常微分方程教程

——课程笔记

 $\zeta(2)$

2022年1月14日

前言

这是我的常微分方程课程笔记,参考教材为蔡燧林《常微分方程》第四版,浙江大学出版社. 同步课程在 bilibili 上有,课程链接为:https://www.bilibili.com/video/BV1y7411E7hp?share_source=copy_web. 同时,参考了丁同仁的《常微分方程》和 GTM 182 来完善这份笔记. 本笔记中的差分方程参考零蛋大的《微积分笔记》最终版,附录部分参考陈兆斗的《大学生数学竞赛习题精讲》.

注 本笔记中的特解用 \tilde{y} 表示, $r_1 = r_2 := r$ 表示 $r_1 = r_2$,将它们定义为 r. 本笔记中的单位矩阵用 I 表示. 笔记中打星号的章节表示不需要掌握的内容.

 $\zeta(2)$ 2022 年 1 月 14 日

目录

第一章	初等积分法	1
1.1	基本概念	1
1.2	可分离变量方程	4
1.3	齐次方程	5
1.4	一阶线性微分方程	6
1.5	伯努利方程	9
1.6	* 里卡蒂方程	10
1.7	全微分方程	11
	1.7.1 全微分方程的概念	11
	1.7.2 积分因子	12
1.8		16
	dx^2	16
	d^2u (du)	17
	$1.8.3 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f\left(y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) $ 不显含 x	18
1.9	微分方程的应用	20
	1.9.1 应用范围	20
	1.9.2 数学建模的方法	20
	1.9.3 一个经典科学问题: 行星运动的开普勒第一和第二定律	23

目录

第二章	线性微分方程	27
2.1	二阶线性微分方程解的结构	. 27
	2.1.1 二阶线性微分方程的形式	. 27
	2.1.2 二阶线性微分算子	. 27
	2.1.3 叠加原理	. 28
	2.1.4 函数线性相关和线性无关的定义	. 29
	2.1.5 二阶齐次线性微分方程解的结构定理	. 30
	2.1.6 二阶非齐次线性微分方程通解的结构定理	. 30
	2.1.7 广义叠加定理	. 30
2.2	二阶常系数线性微分方程	. 31
	2.2.1 二阶常系数齐次线性微分方程	. 31
	2.2.2 二阶常系数非齐次线性微分方程	. 33
2.3	二阶变系数线性微分方程	. 42
	2.3.1 变量替换法	. 42
	2.3.2 常数变易法	. 46
	2.3.3 幂级数解法	. 48
第三章	线性微分方程组	50
≯ →早		
5.1	微分方程组与线性微分方程组	
	3.1.1 n 阶微分方程与特定一阶微分方程组的等价性	
	3.1.2 线性微分方程组的一般概念	. 51
3.2	线性微分方程组解的一般理论	. 51
3.3	常系数线性微分方程组的解法	. 51
	$3.3.1$ 齐次情形 $(\vec{f}(t) \equiv 0)$. 51
3.4	非齐次情形 $(\vec{f}(t) \not\equiv 0)$. 54
3.5	常系数线性微分方程组	. 57

目录		III
第四章	常微分方程的数值解法入门	60
4.1	数值微分	60
	4.1.1 Euler 方法	61
	4.1.2 改进 Euler 方法	62
4.2	龙格——库塔法	63
第五章	存在和唯一性定理	65
5.1	皮卡存在和唯一性定理	65
	5.1.1 定理的意义	65
	5.1.2 解的存在唯一性定理	65
5.2	解的延伸	67
	5.2.1 延展解, 不可延展解的定义	67
	5.2.2 不可延展解的存在性	67
	5.2.3 不可延拓解的性质	68
第六章	差分方程	70
6.1	差分方程概述	70
6.2	一阶常系数线性差分方程	71
	6.2.1 特征根法	71
	6.2.2 迭代法	73
6.3	二阶常系数线性差分方程	75
	6.3.1 待定系数法	77
	6.3.2 降阶法	79
	6.3.3 算子法	79
6.4	非线性差分方程	80
6.5	差分方程应用举例	83
附录 A	常系数非齐次线性微分方程求特解的算子解法	84
	算子多项式	84

目录		IV
A.2	算子多项式的运算	85
A.3	逆算子	85
A.4	逆算子的性质	86
A.5	常系数非齐次线性方程求特解的算子解法	86

第一章 初等积分法

1.1 基本概念

定义 1.1.1 (微分方程). y = f(x) 或 F(x, y) = 0.

$$F(x, y, y', \cdots, y^{(n)}) = 0$$

1. 两个实例:

例 1.1.2. (冷却问题) 设温度为 100° C 物体放置在 20° C 的空气中冷却, 求 物体温度随时间的变化规律.

解设 t 时刻物体温度为 T,设比例系数为 k > 0.则

$$\begin{cases} \frac{dT}{dt} = -k(T - 20) & (1) \\ T|_{t=0} = 100(\underline{\mathfrak{M}}\underline{\mathbf{ff}}\underline{\mathfrak{S}}\underline{\mathfrak{H}}) & (2) \end{cases}$$
$$\frac{dT}{T - 20} = -kdt$$
$$\int \frac{dT}{T - 20} = -\int kdt + C_1$$
$$\ln(T - 20) = -kt + C_1 = \ln e^{-kt + C_1}$$
$$T - 20 = e^{C_1}e^{-kt}$$

 \diamondsuit $C = e^{C_1}$,则

$$T = 20 + Ce^{-kt}$$
 (一族函数, 是 (1) 的通解)

2

因为 $T|_{t=0} = 100$,所以

$$100 = 20 + Ce^0 \Rightarrow C = 80$$
 (C由初值条件决定)

所以

$$T = 20 + 80e^{-kt} \qquad (\underline{\mathcal{H}}(1)) \text{ in } \underline{\mathbf{H}}(1)$$

即为所求.

例 1.1.3. 设有质量为 m 的物体只受重力作用,由静止自由降落,求降落的距离与时间 t 的关系.

解 建立如图所示坐标系. 设时刻 t 物体降落的距离为 x. 则

$$\begin{cases} mg = m\frac{d^2x}{dt^2} \\ x|_{t=0} = 0 \\ \frac{dx}{dt}|_{t=0} = 0 \end{cases}$$
$$\frac{d^2x}{dt^2} = g$$
$$\frac{dx}{dt} = gt + C_1$$
$$x = \frac{1}{2}gt^2 + C_1x + C_2$$

3

代入初值条件,得

$$C_1 = C_2 = 0$$

于是

$$x = \frac{1}{2}gt^2$$

即为所求.

例 1.1.4. Motion in the Gravitational Field of Two Bodies(Satellite Orbits).

$$\begin{cases} \ddot{x} = x + 2\dot{y} - \mu' \frac{x + \mu}{[(x + \mu)^2 + y^2]^{3/2}} - \mu \frac{x - \mu'}{[(x - \mu')^2 + y^2]^{3/2}} \\ \ddot{y} = x - 2\dot{x} - \mu' \frac{y}{[(x + \mu)^2 + y^2]^{3/2}} - \mu \frac{y}{[(x - \mu')^2 + y^2]^{3/2}} \\ x(0) = 1.2, \quad y(0) = 0 \\ \dot{x}(0) = 0, \quad \dot{y}(0) \approx -1.04936 \end{cases}$$

Here $\mu \approx 0.01213$.

2. 基本概念

定义 1.1.5 (微分方程). 联系着自变量、因变量及因变量导数或微分得方程, 称为微分方程.

常微分方程: 未知函数是一元函数.

偏微分方程: 未知函数是多元函数.

定理 1.1.6 (微分方程的形式).

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

定义 1.1.7 (微分方程的阶). 等于方程中所含最高阶导数的阶数.

定义 1.1.8 (微分方程的解). 设函数 $y = f(x), x \in I$ 有直到 n 阶导数. 若 $F(x,y(x),y'(x),y''(x),\cdots,y^{(n)}(x)) \equiv 0$,则称 y = y(x) 是方程 $F(x,y,y',y'',\cdots,y^{(n)}) = 0$ 的一个解.

定义 1.1.9 (n 阶微分方程的通解). 记作 $y = y(x, C_1, C_2, \cdots, C_n)$ 或 $\varphi(x, y, C_1, C_2, \cdots, C_n) = 0$. 若方程的解中含有任意常数,彼此无关,且任意常数的个数等于方程的阶数,则称这种解为方程的通解.

定义 1.1.10 (微分方程的特解).

定理 1.1.11. n 阶微分方程的初值条件有 n 个等式:

$$y|_{x=x_0} = y_0, y'|_{x=x_0} = y'_{x_0}, \cdots, y^{(n-1)}|_{x=x_0} = y_0^{(n-1)}$$

定义 1.1.12 (初值问题).

1.2 可分离变量方程

1. 形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y)$$

特点:(1) 已解出一阶导数 (2) 右端是一个 x 的一元函数和一个 y 的一元函数的乘积

- 2. 解法:
 - (1) 判断方程类型,若是可分离变量方程,则

$$(2)g(y) \neq 0$$
 时, $\frac{\mathrm{d}y}{g(y)} = f(x)\mathrm{d}x \cdots$ 分离变量

$$(3)\int \frac{\mathrm{d}y}{g(y)} = \int f(x)\mathrm{d}x + C$$
,两边求积分

- (4) 化简即得诵解
- (5) 若题中有初值条件,求特解即可;若题中没有初值条件,若 当 $y = y_0$ 时,有 $g((y_0) = 0$,则 $y = y_0$ 也是方程的一个解.

例 1.2.1.
$$\tan x \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + y$$

解 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+y}{\tan x}$ 可分离变量.

$$\frac{\mathrm{d}y}{1+y} = \frac{\mathrm{d}(\sin x)}{\sin x}$$

$$\ln|1 + y| = \ln|\sin x| + C_1 = \ln|\sin x| + \ln e^{C_1} = \ln|e^{C_1}\sin x|$$
$$1 + y = \pm e^{C_1}\sin x$$

$$1 + y = C\sin x \ (C \neq 0)$$

y = -1 也是方程的解,为上式中C = 0的情形,所以

$$1 + y = C\sin x$$

为所求通解, C 为任意常数.

例 1.2.2.
$$dx + xydy = y^2dx + ydy$$

解

$$(x-1)y dy = (y^2 - 1) dx$$
$$\frac{dy}{dx} = \frac{1}{x-1}(y^2 - 1) \quad$$
可分离变量
$$\frac{y dy}{y^2 - 1} = \frac{dx}{x-1}$$
$$\frac{1}{2} \ln|y^2 - 1| = \ln|x - 1| + \frac{1}{2} \ln|C|, C \neq 0$$
$$y^2 - 1 = C(x-1)^2, C \neq 0$$

 $y=\pm 1$ 也是方程的解,为上式中 C=0 的情形. 所以,方程的通解为

$$y^2 - 1 = C(x - 1)^2$$

1.3 齐次方程

- 1. 形式: $\frac{\mathrm{d}y}{\mathrm{d}x} = g\left(\frac{y}{x}\right)$.
- 2. 解法: 变量替换法.

$$\Leftrightarrow u = \frac{y}{x}, \ \ y = ux.$$

$$x\frac{\mathrm{d}u}{\mathrm{d}x} + u = g(u)$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \cdot (g(u) - u)$$
 可分离变量

例 1.3.1.
$$\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}, y|_{x=1} = \frac{\pi}{6}$$

解令 $u = \frac{y}{x}$,则 y = ux.

$$x\frac{\mathrm{d}u}{\mathrm{d}x} + u = u + \tan u$$

$$\frac{\cos u}{\sin u} \mathrm{d}u = \frac{1}{x} \mathrm{d}x$$

$$\ln|\sin u| = \ln|x| + \ln|C| = \ln|Cx|$$

$$\sin u = Cx$$

所以方程的通解为

$$\sin\frac{y}{x} = Cx$$

因为 $y|_{x=1} = \frac{\pi}{6}$,所以 $C = \frac{1}{2}$,所求特解为

$$\sin\frac{y}{x} = \frac{1}{2}x$$

1.4 一阶线性微分方程

1. 形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x) \quad (1)$$

- (1) 中的 q(x) 称为自由项,非齐次项. 记 (2) 为 $\frac{dy}{dx} + p(x)y = 0$.
 - (1) $q(x) \equiv 0$ 时,(1) 称为一阶齐次线性微分方程.
 - (2) $q(x) \neq 0$ 时,(1) 称为一阶非齐次线性微分方程.

7

2. 解法: 常数变易法

1° 先解 (2)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -p(x)y \quad \text{可分离变量}$$

$$\frac{\mathrm{d}y}{y} = -p(x)\mathrm{d}x$$

$$\ln|y| = -\int p(x)\mathrm{d}x + \ln|C| = \ln\mathrm{e}^{-\int p(x)\mathrm{d}x} + \ln|C| = \ln|C\mathrm{e}^{-\int p(x)\mathrm{d}x}|$$

$$y = C\mathrm{e}^{-\int p(x)\mathrm{d}x}$$

$$y = C\mathrm{e}^{-\int p(x)\mathrm{d}x}$$

(2) 的通解为 $y = Ce^{-\int p(x)dx}$.

 2° 设 $y = ue^{-\int p(x)dx}$ 是 (1) 的解. 则

$$\frac{\mathrm{d}u}{\mathrm{d}x} e^{-\int p(x)\mathrm{d}x} + \underline{u \cdot e^{-\int p(x)\mathrm{d}x} \cdot (-p(x))} + \underline{p(x)u} e^{-\int p(x)\mathrm{d}x} = q(x)$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = q(x)e^{\int p(x)\mathrm{d}x}$$

所以

$$u = \int q(x)e^{\int p(x)dx}dx + C$$

所以

为方程(1)的通解.

$$y = e^{-\int p(x)dx} \int q(x)e^{\int p(x)dx}dx$$
 是方程 (1) 本身的一个特解.
+ $Ce^{-\int p(x)dx}$ (1) 所对应的齐次线性微分方程的通解.

注 第一步: 先求 (1) 所对应齐次线性微分方程 (2) 的通解.

第二步: 常数变易.

例 1.4.1.
$$\frac{dy}{dx} + \frac{1}{x}y = 5$$
 (1)

解
$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = 0$$
 (2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x}y$$

$$\frac{\mathrm{d}y}{y} = -\frac{1}{x}\mathrm{d}x$$

$$\ln|y| = -\ln|x| + \ln|C| = \ln\left|\frac{C}{x}\right|$$

所以 (2) 的通解为 $y = \frac{C}{r}$. 设 $y = u \cdot \frac{1}{r}$ 是 (1) 的解,则

$$\frac{du}{dx} \cdot \frac{1}{x} + u \cdot \frac{-1}{x} + \frac{1}{x} \cdot u \cdot \frac{1}{x} = 5$$

$$\frac{du}{dx} = 5x$$

$$u = \frac{5}{2}x^2 + C$$

所以,(1) 的通解为 $y = \frac{1}{x} \left(\frac{5}{2} x^2 + C \right)$.

例 1.4.2.
$$2x\frac{\mathrm{d}y}{\mathrm{d}x} - y = -x$$

解

$$\frac{\mathrm{d}y}{\mathrm{d}x} \underbrace{-\frac{1}{2x}}_{p(x)} y = \underbrace{-\frac{1}{2}}_{q(x)}$$

$$y = \mathrm{e}^{\int \frac{1}{2x} \mathrm{d}x} \left(\int \left(-\frac{1}{2} \right) \mathrm{e}^{-\frac{1}{2} \int \frac{1}{x} \mathrm{d}x} \mathrm{d}x + C \right) = \mathrm{e}^{\frac{1}{2} \ln|x|} \left(-\frac{1}{2} \int \mathrm{e}^{-\frac{1}{2} \ln|x|} \mathrm{d}x + C \right)$$

$$= \sqrt{|x|} \left(-\frac{1}{2} \int \frac{1}{\sqrt{|x|}} \mathrm{d}x + C \right)$$

$$x > 0 \text{ Bt},$$

x > 0 时,

$$y = \sqrt{x} \left(-\int \frac{1}{2\sqrt{x}} dx + C \right) = \sqrt{x} (-\sqrt{x} + C) = C\sqrt{x} - x$$

x < 0 时,

$$y = \sqrt{-x} \left(\int \frac{1}{2\sqrt{-x}} d(-x) + C \right) = \sqrt{-x} (\sqrt{-x} + C) = C\sqrt{-x} - x$$

所以,所求为

$$y = C\sqrt{|x|} - x, x \neq 0$$

伯努利方程 1.5

1. 形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)y^{\alpha} \quad (\alpha \neq 0, 1)$$

$$p(x)y = q(x)$$

$$p(x)y = q(x)y$$

$$\alpha = 0 \text{ 时}, \ \frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$$
 一阶线性微分方程
$$\alpha = 1 \text{ 时}, \ \frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)y$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (q(x) - p(x))y$$
 可分离变量方程

2. 解法: 变量替换法

$$y^{-\alpha} \frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y^{1-\alpha} = q(x)$$
$$\frac{1}{1-\alpha} \frac{\mathrm{d}(y^{1-\alpha})}{\mathrm{d}x} + p(x)y^{1-\alpha} = q(x)$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} + (1 - \alpha)p(x)z = (1 - \alpha)q(x)$$

例 1.5.1.
$$\frac{dy}{dx} + \frac{y}{x} = a(\ln x)y^2$$

解

$$y^{-2} \frac{dy}{dx} + \frac{1}{x} y^{-1} = a \ln x$$
$$-\frac{d(y^{-1})}{dx} + \frac{1}{x} y^{-1} = a \ln x$$

令 $z = y^{-1}$,则有

$$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{1}{x}z = -a\ln x$$

所以

$$z = e^{\int \frac{1}{x} dx} \left(\int (-a \ln x) e^{-\int \frac{1}{x} dx} dx + C \right) = e^{\ln x} \left(-a \int \ln x \cdot e^{\ln \frac{1}{x}} dx + C \right)$$
$$= x \left(-a \int \ln x \cdot \frac{1}{x} dx + C \right) = x \left(-a \cdot \frac{1}{2} (\ln x)^2 + C \right)$$

所以,通解为

$$y = \frac{1}{x \left(C - \frac{a}{2} (\ln x)^2\right)}$$

此外, y=0 也是解.

1.6 * 里卡蒂方程

里卡蒂方程是最简单的一类非线性方程. 形如 $\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y^2 + q(x)y + r(x)$ 的方程称为里卡蒂方程.

对其特例 $\frac{\mathrm{d}y}{\mathrm{d}x} + ay^2 = bx^m$, 其中 $a \neq 0, b, m$ 都是常数. 刘维尔 (Liouville,J.) 于 1841 年证明了: 当且仅当

$$m = 0, -2, \frac{-4k}{2k+1}, \frac{-4k}{2k-1} \ (k = 1, 2, \cdots)$$

时,方程才可求的用初等函数及其积分所表示的通解. 刘维尔的工作使得人们的注意力开始转向微分方程解的定性研究、数值计算以及求近似解上.

里卡蒂方程在历史上和近代都有重要应用. 例如, 他曾用于证明贝塞尔 (Bessel) 方程的解不是初等函数, 另外它也出现在现代控制论和向量场分支理论的一些问题中.

1.7 全微分方程

1.7.1 全微分方程的概念

设有 P(x,y)dx + Q(x,y)dy = 0 (1)

若 (1) 的左端可以表示成某二元函数 u(x,y) 的全微分,即

$$du(x, y) = P(x, y)dx + Q(x, y)dy$$

则称方程(1)为全微分方程.

注 这时 (1) 可以写成 du(x,y) = 0. 故 u(x,y) = C 是 (1) 的通解.

$$P dx + Q dy 为 全微分 \Leftrightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
$$du = P dx + Q dy \Leftrightarrow \frac{\partial u}{\partial x} = P, \frac{\partial u}{\partial y} = Q$$

例 1.7.1.
$$\frac{2xy+1}{y}$$
dx + $\frac{y-x}{y^2}$ dy = 0

解

$$P = \frac{2xy+1}{y}, \frac{\partial P}{\partial y} = -\frac{1}{y^2}$$

$$Q = \frac{y - x}{y^2}, \frac{\partial Q}{\partial x} = -\frac{1}{y^2}$$

因为 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, 所以这是一个全微分方程. $\underline{\partial} u(x,y) = C$ 是方程的通解. 解法 1

$$\frac{\partial u}{\partial x} = 2x + \frac{1}{y} \Rightarrow u = x^2 + \frac{x}{y} + C(y)$$
$$\frac{\partial u}{\partial y} = -\frac{x}{y^2} + C'(y) = \frac{1}{y} - \frac{x}{y^2}$$

所以

$$C'(y) = \frac{1}{y} \Rightarrow C(y) = \ln|y| + C_1$$

于是

$$u(x,y) = x^2 + \frac{x}{y} + \ln|y| + C_1$$

解法 2

$$u(x,y) = \int_{(0,1)}^{(x,y)} \frac{2xy+1}{y} dx + \frac{y-x}{y^2} dy$$

$$= \int_{(0,1)}^{(x,1)} + \int_{(x,1)}^{(x,y)} dy$$

$$= \int_0^x (2x+1) dx + \int_1^y \left(\frac{1}{y} - \frac{x}{y^2}\right) dy$$

$$= x^2 + x + \ln|y| + \frac{x}{y} - x$$

$$= x^2 + \ln|y| + \frac{x}{y}$$

解法 3 分项组合凑微分法 (恰当方程法)

$$\frac{2xy+1}{y}dx + \frac{y-x}{y^2}dy$$

$$=2xdx + \frac{1}{y}dx + \frac{1}{y}dy - \frac{x}{y^2}dy$$

$$=2xdx + \frac{1}{y}dy + \left(\frac{1}{y}dx + xd\left(\frac{1}{y}\right)\right)$$

$$=d\left(x^2 + \ln|y| + \frac{x}{y}\right)$$

所以

$$u = x^2 + \ln|y| + \frac{x}{y} + C_1$$

原方程的通解为

$$x^2 + \ln|y| + \frac{x}{y} = C$$

1.7.2 积分因子

设方程 $P(x,y)dx+Q(x,y)dy\cdots(1)$ 不是全微分方程,若 (1) 有解,则可证存在函数 $\mu(x,y) \neq 0$,使得 $\mu(x,y)P(x,y)dx+\mu(x,y)Q(x,y)dy=0\cdots(2)$ 是全微分方程,则称 $\mu(x,y)$ 为方程 (1) 的一个积分因子.

注(1)与(2)同解.

积分因子的求法

因为 $\mu P dx + \mu Q dy = 0$ 是全微分方程, 所以

$$\frac{\partial(\mu P)}{\partial y} = \frac{\partial(\mu Q)}{\partial x}$$
$$\frac{\partial \mu}{\partial y} P + \mu \frac{\partial P}{\partial y} = \frac{\partial \mu}{\partial x} Q + \mu \frac{\partial Q}{\partial x}$$
$$\frac{\partial \mu}{\partial y} P - \frac{\partial \mu}{\partial x} Q = \mu \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

<i>> $\mu = \mu(x)$,则

$$-\frac{\mathrm{d}\mu}{\mathrm{d}x}Q = \mu \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$
$$\frac{1}{\mu}\frac{\mathrm{d}\mu}{\mathrm{d}x} = \frac{1}{Q}\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) := \varphi(x)$$
$$\frac{\mathrm{d}\mu}{\mathrm{d}x} = \varphi(x)\mathrm{d}x$$
$$\ln|\mu| = \int \varphi(x)\mathrm{d}x + \ln|C|$$

所以

$$\mu = e^{\int \varphi(x) dx}$$

 $\langle ii \rangle \mu = \mu(y)$,则

$$\frac{\mathrm{d}\mu}{\mathrm{d}y}P = \mu \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$
$$\frac{1}{\mu}\frac{\mathrm{d}\mu}{\mathrm{d}y} = \frac{1}{P}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) := \psi(y)$$

所以

$$\mu = e^{\int \psi(y) dy}$$

例 1.7.2.
$$ydx - xdy = 0$$

解

$$P = y, Q = -x$$
$$\frac{\partial P}{\partial y} = 1, \frac{\partial Q}{\partial x} = -1$$

所以

$$\frac{\partial P}{\partial u} \not\equiv \frac{\partial Q}{\partial x}$$

这不是全微分方程.

(1) 因为

$$\varphi(x) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = -\frac{1}{x} (1 - (-1)) = -\frac{2}{x}$$

所以

$$\mu = e^{-\int \frac{2}{x} dx} = \frac{1}{x^2}$$

所以 $\frac{y dx - x dy}{x^2} = 0$ 是全微分方程.

$$\frac{x\mathrm{d}y - y\mathrm{d}x}{x^2} = 0$$

即

$$d\left(\frac{y}{x}\right) = 0$$

所以,通解为

$$\frac{y}{x} = C$$

(2) 因为

$$\psi(y) = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \frac{1}{y} (-1 - 1) = -\frac{2}{y}$$

所以

$$\mu = e^{-\int \frac{2}{y} dy} = \frac{1}{y^2}$$

所以 $\frac{y dx - x dy}{y^2} = 0$ 是全微分方程.

$$d\left(\frac{x}{y}\right) = 0$$

所以,通解为

$$\frac{x}{y} = C$$

注 $\frac{1}{xy}$, $\frac{1}{x^2+y^2}$, $\frac{1}{x^2-y^2}$ 都是积分因子.

$$d(xy) = xdy + ydx$$

$$d\left(\frac{x}{y}\right) = \frac{ydx - xdy}{y^2}$$

$$d\left(\arctan\frac{x}{y}\right) = \frac{ydx - xdy}{x^2 + y^2}$$

例 1.7.3. $(x^2y^3+y)dx + (x^3y^2-x)dy = 0$

解

$$x^2y^3dx + ydx + x^3y^2dy - xdy = 0$$
$$(x^2y^3dx + x^3y^2dy) + ydx - xdy = 0$$

观察可得 $\frac{1}{xy}$ 是积分因子.

最后,我们指出,若P(x,y)dx + Q(x,y)dy = 0是齐次方程,则函数

$$\mu(x,y) = \frac{1}{xP(x,y) + yQ(x,y)}$$

是一个积分因子.

例 1.7.4. 求解齐次方程

$$(x+y)dx - (x-y)dy = 0$$

解 由上面红体字可见,这方程有积分因子

$$\mu = \frac{1}{x(x+y) - y(x-y)} = \frac{1}{x^2 + y^2}$$

以它乘方程,得到一个全微分方程

$$\frac{xdx + ydy}{x^2 + y^2} - \frac{xdy - ydx}{x^2 + y^2} = 0$$

积分上式,得出

$$\frac{1}{2}\ln(x^2+y^2) - \arctan\frac{y}{x} = \ln C \quad (C>0)$$

由此得通积分

$$\sqrt{x^2 + y^2} = C e^{\arctan \frac{y}{x}}$$

它的极坐标形式为

$$r = Ce^{\theta}$$

由此可见,该积分曲线族是一个以原点为焦点的螺旋线族.

例 1.7.5. The differential equation

$$y dx + 2x dy = 0 \quad (*)$$

is not exact. However, it can easily be made an exact differential equation (in the domain x > 0) by multiplying the equation $1\sqrt{x}$. The resulting differential equation

$$\frac{y}{\sqrt{x}}\mathrm{d}x + 2\sqrt{x}\mathrm{d}y = 0$$

is exact, and a potential function is given by

$$F(x,y) = 2y\sqrt{x} \quad (x > 0)$$

An exact differential equation can also be obtained by multiplying (*) by y:

$$y^2 dx + 2xy dy = 0$$
, giving $F(x, y) = xy^2$.

1.8 可降阶的二阶微分方程

1.8.1
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(x)$$
 型

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \int f(x)\mathrm{d}x + C_1$$

$$y = \int \left(\int f(x) dx \right) dx + C_1 x + C_2$$

例 1.8.1.
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{\cos^2 x}, y|_{x=\frac{\pi}{4}} = \frac{\ln 2}{2}, \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=\frac{\pi}{4}} = 1$$

解

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan x + C_1$$

因为
$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=\frac{\pi}{4}} = 1$$
,所以

$$1 = 1 + C_1 \Rightarrow C_1 = 0$$

所以

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan x$$
$$y = -\ln|\cos x| + C_2$$

因为
$$y|_{x=\frac{\pi}{4}} = \frac{\ln 2}{2}$$
,所以

$$\frac{\ln 2}{2} = -\ln \frac{1}{\sqrt{2}} + C_2 \Rightarrow C_2 = 0$$

于是

$$y = -\ln|\cos x|$$

为所求特解.

设(*)的解为 $p = \varphi(x, C_1)$,则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(x, C_1)$$

原方程通解为

$$y = \int \varphi(x, C_1) \mathrm{d}x + C_2$$

例 1.8.2.
$$(1+x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2x\frac{\mathrm{d}y}{\mathrm{d}x}$$

解 令
$$\frac{\mathrm{d}y}{\mathrm{d}x} = p$$
,则 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}p}{\mathrm{d}x}$.

$$(1+x^2)\frac{\mathrm{d}p}{\mathrm{d}x} = 2xp$$

$$\frac{\mathrm{d}p}{p} = \frac{2x}{1+x^2}\mathrm{d}x$$

$$\ln|p| = \ln(1+x^2) + \ln|C|$$

$$p = C_1(1+x^2)$$

即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = C_1(1+x^2)$$

所以

$$y = C_1 \left(x + \frac{1}{3}x^3 \right) + C_2$$

1.8.3
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f\left(y, \frac{\mathrm{d}y}{\mathrm{d}x}\right)$$
 —不显含 x

$$\frac{\mathrm{d}p}{\mathrm{d}x} = f(y, p)$$

$$p\frac{\mathrm{d}p}{\mathrm{d}y} = f(y, p)$$

设(*)的通解为

$$p = \varphi(y, C_1)$$

即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(y, C_1)$$

$$\frac{\mathrm{d}y}{\varphi(y,C_1)} = \mathrm{d}x$$
例 1.8.3. $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - y\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0$
解 令 $\frac{\mathrm{d}y}{\mathrm{d}x} = p$, 则 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x} = p\frac{\mathrm{d}y}{\mathrm{d}x}$.
$$p^2 - yp\frac{\mathrm{d}p}{\mathrm{d}y} = 0$$
$$\left(p - y\frac{\mathrm{d}p}{\mathrm{d}y}\right)p = 0$$
$$p - y\frac{\mathrm{d}p}{\mathrm{d}y} = 0 \quad (1) \ \ \vec{p} \ p = 0 \quad (2)$$

先来看 (1)

$$p = y \frac{\mathrm{d}p}{\mathrm{d}y}$$

即

$$y \frac{\mathrm{d}p}{\mathrm{d}y} = p$$

$$\frac{\mathrm{d}p}{p} = \frac{\mathrm{d}y}{y}$$

$$\ln|p| = |\ln y| + \ln|C_1|$$

$$p = C_1 y$$

p=0,即(2)也是解,即 $C_1=0$ 的情形.即

$$\frac{dy}{dx} = C_1 y$$
 可分离变量
$$\frac{dy}{y} = C_1 dx$$

$$\ln|y| = C_1 x + \ln|C_2|$$

$$y = C_2 e^{C_1 x} \quad (C_2 \neq 0)$$

y=0 也是解,为 $C_2=0$ 的情形. 所以

$$y = C_2 e^{C_1 x}$$

为所求. 其中 C_1, C_2 为任意常数.

1.9 微分方程的应用

1.9.1 应用范围

- 1. 变化率问题
- 2. 几何问题
- 3. 物理问题, 化学问题
- 4. 经济学问题, 生物、生态学问题

1.9.2 数学建模的方法

- 1. 根据要求、物理化学定律列出含有未知函数导数的方程.
- 2. 利用微元法,建立起含有未知函数的微分方程.
- 3. 根据大量的统计数据模拟问题所符合的规律,从而列出微分方程.

例 1.9.1. 镭、铀等放射性元素因不断地放出各种射线逐渐减少其质量,由实验知,衰变速度与现存物质的质量成正比,求放射性元素在时刻 t 的质量.

解 设 t 时刻的质量为 x, 比例系数为 k(k > 0).

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx$$

$$\frac{\mathrm{d}x}{x} = -k\mathrm{d}t$$

$$\ln|x| = -kt + \ln|C|$$

所以

$$x = Ce^{-kt}$$

x=0 也是解,为 C=0 情形.

例 1.9.2. 一个容器在开始盛有盐水 100 升, 其中含净盐 10 千克, 现以每分钟 3 升的速率注入清水,同时以每分钟 2 升的速率放出,溶液浓度保持均匀,求过程开始一小时溶液的含盐量.

解 设 t 时刻的含盐量为 x 千克,则浓度

$$\frac{x}{100+3t-2t} = \frac{x}{100+t}$$
 (千克/升)

 $\forall t \in [0, +\infty), [t, t + dt]$ 时间段上质量微元

$$\begin{cases} dx = -\frac{x}{100 + t} \cdot 2dt \\ x|_{t=0} = 10 \end{cases}$$

$$\frac{\mathrm{d}x}{x} = -\frac{2\mathrm{d}t}{100+t}$$

$$\ln x = -2\ln(100 + t) + \ln C$$

$$x = C(100 + t)^{-2}$$

$$10 = C100^{-2} \Rightarrow C = 10^5$$

所以

$$x = 10^5 (100 + t)^2$$

所以

例 1.9.3. (正交轨线族) 已知曲线族 $y = \frac{C}{x}$, 其中 C 为曲线的参数, 求另一族曲线, 它与所给的曲线族正交.

解

$$\begin{cases} y = \frac{C}{x} \Rightarrow C = xy \\ y' = -\frac{C}{x^2} \\ \Rightarrow y' = -\frac{y}{x} \end{cases}$$

所以曲线满足 $y' = \frac{x}{y}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$$
 可分离变量

$$y dy = x dx$$
$$\frac{1}{2}y^2 = \frac{1}{2}x^2 + \frac{1}{2}C$$

所以

$$y^2 - x^2 = C$$

即为所求曲线族.

例 1.9.4. 从船上向海中沉放某测控仪器,按测控要求,需确定仪器的下沉深度 y 与下沉速度 v 之间的函数关系. 设仪器在重力作用下从海平面由静止开始下沉,在下沉过程中受到阻力和浮力的作用. 设仪器的质量为 m,体积为 B,海水比重为 ρ ,仪器所受阻力与下沉速度成正比,比例系数为 k(k>0),试建立 y 与 v 所满足的微分方程,并求函数关系.

解

$$m\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = g - kv - \rho gB$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} = v\frac{\mathrm{d}y}{\mathrm{d}t}$$

所以

$$\begin{cases} mv\frac{\mathrm{d}v}{\mathrm{d}y} = mg - kv - \rho gB \\ v|_{y=0} = 0 \end{cases}$$

$$m\frac{v}{mg - kv - \rho gB} \mathrm{d}v = \mathrm{d}y$$

$$\left(-\frac{m}{k}\frac{mg - kv - \rho gB}{mg - kv - \rho gB} + \frac{m}{k} \cdot \frac{mg - \rho gB}{mg - kv - \rho gB}\right) \mathrm{d}v = \mathrm{d}y$$

$$-\frac{m}{k}v - \frac{m}{k^2}(mg - \rho gB)\ln(mg - kv\rho gB) = y + C$$

1.9.3 一个经典科学问题: 行星运动的开普勒第一和第二定律

1. 万有引力定律

$$\overrightarrow{F} = -\frac{GmM}{r^2}\hat{r}$$

r 为<u>以恒量为原点</u>,极坐标系中的<u>径向单位向量</u>,在两质点连线上.

2. 牛顿第二定律

$$\overrightarrow{F} = m \overrightarrow{a} = m \frac{\mathrm{d}^2 \hat{r}}{\mathrm{d}t^2}$$

 \overrightarrow{r} 为位置向量, $\overrightarrow{r} = r\hat{r} = [r\cos\theta, r\sin\theta]$.

3. 极坐标

$$\hat{r} = [\cos \theta, \sin \theta], \hat{\theta} = [-\sin \theta, \cos \theta]$$

$$\Rightarrow \dot{\hat{r}} := \frac{d\hat{r}}{dt} = \dot{\theta}\hat{\theta}, \dot{\hat{\theta}} := \frac{d\hat{\theta}}{dt} = -\dot{\theta}\hat{r}$$

$$\dot{\hat{r}} = \dot{\theta}\hat{\theta}$$

$$\frac{\Delta \hat{r} = ?}{\mathrm{d}t} = \hat{r}(t + \Delta t) - \hat{r}(t) \approx \frac{\Delta \theta}{\mathrm{d}t} \cdot \hat{\theta}$$

$$\begin{vmatrix}
\dot{\hat{r}} &= \frac{\mathrm{d}\hat{r}}{\mathrm{d}t} & \longrightarrow = \dot{\theta}\hat{\theta} \\
\dot{\hat{\theta}} &= -\dot{\theta}\hat{r}
\end{vmatrix}$$

$$\overrightarrow{F} &= -\frac{GmM}{r^2}\hat{r} = m\overrightarrow{d} = \frac{\mathrm{d}^2}{\mathrm{d}t^2}(r\hat{r})$$

$$\frac{\mathrm{d}\overrightarrow{r}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t}(r\hat{r}) = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}(\overrightarrow{r}) = \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} - r\dot{\theta}^2\hat{r}$$

$$= (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}$$

$$= -\frac{GM}{r^2}\hat{r}$$

$$\begin{cases}
\overleftarrow{\mathcal{L}}\dot{\eta}(\hat{r}) = \ddot{r} - r\dot{\theta}^2 = -\frac{GM}{r^2} & (1) - K_1
\end{cases}$$

$$\underbrace{\mathbf{L}\dot{\eta}\dot{\eta}(\hat{\theta}) : 2\dot{r}\dot{\theta} + r\ddot{\theta} = 0}_{1} & (2) - K_2
\end{cases}$$

$$\frac{1}{2}r(2\dot{r}\dot{\theta} + r\ddot{\theta}) = \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}(r^2\dot{\theta}) = 0$$

$$dA = Cdt \qquad K_2$$

$$\ddot{r} - r\dot{\theta}^2 = -\frac{GM}{r^2} - (1)$$

\$

$$\begin{cases} L = r^2 \dot{\theta} \Leftrightarrow \dot{\theta} = \frac{L}{r^2} \\ p = \frac{L^2}{GM} \Leftrightarrow GM = \frac{L^2}{P} \end{cases}$$

作因变量变换

$$u = \frac{p}{r} \Leftrightarrow \mathbf{r} = \frac{p}{u}$$

$$\dot{r} = \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}\left(\frac{p}{u}\right)}{\mathrm{d}t} = \frac{\mathrm{d}\left(\frac{p}{u}\right)}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{p}{u^2} \frac{\mathrm{d}u}{\mathrm{d}\theta} \cdot \frac{L}{r^2}$$

$$= -\frac{p}{u^2} \frac{Lu^2}{p^2} \cdot u' = -\frac{L}{p} u' = -\frac{L}{p} \frac{\mathrm{d}u}{\mathrm{d}\theta}$$

$$\ddot{r} = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\mathrm{d}r}{\mathrm{d}t} \right) \cdot \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{L}{p} u'' \cdot \frac{Lu^2}{p^2} = -\frac{L^2 u^2}{p^3} u''$$

$$-\frac{L^2 u^2}{p^3} u'' - \frac{p}{u} \cdot \frac{L^2 u^4}{p^4} = -\frac{L^2}{p} \cdot \frac{u^2}{p^2}$$

$$\boxed{u'' + u = 1}$$

$$u = A\cos(\theta + \varphi) + 1 = \frac{p}{r}$$

$$r = \frac{p}{1 + A\cos(\theta + \varphi)} = \frac{p}{1 + q\cos\theta} - K_1$$

第二章 线性微分方程

二阶线性微分方程解的结构 2.1

2.1.1 二阶线性微分方程的形式

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = f(x) \tag{1}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = 0 \tag{2}$$

 $f(x) \neq 0$ 时, (1) 称为二阶非齐次线性微分方程.

 $f(x) \equiv 0$ 时, (1) 称为二阶齐次线性微分方程.

(2) 是(1) 所对应的齐次线性微分方程.

2.1.2 二阶线性微分算子

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}y, \\ \sharp + \frac{\mathrm{d}}{\mathrm{d}x} \\ \Rightarrow - \hat{\mathrm{M}}x \\ \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x}y\right) = \frac{\mathrm{d}^2}{\mathrm{d}x^2}y, \\ \sharp + \frac{\mathrm{d}^2}{\mathrm{d}x^2} \\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x}y\right)\right) = \frac{\mathrm{d}^3}{\mathrm{d}x^3}y, \\ \sharp + \frac{\mathrm{d}^3}{\mathrm{d}x^3} \\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x}y\right)\right) = \frac{\mathrm{d}^3}{\mathrm{d}x^3}y, \\ \sharp + \frac{\mathrm{d}^3}{\mathrm{d}x^3} \\ \Rightarrow \frac{\mathrm{d}^3}{\mathrm{d}x^3}$$

$$L = \frac{\mathrm{d}^2}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}}{\mathrm{d}x} + q(x)$$

$$L[y] = \left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}}{\mathrm{d}x} + q(x)\right)y = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y$$

于是, (1) 简记为 L[y] = f(x), (2) 简记为 L[y] = 0.

性质: 设函数 $y = y(x), y_1 = y_1(x), y_2 = y_2(x)$ 二阶可导. C, C_1, C_2 为常数,则有

$$1.L[Cy] = CL[y].$$

$$2.L[y_1 + y_2] = L[y_1] + L[y_2].$$

$$3.L[C_1y_1 + C_2y_2] = C_1L[y_1] + C_2L[y_2].$$

证明 1.

$$L[Cy] = \left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}}{\mathrm{d}x} + q(x)\right)(Cy)$$

$$= \frac{\mathrm{d}^2(Cy)}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}(Cy)}{\mathrm{d}x} + q(x)(Cy)$$

$$= C\left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y\right)$$

$$= CL[y]$$

2.

$$L[y_1 + y_2] = \left(\frac{d^2}{dx^2} + p(x)\frac{d}{dx} + q(x)\right)(y_1 + y_2)$$

$$= \frac{d^2(y_1 + y_2)}{dx^2} + p(x)\frac{d(y_1 + y_2)}{dx} + q(x)(y_1 + y_2)$$

$$= \frac{d^2y_1}{dx^2} + \frac{d^2y_2}{dx^2} + p(x)\frac{dy_1}{dx} + p(x)\frac{dy_2}{dx} + q(x)y_1 + q(x)y_2$$

$$= L[y_1] + L[y_2]$$

$$3.L[C_1y_1 + C_2y_2] = L[C_1y_1] + L[C_2y_2] = C_1L[y_1] + C_2L[y_2]$$

2.1.3 叠加原理

定理 2.1.1. 设 $y_1 = y_1(x), y_2 = y_2(x)$ 都是 L[y] = 0 的解, C_1, C_2 是常数,则 $C_1y_1 + C_2y_2$ (函数 y_1, y_2 的线性组合)也是 L[y] 的解. 即解的线性组合仍是解.

证明 由已知,得

$$L[y_1] = L[y_2] = 0$$

$$L[C_1y_1 + C_2y_2] = C_1L[y_1] + C_2L[y_2] = C_1 \times 0 + C_2 \times 0 = 0$$

所以, $C_1y_1 + C_2y_2$ 是 L[y] = 0 的解.

2.1.4 函数线性相关和线性无关的定义

设 $y_1 = y_1(x), y_2 = y_2(x)$ 是定义在某区间 I 上的函数. 若存在不全为 0 的常数 k_1, k_2 ,使得

$$k_1 y_1(x) + k_2 y_2(x) = 0$$

成立,则称 $y_1 = y_1(x)$ 与 $y_2 = y_2(x)$ 在区间 I 上线性相关. 否则,称 $y_1 = y_1(x)$ 与 $y_2 = y_2(x)$ 在区间 I 上线性无关. 即

$$k_1 y_1(x) + k_2 y_2(x) = 0 \Leftrightarrow k_1 = k_2 = 0$$

注 设 $y_1(x)$ 与 $y_2(x)$ 线性相关且 $y_2(x) \neq 0$,则存在不全为 0 的 k_1, k_2 ,使得 $k_1y_1(x) + k_2y_2(x) = 0$. 设 $k_1 \neq 0$,则 $y_1(x) = -\frac{k_2}{k_1}y_2(x)$, $\frac{y_1(x)}{y_2(x)} = -\frac{k_2}{k_1}$ 为常数. 反之,若 $\frac{y_1(x)}{y_2(x)} = \alpha$ 是常数,则 $y_1(x) - \alpha y_2(x) = 0$. 所以, $y_1(x), y_2(x)$ 线性相关.

线性相关的等价定义: 设 $y_1 = y_1(x), y_2 = y_2(x)$ 是定义在某区间 I 上的函数. 若 $\frac{y_1(x)}{y_2(x)} = \alpha$ (常数), 则称 $y_1 = y_1(x)$ 与 $y_2 = y_2(x)$ 线性相关. 若 $\frac{y_1(x)}{y_2(x)} \neq$ 常数,则称 $y_1 = y_1(x)$ 与 $y_2 = y_2(x)$ 线性无关.

设 $y_1 = y_1(x), y_2 = y_2(x)$ 是 L[y] = 0 的两个线性无关的解,则存在常数 α ,使得 $\frac{y_1(x)}{y_2(x)} = \alpha$,即 $y_1(x) = \alpha y_2(x)$.

$$C_1y_1 + C_2y_2 = C_1\alpha y_2 + C_2y_2 = (C_1\alpha + C_2)y_2 = Cy_2$$

其中, $C = C_1 \alpha + C_2$.

2.1.5 二阶齐次线性微分方程解的结构定理

定理 2.1.2. 设 $y_1 = y_1(x), y_2 = y_2(x)$ 是 L[y] = 0 两个线性无关的解, C_1, C_2 是任意常数,则 L[y] = 0 的通解是 $y = C_1y_1(x) + C_2y_2(x)$.

2.1.6 二阶非齐次线性微分方程通解的结构定理

定理 2.1.3. 设 $\tilde{y} = \tilde{y}(x)$ 是 L[y] = f(x) 的一个特解, $Y = C_1 y_1(x) + C_2 y_2(x)$ 是 L[y] = 0 的通解,则

$$y = Y + \tilde{y} = C_1 y_1(x) + C_2 y_2(x) + \tilde{y}(x)$$

是 L[y] = f(x) 的通解, 其中 C_1, C_2 为任意常数.

证明 $L[y] = L[Y + \tilde{y}] = L[Y] + L[\tilde{y}] = 0 + f(x) = f(x)$, 所以是解.

因为 $Y = C_1 y_1(x) + C_2 y_2(x)$ 是 L[y] = 0 的通解,所以 C_1, C_2 相互独立,所以 $y = Y + \tilde{y}$ 是通解.

2.1.7 广义叠加定理

定理 2.1.4. 设 y_1, y_2 分别是 $L[y] = f_1(x), L[y] = f_2(x)$ 的解,则 $y_1 + y_2$ 是 $L[y] = f_1(x) + f_2(x)$ 的解.

证明由已知,得

$$L[y_1] = f_1(x), L[y_2] = f_2(x)$$

$$L[y_1 + y_2] = L[y_1] + L[y_2] = f_1(x) + f_2(x)$$

所以, $y_1 + y_2$ 是 $L[y] = f_1(x) + f_2(x)$ 的解.

定理 2.1.5. 设 $y_1 + iy_2$ 是 $L[y] = f_1(x) + if_2(x)$ 的解,则 y_1, y_2 分别是 $L[y] = f_1(x)$ 和 $L[y] = f_2(x)$ 的解.

证明 由已知,得

$$L[y_1 + iy_2] = f_1(x) + if_2(x)$$

又 $L[y_1 + iy_2] = L[y_2] + iL[y_2]$, 则

$$L[y_1] = f_1(x), L[y_2] = f_2(x)$$

所以, y_1, y_2 分别是 $L[y] = f_1(x)$ 和 $L[y] = f_2(x)$ 的解.

2.2 二阶常系数线性微分方程

2.2.1 二阶常系数齐次线性微分方程

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = 0 \tag{1}$$

设 $y = e^{rx}$ 是 (1) 的解, r 是待定常数. 将

$$\frac{\mathrm{d}y}{\mathrm{d}x} = r\mathrm{e}^{rx}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = r^2\mathrm{e}^{rx}$$

代入(1),得

$$r^2 e^{rx} + pre^{rx} + qe^{rx} = 0$$

$$r^2 + pr + q = 0$$
 (2)——(1)的特征方程

 $1.p^2-4q>0$,(2) 有两个不相等的实根 r_1,r_2 ,则 $y_1=\mathrm{e}^{r_1x},y_2=\mathrm{e}^{r_2x}$ 都是 (1) 的解. 又 $\frac{y_1}{y_2}=\frac{\mathrm{e}^{r_1x}}{\mathrm{e}^{r_2x}}=\mathrm{e}^{(r_1-r_2)x}\neq$ 常数,所以 y_1,y_2 线性无关,(1) 的通解为 $y=C_1\mathrm{e}^{r_1x}+C_2\mathrm{e}^{r_2x}$, C_1,C_2 为任意常数.

 $2.p^2 - 4q = 0$ 时,特征方程有两个相等的实根 $r_1 = r_2 := r$,则 $y_1 = e^{rx}$ 是 (1) 的解. 设 $y = ue^{rx}$ 是 (1) 的解

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{e}^{rx} + u r \mathrm{e}^{r} x = \left(\frac{\mathrm{d}u}{\mathrm{d}x} + u r\right) \mathrm{e}^{rx}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + r\frac{\mathrm{d}u}{\mathrm{d}x}\right) e^{rx} + \left(\frac{\mathrm{d}u}{\mathrm{d}x} + ur\right) \cdot re^{rx}$$

$$\left(\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + 2r\frac{\mathrm{d}u}{\mathrm{d}x} + r^2 u\right) e^{rx} + p\left(\frac{\mathrm{d}u}{\mathrm{d}x} + ur\right) e^{rx} + que^{rx} = 0$$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + (2r+p)\frac{\mathrm{d}u}{\mathrm{d}x} + (r^2 + pr + q)u = 0$$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = 0$$

取 u = x, 则 $y_2 = xe^{rx}$ 是 (1) 的解. y_1, y_2 线性无关,所以方程的通解为 $y = (C_1 + C_2 x)e^{rx}$.

 $3.p^2 - 4q < 0$,特征方程有两个共轭复根 $r_{1,2} = \alpha \pm i\beta$.

$$y_1 = e^{r_1 x} = e^{(\alpha + i\beta)x} = e^{\alpha x + i\beta x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

$$y_2 = e^{r_2x} = e^{(\alpha - i\beta)x} = e^{\alpha x - i\beta x} = e^{\alpha x}(\cos \beta x - i\sin \beta x)$$

令 $y_1^* = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x, y_2^* = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x, \frac{y_1^*}{y_2^*} = \cot \beta x \neq$ 常数,所以 y_1^*, y_2^* 线性无关. 所以通解为 $y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$.

特征方程 $r^2 + pr + q = 0$ 的根	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p\frac{\mathrm{d}y}{\mathrm{d}x} + qy = 0 \text{ if } \mathbf{M}$
两个不相等实根 r_1, r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等实根 $r_1 = r_2 := r$	$y = (C_1 + C_2 x)e^{rx}$
两个共轭复根 $r_{1,2} = \alpha \pm i\beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

例 2.2.1.
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 0$$

解

$$r^2 + 3r - 10 = 0$$

$$(r+5)(r-2) = 0$$

$$r_1 = -5, r_2 = 2$$

所以通解为 $y = C_1 e^{-5x} + C_2 e^{2x}$, 其中 C_1, C_2 为任意常数.

例 2.2.2.
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$

解

$$r^2 - 4r + 4 = 0$$
$$r_1 = r_2 = 2$$

所以通解为 $y = (C_1 + C_2 x)e^{2x}$, 其中 C_1, C_2 为任意常数.

例 2.2.3.
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 7y = 0$$

解

$$r^2 + 4r + 7 = 0$$
$$r = -2 \pm \sqrt{3}i$$

所以通解为 $y = e^{-2x}(C_1 \cos \sqrt{3}x + C_2 \sin \sqrt{3}x)$, 其中 C_1, C_2 为任意常数.

2.2.2 二阶常系数非齐次线性微分方程

 $f(x) = P_n(x)e^{\alpha x}, P_n(x)$ 是一个 n 次多项式

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = P_n(x)\mathrm{e}^{\alpha x} \qquad (1)$$

设 $\tilde{y} = Q(x)e^{\alpha x}$ 是 (1) 的特解, Q(x) 是待定多项式

$$\frac{\mathrm{d}\tilde{y}}{\mathrm{d}x} = \frac{\mathrm{d}Q}{\mathrm{d}x}\mathrm{e}^{\alpha x} + Q\mathrm{e}^{\alpha x} \cdot \alpha = \left(\frac{\mathrm{d}Q}{\mathrm{d}x}\right)$$

$$\frac{\mathrm{d}^{2}\tilde{y}}{\mathrm{d}x^{2}} = \left(\frac{\mathrm{d}^{2}Q}{\mathrm{d}x^{2}} + \alpha \frac{\mathrm{d}Q}{\mathrm{d}x}\right) e^{\alpha x} + \left(\frac{\mathrm{d}Q}{\mathrm{d}x} + \mathrm{d}Q\right) e^{\alpha x} \cdot \alpha = \left(\frac{\mathrm{d}^{2}Q}{\mathrm{d}x^{2}} + 2\alpha \frac{\mathrm{d}Q}{\mathrm{d}x} + \alpha^{2}Q\right) e^{\alpha x} \\
\left(\frac{\mathrm{d}^{2}Q}{\mathrm{d}x^{2}} + 2x \frac{\mathrm{d}Q}{\mathrm{d}x} + \alpha^{2}Q\right) e^{\alpha x} + p\left(\frac{\mathrm{d}Q}{\mathrm{d}x} + \alpha Q\right) e^{\alpha x} + qQe^{\alpha x} = P_{n}(x)e^{\alpha x} \\
\frac{\mathrm{d}^{2}Q}{\mathrm{d}x^{2}} + (2\alpha + p) \frac{\mathrm{d}Q}{\mathrm{d}x} + (\alpha^{2} + p\alpha + q)Q = P_{n}(x) \tag{2}$$

 $1^{\circ}.\alpha^{2} + p\alpha + q \neq 0$,即 α 不是特征方程的根. 这时 Q(x) 是 n 次多项式. 设 $Q(x) = a_{0}x^{n} + a_{1}x^{n-1} + \cdots + a_{n-1}x + a_{n} := Q_{n}(x)$,所以 $\tilde{y} = Q_{n}(x)e^{\alpha x}$.

 $2^{\circ}.\alpha^2 + p\alpha + q = 0$,但 $2\alpha + p \neq 0$,即 α 是特征方程的单根,取 $Q(x) = xQ_n(x), \text{ ix by } \tilde{y} = xQ_n(x)e^{\alpha x}.$

 $3^{\circ}.\alpha^2 + p\alpha + q = 2\alpha + p = 0$,所以 α 为二重根,这时 $\tilde{y} = x^2 Q_n(x) e^{\alpha x}$.

例 2.2.4.
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{3x}$$

解

$$r^{2} + 5r + 6 = 0$$
$$(r+2)(r+3) = 0$$
$$r_{1} = -2.r_{2} = -3$$

 $\alpha = 3$ 不是特征方程的根,所以特解形如 $\tilde{y} = ae^{3x}$.

例 2.2.5.
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 3xe^{-2x}$$

解

$$r^{2} + 5r + 6 = 0$$
$$(r+2)(r+3) = 0$$
$$r_{1} = -2.r_{2} = -3$$

 $\alpha = -2$ 是特征方程的单根,所以特解形如 $\tilde{y} = x(ax + b)e^{-2x}$.

(A) 2.2.6.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = -(3x^2 + 1)e^{-x}$$

解

$$r^2 + 2r + 1 = 0$$
$$(r+1)^2 = 0$$

$$r_1 = r_2 := r = -1$$

 $\alpha = -1$ 是特征方程的二重根,所以特解形如 $\tilde{y} = x^2(ax^2 + bx + c)e^{-x}$.

例 2.2.7. 求
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y = x^2 - 3$$
 的一个特解.

解

$$r^{2} + r + 2 = 0$$

$$r_{1,2} = \frac{-1 \pm \sqrt{1 - 8}}{2}$$

x = 0 不是特征方程的根. $(x^2 - 3 = (x^2 - 3)e^{0x})$,所以特解形如 $\tilde{y} = (ax^2 + bx + c)e^{0x} = ax^2 + bx + c$.

$$\tilde{y}' = 2ax + b, \tilde{y}'' = 2a$$

$$2a + (2ax + b) + 2(ax^{2} + bx + c) = x^{2} - 3$$

$$a = \frac{1}{a}$$

$$\begin{cases} 2a = 1 \\ 2a + 2b = 0 \\ 2a + b + 2c = -3 \end{cases} \Rightarrow \begin{cases} a = \frac{1}{2} \\ b = -\frac{1}{2} \\ c = -\frac{7}{4} \end{cases}$$

所以
$$\tilde{y} = \frac{1}{2}x^2 - \frac{1}{2}x - \frac{7}{4}$$
.

例 2.2.8. 求
$$\frac{d^2y}{dx^2} + y = (x-3)e^{3x}$$
 的通解.

解

$$r^2 + 1 = 0, r = \pm i$$

所以 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = 0$ 的通解 $Y = C_1 \cos x + C_2 \sin x$.

因为 $\alpha=3$ 不是特征方程的根,所以 $\tilde{y}=(ax+b)\mathrm{e}^{3x}$ 是原方程的一个特解.

$$\tilde{y}' = ae^{3x} + 3(ax+b)e^{3x} = (3ax+a+3b)e^{3x}$$
$$\tilde{y}'' = 3ae^{3x} + (3ax+a+3b)e^{3x} \cdot 3 = (9ax+6a+9b)e^{3x}$$

所以

$$\begin{cases}
(9ax + 6a + 9b)e^{3d} + (ax + b)e^{3d} = (x - 2)e^{3d} \\
\begin{cases}
10a = 1 \\
6a + 10b = -2
\end{cases} \Rightarrow \begin{cases}
a = \frac{1}{10} \\
b = -\frac{13}{50}
\end{cases}$$

所以 $\tilde{y} = \left(\frac{x}{10} - \frac{13}{50}\right) e^{3x}$. 所以原方程的通解为 $y = Y + \tilde{y} = C_1 \cos x + C_2 \sin x + \left(\frac{x}{10} - \frac{13}{50}\right) e^{3x}$.

例 2.2.9. 求
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = (x^2 + 1)e^{-x}$$
 的通解.

解

$$r^2 - 2r - 3 = 0, r_1 = 3, r_2 = -1$$

所以
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 0$$
 的通解 $Y = C_1 \mathrm{e}^{3x} + C_2 \mathrm{e}^{-x}$.

因为 $\alpha = -1$ 是特征方程的单根, 所以特解形如 $\tilde{y} = x(ax^2 + bx + c)e^{-x}$.

$$\frac{\mathrm{d}^2 Q}{\mathrm{d}x^2} + (2\alpha + p)\frac{\mathrm{d}Q}{\mathrm{d}x} + (\alpha^2 + p\alpha + q)Q = P_n(x)$$
 (2)

$$Q(x) = x(ax^{2} + bx + c) = ax^{3} + bx^{2} + cx$$

$$-4(3ax^2 + 2bx + c) = x^2 + 1$$

$$\begin{cases}
-12a = 1 \\
6a - 8b = 0 \Rightarrow \begin{cases}
a = -\frac{1}{12} \\
b = -\frac{1}{16} \\
c = -\frac{9}{32}
\end{cases}$$

所以 $\tilde{y} = -x\left(\frac{x^2}{12} + \frac{x}{16} + \frac{9}{32}\right)e^{-x}$,所以原方程的通解为 $y = Y + \tilde{y} = C_1e^{3x} + C_2e^{-x} - x\left(\frac{1}{12}x^2 + \frac{1}{16}x + \frac{9}{32}\right)e^{-x}$,其中 C_1, C_2 为任意常数.

 $f(x) = P_n(x)e^{\alpha x}\cos\beta x$ 或 $P_n(x)e^{\alpha x}\sin\beta x$ (解法一)

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = P_n(x) \mathrm{e}^{\alpha x} \cos \beta x \qquad (1)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = P_n(x) \mathrm{e}^{\alpha x} \sin \beta x \qquad (2)$$

$$1.f(x) = P_n(x)e^{\alpha x}$$

设 α 是特征方程的 k 重根,则 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + q(y) = f(x)$ 有特解,形如 $\tilde{y} = x^k Q_n(x) \mathrm{e}^{\alpha x}$.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = P_n(x) \mathrm{e}^{(\alpha + \mathrm{i}\beta)x}$$
 (3)

设 (3) 有特解 $\tilde{y} = \tilde{y_1} + i\tilde{y_2}$, 则 $\tilde{y_1}$ 是方程 (1) 的特解, $\tilde{y_2}$ 是方程 (2) 的特解.

例 2.2.10.
$$\frac{d^2y}{dx^2} - y = \sin x$$
 $(n = 0, \alpha = 0, \beta = 1)$

解

$$r^2 - 1 = 0, r = \pm 1$$

所以
$$\frac{d^2y}{dx^2} - y = 0$$
 的通解为 $Y = C_1 e^x + C_1 e^{-x}$.

下求 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = \mathrm{e}^{\mathrm{i}x}$ 的特解. 设特解为 $\tilde{y} = a\mathrm{e}^{\mathrm{i}x}$.

$$\frac{\mathrm{d}\tilde{y}}{\mathrm{d}x} = \mathrm{i}a\mathrm{e}^{\mathrm{i}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -a\mathrm{e}^{\mathrm{i}x}$$

$$-a - a = 1 \Rightarrow a = -\frac{1}{2}$$

所以

$$\tilde{y} = -\frac{1}{2}e^{ix} = -\frac{1}{2}(\cos x + i\sin x)$$

所以原方程的特解为 $\tilde{y_1} = -\frac{1}{2}\sin x$,所以原方程通解为 $y = Y + \tilde{y_1} = C_1 e^x + C_2 e^{-x} - \frac{1}{2}\sin x$.

例 2.2.11.
$$\frac{d^2y}{dx^2} - y = e^x \cos 2x$$
. $(n = 0, \alpha = 1, \beta = 2)$

解

$$r^2 - 1 = 0, r = \pm 1$$

$$\frac{d^2y}{dx^2} - y = 0$$
的通解为 $Y = C_1 e^x + C_2 e^{-x}$.
设 $\frac{d^2y}{dx^2} - y = e^{(1+2i)x}$ 有特解形如 $\tilde{y} = ae^{(1+2i)x}$.

$$\frac{\mathrm{d}\tilde{y}}{\mathrm{d}x} = a\mathrm{e}^{(1+2\mathrm{i})x}(1+2\mathrm{i})$$

$$\frac{\mathrm{d}^2\tilde{y}}{\mathrm{d}x^2} = a(1+2\mathrm{i})^2\mathrm{e}^{(1+2\mathrm{i})x} = a(-3+4\mathrm{i})\mathrm{e}^{(1+2\mathrm{i})x}$$

$$a(-3+4\mathrm{i}) - a = 1 \Rightarrow a = \frac{1}{-4+4\mathrm{i}} = -\frac{1}{8}(1+\mathrm{i})$$

所以

$$\tilde{y} = -\frac{1}{8}(1+i)e^{(1+2i)x} = -\frac{1}{8}(1+i)e^{x}(\cos x + i\sin 2x)$$

$$= -\frac{e^{x}}{8}(\cos 2x + i\sin 2x + i\cos 2x - \sin 2x)$$

$$= -\frac{e^{x}}{8}((\cos 2x - \sin 2x) + i(\sin 2x + \cos 2x))$$

所以原方程特解为 $\tilde{y} = -\frac{e^x}{8}(\cos 2x - \sin 2x)$,所以原方程通解为 $y = Y + \tilde{y_1} = C_1 e^x + C_2 e^{-x} - \frac{e^x}{8}(\cos 2x - \sin 2x)$.

将 $P_n(x)e^{\alpha x}\cos\beta x$ 或 $P_n(x)e^{\alpha x}\sin\beta x$ 改写为 $f(x)=(P_n^1(x)\cos\beta x+P_l^2(x)\sin\beta x)e^{\alpha x}$ (解法二)

$$\begin{aligned} \mathrm{e}^{\mathrm{i}\beta x} &= \cos\beta x + \mathrm{i}\sin\beta x, \mathrm{e}^{-\mathrm{i}\beta x} = \cos\beta x - \mathrm{i}\sin\beta x \\ \cos\beta x &= \frac{\mathrm{e}^{\mathrm{i}\beta x} + \mathrm{e}^{-\mathrm{i}\beta x}}{2}, \sin\beta x = \frac{\mathrm{e}^{\mathrm{i}\beta x} - \mathrm{e}^{-\mathrm{i}\beta x}}{2\mathrm{i}} = \frac{-\mathrm{e}^{\mathrm{i}\beta x} + \mathrm{e}^{-\mathrm{i}\beta x}}{2}\mathrm{i} \\ f(x) &= \left(P_n^1 \frac{\mathrm{e}^{\mathrm{i}\beta x} + \mathrm{e}^{-\mathrm{i}\beta x}}{2} + P_l^2 \frac{-\mathrm{e}^{\mathrm{i}\beta x} + \mathrm{e}^{-\mathrm{i}\beta x}}{2}\mathrm{i}\right)\mathrm{e}^{\alpha x} \\ &= \left(\frac{P_n^1 - P_l^2\mathrm{i}}{2}\mathrm{e}^{\mathrm{i}\beta x} + \frac{P_n^1 + P_l^2\mathrm{i}}{2}\mathrm{e}^{-\mathrm{i}\beta x}\right)\mathrm{e}^{(\alpha - \mathrm{i}\beta)x} \\ &= \frac{P_n^1 - P_l^2\mathrm{i}}{2}\mathrm{e}^{(\alpha + \mathrm{i}\beta)x} + \frac{P_n^1 + P_l^2\mathrm{i}}{2}\mathrm{e}^{(\alpha - \mathrm{i}\beta)x} \end{aligned}$$

$$\diamondsuit g(x) = \underbrace{\frac{P_n^1(x) - P_l^2(x)\mathrm{i}}{2}}_{\text{m次多项式}} \underbrace{\mathrm{e}^{(\alpha + \mathrm{i}\beta)x}}_{\text{指数函数}}, \ \mathrm{iff} \ m = \max\left\{n,l\right\}, \ \mathrm{II} \ f(x) = g(x) + \overline{g}(x).$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = f(x) \qquad (1)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p\frac{\mathrm{d}y}{\mathrm{d}x} + qy = g(x) \tag{2}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p \frac{\mathrm{d}y}{\mathrm{d}x} + qy = \overline{g}(x) \qquad (3)$$

设 $\alpha+\mathrm{i}\beta$ 是特征方程的 k 重根 (k=0 或 1),(2) 的特解形如 $\tilde{y}=x^kQ_m(x)\mathrm{e}^{(\alpha+\mathrm{i}\beta)x}$

$$Q_m(x) = \frac{1}{2} (R_m^1(x) - iR_m^2(x))$$

$$\tilde{y} = \frac{1}{2}x^k (R_m^1 - iR_m^2) e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

$$= \frac{1}{2}x^k (R_m^1 \cos \beta x + iR_m^1 \sin \beta x - iR_m^2 \cos \beta x + R_m^2 \sin \beta x) e^{\alpha x}$$

$$= \frac{1}{2}x^k ((R_m^1 \cos \beta x + R_m^2 \sin \beta x) + i(R_m^1 \sin \beta x - R_m^2 \cos \beta x)) e^{\alpha x}$$

所以 (3) 的特解有 $\tilde{y}_3 = \overline{\tilde{y}_2}$. 所以 (1) 有特解 $\tilde{y} = \tilde{y}_2 + \tilde{y}_3 = \tilde{y}_2 + \overline{\tilde{y}_2} = x^k (R_m^1 \cos \beta x + R_m^2 \sin \beta x) e^{\alpha x}$. 则方程特解形如

$$\tilde{y} = x^k (R_m^1(x)\cos\beta x + R_m^2\sin\beta x)e^{\alpha x}$$

其中 $m = \max\{n, l\}$.

例 2.2.12.
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = \sin x$$

解

$$r^2 - 1 = 0, r = \pm 1$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = 0$$
 的通解 $Y = C_1 \mathrm{e}^x + C_2 \mathrm{e}^{-x}$.

$$m = 0, \alpha = 0, \beta = 1$$

i 不是特征方程的根, k = 0. 设 $\tilde{y} = a \cos x + b \sin x$ 为特解

$$\frac{\mathrm{d}\tilde{y}}{\mathrm{d}x} = -a\sin x + b\cos x$$

$$\frac{\mathrm{d}^2 \tilde{y}}{\mathrm{d}x^2} = -a\cos x - b\sin x$$

所以

$$-a\cos x - b\sin x - a\cos x - b\sin x = \sin x$$

因为 $\frac{\sin x}{\cos x} \neq$ 常数,所以 $\sin x$ 与 $\cos x$ 线性无关. 所以 -2a = -(2b+1) = 0, 所以 $a = 0, b = -\frac{1}{2}$, 所以 $\tilde{y} = -\frac{1}{2}\sin x$. 所以

$$y = Y + \tilde{y} = C_1 e^x + C_2 e^{-x} - \frac{1}{2} \sin x$$

为所求.

例 2.2.13.
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = \mathrm{e}^x \cos 2x$$

解

$$r^2 - 1 = 0, r = \pm 1$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = 0$$
 的通解 $Y = C_1 \mathrm{e}^x + C_2 \mathrm{e}^{-x}$.

$$m = 0, \alpha = 1, \beta = 2$$

1+2i 不是特征方程的根,k=0. 设 $\tilde{y}=(a\cos 2x+b\sin 2x)e^x$ 为特解.

$$\frac{\mathrm{d}\tilde{y}}{\mathrm{d}x} = (-2a\sin 2x + 2b\cos 2x)\mathrm{e}^x + (a\cos 2x + b\sin 2x)\mathrm{e}^x$$
$$= ((a+2b)\cos 2x + (-2a+b)\sin 2x)\mathrm{e}^x$$
$$\mathrm{d}^2\tilde{y}$$

$$\frac{d^2 \tilde{y}}{dx^2} = (-2(a+2b)\sin 2x + 2(-2a+b)\cos 2x)e^x + ((a+2b)\cos 2x + (-2a+b)\sin 2x)e^x$$
$$= ((-4a-3b)\sin 2x + (-3a+4b)\cos 2x)e^x$$

$$(-4a - 3b)\sin 2x + (-3a + 4b)\cos 2x - a\cos 2x - b\sin 2x = \cos 2x$$
$$(-4a + 4b - 1)\cos 2x + (-4a - 4b)\sin 2x = 0$$

因为 $\sin 2x$ 与 $\cos 2x$ 线性无关,所以 -4a + 4b - 1 = -4a - 4b = 0. 所以 $a = -\frac{1}{8}, b = \frac{1}{8}$. 所以 $\tilde{y} = -\frac{1}{8}e^x \left(\cos 2x - \frac{1}{8}\sin 2x\right)$. 所以所求为

$$y = Y + \tilde{y} = C_1 e^x + C_2 e^{-x} - \frac{1}{8} e^x \left(\cos 2x - \frac{1}{8}\sin 2x\right)$$

例 2.2.14.
$$\frac{d^2y}{dx^2} - y = e^x \cos 2x + \sin x$$

解 ①
$$\frac{d^2y}{dx^2} - y = 0$$
 的通解为 $Y = C_1 e^x + C_2 e^{-x}$.
② $\frac{d^2y}{dx^2} - y = e^x \cos 2x$ 的特解为 $\tilde{y_1} = -\frac{1}{8} e^x \left(\cos 2x - \frac{1}{8}\sin 2x\right)$.
③ $\frac{d^2y}{dx^2} - y = \sin x$ 的特解为 $\tilde{y_2} = -\frac{1}{2}\sin x$.

所以原方程通解为 $y = Y + \tilde{y_1} + \tilde{y_2} = C_1 e^x + C_2 e^{-x} - \frac{1}{8} e^x \left(\cos 2x - \frac{1}{8}\sin 2x\right) - \frac{1}{2}\sin x$.

例 2.2.15.
$$y''' + 3y'' + 3y' + y = e^x$$

解

$$r^{3} + 3r^{2} + 3r + 1 = 0$$
$$(r+1)^{3} = 1, r_{1} = r_{2} = r_{3} = -1$$

则 y''' + 2y'' + 3y' + y = 0 的通解 $Y = (C_1 + C_2 x + C_3 x^2)e^{-x}.\alpha = 1$ 不是特征方程的根. 所以可设特解为 $\tilde{y} = ae^x$.

$$\tilde{y}' = \tilde{y}'' = \tilde{y}''' = ae^x$$

代入,得

$$a + 3a + 3a + a = 1 \Rightarrow a = \frac{1}{8}$$

所以

$$\tilde{y} = \frac{1}{8} e^x$$

所以所求为

$$y = Y + \tilde{y} = (C_1 + C_2 x + C_3 x^2) e^{-x} + \frac{1}{8} e^x$$

其中 C_1, C_2, C_3 为任意常数.

2.3 二阶变系数线性微分方程

2.3.1 变量替换法

Euler 方程

$$a_0 x^n \frac{\mathrm{d}^n y}{\mathrm{d} x^n} + a_1 x^{n-1} \frac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}} + \dots + a_{n-1} x \frac{\mathrm{d} y}{\mathrm{d} x} + a_0 y = f(x)$$

其中 $a_0, a_1, a_2, \dots, a_n$ 是常数, f(x) 是一个已知的函数, $a_0 \neq 0$.

$$a_0 x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + a_1 x \frac{\mathrm{d}y}{\mathrm{d}x} + a_2 y = f(x), a_n \neq 0$$
 (1)

<1> 当 x > 0 时,令 $x = e^t$,则 $t = \ln x$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{x}$$
$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2y}{\mathrm{d}t^2} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \cdot \frac{1}{x} + \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{-1}{x^2} = \left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}t}\right) \frac{1}{x^2}$$

代入(1),得

$$a_0 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - a_0 \frac{\mathrm{d}y}{\mathrm{d}t} + a_1 \frac{\mathrm{d}y}{\mathrm{d}t} + a_2 y = f(e^t)$$

$$a_0 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (a_1 - a_0) \frac{\mathrm{d}y}{\mathrm{d}t} + a_2 y = f(\mathrm{e}^t)$$

 $<2> \stackrel{\text{def}}{=} x < 0 \text{ pd}, \ \diamondsuit \ x = -\mathrm{e}^t, t = \ln(-x).$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{1}{-x} \cdot (-1) = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{x}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \cdot \frac{1}{x} + \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{-1}{x^2} = \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}t}\right) \frac{1}{x^2}$$

代入(1),得

$$a_0 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (a_1 - a_0) \frac{\mathrm{d}y}{\mathrm{d}t} + a_2 y = f(-\mathrm{e}^t)$$

例 2.3.1.
$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} = 6 \ln x - \frac{1}{x}$$

解令 $x = e^t$,则 $t = \ln x$.

$$\frac{d^2 y}{dt^2} = 6t - e^{-t}$$

$$\frac{dy}{dt} = 3t^2 + e^{-t} + C_1$$

$$y = t^3 - e^{-t} + C_1 t + C_2$$

所以

$$y = \ln^3 x - \frac{1}{x} + C_1 \ln x + C_2$$

即为所求.

降阶法

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = 0 \quad (1)$$

设 (1) 有一个已知的非零解 y_1 . 令 $y=y_1u$, 其中 u=u(x) 是待定函数. 则

$$y' = y_1'u + y_1u'$$
$$y'' = y_1''u + 2y_1'u' + y_1u''$$
$$y_1u'' + (2y_1' + py_1)u' + (y_1'' + py_1' + qy_1)u = 0$$

因为 y_1 是 (1) 的解, 所以

$$y_1'' + py_1' + qy_1 = 0$$

所以

$$y_1 u'' + (2y_1' + py_1)u' = 0$$

$$y_{1} \frac{dz}{dx} = -(2y'_{1} + py_{1})z$$

$$\frac{dz}{z} = -2\frac{dy_{1}}{y_{1}} - p$$

$$\ln|z| = -2\ln|y_{1}| - \int p(x)dx + \ln|C_{2}|$$

$$\ln|z| = \ln\frac{1}{y^{2}} + \ln e^{-\int p(x)dx} + \ln|C_{2}|$$

$$z = \frac{C_{2}}{y_{1}^{2}} e^{-\int p(x)dx}$$

z=0 也是解,即 $C_2=0$ 的情形. 所以

$$u = C_1 + C_2 \int \frac{1}{y_1^2} e^{-\int p(x) dx}$$

所以 (1) 通解为
$$\underline{y} = y_1 \left(C_1 + C_2 \int \frac{1}{y_1^2} e^{-\int p(x) dx} dx \right)$$
.

例 2.3.2. 已知 $y = \frac{\sin x}{x}$ 是方程 $y'' + \frac{2}{x}y' + y = 0$ (1) 的一个解,求其通解.

解
$$y_1 = \frac{\sin x}{x}$$
, $p(x) = \frac{2}{x}$. 所以通解为
$$y = y_1 \left(C_1 + C_2 \int \frac{1}{y_1^2} e^{-\int p(x) dx} dx \right)$$

$$= \frac{\sin x}{x} \left(C_1 + C_2 \int \frac{x^2}{\sin^2 x} e^{-\int \frac{2}{x} dx} dx \right)$$

$$= \frac{\sin x}{x} (C_1 + C_2 \int \csc^2 x dx)$$

$$= \frac{1}{x} (C_1 \sin x + C_2 \cos x)$$

注

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = f(x) \qquad (2)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = 0 \tag{1}$$

设 (1) 有非零解 y_1 为已知. 令 $y = y_1 u$,代入 (2),得

$$y_1 u'' + (2y_1' + py_1)u' = f(x)$$
 (3)

$$y_1 \frac{\mathrm{d}z}{\mathrm{d}x} + (2y_1' + py_1)z = f(x)$$

所以此降阶法对非齐次线性微分方程仍适用.

某些特殊的变系数方程化为常系数方程

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = 0 \qquad (1)$$

其中 p(x) 具有连续的一阶导数, q(x) 连续.

$$\Leftrightarrow y = uv$$

$$y' = u'v + uv'$$

$$y'' = u''v + 2u'v' + uv''$$

取 $v = e^{-\int \frac{p}{2} dx}$,则 2v' + pv = 0.

$$v' = e^{-\int \frac{p}{2} dx} \cdot \left(-\frac{p}{2}\right) = -\frac{p}{2} \cdot e^{-\int \frac{p}{2} dx}$$

$$v'' = -\frac{p'}{2} e^{-\int \frac{p}{2} dx} - \frac{p}{2} e^{-\int \frac{p}{2} dx} \cdot \left(-\frac{p}{2}\right) = \left(-\frac{p'}{2} + \frac{p^2}{4}\right) e^{-\int \frac{p}{2} dx}$$

$$v'' + pv' + qv = \left(-\frac{p'}{2} + \frac{p^2}{4} - \frac{p^2}{2} + q\right) e^{-\int \frac{p}{2} dx} = -\frac{1}{4} (p^2 + 2p' - 4q)v = -\frac{a}{4}v$$
則 (2) 化为

$$u'' - \frac{a}{4}u = 0$$

例 2.3.3.
$$4\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4x\frac{\mathrm{d}y}{\mathrm{d}x} + (x^2 + 1)y = 0$$

解

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \frac{x^2 + 1}{4}y = 0$$

$$p(x) = x, q(x) = \frac{1}{4}(x^2 + 1)$$

$$p^2 + 2p' - 4q = x^2 + 2 - (x^2 + 1) = 1$$

$$v = e^{-\int \frac{x}{2} dx} = e^{-\frac{x^2}{4}}$$

$$u'' - \frac{1}{4}u = 0$$

$$r^2 - \frac{1}{4}r = 0, r = \pm \frac{1}{2}$$

所以

$$u = C_1 e^{\frac{1}{2}x} + C_2 e^{-\frac{1}{2}x}$$

所以

$$y = e^{-\frac{x^2}{4}} \left(C_1 e^{\frac{1}{2}x} + C_2 e^{-\frac{1}{2}x} \right)$$

为所求通解.

2.3.2 常数变易法

$$y'' + p(x)y' + q(x)y = f(x)$$
 (1)

设 y''+p(x)y'+q(x)y=0 的通解为 $y=C_1y_1(x)+C_2y_2(x)$. 设 $y=u_1y_1+u_2y_2$ 是 (1) 的一个解.

$$y' = u_1'y_1 + u_1y_1' + u_2'y_2 + u_2y_2' = (u_1'y_1 + u_2'y_2) + (u_1y_1' + u_2y_2')$$

补充条件,令 $u_1'y_1 + u_2'y_2 = 0$.

$$y' = u_1 y_1' + u_2 y_2'$$

$$y'' = u_1'y_1' + u_1y_1'' + u_2'y_2' + u_2y_2''$$
$$= (u_1y_1'' + u_2y_2'') + (u_1'y_1' + u_2'y_2')$$

代入(1)得

$$(u_1y_1'' + u_2y_2'') + (u_1'y_1' + u_2'y_2')$$

$$+u_1py_1' + u_2py_2' + u_1qy_1 + u_2qy_2 = f(x)$$

$$\begin{cases} u_1'y_1' + u_2'y_2' = f(x) & (3) \\ u_1'y_1 + u_2'y_2 = 0 & (2) \end{cases}$$
(*)

方程组(*)有唯一解,记作

$$u_1' = \varphi_1(x), u_2' = \varphi_2(x)$$

所以

$$u_1 = \int \varphi_1(x) dx, u_2 = \int \varphi_2(x) dx$$

所以(1)有特解

$$\tilde{y} = y_1 \int \varphi_1(x) dx + y_2 \int \varphi_2(x) dx$$

所以(1)通解为

$$y = Y + \tilde{y} = \cdots$$

例 2.3.4.
$$y'' - 2y + y = \frac{e^x}{x}$$

解

$$r^2 - 2r + 1 = 0, r_1 = r_2 := r = 1$$

所以 y'' - 2y + y = 0 的通解为 $Y = (C_1 + C_2 x)e^x$. 即

$$Y = C_1 e^x + C_2 x e^x, y_1 = e^x, y_2 = x e^x$$

设 $y = u_1 e^x + u_2 x e^x$ 是 (1) 的一个解.

$$\begin{cases} u'_1 y_1 + u'_2 y_2 = 0 \\ u'_1 y'_1 + u'_2 y'_2 = f(x) \end{cases} \quad \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$
——朗斯基行列式
$$\begin{cases} u'_1 e^x + u'_2 x e^x = 0 \\ u'_1 e^x + u'_2 (e^x + x e^x) = \frac{e^x}{x} \end{cases} \Rightarrow \begin{cases} u'_1 + u'_2 x = 0 \\ u'_1 + u'_2 (1 + x) = \frac{1}{x} \end{cases}$$

$$\begin{cases} u_1' e^x + u_2' x e^x = 0 \\ u_1' e^x + u_2' (e^x + x e^x) = \frac{e^x}{x} \end{cases} \Rightarrow \begin{cases} u_1' + u_2' x = 0 \\ u_1' + u_2' (1 + x) = \frac{1}{x} \end{cases}$$

所以

$$u_2' = \frac{1}{x} \Rightarrow u_2 = \ln|x|$$

 $u_1' = -1 \Rightarrow u_1 = -x$

所以(1)有特解

$$\tilde{y} = -xe^x + (\ln|x|)xe^x$$

所以(1)的通解为

$$y = Y + \tilde{y} = (C_1 + C_2 x - x + x \ln |x|) e^x$$

= $(C_1 + C_3 x + x \ln |x|) e^x$

其中 $C_3 = C_2 - 1, C_1, C_3$ 为任意常数.

2.3.3 幂级数解法

例 2.3.5.
$$y'' + y = 0$$

解 设方程的解可展开为下列幂级数:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$
$$y' = a_1 + 2a_2 x + 3a_3 x^2 + \dots + (n+1)a_{n+1} x^n + \dots$$
$$y'' = 2a_2 + 3 \cdot 2a_3 x + 4 \cdot 3a_4 x^2 + \dots + (n+2)(n+1)a_{n+2} x^n + \dots$$

所以

$$(a_0 + 2a_2) + (3 \cdot 2a_3 + a_1)x + (4 \cdot 3a_4 + a_2)x^2 + \dots = 0$$

所以

$$a_0 + 2a_2 = 0 a_2 = -\frac{1}{2}a_0 = -\frac{1}{2!}a_0$$

$$3 \cdot 2a_3 + a_1 = 0 a_3 = -\frac{1}{3 \times 2}a_1 = -\frac{1}{3!}a_1$$

$$4 \cdot 3a_4 + a_2 = 0 a_4 = -\frac{1}{4 \times 3}a_2 = (-1)^2 \frac{1}{4 \cdot 3 \cdot 2}a_0 = (-1)^2 \frac{1}{4!}a_0$$

$$\vdots$$

所以

$$y = a_0 \left(1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \dots \right) + a_1 \left(x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots \right)$$
$$= a_0 \cos x + a_1 \sin x$$

即 $y = a_0 \cos x + a_1 \sin x$ 为方程的通解.

另解 $r^2 + 1 = 0, r = \pm i$,所以通解为 $y = C_1 \cos x + C_2 \sin x$.

第三章 线性微分方程组

3.1 微分方程组与线性微分方程组

从标量到向量

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x) \\ x|_{t=0} = x_0 \end{cases} \Rightarrow \begin{cases} \frac{\mathrm{d}\overrightarrow{x}}{\mathrm{d}t} = \overrightarrow{f}(t,\overrightarrow{x}) \\ \overrightarrow{x}|_{t=0} = \overrightarrow{x_0} \end{cases}$$

即

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = f_1(t, x_1, x_2, \dots, x_n) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = f_2(t, x_1, x_2, \dots, x_n) \\ \dots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = f_n(t, x_1, x_2, \dots, x_n) \\ x_1|_{t=0} = x_1^0, x_2|_{t=0} = x_2^0, \dots, x_n|_{t=0} = x_n^0 \end{cases}$$

3.1.1 n 阶微分方程与特定一阶微分方程组的等价性

对显式 n 阶方程

$$\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = f\left(t, x, \frac{\mathrm{d}x}{\mathrm{d}t}, \cdots, \frac{\mathrm{d}^{n-1}x}{\mathrm{d}t^{n-1}}\right)$$

作变量变换:

$$x_1 = x, x_2 = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x_1}{\mathrm{d}t}, x_3 = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \frac{\mathrm{d}x_2}{\mathrm{d}t}, \cdots, x_n = \frac{\mathrm{d}^{n-1}x}{\mathrm{d}t^{n-1}} = \frac{\mathrm{d}x_{n-1}}{\mathrm{d}t}$$

其中后 n-1 个等式与原方程:

$$\frac{\mathrm{d}x_n}{\mathrm{d}t} = \frac{\mathrm{d}^n x}{\mathrm{d}t^n} = f(t, x_1, x_2, \cdots, x_{n-1}, x_n)$$

3.1.2 线性微分方程组的一般概念

标准形式

$$\frac{\mathrm{d}\overrightarrow{x}}{\mathrm{d}t} = \overline{\overline{A}}(t) \cdot \overrightarrow{x} + \overrightarrow{f}(t)$$

其中 $\overline{A}(t) = \{a_{ij}(t)\}_{i,j=1}^n$ 为系数矩阵,"·" 为 n 阶方阵与 n 维向量乘法. 特例: 等价于 n 阶线性方程时的情况. 和讨论高阶线性方程时的定义一样.

- $\overrightarrow{f}(t) \equiv 0$: 齐次线性方程组
- $\overrightarrow{f}(t) \neq 0$: 非齐次线性方程组

3.2 线性微分方程组解的一般理论

类比单个高阶线性方程的情形,尤其是:

- 线性无关性
- 朗斯基行列式

3.3 常系数线性微分方程组的解法

3.3.1 齐次情形 $(\vec{f}(t) \equiv 0)$

与标量方程情形类似,把求解问题转化为求 特征结构 问题. 设

$$\overrightarrow{x}(t) = \overrightarrow{v}e^{\lambda t}$$

其中 寸 为待定的常数向量.

代入原方程 · · ·

并约去 $e^{\lambda t}$ 后得到一个 矩阵特征值问题:

$$\overline{\overline{A}}\overrightarrow{v} = \lambda \overrightarrow{v}$$

求解常系数齐次线性微分方程组

如特征根 λ_k 为单根 · · ·

它对应的特征向量记为 $\overrightarrow{v_k}$,则原微分方程组的一个解为

$$\overrightarrow{x}(t) = \overrightarrow{v}_k e^{\lambda_k t}$$

1. 如 \overline{A} 的特征根都是单根:

记为 $\lambda_1, \lambda_2, \dots, \lambda_n$,它们分别对应、且互相 线性无关 的 n 个不同的解 $\{\overrightarrow{v}_i\}_{i=1}^n$ 构成一个基本解组. 即原一阶线性方程组的通解

$$\overrightarrow{x}(t) = \sum_{i=1}^{n} c_i \overrightarrow{v}_i e^{\lambda_i t}$$

2. 如 \overline{A} 的特征根为复数单根:

复数根必成对出现(互为共轭),对应特征向量也互为共轭.

3. 如 \overline{A} 的特征根为重根: 有点复杂

k 重特征根 λ_0 对应 k 个线性无关的基本解,形式为

$$\overrightarrow{x}^{(i)}(t) = \left(\overrightarrow{v}_0^{(i)} + \frac{t}{1!}\overrightarrow{v}_1^{(i)} + \frac{t^2}{2!}\overrightarrow{v}_2^{(i)} + \dots + \frac{t^{k-1}}{(k-1)!}\overrightarrow{v}_{k-1}^{(i)}\right)e^{\lambda_0 t}$$

其中 $\overrightarrow{v}_0^{(i)}$ 是 λ_0 对应的 k 个 广义特征向量(它们之间的线性关系). 而

$$\overrightarrow{v}_{j}^{(i)} = \left(\overline{\overline{A}} - \lambda_0 \overline{\overline{I}}\right) v_{j-1}^{(i)}, j = 1, 2, \cdots, k-1$$

怎么求广义特征向量??

$$\mathbb{A} \left(\overline{\overline{A}} - \lambda_0 \overline{\overline{I}} \right)^k \overrightarrow{v} = \overrightarrow{0}$$

例 3.3.1.
$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -3x_1 + 4x_2 - x_3\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_1 + x_3\\ \frac{\mathrm{d}x_3}{\mathrm{d}t} = 6x_1 - 6x_2 + 5x_3 \end{cases} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \underbrace{\begin{pmatrix} -3 & 4 & -2\\ 1 & 0 & 1\\ 6 & -6 & 5 \end{pmatrix}}_{\overline{A}} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}$$

$$\left| \overline{\overline{A}} - \lambda I \right| = \begin{vmatrix} -3 - \lambda & 4 & -2 \\ 1 & 0 - \lambda & 1 \\ 6 & -6 & 5 - \lambda \end{vmatrix} = -(\lambda^3 - 2\lambda^2 - \lambda + 2) = -(\lambda - 2)(\lambda - 1)(\lambda + 1)$$

$$\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -1$$

①
$$\lambda_1 = 2, \left(\overline{\overline{A}} - \lambda_1 I\right) \overrightarrow{v_1} = 0$$

$$\begin{pmatrix} -5 & 4 & -2 \\ 1 & -2 & 1 \\ 6 & -6 & 3 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \\ v_{13} \end{pmatrix} = 0$$

$$v_{11}: v_{12}: v_{13} = \begin{vmatrix} 4 & -2 \\ -2 & 1 \end{vmatrix}: \begin{vmatrix} -2 & -5 \\ 1 & 1 \end{vmatrix}: \begin{vmatrix} -5 & 4 \\ 1 & -2 \end{vmatrix} = 0:3:6 = 0:1:2$$

$$\Rightarrow \overrightarrow{x_1} = e^{2t} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

$$\begin{pmatrix} -4 & 4 & -2 \\ 1 & -1 & 1 \\ 6 & -6 & 4 \end{pmatrix} \begin{pmatrix} v_{21} \\ v_{22} \\ v_{23} \end{pmatrix} = 0$$

$$v_{21}: v_{22}: v_{23} = \begin{vmatrix} -1 & 1 \\ -6 & 4 \end{vmatrix} : \begin{vmatrix} 1 & 1 \\ 4 & 6 \end{vmatrix} : \begin{vmatrix} 1 & -1 \\ 6 & -6 \end{vmatrix} = 2:2:0 = 1:1:0$$

3.4 非齐次情形 $(\vec{f}(t) \neq 0)$

要解

$$\frac{\mathrm{d}\overrightarrow{x}}{\mathrm{d}t} = \overline{\overline{A}} \cdot \overrightarrow{x} + \overrightarrow{f}(t)$$

先解出对应齐次方程组

$$\frac{\mathrm{d}\overrightarrow{x}}{\mathrm{d}t} = \overline{\overline{A}} \cdot \overrightarrow{x}$$

的通解 $\overrightarrow{x}(t)$, 构造基本解矩阵 $\overline{x}(t)$.

然后作常数变易…

设非齐次方程的解

$$\overrightarrow{x}(t) = \overline{\overline{X}}(t)\overrightarrow{c}(t)$$

代入原非齐次方程后可得关于新未知向量函数 $\overrightarrow{c}(t)$ 的微分方程组

$$\overline{\overline{X}}(t)\overrightarrow{c}'(t) = \overrightarrow{f}(t)$$

解这个以 $\overrightarrow{c}(t)$ 为未知量的矩阵方程并作不定积分后即得通解,利用定解 (初值)条件可得特解.

解 1. 求解对应齐次方程组

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 2 & 1 - \lambda & -2 \\ 3 & 2 & 1 - \lambda \end{vmatrix} = 0$$
$$(1 - \lambda)(\lambda^2 - 2\lambda + 5) = 0$$
$$\lambda_1 = 1, \lambda_{2,3} = 1 \pm 2i$$

 $\textcircled{1} \lambda_1 = 1.(A - \lambda_1 I)\overrightarrow{v_1} = 0.$

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & -2 \\ 3 & 2 & 0 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \\ v_{13} \end{pmatrix} = 0$$

$$v_{11}: v_{12}: v_{13} = 2: -3: -2$$

$$\overrightarrow{x_1} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} e^t$$

② $\lambda_{2,3} = 1 \pm 2i.(A - \lambda_2 I)\overrightarrow{v_2} = 0.$

$$\begin{pmatrix} -2i & 0 & 0 \\ 2 & -2i & 2 \\ 3 & 2 & -2i \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \\ v_{13} \end{pmatrix} = 0$$

$$v_{21}: v_{22}: v_{23} = 0:1:-i$$

$$\overrightarrow{x_2} = \begin{pmatrix} 0 \\ 1 \\ -i \end{pmatrix} e^{(1+2i)t}, \overrightarrow{x_3} = \begin{pmatrix} 0 \\ 1 \\ i \end{pmatrix} e^{(1-2i)t}$$

$$\overline{\overline{X}}(t) = e^{t} \begin{pmatrix} 2 & 0 & 0 \\ -3 & \cos 2t & \sin 2t \\ 2 & \sin 2t & -\cos 2t \end{pmatrix}$$

$$\overline{\overline{X}}(t)c'(t) = \overline{f}(t) = \begin{pmatrix} 0 \\ 0 \\ e^{t}\cos 2t \end{pmatrix} \qquad c'(t) = \begin{pmatrix} c'_{1}(t) \\ c'_{2}(t) \\ c'_{3}(t) \end{pmatrix}$$

$$\int_{0}^{t} c'(\tau)d\tau = \int_{0}^{t} \begin{pmatrix} 0 \\ \sin 2\tau \cos 2\tau \\ -\cos^{2} 2\tau \end{pmatrix} d\tau = \begin{pmatrix} 0 \\ \frac{1}{8}(1 - \cos 4t) \\ -\frac{t}{2} - \frac{1}{8}\sin 4t \end{pmatrix} + C$$

$$X(0) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$X(t) = e^{t} \begin{pmatrix} 2 & 0 & 0 \\ -3 & \cos 2t & \sin 2t \\ 2 & \sin 2t & -\cos 2t \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{8}(9 - \cos 4t) \\ -1 - \frac{t}{2} - \frac{1}{8}\sin 4t \end{pmatrix}$$

3.5 常系数线性微分方程组

例 3.5.1.
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 3x - 2y & (1)\\ \frac{\mathrm{d}y}{\mathrm{d}t} = 2x - y & (2) \end{cases}$$

解 (消去 x)

$$x = \frac{1}{2} \left(\frac{\mathrm{d}y}{\mathrm{d}t} + y \right) \tag{3}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2} \left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{\mathrm{d}y}{\mathrm{d}t} \right) \tag{4}$$

(3)(4) 代入(1),得

$$\frac{1}{2} \left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{\mathrm{d}y}{\mathrm{d}t} \right) = \frac{3}{2} \left(\frac{\mathrm{d}y}{\mathrm{d}t} + y \right) - 2y$$

即

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} + y = 0$$

$$r^2 - 2r + 1 = 0, r_1 = r_2 = 1$$
(5)

所以(5)通解为

$$y = (C_1 + C_2 t)e^t$$

所以

$$x = \frac{1}{2} \left[C_2 e^t + (C_1 + C_2 t) e^t + (C_1 + C_2 t) e^t \right] = \left[C_1 + C_2 \left(t + \frac{1}{2} \right) \right] e^t$$

所以所求通解为

$$\begin{cases} x = \left[C_1 + C_2\left(t + \frac{1}{2}\right)\right] e^t \\ y = (C_1 + C_2 t)e^t \end{cases}$$

或

$$\begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} t + \frac{1}{2} \\ t \end{pmatrix} e^t$$

例 3.5.2.
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x + 2y + \mathrm{e}^t & (1)\\ \frac{\mathrm{d}y}{\mathrm{d}t} = 4x + 3y & (2) \end{cases}$$

解 (消去 y)

$$y = \frac{1}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t} - x - \mathrm{e}^t \right) \tag{3}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{2} \left(\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \frac{\mathrm{d}x}{\mathrm{d}t} - \mathrm{e}^t \right) \tag{4}$$

(3),(4) 代入(2),得

$$\frac{1}{2} \left(\frac{d^2 x}{dt^2} - \frac{dx}{dt} - e^t \right) = 4x + \frac{3}{2} \left(\frac{d^2 x}{dt^2} - \frac{dx}{dt} - e^t \right)$$
$$\frac{d^2 x}{dt^2} - 4\frac{dx}{dt} - 5x = -2e^t \qquad (5)$$
$$r^2 - 4r - 5 = 0, r_1 = 5, r_2 = -1$$

所以
$$\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 5x = 0$$
 的通解为

$$X = C_1 e^{5x} + C_2 e^{-t}$$

$$\tilde{y} = x^k Q_n(x) e^{\alpha x}, \alpha = 1, k = 0, n = 0$$

设 (5) 有特解 $\tilde{y} = ae^t$, 代入 (5), 得

$$a\mathscr{A} - 4a\mathscr{A} - 5a\mathscr{A} = -2\mathscr{A}$$
$$a = \frac{1}{4}$$

所以(5)的通解为

$$x = X + \tilde{x} = C_1 e^{5t} + C_2 e^{-t} + \frac{1}{4} e^{t}$$

所以

$$y = \frac{1}{2} \left(5C_1 e^{5t} - C_2 e^{-t} + \frac{1}{4} e^t - C_1 e^{5t} - C_2 e^{-t} - \frac{1}{4} e^t - e^t \right)$$
$$= 2C_1 e^{5t} - C_2 e^{-t} - \frac{1}{2} e^t$$

所以通解为

$$\begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \end{pmatrix} e^{t}$$

解 (消去
$$\frac{\mathrm{d}y}{\mathrm{d}t}$$
)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x - 2y - t \tag{3}$$

$$y = -\frac{1}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t} + x + t \right) \tag{4}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{2} \left(\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{d}x}{\mathrm{d}t} + 1 \right) \quad (5)$$

把 (4),(5) 代入 (1) 或 (2):

. . .

第四章 常微分方程的数值解法入 门

4.1 数值微分

推导/构造方法:

- 1. 插值多项式构造法: 参考数值插值
- 2. 泰勒展开构造法

常用公式

两点公式:

$$\begin{cases} f'(x_0) \approx \frac{f(x_1) - f(x_0)}{h} - \frac{h}{2} f''(\zeta_0) \\ f'(x_1) \approx \frac{f(x_1) - f(x_0)}{h} + \frac{h}{2} f''(\zeta_1) \end{cases}$$
—只能近似一阶导数

三点公式

一阶导数:

$$\begin{cases} f'(x_0) \approx \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3}f'''(\zeta_0) \\ f'(x_1) \approx \frac{-f(x_0) + f(x_2)}{2h} - \frac{h^2}{6}f'''(\zeta_1) \\ f'(x_2) \approx \frac{f(x_0) - 4f(x_1) + 3f(x_2)}{2h} + \frac{h^2}{3}f'''(\zeta_2) \end{cases}$$

二阶导数:

$$\begin{cases} f''(x_0) \approx \frac{f(x_0) - 2f(x_1) + f(x_2)}{2h} - hf'''(\zeta_0) \\ f''(x_1) \approx \frac{f(x_0) - 2f(x_1) + f(x_2)}{2h} - \frac{h^2}{12}f'''(\zeta_1) \\ f''(x_2) \approx \frac{f(x_0) - 2f(x_1) + f(x_2)}{2h} + hf'''(\zeta_2) \end{cases}$$

一阶常微分方程的初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), x \in [a, b] \\ y(a) = y_0 \end{cases}$$

数值求解

在结点 $a = x_0 < x_1 < \dots < x_n = b$ (通常结点等距,步长 $x_{k+1} - x_k$ 记为 h) 上求近似解

$$y_i \approx y(x_i), i = 1, 2, \cdots, n$$

4.1.1 Euler 方法

基本思想

根据 (向前) 两点 Euler 公式 (Forward-Euler Method):

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_i} = f(x_i, y(x_i)) \approx \frac{y_{i+1} - y_i}{h}$$

$$\Rightarrow y_{i+1} = y_i + h f(x_i, y_i)$$

这种显式、步进方法又被称作"Euler 折线法":

从 y_0 开始,通过不断画折线依次求出 y_1, y_2, \dots, y_n 的数值近似解.

• Euler 公式的局部截断误差和精度分析

局部截断误差的定义

一步数值计算的误差 (假设 $y_i = y(x_i)$)

$$R_{i+1} = y(x_{i+1}) - y_{i+1}$$

$$= \left(y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(x_i) + \frac{h^3}{6}y'''(\zeta_i) \right)$$

$$- (y_i + hf(x_i, y_i))$$

$$\approx \frac{h^2}{2}y''(x_i)$$

这是一个一阶方法.

h适当地小时,阶数越大局部截断误差就越小.

4.1.2 改进 Euler 方法

首先根据 (向后) 两点 Euler 公式 (Backward-Euler Method)

$$\frac{dy}{dx}\Big|_{x=x_{i+1}} = f(x_{i+1}, y(x_{i+1})) \approx \frac{y_{i+1} - y_i}{h}$$

$$\Rightarrow y_{i+1} = y_i + h f(x_{i+1}, y_{i+1})$$

这是一种隐式方法.

步进公式不能写成 $y_{i+1} = F(x_i, y_i)$ 的形式,而是 $G(x_{i+1}, y_i, y_{i+1}) = 0$ 的形式.

向后 Euler 公式的局部截断误差

$$R_{i+1} \approx -\frac{h^2}{2} y''(x_i)$$

这是一个一阶方法. 但是

$$y_{x_{i+1}} - \left\{ y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, y_{i+1}) \right) \right\} = o(h^3)$$

这就是梯形公式.

用花括号内的项作为 y_{i+1} , 是一个二阶方法 (实际上是向前和向后的算术平均).

换一种角度

看三种 Euler 方法 (前进/后退/改进) 中的一次步进

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

$$\Rightarrow \int_{y_{x_i}}^{y_{x_{i+1}}} \mathrm{d}y = \int_{x_i}^{x_{i+1}} f(x, y(x)) \mathrm{d}x$$

$$\Rightarrow y(x_{i+1}) - y(x_i) \approx \sum_{x_i} A_k f(x_k, y(x_k))$$

联系数值积分法, 尤其是几何意义

4.2 龙格——库塔法

一般龙格——库塔算法

$$\begin{cases} y_{i+1} = y_i + h \sum_{j=1}^{m} \alpha_j K_j \\ K_1 = f(x_i, y_i) \\ K_j = f(x_i + \lambda_j h, y_i + \mu_j h), j = 2, 3, \dots, m \end{cases}$$

和过往一样,用待定系数法解出系数 $\{\alpha_j, \lambda_j, \mu_j\}$,使得方法阶数尽量高(局部截断误差尽量小). 一般 $\mu_j = \lambda_j K_{j-1}$

注意

- 有些参考书从微分方程出发解释,以"平均斜率"近似微分/导数.
- "求面积/积分"视角从原方程的积分形式出发,对应数值积分理论.
- 一般情况下两种推导是等价的.

龙格——库塔法的推导:Taylor 展开

$$m=2$$

只要

$$\alpha_1 + \alpha_2 = 1, \alpha_2 \lambda_2 = \frac{1}{2}, \mu_2 = \lambda_2 K_1$$

则可达到 2 阶精度.

改进 Euler 公式为其中一组解. 另一组常用解为中点公式.

• 经典龙格——库塔法 (RK4)

m=4,4 阶精度

$$\alpha_1 = \alpha_4 = \frac{1}{6}, \alpha_2 = \alpha_3 = \frac{1}{3}$$

$$\lambda_2 = \lambda_3 = \frac{1}{2}, \lambda_4 = 1; \mu_j = \lambda_j K_{j-1}, j = 2, 3, 4.$$

第五章 存在和唯一性定理

5.1 皮卡存在和唯一性定理

5.1.1 定理的意义

- 1. 是数值解和定性分析的前提;
- 2. 若实际问题中建立的方程模型的解不是存在且唯一的, 该模型就是一个坏模型.

5.1.2 解的存在唯一性定理

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) & (1) \\ y(x_0) = y_0 & (2) \end{cases}$$

如果函数 f(x,y) 在矩形区域 $G = \{(x,y)||x-x_0| \le a, |y-y_0| \le b\}$ 上满足: (1) 连续; (2) 关于变量 y 满足 Lipschitz 条件, 即存在常数 L > 0, 对 $\forall (x,y_1),(x,y_2)$ 有

$$|f(x, y_1) - f(x, y_2)| \le L |y_1 - y_2|$$

则初值问题 (1)-(2) 在区间 $[x_0 - h, x_0 + h]$ 上存在唯一解:

$$y = \varphi(x), \varphi(x_0) = y_0$$

其中
$$h = \min \left\{ a, \frac{b}{M} \right\}, M = \max_{(x,y) \in G} |f(x,y)|.$$

例 5.1.1. 利用右端函数的性质讨论下面微分方程满足初值条件 y(0) = 0 的解的唯一性问题:

解 首先 f 在全平面上连续,且

$$\frac{\partial f}{\partial y} = \alpha |y|^{\alpha - 1}$$

当 $\alpha = 1$ 时,

$$|f(x, y_1) - f(x, y_2)| = ||y_1| - |y_2|| \le |y_1 - y_2|$$

满足 Lipschitz 条件,故解存在唯一.

当 $\alpha > 1$ 时,有连续偏导数,解存在唯一.

当 α <1时,因为

$$\left| \int_0^{\pm \varepsilon} \frac{1}{f} dy \right| = \frac{1}{1 - \alpha} \varepsilon^{1 - \alpha} < +\infty$$

故解不存在唯一.

例 5.1.2. 试求初值问题:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y + 1, \quad y(0) = 0$$

的皮卡序列,并由此取极限求解.

解

$$y_{n+1}(x) = y_0 + \int_{x_0}^x f(x, y_n(x)) dx$$

$$= \int_0^x (x + y_n(x) + 1) dx$$

$$= \frac{x^2}{2} + x + \int_0^x y_n(x) dx$$

$$\Rightarrow y_n(x) = \sum_{i=1}^n \frac{x^i}{i!} + \sum_{i=2}^{n+1} \frac{x^i}{i!}$$

$$\Rightarrow y(x) = \lim_{n \to \infty} y_n(x) = 2e^x - x - 2$$

5.2 解的延伸

5.2.1 延展解,不可延展解的定义

定义 5.2.1. 对定义在平面区域 G 上的微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \quad (*)$$

设 $y = \varphi(x)$ 为方程 (*) 定义在区间 (α_1, β_1) 的连续解, 若存在方程 (*) 的 另一解 $y = \psi(x)$, 它在区间 (α_2, β_2) 上有定义, 且满足:

- (1) $(\alpha_2, \beta_2) \supset (\alpha_1, \beta_1)$ $\not = (\alpha_2, \beta_2) \neq (\alpha_1, \beta_1),$
- (2) 当 $x \in (\alpha_1, \beta_1)$ 时, $\psi(x) = \varphi(x)$;

则称解 $y = \varphi(x), x \in (\alpha_1, \beta_1)$ 是可延拓的,并且称解 $y = \psi(x)$ 是解 $y = \varphi(x)$ 在 (α_2, β_2) 的一个延拓.

若不存在满足上述条件的解 $y = \psi(x)$, 则称解 $y = \varphi(x), x \in (\alpha_1, \beta_1)$ 为 方程的一个不可延拓解, 或饱和解. 此时把不可延拓解的定义区间 (α_1, β_1) 称为一个饱和区间.

5.2.2 不可延展解的存在性

局部 Lipschitz 条件

定义 5.2.2. 若函数 f(x,y) 在区域 G 内连续,且对 G 内的每一点 P,有以 P 为中心完全含于 G 内的闭矩形 R_P 存在,在 R_P 上 f(x,y) 关于 y 满足 Lipschitz 条件 (对不同的点,域 R_P 大小和常数 L 可能不同),则称 f(x,y) 在 G 内关于 y 满足局部 Lipschitz 条件.

对定义 5.2.2 也可如下定义

定义 5.2.3. 对定义在平面区域 G 上函数 f(x,y), 若对 $\forall (x_1,y_1) \in G$, \exists 矩 $\Re R_1 = \{(x,y) | |x-x_1| \le a_1, |y-y_1| \le b_1\} \subset G$ 及常数 L_1 (与 x_1,y_1,a_1,b_1

有关), 使对 $\forall (x, y'), (x, y'') \in R_1$ 有

$$|f(x, y') - f(x, y'')| \le L_1 |y' - y''|$$

恒成立, 则称 f(x,y) 在 G 内关于 y 满足局部 Lipschitz 条件.

注若 f(x,y) 及 $f_y(x,y)$ 在 G 内连续, 则 f(x,y) 在 G 内关于 y 满足局部 Lipschitz 条件.

5.2.3 不可延拓解的性质

定理 5.2.4 (解的延拓定理). 如果方程 (*) 右侧函数 f(x,y) 在有界区域 G中连续,且在在 G 内 f(x,y) 关于 y 满足局部 Lipschitz 条件. 那么方程 (*) 通过 G 内任一点 (x_0,y_0) 的解 $y=\varphi(x)$ 可以延拓,直到点 $(x,\varphi(x))$ 任意接近 G 的边界.

推论 5.2.5. 对定义在平面区域 G 上的初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \\ y(x_0) = y_0 \end{cases}, \quad \sharp \, \Psi(x_0, y_0) \in G.$$

若 f(x,y) 在 G 内连续且关于 y 满足局部 Lipschitz 条件, 则它的任一非他和解均可延拓为饱和解.

推论 5.2.6. 设 $y = \varphi(x)$ 为初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \\ y(x_0) = y_0 \end{cases}, \quad \sharp \, \psi(x_0, y_0) \in G.$$

一个饱和解,则该饱和解的饱和区间I一定是开区间.

推论 5.2.7. 如果 G 是无界区域,在上面延拓定理条件下,方程 (*) 的通过点 (x_0,y_0) 的解 $y=\varphi(x)$ 可以延拓,以向 x 增大 (减少) 一方的延拓来说,有下面的两种情况:

第五章 存在和唯一性定理

69

- (1) 解 $y = \varphi(x)$ 可以延拓到区间 $[x_0, +\infty), (-\infty, x_0],$
- (2) 解 $y = \varphi(x)$ 可以延拓到区间 $[x_0, m), (m, x_0],$

其中 m 为有限数, 当 $x \to m$ 时, 或者 $y = \varphi(m)$ 无界, 或者 $(x, \varphi(x)) \to \partial G$.

例 5.2.8. 讨论下列微分方程解的存在区间:

(1)
$$\frac{dy}{dx} = \frac{1}{x^2 + y^2}.$$
(2)
$$\frac{dy}{dx} = y(y - 1).$$
(3)
$$\frac{dy}{dx} = y\sin(xy).$$

$$(2) \quad \frac{\mathrm{d}y}{\mathrm{d}x} = y(y-1).$$

(3)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = y\sin(xy).$$

$$(4) \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + y^2.$$

解 (1) 由 $\left| \frac{1}{x^2 + y^2} \right| \le \frac{1}{x^2}$ 可知,最大存在区间是 $(-\infty, 0)$ 或 $(0, +\infty)$ 或

(2) 解分离变量方程得

$$x = \ln\left|\frac{y-1}{y}\right| + C$$

最大存在区间是 $(-\infty, C)$ 或 $(C, +\infty)$ 或 $(-\infty, +\infty)$.

(3) 由
$$\left| \frac{\mathrm{d}x}{\mathrm{d}y} \right| \le |y|$$
,可知最大存在区间为 $(-\infty, +\infty)$.

(4) 解得
$$x = \arctan y + C$$
, 故最大存在区间为 $\left(C - \frac{\pi}{2}, C + \frac{\pi}{2}\right)$.

第六章 差分方程

6.1 差分方程概述

定义 6.1.1 (差分的定义). 设函数 y = f(t), 记 $y_t = f(t)$.

1. 函数 y(t) 在 t 处的一阶差分记为

$$\Delta y_t = y_{t+1} - y_t \quad \text{id} \quad \Delta y_t = y(t+1) - y(t)$$

2. 函数 y(t) 在 t 处的二阶差分记为

$$\Delta^{2} y_{t} = \Delta(\Delta y_{t}) = y_{t+2} - 2y_{t+1} + y_{t}$$

3. 函数 y(t) 在 t 处的n 阶差分记为

$$\Delta^{n} y_{t} = \Delta(\Delta^{n-1} y_{t}) = \sum_{i=0}^{n} C_{n}^{i} (-1)^{i} y_{t+n-i}$$

其中, Δ表示差分算子.

定理 6.1.2 (差分的四则运算). 当 a,b,C 为常数, u_t 和 v_t 为 t 的函数时, 有以下结论成立

- 1. $\Delta(C) = 0$
- 2. $\Delta(Cy_t) = C\Delta y_t$

第六章 差分方程

71

3.
$$\Delta(au_t + bv_t) = a\Delta u_t + b\Delta v_t$$

4.
$$\Delta(u_t v_t) = u_t \Delta v_{t+1} + v_{t+1} \Delta u_t$$

5.
$$\Delta \left(\frac{u_t}{v_t} \right) = \frac{v_t \Delta u_t - u_t \Delta v_t}{v_t v_{t+1}}$$

定义 6.1.3 (差分方程). 一般地, 含未知函数和未知函数差分的方程称为差分方程. 差分方程的一般形式为

$$F(t, y_t, y_{t+1}, \cdots, y_{t+n}) = 0$$
 $\not \exists G(t, y_t, \Delta y_t, \cdots, \Delta^n y_t) = 0$

其中 F,G 为表达式, t 是自变量.

6.2 一阶常系数线性差分方程

6.2.1 特征根法

定理 6.2.1 ($f(t) = \lambda^t P_n(t)$ 型). 一阶常系数线性差分方程的一般形式为

$$y_{t+1} - py_t = f(t), p \neq 0$$

1. 对于齐次方程 $y_{t+1}-py_t=0$, 其特征方程为 $\lambda-p=0\Rightarrow \lambda=p$, 则 通解为

$$Y_t = Cp^t, t = 0, 1, 2, \cdots$$

2. 对于非齐次方程 $y_{t+1}-py_t=\lambda^t P_n(t)$, 其中 $P_n(t)$ 为 t 的 n 次多项式.则设特解为

$$\tilde{y_t} = \lambda^t Q_n(t) t^k$$

其中
$$\begin{cases} \lambda^t \mathbb{R} \\ Q_n(t) & \text{是t的n次多项式} \\ k = \begin{cases} 0, \lambda \neq p \\ 1, \lambda = p \end{cases} \end{cases}$$

72

例 6.2.2. 求 $y_{t+1} - y_t = 3 + 2t$ 的通解.

解 齐次方程 $y_{t+1} - y_t = 0$ 的通解为

$$Y_t = C$$

因为 $p=1=\lambda$, 故设所求方程的特解为 $\tilde{y}_t=t(a+bt)$, 代入方程得

$$(t+1)[a+b(t+1)] - t(a+bt) = 3+2t$$

于是

$$\begin{cases} 2b = 2 \\ a + b = 3 \end{cases} \Rightarrow \begin{cases} a = 2 \\ b = 1 \end{cases}$$

故所求方程的特解为

$$\tilde{y_t} = t(2+t)$$

故所求方程的通解为

$$y_t = Y_t + \tilde{y}_t = C + t(2+t)$$

例 6.2.3. 求 $y_{t+1} - 3y_t = 7 \cdot 2^t$ 的通解.

解 齐次方程 $y_{t+1} - 3y_t = 0$ 的通解为

$$Y_t = C \cdot 3^t$$

因为 $3 = p \neq \lambda = 2$, 故所求方程的特解为 $\tilde{y}_t = a \cdot 2^t$, 代入方程得

$$a \cdot 2^{t+1} - 3a \cdot 2^t = 7 \cdot 2^t \Rightarrow a = -7$$

故所求房方程的特解为

$$\tilde{y}_t = -7 \cdot 2^t$$

故所求方程的通解为

$$y_t = Y_t + \tilde{y}_t = C \cdot 3^t - 7 \cdot 2^t$$

定理 6.2.4 (f(t) = b型). 非齐次方程 $y_{t+1} - py_t = b$. 通解为

$$y_t = \begin{cases} Cp^t + \frac{b}{1-p}, p \neq 1\\ C + bt, p = 1 \end{cases}$$

例 6.2.5. 求 $y_{t+1} - 5y_t = 3$ 的通解和满足 $y\big|_{t=0} = \frac{7}{3}$ 的特解.

解该差分方程中 p=5,b=3, 方程通解为

$$y_t = C \cdot 5^t + \frac{3}{1-5} = C \cdot 5^t - \frac{3}{4}$$

将 $y_0 = \frac{7}{3}$ 代入上式,得到 $C = \frac{37}{12}$. 故所求特解为

$$\tilde{y_t} = \frac{37}{12} \cdot 5^t - \frac{3}{4}$$

定理 6.2.6 ($f(t) = \lambda^t (a\cos\theta t + b\sin\theta t)$ 型). 非齐次方程

$$y_{t+1} - py_t = \lambda^t (a\cos\theta t + b\sin\theta t)$$

令 $\delta = \lambda(\cos\theta t + t\sin\theta t)$, 则设特解为

$$\tilde{y_t} = \lambda^t t^k (A\cos\theta + B\sin\theta)$$

其中
$$\begin{cases} \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \end{cases}$$
 其中
$$\begin{cases} \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \end{cases}$$
 其中
$$\begin{cases} \lambda^t \mathbb{R} \\ \lambda^t \mathbb{R} \\$$

6.2.2 迭代法

例 6.2.7. 用迭代法求方程 $y_{t+1} - py_t = b$ 的通解.

解 设给定初始值为 y_0 , 依次将 $t = 0, 1, 2, \dots$, 代入方程得:

$$y_1 = py_0 + b$$

 $y_2 = py_1 + b = p(py_0 + b) + b = p^2y_0 + b(1+p)$
 $y_3 = py_2 + b = p^3y_0 + b(1+p+p^2)$

• • • • •

假设
$$y_t = p^t y_0 + b (1 + p + p^2 + \dots + p^{t-1})$$
, 则

$$y_{t+1} = py_t + b$$

$$= p \left(p^t y_0 + b \left(1 + p + p^2 + \dots + p^{t-1} \right) \right) + b$$

$$= p^{t+1} y_0 + b \left(1 + p + p^2 + \dots + p^t \right)$$

由数学归纳法可得

$$y_t = p^t y_0 + b \left(1 + p + p^2 + \dots + p^{t-1} \right)$$

从而 $y_{t+1} - py_t = b$ 的解为

$$y_{t} = p^{t}y_{0} + b\left(1 + p + p^{2} + \dots + p^{t-1}\right)$$

$$= \begin{cases} p^{t}y_{0} + b\frac{1 - p^{t}}{1 - p}, & \text{\pm p} \neq 1\\ y_{0} + bt, & \text{\pm p} = 1 \end{cases}$$

$$= \begin{cases} \left(y_{0} - \frac{b}{1 - p}\right)p^{t} + \frac{b}{1 - p}, & \text{\pm p} \neq 1\\ y_{0} + bt, & \text{\pm p} = 1 \end{cases}$$

例 6.2.8. 用迭代法求方程 $y_{t+1} - py_t = b^n$ 的通解.

解由于 $y_{t+1} = py_t + b^n$ 依次将 $t = 0, 1, 2, \dots$, 代入方程得:

$$y_1 = py_0 + 1$$

 $y_2 = py_1 + b = p(py_0 + 1) + b = p^2y_0 + b + p$
 $y_3 = py_2 + b^2 = p^3y_0 + p^2 + pb + b^2$

假设
$$y_t = p^t y_0 + \sum_{k=0}^{t-1} p^{t-1-k} b^k$$
, 则

$$y_{t+1} = p^{t+1}y_0 + p\left(\sum_{k=0}^{t-1} p^{t-1-k}b^k\right) + b^t$$

$$= p^{t+1}y_0 + \sum_{k=0}^{t-1} p^{t-k}b^k + b^t$$
$$= p^{t+1}y_0 + \sum_{k=0}^{t} p^{t-k}b^k.$$

由数学归纳法可得

$$y_t = p^t y_0 + \sum_{k=0}^{t-1} p^{t-1-k} b^k$$

由此可得方程的通解为

$$y_t = Cp^t + \sum_{k=0}^{t-1} p^{t-1-k} b^k$$

6.3 二阶常系数线性差分方程

二阶常系数齐次线性差分方程的一般形式为:

$$y_{t+2} + py_{t+1} + qy_t = 0$$

其特征方程:

$$\lambda^2 + p\lambda + q = 0 \Rightarrow \lambda_{1,2} = \frac{1}{2} \left(-p \pm \sqrt{p^2 - 4q} \right)$$

特征方程 $\lambda^2 + p\lambda + q = 0$ 的根	差分方程 $y_{t+2} + py_{t+1} + qy_t = 0$ 通解
两个不相等实根 λ_1,λ_2	$y_t = C_1 \lambda_1^t + C_2 \lambda_2^t$
两个相等实根 $\lambda_1 = \lambda_2 := \lambda$	$y = (C_1 + C_2 t)\lambda^t$
两个共轭复根 $\lambda_{1,2} = \alpha \pm i\beta$	$y = r^t (C_1 \cos \theta t + C_2 \sin \theta t)$

$$r = \sqrt{\alpha^2 + \beta^2}, \cos \theta = \frac{\alpha}{r}, \sin \theta = \frac{\beta}{r}, \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

例 6.3.1. 求 $y_{t+2} + 5y_{t+1} + 4y_t = 0$ 的通解.

解 特征方程

$$\lambda^2 + 5\lambda + 4 = 0 \quad \Rightarrow \quad \lambda_1 = -1, \lambda_2 = -4$$

故通解为

$$y_t = C_1(-1)^t + C_2(-4)^t$$

其中 C_1, C_2 为任意常数.

例 6.3.2. 求 $y_{t+2} - 6y_{t+1} + 9y_t = 0$ 的通解.

解 特征方程为

$$\lambda^2 - 6\lambda + 9 = 0 \Rightarrow \lambda_1 = \lambda_2 = 3$$

故通解为

$$y_t = \left(C_1 + C_2 t\right) 3^t$$

其中 C1, C2 为任意常数.

例 6.3.3. 求 $y_{t+2} + 4y_t = 0$ 的通解.

解 特征方程

$$\lambda^2 + 4 = 0 \quad \Rightarrow \quad \lambda = \pm 2i$$

实部

$$\alpha = 0$$

虚部

$$\beta = 2$$

$$r = \sqrt{\alpha^2 + \beta^2} = 2, \sin \beta = \frac{\beta}{r} = 1$$

故所求通解为

$$y_t = 2^t \left(C_1 \sin \frac{\pi}{2} t + C_2 \sin \frac{\pi}{2} t \right)$$

其中 C_1, C_2 为任意常数.

6.3.1 待定系数法

定理 **6.3.4** ($f(t) = \lambda^t P_n(t)$ 型). 非齐次方程

$$y_{t+2} + py_{t+1} + qy_t = \lambda^t P_n(t)$$

其中 $P_n(t)$ 为 t 的 n 次多项式. 则设特解为

$$\tilde{y_t} = \lambda^t t^k Q_n(t)$$

例 6.3.5. 求 $y_{t+2} - 6y_{t+1} + 9y_t = 3^t$ 的通解.

特征方程为

$$\lambda^2 - 6\lambda + 9 = 0 \Rightarrow \lambda_1 = \lambda_2 = 3$$

 $f(t)=3^tP_0(t)$, 由于 $\lambda=3=\lambda_1=\lambda_2$, 因此 $\lambda=3$ 为二重根, 故设特解为 $\tilde{y}_t=bt^23^t$ 将其代入原差分方程得

$$b(t+2)^2 3^{t+2} - 6b(t+1)^2 3^{t+1} + 9b^2 3^t = 3^t$$

解得 $b = \frac{1}{18}$, 特解为 $\tilde{y}_t = \frac{1}{18}t^23^t$. 所求通解为

$$y_t = (C_1 + C_2 t) 3^t + \frac{1}{18} t^2 3^t$$

例 6.3.6. 求 $y_{t+2} - 4y_{t+1} + 4y_t = 5^t$ 的通解.

解 特征方程为

$$\lambda^2 - 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = 2$$

 $f(t)=5^tP_0(t)$, 由于 $\lambda=5\neq 2=\lambda_1=\lambda_2$, 因此 $\lambda=5$ 不是特征根, 故设特解为 $\tilde{y}_t=b3^t$. 将其代入差分方程得

$$b3^{t+2} - 4b3^{t+1} + 4b3^t = 5^t$$

解得 $b = \frac{1}{9}$, 非齐次方程的特解为 $\tilde{y_t} = \frac{1}{9}5^t$. 所求通解为

$$y_t = (C_1 + C_2 t) 2^t + \frac{1}{9} 5^t$$

其中 C_1, C_2 为任意常数.

例 6.3.7. 求 $y_{t+2} - 3y_{t+1} + 2y_t = 2^t$ 的通解.

解特征方程为

$$\lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 2$$

 $f(t)=2^tP_0(t)$, 由于 $\lambda=2=\lambda_2\neq\lambda_1$, 因此 $\lambda=2$ 是单特征根, 故设特解为 $\tilde{y}_t=bt2^t$. 将其代入差分方程得

$$b(t+2)2^{t+2} - 3(t+1)b3^{t+1} + 2bt3^t = 2^t$$

解得 $b = \frac{1}{2}$, 非齐次方程的特解为 $\tilde{y}_t = \frac{1}{2}2^t = 2^{t-1}$. 所求通解为

$$y_t = C_1 + \left(C_2 + \frac{1}{2}\right) 2^t$$

其中 C_1, C_2 为任意常数.

定理 6.3.8. 非齐次方程

$$y_{t+2} + py_{t+1} + qy_t = \lambda^t (a\cos\theta t + b\sin\theta t)$$

令 $\delta = \lambda(\cos\theta + \mathrm{i}\sin\theta)$. 则设特解为 $\tilde{y_t} = \lambda^t t^k (A\cos\theta t + B\sin\theta t)$. 其中 $\int \lambda^t \,\mathbb{R}$ 拟;

$$\begin{cases} k = \begin{cases} 0, & \delta \text{ π \mathcal{X}} \\ 1, & \delta \text{ ξ \mathcal{X}} \end{cases}$$

$$\begin{cases} 1, & \delta \text{ ξ \mathcal{X}} \\ 2, & \delta \text{ ξ \mathcal{X}} \end{cases}$$

6.3.2 降阶法

例 6.3.9. (2018, 数 III) 差分方程 $\Delta^2 y_x - y_x = 5$ 的通解是 $C2^x - 5$.

解 根据二阶差分的定义可得

$$\Delta^{2} y_{x} = \Delta y_{x+1} - \Delta y_{x} = (y_{x+2} - y_{x+1}) - (y_{x+1} - y_{x})$$
$$= y_{x+2} - 2y_{x+1} + y_{x}$$

由 $\Delta^2 y_x - y_x = 5$ 得

$$y_{x+2} - 2y_{x+1} = 5$$

 $\Leftrightarrow u_x = y_{x+1} - ay_x, u_{x+1} + bu_x = y_{x+2} - 2y_{x+1}, \text{ }$

$$y_{x+2} - (a-b)y_{x+1} - aby_x = y_{x+2} - 2y_{x+1}$$

比较系数,可得

取 a = 2, b = 0, 原方程等价于 $u_{x+1} = 5$, 即 $u_t = 5$. 从而

$$y_{x+1} - 2y_x = 5 \Longrightarrow y_x = C2^x - 5$$

6.3.3 算子法

定理 6.3.10. 对于函数 f(n): 规定下列记号及意义:

- 1. 差分算子 $\Delta: \Delta y_n = y_{n+1} y_n$
- 2. 移位算子 $E: E = \Delta + 1$

对二阶非齐次常系数差分方程

$$y_{t+2} + py_{t+1} + qy_t = f(n) \implies \tilde{a_n} = \frac{1}{E^2 + pE + q} f(n)$$

下面用 $F(E) = E^2 + pE + q$ 表示算子, 根据 f(n) 的不同, 有如下的公式

1. 常数式:
$$\frac{1}{F(E)}C = \frac{C}{F(1)}$$
, 其中 C 为任意常数, 且 $F(1) \neq 0$.

2. 指数式: a 为指数函数的底

若
$$F(a) \neq 0$$
,则 $\frac{1}{F(E)}a^n = \frac{1}{F(a)}a^n$
若 $F(a) = 0$,则 $\frac{1}{F(E)}a^n = n\frac{1}{F'(a)}a^{n-1}$

3. 移位式:
$$\frac{1}{F(E)}a^ng(n) = a^n\frac{1}{F(aE)}g(n).$$

4. 幂函数:
$$\frac{1}{F(E)}n^k = (C_0 + c_1\Delta + c_2\Delta^2 + \dots + c_k\Delta^k)n^k, \Delta = E - 1$$
, 对于 n 的多项式也适用.

6.4 非线性差分方程

定理 6.4.1 (不动点法). 设 $a_{n+1} = \frac{Aa_n + B}{Ca_n + D}$, 其中 A, B, C, C 为常数。其特征根为: $x = \frac{Ax + B}{Cx + D}$.

1.
$$x_1 \neq x_2$$
 $\exists t$, $\frac{a_n - x_1}{a_n - x_2} = C \cdot \frac{a_{n-1} - x_1}{a_{n-1} - x_2}$.

2.
$$x_1 = x_2$$
 时, $\frac{1}{a_n - x_1} = \frac{1}{a_{n-1} - x_1} + C$.

例 6.4.2. 已知
$$a_1=1, a_{n+1}=\frac{2a_n}{a_n+2} (n \in \mathbb{N}_+), \ 求 \ a_n.$$

解法 I. 特征根为

$$x = \frac{2x}{x+2} \Rightarrow x_1 = x_2 = 0$$

故

$$\frac{1}{a_n} = \frac{1}{a_{n-1}} + C \text{ (等差数列)}$$

将
$$a_1 = 1, a_2 = \frac{2}{3}$$
 代入,得 $C = \frac{1}{2}$ (公差). 从而

$$\frac{1}{a_n} = \frac{n+1}{2} \Rightarrow a_n = \frac{2}{n+1} \left(n \in \mathbb{N}_+ \right)$$

法 II. 两边取倒数得

$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{1}{2}$$

故有

$$\frac{1}{a_n} = \frac{1}{a_{n-1}} + \frac{1}{2} = \frac{1}{a_{n-2}} + \frac{1}{2} + \frac{1}{2} = \dots = \frac{1}{a_1} + \frac{n-1}{2}$$

故
$$a_n = \frac{2}{n+1}$$
.

例 6.4.3. 设数列 $\{a_n\}$ 满足 $a_1=\alpha, a_{n+1}=1-\frac{1}{4a_n}$. 求数列 $\{a_n\}$ 的通项公式.

解 (by 予一人). 特征方程

$$x = 1 - \frac{1}{4x} \quad \Rightarrow \quad x = \frac{1}{2}$$

于是考虑将递归式变形为

$$a_{n+1} - \frac{1}{2} = \left(1 - \frac{1}{4a_n}\right) - \frac{1}{2} = \frac{2a_n - 1}{2 + (4a_n - 2)}$$

取倒数,得

$$\left(a_{n+1} - \frac{1}{2}\right)^{-1} = \left(a_n - \frac{1}{2}\right)^{-1} + 2$$

这表明 $\left\{ \left(a_n - \frac{1}{2} \right)^{-1} \right\}$ 是等差序列, 于是

$$\left(a_n - \frac{1}{2}\right)^{-1} = \left(\alpha - \frac{1}{2}\right)^{-1} + 2(n-1)$$

进而

$$a_n = \frac{2\alpha n - n + 1}{2[(2\alpha - 1)n - 2\alpha + 2]}$$

例 6.4.4. 设数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}=\frac{1}{2}\cdot\left(a_n-\frac{1}{a_n}\right)$, 求数列 $\{a_n\}$ 的通项公式.

解 (by Dylaaan). 注意到

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} \xrightarrow{\mathfrak{B}\mathbb{R}} \cot 2\theta = \frac{1}{2} \cdot \left(\cot\theta - \frac{1}{\cot\theta}\right).$$

令 $a_n=\cot\theta_n$, 整理得到 $\theta_{n+1}=2\theta_n$, 因此 $\{\theta_n\}$ 是等比数列, 又根据 $a_1=2$, 得到 $\theta_1=\arctan\frac{1}{2}$, 故

$$\theta_n = \arctan \frac{1}{2} \cdot 2^{n-1} \Rightarrow a_n = \cot \left(\arctan \frac{1}{2} \cdot 2^{n-1}\right)$$

例 6.4.5. (知乎, 474707626) 设数列 $\{y_n\}$ 满足 $y_2=y_3=1$ 以及

$$(n+1)(n-2)y_{n+1} = n(n^2 - n - 1)y_n - (n-1)^3y_{n-1}$$

求极限 $\lim_{n\to\infty} \left(y_n - \frac{1}{n}\right)^{\frac{1}{n^2}}$.

证明 (by 三千弱水). 令 n=2 得

$$y_2 = y_1$$

当 $n \ge 3$ 时

$$(n-2)(y_{n+1}-y_n) = (n-1)^2(y_n-y_{n-1})$$

变形

$$\frac{y_{n+1} - y_n}{n-1} = (n-1)\frac{y_n - y_{n-1}}{n-2}.$$

接着令 $z_n = \frac{y_n - y_{n-1}}{n-2}$,则

$$z_{n+1} = (n-1)z_n = \dots = (n-1)!z_3 = (n-1)!\frac{3y_3 - 2y_2}{1} = (n-1)!$$

故

$$y_{n+1} - y_n = (n-1)(n-1)! \Rightarrow y_{n+1} = ny_n = (n-1)! + c$$

代入初始值 $y_2 = 1$, 解得 c = 1. 所以

$$y_n = \frac{(n-1)! + 1}{n}$$
.

所以

$$\lim_{n \to \infty} \left(y_n - \frac{1}{n} \right)^{\frac{1}{n^2}} = \lim_{n \to \infty} \left(\frac{(n-1)!}{n} \right)^{\frac{1}{n^2}} = 1$$

例 6.4.6. (AMM, 10403) 设数列 $\{y_n\}$ 满足 $y_0=1,y_1=3,$ 且

$$y_{n+1} = (2n+3)y_n - 2ny_{n-1} + 8n, n \ge 1$$

求数列 $\{y_n\}$ 的渐进公式.

解 令 $x_n = y_n + 2n + 1$. 则 $x_0 = 2, x_1 = 6$, 且

$$x_{n+1} - 2(n+1)x_n = x_n - 2nx_{n-1} = \dots = x_1 - 2x_0 = 2, n \ge 1$$

再令 $z_n = x_n/(2^n n!)$. 则 $z_0 = 2$, 且

$$z_k - z_{k-1} = \frac{2}{2^k k!}, k \geqslant 1$$

叠加可得

$$z_n = 2\sum_{k=1}^n \frac{(1/2)^k}{k!} = 2\sqrt{e} - 2\sum_{k=n+1}^\infty \frac{(1/2)^k}{k!}$$

因此,

$$y_n = 2^{n+1} n! \sqrt{e} - 2n - 1 - \frac{1}{n+1} - \frac{1}{2(n+1)(n+2)} - \frac{1}{4(n+1)(n+2)(n+3)} - \cdots$$

6.5 差分方程应用举例

例 6.5.1. 广州公积金贷款年利率为 3.25%. 现贷款 50 万元,贷款年限为 20 年. 采用等额本息还款方式,每月还款金额是多少?

解 设贷款 x 个月后欠款余额是 y_x 元, 月还款额为 m 元, 月利率为 r. 则有

$$y_{x+1} = y_x(1+r) - m, \quad y_0 = 50000$$

该差分方程的解为

$$y_x = \frac{y_0 - \frac{m}{r}}{(1+r)^x} + \frac{m}{r}$$

从而可以解出

$$m = \frac{r \left[y_0 (1+r)^x - y_x \right]}{(1+r)^x - 1}$$

当 x = 240 时, $y_x = 0$, 代入得到 m = 2835.97.

附录 A 常系数非齐次线性微分方程求特解的算子解法

设常系数非齐次线性方程为

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = q(x)$$
 (*)

A.1 算子多项式

对于函数 y = y(x), 规定下列记号及其意义:

$$D = \frac{\mathrm{d}}{\mathrm{d}x} \qquad \qquad Dy = \frac{\mathrm{d}y}{\mathrm{d}x} = y'$$

$$D^2 = DD = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \qquad \qquad D^2y = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = y''$$

$$D^k = D^{k-1}D = \frac{\mathrm{d}^k}{\mathrm{d}x^k} \qquad \qquad D^ky = \frac{\mathrm{d}^ky}{\mathrm{d}x^k} = y^{(k)} \; (k=1,2,\cdots)$$

$$D^0 = 1 \qquad \qquad D^0y = 1y = y. \; (这里"1"仅仅是个形式记号)$$

设 a 是一个常数,规定"aD^k"的意义为 aD^k $y = a \frac{\mathrm{d}^{k} y}{\mathrm{d} x^{k}} = a y^{(k)}$. 这些记号称 为微分算子. 常数 a 本身也看作一个算子即 a = aD,这样 a y = aD⁰y.

记 $f(D) = D^n + a_1 D^{n-1} + a_2 D_{n-2} + \dots + a_{n-1} D + a_n$,称为形式上的算子多项式. 对于函数 y = y(x),规定

$$f(D)y = D^{n}y + a_{1}D^{n-1}y + a_{2}D^{n-2}y + \dots + a_{n-1}Dy + a_{n}y$$

例 **A.1.1.** $f(D) = D^2 - 2D - 3$, $y = x^3 - 1$, 则 $f(D)y = y'' - 2y' - 3y = -3x^3 - 6x^2 + 6x + 3$.

例 A.1.2. 微分方程 $y'' + y = \cos x$ 可写成 $(D^2 + 1)y = \cos x$. 于是方程 (*) 可简记为算子形式 f(D)y = q(x).

A.2 算子多项式的运算

可定义两个算子多项式 f(D), g(D) 的加法和乘法:

$$(f(D) \pm g(D)) y = f(D)y \pm g(D)y$$

$$(f(D)g(D)) y = f(D) (g(D)y)$$

算子多项式的运算满足通常的多项式运算的一切规则. 特别地,它还可作因式分解.

例 A.2.1. $f(D) = D^2 - 2D - 3$ 可分解为 (D-3)(D+1), 则有 $(D^2 - 2D - 3)y = y'' - 2y' - 3y$, 亦有 (D-3)(D+1)y = (D-3)((D+1)y) = (D-3)(y'+y) = y'' - 2y' - 3y.

A.3 逆算子

设 f(D) 是算子多项式, 如果 $f(D)\phi(D)=q(x)$, 则记 $\frac{1}{f(D)}q(x)=\phi(x)$, 称算子 $\frac{1}{f(D)}$ 为 f(D) 的逆算子. 可以看到它是解方程 $f(D)\phi(x)=q(x)$ 中的形式"除法".

例 A.3.1. 因
$$D(x^2) = 2x$$
,则 $\frac{1}{D}(2x) = x^2 = \int 2x dx$;因 $D^2(x^2) = 2$,则 $\frac{1}{D^2}(2) = \frac{1}{D}\left(\frac{1}{D}(2)\right) = \frac{1}{D}[2x] = x^2$

一般有
$$\frac{1}{\mathrm{D}}q(x)=\int q(x)\mathrm{d}x, \frac{1}{\mathrm{D}^k}\left(q(x)\right)=\underbrace{\int \cdots \int}_{k\chi \exp \Im} q(x)(\mathrm{d}x)^k$$
. 逆算子 $\frac{1}{f(\mathrm{D})}$ 在不太严格的意义下可以理解为逆映射,即 $\frac{1}{f(x)}q(x)$ 的意义是求 $q(x)$ 的原

像.

逆算子的性质 A.4

1. 若 a_1, a_2, \dots, a_m 是 m 个常数, v_1, v_2, \dots, v_m 是 m 个函数,则有线性 性质

$$\frac{1}{f(D)}(a_1v_1 + a_2v_2 + \dots + a_mv_m) = a_1\frac{1}{f(D)}v_1 + a_2\frac{1}{f(D)}v_2 + \dots + a_m\frac{1}{f(D)}v_m$$

2. 设 $\mathbf{i} = \sqrt{-1}, u(x), v(x)$ 是实函数, 分别用 $\mathrm{Re}z, \mathrm{Im}z$ 表示复数 z 的实 部和虚部,则

$$\frac{1}{f(D)}\operatorname{Im}(u(x) + iv(x)) = \operatorname{Im}\left(\frac{1}{f(D)}(u(x) + iv(x))\right)$$

$$\frac{1}{f(D)}\operatorname{Re}(u(x) + iv(x)) = \operatorname{Re}\left(\frac{1}{f(D)}(u(x) + iv(x))\right)$$

常系数非齐次线性方程求特解的算子解法 $\mathbf{A.5}$

将非齐次方程 (*) 写成 f(D)y = q(x) 后,其特解可表示为 $y = \frac{1}{f(D)}q(x)$.

1. 当自由项 $q(x) = P_n(x)$ 是 n 次多项式时,可将 $\frac{1}{f(D)}$ 展开为形式上 的 Taylor 级数

$$\frac{1}{f(D)} = b_0 + b_1 D + \dots + b_n D^n + b_{n+1} D^{n+1} + \dots$$

取展开式到第n次项为止,则特辑

$$\tilde{y} = \frac{1}{f(D)} P_n(x) = (b_0 + b_1 D + \dots + b_n D^n) P_n(x)$$

2. 当自由项 $q(x) = e^{\lambda x} v(x) (\lambda \, \text{可为复数}), v(x)$ 是实函数时,此时有公式

$$\frac{1}{f(D)}e^{\lambda x}v(x) = e^{\lambda x}\frac{1}{f(D+\lambda)}v(x)$$

例 A.5.1. $x y'' - 2y' + y = xe^x$ 的特解.

解

$$(D^2 - 2D + 1)y = xe^x$$
 or $(D - 1)^2y = xe^x$

所以特解为

$$\tilde{y} = \frac{1}{(D-1)^2} x e^x = e^x \left(\frac{1}{((D+1)^2)} x \right) = e^x \frac{1}{D^2} x = \frac{x^3}{6} e^x$$

例 A.5.2. $xy'' - 6y' + 13y = e^{3x} \sin 2x$ 的特解.

解

$$(D^2 - 6D + 13)y = e^{3x} \sin 2x$$

使用 Euler 公式,则特解为

$$\tilde{y} = \frac{1}{D^2 - 6D + 13} e^{3x} \sin 2x = e^{3x} \frac{1}{(D+3)^2 - 6(D+3) + 13}$$

$$= e^{3x} \frac{1}{D^2 + 4} \operatorname{Im} e^{2ix} = e^{3x} \operatorname{Im} \left(\frac{1}{D^2 + 4} e^{2ix} \right) = e^{3x} \operatorname{Im} \left(e^{2ix} \frac{1}{(D+2i)^2} 1 \right)$$

$$= e^{3x} \operatorname{Im} \left(e^{2ix} \frac{1}{D} \left(\frac{1}{D+4i} 1 \right) \right) = e^{3x} \operatorname{Im} \left(e^{2ix} \frac{1}{D} \left(\frac{1}{4i} \right) \right) = e^{3x} \operatorname{Im} \left(e^{2ix} \frac{x}{4i} \right)$$

$$= e^{3x} \operatorname{Im} \left(\frac{x \sin 2x}{4} - \frac{x \cos 2x}{4} i \right) = -\frac{x}{4} e^{3x} \cos 2x$$

$$\frac{1}{f(D)} e^{\lambda x} v(x) = e^{\lambda x} \frac{1}{f(D+\lambda)} v(x)$$

例 A.5.3. 求特解: $y'' + y' = x^2 + 1$.

 $M(D^2 + D)y = x^2 + 1$,则特解为

$$\tilde{y} = \frac{1}{D^2 + D}(x^2 + 1) = \frac{1}{D} \left(\frac{1}{1 + D}(x^2 + 1) \right)$$
$$= \frac{1}{D} \left(((1 - D + D^2))(x^2 + 1) \right)$$
$$= \frac{1}{D}(x^2 - 2x + 3) = \frac{x^3}{3} - x^2 + 3x$$

$$\tilde{y} = \frac{1}{D} \left(\frac{1}{1+D} (x^2 + 1) \right) = \frac{1}{D} \left((1 - D + D^2)(x^2 + 1) \right)$$

$$= \left(\frac{1}{D} (1 - D + D^2) \right) (x^2 + 1) = \left(\frac{1}{D} - 1 + D \right) (x^2 + 1)$$

$$= \frac{x^3}{3} - x^2 + 3x - 1$$

参考文献

- [1] 蔡燧林. 常微分方程 [M]. 杭州: 浙江大学出版社,2017.
- [2] 丁同仁,李承治. 常微分方程教程 [M]. 北京: 高等教育出版社,2004.
- [3] Wolfgang Walter. GTM 182: Ordinary Differential Equations[M]. 北京: 世界图书出版社,1927.
- [4] 零蛋大. 微积分笔记最终版 [M].2021.
- [5] 陈兆斗. 大学生数学竞赛习题精讲 [M]. 北京: 清华大学出版社,2014.