1 Amplificador

Se construyó el amplificador de la figura 1. Tal como se observa en ella, el circuito es un colector común con una fuente de corriente, cuyo objetivo es polarizar y ser carga activa.

Figura 1: Amplificador

Los valores de los compoenetes del circuito, son los indicados en la siguiente tabla

Componente	Valor
R_s	560Ω
R_L	$2.2K\Omega$
R_b	$680K\Omega$
R_1	$10K\Omega$
C	1uF
V_{pol}	20V
$Q_1 = Q_2 = Q_3$	BC547

Table 1: Tabla de componentes

Las caracterisiticas de los transistores son las siguientes ¹:

hfe(DC)	hfe(AC)	V_A
110	165	98v

Table 2: Caracterisiticas de los transistores

 $^{^{1}} Datasheet \ del \ BC547: \ Sparkfun.com. \ (2018). \ [online] \ Disponible \ en: \ https://www.sparkfun.com/datasheets/Components/BC546.pdf [Accedido 10 Nov. 2018].$

1.1 Análisis del amplificador

En esta sección se analizara la polarización y las características de pequeñas señales del amplificador.

1.1.1 Polarización

Para analizar la polarización del circuito, se pasivaran las fuentes del alterna. Lo primero a calcular es la fuente de corriente de la figura 2.

Figura 2: Fuente de corriente constante

Suponiendo que Q_2 y Q_3 son transistores iguales, tambien sus corrientes de base son iguales, por ende sus corriente de colector también lo son, y asumiendo que la corriente de base es despreciable frente a la de colector, entonces $I_{out} = I_{ref}$.

Recorriendo la malla de entrada de Q_3 obtenemos que:

$$I_{ref} = \frac{V_{pol} - V_{be}}{R_1} \tag{1}$$

Conociendo las características de la fuente de corriente, se analizara la polarización del circuito:

Figura 3: Polarizacion del amplificador

 $\mathrm{Como}\,I_e=I_o$ y I_o se obtiene a partir de la ecuación 1, entonces:

$$I_e = (hfe + 1) Ib = I_o \tag{2}$$

despejando I_b se obtiene:

$$I_b = \frac{I_o}{hfe + 1} \tag{3}$$

$$I_c \cong I_o \tag{4}$$

La tensión colector emisor se puede calculcar de la siguiente manera:

$$V_c = V_{pol} \tag{5}$$

$$V_e = V_{pol} - R_b I_b - V_{be} \tag{6}$$

restando ambas expresiones obtenemos,

$$V_{ce} = I_b R_b + V_{ce} \tag{7}$$

Finalemnete reemplazando con los valores de los compoenentes, tabla $1 \ y \ 2$, obtenemos :

$$I_b = 17.5uA$$

$$I_c = 1.93mA$$

$$V_{ce} = 12.6V$$