MAR 1 8 2009

SEQUENCE LISTING

- <110> Berislav V. ZLOKOVIC John H. GRIFFIN
- <120> NEUROPROTECTIVE ACTIVITY OF ACTIVATED PROTEIN C INDEPENDENT OF ITS ANTICOAGULANT ACTIVITY
- <130> 5192-16
- <140> US 10/537,545
- <141> 2006-12-18
- <150> PCT/US2003/038764
- <151> 2003-12-05
- <150> US 60/465,235
- <151> 2003-04-25
- <150> US 60/442,066
- <151> 2003-01-24
- <150> US 60/439,936
- <151> 2002-12-05
- <160> 1
- <170> MS Word
- <210> 1
- <211> 10
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> peptide
- <400> 1
- Thr Phe Leu Leu Arg Asn Pro Asn Asp Lys
 1 5 10

continued													
ACA	GCG	GCC	CAC	TGC	ATG	GAT	GAG	TCC	AAG	AAG	СТС	CTT	GTC
AGG	CTT	GGA	GAG	TAT	GAC	CTG	CGG	CGC	TGG	GAG	AAG	TGG	GAG
CTG	GAC	CTG	GAC	ATC	AAG	GAG	GTC	TTC	GTC	CAC	CCC	AAC	TAC
AGC	AAG	AGC	ACC	ACC	GAC	AAT	GAC	ATC	GCA	CTG	CTG	CAC	CTG
GCC	CAG	CCC	GCC	ACC	CTC	TCG	CAG	ACC	ATA	GTG	CCC	ATC	TGC
CTC	CCG	GAC	AGC	GGC	CTT	GCA	GAG	CGC	GAG	CTC	AAT	CAG	GCC
GGC	CAG	GAG	ACC	CTC	GTG	ACG	GGC	TGG	GGC	TAC	CAC	AGC	AGC
CGA	GAG	AAG	GAG	GCC	AAG	AGA	AAC	CGC	ACC	TTC	GTÇ	CTC	AAC
TTC	ATC	AAG	ATT	CCC	GTG	GTC	CCG	CAC	AAT	GAG	TGC	AGC	GAG
GTC	ATG	AGC	AAC	ATG	GTG	TCT	GAG	AAC	ATG	CTG	TGT	GCG	GGC
ATC	CTC	GGG	GAC	CGG	CAG	GAT	GCC	TGC	GAG	GGC	GAC	AGT	GGG
GGG	CCC	ATG	GTC	GCC	TCC	TTC	CAC	GGC	ACC	TGG	TTC	CTG	GTG
GGC	CTG	GTG	. AGC	TGG	GGT	GAG	GGC	TGT	GGG	CTC	CIT	CAC	AAC
TAC	GGC	GTT	TAC	ACC	AAA	GTC	AGC	CGC	TAC	CTC	GAC	TGG	ATC
CAT	GGG	CAC	ATC	AGA	GAC	AAG	GAA'	· GCC	CCC	CAG	AAG	AGC	TGG
GCA	CCT	TAG-	-3'										

wherein

A is deoxyadenyl, G is deoxyguanyl,

R is 5'-GCC CAC CAG GTG CTG CGG ATC CGC AAA CGT-3',
R1 must necessarily be

5'-ATG TGG	CAG			AGC	стс	CTG	CTG	TTC GTG
GCC ACC								
CTT GAC	TCA	GTG	TTC	TCC	AGC	AGC	GAG	CGT-3';

C is deoxycytidyl, T is thymidyl,

R is 5'-GCC CAC CAG GTG CTG CGG ATC CGC, AAA CGT-3' or 5'-CAC CAG GTG CTG

and that when

R is 5'-CAC CAG GTG CTG CGG ATC CGC AAA CGT-3',
R1 must necessarily be

5'-ATG TGG	CAG	CTC	ACA	AGC	CTC	CTG	CTG	TTC GTG
GCC ACC								
CIT GAC.	TCA	GTG	TTC	TCC	AGC	AGC	GAG	CGT GCC3'.

CGG ATC CGC AAA CGT-3'

The compounds of the present invention encode human protein C, and the heretofore unknown amino

5'-ATG TGG	CAG	CTC	ACA	AGC	CTC	CTG	CTG	TTC GTG
GCC ACC								GCT CCT
CTT GAC								
or 5'-ATG TGG								TTC GTG
GCC ACC				TCC				GCT CCT
CTT GAC	TCA	GTG	TTC	TCC	AGC	AGC	GAG	CGT GCC-3'

M is 0 or 1, and N is 0 or 1.

provided that when M is 0, N must necessarily also be 0; and that when

acid sequence of nascent human protein C when M and N are 1. The amino acid sequence, numbered to facilitate further discussion, of nascent human protein C is:

H2N-MET TRP GLN LEU THR SER LEU LEU PHE VAL ALA THR TRP GLY ILE

SER GLY THR PRO ALA PRO LEU ASP SER VAL PHE SER SER SER GLU ARG

ALA HIS GLN VAL LEU ARG ILE ARG LYS ARG ALA ASN SER PHE LEU GLU

GLU LEU ARG HIS SER SER LEU GLU ARG GLU CYS ILE GLU GLU ILE CYS

ASP PHE GLU GLU ALA LYS GLU ILE PHE GLN ASN VAL ASP ASP THR LEU

ALA PHE TRP SER LYS HIS VAL ASP GLY ASP GLN CYS LEU VAL LEU PRO

LEU GLU HIS PRO CYS ALA SER LEU CYS CYS GLY HIS GLY THR CYS ILE

-continued

ASP GLY ILE GLY SER PHE SER CYS ASP CYS ARG SER GLY TRP GLU GLY 130 140
ARG PHE CYS GLN ARG GLU VAL SER PHE LEU ASN CYS SER LEU ASP ASN 145 150 150 160 GLY GLY CYS THR HIS TYR CYS LEU GLU GLU VAL GLY TRP ARG ARG CYS SER CYS ALA PRO GLY TYR LYS LEU GLY ASP ASP LEU LEU GLN CYS HIS PRO ALA VAL LYS PHE PRO CYS GLY ARG PRO TRP LYS ARG MET GLU LYS LYS ARG SER HIS LEU LYS ARG ASP THR GLU ASP GLN GLU ASP GLN VAL 210 220
ASP PRO ARG LEU ILE ASP GLY LYS MET THR ARG ARG GLY ASP SER PRO 225 230 235 240
TRP GLN VAL VAL LEU LEU ASP SER LYS LYS LYS LEU ALA CYS GLY ALA VAL LEU ILE HIS PRO SER TRP VAL LEU THR ALA ALA HIS CYS MET ASP GLU SER LYS LEU LEU VAL SRG LEU GLY GLU TYR ASP LEU ARG ARG 275 280 · 285
TRP GLU LYS TRP GLU LEU ASP LEU ASP ILE LYS GLU VAL PHE VAL HIS 290 295 300
PRO ASN TYR SER LYS SER THR THR ASP ASN ASP ILE ALA LEU LEU HIS 305 310 320 LEU ALA GLN PRO ALA THR LEU SER GLN THR ILE VAL PRO ILE CYS LEU 325 330 335 PRO ASP SER GLY LEU ALA GLU ARG GLU: LEU ASN GLN ALA GLY GLN GLU THR LEU VAL THR GLY TRP GLY TYR HIS SER SER ARG GLU LYS GLU ALA 155 360 365. LYS ARG ASN ARG THR PHE VAL LEU ASN PHE ILE LYS ILE PRO VAL VAL 970 375 380
PRO HIS ASN GLU CYS SER GLU VAL MET SER ASN MET VAL SER GLU ASN 385 390 400
MET LEU CYS ALA GLY ILE LEU GLY ASP ARG GLN ASP ALA CYS GLU GLY ASP SER GLY GLY PRO MET VAL ALA SER PHE HIS GLY THR TRP PHE LEU VAL GLY LEU VAL SER TRP GLY GLU GLY CYS GLY LEU LEU HIS ASN TYR GLY VAL TYR THR LYS VAL SER ARG TYR LEU ASP TRP ILE HIS GLY HIS

450 455 460
ILE ARG ASP LYS GLU ALA PRO GLN LYS SER TRP ALA PRO—COOH

wherein H₂N- is the amino-terminus, COOH is the carboxy-terminus, ALA is Alanine, ARG is Arginine, ASN is Asparagine, ASP is Aspartic acid, CYS is Cysteine, GLN is Glutamine, GLU is Glutamic Acid, GLY is Glycine, HIS is Histidine. ILE is Isoleucine,

LEU is Leucine, LYS is Lysine, MET is Methionine, PHE is Phenylalanine,

60 PRO is Proline, SER is Serine, THR is Threonine, TRP is Tryptophan, TYR is Tyrosine, and . 65 VAL is Valine.

The DNA compounds of the present invention are derived from cDNA clones prepared from human liver mRNA that encodes human protein C activity. In con-