

APPENDIX 1 CLEAN COPY OF AMENDED CLAIMS

54. A compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;
W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)R⁴R⁵, N^{+(O)R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,}}

$\begin{array}{c} \text{OR}^5 \\ | \\ \text{T}(\text{CH}_2)_m\text{QR}^4, \text{T}(\text{CH}_2)_m\text{C}-(\text{CH}_2)_m\text{QR}^4, \\ | \\ \text{H} \end{array}$

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, and
T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴,
N^{+(O)R⁴, N^{+(O)R⁴R⁵Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)R⁵ or N^{+(O)R⁵R⁶Y⁻;}}}}

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;
otherwise R³ has the meanings of R², wherein R² is as defined above, as well as
OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,
T(CH₂)_mQR⁴, or

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, CN or nitro;

when the dotted line is absent, R⁹ can additionally
be = NOH ,

= NOalkyl , =NOalkenyl, =NOalkynyl or =NOcycloalkyl;

and

Y is a halo counter-ion;

with the proviso that: (a) when R⁸ and R⁹ are both hydrogen, W is NH, R¹ is hydrogen and X is NR¹⁰, then R¹⁰ is neither unsubstituted (C₁-C₁₀) alkyl, unsubstituted (C₂-C₁₀) alkenyl nor unsubstituted (C₂-C₁₀) alkynyl;

(b) when R⁸ or R⁹ is NR⁴R⁵, N^{+(O)}R⁴R⁵, or N⁺R⁴R⁵R⁶Y, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more R⁴, R⁵ and R⁶ are attached, heterocyclic or heteroaryl; and

(c) when R⁸ or R⁹ is COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴ or PO₃R⁴, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more R⁴, R⁵ and R⁶ are attached, (CH₂)_naryl wherein n is zero, 1, 2 or 3, heterocyclic or heteroaryl;

(d) when X is S and W is NH, then at least one of R¹, R², R³, R⁸ and R⁹ is other than H or C₁-C₃ alkyl.

56. A compound of Claim 55 having the formula

58. A pharmaceutical formulation comprising a compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocycl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and

the $(CH_2)_nAr$, $(CH_2)_nheteroaryl$, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_nheteroaryl$, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

heteroaryloxy,
 $T(CH_2)_mQR^4$,

$C(O)T(CH_2)_mQR^4$, $NHC(O)T(CH_2)_mQR^4$, $T(CH_2)_mC(O)NR^4NR^5$, and $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$ or $N^+R^5R^6Y^-$;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R^3 is absent;
otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above;
 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1-C_6 alkyl, substituted alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, $N(C_1-C_6\text{alkyl})_1$ or 2, $(CH_2)_nAr$, C_3-C_{10} cycloalkyl, heterocyclyl, and

heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, $T-(CH_2)_mQR^4$, $CO-T-(CH_2)_mQR^4$, $NH(CO)T(CH_2)_mQR^4$, $T-(CH_2)_mCO_2R^4$, and $T(CH_2)_mCONR^4R^5$;

R^6 is alkyl;

R^8 and R^9 independently are H, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CN or nitro;

when the dotted line is absent, R^9 can additionally be = NOH,

= NOalkyl, = NOalkenyl, = NOalkynyl or = NOcycloalkyl;

and

Y is a halo counter-ion;

with the proviso that: (a) when R^8 and R^9 are both hydrogen, W is NH, R^1 is hydrogen and X is NR^{10} , then R^{10} is neither unsubstituted (C_1-C_{10}) alkyl, unsubstituted (C_2-C_{10}) alkenyl nor unsubstituted (C_2-C_{10}) alkynyl; and

(b) when R^8 or R^9 is NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 or PO_3R^4 , then one or more of R^4 , R^5 and R^6 must be, independent of the nitrogen to which said one or more of R^4 , R^5 and R^6 is attached, $(CH_2)_n$ aryl wherein n is zero, 1, 2, or 3, heterocyclic or heteroaryl;

(c) when X is S and W is NH, then at least one of R^1 , R^2 , R^3 , R^8 and R^9 is other than H or C_1-C_3 alkyl;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

14/and
B
NE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS: ELLEN M. DOBRUSIN, ET AL. : EXAMINER: T. TRUONG
SERIAL NO. 09/623,737 : ART UNIT: 1624
FILED: SEPTEMBER 7, 2000 : PAPER NO.
FOR: BICYCLIC PYRIMIDINES AND :
BICYCLIC 3,4-DIHYDROPYRIMIDINES :
AS INHIBITORS OF CELLULAR :
PROLIFERATION :
:

Commissioner for Patents
Washington, D.C. 20231

CONTINGENT AMENDMENT

Dear Sir:

Contingent on the APJ in interference 104,798 determining that Dobrusin's claims 54, 55 and 58 are unpatentable, and Dobrusin's Count 2 is substituted for Count 1, please amend the above identified application as follows:

In the Claims:

Please add the following new claims:

- 77. A compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;
W is S, SO, or SO₂;

X is either O, S or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)R⁴R⁵, N^{+(O)R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,}}

OR⁵

|

T(CH₂)_mQR⁴, T(CH₂)_mC-(CH₂)_mQR⁴,

|

H

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, and T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N^{+(O)R⁴, N^{+(O)R⁴R⁵Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)R⁵ or N^{+(O)R⁵R⁶Y⁻;}}}}

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;

otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,

T(CH₂)_mQR⁴, or

OR⁵

|

T(CH₂)_mC-(CH₂)_mQR⁴,

|

H

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or ₂, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and

heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄,

CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH; and

Y is a halo counter-ion.

78. A compound of Claim 77, wherein R⁸ and R⁹ both are hydrogen.

79. A pharmaceutical formulation comprising a compound of Formula I

I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;
W is S, SO, or SO₂;

X is either O, S or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀

cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro,

heteroaryloxy,
T(CH₂)_mQR⁴,

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, and
T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴,
N^{+(O)}R⁴, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)}R⁵ or N⁺R⁵R⁶Y⁻;
and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;
otherwise R³ has the meanings of R², wherein R² is as defined above, as well as
OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,

wherein T and Q are as defined above;
R⁴ and R⁵ are each independently selected from the group consisting of
hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl,

N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH;

and

Y is a halo counter-ion;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

80. A formulation of Claim 79, wherein R⁸ and R⁹ both are hydrogen. - -

REMARKS

Dobrusin requests to add claims 77-80 to the interference, contingent on the APJ's determination that claims 54, 55 and 58 are unpatentable and Dobrusin's Count 2 is substituted for Count 1.

If there are any additional fees due in connection with the filing of this amendment, the applicants authorize the PTO to charge to Deposit Account No. 03-2775. A prompt and favorable action is solicited.

Respectfully submitted,

CONNOLLY BOVE LODGE & HUTZ LLP

By
Ashley I. Pezzner
Reg. No. 35,646
Tel. (302) 888-6270

225852

CERTIFICATE OF DELIVERY

I hereby certify that the **DOBRUSIN AMENDMENTS** are being filed by Express Mail with the U.S. Patent and Trademark Office, Board of Patent Appeals and Interferences, Crystal Gateway 2, 1225 Jefferson Davis Highway, Suite 1000, Arlington, Virginia 22202, on October 10, 2002.

J. Lynn Ferry

CERTIFICATE OF SERVICE

I hereby certify that a true copy of the foregoing **DOBRUSIN AMENDMENTS** are being served via Express Mail on October 10, 2002 upon Lead Counsel

Stephen M. Haracz, Esq.
Bryan Cave LLP
245 Park Avenue
New York, NY 10167-0034

and in-house counsel

George W. Johnston, Esq.
Hoffman LaRoche, Inc.
340 Kingsland Street
Nutley, New Jersey 07110-1199

225871

J. Lynn Ferry

15/Janet
F
NE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS: ELLEN M. DOBRUSIN, ET AL. : EXAMINER: T. TRUONG
SERIAL NO. 09/623,737 : ART UNIT: 1624
FILED: SEPTEMBER 7, 2000 : PAPER NO.
FOR: BICYCLIC PYRIMIDINES AND
BICYCLIC 3,4-DIHYDROPYRIMIDINES
AS INHIBITORS OF CELLULAR
PROLIFERATION

Commissioner for Patents
Washington, D.C. 20231

CONTINGENT AMENDMENT

Dear Sir:

Contingent on the APJ in interference 104,798 determining that Dobrusin's claims 54, 55 and 58 are unpatentable, please amend the above identified application as follows:

In the Claims:

Please add the following new claims:

-- 61. A compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;
W is NH, S, SO, or SO₂;

X is either O or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, and T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N^{+(O)}R⁴, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)}R⁵ or N⁺R⁵R⁶Y⁻;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;

otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, T(CH₂)_mQR⁴, or

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally

contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH;

and

Y is a halo counter-ion;

with the proviso that: (a) when R⁸ and R⁹ are both hydrogen, W is NH, R¹ is hydrogen and X is NR¹⁰, then R¹⁰ is neither unsubstituted (C₁-C₁₀) alkyl, unsubstituted (C₂-C₁₀) alkenyl nor unsubstituted (C₂-C₁₀) alkynyl;

(b) when R⁸ or R⁹ is NR⁴R⁵, N^{+(O)}R⁴R⁵, or N⁺R⁴R⁵R⁶Y⁻, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more R⁴, R⁵ and R⁶ are attached, heterocyclic or heteroaryl; and

(c) when R⁸ or R⁹ is COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴ or PO₃R⁴, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more R⁴, R⁵ and R⁶ are attached, (CH₂)_naryl wherein n is zero, 1, 2 or 3, heterocyclic or heteroaryl.

62. A compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴R⁵, and T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N^{+(O)}R⁴, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)}R⁵ or N⁺R⁵R⁶Y⁻;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;
otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, T(CH₂)_mQR⁴, or

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or ₂, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH;

and

Y is a halo counter-ion;

with the proviso that: (a) when R⁸ and R⁹ are both hydrogen, W is NH, R¹ is hydrogen and X is NR¹⁰, then R¹⁰ is neither unsubstituted (C₁-C₁₀) alkyl, unsubstituted (C₂-C₁₀) alkenyl nor unsubstituted (C₂-C₁₀) alkynyl.

63. A compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

R¹ is independently selected from the group consisting of (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,

OR⁵

|

T(CH₂)_mQR⁴, T(CH₂)_mC-(CH₂)_mQR⁴,

|

H

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, and
T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴,
N^{+(O)}R⁴, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)}R⁵ or N⁺R⁵R⁶Y⁻;

R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵,

$N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy,

$C(O)T(CH_2)_mQR^4$, $NHC(O)T(CH_2)_mQR^4$, $T(CH_2)_mC(O)NR^4NR^5$, and $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$ or $N^+R^5R^6Y^-$;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R^3 is absent; otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , $T(CH_2)_mQR^4$, or

wherein T and Q are as defined above;

R^4 and R^5 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, $N(C_1-C_6\text{alkyl})_1$ or 2, $(CH_2)_nAr$, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, $T-(CH_2)_mQR_4$,

$\text{CO-T-(CH}_2\text{)}_m\text{QR}^4$, $\text{NH(CO)T(CH}_2\text{)}_m\text{QR}^4$, $\text{T-(CH}_2\text{)}_m\text{CO}_2\text{R}^4$, and
 $\text{T(CH}_2\text{)}_m\text{CONR}^4\text{R}^5$;

R^6 is alkyl;

R^8 and R^9 independently are H, CN or nitro;

when the dotted line is absent, and R^9 is defined above, the carbon in the ring in the number 4 position that is bonded to R^9 , is also bonded to a hydrogen atom,

when the dotted line is absent, R^9 can additionally be = NOH;

and

Y is a halo counter-ion.

64. A compound of Formula I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;

W is NH, S, SO₂, or SO₂;

X is either O, or NR¹⁰;

R^1 and R^2 are independently selected from the group consisting of H, $(\text{CH}_2)_n\text{Ar}$, COR^4 , $(\text{CH}_2)_n$ heteroaryl, $(\text{CH}_2)_n$ heterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the $(\text{CH}_2)_n\text{Ar}$, $(\text{CH}_2)_n$ heteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, $(\text{CH}_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵,

SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy,

$\text{C}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{NHC}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{T}(\text{CH}_2)_m\text{C}(\text{O})\text{NR}^4\text{NR}^5$, and $\text{T}(\text{CH}_2)_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $\text{N}^+(\text{O})\text{R}^4$, $\text{N}^+\text{R}^4\text{R}^6\text{Y}^-$, or CR^4R^5 , and Q is O, S, NR^5 , $\text{N}^+(\text{O})\text{R}^5$ or $\text{N}^+\text{R}^5\text{R}^6\text{Y}^-$;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

R^{10} is selected from the group consisting of H, $(\text{CH}_2)_n\text{Ar}$, COR^4 , $(\text{CH}_2)_n$ heteroaryl, $(\text{CH}_2)_n$ heterocycll, C₃-C₁₀ cycloalkyl, substituted C₁-C₁₀ alkyl substituted by up to 5 substituents, substituted C₂-C₁₀ alkenyl substituted by up to 5 substituents, and substituted C₂-C₁₀ alkynyl substituted by up to 5 substituents, wherein n is 0, 1, 2, or 3, and the $(\text{CH}_2)_n\text{Ar}$, $(\text{CH}_2)_n$ heteroaryl and cycloalkyl, groups are optionally substituted, by up to 5 substituents, wherein said substituents are selected from the group consisting of NR^4R^5 , $\text{N}^+(\text{O})\text{R}^4\text{R}^5$, $\text{N}^+\text{R}^4\text{R}^5\text{R}^6\text{Y}^-$, alkyl, phenyl, substituted phenyl, $(\text{CH}_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , CONR^4R^5 , $\text{SO}_2\text{NR}^4\text{R}^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy,

$\text{C}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{NHC}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{T}(\text{CH}_2)_m\text{C}(\text{O})\text{NR}^4\text{NR}^5$, and $\text{T}(\text{CH}_2)_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $\text{N}^+(\text{O})\text{R}^4$, $\text{N}^+\text{R}^4\text{R}^6\text{Y}^-$, or CR^4R^5 , and Q is O, S, NR^5 , $\text{N}^+(\text{O})\text{R}^5$ or $\text{N}^+\text{R}^5\text{R}^6\text{Y}^-$;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;
otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, T(CH₂)_mQR⁴, or

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH;

and

Y is a halo counter-ion.

65. A compound of Claim 61, wherein W is NH, and R⁸ and R⁹ both are hydrogen.
66. A compound of Claim 62, wherein W is NH, and R⁸ and R⁹ both are hydrogen.
67. A compound of Claim 63, wherein W is NH, and R⁸ and R⁹ both are hydrogen.
68. A compound of Claim 64, wherein W is NH, and R⁸ and R⁹ both are hydrogen.

69. A pharmaceutical formulation comprising a compound of Formula I

I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;
W is NH, S, SO, or SO₂;

X is either O, or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy, T(CH₂)_mQR⁴,

OR⁵
|
T(CH₂)_mC-(CH₂)_mQR⁴,
|
H

$C(O)T(CH_2)_mQR^4$, $NHC(O)T(CH_2)_mQR^4$, $T(CH_2)_mC(O)NR^4NR^5$, and $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$ or $N^+R^5R^6Y^-$; and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R^3 is absent; otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above;

R^4 and R^5 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, $T-(CH_2)_mQR_4$, $CO-T-(CH_2)_mQR^4$, $NH(CO)T(CH_2)_mQR^4$, $T-(CH_2)_mCO_2R^4$, and $T(CH_2)_mCONR^4R^5$;

R^6 is alkyl;

R^8 and R^9 independently are H, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CN or nitro;

when the dotted line is absent, and R^9 is defined above, the carbon in the ring in the number 4 position that is bonded to R^9 , is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally
be = NOH;

and

Y is a halo counter-ion;

with the proviso that: (a) when R⁸ and R⁹ are both hydrogen, W is NH, R¹ is hydrogen and X is NR¹⁰, then R¹⁰ is neither unsubstituted (C₁-C₁₀) alkyl, unsubstituted (C₂-C₁₀) alkenyl nor unsubstituted (C₂-C₁₀) alkynyl; and

(b) when R⁸ or R⁹ is NR⁴R⁵, N⁺(O)R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴ or PO₃R⁴, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more of R⁴, R⁵ and R⁶ is attached, (CH₂)_naryl wherein n is zero, 1, 2, or 3, heterocyclic or heteroaryl;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

70. A pharmaceutical formulation comprising a compound of Formula I

I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, or NR¹⁰;

R^1 , R^2 , and R^{10} are independently selected from the group consisting of H, $(CH_2)_nAr$, COR^4 , $(CH_2)_nheteroaryl$, $(CH_2)_nheterocyclyl$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_2-C_{10} alkenyl, and C_2-C_{10} alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_nAr$, $(CH_2)_nheteroaryl$, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_nheteroaryl$, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy, $T(CH_2)_mQR^4$,

$C(O)T(CH_2)_mQR^4$, $NHC(O)T(CH_2)_mQR^4$, $T(CH_2)_mC(O)NR^4NR^5$, and $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$ or $N^+R^5R^6Y^-$; and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R^3 is absent; otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above; R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1-C_6 alkyl, substituted alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, $N(C_1-C_6alkyl)_1$ or 2, $(CH_2)_nAr$, C_3-C_{10} cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached

optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH; and

Y is a halo counter-ion;

with the proviso that: (a) when R⁸ and R⁹ are both hydrogen, W is NH, R¹ is hydrogen and X is NR¹⁰, then R¹⁰ is neither unsubstituted (C₁-C₁₀) alkyl, unsubstituted (C₂-C₁₀) alkenyl nor unsubstituted (C₂-C₁₀) alkynyl; and

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

71. A pharmaceutical formulation comprising a compound of Formula I

I

or a pharmaceutically acceptable salt thereof,

wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S or NR¹⁰;

R¹ is independently selected from the group consisting of (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)R⁴R⁵, N^{+(R⁴R⁵R⁶Y⁻), alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,}}

C(O)T(CH₂)_mQR⁴, NHC(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴NR⁵, and T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N^{+(O)R⁴, N^{+(R⁴R⁵R⁶Y⁻), or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)R⁵ or N^{+(R⁵R⁶Y⁻);}}}}

R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)R⁴R⁵, N^{+(R⁴R⁵R⁶Y⁻), alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro,}}

heteroaryloxy,

T(CH₂)_mQR⁴,

$\text{C(O)T(CH}_2\text{)}_m\text{QR}^4$, $\text{NHC(O)T(CH}_2\text{)}_m\text{QR}^4$, $\text{T(CH}_2\text{)}_m\text{C(O)NR}^4\text{NR}^5$, and
 $\text{T(CH}_2\text{)}_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR^4 ,
 $\text{N}^+(\text{O})\text{R}^4$, $\text{N}^+\text{R}^4\text{R}^6\text{Y}^-$, or CR^4R^5 , and Q is O, S, NR^5 , $\text{N}^+(\text{O})\text{R}^5$ or $\text{N}^+\text{R}^5\text{R}^6\text{Y}^-$;
and additionally alkyl, alkenyl and alkynyl can be further substituted with one to
three cycloalkyl groups,

when the dotted line is present, R^3 is absent;
otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as
 OH , NR^4R^5 , COOR^4 , OR^4 , CONR^4R^5 , $\text{SO}_2\text{NR}^4\text{R}^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above;
 R^4 and R^5 are each independently selected from the group consisting of
hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl,
 $\text{N}(\text{C}_1\text{-C}_6\text{alkyl})_1$ or 2, $(\text{CH}_2)_n\text{Ar}$, C₃-C₁₀ cycloalkyl, heterocyclyl, and
heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached
optionally form a ring having 3 to 7 carbon atoms and said ring optionally
contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen,
substituted nitrogen, oxygen, and sulfur;
when R^4 and R^5 together with the nitrogen to which they are attached form a
ring, the said ring is optionally substituted by 1 to 3 groups selected from OH,
 OR^4 , NR^4R^5 , $(\text{CH}_2)_m\text{OR}^4$, $(\text{CH}_2)_m\text{NR}^4\text{R}^5$, $\text{T-(CH}_2\text{)}_m\text{QR}^4$,
 $\text{CO-T-(CH}_2\text{)}_m\text{QR}^4$, $\text{NH(CO)T(CH}_2\text{)}_m\text{QR}^4$, $\text{T-(CH}_2\text{)}_m\text{CO}_2\text{R}^4$, and
 $\text{T(CH}_2\text{)}_m\text{CONR}^4\text{R}^5$;
 R^6 is alkyl;
 R^8 and R^9 independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH; and

Y is a halo counter-ion;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

72. A pharmaceutical formulation comprising a compound of Formula I

I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;
W is NH, S, SO, or SO₂;

X is either O, or NR¹⁰;

R¹, and R² are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy, T(CH₂)_mQR⁴,

$\text{C(O)T(CH}_2\text{)}_m\text{QR}^4$, $\text{NHC(O)T(CH}_2\text{)}_m\text{QR}^4$, $\text{T(CH}_2\text{)}_m\text{C(O)NR}^4\text{NR}^5$, and
 $\text{T(CH}_2\text{)}_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR⁴,
 $\text{N}^+(\text{O})\text{R}^4$, $\text{N}^+\text{R}^4\text{R}^6\text{Y}^-$, or CR⁴R⁵, and Q is O, S, NR⁵, $\text{N}^+(\text{O})\text{R}^5$ or $\text{N}^+\text{R}^5\text{R}^6\text{Y}^-$;

R^{10} is selected from the group consisting of H, $(\text{CH}_2)_n\text{Ar}$, COR⁴,
 $(\text{CH}_2)_n$ heteroaryl, $(\text{CH}_2)_n$ heterocyclyl, C₃-C₁₀ cycloalkyl, substituted
C₁-C₁₀ alkyl substituted by up to 5 substituents, substituted C₂-C₁₀ alkenyl
substituted by up to 5 substituents, and substituted C₂-C₁₀ alkynyl substituted by
up to 5 substituents,
wherein n is 0, 1, 2, or 3, and the $(\text{CH}_2)_n\text{Ar}$, $(\text{CH}_2)_n$ heteroaryl and cycloalkyl,
groups are optionally substituted, by up to 5 substituents, wherein said
substituents are selected from the group consisting of NR⁴R⁵, $\text{N}^+(\text{O})\text{R}^4\text{R}^5$,
 $\text{N}^+\text{R}^4\text{R}^5\text{R}^6\text{Y}^-$, alkyl, phenyl, substituted phenyl, $(\text{CH}_2)_n$ heteroaryl, hydroxy,
alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵,
SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro,
heteroaryloxy,

$\text{C(O)T(CH}_2\text{)}_m\text{QR}^4$, $\text{NHC(O)T(CH}_2\text{)}_m\text{QR}^4$, $\text{T(CH}_2\text{)}_m\text{C(O)NR}^4\text{NR}^5$, and
 $\text{T(CH}_2\text{)}_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR⁴,
 $\text{N}^+(\text{O})\text{R}^4$, $\text{N}^+\text{R}^4\text{R}^6\text{Y}^-$, or CR⁴R⁵, and Q is O, S, NR⁵, $\text{N}^+(\text{O})\text{R}^5$ or $\text{N}^+\text{R}^5\text{R}^6\text{Y}^-$;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;

otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or ₂, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, and T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, CN or nitro;

when the dotted line is absent, and R⁹ is defined above, the carbon in the ring in the number 4 position that is bonded to R⁹, is also bonded to a hydrogen atom,

when the dotted line is absent, R⁹ can additionally be = NOH; and

Y is a halo counter-ion;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

73. A formulation of Claim 69, wherein W is NH, and R⁸ and R⁹ both are hydrogen.
74. A formulation of Claim 70, wherein W is NH, and R⁸ and R⁹ both are hydrogen.
75. A formulation of Claim 71, wherein W is NH, and R⁸ and R⁹ both are hydrogen.
76. A formulation of Claim 72, wherein W is NH, and R⁸ and R⁹ both are hydrogen. --

REMARKS

Claims 61-76 are discussed in Dobrusin's Preliminary Motion no. 4. If the APJ determines that Dobrusin's claims 54, 55 and 58 are unpatentable, Dobrusin requests to add claims 61-76. If there are any additional fees due in connection with the filing of this amendment, the applicants authorize the PTO to charge to Deposit Account No. 03-2775. A prompt and favorable action is solicited.

Respectfully submitted,

CONNOLLY BOVE LODGE & HUTZ LLP

By

Ashley I. Pezzner

Reg. No. 35,646

Tel. (302) 888-6270

225844