

# UNIVERSITÀ DEGLI STUDI DI MILANO

# FACOLTÀ DI SCIENZE POLITICHE, ECONOMICHE E SOCIALI

Political communication and populist rhetoric, an analysis of Italian politicians in the digital arena.

By

## RICCARDO RUTA

DRAFT DRAFT

#### Abstract

(the spacing is set to 1.5)

no more than 250 words for the abstract

- a description of the research question what we know and what we don't know
- how the research has attempted to answer to this question
- a brief description of the methods
- brief results
- key conclusions that put the research into a larger context

# Contents

| 1 | Data | a cleaning 1                                               |    |  |  |  |
|---|------|------------------------------------------------------------|----|--|--|--|
|   | 1.1  | Import the dataset and check variables                     | 1  |  |  |  |
|   | 1.2  | Adjust date.time format                                    | 1  |  |  |  |
|   |      | 1.2.1 Check the conversion                                 | 2  |  |  |  |
|   | 1.3  | Create the week variable                                   | 2  |  |  |  |
|   |      | 1.3.1 Check the variable                                   | 2  |  |  |  |
|   | 1.4  | Create the month variable                                  | 3  |  |  |  |
|   |      | 1.4.1 Check the number of month                            | 3  |  |  |  |
|   | 1.5  | Count the number of missing values                         | 3  |  |  |  |
|   |      | 1.5.1 Inspect where are the missings                       | 4  |  |  |  |
|   |      | 1.5.2 Remove rows with missing tweets                      | 5  |  |  |  |
|   | 1.6  | Check that the variables make sense                        | 6  |  |  |  |
|   |      | 1.6.1 Adjust the variable genere                           | 6  |  |  |  |
|   |      | 1.6.2 Verify the substitution                              | 7  |  |  |  |
|   | 1.7  | Create a new dataset selecting only necessary informations | 7  |  |  |  |
|   | 1.8  | Create the corpus                                          | 8  |  |  |  |
|   | 1.9  | Create the DFM                                             | 8  |  |  |  |
|   | 1.10 | Trim the data                                              | 9  |  |  |  |
|   | 1.11 | Remove the emoji                                           | 9  |  |  |  |
|   | 1.12 | Take the proportion of the frequencies                     | 11 |  |  |  |
|   |      | 1.12.1 Now the data are ready for the next analysis        | 11 |  |  |  |

| 2 | Pre | liminar analysis 12 |                                                               |    |  |  |
|---|-----|---------------------|---------------------------------------------------------------|----|--|--|
|   | 2.1 | Who i               | s inside this dataset?                                        | 12 |  |  |
|   | 2.2 | Topfea              | atures frquency                                               | 13 |  |  |
|   |     | 2.2.1               | Relative frequency of the top<br>features by Party ID         | 15 |  |  |
|   | 2.3 | Most                | common hashtag                                                | 15 |  |  |
|   |     | 2.3.1               | Most common hashtag by Gender                                 | 16 |  |  |
|   |     | 2.3.2               | Co-occurrence Plot of hashtags                                | 18 |  |  |
|   | 2.4 | Most                | frequently mentioned usernames                                | 19 |  |  |
|   |     | 2.4.1               | Most frequently mentioned usernames by gender                 | 20 |  |  |
|   |     | 2.4.2               | Co-occurrence plot of usernames                               | 22 |  |  |
|   | 2.5 | How n               | nany times a politician cite his/her party                    | 23 |  |  |
|   |     | 2.5.1               | Count for each party how many times a politician cite their   |    |  |  |
|   |     |                     | respective party                                              | 25 |  |  |
|   | 2.6 | How n               | nany times a politician cite itself in the tweet              | 26 |  |  |
| 3 | Dic | tionary             | v analysis                                                    | 28 |  |  |
|   | 3.1 | Create              | e the dictionary                                              | 28 |  |  |
|   | 3.2 | Decad               | ri_Boussalis_Grundl                                           | 31 |  |  |
|   |     | 3.2.1               | Level of sparsity                                             | 31 |  |  |
|   |     | 3.2.2               | General level of populism in time divided into 3 components . | 32 |  |  |
|   |     | 3.2.3               | General level of populism in time                             | 34 |  |  |
|   | 3.3 | Roodu               | nijn_Pauwels_Italian                                          | 36 |  |  |
|   |     | 3.3.1               | Level of sparsity                                             | 36 |  |  |
|   |     | 3.3.2               | General level of populism in time                             | 37 |  |  |

|     | 3.3.3        | Most populist party                                        | 37 |
|-----|--------------|------------------------------------------------------------|----|
|     | 3.3.4        | Distribution of party populism                             | 38 |
|     | 3.3.5        | Most populist politician                                   | 39 |
|     | 3.3.6        | Distribution of politician populism                        | 40 |
| 3.4 | Grund        | ll_Italian_adapted                                         | 42 |
|     | 3.4.1        | Level of sparsity                                          | 42 |
|     | 3.4.2        | General level of populism in time                          | 43 |
|     | 3.4.3        | Most populist party                                        | 43 |
|     | 3.4.4        | Distribution of party populism                             | 44 |
|     | 3.4.5        | Most populist politician                                   | 44 |
|     | 3.4.6        | Distribution of party populism                             | 45 |
| 3.5 | Decad        | ri_Boussalis                                               | 46 |
|     | 3.5.1        | Level of sparsity                                          | 46 |
|     | 3.5.2        | General level of populism in time                          | 47 |
|     | 3.5.3        | Most populist party                                        | 47 |
|     | 3.5.4        | Distribution of party populism                             | 48 |
|     | 3.5.5        | Most populist politician                                   | 48 |
|     | 3.5.6        | Distribution of politician populism                        | 49 |
| 3.6 | Compa        | are how the dictionaries score for the most populist party | 51 |
| Sen | ${f timent}$ | analysis                                                   | 54 |
| 4.1 | Inspec       | et the dictionary                                          | 54 |
|     | 4.1.1        | Clean text from dataframe                                  | 54 |

4

| 4.2  | Create   | the filtered dataframes   | 55 |
|------|----------|---------------------------|----|
| 4.3  | Create   | enre objects              | 56 |
| 4.4  | Giorgia  | a Meloni                  | 58 |
|      | 4.4.1    | Proportion of the emotion | 58 |
|      | 4.4.2    | Wordcloud of emotions     | 59 |
| 4.5  | Giusep   | ope Conte                 | 60 |
|      | 4.5.1    | Proportion of the emotion | 60 |
|      | 4.5.2    | Wordcloud of emotions     | 61 |
| 4.6  | Matteo   | o Renzi                   | 62 |
|      | 4.6.1    | Proportion of the emotion | 62 |
|      | 4.6.2    | Wordcloud of emotions     | 63 |
| 4.7  | Matteo   | o Salvini                 | 64 |
|      | 4.7.1    | Proportion of the emotion | 64 |
|      | 4.7.2    | Wordcloud of emotions     | 65 |
| 4.8  | Enrico   | Letta                     | 66 |
|      | 4.8.1    | Proportion of the emotion | 66 |
|      | 4.8.2    | Wordcloud of emotions     | 67 |
| 4.9  | Silvio l | Berlusconi                | 68 |
|      | 4.9.1    | Proportion of the emotion | 68 |
|      | 4.9.2    | Wordcloud of emotions     | 69 |
| 4.10 | Robert   | to Speranza               | 70 |
|      | 4.10.1   | Proportion of the emotion | 70 |
|      | 4 10 2   | Wordcloud of emotions     | 71 |

| 5 | $LD_{I}$ | LDA Topic model analysis 7 |                                                                 |    |
|---|----------|----------------------------|-----------------------------------------------------------------|----|
|   | 5.1      | CREA                       | TE THE DTM                                                      | 72 |
|   |          | 5.1.1                      | Remove all the account's mentions                               | 72 |
|   |          | 5.1.2                      | Convert the Document Feature Matrix (Dfm) in a Topic            |    |
|   |          |                            | Model (Dtm)                                                     | 72 |
|   | 5.2      | FIND                       | THE BEST NUMBER OF TOPICS K                                     | 72 |
|   |          | 5.2.1                      | Search the best number of Topics comparing coherence and        |    |
|   |          |                            | exclusivity values                                              | 72 |
|   |          | 5.2.2                      | Plot the values of coherence and exclusivity in order to find   |    |
|   |          |                            | the best $K \dots \dots \dots \dots \dots \dots$                | 73 |
|   | 5.3      | ANAL                       | JISYS OF THE TOPICS                                             | 74 |
|   |          | 5.3.1                      | Run the analysis selecting $k=11$                               | 74 |
|   |          | 5.3.2                      | The most important terms from the model, for each topic $$ . $$ | 74 |
|   |          | 5.3.3                      | Interpret the terms                                             | 75 |
| 6 | FEI      | R: Faci                    | al Emotion Recognition Analysis                                 | 76 |
|   | 6.1      | Repor                      | t on the analysis made with FER Puthon package                  | 76 |

# 1 Data cleaning

#### 1.1 Import the dataset and check variables

## 1.2 Adjust date.time format

#### 1.2.1 Check the conversion

```
check_dates <- tw %>% select(creato_il,date)
kable(head(check_dates), col.names = c("Old date", "New date"))
```

| Old date   | New date   |
|------------|------------|
| 2021-02-13 | 2021-02-13 |
| 2021-02-09 | 2021-02-09 |
| 2021-02-07 | 2021-02-07 |
| 2021-01-21 | 2021-01-21 |
| 2021-01-21 | 2021-01-21 |
| 2021-01-20 | 2021-01-20 |

```
kable(tail(check_dates), col.names = c("Old date", "New date"))
```

| Old date                       | New date   |
|--------------------------------|------------|
| Mon Dec 28 09:51:35 +0000 2020 | 2020-12-28 |
| Tue Jul 20 11:15:44 +0000 2021 | 2021-07-20 |
| Thu Nov 26 13:46:51 +0000 2020 | 2020-11-26 |
| Fri Oct 15 17:28:57 +0000 2021 | 2021-10-15 |
| Wed Jun 03 12:22:31 +0000 2020 | 2020-06-03 |
| Fri Dec 03 21:01:20 +0000 2021 | 2021-12-03 |

#### 1.3 Create the week variable

```
tw <- tw %>% mutate(week = cut.Date(date, breaks = "1 week", labels = FALSE))
```

#### 1.3.1 Check the variable

Inspect the first and the last dates and check if the number of weeks is correct

```
max(tw$date)

## [1] "2022-04-18"

min(tw$date)

## [1] "2020-01-01"

difftime(max(tw$date), min(tw$date), units = "weeks")

## Time difference of 119.7143 weeks
```

#### 1.4 Create the month variable

```
tw <- tw %>% mutate(month = cut.Date(date, breaks = "1 month", labels = FALSE))
```

#### 1.4.1 Check the number of month

```
max(tw$month)

## [1] 28

length(seq(from = min(tw$date), to = max(tw$date), by = 'month'))

## [1] 28
```

## 1.5 Count the number of missing values

```
sum(is.na(tw))
## [1] 154672
```

#### 1.5.1 Inspect where are the missings

```
missings <- c(
sum(is.na(tw$tw_screen_name)),
sum(is.na(tw$nome)),
sum(is.na(tw$tweet_testo)),
sum(is.na(tw$creato_il)),
sum(is.na(tw$creato_il_code)),
sum(is.na(tw$url)),
sum(is.na(tw$party id)),
sum(is.na(tw$genere)),
sum(is.na(tw$chamber)),
sum(is.na(tw$status)),
sum(is.na(tw$date)),
sum(is.na(tw$week)),
sum(is.na(tw$month)) )
missing_df <- data.frame(colnames(tw), missings)</pre>
kable(missing_df)
```

| colnames.tw.   | missings |
|----------------|----------|
| tw_screen_name | 0        |
| nome           | 0        |
| tweet_testo    | 6494     |
| creato_il      | 0        |
| creato_il_code | 0        |
| url            | 148178   |
| party_id       | 0        |
| genere         | 0        |
| chamber        | 0        |
| status         | 0        |
| date           | 0        |
| week           | 0        |
| month          | 0        |
|                |          |

From that analysis i obtain 148178 url missing, this is because the url is collected only when the tweets has an external link to other sources, for our analysis we can ignore those missings, with this check also results 6494 tweets missing those are the cases when someone post only images or video without text, so the extraction is correct.

#### 1.5.2 Remove rows with missing tweets

```
sum(is.na(tw$tweet_testo))
```

## [1] 6494

```
tw <- tw %>% drop_na(tweet_testo)
```

#### 1.6 Check that the variables make sense

```
unique(tw$party_id)
    [1] "PD"
                       "FDI"
                                                      "FI"
##
                                      "M5S"
                                                                     "REG_LEAGUES"
                                      "IV"
                                                      "INDIPENDENTE" "CI"
    [6] "MISTO"
                       "LEGA"
## [11] "LEU"
unique(tw$genere)
## [1] "male" "female" "male "
unique(tw$chamber)
## [1] "NotParl" "Senate" "Camera"
unique(tw$status)
## [1] "sottosegretario" "presregione"
                                           "viceministro"
                                                              "ministro"
## [5] "segretario"
                         "Parl"
1.6.1 Adjust the variable genere
# Remove space from genere variable [RUN ONLY ONCE!]
```

a <- unique(tw\$genere)</pre>

a[3]

```
## [1] "male "
which(tw$genere == a[3])

## [1] 33300 33301 33302 33303 33304

tw$genere <- gsub(a[3],"male",tw$genere)</pre>
```

#### 1.6.2 Verify the substitution

```
which(tw$genere == a[3])
## integer(0)
unique(tw$genere)
## [1] "male" "female"
```

Now all the variables are ready for next steps

# 1.7 Create a new dataset selecting only necessary informations

### 1.8 Create the corpus

```
corpus <- corpus(dataset, text = "tweet_testo")
ndoc(corpus)
## [1] 391197</pre>
```

#### 1.9 Create the DFM

```
# Split the corpus into single tokens (remain positional)
doc.tokens <- tokens(corpus,</pre>
                                   remove_punct = TRUE,
                                   remove_numbers = TRUE,
                                   remove_symbols = TRUE,
                                   remove_url = TRUE)
# Import my stopwords
my_word <- as.list(read_csv("data/it_stopwords_new_list.csv",</pre>
                             show col types = FALSE))
# Attach unrecognized symbols
my_list <- c(" ","c'è","+"," ", my_word$stopwords,</pre>
             stopwords('italian'), stopwords("english"))
# Save my list
#save(my_list,file="data/my_list.Rda")
doc.tokens <- tokens_select(doc.tokens, my_list, selection='remove')</pre>
```

```
DFM <- dfm(doc.tokens, tolower = TRUE)</pre>
```

#### 1.10 Trim the data

Only words that occur in the top 20% of the distribution and in less than 30% of documents. Very frequent but document specific words.

| ## | governo  | grazie | lavoro   | paese | anni     | presidente | grande |
|----|----------|--------|----------|-------|----------|------------|--------|
| ## | 26036    | 20835  | 18314    | 16473 | 16317    | 14258      | 13656  |
| ## | italiani | italia | l'italia | via   | politica | cittadini  | bene   |
| ## | 12011    | 11980  | 11752    | 11504 | 9964     | 9360       | 9311   |
| ## | forza    |        |          |       |          |            |        |
| ## | 8505     |        |          |       |          |            |        |

## 1.11 Remove the emoji

```
# Create a copy of the dfm

test <- DFM_trimmed

# Remove from the copy all the non ASCII carachters

test@Dimnames$features <- gsub("[^\x01-\x7F]", "", test@Dimnames$features)</pre>
```

```
# Check the difference from the list of features before and after apply gsub
a <- unique(test@Dimnames$features)
b <- unique(DFM_trimmed@Dimnames$features)
setdiff(b,a) #I have selected also words that cannot be removed

# Create an object with the features after remove non ASCII characters
c <- test@Dimnames$features

# Create an object with the original features
d <- DFM_trimmed@Dimnames$features

# Create the list of the removed features
diff <- setdiff(d,c)
emoji <- diff[diff %>% nchar() < 4]
emoji <- list(emoji)

# Now i can remove this list from the dfm
DFM_trimmed <- dfm_remove(DFM_trimmed, emoji)

#save(DFM_trimmed, file="data/dfm_trimmed.Rda")</pre>
```



Figure 1: Emoji removed

## 1.12 Take the proportion of the frequencies

```
# Weight the frequency
dfm_weight <- DFM_trimmed %>%
    dfm_weight(scheme = "prop")
```

#### 1.12.1 Now the data are ready for the next analysis

# 2 Preliminar analysis

#### 2.1 Who is inside this dataset?

```
# Number of parliamentarians
n_parl <- length(unique(dataset$nome))
n_parl

## [1] 730

# How many parliamentarians for each party?
n_parl_party <- dataset %>% group_by(party_id) %>% count()
kable(n_parl_party)
```

| party_id     | n     |
|--------------|-------|
| CI           | 6954  |
| FDI          | 36177 |
| FI           | 65264 |
| INDIPENDENTE | 2186  |
| IV           | 3129  |
| LEGA         | 87162 |
| LEU          | 7868  |
| M5S          | 54418 |
| MISTO        | 34644 |
| PD           | 91997 |
| REG_LEAGUES  | 1398  |

```
# Gneder composition
n_gender <- dataset %>% group_by(genere) %>% count()
kable(n_gender)
```

| genere | n      |
|--------|--------|
| female | 111216 |
| male   | 279981 |

```
# Wich is the period of analysis?
max(tw$date)
```

## [1] "2022-04-18"

min(tw\$date)

## [1] "2020-01-01"

## 2.2 Topfeatures frquency





#### 2.2.1 Relative frequency of the topfeatures by Party ID



## 2.3 Most common hashtag

```
tag_dfm <- dfm_select(dfm_weight, pattern = "#*")
toptag <- names(topfeatures(tag_dfm, 20))
toptag</pre>
```

```
##
    [1] "#iostoconsalvini" "#coronavirus"
                                                  "#covid19"
                                                                      "#fratelliditalia"
    [5]
##
        "#lega"
                             "#salvini"
                                                  "#governo"
                                                                      "#conte"
        "#oggivotolega"
                             "#m5s"
                                                                      "#draghi"
##
    [9]
                                                  "#roma"
   [13] "#meloni"
                             "#senato"
                                                                      "#greenpass"
##
                                                  "#forzalombardia"
                                                                      "#mes"
   [17] "#nocoprifuoco"
                             "#covid"
                                                  "#italia"
```



## 2.3.1 Most common hashtag by Gender



### 2.3.2 Co-occurrence Plot of hashtags

Not weighted



Weighted



## 2.4 Most frequently mentioned usernames

```
user_dfm <- dfm_select(dfm_weight, pattern = "@*")
topuser <- names(topfeatures(user_dfm, 20, scheme = "docfreq"))
kable(topuser, col.names = "Most mentioned username")</pre>
```

| Most mentioned username |
|-------------------------|
| @matteosalvinimi        |
| @fratelliditalia        |
| @forza_italia           |
| @pdnetwork              |
| @stampasgarbi           |
| @mov5stelle             |
| @legasalvini            |
| @italiaviva             |
| @giuseppeconteit        |
| @giorgiameloni          |
| @montecitorio           |
| @deputatipd             |
| @repubblica             |
| @vocedelpatriota        |
| @legacamera             |
| @berlusconi             |
| @matteorenzi            |
| @fattoquotidiano        |
| @enricoletta            |
| @borghi_claudio         |
|                         |

## 2.4.1 Most frequently mentioned usernames by gender



#### 2.4.2 Co-occurrence plot of usernames



Not weighted

```
# NOT WEIGHTED

user_dfm_NOT_W <- dfm_select(DFM, pattern = "@*")

topuser_NOT <- names(topfeatures(user_dfm_NOT_W, 20, scheme = "docfreq"))

user_fcm_NOT <- fcm(user_dfm_NOT_W)

set.seed(6)

topuser_fcm_NOT <- fcm_select(user_fcm_NOT, pattern = topuser_NOT)

textplot_network(topuser_fcm_NOT, min_freq = 0.1, edge_alpha = 0.8, edge_size = 5)</pre>
```

#### @vocedelpatriota



## 2.5 How many times a politician cite his/her party

```
party_citations <- data.frame(first = vector(), second = vector() )
system.time(
for (i in unique(tw$party_id))
{
    a <- paste("#", i ,sep = "")
    b <- tw %>% filter(grepl(a,tweet_testo)&party_id== i) %>% count()
    c <- tw %>% filter(party_id == i) %>% count()
    d <- (b/c) * 100
    party_citations <- rbind(party_citations, cbind(i,b,c,d))
}</pre>
```

```
#save(party_citations, file = "data/party_citations.Rda")

colnames(party_citations) <- c("party", "n_citations", "Number of tweets", "perc")

kable(party_citations %>% arrange(desc(perc)), col.names = c("Party", "Number of citations"))
```

| Party        | Number of citations | number of tweets | % of citations |
|--------------|---------------------|------------------|----------------|
| M5S          | 1581                | 54418            | 2.9052887      |
| LEGA         | 511                 | 87162            | 0.5862647      |
| FDI          | 131                 | 36177            | 0.3621085      |
| PD           | 179                 | 91997            | 0.1945716      |
| IV           | 5                   | 3129             | 0.1597955      |
| FI           | 62                  | 65264            | 0.0949988      |
| CI           | 1                   | 6954             | 0.0143802      |
| REG_LEAGUES  | 0                   | 1398             | 0.0000000      |
| MISTO        | 0                   | 34644            | 0.0000000      |
| INDIPENDENTE | 0                   | 2186             | 0.0000000      |
| LEU          | 0                   | 7868             | 0.0000000      |

In the above script i search the # for the parlamentary group, but is very unlikely, for example, that someone use the #IV for talking about the "Italia Viva" party, so i decided to enrich the dataframe creating a new variable with the name of the official twitter page for every party, and repeat the search using it.

I created the variable party\_Page for only those parliamentary group that has a direct connection with a party (i excluded Reg\_leagues, misto and indipendente) ### Create the variable with the name of the official Twitter account

# 2.5.1 Count for each party how many times a politician cite their respective party

| Party            | Number of citations | number of tweets | % of citations |
|------------------|---------------------|------------------|----------------|
| @FratellidItalia | 5842                | 36177            | 16.1483816     |
| @forza_italia    | 5203                | 65264            | 7.9722358      |
| @Mov5Stelle      | 3873                | 54418            | 7.1171304      |
| @ItaliaViva      | 201                 | 3129             | 6.4237776      |
| @pdnetwork       | 4194                | 91997            | 4.5588443      |
| @LegaSalvini     | 3364                | 87162            | 3.8594800      |
| @coraggio_italia | 131                 | 6954             | 1.8838079      |
| @liberi_uguali   | 16                  | 7868             | 0.2033554      |

#### 2.6 How many times a politician cite itself in the tweet

```
self_citations <- data.frame(first = vector(), second = vector())
system.time(
for (i in unique(tw$tw_screen_name))
{
    a <- paste("@", i ,sep = "")
    b <- tw %>% filter(grepl(a,tweet_testo) & tw_screen_name== i) %>% count()
    c <- tw %>% filter(tw_screen_name == i) %>% count()
    d <- (b/c) * 100
    self_citations <- rbind(self_citations, cbind(i,b,c,d))
}

#save(self_citations, file = "data/self_citations.Rda")</pre>
```

| Politician      | Number of citations | Number of tweets | % of citations |
|-----------------|---------------------|------------------|----------------|
|                 |                     |                  |                |
| wandaferro1     | 32                  | 55               | 58.1818182     |
| FrassinettiP    | 32                  | 163              | 19.6319018     |
| albertlaniece   | 51                  | 282              | 18.0851064     |
| Luca_Sut        | 20                  | 341              | 5.8651026      |
| DalilaNesci     | 17                  | 341              | 4.9853372      |
| PatassiniTullio | 13                  | 714              | 1.8207283      |
| matteodallosso  | 3                   | 170              | 1.7647059      |
| sbonaccini      | 33                  | 2884             | 1.1442441      |
| sfnlcd          | 9                   | 1308             | 0.6880734      |
| gianluc_ferrara | 3                   | 560              | 0.5357143      |
| adolfo_urso     | 7                   | 1966             | 0.3560529      |
| gualtierieurope | 4                   | 1432             | 0.2793296      |
| MassimoUngaro   | 3                   | 1135             | 0.2643172      |
| EugenioGiani    | 3                   | 1235             | 0.2429150      |
| pierofassino    | 3                   | 1255             | 0.2390438      |
| ecdelre         | 4                   | 2113             | 0.1893043      |
| guglielmopicchi | 3                   | 3234             | 0.0927644      |

## 3 Dictionary analysis

At the level of political parties, which ones make most use of populist rhetoric? At the level of individual politicians, which ones make most use of populist rhetoric?

I use 3 dictionary to perform the analysis

- Rooduijn & Pauwels: Rooduijn, M., and T. Pauwels. 2011. "Measuring Populism: Comparing Two Methods of Content Analysis." West European Politics 34 (6): 1272–1283.
- Decadri & Boussalis: Decadri, S., & Boussalis, C. (2020). Populism, party membership, and language complexity in the Italian chamber of deputies.
   Journal of Elections, Public Opinion and Parties, 30(4), 484-503.
- Grundl: Gründl J. Populist ideas on social media: A dictionary-based measurement of populist communication. New Media & Society. December 2020.
- Decadri & Boussalis + Grundl: this is simply a more extended version of the D&B dictionary, which also contains some terms taken from Grundl.

## 3.1 Create the dictionary

I imported the excel file with the words for the dictionaries, excluding NA's.

```
# import dictionaries file
dict <- read_excel("data/populism_dictionaries.xlsx")
variable.names(dict)</pre>
```

```
## [1] "Rooduijn_Pauwels_Italian"
```

```
## [3] "Decadri_Boussalis"
## [4] "Decadri_Boussalis_Grundl_People"
  [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri_Boussalis_Grundl_Elite"
# create the dictionary
Rooduijn_Pauwels_Italian <-</pre>
  dictionary(list(populism =
                     (dict$Rooduijn_Pauwels_Italian
                      [!is.na(dict$Rooduijn_Pauwels_Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                     dict$Grundl Italian adapted
                   [!is.na(dict$Grundl Italian adapted)]))
Decadri_Boussalis <-</pre>
  dictionary(list(populism =
                     dict$Decadri Boussalis
                   [!is.na(dict$Decadri_Boussalis)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
                     dict$Decadri Boussalis Grundl People
                   [!is.na(dict$Decadri_Boussalis_Grundl_People)],
                   common_will =
                     dict$`Decadri_Boussalis_Grundl_Common Will`
                   [!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
```

## [2] "Grundl Italian adapted"

```
elite =
    dict$Decadri_Boussalis_Grundl_Elite
[!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
```

| dictionaries             | n.words |
|--------------------------|---------|
| Rooduijn_Pauwels_Italian | 18      |
| Grundl_Italian_adapted   | 135     |
| Decadri_Boussalis        | 25      |
| Decadri_Boussalis_Grundl | 77      |

#### Apply dictionary

## 3.2 Decadri\_Boussalis\_Grundl

#### 3.2.1 Level of sparsity

```
daily: 12.08%
weekly: 0.55%
monthly: 0%

# Dictionary analysis with Decadri_Boussalis_Grundl
dfm_dict1 <- dfm_lookup(dfm_weight, dictionary = Decadri_Boussalis_Grundl)
# Group by date
dfm_by_date1 <- dfm_group(dfm_dict1, groups= date)
# dfm_by_date1
# Group by week
dfm_by_week1 <- dfm_group(dfm_dict1, groups= week)
# dfm_by_week1
# Group by month
dfm_by_month1 <- dfm_group(dfm_dict1, groups= month)
# kable(dfm_by_month1)</pre>
```



Looking at the populist rhetoric for each party divided into the 3 components people-centrism, anti-elitism and common-will, we note that the most frequent components is People-centrism.

#### 3.2.2 General level of populism in time divided into 3 components

## General level of populism divided into 3 components



This plot is coherent with the previous one and show us that people is the Component that score better.

#### 3.2.3 General level of populism in time

# General level of populism with Decadri\_Boussalis\_Grundl dictionar



## 3.3 Rooduijn\_Pauwels\_Italian

## 3.3.1 Level of sparsity

```
daily: 0.60%
weekly: 0.%
monthly: 0%

# Dictionary analysis with Rooduijn_Pauwels_Italian
dfm_dict2 <- dfm_lookup(dfm_weight, dictionary = Rooduijn_Pauwels_Italian)
# Group by date
dfm_by_date2 <- dfm_group(dfm_dict2, groups= date)
#dfm_by_date2
# Group by week
dfm_by_week2 <- dfm_group(dfm_dict2, groups= week)
#dfm_by_week2
# Group by month
dfm_by_month2 <- dfm_group(dfm_dict2, groups= month)
#kable(dfm_by_month2)</pre>
```

## 3.3.2 General level of populism in time

# General level of populism with Rooduijn\_Pauwels\_Italian dictionary



## 3.3.3 Most populist party

```
# Most populist party
dfm_dict2_tstat_party <- textstat_frequency(dfm_dict2, groups = party_id)
kable(dfm_dict2_tstat_party %>% slice_max(frequency, n = 20))
```

|    | feature  | frequency   | rank | docfreq | group        |
|----|----------|-------------|------|---------|--------------|
| 6  | populism | 303.9474786 | 1    | 1919    | LEGA         |
| 10 | populism | 149.7512641 | 1    | 1671    | PD           |
| 2  | populism | 113.7388243 | 1    | 1124    | FDI          |
| 3  | populism | 98.6906136  | 1    | 941     | FI           |
| 8  | populism | 87.6625041  | 1    | 1119    | M5S          |
| 9  | populism | 60.9720255  | 1    | 669     | MISTO        |
| 7  | populism | 11.7023384  | 1    | 175     | LEU          |
| 1  | populism | 3.7116701   | 1    | 45      | CI           |
| 5  | populism | 1.8540424   | 1    | 26      | IV           |
| 11 | populism | 1.0264294   | 1    | 11      | REG_LEAGUES  |
| 4  | populism | 0.0833333   | 1    | 1       | INDIPENDENTE |

## 3.3.4 Distribution of party populism

```
summary(dfm_dict2_tstat_party$frequency)
        Min. 1st Qu.
                          Median
                                       Mean
                                              3rd Qu.
##
                                                           Max.
##
     0.08333
               2.78286 60.97203 75.74005 106.21472 303.94748
#TBD
hist(dfm_dict2_tstat_party$frequency, prob=T)
points(density(dfm_dict2_tstat_party$frequency),type="l",col="blue")
rug(dfm_dict2_tstat_party$frequency,col="red")
m <- mean(dfm_dict2_tstat_party$frequency)</pre>
std<-sqrt(var(dfm_dict2_tstat_party$frequency))</pre>
hist(dfm_dict2_tstat_party$frequency,prob=T,main="Frequency")
```

```
curve(dnorm(x, mean=m, sd=std), col="darkblue", lwd=2, add=TRUE)
```

## 3.3.5 Most populist politician

```
dict2_tstat_nome <- textstat_frequency(dfm_dict2, groups = nome)
kable(dict2_tstat_nome %>% slice_max(frequency, n = 20))
```

|     | feature  | frequency | rank | docfreq | group                      |
|-----|----------|-----------|------|---------|----------------------------|
|     |          |           |      |         |                            |
| 194 | populism | 42.115152 | 1    | 146     | FERRERO Roberta            |
| 472 | populism | 15.910436 | 1    | 160     | SGARBI Vittorio            |
| 341 | populism | 14.112659 | 1    | 77      | MORANI Alessia             |
| 24  | populism | 13.999694 | 1    | 52      | BALDELLI Simone            |
| 179 | populism | 13.821584 | 1    | 48      | FAGGI Antonella            |
| 271 | populism | 13.095709 | 1    | 149     | LANNUTTI Elio              |
| 217 | populism | 12.884799 | 1    | 39      | FREGOLENT Sonia            |
| 450 | populism | 12.806346 | 1    | 64      | RUSPANDINI Massimo         |
| 326 | populism | 12.518396 | 1    | 192     | MELONI Giorgia             |
| 427 | populism | 12.257891 | 1    | 40      | RIVOLTA Erica              |
| 106 | populism | 10.788399 | 1    | 68      | CECCHETTI Fabrizio         |
| 283 | populism | 10.783981 | 1    | 108     | LOLLOBRIGIDA Francesco     |
| 260 | populism | 10.778644 | 1    | 76      | IEZZI Igor Giancarlo       |
| 230 | populism | 10.648954 | 1    | 155     | GARNERO SANTANCHE' Daniela |
| 303 | populism | 10.133849 | 1    | 78      | MALAN Lucio                |
| 447 | populism | 9.885108  | 1    | 29      | RUFA Gianfranco            |
| 455 | populism | 9.561830  | 1    | 93      | SALVINI Matteo             |
| 360 | populism | 9.110910  | 1    | 105     | NOBILI Luciano             |
| 35  | populism | 8.689617  | 1    | 57      | BAZZARO Alex               |
| 501 | populism | 8.495460  | 1    | 32      | TONELLI Gianni             |

# ${\bf 3.3.6}\quad {\bf Distribution\ of\ politician\ populism}$

```
summary(dict2_tstat_nome$frequency)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04348 0.18584 0.53526 1.53433 1.48826 42.11515
```

# 3.4 Grundl\_Italian\_adapted

## 3.4.1 Level of sparsity

```
daily: 0.24%
weekly: 0.0%
monthly: 0%

# Dictionary analysis with Grundl_Italian_adapted
dfm_dict3 <- dfm_lookup(dfm_weight, dictionary = Grundl_Italian_adapted)
# Group by date
dfm_by_date3<- dfm_group(dfm_dict3, groups= date)
# dfm_by_date3
# Group by week
dfm_by_week3 <- dfm_group(dfm_dict3, groups= week)
# dfm_by_week3
# Group by month
dfm_by_month3 <- dfm_group(dfm_dict3, groups= month)</pre>
# weble(dfm_by_month3)
```

## 3.4.2 General level of populism in time

# General level of populism with Grundl\_Italian\_adapted dictionary



## 3.4.3 Most populist party

```
# Most populist party
dict_3_tstat_party <- textstat_frequency(dfm_dict3, groups = party_id)
kable(dict_3_tstat_party %>% slice_max(frequency, n = 20))
```

|    | feature  | frequency  | rank | docfreq | group        |
|----|----------|------------|------|---------|--------------|
| 6  | populism | 225.678708 | 1    | 2075    | LEGA         |
| 10 | populism | 153.269683 | 1    | 2017    | PD           |
| 8  | populism | 133.053746 | 1    | 1724    | M5S          |
| 3  | populism | 131.838292 | 1    | 1524    | FI           |
| 2  | populism | 99.425177  | 1    | 1087    | FDI          |
| 9  | populism | 86.092041  | 1    | 997     | MISTO        |
| 7  | populism | 15.213765  | 1    | 231     | LEU          |
| 1  | populism | 10.602522  | 1    | 157     | CI           |
| 5  | populism | 2.559005   | 1    | 40      | IV           |
| 4  | populism | 1.983671   | 1    | 31      | INDIPENDENTE |
| 11 | populism | 1.505044   | 1    | 22      | REG_LEAGUES  |

# 3.4.4 Distribution of party populism

```
#TBD
summary(dict_3_tstat_party$frequency)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.505 6.581 86.092 78.293 132.446 225.679
```

## 3.4.5 Most populist politician

```
dict_3_tstat_nome <- textstat_frequency(dfm_dict3, groups = nome)
kable(dict_3_tstat_nome %>% slice_max(frequency, n = 20))
```

|     | feature  | frequency | rank | docfreq | group                      |
|-----|----------|-----------|------|---------|----------------------------|
| 287 | populism | 23.033031 | 1    | 240     | LANNUTTI Elio              |
| 210 | populism | 19.501980 | 1    | 110     | FERRERO Roberta            |
| 562 | populism | 19.042283 | 1    | 131     | VITO Elio                  |
| 275 | populism | 16.483870 | 1    | 120     | IEZZI Igor Giancarlo       |
| 494 | populism | 15.974269 | 1    | 184     | SGARBI Vittorio            |
| 341 | populism | 11.063928 | 1    | 159     | MELONI Giorgia             |
| 15  | populism | 10.731212 | 1    | 120     | ANZALDI Michele            |
| 298 | populism | 10.659433 | 1    | 98      | LOLLOBRIGIDA Francesco     |
| 74  | populism | 10.645964 | 1    | 97      | BORGHI Claudio             |
| 476 | populism | 9.238862  | 1    | 122     | SALVINI Matteo             |
| 248 | populism | 9.004085  | 1    | 139     | GARNERO SANTANCHE' Daniela |
| 96  | populism | 8.438949  | 1    | 103     | CANGINI Andrea             |
| 546 | populism | 8.339166  | 1    | 106     | URSO Adolfo                |
| 224 | populism | 8.162373  | 1    | 101     | FONTANA Lorenzo            |
| 472 | populism | 7.850014  | 1    | 68      | RUSPANDINI Massimo         |
| 44  | populism | 7.832168  | 1    | 120     | BERGESIO Giorgio Maria     |
| 165 | populism | 7.565932  | 1    | 92      | DE MARTINI Guido           |
| 141 | populism | 7.036558  | 1    | 43      | CROSETTO Guido             |
| 446 | populism | 7.000320  | 1    | 47      | RIVOLTA Erica              |
| 359 | populism | 6.861311  | 1    | 73      | MORELLI Alessandro         |

# 3.4.6 Distribution of party populism

```
# TBD
summary(dict_3_tstat_nome$frequency)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03846 0.23802 0.62055 1.49000 1.56229 23.03303
```

# 3.5 Decadri\_Boussalis

## 3.5.1 Level of sparsity

```
daily: 0%
weekly: 0.0%
monthly: 0%

# Dictionary analysis with Decadri_Boussalis
dfm_dict4 <- dfm_lookup(dfm_weight, dictionary = Decadri_Boussalis)
# Group by date
dfm_by_date4<- dfm_group(dfm_dict4, groups= date)
#dfm_by_date4
# Group by week
dfm_by_week4 <- dfm_group(dfm_dict4, groups= week)
#dfm_by_week4
# Group by month
dfm_by_wonth4 <- dfm_group(dfm_dict4, groups= month)
#kable(dfm_by_month4)</pre>
```

## 3.5.2 General level of populism in time

# General level of populism with Decadri\_Boussalis dictionary



## 3.5.3 Most populist party

```
# Most populist party
dict_4_tstat_party <- textstat_frequency(dfm_dict4, groups = party_id)
kable(dict_4_tstat_party %>% slice_max(frequency, n = 20))
```

|    | feature  | frequency  | rank | docfreq | group        |
|----|----------|------------|------|---------|--------------|
| 6  | populism | 651.348390 | 1    | 5672    | LEGA         |
| 10 | populism | 493.532735 | 1    | 6417    | PD           |
| 8  | populism | 376.966170 | 1    | 5178    | M5S          |
| 3  | populism | 376.609606 | 1    | 4532    | FI           |
| 2  | populism | 270.814483 | 1    | 2960    | FDI          |
| 9  | populism | 202.466904 | 1    | 2463    | MISTO        |
| 7  | populism | 44.919508  | 1    | 659     | LEU          |
| 1  | populism | 35.105322  | 1    | 506     | CI           |
| 5  | populism | 14.132863  | 1    | 197     | IV           |
| 4  | populism | 10.615825  | 1    | 153     | INDIPENDENTE |
| 11 | populism | 6.122696   | 1    | 93      | REG_LEAGUES  |

# 3.5.4 Distribution of party populism

```
#TBD
summary(dict_4_tstat_party$frequency)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.123 24.619 202.467 225.694 376.788 651.348
```

## 3.5.5 Most populist politician

```
dict_4_tstat_nome <- textstat_frequency(dfm_dict4, groups = nome)
kable(dict_4_tstat_nome %>% slice_max(frequency, n = 20))
```

|     | feature  | frequency | rank | docfreq | group                      |
|-----|----------|-----------|------|---------|----------------------------|
| 236 | populism | 62.66405  | 1    | 282     | FERRERO Roberta            |
| 560 | populism | 41.70723  | 1    | 443     | SGARBI Vittorio            |
| 329 | populism | 34.85565  | 1    | 397     | LANNUTTI Elio              |
| 391 | populism | 33.15912  | 1    | 496     | MELONI Giorgia             |
| 344 | populism | 32.36912  | 1    | 358     | LOLLOBRIGIDA Francesco     |
| 540 | populism | 29.61242  | 1    | 368     | SALVINI Matteo             |
| 27  | populism | 27.44810  | 1    | 135     | BALDELLI Simone            |
| 280 | populism | 26.74696  | 1    | 372     | GARNERO SANTANCHE' Daniela |
| 530 | populism | 24.85093  | 1    | 184     | ROTONDI Gianfranco         |
| 68  | populism | 24.50676  | 1    | 252     | BONACCINI Stefano          |
| 220 | populism | 24.35617  | 1    | 122     | FAGGI Antonella            |
| 317 | populism | 24.31241  | 1    | 207     | IEZZI Igor Giancarlo       |
| 128 | populism | 23.82148  | 1    | 195     | CECCHETTI Fabrizio         |
| 585 | populism | 23.63509  | 1    | 327     | TAJANI Antonio             |
| 80  | populism | 22.82617  | 1    | 240     | BORGHI Claudio             |
| 161 | populism | 21.54784  | 1    | 158     | CROSETTO Guido             |
| 39  | populism | 21.35229  | 1    | 202     | BAZZARO Alex               |
| 47  | populism | 21.29380  | 1    | 318     | BERGESIO Giorgio Maria     |
| 535 | populism | 20.92822  | 1    | 140     | RUSPANDINI Massimo         |
| 365 | populism | 20.38171  | 1    | 185     | MALAN Lucio                |

# 3.5.6 Distribution of politician populism

## #TBD

summary(dict\_4\_tstat\_nome\$frequency)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04348 0.51949 1.65761 3.80772 4.29796 62.66405
```

# Compare how the different dictionaries score



#### # FOCUS ON THE DICTIONARIES THAT SCORE SIMILARLY

```
comparison_time <- plot(dat_smooth3$x, dat_smooth3$y, type = "l", ylab = "Populism :
   lines(dat_smooth2$x, dat_smooth2$y, type = "l", ylab = "Populism level", xlab = "'
   lines(dat_smooth1$x, dat_smooth1$y, type = "l", ylab = "Populism level", xlab = "'
   legend("topleft", legend = c("Roodujin_pauwels", "Grundl_italian", "Decadri_Boussaliatitle(main = "Compare how the different dictionaries score")</pre>
```

# Compare how the different dictionaries score



# 3.6 Compare how the dictionaries score for the most populist party

```
party_rank <- data.frame(first = vector(), second = vector(),</pre>
                          third = vector(), fourth = vector() )
# loop the rank for each party
for (i in party)
{
  rank dict 2 <- (dfm dict2 tstat party %>% filter(group == i ) %>% .$my rank)
  rank_dict_3 <- (dict_3_tstat_party %>% filter(group == i ) %>% .$my_rank)
  rank_dict_4 <- (dict_4_tstat_party %>% filter(group == i ) %>% .$my_rank)
  party <- (i)
  party rank <- rbind(party rank, cbind(party, rank dict 2,</pre>
                                          rank dict 3, rank dict 4))
}
# change the format of the columns in numeric
party_rank$rank_dict_2 <- as.numeric(party_rank$rank_dict_2)</pre>
party_rank$rank_dict_3 <- as.numeric(party_rank$rank_dict_3)</pre>
party_rank$rank_dict_4 <- as.numeric(party_rank$rank_dict_4)</pre>
# Create the column with the sum of the single score
party_rank$total_score <- rowSums(party_rank[,-1])</pre>
kable(party rank)
```

| party        | rank_dict_2 | rank_dict_3 | rank_dict_4 | total_score |
|--------------|-------------|-------------|-------------|-------------|
| LEGA         | 11          | 11          | 11          | 33          |
| PD           | 10          | 10          | 10          | 30          |
| M5S          | 7           | 9           | 9           | 25          |
| FI           | 8           | 8           | 8           | 24          |
| FDI          | 9           | 7           | 7           | 23          |
| MISTO        | 6           | 6           | 6           | 18          |
| LEU          | 5           | 5           | 5           | 15          |
| CI           | 4           | 4           | 4           | 12          |
| IV           | 3           | 3           | 3           | 9           |
| INDIPENDENTE | 1           | 2           | 2           | 5           |
| REG_LEAGUES  | 2           | 1           | 1           | 4           |

# 4 Sentiment analysis

http://saifmohammad.com/WebPages/lexicons.html

## 4.1 Inspect the dictionary

```
head(get sentiment dictionary(dictionary = "nrc", language = "italian"),15)
##
                      word sentiment value
         lang
## 1
      italian
                      abba
                            positive
                                         1
## 2
      italian
                  capacità
                            positive
                                         1
## 3
      italian sopra citato
                            positive
                                         1
## 4
                                         1
      italian
                  assoluto positive
## 5
                                         1
      italian assoluzione positive
## 6
      italian
                assorbito positive
                                         1
## 7
      italian
                abbondanza positive
                                         1
## 8
      italian
                                         1
                abbondante positive
## 9
      italian
                accademico positive
                                         1
                                         1
## 10 italian
                 accademia positive
                                         1
## 11 italian accettabile positive
## 12 italian accettazione positive
                                         1
                                         1
## 13 italian accessibile
                            positive
## 14 italian
                                         1
                   encomio
                            positive
```

#### 4.1.1 Clean text from dataframe

## 15 italian

Define function to make the text extracted from dataframe suitable for analysis

alloggio positive

```
# Define function to make the text suitable for analysis
clean.text = function(x)
  # tolower
  x = tolower(x)
  # remove rt
 x = gsub("rt", "", x)
  # remove at
 x = gsub("@\\\\"", "", x)
  # remove punctuation
 x = gsub("[[:punct:]]", "", x)
  # remove numbers
  x = gsub("[[:digit:]]", "", x)
  # remove links http
 x = gsub("http\\w+", "", x)
  # remove tabs
 x = gsub("[ | t]{2,}", "", x)
  # remove blank spaces at the beginning
 x = gsub("^", "", x)
  # remove blank spaces at the end
 x = gsub(" $", "", x)
 return(x)
}
```

#### 4.2 Create the filtered dataframes

```
# Create filtered dataframes

MELONI <- dataset %>% filter(nome == "MELONI Giorgia")

CONTE <- dataset %>% filter(nome == "CONTE Giuseppe")

RENZI <- dataset %>% filter(nome == "RENZI Matteo")

SALVINI <- dataset %>% filter(nome == "SALVINI Matteo")

LETTA <- dataset %>% filter(nome == "LETTA Enrico")

BERLUSCONI <- dataset %>% filter(nome == "BERLUSCONI Silvio")

SPERANZA <- dataset %>% filter(nome == "SPERANZA Roberto")
```

## 4.3 Create nrc objects

```
# Create the nrc object
nrc_meloni <- get_nrc_sentiment(MELONI$tweet_testo, language="italian")
save(nrc_meloni,file="data/nrc_meloni.Rda")

nrc_conte <- get_nrc_sentiment(CONTE$tweet_testo, language="italian")
save(nrc_conte,file="data/nrc_conte.Rda")

nrc_renzi <- get_nrc_sentiment(RENZI$tweet_testo, language="italian")
save(nrc_renzi,file="data/nrc_renzi.Rda")

nrc_salvini <- get_nrc_sentiment(SALVINI$tweet_testo, language="italian")
save(nrc_salvini,file="data/nrc_salvini.Rda")

nrc_letta <- get_nrc_sentiment(LETTA$tweet_testo, language="italian")
save(nrc_letta,file="data/nrc_letta.Rda")

nrc_berlusconi <- get_nrc_sentiment(BERLUSCONI$tweet_testo, language="italian")</pre>
```

```
save(nrc_berlusconi, file="data/nrc_berlusconi.Rda")
nrc_speranza <- get_nrc_sentiment(SPERANZA$tweet_testo, language="italian")
save(nrc_speranza,file="data/nrc_speranza.Rda")</pre>
```

# 4.4 Giorgia Meloni

# ${\bf 4.4.1} \quad {\bf Proportion \ of \ the \ emotion}$

# **Emotions in tweets by Giorgia Meloni**



#### 4.4.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Giorgia Meloni



# 4.5 Giuseppe Conte

# ${\bf 4.5.1} \quad {\bf Proportion \ of \ the \ emotion}$

# **Emotions in tweets by Giuseppe Conte**



#### 4.5.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Giuseppe Conte



# 4.6 Matteo Renzi

# 4.6.1 Proportion of the emotion

# **Emotions in tweets by Matteo Renzi**



#### 4.6.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Matteo Renzi



# 4.7 Matteo Salvini

# 4.7.1 Proportion of the emotion

# **Emotions in tweets by Matteo Salvini**



#### 4.7.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Matteo Salvini



# 4.8 Enrico Letta

# ${\bf 4.8.1} \quad {\bf Proportion \ of \ the \ emotion}$

# **Emotions in tweets by Enrico Letta**



#### 4.8.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Enrico Letta



## 4.9 Silvio Berlusconi

# 4.9.1 Proportion of the emotion

# **Emotions in tweets by Silvio Berlusconi**



#### 4.9.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Silvio Berlusconi



# 4.10 Roberto Speranza

# 4.10.1 Proportion of the emotion

# **Emotions in tweets by Roberto Speranza**



#### 4.10.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Roberto Speranza



# 5 LDA Topic model analysis

#### 5.1 CREATE THE DTM

5.1.1 Remove all the account's mentions

```
DFM_trimmed@Dimnames$features <- gsub("^@", "", DFM_trimmed@Dimnames$features)</pre>
```

5.1.2 Convert the Document Feature Matrix (Dfm) in a Topic Model (Dtm)

```
dtm <- quanteda::convert(DFM_trimmed, to = "topicmodels")</pre>
```

#### 5.2 FIND THE BEST NUMBER OF TOPICS K

5.2.1 Search the best number of Topics comparing coherence and exclusivity values

```
K = 10:50
```

```
# 10 : 50 iter 1000
top1 <- c(10:50)
## Create an empty data frame
risultati <- data.frame(first=vector(), second=vector(), third=vector())
#Run the loop searching the best k value
system.time(
  for (i in top1)
  {
    set.seed(123)</pre>
```

# 5.2.2 Plot the values of coherence and exclusivity in order to find the best K

# Scatterplot k=10:50



K= 11 has the best values of coherence and exclusivity.

# 5.3 ANALISYS OF THE TOPICS

## 5.3.1 Run the analysis selecting k=11

## 5.3.2 The most important terms from the model, for each topic

| Top terms 01    | Top terms 02 | Top terms 03 | Top terms 04 | Top terms 05 | Top terms 06 |
|-----------------|--------------|--------------|--------------|--------------|--------------|
| governo         | #coronavirus | diretta      | forza_italia | solidarietà  | grande       |
| italiani        | #covid19     | roma         | bene         | libertà      | grazie       |
| lega            | sicurezza    | domani       | cose         | parole       | mondo        |
| conte           | covid        | città        | vero         | diritti      | italia       |
| matteosalvinimi | scuola       | amici        | davvero      | rispetto     | forza        |
| fratelliditalia | salute       | sindaco      | ragione      | democrazia   | de           |
| salvini         | pandemia     | insieme      | problema     | diritto      | italiano     |
| pd              | pass         | sera         | ce           | violenza     | italiana     |
| #lega           | dati         | territorio   | parla        | guerra       | storia       |
| casa            | green        | parlare      | dovrebbe     | popolo       | l'italia     |

| Top terms 7 | Top terms 8 | Top terms 9 | Top terms 10 | Top terms 11 |
|-------------|-------------|-------------|--------------|--------------|
| lavoro      | via         | governo     | anni         | piano        |
| paese       | ministro    | imprese     | grazie       | nazionale    |
| presidente  | legge       | milioni     | donne        | futuro       |
| politica    | parlamento  | euro        | giornata     | importante   |
| buon        | commissione | lavoratori  | auguri       | sociale      |
| l'italia    | senato      | famiglie    | vittime      | giovani      |
| momento     | mov5stelle  | sostegno    | famiglia     | europea      |
| bene        | voto        | cittadini   | comunità     | fondamentale |
| pdnetwork   | camera      | misure      | servizio     | paesi        |
| insieme     | intervento  | crisi       | forze        | intervista   |

# ${\bf 5.3.3} \quad {\bf Interpret\ the\ terms}$

|           | Topic 1         | Topic 2      | Topic 3    | Topic 4      | Topic 5     | Topic 6  |
|-----------|-----------------|--------------|------------|--------------|-------------|----------|
| titles_11 | 1?              | PANDEMIA     | 3?         | 4?           | DIRITTI     | NAZIONE  |
|           | governo         | #coronavirus | diretta    | forza_italia | solidarietà | grande   |
|           | italiani        | #covid19     | roma       | bene         | libertà     | grazie   |
|           | lega            | sicurezza    | domani     | cose         | parole      | mondo    |
|           | conte           | covid        | città      | vero         | diritti     | italia   |
|           | matteosalvinimi | scuola       | amici      | davvero      | rispetto    | forza    |
|           | fratelliditalia | salute       | sindaco    | ragione      | democrazia  | de       |
|           | salvini         | pandemia     | insieme    | problema     | diritto     | italiano |
|           | pd              | pass         | sera       | ce           | violenza    | italiana |
|           | #lega           | dati         | territorio | parla        | guerra      | storia   |
|           | casa            | green        | parlare    | dovrebbe     | popolo      | l'italia |

|           | Topic 7    | Topic 8     | Topic 9    | Topic 10   | Topic 11     |
|-----------|------------|-------------|------------|------------|--------------|
| titles_11 | 7?         | PARLAMENTO  | ECONOMIA   | RICORRENZE | PNRR         |
|           | lavoro     | via         | governo    | anni       | piano        |
|           | paese      | ministro    | imprese    | grazie     | nazionale    |
|           | presidente | legge       | milioni    | donne      | futuro       |
|           | politica   | parlamento  | euro       | giornata   | importante   |
|           | buon       | commissione | lavoratori | auguri     | sociale      |
|           | l'italia   | senato      | famiglie   | vittime    | giovani      |
|           | momento    | mov5stelle  | sostegno   | famiglia   | europea      |
|           | bene       | voto        | cittadini  | comunità   | fondamentale |
|           | pdnetwork  | camera      | misure     | servizio   | paesi        |
|           | insieme    | intervento  | crisi      | forze      | intervista   |

# 6 FER: Facial Emotion Recognition Analysis

## 6.1 Report on the analysis made with FER Puthon package

The package use the FER-2013 dataset created by Pierre Luc Carrier and Aaron Courville.

The dataset was created using the Google image search API to search for images of faces that match a set of 184 emotion-related keywords like "blissful", "enraged," etc. These keywords were combined with words related to gender, age or ethnicity, to obtain nearly 600 strings which were used as facial image search queries. The first 1000 images returned for each query were kept for the next stage of processing. OpenCV face recognition was used to obtain bounding boxes around each face in the collected images. Human labelers than rejected incorrectly labeled images, corrected the cropping if necessary, and filtered out some duplicate images. Approved, cropped images were then resized to 48x48 pixels and converted to grayscale. Mehdi Mirza and Ian Goodfellow prepared a subset of the images for this contest, and mapped the fine-grained emotion keywords into the same seven broad categories used in the Toronto Face Database [Joshua Susskind, Adam Anderson, and Geoffrey E. Hinton. The Toronto face dataset. Technical Report UTML TR 2010-001, U. Toronto, 2010.]. The resulting dataset contains 35887 images, with 4953 "Anger" images, 547 "Disgust" images, 5121 "Fear" images, 8989 "Happiness" images, 6077 "Sadness" images, 4002 "Surprise" images, and 6198 "Neutral" images. FER-2013 could theoretical suffer from label errors due to the way it was collected, but Ian Goodfellow found that human accuracy on FER-2013 was  $65\pm 5\%$ .

66% ACCURACY REPORTED BY OCTAVIO ARRIAGA, Matias Valdenegro-Toro, Paul Plöger (Real-time Convolutional Neural Networks for Emotion and Gender Classification)