14: CLT-BASED CONFIDENCE INTERVALS

Stat250 S25 Prof Amanda Luby

Goal: develop an interval estimate of a population parameter

Today, we'll use the **asymptotic method**:, which uses large-sample theory to approximate the sampling distribution, primarily through the CLT.

 $(1 - \alpha)$ Confidence Interval

$$P(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha$$

Central Limit Theorem

If $X_1, ..., X_n \sim N(\mu, \sigma^2)$, then

1 R detour

rnorm(100)

dnorm(1)

[1] 0.2419707

pnorm(1)

[1] 0.8413447

qnorm(.8413447)

[1] 0.9999998

Example: Find the value of q that is needed for the following $(1 - \alpha)100\%$ normal-based CIs:

- 1. 90%
- 2. 95%
- 3. 97%

Example: Find a 90% confidence interval for the mean bill length of Gentoo penguins. Assume that $\sigma=3.08$. We also have $\bar{X}=47.5$ and n = 123

2 Plug-in principle

Let
$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$$
. Then $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

PROBLEM:
$$\bar{x} \pm z_{1-\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

Proposed solution:

Student's t-distribution

$$T = \frac{Z}{\sqrt{V/df}}$$

where $Z \sim N(0,1), V \sim \chi_{df}^2$, and $Z \perp V \Longrightarrow T \sim t_{df}$

- Symmetric around 0
- For df = 1, mean doesn't exist (Cauchy distribution)
- For $df \ge 2$, $E(T) = E(Z)E(1/\sqrt{V/n}) = 0$
- Heavier tails than normal distribution
- $t_{df} \to N(0,1)$ as $df \to \infty$

Example: Find the value of q that is needed for the following $(1 - \alpha)100\%$ t-based CIs:

- 1. 90%, n = 123
- 2. 95%, n = 25
- 3. 99%, n = 34

Example: Find a 90% confidence interval for the mean bill length of Gentoo penguins. Assume that = 3.08.

Sample statistics:

- n = 123
- $\bar{x} = 47.5$
- s = 3.08

3 Assumptions

 Random sample from a 	population distribution
--	-------------------------

observations

Robustness

If the a procedure "perform well" even if some of the assumptions under which they were developed do not hold, then they are called **robust**.

To check whether a procedure is robust, we can use simulation:

- 1. Simulate data from a variety of different probability distributions
- 2. Run the procedure (e.g., build a one-sample t-interval)
- 3. Compare the results of the procedure to what should have happened.

	Bell- shaped	Short- tailed	Long- tailed	Mild Skew	Moderate Skew	Strong Skew
n						
5	95.3	94	96.3	91.6	91.8	89.8
10	95.9	94	96.3	93.3	93.2	90.8
25	95.3	95.4	95.9	93.8	93.5	90.3
50	94.8	94.3	96.3	94.1	94	93.8
100	95.3	95.7	94.9	95.1	95.9	94.6

Robustness for 1-sample t procedure:

•	If the population distribution i	is roughly	and	,	then the
	procedure works well for samp	ole sizes of at least		(just a rough guide)	

- For ______ population distributions, the t-procedure can be substantially affected, depending on the severity of the ______ and the sample size.
- t-procedures are not resistant to _____
- If observations are not _______, everything breaks