Χαρακτήρες

Χαρακτήρες - Εισαγωγή

- " Έως τώρα έχουμε κατά κύριο λόγο χρησιμοποιήσει τους αριθμητικούς τύπους δεδομένων int, float και double
- Ο τύπος δεδομένων char είναι κι αυτός αριθμητικός
- Για τη διαχείριση των χαρακτήρων (και των αλφαριθμητικών στο επόμενο κεφάλαιο), θα θεωρήσουμε ότι το σύνολο των χαρακτήρων που υποστηρίζει ο υπολογιστής είναι κωδικοποιημένο σύμφωνα με το πιο διαδεδομένο πρότυπο, τον κώδικα ASCII, που αντιστοιχίζει κάθε χαρακτήρα σε μία αριθμητική τιμή
- Ο ASCII κώδικας αντιστοιχίζει (κωδικοποιεί) ένα σύνολο χαρακτήρων που αποτελείται από γράμματα, αριθμούς, σημεία στίξης, κτλ... με ακέραιες τιμές ανάμεσα στο 0 και το 255
- Π.χ. η ASCII τιμή του χαρακτήρα 'C' είναι το 67, ενώ η ASCII τιμή του χαρακτήρα 'C' είναι το 99

ιτισμός ΙΙ

Πίνακας ASCII (Βασικοί χαρακτήρες)

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-@	32	20	Space	64	40	0	96	60	
1	1	Start of heading	SOH	CTRL-A	33	21	12	65	41	A	97	61	a
2	2	Start of text	STX	CTRL-B	34	22		66	42	В	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	C	99	63	C
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	E	101	65	e
6	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
7	7	Bell	BEL	CTRL-G	39	27	**	71	47	G	103	67	g
8	8	Backspace	BS	CTRL-H	40	28	(72	48	H	104	68	h
9	9	Horizontal tab	HT	CTRL-I	41	29)	73	49	1	105	69	i
10	0A	Line feed	LF	CTRL-J	42	2A	*	74	4A	1	106	6A	j
11	OB	Vertical tab	VT	CTRL-K	43	28	+	75	4B	K	107	6B	k
12	OC.	Form feed	FF	CTRL-L	44	2C	¥2	76	4C	L	108	6C	1
13	OD	Carriage feed	CR	CTRL-M	45	2D	-	77	4D	M	109	6D	m
14	0E	Shift out	SO	CTRL-N	46	2E	80	78	4E	N	110	6E	n
15	OF	Shift in	SI	CTRL-O	47	2F	1	79	4F	0	111	6F	0
16	10	Data line escape	DLE	CTRL-P	48	30	0	80	50	P	112	70	p
17	11	Device control 1	DC1	CTRL-Q	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	r
19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	S	115	73	5
20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	T	116	74	t
21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	SYN	CTRL-V	54	36	6	86	56	V	118	76	٧
23	17	End of xmit block	ETB	CTRL-W	55	37	7	87	57	W	119	77	W
24	18	Cancel	CAN	CTRL-X	56	38	8	88	58	X	120	78	×
25	19	End of medium	EM	CTRL-Y	57	39	9	89	59	Υ	121	79	Y
26	1A	Substitute	SUB	CTRL-Z	58	ЗА		90	5A	Z	122	7A	z
27	18	Escape	ESC	CTRL-[59	38	1	91	5B	1	123	7B	{
28	1C	File separator	FS	CTRL-\	60	30	<	92	5C	1	124	7C	10
29	1D	Group separator	GS	CTRL-]	61	3D	_	93	5D	ì	125	7D	}
30	1E	Record separator	RS	CTRL-^	62	3E	>	94	5E	^	126	7E	~
31	1F	Unit separator	US	CTRL-	63	3F	?	95	5F		127	7F	DEL

Πίνακας ASCII (επιπλέον χαρακτήρες)

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
128	80	Ç	160	AD	á	192	CO	L	224	E0	ο.
129	81	ū	161	A1	í	193	C1	1	225	E1	ß
130	82	é â	162	A2	ó	194	C2	T	226	E2	Γ
131	83	â	163	A3	ú	195	C3	Ţ	227	E3	П
132	84	à	164	A4	6	196	C4	30 	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6		198	C6	+	230	E6	μ
135	87		167	A7	0	199	C7	į.	231	E7	1
136	88	ç ê	168	A8	2	200	C8	Ŀ	232	E8	Φ
137	89	ē	169	A9	-	201	C9	F	233	E9	Θ
138	8A	è	170	AA	п	202	CA	<u>I</u>	234	EA	Ω
139	8B	î	171	AB	1/2	203	CB	. ₹	235	EB	õ
140	8C	î	172	AC	1/4	204	CC	F	236	EC	60
141	8D	ì	173	AD	T	205	CD		237	ED	φ
42	8E	Ä	174	AE	<	206	CE	4	238	EE	ε
143	8F	A	175	AF	>	207	CF	± 4	239	EF	n
144	90	É	176	B0	38 50	208	DO	. 1	240	F0	=
145	91	æ	177	B1		209	D1	=	241	F1	±
146	92	Æ	178	B2		210	D2		242	F2	2
147	93	6	179	B3	300	211	D3	Ţ	243	F3	≤
148	94	Ö	180	B4	3	212	D4	Ö	244	F4	ſ
149	95	ò	181	B5	4	213	D5	F	245	F5	
50	96	û	182	86	4	214	D6		246	F6	-
51	97	ù	183	B7	7	215	D7	‡	247	F7	N/
152	98	Ŷ	184	B8	3	216	D8	+	248	F8	Pol
53	99	ŷ Ö Ü	185	B9	4	217	D9	1	249	F9	14
54	9A	Ü	186	BA	1	218	DA	г	250	FA	175
55	98	¢	187	88	9	219	DB	1	251	FB	4
156	9C	£	188	BC	3	220	DC	112	252	FC	
157	9D	¥	189	BD	1	221	DD	· F	253	FD	2
158	9E	Pts	190	BE	4	222	DE	Ĩ	254	FE	S=3
159	9F	f	191	BF	-7	223	DF		255	FF	

Οτύπος char (I)

- Αφού ένας χαρακτήρας κωδικοποιείται σαν ακέραιος με τιμή ανάμεσα στο 0 και το 255, ο τύπος δεδομένων char, που έχει μέγεθος 1 byte, μπορεί να χρησιμοποιηθεί για την αποθήκευση χαρακτήρων
- Στο επόμενο παράδειγμα δηλώνεται μία μεταβλητή τύπου char με το όνομα ch και αποθηκεύεται ο χαρακτήρας 'c' σε αυτήν

```
char ch;
ch = 'c';
```


Όταν χρησιμοποιείται κάποιος σταθερός χαρακτήρας πρέπει να περικλείεται σε μονές αποστρόφους ('') και όχι σε διπλά εισαγωγικά

Οτύπος char (II)

- υ Όταν αποθηκεύεται ένας χαρακτήρας σε μία μεταβλητή τύπου char, στην πραγματικότητα αποθηκεύεται η ASCII τιμή του χαρακτήρα
- Δηλαδή, στο προηγούμενο παράδειγμα στη μεταβλητή ch αποθηκεύτηκε η τιμή 99
- Επομένως, οι εντολές:

- Παρατηρήστε ότι οι πιο συνηθισμένοι χαρακτήρες, όπως γράμματα, ψηφία και σημεία στίξης αντιστοιχίζονται σε αριθμητικές τιμές ανάμεσα στο 0 και το 127
- Οι χαρακτήρες με τιμές από 128 έως 255 αποτελούν το εκτεταμένο ASCII
 σύνολο και αντιστοιχίζονται σε εξεζητημένα γράμματα και ειδικά σύμβολα
- Επειδή η μέγιστη τιμή που μπορεί να πάρει μία μεταβλητή char είναι το 127 (θυμηθείτε ότι το εύρος τιμών του char είναι –128...127) σε περίπτωση που θέλουμε να αποθηκεύσουμε σε μία μεταβλητή char ένα χαρακτήρα με ASCII τιμή μεγαλύτερη από 127, πρέπει να χρησιμοποιήσουμε τον τύπο unsigned char ή int

Εμφάνιση Χαρακτήρα

- Για την εμφάνιση ενός χαρακτήρα στην οθόνη (μέσω της printf ()) χρησιμοποιείται το %c, ενώ για την εμφάνιση της ASCII τιμής του χρησιμοποιείται αντίστοιχα το %d
- Στο παράδειγμα δηλώνεται μία μεταβλητή τύπου char με το όνομα ch και αποθηκεύεται ο χαρακτήρας 'a' σε αυτήν
- Στη συνέχεια εμφανίζεται στην οθόνη ο χαρακτήρας αυτός καθώς και η αντίστοιχη ASCII τιμή του, χρησιμοποιώντας τα προσδιοριστικά μετατροπής %c και %d, αντίστοιχα

```
#include <stdio.h>
int main()
{
    char ch;

    ch = 'a';
    printf("Char = %c and its ASCII code is %d\n",ch,ch);
    return 0;
}
```

Ουσιαστικά, όταν ένας χαρακτήρας περιέχεται σε μία έκφραση – είτε είναι σταθερά είτε μεταβλητή – η C τον χειρίζεται σαν ακέραιο και χρησιμοποιεί την ASCII τιμή του

Παρατηρήσεις

- Ουσιαστικά, κάθε χαρακτήρας δεν είναι τίποτα άλλο παρά ένας μικρός ακέραιος αριθμός από ο έως και 255
- Ανάλογα με το προσδιοριστικό μετατροπής που θα χρησιμοποιήσουμε (%c ή %d) εμφανίζεται ο ίδιος ο χαρακτήρας ή η ASCII τιμή του, αντίστοιχα

Παραδείγματα (Ι)

Dec	Hex	Cha
96	60	
97 98	61	а
98	62	b
99	63	c
100	64	d
101	64 65 66	e
102	66	f
103	67	g
104		h
105	69	1
106	6A	j
107	6B	k I
108		1
109	6D	m
110	6E	n
111		0
112	70	p
113	71	q
114	72	r
115 116	73	S
116	74	t
117	75	u
118	76	u V
119	77	44
120	78	×
121	79	Y
122	74	7

Ποια είναι η έξοδος του παρακάτω προγράμματος ???

```
#include <stdio.h>
int main()
{
    printf("Char = %c and its ASCII code = %d\n", 'a'+3, 'a'+3);
    return 0;
}
```

Έξοδος: Char = d and its ASCII code = 100

Παραδείγματα (II)

Γράψτε ένα πρόγραμμα το οποίο να εμφανίζει την ASCII τιμή του χαρακτήρα που αντιστοιχεί στην αλλαγή νέας γραμμής ή ισοδύναμα στο πάτημα του πλήκτρου Enter

```
#include <stdio.h>
int main()
{
    printf("ASCII code = %d\n",'\n');
    return 0;
}
```

Παραδείγματα (III)

Γράψτε ένα πρόγραμμα το οποίο να εμφανίζει στην οθόνη όλους τους
 χαρακτήρες και τις αντίστοιχες ASCII τιμές αυτών

```
#include <stdio.h>
int main()
{
    int i;
    for(i = 0; i < 256; i++)
        printf("Char = %c and its ASCII code = %d\n",i,i);
    return 0;
}</pre>
```

Παραδείγματα (ΙV)

Παρατηρώντας προσεκτικά τον πίνακα με τις ASCII τιμές των χαρακτήρων, γράψτε ένα πρόγραμμα το οποίο να διαβάζει έναν κεφαλαίο χαρακτήρα και να εμφανίζει τον αντίστοιχο πεζό

```
#include <stdio.h>
int main()
{
    char ch;

    printf("Enter character: ");
    scanf("%c", &ch);

    printf("Char = %c\n", ch+32);
    return 0;
}
```

Η συνάρτηση getchar ()

- Η συνάρτηση getchar () διαβάζει έναν χαρακτήρα από το stdin
 (το οποίο εξ' ορισμού συνδέεται με το πληκτρολόγιο)
- Το πρωτότυπό της δηλώνεται στο stdio.h, ως εξής:

```
int getchar();
```

- Αν η getchar () εκτελεστεί επιτυχημένα, επιστρέφει τον χαρακτήρα που διαβάστηκε
- Αν δεν υπάρχει άλλος χαρακτήρας στο stdin για να διαβαστεί ή αν συμβεί κάποιο λάθος, η getchar() επιστρέφει μία ειδική σταθερά που ονομάζεται ΕΟF και έχει τιμή -1
- Η getchar () εκτελείται πιο γρήγορα από τη scanf (), γιατί η scanf () είναι μία σύνθετη συνάρτηση που έχει σχεδιαστεί για να διαβάζει διάφορους τύπους δεδομένων και όχι μόνο χαρακτήρες

Παράδειγμα

Γράψτε ένα πρόγραμμα το οποίο να εμφανίζει και να μετράει τους χαρακτήρες που εισάγει ο χρήστης μέχρι να πατήσει το πλήκτρο Enter, με χρήση της συνάρτησης getchar ()

```
#include <stdio.h>
int main()
      int ch, sum;
     printf("Enter characters: ");
      sum = 0:
      ch = getchar();
      while (ch != '\n')
            sum++; /* Αυξάνεται η μεταβλητή που μετράει τους
           που έχει εισάγει ο χρήστης μέχρι να διαβαστεί ο
χαρακτήρας '\n'. */
            printf("%c",ch);
            ch = getchar();
      printf("\nTotal number is = %d\n", sum);
      return 0:
```