

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn



中国认可 国际互认 校准 CALIBRATION CNAS L0570

Client

CCS\_CN

Certificate No:

Z16-97077

#### **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 817

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 31, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards                | Scheduled Calibration |                                          |                       |  |
|----------------------------------|-----------------------|------------------------------------------|-----------------------|--|
| Power Meter NRP2 101919          |                       | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |  |
| Power sensor NRP-Z91             | 101547                | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |  |
| Reference Probe EX3DV4           | SN 7307               | 19-Feb-16(SPEAG,No.EX3-7307_Feb16)       | Feb-17                |  |
| DAE4 SN 771                      |                       | 02-Feb-16(CTTL-SPEAG,No.Z16-97011)       | Feb-17                |  |
|                                  |                       |                                          |                       |  |
| Secondary Standards              | ID#                   | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |  |
| Signal Generator E4438C          | MY49071430            | 01-Feb-16 (CTTL, No.J16X00893)           | Jan-17                |  |
| Network Analyzer E5071C MY461106 |                       | 26-Jan-16 (CTTL, No.J16X00894)           | Jan-17                |  |
|                                  |                       |                                          |                       |  |

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

resembling the think the second of the second secon

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: Jun 2, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97077

Page 1 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S P C A Q

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97077

Page 2 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

#### S D E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1258 |  |
|------------------------------|--------------------------|-------------|--|
| Extrapolation                | Advanced Extrapolation   |             |  |
| Phantom                      | Triple Flat Phantom 5.1C |             |  |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |  |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |  |
| Frequency                    | 2450 MHz ± 1 MHz         |             |  |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.8 ± 6 %   | 1.81 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |  |
|---------------------------------------------------------|--------------------|---------------------------|--|
| SAR measured                                            | 250 mW input power | 13.0 mW / g               |  |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 51.7 mW /g ± 20.8 % (k=2) |  |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |  |
| SAR measured                                            | 250 mW input power | 6.15 mW / g               |  |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.5 mW /g ± 20.4 % (k=2) |  |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.2 ± 6 %   | 1.94 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                           |  |
|---------------------------------------------------------|--------------------|---------------------------|--|
| SAR measured                                            | 250 mW input power | 12.8 mW/g                 |  |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 51.5 mW /g ± 20.8 % (k=2  |  |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |  |
| SAR measured                                            | 250 mW input power | 6.07 mW/g                 |  |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.4 mW /g ± 20.4 % (k=2) |  |

Page 3 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S D E A O

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.0Ω+ 4.41jΩ |  |  |
|--------------------------------------|---------------|--|--|
| Return Loss                          | - 27,0dB      |  |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.7Ω+ 4.00jΩ |  |  |
|--------------------------------------|---------------|--|--|
| Return Loss                          | - 26.6dB      |  |  |

#### General Antenna Parameters and Design

| Floatrical Dalay (one discation)        |          |
|-----------------------------------------|----------|
| Electrical Delay (one direction)        | 1.269 ns |
| , , , , , , , , , , , , , , , , , , , , |          |
|                                         |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: Z16-97077

Page 4 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

# S P E A Q

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tcl: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 05.31.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.814$  S/m;  $\epsilon r = 38.78$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY5** Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.8 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.15 W/kgMaximum value of SAR (measured) = 19.8 W/kg



0 dB = 19.8 W/kg = 12.97 dBW/kg

Certificate No: Z16-97077

Page 5 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S P C B Q

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

#### Impedance Measurement Plot for Head TSL



Certificate No: Z16-97077

Page 6 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

# S P E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 05.31.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz;  $\sigma = 1.936$  S/m;  $\varepsilon_r = 53.17$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY5** Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.64 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 19.2 W/kg



0 dB = 19.2 W/kg = 12.83 dBW/kg

Certificate No: Z16-97077

Page 7 of 8



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S D C A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Impedance Measurement Plot for Body TSL



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

### D2450V2, Serial No.817 Extended Dipole Calibrations

Per IEEE Std 1528-2003, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended.

#### Justification of the extended calibration

|                        | till oxtollada      | Jan. 10. 10. 10 | ••                         |                |                                 |                |
|------------------------|---------------------|-----------------|----------------------------|----------------|---------------------------------|----------------|
| D2450V2 Serial No.817  |                     |                 |                            |                |                                 |                |
|                        | 2450 Head           |                 |                            |                |                                 |                |
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta<br>(%)    | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 5.31.2016              | -26.988             |                 | 50.995                     | -              | 4.4109                          |                |
| 5.30.2017              | -27.037             | 0.18            | 51.424                     | 0.469          | 3.8285                          | 0.5824         |

| D2450V2 Serial No.817<br>2450 Body |                     |              |                            |                |                                 |                |
|------------------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------|
| Date of<br>Measurement             | Return-Loss<br>(dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 5.31.2016                          | -26.560             |              | 47.743                     |                | 4.0044                          |                |
| 5.30.2017                          | -26.006             | 2.09         | 49.534                     | 1.791          | 5.1394                          | 1.135          |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Dipole Verification Data D2450V2 Serial No.817 2450 MHz-Head







Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

2450 MHz-Body







Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

lac MRA CNA



Client

CCS CN

Certificate No:

Z16-97078

#### CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1095

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 25, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)'C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| ReferenceProbe EX3DV4   | SN 7307    | 19-Feb-16(SPEAG,No.EX3-7307_Feb16)       | Feb-17                |
| DAE4                    | SN 771     | 02-Feb-16(CTTL-SPEAG,No.Z16-97011)       | Feb-17                |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 01-Feb-16 (CTTL, No.J16X00893)           | Jan-17                |
| NetworkAnalyzer E5071C  | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894)           | Jan-17                |
|                         |            |                                          |                       |

Name

Function

Signature

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: May 31 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97078

Page 1 of 16



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97078

Page 2 of 16



# Compliance Certification Services(KunShan)Inc.Date of Issue: September 26, 2017Report No .: C170628R01

Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Measurement Conditions

| ASY system configuration, as far as | not given on page 1.                                                                             |                                  |
|-------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| DASY Version                        | DASY52                                                                                           | 52.8.8.1258                      |
| Extrapolation                       | Advanced Extrapolation                                                                           |                                  |
| Phantom                             | Triple Flat Phantom 5.1C                                                                         |                                  |
| Distance Dipole Center - TSL        | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution                | dx, dy = 4 mm, dz = 1.4 mm                                                                       | Graded Ratio = 1.4 (Z direction) |
| Frequency                           | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

#### Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.8 ± 6 %   | 4.61 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 7.76 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 77.9 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.21 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.2 mW /g ± 22.2 % (k=2) |

Certificate No: Z16-97078

Page 3 of 16



# Compliance Certification Services(KunShan)Inc.Date of Issue: September 26, 2017Report No .: C170628R01

Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

#### Head TSL parameters at 5300 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.7 ± 6 %   | 4.71 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 8.07 mW/g                 |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 81.0 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.30 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.1 mW /g ± 22.2 % (k=2) |

#### Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.4 ± 6 %   | 4.91 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 8.22 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 82.5 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.33 mW/g                 |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.4 mW /g ± 22.2 % (k=2) |



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

| The following parameters and calculations is a | Temperature     | Permittivity | Conductivity     |
|------------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                    | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters                   | (22.0 ± 0.2) °C | 36.3 ± 6 %   | 5.01 mho/m ± 6 % |
| Head TSL temperature change during test        | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 8.19 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 82.2 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.33 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.4 mW /g ± 22.2 % (k=2) |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.1 ± 6 %   | 5.17 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm³ (1 g) of Head TSL               | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 7.83 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 78.6 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.20 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.1 mW /g ± 22.2 % (k=2) |

Certificate No: Z16-97078 Page 5 of 16



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Body TSL parameters at 5200 MHz

he following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.4 ± 6 %   | 5.39 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL | Condition          |                           |
|----------------------------------------------|--------------------|---------------------------|
| SAR measured                                 | 100 mW input power | 7.47 mW / g               |
| SAR for nominal Body TSL parameters          | normalized to 1W   | 74.5 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm³ (10 g) of Body TSL  | Condition          |                           |
| SAR measured                                 | 100 mW input power | 2.14 mW / g               |
| SAR for nominal Body TSL parameters          | normalized to 1W   | 21.4 mW /g ± 22.2 % (k=2) |

#### Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.3 ± 6 %   | 5.51 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 $\ cm^3$ (1 g) of Body TSL          | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 7.74 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 77.2 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.20 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.0 mW /g ± 22.2 % (k=2) |



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 49.1 ± 6 %   | 5.58 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL            | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 8.10 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 81.1 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.36 mW/g                 |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.7 mW /g ± 22.2 % (k=2) |

#### Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 49.0 ± 6 %   | 5.70 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         | ****         |                  |

#### SAR result with Body TSL at 5600 MHz

| Troodic Williamody Top at 0000 minz                     |                    |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR averaged over 1 $cm^3$ (1 g) of Body TSL            | Condition          |                           |
| SAR measured                                            | 100 mW input power | 7.97 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 79.8 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.26 mW/g                 |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.7 mW /g ± 22.2 % (k=2) |



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S P E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

#### Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

| g parameter and a second                | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.7 ± 6 %   | 5.93 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 7.71 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 77.2 mW /g ± 23.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 100 mW input power | 2.17 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.8 mW /g ± 22.2 % (k=2) |

Certificate No: Z16-97078

Page 8 of 16



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Appendix

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 49.2Ω - 5.46jΩ |
|--------------------------------------|----------------|
| Return Loss                          | - 25.1dB       |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 47.2Ω - 3.86jΩ |
|--------------------------------------|----------------|
| Return Loss                          | - 26.2dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 53.4Ω - 5.61jΩ |  |  |
|--------------------------------------|----------------|--|--|
| Return Loss                          | - 23.9dB       |  |  |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed p | oint 56.6Ω - 1.04jΩ |
|----------------------------------|---------------------|
| Return Loss                      | - 24.0dB            |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 53.0Ω - 6.28jΩ |  |  |  |
|--------------------------------------|----------------|--|--|--|
| Return Loss                          | - 23.4dB       |  |  |  |

#### Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 49.5Ω - 3.51jΩ |  |  |
|--------------------------------------|----------------|--|--|
| Return Loss                          | - 29.0dB       |  |  |

#### Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 47.7Ω - 1.89jΩ |  |  |  |
|--------------------------------------|----------------|--|--|--|
| Return Loss                          | - 30.4dB       |  |  |  |



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 54.0Ω - 3.83jΩ |
|--------------------------------------|----------------|
| Return Loss                          | - 25.5dB       |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 59.3Ω + 0.88jΩ |
|--------------------------------------|----------------|
| Return Loss                          | - 21.4dB       |

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 55.1Ω - 6.15jΩ |  |  |
|--------------------------------------|----------------|--|--|
| Return Loss                          | - 22.4dB       |  |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.308 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: Z16-97078 Page 10 of 16



Report No .: C170628R01-B-SF

Date: 05.23.2016

Date of Issue: September 26, 2017



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1095

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz;  $\sigma$  = 4.614 mho/m;  $\epsilon r$  = 36.82;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5300 MHz;  $\sigma$  = 4.713 mho/m;  $\epsilon r$  = 36.71;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5500 MHz;  $\sigma$  = 4.911 mho/m;  $\epsilon r$  = 36.41;

 $\rho$  = 1000 kg/m3, Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.911 mno/m;  $\epsilon$ r = 36.41;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.006 mho/m;  $\epsilon$ r = 36.27;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5800 MHz;  $\sigma$  = 5.171 mho/m;  $\epsilon$ r = 36.05;  $\rho$  = 1000 kg/m3,

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(5.32,5.32,5.32); Calibrated: 2016/2/19, ConvF(5.02,5.02,5.02); Calibrated: 2016/2/19, ConvF(4.85,4.85,4.85); Calibrated: 2016/2/19, ConvF(4.52,4.52,4.52); Calibrated: 2016/2/19, ConvF(4.45,4.45,4.45); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.75 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.42 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.3 W/kgMaximum value of SAR (measured) = 19.5 W/kg

Certificate No: Z16-97078

Page 11 of 16

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.44 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 36.1 W/kg

SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.13 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 19.3 W/kg



0 dB = 19.3 W/kg = 12.86 dBW/kg

Certificate No: Z16-97078

Page 12 of 16



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.en

#### Impedance Measurement Plot for Head TSL



Certificate No: Z16-97078

Page 13 of 16



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 05.25.2016



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1095

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz;  $\sigma$  = 5.391 mho/m;  $\epsilon$  = 48.36;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5300 MHz;  $\sigma$  = 5.513 mho/m;  $\epsilon$  = 48.26;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5500 MHz;  $\sigma$  = 5.582 mho/m;  $\epsilon$  = 49.14;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.703 mho/m;  $\epsilon$  = 49.04;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5800 MHz;  $\sigma$  = 5.932 mho/m;  $\epsilon$  = 48.71;  $\rho$  = 1000 kg/m3,

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(4.48,4.48,4.48); Calibrated: 2016/2/19, ConvF(4.29,4.29,4.29); Calibrated: 2016/2/19, ConvF(3.97,3.97,3.97); Calibrated: 2016/2/19, ConvF(3.72,3.72,3.72); Calibrated: 2016/2/19, ConvF(3.91,3.91,3.91); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.16 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.52 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Certificate No: Z16-97078 Page 14 of 16



Add; No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.84 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.68 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.24 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.2 W/kg



0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: Z16-97078

Page 15 of 16



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



In Collaboration with

S D C A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

#### Impedance Measurement Plot for Body TSL



Certificate No: Z16-97078

Page 16 of 16

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

### D5GHzV2, Serial No.1095 Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement

Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended.

#### Justification of the extended calibration

| D5GHzV2 Serial No.1095 |            |                     |              |                            |                |                                 |                |
|------------------------|------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------|
|                        | Head       |                     |              |                            |                |                                 |                |
| Date of Me             | easurement | Return<br>Loss (dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 5200MHz                | 5.25.2016  | -25.102             |              | 49.185                     |                | -5.4603                         |                |
| 5200WHZ                | 5.23.2017  | -23.827             | 5.08         | 48.677                     | 0.508          | -5.2048                         | 0.2555         |
| 5300MHz                | 5.25.2016  | -26.188             |              | 47.200                     |                | -3.8631                         |                |
| 5.23.201               | 5.23.2017  | -27.825             | 6.25         | 46.373                     | 0.827          | -3.9051                         | 0.042          |
| 5500MHz                | 5.25.2016  | -23.945             |              | 53.440                     |                | -5.6064                         |                |
| 3300MHZ                | 5.23.2017  | -25.614             | 6.97         | 51.413                     | 2.027          | -5.6890                         | 0.0826         |
| ECONALI-               | 5.25.2016  | -24.034             |              | 56.621                     |                | -1.0375                         |                |
| 5600MHz 5.23           | 5.23.2017  | -24.251             | 0.90         | 55.234                     | 1.387          | -1.4716                         | 0.4341         |
| 5800MHz                | 5.25.2016  | -23.416             |              | 53.000                     |                | -6.2849                         |                |
| JOUUIVIF1Z             | 5.23.2017  | -25.872             | 10.5         | 54.861                     | 1.861          | -6.7383                         | 0.4534         |

| D5GHzV2 Serial No.1095 |            |                     |              |                            |                |                                 |                |
|------------------------|------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------|
|                        | Body       |                     |              |                            |                |                                 |                |
| Date of Me             | easurement | Return<br>Loss (dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 5200MHz                | 5.25.2016  | -28.955             | -            | 49.469                     |                | -3.5100                         |                |
| 3200WHZ                | 5.23.2017  | -28.384             | 1.97         | 50.314                     | 0.845          | -3.5312                         | 0.0212         |
| E200MU-7               | 5.25.2016  | -30.378             |              | 47.724                     |                | -1.8910                         |                |
| 5300MHz 5.23.201       | 5.23.2017  | -31.358             | 3.22         | 46.806                     | 0.918          | -1.5284                         | 0.3626         |
| 5500MHz                | 5.25.2016  | -25.463             |              | 54.013                     |                | -3.8327                         |                |
| 5500WITZ               | 5.23.2017  | 24.064              | 5.49         | 52.539                     | 1.474          | -3.5216                         | 0.3111         |
| F600MH-                | 5.25.2016  | -21.389             |              | 59.271                     |                | 0.8789                          |                |
| 5600MHz 5.2            | 5.23.2017  | -22.755             | 6.39         | 58.225                     | 1.046          | 0.8415                          | 0.0374         |
| E900MUz                | 5.25.2016  | -22.374             |              | 55.140                     |                | -6.1476                         |                |
| 5800MHz                | 5.23.2017  | -23.183             | 3.62         | 55.119                     | 0.021          | -6.6894                         | 0.5418         |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Dipole Verification Data D5GHzV2 Serial No.1095

D5GHzV2-Head





Dipole Verification Data D5GHzV2 Serial No.1095 D5GHzV2-Body

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF



