Deep Learning-Based Quality Inspection in Additive Manufacturing

Wenyuan Cui, Frank Liou

Laser-Aided Manufacturing Processes,
Department of Mechanical and Aerospace Engineering,
Missouri University of Science and Technology, Rolla, 65409

Additive Manufacturing

Laser metal deposition (LMD) process

- Layer-by-layer fabrication
- Powder feedstock
- Dissimilar materials welding

Additive Manufacturing

AM market

\$21.5 B revenue in 2025 (Frost & Sullivan)

Variability of AM process

 Laser power, scan speed, powder feed rate, beam size

Typical defects

Crack, gas porosity, lack of fusion

LMD process window, energy mass density vs. energy area density

Deep Learning-based Method

Neural network

- Massive datasets available
- Strong computation power
- Sophisticated algorithm architecture

Dataset

ISSOURI

Samples fabricated by LMD at Missouri S&T

- AISI 304 stainless steel, Ti6Al4V, Inconel 718 alloy, AlCoCrFeNi HEA
- Prepared by standard metallurgical procedure
- Image size of 224 × 224 pixels

Convolutional Neural Network Architecture

Softmax function:

$$L(\omega) = \sum_{m=1}^{M} \underbrace{\sum_{v=1}^{C} y_{m} \, \overline{y}_{m}^{c} | Y_{m}^{c} | Y_{m}^{c}}_{c=1} \underbrace{\exp(V_{c})}_{c=1} \underbrace{\exp(V_{c})}_{c=1}}_{exp(V_{c})}$$
 where $P(y_{m} = c | X_{m})$ is the predicted probability of a sample X_{m} being class c .

Evaluation of CNN Architecture

Six representative CNN models

- Increasing number of conv. Layers
- Val. accuracy improves from 74.6% to 83.8%
- Overfitting

Epoch = 30, learning rate = 1e-4

Model#	Architecture	Time (h:m:s)	Val. Acc.%
1	C 3×3/8, C 3×3/16, FC 64	0:4:30	74.6
2	C 5×5/8, C 5×5/16, FC 64	0:4:46	76.7
3	C 3×3/16, C 3×3/32, C 3×3/64, FC 256, FC 64	0:4:37	79.5
4	C 5×5/16, C 5×5/32, C 5×5/64, FC 256, FC 64	0:4:45	80.1
5	C 3×3/32, C 3×3/64, C 3×3/128, FC 512, FC 64	0:5:43	82.5
6	C 5×5/32, C 5×5/64, C 5×5/128, FC 512, FC 64	0:6:31	83.8

Model 6

Epoch

Impact of Data Augmentation

- Val. accuracy improve up to 5.6%
- Takes 5 minutes 13 seconds longer for training

Origin image

Rotation

Horizontal flipping

Random crop

Adding Gaussian noise

Adding blur

Epoch = 30, learning rate = 1e-4

Model #	Time (h:m:s)	Val. Acc.%
3	0:10:39	81.2
4	0:10:11	85.7
5	0:10:37	86.7
6	0:11:05	87.3

Regularization

- L2 regularization: apply a weight penalty
- Dropout: randomly drop units

Epoch = 30, learning rate = 1e-4

Model #	Architecture	L2	Dropout	Time (h:m:s)	Val. Acc. (%)
7	C 3×3/32, C 3×3/64, C 3×3/128, FC 512, FC 64	Y(1e-5) N	Y(0.25) Y(0.25)	0:10:43	84.4
8		Y(1e-5) Y(1e-5)	Y(0.25) Y(0.25)	0:11:05	82.5
9		Y(1e-5) Y(1e-5)	N N	0:10:47	77.6
10		N N	Y(0.25) Y(0.25)	0:10:56	81.2
11	C 5×5/32,	Y(1e-5) N	Y(0.25) Y(0.25)	0:10:24	88.7
12	C 5×5/64,	Y(1e-5) Y(1e-5)	Y(0.25) Y(0.25)	0:10:29	87.5
13	C 5×5/128,	Y(1e-5) Y(1e-5)	N N	0:10:17	73.2
14	FC 512, FC 64	N N	Y(0.25) Y(0.25)	0:10:10	87.8

Fine Tuning

Epoch = 300, learning rate = 1e-4

Dropout: Y(0.25)|Y(0.25), time: 1 h 46 m, val. accuracy=94.3% MISSOURI

Architecture

C 5×5/32, C 5×5/64, C 5×5/128, FC 512, FC 64

Performance Evaluation

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = TP/(FN + TP)$$

$$F\ score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

True positive (TP); False positive (FP); False negative (FN)

Alloys	Good	Lack of Fusion	Crack	Gas Porosity
AlCoCrFeNi alloy	93.1%	91.2%	94.9%	88.5%
Ti-6Al-4V	95.1%	88.7%	93.7%	88.3%
AISI 304 stainless steel	96.4%	89.3%	94.8%	90.4%

Class	Precision	Recall	F Score
Crack	0.94	0.95	0.945
Gas porosity	0.91	0.87	0.891
Good quality	0.96	0.94	0.949
Lack of fusion	0.88	0.92	0.901

Accuracy : 92.1%

Detection time: 8.01 milliseconds

Feature Visualization

Feature maps

Feature Visualization

Attention maps

- Obtain through a back-propagation method
- Reveal which part of the AM build parts attracts the network's attention

AM build parts

Attention maps

Failure Case Study

Misclassification

- Black: correct, red: incorrect classification
- High similarity between the gas porosity and lack of fusion

Gas - Good

Gas - LoF

Gas - LoF

Conclusions

Development of a neural network towards anomaly detection

- Tradition inspection relies on manual recognition, bias and timeconsuming
- A convolutional neural network was developed to detect the four types of defects in additive manufactured products. With the data augmentation and regularization strategies, the detection accuracy improved from 74% to 92%, with 8 milliseconds recognition time of a single piece

