Page 11

- **3.1** We must prove that the set $\{x : x \in A \text{ and } x \notin B\}$ exist. Let P(x, A, B) be the property " $x \in A \text{ and } x \notin B$ ", P(x, A, B) implies $x \in A$, because A exist, we have $\{x : x \in A \text{ and } x \notin B\} = \{x \in A : x \in A \text{ and } x \notin B\} = \{x \in A : x \notin B\}$, this set clearly exist by the axiom of comprehension.
- **3.2** Weak Axiom of Existence implies that some set exist, call one of them A and let P(x) be the property " $x \neq x$ ", by axiom of comprehension the set $X = \{x \in A : x \neq x\}$ exist, it has no element because no object satisfy the property P(x).
- **3.3** (a) Suppose that V is set of all sets, by Comprehension $X = \{x \in V : x \notin x\}$ exist. Because V is set of all sets, clearly $X \in V$. Now suppose that $X \in X$ then $X \notin X$ by definition, a contradiction. suppose $X \notin X$, then $X \in X$ again by definition.
- (b) Assume the contrary, there is a set A that any $x \in A$. then A = V is set of all sets, by previous exercise there is no V.
- **3.4** By axiom of pairing the set $\{A, B\}$ exist and union axiom implies the existence of $\bigcup \{A, B\}$, let $P(x, A, B) = (x \in A \land x \notin B) \lor (x \notin A \land x \in B)$ by comprehension there is a set that its elements satisfy P(x, A, B) and $x \in \bigcup \{A, B\}$.
- **3.5** 3.5(a) by axiom of pairing there is $\{A, B\}$ and $\{C\}$. again by pairing $\{\{A, B\}, \{C\}\}$. by axiom of union there is $X = \bigcup \{\{A, B\}, \{C\}\}$. Now $x \in X$ iff $x \in \{A, B\}$ or $x \in \{C\}$ iff x = A or x = B or x = C.
 - (b) Take $\{C, D\}$ instead of $\{C\}$ in the previous exercise.
- **3.6** Assume that $\mathcal{P}(X) \subseteq X$, Now let $Y = \{x \in X : x \notin x\}$, clearly $Y \subseteq X$, so $Y \in \mathcal{P}(X)$, thus $Y \in X$. also we have either $Y \in Y$ or $Y \notin Y$. if first, $Y \notin Y$, if th second $Y \in Y$, thus $Y \in Y$ iff $Y \notin Y$, a contradiction.
- **3.7** Let P(x, A, B) be the property " $x = A \lor x = B$ ", apply axiom of comprehension to C, we get the set $X \subseteq C$ such that $x \in X$ iff x = A or x = B, so $X = \{A, B\}$.

Let P'(x,S) be the property " $\exists A(A \in S \land X \in A)$ ", apply axiom of comprehension to U, we get the set Y such that $x \in Y$ iff for some $A \in S$ we have $x \in A$, thus $Y = \bigcup S$.

Let P'(x, S) be the property " $x \subseteq S$ ", apply axiom of comprehension to P, we get the set Z such that $x \in Z$ iff $x \subseteq S$, thus $Y = \mathcal{P}(S)$.