Módulo 4

OS UTILIZADORES (MODELOS)

Os Utilizadores

- Existem características comuns a todos nós.
- O que está para dentro e para fora nesta imagem?

Os Utilizadores

- · Existem características comuns a todos nós.
- O que está para dentro e para fora nesta imagem?

E agora?

Sistemas Interactivos (v.2019)

Contem os pontos negros!

Sistemas Interactivos (v.²⁰¹⁹)

Sistemas Interactivos (v.2019)

Memory and processing problems

- Reasons error classification
 - Slips actions not carried out as intended.
 - Lapses missed actions due to temporary failure of concentration, memory, or judgement.
 - Mistakes errors due to erroneous action plans.
- A typical lapse error:
 - Post-completion error
 - Missing a final step in a procedure, after the goal is achieved.

Slips:=> Ações não executadas confoi

Modelos do utilizador - modelos cognitivos

- Arquitecturas Cognitivas
 - O utilizador como uma máquina de processamento de informação
 - Exemplo: Model Human Processor
- Modelos Cognitivos
 - Capturam o processo de decisão e/ou execução que permite atingir um dado objectivo
 - Exemplo: GOMS
 - Hierarquias de objectivos e tarefas
 - Assume que resolvemos problemas numa estratégia top-down de "dividir e conquistar"
- Leis empíricas
 - Prevêem desempenho humano (fase de execução cf. modelo de interacção de Norman)
 - Exemplo: KLM, ...

Arquitecturas cognitivas

 Capturam os resultados da Psicologia Cognitiva num modelo computacional

Como se estrutura a nossa mente

 Como os diferentes componentes trabalham em conjunto

Model Human Processor (MHP)

O modelo de processador humano - MHP - é um

Arquitecturas cognitivas – MHP

Sistemas Interactivos (v.2020)

Arquitecturas cognitivas – ACT-R

- ACT-R (Adaptive Control of Thought Rational)
 - Simulador de cognição humana
 - Interpretador em Common Lisp
 - http://act-r.psy.cmu.edu

Como qualquer arquitetura cognitiva, o ACT-R vis

Arquitecturas cognitivas – Soar

- Utilizada para criar agentes inteligentes e modelos cognitivos de comportamento humano
- Implementada em C / C++
- https://soar.eecs.umich.edu

Soar é uma arquitetura c

Modelos Cognitivos

- Capturam o processo de decisão e/ou execução que permite atingir um dado objectivo
 - Cf. fases de Especificação e Execução no modelo de Norman

Selection

Method

Operator

Goal

- Goals Objectivos
- Operators Operadores
- Methods Métodos
- Selection Regras de selecção

GOMS – Exemplo

```
GOAL: CLOSE-WINDOW
. [select GOAL: USE-MENU-METHOD
. MOVE-MOUSE-TO-FILE-MENU
. PULL-DOWN-FILE-MENU
. CLICK-OVER-CLOSE-OPTION
GOAL: USE-CTRL-W-METHOD
. PRESS-CONTROL-W-KEYS]
```

For a particular user:

Rule 1: Select USE-MENU-METHOD unless another rule applies
Rule 2: If the application is GAME, select CTRL-W-METHOD

GOMS – Outro exemplo

```
GOAL: MOVE-TEXT
    GOAL: CUT-TEXT
         GOAL: HIGHLIGHT-TEXT
             [select**: GOAL: HIGHLIGHT-WORD

    MOVE-CURSOR-TO-WORD

    DOUBLE-CLICK-MOUSE-BUTTON

 . . VERIFY-HIGHLIGHT
 . . GOAL: HIGHLIGHT-ARBITRARY-TEXT
. . . MOVE-CURSOR-TO-BEGINNING
 . . . CLICK-MOUSE-BUTTON
. . . MOVE-CURSOR-TO-END
. . . SHIFT-CLICK-MOUSE-BUTTON
                  . VERIFY-HIGHLIGHT]
    . GOAL: ISSUE-CUT-COMMAND
. . . MOVE-CURSOR-TO-EDIT-MENU

    PRESS-MOUSE-BUTTON

 . . MOVE-CURSOR-TO-CUT-ITEM

    VERIFY-HIGHLIGHT

    RELEASE-MOUSE-BUTTON

    GOAL: PASTE-TEXT
         GOAL: POSITION-CURSOR-AT-INSERTION-POINT
         MOVE-CURSOR-TO-INSERTION-POIONT
         CLICK-MOUSE-BUTTON
```

VERTEY-POSTTION

GOMS

Objectivos

- O que o utilizador pretende atingir na utilização do sistema.
- Vários níveis de abstracção: desde objectivos de alto-nível (preparar apontamentos) até objectivos de baixo-nível (apagar uma palavra).
- Decomposição de objectivos em sub-objectivos de forma hierárquica.

Operadores

- As acções perceptuais, motoras ou cognitivas empregues pelos utilizadores para atingir objectivos (ler écran, premir uma tecla, etc.).
- São elementos atómicos (não decomponíveis).
- Assume-se que cada operador demora um tempo constante e independente do contexto a ser executado pelo utilizador.

GOMS

Métodos

- Procedimentos que definem como atingir os objectivos.
- Essencialmente algoritmos que o utilizador aprendeu (sequências de sub-objectivos e operadores).

Regras de selecção

- Definem que métodos devem ser utilizados para atingir um dado objectivo, num dado contexto.
- Representam o conhecimento do utilizador sobre qual o método que deve ser utilizado.
- Tomam a forma de expressões condicionais (por exemplo, se palavra a apagar está a menos de três linhas de distância do cursor, então usar teclas de cursor, senão utilizar rato)

Leis empíricas

- Como só podem ser formuladas para situações muito concretas, as leis empíricas aplicam-se normalmente a acções isoladas.
- Predições qualitativas de desempenho humano
- Derivadas de observações/estudo de comportamento humano

Leis empíricas

Exemplos

• Lei de Hick

$$T = k \log_2(n+1)$$

 $T \rightarrow \text{tempo necessário para escolher entre } n \text{ alternativas } (k \approx 150 \text{msec})$

Lei de Fitts

$$T_{POS} = k \log_2 \left(\frac{D}{W} + .5 \right) \qquad (k \approx 100 msec)$$

 $T_{POS} \rightarrow \text{tempo necessário para atingir um alvo de largura } W$ partindo da distância D.

Lei de Meyer

$$T_{POS} = A + B \times \sqrt{\frac{D}{W}}$$
 $(A \approx -13msec, B \approx 108msec)$

Um refinamento da Lei de Fitts para movimentos rápidos.

Lei de Hick

Leis de Fitt e Meyer (W=1)

Distância

Keystroke Level Model

- Permite analisar desempenho na realização de tarefas conhecidas ao nível físico do dispositivo.
- Baseado no conhecimento empírico do sistema psicomotor humano.
- Útil para comparar desempenho previsto de métodos de operação alternativos.
- Cada método é dividido em operações e a cada tipo de operador está associado um tempo de execução.
- Utilizam-se heurísticas para introduzir operações de "preparação mental" (pausas).
- Somam-se os tempos dos operadores.

KLA

Operadores para interfaces WIMP

Code	O	Time	
K	Key press and release (keyboard)	Best Typist (135 wpm)	0.08 seconds
		Good Typist (90 wpm)	0.12 seconds
		Poor Typist (40 wpm)	0.28 seconds
		Average Skilled Typist (55 wpm)	0.20 seconds
		Average Non-secretary Typist (40 wpm)	0.28 seconds
		Typing Random Letters	0.50 seconds
		Typing Complex Codes	0.75 seconds
		Worst Typist (unfamiliar with keyboard)	1.20 seconds
Р	Point the mouse to an object on screen		1.10 seconds
В	Button press or release (mouse)		0.10 seconds
Н	Hand from keyboard to mouse or vice versa		0.40 seconds
М	Mental preparation		1.20 seconds
T(n)	Type string of characters		n x K seconds
W(t)	User waiting for the system to resp	oond	

KLA

- Regras para colocação de Ms
 - A componente mais complexa do método

Begin with a method encoding that includes all physical operators and response operations.				
Use Rule 0 to p	place candidate Ms, and then cycle through Rules 1 to 4 for each M to see whether it should be deleted.			
Rule 0	Insert Ms in front of all Ks that are not part of argument strings proper (e.g., text strings or numbers).			
	Place Ms in front of all Ps that select commands (not arguments).			
Rule 1	If an operator following an M is fully anticipated in the operator just previous to M, then delete the M (e.g., PMK -> PK).			
Rule 2	If a string of MKs belong to a cognitive unit (e.g., the name of a command), then delete all Ms but the first.			
Rule 3	If a K is a redundant terminator (e.g., the terminator of a command immediately following the terminator of its argument), then delete the M in front of the K.			
Rule 4	If a K terminates a constant string (e.g., a command name), then delete the M in front of the K; but if the K terminates a variable string (e.g., an argument string) then keep the M.			

· Calculadora online.

KLM – Exemplo

- Apagar por arrastamento para o caixote do lixo vs. acrescentar opção de apagar no meu Edit.
 - Quanto tempo poupará a nova solução?
- Assume-se que:
 - pretende-se apagar um ficheiro;
 - ficheiro e caixote do lixo estão visíveis;
 - cursor deve terminar na janela em que o ficheiro estava;
 - a mão começa e termina no rato;
 - utilizador é average non-secretary typist.

KLM – Exemplo

- Alternativa 1 arrastar para o caixote do lixo
 - 1. point to file icon (P)
 - 2. press and hold mouse button (**B**)
 - 3. drag file icon to trash can icon (**P**)
 - 4. release mouse button (B)
 - 5. point to original window (P)

- PBPBP / MPBMPBMP
- Tempo total: 3,5s / 7,1s

KLA – Exemplo

Alternativa 2 – apagar via menu

1. point to file icon	(P)
-----------------------	--------------

2. click mouse button (**BB**)

3. point to file menu (P)

4. press and hold mouse button (**B**)

5. point to DELETE item (**P**)

6. release mouse button (B)

7. point to original window (**P**)

- PBBPBPBP / MPBBMPBMPBMP
- Tempo total: 4,8s / 9,6s

KLA – Exemplo

Alternativa 3 – usar atalho

1.	point to file icon	(P)
		\ -	

2. click mouse button (**BB**)

3. move hand to keyboard (**H**)

4. hit command-Backspace (**KK**)

5. move hand to mouse (**H**)

- PBBHKKH / MPBBHMKKH
- Tempo total: 2,66s / 5,06s