TEXT MINING STATISTICAL MODELING OF TEXTUAL DATA LECTURE 1

Mattias Villani

Division of Statistics

Dept. of Computer and Information Science
Linköping University

OVERVIEW 'STATISTICS FOR TEXTUAL DATA'

- ▶ Lecture 1
 - ► Language models and n-grams
 - Smoothing
 - Part-of-speech tagging
- ► Lecture 2
 - Text classification
- ▶ Lecture 3
 - Topic models

LANGUAGE MODELS - PREDICT THE NEXT WORD

LANGUAGE MODELS

- Let w_i denote the *i*th word in a sentence. Let $w_1^k = w_1 w_2 \cdots w_k$ denote a sentence of k words.
- ► The probability of a sentence

$$p(w_1^n) = p(w_1) \cdot p(w_2|w_1)p(w_3|w_1^2) \cdots p(w_n|w_1^{n-1})$$

Probability distribution over the next word in a sentence:

$$p(w_k|w_1^{k-1})$$

► Example:

$$p(\text{mall}|\text{I like to go to the}) = 0.2$$

 $p(\text{school}|\text{I like to go to the}) = 0.001$

▶ Add beginning of sentence tags <s>.

UNIGRAM MODELS

▶ Bag-or-words model (unigram) ignores the previous words:

$$p(w_n|w_1,...,w_{n-1}) = p(w_n)$$

 $ho(w_n)$ can be estimated by the relative frequency of the word w_n among all N words in the training corpus (maximum likelihood, ML).

$$\hat{p}_{ML}(w_n) = \frac{C(w_n)}{N}$$

▶ Simulating a text from a bag-of-words model gives rubbish.

LANGUAGE MODELS - NGRAMS

► The bigram model

$$p(w_n|w_1,...,w_{n-1}) = p(w_n|w_{n-1})$$

► MI estimate:

$$\hat{\rho}(w_n|w_{n-1}) = \frac{\text{Number of times word } w_n \text{ follows directly after } w_{n-1}}{\text{Number of times } w_{n-1} \text{appears in the text}}$$

Alternative formulation

$$\hat{\rho}(w_n|w_{n-1}) = \frac{C(w_{n-1}, w_n)}{C(w_{n-1})}$$

- ► The bigram language model can therefore be estimated from unigram and bigram counts.
- ▶ Trigram model: $p(w_n|w_{n-1}, w_{n-2})$ and so on.

NGRAM MODELS IN NLTK

- ▶ nltk.bigrams()
- ▶ nltk.trigrams()
- ▶ nGramModel = nltk.NgramModel(2,text7) # Training a bigram model from text7
- ▶ nGramModel.generate(num_words=50) # Simulate a text with 50 words from the model.

THE SPARSITY PROBLEM - UNIGRAM CASE

Maximum likelihood estimator (MLE) for unigram model:

$$\hat{p}_{ML}(w_n) = \frac{C(w_1)}{N}$$

where N is the number of words in training corpus.

Problem with MLE: words not in training corpus are deemed impossible!

$$C(w_1) = 0 \Rightarrow \hat{p}_{ML}(w_n) = 0$$

► Fixing the MLE: add-one smoothing (Laplace smoothing)

$$Pr_{Lap}(w_1) = \frac{C(w_1) + 1}{N + V},$$

where V is the number of words in vocabulary.

Evaluating language models by Perplexity (PP)

$$PP = \sqrt[N]{\frac{1}{P(w_1 w_2 \cdots w_N)}} = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 \cdots w_{i-1})}}$$

THE SPARSITY PROBLEM - NGRAMS

- ▶ **Bigrams** looks for pairs of consequtive words w_1w_2 . The number of possible outcomes is now $B = V^2$.
- ▶ n-grams can have a **huge outcome space** $B = V^n$. Lots of n-grams are unseen in training corpus. **Sparsity** problems!
- ► Add-one smoothing for n-grams

$$Pr_{Lap}(w_1w_2\cdots w_n)=\frac{C(w_1w_2\cdots w_n)+1}{N+B},$$

where $C(w_1w_2\cdots w_n)$ is the number of n-grams $w_1w_2\cdots w_n$ in the training corpus.

▶ But who put the 1 in add-one smoothing?

LIKELIHOOD INFERENCE FOR MULTINOMIAL DATA

- ▶ Data: $y = (n_1, ...n_B)$, where n_b counts the number of observations in the bth category. $\sum_{i=1}^{B} n_i = N$.
- Example: A recent survey among consumer smartphones owners in the U.S. showed that among the N = 513 respondents:
 - $ho n_1 = 180$ owned an iPhone
 - $n_2 = 230$ owned an Android phone
 - $ightharpoonup n_3 = 62$ owned a Blackberry phone
 - $ightharpoonup n_4 = 41$ owned some other mobile phone.
- ▶ Let $\theta_1 = Pr(\text{owns iPhone}), \theta_2 = Pr(\text{owns Android})$ etc
- Likelihood

$$p(n_1, n_2, ..., n_B | \theta_1, \theta_2, ..., \theta_B) = const \cdot \prod_{j=1}^B \theta_j^{n_j}$$

► Maximum likelihood (ML) estimator

$$\hat{\theta}_b = \frac{n_b}{N}$$

BAYESIAN SMOOTHING FOR MULTINOMIAL DATA

Maximum likelihood (ML) estimator

$$\hat{\theta}_b = \frac{n_b}{N}$$

- ▶ ML problematic when data is sparse. $n_b = 0 \Rightarrow \hat{\theta}_b = 0$.
- ▶ Smoothing using a Bayesian prior.
- ▶ Prior: $\theta \sim \text{Dirichlet}(\alpha_1, ..., \alpha_B)$ with density

$$p(\theta_1, \theta_2, ..., \theta_B) \propto \prod_{i=1}^B \theta_j^{\alpha_j - 1}.$$

Expected value and **variance** of the *Dirichlet* $(\alpha_1, ..., \alpha_B)$ distribution

$$E(\theta_b) = \frac{\alpha_b}{\sum_{j=1}^{B} \alpha_j} \qquad V(\theta_b) = \frac{E(\theta_b) [1 - E(\theta_b)]}{1 + \sum_{j=1}^{B} \alpha_j}$$

▶ Note that $\sum_{i=1}^{B} \alpha_i$ is a **precision** parameter.

BAYESIAN SMOOTHING FOR MULTINOMIAL DATA

► Posterior distribution (Likelihood ×Prior)

Posterior:
$$\theta | n_1, ..., n_B \sim \text{Dirichlet}(n_1 + \alpha_1, ..., n_B + \alpha_B)$$

► Posterior expected value

$$E(\theta_b|n_1, ..., n_B) = \frac{n_b + \alpha_b}{N + \sum_{j=1}^B \alpha_j}$$

► Add-one (Laplace) smoothing obtained with uniform prior $\alpha_1 = ... = \alpha_B = 1$

$$E(\theta_b|n_1, ..., n_B) = \frac{n_b + 1}{N + B}$$

where $B = V^n$.

- ▶ Not a great solution when *B* >> *N*. Too much probability mass on unseen words.
- ▶ Uniform prior distribution over all n-grams is stupid.

OTHER SMOOTHING METHODS

▶ Linear interpolation combines trigram, bigram and unigrams:

$$\hat{p}_{LI}(w_n|w_{n-1},w_{n-2}) = \lambda_1 \hat{p}(w_n|w_{n-1},w_{n-2}) + \lambda_2 \hat{p}(w_n|w_{n-1}) + \lambda_3 \hat{p}(w_n)$$

- ▶ The parameters λ_1 , λ_2 and λ_3 can be chosen by cross-validation.
- ▶ Katz back-off N-gram model: use N-gram if available, otherwise back-off to N-1 gram:

$$\hat{\rho}_{katz}(w_n|w_{n-N+1}^{n-1}) = \left\{ \begin{array}{cc} \hat{\rho}(w_n|w_{n-N+1}^{n-1}) & \text{if } C(w_{n-N+1}^n) > 0 \\ \alpha(w_{n-N+1}^{n-1}) \cdot \hat{\rho}_{katz}(w_n|w_{n-N+2}^{n-1}) & \text{otherwise} \end{array} \right\}$$

► Class-based N-grams: use word classes to better distribute probability mass to unseen trigrams. Verb-Verb is not a likely sequence.

PART-OF-SPEECH TAGGING

- Part-of-Speech (POS) or word classes verb, noun, adjective, preposition etc:
- Examples from 45-tag Penn Treebank:
 - ▶ JJ **Adjective**. JJR comparative. JJS superlative
 - ► NN **Noun**, singular or mass, NNS plural NNP Proper noun, singular NNPS Proper noun, plural
 - ▶ VB **Verb**, base form. VBD past tense.
- ▶ Brown corpus in NLTK: The/at Fulton/np-tl County/nn-tl Grand/jj-tl Jury/nn-tl said/vbd Friday/nr ...
- nltk.corpus.brown.tagged_words(simplify_tags=True): [('The', 'DET'), ('Fulton', 'N'), ('County', 'N'), ...]
- ▶ nltk.pos_tag(myText) [first nltk.word_tokenize(myText)]

A PROBABILISTIC MODEL FOR POS TAGGING

▶ POS tagging: determine the sequence of POS tags

$$t_1^n = t_1 t_2 \cdots t_n$$

for the words in the sentence

$$w_1^n = w_1 w_2 \cdots w_n$$

► Note: each word gets a POS tag

$$w_1$$
 w_2 \cdots w_n t_1 t_2 \cdots t_n

► Aim: posterior distribution of the tags

$$p(t_1^n|w_1^n)$$

Or perhaps sufficient with posterior mode

$$\underset{t_1^n}{\operatorname{argmax}} \, p(t_1^n | w_1^n)$$

A PROBABILISTIC MODEL FOR POS TAGGING, CONT.

Bayes theorem:

$$\rho(t_1^n|w_1^n) = \frac{\rho(w_1^n|t_1^n)\rho(t_1^n)}{\rho(w_1^n)}$$

▶ Since $p(w_1^n)$ does not depend on t_1^n , we can use

$$p(t_1^n|w_1^n) \propto p(w_1^n|t_1^n)p(t_1^n)$$

- ▶ Problem: outcome space of t_1^n is enormous. Example: n = 5 with 45-tag set: $45^5 = 184528125$.
- ► Example

	- 1	am	great	at	grammar	$p(t_1^n w_1^n)$
	t_1	t_2	<i>t</i> ₃	t_4	t_5	0.001
1	JJ	VB	JJ	VB	VBD	0.002
2	VB	VB	JJ	JJ	VBD	0.002
3	NN	JJ	NNP	VB	JJ	0.005
:	÷	:	:	:	:	:
45 ⁵	JJ	VB	DT	VB	NN	0.003
	T -TT\	Transport August 1				

A PROBABILISTIC MODEL FOR POS TAGGING, CONT.

- ▶ Two simplifying assumptions makes the problem manageable.
- ► Assumption 1: each word depends only on its tag:

$$p(w_1^n|t_1^n) = \prod_{i=1}^n p(w_i|t_i)$$

► Assumption 2: Bigram assumption for the tags:

$$\rho(t_1^n) = \prod_{i=1}^n \rho(t_i | t_{i-1})$$

► Hidden Markov model (HMM).

MARKOV MODEL FOR POS TAGS - HMM MODEL

OBSERVATION LIKELIHOODS - HMM MODEL

PART-OF-SPEECH TAGGING, CONT.

The POS prior

$$p(t_1^n) = \prod_{i=1}^n p(t_i|t_{i-1})$$

can be estimated as a bigram model from a tagged corpus.

▶ The word distribution $p(w_i|t_i)$ can be estimated by

$$\hat{\rho}(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

▶ The solution to the prediction (parsing) problem

$$\operatorname{argmax}_{t_1^n} p(t_1^n | w_1^n)$$

can be found by the Viterbi algorithm.

- NLTK: nltk.parse.viterbi(myText)
- ▶ Gibbs sampling can be used to draw samples from the posterior

$$p(t_1^n|w_1^n)$$