Quarto Set Up, Descriptive Statistics and Hypotheses Testing

Yimeng (Amy) CHENG

Department of Psychology, University of Chicago

Author Note

Yimeng (Amy) CHENG (D) https://orcid.org/0009-0007-1238-3749

The authors declare no conflict of interest.

Correspondence concerning this article should be addressed to Yimeng (Amy) CHENG, Department of Psychology, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60615, USA, Email: yimengcheng@uchicago.edu

Abstract

This assessment uses the math anxiety dataset to perform various statistical analyses and hypotheses testing.

Keywords: Math Anxiety, Cognitive Concerns, Perfectionism, Statistical Anxiety

Quarto Set Up, Descriptive Statistics and Hypotheses Testing Table of contents

Quarto Set Up, Descriptive Statistics and Hypotheses Testing Objective

The objective of this assignment is to practice using R to calculate and interpret descriptive statistics. Unlike in previous assignments, you will not use a built-in dataset. Instead, you will use data from a published, open-access dataset capturing relationships between math anxiety and self-perception:

Mackinnon, S. P., McCaughey, N., & Hill, T. G. (2024, July 25). The Association of Self-Efficacy, Anxiety Sensitivity, and Self-Critical Perfectionism with Statistics and Math Anxiety. https://doi.org/10.17605/OSF.IO/NZHQ6

You can access the full dataset and codebook here. The data you will need is included in the .csv file within this project's directory.

Before you begin diving into the data summary, you should take some time to familiarize yourself with the dataset, including the different categories of variables and how they can be interpreted.

Set Up

Read in the data

Run this chunk to read in the dataset and view the first few rows:

A tibble: 6 x 97

	id	<pre>program.type</pre>	age	ethnicity.r	major	dal.course.code	se.1	se.2	se.3
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1.25e10	0	21	White	Psyc~	PSYO 2501, STA~	4	3	4
2	1.25e10	0	22	Middle Eas~	Biol~	STAT 1060	5	5	5
3	1.25e10	0	16	Black	Acti~	<na></na>	4	5	5
4	1.25e10	0	19	White	Phar~	<na></na>	5	4	4
5	1.25e10	0	18	White	Unde~	STAT 1060	4	3	4
6	1.25e10	0	19	White	neur~	stat 1060	4	4	3

\$ asi.4

```
# i 88 more variables: se.4 <dbl>, se.5 <dbl>, se.6 <dbl>, se.7 <dbl>,
    se.8 <dbl>, asi.1 <dbl>, asi.2 <dbl>, asi.3 <dbl>, asi.4 <dbl>,
#
#
    asi.5 <dbl>, asi.6 <dbl>, asi.7 <dbl>, asi.8 <dbl>, asi.9 <dbl>,
    asi.10 <dbl>, asi.11 <dbl>, asi.12 <dbl>, asi.13 <dbl>, asi.14 <dbl>,
#
    asi.15 <dbl>, asi.16 <dbl>, asi.17 <dbl>, asi.18 <dbl>, pc.1 <dbl>,
#
    pc.2 <dbl>, pc.3 <dbl>, psp.1 <dbl>, psp.2 <dbl>, psp.3 <dbl>,
    frost.ps.1 <dbl>, frost.ps.2 <dbl>, frost.ps.3 <dbl>, frost.ps.4 <dbl>, ...
#
     Examine the structure of the df. Take note of data types and review factor levels.
spc tbl [453 x 97] (S3: spec tbl df/tbl df/tbl/data.frame)
                  : num [1:453] 1.25e+10 1.25e+10 1.25e+10 1.25e+10 ...
$ id
$ program.type : num [1:453] 0 0 0 0 0 0 0 0 0 ...
$ age
                 : num [1:453] 21 22 16 19 18 19 21 19 18 28 ...
$ ethnicity.r : chr [1:453] "White" "Middle Eastern" "Black" "White" ...
$ major
                  : chr [1:453] "Psychology" "Biology" "Acting" "Pharmacy" ...
$ dal.course.code: chr [1:453] "PSYO 2501, STAT 1060" "STAT 1060" NA NA ...
$ se.1
                  : num [1:453] 4 5 4 5 4 4 4 4 5 ...
$ se.2
                 : num [1:453] 3 5 5 4 3 4 4 4 3 5 ...
$ se.3
                  : num [1:453] 4 5 5 4 4 3 4 5 4 5 ...
$ se.4
                  : num [1:453] 4 4 5 5 4 5 4 4 4 5 ...
$ se.5
                  : num [1:453] 4 4 5 4 4 5 5 5 4 5 ...
$ se.6
                  : num [1:453] 4 5 5 4 4 5 5 4 4 5 ...
$ se.7
                  : num [1:453] 3 5 4 3 4 4 5 5 4 5 ...
$ se.8
                  : num [1:453] 3 3 5 3 4 4 3 5 3 5 ...
$ asi.1
                  : num [1:453] 4 3 5 5 4 5 3 2 4 4 ...
$ asi.2
                 : num [1:453] 3 4 3 1 4 5 5 1 2 2 ...
$ asi.3
                 : num [1:453] 5 4 5 3 3 5 4 2 4 2 ...
```

: num [1:453] 2 4 5 1 2 3 1 2 2 3 ...

```
$ asi.5
                 : num [1:453] 3 5 3 1 3 3 4 1 2 3 ...
$ asi.6
                 : num [1:453] 5 4 5 2 4 5 1 1 1 1 ...
$ asi.7
                 : num [1:453] 5 1 3 2 4 2 2 3 1 2 ...
$ asi.8
                 : num [1:453] 4 1 1 1 2 2 1 2 3 2 ...
$ asi.9
                 : num [1:453] 5 3 5 1 4 2 1 3 2 1 ...
$ asi.10
                 : num [1:453] 5 4 1 1 4 2 1 5 1 1 ...
$ asi.11
                 : num [1:453] 2 1 3 1 4 4 3 4 2 1 ...
$ asi.12
                 : num [1:453] 4 1 3 1 3 4 1 3 2 1 ...
$ asi.13
                 : num [1:453] 5 1 5 3 5 4 1 4 2 1 ...
$ asi.14
                 : num [1:453] 3 2 1 1 4 4 1 2 2 1 ...
$ asi.15
                 : num [1:453] 2 1 3 2 2 4 1 3 2 1 ...
$ asi.16
                 : num [1:453] 3 4 2 1 4 3 3 3 3 1 ...
$ asi.17
                 : num [1:453] 5 5 5 4 2 3 1 5 3 2 ...
$ asi.18
                 : num [1:453] 3 2 1 1 4 3 1 4 4 1 ...
$ pc.1
                 : num [1:453] 3 3 3 4 3 4 4 2 2 NA ...
$ pc.2
                 : num [1:453] 3 3 3 3 2 4 4 2 1 NA ...
$ pc.3
                 : num [1:453] 3 3 3 3 3 4 4 2 2 2 ...
$ psp.1
                 : num [1:453] 7 7 6 6 7 7 7 5 4 1 ...
                 : num [1:453] 7 7 7 3 7 7 7 5 3 1 ...
$ psp.2
$ psp.3
                 : num [1:453] 7 7 7 4 7 7 6 5 6 1 ...
                 : num [1:453] 5 4 4 4 4 5 4 2 2 1 ...
$ frost.ps.1
                 : num [1:453] 4 4 2 4 4 5 5 2 3 2 ...
$ frost.ps.2
                 : num [1:453] 3 4 3 3 4 5 5 2 2 3 ...
$ frost.ps.3
$ frost.ps.4
                 : num [1:453] 4 4 4 4 3 5 3 2 2 3 ...
$ frost.com.1
                 : num [1:453] 5 2 2 4 2 4 4 3 3 1 ...
$ frost.com.2
                 : num [1:453] 4 1 4 2 3 2 4 2 3 1 ...
$ frost.com.3
                 : num [1:453] 4 3 2 3 2 3 2 2 2 1 ...
```

```
$ frost.com.4
                 : num [1:453] 5 1 2 3 4 4 5 2 3 1 ...
$ frost.com.5
                 : num [1:453] 4 5 2 1 3 4 3 3 2 1 ...
$ frost.da.1
                 : num [1:453] 4 1 4 4 4 4 3 3 3 1 ...
                 : num [1:453] 3 1 4 1 4 4 4 2 4 3 ...
$ frost.da.2
$ frost.da.3
                 : num [1:453] 3 1 4 4 2 4 5 1 2 2 ...
$ frost.da.4
                 : num [1:453] 3 2 4 4 3 2 3 1 2 1 ...
                 : num [1:453] 4 3 3 2 4 3 4 NA 4 4 ...
$ stat.anx.1
$ stat.anx.2
                 : num [1:453] 5 1 1 3 4 5 5 NA 3 1 ...
$ stat.anx.3
                 : num [1:453] 4 1 3 1 3 3 3 NA 4 2 ...
$ stat.anx.4
                 : num [1:453] 5 4 5 2 5 5 4 NA 3 5 ...
$ stat.anx.5
                 : num [1:453] 5 4 5 2 5 5 5 NA 4 5 ...
$ stat.anx.6
                 : num [1:453] 3 1 3 1 3 5 2 NA 4 2 ...
$ stat.anx.7
                 : num [1:453] 5 1 1 2 4 2 5 3 3 1 ...
                 : num [1:453] 4 1 1 2 4 4 5 NA 2 1 ...
$ stat.anx.8
$ stat.anx.9
                 : num [1:453] 3 1 2 2 2 3 1 2 3 1 ...
$ stat.anx.10
                 : num [1:453] 3 1 2 2 2 2 1 NA 3 1 ...
$ stat.anx.11
                 : num [1:453] 2 1 2 2 1 2 1 3 4 1 ...
$ stat.anx.12
                 : num [1:453] 2 1 2 1 1 3 1 2 3 1 ...
$ stat.anx.13
                 : num [1:453] 4 1 2 3 2 5 1 3 3 1 ...
                 : num [1:453] 4 1 2 4 3 5 1 2 4 1 ...
$ stat.anx.14
                 : num [1:453] 4 1 2 2 2 1 1 2 3 1 ...
$ stat.anx.15
                 : num [1:453] 4 1 2 3 2 5 1 2 3 1 ...
$ stat.anx.16
$ math.anx.1
                 : num [1:453] 3 1 1 1 2 5 1 1 1 1 ...
$ math.anx.2
                 : num [1:453] 5 2 1 2 4 5 4 1 4 3 ...
$ math.anx.3
                 : num [1:453] 4 1 1 1 2 5 3 1 3 1 ...
$ math.anx.4
                 : num [1:453] 5 2 5 2 4 5 4 4 5 4 ...
$ math.anx.5
                 : num [1:453] 5 1 1 2 5 4 2 3 5 3 ...
```

```
$ math.anx.6
            : num [1:453] 3 1 1 1 3 2 3 1 3 1 ...
$ math.anx.7 : num [1:453] 4 1 1 1 2 3 3 1 4 1 ...
$ math.anx.8 : num [1:453] 5 2 5 3 5 5 5 4 5 3 ...
$ math.anx.9
               : num [1:453] 3 1 1 1 2 3 3 3 2 1 ...
                : num [1:453] 0 1 0 1 1 1 1 0 1 1 ...
$ faculty
$ stats
                : num [1:453] 0 0 0 0 1 1 0 0 1 0 ...
$ stats.history : num [1:453] 1 1 0 0 0 0 1 0 0 1 ...
$ gender.category: num [1:453] 1 1 0 0 1 1 1 1 1 1 ...
$ self.efficacy : num [1:453] 3.62 4.5 4.75 4 3.88 ...
               : num [1:453] 3.67 2 3.33 1.67 2.67 ...
$ asi.phys
$ asi.cog
                : num [1:453] 3.33 3.5 1.83 1 3.83 ...
$ asi.social
               : num [1:453] 4.33 2.83 4.67 2.67 3.83 ...
$ asi
                : num [1:453] 3.78 2.78 3.28 1.78 3.44 ...
$ perf.cog
               : num [1:453] 3 3 3 3.33 2.67 ...
               : num [1:453] 7 7 6.67 4.33 7 ...
$ perf.sp
                : num [1:453] 4 4 3.25 3.75 3.75 5 4.25 2 2.25 2.25 ...
$ frost.ps
                : num [1:453] 4.4 2.4 2.4 2.6 2.8 3.4 3.6 2.4 2.6 1 ...
$ frost.com
$ frost.da
                : num [1:453] 3.25 1.25 4 3.25 3.25 3.5 3.75 1.75 2.75 1.75 ...
$ stat.anx.tc
               : num [1:453] 4.67 3.67 4.33 2 4.67 ...
                : num [1:453] 3.67 1 2.33 1.33 3.33 ...
$ stat.anx.i
               : num [1:453] 5 1 1 2.5 4 3.5 5 3 3 1 ...
$ stat.anx.ah
               : num [1:453] 3.67 1 2 2.67 2 ...
$ stat.anx.ws
$ stat.anx.fst : num [1:453] 3.67 1 2 2.67 2.33 ...
$ stat.anx.sc : num [1:453] 2 1 2 1.5 1 2.5 1 2.5 3.5 1 ...
$ math.anx
                : num [1:453] 4.11 1.33 1.89 1.56 3.22 ...
- attr(*, "spec")=
 .. cols(
```

```
id = col double(),
. .
    program.type = col_double(),
. .
    age = col_double(),
. .
     ethnicity.r = col character(),
    major = col_character(),
. .
     dal.course.code = col_character(),
. .
    se.1 = col_double(),
. .
    se.2 = col_double(),
    se.3 = col_double(),
. .
    se.4 = col_double(),
    se.5 = col_double(),
    se.6 = col double(),
    se.7 = col_double(),
    se.8 = col_double(),
. .
    asi.1 = col_double(),
. .
    asi.2 = col_double(),
. .
    asi.3 = col_double(),
. .
    asi.4 = col double(),
. .
    asi.5 = col double(),
. .
    asi.6 = col_double(),
. .
    asi.7 = col_double(),
. .
    asi.8 = col_double(),
. .
    asi.9 = col_double(),
    asi.10 = col_double(),
. .
    asi.11 = col_double(),
. .
    asi.12 = col_double(),
. .
    asi.13 = col double(),
```

```
asi.14 = col_double(),
. .
    asi.15 = col_double(),
. .
     asi.16 = col_double(),
. .
    asi.17 = col double(),
    asi.18 = col_double(),
. .
    pc.1 = col_double(),
    pc.2 = col_double(),
    pc.3 = col_double(),
    psp.1 = col_double(),
. .
    psp.2 = col_double(),
    psp.3 = col_double(),
    frost.ps.1 = col double(),
     frost.ps.2 = col_double(),
     frost.ps.3 = col_double(),
. .
     frost.ps.4 = col_double(),
     frost.com.1 = col_double(),
     frost.com.2 = col_double(),
     frost.com.3 = col double(),
. .
     frost.com.4 = col_double(),
. .
     frost.com.5 = col_double(),
. .
     frost.da.1 = col_double(),
. .
     frost.da.2 = col_double(),
. .
     frost.da.3 = col_double(),
    frost.da.4 = col_double(),
. .
    stat.anx.1 = col_double(),
. .
    stat.anx.2 = col_double(),
. .
    stat.anx.3 = col double(),
```

```
stat.anx.4 = col_double(),
. .
     stat.anx.5 = col_double(),
. .
     stat.anx.6 = col_double(),
. .
    stat.anx.7 = col double(),
     stat.anx.8 = col_double(),
. .
     stat.anx.9 = col_double(),
. .
     stat.anx.10 = col_double(),
. .
    stat.anx.11 = col_double(),
     stat.anx.12 = col_double(),
. .
     stat.anx.13 = col double(),
    stat.anx.14 = col_double(),
    stat.anx.15 = col double(),
     stat.anx.16 = col_double(),
    math.anx.1 = col_double(),
. .
    math.anx.2 = col double(),
. .
    math.anx.3 = col_double(),
. .
    math.anx.4 = col_double(),
. .
    math.anx.5 = col double(),
. .
    math.anx.6 = col_double(),
. .
    math.anx.7 = col_double(),
. .
    math.anx.8 = col_double(),
. .
    math.anx.9 = col_double(),
. .
    faculty = col_double(),
     stats = col_double(),
. .
     stats.history = col_double(),
. .
    gender.category = col_double(),
. .
    self.efficacy = col double(),
```

```
asi.phys = col_double(),
      asi.cog = col double(),
      asi.social = col_double(),
  . .
      asi = col_double(),
      perf.cog = col_double(),
  . .
      perf.sp = col_double(),
      frost.ps = col_double(),
      frost.com = col_double(),
      frost.da = col_double(),
  . .
      stat.anx.tc = col_double(),
      stat.anx.i = col_double(),
      stat.anx.ah = col_double(),
      stat.anx.ws = col_double(),
      stat.anx.fst = col_double(),
      stat.anx.sc = col_double(),
      math.anx = col_double()
 ..)
- attr(*, "problems")=<externalptr>
$ethnicity.r
[1] "Asian" "Black"
                                        "Hispanic/Latinx" "Middle Eastern"
[5] "Mixed/Other" "White"
$major
  [1] "Acting"
  [2] "anthropology"
  [3] "Apllied Biochemistry"
  [4] "Applied Biology"
```

- [5] "Applied Computer Science"
- [6] "Applied Languages"
- [7] "Applied maths"
- [8] "Architecture"
- [9] "Aveiro University"
- [10] "Bachelor"
- [11] "Bachelor of Medical Sciences"
- [12] "Bachelor of Science Medical Science"
- [13] "Baltic Sea Region Studies"
- [14] "Biligy"
- [15] "Biochemestry"
- [16] "Biochemistry"
- [17] "Biochemistry & Molecular Biology"
- [18] "bioinformatic"
- [19] "biology"
- [20] "Biology"
- [21] "Biology (BSC)"
- [22] "Biology and Psychology"
- [23] "Biology/chemistry double major"
- [24] "Biomedical imaging"
- [25] "BSc Psych"
- [26] "Business & IT"
- [27] "bussiness"
- [28] "Chemical engineering"
- [29] "Chemistry"
- [30] "coding"
- [31] "cognitive science"

- [32] "Communication Sciences"
- [33] "comparative literature"
- [34] "computer science"
- [35] "Computer science"
- [36] "Computer Science"
- [37] "Computer Science and engineering"
- [38] "Computer Science and Engineering"
- [39] "comunication design-multimedia branch"
- [40] "Data science"
- [41] "Data Science"
- [42] "DDH and BDH"
- [43] "dentistry"
- [44] "double major in psychology and philosophy"
- [45] "Double major: Psychology and Sociology"
- [46] "Drawing"
- [47] "Economics"
- [48] "Economy administration"
- [49] "Electrical"
- [50] "Electrical Engineer"
- [51] "electrical engineering"
- [52] "Eletronics and Computer Science"
- [53] "Engineering"
- [54] "Engineering and Science of Data"
- [55] "Engineering Management"
- [56] "English and Psychology"
- [57] "Engraving and printmaking techniques"
- [58] "enineering"

- [59] "environmental health"
- [60] "European Economics Governance"
- [61] "Finance"
- [62] "Food Safety"
- [63] "Foreign Languages"
- [64] "French"
- [65] "Gap (Gestión y Administración Pública) Public administration on english"
- [66] "Geography"
- [67] "Graphic Design"
- [68] "history"
- [69] "Hull University"
- [70] "Human-Computer Interaction"
- [71] "Hydraulic engineering"
- [72] "industrial engineering"
- [73] "Industrial engineering"
- [74] "Industrial Engineering"
- [75] "Informatic"
- [76] "Information and library studies"
- [77] "Information Management"
- [78] "IT"
- [79] "kinesiology"
- [80] "Kinesiology"
- [81] "Languages and communication in international enterprises"
- [82] "Law"
- [83] "Law Justice and Society"
- [84] "Law, Justice, and Society"
- [85] "Linguistics"

- [86] "MA in European Studies"
- [87] "Majors in Psychology and Biology"
- [88] "management"
- [89] "Management"
- [90] "marine biology"
- [91] "Marine Biology"
- [92] "Marine Biolohgy"
- [93] "Marketing"
- [94] "Maste in Informatics Engineering"
- [95] "master"
- [96] "Masters Degree"
- [97] "Mathematics"
- [98] "Mechanical engineering"
- [99] "Mechanical Engineering"
- [100] "medical science"
- [101] "Medical Science"
- [102] "Medical Science/ Mechanical Engineering"
- [103] "medical sciences"
- [104] "Medical sciences"
- [105] "Medical Sciences"
- [106] "Medicine"
- [107] "Medicsl Science"
- [108] "Microbiology"
- [109] "Microbiology & Immunology"
- [110] "Microbiology and Immunology"
- [111] "Modern History"
- [112] "Msc Economics"

- [113] "neuro"
- [114] "neuroscience"
- [115] "Neuroscience"
- [116] "Neuroscience and Chemistry"
- [117] "Neursoscience"
- [118] "nursing"
- [119] "Nursing"
- [120] "Nutrition and dietetics"
- [121] "Open eGoverment"
- [122] "oriental languages and cultures"
- [123] "Pharmacy"
- [124] "Philosophy"
- [125] "Physicaltherapy"
- [126] "Physics"
- [127] "psych"
- [128] "psychology"
- [129] "Psychology"
- [130] "PSYCHOLOGY"
- [131] "Psychology (Planned)"
- [132] "Psychology and Biology"
- [133] "Psychology and History"
- [134] "psychology and neuroscience"
- [135] "psychology and sociology"
- [136] "Pure Mathematics and Law, Justice, and Society"
- [137] "Recreation Therapy"
- [138] "Science Education"
- [139] "Security and strategy studies"

- [140] "Social Psychology"
- [141] "Social Psychology and Psychology of Work"
- [142] "Sociology"
- [143] "Software and Data Engineering"
- [144] "Sustainability"
- [145] "Systems Engineering"
- [146] "tax economics"
- [147] "Textile Engineering"
- [148] "Therapeutic Recreation"
- [149] "Tribology"
- [150] "undecided"
- [151] "Undecided"
- [152] "undecided between oncologyst and psychiatrist"
- [153] "Undicided"
- [154] "UNIVERSITY JUAN CARLOS 1"
- [155] "University od Kazimeirz Wielki in Bydgoszcz, Poland"
- [156] "University Polytechnic of Valencia"
- [157] "Urban Planning and Policy Design"

\$dal.course.code

- [1] "1060, 2501"
- [2] "1060, 2501"
- [3] "2501"
- [4] "I have not yet, will next semester."
- [5] "MATH 1060"
- [6] "MATH1060"
- [7] "N/A"

- [8] "posy 2501 posy 3502"
- [9] "psyo 2501"
- [10] "Psyo 2501"
- [11] "PSYO 2501"
- [12] "PSYO 2501 STAT 1060"
- [13] "PSYO 2501, PSYO 3502"
- [14] "PSYO 2501, STAT 1060"
- [15] "PSYO 3502"
- [16] "psyo2501"
- [17] "PSY02501"
- [18] "PSY02501, STAT1060"
- [19] "PYSO2501"
- [20] "SCIE 1506"
- [21] "SCIE 1506, PSYO 2501"
- [22] "SCIE 1506: PSYO 2501"
- [23] "SCIE 1506; MATH 1215; PSYO 2501"
- [24] "STAT 0160, PSYO 2501"
- [25] "stat 1060"
- [26] "Stat 1060"
- [27] "STAT 1060"
- [28] "STAT 1060 & PSYO 2501"
- [29] "stat 1060 and psyo 2501"
- [30] "Stat 1060 and Psyo 2501"
- [31] "STAT 1060 and PSYO 2501"
- [32] "STAT 1060 and STAT 2080"
- [33] "STAT 1060 PSYO 2501"
- [34] "STAT 1060 PSY02501"

- [35] "STAT 1060, 2060, 2080"
- [36] "STAT 1060, PSYO 2080"
- [37] "stat 1060, psyo 2501"
- [38] "STAT 1060, PSYO 2501"
- [39] "STAT 1060, PSYO 2501, PSYO 3502"
- [40] "STAT 1060, PSYO 2501, STAT 2080,"
- [41] "STAT 1060, PSY02501, PSY03502,"
- [42] "STAT 1060, STAT 2060, PSYO 2501"
- [43] "STAT 1060, STAT 2060, STAT 2080, STAT 2450, PSYO 2501"
- [44] "STAT 1060, STAT 2080, and PSYO 2501"
- [45] "STAT 1060, STAT 2080, PSYO 2501"
- [46] "STAT 1060, STAT 2080, PSYO 2501, PSYO 3502"
- [47] "STAT 1060, STAT 2080, STAT 2450"
- [48] "STAT 1060, STAT 2501"
- [49] "STAT 1060, STAT2060, STAT 2080, PSYO 2501"
- [50] "STAT 1060; PSYO 2501"
- [51] "STAT 1060; PSY02501"
- [52] "STAT 1060; STAT 2080"
- [53] "STAT 1060; STAT 2501"
- [54] "STAT 2060"
- [55] "STAT 2080"
- [56] "stat 2080, psyo 2501"
- [57] "STAT 2080, STAT 1060, PSYO 2501"
- [58] "STAT 2501"
- [59] "Stat1060"
- [60] "STAT1060"
- [61] "STAT1060 & PSY02501"

```
[62] "STAT1060 and PSY02501"
[63] "Stat1060, 2060, 2080 PSY02501, 3502"
[64] "Stat1060, and psyo2501"
[65] "Stat1060, psyo 2501"
[66] "STAT1060, PSY0 2501, PSY0 3502"
[67] "STAT1060, PSY02501"
[68] "stat1060, stat 2080"
[69] "STAT1060, STAT2080, PSY02501"
[70] "STAT1060, STAT2501"
[71] "STAT1060; PSY02501"
[72] "STAT1060; PSY02501; ENGM2032"
[73] "Stats 1060, PSY0 2501"
[74] "Stats 1060/ENGM2032"
[75] "STATS 1060; PSY0 2501"
[76] "yes"
```

Data Preparation

Not all variables are currently the data type we'd like them to be. Based on what you see when you look at the structure of the df and using the data's codebook, which columns are not currently in the correct data type? What changes do you need to make?

Answer: Program type should not be numeric but should be factor. Id should also not be numeric but should be character.

In the chunk below, perform simple data cleaning to retype the columns as needed.

In an effort to simplify things at least a little, let's drop the columns that are item responses, keeping participant info and composite survey scores. Use the codebook to identify which columns are item responses, then modify the dataframe to drop those columns. We're assigning this to a new object, math.anx, to keep the original data intact.

Descriptive Statistics

Center and Spread

We can see basic summary statistics from the wide data (math.anx):

id		age	gender	category.		ethnicity.r
Length: 453	Min.	:16.00	Min.	:0.0000	Asian	: 41
Class :chara	cter 1st	Qu.:19.00	1st Qu	1.:0.0000	Black	: 9
Mode :chara	cter Medi	an :21.00	Mediar	1:1.0000	Hispani	c/Latinx: 13
	Mean	:21.96	Mean	:0.6954	Middle	Eastern : 26
	3rd	Qu.:23.00	3rd Qu	1.:1.0000	Mixed/C	ther : 17
	Max.	:53.00	Max.	:2.0000	White	:347
program.type		major		da.	l.course.	code
No :314	Psychology	: 78	STAT	1060	: 7	6
Yes:139	Neuroscien	ce : 50	STAT	1060, PSY	2501: 2	25
	undecided	: 48	PSY0	2501	: 1	9
	psychology	: 28	STAT1	.060	: 1	7
	Medical Sc	iences: 20	STAT	1060; PSY	2501: 1	0
	Undecided	: 18	(Othe	er)	:11	.0
	(Other)	:211	NA's		:19	6
faculty	st	ats	stats.h	nistory	self.eff	icacy
Min. :0.00	00 Min.	:0.0000	Min.	:0.0000	Min. :	1.000
1st Qu.:1.00	00 1st Qu	.:0.0000	1st Qu.	:0.0000	1st Qu.:	3.500
Median :1.00	00 Median	:0.0000	Median	:1.0000	Median :	4.000
Mean :0.99	78 Mean	:0.3296	Mean	:0.6887	Mean :	3.908
3rd Qu.:1.00	00 3rd Qu	.:1.0000	3rd Qu.	:1.0000	3rd Qu.:	4.375
Max. :2.00	00 Max.	:1.0000	Max.	:1.0000	Max. :	5.000

NA's :1

asi	.phys	asi	.cog	asi.	social	ā	asi		
Min.	:1.000	Min.	:1.000	Min.	:1.167	Min.	:1.056		
1st Qu	.:1.500	1st Qu	.:1.333	1st Qu	.:2.333	1st Qı	1.:1.833		
Median	:1.833	Median	:2.167	Median	:2.833	Mediar	ı :2.333		
Mean	:2.147	Mean	:2.276	Mean	:2.936	Mean	:2.452		
3rd Qu	.:2.833	3rd Qu	.:3.000	3rd Qu	.:3.500	3rd Qı	1.:3.000		
Max.	:5.000	Max.	:5.000	Max.	:5.000	Max.	:4.875		
per	f.cog	per	f.sp	fro	st.ps	frost	c.com	fro	st.da
Min.	:1.000	Min.	:1.000	Min.	:1.00	Min.	:1.00	Min.	:1.000
1st Qu	.:2.000	1st Qu	.:4.333	1st Qu	.:3.25	1st Qu	.:2.00	1st Qu	.:2.500
Median	:3.000	Median	:5.333	Median	:3.75	Median	:2.80	Median	:3.250
Mean	:2.833	Mean	:5.122	Mean	:3.66	Mean	:2.85	Mean	:3.146
3rd Qu	.:3.667	3rd Qu	.:6.333	3rd Qu	.:4.25	3rd Qu	:3.60	3rd Qu	.:4.000
Max.	:5.000	Max.	:7.000	Max.	:5.00	Max.	:5.00	Max.	:5.000
NA's	:7								
stat.	anx.tc	stat	.anx.i	stat.	anx.ah	stat	.anx.ws		
Min.	:1.000	Min.	:1.000	Min.	:1.000	Min.	:1.000		
1st Qu	.:3.333	1st Qu	.:2.000	1st Qu	.:2.000	1st Qı	1.:1.000		
Median	:3.667	Median	:2.667	Median	:3.000	Mediar	ı:1.667		
Mean	:3.670	Mean	:2.738	Mean	:3.176	Mean	:1.792		
3rd Qu	.:4.333	3rd Qu	.:3.333	3rd Qu	.:4.000	3rd Qu	1.:2.000		
Max.	:5.000	Max.	:5.000	Max.	:5.000	Max.	:5.000		
NA's	:3	NA's	:2	NA's	:1	NA's	:1		
stat.	anx.fst	stat.	anx.sc	mat	h.anx				
Min.	:1.000	Min.	:1.000	Min.	:1.000				
1st Qu	.:1.333	1st Qu	.:1.000	1st Qu	.:2.000				

```
Median :2.000
               Median :2.000
                              Median :2.556
      :2.095
                      :2.048
                                     :2.614
Mean
               Mean
                              Mean
               3rd Qu.:2.625
3rd Qu.:2.667
                               3rd Qu.:3.222
                      :5.000
      :5.000
                                     :5.000
Max.
               Max.
                              Max.
NA's :3
               NA's :1
                               NA's
                                     :2
```

But that's kind of a mess, and it doesn't let us use the summary statistics for any purpose beyond just looking at them. We can use the long version to calculate summary statistics for each survey score.

The dataset is not currently in a tidy format, at least not for our purposes. The survey scores are spread across multiple columns. If we want to use a survey score as a grouping variable or calculate summary statistics, we need to reshape the data so that each survey score is in a single column.

Now pivot the data so that the survey scores are in a single column. You'll want to retain the participant information in the long format as well.

```
# A tibble: 6 x 13
```

	id	age	<pre>gender.category</pre>	ethnicity.r	<pre>program.type</pre>	major	dal.course.d	code
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	
1	12490341~	21	1	White	No	Psyc~	PSYO 2501, S	STA~
2	12490341~	21	1	White	No	Psyc~	PSYO 2501, S	STA~
3	12490341~	21	1	White	No	Psyc~	PSYO 2501, S	STA~
4	12490341~	21	1	White	No	Psyc~	PSYO 2501, S	STA~
5	12490341~	21	1	White	No	Psyc~	PSYO 2501, S	STA~
6	12490341~	21	1	White	No	Psyc~	PSYO 2501, S	STA~

i 6 more variables: faculty <dbl>, stats <dbl>, stats.history <dbl>,

self.efficacy <dbl>, Survey Type <chr>, Score <dbl>

With the data in a tidy format, we can both calculate summary statistics and visualize the

data more easily. Let's start with summarizing mean, median, sd, min/max, and range:

id	age	gender.category	ethnicity.r	
Length:7248	Min. :16.00	Min. :0.0000	Asian : 656	
Class :character	1st Qu.:19.00	1st Qu.:0.0000	Black : 144	
Mode :character	Median :21.00	Median :1.0000	Hispanic/Latinx: 208	
	Mean :21.96	Mean :0.6954	Middle Eastern : 416	
	3rd Qu.:23.00	3rd Qu.:1.0000	Mixed/Other : 272	
	Max. :53.00	Max. :2.0000	White :5552	

program.type	maj	jor	d	lal.course.code
No :5024	Psychology	:1248	STAT 1060	:1216
Yes:2224	Neuroscience	: 800	STAT 1060, PS	SYO 2501: 400
	undecided	: 768	PSYO 2501	: 304
	psychology	: 448	STAT1060	: 272
	Medical Sciences	s: 320	STAT 1060; PS	SYO 2501: 160
	Undecided	: 288	(Other)	:1760
	(Other)	:3376	NA's	:3136
faculty	stats	st	ats.history	self.efficacy

	J				<i>j</i>		
Min.	:0.0000	Min.	:0.0000	Min.	:0.0000	Min.	:1.000
1st Qu.	:1.0000	1st Qu	:0.0000	1st Qu.	:0.0000	1st Qu	:3.500
Median	:1.0000	Median	:0.0000	Median	:1.0000	Median	:4.000
Mean	:0.9978	Mean	:0.3296	Mean	:0.6887	Mean	:3.908
3rd Qu.	:1.0000	3rd Qu	:1.0000	3rd Qu.	:1.0000	3rd Qu	:4.375
Max.	:2.0000	Max.	:1.0000	Max.	:1.0000	Max.	:5.000

NA's :16

Survey_Type Score

Length:7248 Min. :1.000

Class:character 1st Qu.:1.889

Mode :character Median :2.750

Mean :2.847

3rd Qu.:3.667

Max. :7.000

NA's :20

A tibble: 16 x 7

	Survey_Type	Mean	Median	SD	Min	Max	Range
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	asi	2.45	2.33	0.794	1.06	4.88	3.82
2	asi.cog	2.28	2.17	1.02	1	5	4
3	asi.phys	2.15	1.83	0.955	1	5	4
4	asi.social	2.94	2.83	0.920	1.17	5	3.83
5	frost.com	2.85	2.8	0.980	1	5	4
6	frost.da	3.15	3.25	1.01	1	5	4
7	frost.ps	3.66	3.75	0.816	1	5	4
8	math.anx	2.61	2.56	0.874	1	5	4
9	perf.cog	2.83	3	0.928	1	5	4
10	perf.sp	5.12	5.33	1.43	1	7	6
11	stat.anx.ah	3.18	3	1.25	1	5	4
12	stat.anx.fst	2.09	2	0.894	1	5	4
13	stat.anx.i	2.74	2.67	0.999	1	5	4
14	stat.anx.sc	2.05	2	1.14	1	5	4
15	stat.anx.tc	3.67	3.67	0.966	1	5	4
16	stat.anx.ws	1.79	1.67	0.807	1	5	4

There's a problem with the summary statistics above. Missing values for some scores for some participants mean that the summary calculations are also missing. In some cases that may

be what we want, but in this case we have enough data that we can just ignore missing values.

As for some reason I just could not load flextable, I will use kableExtra instead to create APA formatted table.

44	٨	tibble	10		7
#	А	ьтррте	10	Х	- /

	Survey_Type	Mean	Median	SD	Min	Max	Range
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	asi	2.45	2.33	0.79	1.06	4.88	3.82
2	asi.cog	2.28	2.17	1.02	1	5	4
3	asi.phys	2.15	1.83	0.95	1	5	4
4	asi.social	2.94	2.83	0.92	1.17	5	3.83
5	frost.com	2.85	2.8	0.98	1	5	4
6	frost.da	3.15	3.25	1.01	1	5	4
7	frost.ps	3.66	3.75	0.82	1	5	4
8	math.anx	2.61	2.56	0.87	1	5	4
9	perf.cog	2.83	3	0.93	1	5	4
10	perf.sp	5.12	5.33	1.43	1	7	6
11	stat.anx.ah	3.18	3	1.25	1	5	4
12	stat.anx.fst	2.09	2	0.89	1	5	4
13	stat.anx.i	2.74	2.67	1	1	5	4
14	stat.anx.sc	2.05	2	1.14	1	5	4
15	stat.anx.tc	3.67	3.67	0.97	1	5	4
16	stat.anx.ws	1.79	1.67	0.81	1	5	4

We can also visualize the data to get a better sense of the distribution of scores. Let's start with a histogram of the math anxiety scores.

Extra step: Math Anxiety vs. Statistics Anxiety Scores

Now generate a violin plot of all the survey scores to see differences in distributions across surveys.

Trying to use facets in creating violin plots

Survey Type

Distribution of Anxiety Scores Across Surveys

Comparing different types of anxiety and performance-related scores

I will summarize Math Anxiety Scores and include an additional measure (Interquartile Range, IQR).

1. Create a summary by program type and survey type

A tibble: 32 x 9

	`Program Type`	`Survey Type`	Mean	Median	SD	Min	Max	Range	IQR
	<fct></fct>	<chr></chr>	<dbl></dbl>						
1	No	Asking for help	3.24	3	1.28	1	5	4	2.5

2	No	Cognitive concerns	2.24	2.17	1.02	1	5	4	1.67
3	No	Computational Self~	2.11	2	1.17	1	5	4	2
4	No	Concern Over Mista~	2.93	3	0.99	1	5	4	1.4
5	No	Doubt about Actions	3.13	3.25	1.04	1	5	4	1.5
6	No	Fear of Statistics	2.1	2	0.88	1	5	4	1.33
7	No	Global ASI	2.42	2.33	0.79	1.06	4.56	3.5	1.17
8	No	Interpretation	2.88	3	1.01	1	5	4	1.67
9	No	Math Anxiety	2.74	2.67	0.89	1	5	4	1.33
10	No	Perfectionism Cogn~	2.67	2.67	0.84	1	4	3	1.33

i 22 more rows

2. Create a Violin Plot for Score Distribution by program type

3. Create a Box-plot Using the Summarized Data

Briefly describe what you see in the figures and tables you created. What do the summary statistics tell you about the data? What do the visualizations tell you about the data? What patterns do you see? Are there any other variables you think would be interesting to look at? Do the descriptives give you any ideas for interesting research questions to ask of these data?

In your answer below, use Quarto markdown references to the tables and figures you created. You can refer to the d2mr-apaquarto repository for examples of how to do this.

Descriptive Analysis of Survey Scores by Program Type

Summary Statistics Overview

The summary statistics presented in Table ?@tbl-summary-stats provide a numerical overview of survey scores across different program types. We see that the mean values across survey types range between 2 and 4, with standard deviations around 0.8 to 1.3. The interquartile range (IQR) highlights some variation in score distributions, suggesting potential differences in how students from different programs experience these anxiety and performance-related factors.

Visualization Insights

The boxplots (Figure (?)) and violin plots (Figure (?)) offer a clearer depiction of score distributions.

Boxplots reveal that while median scores are similar between STEM and Non-STEM students, the spread of scores varies. Some survey types, such as "Asking for Help" and "Perfectionism Concern," exhibit more variability, particularly within STEM students.

Violin plots provide additional insights into the density of scores, showing that for certain survey types (e.g., "Fear of Statistics," "Math Anxiety"), there is a higher concentration of students reporting lower scores, while in other areas, scores are more evenly distributed.

Emerging Patterns

STEM vs. Non-STEM Differences

STEM students tend to have slightly lower self-reported anxiety levels in some domains (e.g., "Doubt in Abilities"), but the variability is larger in others (e.g., "Fear of Statistics").

Correlation

Now that we have a better sense of the distribution of the survey scores, let's look at the relationships between them. We can start by calculating the correlation matrix for the survey scores.

```
# Create a matrix-like object of only survey scores (use the wide data)

# Convert long format to wide format (each survey type as a column)

survey_wide <- math.anx %>%

select(id, Survey_Type, Score) %>%

pivot_wider(names_from = Survey_Type, values_from = Score)

# Remove ID column (only keep numeric survey scores)

survey_scores_only <- survey_wide %>% select(-id)
```

Physical concerns

```
# Calculate the correlation matrix for the survey scores using `cor()`
cor_matrix <- cor(survey_scores_only, use = "pairwise.complete.obs")
# Print the correlation matrix
print(cor_matrix)</pre>
```

	Physical	l concerns	Cognitive	concerns
Physical concerns	:	1.00000000		0.6104022
Cognitive concerns	(0.61040216		1.0000000
Social concerns	(0.42791870		0.4956596
Global ASI	(0.82894000		0.8634367
Perfectionism Cognitions	(0.16369919		0.2732041
Perfectionism Self-Presentation	(0.20709222		0.2685102
Perfectionism Personal Standard	(0.09021988		0.1355116
Concern Over Mistakes	(0.35952255		0.4502603
Doubt about Actions	(0.30020636		0.4592351
Test and Class Anxiety	(0.17721312		0.1796388
Interpretation	(0.21965993		0.2484067
Asking for help	(0.22701725		0.2511848
Worth of Statistics	(0.15488534		0.0344268
Fear of Statistics	(0.16790178		0.1302702
Computational Self-concept	(0.23987004		0.2037421
Math Anxiety	(0.27357472		0.3188073
	Social o	concerns Gl	obal ASI	

0.42791870 0.8289400

Cognitive concerns	0.49565959 0.86343	367	
Social concerns	1.00000000 0.76946	573	
Global ASI	0.76946731 1.00000	000	
Perfectionism Cognitions	0.25910804 0.28265	583	
Perfectionism Self-Presentation	0.49308778 0.38869	977	
Perfectionism Personal Standard	0.18086165 0.16386	511	
Concern Over Mistakes	0.43035140 0.50480	39	
Doubt about Actions	0.38014927 0.46625	523	
Test and Class Anxiety	0.23322814 0.23721	17	
Interpretation	0.18440695 0.26637	37	
Asking for help	0.31693391 0.32014	159	
Worth of Statistics	0.07629927 0.10694	111	
Fear of Statistics	0.06953729 0.15009	91	
Computational Self-concept	0.14855479 0.24277	754	
Math Anxiety	0.26011814 0.34643	399	
	Perfectionism Cognitions	3	
Physical concerns	0.1636991913	3	
Cognitive concerns	0.2732041013		
Social concerns	0.2591080409)	
Global ASI	0.2826583229		
Perfectionism Cognitions	1.000000000		
Perfectionism Self-Presentation	0.2664517224		
Perfectionism Personal Standard	0.5142173496	3	
Concern Over Mistakes	0.3717105905	5	
Doubt about Actions	0.2591455376	3	
Test and Class Anxiety	0.1070434544		
Interpretation	0.0500130468	3	

Asking for help	0.0868452869
Worth of Statistics	-0.1154640536
Fear of Statistics	0.0008872539
Computational Self-concept	-0.0125320593
Math Anxiety	0.1080537730
	Perfectionism Self-Presentation
Physical concerns	0.20709222
Cognitive concerns	0.26851019
Social concerns	0.49308778
Global ASI	0.38869768
Perfectionism Cognitions	0.26645172
Perfectionism Self-Presentation	1.00000000
Perfectionism Personal Standard	0.29131917
Concern Over Mistakes	0.55070268
Doubt about Actions	0.41823450
Test and Class Anxiety	0.27374624
Interpretation	0.19306364
Asking for help	0.36731936
Worth of Statistics	-0.04312240
Fear of Statistics	0.01742979
Computational Self-concept	0.07631246
Math Anxiety	0.30460046
	Perfectionism Personal Standard
Physical concerns	0.09021988
Cognitive concerns	0.13551164
Social concerns	0.18086165
Global ASI	0.16386106

Perfectionism Cognitions	0.51421735
Perfectionism Self-Presentation	0.29131917
Perfectionism Personal Standard	1.00000000
Concern Over Mistakes	0.28286000
Doubt about Actions	0.12809854
Test and Class Anxiety	0.08910384
Interpretation	0.05993551
Asking for help	0.03566139
Worth of Statistics	-0.13208476
Fear of Statistics	-0.03903485
Computational Self-concept	-0.15299556
Math Anxiety	0.07759856

Concern Over Mistakes Doubt about Actions

Physical concerns	0.35952255	0.30020636
Cognitive concerns	0.45026034	0.45923508
Social concerns	0.43035140	0.38014927
Global ASI	0.50480391	0.46625226
Perfectionism Cognitions	0.37171059	0.25914554
Perfectionism Self-Presentation	0.55070268	0.41823450
Perfectionism Personal Standard	0.28286000	0.12809854
Concern Over Mistakes	1.00000000	0.52249297
Doubt about Actions	0.52249297	1.00000000
Test and Class Anxiety	0.27252702	0.25306174
Interpretation	0.28159070	0.26160905
Asking for help	0.39857539	0.30934985
Worth of Statistics	0.05667524	0.02508179
Fear of Statistics	0.09497412	0.10421510

Computational Self-concept		0.19	9279361	0.22770277
Math Anxiety	0.38419165 0.3625			0.36252468
	Test an	d Class	Anxiety	Interpretation
Physical concerns		0.1	17721312	0.21965993
Cognitive concerns		0.1	17963885	0.24840669
Social concerns		0.2	23322814	0.18440695
Global ASI		0.2	23721168	0.26637370
Perfectionism Cognitions		0.1	10704345	0.05001305
Perfectionism Self-Presentation		0.2	27374624	0.19306364
Perfectionism Personal Standard		0.0	8910384	0.05993551
Concern Over Mistakes		0.2	27252702	0.28159070
Doubt about Actions		0.2	25306174	0.26160905
Test and Class Anxiety		1.0	0000000	0.59758255
Interpretation		0.5	9758255	1.00000000
Asking for help		0.4	10468884	0.41472269
Worth of Statistics		0.1	7147396	0.28669050
Fear of Statistics		0.2	23629023	0.34096286
Computational Self-concept		0.3	35498764	0.46617663
Math Anxiety		0.6	52564167	0.65102083
	Asking	for help	Worth o	of Statistics
Physical concerns	0.	22701725	5	0.15488534
Cognitive concerns	0.	25118483	3	0.03442680
Social concerns	0.	31693391	L	0.07629927
Global ASI	0.	32014593	3	0.10694111
Perfectionism Cognitions	0.	08684529)	-0.11546405
Perfectionism Self-Presentation	0.	36731936	5	-0.04312240
Perfectionism Personal Standard	0.	03566139)	-0.13208476

Concern Over Mistakes		0.39857539	0.0566	7524
Doubt about Actions		0.30934985	0.0250	8179
Test and Class Anxiety		0.40468884	0.1714	7396
Interpretation		0.41472269	0.2866	9050
Asking for help		1.00000000	0.1396	6498
Worth of Statistics		0.13966498	1.0000	0000
Fear of Statistics		0.24941419	0.5263	7725
Computational Self-concept		0.30035710	0.4980	2552
Math Anxiety		0.43278254	0.2345	9598
	Fear	of Statistics	Computationa	l Self-concept
Physical concerns		0.1679017761		0.23987004
Cognitive concerns		0.1302701632		0.20374211
Social concerns		0.0695372868		0.14855479
Global ASI		0.1500991180		0.24277541
Perfectionism Cognitions		0.0008872539		-0.01253206
Perfectionism Self-Presentation		0.0174297923		0.07631246
Perfectionism Personal Standard		-0.0390348469		-0.15299556
Concern Over Mistakes		0.0949741150		0.19279361
Doubt about Actions		0.1042150962		0.22770277
Test and Class Anxiety		0.2362902305		0.35498764
Interpretation		0.3409628581		0.46617663
Asking for help		0.2494141931		0.30035710
Worth of Statistics		0.5263772466		0.49802552
Fear of Statistics		1.000000000		0.53796229
Computational Self-concept		0.5379622946		1.00000000
Math Anxiety		0.2873601409		0.48724833

Math Anxiety

Physical concerns	0.27357472
Cognitive concerns	0.31880731
Social concerns	0.26011814
Global ASI	0.34643989
Perfectionism Cognitions	0.10805377
Perfectionism Self-Presentation	0.30460046
Perfectionism Personal Standard	0.07759856
Concern Over Mistakes	0.38419165
Doubt about Actions	0.36252468
Test and Class Anxiety	0.62564167
Interpretation	0.65102083
Asking for help	0.43278254
Worth of Statistics	0.23459598
Fear of Statistics	0.28736014
Computational Self-concept	0.48724833
Math Anxiety	1.00000000

What a mess! Put this into an APA-style table using flextable and flextable::theme_apa().

Sorry still can't use flextable. I will use another package: kableExtra

	Survey Score	Physical concerns	Cognitive concerns
1	Physical concerns	1.00	0.61
2	Cognitive concerns	0.61	1.00
3	Social concerns	0.43	0.50
4	Global ASI	0.83	0.86
5	Perfectionism Cognitions	0.16	0.27
6	Perfectionism Self-Presentation	0.21	0.27
7	Perfectionism Personal Standard	0.09	0.14

8	Concern Over Mistakes		0.36	0.45
9	Doubt about Actions		0.30	0.46
10	Test and Clas	ss Anxiety	0.18	0.18
11	Inter	rpretation	0.22	0.25
12	Askin	g for help	0.23	0.25
13	Worth of	Statistics	0.15	0.03
14	Fear of S	Statistics	0.17	0.13
15	Computational Se	lf-concept	0.24	0.20
16	Ma	th Anxiety	0.27	0.32
5	Social concerns Globa	l ASI Perfect:	ionism Cognitions	
1	0.43	0.83	0.16	
2	0.50	0.86	0.27	
3	1.00	0.77	0.26	
4	0.77	1.00	0.28	
5	0.26	0.28	1.00	
6	0.49	0.39	0.27	
7	0.18	0.16	0.51	
8	0.43	0.50	0.37	
9	0.38	0.47	0.26	
10	0.23	0.24	0.11	
11	0.18	0.27	0.05	
12	0.32	0.32	0.09	
13	0.08	0.11	-0.12	
14	0.07	0.15	0.00	
15	0.15	0.24	-0.01	
16	0.26	0.35	0.11	

Perfectionism Self-Presentation Perfectionism Personal Standard

1		0.21		0.09
2		0.27		0.14
3		0.49		0.18
4		0.39		0.16
5		0.27		0.51
6		1.00		0.29
7		0.29		1.00
8		0.55		0.28
9		0.42		0.13
10		0.27		0.09
11		0.19		0.06
12		0.37		0.04
13		-0.04		-0.13
14		0.02		-0.04
15		0.08		-0.15
16		0.30		0.08
Conce	on Over Mistakes	Doubt about	Actions	Test and Class Anxiety
1	0.36		0.30	0.18
2	0.45		0.46	0.18
3	0.43		0.38	0.23
4	0.50		0.47	0.24
5	0.37		0.26	0.11
6	0.55		0.42	0.27
7	0.28		0.13	0.09
8	1.00		0.52	0.27
9	0.52		1.00	0.25
10	0.27		0.25	1.00

11		0.28			0.2	26		0.60
12		0.40			0.3	31		0.40
13		0.06			0.0)3		0.17
14		0.09			0.1	.0		0.24
15		0.19			0.2	23		0.35
16		0.38			0.3	86		0.63
	Interpretation	Asking for	help	Worth	of	Statistics	Fear of	Statistics
1	0.22		0.23			0.15		0.17
2	0.25		0.25			0.03		0.13
3	0.18		0.32			0.08		0.07
4	0.27		0.32			0.11		0.15
5	0.05		0.09			-0.12		0.00
6	0.19		0.37			-0.04		0.02
7	0.06		0.04			-0.13		-0.04
8	0.28		0.40			0.06		0.09
9	0.26		0.31			0.03		0.10
10	0.60		0.40			0.17		0.24
11	1.00		0.41			0.29		0.34
12	0.41		1.00			0.14		0.25
13	0.29		0.14			1.00		0.53
14	0.34		0.25			0.53		1.00
15	0.47		0.30			0.50		0.54
16	0.65		0.43			0.23		0.29
	Computational S	elf-concep	t Math	n Anxie	ety			
1		0.2	4	0.	. 27			
2		0.2	0	0.	.32			
3		0.1	5	0.	. 26			

4	0.24	0.35
5	-0.01	0.11
6	0.08	0.30
7	-0.15	0.08
8	0.19	0.38
9	0.23	0.36
10	0.35	0.63
11	0.47	0.65
12	0.30	0.43
13	0.50	0.23
14	0.54	0.29
15	1.00	0.49
16	0.49	1.00

I guess that's an improvement, but still not great. If you want, try out the apaTables package to see if it can make a more readable correlation matrix.

Visualize the correlation matrix using a heatmap using the correlation package.

Briefly describe what you see in the correlation matrix. Do you see any general trends? Anything potentially interesting?

Interpretation of the Correlation Matrix Heatmap

The heatmap displays the correlation coefficients between different survey scores, with **darker blue** shades representing stronger *positive* correlations and **darker red** shades indicating stronger *negative* correlations.

General Trends Observed:. Math Anxiety Shows Distinct Patterns

Math Anxiety appears to be more strongly correlated with Fear of Statistics and Statistics Anxiety, which makes sense given that they all relate to quantitative performance-related anxieties.

Interestingly, Math Anxiety does not seem to be as strongly correlated with social or physical anxieties, suggesting a domain-specific nature.

Cognitive and Performance Anxiety Correlations

Cognitive Performance and Cognitive Anxiety exhibit moderate correlations, suggesting that individuals with high cognitive anxiety may also struggle with performance-related tasks.

Perfectionism Concern shows moderate correlations with Doubt in Abilities, indicating that individuals with perfectionistic tendencies may experience self-doubt.

Lower Correlations for Some Constructs

Some constructs, such as Spatial Performance, show weaker correlations with most other variables, which suggests that spatial skills may be less influenced by anxiety factors in this dataset.

Potentially Interesting Insights:

The clustering of certain anxiety types suggests that anxiety may not be a single unified construct but rather have distinct components that interact in specific ways.

Investigating subgroup differences (e.g., STEM vs. Non-STEM students) could be interesting, as certain anxiety types may be more relevant in different academic or career paths.

The relationship between Cognitive Anxiety and Performance-Related Scores (e.g., Math Anxiety, Perfectionism Concern) might indicate that high anxiety could predict lower confidence or performance expectations.

Select at least one demographic variable to explore in relation to the survey scores. Build on the plot you created above to include the demographic variable as a grouping variable. You can use grouping aesthetics, faceting, or both.

As before, describe what you see in the scatterplot. Does the demographic variable you chose seem to be related to one or both survey scores? To the association between them? If you see any kind of relationships, what might they mean?

Interpretation of the Scatterplot

In Figure Figure ??, the scatterplot illustrates the relationship between Global ASI and Math Anxiety, while incorporating ethnicity as a grouping variable.

Key Observations:

Positive Association Across Groups:

The trend lines for each ethnic group indicate a general positive relationship between Global ASI and Math Anxiety. This suggests that higher Global ASI scores tend to be associated with higher Math Anxiety scores, regardless of ethnicity.

Variability by Ethnicity:

Some ethnic groups appear to have steeper regression lines, suggesting a stronger association between Global ASI and Math Anxiety.

Others have flatter slopes, implying that Global ASI may not be as predictive of Math Anxiety for those groups.

Confidence Intervals:

The gray shaded areas around the regression lines represent confidence intervals. Some groups exhibit wider confidence intervals, indicating greater uncertainty in the estimates, possibly due to smaller sample sizes or greater individual variability.

Does Ethnicity Moderate the Relationship?

The differences in slopes suggest that the strength of the relationship between Global ASI and Math Anxiety varies by ethnicity.

Some groups show a steeper increase in Math Anxiety with rising Global ASI, while others have a weaker or even nearly flat relationship.

This indicates a potential moderation effect of ethnicity, meaning that the impact of Global ASI on Math Anxiety might not be uniform across different ethnic backgrounds.

Further moderation analysis will be performed to analyse the relationship.

Research Question 1: Is there a significant difference in Math Anxiety across different ethnic groups?

Hypotheses:

Null Hypothesis (H_0) : The mean Math Anxiety scores do not differ across ethnic groups. Alternative Hypothesis (H_A) : At least one ethnic group has a significantly different Math Anxiety mean score.

Df Sum Sq Mean Sq F value Pr(>F)
ethnicity.r 5 5.4 1.0802 1.422 0.215
Residuals 445 338.0 0.7596
2 observations deleted due to missingness

As the p value is insignificant, the result suggests that the mean Math Anxiety scores do not differ across ethnic groups.

Research Question 2: Does Ethnicity Moderate the Relationship?

Now I aim to test whether ethnicity moderates the relationship between Global ASI (Anxiety Sensitivity Index) and Math Anxiety. Specifically, examining whether the effect of Global ASI on Math Anxiety varies across different ethnic groups.

Hypotheses

Main Effect Hypothesis.

- Null Hypothesis (H_0): There is no significant relationship between Global ASI and Math Anxiety.
- Alternative Hypothesis (H_A): There is a significant positive relationship between Global ASI and Math Anxiety.

$$\beta_1 \neq 0$$

where:

• β_1 represents the effect of Global ASI on Math Anxiety.

Moderation Hypothesis.

- Null Hypothesis (H_0): The relationship between Global ASI and Math Anxiety does not depend on ethnicity (i.e., there is no interaction).
- Alternative Hypothesis (H_A) : The relationship between Global ASI and Math Anxiety is moderated by ethnicity (i.e., there is a significant interaction effect).

$$\beta_3 \neq 0$$

where:

• β_3 represents the **interaction effect** between Global ASI and ethnicity.

Regression Model for Moderation Analysis

The linear regression model including an **interaction term** between Global ASI and ethnicity is:

Math Anxiety =
$$\beta_0 + \beta_1$$
(Global ASI) + β_2 (Ethnicity) + β_3 (Global ASI × Ethnicity) + ϵ where:

- β_0 is the intercept.
- β_1 is the main effect of Global ASI.
- β_2 represents the effect of ethnicity.
- β_3 represents the interaction effect (i.e., moderation effect).
- ϵ is the residual error.

Run the Linear Regression Model with Interaction

Call:

lm(formula = `Math Anxiety` ~ `Global ASI` * ethnicity.r, data = survey_wide)

Residuals:

Min 1Q Median 3Q Max -1.86290 -0.56199 -0.07265 0.51327 2.29991

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.31219	0.42969	5.381	1.21e-07
`Global ASI`	0.02862	0.16804	0.170	0.8648
ethnicity.rBlack	-0.75726	1.04302	-0.726	0.4682
ethnicity.rHispanic/Latinx	-1.09981	0.88004	-1.250	0.2121
ethnicity.rMiddle Eastern	-0.70756	0.65577	-1.079	0.2812
ethnicity.rMixed/Other	-0.79781	0.76510	-1.043	0.2976
ethnicity.rWhite	-0.71210	0.45280	-1.573	0.1165
`Global ASI`:ethnicity.rBlack	0.42820	0.40291	1.063	0.2885
`Global ASI`:ethnicity.rHispanic/Latinx	0.76574	0.37411	2.047	0.0413
`Global ASI`:ethnicity.rMiddle Eastern	0.46155	0.26128	1.766	0.0780
`Global ASI`:ethnicity.rMixed/Other	0.57487	0.31628	1.818	0.0698
`Global ASI`:ethnicity.rWhite	0.37546	0.17673	2.125	0.0342

(Intercept)

`Global ASI`

ethnicity.rBlack