CS21 Decidability and Tractability

Lecture 12 February 3, 2014

February 3, 2014

CS21 Lecture 12

Outline

- undecidable problems
 - computation histories
 - surprising contrasts between decidable/undecidable
- Rice's Theorem
- Post Correspondence problem

February 3, 2014

CS21 Lecture 12

Definition of reduction

- · More refined notion of reduction:
 - "many-one" reduction (commonly)
 - "mapping" reduction (book)

Definition of reduction

· function f should be computable

Definition: $f: \Sigma^* \rightarrow \Sigma^*$ is computable if there exists a TM M_f such that on every w∈ Σ* M_f halts on w with f(w) written on its tape.

February 3, 2014 CS21 Lecture 12

Definition of reduction

· Notation: "A many-one reduces to B" is written

$A \leq_m B$

- "yes maps to yes and no maps to no" means:

 $w \in A$ maps to $f(w) \in B \& w \notin A$ maps to $f(w) \notin B$

· B is at least as "hard" as A

- more accurate: B at least as "expressive" as A

February 3, 2014 CS21 Lecture 12

Using reductions

Definition: $A \leq_m B$ if there is a computable function f such that for all w

 $w \in A \Leftrightarrow f(w) \in B$

<u>Theorem</u>: if A \leq_m B and B is decidable then A is decidable

Proof:

- decider for A: on input w, compute f(w), run decider for B, do whatever it does.

February 3, 2014 CS21 Lecture 12

Using reductions

- Main use: given language NEW, prove it is undecidable by showing OLD ≤_m NEW, where OLD known to be undecidable
 - proof by contradiction
 - if NEW decidable, then OLD decidable
 - OLD undecidable. Contradiction.
- · common to reduce in wrong direction.
- review this argument to check yourself.

February 3, 2014

CS21 Lecture 12

Using reductions

Theorem: if A ≤_m B and B is RE then A is RE

Proof:

- TM for recognizing A: on input w, compute f(w), run TM that recognizes B, do whatever it does.
- Main use: given language NEW, prove it is not RE by showing OLD ≤_m NEW, where OLD known to be not RE.

February 3, 2014

CS21 Lecture 12

Many-one reduction example

Showed E_{TM} undecidable. Consider:

 $co\text{-}E_{TM} = \{ \langle M \rangle : L(M) \neq \emptyset \}$

- f(<M, w>) = <M'>
 where M' is TM that
 - on input x, if $x \neq w$,
 - then reject
 else simulate M on x,
 - else simulate M on x and accept if M does
- f clearly computable

February 3, 2014 CS21 Lecture 12

Many-one reduction example

- f(<M, w>) = <M'> where M' is TM that
 - on input x, if $x \neq w$, then reject
 - else simulate M on x, and accept if M does
- yes maps to yes?
- f clearly computable
- if <M, w> \in A_{TM} then f(M, w) \in co-E $_{TM}$
- no maps to no?
- -if <M, w> \notin A_{TM} then f(M, w) \notin co-E_{TM}

February 3, 2014

CS21 Lecture 12 10

Undecidable problems

Theorem: The language

REGULAR = {<M>: M is a TM and L(M) is regular}

is undecidable.

Proof:

- reduce from A_{TM} (i.e. show $A_{TM} \leq_m REGULAR$)
- what should f(<M, w>) produce?

February 3, 2014

CS21 Lecture 12

Undecidable problems

Proof:

-f(<M, w>) = <M'> described below

on input x:

- , in f as
- if x has form 0ⁿ1ⁿ, accept
 else simulate M on w and accept x if M accepts
- is f computable?
- YES maps to YES? <M, w> \in A_{TM} \Rightarrow
- NO maps to NO?

<M, w> \notin A_{TM} \Rightarrow $f(M, w) \notin REGULAR$

 $f(M, w) \in REGULAR$

February 3, 2014

11

CS21 Lecture 12

Dec. and undec. problems

- the boundary between decidability and undecidability is often quite delicate
 - seemingly related problems
 - one decidable
 - other undecidable
- We will see two examples of this phenomenon next.

February 3, 2014

CS21 Lecture 12

re 12 13

Computation histories

- Recall configuration of a TM: string uqv with $u,v \in \Gamma^*$, $q \in Q$
- The sequence of configurations M goes through on input w is a computation history of M on input w
 - may be accepting, or rejecting
 - reserve the term for halting computations
 - nondeterministic machines may have several computation histories for a given input.

February 3, 2014

CS21 Lecture 12

Linear Bounded Automata

LBA definition: TM that is prohibited from moving head off right side of input.

- machine prevents such a move, just like a TM prevents a move off left of tape
- How many possible configurations for a LBA M on input w with |w| = n, m states, and p = |Γ|?
 - counting gives: mnpⁿ

February 3, 2014

CS21 Lecture 12

Dec. and undec. problems

- two problems we have seen with respect to TMs, now regarding LBAs:
 - LBA acceptance:

 $A_{LBA} = \{ \langle M, w \rangle : LBA M \text{ accepts input } w \}$

- LBA emptiness:

 $E_{LBA} = \{ \langle M \rangle : LBA M \text{ has } L(M) = \emptyset \}$

Both decidable? both undecidable? one decidable?

February 3, 2014

15

17

CS21 Lecture 12

16

18

Dec. and undec. problems

Theorem: A_{LBA} is decidable.

Proof:

- input <M, w> where M is a LBA
- key: only mnpn configurations
- if M hasn't halted after this many steps, it must be looping forever.
- simulate M for mnpⁿ steps
- if it halts, accept or reject accordingly,
- else reject since it must be looping

February 3, 2014

CS21 Lecture 12

ram: E is undesidable

<u>Theorem</u>: E_{LBA} is undecidable.

Proof:

- reduce from co- A_{TM} (i.e. show co- $A_{TM} \le_m E_{LBA}$)

Dec. and undec. problems

- what should f(<M, w>) produce?
- Idea:
 - produce LBA B that accepts exactly the accepting computation histories of M on input w

February 3, 2014

CS21 Lecture 12

3

Dec. and undec. problems

Proof:

- f(<M, w>) = described below

on input x, check if x has form

- #C₁#C₂#C₃#...#C_k#
- check that C₁ is the start configuration for M on input w
- check that $C_i \Rightarrow^1 C_{i+1}$
- \bullet check that \boldsymbol{C}_k is an accepting configuration for M

February 3, 2014

- is B an LBA?
- is f computable?
- YES maps to YES?

$$<$$
M, w> \in co-A_{TM} \Rightarrow $f(M, w) \in E_{LBA}$

• NO maps to NO?

$$<$$
M, w> \notin co-A_{TM} \Rightarrow $f(M, w) \notin E_{LBA}$

CS21 Lecture 12

4