Основы машинного обучения

Лекция 12

Решающие деревья

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2024

Решающие деревья

Логические правила

- [30 < площадь < 50][2 < этаж < 5][500 < расстояние до метро < 1000]
- Легко объяснить, как работают
- Находят нелинейные закономерности

- Нужно как-то искать хорошие логические правила
- Нужно уметь составлять модели из логических правил

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Сложность дерева

- Решающее дерево можно строить до тех пор, пока каждый лист не будет соответствовать ровно одному объекту
- Деревом можно идеально разделить любую выборку!
- Если только нет объектов с одинаковыми признаками, но разными ответами

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Предикаты

- Порог на признак $\left[x_{j} < t
 ight]$ не единственный вариант
- Предикат с линейной моделью: $[\langle w, x \rangle < t]$
- Предикат с метрикой: $[\rho(x, x_0) < t]$
- И много других вариантов
- Но даже с простейшим предикатом можно строить очень сложные модели

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Регрессия:

$$c_v = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} y_i$$

• Классификация:

$$c_v = \arg\max_{k \in \mathbb{Y}} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Классификация и вероятности классов:

$$c_{vk} = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Можно усложнять листья
- Например:

$$c_v(x) = \langle w_v, x \rangle$$

Формула для дерева

- Дерево разбивает признаковое пространство на области R_1 , ..., R_J
- Каждая область R_i соответствует листу
- В области R_j прогноз c_j константный

$$a(x) = \sum_{j=1}^{J} c_j \left[x \in R_j \right]$$

Формула для дерева

$$a(x) = \sum_{j=1}^{J} c_j \left[x \in R_j \right]$$

- Решающее дерево находит хорошие новые признаки
- Над этими признаками подбирает линейную модель

Как выбирать предикаты

- Разберёмся на примере
- Начнём с задачи классификации

• Как разбить вершину?

Как сравнить разбиения?

ИЛИ

• Мера неопределённости распределения

• Мера неопределённости распределения

- Дискретное распределение
- Принимает n значений с вероятностями p_1 , ..., p_n
- Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

- $H = 1.60944 \dots$
- (0.2, 0.2, 0.2, 0.2, 0.2) (0.9, 0.05, 0.05, 0, 0)
 - $H = 0.394398 \dots$

- (0, 0, 0, 1, 0)
- H = 0

Как сравнить разбиения?

- (0.5, 0.5, 0) и (0, 0, 1)
- H = 0.693 + 0 = 0.693

- (0.33, 0.33, 0.33) и (0.33, 0.33, 0.33)
- H = 1.09 + 1.09 = 2.18

$$H(p_1, ..., p_K) = -\sum_{i=1}^K p_i \log_2 p_i$$

- Характеристика «хаотичности» вершины
- Impurity

Критерий Джини

$$H(p_1, ..., p_K) = \sum_{i=1}^K p_i (1 - p_i)$$

- Вероятность ошибки случайного классификатора, который выдаёт класс k с вероятностью p_k
- Примерно пропорционально количеству пар объектов, относящихся к разным классам

Критерии качества вершины

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

$$Q(R,j,t) = H(R) - H(R_{\ell}) - H(R_r) \to \max_{j,t}$$

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

$$Q(R,j,t) = H(R) - H(R_{\ell}) - H(R_r) \to \max_{j,t}$$

Или так:

$$Q(R,j,t) = H(R_{\ell}) + H(R_r) \to \min_{j,t}$$

• (у этих формул есть проблемы!)

Как сравнить разбиения?

- (5/6, 1/6) и (1/6, 5/6)
- 0.65 + 0.65 = 1.3

- (6/11, 5/11) и (0, 1)
- 0.994 + 0 = 0.994

$$Q(R, j, t) = H(R) - \frac{|R_{\ell}|}{|R|} H(R_{\ell}) - \frac{|R_{r}|}{|R|} H(R_{r}) \to \max_{j, t}$$

Или так:

$$Q(R, j, t) = \frac{|R_{\ell}|}{|R|} H(R_{\ell}) + \frac{|R_{r}|}{|R|} H(R_{r}) \to \min_{j, t}$$

Как сравнить разбиения?

- (5/6, 1/6) и (1/6, 5/6)
- 0.5 * 0.65 + 0.5 *0.65 = 0.65

- (6/11, 5/11) и (0, 1)
- $\bullet \frac{11}{12} * 0.994 + \frac{1}{12} * 0 = 0.911$

А для регрессии?

А для регрессии?

А для регрессии?

Задача регрессии

$$H(R) = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - y_R)^2$$

$$y_R = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} y_i$$

• То есть «хаотичность» вершины можно измерять дисперсией ответов в ней