Notes of Probability and Stochastics

Xie Zejian

Zhang Songxin

2021-01-25

Contents

1	Measure and integrations		5
	1.1 Measurable space		5

4 CONTENTS

Chapter 1

Measure and integrations

1.1 Measurable space

1.1.1 σ algebra

Definition 1.1. A nonempty system of subset of Ω is an algebra on Ω if it's

- 1. Closed under complement: $A^c \in \mathcal{A} \iff A \in \mathcal{A}$
- 2. Closed under finite union: $\cup_i A_i \in \mathcal{A} \iff \forall i, A_i \in \mathcal{A}$

it's an σ algebra on Ω if it's also closed under countable union.

Remark. \mathcal{A} is an algebra auto implies $\emptyset \in \mathcal{A}$ and $\Omega \in \mathcal{A}$. So $\{\emptyset, \Omega\}$ is the minimum algebra on Ω and thus minimum σ algebra while the discrete algebra 2^{Ω} is maximum.

Let $\left\{\mathcal{A}_{\gamma}:\gamma\in\Gamma\right\}$ is a collection of σ algebra, then we have

$$\mathcal{A} = \cap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$$

is also a σ algebra. Hence we can define the smallest σ algebra as intersection of all σ algebras contains \mathcal{A} , that called the σ algebra **generated** by \mathcal{A} and denoted by $\sigma(\mathcal{A})$.

The smallest σ -algebra generated by the system of all open sets in a topological space (Ω, τ) is called **Borel** σ **algebra** on Ω and denoted by $\mathcal{B}(\Omega)$, its elements are called **Borel sets**.

6

1.1.2 π, λ, m systems

A collection of subsets \mathcal{A} is called

- 1. **m-system** if closed under monotone series, that is if $(A_n) \subset \mathcal{A}$ and $A_n \nearrow A$, then $A \in \mathcal{A}$.
- 2. π -system is closed under finite intersection
- 3. λ system if
 - 1. $\Omega \in \mathcal{A}$
 - 2. closed under proper difference:

$$A - B \in \mathcal{A} \iff B \subset A \text{ and } B, A \in \mathcal{A}$$

3. is an m-system (cause $\Omega - A_i \downarrow$ whenever $A_i \uparrow$)

1.1.3 Relationships with σ algebra

 \mathcal{A} is a σ - algebra $\iff \mathcal{A}$ is a m-system and \mathcal{A} is an algebra \mathcal{A} is a σ - algebra $\iff \mathcal{A}$ is a π - system & \mathcal{A} is a λ - system

Which can be proved as follows:

- **⇒**:
 - 1. $\Omega \in \mathcal{A}$
 - 2. $A B = A \cap B^c \in \mathcal{A}$
 - 3. is an m-system
- =:
 - 1. $A^c = \Omega A \in \mathcal{A}$
 - 2. $A \cup B = (A^c \cap B^c)^c \in \mathcal{A}$
 - 3. hence \mathcal{A} is an algebra and \mathcal{A} is a m-system

Similarly, for m, π, λ -system, those properties also hold:

Let $\{A_{\gamma} : \gamma \in \Gamma\}$ is a collection of m, π, λ -system then we have

$$\mathcal{A} = \cap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$$

is also a m, π, λ -system

$$\forall \mathcal{A} \subset \mathcal{P}(\Omega), \quad \exists m(\mathcal{A}) \quad s.t.$$

1.1. MEASURABLE SPACE

7

- 1. $\mathcal{A} \subset \sigma(\mathcal{A})$
- 2. $\forall \mathcal{A} \subset \mathcal{B} \in \text{m-systemes} \quad m(\mathcal{A}) \subset \mathcal{B}$
- 3. $m(\mathcal{A})$ is unique.

similarly with $\lambda(\mathcal{A})$ and $\pi(\mathcal{A})$

$$\sigma \iff$$

::: {.theorem name="Simple Approximation Theorem"}

Give a function:

$$d_n(r) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{1}_{[\frac{k-1}{2^n},\frac{k}{2^n})}(r) + n \mathbf{1}_{[n,\infty]}(r), \qquad r \in \overline{\mathbb{R}}_+$$

Notice that $d_n(r)$ is an increasing right-continuous simple function and $d_n(r) \nearrow r$ as $n \to \infty$.

A positive function f on E is \mathcal{A} -measurable iff it is the limit of an increasing sequence of positive simple functions.

:::

Proof. When a lim sup and a lim inf exists for a simple function sequence, then $\lim f_n$ exists and as for $n \in \mathbb{N}_+$, f_n is \mathcal{A} -measurable, $\lim f_n$ is \mathcal{A} -measurable. For the converse, let $f_n = d_n \circ f$ is. Then $f_n \nearrow f$ and f_n is a simple function.

Definition 1.2 (Integrations). • $\int f d\mu$ is called the integrations of f according to measure μ , usually noted as μf .

• $\int_A f d\mu$ is called the integrations of f according to μ on \mathcal{A} -measurable set A, noted as $\mu(f1_A)$.

Theorem 1.1 (Monotone Convergence Theorem). Let (f_n) be an increasing sequence in A_+ , then:

$$\mu(\lim f_n) = \lim \mu f_n$$

Proof. Let $f_n \nearrow f$, then $\mu f \ge \mu f_n$ for each n, so $\mu f \ge \lim \mu f_n$. Now need to prove that $\lim \mu f_n \ge \mu f$.

Fix $b \in \mathbb{R}_+$ and $B \in \mathcal{A}$, where f is \mathcal{A} -measurable. Then $\{f_n > b\} \nearrow \{f > b\}$, where let $B_n = B \cap \{f_n > b\}$, then $B_n \nearrow B$, so

$$\lim \mu(B_n) = \mu(B)$$

and:

$$f_n 1_B \ge f_n 1_{B_n} \ge b 1_{B_n}$$

then

$$\mu(f_n 1_B) \ge \mu(b 1_{B_n}) = b\mu(1_{B_n})$$

Take limits for each side:

$$\lim \mu(f_n 1_B) \ge b\mu(B)$$

Let g be a positive simple function s.t. $f \ge g$ holds on Ω . Let $g = \sum_{i=1}^m b_i 1_{B_i}$ where on each B_i , $f \ge b_i$ holds. Then:

$$\lim \mu(f_n 1_{B_i}) \geq b_i \mu(B_i) \qquad i = 1, 2, \dots, m$$

Let g has the canonical representation, then

$$\lim_n \mu f_n = \lim_n \sum_{i=1}^m \mu(f_n 1_{B_i}) = \sum_{i=1}^m \lim_n \mu(f_n 1_{B_i}) \geq \mu g$$

Let $g = d_k \circ f$ and change g to its canonical representation, then

$$\lim_{n} \mu f_n \ge \mu(d_k \circ f)$$

holds for every k, then let $k \to \infty$, we get $\lim \mu f_n \ge \mu f$. Now we prove the theorem.

Theorem 1.2 (Fatou's Lamma). Let $(f_n) \in \mathcal{A}_+$, then

$$\mu(\liminf f_n) \leq \liminf \mu f_n$$

Proof. Let $g_m = \inf_{n \geq m} f_n$, notice that g_m is increasing and $g_m \nearrow \liminf f_n$ as $m \to \infty$. By the monotone converge theorem:

$$\mu(\liminf f_n) = \lim \mu g_m$$

Notice that $g_m \leq f_n$ for all $n \geq m$, and $\mu g_m \leq \mu f_n$ for all $n \geq m$, so $\mu g_m \leq \inf_{n \geq m} \mu f_n$, take limit of m,

$$\lim \mu g_m \leq \lim\inf \mu f_n$$

Theorem 1.3 (Almost Everywhere Theorem). Let (f_n) be a sequence of numerical functions on Ω . Suppose that for each n, there is $g_n \in \mathcal{A}$ s.t. $f_n = g_n$ a.e. Further suppose for each n that $f_n \geq 0$ a.e. and $f_n \leq f_{n+1}$ a.e. Then, $\lim f_n$ exists a.e. is positive a.e. and $\mu(\lim f_n) = \lim \mu f_n$.

Proof. Let

$$N = \bigcup_{n=1}^{\infty} (L_n \cup M_n \cup N_n)$$

where L denotes the $f_n \leq f_{n+1}$'s zero-measure set, and N denote the $f_n = g_n$'s and M denotes $f_n \geq 0$'s.

For every $x \in \Omega - N$, we have

$$0 \le f_1(x) = g_1(x) \le f_2(x) = g_2(x) \dots$$

so $\lim f_n = \lim g_n$ exists on $\Omega - N$. Then define:

$$f(x) = \begin{cases} \lim f_n(x) & x \notin N \\ 0 & x \in N \end{cases}$$

Then $(g_n 1_{\Omega-N}) \nearrow f$ on Ω . So

$$\mu f = \lim \mu(g_n 1_{\Omega - N}) = \lim \mu g_n$$

Theorem 1.4 (Integral characterization theorem). Let (Ω, \mathcal{A}) be a measurable space. Let L be a mapping from \mathcal{A}_+ into $\overline{\mathbb{R}}_+$ then there is a unique measure μ on (Ω, \mathcal{A}) s.t. $L(f) = \mu f$ for every $f \in \mathcal{A}_+$ iff: $-f = 0 \implies L(f) = 0 - f, g \in \mathcal{A}_+$ and $a, b \in \mathbb{R}_+ \implies L(af + bg) = aL(f) + bL(g) - (f_n) \subset \mathcal{A}_+$ and $f_n \nearrow f \implies L(f_n) \nearrow L(f)$

Proof. Let there is a function L satisfies above conditions and give a μ and let $\mu(A) = L(1_A)$, then use those conditions we can prove that μ is a measure a (Ω, \mathcal{A}) .

Definition 1.3 (Image measure). Let (F, \mathcal{F}) and (Ω, \mathcal{A}) be measurable spaces. Let ν be a measure on (F, \mathcal{F}) and let $h : F \to \Omega$ be measurable relative to \mathcal{F} and \mathcal{A} , then define a mapping $\nu \circ h^{-1}(B) = \nu(h^{-1}B), B \in \mathcal{A}$. Then $\nu \circ h^{-1}$ is a measure on (Ω, \mathcal{A}) , which is called the image of ν under h.

Theorem 1.5. For every $f \in \mathcal{A}_+$, we have $(\nu \circ h^{-1})f = \nu(f \circ h)$.

Proof. Let $L: \mathcal{A}_+ \to \overline{\mathbb{R}}_+$ by letting $L(f) = \nu(f \circ h)$. Then as the property of $\nu(f \circ h)$, f satisfies the properties of integral characterization theorem. Then, $L(f) = \mu f$ for some unique measure μ on (Ω, \mathcal{A}) . And

$$\mu(B) = L(1_B) = \nu(1_B \circ h) = \nu(h^{-1}B), \qquad B \in \mathcal{A}$$