Dynamics of FX correlations

A minimum spanning tree approach

Andrea Politano

July 12, 2016

Università di Pisa

Table of contents

- 1. Introduction
- 2. Correlations and dynamic asset trees
- 3. Tree occupation and central vertex
- 4. Tree clustering and economic interpretation
- 5. Asset tree evolution
- 6. Summary and conclusions
- 7. Appendix

Introduction

Financial Markets as Complex Systems

Financial Markets (FM)

- Evolving complex systems with many interacting entities
- Organized in hierarchical structures

Financial Markets as Complex Systems

Financial Markets (FM)

- Evolving complex systems with many interacting entities
- Organized in hierarchical structures

Hierarchical arrangement

- Can be found by studying correlations between asset returns
- Using a correlation-based metric we construct a complete graph whose nodes are the traded assets
- We can extract a minimum spanning tree (MST) from which we can identify clusters of elements.

FX market

The foreign exchange market (FX) is a global decentralized market for the trading of currencies.

- The main characteristics of FX market are
 - · High liquidity
 - Strong presence of institutional investors
 - Geographical dispersion (OTC market)
 - Continuous operation

Data

The dataset consists of 2969 **daily exchange rates** for N=45 currencies traded in the FX market from Jan 05 2004 to Dec 31 2015 (12 years). Special drawing right (XDR) are used as the numeraire.

	Europe	America & Oceania		
GBP	GBP British Pounds		Canadian Dollars	
HRK	Croatian Kuna	BRL	Brazilian Reals	
CZK	Czech Koruna	ARS	Argentine Pesos	
EUR	European Euros	USD	U.S. Dollars	
HUF	Hungarian Forint	COP	Colombian Pesos	
ISK	Icelandic Krona	JMD	Jamaican Dollars	
NOK	Norwegian Kroner	MXN	Mexican Pesos	
PLN	Polish Zloty	PEN	Peruvian New Soles	
RON	RON Romanian Leu		Chilean Pesos	
RUB	Russian Ruble	NZD	New Zeland Dollar	
SEK	Swedish Krona	FJD	Fijian Dollars	
CHF	Swiss Francs	AUD	Austrialan Dollars	

Data

	Asia	Africa & middle east		
CNY	Chinese Renminbi	DZD	Algerian Dinar	
INR	Indian Rupiah	EGP	Egyptian Pound	
IDR	Indonesian Rupiah	GHS	Gahanaian Cedis	
JPY	Japanese Yen	ILS	Israeli Shekels	
MYR	Malaysian Ringgit	ZAR	South Africa Rand	
PKR	Pakistani Rupees	TND	Tunisian Dinars	
SGD	Singapore Dollars	TRY	Turkish Lira	
KRW	South Korea Won			
LKR	Sri Lankan Rupees			
TWD	Taiwanese Dollars			
THB	Thai Bath			
VND	Vietnamese Dong			

trees

Correlations and dynamic asset

Return correlations

- Data divided into M=237 two-week stepped windows of width T=588 days.
- Closure ex-rate of the i-th currency at time t by $P_i(\tau)$
- Log-returns given by $r_i(\tau) = \ln\left(\frac{P_i(\tau)}{P_i(\tau-1)}\right)$

In order to characterize the synchronous time evolution of assets, we use the equal time **correlation coefficient** between asset "i" and "j" defined as

$$\rho_{ij}^{t} = \frac{\left\langle r_{i}^{t} r_{j}^{t} \right\rangle - \left\langle r_{i}^{t} \right\rangle \left\langle r_{j}^{t} \right\rangle}{\sqrt{\left[\left\langle r_{i}^{t2} \right\rangle - \left\langle r_{i}^{t} \right\rangle^{2}\right] \left[\left\langle r_{j}^{t2} \right\rangle - \left\langle r_{j}^{t} \right\rangle^{2}\right]}}$$

• These correlation coefficients fulfill the condition $-1 \le \rho_{ij}^t \le +1$ and form M=237 $N \times N$ correlation matrices C^t

Correlations moments

Let us first characterize the correlation coefficient distribution by its first four moments

- Increse in the mean from January 2007
- Mean higher than average between 2008 and 2013
- Skewness always smaller than zero
- Kurtosis greater than three after 2014

In order to construct the MST we have 3 steps to perform

In order to construct the MST we have 3 steps to perform

1. Calculate the correlation matrix for each time window. This results in $M=237~45\times45$ matrices C^t .

In order to construct the MST we have 3 steps to perform

- 1. Calculate the correlation matrix for each time window. This results in $M=237\ 45\times 45$ matrices C^t .
- 2. Derive a set of matrices D^t through the correlation-based metric $d_{ij}(t) = \sqrt{2(1-\rho_{ij}(t))}$ with $0 \le d_{ij}(t) \le 2$

In order to construct the MST we have 3 steps to perform

- 1. Calculate the correlation matrix for each time window. This results in $M=237\ 45\times 45$ matrices C^t .
- 2. Derive a set of matrices D^t through the correlation-based metric $d_{ij}(t) = \sqrt{2(1-\rho_{ij}(t))}$ with $0 \le d_{ij}(t) \le 2$
- 3. Construct a set of MST T^t starting from the matrices D^t

In order to construct the MST we have 3 steps to perform

- 1. Calculate the correlation matrix for each time window. This results in $M=237\ 45\times 45$ matrices C^t .
- 2. Derive a set of matrices D^t through the correlation-based metric $d_{ij}(t) = \sqrt{2(1-\rho_{ij}(t))}$ with $0 \le d_{ij}(t) \le 2$
- 3. Construct a set of MST T^t starting from the matrices D^t

The MST is a simply connected graph that connects all N nodes of the graph with N-1 edges such that the sum of all edge weights $\sum_{d_{ij}^t \in T^t} d_{ij}^t$ is minimum.

8

Normalied tree length

As a measure of the temporal state of the market we define the normalized tree length as $L(t) = \frac{1}{N-1} \sum_{d_i^t \in \mathcal{T}^t} d_{ij}^t$

- Average tree length drop after October 2008
- Standar deviation increase in the same period
- Shrinking of clusters and stretching of the tree

Tree occupation and central

vertex

$$I(t, v_c) = \frac{1}{N-1} \sum_{i=1}^{N} L(v_i^t)$$

In order to characterize the spread of nodes we introduce the mean occupation layer (MOL)

$$I(t, v_c) = \frac{1}{N-1} \sum_{i=1}^{N} L(v_i^t)$$

• $L(v_i^t)$ denotes the level of the vertex v_i in relation to the central vertex v_c . Three alternative definitions for the **central vertex**

$$I(t, v_c) = \frac{1}{N-1} \sum_{i=1}^{N} L(v_i^t)$$

- $L(v_i^t)$ denotes the level of the vertex v_i in relation to the central vertex v_c . Three alternative definitions for the **central vertex**
 - 1. Vertex degree criterion the node with the highest vertex degree

$$I(t, v_c) = \frac{1}{N-1} \sum_{i=1}^{N} L(v_i^t)$$

- $L(v_i^t)$ denotes the level of the vertex v_i in relation to the central vertex v_c . Three alternative definitions for the **central vertex**
 - 1. Vertex degree criterion the node with the highest vertex degree
 - Weighted vertex degree criterion the node with the highest sum of correlation coefficient associated with the incident edges of the vertex.

$$I(t, v_c) = \frac{1}{N-1} \sum_{i=1}^{N} L(v_i^t)$$

- $L(v_i^t)$ denotes the level of the vertex v_i in relation to the central vertex v_c . Three alternative definitions for the **central vertex**
 - 1. Vertex degree criterion the node with the highest vertex degree
 - Weighted vertex degree criterion the node with the highest sum of correlation coefficient associated with the incident edges of the vertex.
 - 3. Center of mass criterion the node that produces the lowest value for mean occupation layer $I(t, v_c)$

- The first two criteria lead to the U.S. dollar (USD) as the central currency
- The vertex degree criterion leads to AUD dominating 34.6% of the time, followed by SGD at 17.7%, and USD at 10.1%

- Increase in the MOL from 2006 to 2008
- Pronounced peak corresponding to October 2008
- MOL higher than average from 2009 to 2014
- High MOL reflect finer market structure, whereas low dips are connected to homogeneous behavior of the system

Tree clustering and economic

interpretation

MST 2004-2006

Cluster	Central node	L _{CN}	Cluster	Central node	L_{CN}
International	USD	1.01	Sout-east Asia	MYR	1.11
European	EUR	1.02	South-america	MXN	1.12
Indo-pacific	SGD	1.24	Tree	USD	0.91

MST 2007-2010

Cluster	Central node	L _{CN}	Cluster	Central node	L _{CN}
International	USD	0.94	Sout-east Asia	MYR	1.09
European	EUR	0.91	South-america	MXN	1.22
Commonwealth	AUD	0.94	Tree	COP	0.87

14

MST 2013-2015

Cluster	Central node	L_{CN}	Cluster	Central node	L _{CN}
International	USD	0.87	Sout-east Asia	TWD	1.09
European	EUR	0.91	South-america	MXN	1.02
Commonwealth	AUD	1.09	Tree	AUD	0.97

15

MST full period

Cluster	Central node	L _{CN}	Cluster	Central node	L _{CN}
International	USD	0.90	Sout-east Asia	MYR	1.06
European	EUR	0.95	South-america	MXN	1.09
Commonwealth	AUD	1.00	Tree	MXN	0.94

Asset tree evolution

Survival ratio

In order to investigate the robustness of asset tree topology, we define the **multi-step survival ratio** of tree edges as

$$\sigma_k(t) = \frac{1}{N-1} |E(t) \cap E(t-1)...E(t-k+1)|$$

- $\sigma(t)$ represents the fraction of edges found common in k consecutive trees at times t...t-k
- Under normal circumstances the tree for two consecutive time steps should look very similar
- Some of the differences can reflect real changes in the asset taxonomy

Single-step survival ratio

- $\overline{\sigma_1(t)} = 0.96$. A large majority of links survives from one window to the next
- A prominent dips corresponding to October 2008 indicate a strong tree reconfiguration taking place
- As might be expected, the ratio decreases with increases in step k.
- When the value of k increase the curve gradually becomes more smooth.
 system

Connection decay

- The connections disappear quite slowly
- A small proportion of links remains intact creating a stable base for construction of the MST
- The existence of islands of stability is of importance for the construction of portfolios

Survived links

Survived links

Summary and conclusions

Summary and conclusions

We have studied the distribution of correlation and the dynamics of asset trees.

- The tree evolves over time and the normalized tree length decreases and remains low during bear markets, thus implying the shrinking of the asset tree particularly strongly during a stock market crisis.
- We have also found that the mean occupation layer fluctuates as a function of time, and experiences an increse at the time of market crisis due to topological changes in the asset tree.
- The US dollar has been confirmed as the central currency of the asset tree

Finally we investigated the robustness of asset tree topology through the multi-step survivor ratio

- We observed a slow decays of $\overline{\sigma_k t}$ as k increase.
- A proportion of links remains intact as k increase, creating a stable base for construction of the MST

Thank you!

Appendix

Presence of **outliers** in the time series of FX returns.

Outliers are due to central banks measures: devaluation, interest rates, setting of minimum exchange rate etc.

- PCC sensitive to outliers
 - Finite size breakdown point $B_p = \frac{1}{p}$

- PCC sensitive to outliers
 - Finite size breakdown point $B_p = \frac{1}{2}$
- $\rho_{full} = -0.17$

- PCC sensitive to outliers
 - Finite size breakdown point $B_p = \frac{1}{2}$
- $\bullet \ \ \rho_{\mathit{full}} = -0.17$
- $\rho_{clean} = -0.37$

Possible solutions to outliers sensitivity

1. Ignoring the problem

- 1. Ignoring the problem
- 2. Robust counterpart of the PCC

- 1. Ignoring the problem
- 2. Robust counterpart of the PCC
- 3. Remove the outliers

Possible solutions to outliers sensitivity

1. Ignoring the problem

1. Morally reprehensible

- $2. \ \ Robust \ counterpart \ of \ the \ PCC$
- 3. Remove the outliers

- 1. Ignoring the problem
- 2. Robust counterpart of the PCC
- 3. Remove the outliers

- 1. Morally reprehensible
- 2. No reason to underweight events

- 1. Ignoring the problem
- 2. Robust counterpart of the PCC
- 3. Remove the outliers

- 1. Morally reprehensible
- 2. No reason to underweight events
- 3. Wisest solution in our opinion

Possible solutions to outliers sensitivity

- 1. Ignoring the problem
- 2. Robust counterpart of the PCC
- 3. Remove the outliers

- 1. Morally reprehensible
- 2. No reason to underweight events
- 3. Wisest solution in our opinion

We decided to reject events more than 30 MAD away from the median.

0.7% of the data rejected passing from the initial 2969 to 2948.