Arquitectura de Computadores

Actividad 19 de mayo

Juan Esteban Bedoya Lautero 20231020057 Brayan Estiven Aguirre Aristizabal - 20231020156 Jonathan Esteban Cruz Fuentes - 20231020098

sección 3-8

Para cada una de las siguientes expresiones, construya el circuito lógico correspondiente utilizando compuertas AND y OR e INVERSORES.

(a)
$$x = \overline{AB(C + D)}$$

B \bigcirc_b

C \bigcirc_b

D \bigcirc_b

(b)
$$\mathbf{x} = \overline{(A+B+\overline{C}D\overline{E})} + \overline{B}C\overline{D}$$

sección 3-11 y 3-12

Demuestre los teoremas de DeMorgan probando todos los casos posibles. Simplifique cada una de las siguientes expresiones usando los teoremas de DeMorgan.

Simplificando:

$$\overline{\overline{A}B\overline{C}}$$

$$= \overline{\overline{A}} + \overline{B} + \overline{\overline{C}}$$

$$= A + \overline{B} + C$$

Demostrando con tablas de verdad:

A	B	C	\overline{A}	\overline{C}	$\overline{A}B\overline{C}$	$\overline{\overline{A}B}\overline{\overline{C}}$
0	0	0	1	1	0	1
0	0	1	1	0	0	1
0	1	0	1	1	1	0
0	1	1	1	0	0	1
1	0	0	0	1	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	1
1	1	1	0	0	0	1

A	В	C	\overline{B}	$A+\overline{B}+C$
0	0	0	1	1
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

(b)
$$\overline{\overline{A}+\overline{B}C}$$

Simplificando:
$$\overline{\overline{A} + \overline{B}C} = \overline{\overline{A}}(\overline{\overline{B}C})$$
$$= A(\overline{\overline{B}} + \overline{C})$$
$$= A(B + \overline{C})$$

Demostrando con tablas de verdad:

A	B	C	\overline{A}	\overline{B}	$\overline{B}C$	$\overline{A}+\overline{B}C$	$\overline{\overline{A}+\overline{B}C}$
0	0	0	1	1	0	1	0

A	B	C	\overline{A}	\overline{B}	$\overline{B}C$	$\overline{A}+\overline{B}C$	$\overline{\overline{A}+\overline{B}C}$
0	0	1	1	1	1	1	0
0	1	0	1	0	0	1	0
0	1	1	1	0	0	1	0
1	0	0	0	1	0	0	1
1	0	1	0	1	1	1	0
1	1	0	0	0	0	0	1
1	1	1	0	0	0	0	1

A	B	C	\overline{C}	$B+\overline{C}$	$A(B+\overline{C})$
0	0	0	1	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

(c) $\overline{AB\overline{CD}}$

Simplificando:

$$\overline{AB}\overline{\overline{C}D}$$

$$=\overline{A}+\overline{B}+\overline{CD}$$

$$= \overline{A} + \overline{B} + \overline{\overline{CD}}$$
$$= \overline{A} + \overline{B} + (CD)$$

Demostrando con tablas de verdad:

A	B	C	D	CD	\overline{CD}	AB	$AB\overline{CD}$	$\overline{AB}\overline{CD}$
0	0	0	0	0	1	0	0	1
0	0	0	1	0	1	0	0	1
0	0	1	0	0	1	0	0	1
0	0	1	1	1	0	0	0	1
0	1	0	0	0	1	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	1	0	0	1
0	1	1	1	1	0	0	0	1
1	0	0	0	0	1	0	0	1
1	0	0	1	0	1	0	0	1

A	В	C	D	CD	\overline{CD}	AB	$AB\overline{CD}$	$\overline{AB\overline{CD}}$
1	0	1	0	0	1	0	0	1
1	0	1	1	1	0	0	0	1
1	1	0	0	0	1	1	1	0
1	1	0	1	0	1	1	1	0
1	1	1	0	0	1	1	1	0
1	1	1	1	1	0	1	0	1

A	B	C	D	\overline{A}	\overline{B}	CD	$\overline{A} + \overline{B} + CD$
0	0	0	0	1	1	0	1
0	0	0	1	1	1	0	1
0	0	1	0	1	1	0	1
0	0	1	1	1	1	1	1
0	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	1
1	0	0	0	0	1	0	1
1	0	0	1	0	1	0	1
1	0	1	0	0	1	0	1
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0

A	B	C	D	\overline{A}	\overline{B}	CD	$\overline{A} + \overline{B} + CD$
1	1	1	1	0	0	1	1