

COMP701 Nature Inspired Computing

Artificial Neural Networks: Training Practice

Recap

Evolution Algorithms (biology-inspired)
 Assignment Part 1

- Swarm Algorithms (social-inspired)
 Assignment Part 2 (Due Sep 27, next Friday)
- Neural Networks (brain-inspired)
 Assignment Part 3

Recap: Perceptron

Recap: Neural Networks

Artificial neurons are connected together to form an *artificial neural network*

The *architecture* of an artificial neural network is the way the layers are organized

Backpropagation (BP) Algorithm

Training Pipeline: data $(x_i, y_i)_{i=1}^N$

1. Forward pass

Input x (i.e., y_0) with W_1 ... W_L to obtain y_1 ... y_L

2. Backward pass

Output y_L and E_L with the chain rule to update $W_1 \dots W_L$

Iterate 1 and 2 until E_L is small or after certain number of iters

Training Practice

- Momentum
- Vanishing Gradient
- Mini-batch Updates
- Cross-entropy Loss

Momentum

- Convergence can be very slow
- Ways to speed up convergence:
 - Increase learning rate
 - weights may oscillate if set too high

Momentum

- Convergence can be very slow
- Ways to speed up convergence:
 - Introduce a momentum term

Keep a portion of previous change
$$\Delta w_{ij}(t) = -\eta \frac{\partial E}{\partial w_{ij}(t)} + \alpha \Delta w_{ij}(t-1)$$
 Usually around 0.5

Vanishing Gradient 1

• If the weights W are large, y_i becomes large

$$f(y_j)$$
 approaches 1, and $f'(y_j) = \frac{\partial E_L}{\partial W_L} \rightarrow 0$

• Hence weights do not change: $W = W + \frac{\partial E_L}{\partial W_L}$

• Possible solution: Add a small constant, say 0.1, to f'

Vanishing Gradient 2

- Error signal is attenuated as it goes backwards through multiple layers
- Consequently, input-to-hidden weights learn more slowly than hidden-to-output weights

Possible solution: use <u>different learning rates</u> for different layers

Mini-Batch Update

- Dataset $(x_i, y_i)_{i=1}^N$, e.g., N = 10,000
- Online update (one by one)
 - Weights are updated after each training pattern
 - Computationally demanding
- Mini-Batch update:
 - Divide training dataset into small batches (mini-batch)
 - Weights are accumulated and updated for each mini-batch data
 - Both efficient and more accurate
 E.g., batch_size=8, 16, ..., 256

Variations of Gradient Algorithms

- Stochastic Gradient Descent (SGD) Batch update
- Root Mean Square Propagation (RMSprop)
- Adaptive Gradient Algorithm (Adagrad)
- Adadelta improved version of Adagrad
- Adaptive Moment Estimation (Adam) keeps separate learning rate for each weight
- Adamax variant of Adam

Don't worry, PyTorch has all the implementations!!!!

Cross-entropy Loss Function

An alternative to squared error suitable for binary outputs

$$\boldsymbol{E} = \frac{1}{2}(d - \boldsymbol{y})^2$$

Cross entropy function:

$$E = \sum_{p} \left[\frac{d^p}{\sqrt{p}} \log \frac{d^p}{y^p} + (1 - d^p) \log \frac{1 - d^p}{1 - y^p} \right]$$
Target output
Computed output

- Heavily penalizes very wrong outputs
- Leads to faster convergence for some problems and avoids local minima

Cross-entropy Loss Function

Overfitting

 The model produces very small errors for the training set but large errors for non-training ("unseen") data

 Could be due to the model is too large for the given amount of training data

Or the model simply remembers every training data point

Overcome Overfitting

- Use more training data
- Use a validation set a set of data separate from the training and test sets – stop when there is no more improvement to the validation set

Any Question so far?

Exclusive OR Classification Problem

PyTorch for XOR classification (7.3)

Recap of ANN and PyTorch

PyTorch for XOR classification (7.3)

 $egin{array}{c|cccc} x_1 & x_2 & y \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$

Input: (x1, x2)

Model: Multilayer Networks

Output: y = 0 or 1

Recap of ANN and PyTorch

Input: (x1, x2)

The Data

```
import torch.utils.data as data

class XOR_Dataset(data.Dataset):

train_dataset = XOR_Dataset(size=2500)
train_data_loader = data.DataLoader(train_dataset,
```

Model: Multilayer Networks

The Model

return x

```
class XOR_Classifier(nn.Module):

def __init__(self, num_inputs, num_hidden, num_outputs):
    super().__init__()
    # Initialize modules needed for this network
    self.linear1 = nn.Linear(num_inputs, num_hidden)
    self.activation = nn.Tanh()
    self.linear2 = nn.Linear(num_hidden, num_outputs)

def forward(self, x):
    # Compute output given an input
    x = self.linear1(x)
    x = self.linear2(x)
```

Output: preds = 0 or 1

Prediction

```
for data_inputs, data_labels in data_loader:
    preds = model(data_inputs)
```

```
loss = loss_module(preds, data_labels.float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
```

```
loss_module = nn.BCEWithLogitsLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
```

Important Note

Make sure PyTorch is Installed (Workshop 7)!

Alternatively, you can use Google Colab

Finish Task 7.3 (Basic code for Assignment Part 3)

Any Question so far?

COMP815 Nature Inspired Computing

Convolutional Neural Networks

Visual Cortex

 Research by Hubel and Wiesel (Nobel Prize 1981) on the visual cortex in 1960s

- Two kinds of cells
 - Simple cells respond to edges and lines of particular orientation in certain parts of a scene
 - Complex cells respond to edges and lines at any location in the scene

Neocognitron

Pick up local features

Aggregate these features into representation in a local neighbourhood

LeNet

The first Convolutional Neural Network

Linear Convolution

Linear convolution in linear systems theory:

Can also be extended to higher dimensions

• The "convolution" used in the convolution layer is actually a correlation: N-1

$$y_n = \sum_{i=0}^{N-1} w_i x_i$$

Example

 W_i

1	0	1
0	1	0
1	0	1

Kernel

Image

y_i

Convolved Feature