GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Semester-VI

Course Title: Embedded Systems

(Course Code: 4361705)

Diploma programmer in which this course is offered	Semester in which offered
INSTRUMENTATION AND CONTROL ENGINEERING	Sixth

1. RATIONALE

The knowledge of embedded system is essential in the field of instrumentation as the world is migrating towards automation rapidly in every field. By learning this course students can develop their own embedded system using any controllers which is application specific to solve given real time problems. Thus this course is an important course for students who want to work in the automation sector of the electronic industry.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Develop embedded systems for instrumentation application.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- I. Select appropriate microcontroller for given embedded system.
- II. Explain architecture and working of AVR microcontroller.
- III. Write and execute embedded C program for given application.
- IV. Interface AVR microcontroller with hardware for given embedded system.
- V. Develop small embedded system using AVR microcontroller.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme				
(Ir	n Hour	s)	(L+T+P/2)	Theory	Theory Marks Practical Ma			Total
L	T	Р	С	CA	ESE	CA	ESE	Marks
3	0	2	4	30*	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken of 11 during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

GTU - COGC-2023 Curriculum Page **1** of **7**

5. SUGGESTED PRACTICAL EXERCISES:

Sr.No.	Practical Outcomes (PrOs)	Unit	Approx.
		No.	Hrs.
			Required
1	Explore various blocks of Embedded System.	I	02
2	Learn architecture of ATMega32 Microcontroller.	П	02
3	Learn pin diagram of ATMega32 Microcontroller.	П	02
4	Write and execute program to configure and access I/O	Ш	02
	ports of ATmega 32.		
5	Write and execute programs to perform bit-wise logic	Ш	02
	operations for bit manipulation.		
6	Write and execute programs to access EEPROM.	III	02
7	Write and execute programs to generate delays using	Ш	02
	timers.		
8	Write and execute programs to count external events	Ш	02
	using timers.		
9	Write and execute programs to receive external	Ш	02
	hardware interrupts.		
10	Write and execute programs for LCD interfacing.	Ш	02
11	Write and execute C programs to read data from ADC	IV	02
	channel.		
12	Develop C program to interface LM35 with ATMega32	IV	02
13	Develop C Program to interface 7 segment display using	IV	02
	MAX7221 with ATMega32.		
14	Write and execute C program to control speed of DC	V	02
	motor using PWM mode in 8 bit timer.		
	Total		28

Note

- 1. More Practical Exercises can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- 2. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Lab Records	05
2	Question answer or Writing steps exercise	20
3	Executing of exercise	40
4	Printout/ Result	20
5	Viva voice	15
	Total	100

GTU - COGC-2023 Curriculum Page **2** of **7**

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
1	Computer	1 to 14
2	Projector	1,2,3
3	Trainer Kit	4,5,6
4	Free Simulation tools	4 to 14

7. AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in 1st year
- II. 'Organization Level' in 2nd year
- III. 'Characterization Level' in 3rd year

8. UNDERPINNING THEORY:

Only the major Underpinning Theory is formulated as higher level UOs of Revised Bloom's taxonomy in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and above	
	level)	
Unit – I	1.a Define basic concept of	1.1 Embedded system:
Overview	embedded system.	Definition, General block
of	1.b Explain Characteristics of	diagram, working and
Embedded	embedded system.	characteristics.
System	1.c Explain Characteristics of real	1.2 Real Time Operating
	time operating system.	System: Definition,
	1.d Compare different AVR	Characteristics.
	microcontrollers.	1.3 Microcontrollers for
		embedded system: Criteria for
		choosing microcontroller.
		1.4 History of AVR
		microcontroller.
		1.5 AVR family overview.
Unit – II	2.a Explain function of each block of	2.1 AVR Microcontroller
AVR	ATmega32 microcontroller.	architecture: ATmega32
Microcontroller	2.b Explain data memory organization	2.2 Data memory: General

GTU - COGC-2023 Curriculum Page **3** of **7**

Architecture	of ATmega32.	Purpose
and Pin	2.c Differentiate between SRAM and	Registers, I/O Memory,
diagram	EEPROM.	Internal SRAM
g	2.d Explain purpose of Status	2.3 EEPROM Memory
	Register.	2.4 Status Register
	2.e Describe how code is fetched	2.5 Program Memory and
	from program memory.	Program Counter
	2.f With a sketch, identify pin of	2.6 ATmega32 pin
	ATmega32.	configuration
	2.g Describe configuration of each	2.7 I/O port configuration
	port.	2.8 AVR Fuse bits
	2.h Describe different ways of Power-	2.9 Clock and Reset Circuits
	on Reset.	2.10 Timers/Counters and its
	2.i Describe different oscillator clock	operation in various modes
	source.	2.11 On-chip ADC in
	2.j Describe mode of operation of	ATmega32:
	Timers/Counters.	Features, Hardware
	2.k Describe features and hardware	considerations
	consideration of on-chip ADC.	
Unit- III	3.a Distinguishes different data types	3.1 Data types and time delays
AVR	for programming AVR in C.	3.2 I/O port programing in C:
Programing	3.b Write C program to configure and	Byte size and bit size I/O
in C	access I/O ports of ATmega32.	3.3 Bit-wise Logic operation in
	3.c Use bit-wise logic operations for	C: AND, OR, EX-OR, Invert and
	bit manipulation.	Shift operation
	3.e Write C programs to access	3.5 Memory Allocation in C
	EEPROM.	3.6 Timer programing in C
	3.f Write C programs to generate	3.7 Serial Communication:
	delays using timers.	RS232 standard, MAX232
	3.g Explain function of MAX232.	3.8 LCD interfacing using 8pin
	3.h LCD interfacing	mode only.
Unit- IV	4.a Read ADC using polling method.	4.1 On-chip ADC programing:
AVR	4.b Interface LM35 with ATmega32.	Polling Method
Interfacing	4.c Interface Relay with ATmega32.	4.2 Interfacing LM35
		4.3 Interfacing Relay using
		ULN2803
Unit-V	5.a Describe function of L293D.	5.1 Motor Driver L293D
Embedded	5.b Control DC motor using PWM	5.2 Speed control of DC motor
System	modes in 8-bit timer.	using 8bit timer in AVR.
Applications	5.c Explain basic block diagram of	5.3 Weather Monitoring
	Weather monitoring System.	System.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN: NA

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks	
No.		Hours	R U A To		Total		
			Level	Level	Level	Marks	
1	Overview of Embedded System	6	4	4	2	10	
2	AVR Microcontroller Architecture	12	8	6	4	18	
	and Pin diagram						

GTU - COGC-2023 Curriculum Page **4** of **7**

3	AVR Programing in C	8	6	5	5	16
4	AVR Interfacing	10	5	6	5	16
5	Embedded System Applications	6	2	4	4	10
	Total	42	25	25	20	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Other than the laboratory learning, following are the suggested student-related **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of each activity.

- i) Prepare journals based on practical performed in laboratory.
- ii) Prepare chart to represent the block diagram of different interfacing chips. Develop a practical application using ATMega32 Microcontroller
- iv) Prepare General purpose board with all ports available as connector
- v) Prepare/Download a dynamic animation to illustrate the following
- Timer operation MAX 7221 Interfacing. DC Motor Interfacing

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b)Guide student(s) in undertaking micro-projects.
- c) Some *of the topics/sub-topics* is relatively simple and very easy to the students for *self-learning*, but to be assessed using different assessment methods.
- d) With respect to **section No.09**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.
- e) Guide students for using latest Technical Magazine.
- f) Arrange visit to relevant industry
- g) Show video lectures on Microcontroller Applications with help of internet.
- h) Programming practices on simulators (free downloadable).

12. SUGGESTED PROJECT LIST

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more Cos which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16 (sixteen) student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

GTU - COGC-2023 Curriculum Page **5** of **7**

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher.

MICRO PROJECT 1: Prepare following Items.

- 1. Prepare Specification Table for AVR microcontroller family.
- 2. Design a chart of ATMega32 Architecture.

MIICRO PROJECT 2: Prepare following Designs.

- 1. Design minimum hardware system for ATMega32 circuit.
- 2. Develop ATMega32 based application board/circuit on PCB.

MICRO PROJECT 3: Design Application oriented basic Project using ATMega32.

- 1. Design and Implement LED flasher circuit.
- 2. Design and Implement circuit for relay-based operation using switch.
- 3. Design and Implement Room Temperature Monitor/Controller System.
- 4. Design and Implement Water Level Indicator/controller circuit.

13. SUGGESTED LEARNING RESOURCES

S.No.	Title of Book	Author	Publication with place, year and ISBN
1	The AVR microcontroller And Embedded System.	Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi	Pearson Publication
2	Embedded C Programming and the Atmel AVR	Richard Barnett, Larry O'cull, Sarah Cox	Cengage Learning India
3	Programming and Interfacing ATMEL AVR Microcontrollers	Thomas Grace	Cengage Learning India

14. SOFTWARE/LEARNING WEBSITES

www.tutorialspoint.com www.javatpoint.com www.electronicshub.org www.circuitdigest.com

15. PO-COMPETENCY-CO MAPPING:

Semester VI		Embedded Systems (Course Code: 4361705)						
		POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Anal ysis	PO 3 Design/ develop ment of solution	PO4 Engineering Tools, Experimentation & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage- ment	PO 7 Life-long learning	
<u>Competency</u>	Develo	p embed	lded syste	ms for aut	omation app	olication	١.	
CO1 Select appropriate microcontroller for given embedded system.	3	2	1	1	2	2	2	

GTU - COGC-2023 Curriculum Page **6** of **7**

CO2 Explain architecture and working of AVR microcontroller	3	2	1	1	-	1	1
CO3 Write and execute embedded C program for given application.	3	2	2	2	-	2	3
CO4 Interface AVR microcontroller with hardware for given embedded system.	3	3	3	3	1	3	3
CO5 Develop small embedded system using AVR microcontroller.	3	3	3	3	2	3	3

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Member - Board of Studies (GTU), Electrical and Allied branches

Prof. Suresh Z. Shyara, IC Engineering, AVPTI, Rajkot

Prof. Mahesh J. Vadhavaniya, IC Engineering, Government Polytechnic, Palanpur

GTU Resource Persons

Prof. Parth H. Modi, IC Engineering, Government Polytechnic, Ahmedabad.

Prof. Vismay A. Chauhan, IC Engineering, Government Polytechnic, Gandhinagar.

GTU - COGC-2023 Curriculum Page **7** of **7**