Mid I RC

Mid term I

- Don't bring any electronic devices like computer, iPad
- Bring calculator

Solid-primitive cell and unit cell

Solid-how to describe a plane-miller index

Crystalline Plane and Miller Index

Solid-how to describe a plane-miller index

<u>Identify crystalline plane</u>

Solid-how to describe a direction

Directions in Crystals

In cubic lattice: [hkl] direction is perpendicular to the (hkl) plane

Surface density of atoms

Crystalline Plane and Miller Index: surface density of atoms

Second-order differential equation

$$\frac{\partial^2 y}{\partial x^2} = k^2 y$$
 General solution: $y = Ae^{bx}$ Plug into the equation: $b^2 Ae^{bx} = k^2 Ae^{bx}$
$$\Rightarrow b = \pm k$$

 $\Rightarrow y = A_1 e^{kx} + A_2 e^{-kx}$

Second-order differential equation

$$\frac{\partial^2 y}{\partial x^2} = -k^2 y$$
 General solution: $y = Ae^{bx}$

Plug into the equation: $b^2Ae^{bx} = -k^2Ae^{bx}$

$$\Rightarrow b = \pm ki$$

\Rightarrow y = A_1 e^{ikx} + A_2 e^{-ikx}

Particle-wave duality-photo-electric experiment

3 Light wave-particle duality in 1905

 \Box Light wave is a particle: $hv = K_{max} + W_c$

Particle-wave duality-De Broglie relationship

In 1924, Louis de Broglie hypothesized in his Ph.D. thesis that matter also has wave properties. He postulated that matter particles, like photons, have a wavelength called the de Broglie wavelength, is given by:

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$$

where the momentum, p, is determined by the kinetic energy $(E = p^2/2m)$.

So electron can be both described by classical matter and probability wave.

General procedures in solving Schrödinger equation

• Solve Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x)$$

- Apply boundary condition
- 1. Wave function should be continuous
- 2. Derivative of wave function should be continuous except for the place where potential energy is infinite
- Normalize the wave function

$$\int_{-\infty}^{\infty} P(x,t)dx = \int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 1$$

Infinite potential well

- Go to look the solution of HW1 p1
- Be careful when solving the boundary condition

Finite potential well

- Go to look the solution of HW1 p2
- Note that derivative of wave function should be continuous except for the place where potential energy is infinite
- Note that the general solution is different when E>V and E<V
- Note that typically one solution will be abandoned when E<V due to the normalization condition

Two finite quantum well

N quantum well-energy band

Forming energy bands: analytical

Silicon band structure example

1st Brillouis zone

Band structure in physical and k space for 1D periodic quantum wells

Metal, semiconductor, insulator

- The importance of bandgap
- Conductivity at 0K?
- Direct band gap semiconductor v.s. indirect band gap semiconductor?
- Why glass is transparent?
- Change of conductivity v.s. temperature?