Package 'waterquality'

August 7, 2023

Title Satellite Derived Water Quality Detection Algorithms

Version 1.0.0

Description The main purpose of waterquality is to quickly and easily convert satellite-based reflectance imagery into one or many well-known water quality algorithms designed for the detection of harmful algal blooms or the following pigment proxies: chlorophyll-a, blue-green algae (phycocyanin), and turbidity. Johansen et al. (2019) <doi:10.21079/11681/35053>.

```
Depends R (>= 3.4.0)
```

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports methods, terra, purrr, caret, magrittr, dplyr

RoxygenNote 7.2.3

Suggests testthat, knitr, tibble, rmarkdown, covr, tmap, tmaptools, sf

URL https://github.com/RAJohansen/waterquality

BugReports https://github.com/RAJohansen/waterquality/issues

VignetteBuilder knitr NeedsCompilation no

Author Richard Johansen [aut, cre] (https://orcid.org/0000-0003-4287-9677), Jakub Nowosad [aut] (https://orcid.org/0000-0002-1057-3721),

Molly Reif [aut] (https://orcid.org/0000-0003-4207-1459),

Erich Emery [aut],

U.S. Army Corps of Engineers [fnd]

Maintainer Richard Johansen < richard.a.johansen@erdc.dren.mil>

Repository CRAN

Date/Publication 2023-08-07 19:40:02 UTC

R topics documented:

Allosabl
Am092Bsub
Am09KBBI
Be162B643sub629
Be162B700sub601
Be162BsubPhy
Be16FLHBlueRedNIR_LS8
Be16FLHBlueRedNIR_MERIS
Be16FLHBlueRedNIR_OLCI 11
Be16FLHBlueRedNIR_S2
Be16FLHBlueRedNIR_WV2
Be16FLHblue_LS8
Be16FLHblue_MERIS
Be16FLHblue_OLCI
Be16FLHblue_S2
Be16FLHblue_WV2
Be16FLHGreenRedNIR_LS8
Be16FLHGreenRedNIR_MERIS
Be16FLHGreenRedNIR_OLCI
Be16FLHGreenRedNIR_S2
Be16FLHGreenRedNIR_WV2
Be16FLHVioletRedNIR_LS8
Be16FLHVioletRedNIR_MERIS
Be16FLHVioletRedNIR_OLCI
Be16FLHVioletRedNIR_S2
Be16FLHVioletRedNIR_WV2
Be16FLHviolet_LS8
Be16FLHviolet_MERIS
Be16FLHviolet_OLCI
Be16FLHviolet_S2
Be16FLHviolet_WV2
Be16NDPhyI
Be16NDPhyI644over615
Be16NDPhyI644over629
Be16NDTIblue
Be16NDTIviolet
Be16Phy2BDA644over629
Da052BDA
De933BDA
extract_lm
extract_lm_cv
extract_lm_cv_all
extract_lm_cv_multi
Gi033BDA
Go04MCI
HII103RDA 48

A110SABI 3

Al10	SABI Al10SABI algorithm	
Index		71
	Nyobel	0)
	Wy08CI	
	wq_calc	
	wq_algorithms	
	TurbMoore80Red	
	TurbLath91RedOverBlue	
	TurbHarr92NIR	
	TurbFrohn09GreenPlusRedBothOverBlue	
	TurbDox02NIRoverRed	
	TurbChip09NIROverGreen	
	TurbBow06RedOverGreen	
	TurbBe16RedOverViolet	
	TurbBe16GreenPlusRedBothOverViolet	
	SY002BDA	
	SM122BDA	
	SI052BDA	
	MM143BDAopt	
	MM12NDCIalt	
	MM12NDCI	
	MM092BDA	
	MI092BDA	
	Kn07KIVU	
	Kn07KIVII	- 40

Description

Applies the Al10SABI algorithm

Usage

```
Al10SABI(w857, w644, w458, w529)
```

Arguments

w857	numeric. Value at wavelength of 857 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 458 nm
w529	numeric. Value at wavelength of 529 nm

Value

SpatRaster or numeric

4 Am092Bsub

References

Alawadi, F. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI). Proc. SPIE 2010, 7825.

See Also

Other algorithms: Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBov06RedOverGreen(), TurbChip09NIROverGreen(), TurbDov02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Am092Bsub

Am092Bsub algorithm

Description

Applies the Am092Bsub algorithm

Usage

Am092Bsub(w681, w665)

Arguments

w681 numeric. Value at wavelength of 681 nm w665 numeric. Value at wavelength of 665 nm

Value

SpatRaster or numeric

References

Amin, R.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery. Opt. Express 2009, 17, 9126–9144.

Am09KBBI 5

See Also

Other algorithms: Al10SABI(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_DLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_W2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_W2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Am09KBBI

Am09KBBI algorithm

Description

Applies the Am09KBBI algorithm

Usage

Am09KBBI(w686, w658)

Arguments

w686 numeric. Value at wavelength of 686 nm w658 numeric. Value at wavelength of 658 nm

Value

SpatRaster or numeric

References

Amin, R.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S.; Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery, Optics Express, 2009, 17, 11, 1-13.

6 Be162B643sub629

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_DLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_DLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be162B643sub629

Be162B643sub629 algorithm

Description

Applies the Be162B643sub629 algorithm

Usage

Be162B643sub629(w644, w629)

Arguments

w644 numeric. Value at wavelength of 644 nm w629 numeric. Value at wavelength of 729 nm

Value

SpatRaster or numeric

References

Be162B700sub601 7

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBov06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be162B700sub601

Be162B700sub601 algorithm

Description

Applies the Be162B700sub601 algorithm

Usage

Be162B700sub601(w700, w601)

Arguments

w700 numeric. Value at wavelength of 700 nm w601 numeric. Value at wavelength of 601 nm

Value

SpatRaster or numeric

References

8 Be162BsubPhy

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_W2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_W2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_W2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be162BsubPhy

Be162BsubPhy algorithm

Description

Applies the Be162BsubPhy algorithm

Usage

Be162BsubPhy(w715, w615)

Arguments

w715 numeric. Value at wavelength of 715 nm w615 numeric. Value at wavelength of 615 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverUiolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHBlueRedNIR_LS8 Be16FLHBlueRedNIR_LS8 algorithm

Description

Applies the Be16FLHBlueRedNIR_LS8 algorithm

Usage

Be16FLHBlueRedNIR_LS8(w658, w857, w458)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_W2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_W2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_W2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_W2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_W2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBov06RedOverGreen(), TurbChip09NIROverGreen(), TurbDov02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16FLHBlueRedNIR_MERIS

Be16FLHBlueRedNIR_MERIS algorithm

Description

Applies the Be16FLHBlueRedNIR_MERIS algorithm

Usage

Be16FLHBlueRedNIR_MERIS(w658, w857, w458)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16FLHBlueRedNIR_OLCI

Be16FLHBlueRedNIR_OLCI algorithm

Description

Applies the Be16FLHBlueRedNIR_OLCI algorithm

Usage

```
Be16FLHBlueRedNIR_OLCI(w658, w857, w458)
```

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16FLHBlueRedNIR_S2 Be16FLHBlueRedNIR_S2 algorithm

Description

Applies the Be16FLHBlueRedNIR_S2 algorithm

Usage

Be16FLHBlueRedNIR_S2(w658, w857, w458)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHBlueRedNIR_WV2 Be16FLHBlueRedNIR_WV2 algorithm

Description

Applies the Be16FLHBlueRedNIR_WV2 algorithm

Usage

Be16FLHBlueRedNIR_WV2(w658, w857, w458)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

14 Be16FLHblue_LS8

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHblue_LS8

Be16FLHblue_LS8 algorithm

Description

Applies the Be16FLHblue_LS8 algorithm

Usage

```
Be16FLHblue_LS8(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), G0033BDA(), G004MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16FLHblue_MERIS

Be16FLHblue_MERIS algorithm

Description

Applies the Be16FLHblue_MERIS algorithm

Usage

```
Be16FLHblue_MERIS(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Be16FLHblue_OLCI

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLH

Be16FLHblue_OLCI

Be16FLHblue_OLCI algorithm

Description

Applies the Be16FLHblue_OLCI algorithm

Usage

```
Be16FLHblue_OLCI(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Be16FLHblue_S2

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_S2(), B

Be16FLHblue_S2

Be16FLHblue_S2 algorithm

Description

Applies the Be16FLHblue_S2 algorithm

Usage

```
Be16FLHblue_S2(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

18 Be16FLHblue_WV2

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), G0033BDA(), G004MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHblue_WV2

Be16FLHblue_WV2 algorithm

Description

Applies the Be16FLHblue_WV2 algorithm

Usage

```
Be16FLHblue_WV2(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), G0033BDA(), G004MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe0w06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHGreenRedNIR LS8

Be16FLHGreenRedNIR_LS8 algorithm

Description

Applies the Be16FLHGreenRedNIR_LS8 algorithm

Usage

Be16FLHGreenRedNIR_LS8(w658, w857, w558)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w558	numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIDlue(), Be16NDTIViolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBov06RedOverGreen(), TurbChip09NIROverGreen(), TurbDov02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbBarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHGreenRedNIR_MERIS

Be16FLHGreenRedNIR_MERIS algorithm

Description

Applies the Be16FLHGreenRedNIR_MERIS algorithm

Usage

Be16FLHGreenRedNIR_MERIS(w658, w857, w558)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w558	numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHDlue_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHDlue_WV2(), Be16FLHDl

Be16FLHGreenRedNIR_OLCI

Be16FLHGreenRedNIR_OLCI algorithm

Description

Applies the Be16FLHGreenRedNIR_OLCI algorithm

Usage

Be16FLHGreenRedNIR_OLCI(w658, w857, w558)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w558	numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHGreenRedNIR_S2 Be16FLHGreenRedNIR_S2 algorithm

Description

Applies the Be16FLHGreenRedNIR_S2 algorithm

Usage

Be16FLHGreenRedNIR_S2(w658, w857, w558)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w558	numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHGreenRedNIR_WV2

Be16FLHGreenRedNIR_WV2 algorithm

Description

Applies the Be16FLHGreenRedNIR_WV2 algorithm

Usage

Be16FLHGreenRedNIR_WV2(w658, w857, w558)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w558	numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBov06RedOverGreen(), TurbChip09NIROverGreen(), TurbDov02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHVioletRedNIR_LS8

Be16FLHVioletRedNIR_LS8 algorithm

Description

Applies the Be16FLHVioletRedNIR_LS8 algorithm

Usage

Be16FLHVioletRedNIR_LS8(w658, w857, w444)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w444	numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBov06RedOverGreen(), TurbChip09NIROverGreen(), TurbDov02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHVioletRedNIR_MERIS

Be16FLHVioletRedNIR_MERIS algorithm

Description

Applies the Be16FLHVioletRedNIR_MERIS algorithm

Usage

Be16FLHVioletRedNIR_MERIS(w658, w857, w444)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w444	numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16FLHVioletRedNIR_OLCI

Be16FLHVioletRedNIR_OLCI algorithm

Description

Applies the Be16FLHVioletRedNIR_OLCI algorithm

Usage

Be16FLHVioletRedNIR_OLCI(w658, w857, w444)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w444	numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_LS8(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHDlue(), Be16FLHDlue(), Be16FLHDlue(), Be16FLHDlue(), Be16FLHDlue(), Be16FLDDPhyI644over629(), Be16FLDPhyI(), Be16FLDTDDLue(), Be16FLDDLue(), Be16FLDLue(), Be16F
```

Be16FLHVioletRedNIR S2

Be16FLHVioletRedNIR_S2 algorithm

Description

Applies the Be16FLHVioletRedNIR_S2 algorithm

Usage

Be16FLHVioletRedNIR_S2(w658, w857, w444)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w444	numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHDlue(), Be16FLHViolet_WV2(), Be16FLHViolet(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHDlue(), Be16FLHViolet(), Be16
```

Be16FLHVioletRedNIR WV2

Be16FLHVioletRedNIR_WV2 algorithm

Description

Applies the Be16FLHVioletRedNIR_WV2 algorithm

Usage

Be16FLHVioletRedNIR_WV2(w658, w857, w444)

Arguments

w658	numeric. Value at wavelength of 658 nm
w857	numeric. Value at wavelength of 857 nm
w444	numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

Be16FLHviolet_LS8

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHDlue_LS8(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHDlue_LS8(), Be16FLHViolet_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHDlue_WV2(), Be16FLHDlue_WV2(), Be16FLHDlue(), Be16FLHDlue(), Be16FLHDlue(), Be16FLHDlue(), Be16FLDDPhyI644over629(), Be16FLDPhyI(), Be16FLDTDDLue(), Be16FLDDLue(), Be16FLDLue(), TurbBov06Flue(), Be16FLDLue(), TurbBov06Flue(), Wy08CI()

Be16FLHviolet_LS8

Be16FLHviolet_LS8 algorithm

Description

Applies the Be16FLHviolet_LS8 algorithm

Usage

```
Be16FLHviolet_LS8(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 429 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHViolet_S2(), Be16FLHViolet_S2(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet(), Be16FLHViolet_S2(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet(), Be16FLHViolet_S2(), Be16FLHViolet(), Be16FLHViolet_S2(), Be16FLHViolet_S2(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_S2(), Be16FLHVi
```

Be16FLHviolet_MERIS Be16FLHviolet MERIS algorithm

Description

Applies the Be16FLHviolet_MERIS algorithm

Usage

```
Be16FLHviolet_MERIS(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 429 nm

Value

SpatRaster or numeric

References

Be16FLHviolet_OLCI 31

See Also

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_DLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletLS8(), Be16FLHVioletLS8(), Be16FLHVioletLS2(), Be16FLHVioletLS2(), Be16FLHVioletLS2(), Be16FLHVioletLS2(), Be16FLHVioletLS2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIVIOlet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCIalt(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16FLHviolet_OLCI Be16FLHviolet OLCI algorithm

Description

Applies the Be16FLHviolet_OLCI algorithm

Usage

```
Be16FLHviolet_OLCI(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 429 nm

Value

SpatRaster or numeric

References

32 Be16FLHviolet_S2

See Also

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLH
```

Be16FLHviolet S2

Be16FLHviolet_S2 algorithm

Description

Applies the Be16FLHviolet_S2 algorithm

Usage

```
Be16FLHviolet_S2(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 429 nm

Value

SpatRaster or numeric

References

Be16FLHviolet_WV2 33

See Also

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIblue(), Be16NDTIblue(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16FLHviolet_WV2

Be16FLHviolet_WV2 algorithm

Description

Applies the Be16FLHviolet_WV2 algorithm

Usage

```
Be16FLHviolet_WV2(w529, w644, w458)
```

Arguments

w529	numeric. Value at wavelength of 529 nm
w644	numeric. Value at wavelength of 644 nm
w458	numeric. Value at wavelength of 429 nm

Value

SpatRaster or numeric

References

34 Be16NDPhyI

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16NDPhyI

Be16NDPhyI algorithm

Description

Applies the Be16NDPhyI algorithm

Usage

Be16NDPhyI(w700, w622)

Arguments

w700 numeric. Value at wavelength of 700 nm w622 numeric. Value at wavelength of 622 nm

Value

SpatRaster or numeric

References

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDTIblue(), Be16NDTIDLUE(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Be16NDPhy1644over615 Be16NDPhy1644over615 algorithm

Description

Applies the Be16NDPhyI644over615 algorithm

Usage

Be16NDPhy1644over615(w644, w615)

Arguments

w644 numeric. Value at wavelength of 644 nm w615 numeric. Value at wavelength of 615 nm

Value

SpatRaster or numeric

References

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_DLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16NDPhy1644over629 Be16NDPhy1644over629 algorithm

Description

Applies the Be16NDPhyI644over629 algorithm

Usage

Be16NDPhyI644over629(w644, w629)

Arguments

w644 numeric. Value at wavelength of 644 nm w629 numeric. Value at wavelength of 629 nm

Value

SpatRaster or numeric

References

Be16NDTIblue 37

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_S2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16NDTIblue

Be16NDTIblue algorithm

Description

Applies the Be16NDTIblue algorithm

Usage

Be16NDTIblue(w658, w458)

Arguments

w658 numeric. Value at wavelength of 658 nm w458 numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538.

38 Be16NDTIviolet

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHViolet_S2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16NDTIviolet

Be16NDTIviolet algorithm

Description

Applies the Be16NDTIviolet algorithm

Usage

Be16NDTIviolet(w658, w444)

Arguments

w658 numeric. Value at wavelength of 658 nm w444 numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538.

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHDlue_ULS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Be16Phy2BDA644over629 Be16Phy2BDA644over629 algorithm

Description

Applies the Be16Phy2BDA644over629 algorithm

Usage

Be16Phy2BDA644over629(w644, w629)

Arguments

w644 numeric. Value at wavelength of 644 nm w629 numeric. Value at wavelength of 629 nm

Value

SpatRaster or numeric

References

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538.

Da052BDA

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletLS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_UN2(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet(), Da052BDA(), De933BDA(), Gi033BDA(), Gi033BDA(), Gi034MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Da052BDA

Da052BDA algorithm

Description

Applies the Da052BDA algorithm

Usage

Da052BDA(w714, w672)

Arguments

w714 numeric. Value at wavelength of 714 nm w672 numeric. Value at wavelength of 672 nm

Value

SpatRaster or numeric

References

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. A., Dyble, J.; Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int. J. Remote Sens., 2008, 29, 3665–3672.

De933BDA 41

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLH

De933BDA

De933BDA algorithm

Description

Applies the De933BDA algorithm

Usage

```
De933BDA(w600, w648, w625)
```

Arguments

w600	numeric. Value at wavelength of 600 nm
w648	numeric. Value at wavelength of 648 nm
w625	numeric. Value at wavelength of 625 nm

Value

SpatRaster or numeric

References

Dekker, A.; Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing, Ph.D. thesis, 1993, Free University, Amsterdam.

42 extract_lm

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLH

extract_lm

Run linear model (lm)

Description

The function runs a linear model on a single water quality parameter and a water quality algorithm and returns a data frame containing the following: r^2, p-value, slope, and intercept of the model

Usage

```
extract_lm(parameter, algorithm, df)
```

Arguments

parameter A string specifying water quality parameter algorithm A string specifying water quality algorithm

df data frame containing the values for parameter and algorithm arguments

Value

A data frame of the model results

References

Johansen, Richard; et al. (2018). Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Harmful Algae. 76. 10.1016/j.hal.2018.05.001.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

extract_lm_cv 43

See Also

```
Other extract_lm: extract_lm_cv_all(), extract_lm_cv_multi(), extract_lm_cv()
```

extract_lm_cv

Run linear model with crossvalidation

Description

The function runs a linear model on a single water quality parameter and a water quality algorithm and conducts a k-folds cross validation, which returns a data frame containing the following: The r^2, p-value, slope, intercept of the global lm model & average r^2, average RMSE, average MAE from the crossvalidated model

Usage

```
extract_lm_cv(
  parameter,
  algorithm,
  df,
  train_method = "lm",
  control_method = "repeatedcv",
  folds = 3,
  nrepeats = 5
)
```

Arguments

parameter	water quality parameter
algorithm	water quality algorithm
df	data frame containing the values for parameter and algorithm arguments
train_method	A string specifying which classification or regression model to use (Default = "lm"). See ?caret::train for more details
control_method	A string specifying the resampling method (Default = "repeated cv "). See ?caret::trainControl for more details
folds	the number of folds to be used in the cross validation model
nrepeats	the number of iterations to be used in the cross validation model

Value

A data frame of the model results

44 extract_lm_cv_all

References

Johansen, Richard; et al. (2018). Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Harmful Algae. 76. 10.1016/j.hal.2018.05.001.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2018). caret: Classification and Regression Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret

See Also

```
Other extract_lm: extract_lm_cv_all(), extract_lm_cv_multi(), extract_lm()
```

extract_lm_cv_all

Run linear model with crossvalidation over multiple dependent and all numeric independent variables in a data frame

Description

The function runs a linear model on a list of x and list of y variables and conducts a k-folds cross validation, which returns a data frame containing the following: The r^2, p-value, slope, intercept of the global lm model & average r^2, average RMSE, average MAE from the crossvalidated model

Usage

```
extract_lm_cv_all(
  parameters,
  df,
  train_method = "lm",
  control_method = "repeatedcv",
  folds = 3,
   nrepeats = 5
)
```

Arguments

parameters the list of dependent variables to be evaluated

df data frame containing the values for parameter and algorithm arguments

train_method A string specifying which classification or regression model to use (Default =

"lm"). See ?caret::train for more details

control_method A string specifying the resampling method (Default = "repeatedcv"). See ?caret::trainControl

for more details

folds the number of folds to be used in the cross validation model nrepeats the number of iterations to be used in the cross validation model

extract_lm_cv_multi 45

Value

A data frame of the model results

References

Johansen, Richard; et al. (2018). Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Harmful Algae. 76. 10.1016/j.hal.2018.05.001.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2018). caret: Classification and Regression Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret

See Also

```
Other extract_lm: extract_lm_cv_multi(), extract_lm_cv(), extract_lm()
```

extract_lm_cv_multi Run linear model with crossvalidation over multiple independent and dependent variables

Description

The function runs a linear model on a list of x and list of y variables and conducts a k-folds cross validation, which returns a data frame containing the following: The r^2, p-value, slope, intercept of the global lm model & average r^2, average RMSE, average MAE from the crossvalidated model

Usage

```
extract_lm_cv_multi(
  parameters,
  algorithms,
  df,
  train_method = "lm",
  control_method = "repeatedcv",
  folds = 3,
  nrepeats = 5
)
```

46 Gi033BDA

Arguments

parameters the list of a water quality parameters to be evaluated algorithms the list of water quality algorithms to be evaluated

df data frame containing the values for parameters and algorithms arguments

train_method A string specifying which classification or regression model to use (Default =

"lm"). See ?caret::train for more details

control_method A string specifying the resampling method (Default = "repeatedcv"). See ?caret::trainControl

for more details

folds the number of folds to be used in the cross validation model
nrepeats the number of iterations to be used in the cross validation model

Value

A data frame of the model results

References

Johansen, Richard; et al. (2018). Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Harmful Algae. 76. 10.1016/j.hal.2018.05.001.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2018). caret: Classification and Regression Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret

See Also

Other extract_lm: extract_lm_cv_all(), extract_lm_cv(), extract_lm()

Gi033BDA algorithm

Description

Applies the Gi033BDA algorithm

Usage

Gi033BDA(w672, w715, w757)

Go04MCI 47

Arguments

w672	numeric. Value at wavelength of 672 nm
w715	numeric. Value at wavelength of 715 nm
w757	numeric. Value at wavelength of 757 nm

Value

SpatRaster or numeric

References

Gitelson, A.A.; U. Gritz, and M. N. Merzlyak.; Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Phys. 2003, 160, 271-282.

See Also

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHDlue_ULS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), G004MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Go04MCI

Go04MCI algorithm

Description

Applies the Go04MCI algorithm

Usage

```
Go04MCI(w709, w681, w753)
```

Arguments

w709	numeric. Value at wavelength of 709 nm
w681	numeric. Value at wavelength of 681 nm
w753	numeric. Value at wavelength of 753 nm

48 HU103BDA

Value

SpatRaster or numeric

References

Gower, J.F.R.; Brown,L.; Borstad, G.A.; Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor. Can. J. Remote Sens., 2004, 30 (1), 17–25.

See Also

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_WV2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHDlue_S2(), Be16FLHDlue_S2(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIVIOlet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

HU103BDA

HU103BDA algorithm

Description

Applies the HU103BDA algorithm

Usage

```
HU103BDA(w615, w600, w725)
```

Arguments

w615	numeric. Value at wavelength of 615 nm
w600	numeric. Value at wavelength of 600 nm
w725	numeric. Value at wavelength of 725 nm

Value

SpatRaster or numeric

Kn07KIVU 49

References

Hunter, P.D.; Tyler, A.N.; Willby, N.J.; Gilvear, D.J.; The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing. Limn. Oceanogr. 2008, 53, 2391-2406.

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), G004MCI(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()

Kn07KIVU

Kn07KIVU algorithm

Description

Applies the Kn07KIVU algorithm

Usage

```
Kn07KIVU(w458, w644, w529)
```

Arguments

w458	numeric. Value at wavelength of 458 nm
w644	numeric. Value at wavelength of 644 nm
w529	numeric. Value at wavelength of 529 nm

Value

SpatRaster or numeric

References

Kneubuhler, M.; Frank T.; Kellenberger, T.W; Pasche N.; Schmid M.; Mapping chlorophyll-a in Lake Kivu with remote sensing methods. 2007, Proceedings of the Envisat Symposium 2007, Montreux, Switzerland 23–27 April 2007 (ESA SP-636, July 2007).

50 Map_WQ_raster

See Also

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

Map_WQ_raster

Create waterquality Map with sampling points and optional histogram

Description

This function wraps the tmap package to help users generate fast and simple data visualization of their WQ_calc raster output along with optional geospatial objects and histogram

Usage

```
Map_WQ_raster(
    WQ_raster,
    sample_points,
    map_title,
    raster_style = "quantile",
    histogram = TRUE
)
```

Arguments

WQ_raster Raster file generated from wq_calc or other GeoTiff file sample_points geospatial file (.shp or .gpkg) containing sampling locations

map_title text used to generate title of map

raster_style method to process the color scale when col is a numeric variable. Please refer to

the style argument in the ?tmap::tm_raster() function for more details (Default

is "quantile").

histogram Option to add or remove a histogram of the data values. (Default is TRUE)

Value

A data visualization of the results

MI092BDA 51

MI092BDA

MI092BDA algorithm

Description

Applies the MI092BDA algorithm

Usage

MI092BDA(w700, w600)

Arguments

w700 numeric. Value at wavelength of 700 nm w600 numeric. Value at wavelength of 600 nm

Value

SpatRaster or numeric

References

Mishra, S.; Mishra, D.R.; Schluchter, W. M., A novel algorithm for predicting PC concentrations in cyanobacteria: A proximal hyperspectral remote sensing approach. Remote Sens., 2009, 1, 758–775.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

52 MM092BDA

MM092BDA

MM092BDA algorithm

Description

Applies the MM092BDA algorithm

Usage

```
MM092BDA(w724, w600)
```

Arguments

w724 numeric. Value at wavelength of 724 nm w600 numeric. Value at wavelength of 600 nm

Value

SpatRaster or numeric

References

Mishra, S.; Mishra, D.R.; Schluchter, W. M., A novel algorithm for predicting PC concentrations in cyanobacteria: A proximal hyperspectral remote sensing approach. Remote Sens., 2009, 1, 758–775.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

MM12NDCI 53

MM12NDCI

MM12NDCI algorithm

Description

Applies the MM12NDCI algorithm

Usage

```
MM12NDCI(w715, w686)
```

Arguments

w715 numeric. Value at wavelength of 714 nm w686 numeric. Value at wavelength of 686 nm

Value

SpatRaster or numeric

References

Mishra, S.; and Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters, Remote Sens. Environ., 2012, 117, 394-406.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHDlue_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), Be16NDFIDDLUE(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

54 MM12NDCIalt

MM12NDCIalt

MM12NDCIalt algorithm

Description

Applies the MM12NDCIalt algorithm

Usage

```
MM12NDCIalt(w700, w658)
```

Arguments

w700 numeric. Value at wavelength of 700 nm w658 numeric. Value at wavelength of 658 nm

Value

SpatRaster or numeric

References

Mishra, S.; Mishra, D.R.; A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms, Env. Res. Lett., 2014, 9 (11), DOI:10.1088/1748-9326/9/11/114003

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLH
```

MM143BDAopt 55

MM143BDAopt	MM143BDAopt algorithm	
•	1 0	

Description

Applies the MM143BDAopt algorithm

Usage

```
MM143BDAopt(w629, w659, w724)
```

Arguments

w629	numeric. Value at wavelength of 629 nm
w659	numeric. Value at wavelength of 659 nm
w724	numeric. Value at wavelength of 724 nm

Value

SpatRaster or numeric

References

Mishra, S.; Mishra, D.R.; A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms, Env. Res. Lett., 2014, 9 (11), DOI:10.1088/1748-9326/9/11/114003

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), G004MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

56 SI052BDA

SI052BDA

SI052BDA algorithm

Description

Applies the SI052BDA algorithm

Usage

```
SI052BDA(w709, w620)
```

Arguments

w709 numeric. Value at wavelength of 709 nm w620 numeric. Value at wavelength of 620 nm

Value

SpatRaster or numeric

References

Simis, S. G. H.; Peters, S.W. M.; Gons, H. J.; Remote sensing of the cyanobacteria pigment phycocyanin in turbid inland water. Limn. Oceanogr., 2005, 50, 237–245.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLH
```

SM122BDA 57

SM122BDA algorithm

Description

Applies the SM122BDA algorithm

Usage

SM122BDA(w709, w600)

Arguments

w709 numeric. Value at wavelength of 709 nm w600 numeric. Value at wavelength of 600 nm

Value

SpatRaster or numeric

References

Mishra, S. Remote sensing of cyanobacteria in turbid productive waters, PhD Dissertation. Mississippi State University, USA. 2012.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLH
```

58 SY002BDA

SY002BDA

SY002BDA algorithm

Description

Applies the SY002BDA algorithm

Usage

```
SY002BDA(w650, w625)
```

Arguments

w650 numeric. Value at wavelength of 650 nm w625 numeric. Value at wavelength of 625 nm

Value

SpatRaster or numeric

References

Schalles, J.; Yacobi, Y. Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll-a pigments in eutrophic waters. Archiv fur Hydrobiologie, Special Issues Advances in Limnology, 2000, 55,153–168.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHDlue_S2(), Be16FLHDlue_S2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_US8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_US2(), Be16FLHViolet_US8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_US2(), Be16FLHViolet_US8(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US8(), Be16FLHViolet_US2(), Be16FLHViolet_US8(), Be16FLHViolet_US8(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), Be16FLHViolet_US2(), MV092BDA(), MV092BDA(), MV12NDCIalt(), MV12NDCIalt(), MV12NDCIalt(), TurbBow06RedOverGreen(), TurbBow06RedOverGreen(), TurbBow06RedOverBlue(), TurbBow06RedOverBl
```

TurbBe16GreenPlusRedBothOverViolet

TurbBe16GreenPlusRedBothOverViolet algorithm

Description

Applies the TurbBe16GreenPlusRedBothOverViolet algorithm

Usage

TurbBe16GreenPlusRedBothOverViolet(w558, w658, w444)

Arguments

w558 numeric. Value at wavelength of 558 nm w658 numeric. Value at wavelength of 658 nm w444 numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_W2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_W2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_W2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIblue(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16RedOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOrTurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

60 TurbBe 16RedOverViolet

TurbBe16RedOverViolet TurbBe16RedOverViolet algorithm

Description

Applies the TurbBe16RedOverViolet algorithm

Usage

TurbBe16RedOverViolet(w658, w444)

Arguments

w658 numeric. Value at wavelength of 658 nm w444 numeric. Value at wavelength of 444 nm

Value

SpatRaster or numeric

References

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIDlue(), Be16NDTIViolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

TurbBow06RedOverGreen 61

Description

Applies the TurbBow06RedOverGreen algorithm

Usage

TurbBow06RedOverGreen(w658, w558)

Arguments

w658 numeric. Value at wavelength of 658 nm w558 numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Bowers, D. G., and C. E. Binding. 2006. The Optical Properties of Mineral Suspended Particles: A Review and Synthesis." Estuarine Coastal and Shelf Science 67 (1–2): 219–230. doi:10.1016/j.ecss.2005.11.010.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe16RedOverViolet(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverViolet(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

TurbChip09NIROverGreen

TurbChip09NIROverGreen algorithm

Description

Applies the TurbChip09NIROverGreen algorithm

Usage

TurbChip09NIROverGreen(w857, w558)

Arguments

w857 numeric. Value at wavelength of 857 nm w558 numeric. Value at wavelength of 558 nm

Value

SpatRaster or numeric

References

Chipman, J. W.; Olmanson, L.G.; Gitelson, A.A.; Remote sensing methods for lake management: A guide for resource managers and decision-makers. 2009, Developed by the North American Lake Management Society in collaboration with Dartmouth College, University of Minnesota, and University of Nebraska for the United States Environmental Protection Agency.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhyI644over615(), Be16NDPhyI644over629(), Be16NDPhyI(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverViolet(), TurbBow06RedOverRed(), TurbFrohn09GreenPlusRedBothOverTurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

TurbDox02NIRoverRed 63

TurbDox02NIRoverRed TurbDox02NIRoverRed algorithm

Description

Applies the TurbDox02NIRoverRed algorithm

Usage

TurbDox02NIRoverRed(w857, w658)

Arguments

w857 numeric. Value at wavelength of 857 nm w658 numeric. Value at wavelength of 658 nm

Value

SpatRaster or numeric

References

Doxaran, D., Froidefond, J.-M.; Castaing, P.; A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters, Remote Sens., 2002, 23, 5079-5085.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_W2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006RedOverGreen(), TurbChip09NIROverGreen(), TurbFrohn09GreenPlusRedBothTurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

TurbFrohn09GreenPlusRedBothOverBlue

TurbFrohn09GreenPlusRedBothOverBlue algorithm

Description

Applies the TurbFrohn09GreenPlusRedBothOverBlue algorithm

Usage

TurbFrohn09GreenPlusRedBothOverBlue(w558, w658, w458)

Arguments

w558	numeric. Value at wavelength of 558 nm
w658	numeric. Value at wavelength of 658 nm
w458	numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Frohn, R. C., & Autrey, B. C. (2009). Water quality assessment in the Ohio River using new indices for turbidity and chlorophyll-a with Landsat-7 Imagery. Draft Internal Report, U.S. Environmental Protection Agency.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red(), Wy08CI()
```

TurbHarr92NIR 65

TurbHarr92NIR

TurbHarr92NIR algorithm

Description

Applies the TurbHarr92NIR algorithm

Usage

TurbHarr92NIR(w857)

Arguments

w857

numeric. Value at wavelength of 857 nm

Value

SpatRaster or numeric

References

Schiebe F.R., Harrington J.A., Ritchie J.C. Remote-Sensing of Suspended Sediments—the Lake Chicot, Arkansas Project. Int. J. Remote Sens. 1992;13:1487–1509.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_LS8(), Be16FLHVioletRedNIR_OLCI(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet(), Be16FLHViolet_S2(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16FLHViolet_UV2(), Be16FLHViolet_WV2(), Be16FLHViolet_UV2(), Be16FLHViolet_WV2(), Be16FLHViolet_WV2(), Be16FLHViolet_UV2(), Be16FLHViolet_WV2(), Be16FLHViolet_UV2(), Be16
```

66 TurbLath91RedOverBlue

TurbLath91RedOverBlue TurbLath91RedOverBlue algorithm

Description

Applies the TurbLath91RedOverBlue algorithm

Usage

TurbLath91RedOverBlue(w658, w458)

Arguments

w658 numeric. Value at wavelength of 658 nm w458 numeric. Value at wavelength of 458 nm

Value

SpatRaster or numeric

References

Lathrop, R. G., Jr., T. M. Lillesand, and B. S. Yandell, 1991. Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters. International Journal of Remote Sensing

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_W2(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_W2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_W2(), Be16FLHDlue_LS8(), Be16FLHDlue_MERIS(), Be16FLHDlue_OLCI(), Be16FLHDlue_S2(), Be16FLHDlue_WV2(), Be16FLHViolet_LS8(), Be16FLHViolet_MERIS(), Be16FLHViolet_OLCI(), Be16FLHViolet_S2(), Be16FLHViolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbMoore80Red(), Wy08CI()
```

TurbMoore80Red 67

TurbMoore80Red

TurbMoore80Red algorithm

Description

Applies the TurbMoore80Red algorithm

Usage

TurbMoore80Red(w658)

Arguments

w658

numeric. Value at wavelength of 658 nm

Value

SpatRaster or numeric

References

Moore, G.K., Satellite remote sensing of water turbidity, Hydrological Sciences, 1980, 25, 4, 407-422.

```
Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_MERIS(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SY002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBe006Green(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), Wy08CI()
```

68 wq_calc

wq_algorithms	wq_algorithms database

Description

A dataset containing the information about the water quality algorithms

Usage

```
wq_algorithms
```

Format

A tibble with 91 rows and 4 variables:

- name: algorithm name
- funs: algorithm function
- satellite: satellite/instrument name ("worldview2", "sentine12", "landsat8", "modis", or "meris")
- bands: list of the bands used from the given satellite/instrument

wq_calc	Water quality calculation

Description

Calculates a set of water quality indices

Usage

```
wq_calc(terraRast, alg = "all", sat, ...)
```

Arguments

terraRast	Terra SpatRaster containing a satellite data
alg	Name (e.g. Am09KBBI()) or type of the algorithm ("chlorophyll", "phycocyanin", "turbidity") or "all"
sat	Name of the satellite or instrument ("worldview2", "sentinel2", "landsat8", "modis", "meris", or "OLCI")
	Other arguments passed on to terra::rast()

Value

SpatRaster

Wy08CI 69

Examples

```
library(terra)

# sentinel2 example
s2 = terra::rast(system.file("raster/S2_Harsha.tif", package = "waterquality"))
s2_Al10SABI = wq_calc(s2, alg = "Al10SABI", sat = "sentinel2")
s2_two_alg = wq_calc(s2, alg = c("TurbChip09NIROverGreen", "Am092Bsub"), sat = "sentinel2")

## Not run: (
s2_wq = wq_calc(s2, alg = "all", sat = "sentinel2")

# landsat8 example
l8 = terra::rast(system.file("raster/L8_Taylorsville.tif", package = "waterquality"))
l8_wq = wq_calc(s2, alg = "all", sat = "landsat8")
)
## End(Not run)
```

Wy08CI

Wy08CI algorithm

Description

Applies the Wy08CI algorithm

Usage

```
Wy08CI(w681, w665, w709)
```

Arguments

w681	numeric. Value at wavelength of 681 nm
w665	numeric. Value at wavelength of 665 nm
w709	numeric. Value at wavelength of 709 nm

Value

SpatRaster or numeric

References

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. A., Dyble, J.; Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int. J. Remote Sens., 2008, 29, 3665–3672.

70 Wy08CI

See Also

Other algorithms: Al10SABI(), Am092Bsub(), Am09KBBI(), Be162B643sub629(), Be162B700sub601(), Be162BsubPhy(), Be16FLHBlueRedNIR_LS8(), Be16FLHBlueRedNIR_MERIS(), Be16FLHBlueRedNIR_OLCI(), Be16FLHBlueRedNIR_S2(), Be16FLHBlueRedNIR_LS8(), Be16FLHGreenRedNIR_LS8(), Be16FLHGreenRedNIR_MERIS(), Be16FLHGreenRedNIR_OLCI(), Be16FLHGreenRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_MERIS(), Be16FLHVioletRedNIR_LS8(), Be16FLHVioletRedNIR_S2(), Be16FLHVioletRedNIR_WV2(), Be16FLHblue_LS8(), Be16FLHblue_MERIS(), Be16FLHblue_OLCI(), Be16FLHblue_S2(), Be16FLHblue_WV2(), Be16FLHviolet_LS8(), Be16FLHviolet_MERIS(), Be16FLHviolet_OLCI(), Be16FLHviolet_S2(), Be16FLHviolet_WV2(), Be16NDPhy1644over615(), Be16NDPhy1644over629(), Be16NDPhy1(), Be16NDTIblue(), Be16NDTIviolet(), Be16Phy2BDA644over629(), Da052BDA(), De933BDA(), Gi033BDA(), Go04MCI(), HU103BDA(), Kn07KIVU(), MI092BDA(), MM092BDA(), MM12NDCIalt(), MM12NDCI(), MM143BDAopt(), SI052BDA(), SM122BDA(), SV002BDA(), TurbBe16GreenPlusRedBothOverViolet(), TurbBow06RedOverGreen(), TurbChip09NIROverGreen(), TurbDox02NIRoverRed(), TurbFrohn09GreenPlusRedBothOverBlue(), TurbHarr92NIR(), TurbLath91RedOverBlue(), TurbMoore80Red()

Index

* Map_WQ models	Be16Phy2BDA644over629, 39
Map_WQ_raster, 50	Da052BDA, 40
* algorithms	De933BDA, 41
Al10SABI, 3	Gi033BDA, 46
Am092Bsub, 4	Go04MCI, 47
Am09KBBI, 5	HU103BDA, 48
Be162B643sub629, 6	Kn07KIVU, 49
Be162B700sub601, 7	MI092BDA, 51
Be162BsubPhy, 8	MM092BDA, 52
Be16FLHblue_LS8, 14	MM12NDCI, 53
Be16FLHblue_MERIS, 15	MM12NDCIalt, 54
Be16FLHblue_OLCI, 16	MM143BDAopt, 55
Be16FLHblue_S2, 17	SI052BDA, 56
Be16FLHblue_WV2, 18	SM122BDA, 57
Be16FLHBlueRedNIR_LS8, 9	SY002BDA, 58
Be16FLHBlueRedNIR_MERIS, 10	${\tt TurbBe16GreenPlusRedBothOverViolet},$
Be16FLHBlueRedNIR_OLCI, 11	59
Be16FLHBlueRedNIR_S2, 12	TurbBe16RedOverViolet, 60
Be16FLHBlueRedNIR_WV2, 13	TurbBow06RedOverGreen, 61
Be16FLHGreenRedNIR_LS8, 19	TurbChip09NIROverGreen, 62
Be16FLHGreenRedNIR_MERIS, 20	TurbDox02NIRoverRed, 63
Be16FLHGreenRedNIR_OLCI, 21	${\it Turb} Frohn @9 Green Plus Red Both Over Blue,$
Be16FLHGreenRedNIR_S2, 22	64
Be16FLHGreenRedNIR_WV2, 23	TurbHarr92NIR, 65
Be16FLHviolet_LS8, 29	TurbLath91RedOverBlue, 66
Be16FLHviolet_MERIS, 30	TurbMoore80Red, 67
Be16FLHviolet_OLCI, 31	Wy08CI, 69
Be16FLHviolet_S2, 32	* datasets
Be16FLHviolet_WV2, 33	wq_algorithms, 68
Be16FLHVioletRedNIR_LS8, 24	* extract_lm
Be16FLHVioletRedNIR_MERIS, 25	extract_lm, 42
Be16FLHVioletRedNIR_OLCI, 26	extract_lm_cv, 43
Be16FLHVioletRedNIR_S2, 27	extract_lm_cv_all,44
Be16FLHVioletRedNIR_WV2, 28	extract_lm_cv_multi,45
Be16NDPhyI, 34	
Be16NDPhy1644over615, 35	Al10SABI, 3, 5–42, 47–67, 70
Be16NDPhy1644over629, 36	Am092Bsub, 4, 4, 6–42, 47–67, 70
Be16NDTIblue, 37	Am09KBBI, 4, 5, 5, 7–42, 47–67, 70
Be16NDTIviolet, 38	Am09KBBI(), 68

72 INDEX

Be162B643sub629, 4-6, 6, 8-42, 47-67, 70	Be16FLHVioletRedNIR_S2, 4-27, 27, 29-42,
Be162B700sub601, 4-7, 7, 9-42, 47-67, 70	47–67, 70
Be162BsubPhy, 4–8, 8, 10–42, 47–67, 70	Be16FLHVioletRedNIR_WV2, 4-28, 28, 30-42,
Be16FLHblue_LS8, 4–14, 14, 16–42, 47–67,	47–67, 70
70	Be16NDPhyI, 4-34, 34, 36-42, 47-67, 70
Be16FLHblue_MERIS, 4–15, 15, 17–42, 47–67,	Be16NDPhyI644over615, 4–35, 35, 37–42,
70	47–67, 70
Be16FLHblue_OLCI, 4–16, 16, 18–42, 47–67,	Be16NDPhy1644over629, 4–36, 36, 38–42, 47–67, 70
Be16FLHblue_S2, 4–17, 17, 19–42, 47–67, 70	Be16NDTIblue, 4-37, 37, 39-42, 47-67, 70
Be16FLHblue_WV2, 4–18, 18, 20–42, 47–67,	Be16NDTIviolet, 4-38, 38, 40-42, 47-67, 70
70	Be16Phy2BDA644over629, 4–39, 39, 41, 42,
Be16FLHB1ueRedNIR_LS8, 4-9, 9, 11-42,	47–67, 70
47–67, 70	
Be16FLHB1ueRedNIR_MERIS, <i>4–10</i> , 10, <i>12–42</i> ,	Da052BDA, 4–40, 40, 42, 47–67, 70
47–67, 70	De933BDA, 4–41, 41, 47–67, 70
Be16FLHBlueRedNIR_OLCI, 4–11, 11, 13–42,	
47–67, 70	extract_lm, 42, 44-46
Be16FLHB1ueRedNIR_S2, <i>4–12</i> , 12, <i>14–42</i> ,	extract_lm_cv, 43, 43, 45, 46
47–67, 70	extract_lm_cv_all, 43, 44, 44, 46
Be16FLHBlueRedNIR_WV2, <i>4–13</i> , 13, <i>15–42</i> ,	extract_lm_cv_multi, 43-45, 45
47–67, 70	
Be16FLHGreenRedNIR_LS8, 4–19, 19, 21–42,	Gi033BDA, 4–42, 46, 48–67, 70
47–67, 70	Go04MCI, 4-42, 47, 47, 49-67, 70
Be16FLHGreenRedNIR_MERIS, 4–20, 20, 22–42, 47–67, 70	HU103BDA, 4–42, 47, 48, 48, 50–67, 70
Be16FLHGreenRedNIR_OLCI, 4–21, 21, 23–42, 47–67, 70	Kn07KIVU, 4-42, 47-49, 49, 51-67, 70
Be16FLHGreenRedNIR_S2, 4–22, 22, 24–42,	Man WO master 50
47–67, 70	Map_WQ_raster, 50 MI092BDA, 4-42, 47-50, 51, 52-67, 70
Be16FLHGreenRedNIR_WV2, 4–23, 23, 25–42,	MM092BDA, 4–42, 47–50, 51, 52–67, 70 MM092BDA, 4–42, 47–51, 52, 53–67, 70
47–67, 70	MM1 2NDCI, 4–42, 47–52, 53, 54–67, 70
Be16FLHviolet_LS8, 4–29, 29, 31–42, 47–67,	MM12NDCIalt, 4–42, 47–53, 54, 55–67, 70
70	MM143BDAopt, 4–42, 47–54, 55, 56–67, 70
Be16FLHviolet_MERIS, 4-30, 30, 32-42,	rii1143bbAopt, 4–42, 47–34, 33, 30–07, 70
47–67, 70	SI052BDA, 4–42, 47–55, 56, 57–67, 70
Be16FLHviolet_OLCI, 4–31, 31, 33–42,	SM122BDA, 4–42, 47–56, 57, 58–67, 70
47–67, 70	SY002BDA, 4–42, 47–57, 58, 59–67, 70
Be16FLHviolet_S2, 4-32, 32, 34-42, 47-67,	31002000, 4-42, 47-37, 30, 37-07, 70
70	terra::rast(), 68
Be16FLHviolet_WV2, 4-33, 33, 35-42, 47-67,	TurbBe16GreenPlusRedBothOverViolet,
70	4–42, 47–58, 59, 60–67, 70
Be16FLHVioletRedNIR_LS8, 4-24, 24, 26-42,	TurbBe16RedOverViolet, 4–42, 47–59, 60,
47–67, 70	61–67, 70
Be16FLHVioletRedNIR_MERIS, 4–25, 25,	TurbBow06Red0verGreen, 4–42, 47–60, 61,
27–42, 47–67, 70	62–67, 70
Be16FLHVioletRedNIR_OLCI, 4–26, 26,	TurbChip09NIROverGreen, 4-42, 47-61, 62,
28–42, 47–67, 70	63–67. 70

INDEX 73

```
\label{eq:total_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_cont
```