CSE 234: Data Systems for Machine Learning Winter 2025

LLMSys

Optimizations and Parallelization

MLSys Basics

Today's Learning Goal

- Case study: Matmul on GPU
- Operator Compilation
- High-level DSL for CUDA: Triton
- Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime

Operator

Triton Programming Model

 Users define tensors in SARM, and modify them using torch-like primitives

Embedded in Python

Kernels are defined in Python using triton.jit

Pointer arithmetics

Users construct tensors of pointers and (de)reference them elementwise

Shape Constraints

Must have power-of-two number of elements along each dimension

Example: elementwise add v1 (z = x + y)

- Triton kernel will be mapped to a single block (SM) of threads
- Users will be responsible for mapping to multiple blocks

```
import triton.language as tl
Import triton
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
  # same as torch.arrange
  offsets = tl.arange(0, 1024)
  # create 1024 pointers to X, Y, Z
  x_ptrs = x_ptr + offsets
 y ptrs = y ptr + offsets
  z_ptrs = z_ptr + offsets
  # load 1024 elements of X, Y, Z
  x = tl.load(x_ptrs)
  y = tl.load(y_ptrs)
  # do computations
  z = x + y
  # write-back 1024 elements of X, Y, Z
  tl.store(z_ptrs, z)
N = 1024
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (1, )
_add[grid](z, x, y, N)
```

Example: elementwise add v2 (z = x + y)

Use multiple blocks

- Index the block and apply offset
- Adds bound check

```
import triton.language as tl
Import triton
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
 # same as torch.arrange
  offsets = tl.arange(0, 1024)
  offsets += tl.program_id(0)*1024
  # create 1024 pointers to X, Y, Z
  x ptrs = x ptr + offsets
  y_ptrs = y_ptr + offsets
  z_ptrs = z_ptr + offsets
  # load 1024 elements of X, Y, Z
  x = tl.load(x_ptrs, mask=offset<N)</pre>
  y = tl.load(y_ptrs<mark>, mask=offset<N</mark>)
  # do computations
  z = x + y
  # write-back 1024 elements of X, Y, Z
  tl.store(z_ptrs, z)
N = 192311
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (triton.cdiv(N, 1024), )
_add[grid](z, x, y, N)
```

Example: elementwise add v2 (z = x + y)

- Parametrize block size
- Why we do this?
 - Triton will do tiling for users
 - Avoid manipulating loops

```
import triton.language as tl
Import triton
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N, BLOCK: tl.constexpr):
 # same as torch.arrange
  offsets = tl.arange(0, BLOCK)
  offsets += tl.program_id(0)*BLOCK
  # create 1024 pointers to X, Y, Z
 x_ptrs = x_ptr + offsets
 y_ptrs = y_ptr + offsets
  z_ptrs = z_ptr + offsets
  # load 1024 elements of X, Y, Z
  x = tl.load(x_ptrs, mask=offset<N)</pre>
  y = tl.load(y_ptrs, mask=offset<N)
  # do computations
  z = x + y
 # write-back 1024 elements of X, Y, Z
 tl.store(z_ptrs, z)
N = 192311
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = lambda args: (triton.cdiv(N, args['BLOCK']), )
_add[grid](z, x, y, N)
```

Elementwise Add Performance

Another Example: Softmax

$$y_i = softmax(\mathbf{x})_i = \frac{e^{x_i}}{\sum e^{x_d}}$$

- How did you implement this in PA1?
 - Think about the potential overhead when compose softmax from primitives
- What if implementing an end-to-end softmax kernel
 - Think about the complexity of implementing in CUDA

Triton Example: softmax


```
import triton.language as tl
Import triton
@triton.jit
def _softmax(z_ptr, x_ptr, stride, N, BLOCK: tl.constexpr):
 # Each program instance normalizes a row
  row = tl.program_id(0)
  cols = tl.arange(0, BLOCK)
  # Load a row of row-major X to SRAM
 x_ptrs = x_ptr + row*stride + cols
 x = tl.load(x_ptrs, mask = cols < N, other = float('-inf'))
  # Normalization in SRAM, in FP32
 x = x.to(tl.float32)
 x = x - tl.max(x, axis=0)
  num = tl.exp(x)
  den = tl.sum(num, axis=0)
  z = num / den;
  # Write-back to HBM
  tl.store(z_ptr + row*stride + cols, z, mask = cols < N)</pre>
```

Performance

Revisit Triton's Pitch

Dataflow Graph Autodiff Graph Optimization Parallelization

Runtime

Operator

Operator Optimization: Wrapping Up

- Goal: to make individual operator run fast on diverse devices
- 1. General ways: vectorization, data layout, etc.
- 2. Matmul-specific: tiling to use fast memory
- 3. Parallelization SIMD using accelerators
- 4. Handcrafted operator kernels vs. automatically compile code
- 5. Triton to find the sweet spot

Wrapping Up Operator Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime

Operator optimization/compilation

Next: Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime

Operator optimization/compilation

Recall Our Goal

- Goal: Rewrite the original Graph G to G';
 - G' runs faster than G
 - G' outputs equivalent results

- Straightforward solution: template
 - Human experts write (sub-)graph transformation templates
 - Guarantee correctness and performance gain
 - Run pattern matching over dataflow graph and replace

Graph Optimization Templates: Fusion

- Why operator fusion improves performance?
 - Reduce kernel launching
 - Reduce I/O
- Cons:
 - Requiring many fused ops: FusedABCOp
 - At some point, codebase becomes unmanageable

Operator Fusion in Practice: CUDA Graph

- Users are allowed to program using primitives with high-level APIs
- Graph is captured at CUDA level

Graph Optimization Templates: Constant Folding

A – (-B)	A + B
A + (A/C1)	

Common Subexpression Elimination (CSE)

$$c = a + b$$
 $c^{3} = a^{1} + b^{2}$
 $d = a$ $e^{1} = a^{1}$
 $e^{2} = b^{2}$
 $f = d + e$ $f^{3} = c^{3}$
 $d = x$ $d^{4} = x^{4}$

CSE hit

Dead Code Elimination (DCE)

$$c = a + b
d = a
e = b
f = d + e
d = x
$$c^{3} = a^{1} + b^{2}
d^{1} = a^{1}
e^{2} = b^{2}
f^{3} = d^{1} + e^{2}
f^{3} = c^{3}
d^{4} = x^{4}
....$$$$

$$c^{3} = a^{1} + b^{2}$$

$$\frac{d^{1}}{d^{2}} = a^{1}$$

$$e^{2} = b^{2}$$

$$f^{3} = d^{1} + e^{2}$$

$$f^{3} = c^{3}$$

$$d^{4} = x^{4}$$

CSE hit

DCE hit

More templates for CSE and DCE

- Greedily apply graph optimizations
- Recall the example below

The final graph is 30% faster on V100 but 10% slower on K80.

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime: schedule , memory

Operator

Problems of Template-based Graph Optimizations

Problem: Infeasible to manually design graph optimizations for all cases

Problems of Template-based Graph Optimizations

Robustness

Experts' heuristics do not apply to all DNNs/hardware

Scalability

New operators and graph structures require more rules

Performance

Miss subtle optimizations for specific DNNs/hardware

Only apply to specific hardware

Only apply to specialized graph structures

Automate Graph Transformation

Key idea: replace manually-designed graph optimizations with automated generation and verification of graph substitutions for tensor algebra

Enumerate and Verify ALL possible graph

Graph Substitution Generator

hardware backend

Enumerate <u>all possible</u> graphs up to a fixed size using available operators

There are many subgraphs even only given 4 Ops

66M graphs with up to 4 operators

A substitution = a pair of equivalent graphs

Graph Substitution Generator

We can generate 28744 substitutions by enumerating graphs with up to 4 ops

Pruning repeated graphs

Variable renaming

Common subgraph

Can we trust graph substitutions?

- We have f(a) = g(b), f(b) = g(b)
 - But can we say: f(x) = g(x) for $\forall x$
- We need to verify formally.

Substitution Verifier

Idea: writing specifications are easier than actually, conducting the optimizations

How to Verify


```
\begin{aligned} \forall x, w_1, w_2 . \\ & \left( Conv(x, w_1), Conv(x, w_2) \right) \\ & = Split \left( Conv(x, Concat(w_1, w_2)) \right) \end{aligned}
```

```
P1. \forall x, w_1, w_2.

Conv(x, Concat(w_1, w_2)) =

Concat(Conv(x, w_1), Conv(x, w_2))

P2. ...
```

- Generating 743 substitutions = 5 mins
- Verify against 43 op specs = 10 mins
- Supporting a new op requires experts to write specs = 1400 LoC
 - vs. 53K LoC of manual optimization in TF

Incorporating substitutions

- Goal: apply verified substitutions to obtain an optimized graph
- Cost Model
 - Based on the sum of individual operator's cost
 - Profile each operator's cost on the target hardware
- Traverse the graph, apply substitutions, calculate cost, use backtracking

Performance (as of 2019)

Summary of Graph Optimization

Limitations

- The best optimization is not covered by search space
- Search is too slow
- Evaluation of the resulting graph is too expensive
 - Limits your trial-and-error times

A Failure Example

Fully Equivalent Transformations

- Math-equivalent
- Missing some optimization opportunities

Partially Equivalent Transformations

- Better performance
- Not fully equivalent -> accuracy loss

How about: exploit the larger space partially equivalent transformations for performance while still preserve correctness?

Motivating Example T_1 reshape & transpose correction conv T_2 reshape & transpose + Correction **Input Program**

- Partial equivalent transformations + correction yield 1.2x speedup
- Which would otherwise be impossible in fully equivalent transformations space

Incorrect results

Partially Equivalent Transformations

- How to mutate?
- How to correct?

Mutant Generator: Step 1

Mutant Generator: Step 2

hardware backend

Mutant Input (Sub)program Operators supported by

Enumerate all possible programs up to a fixed size using available operators

Fully equivalent transformations:

Find transformations with equal results

Partially equivalent transformations:

Find transformations with equal shapes

How to Detect and Correct?

- Which part of the computation is not equivalent?
- How to correct the results?

By Enumeration

- For each possible input I
 - For each position p
 - Check if f(I)[p] == g(I)[p]
- Complexity O(m x n):
 - m: possible inputs
 - n: output shape

- How to reduce enumeration effort?
 - Reduce m and n

How to reduce n?

- Can we just check out a few (or even just one) position at f(I)[p] and assert the (in-)correctness?
- Answer: Yes for 80% of the computation

- Reason: Neural nets computation are mostly Multi-Linear
- Define Multi-linear: f is multi-linear if the output is linear to all inputs
 - $f(I_1, ..., X, ..., I_n) + f(I_1, ..., Y, ..., I_n) = f(I_1, ..., X + Y, ..., I_n)$
 - $\alpha f(I_1, ..., X, ..., I_n) = f(I_1, ..., \alpha X, ..., I_n)$

How to reduce n

- Theorem 1: For two Multi-linear functions f and g, if f=g for O(1)
 positions in a region, then f=g for all positions in the region
- Implications: only need to examine O(1) positions for each region
 - Reduce O(mn) -> O(m)

Group all output positions with an identical summation interval into a region

How to reduce m?

- Theorm 2: if $\exists I, f(I)[p] \neq g(I)[p]$, then the probability that f and g give identical results on t random inputs is $\left(\frac{1}{2^{31}}\right)^t$
- Implications: Run t random tests with random input, and if all t passed, it is very unlikely f and g are inequivalent
- \bullet O(mn) -> O(m) -> O(t) (t << m)

Correct the Mutant

 Goal: quickly and efficiently correcting the outputs of a mutant program

Correct the Mutant

- Goal: quickly and efficiently correcting the outputs of a mutant program
- Step 1: recompute the incorrect outputs using the original program

Correct the Mutant

- Goal: quickly and efficiently correcting the outputs of a mutant program
- Step 1: recompute the incorrect outputs using the original program
- Step 2: opportunistically fuse correction kernels with other operators

Recap

Summary & Questions to discuss

- Fully equivalent transformations vs. Partial
 - How to define search space
 - How to prune search space
 - How to verify & correct
 - How to apply to the ML graph optimization

ML Compiler Retrospective

Q: why the community shifts away from compiler

500+ compiler papers are written during

More Compiler / Graph Optimization

- Guest Speaker: Tianqi Chen
- A.k.a.: GOAT of MLSys
- Inventor of: XGBoost, TVM, MLC-LLM
- Date: Feb. 6
- Topic: Machine Learning

Compilation

Big Picture: where are we

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime

Operator optimization/compilation

Next: Runtime

- "Batching"
- Checkpointing and rematerialization
- Swapping
- Quantization, Mixed precision, and Pruning