

Annotation Tool for Biomedical Images

Problem Statement

Medical institutions generate large volumes of biomedical image data that can be used to train supervised models for valuable AI-assisted diagnosis in healthcare. However, annotating biomedical images is a laborious process that also needs input from professionals for accuracy.

Proposed Solution

An online collaborative tool specialised for use by teams of medical professionals as annotators of biomedical images. Users can smoothly complete annotations with an optimised user interface, and an active learning architecture built upon a pre-trained machine learning model will reduce the labour.

Methodology

Features

Human-In-The-Loop Machine Learning

Collaborative Teams

Objectives

Architecture

Results 0.8 0.7

0.6 SS 0.5 0 0.3 0.2 0.1 **Epoch** Training Loss for the detection of pneumothorax from the chestX-ray dataset, run on models pre-

trained by different datasets Sathiesh Kumar Kaliyugarasan, "Deep transfer learning in medical imaging," M.S. thesis, The University of Bergen, 2019

Conclusion

The project will be evaluated on the following metrics:

- Accuracy of the annotation prediction confidences
- Time-taken to annotate compared to similar software
- Evaluation by Nielsen's 10 **Usability Heuristics**

Technology

Group Members

Fatimah Zulfiqar Muhammad Shaafay Saqib

Advisor

Dr. Hasan Ali Khattak Co-Advisor Dr. Shams Qazi

