

Sequence Listing

<110> ASHKENAZI, AVI J
BOTSTEIN, DAVID
DODGE, KELLY H.
GURNEY, AUSTIN L.
KIM, KYUNG JIN
LAWRENCE, DAVID A.
PITTI, ROBERT
ROY, MARGARET A
TUMAS, DANIEL B
WOOD, WILLIAM I.

<120> DcR3 Polypeptide, A TNFR Homolog

<130> P1134R2 REVISED

<140> US 09/157,289
<141> 1998-09-18

<150> US 60/059,288
<151> 1997-09-18

<150> US 60/094,640
<151> 1998-07-30

<160> 18

<210> 1
<211> 300
<212> PRT
<213> Homo sapiens

<400> 1
Met Arg Ala Leu Glu Gly Pro Gly Leu Ser Leu Leu Cys Leu Val
1 5 10 15

Leu Ala Leu Pro Ala Leu Leu Pro Val Pro Ala Val Arg Gly Val
20 25 30

Ala Glu Thr Pro Thr Tyr Pro Trp Arg Asp Ala Glu Thr Gly Glu
35 40 45

Arg Leu Val Cys Ala Gln Cys Pro Pro Gly Thr Phe Val Gln Arg
50 55 60

Pro Cys Arg Arg Asp Ser Pro Thr Thr Cys Gly Pro Cys Pro Pro
65 70 75

Arg His Tyr Thr Gln Phe Trp Asn Tyr Leu Glu Arg Cys Arg Tyr
80 85 90

Cys Asn Val Leu Cys Gly Glu Arg Glu Glu Ala Arg Ala Cys
95 100 105

His Ala Thr His Asn Arg Ala Cys Arg Cys Arg Thr Gly Phe Phe
110 115 120

Ala His Ala Gly Phe Cys Leu Glu His Ala Ser Cys Pro Pro Gly
125 130 135

Ala Gly Val Ile Ala Pro Gly Thr Pro Ser Gln Asn Thr Gln Cys
140 145 150

Gln Pro Cys Pro Pro Gly Thr Phe Ser Ala Ser Ser Ser Ser Ser
155 160 165

Glu Gln Cys Gln Pro His Arg Asn Cys Thr Ala Leu Gly Leu Ala
170 175 180

Leu Asn Val Pro Gly Ser Ser Ser His Asp Thr Leu Cys Thr Ser
185 190 195

Cys Thr Gly Phe Pro Leu Ser Thr Arg Val Pro Gly Ala Glu Glu
200 205 210

Cys Glu Arg Ala Val Ile Asp Phe Val Ala Phe Gln Asp Ile Ser
215 220 225

Ile Lys Arg Leu Gln Arg Leu Leu Gln Ala Leu Glu Ala Pro Glu
230 235 240

Gly Trp Gly Pro Thr Pro Arg Ala Gly Arg Ala Ala Leu Gln Leu
245 250 255

Lys Leu Arg Arg Arg Leu Thr Glu Leu Leu Gly Ala Gln Asp Gly
260 265 270

Ala Leu Leu Val Arg Leu Leu Gln Ala Leu Arg Val Ala Arg Met
275 280 285

Pro Gly Leu Glu Arg Ser Val Arg Glu Arg Phe Leu Pro Val His
290 295 300

<210> 2
<211> 1114
<212> DNA
<213> Homo sapiens

<220>
<221> Unsure
<222> 1090

0
0
0
0
0
0
0
0
0
0

<223> Unknown base

<400> 2

tccgcaggcg gaccgggggc aaaggaggtg gcatgtcggt caggcacagc 50
agggtcctgt gtccgcgctg agccgcgctc tccctgctcc agcaaggacc 100
atgagggcgc tggaggggcc aggccctgtcg ctgctgtgcc tggtgttggc 150
gctgcctgcc ctgctgccgg tgccggctgt acgcggagtg gcagaaacac 200
ccacacctacc ctggcgggac gcagagacag gggagcggct ggtgtgcgcc 250
cagtgc(cc) caggcacctt tgtgcagcgg ccgtgccgccc gagacagccc 300
cacgacgtgt ggcccggtgtc caccgcgcca ctacacgcag ttctggaact 350
acctggagcg ctgcccgtac tgcaacgtcc tctgcgggaa gcgtgaggag 400
gaggcacggg cttgccacgc caccacaac cgtgcctgcc gctgcgcac 450
cggttcttc ggcacgcgtg gtttctgtt ggagcacgca tcgtgtccac 500
ctggtgccgg cgtgattgcc ccgggcaccc ccagccagaa cacgcagtgc 550
cagccgtgcc ccccaggcac cttctcagcc agcagctcca gctcagagca 600
gtgccagccc caccgcaact gcacggccct gggcctggcc ctcaatgtgc 650
caggctcttc ctccccatgac accctgtgca ccagctgcac tggcttcccc 700
ctcagcacca gggtaccagg agctgaggag tgtgagcgtg ccgtcatcga 750
ctttgtggct ttccaggaca tctccatcaa gaggctgcag cggctgctgc 800
aggccctcga ggccccggag ggctggggtc cgacaccaag ggcggggcgc 850
gcggccttgc agctgaagct gcgtcggcggt ctcacggagc tcctgggggc 900
gcaggacggg gcgtcgctgg tgccgtgtc gcaggcgctg cgcgtggcca 950
ggatgcccgg gctggagcgg agcgtccgtg agcgcttccct ccctgtgcac 1000
tgatcctggc cccctcttat ttattctaca tccttggcac cccacttgca 1050
ctgaaagagg cttttttta aatagaagaa atgaggttn taaaaaaaa 1100
aaaaaaaaaaa aaaa 1114

<210> 3

<211> 491

Sequence Record

<212> DNA
<213> Unknown

<220>
<223> Unknown organism

<220>
<221> unsure
<222> 62, 73, 86, 98
<223> unknown base

<400> 3
gccgagacag ccccacgacg tgtggccgt gtccaccgcg ccactacacg 50
cagttctgga antaactgga gcnctgccgc tactgnaacg tcctctgngg 100
ggagcgtgag gaggaggcac gggcttgcca cgccacccac aaccgtgcct 150
gccgctgccg caccggcttc ttgcgcacg ctggttctg cttggagcac 200
gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca ccccccagcca 250
gaacacgcag tgccttagccg tgccccccag gcaccttctc agccagcagc 300
tccagctcag agcagtgcac gccccacccgc aactgcacgg ccctgggcct 350
ggccctcaat gtgccaggct cttccctccca tgacaccctg tgcaccagct 400
gcactggctt cccctcagc accagggta caggagctga ggagtgtgag 450
cgtgcgtca tcgactttgt ggcttccag gacatctcca t 491

<210> 4
<211> 73
<212> DNA
<213> Unknown

<220>
<223> Unknown organism

<400> 4
gccgagacag ccccacgacg tgtggccgt gtccaccgcg ccactacacg 50
cattctggaa ctacctggag cgc 73

<210> 5
<211> 271
<212> DNA
<213> Unknown

<220>

DNA sequence

<223> Unknown organism

<220>

<221> unsure

<222> 42, 62, 73, 86, 98, 106, 120, 122, 153, 167, 184, 220, 233

<223> unknown base

<400> 5
gccgagacag ccccacgacg tgtggccgt gtccaccgcg cnactacacg 50

cagttctgga antaactgga gcnctgccgc tactgnaacg tcctctgngg 100

ggagcntgag gaggaggcan gngcttgcca cgccacccac aaccgcgcct 150

gcngctgcag caccggnttc ttgcgcacg ctgnnttctg cttggagcac 200

gcatcgtgtc cacctggtn cggcgtgatt gcncggca cccccagcca 250

gaacacgcat gcaaagccgt g 271

<210> 6
<211> 201
<212> DNA
<213> Unknown

<220>

<223> Unknown organism

<220>

<221> unsure

<222> 182

<223> unknown base

<400> 6
gcagttctgg aactacctgg agcgctgccc ctactgcaac gtcctctgct 50

gggagcgtga ggaggaggca cgggcttgcc acgccaccca caaccgtgcc 100

tgccgctgcc gcaccggctt ctgcgcac gctggttct gcttggagca 150

cgcatcgtgt ccacctggtg cggcgtgat tnccccgggc acccccaagcc 200

a 201

<210> 7
<211> 277
<212> DNA
<213> Unknown

<220>

<223> Unknown organism

DNA
DNA
DNA
DNA
DNA
DNA
DNA
DNA

<220>
<221> unsure
<222> 142
<223> unknown base

<400> 7
gaggggcccc caggagtggt ggccggaggt gtggcagggg tcaggttgct 50
ggtcccagcc ttgcaccctg agctaggaca ccagttcccc tgaccctgtt 100
cttccctcct ggctgcaggc acccccagcc agaacacgca gnccagccgt 150
gccccccagg caccttctca gccagcagct ccagtcaga gcagtgccag 200
ccccaccgca actgcacggc cctgggcctg gcctcaatg tgccaggctc 250
ttcctcccat gacaccctgt gcaccag 277

<210> 8
<211> 199
<212> DNA
<213> Unknown

<220>
<223> Unknown organism

<400> 8
gcatcgtgtc cacctggtgtc cggcgtgatt gccccggcca cccccagcca 50
gaacacgcag gccttagccgt gccccccagg caccttctca gccagcagct 100
ccagtcaga gcagtgccag ccccaccgca actgcacggc cctgggcctg 150
gcctcaatg tgccaggctc ttcctcccat gacaccctgt gcaccagct 199

<210> 9
<211> 226
<212> DNA
<213> Unknown

<220>
<223> Unknown organism

<220>
<221> unsure
<222> 4, 9, 12, 165
<223> unknown base

<400> 9
agcngtgcnc cncaggcacc ttctcagcca gcagttccag ctcagagcag 50

DNA sequence

tgccagcccc accgcaactg cacggccctg ggcttggccc tcaatgtgcc 100
aggctcttcc tcccatgaca cgctgtgcac cagctgcact ggcttccccc 150
tcagcaccag ggtancagga gctgaggagt gtgagcgtgc cgtcatcgac 200
tttgtggctt tccaggacat ctccat 226

<210> 10
<211> 283
<212> DNA
<213> Homo sapiens

<220>
<221> Unsure
<222> 1-283
<223> Unknown organism

<220>
<221> unsure
<222> 27, 64, 140
<223> unknown base

<400> 10
cttgtccacc tgggccggc gtgattnccc gggcacccccc agccagaaca 50
cgcagtgccca gccontccccc caggcacctt ctcagccagc agctccagct 100
cagagcagtg ccagcccccac cgcaactgca acgcccctgn ctggccctca 150
atgtgccagg ctcttcctcc catgacaccc tgtgcaccag ctgcactggc 200
ttccccctca gcaccagggt accagtagt gaggagtgtg agcgtgccgt 250
catcgacttt gtggcttcc aggacatctc cat 283

<210> 11
<211> 21
<212> DNA
<213> Unknown

<220>
<223> Unknown organism

<400> 11
cacgctgggt tctgcttggaa g 21

<210> 12
<211> 22
<212> DNA

<213> Unknown

<220>

<223> Unknown organism

<400> 12
agctggtgca cagggtgtca tg 22

<210> 13
<211> 53
<212> DNA
<213> Unknown

<220>

<223> Unknown organism

<400> 13
cccaggcacc ttctcagcca gccagcagct ccagtcaga gcagtgccag 50
ccc 53

<210> 14
<211> 24
<212> DNA
<213> Unknown

<220>

<223> Unknown organism

<400> 14
acacgatgcg tgctccaagc agaa 24

<210> 15
<211> 17
<212> DNA
<213> Unknown

<220>

<223> Unknown organism

<400> 15
cttcttcgcg cacgctg 17

<210> 16
<211> 16
<212> DNA
<213> Unknown

<220>

<223> Unknown organism

<400> 16
atcacgcccc caccag 16

<210> 17
<211> 461
<212> PRT
<213> Homo sapiens

<400> 17

Met	Ala	Pro	Val	Ala	Val	Trp	Ala	Ala	Leu	Ala	Val	Gly	Leu	Glu
1									10					15
Leu	Trp	Ala	Ala	Ala	His	Ala	Leu	Pro	Ala	Gln	Val	Ala	Phe	Thr
							20			25				30
Pro	Tyr	Ala	Pro	Glu	Pro	Gly	Ser	Thr	Cys	Arg	Leu	Arg	Glu	Tyr
							35		40					45
Tyr	Asp	Gln	Thr	Ala	Gln	Met	Cys	Cys	Ser	Lys	Cys	Ser	Pro	Gly
						50			55					60
Gln	His	Ala	Lys	Val	Phe	Cys	Thr	Lys	Thr	Ser	Asp	Thr	Val	Cys
						65			70					75
Asp	Ser	Cys	Glu	Asp	Ser	Thr	Tyr	Thr	Gln	Leu	Trp	Asn	Trp	Val
						80			85					90
Pro	Glu	Cys	Leu	Ser	Cys	Gly	Ser	Arg	Cys	Ser	Ser	Asp	Gln	Val
						95			100					105
Glu	Thr	Gln	Ala	Cys	Thr	Arg	Glu	Gln	Asn	Arg	Ile	Cys	Thr	Cys
						110			115					120
Arg	Pro	Gly	Trp	Tyr	Cys	Ala	Leu	Ser	Lys	Gln	Glu	Gly	Cys	Arg
						125			130					135
Leu	Cys	Ala	Pro	Leu	Arg	Lys	Cys	Arg	Pro	Gly	Phe	Gly	Val	Ala
						140			145					150
Arg	Pro	Gly	Thr	Glu	Thr	Ser	Asp	Val	Val	Cys	Lys	Pro	Cys	Ala
						155			160					165
Pro	Gly	Thr	Phe	Ser	Asn	Thr	Thr	Ser	Ser	Thr	Asp	Ile	Cys	Arg
						170			175					180
Pro	His	Gln	Ile	Cys	Asn	Val	Val	Ala	Ile	Pro	Gly	Asn	Ala	Ser
						185			190					195
Arg	Asp	Ala	Val	Cys	Thr	Ser	Thr	Ser	Pro	Thr	Arg	Ser	Met	Ala
						200			205					210

Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln
215 220 225

His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser
230 235 240

Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr
245 250 255

Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala
260 265 270

Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr
275 280 285

Gln Val Lys Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val
290 295 300

Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu
305 310 315

Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser Ser Ser Ser Ser
320 325 330

Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala Pro Thr Arg
335 340 345

Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu
350 355 360

Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Ser Pro Gly Gly His
365 370 375

Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser
380 385 390

Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met
395 400 405

Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln
410 415 420

Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu
425 430 435

Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro
440 445 450

Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser
455 460

<210> 18
<211> 293
<212> PRT
<213> Homo sapiens

<400> 18

Met	Asn	Lys	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
1				5					10				15	
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
				20					25				30	
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
					35				40				45	
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
					50				55				60	
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Asp	Ser	Trp	His	
					65				70				75	
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
					80				85				90	
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
					95				100				105	
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
					110				115				120	
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
					125				130				135	
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
					140				145				150	
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
					155				160				165	
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
					170				175				180	
His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
					185				190				195	
Gly	Ile	Asp	Val	Thr	Leu	Cys	Glu	Ala	Phe	Phe	Arg	Phe	Ala	
					200				205				210	
Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
					215				220				225	

Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
245 250 255

Leu Trp Lys His Gln Asn Lys Ala Gln Asp Ile Val Lys Lys Ile
260 265 270

Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
275 280 285

Gly His Ala Asn Leu Thr Phe Glu
290

0939606 - C62304