Introductory Applied Machine Learning

Generalization, Overfitting, Evaluation

Victor Lavrenko and Nigel Goddard School of Informatics

Generalization

- Training data: $\{x_i, y_i\}$
 - examples that we used to train our predictor
 - e.g. all emails that our users labelled ham / spam
- Future data: {*x_i*, ?}
 - examples that our classifier has never seen before
 - e.g. emails that will arrive tomorrow
- Want to do well on future data, not training
 - not very useful: we already know y_i
 - easy to be perfect on training data (DT, kNN, kernels)
 - does not mean you will do well on future data
 - can over-fit to idiosyncrasies of our training data

Under- and Over-fitting

Over-fitting:

- predictor too complex (flexible)
 - fits "noise" in the training data
 - patterns that will not re-appear
- predictor F over-fits the data if:
 - we can find another predictor F'
 - which makes more mistakes on training data: $E_{train}(F') > E_{train}(F)$
 - but fewer mistakes on unseen future data : $E_{gen}(F') < E_{gen}(F)$

Under-fitting:

- predictor too simplistic (too rigid)
- not powerful enough to capture salient patterns in data
- can find another predictor F' with smaller E_{train} and E_{gen}

Under- and Over-fitting examples

Regression:

predictor too inflexible: cannot capture pattern

predictor too flexible: fits noise in the data

M = 9

Copyright © 2014 Victor Lavrenko

Flexible vs. inflexible predictors

- Each dataset needs different level of "flexibility"
 - depends on task complexity + available data
 - want a "knob" to get rigid / flexible predictors
- 5 7 10
- Most learning algorithms have such knobs:
 - regression: order of the polynomial
 - NB: number of attributes, limits on σ^2 , ε
 - DT: #nodes in the tree / pruning confidence
 - kNN: number of nearest neighbors
 - SVM: kernel type, cost parameter
- Tune to minimize generalization error

Training vs. Generalization Error

Training error:

$$E_{train} = \frac{1}{n} \sum_{\substack{i=1 \text{training} \\ \text{examples}}}^{n} \underbrace{error(f_D(\mathbf{x}_i), y_i)}_{\text{value we true}}$$

- Generalization error:
 - how well we will do on future data
 - don't know what future data x_i will be
 - don't know what labels y_i it will have
 - but know the "range" of all possible {x,y}

Usually $E_{train} \le E_{gen}$

- x: all possible 20x20 black/white bitmaps
- y: {0,1,...,9} (digits)

Can never compute generalisation error

Estimating Generalization Error

• Testing error:

$$E_{test} = \frac{1}{n} \sum_{i=1}^{n} \frac{\text{over testing set}}{error(f_D(\mathbf{x}_i), y_i)}$$

- set aside part of training data (testing set)
- learn a predictor without using any of this data
- predict values for testing set, compute error
- gives an estimate of true generalization error
 - if testing set is unbiased sample from p(x,y): $\lim_{n\to\infty} E_{test} = E_{gen}$
 - how close? depends on *n*
- Ex: binary classification, 100 instances
 - assume: 75 classified correctly, 25 incorrectly
 - E_{test} = 0.25, E_{gen} around 0.25, but how close?

Confidence Interval for Future Error

- What range of errors can we expect for future test sets?
 - $E_{test} \pm \Delta E$ such that 95% of future test sets fall within that interval
- E_{test} is an unbiased estimate of E = true error rate
 - *E* = probability our system will misclassify a random instance
 - take a random set of *n* instances, how many misclassified? our test set is
 - our test set is one such set

- flip *E*-biased coin *n* times, how many heads will we get?
- Binomial distribution with mean = n E, variance = n E (1-E)
- E_{future}= #misclassified / n, ~ Gaussian, mean E, variance = E (1-E) / n
 - 2/3 future test sets will have error in E $\pm \sqrt{(E(1-E)/n)}$
- p% confidence interval for future error:
 - for n=100 examples, p=0.95 and E=0.25
 - $\sigma = \sqrt{(0.25 \cdot 0.75/100)} = .043$
 - CI = $0.25 \pm 1.96 \cdot \sigma = 0.25 \pm 0.08$
 - n=100, $p=0.99 \rightarrow CI = 0.25 \pm 0.11$
 - n=10000, $p=0.95 \rightarrow CI = 0.25 \pm 0.008$

Training, Validation, Testing sets

- Training set: construct classifier
 - NB: count frequencies, DT: pick attributes to split on
- Validation set: pick algorithm + knob settings
 - pick best-performing algorithm (NB vs. DT vs. ...)
 - fine-tune knobs (tree depth, k in kNN, c in SVM ...)
- Testing set: estimate future error rate
 - never report best of many runs
 - run only once, or report results of every run
- Split randomly to avoid bias

Cross-validation

- Conflicting priorities when splitting the dataset
 - estimate future error as accurately as possible
 - large testing set: big n_{test} → tight confidence interval
 - learn classifier as accurately as possible
 - large training set: big n_{train} → better estimates
 - training and testing cannot overlap: n_{train} + n_{test} = const
- Idea: evaluate Train → Test, then Test → Train, average results
 - every point is both training and testing, never at the same time
 - reduces chances of getting an unusual (biased) testing set
 - 5-fold cross-validation
 - randomly split the data into 5 sets
 - test on each in turn (train on 4 others)
 - average the results over 5 folds

Fold I

Fold 2

Fold 3

Leave-one-out

- n-fold cross-validation (n = total number of instances)
 - predict each instance, training on all (n-1) other instances
- Pros and cons:
 - best possible classifier learned: n-1 training examples
 - high computational cost: re-learn everything n times
 - not an issue for instance-based methods like kNN
 - there are tricks to make such learning faster
 - classes not balanced in training / testing sets
 - random data, 2 equi-probable classes → wrong 100% of the time
 - testing balance: {1 of A, 0 of B} vs. training: {n/2 of B, n/2-1 of A}
 - duplicated data → nothing can beat 1NN (0% error)
 - wouldn't happen with 10-fold cross-validation

Stratification

- Problems with leave-one-out:
 - training / testing sets have classes in different proportions
 - not limited to leave-one-out:
 - K-fold cross-validation: random splits → imbalance
- Stratification
 - keep class labels balanced across training / testing sets
 - simple way to guard against unlucky splits
 - recipe:
 - randomly split each class into K parts
 - assemble ith part from all classes to make the ith fold

Evaluation measures

- Are we doing well? Is system A better than B?
- A measure of how (in)accurate a system is on a task
 - in many cases Error (Accuracy / PC) is not the best measure
 - using the appropriate measure will help select best algorithm
- Classification
 - how often we classify something right / wrong
- Regression
 - how close are we to what we're trying to predict
- Unsupervised
 - how well do we describe our data
 - in general really hard

Classification measures: basics

all testing instances

Predict positive?

	Yes	No
Yes	TP	FN
No	FP	TN
		Yes TP

Confusion matrix for two-class classification

Want: large diagonal, small FP, FN

Classification Error

- Classification error = $\frac{errors}{total} = \frac{FP + FN}{TP + TN + FP + FN}$
- Accuracy = $(1 error) = \frac{correct}{total} = \frac{TP + TN}{TP + TN + FP + FN}$
- Basic measure of "goodness" of a classifier
- Problem: cannot handle unbalanced classes
 - ex1: predict whether an earthquake is about to happen
 - happen very rarely, very good accuracy if always predict "No"
 - solution: make FNs much more "costly" than FPs
 - ex2: web search: decide if a webpage is relevant to user
 - 99.9999% of pages not relevant to any query → retrieve nothing
 - solution: use measures that don't involve TN (recall / precision)

Accuracy and un-balanced classes

- You're predicting Nobel prize (+) vs. not (•)
- Human would prefer classifier A.
- Accuracy will prefer classifier B (fewer errors)
- Accuracy poor metric here

Misses and False Alarms

- False Alarm rate = False Positive rate = FP / (FP+TN)
 - % of negatives we misclassified as positive
- Miss rate = False Negative rate = FN / (TP+FN)
 - % of positives we misclassified as negative
- Recall = True Positive rate = TP / (TP+FN)
 - % of positives we classified correctly (1 Miss rate)
- Precision = TP / (TP + FP)
 - % positive out of what we predicted was positive
- Meaningless to report just one of these
 - trivial to get 100% recall or 0% false alarm
 - typical: recall/precision or Miss / FA rate or TP/FP rate

Evaluation (recap)

- Predicted C?
- Yes No
 Yes TP FN
 No FP TN

- Predicting class C (e.g. spam)
 - classifier can make two types of mistakes:
 - FP: false positives non-spam emails mistakenly classified as spam
 - FN: false negatives spam emails mistakenly classified as non-spam
 - TP/TN: true positives/negatives correctly classified spam/non-spam
 - common error/accuracy measures:
 - Classification Error: $\frac{errors}{total} = \frac{FP + FN}{TP + TN + FP + FN}$
 - Accuracy = 1-Error: $\frac{correct}{total} = \frac{TP + TN}{TP + TN + FP + FN}$

imbalanced

meaningless

- False Alarm = False Positive rate = FP / (FP+TN)
- Miss = False Negative rate = FN / (TP+FN)
- Recall = True Positive rate = TP / (TP+FN)
- Precision = TP / (TP+FP)

always report in pairs, e.g.: Miss / FA or Recall / Prec.

Utility and Cost

- Sometimes need a single-number evaluation measure
 - optimizing the learner (automatically), competitive evaluation
 - may know costs of different errors, e.g. earthquakes:
 - false positive: cost of preventive measures (evacuation, lost profit)
 - false negative: cost of recovery (reconstruction, liability)
- Detection cost: weighted average of FP, FN rates
 - Cost = C_{FP} * FP + C_{FN} * FN

[event detection]

- F-measure: harmonic mean of recall, precision
 - F1 = 2 / (1 / Recall + 1 / Precision) [Information Retrieval]
- Domain-specifc measures:
 - e.g. observed profit/loss from +/- market prediction

Thresholds in Classification

- Two systems have the following performance:
 - A: True Positive = 50%, False Positive = 20%
 - B: True Positive = 100%, False Positive = 60%
- Which is better? (assume no-apriori utility)
 - very misleading question
 - A and B could be the same exact system
 - operating at different thresholds

ROC curves

- Many algorithms compute "confidence" f(x)
 - threshold to get decision: spam if f(x) > t, non-spam if f(x) ≤ t
 - Naïve Bayes: P(spam|x) > 0.5, Linear/Logistic/SVM: w^Tx > 0, Decision Tree: p₊/p₋ > 1
 - threshold t determines error rates
 - False Positive rate = P(f(x)>t|ham), True Positive rate = P(f(x)>t|spam)
- Receiver Operating Characteristic (ROC):

ROC convex hull

- System A: better at high thresholds (high-precision)
- System B: better at low thresholds (high-recall)
- System C: for each x: flip a p-coin, heads: A(x), tails: B(x)
 - if x was really positive:

• P(correct) = p * P(A(x) >
$$t_A$$
 | +)
+ (1-p) * P(B(x) > t_B | +)

•
$$TP_C = p TP_A + (1-p) TP_B$$

if x was really negative:

• P(error) = p * P(A(x) >
$$t_A$$
 | -)
+ (1-p) * P(B(x) > t_B | -)

- $FP_C = p FP_A + (1-p) FP_B$
- may be better than either A or B
- example: Netflix challenge

Evaluating regression

- Classification:
 - count how often we are wrong
- Regression:
 - predict numbers y_i from inputs x_i
 - always wrong, but by how much?

- (root) mean squared error:
 - · popular, well-understood, nicely differentiable
 - sensitive to single large errors (outliers)
- mean absolute error:
 - less sensitive to outliers
- correlation coefficient
 - insensitive to mean & scale

$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$
testing set

$$\frac{n\sum_{i=1}^{n} (f(x_{i}) - \mu_{f})(y_{i} - \mu_{y})}{\sqrt{\sum_{i=1}^{n} (f(x_{i}) - \mu_{f}) \cdot \sum_{i=1}^{n} (y_{i} - \mu_{y})}}$$

Mean Squared Error

• Average (squared) deviation from truth $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(f(x_i)-y_i)^2}$

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(f(x_i)-y_i)^2}$$

- Very sensitive to outliers

 - 99 exact, 1 off by \$10
 all 100 wrong by \$1
- Sensitive to mean / scale
 - $\mu_v = \frac{1}{n} \sum_i y_i$... good baseline
- Relative squared error (Weka)

Mean Absolute Error

- Mean Absolute Error (MAE):
 - less sensitive to outliers
 - many small errors = one large error
 - best 0th order baseline: median{y_i}
 - not the mean as for MSE

- Median Absolute Deviation (MAD): med{|f(x_i)-y_i|}
 - robust, completely ignores outliers
 - can define similar squared error: median{(f(x_i)-y_i)²}
 - difficult to work with (can't take derivatives)
- Sensitive to mean, scale

Correlation Coefficient

Completely insensitive to mean / scale:

$$\frac{n\sum_{i=1}^{n} (f(x_i) - \mu_f)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (f(x_i) - \mu_f) \cdot \sum_{i=1}^{n} (y_i - \mu_y)}} = n\sum_{i=1}^{n} \frac{f(x_i) - \mu_f}{\sigma_f} \cdot \underbrace{\frac{y_i - \mu_y}{\sigma_y}}_{\text{prediction relative to mean}}$$

Intuition: did you capture the relative ordering?

Copyright © 2014 Victor Lavrenko

- output larger f(x_i) for larger y_i
- output smaller f(x_i) for smaller y_i
- useful for ranking tasks:
 - e.g. recommend a movie to a user
- Important to visualize data
 - same CC for 4 predictors ->

Summary

- Training vs. generalization error
 - under-fitting and over-fitting
- Estimate how well your system is doing its job
 - how does it compare to other approaches?
 - what will be the error rate on future data?
- Training and testing
 - cross-validation, leave-one-out, stratification, significance
- Evaluation measures
 - accuracy, miss / false alarm rates, detection cost
 - ROC curves
 - regression: (root) mean squared/absolute error, correlation

Evaluating unsupervised methods

- Generally hard and subjective
 - broad aim: did we capture the structure of the dataset?
 - if possible: does it help us do some (supervised) task
- Dimensionality reduction
 - distance between data in original & reduced space
- Mixture models
 - do we assign high probability to the training data?
- Clustering
 - did we "discover" the latent sub-populations?

Significance tests

- Often need to compare two systems: A, B
 - perform cross-validation: errors e_{A,1} ... e_{A,K}, e_{B,1} ... e_{B,K}
 - average errors: $e_A < e_B$ $\{\{\{\}\}\}\}$
 - does this mean that A better than B?
 - look at the variance of errors
- Significance: could the difference be due to chance?
 - analogy: 3 coin flips, always large difference, pure chance
 - null hypothesis H₀:
 - $e_{A,1} \dots e_{A,K}$, $e_{B,1} \dots e_{B,K}$ are random samples from the same population
 - want to show $P(H_0)$ is very small \rightarrow reject H_0 as improbable
 - let $d_i = e_{A,i} e_{B,i}$ $t = \frac{\sum_i d_i}{\sqrt{\sum_i (d_i \mu)^2}}$ ~ Student's t distribution
 - caution: d_i must be independent (no overlap in data)