Project Report: FaceDetection using Viola-Jones(VJ) Algorithm

1. Introduction

This project aims to implement and evaluate a real-time face detection system using the Viola-Jones (VJ) algorithm. The project is developed as part of the **Digital Image Processing Design** course at **Inha University**. Our objective is to create an efficient face detector using OpenCV and Haar features.

2. Project Details

• University: Inha University

Department: SGCS

Major: Integrated System Engineering (ISE)

• Course: Digital Image Processing Design [202402-ISE4131-001]

Professor: Kakani Vijay

• Project Title: Face Detection using Viola-Jones (VJ) Algorithm

• Team: KBM

Team Members

• Team Lead: Shukrullo Meliboev

• Student ID: 12225261

• Team Member: Arsen Baktybek uulu

• Student ID: 12225262

• Team Member: Asadbek Kiyomov

o Student ID: 12225264

3. Objectives

- · To practice programming the VJ algorithm using OpenCV.
- To utilize Haar features to accurately detect faces.

 To evaluate the performance of the face detector by analyzing maximum and minimum detectable face sizes, as well as detection speed.

4. Methodology

4.1 Training

- Cascade Classifier: The face detection model is trained using a combination of public datasets and a self-made dataset that includes images of team members under various orientations, scales, and lighting conditions.
- Data and Resources:
 - <u>Training Data Link (https://drive.google.com/drive/folders/1eKAg2KUzV6aSoDvpSEWK06y1WKEOHQiC?usp=sharing)</u> Contains datasets used for training and testing.

4.2 Testing and Evaluation

- Image Size: 1024 x 768 pixels.
- Evaluation Metrics:
 - Minimum detectable face size.
 - Maximum detectable face size.
 - o Average detection time per image and per face.

5. Results

Minimum and Maximum Detectable Face Sizes

The face detection script (source.py) was run, and the results for minimum and maximum detectable face sizes were captured in real-time. The detected sizes are as follows:

- Minimum Detectable Size: 30 x 30 pixels
- Maximum Detected Size:

Example 1: 283 x 353 pixelsExample 2: 344 x 429 pixels

Captured Images

Max Detected Size: 283x353 pixels

Min Detected Size: 344x429 pixels

Average Detection Time

• Per Image: 0.0213 seconds

• Per Image Per Face: 0.01 seconds

6. Discussion

Observations

• Performance Analysis:

- The VJ algorithm is capable of detecting faces in real-time with a reasonable level of accuracy for different face sizes.
- The results indicate that the face detector can successfully detect faces within a range of sizes, with the smallest detectable size being 30 x 30 pixels.

Challenges and Limitations

- The accuracy of detection may vary depending on the presence of factors like:
 - Viewpoint variation
 - Deformation
 - Occlusion
 - Illumination changes

- Cluttered or textured backgrounds
- o Intra-class variation

Further analysis will be conducted to evaluate the detector's performance under these conditions.

7. Future Work

- Performance Optimization: Test the model under different lighting and orientation conditions to optimize its accuracy.
- Additional Evaluations: Determine the average detection time per image and per face to assess real-time
 efficiency
- Complete Documentation: Update this report with a thorough analysis of detection challenges.

8. Project Demonstration

- Demo Video: A demonstration video showcasing the face detection process and results is available here:
 - Video Link (https://drive.google.com/file/d/1uPG95scLV3zaYdYxJ_S2bBMrVD29NFVn/view? usp=drive_link)

9. References

- · OpenCV Documentation
- Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. Proceedings
 of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.