EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Diode \rightarrow *pn*-junction + connecting leads one-way device = low resistance when forward biased open switch when reverse biased p-type n-type constant forward voltage drop sillicon silicon Anade Cathode constant reverse saturation current Cathode Diode is destroyed if \rightarrow high forward current overheats device +I (mA) Forward large reverse voltage causes junction to break down = Current reverse breakdown Forward Bias Reverse "kn ee' Typical forward and reverse characteristics of diode \rightarrow Breakdown Voltage Forward Voltage -50mA 0.3v Germanium Germanium "Zener" 0.7v Silicon -20mA Silicon Breakdown or Avalanche Reverse

Region

Bias

Ge diode \rightarrow lower forward voltage drop

Si diode → lower reverse current higher reverse breakdown voltage

<u>Ideal diode:</u>

Short circuit in forward bias Open circuit in reverse bias

 $I_D = 0$

 V_D

Ideal diode

DC equivalent circuits:

Represents device behavior

Made up of number of basic components.

Diode equivalent circuits are necessary → substituted for device when investigating circuit used as device models for computer analysis.

Simplified equivalent circuit:

Piecewise-linear equivalent circuits:

 $r_d = r_{av} = \text{dynamic/ac resistance}$

= offered to changing levels of forward voltage

 $= \Delta V_F \! / \Delta I_F$

= 26 mV/ I_F + dc resistance of semiconductor material

 \approx 26 mV/ I_F + 2 Ω

 V_T = knee voltage

= 0.7 V for Si, 0.3 V for Ge

Problem-3:

Calculate the forward and reverse resistances offered by a silicon diode, with forward voltage of 0.75 V and reverse saturation current of 100 nA, at I_F = 100 mA and at V_R = 50 V.

At
$$I_F$$
 = 100 mA, V_F = 0.75 V
$$R_F = V_F/I_F = 0.75/100 \times 10^{-3} = 7.5~\Omega$$

At
$$V_R$$
 = 50 V, I_R = 100 nA
 R_R = V_R/I_R = 50/100×10⁻⁹ = 500 M Ω

$$I_{F} \downarrow \stackrel{+}{\blacktriangledown} V_{F} \qquad \stackrel{>}{\lessapprox} R_{F} = \frac{V_{F}}{I_{F}}$$

(a) Forward resistance

$$I_{R} \downarrow \stackrel{+}{\longrightarrow} V_{R} \qquad \stackrel{\stackrel{\downarrow}{\Longrightarrow}}{\gtrless} R_{R} = \frac{V_{R}}{I_{R}}$$

(b) Reverse resistance

Problem-4:

Calculate I_F for the diode circuit in Fig. (a) assuming that the diode has V_F = 0.7 V and r_d = 0. Then recalculate the current taking r_d = 0.25 Ω .

Substituting V_F as the diode equivalent circuit

$$I_F = (E - V_F)/R_1 = (1.5 - 0.7)/10 = 80 \text{ mA}$$

Substituting VF and rd as the diode equivalent circuit

$$I_F = (E - V_F)/(R_1 + r_d) = (1.5 - 0.7)/(10 + 0.25) = 78 \text{ mA}$$

Zener Diodes

 V_Z = Zener potential \rightarrow

reverse-bias potential that results dramatic change in characteristics current increases at very rapid rate current direction is opposite to that of positive voltage region

Breakdown \rightarrow Avalanche and Zener Zener region \rightarrow sharp change in characteristic at any level Zener diode \rightarrow *pn*-junction diodes employing this unique portion of characteristic

Zener Diodes

Location of Zener region can be controlled by varying doping levels. Increase in doping \rightarrow increase in number of added impurities \rightarrow decrease Zener potential.

Zener potentials = $V_Z \rightarrow$ 1.8 to 200 V Dynamic resistance = $r_z \rightarrow$ 8.5 Ω Power ratings \rightarrow ½ to 50 W.

Silicon is preferred \rightarrow higher temperature and current capability.

Zener equivalent circuits → Cathode | R_z | V_z | T | V_z | Cathode | (ii) Actual case | (iii) ideal case