Previous Talk padic measure Given: SED[x1,..., xd]

Poincaic series: Q(T) = > H(Xm)p-dm.Tm where $X_m = \{ \bar{x} \in \mathbb{Z}_p \mid J(f(\bar{x})) \geq m \}$ $\widetilde{Q}_{\varepsilon}(T) := Q_{\varepsilon}(p^{d}T) = \sum_{i} \mu(X_{i}) T_{i}$ Generalize +Lis Note: Con remove p-dm Thm: Given "suitable" X = Cp (mEN): Jet QX,(T):= ≥ H(Xm) Lm Then Qx (T) & Q(T)

Exomple

• X = \$

 $Q_{\chi_{\bullet}}(T) = \sum_{k} \mu(X_{m}) T^{m} \quad \text{where } X_{m} = \{x \in \mathbb{Z}_{p} \mid_{X} \text{ is a square in } \mathbb{Q}_{p}, v(x) = m \}$

 $\exists \operatorname{res}(y) : \operatorname{res}(x) = \operatorname{res}(y)^2$

• $\chi^{50} = \{b_5 \cdot \chi \mid \chi \in \chi^0\}$ $h(\chi^{50}) = \frac{5b}{b-1} \cdot b_{-50}$

rs(x) rquare in Fr

X₀ = {x∈ Zρ > p Zρ | x square in Qρ}

C=(1+0.5)

 $\bullet \ \mathbb{Q}_{\times}(\mathsf{T}) = \sum_{n \geq 0} \frac{\mathsf{p}^{-1}}{2\mathsf{p}} \cdot \mathsf{p}^{-2\ell} \cdot \mathsf{T}^{2\ell} = \frac{\mathsf{p}^{-1}}{2\mathsf{p}} \cdot \sum_{n \geq 0} \left(\mathsf{p}^{-2} \cdot \mathsf{T} \right)^{\ell} = \frac{\mathsf{p}^{-1}}{2\mathsf{p}} \cdot \frac{1}{1 - \mathsf{n}^{-2} \cdot \mathsf{T}} \in \mathbb{Q}(\mathsf{T})$

 $\mu(\chi^{\circ}) = \frac{5}{6-1} \cdot \frac{1}{5}$

ay: x=y2

Hensels

Lemma

General case: Condition on X. ? $\underbrace{\{ \overline{X} \ 1^{L} \ X_{m} = \{ \overline{X} \in \mathbb{Z}_{p}^{d} \mid V(f(\overline{X})) \geq m \}}_{q}$

$$(x) = \{x \in \mathbb{Z}_p \mid x \text{ is square in } \mathbb{Q}_p , v(x) = m\}$$

Thm:
$$Q_X(T) := \sum_{m \ni 0} \mu(X_m) T^m \in Q(T)$$
 if X_0 is given by a ? It order formula in the larguage of valued fields ?

1st order follo in the long. of vol. Flde

Cx 2; " $\exists y : y^2 = \chi$ $\wedge V(\chi) = m$ " $(in \times and m (but not y!))$ Defr: A 1st order follows in the Company of whome is obtained as follows: (in x) (in x) =0 for fell(x) =0} $X_{m} = \{ \chi \in \mathbb{Q}_{p} | \chi(\chi) = m \}$ (in X and m) · Apply boolean combinations (1, V, 7) complement · Apply questifier: 3x, marion (Dx means DXEQ) Every such for a definer a family of sets Xm Note: One should really say: "formula in variables x, ..., x, " ~ X m cop

"and in the value group voriable m" -> X. CZp XZ (Xm={x eQp | (xm)eX.}

1st order finles are very flexible Defn: consists of 4(x)=00 = 1x W > minimalistic definition $m = (x)_{V}$ A,V,7 Эx ... namely as follows: Con also express: Yx: blah > Jx: > blah $O \in ((x)^2)_V$ $\exists y: f(x) = y \land v(y) \ge 0$ $\exists y \colon \xi(\underline{x}) = y \cdot g(\underline{x}) \land v(y) \geq 0 \quad \left(v(\xi(\underline{x})) = v(y) + v(g(\underline{x}))\right)$ $V(\xi(X)) \ge V(\xi(X))$ $^{\wedge}(\not\in\overline{\bigotimes})=^{\wedge}(^{\circ}(\overline{x}))$ $\Lambda(\xi(X)) \geq \Lambda(Y(X)) \vee \Lambda(Y(X)) \geq \Lambda(\xi(X))$ $V(\xi(\tilde{\lambda})) \geq m$ $\exists \gamma : v(\gamma) = m \land v(f(x)) \ge v(\gamma)$ 3m' ∈ 2: blah(m') ((y)v)dadd n O+ v: vE etc.

Proof & Applications

Thm:
$$Q_{X_0}(T) := \sum_{m \geq 0} \mu(X_m) T^m \in Q(T)$$
 if

X. is given by a 1st order formula in the language of valued fields

Example application.

 $p(X_m) = \# \text{ Subg ps of } GL_n(\mathbb{Z}_p)$

Proof:

17

 $\begin{aligned} & \lambda_{1} \circ p^{\lambda_{1}} \otimes x \\ & - \lambda_{2} \circ p^{\lambda_{1}} \otimes x \\ & - \lambda_{3} \circ p^{\lambda_{1}} \otimes x \\$

20

21

22

23