Sahyadri Classes

Mathematics

Time: 1.00 hr Marks: 50 XII - A Div

Vector Algebra

1) The volume of the parallelopiped, whose edges are represented by $-12\hat{i} + \alpha \hat{k}$, $3\hat{j} - \hat{k}$, $2\hat{i} + \hat{j} - 15\hat{k}$, is 546, then α is :

- **A**) 3
- **B**) 2
- **C**) -3
- **D**) -2.

2) $(\overrightarrow{a} \times \overrightarrow{b})^2$ is equal to :

- A) $\overrightarrow{a}^2 \overrightarrow{b}^2 (\overrightarrow{a} \cdot \overrightarrow{b})^2$ B) $\overrightarrow{a}^2 \overrightarrow{b}^2 (\overrightarrow{a} \cdot \overrightarrow{b})$ C) $(\overrightarrow{a} \cdot \overrightarrow{b})^2$ D) $a^2 b^2$

3) If $\overrightarrow{a} = 4\hat{i} + 6\hat{j}$ and $\overrightarrow{b} = 3\hat{j} + 4\hat{k}$, then the vector form of the component of \overrightarrow{a} along \overrightarrow{b} is :

- A) $\frac{18}{10\sqrt{13}} \left(3\hat{j} + 4\hat{k}\right)$ B) $\frac{18}{25} \left(3\hat{j} + 4\hat{k}\right)$ C) $\frac{18}{\sqrt{113}} \left(3\hat{j} + 4\hat{k}\right)$ D) $3\hat{j} + 4\hat{k}$

4) The vectors $\hat{i} + 2\hat{j} + 3\hat{k}$, $\lambda \hat{i} + 4\hat{j} + 7\hat{k}$, $-3\hat{i} - 2\hat{j} - 5\hat{k}$ are collinear if λ is :

- **A**) 3
- **B**) 4
- **C**) 5
- **D**) 6.

5) If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = 0$, then :

- **A**) \overrightarrow{a} is parallel to \overrightarrow{b}
- **B**) $\overrightarrow{a} \perp \overrightarrow{b}$
- **C**) either \overrightarrow{a} or \overrightarrow{b} is a null vector
- D) None of these.

6) The projection of the vector \hat{i} – $2\hat{j}$ + \hat{k} on the vector $4\hat{i}-4\hat{j}+7\hat{k}$ is:

- **A)** $\frac{5}{10}\sqrt{5}$ **B)** $2\frac{1}{9}$ **C)** $\frac{9}{19}$
- **D**) $\frac{1}{19}\sqrt{6}$

7) If the vectors $2\hat{i}-\hat{j}+\lambda\hat{k}$, $\hat{i}-\hat{j}+2\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$ are coplanar, then the value of λ is :

- **A**) -1
- **B**) -2
- (C) 3
- **D**) -4.

8) $\overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{b}) =$

- **A**) $\overrightarrow{d} \cdot \overrightarrow{b}$ **B**) a^2b
- **C**) 0

D) $a^2 + ab$

9) The points with position vectors $60\hat{i} + 3\hat{j}$, $40\hat{i}-8\hat{j}$ and $\alpha\hat{i}-52\hat{j}$ are collinear if :

- **A**) a = -40
- **B**) a = 40
- **C**) a = 20
- **D**) None of these.

10) Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-coplanar vectors and \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} be vectors defined by the

 $\overrightarrow{p} = \frac{\overrightarrow{b} \times \overrightarrow{c}}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}, \ \overrightarrow{q} = \frac{\overrightarrow{c} \times \overrightarrow{a}}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}, \ \overrightarrow{r} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}, \text{then}$

 $(\overrightarrow{\alpha} + \overrightarrow{b}) \cdot \overrightarrow{p} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{q} + (\overrightarrow{c} + \overrightarrow{\alpha}) \cdot \overrightarrow{r} \text{ is }$ equal to:

- **A**) 0
- **C**) 2

11) The scalar $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) \times (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$ is :

- **B**) $[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}] + [\overrightarrow{B}\overrightarrow{C}\overrightarrow{A}]$
- **C**) $2[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}]$
- **D**) $[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}]$.

12) If the vectors $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ (a \neq 1, b \neq 1, c \neq 1) are coplanar, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is:

A) 1

C) 0

D) None of these.

13) If the sum of two unit vectors is a unit vector, then the angle between them is equal to:

- **B**) $\pi/3$
- C) $\pi/2$
- **D**) $2\pi/3$.

14) If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then the scalar triple product : $[2\overrightarrow{a} - \overrightarrow{b}, 2\overrightarrow{b} - \overrightarrow{c}]$, $2\overrightarrow{c} - \overrightarrow{a}$]=

- **B**) 1
- **C**) $-\sqrt{3}$

15) Given two vectors $\hat{i} - \hat{j}$ and $\hat{i} + 2\hat{j}$, the unit vector coplanar with the two vectors and perpendicular to first is:

- A) $\frac{1}{\sqrt{2}} (\hat{i} + \hat{j})$ B) $\frac{1}{\sqrt{5}} (2\hat{i} + \hat{j})$ C) $\pm \frac{1}{\sqrt{2}} (\hat{i} + \hat{k})$ D) None of these.

16) If $\overrightarrow{a} = 3\hat{i} - 5\hat{j}$ and $\overrightarrow{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \overrightarrow{c} a vector such that $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$, then $|\overrightarrow{a}|:|\overrightarrow{b}|:|\overrightarrow{c}|=$

- **A**) $\sqrt{34}$: $\sqrt{45}$: $\sqrt{39}$
- **B**) $\sqrt{34}$: $\sqrt{45}$: 39
- **C**) 34:39:45
- **D**) 39:35:34.

17)	Let $\overrightarrow{a} = \hat{i} + \hat{j}$	$\hat{\mathbf{b}} + \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}}$	$\hat{j}+2\hat{k}$ and			A) $5i + 5j + 1$		B) $5i + j - 5k$	-1 \
			vector \overrightarrow{c} lies	in the		C) $5i + j + 5l$	K	$\mathbf{D}) \pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{j})$)K)
	_	and \overrightarrow{b} , then a	-	D) 0.	27)	hypotenuse	AB = p, the		
18)	Given two ve	ectors $\overrightarrow{\alpha} = 2^{2}$	$\hat{\mathfrak{i}}$ –3 $\hat{\mathfrak{j}}$ + 6 $\hat{\mathfrak{k}}$,			$AB \cdot AC + B$	\dot{C} . $\dot{B}\dot{A} + \dot{C}\dot{A}$	\overrightarrow{CB} is equal t	to
	$\overrightarrow{b} = -2\hat{i} + 2\hat{j}$	$-\hat{k}$ and $p = \frac{p}{p}$	projection of to	$\overrightarrow{a} \text{ on } \overrightarrow{a},$		A) 2p ²		B) $\frac{p^2}{2}$	
	then the valu	ue of p is: ˈ	.,			C) p ²		D) None of the	se
	,	•	C) 3	D) 7.	28)	\overrightarrow{A} , B, C, D at \overrightarrow{AB} . \overrightarrow{CD} +	re any four p	points, then	
19)			$2\hat{k}$, $\overrightarrow{b}=2\hat{i}+a$					$\mathbf{B}) \overrightarrow{AB} + \overrightarrow{BC}$ $\mathbf{D}) 0$	+ \overrightarrow{CD}
	If $\overrightarrow{\alpha} = \frac{1}{\sqrt{10}}$ (then the value	$ig(3\hat{\mathfrak{i}}+\hat{\mathtt{k}}ig)$ and $ar{\mathfrak{d}}$ ue of	$ \mathbf{C}) (-2,3) $ $ \overrightarrow{b} = \frac{1}{7} (2\hat{i} + 3\hat{j}) $	$-6\hat{k})$,	29)	$\begin{aligned} &\textbf{If } \textbf{a} = 3, \ \textbf{b} \\ &\textbf{a} + \lambda \textbf{b} \textbf{ is per} \\ &\textbf{A}) \ \frac{9}{16} \end{aligned}$	pendicular		which $\mathbf{D}) \frac{4}{3}$
	$\left(2\overrightarrow{a}-\overrightarrow{b}\right)\cdot\Big $ A) -5	$\left[\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times(\overrightarrow{b})\right]$,	D) 3	30)	unit vector,	then the an	ors and a – b is gle between a	and b is
21)			$4\hat{k}$ and $\overrightarrow{AC} = 9$	· /		7	3	C) $\frac{\pi}{2}$	3
	the median t	hrough A is	:		31)			ctors such that	
	A) √72	B) √33	C) √45	D) √18				ngle between a	
22)	$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \lambda \\ \lambda \text{ is equal to} \end{bmatrix}$		$=\lambda \left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right]$	$\Big]^2$, then	32)	A) $\pi/6$ If the sum o	, ,	ectors is a unit	D) $2\pi/3$
	A) 3	B) 0	C) 1	D) 2		then the ma	gnitude of t	heir difference	is
	,	•	represented	,		A) $\sqrt{2}$	B) $\sqrt{3}$	C) $\frac{1}{\sqrt{3}}$	D) 1
ĺ		-	he area of the	- 1	33)	If a and b an	e two unit v	ectors such th	at a + 2h
	A) 12	B) 13	C) 25	D) 50	00,	and $5a-4b$	are perpen	dicular to each	
24)	If C is the mi outside AB,		f AB and P is a	any point		then the and $A) 45^{\circ}$		B) 60°	
	A) $\overrightarrow{PA} + \overrightarrow{PB} =$	$=\overrightarrow{PC}$				C) $\cos^{-1}\left(\frac{1}{3}\right)$)	$\mathbf{D})\cos^{-1}\left(\frac{2}{7}\right)$	
	B) $\overrightarrow{PA} + \overrightarrow{PB} =$ C) $\overrightarrow{PA} + \overrightarrow{PB} =$				34)			b = a-b , ther	1 the
	$\overrightarrow{PA} + \overrightarrow{PB} - \overrightarrow{PB} - \overrightarrow{PB}$					vectors a ar			
	,					A) Parallel to	o each other		

B) Perpendicular to each other

C) Inclined at an angle of 60°

35) $(a-b) \times (a+b) =$

36) $(2a+3b) \times (5a+7b) =$

A) $2(a \times b)$

C) $a^2 - b^2$

D) Neither perpendicular nor parallel

B) $a \times b$

D) None of these

25) The value of b such that scalar product of the

the sum of the vectors (2i+4j-5k) and

26) A vector whose modulus is $\sqrt{51}$ and makes the same angle with $a=\frac{i-2j+2k}{3},\ b=\frac{-4i-3k}{5}$

B) -1

(bi+2j+3k) is 1, is

and c = j, will be

A) -2

vectors $(\mathbf{i}+\mathbf{j}+\mathbf{k})$ with the unit vector parallel to

C) 0

D) 1

Δ	a	~	h
A	a	X	D

B) $b \times a$

$$\mathbf{C}$$
) $\mathbf{a} + \mathbf{b}$

D) 7a + 10b

37) If a and b are two vectors such that a.b=0 and $a \times b = 0$, then

- A) a is parallel to b
- B) a is perpendicular to b
- C) Either a or b is a null vector
- D) None of these

38)
$$|(a \times b) \cdot c| = |a| |b| |c|$$
, if

A)
$$a \cdot b = b \cdot c = 0$$

B)
$$b \cdot c = c \cdot a = 0$$

C)
$$c \cdot a = a \cdot b = 0$$

D)
$$a \cdot b = b \cdot c = c \cdot a = 0$$

39)
$$|a \times i|^2 + |a \times j|^2 + |a \times k|^2 =$$

A)
$$|a|^2$$

B)
$$2 |a|^2$$

C)
$$3 |a|^2$$

D)
$$4 |a|^2$$

40) If
$$(a \times b)^2 + (a \cdot b)^2 = 144$$
 and $|a| = 4$, then $|b| = 144$

B) 8

D) 12

41) A unit vector in the plane of the vectors 2i + j + k, i - j + k and orthogonal to 5i + 2j + 6k

A) $\frac{6i-5k}{}$

A)
$$\frac{6i-51}{\sqrt{61}}$$

B)
$$\frac{3j-k}{\sqrt{10}}$$

C)
$$\frac{2i-5}{\sqrt{29}}$$

D)
$$\frac{2^{\sqrt{10}} - 2^{k}}{3}$$

42) The area of the parallelogram whose diagonals are $a=3\,i+j-2k$ and $b=i-3\,j+4\,k$ is

- **A**) $10\sqrt{3}$
- **B**) $5\sqrt{3}$
- **C**) 8
- **D**) 4

43) The moment of a force represented by

$$\overrightarrow{F} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
 about the point $2\mathbf{i} - \mathbf{j} + \mathbf{k} =$

$$\textbf{A)}~5\textbf{i}-5\textbf{j}+5\textbf{k}$$

B)
$$5i - 5j + 5k$$

C)
$$-5i + 5j + 5k$$

D)
$$-5i - 5j + 5k$$

44) If the vectors 2i-3j, i+j-k and 3i-k form three concurrent edges of a parallelopiped, then the volume of the parallelopiped is

- **A**) 8
- **B**) 10
- **C**) 4
- **D**) 14

45) If a and b be parallel vectors, then [acb] =

 $\mathbf{A}) 0$

B) 1

C) 2

D) None of these

46) If the vectors $2\mathbf{i} - \mathbf{j} + \mathbf{k}, \ \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ and $3i + \lambda j + 5k$ be coplanar, then

- **A**) -1
- **B**) -2
- **C**) -3
- **D**) -4

47) If a,b and c are unit coplanar vectors then the scalar triple product $[2a-b \ 2b-c \ 2c-a]$ is equal to

- **A**) 0
- **B**) 1
- **C**) $-\sqrt{3}$
- **D**) $\sqrt{3}$

48) The value of $[a-b \ b-c \ c-a]$, where

$$|\mathfrak{a}|=1, |\mathfrak{b}|=5$$
 and $|\mathfrak{c}|=3$ is

- **A**) 0
- **B**) 1
- **C**) 2
- **D**) 4

49) If u, v and w are three non-coplanar vectors, then (u+v-w). $[(u-v)\times(v-w)]$ equals

A) 0

- **B**) $u \cdot (v \times w)$
- **C**) $u \cdot (w \times v)$
- **D**) $3u \cdot (v \times w)$

50)
$$\mathbf{i} \times (\mathbf{j} \times \mathbf{k}) =$$

A) 1

- $\mathbf{B})0$
- **C**) -1

D) None of these

Answer Sheet

Mathematics : Vector Algebra

Total Questions : 50 Total Marks : 50

1	С	2	Α	3	В	4	Α	5	С	6	В	7	Α	8	С	9	Α	10	D	11	Α	12	Α
13	D	14	Α	15	С	16	В	17	С	18	Α	19	Α	20	Α	21	В	22	С	23	D	24	В
25	D	26	D	27	С	28	D	29	В	30	В	31	D	32	В	33	В	34	В	35	Α	36	В
37	С	38	D	39	В	40	С	41	В	42	В	43	D	44	С	45	Α	46	D	47	Α	48	Α
49	В	50	В																				

Solution Sheet

Mathematics: Vector Algebra

Total Questions: 50 Total Marks: 50

- 1) Volume = $\begin{vmatrix} -12 & 0 & \alpha \\ 0 & 3 & -1 \\ 2 & 1 & -15 \end{vmatrix} = 546$ $\Rightarrow -12(-44) + 0 + \alpha(-6) = 546$ $\Rightarrow 528 6\alpha = 546$ $\Rightarrow 6\alpha = -546 + 528 = -18 \Rightarrow \alpha = -3.$
- 2) $(\overrightarrow{a} \times \overrightarrow{b})^2 = (ab \sin \theta)^2$ = $a^2b^2 (1-\cos^2 \theta)$ = $a^2b^2-a^2b^2\cos^2 \theta = \overrightarrow{a^2b^2}-(\overrightarrow{a} \cdot \overrightarrow{b})^2$.
- 3) Vector form of the component of \overrightarrow{a} along \overrightarrow{b} $= \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2}\right) \overrightarrow{b}$ $= (4 \times 0 + 6 \times 3 + 0 \times 4) \frac{(3\hat{j} + 4\hat{k})}{(\sqrt{9 + 16})^2}$ $= \frac{18}{25} (3\hat{j} + 4\hat{k})$
- $= \frac{18}{25} (3\hat{j} + 4\hat{k})$ $\begin{vmatrix}
 1 & 2 & 3 \\
 \lambda & 4 & 7
 \end{vmatrix} = 0$ $\begin{vmatrix}
 -3 & -2 & -5 \\
 \Rightarrow 1. (-20 + 14) 2(-5\lambda + 21) + 3(-2\lambda + 12) = 0$ $\Rightarrow -6 + 10\lambda 42 6\lambda + 36 = 0$ $\Rightarrow 4\lambda = 12 \Rightarrow \lambda = 3.$
- 5) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = 0$ means either \overrightarrow{a} or \overrightarrow{b} is a null vector. \therefore both cant be parallel and perp.
- 6) Projection = $\frac{(1)(4) + (-2)(-4) + (1)(7)}{\sqrt{16 + 16 + 49}}$ $= \frac{4 + 8 + 7}{\sqrt{81}} = \frac{19}{9} = 2\frac{1}{9}.$
- 7) Since the vectors are coplanar,

$$\begin{vmatrix} 2 & -1 & \lambda \\ 1 & -2 & 2 \\ 3 & -2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow 2(-1+4)+1(1-6)+\lambda(-2+3)=0$$

$$\Rightarrow 6-5+\lambda=0 \Rightarrow \lambda=-1.$$

8) Since scalar triple product is zero if two vectors are identical.

9) Let $A(60\hat{i} + 3\hat{j})$, $B(40\hat{i} - 8\hat{j})$, $C(\alpha\hat{i} - 52\hat{j})$ be given points. $\therefore \overrightarrow{AB} = 40\hat{i} - 8\hat{j} - 60\hat{i} - 3\hat{j} = -20\hat{i} - 11\hat{j}$ and $\overrightarrow{AC} = \alpha\hat{i} - 52\hat{j} - 60\hat{i} - 3\hat{j}$ $= (\alpha - 60)\hat{i} - 55\hat{j}$ Since A, B, C are collinear, $\therefore \overrightarrow{AB} = k\overrightarrow{AC}$, for some scalar k $\Rightarrow -20\hat{i} - 11\hat{j} = k\left[(\alpha - 60)\hat{i} - 55\hat{j}\right]$ $\Rightarrow -11 = -55k \Rightarrow k = 1/5$ and $-20 = k(\alpha - 60) = \frac{1}{5}(\alpha - 60)$

 \Rightarrow -100 = a-60

 $\Rightarrow \alpha = -40.$

- **10)** $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{p} = \frac{\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c}}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]} + \frac{\overrightarrow{b} \cdot (\overrightarrow{b} \times \overrightarrow{c})}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]}$ $= \frac{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]} + 0 = 1.$ Similarly $(\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{q} = 1$ and $(\overrightarrow{c} + \overrightarrow{a}) \cdot \overrightarrow{r} = 1$. $\therefore \text{ Total value} = 3.$
- 11) $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) \times (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$ $= \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{B} \times \overrightarrow{C} + \overrightarrow{C} \times \overrightarrow{A} + \overrightarrow{C} + \overrightarrow{B})$ $= \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{C} \times \overrightarrow{A})$ $= \overrightarrow{A} \cdot \overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{C} \times \overrightarrow{A}$ $= [\overrightarrow{A} \overrightarrow{B} \overrightarrow{A}] + [\overrightarrow{A} \overrightarrow{C} \overrightarrow{A}]$ = 0 + 0 = 0.

$$\Rightarrow \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \text{ i.e.} \begin{vmatrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{vmatrix} = 0$$
[Operating $C_2 \to C_2 - C_1$, $C_3 \to C_3 - C_1$]

 $\Rightarrow a(b-1)(c-1)-(1-a)(c-1)-1(1-a)(b-1) = 0$ Dividing throughout by (1-a)(1-b)(1-c), we get:

$$\frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

$$\Rightarrow -1 + \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

$$\Rightarrow \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

13) Let
$$\overrightarrow{a}$$
, \overrightarrow{b} be unit vectors. Then their sum $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c} \Rightarrow (\overrightarrow{a} + \overrightarrow{b})^2 = (\overrightarrow{c})^2 \Rightarrow 1 + 1 + 2\overrightarrow{a} \cdot \overrightarrow{b} = 1 \Rightarrow 2|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = -1 \Rightarrow \cos\theta = -1/2 = -\cos(\pi/3) = \cos\frac{2\pi}{3} \Rightarrow \theta = 2\pi/3.$

14) Since \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit coplanar vectors, $\therefore 2\overrightarrow{a} - \overrightarrow{b}$, $2\overrightarrow{b} - \overrightarrow{c}$, $2\overrightarrow{c} - \overrightarrow{a}$ are also coplanar vectors,

... their scalar triple product is zero,

- **15)** Let $\overrightarrow{\alpha} = \hat{\mathbf{i}} \hat{\mathbf{j}}$ and $\overrightarrow{b} = \hat{\mathbf{i}} 2\hat{\mathbf{j}}$ The reqd. vector is along the vector $\overrightarrow{\alpha} \times (\overrightarrow{\alpha} \times \overrightarrow{b}) = (\overrightarrow{\alpha} \cdot \overrightarrow{b}) \overrightarrow{\alpha} (\overrightarrow{\alpha} \cdot \overrightarrow{\alpha}) \overrightarrow{b}$ $= -(\hat{\mathbf{i}} \hat{\mathbf{j}}) 2(\hat{\mathbf{i}} + 2\hat{\mathbf{j}}) = -3\hat{\mathbf{i}} 3\hat{\mathbf{j}}$ Hence reqd. vectors are given by : $\pm \frac{(-3\hat{\mathbf{i}} 3\hat{\mathbf{j}})}{\sqrt{9 + 9}} = \pm \frac{1}{\sqrt{2}}(\hat{\mathbf{i}} + \hat{\mathbf{j}}).$
- **16)** Here $|\overrightarrow{a}| = \sqrt{9 + 25 + 0} = \sqrt{34}$ $|\overrightarrow{b}| = \sqrt{9 + 25 + 0} = \sqrt{45}$ Now $|\overrightarrow{c}| = |\overrightarrow{a} \times \overrightarrow{b}|$ $= |(3\hat{i} - 5\hat{j}) \times (6\hat{i} + 3\hat{j})|$ $= |9\hat{k} + 30\hat{k}| = |39\hat{k}| = 39.$ Hence $|\overrightarrow{a}| : |\overrightarrow{b}| : |\overrightarrow{c}| = \sqrt{34} : \sqrt{45} : 39$
- 17) Here $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$ $\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} 1 & 0 & 0 \\ 1 & -2 & 3 \\ x & -2 & 1-x \end{vmatrix} = 0$ $[Operating C_2 \rightarrow C_2 C_1 \text{ and } C_3 \rightarrow C_3 C_2]$ $\Rightarrow 1.(-2 + 2x + 6) = 0 \Rightarrow 2x = -4 \Rightarrow x = -2.$

18)
$$\frac{\frac{\overrightarrow{b} \cdot \overrightarrow{a}}{|\overrightarrow{a}|}}{\frac{\overrightarrow{(a} \cdot \overrightarrow{b})}{|\overrightarrow{b}|}} = \frac{|\overrightarrow{b}|}{|\overrightarrow{a}|} = \frac{3}{7}.$$
$$[\because \overrightarrow{a} \cdot \overrightarrow{b}] = \overrightarrow{b} \cdot \overrightarrow{a}]$$

19) \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are mutually orthogonal $\Rightarrow \overrightarrow{b} \cdot \overrightarrow{c} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 0$ $\Rightarrow (2\hat{i} + 4\hat{j} + \hat{k}) \cdot (\lambda \hat{i} + \hat{j} + \mu \hat{k}) = 0$ $\Rightarrow 2\lambda + 4 + \mu = 0 \Rightarrow 2\lambda + \mu = -4 \dots (1)$ and $\Rightarrow (\hat{i} - \hat{j} + 2\hat{k}) \cdot (\lambda \hat{i} + \hat{j} + \mu \hat{k}) = 0$ $\Rightarrow \lambda - 1 + 2\mu = 0 \Rightarrow \lambda + 2\mu = 1 \dots (2)$ Solving (1) and (2), $\lambda = -3$ and $\mu = 2$

$$\begin{aligned} \textbf{20)} & \left(2\overrightarrow{a} - \overrightarrow{b} \right) \cdot \left[\left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \right] \\ &= \left(2\overrightarrow{a} - \overrightarrow{b} \right) \cdot \left[\left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{a} + 2 \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{b} \right] \\ &= \left(2\overrightarrow{a} - \overrightarrow{b} \right) \cdot \\ & \left[\left(\overrightarrow{a} \cdot \overrightarrow{a} \right) \overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{a} + 2 \left(\overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{b} - 2 \left(\overrightarrow{b} \cdot \overrightarrow{b} \right) \overrightarrow{a} \right] \\ & \text{But } \overrightarrow{a} \cdot \overrightarrow{a} = \frac{1}{\sqrt{10}} \left(3\widehat{i} + \widehat{k} \right) \cdot \frac{1}{\sqrt{10}} \left(3\widehat{i} + \widehat{k} \right) \\ &= \frac{1}{10} [(3)(3) + (1)(1)] = \frac{10}{10} = 1 \\ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{\sqrt{10}} \left(3\widehat{i} + \widehat{k} \right) \cdot \frac{1}{7} \left(2\widehat{i} + 3\widehat{j} - 6\widehat{k} \right) \\ &= \frac{1}{7\sqrt{10}} [(3)(2) + 0 + (1)(-6)] = 0 \\ &\text{and } \overrightarrow{b} \cdot \overrightarrow{b} = \frac{1}{7} \left(2\widehat{i} + 3\widehat{j} - 6\widehat{k} \right) \cdot \frac{1}{7} \left(2\widehat{i} + 3\widehat{j} - 6\widehat{k} \right) \\ &= \frac{1}{49} [(2)(2) + (3)(3) + (-6)(-6)] \\ &= \frac{1}{49} [4 + 9 + 36] = 1 \\ \therefore \text{ From (1), Given } = 2 \left(\overrightarrow{a} - \overrightarrow{b} \right) \\ &[(1) \overrightarrow{b} - 0 + 0 - 2(1) \overrightarrow{a}] \\ &= \left(2\overrightarrow{a} - \overrightarrow{b} \right) \cdot \left(\overrightarrow{b} - 2\overrightarrow{a} \right) = 2\overrightarrow{a} \cdot \overrightarrow{b} - 4\overrightarrow{a} \cdot \overrightarrow{a} \\ &- \overrightarrow{b} \cdot \overrightarrow{b} + 2\overrightarrow{b} \cdot \overrightarrow{a} \\ &= 2(0) - 4(1) - (1) + 2(0) = -4 - 1 = -5. \end{aligned}$$

23)
$$|\alpha| = \sqrt{9 + 16 + 25} = 5\sqrt{2}$$

Area = $|\alpha|^2 = 25 \times 2 = 50$.

24)
$$\overrightarrow{PA} + \overrightarrow{PB} = (\overrightarrow{PA} + \overrightarrow{AC}) + (\overrightarrow{PB} + \overrightarrow{BC}) - (\overrightarrow{AC} + \overrightarrow{BC})$$

= $\overrightarrow{PC} + \overrightarrow{PC} - (\overrightarrow{AC} - \overrightarrow{CB}) = 2\overrightarrow{PC} - 0, (\because \overrightarrow{AC} = \overrightarrow{CB})$
 $\therefore \overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$.

25) Parallel vector =
$$(2+b)\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$$

Unit vector = $\frac{(2+b)\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{\sqrt{b^2 + 4b + 44}}$

According to the condition, $1 = \frac{(2+b)+6-2}{\sqrt{b^2+4b+44}}$ $\Rightarrow b^2 + 4b + 44 = b^2 + 12b + 36 \Rightarrow 8b = 8 \Rightarrow b = 8$

26) Let the required vector be $\alpha = d_1 \mathbf{i} + d_2 \mathbf{j} + d_3 \mathbf{k}$, where $\mathrm{d}_1^2+\mathrm{d}_2^2+\mathrm{d}_3^2=51$, (given)(i) Now, each of the given vectors a, b, c is a unit $\text{vector cos}\,\theta = \frac{d \cdot a}{|d|\,|a|} = \frac{d \cdot b}{|d|\,|b|} = \frac{d \cdot c}{|d|\,|c|}$

Vector
$$\cos \theta = \frac{1}{|\mathbf{d}| |\mathbf{a}|} = \frac{1}{|\mathbf{d}| |\mathbf{b}|} = \frac{1}{|\mathbf{d}| |\mathbf{c}|}$$

or $\mathbf{d} \cdot \mathbf{a} = \mathbf{d} \cdot \mathbf{b} = \mathbf{d} \cdot \mathbf{c}$

$$|\mathbf{d}| = \sqrt{51}$$
 cancels out and $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1$
Hence,

$$\begin{aligned} &\frac{1}{3}(d_1-2d_2+2d_3) = \frac{1}{5}(-4d_1+0d_2-3d_3) = d_2\\ &\Rightarrow d_1-5d_2+2d_3 = 0 \text{ and } 4d_1+5d_2+3d_3 = 0\\ &\text{On solving, } \frac{d_1}{5} = \frac{d_2}{-1} = \frac{d_3}{-5} = \lambda \text{ (say)}\\ &\text{Putting } d_1,\ d_2 \text{ and } d_3 \text{ in (i), we get } \lambda = \pm 1 \end{aligned}$$

Hence the required vectors are $\pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{k})$.

Trick: Check it with the options.

27) We have
$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$$

 $(AB) (AC) \cos \theta + (BC) (BA) \cos(90^{\circ} - \theta) + 0$
 $= AB(AC \cos \theta + BC \sin \theta) =$
 $AB\left(\frac{(AC)^2}{AB} + \frac{(BC)^2}{AB}\right)$
 $= AC^2 + BC^2 = AB^2 = p^2$.

28)
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \mathbf{a} + \mathbf{b} \text{ or } \overrightarrow{CA} = -(\mathbf{a} + \mathbf{b})$
 $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \mathbf{b} + \mathbf{c}$
Therefore $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD}$
 $= \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) + (-\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} + \mathbf{c})$
 $= \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{c} = 0$

29) Since $\mathbf{a} + \lambda \mathbf{b}$ is perpendicular to $\mathbf{a} - \lambda \mathbf{b}$, then their product will be zero.

So,
$$(\mathbf{a} + \lambda \mathbf{b}) \cdot (\mathbf{a} - \lambda \mathbf{b}) = 0 \Rightarrow |\mathbf{a}|^2 - \lambda^2 |\mathbf{b}|^2 = 0$$

or $\lambda^2 = \frac{|\mathbf{a}|^2}{|\mathbf{b}|^2} \Rightarrow \lambda^2 = \frac{9}{16}$ or $\lambda = \pm \frac{3}{4}, [\because |\mathbf{a}| = 3, |\mathbf{b}| = 4]$

30)
$$(a-qb)^2 = 1 = 2-2\cos \Rightarrow \theta = 60^\circ$$
.

31) Given condition is a + b = c. Using dot product, (a + b).(a + b) = c.c \Rightarrow a.a + b.b + 2a.b = c.c \Rightarrow |a|.|a| cos 0° + |b|.|b| cos 0° + 2|a|.|b| cos α $= |c|.|c|\cos 0^{\circ}, (\because |a| = |b| = |c| = 1)$

$$\Rightarrow 1 + 1 + 2\cos\alpha = 1 \Rightarrow \cos\alpha = -\frac{1}{2} \Rightarrow \alpha = \frac{2\pi}{3}.$$

32) Let
$$|\mathbf{a}| = 1$$
 and $|\mathbf{b}| = 1$
Also $|\mathbf{a} + \mathbf{b}|^2 = 1^2 \Rightarrow 1 + 1 + 2\cos\theta = 1 \Rightarrow \theta = 120^\circ$
 $\therefore |\mathbf{a} - \mathbf{b}|^2 = 1 + 1 - 2\cos\theta = 3 \Rightarrow |\mathbf{a} - \mathbf{b}| = \sqrt{3}.$

33)
$$(a+2b) \cdot (5a-4b) = 0$$
 or $5a^2 + 6a \cdot b - 8b^2 = 0$ or $6a \cdot b = 3$, $(\because a^2 = 1, b^2 = 1)$ $\therefore a \cdot b = \frac{1}{2}$ or $|a||b| \cos \theta = \frac{1}{2}$ $\therefore \cos \theta = \frac{1}{2}$, $\therefore \theta = 60^\circ$.

34) |a+b|=|a-b|; Squaring both sides, we get 4a.b = 0 \Rightarrow a is perpendicular to b.

35)
$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = \mathbf{a} \times \mathbf{a} - \mathbf{b} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{b}$$

= $\mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{a} = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} = 2(\mathbf{a} \times \mathbf{b}).$

36)
$$14(a \times b) + 15(b \times a) = b \times a$$
.

37)
$$a.b = 0 \Rightarrow a \perp b$$
 or $a = 0$ or $b = 0$ and $a \times b = 0 \Rightarrow a || b$ or $a = 0$ or $b = 0$ Hence, either a or b is a null vector.

38) We have
$$|(\mathbf{a} \times \mathbf{b}).\mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|$$

$$\Rightarrow ||\mathbf{a}||\mathbf{b}|\sin\theta \, \mathbf{n}.\mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|$$

$$\Rightarrow ||\mathbf{a}||\mathbf{b}||\mathbf{c}|\sin\theta \cos\alpha| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|$$

$$\Rightarrow |\sin\theta||\cos\alpha| = 1 \Rightarrow \theta = \frac{\pi}{2} \text{ and } \alpha = 0$$

$$\Rightarrow \mathbf{a} \perp \mathbf{b} \text{ and } \mathbf{c}||\mathbf{n}|$$

$$\Rightarrow \mathbf{a} \perp \mathbf{b} \text{ and is perpendicular to both a and b}$$

$$\therefore \mathbf{a}, \mathbf{b}, \mathbf{c} \text{ are mutually perpendicular}$$
Hence, $\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0$.

$$\begin{array}{ll} \textbf{39)} \ |\mathbf{a} \times \mathbf{i}|^2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 0 & 0 \end{vmatrix}^2, \\ (Since \ \mathbf{a} = \alpha_1 \mathbf{i} + \alpha_2 \mathbf{j} + \alpha_3 \mathbf{k}) \\ = |\alpha_3 \mathbf{j} - \alpha_2 \mathbf{k}|^2 = \alpha_3^2 + \alpha_2^2 \\ Similarly, \ |\mathbf{a} \times \mathbf{j}|^2 = \alpha_1^2 + \alpha_3^2 \ \text{and} \ |\mathbf{a} \times \mathbf{k}|^2 = \alpha_1^2 + \alpha_2^2 \\ \text{Hence the required result can be given as} \\ 2(\alpha_1^2 + \alpha_2^2 + \alpha_3^2) = 2|\mathbf{a}|^2. \end{array}$$

40) We know that
$$(\mathbf{a} \times \mathbf{b})^2 + (\mathbf{a} \cdot \mathbf{b})^2 = |\mathbf{a}|^2 |\mathbf{b}|^2$$

 $\therefore 144 = 16|\mathbf{b}|^2 \Rightarrow |\mathbf{b}| = 3.$

41) Let a unit vector in the plane of
$$2\mathbf{i}+\mathbf{j}+\mathbf{k}$$
 and $\mathbf{i}-\mathbf{j}+\mathbf{k}$ be $\mathbf{\hat{a}}=\alpha(2\mathbf{i}+\mathbf{j}+\mathbf{k})+\beta(\mathbf{i}-\mathbf{j}+\mathbf{k})$ $\mathbf{\hat{a}}=(2\alpha+\beta)\mathbf{i}+(\alpha-\beta)\mathbf{j}+(\alpha+\beta)\mathbf{k}$ As $\mathbf{\hat{a}}$ is unit vector, we have
$$\Rightarrow (2\alpha+\beta)^2+(\alpha-\beta)^2+(\alpha+\beta)^2=1\\ \Rightarrow 6\alpha^2+4\alpha\beta+3\beta^2=1$$
(i) As $\mathbf{\hat{a}}$ is orthogonal to $5\mathbf{i}+2\mathbf{j}+6\mathbf{k}$, we get $5(2\alpha+\beta)+2(\alpha-\beta)+6(\alpha+\beta)=0\\ \Rightarrow 18\alpha+9\beta=0\Rightarrow\beta=-2\alpha$ From (i), we get $6\alpha^2-8\alpha^2+12\alpha^2=1$ $\Rightarrow \alpha=\pm\frac{1}{\sqrt{10}}\Rightarrow\beta=\mp\frac{2}{\sqrt{10}}$. Thus $\mathbf{\hat{a}}=\pm\left(\frac{3}{\sqrt{10}}\mathbf{j}-\frac{1}{\sqrt{10}}\mathbf{k}\right)$.

42)
$$\Delta = \frac{1}{2} |\mathbf{a} \times \mathbf{b}|$$

But $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} = -2\mathbf{i} - 14\mathbf{j} - 10\mathbf{k}.$

Hence $\Delta = \frac{1}{2} |\mathbf{a} \times \mathbf{b}| = \frac{1}{2} \sqrt{4 + 196 + 100} = 5\sqrt{3}.$

43) $\mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = -5\mathbf{i} - 5\mathbf{j} + 5\mathbf{k}.$

44) Here,
$$\overrightarrow{OA} = 2\mathbf{i} - 3\mathbf{j} = \mathbf{a}$$
 (say)
$$\overrightarrow{OB} = \mathbf{i} + \mathbf{j} - \mathbf{k} = \mathbf{b} \text{ (say)}$$
and $\overrightarrow{OC} = 3\mathbf{i} - \mathbf{k} = \mathbf{c} \text{ (say)}$
Hence volume is
$$[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = \mathbf{a}. \ (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} = 4$$

46) If the given vectors are coplanar, then their scalar triple product is zero.

$$\begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & \lambda & 5 \end{vmatrix} = 0 \Rightarrow \lambda = -4.$$

47) Here [a b c] = 0The given scalar triple product= k[abc] = 0.

48)
$$[a-b \ b-c \ c-a] = \{(a-b) \times (b-c)\}. (c-a)$$

 $= (a \times b-a \times c-b \times b+b \times c). (c-a)$
 $= (a \times ab+ca \times a+b \times c). (c-a)$
 $= (a \times b). c-(a \times b). a+(c \times a). c-(c \times a). a$
 $= (a \times b). c-(a \times b). a+(c \times a). c-(c \times a). a$
 $+(b \times c). c-(b \times c). a$
 $=$
 $[a \ b \ c]-[a \ b \ a]+[c \ a \ c]-[c \ a \ a]+[b \ c \ c]-[b \ c \ a]=0$

$$\begin{aligned} \textbf{49)} \ & (\mathbf{u} + \mathbf{v} - \mathbf{w}) \cdot (\mathbf{u} \times \mathbf{v} - \mathbf{u} \times \mathbf{w} - \mathbf{v} \times \mathbf{v} + \mathbf{v} \times \mathbf{w}) \\ & = (\mathbf{u} + \mathbf{v} - \mathbf{w}) \cdot (\mathbf{u} \times \mathbf{v} - \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}) \\ & = \frac{\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v})}{0} - \frac{\mathbf{u} \cdot (\mathbf{u} \times \mathbf{w})}{0} + \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) + \frac{\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v})}{0} \\ & - \mathbf{v} \cdot (\mathbf{u} \times \mathbf{w}) + \frac{\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w})}{0} - \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) + \frac{\mathbf{w} \cdot (\mathbf{u} \times \mathbf{w})}{0} \\ & - \frac{\mathbf{w} \cdot (\mathbf{u} \times \mathbf{w})}{0} = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) - \mathbf{v} \cdot (\mathbf{u} \times \mathbf{w}) - \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) \\ & = [\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}] + [\mathbf{v} \cdot \mathbf{w} \cdot \mathbf{u}] - [\mathbf{w} \cdot \mathbf{u} \cdot \mathbf{v}] = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}). \end{aligned}$$

$\mathbf{0)} \ \mathbf{i} \times \mathbf{j} \times \mathbf{k} = \mathbf{k} \times \mathbf{k} = 0 \ .$		
., ,		