QUESTION 5.1.1 UNION-FIND: MEET ACKERMANN

$$A(m,n) = \begin{cases} n+1 & \text{si } m=0 \\ A(m-1,1) & \text{si } m>0 \text{ et } n=0 \\ A(m-1,A(m,n-1)) & \text{sinon} \end{cases}$$

<u> </u>	0	1	2	3	4
A(n,n)	1	3	7	61	$2^{2^{2^{65536}}} - 3$

La complexité de weighted quick-union avec path compression se comporte comme l'inverse de la fonction d'Ackermann A(n,n): $\alpha(v) = n \iff A(n,n) = v$

<u> </u>	1	3	7	61	2^{64}	$2^{2^{2^{65536}}} - 3$
$\alpha(n)$	0	1	2	3	< 4	4

QUESTION 5.1.1 UNION-FIND: WEIGHTED QUICK-UNION

	Find	Union	
Quick-find	1	O(n)	
Quick-union	O(n) Hauteur de l'arbre	O(n) Hauteur de l'arbre	
Weighted quick-union	O(log(n))	O(log(n))	
Weighted quick-union + comp	~ O(4) amorti (mais pas vraiment)	~ O(4) amorti (mais pas vraiment)	