6 חדוא 1א' *-* שיעור

2024, בינואר, 16

יונתן מגר

טענות נוספות על התכנסות סדרות

מבחן השורש הכללי

. $\exists \lim a_n=0$ אזי . $a_n^{\frac{1}{n}}\leq lpha orall n$ כך ש $n>n_0$ כך ש $n>n_0$ אזי . $\exists 0\leq lpha<1$ ו- $a_n\geq 0$ אזי

. (כלל הסנדוויץ') שואפת ל-0 מכיוון ש- $lpha^n$ שואפת ל-0 וכך גם הסדרה הקבועה $lpha^n$ שואפת ל- $lpha^n$ מכיוון ש- $lpha^n$ שואפת ל- $lpha^n$ שואפת ל- $lpha^n$

שאלה

תהי סדרה (a_n) בהכרח מתכנסת? $n\in\mathbb{N}$ המקיימת $n\in\mathbb{N}$ הסדרה: $a_n^{-\frac{1}{n}}<1$ ה הסדרה מתכנסת? (a_n) בהכרח מתכנסת?

$$a_n: \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{1}{3}...$$

 $\displaystyle \lim_{n \to \infty} a_n$ אין גבול ,
 $a_n^{\frac{1}{n}} < 1 \forall n \in \mathbb{N}$ ואז

מבחן השורש הגבולי

תהי סדרה $\lim_{n \to \infty} a_n^{-\frac{1}{n}} = P$ ונניה כי $a_n \geq 0 \, \forall n \in \mathbb{N}$ אזי:

. $\exists \lim_{n \to \infty} a_n = 0 \leftrightharpoons P < 1$ אם (1) . $\lim_{n \to \infty} a_n = +\infty \leftrightharpoons P > 1$ אם (2)

 $\exists n_{arepsilon} \in \mathbb{N}: \left|a_n^{-\frac{1}{n}} - P
ight| < arepsilon \, \forall n > n_{arepsilon}$ הגבול: $P + arepsilon < 1 \leftarrow 0 < arepsilon < 1 - P$, נבחר P < 1 אם אם P < 1 אז מהגדרת הגבול: $a_n^{-\frac{1}{n}} < P + arepsilon < 1$, סיימנו. $\alpha = P + arepsilon$ המשפט הקודם (1)

. $\exists n_{\varepsilon} \in \mathbb{N}: \left|a_{n}^{\frac{1}{n}} - P\right| < \varepsilon \forall n > n_{\varepsilon}$ בבחר הגבול: $A = \mathbb{N}: \left|a_{n}^{\frac{1}{n}} - P\right| < \varepsilon \forall n > n_{\varepsilon}$ בבחר הגבול: $A = \mathbb{N}: \left|a_{n}^{\frac{1}{n}} - P\right| < \varepsilon \forall n > n_{\varepsilon}$ בבחרט, $A = \mathbb{N}: \left|a_{n}^{\frac{1}{n}} - P\right| < \varepsilon \forall n > n_{\varepsilon}$ (2) בפרט, $A = \mathbb{N}: \left|a_{n}^{\frac{1}{n}} - P\right| < \varepsilon \forall n > n_{\varepsilon}$ (2)

מבחן המנה הגבולי המנה הגבולי .lim $rac{a_{n+1}}{a_n}=L$ - כך ער $a_n>0 \forall n\in\mathbb{N}$ תהי חהי $n o\infty$.lim $a_n=0 \Leftarrow L<1$ אם (1)

. lim $a_n = +\infty \Leftarrow L > 1$ אם (2)

מבחן המנה הכללי

. lim $a_n=0$ אזי $a_{n+1} < La_n \, \forall n > n_0$ - כך שL < 1ו ונתונים (a_n) ונתונים (מונה סדרה חיובית (1)

 $\lim a_n = +\infty$ אזי . $a_{n+1} > La_n \ \forall n > n_0$ כך שL > 1ו ונתונים (a_n) ונתונים (2) נתונה סדרה חיובית (a_n) ונתונים

סדרות מונוטוניות

- $a_{n+1} \leq a_n \forall n \in \mathbb{N}$ נקראת מונוטונית יורדת מ $a_{n+1} \geq a_n \forall n \in \mathbb{N}$ אם עולה אם נקראת מונוטונית יורדת מונוטונית יורק סדרה
 - . אז הסדרה יורדת ממש. אז הסדרה עולה ממש, ואם $a_{n+1} > a_n orall n \in \mathbb{N}$ אז הסדרה יורדת ממש. •

, אם וווסומה יורדת וחסומה מלמטה, אם $\exists \lim a_n = \sup a_n$, אזי, אזי, מלמעלה. אונוטונית עולה מונוטונית עולה מלמעלה. אזי, אזי, אזי, אזי, ווחסומה מלמעלה. אם חסומה מונוטונית עולה וחסומה מלמעלה. $\exists \lim a_n = \inf a_n$ אז

הוכחה

- כך ש- תיכותי. קיים arepsilon > 0 יהי ונוכיח ונוכיח ב $a_n = L$ ונוכיח ונוכיח בסמן (השני ההאשון השני ההאשון בסמן בסמן ונוכיח ונוכיח וונוכיח את המקרה הראשון (השני ההא).

$$\overbrace{L-\varepsilon < \underbrace{a_{n_\varepsilon} \leq \underbrace{a_n \leq L}_{\forall n > n_\varepsilon}}^{\sup a_n = L} \underbrace{\leq L+\varepsilon}_{\varepsilon > 0}$$

כלומר הוכחנו:

$$\forall \varepsilon > 0 \exists n_\varepsilon \in \mathbb{N} : L - \varepsilon < a_n < L + \varepsilon, \forall n > n_\varepsilon$$

דוגמה

?מתכנסת היא האם $.a_n = \left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{2^2}\right)\cdot\ldots\cdot\left(1-\frac{1}{2^n}\right)$ האם היא מתכנסת

פתרון

. a_n איז שני, מצד שני, מצד מונ' יורדת. מצד מונ' $a_{n+1} = \overline{\left(1-\frac{1}{2}\right)\cdot\ldots\cdot\left(1-\frac{1}{2^n}\right)}\cdot\left(1-\frac{1}{2^{n+1}}\right) \leq a_n \, \forall n \in \mathbb{N}$ $\exists \lim a_n$ הקודם המשפט לפי ואז למטה, מלמטה חסומה הסדרה כלומר

. נתונה סדרה המוגדרת ע"י $\exists \lim a_n$ כי $a_{n+1} = \sqrt{6+a}$ שותו. ולחשב אותו ולחשב אותו ולחשב אותו

 $a_n \geq 0 \, \forall n \in \mathbb{N}$ יש באינדוקציה כי הסדרה עולה (ברור ש- נוכיח באינדוקציה - נוכיח באינדוקציה פי

$$.a_2=\sqrt{6+a_1}=\sqrt{6+\sqrt{6}}\geq \sqrt{6}=a_1:a_2\geq a_1$$
 (1) $.a_{n+1}=\sqrt{6+a_n}\geq \sqrt{6+a_{n-1}}=a_n$ ואז $a_n\geq a_{n-1}$ (2)

$$a_{n+1} = \sqrt{6+a_n} \geq \sqrt{6+a_{n-1}} = a_n$$
 ואז $a_n \geq a_{n-1}$ (2)

• נוכיח באינדוקציה כי הסדרה חסומה מלמעלה.

$$a_1 = \sqrt{6} \le 3 : a_1 \le 3$$
 (1)

$$.a_1=\sqrt{6}\leq 3: a_1\leq 3$$
 (1) $.a_{n+1}=\sqrt{a_n+6}\leq 3$ ואז (2) נתוך (2)

מכאן מתקיים . $\lim \sqrt{6+a_n}=\sqrt{6+a}$ וגם וות $\lim a_{n+1}=a$ הקודמים הקודמים $a_n=a$ לכן . $\exists \lim a_n=a$ a=3 כלומר, כלומר, $a_1=3, a_2=-2$ הם $a^2-a-6=0$ הריבועית. כלומר המשוואה הריבועית. כלומר a=3

טענה

סדרה (a_n) מונוטונית עולה ולא חסומה מלמעלה מתכנסת ל $-\infty$. בדומה, סדרה (a_n) מונוטונית עולה ולא חסומה מלמעלה מתכנסת ל $-\infty$ מתכנסת ל

e-סדרה השואפת ל

מוזורה

. מונוטונית עולה מונוטונית $a_n = \left(1 + \frac{1}{n}\right)^n$ הסדרה

הוכחה

:עליה

$$\begin{split} a_n &= \left(1 + \frac{1}{n}\right)^n = \sum_{j=0}^n \binom{n}{j}^{n-j} \cdot \left(\frac{1}{n}\right)^j = \sum_{j=0}^n \frac{n!}{j!(n-j)!} \cdot \frac{1}{n^j} \\ &= 1 + 1 + \sum_{j=2}^n \frac{(n-j)!(n-j+1) \cdot \dots \cdot n}{j!(n-j)!} \cdot (n \cdot n \cdot \dots \cdot n) \\ &= 1 + 1 + \sum_{j=2}^n \frac{1}{j!} \left(\frac{n-j+1}{n} \cdot \frac{n-j+2}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n}\right) \\ &= 1 + 1 + \sum_{j=2}^n \frac{1}{j!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{j-1}{n}\right) \\ &\leq 1 + 1 + \sum_{j=2}^n \frac{1}{j!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{j-1}{n+1}\right) \\ &\leq 1 + 1 + \sum_{j=2}^{n+1} \frac{1}{j!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{j-1}{n+1}\right) = \left(1 + \frac{1}{n+1}\right)^{n+1} = a_{n+1} \end{split}$$

• חסימות:

$$\begin{split} 2 &= a_1 \leq a_n = \left(1 + \frac{1}{n}\right)^n \leq 1 + 1 + \sum_{j=2}^n \frac{1}{j!} = 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{2 \cdot 3 \cdot \ldots \cdot n} \\ &\leq 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 2} + \ldots + \frac{1}{\underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{predict}} = 1 + 1 + \underbrace{\frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^{n-1}\right)}_{2} = 2 + 1 - \underbrace{\frac{1}{2^{n-1}}}_{2n-1} \\ &= 3 - \frac{1}{2^{n-1}} < 3 \end{split}$$

מסקנה

. (2 $\leq e \leq$ 3) e- את הגבול מסמנים . פונה ($1+rac{1}{n}$) לכן הלמעלה, לכן מסמנים את עולה מסמנים את הסדרה .

הערה

.e=2.71828... בהמשך ניתן $.e=\lim\sum_{\substack{n\to\infty}}^n\frac{1}{k!}$ גם ממתקיים שמתקיים בהמשך בהמשף בהמשך בהמש

מוזוה (רחרגיל)

$$\lim_{n \to \infty} \left(1 + rac{1}{x_n}
ight)^{x_n} = e$$
 אזי, אזי, $x_n \to +\infty$ תהי $x_n \to +\infty$ אזי, $x_n \to +\infty$