FEA-RP/USP

Monitor: Fábio Hideki Nishida

Lista Teórica - Capítulo 2 de Wooldridge (2006) - versão 2

Exercício 1 (Wooldridge, 2006, Exercício 2.1). Seja filhos o número de filhos de uma mulher e educ os anos de educação da mulher. Um modelo simples que relaciona a fertilidade a anos de educação é

$$filhos = \beta_0 + \beta_1 educ + u,$$

em que u é um erro não observável.

- a) Que tipos de fatores estão contidos em u? E provável que eles estejam correlacionados com o nível de educação?
- b) Uma análise de regressão simples mostrará o efeito ceteris paribus da educação sobre a fertilidade? Explique.

Exercício 2 (Wooldridge, 2006, Exercício 2.3). A tabela seguinte contém as variáveis nmgrad (nota média em curso superior nos Estados Unidos) e tac (nota do teste de avaliação de conhecimentos para ingresso em curso superior nos Estados Unidos) com as notas hipotéticas de oito estudantes de curso superior. A nota nmgrad está baseada em uma escala de quatro pontos e foi arredondada para um dígito após o ponto decimal. A nota tac baseia-se em uma escala de 36 pontos e foi arredondada para um número inteiro.

Estudante	nmgrad	tac
1	2,8	21
2	3,4	24
3	3,0	26
4	3,5	27
. 5	3,6	29
6	3,0	25
7	2,7	25
8	3,7	30

a) Estime a relação entre nmgrad e tac usando MQO; isto é, obtenha as estimativas de intercepto e de inclinação da equação

$$\widehat{nmgrad} = \hat{\beta}_0 + \hat{\beta}_1 tac$$

Comente a direção da relação. O intercepto tem uma interpretação útil aqui? Explique. Qual deveria ser o valor previsto de nmgrad se a nota tac aumentasse em cinco pontos?

- b) Calcule os valores estimados e os resíduos de cada observação e verifique que a soma dos resíduos é (aproximadamente) zero.
- c) Qual \acute{e} o valor previsto de **nmgmd** quando tac = 20?
- d) Quanto da variação de nmgrad dos 8 estudantes é explicada por tac? Explique.

Exercício 3 (Wooldridge, 2006, Exercício 2.6). Usando dados de casas vendidas em 1988 em Andover, Massachusetts [Kiel e McClain (1995)], a equação seguinte relaciona os preços das casas (preço) à distância de um incinerador de lixo recentemente construído (dist):

$$\widehat{\log(preco)} = 9,40 + 0,312 \log(dist)$$

 $n = 135, \quad R^2 = 0,162$

- a) Interprete o coeficiente de log(dist). O sinal dessa estimativa é o que você esperava?
- b) Você considera que a regressão simples oferece um estimador não-viesado da elasticidade ceteris paribus de preço em relação a dist? (Pense na decisão da cidade sobre onde colocar o incinerador.)
- c) Quais outros fatores relativos a casas afetam seu preço? Eles poderiam estar correlacionados com a distância do incinerador?

Exercício 4 (Wooldridge, 2006, Exercício 2.8). Considere o modelo de regressão simples padrão $y = \beta_0 + \beta_1 x + u$, sob as hipóteses RLS.1 a RLS.4. Os estimadores usuais $\hat{\beta}_0$ e $\hat{\beta}_1$, são não-viesados para seus respectivos parâmetros populacionais. Seja $\tilde{\beta}_1$, o estimador de β_1 obtido ao assumir que o intercepto é zero (veja a Seção 2.6).

- a) Encontre $E(\tilde{\beta}_1)$ em termos de x_i, β_0 e β_1 . Verifique que $\tilde{\beta}_1$ é não-viesado para β_1 , quando o intercepto populacional é zero ($\beta_0 = 0$). Há outros casos em que $\tilde{\beta}_1$ é não-viesado?
- b) Encontre a variância de $\tilde{\beta}_1$ [Sugestão: a variância não depende de β_0].
- c) Mostre que $Var(\tilde{\beta}_1) \leq Var(\hat{\beta}_1)$. [Sugestão: para qualquer amostra de dados, $\sum_{i=1}^n x_i^2 \geq \sum_{i=1}^n (x_i \bar{x})^2$, com a desigualdade estrita preponderando, a não ser que $\bar{x} = 0$].
- d) Comente a relação entre viés e variância, ao escolher entre $\hat{\beta}_1$ e $\tilde{\beta}_1$.

Exercício 5 (Wooldridge, 2006, Exercício 2.7). Considere a função de poupança

$$poup = \beta_0 + \beta_1 rend + u, \qquad u = \sqrt{rend.e},$$

em que \mathbf{e} é uma variável aleatória com E(e)=0 e $Var(e)=\sigma_e^2$. Assuma que \mathbf{e} é independente de \mathbf{rend} .

- a) Mostre que E(u|rend) = 0, de modo que a hipótese de média condicional zero (hipótese RLS.3) é satisfeita. [Sugestão: se **e** é independente de **rend**, então E(e|rend) = E(e)].
- b) Mostre que $Var(u|rend) = \sigma_e^2$ rend, de modo que a hipótese de homocedasticidade RLS.5 é violada. Em particular, a variância de poup aumenta com rend. [Sugestão: Var(e|rend) = Var(e), pois e e rend são independentes].
- c) Faça um discussão que sustente a hipótese de que a variância da poupança aumenta com a renda da família.