Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models An Application of the EM Algorithm

Based on tutorials by Jeff A. Bilmes and by Ludwig Schwardt

Pardis Noorzad - Amirkabir University of Technology - Bahman 12, 1389

Outline

- Introduction
- 2 Density Estimation
- Gaussian Mixture Model
- Some Results
- **5** Other Applications of EM

What does EM do?

- iterative maximization of the likelihood function
 - when data has missing values or
 - when maximization of the likelihood is difficult
 - data augmentation
- X is incomplete data
- \bullet $\mathbf{Z} = (\mathbf{X}, \mathbf{Y})$ is the complete data set

EM and MLE

maximum likelihood estimation

- estimates density parameters
- \Longrightarrow EM app: parametric density estimation
- when density is a mixture of Gaussians

The density estimation problem

Definition

Our parametric density estimation problem:

$$\begin{aligned} \mathbf{X} &= \{\mathbf{x}_i\}_{i=1}^N, \ \mathbf{x}_i \in \mathbb{R}^D \\ f(\mathbf{x}_i | \mathbf{\Theta}), \text{ i.i.d. assumption} \\ f(\mathbf{x}_i | \mathbf{\Theta}) &= \sum_{k=1}^K \alpha_k p(\mathbf{x}_i | \theta_k) \\ K \text{ components (given)} \\ \mathbf{\Theta} &= (\alpha_1, \dots, \alpha_K, \theta_1, \dots, \theta_K) \end{aligned}$$

Constraint on mixing probabilities α_i

$$\int_{\mathbb{R}^{D}} p(\mathbf{x}_{i}|\theta_{k}) d\mathbf{x}_{i} = 1$$

$$1 = \int_{\mathbb{R}^{D}} f(\mathbf{x}_{i}|\boldsymbol{\Theta}) d\mathbf{x}_{i}$$

$$= \int_{\mathbb{R}^{D}} \sum_{k=1}^{K} \alpha_{k} p(\mathbf{x}_{i}|\theta_{k}) d\mathbf{x}_{i}$$

$$= \sum_{k=1}^{K} \alpha_{k}.$$

The maximum likelihood problem

Definition

Our MLE problem:

$$\begin{split} p(\mathbf{X}|\mathbf{\Theta}) &= \prod_{i=1}^N p(\mathbf{x}_i|\mathbf{\Theta}) = \mathcal{L}(\mathbf{\Theta}|\mathbf{X}) \\ \mathbf{\Theta}^* &= \arg\max_{\mathbf{\Theta}} \mathcal{L}(\mathbf{\Theta}|\mathbf{X}) \\ \text{the log-likelihood: } \log(\mathcal{L}(\mathbf{\Theta}|\mathbf{X})) \\ \log(\mathcal{L}(\mathbf{\Theta}|\mathbf{X})) &= \sum_{i=1}^N \log\left(\sum_{k=1}^K \alpha_k p(\mathbf{x}_i, \theta_k)\right) \\ \text{difficult to optimize b/c it contains log of sum} \end{split}$$

The EM formulation

Definition

Our **EM** problem:

$$Z = (X, Y)$$

$$\mathcal{L}(\mathbf{\Theta}|\mathbf{Z}) = \mathcal{L}(\mathbf{\Theta}|\mathbf{X}, \mathbf{Y}) = p(\mathbf{X}, \mathbf{Y}|\mathbf{\Theta})$$

$$y_i \in 1 \dots K$$

 $y_i = k$ if the ith sample was generated by the kth component

Y is a random vector

$$\log(\mathcal{L}(\boldsymbol{\Theta}|\mathbf{X}, \mathbf{Y})) = \sum_{i=1}^{N} \log(\alpha_{y_i} p(\mathbf{x}_i | \theta_{y_i}))$$

The EM formulation

Definition

The E- and M-steps with the auxiliary function Q:

E-step:
$$Q(\mathbf{\Theta}, \mathbf{\Theta}^{(i-1)}) = E[\log(p(\mathbf{X}, \mathbf{Y}|\mathbf{\Theta}))|\mathbf{X}, \mathbf{\Theta}^{(i-1)}]$$

$$\mathsf{M}\text{-step: } \mathbf{\Theta}^{(i)} = \arg\max_{\mathbf{\Theta}} Q(\mathbf{\Theta}, \mathbf{\Theta}^{(i-1)})$$

The EM formulation $_{\mathsf{The}\ Q}$ function

$$Q(\mathbf{\Theta}, \mathbf{\Theta}^{(t)}) = E[\log(p(\mathbf{X}, \mathbf{Y}|\mathbf{\Theta}))|\mathbf{X}, \mathbf{\Theta}^{(t)}]$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{N} \log(\alpha_k p(\mathbf{x}_i|\theta_k)) p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{N} \log(\alpha_k) p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})$$

$$+ \sum_{k=1}^{K} \sum_{i=1}^{N} \log(p(\mathbf{x}_i|\theta_k)) p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})$$

The EM formulation Solving for α_k

We use the Lagrange multiplier to enforce $\sum_{k} \alpha_{k} = 1$.

$$\frac{\partial}{\partial \alpha_k} \left[\sum_k \sum_i \log(\alpha_k) p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)}) + \lambda \left(\sum_k \alpha_k - 1 \right) \right] = 0$$

$$\sum_{i} \frac{1}{\alpha_k} p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)}) + \lambda = 0$$

Summing both sides over k, we get $\lambda = -N$.

$$\alpha_k = \frac{1}{N} \sum_i p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)}).$$

Gaussian components

$$p(\mathbf{x}_i|\mathbf{x}_k, \mathbf{\Sigma}_k) = (2\pi)^{-\frac{D}{2}} |\mathbf{\Sigma}_k|^{-\frac{1}{2}} \exp(-\frac{1}{2}(\mathbf{x}_i - \mathbf{m}_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x}_i - \mathbf{m}_k))$$

$$\mathbf{m}_k = \frac{\sum_i \mathbf{x}_i p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})}{\sum_i p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})}$$
$$\mathbf{\Sigma}_k = \frac{p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})(\mathbf{x}_i - \mathbf{m}_k)(\mathbf{x}_i - \mathbf{m}_k)^T}{p(k|\mathbf{x}_i, \mathbf{\Theta}^{(t)})}$$

Parametric Density Estimation using Gaussian Mixture Models Gaussian Mixture Model

Choice of Σ_k

Fits data best, but costly in high-dimensional space.

Figure: full covariance

Parametric Density Estimation using Gaussian Mixture Models Gaussian Mixture Model

Choice of Σ_k Diagonal covariance

A tradeoff between cost and quality.

Figure: diagonal covariance

Parametric Density Estimation using Gaussian Mixture Models Gaussian Mixture Model

Choice of
$$\Sigma_k$$

Spherical covariance, $\Sigma_k = \sigma_k^2 \mathbf{I}$

Needs many components to cover data.

Figure: spherical covariance

Decision should be based on the size of training data set

• so that all parameters may be tuned

Data

data generated from a mixture of three bivariate Gaussians

PDFs

estimated pdf contours (after 43 iterations)

Clusters

 \mathbf{x}_i assigned to the cluster k corresponding to the highest $p(k|\mathbf{x}_i, \mathbf{\Theta})$

A problem with missing data Life-testing experiment

- \bullet lifetime of light bulbs follows an exponential distribution with mean θ
- two separate experiments
- N bulbs tested until failed
 - failure times recorded as x_1, \ldots, x_N
- M bulbs tested
 - failure times not recorded
 - \bullet only number of bulbs r, that failed at time t
 - missing data are failure times u_1, \ldots, u_M

EM formulation Life-testing experiment

•
$$\log(\mathcal{L}(\theta|x, u)) = -N(\log \theta + \bar{x}/\theta) - \sum_{i=1}^{M} (\log \theta + u_i/\theta)$$

- expected value for bulb still burning: $t + \theta$
- one that burned out: $\theta \frac{te^{-t}/\theta^{(k)}}{1-e^{-t}/\theta^{(k)}} = \theta th^{(k)}$
- E-step: $Q(\theta, \theta^{(k)}) = -(N+M)\log \theta$

$$-\frac{1}{\theta}(N\bar{x} + (M-r)(t+\theta^{(k)}) + r(\theta^{(k)} - th^{(k)}))$$

$$\bullet$$
 M-step: $\frac{1}{N+M}(N\bar{x}+(M-r)(t+\theta^{(k)})+r(\theta^{(k)}-th^{(k)}))$

