

Procedural Celestial Rendering for 3D Navigation

A Technique to Render a Parametric Celestial Skybox

Alain Galvan agalvan@fiu.edu

Francisco Ortega fortega@fiu.edu

Naphtali Rishe ndr@acm.org

INTRODUCTION

We present a novel technique to render a parametric celestial skybox with the ability to light environments similar to natural color corrected images from telescopes.

We first pre-compute a spherical ray map that corresponds to the cubemap coordinates, then generate stars and dust through a combination of different noise generation shaders.

RELATED WORK

- **Elcott et al.** for Final Fantasy XV generates a sky with raymarching, and used light probes for lighting the scene.
- Limberger et al. attempt to render stars using billboards.
- Elek and Kmoch provided a model for spectral scattering used in Unreal.
- Trindade et al. used cubemaps to rendering multi-scale 3D navigation environments.

APPROACH

- We first formulate a physically-based model for starlight and stardust based on the user's origin position, star size, and temperature.
- •We combine this with **volumetric raymarching** (a volumetric form of ray-casting) techniques for clouds and dust.
- The result is a realtime animated sky that doubles as a radiance map.

ALGORITHM

- cube based spherical directional map is generated by the shader, which is then used as an input to a four dimensional noise generation algorithm based on the work of Perlin et al. to create volumetric diffuse effects.
- The output of the noise generation algorithms is composited with a white noise function mapped to sharp changes in luminosity values.
- Our system is implemented as a plugin for Unreal Engine 4. Our source code is easy to use and requires minimal changes to existing scenes.

MAPINGS

Figure 3: A spherical direction map used as an input for noise generation. The latitude/longitude and round lines were added to help distinguish cube faces.

ELICITATION

Figure 4: Our first evaluation of the system was in a gesture elicitation study. Users navigated based on instructions.

EVALUATION

- During the trials, we were able to constantly refresh the generated sky at 60 frames per second on an Nvidia 980
 GTX & 980m (circa 2014) with texels of 1024 pixels per cube face.
- •On an Nvidia 650m (circa 2012) the effect was too taxing, running at 22 frames per second at 1024 texel size, however 256 texel size ran smoothly at 60 frames per second.

CONCLUSION

- Our approach provides other researchers with the ability to create large expanses of space for user interaction, in particular 3D navigation.
- The use of cubemap lighting looks similar to color corrected photographs provided by NASA.
- Future work includes the creation of a WebGL implementation of the library.