计算机组成原理与系统结构

第三章 信息编码与数据表示

http://jpkc.hdu.edu.cn/computer/zcyl/dzkjdx/

第三章 信息编码与数据表示

- 3. 数值数据的表示
- 3. 数据格式
- 3.3
- 定点机器数的表示方法 浮点机器数的表示

方法

- 3. 非数值数据的表示
- 3. 校验码
- 3.7 现代计算机系统的数据表

不

本章小结

3.3 定点机器数的表示方法

- ❖ 定点机器数的小数点的位置是固定不变的,可以分为两种:
 - 定点小数:用于表示纯小数,小数点隐含固定在最高数据位的左边,整数位则用于表示符号位。
 - 定点整数:用于表示纯整数,小数点位置隐含固定 在最低位之后,最高位为符号位。
- ❖ 一、原码表示法
- ❖二、补码表示法
- ❖ 三、反码表示法
- ❖ 四、移码表示法
- ❖ 五、定点机器数转换

对比

- ❖1、表示方法:最高位为符号位, 位。
 - 符号位: 0 一正数, 1 一负数。
 - 数值位:与绝对值相同。
- ❖对于定点整数:
 - = 若 $X=+X_1X_2----X_n$,则 $[X]_{\bar{p}}=0,X_1X_2-----X_n$;
- ❖对于定点小数:
 - 若 X=+0. X_1X_2 ···· X_n , 则 $[X]_{\bar{B}}=0$. X_1X_2 ···· X_n ;

","和"." 只用于助记, 在计算机中并 无专用部件来 表示


```
❖ 例 1: X=1011, Y = - 1011, 则:
  [X] _{\mathbb{R}} = 0,1011 ; [Y]1_{\mathbb{R}} \neq 011
◆例2: №011001, Y = - 0.11011,1011;
  [X]_{g} = _____; [Y]_{g} = ____
*例3: Q = POP_1^{-1}, Y = -0.11011, 19129 的8
 位原码机器数。
  [X]_{g} = ____; [Y]_{g} = ____
```

❖ 例 4: [0] _□ = ?

- ◆ 2 、 0 的表示: 0 的原码表示有两种形式,即分别 按照正数和负数表示。
 - **■** [+0] _□ = 00····0 $[-0]_{\bar{n}} = 10 \cdots 0$
- ※3、表示范围:对于 n + 1 位原码机器数 X. 它所能 包括 1 位符号 表示的数据范围为: 表示的剱佑沁回/y:
 ■ 定点整数: -(2ⁿ - 1) ≤ X ≤ 2 位, n 位数值

 - 定点小数: (1-2-n) ≤ X ≤ 1-2-n

•思考: 16 位定点整数的原码表示范围?

❖ 4、数学表示:编码与真值之间的数学关系

定点
整数
$$[X]_{\mathbb{R}} = \begin{cases} X & X \ge 0 \\ 2^n - X & X \le 0 \end{cases}$$

定点
小数
$$[X]_{\mathbb{R}} = \begin{cases} X & X \ge 0 \\ 1 - X & X \le 0 \end{cases}$$

❖ 4 位原码机器数 (整数)对应 的真值

机器数	原码对应真值
0000	0
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7
1000	-0
1001	-1
1010	-2
1011	-3
1100	-4
1101	-5
1110	-6
1111	-7

- ❖ 4 位原码机器数(整数)在数轴上的表示
 - 原码机器数编码与真值的对应

- ❖1、表示方法:最高位为符号位,其他位为数值位。
 - 符号位: 0 一正数, 1 一负数。
 - 数值位:正数时,与绝对值相同;负数时,
- ❖对为絶对整数反后,未位加1。

- = 若 $X=+X_1X_2-\cdots-X_n$,则 $[X]_{\stackrel{}{N}}=0$, $X_1X_2-\cdots-X_n$
- 若 $X = -X_1X_2 \cdots X_n$, 则 $[X]_{\frac{1}{N}} = 1, X_1X_2 \cdots X_n$ + 1 。
- ❖对于定点小数:
 - 若 X=+0. $X_1X_2\cdots X_n$, 则 $[X]_{\frac{1}{N}}=0$. $X_1X_2\cdots X_n$;
 - 若 X=-0. $X_1X_2\cdots X_n$, 则 $[X]_{*}=1.X_1X_2\cdots$

- ❖ 例 1: X=1011, Y = − 1011, 则:

 [X]

 [X]

 [Y]

 [Y]
- ❖ 例 2: X=0.11101, Y = 0.1111,001

 [X]

 _{*} = _____; [Y]

 _{*} = _____

※ 例 3: Q=QQQ1Q1,0 Y = - 0.1101, 求 X 和 Y 的 8 位补码机器数。

 $[X]_{*h} = \underline{\qquad} [Y]_{*h} = \underline{\qquad}$

_____;

◆例4: [0]_→=?

- ❖ 2 、 0 的表示: 0 的补码表示形式是唯一的 ,即分别按照正数和负数表示均一致,为全零
 - 0

$$[-0]_{*} = 00 \cdots 0 = [-0]_{*} = 00 \cdots 0$$

- ※3、表示范围:对于 n + 1 位 元 包括 1 位符号 它所能表示的数据范围为: 位 n 位数值
 - 定点整数: 2ⁿ≤X ≤ 2ⁿ 1
 - 定点小数: -1≤X ≤ 1-2-n
- ❖ 计算机中的整型数据(int)均用补码来表示。

思考题:

- ❖32 位微机中, C程序定义了两个变量 x
 - , у:
- ❖Int x;
- Unsigned int y;
- ❖问: x, y的数据取值范围?
- ❖x 是 32 位补码表示的整数: 231≤X ≤ 231 -
- 1
- ❖y 是 32 位无符号整数: 0≤X ≤ 2³² 1

❖4、数学表示

定点
整数
$$[X]_{\stackrel{}{\nmid}_{l}} = \begin{cases} X & X \ge 0 \\ 2^{n+1} + X & X < 0 \end{cases}$$

$$[X]_{\frac{1}{4h}} = 2^{n+1} + X \pmod{2^n}$$

$$[X]_{\nmid \mid} = \begin{cases} X & X \ge 0 \\ 2 + X & X < 0 \end{cases}$$

$$\begin{bmatrix} X \end{bmatrix}_{\frac{1}{4h}} = 2+X \quad (\text{mod} \\ 2)$$

❖ 4 位补码机器数 (整数)对应 的真值

机器数	原码真 值	补码真值
0000	0	0
0001	+1	+1
0010	+2	+2
0011	+3	+3
0100	+4	+4
0101	+5	+5
0110	+6	+6
0111	+7	+7
1000	-0	-8
1001	-1	-7
1010	-2	-6
1011	-3	-5
1100	-4	-4
1101	-5	-3
1110	-6	-2
1111	-7	-1

- ❖ 4 位补码机器数(整数)在数轴上的表示
 - 补码机器数编码与真值的对应

- ❖1、表示方法:最高位为符号位,其他位为数值位。
 - 符号位: 0 一正数, 1 一负数。
 - 数值位:正数时,与绝对值相同;负数时,
- ※ 对 判絶 对 種級 反。
 - = 若 $X=+X_1X_2\cdots\cdots X_n$,则 $[X]_{\overline{p}}=0,X_1X_2\cdots\cdots X_n$;
 - 若 $X=-X_1X_2\cdots X_n$, 则 $[X]_{\xi}=1, X_1X_2\cdots X_n$

❖对于定点小数:

■ 若 $X=+0. X_1 X_2 \cdots X_n$,则 $[X]_{\xi}=0. X_1 X_2 \cdots X_n$;

- - ;

- __;
- ❖例4: [0]_反=?

- ❖ 2 、 0 的表示: 0 的反码表示有两种形式,即 分别按照正数和负数表示。
 - $[+0]_{\bar{p}} = 00 \cdots 0 \quad [-0]_{\bar{p}} = 11 \cdots 1$
- ※3、表示范围:对于 n + 1 位反码机器数 X ,它 所能表示的数据范围为: 包括 1 位符号
 - 定点整数: $-(2^n-1) \leq X \leq 2$ 位, n 位数值
 - 定点小数: -(1-2⁻ⁿ) ≤ X ≤ 1-2^位n

•思考: 16 位定点整数的反码表示范围?

❖4、数学表示

定点
整数
$$[X]_{\overline{p}} = \begin{cases} X & X \ge 0 \\ 2^{n+1} - 1 + X & X \le 0 \end{cases}$$

定点
小数
$$[X]_{\overline{p}} = \begin{cases} X & X \ge 0 \\ 2 - 2^{-n} + X & X \le 0 \end{cases}$$

❖ 4 位反码机器数 (整数)对应 的真值

K				
	机器数	原码真 值	补码真值	反码真值
	0000	0	0	0
	0001	+1	+1	+1
	0010	+2	+2	+2
	0011	+3	+3	+3
	0100	+4	+4	+4
	0101	+5	+5	+5
	0110	+6	+6	+6
	0111	+7	+7	+7
	1000	-0	-8	-7
	1001	-1	-7	-6
	1010	-2	-6	-5
	1011	-3	-5	-4
	1100	-4	-4	-3
	1101	-5	-3	-2
	1110	-6	-2	-1
	1111	-7	-1	-0

- ❖ 4 位反码机器数(整数)在数轴上的表示
 - 反码机器数编码与真值的对应

- - 符号位: 1一正数, 0一负数。
 - 数值位:正数时,与绝对值相同;负数时,为绝对值取反后,末位加1。移码表示:即为补码的符号位取反

❖ 对于定点整数:

- 若 $X=+X_1X_2\cdots X_n$,则 $[X]_8=1$, $X_1X_2\cdots X_n$

❖ 例 4: [0]_森=?

```
❖例1: X=1011, Y=-1011, 则:
  [X]_{*} = 1,1011 [Y]_{*} = 9101
* 例 2: X=10, 1101, Y=-0.10010, 10010:
  [X]_{8} = _____; [Y]_{8} = ____
的8位移码机器数。
  [X]_{8} = _____; [Y]_{8} = ____
```

24

- ❖2、0的表示: 0 的移码表示形式是唯一的,即分别按照正数和负数表示均一致。
 - [+0] _移 = 10…0 [-0] _移 = 10 …0
- ◆3、表示范围:对于n+1位移位,n位数值数X,它所能表示的数据范围为:
- •思考定点整数点整数的移码表示范围?1
- *移码通常作为浮点数的阶码。

❖4、数学表示

$$[X]_{8} = 2^n + X$$

❖又称增码

❖ 4 位移码 机器数 (整数) 对应的真 值

机器数	原码真 值	补码真值	反码真值	移码真值
0000	0	0	0	-8
0001	+1	+1	+1	-7
0010	+2	+2	+2	-6
0011	+3	+3	+3	-5
0100	+4	+4	+4	-4
0101	+5	+5	+5	-3
0110	+6	+6	+6	-2
0111	+7	+7	+7	-1
1000	-0	-8	-7	0
1001	-1	-7	-6	+1
1010	-2	-6	-5	+2
1011	-3	-5	-4	+3
1100	-4	-4	-3	+4
1101	-5	-3	-2	+5
1110	-6	-2	-1	+6
1111	7	4	Λ	47

- ❖ 4 位移码机器数(整数)在数轴上的表示
 - 移码机器数编码与真值的对应

四种定点机器数的表示

真值	$X = + X_1 X_2 - \cdots X_n$	$X = - X_1 X_2 - \cdots X_n$
原码	$[X]_{\mathbb{R}} = 0 X_1 X_2 \cdots X_n$	$[X]_{\bar{n}} = 1 X_1 X_2 \cdots X_n$
反码	$[X]_{\bar{\aleph}} = 0 X_1 X_2 \cdots X_n$	$[X]_{\bar{\aleph}} = 1 X_1 X_2 \cdots X_n$
补码	$[X]_{*h} = 0 X_1 X_2 \cdots X_n$	$[X]_{\frac{1}{4}} = 1 X_1 X_2 \cdots X_n$
移码	$[X]_{8} = 1 X_1 X_2 \cdots X_n$	$[X]_{8} = 0 X_{1}X_{2} \cdots X_{n}$

四种定点机器数,0的表示

真值	X=+ 0	X=- 0
原码	[X] _原 = 0 000	[X] _原 = 1 000
反码	[X] _反 = 0 000	[X] _反 = 1 11 ·····1
补码	[X] *\= 0 00 ·····0	
移码	[X] _移 = 1 000	

四种定点机器数的表示范围 (n+1 位机器

	定点整数	定点小数
原码	$-(2^{n}-1) \leq X \leq 2^{n}$	$- (1-2^{-n}) \leq X \leq 1-2^{-n}$
反码	$-(2^{n}-1) \leq X \leq 2^{n}$	$- (1-2^{-n}) \leq X \leq 1-2^{-n}$
补码	$-2^n \leqslant X \leqslant 2^n -1$	-1 ≤ X ≤ 1-2 ^{- n}
移码	$-2^n \leqslant X \leqslant 2^n -1$	-1 ≤ X ≤ 1-2 ^{- n}

五、定点机器数转换

机器码的转换关系

五、定点机器数转换

- *机器数转换为真值
 - ① 机器数的符号位→真值的正负
 - ② 机器数的定义和表示→ 真值的绝对值
- ❖机器数之间的相互转换
 - 最简单的方法: 先求出它们的真值, 然后再转 换为另一种表示方法。

课堂练习

❖ 2 、求以下各机器数的十进制真值:

课堂练习

-(11111111 + 1)₂

```
[X]<sub>原</sub> = 1,0000000 , 则 X =
[X] <sub>补</sub> = 1,00000000 ,则 X =
[X]<sub>反</sub> = 1,0000000 , 则 X =
[X]<sub>森</sub> = 1,0000000 , 则 X =
[X]_{\mathbb{R}} = 1,1101 , \mathbb{N} = ?
[X]_{*} = 1,1101 , \bigcup X = ?
[X]_{\mathbb{R}} = 1,1101 , \emptyset X = ?
[X] <sub>森</sub> = 1,1101 ,则 X = ?
[X]_{\mathbb{R}} = 0,1000 , \emptyset X = ?
```


X = -1000 B

X = +1000B

X = -1000 B

The Engl