ENTROPY ESTIMATORS – IMPROVEMENTS AND COMPARISONS

Robert Wieczorkowski *, Przemysław Grzegorzewski * *

*Institute of Mathematics, Warsaw University of Technology,

Plac Politechniki 1, 00-661 Warsaw, Poland

Systems Research Institute, Polish Academy of Sciences,

ul. Newelska 6, 01-447 Warsaw, Poland

Key Words: entropy, Jackknife, spacings

ABSTRACT

The problem of the entropy estimation is discussed. Modifications of the well-known Vasicek's estimator and Correa's estimator are considered. An extensive simulation study for the comparison of all estimators under study is performed. It appears that the new estimators based on the bias correction and Jackknife behave better than the traditional ones.

INTRODUCTION

The entropy of a random variable was introduced by C. E. Shannon (1948) as a measure of information and uncertainty. Now the entropy is a charac-

AMS 1991 Subject Classification: 62F10, 62G05, 63G30

teristic playing a fundamental role not only in information theory and communication, but also in classification, pattern recognition, statistical physics, stochastic dynamics, statistics, etc. Just in statistics Shannon's entropy is used as a descriptive parameter (measure of dispersion), for testing normality (Vasicek (1976) and Arizono and Ohta (1989)), exponentiality (Grzegorzewski and Wieczorkowski (1998)) and uniformity (Dudewicz, van der Meulen et al. (1995)). Goodness-of-fit test for uniformity based on the sample entropy are extensively utilized in evaluating random number generators. One also know the maximum entropy principle applicable widely in problems of inference on the basis of incomplete data.

Therefore the entropy estimation seems to be an important problem, crucial for many further applications. However, there are not many papers devoted to the entropy estimation problem. The most prominent estimator of entropy, based on spacings, was proposed by Vasicek. The other entropy estimator is due to van Es (1992). Recently Correa (1995) suggested a new entropy estimator based on the local linear regression.

In this paper we show how to improve both Vasicek and Correa's estimators. We have modified them with help of the bias correction or the simple Jackknife. Then an extensive simulation study was performed. The mean square error and the bias were used as measures of the quality of estimators. It appears that our new estimators behave better than the estimators used before.

VASICEK'S, VAN ES' AND CORREA'S ESTIMATORS

For continuous random variable X with a density function f the entropy is defined as

$$H(X) \equiv H(f) = -\int_{-\infty}^{+\infty} f(x) \ln f(x) \ dx. \tag{1}$$

It may be shown easily that (1) can be expressed as

$$H(f) = \int_{0}^{1} \ln\left(\frac{d}{dp}F^{-1}(p)\right) dp. \tag{2}$$

The best known and widely used entropy estimator was proposed by Vasicek (1976). His estimator was constructed by replacing the distribution function F in (2) by the empirical distribution function and using a difference oper-

ator instead of the differential one. The derivative $\frac{d}{dp}F^{-1}(p)$ is then estimated by a function of spacings.

Let X_1, \ldots, X_n , $n \geq 3$, be a sample from the distribution F. Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote ordered statistics from the sample X_1, \ldots, X_n . Then Vasicek's estimator of entropy has a following form

$$V_{m,n}(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n \ln \left(\frac{n}{2m} \left(X_{(i+m)} - X_{(i-m)} \right) \right), \tag{3}$$

where m is a positive integer smaller than $\frac{n}{2}$, $X_{(i)} = X_{(1)}$ for i < 1 and $X_{(i)} = X_{(n)}$ for i > n,

Vasicek proved that his estimator is consistent, i.e. $V_{m,n} \to H(f)$ as $n \to \infty$, $m \to \infty$ and $\frac{m}{n} \to 0$. Vasicek's estimator is also asymptotically normal, however Dudewicz, van der Meulen et al. (1995) showed that the convergence is not very fast.

In 1992 van Es suggested a new estimator of a form

$$E_{m,n} = \frac{1}{n-m} \sum_{i=1}^{n-m} \ln \left(\frac{n+1}{m} \left(X_{(i+m)} - X_{(i)} \right) \right) + \sum_{k=m}^{n} \frac{1}{k} + \ln m - \ln(n+1).$$
 (4)

Van Es proved, under some conditions, consistency and asymptotic normality of this estimator.

In 1995 Correa suggested a modification of Vasicek's estimator. In estimation the density f of F in the interval $(X_{(i-m)}, X_{(i+m)})$ he used a local linear model based on 2m+1 points: $F(X_{(j)}) = \alpha + \beta X_{(j)} + \varepsilon$, $j = m-i, \ldots, m+i$. This yields a following estimator

$$C_{m,n}(X_1,\ldots,X_n) = -\frac{1}{n}\sum_{i=1}^n \ln(b_i),$$
 (5)

where

$$b_{i} = \frac{\sum_{j=i-m}^{i+m} \left(X_{(j)} - \overline{X}_{(i)} \right) (j-i)}{n \cdot \sum_{j=i-m}^{i+m} \left(X_{(j)} - \overline{X}_{(i)} \right)^{2}},$$
(6)

$$\overline{X}_{(i)} = \frac{1}{2m+1} \sum_{j=i-m}^{i+m} X_{(j)}, \tag{7}$$

m is a positive integer smaller than $\frac{n}{2}$, $X_{(i)} = X_{(1)}$ for i < 1 and $X_{(i)} = X_{(n)}$ for i > n.

By the simulation study Correa showed that for a few distributions (standard normal, exponential with mean equal to 1 and uniform U(0,1)) his estimator produces smaller mean squared error than Vasicek's estimator and van Es' estimator.

ESTIMATION WITH THE BIAS CORRECTION

While proving consistency of the entropy estimator Vasicek indicated how to correct a bias correction of the $V_{m,n}$ statistic. Applying this correction we get another entropy estimator

$$V'_{m,n} = V_{m,n} - \log(n) + \log(2m) - (1 - \frac{2m}{n})\Psi(2m) + \Psi(n+1)$$

$$-\frac{2}{n} \sum_{i=1}^{m} \Psi(i+m-1)$$
(8)

where $\Psi(x)$ is the digamma function defined as $\Psi(x) = \frac{d}{dx}\Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$. For integer arguments holds identity $\Psi(k) = \sum_{i=1}^{k-1} \frac{1}{i} - \gamma$, where γ is Euler's constant, $\gamma = 0.57721566490...$

It is surprising why neither Vasicek nor his successors haven't use $V'_{m,n}$ in their further research. Therefore we have decided to compare the properties of $V'_{m,n}$, called the Vasicek estimator with the bias correction, with other entropy estimators (including Vasicek's $V_{m,n}$). It is worth noting that a similar bias correction is used in van Es' estimator $E_{m,n}$.

JACKKNIFE ENTROPY ESTIMATION

A special technique, called Jackknife, for the purpose of bias reduction was introduced by Quenouille (1949, 1956). Let X_1, \ldots, X_n be a sample from the distribution F_{θ} . Suppose we do not know any unbiased estimator of θ , but we know a biased estimator $\widehat{\theta}(X_1, \ldots, X_n)$. The Jackknife estimator of θ is derived from this biased estimator by leaving out one observation at a time and calculating

$$\widehat{\theta}_i = \widehat{\theta}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n). \tag{9}$$

Denoting

$$\widehat{\theta}_{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{i}, \tag{10}$$

we obtain a bias estimate

$$\widehat{b}(\theta) = (n-1)(\widehat{\theta}_{\Sigma} - \widehat{\theta}) \tag{11}$$

and the Jackknife estimator of θ , corrected for the bias:

$$\widetilde{\theta} = \widehat{\theta} - \widehat{b}(\theta) = \widehat{\theta} - (n-1)(\widehat{\theta}_{\Sigma} - \widehat{\theta}).$$
 (12)

In 1972 Gray and Schucany suggested, so called, the generalized Jackknife statistic

 $\theta^* = \frac{\widehat{\theta'} - R\widehat{\theta''}}{1 - R},\tag{13}$

where $\widehat{\theta}'$ and $\widehat{\theta}''$ are biased estimators of θ , usually chosen as $\widehat{\theta}' = \widehat{\theta}$ and $\widehat{\theta}'' = \widehat{\theta}_{\Sigma}$. Note that the choice of $R = \frac{n-1}{n}$ yields $\widetilde{\theta}$ as a special case.

Although the Jackknife method focuses only on reducing the bias of an estimator it may serve for variance reduction as well (see, e.g., Gray and Schucany (1972)). For more details concerning the Jackknife technique we refer the reader to Gray and Schucany (1972) and Efron (1982).

We propose to correct Correa's estimator using Jackknife formula (12) with $\widehat{\theta} = C_{m,n}$. We denote this bias corrected estimator by $C'_{m,n}$. We have chosen Correa's estimator since, according to Correa (1995) it dominates both Vasicek's and van Es' estimators.

SIMULATION STUDY

To compare the performance of the entropy estimators, an empirical sampling study was conducted. We used following entropy: Vasicek's $V_{m,n}$ estimator, Vasicek's estimator with the correction of the bias $V'_{m,n}$, van Es' $E_{m,n}$ estimator, Correa's $C_{m,n}$ estimator, and Jackknife corrected Correa's estimator $C'_{m,n}$.

We have chosen the following distributions:

• uniform distribution U(0,1); in this case entropy H(f) = 0.

- exponential distributions $Exp(\lambda)$ with density function $f(x) = \frac{1}{\lambda} \exp(-\frac{x}{\lambda})$, $\lambda > 0$, x > 0; then we have $H(f) = 1 + \ln(\lambda)$. In our study we have considered $\lambda = 0.5, 1, 2, 5$.
- ••exponential power family of distributions EPD(p) with density

$$f(x) = \frac{1}{2\Gamma(1+1/p)} \exp(-|x|^p), \quad x \in (-\infty, \infty), \quad p > 0.$$
 (14)

For discussion of the exponential power family see, e.g., Sherman (1997) and references therein. Varying the parameter p we obtain symmetric densities with different tail behavior: the density has very heavy tails as $p \to 0$, and very light tails as $p \to \infty$ (f(x) converges then to uniform distribution U(-1,1)). It worth noting that for p=2 we get the normal distribution, namely $EPD(2) = N(0,\frac{1}{2})$, while for p=1 we get the double exponential distribution. Exponential power family is interesting for comparing entropy estimators, because by straightforward calculations we can obtain simple formula for theoretical entropy

$$H(f) = \ln\left(\frac{2\Gamma(\frac{1}{p})}{p}\right) + \frac{1}{p}, \text{ for } p > 0.$$
 (15)

In our study we used distributions with parameters p = 0.5, 1, 2, 5.

For each distribution 1000 samples of sizes 5, 10, 15, 20,50 and 100 were generated and the estimators of entropy and their root mean squared errors (RMSE) and bias (BIAS) were computed; each experiment was repeated 10 times and average was taken. Replications were also used to measure the precision of the estimation of RMSE and BIAS by calculation the confidence intervals – this procedure yields absolute errors for the estimated RMSE and BIAS in most cases less than 0.005 with probability greater or equal to 0.99.

The algorithm was written in C programing language and simulations were performed on Cray 6400 computer in Warsaw University of Technology. The uniform random number generator from Berdnikov et al. (1996) was used. Results of the simulations are given in Annex 2 - Tables 1 - 9. Graphs of RMSE and BIAS based on these results are given in Annex 1 - Figures 1 - 18.

CONCLUSION

Our simulation results indicate that regarding the root mean squared error (RMSE) the Vasicek estimator $V'_{m,n}$ with the bias correction is the best – this holds in 98 % cases considered in tables. Van Es' estimator $E_{m,n}$ also compares favorably with other estimators – in 93 % cases $E_{m,n}$ is better in terms of RMSE than $V_{m,n}$, $C_{m,n}$, and $C'_{m,n}$. The results show that Jackknife corrected Correa'a estimator $C'_{m,n}$ works better than $C_{m,n}$ in 42 % of cases. The traditional Vasicek's estimator $V_{m,n}$ is in general the worst.

As regards to the bias (BIAS) comparison the Vasicek estimator $V'_{m,n}$ with the bias correction and the Jackknife corrected Correa's estimator $C'_{m,n}$ are in general - the best. $C'_{m,n}$ has a high bias only in the case of very heavy tailed distribution. Van Es' estimator $E_{m,n}$ behaves very well only in the case of the uniform distribution. In other cases it is dominated by $V'_{m,n}$ and $C'_{m,n}$, but it is better than the usual Correa's estimator $C_{m,n}$ and usual Vasicek's estimator $V_{m,n}$. This traditional Vasicek's estimator $V_{m,n}$ has often the highest bias.

Thus, according to our simulation study, the Vasicek estimator $V'_{m,n}$ with the bias correction should be recommended to the users, because it reveals the smallest root mean squared error and a very low bias. Then we may also recommend van Es' estimator $E_{m,n}$ and the Jackknife corrected Correa'a estimator $C'_{m,n}$ (the first one has a smaller root mean squared error, while the second one has a lower bias). It is worth noting that the most popular and widely used Vasicek's estimator $V_{m,n}$ does not possess good statistical properties.

In the problem of the entropy estimation still a lot have to be done. For example, all the considered estimators depend on two parameters: m and n but the optimal choice of m according to n is still an open problem. Next, in order to reduce simultaneously bias and variance of the entropy estimator it seems to be promising to consider a statistic of a form

$$\widehat{H} = \alpha \widehat{H_1} + \beta \widehat{H}_2, \tag{16}$$

where \widehat{H}_1 and \widehat{H}_2 are biased estimators (e.g. Vasicek's estimators or Correa's estimators with or without modifications).

ANNEX 1 - Figures

Figure 1. RMSE of the entropy estimators for the uniform distribution U(0,1).

Figure 2. BIAS of the entropy estimators for the uniform distribution U(0,1).

Figure 3. RMSE of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda = 0.5$.

Figure 4. BIAS of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda = 0.5$.

Figure 5. RMSE of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda = 1$.

Figure 6. BIAS of the entropy estimators for the exponential distribution $Exp(\lambda) \text{ with mean } \lambda=1.$

Figure 7. RMSE of the entropy estimators for the exponential distribution $Exp(\lambda) \text{ with mean } \lambda=2.$

Figure 8. BIAS of the entropy estimators for the exponential distribution $Exp(\lambda) \text{ with mean } \lambda=2.$

Figure 9. RMSE of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda=5$.

Figure 10. BIAS of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda = 5$.

Figure 11. RMSE of the entropy estimators for the exponential power distribution EPD(p) with p=0.5.

Figure 12. BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=0.5.

Figure 13. RMSE of the entropy estimators for the exponential power distribution EPD(p) with p=1.

Figure 14. BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=1.

Figure 15. RMSE of the entropy estimators for the exponential power distribution EPD(p) with p=2, i.e.for the normal distribution N(0,0.5).

Figure 16. BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=2, i.e.for the normal distribution N(0,0.5).

Figure 17. RMSE of the entropy estimators for the exponential power distribution EPD(p) with p=5.

Figure 18. BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=5.

ANNEX 2 - Tables

Table 1: RMSE and BIAS of the entropy estimators for the uniform distribution U(0,1)

				RMSE		·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	.875	.421	.481	.721	.772	767		000	591	174
5	2	.774	.344	.405	.570	.440	693	.000	.003	457	035
10	1	.570	.237	.297	.445	.452	518	.001	.002	380	168
10	2	.455	.182	.225	.305	.313	417	004	003	246	033
10	3	.451	.165	.217	.292	.286	420	.001	.000	240	.001
10	4	.486	.163	.222	.313	.252	458	001	000	266	.003
15	1	.469	.173	.229	.353	.349	436	.001	.004	310	170
15	2	.343	.129	.163	.212	.227	318	.001	.002	170	028
15	3	.330	.117	.154	.199	.198	309	.001	.001	161	.001
15	4	.343	.110	.154	.206	.186	325	.001	.002	174	.006
15	5	.368	.107	.161	.222	.183	352	.000	001	193	.011
20	1	.417	.139	.195	.305	.297	393	.002	.003	273	166
20	2	.291	.103	.133	.169	.184	272	001	001	135	026
20	3	.269	.092	.120	.152	.158	253	.001	.001	121	.002
20	4	.276	.086	.119	.157	.149	262	001	001	130	.005
20	5	.291	.084	.124	.168	.142	278	001	000	144	.006
50	1	.329	.077	.117	.224	.216	320	.001	.001	211	168
50	2	.195	.053	.074	.087	.102	187	000	000	070	028
50	3	.160	.046	.062	.067	.084	153	000	001	049	000
50	4	.148	.041	.058	.063	.076	142	.001	.001	047	.006
50	5	.146	.040	.057	.066	.071	141	.000	.000	052	.009
100	1	.300	.051	.082	.197	.191	295	000	.001	190	168
100	2	.162	.034	.049	.058	.069	158	.001	.001	048	026
100	3	.123	.029	.040	.038	.054	119	000	.000	025	001
100	4	.106	.025	.036	.033	.048	103	.000	.000	021	.006
100	5	.099	.024	.034	.033	.045	096	.000	.000	022	.008

Table 2: RMSE and BIAS of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda=.5$

			.031 .612 .652 .890 .86 .929 .557 .590 .747 .66 .677 .391 .433 .566 .5- .571 .366 .393 .449 .44 .566 .361 .391 .437 .44 .575 .362 .385 .437 .44 .549 .308 .344 .448 .44 .442 .290 .315 .340 .34 .427 .284 .314 .328 .32 .433 .288 .320 .331 .33 .441 .293 .325 .334 .33 .489 .263 .299 .391 .33 .379 .247 .271 .287 .29 .359 .243 .271 .274 .28 .356 .246 .276 .273 .28						BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
- 5	1	1.031			.890	.895	832	065	099	653	195
5	2	.929	.557	.590	.747	.662	745	052	106	496	052
10	1	.677	.391	.433	.566	.547	554	035	076	414	173
10	2	.571	.366	.393	.449	.452	439	026	097	260	030
10	3	.566	.361	.391	.437	.451	437	016	117	242	001
10	4	.575	.362	.385	.437	.457	447	.010	109	233	.013
15	1	.549	.308	.344	.448	.433	455	018	052	327	168
15	2	.442	.290	.315	.340	.349	334	015	084	180	024
15	3	.427	.284	.314	.328	.333	319	009	107	159	.001
15	4	.433	.288	.320	.331	.341	323	.003	118	155	.008
15	5	.441	.293	.325	.334	.351	331	.022	123	151	.014
20	1	.489	.263	.299	.391	.375	412	017	050	291	172
20	2	.379	.247	.271	.287	.291	288	016	080	146	026
20	3	.359	.243	.271	.274	.281	264	010	101	123	002
20	4	.356	.246	.276	.273	.284	257	.004	109	113	.008
20	5	.357	.247	.280	.272	.286	258	.020	118	107	.012
50	1	.365	.161	.186	.271	.259	328	008	029	219	169
50	2	.246	.151	.167	.169	.175	195	008	049	076	029
50	3	.219	.151	.168	.160	.168	158	005	065	050	003
50	4	.205	.148	.169	.154	.164	142	.001	075	041	.006
50	5	.200	.148	.174	.154	.163	135	.007	086	039	.008
100	1	.317	.112	.128	.221	.213	297	001	015	191	166
100	2	.195	.107	.117	.119	.125	163	005	031	052	028
100	3	.158	.103	.114	.106	.114	120	001	040	024	.000
100	4	.147	.105	.118	.107	.114	103	.000	050	018	.006
100	5	.139	.103	.120	.105	.112	092	.004	057	015	.008

Table 3: RMSE and BIAS of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda=1$

				RMSE			T		BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	1.029	.611	.652	.888	.895	831	- 064	098	651	200
5	2	.915	.550	.585	.734	.650	733	039	093	483	043
10	1	.675	.391	.432	.565	.548	552	032	072	411	177
10	2	.573	.364	.389	.450	.453	444	031	102	266	035
10	3	.567	.360	.389	.438	.452	439	017	116	244	005
10	4	.574	.360	.391	.435	.448	448	.009	113	234	.014
15	1	.550	.311	.348	.449	.431	454	017	053	327	166
15	2	.448	.292	.318	.346	.349	341	023	092	187	030
15	3	.431	.286	.315	.331	.342	323	013	111	163	003
15	4	.431	.284	.317	.328	.336	324	.002	120	156	.004
15	5	.433	.287	.315	.326	.352	325	.028	117	145	.020
20	1	.490	.265	.299	.393	.377	413	018	052	292	171
20	2	.380	.247	.269	.287	.292	289	018	081	148	027
20	3	.354	.243	.268	.270	.281	258	004	094	116	.004
20	4	.352	.240	.272	.268	.275	257	.003	111	113	.008
20	5	.363	.249	.283	.277	.289	265	.013	123	114	.005
50	1	.363	.161	.186	.269	.258	- 326	005	028	216	168
50	2	.246	.150	.165	.168	.174	195	008	050	076	029
50	3	.216	.149	.166	.157	.167	156	003	063	048	.000
50	4	.205	.150	.171	.156	.166	140	.002	074	040	.009
50	5	.199	.148	.173	.153	.163	134	.007	085	038	.008
100	1	.319	.113	.131	.224	.216	299	003	017	193	169
100	2	.192	.105	.115	.116	.122	161	002	029	050	026
100	3	.158	.103	.114	.106	.114	120	001	040	024	.000
100	4	.145	.104	.118	.106	.113	102	.002	049	017	.008
100	5	.138	.103	.119	.105	.112	091	.005	056	014	.009

Table 4: RMSE and BIAS of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda=2$

				RMSE				-	BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	1.012	.608	.646	.873	.893	811	044	075	633	183
5	2	.931	.558	.595	.748	.662	748	054	109	498	053
10	1	.685	.398	.440	.574	.561	559	039	081	418	180
10	2	.575	.367	.393	.453	.456	443	031	103	265	037
10	3	.564	.357	.391	.434	.446	437	016	117	241	004
10	4	.571	.361	.386	.434	.452	443	.014	105	230	.013
15	1	.556	.315	.355	.455	.439	459	022	061	332	171
15	2	.442	.287	.312	.340	.345	337	018	088	183	026
15	3	.433	.289	.318	.334	.341	323	013	110	163	004
15	4	.430	.284	.317	.327	.337	323	.004	118	154	.004
15	5	.441	.291	.323	.333	.353	333	.020	123	153	.011
20	1	.488	.263	.300	.390	.372	411	016	051	290	170
20	2	.376	.245	.269	.284	.291	286	014	077	145	028
20	3	.361	.245	.272	.275	.284	265	011	101	124	006
20	4	.356	.243	.273	.273	.281	261	.000	112	117	.003
20	5	.359	.245	.278	.273	.282	263	.014	120	112	.009
50	1	.364	.161	.185	.269	.259	326	006	027	217	168
50	2	.245	.151	.166	.168	.174	192	006	047	073	026
50	3	.219	.150	.168	.159	.167	159	006	065	051	004
50	4	.206	.149	.169	.156	.165	142	.000	076	042	.005
50	5	.201	.149	.174	.155	.164	136	.005	086	040	.006
100	1	.321	.113	.131	.225	.218	300	005	019	195	171
100	2	.194	.105	.115	.117	.122	163	004	031	052	027
100	3	.159	.103	.113	.106	.114	120	001	039	024	.001
100	4	.144	.103	.116	.104	.112	102	.002	049	017	.007
100	5	.138	.104	.120	.105	.113	091	.005	057	013	.010

Table 5: RMSE and BIAS of the entropy estimators for the exponential distribution $Exp(\lambda)$ with mean $\lambda=5$

		<u> </u>		RMSE					BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	1.013	.602	.644	.873	.879	815	048	080	637	181
5	2	.927	.558	.593	.746	.658	742	048	103	493	047
10	1	.673	.387	.433	.562	.547	552	033	074	412	172
10	2	.575	.363	.391	.451	.451	- 448	035	108	269	037
10	3	.563	.358	.389	.434	.450	435	013	114	239	000
10	4	.575	.359	.389	.436	.451	450	.007	111	236	.004
15	1	.547	.306	.342	.446	.428	454	017	052	327	165
15	2	.446	.289	.315	.343	.350	339	021	091	185	027
15	3	.429	.284	.312	.328	.334	321	012	109	162	002
15	4	.427	.285	.315	.326	.340	319	.008	114	151	.012
15	5	.436	.287	.318	.328	.347	329	.024	118	150	.013
20	1	.489	.265	.302	.391	.376	412	016	049	291	172
20	2	.377	.247	.269	.285	.291	286	014	078	144	023
20	3	.358	.244	.269	.274	.284	262	009	098	122	001
20	4	.351	.244	.271	.270	.281	253	.008	106	109	.013
20	5	.355	.244	.276	.270	.282	258	.020	116	107	.012
50	1	.364	.160	.186	.270	.256	328	007	029	218	169
50	2	.248	.154	.168	.171	.177	195	008	~.049	076	027
50	3	.217	.151	.167	.159	.169	156	003	063	048	000
50	4	.206	.149	.171	.156	.165	143	000	077	043	.005
50	5	.201	.149	.174	.155	.163	135	.006	086	039	.007
100	1	.318	.111	.128	.222	.214	- 298	003	016	193	168
100	2	.195	.107	.117	.118	.123	163	005	032	052	027
100	3	.161	.105	.116	.108	.115	122	003	043	026	002
100	4	.145	.103	.117	.105	.113	102	.001	049	017	.007
100	5	.137	.102	.119	.104	.111	091	.005	056	013	.010

Table 6: RMSE and BIAS of the entropy estimators for the exponential power distribution EPD(p) with $p=.5\,$

	-			RMSE					BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	1.204	.775	.818	1.067	1.013	937	170	293	753	093
5	2	1.162	.739	.789	.977	.898	927	233	368	673	046
10	1	.774	.512	.573	.670	.630	583	064	220	438	152
10	2	.678	.501	.586	.570	.587	459	046	334	258	.099
10	3	.675	.507	.609	.570	.713	446	025	392	216	.312
10	4	.717	.527	.631	.601	.969	488	031	411	238	.490
15	1	.628	.408	.467	.534	.509	479	043	184	348	170
15	2	.510	.388	.478	.423	.440	330	011	278	158	.008
15	3	.496	.408	.526	.427	.469	284	.026	355	091	.103
15	4	.485	.425	.542	.438	.533	246	.080	389	032	.246
15	5	.499	.446	.557	.460	.666	247	.106	410	012	.413
20	1	.546	.345	.395	.456	.436	423	028	147	299	169
20	2	.432	.335	.413	.357	.371	273	001	237	117	013
20	3	.407	.347	.456	.354	.386	216	.037	306	048	.037
20	4	.393	.358	.488	.360	.396	181	.080	360	.001	.091
20	5	.395	.387	.515	.384	.439	150	.127	394	.049	.178
50	1	.396	.215	.246	.308	.294	333	012	082	222	170
50	2	.280	.204	.251	.215	.224	192	005	139	067	032
50	3	.252	.207	.283	.209	.222	144	.009	190	025	012
50	4	.235	.212	.307	.211	.223	108	.035	226	.008	004
50	5	.224	.219	.333	.217	.226	078	.063	261	.039	002
100	1	.337	.150	.169	.246	.239	302	006	048	196	170
100	2	.220	.145	.173	.154	.159	166	007	089	052	034
100	3	.185	.146	.188	.147	.154	114	.005	116	013	005
100	4	.170	.146	.205	.146	.153	089	.015	144	.004	001
100	5	.161	.148	.224	.148	.153	069	.027	170	.019	001

Table 7: RMSE and BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=1

				RMSE					BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	1.119	.620	.663	.972	.879	948	181	242	771	168
5	2	1.079	.577	.625	.878	.694	946	253	316	710	150
10	1	.725	.402	.462	.610	.556	610	090	184	469	170
10	2	.644	.384	.459	.509	.461	530	117	273	350	.012
10	3	.665	.388	.489	.519	.495	557	135	330	362	.112
10	4	.716	.394	.504	.554	.590	619	162	361	412	.153
15	1	.580	.310	.366	.474	.431	493	056	142	365	171
15	2	.479	.294	.370	.367	.351	383	065	224	226	007
- 15	3	.475	.299	.402	.364	.353	374	065	280	210	.053
15	4	.488	.296	.429	.370	.366	394	067	323	219	.111
15	5	.516	.303	.449	.389	.415	424	071	351	238	.175
20	1	.518	.268	.321	.416	.381	446	050	131	324	182
20	2	.406	.253	.321	.305	.296	321	050	196	177	021
20	3	.385	.248	.349	.289	.291	297	044	247	151	.028
20	4	.390	.253	.381	.295	.297	299	039	291	148	.053
- 20	5	.401	.256	.404	.302	.314	310	032	323	150	.091
50	1	.377	.161	.196	.281	.262	341	021	070	231	175
50	2	.259	.151	.196	.175	.176	212	025	119	091	035
50	3	.230	.152	.218	.164	.170	173	020	154	062	007
50	4	.216	.150	.238	.159	.167	155	013	185	050	.003
50	5	.208	.151	.258	.158	.171	143	001	210	040	.010
100	1	.331	.113	.137	.234	.222	311	016	047	206	177
100	2	.204	.107	.135	.123	.125	174	016	075	062	035
100	3	.169	.106	.146	.111	.116	132	012	098	034	008
100	4	.152	.104	.159	.107	.114	111	008	120	024	002
100	5	.145	.104	.176	.106	.112	102	005	142	021	000

Table 8: RMSE and BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=2, i.e. for the normal distribution N(0,.5)

				RMSE			l		BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	1.044	.526	.569	.892	.829	914	147	172	739	208
5	2	1.002	.472	.516	.795	578	910	216	241	679	174
10	1	.677	.329	.379	.557	.504	596	077	125	458	175
10	2	.594	.300	.355	.451	.387	525	112	196	355	015
10	3	.620	.300	.365	.466	.378	560	139	230	382	.009
10	4	.667	.303	.379	.498	.392	614	157	254	426	.014
15	1	.545	.250	.304	.435	.392	487	051	105	361	168
15	2	.451	.236	.285	.330	.302	391	073	160	243	015
15	3	.453	.234	.302	.330	.283	398	089	201	248	.019
15	4	.473	.232	.316	.344	.280	424	097	229	270	.042
15	5	.504	.235	.331	.366	.293	458	105	246	297	.060
20	1	.479	.210	.257	.373	.333	432	037	085	312	167
20	2	.374	.192	.241	.263	.244	326	054	140	187	020
20	3	.362	.190	.257	.255	.235	314	060	177	178	.021
20	4	.374	.190	.278	.264	.232	329	069	207	193	.036
20	5	.397	.196	.297	.283	.236	353	- 076	231	215	.046
50	1	.358	.126	.161	.258	.238	335	015	050	226	169
50	2	.236	.115	.148	.143	.143	207	021	085	089	025
50	3	.203	.109	.156	.126	.132	171	018	107	065	.008
50	4	.195	.110	.173	.126	.131	162	019	131	063	.017
50	5	.193	.110	.187	.128	.132	160	018	151	066	.023
100	1	.316	.088	.113	.216	.205	304	008	032	198	170
100	2	.185	.079	.101	.096	.099	167	009	052	056	025
100	3	.148	.076	.106	.082	.089	128	009	071	031	.002
100	4	.134	.075	.116	.079	.087	111	008	086	026	.010
100	5	.127	.075	.126	.080	.087	102	006	100	025	.013

Table 9: RMSE and BIAS of the entropy estimators for the exponential power distribution EPD(p) with p=5

				RMSE					BIAS		
n	m	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$	$V_{m,n}$	$V'_{m,n}$	$E_{m,n}$	$C_{m,n}$	$C'_{m,n}$
5	1	.968	.453	.509	.813	.790	860	093	103	686	216
5	2	.895	.381	.429	.687	.482	820	127	132	588	128
10	1	.638	.271	.326	.514	.473	581	062	081	444	188
10	2	.540	.228	.269	.392	.334	497	085	113	331	054
10	3	.557	.220	.269	.397	.312	521	100	132	346	041
10	4	.603	.226	.280	.430	.298	571	113	144	384	058
15	1	.516	.201	.256	.401	.364	476	040	063	351	175
15	2	.415	.174	.211	.285	.254	382	063	101	235	039
15	3	.417	.172	.214	.287	.230	388	079	121	243	019
15	4	.438	.171	.220	.303	.216	412	085	133	265	020
15	5	.467	.171	.227	.324	.213	444	091	138	291	024
20	1	.460	.170	.222	.349	.315	428	033	060	308	172
20	2	.351	.149	.184	.232	.211	322	050	092	186	030
20	3	.339	.141	.180	.224	.187	314	060	109	184	007
20	4	.353	.144	.192	.238	.179	330	070	126	202	004
20	5	.373	.145	.198	.253	.171	352	075	132	222	005
50	1	.348	.099	.138	.244	.226	333	013	035	225	170
50	2	.222	.083	.110	.120	.118	207	020	056	089	024
50	3	.193	.081	.112	.107	.105	177	024	072	073	.002
50	4	.187	.080	.120	.108	.102	172	029	088	077	.009
50	5	.188	.080	.126	.112	.100	172	031	096	083	.014
100	1	.310	.068	.096	.208	.197	303	007	023	198	169
100	2	.177	.057	.075	.080	.082	168	009	037	057	026
100	3	.142	.055	.078	.065	.071	132	013	051	037	.000
100	4	.127	.053	.082	.061	.068	116	013	060	033	.009
100	5	.121	.052	.087	.062	.067	110	014	069	035	.012

BIBLIOGRAPHY

- Arizono I., Ohta H. (1989), "A Test for Normality Based on Kullback-Leibler Information", *Amer. Statist.* 43, 20-22.
- Berdnikov A.S., Compagner A., Turtia S.B. (1996), "A MathLink Program for High-Quality Random Numbers", *The Mathematica Journal* 6(3), 65-69.
- Correa J.C. (1995), "A New Estimator of Entropy", Commun. Statist.-Theory Meth. 24, 2439-2449.
- Dudewicz E.J., van der Meulen E.C., SriRam M.G., Teoh N.K.W. (1995), "Entropy-Based Random Number Evaluation", Amer. J. Math. Management Sci. 15, 115-153.
- Efron B. (1982), The Jackknife, the Bootstrap and Other Resampling Plans, CBMS Monogr. No. 38, Siam, Philadelphia.
- Gray H.L., Schucany W.R. (1972), *The Generalized Jacknife Statistic*, Marcel Dekker, New York.
- Grzegorzewski P., Wieczorkowski R. (1998), "Entropy-Based Goodness-of-Fit Test for Exponentiality", submitted for publication.
- Quenouille M.H. (1949), "Approximate Tests of Correlation in Time Series", J. Roy. Statist. Soc. B 11, 68-84.
- Quenouille M.H. (1956), "Notes on Bias in Estimation", *Biometrika* 43, 353-360.
- Shannon C.E. (1948), "A Mathematical Theory of Communication", Bell. System Tech. J. 27, 379-423, 623-656.
- Sherman M. (1997), "Comparing the Sample Mean and the Sample Median: An Exploration in the Exponential Power Family", *The American Statistician* 51, 52-54.

van Es B. (1992), "Estimating Functionals Related to a Density by a Class of Statistics Based on Spacings", Scan. J. Statist. 19, 61-72.

Vasicek O. (1976), "A Test for Normality Based on Sample Entropy", J. Roy. Statist. Soc. Ser. B, 38, 54-59.

Received September, 1998; Revised January, 1999.