Implantations efficaces de calculs sur les polynômes à une variable : FFT

7 Avril 2022

Table des matières

In	trod	uction	ì																					
1	_	orithn																						
	1.1	Implé	m	er	nta	ati	on	ι.																
	1.2	Comp	a	ra	is	on	-]	Nε	aïf,	/K	ara	atsı	ub	a										
2	Fast	t Four	ie	er	\mathbf{T}	ra	ns	sfc	orr	\mathbf{n}	(F	$\mathbf{F}\mathbf{I}$	7)											
	2.1	Fonct	io	nr	ıе	me	ent	t.			` 													
	2.2	Évalu	ıti	on	1 (l'u	n	po	oly	nôi	me	er	ı u	n	pc	oin	t							
		2.2.1		In	np	lé	me	ent	tat	ion	l.													
		2.2.2		Τe	es1	ts	de	ŧŧ€	$_{ m em}$	DS														

Introduction

Dans le cadre de l'UE LU2IN013, nous avons réalisé un projet sur l'optimisation de calculs sur les polynômes à une variable. Le but final de ce projet est la multiplication de deux polynômes le plus efficacement possible. Pour ce faire, nous nous intéressons à plusieurs type d'algorithmes pour la multiplication, notamment : l'algorithme naïf, de Karatsuba et FFT. Nous avons tout d'abord commencé avec Python mais nous avions besoin d'un langage bas niveau pour plus de rapidité d'où le fait qu'on a rapidement changé pour le langage C.

Chapitre 1

Algorithme de Karatsuba

 test

1.1 Implémentation

1.2 Comparaison - Naïf/Karatsuba

Chapitre 2

Fast Fourier Transform (FFT)

- 2.1 Fonctionnement
- 2.2 Évalution d'un polynôme en un point
- 2.2.1 Implémentation
- 2.2.2 Tests de temps

l'équation dans la phrase $e^{i\pi}+1=0$ l'équation au milieu numerotée

$$E = mc^2 (2.1)$$

l'equation au mileu non numerotée

$$E = mc^2$$

Ceci est une liste:

- 1. premier element
- 2. deuxieme element