Nome: Tális Breda - 22102202

Exercício 1

(8 blocos e 4 words por bloco)

Qual foi a taxa final de acertos do cache?
R:

Simulate and illustrate data cache performance						
Cache Organization						
Placement Policy Dire	ect Mapping	•	Number of blocks		8	
Block Replacement Policy	LRU	•	Cache block size (words))	4 ▼	
Set size (blocks)	1	•	Cache size (bytes)		128	
	Cache	Pe	rformance			
Memory Access Count	2	57	Cache Block Table			
Cache Hit Count	1	92	(block 0 at top)			
			= empty			
Cache Miss Count		65	= hit			
Cache Hit Rate	75%		= miss			
	Ru	ıntiı	ne Log			
☐ Enabled						
Tool Control						
Disconnect from MIPS	Disconnect from MIPS Reset Close				Close	

75%, pois a cada 4 acessos ocorrem 3 acertos, por conta do tamanho da word. Quando é feita a primeira tentativa de leitura, ocorre um *miss* pois o que está sendo procurado não está presente na cache. Com o miss, um bloco com 4 words é escrito na cache. Essas 4 words incluem a que foi buscada e as próximas 3. Como o acesso, nesse caso, é sequencial, as próximas words buscadas são as que acabaram de ser escritas na cache, resultando em 3 *hits*.

Qual será a taxa de acertos se o tamanho do bloco for aumentado de 4 para 8 words?

R:

Simulate and illustrate data cache performance						
	Cache O	rganization				
Placement Policy Direct	Mapping ▼	Number of blocks	8			
Block Replacement Policy	LRU ▼	Cache block size (words	8 🔻			
Set size (blocks)	1 🔻	Cache size (bytes)	256			
	Cache P	erformance				
Memory Access Count	257	Cache Block Table				
Cache Hit Count	224	(block 0 at top)				
Cache Hit Count	224	= empty				
Cache Miss Count	33	= hit				
Cache Hit Rate	87%	= miss				
	Runtime Log					
☐ Enabled						
Tool Control						
Disconnect from MIPS		Reset	Close			

Agora, a taxa de acertos passa a ser de 87%, equivalente a 7 em 8. A lógica segue a mesma: no primeiro acesso ocorre o miss, e um bloco com a word atual e as próximas 7 é escrito na cache, resultando em *hit* nos próximos 7 acessos.

E se for diminuído de 4 words para 2 words? R:

Simulate and illustrate data cache performance						
Cache Organization						
Placement Policy	Direct Mapping	-	Number of blocks		8	
Block Replacement Po	licy	-	Cache block size (words	;)	2 🔻	
Set size (blocks)		1 🔻	Cache size (bytes)		64	
	Ca	che Pe	rformance			
Memory Access Count	t	257	Cache Block Table			
Cache Hit Count		128	(block 0 at top)			
			= empty			
Cache Miss Count		129	= hit			
Cache Hit Rate	5 0%		= miss			
		Runtii	me Log			
□ Enabled						
Tool Control						
Disconnect from MIF	PS		Reset		Close	

Seguindo a mesma lógica, a taxa de acertos agora passa a ser 50%, equivalente a 1 em 2. Nesse caso, quando a primeira tentativa de leitura é feita, ocorre um *miss* e um bloco de 2 words é escrito na memória, contendo apenas o próximo elemento a ser lido. Por isso, para cada *miss* ocorre apenas 1 *hit*.

Exercício 2

(8 blocos e 4 words por bloco) Qual foi o desempenho do cache para este programa? R:

Simulate and illustrate data cache performance						
Cache Organization						
Placement Policy Di	rect Mapping	•	Number of blocks		8	-
Block Replacement Policy	y LRU	•	Cache block size (words)		4	-
Set size (blocks)	1	•	Cache size (bytes)			128
	Cache	Pe	rformance			
Memory Access Count	2	57	Cache Block Table			
Cache Hit Count		0	(block 0 at top)			
Cacile Hit Count		U	= empty			
Cache Miss Count	2	57	= hit			
Cache Hit Rate	0%		= miss			
	Ru	ıntiı	ne Log			
☐ Enabled						
Tool Control						
Disconnect from MIPS			Reset		Clo	ose

Para este caso, a matriz não está sendo acessada linha por linha (sequencialmente), mas está sendo acessada coluna por coluna. Dessa forma, quando é feita a primeira tentativa de leitura, ocorre um *miss* e é escrito na cache um bloco com 4 words, consistindo do endereço atual e dos próximos 3. Porém, os próximos 3 endereços consistem nos elementos da linha atual da matriz, e o acesso é feito na coluna. Então, na próxima leitura, também ocorrerá *miss*, pois o endereço buscado continuará não existindo na cache.

Dessa forma, não ocorre nenhum hit durante a execução do programa, e a taxa de acertos fica em 0%.

(16 blocos e 4 words por bloco) Qual foi o desempenho do cache para este programa? R:

Simulate and illustrate data cache performance Cache Organization						
Placement Policy	Direct Mapping	Tile OI	Number of blocks		16	-
Block Replacement Po	licy	-	Cache block size (words)	4	-
Set size (blocks)		1 🔻	Cache size (bytes)			256
	Cac	he Pe	rformance			
Memory Access Count	t	257	Cache Block Table			
Cache Hit Count		0	(block 0 at top)			
			= empty			
Cache Miss Count		257	= hit			
Cache Hit Rate	0%		= miss			
	Runtime Log					
☐ Enabled						
Tool Control						
Disconnect from MIF	os		Reset		Clo	se

Nesse caso, a quantidade de blocos de memória na cache aumentou de 8 para 16. Porém, assim como no caso anterior, a cada *miss*, é escrito um bloco com 4 words na cache, consistindo dos próximos 3 endereços da mesma linha. Como o acesso é feito em colunas, esses endereços não estarão mais presentes na cache no momento em que forem acessados, pois serão substituídos antes que isso aconteça. Por isso, a taxa de acerto continua em 0%.

Obs: É possível aumentar a taxa de acertos aumentando apenas a quantidade de blocos de memória na cache, porém seriam necessários muito mais blocos. No caso da matriz 16x16, uma cache com 64 blocos de 4 words tem uma taxa de acerto de 75%, porém serão necessários ainda mais blocos para matrizes maiores.

Isso ocorre pois, mesmo que as primeiras leituras sejam *miss*, os próximos endereços são escritos na cache, e ela é grande o suficiente para que alguns deles não sejam substituídos, e permaneçam armazenados até que sejam lidos.

(16 blocos e 16 words por bloco) Qual foi o desempenho do cache para este programa? R:

Simulate and illustrate data cache performance						
	Cache O	rganization				
Placement Policy Direct	t Mapping -	Number of blocks	16 ▼			
Block Replacement Policy	LRU ▼	Cache block size (words	16 🔻			
Set size (blocks)	1 🔻	Cache size (bytes)	1024			
	Cache P	erformance				
Memory Access Count	257	Cache Block Table				
Cache Hit Count	240	(block 0 at top)				
		= empty				
Cache Miss Count	17	= hit				
Cache Hit Rate	93%	= miss				
	Runtime Log					
☐ Enabled						
Tool Control						
Disconnect from MIPS Reset Close						

A lógica para esse caso é a que segue:

- Primeira leitura: *miss*, pois ainda não tem nada armazenado na cache. Um bloco com 16 words é escrito nela, consistindo em todos os elementos da linha atual da matriz.
- Próxima leitura: *miss*, pois como o acesso ainda está sendo feito coluna após coluna, e na cache está armazenada apenas a linha anterior, o endereço buscado não existirá na cache. Novamente, é escrito na cache um bloco com 16 words, equivalente a todos os elementos da linha atual.
- O passo anterior se repete até que o programa chegue ao fim da primeira coluna.
 A partir daí, todas as linhas da matriz foram escritas na cache. Isso significa que a matriz inteira agora está armazenada na cache. Logo, todos os próximos acessos resultarão em *hit*, pois a cache tem tamanho suficiente para que não ocorra substituição em nenhum momento do programa.