Corrigé: L-systèmes)

Partie 1. Morphismes et L-systèmes

Question 1.1 On montre sans difficulté par récurrence sur la longueur des mots que si f est un morphisme et $u = u_1 u_2 \cdots u_n$ avec $u_i \in A$ alors $f(u) = f(u_1) f(u_2) \cdots f(u_n)$, ce qui montre que f est entièrement défini par la donnée de f(x) pour chaque lettre x de A.

Question 1.2 Si on pose $G_2 = (A_2, (b \mapsto a, a \mapsto bb), b)$ on a $S(G_2) = (b, a, bb, aa, bbbb, aaaa, \cdots) \neq S(G_1)$ mais $L(G_2) = L(G_1)$.

Question 1.3 On a S(T) = (a, ab, abba, abbabaab, abbabaabbaabbaababa, ...).

Le seul morphisme lettre-à-lettre de A_2^* dans lui-même qui soit différent de l'identité est $\iota = (a \mapsto b, b \mapsto a)$. Remarquons déjà que $\iota \circ \theta = \theta \circ \iota$: la composée de deux morphismes est un morphisme, et ces deux morphismes coïncident sur l'alphabet A_2 . Montrons alors par récurrence sur n que $\theta^{n+1}(a) = \theta^n(a) \cdot \iota(\theta^n(a))$.

- Si n = 0, $\theta(a) = ab = a.\iota(a)$ et $\theta^{0}(a) = a$.
- $-\text{ Si }n>0, \text{ supposons }\theta^n(a)=\theta^{n-1}(a).\iota(\theta^{n-1}(a)).\text{ Alors }:\theta^{n+1}(a)=\theta^n(a).\theta\circ\iota(\theta^{n-1}(a))=\theta^n(a).\iota(\theta\circ\theta^{n-1}(a))=\theta^n(a).\iota(\theta^n(a)).\theta\circ\iota(\theta^n(a))=\theta^n(a).$

De cette égalité il résulte que $|\theta^{n+1}(a)| = 2|\theta^n(a)|$ (car ι est une isométrie), puis que $|\theta^n(a)| = 2^n$.

Supposons L(T) rationnel. Puisque qu'il est de cardinal infini il existe (d'après le lemme de l'étoile) trois mots u, v, w tels que $v \neq \varepsilon$ et pour tout $n \in \mathbb{N}$, $uv^n w \in L(T)$. Mais les longueurs des mots de L(T) sont des puissances de 2, donc pour tout $n \in \mathbb{N}$ il existe $p \in \mathbb{N}$ tel que $|u| + |w| + n|v| = 2^p$.

Traduisons ce résultat pour n = 0, 1, 2: il existe $p_0 < p_1 < p_2$ tels que $|u| + |w| = 2^{p_0}$, $|u| + |w| + |v| = 2^{p_1}$ et $|u| + |w| + 2|v| = 2^{p_2}$. Alors:

$$2|v| = 2^{p_2} - 2^{p_0} = 2(2^{p_1} - 2^{p_0}) \Longrightarrow 2^{p_2 - p_0} = 2^{p_1 - p_0 + 1} - 1$$

ce qui est absurde. L(T) n'est donc pas rationnel.

Question 1.4 Posons $f = (a \mapsto ab, b \mapsto b)$. On montre aisément par récurrence sur $n \in \mathbb{N}$ que $f^n(a) = ab^n$ donc $g(f^n(a)) = a^{n+1}$ et $L(H) = \{a^{n+1} \mid n \in \mathbb{N}\} = A_1^+$.

Supposons l'existence d'un D0L-système $G = (A, g, u_0)$ tel que $L(G) = A_1^+$. Alors $a \in A$ et il existe un entier $k \in \mathbb{N}^*$ tel que $u_0 = a^k$. Mais $g(u_0) = g(a)^k \in A_1^+$ donc il existe $p \in \mathbb{N}^*$ tel que $g(a) = a^p$. On établit alors par récurrence que pour tout $n \in \mathbb{N}$, $u_n = a^{p^n k}$, soit $L(G) = \{a^{p^n k} \mid n \in \mathbb{N}\}$, ensemble qui ne peut être égal à A_1^+ .

Partie 2. Mots infinis engendrés par L-systèmes

Question 2.1 Supposons $y \neq z$, et notons x le plus long préfixe commun à y et à z. Il existe donc deux lettres distinctes a et b dans A telles que xa soit préfixe de y et xb préfixe de z.

Considérons maintenant un mot m de L strictement plus long que x (un tel mot existe car L est infini). Alors xa et m sont préfixes de y donc xa est préfixe de m, et xb et m sont préfixes de z donc xb est préfixe de m. Étant de mêmes longueurs on devrait avoir xa = xb, ce qui ne se peut. On a donc y = z.

Par ailleurs, si y est un mot infini, notons L l'ensemble de ses préfixes. Alors L est un langage infini qui engendre le mot y.

Question 2.2 Si L engendre un mot infini y, alors L est infini et pour tout couple $(u, v) \in \mathbb{L}^2$, u et v sont préfixes de y donc u est préfixe de v si $|u| \le |v|$, et v est préfixe de u si $|v| \le |u|$.

Réciproquement, supposons L infini et pour tout couple $(u,v) \in L^2$, u est préfixe de v ou v préfixe de u. Nous allons construire lettre par lettre un mot infini v puis montrer que L engendre v.

Pour tout $n \in \mathbb{N}$, on choisit un mot u_n de longueur supérieure ou égale à n (il en existe car L est infini) et on note y_n la n^e lettre de u_n . On construit ainsi un mot infini y.

Considérons maintenant un mot $v \in L$ quelconque, et v_k sa k^e lettre. Puisque u_k et v sont au moins de longueur k et que l'un est préfixe de l'autre, on a nécessairement $v_k = y_k$, ce qui prouve que v est préfixe de y. Ce mot est donc bien engendré par L.

Question 2.3 Posons $Q = (A_2, (a \mapsto ab, b \mapsto ab), ab)$. Alors $S(Q) = (ab, abab, abababab, \cdots)$ donc $L(Q) = \{(ab)^{2^n} \mid n \in \mathbb{N}^*\}$ et Q engendre le mot *q*.

Question 2.4 Si G engendre un mot infini alors (question 2.2) u_0 est préfixe de $f(u_0)$ ou $f(u_0)$ préfixe de u_0 . Supposons que cette deuxième alternative soit la bonne : il existe un mot v tel que $u_0 = f(u_0)v$. On a alors $f^n(u_0) = f^{n+1}(u_0)f(v)$ et $|f^{n+1}(u_0)| \le |f^n(u_0)|$. La suite entière $(|f^n(u_0)|)_{n \in \mathbb{N}^*}$ est positive et décroissante donc stationnaire et L(G) ne peut être infini, ce qui est absurde. On en déduit que u_0 est un préfixe (strict) de $f(u_0)$.

Réciproquement, si u_0 est un préfixe de $f(u_0)$ il existe un mot v tel que $f(u_0) = u_0v$. On établit alors par récurrence que $f^n(u_0) = u_0 v f(v) \cdots f^{n-1}(v)$ ce qui montre que $i < j \Longrightarrow f^i(u_0)$ est préfixe de $f^j(u_0)$ et permet grace à la question 2.2 d'en conclure que G engendre un mot infini.

 $\textbf{Question 2.5} \quad \text{Posons } \mathbf{K}_1 = (\mathbf{A}_3, (a \mapsto b, b \mapsto c, c \mapsto \epsilon), a). \text{ Alors } \mathbf{S}(\mathbf{K}_1) = (a, b, c, \epsilon, \epsilon, \cdots) \text{ et } \mathbf{L}(\mathbf{K}_1) = \left\{a, b, c, \epsilon\right\}. \ \mathbf{L}(\mathbf{K}_1) \text{ est fini}$ donc K₁ ne peut engendrer un mot infini.

Question 2.6 Posons $K_2 = (A_3, (a \mapsto ab, b \mapsto c, c \mapsto \varepsilon), a)$. Alors $S(K_2) = (a, ab, abc, abc, \cdots)$ et $L(K_2) = \{a, ab, abc\}$. $L(K_2)$ est fini donc K₂ n'engendre pas de mot infini.

Question 2.7 L'exemple de la question 1.1 convient : $L(G_1)$ est infini mais n'engendre pas de mot infini.

Question 2.8 Dans l'exemple de la question 2.6, les lettres b et c sont mortelles et la lettre a immortelle : pour tout $n \in \mathbb{N}$, a est préfixe de $f^n(a)$ donc $f^n(a) \neq \varepsilon$.

Supposons que $f(u_0) = u_0 v$ et que v ne contienne que des lettres mortelles. Dans ce cas, notons n_0 le plus petit entier pour

lequel, quel que soit la lettre v_k de v on ait $f^{n_0}(v_k) = \varepsilon$. Alors $f^n(v) = \varepsilon$ pour $n \ge n_0$. Mais alors $f^n(u_0) = u_0 v f(v) f^2(v) \cdots f^n(v) = u_0 v f(v) \cdots f^{n_0-1}(v)$, donc la suite $(f^n(u_0))_{n \in \mathbb{N}}$ est stationnaire et L(G) est fini.

Réciproquement, si v possède une lettre immortelle, alors pour tout $n \in \mathbb{N}$, $|f^n(v)| \ge 1$ donc $|f^n(u_0)| \ge |u_0| + n + 1$. Le langage L(G) possède des mots arbitrairement longs donc est infini.

Question 2.9 La première boucle initialise le tableau N à 0 pour tout couple $(x, y) \in A^2$ donc a un coût en $O(k^2)$. La seconde boucle parcours le mot f(y) pour toute lettre $y \in A$. À l'issue de cette boucle, N(x, y) est égal au nombre d'occurences de la lettre x dans le mot f(y), L[y] = |f(y)| et T contient toutes les lettres y telles que $f(y) = \varepsilon$. Le coût de cette seconde boucle est un $O(k + \sum_{y \in A} |f(y)|) = O(k + m)$.

Enfin, la boucle conditionnelle exploite la remarque suivante : la lettre x est mortelle si et seulement si $f(x) = \varepsilon$ ou si toutes les lettres de f(x) sont mortelles. T'est l'ensemble des lettres mortelles déjà découvertes mais non encore traitées et M l'ensemble des lettres mortelles découvertes et traitées. À chaque étape, une lettre mortelle découverte x est traitée (et transférée de T vers M): le traitement consiste à supprimer ses occurrences de tous les mots f(v) où il est présent $(L[y] \leftarrow L[y] - N[x, y])$. Si à l'issue de ce traitement il ne reste plus de lettre dans f(y) (L[y] = 0), c'est que y est une lettre mortelle (d'après la remarque donnée plus haut) et y est transférée dans T.

Puisque A est fini le nombre de lettres qui passe par T est fini donc cette boucle se termine et son coût est un $O(k^2)$. La complexité totale de cette fonction est donc un $O(k^2 + m)$.

Question 2.10 Posons $G = (A, f, u_0)$. Pour que G engendre un mot infini, il faut et il suffit que $f(u_0) = u_0 v$, où v est un mot contenant au moins une lettre immortelle (questions 2.4 et 2.8). Dans ce cas, $W(G) = u_0 v f(v) f^2(v) \cdots$. Ceci conduit à l'algorithme :

```
fonction Est-préfixe(u, v)
                                                         fonction Mot_infini(A, f, u_0, \ell)
   si |v| < |u| alors
                                                             w = f(u_0)
       retourner Faux
                                                             si non Est-préfixe(u_0, w) alors
   pour i de 0 à |u|-1 faire
                                                                 retourner ("pas de mot infini")
       si u[i] \neq v[i] alors
                                                             M = Lettres-mortelles(A, f)
          retourner Faux
                                                             v = w[|u_0|:]
   retourner Vrai
                                                             si Est-mortel(M, v) alors
                                                                 retourner ("pas de mot infini")
fonction Est-mortel(M, u)
                                                             tant que |w| < \ell faire
   pour i de 0 à |u|-1 faire
                                                                 v \leftarrow f(v)
       si u[i] ∉ M alors
                                                                 w \leftarrow w.v
          retourner Faux
                                                             retourner w[:\ell]
   retourner Vrai
```

Question 2.11 Considérons le mot infini $y = ababababab \cdots$ défini par $y_{2p} = a$ et $y_{2p+1} = b$, $p \in \mathbb{N}$. Alors $\zeta(y) = y$. Réciproquement, si z est un point fixe non trivial de ζ , considérons son préfixe de longueur $2p : u = z_0 z_1 \cdots z_{2p-2} z_{2p-1}$. Alors $\zeta(u) = abab \cdots abab$ donc $z_0 = a$, $z_1 = b$, ..., $z_{2p-2} = a$, $z_{2p-1} = b$. En procédant par récurrence sur p on prouve donc que z = y: le point fixe est unique.

Question 2.12 Les mots infinis $y = abababab \cdots$ et by sont deux points fixes non triviaux de η , mais il en existe une infinité puisque pour tout $n \in \mathbb{N}$, $b^n y$ est un point fixe non trivial de η .

Question 2.13 Soit y un point fixe non trivial d'un morphisme non effaçant f. Il existe au moins une lettre x de y telle que $f(x) \neq x$; considérons celle d'indice minimal ainsi que le plus petit préfixe dans lequel cette lettre apparaît. Ce préfixe s'écrit $u_0 = sx$ avec f(s) = s.

On a $f(u_0) = sf(x)$, et puisque f est non effaçant, $|f(u_0)| \ge |u_0|$. On en déduit que u_0 est préfixe de $f(u_0)$, donc que f(x) est préfixe de $f(u_0)$, avec $f(u_0) = u_0 v$.

Puisque f est non effaçant, toutes les lettres sont immortelles, et d'après 2.4 et 2.8 le D0L (A, f, u_0) engendre un mot infini. Enfin, puisque u_0 est préfixe de y, $f(u_0)$ est préfixe de f(y) = y, et plus généralement on prouve par récurrence sur $n \in \mathbb{N}$ que $f^n(u_0)$ est préfixe de y et donc que (A, f, u_0) engendre y.

Si de plus on a $f(x) \neq x$ pour tout $x \in A$, alors $s = \varepsilon$ et $u_0 = x$ donc le D0L-système qui engendre y est de la forme (A, f, x) avec $x \in A$; il y en a au plus card A, donc au plus card A points fixes non triviaux.

Question 2.14 Le D0L-système trouvé à la question 2.3 engendre le mot périodique *abababab* · · · qui est aussi ultimement périodique.

Considérons maintenant un mot infini ultimement périodique $y \in A^{\mathbb{N}}$, et $i_0 \ge 0$ et $p \ge 1$ tels que $y_i = y_{i+p}$ pour $i \ge i_0$. On définit un HD0L-système $(A_2, (a \mapsto ab, b \mapsto b), a, A, g)$ en posant $g(a) = y_0y_1 \cdots y_{i_0-1}$ et $g(b) = y_{i_0}y_{i_0+1} \cdots y_{i_0+p-1}$, et ce système engendre y.

Question 2.15 On a T = $(A_2, (a \mapsto ab, b \mapsto ba), a)$ donc $u_0 = a$ et $\theta(u_0) = ab$. u_0 est préfixe de $\theta(u_0)$ et b est une lettre immortelle car θ est non-effaçant donc T engendre un mot infini t (questions 2.4 et 2.8).

À la question 1.3 nous avons montré que $\theta^{n+1}(a) = \theta^n(a)$. $\iota(\theta^n(a))$ et que $|\theta^n(a)| = 2^n$. Pour tout $k \in \mathbb{N}$ il existe un unique entier n tel que $2^n \le k < 2^{n+1}$, et donc $t_k = \iota(t_{k-2^n})$.

Considérons alors la décomposition de k en base $2: k = (b_n b_{n-1} \cdots b_1 b_0)_2$ et notons p le nombre de bits égaux à 1. Alors

$$t_k = \iota^k(a) = \begin{cases} a & \text{si } p \text{ est pair} \\ b & \text{si } p \text{ est impair} \end{cases}$$

Supposons que t soit ultimement périodique, et considérons i_0 et p tel que $i \ge i_0 \Rightarrow t_{i+p} = t_i$.

Si la décomposition de p en base 2 comporte un nombre impair de 1, choisissons $i = 2^n$ supérieur à i_0 tel que $2^n > p$. Alors $t_i = b$ et $t_{i+p} = a$, ce qui est absurde.

Si la décomposition de p en base 2 comporte un nombre pair de 1, choisissons $i = 2^n + 2^k$ avec $2^n \ge i_0$ et k choisi tel que $2^{k-1} (de sorte que <math>p$ et 2^k aient le même bit de poids fort). Alors $t_i = a$ et $t_{i+p} = b$, ce qui est absurde.

Question 2.16 Notons déjà que (A_3, μ, a) engendre bien un mot infini $(u_0 = a \text{ est préfixe de } f(u_0) = abc \text{ et } v = bc \text{ comporte deux lettres éternelles})$. Notons $y = av\mu(v)\mu^2(v)\cdots$ ce mot.

Le HD0L-système T' engendre donc le mot infini $\psi(y) = \psi(a).\psi(v).\psi \circ \mu(v).\psi \circ \mu^2(v)\cdots$

On a $\psi \circ \mu = (a \mapsto abbaba, b \mapsto abba, c \mapsto ab) = \theta \circ \psi$ donc $\psi(y) = \psi(a).\psi(v).\theta \circ \psi(v).\theta^2 \circ \psi(v)... = abb.\psi(v).\theta \circ \psi(v).\theta^2 \circ \psi(v)...$ Sachant que $\theta(abb) = abbaba = abb.\psi(v)$, on a $\theta(\psi(y)) = \psi(y)$. Le mot infini $\psi(y)$ est donc un point fixe non trivial de θ et d'après la question 2.13, il est engendré par le D0L-système (A_2, θ, a) . Il est donc égal à t.

Question 2.17 G_m engendre un mot infini donc $f^m(u_0) = u_0 v$ et $W(G_m) = u_0 v f^m(v) f^{2m}(v) \cdots$.

Pour tout $k \in \mathbb{N}^*$, $f^{km}(u_0) = u_0 v f^m(v) f^{2m}(v) \cdots f^{(k-1)m}(v)$ donc G_{km} engendre un mot infini, et $W(G_{km}) = W(G_m)$ (car $L(G_{km})$ est une suite extraite de $L(G_m)$).

De même, pour tout $k \in \mathbb{N}^*$, $W(G_{kn}) = W(G_n)$, et en particulier, $W(G_m) = W(G_{mn}) = W(G_n)$.

Partie 3. Hiérarchie

Partie 4. Mots sans carré, mots sans cube

Question 4.1 Observons que si u est un mot sans carré, tous ses préfixes sont aussi sans carré. Partant de cette remarque, et puisque les mots à deux lettres et sans carré dans A_2^* sont ab et ba, les mots à trois lettres et sans carré doivent avoir

pour préfixe l'un de ces deux mots : seuls *aba* et *bab* conviennent. Observons maintenant les mots à quatre lettres dont l'un de ses deux mots est préfixe. Il y en a quatre : *abaa*, *abab*, *baba*, *babb*, mais tous les quatre contiennent un carré. Il ne peut donc y avoir de mot sans carré de longueur supérieure à 3, et $E^2(A) = \{\varepsilon, a, b, ab, ba, aba, bab\}$.

Question 4.2 Posons $w = w_0 w_1 \cdots w_{n-1}$. Alors w est sans carré si et seulement si pour tout i et j vérifiant $0 \le i < j$ et $2j - i \le n$ on a $w_i w_{i+1} \cdots w_{j-1} \ne w_j w_{j+1} \cdots w_{2j-i-1}$. D'où l'algorithme :

```
fonction Sans-carré(w)
n \leftarrow |w|
pour i de 0 à n-2 faire
pour j de i+1 à \lfloor (n+i)/2 \rfloor faire
k \leftarrow 0
tant que k < j-i and w[i+k] = w[j+k] faire
k \leftarrow k+1
si k=j-i alors retourner Faux
retourner Vrai
```

On peut majorer le nombre de comparaisons entre caractères individuels par :

$$\sum_{i=0}^{n-2} \sum_{j=i+1}^{\lfloor (n+i)/2\rfloor} (j-i) = \sum_{i=0}^{n-2} \sum_{j=1}^{\lfloor (n-i)/2\rfloor} j \leq \sum_{i=0}^{n-2} \frac{\frac{(n-i)}{2} (\frac{n-i}{2}+1)}{2} = \sum_{i=0}^{n-2} \frac{(n-i)(n-i+2)}{8} = O(n^3).$$

Question 4.3 L'indication suggère une démarche récursive : si S_i désigne l'ensemble des mots sans carré de longueur i, on obtient S_{i+1} en adjoignant aux mots w de S_i une lettre $x \in A$ à condition que wx soit sans suffixe carré. Écrivons tout d'abord une fonction qui teste ce dernier point. Un suffixe carré s'écrit $w_i \cdots w_{j-1} w_j \cdots w_{n-1}$ avec $w_i \cdots w_{j-1} = 1$

 $w_j \cdots w_{n-1}$ ce qui impose j-i=n-j soit i=2j-n. D'où la fonction :

```
fonction Sans-suffixe-carré(w)
n \leftarrow |w|
pour j de \lceil n/2 \rceil à n-1 faire
i \leftarrow 2j-n
k \leftarrow 0
tant que k < j-i and w[i+k] = w[j+k] faire
k \leftarrow k+1
si k = j-i alors retourner Faux
retourner Vrai
```

Le coût de cette fonction est en $O(n^2)$ avec n = |w|.

On génère alors la liste des mots sans carré de longueur inférieure ou égale à ℓ en procédant ainsi :

```
fonction Mots-sans-carré(A, \ell)
L \leftarrow A, S \leftarrow A
pour i de 2 à \ell faire
S' \leftarrow \emptyset
pour w \in S faire
pour x \in A faire
si Sans-suffixe-carré(wx) alors
S' \leftarrow S' \cup \{wx\}
S \leftarrow S'
L \leftarrow L \cup S
retourner L
```

Le coût de cette fonction est : $\sum_{i=2}^{\ell} k|S_i| \times O(i^2) = k \sum_{i=2}^{\ell} |S_i| \times O(\ell^2) = O(km\ell^2).$

Question 4.4 Soient u et v deux mots tels que $\mu(u) = \mu(v)$, et w le plus long préfixe commun à ces deux mots. On pose u = wu' et v = wv'. Alors $\mu(u') = \mu(v')$.

- Si $u' = \varepsilon$ alors $\mu(v') = \varepsilon$ et puisque μ est non effaçant, $v' = \varepsilon$ et u = v.
- Si $v' = \varepsilon$ le raisonnement est identique.
- Sinon on peut écrire u' = xu'' et v' = yv'' où x et y sont deux lettres quelconques. Nécessairement x = a et y = b (ou le contraire) car seuls $\mu(a)$ et $\mu(b)$ débutent par la même lettre, mais alors $\mu(u') = abc \cdots$ et $\mu(v') = ac \cdots$, ce qui est absurde.

On en déduit que µ est injectif.

Question 4.5 Notons qu'aucun des facteurs interdits n'est présent dans $\mu(a)$, $\mu(b)$ et $\mu(c)$ donc si l'un d'eux est présent dans $\mu(w)$ c'est qu'il est facteur de l'image de deux ou trois lettres consécutives de w. Il reste à les passer en revue pour vérifier qu'aucun ne contient de facteur interdit :

```
\mu(abc) = abcacb, \mu(aca) = abcbabc, \mu(acb) = abcbac, \mu(bab) = acabcac, \mu(bac) = acabcb

\mu(bca) = acbabc, \mu(bcb) = acbac, \mu(cab) = babcac, \mu(cac) = babcb, \mu(cba) = bacabc
```

Aucun de ces mots ne contient de facteur interdit, donc $w \in V \Longrightarrow \mu(w) \in V$.

Question 4.6 Posons $w = w_0 w_1 \cdots w_{n-1}$ et considérons l'entier i maximal et l'entier j minimal tel que v soit facteur de $\mu(w_i) \cdots \mu(w_i)$. On a i < j car $w \neq b$.

- Si v est préfixe de $\mu(w_i)\cdots\mu(w_j)$ on pose $x=\varepsilon$, sinon $\mu(w_i)=abc$ ou ac ($\mu(w_i)=b$ est impossible car i est maximal) et suivant les cas on pose x=bc ou x=c.
- Si v est suffixe de $\mu(w_i)\cdots\mu(w_j)$ on pose $z=\varepsilon$, sinon $\mu(w_j)=abc$ ou ac (car j est minimal) et suivant les cas on pose z=ab ou z=a.

Dans tous les cas on a alors $v = x\mu(w_{i+1})\cdots\mu(w_{i-1})z$ et il reste à poser $y = w_{i+1}\cdots w_{i-1}$ pour avoir $v = x\mu(y)z$.

Supposons maintenant qu'une autre décomposition $v = x'\mu(y')z'$ soit possible.

Si |x| < |x'| alors x est préfixe de x' donc x' = xu avec $u \in c$, bc et u est préfixe de f(y) ou de z, ce qui n'est pas possible. Pour les mêmes raisons on ne peut avoir |x'| < |x|, donc x = x'.

En tenant le même raisonnement on prouve qu'on a aussi z=z' et donc $\mu(y)=\mu(y')$. Mais μ est injectif (question 4.4) donc y=y', ce qui assure l'unicité de la décomposition.

Question 4.7 Supposons qu'il existe $v \neq \varepsilon$ tel que vv soit facteur de $\mu(w)$.

Si on a v = b la question 4.6 appliquée à vv nous permet d'écrire $bb = x\mu(y)z$ avec nécessairement $x = z = \varepsilon$ et donc y = cc, ce qui prouve que w contient le facteur carré cc.

Si $v \neq b$ on peut appliquer la question 4.6 à v et écrire $v = x\mu(y)z$. On a alors $vv = x\mu(y)zx\mu(y)z$.

Envisageons les neuf cas possibles pour le couple (x, z):

- Si $x = z = \varepsilon$ alors $vv = \mu(y)\mu(y)$ et w contient le facteur carré yy.
- Si $x = \varepsilon$ et z = a alors $vv = \mu(y)a\mu(y)a$ et $\mu(y)$ doit débuter par bc ou par c, ce qui est impossible.
- Si $x = \varepsilon$ et z = ab alors $vv = \mu(y)ab\mu(y)ab$ et $\mu(y)$ doit débuter par un c, ce qui est impossible.
- Si x = c et $z = \varepsilon$ alors $vv = c\mu(y)c\mu(y)$ et $\mu(y)$ doit finir par ab ou par a, ce qui est impossible.
- Si x = c et z = a alors $vv = c\mu(y)ac\mu(y)a = c\mu(yby)a$. Nécessairement, le facteur yby de w doit être précédé d'un a ou d'un b et suivi d'un a ou d'un b, ce qui laisse quatre possibilités : aybya, aybyb, bybya, bybyb, les trois dernières contenant un carré (yb ou by).
- Si x = c et z = ab alors $vv = c\mu(y)abc\mu(y)ab = c\mu(yay)ab$. Le facteur yay de w doit être précédé d'un a ou d'un b et suivi d'un a, ce qui laisse deux possibilités : ayaya et byaya qui toutes deux contiennent un carré.
- Si x = bc et $z = \varepsilon$ alors $vv = bc\mu(y)bc\mu(y)$ et $\mu(y)$ doit terminer par un a, ce qui est impossible.
- Si x = bc et z = a alors $vv = bc\mu(y)abc\mu(y)a = bc\mu(yay)a$. Le facteur yay doit être précédé d'un a et suivi d'un a ou d'un a, ce qui laisse deux possibilités : ayaya et ayayb qui toutes deux contiennent un carré.
- Si x = bc et z = ab alors $vv = bc\mu(y)abbc\mu(y)ab$ et bb est facteur de $\mu(w)$, situation déjà traitée au début de cette question.

En définitive, dans tous les cas nous avons mis en évidence la présence d'un carré dans w ou d'un facteur de la forme aybya.

Question 4.8 Supposons qu'un mot v de V contienne un facteur aybya.

Il ne contient pas le facteur aba donc $y \neq \varepsilon$. Il ne contient pas le facteur bb donc y commence et termine par a ou c. Mais il ne contient pas non plus le facteur aa dont y ne peut que commencer et terminer par c. Mais alors cbc est facteur de v, ce qui est absurde. V ne contient donc aucun facteur de la forme aybya.

Question 4.9 Soit $w \in V$ sans facteur carré. D'après la question précédente il ne contient pas non plus de facteur de la forme *aybya* donc d'après la question 4.7, $\mu(w)$ ne contient pas de carré. Mais d'après la question 4.5 on a aussi $\mu(w) \in V$, donc $\mu(w) \in V \cap E^2(A_3)$ et nous avons prouvé que $\mu(V \cap E^2(A_3)) \subset V \cap E^2(A_3)$.

Posons alors $G = (A_3, \mu, a)$. L(G) est infini par $\mu(a) = abc$ et b et c sont immortelles, et puisque $a \in V \cap E^2(A_3)$ on prouve par récurrence que pour tout $n \in \mathbb{N}$, $\mu^n(a) \in V \cap E^2(A_3)$, ce qui implique $L(G) \subset E^2(A_3)$. Il y a donc une infinité de mots sans facteur carré dans A_3^* .

Question 4.10 On peut observer que s'il existe un mot *w* sans carré indéfiniment prolongeable, tous ses prolongements sans carré *uwv* sont aussi indéfiniment prolongeables; il nous suffit donc d'en trouver un.

Considérons le mot a. Nous avons montré à la question précédente que pour tout $n \in \mathbb{N}$, $\mu^n(a) \in \mathbb{E}^2(A_3)$. Par ailleurs il est facile d'établir par récurrence que pour tout $n \ge 2$ il existe deux mots w_1 et w_2 tels que $\mu^n(a) = aw_1aw_2$ avec $|w_1| \ge n$ et $|w_2| \ge n$. Ce mot est sans facteur carré, et en choisissant $n \ge \ell$ et en prenant pour u le suffixe de longueur ℓ de w_1 et pour v le préfixe de longueur ℓ de w_2 on construit un mot uav sans facteur carré, ce qui prouve que a est indéfiniment prolongeable.

J'ai trouvé un mot sans facteur carré et non prolongeable : w = babcbab. Puisqu'il appartient à $V \cap E^2(A_3)$ on peut affirmer que pour tout $n \in \mathbb{N}$, $\mu^n(w)$ est sans facteur carré. Le mot $\mu(w) = acabcacbacabcac$ est lui-aussi non prolongeable, mais malheureusement $\mu^2(w)$ (ainsi que les puissances suivantes) est prolongeable. En revanche, le mot $u = c\mu^2(w)a$ est sans facteur carré et non prolongeable, et j'ai vérifié (à l'aide d'un programme) que pour tout $n \in [1,16]$, $\mu^n(u)$ est sans carré et non prolongeable. Est-ce généralisable pour tout $n \in \mathbb{N}$? Je n'ai pas réussi à le prouver.

Question 4.11 Notons y le mot infini engendré par (A_3, μ, a) . Nous avons vu aux deux questions précédentes que y est un mot sans facteur carré et à la question 2.16 que $t = \psi(y)$.

Supposons que t contienne un cube, c'est-à-dire un facteur vvv avec $v \neq \varepsilon$. Il existe donc $n \in \mathbb{N}$ tel que vvv soit facteur de $\theta^n(a)$. Mais $\theta^{n+1}(a) = \theta^n(a)$. $\iota(\theta^n(a))$ donc $\iota(vvv)$ est facteur de $\theta^{n+1}(a)$ et donc de t. Quitte à remplacer vvv par $\iota(vvv)$ on peut donc supposer que v débute par un a.

Observons maintenant les valeurs de ψ : $\psi(a) = abb$, $\psi(b) = ab$ et $\psi(c) = a$. La lettre a est uniquement présente en tête de l'image d'une lettre, donc chaque v est préfixe d'un facteur de y, et plus précisément chacun des deux premiers v est l'image d'un facteur de y: il existe un facteur u_1u_2 de y tel que $\psi(u_1) = \psi(u_2) = v$. Or on peut prouver comme en 4.4 que ψ est injectif et alors $u_1 = u_2$, ce qui prouve que y possède un facteur carré. Or ceci est absurde, donc t ne contient pas de cube.