Universitatea Alexandru Ioan Cuza din Iași Facultatea de Fizică

Examen – Mecanică Teoretică

1p oficiu

Subject 1. – Calcul Vectorial – Metoda Analitică = 3p

- 1. (1p) Dacă $\vec{B} = rot \vec{A}$ este un câmp magnetic uniform cu potențialul vector $\vec{A} = \frac{1}{2} (\vec{B} x \vec{r})$. Să se calculeze div \vec{A} .
- 2. (1p) Să se calculeze div $(\vec{A} \times \vec{r})$ dacă rot $\vec{A} = 0$.
- 3. (1p) Fiind dat vectorul $\vec{M} = (5r \sin \varphi)\vec{k}$ în coordonate cilindrice. Să se calculeze rot \vec{M} în punctul $(2, \pi, 0)$

Subjectul 2 Problemă formalism analitic Lagrange/Hamilton = 4p

- 1. (2p) Considerăm o particulă cu trei grade de libertate care evolueaza într-un câmp conservativ de energie potențială $V = V(\rho)$, unde ρ este variabila radiala. (1p)
 - a) Să se calculeze lagrangeanul si hamiltonianul sistemului în coordonate cilindrice.
 - b) Să se calculeze impulsurile generalizate asociate coordonatelor generalizate. Definiti impulsurile generalizate.
 - c) Să se determine ecuațiile de mișcare.
- 2. (2p). Pentru sistemul din figura de mai jos (Fig.1) să se calculeze ecuațiile de mișcare utilizând ecuațiile lui Hamilton. Corpul de masă m_1 oscilează numai pe verticală iar corpul de masă m_2 oscilează în planul xOy.

Fig.1

Subjectul 3 = Parantezele POISSON = 2p

Să se calculeze următoarele paranteze POISSON:

- $1)\ (\overrightarrow{K},K^2)$
- 2) $(\overrightarrow{K}, p^n)$

unde vectorul \overrightarrow{K} este vectorul moment cinetic iar p modulul vectorului impuls \overrightarrow{p}

Total = 10 p

SUCCES MAXIM!