ETSI TS 138 521-1 V15.0.0 (2018-10)

5G; NR;

User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.521-1 version 15.0.0 Release 15)

Reference DTS/TSGR-0538521-1vf00 Keywords 5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018. All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.

3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M logo is protected for the benefit of its Members.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ectual Property Rights	2
Forev	word	2
Moda	al verbs terminology	2
Forev	word	9
1	Scope	10
2	Reference	
3	Definitions, symbols and abbreviations	11
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
4	General	12
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	
4.3	Specification suffix information	13
4.4	Test points analysis	13
5	Operating bands and Channel arrangement	14
5.1	General	
5.2	Operating bands	
5.2A	Operating bands for CA	
5.2A.1		15
5.2A.2		
5.2B	Operating bands for DC	
5.2B.1		
5.2C	Operating band combination for SUL	
5.3	UE channel bandwidth	
5.3.1	General	
5.3.2 5.3.4	Maximum transmission bandwidth configuration	
5.3.4	UE channel bandwidth per operating band	
5.3.6	Asymmetric channel bandwidths	
5.3A	UE channel bandwidth for CA	
5.3A.1		
5.3A.2		
5.3A.3	<u> </u>	
5.3A.4	4 RB alignment with Different Numerologies for CA	24
5.3A.5	5 UE channel bandwidth per operating band for CA	24
5.4	Channel arrangement	
5.4.1	Channel spacing	
5.4.1.1		
5.4.2	Channel raster	
5.4.2.1		
5.4.2.2	11 6	
5.4.2.3		
5.4.3 5.4.3.1	Synchronization raster	
5.4.3.1 5.4.3.2		
5.4.3.2 5.4.3.3		
5.4.4 5.4.4	TX–RX frequency separation	
5.4A	Channel arrangement for CA	
5.4A.1	· · · · · · · · · · · · · · · · · · ·	
5.4A.2	1 0	
5.4A.3		
5.4A.4	·	
5.5	Configurations	29

5.5A	Configurations for CA	
5.5A.1	Configurations for intra-band contiguous CA	
5.5A.2	Configurations for intra-band non-contiguous CA	
5.5A.3	Configurations for inter-band CA	
5.5B	Configurations for DC	
5.5C	Configurations for SUL	35
6 '	Transmitter characteristics	36
6.1	General	
6.2	Transmitter power	
6.2.1	UE maximum output power	
6.2.2	Maximum Power Reduction (MPR)	
6.2.3	UE additional maximum output power reduction	
6.2.4	Configured transmitted power	
6.2A	Transmitter power for CA	
6.2B	Transmitter power for DC	
6.2C	Transmitter power for SUL	
6.2C.1	Configured transmitted power for SUL	
6.2C.2	$\Delta T_{\text{IB,c}}$	
6.3	Output power dynamics	
6.3.1	Minimum output power	
6.3.2	Transmit OFF power	
6.3.3	Transmit ON/OFF time mask	
6.3.3.1	General	
6.3.3.2	General ON/OFF time mask	
6.3.3.3	Transmit power time mask for slot and [mini-slot] boundaries	
6.3.3.4	<u>.</u>	
6.3.3.5	PUCCH time mask	
6.3.3.5.		
6.3.3.5.		
6.3.3.6		
6.3.3.7	PUSCH-PUCCH and PUSCH-SRS time masks	
6.3.4	Power control	
6.3.4.1	General	
6.3.4.2		
6.3.4.3	I	
6.3.4.4	•	
6.4	Transmit signal quality	
6.4.1	Frequency error	
6.4.2	Transmit modulation quality	
6.4.2.1	Error Vector Magnitude	
6.4.2.2	Carrier leakage	
6.4.2.3	In-band emissions	
6.4.2.4	EVM equalizer spectrum flatness	
6.5	Output RF spectrum emissions	
6.5.1	Occupied bandwidth	
6.5.2	Out of band emission	
6.5.2.1	General	
6.5.2.2	Spectrum Emission Mask	
6.5.2.3	Additional spectrum emission mask	
6.5.2.4	Additional spectrum emission mask Adjacent channel leakage ratio	
6.5.2.4		
6.5.2.4.		
6.5.2.4. 6.5.3	Spurious emissions	
6.5.3.1	General spurious emissions	
6.5.3.2		
6.5.3.3	1	
6.5.4	Additional spurious emissions	
0.5.4	Transmit mormodulation	115
7	Receiver characteristics	121
7.1	General	121
7.2	Diversity characteristics	121

7.3	Reference sensitivity	
7.3.1	General	
7.3.2	Reference sensitivity power level	
7.3.2_1	Reference sensitivity level with 4 Rx antenna ports	137
7.3.3	ΔRIB,c	140
7.3A	Reference sensitivity for CA	140
7.3A.1	General	140
7.3A.2	Reference sensitivity power level for CA	140
7.3A.2.1	Intra-band contiguous CA	140
7.3A.2.1	.0 Minimum requirements of reference sensitivity for CA	140
7.3A.2.1	1.1 Intra-band contiguous CA 2CC	140
7.3A.2.2	2 Intra-band non-contiguous CA	141
7.3A.2.3	Inter-band CA	141
7.3A.3	$\Delta R_{IB,c}$ for CA	142
7.3A.3.1	General	142
7.3A.3.2	2 Inter-band CA	142
7.3A.3.2	$\Delta R_{IB,c}$ for two bands	142
7.3A.3.2	$\Delta R_{IB,c}$ for three bands	142
7.3A.4	Reference sensitivity exceptions due to UL harmonic interference for CA	
7.3B	Reference sensitivity for DC	143
7.3C	Reference sensitivity for SUL	143
7.3C.1	General	143
7.3C.2	Reference sensitivity power level	143
7.3C.3	$\Delta R_{\mathrm{IB,c}}$ for SUL	147
7.3C.3.1	General	147
7.3C.3.2	SUL band combination	147
7.4	Maximum input level	147
7.4A	Maximum input level for CA	147
7.5	Adjacent channel selectivity	
7.5A	Adjacent channel selectivity for CA	156
7.6	Blocking characteristics	157
7.6.1	General	157
7.6.2	Inband Blocking	157
7.6.3	Out-of-band blocking	162
7.6.4	Narrow band blocking	162
7.6A	Blocking characteristics for CA	168
7.6A.1	General	168
7.6A.2	Inband blocking for CA	168
7.6A.2.1	Intra-band contiguous CA	168
7.6A.3	Out-of-band blocking for CA	168
7.6A.3.1	Intra-band contiguous CA	168
7.6A.4	Narrow band blocking for CA	168
7.7	Spurious response	168
7.8	Intermodulation characteristics	168
7.9	Spurious emissions	168
		4.60
	A (normative): Measurement channels	
A.1 C	General	169
A.2 U	JL reference measurement channels	16 ⁹
A.2.1	General	
A.2.2	Reference measurement channels for FDD	
A.2.2.1	DFT-s-OFDM Pi/2-BPSK	
A.2.2.2		
A.2.2.3	DFT-s-OFDM 16QAM	
A.2.2.4	DFT-s-OFDM 64QAM	
A.2.2.5	DFT-s-OFDM 256QAM	
A.2.2.6	CP-OFDM QPSK	
A.2.2.7	CP-OFDM 16QAM	
A.2.2.8	CP-OFDM 64QAM	
A.2.2.9	CP-OFDM 256QAM	
A.2.3	Reference measurement channels for TDD.	

	.1 DFT-s-OFDM Pi/2-BPSK	
A.2.3		199
A.2.3	· · · · · · · · · · · · · · · · · · ·	
A.2.3		
A.2.3	· ·	
A.2.3	· ·	
A.2.3		
A.2.3	· ·	
A.2.3	.9 CP-OFDM 256QAM	220
A.3	DL reference measurement channels	223
A.3.1	General	
A.3.2		
A.3.2		
A.3.2		
A.3.2	•	
A.3.2		
A.3.3	DL reference measurement channels for TDD	
A.3.3	1 General	233
A.3.3	2 FRC for receiver requirements for QPSK	233
A.3.3	FRC for maximum input level for 64QAM	236
A.3.3		
A 1	-	
A.4	CSI reference measurement channels	242
A.5	OFDMA Channel Noise Generator (OCNG)	242
A.5.1	OCNG Patterns for FDD	
A.5.1.		
A.5.2	•	
A.5.2.		
	•	
Anne	ex B (normative): Propagation Conditions	243
B.0	No interference	243
	No interference	
		244
Anne C.0	ex C (normative): Downlink physical channels	244
Anne	ex C (normative): Downlink physical channels	244
Anne C.0	ex C (normative): Downlink physical channels	244 244 244
Anne C.0 C.1 C.2	Downlink physical channels Downlink signal levels General Setup	244 244 244
Anne C.0 C.1 C.2 C.3	Downlink physical channels Downlink signal levels General Setup Connection	
Anne C.0 C.1 C.2	Downlink physical channels Downlink signal levels General Setup	
C.0 C.1 C.2 C.3 C.3.1	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics	
Anne C.0 C.1 C.2 C.3 C.3.1	Downlink physical channels Downlink signal levels General Setup Connection Measurement of Receiver Characteristics Ex E (normative): Global In-Channel TX-Test	
C.0 C.1 C.2 C.3 C.3.1	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1	Downlink physical channels Downlink signal levels General Setup Connection Measurement of Receiver Characteristics ex E (normative): Global In-Channel TX-Test General	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics Ex E (normative): Global In-Channel TX-Test General Signals and results	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics Ex E (normative): Global In-Channel TX-Test General Signals and results Basic principle	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2	Downlink signal levels General Connection Measurement of Receiver Characteristics Ex E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test	
C.0 C.1 C.2 C.3 C.3.1 Anno E.1 E.2 E.2.1 E.2.2 E.2.3	Downlink signal levels General Connection Measurement of Receiver Characteristics Ex E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5	Ex C (normative): Downlink physical channels Downlink signal levels General Setup. Connection Measurement of Receiver Characteristics Ex E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement points	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Measurement results Measurement points Signal processing	
C.0 C.1 C.2 C.3 C.3.1 Anno E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Measurement results Signal processing Pre FFT minimization process	
C.0 C.1 C.2 C.3 C.3.1 Anno E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Measurement results Measurement points Signal processing Pre FFT minimization process Timing of the FFT window	
C.0 C.1 C.2 C.3 C.3.1 Anno E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Measurement results Signal processing Pre FFT minimization process	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3.1 E.3.2 E.3.3	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Signal processing Pre FFT minimization process. Timing of the FFT window Post FFT equalisation	
C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Measurement points Signal processing Pre FFT minimization process Timing of the FFT window Post FFT equalisation Derivation of the results	
C.0 C.1 C.2 C.3 C.3.1 Anno E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3.1 E.3.2 E.3.3 E.4 E.4.1	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement points Signal processing Pre FFT minimization process Timing of the FFT window Post FFT equalisation Derivation of the results EVM	
Anne C.0 C.1 C.2 C.3 C.3.1 Anne E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3	Downlink signal levels General Setup Connection Measurement of Receiver Characteristics EX E (normative): Global In-Channel TX-Test General Signals and results Basic principle Output signal of the TX under test Reference signal Measurement results Measurement results Measurement points Signal processing Pre FFT minimization process Timing of the FFT window Post FFT equalisation Derivation of the results	

	Frequency error and Carrier leakage	
E.4.6	EVM of Demodulation reference symbols (EVM _{DMRS})	
E.4.6.	Britis	
E.4.6.	Final average for EVM _{DMRS}	255
E.5	EVM and inband emissions for PUCCH	
E.5.1	Basic principle	
E.5.2	Output signal of the TX under test	255
E.5.3	Reference signal	
E.5.4	Measurement results	
E.5.5	Measurement points	
E.5.6	Pre FFT minimization process	
E.5.7	Timing of the FFT window	
E.5.8 E.5.9	Post FFT equalisation	
E.5.9 E.5.9.	Derivation of the results	
E.5.9. E.5.9.		
E.5.9.	0	
E.6 E.6.1	EVM for PRACH	
E.6.1	Basic principle Output signal of the TX under test	
E.6.2 E.6.3	Reference signal	
E.6.4	Measurement results	
E.6.5	Measurement points	
E.6.6	Pre FFT minimization process.	
E.6.7	Timing of the FFT window	
E.6.8	Post FFT equalisation	
E.6.9	Derivation of the results	
E.6.9.	1 EVM _{PRACH}	261
E.6.9.	2 Averaged EVM _{PRACH}	261
Anne	ex F (normative): Measurement uncertainties and Test Tolerances	262
	Acceptable uncertainty of Test System (normative)	
F.1	Acceptable uncertainty of Test System (normative)	262
F.1 F.1.1	Acceptable uncertainty of Test System (normative) Measurement of test environments	262 262
F.1 F.1.1 F.1.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter	262 262 263
F.1 F.1.1 F.1.2 F.1.3	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver	
F.1 F.1.1 F.1.2 F.1.3	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative)	
F.1 F.1.1 F.1.2 F.1.3	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative)	
F.1 F.1.1 F.1.2 F.1.3	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative)	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Measurement of receiver Ext G (normative): Uplink Physical Channels	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver ex G (normative): Uplink Physical Channels Uplink Signal Levels	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne G.0 G.1	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver ex G (normative): Uplink Physical Channels Uplink Signal Levels General	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver ex G (normative): Uplink Physical Channels Uplink Signal Levels	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne G.0 G.1	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver ex G (normative): Uplink Physical Channels Uplink Signal Levels General	262 263 268 268 271 271 271 272 275 276 276
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Ex G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Ex G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3 G.3.0	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Ext G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection Measurement of Transmitter Characteristics	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3 G.3.0 G.3.1 G.3.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Ext G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection Measurement of Transmitter Characteristics Measurement of Receiver Characteristics Measurement of Performance Requirements	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3 G.3.0 G.3.1 G.3.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver EX G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection Measurement of Transmitter Characteristics Measurement of Receiver Characteristics Measurement of Performance Requirements	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3 G.3.0 G.3.1 G.3.2 Anne H.1	Acceptable uncertainty of Test System (normative) Measurement of test environments. Measurement of transmitter. Measurement of receiver. Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative). Measurement of test environments. Measurement of transmitter. Measurement of receiver. Ex G (normative): Uplink Physical Channels. Uplink Signal Levels. General. Set-up Connection Measurement of Transmitter Characteristics. Measurement of Receiver Characteristics. Measurement of Performance Requirements. Ex H (normative): Statistical Testing.	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3 G.3.0 G.3.1 G.3.2 Anne H.1 H.2	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Ex G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection Measurement of Transmitter Characteristics Measurement of Receiver Characteristics Measurement of Performance Requirements Ex H (normative): Statistical Testing. General Statistical testing of receiver characteristics	
F.1 F.1.1 F.1.2 F.1.3 F.2 F.3.1 F.3.2 F.3.3 Anne G.0 G.1 G.2 G.3 G.3.0 G.3.1 G.3.2 Anne H.1	Acceptable uncertainty of Test System (normative) Measurement of test environments Measurement of transmitter Measurement of receiver Interpretation of measurement results (normative) Test Tolerance and Derivation of Test Requirements (informative) Measurement of test environments Measurement of transmitter Measurement of receiver Ex G (normative): Uplink Physical Channels Uplink Signal Levels General Set-up Connection Measurement of Transmitter Characteristics Measurement of Receiver Characteristics Measurement of Performance Requirements Ex H (normative): Statistical Testing General Statistical testing of receiver characteristics. General	

H.2.3	Design of the test	280
H.2.4	Numerical definition of the pass fail limits	
H.2.5	Pass fail decision rules	
Annex	x I: Change history	283
History	y	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

The present document is one part of a multi-part Technical Specification (TS) covering the New Radio (NR) User Equipment (UE) conformance specification, which is divided in the following parts:

- 3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone" (the present document).
- 3GPP TS 38.521-2 [13]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
- 3GPP TS 38.521-3 [14]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios"
- 3GPP TS 38.521-4 [15]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 4: Performance".
- 3GPP TS 38.522 [16]: NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases;
- 3GPP TS 38.533 [17]: NR; User Equipment (UE) conformance specification; Radio resource management;

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain RF characteristics for frequency Range 1 as part of the 5G-NR.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "definition and applicability" part of the test.

For example only Release 15 and later UE declared to support 5G-NR shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 Reference

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

Editor's note: intended to capture more references

[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone".
[3]	3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone".
[4]	3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".
[5]	3GPP TS 38.508-1: "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment ".
[6]	3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
[7]	Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
[8]	3GPP TS 38.211: "NR; Physical channels and modulation".
[9]	3GPP TS 38.213: "NR; Physical layer procedures for control".
[10]	3GPP TR 38.903: "NR; Derivation of test tolerances and measurement uncertainty for User Equipment (UE) conformance tests".
[11]	3GPP TR 38.905: "NR; Derivation of test points for radio transmission and reception conformance test cases".
[12]	3GPP TS 38.214: "NR; Physical layer procedures for data".
[13]	3GPP TS 38.521-2: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
[14]	3GPP TS 38.521-3: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".

[15]	3GPP TS 38.521-4: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 4: Performance".
[16]	3GPP TS 38.522: "NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases".
[17]	3GPP TS 38.533: "NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

Editor's note: intended to capture symbols

 $\begin{array}{ll} \Delta F_{Global} & Granularity \ of \ the \ global \ frequency \ raster \\ \Delta F_{Raster} & Band \ dependent \ channel \ raster \ granularity \end{array}$

 Δf_{OOB} Δ Frequency of Out Of Band emission.

 ΔF_{TX-RX} Δ Frequency of default TX-RX separation of the FDD operating band.

 Δ_{SUL} Channel raster offset for SUL

ΔT_{IB,c} Allowed maximum configured output power relaxation due to support for inter-band CA

operation, for serving cell c.

BW_{Channel} Channel bandwidth

BW_{Channel,block} Sub-block bandwidth, expressed in MHz. BW_{Channel,block}= F_{edge,block,high}- F_{edge,block,low}

BW_{Channel_CA} Aggregated channel bandwidth, expressed in MHz.

 $\begin{array}{ll} BW_{Channel,max} & Maximum \ channel \ bandwidth \ supported \ among \ all \ bands \ in \ a \ release \\ Ceil(x) & Rounding \ upwards; \ ceil(x) \ is \ the \ smallest \ integer \ such \ that \ ceil(x) \ge x \\ Floor(x) & Rounding \ downwards; \ floor(x) \ is \ the \ greatest \ integer \ such \ that \ floor(x) \le x \\ F_{C} & RF \ reference \ frequency \ on \ the \ channel \ raster, \ given \ in \ table \ 5.4.2.2-1 \end{array}$

 $F_{C,block, high}$ Fc of the highest transmitted/received carrier in a sub-block $F_{C,block, low}$ Fc of the lowest transmitted/received carrier in a sub-block

 $\begin{array}{lll} F_{C_low} & \text{The Fc of the lowest carrier, expressed in MHz} \\ F_{C_high} & \text{The Fc of the highest carrier, expressed in MHz} \\ F_{DL_low} & \text{The lowest frequency of the downlink operating band} \\ F_{DL_high} & \text{The highest frequency of the downlink operating band} \\ F_{UL_low} & \text{The lowest frequency of the uplink operating band} \\ F_{UL_high} & \text{The highest frequency of the uplink operating band} \\ \end{array}$

 $\begin{array}{ll} F_{edge,block,low} & The \ lower \ sub-block \ edge, \ where \ F_{edge,block,low} = F_{C,block,low} - F_{offset.} \\ F_{edge,block,high} & The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,high} + F_{offset.} \\ F_{edge_low} & The \ lower \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ F_{edge_high} & Frequency \ offset \ from \ F_{C_high} \ to \ the \ higher \ edge \ or \ F_{C_low} \ to \ the \ lower \ edge. \\ \end{array}$

Foffset,block,low Separation between lower edge of a sub-block and the centre of the lowest component carrier

within the sub-block

 $F_{\text{offset,block,high}}$ Separation between higher edge of a sub-block and the centre of the highest component carrier

within the sub-block

F_{OOB} The boundary between the NR out of band emission and spurious emission domains

 F_{REF} RF reference frequency

L_{CRB} Transmission bandwidth which represents the length of a contiguous resource block allocation

expressed in units of resources blocks

L_{CRB,Max} Maximum number of RB for a given Channel bandwidth and sub-carrier spacing

Min() The smallest of given numbers Max() The largest of given numbers

NR_{ACLR} NR ACLR

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

RB_{START} Indicates the lowest RB index of transmitted resource blocks

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

Editor's note: intended to capture abbreviations.

SCS Subcarrier spacing
SUL Supplementary uplink

MPR Allowed maximum power reduction

CA_nX-nY Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable NR operating band

CC Component Carriers

4 General

Editor's note: Intended to capture more information in future

4.1 Relationship between minimum requirements and test requirements

The TS 38.101-1 [2] is a Single-RAT specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the TS 38.101-1 [2] is demonstrated by fulfilling the test requirements specified in the present document.

The Minimum Requirements given in TS 38.101-1 [2] make no allowance for measurement uncertainty. The present document defines test tolerances and measurement uncertainty. These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by the shared risk principle.

The shared risk principle is defined in Recommendation ITU-R M.1545 [7].

4.2 Applicability of minimum requirements

- a) In TS 38.101-1 [2] the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level subclause, shown in Table 4.3-1.

Clause suffix

None
Single Carrier
A
Carrier Aggregation (CA)
B
Dual-Connectivity (DC)
C
Supplement Uplink (SUL)
D
UL MIMO

Table 4.3-1: Definition of suffixes

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffix A, B, C and D) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C and D) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

4.4 Test points analysis

The information on test point analysis and test point selection including number of test points for each test case is shown in TR 38.905 [11] clause 4.1.

5 Operating bands and Channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specification are identified as described in Table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	450 MHz – 6000 MHz
FR2	24250 MHz – 52600 MHz

The present specification covers FR1 operating bands.

5.2 Operating bands

NR is designed to operate in the FR1 operating bands defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR1

NR operating band	Uplink (UL) operating band BS receive / UE transmit FuL_low - FuL_high	Downlink (DL) operating band BS transmit / UE receive FDL_low - FDL_high	Duplex Mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780MHz	N/A	SUL

5.2A Operating bands for CA

5.2A.1 Intra-band CA

NR intra-band contiguous carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1, where all operating bands are within FR1.

NR intra-band contiguous carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1, where all operating bands are within FR1.

Table 5.2A.1-1: Intra-band contiguous CA operating bands in FR1

NR CA Band	NR Band (Table 5.2-1)
CA_n77	n77
CA_n78	n78
CA_n79	n79

5.2A.2 Inter-band CA

NR inter-band carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.2-1, where all operating bands are within FR1.

Table 5.2A.2-1: Inter-band CA operating bands involving FR1 (two bands)

NR CA Band	NR Band (Table 5.2-1)
CA_n3A-n77A	n3, n77
CA_n3A-n78A	n3, n78
CA_n3A-n79A	n3, n79
CA n8A-n78A	n8, n78
CA_n8A-n79A	n8, n79
CA_n28A_n78A	n28, n78
CA_n41A-n78A	n41, n78
CA_n75A-n78A ¹	n75, n78
CA_n77A-n79A	n77, n79
CA_n78A-n79A	n78, n79
	supporting inter-band carrier mandatory simultaneous

5.2B Operating bands for DC

5.2B.1 General

NR dual connectivity is designed to operate in the operating bands defined in Table 5.2B-1, where all operating bands are within FR1.

Rx/Tx capability.

Table 5.2B-1: Inter-band DC operating bands involving FR1 (two bands)

N	R DC Band	NR Band (Table 5.2-1)
	FFS	FFS
NOTE:		supporting inter-band dual mandatory simultaneous Rx/Tx

5.2C Operating band combination for SUL

NR operation is designed to operate in the operating band combination defined in Table 5.2C-1, where all operating bands are within FR1.

Table 5.2C-1: Operating band combination for SUL in FR1

NR Band combination for SUL	NR Band (Table 5.2-1)
SUL_n78-n80 ²	n78, n80
SUL_n78-n81 ²	n78, n81
SUL_n78-n82 ²	n78, n82
SUL_n78-n83 ²	n78, n83
SUL_n78-n84 ²	n78, n84
SUL_n78-n86 ²	n78, n86
SUL_n79-n80 ²	n79, n80
SUL_n79-n81 ²	n79, n81

NOTE 1: If a UE is configured with both NR UL and NR SUL carriers in a cell, the switching time between NR UL carrier and NR SUL carrier is

NOTE 2: For UE supporting SUL band combination simultaneous Rx/Tx capability is mandatory.

5.3 UE channel bandwidth

5.3.1 General

The UE channel bandwidth supports a single NR RF carrier in the uplink or downlink at the UE. From a BS perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. Transmission of multiple carriers to the same UE (CA) or multiple carriers to different UEs within the BS channel bandwidth can be supported.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the BS channel bandwidth or how the BS allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the BS channel bandwidth.

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1.

Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}

SCS	5MHz	10MHz	15MHz	20 MHz	25 MHz	30 MHz	40 MHz	50MHz	60 MHz	80 MHz	90 MHz	100 MHz
(kHz)	N _{RB}											
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	217	245	273
60	N/A	11	18	24	31	38	51	65	79	107	121	135

5.3.3 Minimum guard band and transmission bandwidth configuration

The minimum guard band for each UE channel bandwidth and SCS is specified in Table 5.3.3-1 The relationship between the channel bandwidth, the guard band and the transmission bandwidth configuration is shown in Figure 5.3.3-1.

Table 5.3.3-1: Minimum guard band for each UE channel bandwidth and SCS (kHz)

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50MHz	60 MHz	80 MHz	90 MHz	100 MHz
15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N/A	N/A	N/A	N/A
30	505	665	645	805	785	945	905	1045	825	925	885	845

ı													1270
	60	N/A	1010	990	1330	1310	1290	1610	1570	1530	1450	1410	1370
	00	1 4// 1	1010	550	1000	1310	1230	1010	1070	1000	1700	1710	1070

NOTE: The minimum guard bands have been calculated using the following equation: (CHBW x 1000 (kHz) - RB value x SCS x 12) / 2 - SCS/2, where RB values are from Table 5.3.2-1.

Figure 5.3.3-1: Definition of channel bandwidth and transmission bandwidth configuration for one NR channel

The number of RBs configured in any channel bandwidth shall ensure that the minimum guard band specified in this clause is met.

Figure 5.3.3-2: UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol due to transmission of SSB, the minimum guard band on each side of the carrier is the guard band applied at the configured channel bandwidth for the numerology that is received immediately adjacent to the guard.

If multiple numerologies are multiplexed in the same symbol and the UE channel bandwidth is >50 MHz, the minimum guard band applied adjacent to 15 kHz SCS shall be the same as the minimum guard band defined for 30 kHz SCS for the same UE channel bandwidth.

Figure 5.3.3-3: Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-3 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

5.3.4 RB alignment with different numerologies

For each numerology, its common resource blocks are specified in Section 4.4.4.3 in [9], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology. The indicated transmission bandwidth configuration must fulfil the minimum guard band requirement specified in Section 5.3.3.

5.3.5 UE channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the TX and RX path.

Table 5.3.5-1: Channel Bandwidths for Each NR band

				NR	band /	SCS /	UE Cha	annel b	andwid	lth			
NR Band	SCS kHz	5 MHz	10 ^{1,2} MHz	15 ² MHz	20 ² MHz	25 ² MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
	15	Yes	Yes	Yes	Yes								
n1	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
	15	Yes	Yes	Yes	Yes								
n2	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n3	15	Yes	Yes	Yes	Yes	Yes	Yes						
	30		Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes						
n5	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
n7	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n8	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes									
n12	30		Yes	Yes									
	60												
n20	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes	Yes								
n25	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n28	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes									
n34	30		Yes	Yes									
110 1	60		Yes	Yes									
n38	15	Yes	Yes	Yes	Yes								
1100	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n39	30	100	Yes	Yes	Yes	Yes	Yes	Yes					
1100	60		Yes	Yes	Yes	Yes	Yes	Yes					
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
n40	30	1.00	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
1170	60	<u> </u>	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
n41	15	-	Yes	Yes	Yes	100	, 03	Yes	Yes	103	103		
	30	<u> </u>	Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60	 	Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n50	15	Yes	Yes	Yes	Yes			Yes	Yes	169	169	103	169
1.00	30	103	Yes	Yes	Yes			Yes	Yes	Yes	Yes ³		
	60	-	Yes	Yes	Yes			Yes	Yes	Yes	Yes ³		
n51	15	Yes	163	163	163			163	163	163	163		
1101	30	103											
	60	 											
n66	15	Yes	Voc	Voc	Voc			Voc					
1100		162	Yes Yes	Yes	Yes			Yes					
	30	<u> </u>		Yes	Yes			Yes					
n70	60	Voc	Yes	Yes	Yes Yes ³	Yes ³		Yes					
n70	15	Yes	Yes Yes	Yes	Yes ³								
	30	 		Yes	Yes ³	Yes ³							
	60		Yes	Yes	Yes ³	Yes ³							

n71	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
n74	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n75	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n76	15	Yes											
	30												
	60												
	15		Yes	Yes	Yes			Yes	Yes				
n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	15		Yes	Yes	Yes			Yes	Yes				
n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	15							Yes	Yes				
n79	30							Yes	Yes	Yes	Yes		Yes
	60							Yes	Yes	Yes	Yes		Yes
	15	Yes	Yes	Yes	Yes	Yes	Yes						
n80	30		Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes						
	15	Yes	Yes	Yes	Yes								
n81	30		Yes	Yes	Yes								
	60		.,	.,	.,								
	15	Yes	Yes	Yes	Yes								
n82	30		Yes	Yes	Yes								
	60	\/											
- 00	15	Yes	Yes	Yes	Yes								
n83	30		Yes	Yes	Yes								
	60	Vaa	\/	\/	\/								
-04	15	Yes	Yes	Yes	Yes								
n84	30	<u> </u>	Yes	Yes	Yes						1		
		0	Yes	Yes	Yes			Voc					
-00	15	Yes	Yes	Yes	Yes			Yes					
n86	30	 	Yes	Yes	Yes			Yes					
NOTE 4	60		Yes	Yes	Yes	L		Yes					

NOTE 1: 90% spectrum utilization may not be achieved for 30kHz SCS. NOTE 2: 90% spectrum utilization may not be achieved for 60kHz SCS. NOTE 3: This UE channel bandwidth is applicable only to downlink.

5.3.6 Asymmetric channel bandwidths

The UE channel bandwidth can be asymmetric in downlink and uplink. In asymmetric channel bandwidth operation, the narrower carrier shall be confined within the frequency range of the wider channel bandwidth.

In FDD, the confinement is defined as a deviation to the default Tx-Rx carrier centre frequency separation (defined in Table 5.4.4-1) as following:

$$\Delta F_{TX\text{-}RX} = \mid (BW_{DL} - BW_{UL})/2 \mid$$

The operating bands and supported asymmetric channel bandwidth combinations are defined in Table 5.3.6-1.

Table 5.3.6-1: FDD asymmetric UL and DL channel bandwidth combinations

NR Band	Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)
n66	5, 10	20, 40
1100	20	40
n70	5	10, 15
n70	5, 10, 15	20, 25

In TDD, the operating bands and supported asymmetric channel bandwidth combinations are defined in Table 5.3.6-2.

Table 5.3.6-2: TDD asymmetric UL and DL channel bandwidth combinations

NR Band	Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)
	, ,	, ,

5.3A UE channel bandwidth for CA

5.3A.1 General

For intra-band contiguous carrier aggregation, *Aggregated Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.1-1.

Figure 5.3A.1-1: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The aggregated channel bandwidth, BW_{Channel_CA}, is defined as

$$BW_{Channel_CA} = F_{edge,high} - F_{edge,low}$$
 (MHz).

The lower bandwidth edge $F_{\text{edge, low}}$ and the upper bandwidth edge $F_{\text{edge, high}}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{edge,low} = F_{C,low} - F_{offset,low}$$

$$F_{edge,high} \! = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$\begin{split} F_{\text{offset,low}} &= (N_{\text{RB,low}} * 12 + 1) * \text{SCS}_{\text{low}} / 2 + \text{BW}_{\text{GB}} \, (\text{MHz}) \\ F_{\text{offset,high}} &= (N_{\text{RB,high}} * 12 - 1) * \text{SCS}_{\text{high}} / 2 + \text{BW}_{\text{GB}} \, (\text{MHz}) \\ BW_{\text{GB}} &= \text{max} \big(\, BW_{\text{GB,Channel}(k)} \big) \end{split}$$

 $BW_{GB,Channel(k)}$ is the minimum guard band defined in sub-clause 5.3.3 of carrier k, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier, respectively.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.1-2.

Figure 5.3A.1-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

The upper sub-block edge of the Sub-block Bandwidth is defined as

$$F_{edge,block,high} = F_{C,block,high} + F_{offset,block,high}$$
.

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

$$BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$$

The lower and upper frequency offsets $F_{offset,block,low}$ and $F_{offset,block,high}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$F_{offset,block,low} = (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB,low}(MHz)$$

$$F_{offset,block,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB,high}(MHz)$$

where N_{RB,low} and N_{RB,high} are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier within a sub-block, respectively. BW_{GB,low}, BW_{GB,high} are the minimum guard band defined in sub-clause 5.3.3 for the lowest and highest assigned component carrier respectively

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

$$W_{gap} = F_{edge,block n+1,low -} F_{edge,block n,high} (MHz)$$

5.3A.2 Maximum transmission bandwidth configuration for CA

5.3A.3 Minimum guard band and transmission bandwidth configuration for CA

5.3A.4 RB alignment with Different Numerologies for CA

5.3A.5 UE channel bandwidth per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations.

For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class with associated bandwidth combination sets specified in clause 5.5A.1. For each carrier aggregation configuration, requirements are specified for all aggregated channel bandwidths contained in a bandwidth combination set, A UE can indicate support of several bandwidth combination sets per carrier aggregation configuration. For intra-band non-contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting two or more sub-blocks, each supporting a carrier aggregation bandwidth class.

For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.

NR CA bandwidth class	Aggregated channel bandwidth	Number of contiguous CC	Fallback group
Α	BW _{Channel_CA} ≤ BW _{Channel,max}	1	
В	20 MHz ≤ CBW ≤ 100 MHz	2	
С	100 MHz < BW _{Channel_CA} ≤ 2 x BW _{Channel,max}	2	1
D	200 MHz < BW _{Channel_CA} ≤ 3 x BW _{Channel,max}	3	
E	300 MHz < BW _{Channel_CA} ≤ 4 x BW _{Channel,max}	4	
F	50 MHz < BW _{Channel_CA} ≤ 100 MHz	2	2
G	100 MHz < BW _{Channel_CA} ≤ 150 MHz	3	
Н	150 MHz < BW _{Channel_CA} ≤ 200 MHz	4	
I	200 MHz < BW _{Channel_CA} ≤ 250 MHz	5	
J	250 MHz < BW _{Channel_CA} ≤ 300 MHz	6	
K	300 MHz < BW _{Channel_CA} ≤ 350 MHz	7	
L	350 MHz < BW _{Channel_CA} ≤ 400 MHz	8	
NOTE: BW _{Channel,max} is maxir	num channel bandwidth supported among	g all bands in a release	

Table 5.3A.4-1: CA bandwidth classes

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

- For NR operating bands with 100 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

- For NR operating bands with 15 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-5kHz, 0kHz, 5kHz\}$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency channel raster defines a set of RF reference frequencies F_{REF} . The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range (0.. 2016666] on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in Table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

$$F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	Free-Offs (MHz)	NREF-Offs	Range of N _{REF}
0 – 3000	5	0	0	0 – 599999
3000 – 24250	15	3000	600000	600000 - 2016666

The channel raster defines a subset of RF reference frequencies that can be used to identify the RF channel position in the uplink and downlink. The RF reference frequency for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity Δ FRaster, which may be equal to or larger than Δ F_{Global}. For SUL bands and Bands n1, n2, n3, n5, n7, n8, n20, n28, n66 and n71 defined in Table 5.2-1.

$$F_{REF \text{ shift}} = F_{REF} + \Delta_{shift}$$
, $\Delta_{shift} = 0 \text{kHz}$ or 7.5kHz.

where Δ_{shift} is signalled by the network in higher layer parameter frequencyShift7p5khz [6].

The mapping between the channel raster and corresponding resource element is given in Section 5.4.2.2. The applicable entries for each operating band are defined in Section 5.4.2.3

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on the channel raster and the corresponding resource element is given in Table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the UE.

Table 5.4.2.2-1: Channel raster to resource element mapping

	$N_{\rm RB} \mod 2 = 0$	$N_{\rm RB} \mod 2 = 1$		
Resource element index k	0	6		
Physical resource block number n_{PRB}	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$		

k, $n_{\rm PRB}$, $N_{\rm RB}$ are as defined in TS 38.211[8].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in subclause 5.4.2.2.

For NR operating bands with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case every 20^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <20>.

For NR operating bands with 15 kHz channel raster below 3GHz, $\Delta F_{Raster} = 3 \times \Delta F_{Global}$. In this case every 3rd NR ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <3>.

For NR operating bands with 15 kHz channel raster above 3GHz, $\Delta F_{Raster} = \Delta F_{Global}$. In this case all NR ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <1>.

In frequency bands with two ΔF_{Raster} , the higher ΔF_{Raster} applies to channels using only the SCS that equals the higher ΔF_{Raster} .

NR Uplink Downlink ΔF_{Raster} Operating (kHz) Range of NREF Range of NREF Band (First - <Step size> - Last) (First - <Step size> - Last) 100 384000 - <20> - 396000 422000 - <20> - 434000 n1 n2 100 370000 - <20> - 382000 386000 - <20> - 398000 n3 100 342000 - <20> - 357000 361000 - <20> - 376000 n5 100 164800 - <20> - 169800 173800 - <20> - 178800 500000 - <20> - 514000 524000 - <20> - 538000 n7 100 176000 - <20> - 183000 185000 - <20> - 192000 100 n8 145800 - <20> - 149200 139800 - <20> - 143200 n12 100 166400 - <20> - 172400 158200 - <20> - 164200 n20 100 n25 100 370000 - <20> - 383000 386000 - <20> - 399000 n28 100 140600 - <20> - 149600 151600 - <20> - 160600 n34 100 402000 - <20> - 405000 402000 - <20> - 405000 n38 100 514000 - <20> - 524000 514000 - <20> - 524000 100 n39 376000 - <20> - 384000 376000 - <20> - 384000 100 460000 - <20> - 480000 460000 - <20> - 480000 n40 499200 - <3> - 537999 499200 - <3> - 537999 n41 15 30 499200 - <6> - 537996 499200 - <6> - 537996 285400 - <20> - 286400 285400 - <20> - 286400 n51 100 342000 - <20> - 356000 422000 - <20> - 440000 n66 100 339000 - <20> - 342000 399000 - <20> - 404000 n70 100 132600 - <20> - 139600 123400 - <20> - 130400 n71 100 100 N/A 286400 - <20> - 303400 n75 100 N/A 285400 - <20> - 286400 n76 n77 620000 - <1> - 680000 620000 - <1> - 680000 15 30 620000 - <2> - 680000 620000 - <2> - 680000 620000 - <1> - 653333 620000 - <1> - 653333 n78 15 620000 - <2> - 653332 620000 - <2> - 653332 30 n79 693334 - <1> - 733333 693334 - <1> - 733333 15 693334 - <2> - 733332 693334 - <2> - 733332 30 342000 - <20> - 357000 n80 100 N/A 100 176000 - <20> - 183000 N/A n81 n82 100 166400 - <20> - 172400 N/A 140600 - <20> -149600 n83 100 N/A 100 384000 - <20> - 396000 n84 N/A n86 100 342000 - <20> - 356000 N/A

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in subclause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block are defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Frequency range	SS Block frequency position SSREF	GSCN	Range of GSCN						
0 – 3000 MHz	N * 1200kHz + M * 50 kHz, N=1:2499, M ε {1,3,5} (Note 1)	[3N + (M-3)/2]	[2 – 7498]						
3000-24250 MHz	2400 MHz + N * 1.44 MHz N = 0:14756	[7499 + N]	[7499 – 22255]						
NOTE 1: The default value for operating bands with SCS spaced channel raster is M=3.									

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in Table 5.4.3.2-1. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL.

Table 5.4.3.2-1: Synchronization raster to SS block resource element mapping

Resource element index k	0
Physical resource block number n_{PRB} of the SS block	$n_{\text{PRB}} = 10$

k, n_{PRB} , are as defined in TS 38.211[8].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is given in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NR Operating Band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last)</step>
n1	15kHz	Case A	5279 - <1> - 5419
n2	15kHz	Case A	4829 - <1> - 4969
n3	15kHz	Case A	4517 - <1> - 4693
	15kHz	Case A	2177 - <1> - 2230
n5	30kHz	Case B	2183 - <1> - 2224
n7	15kHz	Case A	6554 - <1> - 6718
n8	15kHz	Case A	2318 - <1> - 2395
n12	15kHz	Case A	1828 - <1> -1858
n20	15kHz	Case A	1982 - <1> - 2047
n25	15 kHz	Case A	4829 - <1> - 4981
n28	15kHz	Case A	1901 – <1> – 2002
n34	15kHz	Case A	5030 - <1> - 5056
n38	15kHz	Case A	6431 - <1> - 6544
n39	15kHz	Case A	4706 - <1> - 4795
n40	15kHz	Case A	5756 - <1> - 5995
n41	15kHz	Case A	6246 - <9> - 6714
	30 kHz	Case C	6252 - <3> - 6714
n51	15kHz	Case A	3572 - <1> - 3574
n66	15kHz	Case A	5279 - <1> - 5494
1100	30kHz	Case B	5285 - <1> - 5488
n70	15kHz	Case A	4993 - <1> - 5044
n71	15kHz	Case A	1547 – <1> – 1624
n75	15kHz	Case A	3584 - <1> - 3787
n76	15kHz	Case A	3572 - <1> - 3574
n77	30kHz	Case C	7711 – <1> – 8329
n78	30kHz	Case C	7711 – <1> – 8051
n79	30kHz	Case C	8480 - <16> - 8880
NOTE 1: SS Block pattern	n is defined in section 4.1 in T	S 38.213 [9]	

5.4.4 TX-RX frequency separation

The default TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation for operating bands is specified in Table 5.4.4-1.

NR Operating Band	TX – RX carrier centre frequency separation
n1	190 MHz
n2	80 MHz
n3	95 MHz
n5	45 MHz
n7	120 MHz
n8	45 MHz
n12	30 MHz
n20	-41 MHz
n25	80 MHz
n28	55 MHz
n66	400 MHz
n70	295,300 MHz
n71	-46 MHz

Table 5.4.4-1: Default UE TX-RX frequency separation

5.4A Channel arrangement for CA

5.4A.1 Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent NR component carriers is defined as the following unless stated otherwise:

For NR operating bands with 100 kHz channel raster:

Nominal channel spacing =
$$\frac{BW_{Channel(1)} + BW_{Channel(2)} - 2|GB_{Channel(1)} - GB_{Channel(2)}|}{0.6}$$
 0.3 [MHz]

For NR operating bands with 15 kHz channel raster:

with

$$n = \max(\mu_1, \mu_2)$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 with values in MHz. and the $GB_{Channel(i)}$ is the minimum guard band defined in sub-clause 5.3.3, while μ_1 and μ_2 are the subcarrier spacing configurations of the component carriers as defined in TS 38.211. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause

5.4A.2 Channel raster for CA

For inter-band carrier aggregation, the channel raster requirements in subclause 5.4.2 apply for each operating band.

5.4A.3 Synchronization raster for CA

For inter-band carrier aggregation, the synchronization raster requirements in subclause 5.4.3 apply for each operating band.

5.4A.4 Tx-Rx frequency separation for CA

For inter-band carrier aggregation, the Tx-Rx frequency separation requirements in subclause 5.4.4 apply for each operating band.

5.5 Configurations

5.5A Configurations for CA

5.5A.1 Configurations for intra-band contiguous CA

Table 5.5A.1-1: NR CA configurations and bandwidth combination sets defined for intra-band contiguous CA

				ation / Bandw				
NR CA configuratio n	Uplink CA configur ations	Compone Channel bandwidths for carrier (MHz)	nt carriers in o Channel bandwidth s for carrier (MHz)	order of increa Channel bandwidth s for carrier (MHz)	asing carrier f Channel bandwidth s for carrier (MHz)	requency Channel bandwidth s for carrier (MHz)	Aggregat ed bandwidt h (MHz)	Bandwidth combination set
		50	60	,	,		110	
		60	60				120	
		50	80				130	
CA_n77C		60	80				140	
CA_n78C		50	100				150	
CA_n79C		60	100				160	
		80	80				100	
		80	100				180	
		100	100				200	
		50	60	100			210	0
		60	60	100			220	
		50	80	100			230	
		60	80	100			240	
CA_n77D,		50	100	100			250	
CA_n78D, CA_n79D		80	80	100			260	
_		80	90	100			270	
		80	100	100			280	
		90	100	100			290	
		100	100	100	_		300	

	50	60	100	100	310
	60	60	100	100	320
	50	80	100	100	330
	60	80	100	100	340
CA_n77E,	50	100	100	100	350
CA_n78E, CA_n79E	80	80	100	100	360
	80	90	100	100	370
	80	100	100	100	380
	90	100	100	100	390
	100	100	100	100	400

Table 5.5A.1-2: NR CA configurations and bandwidth combination sets defined for intra-band contiguous CA for fallback group 2

		E	E-UTRA CA coi	nfiguration / Bandw	idth combination	set		
ND CA	Uplink	Component	carriers in ord	ler of increasing ncy		Randwidth		
NR CA configurati on	CA configura tions	Channel bandwidths for carrier (MHz)	Channel bandwidths for carrier (MHz)	Channel bandwidths for the other carrier (MHz	aggregated bandwidth (MHz])	Bandwidth combination set		
		40	20		60			
CA_n77F,		50	20		70			
CA_n78F,		40	40		80			
CA_n79F		40	50		90			
		50	50		100			
		40	20	50	110			
CA_n77G,		50	20	50	120			
CA_n78G,		40	40	50	130			
CA_n79G		40	50	50	140			
		50	50	50	150			
		40	20	50x2	160			
CA_n77H,		50	20	50x2	170			
CA_n78H,		40	40	50x2	180			
CA_n79H		40	50	50x2	190			
		50	50	50x2	200			
		40	20	50x3	210			
CA_n77I,		50	20	50x3	220			
CA_n78I,		40	40	50x3	230	0		
CA_n79I		40	50	50x3	240			
		50	50	50x3	250			
		40	20	50x4	260			
CA_n77J,		50	20	50x4	270			
CA_n78J,		40	40	50x4	280			
CA_n79J		40	50	50x4	290			
		50	50	50x4	300			
		40	20	50x5	310			
CA_n77K,		50	20	50x5	320			
CA_n78K,		40	40	50x5	330			
CA_n79K		40	50	50x5	340			
		50	50	50x5	350			
		40	20	50x6	360			
CA_n77L,		50	20	50x6	370			
CA_n78L,		40	40	50x6	380			
CA_n79L		40	50	50x6	390			
		50	50	50x6	400			

5.5A.2 Configurations for intra-band non-contiguous CA

Detailed structure of the subclause is TBD.

5.5A.3 Configurations for inter-band CA

Table 5.5A.3-1: NR CA configurations and bandwidth combinations sets defined for inter-band CA (two bands)

NR CA configur ation	Uplink CA configur ation	NR Ban d	SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Banc width comb ination									
•			15	Yes	Yes	Yes	Yes	Yes	Yes							11 00									
		n3	30		Yes	Yes	Yes	Yes	Yes]									
DA_n3A- n77A -	-		60		Yes	Yes	Yes	Yes	Yes							0									
	n77	15 30		Yes Yes	Yes Yes	Yes Yes			Yes Yes	Yes Yes	Yes	Yes	Yes	Yes	1										
		1177	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1									
•			15	Yes	Yes	Yes	Yes	Yes	Yes																
			30		Yes	Yes	Yes	Yes	Yes]									
CA_n3A-	CA_n3A-		60		Yes	Yes	Yes	Yes	Yes	.,	.,					0									
n78A	n78A	n78	15 30		Yes Yes	Yes Yes	Yes Yes			Yes Yes	Yes Yes	Yes	Yes	Yes	Yes	1									
	1170	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1										
_			15	Yes	Yes	Yes	Yes	Yes	Yes																
		n3	30		Yes	Yes	Yes	Yes	Yes]									
CA_n3A-	_		60		Yes	Yes	Yes	Yes	Yes							0									
n79A		70	15		Yes	Yes	Yes			Yes	Yes														
		n79	30 60		Yes Yes	Yes Yes	Yes Yes			Yes Yes	Yes Yes	Yes Yes	Yes Yes		Yes Yes	4									
			15	Yes	Yes	Yes	Yes			162	162	162	162		165										
CA_n8A- n78A	n8	30		Yes	Yes	Yes																			
	-	60													0										
	n78A		15		Yes	Yes	Yes			Yes	Yes														
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes										
		60 15	Yes	Yes Yes	Yes Yes	Yes Yes			Yes	Yes	Yes	Yes	Yes	Yes	-										
CA_n8A-	n8	30	163	Yes	Yes	Yes									<u> </u>										
			60																						
n79A	-		15		Yes	Yes	Yes			Yes	Yes					0									
		n79	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	<u> </u>									
			60 15	Yes	Yes Yes	Yes Yes	Yes Yes			Yes	Yes	Yes	Yes		Yes										
		n28	30	162	Yes	Yes	Yes									0									
CA_n28A			60																						
-n78A	-		15		Yes	Yes	Yes			Yes	Yes					0									
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes										
			60 15		Yes Yes	Yes	Yes			Yes Yes	Yes	Yes	Yes	Yes	Yes	ļ									
		n41	30		Yes	Yes Yes	Yes Yes			Yes	Yes Yes	Yes	Yes		Yes	<u> </u>									
CA_n41A			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes										
-n78A	-		15		Yes	Yes	Yes			Yes	Yes					0									
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	<u> </u>									
			60 15	Vaa	Yes	Yes	Yes	1	-	Yes	Yes	Yes	Yes	Yes	Yes	 									
		n75	30	Yes	Yes Yes	Yes Yes	Yes Yes									1									
CA_n75A		5	60		Yes	Yes	Yes									_									
-n78A	-		15		Yes	Yes	Yes			Yes	Yes					0									
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	<u> </u>									
		70	60	\\	Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes										
		n76	15 30	Yes												_									
CA			60													1									
n76A-	-		15		Yes	Yes	Yes			Yes	Yes					0									
n78A		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes]									
			60		Yes	Yes	Yes		_	Yes	Yes	Yes	Yes	Yes	Yes										
		, 77	15		Yes	Yes	Yes		-	Yes	Yes	\/a-	\/a-	\/a-	\/a-	1									
CA_n77A		n77 30 Yes Yes 60 Yes Yes	Yes Yes	1	1	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	0													
-n79A	- r	- -	- -	-	- -	- -	-	- -	- -	- -	-	15		163	163	163			Yes	Yes	163	163	163	169	
		n79	30							Yes	Yes	Yes	Yes		Yes	j									
							11/9	111.9	60							Yes	Yes	Yes	Yes		Yes				

CA_n78A		-70	15	Vaa	Vaa	Vaa		V	Vaa			
-n79A	-	n78		Yes	Yes	Yes		Yes	Yes			l U

5.5B Configurations for DC

5.5C Configurations for SUL

Table 5.5C-1: Supported channel bandwidths per SUL band combination

SUL configurati on	NR Band	Subcarrier spacing (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
		15		Yes	Yes	Yes			Yes	Yes				
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n80A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes						
		15		Yes	Yes	Yes			Yes	Yes				
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n81A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	n81	15	Yes	Yes	Yes	Yes								
		15		Yes	Yes	Yes			Yes	Yes				
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n82A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	n82	15	Yes	Yes	Yes	Yes								
		15		Yes	Yes	Yes			Yes	Yes				
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n83A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	n83	15	Yes	Yes	Yes	Yes								
		15		Yes	Yes	Yes			Yes	Yes				
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n84A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	n84	15	Yes	Yes	Yes	Yes								
		15		Yes	Yes	Yes			Yes	Yes				
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n86A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	n86	15	Yes	Yes	Yes	Yes								
		15							Yes	Yes				
SUL_n79A-	n79	30							Yes	Yes	Yes	Yes		Yes
n80A		60							Yes	Yes	Yes	Yes		Yes
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes						
		15							Yes	Yes				
SUL_n79A-	n79	30							Yes	Yes	Yes	Yes		Yes
n81A		60							Yes	Yes	Yes	Yes		Yes
	n81	15	Yes	Yes	Yes	Yes								

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

Uplink RB allocations given in Table 6.1-1 are used throughout this section, unless otherwise stated by the test case.

Table 6.1-1: Common uplink configuration

					RB a	llocation		
Channel Bandwidt h	SCS(kHz	OFDM	Outer_Full	Outer_1RB_Left	Outer_1RB_Right	Inner_Full	Inner_1RB_Left	Inner_1RB_Right
	15	DFT-s CP	25@0 25@0	1@0 1@0	1@24 1@24	12@6 13@6	1@1 1@1	1@23 1@23
5MHz	30	DFT-s	10@0	1@0	1@9	5@2	1@1	1@8
SIVITIZ	30	CP	11@0	1@0	1@10	6@3	1@1	1@9
	60	DFT-s CP	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	15	DFT-s	50@0	1@0	1@49	25@12	1@1	1@48
	13	CP DFT-s	52@0 24@0	1@0 1@0	1@51 1@23	26@13 12@6	1@1 1@1	1@50 1@22
10MHz	30	CP	24@0	1@0	1@23	12@6	1@1	1@22
	60	DFT-s	10@0	1@0	1@9	5@2	1@1	1@8
	00	CP	11@0	1@0	1@10	6@3	1@1	1@9
	15	DFT-s CP	75@0 79@0	1@0 1@0	1@74 1@78	37@18 40@20	1@1 1@1	1@73 1@77
450011-		DFT-s	36@0	1@0	1@35	18@9	1@1	1@34
15MHz	30	CP	38@0	1@0	1@37	19@9	1@1	1@36
	60	DFT-s CP	18@0 18@0	1@0 1@0	1@17 1@17	9@4 9@4	1@1 1@1	1@16
		DFT-s	100@0	1@0	1@99	50@25	1@1	1@16 1@98
	15	CP	106@0	1@0	1@105	53@26	1@1	1@104
20MHz	30	DFT-s	50@0	1@0	1@49	25@12	1@1	1@48
		CP DET a	51@0	1@0	1@50 1@23	26@13 12@6	1@1 1@1	1@49 1@22
	60	DFT-s CP	24@0 24@0	1@0 1@0	1@23	12@6	1@1	1@22
	15 30	DFT-s	128@0	1@0	1@127	64@32	1@1	1@126
		СР	133@0	1@0	1@132	67@33	1@1	1@131
25MHz		DFT-s CP	64@0 65@0	1@0 1@0	1@63 1@64	32@16 33@16	1@1 1@1	1@62 1@63
		DFT-s	30@0	1@0	1@29	15@7	1@1	1@28
	60	CP	31@0	1@0	1@30	16@8	1@1	1@29
	15	DFT-s	160@0	1@0	1@159	80@40	1@1	1@158
		DFT-s	160@0 75@0	1@0 1@0	1@159 1@74	80@40 37@18	1@1 1@1	1@158 1@73
30MHz	30	CP	78@0	1@0	1@77	39@19	1@1	1@76
	60	DFT-s	36@0	1@0	1@35	18@9	1@1	1@34
		CP DET a	38@0	1@0	1@37	19@10	1@1	1@36
	15	DFT-s CP	216@0 216@0	1@0 1@0	1@215 1@215	108@54 108@54	1@1 1@1	1@214 1@214
40MU-	20	DFT-s	100@0	1@0	1@99	50@25	1@1	1@98
40MHz	30	CP	106@0	1@0	1@105	53@26	1@1	1@104
	60	DFT-s CP	50@0 51@0	1@0 1@0	1@49 1@50	25@12 26@13	1@1 1@1	1@48 1@49
		DFT-s	270@0	1@0	1@269	135@67	1@1	1@268
	15	CP	270@0	1@0	1@269	135@67	1@1	1@268
50MHz	30	DFT-s	128@0	1@0	1@127	64@32	1@1	1@126
		CP DFT-s	133@0 64@0	1@0 1@0	1@132 1@63	67@33 32@16	1@1 1@1	1@131 1@62
	60	CP	65@0	1@0	1@64	33@16	1@1	1@62
	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A
	13	CP	N/A	N/A	N/A	N/A	N/A	N/A
60MHz	30	DFT-s CP	162@0 162@0	1@0 1@0	1@161 1@161	81@40 81@40	1@1 1@1	1@160 1@160
		DFT-s	75@0	1@0	1@74	37@18	1@1	1@73
	60	CP	79@0	1@0	1@78	40@20	1@1	1@77
80MHz	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A
		CP	N/A	N/A	N/A	N/A	N/A	N/A

	30	DFT-s	216@0	1@0	1@215	108@54	1@1	1@214
	30	CP	217@0	1@0	1@216	109@54	1@1	1@215
	60	DFT-s	100@0	1@0	1@99	50@25	1@1	1@98
	60	CP	107@0	1@0	1@106	54@27	1@1	1@105
	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A
	15	CP	N/A	N/A	N/A	N/A	N/A	N/A
90MHz	30 60	DFT-s	240@0	1@0	1@239	120@60	1@1	1@238
SOMILIE		CP	245@0	1@0	1@244	122@61	1@1	1@243
		DFT-s	120@0	1@0	1@119	60@30	1@1	1@118
		CP	121@0	1@0	1@120	60@30	1@1	1@119
	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A
	15	CP	N/A	N/A	N/A	N/A	N/A	N/A
100MHz	20	DFT-s	270@0	1@0	1@269	135@67	1@1	1@268
IUUIVIITZ	30	CP	273@0	1@0	1@272	137@68	1@1	1@271
	60	DFT-s	135@0	1@0	1@134	68@34	1@1	1@133
	60	CP	135@0	1@0	1@134	68@34	1@1	1@133

6.2 Transmitter power

6.2.1 UE maximum output power

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS

6.2.1.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.2.1.3 Minimum conformance requirements

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth of NR carrier unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.1.3-1: UE Power Class

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)
n1	,	, ,	,	(33)	23	± 2
n2					23	± 2 ³
n8					23	± 2 ³
n12					23	± 2 ³
n25					23	± 2
n34					23	± 2
n39					23	± 2
n40					23	± 2
n41			26	+2/-3 ³	23	± 2 ³
n66					23	± 2
n70					23	± 2
n71					23	+2/-2.5
n77			26	+2/-3	23	+2/-3
n78			26	+2/-3	23	+2/-3
n79			26	+2/-3	23	+2/-3
n80			-		23	± 2
n81			·		23	± 2
n82			·		23	± 2
n83					23	± 2/-2.5
n84			·		23	± 2
n86					23	± 2

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 2: Power class 3 is default power class unless otherwise stated

NOTE 3: Refers to the transmission bandwidths (Figure 5.3.3-1) confined within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

If a UE supports a different power class than the default UE power class for the band and the supported power class enables the higher maximum output power than that of the default power class:

- if the field of UE capability *maxUplinkDutyCycle* is absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than 50% (The exact evaluation period is no less than one radio frame); or
- if the field of UE capability *maxUplinkDutyCycle* is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than *maxUplinkDutyCycle* as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); or
 - [may] apply all requirements for the default power class to the supported power class and set the configured transmitted power as specified in sub-clause 6.2.4;
- if the IE *P-Max* as defined in TS 38.331 [6] is not provided; or
- if the IE *P-Max* as defined in TS 38.331 [6] is provided and set to the maximum output power of the default power class or lower;
 - shall apply all requirements for the default power class to the supported power class and set the configured transmitted power as specified in sub-clause 6.2.4;
- else (i.e. the IE *P-Max* as defined in TS 38.331 [6] is provided and set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to *maxUplinkDutyCycle* as defined in TS 38.331; or the IE *P-Max* as defined in TS 38.331 [6] is provided and set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to 50% when *maxUplinkDutyCycle* is absent. The exact evaluation period is no less than one radio frame):
 - shall apply all requirements for the supported power class and set the configured transmitted power class as specified in sub-clause 6.2.4;

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.1.

6.2.1.4 Test description

6.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.1.4.1-1: Test Configuration Table

Initial Conditions						
Test Environme	nt as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subclause 4.1						
Test Frequencie	es as specified in TS 38.508-1	Low range, Mid range, High range				
[5] subclause 4.	3.1					
	andwidths as specified in TS	Lowest, Mid, Highest				
38.508-1 [5] sub						
Test SCS as specified in Table 5.3.5-1 Lowest, Highest						
		Test Parameters				
Test ID	Downlink Configuration	Uplink Configur	ation			
	N/A for maximum output	Modulation (NOTE 2)	RB allocation (NOTE 1)			
1	power test case	DFT-s-OFDM PI/2 BPSK	Inner Full			
2		DFT-s-OFDM PI/2 BPSK	Inner 1RB Left			
3		DFT-s-OFDM PI/2 BPSK	Inner 1RB Right			
4		DFT-s-OFDM QPSK	Inner Full			
5		DFT-s-OFDM QPSK Inner 1RB Left				
6		DFT-s-OFDM QPSK Inner 1RB Right				
	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					
NOTE 2: DFT-	s-OFDM PI/2 BPSK test applies	only for UEs which supports half Pi BPSK	in FR1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.1.4.3.

6.2.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.2.1.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.1.5-1.

Table 6.2.1.5-1: UE Power Class

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)
n1		` ,	,		23	±2±TT
n2					23	±2 ³ ±TT
n8					23	±2 ³ ±TT
n12					23	±2 ³ ±TT
n25					23	±2±TT
n34					23	±2±TT
n39					23	±2±TT
n40					23	±2±TT
n41			26	+2+TT/- 3 ³ -TT	23	± 2 ³ ±TT
n66					23	±2±TT
n70					23	±2±TT
n71					23	+2+TT/-2.5- TT
n77			26	+2+TT/-3- TT	23	+2+TT/-3-TT
n78			26	+2+TT/-3- TT	23	+2+TT/-3-TT
n79			26	+2+TT/-3- TT	23	+2+TT/-3-TT
n80					23	±2±TT
n81					23	±2±TT
n82					23	±2±TT
n83					23	+2+TT/-2.5- TT
n84					23	±2±TT
n86					23	±2±TT
NOTE 1:	TT for each	frequency and	d channel ba	ndwidth is spe	ecified in Ta	
NOTE 2:						to account the
NOTE 3:	Power class	3 is default p	ower class u	ınless otherwi	se stated	
NOTE 4:	Refers to the FUL_low an	e transmissior d FUL_low + 4 utput power re	n bandwidths 4 MHz or FU	s (Figure 5.3.3 IL_high – 4 MI	-1) confined Iz and FUL	_high, the

Table 6.2.1.5-2: Test Tolerance (UE maximum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	0.7 dB	1.0 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0 dB

If a UE supports a different power class than the default UE power class for the band and the supported power class enables the higher maximum output power than that of the default power class:

- if the field of UE capability maxUplinkDutyCycle is absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than 50% (The exact evaluation period is no less than one radio frame); or
- if the field of UE capability *maxUplinkDutyCycle* is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than *maxUplinkDutyCycle* as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); or
 - [may] apply all requirements for the default power class to the supported power class and set the configured transmitted power as specified in sub-clause 6.2.4;
- if the IE P-Max as defined in TS 38.331 [6] is not provided; or

tolerance limit by 1.5 dB

- if the IE P-Max as defined in TS 38.331 [6] is provided and set to the maximum output power of the default power class or lower;
 - shall apply all requirements for the default power class to the supported power class and set the configured transmitted power as specified in sub-clause 6.2.4;
- else (i.e. the IE *P-Max* as defined in TS 38.331 [6] is provided and set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to *maxUplinkDutyCycle* as defined in TS 38.331; or the IE *P-Max* as defined in TS 38.331 [6] is provided and set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to 50% when *maxUplinkDutyCycle* is absent. The exact evaluation period is no less than one radio frame):
 - shall apply all requirements for the supported power class and set the configured transmitted power class as specified in sub-clause 6.2.4

6.2.2 Maximum Power Reduction (MPR)

Editor's Note:

- PC 1 and PC 4 MPR is RAN4 pending (there are still brackets left for PC 2 in the minimum requirement).
- Stand alone message contents in TS 38.508-1[5] subclause 4.6 is TBD

6.2.2.1 Test purpose

The number of RB identified in Table 6.2.2.3-1 is based on meeting the requirements for adjacent channel leakage ratio and the maximum power reduction (MPR) due to Cubic Metric (CM).

6.2.2.2 Test applicability

The requirements of this test apply in test cases 6.5.2.2. 1 Adjacent Channel Leakage power Ratio to all types of NR Power Class [2] and 3 UE release 15 and forward

6.2.2.3 Minimum conformance requirements

UE is allowed to reduce the maximum output power due to higher order modulations and transmit bandwidth configurations. For UE Power Class [2] and 3, the allowed maximum power reduction (MPR) is defined in Table 6.2.2.3-2 and 6.2.2.3-1, respectively for channel bandwidths that meets both following criteria:

- Channel bandwidth ≤ 100MHz.
- Relative channel bandwidth $\leq 4\%$ for TDD bands and $\leq 3\%$ for FDD bands.

Where relative channel bandwidth = $2*BW_{Channel} / (F_{UL_low} + F_{UL_high})$.

Table 6.2.2.3-1: Maximum Power Reduction (MPR) for Power 3

Modulation	MPR	(dB)
	Outer RB allocations	Inner RB allocations
DFT-s-OFDM PI/2 BPSK	≤ 0.5	0
DFT-s-OFDM QPSK	≤ 1	0
DFT-s-OFDM 16 QAM	≤ 2	≤ 1
DFT-s-OFDM 64 QAM	≤ 2	2.5
DFT-s-OFDM 256 QAM	4.	5
CP-OFDM QPSK	≤ 3	≤ 1.5
CP-OFDM 16 QAM	≤ 3	≤ 2
CP-OFDM 64 QAM	≤ 3	3.5
CP-OFDM 256 QAM	≤ 6	5.5

Table 6.2.2.3-2: Maximum Power Reduction (MPR) for Power Class 2

Modulation		MPR (dB)	
	Edge RB allocations	Outer RB allocations	Inner RB allocations

DFT-s-OFDM PI/2 BPSK	≤ 3.5	≤ 0.5	0			
DFT-s-OFDM QPSK	≤ 3.5	≤ 1	0			
DFT-s-OFDM 16 QAM	≤ 3.5	≤ 2	≤ 1			
DFT-s-OFDM 64 QAM	≤ 3.5	≤ :	2.5			
DFT-s-OFDM 256 QAM		≤ 4.5				
CP-OFDM QPSK	≤ 3.5	≤ 3	≤ 1.5			
CP-OFDM 16 QAM	≤ 3.5	≤ 3	≤ 2			
CP-OFDM 64 QAM		≤ 3.5				
CP-OFDM 256 QAM		≤ 6.5				

Where the following parameters are defined to specify valid RB allocation ranges for Outer and Inner RB allocations:

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

 $RB_{Start,Low} = max(1, floor(L_{CRB}/2))$

where max() indicates the largest value of all arguments and floor(x) is the greatest integer less than or equal to x.

 $RB_{Start,High} = L_{RB} - RB_{Start,Low} - L_{CRB}$

The RB allocation is an Inner RB allocation if the following conditions are met:

 $RB_{Start,Low} \leq RB_{Start} \leq RB_{Start,High}$, and

 $L_{CRB} \le ceil(N_{RB}/2)$

where ceil(x) is the smallest integer greater than or equal to x.

For UE Power Class 2, an Edge RB allocation is one for which the RB's are allocated at the lowermost or uppermost edge of the channel with LCRB \leq 2 RB's.

The RB allocation is an Outer RB allocation for all other allocations which are not an Inner RB allocation or Edge RB allocation.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.2.

6.2.2.4 Test description

6.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table for Power Class 3

			Initial Conditions	
Test Env [5] subcl		as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH	
	quencies a ause 4.3.1	s specified in TS 38.508-1	Low range, High range	
Test Cha	annel Band	lwidths as specified in TS	Lowest, Highest	
	[5] subcla		Lavorat and I Bahaat	
Test SC	s as specif	ied in Table 5.3.5-1	Lowest and Highest neters for Channel Bandwidths	
T1	F			
Test ID	Freq	Downlink Configuration	Uplink Configur	ation
		N/A for Maximum Power	Modulation (NOTE 2)	RB allocation (NOTE 1)
1	Low	Reduction (MPR) test case	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left
2	High		DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right
3	Default		DFT-s-OFDM PI/2 BPSK	Outer Full
4	Low		DFT-s-OFDM QPSK	Outer_1RB_Left
5	High		DFT-s-OFDM QPSK	Outer_1RB_Right
6	Default		DFT-s-OFDM QPSK	Outer Full
7	Default		DFT-s-OFDM 16 QAM	Inner Full
8	Low		DFT-s-OFDM 16 QAM	Outer_1RB_Left
9	High		DFT-s-OFDM 16 QAM	Outer_1RB_Right
10	Default		DFT-s-OFDM 16 QAM	Outer Full
11	Default		DFT-s-OFDM 64 QAM	Outer Full
12	Default		DFT-s-OFDM 256 QAM	Outer Full
13	Default		CP-OFDM QPSK	Inner Full
14	Low		CP-OFDM QPSK	Outer_1RB_Left
15	High		CP-OFDM QPSK	Outer_1RB_Right
16	Default		CP-OFDM QPSK	Outer Full
17	Default		CP-OFDM 16 QAM	Inner Full
18	Low		CP-OFDM 16 QAM	Outer_1RB_Left
19	High		CP-OFDM 16 QAM	Outer_1RB_Right
20	Default		CP-OFDM 16 QAM	Outer Full
21	Default		CP-OFDM 64 QAM	Outer Full
22	Default		CP-OFDM 256 QAM	Outer Full
			allocation is defined in Table 6.1-1. only for UEs which supports half Pi BPSK	in FR1.

Table 6.2.2.4.1-2: Test Configuration Table for Power Class 2

TBD

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.2.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.2.2.4.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

6.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.2.2.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.2.5-1 and Table 6.2.2.5-4.

Table 6.2.2.5-1: UE Power Class test requirements(for Bands n1, n2, n8, n12, n25, n34, n39, n40, n41, n66, n70, n80, n81, n82, n84, n86) for Power Class 3

Test ID	P _{PowerClass} (dBm)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
2	23	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
3	23	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
4	23	1	0	22	2.0	2	25.0 + TT	20.0 - TT
5	23	1	0	22	2.0	2	25.0 + TT	20.0 - TT
6	23	1	0	22	2.0	2	25.0 + TT	20.0 - TT
7	23	1	0	22	2.0	2	25.0 + TT	20.0 - TT
8	23	2	0	21	2.0	2	25.0 + TT	19.0 - TT
9	23	2	0	21	2.0	2	25.0 + TT	19.0 - TT
10	23	2	0	21	2.0	2	25.0 + TT	19.0 - TT
11	23	2.5	0	20.5	2.5	2	25.0 + TT	18.0 - TT
12	23	4.5	0	18.5	4.0	2	25.0 + TT	14.5 - TT
13	23	1.5	0	21.5	2.0	2	25.0 + TT	19.5 - TT
14	23	3	0	20	2.5	2	25.0 + TT	17.5 - TT
15	23	3	0	20	2.5	2	25.0 + TT	17.5 - TT
16	23	3	0	20	2.5	2	25.0 + TT	17.5 - TT
17	23	2	0	21	2.0	2	25.0 + TT	19.0 - TT
18	23	3	0	20	2.5	2	25.0 + TT	17.5 - TT
19	23	3	0	20	2.5	2	25.0 + TT	17.5 - TT
20	23	3	0	20	2.5	2	25.0 + TT	17.5 - TT
21	23	3.5	0	19.5	3.5	2	25.0 + TT	16.0 - TT
22	23	6.5	0	16.5	5.0	2	25.0 + TT	11.5 - TT

NOTE 1: PPowerClass is the maximum UE power specified without taking into account the tolerance.

NOTE 2: For Band n41, refers to the transmission bandwidths (Figure 5.3.3-1) confined within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB.

NOTE 3: TT=0.7dB for BW $\leq 40MHz$; TT=1.0 for $40MHz < BW <math>\leq 100MHz$.

Table 6.2.2.5-2: UE Power Class test requirements(for Bands n71, n83) for Power Class 3

Test ID	P _{PowerClass} (dBm)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	0.5	0	22.5	2.0	2.5	25.0 + TT	20.0 - TT
2	23	0.5	0	22.5	2.0	2.5	25.0 + TT	20.0 - TT
3	23	0.5	0	22.5	2.0	2.5	25.0 + TT	20.0 - TT
4	23	1	0	22	2.0	2.5	25.0 + TT	19.5 - TT
5	23	1	0	22	2.0	2.5	25.0 + TT	19.5 - TT
6	23	1	0	22	2.0	2.5	25.0 + TT	19.5 - TT
7	23	1	0	22	2.0	2.5	25.0 + TT	19.5 - TT
8	23	2	0	21	2.0	2.5	25.0 + TT	18.5 - TT
9	23	2	0	21	2.0	2.5	25.0 + TT	18.5 - TT
10	23	2	0	21	2.0	2.5	25.0 + TT	18.5 - TT
11	23	2.5	0	20.5	2.5	2.5	25.0 + TT	18.0 - TT
12	23	4.5	0	18.5	4.0	2.5	25.0 + TT	14.5 - TT
13	23	1.5	0	21.5	2.0	2.5	25.0 + TT	19.0 - TT
14	23	3	0	20	2.5	2.5	25.0 + TT	17.5 - TT
15	23	3	0	20	2.5	2.5	25.0 + TT	17.5 - TT
16	23	3	0	20	2.5	2.5	25.0 + TT	17.5 - TT
17	23	2	0	21	2.0	2.5	25.0 + TT	18.5 - TT
18	23	3	0	20	2.5	2.5	25.0 + TT	17.5 - TT
19	23	3	0	20	2.5	2.5	25.0 + TT	17.5 - TT
20	23	3	0	20	2.5	2.5	25.0 + TT	17.5 - TT
21	23	3.5	0	19.5	3.5	2.5	25.0 + TT	16.0 - TT
22	23	6.5	0	16.5	5.0	2.5	25.0 + TT	11.5 - TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance. NOTE 2: TT=0.7dB.

Table 6.2.2.5-3: UE Power Class test requirements for Bands n77, n78, n79) for Power Class 3

Test ID	P _{PowerClass} (dBm)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	0.5	0	22.5	2.0	3	25.0 + TT	19.5 - TT
2	23	0.5	0	22.5	2.0	3	25.0 + TT	19.5 - TT
3	23	0.5	0	22.5	2.0	3	25.0 + TT	19.5 - TT
4	23	1	0	22	2.0	3	25.0 + TT	19.0 - TT
5	23	1	0	22	2.0	3	25.0 + TT	19.0 - TT
6	23	1	0	22	2.0	3	25.0 + TT	19.0 - TT
7	23	1	0	22	2.0	3	25.0 + TT	19.0 - TT
8	23	2	0	21	2.0	3	25.0 + TT	18.0 - TT
9	23	2	0	21	2.0	3	25.0 + TT	18.0 - TT
10	23	2	0	21	2.0	3	25.0 + TT	18.0 - TT
11	23	2.5	0	20.5	2.5	3	25.0 + TT	17.5 - TT
12	23	4.5	0	18.5	4.0	3	25.0 + TT	14.5 - TT
13	23	1.5	0	21.5	2.0	3	25.0 + TT	18.5 - TT
14	23	3	0	20	2.5	3	25.0 + TT	17.0 - TT
15	23	3	0	20	2.5	3	25.0 + TT	17.0 - TT
16	23	3	0	20	2.5	3	25.0 + TT	17.0 - TT
17	23	2	0	21	2.0	3	25.0 + TT	18.0 - TT
18	23	3	0	20	2.5	3	25.0 + TT	17.0 - TT
19	23	3	0	20	2.5	3	25.0 + TT	17.0 - TT
20	23	3	0	20	2.5	3	25.0 + TT	17.0 - TT
21	23	3.5	0	19.5	3.5	3	25.0 + TT	16.0 - TT
22	23	6.5	0	16.5	5.0	3	25.0 + TT	11.5 - TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 2: TT=1.0dB for Bands n77 and n78 when BW ≤ 40MHz; TT=1.0 for Band n79 when BW ≤ 40MHz; TT=1.0 for 40MHz < BW ≤ 100MHz.

Table 6.2.2.5-4: UE Power Class test requirements (for Bands n41, n77, n78, n79) for Power Class 2

TBD

6.2.3 UE additional maximum output power reduction

Editor's note: The following aspects are either missing or not yet determined:

- Initial condition is not complete, except for NS_35.

SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.

- Test case 6.5.3.3 Additional Spurious Emissions is not complete.
- UE Power Class not defined for NR operating band n3, n4, n5, n20 in TS 38.101-1.
- Tests for for network signalling values NS_03, NS_04, NS_05, NS_10, NS_05, NS_08; NS_07, NS_40 and NS_09 not complete.

6.2.3.1 Test purpose

Additional emission requirements can be signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*. To meet these additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table [TBD]. Unless stated otherwise, an A-MPR of 0 dB shall be used.

6.2.3.2 Test applicability

The requirements of this test apply in test case 6.5.2.3 Additional Spectrum Emission mask for network signalled values NS_03, NS_04, NS_06, NS_35 and NS_40 to all types of NR UE release 15 and forward.

The requirements of this test apply in test case 6.5.3.3 Additional Spurious Emissions for network signalled values NS_04, NS_05, NS_07, NS_08 and NS_09 to all types of NR UE release 15 and forward.

6.2.3.3 Minimum conformance requirements

6.2.3.3.1 General

Table 6.2.3.3.1-1 specifies for UE Power Class 3 the additional requirements and allowed A-MPR with corresponding network signalling value and operating band. Unless otherwise stated, the allowed A-MPR is in addition to the allowed MPR specified in subclause 6.2.2.

Table 6.2.3.3.1-1: Additional maximum power reduction (A-MPR)

Network Signalling value	Requirements (subclause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)	Value of additional Spectrum Emission
NS_01					N/A	1
NS_02	6.5.2.2.3-1	n1, n2, n3, n4, n5, n8, n20, n25, n66, n80, n81, n82, n84, (Note 1)			Table 6.2.3.3.1-2	1
NS_03	6.5.2.3.3	n2, n25, n66, n70			Table 6.2.3.3.7-1	3
NS_04	6.5.2.3.3.2	n41	10, 15, 20, 40, 50, 60 80, 100		Subclause 6.2.3.3.2	4
NS_06	6.5.2.3.3.4	n12	5, 10, 15	5.3.5	N/A	2
NS_10		n20, n82	15, 20	Table 6.2.3.3-1	Table 6.2.3.3.3-1	NS_xx
NS_05	[TBD]	n28, n83	5	≥ 2	≤2 ⁴	
140_00	נטטון	1120, 1103	10, 15, 20	≥ 1	≤5 ⁴	
NS_08	[TBD]	n1, n 84	5, 10, 15, 20 ⁵		Table 6.2.3.3.4-1	
NS_07	[TBD]	n28, n83	5, 10	Table 5.3.2-1	[1] ^{3,4}	
NS_35	6.5.2.3.3.1-1	n71	5, 10, 15, 20	Table 5.3.2-1	N/A	2
NS_40	6.5.2.3.3.7	n51	5		Table 6.2.3.3.5-1	35
NS_09	[TBD]	n8, n81	5, 10, 15		Table 6.2.3.3.6-1	

NOTE 1: This NS can be signalled for NR bands that have UTRA services deployed.

NOTE 2: The total maximum output power reduction for NS_xx and NS_yy is obtained by taking the maximum value of MPR + A-MPR specified in Table 6.2.3.3.1-1 and Table 6.2.4-1 in TS 36.101 and A-MPR specified in Table 6.2.3.3-1.

NOTE 3: The A-MPR is 0 dB for inner RB allocations for DFT-s-OFDM PI/2 BPSK and QPSK.

NOTE 4: The A-MPR for CP-OFDM shall also add the corresponding MPR specified in Table 6.2.2.3-1 and Table 6.2.2.3-2.

NOTE 5: No A-MPR is applied for 5 MHz CBW where the lower channel edge is ≥1930 MHz,10 MHz CBW where the lower channel edge is ≥1950 MHz and 15 MHz CBW where the lower channel edge is ≥1955 MHz.

Table 6.2.3.3.1-2: A-MPR for UTRA protections

Modulation	A-MPR			
Wiodulation	Outer RB allocations	Inner RB allocations		
DFT-s-OFDM PI/2 BPSK	≤ 1.5	0		
DFT-s-OFDM QPSK	≤ 1	0		
DFT-s-OFDM 16 QAM	≤ 0.5	0		
DFT-s-OFDM 64 QAM	≤ 0.5	0		
DFT-s-OFDM 256 QAM	0	0		
CP-OFDM QPSK	≤ 1	0		
CP-OFDM 16 QAM	≤ 1	0		
CP-OFDM 64 QAM	≤ 0.5	0		
CP-OFDM 256 QAM	0	0		
NOTE 1: A-MPR defined in t	his Table is additive to MPR	defined in Table 6.2.2.3-1		

NOTE 1: A-MPR defined in this Table is additive to MPR defined in Table 6.2.2.3-NOTE 2: Outer and inner allocations are defined in clause 6.2.2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.1.

6.2.3.3.2 A-MPR for NS_04

TBD

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.2.

6.2.3.3.3 A-MPR for NS_10

Table 6.2.3.3.3-1: A-MPR for NS_10

TBD

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.3.

6.2.3.3.4 A-MPR for NS_08

Table 6.2.3.3.4-1: A-MPR for NS_08

TBD

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.4.

6.2.3.3.5 A-MPR for NS_40

Table 6.2.3.3.5-1: A-MPR for NS_40

TBD

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.5.

6.2.3.3.6 A-MPR for NS_09

Table 6.2.3.3.6-1: A-MPR for NS_09

TBD

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.6.

6.2.3.3.7 A-MPR for NS_03

Table 6.2.3.3.7-1: A-MPR for NS_03

TBD

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.7.

6.2.3.4 Test description

6.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.2.3.4.1-1: Test Configuration table for NS 35

Initial Conditions st Environment as specified in TS 38.508-1 [5] subclause 4.1 st Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1 st Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1 st SCS as specified in Table 5.3.5-1 Lowest and Highest A-MPR test parameters for NS_35 Downlink Configuration St Freq ChBw SCS N/A for A-MPR testing. Low Default Default High Default Low Default Low Default Low Default Default Low Default Default Default Default Default Low Default Default Low Default Default Default Default Low Default Default Low Default Defau
the Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1 to Channel Bandwidths as specified in TS 38.508-1 [5] subclause to SCS as specified in Table 5.3.5-1 Lowest and Highest Lowest and Highest
the Channel Bandwidths as specified in TS 38.508-1 [5] subclause to SCS as specified in Table 5.3.5-1 A-MPR test parameters for NS_35 Downlink Configuration Uplink Configuration
the Channel Bandwidths as specified in TS 38.508-1 [5] subclause to SCS as specified in Table 5.3.5-1 A-MPR test parameters for NS_35 Downlink Configuration Uplink Configuration
A-MPR test parameters for NS_35 Downlink Configuration Uplink Configuration
A-MPR test parameters for NS_35 Downlink Configuration Uplink Configuration
Downlink Configuration St Freq ChBw SCS N/A for A-MPR testing. Modulation (NOTE 2) (NOTE 1)
St Freq ChBw SCS N/A for A-MPR testing. Modulation (NOTE 2) ChOTE 1)
High Default D
Default Low High Default DFT-s-OFDM QPSK Outer_1RB_Left DFT-s-OFDM QPSK Outer_1RB_Right DFT-s-OFDM QPSK Outer_1RB_Right DFT-s-OFDM 16 QAM Outer_1RB_Left DFT-s-OFDM 16 QAM Outer_1RB_Right DFT-s-OFDM 16 QAM Outer_1RB_Right DFT-s-OFDM 16 QAM Outer_1RB_Right DFT-s-OFDM 16 QAM Outer_IRB_Right DFT-s-OFDM 64 QAM Outer Full DFT-s-OFDM 256 QAM Outer Full DFT-s-OFDM QPSK Outer_1RB_Left CP-OFDM QPSK Outer_1RB_Left OFT-S-OFDM QPSK Outer_1RB_Right
DFT-s-OFDM QPSK Outer_1RB_Left
High Default D
Default DFT-s-OFDM QPSK Outer Full
Low
High
Default DFT-s-OFDM 16 QAM
Default DFT-s-OFDM 64 QAM Outer Full Default DFT-s-OFDM 256 QAM Outer Full P. Low CP-OFDM QPSK Outer_1RB_Left B. High CP-OFDM QPSK Outer_1RB_Right
Default DFT-s-OFDM 256 QAM Outer Full
Property Including CP-OFDM QPSK Outer_1RB_Left B High CP-OFDM QPSK Outer_1RB_Right
B High CP-OFDM QPSK Outer_1RB_Right
CD OEDM ODSK Outer Full
F Default CF-OFDIVI QFSK Outer Full
5 Low CP-OFDM 16 QAM Outer_1RB_Left
6 High CP-OFDM 16 QAM Outer_1RB_Righ
' Default CP-OFDM 16 QAM Outer Full
B Default CP-OFDM 64 QAM Outer Full
Default CP-OFDM 256 QAM Outer Full
TE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

Editor's note: The following lines belong at the end of subclause 6.2.3.4.1. As new tables are added to this section, these lines should always follow the tables

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according Annex G.0, G.1, G.2 and G.3.0.
- 4. The UL Reference Measurement channels are set according to the applicable table from Table 6.2.4.3.1-.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, DC bearer (FFS) according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.3.4.3.

6.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to the applicable table from Table 6.2.4.3.1-1 to Table 6.2.4.3.1-2. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1ms). [For TDD slots with transient periods are not under test.]

6.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.1, with the following exceptions for each network signalled value.

6.2.3.4.3.1 Message contents exceptions (network signalled value "NS 02")

1. Information element additional Spectrum Emission is set to NS_02. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_02"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table	e [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_02)		

6.2.3.4.3.2 Message contents exceptions (network signalled value "NS_35")

1. Information element additionalSpectrumEmission is set to NS_35. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 35"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	2 (NS_35)				

6.2.3.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in the applicable table from table 6.2.3.5-1. The allowed A-MPR values specified in table 6.2.3.3-1 are in addition to the allowed MPR requirements specified in clause 6.2.2. For the UE maximum output power modified by MPR and/or A-MPR, the power limits specified in table 6.2.1.3-1 apply.

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	0.5	0	0	22.5	2	2.5	25.7	19.3
2	23	0.5	0	0	22.5	2	2.5	25.7	19.3
3	23	0.5	0	0	22.5	2	2.5	25.7	19.3
4	23	1	0	0	22	2	2.5	25.7	18.8
5	23	1	0	0	22	2	2.5	25.7	18.8
6	23	1	0	0	22	2	2.5	25.7	18.8
7	23	2	0	0	21	2	2.5	25.7	17.8
8	23	2	0	0	21	2	2.5	25.7	17.8
9	23	2	0	0	21	2	2.5	25.7	17.8
10	23	2.5	0	0	20.5	2.5	2.5	25.7	17.3
11	23	4.5	0	0	18.5	4	2.5	25.7	13.8
12	23	3	0	0	20	2.5	2.5	25.7	16.8
13	23	3	0	0	20	2.5	2.5	25.7	16.8
14	23	3	0	0	20	2.5	2.5	25.7	16.8
15	23	3	0	0	20	2.5	2.5	25.7	16.8
16	23	3	0	0	20	2.5	2.5	25.7	16.8
17	23	3	0	0	20	2.5	2.5	25.7	16.8
18	23	3.5	0	0	19.5	3.5	2.5	25.7	15.3
19	23	6.5	0	0	16.5	5	2.5	25.7	10.8

Table 6.2.3.5-1: UE Power Class 3 test requirements (NS_35) for band n71.

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance. NOTE 2: TT=0.7 dB for BW_{channel} ≤ 40 MHz, TT=1.0 dB for 40 MHz < BW_{channel} ≤ 100 MHz.

6.2.4 Configured transmitted power

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS

6.2.4.1 Test purpose

To verify the measured UE configured maximum output power $P_{UMAX,f,c}$ is within the specified bounds.

6.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.2.4.3 Minimum conformance requirements

The UE is allowed to set its configured maximum output power $P_{CMAX,f,c}$ for carrier f of serving cell c in each slot. The configured maximum output power $P_{CMAX,f,c}$ is set within the following bounds:

$$P_{CMAX_L,f,c} \leq \ P_{CMAX,f,c} \ \leq \ P_{CMAX_H,f,c} \ with$$

$$P_{CMAX_L,f,c} = MIN \; \{ P_{EMAX,c} - \Delta T_{C,c}, \; \; (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{RxSRS}, P-MPR_c) \; \}$$

$$P_{CMAX\ H.f.c} = MIN \{P_{EMAX.c}, P_{PowerClass} - \Delta P_{PowerClass} \}$$

where

P_{EMAX,c} is the value given by IE P-Max for serving cell c, defined in TS 38.331[6];

P_{PowerClass} is the maximum UE power specified in Table 6.2.1.3-1 without taking into account the tolerance specified in the Table 6.2.1.3-1;

 $\Delta P_{PowerClass} = 3$ dB for a power class 2 capable UE operating in Band n41, n77, n78 and n79, when P-max of 23 dBm or lower is indicated; or when the field of UE capability maxUplinkDutyCycle is absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than 50%; or when the field of UE capability maxUplinkDutyCycle is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is

larger than maxUplinkDutyCycle as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); or if P-Max is not indicated in the cell, $\Delta P_{PowerClass} = 0$ dB;

 $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in TS 38.101-3 [4] subclause 6.2.6 and 6.2.7; $\Delta T_{IB,c} = 0$ dB otherwise;

 $\Delta T_{C,c}$ is TBD;

MPR_c and A-MPR_c for serving cell c are specified in subclause 6.2.2.3 and subclause 6.2.3.3, respectively;

 ΔT_{RxSRS} is 3 dB and is applied when UE transmits SRS to the antenna port that is designated as Rx port. For other SRS transmissions ΔT_{RxSRS} is zero

P-MPRc is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self defence requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR $_c$ for serving cell c only for the above cases. For UE conducted conformance testing P-MPR $_c$ shall be 0 dB

- NOTE 1: P-MPR_c was introduced in the P_{CMAX,f,c} equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.
- NOTE 2: P-MPR_c may impact the maximum uplink performance for the selected UL transmission path.

The P_{CMAX L.f.c} for carrier f of serving cell c is evaluated each slot.

The measured configured maximum output power P_{UMAX,f,c} shall be within the following bounds:

$$P_{CMAX_L,f,c} \ - \ MAX\{T_{L,c}, T(P_{CMAX_L,f,c})\} \ \leq \ P_{UMAX,f,c} \ \leq \ P_{CMAX_H,f,c} \ + \ T(P_{CMAX_H,f,c}).$$

where the tolerance $T(P_{CMAX,f,c})$ for applicable values of $P_{CMAX,f,c}$ is specified in Table 6.2.4.3-1. The tolerance $T_{L,c}$ is the absolute value of the lower tolerance for the applicable operating band as specified in Table 6.2.1.3-1.

Table 6.2.4.3-1: P_{CMAX} tolerance

P _{CMAX,f,c} (dBm)	Tolerance T(P _{CMAX,f,c}) (dB)
23 < P _{CMAX,c} ≤ 33	2.0
21 ≤ P _{CMAX,c} ≤ 23	2.0
20 ≤ P _{CMAX,c} < 21	2.5
19 ≤ P _{CMAX,c} < 20	3.5
18 ≤ P _{CMAX,c} < 19	4.0
13 ≤ P _{CMAX,c} < 18	5.0
8 ≤ P _{CMAX,c} < 13	6.0
-40 ≤ P _{CMAX,c} < 8	7.0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.4.

6.2.4.4 Test description

6.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.4.4.1-1: Test Configuration Table

	Initial Conditions						
Test Environme	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH					
[5] subclause 4	.1						
Test Frequencie	es as specified in TS 38.508-1	Low range, Mid range, High range					
[5] subclause 4	.3.1						
Test Channel B	andwidths as specified in TS	Lowest, Mid, Highest					
38.508-1 [5] sul	oclause 4.3.1						
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest					
Test Parameters for Channel Bandwidths							
Test ID	Downlink Configuration	Uplink Configu	ration				
	N/A for minimum output	Modulation (NOTE 2)	RB allocation (NOTE 1)				
	power						
1	test case	DFT-s-OFDM Pi/2 BPSK	Inner Full				
2		DFT-s-OFDM QPSK	Inner Full				
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.						
NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.4.4.3.

6.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE reaches the Pumax level of the test point.
- 3. Measure the mean power of the UE in the channel bandwidth for each test point in table 6.2.4.5-1 according to the test configuration from table 6.2.4.4.1-1. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.2.5.4.3-1: FrequencyInfoUL: Test point 1

Derivation Path: TS 38.508-1 [5] Table 4.6.3-44 FrequencyInfoUL						
Information Element	Value/remark	Comment	Condition			
p-Max	-10					

Table 6.2.5.4.3-2: FrequencyInfoUL: Test point 2

Derivation Path: TS 38.508-1 [5] Table 4.6.3-44 FrequencyInfoUL						
Information Element	Value/remark	Comment	Condition			
p-Max	10					

Table 6.2.5.4.3-3: FrequencyInfoUL: Test point 3

Derivation Path: TS 38.508-1 [5] Table 4.6.3-44 FrequencyInfoUL					
Information Element	Value/remark	Comment	Condition		
p-Max	15				

6.2.4.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2.4.5-1.

Table 6.2.4.5-1: P_{CMAX} configured UE output power

	maximum output power	
Measured UE output power test point 1	-10 dBm ± (7+TT)	
Measured UE output power test point 2	10 dBm ± (6+TT)	
Measured UE output power test point 3	15 dBm ± (5+TT)	
Note 1: TT for each frequency and channel bandwidth is specified in Table 6.2.4.5-2. Note 2: In addition note 2 in Table 6.2.1.3-1 shall apply to the tolerances.		

Table 6.2.4.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	0.7 dB	1.0 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0 dB

6.2A Transmitter power for CA

FFS

6.2B Transmitter power for DC

FFS

6.2C Transmitter power for SUL

6.2C.1 Configured transmitted power for SUL

Editor's notes:

- Connection diagram is TBD.
- SA Message contents reference clause number is TBD in 38.508

6.2C.1.1 Test purpose

To verify the UE does not exceed the minimum between the P_{EMAX} maximum allowed UL TX Power signalled by the E-UTRAN and the P_{UMAX} maximum UE power the UE power class.

6.2C.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward and support SUL.

6.2C.1.3 Minimum conformance requirements

Refer to clause 6.2.4.3, and with the following supplementary specification for UE configured with SUL

For single carrier configured transmit power, as the UL carrier and SUL carrier is a same cell, the configured transmit power is specified for each UL carrier in a serving cell. The configured transmit power requirement for serving cell is applied for each UL carrier.

For the UE which supports SUL band combination, $\Delta T_{IB,c}$ in Table 6.2C.2-1 applies.

6.2C.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.2C-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2C.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2C.1.4.1-1: Test Configuration Table

	Initial Conditions				
			L, TL/VH, TH/VL, TH/VH		
- 1		Mid range			
	Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Mid,	Highest	
Test SCS	S as specified in Table 5.3.	5-1	15kHz		
	Test Pa	ramete	ers for Chann	el Bandwidths	
	Downlink	UL C	onfiguration	SUL Configurat	ion
	Configuration				
Test ID	N/A for Configured UE			Modulation	RB
	transmitted Output				allocation
1	Power test case	NA		DFT-s-OFDM Pi/2 BPSK	Inner Full
2		NA DFT-s-OFDM QPSK Inner Full			
Note 1:	Note 1: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel bandwidths are specified in Table 5.5C-1.				
Note 2:	DFT-s-OFDM PI/2 BPSK	test ap	oplies only for l	UEs which supports half Pi B	PSK in FR1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD].
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channel is set according to Table 6.2C.1.4.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2C.1.4.3.

6.2.1.4.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2C.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 2. Send transmit uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command for the UE to reach the P_{umax} level of the test point.
- 3. Measure the mean power of the UE in the channel bandwidth for each test point in table 6.2C.1.5-1 according to the test configuration from Table 6.2C.1.4.1-1. The period of measurement shall be at least continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.2C.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.2C.1.4.3-1: SIB1: Test point 1

Derivation Path: TS 38.508-1 [5] [Table 4.6.1-5] SI	B1		
Information Element	Value/remark	Comment	Condition
supplementaryUplink ::= SEQUENCE {			
frequencyInfoUL SEQUENCE {			
p-Max	-10		
}			
}			

Table 6.2C.1.4.3-2: SIB1: Test point 2

Derivation Path: TS 38.508-1 [5] [Table 4.6.1-5] S	SIB1		
Information Element	Value/remark	Comment	Condition
supplementaryUplink ::= SEQUENCE {			
frequencyInfoUL SEQUENCE {			
p-Max	10		
}			
}			

Table 6.2C.1.4.3-3: SIB1: Test point 3

Derivation Path: TS 38.508-1 [5] [Table 4.6.1-5] \$	SIB1		
Information Element	Value/remark	Comment	Condition
supplementaryUplink ::= SEQUENCE {			
frequencyInfoUL SEQUENCE {			
p-Max	15		
}			
}			

6.2C.1.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2C.1.5-1.

Table 6.2C.1.5-1: P_{CMAX} configured UE output power

	Channel bandwidth / maximum output power					
	5	10	15	20	25	30
	MHz	MHz	MHz	MHz	MHz	MHz
Measured UE						
output power test			-10 dBm :	± (7+TT)		
point 1						
Measured UE	(0.17)					
output power test	10 dBm ± (6+TT)					
point 2						
Measured UE	45 10 (5 77)					
output power test	15 dBm ± (5+TT)					
point 3						
Note 1: TT for eac	TT for each frequency and channel bandwidth is specified in Table 6.2.4.5-2.					
Note 2: In addition	note 3 in Table 6.2.1.3-1 shall apply to the tolerances.					

For the UE which supports SUL configurations with uplink assigned to one E-UTRA band and one supplementary E-UTRA band the $\Delta T_{IB,c}$ in Tables 6.2C.2.3-1 shall be applied for applicable bands.

6.2C.2 $\Delta T_{IB.c}$

For the UE which supports SUL band combination, $\Delta T_{IB,c}$ in Tables below applies. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

Band combination for NR Band ΔT_{IB,c} (dB) SUL n78 8.0 SUL_n78-n80 n80 0.6 8.0 n78 SUL_n78-n81 0.6 n81 n78 8.0 SUL_n78-n82 n82 0.6 n78 8.0 SUL_n78-n83 n83 0.5 n78 8.0 SUL_n78-n84 n84 0.3 SUL_n78-n86 n78 8.0

Table 6.2C.2-1: ΔT_{IB,c} due to SUL

6.3 Output power dynamics

6.3.1 Minimum output power

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 [5] is FFS.
- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS

6.3.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.1.3 Minimum conformance requirements

The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

The minimum output power is defined as the mean power in one sub-frame TBD ms. The minimum output power shall not exceed the values specified in Table 6.3.1.3-1.

Table 6.3.1.3-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40	4.515
10	-40	9.375
15	-40	14.235
20	-40	19.095
25	-39	23.955
30	-38.2	28.815
40	-37	38.895
50	-36	48.615
60	-35.2	58.35
80	-34	78.15
90	-33.5	88.23
100	-33	98.31

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.1.

6.3.1.4 Test description

6.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.1.4.1-1: Test Configuration Table

	Initial Conditions				
Test Environme	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
[5] subclause 4.	.1				
	es as specified in TS 38.508-1	Low range, Mid range, High range			
[5] subclause 4.					
	andwidths as specified in TS	Lowest, Mid, Highest			
38.508-1 [5] sul					
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest			
	Test Paran	neters for Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configura	ation		
	N/A for minimum output	Modulation RB allocation (NOT			
power					
1	test case	CP-OFDM QPSK	Outer Full		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.1.4.3.

6.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Measure the mean power of the UE in the associated measurement channel bandwidth specified in Table 6.3.1.5-1 ~ 6.3.1.5-3 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.3.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-89 with condition CP-OFDM

6.3.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3.1.5-1.

Channel bandwidth Minimum output power Measurement bandwidth (MHz) (dBm) (MHz) 5 -40+TT 4.515 10 -40+TT 9.375 14.235 15 -40+TT 19.095 20 -40+TT 23.955 25 -39+TT 30 -38.2+TT 28.815 40 -37+TT 38.895 48.615 50 -36+TT 58.35 60 -35.2+TT 78.15 80 -34+TT 88.23 90 -33.5+TT 98.31 100 -33+TT

Table 6.3.1.5-1: Minimum output power

Table 6.3.1.5-2: Test Tolerance (Minimum output power)

TT for each frequency and channel bandwidth is specified in Table 6.3.1.5-2

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.3 dB	1.3 dB
40MHz < BW ≤ 100MHz	1.3 dB	1.3 dB	1.3 dB

6.3.2 Transmit OFF power

NOTE 1:

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined;

- Measurement bandwidth and the test tolerance is left FFS.

6.3.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3.2.2 Test applicability

The requirements of this test apply in test cases 6.3.3 Transmit ON/OFF time mask to all types of NR UE release 15 and forward.

6.3.2.3 Minimum conformance requirements

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.3-1.

Table 6.3.2.3-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (TBD)
5	-50	
10	-50	
15	-50	
20	-50	
25	-50	
30	-50	
40	-50	
50	-50	
60	-50	
80	-50	
100	-50	

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the transmitter is not considered OFF.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.2.

An excess transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3.2.4 Test description

This test is covered by clause 6.3.3 Transmit ON/OFF time mask.

6.3.2.5 Test requirement

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3.2.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (TBD)
5	-50+TT	
10	-50+TT	
15	-50+TT	
20	-50+TT	
25	-50+TT	
30	-50+TT	
40	-50+TT	
50	-50+TT	
60	-50+TT	
80	-50+TT	
100	-50+TT	
NOTE 1: TT for each frequ	ency and channel bandwidth is	s specified in Table 6.3.2.5-2

Table 6.3.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.8 dB	1.8 dB	1.8 dB

6.3.3 Transmit ON/OFF time mask

6.3.3.1 General

The transmit [power] time mask defines the transient period(s) allowed

- between transmit OFF power as defined in sub-clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)
- between continuous ON-power transmissions [...].

Unless otherwise stated the minimum requirements in clause 6 apply also in transient periods.

6.3.3.2 General ON/OFF time mask

Editor's Note:

- Test procedure is not complete.
- Test tolerance is not complete.
- Test requirement is not complete.
- -Whether to exclude transient period at both ends of an OFF slot depends on the specific UL configuration and is FFS.
- SA Generic procedures with condition NR in TS 38.508-1 [2] is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS

6.3.3.2.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3.3.2.5.

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power as defined in sub-clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.2.3 Minimum conformance requirements

The general ON/OFF time mask defines the observation period between transmit OFF and ON power and between transmit ON and OFF power for each SCS. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission, etc

The OFF power measurement period is defined in a duration of at least one slot excluding any transient periods. The ON power is defined as the mean power over one slot excluding any transient period.

Figure 6.3.3.2.3-1: General ON/OFF time mask for NR UL transmission in FR1

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.3.2.

6.3.3.2.4 Test description
6.3.3.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.2.4.1-1: Test Configuration Table

		Initial Conditions			
	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
[5] subclause 4	.1				
Test Frequenci	es as specified in TS 38.508-1	Low range, Mid range, High range			
[5] subclause 4	.3.1				
Test Channel B	sandwidths as specified in TS	Lowest, Mid, Highest			
38.508-1 [5] su	bclause 4.3.1				
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest			
	Test Paran	neters for Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configu	ration		
	N/A for minimum output	Modulation	RB allocation (NOTE 1)		
	power				
1	test case	CP-OFDM QPSK	Outer Full		
NOTE 1: The	specific configuration of each RB	allocation is defined in Table 6.1-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.3.2.4.3.

6.3.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.3.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is [FFS].
- 2. Measure the UE transmission OFF power during the slot prior to the PUSCH transmission, excluding a transient period of $10 \,\mu s$ in the end of the slot.
- 3. Measure the output power of the UE PUSCH transmission during one slot.
- 4. Measure the UE transmission OFF power during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

6.3.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Table 6.3.3.2.4-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-90			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

Table 6.3.3.2.4-2: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-89 with condition CP-OFDM

6.3.3.2.5 Test requirement

The requirement for the power measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3.3.2.5-1.

Table 6.3.3.2.5-1: General ON/OFF time mask

	SCS			Cha	nnel bandv	width / mini	mum outp	ut power / ı	neasureme	ent bandwid	dth		
	[kHz]	5	10	15	20	25	30	40	50	60	80	90	100
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit						or carrier fre							
OFF power					For ca	rrier frequer	ncy 3.0GHz	< f ≤ 4.2GH	lz: ≤ -50+TT	dBm			
Transmission OFF		4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
Measurement bandwidth													
Expected	15	-9.62±9.0	-	-	-	-	-	-	0.71±9.0	N/A	N/A	N/A	N/A
Transmission ON		±TT	6.44±9.0 ±TT	4.62±9.0 ±TT	3.35±9.0 ±TT	2.36±9.0 ±TT	1.56±9.0 ±TT	0.26±9.0 ±TT	±TT				
Measured	30	-	-	-	-	-	-	-	0.65±9.0	1.51±9.0	2.77±9.0	3.30±9.0	3.77±9.0
power for CP-OFDM		10.18±9.0 ±TT	6.79±9.0 ±TT	4.79±9.0 ±TT	3.51±9.0 ±TT	2.46±9.0 ±TT	1.67±9.0 ±TT	0.34±9.0 ±TT	±TT	±TT	±TT	±TT	±TT
	60	N/A	-	-	-	-	-	-	0.55±9.0	1.40±9.0	2.71±9.0	3.25±9.0	3.72±9.0
			7.17±9.0 ±TT	5.03±9.0 ±TT	3.78±9.0 ±TT	2.67±9.0 ±TT	1.78±9.0 ±TT	0.50±9.0 ±TT	±TT	±TT	±TT	±TT	±TT
Expected	15	-9.62±9.0	-	-	-	-	-	-	0.71±9.0	N/A	N/A	N/A	N/A
Transmission ON		±TT	6.61±9.0 ±TT	4.85±9.0 ±TT	3.60±9.0 ±TT	2.53±9.0 ±TT	1.56±9.0 ±TT	0.26±9.0 ±TT	±TT				
Measured	30	-	-	-	-	-	-	-	0.48±9.0	1.51±9.0	2.75±9.0	3.21±9.0	3.72±9.0
power for DFT-s-OFDM		10.59±9.0 ±TT	6.79±9.0 ±TT	5.03±9.0 ±TT	3.60±9.0 ±TT	2.53±9.0 ±TT	1.84±9.0 ±TT	0.59±9.0 ±TT	±TT	±TT	±TT	±TT	±TT
	60	N/A	-	-	-	-	-	-	0.48±9.0	1.17±9.0	2.42±9.0	3.21±9.0	3.72±9.0
			7.58±9.0	5.03±9.0	3.78±9.0	2.81±9.0	2.02±9.0	0.59±9.0	±TT	±TT	±TT	±TT	±TT
			±TT	±TT	±TT	±TT	±TT	±TT					
NOTE 1: TT fo	or each f	requency an	d channel b	andwidth is	specified in	Table 6.3.3	3.2.5-2						

Table 6.3.3.2.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.8 dB	1.8 dB	1.8 dB

Table 6.3.3.2.5-3: Test Tolerance for ON power

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS	FFS

6.3.3.3 Transmit power time mask for slot and [mini-slot] boundaries

FFS

6.3.3.4 PRACH time mask

Editor's Note:

- Minimum conformance requirements is not defined (missing in 38.101-1)
- Initial condition is not complete
- SA Message contents in TS 38.508-1 [5] subclause 4.6 is FFS.
- Measurement uncertainty and Test tolerance are not complete
- Test requirements are not complete
- PRACH configuration index is not complete
- Measurement periods of the slot need to be clarification in the test procedure

6.3.3.4.1 Test purpose

To verify that the PRACH time mask meets the requirements given in 6.3.3.4.5.

The time mask for PRACH time mask defines the ramping time allowed

between transmit OFF power as defined in sub-clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)

between continuous ON-power transmissions [...].

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel

6.3.3.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.4.3 Minimum conformance requirements

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.3.4.3-1. The measurement period for different PRACH preamble format is specified in Table 6.3.3.4.3-1.

Table 6.3.3.4.3-1: PRACH ON power measurement period

Measurement period (ms)

PRACH preamble format

Figure 6.3.3.4.3-1: PRACH ON/OFF time mask

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.3.4.

6.3.3.4.4 Test description

6.3.3.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes [TBD]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.4.4.1-1: Test Configuration Table

Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1	Mid range				
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	Lowest, Mid, Highest				
Test SCS as specified in Table 5.3.5-1	SCS defined in TS 38.211 [8]	subclause 6.3.3.2			
PRACH pr	eamble format				
	Paired Spectrum	Unpaired Spectrum			
PRACH Configuration Index	[18, 161]	[0,71]			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0..
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.3.4.4.3.

6.3.3.4.4.2 Test procedure

- 1. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.
- 2. The UE shall send the signalled preamble to the SS.
- 3. The SS measure the UE transmission OFF power during the slot preceding the PRACH preamble excluding a transient period of 10 µs according to Figure 6.3.3.4.3-1.
- 4. Measure the output power of the transmitted PRACH preamble according to Figure 6.3.3.4.3-1.
- 5. Measure the UE transmission OFF power, starting $10~\mu s$ after the PRACH preamble ends for a measurement period.

6.3.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.3 with the following exceptions:

[TBD]

6.3.3.4.5 Test requirement

The requirement for the power measured in steps (3), (4) and (5) of the test procedure shall not exceed the values specified in Table 6.3.3.4.5-1.

Table 6.3.3.4.5-1: PRACH time mask

		Channel bandwidth / Output Power [dBm] / measurement bandwidth									
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
Transmit OFF power	[For carrier frequency f ≤ 3.0GHz: ≤ -50+TT dBm For carrier frequency 3.0GHz < f ≤ 4.2GHz: ≤ -50+TT dBm For carrier frequency 4.2GHz < f ≤ 6GHz: ≤ -50+TT dBm]										
Transmission OFF Measurement bandwidth	4.5	9.36	14.22	19.08	23.94	[28.8]	38.88	48.6	N/A	N/A	N/A
Expected PRACH Transmission ON Measured power	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS
ON power tolerance [f ≤ 3.0GHz 3.0GHz < f ≤ 4.2GHz 4.2GHz < f ≤ 6GHz]	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS	FFS

6.3.3.5 PUCCH time mask

6.3.3.5.1 Long PUCCH time mask

FFS

6.3.3.5.2 Short PUCCH time mask

FFS

6.3.3.6 SRS time mask

FFS

6.3.3.7 PUSCH-PUCCH and PUSCH-SRS time masks

FFS

6.3.4 Power control

6.3.4.1 General

The requirements on power control accuracy apply under normal conditions.

6.3.4.2 Absolute power tolerance

Editor's Note:

- Test purpose is not complete
- Minimum requirements is not defined (missing in 38.101-1)
- Test description is not complete, many TBD,
- Message Contents are TBD
- Test requirement is TBD
- Test Tolerance is TBD

6.3.4.2.1 Test purpose

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than [TBD].

6.3.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.2.3 Minimum conformance requirements

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first [sub-frame] at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than TBD. The tolerance includes the channel estimation error [RSRP estimate].

The minimum requirement specified in Table 6.3.4.2.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 and the maximum output power as specified in sub-clause 6.2.1.

Table 6.3.4.2.3-1: Absolute power tolerance

FFS	FFS

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.2

6.3.4.2.4 Test description

6.3.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes [TBD]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.2.4.1-1: Test Configuration Table

		Initial Co	onditions			
	nment as specified in TS	38.508-1 [5]	Normal			
subclause 4	.1					
Test Freque	encies as specified in TS	38.508-1 [5]	Mid Range			
subclause 4	.3.1					
Test Chann	el Bandwidths as specifi	ed in TS 38.508-1	Lowest, Mid and High	est		
[5] subclaus	e 4.3.1					
Test SCS as	s specified in Table 5.3.	5-1	Lowest and Highest			
		Test Pa	rameters			
Test ID	Downlink Co	nfiguration	Upli	nk Configuration		
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)		
1	N/A for Absolute power	tolerance test case	CP-OFDM QPSK	Outer_Full		
NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.2.4.1-1 and Table 6.3.4.2.4.1-2

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.4.2.4.3. Note that PDCCH DCI format [0_1] sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3.4.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.3.4.2.4.1-1 and Table 6.3.4.2.4.1-2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Measure the initial output power of the first [sub-frame] of UE PUSCH first transmission. [The transient periods of 10us are excluded.]
- 3. Repeat for the two test points as indicated in section 6.3.4.2.4.3. The timing of the execution between the two test points shall be larger than 20ms.

6.3.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.3.4.2.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 38.508-1 [5] subclause [TBD]			
Information Element	Value/remark	Comment	Condition
[TBD]	[TBD]	Test point 1 to verify a UE relative low initial power transmission	

Table 6.3.4.2.4.3-2: UplinkPowerControlCommon: Test point 2

Derivation Path: TS 38.508-1 [5] subclause [TBD]			
Information Element	Value/remark	Comment	Condition
[TBD]	[TBD]	Test point 2 to verify a UE relative high initial power transmission	

6.3.4.2.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table [TBD] and [TBD].

6.3.4.3 Power Control Relative power tolerance

Editor's note: The following items are missing or incomplete

- Test purpose is not complete
- Minimum requirements is not defined (missing in 38.101-1)
- Test description is not complete, many TBD, power pattern missing etc.
- Test requirement is FFS

6.3.4.3.1 Test purpose

To verify the ability of the UE transmitter to set its output power in a target [sub-frame] relatively to the power of the most recently transmitted reference [sub-frame] if the transmission gap between these sub-frames is TBD.

6.3.4.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.3.4.3.3 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.4.3.3-1.

The minimum requirements specified in Table 6.3.4.3.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and the measured [PUMAX] as defined in sub-clause [configured output power].

Table 6.3.4.3.3-1: Relative Power Tolerance

FFS

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.3.

6.3.4.3.4 Test description

6.3.4.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.3.4.1-1 and table 6.3.4.3.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.3.4.1-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in		Normal, IL/V	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
	[5] subclause 4.1					
	cies as specified in	FFS				
TS 38.508-1 [5] subclause 4.3.1						
	Bandwidths as specified in	FFS				
	[5] subclause 4.3.1					
Test SCS as	specified in Table 5.3.5-1	FFS				
		ers for Channe	el Bandwidt	hs		
	Downlink Configur	ation	U	plink Configura	ation	
Ch BW	N/A for Power Control Rel	ative power	Mod'n	RB allocation (NOTE 1)		
	tolerance test ca	se		FDD	TDD	
5MHz			TBD	TBD	TBD	
10MHz			TBD	TBD	TBD	
15MHz			TBD	TBD	TBD	
20MHz			TBD	TBD	TBD	
25MHz			TBD	TBD	TBD	
40MHz			TBD	TBD	TBD	
50MHz			TBD	TBD	TBD	
60MHz			TBD	TBD	TBD	
		TBD				
100MHz TBD TBD TBD						
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.3.4.3.4.1-2.						
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, the applicable						
channel bandwidths are specified in Table TBD						
oranio sanamano di opposito di ratio 125						

Table 6.3.4.3.4.1-2: Uplink Configuration of each RB allocation

NOTE 3: [The starting resource block shall be RB# 0.]

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.3.4.1-1 and Table 6.3.4.3.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity (FFS), DC bearer (FFS) according to TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.3.4.3.4.3.

6.3.4.3.4.2 Test procedure

The procedure is separated in various subtests to verify different aspects of relative power control. The power patterns of the subtests are described in figure TBD.

1. Sub test: [ramping up pattern]

FFS

2. Sub test: [ramping down pattern]

FFS

3. Sub test: [alternating pattern]

FFS

6.3.4.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.3.4.3.5 Test requirement

FFS

6.3.4.4 Aggregate power tolerance

Editor's Note:

- Test purpose is not complete
- Minimum requirements is not defined (missing in 38.101-1) missing measurement length and requirement
- Test description is not complete, many TBD
- Test requirement is TBD
- Test Tolerance is TBD
- Definition of Outer_full DL Allocation table is TBD

6.3.4.4.1 Test purpose

To verify the ability of the UE transmitter to maintain its power during non-contiguous transmissions within TBD in response to [0 dB] commands with respect to the first UE transmission and all other power control parameters [as specified in 38.213] kept constant.

6.3.4.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.4.3 Minimum conformance requirements

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power during non-contiguous transmissions within TBD in response to [0 dB] commands with respect to the first UE transmission and all other power control parameters [as specified in 38.213] kept constant.

The minimum requirement specified in Table 6.3.4.4.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 and the maximum output power as specified in sub-clause 6.2.1.

Table 6.3.4.4.3-1: Aggregate power tolerance

FFS	

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.4

6.3.4.4.4 Test description

6.3.4.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.4.4.1-1 and table 6.3.4.4.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.4.4.1-1: Test Configuration Table: PUCCH sub-test

	Initial Conditions					
Test Environme	Test Environment as specified in TS 38.508-1 [5]		Normal			
subclause 4.1	subclause 4.1					
Test Frequencie	es as specified in	TS 38.508-1 [5]	Mid range			
subclause 4.3.1						
Test Channel B	andwidths as spe	ecified in TS 38.508-1 [5]	Lowest, Mid and Highest			
subclause 4.3.1						
Test SCS as sp	Test SCS as specified in Table 5.3.5-1		Lowest and Highest			
Test Parameters for Ch			Channel Bandwidths			
Test ID	Downli	nk Configuration	Uplink Configuration			
	Modulation RB allocation		PUCCH format = Format 1			
1	CP-OFDM	Outer_Full	Length in OFDM symbols = 14			
QPSK			·			
NOTE 1: The	specific configura	tion of each RB allocation	is defined in Table [TBD].			

Table 6.3.4.4.4.1-2: Test Configuration Table: PUSCH sub-test

	Initial Conditions				
Test Environment as specified in TS 38.508-1		Normal			
[5] subclause 4.1					
Test Frequencie	es as specified in	TS 38.508-1	Mid range	Mid range	
[5] subclause 4.	3.1			•	
Test Channel B	andwidths as sp	ecified in TS	Lowest, Mid and Highest		
38.508-1 [5] subclause 4.3.1		·			
Test SCS as sp	Test SCS as specified in Table 5.3.5-1		Lowest and Highest		
		Test Paran	neters for Channel Bandwidths		
Test ID	Downlink Co	onfiguration	Uplink Configuration		
	Modulation	RB	Modulation	RB allocation (NOTE 1)	
allocation)					
1	CP-OFDM	Outer_Full	CP-OFDM QPSK	Outer_Full	
	QPSK				
NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in [TBD].
- 2. The parameter settings for the cell are set up according to [TBD].
- 3. Downlink signals are initially set up according to [TBD], and uplink signals according to [TBD].
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.4.4.1-1 (PUCCH sub-test) and Table 6.3.4.4.1-2 (PUSCH sub-test)
- 5. Propagation conditions are set according to [TBD].
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.4.4.4.3.

6.3.4.4.4.2 Test procedure

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns are described in figure 6.3.4.4.4.2-1.

Figure 6.3.4.4.4.2-1 Test uplink transmission

[TBD]

1. PUCCH sub test:

- 1.1 The SS transmits PDSCH via PDCCH DCI format [0_1] for C_RNTI to transmit the DL RMC according to Table 6.3.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at 0dBm [+/- TBD] dB for carrier frequency $f \le 3.0$ GHz or at 0dBm [+/- TBD] dB for carrier frequency 3.0GHz < f.
- 1.2. Every [TBD] slots transmit to the UE downlink PDSCH MAC padding bits as well as 0 dB TPC command for PUCCH via the PDCCH to make the UE transmit ACK/NACK on the PUCCH for [TBD] slots. The downlink transmission is scheduled in the appropriate slots to make the UE transmit PUCCH as described in figure 6.3.4.4.2-1
- 1.3. Measure the power of TBD consecutive PUCCH transmissions to verify the UE transmitted PUCCH power is maintained within TBD transmissions. [The transient periods of 10us are excluded from the power measurement.]

2. PUSCH sub test:

- 2.1. The SS sends uplink scheduling information via PDCCH DCI format [0_1] for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 0dBm [+/- TBD] dB for carrier frequency $f \le 3.0 \text{GHz}$ or at 0dBm [+/- TBD] dB for carrier frequency 3.0 GHz < f.
- 2.2. Every [TBD] slots schedule the UE's PUSCH data transmission for [TBD] slots and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH. The uplink transmission patterns are described in figure 6.3.4.4.4.2-1,
- 2.3. Measure the power of TBD consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within TBD transmissions. [The transient periods of 10us are excluded from the power measurement.]

6.3.4.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause [TBD].

6.3.4.4.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3.4.4.5-1. The power measurement period shall be [TBD] slots [excluding transient periods].

Table 6.3.4.4.5-1: Power control tolerance

TPC command	UL channel	Test requirement measured power
0 dB	PUCCH	Given TBD power measurements in the pattern, the 2 nd , and later measurements shall be within [± TBD dB] of the 1 st measurement.
0 dB	PUSCH	Given TBD power measurements in the pattern, the 2 nd , and later measurements shall be within [± TBD dB] of the 1 st measurement.
Note 1: [TBD]		

6.4 Transmit signal quality

In this clause a multitude of results are derived, all using one common algorithm returning these results: Global In-Channels TX-Test Annex E. Each sub clause of this clause contains a procedure and test requirements described for a specific measurement. If all relevant test parameters in different sub clauses are the same, then the results, returned by the Global In-Channel TX-Test, may be used across the applicable sub clauses.

6.4.1 Frequency error

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- SA generic procedures with condition NR in TS 38.508-1 is FFS.
- Window length in TS 38.101-1 Annex on Transmit modulation is TBD.
- Annex on Global In-Channel TX-Test contains TBDs.
- Whether for TDD slots with transient periods are tested is FFS.

6.4.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.1.3 Minimum conformance requirements

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of 1 ms compared to the carrier frequency received from the NR Node B.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.1

6.4.1.4 Test description

6.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.1.4.1-1: Test Configuration Table

Initial Conditions						
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Highest				
Test SCS as specified in Table 5.3.5-1		Smallest supported SCS per Channel Bandwidth				
		Test	Parameters			
	Downlink	Configuration	Uplink Configuration			
Test ID	t ID Modulation RB allocation		Modulation	RB allocation		
1	CP-OFDM QPSK	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)		
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2 NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.1.4.3

6.4.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_0] for C_RNTI to transmit the DL RMC according to Table 6.4.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E). [For TDD slots with transient periods are not under test.]

6.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.1.5 Test requirement

The 20 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 15 \text{ Hz})$

6.4.2 Transmit modulation quality

Transmit modulation defines the modulation quality for expected in-channel RF transmissions from the UE. This transmit modulation limit is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resources blocks (RB),
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.4.2 are defined using the measurement methodology specified in Annex E.

6.4.2.1 Error Vector Magnitude

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- SA generic procedures with condition NR in TS 38.508-1 [5] is FFS.
- 38.101-1 [2] Clause 6.4.2.1: UE Output Power for 256 QAM is TBD.
- 38.101-1 Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Window length in TS 38.101-1 [2] Annex on Transmit modulation is TBD.
- Annex on Global In-Channel TX-Test contains TBDs.

6.4.2.1.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4.2.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and the duration of PUCCH/PUSCH channel, or one hop, if frequency hopping is enabled for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in subclause 6.3.3.3.

6.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.1.3 Minimum conformance requirements

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.4.2.1.3-1 for the parameters defined in Table 6.4.2.1.3-2. For EVM evaluation purposes, all PRACH preamble formats 0-4 and all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.4.2.1.3-1: Requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5

Table 6.4.2.1.3-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥Table 6.3.1.3-1
UE Output Power for 256 QAM	dBm	≥ TBD
Operating conditions		Normal conditions

The normative reference for this requirement is TS 38.101 [2] clause 6.4.2.1.

6.4.2.1.4 Test description

6.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.1.4.1-1: Test Configuration Table for PUSCH

		itial Conditions	Ir	
		Normal		subclause
	range	Low range, Mid range, Hig	encies as specified in TS 38.508-1 [5] 4.3.1	Test Frequ subclause
		Lowest, Highest	nel Bandwidths as specified in TS i] subclause 4.3.1	
el Bandwidth	CS per Channel Band	Lowest, mid and highest S	as specified in Table 5.3.5-1	Test SCS a
		est Parameters		
	Configuration		Downlink Configuration	Test ID
cation (NOTE 1)	RB allocation	Modulation (NOTE 3)	N/A	
Inner Full	Inner F	DFT-s-OFDM PI/2 BPSK		1 ³
Outer Full	Outer F	DFT-s-OFDM PI/2 BPSK		2 ³
Inner Full	Inner F	DFT-s-OFDM QPSK		3
Outer Full	Outer F	DFT-s-OFDM QPSK		4
Inner Full	Inner F	DFT-s-OFDM 16 QAM		5
Outer Full	Outer F	DFT-s-OFDM 16 QAM		6
Outer Full	Outer F	DFT-s-OFDM 64 QAM		7
Outer Full	Outer F	DFT-s-OFDM 256 QAM		8
Inner Full	Inner F	CP-OFDM QPSK		9
Outer Full	Outer F	CP-OFDM QPSK		10
Inner Full	Inner F	CP-OFDM 16 QAM		11
Outer Full	Outer F	CP-OFDM 16 QAM		12
Outer Full	Outer F	CP-OFDM 64 QAM		13
Outer Full	Outer F	CP-OFDM 256 QAM		14
	.1-1.	location is defined in Table	The specific configuration of each RB al Test Channel Bandwidths are checked	NOTE 1:

NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.

NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

Table 6.4.2.1.4.1-2: Test Configuration Table for PUCCH

	Initial Conditions			
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal		
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		See Table 6.4.2.1.4.1-	1	
	nnel Bandwidths as specified in TS [5] subclause 4.3.1	See Table 6.4.2.1.4.1-	1	
Test SCS	as specified in Table 5.3.5-1	See Table 6.4.2.1.4.1-1		
	Test Parameters			
ID	Downlink Configuration	Up	olink Configuration	
	N/A	Waveform	PUCCH format	
1		CP-OFDM	FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b	
2	DFT-s-OFDM FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b			
NOTE 1:	NOTE 1: Test Channel Bandwidths are checked separately for each NR band, which applicable channel			
bandwidths are specified in Table 5.3.5-1.				
NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.				

Table 6.4.2.1.4.1-3: Test Configuration for PRACH

Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal			
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1	See Table 6.4.2.1.4.1-1			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	See Table 6.4.2.1.4.1-1			
Test SCS as specified in Table 5.3.5-1	See Table 6.4.2.1.4.1-1			
PRACH preamble format				
	FDD	TDD		
PRACH Configuration Index	17	52		
RS EPRE setting for test point 1 (dBm/15kHz)	-71	-65		
RS EPRE setting for test point 2 (dBm/15kHz)	-86	-80		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.1.4.3

6.4.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 1.2 Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $P_{UMAX\ level}$, allow at least 200ms starting from the first TPC command in this step for the UE to reach $P_{UMAX}\ level$.

- 1.3 Measure the EVM and \overline{EVM}_{DMRS} using Global In-Channel Tx-Test (Annex E).
- 1.4 For modulations except 256QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range $P_{min} + P_W \pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
 - For 256 QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range TBD \pm TBD.
- 1.5 Measure the EVM and \overline{EVM}_{DMRS} using Global In-Channel Tx-Test (Annex E).

NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition..

Table 6.4.2.1.4.2-1: Power Window (dB) for EVM PUSCH and PUCCH except 256QAM

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

Test procedure for PUCCH:

- 2.1 PUCCH is set according to Table 6.4.2.1.4.1-2.
- 2.2 SS transmits PDSCH via PDCCH DCI format [0_1] for C_RNTI to transmit the DL RMC according to Table 6.4.2.1.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. There is no PUSCH transmission.
- 2.3~SS send appropriate TPC commands for PUCCH to the UE until the UE transmit PUCCH at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 2.4 Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- 2.5 Send the appropriate TPC commands for PUCCH to the UE until the UE transmits PUCCH at $P_{min} + P_W \pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 2.6 Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

Test procedure for PRACH:

- 3.1 The SS shall set RS EPRE according to Table 6.4.2.1.4.1-3.
- 3.2 PRACH is set according to Table 6.4.2.1.4.1-3.
- 3.3 The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.
- 3.4 The UE shall send the signalled preamble to the SS.
- 3.5 In response to the preamble, the SS shall transmit a random access response not corresponding to the transmitted random access preamble, or send no response.
- 3.6 The UE shall consider the random access response reception not successful then re-transmit the preamble with the calculated PRACH transmission power.

3.7 Repeat step 5 and 6 until the SS collect enough PRACH preambles ([2] preambles for format 0 and [10] preambles for format 4). Measure the EVM in PRACH channel using Global In-Channel Tx-Test (Annex E).

6.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4.2.1.5-1.

The PUSCH EVM_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4.2.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4.2.1.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.8 for 15 dBm < PuL
		4.3 for -25 dBm < P∪∟≤ 15 dBm
		4.6 for -40dBm ≤ P _{UL} ≤ -25dBm

The PUCCH EVM derived in Annex E.5.9.2 shall not exceed 17.5 %.

The PRACH EVM derived in Annex E.6.9.2 shall not exceed 17.5%.

6.4.2.2 Carrier leakage

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- SA generic procedures with condition NR in TS 38.508-1 [5] is FFS
- 38.101-1 [2] Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Missing minimum conformance requirement in 38.101-1 [2].
- Window length in TS 38.101-1 [2] Annex on Transmit modulation is TBD
- Annex on Global In-Channel TX-Test contains TBDs

6.4.2.2.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency or centre frequency of aggregated transmission bandwidth configuration. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. Carrier leakage interferes with the centre sub carriers of the UE under test (if allocated), especially, when their amplitude is small. The measurement interval is defined over one slot in the time domain.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.2.3 Minimum conformance requirements

In the case that uplink sharing, the carrier leakage may have 7.5 kHz shift with the carrier frequency.

Table 6.4.2.2.3-1: Requirements for in carrier leakage

Parameter description	Unit		Applicable Frequencies	
		-28	Output power > 10 dBm	0
Carrier leakage	-ID	-25	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
	dBc	-20	-30 dBm ≤ Output power ≤ 0 dBm	frequency
		-10	-40 dBm ≤ Output power < -30 dBm	(NOTES 1, 2)

- NOTE 1: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- NOTE 2: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even but excluding any allocated RB.
- NOTE 3: N_{RR} is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 4: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.4.2.2 and 6.4.2.3.

6.4.2.2.4 Test description

6.4.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.2.4.1-1: Test Configuration

	Initial Conditions				
Test Environment Subclause	onment as specified in TS 38.508-1 [5] 4.1	Normal			
	encies as specified in TS 38.508-1 [5]	Low range, Mid range, High	n range		
subclause	4.3.1				
Test Chan	nel Bandwidths as specified in TS	Mid			
38.508-1 [5	5] subclause 4.3.1				
Test SCS a	as specified in Table 5.3.5-1	Smallest supported SCS per Channel Bandwidth			
	Т	est Parameters			
Test ID	Downlink Configuration	Uplink	Configuration		
	N/A	Modulation	RB allocation (NOTE 1, 3)		
1	1 DFT-s-OFDM QPSK		Inner_1RB_Left		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel					
	bandwidths are specified in Table 5.3.5-1.				
NOTE 3:	When the signalled DC carrier position i	s at Inner_1RB_Left, use Inn	er_1RB_Right for UL RB allocation.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to AnnexC.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.2.4.3

6.4.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 3. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 4. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 7. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test
- 8. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 9. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test

Table 6.4.2.2.4.2-1: Power Window (dB) for carrier leakage (step 2 and step 4)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4.2.1.4.2-2: Power Window (dB) for carrier leakage (step 6 and step 8)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.2.5 Test requirement

Each of the [20] carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4.2.2.5-1. Allocated RBs are not under test.

Table 6.4.2.2.5-1: Test requirements for Relative Carrier Leakage Power

LO Leakage		Parameters	Relative limit
		UE output power	(dBc)
		10 + Pw dBm ± Pw dB ⁵	-27.2
		$0 + P_W dBm \pm P_W dB^5$	-24.2
		$-30 + P_W dBm \pm P_W dB^6$	-19.2
		$-40 + P_W dBm \pm P_W dB^6$	-9.2
NOTE 1:	The n	neasurement bandwidth is 1 RB and	I the limit is
	expre	ssed as a ratio of measured power i	n one non-
	alloca RBs.	ted RB to the measured total power	in all allocated
NOTE 2:	The a	pplicable frequencies for this limit a	re those that are
	enclo	sed in the RBs containing the carrie	r leakage frequency
	if $N_{\scriptscriptstyle R}$	$_{\it B}$ is odd, or in the two RBs immedia	tely adjacent to the
	carrie	r leakage frequency if $N_{{\scriptscriptstyle RB}}$ is even	but excluding any
	alloca	ted RB.	
NOTE 3:	N_{pp}	is the Transmission Bandwidth Con	figuration (see
		e 5.3.3).	•
	_	•	
NOTE 4:	r_{RB}	is the transmitted power normalized	by the number of
	alloca	ited RBs, measured in dBm.	
NOTE 5: Pw is the power window according to Table 6.4.2.2.4.2-1 for			
	the carrier frequency f and the channel bandwidth BW.		
NOTE 6:		the power window according to Tab	
	the ca	arrier frequency f and the channel ba	andwidth BW.

6.4.2.3 In-band emissions

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- SA generic procedures with condition NR in TS 38.508-1 [5] is FFS
- 38.101-1 [2] Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Window length in TS 38.101-1 [2] Annex on Transmit modulation is TBD
- Annex on Global In-Channel TX-Test contains TBDs.

6.4.2.3.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

The in-band emission is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain, however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

6.4.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.3.3 Minimum conformance requirements

The average of the basic in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.3-1.

Table 6.4.2.3.3-1: Requirements for in-band emissions

Parameter description	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ -57 \ dBm + 10 \log_{10} \left(SCS / 15 kHz \right) - P_{RB} \right\}$		Any non-allocated (NOTE 2)
		-28	Image frequencies when output power > 10 dBm	Image
IQ Image	dB	-25	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
		-28	Output power > 10 dBm	Comien le else me
Carrier	dBc ——	-25	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage		-20	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 4, 5)
		-10	-40 dBm ≤ Output power < -30 dBm	(1401234, 3)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: *EVM* is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{\it RB}=1$ or $\Delta_{\it RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.3.

6.4.2.3.4 Test description

6.4.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.3.4.1-1: Test Configuration Table for PUSCH

	Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] Normal subclause 4.1					
Test Frequ subclause	encies as specified in TS 38.508-1 [5] 4.3.1	Low range, Mid range, High	range		
	nel Bandwidths as specified in TS 5] subclause 4.3.1	Lowest, Mid, Highest			
Test SCS a	as specified in Table 5.3.5-1	Smallest supported SCS pe	r Channel Bandwidth		
	Test Parameters				
Test ID	Downlink Configuration	Uplink	Configuration		
	N/A	Modulation	RB allocation (NOTE 1)		
1		DFT-s-OFDM QPSK	Inner_1RB_Left		
2		DFT-s-OFDM QPSK	Inner_1RB_Right		
3		CP-OFDM QPSK	Inner_1RB_Left		
4	4 CP-OFDM QPSK Inner_1RB_Right				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.					

Table 6.4.2.3.4.1-2: Test Configuration Table for PUCCH

	Ir	nitial Conditions		
Test Env	ironment as specified in TS 38.508-1 [5] e 4.1	See Table 6.4.2.3.4.1-	1	
Test Free subclaus	quencies as specified in TS 38.508-1 [5] e 4.3.1	See Table 6.4.2.3.4.1-	1	
	nnel Bandwidths as specified in TS [5] subclause 4.3.1	See Table 6.4.2.3.4.1-	1	
Test SCS	S as specified in Table 5.3.5-1	See Table 6.4.2.3.4.1-	1	
	Т	est Parameters		
ID	Downlink Configuration	U	plink Configuration	
	N/A	Waveform	PUCCH format	
1		DFT-s-OFDM	FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b	
2 CP-OFDM FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b				
NOTE 1:	Test Channel Bandwidths are checked bandwidths are specified in Table 5.3.5		and, which applicable channel	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.3.4.3

6.4.2.3.4.2 Test procedure

Test procedure for PUSCH:

1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [1_0] for C_RNTI to schedule the UL RMC according to Table 6.4.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 1.2 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 1.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 1.4 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 1.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 1.6 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.7 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test
- 1.8 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.9 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.3.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition

Test procedure for PUCCH:

- 2.1 PUCCH is set according to Table 6.4.2.3.4.1-2. SS transmits PDSCH via PDCCH DCI format [1A] for C_RNTI to transmit the DL RMC according to Table 6.4.2.3.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH.
- 2.2 Send the appropriate TPC commands in the uplink scheduling information for PUCCH to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 2.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.4 Send the appropriate TPC commands in the uplink scheduling information for PUCCH to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 2.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.6 Send the appropriate TPC commands for PUCCH in the uplink scheduling information to the UE until UE output power is $-30 + P_W$ dBm $\pm P_W$ dB where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 2.7 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.8 Send the appropriate TPC commands for PUCCH in the uplink scheduling information to the UE until UE output power is $-40 + P_W$ dBm $\pm P_W$ dB where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 2.9 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.3.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition

Table 6.4.2.3.4.2-1: Power Window (dB) for carrier leakage (steps 1.2, 1.4, 2.2, and 2.4)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4.2.3.4.2-2: Power Window (dB) for carrier leakage (steps 1.6, 1.8, 2.6, and 2.8)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.3.5 Test requirement

Each of the [20] In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Tables 6.4.2.3.5-1.

Table 6.4.2.3.5-1: Test requirements for in-band emissions

Parameter description	Unit		Limit (NOTE 1)	Applicable Frequencies
General	dB	20 · lo	$ \begin{array}{l} -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ dBm + 10 \log_{10} \left(SCS / 15 kHz \right) - P_{RB} \end{array} \right\} $	Any non-allocated (NOTE 2)
		-27.2	Image frequencies when output power > 10 dBm	Image
IQ Image	dB	-24.2	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
		-27.2	Output power > 10 dBm	Carrier la alcare
Carrier	dBc	-24.2	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage		-19.2	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 4, 5)
		-9.2	-40 dBm ≤ Output power < -30 dBm	(1401234, 3)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even, but excluding any allocated RB.
- NOTE 6: L_{CRR} is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: *EVM* is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: $\Delta_{\it RB}$ is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.

6.4.2.4 EVM equalizer spectrum flatness

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- SA generic procedures with condition NR in TS 38.508-1 [5] is FFS.
- For shaped Pi/2-BPSK modulated waveforms, the minimum requirements are TBD in minimum conformance requirement in 38.101-1 [2].
- 38.101-1 [2] Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Window length in TS 38.101-1 Annex on Transmit modulation is TBD.
- Annex on Global In-Channel TX-Test contains TBDs.
- Addition of dft-s-OFDM test point.

6.4.2.4.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements.

6.4.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.4.3 Minimum conformance requirements

For shaped Pi/2-BPSK modulated waveforms, the minimum requirements are TBD.

For unshaped modulated waveforms, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.3-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.4.2.4.3-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4.3-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.4.2.4.3-1).

Table 6.4.2.4.3-1: Requirements for EVM equalizer spectrum flatness for unshaped modulations (normal conditions)

Frequency range	Maximum ripple [dB]
F _{UL_Meas} – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz	4 (p-p)
(Range 1)	
Ful_Meas - Ful_Low < 3 MHz or Ful_High - Ful_Meas < 3 MHz	8 (p-p)
(Range 2)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which	h the equalizer coefficient is
evaluated	
NOTE 2: Ful_Low and Ful_High refer to each E-UTRA frequence	y band specified in Table
5.5-1	

Table 6.4.2.4.3-2: Minimum requirements for EVM equalizer spectrum flatness for unshaped modulations (extreme conditions)

	Frequency range	Maximum Ripple [dB]
F _{UL_Meas}	s – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)
	(Range 1)	
Ful_Mea	as - Ful_Low < 5 MHz or Ful_High - Ful_Meas < 5 MHz	12 (p-p)
	(Range 2)	
NOTE 1:	F _{UL_Meas} refers to the sub-carrier frequency for which	the equalizer coefficient is
	evaluated	
NOTE 2:	Ful_Low and Ful_High refer to each E-UTRA frequency	band specified in Table
	5.5-1	

Figure 6.4.2.4.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC minimum requirement are within brackets)

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.4.

6.4.2.4.4 Test description
6.4.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.4.4.1-1: Test Configuration

	Initial Conditions									
Test Enviro	onment as specified in TS 38.508-1 [5]	Normal, TL/VL, TL/VH, TH/VL, TH/VH								
subclause	4.1									
Test Frequ	encies as specified in TS 38.508-1 [5]	Low range, Mid range, Hig	h range							
subclause	4.3.1									
Test Chani	nel Bandwidths as specified in TS	Lowest, Mid, Highest								
38.508-1 [5	5] subclause 4.3.1	-								
Test SCS a	as specified in Table 5.3.5-1	Lowest SCS per Channel Bandwidth								
	Т	est Parameters								
Test ID	Downlink Configuration	Uplink Configuration								
	N/A	Modulation	RB allocation (NOTE 1)							
1	1 CP-OFDM QPSK Outer Full									
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.									
NOTE 2:	Test Channel Bandwidths are checked	separately for each NR band	d, which applicable channel							
	bandwidths are specified in Table 5.3.5	-1.								

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.4.4.3
 - SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

6.4.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.3.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-89 with condition CP-OFDM

6.4.2.4.5 Test requirement

Each of the [20] spectrum flatness functions, shall derive four ripple results in Annex E.4.4. The derived results shall not exceed the values in Figure 6.4.2.4.5-1:

For shaped Pi/2-BPSK modulated waveforms, the test requirements are TBD.

For normal conditions and unshaped modulated waveforms, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.4.2.4.5-1 and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4.2.4.5-1).

For normal conditions and for unshaped modulated waveforms, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.5-1. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4.2.4.5-1).

For extreme conditions, the EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4.5-2. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.4.2.4.5-1).

Table 6.4.2.4.5-1: Requirements for EVM equalizer spectrum flatness for unshaped modulations (normal conditions)

Frequency range	Maximum ripple [dB]
Ful_Meas - Ful_Low ≥ 3 MHz and Ful_High - Ful_Meas ≥ 3 MHz	5.4 (p-p)
(Range 1)	
F _{UL_Meas} - F _{UL_Low} < 3 MHz or F _{UL_High} - F _{UL_Meas} < 3 MHz	9.4 (p-p)
(Range 2)	
NOTE 1: Ful_Meas refers to the sub-carrier frequency for which	h the equalizer coefficient is
evaluated	
NOTE 2: Ful_Low and Ful_High refer to each E-UTRA frequence	y band specified in Table
5.5-1	

Table 6.4.2.4.5-2: Minimum requirements for EVM equalizer spectrum flatness for unshaped modulations (extreme conditions)

Frequency range	Maximum Ripple [dB]
Ful_Meas - Ful_Low ≥ 5 MHz and Ful_High - Ful_Meas ≥ 5 MHz	5.4 (p-p)
(Range 1)	
Ful_Meas - Ful_Low < 5 MHz or Ful_High - Ful_Meas < 5 MHz	13.4 (p-p)
(Range 2)	
NOTE 1: Ful_Meas refers to the sub-carrier frequency for which	ch the equalizer coefficient is
evaluated	
NOTE 2: F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequen	cy band specified in Table
5.5-1	

Figure 6.4.2.4.5-1: The test requirements for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC test requirements are within brackets)

6.5 Output RF spectrum emissions

Unwanted emissions are divided into "Out-of-band emission" and "Spurious emissions" in 3GPP RF specifications. This notation is in line with ITU-R recommendations such as SM.329 [TBD] and the Radio Regulations [TBD].

ITU defines:

Out-of-band emission = Emission on a frequency or frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.

Spurious emission = Emission on a frequency, or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products but exclude out-of-band emissions.

Unwanted emissions = Consist of spurious emissions and out-of-band emissions.

The UE transmitter spectrum emission consists of the three components; the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

Figure 6.5-1: Transmitter RF spectrum

6.5.1 Occupied bandwidth

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS

6.5.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits

6.5.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.5.1.3 Minimum conformance requirements

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.5.1.3-1

Table 6.5.1.3-1: Occupied channel bandwidth

		Occupied channel bandwidth / NR Channel bandwidth										
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	80	90	100

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.1.

6.5.1.4 Test description

6.5.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.1.4.1-1: Test Configuration Table

Initial Conditions									
Test Environment as specified in TS 38.508-1 subclause 4.1	[5] Normal	Normal							
Test Frequencies as specified in TS 38.508-1 [subclause 4.3.1	[5] Mid range by default, exce	eptions listed in Table 6.5.1.4.1-2							
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	All	All							
Test SCS as specified in Table 5.3.5-1	Lowest SCS per Channel	Lowest SCS per Channel Bandwidth							
	Test Parameters								
Test ID Downlink Configuration	Uplir	nk Configuration							
N/A for occupied bandwidth test	Modulation	RB allocation (NOTE 1)							
1 case	CP-OFDM QPSK	CP-OFDM QPSK Outer_full							
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.									

Table 6.5.1.4.1-2: Test frequency exceptions for Occupied Bandwidth

5G NR Band	Test Frequency
n77	Low Range, Mid Range, High Range
n78	Low Range, Mid Range, High Range
n79	Low Range, Mid Range, High Range

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0 -
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.1.4.3

6.5.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the power spectrum distribution within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is one active uplink subframe.
- 4. Calculate the total power within the range of all frequencies measured in step 3 and save this value as "Total power".
- 5. Sum up the power upward from the lower boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Lower Frequency".
- 6. Sum up the power downward from the upper boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Upper Frequency".
- 7. Calculate the difference "Upper Frequency" "Lower Frequency" = "Occupied Bandwidth" between the two limit frequencies obtained in step 5 and step 6.

6.5.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.5.1.5-1.

Table 6.5.1.5-1: Occupied channel bandwidth

			Occupied channel bandwidth / NR Channel bandwidth									
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	80	90	100

6.5.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.1 General

FFS

6.5.2.2 Spectrum Emission Mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}) the spurious requirements in subclause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS

6.5.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.2.3 Minimum conformance requirements

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3-1 for the specified channel bandwidth.

Spectrum emission limit (dBm) / Channel bandwidth Δfоов 90 Measurement 5 10 15 20 30 40 50 60 80 100 (MHz) MHz bandwidth MHz 1 % channel ± 0-1 -13 -13 -13 -13 -13 -13 -13 bandwidth -21 $\pm 0-1$ -15 -18 -20 -22 -23 -24 -24 -24 -24 -24 -24 30 kHz ± 1-5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 ± 5-6 -13 -13 ± 6-10 -25 -13 -13 ± 10-15 -25 -13 -13 ± 15-20 -25 -13 ± 20-25 -25 -13 $\pm 25-30$ -25 -13 $\pm 30-35$ -25 -13 ± 35-40 -13 ± 40-45 -25 -13 1 MHz ± 45-50 $\pm 50-55$ -25 $\pm 55-60$ $\pm 60-65$ -25 $\pm 65-80$ -25 $\pm 80-90$ ± 90-95 -25 ± 95-100 ± 100-105 -25

Table 6.5.2.2.3-1: NR General spectrum emission mask

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.2

6.5.2.2.4 Test description

6.5.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table

6.5.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5.2.2.4.1-1: Test Configuration Table

	Default Conditions															
Test E	nvironmer	nt as spec	ified in TS	Normal												
	ause 4.1															
Test F	requencie	s as speci	fied in TS	Low range, High range												
	use 4.3.1	•														
Test C	Channel Ba	andwidths	as specifie	ed in TS 38.508-	Lowest, Highest											
	ubclause 4															
Test S	SCS as spe		able 5.3.5		Lowest and Highest											
	_			meters for Chann												
Test	Freq	ChBw	SCS	Downlink	Uplink Co	nfiguration										
ID				Configuration												
		Default	Default	N/A for	Modulation	RB allocation										
				Spectrum	(NOTE 2)	(NOTE 1)										
1	Low			Emission Mask	DFT-s-OFDM	Outer_1RB_Left										
	1.151-			test case	PI/2 BPSK	Outer ADD Dielet										
2	High				DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right										
3	Default				DFT-s-OFDM	Outer_Full										
3	Delault				PI/2 BPSK	Outer_Full										
4	Low				DFT-s-OFDM	Outer_1RB_Left										
-	LOW				QPSK	Odtoi_TND_Ecit										
5	High				DFT-s-OFDM	Outer_1RB_Right										
	1.1.9.1				QPSK	outor_rrtb_rtigint										
6	Default				DFT-s-OFDM	Outer_Full										
					QPSK											
7	Low				DFT-s-OFDM 16	Outer_1RB_Left										
					QAM											
8	High				DFT-s-OFDM 16	Outer_1RB_Right										
					QAM											
9	Default				DFT-s-OFDM 16	Outer_Full										
					QAM											
10	Default				DFT-s-OFDM 64	Outer_Full										
					QAM											
11	Default				DFT-s-OFDM 256	Outer_Full										
10	1				QAM CD OF DM ODSK	Outor 1DD Latt										
12 13	Low High				CP-OFDM QPSK CP-OFDM QPSK	Outer_1RB_Left Outer_1RB_Right										
	Default				CP-OFDM QPSK	Outer_TRB_Right Outer_Full										
14 15	Low				CP-OFDM QPSK	Outer_1RB_Left										
15	LOW				QAM	Outer_IND_Left										
16	High				CP-OFDM 16	Outer_1RB_Right										
'0	1 11911				QAM	Outoi_iiib_iiigiii										
17	Default				CP-OFDM 16	Outer_Full										
					QAM	<u>-</u>										
18	Default				CP-OFDM 64	Outer_Full										
					QAM	= -										
19	Default				CP-OFDM 256	Outer_Full										
					QAM											
NOTE	1: The s	pecific cor	nfiguration	of each RF allocat	ion is defined in Table	NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.										

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.2.4.1-1.

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.2.4.3

6.5.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.2.1.5-1 for 6.2.2.5-1. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

6.5.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.2.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.1.5-1 or 6.2.2.5-1 as appropriate, and the power of any UE emission shall fulfil requirements in Table 6.5.2.2.5-1.

Table 6.5.2.2.5-1: NR General spectrum emission mask

Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measuremen bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1	-15 + TT	-18	-20	-21	-22 + TT	-23 +	-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 . TT	30 kHz
± 1-5	-10	+ TT -10	+ TT -10	+ TT -10	-10 +	TT -10 +	-10 +	-10	-10 +	-10 +	TT -10 +	+ TT -10	
± 5-6	+ TT -13	+ TT	+ TT	+ TT	TT	TT	TT	+ TT	TT	TT	TT	+ TT	
± 6-10	+ TT -25 + TT	-13 + TT	-13 + TT	-13									
± 10-15		-25 + TT		+ TT	-13 + TT	-13 +							
± 15-20			-25 + TT			TT	-13 +						
± 20-25				-25 + TT			TT	-13 + TT					
± 25-30					-25 + TT				-13 + TT	-13 +			
± 30-35						-25 + TT				TT	-13 + TT		
± 35-40												-13	1 MHz
± 40-45							-25 + TT					+ TT	
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-90										-25 + TT			
± 90-95											-25 + TT		
± 95-100													
100-105												-25	

Note 1: The first and last measurement position with a 30 kHz filter is at ΔfOOB equals to 0.015 MHz and 0.985 MHz.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3 Additional spectrum emission mask

Editor's note: The following aspects are either missing or not yet determined:

- Initial condition is not complete.
- -SA Message contents in TS 38.508-1[5] subclause 4.6 are not complete.
- SA Generic procedures with condition NR in TS 38.508-1 [5] is FFS.

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Note 4: TT = 1.5 dB for $f \le 3\text{GHz}$, TT = 1.8 dB for $3\text{GHz} < f \le 4.2\text{GHz}$, TT = 1.8 dB for $4.2\text{GHz} < f \le 6.0\text{GHz}$.

- Test tolerance is not complete.

6.5.2.3.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.3.3 Minimum conformance requirements

6.5.2.3.3.1 Minimum requirement (network signalled value "[NS 35]")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "[NS_35]" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3.3.1-1.'

10 20 Measurement Δfоов 5 15 (MHz) MHz MHz MHz MHz bandwidth (unless otherwise stated) -15 -20 ± 0-0.1 -18 -21 30 kHz -13 -13 -13 -13 100 kHz ± 0.1-6 -25¹ ± 6-10 -13 -13 -13 100 kHz -25¹ -13 -13 100 kHz ± 10-15 -25¹ -13 100 kHz $\pm 15-20$ -25 ± 20-25 1 MHz NOTE 1: The measurement bandwidth shall be 1 MHz

Table 6.5.2.2.3.3.1-1: Additional requirements

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.1-1.

6.5.2.3.4 Test description

6.5.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.3.4.1-2 for "[NS-35]". The details of the uplink reference measurement channels (RMCs) are specified in Annexes [TBD]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3..
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according Annex G.0, G.1, G.2, G.3.0..

- 4. The UL Reference Measurement channels are set according to the applicable table from Table 6.2.4.3.1-1 to Table 6.2.4.3.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity (FFS), DC bearer (FFS) according to TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.2.3.4.3.

6.5.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to the applicable table from table 6.2.4.3.1-1 to table 6.2.4.3.1-2.1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.5.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause [TBD], with the following exceptions for each network signalled value.

6.5.2.3.4.3.1 Message contents exceptions (network signalled value "[NS_35]")

For "[NS_35]" see A-MPR test case in table 6.2.3.4.3.2-1.

6.5.2.3.5 Test requirement

6.5.2.3.5.1 Test requirements (network signalled value "[NS_35]"

When "[NS 35]" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.5.2.3.5.1-1 as appropriate for a NR UE.

and

- the power of any UE emission shall fulfil requirements in table [TBD], as applicable.

Table 6.5.2.3.5.1-1: Additional requirements (network signalled value "[NS_35]"

Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth (unless otherwise stated)						
± 0-0.1	TBD	TBD	TBD	TBD	30 kHz						
± 0.1-6	TBD	TBD	TBD	TBD	100 kHz						
± 6-10	TBD ¹	TBD	TBD	TBD	100 kHz						
± 10-15		TBD ¹	TBD	TBD	100 kHz						
± 15-20			TBD ¹	TBD	100 kHz						
± 20-25				TBD	1 MHz						
NOTE 1: Th	NOTE 1: The measurement bandwidth shall be 1 MHz										

6.5.2.4 Adjacent channel leakage ratio

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5.2.4.1 NR ACLR

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- PC1 and PC4 requirements are missing in TS 38.101-1 [2].

6.5.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.4.1.3 Minimum conformance requirements

NR adjacent channel leakage power ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing.

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1.3-1.

If the measured adjacent channel power is greater than [-50dBm] then the NR_{ACLR} shall be higher than the value specified in Table 6.5.2.4.1.3-2.

Table 6.5.2.4.1.3-1: NR ACLR measurement bandwidth

NR channel bandwidth / NR ACLR measurement bandwidth												
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
NR ACLR measurement bandwidth	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31

Table 6.5.2.4.1.3-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3
NR ACLR		31 dB	30 dB

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.4.1.

6.5.2.4.1.4 Test description

6.5.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.2.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5.2.4.1.4.1-1: Test Configuration Table

	Default Conditions							
	Environme ause 4.1	nt as spec	ified in TS	NC, TL/VL, TL/VH, TH/VL, TH/VH				
	requencie	es as spec	ified in TS	Low range, High range				
	ause 4.3.1							
	Channel Ba	andwidths	as specifi	Lowest, Highest				
	8-1 [5] sub							
	SCS as sp			5-1	Lowest and Highest			
	•				nnel Bandwidths			
Test	Freq	ChBw	SCS	Downlink	Uplink Configuration			
ID				Configuration				
		Default	Default	N/A for Adjacent	Modulation (NOTE 2)	RB allocation (NOTE 1)		
1	Low			Channel Leakage Ratio	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left		
2	High			test case	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right		
3	Default				DFT-s-OFDM PI/2 BPSK	Outer_Full		
4	Low	}			DFT-s-OFDM QPSK	Outer_1RB_Left		
5	High				DFT-s-OFDM QPSK	Outer_1RB_Right		
6	Default			•	DFT-s-OFDM QPSK	Outer_Full		
7	Default			•	DFT-s-OFDM 16 QAM	Inner_Full		
8	Low				DFT-s-OFDM 16 QAM	Outer_1RB_Left		
9	High				DFT-s-OFDM 16 QAM	Outer_1RB_Right		
10	Default				DFT-s-OFDM 16 QAM	Outer_Full		
11	Default				DFT-s-OFDM 64 QAM	Outer_Full		
12	Default				DFT-s-OFDM 256 QAM	Outer_Full		
13	Default			•	CP-OFDM QPSK	Inner_Full		
14	Low			•	CP-OFDM QPSK	Outer_1RB_Left		
15	High				CP-OFDM QPSK	Outer_1RB_Right		
16	Default			•	CP-OFDM QPSK	Outer_Full		
17	Default				CP-OFDM 16 QAM	Inner_Full		
18	Low			,	CP-OFDM 16 QAM	Outer_1RB_Left		
19	High				CP-OFDM 16 QAM	Outer_1RB_Right		
20	Default				CP-OFDM 16 QAM	Outer_Full		
21	Default				CP-OFDM 64 QAM	Outer_Full		
22	Default				CP-OFDM 256 QAM	Outer_Full		
NOTE	NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.							

NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.4.1.4.3

6.5.2.4.1.4.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.2.5-5 as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.4.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-89 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition

6.5.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.2.5-1 and 6.2.2.5-5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5.2.4.1.5-2.

Table 6.5.2.4.1.5-1: NR ACLR measurement bandwidth

NR channel bandwidth / NR ACLR measurement bandwidth												
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												İ

Table 6.5.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3			
NR ACLR		31 + TT dB	30 + TT dB			
NOTE 1: TT = 0.8 dB for $f \le 4.0$ GHz, TT = 1.0 dB for 4.0 GHz $< f \le 6.0$ GHz,						

6.5.2.4.2 UTRA ACLR

FFS

6.5.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 and NR operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.1 General spurious emissions

Editor's Note:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.

6.5.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.1.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in table 6.5.3.1.3-2.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.3-2 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.1.3-1: Boundary between NR out of band and general spurious emission domain

Channel bandwidth	OOB boundary Δf _{OOB} (MHz)		
BW _{Channel}	BW _{Channel} + 5		

Table 6.5.3.1.3-2: Requirement for general spurious emissions limits

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.1

6.5.3.1.4 Test description

6.5.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.1.4.1-1: Test Configuration Table

Initial Conditions						
Test Enviror	nment as specified in TS	Normal				
38.508-1 [5] subclause 4.1.						
	ncies as specified in TS	Low range, Mid range, High range				
38.508-1 [5]	subclause 4.3.1.					
	el Bandwidths as specified in	Lowest, Mid, Highest				
	[5] subclause 4.3.1.					
Test SCS as	s specified in Table 5.3.5-1	Lowest, Highest				
		Test Parameters				
Test ID	Downlink Configuration	Uplink Configuration				
		Modulation	RB allocation (NOTE 1)			
1	N/A for Spurious Emissions	CP-OFDM QPSK	Outer_Full			
2	2 testing CP-OFDM QPSK Outer_1RB_Left					
3 CP-OFDM QPSK Outer_1RB_Right						
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex [A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.1.4.3.

6.5.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause [TBD].

6.5.3.1.5 Test requirement

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in table 6.5.3.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.1.5-1.

Table 6.5.3.1.5-1: General spurious emissions test requirements

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

6.5.3.2 Spurious emission for UE co-existence

Editor's note

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- Initial conditions is incomplete.

6.5.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band for coexistence with protected bands as indicated in Table 6.5.3.2.3-1.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.2.3-1: Requirements for spurious emissions for UE co-existence

	Spurious emission for UE co-existence						
NR Band	Protected band	Frequen	ncy ra	ange (MHz)	Maxim um Level (dBm)	MBW (MHz)	NOTE
n1, n84	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F_{DL_low}		F_{DL_high}	-50	1	
	E-UTRA Band 3, 34	F _{DL_low}		F_DL_high	-50	1	15
	Frequency range	1880	-	1895	-40	1	15, 27
	Frequency range	1895	-	1915	-15.5	5	15, 26, 27
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27
n2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 50, 51, 66, 70, 71, 74	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
n3, n80	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73,74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 3	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	13
	E-UTRA Band 22, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	13
n5	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85	F _{DL_low}	-	F_{DL_high}	-50		
	E-UTRA Band 41, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	39
	Frequency range	1884.5	-	1915.7	-41	0.3	8,39
n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76	F _{DL_low}	-	$F_{DL_{\!-}high}$	-50	1	
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26
	Frequency range	2595	-	2620	-40	1	15, 21
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA band 3, 7, 22, 41, 42, 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA 8	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	23
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n12	E-UTRA Band 2, 5, 13, 14, 17, 24, 25, 26, 27, 30, 41, 48, 50, 51, 71, 74	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 4, 10, 66, 70	FDL_low	_	FDL_high	-50	1	2
	E-UTRA Band 12, 85	FDL_low	-	FDL_high	-50	1	15
n20, n82	E-UTRA Band 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 43, 50, 51, 65, 67, 68, 72, 74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	

	E-UTRA Band 20	F _{DL_low}	_	F _{DL_high}	-50	1	15
	E-UTRA Band 38, 42, 69	FDL low	-	FDL_high	-50	1	2
	Frequency range	758	-	788	-50	1	
n25	E-UTRA Band 4, 5, 10,12, 13,	F _{DL_low}	-	F _{DL_high}	-50	1	
	14, 17, 24, 26, 27, 28, 29, 30,						
	41, 42, 48, 66, 70, 71, 85						
	E-UTRA Band 2	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 25	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
n28, n83	E-UTRA Band 1, 4, 10, 22, 42,	F _{DL_low}	-	F_{DL_high}	-50	1	2
	43, 50, 51, 65, 73, 74, 75, 76 E-UTRA Band 1	F _{DL_low}	_	F _{DL_high}	-50	1	19, 25
	E-UTRA Band 2, 3, 5, 7, 8, 18,	F _{DL low}		F _{DL_high}	-50	1	19, 25
	19, 20, 25, 26, 27, 31, 34, 38, 40, 41, 66, 72	I DL_IOW		i DL_nign	-30	'	
	E-UTRA Band 11, 21	F_{DL_low}	-	F _{DL_high}	-50	1	19, 24
	Frequency range	470	-	694	-42	8	15, 35
	Frequency range	470	-	710	-26.2	6	34
	Frequency range	662	-	694	-26.2	6	15
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 19
n34	E-UTRA Band 1, 3, 7, 8, 11, 18,	F_{DL_low}	-	F _{DL_high}	-50	1	5
	19, 20, 21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44, 45, 50, 51, 65, 67, 69, 72, 74, 75, 76						
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n38	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
	Frequency range	2645	-	2690	-40	1	15, 22
n39	E-UTRA Band 1, 8, 22, 26, 34, 40, 41, 42, 44, 45, 50, 51, 74	F _{DL_low}	•	F_{DL_high}	-50		
	Frequency range	1805	-	1855	-40	1	33
	Frequency range	1855	-	1880	-15.5	5	15, 26, 33
n40	E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 74, 75, 76	F _{DL_low}	1	F _{DL_high}	-50	1	
n41	E-UTRA Band 1, 2, 3, 4, 5, 8,	F _{DL_low}	-	F _{DL_high}	-50	1	
	10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74						
	E-UTRA Band 9, 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	30
	Frequency range	1884.5		1915.7	-41	0.3	8, 30
n51	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68	F _{DL_low}	-	F _{DL_high}	-50	1	
n66, n86	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	F _{DL_low}	-	F _{DL_high}	-50	1	
	12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68, 70, 71	- DE_IOW		· DL_IIIgii			
	E-UTRA Band 42, 48	F _{DL_low}	-	F _{DL_high}	-50	1	2
n70	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 29, 30, 41, 48, 66, 70, 71	F _{DL_low}	-	F _{DL_high}	-50	1	2

n71	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 29, 30, 48, 66, 85	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25, 41, 70		-	F _{DL_high}	-50	1	2
	E-UTRA Band 29		-	F _{DL_high}	-38	1	15
	E-UTRA Band 71	F _{DL_low}	-	F _{DL_high}	-50	1	15
n77, n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	NR Band n257	26500	-	29500	-5	100	
n79	E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65	F_{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	NR Band n257	26500	-	29500	-5	100	
n80	See n3						
n81	See n8						
n82	See n20						
n83	See n28						
n84	See n1						
n86	See n66						

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: 15 kHz SCS is assumed when RB is mentioned in the note.
- NOTE 4: N/A
- NOTE 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- NOTE 6: N/A
- NOTE 7: Applicable when co-existence with PHS system operating in 1884.5-1919.6MHz.
- NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
- NOTE 9: N/A
- NOTE 10: N/A
- NOTE 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD
- NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB
- NOTE 13: This requirement applies for 5, 10, 15 and 20 MHz NR channel bandwidth allocated within 1744.9MHz and 1784.9MHz.
- NOTE 14: N/A
- NOTE 15: These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1.3-1 and Table 6.6A.3.1.3-1 from the edge of the channel bandwidth.
- NOTE 16: N/A
- NOTE 17: N/A
- NOTE 18: N/A
- NOTE 19: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 20: N/A
- NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 22: This requirement is applicable for power class 3 UE for any channel bandwidths within the range 2570 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For power class 2 UE for any channel bandwidths within the range 2570 2615 MHz, NS_44 shall apply. For power class 2 or 3 UE for carriers with channel bandwidth overlapping the frequency range 2615 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.
- NOTE 23: Void
- NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.3-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.3-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 27: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 28: N/A
- NOTE 29: N/A
- NOTE 30: This requirement applies when the NR carrier is confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz

NOTE 31: N/A

NOTE 32: Void

- NOTE 33: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1892.5 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1895 1903 MHz.
- NOTE 34: This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with Restart > 1 and Restart < 48.
- NOTE 35: This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
- NOTE 36: This requirement is applicable for NR channel bandwidth allocated within 1920-1980 MHz.
- NOTE 37: Applicable when the upper edge of the channel bandwidth frequency is greater than 1980MHz.
- NOTE 38: Applicable when NS_33 or NS_34 is configured by the pre-configured radio parameters.

NOTE 39: Void.

- NOTE 40: In the frequency range x-5950MHz, SE requirement of -30dBm/MHz should be applied; where x = max (5925, face + 15), where face is the channel centre frequency.
- NOTE 41: Applicable for 1.4 MHz bandwidth, and when the lower edge of the assigned NR UL channel bandwidth frequency is greater than or equal to 1427 MHz + the channel BW assigned for 3, 5 and 10 MHz bandwidth, and when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is greater than or equal to 1440 MHz for 15 and 20 MHz bandwidth.
- NOTE 42: Applicable for 1.4, 3 and 5 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1467 MHz assigned for 10 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1463.8 MHz for 15 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1460.8 MHz for 20 MHz bandwidth.

Note: To simplify Table 6.5.3.2.3-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.2.

6.5.3.2.4 Test description

6.5.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes [A.2]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.2.4.1-1: Test Configuration Table

Initial Conditions						
	nment as specified in TS subclause 4.1.	Normal				
	encies as specified in TS subclause 4.3.1.	Low range, Mid range, High range				
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1.						
Test SCS a	s specified in Table 5.3.5-1	Lowest supported SCS per test channel BW,				
		Highest supported SCS per test channel BW				
		Test Parameters				
Test ID	Downlink Configuration	Uplink Configura	ation			
		Modulation	RB allocation (NOTE 1)			
1	N/A for Spurious Emissions	CP-OFDM QPSK	Outer_Full			
2	testing	CP-OFDM QPSK	Outer_1RB_Left			
3	3 CP-OFDM QPSK Outer_1RB_Right					
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration. NOTE 2: The channel conditions for specific scenarios listed in Table 6.5.3.2.3-1 is FFS.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex [A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3..
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.2.4.3.

6.5.3.2.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.3.2.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements and are not repeated in this section.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.2.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.2.3-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step [3], shall not exceed the described value in Table 6.5.3.2.3-1.

6.5.3.3 Additional spurious emissions

- Initial condition for NS value is incomplete. TP analysis is pending.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.

6.5.3.3.3.1 Minimum conformance requirements (network signalled value "NS_04")

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.1-1: Additional requirements

	Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10, 15, 20, 40, 50, 60, 80, 90, 100 MHz	Measurement bandwidth
ſ	2495 ≤ f < 2496	-13	1% of Channel BW
ſ	2490.5 ≤ f < 2495	-13	1 MHz
Ī	0 < f < 2490.5	-25	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.1.

6.5.3.3.3.2 Minimum conformance requirements (network signalled value "NS_07")

When "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.2-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10 MHz	Measurement bandwidth	NOTE			
470 ≤ f ≤ 710	-26.2	6 MHz	1			
NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.						

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.2.

6.5.3.3.3.3 Minimum conformance requirements (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth	NOTE
692-698	-26.2	6 MHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.3.

6.5.3.3.3.4 Minimum conformance requirements (network signalled value "NS_08")

When "NS_08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.4-1: Additional requirements

Frequency band (MHz)					Measurement bandwidth	NOTE
,	5	10	15	20MHz		
	MHz	MHz	MHz			
1884.5 ≤ f ≤1915.7	-41	-41	-41	-41	300 KHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.4.

6.5.3.3.3.5 Minimum conformance requirements (network signalled value "NS_09")

When "NS_09" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.5-1: Additional requirement

Frequency band	Channel bandw	idth / Spectrum emis	Measurement bandwidth	
(MHz)	5 MHz	10 MHz	15 MHz	
860 ≤ f ≤ 890	-40	-40	-40	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.5.

6.5.3.3.4 Test description

6.5.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 6.5.3.3.4.1-1 through Table 6.5.3.3.4.1-xx [TBD]. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.3.4.1-1: Test Configuration Table (network signalled value "NS_04")

	Initial (Conditions					
Test Enviror subclause 4	nment as specified in TS 38.508-1 [5] .1	Normal					
Test Freque subclause 4	encies as specified in TS 38.508-1 [5] .3.1]	TBD]				
Test Channe [5] subclaus	el Bandwidths as specified in TS 38.508-1 e 4.3.1	[TBD]					
Test SCS as	s specified in Table 5.3.5-1	[TBD]					
	Test P	arameters					
Test ID	Downlink Configuration	Uplink Configuration					
		Modulation	RB allocation (NOTE 1)				
1	N/A for Spurious Emissions testing	FFS	FFS				
2	14/7 Tol Opunous Emissions testing	FFS	FFS				
3		FFS	FFS				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration							

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.3.4.1-1 through Table [TBD]
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.3.4.3.

6.5.3.3.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.3.4.1-1 through Table [TBD]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.3.3.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.3.5-1 [TBD]. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Tables [TBD] as appropriate. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. For NS_07 measurements made in a bandwidth of 6.25kHz, measurement parameter settings defined in table [TBD] shall be used. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.3.4.3 Message contents

6.6.3.3.4.3.1 Message contents exceptions (network signalled value "NS_04")

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_04" for Power Class 2

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	.6.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	4 (NS_04)		

6.5.3.3.5 Test requirement

This clause specifies the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated from table 6.5.3.3.5-1.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.3.5.1 Test requirement (network signalled value "NS_04")

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.3.5.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.5.1-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10, 15, 20, 40, 50, 60, 80, 90 100 MHz	Measurement bandwidth
2495 ≤ f < 2496	-13	1% of Channel BW
2490.5 ≤ f < 2495	-13	1 MHz
0 < f < 2490.5	-25	1 MHz

6.5.4 Transmit intermodulation

Editor's Note:

- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS
- How to deal with TDD slots with transient periods is FFS

6.5.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.4.3 Minimum conformance requirements

UE transmit intermodulation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each transmitter antenna port with the other antenna port(s) if any terminated. Both the wanted signal power and the intermodulation product power are measured through NR rectangular filter with measurement bandwidth shown in Table 6.5.4.3-1.

The requirement of transmit intermodulation is specified in Table 6.5.4.3-1.

Table 6.5.4.3-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW	/Channel		
Interference signal frequency offset from channel centre	BW _{Channel}	2*BW _{Channel}		
Interference CW signal level	-40dBc			
Intermodulation product	< -29dBc < -35dBc			
Measurement bandwidth	The maximum transmission bandwidth co the channel BW as defined in Table 6.5.2	onfiguration among the different SCSs for 2.2.3-1		
Measurement offset from channel centre	BW _{Channel} and 2*BW _{Channel}	2*BW _{Channel} and 4*BW _{Channel}		

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.4.

6.5.4.4 Test description

6.5.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.4.4.1-1: Test Configuration Table

	Initial Conditions							
Test Environme	ent as specified in TS 38.508-1	Normal						
[5] subclause 4.	.1							
Test Frequencie	es as specified in TS 38.508-1	Mid range						
[5] subclause 4.	.3.1							
	andwidths as specified in TS	Mid, Highest						
38.508-1 [5] sul	oclause 4.3.1							
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest						
		Test Parameters						
Test ID	Downlink Configuration	Uplink Configura	ation					
	N/A for transmit	Modulation	RB allocation (NOTE 1)					
1	intermodulation test case	DFT-s-OFDM PI/2 BPSK	Inner Full					
2	intermodulation test case	DFT-s-OFDM QPSK Inner Full						
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [A.3.1.3] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.4.4.3.

6.5.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power of the UE. [For TDD slots with transient periods are not under test for the wanted signal and for the intermodulation product.]
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 5. Set the interference CW signal level according to table 6.5.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5.4.5-1.

- 8. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5.4.5-1.

6.5.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5.4.5-1.

Table 6.5.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW	/Channel			
Interference signal frequency offset from channel centre	BW _{Channel}	2*BWChannel			
Interference CW signal level	-40dBc				
Intermodulation product	< -29dBc	< -35dBc			
Measurement bandwidth	The maximum transmission bandwidth co the channel BW as defined in Table 6.5.2	onfiguration among the different SCSs for 2.2.3-1			
Measurement offset from channel centre	BWChannel and 2*BWChannel	2*BWchannel and 4*BWchannel			

7 Receiver characteristics

TBD

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.3.3-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

7.2 Diversity characteristics

The UE is required to be equipped with a minimum of two Rx antenna ports in all operating bands except for the bands n7, n38, n41, n77, n78, n79 where the UE is required to be equipped with a minimum of four Rx antenna ports. This requirement applies when the band is used as a standalone band or as part of a band combination.

For the requirements in Section 7, the UE shall be verified with two Rx antenna ports in all supported frequency bands. Additional requirements for four Rx ports shall be verified in operating bands where the UE is equipped with four Rx antenna ports.

The above rules apply for all subclasses with the exception of subclause 7.9.

7.3 Reference sensitivity

7.3.1 General

FFS

7.3.2 Reference sensitivity power level

Editor's note:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.

7.3.2.1 Test purpose

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

7.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward

7.3.2.3 Minimum conformance requirements

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.3.2.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.2.3-1 and Table 7.3.2.3-2.

Table 7.3.2.3-1: Two antenna port reference sensitivity QPSK PREFSENS

				Operati	ng band	/scs/c	hannel b	andwidth	/ Duplex	r-mode				
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15	-100.0	-96.8	-95.0	-93.8									
n1	30		-97.1	-95.1	-94.0									FDD
	60		-97.5	-95.4	-94.2									
	15	-98.0	-94.8	-93.0	-91.8									
n2	30		-95.1	-93.1	-92.0									FDD
	60		-95.5	-93.4	-92.2									
	15	-97.0	-93.8	-92.0	-90.8	-89.7	-88.9							_
n3	30		-94.1	-92.1	-91.0	-89.8	-89.0							FDD
	60		-94.5	-92.4	-91.2	-90.0	-89.1							
	15	-98.0	-94.8	-93.0	-90.8									
n5	30		-95.1	-93.1	-91.0									FDD
	60													
	15	-98.0	-94.8	-93.0	-91.8									
n7¹	30		-95.1	-93.1	-92.0									FDD
	60		-95.5	-93.4	-92.2									
	15	-97.0	-93.8	-92.0	-90.0									
n8	30		-94.1	-92.1	-90.2									FDD
	60	07.0	20.0	20.0										
	15	-97.0	-93.8	-92.0										FDD
n12	30		-94.1	-92.1										
	60													
	15	-97.0	-93.8	-91.0	-89.8									FDD
n20	30		-94.1	-91.1	-90.0									
	60	00.5	00.0	04.5	00.0									
	15	-96.5	-93.3	-91.5	-90.3									
n25	30		-93.6	-91.6	-90.5									FDD
	60		-94.0	-91.9	-90.7									
	15	-98.5	-95.5	-93.5	-90.8									
n28	30		-95.6	-93.6	-91.0									FDD
	60	100.0	00.0	05.0										
	15	-100.0	-96.8	-95.0										TDD
n34	30		-97.1	-95.1										TDD
	60	400.0	-97.5	-95.4	20.0									
00	15	-100.0	-96.8	-95.0	-93.8									TDD
n38	30		-97.1	-95.1	-94.0									TDD
	60	100.0	-97.5	-95.4	-94.2	02.7	01.0	00.6						
00	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6						TDD
n39	30 60		-97.1	-95.1 -95.4	-94.0	-92.8	-92.0	-90.7 -90.9						TDD
		100.0	-97.5		-94.2	-93.0	-92.1		90.6					
4O	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6	99.0	97.6			TDD
n40	30 60		-97.1 -97.5	-95.1 -95.4	-94.0 -94.2	-92.8	-92.0 -92.1	-90.7 -90.9	-89.7	-88.9 -80.1	-87.6 -87.6			TDD
						-93.0	-32.1		-89.8	-89.1	-07.0			
n 441	15		-94.8	-93.0	-91.8			-88.6	-87.6	90.0	05.0	-85.1	047	TDD
n41 ¹	30		-95.1	-93.1	-92.0			-88.7	-87.7	-86.9	-85.6	-85.1	-84.7	TDD
	60	400.0	-95.5	-93.4	-92.2			-88.9	-87.8	-87.1	-85.6	-00.1	-84.7	
nF4	15	-100.0												TDD
n51	30													TDD
	60	00.5	06.0	04.5	02.2			00.4						
n66 15 -99.5 -96.3 -94.5 -93.3 -90.1 -90.1				FDD										
	30		-96.6	-94.6	-93.5			-90.2		L		<u> </u>		

	60		-97.0	-94.9	-93.7		-90.4						
	15	-100.0	-96.8	-95.0	-93.8	-92.7							
n70	30		-97.1	-95.1	-94.0	-92.8							FDD
	60		-97.5	-95.4	-94.2	-93.0							
	15	-97.2	-94.0	-91.6	-86.0								
n71	30		-94.3	-91.9	-87.4								FDD
	60	-											
	15		-95.8	-94.0	-92.7		-89.6	-88.6					
n77¹	30		-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
	60	-	-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	-
n77 (3.8	15		-95.3	-93.5	-92.2		-89.1	-88.1					
to 4.2	30		-95.6	-93.6	-92.4		-89.2	-88.2	-87.4	-86.1	-85.6	-85.1	TDD
GHz) ¹	60	-	-96.0	-93.9	-92.6		-89.4	-88.3	-87.5	-86.2	-85.7	-85.2	
	15		-95.8	-94.0	-92.7		-89.6	-88.6					
n78¹	30		-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
	60		-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
	15						-89.6	-88.6					
n79¹	30						-89.7	-88.7	-87.9	-86.6		-85.6	TDD
_	60						-89.9	-88.8	-88.0	-86.7		-85.7	

NOTE 1: Four Rx antenna ports shall be the baseline for this operating band NOTE 2: The transmitter shall be set to Pumax as defined in subclause 6.2.4

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.2.3-1 and Table 7.3.2.3-2 shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3-1.

Table 7.3.2.3-3: Uplink configuration for reference sensitivity

15	FDD FDD
Record R	FDD
n2 15 25 501 501 501 30 101 24 241 241 60 101 101 101 15 25 501 501 501 501 30 24 241 241 241 241 60 101 101 101 101 101 15 25 251 251 251 251 80 101 101 101 101 101 15 25 501 751 751 751 15 25 501 751 751 751 15 25 501 751 751 751 15 25 501 751 751 751 15 25 501 751 751 751 18 18 181 181 181 18 18 181 181 19 101 101 101 101 101 101 101 101 101 102 201 201 201 201 103 101 102 102 102 106 </td <td>FDD</td>	FDD
n2 30 101 24 241	FDD
15 25 501 50	FDD
n3 15 25 501 501 501 501 501 501 0 <td></td>	
n3 30 24 24¹ 25¹ 25² 25² 25² 25² 25²	
15	
n5 25 25¹ 25² 25² 25² 25² 25² 25² 25² 25² 25² 25² 25² 25² 25² 25²	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
15 25 501 751 751	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FDD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
60 10¹ 18 18¹ 15 25 25¹ 25¹ 30 10¹ 10¹ 10¹ 60 15 20¹ 20¹ 20¹ 30 10¹ 10¹ 60 15 25 20¹ 20² 20² 15 25 20¹ 20² 60 15 25 50 50¹ 50¹ 15 25 50 50¹ 50¹ 15 25 25¹ 25¹ 25¹ 15 25 25¹ 25¹ 25¹ 15 25 25¹ 25¹ 25¹	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FDD
n8 30 101	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FDD
n12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EDD
n20	FDD
n20 30 10¹ 10² 10² 60 15 25 50 50¹ 10¹ n25 30 24 24¹ 24¹ 10¹ 60 10 10¹ 10¹ 10¹ 10¹ 15 25 25¹ 25¹ 25¹ 25¹	
60 50 15 25 30 24 24 24 60 10 15 25 25 25 25 25 25 25 25 25	FDD
n25	
n25 30 24 24 ¹ 24 ¹	
60 10 10 ¹ 10 ¹ 10 ¹ 15 25 25 ¹ 25 ¹ 25 ¹ 25 ¹	
15 25 25 ¹ 25 ¹ 25 ¹ 25 ¹	FDD
n28 30 10 ¹ 10 ¹ 10 ¹	
. ::=-	FDD
60	
n34 15 25 50 ¹ 75 ¹	
30 24 36 ¹	
60 10 ¹ 18	
15 25 50 ¹ 75 ¹ 100 ¹	
n38 30 24 36 ¹ 50 ¹	TDD
60 10 ¹ 18 24	
15 25 50 ¹ 75 ¹ 100 ¹ 128 ¹ 160 216	
n39 30 24 36 ¹ 50 ¹ 64 ¹ 75 ¹ 100 ¹	TDD
60 10 ¹ 18 24 30 ¹ 36 ¹ 50 ¹	
15 25 50 ¹ 75 ¹ 100 ¹ 128 ¹ 160 216 270	
n40 30 24 36 ¹ 50 ¹ 64 ¹ 75 ¹ 100 ¹ 128 ¹ 162 216 ¹	TDD
60 10 ¹ 18 24 30 ¹ 36 ¹ 50 ¹ 64 ¹ 75 ¹ 100 ¹	
15 50 ¹ 75 ¹ 100 ¹ 216 270	
n41 30 24 36 ¹ 50 ¹ 100 ¹ 128 ¹ 162 216 ¹ 243 ¹ 270 ¹	TDD
60 10 ¹ 18 24 50 ¹ 64 ¹ 75 ¹ 100 ¹ 120 ¹ 135	
15 25	
n51 30	TDD
60	
15 25 50 ¹ 75 ¹ 100 ¹ 216	+
n66 30 24 36 ¹ 50 ¹ 100 ¹	
60 10 ¹ 18 24	FDD

	15	25	50 ¹	75¹	NOTE 3	NOTE 3							
n70	30		24	36¹	NOTE 3	NOTE 3							FDD
	60		10 ¹	18	NOTE 3	NOTE 3							
	15	25	25 ¹	20 ¹	20 ¹								
n71	30		12 ¹	10 ¹	10 ¹								FDD
	60												
	15		50 ¹	75 ¹	100 ¹		216	270					
n77	30		24	36 ¹	50 ¹		100 ¹	128 ¹	162	216¹	243 ¹	270¹	TDD
	60	-	10 ¹	18	24		50 ¹	64 ¹	75 ¹	100 ¹	120 ¹	135	
n77 (3.8	15		50 ¹	75 ¹	100 ¹		216	270					
to 4.2	30		24	38	51		100 ¹	128 ¹	162	216¹	243 ¹	270¹	TDD
GHz)	60		10 ¹	18	24		50 ¹	64 ¹	75 ¹	100 ¹	120 ¹	135	
	15		50 ¹	75 ¹	100 ¹		216	270					
n78	30		24	36 ¹	50 ¹		100 ¹	128 ¹	162	216¹	243 ¹	270¹	TDD
	60		10 ¹	18	24		 50 ¹	64 ¹	75 ¹	100¹	120 ¹	135	
	15						 216	270					
n79	30						100 ¹	128 ¹	162	216¹		270¹	TDD
	60						50 ¹	64 ¹	75 ¹	100¹		135	

NOTE 1: ¹ Refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1).

NOTE 2: ² refers to Band 20; for 15kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at Restart 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at Restart 16; for 30kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at Restart 6 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at Restart 8; for 60kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at Restart 3 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at Restart 4.

NOTE 3: For DL channel bandwidths that do not have symmetric UL channel bandwidth, highest valid UL configuration with lowest duplex distance shall be used.

Unless given by Table 7.3.2.3-4, the minimum requirements specified in Tables 7.3.2.3-1 and 7.3.2.3-2 shall be verified with the network signalling value NS_01 (Table 6.2.3.3-1) configured.

Table 7.3.2.3-4: Network signalling value for reference sensitivity

Operating	Network
band	Signalling
	value
n2	NS_03
n12	NS_06
n25	NS_03
n66	NS_03
n70	NS_03
n71	NS_35

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3.3 for the applicable operating bands.

7.3.2.4 Test description

7.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table Table 5.2-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3

The details of the uplink reference measurement channels (RMCs) are specified in Annexe A2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3.2.4.1-1: Test Configuration Table

			Initial Conditions				
Test Enviror	nment as specifie	d in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subclaus	e 4.1						
Test Freque	ncies as specified	d in TS 38.508-1 [5]	Low range, Mid range, High range				
subclause4.	• • •						
Test Channe	el Bandwidths as	specified in TS	Lowest, Mid, Highest				
	subclause 4.3.1						
Test SCS as	s specified in Tab	le 5.3.5-1	Lowest supported SCS per test channel BW				
			Test Parameters				
Test ID	Downlink	Configuration	Uplink Configura	ation			
	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM Full RB (NOTE 1)		DFT-s-OFDM QPSK	REFSENS (NOTE 2)			
	QPSK			•			

NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.

NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band.

Table 7.3.2.4.1-2: Downlink Configuration of each RB allocation

Channel Bandwidth	SCS(kHz)	LCRBmax	Outer RB allocation / Normal RB allocation
	15	25	25@0
5MHz	30	11	11@0
	60	N/A	N/A
	15	52	52@0
10MHz	30	24	24@0
	60	11	11@0
	15	79	79@0
15MHz	30	38	38@0
	60	18	18@0
	15	106	106@0
20MHz	30	51	51@0
	60	24	24@0
	15	133	133@0
25MHz	30	65	65@0
	60	31	31@0
	15	160	160@0
30MHz	30	78	78@0
	60	38	38@0
	15	216	216@0
40MHz	30	106	106@0
	60	51	51@0
	15	270	270@0
50MHz	30	133	133@0
	60	65	65@0
	15	N/A	N/A
60MHz	30	162	162@0
	60	79	79@0
	15	N/A	N/A
80MHz	30	217	217@0
	60	107	107@0
	15	N/A	N/A
90MHz	30	245	245@0
	60	121	121@0
	15	N/A	N/A
100MHz	30	273	273@0
	60	135	135@0

NOTE 1: Test Channel Bandwidths are checked separately for each NR band, the applicable channel bandwidths are specified in Table 5.3.5-1.

Table 7.3.2.4.1-3: Uplink configuration for reference sensitivity, LCRB @ Restart format

Operating Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Duplex Mode
Dallu	15	25@0	50@0¹	75@0¹	100@0 ¹	IVITIZ		IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	Wode
n1	30	20@0	24@0	36@0¹	50@0¹									FDD
	60		10@0¹	18@0	24@0									
	15	25@0	50@0¹	50@25¹	50@50 ¹									
n2	30	10 ¹	24@0	24@12¹	24@26 ¹									FDD
	60		10@0¹	10@8¹	10@14 ¹									1
	15	25@0	50@0¹	50@25 ¹	50@50 ¹	50@78 ¹	50@110 ¹							
n3	30		24@0	24@12 ¹	24@26 ¹	24@40 ¹	24@51 ¹							FDD
	60		10@0¹	10@8 ¹	10@14 ¹	10@20 ¹	10@26 ¹							
	15	25@0	25@25¹	25@50¹	25@75 ¹									
n5	30		10@14 ¹	10@26¹	10@40 ¹									FDD
	60													1
	15	25@0	50@0¹	75@0¹	75@25 ¹									
n7	30		24@0	36@0¹	36@14 ¹									FDD
	60		10@0¹	18@0	18@8¹									1
	15	25@0	25@25 ¹	25@50 ¹	25@75 ¹									
n8	30		10@14 ¹	10@26 ¹	10@40 ¹									FDD
	60													
	15	20@5 ¹	20@30¹	20@55 ¹										
n12	30		10@14 ¹	10@26 ¹										1
	60													
	15	25@0	20@30¹	20@11 ²	20@16 ²									
n20	30		10@14 ¹	10@6²	10@8²									FDD
	60													1
	15	25@0	50@0	50@0¹	50@50 ¹									
n25	30		24@0	24@12 ¹	24@26 ¹									FDD
	60		10@0	10@8¹	10@14 ¹									
	15	25@0	25@25¹	25@50¹	25@75 ¹									
n28	30		10@14¹	10@26¹	10@40¹									FDD
	60													
	15	25@0	50@0¹	75@0¹										
n34	30		24@0	36@0¹										TDD
	60		10@0¹	18@0										

		1					ı	1	1		1	1	1	1
	15	25@0	50@0¹	75@0¹	100@0 ¹									
n38	30		24@0	36@0¹	50@0¹									TDD
	60		10@0¹	18@0	24@0									
	15	25@0	50@0¹	75@0¹	100@0¹	128@0¹	160@0	216@0						
n39	30		24@0	36@0¹	50@0¹	64@0¹	75@0¹	100@0¹						TDD
	60		10@0¹	18@0	24@0	30@0¹	36@0¹	50@0 ¹						
	15	25@0	50@0¹	75@0¹	100@0 ¹	128@0¹	160@0	216@0	270@0					
n40	30		24@0	36@0¹	50@0¹	64@0¹	75@0¹	100@0 ¹	128@0¹	162@0	216@0¹			TDD
	60		10@0¹	18@0	24@0	30@0¹	36@0¹	50@0 ¹	64@0¹	75@0¹	100@0 ¹			
	15		50@0 ¹	75@0¹	100@0 ¹			216@0	270@0					
n41	30		24@0	36@0¹	50@0¹			100@0¹	128@0¹	162@0	216@0¹	243@0¹	270@0¹	TDD
	60		10@0¹	18@0	24@0			50@0 ¹	64@0¹	75@0¹	100@0 ¹	120@0¹	135@0	
	15	25@0												
n51	30													TDD
	60													
	15	25@0	50@0 ¹	75@0¹	100 ¹			216@0						
n66	30		24@0	36@0¹	50@0¹			100@0 ¹						FDD
	60		10@0¹	18@0	24@0			50@0 ¹						
	15	25@0	50@0¹	75@0¹	NOTE 3	NOTE 3								
n70	30		24@0	36@0¹	NOTE 3	NOTE 3								FDD
	60		10@0¹	18@0	NOTE 3	NOTE 3								
	15	25@0	25@25¹	20@55 ¹	20@80 ¹									
n71	30		12@12 ¹	10@26 ¹	10@40 ¹									FDD
	60													
	15		50@0¹	75@0¹	100@0 ¹			216@0	270@0					
n77	30		24@0	36@0¹	50@0¹			100@0 ¹	128@0¹	162@0	216@0 ¹	243@0¹	270@0¹	TDD
	60	-	10@0¹	18@0	24@0			50@0 ¹	64@0¹	75@0¹	100@0 ¹	120@0 ¹	135@0	
n77 (3.8	15		50@0 ¹	75@0¹	100@0 ¹			216@0	270@0					
to 4.2	30		24@0	36@0	50@0			100@0¹	128@0¹	162@0	216@0¹	243@0¹	270@0¹	TDD
GHz)	60		10@0¹	18@0	24@0			50@0 ¹	64@0¹	75@0¹	100@0¹	120@0¹	135@0	
	15		50@0¹	75@0¹	100@0¹			216@0	270@0					
n78	30		24@0	36@0¹	50@0¹			100@0¹	128@0¹	162@0	216@0¹	243@0¹	270@0¹	TDD
	60		10@0¹	18@0	24@0			50@0¹	64@0¹	75@0¹	100@0¹	120@0¹	135@0	
70	15							216@0	270@0					TDD
n79	30							100@0¹	128@0¹	162@0	216@0¹		270@0¹	TDD
·					1	1								

	60							50@0 ¹	64@0¹	75@0¹	100@0 ¹		135@0	
							s possible to	the downl	ink operatir	ng band bu	ut confined	within the tra	ansmissior	า
				ne channel										
NOTE 2:	² refers t	o Band 20); for 15kH:	z SCS, in tl	ne case of	15MHz cha	nnel bandwi	dth, the UL	resource b	olocks sha	Il be located	d at Restart	11 and in	the case
	of 20MH	z channel	bandwidth	, the UL re	source bloc	cks shall be	located at F	Restart 16;	for 30kHz \$	SCS, in the	e case of 15	5MHz chann	nel bandwi	dth, the
	UL resou	irce block	s shall be I	ocated at F	Restart 6 ar	nd in the ca	se of 20MHz	channel b	andwidth, t	he UL res	ource block	s shall be lo	ocated at F	Restart
	8; for 60	kHz SCS,	in the case	e of 15MHz	channel b	andwidth, t	he UL resou	rce blocks	shall be loc	ated at Re	estart 3 and	I in the case	of 20MHz	channel
	bandwid	th, the UL	resource b	olocks shall	be located	d at Restart	4.							
NOTE 3:	For DL o	hannel ba	andwidths t	hat do not	have symm	netric UL ch	annel bandv	vidth, highe	est valid UL	configura	tion with lov	west duplex	distance s	shall be
	used.				-			_		_		•		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex [A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The UL and Reference Measurement Channel is set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.3.2.4.3.

7.3.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits PUMAX level for at least the duration of the Throughput measurement.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

7.3.2.4.3 Message contents

Message contents are according to TS 38.508-1[5] subclause 4.6 with the following exceptions.

7.3.2.4.3.1 Message contents exceptions (network signalled value "NS_01")

Message contents according to TS 38.508-1 [5] subclause 4.6 can be used without exceptions.

7.3.2.4.3.2 Message contents exceptions (network signalled value "NS_35")

1. Information element additional Spectrum Emission is set to NS_35. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.2.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_35"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	.6.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	[35 (NS_35)]		

7.3.2.5 Test requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A3.2 with reference receive power level specified in Tables 7.3.2.5-1 and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3.

Table 7.3.2.5-1: Reference sensitivity QPSK PREFSENS

				Operati	ng band	/ SCS / C	hannel b	andwidt	h / Duple:	x-mode				
Oper ating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Dupl ex Mode

		-100.0	-96.8	-95.0	-93.8						
	15	+TT	+TT	+TT	+TT						
			-97.1	-95.1	-94.0						
n1	30		+TT	+TT	+TT						FDD
			-97.5	-95.4	-94.2						
	60		+TT	+TT	+TT						
		-98.0	-94.8	-93.0	-91.8						
	15	+TT	+TT	+TT	+TT						
			-95.1	-93.1	-92.0						
n2	30		+TT	+TT	+TT						FDD
			-95.5	-93.4	-92.2						
	60		+TT	+TT	+TT						
	15	-97.0	-93.8	-92.0	-90.8	-89.7	-88.9				
	15	+TT	+TT	+TT	+TT	+TT	+TT				
n3	30		-94.1	-92.1	-91.0	-89.8	-89.0				FDD
113	30		+TT	+TT	+TT	+TT	+TT				
	60		-94.5	-92.4	-91.2	-90.0	-89.1				
	00		+TT	+TT	+TT	+TT	+TT				
n5	15	-98.0	-94.8	-93.0	-90.8						FDD
113	13	+TT	+TT	+TT	+TT						טטו

		1				1	T		T	1	1			
	30		-95.1	-93.1	-91.0									
			+TT	+TT	+TT									
	60													
	15	-98.0	-94.8	-93.0	-91.8									
		+TT	+TT	+TT	+TT									4
n7¹	30		-95.1	-93.1	-92.0									FDD
			+TT	+TT	+TT									
	60		-95.5	-93.4	-92.2									
		07.0	+TT	+TT	+TT									
	15	-97.0	-93.8	-92.0	-90.0									
0		+TT	+TT	+TT	+TT									
n8	30		-94.1	-92.1	-90.2									FDD
			+TT	+TT	+TT									
	60	07.0	00.0	00.0										
	15	-97.0	-93.8	-92.0										
-10	20	+TT	+TT	+TT										
n12	30		-94.1 +TT	-92.1 +TT										FDD
	60		+11	+11										
	60	-97.0	-93.8	-91.0	90.9									
	15	+TT	-93.6 +TT	+TT	-89.8 +TT									
200		+11	-94.1	-91.1								-		FDD
n20	30		+TT	+TT	-90.0 +TT									רטט
	60		+11	+11	+11									
	15	-96.5	-93.3	-91.5	-90.3									
	15	+TT	-93.3 +TT	+TT	+TT									
	30	+11	-93.6	-91.6	-90.5									-
n25	30		+TT	+TT	+TT									FDD
	60		-94.0	-91.9	-90.7									-
	00		+TT	+TT	+TT									
		-98.5	-95.5	-93.5	-90.8									
	15	+TT	-95.5 +TT	-93.5 +TT	+TT									
n28		TII	-95.6	-93.6	-91.0									FDD
1120	30		+TT	+TT	+TT									טטיו
	60		711	711	TII									-
	15	-100.0	-96.8	-95.0										
	13	+TT	+TT	+TT										
	30	TII	-97.1	-95.1										-
n34	30		+TT	+TT										TDD
	60		-97.5	-95.4										
	00		+TT	+TT										
		-100.0	-96.8	-95.0	-93.8									
	15	+TT	+TT	+TT	+TT									
			-97.1	-95.1	-94.0									
n38	30		+TT	+TT	+TT									TDD
			-97.5	-95.4	-94.2									
	60		+TT	+TT	+TT									
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6						
		+TT	+TT	+TT	+TT	+TT	+TT	+TT						
-00	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7						TO.
n39			+TT	+TT	+TT	+TT	+TT	+TT						TDD
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9						1
			+TT	+TT	+TT	+TT	+TT	+TT						
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6					
		+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT					
- 40	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7	-88.9	-87.6			TO.
n40			+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT			TDD
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8	-89.1	-87.6			7
			+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT			
	4.5		-94.8	-93.0	-91.8			-88.6	-87.6					
	15		+TT	+TT	+TT			+TT	+TT					
441	00		-95.1	-93.1	-92.0	İ		-88.7	-87.7	-86.9	-85.6	-85.1	-84.7	1
n41 ¹	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	TDD
	00	İ	-95.5	-93.4	-92.2	İ		-88.9	-87.8	-87.1	-85.6	-85.1	-84.7	1
	60		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
	4.5	-100.0												TOC
n51	15	+TT												TDD
	•	•			•	ē		•		•	·			

	30												
	60			-		-						-	1
	00	-99.5	-96.3	-94.5	-93.3	1	-90.1	1		1	1	1	
	15	-99.5 +TT	-96.3 +TT	-94.5 +TT	-93.3 +TT		+TT						
		+11	-96.6	-94.6	-93.5		-90.2						-
n66	30		-96.6 +TT	+TT	+TT		+TT						FDD
			-97.0	-94.9	-93.7		-90.4						-
	60		-97.0 +TT	+TT	-93.7 +TT		+TT						
		-100.0	-96.8	-95.0	-93.8	-92.7	TII						
	15	+TT	-96.6 +TT	-95.0 +TT	-93.6 +TT	-92.7 +TT							
		+11	-97.1	-95.1	-94.0	-92.8							-
n70	30		-97.1 +TT	+TT	+TT	-92.8 +TT							FDD
													-
	60		-97.5	-95.4	-94.2 +TT	-93.0							
		07.0	+TT	+TT		+TT							
	15	-97.2	-94.0	-91.6	-86.0								
7.4		+TT	+TT	+TT	+TT								
n71	30		-94.3	-91.9	-87.4								FDD
			+TT	+TT	+TT								-
	60	-	05.0	0.1.0	20.7		20.0	20.0					
	15		-95.8	-94.0	-92.7		-89.6	-88.6					
			+TT	+TT	+TT		+TT	+TT			/		
n77¹	30		-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
			+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT	1
	60	_	-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
			+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT	
	15		-95.3	-93.5	-92.2		-89.1	-88.1					
n77			+TT	+TT	+TT		+TT	+TT					
(3.8)	30		-95.6	-93.6	-92.4		-89.2	-88.2	-87.4	-86.1	-85.6	-85.1	TDD
to 4.2			+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT] ''
GHz) ¹	60	_	-96.0	-93.9	-92.6		-89.4	-88.3	-87.5	-86.2	-85.7	-85.2	
	00		+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT	
	15		-95.8	-94.0	-92.7		-89.6	-88.6					
			+TT	+TT	+TT		+TT	+TT					
n78¹	30		-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
1170	- 50		+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT	100
	60		-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
	00		+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT	
	15						-89.6	-88.6					
	13						+TT	+TT					_
n79¹	30						-89.7	-88.7	-87.9	-86.6		-85.6	TDD
111 9	30						+TT	+TT	+TT	+TT		+TT	
	60						-89.9	-88.8	-88.0	-86.7		-85.7	
	00						+TT	+TT	+TT	+TT		+TT	

NOTE 1: Four Rx antenna ports shall be the baseline for this operating band NOTE 2: The transmitter shall be set to PuMAX as defined in subclause 6.2.4

NOTE 3: TT for each frequency and channel bandwidth is specified in Table 7.3.2.5-2

Table 7.3.2.5-2: Test Tolerance (TT) for RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
0.7 dB	1.0 dB	1.5 dB

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.2.5-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3.3 for the applicable operating bands

7.3.2_1 Reference sensitivity level with 4 Rx antenna ports

Editor's Note

- Connection diagram for 4-Rx port is FFS.

7.3.2_1.1 Test purpose

To verify the ability of UE that supports 4 Rx antenna ports to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise. A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area.

7.3.2_1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that supports 4 Rx antenna ports.

7.3.2_1.3 Minimum conformance requirements

For UE(s) equipped with 4 Rx antenna ports, reference sensitivity for 2Rx antenna ports in Table 7.3.2.5-1 shall be modified by the amount given in $\Delta R_{IB,4R}$ in Table 7.3.2_1.3-1 for the applicable operating bands.

Table 7.3.2_1.3-1: Four antenna port reference sensitivity allowance ΔR_{IB,4R}

Operating band	ΔR _{IB,4R} (dB)
n7, n38, n41	-2.7
n77, n78, n79	-2.2

The minimum conformance requirements are defined in TS 38.101-1 [2] clause 7.3.2.3.

7.3.2_1.4 Test description

7.3.2 1.4.1 Initial conditions

Same as in clause 7.3.2.4.1 with following exceptions:

- Instead of Figure A.3.2.1.3.2 \rightarrow use Figure [TBD].
- Instead of clause $7.3.2.4.3 \rightarrow$ use clause 7.3.2 1.4.3.

7.3.2_1.4.2 Test procedure

Same as in clause 7.3.2.4.2.

7.3.2_1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 subclause 4.6 with the following exceptions.

7.3.2_1.4.3.1 Message contents exceptions (network signalled value "NS_01")

Message contents according to TS 38.508-1 [5] subclause 4.6 subclause 4.6 can be used without exceptions.

7.3.2 1.4.3.2 Message contents exceptions (network signalled value "NS 35")

1. Information element additional Spectrum Emission is set to NS_35. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.2_1.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 35"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	.6.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	35 (NS_35)		

7.3.2_1.5 Test requirement

Same as in clause 7.3.2.5 with the following exceptions:

- Instead of Table 7.3.2.5-1 \rightarrow use Table 7.3.2_1.5-1.

Table 7.3.2_1.5-1: Reference sensitivity QPSK PREFSENS

				Operati	ng band	/ SCS / C	hannel b	andwidtl	h / Duple	x-mode				
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15	-100.7 +TT	-97.5 +TT	-95.7 +TT	-94.5 +TT									
n7	30		-97.8 +TT	-95.8 +TT	-94.7 +TT									FDD
	60		-98.2 +TT	-97.1 +TT	-94.9 +TT									
	15	-102.7 +TT	-99.5 +TT	-97.7 +TT	-96.5 +TT									
n38	30		-99.8 +TT	-97.8 +TT	-96.7 +TT									TDD
	60		-100.2 +TT	-98.1 +TT	-96.9 +TT									
	15		-97.5 +TT	-95.7 +TT	-94.5 +TT			-91.3 +TT	-90.3 +TT					
n41	30		-97.8 +TT	-95.8 +TT	-94.7 +TT			-91.4 +TT	-90.4 +TT	-89.6 +TT	-88.3 +TT	-87.8 +TT	-87.4 +TT	TDD
	60		-98.2 +TT	-96.1 +TT	-94.9 +TT			-91.6 +TT	-90.5 +TT	-89.8 +TT	-88.3 +TT	-87.8 +TT	-87.4 +TT	
	15		-98.0 +TT	-96.2 +TT	-94.9 +TT			-91.8 +TT	-90.8 +TT					
n77	30		-98.3 +TT	-96.3 +TT	-95.1 +TT			-91.9 +TT	-90.9 +TT	-90.1 +TT	-88.8 +TT	-88.3 +TT	-87.8 +TT	TDD
	60	-	-98.7 +TT	-96.6 +TT	-95.3 +TT			-92.1 +TT	-91.0 +TT	-90.2 +TT	-88.9 +TT	-88.4 +TT	-87.9 +TT	
	15		-98.0 +TT	-96.2 +TT	-94.9 +TT			-91.8 +TT	-90.8 +TT					
n78	30		-98.3 +TT	-96.3 +TT	-95.1 +TT			-91.9 +TT	-90.9 +TT	-90.1 +TT	-88.8 +TT	-88.3 +TT	-87.8 +TT	TDD
	60		-98.7 +TT	-96.6 +TT	-95.3 +TT			-92.1 +TT	-91.0 +TT	-90.2 +TT	-88.9 +TT	-88.4 +TT	-87.9 +TT	
n79								-91.8 +TT	-90.8 +TT					TDD
1119								-91.9 +TT	-90.9 +TT	-90.1 +TT	-88.8 +TT		-87.8 +TT	טטו

7.3.3 ΔRIB,c

<Editor's note: Text to be added >

7.3A Reference sensitivity for CA

Editor's Note:

- Intra-band non-contiguous CA is FFS
- Inter-band CA is not complete.
- Initial condition is not complete.
- Test procedure is not complete
- Message contents is not complete.
- Choice of UL Modulation scheme need to be investigation further.

7.3A.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3A.2 Reference sensitivity power level for CA

7.3A.2.1 Intra-band contiguous CA

7.3A.2.1.0 Minimum requirements of reference sensitivity for CA

FFS

7.3A.2.1.1 Intra-band contiguous CA 2CC

7.3A.2.1.1.1 Test purpose

To verify the ability of UE that support CA to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area.

7.3A.2.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support intra-band contiguous NR DL CA

7.3A.2.1.1.3 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the throughput of each component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in [Annex A] (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with peak reference sensitivity specified in Table 7.3.2.3-1.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.2.3-1 and Table 7.3.2.3-2.

7.3A.2.1.1.4 Test description

7.3A.2.1.1.4.1 Initial conditions

FFS

7.3A.2.1.1.4.2 Test procedure

FFS

7.3A.2.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause [TBD].

7.3A.2.1.1.5 Test requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.2.3-1 and Table 7.3.2.3-2.

7.3A.2.2 Intra-band non-contiguous CA

FFS

7.3A.2.3 Inter-band CA

7.3A.2.3.1 Test purpose

To verify the ability of UE that support inter-band CA to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area.

7.3A.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support inter-band contiguous NR DL CA

7.3A.2.3.3 Minimum conformance requirements

FFS

7.3A.2.3.4 Test description

FFS

7.3A.2.3.4 Test requirement

FFS

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3A.2.1.1.3.1 for the applicable operating bands.

7.3A.3 $\Delta R_{IB,c}$ for CA

7.3A.3.1 General

For a UE supporting a CA configuration, the $\Delta R_{IB,c}$ applies for both SC and CA operation.

7.3A.3.2 Inter-band CA

7.3A.3.2.1 $\Delta R_{IB.c}$ for two bands

Table 7.3A.3.2.1-1: ΔR_{IB,c} due to CA (two bands)

Inter-band CA configuration	E-UTRA Band	ΔR _{IB,c} [dB]						
CA n2A n70A	n3	0.2						
CA_n3A-n78A	n78	0.5						
CA n28A-n78A	n28	0.2						
CA_IIZOA-III OA	n78	0.5						
CA_n41A-n78A ¹	n78	0.5						
NOTE 1: Synchro	NOTE 1: Synchronization of sub-frame and Tx-Rx timing is assumed.							

7.3A.3.2.2 $\Delta R_{IB,c}$ for three bands

Table 7.3A.3.2.2-1: ΔR_{IB,c} due to CA (three bands)

Inter-band CA configuration	E-UTRA Band	ΔR _{IB,c} [dB]

7.3A.4 Reference sensitivity exceptions due to UL harmonic interference for CA

Sensitivity degradation is allowed for a band in frequency range 1 if it is impacted by UL harmonic interference from another band in frequency range 1 of the same CA configuration. Reference sensitivity exceptions are specified in Table 7.3A.4-1 with uplink configuration specified in Table 7.3A.4-2.

Table 7.3A.4-1: Reference sensitivity exceptions due to UL harmonic for NR CA FR1

	MSD due to harmonic exception for the DL band											
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
n3	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.9	16.1		
	n78 ³		1.1	0.8	0.3							
n28	n78 ^{1,2}		[10.4]	[8.9]	[7.8]			[4.7]	[3.7]	[3]	[1.7]	[0.7]

NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.

NOTE 2: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.2 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band

NOTE 3: The requirements are only applicable to channel bandwidths with a carrier frequency at $\pm \left(20 + BW_{Channel}^{HB} / 2\right)$ MHz offset from $2f_{UL}^{LB}$ in the victim (higher band) with $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$, where $\frac{BW_{Channel}^{LB}}{BW_{Channel}^{LB}}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.

Table 7.3A.4-2: Uplink configuration for reference sensitivity exceptions due to UL harmonic interference for NR CA, FR1

	NR Band / Channel bandwidth of the high band											
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
n3	n78		26	39	53			106	133	160		
n28	n78	5	10	15	20							

For unsynchronized operation, Rx de-sensing in one band will be caused by another band due to lack of isolation in the band filters. Reference sensitivity exceptions for cross band are specified in Table 7.3A.2.1.3.2-3 with uplink configuration specified in Table 7.3A.2.1.3.2-4.

Table 7.3A.2.1.3.2-3: MSD for the CA configuration for asynchronous operation and cross band

	Channel bandwidth											
NR CA NR band 5 10 15 20 40 50 60 80 100 \dot{x}										Duple x mode		
	n41		-90.3	-88.5	-87.3	-84.1	-83.1				TDD	
CA_n41A-n78A	n78 SCS =30 kHz		-87.8	-85.8	-84.6	-81.4	-80.4	-79.6	-78.3	-77.3	TDD	

Table 7.3A.2.1.3.2-4: Harmonic mixing MSD

	NR Band / Channel bandwidth / N _{RB} / Duplex mode											
NR CA Configuration	NR band	UL F _c (MHz)	UL/DL BW (MHz)	UL C _{LRB}	DL F _c (MHz)	MSD (dB)	Duplex mode	Source of IMD				
CA_n41A-n78A ¹	n41	2496 ²	20	100	2496	10.4	TDD	Harmonic mixing				
	n78	3744 ²	10	25	3744	NA	TDD	N/A				
CA_n41A-n78A ¹	n41	2534 ²	20	100	2534	10.4	TDD	Harmonic mixing				
_	n78	3800 ²	10	25	3800	NA	TDD	N/A				

NOTE 1: 2x n78 Tx = 3x n41 Rx

NOTE 2: All channel frequencies between those specified also are de-sensing the same amount.

7.3B Reference sensitivity for DC

7.3C Reference sensitivity for SUL

7.3C.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3C.2 Reference sensitivity power level

Editor's Note:

- Setup SUL operation is not complete.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- Test point selection needs further analysis.

7.3C.2.1 Test purpose

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under SUL operation and conditions of low signal level, ideal propagation and no added noise.

7.3C.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports SUL operation.

7.3C.2.3 Minimum conformance requirements

For SUL operation, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3.2.3-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3-1 or supplementary uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3-1.

Table 7.3C.2.3-1: Supplementary Uplink configuration for reference sensitivity

Downlink band/ Uplink band /Channel bandwidth / N _{RB}									
Downlink band	Uplink band	5 MHz	10 MHz	15 MHz	20 MHz				
n78	n80	25	52	79	106				
n78	n81	25	52	79	106				
n78	n82	25	52	79	106				
n78	n83	25	52	79	106				
n78	n84	25	52	79	106				
n78	n86	25	52	79	106				
n79	n80	25	52	79	106				
n79	n81	25	52	79	106				

For the UE that supports any of the SUL operation given in Table 7.3C.2.3-2, exceptions to the requirements specified in Table 7.3.2.3-1 are allowed when the uplink is active in a lower frequency band and is within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3C.2.3-2. For these exceptions, the UE shall meet the requirements specified in Table 7.3C.2.3.-2 and Supplementary Uplink configuration (exceptions due to harmonic issue given in Table 7.3C.2.3.-3.

Table 7.3C.2.3-2: Reference sensitivity for SUL operation (exceptions due to harmonic issue)

UL	DL	5	10	15	20	25	30	40	50	60	80	90	100
band	band	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
n80	n78 ^{1,2}		23.9	22.1	20.9			17.9					
	n78³		1.1	0.8	0.3								
n82	n78 ^{4,5}		10.8	9.1	8			6					
n81	n78 ^{1,2}		10.8	9.1	8			5.1	4.2	3.5	2.3		1.4
n81	n78 ^{6,7}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
n86	n78 ^{1,2}		23.9	22.1	20.9			17.9					
1100	n78³		1.1	0.8	0.3								
n81	n79 ^{6,7}							[6.8]	6.2	[5.6]	4.9		4.4

- NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 2: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.2 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $\frac{BW_{Channel}^{LB}}{B}$ the channel bandwidth configured in the lower band.
- NOTE 4: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 5: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.4 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.
- NOTE 6: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.5 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.
- NOTE 7: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band

Table 7.3C.2.3-3: Supplementary Uplink configuration (exceptions due to harmonic issue)

UL band	DL band	5 MHz (N _{RB})	10 MHz (N _{RB})	15 MHz (N _{RB})	20 MHz (N _{RB})	25 MHz (N _{RB})	30 MHz (N _{RB})	40 MHz (N _{RB})	50 MHz (N _{RB})	60 MHz (N _{RB})	80 MHz (N _{RB})	90 MHz (N _{RB})	100 MHz (N _{RB})
n80	n78		25	36	50			100					
n81	n78		16	25	25			25	25	25	25	25	25
n81	n79							25	25	25	25	25	25
n83	n78		10	15	20			25	25	25	25	25	25
n86	n78		26	39	53			100					

NOTE 1: The configuration is used for measurement of MSD for NR channel bandwidth of 20MHz. NOTE 2: The configuration is used for measurement of MSD for NR channel bandwidth of 40MHz.

For the UE which supports SUL band combination, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3C.3 for the applicable NR bands. The normative reference for this requirement is TS 38.101-1 [2] clause 7.3C.2

7.3C.2.4 Test description

7.3C.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in A2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex [A, Figure [TBD].
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1, C.2, C3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The UL and DL Reference Measurement Channel shall be set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3.
- 5. The UL Reference Measurement Channel shall be set according to Table 7.3C.2.3-2 and 7.3C.2.3-3 when testing is performed with UL/DL band combination listed in Table 7.3C.2.3-2 for exceptions due to harmonic issue.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.3C.2.4.3

7.3C.2.4.2 Test procedure

- 1 SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.3.1. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits P_{UMAX} level for at least the duration of the Throughput measurement.
- 4. Setup SUL operation [TBD].
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

7.3C.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.3C.2.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A3.2 with parameters specified in Tables 7.3.2.3-1 and Tables 7.3.2.3-2.

For SUL operation, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3.2.5-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.4.1-3 with exceptions listed in clause 7.3C.2.5.1.

7.3C.2.5.1 Reference sensitivity exceptions due to harmonic issue

For SUL operation with DL band listed in Table 7.3C.2.3-2 with supplementary uplink transmission bandwidth less than or equal to that specified in Table 7.3C.2.3-1, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3C.2.5.1-1 due to harmonic exceptions.

Table 7.3C.2.5.1-1: Reference sensitivity for SUL operation (exceptions due to harmonic issue)

UL band	DL band	scs	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
		kHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
		15		-70.9	-70.9	-70.8			-70.7				
n80	n78 ^{1,2}	30		-71.2	-71.0	-70.9			-70.8				
		60		-71.6	-71.3	-71.2			-71.0				
		15		-93.7	-92.2	-91.4							
n80	n78³	30		-94.0	-92.3	-91.5							
		60		-94.4	-92.6	-91.8							

NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.

NOTE 3: The requirements are only applicable to channel bandwidths with a carrier frequency at $\frac{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)}{E^{LB}_{Channel}} \, \text{MHz offset from} \, \frac{2 f_{UL}^{LB}}{E^{LB}_{UL}} \, \text{in the victim (higher band) with}$ $F_{UL_low}^{LB} + BW_{Channel}^{LB} \, / \, 2 \leq f_{UL}^{LB} \leq F_{UL_high}^{LB} - BW_{Channel}^{LB} \, / \, 2 \, \text{, where} \, \frac{BW_{Channel}^{LB}}{E^{LB}_{Channel}} \, \text{are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.}$

For the UE which supports SUL band combination, the minimum requirement for reference sensitivity in Table 7.3C.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3C.3.

7.3C.3 $\Delta R_{IB.c}$ for SUL

7.3C.3.1 General

band.

For a UE supporting a SUL configuration, the $\Delta R_{IB,c}$ applies for both SC and SUL operation.

7.3C.3.2 SUL band combination

For the UE which supports SUL band combination, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in Table 7.3C.3.2-1 for the applicable operating bands.

Table 7.3C.3.2-1: ΔR_{IB,c} due to SUL (two bands)

Band combination for SUL	NR Band	ΔR _{IB,c} [dB]
SUL n78-n80	n78	0.5
30L_II/0-II00	n80	0.2
SUL n78-n81	n78	0.2
30L_1170-1101	n81	0.2
SUL_n78-n82	n78	0.5
SUL n78-n83	n78	0.5
30L_II/0-II03	n83	0.2
SUL_n78-n84	n78	0.5
SUL_n78-n86	n78	0.5
30L_11/6-1166	n86	0.2

7.4 Maximum input level

FFS

7.4A Maximum input level for CA

FFS

7.5 Adjacent channel selectivity

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- UL power level configuration is TBD in TS 38.101-1 [2].
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS

7.5.1 Test purpose

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.5.3 Minimum conformance requirements

The UE shall fulfil the minimum requirements specified in Table 7.5.3-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and the minimum requirements specified in Table 7.5.3-2. for NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz. These requirements apply for all values of an adjacent channel interferer up to -25 dBm and for any SCS specified for the channel bandwidth of the wanted signal. However, it is not possible to directly measure the ACS; instead the lower and upper range of test parameters are chosen as in Table 7.5.3-3 and Table 7.5.3-4 for verification of the requirements specified in Table 7.5.3-1 and as in Table 7.5.3-5, and Table 7.5.3-6 for verification of the requirements specified in Table 7.5.3-2. For these test parameters, the throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2(with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5)]. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.5.3-1: ACS for NR bands with FDL_high < 2700 MHz and FUL_high < 2700 MHz

RX parameter	Units	Channel bandwidth						
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz		
ACS	dB	[33]	[33]	[30]	[27]	[26]		
RX parameter	Units		Channel bandwidth					
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
ACS	dB	[25.5]	[24]	[23]	[22.5]	[21]		
RX parameter	Units		Cha	annel bandw	idth			
		90 MHz	100 MHz					
ACS	dB	[20.5]	[20]					

Table 7.5.3-2: ACS for NR bands with F_{DL low} ≥ 3300 MHz and F_{UL low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth					
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
ACS	dB	[33]	[33]	[33]	[33]	[33]	
RX parameter	Units		Cha	nnel bandw	idth		
		60 MHz	80 MHz	90 MHz	100 MHz		
ACS	dB	[33]	[33]	[33]	[33]		

Table 7.5.3-3: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 1

RX parameter	Units		CI	hannel bandwid	lth	
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В	
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [42.5] dB	REFSENS + [39.5] dB	REFSENS + [38.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15
RX parameter	Units	-		hannel bandwid		
•		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В	
Pinterferer	dBm	REFSENS + [38] dB	REFSENS + [36.5] dB	REFSENS + [35.5] dB	REFSENS + [35] dB	REFSENS + [33.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5
RX parameter	Units			hannel bandwid	th	
		90 MHz	100 MHz			
Power in transmission bandwidth configuration	dBm	REFSEN	S + 14 dB			
Pinterferer	dBm	REFSENS + [33] dB	REFSENS + [32.5] dB			
BW _{interferer}	MHz	5	5			
Finterferer (offset)	MHz	47.5 / -47.5	52.5 / -52.5			

NOTE 1: The transmitter shall be set to 4dB below [...]. NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The

interferer is an NR signal with an SCS equal to that of the wanted signal. NOTE 3: The interferer consists of the NR interferer RMC specified in [...]

Table 7.5.3-4: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 2

RX parameter	Units		С	hannel bandwid	lth	
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in transmission bandwidth configuration	dBm	[-56.5]	[-56.5]	[-53.5]	[-50.5]	[-49.5]
Pinterferer	dBm			-25		
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15
RX parameter	Units			hannel bandwid		
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in transmission bandwidth configuration	dBm	[-49]	[-47]	[-46.5]	[-46]	[-44.5]
Pinterferer	dBm			-25		
BW _{interferer}	MHz	5	5	5	5	5
F _{interferer} (offset)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5
RX parameter	Units			hannel bandwid		•
-		90 MHz	100 MHz			
Power in transmission bandwidth configuration	dBm	[-44]	[-43.5]			
Pinterferer	dBm	-	25	_	_	
BWinterferer	MHz	5	5			
Finterferer (offset)	MHz	52.5 / -52.5	52.5 / -52.5			

NOTE 1: The transmitter shall be set to 24 dB below [...].

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The

interferer is an NR signal with an SCS equal to that of the wanted signal. NOTE 3: The interferer consists of the RMC specified in [...]

Table 7.5.3-5: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

RX parameter	Units		CI	hannel bandwid	lth				
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz			
Power in transmission bandwidth configuration	dBm		REFSENS + 14 dB						
Pinterferer	dBm		RE	FSENS + [45.5]	dB				
BWinterferer	MHz	10	10 15 20 40 50						
Finterferer (offset)	MHz	10 / -10	15 / -15	20 / -20	40 / -40	50 / -50			
RX parameter	Units		CI	hannel bandwid	th				
-		60 MHz	80 MHz	90 MHz	100 MHz				
Power in transmission bandwidth configuration	dBm		REFSENS	S + 14 dB					
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB				
BW _{interferer}	MHz	60	80	90	100				
Finterferer (offset)	MHz	60	80	90	100	•			
		/	/	/	/				
		-60	-80	-90	-100				

NOTE 1: The transmitter shall be set to 4dB below [...].
NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(\lceil F_{\text{interferer}} \rceil / SCS \rceil + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The

interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [...]

Table 7.5.3-6: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

RX parameter	Units		Channel bandwidth						
		10 MHz	20 MHz	40 MHz	60 MHz	80 MHz			
Power in	dBm								
transmission bandwidth configuration			[-56.5]						
Pinterferer	dBm			-25					
BWinterferer	MHz	10	20	40	60	80			
Finterferer (offset)	MHz	10	20	40	60	80			
		/	/	/	/	/			
		-10	-20	-40	-60	-80			
RX parameter	Units		CI	hannel bandwid	lth				
		60 MHz	80 MHz	90 MHz	100 MHz				
Power in transmission bandwidth	dBm		[-50	6.5]					
configuration									
Pinterferer	dBm	-25	-25	-25	-25				
BW _{interferer}	MHz	60	80	90	100				
Finterferer (offset)	MHz	60	80	90	100				
		/	/	/	/				
		-60	-80	-90	-100				

NOTE 1: The transmitter shall be set to 24 dB below [...]. NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [...]

The normative reference for this requirement is TS 38.101-1 [2] clause 7.5.

7.5.4 Test description

7.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.5.4.1-1: Test Configuration Table

		De	fault Conditio	ns				
Test Enviro	onment as specified in T	S	Normal					
	5] subclause 4.1							
Test Frequ	encies as specified in T	S	Mid range					
38.508-1 [5	5] subclause 4.3.1							
Test Chani	nel Bandwidths as speci	fied in	Lowest, Mid a	Lowest, Mid and Highest				
TS 38.508	-1 [5] subclause 4.3.1							
Test SCS a	as specified in Table 5.3	.5-1	Lowest					
		Т	est Parameter	rs				
	Downlink Co	nfigura	ition	Uplink Config	guration			
Test ID	Mod'n	RB	allocation	Mod'n	RB allocation			
1	CP-OFDM QPSK	1	NOTE 1	DFT-s-OFDM QPSK	NOTE 1			
NOTE 1:	The specific configuration	n of upl	ink and downli	nk are defined in Table 7.	.3.2.4.1-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.5.4.3.

7.5.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.5.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.5.5-2 or Table 7.5.5-5 as appropriate (Case 1). Send Uplink power control commands to the UE (less or equal to TBD dB step size should be used), to ensure that the UE output power is within [TBD] dB of the target power level in Table 7.5.5-2 or Table 7.5.5-5, for at least the duration of the Throughput measurement.
- 4. Set the Interferer signal level to the value as defined in Table 7.5.5-2 or Table 7.5.5-5 as appropriate (Case 1) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex [TBD].
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 4.

- 7. Set the Downlink signal level to the value as defined in Table 7.5.5-3 or Table 7.5.5-6 as appropriate (Case 2). Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within [TBD] dB of the target power level in Table [TBD], for at least the duration of the Throughput measurement.
- 8. Set the Interferer signal level to the value as defined in Table 7.5.5-3 or Table 7.5.5-6 as appropriate (Case 2) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex [TBD].
- Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 10. Repeat steps from 7 to 9, using an interfering signal above the wanted signal in Case 2 at step 8.
- 11. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

7.5.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-89 PUSCH-Config.

7.5.5 Test requirement

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Tables 7.5.5-2 and 7.5.5-3.

Table 7.5.5-1: ACS for NR bands with FDL high < 2700 MHz and FUL high < 2700 MHz

RX parameter	Units	Channel bandwidth					
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
ACS	dB	[33]	[33]	[30]	[27]	[26]	
RX parameter	Units	Channel bandwidth					
-		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
ACS	dB	[25.5]	[24]	[23]	[22.5]	[21]	
RX parameter	Units		Cha	nnel bandw	idth		
		90 MHz	100 MHz				
ACS	dВ	[20.5]	[20]				

Table 7.5.5-2: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 1

RX parameter	Units		CI	hannel bandwid	lth	
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В	
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [42.5] dB	REFSENS + [39.5] dB	REFSENS + [38.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15
RX parameter	Units		CI	hannel bandwid	th	
-		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in transmission bandwidth configuration	dBm	REFSENS + 14 dB				
Pinterferer	dBm	REFSENS + [38] dB	REFSENS + [36.5] dB	REFSENS + [35.5] dB	REFSENS + [35] dB	REFSENS + [33.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5
RX parameter	Units			hannel bandwid	th	
		90 MHz	100 MHz			
Power in transmission bandwidth configuration	dBm	REFSEN	S + 14 dB			
Pinterferer	dBm	REFSENS + [33] dB	REFSENS + [32.5] dB			
BW _{interferer}	MHz	5	5			
Finterferer (Offset)	MHz	47.5 / -47.5	52.5 / -52.5			

NOTE 1: The transmitter shall be set to 4dB below [...].

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal. NOTE 3: The interferer consists of the NR interferer RMC specified in [...]

Table 7.5.5-3: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 2

RX parameter	Units		С	hannel bandwid	ith				
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz			
Power in	dBm	[-56.5]	[-56.5]	[-53.5]	[-50.5]	[-49.5]			
transmission									
bandwidth									
configuration									
Pinterferer	dBm			-25					
BWinterferer	MHz	5	5	5	5	5			
Finterferer (offset)	MHz	5	7.5	10	12.5	15			
		/	/	/	/	/			
		-5	-7.5	-10	-12.5	-15			
RX parameter	Units		C	hannel bandwid	ith				
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz			
Power in	dBm	[-49]	[-47]	[-46.5]	[-46]	[-44.5]			
transmission									
bandwidth									
configuration									
Pinterferer	dBm			-25					
BW _{interferer}	MHz	5	5	5	5	5			
Finterferer (offset)	MHz	17.5	22.5	27.5	32.5	42.5			
,		/	/	/	/	/			
		-17.5	-22.5	-27.5	-32.5	-42.5			
RX parameter	Units		С	hannel bandwid	lth				
		90 MHz	100 MHz						
Power in	dBm								
transmission		[_1/1]	[-43.5]						
bandwidth		[-44]	[-43.0]						
configuration									
Pinterferer	dBm	=	25						
BWinterferer	MHz	5	5						
Finterferer (offset)	MHz	52.5	52.5						
		/	/						
		-52.5	-52.5						

NOTE 1: The transmitter shall be set to 24 dB below [...].

NOTE 2: The absolute value of the interferer offset $F_{\text{interferer}}$ (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [...]

For NR bands with F_{DL_high} < 3300 MHz and F_{UL_high} < 3300 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Tables 7.5.5-5 and 7.5.5-6.

Table 7.5.5-4: ACS for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth					
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
ACS	dB	[33]	[33]	[33]	[33]	[33]	
RX parameter	Units	Channel bandwidth					
		60 MHz	80 MHz	90 MHz	100 MHz		
ACS	dB	[33]	[33]	[33]	[33]		

Table 7.5.5-5: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

RX parameter	Units		CI	nannel bandwid	lth		
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В		
Pinterferer	dBm		REFSENS + [45.5] dB				
BWinterferer	MHz	10	15	20	40	50	
Finterferer (offset)	MHz	10 / -10	15 / -15	20 / -20	40 / -40	50 / -50	
RX parameter	Units		CI	nannel bandwid	th		
•		60 MHz	80 MHz	90 MHz	100 MHz		
Power in transmission bandwidth configuration	dBm		REFSEN	S + 14 dB			
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB		
BW _{interferer}	MHz	60	80	90	100		
Finterferer (offset)	MHz	60	80	90	100		
		/	/	/	/		
		-60	-80	-90	-100		

NOTE 1: The transmitter shall be set to 4dB below [...].

NOTE 2: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [...]

Table 7.5.5-6: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

RX parameter	Units		CI	hannel bandwid	dth	
-		10 MHz	20 MHz	40 MHz	60 MHz	80 MHz
Power in	dBm					
transmission bandwidth				[-56.5]		
configuration						
Pinterferer	dBm			-25		
BWinterferer	MHz	10	20	40	60	80
Finterferer (offset)	MHz	10	20	40	60	80
		/	/	/	/	/
		-10	-20	-40	-60	-80
RX parameter	Units		CI	hannel bandwid	dth	
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in transmission bandwidth configuration	dBm		[-56	6.5]		
Pinterferer	dBm	-25	-25	-25	-25	
BW _{interferer}	MHz	60	80	90	100	
F _{interferer} (offset)	MHz	60	80	90	100	
		/	/	/	/	
		-60	-80	-90	-100	

NOTE 1: The transmitter shall be set to 24 dB below [...].

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [...

7.5A Adjacent channel selectivity for CA

FFS

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

7.6.1 General

FFS

7.6.2 Inband Blocking

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- UL power level configuration is TBD in TS 38.101-1 [2].
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS

7.6.2.1 Test purpose

Inband blocking is defined for an unwanted interfering signal falling into the range from 15 MHz below to 15 MHz above the UE receive band, with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, or into an immediately adjacent frequency range up 3CBW below or above the UE receive band, with $F_{DL_high} < 3300$ MHz and $F_{UL_high} < 3300$ MHz, at which the relative throughput shall meet or exceed the requirement for the specified measurement channel.

7.6.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.6.2.3 Minimum conformance requirements

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, in-band blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL signal as described in Annex A.5) with parameters specified in Table 7.6.2.3-1 and Table 7.6.2.3-2. The said relative throughput shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.2.3-1: In-band blocking parameters for NR bands with FDL_high < 2700 MHz and FUL_high < 2700 MHz

RX parameter	Units	Channel bandwidth					
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm		REFSENS +	channel specific	c value below		
transmission	dB	6	6	7	9	10	
bandwidth							
configuration							
BWinterferer	MHz			5			
Floffset, case 1	MHz			7.5			
Floffset, case 2	MHz	12.5					
RX parameter	Units	Channel bandwidth					
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm		REFSENS + channel speci				
transmission	dB	11	12	13	14	15	
bandwidth							
configuration							
BWinterferer	MHz			5			
Floffset, case 1	MHz			7.5			
Floffset, case 2	MHz			12.5			
RX parameter	Units		CI	hannel bandwid	dth		
		90 MHz	100 MHz				
Power in	dBm						
transmission			channel specific				
bandwidth		value	below				
configuration							
	dB	15.5	16				
BWinterferer	MHz		5				
Floffset, case 1	MHz	7.5					
Floffset, case 2	MHz	1:	2.5				

NOTE 1: The transmitter shall be set to 4dB below [TBD].

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex [TBD]

Table 7.6.2.3-2: In-band blocking for NR bands with F_{DL} high < 2700 MHz and F_{UL} high < 2700 MHz

NR band	Parameter	Unit	Case 1	Case 2	Case 3
	Pinterferer	dBm	-56	-44	-15
n1, n2, n3,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -	
n5, n7, n8,			Floffset, case 1	Floffset, case 2	
n12, n20,			and	and	
n25, n28,			CBW/2 +	≥ CBW/2 +	
n34, n38,			Floffset, case 1	Floffset, case 2	
n39, n40,	Finterferer	MHz		F _{DL_low} - 15	
n41, n51,				to	
n66, n70,			NOTE 2	F _{DL_high} + 15	
n71, n75,					
n76					
n71	F _{interferer}	MHz	NOTE 2	F _{DL_low} – 12 to	$F_{DL_{low}} - 12$
			INOIEZ	FDL_high + 15	

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to

 $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -CBW/2 - Floffset, case 1; b: CBW/2 + Floffset, case 1

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, in-band blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into an immediately adjacent frequency range up 3CBW below or above the UE receive band with CBW is the bandwidth of the wanted signal. The throughput of the wanted signal shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex

A.5.1.1/A.5.2.1)] with parameters specified in Table 7.6.2.3-3 and Table 7.6.2.3-4. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6.2.3-3: In-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units		CI	nannel bandwid	lth	50 MHz		
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz		
Power in	dBm		REFSENS + channel specific value below					
transmission bandwidth configuration	dB			6				
BW _{interferer}	MHz	10	20	40	60	80		
Floffset, case 1	MHz	15	30	60	90	120		
Floffset, case 2	MHz	25	50	100	150	200		
RX parameter	Units		CI	nannel bandwid	lth			
		60 MHz	80 MHz	90 MHz	100 MHz			
Power in	dBm	REF	SENS + channe	l specific value b	elow			
transmission bandwidth configuration	dB		(6				
BWinterferer	MHz	60	80	90	100			
F _{loffset, case 1}	MHz	90	120	135	150			
Floffset, case 2	MHz	150	200	225	250			

NOTE 1: The transmitter shall be set to 4dB below [TBD].

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex [TBD]

Table 7.6.2.3-4: In-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2
	Pinterferer	dBm	-56	-44
n77, n78,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -
n79			Floffset, case 1	Floffset, case 2
			and	and
			BW/2 +	≥ CBW/2 +
			Floffset, case 1	Floffset, case 2
	Finterferer			F _{DL_low} – 3CBW
			NOTE 2	to
				F _{DL_high} + 3CBW
	The absolute value of			
	further adjusted to	$ F_{ m interferer} $	SCS $+ 0.5)SCS$ MH	z with SCS the
	sub-carrier spacing of	of the want	ted signal in MHz. Th	ne interferer is an
	NR signal with an SO	CS equal to	o that of the wanted	signal.
NOTE 2:	For each carrier freq	uency, the	requirement applies	for two interferer
	carrier frequencies: a	a: -CBW/2	- Floffset, case 1; b: CB	W/2 + Floffset, case 1
NOTE 3:	CBW denotes the ch	annel ban	dwidth of the wanted	d signal

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6.2.

7.6.2.4 Test description

7.6.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.6.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6.2.4.1-1: Test Configuration Table

	Default Conditions					
	onment as specified in T	S	Normal			
38.508-1 [5] subclause 4.1 Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Mid a	and Highest			
Test SCS	as specified in Table 5.3	.5-1	Lowest			
		Т	est Parameter	s		
	Downlink Co	nfigura	ition	Uplink Config	guration	
Test ID	Test ID Mod'n RI			Mod'n	RB allocation	
1	CP-OFDM QPSK	1	NOTE 1	DFT-s-OFDM QPSK	NOTE 1	
NOTE 1:	The specific configuration	n of upl	link and downli	nk are defined in Table 7.	.3.2.4.1-1.	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.6.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.6.2.4.3.

7.6.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to Tables 7.6.2.5-1 and 7.6.2.5-2 or Tables 7.6.2.5-3 and 7.6.2.5-4 as appropriate depending on NR band.
- 4. Set the downlink signal level according to the table 7.6.2.5-1 or 7.6.2.5-3 as appropriate. Send uplink power control commands to the UE (less or equal to TBD dB step size should be used), to ensure that the UE output power is within TBD dB of the target level in table 7.6.2.5-1 for NR bands with FDL_high < 2700 MHz and $F_{UL_high} < 2700$ MHz or within TBD dB of the target level in table 7.6.2.5-3 for NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, for at least the duration of the throughput measurement.
- Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 3.
- 7. Repeat steps from 3 to 6, using interfering signals in Case 2 at step 3 and 6. The ranges of case 2 are covered in steps equal to the interferer bandwidth.

7.6.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-89 PUSCH-Config.

7.6.1.5 Test requirement

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex in Annexes A.2.2, A.2.3 and A.3.2 with parameters specified in Tables 7.6.2.5-1 and 7.6.2.5-2.

Table 7.6.2.5-1: In-band blocking parameters for NR bands with FDL_high < 2700 MHz and FUL_high < 2700 MHz

RX parameter	Units		CI	hannel bandwid	lth				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz			
Power in	dBm		REFSENS +	channel specific	value below				
transmission	dB	6	6	7	9	10			
bandwidth									
configuration									
BW _{interferer}	MHz		5						
Floffset, case 1	MHz		7.5						
Floffset, case 2	MHz		12.5						
RX parameter	Units	Channel bandwi				T			
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz			
Power in	dBm		REFSENS + channel specific value I						
transmission	dB	11	12	13	14	15			
bandwidth									
configuration									
BWinterferer	MHz			5					
Floffset, case 1	MHz			7.5					
Floffset, case 2	MHz			12.5					
RX parameter	Units			nannel bandwid	lth				
		90 MHz	100 MHz						
Power in	dBm								
transmission			channel specific						
bandwidth		value	below						
configuration			.						
	dB	15.5	16						
BW _{interferer}	MHz		5						
Floffset, case 1	MHz		' .5						
Floffset, case 2	MHz	1:	2.5						

NOTE 1: The transmitter shall be set to 4dB below [TBD].

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex [TBD]

Table 7.6.2.5-2: In-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit Case 1		Case 2	Case 3
	Pinterferer	dBm	-56	-44	-15
n1, n2, n3,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -	
n5, n7, n8,			Floffset, case 1	F _{loffset, case 2}	
n12, n20,			and	and	
n28, n38,			CBW/2 +	≥ CBW/2 +	
n39 ,n40,			Floffset, case 1	Floffset, case 2	
n41, n51,	Finterferer	MHz		F _{DL_low} - 15	
n66, n70,			NOTE 2	to	
n71, n75,			NOTE 2	F _{DL_high} + 15	
n76					
n71	F _{interferer}	MHz	NOTE 2	F _{DL_low} – 12 to	F _{DL_low} – 12
			NOTEZ	F _{DL_high} + 15	

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to

 $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -CBW/2 - Floffset, case 1; b: CBW/2 + Floffset, case 1

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, the throughput measurement derived in test procedure shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.2 and A.3 with parameters specified in Tables 7.6.2.5-3 and 7.6.2.5-4.

Table 7.6.2.5-3: In-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz
MHz

RX parameter	Units		CI	hannel bandwid	dth					
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz				
Power in	dBm		REFSENS + channel specific value below							
transmission	dB			6						
bandwidth										
configuration										
BWinterferer	MHz	10	20	40	60	80				
Floffset, case 1	MHz	15	30	60	90	120				
Floffset, case 2	MHz	25	50	100	150	200				
RX parameter	Units		CI	hannel bandwid	dth					
		60 MHz	80 MHz	90 MHz	100 MHz					
Power in	dBm	REF	SENS + channe	l specific value b	elow					
transmission	dB		(5						
bandwidth										
configuration										
BW _{interferer}	MHz	60	80	90	100					
Floffset, case 1	MHz	90	120	135	150					
Floffset, case 2	MHz	150	200	225	250					

NOTE 1: The transmitter shall be set to 4dB below [TBD].

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex [TBD]

Table 7.6.2.5-4: In-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2					
	Pinterferer	dBm	-56	-44					
n77, n78,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -					
n79			Floffset, case 1	Floffset, case 2					
			and	and					
			BW/2 +	≥ CBW/2 +					
			Floffset, case 1	Floffset, case 2					
	Finterferer			F _{DL_low} – 3CBW					
			NOTE 2	to					
				F _{DL_high} + 3CBW					
			ferer_offset Finterfere						
	further adjusted to $(F_{\text{interferer}} / SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an								
			o that of the wanted						
NOTE 2: F	or each carrier freq	uency, the	e requirement applies - F _{loffset, case 1} ; b: CB'	s for two interferer					

7.6.3 Out-of-band blocking

FFS

7.6.4 Narrow band blocking

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

NOTE 3: CBW denotes the channel bandwidth of the wanted signal

- UL power level configuration is TBD in RAN 4 38.101-1.
- Stand alone message contents in TS 38.508-1[5] subclause 4.6 is TBD

7.6.3.1 Test Purpose

Out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band, with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, or falling outside a frequency range up to 3CBW below or from 3CBW above the UE receive band, with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

7.6.3.2 Test Applicability

This test applies to all types of NR UE release 15 and forward.

7.6.3.3 Minimum Conformance Requirements

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-1 and Table 7.6.3-2. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.5-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.3-1: Out-of-band blocking parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

Hnito	Channel bandwidth							
Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz			
dBm	REFSENS + channel specific value below							
dB	6	6	7	9	10			
Linita		Cl	nannel bandwid	th				
Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz			
dBm		value below						
dB	11	12	13	14	15			
Linita	Channel bandwidth							
Units	90 MHz	100 MHz						
dBm	REFSENS + c	hannel specific						
	value	below						
dB	15.5	16						
	dB Units dBm dB Units dBm	dBm 5 MHz dBm 6 Units 30 MHz dBm 11 Units 90 MHz dBm REFSENS + covalue	Sample S	S MHz	S MHz			

Table 7.6.3-2: Out of-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Range 1	Range 2	Range 3
n1, n2, n3,	Pinterferer	dBm	-44	-30	-15
n5, n7, n8,	F _{interferer} (CW)	MHz			
n12, n20,					
n25, n28,					$1 \le f \le F_{DL low} - 85$
n34, n38,			$-60 < f - F_{DL_{low}} < -15$	$-85 < f - F_{DL_{low}} \le -60$	0r
n39, n40,			or	or	F _{DL high} + 85 ≤ f
n41, n51,			$15 < f - F_{DL_high} < 60$	$60 \le f - F_{DL_high} < 85$	1 bl_nign + 65 ≤ 1 ≤ 12750
n66, n70,					<u> = 12730</u>
n71, n75,					
n76					
NOTE: Th	ne power level of the	ne interfere	er (P _{Interferer}) for Range 3	shall be modified to -20 of	dBm for Finterferer >
60	000 MHz.				

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-2, a maximum of

$$\left| \max \left\{ 24,6 \cdot \left\lceil n \cdot N_{RR} / 6 \right\rceil \right\} / \min \left\{ \left\lceil n \cdot N_{RR} / 10 \right\rceil, 5 \right\} \right|$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor CBW/2 \rfloor 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, CBW the bandwidth of the frequency channel in MHz and n = 1,2,3 for SCS = 15,30,60 kHz, respectively. For these exceptions, the requirements in sub-clause 7.7 apply.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range up to 3CBW below or from 3CBW above the UE receive band, where CBW is the channel bandwidth. The throughput of the wanted signal shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-3 and Table 7.6.3-4. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6.3-3: Out-of-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units		Channel bandwidth							
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz				
Power in	dBm		REFSENS +	channel specific	value below					
transmission bandwidth configuration	dB	6	7	9	9	9				
RX parameter	Units		Channel bandwidth							
		60 MHz	80 MHz	90 MHz	100 MHz					
Power in	dBm	REF	SENS + channe	l specific value b	elow					
transmission bandwidth configuration	dB	9	9	9	9					
NOTE: The tra	ansmitter sh	all be set to 4dB	below							

Table 7.6.3-4: Out of-band blocking for NR bands with F_{DL low} ≥ 3300 MHz and F_{UL low} ≥ 3300 MHz

NR band	Parameter	Unit	Range1	Range 2	Range 3
n77, n78	Pinterferer	dBm	-44	-30	-15
(NOTE 3)	Finterferer (CW)	MHz	$-60 < f - F_{DL_low} \le$ $-3CBW$ or $3CBW \le f - F_{DL_high} <$ 60	$\begin{array}{l} -200 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ or \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 200 \end{array}$	$1 \le f \le F_{DL_low} - MAX(200,3CBW)$ or $F_{DL_high} + MAX(200,3CBW)$ $\le f \le 12750$
n79 (NOTE 4)	Finterferer (CW)	MHz	N/A	$ \begin{array}{l} -150 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ \text{or} \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 150 \end{array} $	$1 \le f \le F_{DL_low} - MAX(150,3CBW)$ or $F_{DL_high} + MAX(150,3CBW)$ $\le f \le 12750$

NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 6000 MHz.

NOTE 2: CBW denotes the channel bandwidth of the wanted signal

NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz. For CBW > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3CBW from the band edge. For CBW larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

NOTE 4: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 3650 MHz and F_{Interferer} < 5750 MHz. For CBW ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-4, a maximum of

$$\left[\max\left\{24,6\cdot\left\lceil n\cdot N_{RB} / 6\right\rceil\right\} / \min\left\{\left\lceil n\cdot N_{RB} / 10\right\rceil,5\right\}\right]$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor CBW/2 \rfloor 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, CBW the bandwidth of the frequency channel in MHz and n = 1,2,3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in sub-clause 7.7 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6.3.

7.6.3.4 Test Description

7.6.3.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 7.6.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.3.

Default Conditions Test Environment as specified in TS Normal 38.508-1 [5] subclause 4.1 One frequency chosen arbitrarily from low or high range Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1 Test Channel Bandwidths as specified in Lowest, Mid and Highest TS 38.508-1 [5] subclause 4.3.1 Test SCS as specified in TS 38.508-1 [5] Lowest subclause 4.3.1 **Test Parameters Downlink Configuration Uplink Configuration** Test ID Mod'n **RB** allocation Mod'n **RB** allocation **CP-OFDM QPSK** NOTE 1 DFT-s-OFDM QPSK NOTE 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1.

Table 7.6.3.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508 [5] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.3.1 and TS 38.508-1 [5] subclause 5.2.1.1.1, and uplink signals according to Annex [TBD].
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.6.3.4.3.

7.6.3.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to Table 7.6.3.5-2 or 7.6.3.5-4. The frequency step size is $\min(|CBW/2|5)$ MHz.

- 4. Set the downlink signal level according to the table 7.6.3.5-1 or 7.6.3.5-3. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within 4dB below $P_{CMAX_L,f,c}$ of the target level in table 7.6.3.5-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz or within 4dB below $P_{CMAX_L,f,c}$ dB of the target level in table 7.6.2.5-3 for NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, for at least the duration of the throughput measurement.
- Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Record the frequencies for which the throughput doesn't meet the requirements.
- 7. Repeat steps from 3 to 6, using an interfering signal above the wanted signal at step 3.

7.6.3.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.6.3.5 Test Requirement

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.3.5-1 and 7.6.3.5-2.

For NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, the number of spurious response frequencies recorded in the final step of test procedure shall not exceed $\lfloor \max\{24,6 \cdot \lceil n \cdot N_{RB} / 6 \rceil\}/\min\{\lfloor n \cdot N_{RB} / 10 \rfloor,5\}\rfloor$ in each assigned frequency channel when measured using a $\min(\lfloor CBW / 2 \rfloor,5)$ MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.3.5-1: Out-of-band blocking parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

DV noromotor	Units		Channel bandwidth							
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz				
Power in	dBm		REFSENS +	channel specific	value below					
transmission bandwidth configuration	dB	6	6	7	9	10				
DV noromotor	Units		Channel bandwidth							
RX parameter	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz				
Power in transmission	dBm	REFSENS + channel specific value below								
bandwidth configuration	dB	11	12	13	14	15				
DV novemeter	Units	Channel bandwidth								
RX parameter	Units	90 MHz	100 MHz							
Power in	dBm	REFSENS + 0	channel specific							
transmission bandwidth		value below								
configuration	dB	15.5	16							

Table 7.6.3.5-2: Out of-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Range 1	Range 2	Range 3
n1, n2, n3,	Pinterferer	dBm	-44	-30	-15
n5, n7, n8,	F _{interferer} (CW)	MHz			
n12, n20,					
n25, n28,					1 ≤ f ≤ F _{DL low} – 85
n34, n38,			$-60 < f - F_{DL_{low}} < -15$	$-85 < f - F_{DL_{low}} \le -60$	= -
n39, n40,			or	or	Or E 95 < f
n41, n51,			$15 < f - F_{DL_high} < 60$	$60 \le f - F_{DL_high} < 85$	F _{DL_high} + 85 ≤ f ≤ 12750
n66, n70,					≥ 12750
n71, n75,					
n76					
NOTE: Th	ne power level of th	ne interfere	er (P _{Interferer}) for Range 3	shall be modified to -20 of	Bm for Finterferer >
60	000 MHz.				

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, the throughput measurement derived in test procedure shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex 3.2 with parameters specified in Tables 7.6.3.5-3 and 7.6.3.5-4.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, the number of spurious response frequencies recorded in the final step of test procedure shall not exceed $\left[\max\left\{24,6\cdot\left\lceil n\cdot N_{RB} \mid 6\right\rceil\right\}\right]/\min\left\{\left\lceil n\cdot N_{RB} \mid 10\right\rceil,5\right\}\right]$ in each assigned frequency channel when measured using a $\min(\left\lceil CBW \mid 2\right\rceil,5)$ MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.3.5-3: Out-of-band blocking parameters for NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz

RX parameter	Units		Channel bandwidth								
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz					
Power in	dBm		REFSENS + channel specific value below								
transmission bandwidth configuration	dB	6	7	9	9	9					
RX parameter	Units		CI	nannel bandwid	lth						
		60 MHz	80 MHz	90 MHz	100 MHz						
Power in	dBm	REF	SENS + channe	l specific value b	elow						
transmission bandwidth configuration	dB	9	9	9	9						

Table 7.6.3.5-4: Out of-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Range1	Range 2	Range 3
n77, n78	Pinterferer	dBm	-44	-30	-15
(NOTE 3)	Finterferer (CW)	MHz	$\begin{array}{c} -60 < f - F_{DL_low} \leq \\ -3CBW \\ or \\ 3CBW \leq f - F_{DL_high} < \\ 60 \end{array}$	$\begin{array}{l} -200 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ or \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 200 \end{array}$	$1 \le f \le F_{DL_low} - MAX(200,3CBW)$ or F_{DL_high} + MAX(200,3CBW) $\le f \le 12750$
n79 (NOTE 4)	Finterferer (CW)	MHz	N/A	$\begin{array}{l} -150 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ \text{or} \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 150 \end{array}$	$1 \le f \le F_{DL_low} - MAX(150,3CBW)$ or F_{DL_high} + MAX(150,3CBW) $\le f \le 12750$

- NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 6000 MHz.
- NOTE 2: CBW denotes the channel bandwidth of the wanted signal
- NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz. For CBW > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3CBW from the band edge. For CBW larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.
- NOTE 4: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 3650 MHz and F_{Interferer} < 5750 MHz. For CBW ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

7.6A Blocking characteristics for CA

- 7.6A.1 General
- 7.6A.2 Inband blocking for CA
- 7.6A.2.1 Intra-band contiguous CA

FFS

- 7.6A.3 Out-of-band blocking for CA
- 7.6A.3.1 Intra-band contiguous CA

FFS

- 7.6A.4 Narrow band blocking for CA
- 7.7 Spurious response

FFS

7.8 Intermodulation characteristics

FFS

7.9 Spurious emissions

FFS

Annex A (normative): Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per data stream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all data streams (code words).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

The measurement channels in the following subclauses are defined to derive the requirements in clause 6 (Transmitter Characteristics) and clause 7 (Receiver Characteristics). The measurement channels represent example configurations of physical channels for different data rates.

A.2.2 Reference measurement channels for FDD

A.2.2.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.2.1-1: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	15	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	5	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	15	15	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	15	15	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	20	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	20	15	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	25	15	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	25	15	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	30	15	80	11	pi/2 BPSK	0	1/4	2472	16	2	1	10560	10560
	30	15	160	11	pi/2 BPSK	0	1/4	4872	24	2	2	21120	21120
	40	15	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	40	15	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	50	15	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
Note 1: D	50	15	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.1-2: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	30	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	5	30	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	10	30	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	10	30	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	15	30	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	15	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	20	30	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	20	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	25	30	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	25	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	30	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	30	30	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	40	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	40	30	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	50	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	50	30	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	60	30	81	11	pi/2 BPSK	0	1/4	2536	16	2	1	10692	10692
	60	30	162	11	pi/2 BPSK	0	1/4	5000	24	2	2	21384	21384
	80	30	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	80	30	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	90	30	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	90	30	243	11	pi/2 BPSK	0	1/4	7560	24	2	2	32076	32076
	100	30	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	100	30	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.1-3: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	10	60	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	10	60	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	15	60	9	11	pi/2 BPSK	0	1/4	288	16	2	1	1188	1188
	15	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	20	60	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	20	60	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	25	60	15	11	pi/2 BPSK	0	1/4	480	16	2	1	1980	1980
	25	60	30	11	pi/2 BPSK	0	1/4	984	16	2	1	3960	3960
	30	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	30	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	40	60	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	40	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	60	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	60	60	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	80	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	80	60	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	90	60	60	11	pi/2 BPSK	0	1/4	1864	16	2	1	7920	7920
	90	60	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, Note 1: 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.2 DFT-s-OFDM QPSK

Table A.2.2.2-1: Reference Channels for DFT-s-OFDM QPSK for 15kHz SCS

Paramet er	Channel bandwidt h	Subcarri er Spacing	Allocate d resourc e blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Codin g Rate	Payloa d size	Transpo rt block CRC	LDPC Base Graph	Numbe r of code blocks per slot (Note 3)	Total numbe r of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	5	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	10	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	15	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	15	15	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	15	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	20	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	20	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	20	15	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	25	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	15	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	25	15	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	30	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512

50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.2-2: Reference Channels for DFT-s-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		,				Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	100	30	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

- Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.
- Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2-3: Reference Channels for DFT-s-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	10	60	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	15	11	QPSK	2	1/6	768	16	2	1	3960	1980
	25	60	30	11	QPSK	2	1/6	1544	16	2	1	7920	3960
	30	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	30	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	40	60	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	40	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	60	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	60	60	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	80	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	80	60	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	90	60	60	11	QPSK	2	1/6	3104	16	2	1	15840	7920
	90	60	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.3 DFT-s-OFDM 16QAM

Table A.2.2.3-1: Reference Channels for DFT-s-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	15	15	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	15	15	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	20	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	20	15	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	25	15	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	25	15	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.3-2: Reference Channels for DFT-s-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	5	30	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	15	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	20	30	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	20	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	25	30	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	25	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	30	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	30	30	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	40	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	40	30	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	50	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	50	30	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
-	80	30	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	90	30	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
-	90	30	243	11	16QAM	10	1/3	43032	24	1	6	128304	32076
-	100	30	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	100	30	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.3-3: Reference Channels for DFT-s-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	10	60	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	15	11	16QAM	10	1/3	2664	16	2	1	7920	1980
	25	60	30	11	16QAM	10	1/3	5248	24	1	1	15840	3960
	30	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	30	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	40	60	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	40	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	60	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	60	60	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	80	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	80	60	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	90	60	60	11	16QAM	10	1/3	10504	24	1	2	31680	7920
	90	60	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.4 DFT-s-OFDM 64QAM

Table A.2.2.4-1: Reference Channels for DFT-s-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	18	1/2	9992	24	1	2	19800	3300
	10	15	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	15	15	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	20	15	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	25	15	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	30	15	160	11	64QAM	18	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
•	50	15	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.4-2: Reference Channels for DFT-s-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	10	30	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	15	30	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	20	30	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	25	30	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	30	30	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	40	30	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	50	30	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	60	30	162	11	64QAM	18	1/2	64552	24	1	8	128304	21384
	80	30	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	90	30	243	11	64QAM	18	1/2	96264	24	1	12	192456	32076
	100	30	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.4-3: Reference Channels for DFT-s-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	15	60	18	11	64QAM	18	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	25	60	30	11	64QAM	18	1/2	12040	24	1	2	23760	3960
	30	60	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	40	60	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	60	60	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	80	60	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	90	60	120	11	64QAM	18	1/2	48168	24	1	6	95040	15840
	100	60	135	11	64QAM	18	1/2	54296	24	1	7	106920	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.5 DFT-s-OFDM 256QAM

Table A.2.2.5-1: Reference Channels for DFT-s-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		,				Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	15	15	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	20	15	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	25	15	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Table A.2.2.5-2: Reference Channels for DFT-s-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	20	30	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	25	30	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	30	30	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	40	30	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	50	30	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	90	30	243	11	256QAM	20	2/3	172176	24	1	21	256608	32076
	100	30	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.5-3: Reference Channels for DFT-s-OFDM 256QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	30	11	256QAM	20	2/3	21000	24	1	3	31680	3960
	30	60	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	40	60	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	50	60	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	60	60	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	80	60	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	90	60	120	11	256QAM	20	2/3	83976	24	1	10	126720	15840
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.6 CP-OFDM QPSK

Table A.2.2.6-1: Reference Channels for CP-OFDM QPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	13	11	QPSK	2	1/6	672	16	2	1	3432	1716
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	10	15	52	11	QPSK	2	1/6	2600	16	2	1	13728	6864
	15	15	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	15	15	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	20	15	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	20	15	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	25	15	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	25	15	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Table A.2.2.6-2: Reference Channels for CP-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	5	30	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	15	30	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	20	30	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	20	30	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	25	30	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	25	30	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	30	30	39	11	QPSK	2	1/6	2024	16	2	1	10296	5148
	30	30	78	11	QPSK	2	1/6	3848	24	2	2	20592	10296
	40	30	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	40	30	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	50	30	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	50	30	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	109	11	QPSK	2	1/6	5384	24	2	2	28776	14388
-	80	30	217	11	QPSK	2	1/6	10752	24	2	3	57288	28644
	90	30	123	11	QPSK	2	1/6	6152	24	2	2	32472	16236
-	90	30	245	11	QPSK	2	1/6	12296	24	2	4	64680	32340
-	100	30	137	11	QPSK	2	1/6	6792	24	2	2	36168	18084
	100	30	273	11	QPSK	2	1/6	13576	24	2	4	72072	36036

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.6-3: Reference Channels for CP-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		-				Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	10	60	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	25	60	31	11	QPSK	2	1/6	1544	16	2	1	8184	4092
	30	60	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	30	60	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	40	60	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	40	60	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	60	60	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	60	60	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	80	60	54	11	QPSK	2	1/6	2664	16	2	1	14256	7128
	80	60	107	11	QPSK	2	1/6	5256	24	2	2	28248	14124
	90	60	61	11	QPSK	2	1/6	3104	16	2	1	16104	8052
	90	60	121	11	QPSK	2	1/6	6024	24	2	2	31944	15972
	100	60	68	11	QPSK	2	1/6	3368	16	2	1	17952	8976
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.7 CP-OFDM 16QAM

Table A.2.2.7-1: Reference Channels for CP-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	13	11	16QAM	10	1/3	2280	16	2	1	6864	1716
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	10	15	52	11	16QAM	10	1/3	9224	24	1	2	27456	6864
	15	15	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	15	15	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	20	15	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	20	15	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	25	15	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	25	15	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Table A.2.2.7-2: Reference Channels for CP-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	5	30	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	15	30	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	20	30	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	20	30	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	25	30	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	25	30	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	30	30	39	11	16QAM	10	1/3	6784	24	1	1	20592	5148
	30	30	78	11	16QAM	10	1/3	13576	24	1	2	41184	10296
	40	30	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	40	30	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	50	30	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	50	30	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	109	11	16QAM	10	1/3	18960	24	1	3	57552	14388
	80	30	217	11	16QAM	10	1/3	37896	24	1	5	114576	28644
-	90	30	123	11	16QAM	10	1/3	21504	24	1	3	64944	16236
-	90	30	245	11	16QAM	10	1/3	43032	24	1	6	129360	32340
-	100	30	137	11	16QAM	10	1/3	24072	24	1	3	72336	18084
	100	30	273	11	16QAM	10	1/3	48168	24	1	6	144144	36036

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.7-3: Reference Channels for CP-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	10	60	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	25	60	31	11	16QAM	10	1/3	5376	24	1	1	16368	4092
	30	60	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	30	60	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	40	60	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	40	60	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	60	60	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	60	60	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	80	60	54	11	16QAM	10	1/3	9480	24	1	2	28512	7128
	80	60	107	11	16QAM	10	1/3	18960	24	1	3	56496	14124
	90	60	61	11	16QAM	10	1/3	10760	24	1	2	32208	8052
	90	60	121	11	16QAM	10	1/3	21000	24	1	3	63888	15972
	100	60	68	11	16QAM	10	1/3	11784	24	1	2	35904	8976
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.8 CP-OFDM 64QAM

Table A.2.2.8-1: Reference Channels for CP-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	19	1/2	9992	24	1	2	19800	3300
	10	15	52	11	64QAM	19	1/2	21000	24	1	3	41184	6864
	15	15	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	20	15	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	25	15	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	30	15	160	11	64QAM	19	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	19	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	19	1/2	108552	24	1	13	213840	35640

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.8-2: Reference Channels for CP-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	10	30	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	15	30	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	20	30	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	25	30	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	30	30	78	11	64QAM	19	1/2	31240	24	1	4	61776	10296
	40	30	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	50	30	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	60	30	162	11	64QAM	19	1/2	64552	24	1	8	128304	21384
	80	30	217	11	64QAM	19	1/2	86040	24	1	11	171864	28644
	90	30	245	11	64QAM	19	1/2	98376	24	1	12	194040	32340
	100	30	273	11	64QAM	19	1/2	108552	24	1	13	216216	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.8-3: Reference Channels for CP-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	15	60	18	11	64QAM	19	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	25	60	31	11	64QAM	19	1/2	12296	24	1	2	24552	4092
	30	60	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	40	60	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	50	60	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	60	60	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	80	60	107	11	64QAM	19	1/2	43032	24	1	6	84744	14124
	90	60	121	11	64QAM	19	1/2	48168	24	1	6	95832	15972
	100	60	135	11	64QAM	19	1/2	54296	24	1	7	106920	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.9 CP-OFDM 256QAM

Table A.2.2.9-1: Reference Channels for CP-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	52	11	256QAM	20	2/3	36896	24	1	5	54912	6864
	15	15	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	20	15	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	25	15	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Table A.2.2.9-2: Reference Channels for CP-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	20	30	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	25	30	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	30	30	78	11	256QAM	20	2/3	55304	24	1	7	82368	10296
	40	30	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	50	30	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	217	11	256QAM	20	2/3	151608	24	1	18	229152	28644
	90	30	245	11	256QAM	20	2/3	172176	24	1	21	258720	32340
	100	30	273	11	256QAM	20	2/3	192624	24	1	23	288288	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.9-3: Reference Channels for CP-OFDM 256QAM for 60kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size	Transport block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulated symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	31	11	256QAM	20	2/3	22032	24	1	3	32736	4092
	30	60	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	40	60	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	50	60	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	60	60	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	80	60	107	11	256QAM	20	2/3	75792	24	1	9	112992	14124
	90	60	121	11	256QAM	20	2/3	86040	24	1	11	127776	15972
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

A.2.3 Reference measurement channels for TDD

TDD slot patterns defined for reference sensitivity tests will be used for UL RMCs defined below.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.3.1-1: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	15	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	5	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	15	15	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	15	15	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	20	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	20	15	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	25	15	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	25	15	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	30	15	80	11	pi/2 BPSK	0	1/4	2472	16	2	1	10560	10560
	30	15	160	11	pi/2 BPSK	0	1/4	4872	24	2	2	21120	21120
	40	15	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	40	15	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	50	15	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
•	50	15	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.1-2: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	30	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	5	30	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	10	30	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	10	30	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	15	30	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	15	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	20	30	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	20	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	25	30	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	25	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	30	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	30	30	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	40	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	40	30	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	50	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	50	30	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	60	30	81	11	pi/2 BPSK	0	1/4	2536	16	2	1	10692	10692
	60	30	162	11	pi/2 BPSK	0	1/4	5000	24	2	2	21384	21384
	80	30	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	80	30	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	90	30	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	90	30	243	11	pi/2 BPSK	0	1/4	7560	24	2	2	32076	32076
	100	30	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	100	30	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.1-3: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	10	60	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	10	60	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	15	60	9	11	pi/2 BPSK	0	1/4	288	16	2	1	1188	1188
	15	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	20	60	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	20	60	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	25	60	15	11	pi/2 BPSK	0	1/4	480	16	2	1	1980	1980
	25	60	30	11	pi/2 BPSK	0	1/4	984	16	2	1	3960	3960
	30	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	30	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	40	60	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	40	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	11	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	60	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	60	60	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	80	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	80	60	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	90	60	60	11	pi/2 BPSK	0	1/4	1864	16	2	1	7920	7920
	90	60	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.2 DFT-s-OFDM QPSK

Table A.2.3.2-1: Reference Channels for DFT-s-OFDM QPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	5	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	10	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	15	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	15	15	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	15	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	20	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	20	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	20	15	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	25	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
-	25	15	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
-	25	15	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
-	30	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
-	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
-	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
-	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
-	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
-	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2-2: Reference Channels for DFT-s-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	100	30	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2-3: Reference Channels for DFT-s-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	10	60	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	15	11	QPSK	2	1/6	768	16	2	1	3960	1980
	25	60	30	11	QPSK	2	1/6	1544	16	2	1	7920	3960
	30	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	30	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	40	60	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	40	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	60	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	60	60	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	80	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	80	60	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	90	60	60	11	QPSK	2	1/6	3104	16	2	1	15840	7920
	90	60	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.3 DFT-s-OFDM 16QAM

Table A.2.3.3-1: Reference Channels for DFT-s-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	15	15	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	15	15	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	20	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	20	15	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	25	15	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	25	15	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
•	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.3-2: Reference Channels for DFT-s-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	5	30	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	15	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	20	30	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	20	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	25	30	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	25	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	30	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	30	30	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	40	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	40	30	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	50	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	50	30	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	80	30	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	90	30	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	90	30	243	11	16QAM	10	1/3	43032	24	1	6	128304	32076
	100	30	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	100	30	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.3-3: Reference Channels for DFT-s-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	10	60	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	15	11	16QAM	10	1/3	2664	16	2	1	7920	1980
	25	60	30	11	16QAM	10	1/3	5248	24	1	1	15840	3960
	30	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	30	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	40	60	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	40	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	50	60	32	11	16QAM	10	1/3	5632	24	1	11	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	60	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	60	60	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	80	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	80	60	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	90	60	60	11	16QAM	10	1/3	10504	24	1	2	31680	7920
	90	60	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.4 DFT-s-OFDM 64QAM

Table A.2.3.4-1: Reference Channels for DFT-s-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	18	1/2	9992	24	1	2	19800	3300
	10	15	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	15	15	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	20	15	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	25	15	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	30	15	160	11	64QAM	18	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Table A.2.3.4-2: Reference Channels for DFT-s-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	10	30	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	15	30	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	20	30	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	25	30	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	30	30	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	40	30	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
-	50	30	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	60	30	162	11	64QAM	18	1/2	64552	24	1	8	128304	21384
<u> </u>	80	30	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	90	30	243	11	64QAM	18	1/2	96264	24	1	12	192456	32076
	100	30	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.4-3: Reference Channels for DFT-s-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	15	60	18	11	64QAM	18	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	25	60	30	11	64QAM	18	1/2	12040	24	1	2	23760	3960
	30	60	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	40	60	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	60	60	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	80	60	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	90	60	120	11	64QAM	18	1/2	48168	24	1	6	95040	15840
1	100	60	135	11	64QAM	18	1/2	54296	24	1	7	106920	17820

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.5 DFT-s-OFDM 256QAM

Table A.2.3.5-1: Reference Channels for DFT-s-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	15	15	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	20	15	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	25	15	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Table A.2.3.5-2: Reference Channels for DFT-s-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	20	30	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	25	30	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	30	30	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
`	40	30	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	50	30	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
· 	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
·	80	30	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	90	30	243	11	256QAM	20	2/3	172176	24	1	21	256608	32076
·	100	30	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.5-3: Reference Channels for DFT-s-OFDM 256QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	30	11	256QAM	20	2/3	21000	24	1	3	31680	3960
	30	60	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	40	60	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	50	60	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	60	60	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	80	60	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	90	60	120	11	256QAM	20	2/3	83976	24	1	10	126720	15840
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.6 CP-OFDM QPSK

Table A.2.3.6-1: Reference Channels for CP-OFDM QPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	13	11	QPSK	2	1/6	672	16	2	1	3432	1716
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	10	15	52	11	QPSK	2	1/6	2600	16	2	1	13728	6864
	15	15	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	15	15	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	20	15	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	20	15	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	25	15	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	25	15	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.6-2: Reference Channels for CP-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	5	30	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	15	30	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	20	30	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	20	30	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	25	30	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	25	30	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	30	30	39	11	QPSK	2	1/6	2024	16	2	1	10296	5148
	30	30	78	11	QPSK	2	1/6	3848	24	2	2	20592	10296
	40	30	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	40	30	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	50	30	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	50	30	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	109	11	QPSK	2	1/6	5384	24	2	2	28776	14388
	80	30	217	11	QPSK	2	1/6	10752	24	2	3	57288	28644
	90	30	123	11	QPSK	2	1/6	6152	24	2	2	32472	16236
	90	30	245	11	QPSK	2	1/6	12296	24	2	4	64680	32340
	100	30	137	11	QPSK	2	1/6	6792	24	2	2	36168	18084
	100	30	273	11	QPSK	2	1/6	13576	24	2	4	72072	36036

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.6-3: Reference Channels for CP-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	10	60	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	25	60	31	11	QPSK	2	1/6	1544	16	2	1	8184	4092
	30	60	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	30	60	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	40	60	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	40	60	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	60	60	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	60	60	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	80	60	54	11	QPSK	2	1/6	2664	16	2	1	14256	7128
	80	60	107	11	QPSK	2	1/6	5256	24	2	2	28248	14124
	90	60	61	11	QPSK	2	1/6	3104	16	2	1	16104	8052
	90	60	121	11	QPSK	2	1/6	6024	24	2	2	31944	15972
	100	60	68	11	QPSK	2	1/6	3368	16	2	1	17952	8976
1	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.7 CP-OFDM 16QAM

Table A.2.3.7-1: Reference Channels for CP-OFDM 16QAM for 15kHz SCS

215

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	13	11	16QAM	10	1/3	2280	16	2	1	6864	1716
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	10	15	52	11	16QAM	10	1/3	9224	24	1	2	27456	6864
	15	15	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	15	15	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	20	15	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	20	15	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	25	15	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	25	15	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.7-2: Reference Channels for CP-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	5	30	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	15	30	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	20	30	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	20	30	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	25	30	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	25	30	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	30	30	39	11	16QAM	10	1/3	6784	24	1	1	20592	5148
	30	30	78	11	16QAM	10	1/3	13576	24	1	2	41184	10296
	40	30	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	40	30	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	50	30	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	50	30	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	109	11	16QAM	10	1/3	18960	24	1	3	57552	14388
	80	30	217	11	16QAM	10	1/3	37896	24	1	5	114576	28644
	90	30	123	11	16QAM	10	1/3	21504	24	1	3	64944	16236
	90	30	245	11	16QAM	10	1/3	43032	24	1	6	129360	32340
	100	30	137	11	16QAM	10	1/3	24072	24	1	3	72336	18084
	100	30	273	11	16QAM	10	1/3	48168	24	1	6	144144	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.7-3: Reference Channels for CP-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	10	60	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	25	60	31	11	16QAM	10	1/3	5376	24	1	1	16368	4092
	30	60	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	30	60	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	40	60	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	40	60	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	50	60	33	11	16QAM	10	1/3	5760	24	1	11	17424	4356
	50	60	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	60	60	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	60	60	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	80	60	54	11	16QAM	10	1/3	9480	24	1	2	28512	7128
	80	60	107	11	16QAM	10	1/3	18960	24	1	3	56496	14124
	90	60	61	11	16QAM	10	1/3	10760	24	1	2	32208	8052
	90	60	121	11	16QAM	10	1/3	21000	24	1	3	63888	15972
	100	60	68	11	16QAM	10	1/3	11784	24	1	2	35904	8976
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.8 CP-OFDM 64QAM

Table A.2.3.8-1: Reference Channels for CP-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	19	1/2	9992	24	1	2	19800	3300
	10	15	52	11	64QAM	19	1/2	21000	24	1	3	41184	6864
	15	15	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	20	15	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	25	15	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	30	15	160	11	64QAM	19	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	19	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	19	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.8-2: Reference Channels for CP-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	10	30	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	15	30	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	20	30	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	25	30	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	30	30	78	11	64QAM	19	1/2	31240	24	1	4	61776	10296
	40	30	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	50	30	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	60	30	162	11	64QAM	19	1/2	64552	24	1	8	128304	21384
	80	30	217	11	64QAM	19	1/2	86040	24	1	11	171864	28644
	90	30	245	11	64QAM	19	1/2	98376	24	1	12	194040	32340
	100	30	273	11	64QAM	19	1/2	108552	24	1	13	216216	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.8-3: Reference Channels for CP-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulate d symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	15	60	18	11	64QAM	19	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	25	60	31	11	64QAM	19	1/2	12296	24	1	2	24552	4092
	30	60	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	40	60	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	50	60	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	60	60	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	80	60	107	11	64QAM	19	1/2	43032	24	1	6	84744	14124
	90	60	121	11	64QAM	19	1/2	48168	24	1	6	95832	15972
	100	60	135	11	64QAM	19	1/2	54296	24	1	7	106920	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.9 CP-OFDM 256QAM

Table A.2.3.9-1: Reference Channels for CP-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	52	11	256QAM	20	2/3	36896	24	1	5	54912	6864
	15	15	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	20	15	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	25	15	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.9-2: Reference Channels for CP-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	20	30	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	25	30	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	30	30	78	11	256QAM	20	2/3	55304	24	1	7	82368	10296
<u>-</u>	40	30	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	50	30	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
·	80	30	217	11	256QAM	20	2/3	151608	24	1	18	229152	28644
	90	30	245	11	256QAM	20	2/3	172176	24	1	21	258720	32340
	100	30	273	11	256QAM	20	2/3	192624	24	1	23	288288	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.9-3: Reference Channels for CP-OFDM 256QAM for 60kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4, 9, 14, 19, 24, 29, 34 and 39	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39 (Note 3)	Total number of bits per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39	Total modulated symbols per slot for slots 4, 9, 14, 19, 24, 29, 34 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	31	11	256QAM	20	2/3	22032	24	1	3	32736	4092
	30	60	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	40	60	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	50	60	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	60	60	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	80	60	107	11	256QAM	20	2/3	75792	24	1	9	112992	14124
	90	60	121	11	256QAM	20	2/3	86040	24	1	11	127776	15972
·	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3 DL reference measurement channels

A.3.1 General

Table A.3.1-1: Common reference channel parameters

Parameter	Unit	Value
CORESET frequency domain allocation		Full BW
CORESET time domain allocation		2 OFDM symbols at the begin of each slot
PDSCH mapping type		Type A
PDSCH start symbol index (S)		2
Number of consecutive PDSCH symbols (L)		12
PDSCH PRB bundling	PRBs	2
Dynamic PRB bundling		false
MCS table for TBS determination		64QAM
Overhead value for TBS determination		0
First DMRS position for Type A PDSCH mapping		2
DMRS type		Type 1
Number of additional DMRS		2
FDM between DMRS and PDSCH		Disable
TRS configuration		1 slot, periodicity 10 ms, offset 0
PTRS configuration		PTRS is not configured

A.3.2 DL reference measurement channels for FDD

A.3.2.1 General

[FRC applicability TBA]

Table A.3.2.1-1: Additional reference channels parameters for FDD

Parameter	Unit	Value
Number of HARQ Processes		4
K1 value		2 for all slots

A.3.2.2 FRC for receiver requirements for QPSK

Table A.3.2.2-1: Fixed reference channel for receiver requirements (SCS 15 kHz, FDD, QPSK 1/3)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	1672	3368	5120	6912	8712	10504	14088	17424
Transport block CRC	Bits	16	16	24	24	24	24	24	24
LDPC base graph		2	2	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	CBs	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	5400	11232	17064	22896	28728	34560	46656	58320
	N Albara a	4.504	2.024	4 000	0.000	7.044	0.454	12.67	15.68
Max. Throughput averaged over 1 frame	Mbps	1.504	3.031	4.608	6.220	7.841	9.454	9	2

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame,

Table A.3.2.2-2: Fixed reference channel for receiver requirements (SCS 30 kHz, FDD, QPSK 1/3)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	[78]	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		4	4	4	4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088	17928
Transport block CRC	Bits	16	16	16	16	24	24	24	24	24	24	24
LDPC base graph		2	2	2	2	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872	58968
Max. Throughput averaged over 1 frame	Mbps	1.398	3.055	4.697	6.399	8.025	9.485	13.133	16.553	19.958	26.767	34.063

Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1. Note 1:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). SS/PBCH block is transmitted in slot #0 of each frame. Note 2:

Note 3:

Note 4: Slot i is slot index per frame,

Table A.3.2.2-3: Fixed reference channel for receiver requirements (SCS 60 kHz, FDD, QPSK 1/3)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	[38]	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		338	338	338	338	338	338	338	338	338	338
MCS Index		4	4	4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots2,,39	Bits	736	1192	1608	2024	2472	3368	4224	5120	6912	8712
Transport block CRC	Bits	16	16	16	16	16	16	24	24	24	24
LDPC base graph		2	2	2	2	2	2	1	1	1	1
Number of Code Blocks per Slot											
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots2,,39	CBs	1	1	1	1	1	1	1	1	1	2
Binary Channel Bits per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	2376	3888	5184	6696	8208	11016	14040	17064	23112	29160
Max. Throughput averaged over 1 frame	Mbps	2.870	4.649	6.271	7.894	9.641	13.135	16.474	19.968	26.957	33.977

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.2.3 FRC for maximum input level for 64QAM

Table A.3.2.3-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, FDD, 64QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration $^{\mu}$		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		24	24	24	24	24	24	24	24
Modulation		64	64	64	64	64	64	64	64
IVIOGUIATIOTI		QAM							
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	12296	25608	38936	52224	64552	77896	10657 6	13117 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	CBs	2	4	5	7	8	10	13	16
Binary Channel Bits per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	16200	33696	51192	68688	86184	10368 0	13996 8	17496 0
Max. Throughput averaged over 1 frame	Mbps	11.06 6	23.04 7	35.04 2	47.00 2	58.09 7	70.10 6	95.91 8	118.0 58

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.2.3-2: Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, FDD, 64QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	[78]	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		24	24	24	24	24	24	24	24	24	24	24
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	5376	11784	18432	25104	31752	37896	52224	64552	79896	106576	135296
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	CBs	1	2	3	3	4	5	7	8	10	13	17
Binary Channel Bits per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	7128	15552	24624	33048	42120	50544	68688	86184	104976	140616	176904
Max. Throughput averaged over 1 frame	Mbps	10.214	22.390	35.021	47.698	60.329	72.002	99.226	122.64 9	151.80 2	202.49 4	257.06 2

Note 1:

Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 2:

SS/PBCH block is transmitted in slot 0 of each frame. Note 3:

Note 4: Slot i is slot index per frame.

Table A.3.2.3-3: Fixed Reference Channel for Maximum input level receiver requirements (SCS 60 kHz, FDD, 64QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	[38]	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38
MCS Index		24	24	24	24	24	24	24	24	24	24
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	5376	8712	11784	15112	18432	25104	31752	38936	52224	65576
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	CBs	1	2	2	2	3	3	4	5	7	8
Binary Channel Bits per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	7128	11664	15552	20088	24624	33048	42120	51192	69336	87480
Max. Throughput averaged over 1 frame	Mbps	20.429	33.106	44.779	57.426	70.042	95.395	120.65 8	147.95 7	198.45 1	249.18 9

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.2.4 FRC for maximum input level for 256 QAM

Table A.3.2.4-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, FDD, 256QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	16896	34816	53288	71688	90176	10855 2	14340 0	18037 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	CBs	3	5	7	9	12	14	18	23
Binary Channel Bits per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	21600	44928	68256	91584	11491 2	13824 0	18662 4	23328
Max. Throughput averaged over 1 frame	Mbps	15.20 6	31.33 4	47.95 9	64.51 9	81.15 8	97.69 7	129.0 60	162.3 38

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Table A.3.2.4-2: Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, FDD, 256QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	[78]	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		23	23	23	23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	7424	16136	25608	33816	44040	52224	71688	90176	108552	147576	184424
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	CBs	1	3	4	5	6	7	9	12	14	19	23
Binary Channel Bits per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	9504	20736	32832	44064	56160	67392	91584	114912	139968	187488	235872
Max. Throughput averaged over 1 frame	Mbps	14.106	30.658	48.655	64.250	83.676	99.226	136.20 7	171.33 4	206.24 9	280.39 4	350.40 6

Note 1:

Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 2:

SS/PBCH block is transmitted in slot 0 of each frame. Note 3:

Note 4: Slot i is slot index per frame.

Table A.3.2.4-3: Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, FDD, 256QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	[38]	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38
MCS Index		23	23	23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	7424	12040	16136	21000	25608	33816	44040	53288	71688	90176
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	CBs	1	2	3	3	4	5	6	7	9	12
Binary Channel Bits per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	9504	15552	20736	26784	32832	44064	56160	68256	92448	116640
Max. Throughput averaged over 1 frame	Mbps	28.211	45.752	61.317	79.800	97.310	128.50 1	167.35 2	202.49 4	272.41 4	342.66 9

Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 2:

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.3 DL reference measurement channels for TDD

A.3.3.1 General

Table A.3.3.1-1: Additional reference channels parameters for TDD

D.	arameter		Value	
P	arameter	SCS 15 kHz (µ=0)	SCS 30 kHz (µ=1)	SCS 60 kHz (µ=2)
UL-DL configuration	referenceSubcarrie rSpacing	15 kHz	30 kHz	60 kHz
	dl-UL- TransmissionPerio dicity	5 ms	5 ms	1.25 ms
	nrofDownlinkSlots	3	7	3
	nrofDownlinkSymb ols	10	6	6
	nrofUplinkSlot	1	2	1
	nrofUplinkSymbols	2	4	4
Number of HA	RQ Processes	8	8	8
K1 value		K1 = 4 if mod(i,5) = 0 K1 = 3 if mod(i,5) = 1 K1 = 2 if mod(i,5) = 2 where i is slot index per frame; $i = \{0,,9\}$	K1 =8 if mod(i,10) = 0 K1 =7 if mod(i,10) = 1 K1 =6 if mod(i,10) = 2 K1 =5 if mod(i,10) = 3 K1 =4 if mod(i,10) = 4 K1 =3 if mod(i,10) = 5 K1 =2 if mod(i,10) = 6 where i is slot index per frame; i = {0,,19}	K1 = 4 if mod(i,5) = 0 K1 = 3 if mod(i,5) = 1 K1 = 2 if mod(i,5) = 2 where i is slot index per frame; i = $\{0,,39\}$

A.3.3.2 FRC for receiver requirements for QPSK

Table A.3.3.2-1: Fixed reference channel for receiver requirements (SCS 15 kHz, TDD, QPSK 1/3)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	1672	3368	5120	6912	8712	10504	14088	17424
Transport block CRC	Bits	16	16	24	24	24	24	24	24
LDPC base graph		2	2	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	CBs	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	5400	11232	17064	22896	28728	34560	46656	58320
Max. Throughput averaged over 1 frame	Mbps	0.836	1.684	2.560	3.456	4.356	5.252	7.044	8.712

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Table A.3.3.2-2: Fixed reference channel for receiver requirements (SCS 30 kHz, TDD, QPSK 1/3)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		4	4	4	4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088	17928
Transport block CRC	Bits	16	16	16	16	24	24	24	24	24	24	24
LDPC base graph		2	2	2	2	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872	58968
Max. Throughput averaged over 1 frame	Mbps	0.957	2.090	3.214	4.378	5.491	6.490	8.986	11.326	13.655	18.314	23.306

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.2-3: Fixed reference channel for receiver requirements (SCS 60 kHz, TDD, QPSK 1/3)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		22	22	22	22	22	22	22	22	22	22
MCS Index		4	4	4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	Bits	736	1192	1608	2024	2472	3368	4224	5120	6912	8712
Transport block CRC	Bits	16	16	16	16	16	16	24	24	24	24
LDPC base graph		2	2	2	2	2	2	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	CBs	1	1	1	1	1	1	1	1	1	2
Binary Channel Bits per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	Bits	2376	3888	5184	6696	8208	11016	14040	17064	23112	29160
Max. Throughput averaged over 1 frame	Mbps	1.619	2.622	3.538	4.453	5.438	7.410	9.293	11.264	15.206	19.166

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.3.3 FRC for maximum input level for 64QAM

Table A.3.3.3-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, TDD, 64QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration $^{\mu}$		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		24	24	24	24	24	24	24	24
Modulation		64	64	64	64	64	64	64	64
Target Coding Rate		QAM 3/4	QAM 3/4	QAM 3/4	QAM 3/4	QAM 3/4	QAM 3/4	QAM 3/4	QAM 3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot					•		•	•	
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	12296	25608	38936	52224	64552	77896	10657 6	13117 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	CBs	2	4	5	7	8	10	13	16
Binary Channel Bits per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	16200	33696	51192	68688	86184	10368 0	13996 8	17496 0
Max. Throughput averaged over 1 frame	Mbps	6.148	12.80 4	19.46 8	26.11 2	32.27 6	38.94 8	53.28 8	65.58 8

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Table A.3.3.3-2: Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, TDD, 64QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		24	24	24	24	24	24	24	24	24	24	24
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	5376	11784	18432	25104	31752	37896	52224	64552	79896	106576	135296
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	CBs	1	2	3	3	4	5	7	8	10	13	17
Binary Channel Bits per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	7128	15552	24624	33048	42120	50544	68688	86184	104976	140616	176904
Max. Throughput averaged over 1 frame	Mbps	6.989	15.319	23.962	32.635	41.278	49.265	67.891	83.918	103.86 5	138.54 9	175.88 5

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.3-3: Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, TDD, 64QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		22	22	22	22	22	22	22	22	22	22
MCS Index		24	24	24	24	24	24	24	24	24	24
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	Bits	5376	8712	11784	15112	18432	25104	31752	38936	52224	65576
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = $\{0,1,2\}$ for i from $\{2,,39\}$	CBs	1	2	2	2	3	3	4	5	7	8
Binary Channel Bits per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = $\{0,1,2\}$ for i from $\{2,,39\}$	Bits	7128	11664	15552	20088	24624	33048	42120	51192	69336	87480
Max. Throughput averaged over 1 frame	Mbps	11.827	19.166	25.925	33.246	40.550	55.229	69.854	85.659	114.89 3	144.26 7

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.3.4 FRC for maximum input level for 256 QAM

Table A.3.3.4-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, TDD, 256QAM)

Parameter	Unit	Value								
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15	
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0	
Allocated resource blocks		25	52	79	106	133	[160]	216	270	
Subcarriers per resource block		12	12	12	12	12	12	12	12	
Allocated slots per Frame		5	5	5	5	5	5	5	5	
MCS Index		23	23	23	23	23	23	23	23	
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	
Information Bit Payload per Slot										
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
For Slots 1,2,5,6,7	Bits	16896	34816	53288	71688	90176	10855 2	14340 0	18037 6	
Transport block CRC	Bits	24	24	24	24	24	24	24	24	
LDPC base graph		1	1	1	1	1	1	1	1	
Number of Code Blocks per Slot										
For Slots 0,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
For Slots 1,2,5,6,7	CBs	3	5	7	9	12	14	18	23	
Binary Channel Bits per Slot										
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
For Slots 1,2,5,6,7	Bits	21600	44928	68256	91584	11491 2	13824 0	18662 4	23328 0	
Max. Throughput averaged over 1 frame	Mbps	8.448	17.40 8	26.64 4	35.84 4	45.08 8	54.27 6	71.70 0	90.18 8	

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Table A.3.3.4-2: Fixed Reference channel for maximum input level receiver requirements (SCS 30 kHz, TDD, 256QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		23	23	23	23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	7424	16136	25608	33816	44040	52224	71688	90176	108552	147576	184424
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	9504	20736	32832	44064	56160	67392	91584	114912	139968	187488	235872
Max. Throughput averaged over 1 frame	Mbps	9.651	20.977	33.290	43.961	57.252	67.891	93.194	117.22 9	141.11 8	191.84 9	239.75 1

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.4-3: Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, TDD, 256QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		22	22	22	22	22	22	22	22	22	22
MCS Index		23	23	23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	Bits	7424	12040	16136	21000	25608	33816	44040	53288	71688	90176
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	CBs	1	2	3	3	4	5	6	7	9	12
Binary Channel Bits per Slot											
For Slots 0,1 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{2,,39\}$	Bits	9504	15552	20736	26784	32832	44064	56160	68256	92448	116640
Max. Throughput averaged over 1 frame	Mbps	16.333	26.488	35.499	46.200	56.338	74.395	96.888	117.23 4	157.71 4	198.38 7

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.4 CSI reference measurement channels

TBD

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

A.5.1.1 OCNG FDD pattern 1: Generic OCNG FDD Pattern for all unused REs

Table A.5.1.1-1: OP.1 FDD: Generic OCNG FDD Pattern for all unused REs

OCNG Distribution	Control Region	Data Region								
OCNG Parameters	(Core Set)									
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)								
Structure	PDCCH	PDSCH								
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data								
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH								
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP								
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH								
Note 1: All unused REs in the active CORESETS appointed by the search spaces in use. Note 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETs, synchronization signals or reference signals in channel bandwidth.										

A.5.2 OCNG Patterns for TDD

A.5.2.1 OCNG TDD pattern 1: Generic OCNG TDD Pattern for all unused REs

Table A.5.2.1-1: OP.1 TDD: Generic OCNG TDD Pattern for all unused REs

OCNG Distribution	Control Region	Data Region							
OCNG Parameters	(Core Set)	-							
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)							
Structure	PDCCH	PDSCH							
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data							
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH							
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP							
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH							
Note 1: All unused REs in the active CORESETS appointed by the search spaces in use. Note 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETs, synchronization signals or reference signals in channel bandwidth.									

Annex B (normative): Propagation Conditions

The propagation conditions and channel models for various environments are specified. For each environment a propagation model is used to evaluate the propagation pathless due to the distance. Channel models are formed by combining delay profiles with a Doppler spectrum, with the addition of correlation properties in the case of a multi-antenna scenario.

B.0 No interference

The downlink connection between the System Simulator and the UE is without Additive White Gaussian Noise, and has no fading or multipath effects.

Annex C (normative): Downlink physical channels

C.0 Downlink signal levels

The downlink power settings in Table C.0-1 is used unless otherwise specified in a test case.

If the UE has more than one Rx antenna, the downlink signal is applied to each one. All UE Rx antennas shall be connected.

If the UE has one Rx antenna, the downlink signal is applied to it.

Table C.0-1: Default Downlink power levels for NR

202		Unit					CI	nannel b	andwidtl	า				
SCS (kHz)			5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
15	Number of RBs		25	50	75	100	128	160	215	270	N/A	N/A	N/A	N/A
15	Channel BW power	dBm	-60	-57	-55	-54	-53	-52	-51	-50	N/A	N/A	N/A	N/A
30	Number of RBs		10	24	36	50	64	75	100	128	162	216	243	270
30	Channel BW power	dBm	-61	-57	-55	-54	-53	-52	-51	-50	-49	-48	-47	-47
60	Number of RBs		N/A	10	18	24	30	36	50	64	75	100	120	135
60	Channel BW power	dBm	N/A	-58	-56	-54	-53	-52	-51	-50	-49	-48	-47	-47
	RS EPRE	dBm/ 15kH z	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85
	Note 1: The channel bandwidth powers are informative, based on -85dBm/15kHz SS/PBCH SSS EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed. Note 2: The power level is specified at each UE Rx antenna.													
	Note 3: DI	L level is 5dBm/15k	applied f	•				nfiguratio	n () with	the same	e power	spectrum	density	of -

The default signal level uncertainty is \pm 3dB at each test port, for any level specified. If the uncertainty value is critical for the test purpose, a tighter uncertainty is specified for the related test case in Annex F

C.1 General

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.2 Setup

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-upPhysical Channel								
PBCH								
PSS								
SSS								
PDCCH								
PDSCH								
DMRS								
CSI-RS								

C.3 Connection

C.3.1 Measurement of Receiver Characteristics

Unless otherwise stated, Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Parameter	Unit	Value
SSS transmit power	W	Test specific
EPRE ratio of PSS to SSS	dB	0
EPRE ratio of PBCH DMRS to SSS	dB	0
EPRE ratio of PBCH to PBCH DMRS	dB	0
EPRE ratio of PDCCH DMRS to SSS	dB	0
EPRE ratio of PDCCH to PDCCH DMRS	dB	0
EPRE ratio of PDSCH DMRS to SSS (Note 1)	dB	3
EPRE ratio of PDSCH to PDSCH DMRS (Note 1)	dB	-3
EPRE ratio of CSI-RS to SSS	dB	0
EPRE ratio of PTRS to PDSCH	dB	Test specific
EPRE ratio of OCNG DMRS to SSS	dB	0
EPRE ratio of OCNG to OCNG DMRS (Note 1)	dB	0

Note 1: No boosting is applied to any of the channels except PDSCH DMRS. For PDSCH DMRS, 3 dB power boosting is applied assuming DMRS Type 1 configuration when DMRS and PDSCH are TDM'ed and only half of the DMRS REs are occupied.

Note 2: Number of DMRS CDM groups without data for PDSCH DMRS configuration for OCNG is set to 1.

Annex E (normative): Global In-Channel TX-Test

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- 38.101-1 Annex on Transmit modulation contains TBDs.
- Sampling rate is TBD.

Note: Clauses E.2.2 to E.5.9.3 are descriptions, which assume no power ramping adjacent to the measurement period.

E.1 General

The global in-channel TX test enables the measurement of all relevant parameters that describe the in-channel quality of the output signal of the TX under test in a single measurement process.

The parameters describing the in-channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters.

E.2 Signals and results

E.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. All signals are represented as equivalent (generally complex) baseband signals.

The description below uses numbers as examples. These numbers are taken from FDD with normal CP length and 20 MHz bandwidth. The application of the text below, however, is not restricted to this frame structure and bandwidth.

E.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment and stored for further processing. It is sampled at a sampling rate of TBD. In the time domain it comprises at least 10 uplink subframes. The measurement period is derived by concatenating the correct number of individual uplink slots until the correct measurement period is reached. The output signal is named z(v). Each slot is modelled as a signal with the following parameters: demodulated data content, carrier frequency, amplitude and phase for each subcarrier, timing, carrier leakage.

NOTE 1: TDD

Since the uplink subframes are not continuous, n slots should be extracted from more than 1 continuous radio frame where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

E.2.3 Reference signal

Two types of reference signal are defined:

The reference signal $i_1(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: demodulated data content, nominal carrier frequency, nominal amplitude and phase for each

subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of TBD in the time domain.

The reference signal $i_2(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted data content: nominal reference symbols, (all modulation symbols for user data symbols are set to 0V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of TBD Msps in the time domain.

NOTE: The PUCCH is off during the time under test.

E.2.4 Measurement results

The measurement results, achieved by the global in channel TX test are the following:

- Carrier Frequency error
- EVM (Error Vector Magnitude)
- Carrier leakage
- Unwanted emissions, falling into non allocated resource blocks.
- EVM equalizer spectrum flatness

E.2.5 Measurement points

The unwanted emission falling into non-allocated RB(s) is calculated directly after the FFT as described below. In contrast to this, the EVM for the allocated RB(s) is calculated after the IDFT for DFT-s-OFDM or after the Tx-Rx chain equalizer for CP-OFDM. The samples after the TX-RX chain equalizer are used to calculate EVM equalizer spectrum flatness. Carrier frequency error and carrier leakage is calculated in the block "RF correction".

Figure E.2.5-1: EVM measurement points

E.3 Signal processing

E.3.1 Pre FFT minimization process

Before applying the pre-FFT minimization process, z(v) and i(v) are portioned into n pieces, comprising one slot each, where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

Each slot is processed separately. Sample timing, Carrier frequency and carrier leakage in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

The carrier frequency variation and the IQ variation are the measurement results: Carrier Frequency Error and Carrier leakage.

From the acquired samples n carrier frequencies and n carrier leakages can be derived.

- NOTE 1: The minimisation process, to derive carrier leakage and RF error can be supported by Post FFT operations. However the minimisation process defined in the pre FFT domain comprises all acquired samples (i.e. it does not exclude the samples in between the FFT widths and it does not exclude the bandwidth outside the transmission bandwidth configuration
- NOTE 2: The algorithm would allow deriving Carrier Frequency error and Sample Frequency error of the TX under test separately. However there are no requirements for Sample Frequency error. Hence the algorithm models the RF and the sample frequency commonly (not independently). It returns one error and does not distinguish between both.

After this process the samples z(v) are called $z^{0}(v)$.

E.3.2 Timing of the FFT window

The FFT window length is TBD samples per OFDM symbol. TBD FFTs (TBD samples) cover less than the acquired number of samples (TBD samples). The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP. There are three different instants for FFT:

Centre of the reduced window, called $\Delta \tilde{c}$, $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2.

The timing of the measured signal is determined in the pre FFT domain as follows, using $z^0(v)$ and $i_2(v)$:

- 1. The measured signal is delay spread by the TX filter. Hence the distinct boarders between the OFDM symbols and between Data and CP are also spread and the timing is not obvious.
- 2. In the Reference Signal $i_2(v)$ the timing is known.
- 3. Correlation between (1.) and (2.) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The meaning of "impulse response" assumes that the autocorrelation of the reference signal $i_2(v)$ is a Dirac peak and that the correlation between the reference signal $i_2(v)$ and the data in the measured signal is 0. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal.

From the acquired samples n timings can be derived.

For all calculations, except EVM, the number of samples in $z^0(v)$ is reduced to TBD blocks of samples, comprising TBD samples (FFT width) and starting with $\Delta \tilde{c}$ in each OFDM symbol including the demodulation reference signal.

For the EVM calculation the output signal under test is reduced to TBD blocks of samples, comprising TBD samples (FFT width) and starting with $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2 in each OFDM symbol including the demodulation reference signal.

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z'(v).

The timing of the centre $\Delta \tilde{c}$ with respect to the different CP length in a slot is as follows: (FDD, normal CP length)

 $\Delta \tilde{c}$ is on T_f =TBD within the CP of length 144, 72, 36 (in OFDM symbol except 0 and $7 \cdot 2^{\mu}$) for SCS = 15 kHz, 30 kHz, 60 kHz, respectively, where

$$\mu = \begin{cases} 0, \text{ for } 15 \text{ kHz SCS} \\ 1, \text{ for } 30 \text{ kHz SCS} \\ 2, \text{ for } 60 \text{ kHz SCS}. \end{cases}$$

 $\Delta \widetilde{c}$ is on T_f =TBD within the CP of length 160, 88, 52 (in OFDM symbol 0 and $7 \cdot 2^{\mu}$) for SCS = 15 kHz, 30 kHz, 60 kHz, respectively.

E.3.3 Post FFT equalisation

Perform 14 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \widetilde{c}$, including the demodulation reference symbol. The result is an array of samples, 14 in the time axis t times TBD in the frequency axis f. The samples represent the DFT coded data symbols (in OFDM-symbol 0,1,3,4,5,6,8,9,10,12,13 in each slot) and demodulation reference symbols (OFDM symbol 2, 7, 11 in each slot) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal demodulation reference symbols and nominal DFT coded data symbols are used to equalize the measured data symbols. (Location for equalization see Figure E.2.5-1)

NOTE: The nomenclature inside this note is local and not valid outside.

The nominal DFT coded data symbols are created by a demodulation process. The location to gain the demodulated data symbols is "EVM" in Figure E.2.5-1. For CP-OFDM, the process described in Annex E.5 can be applied. A demodulation process as follows is recommended for DFT-s-OFDM:

- 1. Equalize the measured DFT coded data symbols using the reference symbols for equalisation. Result: Equalized DFT coded data symbols
- 2. iDFT transform the equalized DFT coded data symbols: Result: Equalized data symbols
- 3. Decide for the nearest constellation point: Result: Nominal data symbols
- 4. DFT transform the nominal data symbols: Result: Nominal DFT coded data symbols

At this stage we have an array of \underline{M} easured DFT coded data- \underline{S} ymbols and reference- \underline{S} ymbols (MS(f,t))

versus an array of Nominal DFT coded data-Symbols and reference Symbols (NS(f,t))

(complex, the arrays comprise 11 DFT coded data symbols and 3 demodulation reference symbol in the time axis and the number of allocated subcarriers in the frequency axis.)

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f) is defined as

$$EC(f) = \frac{\sum_{t=0}^{13} NS(f,t)^* NS(f,t)}{\sum_{t=0}^{13} NS(f,t)^* MS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the DFT-coded data symbols. The measured DFT-coded data and the references symbols are equalized by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With · denoting multiplication.

Z'(f,t), restricted to the data symbol (excluding t=2,7,11) is used to calculate EVM, as described in E.4.1.

EC(f) is used in E.4.4 to calculate EVM equalizer spectral flatness.

NOTE: The post FFT minimisation process is done over 14 symbols (11 DFT-coded data symbols and 3 reference symbols).

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.4 Derivation of the results

E.4.1 EVM

For EVM create two sets of Z'(f,t)., according to the timing " $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2" using the equalizer coefficients from E.3.3.

Perform the iDFTs on Z'(f,t) in the case of DFT-s-OFDM waveform. The IDFT-decoding preserves the meaning of t but transforms the variable f (representing the allocated sub carriers) into another variable g, covering the same count and representing the demodulated symbols. The samples in the post IDFT domain are called iZ'(g,t). The equivalent ideal samples are called iI(g,t). Those samples of Z'(f,t), carrying the reference symbols (=symbol 2,7,11) are not iDFT processed.

The EVM is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\displaystyle\sum_{t \in T} \sum_{g \in G} \left| iZ^{'}\left(g^{'}, t^{'}\right) - iI\left(g^{'}, t^{'}\right)^{2}}{\left|G\right| \cdot \left|T\right| \cdot P_{0}}} \;,$$

where

t covers the count of demodulated symbols with the considered modulation scheme being active within the measurement period, (i.e. symbol 0,1,3,4,5,6,8,9,10,12,13 in each slot, $\rightarrow |T|=11$)

g covers the count of demodulated symbols with the considered modulation scheme being active within the allocated bandwidth. ($|G|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

iZ'(g,t) are the samples of the signal evaluated for the EVM.

iI(g,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 2n EVM values can be derived, n values for the timing $\Delta \widetilde{c}$ -W/2 and n values for the timing $\Delta \widetilde{c}$ +W/2

E.4.2 Averaged EVM

EVM is averaged over all basic EVM measurements.

The averaging comprises n UL slots

$$\overline{EVM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_i^2}$$

where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

for PUCCH, PUSCH.

The averaging is done separately for timing $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2 leading to \overline{EVM}_l and \overline{EVM}_h

$$EVM_{final} = max(\overline{EVM}_1, \overline{EVM}_h)$$
 is compared against the test requirements.

E.4.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

Explanatory Note:

The inband emission measurement is only meaningful with allocated RB(s) next to non allocated RB. The allocated RB(s) are necessary but not under test. The non allocated RBs are under test. The RB allocation for this test is as follows: The allocated RB(s) are at one end of the channel BW, leaving the other end unallocated. The number of allocated RB(s) is smaller than half of the number of RBs, available in the channel BW. This means that the vicinity of the carrier in the centre is unallocated.

There are 3 types of inband emissions:

- 1. General
- 2. IQ image
- 3. Carrier leakage

Carrier leakage are inband emissions next to the carrier.

IQ image are inband emissions symmetrically (with respect to the carrier) on the other side of the allocated RBs.

General are applied to all unallocated RBs.

For each evaluated RB, the minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply.

In specific the following combinations:

- Power (General)
- Power (General + Carrier leakage)
- Power (General + IQ Image)

1 and 2 is expressed in terms of power in one non allocated RB under test, normalized to the average power of an allocated RB (unit dB).

3 is expressed in terms of power in one non allocated RB, normalized to the power of all allocated RBs. (unit dBc).

This is the reason for two formulas *Emissions* relative.

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs below the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\max(f_{\min}, (c_{t}+12 \cdot \Delta_{RB} * \Delta f))}^{c_{t}+(12 \cdot \Delta_{RB} * \Delta f))} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{c_{h}+(12 \cdot \Delta_{RB} * \Delta f))}^{\min(f_{\max}, (c_{h}+12 \cdot \Delta_{RB} * \Delta f))} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

the upper formula represents the in band emissions below the allocated frequency block and the lower one the in band emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ DFT-s-OFDM symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 $f_{
m min}$ and $f_{
m max}$ are the lower and upper edge of the UL transmission BW configuration,

 \boldsymbol{c}_l and \boldsymbol{c}_h are the lower and upper edge of the allocated BW,

 Δf is the SCS, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.3.3

The allocated RB power per RB and the total allocated RB power are given by:

$$P_{RB} = \frac{1}{|T_{s}| \cdot L_{CRBs}} \sum_{t \in T_{s}}^{c_{1} + (12 \cdot L_{CRBs} - 1) \cdot \Delta f} |\text{MS}(t, f)|^{2} [\text{dBm}/(12\Delta f)]$$

$$P_{All-RBs} = \frac{1}{|T_{s}|} \sum_{t \in T_{s}}^{c_{1} + (12 \cdot L_{CRBs} - 1) * \Delta f} |\text{MS}(t, f)|^{2} [\text{dBm}]$$

The relative in-band emissions, applicable for General and IQ image, are given by:

$$Emissions_{relative}(\Delta_{RB}) = 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_S| \cdot L_{CRBS}} \sum_{t \in T_S} \sum_{c_l}^{c_l + (12 \cdot L_{CRBS} - 1) \cdot \Delta f} |\mathsf{MS}(t, f)|^2} \right) [\mathsf{dB}] = Emissions_{absolute}(\Delta_{RB}) [\mathsf{dBm}/12\Delta f] - P_{RB}[dBm/12\Delta f]$$

where

 L_{CRBs} is the number of allocated resource blocks,

and

MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.3.3.

The relative in-band emissions, applicable for carrier leakage, is given by:

$$\begin{split} Emissions_{relative} &= 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(RBnextDC)}{\frac{1}{|T_s|} \sum_{t \in T_s} \sum_{c_l}^{c_l + (12 \cdot L_{CRBs} - 1) \cdot \Delta f} |\mathsf{MS}(t, f)|^2} \right) [\mathsf{dBc}] \\ &= Emissions_{absolute}(RBnextDC)[\mathsf{dBm}/12\Delta f] - P_{All\ RBs}[\mathsf{dBm}] \end{split}$$

where RBnextDC means: Resource Block next to the carrier.

This can be one RB or one pair of RBs, depending whether the DC carrier is inside an RB or in between two RBs.

Although an exclusion period may be applicable in the time domain, when evaluating EVM, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples *n* functions for general in band emissions and IQ image inband emissions can be derived. n values or n pairs of carrier leakage inband emissions can be derived. They are compared against different limits.

E.4.4 EVM equalizer spectrum flatness

For EVM equalizer spectrum flatness use EC(f) as defined in E.3.3. Note, EC(f) represents equalizer coefficient $f \in F$, f is the allocated subcarriers within the transmission bandwidth $((|F|=12*L_{CRB*})$

From the acquired samples n functions EC(f) can be derived.

EC(f) is broken down to 2 functions:

$$EC_1(f), f \in Range 1$$

$$EC_2(f), f \in Range \ 2$$

Where Range 1 and Range 2 are as defined in Table 6.5.2.4.5-1 for normal condition and Table 6.5.2.4.5-2 for extreme condition

The following peak to peak ripple is calculated:

 $RP_1 = 20 * \log (\max (|EC_1(f)|) / \min (|EC_1(f)|))$, which denote the maximum ripple in Range 1

 $RP_2 = 20 * log (max (|EC_2(f)|) / min(|EC_2(f)|))$, which denote the maximum ripple in Range 2

 $RP_{12} = 20*log(max(|EC_1(f)|)/min(|EC_2(f)|))$, which denote the maximum ripple between the upper side of Range 1 and lower side of Range 2

 $RP_{21} = 20*\log(max(|EC_2(f)|)/min(|EC_1(f)|))$,which denote the maximum ripple between the upper side of Range 2 and lower side of Range 1

E.4.5 Frequency error and Carrier leakage

See E.3.1.

E.4.6 EVM of Demodulation reference symbols (EVM_{DMRS})

For the purpose of EVM $_{DMRS}$, the steps E.2.2 to E.4.2 are repeated 6 times, constituting 6 EVM $_{DMRS}$ sub-periods. The only purpose of the repetition is to cover the longer gross measurement period of EVM $_{DMRS}$ (6 · n time slots) and to derive the FFT window timing per sub-period.

The bigger of the EVM results in one n TS period corresponding to the timing $\Delta \widetilde{c}$ -W/2 or $\Delta \widetilde{c}$ +W/2 is compared against the limit. (Clause E.4.2) This timing is re-used for EVM _{DMRS} in the equivalent EVM _{DMRS} sub-period.

For EVM the demodulation reference symbols are excluded, while the data symbols are used. For EVM $_{DMRS}$ the data symbols are excluded, while the demodulation references symbols are used. This is illustrated in figure E.4.6-1

Figure E.4.6-1: EVM_{DMRS} measurement points

Re-use the following formula from E.3.3:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

To calculate EVM_{DMRS} , the data symbol (t=0,1,3,4,5,6,8,9,10,12,13) in Z'(f,t) are excluded and only the reference symbols (t=2,7,11) is used.

The EVM $_{DMRS}$ is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{DMRS} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{'}(f, t) - I(f, t) \right|^{2}}{\left| T \left| \cdot P_{0} \cdot \middle| F \right|}},$$

where

t covers the count of demodulation reference symbols (i.e. symbols 2,7,11 in each slot, so count=3)

f covers the count of demodulation reference symbols within the allocated bandwidth. ($|F|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

Z '(f,t) are the samples of the signal evaluated for the EVM $_{
m DMRS}$

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

n such results are generated per measurement sub-period.

E.4.6.1 1st average for EVM DMRS

EVM _{DMRS} is averaged over all basic EVM _{DMRS} measurements in one sub-period

The averaging comprises n UL slots

$$1stEVM_{DMRS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (EVM_{DMRS,i})^{2}}$$

The timing is taken from the EVM for the data. 6 of those results are achieved from the samples. In general the timing is not the same for each result.

E.4.6.2 Final average for EVM DMRS

$$finalEVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{i=1}^{6} \left(1stEVM_{DMRS,i}\right)^{2}}$$

E.5 EVM and inband emissions for PUCCH

For the purpose of worst case testing, the PUCCH shall be located on the edges of the Transmission Bandwidth Configuration (6,15,25,50,75,100 RBs).

The EVM for PUCCH (EVM $_{PUCCH}$) is averaged over n slots, where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

At least *n* TSs shall be transmitted by the UE without power change. SRS multiplexing shall be avoided during this period. The following transition periods are applicable: One OFDM symbol on each side of the slot border (instant of band edge alternation).

The description below is generic in the sense that all 5 PUCCH formats are covered. Although the number of OFDM symbols in one slot can be different from 7 (depending on the format, configuration and cyclic prefix length), the text below uses 7 without excluding the others.

E.5.1 Basic principle

The basis principle is the same as described in E.2.1

E.5.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

E.5.3 Reference signal

The reference signal is defined same as in E.2.3. Same as in E.2.3, $i_1(v)$ is the ideal reference for EVM_{PUCCH} and $i_2(v)$ is used to estimate the FFT window timing.

Note PUSCH is off during the PUCCH measurement period.

E.5.4 Measurement results

The measurement results are:

- EVM_{PUCCH}
- Inband emissions with the sub-results: General in-band emission, IQ image (according to: 38.101. Annex F.4, Clause starting with: "At this stage the")

E.5.5 Measurement points

The measurement points are illustrated in the figure below:

Figure E.5.5-1: Measurement points

E.5.6 Pre FFT minimization process

The pre FFT minimisation process is the same as describes in clause E.3.1.

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the pre FFT minimisation process is done over the complete slot.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.5.7 Timing of the FFT window

Timing of the FFT window is estimated with the same method as described in E.3.2.

E.5.8 Post FFT equalisation

The post FFT equalisation is described separately without reference to E.3.3:

Perform 7 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \tilde{c}$, including the demodulation reference symbol. The result is an array of samples, 7 in the time axis t times TBD in the frequency axis f. The samples represent the OFDM symbols (data and reference symbols) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal reference symbols and **nominal** OFDM data symbols are used to equalize the measured data symbols.

Note: (The nomenclature inside this note is local and not valid outside)

The nominal OFDM data symbols are created by a demodulation process. A demodulation process as follows is recommended:

- 1. Equalize the measured OFDM data symbols using the reference symbols for equalisation. Result: Equalized OFDM data symbols
- 2. Decide for the nearest constellation point, however not independent for each subcarrier in the RB. 12 constellation points are decided dependent, using the applicable CAZAC sequence. Result: Nominal OFDM data symbols

At this stage we have an array of \underline{M} easured data- \underline{S} ymbols and reference- \underline{S} ymbols (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

The arrays comprise in sum 7 data and reference symbols, depending on the PUCCH format, in the time axis and the number of allocated sub-carriers in the frequency axis.

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{6} NS(f,t)^{*} NS(f,t)}{\sum_{t=0}^{6} MS(f,t)^{*} NS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the OFDM data together with the demodulation reference symbols by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With · denoting multiplication.

Z'(f,t) is used to calculate EVM_{PUCCH}, as described in E.5.9 1

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the post FFT minimisation process is done over 7 OFDM symbols.

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.5.9 Derivation of the results

E.5.9.1 EVM_{PUCCH}

For EVM_{PUCCH} create two sets of Z'(f,t)., according to the timing " $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2" using the equalizer coefficients from E.5.8

The EVM_{PUCCH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{PUCCH} = \sqrt{\frac{\displaystyle\sum_{t \in T} \sum_{f \in F} \left| Z^{-1}(f, t) - I(f, t) \right|^{2}}{\left| T \mid \cdot P_{0} \cdot \mid F \right|}},$$

where

the OFDM symbols next to slot boarders (instant of band edge alternation) are excluded:

t covers less than the count of demodulated symbols in the slot (|T|=5)

f covers the count of subcarriers within the allocated bandwidth. (|F|=12)

 $Z^{\prime}(f,t)$ are the samples of the signal evaluated for the EVM_{PUCCH}

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 2n EVM_{PUCCH} value can be derived, n values for the timing $\Delta \widetilde{c}$ -W/2 and n values for the timing $\Delta \widetilde{c}$ +W/2

E.5.9.2 Averaged EVM_{PUCCH}

EVM_{PUCCH} is averaged over all basic EVM_{PUCCH} measurements

The averaging comprises *n* UL slots

$$\overline{EVM}_{PUCCH} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (EVM_{PUCCH,i})^{2}}$$

The averaging is done separately for timing $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2 leading to $\overline{EVM}_{PUCCH,low}$ and $\overline{EVM}_{PUCCH,high}$

 $EVM_{PUCCH,final} = \max(\overline{EVM}_{PUCCH,low},\overline{EVM}_{PUCCH,high})$ is compared against the test requirements.

E.5.9.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\max(f_{\min},(c_{t}+12 \cdot \Delta_{RB}+1)^{*} \Delta f}^{c_{t}+(12 \cdot \Delta_{RB}+11)^{*} \Delta f} |Y(t,f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\min(f_{\max},(c_{t}+12 \cdot \Delta_{RB}*\Delta f))}^{\min(f_{\max},(c_{t}+12 \cdot \Delta_{RB}*\Delta f))} |Y(t,f)|^{2}, \Delta_{RB} > 0 \end{cases},$$

where

the upper formula represents the inband emissions below the allocated frequency block and the lower one the inband emissions above the allocated frequency block.

 T_s is a set of $\left|T_s\right|$ OFDM symbols in the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 f_{\min} and f_{\max} are the lower and upper edge of the UL system BW,

 \boldsymbol{c}_l and \boldsymbol{c}_h are the lower and upper edge of the allocated BW,

 Δf is the SCS, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.5.8

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = 10*\log_{10} \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot L_{CRBs}} \sum_{t \in T_{s}}^{c_{1}+(12:L_{CRBs}-1)*\Delta f} \left|MS(t,f)\right|^{2}} [dB]$$

where

 L_{CRBs} is the number of allocated RBs,

and MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.5.8

Although an exclusion period for EVM is applicable in E.5.9.1, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples n functions for inband emissions can be derived.

Since the PUCCH allocation is always on the upper or lower band-edge, the opposite of the allocated one represents the IQ image, and the remaining inner RBs represent the general inband emissions. They are compared against different limits.

E.6 EVM for PRACH

The description below is generic in the sense that all PRACH formats are covered. The numbers, used in the text below are taken from PRACH format#0 without excluding the other formats. The sampling rate for the PUSCH, TBD Msps in the time domain, is re-used for the PRACH. The carrier spacing of the PUSCH is up to 48 times higher than that of PRACH depending on the PRACH format and SCS. This results in an oversampling factor *ovf* of up to 48, when acquiring the time samples for the PRACH. The pre-FFT algorithms (clauses E.6.6 and E.6.7) use all time samples, although oversampled. For the FFT the time samples are decimated by the *ovf*, resulting in the same FFT size as for the other transmit modulation tests. Decimation requires a decision, which samples are used and which ones are rejected. The algorithm in E.6.6, Timing of the FFT window, can also be used to decide about the used samples.

E.6.1 Basic principle

The basis principle is the same as described in E.2.1

E.6.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

The measurement period is TBD.

E.6.3 Reference signal

The test description in 6.4.2.1.4.1 is based on non-contention based access:

- PRACH configuration index (responsible for Preamble format, System frame number and subframe number)
- Preamble ID
- Preamble power

signalled to the UE, defines the reference signal unambiguously, such that no demodulation process is necessary to gain the reference signal.

The reference signal i(v) is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: the applicable Zadoff Chu sequence, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of TBD Msps in the time domain.

E.6.4 Measurement results

The measurement result is:

EVMPRACH

E.6.5 Measurement points

The measurement points are illustrated in the figure below:

Figure E.6.5-1: Measurement points

E.6.6 Pre FFT minimization process

The pre-FFT minimization process is applied to each PRACH preamble separately. The time period for the pre-FFT minimisation process includes the complete CP and Zadoff-Chu sequence (in other words, the power transition period is per definition outside of this time period) Sample timing, Carrier frequency and carrier leakage in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

After this process the samples z(v) are called $z^0(v)$.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.6.7 Timing of the FFT window

The FFT window length is TBD samples for preamble format 0, however in the measurement period at least TBD samples are taken. The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W < CP.

The reference instant for the FFT start is the centre of the reduced window, called $\Delta \widetilde{c}$,

EVM is measured at the following two instants: $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2.

The timing of the measured signal $z^0(v)$ with respect to the ideal signal i(v) is determined in the pre FFT domain as follows:

Correlation between $z^0(v)$ and i(v) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal with respect to the ideal signal.

W is different for different preamble formats and shown in Table E.6.7-1.

Table E.6.7-1EVM window length for PRACH

TBD

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z''(v).

The sample frequency TBD MHz is oversampled with respect to the PRACH-subcarrier spacing of 1.25kHz (format 0 to 3) and 5kHz (format 4). EVM is based on TBD samples per PRACH preamble and requires decimation of the time samples by the factor of $12 \cdot 2^{\mu}$ (format 0 to 3) and factor $3 \cdot 2^{\mu}$ (format 4). The final number of samples per PRACH preamble, used for FFT is reduced compared to z''(v) by the same factor. This subset of samples is called z'(v).

E.6.8 Post FFT equalisation

Equalisation is not applicable for the PRACH.

E.6.9 Derivation of the results

E.6.9.1 EVMPRACH

Perform FFT on z'(v) and i(v) using the FFT timing $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$.

[For format 2 and 3 the first and the repeated preamble sequence are FFT-converted separately. using the standard FFT length of TBD.]

The EVM_{PRACH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s).

$$EVM_{PRACH} = \sqrt{\frac{\sum_{f \in F} \left| Z_{,}^{'} \left(f_{,}^{'} \right) - I \left(f_{,}^{'} \right) \right|^{2}}{N_{ZC} \cdot P_{0}}},$$

where

f covers the count of demodulated symbols within the allocated bandwidth.

Z'(f) are the samples of the signal evaluated for the EVM_{PRACH}

I(f) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

 $N_{\rm ZC}$ is random access preamble sequence length.

From the acquired samples TBD EVM_{PRACH} values can be derived, TBD values for the timing $\Delta \widetilde{c}$ –W/2 and TBD values for the timing $\Delta \widetilde{c}$ +W/2.

E.6.9.2 Averaged EVM_{PRACH}

The PRACH EVM, EVM_{PRACH} , is averaged over TBD preamble sequence measurements.

$$\overline{EVM}_{PRACH} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (EVM_{PUCCH,i})^2}$$

where m is TBD.

The averaging is done separately for timing: $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2 leading to $\overline{EVM}_{PRACH,low}$ and $\overline{EVM}_{PRACH,high}$

 $EVM_{PRACH,final} = \max(\overline{EVM}_{PRACH,low},\overline{EVM}_{PRACH,high})$ is compared against the test requirements.

Annex F (normative): Measurement uncertainties and Test Tolerances

F.1 Acceptable uncertainty of Test System (normative)

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

The downlink signal uncertainties apply at each receiver antenna connector.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in TS 38.508-1 [5] subclause 4.1, Test environments shall be

- Pressure ±5 kPa.

- Temperature ±2 degrees.

- Relative Humidity ±5 %.

- DC Voltage $\pm 1,0 \%$.

- AC Voltage $\pm 1,5 \%$.

- Vibration 10 %.

- Vibration frequency 0,1 Hz.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Table F.1.2-1: Maximum Test System Uncertainty for transmitter tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2.1 UE maximum output	f ≤ 3.0GHz	
power	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	2.0011 6 < 4.2011-	
	3.0GHz < f ≤ 4.2GHz ±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
6.2.2 Maximum Power	±1.6 dB, 40MHz < BW ≤ 100MHz f ≤ 3.0GHz	
Reduction (MPR)	± 0.7 dB, BW ≤ 40MHz	
Neudction (ivii 10)	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
6.2.3 UE additional	f ≤ 3.0GHz	
maximum output power	±0.7 dB, BW ≤ 40MHz	
reduction	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz	
6.2.4 Configured transmitted		
power	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	0.0011 (1.4.0011	
	3.0GHz < f ≤ 4.2GHz ±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
6.2.4 Minimum output nower	±1.6 dB, 40MHz < BW ≤ 100MHz	
6.3.1 Minimum output power	f ≤ 3.0GHz ±1.0 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.3 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.5 dB, BW ≤ 40MHz	
	±1.8 dB, 40MHz < BW ≤ 100MHz	

000T :: 0FF	1, 10,0011	
6.3.2 Transmit OFF power	f ≤ 3.0GHz	
	±1.5 dB, BW ≤ 40MHz	
	±1.7 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.3.2 General ON/OFF	f ≤ 3.0GHz	
time mask	±1.5 dB, BW ≤ 40MHz	
line mask	±1.7 dB, 40MHz < BW ≤ 100MHz	
	±1.7 db, 401/11 12 < by ≤ 1001/11 12	
	2 00Hz - f < 4 20Hz	
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.4.2 Absolute power	f ≤ 3.0GHz	Test System uncertainty =
tolerance	±1.0 dB, BW ≤ 40MHz	SQRT (UL Meas Uncer2 + DL
	±1.6 dB, 40MHz < BW ≤ 100MHz	Meas Uncer ²)
		mede emes. /
	3.0GHz < f ≤ 4.2GHz	
	±1.4 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 100MHz	
	±1.9 dD, 401/11 12 < DVV = 1001/11 12	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 40MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.4.3 Power Control	±0.7 dB, BW ≤ 40MHz	
Relative power tolerance	±1.0 dB, 40MHz < f ≤ 100MHz	
6.3.4.4 Aggregate power	±0.7 dB, BW ≤ 40MHz	
tolerance	±1.0 dB, 40MHz < f ≤ 100MHz	
6.4.1 Frequency Error	±15 Hz, f ≤ 3.0GHz	
	±36 Hz, f > 3.0GHz	
	DL Signal level:	
	±0.7 dB, f ≤ 3.0GHz	
	±1.0 dB, 3.0GHz < f ≤ 4.2GHz	
	$\pm 1.5 \text{ dB}, 4.2 \text{GHz} < f \le 6.0 \text{GHz}$	
6.4.2.1 Error Vector	For up to 256QAM:	
Magnitude	f ≤ 6.0GHz, BW ≤ 100MHz	
	15 dBm < P _{UL}	
	PUSCH, PUCCH, PRACH: ±1.5 %	
	-25 dBm < P∪L ≤ 15 dBm	
	PUSCH, PUCCH, PRACH: ±2.5 %	
		l .
	-40dBm ≤ P _{UL} ≤ -25dBm PUSCH, PUCCH, PRACH: ±3.0 %	

6.4.2.2 Carrier Leakage	f ≤ 3.0GHz
	±0.8 dB, BW ≤ 40MHz
	±1.5 dB, 40MHz < BW ≤ 100MHz
	3.0GHz < f ≤ 4.2GHz
	±0.8 dB, BW ≤ 40MHz
	±1.6 dB, 40MHz < BW ≤ 100MHz
	4.2GHz < f ≤ 6.0GHz
	±1.0 dB, BW ≤ 40MHz
0.4.0.0 kg kg and ansigning	±1.6 dB, 40MHz < BW ≤ 100MHz
6.4.2.3 In-band emissions	f ≤ 3.0GHz
	±0.8 dB, BW ≤ 40MHz
	±1.5 dB, 40MHz < BW ≤ 100MHz
	3.0GHz < f ≤ 4.2GHz
	±0.8 dB, BW ≤ 40MHz
	±1.6 dB, 40MHz < BW ≤ 100MHz
	4.2GHz < f ≤ 6.0GHz
	±1.0 dB, BW ≤ 40MHz
	±1.6 dB, 40MHz < BW ≤ 100MHz
6.4.2.4.EVM equalizer	±1.4 dB, BW ≤ 40MHz
6.4.2.4 EVM equalizer	, ,
spectrum flatness	±1.6 dB, 40MHz < f ≤ 100MHz
6.5.1 Occupied bandwidth	TBD
6.5.2.2 Spectrum Emission	±1.5 dB, f ≤ 3.0GHz
Mask	±1.8 dB, 3.0GHz < f ≤ 4.2GHz
	±2.0 dB, 4.2GHz < f ≤ 6.0GHz
6.5.2.3 Additional spectrum	±1.5 dB, f ≤ 3.0GHz
emission mask	±1.8 dB, 3.0GHz < f ≤ 4.2GHz
	±2.0 dB, 4.2GHz < f ≤ 6.0GHz
6.5.2.4.1 NR ACLR	±0.8 dB, f ≤ 4.0GHz
O.O.Z. II. I TATE / COLIC	±1.0 dB, 4.0GHz < f ≤ 6.0GHz
6.5.2.4.2 UTRA ACLR	±0.8 dB, f ≤ 4.0GHz
0.5.2.4.2 OTKA ACEK	
0.5.0.4.0	±1.0 dB, 4.0GHz < f ≤ 6.0GHz
6.5.3.1 General spurious	for results > -60 dBm:
emissions	±2.0 dB, 9kHz < f ≤ 3GHz
	±2.5 dB, 3GHz < f ≤ 4GHz
	±4.0 dB, 4GHz < f ≤ 19GHz
	±6.0 dB, 19GHz < f ≤ 26GHz
6.5.3.2 Spurious emission	for results > -60 dBm:
for UE co-existence	±2.0 dB, 9kHz < f ≤ 3GHz
	± 2.5 dB, 3GHz < f \leq 4GHz
	±4.0 dB, 4GHz < f ≤ 19GHz
	±6.0 dB, 19GHz < f ≤ 26GHz
6.5.3.3 Additional spurious	for results > -60 dBm:
emissions	±2.0 dB, 9kHz < f ≤ 3GHz
GIIIIOOIUIIO	
	±2.5 dB, 3GHz < f ≤ 4GHz
	±4.0 dB, 4GHz < f ≤ 19GHz
	±6.0 dB, 19GHz < f ≤ 26GHz

6.5.4 Transmit	f ≤ 3.0GHz	Overall system uncertainty
intermodulation	±2.7 dB, BW ≤ 40MHz	comprises four quantities:
	±3.1 dB, 40MHz < BW ≤ 100MHz	Wanted signal setting error
	3.0GHz < f ≤ 4.2GHz	CW Interferer level error Wanted signal meas. error
	±3.7 dB, BW ≤ 40MHz	4. Intermodulation product
	±4.0 dB, 40MHz < BW ≤ 100MHz	measurement error
	4.2GHz < f ≤ 6.0GHz	The relative level of the wanted
	±5.1 dB, BW ≤ 40MHz ±5.3 dB, 40MHz < BW ≤ 100MHz	signal and the CW interferer
	±3.3 dB, 40101112 < BW ± 100101112	has 2 x effect on the
		intermodulation product.
		Items 1, 2, 3 and 4 are
		assumed to be uncorrelated so
		can be root sum squared to provide the combined effect.
		provide the demanded enest.
		Test System uncertainty =
		SQRT [(2 x SQRT (Wanted setting_error ² +
		CW_level_error ²)) ² +
		Wanted_level_meas error ² +
		Intermodulation product
		measurement error ²]

F.1.3 Measurement of receiver

Table F.1.3-1: Maximum Test System Uncertainty for receiver tests

7.3.2 Reference sensitivity prover level 2.0 dB, 3.09Hz < 15.4 2CHz	Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
power level	7.3.2 Reference sensitivity	±0.7 dB, f ≤ 3.0GHz	
Downlink power		±1.0 dB, 3.0GHz < f ≤ 4.2GHz	
#10 dB 3.0GHz < 15 4.2GHz			
#1.0 dB, 3.0GHz < f s 4.2GHz #1.5 dB, 4.2GHz < f s 6GHz Uplink power measurement f s 3.0GHz #0.7 dB, BW s 40MHz #1.0 dB, BW s 40MHz #1.0 dB, BW s 40MHz #1.0 dB, BW s 40MHz #1.5 dB, 40MHz < BW s 100MHz #1.5 dB, 20MHz < f s 6.0GHz #1.5 dB, 20MHz < f s 6.0GHz #1.5 dB, 20MHz < f s 6.0GHz #1.5 dB, 20MHz < f s 6.0GHz #1.5 dB, 20MHz < f s 6.0GHz #1.5 dB, 20MHz < f s 6.0GHz #1.5 dB, 3.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.0MHz #1.5 dB, 4.0MHz < BW s 100MHz #1.5 dB, 4.0MHz #1.5 dB, 4.0MHz < BW s 100MHz #1.5 dB, 4.0MHz < BW s 40MHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5 dB, 4.2GHz < f s 6.0GHz #1.5	7.4 Maximum input level		
#1.5 dB, 4.2GHz < 15 GGHz Uplink power measurement 15 3.0GHz 21.1 dB, BW \$ 40MHz 21.1 dB, BW \$ 40MHz 21.1 dB, BW \$ 40MHz 21.1 dB, BW \$ 40MHz 21.1 dB, BW \$ 40MHz 21.1 dB, BW \$ 20MHz 21.3 dB, BW \$ 20MHz 21.3 dB, BW \$ 20MHz 22.3 dB, 3.0GHz < 15 4.2GHz 22.3 dB, 3.0GHz < 15 4.2GHz 21.0 dB, BW \$ 40MHz 22.3 dB, 3.0GHz < 15 4.2GHz 21.1 dB, 40MHz < BW \$ 100MHz 22.3 dB, 3.0GHz < 15 4.2GHz 21.1 dB, 40MHz < BW \$ 100MHz 22.3 dB, 3.0GHz < 15 4.2GHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 40MHz < BW \$ 40MHz 21.1 dB, 40MHz < BW \$ 100MHz 21.1 dB, 8W \$ 40MHz			
Uplink power measurement f ≤ 3.0GHz ±1.4 dB, 40MHz < BW ≤ 100MHz			
f ≤ 3.0 GHz		±1.5 dB, 4.2GHz < f ≤ 6GHz	
f ≤ 3.0 GHz		Uplink power measurement	
1.1.4 dB, 40MHz < BW ≤ 100MHz 3.0 GHz < f ≤ 4,2GHz ±1.0 dB, BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 4.2 GHz < f ≤ 6.0 GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 100MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 2.1.6 dB, 40MHz < BW ≤ 100MHz 2.3 dB, 3.0 GHz ±2.3 dB, 3.0 GHz ±2.3 dB, 3.0 GHz ±2.3 dB, 3.0 GHz ±1.0 dB, BW ≤ 40MHz ±1.4 dB, 40MHz < BW ≤ 100MHz 3.0 GHz < f ≤ 4.2 GHz ±1.0 dB, BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 4.2 GHz < f ≤ 6.0 GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 3.0 GHz < f ≤ 4.2 GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 7.6.2 Inband Blocking Blocking ±1.6 dB, 40MHz < BW ≤ 100MHz ±1.4 dB, 40MHz < BW ≤ 100MHz 1.0 dB, BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz ±1.6 dB, 40MHz ±1.6 dB, 40MHz ±1.6 dB,			
3.0GHz < f ≤ 4.2GHz			
### ### ### ### ### ### ### ### ### ##		±1.4 dB, 40MHz < BW ≤ 100MHz	
#1.6 dB, 40MHz < BW ≤ 100MHz 4.2GHz < 1 ≤ 6.0GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz ACS value ±1.6 dB, 40MHz < BW ≤ 100MHz ±2.3 dB, 3.0GHz ±2.3 dB, 3.0GHz ±2.3 dB, 3.0GHz ±2.3 dB, 3.0GHz ±1.4 dB, 40MHz ±1.4 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 40MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 40MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 6 f ≤ 3.0GHz #1.6 dB, 6 f ≤ 3.0GHz #2.3 dB, 3.0GHz < 1 ≤ 4.2GHz #3.0 dB, 4.2GHz < 1 ≤ 6.0GHz #		3.0GHz < f ≤ 4.2GHz	
4.2GHz < 1 ≤ 6.0GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 7.5 Adjacent channel selectivity 4.2 GHz < 1 ≤ 4.2GHz ±2.3 dB, 3.0GHz < 1 ≤ 4.2GHz ±3.0 dB, 4.2GHz < 1 ≤ 6.0GHz 1. Wanted signal level error 2. Interferer signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR 1. Wanted signal level error 2. Interferer ACLR 4. Set 4. S		±1.0 dB, BW ≤ 40MHz	
# 1.3 dB, BW ≤ 20MHz # 1.5 dB, 20MHz # 1.6 dB, 40MHz < BW ≤ 40MHz # 1.6 dB, 40MHz < BW ≤ 100MHz # 1.6 dB, 1≤ 3.0GHz # 1.6 dB, 40MHz < BW ≤ 100MHz # 1.6 dB, 1≤ 3.0GHz # 1.6 dB, 40MHz < BW ≤ 100MHz # 1.6 dB, 1≤ 3.0GHz # 1.6		±1.6 dB, 40MHz < BW ≤ 100MHz	
# 1.5 dB, 20MHz < BW ≤ 40MHz # 1.6 dB, 40MHz < BW ≤ 100MHz # 1.6 dB, 40MHz < BW ≤ 100MHz # 1.6 dB, 1≤ 3.0GHz # 1.6 dB, 1≤ 3.0GHz # 1.6 dB, 1≤ 3.0GHz # 1.6 dB, 1≤ 3.0GHz # 1.5 dB, 20MHz < 1≤ 6.0GHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.6 dB, 40MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 3.0GHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 20MHz < BW ≤ 100MHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 1≤ 3.0GHz # 1.5 dB, 40MHz < BW ≤ 100MHz # 1.5 dB, 1≤ 3.0GHz #		4.2GHz < f ≤ 6.0GHz	
# 1.5 dB, 20MHz < BW ≤ 40MHz # 1.6 dB, 40MHz		±1.3 dB, BW ≤ 20MHz	
7.5 Adjacent channel selectivity			
selectivity $ \begin{array}{ll} \pm 1.6 \ dB, \ f \leq 3.0 \ GHz \\ \pm 2.3 \ dB, \ 3.0 \ GHz < f \leq 4.2 \ GHz \\ \pm 3.0 \ dB, \ 4.2 \ GHz < f \leq 6.0 \ GHz \\ \end{array}{2} $		±1.6 dB, 40MHz < BW ≤ 100MHz	
#2.3 dB, 3.0 GHz < f ≤ 4 2 GHz #3.0 dB, 4.2 GHz < f ≤ 6.0 GHz Uplink power measurement f ≤ 3.0 GHz #0.7 dB, BW ≤ 40 MHz #1.4 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 20 MHz < BW ≤ 40 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.6 dB, 40 MHz < f ≤ 4.2 GHz #2.3 dB, 3.0 GHz < f ≤ 4.2 GHz #3.0 dB, 4.2 GHz < f ≤ 6.0 GHz #1.4 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 20 MHz < BW ≤ 40 MHz #1.6 dB, f ≤ 3.0 GHz #2.3 dB, 3.0 GHz < f ≤ 4.2 GHz #3.0 dB, 4.2 GHz < f ≤ 6.0 GHz #1.4 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 8 W ≤ 40 MHz #1.6 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 40 MHz < BW ≤ 100 MHz #1.5 dB, 40 MHz < BW ≤ 40 MHz #1.5 dB, 40 MHz < 40 MHz #1.5 dB, 40 MHz < 40 MHz #1.5 dB, 40 MHz < 40 MH		ACS value	
$ \begin{array}{c} \pm 3.0 \text{ dB, } 4.2 \text{GHz} < \text{f} \le 6.0 \text{GHz} \\ \\ \text{Uplink power measurement} \\ \text{f} \le 3.0 \text{GHz} \\ \pm 0.7 \text{ dB, BW} \le 40 \text{MHz} \\ \pm 1.4 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz} \\ \\ \pm 1.0 \text{ dB, BW} \le 40 \text{MHz} \\ \\ \pm 1.0 \text{ dB, BW} \le 40 \text{MHz} \\ \\ \pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz} \\ \\ \\ \pm 1.3 \text{ dB, } 80 \text{W} \le 20 \text{MHz} \\ \\ \\ \pm 1.5 \text{ dB, } 20 \text{MHz} < \text{BW} \le 100 \text{MHz} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	selectivity		comprises three quantities:
Uplink power measurement $f \le 3.0\mathrm{GHz}$ $\pm 0.7\mathrm{dB}$, BW $\le 40\mathrm{MHz}$ $\pm 1.4\mathrm{dB}$, $40\mathrm{MHz}$ $< 8\mathrm{W} \le 100\mathrm{MHz}$ $< 1.4\mathrm{dB}$, $40\mathrm{MHz}$ $< $			1 Wanted signal level error
$ \begin{array}{c} \text{Opinin Divest The easternism} \\ \text{f} \leq 3.0 \text{GHz} \\ \pm 0.7 \text{ dB, BW} \leq 40 \text{MHz} \\ \pm 1.4 \text{ dB, 40MHz} < \text{BW} \leq 100 \text{MHz} \\ \text{3.0GHz} < \text{f} \leq 4.2 \text{GHz} \\ \pm 1.0 \text{ dB, BW} \leq 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \leq 100 \text{MHz} \\ \text{4.2GHz} < \text{f} \leq 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \leq 20 \text{MHz} \\ \pm 1.5 \text{ dB, 20MHz} < \text{BW} \leq 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \leq 40 \text{MHz} \\ \text{2 the ferer ACLR effect is systematic, and is added arithmetically.} \\ \text{7.6.2 Inband Blocking} \\ \hline \\ \textbf{7.6.2 Inband Blocking} \\ \hline \\ \textbf{7.6.2 Inband Blocking} \\ \hline \\ \textbf{8.10 GHz} < \text{6.0 GHz} \\ \text{1.0 GHz} < \text{6.0 GHz} \\ \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} \\ \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < \text{1.0 GHz} < 1.0 GH$		$\pm 3.0 \text{ dB}, 4.2 \text{GHz} < 1 \le 6.0 \text{GHz}$	
$ \begin{array}{c} f \leq 3.0 \text{GHz} \\ \pm 0.7 \text{ dB, BW} \leq 40 \text{MHz} \\ \pm 1.4 \text{ dB, 40 MHz} \leq \text{BW} \leq 100 \text{MHz} \\ \hline 3.0 \text{GHz} < f \leq 4.2 \text{GHz} \\ \pm 1.0 \text{ dB, BW} \leq 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40 MHz} < \text{BW} \leq 100 \text{MHz} \\ \hline 4.2 \text{GHz} < f \leq 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \leq 20 \text{MHz} \\ \pm 1.6 \text{ dB, 40 MHz} < \text{BW} \leq 100 \text{MHz} \\ \hline 4.2 \text{GHz} < f \leq 6.0 \text{GHz} \\ \pm 1.5 \text{ dB, 20 MHz} < \text{BW} \leq 20 \text{MHz} \\ \hline \pm 1.6 \text{ dB, 40 MHz} < \text{BW} \leq 100 \text{MHz} \\ \hline 4.2 \text{GHz} < f \leq 6.0 \text{GHz} \\ \pm 1.5 \text{ dB, 20 MHz} < \text{CHZ} < f \leq 6.0 \text{GHz} \\ \hline 4.16 \text{ dB, 40 MHz} < \text{BW} \leq 100 \text{MHz} \\ \hline \hline 7.6.2 \text{ Inband Blocking} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $		Uplink power measurement	
#1.4 dB, 40MHz < BW ≤ 100MHz 3.0GHz < f ≤ 4.2GHz #1.0 dB, BW ≤ 40MHz #1.6 dB, 40MHz < BW ≤ 100MHz 4.2GHz < f ≤ 6.0GHz #1.5 dB, 20MHz < BW ≤ 40MHz #1.5 dB, 20MHz < BW ≤ 40MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.5 dB, 20MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 40MHz < BW ≤ 100MHz #1.6 dB, 5 3.0GHz #1.6 dB, 5 3.0GHz #1.3 dB, BW ≤ 40MHz #1.5 dB, 20MHz < BW ≤ 100MHz #1.6 dB, 6 3.0GHz #1.6 dB, 6 3.0GHz #1.6 dB, 6 3.0GHz #1.6 dB, 4.2GHz < 6 6.0GHz #1.6 dB, 4.2GHz < 7 ≤ 4.2GHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.0 dB, BW ≤ 40MHz #1.1 dB, 40MHz < BW ≤ 100MHz #1.2GHz < f ≤ 6.0GHz #1.1 dB, 40MHz < BW ≤ 100MHz #1.2 dB, 40MHz < BW ≤ 100MHz #1.3 dB, BW ≤ 20MHz #1.5 dB, 20MHz < BW ≤ 40MHz #1.5 dB, 40MHz < BW ≤ 40MHz #1.5 dB, 50MHz #1.5 dB, 50MHz #1.5 dB, 50MHz #1.			ACLR
be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The interferer ACLR effect is systematic, and is added arithmetically. 4.2GHz < f ≤ 6.0GHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz Blocking ±1.6 dB, f ≤ 3.0GHz ±2.3 dB, 3.0GHz < f ≤ 4.2GHz ±2.3 dB, 3.0GHz < f ≤ 6.0GHz Uplink power measurement f ≤ 3.0GHz ±1.4 dB, 40MHz < BW ≤ 100MHz 11.4 dB, 40MHz < BW ≤ 100MHz Blocking 3.0GHz ±1.6 dB, 6≤ 3.0GHz ±1.0 dB, BW ≤ 40MHz ±1.4 dB, 40MHz < BW ≤ 100MHz 4.2GHz < f ≤ 4.2GHz ±1.0 dB, BW ≤ 40MHz ±1.5 dB, 20MHz < BW ≤ 100MHz 4.2GHz < f ≤ 6.0GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.5 dB, 20MHz		±0.7 dB, BW ≤ 40MHz	Itoma 1 and 2 are assumed to
$3.0 \text{GHz} < f \le 4.2 \text{GHz} \\ \pm 1.0 \text{ dB, BW} \le 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz}$ $4.2 \text{GHz} < f \le 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \le 20 \text{MHz} \\ \pm 1.5 \text{ dB, 20MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz}$ $1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz}$ $1.6 \text{ dB, 40MHz} < \text{dB} = 1.6 \text{ dB, 40MHz}$ $1.6 \text{ dB, 6} \le 3.0 \text{GHz}$ $1.6 \text{ dB, 6} \le 3.0 \text{GHz}$ $1.6 \text{ dB, 4.2 GHz} < f \le 6.0 \text{GHz}$ $1.6 \text{ dB, 4.2 GHz} < f \le 6.0 \text{GHz}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{GHz}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.6 \text{ dB, 40MHz} < f \le 6.0 \text{dB}$ $1.$		±1.4 dB, 40MHz < BW ≤ 100MHz	
$\begin{array}{lll} 3.0\text{GHz} < 1 \le 4.2\text{GHz} \\ \pm 1.0\text{ dB},\text{BW} \le 40\text{MHz} \\ \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.3\text{ dB},\text{BW} \le 20\text{MHz} \\ \pm 1.5\text{ dB},\text{20MHz} < \text{BW} \le 40\text{MHz} \\ \pm 1.5\text{ dB},\text{20MHz} < \text{BW} \le 40\text{MHz} \\ \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{ dB},\text{40MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 2.3\text{ dB},3.0\text{GHz} < 1 \le 4.2\text{GHz} \\ \pm 2.3\text{ dB},3.0\text{GHz} < 1 \le 4.2\text{GHz} \\ & \pm 2.3\text{ dB},3.0\text{GHz} < 1 \le 4.2\text{GHz} \\ & \pm 3.0\text{dB},4.2\text{GHz} < 1 \le 6.0\text{GHz} \\ & \pm 0.7\text{dB},\text{BW} \le 40\text{MHz} \\ & \pm 1.4\text{dB},40\text{MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{dB},40\text{MHz} < \text{BW} \le 40\text{MHz} \\ & \pm 1.6\text{dB},40\text{MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{dB},40\text{MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{dB},40\text{MHz} < \text{BW} \le 100\text{MHz} \\ & \pm 1.6\text{dB},40\text{MHz} < \text{dBW} \le 40\text{MHz} \\ & \pm 1.6\text{dB},40$			
$\begin{array}{c} \pm 1.0 \text{ dB, BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100\text{MHz} \\ \end{array} \\ \pm 1.3 \text{ dB, BW} \le 20\text{MHz} \\ \pm 1.5 \text{ dB, 20MHz} < \text{BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100\text{MHz} \\ \end{array} \\ \begin{array}{c} \pm 1.6 \text{ dB, 40MHz} < \text{dBW} \le 20\text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100\text{MHz} \\ \end{array} \\ \begin{array}{c} \pm 1.6 \text{ dB, 40MHz} < \text{dBW} \le 100\text{MHz} \\ \end{array} \\ \begin{array}{c} \text{Test System uncertainty} = \\ [\text{SQRT (wanted_level_error}^2 + \text{interferer_level_error}^2)] + \text{ACLR} \\ \text{effect.} \\ \end{array} \\ \begin{array}{c} \text{To.2.2 Inband Blocking} \\ \end{array} \\ \begin{array}{c} \text{Blocking} \\ \pm 1.6 \text{ dB, } 1 \le 3.0 \text{GHz} \\ \pm 2.3 \text{ dB, 3.0GHz} < 1 \le 4.2 \text{GHz} \\ \pm 3.0 \text{ dB, 4.2GHz} < 1 \le 6.0 \text{GHz} \\ \end{array} \\ \begin{array}{c} \text{Uplink power measurement} \\ 1 \le 3.0 \text{ GHz} \\ \pm 0.7 \text{ dB, BW} \le 40\text{MHz} \\ \pm 1.4 \text{ dB, 40MHz} < \text{BW} \le 100\text{MHz} \\ \end{array} \\ \begin{array}{c} \text{3.0GHz} < 1 \le 4.2 \text{GHz} \\ \pm 1.0 \text{ dB, BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100\text{MHz} \\ \end{array} \\ \begin{array}{c} \text{3.0GHz} < 1 \le 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \le 20\text{MHz} \\ \pm 1.5 \text{ dB, 20MHz} < \text{BW} \le 40\text{MHz} \\ \end{array} \\ \begin{array}{c} \text{4.16 dB, 40MHz} < \text{BW} \le 100\text{MHz} \\ \end{array} \\ \begin{array}{c} \text{The interferer ACLR effect is systematic, and is added arithmetically.} \\ \text{Trest System uncertainty} = \\ \text{SQRT (wanted_level_error}^2 + \\ \text{interferer ACLR} \\ \text{orithmetically.} \\ \text{Test System uncertainty} = \\ \text{SQRT (wanted_level_error}^2 + \\ \text{interferer_level_error}^2 + \\ interferer_l$			
$ \begin{array}{c} \pm 1.6 $			
$\begin{array}{lll} 4.2 \text{GHz} < 1 \le 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \le 20 \text{MHz} \\ \pm 1.6 \text{ dB, 20MHz} < \text{BW} \le 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz} \\ \end{array}$		±1.6 dB, 40MHz < BW ≤ 100MHz	
$ \begin{array}{lll} \pm 1.3 \ dB, \ BW \le 20 \ MHz \\ \pm 1.5 \ dB, \ 20 \ MHz < BW \le 40 \ MHz \\ \pm 1.6 \ dB, \ 40 \ MHz < BW \le 100 \ MHz \\ \end{array} \\ \begin{array}{lll} \text{Test System uncertainty} = \\ [SQRT (wanted_level_error^2 + interferer_level_error^2 + interferer_level_error^2)] + ACLR} \\ \hline 7.6.2 \ Inband \ Blocking \\ \pm 1.6 \ dB, \ 40 \ MHz < BW \le 100 \ MHz \\ \pm 2.3 \ dB, \ 3.0 \ GHz < f \le 4.2 \ GHz \\ \pm 2.3 \ dB, \ 3.0 \ GHz < f \le 6.0 \ GHz \\ \hline 1. \ Wanted \ signal \ level \ error \\ 2. \ Interferer \ signal \ level \ error \\ 3. \ Interferer \ ACLR \\ 4. \ Interferer \ broadband \ noise \\ Items 1 \ and 2 \ are \ assumed \ to be \ uncorrelated \ so \ can be \ root \ sum \ squared \ to \ provide \ the \ ratio \ error \ of \ the \ two \ signals. \\ 3.0 \ GHz < f \le 4.2 \ GHz \\ \pm 1.0 \ dB, \ BW \le 40 \ MHz \\ \pm 1.6 \ dB, \ 40 \ MHz < BW \le 100 \ MHz \\ \hline \pm 1.3 \ dB, \ BW \le 20 \ MHz \\ \pm 1.5 \ dB, \ 20 \ MHz < BW \le 40 \ MHz \\ \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \pm 1.6 \ dB, \ 40 \ MHz < BW \le 40 \ MHz \\ \hline \end{array}$		4 2GHz < f < 6 0GHz	arithmetically.
			To at Countains consominated
$\pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{interferer_level_error}^2)] + \text{ACLR} \\ \\ & \text{effect.} \\ \hline \\ & \text{7.6.2 Inband Blocking} \\ \hline \\ & \text{Blocking} \\ \\ & \pm 1.6 \text{ dB, } f \le 3.0\text{GHz} \\ \\ & \pm 2.3 \text{ dB, } 3.0\text{GHz} < f \le 4.2\text{GHz} \\ \\ & \pm 2.3 \text{ dB, } 3.0\text{GHz} < f \le 6.0\text{GHz} \\ \hline \\ & \text{Uplink power measurement} \\ & f \le 3.0\text{GHz} \\ \\ & \pm 0.7 \text{ dB, BW} \le 40\text{MHz} \\ \\ & \pm 1.4 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{3.0GHz} < f \le 4.2\text{GHz} \\ \\ & \pm 1.0 \text{ dB, BW} \le 40\text{MHz} \\ \\ & \pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.2GHz} < f \le 6.0\text{GHz} \\ \\ & \pm 1.3 \text{ dB, BW} \le 20\text{MHz} \\ \\ & \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 40\text{MHz} \\ \\ & \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 40\text{MHz} \\ \\ & \pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.2GHz} < f \le 6.0\text{GHz} \\ \\ & \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 40\text{MHz} \\ \\ & \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.2GHz} < f \le 6.0\text{GHz} \\ \\ & \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 40\text{MHz} \\ \\ & \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & \text{4.16 dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \hline \\ & 4.16 $			
7.6.2 Inband Blocking Blocking $\pm 1.6 dB, f \leq 3.0 GHz$ $\pm 2.3 dB, 3.0 GHz < f \leq 4.2 GHz$ $\pm 3.0 dB, 4.2 GHz < f \leq 6.0 GHz$ Uplink power measurement $f \leq 3.0 GHz$ $\pm 0.7 dB, BW \leq 40 MHz$ $\pm 1.4 dB, 40 MHz < BW \leq 100 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 100 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 100 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 100 MHz$ $\pm 1.3 dB, BW \leq 20 MHz$ $\pm 1.3 dB, BW \leq 20 MHz$ $\pm 1.5 dB, 20 MHz < BW \leq 40 MHz$ $\pm 1.5 dB, 20 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz < BW \leq 40 MHz$ $\pm 1.6 dB, 40 MHz$ $\pm 1.6 dB, 40 MHz$ $\pm 1.6 dB, 40 MHz$			
7.6.2 Inband Blocking Blocking $\pm 1.6 \text{ dB}, f \le 3.0 \text{GHz}$ $\pm 2.3 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$ $\pm 3.0 \text{ dB}, 4.2 \text{GHz} < f \le 6.0 \text{GHz}$ Uplink power measurement $f \le 3.0 \text{GHz}$ $\pm 1.4 \text{ dB}, 40 \text{MHz}$ $\pm 1.4 \text{ dB}, 40 \text{MHz}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.6 \text{ dB}, 40 \text{ dB}$ $\pm 1.$			
	7.0.0 lab - a d Dl - l '	Disabis s	
	7.6.∠ Inband Blocking		
$\pm 3.0 \text{ dB, } 4.2 \text{GHz} < \text{f} \le 6.0 \text{GHz}$ 2. Interferer signal level error 3. Interferer ACLR Uplink power measurement 4. Interferer broadband noise Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. $3.0 \text{GHz} < \text{f} \le 4.2 \text{GHz}$ $\pm 1.0 \text{ dB, BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $4.2 \text{GHz} < \text{f} \le 6.0 \text{GHz}$ $\pm 1.3 \text{ dB, BW} \le 20 \text{MHz}$ $\pm 1.5 \text{ dB, } 20 \text{MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 40 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz}$			
Uplink power measurement $f \le 3.0 \text{GHz}$ Uplink power $f \le 3.0 \text{GHz}$ Uplink power measurement $f \le 3.0 \text{GHz}$ Uplink power measurement $f \le 3.0 \text{GHz}$ Uplink power measurement $f \le 3.0 \text{GHz}$ Uplink power measurement $f \le 3.0 \text{GHz}$ Uplink power provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = $f \le 3.0 \text{GHz}$ Uplink power power provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = $f \le 3.0 \text{GHz}$ Uplink power power provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = $f \le 3.0 \text{GHz}$ Uplink power provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = $f \le 3.0 \text{GHz}$ Uplink power power power provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. The Interference p		'	
Uplink power measurement $f \le 3.0 \text{GHz}$ $\pm 0.7 \text{dB}$, BW $\le 40 \text{MHz}$ $\pm 1.4 \text{dB}$, $40 \text{MHz} < \text{BW} \le 100 \text{MHz}$ $\pm 1.0 \text{dB}$, BW $\le 40 \text{MHz}$ $\pm 1.0 \text{dB}$, BW $\le 40 \text{MHz}$ $\pm 1.0 \text{dB}$, BW $\le 40 \text{MHz}$ $\pm 1.0 \text{dB}$, BW $\le 40 \text{MHz}$ $\pm 1.0 \text{dB}$,		±0.0 dB, 4.20112 < 1 ± 0.00112	
$\begin{array}{ll} \text{Items 1 and 2 are assumed to} \\ \pm 0.7 \text{ dB, BW} \leq 40\text{MHz} \\ \pm 1.4 \text{ dB, 40MHz} < \text{BW} \leq 100\text{MHz} \\ & \text{sum squared to provide the} \\ & \text{sum squared to provide the} \\ & \text{ratio error of the two signals.} \\ & 3.0\text{GHz} < \text{f} \leq 4.2\text{GHz} \\ & \pm 1.0 \text{ dB, BW} \leq 40\text{MHz} \\ & \pm 1.6 \text{ dB, 40MHz} < \text{BW} \leq 100\text{MHz} \\ & \text{Broadband noise effect is} \\ & \text{systematic, and is added} \\ & \text{arithmetically.} \\ & \text{4.2GHz} < \text{f} \leq 6.0\text{GHz} \\ & \pm 1.3 \text{ dB, BW} \leq 20\text{MHz} \\ & \pm 1.5 \text{ dB, 20MHz} < \text{BW} \leq 40\text{MHz} \\ & \pm 1.6 \text{ dB, 40MHz} < \text{BW} \leq 40\text{MHz} \\ & \text{effect + Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & \text{modulated interferer:} \\ & \text{Broadband noise effect.} \\ & \text{In-band blocking, using} \\ & In-band blocking, usi$		Uplink power measurement	
$ \pm 1.4 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ 3.0\text{GHz} < \text{f} \le 4.2\text{GHz} \\ \pm 1.0 \text{ dB, BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ 4.2\text{GHz} < \text{f} \le 6.0\text{GHz} \\ \pm 1.3 \text{ dB, BW} \le 20\text{MHz} \\ \pm 1.5 \text{ dB, } 20\text{MHz} < \text{BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 40\text{MHz} \\ \pm 1.6 \text{ dB, } 40\text{MHz} < \text{BW} \le 100\text{MHz} \\ \end{bmatrix} $ sum squared to provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = [SQRT (wanted_level_error^2 + interferer_level_error^2)] + ACLR effect + Broadband noise effect. In-band blocking, using modulated interferer:			
$3.0 \text{GHz} < \text{f} \le 4.2 \text{GHz} \\ \pm 1.0 \text{ dB, BW} \le 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz} \\ 4.2 \text{GHz} < \text{f} \le 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \le 20 \text{MHz} \\ \pm 1.5 \text{ dB, 20MHz} < \text{BW} \le 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz} \\ \end{bmatrix} $ ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = [SQRT (wanted_level_error^2 + interferer_level_error^2)] + ACLR effect + Broadband noise effect. In-band blocking, using modulated interferer:		±0.7 dB, BW ≤ 40MHz	
$\begin{array}{lll} 3.0 \text{GHz} < \text{f} \le 4.2 \text{GHz} \\ \pm 1.0 \text{ dB, BW} \le 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz} \\ & \text{Broadband noise effect is} \\ & \text{systematic, and is added} \\ & \text{arithmetically.} \\ & \text{4.2GHz} < \text{f} \le 6.0 \text{GHz} \\ & \pm 1.3 \text{ dB, BW} \le 20 \text{MHz} \\ & \pm 1.5 \text{ dB, 20MHz} < \text{BW} \le 40 \text{MHz} \\ & \pm 1.6 \text{ dB, 40MHz} < \text{BW} \le 40 \text{MHz} \\ & \text{effect + Broadband noise effect.} \\ & \underline{\text{In-band blocking, using}} \\ & \underline{\text{modulated interferer:}} \\ \end{array}$		±1.4 dB, 40MHz < BW ≤ 100MHz	
$ \begin{array}{ll} \pm 1.0 \text{ dB, BW} \leq 40 \text{MHz} \\ \pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \leq 100 \text{MHz} \\ \end{array} \\ \begin{array}{ll} \text{Broadband noise effect is} \\ \text{systematic, and is added} \\ \text{arithmetically.} \\ \text{Test System uncertainty} = \\ \pm 1.3 \text{ dB, BW} \leq 20 \text{MHz} \\ \pm 1.5 \text{ dB, } 20 \text{MHz} < \text{BW} \leq 40 \text{MHz} \\ \pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \leq 100 \text{MHz} \\ \end{array} \\ \begin{array}{ll} Equation of the proof of the proo$		2.0015 .4 < 4.2015	
$ \begin{array}{lll} & \text{arithmetically.} \\ 4.2\text{GHz} < \text{f} \leq 6.0\text{GHz} \\ & \pm 1.3 \text{ dB, BW} \leq 20\text{MHz} \\ & \pm 1.5 \text{ dB, 20MHz} < \text{BW} \leq 40\text{MHz} \\ & \pm 1.6 \text{ dB, 40MHz} < \text{BW} \leq 100\text{MHz} \end{array} \qquad \begin{array}{ll} & \text{Figure 1} \\ & \text{interferer_level_error}^2 + \\ & \text{interferer_level_error}^2)] + \text{ACLR} \\ & \text{effect} + \text{Broadband noise effect.} \\ & \underline{\text{In-band blocking, using modulated interferer:}} \\ \end{array} $		· ·	
$ \begin{array}{lll} 4.2 \text{GHz} < f \leq 6.0 \text{GHz} \\ \pm 1.3 \text{ dB, BW} \leq 20 \text{MHz} \\ \pm 1.5 \text{ dB, 20MHz} < \text{BW} \leq 40 \text{MHz} \\ \pm 1.6 \text{ dB, 40MHz} < \text{BW} \leq 100 \text{MHz} \\ \end{array} $		1 1.0 QD, 40IVII IZ < DVV > 100IVITZ	
$ \pm 1.3 \text{ dB, BW} \le 20 \text{MHz} \\ \pm 1.5 \text{ dB, } 20 \text{MHz} < \text{BW} \le 40 \text{MHz} \\ \pm 1.6 \text{ dB, } 40 \text{MHz} < \text{BW} \le 100 \text{MHz} $ [SQRT (wanted_level_error² + interferer_level_error²)] + ACLR effect + Broadband noise effect. In-band blocking, using modulated interferer:		4.2GHz < f ≤ 6.0GHz	
±1.6 dB, 40MHz < BW ≤ 100MHz effect + Broadband noise effect. In-band blocking, using modulated interferer:			[SQRT (wanted_level_error ² +
In-band blocking, using modulated interferer:			
modulated interferer:		±1.6 dB, 40MHz < BW ≤ 100MHz	
Broadhand noise not annlicable			modulated interferer:
Diodubana noise not applicable			Broadband noise not applicable

		T =
7.6.3 Out-of-band blocking	Wanted signal, f ≤ 3.0GHz	Out of band blocking, using CW
	±2.0 dB, Blocking, 1MHz < f _{interferer} ≤ 3GHz	interferer:
	±3.9 dB, Blocking, 3GHz < f _{interferer} ≤ 12.75GHz	
		Interferer ACLR not applicable
	Wanted signal, 3.0GHz < f ≤ 4.2GHz	Impact of interferer Broadband
	±2.2 dB, Blocking, 1MHz < finterferer ≤ 3GHz	noise 0.8dB
	±4.0 dB, Blocking, 3GHz < f _{interferer} ≤ 12.75GHz	Figures and sometimes of the sub-
		Figures are combined to give
	Wanted signal, 4.2GHz < f ≤ 6GHz	Test System uncertainty, using
	±2.6 dB, Blocking, 1MHz < f _{interferer} ≤ 3GHz	formula given for 7.6.2
	±4.2 dB, Blocking, 3GHz < f _{interferer} ≤ 12.75GHz	
	,	
	Uplink power measurement	
	f ≤ 3.0GHz	
	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	11.4 db, 40m 12 \ bw 1 100m 12	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	±1.0 db, 40lvii i2 < bv/ ≤ 100lvii i2	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
7.C.4 Nomerous beautiful 1.	±1.6 dB, 40MHz < BW ≤ 100MHz	Name of board to be a little of the state of
7.6.4 Narrow band blocking	Blocking	Narrow band blocking, using
	± 2.0dB, f ≤ 3.0GHz	CW interferer:
	± 2.4 dB, 3.0 GHz < f ≤ 4.2 GHz	Leterform ACLD 11 11
	± 3.1 dB, 4.2 GHz < f ≤ 6.0 GHz	Interferer ACLR not applicable
		Impact of interferer Broadband
	Uplink power measurement	noise 0.8dB
	f ≤ 3.0GHz	Figures are combined to give
	±0.7 dB, BW ≤ 40MHz	Test System uncertainty, using
	±1.4 dB, 40MHz < BW ≤ 100MHz	formula given for 7.6.2
		Torridia giveri for 7.0.2
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
7.7 Spurious response	Same as 7.6.3	Same as 7.6.3
7.8.2 Wide band	Intermodulation	Overall intermodulation
Intermodulation	± 2.3dB, f ≤ 3.0GHz	uncertainty comprises three
	± 3.1dB, 3.0GHz < f ≤ 4.2GHz	quantities:
	± 4.3dB, 4.2GHz < f ≤ 6.0GHz	Wanted signal level error
		2. CW Interferer level error
	Uplink power measurement	3. Modulated Interferer level
	f ≤ 3.0GHz	error
	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	Effect of interferer ACLR has
		not been included as modulated
	3.0GHz < f ≤ 4.2GHz	interferer has larger frequency
	±1.0 dB, BW ≤ 40MHz	offset
	±1.6 dB, 40MHz < BW ≤ 100MHz	The effect of the closer CW
	1 1.0 dD, 40IVII IZ \ DVV = TUUIVII IZ	signal has twice the effect.
	4.2GHz < f ≤ 6.0GHz	Items 1, 2 and 3 are assumed
	±1.3 dB, BW ≤ 20MHz	to be uncorrelated so can be
	±1.5 dB, 20MHz < BW ≤ 40MHz	root sum squared to provide the
	±1.6 dB, 40MHz < BW ≤ 100MHz	combined effect of the three
		signals.
		Test System uncertainty =
		SQRT [(2 x CW_level_error) ²
		+(mod interferer_level_error) ²
		+(wanted signal_level_error)2]

7.9 Spurious emissions	for results > -60 dBm: ±2.0 dB, 9kHz < f ≤ 3GHz	
	±2.5 dB, 3GHz < f ≤ 4GHz	
	±4.0 dB, 4GHz < f ≤ 19GHz	
	±6.0 dB, 19GHz < f ≤ 26GHz	

F.2 Interpretation of measurement results (normative)

The measurement results returned by the Test System are compared – without any modification – against the Test Requirements. The Test Requirement is defined as a threshold considered in a test to assess compliance of the device; it might be either equal or relaxed compared to the corresponding core specification value by an amount defined in Annex F.3 as Test Tolerance.

The "Shared Risk" principle is defined in Rec. ITU-R M.1545.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows:

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement, making the test harder to pass. For some tests, for example receiver tests, this may require modification of stimulus signals. This procedure will ensure that a Test System not compliant with clause F.1does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.3 Test Tolerance and Derivation of Test Requirements (informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in this clause. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for the relaxation is given in this clause.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

The downlink Test Tolerances apply at each receiver antenna connector.

F.3.1 Measurement of test environments

The UE test environments are set to the values defined in TS 38.508-1 subclause 4.1, without any relaxation. The applied Test Tolerance is therefore zero.

F.3.2 Measurement of transmitter

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
6.2.1 UE maximum output	<u>f</u> ≤ 3.0GHz	Upper limit + TT, Lower limit - TT
power	0.7 dB, BW ≤ 40MHz	
	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
6.2.2 Maximum Power	<u>f ≤ 3.0GHz</u>	Upper limit + TT, Lower limit - TT
Reduction (MPR)	0.7 dB, BW ≤ 40MHz 1.0 dB, 40MHz < BW ≤ 100MHz	
	1.0 dB, 4000112 < BVV = 10000112	
	3.0GHz < f ≤ 6.0GHz	
0.00115 1100	1.0 dB, BW ≤ 100MHz	
6.2.3 UE additional maximum output power	<u>f ≤ 3.0GHz</u> 0.7 dB, BW ≤ 40MHz	Upper limit + TT, Lower limit - TT
reduction	1.0 dB, 40MHz < BW ≤ 100MHz	
	$3.0\text{GHz} < f \le 6.0\text{GHz}$	
6.2.4 Configured	1.0 dB, BW ≤ 100MHz f ≤ 3.0GHz	Upper limit + TT, Lower limit - TT
transmitted power	0.7 dB, BW ≤ 40MHz	Opper innit + 11, Lower innit - 11
a constant of posterior	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz 1.0 dB, BW ≤ 100MHz	
6.3.1 Minimum output	f ≤ 3.0GHz	Minimum requirement + TT
power	1.0 dB, BW ≤ 40MHz	
	1.3 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.3 dB, BW ≤ 100MHz	
6.3.2 Transmit OFF power	<u>f</u> ≤ 3.0GHz	Minimum requirement + TT
	1.5 dB, BW ≤ 40MHz	
	1.7 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.8 dB, BW ≤ 100MHz	
6.3.3.2 General ON/OFF	$f \le 3.0 \text{GHz}$	OFF Power:
time mask	1.5 dB, BW ≤ 40MHz 1.7 dB, 40MHz < BW ≤ 100MHz	Minimum requirement + TT
	1.7 dB, 10WHZ \ BW = 100WHZ	ON Power:
	$3.0GHz < f \le 6.0GHz$	Upper limit + TT, Lower limit - TT
6.2.4.2 Absolute newer	1.8 dB, BW ≤ 100MHz	Upper limit + TT, Lower limit - TT
6.3.4.2 Absolute power tolerance	<u>UL Power ≥ 0dBm</u> f ≤ 3.0GHz	Opper IIIIII + 11, Lower IIIIII – 11
toloranos	[1.0] dB, BW ≤ 40MHz	Core requirement is still FFS.
	[1.4] dB, 40MHz < BW ≤ 100MHz	·
	3.0GHz < f ≤ 6.0GHz	
	3.0GHZ < 1 ≤ 6.0GHZ [1.4] dB, BW ≤ 100MHz	
6.3.4.3 Power Control	[0.7] dB, BW ≤ 100MHz	Upper limit + TT, Lower limit - TT
Relative power tolerance		
6.3.4.4 Aggregate power	[0.7] dB, BW ≤ 100MHz	Core requirement is still FFS. Upper limit + TT, Lower limit – TT
tolerance	[0.7] QD, DVV \(\sigma\) 1001VITZ	Opper minit + 11, Lower minit - 11
		Core requirement is still FFS.
6.4.1 Frequency Error	15 Hz	Modulated carrier frequency:
		Upper limit + TT, Lower limit – TT
		DL power:
		REFSENS + TT

6.4.2.1 Error Vector	For up to C4OAM	Minimum va suiva sa aut . TT
	For up to 64QAM	Minimum requirement + TT
Magnitude	0%	
	5 0500444	
	For 256QAM	
	f ≤ 6.0GHz, BW ≤ 100MHz	
	0.3%, 15dBm < PuL	
	0.8% , $-25dBm < P_{UL} \le 15dBm$,	
	1.1%, -40dBm ≤ P_{UL} ≤ -25dBm	
6.4.2.2 Carrier Leakage	0.8 dB, BW ≤ 100MHz	Minimum requirement + TT
6.4.2.3 In-band emissions	0.8 dB, BW ≤ 100MHz	Minimum requirement + TT
6.4.2.4 EVM equalizer	1.4 dB, BW ≤ 100MHz	Minimum requirement + TT
spectrum flatness		·
6.5.1 Occupied bandwidth	FFS	Minimum requirement + TT
6.5.2.2 Spectrum Emission	1.5 dB, f ≤ 3.0GHz	Minimum requirement + TT
Mask	1.8 dB, 3.0GHz < f ≤ 6.0GHz	
6.5.2.3 Additional spectrum	1.5 dB, f ≤ 3.0GHz	Minimum requirement + TT
emission mask	1.8 dB, 3.0GHz < f ≤ 6.0GHz	·
6.5.2.4.1 NR ACLR	Absolute requirement	Absolute requirement
	0 dB	ACLR Minimum Requirement + TT
		·
	Relative requirement	Relative requirement
	0.8 dB	ACLR Minimum Requirement + TT
6.5.2.4.2 UTRA ACLR	Same as 6.5.2.4.1	Same as 6.5.2.4.1
6.5.3.1 General spurious	0 dB	Minimum requirement + TT
emissions		·
6.5.3.2 Spurious emission	0 dB	Minimum requirement + TT
for UE co-existence		·
6.5.3.3 Additional spurious	0 dB	Minimum requirement + TT
emissions		
6.5.4 Transmit	0 dB	CW interferer Minimum Requirement
intermodulation		- TT

F.3.3 Measurement of receiver

Table F.3.3-1: Derivation of Test Requirements (Receiver tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
7.3.2 Reference sensitivity	0.7 dB, f ≤ 3.0GHz	Reference sensitivity power level +
power level	1.0 dB, 3.0GHz < f ≤ 6.0GHz	TT
		T-put limit unchanged
7.4 Maximum input level	0.7 dB, f ≤ 3.0GHz	Maximum input level - TT
	1.0 dB, 3.0GHz < f ≤ 6.0GHz	
7.5 Adjacent channel	0 dB	Wanted signal power + TT
selectivity	Holink nower	Interferer signal power unchanged
	Uplink power f ≤ 3.0GHz	T-put limit unchanged
	0.7 dB, BW ≤ 40MHz	1-put littit unchanged
	1.0 dB, 40MHz < BW ≤ 100MHz	
	1.0 dB, 10111112 \ BTT = 100111112	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
7.6.2 Inband Blocking	0 dB	Wanted signal power + TT
	<u>Uplink power</u>	Interferer signal power unchanged
	<u>f ≤ 3.0GHz</u>	T-put limit unchanged
	0.7 dB, BW ≤ 40MHz	
	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
7.6.3 Out-of-band blocking	0 dB	Wanted signal power + TT
		The state of Great Parish and The state of t
		Interferer signal power unchanged
		T-put limit unchanged
7.6.4 Narrow band blocking	0 dB	Wanted signal power + TT
		Interferer signal power unchanged
7.7 Churiaua raananaa	0 dB	T-put limit unchanged Wanted signal power + TT
7.7 Spurious response	U dB	wanted signal power + 11
		Interferer signal power unchanged
		T-put limit unchanged
7.8.2 Wide band	0 dB	Wanted signal power +TT
Intermodulation		
		CW Interferer signal power
		unchanged
		Modulated Interferer signal power
		unchanged
		T-put limit unchanged
7.9 Spurious emissions	0 dB	Minimum requirement + TT

Annex G (normative): Uplink Physical Channels

G.0 Uplink Signal Levels

Uplink signal power is a UE figure, which is configured by the Test System by means of:

RRC messages (IE-s), such as:

- PUSCH-PowerControl
- PUCCH-PowerControl
- RACH-ConfigGeneric
- SRS-Config

and L1/2 Power control commands (TPC).

The uplink power settings are specified in the test case.

Otherwise, the uplink power settings result from the default RRC messages described in 3GPP TS 38.508 [5], and appropriate TPC-s, which are sent to the UE to transmit with an UL power level necessary for maintaining the call during the test.

G.1 General

This annex specifies the uplink physical channels that are needed for setting a connection and channels that are needed during a connection. Table G.1-1 describes the mapping of uplink physical channels and signals to physical resources

Table G.1-1: Mapping of uplink physical channels and signals to physical resources

Physical channel	Time Domain Location	Frequency Domain Location	Note
PRACH	Allowed by the parameter prach- ConfigurationIndex provided by higher layers	Allowed by the parameter msg1- FrequencyStart provided by higher layers	Mapping rule is specified in TS 38.211 [8] Section 6.3.3
DMRS	For DMRS on PUCCH format 1: Every other symbols i.e., 0, 2, 4 For DMRS on PUCCH format 2: All the PUCCH symbols For DMRS on PUCCH format 3,4: PUCCH length dependent For One symbol DMRS on PUSCH: Symbol 0 of each slot	DMRS on CP-OFDM PUSCH: Specified by the parameters dmrs-Type provided by higher layers. DMRS on DFT-OFDM PUSCH: Allowed for DMRS configuration type1 DMRS on PUCCH: PUCCH bandwidth dependent.	Mapping rule of DMRS for PUCCH is specified in TS 38.211 [8] Section 6.4.1.3 Mapping rule of DMRS for PUSCH is specified in TS 38.211 [8] Sections 6.4.1.1, 6.4.1.2
PUCCH	For PUCCH Format 0: 1 ~ 2 symbols each slot, specified by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format0 provided by the higher layer. For PUCCH Format 1: 4 ~ 14 symbols each slot, specified by the parameters of nrofSymbols and those of startingSymbolIndex of PUCCH-format1 provided by the higher layer. For PUCCH Format 2, 1 ~ 2 symbols each slot, specified by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format2 provided by the higher layer. For PUCCH Format 3: 4 ~ 14 symbols each slot, allowed by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format3, provided by the higher layer. For PUCCH Format 4: 4 ~ 14 symbols each slot, specified by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format4, provided by higher layer.	For PUCCH Format 0, 1 1 RB, the position specified by the parameters of startingPRB and intraSlotFrequencyHopping in the corresponding PUCCH-Resource provided by the higher layer. For PUCCH Format 2, 3: 1~16 RBs, specified by the parameter of nrofPRBs in PUCCH-format2 and PUCCH-format3 respectively; additionally the position specified by the parameters of startingPRB and intraSlotFrequencyHopping in the corresponding PUCCH-Resource provided by the higher layer. For PUCCH Format 4 1 RB, the position specified by the parameters of startingPRB and intraSlotFrequencyHopping in the corresponding PUCCH-Resource provided by the higher layer	Mapping rule is specified in TS 38.211 [8] Section 6.3.2 and 38.213 [9] Section 9.2
PUSCH	All remaining uplink symbols of each slot not allocated to DMRS	RBs allocated according to Reference Measurement channel in Annex A.2	Mapping rule is specified in TS 38.211 [8] Section 6.3 and 38.214 [12] Section 6.1
SRS	1, 2, or 4 symbols among the last 6 symbols in each SRS transmission slot specified by the parameters of resourceMapping, and resourceType in SRS-Config provided by the higher layer.	RBs specified by the ue-specific parameters of freqDomainPosition, freqDomainShift and freqHopping in SRS-Config provided by the higher layer.	Mapping rule is specified in TS 38.211 [8] Section 6.4.1.4.3

G.2 Set-up

Table G.2-1 describes the uplink physical channels that are required for connection set up.

Table G.2-1: Uplink Physical Channels required for connection set-up

Physical Channel	
PRACH	
DMRS	
PUCCH	
PUSCH	

G.3 Connection

The following clauses describes the uplink physical channels that are transmitted during a connection i.e., when measurements are done.

G.3.0 Measurement of Transmitter Characteristics

As specified in the test case. Otherwise:

- PUSCH + DMRS for PUSCH (and DMRS) measurements.
- PUCCH + DMRS for PUCCH (and DMRS) measurements.
- PRACH for PRACH measurements.

SRS for SRS measurements.

G.3.1 Measurement of Receiver Characteristics

As specified in the test case. Otherwise:

- PUSCH + DMRS for measurements with uplink interference configured.
- PUCCH + DMRS for measurements without uplink interference configured.

G.3.2 Measurement of Performance Requirements

As specified in the test case. Otherwise:

PUCCH + DMRS for measurements without CSI feedback, or with CSI feedback in PUCCH mode.

PUSCH + DMRS for measurements with CSI feedback in PUSCH mode.

Annex H (normative): Statistical Testing

H.1 General

FFS.

H.2 Statistical testing of receiver characteristics

H.2.1 General

The test of receiver characteristics is two fold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is >95% of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

H.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.
 - If payload is received, but damaged and cannot be decoded, the UE signals a NACK.
- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different subframes, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received subframes (ACK), unsuccessfully received subframes (NACK) and no reception at all (DTX-subframes).
- f) DTX-subframes may occur regularly according the applicable reference measurement channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special subframes. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-subframes occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)
 - This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs
- number of ACKs and
- number of statDTXs (regDTX is implicitly known to the SS)

The ratio (NACK + statDTX)/(NACK+ statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

H.2.3 Design of the test

The test is defined by the following design principles (see clause H.x, Theory....):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Customer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

H.2.4 Numerical definition of the pass fail limits

Table H.2.4-1: pass fail limits

ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f	ne	ns _p	ns _f
0	67	NA	39	763	500	78	1366	1148	117	1951	1828
1	95	NA	40	778	516	79	1381	1166	118	1965	1845
2	119	NA	41	794	532	80	1396	1183	119	1980	1863
3	141	NA	42	810	548	81	1412	1200	120	1995	1881
4	162	NA	43	826	564	82	1427	1217	121	2010	1899
5	183	NA	44	842	580	83	1442	1234	122	2025	1916
6	202	NA	45	858	596	84	1457	1252	123	2039	1934
7	222	NA	46	873	612	85	1472	1269	124	2054	1952
8	241	NA	47	889	629	86	1487	1286	125	2069	1969
9	259	NA	48	905	645	87	1502	1303	126	2084	1987
10	278	76	49	920	661	88	1517	1321	127	2099	2005
11	296	88	50	936	678	89	1532	1338	128	2113	2023
12	314	100	51	952	694	90	1547	1355	129	2128	2040
13	332	113	52	967	711	91	1562	1373	130	2143	2058
14	349	126	53	983	727	92	1577	1390	131	2158	2076
15	367	140	54	998	744	93	1592	1407	132	2172	2094
16	384	153	55	1014	760	94	1607	1425	133	2187	2111
17	401	167	56	1029	777	95	1623	1442	134	2202	2129
18	418	181	57	1045	793	96	1637	1459	135	2217	2147
19	435	195	58	1060	810	97	1652	1477	136	2231	2165
20	452	209	59	1076	827	98	1667	1494	137	2246	2183
21	469	224	60	1091	844	99	1682	1512	138	2261	2201
22	486	238	61	1106	860	100	1697	1529	139	2275	2218
23	503	253	62	1122	877	101	1712	1547	140	2290	2236
24	519	268	63	1137	894	102	1727	1564	141	2305	2254
25	536	283	64	1153	911	103	1742	1582	142	2320	2272
26	552	298	65	1168	928	104	1757	1599	143	2334	2290
27	569	313	66	1183	944	105	1772	1617	144	2349	2308
28	585	328	67	1199	961	106	1787	1634	145	2364	2326
29	602	343	68	1214	978	107	1802	1652	146	2378	2344
30	618	359	69	1229	995	108	1817	1669	147	2393	2361
31	634	374	70	1244	1012	109	1832	1687	148	2408	2379
32	650	389	71	1260	1029	110	1847	1704	149	2422	2397
33	667	405	72	1275	1046	111	1861	1722	150	2437	2415
34	683	421	73	1290	1063	112	1876	1740	151	2452	2433
35	699	436	74	1305	1080	113	1891	1757	152	2466	2451
36	715	452	75	1321	1097	114	1906	1775	153*)	NA	2469
37	731	468	76	1336	1114	115	1921	1793			
38	747	484	77	1351	1131	116	1936	1810	*) no	te 2 in F	1.2.5

NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX)

NOTE 2: The second column is the number of samples for the pass limit (nsp, ns=Number of Samples= number of NACK + statDTX + ACK)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

H.2.5 Pass fail decision rules

The pass fail decision rules apply for a single test, comprising one component in the test vector. The over all Pass /Fail conditions are defined in clause H.2.6and H.2A.6

Having observed 0 errors, pass the test at 67+ samples, otherwise continue

Having observed 1 error, pass the test at 95+ otherwise continue

Having observed 2 errors, pass the test at 119+ samples, otherwise continue

Etc. etc.

Having observed 151 errors, pass the test at 2452+ samples, fail the test at 2433- samples, otherwise continue

Having observed 152 errors, pass the test at 2466+ samples, fail the test at 2451- samples.

Where x+ means: x or more, x- means x or less

NOTE 1: an ideal DUT passes after 67 samples. The maximum test time is 2466 samples.

NOTE 2: It is allowed to deviate from the early decision concept by postponing the decision (pass/fail or continue). Postponing the decision to or beyond the end of Table H.2.4-1 requires a pass fail decision against the test limit: pass the DUT for ER<0.0618, otherwise fail.

Annex I: Change history

Change history Date Meeting TDoc CR Rev Cat Subject/Comment New								
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New versio n	
2017-08	RAN5#76	R5-175705	-	-	-	Draft skeleton	0.0.1	
2018-01	RAN5#1- 5G-NR Adhoc	R5-180068 R5-180069 R5-180070 R5-180071 R5-180072 R5-180075 R5-180076 R5-180077 R5-180078 R5-180079	-		-	Implementation of pCRs to TS 38.521-1 V0.1.0	0.1.0	
2018-01	RAN5#78	R5-181506 R5-181507 R5-181670 R5-181671 R5-181672 R5-181677 R5-181677 R5-181679 R5-181685 R5-181686 R5-181699 R5-181699 R5-181700	-	-	-	Implementation of pCRs to TS 38.521-1 V0.2.0	0.2.0	
2018-03	RAN5#2- 5G-NR Adhoc	R5-181759	-	-	-	Update TS 38.521-1 to align with new structure of TS 38.101-1 based on endorsed CR R4-1802403	0.3.0	
2018-04	RAN5#2- 5G-NR Adhoc	R5-81976	-	-	-	3GU mismatch		
2018-04	RAN5#2- 5G-NR Adhoc	R5-181771 R5-181833 R5-181842 R5-182000 R5-182003 R5-182004 R5-182005 R5-182020 R5-182021 R5-182026	-	-	-	Implementation of pCRs to TS 38.521-1 V0.4.0 Add clause 4.4 Test point analysis	0.4.0	
2018-07	RAN5#79	R5-182768 R5-182973 R5-183702 R5-183703 R5-183705 R5-183906 R5-183936 R5-183923 R5-183953 R5-183954 R5-183955 R5-183955 R5-183957 R5-183958 R5-183959 R5-183959 R5-183960	-		-	Implementation of pCRs to TS 38.521-1 V0.5.0		
2018-07	RAN5#79	R5-183960 R5-183279	-	-	-	Corrected Table numbering issues in subclause 6.5.2.4.1.4.2 Test procedure to capture R5-183960 changes into draft TS 38.521-1 v0.5.1	0.5.1	
2018-07	RAN5#79	R5-182363	<u> </u>	_	-	withdrawn	1.0.0	

						T	
2018-08	RAN5#80	R5-185321	-	-	-	Implementation of pCRs to TS 38.521-1 V1.0.1	1.0.1
		R5-184298					
		R5-185305					
		R5-185322					
		R5-185323					
		R5-185495					
		R5-185444					
		R5-185565					
		R5-185445					
		R5-185524					
		R5-184572					
		R5-185390					
		R5-184574					
		R5-185521					
		R5-185408					
		R5-184822					
		R5-185446					
		R5-185324					
		R5-185447					
		R5-185411					
		R5-185413					
		R5-185496					
		R5-185414					
		R5-185415					
		R5-185325					
		R5-185500					
		R5-185501					
		R5-185312					
		R5-185326					
		R5-185315					
		R5-185317					
		R5-185327					
		R5-185320					
2018-09	RAN#81	-	-	-	-	raised to v15.0.0 with editorial changes only	15.0.0

History

Document history						
V15.0.0	October 2018	Publication				