1. $y^2 = x^3 + 16 \Leftrightarrow (y-4) \cdot (y+4) = x^3$.

Если y — нечётное, то HOД(y-4,y+4)=1. Следовательно y-4 и y+4 — кубы. Если y — чётное, то x тоже. Заменим y на 2y, а x на 2x. При подстановке и сокращении на 4получим, $y^2=2\cdot x^3+4$. Обе части делятся на 4, значит, x и y снова чётные. Приводим аналогичную замену. $y^2=4\cdot x^3+1$. В этот раз y уже нечётное. Заменим, y=2m+1 и подставим. $4\cdot x^3=$ $(y-1)\cdot(y+1)=2m\cdot(2m+2)\Leftrightarrow x^3=m\cdot(m+1)$. Это означает, что m и (m+1) являются кубами, то есть m=-1,0. Подставляя, получаем, что $(x,y)=(0,\pm 4)$

2. $y^2 = x^3 - 1$. Первым делом по модулю 8 получаем, что x — нечётное, а y — чётное.

 $x^3=(y+i)\cdot (y-i)$. Докажем, что (y+i) и (y-i) взаимнопросты в $\mathbb{Z}[i]$. Пусть y+i и y-iделятся на θ . Тогда 2i = (y+i) - (y-i) делится на θ . Следовательно, $N(\theta)$ делит N(2i) = 4, где N(x) — норма x. Также $N(\theta)$ делит $N(y+i)=y^2+1$, что нечётно. Получается, что $N(\theta)=1$. А значит, y + 1 и y - 1 взаимнопросты.

Так как (y+i) и (y-i) взаимнопросты, а их произведение — куб, то (y+i) является $\theta \cdot (m+ni)^3$, где θ имеет норму 1. Заметим, что θ с нормой 1 всегда является кубом, а, значит, можно сказать, что $\theta = 1$.

 $y+i=(m+ni)^3$. Раскорем скобки, и получим: $y=m^3-3\cdot m\cdot n^2$ и $1=3\cdot m^2\cdot n-n^3=n(3\cdot m^2-1)$. Подходит только m=0 и n=-1. Значит, y=0, а x=1.

- 3. Рассмотрим, $\left(\frac{(n-2)\cdot(n-1)}{2}\right)^2+(n-1)^3+n^3=1^3+2^3+\ldots+(n-1)^3+n^3=\left(\frac{n\cdot(n+1)}{2}\right)^2$. Осталось понять, что $\frac{n\cdot(n+1)}{2}$ бесконечно раз является квадратом. $\frac{n\cdot(n+1)}{2}=m^2\Leftrightarrow n^2+n=2\cdot m^2\Leftrightarrow (2\cdot n+1)^2-2\cdot(2\cdot m)^2=1$. Последнее является уравнением Пелля.
- **4.** Если всё раскрыть и привести к общему знаменателю, получаем: $2 \cdot k^2 + 2 \cdot k = n^2 + 3n + 2 \Leftrightarrow$ 4. Если все раскрыть и привести к оощему знаменателю, получаем. 2 n-12 n-12 n-13 n-14 n-1
- фундаментальным решением, тогда $2 \cdot n + (2m+1) \cdot \sqrt{3} = (2+\sqrt{3})^l$. Заметим, что $2 \cdot n$ чётное, а значит, l должно быть нечётным: l=2k+1. Складывая предыдущее равенство с $2\cdot n-(2m+1)\cdot \sqrt{3}=(2-\sqrt{3})^l$, получаем $4\cdot n=(2+\sqrt{3})^{2k+1}+(2-\sqrt{3})^{2k+1}=\frac{(1+\sqrt{3})^2}{2}\cdot (2+\sqrt{3})^{2k}+\frac{(1-\sqrt{3})^2}{2}\cdot (2-\sqrt{3})^{2k}$. (Так как $(1 \pm \sqrt{3})^2 = 2 \cdot (2 \pm \sqrt{3})$

Продолжая, получаем $2 \cdot n - 2 = \frac{(1+\sqrt{3})^2 \cdot (2+\sqrt{3})^{2k} + (1-\sqrt{3})^2 \cdot (2-\sqrt{3})^{2k} - 8}{4} = \frac{1}{4} \cdot ((1+\sqrt{3}) \cdot (2+\sqrt{3})^k + (1-\sqrt{3})^k + (1-\sqrt{3})^k$ $(1-\sqrt{3})\cdot(2-\sqrt{3})^k)^2$.

- **6.** Первым делом, возмьмём по модулю 3, и поймём, что z не может быть чётным. Пусть z=2k+1. $3^x=y^{2k+1}+1=(y+1)\cdot(y^{2k}-y^{2k-1}+\ldots+1)$. Из первой скобки получаем $y\equiv -1$, значит, $y^{2k}-y^{2k-1}+\ldots\equiv 2k+1\equiv 0$. Значит, 2k+1 делится на 3. Значит, z=3p.
- $3^x = y^{3p} + 1 = (y^p + 1) \cdot (y^{2p} y^p + 1)$. Значит, $y^p = 3^s 1$. Подставим. $3^x = y^{3p} + 1 = 3^{3s} 3^{2s+1} + 3^{s+1}$. Последнее может быть степенью тройки только при s=1.
- 7. Рассмотрим уравнение Пелля $x^2 2 \cdot y^2 = 1$. Из каждой пары (x,y) получаем тройку подряд идущих чисел $(y^2 + y^2, x^2 + 0^2, x^2 + 1^2)$.
 - 8. Прибавим 1 к обоим частям, и обнаружим, что a делит_2002.

Далее рассмотрим по модулю 3, и получим, что $a \equiv 1$. Также получаем, что n должно быть

чётно. Далее рассмотрим по модулю 4. Получаем, что a должно быть нечётным. А если точнее $a\equiv 1$.

a должно делить 2002 = 2 × 7 × 11 × 13. Так как $a \equiv 1$ и нечётно, то a может делить только 7×13 . И наконец, так как $a \equiv 1$, то a делит 13.

Отметим, что a=1 не подходит. При $a=13,\ n=2$ подходит. Пусть подходит n больше, тогда $13^{n+1} \equiv 2001 \equiv 1$, но так как n — чётно, то $13^{n+1} \equiv 13$.

- 9. КБШ. $(a+b+c+d)\cdot(\frac{1}{a}+\frac{1}{b}+\frac{2^2}{c}+\frac{4^2}{d})\geq (1+1+2+4)^2=64.$ 10. Возьмём вторую производную по a. $f''(a)=\frac{2b}{(c+a+1)^3}+\frac{2c}{(a+b+1)^3}\geq 0.$ Значит, максимум fнаблюдается в крайних значениях. Проверяем.
 - 11. Сделаем замену: $x = \frac{1}{a}$, $y = \frac{1}{b}$ и $z = \frac{1}{c}$. Тогда, $\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} = \frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} = A$. Рассмотрим выпуклую функцию $f(x) = \frac{1}{x}$. $A = x \cdot f(\frac{y+z}{x}) + y \cdot f(\frac{z+x}{y}) + z \cdot f(\frac{x+y}{z}) \underset{\text{By Jensen}}{\geq}$

$$(x+y+z) \cdot f(\frac{(y+z)+(z+x)+(x+y)}{x+y+z}) = \frac{x+y+z}{2} \ge \frac{3}{\text{AM-GM}} \frac{3}{2}.$$