

Bluetooth Controlled Robot

Maanit Kalsotra

https://www.kalsotra.com

Features

- The Robot is controlled by android app through Bluetooth
- The range of the robot is 10-20 metre
- The robot is completely built using recycled or reused parts
- The robot is working on a 7.2 volts source but can also work in the range of 6-12 volts
- The robot has clock Rate of 16 MHz and computing speed of 16 MIPS
- The robot also features a SRAM of 2KB and EEPROM of 1KB

Hardware Used

- Atmega 328P microcontroller
- L298N motor driver H-bridge
- HC-05 Bluetooth Module
- Old wood piece used as double-decker chassis
- 18650 lithium ion battery from an old laptop battery pack
- Geared motors and wheels
- Pen refill used as an antenna

Software Used

Android application android application based on Java model to control the robot using single character serial communication.

IDE(Integrated desktop environment) IDE for programming the Atmega328P chip

Construction

Working

- The Android application will send a single character as per user selection
- The character received by the Bluetooth module of robot will send the character to the micro controller
- The micro controller will process the character to recognise its function and send the required command to the motor driver
- The motor driver will send the power to the motors of robot
- And the Robot will work as per the given command

Working (Contd.)

Working of each Motor

Movement in Different combinations by two motors enables the robot to move in all direction

	Motor A	Motor B	Direction
Forward	√	√	1
Backward			
Left	X		1
Right		X	1

Code

```
/ *
Code Name: Arduino Bluetooth Control Car
Code URI: https://github.com/krygOn/arduino-bluetooth-
  robot
Author: Maanit Kalsotra
Description: This program is used to control a robot
  using a app
that communicates with Arduino through a bluetooth
  module.
App URI: https://bit.ly/2BlMAea
* /
#define in1 5 //L298n Motor Driver pins.
#define in2 6
#define in3 10
\#define in4 11
#define LED 13
int command; //Int to store app command state.
int Speed = 204; // 0 - 255.
int Speedsec;
int buttonState = 0;
int lastButtonState = 0:
int Turnradius = 0; //Set the radius of a turn, 0 - 255
  Note: the robot will malfunction if this is higher
  than int Speed.
```

```
int brakeTime = 45:
int brkonoff = 1; //1 for the electronic braking system,
  O for normal.
void setup() {
  pinMode(in1, OUTPUT);
  pinMode(in2, OUTPUT);
  pinMode(in3, OUTPUT);
  pinMode(in4, OUTPUT);
  pinMode(LED, OUTPUT); //Set the LED pin.
  Serial.begin(9600); //Set the baud rate to your
  Bluetooth module.
}
void loop() {
  if (Serial.available() > 0) {
    command = Serial.read();
    Stop(); //Initialize with motors stoped.
    switch (command) {
      case 'F':
        forward():
        break:
      case 'B':
        back():
        break:
```

```
case '2':
        Speed = 153;
        break;
      case '3':
        Speed = 165;
        break;
      case '4':
        Speed = 178;
        break:
      case '5':
        Speed = 191;
        break;
      case '6':
        Speed = 204;
        break;
      case '7':
        Speed = 216;
        break;
      case '8':
        Speed = 229;
        break;
      case '9':
        Speed = 242;
       break;
```

```
case 'q':
        Speed = 255;
        break;
    }
    Speedsec = Turnradius;
    if (brkonoff == 1) {
      brakeOn();
    } else {
      brakeOff();
  }
}
void forward() {
  analogWrite(in1, Speed);
  analogWrite(in3, Speed);
}
void back() {
  analogWrite(in2, Speed);
  analogWrite(in4, Speed);
}
```

```
void left() {
  analogWrite(in3, Speed);
  analogWrite(in2, Speed);
}
void right() {
  analogWrite(in4, Speed);
  analogWrite(in1, Speed);
}
void forwardleft() {
  analogWrite(in1, Speedsec);
  analogWrite(in3, Speed);
}
void forwardright() {
  analogWrite(in1, Speed);
  analogWrite(in3, Speedsec);
}
void backright() {
  analogWrite(in2, Speed);
  analogWrite(in4, Speedsec);
}
void backleft() {
  analogWrite(in2, Speedsec);
 analogWrite(in4, Speed);-
```

```
void Stop() {
  analogWrite(in1, 0);
  analogWrite(in2, 0);
  analogWrite(in3, 0);
  analogWrite(in4, 0);
}
```