EEE205 – Digital Electronics (II) Lecture 15-16

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Memory Devices

Memory Terminology

- □ **Volatile memory**: memory that requires electrical power to hold data.
- **Non-volatile memory**: store information without electrical power.
- Sequential acess memory (SAM): a particular word is found by sequencing through all address locations until the desired address is reached. The access time varies.
- □ Random access memory (RAM): the access time is the same for any address.

Memory Terminology

- **Read only memory (ROM)**: memory that can be written once (in factory) and can only be read afterwards.
- □ **Read/Write Memory (RWM)**: memory that can be read or written.
- Static memory: data will remain stored as long as power is applied.
- □ **Dynamic memory**: data will not remain stored, even with power applied, unless the data are periodically rewrittem into memory.

General Memory Operation

- □ Every memory system requires I/O lines to provide the following functions
 - Select memory address being accessed for R or W operation
 - Select either a R or W operation
 - Supply input data to be stored during a W
 - Hold output data from memory during a R
 - Enable or disable memory so that it will or will not respond to read/write commands

General Memory Operation

□ Address inputs

□ R/W input

☐ Memory enable

(a)

Data inputs

*	X		Addresses					
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1
1	1	1	1	0	0	0	1	0
1	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	0	0
0	0	0	0	0	0	1	0	1
					•		:	
1	1	0	1	1	1	1	0	1
1	1	0	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1

(b)

CPU Memory Connections

- □ Main memory is interfaced to the CPU through
 - address bus
 - data bus
 - control bus

CPU Memory Connections

- □ Write operation process:
 - CPU places the memory location address on the address bus
 - CPU places data to be stored on the data bus
 - CPU activates the control signal for the W operation
 - Memory ICs determine location for memory storage by decoding the binary address
 - Data on the data bus is transferred to selected memory location

CPU Memory Connections

- □ Read operation process:
 - CPU places address of memory location for data retrieval on the address bus
 - CPU activates the control signal lines for the R operation
 - Memory ICs determine location of data being retrieved
 - Memory IC places data from the memory location onto the data bus

Read Only memories

- □ Holds data that does not change, or changes only infrequently
- □ Nonvolatile
- □ Applications: embedded microcontroller program memory, bootstrap memory, Data tables, etc.

Read Only memories

- Address inputs
- □ Data outputs
- □ Control input(s)
- □ The read operation

ROM Architecture

- □ Four basic parts
 - Register array stores data programmed into the ROM
 - Address decoders determines which register will be enabled by row and column
 - Output buffers pass data to the external data outputs

ROM Architecture

ROM Timing

□ Typical timing for a ROM read operation:

Types of ROMs

- Mask programmed ROM (MROM)
 - Photographic "mask" establishes electrical interconnections
 - Economical only in high volume applications
- Programmable ROMs (PROMs)
 - Fusible links allow end users to program the device
 - Can only be programmed once
 - Economical for small volume applications
- □ Flash Memory

Allow rapid in-circuit reprogramming of individual bytes

Types of ROMs

- □ Erasable programmable ROM (EPROM)
 - Can be erased and reprogrammed by user
 - UV light is used to clear the device
 - Entire device is cleared
- Electrically erasable PROM (EEPROM)
 - Voltage is used to clear memory
 - Individual bytes can be erased

In-circuit, electrically erasable byte-by-byte

In-circuit, electrically erasable by sector or in bulk (all cells)

UV erasable in bulk; erased and reprogrammed out of circuit

Cannot be erased and reprogrammed

CD ROM

- Light is used to stores binary data
- Large quantities of data are economically stored

Device complexity and cost

Semiconductor RAM

- □ Random access memory all memory locations are equally accessible
- □ Used for temporary storage
- □ Fast read and write times are necessary
- □ RAM is volatile
- Many basic concepts that apply to ROM apply to RAM as well

RAM Architecture

- □ Consider RAM as a number of registers, each storing a single word and having a unique address
- □ Read operation
- □ Write operation
- □ Chip select
- □ Common I/O pins

RAM Architecture

Static RAM (SRAM)

- Stores data as long as power is applied
- □ Available in bipolar, MOS and BiCMOS variations
- □ Static RAM timing
- □ Read cycle
- □ Write cycle
- □ Actual SRAM chip the MCM6264C

Static RAM (SRAM)

Typical timing for static RAM

Dynamic RAM (DRAM)

- □ High capacity
- □ Low power requirement
- Moderate speed
- □ Small capacitors are used to store data
- Must be periodically refreshed
- □ Used for main internal memory in PCs or Macs

Dynamic RAM Structure and Operation

- □ An array of cells with unique row and column positions
- □ Analysis of read and write operations using the simplified representation below:

Dynamic RAM Structure and Operation

Dynamic RAM Structure and Operation

□ Address multiplexing – each address pin can accommodate two different address bits

^{*}MUX = 0 transmits CPU address A₈-A₁₅ to DRAM. MUX = 1 transmits A₀-A₇ to DRAM.

DRAM Read/Write Cycles

A read operation on a dynamic RAM. The R/W input (not shown) is assumed to be HIGH.

DRAM Read/Write Cycles

A write operation on a dynamic RAM.

DRAM Refreshing

- □ When a read operation is performed on a cell, all of the cells in the row will be refreshed
- □ Refresh control logic is used to make sure that each row is refreshed within the time limit
- □ Refresh modes
 - Burst
 - Distributed
- □ Most common method used is RAS only refresh
- □ The DRAM controller

Expanding Word Size and Capacity

- Expanding word size
- Combining RAMs
 - At right two 16X4
 RAMs are combined for a 16X8 module

Expanding Word Size and Capacity

- Expanding capacity
- Combining RAMs
 - At right two 16X4 chips are combined for a 32X4 memory

