دورة سنة 2008 الإكمالية الإستثنائية	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الكيمياء المدة: ساعة واحدة	

Cette épreuve est constituée de trois exercices. Elle comporte 2 pages numérotées 1 et 2.

Traiter les trois exercices suivants :

Premier exercice (6 points) Obtention du chlorure de polyvinyle (PVC)

Le chlorure de polyvinyle ou le polychloroéthène est obtenu par polymérisation du monomère, le chlorure de vinyle C₂H₃Cl. Le chlorure de polyvinyle (PVC) est la matière plastique la plus utilisée dans le monde après le polyéthène.

Donnée : Les représentations de Lewis des atomes d'hydrogène, de carbone et de chlore sont données ci-dessous:

- 1. L'élément chlore appartient à la troisième période de la classification périodique.
 - 1.1 Préciser à quel groupe (colonne) de la classification périodique appartient le chlore.
 - 1.2 Déterminer le numéro atomique de l'élément chlore.
- 2. La formule moléculaire de l'éthène est obtenue en remplaçant l'atome de chlore Cl, dans la formule du chlorure de vinyle, par un atome d'hydrogène H.
 - **2.1 -** Donner la formule semi- développée de l'éthène.
 - 2.2 Indiquer le type de liaison entre les atomes de carbone dans la molécule d'éthène.
- 3. Écrire la formule développée du chlorure de vinyle.
- **4.** L'équation générale de polymérisation d'un monomère M est : \mathbf{n} (M) $\longrightarrow -(\mathbf{M})_{\mathbf{n}}$ Choisir, parmi les équations suivantes, l'équation de la réaction de polymérisation du chlorure de vinyle.

a)
$$\mathbf{n}$$
 (CH₂ = CHCl) $\longrightarrow \overline{\mathbf{n}}$ (CH₂ \square CHCl $\xrightarrow{\mathbf{n}}$
b) (CH₂ = CHCl) \mathbf{n} $\longrightarrow \overline{}$ (CH₂ \square CHCl $\xrightarrow{\mathbf{n}}$
c) \mathbf{n} (CH₂ = CHCl) $\longrightarrow \overline{}$ (CH₂ \square CHCl $\xrightarrow{\mathbf{n}}$

Deuxième exercice (7 points) Pétrole

Le pétrole est un mélange d'hydrocarbures. Le pétrole doit être traité avant d'être utilisé. Durant le raffinage du pétrole, les hydrocarbures (A) et (B) sont obtenus.

Les graphes (1) et (2) montrent le nombre d'atomes de carbone et d'hydrogène dans les molécules de (A) et (B).

Hydrocarbure Graphe (1)

В

- 1. Se référer aux graphes (1) et (2). Vérifier que la formule moléculaire de (A) est C₂H₄ et que celle de **(B)** est C_4H_{10} .
- 2. Identifier la famille (classe) d'hydrocarbures à laquelle appartient chacun de ces composés.
- 3. Ecrire l'équation de la combustion complète de l'hydrocarbure (B).
- 4. Une molécule de l'hydrocarbure (A) réagit avec une molécule de dichlore. Un composé (D) est obtenu.
 - 4.1- Expliquer laquelle des deux formules développées suivante (I) ou (II) peut être associée au composé (D).

4.2- Indiquer si le composé **(D)** est un hydrocarbure ou non. Justifier.

Troisième exercice (7 points) Pile électrochimique : Zn - Cu

Dans un bécher contenant une solution de sulfate de cuivre II (couleur bleue) et un thermomètre indiquant une température de 21°C, on plonge une lame de zinc. Après un certain temps, le thermomètre indique 22°C. Une réaction chimique a eu lieu. La réaction est représentée par l'équation suivante :

$$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$$
 équation (E)

- 1. Montrer, en utilisant les nombres d'oxydation, que la réaction ci-dessus est une réaction d'oxydoréduction.
- 2. Indiquer les cations qui se trouvent dans la solution durant la réaction.

- 3.1 Écrire la demi-équation électronique de réduction et la demi-équation électronique d'oxydation qui ont lieu.
- 3.2 Identifier l'oxydant dans la réaction ci-dessus.
- 3.3 Déduire lequel des deux métaux, le zinc ou le cuivre, a une plus grande tendance à perdre des électrons.
- 4. On désire construire une pile électrochimique (G). La réaction de cette pile à construire est représentée par l'équation (E).

Le matériel suivant est disponible :

- Des béchers de 250 mL.
- Des lames de : zinc, argent, cuivre.
- Une solution contenant des ions de zinc (Zn²⁺).
- Une solution contenant des ions d'argent (Ag^{\downarrow}) .
- Une solution contenant des ions de cuivre II (Cu²⁺).
- Fils de connexion.

Voltmètre.

- Fil de fer en forme de U.

 - Un tube en U contenant un électrolyte.
- **4.1** Nommer le matériel nécessaire pour construire la demi-pile anodique.
- 4.2 Un pont salin est utilisé dans la construction de la pile électrochimique Zn Cu. Donner deux raisons pour lesquelles le pont salin est utilisé pour associer les solutions dans les deux demi-piles.