

ABNT-Associação Brasileira de Normas Técnicas

Sede: Rio de Janeiro Av. Treze de Maio, 13 - 28º andar CEP 20003-900 - Caixa Postal 1680 Rio de Janeiro - RJ Tel.: PABX (021) 210-3122 Telex: (021) 34333 ABNT - BR Endereço Telegráfico: NORMATÉCNICA

Copyright © 1993, ABNT-Associação Brasileira de Normas Técnicas Printed in Brazil/ Impresso no Brasil Todos os direitos reservados SET 1993

NBR 7229

Projeto, construção e operação de sistemas de tanques sépticos

Procedimento

Origem: Projeto NBR 7229/1992

CB-02 - Comitê Brasileiro de Construção Civil

CE-02:009.07 - Comissão de Estudo de Instalação Predial de Fossas Sépticas NBR 7229 - Project, construction and operation of septic tank systems - Procedure

Descriptor: Septic tank

Esta Norma substitui a NBR 7229/1982

Válida a partir de 01.11.1993

Incorpora as Erratas de JAN 1994 e nº 2 de SET 1997

Palavras-chave: Tanque séptico. Fossa séptica

15 páginas

SUMÁRIO

- 1 Objetivo
- 2 Documentos complementares
- 3 Definições
- 4 Condições gerais
- 5 Condições específicas
- 6 Inspeção

ANEXO A - Figuras

1 Objetivo

Esta Norma fixa as condições exigíveis para projeto, construção e operação de sistemas de tanques sépticos, incluindo tratamento e disposição de efluentes e lodo sedimentado. Tem por objetivo preservar a saúde pública e ambiental, a higiene, o conforto e a segurança dos habitantes de áreas servidas por estes sistemas.

2 Documentos complementares

Na aplicação desta Norma é necessário consultar:

NBR 5626 - Instalações prediais de água fria - Procedimento

NBR 8160 - Instalações prediais de esgoto sanitário - Procedimento

NBR 13969 - Tanques sépticos - Unidades de tratamento complementar e disposição final dos efluentes líquidos - Projeto, construção e operação

3 Definições

Para os efeitos desta Norma são adotadas as definições de 3.1 a 3.36.

3.1 Decantação

Processo em que, por gravidade, um líquido se separa dos sólidos que continha em suspensão.

3.2 Despejo industrial

Resíduo líquido de operação industrial.

3.3 Diâmetro nominal (DN)

Designação numérica de tamanho, que é comum a todos os componentes de um sistema de tubulação, exceto os componentes designados pelo diâmetro externo ou pelo tamanho da rosca.

3.4 Taxa de acumulação de lodo

Número de dias de acumulação de lodo fresco equivalente ao volume de lodo digerido a ser armazenado no tanque, considerando redução de volume de quatro vezes para o lodo digerido.

3.5 Digestão

Decomposição da matéria orgânica em substâncias progressivamente mais simples e estáveis.

3.6 Dispositivo de descarga de lodo

Instalação tubular para retirada, por pressão hidrostática, do conteúdo da zona de digestão.

3.7 Dispositivo de entrada

Dispositivo interno destinado a orientar a entrada do esgoto no tanque séptico, prevenindo sua saída em curtocircuito.

3.8 Dispositivo de saída

Dispositivo interno destinado a orientar a saída do efluente do tanque séptico, evitando curto-circuito, e a reter escuma.

3.9 Efluente

Parcela líquida que sai de qualquer unidade de tratamento.

3.10 Efluente do tanque séptico

Efluente ainda contaminado, originário do tanque séptico.

3.11 Escuma

Matéria graxa e sólidos em mistura com gases, que flutuam no líquido em tratamento.

3.12 Água residuária

Líquido que contém resíduo de atividade humana.

3.13 Esgoto afluente

Água residuária que chega ao tanque séptico pelo dispositivo de entrada.

3.14 Esgoto doméstico

Água residuária de atividade higiênica e/ou de limpeza.

3.15 Esgoto sanitário

Água residuária composta de esgoto doméstico, despejo industrial admissível a tratamento conjunto com esgoto doméstico e água de infiltração.

3.16 Filtro anaeróbio

Unidade destinada ao tratamento de esgoto, mediante afogamento do meio biológico filtrante.

3.17 Intervalo entre limpezas

Período de tempo entre duas operações consecutivas e necessárias de remoção do lodo do tanque séptico.

3.18 Lodo

Material acumulado na zona de digestão do tanque séptico, por sedimentação de partículas sólidas suspensas no esgoto.

3.19 Lodo desidratado

Lodo com baixo teor de umidade.

3.20 Lodo digerido

Lodo estabilizado por processo de digestão.

3.21 Lodo fresco

Lodo instável, em início de processo de digestão.

3.22 Período de detenção do esgoto

Tempo médio de permanência da parcela líquida do esgoto dentro da zona de decantação do tanque séptico.

3.23 Período de digestão

Tempo necessário à estabilização da parcela orgânica do lodo.

3.24 Profundidade total

Medida entre a face inferior da laje de fechamento e o nível da base do tanque.

3.25 Profundidade útil

Medida entre o nível mínimo de saída do efluente e o nível da base do tanque.

3.26 Sedimentação

Processo em que, por gravidade, sólidos em suspensão se separam do líquido que os continha.

3.27 Sistema de esgotamento sanitário

Conjunto de instalações que reúne coleta, tratamento e disposição das águas residuárias.

3.28 Sistema de tanque séptico

Conjunto de unidades destinadas ao tratamento e à disposição de esgotos, mediante utilização de tanque séptico e unidades complementares de tratamento e/ou disposição final de efluentes e lodo.

3.29 Sumidouro ou poço absorvente

Poço seco escavado no chão e não impermeabilizado, que orienta a infiltração de água residuária no solo.

3.30 Tanque séptico

Unidade cilíndrica ou prismática retangular de fluxo horizontal, para tratamento de esgotos por processos de sedimentação, flotação e digestão (ver Figura 1 do Anexo A).

3.31 Tanque séptico de câmara única

Unidade de apenas um compartimento, em cuja zona superior devem ocorrer processos de sedimentação e de flotação e digestão da escuma, prestando-se a zona inferior ao acúmulo e digestão do lodo sedimentado.

3.32 Tanque séptico de câmaras em série

Unidade com dois ou mais compartimentos contínuos, dispostos seqüencialmente no sentido do fluxo do líquido e interligados adequadamente, nos quais devem ocorrer, conjunta e decrescentemente, processos de flotação, sedimentação e digestão.

3.33 Vala de filtração

Sistema de tratamento biológico do efluente do tanque séptico, que consiste em um conjunto ordenado de caixa de distribuição, caixas de inspeção, tubulações perfuradas superiores, para distribuir o efluente sobre leito biológico filtrante, e tubulações perfuradas inferiores, para coletar o filtrado e encaminhá-lo à disposição final.

3.34 Vala de infiltração

Sistema de disposição do efluente do tanque séptico, que orienta sua infiltração no solo e consiste em um conjunto ordenado de caixa de distribuição, caixas de inspeção e tubulação perfurada assente sobre a camada-suporte de pedra britada.

3.35 Volume total

Volume útil acrescido de volume correspondente ao espaço destinado à circulação de gases no interior do tanque, acima do nível do líquido.

3.36 Volume útil

Espaço interno mínimo necessário ao correto funcionamento do tanque séptico, correspondente à somatória dos volumes destinados à digestão, decantação e armazenamento de escuma.

4 Condições gerais

4.1 Aplicação do sistema

- **4.1.1** O sistema de tanques sépticos aplica-se primordialmente ao tratamento de esgoto doméstico e, em casos plenamente justificados, ao esgoto sanitário.
- 4.1.2 O emprego de sistemas de tanque séptico para o tratamento de despejos de hospitais, clínicas, laboratórios de análises clínicas, postos de saúde e demais estabelecimentos prestadores de serviços de saúde deve ser previamente submetido à apreciação das autoridades sanitárias e ambiental competentes, para a fixação de eventuais exigências específicas relativas a pré e pós-tratamento.
- **4.1.3** Mesmo nos casos em que seja admitido o tratamento de esgoto sanitário com presença de substâncias tóxicas, nos termos das seções precedentes, cuidados especiais devem ser tomados na disposição do lodo.
- **4.1.4** O sistema deve ser dimensionado e implantado de forma a receber a totalidade dos despejos, com exceção dos despejos especificados em 4.3.2.

4.2 Indicações do sistema

O uso do sistema de tanque séptico somente é indicado para:

- a) área desprovida de rede pública coletora de esgoto;
- b) alternativa de tratamento de esgoto em áreas providas de rede coletora local;
- c) retenção prévia dos sólidos sedimentáveis, quando da utilização de rede coletora com diâmetro e/ou declividade reduzidos para transporte de efluente livre de sólidos sedimentáveis.

4.3 Restrições ao uso do sistema

- **4.3.1** O sistema em funcionamento deve preservar a qualidade das águas superficiais e subterrâneas, mediante estrita observância das restrições desta Norma, relativas à estanqueidade e distâncias.
- 4.3.2 É vedado o encaminhamento ao tanque séptico de:
 - a) águas pluviais;
 - b) despejos capazes de causar interferência negativa em qualquer fase do processo de tratamento ou a elevação excessiva da vazão do esgoto afluente, como os provenientes de piscinas e de lavagem de reservatórios de água.

4.4 Abrangência do projeto

- **4.4.1** Os sistemas de tanques sépticos devem ser projetados de forma completa, incluindo disposição final para efluente e lodo (ver Figura 2 do Anexo A), bem como, sempre que necessário, tratamento complementar destes conforme a NBR 13969.
- **4.4.2** Os projetos dos sistemas de tratamento complementar e disposição final de efluente e de lodo digerido devem atender ao disposto nas NBR 5626 e NBR 8160 e nas normas a elas relacionadas.

5 Condições específicas

5.1 Distâncias mínimas

Os tanques sépticos devem observar as seguintes distâncias horizontais mínimas:

- a) 1,50 m de construções, limites de terreno, sumidouros, valas de infiltração e ramal predial de água;
- b) 3,0 m de árvores e de qualquer ponto de rede pública de abastecimento de água;
- c) 15,0 m de poços freáticos e de corpos de água de qualquer natureza.

Nota: As distâncias mínimas são computadas a partir da face externa mais próxima aos elementos considerados.

5.2 Materiais

Os materiais empregados na execução dos tanques sépticos, tampões de fechamento e dispositivos internos devem atender às seguintes exigências:

- a) resistência mecânica adequada às solicitações a que cada componente seja submetido;
- b) resistência ao ataque químico de substâncias contidas no esgoto afluente ou geradas no processo de digestão.

5.3 Contribuição de despejos

No cálculo da contribuição de despejos, deve ser considerado o seguinte:

- a) número de pessoas a serem atendidas;
- b) 80% do consumo local de água. Em casos plenamente justificados, podem ser adotados percentuais diferentes de 80% e, na falta de dados locais relati-vos ao consumo, são adotadas as vazões e contri-buições constantes na Tabela 1;
- c) nos prédios em que haja, simultaneamente, ocupan-tes permanentes e temporários, a vazão total de contribuição resulta da soma das vazões corres-pondentes a cada tipo de ocupante.

5.4 Período de detenção dos despejos

Os tanques sépticos devem ser projetados para períodos mínimos de detenção, conforme a Tabela 2.

5.5 Contribuição de lodo fresco

A contribuição de lodo fresco é estimada conforme a Tabela 1. Para os casos de esgotos não-domésticos, de acordo com 4.1.2, a contribuição deve ser fixada a partir de observações de campo ou em laboratório, pelos indicado-res menos favoráveis.

5.6 Taxa de acumulação total de lodo

- **5.6.1** A taxa de acumulação total de lodo, em dias, é obtida em função de:
 - a) volumes de lodo digerido e em digestão, produzidos por cada usuário, em litros;

- b) faixas de temperatura ambiente (média do mês mais frio, em graus Celsius);
- c) intervalo entre limpezas, em anos.

5.6.2 As taxas resultantes são as da Tabela 3. Para acumulação em períodos superiores a cinco anos, devem ser estudadas as condições particulares de contribuição, acu-mulação e adensamento do lodo em cada caso.

5.7 Dimensionamento do tanque séptico

O volume útil total do tanque séptico deve ser calculado pela fórmula:

$$V = 1000 + N (CT + K Lf)$$

Onde:

V = volume útil, em litros

N = número de pessoas ou unidades de contribuição

C = contribuição de despejos, em litro/pessoa x dia ou em litro/unidade x dia (ver Tabela 1)

T = período de detenção, em dias (ver Tabela 2)

- K = taxa de acumulação de lodo digerido em dias, equivalente ao tempo de acumulação de lodo fresco (ver Tabela 3)
- Lf = contribuição de lodo fresco, em litro/pessoa x dia ou em litro/unidade x dia (ver Tabela 1)

Tabela 1 - Contribuição diária de esgoto (C) e de lodo fresco (Lf) por tipo de prédio e de ocupante

Unid.: L

Prédio	Unidade	Contribuição de esgotos (C) e lodo fresco (Lf)	
1. Ocupantes permanentes			
- residência			
padrão alto	pessoa	160	1
padrão médio	pessoa	130	1
padrão baixo	pessoa	100	1
- hotel (exceto lavanderia e cozinha)	pessoa	100	1
- alojamento provisório	pessoa	80	1
2. Ocupantes temporários			
- fábrica em geral	pessoa	70	0,30
- escritório	pessoa	50	0,20
- edifícios públicos ou comerciais	pessoa	50	0,20
- escolas (externatos) e locais de longa			
permanência	pessoa	50	0,20
- bares	pessoa	6	0,10
- restaurantes e similares	refeição	25	0,10
- cinemas, teatros e locais de curta			
permanência	lugar	2	0,02
- sanitários públicos ^(A)	bacia sanitária	480	4,0

⁽A) Apenas de acesso aberto ao público (estação rodoviária, ferroviária, logradouro público, estádio esportivo, etc.).

Tabela 2 - Período de detenção dos despejos, por faixa de contribuição diária

Contribuição diário (L)	Tempo de detenção		
Contribuição diária (L)	Dias	Horas	
Até 1500	1,00	24	
De 1501 a 3000	0,92	22	
De 3001 a 4500	0,83	20	
De 4501 a 6000	0,75	18	
De 6001 a 7500	0,67	16	
De 7501 a 9000	0,58	14	
Mais que 9000	0,50	12	

Tabela 3 - Taxa de acumulação total de lodo (K), em dias, por intervalo entre limpezas e temperatura do mês mais frio

Intervalo entre limpezas (anos)	Valores de K por faixa de temperatura ambiente (t), em °C		
	t≤10	10 ≤ t ≤ 20	t>20
1	94	65	57
2	134	105	97
3	174	145	137
4	214	185	177
5	254	225	217

5.8 Geometria dos tanques

Os tanques sépticos podem ser cilíndricos ou prismáticos retangulares. Os cilíndricos são empregados em situações onde se pretende minimizar a área útil em favor da profundidade; os prismáticos retangulares, nos casos em que sejam desejáveis maior área horizontal e menor profundidade.

5.9 Medidas internas mínimas (ver Figuras 3 e 4 do Anexo A)

As medidas internas dos tanques devem observar o que segue:

- a) profundidade útil: varia entre os valores mínimos e máximos recomendados na Tabela 4, de acordo com o volume útil obtido mediante a fórmula de 5.7;
- b) diâmetro interno mínimo: 1,10 m;
- c) largura interna mínima: 0,80 m;
- d) relação comprimento/largura (para tanques prismáticos retangulares): mínimo 2:1; máximo 4:1.

Tabela 4 - Profundidade útil mínima e máxima, por faixa de volume útil

Volume útil (m³)	Profundidade útil mínima (m)	Profundidade útil máxima (m)
Até 6,0	1,20	2,20
De 6,0 a 10,0	1,50	2,50
Mais que 10,0	1,80	2,80

5.10 Número de câmaras

O emprego de câmaras múltiplas em série é recomendado especialmente para os tanques de volumes pequeno a médio, servindo até 30 pessoas. Para observância de melhor desempenho quanto à qualidade dos efluentes, recomendam-se os seguintes números de câmaras:

- a) tanques cilíndricos: três câmaras em série;
- b) tanques prismáticos retangulares: duas câmaras em série.

5.11 Proporção entre as câmaras (ver Figura 4 do Anexo A)

Conforme sua conformação, cilíndrica ou prismática, os tanques têm as seguintes proporções entre câmaras:

- a) tanques cilíndricos: 2:1 em volume, da entrada para a saída;
- b) tanques prismáticos retangulares: 2:1 em volume, da entrada para a saída.

5.12 Intercomunicação entre as câmaras

As câmaras devem comunicar-se mediante aberturas com área equivalente a 5% da seção vertical útil do tanque no plano de separação entre elas. As seguintes relações de medida devem ser observadas para as aberturas (ver Figura 4 do Anexo A):

- a) distância vertical mínima da extremidade ou geratriz superior da abertura ao nível do líquido: 0,30 m;
- b) distância vertical mínima da extremidade inferior da abertura à soleira do tanque: metade da altura útil para tanques dimensionados para limpeza a intervalos de até três anos, e dois terços da altura útil para tanques dimensionados para limpeza a intervalos superiores a três anos;
- c) menor dimensão de cada abertura: 3 cm.

5.13 Dispositivos de entrada e saída

Os dispositivos de entrada e saída, constituídos por três sanitários ou septos, devem observar as seguintes relações de medidas (ver Figura 3 do Anexo A):

 a) dispositivo de entrada: parte emersa, pelo menos 5 cm acima da geratriz superior do tubo de entrada, e parte imersa aprofundada até 5 cm acima do nível correspondente à extremidade inferior do dispositivo de saída;

- b) dispositivo de saída: parte emersa nivelada, pela extremidade superior, ao dispositivo de entrada, e parte imersa medindo um terço da altura útil do tanque a partir da geratriz inferior do tubo de saída;
- c) as geratrizes inferiores dos tubos de entrada e saída são desniveladas em 5 cm;
- d) entre a extremidade superior dos dispositivos de entrada e saída e o plano inferior da laje de cobertura do tanque, deve ser preservada uma distância mínima de 5 cm.

5.14 Aberturas de inspeção (ver Figura 5 do Anexo A)

As aberturas de inspeção dos tanques sépticos devem ter número e disposição tais que permitam a remoção do lodo e da escuma acumulados, assim como a desobstrução dos dispositivos internos. As seguintes relações de distribuição e medidas devem ser observadas:

- a) todo tanque deve ter pelo menos uma abertura com a menor dimensão igual ou superior a 0,60 m, que permita acesso direto ao dispositivo de entrada do esgoto no tanque;
- b) o máximo raio de abrangência horizontal, admissível para efeito de limpeza, é de 1,50 m, a partir do qual nova abertura deve ser necessária;
- c) a menor dimensão das demais aberturas, que não a primeira, deve ser igual ou superior a 0,20 m;
- d) os tanques executados com lajes removíveis em segmentos não necessitam de aberturas de inspeção, desde que as peças removíveis que as substituam tenham área igual ou inferior a 0,50 m²;
- e) os tanques prismáticos retangulares de câmaras múltiplas devem ter pelo menos uma abertura por câmara;
- f) os tanques cilíndricos podem ter uma única abertura, independentemente do número de câmaras, desde que seja observado o raio de abrangência disposto em 5.14-b) e que a distância entre o nível do líquido e a face inferior do tampão de fechamento seja igual ou superior a 0,50 m.

5.15 Procedimentos construtivos

- **5.15.1** Os tanques sépticos e respectivos tampões devem ser resistentes a solicitações de cargas horizontais e verticais, em dimensões suficientes para garantir a estabilidade em face de:
 - a) cargas rodantes (veículos) e reaterro, no caso de os tanques estarem localizados em área pública, mesmo que não diretamente na via carroçável;
 - b sobrecargas aplicadas no dimensionamento das respectivas edificações, no caso de os tanques estarem localizados internamente aos lotes;
 - c)pressões horizontais de terra;
 - d) carga hidráulica devida à sobrelevação de lençol freático, em zonas suscetíveis a esse tipo de ocorrência.

5.15.2 Para tanques sépticos de uso doméstico, individuais e coletivos, na faixa de até, aproximadamente, 6,0 m³, os requisitos de estabilidade são, em geral, atendidos por construções em alvenaria de tijolo inteiro (espessura de 20 cm a 22 cm, fora revestimento) ou por concreto armado, moldado no local, com espessura de 8 cm a 10 cm. É admissível também o uso de outros materiais e componentes pré-fabricados, como anéis de concreto armado, componentes de poliéster armado com fibra de vidro e chapas metálicas revestidas. Nestes casos, a resistência especificada pode ser atingida mediante espessuras inferiores às indicadas para construção convencional.

- 5.15.3 A laje de fundo deve ser executada antes da construção das paredes, exceto nos casos plenamente justificados.
- **5.15.4** Os tanques devem ser estanques; os construídos em alvenaria devem ser revestidos, internamente, com material de desempenho equivalente à camada de argamassa de cimento e areia no traço 1:3 e espessura de 1,5 cm (ver Figura 6 do Anexo A).

5.16 Identificação

Os tanques devem conter uma placa de identificação com as seguintes informações, gravadas de forma indelével, em lugar visível (ver Figura 7 do Anexo A):

- a) identificação: nome do fabricante ou construtor e data de fabricação;
- b) tanque dimensionado conforme a NBR 7229;
- c) temperatura de referência: conforme o critério de dimensionamento adotado; indicação da faixa de temperatura ambiente. Para tanques dimensionados para condições mais rigorosas (T ≤ 10°C), indicar "todas";
- d) condições de utilização: tabela associando números de usuários e intervalos de limpeza permissíveis, conforme os exemplos da Figura 7 do Anexo A.

6 Inspeção

6.1 Verificação de estanqueidade dos tanques

- **6.1.1** Antes de entrar em funcionamento, o tanque séptico deve ser submetido ao ensaio de estanqueidade, realizado após ele ter sido saturado por no mínimo 24 h.
- **6.1.2** A estanqueidade é medida pela variação do nível de água, após preenchimento, até a altura da geratriz inferior do tubo de saída, decorridas 12 h. Se a variação for superior a 3% da altura útil, a estanqueidade é insuficiente, devendo-se proceder à correção de trincas, fissuras ou juntas. Após a correção, novo ensaio deve ser realizado.

6.2 Manutenção

6.2.1 Procedimento de limpeza dos tanques

6.2.1.1 O lodo e a escuma acumulados nos tanques devem ser removidos a intervalos equivalentes ao período de limpeza do projeto, conforme a Tabela 3 (ver 5.6.2).

- **6.2.1.2** O intervalo pode ser encurtado ou alongado quanto aos parâmetros de projeto, sempre que se verificarem alterações nas vazões efetivas de trabalho com relação às estimadas.
- **6.2.1.3** Quando da remoção do lodo digerido, aproximadamente 10% de seu volume devem ser deixados no interior do tanque.
- **6.2.1.4** A remoção periódica de lodo e escuma deve ser feita por profissionais especializados que disponham de equipamentos adequados, para garantir o não-contato direto entre pessoas e lodo. É obrigatório o uso de botas e luvas de borracha. Em caso de remoção manual, é obrigatório o uso de máscara adequada de proteção.
- **6.2.1.5** No caso de tanques utilizados para o tratamento de esgotos não exclusivamente domésticos, como em estabelecimentos de saúde e hotéis, é obrigatória a remoção por equipamento mecânico de sucção e caminhão-tanque.
- **6.2.1.6** Anteriormente a qualquer operação que venha a ser realizada no interior dos tanques, as tampas devem ser mantidas abertas por tempo suficiente à remoção de gases tóxicos ou explosivos (mínimo: 5 min).

6.2.2 Acesso à limpeza dos tanques

- **6.2.2.1** Os tampões de fechamento dos tanques devem ser diretamente acessíveis para manutenção.
- **6.2.2.2** O eventual revestimento de piso executado na área dos tanques sépticos não pode impedir a abertura das tampas. O recobrimento com azulejos, cacos de cerâmica ou

outros materiais de revestimento pode ser executado sobre as tampas, desde que sejam preservadas as juntas entre estas e o restante do piso.

6.2.3 Disposição de lodo e escuma

- **6.2.3.1** O lodo e a escuma removidos dos tanques sépticos em nenhuma hipótese podem ser lançados em corpos de água ou galerias de águas pluviais.
- **6.2.3.2** O lançamento do lodo digerido, em estações de tratamento de esgotos ou em pontos determinados da rede coletora de esgotos, é sujeito à aprovação e regulamentação por parte do órgão responsável pelo esgotamento sanitário na área considerada.
- **6.2.3.3** No caso de tanques sépticos para atendimento a comunidades isoladas, deve ser prevista a implantação de leitos de secagem, projetados de acordo com a normalização específica. Estes devem estar localizados em cota adequada à disposição final ou ao retorno dos efluentes líquidos para os tanques.
- **6.2.3.4** O lodo seco pode ser disposto em aterro sanitário, usina de compostagem ou campo agrícola, sendo que, neste último, só quando ele não é voltado ao cultivo de hortaliças, frutas rasteiras e legumes consumidos crus.
- **6.2.3.5** Quando a comunidade não dispuser de rede coletora de esgoto, os órgãos responsáveis pelo meio ambiente, saúde e saneamento básico devem ser consultados sobre o que fazer para os lodos coletados dos tanques sépticos poderem ser tratados, desidratados e dispostos sem prejuízos à saúde e ao meio ambiente.

8	NBR 7229/1993

ANEXO A - Figuras

Figura 1 - Funcionamento geral de um tanque séptico

Nota: Pode haver combinação de alternativas.

Figura 2 - Sistema de tanque séptico - Esquema geral

 $a \ge 5 \text{ cm}$

b≥5 cm

c = 1/3 h

h = profundidade útil

H = altura interna total

L = comprimento interno total

W = largura interna total (≥ 80 cm)

Relação L/W: entre 2:1 e 4:1

Figura 3 - Detalhes e dimensões de um tanque séptico de câmara única

2/3 h para tanques com intervalo de limpeza acima de cinco anos

Figura 4 - Dimensões dos tanques sépticos

a-1 Câmara única

a-2 Câmaras múltiplas

Figura 5-(a) - Tanque com única abertura

b-1 Câmara única

Prismática

b-2 Câmaras múltiplas

Figura 5-(b) - Tanque com múltipla abertura

Figura 5 - Disposição das aberturas

Procedimento inaceitável (vazamentos inevitáveis)

Procedimento aceitável (vazamentos controlados se o revestimento interno for de boa qualidade)

Procedimento desejável (vazamentos pela junta quase impossíveis)

Nota: a = dimensão de acordo com dimensionamento para não-flutuação devido ao empuxo.

Figura 6 - Junção laje de fundo/paredes laterais

FABRICANTE/CONSTRUTOR:				
ENDEREÇO: Rua		Nº	Cidade	UF
VOLUME TOTAL:	m³	Volume útil	m³	
CAPACIDADE NORMAL:		Pessoas/un.	Vazão	m³/d
TEMPERATURA AMBIENTE:	°C a	°C	Data de fabricação:	
	RECOMI	ENDA-SE A LIMPEZA CONFORME	TABELA ABAIXO	
Pessoa/un.				
Intervalo (anos)				
	anativida automa a NDD 700	20,4002		·
- Este tanque séptico foi dimensionado e	construido conforme a NBR 722	29/1993.		

Figura 7 - Placa de identificação

7