I. Linear Algebra

I.11. Matrix Norms

Lecture based on

 $\textbf{https://github.com/gwthomas/math4ml} \; (\mathsf{Garrett} \; \mathsf{Thomas}, \; 2018)$

https://mml-book.github.io/ (Deisenroth et al., 2020, Mathematics for Machine Learning)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Matrix Norms

Let $\mathbb{R}^{m \times n}$ denote the **vector space** of all matrices of size $m \times n$ (with m rows and n columns) with entries in \mathbb{R} .

A matrix norm is a norm on the vector space $\mathbb{R}^{m \times n}$.

Thus, the matrix norm is a function $\|\cdot\|:\mathbb{R}^{m\times n}\to\mathbb{R}$ that must satisfy the following properties:

For all scalars α in $\mathbb R$ and for all matrices $\mathbf A$ and $\mathbf B$ in $\mathbb R^{m\times n}$,

- $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$ (being "absolutely homogeneous")
- $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$ (being "sub-additive" or satisfying the "triangle inequality")
- $\|\mathbf{A}\| \ge 0$ (being "positive-valued")
- $|\mathbf{A}| = 0$ if and only if $\mathbf{A} = \mathbf{0}_{m,n}$ (being "definite")

Additionally, some (not all) matrix norms satisfy the following condition:

• $\|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \|\mathbf{B}\|$ for all matrices $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{B} \in \mathbb{R}^{m \times p}$.

2

If V and W are vector spaces, then the set of linear maps $T:V\to W$ forms another vector space.

The norms $\|\cdot\|_W$ on W and $\|\cdot\|_V$ on V induce the **operator norm**

$$||T||_{\text{op}} = \max_{\substack{\mathbf{x} \in V \\ \mathbf{x} \neq 0}} \frac{||T(\mathbf{x})||_W}{||\mathbf{x}||_V}$$

If $A = \mathbb{R}^{m \times n}$ is a linear map from \mathbb{R}^n to \mathbb{R}^m , then the *p*-norm defines the **matrix** *p*-**norm**:

$$\|\mathbf{A}\|_p = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}$$

For the special cases $p = 1, 2, \infty$, we have

•
$$\|\mathbf{A}\|_1 = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_1}{\|\mathbf{x}\|_1} = \max_{1 \le j \le n} \sum_{i=1}^m |A_{ij}|$$

•
$$\|\mathbf{A}\|_{\infty} = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |A_{ij}|$$

•
$$\|\mathbf{A}\|_2 = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \sigma_1(\mathbf{A})$$

These norms have identical values for the Identity matrix

$$\|\mathbf{I}\|_1 = 1 \quad \|\mathbf{I}\|_{\infty} = 1 \quad \|\mathbf{I}\|_2 = 1$$

By definition, $\|\mathbf{A}\mathbf{x}\|_p \leq \|\mathbf{A}\|_p \|\mathbf{x}\|_p$.

Proposition (The matrix p-norm is submultiplicative.)

$$\|\mathbf{A}\mathbf{B}\|_p \leq \|\mathbf{A}\|_p \|\mathbf{B}\|_p$$

A matrix norm is unitary invariant, if

$$\|\mathbf{Q}_1 \mathbf{A} \mathbf{Q}_2^{\mathsf{T}}\| = \|\mathbf{A}\|,$$

where \mathbf{Q}_1 and \mathbf{Q}_2 are ornogonal matrices.

- Spectral norm $\|\mathbf{A}\|_2 = \sigma_1$
- Frobenius norm $\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |A_{ij}|^2} = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$
- Nuclear norm $\|\mathbf{A}\|_N = \sigma_1 + \cdots + \sigma_r$

These norms have different values for the Identity matrix

$$\|\mathbf{I}\|_2 = 1 \quad \|\mathbf{I}\|_F = \sqrt{n} \quad \|\mathbf{I}\|_N = n$$

Also for an orthogonal matrix Q

$$\|\mathbf{Q}\|_2 = 1 \quad \|\mathbf{Q}\|_F = \sqrt{n} \quad \|\mathbf{Q}\|_N = n$$

Theorem (Eckart-Young Theorem)

Let $\parallel\dot\parallel$ be unitary invariant and

$$\mathbf{A}_k = \mathbf{U}_{\mathbf{k}} \mathbf{\Sigma}_{\mathbf{k}} \mathbf{V}_{\mathbf{k}}^{\top} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\top} + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^{\top}$$

then, $\|\mathbf{A} - \mathbf{A}_k\| \le \|\mathbf{A} - \mathbf{B}\|$ for any $\mathbf{B} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\mathbf{B}) \le k$.