01-01 Introduction au partitionnement de données

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

- 1. Introduction
- 2. Les principaux types de partitionnement
- 3. Applications
- 4. Lecture obligatoire
- 5. Références

- 1. Introduction
- 2. Les principaux types de partitionnement
- 3. Applications
- 4. Lecture obligatoire
- 5. Références

Rappelez-vous, en **apprentissage supervisé** ...

Maintenant, en apprentissage non supervisé

On réalise alors un **partitionnement des données** (data clustering) ou classification non supervisée

Les clusters peuvent avoir différentes morphologies

Ils peuvent être de différentes tailles ...

... et de différentes densités

Dans certains cas, il peut même y avoir chevauchement

- 1. Introduction
- 2. Les principaux types de partitionnement
- 3. Applications
- 4. Lecture obligatoire
- 5. Références

Les principaux types de partitionnement

- Partitionnement basé sur
 - les centroïdes (K-moyennes, CURE, ...)
 - la connectivité (hiérarchique, ...)
 - la distribution (BFR, ...)
 - la densité (DBSCAN, OPTICS, ...)
 - les grilles
- Et d'autres

Les principaux types de partitionnement

- Partitionnement basé sur
 - o les centroïdes (**K-moyennes**, CURE, ...) 👈
 - la connectivité (hiérarchique, ...)
 - la distribution (BFR, ...)
 - o la densité (**DBSCAN**, OPTICS, ...) 👈
 - les grilles
- Et d'autres

- 1. Introduction
- 2. Les principaux types de partitionnement
- 3. Applications
- 4. Lecture obligatoire
- 5. Références

Applications du partitionnement

- Optimisation de portfolio
- Centres de données
- Astrophysique
- Cybersécurité
- Marketing
- Génétique
- Télédétection
- **..**

- 1. Introduction
- 2. Les principaux types de partitionnement
- 3. Applications
- 4. Lecture obligatoire
- 5. Références

Lecture obligatoire

 Introduction to Statistical Learning with Applications in R Second edition (2021)

Lire le chapitre 12.4 Clustering Methods Pages 516-532

- 1. Introduction
- 2. Les principaux types de partitionnement
- 3. Applications
- 4. Lecture obligatoire
- 5. Références

Références

- [1] CS229: Machine Learning Stanford University
- [2] Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, "Introduction to Statistical Learning with Applications in R Second edition"
- [3] Popular Unsupervised Clustering Algorithms (Kaggle)