

ЗАДАЧИ М+

В тази рубрика, която се води от доп. д-р Веселин Ненков, се публикуват задачи за ученици от горните класове, за студенти и учители. Основният признак за подбор е оригиналност. Това не означава задължителна новост, защото твърдението, че една задача е пова, остава в сила до доказване на противното. Оригиналността включва естетичност и остроумие, а решаването на задачи с подобни качества изисква инициативност, откривателски подход, интелектуално усилие.

Рубриката разчита на активното Ви участие както с решения, така и с предложения на задачи. Изпращайте ги на адрес:

1618 София, ул. "Гусла" № 1 ВУЗФ Радмила Златкова

писмата си посочвайте училището (упиверситета) класа (курса), ако сте ученик (студент). Желателно е предлаганите задачи да са напечатани в два екземпляра с кратки, по пълни решения. Ще отбелязваме имената на тези, конто паправили предложенията. Ако задачата заета, носочете В източника. писмото поставете празен плик с точния Ви адрес. Без да нзвършва класиране, M+ще обсъжда пзпратените решения, а пайхубавите от тях ще намерят място страниците на рубриката ще бъдат паграждавани.

M+547. Да се определи съществуват ли n последователни цели числа, сборът от квадратите на които е квадрат на цяло число, ако $n = 4^k (6m+1)$ за някои неотрицателни цели числа k и m.

(Христо Лесов, гр. Казанлък)

M+548. Положителните числа a_1 , a_2 , ..., a_n са такива, че е изпълнено неравенството

$$\frac{a_1}{S - a_1 + 1} + \frac{a_2}{S - a_2 + 1} + \dots + \frac{a_n}{S - a_n + 1} \le 1,$$

където $S = a_1 + a_2 + \dots + a_n$. Да се докаже, че е изпълнено

неравенството
$$\frac{1}{S-a_1+1} + \frac{1}{S-a_2+1} + \dots + \frac{1}{S-a_n+1} \ge 1$$
.

(Draghia Denisa Iulia, Крайова, Румъния)

М+549. Да се докажат неравенствата:

a)
$$\sqrt{1 + \sin x} + \sqrt{1 + \cos x} \ge 1$$
; 6) $\sqrt{1 - \sin x} + \sqrt{1 + \cos x} \ge 1$;

B)
$$\sqrt{1 + \sin x} + \sqrt{1 - \cos x} \ge 1$$
; r) $\sqrt{1 - \sin x} + \sqrt{1 - \cos x} \ge 1$.

(Лучиан Туцеску, Крайова, Румъния)

M+550. Даден е $\triangle ABC$, за който $\prec BAC = 60^\circ$. Върху страната AC съществува такава точка K, че вписаните в $\triangle ABK$ и $\triangle BCK$ окръжности се допират в точка L, за която BL = 6.KL. Да се докаже, че вписаната в $\triangle ABC$ окръжност минава през точката K и центърът й лежи върху вписаната в $\triangle ABK$ окръжност.

(Сава Гроздев, гр. София, Веселин Ненков, с. Бели Осъм)

M+551. Нека O и H са съответно центърът на описаната окръжност и ортоцентърът на остроъгълен триъгълник ABC, в който $\angle ACB = \gamma$ е най-малкият му ъгъл. Ако Q е такава точка от страната BC, че $\angle HOQ = 2\gamma$, да се определи $\angle OHQ$.

(Хаим Хаимов, гр. Варна)

M+552. Дадени са тетраедър ABCD с център на тежестта G и сфера k с център G. Ако M е произволна точка от k, да се докаже, че сумата $AM^2 + BM^2 + CM^2 + DM^2$ не зависи от положението на M върху k. (Милен Найденов, гр. Вариа)

Краен срок за изпращане на решения: 15.10.2016 г.