

TASK 1

RAZAN SALMAN

NEDAL ALTITI

LAITH RASHEED

O UTLINES

PROBLEM DEFINITION

PROBLEM STRUCTURE

FEATURES

HYPOTHESIS

RECOMMENDATION

PROBLEM DEFINITION

PROBLEM DEFINITION

INITIAL SITUATION

Dataset that includes details about fiber customers, demographics, subscription technical information, and contract type

PROBLEM DEFINITION

PROJECT SCOPE/ USE CASE

- 1. OUR OBJECTIVE
- 2. BUISSNIS OBJECTIVE

OUR OBJECTIVE

identify customers who are at risk of churning and check their loyalty and satisfaction

BUISSNES OBJECTIVE

REDUCE THE CHURN RATE AND IMPROVING CUSTOMER RETENTION

What is the churn rate?

"Churn rate is a metric used to measure the rate at which customers or subscribers discontinue using a company's products or services over a given period of time"

What is the churn rate?

"Churn rate is a metric used to measure the rate at which customers or subscribers discontinue using a company's products or services over a given period of time"

REASONS

- 1- CUSTOMER DIES OR GOES OUT OF BUSINESS.
- 2- JUST DO NOT ACHIEVE THEIR DESIRED OUTCOME.

What is the churn rate?

"Churn rate is a metric used to measure the rate at which customers or subscribers discontinue using a company's products or services over a given period of time"

CHURN RATE CALCULATION

CHURN RATE CAPTURES THE NUMBER OF PEOPLE WE RETAIN AT THE END OF A TIME PERIOD.

CHURN RATE =

CUSTOMERS AT START OF USAGE INTERVAL – CUSTOMERS AT END OF USAGE INTERVAL

CUSTOMERS AT START OF USAGE INTERVAL

What is the churn rate?

"Churn rate is a metric used to measure the rate at which customers or subscribers discontinue using a company's products or services over a given period of time"

SOLUTIONS

PROBLEM DEFINITION

SUCCESS CRITERIA

in general, an **annual** churn rate of 5% is seen as a reasonable benchmark

PROBLEM STRUCTURE

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

FRAME THE PROBLEM

GET THE DATA

EDA

MISINTERPRETAT ION SOME FEATURES

MISSING VALUES

OUTLIERS AND VARIATION

IMBALANCE DATA CATEGOR-ICAL DATA

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

FRAME THE PROBLEM

GET THE DATA

EDA

MISINTERPRETAT ION SOME FEATURES

MISSING VALUES

OUTLIERS AND VARIATION

IMBALANCE DATA

CATEGOR-ICAL DATA

- 1. SEARCH
- 2. ASK EXPERTS
- 3. CASE STUDIES

1. Structured

- 2. MAR
- 3. MNAR

1. Transformation

- 2. Modeling
- 3- Normalization

Non representative

2. skewness

Encoding to convert them to numerical values

15

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

MISSING VALUES

	columns	number o	of missing	values
0	OF_PREV_SPEED			74714
1	GB_TOTAL_CONSUMPTION_Month3			4242
2	Disconnection_TOTAL_MAX_day			625
3	Disconnection_TOTAL_MIN_day			625
4	Disconnection_TOTAL_SUM_Month			625
5	Disconnection_TOTAL_MEAN_Month			625
6	GB_TOTAL_CONSUMPTION_Month2			367
7	GOVERNORATE			323
8	GB_TOTAL_CONSUMPTION_Month1			155
9	CUSTOMER_GENDER			54
10	LAST_LINK_QUALITY			28
11	LAST_LINK_STATUS			28
12	LAST_POWER_VALIDATION			28
13	LAST_LINK_PRIORITY			28

We have 82,467 missing values in total

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

MISSING VALUES

Methods to handle the missing values

Numerical Variable

- 1- delete the missing values >
- 2- using the mean x
- 3- using the median, better for outlier and skewness
- 4- iterative imputation

Categorical Variable

- 1- delete the missing values
- 2- impute the missing values with most frequent variable
- 3- iterative imputation

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

Categorical data

Methods to handle categorical data

- 1- OneHotEncoding, e.g "Gender, Migration Flag".
- 2- LabelEncoding, e.g "age group".

OneHotEncoding

TARGET	F	M
0	0	1
1	1	0

LabelEncoding

AGE GROUP	CATEGORICAL	TARGET
CHILD	1	1
TENEEAGER	2	1
ADULT	3	0
SENIOR	4	0

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

FRAME THE PROBLEM

GET THE DATA

EDA

MISINTERPRETAT ION SOME FEATURES

- 1. SEARCH
- 2. ASK EXPERTS
- 3. CASE STUDIES

MISSING VALUES

- 1. Structured
- 2. MAR
- 3. MNAR

OUTLIERS AND VARIATION

- 1. Transformation
- 2. Modeling
- 3- Normalization

IMBALANCE DATA

- Non representative
- 2. skewness

CATEGOR-ICAL DATA

Encoding to convert them to numerical values

21

PROBLEM STRUCTURE

"WHAT COULD BE THE KEY ELEMENT OF THE PROBLEM?"

FRAME THE PROBLEM

GET THE DATA

EDA

MISINTERPRETAT
ION SOME
FEATURES

MISSING VALUES

OUTLIERS AND VARIATION

IMBALANCE DATA

CATEGOR-ICAL DATA

DATA GAB

DATA GAB

GARBAGE IN, GARBAGE OUT

Bad Data

Great Model

Bad Prediction

CODING FRAME THE PROBLEM **ACADEMY BY** ORANGE **GET THE DATA** TASK 1 EDA DATA GAB **VISUALIZATION EXPLORE DIFFERENT MODELS** FINE TUNNING THE MODEL **EVALUATION METRICS** COMBINING PRECISION AND RECALL, F1 SCORE, AREA UNDER CURVE ROC PRESENT SOLUTION

FEATURES

HYPOTHESIS

OF SPEED

HYPOTHESIS

The probability of a male customer to be churned is higher than the probability of a female customer to be churned

WRONG

HYPOTHESIS

Churned Customers Who Either Upgraded Their Contract Or Not

n: did not upgrade

y: upgraded

Customers who don't perform migration flag (n), have a higher probability to being churned

Migration Flag: The customers who upgraded their contract

HYPOTHESIS

Churned Customers Who Either Renewed Their Contracts Or Not

Customers who don't commit with their contract period are most likely to being churned more than the customers who commit with their contract period

320

300

280

260

240

220

80

60

40

20

% of Total Count Of Customers With Orange Months

320

Churned Customers In Jordan

Higher churned customers are from West Amman

WE CAN NOT PROVE IT

HYPOTHESIS

Churned Customers vs contract type

Customers with 24 months contract type are having higher probability to churn

30

HYPOTHESIS

400

350

75.91%

Churned Customers age group

Teenager 19-25 Adult 25-60 Seniors

5.74%

Above 60

Adults are the "age group" that churned the most

CORELATION MATRIX HEATMAP

Future work

- 1- track down who participated in the data collection and who made the data.
- 2-collecting more features for our customers
 - time-based features to capture the patterns and trends in customer behavior over time.
 - education level, and occupation could provide insights into which customer groups are more likely to churn.
 - customer service interactions, such as the number of complaints or inquiries, can provide insights into customer satisfaction with the service and identify areas for improvement.
 - whether a customer has a spouse or not
- 3- Incorporate unstructured data such as social media or customer service transcripts that can provide insights into customer behavior and attitudes.

RECOMMENDATION

Ensuring the Supply Chain & Technical Departments are providing a high of-speed all the time, and continuous check for any technical issue could lead to disconnection, because these two are the main factors could lead a customer to churn

Offering attractive deals to customers before the end of their contract is a proactive way to prevent churn

it's important to note that churn rate is not the only metric that companies should consider when evaluating customer satisfaction and loyalty. Other factors such as customer engagement, customer lifetime value, and customer referral rates should also be taken into account

accurate measurement of churn rate requires careful consideration of the time interval and definition of churn, as well as the data quality and business context.