

第七讲 函数性质的应用

- **例1.** 已知函数 $f(x) = x^3 + \log_2(\sqrt{x^2 + 1} + x)$.
 - (1) 判断 f(x) 的奇偶性.
 - (2) 对于实数 a,b,若 a+b>0,求证: f(a)+f(b)>0.

解: (1) 注意 f(x) 的定义域为 \mathbb{R} .

且
$$f(-x) = -x^3 + \log_2(\sqrt{x^2 + 1} - x) = -x^3 + \log_2\frac{1}{\sqrt{x^2 + 1} + x} = -x^3 - \log_2(\sqrt{x^2 + 1} + x) = -f(x)$$
. 故 $f(x)$ 为奇函数.

(2) 当 $x \ge 0$ 时,可得 f(x) 单调递增.

对任意 $x_1 < x_2 \le 0$,有 $-x_1 > -x_2 \ge 0$,故 $f(x_1) = -f(-x_1) < -f(-x_2) = f(x_2)$.

于是 f(x)在 $(-\infty,0]$ 上单调递增. 所以 f(x)在 \mathbb{R} 上单调递增.

由a+b>0可得a>-b,于是f(a)>f(-b)=-f(b),所以f(a)+f(b)>0.

例2. 函数 $f(x) = |x^2 - a|$ 在区间 [-1,1] 内的最大值为 M(a),求 M(a)的最小值.

解: 由
$$f(1) = |1-a|$$
, $f(0) = |a|$,故 $M(a) \ge \max\{|1-a|,|a|\}$.于是 $M(a) \ge \frac{|1-a|+|a|}{2} \ge \frac{1}{2}|1-a+a| = \frac{1}{2}$. 取 $a = \frac{1}{2}$,注意 $y = x^2 - \frac{1}{2}$ 在区间 $[-1,1]$ 上的值域为 $\left[-\frac{1}{2},\frac{1}{2}\right]$,于是 $f(x) = \left|x^2 - \frac{1}{2}\right|$ 的最大值为 $\frac{1}{2}$. 综上可知 $M(a)$ 的最小值为 $\frac{1}{2}$.

例3. 若奇函数 f(x) 在 $[0,+\infty)$ 上递增,是否存在实数 m,使 $f(\cos 2\theta 3)+f4(m 2-mos\theta \theta)$ **》** ()对任意 实数 θ 恒成立?若存在,求出m的范围;若不存在,说明理由.

解:由例 1 结论,知题中不等式等价于 $\cos 2\theta - 3 + 4m - 2m \cos \theta > 0$.

变形可得
$$(2-t)m>2-t^2$$
,即 $m>\frac{2-t^2}{2-t}$ 在 $-1 \le t \le 1$ 时恒成立.
由 $\frac{2-t^2}{2-t}=2+t-\frac{2}{2-t}=4-(2-t)-\frac{2}{2-t}\le 4-2\sqrt{2}$,可得 m 的取值范围是 $\left(4-2\sqrt{2},+\infty\right)$.

例4. 函数 f(x) 满足 f(x+1) 的反函数恰为 $f^{-1}(x+1)$,且 f(1)=4007,求 f(1998).

解: 对 $y = f^{-1}(x+1)$, 其反函数为 $x = f^{-1}(y+1)$, 变形得 f(x) = y+1, 即 y = f(x)-1. 从而得到f(x+1)=f(x)-1. 再由f(1)=4007, 可得f(1998)=2010.

例5. 已知函数 f(x)满足:

①
$$f(0) = 0$$
;

②对任意
$$x, y \in (-\infty, -1) \cup (1, +\infty)$$
,都有 $f\left(\frac{1}{x}\right) + f\left(\frac{1}{y}\right) = f\left(\frac{x+y}{1+xy}\right)$;

③当
$$x \in (-1,0)$$
时,都有 $f(x) > 0$.

求证:
$$f\left(\frac{1}{19}\right) + f\left(\frac{1}{29}\right) + \dots + f\left(\frac{1}{n^2 + 7n + 11}\right) > f\left(\frac{1}{4}\right)$$
, 其中 n 为正整数.

解: 当
$$x, y \in (-\infty, -1) \cup (1, +\infty)$$
 时, $\frac{1}{x}, \frac{1}{y} \in (-1, 0) \cup (0, 1)$.
由条件②,可得 $x, y \in (-1, 0) \cup (0, 1)$ 时, $f(x) + f(y) = f\left(\frac{1}{x} + \frac{1}{y}\right)$ 由 数当 $x \in (-1, 0) \cup (0, 1)$ 时, $f(x) + f(-x) = f(0) = 0$.

再由条件①,可得 f(x) 在 (-1,1) 上是奇函数.

结合③, 可得
$$x \in (0,1)$$
时, $f(x) < 0$.

可得
$$f\left(\frac{1}{19}\right) + f\left(\frac{1}{29}\right) + \dots + f\left(\frac{1}{n^2 + 7n + 11}\right) = f\left(\frac{1}{4}\right) - f\left(\frac{1}{n + 4}\right) > f\left(\frac{1}{4}\right).$$

例6. 已知函数 $f(x)(0 \le x \le 1)$ 满足如下条件:

①
$$f(0) = f(1) = 0$$
;

②对任意
$$x$$
、 $y \in [0,1]$, $x \neq y$, 均有 $|f(x)-f(y)| < |x-y|$.

求证: 对任意
$$x, y \in [0,1]$$
, 均有 $|f(x) - f(y)| < \frac{1}{2}$.

证:
$$\forall x, y \in [0,1]$$
, 若 $|x-y| \le \frac{1}{2}$, 由条件②可得 $|f(x)-f(y)| < |x-y| \le \frac{1}{2}$, 命题成立.

$$|f(x)-f(y)| = |f(x)-f(0)+f(1)-f(y)| \le |f(x)-f(0)| + |f(1)-f(y)| < x+1-y=1-(y-x) < \frac{1}{2}.$$
 综上即可得证.

例7. 设函数 $f: \mathbb{N}^* \to \mathbb{N}^*$ 是严格递增的,且对每个 $n \in \mathbb{N}^*$,都有 f(f(n)) = kn ,这里 k 为给定的正整数. 求证: 对一切 $n \in \mathbb{N}^*$,都有 $\frac{2kn}{k+1} \le f(n) \le \frac{(k+1)n}{2}$.

证: 由
$$f(n)$$
严格递增,可得 $1 \le f(1) < f(2) < f(3) < \cdots < f(n) < \cdots$.

故比
$$f(n)$$
小的正整数至少有 $n-1$ 个,于是 $f(n) \ge n$.

对任意
$$m > n$$
,由 $f(n) < f(n+1) < f(n+2) < \dots < f(m)$,可得 $f(m) - f(n) \ge m - n$.

所以
$$f(f(n)) - f(n) \ge f(n) - n$$
 , 于是 $2f(n) \le n + f(f(n)) = (k+1)n$, 即 $f(n) \le \frac{(k+1)n}{2}$. 再由 $kn = f(f(n)) \le \frac{k+1}{2} f(n)$,整理可得 $f(n) \ge \frac{2kn}{k+1}$.

再由
$$kn = f(f(n)) \le \frac{k+1}{2} f(n)$$
, 整理可得 $f(n) \ge \frac{2kn}{k+1}$