Uniformization of Multi-Valued Functions

Tang Junwei

September 16, 2025

Contents

1	Multi-Valued Functions	2
2	Regular Path Lifting Theorem	2
3	Uniformization Groups	3
4	The Solvability of Multi-Valued Functions	4
5	A Topology Proof of Abel Theorem	Ę

1 Multi-Valued Functions

Definition 1.1. Let X and Y be two sets, P(Y) is the set of all of subsets contained in Y. The Function f is called a multi-valued function, if $f: X \to P(Y)$. Such f can be denoted by $f: X \to Y$. The domain of definition of f is denoted by D(f).

Example 1.2. The function $\sqrt{-}:\mathbb{C}\to\mathbb{C}$ is a multi-valued function.

Definition 1.3. Let X and Y be two topology spaces, $f: X \mapsto Y$ is a multi-valued function. For $x \in D(f)$, x is called a regular point, if there exists neighborhood U of x, a disjoint collection $\{V_i: i \in I\}$ of open sets in Y and a collection of continous maps $\{f_i: U \to V_i: i \in I\}$, such that for any $y \in U$, we have $f(y) = \{f_i(y): i \in I\}$.

All of regular points in D(f) forms a open set R(f), and points in D(f) - R(f) are called branching points.

Example 1.4. Consider $P_n = \{\text{all the monic polynomials over } \mathbb{C} \text{ with degree } d \leq n \}$, we view it as \mathbb{C}^n with Euclidean topology. Then we define $\Psi : P_n \to \mathbb{C}$, $\Psi(f) = \{\text{the roots of } f\}$. We find that $R(P_n) = \{\text{all the separable polynomails}\}$, denoted by P_n^s .

2 Regular Path Lifting Theorem

Definition 2.1. Consider multi-valued function $f: X \to Y$. A path $\gamma: I \to R(f)$ in R(f) is a regular path. The path $\tilde{\gamma}: I \to Y$ is a lift of γ , if $\tilde{\gamma}(t) \in f(\gamma(t))$ for any $t \in I$.

Theorem 2.2. There is a multi-valued function between topology spaces $f: X \to Y$. Suppose $\gamma: I \to R(f)$ is a regular path, $x_0 = \gamma(0)$. Choose $y_0 \in f(x_0)$, then there exists a unique lift $\tilde{\gamma}$ of γ , such that $\tilde{\gamma}(t) \in f(\gamma(t))$ for any $t \in I$ and $\tilde{\gamma}(0) = y_0$.

Proof. $\forall x \in \gamma(I), \exists$ a neighborhood U_x of x, a disjoint collection $\{V_i : i \in I\}$ of open sets in Y and a collection of continous maps $\{f_i^x : U_x \to V_i : i \in f(x)\}$, such that for any $y \in U_x$, we have $f(y) = \{f_i^x(y) : i \in f(x)\}$. The collection $\{U_x : x \in \gamma(I)\}$ forms a open covering of subspace $\gamma(I)$. By Lebesgue's Lemma, $\exists n \in \mathbb{N}$, such that $\gamma([\frac{i-1}{n}, \frac{i}{n}]) \subset U_{x_i}$ for some $x_i \in \gamma(I)$, where $1 \leq i \leq n$.

Then for $\frac{i-1}{n} \leq t \leq \frac{i}{n}$, we can define $\tilde{\gamma}(t) = f_{\tilde{\gamma}(\frac{i-1}{n})}^{x_i}(\gamma(t))$ inductively, the basic case holds because we fix $y_0 = \tilde{\gamma}(0)$. By Pasting Lemma we can check $\tilde{\gamma}$ is a path in Y. Also we can check $\tilde{\gamma}(t) \in f(\gamma(t))$ for any $t \in I$. Thus $\tilde{\gamma}$ is the lift we need and it is unique.

Using the same techique, we can also proof the following theorem.

Theorem 2.3. If two paths η and γ are homotopic rel endpoints, then their lifts $\tilde{\eta}$ and $\tilde{\gamma}$ are also homotopic rel endpoints.

3 Uniformization Groups

Definition 3.1. For a multi-valued function $f: X \to Y$ and a path $\gamma: I \to X$ from x_0 to x_1 , we define $M(f, \gamma): f(x_0) \to f(x_1), y_0 \in f(x_0) \mapsto \tilde{\gamma}_{y_0}(1)$.

By theorem 2.2 we can check this map is well-defined. Theorem 2.3 shows that $M(f, \gamma)$ depends on the homotopy class of γ , and $M(f, \gamma)$ is bijective obviously.

Theorem 3.2. Consider multi-valued function $f: X \rightarrow Y$. Fix $x_0 \in R(f)$, then we have group homomorphism:

$$\rho: \pi_1(R(f), x_0) \to \mathsf{S}_{f(x_0)}$$
$$[\gamma] \mapsto M(f, \gamma)$$

Such ρ is called the uniformization homomorphism of f, and the image of ρ is called the uniformization group of f, denoted by $M(f, x_0)$

Proof. By theorem 2.3, we know that if $[\gamma_1] = [\gamma_2]$, then $M(f, \gamma_1) = M(f, \gamma_2)$. Since $M(f, \gamma)$ is bijective, $M(f, \gamma) \in S_{f(x_0)}$.

Since $\rho([\gamma])\rho(\eta) = M(f,\gamma)M(f,\eta) = M(f,\gamma\cdot\eta) = \rho([\gamma\cdot\eta]) = \rho([\gamma])\rho([\eta]), \ \rho$ is a group homomorphism.

We have the following proposition.

Proposition 3.3. If x_1 and x_2 are in the same path connected component of R(f), then $M(f, x_1) \cong M(f, x_2)$.

Definition 3.4. Let G be a group. The commutant of G, G', is the subgroup $\{aba^{-1}b^{-1}: \forall a, b \in G\}$. Then we define $G^{(1)} = G/G'$ and $G^{(k)} = G^{(k-1)}/(G^{(k-1)})'$ for $1 \leq k$. The length of $1 \leq K$ of $1 \leq K$ is the smallest integer $1 \leq K$ such that $1 \leq K$ in the smallest integer $1 \leq K$ in the smallest $1 \leq K$ in the small $1 \leq K$ in the smallest $1 \leq K$ in the smallest $1 \leq K$ in the

Definition 3.5. For a multi-valued function $f: X \rightarrow Y$, the complexity of f is defined as follow

$$c(f) = \max\{I(M(f, x_0)) : \forall x_0 \in X\}$$

Example 3.6. Consider $\sqrt[n]{-}: \mathbb{C} \to \mathbb{C}$. $R(f) = \mathbb{C} - \{0\}$. Choose base point $x_0 = 1$, $\pi_1(R(\sqrt[n]{-}), x_0)$ is generated by $[\gamma]$, where $\gamma(t) = e^{i2\pi t}$. And $\sqrt[n]{x_0} = \{1, \xi, ..., \xi^{n-1}\}$, where $\xi = e^{\frac{2\pi i}{n}}$. Then γ has n lifts $\tilde{\gamma}_{\xi^k}(t) = \xi^k e^{\frac{2\pi i}{n}}$, thus $M(\sqrt[n]{-}, \gamma) = (1\xi\xi^2...\xi^{n-1})$. Hence, $M(\sqrt[n]{-}, x_0) \cong \mathbb{Z}_n$ and $C(\sqrt[n]{-}) = 1$

Example 3.7. $M(\Psi_n, x_0) \cong S_n$, where Ψ_n maps a polynomial to its roots and x_0 is $p(z) = z^n - 1$.

Proof. The polynomial x_0 has roots $\{1, \xi, ..., \xi^{n-1}\}$. For ξ^j and ξ^k , choose a path η from ξ^j to ξ^k and a path λ from ξ^k to ξ^j , such that $\eta(0,1) \cap \Psi_n = \emptyset$ and $\lambda(0,1) \cap \Psi_n = \emptyset$. Consider the polynomial

$$p_t(z) = (z - \eta(t))(z - \lambda(t)) \prod_{i \neq j,k} (z - \xi^i)$$

We can define a closed path $\gamma: I \to P_n^s, t \mapsto p_t(z)$, which start from x_0 and $(\xi^j \xi^k) = M(\Psi_n, \gamma) \in M(\Psi_n)$. Hence $M(\Psi_n, x_0) \cong S_n$.

4 The Solvability of Multi-Valued Functions

For the discussion, we will directly give the following definitions and theorems.

Definition 4.1. Given a multi-valued function $f: X \to Y$ and a regular closed path $\gamma: I \to R(f)$. The path γ , is called 1-st commutant path if there exists regular closed paths γ_1 and γ_2 , such that $\gamma = \gamma_1 \gamma_2 \overline{\gamma_1} \overline{\gamma_2}$.

The path γ is called k-th commutant path if there exists (k-1)-th commutant paths γ_1 and γ_2 , such that $\gamma = \gamma_1 \gamma_2 \bar{\gamma}_1 \bar{\gamma}_2$.

Definition 4.2. A regular closed path γ is liftable if $\rho(\gamma): f(x_0) \to f(x_0)$ is identity.

Obviously, if the complexity of $f: X \to Y$ is 1, then there exists a regular closed path which is unliftable, and each 1-st commutant path is liftable, since $M(f, x_0)$ is an abelian group. Then by induction, we can proof the following theorem.

Theorem 4.3. $c(f) = k \Leftrightarrow \text{All k-th commutant paths are liftable, and there exists a (k-1)-th unliftable commutant path.$

 $c(f) = \infty \Leftrightarrow \forall k > 0$, there exists a k-th unliftable commutant path.

Definition 4.4. Given two multi-valued functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. The composition of f and g is $g \circ f: X \rightarrow Z, x \mapsto \bigcup_{y \in f(x)} g(y)$.

Theorem 4.5. If R(g) = Y, then $c(g \circ f) \leq c(g) + c(f)$.

Proof. Without the loss of generality, we assume c(g) = 1, and suppose c(f) = 1. Choose a (k+1)-th commutant path γ in $R(g \circ f)$ base at x_0 , i.e. there exists k-th commutant path γ_1 and γ_2 such that $\gamma = \gamma_1 \gamma_2 \bar{\gamma}_1 \bar{\gamma}_2$. Since c(f) = k, then γ_1 and γ_2 can be lifted to $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ by f, and endpoint is $y_0 \in f(x_0)$. Thus γ has a lift $\tilde{\gamma}$ in Y, satisfying $\tilde{\gamma} = \tilde{\gamma}_1 \tilde{\gamma}_2 \bar{\tilde{\gamma}}_1 \bar{\tilde{\gamma}}_2$. Since c(g) = 1, $\tilde{\gamma}$ has a lift $\hat{\gamma}$ in Z by g with endpoint $z_0 \in g(y_0) \subset g \circ f(x_0)$. Hence, by theorem $4.3, c(g \circ f) \leq k+1$.

Definition 4.6. Given $f, g: X \rightarrow Y$, we say that $f \subset g$ if $f(x) \subset g(x) \forall x \in X$.

Theorem I. f $f \subset g$ and $R(f) \subset R(g)$, then $c(f) \leq c(g)$.

Proof. Using theorem 4.3 and definition 4.4, the proof is trivial.

In summary, we have the following useful theorem.

Theorem 4.7. Suppose $f: X \to Y$ is contained the composition of multi-valued functions $X \to X_1 \to \cdots \to X_n = Y$, and each component function $f_i: X_{i-1} \to X_i$ is regular. Then $c(f) \leq \sum_{i=1}^n c(f_i)$.

Definition 4.8. A multi-valued function f is solvable if $c(f) < \infty$, otherwise it is unsolvable.

Immediately, an unsolvable function is not a composition of finite many solvable function.

5 A Topology Proof of Abel Theorem

Before proofing Abel Theorem, we need to introduce some facts about Zariski topology on \mathbb{C}^n .

Definition 5.1. Subset $A \subset \mathbb{C}^n$ is a Zariski closed set, if there exists finite many polynomials $f_1, ..., f_k$, such that every point in A is the root of one if the above polynomials.

Proposition 5.2. We have some facts about Zariski topology.

- 1. Arbitrary intersection of Zarisiki closed set is closed.
- 2. Finte union of Zarisiki closed set is closed.
- 3. The inverse image of a Zariski closed(open) set under polynomial map is closed(open).
- 4. Finite intersection of nonempty Zariski open sets is nonempty.
- 5. Nonempty Zariski open sets are path connected.

To translate the algebraic language of Abel Theorm into the language of multi-valued function, we need to define the rational function and the radical function.

Definition 5.3. Consider multivariate polynomial functions $f_1, ..., f_m, g_1, ..., g_m : \mathbb{C}^n \to \mathbb{C}$, we call the function

$$\left(\frac{f_1}{g_1}, ..., \frac{f_m}{g_m}\right) : U \to \mathbb{C}^m$$

$$(z_1, ..., z_n) \mapsto \left(\frac{f_1(z_1, ..., z_n)}{g_1(z_1, ..., z_n)}, ..., \frac{f_m(z_1, ..., z_n)}{g_m(z_1, ..., z_n)}\right)$$

rational function, where $U = \{(z_1, ..., z_n) \in \mathbb{C}^n : g_i(z_1, ..., z_n) \neq 0 \forall 1 \leq i \leq m\}$ is a Zariski open set.

Definition 5.4. Let $k_1, ..., k_n$ be integers. We call the function

$$f:\mathbb{C}^n \rightarrowtail \mathbb{C}^n$$

$$(z_1, ..., z_n) \mapsto \{(y_1, ..., y_n) \in \mathbb{C}^n : y_i \in \sqrt[k_i]{z_i} \forall 1 \le i \le n\}$$

multivariate radical function. And $R(f) = \{(z_1, ..., z_n) \in \mathbb{C}^n : z_i \neq 0\}.$

Definition 5,5. (Roots-Finding Formula for Equation of Degree n) Let U be a nonempty Zariski open set in $P_n \cong \mathbb{C}^n$. Consider composition multi-valued function

$$f: U \longrightarrow \mathbb{C}^{n_1} \longrightarrow ... \rightarrowtail \mathbb{C}$$

where each $f_i: \mathbb{C}^{n_{i-1}} \to \mathbb{C}^{n_i}$ is either a rational function, or a multivariate radical function. If $\Psi_n|_U \subset f$, then we call f the roots-finding formula for equation of degree n.

Theorem 5.6. (Abel-Ruffini Theorem) If $n \geq 5$, there doesn't exist the roots-finding formula.

Proof. First we will proof $M(\Psi_n|_U) \cong \mathsf{S}_n$.

Consider function $\sigma: \mathbb{C}^n \to P_n$, $(z_1,...,z_n) \mapsto (z-z_1)...(z-z_n)$ and $g \in S_n$. Choose $p_0 \in U \cap R(\Psi_n)$, p_0 has roots $r_1,...,r_n$. Then we have $\sigma(r_1,r_2,...,r_n) = \sigma(r_{g(1)},r_{g(2)},...,r_{g(n)}) = p_0$. Since σ is continous, then $(r_1,r_2,...,r_n)$, $(r_{g(1)},r_{g(2)},...,r_{g(n)}) \in \sigma^{-1}(U \cap R(\Psi_n))$ can be connected by a path γ . Thus we obtain a regular path $\sigma \circ \gamma$ base at p_0 and $M(\Psi_n,\sigma \circ \gamma) = g$. Hence $M(\Psi_n|_U) = S_n$.

Let $n \geq 5$, suppose exists roots-finding formula, i.e. $\Psi_n|_U \subset f: U \mapsto \mathbb{C}^{n_1} \mapsto ... \mapsto \mathbb{C}$. Define $V_i = R(f_i)$, then each V_i is nonempty Zariski open set. Then construct $U_i = V_i \cap f_i^{-1}(U_{i+1})$ by induction, we have $\Psi_n|_{U_1} \subset f|_{U_1}: U_1 \stackrel{f_1|_{U_1}}{\mapsto} U_2 \stackrel{f_2|_{U_2}}{\mapsto} ... \stackrel{f_k|_{U_k}}{\mapsto} \mathbb{C}$, where each $f_i|_{U_i}$ is regular and solvable, but $\Psi_n|_{U_1}$ is unsolvable, then by theorem 4.7 this implies contradiction.

6