# Modeling of Power Grid Loads based on High Rate Grid Data

Andrew Miller
Alexander Dimitrov
Washington State University

#### Outline

#### Introduction:

- What is Load Modeling?
- What is Phasor Measurement Unit (PMU) data?

#### Methods:

- Nondimensionalization of PMU data
- Discrete Time model
- Least Squares
- Linear model Assumptions check
- Model ranking via AICc

#### Results:

- Linear model assumptions analysis
- Ranking via AICc
- Test data applied to load model

#### Discussion

## Introduction-Power System



#### Introduction-Motivation

#### Motivation

- Load refers to the total power demand at a particular substation
- Dynamic responses of loads critical for system stability and controls

#### Objective

 Predict power system response to perturbations of voltage/frequency through mathematical models

## Introduction-Motivation (Single Line to Ground)



## Introduction-Phasor Measurement Unit (PMU)

- Sensors that are at different locations along power system
- Measures phasors of voltages and currents
- GPS synchronized
- 60 samples/second
- ~10 years old

## Introduction- Measurement-based Load Modeling

- Mathematical relationship between **response**:
  - Real power (MW)
  - Reactive power (MVAR)

#### and **predictors**:

- Voltage (KV)
- Frequency (Hz)
- PMU data to create load model (estimate parameters)
- Useful for online monitoring

## Methods-Nondimensionalization

- Eliminates physical units (MW, KV, MVAR)
- Intrinsic properties (natural units) remain
- Intrinsic system's dynamics observed
- Given by

$$Z_{n,k} = \frac{Y_{n,k} - \widehat{\mu_k}}{\widehat{\sigma_k}},$$

#### where

 $Z_{n,k}$  K variables and n observations per variable;  $Y_{n,k}$  observed responses;  $\widehat{\mu_k}$  mean for each variable k; standard deviation for each variable k.

#### Methods-Discrete time load model

Voltage and frequency dependent model:

$$\begin{cases} \widehat{P_t} = a_1 P_{t-1} + \dots + a_n P_{t-n} + b_0 V_t + \dots + b_n V_{t-n} + c_0 F_t + \dots + c_n F_{t-n} \\ \widehat{Q_t} = d_1 Q_{t-1} + \dots + d_n Q_{t-n} + b_0 V_t + \dots + b_n V_{t-n} + c_0 F_t + \dots + c_n F_{t-n} \end{cases}$$

#### where

 $P_t$ ,  $Q_t$  Measured real and reactive power at time t, respectively;  $V_t$ ,  $F_t$  Measured voltage and frequency at time t, respectively; t-n n number of time lags;  $a_1, \ldots, a_n$  real power parameters;  $b_0, \ldots, b_n$  voltage parameters;  $c_0, \ldots, c_n$  frequency parameters.

Voltage dependent load model will also be considered

## Methods-Least Squares

Assumes that data is well represented by

$$Y_i = \sum_{j=1}^n \theta_j X_{i,j} + \varepsilon_i,$$

where

```
n number of parameters;
```

 $Y_i$   $i^{th}$  response from data;

 $X_{i,j}$  input data matrix;

 $\theta_i$  vector containing j parameters;

 $\varepsilon_i$   $i^{th}$  random error (i.i.d with  $\varepsilon \sim N(0, \sigma^2)$ )

## Methods-Least Squares

Error function to be minimized is defined in terms of variance

number of observations.

where

$$E(\theta) = \frac{1}{N} \sum_{i=1}^N (Y_i - \sum_{j=1}^n \theta_j X_{i,j})^2,$$
 vector of parameters (e.g.  $\theta = [a_1, \dots, a_n, b_0, \dots, b_n]$ );

•  $E(\theta)$  can be minimized by using optimization techniques from calculus

## Methods- Assumptions Check $\varepsilon \sim N(0, \sigma^2)$

Assumptions:

1) Normality

2) Independence

3) Homoscedasticity (constant variance)

## Methods-Assumption of Normality

• Anderson-Darling test as a quantitative assessment

• Compares f(x) to  $\widehat{f(x)}$ 

•  $H_0$ : Errors are normally distributed  $H_a$ : Errors are not normally distributed,

where we reject if P-value < 0.05

## Methods-Assumption of Normality

- QQ-Plots as a qualitative assessment
  - Theoretical vs. Actual quantiles
  - If data normally distributed, then

$$y_n = \hat{\sigma} z_n + \hat{\mu},$$

#### where

 $y_n$  observed response from data;  $\hat{\sigma}$  sample standard deviation;

 $\hat{\mu}$  sample mean;

 $z_n$  lower quantiles corresponding to  $y_n$ .



## Methods-Assumption of Independence

• Durbin-Watson test as a quantitative assessment

```
• \begin{cases} H_0: \text{ Errors are serially uncorrelated} \\ H_a: Errors \ are \ serially \ correlated \end{cases} (\varepsilon_t = \rho \varepsilon_{t-1} + \alpha_t),
```

#### where

```
reject if bootstrapped P-value < \alpha = 0.05; \rho autocorrelation parameter and |\rho| < 1; \alpha_t is i.i.d. NID(0, \sigma_{\alpha}^2) random variable.
```

## Methods-Assumption of Independence

- Autocorrelation Function (ACF)-Plots as a qualitative assessment
  - Relationship between  $\varepsilon_t$  and  $\varepsilon_{t-h}$ , for lag  $h=1,\ldots,n$
  - $r_t$  are autocorrelation coefficients given by

$$r_{t} = \frac{\sum_{i=1}^{t-h} (\varepsilon_{i} - \bar{\varepsilon})(\varepsilon_{i+h} - \bar{\varepsilon})}{\sum_{i=1}^{t} (\varepsilon_{i} - \bar{\varepsilon})^{2}}$$



where

 $\bar{\varepsilon}$  error mean;

h time series of errors having h lags.

## Methods-Assumption of Homoscedasticity

• Breusch-Pagan test as a quantitative assessment

• 
$$\begin{cases} H_0: \text{ Errors have constant variance} \\ H_a: Errors \ can \ be \ written \ as \ \varepsilon_t^2 = \alpha_0 + \alpha_1 V_{t,1} + \cdots + \alpha_p F_{t,p}, \end{cases}$$

where

$$\alpha$$
 reject if P-value <  $\alpha = 0.05$ ;  $V_{t,1}$ ,  $F_{t,p}$  Voltage and frequency.

• Fitted vs. Errors as a qualitative assessment



- Change of errors' spread around mean with fitted values
- Points  $x_i > 4\sigma$  from the mean indicate severe violation

## Methods-Akaike's Information Criterion (AIC)

- ullet Assesses discrepancy between f and g using Kullback-Leibler
- Given by

$$AIC = -2 \ln \mathcal{L}(\hat{\theta} | data)) + 2K$$

where

*K* number of parameters;

- $\hat{\theta}$  vector of parameters to be optimized.
- AICc given by

$$AICc = AIC + \frac{2K(K+1)}{n-K-1}.$$

• AICc converges to AIC as  $n \to \infty$ 

## Methods-Akaike's Information Criterion (AIC)

Candidate equations ranked using

$$\begin{cases} \Delta_{i} = AIC_{i} - AIC_{min} \\ \mathcal{L}(g_{i}|data) = e^{-0.5\Delta_{i}} \end{cases}$$

$$Evidence\ ratio = \frac{1}{e^{-0.5\Delta_{i}}},$$

where

 $g_i$  i candidate equations g;  $AIC_{min}$  best model;  $\mathcal{L}(g_i|data)$  relative likelihood of each model given the data. *i* candidate equations *g*;

 Results interpreted as "evidence is x times stronger for best model"

## **Results-Real Power**



## Results-QQ Plots for Real Power



## Results- Anderson-Darling for Real Power

| Model Order | Independent Variables | $P_t$ Test Statistic (A) | P <sub>t</sub> P-value |
|-------------|-----------------------|--------------------------|------------------------|
| n = 1       | V+F                   | 21.808                   | 2.2e-16                |
| n = 1       | V                     | 21.728                   | 2.2e-16                |
| n = 2       | V+F                   | 8.5404                   | 2.2e-16                |
| n = 2       | V                     | 7.5586                   | 2.2e-16                |
| n = 3       | V+F                   | 1.3351                   | 0.001842               |
| n = 3       | V                     | 1.1237                   | 0.006101               |
| n = 4       | V+F                   | 1.8968                   | 7.711e-05              |
| n = 4       | V                     | 1.6646                   | 0.0002858              |

## Results-Autocorrelation Function for Real Power



## Results-Durbin Watson for Real Power

#### • # of uncorrelated lags/15

| Model Order | Independent Variables | # of uncorrelated lags | Best                                 |
|-------------|-----------------------|------------------------|--------------------------------------|
| n = 1       | V+F                   | 1                      |                                      |
| n = 1       | V                     | 2                      |                                      |
| n = 2       | V+F                   | 1                      |                                      |
| n = 2       | V                     | 1                      |                                      |
| n = 3       | V+F                   | 5                      |                                      |
| n = 3       | V                     | 5                      | select as best since simplest model. |
| n = 4       | V+F                   | 5                      |                                      |
| n = 4       | V                     | 4                      |                                      |

## Results-Fitted values vs. Residuals for Real Power

#### • Third order



## Results- Breusch Pagan for Real Power

| Model Order | Independent Variables | Chi-square | P-value       |
|-------------|-----------------------|------------|---------------|
| n = 1       | V+F                   | 1424.587   | 9.543696e-312 |
| n = 1       | V                     | 1824.349   | 0             |
| n = 2       | V+F                   | 175.0876   | 5.728838e-40  |
| n = 2       | V                     | 152.4671   | 5.008834e-35  |
| n = 3       | V+F                   | 9.110667   | 0.002541231   |
| n = 3       | V                     | 5.606244   | 0.01789659    |
| n = 4       | V+F                   | 28.13365   | 1.132202e-07  |
| n = 4       | V                     | 14.74218   | 0.0001232578  |

#### Results- Conclusions for Real Power

#### Normality:

- a) QQ-Plot: 3<sup>rd</sup> and 4<sup>th</sup> order models are about the same for both V and V+F
- b) Anderson-Darling test: 3<sup>rd</sup> order voltage model is best

#### • Independence:

- a) Durbin-Watson test: no benefit gained from going beyond 3<sup>rd</sup> order voltage model
- b) ACF-Plot: agrees with the results of the DW test

#### Homoscedasticity:

- a) Breusch-Pagan test: no benefit gained from going beyond 3<sup>rd</sup> order voltage model
- b) Fitted vs. Residuals: 3<sup>rd</sup> order voltage model confirmed BP results
- Conclusion for  $P_t$ :3rd order voltage model gives optimal results and is simplest

## Results-Reactive



## Results-QQ Plots for Reactive Power



## Results-Anderson Darling for Reactive Power

| Model Order | Independent Variables | $Q_t$ Test Statistic (A) | $Q_t$ P-value |
|-------------|-----------------------|--------------------------|---------------|
| n = 1       | V+F                   | 8.8153                   | 2.2e-16       |
| n = 1       | V                     | 26.36                    | 2.2e-16       |
| n = 2       | V+F                   | 1.4725                   | 0.0008467     |
| n = 2       | V                     | 2.305                    | 7.736e-06     |
| n = 3       | V+F                   | 3.8779                   | 1.166e-09     |
| n = 3       | V                     | 5.0148                   | 2.133e-12     |
| n = 4       | V+F                   | 3.2677                   | 3.503e-08     |
| n = 4       | V                     | 3.6999                   | 3.141e-09     |

## Results-Autocorrelation for Reactive Power



#### Results-Durbin Watson for Reactive Power

#### • # of uncorrelated lags/15

| Model Order | Independent Variables | # of uncorrelated lags | Best                                 |
|-------------|-----------------------|------------------------|--------------------------------------|
| n = 1       | V+F                   | 3                      |                                      |
| n = 1       | V                     | 1                      |                                      |
| n = 2       | V+F                   | 0                      |                                      |
| n = 2       | V                     | 0                      |                                      |
| n = 3       | V+F                   | 1                      |                                      |
| n = 3       | V                     | 3                      | Select as best since simplest model. |
| n = 4       | V+F                   | 1                      |                                      |
| n = 4       | V                     | 1                      |                                      |

## Results-Fitted values vs. Residuals for Reactive Power

• Third order



## Results- Breusch Pagan for Reactive Power

| Model Order | Independent Variables | Chi-square | P-value       |
|-------------|-----------------------|------------|---------------|
| n = 1       | V+F                   | 208.4134   | 3.048111e-47  |
| n = 1       | V                     | 1008.033   | 3.22238e-221  |
| n = 2       | V+F                   | 988.6812   | 5.182923e-217 |
| n = 2       | V                     | 1551.624   | 0             |
| n = 3       | V+F                   | 622.6902   | 1.943818e-137 |
| n = 3       | V                     | 766.2074   | 1.200529e-168 |
| n = 4       | V+F                   | 2548.82    | 0             |
| n = 4       | V                     | 2903.575   | 0             |

#### Results- Conclusions for Reactive Power

#### Normality:

- a) QQ-Plot: 4th order models are about the same for both V and V+F
- b) Anderson-Darling test: states that 2<sup>nd</sup> order V+F is best

#### • Independence:

- a) Durbin-Watson test: no benefit gained from going beyond 3rd order V model
- b) ACF-Plot: agrees with the results of the DW test

#### Homoscedasticity:

- a) Breusch-Pagan test: no benefit gained from going beyond 1st order V+F model
- b) Fitted vs. Residuals: 1st order V+F model confirmed BP results
- Conclusion for  $Q_t$ : All models considered are performing poorly. 4<sup>th</sup> order V model selected based on figures from acf and QQ-plot

**Next Method** 

## AICc based Ranking

# Results-AICc based Ranking for Real Power

| Model<br>Order | Number of parameters K | Independent<br>Variables | AICc      | $\Delta_i$ | $\mathcal{L}(g_i data)$ | Evidence<br>Ratio |
|----------------|------------------------|--------------------------|-----------|------------|-------------------------|-------------------|
| n = 4          | K = 14                 | V+F                      | -19169.22 | 0.00       | 1.0                     | 1                 |
| n = 3          | K = 11                 | V+F                      | -19124.46 | 44.76021   | 1.907406e-10            | 5.242723e+0<br>9  |
| n = 4          | K = 9                  | V                        | -19103.05 | 66.17212   | 4.274713e-15            | 2.339338e+1<br>4  |
| n = 3          | K = 7                  | V                        | -19076.08 | 93.14021   | 5.954715e-21            | 1.679342e+2<br>0  |
| n = 2          | K = 8                  | V+F                      | -18640.93 | 528.29351  | 1.916556e-<br>115       | 5.217692e+1<br>14 |
| n = 2          | K = 5                  | V                        | -18619.30 | 549.91742  | 3.863226e-<br>120       | 2.588510e+1<br>19 |
| n = 1          | K = 5                  | V+F                      | -17555.56 | 1613.66177 | 0.00                    | $\infty$          |
| n = 1          | K = 3                  | V                        | -17465.17 | 1704.04749 | 0.00                    | <b>∞</b>          |

# Results-AICc based Ranking for Reactive Power

| Model<br>Order | Number of<br>Parameters K | Independent<br>Variables | AICc      | $\Delta_{m{i}}$ | $\mathcal{L}(g_i data)$ | Evidence<br>Ratio |
|----------------|---------------------------|--------------------------|-----------|-----------------|-------------------------|-------------------|
| n = 4          | K = 14                    | V+F                      | -19908.81 | 0.0000          | 1                       | 1                 |
| n = 4          | K = 9                     | V                        | -19813.68 | 95.13445        | 2.196933e-21            | 4.551801e+20      |
| n = 3          | K = 11                    | V+F                      | -18912.08 | 996.73146       | 3.651856e-217           | 2.738333e+216     |
| n = 3          | K = 7                     | V                        | -18697.87 | 1210.94449      | 1.113643e-263           | 8.979536e+262     |
| n = 2          | K = 8                     | V+F                      | -18550.95 | 1357.86493      | 1.391158e-295           | 7.188254e+294     |
| n = 2          | K = 5                     | V                        | -18341.09 | 1567.72144      | 0                       | ∞                 |
| n = 1          | K = 5                     | V+F                      | -17199.56 | 2709.25215      | 0                       | ∞                 |
| n = 1          | K = 3                     | V                        | -16720.93 | 3187.88793      | 0                       | $\infty$          |

# Results-AICc Ranking

- Correctly identifies best models
- Evidence ratio values hard to reconcile with results

#### • For $P_t$ :

- a) AICc states that the most complicated model is the best
- b) No benefit beyond 3<sup>rd</sup> order V model
- c) Conclude that AICc differences between top 4 models not significant
- d) Choose simplest model (3<sup>rd</sup> order voltage model)

#### • For $Q_t$ :

- a) AICc states that the most complicated model is the best
- b) No benefit beyond 4<sup>th</sup> order V model
- c) Conclude that AICc differences between top 2 models not significant
- d) Choose simplest model (4<sup>th</sup> order voltage model)

## Results-Final Load Model

ullet Final equations selected for  $P_t$  and  $Q_t$ 

$$\begin{cases} \widehat{P_t} = 1.49P_{t-1} - 0.67P_{t-2} + 0.18P_{t-3} + \\ 0.66V_t - 1.13V_{t-1} + 0.65V_{t-2} - 0.198V_{t-3} \end{cases}$$
 
$$\widehat{Q_t} = 1.44Q_{t-1} - 1.07Q_{t-2} + 0.73Q_{t-3} - 0.11Q_{t-4} + \\ 0.71V_t - 0.65V_{t-1} + 0.12V_{t-2} + 0.03V_{t-3} - 0.197V_{t-4} \end{cases}$$

Set of equations defines load model

# Results-Line to Line to Line (LLL) Fault



## Results-Real Power Tested on LLL Fault Data



## Results-Reactive Power Tested on LLL Fault Data



## Results-Validation of Real Power

| Model Order n | # of Parameters<br>k | Model | RMSE Train | RMSE Validation | Factor |
|---------------|----------------------|-------|------------|-----------------|--------|
| N = 2         | 8                    | V+F   | 0.0747     | 0.0776          | 1.0    |
| N = 1         | 5                    | V+F   | 0.0869     | 0.0868          | 1.0    |
| N = 3         | 7                    | V     | 0.07035    | 0.0834          | 1.2    |
| N = 3         | 11                   | V+F   | 0.0699     | 0.0845          | 1.2    |
| N = 4         | 14                   | V+F   | 0.0694     | 0.0842          | 1.2    |
| N = 1         | 3                    | V     | 0.0015     | 0.0853          | 57     |
| N = 2         | 5                    | V     | 0.0013     | 0.0777          | 60     |
| N= 4          | 9                    | V     | 0.0012     | 0.0834          | 70     |

## Results-Validation of Reactive Power

| Model Order n | # of Parameters<br>k | Model | RMSE Train | RMSE Validation | Factor |
|---------------|----------------------|-------|------------|-----------------|--------|
| N = 3         | 7                    | V     | 1.7593     | 0.0742          | 24 up  |
| N = 4         | 14                   | V+F   | 0.0625     | 0.0788          | 1.3    |
| N = 2         | 8                    | V+F   | 0.0757     | 0.1744          | 2.3    |
| N = 1         | 5                    | V+F   | 0.0914     | 0.3373          | 3.7    |
| N = 3         | 11                   | V+F   | 0.0719     | 1.6931          | 24     |
| N = 1         | 3                    | V     | 0.0016     | 1.6666          | 1023   |
| N = 2         | 5                    | V     | 0.0013     | 1.7437          | 1342   |
| N= 4          | 9                    | V     | 0.0011     | 1.7843          | 1687   |

### Discussion

Linear models capture real power acceptably

 No improvement beyond 3<sup>rd</sup> order real power linear voltage model

Reactive power not linear

 No improvement beyond 4<sup>th</sup> order reactive power linear voltage model

Congruency between statistical methods

## **Future Work**

Different model types should be explored

Different parameter estimators

Model errors

Better test data

# Results

Pairs plot of SLG data



## **AIC**

#### III.V Method 2: Akaike Information Criterion for Model Selection

In method 2 the second order Akaike Information Criterion (AICc) is used to rank a set of linear regression models. AIC assesses the discrepancy between two continuous models based on the Kullback-Leibler (K-L) distance given by

$$I(f,g) = \int f(x) \cdot \log(f(x)) \cdot dx - \int f(x) \cdot \log(g(x|\theta)) \cdot dx, \tag{20}$$

where

I(f,g) is defined as the "information loss;"

f(x) is the unknown reality with conceptually infinite parameters;

 $g(x|\theta)$  is the approximating model being compared to f(x) [20].

Now, equation 20 is nothing more than

$$I(f,g) = \mathbf{E}_f[\log(f(x))] - \mathbf{E}_f[\log(g(x|\theta))], \tag{21}$$

#### AIC

 $\mathbf{E}_f$  is the expectation with respect to the truth.

Realizing that the first term on the right-hand side of equation 21 is a constant (an unknown AIC number), equation 21 becomes

$$I(f,g) - C = -\mathbf{E}_f[\log(g(x|\theta))] \tag{22}$$

From equation 22, the problem becomes one of minimizing the right-hand side, but this term is not computable as it stands. It has been shown that when data is introduced to the derivation, the expectation of the K-L information can be estimated by

$$\mathbf{E}_{y}\mathbf{E}_{x}[\log(g(x|\hat{\theta}(y)))] = \log(\mathcal{L}(\hat{\theta}|\mathrm{data})) - K, \tag{23}$$

where

 $\theta$  is a vector of parameters;

K is the number of parameters [21].

For historical reasons, 23 is multiplied by -2. In practice, it is recommended that AICc be used due to the fact that it has a correction term for small sample sizes. AICc is given by