Лабораторная работа №4

Исследование нерекурсивной цепи второго порядка

1. Исследование частотных характеристик

1.1 ФНЧ

$$\omega c(a1,a2) := \begin{bmatrix} \infty & \text{if } |a2| < 0.001 \\ \\ acos \underbrace{ \begin{bmatrix} -2 \cdot a1 \cdot (1+a2) + sign(a1) \sqrt{ \left[2 \cdot a1 \cdot (1+a2) \right]^2 - 2 \cdot 4 \cdot a2 \cdot \left[2 \cdot \left[a1^2 + (1-a2)^2 \right] - \left[a2 + 1 + \left(\left| a1 \right| \right)^2 \right] \end{bmatrix}}_{2 \cdot (4 \cdot a2)} \text{ otherwise }$$

a1 := 0.5

a2 := 0.06

 $\omega c(a1, a2) = 2.107 \text{ rad}$

a1 := 0.5 a2 := 0.5

 $\omega c(a1, a2) = 1.372 \text{ rad}$

a1 := 1

a2 := 0.2

 $\omega c(a1, a2) = 1.818 \, rad$

a1 := 2

a2:= 1

 $\omega c(a1, a2) = 1.705 \text{ rad}$

Зависимость wc от параметров a1,a2

a2 := 0.02

a2 := 0.06

1.2 ФВЧ

a1:=
$$-0.5$$
 a2:= 0.06 $\omega c(a1, a2) = 1.035$ rad

<u>a1</u>:= −1

$$a2 := 0.2$$

 $\omega c(a1, a2) = 1.323 \text{ rad}$

a1 := -2 a2 := 0.08

 $\omega c(a1, a2) = 0.98 \, rad$

a1 := -2

a2 := 0.5

 $\omega c(a1, a2) = 1.292 \text{ rad}$

Зависимость wc от параметров a1,a2

a2 := 0.02

wc(a1)

a2 = 0.06

1.3 Полосовой фильтр

$$b1(a1,a2) := \frac{-2 \cdot a1 \cdot (1+a2) - \sqrt{\frac{\left[2 \cdot a1 \cdot (1+a2)\right]^2 - 4 \cdot 4 \cdot a2 \cdot \left[a1^2 + (1-a2)^2\right]}{2}}}{2 \cdot 4 \cdot a2}$$

$$b2(a1,a2) := \frac{-2 \cdot a1 \cdot (1 + a2) + \sqrt{\frac{[2 \cdot a1 \cdot (1 + a2)]^2 - 4 \cdot 4 \cdot a2 \cdot [a1^2 + (1 - a2)^2]}{2}}}{2 \cdot 4 \cdot a2}$$

$$\omega p(a1,a2) := a cos \left[\frac{-a1(1+a2)}{4 \cdot a2} \right] \qquad \omega 2(a1,a2) := a cos(b2(a1,a2)) \qquad \omega 1(a1,a2) := a cos(b1(a1,a2)) \qquad Q(a1,a2) := \frac{\omega p(a1,a2)}{\omega 2(a1,a2) - \omega 1(a1,a2)}$$

$$a1 := -1$$
 $a2 := -1$ $\omega 1(a1, a2) = 0.659 \text{ rad}$ $\omega p(a1, a2) = 1.571 \text{ rad}$ $\omega 2(a1, a2) = 2.483 \text{ rad}$ $\omega 2(a1, a2) = 0.861$

al := 1

a2 := -1

 $\omega 1(a1, a2) = 0.659 \text{ rad}$ $\omega p(a1, a2) = 1.571 \text{ rad}$ $\omega 2(a1, a2) = 2.483 \text{ rad}$

Q(a1, a2) = 0.861

a1 = 0

a2 := -1

 $\omega 1(a1, a2) = 0.785 \text{ rad}$ $\omega p(a1, a2) = 1.571 \text{ rad}$ $\omega 2(a1, a2) = 2.356 \text{ rad}$

Q(a1, a2) = 1

Зависимости wp(a1),wp(a2),Q(a1),Q(a2)

$$a2 := -0.2$$

$$a2 := -0.5$$

$$a2 := -0.8$$

wp(a2)/pi

a2:= −1

1.4 Режекторный фильтр

a1:=
$$-0.5$$
 a2:= 0.5 $\omega 1(a1,a2) = 0.787 \text{ rad}$ $\omega p(a1,a2) = 1.186 \text{ rad}$ $\omega 2(a1,a2) = 1.527 \text{ rad}$ $Q(a1,a2) = 1.605$

a2:= 0.1

Q(a1)

a2:= 0.5

Q(a1)

2.Исследование временных характеристик

2.1. Фильтр нижних частот

$$d(n) := \begin{bmatrix} 0 & \text{if } n > 0 \\ 0 & \text{if } n < 0 \\ 1 & \text{otherwise} \end{bmatrix}$$

$$h(n,a1,a2) := d(n) + a1 \cdot d(n-1) + a2 \cdot d(n-2)$$
 $n := 0,1...5$

$$p(n) := \begin{bmatrix} 0 & \text{if } n < 0 \\ 1 & \text{otherwise} \end{bmatrix}$$

$$p(n,a1,a2) := p(n) + a1 \cdot p(n-1) + a2 \cdot p(n-2)$$

$$i(n) \coloneqq (p(n) - p(n-4))$$

$$i(n, a1, a2) := i(n) + a1 \cdot i(n-1) + a2 \cdot i(n-2)$$

1)
$$a_1=0.5$$
, $a_2=0.05$;

$$a1 := 0.5$$

$$a2 := 0.05$$

4)
$$a_1=2.1$$
, $a_2=1$.

2.2. Фильтр верхних частот 1) a_1 =-0.5, a_2 =0.05;

1)
$$a_1 = -0.5$$
, $a_2 = 0.05$;

2.3. Полосовой фильтр

1)
$$a_1$$
=-1, a_2 =-1;

3)
$$a_1=1$$
, $a_2=-1$.

0.83 p(n, a1, a2) 0.15 -0.52 -1.2 0 1 2 3 4 5

2.4. Режекторный фильтр

a1;= −1

для $a_1 \in \{-1;0;1\}, a_2 \in \{0.75;1\},$

