TEST 1 PRACTICE PROBLEMS

ADRIAN PĂCURAR

Problem 1. Find the limit $\lim_{x\to 4} \left(\frac{1}{x-4} - \frac{8}{x^2-16}\right)$

Problem 2. Find the limit $\lim_{x\to 0} \sqrt[5]{x} \cos^5(x)$.

Problem 3. The limit $\lim_{t\to 0} \frac{(2+t)^5-2^5}{t}$ represents the derivative of some function f(x) at a point x=a. What is f(x) and what is a?

Problem 4. Find the limit $\lim_{h\to 0} \frac{e^x(e^h-1)}{h}$.

Problem 5. Suppose the point (2,2) is another point on the tangent line to the graph of f(x) at (1,1). Answer the following:

- (a) What is the equation of the tangent line?
- (b) What is f'(1)?
- (c) Find the instantaneous rate of change for the function $g(x) = \frac{f(x)}{f(x)+1}$ when x=1.

Problem 6. The point (2,4) is another point on the tangent line to the graph of f(x) at (1,1). What is g'(1) for $g(x) = [f(x)]^2$?

1

Problem 7. Given that $2 \le f(x) \le 2 + \sin(x)$ for all $x \in \mathbb{R}$, find the limit $\lim_{x \to \pi} f(x)$.

Problem 8. It is a known fact that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Compute the following:

- (a) $\lim_{x\to 0} \frac{x}{\sin x}$.
- (b) $\lim_{x\to 0} \frac{\sin x}{x^2}$.
- (c) $\lim_{x\to 0^+} \frac{\sin x}{x^2}$.
- (d) $\lim_{x\to 0} \frac{\sin(2x)}{2x}$.
- (e) $\lim_{x\to 0} \frac{\sin(5x)\cos x}{x}$.

Problem 9. Compute the following limits:

(a)
$$\lim_{x\to 0^-} x^{1/4}$$

(b)
$$\lim_{x\to\infty} \frac{x^4 - 3x^3 + 5x + 1}{x^5 + 12x + 8}$$

(c)
$$\lim_{x\to\infty} \frac{x^4 - 6x + 8}{5x^3 + 8x^4}$$

(d)
$$\lim_{x\to\infty} \frac{x^8 + e^x + 1}{5x^8 + 3e^x + 12x^2 + 5}$$

(e)
$$\lim_{x \to \infty} \frac{5 \ln x + 12}{7 \ln x + \cos x + 6}$$

(f)
$$\lim_{x\to\infty} \frac{5+e^{-x}+2e^{-2x}}{7+2e^{-x}+3e^{-2x}}$$

(g)
$$\lim_{x\to-\infty} \frac{1+2e^x+3e^{2x}}{4+5e^x+6e^{2x}+e^{-x}}$$

(h)
$$\lim_{x\to\infty} \frac{\sqrt{x^2+1}}{x^4+1}$$

(i)
$$\lim_{x\to\infty} \frac{\sqrt{2x^2+8}}{x+5}$$

(j)
$$\lim_{x\to-\infty} \frac{\sqrt{\pi x^6 + 23x + 8}}{2x^3 + x^2 + 1}$$

Problem 10. Using the linerization of x^3 at x = 8, estimate the value of 8.1^3 .

Problem 11. We know that $e^0 = 1$. Use linearization to approximate the value of $e^{0.1}$.

Problem 12. Use linear approximation to estimate the value of $(12.2)^2$.

Problem 13. Given any two real numbers a < b, what is the average rate of change of f from x = a to x = b if $f(x) = \frac{2x + 5}{4 + \pi}$? What is the instantaneous rate of change of f?

Problem 14. What is the instantaneous rate of change of $f(x) = \frac{x^2 + x - 2}{x - 1}$ when $x \neq 1$?

Problem 15. Suppose $f(x) = 3x^2 + 8$ and $h(x) = \frac{1}{2}x^3 + 2x + 1$. Find the instantaneous rate of change of the graph of $g(x) = \frac{f(x)}{3} + 2h(x)$ at x = 1.

Problem 16. You are told that a parabola which "opens up" has roots x = a and x = b, where a < b. At what x value is the minimum of the parabola attained?