Computational Microelectronics Lecture 9 Diffusion

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Diffusion – Electric Field

Two dopants

- Consider B and As.
 - Now, the solution vector is $[C_B(x_0)C_{As}(x_0)C_B(x_1)C_{As}(x_1)...C_B(x_{N-1})C_{As}(x_{N-1})]^T$.
 - In the case of boron,

$$F_{C,i+0.5} = -\frac{D}{\Delta x} \frac{1}{\sqrt{p(x_{i+1}, t_k)p(x_i, t_k)}} \times [C(x_{i+1}, t_k)p(x_{i+1}, t_k) - C(x_i, t_k)p(x_i, t_k)]$$

– Due to n and p, which depend on \mathcal{C}_{AS} – \mathcal{C}_{B} , they are coupled.

Example

- Consider the following initial profiles and conditions.
 - -B: Uniform distribution with a density of 10^{17} cm⁻³. Diffusivity of 1.40 X 10^{-14} cm² sec⁻¹
 - -As: Gaussian profile. Peak at 20 nm. Peak density is 5.0 X 10²¹ cm⁻³. Standard deviation is 9 nm. Diffusivity of 1.47 X 10⁻¹⁵ cm² sec⁻¹

After 10 minutes without electric field effect

- Without the electric field effect,
 - Boron is still uniformly distributed.

After 10 minutes with electric field effect

- With the electric field effect,
 - -Boron is pulled into the N+ region.

HW#9

- Due: AM08:00, October 4
- Problem#1
 - Reproduce the last graph. (You may use an approximate Jacobian matrix.)
- Problem#2
 - Predict the dopant profiles after 30 minutes.

Q&A

Any question?

Lecture 10 is uploaded in my YouTube channel.

• Watch the video. (It is very short, just 16-minutes long.)

Bonani, 1995

 A novel implementation of noise analysis in general-purpose PDE-based semiconductor device simulators

HW#9

Problem#3

 Leave a comment on the YouTube lecture video for Lecture 10. (Your comment will be also used to check the attendance.)

Problem#4

- -I have shown 11 IEDM papers. Select one paper and submit a report on the selected paper. (Of course, you don't have to write a perfect report. Just try to undertstand the main idea.)
- In a case where you have your own favorite IEDM paper, it is okay to review it.

Thank you!