# REORDERINGS FOR FILL-REDUCTION GENERAL SPARSE MATRICES

- Minimal degree ordering
- Nested Dissection (ND) ordering
- Complexity of ND for model problems

## Orderings used in direct solution methods

- > Two broad types of orderings used:
- Minimal degree ordering + many variations
- Nested dissection ordering + many variations
- Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node  $\boldsymbol{v}$  of smallest degree. After eliminating node  $\boldsymbol{v}$ , update degrees and repeat.

\_\_\_\_\_ Csci 8314 – February 18, 2014

## Minimal Degree Ordering

At any step i of Gaussian elimination define for any candidate pivot row j

$$Cost(j) = (nz_c(j)-1)(nz_r(j)-1)$$

where  $nz_c(j)=$  number of nonzero elements in column j of 'active' matrix,  $nz_r(j)=$  number of nonzero elements in row j of 'active' matrix.

- $\blacktriangleright$  Heuristic: fill-in at step j is  $\leq cost(j)$
- Strategy: select pivot with minimal cost.
- ➤ Local, greedy algorithm
- Good results in practice.

# $Many\ improvements\ made\ over\ the\ years$

• Alan George and Joseph W-H Liu, THE EVOLUTION OF THE MINIMUM DEGREE ORDERING ALGORITHM, SIAM Review, vol 31 (1989), pp. 1-19.

| Min. Deg. Algorithm              | Storage | Order.  |
|----------------------------------|---------|---------|
|                                  | (words) | time    |
| Final min. degree                | 1,181 K | 43.90   |
| Above w/o multiple elimn.        | 1,375 K | 57.38   |
| Above w/o elimn. absorption      | 1,375 K | 56.00   |
| Above w/o incompl. deg. update   | 1,375 K | 83.26   |
| Above w/o indistiguishible nodes | 1,308 K | 183.26  |
| Above w/o mass-elimination       | 1,308 K | 2289.44 |

 $\blacktriangleright$  Results for a 180 imes 180 9-point mesh problem

- > Since this article, many important developments took place.
- ➤ In particular the idea of "Approximate Min. Degree" and and "Approximate Min. Fill", see
- E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATEGIES FOR BOTTOM-UP SPARSE MATRIX ORDERING, SIMAX, vol. 19 (1998), pp. 682-695.
- Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. AN APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM. SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886-905.

-5 \_\_\_\_\_ Csci 8314 – February 18, 2014

## Practical Minimal degree algorithms

First Idea: Use quotient graphs

- \* Avoids elimination graphs which are not economical
- \* Elimination creates cliques
- \* Represent each clique by a node termed an *element* (recall FEM methods)
- \* No need to create fill-edges and elimination graph
- \* Still expensive: updating the degrees

Sci 8314 – February 18, 2014

## **Second idea:** Multiple Minimum degree

- \* Many nodes will have the same degree. Idea: eliminate many of them simultaneously —
- \* Specifically eliminate independent set of nodes with same degree.

# Third idea: Approximate Minimum degree

- \* Degree updates are expensive -
- \* Goal: To save time.
- \* Approach: only compute an approximation (upper bound) to degrees.
- \* Details are complicated and can be found in Tim Davis' book

# Nested Dissection Reordering (Alan George)

- Computer science 'Divide-and-Conquer' strategy.
- Best illustration: PDE finite difference grid.
- Easily described by using recursivity and by exploiting 'separators': 'separate' the graph in three parts, two of which have no coupling between them. The 3rd set ('the separator') has couplings with vertices from both of the first 2 sets.
- ➤ Key idea: dissect the graph; take the subgraphs and dissect them recursively.
- ➤ Nodes of separators always labeled last after those of the parents

7 \_\_\_\_\_\_ Csci 8314 – February 18, 2014

Csci 8314 - February 18, 2014

Nested dissection ordering: illustration



ightharpoonup For regular n imes n meshes, can show: fill-in is of order  $n^2 \log n$  and computational cost of factorization is  $O(n^3)$ 

How does this compare with a standard band solver?

8-9 \_\_\_\_\_ Csci 8314 – February 18, 2014

## Nested dissection for a small mesh





Second Dissection



Third Dissection



Nested dissection: cost for a regular mesh

- ightharpoonup In 2-D consider an n imes n problem,  $N=n^2$
- ightharpoonup In 3-D consider an n imes n imes n problem,  $N=n^3$

|              | 2-D           | 3-D          |
|--------------|---------------|--------------|
| space (fill) | $O(N \log N)$ | $O(N^{4/3})$ |
| time (flops) | $O(N^{3/2})$  | $O(N^2)$     |

> Significant difference in complexity between 2-D and 3-D

## Nested dissection and separators

- Nested dissection methods depend on finding a good graph separator:  $V = T_1 \cup UT_2 \cup S$  such that the removal of S leaves  $T_1$  and  $T_2$  disconnected.
- $\blacktriangleright$  Want: S small and  $T_1$  and  $T_2$  of about the same size.
- > Simplest version of the graph partitioning problem.

## A theoretical result:

If G is a planar graph with N vertices, then there is a separator S of size  $<\sqrt{N}$  such that  $|T_1|<2N/3$  and  $|T_2|<2N/3$ .

In other words "Planar graphs have  $O(\sqrt{N})$  separators"

Many techniques for finding separators: Spectral, iterative swapping (K-L), multilevel (Metis), BFS, ...

8-13 Csci 8314 – February 18, 2014

## The 2-D model problem

> 2-D finite difference mesh with N vertices.

## Theorem:

With natural ordering, resulting fill-in is  $\Theta(N^{3/2})$ 

## Theorem:

With any ordering, resulting fill-in is  $\Omega(N \log N)$ 

#### Theorem:

With nested dissection ordering, resulting fill-in is  $O(N \log N)$ 

4 \_\_\_\_\_ Csci 8314 – February 18, 2014

## Ordering techniques in practice

- ➤ In practice: Nested dissection (+ variants) is preferred for parallel processing
- ➤ Good implementations of Min. Degree algorithm work well in practice. Currently AMD and AMF are best known implementations/variants/
- ➤ Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.