Поиск...

Компьютерная сеть - шпаргалка

Последнее обновление: 21 сен, 2022

Компьютерная сеть — это взаимосвязанное вычислительное устройство, которое может обмениваться данными и совместно использовать ресурсы. Эти подключенные устройства используют набор правил, называемых протоколами связи, для передачи информации по физической или беспроводной технологии. Современные сети предлагают больше, чем просто подключение. Предприятия начинают с цифровой трансформации. Сети имеют важное значение для этой трансформации и ее успеха.

Ниже приведена шпаргалка по компьютерным сетям:

Топологии сети:

Имя	Описание
<u>Топология</u> <u>шины</u>	Шинная топология, также называемая линейной топологией, представляет собой тип сетевой топологии, в которой все сетевые устройства подключаются через центральный сетевой кабель RJ-45 или коаксиальный кабель.
<u>Кольцевая</u> <u>топология</u>	Кольцевая топология — это тип сетевой топологии, в которой каждое устройство подключается к двум другим устройствам с каждой стороны с помощью RJ-45 или коаксиальных кабелей.

Имя	Описание
<u>Топология</u> <u>«звезда»</u>	Топология «звезда» — это топология сети, в которой каждый элемент сети физически подключен к центральному узлу, такому как маршрутизатор, концентратор или коммутатор. В топологии «звезда» концентраторы действуют как серверы, а соединяющиеся узлы действуют как клиенты.
<u>Топология</u> <u>сетки</u>	В топологии сетки каждый узел подключен как минимум к одному другому узлу, а часто и к нескольким узлам. Каждый узел может отправлять и получать сообщения от других узлов.
<u>Топология</u> д <u>ерева</u>	Древовидная топология — это гибридная сетевая топология, в которой звездообразные сети соединены между собой шинными сетями. Древовидные сети являются иерархическими, и каждый узел может иметь любое количество дочерних узлов.
<u>Гибридная</u> топология	Гибридная топология — это тип сетевой топологии, которая использует две или более различных сетевых топологий. Эти топологии могут включать смешанные топологии шины, топологии сетки, топологии кольца, топологии звезды и топологии дерева.

Типы сетей:

Тип сети	Описание
<u>КАСТРЮЛЯ</u>	Персональная сеть — это сеть, состоящая из небольшого числа устройств, принадлежащих одному человеку.
<u>Локальная</u> <u>сеть</u>	Локальная вычислительная сеть — это сеть, охватывающая небольшую территорию (например, сеть компании).
WAN	Глобальная вычислительная сеть — это сеть, включающая множество устройств и охватывающая большую территорию. Обычно находится в коллективной собственности.
<u>АНИРЖҮМ</u>	MAN означает Metropolitan Area Network (городская вычислительная сеть). Это компьютерная сеть, которая объединяет определенное количество локальных сетей для формирования

Тип сети	Описание
	более крупной сети, чтобы компьютерные ресурсы могли совместно использоваться.

Модель TCP/IP и модель OSI:

TCP/IP	Модель OSI	Протоколы	
	<u>Уровень</u> приложений	DNS, DHCP, FTP, HTTPS, IMAP, LDAP, NTP, POP3, RTP, RTSP, SSH, SIP, SMTP, SNMP, Telnet, TFTP	
<u>Уровень</u> приложений	<u>Уровень</u> представления	JPEG, MIDI, MPEG, PICT, TIFF	
	<u> Уровень сеанса</u>	NetBIOS, NFS, PAP, SCP, SQL, ZIP	
<u>Транспортный</u> <u>уровень</u>	<u>Транспортный</u> <u>уровень</u>	TCP, UDP	
Интернет-слой	Сетевой уровень	ICMP, IGMP, IPsec, IPv4, IPv6, IPX, RIP	
Связующий слой	<u>Уровень канала</u> передачи данных	ARP, ATM, CDP, FDDI, Frame Relay, HDLC, MPLS, PPP, STP, Token Ring	
	<u>Физический уровень</u>	Bluetooth, Ethernet, DSL, ISDN, Wi-Fi 802.11	

Протоколы компьютерных сетей:

Сетевой протокол	Описание	Номер порта протокола
<u>Ethernet</u>	Семейство протоколов, определяющих, как устройства в одном сегменте сети форматируют и передают данные.	44818, 2222

Сетевой протокол	Описание	Номер порта протокола
<u>Wi-Fi или WLAN</u>	Семейство протоколов, обеспечивающих беспроводную передачу данных.	_
<u>ΤΚΠ</u>	Разделяет данные на пакеты (собирает их позже). Проверка ошибок также включена, поскольку ожидается, что подтверждение будет отправлено в течение указанного периода времени.	22
УДП	Протокол пользовательских датаграмм	4096-65535
ИС	Каждое устройство имеет IP-адрес. Пакеты «адресуются», чтобы гарантировать, что они дойдут до нужного пользователя.	_
HTTP	Используется для доступа к веб-страницам с веб-сервера.	80
HTTP'S	использует шифрование для защиты данных.	443
ΦΤΠ	Протокол передачи файлов: обеспечивает загрузку и выгрузку файлов, передачу данных и программ.	21
<u>SMTP</u>	SMTP-сервер имеет базу данных адресов электронной почты пользователей. Internet Message Access Protocol: обрабатывает входящую почту.	587
<u>IMAP</u>	Протокол доступа к сообщениям в Интернете: обработка входящей почты.	993

Сетевой протокол	Описание	Номер порта протокола
<u>АРП</u>	ARP находит аппаратный адрес хоста (также известный как MAC-адрес (Media Access Control)) на основе его известного IP-адреса.	_
<u>ДНС</u>	DNS — это имя хоста для службы трансляции IP-адресов. DNS — это распределенная база данных, реализованная на иерархии серверов имен. Это протокол прикладного уровня для обмена сообщениями между клиентами и серверами.	53
ΦΤΠϹ	FTPS известен как FTP SSL, что означает протокол передачи файлов (FTP) по протоколу защищенных сокетов (SSL), который более безопасен, чем FTP. FTPS также называют защищенным протоколом передачи файлов.	21
POP3	РОРЗ — это простой протокол, который позволяет только загружать сообщения из папки «Входящие» на локальный компьютер.	110
<u>ГЛОТОК</u>	Протокол инициирования сеанса был разработан IETF и описан в RFC 3261. Это протокол прикладного уровня, который описывает способ обнаружения телефонных звонков через Интернет, видеоконференций и других мультимедийных соединений, управления ими и их завершения.	5060,5061
МСБ	Протокол SMB был разработан корпорацией Microsoft для прямого обмена файлами по локальным сетям.	139
<u>SNMP</u>	SNMP — это протокол прикладного уровня, использующий номера портов UDP 161/162. SNMP также используется для мониторинга	161

/ PIVI	компьютерная сеть – шпаргалка деекзгогдеек	
Сетевой протокол	Описание	Номер порта протокола
	сетей, обнаружения сетевых ошибок и иногда для настройки удаленных устройств.	
<u>SSH</u>	SSH (Secure Shell) — это разрешения, используемые протоколом SSH. То есть криптографическим сетевым протоколом, используемым для отправки зашифрованных данных по сети.	22
<u>BHK</u>	VNC означает виртуальную сетевую связь.	5900
РПК	Удаленный вызов процедур (RPC) — это мощный метод построения распределенных клиент-серверных приложений. Он основан на расширении традиционных вызовов на локальные процедуры, так что вызываемая процедура не обязательно должна находиться в том же адресном пространстве, что и вызывающая процедура.	1024 до 5000
<u>НФС</u>	NFS использует дескрипторы файлов для уникальной идентификации файла или каталога, над которым выполняется текущая операция. Протокол управляющих сообщений Интернета (ICMP) для обеспечения контроля ошибок. Используется для сообщения об ошибках и административных запросов.	2049
ИКМП	Протокол управляющих сообщений Интернета (ICMP) для обеспечения контроля ошибок. Используется для сообщения об ошибках и запросов управления.	_
БООТП	Протокол начальной загрузки (ВООТР) — сетевой протокол, используемый сетевым управлением для назначения IP-адресов каждому члену этой сети с целью	67

Сетевой протокол	Описание	Номер порта протокола
	присоединения к другим сетевым устройствам через главный сервер.	
<u>DHCP</u>	Протокол динамической конфигурации хоста (DHCP) — это протокол прикладного уровня. DHCP основан на модели клиент-сервер, основанной на обнаружениях, предложениях, запросах и подтверждениях.	68
HAT	Трансляция сетевых адресов (NAT) — это процесс преобразования одного или нескольких локальных IP-адресов в один или несколько глобальных IP-адресов или наоборот с целью предоставления доступа в Интернет локальным хостам.	5351
ППС	Протокол точка-точка (PPP) по сути является асимметричным набором протоколов для различных соединений или ссылок без кадрирования. Н. Raw bit pipe. PPP также ожидает, что другие протоколы будут устанавливать соединения, аутентифицировать пользователей и переносить данные сетевого уровня.	1994
<u>РВАТЬ</u>	Протокол маршрутной информации (RIP) — это протокол динамической маршрутизации, который использует количество переходов в качестве метрики маршрутизации для поиска наилучшего пути между сетями источника и назначения.	520
<u>ОСФФ</u>	Open Shortest Path First (OSPF) — это протокол маршрутизации на основе состояния канала, используемый для поиска наилучшего пути между маршрутизаторами источника и назначения с использованием своего собственного кратчайшего пути.	89

Сетевой протокол	Описание	Номер порта протокола
<u>EIGRP</u>	Усовершенствованный протокол маршрутизации внутреннего шлюза (EIGRP) — это протокол динамической маршрутизации, используемый для поиска наилучшего пути и доставки пакетов между любыми двумя устройствами уровня 3.	88
БГП	Протокол пограничного шлюза (BGP) — это протокол, используемый для обмена информацией о маршрутизации в Интернете и применяемый между интернетпровайдерами в разных автономных системах.	179
СТП	Протокол Spanning Tree Protocol (STP) используется для создания сети без петель путем мониторинга сети, отслеживания всех соединений и отключения наименее избыточных соединений.	от 0 до 255
<u>РАРП</u>	RARP (Reverse Address Resolution Protocol) — это сетевой протокол, используемый клиентскими компьютерами для запроса IP-адресов из таблицы или кэша протокола разрешения адресов сервера шлюза.	_
<u>Полиция Лос-</u> <u>Анджелеса</u>	Протокол D-канала LAPD или Link Access Protocol по сути является протоколом уровня 2, обычно требуемым для D-канала ISDN. Он является производным от протокола LAPB (Link Access Protocol Balanced).	_
<u>IPsec</u>	IP Security (IPSec) — это стандартный набор протоколов Internet Engineering Task Force (IETF) между двумя точками связи в сетях IP для обеспечения аутентификации, целостности и конфиденциальности данных. Он также определяет зашифрованные,	4500

	компьютерная сеть – шпаргалка деекѕтогдеек	_
Сетевой протокол	Описание	Номер порта протокола
	расшифрованные и аутентифицированные пакеты.	
<u>ASCII</u>	ASCII (American Standard Code for Information Interchange) — это стандартная кодировка символов, используемая в телекоммуникациях. Представление ASCII «ask-ee» — это строго 7-битный код на основе английского алфавита. Коды ASCII используются для представления буквенноцифровых данных.	9500
EBCDIC	EBCDIC (Extended Binary Encoded Decimal Interchange Code) (произносится как «эб-сух-дик» или «эб-кух-дик») — буквенно-цифровой двоичный код, разработанный IBM для работы крупномасштабных компьютерных систем.	_
<u>X.25 ПА</u> Д	X.25 — это стандарт протокола Сектора стандартизации электросвязи Международного союза электросвязи (ITU-T) для связи в широкополосных сетях (WAN), который в основном описывает, как устанавливаются и поддерживаются соединения между пользовательскими устройствами и сетевыми устройствами.	_
HDLC	High-Level Data Link Control (HDLC) обычно использует термин «кадр» для обозначения единиц или журналов единиц данных, которые часто передаются или передаются с одной станции на другую, express. Каждый кадр в канале должен начинаться и заканчиваться полем последовательности флагов (F).	_
СОСКАЛЬЗЫВАТЬ	SLIP означает Serial Line Internet Protocol (Протокол последовательной линии	

PM	Компьютерная сеть – шпаргалка GeeksforGeek	3
Сетевой протокол	Описание	Номер порта протокола
	Интернета). Это реализация TCP/IP, которая была описана в RFC 1055 (Запрос комментариев).	
КОЛЕНИ	Процедура доступа к каналу (LAP) в основном рассматривается как семейство протоколов уровня канала передачи данных (DLL) ITU , которые являются подмножествами высокоуровневого управления каналом передачи данных (HDLC) . LAP, в частности, происходит от жизненного цикла разработки систем (SDLC) IBM .	_
НКП	Протокол управления сетью (NCP) — это набор протоколов, входящих в протокол точка-точка (PPP).	524
<u>Мобильный IP-</u> <u>адрес</u>	Мобильный IP — это протокол связи (создан путем расширения интернет-протокола IP), который позволяет пользователю перемещаться из одной сети в другую, используя один и тот же свой IP-адрес.	434
VOIP	Voice over Internet Protocol (VoIP) — это технология, которая позволяет вам совершать голосовые вызовы через широкополосное интернет-соединение вместо аналоговой (обычной) телефонной линии. Некоторые службы VoIP позволяют вам звонить людям, использующим ту же службу, но другие могут позволить вам звонить кому угодно.	5060
LDAP	Lightweight Directory Access Protocol (LDAP) — это интернет-протокол, работающий на ТСР/IР, используемый для доступа к информации из каталогов. Протокол LDAP в	389

Сетевой протокол	Описание	Номер порта протокола
	основном используется для доступа к активному каталогу.	
<u>ГРЕ</u>	GRE или Generic Routing Encapsulation — это туннельный протокол, разработанный Cisco. Он инкапсулирует IP-пакеты, т.е. доставляемые внутренние пакеты, во внешние пакеты.	47
AX	Заголовки HTTP Заголовок Authorization — это заголовок типа запроса, который используется для хранения информации об учетных данных для аутентификации пользователя через сервер. Если сервер отвечает 401 Unauthorized и заголовок WWW-Authenticate обычно не.	51
<u>ЭСП</u>	Encapsulation security payload, также сокращенно ESP, играет очень важную роль в сетевой безопасности. ESP или Encapsulation security payload — это отдельный протокол в IPSec.	500
<u>ННТП</u>	Сетевой протокол передачи новостей (NNTP) является базовым протоколом UseNet, всемирной системы обсуждений, содержащей сообщения или статьи, известные как новости.	119
RPC-DCOM	DCOM — распределенная компонентная объектная модель — помогает удаленным объектам работать с протоколом, известным как вызов удаленных процедур объектов (ORPC).	_
ИРЦ	Internet Relay Chat (IRC) — это интернет- приложение, разработанное Якко Ойкариненом в Финляндии. Чат — это самый	6667

Сетевой протокол	Описание	Номер порта протокола
	удобный и быстрый способ общения с другими людьми через Интернет.	

Стандарты IEEE:

Стандарты	Описание
IEEE 802	<u> </u>
IEEE 802.1	Mocтoвое соединение LAN/MAN и управление
IEEE 802.1s	Множественное остовное дерево
IEEE 802.1 c	<u>Быстрая перенастройка связующего дерева</u>
IEEE 802.1x	Управление сетевым доступом на основе портов
IEEE 802.2	<u>Логическое управление связью (LLC)</u>
IEEE 802.3	<u>Метод доступа CSMA/CD (Ethernet)</u>
IEEE 802.3ae	<u> 10-гигабитный Ethernet</u>
IEEE 802.4	Метод доступа к шине передачи маркера и спецификации физического уровня
IEEE 802.5	Метод доступа Token Ring и спецификации физического уровня
IEEE 802.6	<u>Метод доступа Distributed Queue Dual Bus (DQDB) и спецификации</u> <u>физического уровня (MAN)</u>
IEEE 802.7	<u>Широкополосная локальная сеть</u>
IEEE 802.8	Волоконно-оптический
IEEE 802.9	Изохронные локальные сети (стандарт отозван)

FIVI	Romitable phase cera - milaprasika deekstordeeks
Стандарты	Описание
IEEE 802.10	Совместимая безопасность LAN/MAN
IEEE 802.11	<u>Характеристики МАС-адреса и физического уровня беспроводной</u> <u>локальной сети</u>
IEEE 802.11a	Беспроводная связь со скоростью до 54 Мбит/с
IEEE 802.11b	<u>Беспроводная связь со скоростью до 11 Мбит/с</u>
IEEE 802.11g	Беспроводная связь со скоростью до 54 Мбит/с
IEEE 802.11n	Беспроводная связь со скоростью до 600 Мбит/с
IEEE 802.12	Метод доступа по требованию, физический уровень и характеристики ретранслятора
IEEE 802.13	Не используется
IEEE 802.14	<u>Кабельные модемы (предложенный стандарт был отозван)</u>
IEEE 802.15	<u>Беспроводная персональная сеть (WPAN)</u>
IEEE 802.16	<u>Беспроводная городская вычислительная ceть (Wireless MAN)</u>
IEEE 802.17	Доступ к устойчивому пакетному кольцу (RPR)

Сетевые устройства:

Устройство	Описание
Клиент	Любое устройство, например рабочая станция, ноутбук, планшет или смартфон, которое используется для доступа к сети.

Устройство	Описание
Сервер	Предоставляет пользователям сети ресурсы, включая электронную почту, веб-страницы или файлы.
Центр	Устройство уровня 1, которое не выполняет никакой проверки трафика. Концентратор просто получает трафик в порту и повторяет этот трафик из всех других портов.
Выключатель	Устройство уровня 2, которое принимает решения о пересылке на основе <u>адреса назначения Media Access</u> <u>Control (MAC)</u> . Коммутатор узнает, какие устройства находятся на каких портах, проверив исходный MAC-адрес. Затем коммутатор пересылает трафик только на соответствующий порт, а не на все остальные порты.
Маршрутизатор	Устройство уровня 3, которое принимает решения о пересылке на основе адресации Интернет-протокола (IP). На основе таблицы маршрутизации маршрутизатор интеллектуально пересылает трафик из соответствующего интерфейса.
Многоуровневый коммутатор	Может работать как на уровне 2, так и на уровне 3. Многоуровневый коммутатор, также называемый коммутатором уровня 3, представляет собой высокопроизводительное устройство, способное коммутировать трафик внутри локальной сети и пересылать пакеты между подсетями.
СМИ	Медиа могут быть медными кабелями, <u>оптоволоконными</u> кабелями или радиоволнами. Медиа различаются по стоимости, пропускной способности и ограничению расстояния.
Аналоговый модем	Модем — сокращение от модулятор/демодулятор. Аналоговый модем преобразует цифровые сигналы, генерируемые компьютером, в аналоговые сигналы, которые могут передаваться по обычным телефонным линиям.
Широкополосный модем	Цифровой модем, используемый с <u>высокоскоростным DSL</u> или кабельным Интернет-сервисом. Оба работают

Устройство	Описание
	аналогично аналоговому модему, но используют более высокие широкополосные частоты и скорости передачи.
Точка доступа (АР)	Сетевое устройство со встроенной антенной, передатчиком и адаптером, которое обеспечивает точку соединения между WLAN и проводной локальной сетью Ethernet. Точки доступа обычно имеют несколько проводных портов RJ-45 для поддержки клиентов локальной сети. Большинство маршрутизаторов для малых офисов или домашних офисов (SOHO) интегрируют точку доступа.

Кабели в сетевых устройствах:

Стандарты Ethernet (IEEE)	Скорость передачи данных	Тип волокна кабеля	Максимальное расстояние (IEEE)
Ethernet (10Base-FL)	10 Мбит/с	50 м или 62,5 мкм многомодовый @ 850 нм	2км
<u>Быстрый</u> <u>Ethernet</u> (100Base-FX)	100 Мбит/с	50 м или 62,5 мкм многомодовый @ 1300 нм	2км
<u>Быстрый</u> <u>Ethernet</u> (100Base-SX)	100 Мбит/с	50 м или 62,5 мкм многомодовый @ 850 нм	300м
<u>Гигабитный</u> <u>Ethernet</u> (1000Base-SX)	1000 Мбит/с	50 м многомодовый @ 850 нм	550м
<u>Гигабитный</u> <u>Ethernet</u> (1000Base-SX)	1000 Мбит/с	62,5 мкм многомодовый @ 850 нм	220м
<u>Гигабитный</u> <u>Ethernet</u> (1000Base-LX)	1000 Мбит/с	50 м или 62,5 мкм многомодовый @ 1300 нм	550м

Стандарты Ethernet (IEEE)	Скорость передачи данных	Тип волокна кабеля	Максимальное расстояние (IEEE)
<u>Гигабитный</u> <u>Ethernet</u> (1000Base-LX)	1000 Мбит/с	9 мкм одномодовый @1310 нм	5км
<u>Гигабитный</u> <u>Ethernet</u> (1000Base-LH)	1000 Мбит/с	9 мкм одномодовый @1550 нм	70км

Типы сетей Ethernet:

Скорость	Общее название	Неофициальное название стандарта IEEE	Официальное название стандарта IEEE	Тип кабеля, максимальная длина
10 Мбит/ с	Ethernet	10BASE-T	802.3	Медь, 100 м
100 Мбит/с	Быстрый Ethernet	100BASE-T	802.3u	Медь, 100 м
1000 Мбит/с	<u>Гигабитный</u> <u>Ethernet</u>	1000BASE-LX	802.3z	Волокно, 5000 м
1000 Мбит/с	<u>Гигабитный</u> <u>Ethernet</u>	1000BASE-T	802.3ab	Медь, 100 м
10 Гбит/с	<u>10-</u> гигабитный <u>Ethernet</u>	10GBASE-T	802.3an	Медь, 100 м

Типы сетевых подключений:

Тип	Описание
<u>Интернет</u>	Сеть миллионов взаимосвязанных и кооперативно подключенных
	компьютеров называется Интернет. Интернет включает людей,

Тип	Описание		
	ресурсы и средства совместной работы.		
Интранет	Это внутренняя частная сеть, созданная внутри организации с использованием стандартов и продуктов Интернета и Всемирной паутины, которая обеспечивает доступ к корпоративной информации для сотрудников организации.		
Экстранет	Это тип сети, который позволяет внешним пользователям получать доступ к интрасети организации.		

Передача Мейя:

• Управляемые медиа:

Тип носителя	Описание	
Витая пара	Это наложенная обмотка из двух отдельно изолированных проводников. Как правило, несколько таких пар группируются вместе в защитном кожухе. Они являются наиболее широко используемой средой передачи.	
<u>Коаксиальный</u> <u>кабель</u>	Он имеет изоляционный слой из ПВХ или тефлона и внешнюю пластиковую оболочку, содержащую два параллельных проводника, каждый из которых имеет отдельное конформное защитное покрытие.	
<u>Оптоволоконный</u> <u>кабель</u>	Он использует концепцию отражения света через стеклянный или пластиковый сердечник. Ядро окружено менее плотной стеклянной или пластиковой оболочкой, называемой оболочкой. Используется для передачи больших объемов данных.	
Полосковая линия	Stripline — это поперечная электромагнитная (TEM) линия передачи, изобретенная Робертом М. Барреттом в исследовательском центре ВВС Кембриджа в 1950-х годах. Stripline — самая ранняя форма планарной линии передачи.	
<u>Микрополосковая</u> <u>линия</u>	Проводящий материал отделен от заземляющей плоскости диэлектрическим слоем.	

• Неуправляемые СМИ :

Тип носителя	Описание	
<u>Радиоволны</u>	Их легко генерировать, и они могут проникать в здания. Нет необходимости выравнивать передающие и приемные антенны. Диапазон частот: 3 кГц — 1 ГГц. АМ-радио, FM-радио и беспроводные телефоны используют радиоволны для передачи.	
<u>Микроволновые</u> <u>печи</u>	Типы мультиплексоров: передача по прямой видимости. Н. Передающие и приемные антенны должны быть правильно размещены. Расстояние, на которое распространяется сигнал, прямо пропорционально высоте антенны. Диапазон частот: 1 ГГц – 300 ГГц Они в основном используются для мобильной телефонии и распространения телевидения.	
<u>Инфракрасный</u>	Инфракрасный порт используется для связи на коротких расстояниях. Препятствия не могут быть преодолены. Это предотвращает помехи между системами. Диапазон частот: 300 ГГц – 400 ТГц Используется в пультах дистанционного управления телевизорами, беспроводных мышах, клавиатурах, принтерах и т. д.	

Типы мультиплексоров:

Тип	Описание	
<u>Частотное разделение</u> <u>каналов (FDM)</u>	Спектр частот разделен на логические каналы, и каждый пользователь имеет эксклюзивный доступ к своему каналу. Он передает сигналы в нескольких различных частотных диапазонах и несколько видеоканалов по одному кабелю. Каждый сигнал модулируется на разной несущей частоте, а несущие частоты разделены защитными полосами.	
<u>Временное разделение</u> <u>каналов (TDM)</u>	Каждый пользователь получает полную пропускную способность на короткий период времени на регулярной основе. Весь канал выделяется одному пользователю, но только на короткий период времени.	

Тип	Описание
Мультиплексирование с разделением по длине волны	Это то же самое, что и FDM, но примененное к волокну, с той разницей, что здесь рабочая частота намного выше, фактически в оптическом диапазоне. Благодаря своей чрезвычайно высокой пропускной способности оптоволокно имеет большой потенциал.

Обнаружение столкновений:

Тип	Описание
Множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD)	В этом методе после отправки кадра станция отслеживает носитель, чтобы убедиться, что передача прошла успешно. Если передача прошла успешно, передача прекращается, в противном случае кадр передается повторно.
Множественный доступ с контролем несущей и предотвращением коллизий (CSMA/CA)	Основная идея CSMA/CA заключается в том, что станции должны иметь возможность принимать во время передачи, чтобы обнаруживать коллизии от разных станций. Коллизия в проводной сети почти удваивает энергию принимаемого сигнала, позволяя станциям обнаруживать потенциальную коллизию.
<u>АЛОХА</u>	Он был разработан для Wi-Fi, но может также использоваться для общего медиа. Несколько станций могут передавать данные одновременно, что может привести к коллизиям и повреждению данных.

Службы сетевого уровня:

Тип	Описание	
<u>Пакетирование</u>	Процесс инкапсуляции данных (также называемых полезной нагрузкой), полученных с верхних уровней сети, в пакеты сетевого уровня в источнике и декапсуляции полезной нагрузки из пакетов сетевого уровня в пункте назначения называется пакетированием.	

Тип	Описание
<u>Маршрутизация</u> и пересылка	Это две другие услуги, предоставляемые сетевым уровнем. Сеть имеет множество маршрутов от источника к месту назначения. Сетевой уровень устанавливает некоторые стратегии для поиска наилучшего возможного маршрута. Этот процесс называется маршрутизацией.

Способ связи:

Типы	Описание
<u>Симплексный</u> режим	В симплексном режиме связь односторонняя, как односторонняя. Только одно из двух устройств на линии связи может передавать, другое может только получать. Симплексный режим позволяет отправлять данные в одном направлении, используя полную пропускную способность канала.
<u>Полудуплексный</u> <u>режим</u>	В полудуплексном режиме каждая станция может как передавать, так и получать, но не одновременно. Когда одно устройство передает, другое устройство может только получать и наоборот. Полудуплексный режим используется, когда не требуется одновременная связь в обоих направлениях.
<u>Полный</u> д <u>уплексный</u> <u>режим</u>	В полнодуплексном режиме обе станции могут передавать и получать данные одновременно. В полнодуплексном режиме сигналы в одном направлении делят пропускную способность канала с сигналами в другом направлении. Такое совместное использование может осуществляться двумя способами: • Либо канал должен содержать два физически отдельных пути передачи: один для отправки, а другой для приема. • Или пропускная способность делится между сигналами, передаваемыми в обоих направлениях.

Занятия по компьютерным сетям:

COPT	ВЕДУЩИЕ БИТЫ	СЕТЕВЫЕ ИДЕНТИФИКАЦИОННЫЕ БИТЫ	БИТЫ ИДЕНТИФИКАТОРА ХОСТА	K
<u>КЛАСС</u> <u>А</u>	0	8	24	
<u>КЛАСС</u> <u>Б</u>	10	16	16	
<u>КЛАСС</u> <u>С</u>	110	24	8	2:
<u>КЛАСС</u> <u>D</u>	1110	НЕ ОПРЕДЕЛЕНО	НЕ ОПРЕДЕЛЕНО	C
<u>КЛАСС</u> <u>E</u>	1111	НЕ ОПРЕДЕЛЕНО	НЕ ОПРЕДЕЛЕНО	C

Адрес подсети или идентификатор подсети с использованием префикса /16	1-й используемый IP-адрес	Последний используемый IP-адрес	Адрес для трансляции
120.0.0.0/24	120.0.0.1	120.0.255.254	120.0.255.255
120.1.0.0/24	120.1.0.1	120.1.255.254	120.1.255.255
120.2.0.0/24	120.2.0.1	120.2.255.254	120.2.255.255
120.3.0.0/24	120.3.0.1	120.3.255.254	120.3.255.255
120.100.0.0/24	120.100.0.1	120.100.255.254	120.100.255.255
120.101.0.0/24	120.101.0.1	120.101.255.254	120.101.255.255

 Способность
 Инженерная математика
 Дискретная математика
 Операционная система
 СУЕ
 Войти

 120.201.0.0/24
 120.201.0.1
 120.201.255.254
 120.201.255.255

Адрес подсети или идентификатор подсети с использованием префикса /16	1-й используемый IP-адрес	Последний используемый IP-адрес	Адрес для трансляции	
120.253.0.0/24	120.253.0.1	120.253.255.254	120.253.255.255	
120.254.0.0/24	120.254.0.1	120.254.255.254	120.254.255.255	
120.255.0.0/24	120.255.0.1	120.255.255.254	120.255.255.255	

Подсети:

Частный IP-адрес с маской подсети	Диапазон частных IP-адресов	Диапазон частных IP- адресов, обозначенный в CIDR
10.0.0.0 255.0.0.0	10.0.0.0 по 10.255.255.255	10.0.0/8
172.16.0.0 255.240.0.0	172.16.0.0 по 172.31.255.255	172.16.0.0/12
192.168.0.0 255.255.0.0	192.168.0.0 по 192.168.255.255	192.168.0.0/16

CIDR	МАСКА ПОДСЕТИ	МАСКА- ПОДСТАВКА	КОЛИЧЕСТВО ІР-АДРЕСОВ	КОЛИЧЕСТВО ИСПОЛЬЗУЕМЫХ IP-АДРЕСОВ
/32	255.255.255.255	0.0.0.0	1	1
/31	255.255.255.254	0.0.0.1	2	2*
/30	255.255.255.252	0.0.0.3	4	2
/29	255.255.255.248	0.0.0.7	8	6
/28	255.255.255.240	0.0.0.15	16	14

CIDR	МАСКА ПОДСЕТИ	МАСКА- ПОДСТАВКА	КОЛИЧЕСТВО ІР-АДРЕСОВ	КОЛИЧЕСТВО ИСПОЛЬЗУЕМЫХ IP-АДРЕСОВ
/27	255.255.255.224	0.0.0.31	32	30
/26	255.255.255.192	0.0.0.63	64	62
/25	255.255.255.128	0.0.0.127	128	126
/24	255.255.255.0	0.0.0.255	256	254
/23	255.255.254.0	0.0.1.255	512	510
/22	255.255.252.0	0.0.3.255	1,024	1,022
/21	255.255.248.0	0.0.7.255	2,048	2,046
/20	255.255.240.0	0.0.15.255	4,096	4,094
/19	255.255.224.0	0.0.31.255	8,192	8,190
/18	255.255.192.0	0.0.63.255	16,384	16,382
/17	255.255.128.0	0.0.127.255	32,768	32,766
/16	255.255.0.0	0.0.255.255	65,536	65,534
/15	255.254.0.0	0.1.255.255	131,072	131,070
/14	255.252.0.0	0.3.255.255	262,144	262,142
/13	255.248.0.0	0.7.255.255	524,288	524,286
/12	255.240.0.0	0.15.255.255	1,048,576	1,048,574
/11	255.224.0.0	0.31.255.255	2,097,152	2,097,150
/10	255.192.0.0	0.63.255.255	4,194,304	4,194,302
/9	255.128.0.0	0.127.255.255	8,388,608	8,388,606

CIDR	МАСКА ПОДСЕТИ	МАСКА- ПОДСТАВКА	КОЛИЧЕСТВО ІР-АДРЕСОВ	КОЛИЧЕСТВО ИСПОЛЬЗУЕМЫХ
	ПОДСЕТИ	ПОДСТАВКА	ГР-АДРЕСОВ	ІР-АДРЕСОВ
/8	255.0.0.0	0.255.255.255	16,777,216	16,777,214
/7	254.0.0.0	1.255.255.255	33,554,432	33,554,430
/6	252.0.0.0	3.255.255.255	67,108,864	67,108,862
/5	248.0.0.0	7.255.255.255	134,217,728	134,217,726
/4	240.0.0.0	15.255.255.255	268,435,456	268,435,454
/3	224.0.0.0	31.255.255.255	536,870,912	536,870,910
/2	192.0.0.0	63.255.255.255	1,073,741,824	1,073,741,822
/1	128.0.0.0	127.255.255.255	2,147,483,648	2,147,483,646
/0	0.0.0.0	255.255.255.255	4,294,967,296	4,294,967,294

Методы сетевой безопасности:

Метод	Описание	
<u>Аутентификация</u>	Подтвердите личность пользователя, обычно попросив его ввести пароль или биометрический идентификатор.	
<u>Шифрование</u>	Шифровать данные ключом, то есть для расшифровки данных требуется тот же ключ. Так работает HTTPS.	
<u>Брандмауэры</u>	Защитите сеть от несанкционированного доступа.	
<u>Фильтрация МАС-</u> <u>адресов</u>	Разрешить или запретить устройствам доступ к сети на основе их физического адреса, встроенного в сетевой адаптер устройства.	

Комментарий Дополнительная информация

Следующая статья

Шпаргалка по Angular — базовое руководство по Angular

Похожие чтения

Geeksforgeeks Cheatsheets - Все коллекции шпаргалок по кодированию

Шпаргалки — это короткие документы, которые содержат всю самую важную информацию о конкретной технологии вкратце, например, ее синтаксис, команды, функции или ее особенности. Шпаргалки...

4 мин чтения

Памятка по маске подсети

Маска подсети — это числовое значение, которое описывает, как компьютер или устройство разделяет IPадрес на две части: сетевую часть и хостовую часть. Сетевой элемент определяет сеть, к которой...

9 мин чтения

Шпаргалка по Git

Git Cheat Sheet — это всеобъемлющее краткое руководство по изучению концепций Git, от самых базовых до продвинутых уровней. С помощью этой Git Cheat Sheet мы стремимся предоставить удобный справочный...

10 мин чтения

Шпаргалка по NumPy: от новичка до продвинутого пользователя (PDF)

NumPy означает Numerical Python. Это один из важнейших основополагающих пакетов для численных вычислений и анализа данных в Python. Большинство вычислительных пакетов, предоставляющих научные...

15+ мин чтения

Шпаргалка по командам Linux

Linux, часто ассоциируемый с тем, что он является сложной операционной системой, используемой в основном разработчиками, не обязательно полностью соответствует этому описанию. Хотя поначалу он...

13 мин чтения

Памятка Pandas по науке о данных на Python

Pandas — это мощная и универсальная библиотека, которая позволяет работать с данными в Python. Она предлагает ряд функций и возможностей, которые делают анализ данных быстрым, простым и эффективны...

15+ мин чтения

Шпаргалка по Java

Java — это язык программирования и платформа, которые широко используются с момента их разработки Джеймсом Гослингом в 1991 году. Он следует концепции объектно-ориентированного программирования и...

15+ мин чтения

Шпаргалка по C++ STL

Шпаргалка по C++ STL содержит краткие и лаконичные заметки по стандартной библиотеке шаблонов (STL) в C++. Шпаргалка по STL, разработанная для программистов, которые хотят быстро ознакомиться с ключевым...

15+ мин чтения

Шпаргалка по Docker: полное руководство (2024)

Docker — очень популярный инструмент, представленный для того, чтобы упростить разработчикам создание, развертывание и запуск приложений с использованием контейнеров. Контейнер — это утилита,...

11 мин чтения

Шпаргалка по С++

Это шпаргалка по программированию на С++. Она полезна для новичков и продолжающих, желающих изучить или повторить концепции программирования на С++. При изучении нового языка раздражает...

15+ мин чтения

A-143, 7-й этаж, Sovereign Corporate Tower, Сектор-136, Нойда, Уттар-Прадеш (201305)

Юридический адрес:

К 061, Башня К, Квартира Гульшан Виванте, сектор 137, Нойда, Гаутам Буддх Нагар, Уттар-Прадеш, 201305

Рекламируйтесь у нас

Компания	Языки
О нас	Питон
Юридический	Ява
политика конфиденциальности	C++
ВСМИ	PHP
Связаться с нами	GoLang
Рекламируйтесь у нас	SQL
Корпоративное решение GFG	Язык Р
Программа стажировки	Учебник по Android
	Архив обучающих программ

ДСА

Структуры данных
Алгоритмы
DSA для начинающих
Основные проблемы DSA
Дорожная карта DSA
100 основных проблем на собеседовании DSA

Наука о данных и машинное обучение

Наука о данных с Python
Наука о данных для начинающих
Машинное обучение
Математика машинного обучения
Визуализация данных
Панды

Компьютерная сеть - шпаргалка | GeeksforGeeks

Дорожная карта DSA Сандипа Джайна Все шпаргалки

НЛП Глубокое обучение

Веб-технологии

HTML CSS JavaScript Машинопись ReactJS

ReactJS СледующийJS Бутстрап Веб-дизайн

Учебник по Python

Примеры программирования на Python Проекты Python Питон Tkinter Веб-скрапинг с помощью Python Учебник OpenCV Вопрос на собеседовании по Python

Джанго

DevOps

Гит Линукс АВС Докер Кубернетес Лазурный GCP

Дорожная карта DevOps

Информатика

Операционные системы
Компьютерная сеть
Система управления базами данных
Программная инженерия
Проектирование цифровой логики
Инженерная математика
Разработка программного обеспечения

Проектирование системы

Проектирование высокого уровня
Низкоуровневое проектирование
Диаграммы UML
Руководство по собеседованию
Шаблоны проектирования

ООАД Учебный лагерь по проектированию систем Вопросы для интервью

Подготовка к собеседованию

Конкурсное программирование
Лучший DS или Алгоритм для CP
Процесс подбора персонала в компании
Подготовка на уровне компании
Подготовка к способностям
Пазлы

Школьные предметы

Мировой ГК

Математика Физика Химия Биология Социальные науки Грамматика английского языка Коммерция

Видео GeeksforGeeks

ДСА Питон Ява С++ Веб-разработка Наука о данных Предметы CS

@GeeksforGeeks, Sanchhaya Education Private Limited , Все права защищены