Math 109 HW 9

Ray Tsai

11/28/2022

1.

Proposition 1. Suppose that for all $n \ge 1$, $\bigcap_{i=1}^{n} S_i \ne \emptyset$, $i \in \mathbb{Z}_{\ge 1}$. $\bigcap_{i=1}^{\infty} S_i \ne \emptyset$.

Proof. We will prove by contradiction. Suppose for the sake of contradiction that $\bigcap_{i=1}^{\infty} S_i = \emptyset$. This means that there exists $a > b \ge 1$ such that $S_a \cap S_b = \emptyset$, which means that $\bigcap_{i=1}^{a} S_i = \emptyset$. However, this contradicts our

assumption that for all integers $i, n \geq 1$, $\bigcap_{i=1}^{n} S_i \neq \emptyset$.

Therefore,
$$\bigcap_{i=1}^{\infty} S_i \neq \emptyset$$
.

2.

Proposition 2. Let $f: A \to B$ be a function. If $g, h: B \to A$ are inverse functions of f, then g(b) = h(b) for all $b \in B$.

Proof. Let g,h be functions such that f(g(b)) = b and f(h(b)) = b for all $b \in B$ and g(f(a)) = a and h(f(a)) = a for all $a \in A$. Let $x \in B$. We will show that g(x) = h(x). Since f(h(x)) = x, we have g(f(h(x))) = g(x). In addition, since g(f(a)) = a for all $a \in A$, we then have g(f(h(x))) = h(x). Thus, g(x) = g(f(h(x))) = h(x).

Therefore, the inverse function of f is unique.

3.

Proposition 3. If a function $f: A \rightarrow B$ has an inverse, then f is bijective.

Proof. We will prove by contradiction. Let $g: B \to A$ be a function such that g(f(x)) = x and f(g(y)) = y, for all $x \in A$, $y \in B$. Suppose for the

sake of contradiction that f is not bijective, namely f is not injective or not surjective.

If f is not injective, then there exists $m, n \in A$ such that $m \neq n$ and f(m) = f(n). We then have g(f(m)) = g(f(n)). However, since g(f(m)) = m and g(f(n)) = n, we have m = n, which contradicts our assumption. Thus, f is injective.

If f is not subjective, then there exists $k \in B$ such that for all $l \in A$, $f(l) \neq k$. We then have $f(g(k)) \neq k$. However, this contradicts our assumption that f(g(y)) = y, for all $y \in B$. Therefore, f is surjective.

Combining these two cases, our assumption that f is not bijective is contradicted.

Therefore, if there exists an inverse of f, then f is bijective.

4.

Proposition 4. If a function $f: A \to B$ is bijective, then it has an inverse.

Proof. Let $f:A\to B$ be a bijective function, and $g:B\to A$. Let $x\in A,y\in B$, such that f(x)=y. We will show that there exists a function $g:B\to A$ such that g(f(x))=x and f(g(y))=x.

Since f is surjective, we know that there exists a function g such that for all $g \in B$, there exist $g \in A$ such that g(y) = g.

Since f is injective and a well-defined function, we know that f(m) = f(n) if and only if m = n, $m, n \in A$. Let m = g(k) and n = g(l), for some $k, l \in B$. This shows that there exists g such that if g(k) = g(l), then k = l.

This shows that there exists a well-defined function $g: B \to A$ such that g(y) = x. We then have g(f(x)) = g(y) and f(g(y)) = f(x) = y.

Therefore, if a function is bijective, then it has an inverse. \Box

5.

Proposition 5. *f is a well-defined function.*

Proof. We will show that f is a well-defined function.

Existence: Let $x \in S$. We will show that there exist $s \in S$ such that f(x) = s. Let $s = [x] \in S / \infty$. Since ∞ is reflexive, we have $x \sim [x]$. This shows that f(x) = [x] = s.

Uniqueness: Let $[b_1] = f(a), [b_2] = f(a)$ for some $a, b_1.b_2 \in S$. We will show that $[b_1] = [b_2]$. Since $[b_1] = f(a), [b_2] = f(a)$, we know that $a \sim b_1$ and $a \sim b_2$. Since \sim is symmetric, we have $b_1 \sim a$. Since \sim is transitive, we then have $b_1 \sim b_2$, which shows that $[b_1] = [b_2]$.

Therefore, f is a well-defined function.