Prediction of age-structured model for SARS-CoV-2 in Seoul and Gyeonggi

Yunjeong Lee ¹ Jeongjoo Seok ²

 $^1{\rm School}$ of Mathematics and Computing (Computational Science and Engineering)

²School of Mathematics and Computing (Mathematics)

September 29, 2021

Data

- 1. Daily confirmed cases in Seoul and Gyeonggi
- 2. Vaccine
 - ▶ Daily number of vaccination for 1st dose (by age)
 - ▶ Daily number of vaccination for 2nd dose (by age)
 - ► Vaccine efficacy
- 3. Proportion of δ variant

1. Daily number of vaccination for 1st dose (all ages)

Figure 1: The daily number vaccination for 1st dose and 2nd dose from 2021/02/15 to 2021/09/01

1. Daily number of vaccination for 1st dose (by age)

- ▶ The daily number of vaccination by age is generated by the ratio between ages of vaccinated people.
- ► The ratio is based on KDCA reports.

Figure 2: The daily number vaccination for 1st dose by age from 2021/02/15 to 2021/09/01

2. Daily number of vaccination for 2nd dose (by age)

- ▶ The daily number of vaccination by age is generated by the ratio between ages of vaccinated people.
- ► The ratio is based on KDCA reports.

Figure 3: The daily number vaccination for 2nd dose by age from 2021/02/15 to 2021/09/01

3. Vaccine efficacy

- ▶ The vaccine efficacies for α variant and δ variant are different.
- \triangleright We use weighted sum of vaccine efficacies where weights are based on proportion of δ variant

	Dose	Astrazeneca	Pfizer
α variant	1st dose 2nd dose	$48.7\% \\ 74.5\%$	47.5% $93.7%$
δ variant	1st dose 2nd dose	$30.0\% \\ 67\%$	35.6% $88%$

Table 1: The vaccine efficacies according to the vaccine type, variant and dose.

 $^{^1{\}rm Jamie~Lopez~Bernal~et~al.}$ (2021). "Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant". In: New England Journal of Medicine

3. Vaccine efficacy

Figure 4: The estimated daily vaccine efficacy for 1st dose and 2nd dose.

4. Proportion of δ variant

Figure 5: Estimates of proportion of δ variant.

Model

Figure 6: Diagram of age-structured model for SARS-CoV-2.

Model

Notation	Interpretation
S	Susceptibles
E	Exposed
I	Infectious
H	Hospitalized
R	Removed (or recovered)
V	Vaccinated (between 1st dose and 2nd dose)
λ	Force of infection
κ	Latent period
α	Infectious period
γ	Hospitalization period
e_1	Vaccine efficacy for 1st dose
e_2	Vaccine efficacy for 2nd dose

Table 2: Definition of states and parameters.

Social distancing

Social distance level

- ▶ 0.5단계 감소: transmission rate 전단계 대비 41.61% 증가
- ▶ 0.5단계 증가: transmission rate 전단계 대비 30% 감소
- ▶ 1단계 증가: transmission rate 전단계 대비 65% 감소

Date	Social distancing level	Change of transmission rate
2021/02/15-2021/06/30	2	
2021/07/01-2021/07/11	1.5	$\beta imes 1.4161$
$2021/07/12-2021/09/01^2$	-	-

Table 3: The change of transmission rate according to the social distancing level from 2021/02/15 to 2021/09/01.

²It will be changed according to the experiments.

Definition of λ

Motivation

- ▶ In general, $\lambda(t)$ is defined by $W \times I(t)$ where W is the WAIFW matrix, and I(t) is the number of infectious at time t.
- \triangleright To reflect the non-pharmaceutical intervention, we consider time-dependent W(t).

Definition of WAIFW matrix

Let p(t) and SD(t) be the proportion of δ variant and proportionate of the corresponding social distancing level at time t. Let C(t) be the contact rate at time t.

$$W(t) = ((1 - p(t) + p(t)\delta) \times \beta \times SD(t) \times C(t)$$

Experiments

Baseline scenario

	2/15- $6/30$	7/1-7/11	7/12-9/26
사회적 거리두기	2단계	1.5단계	2.5-3단계

Table 4: The social distancing level of baseline scenario

Experiments

Combination of following settings

- ▶ 사회적 거리두기 (2021/09/27-2021/12/31)
 - ▶ 현행 유지
 - ▶ 0.5단계 완화: 1.4161배
 - ▶ 1단계 완화: 2.0053(= 1.4161²)배
- ▶ 등교 관련
 - ▶ 현행 유지
 - ▶ contact이 거리두기 0.5단계 완화 수준으로 증가: 1.4161배
 - ▶ contact이 거리두기 1단계 완화 수준으로 증가: 2.0053(= 1.4161²)배

사회적 거리두기 완화 수준: same & 등교로 인한 contact 증가 수준: same

Figure 7: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: same & 등교로 인한 contact 증가 수준: same

Figure 8: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: same & 등교로 인한 contact 증가 수준: 0.5

Figure 9: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: same & 등교로 인한 contact 증가 수준: 0.5

Figure 10: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: same & 등교로 인한 contact 증가 수준: 1

Figure 11: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: same & 등교로 인한 contact 증가 수준: 1

Figure 12: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: 0.5 & 등교로 인한 contact 증가 수준: same

Figure 13: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: 0.5 & 등교로 인한 contact 증가 수준: same

Figure 14: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: 0.5 & 등교로 인한 contact 증가 수준: 0.5

Figure 15: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: 0.5 & 등교로 인한 contact 증가 수준: 0.5

Figure 16: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: 0.5 & 등교로 인한 contact 증가 수준: 1

Figure 17: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: 0.5 & 등교로 인한 contact 증가 수준: 1

Figure 18: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: 1 & 등교로 인한 contact 증가 수준: same

Figure 19: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: 1 & 등교로 인한 contact 증가 수준: same

Figure 20: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: 1 & 등교로 인한 contact 증가 수준: 0.5

Figure 21: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: 1 & 등교로 인한 contact 증가 수준: 0.5

Figure 22: The estimated reproduction number from 2021/02/15 to 2021/09/01.

사회적 거리두기 완화 수준: 1 & 등교로 인한 contact 증가 수준: 1

Figure 23: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

사회적 거리두기 완화 수준: 1 & 등교로 인한 contact 증가 수준: 1

Figure 24: The estimated reproduction number from 2021/02/15 to 2021/09/01.