Fully-Connected Tensor Network Decomposition and Its Application to Higher-Order Tensor Completion

Yu-Bang Zheng¹

Ting-Zhu Huang¹, Xi-Le Zhao¹, Qibin Zhao², Tai-Xiang Jiang³

¹University of Electronic Science and Technology of China, China ²Tensor Learning Team, RIKEN AIP, Japan ³Southwestern University of Finance and Economics, China

AAAI 2021

Outline

- Background and Motivation
- PCTN Decomposition
- FCTN-TC Model and Solving Algorithm
- Numerical Experiments
- Conclusion

Outline

- Background and Motivation
- PCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- 4 Numerical Experiments
- Conclusion

Higher-Order Tensors

Many real-world data are higher-order tensors: e.g., color video, hyperspectral image, and traffic data.

color video

hyperspectral image

traffic data

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and traffic data completion.

recommender system

hyperspectral image

Tensor Completion

Missing Values Problems: recommender system design, image/video inpainting, and traffic data completion.

Tensor Completion (TC): complete a tensor from its partial observation.

III-Posed Inverse Problem

III-posed inverse problem

III-Posed Inverse Problem

III-posed inverse problem

Prior/Intrinsic property

- Piecewise smoothness
- Nonlocal self-similarity
- Low-rankness

III-Posed Inverse Problem

III-posed inverse problem

Prior/Intrinsic property

- Piecewise smoothness
- Nonlocal self-similarity
- Low-rankness

Low-Rank Tensor Decomposition (Φ)

$$\min_{\mathcal{X},\mathcal{G}} \frac{1}{2} \| \mathcal{X} - \Phi(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N) \|_F^2,$$
s.t. $\mathcal{P}_{\mathcal{O}}(\mathcal{X}) = \mathcal{P}_{\mathcal{O}}(\mathcal{F}).$

Minimizing Tensor Rank

$$\min_{\mathcal{X}} \ \operatorname{Rank}(\mathcal{X}),$$
s.t. $\mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F}).$

Here $\mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ is an incomplete observation of $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, Ω is the index of the known elements, and $\mathcal{P}_{\Omega}(\mathcal{X})$ is a projection operator which projects the elements in Ω to themselves and all others to zeros.

Tensor Decomposition

- decomposes a higher-order tensor to a set of low-dimensional factors;
- has powerful capability to capture the global correlations of tensors.

Tensor Decomposition

- decomposes a higher-order tensor to a set of low-dimensional factors;
- has powerful capability to capture the global correlations of tensors.

$$\mathcal{X} = \mathcal{G} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \cdots \times_{N} \mathbf{U}^{(N)}$$

$$\mathcal{X} = \mathcal{G} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \cdots \times_{N} \mathbf{U}^{(N)}$$

Tucker decomposition

$$I_{1} \underbrace{\mathcal{X}}_{I_{1}} = \underbrace{I_{3}}_{I_{1}} \underbrace{g_{2}^{(3)}}_{\mathbf{g}_{1}^{(2)}} \underbrace{f_{1}}_{I_{1}} \underbrace{g_{2}^{(2)}}_{\mathbf{g}_{2}^{(2)}} \underbrace{f_{2} \dots f_{1}}_{I_{1}} \underbrace{g_{2}^{(k)}}_{\mathbf{g}_{2}^{(k)}} \qquad \mathcal{X} = \sum_{r=1}^{R} \lambda_{r} \, \mathbf{g}_{r}^{(1)} \circ \mathbf{g}_{r}^{(2)} \circ \dots \circ \mathbf{g}_{r}^{(N)}$$

CANDECOMP/PARAFAC (CP) decomposition

Limitations of Tucker Decomposition

- only characterizes correlations among one mode and all the rest of modes, rather than between any two modes;
- needs high storage cost.

Limitations of Tucker Decomposition

- only characterizes correlations among one mode and all the rest of modes, rather than between any two modes;
- needs high storage cost.

Limitations of CP Decomposition

- difficulty in flexibly characterizing different correlations among different modes;
- difficulty in finding the optimal solution.

Recently, the popular **tensor train (TT) and tensor ring (TR) decompositions** have emerged and shown great ability to deal with **higher-order**, **especially beyond third-order tensors**.

Recently, the popular **tensor train (TT) and tensor ring (TR) decompositions** have emerged and shown great ability to deal with **higher-order**, **especially beyond third-order tensors**.

$$\mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, \dots, i_$$

TT decomposition

Recently, the popular **tensor train (TT) and tensor ring (TR) decompositions** have emerged and shown great ability to deal with **higher-order**, **especially beyond third-order tensors**.

$$\mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N-1}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N-1}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{1}} \dots \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{r_{N}=1}^{R_{N}} \mathcal{X}(i_{1}, i_{2}, \dots,$$

TT decomposition

TR decomposition

Motivations

Limitations of TT and TR Decomposition

A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;
- Without transpositional invariance: keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

Examples:

```
\triangleright reverse permuting: [1,2,3,4] \rightarrow [4,3,2,1];
```

 \triangleright circular shifting: $[1,2,3,4] \rightarrow [2,3,4,1], [3,4,1,2], [4,1,2,3].$

Motivations

Limitations of TT and TR Decomposition

- A limited correlation characterization: only establish a connection (operation) between adjacent two factors, rather than any two factors;
- Without transpositional invariance: keep the invariance only when the tensor modes make a reverse permuting (TT and TR) or a circular shifting (only TR), rather than any permuting.

Examples:

```
\triangleright reverse permuting: [1,2,3,4] \rightarrow [4,3,2,1];
```

$$\triangleright$$
 circular shifting: [1, 2, 3, 4] \rightarrow [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3].

How to break through?

Outline

- Background and Motivation
- PCTN Decomposition
- 3 FCTN-TC Model and Solving Algorithm
- 4 Numerical Experiments
- Conclusion

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of **low-dimensional** Nth-order factor tensors \mathcal{G}_k ($k = 1, 2, \dots, N$). The element-wise form of the FCTN decomposition can be expressed as

$$\mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1,N}=1}^{R_{1,N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2,N}=1}^{R_{2,N}} \cdots \sum_{r_{N-1,N}=1}^{R_{N-1,N}} \left\{ \mathcal{G}_{1}(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1,N}) \right. \\ \left. \mathcal{G}_{2}(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2,N}) \cdots \right. \\ \left. \mathcal{G}_{k}(r_{1,k}, r_{2,k}, \cdots, r_{k-1,k}, i_{k}, r_{k,k+1}, \cdots, r_{k,N}) \cdots \right. \\ \left. \mathcal{G}_{N}(r_{1,N}, r_{2,N}, \cdots, r_{N-1,N}, i_{N}) \right\}.$$

$$(1)$$

Note: Here $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ and $\mathcal{G}_k \in \mathbb{R}^{R_{1,k} \times R_{2,k} \times \cdots \times R_{k-1,k} \times I_k \times R_{k,k+1} \times \cdots \times R_{k,N}}$.

Definition 1 (FCTN Decomposition)

The FCTN decomposition aims to decompose an Nth-order tensor \mathcal{X} into a set of **low-dimensional** Nth-order factor tensors \mathcal{G}_k ($k = 1, 2, \cdots, N$). The element-wise form of the FCTN decomposition can be expressed as

$$\mathcal{X}(i_{1}, i_{2}, \cdots, i_{N}) = \sum_{r_{1,2}=1}^{R_{1,2}} \sum_{r_{1,3}=1}^{R_{1,3}} \cdots \sum_{r_{1,N}=1}^{R_{1,N}} \sum_{r_{2,3}=1}^{R_{2,3}} \cdots \sum_{r_{2,N}=1}^{R_{2,N}} \cdots \sum_{r_{N-1,N}=1}^{R_{N-1,N}} \left\{ \mathcal{G}_{1}(i_{1}, r_{1,2}, r_{1,3}, \cdots, r_{1,N}) \right. \\ \left. \mathcal{G}_{2}(r_{1,2}, i_{2}, r_{2,3}, \cdots, r_{2,N}) \cdots \right. \\ \left. \mathcal{G}_{k}(r_{1,k}, r_{2,k}, \cdots, r_{k-1,k}, i_{k}, r_{k,k+1}, \cdots, r_{k,N}) \cdots \right. \\ \left. \mathcal{G}_{N}(r_{1,N}, r_{2,N}, \cdots, r_{N-1,N}, i_{N}) \right\}.$$

$$(1)$$

Note: Here $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ and $\mathcal{G}_k \in \mathbb{R}^{R_{1,k} \times R_{2,k} \times \cdots \times R_{k-1,k} \times I_k \times R_{k,k+1} \times \cdots \times R_{k,N}}$.

FCTN-ranks: the vector (length: N(N-1)/2) collected by R_{k_1,k_2} ($1 \le k_1 < k_2 \le N$ and $k_1,k_2 \in \mathbb{N}^+$).

Figure 1: The Fully-Connected Tensor Network Decomposition.

Figure 1: The Fully-Connected Tensor Network Decomposition.

 R_{k_1,k_2} : characterizes the intrinsic correlations between the k_1 th and k_2 th modes of \mathcal{X} .

FCTN Decomposition: characterizes the correlations between any two modes.

Matrices/Second-Order Tensors

$$\boldsymbol{X} = \boldsymbol{G}_1 \boldsymbol{G}_2 \Leftrightarrow \boldsymbol{X}^\mathsf{T} = \boldsymbol{G}_2^\mathsf{T} \boldsymbol{G}_1^\mathsf{T}$$

 \Rightarrow

Higher-Order Tensors

??

Matrices/Second-Order Tensors

$$\mathbf{X} = \mathbf{G}_1 \mathbf{G}_2 \Leftrightarrow \mathbf{X}^\mathsf{T} = \mathbf{G}_2^\mathsf{T} \mathbf{G}_1^\mathsf{T}$$

Higher-Order Tensors

? ? '

Theorem 1 (Transpositional Invariance)

Supposing that an Nth-order tensor \mathcal{X} has the following FCTN decomposition: $\mathcal{X} = FCTN(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N)$. Then, its vector \mathbf{n} -based generalized tensor transposition $\vec{\mathcal{X}}^\mathbf{n}$ can be expressed as $\vec{\mathcal{X}}^\mathbf{n} = FCTN(\vec{\mathcal{G}}^\mathbf{n}_{n_1}, \vec{\mathcal{G}}^\mathbf{n}_{n_2}, \cdots, \vec{\mathcal{G}}^\mathbf{n}_{n_N})$, where $\mathbf{n} = (n_1, n_2, \cdots, n_N)$ is a reordering of the vector $(1, 2, \cdots, N)$.

Note: $\vec{\mathcal{X}^n} \in \mathbb{R}^{l_{n_1} \times I_{n_2} \times \cdots \times I_{n_N}}$ is generated by rearranging the modes of \mathcal{X} in the order specified by the vector \mathbf{n} .

FCTN Decomposition: has transpositional invariance.

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor \mathcal{X} can be represented by Equation (1), the following inequality holds:

$$\operatorname{Rank}(\mathbf{X}_{[n_{1:d};n_{d+1:N}]}) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{n_i,n_j},$$

where $R_{n_i,n_j} = R_{n_j,n_i}$ if $n_i > n_j$ and (n_1, n_2, \dots, n_N) is a reordering of the vector $(1, 2, \dots, N)$.

Note:
$$\mathbf{X}_{[n_{1:d};n_{d+1:N}]} = \text{reshape}(\vec{\mathcal{X}}^{\mathbf{n}}, \prod_{i=1}^{d} I_{n_i}, \prod_{i=d+1}^{N} I_{n_i}).$$

Comparison:

- \triangleright TT-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le R_d;$
- \triangleright TR-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le R_d R_N$;
- ho FCTN-ank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \leq \mathbf{X}_d \mathbf{X}_N$, ho FCTN- $\mathbf{X}_{[1:d;d+1:N]} \leq \prod_{i=1}^d \prod_{i=d+1}^N R_{i,i}$.

Theorem 2 (The FCTN Rank and the Unfolding Matrix Rank)

Supposing that an Nth-order tensor \mathcal{X} can be represented by Equation (1), the following inequality holds:

$$\operatorname{Rank}(\mathbf{X}_{[n_{1:d};n_{d+1:N}]}) \leq \prod_{i=1}^{d} \prod_{j=d+1}^{N} R_{n_i,n_j},$$

where $R_{n_i,n_j} = R_{n_j,n_i}$ if $n_i > n_j$ and (n_1, n_2, \dots, n_N) is a reordering of the vector $(1, 2, \dots, N)$.

Note:
$$\mathbf{X}_{[n_{1:d};n_{d+1:N}]} = \text{reshape}(\vec{\mathcal{X}}^\mathbf{n},\prod_{i=1}^d I_{n_i},\prod_{i=d+1}^N I_{n_i}).$$

Comparison:

- \triangleright TT-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le R_d;$
- \triangleright TR-rank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le R_d R_N$;
- \triangleright FCTN-ank: Rank $(\mathbf{X}_{[1:d;d+1:N]}) \le \prod_{i=1}^d \prod_{j=d+1}^N R_{i,j}$.
 - the FCTN-rank can bound the rank of all generalized tensor unfolding;
 - can capture more informations than TT-rank and TR-rank;

A Discussion of the Storage Cost

CP Decomposition $\mathcal{O}(NR_1I)$

TT/TR Decomposition $\mathcal{O}(NR_2^2I)$

Tucker Decomposition $\mathcal{O}(NIR_3 + R_3^N)$

FCTN Decomposition $\mathcal{O}(NR_4^{N-1}I)$

A Discussion of the Storage Cost

$$\begin{array}{cccc} \text{CP Decomposition} & & \text{TT/TR Decomposition} \\ \mathcal{O}(NR_1I) & & \mathcal{O}(NR_2^2I) \\ \\ \text{Tucker Decomposition} & & \text{FCTN Decomposition} \\ \mathcal{O}(NIR_3+R_3^N) & & \mathcal{O}(NR_4^{N-1}I) \\ \end{array}$$

The storage cost of the FCTN decomposition seems to theoretical high. But when we express real-world data, the required FCTN-rank **is usually less** than CP, TT, TR, and Tucker-ranks.

FCTN Composition

Definition 2 (FCTN Composition)

We call the process of generating \mathcal{X} by its FCTN factors \mathcal{G}_k $(k=1,2,\cdots N)$ as the FCTN composition, which is also denoted as FCTN $(\{\mathcal{G}_k\}_{k=1}^N)$. If one of the factors \mathcal{G}_t $(t \in \{1,2,\cdots,N\})$ does not participate in the composition, we denote it as $FCTN(\{\mathcal{G}_k\}_{k=1}^N, /\mathcal{G}_t)$

Theorem 3

Supposing that $\mathcal{X} = \text{FCTN}(\{\mathcal{G}_k\}_{k=1}^N)$ and $\mathcal{M}_t = \text{FCTN}(\{\mathcal{G}_k\}_{k=1}^N, /\mathcal{G}_t)$, we obtain that

$$\mathbf{X}_{(t)} = (\mathbf{G}_t)_{(t)}(\mathbf{M}_t)_{[m_{1:N-1};n_{1:N-1}]},$$

where

$$m_i = \begin{cases} 2i, & \text{if } i < t, \\ 2i - 1, & \text{if } i \ge t, \end{cases} \text{ and } n_i = \begin{cases} 2i - 1, & \text{if } i < t, \\ 2i, & \text{if } i \ge t. \end{cases}$$

Outline

- Background and Motivation
- PCTN Decomposition
- FCTN-TC Model and Solving Algorithm
- 4 Numerical Experiments
- Conclusion

FCTN-TC Model

 $\mathcal{F} \in \mathbb{R}^{I_1 imes I_2 imes \cdots imes I_N}$

Relationship

$$\mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F})$$

Underlying Tensor

$$\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$$

FCTN-TC Model

$$\begin{array}{c|c} \hline \text{Incomplete Observation} \\ \hline \mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} \end{array} \Leftarrow \begin{array}{c} \hline \text{Relationship} \\ \hline \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{F}) \end{array} \Rightarrow \begin{array}{c} \hline \text{Underlying Tensor} \\ \hline \mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} \end{array}$$

FCTN Decomposition-Based TC (FCTN-TC) Model

$$\min_{\mathcal{X},\mathcal{G}} \frac{1}{2} \| \mathcal{X} - \text{FCTN}(\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N) \|_F^2 + \iota_{\mathbb{S}}(\mathcal{X}), \tag{2}$$

where $\mathcal{G} = (\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_N)$,

$$\iota_{\mathbb{S}}(\mathcal{X}) := \begin{cases} 0, \text{ if } \mathcal{X} \in \mathbb{S}, \\ \infty, \text{ otherwise,} \end{cases} \text{ with } \mathbb{S} := \{\mathcal{X} \colon \mathcal{P}_{\Omega}(\mathcal{X} - \mathcal{F}) = 0\},$$

 Ω is the index of the known elements, and $\mathcal{P}_{\Omega}(\mathcal{X})$ is a projection operator which projects the elements in Ω to themselves and all others to zeros.

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

$$\begin{cases} \mathcal{G}_{k}^{(s+1)} = \underset{\mathcal{G}_{k}}{\operatorname{argmin}} \left\{ f(\mathcal{G}_{1:k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1:N}^{(s)}, \mathcal{X}^{(s)}) + \frac{\rho}{2} \|\mathcal{G}_{k} - \mathcal{G}_{k}^{(s)}\|_{F}^{2} \right\}, \ k = 1, 2, \dots, N, \\ \mathcal{X}^{(s+1)} = \underset{\mathcal{X}}{\operatorname{argmin}} \left\{ f(\mathcal{G}^{(s+1)}, \mathcal{X}) + \frac{\rho}{2} \|\mathcal{X} - \mathcal{X}^{(s)}\|_{F}^{2} \right\}, \end{cases}$$
(3)

where $f(\mathcal{G}, \mathcal{X})$ is the objective function of (2) and $\rho > 0$ is a proximal parameter.

PAM-Based Algorithm

Proximal Alternating Minimization (PAM)

$$\begin{cases}
\mathcal{G}_{k}^{(s+1)} = \underset{\mathcal{G}_{k}}{\operatorname{argmin}} \left\{ f(\mathcal{G}_{1:k-1}^{(s+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1:N}^{(s)}, \mathcal{X}^{(s)}) + \frac{\rho}{2} \|\mathcal{G}_{k} - \mathcal{G}_{k}^{(s)}\|_{F}^{2} \right\}, \ k = 1, 2, \dots, N, \\
\mathcal{X}^{(s+1)} = \underset{\mathcal{X}}{\operatorname{argmin}} \left\{ f(\mathcal{G}^{(s+1)}, \mathcal{X}) + \frac{\rho}{2} \|\mathcal{X} - \mathcal{X}^{(s)}\|_{F}^{2} \right\},
\end{cases} \tag{3}$$

where $f(\mathcal{G}, \mathcal{X})$ is the objective function of (2) and $\rho > 0$ is a proximal parameter.

$$G_k$$
-Subproblems $(k=1,2,\cdots,N)$

$$\begin{split} (\mathbf{G}_{k}^{(s+1)})_{(k)} &= \big[\mathbf{X}_{(k)}^{(s)}(\mathbf{M}_{k}^{(s)})_{[n_{1:N-1};m_{1:N-1}]} + \rho(\mathbf{G}_{k}^{(s)})_{(k)}\big] \big[(\mathbf{M}_{k}^{(s)})_{[m_{1:N-1};n_{1:N-1}]}(\mathbf{M}_{k}^{(s)})_{[n_{1:N-1};m_{1:N-1}]} + \rho\mathbf{I}\big]^{-1}, \\ \mathcal{G}_{k}^{(s+1)} &= \mathrm{GenFold}\big((\mathbf{G}_{k}^{(s+1)})_{(k)}, k; 1, \cdots, k-1, k+1, \cdots, N\big), \end{split} \tag{4}$$

where $\mathcal{M}_k^{(s)} = \text{FCTN}(\mathcal{G}_{1:k-1}^{(s+1)}, \mathcal{G}_k, \mathcal{G}_{k+1:N}^{(s)}, /\mathcal{G}_k)$, and vectors \mathbf{m} and \mathbf{n} have the same setting as that in Theorem 3.

\mathcal{X} -Subproblem

$$\mathcal{X}^{(s+1)} = \mathcal{P}_{\Omega^c} \left(\frac{\text{FCTN}(\{\mathcal{G}_k^{(s+1)}\}_{k=1}^N) + \rho \mathcal{X}^{(s)}}{1 + \rho} \right) + \mathcal{P}_{\Omega}(\mathcal{F}). \tag{5}$$

PAM-Based Algorithm

Algorithm 1 PAM-Based Solver for the FCTN-TC Model.

```
Input: \mathcal{F} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}, \Omega, the maximal FCTN-rank R^{\max}, and \rho = 0.1.

Initialization: s = 0, s^{\max} = 1000, \mathcal{X}^{(0)} = \mathcal{F}, the initial FCTN-rank R = \max\{\operatorname{ones}(N(N-1)/2,1), R^{\max}-5\}, and \mathcal{G}_k^{(0)} = \operatorname{rand}(R_{1,k}, R_{2,k}, \cdots, R_{k-1,k}, I_k, R_{k,k+1}, \cdots, R_{k,N}), where k = 1, 2, \cdots, N.

while not converged and s < s^{\max} do
```

Update $\mathcal{G}_k^{(s+1)}$ via (4).

Update $\mathcal{X}^{(s+1)}$ via (5).

Let $R = \min\{R + 1, R^{\max}\}$ and expand $\mathcal{G}_k^{(s+1)}$ if $\|\mathcal{X}^{(s+1)} - \mathcal{X}^{(s)}\|_F / \|\mathcal{X}^{(s)}\|_F < 10^{-2}$.

Check the convergence condition: $\|\mathcal{X}^{(s+1)} - \mathcal{X}^{(s)}\|_F / \|\mathcal{X}^{(s)}\|_F < 10^{-5}$.

Let s = s + 1.

end while

Output: The reconstructed tensor \mathcal{X} .

Theorem 4 (Convergence)

The sequence $\{\mathcal{G}^{(s)}, \mathcal{X}^{(s)}\}_{s \in \mathbb{N}}$ obtained by the Algorithm 1 globally converges to a critical point of (2).

Outline

- Background and Motivation
- PCTN Decomposition
- FCTN-TC Model and Solving Algorithm
- Numerical Experiments
- Conclusion

Synthetic Data Experiments

- Compared Methods: TT-TC (PAM), TR-TC (PAM), and FCTN-TC (PAM);
- Quantitative Metric: the relative error (RSE) between the reconstructed tensor and the ground truth.

Figure 2: Reconstructed results on the synthetic dataset.

Real Data Experiments

Compared Methods:

- HaLRTC [Liu et al. 2013; IEEE TPAMI];
- TMac [Xu et al. 2015; IPI];
- t-SVD [Zhang and Aeron 2017; IEEE TSP];
- TMacTT [Bengua et al. 2017; IEEE TIP];
- TRLRF [Yuan et al. 2019; AAAI].

Quantitative Metric:

- PSNR;
- RSE.

Color Video Data

 Table 1: The PSNR values and the running times of all utilized methods on the color video data.

Dataset	MR	95%	90%	80%	Mean time (s)	Dataset	MR	95%	90%	80%	Mean time (s)
news	Observed	8.7149	8.9503	9.4607		containe	Observed	4.5969	4.8315	5.3421	
	HaLRTC	14.490	18.507	22.460	36.738		HaLRTC	18.617	21.556	25.191	34.528
	TMac	25.092	27.035	29.778	911.14		TMac	26.941	26.142	32.533	1224.4
	t-SVD	25.070	28.130	31.402	74.807		t-SVD	28.814	34.912	39.722	71.510
	TMacTT	24.699	27.492	31.546	465.75		TMacTT	28.139	31.282	37.088	450.70
	TRLRF	22.558	27.823	31.447	891.96		TRLRF	30.631	32.512	38.324	640.41
	FCTN-TC	26.392	29.523	33.048	473.50		FCTN-TC	30.805	37.326	42.974	412.72
Dataset	MR	95%	90%	80%	Mean	Dataset	MR	95%	90%	80%	Mean
					time (s)	Dataoot			0070	00 /6	time (s)
	Observed	3.8499	4.0847	4.5946	time (s)	Juluoot	Observed		6.6638		time (s)
	Observed HaLRTC		4.0847 20.334			Janasar	Observed HaLRTC	6.4291	6.6638	7.1736	time (s) — 32.882
		16.651		24.813	38.541	Databot		6.4291 14.561	6.6638	7.1736 23.396	32.882
elephants	HaLRTC TMac	16.651 26.753	20.334 28.648	24.813 31.010	38.541	bunny	HaLRTC	6.4291 14.561 25.464	6.6638 19.128	7.1736 23.396 30.525	32.882 779.78
elephants	HaLRTC TMac	16.651 26.753 21.810	20.334 28.648 27.252	24.813 31.010 30.975	38.541 500.70		HaLRTC TMac	6.4291 14.561 25.464 21.552	6.6638 19.128 28.169	7.1736 23.396 30.525 30.344	32.882 779.78 66.294
elephants	HaLRTC TMac t-SVD	16.651 26.753 21.810 25.918	20.334 28.648 27.252	24.813 31.010 30.975 32.232	38.541 500.70 63.994 204.64		HaLRTC TMac t-SVD	6.4291 14.561 25.464 21.552 26.252	6.6638 19.128 28.169 26.094	7.1736 23.396 30.525 30.344 33.096	32.882 779.78 66.294 264.15

The data is available at http://trace.eas.asu.edu/yuv/.

Color Video Data

Figure 3: Reconstructed results on the 35th frame of the CV bunny.

HaLRTC

Traffic Data

Observed

TMac

Figure 4: Reconstructed results on the traffic flow dataset with MR=40%. The first and the second rows are the results on the 2nd day and the corresponding residual results, respectively.

The data is available at http://gtl.inrialpes.fr/.

t-SVD

Conclusion

Contributions

- Propose an FCTN decomposition, which breaks through the limitations of TT and TR decompositions;
- Employ the FCTN decomposition to the TC problem and develop an efficient PAMbased algorithm to solve it;
- Theoretically demonstrate the convergence of the developed algorithm.

Conclusion

Contributions

- Propose an FCTN decomposition, which breaks through the limitations of TT and TR decompositions;
- Employ the FCTN decomposition to the TC problem and develop an efficient PAMbased algorithm to solve it;
- Theoretically demonstrate the convergence of the developed algorithm.

Challenges and Future Directions

- lacktriangle Difficulty in finding the optimal FCTN-ranks \Leftarrow Exploit prior knowledge of factors;
- 2 Storage cost seems to theoretical high \Leftarrow Introduce probability graphical model.

Thank you very much for listening!

Wechat

Homepage: https://yubangzheng.github.io