Database Design II: Normalization Forms

DSC 301: Lecture 9

February 24, 2021

Lecture Objectives

- Review Functional Dependencies
- State purpose of normalization
 - Mention performance trade-off, thus denormalization
- State Normalization Forms
- Apply normalization (use MySQL Workbench)

Functional Dependencies (FD)

- \bullet Notation: $A \to B$ read "B is functionally dependent on A" (or A determines B)
- Generalizes concept of keys (i.e., a key is a FD)
- $A \to B$ if $t_i[B] = t_j[B]$ when $t_i[A] = t_j[A]$ for all i, j.
- Used in the normalization process (topic of this lecture)

Example 1. Given the relation R in Table 1, verify that $A \to B$. Find another FD.

Table 1: Functional Dependency

R =	Α	В	C	D
	1	1	1	1
	1	1	3	1
	2	1	3	4
	2	1	3	1
	3	6	3	1

Purpose of Normalization

A table (i.e., relation) is the basic building block of a database, therefore its design is of significant importance. How to produce good table structures?

Definition 1. Normalization is a technique to produce a <u>set</u> of relations with certain desirable properties (given data requirements of the enterprise¹).

- Minimize redundancy
 - reduce opportunities for inconsistencies (typically from updates)
 - reduce storage
 - considered as an anomaly
 - NOTE: minimize does not mean eliminate (e.g., keys are redundant)
- Eliminate anomalies
- Facilitate multiple table queries

Normalization Forms

Except for the first normal form (1NF), all normal forms based on functional dependencies. Because higher normal forms deal with situations extremely rare², we only discuss the first three normal forms. In addition, there are trade-offs between data redundancy and performance. Normalizing reduces redundancy at the expense of performance. Therefore, occasionally, we **denormalize** database tables to reduce the number of *joins*.

¹Needs of the organization

²Analytic (statistical) research applications beyond the scope of business operations.

A database is *normalized* if it is in third-normal form. A relation not normalized is said to be in *unnormalized form* (UNF). Normal forms are executed as a series of steps.

- 1. 1NF: Each row is unique³, no repeated columns, and all cells are atomic.
- 2. 2NF: In 1NF and contains no partial dependencies.
- 3. 3NF: In 2NF and contains no transitive dependencies.

First Normal Form

Each row is unique, no repeated columns, and all cells are atomic.

Example 2. Identify why the given table is unnormalized.

Table 2: Non-normalize Table

	Name	Class 1	Class 2	Class 3
Students =	Norville Rogers	MAT480	MAT405	ART101
	Fred Jones	MAT190	ENV104	BIO110
	Daphne Blake	MAT190	ENV104	

Example 3. Identify why the given table is unnormalized.

Table 3: Non-normalize Table. Note: this may be a good spreadsheet design and great view for a report.

	ID	Name	Class	Rank	Hours
	1	Norville Rogers	MAT190	Freshman	18
			ENV104		
			BIO110		
Students =	2	Fred Jones	MAT480	Senior	101
			MAT405		
			ART101		
	3	Daphne Blake	MAT190	Freshman	25
			ENV104		

³i.e., Key exists

Table 4: Table in 1NF. Note: There still exists many update anomalies and data redundancy.

StudentID	First	Last	Class	Description	Rank	Hours
1	Norville	Rogers	MAT190	Calculus 1	Freshman	18
1	Norville	Rogers	ENV104	EnvSci.	Freshman	18
1	Norville	Rogers	BIO110	Biology	Freshman	18
2	Fred	Jones	MAT480	Math Research	Senior	101
2	Fred	Jones	MAT405	Numerical Analysis	Senior	101
2	Fred	Jones	ART101	Drawing	Senior	101
3	Daphne	Blake	MAT190	Calculus 1	Freshman	25
3	Daphne	Blake	ENV104	EnvSci.	Freshman	25

Second Normal Form

Table must be in 1NF and no partial dependencies (i.e., every non-key column must depend on the entire key). In Table 4, (StudentID, Class) is a primary key. However, StudentID \rightarrow First is a partial dependency. That is, First is depends on StudentID. In fact, so does Last and Rank. Said another way, Rank, for example, does NOT depend on the entire key (only part of the key). In addition, Description only depends on Class instead of the entire key. We decompose table into two tables for which there are no partial dependencies.

Table 5: Table in 2NF. Note: reduced redundancy and all non-key columns (i.e., First, Last, Rank, Hours depend entirely on StudentID.

Students =	StudentID	First	Last	Rank	Hours
	1	Norville	Rogers	Freshman	18
	2	Fred	Jones	Senior	101
	3	Daphne	Blake	Freshman	25

Note: It is important to point out that functional dependencies are not particular to an instance (i.e., the Students relation above), but a general property (constraint) on the schema. For example, in the Students relation above, technically $\mathtt{First} \to \mathtt{Last}$, but actually we should not expect this dependency to hold. There are many students that have same first names and different last names or same first and last names.

Table 6: Table not in 2NF. What is the key? Class, StudentID. Note that Description is dependent on only part of the key (i.e., Class).

	Class	Description	StudentID
	MAT190	Calculus 1	1
	MAT190	Calculus 1	3
	ENV104	EnvSci.	1
Classes =	ENV104	EnvSci.	3
	BIO110	Biology	1
	MAT480	Math Research	2
	MAT405	Numerical Analysis	2
	ART101	Drawing	2

Table 7: Table in 2NF. What is the key?

	Class	Description	
Classes =	MAT190	Calculus 1	
	ENV104	EnvSci.	
	BIO110	Biology	
	MAT480	Math Research	
	MAT405	Numerical Analysis	
	ART101	Drawing	

Third Normal Form

Remove transitive dependencies (non-key columns depend ONLY on key).

Table 8: Table in 3NF. What is the key?

	Class	StudentID
	MAT190	1
	MAT190	3
	ENV104	1
$Student_Classes =$	ENV104	3
	BIO110	1
	MAT480	2
	MAT405	2
	ART101	2

Table 9: Normalize

TID	Tname	Dept	Building	Baddr	Office	SID	Sname	Course
1	Adams	MAT	Α	12 Broadway	200	1	Jones	MAT190
1	Adams	MAT	А	12 Broadway	200	2	Rogers	MAT190
1	Adams	MAT	Α	12 Broadway	200	3	Blake	MAT195
2	Bashforth	MAT	А	12 Broadway	201	3	Blake	MAT200
2	Bashforth	MAT	А	12 Broadway	201	4	King	MAT200
2	Bashforth	MAT	Α	12 Broadway	201	5	Snow	MAT201
:	:	:	:	:	:	:	:	:
3	Carrie	HIS	В	11 Hill	111	5	Snow	HIS101
3	Carrie	HIS	В	11 HILL	111	4	King	HIS101
3	Carrie	HIS	В	11 Hill	111	5	Fisher	HIS102
3	Carrie	HIS	В	11 Hill	111	5	Ramsey	HIS102
4	Adams	HIS	В	11 Hill	200	6	Flowers	HIS101
÷	:	:	i.	:	:	÷	i i	i:

Figure 1: Teachers - Students - Classes