

IMP PROJEKT - HRA HAD

NIKOLA MACHÁLKOVÁ

Video

ÚVOD DO PROBLÉMU

Motivace

Výsledkem projektu je hra HAD, ve které se had pohybuje po dvou maticových LED displejích připojených na FITkit 3, kdy displej je o velikosti 8 sloupců a 8 řádků. Hra nemusí obsahovat sbírání ovoce ani zvětšování či zmenšování délky hada – délka tedy zůstává fixní.

Přehled využitého hardware a software

Jako hardware bylo použito zařízení FITkit 3 s maticovými displeji. Maticové displeje jsou o velikosti 8*16 bodů a jsou připojeny k FITkitu pomocí konektoru P1 platformy FITkit 3 a konektoru P3, který je i příslušně označen.

FITkit obsahuje hned několik tlačítek, pro potřeby projektu se však využívala pouze tlačítka s vývody P26, P10, P12 a P27, respektive nahoru, doprava, dolů a doleva. Poslední tlačítko P11 by tedy teoreticky mohlo sloužit k případnému rozšíření – třeba na reset polohy hada, nebo na prodlužování hada, nebo na generaci ovoce ke sbírání.

Jako software byl použit Kinetis Design Studio (KDS). Jelikož projekt pracuje pouze s displeji a FITkitem, nebyla potřeba vytvářet nebo používat další technologie, bohatě stačilo výše zmíněné.

Knihovna se v projektu používala jediná – *MK60DZ10.h.* Dále se deklarovala makra – pro *GPIO* pro přístup k pinům a pro nastavení jednotlivých pinů. Tyto informace jsou převzaty z testovacího programu, získaného u zadání projektu.

POPIS ŘEŠENÍ

Na začátku programu se definují makra a globální proměnné xsnake, ysnake a direction.

Xsnake a *ysnake* jsou pole o velikosti 4 (aneb předem určená délka hada), které obsahují souřadnice x a y jednotlivých bodů/částí těla na displejích. Na začátku jsou zavedeny pouze xové souřadnice a had má tedy hlavu na sloupci s indexem 4, nultý řádek.

Proměnná *direction* je pak jeden znak, který určuje směr pohybu hada. Jedná se vždy o začátek slov *up*, *right*, *down*, *left*. Na začátku má pozici *right*, had se tudíž bude pohybovat směrem doprava, dokud není stisknuto jiné tlačítko.

Program poté přechází do *main()*, kde zavolá funkci *SystemConfig()*. Tato funkce nastavuje potřebné MCU zařízení a je převzatá z testovacího programu. Je však rozšířená o nastavení jednotlivých pinů a vymazáním a zapnutím IRQ.

Program by neměl nikdy opustit funkci *main()*, proto je důležité, aby další řádky kódu byly obsaženy v cyklu implementovaném jako *while(1)* pro nekonečný cyklus.

Následuje další cyklus, tentokrát nastavení pozice těla pro body 2 – 4. Každý bod si bere souřadnice x a y bodu před ním, a tím se tedy korektně posunuje. Jakmile se souřadnice nastaví, zjistí se, které tlačítko (pokud nějaké) bylo stisknuto, a kam se bude tedy had, resp. jeho hlava, dále pohybovat. Pokud interrupt přijde, řeší se ve funkci *change_direction()*, v níž se nastavuje proměnná *direction* na příslušný směr.

Program se tedy přesune do funkce *choose_direction()*, ve které se přičítají či odčítají souřadnice podle směru. Hned na začátku se nastaví sloupec, ve kterém je hlava hada. Poté se přejde do switche s proměnnou *direction*, která rozhoduje o způsobu pohybu. Též se zde detekuje přetečení řádku/sloupce. Pokud hlava přesáhne index sloupce 7, vrátí se zpět na 0. Pokud hlava přesáhne index řádku 15, vrátí se zpět na 0.

Jakmile je rozhodnuto o souřadnicích, program se vrátí zpět do funkce main() a projde posledním cyklem. Tentokrát se jedná o cyklus, který funguje jako zpoždění, a volá funkci light(), která rozsvítí příslušné řádky a sloupce. Funkce light() pak nastavuje řádek, na kterém se daný bod nachází pomocí bitových přesunů příslušných k řádkům na displejích, a to pomocí příkazu $PTA->PDOR/=GPIO_PDOR_PDO(1<< x)$, kde x právě odpovídá číslu příslušného řádku. Jedná se tedy o řádky (v pořadí od 0): 29, 27, 7, 28, 25, 9, 24 a 26.

Program se poté vrací zpátky na začátek cyklu while a takhle se donekonečna opakuje.

ZHODNOCENÍ

Testování fungovalo jednoduše – po dokončení programování se vyzkoušely veškeré use-case, které by mohly nastat. Zkoušel se tedy přechod z jedné strany na druhou, rychlá změna pohybu i změna směru v rámci pouze sloupce/pouze řádku. Jako další se testovala rychlost, jestli se had nepohybuje moc pomalu, nebo jestli odezva na interrupt netrvá moc dlouho.

Jak lze ale vidět na <u>videu</u>, všechny tyto testy had úspěšně a zdarně zvládl, a může se tedy zkonstatovat, že testování proběhlo úspěšně a program funguje tak, jak má.

VLASTNÍ HODNOCENÍ

 $\sum = (K_1 + K_2 * F/5) * (E + F + Q + P + D) = (0.25 + 0.75 * 5 / 5) * (1 + 5 + 3 + 1 + 3) = \textbf{13 b.}$