EJERCICIO IMAGEN I

Comprimir la siguiente imagen en escala de grises usando codificación Huffman

0	0	0	0	0	0	4	3
0	6	5	7	7	6	3	3
0	1	4	6	7	5	3	3
0	3	4	6	7	5	3	3
0	1	3	5	5	4	3	2
0	1	3	5	4	4	2	1
0	1	3	4	4	3	1	1
0	0	0	0	0	6	4	5

a) Códigos Huffman

0	1	2	3	4	5	6	7
17/64	7/64	2/64	13/64	9/64	7/64	5/64	4/64

Estas son las probabilidades y ahora vamos a llevar a cabo el proceso Huffman.

it 0	it 1	it 2	it 3	it 4	it 5	it 6
2+7(6/64)	2+7+6(11/64)		2+7+6+4(20/64)	2+7+6+4(20/64)	2+7+6+4+0(37/64)	64/64
6(5/64)						
4(9/64)	4(9/64)	4(9/64)				
0(17/64)	0(17/64)	0(17/64)	0(17/64)	0(17/64)		
5(7/64)	5(7/64)	5+1(14/64)	5+1(14/64)	5+1+3(27/64)	5+1+3(27/64)	
1(7/64)	1(7/64)					
3(13/64)	3(13/64)	3(13/64)	3(13/64)			

Los códigos quedarían:

 0: 01
 4: 001

 1: 101
 5: 100

 2: 00000
 6: 0001

 3: 11
 7: 00001

b) Tamaño Medio

$$L_{medio} = \sum_{k=0}^{L-1} l(r_k) p(r_k)$$

Lmedio = 2,8 bits

c) Ratio de Compresión y Redundancia de datos

Si no usamos Huffman el Lmedio es 3 ya que tenemos 8 niveles que se codifican con 3 bits $(2^3 = 8)$, por lo tanto el ratio de compresión es:

d) Entropía Huffman

$$H = -\sum_{i} i pi log2pi = 2,756625$$

e) Codifica según el código obtenido: 0 1 4 6 7 5 3 3

$$0\ 1\ 4\ 6\ 7\ 5\ 3\ 3 \rightarrow \underline{01\ 101\ 001\ 0001\ 00001\ 100\ 11\ 11}$$

f) Decodifica según el código obtenido: 001111100110011

$$001111100110011 \to \underline{\textbf{433453}}$$