Reinforcement Learning, Part 2: Unknown Environment

Data 102, Lecture 22 Spring 2023

Weekly Outline

• Announcements:

- \bullet Midterm 2 on 04/13
- ◆ Office hours on Thursday

• So far: Reinforcement learning intro

- ◆ Dynamic programming
- ◆ Markov Decision Processes: transitions and rewards are known
- ◆ Value iteration (Bellman equation)

• Today: More on reinforcement learning

- ◆ Unknown environment (transitions and/or rewards)
- ◆ Q-Learning, RL in practice, exploration
- ◆ Next time: game theory

Agenda

- Q-Learning
- Reinforcement Learning in practice

Online Decision Making in Unknown Environment

- So far we have learned how to make optimal decisions in a fully known environment:
 - \bullet Both transition T(s, a, s') and reward R(s, a, s') functions were known.
 - ◆ Question: Is value iteration an offline or online algorithm? Offline
- In reality, the environment is unknown: either or both transition and reward functions may be unknown.
- Examples: self-driving car, learning to play a game (e.g. minesweeper). Other examples?
- We can no longer user value iteration.
- Instead, we need to **learn about the environment online** as data about rewards and transitions arrive.

Q-Learning

- If we don't known T(s, a, s') and R(s, a, s') functions, then we need to try (explore) actions and observe **trajectories**.
- **Trajectory**: one sequence of state/action/reward from "running" the MDP

- Learn Q* from trajectories: "Q-Learning"
- To construct a trajectory, we follow an exploration policy
- A good exploration policy should visit all possible states and rewards
- Question: In a trajectory, what do we control? What does the nature control?

Q-Learning

• **Trajectory**: a sequence of triplets $\{(s_i, a_i, r_i)\}_{i=0}^{\infty}$

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots$$

- A trajectory effectively gives us a sample from transition and reward functions
 - lacktriangle Our samples look like $T(s_i, a_i, s_{i+1})$ and $R(s_i, a_i, s_{i+1})$
- How do we use these samples to learn the Q^* function?
 - Intuitively, we should use the observed rewards r_i to get information about Q^*
 - If we observe that reward r is usually high for a pair of state/action (s, a), then $Q^*(s, a)$ must be high.
- Example trajectories

- Generate trajectories according to our exploration policy
- Initialize $Q^*(s, a)$ as an array (we'll talk about how to initialize later)
- For each (s_i, a_i, r_i, s_{i+1}) in each trajectory update our current Q^* function:

$$Q^*(s_i, a_i) = (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_i, a')]$$

$$= (1 - \alpha)Q^*(s_i, a')$$

$$= (1 - \alpha)Q^$$

- Intuition: "mixing" new observations with what we think so far about $Q^*(s,a)$
- α is the step size parameter:
 - ◆ Large values: big updates but noisy
 - ◆ Small values: smaller updates but more robust

• Recall Q-Iteration:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \Big[R(s, a, s') + \gamma \max_{a' \in A} Q^*(s', a') \Big]$$

• Question: How is SARSA update related to Q-Iteration?

$$Q^*(s_i, a_i) = (1 - \alpha)Q^*(s_i, a_i) + \alpha \left[r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a') \right]$$

• Recall Q-Iteration:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a' \in A} Q^*(s', a') \right]$$

• Question: How is SARSA update related to Q-Iteration?

$$Q^*(s_i, a_i) = (1 - \alpha)Q^*(s_i, a_i) + \alpha \left[r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a') \right]$$

• The right-hand term in SARSA update is equal to Q-iteration update on average:

$$E_{s_{i+1}}[r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')] = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a' \in A} Q^*(s', a') \right]$$

• Hence, the SARSA update incorporate a "noisy" target into our current estimate of Q^* function.

• Question: Why do we need to mix new target with our old estimate of Q^* function? Why not use the following simple update?

$$Q^*(s_i, a_i) = r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')$$

• Question: Why do we need to mix new target with our old estimate of Q^* function? Why not use the following simple update?

$$Q^*(s_i, a_i) = r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')$$

- This update rule would throw away whatever we have learned so far in each step!
- Target in each step is noisy, our estimate of Q^* will always remain noisy.

$$Q^*(s_i, a_i) = (1 - \alpha)Q^*(s_i, a_i) + \alpha [r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a')]$$

- Mixing with rate α allows us to "average" many noisy updates together
- Mixing stabilizes our estimate of Q^* function

Convergence of SARSA

$$Q_{\text{rew}}^*(s_i, a_i) = (1 - \alpha)Q_{\text{obs}}^*(s_i, a_i) + \alpha \left[r_i + \gamma \max_{a' \in A} Q_{\text{obs}}^*(s_{i+1}, a') \right]$$

- Theoretically we need the step sizes to become smaller over updates: $\alpha \to 0$
 - \bullet In practice, we use fixed small α or use a decay schedule

- We also need sufficient exploration of all states and actions. This is similar to Multi Armed Bandits where we needed to explore all arms sufficiently.
 - ◆ In theory, we need to visit all states/actions infinitely often
 - \bullet In practice, we need a good exploration policy $\pi(s)$ that tries each action enough times

Q-Learning: Exploration vs Exploitation

- Two related questions:
 - \bullet How do we initialize Q^* ?
 - ♦ How do we choose a policy to make "good" trajectories?
- Baseline idea:
 - ♦ Initialize Q^* array to 0
 - Policy: choose action with the highest Q^*
 - ◆ Generate trajectories using the above policy
 - Use SARSA to update Q^* , and repeat
- Question: why is this a bad idea?

Q-Learning: Exploration vs Exploitation

- Two related questions:
 - \bullet How do we initialize Q^* ?
 - ♦ How do we choose a policy to make "good" trajectories?
- Baseline idea:
 - ♦ Initialize Q^* array to 0
 - Policy: choose action with the highest Q^*
 - ◆ Generate trajectories using the above policy
 - \bullet Use SARSA to update Q^* , and repeat
- Question: why is this a bad idea?
 - \bullet After first update, $Q^* > 0$. Keeps trying the same trajectory repeatedly.
 - ◆ No Exploration!

Exploration Policy

- Good exploration strategies:
 - ◆ Randomly choose and explore actions at the beginning
 - \bullet In each time step, take a random action with probability ϵ
 - ♦ Initialize Q^* to some large value, and in each step choose action with the highest Q^*
- The last option is similar to exploration in UCB algorithm:
 - lacktriangledown Initializing Q^* to large values incentives us to try actions which we have not visited enough yet
 - lacktriangle Large initial values for Q^* capture the idea that we have a lot of uncertainty about unexplored actions

Agenda

- Q-Learning
- Reinforcement Learning in practice

Function Approximation

- In grid world and road trip the number of states were small
 - ◆ About 10 in grid world and 20 in road trip
- But in most problems, the state space is very large:
 - \bullet About 10¹⁵⁰ in chess and 10¹⁷⁰ in Go
- When the state space is large, we can't use an array for Q^* to store its values
- Idea: use function approximation
 - \bullet Let Q^* be a function and approximate that function
 - Q^* will be a predictive model (e.g., regression, neural network, etc.)
 - ◆ Intuitively, when we update one step, we also update similar states

Function Approximation

- Instead of a general function Q^* , use a parametric function Q^*
 - **Examples:** Linear in feature space $Q_{\theta}^*(s, a) = \theta^T \phi(s, a)$ where $\phi(s, a)$ are features of the state/action pair, Output of a Neural Network
- Recall SARSA update:

$$Q^*(s_i, a_i) = (1 - \alpha)Q^*(s_i, a_i) + \alpha \left[r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a') \right]$$
$$= Q^*(s_i, a_i) + \alpha \left[r_i + \gamma \max_{a' \in A} Q^*(s_{i+1}, a') - Q^*(s_i, a_i) \right]$$

• Now, instead of updating Q^* update its parameters θ over the trajectory:

$$\theta = \theta + \alpha \left[r_i + \gamma \max_{a' \in A} Q_{\theta}^*(s_{i+1}, a') - Q_{\theta}^*(s_i, a_i) \right] \nabla_{\theta} Q_{\theta}^*(s_i, a_i)$$

Reward Hacking

- If we are not careful about how we describe the reward function, we could end up with a policy that ignores the problem structure
 - ◆ Agent would cheat the reward structure by finding irrelevant actions that artificially increase the reward
 - ◆ Agent would learn a policy that is not helpful to us

• Example: Misspecified reward function leads to to <u>reward hacking and odd</u> <u>behavior in CoastRunners</u>