Proximity Gaps 与 Correlated Agreement: FRI 安全性证明的核心

- Jade Xie <u>jade@secbit.io</u>
- Yu Guo yu.guo@secbit.io

本文主要受 <u>Proximity Gaps & Applications to Succinct Proofs</u> 视频中的启发,结合论文[BCIKS20] ,介绍 Proximity Gaps 的概念,以及与 Proximity Gaps 有着紧密联系的 Correlated Agreement 定理,其在 FRI 安全性证明中起了非常重要的作用。

在 FRI 协议中,对于一个多项式 $f:\mathcal{D}\to\mathbb{F}_q$,设 $f(x)=a_0+a_1x+a_2x^2+\ldots+a_{k-1}x^{k-1}$,其是一个次数小于 k 的多项式,将其在域 \mathcal{D} 上进行求值,其中 $|\mathcal{D}|=n$,则 $f\in\mathrm{RS}[\mathbb{F}_q,\mathcal{D},k]$ 。 Prover 想向 Verifier 证明 f(x) 的次数确实是小于 k 的。如果 $f\in\mathrm{RS}[\mathbb{F}_q,\mathcal{D},k]$,则 Verifier 输出 accept ,如果 f 距离对应的编码空间 $\mathrm{RS}[\mathbb{F}_q,\mathcal{D},k]$ 有 δ 远,则输出 reject 。 Verifier 能够获得的是关于一系列函数的 oracle ,FRI 协议想要实现的 就是 Verifier 查询 oracle 尽可能的少,并能区分出 f 属于上述哪一种情况。

不妨设 k-1 为偶数,那么

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{k-1} x^{k-1}$$

$$= (a_0 + a_2 x^2 + \dots + a_{k-1} x^{k-1}) + x(a_1 + a_3 x^2 + \dots + a_{k-2} x^{k-3})$$

$$:= g(x^2) + xh(x^2)$$
(1)

可以发现函数

$$g(x) = a_0 + a_2 x + \dots + a_{k-1} x^{\frac{k-1}{2}}$$

$$h(x) = a_1 + a_3 x + \dots + a_{k-2} x^{\frac{k-3}{2}}$$

$$(2)$$

开始 Prover 想向 Verifier 证明 f(x) 的次数小于 k , 现在可以分解成三个子问题:

- 1. 证明函数 g(x) 的次数小于 k/2 ,即 $g(x) \in \mathrm{RS}[\mathbb{F}_q, \mathcal{D}^{(1)}, k/2]$
- 2. 证明函数 h(x) 的次数小于 k/2 ,即 $h(x) \in \mathrm{RS}[\mathbb{F}_q, \mathcal{D}^{(1)}, k/2]$
- 3. 证明 $f(x) = g(x^2) + x \cdot h(x^2)$

其中 $|D^{(1)}|=n/2$ 。第三项是证明奇偶拆分是正确的。同样可以分别对 g(x) 和 h(x) 进行类似 f(x) 那样奇偶项的分解,分别分解成两个次数小于 k/4 的多项式,这样就要证明 4 个多项式的次数小于 k/4 ,直到最后分解到证明常数多项式。这个过程如下图所示,可以发现要证明的多项式在以 2 的指数的形式增长。在这个过程中,为了证明奇偶拆分是没有问题的,需要发送关于所有这些多项式的 oracle 给 Verifier ,可以想象发送的多项式实在是太多了,随着 k 的增加是爆炸性增长的。

既然我们的目的是证明多项式的次数小于某一个数,我们的想法是不希望对 f(x) 分解问题时像上面那样分叉,分成两个多项式,我们想要下一步证明一个多项式次数小于 k/2 ,这样能大大减少发送的多项式。怎么做到这一点呢?我们可以向 Verifer 要一个随机数 $r\in\mathbb{F}$,将 g(x) 和 h(x) 作线性组合,得到 $g(x)+r\cdot h(x)$,将 f(x) 的次数小于 k 的问题分解为:

1.
$$f^{(1)}(x) = g(x) + r \cdot h(x)$$
 的次数小于 $k/2$,即 $f^{(1)}(x) \in \mathrm{RS}[\mathbb{F}_q, \mathcal{D}^{(1)}, k/2]$

这时发送的多项式的图形就变成下图这样了,可以看到要发送的多项式的 oracle 大大减少了。

$$f(x) \longrightarrow f^{(1)}(x) \longrightarrow f^{(2)}(x) + r'h_2(x) \qquad g_3(x) + r''h_3(x)$$

$$f(x) \longrightarrow f^{(1)}(x) \longrightarrow f^{(2)}(x) \longrightarrow f^{(3)}(x) \longrightarrow f^{(3)}(x)$$

$$\langle k/2 \rangle \langle k/4 \rangle \langle k/8 \rangle$$

那么现在剩下一个问题是,这样做是否和原来的方式等价呢?当然如果 Prover 是诚实的,根据 RS 编码的线性性, $g(x),h(x)\in \mathrm{RS}[\mathbb{F}_q,\mathcal{D}^{(1)},k/2]$,那么其线性组合之后依然是在 $\mathrm{RS}[\mathbb{F}_q,\mathcal{D}^{(1)},k/2]$ 中的。但如果 Prover 作弊呢?例如 g(x) 距离编码空间 $\mathrm{RS}[\mathbb{F}_q,\mathcal{D}^{(1)},k/2]$ 有 δ 远,我们希望用随机数 r 进行线性组合之后的 $g(x)+r\cdot h(x)$ 还是有 δ 这么远,这样 Verifier 能够发现 Prover 作弊。我们不希望的是折叠之后的 $g(x)+r\cdot h(x)$ 距离对应的编码空间变得更近了。Proximity Gaps 告诉我们发生这样的概率是非常小的,和中彩票一样,这样我们就可以大胆的用随机数进行折叠了。

Proximity Gaps

上面我们考虑的是两个多项式折叠的情况,实际中我们会用到随机数一次进行多折或者对多个多项式进行 batch。这里我们不妨考虑一般的情况,假设有 m 个向量 (u_0,\ldots,u_{m-1}) ,对每一个 $u_i\in\mathbb{F}_q^{\mathcal{D}}$,可以看作是 $\mathcal{D}\to\mathbb{F}$ 上的多项式,也可以看作是 $|\mathcal{D}|=n$ 维的向量。对这 m 个向量进行线性组合,记作 $A=\operatorname{span}\{u_0,\ldots,u_{m-1}\}$,这里的 A 是 $\mathbb{F}^{\mathcal{D}}$ 中的 affine space ,记编码空间 $V:=\operatorname{RS}[\mathbb{F},\mathcal{D},k]$ 。

我们关心 A 中的元素与编码空间 V 之间的距离关系是怎样的。如下图所示,将编码空间 V 中的所有 code 表示为点,以这些点为圆心,以 δ 为半径画一个球体。A 形成的空间用一个二维平面表示,如果 A 中的元素距离 V 中的某些 code 之间的相对 Hamming 距离小于等于 δ ,就说明与图中的某些 Hamming 球之间有交集,将所有的这些交集并起来就形成了图中绿色的阴影区域。换句话说,对于阴影区域 $S\subset A$ 的每一个元素 a ,一定存在一个 $v\in V$,使得 $\Delta(a,v)\leq \delta$ 。

我们将 $\mathbb{F}^{\mathcal{D}}$ 中的所有的 affine space 组成一个集合 $\mathbf{C}_{\mathrm{Affine}}$,Proximity Gaps 结论[BCIKS20, Theorem 1.2]告诉对于任意一个 $A\in \mathbf{C}_{\mathrm{Affine}}$ (如 $A=\mathrm{span}\{u_0,\ldots,u_{m-1}\}$),都有要么 A 中的所有的元素都在阴影区域里面,要么 A 中只有很少的一部分元素在阴影区域中。不可能说 A 中一半的元素在阴影区域,而另一半的元素不在阴影区域中。用公式表达就是只能符合下面两种情况之一:

- 1. $\Pr_{a \in A}[\Delta(a, V) \leq \delta] \leq \epsilon$
- 2. $\Pr_{a \in A}[\Delta(a, V) \leq \delta] = 1$

我们称 δ 为 proximity 参数(proximity parameter), ϵ 为误差参数(error parameter),它是一个非常小的数。当 然关于 ϵ 有具体表达式的,其和 q,n,ρ,δ 是相关的,即 $\epsilon=\epsilon(q,n,\rho,\delta)$,其中 ρ 表示码率, $\rho=\frac{k}{n}$ 。

那么这里的阴影区域代表什么呢?这个结论与 FRI 的安全性分析之间有什么关系呢?下面针对诚实的 Prover 和作弊的 Prover 这两种情况来应用 Proximity Gaps 结论进行分析。

诚实的 Prover

如果是诚实的 Prover ,那么对 (u_0,\ldots,u_{m-1}) 中的每一个向量都有 $u_i\in V$ 。

$$A = \operatorname{span} \left(\begin{array}{c} u_0 \\ u_1 \end{array} \right) \begin{array}{c} 1 \\ r_1 \\ \vdots \\ r_{m-1} \end{array} \right)$$

由 RS 编码的线性性,我们知道线性组合之后一定还在编码空间 V 中,因此 $A\subset V$,此时 A 中所有的元素都在 V 中,那么 Verifier 进行随机线性组合之后,任意选取一点 $a\in A$,都能得到 $a\in V$,此时 Verifier 一定会接 受。这种情况对应 Proximity Gaps 中的第二种情况,取 $\delta=0$,此时

$$\Pr_{a \in A}[\Delta(a, V) = 0] = 1 \tag{3}$$

恶意的 Prover

如果 Prover 作弊,假设在 Prover 发送给 Verifier 的 m 个向量 $\vec{u}=(u_0,\ldots,u_{m-1})$ 中混入了一个向量距离 V 有 δ 远,即

$$\exists u_i^* \in \vec{u}, \quad \Delta(u_i^*, V) > \delta$$
 (4)

那么在 $A=\operatorname{span}\{u_0,u_1,\ldots,u_{m-1}\}$ 中,取 $a^*=u_i^*\in A$,肯定有

$$\exists a^* \in A, \quad \Delta(a^*, V) > \delta$$
 (5)

此时根据 Proximity Gaps 结论,已经有 A 中的一个元素不在阴影区域内了,因此排除 $\Pr_{a\in A}[\Delta(a,V)\leq\delta]=1$ 这种情况,只能是 $\Pr_{a\in A}[\Delta(a,V)\leq\delta]\leq\epsilon$ 。这也说明哪怕 m 个向量中只有一个向量距离对应的编码空间有 δ 那么远, A 中大部分元素都距离 V 有 δ 那么远。换句话说,随机从 A 中选取的一点 a ,其与 V 之间的距离能代表 m 个向量中距离 V 的最远距离。

现在 Verifier 就从 A 中随机选取一点 $a\in A$,来检查 $\Delta(a,V)$ 是否大于 δ ,会出现两种情况。一种是选到了图中的阴影区域,另一种是选到阴影区域之外。

情况 1: $\Delta(a,V) \leq \delta$ 。 此时 Verifier 选取的点 a 在阴影区域内。我们说此时 Prover 非常幸运,虽然 Prover 提供了的错误的 witness ,即距离编码空间 δ 远,但是随机线性组合之后距离编码空间变得有 δ 那么近了,此时 Prover 能成功骗过 Verifer 。出现这种情况对 Verifier 来说不是好事,好在 Proximity Gaps 结论告诉我们 $\Pr_{a \in A}[\Delta(a,V) \leq \delta] \leq \epsilon$,也就是随便选一点能进入阴影区域的概率是非常非常小的,Prover 需要像中彩票那 么幸运才行,也就是此时 Prover 能成功骗过 Verifier 的概率不会超过 ϵ 。

情况 2: $\Delta(a,V)>\delta$ 。 此时 Verifier 选取的点 a 在阴影区域外。Prover 还有可能作弊成功吗?还是有的,因为 Verifer 收到了关于 a 的 oracle ,但是不会去检查 a 中的所有值,只想查询某一些值来看是否在 V 中。如果 Verifier 只查询一次,由于 $\Delta(a,V)>\delta$,那么 a 中有大于 δ 比例的分量与 v 对应的分量不等,此时 Verifier 有大于 δ 的概率抓到 Prover 作弊,也就是说此时 Prover 能作弊成功的概率不超过 $1-\delta$ 。

如果 Verifier 重复查询 κ 次,此时 Prover 能作弊成功的概率不会超过 $(1-\delta)^{\kappa}$ 。

那么,作弊的 Prover 能够成功的概率是上述两种情况的联合概率,即不会超过

$$\epsilon + (1 - \delta)^{\kappa} \tag{6}$$

上面分析的思路其实就是一般 FRI 协议 soundness 分析的思路,论文中会将发生情况 1 叫做发生了一些"坏"的事件 ("bad" event) ,然后假设"坏"的事件没有发生的情况下,估计情况 2 的概率,最后再将两个结合起来进行分析。

我们知道 FRI 协议分为两个阶段,一个是 Commit 阶段,另一个是 Query 阶段。我们可以将上述两种情况与这两个阶段对应起来:

- 1. 上述情况 1 发生在 Commit 阶段, Verifier 会选取随机数让 Prover 对多项式进行折叠。
- 2. 上述情况 2 对应发生在 Query 阶段,此时 Verifier 会随机选取一些点进行 query 检查。

如果是 batched 版本的 FRI 协议,想证明多个多项式 $f_0^{(0)}, f_1^{(0)}, \dots, f_t^{(0)}$,都是小于 k 次的多项式,可以先用随机数 $\{x_1,\dots,x_t\}$ 进行聚合,得到

$$f^{(0)}(x) = f_0^{(0)} + \sum_{i=1}^{t} x_i \cdot f_i^{(0)}$$
(7)

然后再对 $f^{(0)}(x)$ 应用一般的 FRI 协议,证明其是小于 k 次的多项式。这里分析 soundness 也是对应上述情况 1,即可能存在由于随机数的选取导致 $f^{(0)}(x)$ 距离对应的 RS 编码空间变得不再有 δ 远。

δ 增加带来的影响

下面分析下 proximity 参数 δ 的增加会带来什么影响?我们已经分析出作弊的 Prover 能成功骗过 Verifier 的概率不超过

$$\epsilon + (1 - \delta)^{\kappa} \tag{8}$$

这个概率由两部分组成, δ 的增加会导致:

- 1. ϵ \uparrow 。从图形上来理解, δ 控制了每个 Hamming 球的半径,如果 δ 增大,那么 Hamming 球变大,其与 affine space A 之间的交集按理说就会更大,也就是阴影区域增大,这就意味着 ϵ 会变大。
 - o 对作弊的 Prover 来说是好事:)。因为此时 Prover 变得比之前更加幸运了,有更大的概率进入绿色的阴影区域,能成功骗过 Verifier 了。
 - o 自然,对 Verifier来说是坏事:(。
- 2. $(1-\delta)^{\kappa} \downarrow$ 。这个式子是直接和 δ 相关的, δ 增大,那么 $(1-\delta)^{\kappa}$ 会变小。
 - 对作弊的 Prover 来说是坏事:(。因为此时 Prover 作弊成功的概率会变小。
 - o 对 Verifier 来说是好事:)。 此时有更大的概率抓住 Prover 作弊。在达到相同的安全性要求下, Verifier 只需要更少的轮询次数就能达到要求了。

可以看到, δ 的增加使得 ϵ 变大, $(1-\delta)^{\kappa}$ 变小,在实际中, ϵ 是非常小的, $(1-\delta)^{\kappa}$ 在整个和式中所占比例更大,因此整体还是会变小的,这对于整个 FRI 协议来说,soundness 变小,也说明会更加安全。

上面是从 soundness 角度分析的,视频 <u>Proximity Gaps & Applications to Succinct Proofs</u> 中还提到一点, δ 的 增大会使得 Correlated Agreement 结论变得更弱, Correlated Agreement 是一个比 Proximity Gaps 更强的结论(到目前为止,还没有证明出它们等价)。下面就介绍下 Correlated Agreement 结论。

Correlated Agreement

前面提到的 affine space $A=\mathrm{span}\{u_0,u_1,\ldots,u_{m-1}\}$,为保持和 [BCIKS20, Theorem 1.6] 结论一致,在第一个向量 u_0 前不使用随机数,设 $A=u_0+\mathrm{span}\{u_1,\ldots,u_{m-1}\}$ 。

Correlated Agreement 定理 ([BCIKS20, Theorem 1.6]) 说的是如果 $\delta \in (0,1-\sqrt{
ho})$ 并且

$$\Pr_{a \in A}[\Delta(a, V) \le \delta] > \epsilon, \tag{9}$$

其中, ϵ 就是 Proximity Gaps 结论中给出的 ϵ ,那么存在 $\mathcal{D}'\subset\mathcal{D}$,以及 $v_0,\ldots,v_{m-1}\in V$ 使得

- 1. Density : $\frac{|\mathcal{D}'|}{|\mathcal{D}|} \geq 1 \delta$,
- 2. Agreement: 对任意的 $i \in \{0,\ldots,m-1\}$, 有 $u_i|_{\mathcal{D}'} = v_i|_{\mathcal{D}'}$ 。

意思是如果落入阴影区域的元素很多,占比比 Proximity Gaps 结论中的 ϵ 还大的话,那么在 V 中存在码字 v_0,\ldots,v_{m-1} ,会在区域 $\mathcal D$ 中存在一个占比很大(超过 $1-\delta$)的子集 $\mathcal D'$,在这里每个 u_i 都能与对应的 v_i 在 $\mathcal D'$ 上是一致的。根据 Proximity Gaps 的结论,A 中的元素分为以下两种情况:

- 1. $\Pr_{a \in A}[\Delta(a, V) \leq \delta] \leq \epsilon$
- 2. $\Pr_{a \in A}[\Delta(a, V) \leq \delta] = 1$

现在落入阴影区域的元素占比比 ϵ 还大,那么自然排除第一种情况,得出 A 中所有的元素都落在阴影区域中,即 $\Pr_{a\in A}[\Delta(a,V)\leq\delta]=1.$

而 Correlated Agreement 定理给出了更加具体的结论,说的是在折叠之前的元素 u_i 与在编码空间 V 中找到的码字 v_i 之间的关系。

例如,Prover 想证明的是一个多项式 $f\in\mathrm{RS}[\mathbb{F}_q,\mathcal{D}^{(0)},k]$,设 $\mathcal{D}^{(0)}=\{x_1,\ldots,x_n\}$,计算 $\{f(x_1),\ldots,f(x_n)\}$,Prover 就会将这些值的 oracle 发送给 Verifier ,实际中会采用 Merkle 树的方式来实现 oracle 。

将 f 通过拆分得到两个多项式 g(x) 与 h(x) 。诚实的情况下 $g,h\in\mathrm{RS}[\mathbb{F}_q,\mathcal{D}^{(1)},k/2]$,其中 $|\mathcal{D}^{(1)}|=|\mathcal{D}^{(0)}|/2=n/2$ 。

Correlated Agreement 结论告诉我们,对于 g(x) 与 h(x) 形成的 affine space $A=\{g+z\cdot h:z\in\mathbb{F}\}$,如果 A 中有超过 Proximity Gaps 结论中的 ϵ 的比例的元素都落入了"阴影区域",即满足 $\Delta(a,V)\geq\delta$,那么就存在如下图所示的 \mathcal{D}' ,以及 $\bar{g},\bar{h}\in\mathrm{RS}[\mathbb{F}_q,\mathcal{D}^{(1)},k/2]$ 。不妨设 $\mathcal{D}'=\{\alpha_1,\alpha_2,\ldots,\alpha_i\}$,那么根据结论 $|\mathcal{D}'|/|\mathcal{D}^{(1)}|\geq 1-\delta$,有指标 $i\geq (1-\delta)n/2$ 。在所有的 \mathcal{D}' 上,g 与 \bar{g} 一致,h 与 \bar{h} 一致,在图中用绿色表示,意思就是在这些 \mathcal{D}' 集合中的点上求值,它们的值是一样的。

回到 δ 增大的分析,可以看到随着 δ 的增大,Correlated Agreement 结论里的第一条 **Density** 中的 $1-\delta$ 就会变小,这使得结论中能确保的存在 V 中的 v_i 与 u_i 一致的子集 \mathcal{D}' 就变小了,使得得到的结论更弱了。

在 [BCIKS20] 论文中说到, Proximity Gap 定理([BCIKS20, 定理 1.2]) 就是通过 Correlated Agreement 定理 ([BCIKS20, 定理 1.6]) 推导得出的,但是 Proximity Gap 定理目前还不知道能否推出 Correlated Agreement 。如果 Proximity Gap 不能推出 Correlated Agreement 定理的话,说明 Correlated Agreement 定理是一个比 Proximity Gap 定理更强的结论。那如果能推出的话,说明这两个定理就等价了。

其实 Correlated Agreement 定理的版本很多,取不同的 A 就能得到不同的定理,A 可以是:

- 1. 线(lines): $A = \{u_0 + zu_1 : z \in \mathbb{F}\}$
- 2. 低次参数化曲线(low-degree parameterized curves): $ext{curve}(\mathbf{u}) = \left\{ u_z := \sum_{i=0}^{m-1} z^i \cdot u_i | z \in \mathbb{F}_q \right\}$
- 3. affine space: $u_0 + \text{span}\{u_1, \dots, u_{m-1}\}$

同时,关于 Correlated Agreement 定理的条件

$$\Pr_{a \in A}[\Delta(a, V) \le \delta] > \epsilon,\tag{10}$$

这里我们测量的是 a 与 V 之间的相对 Hamming 距离,我们还可以将这个测度变得更一般化,加上权重,给一个权重函数 $\mu:\mathcal{D}\to [0,1]$,定义两个向量 u 与 v 之间的相对 μ -agreement 为

$$agree_{\mu}(u, v) := \frac{1}{|\mathcal{D}|} \sum_{x: u(x) = v(x)} \mu(x)$$
 (11)

当取 $\mu \equiv 1$ 时,

$$\operatorname{agree}_{\mu}(u, v) = \frac{1}{|\mathcal{D}|} \sum_{x: u(x) = v(x)} \mu(x) = \frac{1}{|\mathcal{D}|} \sum_{x: u(x) = v(x)} 1 = 1 - \Delta(u, v)$$
(12)

这个测度的值就完全等于用 1 减去相对 Hamming 距离了。同样定义一个向量 u 与编码空间 V 之间的最大 agreement 为

$$\operatorname{agree}_{\mu}(u, V) := \max_{v \in V} \operatorname{agree}_{\mu}(u, v) \tag{13}$$

将定理中的条件变为:

$$\Pr_{a \in A}[\text{agree}_{\mu} \le \alpha] > \epsilon, \tag{14}$$

就会得到对应的 Weighted correlated agreement 定理(见[BCIKS20, Section 7])。可见 Correlated agreement 定理是非常灵活的。在论文[BCIKS20, Theorem 8.3]中关于 batched FRI 协议的 soundness 证明,就先定义了需要的权重函数 μ ,使用 Weighted Correlated Agreement 定理来证明,而不是用 Proximity Gap 定理来进行证明。且该定理一般都出现在反证法中,它能有力的帮我们找到编码空间的码字 v_i ,且满足定理结论中说到的性质,能够通过推导帮助我们找到矛盾。

Correlated Agreement 定理在 soundness 中的应用

这里简单描述下 Correlated Agreement 定理在 soundness 证明中的应用,没有那么严谨,实际的安全性分析会更加复杂。

前面说过 FRI 协议的 soundness 分析分为两个部分:

- 1. 在batch 阶段 或者 Commit 阶段,由于随机数的选择不当,使得原本距离编码空间很远的多项式,经过折叠 之后距离相应的编码空间变得更近了,也就是进入了"阴影区域"。
- 2. 在 Query 阶段,由于随机进行检查,导致没抓住 Prover 作弊。

Correlated Agreement 定理主要就是应用在第一部分中的概率分析,会先定义"坏"的事件 $E^{(i)}$: 折叠之前 $\Delta^*(f^{(i)},\mathrm{RS}^{(i)})>\delta$,将 $f^{(i)}$ 拆分为 $g^{(i+1)}$ 与 $h^{(i+1)}$,再用随机数 $r\in\mathbb{F}$ 进行折叠之后得到 $\mathrm{fold}_r(f^{(i)})$,发生了

$$\Delta(\text{fold}_r(f^{(i)}), RS^{(i+1)}) < \delta \tag{15}$$

这里用到了 Δ^* ,它的定义与 Hamming 距离有所区别,其联系了 FRI 的 Query 阶段的随机查询,这里就不详细展开了。假设发生一个"坏"的事件 $E^{(i)}$ 的概率不超过 ϵ ,即

$$\Pr[E^{(i)}] = \Pr_{r \in \mathbb{F}} [\Delta(\text{fold}_r(f^{(i)}), RS^{(i+1)}) \le \delta] \le \epsilon$$
(1)

如果 FRI 协议中折叠 d 次,那么发生一些"坏"的事件的概率不超过 $d \cdot \epsilon$,即

$$\bigcup_{i=0}^{d} \Pr[E^{(i)}] \le d \cdot \epsilon \tag{16}$$

这样就将第一部分的概率分析出来了,接着再假设没有这些"坏"的事件发生,来分析第二部分的概率,最终结合两部分概率就能得到 soundness 的结论。

现在剩下的一个关键问题是如何证明 (1) 式,即证明如果 $\Delta^*(f^{(i)}, \mathrm{RS}^{(i)}) > \delta$,有

$$\Pr_{r \in \mathbb{F}}[\Delta(\operatorname{fold}_r(f^{(i)}), \operatorname{RS}^{(i+1)}) \le \delta] \le \epsilon \tag{2}$$

思路就是用反证法,假设(2)式不成立,即

$$\Pr_{r \in \mathbb{F}}[\Delta(\text{fold}_r(f^{(i)}), \text{RS}^{(i+1)}) \le \delta] > \epsilon$$
(17)

这就满足了 Correlated Agreement 定理的条件了,说明此时存在 $\mathcal{D}'\subset\mathcal{D}^{(i+1)}$,以及 $\bar{g}^{(i+1)}, \bar{h}^{(i+1)}\in\mathrm{RS}^{(i+1)}$ 满足

$$\bar{g}^{(i+1)}|_{\mathcal{D}'} = g^{(i+1)}|_{\mathcal{D}'}, \quad \bar{h}^{(i+1)}|_{\mathcal{D}'} = h^{(i+1)}|_{\mathcal{D}'}$$
 (18)

并且 $|\mathcal{D}'| \geq (1-\delta)|\mathcal{D}^{(i+1)}|$ 。拿着这编码空间中的码字 $ar{g}^{(i+1)}$ 与 $ar{h}^{(i+1)}$,能得到一个多项式 $ar{f}^{(i)}$,

$$\bar{f}^{(i)}(x) = \bar{g}^{(i+1)}(x^2) + x \cdot \bar{h}^{(i+1)}(x^2) \tag{19}$$

由于编码的线性性,那么 $ar{f}^{(i)}$ 肯定也是一个码字,且 $ar{f}^{(i)} \in \mathrm{RS}^{(i)}$,同时有

$$\bar{f}^{(i)}|_{\mathcal{D}'} = f^{(i)}|_{\mathcal{D}'} \tag{20}$$

由于 $|\mathcal{D}'| \geq (1-\delta)|\mathcal{D}^{(i+1)}|$,我们可以得到 $\Delta^*(f^{(i)},\mathrm{RS}^{(i)}) \leq \Delta^*(f^{(i)},\bar{f}^{(i)}) \leq \delta$,这与假设矛盾,因此 (2) 式成立。

总结

Proximity gap 在 FRI 协议中起着至关重要的作用,它能让我们放心的用随机数对多项式进行折叠,这大大减少了 Prover 发送 oracle 的数量,同时也减少了 Verifier 查询的数量。此外,Proximity gap 和 Correlated Agreement 定理密切相关,并且在 FRI 的 soundness 分析中起到了关键作用。

References

- [BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed–Solomon Codes. In *Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science*, pages 900–909, 2020.
- 视频: Proximity Gaps & Applications to Succinct Proofs