Design and Analysis of Algorithms Part I: Divide and Conquer

Lecture 4: Maximum Contiguous Subarray Problem

Ke Xu and Yongxin Tong (许可 与 童咏昕)

School of CSE, Beihang University

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

• Divide-and-conquer (D&C) is an important algorithm design paradigm.

 Divide-and-conquer (D&C) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

 Divide-and-conquer (D&C) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

Conquer

Solving each subproblem (directly if small enough or recursively)

• Divide-and-conquer (D&C) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

Conquer

Solving each subproblem (directly if small enough or recursively)

Combine

Combining the solutions of the subproblems into a global solution

- In Part I, we will illustrate Divide-and-Conquer using several examples:
 - Maximum Contiguous Subarray (最大子数组)
 - Counting Inversions (逆序计数)
 - Polynomial Multiplication (多项式乘法)
 - QuickSort and Partition (快速排序与划分)
 - Randomized Selection (随机化选择)
 - Lower Bound for Sorting (基于比较的排序下界)

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned 2+1-4+5+2=6 M\$

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned
$$2+1-4+5+2=6$$
 M\$

Between years 5 and 8:

• ACME earned 5 + 2 - 1 + 3 = 9 M\$

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned
$$2+1-4+5+2=6$$
 M\$

Between years 5 and 8:

• ACME earned
$$5 + 2 - 1 + 3 = 9$$
 M\$

Problem: Find the span of years in which ACME earned the most

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned
$$2+1-4+5+2=6$$
 M\$

Between years 5 and 8:

• ACME earned
$$5 + 2 - 1 + 3 = 9$$
 M\$

如果所有数组元素 都是非负数,整个 数组和肯定是最大

Problem: Find the span of years in which ACME earned the most

Answer: Year 5-8, 9 M\$

¹A Company that Makes Everything

Formal Definition

• Input: An array of reals A[1...n]

Formal Definition

- Input: An array of reals A[1...n]
- The value of subarray A[i...j] is

$$V(i,j) = \sum_{x=i}^{j} A(x)$$

Formal Definition

- Input: An array of reals A[1...n]
- The value of subarray A[i...j] is

$$V(i,j) = \sum_{x=i}^{j} A(x)$$

Definition (Maximum Contiguous Subarray Problem)

Find $i \leq j$ such that V(i,j) is maximized.

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

```
VMAX \leftarrow A[1];
```

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     for j \leftarrow i to n do
          // calculate V(i,j)
          V \leftarrow 0;
          for x \leftarrow i to j do
            V \leftarrow V + A[x];
          end
```

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     for j \leftarrow i to n do
         // calculate V(i,j)
         V \leftarrow 0;
         for x \leftarrow i to j do
           V \leftarrow V + A[x];
         end
         if V > VMAX then
             VMAX \leftarrow V;
         end
    end
end
return VMAX
```

Calculate the value of V(i,j) for each pair $i \leq j$ and return the maximum value

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
    for j \leftarrow i to n do
         // calculate V(i,j)
         V \leftarrow 0;
         for x \leftarrow i to j do
           V \leftarrow V + A[x];
         end
         if V > VMAX then
             VMAX \leftarrow V;
         end
    end
end
return VMAX
```

 $O(n^3)$ arithmetic additions

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

Idea:

don't need to calculate each V(i, j) from scratch

Idea

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

Idea:

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     V \leftarrow 0;
     for j \leftarrow i to n do
          // calculate V(i,j)
          V \leftarrow V + A[j];
```

Idea:

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     V \leftarrow 0:
    for j \leftarrow i to n do
         // calculate V(i,j)
       V \leftarrow V + A[j];
         if V > VMAX then
          | VMAX \leftarrow V;
         end
    end
end
return VMAX
```

Idea:

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
    V \leftarrow 0:
    for j \leftarrow i to n do
         // calculate V(i,j)
       V \leftarrow V + A[j];
        if V > VMAX then
          VMAX \leftarrow V;
         end
    end
end
return VMAX
```

 $O(n^2)$ arithmetic additions

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] $A = A_1 U A_2$

Set
$$m = \lfloor (n+1)/2 \rfloor$$

The MCS S must be one of

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] A = A + 1 + U + A + 2

The MCS S must be one of

• S_1 : the MCS in $A[1 \dots m]$

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] A = A + 1 + U + A + 2

The MCS S must be one of

- **①** S_1 : the MCS in $A[1 \dots m]$
- ② S_2 : the MCS in A[m+1...n]

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] A = A + 1 + U + A + 2

The MCS S must be one of

- \circ S_1 : the MCS in $A[1 \dots m]$
- ② S_2 : the MCS in A[m+1...n]
- A: the MCS across the cut.

A Divide-and-Conquer Algorithm

Set
$$m = \lfloor (n+1)/2 \rfloor$$

The MCS S must be one of

- \circ S_1 : the MCS in $A[1 \dots m]$
- ② S_2 : the MCS in A[m+1...n]
- A: the MCS across the cut.

So,

最终,在S₁,S₂和A(跨越中点的最大子数组)这三种情况中选取和最大者

$$S =$$
the best among $\{S_1, S_2, A\}$

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

• $S_1 =$

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

• $S_1 = [3, 6]$ and $S_2 =$

• $S_1 = [3, 6]$ and $S_2 = [2, 6, 1]$

• $A_1 =$

• $S_1 = [3, 6]$ and $S_2 = [2, 6, 1]$

• $A_1 = [3, 6, -1]$ and $A_2 =$

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 =$

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 = [3, 6, -1, 2, -4, 7]$

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 = [3, 6, -1, 2, -4, 7]$

- $Value(S_1) = 9$; $Value(S_2) = 9$; Value(A) = 13
- solution:

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 = [3, 6, -1, 2, -4, 7]$

- $Value(S_1) = 9$; $Value(S_2) = 9$; Value(A) = 13
- solution: A

Divide: MCS across The Cut

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] $A = A_1 U A_2$

Divide: MCS across The Cut

Set
$$m = \lfloor (n+1)/2 \rfloor$$

$$A = A_1 \cup A_2$$

A₁: MCS among contiguous subarrays ending at A[m]

Divide: MCS across The Cut

Set
$$m = \lfloor (n+1)/2 \rfloor$$

$$A = A_1 \cup A_2$$

- A₁: MCS among contiguous subarrays ending at A[m]
- A_2 : MCS among contiguous subarrays starting at A[m+1]

Conquer: Finding the " A_1 " Subarrays

 A_1 is in the form $A[i \dots m]$, V(i, m) = V(i + 1, m) + A[i]

```
\mathsf{MAX} \leftarrow A[m];
\mathsf{SUM} \leftarrow A[m];
```

Conquer: Finding the " A_1 " Subarrays

 A_1 is in the form $A[i \dots m]$, V(i, m) = V(i + 1, m) + A[i]

```
MAX \leftarrow A[m];
SUM \leftarrow A[m];
for i \leftarrow m-1 downto 1 do
    SUM \leftarrow SUM + A[i];
```

Conquer: Finding the " A_1 " Subarrays

```
A_1 is in the form A[i \dots m], V(i, m) = V(i+1, m) + A[i]
```

```
MAX \leftarrow A[m];
SUM \leftarrow A[m];
for i \leftarrow m-1 downto 1 do
    SUM \leftarrow SUM + A[i];
    if SUM > MAX then
        MAX \leftarrow SUM;
    end
end
```

Conquer: Finding the $''A_1'''$ Subarrays


```
MAX \leftarrow A[m];
SUM \leftarrow A[m];
for i \leftarrow m-1 downto 1 do
    SUM \leftarrow SUM + A[i];
    if SUM > MAX then
        MAX \leftarrow SUM;
    end
end
A_1 = MAX;
```

There are only m sequences of the form

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- There are only m sequences of the form
 - A_1 can be found in O(m) time

• Similarly, A_2 is in the form A[m+1...j]

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences
 - A_2 can be found in O(n-m) time

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences
 - A_2 can be found in O(n-m) time

• $A = A_1 \cup A_2$ can be found in O(n) time

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences
 - A_2 can be found in O(n-m) time

- $A = A_1 \cup A_2$ can be found in O(n) time
 - linear to the input size

MCS(A, s, t)

Input: $A[s \dots t]$ with $s \le t$

Output: MCS of $A[s \dots t]$

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
    if s = t then return A[s];
    else
         m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
         Find MCS(A, s, m);
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
    if s = t then return A[s];
    else
        m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
        Find MCS(A, s, m);
        Find MCS(A, m + 1, t);
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
    else
        m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
        Find MCS(A, s, m);
        Find MCS(A, m + 1, t);
        Find MCS that contains both A[m] and A[m+1];
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
   else
       m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
       Find MCS(A, s, m);
       Find MCS(A, m + 1, t);
       Find MCS that contains both A[m] and A[m+1];
       return maximum of the three sequences found
   end
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
   else
       m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
       Find MCS(A, s, m);
       Find MCS(A, m + 1, t);
       Find MCS that contains both A[m] and A[m+1];
       return maximum of the three sequences found
   end
end
```

MCS(A, s, t)

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
   else
       m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
       Find MCS(A, s, m);
       Find MCS(A, m + 1, t);
       Find MCS that contains both A[m] and A[m+1];
       return maximum of the three sequences found
   end
end
```

First Call: MCS(A, 1, n)

6 -4 7 -4 0 1

6 -4 7 | -4 0 1

Conquer

Divide

Conquer

Divide

 $MCS={6}$ $MCS={-4}$ Conquer $A = \{6, -4\}$ Value(A)=2

Divide

MCS={6} MCS={-4} \A={6,-4} \Value(A)=2 MCS={6} MCS={7}

Conquer

Divide

Conquer

Outline

Introduction to Part I

- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

begin if s = t then return A[s] // O(1)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

$$T(1) = O()$$

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

$$T(1) = O(1)$$

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

To simplify the analysis, we assume that n is a power of 2

$$T(n) = \begin{cases} 2T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

To simplify the analysis, we assume that n is a power of 2

$$T(n) = \begin{cases} 2T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

A O(n³) brute force algorithm

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

- A O(n³) brute force algorithm
- A O(n²) algorithm that reuses data

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

- A O(n³) brute force algorithm
- A O(n²) algorithm that reuses data
- A O(n log n) divide-and-conquer algorithm

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

- A O(n³) brute force algorithm
- A O(n²) algorithm that reuses data
- A O(n log n) divide-and-conquer algorithm

Can you solve the problem in O(n) time?

