Using Publicly Available Data to Model Six Species of Lepidoptera in Kruger National Park

Jennifer Sailor MSSC 6975 Dr. Nate Lemoine

Outline

- Project Goals
- Data Collection Shortened Version
- Machine Learning Method
- Model's Results
- Interpretation
- Future Exploration & What I learned

Goals

- Create Present Day & Future Spatial Distributions for 6 Species of Lepidoptera in Kruger National Park
 - using an ensemble machine learning approach
- Results that show how climate change will impact the distribution of rare and common species

Why Spatial Distributions?
Why Butterflies?
Why Kruger National Park?

Data Collection

Data Set & Sources

	Species	Latitude & Longitude	Climate Data Variables					
0	Puttorflios of the							
1	Butterflies of the Kruger National Park	A						
i	JOHAN KLOPPERS and the late Or, G VAN SON	GBIF	> WorldClim					
i		Global Biodiversity Information Facility						
1	219 Species illustrated							
n								

Data Set

Preprocessing Steps

Removal of Inaccurate Data

- Null Values
- 2. Coordinates in Major cities
- Coordinates in the Ocean
- 4. Coordinates not in Africa Geographically

Generating Pseudo Absent Records

i.e., uniform distribution

Removal of Sample Bias

- Removing Duplicate Coordinates in Spatial Grid
- Training Dataset being the true geographical range of species (Africa) not just area of Interest

Removal of Variables with strong Correlation

i.e., multicollinearity testing

Data Set

Training Datasets!

		Species	Climate Data Variables					
	0	1 = Present	lity	onth	onth	Jarter	arter	
Rare	1		Femperature Seasonality	Coldest Month	Driest Mo	Precipitation Warmest Quarter	Precipitation Coldest Quarter	
	:			Min Temp. C	Precipitation Driest Month			
	n	0 = Absent	Tem	Min	Pre	Precipi	Precip	

Data Set

Training & Testing Results

Model 1 Results Model 2 Training – 70% Results Dataset **Ensemble Model Averaged Prediction** Results Testing – 30% Model N Results

ensemble of 9 models

Models of Choice

Model 1
Logistic Regression

Model 2 K-Neighbors Clas.

Model 3
Gaussian Process Clas.

Model 4
Decision Tree Clas.

Model 5
Random Forest Clas.

Model 6
Artificial Neural Net.

Model 7
Ada Boost Clas.

Model 8 Naïve Bayes. Clas.

Model 9
Quadratic Discr. Analysis

Hyperparameter Tuning on AUC-ROC – Non-Default Parameters

Model 1
Logistic Regression

n/a

Model 4
Decision Tree Clas.

Criterion = 'entropy', max depth = 5

Model 7
Ada Boost Clas.

Learning rate = 0.1, n estimators = 300

Model 2 K-Neighbors Clas. Leaf size = 1, p = 1, n neighbors = 7

Model 5
Random Forest Clas.

max depth = 5

Model 8 Naïve Bayes. Clas.

n/a

Model 3
Gaussian Process Clas.

n/a

Model 6
Artificial Neural Net.

Max iter = 1000

Model 9
Quadratic Discr. Analysis

n/a

Individual Models

AUC – ROC Estimates							
	Rare			Common			
	Mycalesis rhacotis	Eronia cleodora	Cacyreues marshalli	Danaus chrysippus	Vanessa cardui	Belenois aurota	
GLM	0.86	0.85	0.89	0.74	0.83	0.78	
KNC	0.94	0.96	0.95	0.86	0.90	0.88	
GPC	0.92	0.97	0.95	0.85	0.90	0.86	
DTC	0.95	0.90	0.93	0.81	0.88	0.83	
RFC	0.94	0.96	0.97	0.88	0.92	0.89	
ANN	0.93	0.98	0.95	0.85	0.91	0.86	
ABC	0.88	0.97	0.97	0.82	0.89	0.85	
NBC	0.88	0.91	0.90	0.77	0.80	0.81	
QDA	0.90	0.92	0.92	0.78	0.84	0.81	
Ensemble	0.91	0.94	0.94	0.82	0.87	0.84	

Abbreviations: GLM, Logistic regression; KNC, K-neighbors Classifier; GPC, Gaussian Process Classifier; DTC, Decision Tree Classifier; RFC, Random Forest Classifier; ANN, Artificial Neural Network; ABC; Ada Boost Classifier; NBC, Naïve Bayesian Classifier; QDA, Quadratic Discriminant Analysis.

100% Training Results

Prediction Datasets (times 6 for each species)

	Species	RCP 8.5 Climate Data						
0		ality	onth	onth	uarter	arter		
1	7	Seasona	Coldest Month	Driest Mo	armest Q	oldest Qu		
:		Temperature Seasonality	Min Temp. C	Precipitation Driest Month		Precipitation Coldest Quarter		
n		Tem	Min	Pre	Precipi	Precip		

Accounting for Climate Uncertainty

ensemble of 4 climate scenarios for each RCP level

Predictive Results

Factors we're Considering

- Precipitation
- Temperature

Factors we're not Considering

- Plant & Species Distributions!
- Plant & Species Interactions!

Future Exploration

- Expanding to more species to better identify trends
- Adding Additional Variables?

What I Learned

- Expansion/Improvement on my Python coding skills
- GIS!
- Expansion of knowledge in Ecology
- Stacked Ensemble ML Approach

Questions

Using Publicly Available Data to
Model Six Species of
Lepidoptera in Kruger National Park

Thank You to Dr. Nate Lemoine for working with me on this project &

Thank You to MSSC allowing me to work across disciplines!

