1

2

CLAIMS:

1.	A method for positioning pulses,	comprising the steps of
----	----------------------------------	-------------------------

- specifying pulse positioning over time in accordance with a time layout about a time reference,
- 4 generating a time-hopping code; and
- mapping pulses over the time layout based on the time hopping code, wherein a pulse can be placed at any location within said time layout.
- 1 2. The method of claim 1, wherein said time reference is a time position of a pulse.
 - 3. The method of claim 2, wherein said pulse is a preceding pulse.
 - 4. The method of claim 2, wherein said pulse is a succeeding pulse.
- The method of claim 1, wherein said time reference is at least one of a fixed and a non-fixed time reference.
 - 6. The method of claim 1, wherein said time hopping code has a predefined property.
- 7. The method of claim 6, wherein the pre-defined property is at least one of spectral properties and correlation properties.
- 1 8. The method of claim 7, wherein the correlation property comprises at least one 2 of autocorrelation properties and cross-correlation properties.
- 1 9. The method of claim 1, wherein said time-hopping code comprises at least one
- of a hyperbolic congruential code, quadratic congruential code, linear congruential code,
 Welch-Costas array code, Golomb-Costas array code, pseudorandom code, chaotic code, and
- 4 Optimal Golomb Ruler code.
- 1 10. The method of claim 1, wherein the time layout is comprised of a plurality of 2 frames.

1	11.	The me. of claim 10, wherein said frame is consed of a plurality of
2	sub-frames.	
1	12.	The method of claim 11, wherein said sub-frame is comprised of a plurality of
2	smaller components.	
1	13.	The method of claim 12, wherein said smaller components are further
2	subdivided.	
1	14.	The method claim 1, wherein the time layout is a delta value layout.
1	15.	An impulse transmission system comprising:
2		a Time Modulated Ultra Wideband Transmitter;
3		a Time Modulated Ultra Wideband Receiver; and
4		said Time Modulated Ultra Wideband Transmitter and said Time Modulated
5	Ultra Wideband Receiver employ a time-hopping code, wherein said code specifies pulse	
6	positioning over time in accordance with a time layout about a time reference, and a pulse	
7	can be placed at any location within said time layout.	
1	16.	The impulse transmission system of claim 15, wherein said time reference is a
2	time position of a pulse.	
1	17.	The impulse transmission system of claim 16, wherein said pulse is a
2	preceding pulse.	
1	18.	The impulse transmission system of claim 16, wherein said pulse is a
2	succeeding pulse.	
1	19.	The impulse transmission system of claim 15, wherein said time reference is at
2	least one of a fixed and a non-fixed time reference.	
1	20.	The impulse transmission system of claim 15, wherein said time hopping code
2	has a predefined property.	
1	21.	The impulse transmission system of claim 20, wherein the pre-defined
2	property is a	at least one of spectral properties and correlation properties.

1

2

1

1

2

1

2

1 2

3

- 22. The in transmission system of claim 21, v. ein the correlation property 1 comprises at least one of autocorrelation properties and cross-correlation properties. 2
- The impulse transmission system of claim 15, wherein said time-hopping code 23. 1 comprises at least one of a hyperbolic congruential code, quadratic congruential code, linear 2 congruential code, Welch-Costas array code, Golomb-Costas array code, pseudorandom 3 code, chaotic code, and Optimal Golomb Ruler code. 4
 - The impulse transmission system of claim 15, wherein the time layout is 24. comprised of a plurality of frames.
- The impulse transmission system of claim 24, wherein said frame is comprised 25. of a plurality of sub-frames. 2
 - The impulse transmission system of claim 25, wherein said sub-frame is 26. comprised of a plurality of smaller components.
 - The impulse transmission system of claim 26, wherein said smaller 27. components are further subdivided.
 - The impulse transmission system claim 15, wherein the time layout is a delta 28. alue layout.