

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-337289

(43)Date of publication of application: 06.12.1994

(51)Int.CI.

G01T 1/20

(21)Application number: 05-151564 (71)Applicant: SHIMADZU CORP

(22)Date of filing: 27.05.1993 (72)Inventor: YAMAMOTO SEIICHI

MATSUYAMA TSUNEKAZU

(54) RADIATION DETECTOR AND APPLICATION THEREOF

(57)Abstract:

PURPOSE: To provide a radiation detector which can acquire the information of . -ray emitting position with respect to the depth direction of a scintillator through a simple constitution.

CONSTITUTION: The radiation detector comprising first scintillators 1011–1086 and photomultipliers 201–204 for identifying the incident positions in X and Y directions based on the ratio of outputs therefrom is coupled optically with second scintillators 3011–3086 having the damping time of emission pulse different from that of the first scintillators 1011–1086. When the damping time of emission pulse is identified, a decision can be made in which of the first and second scintillators 1011–1086,

3011-3086 the emission takes place and the incident position can be identified based on the ratio of outputs from the photomultipliers 201-204.

LEGAL STATUS

[Date of request for examination]

06.08.1999

[Date of sending the examiner's decision 21.08.2001

of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平6-337289

(43)公開日 平成6年(1994)12月6日

(51) Int. Cl. 5

識別記号 庁内整理番号 FΙ

技術表示箇所

G O 1 T 1/20

G 7204 - 2 G

審査請求 未請求 請求項の数2

FD

(全10頁)

(21)出願番号

特願平5-151564

(22)出願日

平成5年(1993)5月27日

(71)出願人 000001993

株式会社島津製作所

京都府京都市中京区西ノ京桑原町1番地

(72)発明者 山本 誠一

京都市中京区西ノ京桑原町1番地 株式会

社島津製作所三条工場内

(72)発明者 松山 恒和

京都市中京区西ノ京桑原町1番地 株式会

社島津製作所三条工場内

(74)代理人 弁理士 杉谷 勉

(54) 【発明の名称】放射線検出器及びそれを用いた装置

(57)【要約】

【目的】 シンチレータの深さ方向に対するガンマ線の 発光位置の情報を簡単な構成で得ることができる放射線 検出器を提供する。

【構成】 X、Y方向の入射位置を光電子倍増管20, ~204の出力比で識別できる光電子倍増管201~2 04、第1のシンチレータ1011~10seからなる放射 線検出器に、第1のシンチレータ10₁₁~10₈₆と発光 パルスの減衰時間が異なる第2のシンチレータ3011~ 3 O geが光学的に結合されている。第2のシンチレータ 3011~3086は、第1のシンチレータ1011~1086 との結合面以外反射材が塗布してある。発光パルスの減 衰時間を識別することにより、第1、第2のシンチレー タ1011~10ss、3011~30ssのいずれで発光した かが判別でき、光電子倍増管20,~204の出力比に より入射位置を識別できる。

【特許請求の範囲】

【請求項1】 2 次元的に密着配置された複数本のシン チレータと、前記シンチレータ群に対して光学的に結合 され、かつ、前記シンチレータの本数よりも少ない複数 本の光電子倍増管を備え、前記光電子倍増管の出力比に 基づいてガンマ線の入射位置を検出する放射線検出器に おいて、前記各シンチレータには、その深さ方向に、発 光パルスの減衰時間の異なる別異のシンチレータを光学 的に結合したことを特徴とする放射線検出器。

【請求項2】 請求項1に記載の放射線検出器を被検体 10 の体軸回りに周設し、かつ、前記被検体から放射される ガンマ線の入射位置を検出する位置検出手段と、前記各 シンチレータの発光パルスの減衰時間の違いによりいず れのシンチレータで発光したかを識別する発光位置識別 手段と、前記位置検出手段で検出された情報と前記発光 位置識別手段で識別された情報とに基づいて、関心部位 のRI分布の断層像を作成する画像処理手段とを備えた ことを特徴とする放射線検出器を用いた装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、被検体に投与されて 関心部位に蓄積された放射性同位元素(RI)から放出 された放射線(ガンマ線)の入射位置を検出するための 放射線検出器、およびその放射線検出器を用いて関心部 位のRI分布の断層像を得るように構成した装置、例え ば、ポジトロン放射トモグラフィ(PET)装置などに 関する。

[0002]

【従来の技術】従来のこの種の放射線検出器は、検出分 解能を高めるために、複数のシンチレータとそれよりも 少ない数の光電子倍増管を結合し、シンチレータでの発 光を複数個の光電子倍増管に適正に分配して、各光電子 倍増管の出力比からガンマ線の入射位置を決定するよう に構成されている。

【0003】このような放射線検出器として、例えば、 特公平2-14666号、特公表62-500957 号、特開平3-185385号公報などに開示されてい るもの、あるいは、本願出願人が特願平4-10897 2号で提案しているもの等がある。

【0004】この一例を、図12を参照して説明する。 図に示す放射線検出器1は、X方向に6個、Y方向に8 個の合計48個のシンチレータ1011~10s6を2次元 的に密着配置したシンチレータ群10と、このシンチレ ータ群10に対して光学的に結合された4個の光電子倍 増管201、202、203、204とから構成されて $v_{0} = v_{0} = v_{0$ としては、例えば、Bi, Ge, O12(BGO)が用い られている。また、シンチレータ10ijでの発光を各光 「電子倍増管20、~20」に適正に分配するために、各

を設けたり(特公表62-500957号)、各シンチ レータ10ょうの結合面を粗面および/または鏡面とした り (特開平3-185385号)、あるいは、図12に 示すように、各シンチレータ10ょが対向する面の所要 領域に光学的反射材11を、各シンチレータ10点の配 列順序に関連して変化させて被着させている (特願平4 -108972号)。これにより、各光電子倍増管20 、~204の出力比を求めれば、X方向、Y方向に対す るガンマ線の入射位置、すなわち、どのシンチレータ1 0,,にガンマ線が入射したかを認識することができる。

【0005】このような放射線検出器1を用いて被検体 の関心部位のRI分布の断層像を得るための、例えば、 PET装置は、図13に示すように、複数個の放射線検 出器1を被検体Mの体軸J回りに周設して構成されてい

【0006】図では、各放射線検出器1のX方向を体軸 J回りに、Y方向を体軸 J方向(紙面に垂直方向)にそ れぞれ一致させてある。被検体Mの関心部位から放出さ れたガンマ線は各放射線検出器1で検出される。各放射 20 線検出器1では、それぞれどのシンチレータにガンマ線 が入射したかを識別する。このようにして得られたガン マ線の入射位置の情報に基づいて、関心部位のRI分布 の断層像を得る。

[0007]

【発明が解決しようとする課題】しかしながら、このよ うな構成を有する従来例の場合には、次のような問題が ある。すなわち、PET装置において、視野中心から離 れた位置Pnから放出されるガンマ線は、図14に示す ように、放射線検出器1のシンチレータに斜めから入射 する。このとき、図15に示すように、ガンマ線が放射 線検出器1nのシンチレータ10₄、に入射したにもかか わらず、シンチレータ103」内で発光する場合がある。 従来の放射線検出器1では、このようにシンチレータ1 04」に入射し、シンチレータ103」内で発光したガンマ 線は、シンチレータ103%に入射したものとして認識さ れることになる。従って、シンチレータに斜めから入射 したガンマ線を誤った位置で検出することになり、得ら れた断層像は不正確なものになるという問題がある。

【0008】ところで、例えば、図16に示すように、 40 シンチレータを深さ方向にA、Bの2層に分割して、ガ ンマ線がいずれの層で発光したかを検出できれば、その 発光位置についての情報と、ガンマ線の入射位置につい ての情報とに基づいて、被検体Mのガンマ線の放出位置 を正確に認識することができる。例えば、上述のような 場合、A層で発光し、シンチレータ104jに入射したこ とを検出したときには、放出位置(例えば、図14のP n)からガンマ線が放出したと認識し、また、B層で発 光し、シンチレータ10giに入射したことを検出したと きにも、放出位置Pnからガンマ線が放出したと認識す シンチレータ1013が対向する面に長さが違うスリット 50 る。このように、シンチレータの深さ方向に対するガン

マ線の発光位置を検出できれば、ガンマ線の入射位置の 検出精度の向上を図ることができるので、上述のような 問題に対処することもできる。

【0009】しかし、シンチレータの深さ方向に対する ガンマ線の発光位置の情報を得る方法として、シンチレ - タの側面にフォトダイオード等を接続した方法などが 考案されているが、構造が複雑でコスト高を招くなど、 実用的ではない。

【0010】この発明は、このような事情に鑑みてなさ れたものであって、シンチレータの深さ方向に対するガ 10 ンマ線の発光位置の情報を簡単な構成で得ることができ る放射線検出器と、その放射線検出器を用いて、被検体 の関心部位のRI分布の断層像を得るための装置を提供 することを目的とする。

[0011]

【課題を解決するための手段】この発明は、このような 目的を達成するために、次のような構成をとる。すなわ ち、請求項1に記載の発明は、2次元的に密着配置され た複数本のシンチレータと、前記シンチレータ群に対し て光学的に結合され、かつ、前記シンチレータの本数よ りも少ない複数本の光電子倍増管を備え、前記光電子倍 増管の出力比に基づいてガンマ線の入射位置を検出する 放射線検出器において、前記各シンチレータには、その 深さ方向に、発光パルスの減衰時間の異なる別異のシン チレータを光学的に結合したものである。

【0012】また、請求項2に記載の発明は、請求項1 に記載の放射線検出器を被検体の体軸回りに周設し、か つ、前記被検体から放射されるガンマ線の入射位置を検 出する位置検出手段と、前記各シンチレータの発光パル スの減衰時間の違いによりいずれのシンチレータで発光 30 したかを識別する発光位置識別手段と、前記位置検出手 段で検出された情報と前記発光位置識別手段で識別され た情報とに基づいて、関心部位のRI分布の断層像を作 成する画像処理手段とを備えたものである。

[0013]

【作用】請求項1に記載の発明の作用は次のとおりであ る。すなわち、放射線検出器に入射したガンマ線は、深 さ方向に結合されたいずれかのシンチレータで発光す る。それぞれのシンチレータの発光パルスの減衰時間は 異なるので、その発光パルスの減衰時間の違いを識別す 40 ることにより、いずれのシンチレータでガンマ線が発光 したかを検出することができる。

【0014】また、請求項2に記載の発明によれば、位 置検出手段でガンマ線の入射位置を検出するとともに、 発光位置識別手段でいずれのシンチレータで発光したか の情報、すなわち、シンチレータの深さ方向に対する発 光位置についての情報を得る。画像処理手段では、位置 検出手段で検出されたガンマ線の入射位置の情報を、発 光位置識別手段で識別されたシンチレータの深さ方向に 対する発光位置についての情報によって、ガンマ線の放 50 ンマ線量 Ioの1/2になる長さ程度に設定することが

出位置を正確に認識するように補正して関心部位のRI 分布の断層像を作成する。これにより、例えば、シンチ レータに斜め方向に入射するガンマ線の放出位置の誤検 出を低減できるので、作成された断層像はより正確なも のとなる。

[0015]

【実施例】以下、図面を参照してこの発明の一実施例を 説明する。図1は、この発明の一実施例に係る放射線検 出器の構成を示す斜視図、図2は、図1のA-A矢視断 面図、図3は図1のB-B矢視断面図である。なお、図 12と同一符号で示す部分は従来例と同一構成であるの で、ここでの詳述は省略する。

【0016】この実施例に係る放射線検出器2では、4 個の光電子倍増管 20k (k=1~4)に、48個の第 1のシンチレータ10_{ij} ($i = 1 \sim 8$ 、 $j = 1 \sim 6$) か らなる第1のシンチレータ群10が、光学的に結合され ており、各第1のシンチレータ10;」の上面(光電子倍 増管20 と結合された面と反対側の面)には、第2の シンチレータ30_i, $(i=1\sim8, j=1\sim6)$ からな る第2のシンチレータ群30がそれぞれ光学的に結合さ れている。

【0017】第1のシンチレータ群10を構成する各シ ンチレータ10,が対向する面の所要領域には、特願平 -108972号と同様に光学的反射材11を各シンチ レータ10」の配列順序に関連して変化させて被着させ ている。すなわち、第2のシンチレータ3011を除いた 光電子倍増管20k と第1のシンチレータ群10との構 成では、従来例と同様に、各シンチレータ10ijでの発 光を各光電子倍増管20kに適正に分配し、各光電子倍 増管20kの出力比を求めることにより、X方向、Y方 向に対するガンマ線の入射位置を認識することができる ものである。

【0018】図2、図3に示すように、第2のシンチレ ータ30ょ」の面の内、それぞれ第1のシンチレータ10 ijに結合された面以外の面、すなわち、第2のシンチレ ータ30ネョの外表面と、各第2のシンチレータ30ネョの 対向する面とには、反射材31が塗布してある。従っ て、図2に示すように、第2のシンチレータ30;」(例 えば、30ょ3)で発光した光は、それぞれ、その第2の シンチレータ30ig(30ig)に結合された第1のシン チレータ10ij(10i3)に導かれることになる。

【0019】また、第1のシンチレータ10ょ」と第2の シンチレータ30ょ」とは、それぞれ発光パルスの減衰時 間が異なるものを用いている。この実施例では、シンチ レータ10₁をBGOで、第2のシンチレータ30 ijは、Gd2SiOs(GSO)で構成した。

【0020】なお、第2のシンチレータ30ょの長さX は、第2のシンチレータ30減を透過した後のガンマ線 量Ⅰが、第2のシンチレータ30ょ」の上面に入射するガ 好ましい。IとIoとは、

 $I = I \circ e^{-ux}$

の関係で記述できる。ここで、Uは、シンチレータの吸 収係数である。従って、

 $I/I o = 1/2 = e^{-ux}$

となり、Xを特定することができる。このように第2の シンチレータ30ょ」の長さXが決まれば、第1のシンチ レータ10ょ」と第2のシンチレータ30ょ」とにおける発 光の割合を等分することができる。

【0021】次に、上述の構成の放射線検出器の作用を 図4を参照して説明する。図4(a)に示すように、第 1のシンチレータ1011内で発光した光は、従来例と同 様に、各光電子倍増管20%に適正に分配され、各光電 子倍増管20xの出力比を求めることにより、X方向、 Y方向に対するガンマ線の入射位置を認識することがで きる。なお、第1のシンチレータ1013内で発光した光 の発光パルスの減衰時間は、約300nsである。

【0022】一方、図4(b)に示すように、第2のシ ンチレータ30ょ内で発光した光は、その第2のシンチ レータ30 i に結合された第1のシンチレータ10 i に 20 導かれる。第1のシンチレータ1013に導かれた光は、 従来例と同様に、各光電子倍増管20k に適正に分配さ れ、各光電子倍増管20kの出力比を求めることによ り、X方向、Y方向に対するガンマ線の入射位置を認識 することができる。なお、第2のシンチレータ30ょ」内 で発光した光の発光パルスの減衰時間は、約60nsで

【0023】すなわち、第1のシンチレータ10is、第 2のシンチレータ30ijのいずれで発光しても、X方 向、Y方向に対するガンマ線の入射位置を認識すること 30 ができる。

【0024】また、第1、第2のシンチレータ10ij、 30ょ」で発光した光の発光パルスの減衰時間と、光電子 倍増管20 からの出力電圧値との関係を図5に示す。 図からも判るように、各波形を分析してやることによ り、第1のシンチレータ10ょ」で発光したのか、第2の ·シンチレータ30ょ」で発光したのかを識別することがで きる。

【0025】ガンマ線の入射位置と発光位置とを検出す る回路構成を図6に示す。図中、P1、P2、P3、P40 4 は、それぞれ光電子倍増管 201、202、203、 20 からの出力(電圧値)である。

【0026】位置検出回路41では、P, +P3とP2 + P』との比に基づき、X方向に対する入射位置の検出 を行ない、P₁ + P₂ と P₃ + P₄ との比に基づき、Y 方向に対する入射位置の検出を行なう。なお、この位置 検出回路41は、この発明における位置検出手段に相当 する。

【0027】波形分析回路42では、P,~P。の発光 パルスの減衰時間を、例えば、コンパレータ等で分析し 50 第2のメモリ52には、第2のシンチレータ群30に対

て、第1のシンチレータ10ijで発光したのか、第2の シンチレータ30ょ」で発光したのかを識別する。なお、 この波形分析回路42は、この発明における発光位置識 別手段に相当する。

【0028】双方の回路41、42からの識別結果に基 づいて、シンチレータの深さ方向に2層に分割した状態 で、ガンマ線の入射位置を認識することができる。これ は概念的には、図7に示すように、2個の検出器3、4 を、2段に連結したのと同じことになり、シンチレータ の深さ方向に対する入射位置の識別精度をより一層向上 させることができる。

【0029】なお、上述の実施例装置では、第1のシン チレータ10iiとしてBGOを、第2にシンチレータ3 OijとしてGSOを用いたが、第1のシンチレータ10 ,,としてGSOを、第2にシンチレータ30,,としてB GOを用いて装置を構成してもよい。また、第1のシン チレータ10ょ」と第2のシンチレータ30ょ」との発光パ ルスの減衰時間が異なる組合わせであれば、BGO、G SO以外であっても、NaI、BaFz、CsFなどを 用いて第1、第2のシンチレータ10ij、30ijを構成 してもよい。

【0030】さらに、上述の実施例では、2種類のシン チレータを用いてシンチレータの深さ方向に2層に分割 したが、3種以上のシンチレータをシンチレータの深さ 方向に光学的に結合して、シンチレータの深さ方向に3 層以上に分割して放射線検出器を構成してもよく、その ようにすれば、シンチレータの深さ方向に対するより細 かい情報が得られる。

【0031】また、上述の実施例では、特願平4-10 8972号に第2のシンチレータ30ょ」を結合して構成 したが、その他、特公平2-14666号、特公表62 -500957号、特開平3-185385号公報など に開示されているシンチレータに第2のシンチレータ3 O jjを結合して構成してもよい。

【0032】次に、上述の放射線検出器2を用いたPE T装置の構成を図8を参照して説明する。図8に示すよ うに、各放射線検出器2を被検体Mの体軸J回りに周設 して装置が構成されている。

【0033】また、各放射線検出器2の位置検出回路4 1と波形分析回路42との出力データは、それぞれ分配 回路43に与えられる。各分配回路43では、波形分析 回路42の判定結果が、第1のシンチレータ群10であ れば、位置検出回路41から与えられた入射位置情報を 第1のメモリ51に記憶し、波形分析回路42の判定結 果が、第2のシンチレータ群30であれば、位置検出回 路41からの入射位置情報を第2のメモリ52に記憶す

【0034】すなわち、第1のメモリ51には、第1の シンチレータ群10に対する入射位置情報が記憶され、

する入射位置情報が記憶されている。第1、第2のメモリ51、52からの情報は、画像処理部60に与えられる。画像処理部60では、与えられた情報に基づいてRI分布の断層像を作成する。なお、この画像処理部60は、この発明における画像処理手段に相当する。

7

【0035】このようなPET装置において、従来例で 指摘した、放射線検出器に斜めに入射するガンマ線につ いて考えてみる。図9(a)に示すように、第2のシン チレータ 30_{43} で発光した光は、第1のシンチレータ1 0_{43} に導かれる。そして、第2のメモリ52に第2のシ 10ンチレータ 30_{43} に入射したものとして記憶される。

【0036】一方、図9(b)に示すように、第2のシンチレータ 30_{43} を突き抜けて第1のシンチレータ 10_{33} で発光した光は、第1のメモリ51に第1のシンチレータ 10_{34} に入射したものとして記憶される。

【0037】ここで、視野中心からずれた位置Pnから 版出されたガンマ線の入射位置を、例えば、第1のシンチレータ群10に対しては第1のシンチレータ1033、第20シンチレータ群30に対しては第20のシンチレータ 【206】ガンマ線の入身タ3043で検出するということを予め決めておき、画像 20 路構成を示す図である。 【207】実施例装置の特力な検出誤差による画像の劣化を低減することができ 的に示した図である。 【218】実施例装置を見る。

【0038】なお、シンチレータの深さ方向に3種類以上のシンチレータを結合した放射線検出器を用いれば、入射位置の検出精度を一層向上させることができるので、断層像をより正確なものとすることができる。

【0039】また、従来のPET装置では、図10に示すように、Pa、Pb間を最小分解能とした検出分解能しか得られないので、ウオブリング等により、各放射線 30 検出器1を被検体に対して振動させて、Pa、Pb間の位置から放出されるガンマ線の検出を行なえるようにしているが、上述ようなPET装置では、シンチレータの深さ方向に2層に分割して入射位置を検出することができるので、ウオブリング等を行なわなくとも、例えば、図11に示すように、Pa、Pb間の位置から放出されるガンマ線の検出も行なうことができる。

[0040]

【発明の効果】以上の説明から明らかなように、請求項1に記載の発明によれば、シンチレータの深さ方向に対40して、減衰時間の異なる別異のシンチレータを光学的に結合して、シンチレータの深さ方向に対するガンマ線の発光位置を検出できるように構成したので、シンチレータの深さ方向に対するガンマ線の発光位置の情報を簡単な構成で得られる放射線検出器を実現できる。

【0041】また、請求項2に記載の発明によれば、各

放射線検出器では、シンチレータの深さ方向に対して複数層に分割された状態で、ガンマ線の入射位置を検出することができるので、例えば、斜め方向から入射したガンマ線の放出位置をより正確に認識することができる。従って、入射位置の誤検出による断層像の劣化を低減することができる。また、シンチレータの深さ方向に分割して入射位置を検出することができるので、ウオブリング等を行なわなくとも、検出分解能を高めることができる。

【図面の簡単な説明】

【図1】この発明の一実施例に係る放射線検出器の構成を示す斜視図である。

【図2】図1のA-A矢視断面図である。

【図3】図1のB-B矢視断面図である。

【図4】実施例装置の作用を説明するための図である。

【図5】第1、第2のシンチレータで発光した光の発光 パルスの減衰時間と、光電子倍増管からの出力電圧値と の関係を示す図である。

【図6】ガンマ線の入射位置と発光位置とを検出する回路構成を示す図である。

【図7】実施例装置の構成を2個の放射線検出器で概念的に示した図である。

【図8】実施例装置を用いたPET装置の構成を示す図である。

【図9】ガンマ線がシンチレータに斜めに入射したとき の作用を説明するための図である。

【図10】従来装置の検出分解能を示す図である。

【図11】この発明に係るPET装置の検出分解能を示す図である。

【図12】従来例に係る放射線検出器の構成を示す斜視 図である。

【図13】従来例に係るPET装置の構成を示す図である。

【図14】従来例の問題点を説明するための図である。

【図15】従来例の問題点を説明するための図である。

【図16】シンチレータを2層に分割した場合の効果を 説明するための図である。

【符号の説明】

2 … 放射線検出器

10: … 第1のシンチレータ

11、31 … 反射材

30:」 … 第2のシンチレータ

41 … 位置検出回路

42 … 波形分析回路

60 … 画像処理部

【図2】

【図4】

【図8】

【図15】

