Feedback — Week 1 Quiz

Help

Thank you. Your submission for this quiz was received.

You submitted this quiz on Sat 10 Jan 2015 9:22 PM PST. You got a score of 20.00 out of 20.00.

Introduction

This first quiz will check your ability to execute basic operations on objects in R and to understand some basic concepts. For questions 11–20 you will need to load a dataset into R and do some basic manipulations in order to answer the questions on the quiz.

You may want to print a copy of the quiz questions to look at as you work on the assignment. It is recommended that you save your answers as you go in the event that a technical problem should occur with your network connection or computer. Ultimately, you must submit the quiz online to get credit!

Data

The zip file containing the data for questions 11–20 in this Quiz can be downloaded here:

Week 1 Quiz Data

For this assignment you will need to unzip this file in your working directory.

Question 1

R was developed by statisticians working at

Your Answer		Score	Explanation
Harvard			
University			
The University of	~	1.00	The R language was developed by Ross Ihaka and Robert
Auckland			Gentleman who were statisticians at the University of Auckland in New Zealand.

The University of New South Wales		
Johns HopkinsUniversity		
Total	1.00 /	
	1.00	

The definition of free software consists of four freedoms (freedoms 0 through 3). Which of the following is NOT one of the freedoms that are part of the definition?

8	score	Explanation
~ 1	1.00	This is not part of the free software definition. The free software definition does not mention anything about selling software (although it does not disallow it).
	√ 1	1.00 / 1.00

Question 3

our Answer		Score	Explanation
numeric			
o character			
data frame	~	1.00	'data frame' is not an atomic data type in R.
complex			
Total		1.00 / 1.00	

Question 4 If I execute the expression x <- 4L in R, what is the class of the object `x' as determined by the `class()' function? Your Score **Explanation** Answer numeric 1.00 The 'L' suffix creates an integer vector as opposed to a integer numeric vector. character complex 1.00 / Total 1.00

Question 5

What is the class of the object defined by x <- c(4, TRUE)?

Your Score Explanation

integer			
numeric •	~	1.00	The numeric class is the "lowest common denominator" here and so all elements will be coerced into that class.
○ list			
ological			
Total		1.00 /	
		1.00	
Question E	xplan	ation	

If I have two vectors $x \leftarrow c(1,3,5)$ and $y \leftarrow c(3,2,10)$, what is produced by the expression cbind(x, y)?

Your Answer		Score	Explanation
a 2 by 3 matrix			
a vector of length 2			
a vector of length 3			
a 3 by 2 numeric matrix	*	1.00	The 'cbind' function treats vectors as if they were columns of a matrix. It then takes those vectors and binds them together column-wise to create a matrix.
Total		1.00 / 1.00	

Question 7			
key property of vectors in R is that			
Your Answer		Score	Explanation
the length of a vector must be less than 32,768			
elements of a vector all must be of the same class	~	1.00	
elements of a vector can only be character or numeric			
a vector cannot have have attributes like dimensions			
Total		1.00 / 1.00)

Question 8 Suppose I have a list defined as x <- list(2, "a", "b", TRUE). What does x[[1]] give me?</th> Your Answer Score Explanation ■ a character vector containing the element "2". ■ a list containing a numeric vector of length 1. ■ a numeric vector containing the element 2. ✓ 1.00 ■ a list containing the letter "a". Total 1.00 / 1.00

Question 9 Suppose I have a vector x <- 1:4 and a vector y <- 2. What is produced by the expression x + y? Your Answer Score Explanation

1.00
1.00 / 1.00

Suppose I have a vector x <- c(17, 14, 4, 5, 13, 12, 10) and I want to set all elements of this vector that are greater than 10 to be equal to 4. What R code achieves this?

Your Answer	Score	Explanation
x[x > 10]== 4		
x[x >= 10]4		
x[x == 4]10		
• x[x >= 11]	1 .00	You can create a logical vector with the expression $x \ge 11$ and then use the [operator to subset the original vector x .
Total	1.00 / 1.00	

Question 11

In the dataset provided for this Quiz, what are the column names of the dataset?

Your Answer Score Explanation

0 1, 2, 3, 4, 5, 6			
Ozone, Solar.R, Wind,	~	1.00	You can get the column names of a data frame
Temp, Month, Day			with the `names()' function.
Month, Day, Temp, Wind			
Total		1.00 /	
		1.00	

Extract the first 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer	Score	Explanation
Ozone Solar.R Wind T		
emp Month Day		
1 18 224 13.8 67		
9 17		
2 NA 258 9.7 81		
7 22		
		V
	1.00	You can extract the first two rows using the [operator
Ozone Solar.R Wind T		and an integer sequence to index the rows.
emp Month Day		
1 41 190 7.4 67		
5 1		
2 36 118 8.0 72		
5 2		
Ozone Solar.R Wind T		
emp Month Day		
1 9 24 10.9 71		
9 14		
2 18 131 8.0 76		

7 of 13

Question 13

How many observations (i.e. rows) are in this data frame?

Your Answer		Score	Explanation
129			
160			
45			
● 153	~	1.00	You can use the `nrow()' function to compute the number of rows in a data frame.
Total		1.00 / 1.00	

Question 14

Extract the *last* 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer	Score	Explanation
0		

```
Ozone Solar.R Wind Te
mp Month Day
152 31 244 10.9 78
 8 19
153 29 127 9.7 82
6 7
0
  Ozone Solar.R Wind Te
mp Month Day
152 34
          307 12.0 66
 5 17
153 13
          27 10.3 76
9 18
  Ozone Solar.R Wind Te
mp Month Day
          44 9.7 62
152 11
5 20
153 108 223 8.0 85
 7 25
                        ✓ 1.00
                                      The `tail()' function is an easy way to extract the
                                      last few elements of an R object.
  Ozone Solar.R Wind Te
mp Month Day
152 18
         131 8.0 76
9 29
153 20 223 11.5 68
 9 30
Total
                            1.00 /
                            1.00
```

What is the value of Ozone in the 47th row?

our our	Score	Explanation	
nswer			

18

34			
21	~	1.00	The single bracket [operator can be used to extract individual
			rows of a data frame.
Total		1.00 /	
		1.00	

How many missing values are in the Ozone column of this data frame?

Your Answer		Score	Explanation
43			
9			
o 78			
• 37	~	1.00	
Total		1.00 / 1.00	

Question Explanation

The `is.na' function can be used to test for missing values.

Question 17

What is the mean of the Ozone column in this dataset? Exclude missing values (coded as NA) from this calculation.

Your Answer	Score	Explanation
◎ 18.0		
0 31.5		

42.1	~	1.00	
otal		1.00 / 1.00	

The 'mean' function can be used to calculate the mean.

Question 18

Extract the subset of rows of the data frame where Ozone values are above 31 and Temp values are above 90. What is the mean of Solar.R in this subset?

Your Answer		Score	Explanation
205.0			
212.8	~	1.00	
334.0			
185.9			
Total		1.00 / 1.00	

Question Explanation

You need to construct a logical vector in R to match the question's requirements. Then use that logical vector to subset the data frame.

Question 19

What is the mean of "Temp" when "Month" is equal to 6?

Your Answer		Score	Explanation	
● 79.1	~	1.00		
90.2				

○ 85.6		
© 75.3		
Total	1.00 / 1.00	

What was the maximum ozone value in the month of May (i.e. Month = 5)?

Your Answer		Score	Explanation
1 8			
• 115	~	1.00	
97			
0 100			
Total		1.00 / 1.00	
10001		1.007 1.00	

13 of 13