Exercises.

- 1. Let \mathbb{F} be the field $\mathbb{F} = \mathbb{F}_5 = \mathbb{Z}_5$.
 - (a) Find the multiplicative inverse of the elements 1, 2, 3, 4 of \mathbb{F} .
 - (b) Compute the following in \mathbb{F}^3 :

(a)
$$\begin{pmatrix} 2\\4\\1 \end{pmatrix} + \begin{pmatrix} 3\\1\\4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1\\3\\4 \end{pmatrix} + \begin{pmatrix} 4\\0\\3 \end{pmatrix}$ (c) $4 \cdot \begin{pmatrix} 3\\2\\4 \end{pmatrix}$ (d) $3 \cdot \begin{pmatrix} 2\\3\\4 \end{pmatrix}$

(c) Find a nonzero vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{F}^3$ such that

$$a \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} + b \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix} + c \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(Remember that in this entire problem, $\mathbb{F} = \mathbb{Z}_5$! You might want to mimic row reduction that you have done in an earlier linear algebra class).

Solution to Question 1.

(a) In \mathbb{F}_5 , we have

$$1 \cdot 1 = 1$$
,

$$2 \cdot 3 = 1$$

$$4 \cdot 4 = 1$$
.

Hence,

$$1^{-1}=1$$
,

$$2^{-1}=3$$

$$3^{-1}=2$$

$$4^{-1} = 4$$
.

(b) (a)
$$\begin{pmatrix} 2\\4\\1 \end{pmatrix} + \begin{pmatrix} 3\\1\\4 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1\\3\\4 \end{pmatrix} + \begin{pmatrix} 4\\0\\3 \end{pmatrix} = \begin{pmatrix} 0\\3\\2 \end{pmatrix}$, (c) $4 \cdot \begin{pmatrix} 3\\2\\4 \end{pmatrix} = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, (d) $3 \cdot \begin{pmatrix} 2\\3\\4 \end{pmatrix} = \begin{pmatrix} 1\\4\\2 \end{pmatrix}$.

(c) By performing row reduction

$$\begin{bmatrix} 0 & 4 & 3 \\ 3 & 0 & 4 \\ 1 & 3 & 4 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 3 & 4 \\ 0 & 4 & 3 \\ 3 & 0 & 4 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 3 & 4 \\ 0 & 4 & 3 \\ 0 & 1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Therefore,

$$b = -2c = 3c,$$

 $a = -3b - 4c = 2b + c = 2c.$

Any vector of the form $c \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ works.

2. Let $\mathbb{R}^{n \times n}$ denote the $n \times n$ matrices with coefficients in \mathbb{R} , for $n \ge 1$. This set has two natural operations, matrix addition + and matrix multiplication \cdot . For which n is $\mathbb{R}^{n \times n}$ with these operations a field? (Remember to justify your answers! If it is a field, prove it, if not, give a reason).

Solution to Question 2.

- For n = 1, $\mathbb{R}^{1 \times 1} \simeq \mathbb{R}$. So it is a field.
- Assume $n \geq 2$. If $\mathbb{R}^{n \times n}$ is a field, then the matrix $\mathbf{0}$ is the 0 element in the field. Let \mathbb{E}_{ij} be the matrix in $\mathbb{R}^{n \times n}$ with the (i,j)-entry equals 1 and all other entries are 0. Then $E_{11} \cdot E_{22} = \mathbf{0}$. However, we know that neither E_{11} nor E_{22} is $\mathbf{0}$. Therefore, $\mathbb{R}^{n \times n}$ is not a field for $n \geq 2$.

- 3. Let \mathbb{F} be a field. The **characteristic** of \mathbb{F} is defined to be the smallest positive integer p such that $1+1+\cdots+1=0$, where there are p 1's in this formula. If no such sum is 0, then we say the characteristic of \mathbb{F} is 0.
 - (a) Find the characteristics of the fields \mathbb{R} , \mathbb{C} , \mathbb{Z}_p .
 - (b) If \mathbb{F} is a finite field, show that the characteristic \mathfrak{p} of \mathbb{F} is not zero.
 - (c) If \mathbb{F} is a finite field, show that the characteristic p of \mathbb{F} is a prime number.

Solution to Question 3.

(a) char $\mathbb{R} = 0$. Reason: If not, assume char $\mathbb{R} = n > 0$. This means

$$0 < n = \sum_{n} 1 = 0,$$

which is a contradiction. This reasoning implies that for any field \mathbb{F} containing \mathbb{Z} , char $\mathbb{F} = 0$. In particular, char \mathbb{R} and char \mathbb{C} are 0. char $\mathbb{Z}_p = p$ by the definition of \mathbb{Z}_p and that of characteristic.

(b) Assume the cardinality $|\mathbb{F}| = n$. Let $e_i = \sum_i \mathbf{1}_{\mathbb{F}} = i \cdot \mathbf{1}_{\mathbb{F}}$. Because there are only n elements in \mathbb{F} , so among e_1, \ldots, e_{n+1} there must be two identical elements. Assume WLOG that $e_j = e_k$ and j < k. Then $(k-j) \cdot \mathbf{1} = 0$. So the characteristic is not 0. From the reasoning, we've actually shown that

$$0 < \text{char } \mathbb{F} \leq |\mathbb{F}|.$$

(c) Assume char $\mathbb{F}=\mathfrak{n}>0$. If \mathfrak{n} is not prime, then $\mathfrak{n}=\mathfrak{p}\cdot \mathfrak{q}$ with $\mathfrak{p},\mathfrak{q}<\mathfrak{n}$. By the definition of characteristic, $\mathfrak{p}\mathbf{1}_{\mathbb{F}}\neq\mathbf{0}_{\mathbb{F}}$ and $\mathfrak{q}\mathbf{1}_{\mathbb{F}}\neq\mathbf{0}_{\mathbb{F}}$. Since we have distribution law in \mathbb{F} ,

$$\mathfrak{p}\mathbf{1}_{\mathbb{F}}\cdot\mathfrak{q}\mathbf{1}_{\mathsf{F}}=\mathfrak{p}\mathfrak{q}\mathbf{1}_{\mathsf{F}}=\mathfrak{n}\mathbf{1}_{\mathsf{F}}=\mathbf{0}_{\mathbb{F}}.$$

This makes a contridiction. So n must be prime.

- 4. In this problem we will investigate fields with 4 elements.
 - (a) If \mathbb{F}_4 is a field with exactly 4 elements, what must the characteristic be? (justify your answer, of course! But you may use without proof statements from the previous problem).
 - (b) Find a field \mathbb{F}_4 that has 4 elements. Write down the addition and multiplication tables of this field. Remember that two of your elements are 0 and 1!
 - (c) Find all fields with 4 elements (i.e. write down all possible addition and multiplication tables. Your first two elements should be 0 and 1).

Solution to Question 4.

(a) Recall in Question 3, we've shown that

$$0 < \text{char } \mathbb{F} \leq |\mathbb{F}|,$$

and that char \mathbb{F} is prime. So char \mathbb{F} can only be 2 or 3.

If char $\mathbb{F}=3$, then we may assume $\mathbb{F}_4=\{0,1,2,\alpha\}$, where α is distinct from 0,1,2. Now $\alpha+1\in\mathbb{F}_4$. So either $\alpha+1=0,1,2$ or $\alpha+1=\alpha$. However $\alpha+1=\alpha$ implies 0=1. $\alpha+1=0,1,2$ implies $\alpha=2,0,1$, respectively. All these cases are impossible. So char $\mathbb{F}_4\neq 3$.

Hence, char $\mathbb{F}_4 = 2$.

(b) Notice that char $\mathbb{F}_4 = 2$, so 1 + 1 = 0. Let \mathfrak{a} be an element in \mathbb{F}_4 distinct from 0 and 1. Then $\mathfrak{a} + 1$ is also in \mathbb{F}_4 . Because

$$a + 1 = 0 \implies a = 1,$$

 $a + 1 = 1 \implies a = 0,$

and

$$a + 1 = a \implies 1 = 0$$

so a + 1 is distinct from 0, 1 and a. Hence,

$$\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}.$$

(c) The addition table is

+	0	1	a	a+1
0	0	1	a	a+1
1	1	0	a+1	а
а	а	a+1	0	1
a+1	a+1	a	1	0

For the multiplication, we know for all $x \in \mathbb{F}_4$,

$$0 \cdot x = 0, \qquad 1 \cdot x = x.$$

Since $a \cdot a \in \mathbb{F}_4$, it must be one of the 4 elements. Because

$$a \cdot a = 0 \implies a = 0,$$

 $a \cdot a = 1 \implies (a+1)^2 = 0 \implies a = 1,$
 $a \cdot a = a \implies a = 1,$

so $a \cdot a$ must be a + 1. The only possible multiplication table is If there is another field

•	0	1	a	a+1
0	0	0	0	0
1	0	1	α	a+1
a	0	a	a+1	1
a+1	0	a+1	1	а

 $\mathbb{F}_4'=\{0,1,b,b+1\}$ with 4 elements, it must have the same multiplication table with b in place of \mathfrak{a} . So the map $\phi:\mathbb{F}_4\to\mathbb{F}_4'$ defined by

$$\begin{split} \phi(0) &= 0, & \phi(1) &= 1, \\ \phi(\alpha) &= b, & \phi(\alpha+1) &= b+1 \end{split}$$

is an isomorphism between fields. Hence, there is only one such field up to isomorphism.

Math 4310 (Fall 2019) HW1 solutions 6

5. Show that \mathbb{C} is a vector space over the field \mathbb{R} . More generally, if $\mathbb{F} \subset \mathbb{K}$ are both fields (with addition, multiplication, 0, 1, in \mathbb{F} induced from the same operations/elements on \mathbb{K}), is \mathbb{K} a vector space over \mathbb{F} ? (for this one case, you should either provide a counter-example or a one or two line reason, no proof is required this time).

Solution to Question 5.

 \mathbb{C} is a vector space over \mathbb{R} . This is because for all $a, b \in \mathbb{R}$ and $z_1, z_2 \in \mathbb{C}$, we know $az_1 + bz_2 \in \mathbb{C}$, and by the distribution law,

$$(a + b)z_1 = az_1 + bz_1,$$

 $a(z_1 + z_2) = az_1 + az_2.$

The reason can be applied to any $\mathbb{F} \subset \mathbb{K}$ if we replace \mathbb{R} with \mathbb{F} and \mathbb{C} with \mathbb{K} . Hence we may say, in general, if \mathbb{F} is a subfield of \mathbb{K} , then \mathbb{K} is a vector space over \mathbb{F} .