IMPORTANT SIGNALS CONTINUOUS TIME

Motivation

- > These signals occur frequently in nature
- They serve as basic building blocks from which we can construct many other signals
- Sinusoidal and periodic complex signals are used to describe the characteristics of many physical processes
- Constructing signals in this way will allow us to examine and understand more deeply the properties of both signals and systems

Continuous Time Unit Step Function

>A basic continuous-time signal unit step function:

$$u(t) = \begin{cases} \mathbf{0}, & t < \mathbf{0} \\ \mathbf{1}, & t > \mathbf{0} \end{cases}$$

- \triangleright Note that u(t) is discontinuous at t=0
- >The unit step function will be very important in examination of the properties of the systems

Continuous Time Unit Impulse Function

> Figure shows the CT unit impulse function

- >We can visualize an impulse as a tall, narrow, rectangular pulse of unit area
- The width of this rectangular pulse is a very small value $\varepsilon \to 0$, consequently, its height is a very large value $1/\varepsilon \to \infty$

Continuous Time Unit Impulse Function

- The unit impulse therefore can be regarded as a rectangular pulse with a width that has become infinitesimally small, a height that has become infinitely large, and an overall area that has been maintained at unity
- Thus $\delta(t) = 0$ everywhere except at t = 0, where it is undefined
- For this reason, a unit impulse is represented by the spear-like symbol
- Multiplication of a CT function $\varphi(t)$ with a unit impulse located at t = 0 results in an impulse, which is located at t = 0 and has strength $\varphi(0)$ (the value of $\varphi(t)$ at the location of the impulse)

$$\phi(t)\delta(t) = \phi(0)\delta(t)$$

Unit Impulse Function

The unit step function is the running integral of unit impulse function

$$\int_{-\infty}^{t} \delta(\tau) d\tau = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$
$$= u(t)$$

>The CT unit impulse is the first derivative of the CT unit step as:

$$\delta(t) = \frac{du(t)}{dt}$$

>Since u(t) is discontinuous at t = 0, it is not formally differentiable

Continuous Time Unit Functions

The unit step expressed as the running integral of the unit impulse

$$\delta(t) = \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Practical Continuous Time Unit Functions

- In practice, the unit step $u_{\Delta}(t)$ rises from the value 0 to the value 1 in a short-time interval of length Δ
- The unit step can be thought of as an idealisation of $u_{\Delta}(t)$ for Limit $\Delta \rightarrow 0$

 $ightharpoonup As \Delta
ightharpoonup 0$ and the derivative becomes the impulse in practical sense as shown - (Unity area)

Sinusoidal Signals

General sinusoidal signal has the form:

$$x(t) = A\cos(\omega_0 t + \phi)$$

 Where t has the unit of seconds, ω₀ has the unit of radians per second, and Φ has the unit of radians. It is common to use the relation:

$$\omega_0 = 2\pi f_0$$

Where f₀ has the units of cycles/second or Hertz

- Complex numbers are used when dealing with sinusoidal sources
- Complex Numbers represent points in a two dimensional complex plane or s-plane that are referenced to two distinct axes
- The horizontal axis is called the "real axis" while the vertical axis is called the "imaginary axis"
- The real and imaginary parts of a complex number, Z are abbreviated as Re(Z) and Im(Z), respectively

> Complex numbers shown on the complex plane

- We can use phasors to represent sinusoidal waveforms
- The amplitude and phase angle of phasors can be written in the form of a complex number
- A complex number can be represented in one of three ways:

$$ightharpoonup Z = x + jy
ightharpoonup Rectangular Form$$

$$ightharpoonup Z = A \angle \Phi$$
 » Polar Form

 $ightharpoonup Z = A e^{j\phi}$ » Exponential Form

Complex numbers in exponential form are represented as below:

$$Z = Ae^{j\phi}$$

$$Z = A(\cos\phi + j\sin\phi)$$

Euler's identity:
$$e^{\pm i\theta} = \cos\theta \pm i\sin\theta$$

The phasor will rotate as the angle φ changes

Exponential signals

$$x(t) = Ae^{at}$$

where A and a are complex numbers.

- Exponential and sinusoidal signals arise naturally in the analysis of linear systems
- Example: simple harmonic motion that you learned in physics
- There are several distinct types of exponential signals
 - A and a real
 - -A and a imaginary
 - -A and a complex (most general case)

> A and a are real

$$x(t) = e^{at}$$
, $a \in \mathbb{R}$, $e \sim 2.7182$

$$a > 0$$
; $\lim_{t \to -\infty} e^{at} = 0$;

$$a < 0$$
; $\lim_{t \to -\infty} e^{at} = \infty$

$$\lim_{t \to \infty} e^{at} = \infty ; e^{0} = 1$$
$$\lim_{t \to \infty} e^{at} = 0 ; e^{0} = 1$$

> a is imaginary

$$x(t) = Ae^{at} = A(e^a)^t$$

When a is imaginary, then Euler's equation applies:

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

 $e^{j\omega n} = \cos(\omega n) + j\sin(\omega n)$

- Since $|e^{j\omega t}|=1$, this looks like a coil in a plot of the complex plane versus time
- $\mathrm{e}^{j\omega t}$ is Periodic with fundamental period $T=\frac{2\pi}{\omega}$
- Real part is sinusoidal: $Re\{Ae^{j\omega t}\} = A\cos(\omega t)$
- Imaginary part is sinusoidal: $\operatorname{Im}\{A\mathrm{e}^{j\omega t}\}=A\sin(\omega t)$
- These signals have infinite energy, but finite (constant) average power

> a is imaginary:

$$Ae^{at}$$
, $A=1$ and $a=j$

Sinusoidal Exponential Harmonics

• In order for $e^{j\omega t}$ to be periodic with period T, we require that

$$e^{j\omega t} = e^{j\omega(t+T)} = e^{j\omega t}e^{j\omega T}$$
 for all t

• This implies $e^{j\omega T}=1$ and therefore

$$\omega T = 2\pi k$$
 where $k = 0, \pm 1, \pm 2, \dots$

- There is more than one frequency ω that satisfies the constraint x(t) = x(t+T) where $T = \frac{2\pi k}{L}$
- The **fundamental frequency** is given by k = 1:

$$\omega_0 = \frac{2\pi}{T_0}$$

• The other frequencies that satisfy this constraint are then integer multiples of ω_0

Sinusoidal Exponential Harmonics

> Example of continuous-time harmonics

Damped Complex Sinusoidal Exponentials

$$x(t) = Ae^{at}$$

- When a is complex, these become damped sinusoidal exponentials
- Let $a = \alpha + j\omega$. Then

$$x(t) = Ae^{at} = (Ae^{\alpha t}) \times e^{j\omega t}$$

 Thus, these are equivalent to multiplying an complex sinusoid by a real exponential

Damped Complex Sinusoidal Exponentials

 Ae^{at} , A = 1 and $a = \pm 0.05 + j2$

Complex:Blue Real:Red Imaginary:Green

Problem-1

> Express the sum of two complex exponentials as a product of a complex exponential and a single sinusoid:

$$x(t) = e^{j2t} + e^{j3t}$$

> Also, plot the magnitude of this signal.

END