Man-Machine Visualization & OEE Analysis

August 2562

KMUTNB

Session 1: Visualization & OEE

เป้าหมายของการทำ Visualize Man - Machine

Experience and Knowledge can be stored as the data

People Experience

Digitalization

What's occurred in a head?

Experts get Kaizen actions using their experience and knowledge after observing the site.

Kaizen Action

- √ Eliminate
- √ Change
- √ Simplify
- √ Improve

Visualization

1st and 2nd Rocket provide current situation and trend data.

Visualize Human data and Machine data in time-series

Even if we can see a combination of Human and Machine information as fact, How to find the point where we start Kaizen?

Strategy of Action

LASI recommend to find strategy of action using Macro Diagnosis based on TPM 16 big loss.

1st Rocket Sample

Data storage and provision functions are essential for visualization.

1st Rocket Sample

There are several ways to obtain data on equipment and production lines.

Visualize machine data in time-series view

Visualize the obtained data in time-series view.

Current

Daily

Monthly

KPI Value for Macro Diagnosis

Find points to start Kaizen by comparing the OEE of each process with the target OEE.

8 Big Loss

Based on each OEE, the policy of improvement for each process is decided.

Detail visualization

Detail Visualization support us to find the reason of losses.

Trend information

The way to find use machine data

Trend and Categorize time series data produce Kaizen Plan. Get the downtime reason data to categorize time series data.

OEE Analysis

Data Definition for OEE Analysis

KPI Calcution and Data Aquisition

OEE KPIs

Availability = ②Operating Time / ①Loading Time x100

(Timewise) = (①Loading Time-④Down Time)/ ①Loading Time x100

Performance Rate = 3Net Operating Time / 2Operating Time x100

= 8Standard C.T. x 5Produced Vol. / 2Operating Time x100

Quality Product Rate = 7Good Produced Volume/5Produced Volume x100

= (5Produced Vol - 6Defects Unit)/ 4Produced Vol. x100

Time Measurement

①Loading Time: Record by Operator or Defined Data from System

②Operating Time: Collected by Machine Status Data from System

3Net Operating Time: Calculated with **8Standard C.T.** x **5Produced Vol.**

4 Down Time: If possible integration of various Down Time Losses

⑤ Produced Volume: Counter Value or Data Collection system

6 Defects Unit: Recorded by Counter or Operator, auto. Collecting

7 Good Produced Volume: Recorded by Counter or Operator, auto. Collecting

®Standard C.T.: Defined by Plant Manager

1st Rocket Sample

It is necessary to acquire three kind of data in the OEE calculation.

Exercise

1. Calculate OEE using sample data.

Standard C.T.=10 min. Working Hour: 08:00 - 18:00

Make sample data which can obtain the specified OEE.

ตัวอย่างข้อมูล

- 1. Schedule downtime = 90 min
- 2. Loading time = 90 min
- 3. Downtime Loss = 15 min
- 4. Production = 46
- 5. Defected Unit = 2

Working Time = 10 Hrs. = 600 Min Schedule = 90 min.

Loading Time = 600 - 90 = 510 min

Downtime loss = 15 min

Operating time = 510 - 15 = 495 min

A = Operating time / Loading time =

P = Production unit x Cycle Time (Planned) / Operating time

$$= 46 \times 10 / 495 =$$

$$Q = (46 - 2) / 46 =$$

$$OEE = A \times P \times Q =$$

Answer Exercise 1

Working Hour = 600 min Schedule Downtime= 90 min Loading Time = 510 min Downtime loss = 15 min Operating Time = 495 min

Production = 46 Defect Unit = 2

A=495/ 510 x 100 = 97.06% P=46 x 10 / 495 x 100 = 92.93% Q=(46-2) / 46 x 100 = 95.65%

 $OEE=0.9706 \times 0.9293 \times 0.9565 = 0.8675$

Exercise 2

Make sample data and Signal definition to get specified OEE.

```
Target OEE
   Availability: 80.0%
   Performance Rate: 95.0%
   Quality Product Rate: 94.7%

Precondition
   Working hour: 1 hour(From 8am to 9am)
   Short Break: 10 min.
```

Standard C.T.: 1 min.

Answer Exercise 2

```
Working time 60min.
Schedule Downtime =10 min.
Loading Tim = 50min.
```

```
A= Operating time / Loading Time
Operating time / 50 = 0.8
Operating time = 40 (min.)
```

```
P=Standard C.T. x Produced Vol./ Operating time

1 x Produced Vol / 40 = 0.95

Produced Vol = 38
```

```
Q=(Produced Vol.-Defect Unit)/ Produced Vol.
(38 - Defect Unit) / 38 = 0.947
Defects Unit=2
```


นิยาม

Plant Operating Time

Planned Production Time

Operating Time

1. Plant Operating Time

คือเวลาที่โรงงานเปิด และมีความพร้อมในการเปิดเครื่องจักร

2. Planned Production Time

คือเวลาที่พร้อมในการเปิด หัก ด่วยเวลาที่เครื่องจักรหยุด เช่น เสีย, พักเที่ยง, ทำการบำรุงรักษา หรือเหตุการณ์อะไรก็ตามที่ทำให้เครื่องจักรไม่สามารถทำการ ผลิตได้

3. Operating Time

คือเวลาที่ทำการผลิตจริง เท่ากับเวลาที่เครื่องพร้อมผลิต หัก ด้วยเวลาที่หยุด การผลิตด้วยทุก ๆ สาเหตุ

Availability = Operating Time / Planned Production Time

TRENDS

ประโยชน์ของการเพิ่ม OEE

- 1. การเพิ่ม OEE ประมาณ 10-15% ภายใน 1 ปี จะสามารถเพิ่ม ROA ได้ประมาณ 50%
- 2. การดำเนินการเพื่อปรับปรุง OEE มีผลต่อการปรับปรุงต้นทุนมากกว่าการเพิ่มเครื่องจักรเพื่อ ขยายกำลังการผลิต 10 เท่า และสามารถลดเงินลงทุนเกี่ยวกับเครื่องจักรประมาณร้อยละ 50
- 3. จากสถิติของอุตสาหกรรมในสหรัฐฯ พบว่าการลดอัตรา downtime ลง 1% จะสามารถลด ค่าใช้จ่ายลงได้ปีละ \$1 ล้านเหรียญ
- 4. การปรับปรุง OEE นอกจากลดต้นทุนได้แล้ว ยังช่วยลดการใช้พลังงาน, ลดปริมาณก๊าซคาร์บอน ในชั้นบรรยากาศ

Proximity switch

การส่งข้อมูลโดยโปรแกรม

อุปกรณ์ embedded controller ทำหน้าที่รับสัญญาณจาก sensors และแปลงเป็นข้อมูลส่งไปเก็บที่ database MySQL โดยการเรียกใช้โปรแกรม Php scripts ที่จัดเก็บไว้ใน Local server และ Cloud server

Phpmyadmin เป็นโปรแกรมที่อำนวยความสะดวกในการจัดการฐานข้อมูล

Grafana เป็นโปรแกรม สร้าง Dashboard โดยใช้ข้อมูลจากฐานข้อมูล

ชื่อฐานข้อมูลที่ใช้ในการจัดเก็บข้อมูลเครื่องจักร

- 1. Plandata สำหรับ เก็บข้อมูลแผนการผลิต
- 2. Productiondata สำหรับเก็บข้อมูลการผลิตแบบอนุกรมเวลา
- 3. Members สำหรับเก็บ user/password ในการเข้าสู่ Application

ตัวอย่างข้อมูลในตารางแผนการผลิต

Browse	Structure	SQL	Search	lnsert	Export	i Imp	ort Pri	vileges	<i>₯</i> Operati	ions	36 Triggers							
+ Options																		
← ⊤→	▽	ID v 1	timestamp	McNo	LotNo	ItemNo I	PlannedQty	Status	Sequence	StartDateTime	RunDateTime	BreakdownDateTime	StopDateTime	ProducedQty	AQty	AvTime	CycleTime	TotalDefect
Edit	🛂: Copy 😄 Delete	26	2019-08-20 21:40	0:32 MC-00	1 Lot#23		0.00	2	1	2019-08-20 21:40:29	2019-08-20 21:40:32	NULL	NULL	0.00	0.00	0.00	0.00	0.00
□ 🧬 Edit	🛂 Copy 😄 Delete	25	2019-08-20 21:39	9:57 MC-00	1 Lot#22		0.00	2	1	2019-08-20 21:39:23	2019-08-20 21:39:57	NULL	NULL	0.00	0.00	0.00	0.00	0.00
Edit	🛂 Copy 😄 Delete	24	2019-08-20 21:38	8:54 MC-00	1 Lot#21		0.00	1	1	2019-08-20 21:38:54	2019-08-20 21:38:38	NULL	NULL	0.00	0.00	0.00	0.00	0.00
□ 🧬 Edit	🛂 Copy 😄 Delete	23	2019-08-20 21:33	3:29 MC-00	1 Lot#20		0.00	2	1	2019-08-20 21:33:24	2019-08-20 21:33:29	NULL	NULL	0.00	0.00	0.00	0.00	0.00
Edit	👫 Copy 😄 Delete	22	2019-08-20 06:40	0:16 MC-00	1 Lot#18		0.00	2	1	2019-08-20 06:37:44	2019-08-20 06:40:16	2019-08-20 06:38:27	NULL	0.00	0.00	0.00	0.00	0.00
□ 🧼 Edit	🛂 Copy 😄 Delete	21	2019-08-20 06:35	5:02 MC-00	1 Lot#17		0.00	2	1	2019-08-20 06:35:00	2019-08-20 06:35:02	NULL	NULL	0.00	0.00	0.00	0.00	0.00
Edit	🛂 Copy 😄 Delete	20	2019-08-20 06:34	4:15 MC-00	1 Lot#16		0.00	3	1	2019-08-20 06:32:41	2019-08-20 06:33:48	2019-08-20 06:33:18	2019-08-20 06:34:15	68.00	7.17	0.00	0.00	0.00
□ 🧼 Edit	🛂 Copy 😄 Delete	19	2019-08-20 06:29	9:29 MC-00	1 Lot#15		0.00	2	1	2019-08-20 06:29:24	2019-08-20 06:29:29	2019-08-20 06:29:08	NULL	0.00	0.00	0.00	0.00	0.00
□ 🥜 Edit	🛂 Copy 😄 Delete	18	2019-08-20 05:56	8:31 MC-00	1 Lot#14		0.00	2	1	2019-08-20 05:56:25	2019-08-20 05:56:31	2019-08-20 05:52:07	NULL	0.00	0.00	0.00	0.00	0.00
□ 🧳 Edit	📲 Copy 😄 Delete	17	2019-08-19 23:36	3:12 MC-00	1 Lot#13		0.00	1	1	2019-08-19 23:36:12	NULL	NULL	NULL	0.00	0.00	0.00	0.00	0.00
					.			-										

ตัวอย่างข้อมูลการผลิต โดยจะเก็บข้อมูลตามระยะเวลาที่กำหนด เช่น ทุก ๆ 3 นาที่

การสร้างกราฟจากฐานข้อมูล แสดง เวลาเปิดเครื่อง, เวลาผลิต, เวลาหยุดเครื่อง และจำนวนที่ผลิตได้

ตัวอย่างการ สร้างคำสั่งเพื่อเรียกข้อมูลมาสร้างกราฟ

End of Session 1