PATENT, ABSTRACTS OF JAPAN

(11)Publication number:

62-097638

(43)Date of publication of application: 07.05.1987

(51)Int.CI.

B01J 13/02 B01F 17/52 B41M 5/12

(21)Application number : 60-240146

(71)Applicant: KANZAKI PAPER MFG CO LTD

(22)Date of filing:

25.10.1985

(72)Inventor: SHIOI SHUNSUKE

SHINKOU KAZUYUKI TAJIRI MASANAO MIYAKE AKIRA

(54) PREPARATION OF MICROCAPSULE

(57)Abstract:

PURPOSE: To enhance the holdability of a core substance, by preparing a microcapsule by the polycondensation of a hydrophilic melamine-formaldehyde resin precondensate contained in water containing an emulsifier comprising a specific copolymer.

CONSTITUTION: 85mol% or more of an unsaturated basic acid monomer, a hydrophobic monomer and a hydrophilic monomer other than carboxylic acid are reacted to produce a copolymer which is, in turn, used as an emulsifier. A hydrophilic melamine—formaldehyde resin precondensate contained in water or a hydrophilic medium containing said emulsifier is subjected to polycondensation and a hydrophobic core substance is coated with the resulting polycondensate to prepare a microcapsule. The content of the hydrophobic monomer is pref. 15W1mol% and the pref. content of the hydrophilic monomer other than carboxylic acid is 18W0.5mol%. The emulsifier is contained in the hydrophilic medium in an amount of 0.1% or more from the aspect of the stability of an emulsion.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19日本国特許庁(IP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62-97638

@Int.Cl.4

識別記号

1 1 2.

广内整理番号

❷公開 昭和62年(1987)5月7日

B 01 J 13/02 B 01 F 17/52

5/12

C-8317-4G

8317-4G

6906-2H 審査請求 未請求 発明の数 1 (全6頁)

の発明の名称

B 41 M

マイクロカプセルの製造方法

②特 願 昭60-240146

四出 願 昭60(1985)10月25日

⑦発 明 者 ⑫発 明 者

明

顖 人

⑫発 明

⑫発

砂出

俊 介

巫

之

盲

亮

尼崎市常光寺元町1丁目11 神崎製紙株式会社神崎工場内 尼崎市常光寺元町1丁目11 神崎製紙株式会社神崎工場内

尼崎市常光寺元町1丁目11 神崎製紙株式会社神崎工場内 尼崎市常光寺元町1丁目11 神崎製紙株式会社神崎工場内

東京都中央区銀座4丁目9番8号

老 H 尻 者 笔

塩

新

井

光

神崎製紙株式会社

邳代 理 人 弁理士 蓮 見

- マイクロカプセルの製造方法 1. 発明の名称
- 2. 特許請求の範囲
 - (1) 乳化剤を有する水或いは親水性媒体中に含 有せしめた親水性のメラミン-ホルムアルデ ヒド系樹脂初期縮合物を重縮合せしめて疎水 性芯物質を被覆するマイクロカプセルの製造 方法において、該乳化剤が①80モル%以上 の不飽和一塩基酸モノマー、②疎水性モノマ - および③カルボン酸以外の親水性モノマー からなる共重合体であることを特徴とするマ イクロカプセルの製造方法。
 - (2) 不飽和一塩基酸モノマーがアクリル酸また はメタクリル酸である請求の範囲第(1)項記載 の製造方法。
 - (3) 疎水性モノマーがアクリル酸またはメタク リル酸のアルキルエステルである請求の範囲 第(1)~(2)項記載の製造方法。
 - (4) カルポン酸以外の親水性モノマーがアクリ ル酸アミドまたはメタクリル酸アミドである

請求の範囲第(1)~(3)項記載の製造方法。

3. 発明の詳細な説明

「産業上の利用分野」

本発明は疎水性芯物質を包含する極めて高性 能なマイクロカプセルの製造方法に関するもの である.

「従来の技術」

近年、マイクロカプセル化技術の進歩は著し く、かかるマイクロカブセル化物の使用分野も 感圧複写紙を始めとして極めて広範囲、多方面 にわたっている。

マイクロカプセルの製造法としては、コアセ ルベーション法、界面重合法、in-situ重合法 など各種の方法が知られている。

これらのうちでもメラミン-ホルムアルデヒド 樹脂を壁膜として有するマイクロカプセルは、 耐水性、耐溶剤性等において優れているため、 各種のカプセル化法が提案されており、例えば 水或いは親水性媒体中に存在するメラミンーホ ルムアルデヒド樹脂初期縮合物を疎水性芯物質 のまわりに堆積させる方法に関し、特開昭 5 3 - 8 4 8 8 1 号、特開昭 5 4 - 4 9 9 8 4 号、特開昭 5 5 - 1 5 6 6 0 号、特開昭 5 5 - 4 7 1 3 9 号、特開昭 5 5 - 5 1 4 3 1 号、特開昭 5 5 - 6 7 3 2 9 号、特開昭 5 5 - 5 1 4 3 1 号、特開昭 5 5 - 6 7 3 2 9 号、特開昭 5 6 - 5 8 5 3 6 号、特開昭 5 6 - 1 0 0 6 2 9 号、特開昭 5 6 - 1 0 0 6 2 9 号、特開昭 5 6 - 1 0 2 9 3 4 号、特開昭 5 6 - 1 2 1 6 2 8 号、特開昭 5 7 - 1 0 3 8 9 1 号等が提案されている。しかし、このように数多くのカプセル化法が開発した。これらの方法には次に挙げる如き短所のいずれかが付随するため、まだ改良の必要がある。

- ① 使用される乳化剤の乳化力が不足するため、 微小なカプセルが得難く、これを感圧複写紙に 適用すると、極めて汚れ易い複写紙となる。
- ② 用いられる乳化剤の乳化安定性が悪い場合には巨大油滴が生成し易く、これを感圧複写紙に適用すると、スポット汚れの原因となる。
- ③ 壁膜剤の芯物質表面への堆積が充分でなく、

中に含有せしめた親水性のメラミンーホルムアルデヒド系樹脂初期縮合物を重縮合せしめて疎水性 芯物質を被覆するマイクロカプセルの製造方法において、該乳化剤が① 8 0 モル%以上の不飽和一塩基酸モノマー、②疎水性モノマーおよび③カルボン酸以外の親水性モノマーからなる共重合体であることを特徴とするマイクロカプセルの製造方法である。

「作用」

本発明の乳化剤を構成する不飽和一塩基酸モノマーとは1分子中に1個のカルボキシル基を含有した不飽和化合物であり、例えば、アクリル酸、ククリル酸、クロトン酸等が例示される。これらの中でも、特にアクリル酸またはメタクリル酸を使用した乳化剤は、芯物質保持性のよれのを使用した乳化剤は、芯物質保持性のられる。また、疎水性モノマーとは疎水性基を含すした。不能をであり、例えば、エチレン、プロピレン、スチレン、ピニル、プロピオン酸

得られるカプセルの芯物質保持性が劣る。

- ③ 芯物質の乳化剤として用いられる水溶性高分子の物性、例えば重合度、分子量分布、共重合 比率、変性度等の做妙な変化の影響を受け易く、 ロットの異なる材料を用いる工業スケールでの 鋼製において膜強度等の品質上のバラツキを生 じ易い。
- ⑤ 芯物質表面へ堆積する壁膜材が耐水性を有するアルデヒド重縮合樹脂と耐水性の劣る高分子化合物との混合物の形である場合、耐水性の劣るカブセルしか得られない。

「発明が解決しようとする問題点」

本発明者等はかかる現状に鑑み、メラミンーホルムアルデヒド系樹脂を壁膜として有するマイクロカプセルの製造方法について鋭意研究の結果、特定の乳化剤を選択的に使用すると上記の欠点が回避され、高性能なマイクロカプセルが容易に得られることを見出し、本発明を達成するに至った。「問題を解決するための手段」

本発明は、乳化剤を有する水或いは親水性媒体

ビニル、ピバリン酸ビニル、アクリロニトリル、 メタクリロニトリル、アクリル酸メチル、アクリ ル酸エチル、アクリル酸プロピル、アクリル酸ブ チル、アクリル酸オクチル、メタクリル酸メチル、 メタクリル酸エチル、メタクリル酸プチル、イタ コン酸ジメチル、イタコン酸ジヘキシル等が例示 される。これらの中でも、アクリル酸またはメタ クリル酸のアルキルエステルが好ましく、特にア ルコール残基中に1~4個、より好ましくは3又 は4個の炭素原子を有するアクリル酸またはメター クリル酸エステルがより好ましく使用される。 さらに、カルボン酸以外の親水性モノマーとして は、例えば、ビニルベンゼンスルホン酸、2-ァ クリルアミドー2~メチループロパンスルホン酸、 ピニルスルホン酸等のスルホン酸類、アクリル酸 アミド、メタクリル酸アミド等のアミド類、ビニ ルホスホン酸等の有機リン酸類等が例示される。 これらの中でもアクリル酸アミド、メタクリル酸 アミド等のアミド類は極めて良好なカプセルが調 製できる為、より好ましく用いられる。

本発明において用いられる特定の乳化剤は、上記三成分を必須成分とする共重合体であり、且つその共重合体組成のうち不飽和一塩基酸とするものである。かかる乳化剤のうちでも、不飽和一塩基酸モノマー成分が85モル%以上、より好ましくは90モル%以上である化合物は、芯物質保持性の極めて良好なカプセルが得られるため、より好ましく使用される。

また、上記乳化剤において、疎水性モノマーの 含有率は、好ましくは15モル%~1モル%、よ り好ましくは10モル%~3モル%の範囲である のが望ましい。

さらに、カルボン酸以外の親水性モノマーの含有 率は、良好な芯物質保持性を有するカプセルを得 るために、好ましくは18モル%~0.5モル%、 より好ましくは10モル%~1モル%であること が望ましい。

なお、本発明においては、必要に応じて上配の 乳化剤と共に、他のアニオン性、ノニオン性、カ

ノール類としては、例えばフェノール、キシレノール、ハイギアルでは、例えばフェノールル等に、アルアロカテコールがは、カールがアルデヒンでは、パラホルムアルアルアルアルアルがアールができる。 からには、グラフェスルの変性・リアンテトラシス・ないのでは、が、クールでは、が、クールでは、が、クールでは、が、クールでは、が、クールを変性・リーンのは、が、クールができません。 例えば、グーク・シーンのは、例えば、アーンをは、アーンがリールができません。 例えば、アーンがリコール等が挙げられる。

親水性のメラミンーホルムアルデヒド系樹脂初期縮合物としては、上記の如き各種のものが使用できるが、中でもメラミンーホルムアルデヒド樹脂初期縮合物及びそのメチル化物は、緻密な膜が得られるため最も好ましく用いられる。

チオン性または両性の高分子や低分子乳化剤を併 用することもできる。

なお、上記の如き乳化剤は、乳化液調製の容易さ、乳化液の安定化等の点から水或いは親水性媒体中に 0.1 %以上、より好ましくは 0.3 %以上、最も好ましくは 0.5 ~ 5 %程度合有させるのが望ましい。使用量の上限は系の粘度あるいはカプセル調製装置等により決定されるか、一般的には 2 0 %以下にとどめられる。

本発明において用いられる観水性のメラミンー ホルムアルデヒド系樹脂初期縮合物としては、メ ラミンーホルムアルデヒド樹脂初期縮合物の他に、 そのメチル化物、さらには他のアミン類、フェノ ール類、アルデヒド類やアニオン、カチオン、ノ ニオン変性剤等で一部変性したもの等が挙げられ

アミン類としては、例えば尿素、チオ尿素、アルキル尿素、エチレン尿素、アセトグアナミン、 ベンゾグアナミン、メラミン、グアニジン、ジシアンジアミド、ピウレット、シアナミド等;フェ

親水性のメラミンーホルムアルデヒド系樹脂初期縮合物の配合量は、用いる疎水性芯物質の種類、カプセルの用途等に応じて適宜調節されるが、一般に疎水性芯物質100重量部に対して、メラミン換算で2~40重量部、より好ましくは4~30重量部程度配合される。

本発明において、親水性のメラミンーホルムアルデヒド系樹脂初期縮合物は、水或いは親水性媒体中に疎水性芯物質を乳化する前、乳化中、乳化後のいずれの段階で系中に添加してもよいが、疎水性芯物質を乳化後に初期縮合物を添加する場合には、初期縮合物を添加後、更に疎水性芯物質の乳化を行うのが望ましい。

本発明において、初期縮合物を添加する時の系の温度は特に限定されるものではないが、より良好な芯物質保持性を有するカプセルを得る為には65℃以上に維持することが好ましく、より好ましくは70℃以上、最も好ましくは80℃以上に維持するのが望ましい。

本発明におけるカプセル調製条件は、そのカプ

セルの用途に応じて適宜調節し得るもので、特に限定されるものではないが、PH5.0以下、60 で以上の条件で2時間以上維持するのが望ましく、 PH4.0以下、80で以上の条件で2時間以上維持すると極めて高品質を有するカプセルを得ることができる。

本発明において反応系を酸性に維持するためには、例えばギ酸、酢酸、クエン酸、シュウ酸、パラトルエンスルフォン酸、塩酸、硫酸、リン酸などの如きアミノアルデヒド樹脂製造分野で一般に用いられる所謂酸触媒が用いられる。

マイクロカブセル中に内包される疎水性芯物質については、特に限定するものではないが、例えば魚油、ラード油などの如き動物油類、オリーブ油、落花生油、亜麻仁油、大豆油、ひまし油などの如き植物油類、石油、ケロシン、キシレン、トルエンなどの如き鉱物油類、アルキル置換ナフタリン、ビン社のエールアルカン、ナリチル酸メチル、アジピン酸ジーnープロピル、アジピン

「実施例」

以下に本発明の方法をより具体的に説明するために、実施例を記載するが、勿論これらに限定されるものではない。また特に断らない限り例中の部および気はそれぞれ重量部および重量%を表わす。

実施例 1

クリスタルバイオレットラクトン4部をアルキルナフタレン100部に溶解して内相液を得た。別に、加熱装置を備えた優搾混合容器中に乳化剤としてアクリル酸・アクリル酸=n-ブチル・アクリル酸アミド共量合体(モル比 90:6:4)3部(固形分)を水200部に加熱、溶解して調製した水溶液を加え、これに20%脊性ソーダ水溶液を添加してPHを5.0に調節してカプセル製造用水性媒体とした。

この水性媒体を 8 5 でに加熱し、その中に上記 内相被を平均粒径が 1 5 µになるように乳化した。 3 7 %ホルムアルデヒド水溶液 3 0 部とメラミン 1 0 部との混合物を加熱して調製した 6 0 でのメ

本発明の方法で調製されるマイクロカブセルは、 濾過、洗浄、乾固、噴霧乾爆、戦いは特願昭59 -94825号に記載の如くカブセル調製後にア ルデヒド系樹脂形成材料を添加し、該樹脂形成材 料を重縮合せしめた後、その分散媒を除去する方 法等により粉体状カプセルとすることも可能である。

ラミン・ホルムアルデヒド樹脂初期縮合物を、 8 5 でに保たれた上記乳化液中に強力攪拌しながら添加し、更に内相液の乳化を続けて平均粒径が 3. 5 µになるように乳化した。乳化後の液温は 8 0 であった。

続いて80℃で2時間、更に90℃で2時間反応させ、0.05N-塩酸を滴下してPH3.8に調節した後95℃で5時間反応させてカプセル分散液を得た。

このカプセル分散液に澱粉粒子50部を添加し、 濃度が20%になるように希釈してカプセル塗液 とし、得られた塗液を40g/㎡の原紙にエアー ナイフコーターで固形分が4g/㎡となるように 塗抹して上用紙を作成した。

〔下用柢の作成〕

水酸化アルミニウム 6 5 部、酸化亜鉛 2 0 部、3.5 - ジ (α-メチルベンジル) サリチル酸亜鉛とα-メチルスチレン・スチレン共重合体との混融物 (混融比 8 0 / 2 0) 1 5 部、ポリピニルアルコール水溶液 5 部 (固形分) 及び水 3 0 0 部

をボールミルで 2 4 時間粉砕して得た分散液に、カルボキシ変性スチレン・ブタジエン共園合体ラテックス 2 0 部 (固形分)を加えて調製した類色剤塗液を 4 0 g / ㎡の原紙にエアーナイフコーターで固形分が 5 g / ㎡となるように塗抹して下用紙を作成した。

前記上用紙をこの下用紙に重ねタイプライターで印字したところ、極めて鮮明な発色像が得られた。また前記上用紙と下用紙を重ねて100℃で3時間熱処理したが、下用紙面に汚れは見られずカプセルの芯物質保持性が良好であることが分かった。

実施例 2

乳化剤として、アクリル酸・アクリル酸・nープチル・2-アクリルアミド-2-メチループロパンスルホン酸共重合体(モル比 90:6:4)を用いた以外は実施例1と同様にしてカブセル分散液を翻製し、以下同様にして上用紙を作成した。実施例1と同様に評価した結果、芯物質保持性は実施例1と比べやや劣るものの、発色性は良好で

あり、実用上充分な品質を有するカプセルである ことが分かった。

比較例 1

乳化剤として、アクリル酸・アクリル酸-n-ブチル共重合体(モル比 90:10)を用いた 以外は実施例1と同様にしてカプセル分散液を調 製し、上用紙を作成した。

実施例 1 と同様に評価したところ、芯物質保持性は実施例 1 および 2 で得られたカプセルに比べてかなり劣っており、実用上問題のあるカプセルであることがわかった。

「効果」

各実施例の結果から明らかなように、本発明の 方法で得られたマイクロカプセルは、従来法に比 較して何れも芯物質保持性に優れており、感圧複 写紙用として使用した場合でも充分な品質特性を 備えていた。

特許出關人 神崎製紙株式会社

手統補正審

昭和61年3月28日

特許庁長官 殴

1. 事件の表示

昭和60年特許願凱240146号

2. 発明の名称

マイクロカプセルの製造方法

3. 補正をする者

事件との関係 特許出願人

住 所 東京都中央区銀座《丁目9番8号

名 称 神崎製紙株式会社

代表者 河 轩 俊 葦

方式 ①

4. 代理人

居 所 (〒660) 尼崎市常光寺4丁目3番1号 (行政区画の安示変更による変更) 神崎製紙株式会社内

TEL 大阪 (06) 488-3211代

氏 名 弁理士 (7385) 運 見

81, 3, 31

- 5. 補正命令の日付 自発
- 5. 補正の対象 明細書の「特許請求の範囲」及び 「発明の詳細な説明」の例
- 7. 補正の内容 別紙の通り

(補正の内容)

- (1) 特許請求の範囲を以下の如く補正する。
- (2) 不飽和一塩基酸モノマーがアクリル酸またはメタクリル酸である請求の範囲第(1)項記載の製造方法。
- (3) 疎水性モノマーがアクリル酸またはメタクリル酸のアルキルエステルである請求の範囲 第(1)~(2)項配載の製造方法。
- (4) カルボン酸以外の観水性モノマーがアクリル酸アミドまたはメタクリル酸アミドである。 踏求の範囲第(1)~(3)項記載の製造方法。

特開昭62-97638 (6)

(5) カルボン酸以外の親水性モノマーがジメチ ルアミノエチルメタクリレートである論求の 範囲第(1)~(3)項記載の製造方法。」

(2) 明細番第6頁16行目の「……アミド等のアミド類、」の後に以下の文章を挿入する。

「ジメチルアミノエチルメタクリレート、ジメ チルアミノプロピルメタクリレート、ジメチ ルアミノエチルアクリレート、ジメチルアミ ノプロピルアクリレート、ジメチルアミノプ ロピルメタクリルアミド、ジメチルアミノブ ロピルアクリルアミド等のアミン類、」

(3) 明細書第6頁19行目の「アミド等のアミド類」の後に以下の文章を挿入する。

「及びジメチルアミノエチルメタクリレート等 のアミン類」

(4) 明細書第16頁3行目の『比較例1」の前に 以下の文章を挿入する。

「実施例3.4

乳化剤として、アクリル酸・メタクリル酸 - n - ブチル・アクリル酸アミド共重合体 (モル比 92:4:4) [実施例3)、アクリル酸・アクリル酸・ローブチル・ジメチルアミノエチルメタクリレート共重合体(モル比 92:5:3) [実施例4]を用いた以外は実施例1と同様にしてカプセル分散液を調製し、以下同様にして上用紙を作成した。実施例1と同様に配けてあった。」

(以上)