NBA Prediction Modeling

Luke DiPerna August 2023

Project Goal

Create a model that can predict the outcome of NBA games with 68% accuracy.

Stakeholder

Stat-Ball.com, a sports news and entertainment website.

Business Use Case

The site plans to have fantasy drafts and competitions for predicting NBA game winners, so they want an in-house model for users to compete against.

Project Tasks

	0
	C
	به
	0
(
	_
	E E
	ਲ
(

- Web-scrape available statistics
- Create database to store the datasets

Data Processing

- Determine data aggregation methodPrepare data for modeling pipeline
- Select appropriate modeling methods
 Test models and analyze results
 - Modeling and Testing
- Test models and analyze results

Data Collection

Scope: Boxscore data from the past 10 regular seasons

Source: Basketball-Reference.com

Method: Web-scraper

Data Storage

SQLite Database:

- 3 tables: Game Info, Player Stats, Team
- Stats
- 11,979 NBA games
- 341,669 observations
- 46 features
- Kaggle link

Data Processing

Aggregation Method

Team Aggregation:

• Efficient

Player Aggregation:

Can react to roster changes

Responsiveness

- Robust vs. Relevant
- Seasonal carryover
- 10, 20, and 30 game averages

Feature Selection

- Four Factor data
- Full dataset
- Principal Component Analysis

Model Selection

- Logistic Regression (LR)
- K-Nearest Neighbors (KNN)
- Random Forest (RF)
- Gaussian Naive-Bayes (GNB)
- Support Vector (SVC)
- Neural Network (NN)
- Elo Rating System

Model Comparison

- Baseline Model:
- Accuracy: 57.2%
- Models behaved similarly:
 - o Accuracy: 59-62%
- Error Distribution
 Higher error in the first

half of a season

•

Feature Selection

Despite colinearity, high feature counts increased accuracy

Elo Rating System

Data Requirements:

- Team Elo ratings
- Away/Home Team Game Outcome

Assumptions:

- Head-to-head
- Winner: gains rating

Loser: loses rating

Zero-sum

Additional Adjustments:

- Margin of Victory
- Seasonal Reset

Performance:

• 65.3% accuracy

Elo Rating System

Data Requirements:

- Team Elo ratings
- Away/Home Team Game Outcome

Assumptions:

- Head-to-head
- Winner: gains rating
- Loser: loses rating
- Zero-sum

Additional Adjustments:

- Margin of Victory
- Seasonal Reset

Performance:

• 65.3% accuracy

Results

Top Performing Models:

- Elo System
 - GNBRFC
- 65.3% accuracy
- 63.5% accuracy 63.2% accuracy

Top Performing Data:20-game Four Factor dataset

Recommendation:

Elo Rating System

- Highest accuracy model (65.3%)
- Lowest data requirements
- Outperforms ML models

Next Steps:

	\Box
	0
•	
	ŏ
-	<u> </u>
	_
	\circ
(0
(5
(is Co
(ta Co
(ata Co
(Data Co

- Additional seasons
- Playoff data

Player Aggregation

- Responsive to roster changes
- Opportunity to create player-based metrics

Additional Adjustments

- Improved feature engineering/selection
- Ensemble model the incorporates Elo

Questions?

Luke DiPerna

<u>LinkedIn</u> <u>GitHub</u>