Para $a \in \mathbb{R}$, un entorno de a es un intervalo abierto (x, y) que contiene a a (i.e., x < a < y).

- 1. Sean $a \in \mathbb{R}$ y $X \subseteq \mathbb{R}$. Son equivalentes:
 - (a) X incluye un entorno de a;

- (b) Existe $\delta > 0$ tal que $(a \delta, a + \delta) \subseteq X$.
- 2. Probar que si f y g están definidas en sendos entornos de a (salvo quizá en a mismo), entonces f+g y $f\cdot g$ también lo están.
- **3.** En cada uno de los siguientes casos, para un $\varepsilon > 0$ dado, encontrar $\delta > 0$ tal que $|f(x)-l| < \varepsilon$ para todo x que satisface $0 < |x-a| < \delta$.

(a)
$$\begin{cases} f(x) = x^4, \\ l = a^4. \end{cases}$$

(b)
$$\begin{cases} f(x) = \frac{1}{x}, \\ a = 1, \ l = 1. \end{cases}$$

(c)
$$\begin{cases} f(x) = x^4 + \frac{1}{x}, \\ a = 1, \ l = 2. \end{cases}$$

4. Demostrar por definición los siguientes límites.

(a)
$$\lim_{x \to a} x = a$$
.

(d)
$$\lim_{x \to a} \sqrt{x} = \sqrt{a}, \ a > 0.$$

(b) Si
$$f(x)$$
 es constante e igual a $c \in \mathbb{R}$, $\lim_{x \to a} f(x) = c$.

(e)
$$\lim_{x \to a} \frac{x^2 - a^2}{x - a} = 2a$$
.

(c)
$$\lim_{x \to a} x^2 = a^2$$
.

(f)
$$\lim_{x \to 0} x^2 \operatorname{sen}\left(\frac{1}{x}\right) = 0.$$

5. Calcular los siguientes límites en caso de existir. Justificar.

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1}$$
.

(e)
$$\lim_{h\to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h}$$
 $(a > 0)$.

(b)
$$\lim_{x\to 2} \frac{x^3-8}{x-2}$$
.

(f)
$$\lim_{t \to 9} \frac{9-t}{3-\sqrt{t}}$$
.

(c)
$$\lim_{x \to y} \frac{x^n - y^n}{x - y}.$$

(g)
$$\lim_{x \to 2} (x^2 - \lfloor x \rfloor)$$
.

(d)
$$\lim_{h\to 0} \left(\frac{1}{h\sqrt{1+h}} - \frac{1}{h} \right).$$

(h)
$$\lim_{x \to 0} \frac{|x|}{x \cos x}.$$

Aclaración. Recordamos que las siguientes notaciones son equivalentes:

$$\lim_{x \to a^+} f(x) = \lim_{x \to a} f(x)$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a} f(x)$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x)$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$$

6. Trazar el gráfico de la función

$$g(x) = \begin{cases} 2 - x & \text{si } x < -1, \\ x + 2 & \text{si } -1 \le x < 1, \\ 4 & \text{si } x = 1, \\ 4 - x & \text{si } x > 1. \end{cases}$$

Además, determinar el valor de los siguientes límites cuando existan.

- (a) $\lim_{x \to -1} g(x)$. (c) $\lim_{x \to -1} g(x)$.
- (e) $\lim_{x \to 1} g(x)$.
- (g) $\lim_{x \to -\infty} g(x)$.

- (b) $\lim_{x \to -1} g(x)$.
- (d) $\lim_{x \sim 1} g(x)$.
- (f) $\lim_{x \to 1} g(x)$.
- (h) $\lim_{x \to \infty} g(x)$.

7. Demostrar por definición que no existen los siguientes límites.

(a)
$$\lim_{x\to 0} \frac{1}{x}$$
.

(b) $\lim_{x \to 0} \operatorname{sen}(1/x)$.

8. Calcular los siguientes límites en caso de existir o ser $\pm \infty$. Justificar.

- (a) $\lim_{y \to \infty} \frac{3y-4}{6y+1}$.
- (c) $\lim_{x \to \infty} \frac{x^3 + 7x}{x^4 2}$.
- (e) $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$.
- (b) $\lim_{x \to -\infty} \frac{5x^3 2x + 7}{4x^2 1}$. (d) $\lim_{x \to \infty} (\sqrt[n]{x^2 + 1} x)$.

9. Demostrar las siguientes afirmaciones.

- (a) $\lim_{x\to 3} \frac{1}{(x-3)^2} = \infty$, usando la definición de límite.
- (b) Si $\lim_{x\to 0} f(x)$ existe, entonces $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$.
- (c) Si $\lim_{x\to 0} f(x^2)$ existe, entonces no necesariamente existe $\lim_{x\to 0} f(x)$.
- (d) Si $\lim_{x \to 0} f(1/x)$ existe, entonces $\lim_{x \to 0} f(1/x) = \lim_{x \to \infty} f(x)$.
- (e) $\lim_{x \to 0} f(x) = \infty$ si y sólo si $\lim_{x \to \infty} f(1/x) = \infty$.
- (f) Existe $f: \mathbb{R} \to \mathbb{R}$ tal que $\lim_{x \to a} f(x)$ no existe para todo $a \in \mathbb{R}$.

10. Calcular los siguientes límites. Recordar que $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x} = 1$.

- (a) $\lim_{x \to 0} \frac{2x}{\operatorname{sen}(3x)}.$
- (c) $\lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} x}{\cos(x)}$.
- (d) $\lim_{x \to 0} \frac{1 \cos(x)}{x}.$

(b) $\lim_{x \to 0} \frac{\sin^2(2x)}{x}$.

(e) $\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$.

11. Decir si las siguientes afirmaciones son verdaderas o falsas, y justificar. Asumir que las funciones f y g están definidas en un entorno de a o de 0 según corresponda.

- (a) $\lim_{x \to 0} f(x) = \lim_{x \to 0} f(-x)$.
- (b) Si $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ no existen, entonces $\lim_{x\to a} (f(x)+g(x))$ no existe.
- (c) Si $\lim_{x\to 0} g(x) = 0$, entonces $\lim_{x\to 0} g(x) \operatorname{sen}(\frac{1}{x}) = 0$.
- (d) Si $\lim_{x\to a} |f(x)| = 0$, entonces $\lim_{x\to a} f(x) = 0$.
- (e) $\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h)$.