Homework 5 (計算方法設計, Design and Analysis of Algorithms)

註: 請在截止日期以前透過 eeclass 線上繳交作業,請注意不接受遲交。Please submit your assignment online through eeclass before the due date. Note that late submissions will not be accepted.

Due date: June 4, 2025

- 1. (25%) Let S be a (not necessarily sorted) sequence of n different integers. An integer x in S is called as approximate median of S if $|\{y \in S: y < x\}| \ge \frac{n}{4}$ and $|\{y \in S: y > x\}| \ge \frac{n}{4}$. Design an O(n) time algorithm to find all the approximate medians of S.
- 2. (25%) For the following profit matrix, find an optimal allocation of resources to maximize the total profit for these four projects and four resources by using the dynamic programming method.

Resource Project	1	2	3	4
1	3	7	10	12
2	1	2	6	9
3	2	4	8	9
4	4	2	7	10

- 3. (25%) Find an optimal binary tree for a_1, a_2, \dots, a_6 by using the dynamic programming method, if the identifiers a_1, a_2, \dots, a_6 have probabilities 0.3, 0.2, 0.05, 0.2, 0.1, 0.15 respectively and all other identifiers have zero probability.
- **4.** (25%) Suppose that there are n jobs, labeled as 1,2, ..., n, in which each job i has a start time s_i , a finish time f_i and a positive weight w_i , where $1 \le i \le n$. Moreover, two jobs i and j are said to be compatible if their time intervals $[s_i, f_i]$ and $[s_j, f_j]$ do not overlap (i.e., $f_i \le s_j$ or $f_j \le s_i$). Please use the dynamic programming technique to design a polynomial-time algorithm for finding a maximum-weight subset of mutually compatible jobs (15%). Please also analyze the time complexity of your algorithm in big-O notation (10%).