One-Sided Unsupervised Domain Mapping

Sagie Benaim and Lior Wolf NIPS 2017

Latest Trends

- 1. Style Transfer (Gatys et al.)
 - Replaces statistics/texture given an example

Not semantic

Latest Trends

- 1. Style Transfer (Gatys et al.)
 - Replaces statistics/texture given an example

Not semantic

2. Domain adaptation

• "Domain-adversarial training of neural networks" Ganin et al.

Supervised and not generative

Image to Image Translation

Adversarial Nets Framework

(Karras et. al, 2017)

Fully Supervised Alignment

• "Image-to-image translation with conditional adversarial nets" Isola et al (pix2pix)

Fully Supervised Alignment

• "Image-to-image translation with conditional adversarial nets" Isola et al (pix2pix)

Partially Supervised Alignment

• "Unsupervised Cross-Domain Image Generation" Taigman et al.

Unsupervised Alignment

- Highly related domains
 - "Unsupervised Image-to-Image Translation Networks" Liu et al.

Circular GANs

DiscoGAN: "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks". Kim et al. ICML'17.

CycleGAN: "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks". Zhu et al. arXiv:1703.10593, 2017.

DualGAN: "Unsupervised Dual Learning for Image-to-Image Translation". Zili et al. arXiv:1704.02510, 2017.

. 1

Circular GANs

Circular GANs (DiscoGAN, CycleGAN, DualGAN)

Approximate Mapping

Mode Collapse

• GAN: G_{AB} $G_{$

Introducing DistanceGAN

- ·Apairofimages of a given distance are mapped to a pair of outputs with a similar distance
- $|x_i| d$ are highly $|x_i| d$ are highly correlated.

Introducing DistanceGAN

- ·Apairofimages of a given distance are mapped to a pair of outputs with a similar distance
- $|x_i| d$ are highly $|x_i| d$ are highly correlated.

Motivating distance correlations I

Analysis of CycleGAN's horse to zebra results

Motivating distance correlations II

Non-negative matrix approx. of DiscoGAN's bag to shoe

Building Block: Conditional GAN

$$\mathcal{L}_{GAN}(G_{AB}, D_B, \hat{p}_A, \hat{p}_B) = \mathbb{E}_{x_B \sim \hat{p}_B}[\log D_B(x_B)] + \mathbb{E}_{x_A \sim \hat{p}_A}[\log(1 - D_B(G_{AB}(x_A)))]$$

• Other GAN variants can be used: w-gan, improved w-gan, BEGAN, etc.

The loss used

·Adistance correlation loss:

- $\sum_{x_i,x_j} |d_1 d_2|$
- $\bullet \ d_1 = \left. \frac{1}{\sigma_A} (|x_i x_j|_1 \mu_A) \right.$
- $d_2 = \frac{1}{\sigma_B} (|G(x_i) G(x_j)|_1 \mu_B)$

The loss used

·Adistance correlation loss:

- $\sum_{x_i,x_j} |d_1 d_2|$
- $d_1 = \frac{1}{\sigma_A} (|x_i x_j|_1 \mu_A)$
- $d_2 = \frac{1}{\sigma_B} (|G(x_i) G(x_j)|_1 \mu_B)$

• AGANIBSSON Y

Additive is more stable than multiplicative

- Additive Loss: $\sum_{x_i,x_j} |d_1 d_2|$
- Multiplicative Loss: $-\sum_{x_i,x_j}d_1d_2$
- * Highly correlated. Additive Loss doesn't dominate optimization.

GAN Architecture

- DiscoGAN based (64 pixels):
 - Generator: Encoder-Decoder, Based on DCGAN
 - Discriminator: Simple Decoder

- CycleGAN based (128-256 pixels):
 - Based on "Perceptual losses for real-time style transfer and super-resolution"
 Johnson et al.
 - Generator: Use of additional Residual blocks
 - Discriminator: Use of 70*70 Patch-GAN

Variants

- Distance Loss Only (Either on DiscoGAN arch of CycleGAN arch)
- Distance + Cycle Loss
- Self Distance

Solves asymmetry problem: Mode Collapse

• GAN:

Cycle:

• Distance:

Experiments

Table 2: Normalized RMSE between the angles of source and translated images.

M	lethod	car2car	car2head
D	iscoGAN	0.306	0.137
D	istance	0.135	0.097
D	ist.+Cycle	0.098	0.273
Se	elf Dist.	0.117	0.197

Cityscapes

• FCN Score: Better per-class accuracy (Significantly), per-pixel accuracy, Class IOU

(a) Input (c)Cycle **GAN** (d) Distance

CelebA mapping results using the VGG face descriptor

	$Male \to Female$			
Method	Cosine Similarity	Separation Accuracy		
DiscoGAN	0.23	0.87		
Distance	0.32	0.88		
Distance+Cycle	0.35	0.87		
Self Distance	0.24	0.86		

Table 4: CelebA mapping results using the VGG face descriptor.

	$Male \to Female$		$Blond \to Black$		$Glasses \rightarrow Without$	
Method	Cosine Similarity	Separation Accuracy	Cosine Similarity	Separation Accuracy	Cosine Similarity	Separation Accuracy
DiscoGAN	0.23	0.87	0.15	0.89	0.13	0.84
Distance	0.32	0.88	0.24	0.92	0.42	0.79
Distance+Cycle	0.35	0.87	0.24	0.91	0.41	0.82
Self Distance	0.24	0.86	0.24	0.91	0.34	0.80
	———— Other direction ———					
DiscoGAN	0.22	0.86	0.14	0.91	0.10	0.90
Distance	0.26	0.87	0.22	0.96	0.30	0.89
Distance+Cycle	0.31	0.89	0.22	0.95	0.30	0.85
Self Distance	0.24	0.91	0.19	0.94	0.30	0.81

Table 3: MNIST classification on mapped SHVN images.

Method	Accuracy
CycleGAN Distance Dist.+Cycle Self Dist.	26.1% 26.8% 18.0% 25.2%

User Study

- Cityscapes Labels to Photos realness (71% of cases better than CycleGAN)
- Similarity to Ground Truth (68% of cases better than CycleGAN)
- Similar experiments in DiscoGAN's Male to Female and Handbags to Shoes.

Extensions and Notes

- Minimal information is required potentially infinitely many mappings.
- Better understanding of semantics: SVHN to MNIST
- Other domains? Text translation from one embedding to another.
- Other Trends: Many to Many Translations (e.g StarGAN)

Thank You! Questions?

Minimality

Potentially Infinitely many solutions preserving distance correlations

Figure 1: An illustrative example where the two domains are line segments in \mathbb{R}^2 . There are infinitely many mappings that preserve the uniform distribution on the two segments. However, only two stand out as "semantic". These are exactly the two mappings that can be captured by a neural network with only two hidden neurons and Leaky ReLU activations, i.e., by a function $h(x) = \sigma_a(Wx + b)$, for a weight matrix W and the bias vector b.