Monopsony Power and Creative Destruction

GEA Christmas meeting, 20th December 2024

Isabella Maassen, Filip Mellgren, Jonas Overhage

IIES - Institute for International Economic Studies, Stockholm University

Introduction

Research Question

- Research Question:
 - How does labor market power affect output and growth?
- Key trade-off:
 - ullet Monopsony o markdown distribution
 - Static misallocation (lower current output)
 - Innovation incentives (higher output growth)

Motivation

- Productivity growth in developed countries:
 - Slowdown over last decades broadly
- One approach in existing research: product market power
 - Aghion et al., 2023, De Ridder, 2022
- We incorporate labor market power: monopsony
 - Studied e.g. by Berger et al., 2022, Bachmann et al., 2022
 - Focus in existing literature: static misallocation
 - This paper: incorporate long-run growth implications

Overview

- Framework builds on existing firm dynamics & growth models:
 - Klette and Kortum, 2004, Aghion et al., 2023
 - Growth model of creative destruction and product market power
- We expand this with labor market power:
 - Discrete choice workplaces & home production, Card et al., 2018
- Note on monopsony:
 - 'New classical monopsony' as in Card et al., 2018, Manning, 2021
 - Wage setting power: upward sloping labor supply curve facing firm

Model Setup

Workers

- Mass L workers, no savings
- ullet Choose to work (g=e) at firm $j\in\{1,...,\mathcal{J}\}$, or at home (g=u)
- Utility of worker o, choosing to work at firm j:

$$u_{oj} = \beta \log C_j + \xi_{oe} + (1 - \sigma)\varepsilon_{oj}$$
. $\xi_{og}, \varepsilon_{oj} \sim EVT1$

From logit-choice then follows labor supply given net wage:

$$L_j(W_j) = zW_j^{\frac{\beta}{1-\sigma}},$$
 Details

- where z includes the option value of all wages and the outside option
- The labor supply elasticity is:

$$\frac{\partial \log L_j}{\partial \log W_j} = \frac{\beta}{1 - \sigma}$$

Goods Production

- Final goods production: $Y = \exp \int_0^1 \ln(q_i y_i) di$.
 - q_i is quality level of good i
- Intermediate good demand: $p_i y_i = PY$, normalize $P \equiv 1$.
- Competition: Details
 - Bertrand competition in product lines, quality breaks ties.
 - Quality leader in line i is j(i), follower j'(i)
 - Leader's quality is one γ -step above follower's: $q_{j(i)} = \gamma q_{j'(i)}$
 - Nash equilibrium: Leader fulfills line demand, $p_i = \gamma m c_{j'(i)}$.
- Intermediate goods production: $y_{i,j(i)} = s_{j(i)}l_{i,j(i)}$.
- **Key link:** $mc_{j'(i)}$ depends on firm size due to monopsony! Details
- **Firm types:** Top 10% with productivity s_h , remaining with s_l

Dynamic Block

Dynamic decision: Research effort

- Given line-level solutions:
 - $n_{i,t}$: number of product lines where firm j is quality leader
 - This is firms' only state variable, L_{jt} & W_{jt} follow from it
 - Markups, markdowns function of firm size
 Details
- The dynamic problem is how much to invest in research:
 - Stock of lines develops according to: $n_{j,t+1} = (1 X_t)n_{j,t} + x_{jt}$
 - Aggregate rate of creative destruction: $X_t = \sum_j x_{jt}$
 - Cost of drawing x_t new lines: $R(x_{jt}) = \psi Y x_{jt}^{\Phi}$.

Firm Problem on BGP

- Focus on a balanced growth path
 - Constant \mathcal{J}, X , constant Top 10% concentration h
 - Quality growth $Q_{t+1}/Q_t = g = \gamma^X$
 - Y_t, mc_{jt}, W_{jt} all grow at g & z at $g_z = g^{-\frac{\beta}{1-\sigma}}$
- Restate firm problem, relative to output Y:

$$v_j(n_j) = \max_{n'_j} n_j - \frac{W_j}{Y} L_j$$
$$-\psi(n'_j - (1 - X)n_j)^{\Phi} + \rho v(n'_j),$$

• W_j , L_j are functions of n_j , which is constant on BGP

Output Decomposition

• Define $S \equiv \int_0^1 s_{j(i)} di$, $L \equiv \sum_j L_j$

$$Y = \exp \int_0^1 \ln(q_i y_i) di = Q \exp \int_0^1 \ln(s_{j(i)}) di \exp \int_0^1 \ln(l_{j(i)}) di$$

$$= Q \cdot S \cdot M \cdot L \qquad \text{Details}$$

- Where $M = \frac{\exp \int_0^1 \ln \mu_{j(i)} di}{\int_0^1 \mu_{j(i)} di}$ is misallocation from price dispersion
- Decomposition of present value, accounting for g:

$$PV\left\{\frac{Y}{\mathcal{L}}\right\}_{t=0}^{\infty} pprox \underbrace{\frac{Q_0}{1-\rho(1+g)}\cdot S\cdot M\cdot L}_{TFP}$$

- Tension between static- and dynamic efficiency. Higher h:
 - Increases S, but also R&D spending $Y \sum_i \psi(Xn_i)^{\phi}$ for given X

Quantitative Results

Model Fit

• Match U.S. economy 1954 – 2007: Details

Definition	Data	Model
Average Markup	1.24	1.28
Growth rate	1.078%	1.077%
R&D spending (% of GDP)	2.45%	6.33%
Share of Output, top 10% firms	75.59%	75.74%
Labor Market Participation	83.4%	83.41%
Profit Share	5.45%	5.45%
Top 10% wage premium	21%	25.4%

• Good overall match, although R&D spending too high

Static Results

- Concentration increases as σ increases (labor elasticity increases)
- Production (by large firms) increases

Dynamic Results

- R&D by large firms increases, but not in line with Output increases
- Small firm R&D declines
- More concentrated R&D also less efficient
- Strong decline in productivity growth

Present Value Decomposition

- Main channels: Quality growth versus Static TFPQ
- Here: PV maximized for high concentration low growth scenario!
- Preference change, so no welfare analysis here

Conclusion

- Contribution:
 - Importance of labor supply elasticities for output, wages and growth
 - Key result: Static-dynamic tradeoff
- Omitted in this presentation:
 - Detailed results w.r.t markups, markdowns and wages
 - Policy exercise: Income taxes
 - Amenity-heterogeneity (WIP)

Extension: Taxes

Government, Taxes

• Tax function as in Borella et al., 2022, but here paid by firm:

$$T\left(\frac{W_j}{\bar{W}}\right) = \left(\frac{1}{1-\lambda}\frac{W_j^\tau}{\bar{W}^\tau}\right)^{\frac{1}{1-\tau}} - 1$$

- $\bullet~\lambda$ governs average tax level, τ progressivity
- $\bullet~1-\tau$ is the elasticity of post tax income w.r.t pre tax income
- Reference wage: $\bar{W} = \sum_j L_j W_j / \sum_j L_j$
- The budget balances, government spending *G* per household:

$$\mathcal{L}G = \sum_{j} T(W_{j}/\bar{W})W_{j}L_{j}$$

Gross Wage Labor Supply Elasticity

- ullet Gross wage: $W^G=(1+T(W_j/ar{W}))W_j$
- Labor supply elasticity wrt the gross wage W^G :

$$\frac{\partial \log(L_j)}{\partial \log(W^G)} = \underbrace{\frac{\beta}{1-\sigma}}_{preferences} \underbrace{(1-\tau)}_{policy} \tag{1}$$

- This is the elasticity relevant to the firm
- ullet Can be directly affected by changing au

Income Taxation

ullet Tax level λ and progressivity au from Borella et al., 2022

- Macnamara et al., 2024 suggest tax cuts should increase TFP growth
- TFP growth in data not high(er) post tax cuts, according to model:
 - $\lambda \downarrow$ has no effect on h, slightly increases R&D for all firms
 - $\tau\downarrow$ increases labor elasticity, increases h, decreases (small) firm R&D

Comparing Tax Regimes

- Before: Little effect from historical reforms
- Now: Show that tax regime can strongly affect growth
- To discipline this exercise, we fix todays G at its base level
- Increasing λ , decreasing τ makes taxes less progressive
- ullet Concentration (almost) entirely from au, through labor elasticity

Static Results

- ullet Concentration increases as au decreases (labor elasticities increase)
- \bullet Note: Higher λ decreases Output
- ullet Effect from au (higher S) dominates, Output increases overall

Dynamic Results

- R&D by large firms increases, but not in line with Output increases
- Small firm R&D declines
- more concentrated R&D also less efficient
- strong decline in productivity growth

Present Value Decomposition

- Main channels: Quality growth versus Static TFPQ
- Present value maximized in low base high progressivity regime
- ullet PV U-Shape, but S capped at h=1 (requires regressive au < 0!)

References

References i

References

- Aghion, P., Bergeaud, A., Boppart, T., Klenow, P. J., & Li, H. (2023). A theory of falling growth and rising rents. *Review of Economic Studies*, 90(6), 2675–2702.
 - Autor, D., Dorn, D., Katz, L. F., Patterson, C., & Van Reenen, J. (2020). The Fall of the Labor Share and the Rise of Superstar Firms*. *The Quarterly Journal of Economics*, 135(2), 645–709. https://doi.org/10.1093/qje/qjaa004
- Bachmann, R., Bayer, C., Stüber, H., & Wellschmied, F. (2022).

 Monopsony Makes Firms Not Only Small but Also Unproductive:

 Why East Germany Has Not Converged.

References ii

- BEA. (2024a). Corporate profits after tax (without iva and ccadj) [cp] [Retrieved from FRED, Federal Reserve Bank of St. Louis].
- BEA. (2024b). Government current expenditures [gexpnd] [Retrieved from FRED, Federal Reserve Bank of St. Louis].
- Berger, D., Herkenhoff, K., & Mongey, S. (2022). Labor Market Power.

 American Economic Review, 112(4), 1147–1193.

 https://doi.org/10.1257/aer.20191521
- BLS. (2024a). Labor force participation rate 25-54 yrs. [Ins11300060] [Retrieved from FRED, Federal Reserve Bank of St. Louis].
 - BLS. (2024b). Private nonfarm business sector: Total factor productivity [mfpnfbs] [Retrieved from FRED, Federal Reserve Bank of St. Louis].

References iii

- Borella, M., De Nardi, M., Pak, M., Russo, N., & Yang, F. (2022). The importance of modeling income taxes over time. u.s. reforms and outcomes (Working Paper No. 30725). National Bureau of Economic Research. https://doi.org/10.3386/w30725
- Card, D., Cardoso, A. R., Heining, J., & Kline, P. (2018). Firms and labor market inequality: Evidence and some theory. *Journal of Labor Economics*, *36*(S1), S13–S70.
- De Ridder, M. (2022). Market Power and Innovation in the Intangible Economy. *Working Paper*.
- Klette, T. J., & Kortum, S. (2004). Innovating Firms and Aggregate Innovation. journal of political economy.
- Macnamara, P., Pidkuyko, M., & Rossi, R. (2024). Marginal tax rates and income in the long run: Evidence from a structural estimation. *Journal of Monetary Economics*, 142, 103514. https://doi.org/https://doi.org/10.1016/j.jmoneco.2023.09.001

References iv

Standard & Poor's. (2020). Compustat dataset.

Wong, H. C. (2023). *Understanding high-wage firms* (tech. rep.). Mimeo.

World Bank. (2024). Research and development expenditure (% of gdp) gb.xpd.rsdv.gd.zs [Retrieved from World Bank Open Data]. https://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS? locations=OF-US

Appendix

Labor Supply: details

• Using $D_e = \sum_{k=1}^{\mathcal{J}} W_k^{\frac{\beta}{1-\sigma}}$ and $D_u = (\omega Y)^{\frac{\beta}{1-\sigma}}$: $P(g=e) = \frac{D_e^{1-\sigma}}{D_e^{1-\sigma} + D_u^{1-\sigma}}$ $P(j|g=e) = \frac{\exp(\beta \frac{\log W_j}{1-\sigma})}{D_e} = \frac{W_j^{\frac{\beta}{1-\sigma}}}{D_e}$ $P(g=e)P(j|g=e) = \frac{W_j^{\frac{\beta}{1-\sigma}}}{D_o^{\sigma}(D_e^{1-\sigma} + D_u^{1-\sigma})}$

which implies:

$$L_{j}(W_{j}) = \mathcal{L}P(W_{j}) = \mathcal{L}\frac{W_{j}^{\frac{\beta}{1-\sigma}}}{\left(\sum_{k=1}^{\mathcal{J}} W_{k}^{\frac{\beta}{1-\sigma}}\right)^{\sigma} (\omega Y)^{\beta} + \sum_{k=1}^{\mathcal{J}} W_{k}^{\frac{\beta}{1-\sigma}}}$$

GO BACK

Within-line Nash equilibrium

- There are other equilibria, in which j' threatens price $< mc_{j'}$
- This feature exists in all Klette-Kortum type models
- Competition is in prices, firms commit to produce by setting price
 - Is this a crazy assumption with our increasing marginal cost?
 - Recall that lines are atomistic....
 - ... and that acquiring them is costly!
 - Producing in a single additional line has little of effect on cost
 - In addition, acquiring a line and then not producing in it is clearly not optimal

GO BACK

Note on marginal costs

- Firm-level employment: $L_j = \frac{Y_j}{s_j}$,
- Firm-level output: $Y_j = \int_0^{n_j} y_i di = \int_0^{n_j} \frac{Y}{\gamma m c_{j'(j)}} di$.
 - On BGP, every firm faces the same distribution of 'followers' marginal costs.
 - Therefore, $Y_j = \int_0^{n_j} \frac{Y}{\gamma m c_{j'(j)}} di = \frac{Y}{\gamma m} n_j$, where $m^{-1} \equiv \int_0^1 \frac{1}{m c_{j'(j)}} di$
- Wage: $W_j = \left(\frac{L_j}{z}\right)^{\frac{1-\sigma}{\beta}} = \left(\frac{Y_j}{s_j z}\right)^{\frac{1-\sigma}{\beta}}$
 - Recall $z \equiv \frac{\mathcal{L}}{D_e^{\sigma} (\bar{W}Y)^{\beta} + D_e}$
- Production costs: $C(Y_j) = (1 + T(W_j(Y_j)/\bar{W}))W_j(Y_j)L_j(Y_j)$
- Marginal cost of increasing production: $mc_j = C'(Y_j)$.

Markups and Markdowns

- From line-level equilibrium: $p_i = \gamma m c_{j'(i)}$
- Line-level markups p/mc thus depend on leader, follower:

$$\mu_{j(i)j'(i)} = \gamma \frac{mc_{j'(i)}}{mc_{j(i)}}$$

ullet Firm-level markups additionally a function of $m = \left(\int_0^1 m c_{j(i)}^{-1} di
ight)^{-1}$

$$\mu_j \equiv \frac{\int_0^{n_j} y_i p_i di}{m c_j \cdot \int_0^{n_j} y_i di} = \frac{\gamma m}{m c_j}.$$

Gross wage markdown is then a function of markup, taxes:

$$\frac{W_{j} \cdot \left(1 + T\left(\frac{W_{j}}{W}\right)\right)}{\gamma m s_{j}} = \frac{1}{\mu_{j}} \cdot \frac{\frac{\beta}{1 - \sigma}}{1 + \frac{\beta}{1 - \sigma} + \frac{\tau}{1 - \tau}}$$

Closing the model

• Final output is spent on private consumption C, government consumption $\mathcal{L}G$, research spending X, and rents R.

1.
$$X = Y \sum_{i} \psi(n'_{i} - (1 - X)n_{i})^{\phi}$$

2.
$$C = \int_{0}^{\infty} W_{o}$$

3.
$$R = \sum_{j} (Y - (1 + T(W_j/\bar{W}))L_jW_j - Y\psi(n'_j - (1 - X)n_j)^{\phi})$$

• Growth rate depends on aggregate rate X of creative destruction:

$$X = \sum_{j} x_{j}, \quad g = \gamma^{X}.$$

Algorithm, Outer Loop

- \bullet Outer loop: Guess $J_{\rm guess}$
- ullet Inner loop: Fully solve model given J_{guess}
- Compute: $V_{\text{entry}} = \frac{\alpha \tilde{v}_h(n_h) + (1-\alpha)\tilde{v}_l(n_l)}{1-\rho}$
- Outer Check: $|V_{\text{entry}} \text{entry cost}|$

Back to results

Algorithm, Inner Loop

Inner loop: Guess h_{guess} , $\left(\frac{Y}{mz}\right)_{guess}$

• Compute
$$n_h = \frac{h_{\text{guess}}}{J_h}, n_l = \frac{1 - h_{\text{guess}}}{J_l}$$

• Get
$$w_j = \left(n_h \left(\frac{Y}{mz}\right)_{\text{guess}} \frac{1}{\gamma s_j}\right)^{\frac{1-\sigma}{\beta}}$$
 and $\bar{W} = f_w(h, w_h, w_l)$

•
$$mc_j = f_{mc}\left(n_j, s_j, \frac{Y}{mz}, \bar{W}\right)$$
 and $m = \left[\frac{h}{mc_h} + \frac{1-h}{mc_l}\right]^{-1}$

•
$$D_e = J_h w_h^{\frac{\beta}{1-\sigma}} + J_I w_I^{\frac{\beta}{1-\sigma}}$$

• Find Y such that
$$\left(\frac{Y}{mz}\right)_{\text{guess}} = \frac{Y^{1+\beta}\omega D_e^{\sigma} + YD_e}{mLs}$$

•
$$D_0 = (\omega Y)^{\beta}$$

•
$$z = \frac{Ls}{D_0 D_e^{\sigma} + D_e}$$
, $L_j = w_j^{\frac{\beta}{1-\sigma}} z$

Inner Check:
$$\left|n_h^{\phi-1}(mc_l-\gamma m)-n_l^{\phi-1}(mc_h-\gamma m)\right|+\left|mc_h^hmc_l^{1-h}-\frac{Q}{\gamma}\right|$$

• Solve for
$$X\in (0,1)$$
 using $\frac{mc_j-\gamma m}{\gamma m}\frac{1}{\psi\phi}\frac{1}{\eta_j^{\phi-1}}=X^{\phi-1}\frac{\rho-1}{\rho}-X^{\phi}$

Calibration Details

Parameter	Value	Moment	Moment source
β	7.19	Top 10% Output share	Computestat: Standard & Poor's, 2020
σ	0.43	Top 10% Wage Premium	Wong, 2023
ω	0.61	Labor Market Participation	BLS, 2024a, 1986 - 1999 average
ψ	3.09	TFP growth rate	BLS, 2024b, 1954 - 2007 average
ϕ	1.48	R&D Spending (% of GDP)	World Bank, 2024, 1996
γ	1.26	Average Markup	Autor et al., 2020
ζ	0.92	Profit share	BEA, 2024a, 1986 – 1999 average

Parameter	Value	Source	
λ	0.103 0.078	Borella et al., 2022, 1969 – 1981 average Borella et al., 2022, 1969 – 1981 average	
τ Sh	1.49	Compustat: Standard & Poor's, 2020, s_h/s_l , 1954 – 2007 average	
η	0.32	BEA, 2024b, G/Y , 1969 – 2007 average	

Back to calibration

Decomposition details

$$Y = Q \cdot \exp \int_0^1 \ln s_{j(i)} di \cdot \exp \int_0^1 \ln l_i di$$

$$\approx Q \cdot \exp \int_0^1 \ln s_{j(i)} di \cdot \left(\ln \overline{l} + \int_0^1 \frac{1}{l_i} (l_i - \overline{l}) - \frac{1}{2\overline{l^2}} (l_i - \overline{l})^2 di \right)$$

$$= Q \cdot S \cdot \left(1 - \frac{CV^2}{2} \right) \int_0^1 l_i di$$

$$= \underbrace{Q \cdot S \cdot \left(1 - \frac{CV^2}{2} \right)}_{TFP} \cdot \sum_{j \in \mathcal{J}} L_j$$

 $= Q \cdot S \cdot M \cdot L$, where M follows from price/markup dispersion:

$$M = \left(1 - \frac{CV^2}{2}\right) = \left(\frac{3}{2} - \frac{\mathbb{E}\left(\frac{1}{\left(s_j m c_{j'}\right)^2}\right)}{2 \cdot \mathbb{E}\left(\frac{1}{s_j m c_{j'}}\right)^2}\right)$$

Back to decomposition