Teoría de conjuntos

- ightharpoonup Fórmulas de los complementos: $A \cup \overline{A} = \Omega$; $A \cap \overline{A} = \emptyset$; $\overline{\Omega} = \emptyset$
- \rightarrow Fórmula de la partición: $\forall B, A = (A \cap B) \cup (A \cap \overline{B})$
- **→** Fórmulas de DeMorgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$; $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- → Propiedades permutativas: $A \cup B = B \cup A$; $A \cap B = B \cap A$
- → Propiedades asociativas: $\begin{cases} (A \cup B) \cup C &= A \cup (B \cup C) &= A \cup B \cup C \\ (A \cap B) \cap C &= A \cap (B \cap C) &= A \cap B \cap C \end{cases}$
- → Propiedades distributivas: $\begin{cases} (A \cup B) \cap C &= (A \cap C) \cup (B \cap C) \\ (A \cap B) \cup C &= (A \cup C) \cap (B \cup C) \end{cases}$

Técnicas de conteo

Principio(s) fundamental(es) del conteo:

Ley del producto: Si un cierto evento puede suceder de m formas , y otro cierto evento puede suceder de n formas independientes del primero, entonces la cantidad de formas en que puede suceder los dos eventos simultáneamente es $m \cdot n$

Ley de la suma: Si un cierto evento puede suceder de m formas , y otro cierto evento puede suceder de n formas distintas al primero, entonces la cantidad de formas en que puede suceder alguno de los dos eventos (o bien uno, o bien el otro) es m+n.

"0"⇔∪⇔+

Con n elementos <u>todos distinguibles entre si</u> se forman arreglos de r elementos cada uno: (modelo urna-arreglo)

		No se pueden repetir elementos	Se pueden repetir elementos
Importa el orden	Permutaciones (Variaciones) (Ordenaciones)	$P_r^n = \frac{n!}{(n-r)!} = \underbrace{n \cdot (n-1) \cdot \dots \cdot (n-(r-1)) \cdot \dots \cdot (n-(r-1)) \cdot \dots \cdot (n-(r-1))}_{r \text{ factores}}$ {(AB);(AC);(BA);(BC);(CA);(CB)}	I I I I I I I I I I I I I I I I I I I
	Permutaciones (r=n)	$P^n = n!$ {(ABC);(ACB); ;(BAC);(BCA); ;(CAB);(CBA)}	$P^{:n} = n^{n} \qquad \begin{array}{l} \{(AAA); (AAB); (AAC); (ABA); \\; (ABB); (ABC); (ACA); (ACB); \\; (ACC); (BAA); (BAB); (BAC); \\; (BBA); (BBB); (BBC); (BCA); \\; (BBB); (BCC); (CAA); (CAB); \\; (CAC); (CBA); (CBC); \\; (CCA); (CCB); (CCC) \end{array}$
No importa el orden	Combinaciones		$= \binom{n}{r} = \binom{r+(n-1)}{(n-1)} = \frac{(n+r-1)!}{r! \cdot (n-1)!}$ {AA};{AB};{AC};{BB};{BC};{CC}}

Permutaciones con categorías o clases: Si se tienen n_1 elementos de una clase, n_2 de otra clase,..., n_k de la última clase, y elementos de la misma clase son indistinguibles entre si; entonces la cantidad de permutaciones distinguibles que se pueden contar son:

$$P_n^{(n_1;n_2;...;n_k)} = \frac{n!}{(n_1!)\cdot(n_2!)\cdot...\cdot(n_k!)} \quad \text{donde} \quad n = n_1 + n_2 + ... + n_k \quad \text{es \#(elementos totales)}$$

<u>Ordenación de elementos indistinguibles:</u> Si se tienen r elementos indistinguibles entre si, la cantidad de forma en que estos pueden ser repartidos entre n categorías diferentes es equivalente a la cantidad de formas de ordenar en línea r elementos indistinguibles con (n-1) separadores. Estas formas son $\binom{n}{r} = P_{r+n-1}^{(r;n-1)}$

Esto es solo un apunte de formulas relevantes. Reportar cualquier error a 6106tl@gmail.com

Ing. Sergio QUINTEROS