Combinatorial Theory

September 13, 2023

Contents

L	\mathbf{Cha}	pter 1	1
	1.1	Permutations, Subsets, Multisets	1
	1.2	Generating Functions	2

1 Chapter 1

1.1 Permutations, Subsets, Multisets

Example 1.1.1. Suppose n people give their n hats to a hat check. Let g(n) be the number ways hats could be given back so no person receives their own hat.

Answer.

$$g(n) = \sum_{i=0}^{n} \frac{(-1)^{i} n!}{i!}.$$

Example 1.1.2. Let h(n) be the number of domino tilings of a $2 \times n$ rectangle using 2×1 rectangles.

Answer. 1. For all $n \ge 3$, $h(n) = h(n-1) + h(n_2)$.

2. Using rational generating function associated to linear recurrence relations:

$$h(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right).$$

Definition 1.1.3. Let S be a finite set. A k-permutation of S is a sequence (s_1, s_2, \ldots, s_k) as long as $k \leq |s|$.

The number of k-permutation of [n] is

$$n(n-1)\cdots(n-k+1)=\frac{n!}{(n-k)!}$$
, denoted by $(n)_k$ or falling factorial.

Definition 1.1.4. Let $\binom{n}{k}$ denote the number of subsets of [n] of size k.

Theorem 1.1.5 (Sagan 1.3.2).

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{(n)_k}{k!}.$$

Theorem 1.1.6 (Sagan 1.3.3). We have

1. $\binom{0}{0} = 1 \quad \binom{0}{k} = 0.$

2. $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$

 $\binom{n}{k} = \binom{n}{n-k}.$

 $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$

5. $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = \begin{cases} 1, & n=0\\ 0, & n \ge 1 \end{cases}.$

1.2 Generating Functions

Given a numerical sequence

$$a_0, a_1, a_2, a_3, \dots$$

The ordinary generating function is

$$A(x) = \sum_{n>0} a_n x^n.$$

Note: k[[x]] is a local ring.

Claim: A(x) is invertible if and only if $a_0 \neq 0$.

Let

$$A_m(x) = \sum_{n=0}^m x^n.$$

Then

$$A(x)(1-x) = \lim_{m \to \infty} A_m(x)(1-x) = 1.$$

Two generating functions are the same if they converge to each other.

Theorem 1.2.1 (Binomial Theorem).

$$\sum_{k>0} \binom{n}{k} x^k = \sum_{k=0}^n \binom{n}{k} x^k = (1+x)^n.$$

We first do some disambiguating. We use multivariables instead of just one.

$$(1+x_1)(1+x_2)\cdots(1+x_n) = \sum_{1\leq i_1< i_2\cdots i_k\leq n} x_{i_1}x_{i_2}\cdots x_{i_k}$$
$$= \sum_{T\subseteq[n]} \prod_{i\in T} x_i$$
$$= \sum_{k=0}^n \binom{n}{k} x^k$$

Definition 1.2.2. Let α be any complex number, k non-negative integer. We define

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - k + 1)}{k!}.$$

Consider the genreating function of $\binom{-3}{k}$.

$$\begin{pmatrix} -3\\0 \end{pmatrix} = 1, \begin{pmatrix} -3\\1 \end{pmatrix} = -3, \begin{pmatrix} -3\\2 \end{pmatrix} = 6, \begin{pmatrix} -3\\3 \end{pmatrix} = -10, \dots$$

First note that

$$\sum_{n \geq 0} \binom{-3}{n} x^n = \sum_{n \geq 0} (-1)^n \frac{(n+2)(n+1)}{2} x^n.$$

Then do some differenciation to $\frac{1}{1-x}$ we'll eventually be

$$(1+x)^{-3}$$
.

Theorem 1.2.3 (Generalized Binomial Theorem).

$$\sum_{k>0} {\alpha \choose k} x^k = (1+x)^{\alpha}.$$

This could be proved/shown by doing taylor series expansions.

Definition 1.2.4. n multichoose k is the number of ways of choosing a multiset from [n] of size k. Denoted by

$$\binom{n}{k}$$
.

Example 1.2.5.

$$\left(\binom{3}{2} \right) = \# \left\{ 11, 12, 13, 22, 23, 33 \right\} = 6.$$

Theorem 1.2.6.

$$\binom{n}{k} = \binom{n+k-1}{k}.$$

Theorem 1.2.7.

$$\sum_{k>0} \left(\binom{n}{k} \right) x^k = (1-x)^{-n} \quad or \quad \left(\frac{1}{1-x} \right)^n.$$

Recall h(n) is the number of tilings of a $2 \times n$ rectangle.

$$h(n) = \sum_{k=0}^{\frac{n}{2}} \binom{n-k}{k}$$

$$H(x) = \sum_{n\geq 0} h(n)x^n$$

$$H(x) = \frac{1}{1-x-x^2}$$

Example 1.1.13, 1.1.15 from Stanely.

Definition 1.2.8. A *composition* of [n] is an ordered sum of positive integers that sum to n. k-composition has exactly k parts.

The number of k-compositions of [n] is $\binom{n-1}{k-1}$ and the number of compositions is 2^{n-1} .

Definition 1.2.9. Multinomial coefficients are

$$\left(\begin{array}{c} n \\ a_1, a_2, \dots, a_m \end{array} \right) = \frac{n!}{a_1! a_2! \cdots a_m!} = \left(\begin{array}{c} n \\ a_1 \end{array} \right) \left(\begin{array}{c} n-a_1 \\ a_2 \end{array} \right) \cdots \left(\begin{array}{c} n-a_1-\cdots-a_{m-1} \\ a_m \end{array} \right)$$