Работоспособность непараметрического критерия Вилкоксона при решении задач с особенностями в выборках

A. E. Коченгин НИУ МЭИ Москва kochenginalexey@gmail.com

Г. Хрисостому университет им. Фредерика Кипр Chrysostomou_George@yahoo.com

B. А. Шихин НИУ МЭИ Москва ShikhinVA@mpei.ru

Предлагается подход к повышению разрешимости задач дискриминации данных посредством непараметрического критерия знаковых рангов Вилкоксона при принятии решений в ситуациях с особенностями в сравниваемых выборках данных типа "смещение по вертикали" и "масштаб". Модифицированный критерий Вилкоксона рассматривается в качестве инструмента выявления отклонений при ведении технологического процесса, которые не превышают пороговые значения, но существенное влияние экономические показатели. Предложенный метод выявления критических событий с применением модифицированного критерия Вилкоксона позволяет определять как факт наличия события, так и производить их распознавание. Доказывается, что мощность предложенного модифицированного критерия Вилкоксона не ухудшается по сравнению с классическим критерием Вилкоксона. Произведенная обработка учетных данных на примере нефтехимических электропотребления одного из промышленных предприятий позволила протестировать возможность применения модифицированного критерия Вилкоксона составе вычислительной R процедуры разработанного алгоритма выявления критических событий.

Ключевые слова: непараметрический критерий; технологическое событие; статистические методы; профиль нагрузки

I. Введение

Проблема пропуска важной информации, не нарушающей в целом технологический процесс, однако оказывающей существенное влияние на оптимальное функционирование объекта управления и контроля является предметом многих исследований. Один из используемых при этом подходов сводится к сравнительному анализу соответствующих выборок данных.

При решении задач дискриминации двух выборок перед исследователем встает вопрос выбора критерия. Наиболее распространённым является использование статистических методов. Однако для выборок с небольшим количеством значений (до 50), наиболее известные параметрические подходы не работают. В таких случаях обычно применяют непараметрические критерии.

Особенность постановки задачи тестирования двух выборок на предмет принадлежности к единой выборке и отсутствию существенных отклонений в силу наличия критических событий в рассматриваемом случае сравнения профилей электропотребления состоит в том, что сравниваются две упорядоченные по времени выборки Y_1 и Y_2 поскольку они состоят из почасовых измерений электроэнергии.

Предполагается, что профиль нагрузки, по которому формируется выборка Y_1 , соответствует интервалу времени, на котором гарантированно отсутствовали критические события, а Y_2 является выборкой данных по исследуемому на предмет факта наличия или отсутствия критических событий по другому интервалу времени.

II. ПРЕДЛАГАЕМЫЙ МОДЕРНИЗИРОВАННЫЙ КРИТЕРИЙ ВИЛКОКСОНА

В практике применения критерия знаковых рангов Вилкоксона для выявления критических событий возникает ряд трудностей, связанных с особенностями, проявляющимися при попарном сравнении элементов классифицируемых выборок. Это так называемые альтернативы "масштаба" и "смещения по вертикали".

Неучет данных обстоятельств может приводить к качественно неверному результату. Рассмотрим задачу выработки такого универсального приема обработки статистических данных, который бы позволил учесть указанные нарушения, а также исследуем вопросы,

связанные с изменением мощности усовершенствованного критерия.

Обойти указанные трудности предлагается за счет учета дополнительной априорной информации (обычно) требованиях К точностным характеристикам данных. При учете электроэнергии точностные характеристики данных непосредственно зависят OT классов точности применяемых электросчетчиков, a OT утвержденной также установленном порядке Методики выполнения измерений

Допустим, что в соответствии с требованиями к точностным характеристикам в конкретном исследовании на исследуемую выборку Y_2 наложены поэлементно ограничения:

$$\left| Y_{i,i} - Y_{i,i} \right| \le \sigma_{_{0}}; for \forall i, i - \text{int } eger$$

$$Y_{i,i}, Y_{i,i} \ge 0$$
(1)

В выражении (1) положительная константа σ_0 задается как известная мера точности полученных измерительных данных.

Полагаем, что на основе априорной информации практически всегда может быть выбрана среди архива профилей нагрузки такая выборка Y_1 с гарантированным отсутствием критических событий и которая заведомо удовлетворяет точностным требованиям к отражению технологического процесса $\sigma_I \leq \sigma_0$, где σ_I — медиана абсолютного отклонения данных по Y_1 .

Пусть δ_{Ii} и δ_{2i} представляют собой отклонения наблюдений Y_{Ii} и Y_{2i} от гипотетических (без ошибок измерения) истинных значений элементов Y_{0i} , $i=\overline{1,N}$ эталонной выборки Y_0 :

$$\delta_{1i} = |Y_{1i} - Y_{0i}| \to \sigma_1 = Ex[\delta_1]$$

$$\delta_{2i} = |y_{2i} - y_{0i}| \to \sigma_2 = Ex[\delta_2]$$

$$\delta_i = |y_{1i} - y_{2i}| \to \sigma = Ex[\delta]$$

$$\sigma_2 \ge \sigma_1 & \sigma_1 \le \sigma_0$$
(2)

Анализируя традиционную процедуру метода Вилкоксона, можно сделать вывод, что для самой неблагоприятной ситуации взаимного расположения численных значений наблюдений по сравниваемым Y_1 и Y_2 будем иметь:

$$\sigma \le (\sigma_1 + \sigma_2) \Rightarrow \sigma = \sigma_1 + \sigma_2 \tag{3}$$

Для отмеченных выше особых ситуаций предлагается процедуру критерия Вилкоксона применить не к первичным разностям наблюдений δ_i , а проверять гипотезу об одностороннем расположении матожидания $\sigma = Ex[\delta]$ относительно заданной константы σ_0 . Другими словами, матожидание от ошибок измерения должно быть меньше

или равно наложенным на точностные характеристики ограничениям, что можно сформулировать в виде проверки гипотезы H1:

$$H1: Ex[\delta] < \sigma_0 \tag{4}$$

Однако при этом встает вопрос, как скажется замена тестируемой гипотезы H на H1 при вынесении окончательного решения о возможном наличии критического события. Для ответа на этот вопрос предлагается сформулировать и доказать следующую теорему.

Теорема 1. Положительное решение по гипотезе H1 об одностороннем расположении матожидания разностей δ_i относительно заданного уровня точности σ_0 : H1: $Ex[\delta] < \sigma_0$ вместо проверки исходной гипотезы H о принадлежности двух выборок Y_1 и Y_2 одной генеральной совокупности Y_0 : H: $Y_1 \in Y_0$ & $Y_2 \in Y_0$ является лишь достаточным условием достоверности исходной гипотезы H.

<u>Доказательство.</u> Для доказательства Теоремы 1 необходимо проверить следующие два положения, соответствующие ситуациям отсутствия или наличия критических отклонений во второй из двух сравниваемых выборок Y_1 , Y_2 :

- а). Верно ли, что если $Ex[\delta] < \sigma_o$, то $\sigma_2 < \sigma_o$?
- б). Следует ли из того, что $Ex[\delta] > \sigma_o$, $\Rightarrow \sigma_2 > \sigma_o$?

При этом будем исходить из самой неблагоприятной ситуации (3) относительно взаимного расположения наблюдений.

Анализируя (а) с учетом (2), (3) с достаточной очевидностью получаем

$$Ex[\delta] = (\sigma_1 + \sigma_2) < \sigma_o \Rightarrow \sigma_2 < (\sigma_o - \sigma_I)$$
 (5)

Поскольку известно, что $\sigma_l < \sigma_o$, следовательно, $\sigma_2 < \sigma_o$, что и требовалось доказать.

Анализируя (б) с учетом (2), (3) имеем:

$$Ex[\delta] = (\sigma_1 + \sigma_2) > \sigma_0 \Longrightarrow \sigma_2 > (\sigma_0 - \sigma_1)$$
 (6)

Поскольку известно, что $\sigma_l < \sigma_o$, следовательно, σ_2 не обязательно больше σ_o . Каждая из σ_l и σ_2 может быть меньше σ_o , однако при этом их сумма может быть больше σ_o . Следовательно, положение (б) выполняется не всегда.

Таким образом, достаточные условия Теоремы 1 можно считать доказанными. Для частного случая из Теоремы 1 можно вывести очевидное следствие.

Следствие 1. Если предположить, что одна из выборок, например, Y_I является эталонной, т.е. $\sigma_I \cong 0$, то положения (a) и (б) выполняются автоматически:

$$Ex[\delta] = \sigma_2, \&Ex[\delta] < \sigma_0 \Longrightarrow \sigma_2 < \sigma_0 \tag{7}$$

$$Ex[\delta] = \sigma_2, \&Ex[\delta] > \sigma_0 \Longrightarrow \sigma_2 > \sigma_0$$
 (8)

и полученные условия являются необходимыми и достаточными для принятия гипотезы (4).

Таким образом, для повышения мощности критерия Вилкоксона, предлагается модифицировать алгоритм традиционного критерия Вилкоксона. В результате имеем:

Шаг 1: Выдвижение гипотезы

Шаг 2: Вычисляются разности δ_i , $i=\overline{1,N}$ из N пар наблюдений $(Y_{1-1},\ Y_{2-1}),\ (Y_{1-2},\ Y_{2-2}),...,\ (Y_{1-N},\ Y_{2-N})$: $\delta_i=Y_1-Y_2,$ $i=\overline{1,N}$

Шаг 3: Вычисляются разности $\delta_i - \sigma_0$, $i = \overline{1, N}$. Значение σ_0 задается на основе априорной информации.

Шаг 4: Вычисленные разности $\delta_i - \sigma_0, i = \overline{1,N}$ упорядочиваются по абсолютной величине в виде вариационного ряда $\delta(1)$ - σ_o , $\delta(2)$ - σ_o ,..., $\delta(N)$ - σ_o и каждой разности в порядке возрастания присваивается соответствующий ранг R_i — целое положительное число: $R_i = \overline{1,N}$, $i = \overline{1,N}$.

Шаг 5: Каждому рангу $R_i=1,N$ приписывается знак соответствующей разности $(Y_{1i}-Y_{2i}-\sigma_o)$, $i=\overline{1,N}$ и вычисляется сумма положительных рангов T_{N+} .

Шаг 6: Вычисленное значение T_{N+} . сравнивается с критическим значением критерия $A[\alpha,N]$, которое определяется из статистических таблиц [3] в соответствии с заданным уровнем значимости α и числом сравниваемых пар N.

III. ИССЛЕДОВАНИЕ МОЩНОСТИ ПРЕДЛОЖЕННОГО МОДЕРНИЗИРОВАННОГО КРИТЕРИЯ ВИЛКОКСОНА

Рассматриваемый в данной работе критерий Вилкоксона относится к классу ранговых критериев, т.е. опирающихся на ранговую статистику T=t(R), и принадлежит подклассу линейных критериев. Линейная ранговая статистика может быть представлена в общем случае в виде:

$$T = \sum_{i=1}^{N} a(i, R_i)$$
 (9)

где $\{a(i,j)\}$ есть произвольная матрица размером $[N\times N]$. В данном случае рассматриваем критерий знаковых рангов Вилкоксона, опирающийся на простую линейную статистику

$$T = \sum_{i=1}^{N} R_i \tag{10}$$

Требуется установить, как повлияет предложенная выше модификация процедуры критерия на значение дисперсии σ^2 , которая в свою очередь определяет значение мощности критерия дискриминации, а в приведенном

случае использования линейного критерия — данная зависимость однозначна.

Предполагаем, что используемая в исследовании априорная информация (предпосылки) включает:

- 1. Наблюдения по показателям дискриминации принимают только неотрицательные значения: $y_i \ge 0$, $i = \overline{1,N}$. Считаем, что это условие всегда выполняется или может быть обеспечено без особых затруднений, учитывая, что данные в рассматриваемом случае представляют собой показания потребленной энергии.
- 2. Всегда может быть указана "эталонная выборка". Это могут быть результаты экспертных оценок архивов профилей нагрузки. Знание значения показателя дискриминации из эталонной выборки позволяет перейти от заданного безразмерного значения константы $\sigma_o\%$ к заданию ее абсолютного значения σ_o .

Начнем рассмотрение возможных особенностей в данных для случая "смещение по вертикали". Элементы выборки Y_1 на рис. 1 помечены как " \blacklozenge ", а выборки Y_2 как " \blacksquare ".

Рис. 1. Случай особенностей в данных типа "смещение по вертикали"

Из приведенной на рис. 1 графической интерпретации ясно, что смещение разностей $(\delta_i$ - $\sigma_O)$, вычисляемых согласно модернизированному критерию приводит к уменьшению дисперсии $\sigma^2[\delta$ - $\sigma_O]$ по сравнению с дисперсией $\sigma^2[\delta]$, имеющей место в традиционном алгоритме. Заметим, что это справедливо только при правильном выборе σ_O , что является особой задачей исследования.

Рассмотрим случай особенности типа "масштаб", когда большим по абсолютной величине, но разнознаковым разностям $\delta_i = y1_i - y2_i$, $i = \overline{1,N}$ сопутствует ситуация $T_{N+} \cong T_N$. при которой критерий Вилкоксона в

традиционной форме неработоспособен. На рис. 2 учтена особенность взятия абсолютного значения от разностей δ_i .

Рис. 2. Случай особенностей в данных типа "масштаб"

Из приведенных рисунков видно, что значение дисперсии $\sigma^2[\delta - \sigma_O]$, рассчитываемое в модернизированной процедуре по отношению к $(+\sigma_O)$ и $(-\sigma_O)$, уменьшается в сравнении с $\sigma^2[\delta]$.

Таким образом, доказано, что предложенное изменение традиционной процедуры критерия знаковых рангов Вилкоксона приводит к повышению мощности критерия и к приданию ему способности служить формализованным инструментом для принятия решений в ситуациях с нарушениями в данных типа "смещение по вертикали" и "масштаб".

IV. Выводы

Предложенная процедура модифицированного критерия Вилкоксона за счет учета доступной дополнительной априорной информации об известных требованиях к точностным характеристикам данных позволяет повысить разрешающую способность критерия знаковых рангов Вилкоксона.

Доказано, что мощность модифицированного критерия Вилкоксона по сравнению с традиционной процедурой

метода в общем случае не ухудшается, а при особенностях в сравниваемых данных типа "смещение по вертикали", "масштаб" мощность критерия повышается.

Список литературы

- Spiering T. Energy efficiency benchmarking for injection moulding processes // Robotics and Computer-Integrated Manufacturing. 2015. No. 36.P. 45-59.
- [2] Кобзарь А.И. Прикладная математическая статистика. Физматлит: 2006. С.457-458.
- [3] Owen D.B. Handbook of statistical tables. Adisson-wesley publishing company.:0. 1962. P.580.
- [4] Крамер Г. Математические методы статистики, пер. с англ., 2 изд., М., 1975.
- [5] Коченгин А.Е., Шихин В.А., Павлюк Г.П. Выявление и идентификация значимых технологических событий при анализе профиля электроснабжения промышленного предприятия // Автоматизация в промышленности 2019. №1. С.25-31.
- [6] Орлов А.И. Современная прикладная статистика // Заводская лаборатория. Диагностика материалов. 1998. Т.64. №3. С. 52-60.
- [7] Горский В.Г., Орлов А.И. Математические методы исследования: итоги и перспективы // Заводская лаборатория. Диагностика материалов. 2002. Т.68. №1. С.108-112.
- [8] ГОСТ Р 50.1.037-2002. Рекомендации по стандартизации. Прикладная статистика: Правила проверки согласия опытного распределения с теоретическим. Часть II: Непараметрические критерии. Госстандарт РФ: 2002.С.66.
- [9] Ассоциация НП Совет рынка Приложение № 11.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка [Электронный ресурс], URL: https://www.npsr.ru/sites/default/files/sr_regulation/reglaments/SR_0V048679/r1_1_pri 1_11_1_01092016_29082016.pdf
- [10] Орлов А.И. Точки роста статистических методов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. №09(103). С. 136–162. IDA [article ID]: 1031409011. Режим доступа: http://ej.kubagro.ru/2014/09/pdf/11.pdf
- [11] Орлов А.И. Часто ли распределение результатов наблюдений является нормальным? // Заводская лаборатория. Диагностика материалов, 1991. Т.57. №7. С.64-66.
- [12] Орлов А.И. Неустойчивость параметрических методов отбраковки резко выделяющихся наблюдений. // Заводская лаборатория. Диагностика материалов. 1992. Т.58. №7. С.40-42.
- [13] Teiwes H Energy load profile analysis on machine level //CIRP. 2018. №69. P.271–276.
- [14] Kang M. S Load profile synthesis and wind power generation prediction for an isolated power system // IEEE. 2007. P. 1459 – 1464.
- [15] Hogg R.V Probability and Statistical Inference. Prentice Hall. 2006. P. 557.