Определение производной.

Определение 1. Пусть функция f определена на некотором интервале, точка x_0 принадлежит этому интервалу. Производной функции f в точке x_0 называется число $f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, если этот предел существует (тогда говорят, что функция f дифференцируема в точке x_0).

Задача 1. Докажите, что $f'(x_0) = \lim_{t\to 0} \frac{f(x_0+t)-f(x_0)}{t}$.

Задача 2. Для каждого $a \in \mathbb{R}$ найдите f'(a), если

a) f(x) = c, где $c \in \mathbb{R}$; **6)** $f(x) = x^n, n \in \mathbb{N}$; **B)** $f(x) = x^{-n}, n \in \mathbb{N}$.

Задача 3°. Докажите, что $f'(x_0) = A$ тогда и только тогда, когда найдётся такая функция $\beta(t)$, что для всех достаточно малых t будет верно $f(x_0+t) = f(x_0) + At + \beta(t)$, причём $\lim_{t\to 0} \beta(t)/t = 0$.

Задача 4. Докажите, что функция, дифференцируемая в точке, непрерывна в этой точке.

Определение 2. Говорят, что функция f дифференцируема на интервале, если она дифференцируема в каждой точке этого интервала. При этом её npouseodhoй называется функция $f': x \mapsto f'(x)$.

Задача 5 $^{\varnothing}$. Найдите производные функций (там, где они существуют): **a)** |x|; **б)** \sqrt{x} ; **в)** $x^{3/2}$.

Вычисление производных

Задача 6°. Пусть функции f и g дифференцируемы на некотором интервале. Докажите, что

- **a)** функция f + g тоже дифференцируема на этом интервале и (f + g)' = f' + g';
- **б)** для любой константы C функция Cf тоже дифференцируема на этом интервале и (Cf)' = Cf';
- **в)** функция fg тоже дифференцируема на этом интервале и (fg)' = f'g + fg';
- **г)** функция f/g дифференцируема во всех точках интервала, где $g(x) \neq 0$, и $(f/g)' = (f'g fg')/g^2$.

Задача 7^{\varnothing} . Найдите производные функций (там, где они существуют): **a)** $a_n x^n + \ldots + a_1 x + a_0;$ **b)** $\frac{5x+6}{7x+8}$; **b)** $\frac{1}{x^3-5x-2}$. **r)** $\sin x;$ **д)** $\cos x;$ **e)** $\operatorname{tg} x;$ **ж)** $\operatorname{ctg} x;$ **3)** $x^{m/n}$, где $m \in \mathbb{Z}, n \in \mathbb{N};$ **и)** e^x .

Задача 8°. Пусть F(x)=f(g(x)). Докажите, что если g дифференцируема в точке x_0 , а f дифференцируема в точке $g(x_0)$, то F(x) дифференцируема в точке x_0 , и $F'(x_0)=f'(g(x_0))g'(x_0)$.

Задача 9°. а)* Пусть функция f на некотором интервале непрерывна и имеет обратную функцию g. Докажите, что если f дифференцируема в точке x_0 из этого интервала и $f'(x_0) \neq 0$, то g дифференцируема в точке $f(x_0)$ и $g'(f(x_0)) = \frac{1}{f'(x_0)}$.

б) Каков геометрический смысл формулы из пункта а)?

Задача 10. Найдите производную функции $\sqrt[3]{x}$ через формулу производной обратной функции.

Задача 11 . Продифференцируйте:

a) $\sin x^2$; б) $\arcsin x$; в) $\arccos x$; г) $\arctan x$; д) $\ln x$; е) 2^x ; ж)* x^α .

Определение 3. Говорят, что многочлен f(x) имеет *кратный корень* α , если он делится на $(x-\alpha)^k$, где целое $k \geqslant 2$. Если при этом f(x) не делится на $(x-\alpha)^{k+1}$, говорят, что α — *корень кратности* k.

Залача 12°.

- а) Докажите, что при дифференцировании кратность корня многочлена понижается на 1.
- б) Докажите, что многочлен имеет кратный корень тогда и только тогда, когда он имеет общий корень со своей производной.
- **в)** Пусть многочлен из $\mathbb{Q}[x]$ не раскладывается на множители с рациональными коэффициентами (неприводим над \mathbb{Q}). Может ли он иметь кратный комплексный корень?

$\begin{array}{c cccc} 1 & 2 & 2 & 2 \\ a & 6 & B \end{array}$	3 4	5 5 5 a 6 B	6 6 a 6	6 6 в г	7 7 a 6	7 7 в г	7 7 7 д е х	7 7 7 к з и	8 9 a	$\begin{bmatrix} 9 & 10 \\ 6 & 6 \end{bmatrix}$	11 1 a 6	1 11 11 В Г	11 11 11 12 12 12 дежабв