Andoni Latorre Galarraga

Conceptos

Espacio topológico

Un espacio topológico es un par ordenado (X, τ_X) donde X es un conjunto y τ_X es una topología sobre X.

T_2 (de Hausdorff)

Un espacio topológico (X, τ_X) se dice T_2 si

$$\forall a, b \in X \text{ con } a \neq b, \exists \mathcal{U}, \mathcal{V} \in \tau_X : a \in \mathcal{U}, b \in \mathcal{V}, \mathcal{U} \cap \mathcal{V} = \emptyset$$

, es decir, todo par de puntos distintos se puede separar por abiertos disjuntos.

Compacto

Un espacio topológico (X, τ_X) se dice compacto si

$$\forall \{\mathcal{U}_i\}_{i \in I} \subseteq \tau_X : \bigcup_{i \in I} \mathcal{U}_i = X \quad , \exists J \subseteq I : |J| \le \infty, \bigcup_{i \in I} \mathcal{U}_i = X$$

, es decir, todo recubrimiento por abiertos de \boldsymbol{X} tiene un subrecubrimiento finito.

Aplicación continua

Se dice que la aplicación $f:(X,\tau_X)\longrightarrow (Y,\tau_Y)$ es continua si

$$\forall \mathcal{U} \in \tau_Y, f^{-1}(\mathcal{U}) \in \tau_X$$

, es decir, la antiimagen de cualquier abierto es un abierto.

Aplicación topologicamente cerrada

Se dice que la aplicación $f:(X,\tau_X)\longrightarrow (Y,\tau_Y)$ es cerrada si

$$\forall \mathcal{U} \in \tau_x, \quad f(\mathcal{U}^c)^c \in \tau_Y$$

, es decir, la imagen de todo cerrado es un cerrado.

Homeomorfismo

Se dice que la aplicación $f:(X,\tau_X)\longrightarrow (Y,\tau_Y)$ es un homeomorfismo si es continua, biyectiva y su inversa es continua.

Homeomorfo

Los espacios topológicos (X, τ_x) y (Y, τ_Y) se dicen homeomorfos si existe un homeomorfismo $f: (X, \tau_X) \longrightarrow (Y, \tau_Y)$.

Identificación

Se dice que la aplicación $f:(X,\tau_X)\longrightarrow (Y,\tau_Y)$ es una identificación si es sobreyectiva y $\mathcal{U}\in\tau_Y\Leftrightarrow f^{-1}(\mathcal{U})\in\tau_X$.

Andoni Latorre Galarraga

Proposición:

Sean $\tilde{\Phi_1}, \tilde{\Phi}_2 : X \longrightarrow \mathbb{R}$ dos elevaciones de una aplicación continua $\Phi : X \longrightarrow \mathbb{S}^1$, donde X es un espacio topológico conexo, entonces $\exists k \in \mathbb{Z} : \tilde{\Phi}_2 - \tilde{\Phi}_1 = 2k\pi$.

Dem:

Por ser $\tilde{\Phi}_1$, $\tilde{\Phi}_2$ elevaciones de Φ , tenmos que $\tilde{\Phi}=exp\circ\tilde{\Phi}_1=exp\circ\Phi_2$. Por la periodicidad de exp, tenemos que $\tilde{\Phi}_1-\tilde{\Phi}_2=2\pi k(x)$ donde $k:X\to\mathbb{Z}$. Como X es conexo, $(\frac{\tilde{\Phi}_1-\tilde{\Phi}_2}{2\pi})(X)=k(X)$ es conexo ya que $\frac{\tilde{\Phi}_1-\tilde{\Phi}_2}{2\pi}=k$ es continua. Pero los conexos en \mathbb{Z} son los puntos por lo tanto, k es contante.

Andoni Latorre Galarraga

Problema:

Sea $\alpha:[0,2\pi]\longrightarrow \mathbb{R}^2$ dada por $\alpha(t)=(2\cos t-1)(\cos t,\sin t)$.

i) Representar $\alpha([0, 2\pi])$.

ii) ¿Es α simple?

No es simple por no ser inyectiva. $\alpha(\frac{\pi}{3}) = \alpha(\frac{5\pi}{3}) = (0,0)$.

iii) ¿Es α convexa?

No es convexa, evidentemente la recta tangente en $\alpha(0)$ que es x=1 corta la curva en otros dos puntos. Además veremos que solo tiene 2 vértices, por el teorema de los 4 vértices no puede ser convexa.

iv) Calcular los vértices de α .

Calculamos la <u>curvatura</u> y su <u>derivada</u>. Tenemos que

$$k_2'(t) = \frac{12 \operatorname{sen} t(\cos t - 2)}{(5 - 4 \cos t)^{5/2}}$$

Tenemos ceros, y por lo tanto vértices, en $0, \pi$ y 2π , es decir, en (3,0) y (1,0).

Andoni Latorre Galarraga

Problema:

Calcular un entorno tubular de la elipse $\alpha(t) = (\cos t, 2 \sin t)$ en [-2, 2].

Calculamos el vector normal a la curva en $\alpha(t)$.

$$\alpha'(t) = (-\sin t, 2\cos t)$$

Y la recta normal a la curva en $\alpha(t)$.

$$\alpha(t) + \lambda \mathcal{J}\alpha'(t) = ((1+2\lambda)\cos t, (2+\lambda)\sin t)$$

Intrescamos la recta con el eje Y.

$$(1+2\lambda)\cos t = 0 \Rightarrow \lambda = \frac{-1}{2}$$

Tenemos que el punto de intersección es $(0, \frac{3}{2} \operatorname{sen} t)$. Como $\frac{3}{2} \operatorname{sen} t$ es creciente en $[-2, 2] \setminus [\frac{-\pi}{2}, \frac{\pi}{2}]$.

$$\varepsilon < \inf \left\| \alpha(t) - (0, \frac{3}{2} \operatorname{sen} t) \right\| = \inf \sqrt{\cos^2 t + \frac{1}{4} \operatorname{sen}^2 t}$$

Que es la distancia al origen de un punto en la elipse $(\cos t, \frac{1}{2} \sin t)$

Por lo tanto, $\varepsilon < \frac{1}{2}.$ Ahora, para encontrar la frontera del entorno tublar

$$\lambda = \pm \frac{a}{2 \|\alpha'(t)\|} = \pm \frac{1}{2\sqrt{\operatorname{sen}^2 t + 4 \cos^2 t}}$$

Y tenemos los extremos del entorno tubular

$$\begin{array}{l} ((1+\frac{1}{\sqrt{\sin^2 t + 4\cos^2 t}})\cos t, (2+\frac{1}{2\sqrt{\sin^2 t + 4\cos^2 t}})\sin t) \\ ((1-\frac{1}{\sqrt{\sin^2 t + 4\cos^2 t}})\cos t, (2-\frac{1}{2\sqrt{\sin^2 t + 4\cos^2 t}})\sin t) \end{array}$$

Dibujado sin distorsión:

