Real Variables: Problem Set X

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set X of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 13-41.

41. Let X be the linear space of all polynomials defined on **R**. For $p \in X$, define ||p|| to be the sum of the absolute values of the coefficients of p. Show that this is a norm on X. For each n, define $\psi_n \colon X \to \mathbf{R}$ by $\psi_n(p) = p^{(n)}(0)$. Use the properties of the sequence $\{\psi_n\}$ in $\mathcal{L}(X, \mathbf{R})$ to show that X is not a Banach space.

Solution. We first show that $\| \| : X \to \mathbb{R}$ given is a norm on X. First of all,

Question 2. Royden 14-18.

18. Let X be a normed linear space, ψ belong to X^* , and $\{\psi_n\}$ be in X^* . Show that if $\{\psi_n\}$ converges weak-* to ψ , then

 $\|\psi\| \leq \limsup \|\psi_n\|.$

Solution.

Question 3. Royden 14-23.

23. Let Y be a linear subspace of a normed linear space X and z be a vector in X. Show that $\operatorname{dist}(z, Y) = \sup \left\{ \psi(z) \mid \|\psi\| = 1, \psi = 0 \text{ on } Y \right\}.$

Solution.

Question 4. Royden 15-12.

- 12. If Y is a linear subspace of a Banach space X, we define the annihilator Y^{\perp} to be the subspace of X^* consisting of those $\psi \in X^*$ for which $\psi = 0$ on Y. If Y is a subspace of X^* , we define Y^0 to be the subspace of vectors in X for which $\psi(x) = 0$ for all $\psi \in Y$.
 - (i) Show that Y^{\perp} is a closed linear subspace of X^* .
 - (ii) Show that $(Y^{\perp})^0 = \overline{Y}$.

Solution.