CS1555 Recitation 5 – Solution

Objective: To practice relational algebra, especially aggregations, joins, and division.

Consider the following relation schemas:

```
STUDENT (sid, name, class, major)

STUDENT _DIR (id, address, phone)

FK: (id) → STUDENT (sid)

COURSES_TAKEN (course_no, term, sid, grade)

FK: (course_no) → COURSE (course_no); (sid) → STUDENT (sid)

COURSE (course_no, course_name, level)

INSTRUCTOR (id, fname, lname)

COURSES_OFFERED(course_no, term, instructor_id)

FK: (course_no) → COURSE (course_no); (instructor_id) → INSTRUCTOR (id)
```

Write a relational algebra query using the nested notation for each of the queries below:

1. Find for each instructor, the course names of the courses he/she was teaching in Fall 19. List in addition to the course name, the first name and the last names of the instructor.

```
\piCOURSE.name, INSTRUCTOR.fname, INSTRUCTOR.Lname (\sigmaterm='Fall 19' (INSTRUCTOR) INSTRUCTOR.id = COURSES_OFFERED.instructor_id (COURSE * COURSES_OFFERED)))
```

2. List the sid, name, and address (if available) of all students.

```
\pi_{\text{sid, name, address}} (STUDENT ] \bowtie STUDENT_DIR. id STUDENT_DIR. id STUDENT_DIR) (note the left outer join)
```

Write a relational algebra query using the sequence notation for each of the queries below:

1. Find the total number of students who have enrolled in the course "Operating Systems".

$$\begin{aligned} & \textit{OS_TAKING} \leftarrow & \pi_{sid}(\\ & \sigma_{\textit{COURSE.name}} = \text{'Operating Systems'} & (\textit{COURSE_TAKEN} * \textit{COURSE})) \\ & \text{RSLT} \leftarrow & \mathcal{F}_{\textit{COUNT sid}} & (\textit{OS_TAKING}) \end{aligned}$$

(or you can combine the two steps into one expression (nested operations))

2. Find the sid(s) of the student(s) who has/have the highest GPA

STUDENT_GPA(sid, gpa)
$$\leftarrow$$
 sid $\mathcal{F}_{AVERAGE\ grade}$ (COURSE_TAKEN)

HIGHEST_GPA (max_gpa) \leftarrow $\mathcal{F}_{MAX\ gpa}$ (STUDENT_GPA)

RSLT \leftarrow π_{sid} (STUDENT_GPA $\bowtie_{gpa\ =\ max_gpa}$ (HIGHEST_GPA))

3. Find the sid (s) of the student(s) who has/have taken all courses at the UGrad level

COURSE_DENOMINATOR
$$\leftarrow \pi_{\text{course_no}} (\sigma_{\text{level}} = 'UGrad' COURSE)$$

RSLT $\leftarrow (\pi_{\text{sid_course_no}}(COURSE_TAKEN)) \div COURSE_DENOMINATOR$

4. Find for each instructor the number of courses he/she has taught or is teaching. List the first name and the last name of each instructor along with his/her ID and number of courses.

$$COURSES_TAUGHT(id, n_courses) \leftarrow instructor_id F_{COUNT course_no}$$

$$(COURSES_OFFERED)$$

RSLT ← COURSES_TAUGHT * INSTRUCTOR

5. List the SID of the students who did not enroll in any course in Fall 19.

SID_ENROLL_FALL19
$$\leftarrow \pi_{sid}(\sigma_{term = 'Fall 19'}(COURSE_TAKEN))$$

SID_ALL $\leftarrow \pi_{sid}(STUDENT)$
RSLT \leftarrow SID_ALL - SID_ENROLL_FALL19