Problème. Sur la notion de fonction génératrice.

Dans ce problème, m et n sont des entiers naturels non nuls et $p \in [0,1]$. Toutes les variables aléatoires seront supposées définies sur un espace probabilisé fini (Ω, P) et à valeurs entières positives : $X(\Omega)$ sera une partie finie de \mathbb{N} .

On appelle fonction génératrice de X et on note G_X la fonction

$$G_X: t \mapsto E(t^X).$$

1. Fonction génératrice et loi d'une variable aléatoire.

Soit X et Y deux variables aléatoires à valeurs entières.

(a) Démontrer que pour tout $t \in \mathbb{R}$,

$$G_X(t) = \sum_{k \in X(\Omega)} P(X = k)t^k.$$

- (b) Justifier que X et Y ont même loi si et seulement si $G_X = G_Y$.
- 2. Fonction génératrice et lois usuelles.

Pour $t \in \mathbb{R}$, calculer

- (a) $G_X(t)$ pour X suivant la loi de Bernoulli $\mathcal{B}(p)$.
- (b) $G_U(t)$ pour U suivant la loi uniforme sur [1, n]
- (c) $G_Y(t)$, pour Y suivant la loi binomiale $\mathcal{B}(n,p)$.
- 3. Fonction génératrice et espérance.

Soit $X: \Omega \to [0, n]$.

- (a) Justifier que $G'_{Y}(1) = E(X)$.
- (b) À l'aide de ce qui précède, retrouver l'expression connue pour l'espérance d'une variable aléatoire de loi $\mathcal{B}(n,p)$.

- 4. Fonction génératrice et somme de deux variables.
 - (a) Montrer que si X et Y sont deux variables aléatoires **indépendantes**, alors

$$G_{X+Y} = G_X \times G_Y$$
.

(b) Application 1

On modélise un lancer de deux dés équilibrés en considérant un couple (X, Y) de deux variables indépendantes et toutes deux de loi uniforme sur [1, 6]. Quelle est la loi de X + Y?

(c) Application 2

Soient X et Y deux variables aléatoires indépendantes, X suivant la loi binomiale $\mathcal{B}(m,p)$ et Y suit la loi $\mathcal{B}(n,p)$. Démontrer que X+Y suit la loi $\mathcal{B}(m+n,p)$.

Exercice. Distance au s.e.v. des matrices symétriques.

Dans cet exercice, on travaille dans l'espace vectoriel $E = M_2(\mathbb{R})$. On note $F = S_2(\mathbb{R})$ le sous-espace vectoriel des matrices symétriques.

On utilisera les notations standard pour sa base canonique : $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$.

Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, on pose $\langle A, A' \rangle = aa' + bb' + cc' + dd'$.

C'est le produit scalaire canonique sur $M_2(\mathbb{R})$.

- 1. Vérifier que $\langle \cdot, \cdot \rangle$ est bien un produit scalaire sur E.
- 2. On considère la famille de trois matrices $\mathcal{F} = (E_{1,1}, E_{2,2}, S)$, avec $S = E_{1,2} + E_{2,1}$.
 - (a) Vérifier que \mathcal{F} est une famille orthogonale, et que c'est une base de F.
 - (b) Est-ce une base orthonormée de F?

3. Notons $M = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$.

En vous aidant de la famille \mathcal{F} , calculer $p_F(M)$, le projeté orthogonal de M sur F

4. En déduire d(M, F), la distance de M à F. Vovez-vous un autre moven de calculer cette distance?