Métricas del Software

"No podemos controlar lo que no podemos medir" Tom de Marco

- "Una métrica es una medida cuantitativa del grado en que un producto o proceso posee un atributo dado" (IEEE)
- Una métrica es una medición de un atributo del software (BOEHM)
 - Una medición es el proceso por el cual se le asignan valores (números o símbolos) a atributos de manera de describirlos de acuerdo a reglas claramente definidas
 - Son atributos del SW: el tiempo, el tamaño, la complejidad, el costo, el esfuerzo necesario,

A R V (200

2

Métricas del SW

- Importancia
 - Son la base para la mejora continua
 - Nos permiten objetivizar valores cualitativos, o ambiguos
- Clasificación
 - Según el tipo de medición:
 - Mediciones Directas
 - Mediciones Indirectas
 - Según IEEE:
 - Métricas orientadas a la Calidad
 - Métricas orientadas al tamaño del SW
 - Métricas orientadas a la gestión de proyectos

A R V (200

Métricas

- Medición directa, no depende de la medición de otro atributo del SW. Ej:
 - Complejidad ciclomática
 - Líneas de código
 - Cantidad de errores, de defectos
- Medición Indirecta, aquella que involucra medir uno más atributos distintos. Ej:
 - Los costos de un proyecto
 - La calidad (ISO 9126)
 - El esfuerzo

A R V (200

4

Métricas

- Llamamos métricas en SW :
 - A un nº derivado de una medición. Ej : KSLOC
 - A una escala de medición. Ej. escala de cohesión
 - A un atributo medible. Ej. Complejidad
 - A un modelo de cálculo que involucra una medición indirecta. Ej. COCOMO
- Cualidades de las métricas
 - Resultado de una medición (no es algo subjetivo)
 - Resultado independiente (no forzar un resultado)
 - Resultado reproducible (No depende de quien los registre)

A R V (200

Métricas - Ejemplos

Podemos establecer una BD Histórica de proyectos que nos permita estimar con mayor exactitud en nuevos proyectos

PROYECTO	ESFUERZO PM	COSTO \$	KLOC*	# PAGS. DOCTO.	ERRORES	PERSONAS
PROY I	27	230	16.3	478	39	4
PROY II	54	421	29.4	1351	121	6
PROY III	34	321	21.3	980	45	7

A R V (200

6

Métricas - Ejemplos

- Métricas orientadas al tamaño
 - KSLOC
 - Puntos Función
 - Puntos Objeto
 - Puntos Función Característicos
 - PF3D
- Métricas orientadas a la Calidad
 - **CORRECCION** : grado en que el software produce resultados precisos o hace la función requerida.
 - Métrica : Defectos / KSLOC.
 - **USABILIDAD**: "AMIGABILIDAD" del sistema:
 - Métrica 1) Habilidad necesaria para aprender el sistema
 - 2) Tiempo para dominarlo
 - 3) Incremento en productividad
 - 4)Actitud del usuario

A R V (200

Métricas - Ejemplos

- Algunas métricas top orientadas al proyecto (IEEE 93)
 - Encontrar y corregir un error cuando el software ya ha sido lanzado, es 100 veces mas costoso que hacerlo durante las fases de requerimientos o diseño preliminar.
 - Los costos de desarrollo y mantenimiento son primariamente una función del número de SLOC del producto
 - El radio entre costos de HW y SW fue cambiando desde 85:15 en 1960 a 15:85 en 1990 y sigue creciendo
 - Cerca de un 15% de esfuerzo solamente, esta dedicado a la programación en un proyecto de SW.
 - Antes era 40% Análisis y Diseño, 20% programación y 40% Integración y prueba
 - Ahora la distribución es 60% análisis y diseño, 15% programación y 25 % integración y prueba.

A B V (200

8

Métricas - Ejemplos

- Algunas métricas top orientadas al proyecto (IEEE 93)
 - Las revisiones técnicas o inspecciones del software han logrado detectar el 60% de errores antes de la operación.
 - Muchos fenómenos del software tienen una distribución de Pareto: 80% de la contribución viene del 20% de contribuyentes.
 - 20 % de los módulos contribuyen al 80% del costo
 - 20 % de los módulos aportan el 80% de los errores
 - 20 % de los errores consumen el 80% del costo para corregirlos
 - 20 % de experiencia en las herramientas son el 80% del grado de uso de la herramienta.
 - Las métricas han ayudado desde años a establecer útiles relaciones para los desarrolladores de SW.

A R V (200/