Apuntes de ESTADÍSTICA

ANEXO

Tablas de los Intervalos de confianza

Sixto Sánchez Merino

Dpto. de Matemática Aplicada Universidad de Málaga

Mi agradecimiento al profesor Carlos Cerezo Casermeiro, por sus correcciones y sugerencias en la elaboración de estos apuntes.

Apuntes de Estadística

(5)2011, Sixto Sánchez Merino.

Este trabajo está editado con licencia "Creative Commons" del tipo:

Reconocimiento-No comercial-Compartir bajo la misma licencia 3.0 España.

Usted es libre de:

- copiar, distribuir y comunicar públicamente la obra.
- hacer obras derivadas.

Bajo las condiciones siguientes:

- Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra).
- No comercial. No puede utilizar esta obra para fines comerciales.
- Ocompartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.
- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.
- Nada en esta licencia menoscaba o restringe los derechos morales del autor.

Anexo A

Tablas de intervalos de confianza

Intervalos de confianza para la media μ de una distribución normal $N(\mu, \sigma)$

Varianza	Varianza desconocida		
Conocida	Muestras grandes	Muestras pequeñas	
	n > 30	$n \le 30$	
$I = \left[\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$	$I = \left[\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} \right]$	$I = \left[\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right]$	

Intervalo de confianza para la varianza σ^2 de una distribución normal $N(\mu,\sigma)$

$$I = \left[\frac{(n-1)s^2}{\chi^2_{\alpha/2, n\!-\!1}}, \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2}, n\!-\!1)}} \right]$$

Intervalo de confianza para el parámetro p de una distribución binominal B(n,p)

$$I = \left[\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right]$$

Intervalo de confianza para el parámetro λ de una distribución de Poisson $P(\lambda)$

$$I = \left[\hat{\lambda} \pm z_{\alpha/2} \sqrt{\frac{\hat{\lambda}}{n}} \right]$$

Intervalo de confianza para la diferencia	a de medias	$(\mu_1 - \mu_2)$	de dos	distribu-
ciones normales $N(\mu_1, \sigma_1)$ y $N(\mu_2, \sigma_2)$				

Varianzas	Muestras	Varianzas	Intervalo
Conocidas			$I = \left[(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$
	grandes $n_1 + n_2 > 30$ $n_1 \simeq n_2$		$I = \left[(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right]$
Desconocidas	Pequeñas	Iguales	$I = \left[(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2, n_1 + n_2 - 2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right]$
	$n_1 + n_2 \le 30$	Distintas	$I = \left[(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2, f} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right]$

donde

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \qquad \text{y} \qquad f = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 + 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 + 1}} - 2$$

son respectivamente la media ponderada de las varianzas muestrales y la aproximación de Welch.

Intervalo de confianza para la razón de varianzas σ_1^2/σ_2^2 de dos poblaciones normales $N(\mu_1,\sigma_1)$ y $N(\mu_2,\sigma_2)$

$$I = \left\lceil \frac{s_1^2/s_2^2}{F_{\alpha/2;n_1\!-\!1,n_2\!-\!1}}, \frac{s_1^2/s_2^2}{F_{1-\frac{\alpha}{2};n_1\!-\!1,n_2\!-\!1}} \right\rceil$$

Intervalo de confianza para la diferencia de parámetros $(p_1 - p_2)$ de dos distribuciones binomiales $B(n_1, p_1)$ y $B(n_2, p_2)$

$$I = \left[\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \right]$$

Apuntes de ESTADÍSTICA

ANEXO

Tablas de los Contrastes de hipótesis

Sixto Sánchez Merino

Dpto. de Matemática Aplicada Universidad de Málaga

Mi agradecimiento al profesor Carlos Cerezo Casermeiro, por sus correcciones y sugerencias en la elaboración de estos apuntes.

Apuntes de Estadística

(5)2011, Sixto Sánchez Merino.

Este trabajo está editado con licencia "Creative Commons" del tipo:

Reconocimiento-No comercial-Compartir bajo la misma licencia 3.0 España.

Usted es libre de:

- copiar, distribuir y comunicar públicamente la obra.
- hacer obras derivadas.

Bajo las condiciones siguientes:

- Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra).
- No comercial. No puede utilizar esta obra para fines comerciales.
- Ocompartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.
- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.
- Nada en esta licencia menoscaba o restringe los derechos morales del autor.

Anexo B

Tablas de contrastes de hipótesis (regiones de rechazo)

Contraste de hipótesis para la media ($\mu=\mu_0$) de una población normal $N(\mu,\sigma)$

Varianza	Muestras	$H_0: \mu \ge \mu_0$ $H_a: \mu < \mu_0$	$H_0: \mu = \mu_0$ $H_a: \mu \neq \mu_0$	$H_0: \mu \le \mu_0$ $H_a: \mu > \mu_0$
conocida		$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} < -z_{\alpha}$	$\frac{ \bar{x} - \mu_0 }{\sigma/\sqrt{n}} > z_{\alpha/2}$	$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha}$
desconocida	grandes $n > 30$	$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} < -z_\alpha$	$\frac{ \bar{x} - \mu_0 }{s/\sqrt{n}} > z_{\alpha/2}$	$\frac{\bar{x} - \mu_0}{s / \sqrt{n}} > z_\alpha$
desconocida	pequeñas $n \leq 30$	$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} < -t_{\alpha, n-1}$	$\frac{ \bar{x} - \mu_0 }{s/\sqrt{n}} > t_{\alpha/2, n-1}$	$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} > t_{\alpha, n-1}$

Contraste de hipótesis para la varianza ($\sigma^2=\sigma_0^2$) de una población normal $N(\mu,\sigma)$

$H_0: \ \sigma^2 \geq \sigma_0^2$ $H_a: \ \sigma^2 < \sigma_0^2$	$H_0: \sigma^2 = \sigma_0^2$	$H_0: \ \sigma^2 \leq \sigma_0^2$ $H_a: \ \sigma^2 > \sigma_0^2$
	$H_a: \sigma^2 \neq \sigma_0^2$ $\frac{(n-1)s^2}{\sigma_0^2} \notin \left[\chi_{1-\frac{\alpha}{2},n-1}^2; \chi_{\frac{\alpha}{2},n-1}^2\right]$	

Contraste de hipótesis de la igualdad de medias ($\mu_1 = \mu_2$) de dos poblaciones normales $N(\mu_1, \sigma_1)$ y $N(\mu_2, \sigma_2)$ de varianzas σ_1^2 y σ_2^2 conocidas

$H_0: \ \mu_1 \ge \mu_2$ $H_a: \ \mu_1 < \mu_2$	$H_0: \ \mu_1 = \mu_2$ $H_a: \ \mu_1 \neq \mu_2$	$H_0: \ \mu_1 \le \mu_2$ $H_a: \ \mu_1 > \mu_2$
$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < -z_{\alpha}$	$\frac{ \bar{x}_1 - \bar{x}_2 }{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > z_{\alpha/2}$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > z_{\alpha}$

Contraste de hipótesis de la igualdad de medias ($\mu_1 = \mu_2$) de dos poblaciones normales $N(\mu_1, \sigma_1)$ y $N(\mu_2, \sigma_2)$ de varianzas σ_1^2 y σ_2^2 desconocidas para muestras grandes ($n_1 + n_2 > 30$, $n_1 \simeq n_2$)

$H_0: \mu_1 \ge \mu_2$ $H_a: \mu_1 < \mu_2$	$H_0: \ \mu_1 = \mu_2$ $H_a: \ \mu_1 \neq \mu_2$	$H_0: \ \mu_1 \le \mu_2$ $H_a: \ \mu_1 > \mu_2$
$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} < -z_{\alpha}$	$\frac{ \bar{x}_1 - \bar{x}_2 }{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > z_{\alpha/2}$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > z_{\alpha}$

Contraste de hipótesis de la igualdad de medias ($\mu_1 = \mu_2$) de dos poblaciones normales $N(\mu_1, \sigma_1)$ y $N(\mu_2, \sigma_2)$ de varianzas σ_1^2 y σ_2^2 desconocidas pero iguales ($\sigma_1^2 = \sigma_2^2$) para muestras pequeñas ($n_1 + n_2 \leq 30$)

$H_0: \ \mu_1 \ge \mu_2$ $H_a: \ \mu_1 < \mu_2$	$H_0: \ \mu_1 = \mu_2$ $H_a: \ \mu_1 \neq \mu_2$	$H_0: \ \mu_1 \le \mu_2$ $H_a: \ \mu_1 > \mu_2$
$\frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -t_{\alpha, n_1 + n_2 - 2}$	$\frac{ \bar{x}_1 - \bar{x}_2 }{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{\frac{\alpha}{2}, n_1 + n_2 - 2}$	$\frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{\alpha, n_1 + n_2 - 2}$

donde

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

es la media ponderada de las cuasivarianzas muestrales.

Contraste de hipótesis de la igualdad de medias ($\mu_1 = \mu_2$) de dos poblaciones normales $N(\mu_1, \sigma_1)$ y $N(\mu_2, \sigma_2)$ de varianzas σ_1^2 y σ_2^2 desconocidas y distintas ($\sigma_1^2 \neq \sigma_2^2$) para muestras pequeñas ($n_1 + n_2 \leq 30$)

$H_0: \ \mu_1 \ge \mu_2$ $H_a: \ \mu_1 < \mu_2$	$H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$	$H_0: \ \mu_1 \le \mu_2$ $H_a: \ \mu_1 > \mu_2$
$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} < -t_{\alpha,f}$	$\frac{ \bar{x}_1 - \bar{x}_2 }{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > t_{\alpha/2, f}$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > t_{\alpha, f}$

donde

$$f = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 + 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 + 1}} - 2$$

es la aproximación de Welch.

Contraste de hipótesis de la igualdad de varianzas ($\sigma_1^2 = \sigma_2^2$) de dos poblaciones normales $N(\mu_1, \sigma_1)$ y $N(\mu_2, \sigma_2)$

$H_0: \ \sigma_1^2 \ge \sigma_2^2$ $H_a: \ \sigma_1^2 < \sigma_2^2$	$H_0: \ \sigma_1^2=\sigma_2^2$ $H_a: \ \sigma_1^2 eq \sigma_2^2$	$H_0: \ \sigma_1^2 \le \sigma_2^2$ $H_a: \ \sigma_1^2 > \sigma_2^2$
$\frac{s_1^2}{s_2^2} < F_{1-\alpha;n_1-1,n_2-1}$	$\frac{s_1^2}{s_2^2} \notin [F_{1-\frac{\alpha}{2};n_1-1,n_2-1}, F_{\frac{\alpha}{2};n_1-1,n_2-1}]$	$\frac{s_1^2}{s_2^2} > F_{\alpha;n_1-1,n_2-1}$

Contraste de hipótesis para el parámetro p de una distribución binomial B(n,p)

$H_0: p \ge p_0$ $H_a: p < p_0$	$H_0: p = p_0$ $H_a: p \neq p_0$	$H_0: p \le p_0$ $H_a: p > p_0$
$\frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} < -z_{\alpha}$	$\frac{ \hat{p} - p_0 }{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} > z_{\alpha/2}$	$\frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} > z_{\alpha}$

Contraste de hipótesis para la igualdad de los parámetros $(p_1 = p_2)$ de dos distribuciones binomiales $B_1(n_1, p_1)$ y $B_2(n_2, p_2)$ para muestras grandes

$H_0: p_1 \ge p_2$ $H_a: p_1 < p_2$	$H_0: p_1 = p_2$ $H_a: p_1 \neq p_2$	$H_0: p_1 \le p_2$ $H_a: p_1 > p_2$
$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}} < -z_{\alpha}$	$\frac{ \hat{p}_1 - \hat{p}_2 }{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}} > z_{\alpha}/2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}} > z_{\alpha}$

Apuntes de ESTADÍSTICA

ANEXO

Tablas de las Distribuciones de probabilidad

Sixto Sánchez Merino

Dpto. de Matemática Aplicada Universidad de Málaga

Mi agradecimiento al profesor Carlos Cerezo Casermeiro y Carlos Guerrero García, por sus correcciones y sugerencias en la elaboración de estos apuntes.

Apuntes de Estadística

(5)2011, Sixto Sánchez Merino.

Este trabajo está editado con licencia "Creative Commons" del tipo:

Reconocimiento-No comercial-Compartir bajo la misma licencia 3.0 España.

Usted es libre de:

- copiar, distribuir y comunicar públicamente la obra.
- A hacer obras derivadas.

Bajo las condiciones siguientes:

- **Reconocimiento.** Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra).
- No comercial. No puede utilizar esta obra para fines comerciales.
- Ompartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.
- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.
- Nada en esta licencia menoscaba o restringe los derechos morales del autor.

Anexo C

Tablas de las distribuciones de probabilidad

En este anexo se incluyen las tablas de las distribuciones de probabilidad más usuales.

Distribución Binomial B(n,p)

$$b(n, k, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

		р												
n	k	0.01	0,05	0,10	0,15	0,20	0,25	0,30	1/3	0,35	0,40	0.45	0,49	0,50
2	0	0,9801		0,8100							,	0,3025		•
2	1			0,1800										
2	2			0,0100										
3	0 1			0,7290 0,2430								-	-	-
3	2			0,0270										
3	3			0,0010										
4	0	0,9606	0,8145	0,6561	0,5220	0,4096	0,3164	0,2401	0,1975	0,1785	0,1296	0,0915	0,0677	0,0625
4	1			0,2916										
4	2			0,0486										
4	3 4			0,0036 0,0001										
5	0			0,5905										
5	1			0,3281								-	-	-
5	2	0,0010	0,0214	0,0729	0,1382	0,2048	0,2637	0,3087	0,3292	0,3364	0,3456	0,3369	0,3185	0,3125
5	3			0,0081								-	-	-
5	4			0,0005										
5 6	5 0			0,0000					•	•				
6	1	· ·	,	0,3543	•	,	,	,	,	,	,	,	,	,
6	2			0,0984								-	-	-
6	3	0,0000	0,0021	0,0146	0,0415	0,0819	0,1318	0,1852	0,2195	0,2355	0,2765	0,3032	0,3121	0,3125
6	4		,	0,0012	,	,	,	•	,	,	,	•	,	,
6	5			0,0001										
7	6 0		•	0,0000 0,4783	-	•		•			•			-
7	1			0,3720										
7	2			0,1240								-	-	-
7	3			0,0230										
7	4			0,0026										
7	5			0,0002								-	-	-
7	6 7			0,0000										
8	0			0,4305										
8	1			0,3826										
8	2			0,1488										
8	3			0,0331										
8	4 5			0,0046 0,0004										
8	6			0,0004										
8	7			0,0000										
8	8			0,0000										
9	0			0,3874										
9	1			0,3874										
9	2			0,1722 0,0446										
9	4			0,0440										
9	5			0,0008										
9	6			0,0001										
9	7			0,0000										
9	8			0,0000										
9 10	9			0,0000										
10				0,3467										
10				0,1937										
10	3	0,0001	0,0105	0,0574	0,1298	0,2013	0,2503	0,2668	0,2601	0,2522	0,2150	0,1665	0,1267	0,1172
10				0,0112										
10				0,0015										
10 10				0,0001										
10				0,0000										
10				0,0000										
10				0,0000										

Distribución de Poisson $P(\lambda)$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

λ	0	1	2	3	4	5	6	7	8	9	10	11	12
0,1	0,9048	0,0905	0,0045	0,0002	0,0000								
0,2					0,0001	0,0000							
0,3	0,7408	0,2222	0,0333	0,0033	0,0003	0,0000							
0,4	0,6703	0,2681	0,0536	0,0072	0,0007	0,0001	0,0000						
0,5	0,6065	0,3033	0,0758	0,0126	0,0016	0,0002	0,0000						
0.6	0 5 4 0 0	0.2202	0.0000	0.0400	0.0020	0.0004	0.0000						
0,6 0,7					0,0030			0.0000					
0,7		•			0,0030		•						
0,9	· ·	•			0,0111	•	-	•					
1,0					0,0153				0,0000				
1,1					0,0203								
1,2					0,0260								
1,3					0,0324								
1,4					0,0395								
1,5	0,2231	0,3347	0,2510	0,1255	0,0471	0,0141	0,0035	0,0008	0,0001	0,0000			
1,6	0,2019	0,3230	0,2584	0,1378	0,0551	0,0176	0,0047	0,0011	0,0002	0,0000			
1,7	0,1827	0,3106	0,2640	0,1496	0,0636	0,0216	0,0061	0,0015	0,0003	0,0001	0,0000		
1,8	0,1653	0,2975	0,2678	0,1607	0,0723	0,0260	0,0078	0,0020	0,0005	0,0001	0,0000		
1,9					0,0812								
2,0	0,1353	0,2707	0,2707	0,1804	0,0902	0,0361	0,0120	0,0034	0,0009	0,0002	0,0000		
2,2	0.1108	0.2438	0.2681	0.1966	0,1082	0.0476	0.0174	0.0055	0.0015	0.0004	0.0001	0.0000	
2,4					0,1254								
2,6	0,0743	0,1931	0,2510	0,2176	0,1414	0,0735	0,0319	0,0118	0,0038	0,0011	0,0003	0,0001	0,0000
2,8	0,0608	0,1703	0,2384	0,2225	0,1557	0,0872	0,0407	0,0163	0,0057	0,0018	0,0005	0,0001	0,0000
3,0	0,0498	0,1494	0,2240	0,2240	0,1680	0,1008	0,0504	0,0216	0,0081	0,0027	0,0008	0,0002	0,0001
3,2	0.0408	0.1304	0.2087	0.2226	0,1781	0.1140	0.0608	0.0278	0.0111	0.0040	0.0013	0.0004	0.0001
3,4					0,1858								
3,6					0,1912							0,0009	
3,8					0,1944							0,0013	0,0004
4,0	0,0183	0,0733	0,1465	0,1954	0,1954	0,1563	0,1042	0,0595	0,0298	0,0132	0,0053	0,0019	0,0006
5,0	0.0067	0 0337	0.0842	0 1404	0,1755	O 1755	0 1/62	0 1044	0 0653	0 0363	0.0181	0 0082	0.0034
6,0					0,1733								
7,0					0,0912								
8,0					0,0573								
9,0	0,0001				0,0337								
10,0	0,0000	0,0005	0,0023	0,0076	0,0189	0,0378	0,0631	0,0901	0,1126	0,1251	0,1251	0,1137	0,0948
	13	14	15	16	17	18	19	20	21	22	23	24	25
5,0	0,0013	0,0005	0,0002	0,0000									
6,0					0,0001	0,0000							
7,0		0,0071		0,0014			0,0001	0,0000					
8,0	0,0296	0,0169		0,0045				0,0002	0,0001	0,0000			
9,0	0,0504	0,0324	0,0194	0,0109	0,0058	0,0029	0,0014	0,0006	0,0003	0,0001	0,0000		
10,0	0,0729	0,0521	0,0347	0,0217	0,0128	0,0071	0,0037	0,0019	0,0009	0,0004	0,0002	0,0001	0,0000

Distribución Normal N(0,1)

γ										
z_{α}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
	Ī									
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
	l									
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
4.5		0.0055	0.0040	0.0000	0.0040	0.0000	0.0504	0.0500	0.0574	0.0550
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,0	0,0220	0,0222	0,0217	0,0212	0,0207	0,0202	0,0154	0,0150	0,0146	0,0163
2,2	0,0179	0,0174	0,0170	0,0100	0,0102	0,0130	0,0119	0,0136	0,0140	0,0143
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
_,-	0,0002	0,0000	0,0070	0,0070	0,0070	0,007 1	0,0000	0,0000	0,0000	0,0001
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
	.,	-,	-,	-,	-,	-,	-,	-,	-,	-,

	0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90
3	1,35E-03	9,68E-04	6,87E-04	4,83E-04	3,37E-04	2,33E-04	1,59E-04	1,08E-04	7,24E-05	4,81E-05
4	3,17E-05	2,07E-05	1,34E-05	8,55E-06	5,42E-06	3,40E-06	2,11E-06	1,30E-06	7,94E-07	4,80E-07
5	2,87E-07	1,70E-07	9,98E-08	5,80E-08	3,34E-08	1,90E-08	1,07E-08	6,01E-09	3,33E-09	1,82E-09
6	9,90E-10	5,32E-10	2,83E-10	1,49E-10	7,80E-11	4,04E-11	2,07E-11	1,05E-11	5,26E-12	2,62E-12

Distribución χ^2

$n \setminus \alpha$	0,995	0,99	0,98	0,975	0,95	0,90	0,10	0,05	0,025	0,02	0,01
1	3,927E-05	1,571E-04	6,285E-04	9,821E-04	0,0039	0,0158	2,706	3,841	5,024	5,412	6,635
2	0,0100	0,0201	0,0404	0,0506	0,103	0,211	4,605	5,991	7,378	7,824	9,210
3	0,072	0,115	0,185	0,216	0,352	0,584	6,251	7,815	9,348	9,837	11,345
4	0,207	0,297	0,429	0,484	0,711	1,064	7,779	9,488	11,143	11,668	13,277
5	0,412	0,554	0,752	0,831	1,145	1,610	9,236	11,070	12,833	13,388	15,086
6	0,676	0,872	1,134	1,237	1,635	2,204	10,645	12,592	14,449	15,033	16,812
7	0,989	1,239	1,564	1,690	2,167	2,833	12,017	14,067	16,013	16,622	18,475
8	1,344	1,646	2,032	2,180	2,733	3,490	13,362	15,507	17,535	18,168	20,090
9	1,735	2,088	2,532	2,700	3,325	4,168	14,684	16,919	19,023	19,679	21,666
10	2,156	2,558	3,059	3,247	3,940	4,865	15,987	18,307	20,483	21,161	23,209
44	1 0.000	2.052	2.000	0.040	4 575	<i></i>	47.075	40.075	24 020	00.040	24.705
11 12	2,603 3,074	3,053 3,571	3,609 4,178	3,816 4,404	4,575	5,578	17,275	19,675	21,920	22,618 24,054	24,725
13	3,565	4,107	4,765	5,009	5,226 5,892	6,304 7,042	18,549 19,812	21,026 22,362	23,337 24,736	25,472	26,217 27,688
14	4,075	4,660	5,368	5,629	6,571	7,042	21,064	23,685	26,119	26,873	29,141
15	4,601	5,229	5,985	6,262	7,261	8,547	22,307	24,996	27,488	28,259	30,578
10	1 4,001	0,220	0,000	0,202	7,201	0,047	22,007	24,000	27,400	20,200	00,070
16	5,142	5,812	6,614	6,908	7,962	9,312	23,542	26,296	28,845	29,633	32,000
17	5,697	6,408	7,255	7,564	8,672	10,085	24,769	27,587	30,191	30,995	33,409
18	6,265	7,015	7,906	8,231	9,390	10,865	25,989	28,869	31,526	32,346	34,805
19	6,844	7,633	8,567	8,907	10,117	11,651	27,204	30,144	32,852	33,687	36,191
20	7,434	8,260	9,237	9,591	10,851	12,443	28,412	31,410	34,170	35,020	37,566
21	8,034	8,897	9,915	10,283	11,591	13,240	29,615	32,671	35,479	36,343	38,932
22	8,643	9,542	10,600	10,982	12,338	14,041	30,813	33,924	36,781	37,659	40,289
23	9,260	10,196	11,293	11,689	13,091	14,848	32,007	35,172	38,076	38,968	41,638
24	9,886	10,856	11,992	12,401	13,848	15,659	33,196	36,415	39,364	40,270	42,980
25	10,520	11,524	12,697	13,120	14,611	16,473	34,382	37,652	40,646	41,566	44,314
26	11,160	12,198	13,409	13,844	15,379	17,292	35,563	38,885	41,923	42,856	45,642
27	11,808	12,879	14,125	14,573	16,151	18,114	36,741	40,113	43,195	44,140	46,963
28	12,461	13,565	14,847	15,308	16,928	18,939	37,916	41,337	44,461	45,419	48,278
29	13,121	14,256	15,574	16,047	17,708	19,768	39,087	42,557	45,722	46,693	49,588
30	13,787	14,953	16,306	16,791	18,493	20,599	40,256	43,773	46,979	47,962	50,892

Distribución t de Student

$_{n}\backslash^{\alpha}$	0,40	0,30	0,20	0,10	0,050	0,025	0,010	0,005	0,001	0,0005
1	0,325	0,727	1,376	3,078	6,314	12,71	31,82	63,66	318,3	636,6
2	0,289	0,617	1,061	1,886	2,920	4,303	6,965	9,925	22,33	31,60
3	0,277	0,584	0,978	1,638	2,353	3,182	4,541	5,841	10,21	12,92
4	0,271	0,569	0,941	1,533	2,132	2,776	3,747	4,604	7,173	8,610
5	0,267	0,559	0,920	1,476	2,015	2,571	3,365	4,032	5,893	6,869
6	0,265	0,553	0,906	1,440	1,943	2,447	3,143	3,707	5,208	5,959
7	0,263	0,549	0,896	1,415	1,895	2,365	2,998	3,499	4,785	5,408
8	0,262	0,546	0,889	1,397	1,860	2,306	2,896	3,355	4,501	5,041
9	0,261	0,543	0,883	1,383	1,833	2,262	2,821	3,250	4,297	4,781
10	0,260	0,542	0,879	1,372	1,812	2,228	2,764	3,169	4,144	4,587
11	0,260	0,540	0,876	1,363	1,796	2,201	2,718	3,106	4,025	4,437
12	0,259	0,539	0,873	1,356	1,782	2,179	2,681	3,055	3,930	4,318
13	0,259	0,538	0,870	1,350	1,771	2,160	2,650	3,012	3,852	4,221
14	0,258	0,537	0,868	1,345	1,761	2,145	2,624	2,977	3,787	4,140
15	0,258	0,536	0,866	1,341	1,753	2,131	2,602	2,947	3,733	4,073
16	0,258	0,535	0,865	1,337	1,746	2,120	2,583	2,921	3,686	4,015
17	0,257	0,534	0,863	1,333	1,740	2,110	2,567	2,898	3,646	3,965
18	0,257	0,534	0,862	1,330	1,734	2,101	2,552	2,878	3,610	3,922
19	0,257	0,533	0,861	1,328	1,729	2,093	2,539	2,861	3,579	3,883
20	0,257	0,533	0,860	1,325	1,725	2,086	2,528	2,845	3,552	3,850
21	0,257	0,532	0,859	1,323	1,721	2,080	2,518	2,831	3,527	3,819
22	0,256	0,532	0,858	1,321	1,717	2,074	2,508	2,819	3,505	3,792
23	0,256	0,532	0,858	1,319	1,714	2,069	2,500	2,807	3,485	3,768
24	0,256	0,531	0,857	1,318	1,711	2,064	2,492	2,797	3,467	3,745
25	0,256	0,531	0,856	1,316	1,708	2,060	2,485	2,787	3,450	3,725
26	0,256	0,531	0,856	1,315	1,706	2,056	2,479	2,779	3,435	3,707
27	0,256	0,531	0,855	1,314	1,703	2,052	2,473	2,771	3,421	3,690
28	0,256	0,530	0,855	1,313	1,701	2,048	2,467	2,763	3,408	3,674
29	0,256	0,530	0,854	1,311	1,699	2,045	2,462	2,756	3,396	3,659
30	0,256	0,530	0,854	1,310	1,697	2,042	2,457	2,750	3,385	3,646
40	0,255	0,529	0,851	1,303	1,684	2,021	2,423	2,704	3,307	3,551
50	0,255	0,528	0,849	1,299	1,676	2,009	2,403	2,678	3,261	3,496
60	0,254	0,527	0,848	1,296	1,671	2,000	2,390	2,660	3,232	3,460
80	0,254	0,526	0,846	1,292	1,664	1,990	2,374	2,639	3,195	3,416
100	0,254	0,526	0,845	1,290	1,660	1,984	2,364	2,626	3,174	3,390
200	0,254	0,525	0,843	1,286	1,653	1,972	2,345	2,601	3,131	3,340
500	0,253	0,525	0,842	1,283	1,648	1,965	2,334	2,586	3,107	3,310
1E+05	0,253	0,524	0,842	1,282	1,645	1,960	2,326	2,576	3,090	3,291

Distribución F de Fisher-Snedecor para $\alpha=0'1$

1E+05	63,33	9,491	5,134	3,761	3,105	2,722	2,471	2,293	2,159	2,055	1,972	1,904	1,846	1,797	1,755	1,718	1,686	1,657	1,631	1,607	1,586	1,567	1,549	1,533	1,518	1,504	1,491	1,478	1,467	1,456	1,377	1,292	1,193	1,008
120	90'89	9,483	5,143	3,775	3,123	2,742	2,493	2,316	2,184	2,082	2,000	1,932	1,876	1,828	1,787	1,751	1,719	1,691	1,666	1,643	1,623	1,604	1,587	1,571	1,557	1,544	1,531	1,520	1,509	1,499	1,425	1,348	1,265	1,169
09	62,79	9,475	5,151	3,790	3,140	2,762	2,514	2,339	2,208	2,107	2,026	1,960	1,904	1,857	1,817	1,782	1,751	1,723	1,699	1,677	1,657	1,639	1,622	1,607	1,593	1,581	1,569	1,558	1,547	1,538	1,467	1,395	1,320	1,240
40	62,53	9,466	5,160	3,804	3,157	2,781	2,535	2,361	2,232	2,132	2,052	1,986	1,931	1,885	1,845	1,811	1,781	1,754	1,730	1,708	1,689	1,671	1,655	1,641	1,627	1,615	1,603	1,592	1,583	1,573	1,506	1,437	1,368	1,295
30	62,26	9,458	5,168	3,817	3,174	2,800	2,555	2,383	2,255	2,155	2,076	2,011	1,958	1,912	1,873	1,839	1,809	1,783	1,759	1,738	1,719	1,702	1,686	1,672	1,659	1,647	1,636	1,625	1,616	1,606	1,541	1,476	1,409	1,342
24	62,00	9,450	5,176	3,831	3,191	2,818	2,575	2,404	2,277	2,178	2,100	2,036	1,983	1,938	1,899	1,866	1,836	1,810	1,787	1,767	1,748	1,731	1,716	1,702	1,689	1,677	1,666	1,656	1,647	1,638	1,574	1,511	1,447	1,383
15	61,22	9,425	5,200	3,870	3,238	2,871	2,632	2,464	2,340	2,244	2,167	2,105	2,053	2,010	1,972	1,940	1,912	1,887	1,865	1,845	1,827	1,811	1,796	1,783	1,771	1,760	1,749	1,740	1,731	1,722	1,662	1,603	1,545	1,487
12	60,71	9,408	5,216	3,896	3,268	2,905	2,668	2,502	2,379	2,284	2,209	2,147	2,097	2,054	2,017	1,985	1,958	1,933	1,912	1,892	1,875	1,859	1,845	1,832	1,820	1,809	1,799	1,790	1,781	1,773	1,715	1,657	1,601	1,546
10	60,19	9,392	5,230	3,920	3,297	2,937	2,703	2,538	2,416	2,323	2,248	2,188	2,138	2,095	2,059	2,028	2,001	1,977	1,956	1,937	1,920	1,904	1,890	1,877	1,866	1,855	1,845	1,836	1,827	1,819	1,763	1,707	1,652	1,599
6	29,86	9,381	5,240	3,936	3,316	2,958	2,725	2,561	2,440	2,347	2,274	2,214	2,164	2,122	2,086	2,055	2,028	2,005	1,984	1,965	1,948	1,933	1,919	1,906	1,895	1,884	1,874	1,865	1,857	1,849	1,793	1,738	1,684	1,632
∞	59,44	6,367	5,252	3,955	3,339	2,983	2,752	2,589	2,469	2,377	2,304	2,245	2,195	2,154	2,119	2,088	2,061	2,038	2,017	1,999	1,982	1,967	1,953	1,941	1,929	1,919	1,909	1,900	1,892	1,884	1,829	1,775	1,722	1,670
7	58,91	9,349	5,266	3,979	3,368	3,014	2,785	2,624	2,505	2,414	2,342	2,283	2,234	2,193	2,158	2,128	2,102	2,079	2,058	2,040	2,023	2,008	1,995	1,983	1,971	1,961	1,952	1,943	1,935	1,927	1,873	1,819	1,767	1,717
9	58,20	9,326	5,285	4,010	3,405	3,055	2,827	2,668	2,551	2,461	2,389	2,331	2,283	2,243	2,208	2,178	2,152	2,130	2,109	2,091	2,075	2,060	2,047	2,035	2,024	2,014	2,005	1,996	1,988	1,980	1,927	1,875	1,824	1,774
2	57,24	9,293	2,309	4,051	3,453	3,108	2,883	2,726	2,611	2,522	2,451	2,394	2,347	2,307	2,273	2,244	2,218	2,196	2,176	2,158	2,142	2,128	2,115	2,103	2,092	2,082	2,073	2,064	2,057	2,049	1,997	1,946	1,896	1,847
4	55,83	9,243	5,343	4,107	3,520	3,181	2,961	2,806	2,693	2,605	2,536	2,480	2,434	2,395	2,361	2,333	2,308	2,286	2,266	2,249	2,233	2,219	2,207	2,195	2,184	2,174	2,165	2,157	2,149	2,142	2,091	2,041	1,992	1,945
က	53,59	9,162	5,391	4,191	3,619	3,289	3,074	2,924	2,813	2,728	2,660	2,606	2,560	2,522	2,490	2,462	2,437	2,416	2,397	2,380	2,365	2,351	2,339	2,327	2,317	2,307	2,299	2,291	2,283	2,276	2,226	2,177	2,130	2,084
2	49,50	9,000	5,462	4,325	3,780	3,463	3,257	3,113	3,006	2,924	2,860	2,807	2,763	2,726	2,695	2,668	2,645	2,624	2,606	2,589	2,575	2,561	2,549	2,538	2,528	2,519	2,511	2,503	2,495	2,489	2,440	2,393	2,347	2,303
1	39,86	8,526	5,538	4,545	4,060	3,776	3,589	3,458	3,360	3,285	3,225	3,177	3,136	3,102	3,073	3,048	3,026	3,007	2,990	2,975	2,961	2,949	2,937	2,927	2,918	2,909	2,901	2,894	2,887	2,881	2,835	2,791	2,748	2,706
$n_2 \setminus^{n_1}$	_	7	က	4	2	9	7	œ	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	52	5 6	27	28	29	30	40	09	120	1E+05

Distribución F de Fisher-Snedecor para $\alpha=0'05$

1E+05	254,3	19,50	8,526	5,628	4,365	3,669	3,230	2,928	2,707	2,538	2,405	2,296	2,206	2,131	2,066	2,010	1,960	1,917	1,878	1,843	1,812	1,783	1,757	1,733	1,711	1,691	1,672	1,654	1,638	1,622	1,509	1,389	1,254	1,010
120	253,3	19,49	8,549	5,658	4,398	3,705	3,267	2,967	2,748	2,580	2,448	2,341	2,252	2,178	2,114	2,059	2,011	1,968	1,930	1,896	1,866	1,838	1,813	1,790	1,768	1,749	1,731	1,714	1,698	1,683	1,577	1,467	1,352	1,222
09	252,2	19,48	8,572	2,688	4,431	3,740	3,304	3,005	2,787	2,621	2,490	2,384	2,297	2,223	2,160	2,106	2,058	2,017	1,980	1,946	1,916	1,889	1,865	1,842	1,822	1,803	1,785	1,769	1,754	1,740	1,637	1,534	1,429	1,318
40	251,1	19,47	8,594	5,717	4,464	3,774	3,340	3,043	2,826	2,661	2,531	2,426	2,339	2,266	2,204	2,151	2,104	2,063	2,026	1,994	1,965	1,938	1,914	1,892	1,872	1,853	1,836	1,820	1,806	1,792	1,693	1,594	1,495	1,394
30	250,1	19,46	8,617	5,746	4,496	3,808	3,376	3,079	2,864	2,700	2,570	2,466	2,380	2,308	2,247	2,194	2,148	2,107	2,071	2,039	2,010	1,984	1,961	1,939	1,919	1,901	1,884	1,869	1,854	1,841	1,744	1,649	1,554	1,459
24	249,1	19,45	8,639	5,774	4,527	3,841	3,410	3,115	2,900	2,737	2,609	2,505	2,420	2,349	2,288	2,235	2,190	2,150	2,114	2,082	2,054	2,028	2,005	1,984	1,964	1,946	1,930	1,915	1,901	1,887	1,793	1,700	1,608	1,517
15	245,9	19,43	8,703	2,858	4,619	3,938	3,511	3,218	3,006	2,845	2,719	2,617	2,533	2,463	2,403	2,352	2,308	2,269	2,234	2,203	2,176	2,151	2,128	2,108	2,089	2,072	2,056	2,041	2,027	2,015	1,924	1,836	1,750	1,666
12	243,9	19,41	8,745	5,912	4,678	4,000	3,575	3,284	3,073	2,913	2,788	2,687	2,604	2,534	2,475	2,425	2,381	2,342	2,308	2,278	2,250	2,226	2,204	2,183	2,165	2,148	2,132	2,118	2,104	2,092	2,003	1,917	1,834	1,752
10	241,9	19,40	8,786	5,964	4,735	4,060	3,637	3,347	3,137	2,978	2,854	2,753	2,671	2,602	2,544	2,494	2,450	2,412	2,378	2,348	2,321	2,297	2,275	2,255	2,236	2,220	2,204	2,190	2,177	2,165	2,077	1,993	1,910	1,831
6	240,5	19,38	8,812	666'9	4,772	4,099	3,677	3,388	3,179	3,020	2,896	2,796	2,714	2,646	2,588	2,538	2,494	2,456	2,423	2,393	2,366	2,342	2,320	2,300	2,282	2,265	2,250	2,236	2,223	2,211	2,124	2,040	1,959	1,880
æ	238,9	19,37	8,845	6,041	4,818	4,147	3,726	3,438	3,230	3,072	2,948	2,849	2,767	2,699	2,641	2,591	2,548	2,510	2,477	2,447	2,420	2,397	2,375	2,355	2,337	2,321	2,305	2,291	2,278	2,266	2,180	2,097	2,016	1,939
7	236,8	19,35	8,887	6,094	4,876	4,207	3,787	3,500	3,293	3,135	3,012	2,913	2,832	2,764	2,707	2,657	2,614	2,577	2,544	2,514	2,488	2,464	2,442	2,423	2,405	2,388	2,373	2,359	2,346	2,334	2,249	2,167	2,087	2,010
9	234,0	19,33	8,941	6,163	4,950	4,284	3,866	3,581	3,374	3,217	3,095	2,996	2,915	2,848	2,790	2,741	2,699	2,661	2,628	2,599	2,573	2,549	2,528	2,508	2,490	2,474	2,459	2,445	2,432	2,421	2,336	2,254	2,175	2,099
2	230,2	19,30	9,013	6,256	2,050	4,387	3,972	3,687	3,482	3,326	3,204	3,106	3,025	2,958	2,901	2,852	2,810	2,773	2,740	2,711	2,685	2,661	2,640	2,621	2,603	2,587	2,572	2,558	2,545	2,534	2,449	2,368	2,290	2,214
4	224,6	19,25	9,117	6,388	5,192	4,534	4,120	3,838	3,633	3,478	3,357	3,259	3,179	3,112	3,056	3,007	2,965	2,928	2,895	2,866	2,840	2,817	2,796	2,776	2,759	2,743	2,728	2,714	2,701	2,690	2,606	2,525	2,447	2,372
က	215,7	19,16	9,277	6,591	5,409	4,757	4,347	4,066	3,863	3,708	3,587	3,490	3,411	3,344	3,287	3,239	3,197	3,160	3,127	3,098	3,072	3,049	3,028	3,009	2,991	2,975	2,960	2,947	2,934	2,922	2,839	2,758	2,680	2,605
2	199,5	19,00	9,552	6,944	2,786	5,143	4,737	4,459	4,256	4,103	3,982	3,885	3,806	3,739	3,682	3,634	3,592	3,555	3,522	3,493	3,467	3,443	3,422	3,403	3,385	3,369	3,354	3,340	3,328	3,316	3,232	3,150	3,072	2,996
1	161,4	18,51	10,13	7,709	6,608	2,987	5,591	5,318	5,117	4,965	4,844	4,747	4,667	4,600	4,543	4,494	4,451	4,414	4,381	4,351	4,325	4,301	4,279	4,260	4,242	4,225	4,210	4,196	4,183	4,171	4,085	4,001	3,920	3,842
$n_2 \setminus^{n_1}$	-	7	က	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	52	5 0	27	28	5	30	40	09	120	1E+05

Distribución F de Fisher-Snedecor para $\alpha = 0'025$

1E+05	1018,3	39,50	13,90	8,257	6,015	4,849	4,142	3,670	3,333	3,080	2,883	2,725	2,596	2,487	2,395	2,316	2,248	2,187	2,133	2,085	2,042	2,003	1,968	1,935	1,906	1,878	1,853	1,829	1,807	1,787	1,637	1,482	1,311	1,012
120	1014,0	39,49	13,95	8,309	690'9	4,904	4,199	3,728	3,392	3,140	2,944	2,787	2,659	2,552	2,461	2,383	2,315	2,256	2,203	2,156	2,114	2,076	2,041	2,010	1,981	1,954	1,930	1,907	1,886	1,866	1,724	1,581	1,433	1,269
09	1009,8	39,48	13,99	8,360	6,123	4,959	4,254	3,784	3,449	3,198	3,004	2,848	2,720	2,614	2,524	2,447	2,380	2,321	2,270	2,223	2,182	2,145	2,111	2,080	2,052	2,026	2,002	1,980	1,959	1,940	1,803	1,667	1,530	1,388
40	1005,6	39,47	14,04	8,411	6,175	5,012	4,309	3,840	3,505	3,255	3,061	2,906	2,780	2,674	2,585	2,509	2,442	2,384	2,333	2,287	2,246	2,210	2,176	2,146	2,118	2,093	2,069	2,048	2,028	2,009	1,875	1,744	1,614	1,484
30	1001,4	39,46	14,08	8,461	6,227	2,065	4,362	3,894	3,560	3,311	3,118	2,963	2,837	2,732	2,644	2,568	2,502	2,445	2,394	2,349	2,308	2,272	2,239	2,209	2,182	2,157	2,133	2,112	2,092	2,074	1,943	1,815	1,690	1,566
24	997,2	39,46	14,12	8,511	6,278	5,117	4,415	3,947	3,614	3,365	3,173	3,019	2,893	2,789	2,701	2,625	2,560	2,503	2,452	2,408	2,368	2,331	2,299	2,269	2,242	2,217	2,195	2,174	2,154	2,136	2,007	1,882	1,760	1,640
15	984,9	39,43	14,25	8,657	6,428	5,269	4,568	4,101	3,769	3,522	3,330	3,177	3,053	2,949	2,862	2,788	2,723	2,667	2,617	2,573	2,534	2,498	2,466	2,437	2,411	2,387	2,364	2,344	2,325	2,307	2,182	2,061	1,945	1,833
12	976,7	39,41	14,34	8,751	6,525	2,366	4,666	4,200	3,868	3,621	3,430	3,277	3,153	3,050	2,963	2,889	2,825	2,769	2,720	2,676	2,637	2,602	2,570	2,541	2,515	2,491	2,469	2,448	2,430	2,412	2,288	2,169	2,055	1,945
10	9'896	39,40	14,42	8,844	6,619	5,461	4,761	4,295	3,964	3,717	3,526	3,374	3,250	3,147	3,060	2,986	2,922	2,866	2,817	2,774	2,735	2,700	2,668	2,640	2,613	2,590	2,568	2,547	2,529	2,511	2,388	2,270	2,157	2,048
6	963,3	39,39	14,47	8,905	6,681	5,523	4,823	4,357	4,026	3,779	3,588	3,436	3,312	3,209	3,123	3,049	2,985	2,929	2,880	2,837	2,798	2,763	2,731	2,703	2,677	2,653	2,631	2,611	2,592	2,575	2,452	2,334	2,222	2,114
œ	956,7	39,37	14,54	8,980	6,757	2,600	4,899	4,433	4,102	3,855	3,664	3,512	3,388	3,285	3,199	3,125	3,061	3,005	2,956	2,913	2,874	2,839	2,808	2,779	2,753	2,729	2,707	2,687	2,669	2,651	2,529	2,412	2,299	2,192
7	948,2	39,36	14,62	9,074	6,853	269'9	4,995	4,529	4,197	3,950	3,759	3,607	3,483	3,380	3,293	3,219	3,156	3,100	3,051	3,007	2,969	2,934	2,902	2,874	2,848	2,824	2,802	2,782	2,763	2,746	2,624	2,507	2,395	2,288
ဖ	937,1	39,33	14,73	9,197	8/6'9	5,820	5,119	4,652	4,320	4,072	3,881	3,728	3,604	3,501	3,415	3,341	3,277	3,221	3,172	3,128	3,090	3,055	3,023	2,995	2,969	2,945	2,923	2,903	2,884	2,867	2,744	2,627	2,515	2,408
2	921,8	39,30	14,88	9,364	7,146	5,988	5,285	4,817	4,484	4,236	4,044	3,891	3,767	3,663	3,576	3,502	3,438	3,382	3,333	3,289	3,250	3,215	3,183	3,155	3,129	3,105	3,083	3,063	3,044	3,026	2,904	2,786	2,674	2,567
4	9,668	39,25	15,10	6,605	7,388	6,227	5,523	5,053	4,718	4,468	4,275	4,121	3,996	3,892	3,804	3,729	3,665	3,608	3,529	3,515	3,475	3,440	3,408	3,379	3,353	3,329	3,307	3,286	3,267	3,250	3,126	3,008	2,894	2,786
က	864,2	39,17	15,44	6/6′6	7,764	662'9	2,890	5,416	5,078	4,826	4,630	4,474	4,347	4,242	4,153	4,077	4,011	3,954	3,903	3,859	3,819	3,783	3,750	3,721	3,694	3,670	3,647	3,626	3,607	3,589	3,463	3,343	3,227	3,116
2	2,662	39,00	16,04	10,65	8,434	7,260	6,542	6,059	5,715	5,456	5,256	960'9	4,965	4,857	4,765	4,687	4,619	4,560	4,508	4,461	4,420	4,383	4,349	4,319	4,291	4,265	4,242	4,221	4,201	4,182	4,051	3,925	3,805	3,689
1	647,8	38,51	17,44	12,22	10,01	8,813	8,073	7,571	7,209	6,937	6,724	6,554	6,414	6,298	6,200	6,115	6,042	5,978	5,922	5,871	5,827	5,786	5,750	5,717	5,686	5,659	5,633	5,610	5,588	2,568	5,424	5,286	5,152	5,024
$n_2 \setminus^{n_1}$	_	7	က	4	2	ၯ	7	œ	6	10	1	12	13	14	15	16	17	18	19	50	21	22	73	24	52	5 6	27	28	59	30	40	09	120	1E+05

Distribución F de Fisher-Snedecor para $\alpha = 0'01$

1E+05	9989	99,50	26,13	13,46	9,021	6,880	5,650	4,859	4,311	3,909	3,603	3,361	3,166	3,004	2,869	2,753	2,653	2,566	2,489	2,421	2,360	2,306	2,256	2,211	2,170	2,132	2,097	2,064	2,034	2,006	1,805	1,601	1,381	1,015
120	6339	99,49	26,22	13,56	9,112	696'9	5,737	4,946	4,398	3,996	3,690	3,449	3,255	3,094	2,959	2,845	2,746	2,660	2,584	2,517	2,457	2,403	2,354	2,310	2,270	2,233	2,198	2,167	2,138	2,111	1,917	1,726	1,533	1,325
09	6313	99,48	26,32	13,65	9,202	7,057	5,824	5,032	4,483	4,082	3,776	3,535	3,341	3,181	3,047	2,933	2,835	2,749	2,674	2,608	2,548	2,495	2,447	2,403	2,364	2,327	2,294	2,263	2,234	2,208	2,019	1,836	1,656	1,473
40	6287	99,47	26,41	13,75	9,291	7,143	5,908	5,116	4,567	4,165	3,860	3,619	3,425	3,266	3,132	3,018	2,920	2,835	2,761	2,695	2,636	2,583	2,535	2,492	2,453	2,417	2,384	2,354	2,325	2,299	2,114	1,936	1,763	1,592
30	6261	99,47	26,50	13,84	9,379	7,229	5,992	5,198	4,649	4,247	3,941	3,701	3,507	3,348	3,214	3,101	3,003	2,919	2,844	2,778	2,720	2,667	2,620	2,577	2,538	2,503	2,470	2,440	2,412	2,386	2,203	2,028	1,860	1,697
24	6235	99,46	26,60	13,93	9,466	7,313	6,074	5,279	4,729	4,327	4,021	3,780	3,587	3,427	3,294	3,181	3,084	2,999	2,925	2,859	2,801	2,749	2,702	2,659	2,620	2,585	2,552	2,522	2,495	2,469	2,288	2,115	1,950	1,791
15	6157	99,43	26,87	14,20	9,722	7,559	6,314	5,515	4,962	4,558	4,251	4,010	3,815	3,656	3,522	3,409	3,312	3,227	3,153	3,088	3,030	2,978	2,931	2,889	2,850	2,815	2,783	2,753	2,726	2,700	2,522	2,352	2,192	2,039
12	6106	99,42	27,05	14,37	9,888	7,718	6,469	2,667	5,111	4,706	4,397	4,155	3,960	3,800	3,666	3,553	3,455	3,371	3,297	3,231	3,173	3,121	3,074	3,032	2,993	2,958	2,926	2,896	2,868	2,843	2,665	2,496	2,336	2,185
10	9209	99,40	27,23	14,55	10,05	7,874	6,620	5,814	5,257	4,849	4,539	4,296	4,100	3,939	3,805	3,691	3,593	3,508	3,434	3,368	3,310	3,258	3,211	3,168	3,129	3,094	3,062	3,032	3,005	2,979	2,801	2,632	2,472	2,321
6	6022	66'36	27,35	14,66	10,16	7,976	6,719	5,911	5,351	4,942	4,632	4,388	4,191	4,030	3,895	3,780	3,682	3,597	3,523	3,457	3,398	3,346	3,299	3,256	3,217	3,182	3,149	3,120	3,092	3,067	2,888	2,718	2,559	2,408
∞	5981	99,37	27,49	14,80	10,29	8,102	6,840	6,029	5,467	5,057	4,744	4,499	4,302	4,140	4,004	3,890	3,791	3,705	3,631	3,564	3,506	3,453	3,406	3,363	3,324	3,288	3,256	3,226	3,198	3,173	2,993	2,823	2,663	2,511
7	5928	96'36	27,67	14,98	10,46	8,260	6,993	6,178	5,613	5,200	4,886	4,640	4,441	4,278	4,142	4,026	3,927	3,841	3,765	3,699	3,640	3,587	3,539	3,496	3,457	3,421	3,388	3,358	3,330	3,304	3,124	2,953	2,792	2,640
ဖ	5859	99,33	27,91	15,21	10,67	8,466	7,191	6,371	5,802	5,386	5,069	4,821	4,620	4,456	4,318	4,202	4,102	4,015	3,939	3,871	3,812	3,758	3,710	3,667	3,627	3,591	3,558	3,528	3,499	3,473	3,291	3,119	2,956	2,802
2	5764	99,30	28,24	15,52	10,97	8,746	7,460	6,632	6,057	5,636	5,316	5,064	4,862	4,695	4,556	4,437	4,336	4,248	4,171	4,103	4,042	3,988	3,939	3,895	3,855	3,818	3,785	3,754	3,725	3,699	3,514	3,339	3,174	3,017
4	5625	99,25	28,71	15,98	11,39	9,148	7,847	2,006	6,422	5,994	2,668	5,412	5,205	5,035	4,893	4,773	4,669	4,579	4,500	4,431	4,369	4,313	4,264	4,218	4,177	4,140	4,106	4,074	4,045	4,018	3,828	3,649	3,480	3,319
က	5403	99,17	29,46	16,69	12,06	9,780	8,451	7,591	6,992	6,552	6,217	5,953	5,739	5,564	5,417	5,292	5,185	5,092	5,010	4,938	4,874	4,817	4,765	4,718	4,675	4,637	4,601	4,568	4,538	4,510	4,313	4,126	3,949	3,782
2	4999	00'66	30,82	18,00	13,27	10,92	9,547	8,649	8,022	7,559	7,206	6,927	6,701	6,515	6,359	6,226	6,112	6,013	5,926	5,849	2,780	5,719	5,664	5,614	2,568	5,526	5,488	5,453	5,420	5,390	5,179	4,977	4,787	4,605
_	4052	98,50	34,12	21,20	16,26	13,75	12,25	11,26	10,56	10,04	9,646	9,330	9,074	8,862	8,683	8,531	8,400	8,285	8,185	8,096	8,017	7,945	7,881	7,823	7,770	7,721	7,677	7,636	7,598	7,562	7,314	7,077	6,851	6,635
$n_2 \setminus n_1$	-	7	က	4	2	ဖ	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	52	5 6	27	28	29	30	40	09	120	1E+05

Distribución F de Fisher-Snedecor para $\alpha=0'005$

1E+05	25464	199,5	41,83	19,32	12,14	8,879	7,076	5,951	5,188	4,639	4,226	3,904	3,647	3,436	3,260	3,112	2,984	2,873	2,776	2,691	2,614	2,546	2,484	2,428	2,377	2,330	2,287	2,247	2,210	2,176	1,932	1,689	1,431	1,016
120	25359	199,5	41,99	19,47	12,27	9,001	7,193	6,065	5,300	4,750	4,337	4,015	3,758	3,547	3,372	3,224	3,097	2,987	2,891	2,806	2,730	2,663	2,602	2,546	2,496	2,450	2,408	2,369	2,333	2,300	2,064	1,834	1,606	1,364
09	25253	199,5	42,15	19,61	12,40	9,122	7,309	6,177	5,410	4,859	4,445	4,123	3,866	3,655	3,480	3,332	3,206	3,096	3,000	2,916	2,841	2,774	2,713	2,658	2,609	2,563	2,522	2,483	2,448	2,415	2,184	1,962	1,747	1,533
40	25148	199,5	42,31	19,75	12,53	9,241	7,422	6,288	5,519	4,966	4,551	4,228	3,970	3,760	3,585	3,437	3,311	3,201	3,106	3,022	2,947	2,880	2,820	2,765	2,716	2,671	2,630	2,592	2,557	2,524	2,296	2,079	1,871	1,669
30	25044	199,5	42,47	19,89	12,66	9,358	7,534	968'9	5,625	5,071	4,654	4,331	4,073	3,862	3,687	3,539	3,412	3,303	3,208	3,123	3,049	2,982	2,922	2,868	2,819	2,774	2,733	2,695	2,660	2,628	2,401	2,187	1,984	1,789
24	24940	199,5	42,62	20,03	12,78	9,474	7,645	6,503	5,729	5,173	4,756	4,431	4,173	3,961	3,786	3,638	3,511	3,402	3,306	3,222	3,147	3,081	3,021	2,967	2,918	2,873	2,832	2,794	2,759	2,727	2,502	2,290	2,089	1,898
15	24630	199,4	43,08	20,44	13,15	9,814	2,968	6,814	6,032	5,471	5,049	4,721	4,460	4,247	4,070	3,920	3,793	3,683	3,587	3,502	3,427	3,360	3,300	3,246	3,196	3,151	3,110	3,073	3,038	3,006	2,781	2,570	2,373	2,187
12	24426	199,4	43,39	20,70	13,38	10,03	8,176	7,015	6,227	5,661	5,236	4,906	4,643	4,428	4,250	4,099	3,971	3,860	3,763	3,678	3,602	3,535	3,475	3,420	3,370	3,325	3,284	3,246	3,211	3,179	2,953	2,742	2,544	2,359
10	24224	199,4	43,69	20,97	13,62	10,25	8,380	7,211	6,417	5,847	5,418	5,085	4,820	4,603	4,424	4,272	4,142	4,030	3,933	3,847	3,771	3,703	3,642	3,587	3,537	3,492	3,450	3,412	3,377	3,344	3,117	2,904	2,705	2,519
6	24091	199,4	43,88	21,14	13,77	10,39	8,514	7,339	6,541	5,968	5,537	5,202	4,935	4,717	4,536	4,384	4,254	4,141	4,043	3,956	3,880	3,812	3,750	3,695	3,645	3,599	3,557	3,519	3,483	3,450	3,222	3,008	2,808	2,621
∞	23925	199,4	44,13	21,35	13,96	10,57	8,678	7,496	6,693	6,116	5,682	5,345	9/0/9	4,857	4,674	4,521	4,389	4,276	4,177	4,090	4,013	3,944	3,882	3,826	3,776	3,730	3,687	3,649	3,613	3,580	3,350	3,134	2,933	2,745
7	23715	199,4	44,43	21,62	14,20	10,79	8,885	7,694	6,885	6,302	2,865	5,525	5,253	5,031	4,847	4,692	4,559	4,445	4,345	4,257	4,179	4,109	4,047	3,991	3,939	3,893	3,850	3,811	3,775	3,742	3,509	3,291	3,087	2,897
9	23437	199,3	44,84	21,97	14,51	11,07	9,155	7,952	7,134	6,545	6,102	2,757	5,482	5,257	5,071	4,913	4,779	4,663	4,561	4,472	4,393	4,322	4,259	4,202	4,150	4,103	4,059	4,020	3,983	3,949	3,713	3,492	3,285	3,091
2	23056	199,3	45,39	22,46	14,94	11,46	9,522	8,302	7,471	6,872	6,422	6,071	5,791	5,562	5,372	5,212	5,075	4,956	4,853	4,762	4,681	4,609	4,544	4,486	4,433	4,384	4,340	4,300	4,262	4,228	3,986	3,760	3,548	3,350
4	22500	199,2	46,19	23,15	15,56	12,03	10,05	8,805	7,956	7,343	6,881	6,521	6,233	2,998	5,803	5,638	5,497	5,375	5,268	5,174	5,091	5,017	4,950	4,890	4,835	4,785	4,740	4,698	4,659	4,623	4,374	4,140	3,921	3,715
က	21615	199,2	47,47	24,26	16,53	12,92	10,88	9,596	8,717	8,081	7,600	7,226	6,926	089'9	6,476	6,303	6,156	6,028	5,916	5,818	5,730	5,652	5,582	5,519	5,462	5,409	5,361	5,317	5,276	5,239	4,976	4,729	4,497	4,280
2	19999	199,0	49,80	26,28	18,31	14,54	12,40	11,04	10,11	9,427	8,912	8,510	8,186	7,922	7,701	7,514	7,354	7,215	7,093	986'9	6,891	908'9	6,730	6,661	6,598	6,541	6,489	6,440	968'9	6,355	990'9	2,795	5,539	5,299
7	16211	198,5	22,22	31,33	22,78	18,63	16,24	14,69	13,61	12,83	12,23	11,75	11,37	11,06	10,80	10,58	10,38	10,22	10,07	9,944	9,830	9,727	9,635	9,551	9,475	9,406	9,342	9,284	9,230	9,180	8,828	8,495	8,179	7,880
$n_2 \setminus^{n_1}$	7	7	က	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	2 2	5 6	27	28	29	30	40	09	120	1E+05