Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{7}\left(\sqrt{7}+1\right)-\sqrt{7}=\sqrt{7}\cdot\sqrt{7}+\sqrt{7}-\sqrt{7}=$	2p
	=7+0=7	3 p
2.	f(0)=8	3p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 8$	2p
3.	$x^2 + 9 = 5^2 \Rightarrow x^2 - 16 = 0$	2p
	x = -4 sau $x = 4$, care convin	3 p
4.	$x - \frac{40}{100} \cdot x = 300$, unde x este prețul obiectului înainte de ieftinire	3 p
	x = 500 de lei	2p
5.	M(0,2), unde punctul M este mijlocul laturii AB	2 p
	CM = 4	3p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\frac{\sqrt{3}}{2} \cdot \sin 60^{\circ} - \frac{\sqrt{2}}{2} \cdot \sin 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$	3р

1.a)	$\det A = \begin{vmatrix} 6 & -10 \\ 3 & -5 \end{vmatrix} = 6 \cdot (-5) - 3 \cdot (-10) =$	3p
	=-30+30=0	2 p
b)	$A \cdot A = A$ şi $M(a) \cdot M(b) = (I_2 + aA)(I_2 + bA) = I_2 + aA + bA + abA \cdot A =$	2 p
	$= I_2 + aA + bA + abA = I_2 + (a+b+ab)A = M(a+b+ab)$, pentru orice numere reale a şi b	3 p
c)	$(I_2 + A) + (I_2 + 2A) + \dots + (I_2 + 2019A) = 2019I_2 + (1 + 2 + \dots + 2019)A =$	3 p
	$=2019(I_2+1010A)=2019M(1010)$, de unde obținem $a=1010$	2 p
2.a)	$f(1) = m \cdot 1^3 + 2 \cdot 1^2 - m \cdot 1 - 2 =$	3p
	= m + 2 - m - 2 = 0, pentru orice număr real nenul m	2p
b)	$f = 3X^3 + 2X^2 - 3X - 2 \Rightarrow f = (X - 1)(X + 1)(3X + 2)$	2p
	$x_1 = -1, \ x_2 = -\frac{2}{3}, \ x_3 = 1$	3p
c)	$x_1 x_2 + x_1 x_3 + x_2 x_3 = -1, \ x_1 x_2 x_3 = \frac{2}{m}$	2p
	$\frac{x_1 x_2 + x_1 x_3 + x_2 x_3}{x_1 x_2 x_3} = -4 \Leftrightarrow \frac{-m}{2} = -4 \Leftrightarrow m = 8$	3p

SUBI	SUBIECTUL al III-lea (30 de punc	
1.a)	$f'(x) = 3x^2 - 3 =$	3 p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$f''(x) = 6x, \ x \in \mathbb{R}$	2p
	$f''(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci funcția f este convexă pe $[0, +\infty)$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este crescătoare pe $(-\infty, -1]$ și $f'(x) \le 0$, pentru	2p
	orice $x \in [-1,1] \Rightarrow f$ este descrescătoare pe $[-1,1]$	2p
	$f(x) \le f(-1)$, pentru orice $x \in (-\infty, 1]$ și $f(-1) = 7$, deci $f(x) \le 7$, pentru orice $x \in (-\infty, 1]$	3p
2.a)	$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} (3x^{2} + 6x + 7) dx = \left(\frac{3x^{3}}{3} + \frac{6x^{2}}{2} + 7x\right) \Big _{0}^{1} =$	3 p
	=1+3+7-0=11	2p
b)	$\int_{-1}^{1} \frac{x+1}{f(x)} dx = \int_{-1}^{1} \frac{x+1}{\sqrt{3x^2 + 6x + 7}} dx = \frac{1}{3} \sqrt{3x^2 + 6x + 7} \Big _{-1}^{1} =$	3 p
	$= \frac{1}{3} \left(\sqrt{16} - \sqrt{4} \right) = \frac{2}{3}$	2p
c)	$\sqrt{3x^2 + 6x + 7} \ge \sqrt{7}$, pentru orice $x \in [0, +\infty)$	2p
	$\mathcal{A} = \int_{0}^{a} f(x) dx = \int_{0}^{a} \sqrt{3x^2 + 6x + 7} dx \ge \int_{0}^{a} \sqrt{7} dx = a\sqrt{7}, \text{ pentru orice } a \in (0, +\infty)$	3 p

Matematică M tehnologic

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{7}(\sqrt{7}+1)-\sqrt{7}=7$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 8$. Determinați coordonatele punctului de intersecție a graficului funcției f cu axa Oy.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_5(x^2+9)=2$.
- **5p 4.** După o ieftinire cu 40%, prețul unui obiect este 300 de lei. Calculați prețul obiectului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,2), B(-3,2) și C(0,6). Determinați, în triunghiul ABC, lungimea medianei din vârful C.
- **5p 6.** Arătați că $\frac{\sqrt{3}}{2} \cdot \sin 60^{\circ} \frac{\sqrt{2}}{2} \cdot \sin 45^{\circ} = \frac{1}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 6 & -10 \\ 3 & -5 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(a) = I_2 + aA$, unde a este număr real.
- **5p** a) Arătați că det A = 0.
- **5p b**) Demonstrați că $M(a) \cdot M(b) = M(a+b+ab)$, pentru orice numere reale a și b.
- **5p** c) Determinați numărul real a pentru care M(1) + M(2) + ... + M(2019) = 2019 M(a).
 - **2.** Se consideră polinomul $f = mX^3 + 2X^2 mX 2$, unde *m* este număr real nenul.
- **5p** a) Arătați că f(1) = 0, pentru orice număr real nenul m.
- **5p b**) Pentru m = 3, determinați rădăcinile polinomului f.
- **5p** c) Determinați numărul real nenul m pentru care $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = -4$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 5$.
- **5p** a) Arătați că $f'(x) = 3(x-1)(x+1), x \in \mathbb{R}$.
- **5p b**) Demonstrați că funcția f este convexă pe $[0,+\infty)$.
- **5p** c) Demonstrați că $f(x) \le 7$, pentru orice $x \in (-\infty, 1]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{3x^2 + 6x + 7}$.
- **5p a)** Arătați că $\int_{0}^{1} f^{2}(x) dx = 11$.
- **5p b)** Calculați $\int_{-1}^{1} \frac{x+1}{f(x)} dx$.
- **5p** c) Demonstrați că, pentru orice $a \in (0, +\infty)$, suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = a are aria mai mare sau egală cu $a\sqrt{7}$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$6\sqrt{3} + 2(1 - \sqrt{27}) = 6\sqrt{3} + 2(1 - 3\sqrt{3}) =$	3p
	$=6\sqrt{3}+2-6\sqrt{3}=2$	2p
2.	f(2) = 0	3p
	$f(0) \cdot f(1) \cdot f(2) = 0$	2p
3.	20x - 6 = 14	3 p
	x = 1, care convine	2p
4.	$x + \frac{10}{100} \cdot x = 440$, unde x este prețul inițial al obiectului	3р
	x = 400 de lei	2p
5.	Mijlocul segmentului BC este punctul $M(3,3)$	2p
	AM = 1	3 p
6.	$\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 30^\circ = \frac{1}{2}$, $\tan 30^\circ = \frac{\sqrt{3}}{3}$	3p
	$\frac{\cos 30^{\circ}}{1+\sin 30^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{1+\frac{1}{2}} = \frac{\sqrt{3}}{2} \cdot \frac{2}{3} = \frac{\sqrt{3}}{3} = \text{tg}30^{\circ}$	2p

1.a)	$\det M = \begin{vmatrix} -1 & 2 \\ -6 & -9 \end{vmatrix} = (-1) \cdot (-9) - (-6) \cdot 2 =$	3 p
	=9+12=21	2p
b)	$A(-a) + A(a) = \begin{pmatrix} -a+1 & -a+2 \\ -a-2 & -a+1 \end{pmatrix} + \begin{pmatrix} a+1 & a+2 \\ a-2 & a+1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ -4 & 2 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = 2A(0)$, pentru orice număr real a	2p
c)	$ \begin{pmatrix} a+1 & a+2 \\ a-2 & a+1 \end{pmatrix} \begin{pmatrix} b+1 & b+2 \\ b-2 & b+1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -6 & -9 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2ab-a+3b-3 & 2ab+3a+3b+4 \\ 2ab-a-b-4 & 2ab-b+3a-3 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -6 & -9 \end{pmatrix} $	2p
	Obţinem $a = -1$, $b = 1$	3 p
2.a)	$2 \circ (-2) = 2(2 + (-2)) - \frac{2 \cdot (-2)}{2} =$	3p
	$=\frac{4}{2}=2$	2p

b)	$2\left(n+\frac{1}{n}\right) - \frac{n \cdot \frac{1}{n}}{2} = \frac{9}{2} \Leftrightarrow n + \frac{1}{n} = \frac{5}{2}$ Cum <i>n</i> este număr natural nenul, obținem <i>n</i> = 2	3p
c)	$2(x+y) - \frac{xy}{2} = 8 \Leftrightarrow 4x + 4y - xy - 16 = 0 \Leftrightarrow (x-4)(4-y) = 0, \text{ pentru orice număr real } x$	3p
	y = 4	2p

SUBIECTUL al III-lea

1.a)	$x'(x) = x^2 + 4 - x \cdot 2x$	
	$f'(x) = \frac{x^2 + 4 - x \cdot 2x}{\left(x^2 + 4\right)^2} =$	3p
	$= \frac{4 - x^2}{\left(x^2 + 4\right)^2} = \frac{(2 - x)(2 + x)}{\left(x^2 + 4\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{x^2 + 4} = \lim_{x \to -\infty} \frac{1}{x \left(1 + \frac{4}{x^2}\right)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2p
c)	$f'(x) \le 0$, pentru orice $x \in (-\infty, -2] \Rightarrow f$ este descrescătoare pe $(-\infty, -2]$, $f'(x) \ge 0$, pentru orice $x \in [-2, 2] \Rightarrow f$ este crescătoare pe $[-2, 2]$ și $f'(x) \le 0$, pentru orice $x \in [2, +\infty) \Rightarrow f$ este descrescătoare pe $[2, +\infty)$	2p
	f continuă pe \mathbb{R} , $\lim_{x \to -\infty} f(x) = 0$, $f(-2) = -\frac{1}{4}$, $f(2) = \frac{1}{4}$ și $\lim_{x \to +\infty} f(x) = 0$, deci mulțimea valorilor funcției f este $\left[-\frac{1}{4}, \frac{1}{4} \right]$	3p
2.a)	$\int_{0}^{2} x(x+1) \left(f(x) + \frac{1}{x+2} \right) dx = \int_{0}^{2} x dx =$	2p
	$=\frac{x^2}{2}\Big _0^2=2$	3p
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(\frac{x}{x+1} - \frac{x}{x+2} \right) dx = \int_{0}^{1} \left(1 - \frac{1}{x+1} - 1 + \frac{2}{x+2} \right) dx =$	2 p
	$= \left(-\ln(x+1) + 2\ln(x+2)\right) \Big _{0}^{1} = 2\ln 3 - 3\ln 2 = \ln\frac{9}{8}$	3p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = \left(\ln(x+1) - \ln(x+2) \right) \Big _{0}^{1} = \ln\frac{4}{3}$	3 p
	$\ln\left(p^2 + \frac{1}{3}\right) = \ln\frac{4}{3} \Leftrightarrow p^2 + \frac{1}{3} = \frac{4}{3} \Leftrightarrow p^2 - 1 = 0 \text{ si, cum } p \text{ este număr natural, obținem } p = 1$	2 p

Matematică *M_tehnologic*

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- 1. Arătați că $6\sqrt{3} + 2(1 \sqrt{27}) = 2$ **5p**
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4$. Calculați $f(0) \cdot f(1) \cdot f(2)$. 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(20x-6) = \log_5 14$. 5p
- **5**p 4. După o scumpire cu 10%, un obiect costă 440 de lei. Determinați prețul inițial al obiectului.
- 5. În reperul cartezian xOy se consideră punctele A(3,4), B(0,6) și C(6,0). Calculați distanța de la **5p** punctul A la mijlocul segmentului BC.
- **6**. Arătați că $\frac{\cos 30^{\circ}}{1 + \sin 30^{\circ}} = \text{tg } 30^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $M = \begin{pmatrix} -1 & 2 \\ -6 & -9 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a+1 & a+2 \\ a-2 & a+1 \end{pmatrix}$, unde a este număr real.
- a) Arătați că $\det M = 21$ **5p**
- **b**) Demonstrați că A(-a) + A(a) = 2A(0), pentru orice număr real a. **5p**
- 5p c) Determinați numerele reale a și b pentru care $A(a) \cdot A(b) = M$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 2(x+y) \frac{xy}{2}$.
- a) Arătați că $2 \circ (-2) = 2$. 5p
- **b**) Determinați numărul natural nenul *n* pentru care $n \circ \frac{1}{n} = \frac{9}{2}$. **5p**
- c) Determinați numărul real y astfel încât $x \circ y = 8$, pentru orice număr real x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + \lambda}$.
- a) Arătați că $f'(x) = \frac{(2-x)(2+x)}{(x^2+4)^2}, x \in \mathbb{R}$.
- **b)** Determinați ecuația asimptotei orizontale spre $-\infty$ la graficul funcției f. **5p**
- c) Determinați mulțimea valorilor funcției f. **5**p
 - 2. Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{x+1}-\frac{1}{x+2}$.
- a) Arătați că $\int_{0}^{2} x(x+1) \left(f(x) + \frac{1}{x+2} \right) dx = 2$.
- **b**) Arătați că $\int x f(x) dx = \ln \frac{9}{8}$. **5**p
- ${f c}$) Determinați numărul natural p, știind că suprafața plană delimitată de graficul funcției f, axa **5p** Ox și dreptele de ecuații x = 0 și x = 1 are aria egală cu $\ln\left(p^2 + \frac{1}{2}\right)$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{3}{2} - \frac{2}{3}\right) : \left(\frac{3}{2} + \frac{2}{3}\right) : \frac{13}{5} = \frac{5}{6} : \frac{13}{6} : \frac{13}{5} = \frac{5}{6} : \frac{13}{6} : \frac{13}{5} = \frac{5}{6} : \frac{13}{6} : \frac{13}{6}$	3 p
	$=\frac{5}{6} \cdot \frac{6}{13} \cdot \frac{13}{5} = 1$	2p
2.	f(m+1) = 2(m+1) - 4 = 2m - 2	3p
	$2m-2=m \Leftrightarrow m=2$	2p
3.	$2x + 3 = 9 \Rightarrow 2x = 6$	3 p
	x = 3, care convine	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	În mulțimea A sunt 3 numere multiplu de 3, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	1p
5.	MP = 4, $NP = 3$	2p
	ΔMPN este dreptunghic în P , deci $\mathcal{A}_{\Delta MPN} = \frac{4 \cdot 3}{2} = 6$	3p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\frac{1}{\sqrt{3}} \cdot \sin 60^\circ + \sin^2 45^\circ = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$	3 p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2 p
b)	$M(a) \cdot M(b) = \begin{pmatrix} 1+a & -a \\ a & 1-a \end{pmatrix} \begin{pmatrix} 1+b & -b \\ b & 1-b \end{pmatrix} = \begin{pmatrix} 1+a+b & -b-a \\ a+b & 1-a-b \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 1 + (a+b) & -(a+b) \\ a+b & 1 - (a+b) \end{pmatrix} = M(a+b), \text{ pentru orice numere reale } a \text{ si } b$	2 p
c)	$M(a) \cdot M(-a) = M(0) = I_2 \Rightarrow (M(a))^{-1} = M(-a)$, pentru orice număr real a	2p
	$X = (M(1))^{-1} \cdot A \cdot (M(2))^{-1} \Rightarrow X = M(-1) \cdot A \cdot M(-2) \Rightarrow X = \begin{pmatrix} -11 & 18 \\ -17 & 28 \end{pmatrix}$	3p
2.a)	$f(0) = 2 \cdot 0^3 - 4 \cdot 0^2 + 4 \cdot 0 - 3 =$	3p
	=0-0+0-3=-3	2 p

b)	$x_1x_2 + x_2x_3 + x_3x_1 = 2$, $x_1x_2x_3 = \frac{3}{2}$	2p
	$a = \frac{3}{x_1} + \frac{3}{x_2} + \frac{3}{x_3} = \frac{3(x_1x_2 + x_2x_3 + x_3x_1)}{x_1x_2x_3} = 4$, care este număr natural	3 p
c)	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1) = 2^2 - 2 \cdot 2 = 0$	2 p
	Dacă x_1 , x_2 și x_3 sunt numere reale, atunci $x_1 = x_2 = x_3 = 0$, ceea ce nu convine deoarece $f(0) = -3$	3 p

SUBIECTUL al III-lea

	De l'ell air lit lea	/
1.a)	$f'(x) = \frac{x^6 + 5 - x \cdot 6x^5}{\left(x^6 + 5\right)^2} = \frac{5 - 5x^6}{\left(x^6 + 5\right)^2} =$	3 p
	$= \frac{5(1-x^6)}{(x^6+5)^2} = \frac{5(1-x^3)(1+x^3)}{(x^6+5)^2}, \ x \in \mathbb{R}$	2 p
b)	$f(0) = 0, f'(0) = \frac{1}{5}$	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = \frac{1}{5}x$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare pe $(-\infty, -1]$, $f'(x) \ge 0$, pentru orice $x \in [-1, 1] \Rightarrow f$ este crescătoare pe $[-1, 1]$ și $f'(x) \le 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este descrescătoare pe $[1, +\infty)$	2p
	f continuă pe \mathbb{R} , $\lim_{x \to -\infty} f(x) = 0$, $f(-1) = -\frac{1}{6}$, $f(1) = \frac{1}{6}$ și $\lim_{x \to +\infty} f(x) = 0$, deci mulțimea valorilor funcției f este $\left[-\frac{1}{6}, \frac{1}{6}\right]$	3 p
2.a)	$\int_{0}^{1} \frac{f(x)}{e^{x}} dx = \int_{0}^{1} (x-1) dx = \left(\frac{x^{2}}{2} - x\right) \Big _{0}^{1} =$	3 p
	$=\frac{1}{2}-1-0=-\frac{1}{2}$	2p
b)	$F'(x) = ((x-2)e^x + 2019)' = 1 \cdot e^x + (x-2)e^x + 0 =$	3p
	$=(x-1)e^x=f(x), x \in \mathbb{R}$	2p
c)	$= (x-1)e^{x} = f(x), x \in \mathbb{R}$ $\int_{0}^{1} f^{2}(x)f'(x)dx = \frac{f^{3}(x)}{3}\Big _{0}^{1} =$	3 p
	$= \frac{f^3(1) - f^3(0)}{3} = \frac{0 - (-1)}{3} = \frac{1}{3}$	2 p

Matematică M_tehnologic

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\frac{3}{2} \frac{2}{3}\right) : \left(\frac{3}{2} + \frac{2}{3}\right) \cdot \frac{13}{5} = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 4. Determinați numărul real m, știind că f(m+1) = m.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_7(2x+3) = \log_7 9$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$, acesta să fie multiplu de 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(4,1), N(1,5) și P(4,5). Calculați aria triunghiului MNP.
- **5p 6.** Arătați că $\frac{1}{\sqrt{3}} \cdot \sin 60^\circ + \sin^2 45^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ și $M(a) = \begin{pmatrix} 1+a & -a \\ a & 1-a \end{pmatrix}$, unde a este număr real.
- **5p a**) Arătați că det A = -2.
- **5p b**) Demonstrați că $M(a) \cdot M(b) = M(a+b)$, pentru orice numere reale a și b.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$ pentru care $M(1) \cdot X \cdot M(2) = A$.
 - **2.** Se consideră polinomul $f = 2X^3 4X^2 + 4X 3$.
- **5p** a) Arătați că f(0) = -3.
- **5p b)** Demonstrați că numărul $a = \frac{3}{x_1} + \frac{3}{x_2} + \frac{3}{x_3}$ este natural, unde x_1 , x_2 și x_3 sunt rădăcinile lui f.
- $\mathbf{5p}$ **c**) Demonstrați că polinomul f **nu** are toate rădăcinile reale.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^6 + 5}$.
- **5p** a) Arătați că $f'(x) = \frac{5(1-x^3)(1+x^3)}{(x^6+5)^2}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0 situat pe graficul funcției f.
- **5p** $| \mathbf{c} |$ Determinați mulțimea valorilor funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)e^x$.
- **5p** a) Arătați că $\int_{0}^{1} \frac{f(x)}{e^{x}} dx = -\frac{1}{2}$.
- **5p b**) Demonstrați că $F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-2)e^x + 2019$ este o primitivă a funcției f.
- **5p** c) Calculați $\int_{0}^{1} f^{2}(x) f'(x) dx$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$N = 16 + 24i + 9i^2 + 9 - 24i + 16i^2 =$	2p
	=16-9+9-16=0, care este număr natural	3 p
2.	$f(a) = a \Leftrightarrow 2 - a^2 = a \Leftrightarrow a^2 + a - 2 = 0$	3p
	a = -2 sau $a = 1$	2p
3.	$5^x (1+5) = 30 \Leftrightarrow 5^x = 5$	3 p
	x=1	2p
4.	Mulțimea M are 49 de elemente, deci sunt 49 de cazuri posibile	1p
	În mulțimea <i>M</i> sunt 7 numere naturale, deci sunt 7 cazuri favorabile	2p
	nr. cazuri favorabile 7 1	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{7}{49} = \frac{1}{7}$	2p
5.	Mijlocul segmentului AC este punctul $M(2,3)$	2p
	$BM = \sqrt{(3-2)^2 + (5-3)^2} = \sqrt{5}$	3 p
6.	$(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x + \sin^2 x - 2\sin x \cos x + \cos^2 x =$	2p
	= $2(\sin^2 x + \cos^2 x)$ = $2 \cdot 1$ = 2, pentru orice număr real x	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1,1) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(1,1)) = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot (-1) =$	3p
	=1+1=2	2p
b)	$ \binom{n-1}{0} \binom{0}{n-1} + \binom{n+1}{0} \binom{0}{n+1} = \binom{2018}{0} \binom{0}{2018} \Leftrightarrow \binom{2n}{0} \binom{0}{2n} = \binom{2018}{0} \binom{0}{2018} $	3р
	n = 1009	2p
c)	$ \begin{pmatrix} x & -1 \\ 1 & x \end{pmatrix} \begin{pmatrix} x & -1 \\ 1 & x \end{pmatrix} = \begin{pmatrix} a & 2 \\ -2 & a \end{pmatrix} \Leftrightarrow \begin{pmatrix} x^2 - 1 & -2x \\ 2x & x^2 - 1 \end{pmatrix} = \begin{pmatrix} a & 2 \\ -2 & a \end{pmatrix} $	3 p
	x = -1, de unde obţinem $a = 0$	2p
2.a)	$f(-1) = (-1)^3 - 7 \cdot (-1)^2 + m \cdot (-1) - 8 = -m - 16$	2 p
	$f(1) = 1^3 - 7 \cdot 1^2 + m \cdot 1 - 8 = m - 14 \Rightarrow f(-1) + f(1) = -m - 16 + m - 14 = -30$, pentru orice număr real m	3 p
b)	$f(2) = 0 \Rightarrow m = 14$, deci $f = X^3 - 7X^2 + 14X - 8$	2 p
	Câtul este $X-4$ și restul este $X-4$	3 p
c)	$x_1 x_3 = x_2^2 \Rightarrow x_1 x_2 x_3 = x_2^3$ şi, cum $x_1 x_2 x_3 = 8$, obţinem $x_2 = 2$	2p
	Polinomul f are rădăcinile 1, 2 și 4, deci $m=14$	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Model

5021	(So de pl	ancte)
1.a)	$f'(x) = \frac{(2x+2)(x+2) - (x^2 + 2x + 1) \cdot 1}{(x+2)^2} =$	3p
	$=\frac{x^2+4x+3}{(x+2)^2} = \frac{(x+1)(x+3)}{(x+2)^2}, \ x \in (-2, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 2x + 1}{x(x+2)} = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{1}{x + 2} = 0$, deci dreapta de ecuație $y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3р
c)		2p
	$f''(x) > 0$, pentru orice $x \in (-2, +\infty)$, deci funcția f este convexă pe $(-2, +\infty)$	3 p
2.a)	$F:(0,+\infty) \to \mathbb{R}, \ F(x) = \frac{x^3}{3} + \ln x + c, \text{ unde } c \in \mathbb{R}$	3p
	Cum $F(1) = \frac{1}{3} + c$, obținem $F(1) = 0 \Leftrightarrow c = -\frac{1}{3}$, deci $F(x) = \frac{x^3}{3} + \ln x - \frac{1}{3}$	2p
b)	$g(x) = x^{2} + \frac{1}{x} \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} \left(x^{4} + 2x + \frac{1}{x^{2}} \right) dx = \pi \cdot \left(\frac{x^{5}}{5} + x^{2} - \frac{1}{x} \right) \Big _{1}^{2} =$	3p
	$=\pi\left(\frac{32}{5}+4-\frac{1}{2}-\frac{1}{5}-1+1\right)=\frac{97\pi}{10}$	2p
c)	$\int_{1}^{m} (f(x) - x^{2}) \ln x dx = \int_{1}^{m} \frac{1}{x} \ln x dx = \frac{1}{2} \ln^{2} x \bigg _{1}^{m} = \frac{1}{2} \ln^{2} m$	3p
	$\frac{1}{2}\ln^2 m = \frac{1}{2} \Leftrightarrow \ln m = -1$ sau $\ln m = 1$, deci $m = \frac{1}{e}$, care nu convine sau $m = e$, care convine	2p

Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_tehnologic*

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

- **5p 1.** Arătați că numărul $N = (4+3i)^2 + (3-4i)^2$ este natural, unde $i^2 = -1$.
- **5p** 2. Determinați numerele reale a, știind că punctul A(a, a) aparține graficului funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2 x^2$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^x + 5^{x+1} = 30$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, ..., \sqrt{49}\}$, acesta să fie număr natural.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,5), B(3,5) și C(2,1). Determinați lungimea medianei din B a triunghiului ABC.
- **5p** | **6.** Demonstrați că $(\sin x + \cos x)^2 + (\sin x \cos x)^2 = 2$, pentru orice număr real x.

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

- **1.** Se consideră matricea $A(x,y) = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, unde x și y sunt numere reale.
- **5p** a) Arătați că $\det(A(1,1)) = 2$.
- **5p b**) Determinați numărul natural n pentru care A(n-1,0) + A(n+1,0) = A(2018,0).
- **5p** c) Determinați numărul real a, știind că există un număr real x pentru care $A(x,1) \cdot A(x,1) = A(a,-2)$.
 - **2.** Se consideră polinomul $f = X^3 7X^2 + mX 8$, unde m este număr real.
- **5p** a) Arătați că f(-1) + f(1) = -30, pentru orice număr real m.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la $X^2 3X + 1$, știind că f se divide cu X 2.
- **5p** c) Determinați numărul real m pentru care polinomul f are trei rădăcini reale pozitive, în progresie geometrică.

SUBIECTUL al III-lea - Scrieți, pe foaia de examen, rezolvările complete.

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 + 2x + 1}{x+2}$.
- **5p a)** Arătați că $f'(x) = \frac{(x+1)(x+3)}{(x+2)^2}, x \in (-2, +\infty).$
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că funcția f este convexă pe $(-2, +\infty)$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 + \frac{1}{x}$.
- **5p** a) Determinați primitiva F a funcției f pentru care F(1) = 0.
- **5p b**) Arătați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, g(x) = f(x) este egal cu $\frac{97\pi}{10}$.
- **5p** c) Determinați numărul $m \in (1, +\infty)$, știind că $\int_{1}^{m} (f(x) x^2) \ln x \, dx = \frac{1}{2}$.

Matematică *M_tehnologic*

Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1+\sqrt{5}\right)^2 = 6+2\sqrt{5}$	3 p
	$\sqrt{20} = 2\sqrt{5}$, deci $(1+\sqrt{5})^2 - \sqrt{20} = 6 + 2\sqrt{5} - 2\sqrt{5} = 6$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 + 2x - 3 = 0$, deci $x = -3$ sau $x = 1$	3 p
	Distanța dintre punctele de intersecție a graficului funcției f cu axa Ox este egală cu 4	2 p
3.	$2^{2x} \cdot 2^{3x+3} = 2^{8x} \Leftrightarrow 2^{5x+3} = 2^{8x}$	3p
	5x + 3 = 8x, deci $x = 1$	2 p
4.		3p
	3 și 5	°P
	Numerele sunt 135, 153, 315, 351, 513 și 531	2p
5.	a+1=2a-1	3 p
	a=2	2p
6.	$4\sin^2 x + 12\sin x \cos x + 9\cos^2 x + 9\sin^2 x - 12\sin x \cos x + 4\cos^2 x =$	2p
	$=13\sin^2 x + 13\cos^2 x = 13\left(\sin^2 x + \cos^2 x\right) = 13, \text{ pentru orice număr real } x$	3 p

1.a)	$A(2) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} =$	3p
	$= 2 \cdot 2 - 1 \cdot 1 = 3$	2p
b)	$A(x) \cdot A(y) = \begin{pmatrix} x & x-1 \\ x-1 & x \end{pmatrix} \begin{pmatrix} y & y-1 \\ y-1 & y \end{pmatrix} = \begin{pmatrix} xy + xy - x - y + 1 & xy - x + xy - y \\ xy - y + xy - x & xy - x - y + 1 + xy \end{pmatrix} = \begin{pmatrix} xy + xy - x - y + 1 & xy - x + xy - y \\ xy - y + xy - x & xy - x - y + 1 + xy \end{pmatrix} = \begin{pmatrix} xy + xy - x - y + 1 & xy - x + xy - y \\ xy - y + xy - x & xy - x - y + 1 + xy \end{pmatrix}$	3 p
	$= \begin{pmatrix} 2xy - x - y + 1 & 2xy - x - y + 1 - 1 \\ 2xy - x - y + 1 - 1 & 2xy - x - y + 1 \end{pmatrix} = A(2xy - x - y + 1), \text{ pentru orice numere reale } x \text{ §i } y$	2p
	$A(x) \cdot A\left(\frac{1}{2}\right) = A\left(2 \cdot x \cdot \frac{1}{2} - x - \frac{1}{2} + 1\right) = A\left(\frac{1}{2}\right), \ A\left(\frac{1}{2}\right) \cdot A(y) = A\left(2 \cdot \frac{1}{2} \cdot y - \frac{1}{2} - y + 1\right) = A\left(\frac{1}{2}\right),$	2 p
	pentru orice numere reale x și y	
	Pentru orice numere reale x și y , $\left(A(x) \cdot A\left(\frac{1}{2}\right)\right) \cdot A(y) = A\left(\frac{1}{2}\right) \cdot A(y) = A\left(\frac{1}{2}\right)$, deci $a = \frac{1}{2}$	3 p
2.a)	$6*2=6+2-\frac{6\cdot 2}{4}=$	3 p
	=8-3=5	2 p

b)	$x + 4x - \frac{x \cdot 4x}{4} = 6 \Leftrightarrow x^2 - 5x + 6 = 0$	3p
	x = 2 sau $x = 3$	2p
c)	x*4=4 și $4*y=4$, pentru orice numere reale x și y	2p
	1*2*3**2019 = ((1*2*3)*4)*(5*6**2019) = 4*(5*6**2019) = 4	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = \frac{1 \cdot e^x - (x - 3) \cdot e^x}{\left(e^x\right)^2} =$	3p
	$= \frac{e^{x} (1 - (x - 3))}{e^{2x}} = \frac{4 - x}{e^{x}}, x \in \mathbb{R}$	2p
b)	$f''(x) = \frac{x-5}{e^x}, \ x \in \mathbb{R}$	3p
	$f''(x) \ge 0$, pentru orice $x \in [5, +\infty)$, deci funcția f este convexă pe $[5, +\infty)$	2p
c)	$x \in (-\infty, 4] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $(-\infty, 4]$ și $x \in [4, +\infty) \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[4, +\infty)$	2p
	$f(x) \le f(4)$, pentru orice număr real $x \Rightarrow 3 + \frac{x-3}{e^x} \le 3 + \frac{1}{e^4}$, deci $x-3 \le e^{x-4}$, pentru orice	3 p
2.a)	număr real x	
2.0)	$\left \int_{0}^{1} f(x) dx = \int_{0}^{1} (6x^{2} + 4x + 1) dx = (2x^{3} + 2x^{2} + x) \right _{0}^{1} =$	3 p
	=2+2+1-0=5	2p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x) = 6x^2 + 4x + 1, x \in \mathbb{R}$	2p
	$f(x) > 0 \Rightarrow F'(x) > 0$, pentru orice număr real x, deci funcția F este crescătoare pe \mathbb{R}	3 p
c)	$\int_{1}^{a} \frac{f(x)}{x} dx = \int_{1}^{a} \left(6x + 4 + \frac{1}{x} \right) dx = \left(3x^{2} + 4x + \ln x \right) \Big _{1}^{a} = 3a^{2} + 4a + \ln a - 7$	2p
	$3a^2 + 4a + \ln a - 7 = 13 + \ln a \Leftrightarrow 3a^2 + 4a - 20 = 0$, de unde obţinem $a = -\frac{10}{3}$ care nu convine, $a = 2$ care convine	3 p

Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_tehnologic* Clasa a XII-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(1+\sqrt{5})^2 \sqrt{20} = 6$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 3$. Calculați distanța dintre punctele de intersecție a graficului funcției f cu axa Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $4^x \cdot 8^{x+1} = 16^{2x}$.
- **5p 4.** Determinați numerele naturale de trei cifre care au produsul cifrelor egal cu 15.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(a, a+1), unde a este număr real. Determinați numărul real a, știind că punctul A se află pe dreapta de ecuație y = 2x 1.
- **5p 6.** Demonstrați că $(2\sin x + 3\cos x)^2 + (3\sin x 2\cos x)^2 = 13$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & x-1 \\ x-1 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(2)) = 3$.
- **5p b**) Demonstrați că $A(x) \cdot A(y) = A(2xy x y + 1)$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul real a, știind că $A(a) = A(x) \cdot A(\frac{1}{2}) \cdot A(y)$, pentru orice numere reale x și y.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = x + y \frac{xy}{4}$.
- **5p a)** Arătați că 6*2=5.
- **5p b**) Determinați numerele reale x pentru care x*(4x) = 6.
- **5p c**) Calculați 1*2*3*...*2019.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3 + \frac{x-3}{e^x}$.
- **5p** a) Arătați că $f'(x) = \frac{4-x}{e^x}, x \in \mathbb{R}$.
- **5p b**) Arătați că funcția f este convexă pe $[5,+\infty)$.
- **5p** c) Demonstrați că $x-3 \le e^{x-4}$, pentru orice număr real x.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 6x^2 + 4x + 1$.
- **5p a)** Arătați că $\int_{0}^{1} f(x) dx = 5$.
- **5p b**) Demonstrați că orice primitivă a funcției f este crescătoare pe \mathbb{R} .
- **5p** c) Determinați numărul real a, a > 1, pentru care $\int_{1}^{a} \frac{f(x)}{x} dx = 13 + \ln a$.

Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_tehnologic*

Clasa a XI-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	В	5p
2.	C	5p
3.	C	5p
4.	D	5p
5.	$oldsymbol{A}$	5p
6.	D	5p

1.a)	$D(0) = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 3 & 5 \\ 1 & 2 & 4 \end{vmatrix} =$	2p
	=12+(-4)+10-(-3)-10-16=-5	3р
b)	$D(a) = 12(a+1) + 4(a^2-1) + 5(2a+2) - 3(a^2-1) - 10(a+1) - 8(2a+2) =$	3p
	$=a^2-4a-5=(a-5)(a+1)$, pentru orice număr real a	2p
c)	$(a-5)(a+1) < -3(a+1) \Leftrightarrow (a+1)(a-2) < 0$	2p
	Cum a este număr întreg, obținem $a = 0$ sau $a = 1$	3 p
2.a)	$M(-1) + M(1) = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix}1&0\\0&1\end{pmatrix}=2M(0)$	2p
b)	$M(x) \cdot M(y) = \begin{pmatrix} 1 - x & x \\ -x & 1 + x \end{pmatrix} \begin{pmatrix} 1 - y & y \\ -y & 1 + y \end{pmatrix} = \begin{pmatrix} 1 - x - y & y + x \\ -x - y & 1 + x + y \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (x+y) & x+y \\ -(x+y) & 1 + (x+y) \end{pmatrix} = M(x+y), \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$M(2x) = M(a) \Leftrightarrow 2x = a$, unde $x \neq a$ sunt numere reale	3 p
	Pentru orice număr real a , există un număr real $x = \frac{a}{2}$, astfel încât $M(x) \cdot M(x) = M(a)$	2 p

1.a)	$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 5x + 4}{x - 1} = \lim_{x \to 1} \frac{(x - 4)(x - 1)}{x - 1} =$	3 p
	$=\lim_{x\to 1} (x-4) = -3$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{f(x+1)} = \lim_{x \to +\infty} \frac{x^2 - 5x + 4}{(x+1)^2 - 5(x+1) + 4} = \lim_{x \to +\infty} \frac{x^2 \left(1 - \frac{5}{x} + \frac{4}{x^2}\right)}{x^2 \left(1 - \frac{3}{x}\right)} =$	3p
	$= \lim_{x \to +\infty} \frac{1 - \frac{5}{x} + \frac{4}{x^2}}{1 - \frac{3}{x}} = 1$	2 p
c)	$g(x) = \frac{x^2 - 5x + 4}{x} \Rightarrow \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 5x + 4}{x^2} = 1$	2p
	$\lim_{x \to +\infty} (g(x) - x) = \lim_{x \to +\infty} \frac{-5x + 4}{x} = -5, \text{ deci dreapta de ecuație } y = x - 5 \text{ este asimptota}$	3 p
	oblică spre $+\infty$ la graficul funcției f	
2.a)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{1 - x} = 0, \ \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{2 - x - x^2}{x} = 0$	2p
	Cum $f(1) = 0$, obținem $\lim_{x \to 1} f(x) = f(1)$, deci funcția f este continuă în $x = 1$	3 p
b)	$\lim_{x \to -3} \frac{f(x) - 2}{x + 3} = \lim_{x \to -3} \frac{\sqrt{1 - x} - 2}{x + 3} = \lim_{x \to -3} \frac{-x - 3}{(x + 3)(\sqrt{1 - x} + 2)} =$	3 p
	$= \lim_{x \to -3} \frac{-1}{\sqrt{1-x} + 2} = -\frac{1}{4}$	2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2 - x - x^2}{x} = -\infty, \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{1 - x} = +\infty$	2p
	f continuă pe $(-\infty,1)$, f continuă în $x=1$ și f continuă pe $(1,+\infty)$, deci f este continuă pe $\mathbb R$, deci mulțimea valorilor funcției f este $\mathbb R$, de unde obținem că, pentru orice număr real a , ecuația $f(x)=a$ are cel puțin o soluție	3 p

Examenul de bacalaureat național 2019

Proba E. c)

Matematică *M_tehnologic*

Clasa a XI-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, litera corespunzătoare răspunsului corect. (30 de puncte)

1. Rezultatul calculului $\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} - (\sqrt{3}-2)$ este: **5**p

C. $1+\sqrt{3}$ **D.** 3

2. Punctul de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x - 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = -3x + 9 este:

A. P(1,1)

B. P(2,1) **C.** P(2,3) **D.** P(3,2)

3. Mulțimea soluțiilor ecuației $3 \cdot 2^x + 2^{x+3} = 44$ este: 5p

4. Probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă 5p produsul cifrelor egal cu 0 este egală cu:

C. $\frac{1}{0}$

5p 5. În reperul cartezian xOy se consideră punctele A(0,a), B(3,4) și C(6,0), unde a este număr real. Dacă $OB \parallel AC$, atunci numărul real a este egal cu:

D. 8

6. Se consideră triunghiul ABC dreptunghic în A cu AB = 5 și BC = 13. Tangenta unghiului B este egală cu:

A. $\frac{5}{13}$

B. $\frac{5}{12}$

C. $\frac{13}{12}$ D. $\frac{12}{5}$

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

1. Se consideră determinantul $D(a) = \begin{vmatrix} a+1 & 2a+2 & a^2-1 \\ 2 & 3 & 5 \\ 1 & 2 & 4 \end{vmatrix}$, unde a este număr real.

a) Arătați că D(0) = -5. 5p

b) Demonstrați că D(a) = (a-5)(a+1), pentru orice număr real a. **5**p

c) Determinați numerele întregi a pentru care D(a) < -3a - 3. **5**p

2. Se consideră matricea $M(x) = \begin{pmatrix} 1-x & x \\ -x & 1+x \end{pmatrix}$, unde x este număr real.

a) Arătați că M(-1) + M(1) = 2M(0). 5p

b) Demonstrați că $M(x) \cdot M(y) = M(x+y)$, pentru orice numere reale $x \neq y$. **5p**

c) Demonstrați că pentru orice număr real a, există un număr real x astfel încât $M(x) \cdot M(x) = M(a)$. 5p

SUBIECTUL al III-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 5x + 4$.

5p a) Arătați că
$$\lim_{x \to 1} \frac{f(x)}{x-1} = -3$$
.

5p b) Calculați
$$\lim_{x \to +\infty} \frac{f(x)}{f(x+1)}$$
.

5p c) Determinați ecuația asimptotei oblice spre
$$+\infty$$
 la graficul funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = \frac{f(x)}{x}$.

2. Se consideră funcția
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} \sqrt{1-x}, & x \in (-\infty,1) \\ \frac{2-x-x^2}{x}, & x \in [1,+\infty) \end{cases}$.

5p a) Demonstrați că funcția f este continuă în x=1.

5p b) Calculați
$$\lim_{x \to -3} \frac{f(x)-2}{x+3}$$
.

5p c) Demonstrați că, pentru orice număr real a, ecuația f(x) = a are cel puțin o soluție.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 - \frac{1}{3} + \frac{1}{4}\right) : \left(1 - \frac{1}{12}\right) = \frac{12 - 4 + 3}{12} : \frac{11}{12} =$	3p
	$=\frac{11}{12} \cdot \frac{12}{11} = 1$	2p
2.	f(-2) + f(2) = 8 + 8 =	2p
	$=16=4\cdot 4=4f(0)$	3p
3.	$x^2 - 27 = (x - 3)^2 \Rightarrow 6x - 36 = 0$	3p
	x = 6, care convine	2p
4.	Mulțimea M are 10 elemente, deci sunt 10 cazuri posibile	2 p
	În mulțimea M sunt 5 numere pare, deci sunt 5 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{10} = \frac{1}{2}$	1 _m
	nr. cazuri posibile 10 2	1p
5.	$8 = \frac{4 + x_C}{2} \Rightarrow x_C = 12$	3p
	$3 = \frac{3 + y_C}{2} \Rightarrow y_C = 3$	2p
6.	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}, \sin 60^{\circ} = \frac{\sqrt{3}}{2}$	2p
	$\cos^2 30^\circ + \sin^2 60^\circ - 2\cos 30^\circ \cdot \sin 60^\circ = \left(\cos 30^\circ - \sin 60^\circ\right)^2 = \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right)^2 = 0$	3р

		/
1.a)	$\det M = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot 1 =$	3p
	=4-1=3	2p
b)	$A(a) \cdot A(a) = \begin{pmatrix} a^2 + 3 & a + 2 \\ 3a + 6 & 7 \end{pmatrix}$	2p
	$4A(a) - I_2 = \begin{pmatrix} 4a - 1 & 4 \\ 12 & 7 \end{pmatrix}$, deci $\begin{pmatrix} a^2 + 3 & a + 2 \\ 3a + 6 & 7 \end{pmatrix} = \begin{pmatrix} 4a - 1 & 4 \\ 12 & 7 \end{pmatrix}$, de unde obţinem $a = 2$	3p
c)	$aA(a) + M = $ $\begin{pmatrix} a^2 + 2 & a + 1 \\ 3a + 1 & 2a + 2 \end{pmatrix} \Rightarrow \det(aA(a) + M) = (a + 1)(2a^2 - 3a + 3)$	3p
	Cum $2a^2 - 3a + 3 \neq 0$, pentru orice număr real a , obținem $a = -1$	2p

2.a)	$f(2) = 2^3 - 4 \cdot 2^2 + m \cdot 2 + 2 =$	3p
	=8-16+2m+2=2m-6, pentru orice număr real m	2 p
b)	$x_1 + x_2 + x_3 = 4$, $x_1 x_2 x_3 = -2$	2p
	Pentru orice număr real m , $E = x_1 x_2 x_3 (x_1 + x_2 + x_3) = -8$, care este număr întreg	3 p
c)	$f = X^3 - 4X^2 + 3X + 2 = (X - 2)(X^2 - 2X - 1)$	2p
	$x_1 = 1 - \sqrt{2}$, $x_2 = 2$, $x_3 = 1 + \sqrt{2}$	3 p

SUBIECTUL al III-lea

(50 de puncte)		
1.a)	$f'(x) = 7 \cdot 3x^2 - 5 \cdot 2x + 1 =$	2 p
	$=21x^2-10x+1=(3x-1)(7x-1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{x f'(x)}{f(x)} = \lim_{x \to +\infty} \frac{x(3x-1)(7x-1)}{7x^3 - 5x^2 + x + 1} = \lim_{x \to +\infty} \frac{x^3 \left(3 - \frac{1}{x}\right) \left(7 - \frac{1}{x}\right)}{x^3 \left(7 - \frac{5}{x} + \frac{1}{x^2} + \frac{1}{x^3}\right)} =$	2p
	$= \lim_{x \to +\infty} \frac{\left(3 - \frac{1}{x}\right)\left(7 - \frac{1}{x}\right)}{7 - \frac{5}{x} + \frac{1}{x^2} + \frac{1}{x^3}} = 3$	3p
c)	$f'(x) \ge 0$, pentru orice $x \in \left(-\infty, \frac{1}{7}\right] \Rightarrow f$ este crescătoare pe $\left(-\infty, \frac{1}{7}\right]$ și $f'(x) \le 0$, pentru orice $x \in \left[\frac{1}{7}, \frac{1}{3}\right] \Rightarrow f$ este descrescătoare pe $\left[\frac{1}{7}, \frac{1}{3}\right]$	2 p
	Cum $f(x) \le f\left(\frac{1}{7}\right)$, pentru orice $x \in \left(-\infty, \frac{1}{3}\right]$ și $f\left(\frac{1}{7}\right) = \frac{52}{49}$, obținem $f(x) \le \frac{52}{49}$, pentru orice $x \in \left(-\infty, \frac{1}{3}\right]$	3 p
2.a)	$\int_{1}^{2} f(x)dx = \int_{1}^{2} (x-2)dx = \left(\frac{x^{2}}{2} - 2x\right) \Big _{1}^{2} =$	3p
	$=(2-4)-\left(\frac{1}{2}-2\right)=-\frac{1}{2}$	2p
b)	Cum $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (x^2 + 8x - 2) = -2$, $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (x - 2) = -2$ și $f(0) = -2$, obținem $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = f(0)$, deci funcția f este continuă în $x = 0$	3p
	Cum funcția f este continuă pe $(-\infty,0)$ și pe $(0,+\infty)$, obținem că f este continuă pe $\mathbb R$, deci funcția f admite primitive pe $\mathbb R$	2p
c)	$\mathcal{A} = \int_{-1}^{0} f(x) dx = \int_{-1}^{0} x^2 + 8x - 2 dx = \int_{-1}^{0} (-x^2 - 8x + 2) dx =$	2p
	$= \left(-\frac{x^3}{3} - \frac{8x^2}{2} + 2x \right) \Big _{-1}^{0} = \frac{17}{3}$	3 p

Matematică M_tehnologic

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

5p 1. Arătați că
$$\left(1-\frac{1}{3}+\frac{1}{4}\right):\left(1-\frac{1}{12}\right)=1$$
.

- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 4$. Arătați că f(-2) + f(2) = 4f(0).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_8(x^2 27) = \log_8(x 3)^2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{10,11,12,13,14,15,16,17,18,19\}$, acesta să fie număr par.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,3) și B(8,3). Determinați coordonatele punctului C, știind că punctul B este mijlocul segmentului AC.
- **5p** | **6**. Arătați că $\cos^2 30^\circ + \sin^2 60^\circ 2\cos 30^\circ \cdot \sin 60^\circ = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $M = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a & 1 \\ 3 & 2 \end{pmatrix}$ unde a este număr real.
- **5p a)** Arătați că $\det M = 3$.
- **5p b**) Determinați numărul real a pentru care $A(a) \cdot A(a) = 4A(a) I_2$.
- **5p** c) Determinați numărul real a pentru care $\det(aA(a) + M) = 0$.
 - **2.** Se consideră polinomul $f = X^3 4X^2 + mX + 2$, unde *m* este număr real.
- **5p** a) Arătați că f(2) = 2m 6, pentru orice număr real m.
- **5p b)** Demonstrați că, pentru orice număr real m, numărul $E = x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2$ este întreg, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Pentru m=3, determinați rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 7x^3 5x^2 + x + 1$.
- **5p** a) Arătați că $f'(x) = (3x-1)(7x-1), x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{x f'(x)}{f(x)}$.
- **5p** c) Demonstrați că $f(x) \le \frac{52}{49}$, pentru orice $x \in \left(-\infty, \frac{1}{3}\right]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 + 8x 2, & x \in (-\infty, 0] \\ x 2, & x \in (0, +\infty) \end{cases}$.
- **5p a**) Arătați că $\int_{1}^{2} f(x) dx = -\frac{1}{2}$.
- **5p b**) Demonstrați că funcția f admite primitive pe \mathbb{R} .
- **5p** c) Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = -1 și x = 0 are aria egală cu $\frac{17}{3}$.