Содержание ¶

- 1 Подготовка данных
- 2 Анализ данных
- 3 Модель
- 4 Чек-лист готовности проекта

Восстановление золота из руды (учебный проект)

Прототип модели машинного обучения для «Цифры».

Модель предсказывает коэффициент восстановления золота из золотосодержащей руды.

Этапы:

rougher — флотация primary_cleaner — первичная очистка secondary_cleaner — вторичная очистка final — финальные характеристики

Типы параметров:

input — параметры сырья output — параметры продукта state — параметры, характеризующие текущее состояние этапа calculation — расчётные характеристики

Технологический процесс

Rougher feed — исходное сырье

Rougher additions (или reagent additions) — флотационные реагенты: Xanthate, Sulphate, Depressant

Xanthate — ксантогенат (промотер, или активатор флотации);

Sulphate — сульфат (на данном производстве сульфид натрия);

Depressant — депрессант (силикат натрия).

Rougher process (англ. «грубый процесс») — флотация

Rougher tails — отвальные хвосты

Float banks — флотационная установка

Cleaner process — очистка

Rougher Au — черновой концентрат золота

Final Au — финальный концентрат золота

Параметры этапов

air amount — объём воздуха fluid levels — уровень жидкости feed size — размер гранул сырья feed rate — скорость подачи

Подготовка данных

```
In [2]:
```

```
import pandas as pd
   import matplotlib.pyplot as plt
 3 import seaborn as sns
 4 import numpy as np
 5
   import random
 7
   from sklearn.preprocessing import StandardScaler
8
 9
   from sklearn.metrics import mean absolute error, make scorer
10 from sklearn.model selection import cross val score, cross val predict
   from sklearn.linear model import LinearRegression
11
   from sklearn.ensemble import RandomForestRegressor
12
13
```

In [3]:

```
train = pd.read_csv('/datasets/gold_recovery_train_new.csv')
test = pd.read_csv('/datasets/gold_recovery_test_new.csv')
full = pd.read_csv('/datasets/gold_recovery_full_new.csv')

4
```

In [4]:

```
1 print(len(train.columns), len(test.columns), len(full.columns)) #длина выборок
```

87 53 87

In [5]:

```
1 train_c = train.columns.to_list()
2 full_c = full.columns.to_list()
3 test_c = test.columns.to_list()
4 if train_c== full_c:
    print('Столбцы обучающей и полной выборки равны') #столбцы обучающей и полно
6
```

Столбцы обучающей и полной выборки равны

In [6]:

```
1 deleted = [i for i in full_c if not i in test_c]
2 len(deleted) #признаки, отсутствющие в тестовой выборке
```

Out[6]:

34

In [7]:

```
1 nodeleted = [i for i in full_c if not i in deleted]
2 test_c==nodeleted
```

Out[7]:

True

Тестовая выборка содержит:

Дата

Первичная очистка:

- параметры сырья: сульфаты, депрессант, ксантогенат, размер гранул
- текущее состояние этапа на 8 флотационной установке: объем воздуха и уровень жидкости (4 измерения)

Флотация:

- входящий размер 4 элементов, размер гранул, скорость подачи
- параметры сырья на 10 и 11 флотационной установке (сульфат, ксантогенат)
- текущее состояние этапа на 10 флотационной установке: объем воздуха и уровень жидкости (6 измерений)

Вторичная очистка:

• текущее состояние этапа на 2, 3, 4, 5, 6 установках: объем воздуха и уровень жидкости (2 измерения)

Отсутствуюющие столбцы

Финальная:

- параметры продукта: концентрация золота, свинца, серебра, соли
- параметры продукта: эффективность восстановления
- параметры продукта: концентрация 4 элементов в хвостах

Первичная очистка:

- параметры продукта: параметры сырья: сульфаты, депрессант, ксантогенат, размер гранул сырья
- параметры продукта: концентрация 4 элементов после очистки
- параметры продукта: концентрация 4 элементов в хвостах после очистки

Флотация:

- отгношение сульфата к концентрации золота
- отношение сульфата к размеру гранул золота, флотационные установки 10 и 11
- соотношение золота и свинца
- параметры продукта: размер гранул серебра, свинца, соли, золота
- параметры продукта: концентрация 4 элементов
- параметры продукта: эффективность восстановления
- параметры продукта: концентрация 4 элементов в хвостах

Вторичная очистка:

• параметры продукта: концентрация 4 элементов в хвостах

Вывод:

В тестовой выборке отсутствуют столбцы, которые являются результатами работы этапа

Список недоступных признаков на тесте:

Финальный концентрат:

параметры продукта: концентрация золота, серебра, свинца, соли

параметры продукта: концентрация 4 элементов в хвостах

параметры продукта: эффективность обогащения

Первичная очистка:

параметры продукта: концентрация 4 элементов

параметры продукта: концентрация 4 элементов в хвостах

Флотация:

расчетные характеристики: концентрация сульфата по отношению к золоту

расчетные характеристики: флотационная установка 10, отношения сульфата к золоту расчетные характеристики: флотационная установка 11, отношения сульфата к золоту

расчетные характеристики: флотационная установка 10, соотношение свинца

параметры продукта: концентрация 4 элементов

параметры продукта: концентрация 4 элементов в хвостах

параметры продукта: эффективность обогащения

Вторичная очистка:

параметры продукта: концентрация 4 элементов

параметры продукта: концентрация 4 элементов в хвостах

```
In [8]:
```

full.columns[~full.columns.isin(test.columns.to_list())]

Out[8]:

```
Index(['final.output.concentrate ag', 'final.output.concentrate pb',
       'final.output.concentrate sol', 'final.output.concentrate au',
       'final.output.recovery', 'final.output.tail ag', 'final.output.
tail pb',
       'final.output.tail sol', 'final.output.tail au',
       'primary cleaner.output.concentrate ag',
       'primary cleaner.output.concentrate pb',
       'primary cleaner.output.concentrate sol',
       'primary cleaner.output.concentrate au',
       'primary cleaner.output.tail_ag', 'primary_cleaner.output.tail_
pb',
       'primary cleaner.output.tail sol', 'primary cleaner.output.tail
_au',
       'rougher.calculation.sulfate to au concentrate',
       'rougher.calculation.floatbank10 sulfate to au feed',
       'rougher.calculation.floatbank11 sulfate to au feed',
       'rougher.calculation.au pb ratio', 'rougher.output.concentrate
ag',
       'rougher.output.concentrate pb', 'rougher.output.concentrate so
1',
       'rougher.output.concentrate au', 'rougher.output.recovery',
       'rougher.output.tail ag', 'rougher.output.tail pb',
       'rougher.output.tail sol', 'rougher.output.tail au',
       'secondary cleaner.output.tail ag', 'secondary cleaner.output.t
ail pb',
       'secondary cleaner.output.tail sol',
       'secondary cleaner.output.tail au'],
      dtype='object')
```

```
In [9]:
```

```
\#Recovery = (c*(f-t))/(f*(c-t))*100% < br > < br >
 1
 2
 3
   \#C — доля золота в концентрате после флотации/очистки;<br>
   #F — доля золота в сырье/концентрате до флотации/очистки;<br>
 5
   #Т — доля золота в отвальных хвостах после флотации/очистки.m<br/><br/>>
7
   c = full['rougher.output.concentrate au']
8 t = full['rougher.output.tail au']
9
   f = full['rougher.input.feed au']
10
   full['rougher.recovery test'] = (c*(f-t))/(f*(c-t))*100
11
12
   #print(full['rougher.recovery_test'][16])
13
14 #print(full['rougher.output.recovery'][16])
print(full[['rougher.recovery test', 'rougher.output.recovery']])
16
17
```

	<pre>rougher.recovery_test</pre>	rougher.output.recovery
0	87.107763	87.107763
1	86.843261	86.843261
2	86.842308	86.842308
3	87.226430	87.226430
4	86.688794	86.688794
19434	89.574376	89.574376
19435	87.724007	87.724007
19436	88.890579	88.890579
19437	89.858126	89.858126
19438	89.514960	89.514960

[19439 rows x 2 columns]

```
In [10]:
```

```
1
2  c = full['final.output.concentrate_au']
3  t = full['final.output.tail_au']
4  f = full['primary_cleaner.output.concentrate_au']
5  full['final.recovery_test'] = (c*(f-t))/(f*(c-t))*100
7  print(full[['final.recovery_test', 'final.output.recovery']].sort_values('final.generation)
9  10
```

	final.recovery_test	final.output.recovery
14746	-0.0	0.0
14359	-0.0	0.0
14360	-0.0	0.0
10026	-0.0	0.0
7585	-0.0	0.0
15787	100.0	100.0
6279	100.0	100.0
6163	100.0	100.0
18037	100.0	100.0
11977	100.0	100.0

[19439 rows x 2 columns]

In [11]:

```
full[(full['final.recovery_test']<0)&(full['primary_cleaner.output.concentrate_a
2
3
4
5
6</pre>
```

Out[11]:

	primary_cleaner.output.concentrate_au	final.output.concentrate_au	final.output.tail_au	final.recovery_test fi
19	0.0	42.509402	2.272460	-inf
14308	0.0	41.347015	3.060066	-inf
14113	0.0	35.303158	5.471755	-inf
14112	0.0	43.186241	4.907862	-inf
14111	0.0	43.963810	4.374566	-inf
8263	0.0	42.691757	3.655060	-inf
8262	0.0	41.862333	4.064143	-inf
8261	0.0	43.046942	4.322626	-inf
7443	0.0	44.528214	3.199278	-inf

In [12]: 1 2 3 #Найдите МАЕ между вашими расчётами и значением признака. mae = mean absolute error(full['rougher.recovery test'], full['rougher.output.re 5 mae Out[12]: 9.874045668302637e-15 В 'rougher.output.recovery', расчитанном по формуле различия с исходными данными несущественные. Возможно, они возникли в следствии округления данных в расчетах. 'final.recovery test' - значения отличаются сильно и также я заметила, что если на входе была концентрация 0, то формула дает результат -inf. Замена данных формулой приводит к сильному ухудшению качества модели. Возможно, при расчетах

формула отличалась?

```
In [13]:
    full['rougher.output.recovery'] = full['rougher.recovery test']
 2
    #full.loc[full['primary cleaner.output.concentrate au']!=0,'final.output.recover
 3
In [14]:
```

```
#full[full['final.output.recovery']<0]['primary cleaner.output.concentrate au']</pre>
```

```
In [15]:
```

```
print(full.shape,test.shape,train.shape) #в фул я добавляла одну колонку для те
2
```

```
(19439, 89) (5290, 53) (14149, 87)
```

Дубликатов нет

```
In [16]:
```

0

```
for one in [full,test,train]:
 1
 2
        print(one.duplicated().sum())
0
0
```

Выпады в данных есть, я не могу их удалить без консультации со специалистом

In [17]:

```
for one in full.columns.drop('date'):
    full[[one]].boxplot()
    plt.show()
```


Пропуски

параметры продукта заполню ближайшими значениями, параметры сырья - медианами

```
In [18]:
```

```
def passing(data):
 2
        #продукт
        for elem in ['aq','sol','pb', 'au']:
 3
            for output in['final.output.concentrate ',
 4
 5
                       'final.output.tail ',
 6
                       'primary cleaner.output.tail ',
                       'primary cleaner.output.concentrate ']:
 7
                if (output+elem) in data.columns:
 8
 9
                    data.loc[data[output+elem].isna(), output+elem] = data[output+el
10
11
        if 'rougher.output.concentrate sol' in data.columns:
            data.loc[data['rougher.output.concentrate sol'].isna(),
12
13
                     'rougher.output.concentrate sol'] = data['rougher.output.concer
14
        if 'rougher.output.tail ag' in data.columns:
15
            data.loc[data['rougher.output.tail ag'].isna(),
16
                     'rougher.output.tail ag'] = data['rougher.output.tail ag'].ffi]
17
18
        for elem in ['aq','pb','sol']:
19
            if ('secondary cleaner.output.tail '+elem) in data.columns:
20
                data.loc[data['secondary cleaner.output.tail '+elem].isna(),
21
                         'secondary cleaner.output.tail '+elem] = data['secondary cl
22
                                                                         +elem].ffill
23
        #сырье
2.4
        for reagent in ['sulfate','depressant','xanthate']:
25
            if ('primary cleaner.input.'+reagent) in data.columns:
                    data.loc[data['primary_cleaner.input.'+reagent].isna(),
26
27
                              'primary cleaner.input.'+reagent] = data['primary clear
28
        for reagent in ['sulfate', 'xanthate']:
29
            for inpu in ['rougher.input.floatbank10 ','rougher.input.floatbank11 '];
30
                if (inpu+reagent) in data.columns:
31
                    data.loc[data[inpu+reagent].isna(),inpu+reagent] = data[inpu+reagent]
32
        for feed in ['feed pb','feed rate','feed size','feed sol']:
33
            if ('rougher.input.'+feed) in data.columns:
34
                    data.loc[data['rougher.input.'+feed].isna(), 'rougher.input.'+fe
3.5
36
37
        #текущий этап
38
        for state in ['primary_cleaner.state.floatbank8_']:
39
            for letter in ['a','b','c','d']:
40
                for item in [' air',' level']:
41
                    if (state+letter+item) in data.columns:
42
                        data.loc[data[state+letter+item].isna(),
                                 state+letter+item] = data[state+letter+item].ffill
43
44
45
        for letter in ['a','b','c']:
46
            for item in [' air',' level']:
47
                if ('rougher.state.floatbank10 '+letter+item) in data.columns:
                    data.loc[data['rougher.state.floatbank10 '+letter+item].isna(),
48
49
                          'rougher.state.floatbank10 '+letter+item] = data['rougher.s
50
                                                                            +letter+it
        if 'rougher.state.floatbank10 e air' in data.columns:
51
52
            data.loc[data['rougher.state.floatbank10 e air'].isna(),
53
                 'rougher.state.floatbank10 e air'] = data['rougher.state.floatbank1
54
55
        sec = 'secondary cleaner.state.floatbank'
56
        for fb in range (2,6):
57
            fb = str(fb)
58
            for letter in [' a ',' b ']:
59
                for item in ['air','level']:
```

```
60
                     if (sec+fb+letter+item) in data.columns:
61
                         data.loc[data[sec+fb+letter+item].isna(),
62
                                   sec+fb+letter+item] = data[sec+fb+letter+item].ffi]
        for item in ['air','level']:
63
64
            if ('secondary cleaner.state.floatbank6 a '+item) in data.columns:
65
                 data.loc[data['secondary cleaner.state.floatbank6 a '+item].isna(),
                           'secondary cleaner.state.floatbank6 a '+item] = data['secondary cleaner.state.floatbank6 a '+item]
66
67
68
69
70
        #калькуляция
71
72
        for conc in ['sulfate to au concentrate',
73
                           'floatbank10 sulfate to au feed',
74
                           'floatbank11 sulfate to au feed']:
7.5
            if ('rougher.calculation.'+conc) in data.columns:
76
                     data.loc[data['rougher.calculation.'+conc].isna(),
77
                               'rougher.calculation.'+conc] = data['rougher.calculation
78
79
        return data
   full = passing(full)
80
81
   train = passing(train)
82
   test = passing(test)
83
```

```
In [19]:
```

```
1 #test.isna().sum()
```

Анализ данных

Как меняется концентрация металлов (Au, Ag, Pb) на различных этапах очистки

In [20]:

```
1 concentrate au = pd.DataFrame()
 2 concentrate ag = pd.DataFrame()
 3 concentrate pb = pd.DataFrame()
 5 concentrate au['input au'] = full['rougher.input.feed au']
 6 concentrate_ag['input_ag'] = full['rougher.input.feed_ag']
 7
   concentrate pb['input pb'] = full['rougher.input.feed pb']
 8 for one in ['rougher', 'primary_cleaner','final']:
        lev = '.output.concentrate '
 9
10
       concentrate_au[one+'_au'] = full[one+lev+'au']
11
        concentrate_ag[one+'_ag'] = full[one+lev+'ag']
concentrate_pb[one+'_pb'] = full[one+lev+'pb']
12
13
14
15 concentrate_au
```

Out[20]:

	input_au	rougher_au	primary_cleaner_au	final_au
0	6.486150	19.793808	34.174427	42.192020
1	6.478583	20.050975	34.118526	42.701629
2	6.362222	19.737170	33.969464	42.657501
3	6.118189	19.320810	28.260743	42.689819
4	5.663707	19.216101	33.044932	42.774141
19434	5.335862	18.603550	32.940215	46.713954
19435	4.838619	18.441436	32.925325	46.866780
19436	4.525061	15.111231	31.856742	46.795691
19437	4.362781	17.834772	30.770892	46.408188
19438	4.365491	17.804134	30.356618	46.299438

19439 rows × 4 columns

In [21]:

```
1 concentrate_au.boxplot()
2 plt.show()
3 concentrate_ag.boxplot()
4 plt.show()
5 concentrate_pb.boxplot()
6 plt.show()
```


In [22]:

```
concentrate_ag.plot(kind = 'hist',alpha=0.6, bins=300)
concentrate_au.plot(kind = 'hist',alpha=0.6, bins=300)
concentrate_pb.plot(kind = 'hist',alpha=0.6, bins=300)
```

Out[22]:

<AxesSubplot:ylabel='Frequency'>

Вывод: концентрация золота увеличивается на каждом этап, концентрация серебра увеличивается на флотации и уменьшается на каждом следующем этапе, концентрация свинца растет на флотации и на первом этапе очистки и не увеличивается во время второй очистки

Сравниваю распределение размеров гранул сырья на обучающей и тестовой выборках.

In [23]:

```
plt.figure(figsize=(10,8), dpi= 80)
sns.kdeplot(test['primary_cleaner.input.feed_size'], color="g", alpha=.7)
sns.kdeplot(train['primary_cleaner.input.feed_size'], color="b", alpha=.7)
plt.show()

plt.figure(figsize=(10,8), dpi= 80)
sns.kdeplot(test['rougher.input.feed_size'], color="g", alpha=.7)
sns.kdeplot(train['rougher.input.feed_size'], color="b", alpha=.7)
plt.show()
```


Out[24]:

	rougher.input	rougher.output	primary.output	final.output
0	51.680034	66.424950	72.640924	63.644396
1	50.659114	67.012710	72.543485	63.957723
2	50.609929	66.103793	72.095042	64.311180
3	51.061546	65.752751	59.957723	63.573449
4	47.859163	65.908382	71.321010	64.004667
19434	53.415050	70.781325	59.001692	68.098589
19435	53.696482	70.539603	59.703912	68.274362
19436	54.589604	55.376330	59.561096	68.226068
19437	54.027355	69.201689	57.216686	68.200449

In [25]:

```
plt.figure(figsize=(10,8))
legend = True
sns.kdeplot(sum_conc['rougher.input'],alpha=.7, label = 'before')
sns.kdeplot(sum_conc['rougher.output'], alpha=.7, label = 'after_rougher')
sns.kdeplot(sum_conc['primary.output'], alpha=.7, label = 'after_primary')
sns.kdeplot(sum_conc['final.output'], alpha=.7, label='final')
plt.legend()
plt.show()
```


Выводы: Есть небольшое количество данных с практически нулевой концентрацией веществ на всех этапах. Суммарная концентрация меняется в зависимости от этапа обработки. Сначала снижается после флотации, затем возврастает после первого этапа очистки. Стремительно возрастает после второго этапа очистки

Заменим X на Z и вычислим, чему будет равено предсказание и вектор весов.

$$a_1 = Zw_1$$

$$qquad(2.2)$$

$$w_1 = (Z^T Z)^{-1} Z^T y$$

Подставим уравнение 2.2 правую часть уравнения 2.3 и получим следущее:

$$a1 = Z(Z^T Z)^{-1} Z^T y$$

Заменим все Z правой частью уравнения 2.1:

$$a_1 = XP((XP)^T(XP))^{-1}(XP)^T y$$

$$qquad(2.5)$$

Для следующего шага понадобится следующее свойсво обратной матрицы:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Раскроем $((XP)^T(XP))^{-1}$ в два шага:

$$a_1 = XP((XP)^T(XP))^{-1}(XP)^Ty = XP(XP)^{-1}((XP)^T)^{-1}(XP)^Ty = XPP^{-1}X^{-1}((XP)^T)^{-1}(XP)^Ty$$

$$qquad(2.6)$$

Умножение приведет к $PP^{-1}=E$. Для следуюзего этапа воспользуемся свойством транспорнированной матрицы:

$$(AB)^T = B^T A^T$$

Умножение на единичную матрицу ничего не меняет. Раскроем $((XP)^T)^{-1}(XP)^T$ в три шага:

$$a_1 = XEX^{-1}((XP)^T)^{-1}(XP)^Ty = XX^{-1}(P^TX^T)^{-1}P^TX^Ty = XX^{-1}(X^T)^{-1}(P^T)^{-1}P^TX^Ty$$

$$aquad(2.7)$$

Умножение приведет к $(P^T)^{-1}P^T=E$. Посмотрим, что осталось от уравнения 2.7:

$$a_1 = XX^{-1}(X^T)^{-1}EX^Ty = X(X^TX)^{-1}X^Ty = Xw = a$$

$$qquad(2.8)$$

"Как видно, значение предсказания a не меняется, если умножать матрицу признаков на обратимую матрицу."

In [26]:

Out[26]:

date final.output.concentrate_ag final.output.concentrate_pb final.output.concentrate_sol final.o

0 rows × 87 columns

Модель

Метрики качества

```
In [27]:
```

```
1 #перенесла отсюда функцию поближе к коду
```

```
In [28]:
```

```
1 #train.columns
2
```

```
In [29]:
    train.index = train.date
 2
    test.index = test.date
 3
    full.index = full.date
 5
   test target = pd.DataFrame()
    test target['date'] = test['date']
 6
 7
    test target.index = test target.date
 8
    test target[['rougher.output.recovery','final.output.recovery']] = full[['roughe
 9
   train[['rougher.output.recovery','final.output.recovery']] = full[['rougher.output.recovery']]
10
    train target = train[['rougher.output.recovery','final.output.recovery']]
12
    train = train[test.columns]
13
14
    train.shape, train target.shape, test.shape, test target.shape
15
Out[29]:
((13599, 53), (13599, 2), (5290, 53), (5290, 3))
In [30]:
    test target['final.output.recovery'].isna()]=0
   test target[test target['final.output.recovery'].isna()]
Out[30]:
     date rougher.output.recovery final.output.recovery
date
удалю из обучающей выборки нули в целевом признаке (это ухудшило качество модели)
In [31]:
    #train target = train target[(train target['rougher.output.recovery']!=0)&(train
    #train target = train target.dropna()
 2
 3
 4
    #train = train[train.index.isin(train target.index)]
    #train.shape, train target.shape
In [32]:
    train target[train target['final.output.recovery'].isna()]
Out[32]:
     rougher.output.recovery final.output.recovery
date
```

Посмотрю на корреляцию признаков

In [33]:

```
1
2 #pd.set_option('display.max_rows',None)
3 #pd.set_option('display.max_columns',None)
4 full.corr()
5 #primary_cleaner.output.concentrate_ag
6
7
```

Out[33]:

	final.output.concentrate_ag	final.output.concentrate_pb
final.output.concentrate_ag	1.000000	0.063618
final.output.concentrate_pb	0.063618	1.000000
final.output.concentrate_sol	0.345467	-0.041863
final.output.concentrate_au	-0.038185	0.374439
final.output.recovery	0.185964	0.151998
secondary_cleaner.state.floatbank5_b_level	0.156545	-0.059971
secondary_cleaner.state.floatbank6_a_air	0.162637	-0.042138
secondary_cleaner.state.floatbank6_a_level	0.059583	0.067421
rougher.recovery_test	0.084139	0.039727
final.recovery_test	-0.000850	0.037343

88 rows × 88 columns

Мне кажется, нет признаков, которые бы сильно влияли на целевые, а те, которые могли бы влиять, уже удалены в тестовой выборке

In [34]:

```
train = train.drop('date', axis=1)
test = test.drop('date', axis=1)
test_target = test_target.drop('date', axis=1)

4
```

3.2. Обучите разные модели и оцените их качество кросс-валидацией. Выберите лучшую модель и проверьте её на тестовой выборке. Опишите выводы.

```
In [35]:
```

```
def calc smape(target, prediction):
 1
 2
        #функция принимает на вход целевой признак и предсказание и вычисляет smape
 3
        #симметричное среднее абсолютное процентное отклонение
 4
       smape = 0
 5
        for i in range(len(target)):
            smape += (1/len(target)) * (abs(target[i]-prediction[i])) / ((abs(target
 6
 7
        return smape
 8
 9
   def calc itog smape(target, prediction):
10
       target= np.array(target)
11
        #функция вычисляет итоговую метрику, принимая на вход smape двух величин
       smape one = calc smape(target[:,0],prediction[:,0])
12
13
        smape_two = calc_smape(target[:,1], prediction[:,1])
        smape itog = 0.25*smape one+0.75*smape two
14
15
16
       return smape itog
17
18
```

Константная модель

In [36]:

```
constant_predict = pd.DataFrame(index = train_target.index, columns = ['rougher.constant_predict['rougher.output.recovery'] = constant_predict['rougher.output.recovery']
constant_predict['final.output.recovery'] = constant_predict['final.output.recovery']
constant_predict = constant_predict.to_numpy()
constant_smape = calc_itog_smape(train_target, constant_predict)
constant_smape
```

Out[36]:

9.339089690445489

Случайный лес

```
In [ ]:
```

```
1 B 2
```

In [37]:

```
1 best est = 0
 2 best depth = 0
 3 best cross = -10000
 4 | best split = 0
 5 best leaf = 0
 6
   prediction = pd.DataFrame()
 7
   for est in range (25, 26): #подобрала лучшие гиперпарамы
 8
        for depth in range (3,4):
 9
            for split in range (1, 2):
10
                for leaf in range(136,137):
                    model f = RandomForestRegressor(n estimators=est,
11
12
                                                      max depth=depth,
13
                                                      random state=12345,
14
                                                      min samples split=split/10,
15
                                                      min samples leaf=leaf)
16
17
                    scor = make scorer(calc itog smape, greater is better=False)
18
                    cross = cross val score (model f, train, train target, cv=5, score
19
                    if cross.mean()>best cross:
20
                        best est = est
2.1
                        best depth = depth
22
                        best cross = cross.mean()
23
                        best split = split
24
                        best leaf = leaf
25
                    #print(cross.mean(), est, depth, split, leaf)
26
   print(best cross*(-1), 'Лучшие гиперпараметры:', best est, best depth, best spl
27
28
29
```

8.662527213987541 Лучшие гиперпараметры: 25 3 1 136

Стандартизация - не влияет на результат

In [38]:

```
pd.options.mode.chained_assignment = None

scaler = StandardScaler()

scaler.fit(train)

train_scaled = scaler.transform(train)

test_scaled = scaler.transform(test)
```

In [46]:

```
prediction_l = pd.DataFrame()
model_l = LinearRegression()
model_l.fit(train, train_target)
scor = make_scorer(calc_itog_smape, greater_is_better=False)
cross_l = cross_val_score(model_l, train, train_target, cv=5, scoring = scor)
print(cross_l.mean(), cross_l)
```

```
-10.014241894204414 [-12.03005649 -8.86985447 -9.30815727 -7.843783 54 -12.01935769]
```

In [45]:

```
model_f.fit(train,train_target)
predict_test_f = model_f.predict(test)
smape_test_f = calc_itog_smape(test_target, predict_test_f)
smape_test_f
```

Out[45]:

9.32012722153264

Лучшая модель - случайный лес. SMAPE на тестовой выборке - 9.32