Railway Scheduling using Reinforcement Learning

Arpit Singh 111601031

Scheduling Problem

- **Resources** Network topology, Stations, Tracks.
- **Train Movement** Reference timetable (desired arrival and departure time of each train at each station)
- Goal Assign track resources for each train for a fixed time period, such that they all
 complete their journeys without conflicts.
- Timetable may be infeasible.
 - Adjust arrival and departure times such that all rules are satisfied, while minimizing
 Priority Weighted delay.
- Rescheduling (online counterpart)
 - Goal: Recover from a disruption of timetable (due to delays or faults)

Overview

- Algorithmic Details
 - Sarsa (λ)
 - Proxy Reward
 - Prior and Proposed Q-values
- Experiments on (HYP-1, HYP-2, HYP-3)
- Results and Insights (Transfer Learning)
- Flatland Challenge
- Future Work

State Space Representation

- Local neighborhood
- Higher values indicate higher congestion in the resource
- l_b behind each train and l_f infront of each train
- $ullet S_r = R-1-min(R-1, \lceil N_r-w_cT_{r,c}-w_dT_{r,d})$
- Priority of the train is also in state
- Size of state space $P * R^{l_b+1+l_f}$

Action and Policy Definition

- Choice of action in any given state is binary
 - Move to move the current train to the next resource
 - Wait halt in the current resource for a predefined time period
- The order in which trains are selected is given be **deadlock avoidance heuristic**
- ϵ greedy policy based on Q-value
 - \circ With probability ϵ , choose action randomly (**Exploration**)
 - \circ With probability (1- ϵ), choose action greedly (**Exploitation**)
- **ε** decreases as the training proceeds

Objective Function

- Time duration from first event to last event (makespan)
- Total or average running time of trains
- Robustness of the timetable to deviations (using Slack times)
- Priority-weighted delay

$$J = \frac{1}{N_{r,t}} \sum_{r,t} \frac{\delta_{r,t}}{P_t}$$

Sarsa(λ)

- **Objective function** as the negative of the reward.
- Reward at the end of each episode

$$Q_{t+1}(s, a) = Q_t(s, a) + \alpha \delta_t e_t(s, a) \ \forall (s, a)$$

$$\delta_t = r_{t+1} + \gamma * Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)$$

$$e_t(s, a) = \begin{cases} \gamma \lambda e_{t-1}(s, a) + 1 & \text{if } s = s_t \text{ and } a = a_t \\ \gamma \lambda e_{t-1}(s, a) & \text{otherwise.} \end{cases}$$

Sarsa() backup diagram

Sarsa() Algorithm

Algorithm 1 Sarsa Lambda [3] Initialize Q(s, a) arbitrarily and $e(s, a) = 0 \ \forall s, a$ Repeat (for each episode): Initialize s,a Repeat (for each step of episode): Take action a, observe r,s'Choose a' from s' using ϵ - greedy policy $\delta \leftarrow r + \gamma Q(s', a') - Q(s, a)$ $e(s,a) \leftarrow e(s,a) + 1$ For all s,a $Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)$ $e(s,a) \leftarrow \gamma \lambda e(s,a)$ $s \leftarrow s'; a \leftarrow a'$ until s is terminal

About Problem Instances

 Table 5.1
 Hypothetical instances

Name	Stns.	Trains (sorted by priority)	Events
HYP-1	5	8,0,0	40
HYP-2	11	$15,\!45,\!0$	1320
HYP-3	11	40,80,0	2640

Sarsa() Result

- The back-propagation of rewards after the end of the episode is not possible, because the episode can be very long.
- Possible to visit the same state-action pair in loop leading to large accumulation of reward at that state-action pair, leading to extreme values.
- the magnitude of delays is different from one problem instance to another (obstacle in transfer learning).

Proxy Reward

- Success of episode
 - Maximum acceptable level J is set to a proportion (1 + ρ) of the minimum J observed thus far.
 - Success: If sum of priority-weighted delay is under current threshold, reward +1
 - **Failure**: if priority weighted delay is over the threshold, or if the episode enters deadlock, reward 0
- Instead of tracking whole trajectory, observe what state-action pairs are visited in an episode.
- **Proxy Reward**: For a give state-action pair, probability of ending up in a successful episode

$$0 \le \sigma(x, a) = \frac{\epsilon_{x, a}^*}{\epsilon_{x, a}} \le 1$$

Q-values

Prior

$$q(x,a) = w\sigma(x,a) + (1-w)\sum_{m=1}^{M} \frac{\sigma(x'_m, a'_m)}{M}$$

Propose

$$q(x, a) = w\sigma(x, a) + (1 - w) \sum_{m=1}^{M} \frac{q(x'_m, a'_m)}{M}$$

$$q(x,a) = \sigma(x,a) + \gamma \sum_{m=1}^{M} \frac{q(x'_m, a'_m)}{M}$$

Training (HYP-1)

Training

Instance	Minimum	Deadlock	Total states visited
HYP-1	23.53750	3	354
	23.58750	3	348
HYP-2	2.60682	3	1650
	2.58447	5	1712
HYP-3	11.64754	32	3377
	11.34754	29	3021

Training (HYP-3)

HYP-3 Schedule

Testing (Zero delay)

Train	Test	Minimum	Average	deadlock
HYP-2	HYP-2	4.050	4.980 ± 0.590	0
		2.680	3.257 ± 0.501	0
HYP-3	HYP-2	3.089	4.080 ± 0.370	0
		2.709	4.184 ± 0.438	0
HYP-2	HYP-3	12.683	14.580 ± 1.058	16
		11.453	13.083 ± 1.164	6
HYP-3	HYP-3	11.855	12.954 ± 0.540	1
		11.438	12.734 ± 0.613	0

Testing (20% delay)

		Table 5.5	20% delay	
Train	Test	Minimum	Average	deadlock
HYP-2	HYP-2	9.591	11.388 ± 1.258	0
		8.386	10.261 ± 0.733	1
HYP-3	HYP-2	9.603	10.932 ± 0.881	3
		8.473	10.472 ± 0.792	1
HYP-2	HYP-3	26.882	31.955 ± 2.290	23
		27.734	30.141 ± 1.486	29
HYP-3	HYP-3	26.522	30.135 ± 1.649	3
		26.560	29.231 ± 1.723	1

Flatland Challenge

Future Work

- Further Testing
 - On Real life dataset (Ajmer and Konkan railway lines)
 - Introduce only in some part of the railway network
- Current algorithm works only for **railway line** not **railway network.** Try to extend current algorithm for railway network.
- Use **Tree like Observation** instead of Straight line.
- Work on solving Flatland challenge.