Nathan Foulquier

LaTIM CHU Morvan, UMR 1227

Seminar, May 2017

•0 Recall

Introduction

Context

Nathan Foulquier

22/05/2017

Introduction

The main idea

The diagnostic

Features Selection

The Boruta Algorithm

Shadow Feature: random permutation of an original feature MIRA: maximum importance of all shadow features

- \rightarrow Rank the originals features
- \rightarrow Select the "important" features

Features Selection

Results

- \rightarrow 80% of irrelevant features for RA
 - \rightarrow 90% of irrelevant features for SjS

Rules Generation

Pattern Mining

$$support(E) = \frac{card(\{p \in P | E \subset p\})}{card(P)}$$

Pattern E is frequent if $support(E) \ge minsup$

4日 > 4周 > 4 至 > 4 至 >

Rules Extraction

$$\left[r: \left(e-h
ight)
ightarrow h
ight]$$

$$e \in \{items\}, card(e) \ge 2$$

Generate h with $h \neq \emptyset$, $h \neq e$

$$confidence(r) = \frac{support(e)}{support(e - h)}$$

a rule r is valid if confiance(r) > minconf

Results

 \rightarrow Easiest to identify RA than SiS

- \rightarrow Some algorithms can handle discrete attributes only
- ightarrow correct skewed distribution
- \rightarrow reduce the influence of outliers

First Attempt

Nathan Foulguier

 \Rightarrow Learn the optimal value of k Where $k \in \{2, ..., max_k\}$

Ameva
$$(k) = \frac{\chi^2(k)}{k(l-1)}$$
 $\chi^2(k) = N(-1 + \sum_{j=1}^{l} \sum_{i=1}^{k} \frac{n_{ij}^2}{n_i n_j})$

k:number of discrete intervals, I: number of classes

Maximize the dependency relationship between the class labels and the continuous-values attribute

Minimize the number of intervals k

Flow cytometry

P1, 12 variables saved

P4, 3 variables saved

P2, 4 variables saved

P5, 13 variables saved

P3, 8 variables saved

P6, 6 variables saved

◆□ > ◆□ > ◆ = > ◆ = > ● の < ○</p>

Features Selection

Flow cytometry

Rules Generation

Flow Cytometry

→ High Confidence

 \rightarrow Low Support

Rules Generation

Flow Cytometry

→ High Confidence

→ Better Support

Improvements

Perspectives

Perspectives

- Refine the rules
- Implement the inference engine
- More data
- Include Inception

