Carnegie Mellon University Electrical & Computer Engineering

Recitation # 3 Optimization

February 2, 2024 Weiran Lin

Recap of adversarial attacks:

Fixed model weights and update inputs

Recap of adversarial attacks:

Fixed model weights and update inputs

- What would happen if we select a wrong class t',
 - o and change the inputs?

Recap of adversarial attacks:

Fixed model weights and update inputs

- What would happen if we select a wrong class t',
 - o and change the inputs?
 - What would happen if we maximize instead of minimizing the loss function, while still using the true value as t?

 Carnegie Mellon University

Why we need them in adversarial attacks?

$$\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

Why we need them in adversarial attacks?

$$\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

Q: If an image has a size of (32,32,3), what is n?

Why we need them in adversarial attacks?

$$\|x\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$$

- Q: If an image has a size of (32,32,3), what is n?
 - n=32*32*3

Why we need them in adversarial attacks?

$$\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

- Q: If an image has a size of (32,32,3), what is n?
 - n=32*32*3

$$\|x\|_{\infty} = \max\left\{|x_1|, |x_2|, \dots, |x_n|\right\}$$

Update the model weights respect to the inputs

- Each y,a,b is a vector, and each w is a matrix,
 - \circ If y_{L-2} has length M_0 , and b_{L-1} has length M_1 ,
 - What is the length of a_{L-1}? What is the length of y_{L-1}?

- Each y,a,b is a vector, and each w is a matrix,
 - \circ If y_{L-2} has length M_0 , and b_{L-1} has length M_1 ,
 - What is the length of a₁₋₁? What is the length of y₁₋₁?
 - What is the size of W₁₋₁?

Now we know y_{L-1} has length M_1

- If there are N classes
 - What is the length of a_{L} ? What is the length of y_{L} ? What is the length of b_{L} ?

Now we know y_{L-1} has length M_1

- If there are N classes
 - What is the length of a_i? What is the length of y_i? What is the length of b_i?
 - What is the size of W_i?

Now we know y_{L-1} has length M_1

- If there are N classes
 - What is the length of a_i? What is the length of y_i? What is the length of b_i?
 - ➤ What is the size of W₁?
 - ➤ What is the size of the Loss E?

Now we know y_{L-2} has length M_0 , y_{L-1} has length M_1 and there are N classes,

What is the size of dE/dy_{L-1}? What is the size of dE/dy_{L-1}? What is the size of dE/dy_{L-2}?

Now we know y_{1-2} has length M_0 , y_{1-1} has length M_1 and there are N classes,

- What is the size of dE/dy, ? What is the size of dE/dy,? What is the size of dE/dy,?
- What is the size of dE/dW
 _{L-1}?

Now we know y_{1-2} has length M_0 , y_{1-1} has length M_1 and there are N classes,

- What is the size of dE/dy_{L-1}? What is the size of dE/dy_{L-1}? What is the size of dE/dy_{L-2}?
- What is the size of dE/dW
 _{L-1}?
- What is the size of dE/da_{L-1}? What is the size of dE/da_{L-1}?

Now we know y_{1-2} has length M_0 , y_{1-1} has length M_1 and there are N classes,

- What is the size of dE/dy_{L-1}? What is the size of dE/dy_{L-1}? What is the size of dE/dy_{L-2}?
- What is the size of dE/dW
 _{L-1}?
- What is the size of dE/da_{L-1}? What is the size of dE/da_{L-1}?
- What is the size of dE/db ? What is the size of dE/db ??

Carnegie Mellon University

What we expect you to implement:

1. Setup: initialize all w and b according to given dimensions (M and N)

What we expect you to implement:

- 1. Setup: initialize all w and b according to given dimensions (M and N)
- 2. Forward pass: given y_{L-2} , compute y_{L-1} , y_{L} and loss function E

What we expect you to implement:

- 1. Setup: initialize all w and b according to given dimensions (M and N)
- 2. Forward pass: given y_{L-2} , compute y_{L-1} , y_{L} and loss function E
- 3. Backward pass: given E and current w and b,
 - a. Compute dE/dw and dE/db
 - b. Update w and b accordingly.

Carnegie Mellon University