School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet II: Field extensionions: Algebraic elements, minimum polynomials, simple extensions (Solutions)

1. Let K be an extension of the field F such that the degree |K:F| is a prime number. Show that there are no *intermediate* fields between F and K; that is, no fields L satisfying $F \subset L \subset K$.

Solution: Suppose L is an intermediate field: $F \subseteq L \subseteq K$. Then by the Tower Law

$$|K:F| = |K:L| \cdot |L:F|.$$

Since |K:F| is prime, either |K:L|=1 or |L:F|=1. Thus L=K or L=F.

Hence there are no *strictly* intermediate fields L satisfying $F \subset L \subset K$.

2. For all values of $a, b \in \mathbb{Q}$, determine the minimum polynomial of $a + b\sqrt{2}$ over \mathbb{Q} .

Solution: If b = 0, then $a \in \mathbb{Q}$ satisfies the linear polynomial X - a over \mathbb{Q} and this is the minimum polynomial of a over \mathbb{Q} .

If $b \neq 0$, then $\alpha = a + b\sqrt{2} \notin \mathbb{Q}$. (For if $\alpha \in \mathbb{Q}$, then $\sqrt{2} = (\alpha - a)/b \in \mathbb{Q}$, which would be a contradiction.) Hence the minimum polynomial of α over \mathbb{Q} cannot be linear. Now

$$\alpha^2 = (a + b\sqrt{2})^2 = a^2 + 2ab\sqrt{2} + 2b^2.$$

Hence

$$\alpha^{2} - 2a\alpha = a^{2} + 2b^{2} + 2ab\sqrt{2} - 2a^{2} - 2ab\sqrt{2}$$
$$= 2b^{2} - a^{2}$$

and we conclude α is a root of

$$X^2 - 2aX + a^2 - 2b^2.$$

Since α does not satisfy any linear polynomial, we conclude this polynomial is the minimum polynomial of α over \mathbb{Q} .

In conclusion, the minimum polynomial of $a + b\sqrt{2}$ over \mathbb{Q} is

$$X - \alpha \qquad \text{if } b = 0,$$

$$X^2 - 2aX + (a^2 - 2b^2) \qquad \text{if } b \neq 0.$$

- 3. (a) Show that $\mathbb C$ is a simple extension of $\mathbb R$.
 - (b) What are the irreducible polynomials over \mathbb{C} ?
 - (c) Show that if α is algebraic over \mathbb{C} , then $\mathbb{C}(\alpha) = \mathbb{C}$.

Solution: (a) Every element of \mathbb{C} can be expressed as a+bi where $a,b\in\mathbb{R}$. Hence the smallest subfield of \mathbb{C} containing \mathbb{R} and the element i is \mathbb{C} itself; that is, $\mathbb{C}=\mathbb{R}(i)$. Hence \mathbb{C} is a simple extension of \mathbb{R} .

(b) The Fundamental Theorem of Algebra (proved in Complex Analysis books/courses) states that every polynomial f(X) with complex coefficients (that is, $f(X) \in \mathbb{C}[X]$) has a root α in \mathbb{C} and hence factorizes as

$$f(X) = (X - \alpha) g(X)$$

for some $g(X) \in \mathbb{C}[X]$. Consequently, the only irreducible polynomials over \mathbb{C} are the linear polynomials (i.e., those of degree one).

- (c) If α is algebraic over \mathbb{C} , then the minimum polynomial $f(X) \in \mathbb{C}[X]$ is irreducible so, by (b), is of degree one; that is, $f(X) = X \alpha$ and $\alpha \in \mathbb{C}$. Hence $\mathbb{C}(\alpha) = \mathbb{C}$.
- 4. Let α be algebraic over the base field F. Show that every element of the simple extension $F(\alpha)$ is algebraic over F.

Solution: Let α be algebraic over F. Suppose f(X) is the minimum polynomial of α over F. Then

$$|F(\alpha):F|=\deg f(X).$$

This is a positive integer, so we conclude that $F(\alpha)$ is a finite extension of F. As a finite extension, it follows that $F(\alpha)$ is an algebraic extension of F; that is, every element of $F(\alpha)$ is algebraic over F.

5. Show that the polynomial $f(X) = X^4 - 16X^2 + 4$ is irreducible over \mathbb{Q} .

Let α be a root of f(X) in some field extension of \mathbb{Q} . Determine the minimum polynomials of α^2 and of $\alpha^3 - 14\alpha$ over \mathbb{Q} .

Solution: Consider $f(X) = X^4 - 16X^2 + 4$ over \mathbb{Q} . If f(X) factorizes over \mathbb{Q} , then it factorizes over \mathbb{Z} , by Gauss's Lemma. If we reduce the coefficients modulo 3 (that is, apply the ring homomorphism $\mathbb{Z}[X] \to \mathbb{F}_3[X]$ induced by the natural map $\mathbb{Z} \to \mathbb{F}_3$) then we obtain a factorization of

$$\bar{f}(X) = X^4 - X^2 + 1$$

over \mathbb{F}_3 . Note

$$\bar{f}(0) = 1, \quad \bar{f}(1) = 1, \quad \bar{f}(2) = 1,$$

so $\bar{f}(X)$ has no linear factors. Therefore f(X) has no linear factors over \mathbb{Z} , nor over \mathbb{Q} . We conclude that if f(X) factorizes over \mathbb{Q} , then it has a factorization

$$f(X) = (X^2 + \alpha X + \beta)(X^2 + \gamma X + \delta)$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$. Hence

$$\alpha + \gamma = 0,$$
 $\alpha \gamma + \beta + \delta = -16,$ $\alpha \delta + \beta \gamma = 0,$ $\beta \delta = 4.$

The first equation yields $\gamma = -\alpha$ and then the third equation becomes

$$(\delta - \beta)\alpha = 0.$$

If it were the case that $\beta \neq \delta$, then this would force $\alpha = \gamma = 0$. The second equation is then $\beta + \delta = -16$, which is impossible if $\beta \delta = 4$ (as then $\{\beta, \delta\} = \{1, 4\}$ or $\{-1, -4\}$). Hence $\beta = \delta$ and we conclude $\beta = \delta = \pm 2$. The second equation, in this case, becomes

$$-\alpha^2 + 2\beta = -16;$$

that is,

$$\alpha^2 = 2\beta + 16 = 12$$
 or 20.

This is impossible for $\alpha \in \mathbb{Z}$.

We conclude that $f(X) = X^4 - 16X^2 + 4$ is indeed irreducible over \mathbb{Q} .

Let α be a root of f(X) in some extension over \mathbb{Q} . Then $\alpha^4 - 16\alpha^2 + 4 = 0$ and f(X) Is the minimum polynomial of α over \mathbb{Q} . Let $\beta = \alpha^2$. Certainly β satisfies

$$\beta^2 - 16\beta + 4 = 0$$
:

that is, β is a root of $X^2-16X+4$. This must be the minimum polynomial of β over \mathbb{Q} , for if it were not, then β would satisfy a linear polynomial over \mathbb{Q} , say X-c, and then α would satisfy $\alpha^2-c=0$, contrary to f(X) being the minimum polynomial of α over \mathbb{Q} .

Hence $X^2 - 16X + 4$ is the minimum polynomial of $\beta = \alpha^2$ over \mathbb{Q} .

Let $\gamma = \alpha^3 - 14\alpha$. Since α does not satisfy a non-zero polynomial of degree three over \mathbb{Q} , γ cannot satisfy a linear polynomial over \mathbb{Q} . Hence the minimum polynomial of γ over \mathbb{Q} has degree at least two. Observe, using the fact that $\alpha^4 = 16\alpha^2 - 4$, that

$$\begin{split} \gamma^2 &= (\alpha^3 - 14\alpha)^2 \\ &= \alpha^6 - 28\alpha^4 + 196\alpha^2 \\ &= \alpha^2(16\alpha^2 - 4) - 28(16\alpha^2 - 4) + 196\alpha^2 \\ &= 16\alpha^4 - 4\alpha^2 - 448\alpha^2 + 112 + 196\alpha^2 \\ &= 16(16\alpha^2 - 4) - 256\alpha^2 + 112 \\ &= 256\alpha^2 - 64 - 256\alpha^2 + 112 \\ &= 48. \end{split}$$

Hence γ is a root of X^2-48 and this must then be the minimum polynomial of $\gamma=\alpha^3-14\alpha$ over \mathbb{Q} .

- 6. Determine the following degrees of field extensions:
 - (a) $|\mathbb{Q}(\sqrt[5]{3}):\mathbb{Q}|$
 - (b) $|\mathbb{Q}(e^{2\pi i/5}):\mathbb{Q}|$
 - (c) $|\mathbb{Q}(\sqrt{2},i):\mathbb{Q}|$
 - (d) $|\mathbb{Q}(\sqrt{2}i):\mathbb{Q}|$
 - (e) $|\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}|$
 - (f) $|\mathbb{Q}(\sqrt{6},i):\mathbb{Q}(i)|$

Solution: (a) First observe that $\sqrt[5]{3}$ is a root of X^5-3 , which is an irreducible polynomial over \mathbb{Q} by Eisenstein's Criterion. Hence X^5-3 is the minimum polynomial of $\sqrt[5]{3}$ over \mathbb{Q} and therefore

$$|\mathbb{Q}(\sqrt[5]{3}):\mathbb{Q}|=5.$$

(b) Let $\omega = e^{2\pi i/5}$. Note $\omega^5 = 1$, but $X^5 - 1$ is not irreducible over \mathbb{Q} as it factorizes as

$$X^5 - 1 = (X - 1)(X^4 + X^3 + X^2 + X + 1).$$

Substituting ω into this factorization we conclude

$$0 = (\omega - 1)(\omega^4 + \omega^3 + \omega^2 + \omega + 1),$$

so

$$\omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0$$

since $\omega \neq 1$. Thus ω satisfies the polynomial $X^4 + X^3 + X^2 + X + 1$, which is an irreducible polynomial over $\mathbb Q$ as observed in Example 1.24(iii) (taking p=5 in that example). Hence the minimum polynomial of $\omega = \mathrm{e}^{2\pi i/5}$ over $\mathbb Q$ is $X^4 + X^3 + X^2 + X + 1$ and

$$|\mathbb{Q}(e^{2\pi i/5}):\mathbb{Q}|=4.$$

(c) We use the Tower Law to observe

$$|\mathbb{Q}(\sqrt{2},i):\mathbb{Q}| = |\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})| \cdot |\mathbb{Q}(\sqrt{2}):\mathbb{Q}|.$$

Now $\sqrt{2}$ is a root of $X^2 - 2$ and this is an irreducible polynomial over \mathbb{Q} by Eisenstein's Criterion. Thus $X^2 - 2$ is the minimum polynomial of $\sqrt{2}$ over \mathbb{Q} and

$$|\mathbb{Q}(\sqrt{2}):\mathbb{Q}|=2.$$

Now i is a root of $X^2 + 1$. If this polynomial were reducible over $\mathbb{Q}(\sqrt{2})$, it would factorize as

$$X^2 + 1 = (X - i)(X + i)$$

over $\mathbb{Q}(\sqrt{2})$ and so $i \in \mathbb{Q}(\sqrt{2})$, which is not true as $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$. Hence $X^2 + 1$ is irreducible over $\mathbb{Q}(\sqrt{2})$ and is therefore the minimum polynomial of i over $\mathbb{Q}(\sqrt{2})$. Thus

$$|\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})|=2$$

and we conclude

$$|\mathbb{Q}(\sqrt{2},i):\mathbb{Q}| = 2 \times 2 = 4.$$

(d) Now $\sqrt{2}i$ is a root of $X^2 + 2$, which is irreducible over \mathbb{Q} by Eisenstein's Criterion. We conclude $X^2 + 2$ is the minimum polynomial of $\sqrt{2}i$ over \mathbb{Q} and

$$|\mathbb{Q}(\sqrt{2}i):\mathbb{Q}|=2.$$

(e) We use the Tower Law to observe

$$|\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}|=|\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}(\sqrt{2})|\cdot|\mathbb{Q}(\sqrt{2}):\mathbb{Q}|.$$

We already know (see part (c)) that

$$|\mathbb{Q}(\sqrt{2}):\mathbb{Q}|=2$$

and indeed this tells us that $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} . Now $\sqrt{5}$ satisfies the polynomial $X^2 - 5$. If this were reducible over $\mathbb{Q}(\sqrt{2})$, it would factorize into linear factors and then necessarily $\sqrt{5} \in \mathbb{Q}(\sqrt{2})$; that is,

$$\sqrt{5} = a + b\sqrt{2}$$

for some $a, b \in \mathbb{Q}$. If b = 0, then $\sqrt{5} \in \mathbb{Q}$, which we know is false. If a = 0, then $\sqrt{5} = b\sqrt{2}$, so $\sqrt{10} = 2b \in \mathbb{Q}$, which again is false. Thus $a, b \neq 0$ and, upon squaring,

$$5 = a^2 + 2ab\sqrt{2} + 2b^2$$
:

that is,

$$\sqrt{2} = \frac{5 - a^2 - 2b^2}{2ab} \in \mathbb{Q},$$

again a contradiction. Hence $\sqrt{5} \notin \mathbb{Q}(\sqrt{2})$ and $X^2 - 5$ is irreducible over $\mathbb{Q}(\sqrt{2})$. It is therefore the minimum polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{2})$ and we conclude

$$|\mathbb{Q}(\sqrt{2}, \sqrt{5}) : \mathbb{Q}(\sqrt{2})| = 2$$

and hence

$$|\mathbb{Q}(\sqrt{2}, \sqrt{5}) : \mathbb{Q}| = 4.$$

(f) We know i has minimum polynomial $X^2 + 1$ over \mathbb{Q} , so $|\mathbb{Q}(i) : \mathbb{Q}| = 2$ and $\{1, i\}$ is a basis for $\mathbb{Q}(i)$ over \mathbb{Q} .

Now $\sqrt{6}$ is a root of X^2-6 . If this were to factorize into linear factors over $\mathbb{Q}(i)$, then $\sqrt{6} \in \mathbb{Q}(i)$ and we could write $\sqrt{6} = a + bi$ for some $a, b \in \mathbb{Q}$. However, $\sqrt{6}$ is real, so necessarily b = 0, but this is a contradiction as $\sqrt{6} \notin \mathbb{Q}$, contrary to the equation $\sqrt{6} = a$. Hence X^2-6 is irreducible over $\mathbb{Q}(i)$ and is the minimum polynomial of $\sqrt{6}$ over $\mathbb{Q}(i)$. Thus

$$|\mathbb{Q}(\sqrt{6}, i) : \mathbb{Q}(i)| = 2.$$

7. Let $\alpha \in \mathbb{C}$ be a root of the polynomial $X^2 + 2X + 5$. Express the element

$$\frac{\alpha^3 + \alpha - 2}{\alpha^2 - 3}$$

of $\mathbb{Q}(\alpha)$ as a linear combination of the basis $\{1, \alpha\}$.

Solution: We first deal with the numerator and denominator of the given fraction. Dividing the appropriate polynomial by $X^2 + 2X + 5$, we observe

$$X^{3} + X - 2 = X(X^{2} + 2X + 5) - 2X^{2} - 4X - 2$$
$$= (X - 2)(X^{2} + 2X + 5) + 8,$$

so upon substituting α ,

$$\alpha^3 + \alpha - 2 = 8.$$

Similarly

$$X^2 - 3 = (X^2 + 2X + 5) - 2X - 8,$$

so upon substituting α ,

$$\alpha^2 - 3 = -2\alpha - 8.$$

To divide by this element, we shall apply the method to determine the greatest common divisor of the polynomials

$$a_0(X) = X^2 + 2X + 5$$
 and $a_1(X) = -2X - 8$.

Divide $a_0(X)$ by $a_1(X)$ to give quotient and remainder:

$$a_0(X) = X^2 + 2X + 5$$

$$= -\frac{1}{2}X \cdot (-2X - 8) - 2X + 5$$

$$= (-\frac{1}{2}X + 1)(-2X - 8) + 13.$$

We take $a_2 = 13$. As this is a unit in $\mathbb{Q}[X]$, we conclude that $a_0(X)$ and $a_1(X)$ are coprime in this Euclidean domain. Reversing the steps in the calculation:

$$13 = a_0(X) - \left(-\frac{1}{2}X + 1\right)a_1(X)$$

= $a_0(X) + \left(\frac{1}{2}X - 1\right)(-2X - 8).$

Substituting α gives

$$13 = (\frac{1}{2}\alpha - 1)(-2\alpha - 8).$$

Hence

$$\frac{1}{\alpha^2 - 3} = \frac{1}{-2\alpha - 8} = \frac{1}{13} \left(\frac{1}{2}\alpha - 1 \right).$$

We finally conclude, using all above calculations, that

$$\frac{\alpha^3 + \alpha - 2}{\alpha^2 - 3} = \frac{8}{-2\alpha - 8}$$
$$= \frac{8}{13} \left(\frac{1}{2}\alpha - 1\right)$$
$$= \frac{4}{13}(\alpha - 2).$$

8. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{5}) = \mathbb{Q}(\sqrt{2} + \sqrt{5})$.

Determine the minimum polynomial of $\sqrt{2} + \sqrt{5}$ over the following subfields:

(i)
$$\mathbb{Q}$$
; (ii) $\mathbb{Q}(\sqrt{2})$; (iii) $\mathbb{Q}(\sqrt{5})$.

Solution: We have already calculated the degree of the extension $\mathbb{Q}(\sqrt{2}, \sqrt{5})$ over \mathbb{Q} in Question 6(e):

$$|\mathbb{Q}(\sqrt{2}, \sqrt{5}) : \mathbb{Q}| = 4.$$

Since $\sqrt{2} + \sqrt{5} \in \mathbb{Q}(\sqrt{2}, \sqrt{5})$, certainly

$$\mathbb{Q}(\sqrt{2}+\sqrt{5})\subseteq\mathbb{Q}(\sqrt{2},\sqrt{5}).$$

The Tower Law tells us that $|\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q}|$ divides $|\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}|=4$, so it equals 1, 2 or 4. Moreover, we also know that $\{1,\sqrt{2},\sqrt{5},\sqrt{10}\}$ is a basis for $\mathbb{Q}(\sqrt{2},\sqrt{5})$ over \mathbb{Q} (as built, via the proof of the Tower Law, from the basis $\{1,\sqrt{2}\}$ for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} and the basis $\{1,\sqrt{5}\}$ for $\mathbb{Q}(\sqrt{5})$ over \mathbb{Q} . It follows that $\sqrt{2}+\sqrt{5}\notin\mathbb{Q}$ as otherwise we would have a linear dependence relation

$$\sqrt{2} + \sqrt{5} + c = 0$$

for some $c \in \mathbb{Q}$.

Hence $\sqrt{2} + \sqrt{5}$ does not satisfy a linear polynomial over \mathbb{Q} . Suppose it satisfies a quadratic polynomial

$$X^2 + aX + b$$

where $a, b \in \mathbb{Q}$; that is,

$$(\sqrt{2} + \sqrt{5})^2 + a(\sqrt{2} + \sqrt{5}) + b = 0$$

or

$$2\sqrt{10} + a\sqrt{2} + b\sqrt{5} + (7+b) = 0.$$

This also is impossible since $\{1, \sqrt{2}, \sqrt{5}, \sqrt{10}\}$ is linearly independent over \mathbb{Q} . We conclude that $\sqrt{2} + \sqrt{5}$ does not satisfy a linear or quadratic polynomial over \mathbb{Q} . Hence

$$|\mathbb{Q}(\sqrt{2} + \sqrt{5}) : \mathbb{Q}| = 4$$

and, from the inclusion $\mathbb{Q}(\sqrt{2}+\sqrt{5})\subseteq\mathbb{Q}(\sqrt{2},\sqrt{5})$, we conclude

$$\mathbb{Q}(\sqrt{2} + \sqrt{5}) = \mathbb{Q}(\sqrt{2}, \sqrt{5}).$$

(i) We have observed the minimum polynomial of $\alpha = \sqrt{2} + \sqrt{5}$ over \mathbb{Q} must have degree four. We start by calculating

$$\alpha^4 = (\sqrt{2} + \sqrt{5})^4 = (7 + 2\sqrt{10})^2$$

$$= 28\sqrt{10} + 89$$

$$= 14(7 + 2\sqrt{10}) - 9$$

$$= 14(\sqrt{2} + \sqrt{5})^2 - 9$$

$$= 14\alpha^2 - 9,$$

so

$$\alpha^4 - 14\alpha^2 + 9 = 0.$$

Hence $\alpha = \sqrt{2} + \sqrt{5}$ is a root of $X^4 - 14X^2 + 9$. This must then be the minimum polynomial of $\sqrt{2} + \sqrt{5}$ over \mathbb{Q} .

(ii) By the Tower Law, $|\mathbb{Q}(\sqrt{2} + \sqrt{5}) : \mathbb{Q}(\sqrt{2})| = 2$, so the minimum polynomial of $\alpha = \sqrt{2} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{2})$ has degree two. Observe

$$\alpha^{2} = (\sqrt{2} + \sqrt{5})^{2} = 7 + 2\sqrt{10}$$

$$= 7 + 2\sqrt{2} \cdot \sqrt{5}$$

$$= 3 + 2\sqrt{2} (\sqrt{2} + \sqrt{5})$$

$$= 3 + 2\sqrt{2} \alpha,$$

so

$$\alpha^2 - 2\sqrt{2}\,\alpha - 3 = 0.$$

Hence α is a root of the polynomial $X^2 - 2\sqrt{2}X - 3$, so this must be the minimum polynomial of $\alpha = \sqrt{2} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{2})$.

(iii) Similarly $|\mathbb{Q}(\sqrt{2} + \sqrt{5}) : \mathbb{Q}(\sqrt{5})| = 2$ and the minimum polynomial of $\alpha = \sqrt{2} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{5})$ has degree two. Observe

$$\alpha^{2} = (\sqrt{2} + \sqrt{5})^{2} = 7 + 2\sqrt{10}$$

$$= 7 + 2\sqrt{5} \cdot \sqrt{2}$$

$$= -3 + 2\sqrt{5} (\sqrt{2} + \sqrt{5})$$

$$= -3 + 2\sqrt{5} \alpha.$$

SO

$$\alpha^2 - 2\sqrt{5}\,\alpha + 3 = 0.$$

Hence α is a root of the polynomial $X^2 - 2\sqrt{5}X + 3$, so this must be the minimum polynomial of $\alpha = \sqrt{2} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{5})$.

9. Let α and β be algebraic elements over the base field F. Suppose that the minimum polynomial of α over F has degree m, the minimum polynomial of β over F has degree n, and that m and n are coprime. Show that $|F(\alpha, \beta): F| = mn$.

Solution: By the Tower Law, applied twice,

$$|F(\alpha, \beta) : F| = |F(\alpha, \beta) : F(\alpha)| \cdot |F(\alpha) : F|$$
$$= |F(\alpha, \beta) : F(\beta)| \cdot |F(\beta) : F|.$$

Hence $|F(\alpha):F|=m$ and $|F(\beta):F|=n$ both divide $|F(\alpha,\beta):F|$. Since m and n are coprime, we conclude that mn divides $|F(\alpha,\beta):F|$.

However, β satisfies a polynomial of degree n over $F(\alpha)$ (namely it is a root of the minimum polynomial of β over F), so the minimum polynomial of β over $F(\alpha)$ has degree $\leq n$, so

$$|F(\alpha, \beta) : F(\alpha)| \leq n$$

and hence

$$|F(\alpha, \beta) : F| = |F(\alpha, \beta) : F(\alpha)| \cdot |F(\alpha) : F| \le mn.$$

Combining this with the fact that mn divides $|F(\alpha, \beta): F|$, we conclude

$$|F(\alpha, \beta): F| = mn.$$

10. Let α be transcendental over the field F. Show that there is an isomorphism ψ from the field F(X) of rational functions in the indeterminate X over F to the simple extension $F(\alpha)$ satisfying $X\psi=\alpha$ and $b\psi=b$ for all $b\in F$.

Solution: Suppose α is transcendental over F. First define the map $\phi: F[X] \to F(\alpha)$ by evaluating a polynomial at α :

$$\phi \colon g(X) \mapsto g(\alpha).$$

This map was considered during Chapter 2 of the lecture notes and we observed (see Lemma 2.11(ii)) that ϕ is a ring homomorphism. Since α is transcendental, $\ker \phi = \{0\}$ and hence ϕ is an injective map.

We now extend ϕ to a map

$$\psi \colon F(X) \to F(\alpha)$$

by defining

$$\left(\frac{g(X)}{h(X)}\right)\psi = \frac{g(\alpha)}{h(\alpha)}.$$

We need to check ψ is a well-defined ring homomorphism that is bijective.

First note that since $h(\alpha) \neq 0$ whenever h(X) is a non-zero polynomial, it is certainly the case that $g(\alpha)/h(\alpha)$ is some element of $F(\alpha)$. Now suppose that $g_1(X)/h_1(X) = g_2(X)/h_2(X)$ in F(X). This means

$$g_1(X) h_2(X) = g_2(X) h_1(X),$$

so upon applying ϕ (that is, evaluating at α),

$$g_1(\alpha) h_2(\alpha) = g_2(\alpha) h_1(\alpha).$$

Hence

$$\frac{g_1(\alpha)}{h_1(\alpha)} = \frac{g_2(\alpha)}{h_2(\alpha)}$$

(using the fact that $h_1(\alpha) \neq 0$ and $h_2(\alpha) \neq 0$), which shows

$$\left(\frac{g_1(X)}{h_1(X)}\right)\psi = \left(\frac{g_2(X)}{h_2(X)}\right)\psi,$$

so ψ is indeed well-defined.

Now if $g_1(X)/h_1(X), g_2(X)/h_2(X) \in F(X)$, then

$$\left(\frac{g_1(X)}{h_1(X)} + \frac{g_2(X)}{h_2(X)}\right)\psi = \left(\frac{g_1(X)h_2(X) + g_2(X)h_1(X)}{h_1(X)h_2(X)}\right)\psi
= \frac{g_1(\alpha)h_2(\alpha) + g_2(\alpha)h_1(\alpha)}{h_1(\alpha)h_2(\alpha)}
= \frac{g_1(\alpha)h_2(\alpha)}{h_1(\alpha)h_2(\alpha)} + \frac{g_2(\alpha)h_1(\alpha)}{h_1(\alpha)h_2(\alpha)}
= \frac{g_1(\alpha)}{h_1(\alpha)} + \frac{g_2(\alpha)}{h_2(\alpha)}
= \left(\frac{g_1(X)}{h_1(X)}\right)\psi + \left(\frac{g_2(X)}{h_2(X)}\right)\psi$$

and

$$\begin{split} \left(\frac{g_1(X)}{h_1(X)} \cdot \frac{g_2(X)}{h_2(X)}\right) \psi &= \left(\frac{g_1(X) g_2(X)}{h_1(X) h_2(X)}\right) \psi \\ &= \frac{g_1(\alpha) g_2(\alpha)}{h_1(\alpha) h_2(\alpha)} \\ &= \frac{g_1(\alpha)}{h_1(\alpha)} \cdot \frac{g_2(\alpha)}{h_2(\alpha)} \\ &= \left(\frac{g_1(X)}{h_1(X)}\right) \psi \cdot \left(\frac{g_2(X)}{h_2(X)}\right) \psi. \end{split}$$

Thus ψ is a ring homomorphism $F(X) \to F(\alpha)$.

Observe g(X)/h(X) belongs to the kernel of ψ if and only if $g(\alpha)/h(\alpha) = 0$; that is, $g(\alpha) = 0$. Since α is transcendental, this occurs only when g(X) = 0, so

$$\ker \psi = \{0\}$$

and ψ is injective. Therefore $F(X) \cong \operatorname{im} \psi$ and $\operatorname{im} \psi$ is a subfield of $F(\alpha)$. However $F \subseteq \operatorname{im} \psi$ as the constant polynomial b maps to b under ψ for all $b \in F$. Similarly $X\psi = \alpha$, so $\alpha \in \operatorname{im} \psi$. Thus, $\operatorname{im} \psi$ is a subfield of $F(\alpha)$ containing both F and α , so $\operatorname{im} \psi = F(\alpha)$.

In conclusion, ψ is an isomorphism $F(X) \to F(\alpha)$ that satisfies $X\psi = \alpha$ and $b\psi = b$ for all $b \in F$.

- 11. (a) Show that the field \mathbb{A} of algebraic numbers over \mathbb{Q} is countable.
 - (b) Show that \mathbb{C} is an infinite degree extension of \mathbb{A} .
 - (c) Show that $\mathbb C$ contains elements that are transcendental over $\mathbb Q$.

Solution: (a) Recall that \mathbb{Q} is uncountable, so there exists a bijection $\mathbb{N} \to \mathbb{Q}$. We also know $\mathbb{N} \times \mathbb{N}$ is countable. It follows that $\mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ (k times) is a countable set, for any choice of positive integer k.

For a fixed degree d, any polynomial of degree d over \mathbb{Q} has the form

$$a_0 + a_1 X + a_2 X^2 + \dots + a_d X^d$$

for some $a_0, a_1, \ldots, a_d \in \mathbb{Q}$. The collection of possible coefficients is in one-correspondence with $\mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ (d+1 times). Hence there are countably many polynomials $f(X) \in \mathbb{Q}[X]$ of degree d. Each such polynomial f(X) has at most d roots in \mathbb{C} . Let us write $Z_{f(X)}$ for the set of roots of f(X) in \mathbb{C} . Hence

$$\mathbb{A} = \bigcup_{d=1}^{\infty} \bigcup_{f(X) \in \mathcal{P}_d} Z_{f(X)}$$

where \mathcal{P}_d is the (countable) set of polynomials of degree d in $\mathbb{Q}[X]$.

Thus \mathbb{A} is a countable union of finite sets, so as a countable union of countable sets, \mathbb{A} is countable.

(b) If \mathbb{C} were a finite extension of \mathbb{A} , it would have some basis $\{v_1, v_2, \dots, v_n\}$ over \mathbb{A} . Then every element of \mathbb{C} would be uniquely expressible in the form

$$a_1v_1 + a_2v_2 + \dots + a_nv_n$$

where $a_1, a_2, \ldots, a_n \in \mathbb{A}$. Hence there would be a bijection $\mathbb{A}^n \to \mathbb{C}$ and, since \mathbb{A} is countable, we would conclude \mathbb{C} is countable. As \mathbb{C} is actually an uncountable set, we conclude that \mathbb{C} is an infinite degree extension of \mathbb{A} .

(c) Since $|\mathbb{C} : \mathbb{A}| = \infty$, we know $\mathbb{A} \neq \mathbb{C}$, so \mathbb{C} contains elements that are not algebraic over \mathbb{Q} ; that is, \mathbb{C} contains elements that are transcendental over \mathbb{Q} .