

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2023/24

Paula Reichert, Siddhant Das

Lineare Algebra (Informatik) Übungsblatt 9

Aufgabe 1 (Lineare Unabhängigkeit in \mathbb{R}^3)

Prüfen Sie, ob die folgenden Mengen von Vektoren linear abhängig oder linear unabhängig in \mathbb{R}^3 sind:

- (i) $\{(-1,1,5)\}$
- (i) $\{(0,0,0),(-1,1,5)\}$
- (iii) $\{(-1,1,5),(2,1,3),(-2,2,10)\}$

Bestimmen Sie außerdem die lineare Hülle für jede dieser Mengen.

Aufgabe 2 (Lineare Unabhängigkeit in \mathbb{C}^3)

Man betrachte \mathbb{C}^3 als Vektorraum über \mathbb{C} . Untersuchen Sie,

(i) ob die Vektoren
$$\begin{pmatrix} i \\ 2 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3i \\ 4-i \\ -1+i \end{pmatrix}$ in \mathbb{C}^3 linear unabhängig sind,

(ii) ob die Vektoren
$$\begin{pmatrix} i \\ 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ -i \\ i \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$ in \mathbb{C}^3 linear unabhängig sind.

Aufgabe 3 (Basis von Polynomen)

Es sei $P_2(\mathbb{R}) := \{P : \mathbb{R} \to \mathbb{R}, x \mapsto ax^2 + bx + c, a, b, c \in \mathbb{R}\}.$

- (i) Zeigen Sie, daß sowohl $\mathcal{B}_1 := \{1, x, x^2\}$ als auch $\mathcal{B}_2 := \{1, x, \frac{1}{2}(3x^2 1)\}$ Basen von $P_2(\mathbb{R}) = \text{sind.}$
- (ii) Drücken Sie das Polynom $P' \in P_2(\mathbb{R}), P'(x) := (x+1)^3 (x-1)^3$ sowohl bezüglich der Basis $\mathcal{B}_1 := \{1, x, x^2\}$ als auch bezüglich der Basis $\mathcal{B}_2 := \{1, x, \frac{1}{2}(3x^2 1)\}$ aus.

Aufgabe 4 (\mathbb{R} als \mathbb{R} -Vektorraum vs. \mathbb{Q} -Vektorraum)

 $\mathbb R$ ist sowohl über dem Köper $\mathbb R$ als auch über dem Köper $\mathbb Q$ ein Vektorraum. Zeigen Sie, dass die Vektoren $1 \in \mathbb R$ und $\sqrt{2} \in \mathbb R$

- (i) linear abhängig sind, wenn man \mathbb{R} als \mathbb{R} -Vektorraum auffasst,
- (ii) linear unabhängig sind, wenn man \mathbb{R} als \mathbb{Q} -Vektorraum auffasst.