Statistical Inference (EECE5612) Spring 2022

Homework 3 (Assigned Feb. 9, due Feb 16, 2022.)

Objective: The objective of this exercise is to study the Neyman-Pearson detection principle.

Task:

- Consider the following detection problem: The observation y of a random variable Y is known to contain a signal in noise. The signal either equals A_0 , or it equals $A_1 > A_0$. The noise is zero-mean Gaussian of known variance σ_Z^2 .
 - (i) Develop the Neyman-Pearson detection rule.
 - (ii) Determine the probability of correct detection as a function of the probability of false alarm.
- Use Matlab to generate 10,000 detection trials, with A_0 occurring with probability $P_0=0.3$ (and A_1 occurring with probability $P_1=0.7$). Set the noise variance to $\sigma_Z^2=1$, and the signal values such that $SNR_0=\frac{A_0^2}{\sigma_Z^2}$ is 10 dB and $SNR_1=\frac{A_1^2}{\sigma_Z^2}$ is 15 dB.
 - (i) Set the desired probability of false alarm to $P_{fa}^* = 10\%$. Count the instances of correct detection and estimate the probability of correct detection.
 - (ii) Repeat for different values of P_{fa}^* , ranging from 0 to 100 % in steps of 10%. Plot the estimated probability of correct detection vs. the probability of false alarm. Plot the theoretical ROC on the same graph. Comment on the result.
 - (iii) Estimate the actual probability of false alarm, and plot it against the design value P_{fa}^* . Comment on the result.

Reporting: Your report should be typed, and not exceed two single-sided pages. It should be written in a professional manner. Figures and mathematical expressions should be used whenever meaningful. Figures should always have axes labeled in appropriate units (e.g. time [s], time [ms], frequency [Hz], frequency [kHz], SNR or SNR [dB], etc.). Include any Matlab code as an appendix. Please put your name on top of the report.