Übungsaufgaben zur Klausur

- 1.) Wie groß sind die Konzentrationen c(H⁺) und c(OH⁻) in folgenden Lösungen:
 - a) 0,015 mol/L HNO₃
 - b) 0,0025 mol/L Ba(OH)₂
 - c) 0,0003 mol/L HCI
 - d) 0,016 mol/L Ca(OH)₂ ?

Hinweis: Notieren Sie immer die Reaktionsgleichung. Schauen Sie wie viele Teilchen H⁺ bzw. OH⁻ Ionen entstehen. Entsteht mehr als ein Teilchen, wird die Ausgangskonzentration mit der Anzahl der entstehenden Teilchen multipliziert:

$$H_2A \rightarrow 2 H^+ + A^2$$

1 mol 2 mol 2 mol

- 2.) Welchen pH-Wert haben Lösungen mit:
 - a) $c(H^+) = 7.3 \cdot 10^{-5} \text{mol/L}$
 - b) $c(H^+) = 0.084 \text{ mol/L}$
 - c) $c(H^+) = 3.9 \cdot 10^{-8} \text{mol/L}$
 - d) $c(OH^{-})=3,3 \cdot 10^{-4} mol/L$
 - e) $c(OH^{-}) = 0.042 \text{ mol/L}$?
- 3.) Wie groß sind c(H⁺) und c(OH⁻)?
 - a) pH = 1.23
 - b) pH = 10,92
 - c) pOH = 4.32
 - d) pOH = 12.34
 - e) pOH = 0.16
- 4.) Die Lösung einer schwachen Säure HX mit c= 0.26 mol/L hat einen pH-Wert von 2.86. Wie groß ist die Säurekonstante K_S ?
- 5.) Die Lösung einer schwachen Base B_{OH} mit $c(B_{OH})$ = 0,44 mol/L hat einen pH-Wert von 11,12. Wie groß ist die Basenkonstante K_B ?

$$c(OH^{-}) \cdot c(B^{+})$$

Hinweis: Ähnliche Berechnung wie K_S ! K_B = c(BOH)

6.) Welchen pH-Wert hat eine Lösung von 0,3 mol/L NH $_3$ pro Liter? $K_B = 1,8\cdot10^{-5}$ mol/L

Hinweis: Reaktionsgleichung aufschreiben! In die Formel einsetzen! Konzentration an OH⁻ berechnen. pOH-Wert berechnen. pH-Wert berechnen.

- 7.) In einer Lösung von Benzylamin (C₆H₅CH₂NH₂) mit einer Konzentration von 0,25 mol/l ist c(OH⁻)=2,4·10⁻³ mol/l. Wie groß die Basenkonstante?
- 8.) Wie groß ist die c(H⁺) einer 0,25 mol/L Benzoesäure? Wie viel % davon sind dissoziert ? $K_S = 6.0 \cdot 10^{-5}$ mol/L

- 9.) Welchen **pH-Wer**t hat die Lösung einer einprotonigen Base mit c= $8,3 \cdot 10^{-5}$ mol/L, wenn α =23% ist? *Achtung: hier ist* α *für die OH- Konzentration angegeben!!!*
- 10.) Eine Pufferlösung enthält 1 mol/L Essigsäure und 1 mol/L Natriumacetat. Sie hat einen pH-Wert und pK_s –Wert von 4,742. Welchen pH –Wert hat Sie nach der Zugabe von 0,003mol/L HCl bzw. 0,003 mol/L NaOH ?
- 11.) Was bewirkt das Vitamin A (Retinol)?
 - a) Sehkraft, Hautbildung
 - b) Calciumeinlagerung
 - c) Stärkung des Immunsystems
 - d) Beeinflusst die Bildung roter Blutkörperchen
- 12.) Welche Bedeutung haben Vitamine?
 - a) Sie kommen nur in sehr kleiner Konzentration vor und sind deshalb von geringer Bedeutung.
 - b) Sie wirken als Co-Enzyme im Körper.
 - c) Ihr Fehlen kann schlimme Mangelkrankheiten auslösen.
 - d) Sie wirken nur in Verbindung mit Kohlenhydraten
- 13.) Was bewirkt Skorbut?
 - a) Zahnfleischbluten, Zahnausfall, Anämie
 - b) Knochenbrüchigkeit
 - c) Blindheit
 - d) Muskelkrämpfe
- 14.) Was versteht man unter Hypovitaminose?
 - a) Krankheiten durch eine zu hohe Vitaminzufuhr.
 - b) Krankheiten durch eine zu niedrige Vitaminzufuhr.
 - c) Die Kombination von Vitaminen.
 - d) Die optimale Zufuhr von Vitaminen.
- 15.) Bilden Sie aus Glycerin und Buttersäure C₃H₁COOH ein Fett.
- 16.) Warum ist Kokosfett bei Raumtemperatur fest?
- 17.) Wie kann man Olivenöl härten?
- 18.) Nennen Sie verantwortliche Faktoren die zur Oxidation von Fetten führen und zeigen Sie an einem Beispiel die Autooxidation.
- 19.) Wozu dient das Depotfett?
- 20.) Wie werden kurze und langkettige Fettsäuren durch das Blut transportiert?
- 21.) Wie werden vom Körper gebildete Fette durch das Blut transportiert?
- 22.) Was ist die Lipogenese?
- 23.) Nennen Sie die wichtigsten Schritte der Lipolyse.

Lösungen:

- 1.) $6.7 \cdot 10^{-13} \text{mol/L}$; 0.015 mol/l; $2 \cdot 10^{-12} \text{mol/L}$; 0.005 mol/L; 3.10^{-4} mol/L ; $3.3 \cdot 10^{-11} \text{ mol/L}$; $3.2 \cdot 10^{-2} \text{mol/L}$; $3.1 \cdot 10^{-13} \text{ mol/l}$;
- 2.) 4,14; 1,08; 7,41; 10,51; 12,62;
- 3.) $5,9\cdot10^{-2}$ mol/L; $1,7\cdot10^{-13}$ mol/L; $1,2\cdot10^{-11}$ mol/L; $8,3\cdot10^{-4}$ mol/L; $2,1\cdot10^{-11}$ mol/L; $4,8\cdot10^{-5}$ mol/L; $2,1\cdot10^{-12}$ mol/L; $2,1\cdot10^{-13}$ mol/L; $2,1\cdot10^{-14}$ mol/L
- 4.) $7.3 \cdot 10^{-6} \text{ mol/L}$
- 5.) $4.0 \cdot 10^{-6} \text{ mol/L}$
- 6.) pH = 11,37
- 7.) $2,30 \cdot 10^{-5} \text{ mol/L}$
- 8.) 4,90 · 10⁻³ mol/L; 3,1%
- 9.) 9,28
- 10.) 4,739 (bei Zugabe HCl) ; 4,745 (bei Zugabe Natronlauge)
- 11.) a
- 12.) b,c
- 13.) a
- 14.) b