1) a)
$$\frac{11}{2}$$

b)
$$-3$$

b)
$$-3$$
 c) $-\frac{1}{3}$

2) 4

3)
$$0 < x < 2 e x \neq 1$$

4)
$$(a > 0 e a \neq 1) e (x < -1 ou x > 1)$$

- 5) 3
- 6) a) 5 b) 15
- 7) 0

$$8) 2n + 3m$$

9)
$$r + \frac{2}{3} s - \frac{1}{2} t$$

$$11) x = \frac{b \cdot c^2}{\sqrt[3]{a}}$$

- 12) 0,85733
- 13) 1

$$14) - p$$

$$(a + b) \frac{2a + b}{3} e^{\frac{a - b}{3}}$$

- 16) {1, 4}
- 17) [6]
- 18) [30]
- 19) [5]
- 20) [27]

21)
$$\{(\frac{1}{10}, 100)\}$$

23)
$$\{\frac{1}{5}, 5\}$$

24) [8]
25) [1]
26) [4, -4]
27) [0]
28) [-3]
29) [2]
30) [(-1, 2), (log₂ 9, - log₃ 2)]
31)
$$\frac{(2-a)}{(a+b)}$$
32) 36^3
33) 0
34) [3, $\log_2 \frac{5}{8}$]
35) [$x \in \mathbb{R} \mid x < -1$]
36) [$x \in \mathbb{R} \mid x < 1$]
38) [$x \in \mathbb{R} \mid x < 1$]
39) \mathbb{R}_+
40) $\left\{x \in \mathbb{R} \mid 1 < x \leq \frac{\sqrt{6}}{2} \text{ ou } \frac{-\sqrt{6}}{2} \leq x < -1\right\}$
41) [$x \in \mathbb{R} \mid -2 \leq x < 0 \text{ ou } 2 < x \leq 4$]
42) [$x \in \mathbb{R} \mid 0 < x \leq 10 \text{ ou } x \geq 100$]
43) [$x \in \mathbb{R} \mid 1 < x < \frac{3}{2}$]
44) [$x \in \mathbb{R} \mid 5 < x \leq 6$]
45) [$x \in \mathbb{R} \mid 4 < x < 7$]
47) [$x \in \mathbb{R} \mid -1 = 1$]
48) [$x \in \mathbb{R} \mid -1 = 1$]
49) [$x \in \mathbb{R} \mid -1 = 1$]
49) [$x \in \mathbb{R} \mid -1 = 1$]
40) [$x \in \mathbb{R} \mid -1 = 1$]
41) [$x \in \mathbb{R} \mid -1 = 1$]
42) [$x \in \mathbb{R} \mid 0 < x \leq 10 \text{ ou } x \geq 100$]
43) [$x \in \mathbb{R} \mid 1 < x < \frac{3}{2}$]
44) [$x \in \mathbb{R} \mid 5 < x \leq 6$]
45) [$x \in \mathbb{R} \mid 4 < x < 7$]
47) [$x \in \mathbb{R} \mid -\frac{1}{2} < x < 0$]
48) [$x \in \mathbb{R} \mid -3 \leq x < -\sqrt{6} \text{ ou } \sqrt{6} < x \leq 3$]
50) a) 3,38202 b) 2,38202 c) 3,38202 (e) 2,38202 (e) 3,38202 (e) 3,96 \cdot 10^{-3} (e) 6,07 \cdot 10^{

o que é absurdo, pois 5ª é um número ímpar e maior ou igual a 5, enquanto

$$2^{b-a}$$
 é par, se $b > a$
 2^{b-a} não é inteiro, se $b < a$
 $2^{b-a} = 1$, se $b = a$

alog the property of the delical para a self, pole

(c.q.d)