Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-223. Вариант 12

1. Пусть
$$z=\frac{1}{2}-\frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{2-2\sqrt{3}i}$ имеет аргумент $-\frac{\pi}{21}$.

2. Решить систему уравнений:

$$\begin{cases} x(11+12i) + y(1+12i) = 338 + 101i \\ x(14+9i) + y(-7+14i) = 367 + 150i \end{cases}$$

- 3. Найти корни многочлена $-3x^6-15x^5-78x^4-162x^3-996x^2-6600x+20400$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=2+4i,\,x_2=-3+5i,\,x_3=2.$
- 4. Даны 3 комплексных числа: -18-14i, -15-i, -2-3i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2 2\sqrt{3}i, z_2 = -4i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+2-2i| < 1\\ |arg(z-4)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, 0, 9), b = (7, -7, 5), c = (-4, 4, -3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(8,-1,-1) и плоскость P:28x-30y-6z+600=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-14,-10,-11), $M_1(-1,-51,-14)$, $M_2(-9,-3,-14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 19x + 3y - 23z - 37 = 0 \\ 15x + 16y - 5z + 164 = 0 \end{cases} \qquad L_2: \begin{cases} 4x - 13y - 18z - 2237 = 0 \\ -11x + 15y - 17z + 223 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.