ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES I

Projeto de Somador com e sem Sinal

prof. Dr. César Augusto M. Marcon prof. Dr. Edson Ifarraguirre Moreno

Planejando a Descrição de um Somador

- Como descrever uma soma?
 - $S \le A + B;$
- Como esta soma pode ser realizada em hardware?
 - Dividir as entradas e saídas em vetores de bits
- Exemplo:
 - A e B são vetores de 4 bits

- Sigual a 8

O que fazer com cada bit?

 Descrever em hardware uma função que implementa a operação de soma deste bit

Qual é a função?

 Supondo a soma de dois bits, para cada par de bit somado existem duas saídas: o vai um (carry) e o resultado da soma

Como implementar a função?

Por exemplo uma tabela verdade

а	b	s (soma)	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Qual é o próximo passo?

- Extrair as funções da tabela verdade
 - s = a x or b
 - carry = a and b

• E agora?

- Descrever as funções em Hardware
- Qual recurso utilizar?
 - Linguagem VHDL

- INTERFACE EXTERNA: entity
 - Especifica somente a interface
 - Não contém definição do comportamento

- COMPORTAMENTO: architecture
 - Especifica o comportamento da entity
 - Deve ser associada a uma entity específica
 - Uma entity pode ter associada várias architectures
 (diferentes formas de implementar um mesmo módulo)

```
architecture HA of HalfAdd is
begin
  s <= a xor b;
  carry <= a and b;
end HA;</pre>
```

Somador de 1 bit Completo

- A arquitetura HD, apresentada é suficiente para descrever uma soma de um estágio?
 - Não, falta considerar o vai um do estágio anterior

Exercício:

- Fazer um novo par entidade-arquitetura que implementa uma soma completa. Fazer a tabela verdade e a entidade e a arquitetura.
- Chame esta entidade de Add (será usada mais adiante)

- Como fazer agora para conseguir implementar todo o vetor?
 - Uma possibilidade é implementar vários módulos de 1 bit em um par entidadearquitetura

Somador Completo de 4 Bits

Somador Completo de 4 Bits

```
library IEEE;
use IEEE.std_logic_1164.all;

architecture Somador of Adder4Bits is
    signal c: std_logic_vector(3 downto 0);

begin
    A0: entity Add port map(cin=>'0', A=>A(0),B=>B(0),cout=>c(0),s=>S(0));
    A1: entity Add port map(cin=>c(0),A=>A(1),B=>B(1),cout=>c(1),s=>S(1));
    A2: entity Add port map(cin=>c(1),A=>A(2),B=>B(2),cout=>c(2),s=>S(2));
    A3: entity Add port map(cin=>c(2),A=>A(3),B=>B(3),cout=>c(3),s=>S(3));
    cout <= c(3);
end Somador;</pre>
```

Perguntas e exercícios:

- A descrição acima é estrutural ou comportamental? Porque?
- Para que serve o cout do somador de 4 bits, já que não há mais estágios
- Faça um somador de 8 bits, tendo como base o somador de 4 Bits descrito acima

Exercícios

- 3. (POSCOMP 2003 22) Qual a função do circuito abaixo?
 - a. Multiplexador
 - b. Multiplicador
 - c. Deslocador
 - d. Somador
 - e. Subtrator

Resposta de Exercícios

- 3. (POSCOMP 2003 22) Qual a função do circuito abaixo?
 - a. Multiplexador
 - b. Multiplicador
 - c. Deslocador
 - d. Somador
 - e. Subtrator

