Методы оптимизации

Конспект теории

Содержание

1	Ma	trix calculus and linear algebra	3
	1.1	Матричное дифференцирование	3
	1.2	Псевдообратная матрица	
	1.3	Сингулярное разложение	4
2	Cor	nvex sets and functions, projections	5
	2.1	Выпуклые множества	5
	2.2	Проекции	5
	2.3	Выпуклые функции	
3	Cor	njugate sets	7
4	Cor	njugate functions	8
	4.1	Сопряженные функции	8
	4.2	Сопряженная норма	8
5	Sub	ogradient and subdifferential	9
6	Kai	rush-Kuhn-Tucker conditions	10
7	Dua	ality	11
	7.1	Построение двойственной задачи	11
	7.2	Связь двойственной задачи и условий ККТ	12
	7.3	Теорема Фенхеля-Рокафеллара	12
	7.4	Задачи линейного программирования	13
8	Ma	ximum likelihood estimation	14
	8.1	Постановка задачи	14
	8.2	Линейная регрессия	
	8.3	Логистическая регрессия	15

Источники:

- 1. семинары Даниила Меркулова в 776 группе (source: fmin.xyz);
- 2. лекции Осипенко К.Ю. на ФУПМе;
- 3. "Convex Optimization", Stephen Boyd.

Используемые обозначения:

- $\nabla f(x)$ градиент функции $f: \mathbb{R}^p \to \mathbb{R}$ по вектору x. По умолчанию является столбцом $(p \times 1)$.
- H(x) гессиан функции $f: \mathbb{R}^p \to \mathbb{R}$. Является матрицей $(p \times p)$.
- J(x) якобиан функции $f: \mathbb{R}^p \to \mathbb{R}^m$. Является матрицей $(m \times p)$.
- f'(X) производная функции $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ по матрице X:

$$f'(X) = \left(\frac{\partial f}{\partial x_{ij}}\right)_{\substack{i=1,\dots,m\\j=1,\dots,n}} = (m \times n)$$

- $\langle x,y\rangle=x^Ty$ скалярное произведение векторов x и y.
- $\langle X,Y\rangle=\operatorname{tr}(A^TB)=\sum_{i=1}^n\sum_{j=1}^m a_{ij}b_{ij}$ скалярное произведение матриц X и Y (одинакового размера).
- $X^{-T} = (X^{-1})^T = (X^T)^{-1}$ для квадратной невырожденной матрицы X.
- \bullet I = E единичная матрица.
- \mathbb{S}^n_+ симметричные положительно полуопределенные матрицы порядка n.
- \mathbb{S}^n_{++} симметричные положительно определенные матрицы порядка n.
- $A \succ 0$ матрица A положительно определена.
- $A\succeq 0$ матрица A положительно полуопределена.
- $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0\}$ векторы с неотрицательными компонентами.
- $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n \mid x_i > 0\}$ векторы с положительными компонентами.
- $\|\cdot\|_2$ евклидова норма вектора.
- \bullet int A, relint A внутренность A, относительная внутренность A.
- $B_r(a)$ открытый шар радиуса r с центром в точке a.
- convA выпуклая оболочка множества A.
- aff A аффинная оболочка множества A.
- \bullet cone A коническая оболочка множества A.
- lin A линейная оболочка множества A.
- $A+B=\{a+b\mid a\in A,\ b\in B\}$ сумма Минковского множеств A и B.
- $\mathbb{E}\xi$ матожидание случайной величины ξ (expected value).
- $\mathbb{V}\xi$ дисперсия случайной величины ξ (variance).

1 Matrix calculus and linear algebra

1.1 Матричное дифференцирование

Для нахождения первой и второй производной (градиента, якобиана, гессиана и т.п.) многомерных функций используется запись дифференциала функции, следующая из формулы Тейлора:

• $f: \mathbb{R}^n \to \mathbb{R}$

$$df = \langle \nabla f, dx \rangle$$
$$d^2 f = \langle H dx_1, dx_2 \rangle,$$

где dx_1 — дифференциал x при первом дифференцировании, а dx_2 — при втором.

• $f: \mathbb{R}^n \to \mathbb{R}^m$

$$df = Jdx,$$

где $J = (m \times n)$ — якобиан функции f.

• $f: \mathbb{R}^{m \times n} \to \mathbb{R}$

$$df = \langle f'(X), dX \rangle$$

Производные старших порядков также можно получить таким образом, но они уже будут тензорами ранга ≥ 3 , поэтому они не будут иметь матричного представления.

Некоторые свойства дифференцирования матриц:

1.
$$d(X^T) = (dx)^T$$

$$2. \ d(XY) = (dX)Y + X(dY)$$

3.
$$d(\det X) = \det X\langle X^{-T}, dX\rangle$$

4.
$$d(\operatorname{tr} X) = \langle I, dX \rangle$$

1.2 Псевдообратная матрица

Опр. Пусть $A \in \mathbb{R}^{m \times n}$. Псевдообратной матрицей (Moore-Penrose inverse) к матрице A называется

$$A^{\dagger} = \lim_{\alpha \to 0} (A^{T}A + \alpha I)^{-1}A^{T} = \lim_{\alpha \to 0} A^{T}(AA^{T} + \alpha I)^{-1}$$

Оба предела всегда существуют и равны.

Если матрица A имеет полный ранг (rg $A = \min\{m, n\}$), то для A^{\dagger} есть алгебраическое выражение:

Случай	Алгебраическое выражение	Задача, решением которой является $A^{\dagger}b$
$A \in \mathbb{R}^{n \times n}$	$A^{\dagger} = A^{-1}$	Ax = b
$A \in \mathbb{R}^{m \times n}$ $m \ge n$	$A^{\dagger} = (A^T A)^{-1} A^T$	$ Ax - b _2^2 \to \min_{x \in \mathbb{R}^n}$
$A \in \mathbb{R}^{m \times n}$ $m \le n$	$A^{\dagger} = A^T (AA^T)^{-1}$	$\begin{cases} x _2^2 \longrightarrow \min_{x \in \mathbb{R}^n} \\ Ax = b \end{cases}$

Свойства:

$$\bullet \ AA^{\dagger}A = A$$

•
$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$

•
$$(A^{\dagger})^{\dagger} = A$$

$$\bullet \ (A^T)^\dagger = (A^\dagger)^T$$

•
$$(\alpha A)^{\dagger} = \alpha^{-1} A^{\dagger}$$

•
$$(AB)^\dagger = B^\dagger A^\dagger,$$
 если A или B полного ранга

Если линейная система Ax = b имеет решения, то все они задаются формулой

$$x = A^{\dagger}b + [I - A^{\dagger}A]w, \quad \forall w \in \mathbb{R}^n$$

1.3 Сингулярное разложение

Теорема о сингулярном разложении (SVD)

Пусть $A \in \mathbb{R}^{m \times n}$ — произвольная вещественная матрица ранга r. Тогда при $m \geq n$:

$$A = U\Sigma V^T,$$

- $U=(m\times m),\ \ V=(n\times n)$ ортогональные матрицы,
- $\Sigma = (m \times n)$ матрица с r ненулевыми элементами на диагонали:

$$\sigma_j = \sqrt{\lambda_j} \ - \$$
сингулярные числа матрицы A^TA в порядке убывания

 \bullet Столбцы U- собственные векторы $AA^T,$ столбцы V- собственные векторы $A^TA.$

Аналогично теорема формулируется для случая, когда $m \leq n.$

Если $A = U\Sigma V^T$, то псевдообратная матрица находится по формуле:

$$A^{\dagger} = V \Sigma^{\dagger} U^T, \qquad \Sigma^{\dagger} = \operatorname{diag}\left(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_r}, 0, \dots, 0\right)$$

2 Convex sets and functions, projections

2.1 Выпуклые множества

Способы проверить выпуклость множества:

• По определению:

Опр. Множество $S \subset \mathbb{R}^n$ называется выпуклым, если

$$\forall x, y \in S \ \forall \lambda \in [0, 1] \ \rightarrow \ \lambda x + (1 - \lambda)y \in S;$$

- Пересечение любого (даже несчетного) числа выпуклых множеств выпуклое множество;
- ullet Образ и прообраз выпуклого множества при аффинном отображении (f(x) = Ax + b) выпуклые множества.

2.2 Проекции

Опр. Проекцией точки $y \in \mathbb{R}^n$ на множество $S \subset \mathbb{R}^n$ называется точка $\pi = \pi_S(y) \in S,$ если

$$\forall x \in S \quad \to \quad \|\pi - y\| \le \|\pi - x\|$$

Свойства:

ullet Если проекция y на S существует, то

$$\pi_S(y) = \arg\min_{x \in S} ||x - y||$$

- Проекция может вообще не существовать, быть единственна, или их может быть много.
- (теорема Рисса о проекции) Если множество $S \subset \mathbb{R}^n$ выпукло и замкнуто, то проекция любой точки на S существует и единственна, и выполнено:

$$\forall x \in S: \langle \pi - y, x - \pi \rangle \ge 0 \iff \pi_S(y) = \pi$$

- Если множество S открыто, а $y \notin S$, то проекции не существует.
- \bullet Если S аффинное подпространство, то

$$\forall x \in S: \langle \pi - y, x - \pi \rangle = 0 \iff \pi_S(y) = \pi$$

2.3 Выпуклые функции

Способы проверить (нестрогую) выпуклость функции:

• По определению:

Опр. Функция $f:S\longrightarrow \mathbb{R}$, определенная на *выпуклом* множестве $S\subseteq \mathbb{R}^n$, называется *выпуклой на* S, если

$$\forall x, y \in S \ \forall \lambda \in [0, 1] \ \rightarrow \ f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

• Дифференциальный критерий 1-го порядка:

Пусть f дифференцируема на S. Тогда f выпукла на S тогда и только тогда, когда

$$\forall x, y \in S \rightarrow f(y) \ge f(x) + (\nabla f(x))^T (y - x),$$

то есть в каждой точке можно провести касательную гиперплоскость, являющуюся глобальной нижней оценкой.

• Дифференциальный критерий 2-го порядка:

Пусть f дважды дифференцируема на S. Тогда f выпукла тогда и только тогда, когда

$$\forall x \in \text{relint} S \rightarrow H(x) = \nabla^2 f(x) \succeq 0,$$

то есть гессиан f является положительно полуопределенной матрицей.

• Ограничение на прямую:

Пусть $f: S \longrightarrow \mathbb{R}, S \subseteq \mathbb{R}^n$ — выпукло. Пусть $x \in S, v \in \mathbb{R}^n$. Определим на выпуклом множестве $T = \{t \mid x + tv \in S\} \subseteq \mathbb{R}$ функцию числового аргумента g:

$$g: T \longrightarrow \mathbb{R}, \qquad g(t) = f(x + tv)$$

Тогда функция f выпукла на S тогда и только тогда, когда

$$\forall x \in S, \ v \in \mathbb{R}^n$$
 функция g выпукла на T .

Чтобы проверить строгую выпуклость нужно во всех критериях поменять знаки неравенств на строгие.

Способы проверить μ -сильную выпуклость:

• По определению:

Опр. Функция $f: S \longrightarrow \mathbb{R}$, определенная на *выпуклом* множестве $S \subseteq \mathbb{R}^n$, называется μ -сильно выпуклой на S или просто сильно выпуклой, если

$$\exists \mu > 0 \ \forall x, y \in S \ \forall \lambda \in [0, 1] \ \rightarrow \ f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) - \mu \lambda (1 - \lambda)||x - y||$$

• Дифференциальный критерий 1-го порядка:

Пусть f дифференцируема на S. Тогда f сильно выпукла на S тогда и только тогда, когда

$$\exists \mu > 0 \ \forall x,y \in S \ \rightarrow \ f(y) \geq f(x) + \left(\nabla f(x)\right)^T (y-x) + \frac{\mu}{2} \|y-x\|^2,$$

то есть в каждой точке можно провести касательную параболу, являющуюся глобальной нижней оценкой.

• Дифференциальный критерий 2-го порядка:

Пусть f дважды дифференцируема на S. Тогда f сильно выпукла тогда и только тогда, когда

$$\exists \mu > 0 \ \forall x \in \text{relint} S \rightarrow H(x) = \nabla^2 f(x) \succeq \mu I,$$

то есть матрица $(\nabla^2 f(x) - \mu I)$ является положительно полуопределенной матрицей.

Опр. Функция f называется вогнутой, если функция (-f) выпукла.

3 Conjugate sets

Опр. Пусть $S \subset \mathbb{R}^n$. Сопряженным или двойственным множеством ко множеству S называется

$$S^* = \left\{ y \in \mathbb{R}^n \mid \langle x, y \rangle \ge -1 \ \forall x \in S \right\}$$

Опр. Пусть $S \subset \mathbb{R}^n$ — конус. Сопряженным конусом называется

$$K^* = \left\{ y \in \mathbb{R}^n \mid \langle x, y \rangle \ge 0 \ \forall x \in K \right\}$$

Свойства:

- S^* всегда выпукло, замкнуто и содержит 0.
- $S^* = \bigcap_{x \in S} \big\{ y \mid \langle x, y \rangle \ge -1 \big\}$ пересечение полупространств.
- $S^* = (\overline{S})^*$, $S^* = (\text{conv}S)^*$, $S^* = (S \cup \{0\})^*$
- $S^{**} = \overline{\operatorname{conv}(S \cup \{0\})}$
- $\bullet \left(\bigcup_{\alpha} S_{\alpha}\right)^* = \bigcap_{\alpha} S_{\alpha}^*$
- Для конуса K и произвольного множества $S\colon \ (S+K)^*=S^*\cup K^*$
- ullet Для конусов $K_1,K_2,$ имеющих внутреннюю точку: $(K_1\cap K_2)^*=K_1+K_2$

Теорема. Сопряженным ко множеству

$$S = \operatorname{conv}(x_1, \dots, x_k) + \operatorname{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник)

$$S^* = \{ p \mid \langle p, x_i \rangle \ge -1, \ i = \overline{1, k}, \ \langle p, x_j \rangle \ge 0, \ j = \overline{k+1, m} \}$$

4 Conjugate functions

4.1 Сопряженные функции

Опр. Пусть $f: \mathbb{R}^n \to \mathbb{R}$. Сопряженной к функции f функцией называется

$$f^*(y) = \sup_{x \in \mathbb{R}^n} (\langle y, x \rangle - f(x))$$

Областью определения f^* является множество таких y, что супремум в определении выше конечен.

Свойства:

- f^* выпуклая функция;
- $f^{**} = f \iff f$ выпуклая замкнутая функция (*Теорема Фенхеля-Моро*);
- Неравенство Фенхеля-Юнга: $f(x) + f^*(y) \ge \langle y, x \rangle$
- Если $f(x) \le g(x)$, то $f^*(y) \ge g^*(y)$
- Если $f(x,y) = f_1(x) + f_2(y)$ и функции f_1, f_2 выпуклы, то $f^*(p,q) = f^*(p) + f^*(q)$

Как искать сопряженную функцию к дифференцируемой фукнции f(x):

- 1. Положить $g(x,y) = \langle y, x \rangle f(x)$.
- 2. Определить, при каких $y \sup_{x \in \mathbb{R}} g(x,y)$ конечен это область определения f^* .
- 3. Найти максимум g(x,y) по x: $\nabla_x g(x,y) = y \nabla f(x) = 0$. Часто получается (но не всегда), что все значения y, при которых уравнение $y = \nabla f(x)$ разрешимо относительно x, есть область определения f^* .
- 4. Выразить x через y и подставить в g(x,y) это выражение для $f^*(y)$.

4.2 Сопряженная норма

Опр. Пусть $(X, \|\cdot\|)$ — линейное нормированное пространство. Сопряженным пространством X^* называется множество всех линейных непрерывных функционалов на X.

Действие функционала $y \in X^*$ на элементе $x \in X$ обозначается $\langle y, x \rangle$.

Опр. Сопряженной нормой (dual norm) на X^* называется функция $\|\cdot\|_*: X^* \to \mathbb{R}$:

$$||y||_* = \sup_{x \neq 0} \frac{\left| \langle y, x \rangle \right|}{||x||} = \sup_{||x|| < 1} \left| \langle y, x \rangle \right| = \inf \left\{ L > 0 \mid |\langle y, x \rangle| \le L ||x|| \ \forall x \in X \right\}$$

Свойства:

- $(X^*, \|\cdot\|_*)$ линейное нормированное пространство.
- Неравенство Коши-Буняковского-Шварца: $\langle y, x \rangle \leq ||y||_* \cdot ||x||$.
- Сопряженным пространством ко множеству столбцов \mathbb{R}^n является множество всех строк \mathbb{R}^n , а $\langle y, x \rangle$ является обычным скалярным произведением.
- Сопряженной нормой к $\|\cdot\|_p$ на \mathbb{R}^n является $\|\cdot\|_q$, где $\frac{1}{p}+\frac{1}{q}=1, \ p>1.$
- Сопряженной нормой к $\|\cdot\|_1$ является $\|\cdot\|_\infty$, сопряженной нормой к $\|\cdot\|_\infty$ является $\|\cdot\|_1$.
- Норма $\|\cdot\|_2$ самосопряжена.

Сопряженная норма не является сопряженной функцией для f(x) = ||x||. Сопряженной функцией будет

$$f^*(y) = \begin{cases} 0 & , & ||y||_* \le 1; \\ +\infty & , & \text{иначе.} \end{cases}$$

5 Subgradient and subdifferential

Опр. Пусть $f:S\to\mathbb{R},\ S\subset\mathbb{R}^n$. Вектор g называется субградиентом функции f в точке x_0 , если

$$\forall x \in S \rightarrow f(x) - f(x_0) \ge \langle g, x - x_0 \rangle$$

Опр. Множество всех субградиентов f в точке x_0 называется субдифференциалом функции f в точке x_0 и обозначается $\partial f(x_0) \equiv \partial f_S(x_0)$.

Свойства:

- Если $x_0 \in \text{relint} S$, то $\partial f_S(x_0)$ выпуклое компактное множество;
- Выпуклая функция f дифференцируема в $x_0 \iff \partial f(x_0) = \{\nabla f(x_0)\};$
- Если $\forall x \in S \ \partial f_S(x_0) \neq \emptyset$, то f выпукла на S;
- Если $\alpha \geq 0$, то $\partial(\alpha f)(x) = \alpha \partial f(x)$;
- Если f выпукла, то $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$.

Теорема Моро-Рокафеллара.

Пусть $f: E \to \mathbb{R}, \ g: G \to \mathbb{R}$ — выпуклые функции, $x_0 \in E \cap G, \ E \cap \mathrm{int}G \neq \emptyset$. Тогда

$$\partial (f+q)(x_0) = \partial f(x_0) + \partial g(x_0)$$

Теорема Дубовицкого-Милютина.

Пусть $f_i: E_i \to \mathbb{R}, \ i = \overline{1,m}$ — выпуклые функции, $x_0 \in \mathrm{int}\Big(\bigcap_{i=1}^m E_i\Big)$, а функция $f:\bigcap_{i=1}^m E_i \to \mathbb{R}$:

$$f(x) = \max \{f_1(x), \dots, f_m(x)\}$$

Тогда

$$\partial f(x_0) = \mathbf{conv} \bigg(\bigcup_{j \in I} \partial f_j(x_0) \bigg), \qquad I = \big\{ j \mid f_j(x_0) = f(x_0) \big\}$$

Теорема о субдифференциале сложной функции.

Пусть $g_i: S \to \mathbb{R}, \ i = \overline{1,m}$ — выпуклые функции, $\varphi: U \to \mathbb{R}$ — неубывающая (по всем переменным) выпуклая функция, причем $U \supset \big(g_1(S), \dots, g_m(S)\big), \ U \subset \mathbb{R}^m$ — открытое множество. Тогда при $f(x) = \varphi\big(g_1(x), \dots, g_m(x)\big)$:

$$\partial f(x) = \bigcup_{p \in \partial \varphi(u)} \left(\sum_{i=1}^m p_i \partial g_i(x) \right), \qquad u = \left(g_1(x), \dots, g_m(x) \right)$$

В частности, если φ дифференцируема в точке u, то

$$\partial f(x) = \sum_{i=1}^{m} \frac{\partial \varphi}{\partial u_i}(u) \partial g_i(x)$$

6 Karush-Kuhn-Tucker conditions

Рассматривается задача оптимизации (задача математического программирования):

$$\begin{cases} f(x) \longrightarrow \min_{x \in \mathbb{R}^n} \\ g_i(x) \le 0, & i = \overline{1, m} \\ h_j(x) = 0, & j = \overline{1, p} \end{cases} \iff f(x) \longrightarrow \min_{x \in S}, \tag{*}$$

где множество S задается ограничениями.

Замечания:

- можно убрать ограничения типа $h_j(x) = 0$, заменив их на $h_j(x) \le 0$ и $-h_j(x) \le 0$;
- под записью f(x) min понимается нахождение нижней грани (инфимума);
- далее все функции f,g_i и h_j считаем достаточно гладкими.

Опр. Функцией Лагранжа для задачи (*) называется

$$L(x, \lambda, \mu) = \lambda_0 f(x) + \sum_{i=1}^{p} \lambda_j h_j(x) + \sum_{i=1}^{m} \mu_i g_i(x)$$

Теорема Каруша-Куна-Таккера.

Пусть x^* — решение задачи (*).

Тогда $\exists \; (\lambda^*, \mu^*) = (\lambda_0^*, \dots, \lambda_n^*, \mu_1^*, \dots, \mu_m^*) \neq \mathbf{0} \;$ такой, что выполнены условия Каруша-Куна-Таккера:

- 1. $x^* \in S \ (x^* \partial onycmumas точка, т.е. выполнены ограничения);$
- 2. $\lambda_0^* \geq 0$, $\mu_i^* \geq 0$, $i = \overline{1,m}$ (неотрицательность);
- 3. $\nabla_x L(x^*, \lambda^*, \mu^*) = 0$ (минимальность);
- 4. $\mu_i^* \cdot g_i(x^*) = 0, \ i = \overline{1,m} \ (дополняющая нежесткость).$

Опр. Задача (*) называется выпуклой, если функции f, g_i выпуклы, а ограничения-равенства либо отсутствуют, либо являются аффинными (имеют вид Ax = b).

Опр. Задача (*) называется *регулярной*, если для нее условия ККТ выполнены при $\lambda_0^* > 0$.

Если задача (*) регулярна, то в лагранжиане можно положить $\lambda_0 = 1$:

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{p} \lambda_{i} h_{j}(x) + \sum_{i=1}^{m} \mu_{i} g_{i}(x),$$

то есть регулярность в некотором смысле означает невырожденность задачи.

Условие регулярности Слейтера. Пусть в задаче (*)

- \bullet функции g_i выпуклы, а h_j либо отсутствуют, либо аффинны;
- $\exists \widetilde{x} \in S : g_i(\widetilde{x}) < 0 \iff \operatorname{relint}(S) \neq \emptyset.$

Тогда задача (*) является регулярной.

Условие регулярности через двойственность. Если в задаче (*) присутствует сильная двойственность, то задача (*) регулярна.

Если задача (*) выпукла и регулярна, то условия Каруша-Куна-Таккера являются *необходимыми* и достаточными условиями глобального минимума.

7 Duality

7.1 Построение двойственной задачи

Опр. Функция $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ называется собственной, если f не принимает значения $-\infty$ и $f \not\equiv +\infty$.

Рассматривается задача оптимизации (primal problem) собственной функции $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$:

$$\begin{cases}
f(x) \longrightarrow \min_{x \in \mathbb{R}^n} \\
g_i(x) \le 0, \quad i = \overline{1, m} \\
h_j(x) = 0, \quad j = \overline{1, p}
\end{cases}
\iff f(x) \longrightarrow \min_{x \in S}, \tag{P}$$

где множество S задается ограничениями. Оптимальное значение этой задачи будем обозначать $p^*.$

Ей соответствует лагранжиан

$$L(x, \lambda, \mu) = f(x) + \sum_{j=1}^{p} \lambda_{j} h_{j}(x) + \sum_{i=1}^{m} \mu_{i} g_{i}(x)$$

Обозначим

$$F(x) = \max_{\substack{\lambda \in \mathbb{R}^p \\ \mu \in \mathbb{R}^m_+}} L(x, \lambda, \mu) = \begin{cases} f(x), & x \in S; \\ +\infty, & x \notin S. \end{cases}$$

Второе равенство легко доказывается.

Часто в качестве нотации вместо sup и inf используется max и min, но подразумеваются верхняя и нижняя грани соответственно.

Тогда исходную задачу можно записать в виде:

$$f(x) \longrightarrow \min_{x \in S} \iff F(x) \longrightarrow \min_{x \in \mathbb{R}^n}$$

Опр. Двойственной функцией (dual function) к задаче (P) называется функция $g: \mathbb{R}^p \times \mathbb{R}^m_+ \to \mathbb{R} \cup \{-\infty\}$

$$g(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)$$

Не стоит путать понятия сопряженной функции и двойственной функции.

Несложно видеть, что

$$g(\lambda, \mu) \le L(x, \lambda, \mu) \le F(x)$$
 $\forall x \in \mathbb{R}^n, \ \lambda \in \mathbb{R}^p, \ \mu \in \mathbb{R}^m_+,$

поэтому

$$\max_{\substack{\lambda \in \mathbb{R}^p \\ \mu \in \mathbb{R}^m_+}} g(\lambda, \mu) \le \min_{x \in \mathbb{R}^n} F(x) = \min_{x \in S} f(x) \tag{1}$$

Опр. Двойственной задачей (dual problem) к задаче (P) называется задача

$$\begin{cases} g(\lambda, \mu) \longrightarrow \max \\ \mu_i \ge 0, \quad i = \overline{1, m} \end{cases}$$
 (D)

Оптимальное значение задачи (D) будем обозначать d^* .

Опр. Говорят, что в задаче (P) присутствует *слабая двойственность* (weak duality), если $d^* \leq p^*$. Из (1) следует, что слабая двойственность есть всегда.

Опр. Говорят, что в задаче (P) присутствует сильная двойственность (strong duality), если $d^* = p^*$. Сильная двойственность есть не всегда, однако есть некоторые достаточные условия, гарантирующие ее наличие.

Опр. Разница $p^* - d^*$ называется разрывом двойственности (duality gap).

Условие Слейтера.

В задаче (P) есть сильная двойственность, если (P) — выпуклая задача и relint $(S) \neq \emptyset$, т.е.

$$\exists \widetilde{x} \in \mathbb{R}^n : g_i(\widetilde{x}) < 0$$

7.2 Связь двойственной задачи и условий ККТ

Рассмотрим выпуклую задачу, для которой выполнено условие Слейтера

$$\begin{cases} f(x) \longrightarrow \min_{x \in \mathbb{R}^n} \\ g_i(x) \le 0, \quad i = \overline{1, m} \\ Ax = b. \end{cases}$$

Для нее условия Каруша-Куна-Таккера являются необходимыми и достаточными условиями глобального минимума, и наблюдается сильная двойственность.

При таких условиях точки x^*, λ^*, μ^* — решение системы из условий ККТ тогда и только тогда, когда

- x^* точка оптимума прямой задачи;
- (λ^*, μ^*) точка оптимума двойственной задачи.

7.3 Теорема Фенхеля-Рокафеллара

Рассмотрим задачу оптимизации

$$f(x) + g(Ax) \longrightarrow \min_{x \in E \cap A^{-1}(G)}$$

где $x \in \mathbb{R}^n$, а $A \in \mathbb{R}^{m \times n}$ — матрица линейного отображения из \mathbb{R}^n в \mathbb{R}^m .

Эквивалентная задача:

$$\begin{cases} f(x) + g(y) \longrightarrow \min \\ Ax = y \end{cases}$$
 (*)

Можно считать, что f и g равны $+\infty$ вне множеств E и G соответственно, то есть $E=\mathrm{dom}\,f,\ G=\mathrm{dom}\,g.$

Лагранжиан:

$$L(x, y, \lambda) = f(x) + g(y) + \lambda^{T} (Ax - y)$$

Несложно видеть, что двойственная функция выражается через сопряженные:

$$g_d(\lambda) = -f^*(-A^T\lambda) - g^*(\lambda)$$

Тогда задача, двойственная к (*) имеет вид

$$-f^*(-A^T\lambda) - g^*(\lambda) \longrightarrow \max_{\lambda \in \mathbb{R}^m}$$

Теорема Фенхеля-Рокафеллара.

1. Пусть $f: \mathbb{R}^n \to \overline{\mathbb{R}}, \ g: \mathbb{R}^m \to \overline{\mathbb{R}}$ — собственные функции, $A \in \mathbb{R}^{m \times n}$, а p^* и d^* — значения оптимумов прямой и двойственной задач:

$$p^* = \min_{x \in \mathbb{R}^n} \left[f(x) + g(Ax) \right], \qquad d^* = \max_{\lambda \in \mathbb{R}^m} \left[-f^*(-A^T\lambda) - g^*(\lambda) \right]$$

Тогда $p^* \ge d^*$. (Это мы доказали, построив двойственную задачу.)

2. Кроме того, пусть функции f и g выпуклы, и $A(\operatorname{relint} E) \cap \operatorname{relint} G \neq \varnothing$. Тогда $p^* = d^*$. При этом, если $p^* = d^* < +\infty$, то точки x^* и λ^* являются точками оптимума тогда и только тогда, когда

$$-A^T \lambda^* \in \partial f(x^*), \qquad \lambda^* \in \partial g(Ax^*)$$

7.4 Задачи линейного программирования

Форма задачи линейного программирования	Прямая задача (Р)	Двойственная задача (D)
нормальная	$\begin{cases} c^T x \longrightarrow \min \\ Ax \ge b \\ x \ge 0 \end{cases}$	$\begin{cases} y^T b \to \max \\ y^T A \le c^T \\ y^T \ge 0 \end{cases}$
общая	$\begin{cases} c^T x \longrightarrow \min \\ Ax \ge b \end{cases}$	$\begin{cases} y^T b \to \max \\ y^T A = c^T \\ y^T \ge 0 \end{cases}$
каноническая	$\begin{cases} c^T x \longrightarrow \min \\ Ax = b \\ x \ge 0 \end{cases}$	$\begin{cases} y^T b \to \max \\ y^T A \le c^T \end{cases}$

Задачу линейного программирования $(Л\Pi)$ в одной форме можно свести к другой, то есть все три формы эквивалентны.

Везде подразумевается, что заданы столбцы $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ и матрица $A \in \mathbb{R}^{m \times n}$, а оптимум ищется по векторам $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.

Теорема о двойственности.

1. Для оптимальных значений прямой и двойственной задач линейного программирования возможны следующие 4 случая:

	1	2	3	4
значение (P)	c	Ø	$-\infty$	Ø
значение (D)	c	$+\infty$	Ø	Ø

где $c \in \mathbb{R}$, а \varnothing означает, что допустимое множество задачи пусто.

2. Пусть \widehat{x} и \widehat{y}^T — допустимые точки задач (P) и (D). Тогда

$$\left. egin{aligned} \widehat{x} & - & \text{решение } (P) \\ \widehat{y}^T & - & \text{решение } (D) \end{aligned}
ight.
ight. \qquad \Longleftrightarrow \qquad c^T \, \widehat{x} = \widehat{y}^T \, b$$

То есть если значение хотя бы одной из задач (P) или (D) конечно, то значения обоих задач конечны и совпадают, то есть присутствует сильная двойственность.

Теорема о двойственности верна для задач линейного программирования в любой форме.

8 Maximum likelihood estimation

8.1 Постановка задачи

Дано: выборка x_1,\dots,x_m — независимые измерения случайного вектора $X\in\mathbb{R}^n.$

3адача: найти распределение случайного вектора X.

Сначала делается общая гипотеза о том, распределение какого класса имеет случайный вектор X. То есть мы предполагаем, что X имеет плотность распределения $p(x \mid \theta)$, где $\theta \in \mathbb{R}^k$ — набор параметров.

Например, мы можем предположить, что X имеет нормальное распределение. Тогда $\theta = (\mu, \sigma)$ и

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Найдем такие параметры θ^* , что вероятность исходной выборки при $\theta = \theta^*$ максимальна. В этом и заключается суть метода максимального правдоподобия.

Oпр. Функцией правдоподобия (likelihood function) называется вероятность исходной выборки:

$$L(\theta) = \prod_{i=1}^{m} p(x_i \mid \theta)$$

Почти всегда удобно перейти к логарифму этой функции, и иногда именно его называют функцией правдоподобия.

Опр. Функцией правдоподобия (log-likelihood function) называется

$$L(\theta) = \log \prod_{i=1}^{m} p(x_i \mid \theta) = \sum_{i=1}^{m} \log p(x_i \mid \theta)$$

Тогда оптимальные параметры:

$$\theta^* = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \sum_{i=1}^{m} \log p(x_i \mid \theta)$$

Находить их можно, например, приравняв градиент функции правдоподобия к нулю: $\nabla_{\theta} L(\theta^*) = 0$.

8.2 Линейная регрессия

Дано: точки $a_1, \ldots, a_m \in \mathbb{R}^n \ (m > n)$ и измерения $b_1, \ldots, b_m \in \mathbb{R}$ в этих точках.

Задача: найти наилучшее линейное приближение $b \approx \theta^T A$, где матрица $A \in \mathbb{R}^{m \times n}$ имеет строки a_i , а $\theta \in \mathbb{R}^n$ — вектор параметров.

Если в модель хочется добавить смещение: $b \approx \theta^T A + \theta_0$, то можно добавить еще одну величину $a_{m+1} = 1$, всегда равную единице. Тогда задача сведется к описанному выше случаю.

Рассмотрим два способа решения этой задачи.

1. Метод наименьших квадратов

Предположим, что слово "наилучшее" означает, что сумма квадратов отклонений наименьшая. Тогда можно сформулировать задачу оптимизации:

$$\sum_{i=1}^{m} (\theta^{T} a_{i} - b_{i})^{2} = \|\theta^{T} A - b\|_{2}^{2} \longrightarrow \min_{\theta}$$

В случае полноранговой матрицы A, приравнивая градиент по θ к нулю, получаем, что решение задается псевдообратной матрицей:

$$\theta^* = (A^T)^{\dagger} b^T = A (A^T A)^{-1} b^T$$

2. Метод максимального правдоподобия

Сделаем гипотезу, что измерения b_i не просто зависят линейно от a_i , но и имеют некоторый шум ξ_i :

$$b_i = \theta^T a_i + \xi_i$$

Предположим, что ξ_i — независимые значения одной и той же случайной величины $\xi \sim \mathcal{N}(0, \sigma^2)$, то есть что шум нормальный:

$$p(x \mid \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Таким образом, функция правдоподобия:

$$L(\theta, \sigma) = \sum_{i=1}^{m} p(\xi_i \mid \sigma) = \sum_{i=1}^{m} p(b_i - \theta^T a_i \mid \sigma) = -\frac{m}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (b_i - \theta^T a_i)^2$$

Заметим, что в этом примере параметры θ является параметрами распределения, но все равно входят в функцию правдоподобия.

Максимизация этой функции по θ равносильна минимизации $\|b - \theta^T A\|_2^2$, что как раз и есть метод наименьших квадратов.

Итак, мы показали, что следующие два подхода эквивалентны:

- ullet искать такие параметры $heta^*$, что сумма квадратов отклонений минимальна;
- ullet искать такие параметры $heta^*$, что невязки ξ_i как можно лучше описываются нормальным распределением.

Аналогичным образом, можно показать, что эквивалентны следующие подходы:

- \bullet искать такие параметры θ^* , что сумма модулей отклонений минимальна;
- \bullet искать такие параметры θ^* , что невязки ξ_i как можно лучше описываются распределением Лапласа.

8.3 Логистическая регрессия

Решается задача бинарной классификации.

<u>Дано:</u> точки (векторы признаков) $x_1, \ldots, x_m \in \mathbb{R}^n$ и значения $y_1, \ldots, y_m \in \{0,1\}$ бинарной функции в этих точках.

Задача: построить функцию $\varphi: \mathbb{R}^n \to [0,1]$, которая по набору признаков x будет давать вероятность $\varphi(x)$ того, что y=1.

Предположим, что вероятность того, что y = 1 подчиняется логистической функции или сигмоиде:

$$\mathbb{P}\{y = 1 \mid x\} = \sigma(u) = \frac{1}{1 + e^{-u}},$$

где $u = u(x) \in \mathbb{R}$ — некоторая величина, характеризующая выборку. В логистической регрессии, как в линейной регрессии, используется линейная комбинация:

$$u = \theta_0 + \theta_1 x^{(1)} + \ldots + \theta_n x^{(n)} = \theta_0 + \theta^T x$$

Таким образом:

$$\mathbb{P}\{y=1\mid x\} = \sigma(\theta^T x), \qquad \mathbb{P}\{y=0\mid x\} = 1 - \sigma(\theta^T x)$$

Здесь и далее будем без ограничения общности опускать коэффициент θ_0 .

Можно записать компактно:

$$\mathbb{P}\{y\mid x\} = \left[\sigma(\theta^T x)\right]^y \cdot \left[1 - \sigma(\theta^T x)\right]^{1-y}, \qquad y \in \{0, 1\}$$

Задача сводится к тому, что найти наилучшие коэффициенты θ . Найдем их методом максимального правдоподобия:

$$\prod_{i=1}^{m} \mathbb{P}\{y = y_i \mid x_i\} \longrightarrow \max_{\theta}$$

Функция правдоподобия:

$$L(\theta) = \sum_{i=1}^{m} \ln \mathbb{P}\{y = y_i \mid x_i\} = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] \longrightarrow \max_{\theta} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \ln \mathbb{P}\{y = y_i \mid x_i\} = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right] = \sum_{i=1}^{m} \left[y_i \ln \sigma(\theta^T x_i) + (1 - y_i) \ln \left(1 - \sigma(\theta^T x_i) \right) \right]$$

Можно упростить это выражение. Распишем $\sigma(u) = \frac{e^u}{1 + e^u}, \ 1 - \sigma(u) = \frac{1}{1 + e^u},$ и тогда

$$L(\theta) = \sum_{i=1}^{m} \left[y_i \left(u_i - \ln(1 + e^{u_i}) \right) - (1 - y_i) \ln(1 + e^{u_i}) \right] = \sum_{i=1}^{m} \left[y_i \cdot \theta^T x_i - \ln\left(1 + \exp(\theta^T x_i)\right) \right] \longrightarrow \max_{\theta} \left[\frac{1}{2} \left(\frac{$$

Максимизация функции правдоподобия эквивалентна минимизации логистической функции ошибки (logloss function), это частный случай функции кросс-энтропии при числе классов M=2:

$$\operatorname{Log_loss}(y,p) = -\sum_{i=1}^{m} \left[y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \right] \longrightarrow \min_{\theta},$$

где $p_i = \sigma(\theta^T x_i)$ — предсказываемые моделью вероятности, y_i — реальные значения.

Ясно, что бинарная энтропия достигает минимума, когда все $p_i = y_i$, но в логистической регрессии мы ищем их в особом виде, зависящем от коэффициентов θ , поэтому оптимальные значения будут другими:

Иллюстрация из книги "Convex optimization", Boyd, $\S7.1.1$.

Кружочками отмечены реальные пары (u_i, y_i) из выборки, где $u = \theta^T x$, при этом параметры θ выбраны оптимальными. На графике также изображена сигмоида. Ее значения в каждой точке $\sigma(u_i) = p_i$ — предсказываемые моделью вероятности.

Итак, конечной моделью будет

$$\varphi(x) = \sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}.$$