Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»

Анализ и восстановление комбинаторных объектов с недостающими элементами на примере латинских квадратов

7 июля 2020 г.

Научные руководители:

Кочетов Юрий Андреевич, д. ф-м. н. Горкунов Евгений Владимирович, к. ф-м. н.

Студент: Данилко Виталий Романович НГУ ФИТ, группа 18227

Содержание

- * Актуальность исследования
- \star Задачи
- ***** Определения
 - 🖈 Латинский квадрат
 - * Ортогональность
- 🖈 Гипотеза и теорема
- ★ Система Боуза
- * Методы восстановления
 - 🛪 Метод строк и столбцов
 - \star Диагональный метод
- 🛨 Перебор конфигураций
- Результаты
- * Список публикаций

Актуальность исследования

Связанные проблемы

- * Восстановление квадратов
- ★ Пересечение кодов
- * Расстояние между функциями

Задачи

- 🖈 Изучение и анализ свойств системы попарно ортогональных латинских квадратов
- \star Разработка алгоритма восстановления системы ортогональных латинских квадратов
- * Обоснование разработанного алгоритма
- ★ Увеличение производительности алгоритма
- * Анализ разработанного алгоритма

Определения

Латинский квадрат

->->-			1 6	-44
0	1	2	3	4
4	0	1	2	3
3	4	0	1	2
2	3	4	0	1
1	2	3	4	0

Определения

Ортогональность

Два латинских квадрата $L=(l_{ij})$ и $K=(k_{ij})$ порядка n называются ортогональными, если все n^2 упорядоченных пар (l_{ij},k_{ij}) различны.

	1			
0	1	2	0	
1	2	0	2	(
2	0	1	1	4
			17.7	

// /=\S	m = m	
(0,0)	(1, 1)	(2, 2)
(1, 2)	(2,0)	(0, 1)
(2,1)	(0, 2)	(1,0)

Полная система содержит n-1 попарно ортогональных латинских квадратов порядка n.

Гипотеза и теорема

Гипотеза (С. В. Августинович, ИМ СО РАН)

Полная система попарно ортогональных латинских квадратов порядка n при наличии не более 2n-1 неизвестных элементов в каждом из квадратов однозначно восстанавливается.

Теорема

Полная система попарно ортогональных латинских квадратов порядка $n \in \{3,4,5,7,8\}$ при наличии не более 2n-1 неизвестных элементов в каждом из квадратов однозначно восстанавливается.

Система Боуза

Метод строк и столбцов

В каждом латинском квадрате системы ищем строку и столбец, содержащий только один неизвестный элемент. Повторяем, пока любая строка и любой столбец не будут содержать либо 0, либо не менее 2 неизвестных элементов.

E		<u>(</u>	3	4)	H		3	4	Œ			2	3	4
	4	4	4	0	뭁	H	1///		4	0	덻	l		Y	4	0
2	F	4			\Rightarrow	2		4	0	1	\Rightarrow	2	3	4	0	1
3	4	0	1	2	ħL	3	4	0	1	2	ЦÈ	3	4	0	1	2
4	0	1	2	3		4	0	1	2	3		4	0	1	2	3

Диагональный метод

Ищем в каждом латинском квадрате системы диагонали размера n-1. В других квадратах системы это же множество клеток образует трансверсаль, которую мы тоже можем однозначно восстановить, заполнив неизвестную клетку элементом, отсутствующим в рассматриваемой трансверсали.

0	1	W		
1	2	Œ	7/	7//
2	3	2	$\rangle\rangle$	E
3	4	0	1	2
4	0	1	2	3

0	1	H/		
3	4		l/F	
1	2	Œ		Ë
4	0	1	2	3
2	3	4	0	1

0	1	2	4	
1	2	£	1/1	퀻
2	3	\sqrt{n}	7//	
3	4	0	1	2
4	0	1	2	3

0	1	2		2///
3	4	Y		R
1	2			ſĒ
4	0	1	2	3
2	3	4	0	1

Полный перебор

n	Количество конфигураций
3	126
4	11 440
5	2 042 975
7	262 596 783 764
8	159 518 999 862 720
9	128 447 994 798 305 325
11	169 758 547 725 351 091 518 726
13	495874093230232452749553398586
16	8283675595268374292919471912522442632960

Программа

Программа

- Написана система распределённых вычислений на добровольной основе, состоящая из серверной и клиентской части
- ★ Для реализации алгоритма использованы Apache MXNet и NumPy

Доказанные свойства

Доказанные свойства

- Если конфигурация восстанавливается, то восстанавливается конфигурация являющаяся её частью
- ***** Приведенная конфигурация размера 2n-3 и меньше дополняется до конфигурации размера либо 2n-2, либо 2n-1
- \star n+2 неизвестных элементов восстанавливаются однозначно
- \star 2n-1 неизвестных элементов, расположенных в двух строках или в двух столбцах, восстанавливаются однозначно
- \star Полная линейная система попарно ортогональных латинских квадратов порядка n и эквивалентная ей при наличии не более 2n-1 неизвестных элементов однозначно восстанавливается в своём классе эквивалентности.

Полученные результаты

Полученные результаты

- Изучены системы попарно ортогональных латинских квадратов и доказан ряд утверждений об их восстановлении
- * Разработан алгоритм восстановления таких систем
- * Доказана математическая корректность алгоритма
- На основе исследованных свойств достигнуто ускорение исходного алгоритма и вычислен коэффициент ускорения
- * Подтверждена гипотеза о восстановлении системы попарно ортогональных латинских квадратов порядка $n \in \{3, 4, 5, 7, 8\}$

Публикации

- ★ Данилко В. Р. Восстановление системы попарно ортогональных латинских квадратов по частичной информации // Мальцевские чтения. Международная конференция (Новосибирск, 19–22 ноября 2018 г.). Новосибирск, 2018 г. С. 87.
- ★ Gorkunov E. V., Danilko V. R. Reconstructing sets of Latin squares, linear and equivalent to linear codes // Proc. XVI Int. Symp. "Problems of Redundancy in Information and Control Systems" (Moscow, Russia, Oct. 21–25, 2019). 2019. P. 47–51.

Спасибо за внимание!

16/16