Problem 4

Ha Vu Anh

Lemma: Let ABC be a triangle with incenter I, DEF be the pedal triangle of I wrt ABC, K be the Kosnita point of DEF

then IK is parallel to the euler line of the orthic triangle of DEF.

Proof: Let A_1, B_1, C_1 be the midpoint of small arc BC, CA, AB of (O) respectively, let S be the Schiffler point of ABC point

then it is well known that S lies on the euler line of ABC.

Let A_2 be the orthocenter of BIC, M be the midpoint of AI

then D, K, M and A_1, S, A_2 are collinear.

Simple ratio chasing yield $A_1A_2 \parallel DM$ therefore $A_1S \parallel DK$.

Similarly: $B_1S \parallel EK, C_1S \parallel FK$.

Combine this with the fact that DEF and $A_1B_1C_1$ are triangles with 3 pair of respective parallel sides we get S is the Kosnita point of $A_1B_1C_1$ therefore $IK \parallel OS$ which is the euler line of ABC which is also parallel to the euler line of the orthic triangle of DEF, as desired.

Claim: Let K be the Kosnita point of ABC, DEF be the pedal triangle of K wrt ABC. Let H_K be the orthocenter of DEF, O, H be the circumcenter, orthocenter of ABC respectively, L be a point lies on DK such that $KH_K = LH_K$.

Then H_KK is parallel to the euler line of the orthic triangle of ABC and LE = LF.

Proof: Let H_A, H_B, H_C be the orthocenter of AEF, BDF, CDE, O_A be the midpoint of AK which is circumcenter of AEF, we will prove $H_AO_A \perp BC$.

Let N be the nine point center of ABC, AN cut (O) at U and UV be the diameter of (O),

J be the orthocenter of VBC then $\triangle AEF \cup (H_A, O_A) \sim \triangle VBC \cup (J, O)$

therefore $\angle AO_AH_A = \angle VOJ$.

Let O' be the reflection of O through the midpoint of BC,

since J is the reflection of U through the midpoint of BC,

we get $OJ \parallel O'U$ therefore $\angle AO_AH_A = \angle VOJ = \angle VUO' = \angle OAU = \angle HAK$.

Therefore, H_AO_A is parallel to AH therefore H_AW is parallel to KD with W being the midpoint of KH.

Similarly H_BW, H_CW is parallel to KE, KF respectively. Combine this with the fact that $\triangle DEF$

we get $\overrightarrow{G_KW} = 2 \cdot \overrightarrow{KG_K}(1)$.

Denote N_K, O_K as the nine point center, circumcenter of DEF we get O_K is the midpoint of KN and $\overrightarrow{G_K O_K} = 2 \cdot \overrightarrow{N_K G_K}$

combine this with (1) we get $\overrightarrow{WO_K} = 2 \cdot \overrightarrow{N_K K}$.

Let M be the midpoint of OK then $\overrightarrow{O_KM} = \overrightarrow{WO_K} = 2 \cdot \overrightarrow{N_KK}$.

Combine this with N_K being the midpoint of H_KO_K we get H_K, K, M are collinear which imply H_K, K, O are collinear.

Applying the lemma above we get OK parallel to the euler line of the orthic triangle of ABCtherefore KH_K is parallel to the euler line of the orthic triangle of ABC, as desired.

Redefine L as the reflection of O_A through the midpoint of EF which is P,

we will prove $KH_K = LH_K$ and L lies on DK.

Since L, K are reflections of O_A, H_A through P respectively we get $LK \parallel O_A H_A \parallel DK$ therefore L lies on DK.

Since O, J, H are reflections of O', U, A' through the midpoint of BC with AA' being the diameter of (O), we get $\angle HJO = \angle A'UO = 90^{\circ}$ therefore NJ = NO.

Since $\triangle NBC \sim \triangle D'EF$ with DD' being the diameter of DEF

we get $\triangle AEF \cup D', H_A, O_A \sim \triangle VBC \cup N, J, O$ combine with NJ = NO we get $D'H_A = D'O_A$.

Since D', H_A, O_A are reflections of H_K, K, L through P respectively we get $KH_K = LH_K$, as desired.

Back to the main problem,

Let H_A be the midpoint of small arc EF of (AEF) and denote H_B, H_C similarly. Since the vertices of \mathcal{T} are the antipode of A, B, C in (AEF), (BDF), (CDE)we get the 3 angle bisectors of \mathcal{T} is the lines from H_A, H_B, H_C perpendicular to IA, IB, ICtherefore II_1 is the diameter of $(IH_AH_BH_C)$.

Denote I_A, I_B, I_C as the A, B, C excenter of ABC respectively, let H be the orthocenter of DEF. Let K be the Kosnita point of $I_AI_BI_C$ and $A_1B_1C_1$ be the pedal triangle of K wrt $I_AI_BI_C$. Let H_K be the orthocenter of $A_1B_1C_1$, L be a point lies on A_1K such that $H_KK = H_KL$. Applying the claim above, we get KH_K is parallel to the euler line of the orthic triangle of $I_AI_BI_C$ which is ABC and $LB_1 = LC_1$.

Let O be the circumcenter of ABC which is also the nine point center of $I_AI_BI_C$. It is well known that $I_AO \perp EF$ and since $I_AO \perp B_1C_1$ we get $EF \parallel B_1C_1$. Similarly, $A_1B_1C_1$ and DEF are triangles with 3 pairs of respective sides parallel to each other.

```
Let H'_A as a point lies on DI such that HH'_A = HI.
Since A_1K \parallel DI and similarly B_1K \parallel EI, C_1K \parallel FI, we get \triangle DEF \cup H, I, H'_A \sim \triangle A_1B_1C_1 \cup H_K, K, L therefore since LB_1 = LC_1 we get H'_AE = H'_AF and since H'_A also lies on AI therefore H'_A \equiv H_A therefore HI = HH_A and similarly we get HI = HH_A = HH_B = HH_C and since II_1 is the diameter of (IH_AH_BH_C) we get I, H, I_1 are collinear.
We also get IH \parallel KH_K and since KH_K is parallel to the culer line of ABC.
```

We also get $IH \parallel KH_K$ and since KH_K is parallel to the euler line of ABC, we get IH is parallel to the euler line of ABC therefore II_1 is parallel to the euler line of ABC. Hence the problem is proved.