Modèle linéaire

Pierre Gloaguen

16 novembre 2018

Objectifs

- Expliquer les variations d'une variable quantitative:
 - ▶ Un rendement, une abondance, un taux d'une substance. . .
- ▶ En fonctions d'autres variables:
 - ▶ Un fertilisant, une région, un apport chimique. . .

Avantages

- ▶ Formulation mathématique simple permettant de connaître ses propriétés.
- ▶ Bonne représentation (en première approximation) de nombreux phénomènes.

Cas d'étude: Rendement de maïs

- ▶ On souhaite expliquer le **rendement** de plants de maïs.
- ▶ On dispose de 288 parcelles (on a désormais enlevé 11 parcelles).
- ▶ Sur chaque parcelle, le maïs a un même marqueur génétique:
 - Soit un marqueur de type 1;
 - Soit un marqueur de type 2;
- Sur chaque parcelle, le maïs a une même variété:
 - Corn, European, Northern, Tropical.
- Sur chaque parcelle, on mesure différentes caractéristiques:
 - Le **rendement** de la parcelle;
 - La teneur moyenne en huile d'un grain de maïs;
 - La teneur moyenne en proteine d'un grain de maïs;
 - La teneur moyenne en amidon d'un grain de maïs;
 - Le nombre de degrés-jours moyen avant la floraison d'un plant de maïs;
 - Le nombre moyen de feuilles par plant de maïs;
- Quelles variables explicatives donnent des informations sur le rendement?

Principes du modèle linéaire

- Modèle mathématique décrivant le lien entre une variable explicative quantitative (le rendement) et des variables explicatives (la variété, la teneur en huile,...)
- ▶ Modèle décrit dans un cadre probabiliste décrivant l'aléa (part non prédite).

Principe d'application

- 1. Question biologique;
- 2. Ecriture du modèle;
- 3. Ajustement (estimation) du modèle grâce aux données;
- 4. Vérification de la validité des hypothèses faites dans le modèle;
- 5. Test de la pertinence du modèle linéaire par rapport à un modèle simple;
- 6. Test de la pertinence des différents éléments du modèle;
- 7. Critique du modèle;
- 8. Conclusion sur la question biologique.

1) Question biologique

Question biologique: Le **rendement** d'une espèce peut il être expliqué par sa variété et son marqueur génétique?.

- Le rendement est la variable à expliquer;
- La variété et le marqueur sont des variables explicatives. Ce sont des variables qualitatives.
- Cadre de l'ANOVA 2 facteurs 1 variable à expliquer, quantitative, 2 variable explicatives, qualitatives.
- ▶ Première étape: Une approche descriptive.

Pour cet exemple, on a enlevé la variété Stiff Stalk

Coefficient de corrélation linéaire empirique

Effectifs et moyennes par variété

Variete

Marqueur	Corn	European	Northern	Tropical
1	45	19	30	8
2	72	37	20	46

Variete Marqueur Rendement

		1	
1	Corn	1	347.8866
2	European	1	319.9829
3	Northern	1	316.7196
4	Tropical	1	342.4842
5	Corn	2	342.7325
6	European	2	324.4547
7	Northern	2	319.3362
8	Tropical	2	341.2252

Visualisation graphique

Question biologique: Le **rendement** d'une espèce peut il être expliqué par sa *variété* et son marqueur génétique?.

Interactions

II) Ecriture du modèle (régulier)

Notations

On a n = 277 observations. Le facteur Marqueur a I = 2 niveaux, codés ainsi: 1 (i=1), 2 (i=2). Le facteur Variete a J = 4 niveaux, codés ainsi: Corn (j=1), European (j=2), Northern (j=3), Tropical (j=4).

Pour chaque niveau croisement de niveaux (i,j), on dispose de n_{ij} observations avec

$$n_{11} = 45$$
, $n_{12} = 19$, $n_{13} = 30$, $n_{14} = 8$, $n_{21} = 72$, $n_{22} = 37$, $n_{23} = 20$, $n_{24} = 46$.

On note y_{ijk} le rendement de la k-ième parcelle pour le Marqueur i et la Variete j.

Modèle

On suppose que y_{ijk} est la réalisation d'une V.A. Y_{ijk} telle que:

$$Y_{ijk} = \mu_{ij} + E_{ijk}, \ 1 \le i \le I, \ 1 \le j \le J, \ 1 \le k \le n_{ij}$$

- \blacktriangleright μ_{ij} est la moyenne attendue de rendement pour le Marqueur i et la Variete j;
- E_{ijk} est le résidu (aléa) associé à l'observation Y_{ijk} . $E_{ijk} \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

II) Ecriture du modèle (singulier)

Notations

On a n=277 observations. Le facteur Marqueur a I=2 niveaux, codés ainsi: 1 (i=1), 2 (i=2). Le facteur Variete a J=4 niveaux, codés ainsi: Corn (j=1), European (j=2), Northern (j=3), Tropical (j=4).

Pour chaque croisement de niveaux (i,j), on dispose de n_{ij} observations avec

$$n_{11} = 45, n_{12} = 19, n_{13} = 30, n_{14} = 8, n_{21} = 72, n_{22} = 37, n_{23} = 20, n_{24} = 46.$$

On note y_{ijk} le rendement de la k-ième parcelle pour le Marqueur i et la Variete j.

Modèle

On suppose que y_{ijk} est la réalisation d'une V.A. Y_{ijk} telle que:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + E_{ijk}, \ 1 \leq i \leq I, \ 1 \leq k \leq n_{ij}$$

- μ est la rendement moyen de référence;
- $ightharpoonup \alpha_i$ est **l'effet principal** du Marqueur de niveau i.
- \triangleright β_j est **l'effet principal** de la Variete de niveau j;
- $ightharpoonup \gamma_{ij}$ est **l'effet d'interaction** entre le Marqueur i et la Variete j;
- ▶ E_{ijk} est le résidu (aléa) associé à l'observation Y_{ijk} . $E_{ijk} \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$.

III) Ajustement du modèle régulier

Estimateurs

Estimateurs: Variables aléatoires L'estimateur de μ_{ij} est donné par la moyenne empirique du rendement des parcelles de Marqueur i et de Variete j.

$$\hat{\mu}_{ij} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} Y_{ijk} = Y_{ij\bullet}$$

▶ Estimations: Réalisation sur les données

$$\hat{\mu}_{ij}^{obs} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} y_{ijk} = y_{ij\bullet}$$

Prédicteur et prédiction

Prédicteur Pour une parcelle e Marqueur i et de Variete j, le rendement prédit est:

$$\widehat{Y}_{ijk} = \hat{\mu}_{ij} = Y_{ij\bullet}$$

▶ Prédiction Réalisation sur les données

$$\widehat{y}_{ik} = \hat{\mu}_{ij}^{obs} = y_{ijullet}$$

III) Ajustement du modèle singulier

Il y a trop de paramètres de moyennes! (1+I+J+IJ) alors qu'on a IJ moyennes!

On doit **poser** 1 + I + J **contraintes**, typiquement:

$$\alpha_1 = 0, \ \beta_1 = 0, \ \gamma_{1j} = \gamma_{i1} = 0, \ 1 \le i \le I, \ 1 \le j \le J.$$

Les 1ers niveaux de chaque facteur sont alors des niveaux de référence.

Les estimateurs des $\mu, \alpha_i, \beta_j, \gamma_{ij}$ vont **dépendre** de la contrainte!

Pour la contrainte ci dessus, on a:

$$\hat{\mu} = Y_{11\bullet}, \ \hat{\alpha}_i = Y_{i1\bullet} - Y_{11\bullet}, \ \hat{\beta}_j = Y_{1j\bullet} - Y_{11\bullet}, \hat{\gamma}_{ij} = Y_{ij\bullet} - Y_{i1\bullet} - Y_{1j\bullet} + Y_{11\bullet}$$

Le prédicteur est alors

$$\widehat{Y}_{ijk} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\gamma}_{ij} = Y_{ij\bullet}$$

Le prédicteur ne dépend pas de la contrainte.

Estimateur et estimation de la variance σ^2

Résidus observés

$$\hat{e}_{ijk} = y_{ijk} - \hat{y}_{ijk}, \ 1 \le i \le I, \ 1 \le j \le J, \ 1 \le k \le n_{ij}$$

Estimateur

$$S^{2} = \frac{\sum_{i=1}^{J} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (Y_{ijk} - \hat{Y}_{ijk})^{2}}{n - IJ}$$

Estimation

$$\hat{\sigma}_{obs}^2 = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - \widehat{y}_{ijk})^2}{n - IJ} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} \widehat{e}_{ijk}^2}{n - IJ} \stackrel{ici}{=} 467.4$$

IV) Validité des hypothèses

Distribution identique, espérance constante et nulle

Ce qu'on regarde: Les résidus observés \hat{e}_{ijk} en fonction des prédictions \hat{y}_{ijk} (équivalent à regarder en fonction des croisements de niveaux).

Ce qu'on voit: La distribution des résidus semble comparable dans toutes les variétés. La variance ne semble pas différer selon le croisement de niveaux.

Ce qu'on conclut: L'hypothèse de distribution identique des résidus semble valable.

Distribution identique, variance constante

Ce qu'on regarde: La valeur absolue des résidus (standardisés) observés en fonction des prédictions \hat{y}_k (équivalent à regarder en fonction des croisements de niveaux).

Ce qu'on voit: La valeur absolue des résidus semble comparable dans toutes les variétés (autour de 0.8). La variance ne semble pas différer selon le croisement de niveaux.

Ce qu'on conclut: L'hypothèse de variance identique des résidus semble valable.

Distribution normale

Ce qu'on regarde: La valeur des quantiles empiriques des résidus standardisés en fonction de la valeur quantiles théoriques d'une loi normale $\mathcal{N}(0,1)$.

Ce qu'on voit: Les points sont globalement alignés sur la droite y = x, avec quelques problèmes pour les premiers quantiles.

Ce qu'on conclut: On peut valider l'hypothèse de distribution normale des résidus.

Résidus par variété

Ce qu'on regarde: Même graphique (réarrangé) que le 1er.

Ce qu'on voit: Même chose qu'au premier.

Ce qu'on conclut: Même chose qu'au premier.

4 graphes et un oeil fin

Rien dans ces quatre graphiques ne permet de contredire les hypothèses faites sur les résidus.

√) Test du modèle

On veut tester si notre modèle impliquant le niveau de Marqueur et de Variete du maïs explique mieux le **rendement** qu'un modèle simple, où le **rendement** est constant.

Hypothèses du test

On teste:

$$H_0: \quad Y_{ijk} = \mu + E_{ijk} \qquad \qquad \text{Modèle } M_0$$
 contre $H_1: \quad Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + E_{ijk} \qquad \text{Modèle } M_1$

Pour tester cette hypothèse, on va décomposer la variabilité des données:

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{SCT} (Y_{ijk} - \bar{Y})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{SCM} (\widehat{Y}_{ijk} - \bar{Y})^2 + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{SCR} (Y_{ijk} - \widehat{Y}_{ijk})^2$$

Somme	ddl	Réalisation
SCT:	n - 1	$SCT_{obs} = \sum_{i,j,k} (y_{ijk} - \bar{y})^2$
SCM:	IJ - 1	$SCM_{obs} = \sum_{i,i,k}^{\infty} (\hat{y}_{ijk} - \bar{y})^2$
SCR:	n - IJ	$SCR_{obs} = \sum_{i,j,k} (y_{ijk} - \hat{y}_{ijk})^2$

Test du modèle

Hypothèses du test

$$\begin{array}{ccc} H_0: & Y_{ijk} = \mu + E_{ijk} & \text{Modèle } M_0 \\ \text{contre} & H_1: & Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + E_{ijk} & \text{Modèle } M_1 \end{array}$$

Statistique de test

On considère la statistique de test

$$F = \frac{SCM/ddI(SCM)}{SCR/ddI(SCR)}$$

Si H_0 est vraie, alors $F \stackrel{H_0}{\sim} Fisher(ddl(SCM), ddl(SCR))$.

Sur les données on observe

$$f_{obs} = \frac{SCM_{obs}/ddI(SCM)}{SCR_{obs}/ddI(SCR)}.$$

On rejette H_0 au risque de première espèce α si

$$\underbrace{\mathbb{P}(F > f_{obs})}_{\text{p-valeur}} < \alpha$$

Table d'analyse de la variance

ddl	Somme	ddl	Somme	Stat. test.	p-valeur
ddl(SCT)		()			7/5
ddl(SCR)	SCR _{obs}	ddI(SCM)	SCM _{obs}	f _{obs}	$\mathbb{P}(F > f_{obs})$

Analysis of Variance Table

```
Model 1: Rendement ~ 1

Model 2: Rendement ~ Marqueur * Variete
Res.Df RSS Df Sum of Sq F Pr(>F)

1 276 163064

2 269 125735 7 37329 11.409 1.135e-12 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Conclusion du test: On rejette H_0 et on conclut que le modèle d'ANOVA explique mieux les données qu'un modèle où le rendement est constant.

REMARQUE:
$$\hat{\sigma}^2 = S^2 = SCR/ddl(SCR)$$

VI) Tests des effets

Chacun des effets dans le modèle est il indispensable?

- ▶ Effet d'interaction?
- Effet principal du Marqueur?
- ► Effet principal de la Variete?

Test de l'effet d'interaction

On testera si l'ajout d'un effet d'interaction à un modèle avec les effets principaux apporte de l'information sur le rendement.

Test des effets principaux

2 manières de voir le problème?

- L'ajout de l'effet principal du facteur Marqueur est il intéressant par rapport à un modèle constant? (Test de type I)
- L'ajout de l'effet principal du facteur Marqueur est il intéressant par rapport à un modèle ayant l'effet Variete? (Test de type II)

Notion de réduction

Notations

Modèle	Equation	SCM
M_{μ}	$Y_{ijk} = \mu + E_{ijk}$	SCM_{μ}
$M_{\mu,\alpha}$	$Y_{ijk} = \mu + \alpha_i + E_{ijk}$	$SCM_{\mu,\alpha}$
$M_{\mu,\beta}$	$Y_{ijk} = \mu + \beta_j + E_{ijk}$	$SCM_{\mu,\beta}$
$M_{\mu,\alpha,eta}$	$Y_{iik} = \mu + \alpha_i + \beta_i + E_{iik}$	$SCM_{\mu,\alpha,eta}$
$M_{comp} = M_{\mu, \alpha, \beta, \gamma}$	$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + E_{ijk}$	$SCM_{\mu,lpha,eta,\gamma}$

Réduction

On appelle réduction associée α dans un modèle contenant μ la quantité:

$$R(\alpha|\mu) = SCM_{\mu,\alpha} - SCM_{\mu}$$

Son **degré de liberté** est le nombre de paramètres supplémentaires à estimé (après contraintes) dans $M_{\mu,\alpha}$ par rapport à M_{μ} , donc, I-1 pour cet exemple.

On généralise cette définition pour tout modèle M_1 emboîté dans un modèle M_2 (noté $M_1 \subset M_2$), i.e. tel que M_2 consiste en l'ajout de paramètres à M_1 , en notant:

$$R(M_2|M_1) = SCM_2 - SCM_1$$

où M_2 est **au plus** le modèle complet M_{comp} .

Test associé à une réduction

Pour tester l'intérêt d'un modèle M_2 par rapport à un modèle M_1 ($M_1 \subset M_2$), on testera:

 H_0 : Le vrai modèle est M_1

contre H_1 : Le vrai modèle est M_2

Statistique de test

On considère la statistique de test

$$F = \frac{R(M_2|M_1)/ddl(R(M_2|M_1))}{SCR/ddl(SCR)}$$

où SCR est la somme des carrés résiduelles du modèle **complet** M_{comp} .

Si H_0 est vraie, alors $F \stackrel{H_0}{\sim} Fisher(ddl(R(M_2|M_1), ddl(SCR)))$.

Sur les données on observe f_{obs} comme une réalisation de F.

On rejette
$$H_0$$
 au risque de première espèce α si $\mathbb{P}(F > f_{obs}) < \alpha$

Dans ce cas, on conclue que les effets de M_2 non présents dans M_1 apporte de l'information sur la variable explicative.

Tests de type I et II

Type I

Effet testé	H ₀	<i>H</i> ₁	Réduction
α	$Y_{ijk} = \mu + E_{ijk}$	$Y_{ijk} = \mu + \alpha_i + E_{ijk}$	$R(\alpha \mu)$
β	$Y_{ijk} = \mu + \alpha_i + E_{ijk}$	$Y_{ijk} = \mu + \alpha_i + \beta_j + E_{ijk}$	$R(\beta \mu,\alpha)$
γ	$Y_{ijk} = \mu + \alpha_i + \beta_j + E_{ijk}$	$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} E_{ijk}$	$R(\gamma \mu,\alpha,\beta)$

Le test des effets principaux dépend de l'ordre d'entrée des facteurs!

Type II

Effet testé	H ₀	H_1	Réduction
β		$\begin{aligned} Y_{ijk} &= \mu + \alpha_i + \beta_j + E_{ijk} \\ Y_{ijk} &= \mu + \alpha_i + \beta_j + E_{ijk} \\ Y_{ijk} &= \mu + \alpha_i + \beta_j + \gamma_{ij} E_{ijk} \end{aligned}$	$egin{array}{c} R(lpha \mu,eta) \ R(eta \mu,lpha) \ R(\gamma \mu,lpha,eta) \end{array}$

Test des effets Marqueur et Variete (Type I)

Effet	ddl	Réduction	Ratio	Stat. test.	p-valeur
α	$ddI(R(\cdot))$	$R(\alpha \mu)$	F	f _{obs}	$\mathbb{P}(F > f_{obs})$
β	$ddl(R(\cdot))$	$R(\beta \mu,\alpha)$	F	f _{obs}	$\mathbb{P}(F > f_{obs})$
γ	$ddl(R(\cdot))$	$R(\gamma \mu,\alpha,\beta)$	F	f _{obs}	$\mathbb{P}(F > f_{obs})$
	ddl(SCR)	SCR	S^2		

Analysis of Variance Table

```
Response: Rendement
```

```
Df Sum Sq Mean Sq F value Pr(>F)
Marqueur
                 1
                      470
                            469.6 1.0048
                                            0.3171
Variete
                  3 35849 11949.7 25.5655 1.393e-14 ***
Marqueur: Variete
                      1011
                            336.9
                                   0.7208
                                            0.5403
Residuals
                269 125735 467.4
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Au risque $\alpha = 0.01$

- Pas d'effet d'interaction;
- Pas d'effet principal de type I pour le facteur Marqueur;
- Effet du facteur Variete;

Test des effets Marqueur et Variete (Type II)

Effet	Réduction	ddl	Stat. test.	p-valeur
$\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}$	$R(lpha \mu)$ $R(eta \mu,lpha)$ $R(\gamma \mu,lpha,eta)$ SCR	$ddI(R(\cdot))$ $ddI(R(\cdot))$ $ddI(R(\cdot))$ ddI(SCR)	f_{obs} f_{obs} f_{obs}	$\mathbb{P}(F > f_{obs})$ $\mathbb{P}(F > f_{obs})$ $\mathbb{P}(F > f_{obs})$

Anova Table (Type II tests)

```
Response: Rendement
```

```
        Marqueur
        Sum Sq
        Df
        F value
        Pr(>F)

        Marqueur
        69
        1
        0.1473
        0.7014

        Variete
        35849
        3
        25.5655
        1.393e-14
        ***

        Marqueur: Variete
        1011
        3
        0.7208
        0.5403

        Residuals
        125735
        269
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Au risque $\alpha = 0.01$

- Pas d'effet d'interaction;
- ▶ Pas d'effet principal de type II pour le facteur Marqueur;
- ► Effet du facteur Variete;

Notion d'orthogonalité

Facteur 1 / Facteur 2	1	 J	Somme
1	n ₁₁	 n_{1J}	n_{1+}
<u>:</u>	:	 	:
	n_{l1}	 n _{IJ}	n_{I+}
Somme	n_{+1}	 n_{+J}	n

Le plan est **orthogonal** si pour tout i et j

$$n_{ij} = \frac{n_{i+} \times n_{+j}}{n}$$

En particulier, si le plan d'expérience est équilibré, il est orthogonal.

Si le plan est orthogonal, les tests de type I et II sont les mêmes.

VI) Test sur les paramètres de moyenne.

Hypothèses de test

Pour chaque paramètre de moyenne (une fois les contraintes posées!) on teste:

 $H_0: paramètre = 0$

 $\text{contre} \quad \textit{H}_1: \quad \mathsf{param\`etre} \neq 0$

Ce test a en pratique peu d'intérêt car il dépend de la contrainte

Statistique de test

Exemple pour
$$lpha_i$$
, on utilise $T=rac{\hat{lpha_i}}{\sqrt{\mathbb{V}[\hat{lpha_i}]}}$

où $\widehat{\mathbb{V}[\hat{\alpha}_i]}$ est l'estimateur de la variance de $\hat{\alpha}_i$ (calculé grâce à la réalisation de S^2).

Si H_0 est vraie, $T \stackrel{H_0}{\sim} Student(ddl(SCR))$.

On observe la réalisation t_{obs} de T. On rejette H_0 au risque α si:

$$\mathbb{P}(T < t_{obs}) < \alpha/2 \text{ ou } \mathbb{P}(T > t_{obs}) < \alpha/2$$

Ou, de manière équivalente:
$$\overbrace{2\mathbb{P}(T>|t_{obs}|)}^{\text{p-valeur dans R}}<\alpha$$

Estimations du modèle

Call:

lm(formula = formule_anov2, data = donnees)

Residuals:

Min 1Q Median 3Q Max -73.521 -11.365 1.584 13.834 58.682

Coefficients:

	Estimate S	Std.	Error	t value	Pr(> t)	
(Intercept)	347.887		3.223	107.942	< 2e-16	***
Marqueur2	-5.154		4.108	-1.255	0.211	
VarieteEuropean	-27.904		5.915	-4.717	3.84e-06	***
VarieteNorthern	-31.167		5.096	-6.116	3.36e-09	***
VarieteTropical	-5.402		8.295	-0.651	0.515	
Marqueur2:VarieteEuropean	9.626		7.356	1.309	0.192	
Marqueur2:VarieteNorthern	7.771		7.472	1.040	0.299	
Marqueur2:VarieteTropical	3.895		9.245	0.421	0.674	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21.62 on 269 degrees of freedom Multiple R-squared: 0.2289, Adjusted R-squared: 0.2089 F-statistic: 11.41 on 7 and 269 DF, p-value: 1.135e-12

Comparaison des moyennes par variété

Pour chaque couple de croisement de niveau (i,j) et (i',j') on veut tester

$$H_0: \quad \mu_{ij} = \mu_{i'j'}$$
 contre $H_1: \quad \mu_{ij} \neq \mu_{i'j'}$

Statistique de test

$$T = rac{\hat{\mu}_{ij} - \hat{\mu}_{i'j'}}{\sqrt{S^2}}$$

où S^2 est l'estimateur de la variance du modèle d'ANOVA.

Si H_0 est vraie, $T \stackrel{H_0}{\sim} Student(ddl(SCR))$.

On observe la réalisation t_{obs} de T. On rejette H_0 au risque α si:

$$\mathbb{P}(T < t_{obs}) < \alpha/2 \text{ ou } \mathbb{P}(T > t_{obs}) < \alpha/2$$

Ou, de manière équivalente:

$$\overbrace{2\mathbb{P}(\mathit{T}>|\mathit{t_{obs}}|)}^{\text{p-valeur dans R}}<\alpha$$

Correction pour les tests multiples

- $ightharpoonup \frac{IJ \times (IJ-1)}{2}$ tests sont effectués;
- Mécaniquement, la multitude de test amènera à rejeter H_0 ;
- ▶ Il faut corriger la p-valeur!

Correction de Bonferroni

On ajuste la p - valeur par le nombre de tests. Pour un risque de 1ère espèce α , on rejettera H_0 si

$$\overbrace{\frac{IJ(IJ-1)}{2}\times 2\mathbb{P}(T>|t_{obs}|)}^{\text{p-valeur corrigée}}<\alpha$$

Cette correction est appelée correction de Bonferroni.

Test 2 à 2

contrast	estimate	SE	df	t.ratio	p.value
1,Corn - 2,Corn	5.154046	4.108393	269	1.255	1.0000
1,Corn - 1,European	27.903652	5.915050	269	4.717	0.0001
1,Corn - 2,European	23.431862	4.797901	269	4.884	0.0001
1,Corn - 1,Northern	31.166936	5.095834	269	6.116	<.0001
1,Corn - 2,Northern	28.550361	5.810144	269	4.914	<.0001
1,Corn - 1,Tropical	5.402369	8.295416	269	0.651	1.0000
1,Corn - 2,Tropical	6.661371	4.533014	269	1.470	1.0000
2,Corn - 1,European	22.749605	5.576082	269	4.080	0.0017
2,Corn - 2,European	18.277816	4.373183	269	4.180	0.0011
2,Corn - 1,Northern	26.012890	4.698127	269	5.537	<.0001
2,Corn - 2,Northern	23.396314	5.464673	269	4.281	0.0007
2,Corn - 1,Tropical	0.248323	8.057221	269	0.031	1.0000
2,Corn - 2,Tropical	1.507325	4.080819	269	0.369	1.0000
1,European - 2,European	-4.471790	6.101939	269	-0.733	1.0000
1,European - 1,Northern	3.263284	6.338874	269	0.515	1.0000
1,European - 2,Northern	0.646709	6.926152	269	0.093	1.0000
1,European - 1,Tropical	-22.501282	9.111956	269	-2.469	0.3963
1,European - 2,Tropical	-21.242280	5.895932	269	-3.603	0.0105
2,European - 1,Northern	7.735074	5.311625	269	1.456	1.0000
2,European - 2,Northern	5.118499	6.000302	269	0.853	1.0000
2,European - 1,Tropical	-18.029493	8.429696	269	-2.139	0.9339
2,European - 2,Tropical	-16.770491	4.774312	269	-3.513	0.0146
1, Northern - 2, Northern	-2.616575	6.241096	269	-0.419	1.0000
1,Northern - 1,Tropical	-25.764567	8.602758	269	-2.995	0.0840
1,Northern - 2,Tropical	-24.505565	5.073630	269	-4.830	0.0001
2,Northern - 1,Tropical	-23.147991	9.044208	269	-2.559	0.3089
2,Northern - 2,Tropical				-3.780	0.0054
1,Tropical - 2,Tropical	1.259002	8.281795	269	0.152	1.0000

P value adjustment: bonferroni method for 28 tests

Comparaison des moyennes par Marqueur

On a les moyennes observées par type de marqueur

Marqueur Moyenne 1 1 333.0984 2 2 335.7980

Si on souhaite comparer les moyennes pour l'effet d'un facteur, il faut *ajuster* par l'effet de l'autre facteur et l'effet d'interaction.

Pour les moyennes de rendement par Marqueur, on comparera, pour tout i:

$$\widetilde{\mu}_{i\bullet} = \mu + \alpha_i + \underbrace{\frac{1}{J} \sum_{j=1}^{J} \beta_j + \frac{1}{J} \sum_{j=1}^{J} \gamma_{ij}}_{Ajustement}$$

\$1smeans

Marqueur lsmean SE df lower.CL upper.CL 1 331.7683 2.610020 269 326.6297 336.9070 2 331.9371 1.814123 269 328.3655 335.5088

Results are averaged over the levels of: Variete Confidence level used: 0.95

\$contrasts

contrast estimate SE df t.ratio p.value 1 - 2 -0.1688292 3.178561 269 -0.053 0.9577

Results are averaged over the levels of: Variete

VII) Critique du modèle

Le modèle est ici inutilement compliqué, il ne semble pas utile d'inclure le marqueur génétique pour expliquer le rendement.

Parmi les deux facteurs explicatifs, seul la variable variété semble importante.

VIII) Conclusion biologique

La connaissance de la variété semble donner une information sur le rendement, cependant la connaissance du marqueur génétique ne semble pas être un facteur important.

On pourra désormais voir si un modèle comprenant les variables quantitatives **et** l'effet variété permet une bonne prédiction des données.