1 Úvod aneb Projektivní přímka a rovina

Poznámka (O čem to bude)

Nevlastní body, homogenní souřadnice. Projektivní geometrie = "geometrie polohy", tj. neměří se vzdálenosti ani úhly. Máme pojmy (v rovině) bod, přímka, incidence $(X \in p)$.

Inspirováno perspektivou v malířství (realismus, 17. století).

Klíčové pojmy: nevlastní body ("body v nekonečnu"), princip duality.

Poznámka (Možné přístupy ke geometrii)

Axiomatický (jen axiomy, bez obrázků) (dnes), syntetický (důraz kladen na obrázky, bez souřadnic) (tento semestr), analytický (souřadnice, bez obrázků) (příští semestr).

1.1 Axiomatika projektivní geometrie (v rovině)

Poznámka (Primitivní pojmy)

Bod, přímka, incidence.

Definice 1.1 (Axiom A1)

Ke každým dvěma (různým) bodům $\exists !$ přímka s oběma body incidentní. (Přímce říkáme spojnice daných bodů.)

Definice 1.2 (Axiom A2)

Ke každým dvěma (různým) přímkám $\exists !$ bod s oběma přímkami incidentní. (Bodu říkáme průsečíkdaných přímek.)

Poznámka

 ${\rm A2}$ vzniklo z ${\rm A1}$ záměnnou pojmů bod a přímka. V EG neplatí, ale v PG chceme mít Princip duality.

Definice 1.3 (Princip duality)

Veškerá tvrzení zůstávají v platnosti, pokud v nich zaměníme pojmy bod a přímka, incidence (prochází bodem a leží na přímce, průsečík a spojnice), a pojmy z nich odvozené.

Definice 1.4 (Nevlastní bod, vlastní bod)

Máme-li dvě rovnoběžky v EG, pak za jejich průsečík v PG označíme společný směr (bez orientace), neboli nevlastní bod (značíme X_{∞} , atd.).

Původní body v rovině budeme nazývat vlastní.

Definice 1.5 (Nevlastní přímka, vlastní přímka)

Nevlastní přímka $(n_{\infty})=$ množina všech nevlastních bodů.

Poznámka

S nevlastními body a přímkou splňuje rovina A1 i A2.

Definice 1.6 (Axiom A3)

Existují alespoň 4 body, z nichž každé 3 jsou nekolineární.

Poznámka ("A4")

Duální tvrzení k A3 už je dokazatelné z A1 až A3.

Definice 1.7 (Projektivní rovina)

Rovina s nevlastními body a nevlastní přímkou splňuje i A3. Takové rovině $(\mathbb{R}^2 \cup n_{\infty})$ budeme říkat projektivní rovina a značit ji $\mathbb{R}P^2$ nebo P^2 .

Poznámka (Idea: existující různé geometrie)

Euklidovská geometrie (EG) (body, přímky, incidence, vzdálenosti, úhly), Afinní geometrie (AG) (body, přímky, incidence, rozlišení rovnoběžek a různoběžek, případně vlastních a nevlastních bodů), Projektivní geometrie (PG) (body, přímky, incidence).

(Hyperbolická geometrie = Lobačevského geometrie (body, přímky, incidence, jiné vzdálenosti, jiné úhly))

1.2 Afinní geometrie

Poznámka

Body A, B, \ldots a vektory u, v, \ldots

→ přímky, vzájemné polohy přímek (ale ne kolmost).

Poznámka (Lze zavést střed úsečky:)

$$\vec{AS} = \frac{1}{2}\vec{AB} \Leftrightarrow \vec{SA} = -\vec{SB}.$$

Definice 1.8 (Dělící poměr)

Dělící poměr 3 bodů A,B,C na (jedné) přímce je číslo $\lambda=(ABC)$ splňující $C-A=\lambda(C-B).$

Poznámka

Odsud lze odvodit Euklidovskou definici dělícího poměru: $|\lambda| = \frac{\|C-A\|}{\|C-B\|}$.

A, B, C různé, pak λ nenabývá hodnot 0 (A = C), 1 (A = B) a ∞ (B = C).

C je středem úsečky AB, právě když (ABC) = -1.

Dělící poměr jako graf funkce (A, B pevné, C proměnné) je hyperbola.

Pro každé dva body $A \neq B$ a $\forall \lambda \in \mathbb{R} \setminus \{0,1\}$, existuje právě jedno C, že $(ABC) = \lambda$.

Konstrukce: dány úsečky délek 1 a λ , a body A, B.

Pokud $\lambda=(ABC)$, tak $(BAC)=\frac{1}{\lambda},~(ACB)=1-\lambda,~(BCA)=\frac{\lambda-1}{\lambda},~(CAB)=\frac{1}{1-\lambda},~(CBA)=\frac{\lambda}{\lambda-1}.$ Tyto permutace se některé rovnají pro λ z trojice $(0,1,\infty)$ (každé tam bude dvakrát), z trojice (-1,2,1/2) (také každé dvakrát) a z dvojice $(1/2+i\sqrt{3}/2,1/2-i\sqrt{3}/2)$ (každé třikrát).

Poznámka (Role zobrazení v jednotlivých geometriích)

V EG: posunutí, otáčení a osová souměrnost (tj. shodnosti) zachovávají délky a úhly (tj. (pro zajímavost) jsou to invarianty euklidovské grupy).

V AG: isomorfismy (lineární zobrazení na) zachovávají dělící poměr.

1.3 Projektivní přímka

Definice 1.9 (Označení)

Je-li $v=(x_0,x_1)\in\mathbb{R}^2\setminus\{(0,0)\}$, označíme $\langle v\rangle=$ lineární obal v= přímka generovaná v (procházející počátkem). Tedy $\langle (x_0,x_1)\rangle=\langle v\rangle=\langle av\rangle=\langle ax_0,ax_1\rangle$ pro $\forall a\neq 0,a\in\mathbb{R}$.

Definice 1.10 (Projektivní přímka $\mathbb{R}P^1$, geometrický bod, aritmetický zástupce, homogenní souřadnice)

Projektivní přímka je množina $\mathbb{R}P^1 = \{\langle v \rangle | v \in \mathbb{R}^2 \setminus \{(0,0)\}\} = \text{množina všech přímek v } \mathbb{R}^2 \text{ (procházejících počátkem). Prvek } \langle v \rangle \in \mathbb{R}P^2 \text{ nazýváme geometrický bod, vektor } v \in \mathbb{R}^2 \setminus \{(0,0)\} \text{ nazýváme jeho aritmetickým zástupcem.}$

Poznámka

Tedy každý geometrický bod má nekonečně mnoho aritmetických zástupců (a ti se všichni liší jen nenulovým násobkem).

Je-li $v=(x_0,x_1)$, píšeme $\langle v\rangle=[x_0:x_1]$. Tomuto se říká homogenní souřadnice geometrického bodu.

Poznámka

Jsou určeny až na nenulový násobek.

Definice 1.11 (Kanonické vnoření afinní přímky \mathbb{R} do projektivní přímky $\mathbb{R}P^1$)

Kanonické vnoření afinní přímky \mathbb{R} do projektivní přímky $\mathbb{R}P^1$ je zobrazení $\mathbb{R} \to \mathbb{R}P^1$, bod $x \mapsto [1:x]$ (body vlastní) a vektor $1 \mapsto [0:1]$ (bod nevlastní).

První souřadnice je tzv. rozlišovací souřadnice (1 znamená vlastní, 0 nevlastní).

TODO!!!

Příklad (Konstrukce)

Zkonstruovat 4. harmonický bod. (Mějme body M, N, A a chceme najít C tak, aby (MNAC) = -1)

Řešení

Zvolíme nekolineární bod H, do kterého vedeme přímky m,n,a. Vedeme libovolnou přímku z A, průsečíky s m a n označme X a Y. Do nich vedeme přímky z N a M a průsečík těchto přímek spojíme s H a máme přímku c.

TODO!!! (Konstrukce 4. harmonické přímky).

Definice 1.12 (Projektivní škála)

Máme body 0, 1 a ∞ na jedné přímce. Následně provedeme několik kroků: 1. najdeme bod -1 tak, aby $(0 \infty 1 - 1) = -1$, najdeme bod -2 tak, aby $(-1 \infty 0 - 2) = -1$

TODO!!!

Poznámka

Této konstrukce se dá použít k nakreslení pražců na sbíhající se koleje (průsečík = ∞ , první pražec 0, druhý 1).

2 Projektivita a perspektivita lineárních soustav

Definice 2.1 (Soustava)

Bodová = označené body na přímce. Píšeme p(A, B, C, ...).

Přímková = označené přímky ve svazku. Píšeme P(a, b, c, ...).

Dvě soustavy jsou sourodé, pokud jsou stejného typu a nesourodé, pokud jsou různých typů. Pokud jsou sourodé, pak mohou být soumístné, tedy na stejné přímce / ve stejném svazku, nebo nesoumístné (různé přímky / různé svazky).

Definice 2.2 (Perspektiva)

Perspektiva nesoumístných sourodých soustav je zobrazení: pro bodové soustavy jde o středové promítání z bodu $O \notin p, p'$ (píšeme p(A, B < C) :: p'(A', B', C')), pro přímkové soustavy duálně (přímka o protne soustavu procházející P v bodech, které spojíme s bodem P' a dostaneme druhou soustavu).

Bod O se nazývá bod perspektivity (střed promítání). Přímka o je přímkou perspektivity.

Poznámka

Bod O nemusí být vlastni.

Poznámka (Značení ::)

Perspektivita je určená dvěma páry bodů/přímek (potřebujeme najít bod ${\cal O}$ nebo přímku o), proto "dvakrát dvě tečky".

Důsledek

V každé perspektivitě existuje samodružný element: průsečík $p \cap p'$ respektive spojnice PP'.

Pozor

Složení perspektivit obecně není perspektivita! (Nemusí být zachován samodružný element.)

Definice 2.3 (Projektivita)

Projektivita je složení konečného počtu perspektivit.

Poznámka

Dá se dokázat, že každá projektivita je složením ≤ 2 perspektivit.

Důsledek

Projektivita obecně nemá samodružný element, ale pokud už ho obsahuje, již je perspektivitou.

Pozor

Perspektivita nezachovává dělící poměr 3 bodů.

Tvrzení 2.1

Perspektivita zachovává dvojpoměry 4 bodů.

Dusledek

Projektivita zachovává dvojpoměry 4 bodů.

Tvrzení 2.2 (Lze dokázat i opak)

Pokud zobrazení zachovává kolinearitu a dvojpoměr, je to nutně projektivita.

Poznámka (Druhý způsob (analytický) zavedení projektivity a perspektivity) Nejprve se zavede projektivní souřadný systém (PSS) na projektivní přímce. Je to trojice bodů $0, 1, \infty$. Souřadnice bodu X vůči tomuto PSS je homogenní dvojice [1:x], kde $x = (X10\infty)$. Pak projektivní zobrazení je $\mathbb{R}P^1 \to \mathbb{R}P^1$, $[x_0:x_1] \mapsto [x'_0:x'_1]$, kde $(x'_0, x'_1) = A \cdot (x_0, x_1)^T$, kde A je regulární matice 2×2 určená až na násobek $\neq 0$.

Důsledek

Projektivita zachovává dvojpoměr.

Pak perspektivita = projektivita mající samodružný bod.

Poznámka (Značení projektivity)

Projektivitu značíme p(A, B, C) ::: p'(A', B', C').

Poznámka

Projektivita je určena třemi páry bodů.

Definice 2.4 (Perspektivita nesourodých soustav)

Dvě nesourodé soustavy jsou v perspektivitě, je-li jedna soustava průmětem/průsekem té druhé.

Věta 2.3

 $Dv\check{e}$ sourodé nesoumístné soustavy jsou v perspektivitě \Leftrightarrow obě jsou v perspektivitě s touž nesourodou soustavou.

Důkaz

Obrázkem. (Dává nám to přesně ty body a přímky, které potřebujeme.)

Poznámka (Doplňování soustav)

Doplňování perspektivit (p(A, B, C) :: p'(A', B', C') dáno, k bodu X na p doplňte X') je jednoduché.

Doplňování projektivit (p(A, B, C) ::: p'(A', B', C') dáno, m bodu X na p doplňte X') je těžší, budeme potřebovat následující větu.

Věta 2.4 (O direkční přímce)

Nechť p(A, B, C) ::: p'(A', B', C') je projektivita nesoumístných bodových soustav. Pak průsečíky spojnic AB' a A'B, AC' a CA', BC' a CB' leží na jedné přímce d.

 $D\mathring{u}kaz$

Zvolme si význačné body A, A' a uvažujme přímky: a = AA', b = AB' a c = AC', stejně tak a' = A'A, b' = A'B, c' = A'C. Hned je jasné, že a = a'.

Pak máme A(a,b,c) ::: p'(A',B',C') ::: p(A,B,C) :: A'(a',b',c'). Tedy A(a,b,c) ::: A'(a',b',c'). Ale ta má samodružnou přímku a=a', tedy je to perspektivita 2 přímkových soustav, tedy podle předchozí věty jsou obě v perspektivitě s touž nesourodou soustavou (body na přímce). Označme ji d. A víme, že se s ní protínají odpovídající si páry přímek, tj. páry B=AB', b'=A'B, c=AC', c'=A'C.

Potřebujeme ukázat, že přímka d nezávisí na volbě páru AA'. A tím také to, že také přímky BC', B'C se protínají na d. Označme M=N' průsečík $p \cap p'$. Kde je M' a N? Platí $M'=p' \cap d$ a $N=p \cap d$. $N \in p$ zřejmé (leží v soustavě p(A,B,C)). $N \in d$? máme přímky n=AN=p, n'=A'N, víme, že průsečík $n \cap n'=N \in d$. Stejně tak $M'=p' \cap d$.

Důsledek: d = M'N, ale M, N' nezáleží na volbě páru AA', tedy máme hotovo.

Definice 2.5 (Direkční přímka projektivity)

Přímku z předchozí věty nazveme direkční přímka projektivity.

Poznámka

Projektivita je perspektivita $\Leftrightarrow p \cap p' \in d$.

Příklad

Doplňování projektivity (nesoumístných soustav) je teď jednoduché. Doplňování projektivity soumístných soustav uděláme přes další soustavu.

Příklad

Spojení bodu V s nepřístupným průsečíkem přímek p, p'.

Řešení

Na p a p' doplníme body A, A', B, B' tak, aby $V \in AB'$, BA'. AA' a BB' se protínají v bodě, ze kterého vedeme přímku, na která protne p a p' v bodech C a C'. Nyní najdeme direkční přímku.

Věta 2.5 (Papova o šestiúhelníku)

Stejné jako věta o direkční přímce. (Jinak formulovaná.)

TODO!!! (charakteristika projektivity, involuce, ...)

Definice 2.6 (Involuce)

Involuce je projektivita (soumístných soustav) splňující jednu z následujících ekvivalentních podmínek:

- w = (XX'ST) = -1; (tzv. charakteristika projektivity, X a X' je libovolný pár, S a T jsou různé samodružné elementy)
- $\exists X \neq S, T : X'' = X$:
- $\forall X: X'' = X$.

Definice 2.7 (Hyperbolická a eliptická involuce)

S,Treálné různé \implies involuce je hyperbolická (nesouhlasné soustavy, neboli směr je proti).

S, T komplexně sdružené \implies eliptická (souhlasné soustavy, neboli směr se zachovává).

Poznámka

S=T je parabolická involuce (ale není to projektivita, neboť to není prosté zobrazení).

Poznámka (Pár involuce)

 $X \to X'$ a $X' \to X$, pak X, X' je pár involuce.

Poznámka

Projektivita je určena 3 páry, involuce je určena 2 páry.

Důsledek

AA'B'B a BAA'B' (ve skutečnosti vzhledem k zahrnutí ∞ jsou to stejné případy) jsou hyperbolické (říkáme páry se nerozdělují), ABA'B' jsou hyperbolické (páry se rozdělují).

Příklad (Konstrukce)

Určit druhý samodružný bod (T) involuce určené jedním samodružným bodem (S) a jedním párem (A, A').

Řešení

Využijeme (AA'ST) = -1 a najdeme čtvrtý harmonický bod, jak jsme to již dělali.

Věta 2.6 (O bodu na direkční přímce)

Mějme projektivitu p(A, B, C) ::: p'(A', B', C') (nesourodých soustav), d nechť je direkční přímka, $H \in d$ libovolný bod na direkční přímce. Pak páry přímek a = HA, A' = HA', b = HB, b' = HB', atd. jsou páry téže involuce přímek ve svazku se středem H. Neboli H(a,b,c) ::: H(a',b',c') je involuce.

 $D\mathring{u}kaz$

"1. Projektivita":

$$H(a,b,c) :: p(A,B,C) ::: p'(A',B',C') :: H(a',b',c').$$

(Složení tří projektivit je projektivita, tedy existuje H(a, b, c) ::: H(a', b', c'))

"2. Involuce": Tato projektivita je involuce, protože pokud označíme $X=a'\cap p \implies x=a'$, pak z věty o direkční přímce platí $X'=a\cap p' \implies a=x'$, tedy (a,a') je pár involuce a to už stačí.

(Pokud $H \in AA'$, zvolíme místo A jiný bod.)

Věta 2.7 (O přímce procházející direkčním bodem)

Mějme projektivitu P(a,b,c) ::: P'(a',b',c'), D nechť je direkční bod a $D \in h$. Pak páry bodů $A = h \cap a$, $A' = h \cap a'$, $B = h \cap b$, $B' = h \cap b'$ jsou páry téže involuce bodů na přímce h. (h(A,B,C) ::: h(A',B',C') je involuce.)

 $D\mathring{u}kaz$

Dualita.

Příklad

Doplňování bodové involuce dané dvěma páry.

Řešení

Použijeme předchozí větu a doplníme projektivitu. (Další způsoby jsou klasicky jako doplňování projektivity, nebo použití původní, neduální, verze předchozí věty.)

2.1 Úplný čtyřroh a úplný čtyřstran

Definice 2.8 (Úplný čtyřroh)

Čtveřice bodů v rovině $(M,\ N,\ P,\ Q)$, přičemž žádné tři nejsou kolineární, se nazývá čtyřroh.

Tyto body (M, N, P, Q) jsou vrcholy čtyřrohu. Jejich 6 spojnic jsou strany čtyřrohu.

Máme 3 páry protějších stran (MN a PQ, MP a NQ, MQ a NP), 3 diagonální vrcholy = průsečíků protějších stran (X, Y, Z) a 3 diagonální strany (XY, XZ, YZ).

Všemu tomuto dohromady se říká úplný čtyřroh.

Definice 2.9 (Úplný čtyřstran)

Čtveřice přímek v rovině (m, n, p, q), přičemž žádné tři neprochází jedním bodem, se nazývá čtyřstran.

Tyto přímky (m, n, p, q) jsou strany čtyřstranu. Jejich 6 průsečíků jsou vrcholy čtyřstrnu.

Máme 3 páry protějších vrcholů $(m \cap n \text{ a } p \cap q, m \cap p \text{ a } n \cap q, m \cap q \text{ a } n \cap p)$, 3 diagonální strany = spojnice protějších vrcholů (x, y, z) a 3 diagonální vrcholy $(x \cap y, x \cap z, y \cap z)$.

Všemu tomuto dohromady se říká úplný čtyřstran.

Věta 2.8

Každá (i diagonální) strana úplného čtyřrohu je proťata ostatními stranami jen ve 4 bodech, které tvoří harmonickou čtveřici.

 $D\mathring{u}kaz$

"První část" se spočítá z obrázku. "Druhá část" je vidět z konstrukce čtvrtého bodu harmonické čtveřice. $\hfill\Box$

Věta 2.9 (Duální k přechozí)

Každý (i diagonální) vrchol úplného čtyřstranu je spojen s ostatními vrcholy pouze 4 přímkami, ty tvoří harmonickou čtveřici.

Věta 2.10 (O přímce a čtyřrohu)

Je dán úplný čtyřroh a libovolná přímka h různá od jeho 9 stran. Pak protější strany 4 rohu vytínají na h páry téže involuce.

 $D\mathring{u}kaz$

Nechť P a Q jsou středy svazků a = PM, b = PN a a' = QN, b' = QM (a a a' protější, b a b' taktéž). Páry AA', BB' zadávají involuci na b. Je pár CC' také párem této involuce?

Zároveň máme projektivitu $P(a,b,\ldots)$::: $Q(a',b',\ldots)$. Dle věty o přímce procházející direkčním bodem je průsečík $D=C'=MN\cap h$ direkčním bodem této projektivity a proto $D'=C=PQ\cap h$. Tedy DD'=C'C je pár téže involuce.

Věta 2.11 (O bodu a čtyřstranu)

Je dán úplný čtyřstran a bod H různý od jeho vrcholů. Pak spojnice protějších vrcholů čtyřstranu s H tvoří páry téže involuce.

Poznámka

A, A', B, B', C, C' z předchozí věty (původní verze) se nazývá čtyřstranná množina.

3 Kuželosečky

Definice 3.1 (Bodová kuželosečka)

Mějme projektivitu nesoumístných přímkových soustav H(a, b, c) ::: H'(a', b', c'). Bodová kuželosečka $\mathcal{B} = \text{množina průsečíků odpovídajících si přímek (tj. <math>a \cap a', b \cap b'$, atd.).

Věta 3.1

Zadaná projektivita je perspektivitou \Leftrightarrow kuželosečka B se skládá ze dvou přímek, a sice přímky HH' a z přímky perspektivity.

 $D\mathring{u}kaz$

Z obrázku a rozpravy nad ním.

Definice 3.2 (Singulární a regulární)

Když $H::H'\mathcal{B}$ je singulární. V opačném případě je regulární.

Tvrzení 3.2 (Platí)

 $H, H' \in \mathcal{B}$. (Pro singulární kuželosečku celá $HH' \in \mathcal{B}$. Pro regulární křivku $H = n \cap n'$ a $H' = m \cap m'$, tedy $H, H' \in \mathcal{B}$.)

Poznámka

Dále budeme uvažovat jen regulární křivky.

Definice 3.3 (Vzájemná poloha přímky a kuželosečky)

Přímka v rovině je (ve vztahu ke kuželosečce)

- vnější přímka, pokud nemají žádný společný bod;
- tečna, má-li jeden průsečík;
- sečna, má-li dva průsečíky.

Věta 3.3

Bodem H (resp. H') prochází jediná tečna, a sice n (resp. m'), kde m = n' = HH'. Průsečík $D = n \cap m'$ je direkčním bodem zadané projektivity.

 $D\mathring{u}kaz$

Přímka $x \in H(a,b,c)$ protíná kuželosečku \mathcal{B} ve 2 bodech, pouze pro x=n tyto 2 body splývají do 1 bodu (H). Podobně pro H', m'. $D=n \cap m'$ už víme.

Věta 3.4

Je-li dána \mathcal{B} pomocí projektivity H(a,b,c) ::: H'(a',b',c') a zvolíme-li 5 bodů na \mathcal{B} : K, K', A, B, C a označíme-li $\alpha = KA$, $\beta = KB$, ..., pak projektivita $K(\alpha,\beta,\gamma)$::: $K(\alpha',\beta',\gamma')$ zadává tutéž kuželosečku.

 $D\mathring{u}kaz$

Vynechán.

Dusledek

V definici kuželosečky můžeme vzít za středy svazků libovolné dva body na kuželosečce.

Důsledek

Každým bodem (regulární) kuželosečky prochází jediná tečna.

Důsledek

Kuželosečka je zadána 5 body (nebo šesti přímkami, z nichž 3 a 3 prochází stejným a stejným bodem).

Příklad (Konstrukce (!!!))

Sestrojit kuželosečku z 5 bodů. (Tj. dány body H, H', A, B, C, najít alespoň 1 další bod kuželosečky procházející těmito body. Pak umíme najít libovolný konečný počet bodů.)

Řešení

Nalezneme direkční bod a následně provedeme konstrukci druhé přímky v perspektivitě k nějaké zvolené přímce (ta nám určuje, který bod dostaneme).

Příklad (DÚ)

K zadaným 5 bodům najít 10–15 dalších bodů kuželosečky. (Ručně nebo v geogebře.)

Příklad (Konstrukce)

Kuželosečka zadána 5 body, v jednom z nich najít tečnu.

Řešení

Tento bod vezmeme jako bod soustavy, k němu zvolíme druhý bod a najdeme direkční bod perspektivity přímkových soustav procházejících zbylými třemi body. Ten spojíme s naším bodem a máme tečnu.

Poznámka

Tečna s bodem dotyku = 2 podmínky pro kuželosečku.

Kuželosečka je tedy zadána 5 podmínkami:

- 5 bodů;
- 4 body + tečna v jednom z nich;
- 3 body + tečny ve dvou z nich.

Příklad (Konstrukce)

Sestrojit kuželosečku z jedné tečny a 4 bodů.

Řešení

Zvolíme ze 3 zbývajících bodů bod druhé přímkové soustavy. Poté průsečík tečny a spojnice (správných) průsečíků vzniklých 4 přímek je direkční bod.

```
Příklad (Konstrukce)
Sestrojit kuželosečku ze dvou tečen a 3 bodů.

Řešení
Zde máme direkční bod rovnou.
```

3.1 Soustavy na bodové kuželosečce

Definice 3.4

 $\mathcal{B}(A,B,C)$ je bodová soustava na \mathcal{B} . Zase mohou bít soumístné/nesoumístné. Perspektivita soustavy na kuželosečce a soustavy na přímce je "promítnutí" bodů soustavy $\mathcal{B}(A,B,C)$ z libovolného bodu $\in \mathcal{B}$ na danou přímku. Složení perspektivit je zase projektivita. Dvojpoměr 4 bodů na \mathcal{B} je definován přenesením na bodovou soustavu na přímce (zachovává se v každé projektivitě).

Poznámka

Projektivita je dána 3 páry bodů.

Projektivita soumístných soustav na \mathcal{B} má 2/1/0 samodružných bodů.

Věta 3.5

Je-li dána projektivita $\mathcal{B}(A,B,C)$::: $\mathcal{B}(A',B',C')$, pak průsečíky $AB' \cap A'B$, $AC' \cap A'C$, BC', B' leží na jedné, tzv. direkční přímce d. Navíc d $\cap \mathcal{B}$ jsou samodružné body dané projektivity.

 $D\mathring{u}kaz$

Označíme si b = A'B, b' = AB', c = A'C, c = AC' a a = A'A = a'.

$$A(a',b',c') ::: \mathcal{B}(A',B',C') ::: \mathcal{B}(A,B,C) ::: A'(a,b,c).$$

Tato projektivita (A(a',b',c') ::: A'(a,b,c)) je perspektivita (neboť a=a' je samodružná). Tedy existuje přímka perspektivity d, na níž se kříží b', b a c, c'.

Dále chceme ukázat i $BC' \cap B'C \in d$ a $d \cap \mathcal{B} = \operatorname{samodružn\'e}$ body projektivity. Nejprve ukážeme druhou část (a z ní už plyne první, protože samodružn\'e body nezávisí na volbě A): S = S', T = T' samodružn\'e body ($\in \mathcal{B}$ z definice), potom $S = S' \in d$, neboť s = A'S a s' = AS' se protínají na d, ale jediný jejich průsečík je S = S' (T = T' obdobně).

 $D\mathring{u}kaz$

Důkaz pro 0 samodružných bodů (případně pro 1) by se prováděl algebraicky.

Poznámka

Direkční přímka je sečnou / tečnou / vnější přímkou k $\mathcal{B} \Leftrightarrow \text{daná projektivita má } 2/1/0$ reálné samodružné body.

Příklad (Konstrukce)

Doplňování projektivity na bodové kuželosečce.

Řešení

Nemůžeme to udělat tak, jak bychom chtěli, protože nemáme "nakreslenou" kuželosečku (neumíme s ní dělat průsečík).

Co ale můžeme, můžeme obvyklým způsobem najít dvě přímky procházející doplňovaným bodem a najít jejich průsečík.

Definice 3.5 (Involuce (totéž, co výše))

Involuce je projektivita (soumístných soustav) splňující jednu z následujících ekvivalentních podmínek:

- w = (XX'ST) = -1; (tzv. charakteristika projektivity, X a X' je libovolný pár, S a T jsou různé samodružné elementy)
- $\exists X \neq S, T : X'' = X;$
- $\forall X: X'' = X$.

Poznámka

Involuce je dána 2 páry bodů.

Rozlišujeme involuci hyperbolickou a eliptickou podle toho, zda má 2 nebo 0 samodružných bodů.

Věta 3.6 (O involuci na bodové kuželosečce)

Nechť je dána involuce na \mathcal{B} dvěma páry bodů A, A'; B, B'. Pak platí:

- 1. Na direkční přímce d leží nejen průsečíky AB', A'B, ... ale i průsečíky AB, A'B', ...
- 2. Spojnice AA', BB', ... se protínají v jediném bodě P.
- 3. Průsečíky $\alpha \cap \mathcal{B}$ jsou samodružné body involuce (S, T), přímky PS a PT jsou tečny z bodu P k \mathcal{B} .
- 4. Tečny v bodech A, A' se také protínají na d.

Definice 3.6

d se pak nazývá osa involuce, P se nazývá střed involuce.

Definice 3.7

Říkáme též, že involuce je indukována svým středem P.

Taktéž definujeme vnější a vnitřní bod kuželosečky v následující tabulce:

Involuce	Reálné samodružné body	Osa involuce	Střed involuce
hyperbolická	2	sečna	vnější bod
eliptická	0	vnější přímka	vnitřní bod
"parabolická"	1	tečna	$\in \mathcal{B}$

(U parabolické se všechny body zobrazí do P.)

Definice 3.8 (Další názvy)

P = pól přímky d, d = polára bodu P.

Poznámka

 $p = \text{vnitřní bod } \mathcal{B} \implies \text{každá přímka z bodu } P \text{ je sečna } \mathcal{B}.$

 $p = \text{vnější bod } \mathcal{B} \implies \text{existují právě dvě tečny a ty oddělují sečny od vnějších přímek.}$

Důsledek

Je-li $R = A'A \cap T_1T_2$ (T_i tečné body z bodu P), pak (AA'RP) = -1.

3.2 Čtyři malé věty

Věta 3.7 (A)

Mějme na \mathcal{B} dány dvě involuce se středy $P \neq Q$. Tyto dvě involuce mají jediný společný pár, jsou to právě průsečíky $PQ \cap \mathcal{B}$. Navíc je-li alespoň jeden z bodů P, Q vnitřní, je tento pár reálný.

 $D\mathring{u}kaz$

Jednoduchý.

Věta 3.8 (B)

Nechť A, A' = pár involuce indukovaný na \mathcal{B} středem P, Q := průsečík tečen k \mathcal{B} v bodech A a A'. $X, X' = PQ \cap \mathcal{B}$. Pak X, X' je jediný pár involuce se středem P, který splňuje (XX'AA' = -1).

 $D\mathring{u}kaz$

Pro involuci ze středem Q platí A, A' jsou samodružné body. X, X' je pár této involuce, tedy (XX'AA') = -1. A dle Věty A je to jediný takový pár.

Věta 3.9 (C)

P=libovolný vnější bod $\mathcal{B}.$ M,N=body dotyku tečen z P k $\mathcal{B}.$ A,C=2 (libovolné) body na \mathcal{B} kolineární s bodem P. B=libovolný další bod na $\mathcal{B}.$ a:=BA, c:=BC, m:=BM, n:=BN. Pak (mnac)=-1.

 $D\mathring{u}kaz$

Okamžitě z Věty B.

Věta 3.10 (D)

P,M,N,A,C jako ve větě C. m:=CM, n:=CN, a:=CA a c je tečna v bodě C. Pak (mnac)=-1. (Věta C s C=B.)

 $D\mathring{u}kaz$

C = B ve Větě C.

Příklad (Konstrukce)

Kuželosečka je dána 3 body a tečnami ve 2 z nich. Sestrojit tečnu ve 3 bodě.

Řešení

Věta D.