Topological Data Analysis

Lecture 11

Homology representatives

Homology representatives

Homology representatives

Optimal cycle

$$z^* = \arg\min_{z} \ell(z_0) \quad s.t.z \sim z_0$$

	1	4	14	3	2	24	34	23	234	12
0										
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

Filtration function provides order on simplices, therefore on columns and rows of the filtration matrix. Ties are broken, first by simplex dimension, second by lexicographic order given by order on vertices.

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

24 | 34 | 23 | 234 | 12

[23+24]

[23+24+34]

	40	
	2 60 30	
10 1	30 3	
	50	
	20 50	
	4 20	4
	20	

	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

[23+24+34]

10 1	40 2 50	60 70	30 3
20	4 20	50	

	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

[23+24+34]

		1	4	14	3	2	24	34	23	234	
	1			1							
40	4			1			1	1			
2	14										
60 30 3	3							1			
50 70	2						1				
20 50	24									1	
4	34									1	
4 20	23									1	
	12										
											_

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			1
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

[23+24+34]

[12+24]

50

[23+24+34] [12+14+24]

Matrix is called reduced if all lowest nonzero elements are in unique rows

[23+24+34] [12+14+24]

34 | 23 | 234 | 12 $\mathbf{R} =$

Matrix is called reduced if all lowest nonzero elements are in unique rows

Extracting information

[23+24+34] [12+14+24]

Essential simplices correspond to unpaired empty columns

Persistence pairing

(4, 14) 0

(1, <u>Ø</u>) 0

(2, 24) 0

(12, <u>Ø</u>) 1

(3, 34) 0

(23, 234) 1

Extracting information

60

50

[23+24+34] [12+14+24]

Persistence pairing

Persistence diagram

(1, <u>Ø</u>) 0

(12, <u>Ø</u>) 1

(10, <u>Ø</u>) 0

(80, <u>Ø</u>) 1

(4, 14) 0

(2, 24) 0

(3, 34) 0

(23, 234) 1

(20, 20) 0

(40, 50) 0

(30, 50) 0

(60, 70) 1

Extracting information

[23+24+34] [12+14+24]

10 20 20 30 40 50 50 60 70 80

Persistence pairing [representatives]

(4, 14) 0 [4] $(1, \emptyset) 0$ [1]

(2, 24) 0 [2] $(12, \emptyset) 1$ [12+14+24]

(3, 34) 0 [3]

(23, 234) 1 [23+24+34]

Persistence diagram

(20, 20) 0 $(10, \infty) 0$

(40, 50) 0 $(80, \infty) 1$

(30, 50) 0

(60, 70) 1

Representatives

50

50

[23+24+34] [12+14+24]

		1	4	14	3	2	24	34	23	234	12
	1			1							
	4			1			1	1			
	14										
	3							1			
=	2						1				
	24									1	
	34									1	
	23									1	
	12										

Representatives are given by the linear combination of columns corresponding to the reduced columns

Representatives

[23+24+34] [12+14+24]

40 50 34 23 234 12

Representatives are given by the linear combination of columns corresponding to the reduced columns

Homologous cycles

Homologous cycles

$$z \sim z' \iff z - z' \in B_k$$

$$B_k = \{c \in C_k \mid \partial_{k+1}d = c, \text{ for some } d \in C_{k+1}\}$$

Homologous cycles

Homologous cycles

$$z \sim z' \iff z - z' \in B_k$$

$$B_k = \{c \in C_k \mid \partial_{k+1}d = c, \text{ for some } d \in C_{k+1}\}$$

Representatives

Optimal representatives

Optimal cycle

minimize $\|z\|_0$ subject to $z\sim z_1.$ minimize $\|z\|_0$ subject to $z=z_1+\partial w,$ $w\in C_2(X).$

Persistence representatives

Optimal representatives w.r.t. a filtration — cycles

minimize
$$\|z\|_0$$
 subject to $z=z_3+\partial w+kz_2,$ $w\in C_2(X_5),$ $k\in \Bbbk.$

Algorithm 1 Computing an optimal cycle on a filtration.

Compute $D_q(\mathbb{X})$ and persistence cycles z_1, \ldots, z_n Have $(b_i, d_i) \in D_q(\mathbb{X})$ be chosen by a user Solve the following optimization problem:

minimize
$$\|z\|_1$$
 subject to
$$z = z_i + \partial w + \sum_{j \in T_i} \alpha_j z_j,$$

$$w \in C_{q+1}(X_{b_i}),$$
 $\alpha_j \in \mathbb{k},$ where $T_i = \{j \mid b_j < b_i < d_j\}$

Representatives

Scaffolds

Given a graph G a homological scaffold H(G) is a subgraph of G induced by the edges present in the representatives of homology classes.

The frequency homological scaffold $H^F(G)$ as the network composed of all the cycle paths corresponding to generators, where an edge e is weighted by the number of different cycles it belongs to.

The persistence homological scaffold $H^{p}(G)$ is the network composed of all the cycle paths corresponding to generators weighted by their persistence.

If an edge e belongs to multiple cycles $z_0,z_1,...,z_s$, its weight is defined as the sum of the generators' persistence.

$$\omega_e^P = \sum_{[z]_i} \mathbf{1}_{e \in [z]_i}$$

$$\omega_e^F = \sum_{[z]_i \mid e \in [z]_i} \pi_{[z]_i}$$

Harmonic representatives

Hodge Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0 \qquad C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Betti numbers via Hodge Laplacian

$$\beta_k = \dim \ker(\mathbf{L}_k)$$

Harmonic cycles

$$z_k^H \in \ker L_k$$

Hodge decomposition

$$C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

Harmonic representatives

Hodge Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0 \qquad C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Hodge decomposition

$$C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

Betti numbers via Hodge Laplacian

$$\beta_k = \dim \ker(\mathbf{L}_k)$$

Harmonic cycles

$$z_k^H \in \ker L_k$$

Eigenvectors corresponding to zero eigenvalues of \mathbf{L}_k

Harmonic representatives

Hodge Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0 \qquad C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Hodge decomposition

$$C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

Betti numbers via Hodge Laplacian

$$\beta_k = \dim \ker(\mathbf{L}_k)$$

Harmonic cycles

$$z_k^H \in \ker L_k$$

Eigenvectors corresponding to zero eigenvalues of \mathbf{L}_k

(0, 1): 0.67

(0, 2): 0.25

(0, 3): 0.42

- (1, 3): 0.42

- (1, 4): 0.25

(2, 3): 0.16

(2, 5): 0.09

(3, 4): 0.16

(4, 6): 0.09

(5, 6): 0.09

Persistent harmonic representatives

Persistence diagram

$$D_{f_{\theta}}(X) = \{ (f(b_i), f(d_i)) \}_{i \in I}$$

	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

Filtration function provides order on simplices, therefore on columns and rows of the filtration matrix. Ties are broken, first by simplex dimension, second by lexicographic order given by order on vertices.

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

10 **1**

		1	4	14	3	2	24	34	23	234	12
	1			1							1
	4			1			1	1			
	14										
10 1	3							1	1		
	2						1		1		1
	24									1	
4	34									1	
20	23									1	
	12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

dt=14

 $\mathbf{B}_1(t)$

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

dt=3

 $\mathbf{B}_1(t)$

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

dt=2

 $\mathbf{B}_1(t)$

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

dt = 234

 $\mathbf{B}_1(t) \qquad \mathbf{B}_2(t)$

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

dt=12

 $\mathbf{B}_1(t) \qquad \mathbf{B}_2(t)$

Persistent harmonic representatives

Filtration

Persistence barcode

Higher-order Laplacian at filtration step t

$$\mathbf{L}_k(t) = \mathbf{B}_k(t)^T \mathbf{B}_k(t) + \mathbf{B}_{k+1}(t) \mathbf{B}_{k+1}(t)^T$$

Persistent harmonic representatives

Solve two eigenproblems on $\mathbf{L}_{k,t}$ with $t=b_i$ and $t=b_i-1$ to find two sets of eigenvalues $\lambda_{k,t}$ and corresponding eigenvectors $\mathbf{V}_{k,t}$ of dimension k at time t to obtain zero eigenvalues (up to a tolerance hyperparameter δ) and their corresponding eigenvectors

- eigenvalues λ_{k,b_i-1}^0 and corresponding eigenvectors \mathbf{V}_{k,b_i-1}^0 at time b_i-1 immediately preceding birth time b_i ,
- eigenvalues λ_{k,b_i}^0 and corresponding eigenvectors \mathbf{V}_{k,b_i}^0 at birth time b_i .

Find the representative vector \mathbf{w}_{k,b_i}^+ at birth such that $\mathbf{w}_{k,b_i}^+ \in \mathbf{V}_{k,b_i}^0$, but $\mathbf{w}_{k,b_i}^+ \notin \mathbf{V}_{k,b_i-1}^0$. To do so,

$$\mathbf{w}_{k,b_i}^+ = \arg \max_{\mathbf{v}_{k,b_i}^0 \in \mathbf{V}_{k,b_i}^0} \min \sigma \left(\mathbf{V}_{k,b_i-1}^0 \mid \mathbf{v}_{k,b_i}^0 [:-1] \right), \tag{11}$$

where $\min \sigma(\mathbf{X} \mid \mathbf{x})$ is the smallest singular value of the augmented matrix \mathbf{X} by a vector $\mathbf{x}[:-1]$, i.e. with the last element truncated.

Higher-order Laplacian at filtration step t

$$\mathbf{L}_k(t) = \mathbf{B}_k(t)^T \mathbf{B}_k(t) + \mathbf{B}_{k+1}(t) \mathbf{B}_{k+1}(t)^T$$

