MIE 1807 Principles of Measurement

2017-01-30 Neil Montgomery

Lecture notes: https://github.com/mie1807-winter-2017

Some Rules

$$E(aX + b) = aE(X) + b$$
$$E(X_1 + X_2) = E(X_1) + E(X_2)$$

$$Var(aX + b) = a^2 Var(X)$$

If X_1 and X_2 are independent:

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2)$$

but not vice-versa.

MIE1807 - Neil Montgomery

Standardization

The rules allow us to consider *standardized* versions of random variables, with mean 0 and variance 1.

$$Y = \frac{X - \mu}{\sigma}$$

$$E(Y) = E\left(\frac{X - \mu}{\sigma}\right) = \frac{1}{\sigma}(\mu - \mu) = 0$$

$$Var(Y) = Var\left(\frac{X - \mu}{\sigma}\right) = \frac{1}{\sigma^2}\sigma^2 = 1$$

But Y and X have the same *shape*.

MIE1807 - Neil Montgomery

3

A frequent probabilistic situation...

- Many random quantities result from:
 - Sums/averages of...
 - ...a relatively large number of...
 - ...roughly equally weighted...
 - ...independent random contributions.
- Direct examples: height, test scores, measurement errors.
- Indirect example: sample averages

MIE1807 - Neil Montgomery

ļ

Indirect Example 1

Toss n dice and let X be the sample average result. Formally:

$$X = (X_1 + X_2 + \dots + X_n)/n$$

n=1, k=10000

Histogram of k = 10000 tosses with n = 1

MIE1807 - Neil Montgomery

Indirect Example 2 Observe n engine failures X be the sample average failure time. Density of "Exponential Distribution" Density commonly used to model: $f(x) = \lambda e^{-\lambda x} \text{ for } x > 0$

Model: The Normal Distributions

Symmetric, bell-shaped densities:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \overset{\text{N(0,1) Density}}{\overset{\text{R}}{\circ}}$$

$$E(X) = \mu$$

$$\overset{\text{S}}{\circ}$$

$$Var(X) = \sigma^2$$

MIE1807 - Neil Montgomery

13

Normal densities all have the same shape

MIE1807 - Neil Montgomery

The Normal Distributions

"X has a Normal distribution with mean μ and variance σ^2 :

$$X \sim N(\mu, \sigma^2)$$

"Standard" (ized) normal denoted (conventionally) by Z, and is such that

$$Z \sim N(0, 1)$$

Relationship:

$$Z = \frac{X - \mu}{\sigma} \qquad X = \mu + \sigma Z$$

$$X = \mu + \sigma Z$$

MIE1807 - Neil Montgomery

15

Normal Probability Computations

If $X \sim N(\mu, \sigma^2)$ then

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

Explicit antiderivative not available.

Real world: use computer.

Tests: transform $Z = \frac{X - \mu}{\sigma}$ and use table of standard Normal probabilities.

MIE1807 - Neil Montgomery

Interesting fact: Normal + Normal ~ Normal

If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$, then $X_1 + X_2 \dots$ is a random variable too.

In fact $X_1 + X_2$ also has a Normal distribution.

If
$$X_1 \perp X_2$$
:

$$X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

MIE1807 - Neil Montgomery

17

Model for notion of "Sample"

We want a mathematical model for "replication" (of an experiment).

In other words, we got the numbers x_1, x_2, \ldots, x_n in our dataset, but where did they come from?

Define a sample as a sequence of independent r.v.s with the same distribution: X_1, X_2, \ldots, X_n

"i.i.d."

MIE1807 - Neil Montgomery

Interesting Functions of Samples

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Sample mean.
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
mple variance.
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

These are random variables.

MIE1807 - Neil Montgomery

19

(Sorry for even more confusion!)

Given a dataset x_1, \ldots, x_n

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 $s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$

were also called sample mean and sample variance, but these are just numbers!

Call these quantities observed...

MIE1807 - Neil Montgomery

Mean and Variance of "Sample Average"

For any sample X_1, \ldots, X_n that are independent and have the same distribution with mean μ and variance σ^2 :

Var(
$$\overline{X}$$
) = $\frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} n \mu = \mu$
Var(\overline{X}) = $\frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$

$$n^{2} \sum_{i=1}^{n} n^{2} \qquad r$$

$$SD(\overline{X}) = \frac{\sigma}{\sqrt{n}}$$

MIE1807 - Neil Montgomery

2

Special Case - Normal

Suppose further that X_1, \ldots, X_n is a sample from a $N(\mu, \sigma^2)$ distribution.

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2) \qquad \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

MIE1807 - Neil Montgomery

"Fundamental Theorem of Statistics"

For any population modeled with a distribution with mean μ and variance σ^2 .

Consider a sample X_1, \ldots, X_n .

$$\lim_{n\to\infty} P\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \le u\right) = P(Z \le u)$$

Where
$$Z \sim N(0, 1)$$
.

Really called the "Central Limit Theorem" or CLT.

MIE1807 - Neil Montgomery

23

24

Limit theorems not always useful in practice, but the CLT is!

The importance of the CLT is due to the speed of convergence:

$$P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le u\right) \approx P(Z \le u)$$

for n "large enough". How large? It depends on the shape of the underlying distribution.

 n
 2
 10
 20
 50

 shape
 Normal
 Symmetric
 Moderate Non-normal
 Very non-normal

 MIE1807 - Neil Montgomery

CLT example

Engine lifetimes follow a roughly symmetric distribution with mean 3.4 years and s.d. 2.1 years.

What is the chance that the average life of 25 engines exceeds 4 years?

$$P(\overline{X} > 4) = P\left(\frac{\overline{X} - 3.4}{2.1/\sqrt{25}} > \frac{4 - 3.4}{2.1/\sqrt{25}}\right)$$
$$\approx P(Z > 1.43) = 0.0766$$

MIE1807 - Neil Montgomery

25

An accurate plot for detecting deviation from Normal

Consider a sample of size 10 (say) from N(0,1)

On average such a sample will be centered at 0 with the same amount of probability between each point.

MIE1807 - Neil Montgomery

Normal Quantile Plot (NQP)

The Computer can calculate what these theoretical quantiles $z_{(1)}, z_{(2)}, \ldots, z_{(10)}$ should be.

$z_{(1)}$	1	2	3	4	5	6	7	8	9	10
Probabilities	0.06	0.16	0.26	0.35	0.45	0.55	0.65	0.74	0.84	0.94
Quantiles	-1.55	-1.00	-0.66	-0.38	-0.12	0.12	0.38	0.66	1.00	1.55

 \dots and so on for any sample size n.

A Normal Quantile Plot of a univariate, numerical dataset, is a scatterplot of the data versus normal quantiles.

MIE1807 - Neil Montgomery

27

(Light and Heavy Tailed Distributions)

Right and left skew has already been defined. In addition, we can have:

