Econometrics A (Econ 210)

Problem Set 1

Mohsen Mirtaher - Fall 2015

Due: Oct 8, 2015; TA Session

- 1. Suppose D_i and Z_i are two binary random variables where $\Pr[D_i = 1] = p$ and $\Pr[Z_i = 1] = q$. Y_i is a continuous random variable with $\mathbb{E}[Y_i] = 0$. Show the following propositions
 - (a) $\mathbb{E}[D] = p$.
 - (b) Var[D] = p(1-p).
 - (c) $\frac{\operatorname{Cov}[D,Z]}{\operatorname{Var}[D]} = \mathbb{E}\left[Z|D=1\right] \mathbb{E}\left[Z|D=0\right].$
 - (d) Assume $\mathbb{E}[D] = 0$. Show that if $Y \perp \!\!\! \perp D$ and $Y \perp \!\!\! \perp Z$ then $\mathbb{E}[DZY] = 0$.
 - (e) Define $W=3^D-1$. Derive $\mathbb{E}\left[W\right],\,\mathbb{E}\left[W^2\right],$ and Var[W].
- 2. Random variable X is distributed with a distribution with density $f(X = x) = e^{-x}$. Y and Z are two other random variables but with the same distribution as X. X, Y, and Z are non-negative and independent of each other.
 - (a) Find $\mathbb{E}[X]$ (Hint: use the fact that $\int_0^\infty x e^{-x} dx = 1$).
 - (b) Find Var[X] (Hint: use the fact that $\int_0^\infty x^2 e^{-x} dx = 2$).
 - (c) Is that true that $\mathbb{E}[X] = \mathbb{E}[Y] = \mathbb{E}[Z]$?
 - (d) What is the probability that the smallest random variable, min $\{X, Y, Z\}$, to be greater than or equal to 1?

- (e) What is the probability that the largest random variable, $\max\{X,Y,Z\}$, to be greater than or equal to the sum of the other two random variables?
- 3. Consider random vector V=(X,Y)' with the joint density $f_{X,Y}(X=x,Y=y)=\frac{1}{8}(6-x-y)$ where $0 \le x \le 2$ and $2 \le y \le 4$. Find the following conditional moments,
 - (a) $\mathbb{E}[Y|X=x]$.
 - (b) $\mathbb{E}[Y^2|X=x]$.
 - (c) Var[Y|X=x].
- 4. Prove the following statements:
 - (a) $\mathbb{E}\left[\mathbb{E}\left[Y|X,Z\right]|X\right] = \mathbb{E}\left[Y|X\right]$.
 - (b) Prove that if X and Y are independent of each other then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.
 - (c) Prove that if $\mathbb{E}\left[Y|X\right] = \mathbb{E}\left[Y\right]$ then $\mathrm{Cov}[X,Y] = 0$.
 - (d) Is that true that Cov[X, Y] = 0 implies that X and Y are independent?
- 5. Let U, V, and W be independent, identically distributed random (i.i.d.) variables following a standard normal distribution, i.e. N(0,1). Let

$$X = 2U + V + 1$$

$$Y = -U + 3W + 3$$

- (a) Is $X \perp \!\!\!\perp Y$? Why or why not?
- (b) Calculate analytically:
 - i. $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
 - ii. Var[X] and Var[Y].
 - iii. Cov[X, Y] and Corr[X, Y].

iv.
$$\mathbb{E}[X+Y]$$
 and $\text{Var}[X+Y]$ (and confirm that $\text{Var}[X+Y] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X,Y]$).

v.
$$Cov[X + Y, Y]$$
 and $Corr[X + Y, Y]$.

(c) In R, set the random number generator seed to 210, then generate 40 values each for U, V, and W. Then, generate X and Y using those values. Show a scatterplot of X versus Y. Calculate empirically:

vi.
$$\widehat{\mathbb{E}[X]}$$
 and $\widehat{\mathbb{E}[Y]}$.

vii.
$$\widehat{\operatorname{Var}[X]}$$
 and $\widehat{\operatorname{Var}[Y]}$.

viii.
$$\widehat{\text{Cov}[X,Y]}$$
 and $\widehat{\text{Corr}[X,Y]}$.

ix.
$$\mathbb{E}[\widehat{X+Y}]$$
 and $\widehat{\text{Var}[X+Y]}$.

x.
$$\widehat{\text{Cov}[X+Y,Y]}$$
 and $\widehat{\text{Corr}[X+Y,Y]}$.

Comment on your "small sample" results. What happens as the number of observations goes up?

6. Consider the following discrete joint distribution:

$\downarrow X \ Y \rightarrow$	1	2	3	4
0	0.1	0.05	0.025	0.025
1	0.07	0.13	0.04	0.06
2	0.1	0.1	0.25	0.05

- (a) Find the first two moments the mean and variance of the marginal distributions of X and Y. Check that the identity $\operatorname{Var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ holds.
- (b) Confirm that $\mathbb{E}[XY] = 3.19$. Use this in combination with your calculations in (a) above to find Cov[X, Y].
- (c) Find the conditional probability mass function P(Y = y | X = x) and use it to calculate the conditional mean function $\mathbb{E}[Y | X = x]$ for each possible realization of X.

(d) Calculate $\mathbb{E}\left[\mathbb{E}\left[Y|X=x\right]\right]$. With respect to which distribution is the outer expectation taken? The inner expectation? What do you notice about your answer as compared to the means you calculated in (a) above?