Modelling CS u: control input, y: plant output State variable CS is in state variable form if IO to SS Model 1. Define x s.t. highest order derivative in \dot{x} 2. Write x=Ax+Bu=f(x,u) by isolating for components of x 3. Write y=Cx+Du=h(x,u) by setting measurement output y to component of x **Equilibria** y_d (steady state) b/c if $y(0)=y_d$ at t=0, then $y(t)=y_d \ \forall t\geq 0$. Equilibrium pair Consider the system x=f(x,u). The pair (\bar{x},\bar{u}) is an equilibrium pair if $f(\bar{x},\bar{u})=0$. Equilibrium point \bar{x} is an equilibrium point w/ control $w=\bar{w}$. If $w=\bar{w}$ and $x(0)=\bar{x}$ then $x(t)=\bar{x}$ $t \neq t \geq 0$ (i.e. a system that starts at equilibrium remains at equilibrium). Find Equilibrium Pair/Point 1. Set f(x,u)=0 2. Solve f(x,u)=0 to find $(x,u)=(\bar{x},\bar{u})$. 3. If specific $w=\bar{u}$, then find $x=\bar{x}$ by solving $f(x,\bar{u})=0$. So in specific u=u, then find u=x by solving f(x,u)=0. Linearization Nonlinear System Consider system x=f(x,u) w/ equ. pair (\bar{x},\bar{u}) , then error coordinates around equ. pair $\delta x=x-\bar{x}$, $\delta u=u-\bar{u}$, $\delta y=y-h(\bar{x},\bar{u})$ w/ $\delta \dot{x}=A\delta x+B\delta u$, $A=\frac{\partial f(\bar{x},\bar{u})}{\partial x}\in\mathbb{R}^{n_1\times n_1}$, $B=\frac{\partial f(\bar{x},\bar{u})}{\partial u}\in\mathbb{R}^{n_1}$, $\delta y=C\delta x+D\delta u$, $C=\frac{\partial h}{\partial x}(\bar{x},\bar{u})\in\mathbb{R}^{1\times n_1}$, $D=\frac{\partial h(\bar{x},\bar{u})}{\partial u}\in\mathbb{R}^{n_1}$, $\delta y=C\delta x+D\delta u$, $C=\frac{\partial h}{\partial x}(\bar{x},\bar{u})\in\mathbb{R}^{1\times n_1}$, $D=\frac{\partial h(\bar{x},\bar{u})}{\partial u}\in\mathbb{R}^{n_1}$ *Only valid at equ. pairs. $\cup \longrightarrow \underbrace{ \begin{array}{c} Plant \\ \\ \\ \end{array}} \qquad y \qquad \underbrace{\begin{array}{c} \text{Approximat} \\ \\ \end{array}} \qquad \underbrace{\begin{array}{c} S_{0} \\ \\ \\ \end{array}} \underbrace{\begin{array}{c} S_{0} \\ \\ \\ \\ \end{array}} \underbrace{\begin{array}{c} S_{0} \\ \\ \\ \end{array}} \underbrace{\begin{array}{c} S_{0} \\ \\ \\ \end{array}} \underbrace{\begin{array}{c} S_{0} \\ \\$

