

Description

The VST06N036 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =60V, I_{D} =120A $R_{DS(ON)}$ < 4.0mΩ @ V_{GS} =10V (Typ:3.6mΩ)

- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N036-T7	VST06N036	TO-247	-	-	-

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous (Silicon Limited)	I _D	120	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	100	А	
Pulsed Drain Current	I _{DM}	480	А	
Maximum Power Dissipation	P _D	155	W	
Derating factor		1.03	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	℃	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	0.97	°C/W
---	-------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60		-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)			•	•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =60A	-	3.6	4.0	mΩ	
Forward Transconductance	g FS	V _{DS} =10V,I _D =60A	40	-	-	S	
Dynamic Characteristics (Note4)				•			
Input Capacitance	C _{lss}	V -20V/V -0V/	-	3400	-	PF	
Output Capacitance	C _{oss}	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	650	-	PF	
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	20	-	PF	
Switching Characteristics (Note 4)				•			
Turn-on Delay Time	t _{d(on)}		-	11	-	nS	
Turn-on Rise Time	t _r	V_{DD} =30 V , I_{D} =60 A	-	5	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	56	-	nS	
Turn-Off Fall Time	t _f		-	12	-	nS	
Total Gate Charge	Qg	\/ -20\/ L -C0A	-	51		nC	
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =60A, V_{GS} =10V	-	12		nC	
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	7.3		nC	
Drain-Source Diode Characteristics				•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =120A	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	120	А	
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	47		nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	59		nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 Power De-rating

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance