Zusatzaufgaben 9

Aufgabe 1: Myhill-Nerode für nicht reguläre Sprachen

Gegeben seien die Sprachen:

$$A \triangleq \{ 1^{n}0^{n} \mid n \in \mathbb{N} \}$$
 mit $\Sigma_{A} \triangleq \{ 1, 0 \}$

$$B \triangleq \{ 73a^{n}7b^{m} \mid n, m \in \mathbb{N} \land n = m+2 \}$$
 mit $\Sigma_{B} \triangleq \{ a, b, 3, 7 \}$

$$C \triangleq \{ w \in \{ a, b \}^{*} \mid |w|_{a} = |w|_{b} \}$$
 mit $\Sigma_{C} \triangleq \{ a, b \}$

1.a) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. A an.

------Lösung

$$\begin{split} [\,\,\mathbf{1}^k\,\,]_{\equiv_A} &= \{\,\mathbf{1}^k\,\,\} \quad \text{für } k \in \mathbb{N} \\ [\,\,\mathbf{1}^{l+1}0\,\,]_{\equiv_A} &= \left\{\,\,\mathbf{1}^{l+i}0^i\,\,|\,\,i \in \mathbb{N}^+\,\,\right\} \quad \text{für } l \in \mathbb{N} \\ [\,\,0\,\,]_{\equiv_A} &= \left\{\,\,\mathbf{0}x,\mathbf{1}^n\mathbf{0}^m,x\mathbf{0}\mathbf{1}y\,\,|\,\,x,y \in \Sigma_A^* \wedge n,m \in \mathbb{N}^+ \wedge m > n\,\,\right\} \\ &= \Sigma_A^* \setminus \left(\left(\bigcup_{k \in \mathbb{N}} [\,\,\mathbf{1}^k\,\,]_{\equiv_A}\right) \cup \left(\bigcup_{l \in \mathbb{N}} [\,\,\mathbf{1}^{l+1}0\,\,]_{\equiv_A}\right)\right) \end{split}$$

-(/Lösung)

1.b) Beweise mit Hilfe der Myhill-Nerode-Relation, dass A nicht regulär ist.

Lösung -----

Zu den Äquivalenzklassen von \equiv_A gehören u.A. die Klassen:

$$[\,1^{n+1}0\,]_{\equiv_A}=\left\{\,1^{n+\mathfrak{i}}0^{\mathfrak{i}}\,|\,\mathfrak{i}\in\mathbb{N}^+\,
ight.$$
 für $\mathfrak{n}\in\mathbb{N}$

(Diese Zeile repräsentiert bereits unendlich viele Klassen, wir zeigen noch, dass diese Klassen tatsächlich bzgl. \equiv_A unterschieden werden müssen.)

Annahme: $n \neq m$.

Zu Zeigen: $1^{n+1}0 \not\equiv_A 1^{m+1}0$

Betrachte $z = 0^n$.

Dann ist $1^{n+1}0z = 1^{n+1}0^{n+1} \in A$ und $1^{m+1}0z = 1^{m+1}0^{n+1} \notin A$, weil $n \neq m$.

Mit der Definition von \equiv_A gilt damit $1^{n+1}0 \not\equiv_A 1^{m+1}0$ (und damit $[1^{n+1}0]_{\equiv_A} \neq [1^{m+1}0]_{\equiv_A}$).

Damit ist der Index von \equiv_A unendlich. Nach Theorem 2.4.1 ist A damit nicht regulär.

/Lösung

1.c) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. B an.

------(Lösung)-----

$$\begin{split} [\; \epsilon \;]_{\equiv_B} &= \{ \; \epsilon \; \} \\ [\; 7 \;]_{\equiv_B} &= \{ \; 7 \; \} \\ [\; 73\alpha^k \;]_{\equiv_B} &= \{ \; 73\alpha^k \; \} \quad \text{für } k \in \mathbb{N} \\ [\; 73\alpha^{l+2}7 \;]_{\equiv_B} &= \left\{ \; 73\alpha^{l+2+n}7b^n \; | \; n \in \mathbb{N} \; \right\} \quad \text{für } l \in \mathbb{N} \\ [\; 3 \;]_{\equiv_B} &= \Sigma_B^* \setminus \left([\; \epsilon \;]_{\equiv_B} \cup [\; 7 \;]_{\equiv_B} \cup \left(\bigcup_{k \in \mathbb{N}} [\; 73\alpha^k \;]_{\equiv_B} \right) \cup \left(\bigcup_{l \in \mathbb{N}} [\; 73\alpha^{l+2}7 \;]_{\equiv_B} \right) \right) \end{aligned}$$

/Lösung

1.d) Beweise mit Hilfe der Myhill-Nerode-Relation, dass B nicht regulär ist.

Lösung

Zu den Äquivalenzklassen von \equiv_B gehören u.A. die Klassen:

$$[\ 73aaa^n7\]_{\equiv_B}=\left\{\ 73aaa^{n+l}7b^l\ |\ l\in\mathbb{N}\ \right\}\quad \text{für }n\in\mathbb{N}$$

Annahme: $n \neq m$.

Zu Zeigen: $73aaa^n7 \not\equiv_B 73aaa^m7$

Betrachte $z = b^n$.

Dann ist $73aaa^n7z=73a^{n+2}7b^n\in B$ und $73aaa^m7z=73a^{m+2}7b^n\notin B$, weil $m+2\ne n+2$ mit $n\ne m$.

Mit der Definition von \equiv_B gilt damit $73aaa^n7 \not\equiv_B 73aaa^m7$.

Damit ist der Index von \equiv_{B} unendlich. Nach Theorem 2.4.1 ist B damit nicht regulär.

/Lösung

1.e) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. C an.

------Lösung

$$[a^{k}]_{\equiv_{C}} = \{ w \in \{ a, b \}^{*} | |w|_{a} - |w|_{b} = k \} \quad \text{für } k \in \mathbb{N}$$

$$[b^{l}]_{\equiv_{C}} = \{ w \in \{ a, b \}^{*} | |w|_{b} - |w|_{a} = l \} \quad \text{für } l \in \mathbb{N}^{+}$$

/Lösung

1.f) Beweise mit Hilfe der Myhill-Nerode-Relation, dass C nicht regulär ist.

-----Lösung

Zu den Äquivalenzklassen von $\equiv_{\mathbb{C}}$ gehören u.A. die Klassen:

$$[a^n]_{\equiv_C} = \{ w \in \{ a, b \}^* \mid |w|_a - |w|_b = n \} \text{ für } n \in \mathbb{N}$$

Annahme: $n \neq m$.

Zu Zeigen: $a^n \not\equiv_B a^m$

Betrachte $z = b^n$.

 $\text{Dann ist } \mathfrak{a}^{\mathfrak{n}}z = \mathfrak{a}^{\mathfrak{n}}\mathfrak{b}^{\mathfrak{n}} \in \text{C und } \mathfrak{a}^{\mathfrak{m}}z = \mathfrak{a}^{\mathfrak{m}}\mathfrak{b}^{\mathfrak{n}} \notin \text{C, weil } |\mathfrak{a}^{\mathfrak{m}}\mathfrak{b}^{\mathfrak{n}}|_{\mathfrak{a}} \neq |\mathfrak{a}^{\mathfrak{m}}\mathfrak{b}^{\mathfrak{n}}|_{\mathfrak{b}} \text{ mit } \mathfrak{n} \neq \mathfrak{m}.$

Mit der Definition von \equiv_C gilt damit $a^n \not\equiv_C a^m$.

Damit ist der Index von $\equiv_{\mathbb{C}}$ unendlich. Nach Theorem 2.4.1 ist \mathbb{C} damit nicht regulär.

/Lösung

Aufgabe 2: Pumping Lemma

Gegeben seien die Sprachen

$$\begin{split} &A_{1} \triangleq \{ \ w \in \{ \ 0, \ 1 \ \}^{*} \ | \ |w|_{0} = |w|_{1} \ \} \\ &A_{2} \triangleq \left\{ \ (ab)^{n} \ c^{n} \ | \ n \in \mathbb{N} \ \right\} \\ &A_{3} \triangleq \left\{ \ w \ | \ w \in \{ \ a, \ b \ \}^{*} \ \right\} \\ &A_{4} \triangleq \left\{ \ w \in \{ \ a, \ b \ \}^{*} \ | \ \exists x,y \in \{ \ a, \ b \ \} \ . \ \exists n \in \mathbb{N} \ . \ w = bx^{n}ay^{n} \lor w = x^{n}aby^{n} \ \right\} \\ &A_{5} \triangleq \left\{ \ a^{n^{2}} \ | \ n \in \mathbb{N} \ \right\} \end{split}$$

2.a) Beweise oder widerlege, dass die Sprache A₁ regulär ist.

Coin C NI (bolishin short feet) Wir withlandas Worth w. On 10 mit w. C A. dann bul

Sei $n \in \mathbb{N}$ (beliebig aber fest). Wir wählen das Wort $w=0^n1^n$ mit $w \in A_1$, denn $|w|_0=n=|w|_1$, und $|w|\geqslant n$. Sei w=xyz eine beliebige Zerlegung mit $y\neq \varepsilon$ und $|xy|\leqslant n$. Dann ist $x=0^i$, $y=0^j$ und $z=0^{n-i-j}1^n$ für ein $j\neq 0$ und $i+j\leqslant n$. Wir wählen k=0. Dann ist $xy^0z=0^{n-j}1^n$. $xy^0z\notin A_1$, denn $n-j\neq n$ für $j\neq 0$. Da \neg **PUMP-REG** (A_1) , ist A_1 nach dem Pumping-Lemma nicht regulär.

/Lösung

2.b)	Beweise oder widerlege, dass die Sprache A ₂ regulär ist.
	Lösung)
	Sei $n \in \mathbb{N}$ beliebig und fest. Wir wählen das Wort $w = (ab)^{n+1} c^{n+1}$ mit $w \in A_2$ und $ w \ge n$. Sei $w = xyz$ eine beliebige Zerlegung mit $y \ne \varepsilon$ und $ xy \le n$. Dann gibt es 4 Fälle:
	Fall 1: $x = (ab)^i$, $y = (ab)^j$ und $z = (ab)^{n+1-i-j} c^{n+1}$ für ein $j \neq 0$ und $2(i+j) \leq n$. Wir wählen $k = 0$. Dann ist $xy^0z = (ab)^{n+1-j} c^{n+1}$. $xy^0z \notin A_2$, denn $n+1-j \neq n+1$ für $j \neq 0$.
	Fall 2: $x = (ab)^i$, $y = (ab)^j$ a und $z = b (ab)^{n-i-j} c^{n+1}$ für $2(i+j)+1 \le n$. Wir wählen $k = 0$. Dann ist $xy^0z = (ab)^i$ $b (ab)^{n-i-j}$ c^{n+1} und damit $xy^0z \notin A_2$.
	Fall 3: $x = (ab)^i$ a, $y = (ba)^j$ und $z = b(ab)^{n-i-j} c^{n+1}$ für ein $j \neq 0$ und $2(i+j) + 1 \leq n$. Wir wählen $k = 0$. Dann ist $xy^0z = (ab)^{n-j+1} c^{n+1}$. $xy^0z \notin A_2$, denn $n-j+1 \neq n+1$ für $j \neq 0$.
	Fall 4: $x = (ab)^i$ a, $y = (ba)^j$ b und $z = (ab)^{n-i-j}$ c^{n+1} für $2(i+j) + 2 \le n$. Wir wählen $k = 0$. Dann ist $xy^0z = (ab)^i$ a $(ab)^{n-i-j}$ c^{n+1} und damit $xy^0z \notin A_2$.
	Da \neg PUMP-REG (A_2), ist A_2 nach dem Pumping-Lemma nicht regulär.
2.c)	Beweise oder widerlege, dass die Sprache A ₃ regulär ist.
	Looming
	Wir zeigen, dass die Sprache A_3 gleich der Sprache $L((a+b)^*)$ ist.
	$L((a+b)^*) \stackrel{FS 1.2.8 *}{=} L(a+b)^* \stackrel{FS 1.2.8+}{=} (L(a) \cup L(b))^* \stackrel{FS 1.2.8a,b \in \Sigma}{=} (\{a\} \cup \{b\})^*$
	$\stackrel{\mathrm{Def.}\ \cup}{=}\ \{\ a,\ b\ \}^*\stackrel{\mathrm{Def.}\ A_3}{=}\ \{\ w\mid w\in \{\ a,\ b\ \}^*\ \}\stackrel{\mathrm{Def.}\ A_3}{=}\ A_3$
	Da A_3 durch einen regulären Ausdruck beschrieben wird, gibt es nach Theorem 1.4.5 eine reguläre Grammatik G mit $L(G) = A_3$. Nach Definition 1.4.3 ist A_3 damit regulär.
	/Lösung
2.d)	Beweise oder widerlege, dass die Sprache A ₄ regulär ist.
	Sei $n \in \mathbb{N}$ beliebig und fest. Wir wählen das Wort $w = a^{n+1}b^{n+1}$ mit $w \in A_4$, denn $w = a^nabb^n = x^naby^n$ für $x,y \in \{a,b\}$, und $ w \geqslant n$. Sei $w = xyz$ eine beliebige Zerlegung mit $y \neq \varepsilon$ und $ xy \leqslant n$. Dann ist $x = a^i$, $y = a^j$ und $z = a^{n+1-i-j}b^{n+1}$ für ein $j \neq 0$ und $i+j \leqslant n$. Wir wählen $k = 0$. Dann ist $xy^0z = a^{n+1-j}b^{n+1}$. $xy^0z \notin A_4$, denn $n+1-j \neq n+1$ für $j \neq 0$. Da \neg PUMP-REG (A_4) , ist A_4 nach dem Pumping-Lemma nicht regulär.
	/Lösung
2.e)	Beweise oder widerlege, dass die Sprache A ₅ regulär ist.
	Sei $n \in \mathbb{N}$ beliebig und fest. Wir wählen das Wort $w = a^{n^2}$ mit $w \in A_5$ und $ w \geqslant n$. Sei $w = xyz$ eine beliebige Zerlegung mit $y \neq \varepsilon$ und $ xy \leqslant n$. Dann ist $x = a^i$, $y = a^j$ und $z = a^{n^2-i-j}$ für ein $j \neq 0$ und $i+j \leqslant n$. Wir wählen $k = 2$. Dann ist $xy^2z = a^{n^2+j}$. Wir zeigen $xy^2z \notin A_5$ mit einem Beweis durch Widerspruch: Annahme: $xy^2z \in A_5$. Dann gibt es ein $l \in \mathbb{N}$, so dass $n^2 + j = (n+l)^2 = n^2 + 2nl + l^2$. Dann ist $j = 2nl + l^2$, aber gleichzeitig $j \neq 0$ und $j \leqslant n$. Das ist ein Widerspruch, also ist $xy^2z \notin A_5$. Da \neg PUMP-REG (A_5) , ist A_5 nach dem Pumping-Lemma nicht regulär.
	/Lösung