Orale 17/07/2023 Per l'oscillatore armonico in 3d con spin Hb= Bs,.s. $H = Ha + Hb = \frac{P_1^2}{2m} + \frac{P_2^2}{2m} - \kappa(x_1 - x_2)^2 + \beta S_1 \cdot S_2$ no degenerazione a=? data solamente dalla parte spaziale. Nel calcolo della degenerazione dello stato fondamentale si può trascurare la parte di interazione spin? No Orale 25/07/2023 Introduzione al problema dell'oscillatore armonico 1D. Hamiltoniana e relativo spettro. Risoluzione tramite operatori di sulta e discesa adimensionali. Lo stesso sistema perturbato da un campo elettrico statico crescente lineurmente nella posizione E = Kx. Cosa composta? Se invece la perturbazione è dipendendente dul tempo nella forma E = Eo ett Per t>0 e nullo per t<0. Come si culcola la probabilità di transire a un generico stato eccitato partendo dal fondamentale? Consideriamo un atomo di idrogeno nello stato fondamentale Perturbuto du un campo elettrico lungo l'asse x: \(\vec{E} = (\vec{E}, 0, 0) \) Come si modificano i livelli energetici del sistema? Fondamentale invariato e primi eccitati Introduzione allo scattering. Un flusso di particelle entrante in un potenziale centrale "determina" un flusso uscente. Fattore di forma con simmetria sferica e approssimazione di Born Per il Potenziale Un 1 Potesi e conseguenze.

Def	. M LS	Fronc	e d	ا ا	C210	ve	d'ur	t.	YIU	. C	orre	nti	dı	den	sitv	. e	180	θ, Φ)	2	
									rbi	COV	ΛH	lamı	lton	ועאנ	ب لم	SPIN	λŚ	= 1/2	. :	
		\$1.5							1 L	(ı		. L .		ſı	_	,			
		ve teg									พยพ	.Me	ntu	le d	del	5151	tem	ب ر	9	
		ceg	910	ac		uc	gev		. 210	/V(
Cor	M510	lero	s (sist	tem	u c	. 1	q-b	nt d	Con	Ha	m,1ŧ	БИIC	ına						
Ĥ=	= 2	$\overset{\wedge}{\sigma}_{\varkappa}$.	+ W	ለ ፬ ₂																
												l'esp	(622	10UE	de	lla	Prob	abıl,	tà	
		ላ ላ ላ								I↓	, > .									
140	0781	ે ૯	¥	الماه	L W	ned	10	< 0,	e 7											