МИНОБРНАУКИ РОССИИ

федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский политехнический университет Петра Великого» (ФГАОУ ВО «СПбПУ»)

Университетский политехнический колледж

	Утв	ерждаю
Зам. д	цирен	стора по УМР
]	Е.Г.К	онакина
‹ ‹	>>	2017 г.

ОТЧЕТ

по учебной практике УП.01.01 «Системное программирование»

По профессиональному модулю ПМ.01 «Разработка программных модулей программного обеспечения для компьютерных систем»

Специальность 09.02.03. «Программирование в компьютерных системах»
--

Студента III курса <u>32928/2</u> группы

Тимушев Фёдор Алексеевич

(Фамилия, имя, отчество)

Место прохождения практики: УПК, пр. Энгельса д.23

Период прохождения практики

с «25» сентября 2017 г. по «14» октября 2017 г.

Руководитель(и) практики:

	Девятко п.С	
(подпись)	(расшифровка подписи)	
Итоговая оценка по практике		

Санкт-Петербург 2017

	вержд и. дир	аю ектора по УМР
		Е.Г.Конакина
 ((>>	2017 г.

Задание на учебную практику УП.01.01
по профессиональному модулю
ПМ.01 «Разработка программных модулей программного обеспечения для компьютерных систем»
Специальность <u>09.02.03 «Программирование в компьютерных системах»</u> (код и наименование специальности)
Студенту <u>3</u> курса <u>32928/2</u> группы
Тимушев Фёдор Алексеевич (фамилия, имя, отчество) Место прохождения практики Университетский политехнический колледж
(наименование и адрес организации)
Период прохождения практики с <u>«25» сентября 2017 г.</u> по <u>«14» октября 2017 г.</u>
Виды работ, обязательные для выполнения
Использование функций
Работа с указателями Работа с файлами
Динамические структуры данных
Работа с файловой системой
Организация многопоточной обработки данных

Индивидуальное задание (заполняется в случае необходимости дополнительных видов работ для решения практикоориентированных задач и т.д.)

ВАРИАНТ 8

Задание выдал «25» сентября 2017 г.		<u>Девятко Н.С</u>
-	(подпись)	(Ф.И.О.)
С заданием ознакомлен		
«25» <u>сентября</u> 2017 г.		
	(подпись)	(Ф.И.О. студента)

МИНОБРНАУКИ РОССИИ

федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский политехнический университет Петра Великого» (ФГАОУ ВО «СПбПУ»)

Университетский политехнический колледж

ДНЕВНИК

прохождения учебной практики «Системное программирование»

По профессиональному модулю ПМ.01 «Разработка программных модулей программного обеспечения для компьютерных систем»

Специальность 09.02.03. «Программирование в компьютерных системах»

Студент(ка) III курса <u>32928/2</u> группы

Тимушев Фёдор Алексеевич

Место прохождения практики УПК, пр. Энгельса д.23

Период прохождения практики

Итоговая оценка по практике _____

Санкт-Петербург

Содержание дневника

Дата	Виды выполненных работ и заданий по программе практики	Подпись руководителя практики
1	2	3
25.09	Разработка алгоритмов решения вычислительных задач.	
26.09	Реализация программ по типовым алгоритмам.	
27.09	Разработка спецификаций отдельных компонент программного обеспечения. Создание и использование функций.	
28.09	Кодирование, отладка, тестирование, оптимизация программного модуля обработки простых данных с помощью функций программиста.	
29.09	Организация динамического распределения памяти. Разработка функций для обработки, преобразования, сортировки данных с помощью адресной арифметики.	
30.09	Кодирование, отладка, тестирование, оптимизация программного модуля обработки массивов с использованием указателей.	
02.10	Разработка спецификаций функций анализа и обработки строчных величин. Создание статической библиотеки.	
03.10	Кодирование, отладка, тестирование, оптимизация программного модуля обработки строк с использованием собственной библиотеки.	
04.10	Разработка функций для работы с текстовыми файлами, организации ввода-вывода текстовой информации и ее хранения на внешних носителях.	
05.10	Разработка программ для работы с файлами и папками.	
06.10	Разработка программ обработки двоичных файлов.	
07.10	Динамические структуры данных: односвязная очередь, стек, дерево. Разработка функций по организации работы с динамическими структурами данных.	
09.10	Кодирование, отладка, тестирование, оптимизация программного модуля обработки динамических структур данных.	
10.10	Структура каталога. Разработка программ для просмотра каталога диска, поиска файлов, определения и изменения атрибутов файлов.	
11.10	Кодирование, отладка, тестирование, оптимизация программного модуля по работе с файловой системой.	
12.10	Создание параллельных потоков и процессов обработки информации.	
13.10	Синхронизация потоков и процессов.	
14.10	Кодирование, отладка, тестирование, оптимизация программного модуля многопоточной обработки информации.	

Тема 1: «Разработка программ по типовым алгоритмам»

Цель: получить практические навыки по разработке программ по типовым алгоритмам.

Задача 1.1.

Составить *алгоритм* и программу, которая по номеру дня в году выводит число и месяц в общепринятой форме. Например, 33-ий день в году – 2 февраля.

Входные данные:

const string mes[12] – строковый массив, содержащий названия месяцев года; const int den[12] – числовой массив, содержащий числа с кол-вом дней в месяцах; int n – переменная целого типа, означающая номер дня в году, вводится с клавиатуры;

int check_day – переменная целого типа, означающая номер дня в месяце, с которым она будет сопоставляться;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры;
- 2 вычисление дня в году, в соответствии с введенными пользователем данными;
- 3 вывод найденного дня в общепринятой форме на экран;

Выходные данные:

```
n-вывод дня, введенного пользователем ранее; 
 (n-check\_day)-вывод искомого дня; 
 mes[i]-вывод сопоставимого искомому дню месяца;
```



```
#include <conio.h>
#include <stdio.h>
#include <iostream>
#include <string>
using namespace std;
int main()
{
    setlocale(LC_ALL, "Russian");
    const string mes[12] = { "января", "февраля", "марта",
"апреля", "мая", "июня", "июля", "августа", "сентября", "октября", "ноября", "декабря" }; //строковый массив, содержащий названия
месяцев года
    const int den[12] = {31, 28, 31, 30, 31, 30, 31, 30, 31,
30, 31}; //числовой массив, содержащий числа с кол-вом дней в
месяцах
    int n; //номер дня в году
    cout << "Введите номер дня в году от 1 до 365: ";
    cin >> n;
    int check_day = 0; //номер дня в месяце
    if (n <= 0 || n > 365) //проверка на правильность ввода номера
дня
    {
           cout << "Введите день в правильном диапазоне!";
           system("Pause");
    for (int i = 0; i < 12; check_day += den[i], i++)</pre>
//"наращивание" месяцев к номеру дня в них
           if (check_day < n && n <= (check_day + den[i])) //если</pre>
номер дня в месяце меньше введенного пользователем и меньше
"наращенного" то переход к выводу
           {
                  cout << n << <mark>" день в году - " << n - check_day <<</mark>
" " << mes[i]; //вывод
                  break;
           }
    _getch();
```

No	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений $n \in [1;365]$, $x>0$	n=33 Ожидаемые ответы 2 февраля
2	Класс допустимых значений $n \in [1;365], x>0$ Граничные условия	n=1 n=365 Ожидаемые ответы: 1 января, 31 декабря
3	Класс недопустимых значений $n \in (-\infty;0]$ $x>0$	n=-1 n=0 Ожидаемые ответы: сообщение об ошибке
4	Класс недопустимых значений $n \in [366; +\infty), x>0$	n=366 Ожидаемые ответы: сообщение об ошибке

Результаты тестирования:

1 – Проверка на ввод значений вне диапазона:

2 – Проверка на ввод крайних значений (минимального и максимального):

Задача 1.2.

Составить *алгоритм* и программу, которая имитирует работу секундомера. Пользователь задает количество минут и секунд, затем программа показывает обратный отсчёт времени на чистом экране по центру, по окончании отсчёта выдаёт сообщение «Время истекло!»

Входные данные:

int m, s; - минуты и секунды;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры;
- 2 начало счета таймера;
- 3 вывод сообщения об окончании времени;

Выходные данные:

int m, s; - минуты и секунды;

Сообщение об окончании счета;


```
#include <conio.h>
#include <stdio.h>
#include <iostream>
#include <string>
#include <windows.h>
#include <time.h>
using namespace std;
int main()
{
       setlocale(LC ALL, "Russian");
       int m, s; // минуты и секунды
cout << "Введите минуты: ";</pre>
       cin >> m;
       if (m < 0 || m > 59) //проверка на корректность ввода минут
       {
              cout << "Введите минуты корректно!";
              _getch();
              exit(0);
       cout << "Введите секунды: ";
       cin >> s;
       if (s < 0 \mid | s > 59) //проверка на корректность ввода секунд
              cout << "Введите секунды корректно!";
              _getch();
              exit(0);
       while (true)
              system("CLS");
              HANDLE hd = GetStdHandle(STD OUTPUT HANDLE);//ввыод по центру консоли
              COORD cd;
              cd.X = 35;
              cd.Y = 10;
              SetConsoleCursorPosition(hd, cd);
              cout.width(2);//заполнение таймера нулями
              cout.fill('0');
              cout << m << ":";
              cout.width(2);
              cout.fill('0');
              cout << s;
              Sleep(1000);//шаг в одну секунду
              if (s > 0)
                     s--;
              if (s == 0 \&\& m > 0)
              {
                     s = 59;
                     m--;
              if (s == 0 && m == 0)//конец таймера
                     HANDLE hd = GetStdHandle(STD_OUTPUT_HANDLE);//вывод по центру
консоли сообщения
                     COORD cd;
                     cd.X = 30;
                     cd.Y = 10;
                     SetConsoleCursorPosition(hd, cd);
                     cout << "Время истекло!" << endl;
                     break;
              }
       system("Pause");
}
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений $m \in [0;59]$, $m>0$ $s \in [0;59]$, $s>0$	m = 1 s = 5 Ожидаемые ответы: окончание работы таймера выводом сообщения по центру консоли
2	Класс допустимых значений $m \in (-\infty;-1][60;+\infty)$, $m>0$ $s \in (-\infty;-1][60;+\infty)$, $s>0$	n=-1 n=60 Ожидаемые ответы: сообщение об ошибке

Тема 2: «Использование функций»

Цель: получить практические навыки по использованию функций;

Задача 2.1:

Разработать спецификации и написать функцию для вычисления значения любого члена арифметической прогрессии по заданному номеру, если известен первый член прогрессии и её разность, а также функцию, проверяющую, принадлежит ли заданное число этой прогрессии. Организовать вызов обоих функций для проверки.

Входные данные:

double a, r, an - a - первый член, r - разность, an - n - ный член; $int \ n$ - Введите номер члена арифм прогрессии;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры;
- 2 определение н-ного члена арифм. прогрессии;
- 3 установление принадлежности числа к арифм. прогрессии;
- 3 –вывод вычислений на экран;

Выходные данные:

double an - an - n-ный член;

bool check – проверка на принадлежность к прогрессии;


```
#include <iostream>
#include <conio.h>
#include <locale>
#include <Windows.h>
using namespace std;
double arpr(double a, double r, int n)//фукнция вычисления члена арифм. прогрессии по
заданному номеру и возвращает an - n-ный член прогрессии
{return a + (n - 1)*r;}//a - первый член, r - разность, n - номер члена
bool arnumber(double a, double r, double an)//функция проверяет принадлежность числа к
арифметической прогрессии
      double n;
      n = ((an - a) / r) + 1; //a - первый член, <math>r - разность, an - n-ный член
      if (n - (int)n == 0)//true - если принадлежит, false - не принадлежит
             return true;
      else
             return false;
void main()
      setlocale(LC_ALL, "Rus");
      double a, r, an;
      int n;
      bool check;
      cout << "--Опр. n-члена арифм. прогрессии--" << endl;
      cout << "\nВведите первый член арифм. прогрессии: "; cin >> а;
      cout << "\nВведите разность: "; cin >> r;
      {cout << "\nВведите номер члена арифм. прогрессии: "; cin >> n;}
      while (n <= 0);
      an = arpr(a, r, n);
      cout << "\n" << n << "-ый член арифм. прогрессии равен = " << an;
      cout << "\n\nВведите n-ный член арифм. прогрессии: "; cin >> an;
      check = arnumber(a, r, an);
      if (check)
             cout << "\nЧисло принадлежит арифм. прогрессии";
             cout << "\пЧисло не принадлежит арифм. прогрессии";
      _getch();
}
```

- функции "arpr"

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений	n=3
	$n \in [0;2147483647], n \in \mathbb{Z}$	a=2
	а – любое число,	r = 5
	r – любое число	Ожидаемые ответы:
		3ий член ариф.прогрессии = 12
		// функция высчитывает п-ный член арифметической прогрессии
2	Класс недопустимых значений	n=-1
	$n < 0, n \in R$	n=0
		Ожидаемые ответы: повторный ввод

Г:\УЧЕБА\ПП\Practice 2017 #2\Practice2017-2\Debug\Prac --Oпр. п-члена арифм. прогрессии-Введите первый член арифм. прогрессии: 2 Введите разность: 5 Введите номер члена арифм. прогрессии: −1 Введите номер члена арифм. прогрессии: 0 Введите номер члена арифм. прогрессии: 3 Введите номер члена арифм. прогрессии: 0 Введите номер члена арифм. прогрессии: 3 Введите номер члена арифм. прогрессии: 12 Число принадлежит арифм. прогрессии. прогрессии. 12

- функции "arnumber"

No	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений	an=12
	а – любое число,	a=2
	r – любое число,	r = 5
	an – любое число	Ожидаемые ответы:
		Число принадлежит арифметической
		прогрессии
		Функция проверяет принадлежность члена
		an к арифметической прогрессии

F:\УЧΕБΑ\ΠΠ\Practice 2017 #2\Practice2017-2\Debug\Practice
Oпр. n-члена арифм. прогрессии
Введите первый член арифм. прогрессии: 2
Введите разность: 5
Введите номер члена арифм. прогрессии: -1
Введите номер члена арифм. прогрессии: О
Введите номер члена арифм. прогрессии: З
3-ый член арифм. прогрессии равен = 12
Введите п-ный член арифм. прогрессии: 12
Число принадлежит арифм. прогрессии

Задача 2.2:

Разработать программу для вычисления интеграла методом трапеций и методом Симпсона, оформив каждый способ в виде отдельной функции. Вывести на экран результаты интегрирования разными методами для сравнения.

$$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{(2 + \sin^2 x - \cos^2 x)} dx$$

Входные данные:

double accuracy – точность;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры;
- 2 вычисление интеграла методом трапеций;
- 3 вычисление интеграла методом Симпсона;
- 3 –вывод вычислений на экран;

Выходные данные:

double Trapecia — значения от вычисления методом трапеций; double Simpson — значения от вычисления методом Симпсоном;


```
double x = 0, first, last; //x - аргумент, first/last - первый последний элемент
ряда
      n *= 2:
      do
      {
              s = (b - a) / n;
              chet = 0; nechet = 0;
             first = func(a);
              last = func(b);
              for (int i = 1; i < n; i++)</pre>
                    x = a + i*s;
                    if (i % 2 == 0)
                    {
                           chet += func(x);
                    }
                    else
                    {
                            nechet += func(x);
                    }
              I = s / 3 * (last + 2 * chet + 4 * nechet + first); //нахождение
интеграла
             tt = fabs(I1 - I);
             I1 = I;
             n *= 2; //удваивание отрезков разбиения
      while (tt >= t);
      return I;
double trapeze(double a, double b, double t) //метод трапеций
      double I = 0, I1 = 0, s, chet, nechet, tt, n = 4;
      double x = 0, first, last;
      do
      {
             s = (b - a) / n;
             double S = 0; //cymma
             first = func(a);
             last = func(b);
             for (int i = 1; i < n; i++)
              {
                    x = a + i*s;
                    S += func(x);
             I = s / 2 * (last + 2 * S + first); // интеграл
             tt = fabs(I1 - I);
             I1 = I;
             n *= 2; // удваиваем кол-во отрезков разбиения
      while (tt >= t);
      return I;
void main()
      setlocale(LC_ALL, "Russian");
      int a = 0, b = M_PI/2.; // пределы интегрирования
      double accuracy; // точность
      cout << "Введите точность: ";
      cin >> accuracy;
      if (accuracy <= 0 || accuracy > 1)
              cout << "Точность только от 0 до 1!\n";
      else
       {
             double Trapecia = trapeze(a, b, accuracy);
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений ассигасу ∈ (0;1], <i>accuracy</i> > 0	п=0.001 Ожидаемые ответы: методом трапеций: 0.220437 методом Симпсона: 0.220545 п = 1 Ожидаемые ответы: методом трапеций: 0.213601 методом Симпсона: 0.220569 // чем меньше значение, тем более точным получается результат вычисления интеграла.
2	Класс недопустимых значений <i>accuracy</i> < 0	accuracy = -1; Ожидаемые ответы: сообщение об ошибке
3	Класс недопустимых значений accuracy > 0	ассигасу = 2; Ожидаемые ответы: сообщение об ошибке

C:\Windows\system32\cmd.exe	C:\Windows\system32\cmd.exe
Введите точность: 1	Введите точность: 0.001
По методу трапеций :0.213601	По методу трапеций :0.220437
По методу Симпсона :0.220569	По методу Симпсона :0.220545
Для продолжения нажмите любую клавишу	Для продолжения нажмите любую клавишу

Тема 3: «Указатели и динамическое распределение памяти»

Цель: получить практические навыки по работе с указателями и динамическому распределению памяти.

Задача 3.1:

Динамически выделить память под N элементов вещественного типа float. Разработать *алгоритм* и программу обработки одномерного динамического массива. Осуществить циклический сдвиг элементов одномерного массива на k позиций.

Входные данные:

 $int \ k, \ n$ - n - кол-во элементов, k - сдвиг позиций;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (кол-ва элементов массива и сдвига);
- 2 заполнение массива;
- 3 вывод массива на экран;
- 4 сдвиг элементов массива;
- 5 вывод сдвинутого массива на экран;

Выходные данные:

*(ptrarray + count) – вывод массива, вывод сдвинутого массива;

```
#include <iostream>
#include <stdio.h>
#include <ctime>
#include <iomanip>// в заголовочном файле <iomanip> содержится прототип функции
setprecision() Задает точность для плавающей запятой.
using namespace std;
int main(int argc, char* argv[])
       setlocale(LC_ALL, "Russian");
       srand(time(0)); // генерация случайных чисел
       int count, k, j, n; //count - индекс массива, j - индекс для сдвинутого массива,
n - кол-во элементов, k - сдвиг позиций
       float buf; //буфер, хранящий сортируемый массив
       cout << "Введите кол-во элементов: ";cin >> n;
       if (n <= 0)
       { cout << "Ошибка!" << endl; return 0; } cout << "Введите сдвиг: "; cin >> k;
       if (k <= 0)
              { cout << "Ошибка!" << endl; return 0; }
       float *ptrarray = new float[n]; // создание динамического массива вещественных
чисел на п элементов
       for (count = 0; count < n; count++)//заполнение массива случайными числами с
масштабированием от 1 до 10
              *(ptrarray + count) = (rand() % 10 + 1) / float((rand() % 10 + 1));
       cout << "/ array / \n";</pre>
       for (count = 0; count < n; count++)//вывод массива
              cout << setprecision(2) << *(ptrarray + count) << "\n";</pre>
       for (count = 0; count < k; count++)//сдвиг на k позиций
                     buf = ptrarray[n - 1]; //запись в буфер
                     for (j = n - 1; j > 0; j--)
                     *(ptrarray + j) = ptrarray[j - 1];//заполнение сдвинутого массива
                            ptrarray[0] = buf; //очистка буфера
              }
```

```
cout << "\n/Сдвиг элементов массива на " << k <<" позиций:/ \n";
       for (count = 0; count < n; count++)//вывод сдвинутого массива
               cout << setprecision(2) << *(ptrarray + count) << "\n";</pre>
       delete[] ptrarray; // высвобождение памяти
       cout << endl; system("pause"); return 0;</pre>
}
                                                           2
                                                                          3
                                            1
         Начало
                                                                        Цикл 5
           Ввод
                                                                      count = 0
                                         Цикл 2
                                                                      count < n
            n
                                                                       count++
                                          Цикл 3
                                                                      *(ptrarray
                                        count = 0
          n <= 0
                                        count < k
                                                                       +count)
                                         count++
                                          buf =
           Ввод
                                                                        Цикл 5
                                     ptrarray[n - 1]
                                          Цикл 4
                                        j = n - 1
                                                                       delete[]
          k <= 0
                                          j > 0
                                                                       ptrarray
                                            j--
          Цикл 1
                                                                         Конец
        count = 0
                                     *(ptrarray+j)=
        count < n
                                      ptrarray[j-1]
         count++
     *(ptrarray + count)
    = (rand() % 10 +
1) / float((rand() %
                                         Цикл 4
         10 + 1))
         Цикл 1
                                     ptrarray[0]=buf
          Цикл 2
        count = 0
                                         Цикл 3
        count < n
         count++
          Вывод
                                          Вывод
      *(ptrarray +
                                            k
         count)
                           2
```

N₂	Классы эквивалентности	Тестовый набор
	Класс допустимых значений	n = 5
	$n \in [0;2147483647], n \in N$	k=2
	$k \in [0;2147483647], n \in N$	Ожидаемые ответы: вывод массива из 5
1	2,	элементов и сдвиг его на 2 позиции
		//массив заполняется случайными числами,
		делаем сдвиг элементов массива вправо(вниз)
		на k позиций.
	Класс недопустимых значений	n = 0
	$n \in (-\infty; 0], n \ll 0$	n = -1
2		Ожидаемые ответы: сообщение об ошибке
		//количество элементов должно быть больше
		нуля.Сдвиг не должен быть отрицательным.
	Класс недопустимых значений	k = -1
	$k \in (-\infty; 0), k < 0$	Ожидаемые ответы: сообщение об ошибке
2		
		//количество элементов должно быть больше
		нуля.Сдвиг не должен быть отрицательным.

Залача 3.2:

Динамически выделить память под N2 элементов целого типа int. Разработать алгоритм и программу обработки квадратной матрицы порядка N: найти в матрице такие номера k, что k –ая строка матрицы совпадает с k –ым столбцом.

Входные данные:

int n — кол-во элементов массива;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (кол-во строк и столбцов);
- 2 заполнение массива;
- 3 вывод массива на экран;
- 4 нахождение таких номеров k, что k —ая строка матрицы совпадает с k —ым столбцом:
- 5 вывод этих k на экран;

Выходные данные:

i + 1 — такие номера k, что k —ая строка матрицы совпадает с k —ым столбцом сдвиг позиций;

```
#include <iostream>
#include <stdio.h>
#include <ctime>
#include <iomanip>// в заголовочном файле <iomanip> содержится прототип функции
setprecision() Задает точность для плавающей запятой.
using namespace std;
int main(int argc, char* argv[])
       setlocale(LC_ALL, "Russian");
       srand(time(0)); // генерация случайных чисел
       int count, n; //count - индекс массива, j - индекс для сдвинутого массива, n -
кол-во элементов, k - сдвиг позиций
       cout << "Введите кол-во строк и столбцов: "; cin >> n;
       if (n \leftarrow 0)
              { cout << "Ошибка!"; return 0; }
       int **ptrarray = new int*[n]; // создание динамического массива вещественных
чисел на п элементов
       for (int count = 0; count < n; count++)</pre>
              *(ptrarray+count) = new int[n];
       for (int count_row = 0; count_row < n; count_row++)</pre>
              for (int count_column = 0; count_column < n; count_column++)</pre>
                      *(*(ptrarray + count_row ) + count_column) = (rand() % 1 + 1) /
\mathsf{int}((\mathsf{rand}()\ \%\ 1\ +\ 1));\ //заполнение массива случайными числами с масштабированием от 1
до 10
       cout << "/ array / \n";</pre>
       for (int count row = 0; count row < n; count row++)</pre>
              for (int count column = 0; count column < n; count column++)</pre>
              cout << setw(4) << *(*(ptrarray + count_row) + count_column) << " ";</pre>
              cout << endl;</pre>
       bool *k = new bool[n];
       for (int i = 0; i < n; i++)
              k[i] = true;
              for (int j = 0; j < n; j++)</pre>
                     if (*(*(ptrarray + i) + j) != *(*(ptrarray + j) + i))
                             { k[i] = false; break; }
       }
```

```
cout << "\nНомера k, что k -ая строка матрицы совпадает с k -ым столбцом: ";
       for (int i = 0; i < n; i++)</pre>
               if (k[i])
                       cout << i + 1 << " ";
       for (int count = 0; count < n; count++)</pre>
       delete[] * (ptrarray + count);
cout << endl; system("pause"); return 0;</pre>
}
               Начало
                Ввод
                                                                            Цикл 3
                n <= 0
                                                                            Цикл 2
                Нет
                                                                            Цикл 4
                int
                                                                        count_row = 0
           **ptrarray =
                                                                        count_row < n</pre>
           new int*[n]
                                                                         count_row++
               Цикл 1
                                                                             Цикл 5
             count = 0
                                     *(*(ptrarray + count_row)
                                                                       count_column = 0
             count < n
                                                                       count_column < n</pre>
                                           + count_column)
                                                                        count_column++
              count++
            *(ptrarray +
               count)
           = new int[n]
    Да
              Цикл 1
                                                                            Цикл 5
               Цикл 2
           count_row = 0
                                                                           Цикл 4
           count_row < n</pre>
            count_row++
                Цикл 3
                                                                        bool *k = new
          count_column = 0
          count_column < n</pre>
                                *(*(ptrarray + count_row)
                                                                           bool[n]
                                     + count_column) =
           count_column++
                                     (rand() % 1 + 1) /
                                   int((rand() \% 1 + 1))
```


№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений $n \in [0;2147483647], n \in \mathbb{N}$	n = 3 Ожидаемые ответы: вывод массива из 5 строк и столбцов, вывод k, если такие имеются //номера k — индексы совпадающих строк и столбцов.
2	Класс недопустимых значений $n \in (-\infty;0], n <= 0$ $n \in (-\infty;0], n <= 0$	n = 0 n = -1 Ожидаемые ответы: сообщение об ошибке

```
Введите кол-во строк и столбцов: 3
/ аггау /
0 0 0 0
1 1 0
0 1 2
Номера k, что k -ая строка матрицы совпадает с k -ым столбцом:
Для продолжения нажмите любую клавишу . . .

Введите кол-во строк и столбцов: 3
/ аггау /
1 1 0
2 1 0
0 0 0

Номера k, что k -ая строка матрицы совпадает с k -ым столбцом:
З с:\Windows\system32\cmd.exe
```

```
шт C:\Windows\system32\cmd.exe
Введите кол−во строк и столбцов: −1
Ошибка!Для продолжения нажмите любую клавишу . . .
```

Тема 4: «Обработка строчных величин»

Цель: получить практические навыки по обработке строчных величин.

Задача 4:

- Разработать функцию, которая возвращает строку символов, которая получена из строки S1 путём удаления символов с позиции N1 до позиции N2.
- Разработать функцию, которая возвращает строку символов, которая получена из строки S1 путём удаления символов с позиции N1 до позиции N2 и вставки на это место строки S2.

Все функции поместить в отдельном файле (библиотеке). Разработать проект, подключающий собственную библиотеку, для проверки результатов вызова функций.

Входные данные:

char str[100], substr[100] — строка и доп. строка; *int* n1, n2 — позиции от и до, в пределах которых нужно удалить элементы и внедрить туда доп. строку;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (обеих строк и диапазона);
- 2 вывод начальной строки на экран;
- 3 вывод строки с удалением на экран;
- 4 вывод строки с добавлением доп. строки;

Выходные данные:

```
char str – первоначальная строка;
del – строка с удаленными элементами;
add – строка с добавлением доп. строки;
```

#pragma ones


```
#include <iostream>
using namespace std;
char* delete_str(char str[], int n1, int n2)
{
       int n = strlen(str);
       if (n1 < 0 || n2 < 0 || n1 > n2 || n < n1 || n < n2)
              return NULL;
       else
       {
              char *resultdel = new char[n];
              for (int i = 0; i <= n1; i++)
              resultdel[i] = str[i]; //Записываем символы исходной строки до начала
индекса диапазана
              for (int i = n2; i < n; i++)</pre>
              resultdel[i - (n2 - n1)] = str[i]; //сдвигаем resultdel[n - (n2 - n1)] = '\0';
              return resultdel;
       }
}
char* add_str(char str[], char substr[], int n1, int n2)
       int n = strlen(str);
       int nsub = strlen(substr);
       if (n1 < 0 || n2 < 0 || n1 > n2 || n < n1 || n < n2)
              return NULL;
       else
       {
              char *resultadd = new char[n + nsub];
              int i; //индексы исходной строки
              int j; //идекс дополнительной строки
              for (i = j = 0; i < n1; i++, j++)
              resultadd[j] = str[i]; //Записываем исходную строку до начала диапазона
              for (i = 0; i < nsub; i++, j++)</pre>
              resultadd[j] = substr[i]; //Записываем подстроку в результирующую строку
              for (i = n2; i < n; i++, j++)
              resultadd[j] = str[i]; //В конец результирующей строки(после индекса
конца диапазона) дописываем оставшиеся символы исходной строки
              resultadd[j] = '\0';
              return resultadd;
       }
}
#include <iostream>
#include <conio.h>
#include <locale>
#include <Windows.h>
#include <lib.h>
using namespace std;
void main()
{
       setlocale(LC ALL, "Rus");
       SetConsoleCP(1251);
       SetConsoleOutputCP(1251);
       char *del, *add;
       int n1, n2;
       cout << "Введите строку текста: ";
       char str[100]; gets s(str);
       cout << "Введите доп. строку: ";
       char substr[100]; gets_s(substr);
       cout << endl << "Введите позиции от и до, в пределах которых нужно удалить
символы: ";
       cin >> n1 >> n2;
       cout << endl << "Начальная строка: " << str << endl << endl;
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений $str \in (0;100], str > 0$ $substr \in (0;100], substr > 0$	str = Добре substr = ЛОЛ Ожидаемые ответы:
	n1 > 0, n1 < n2, n1 < n n2 > 0, n2 > n1, n2 < n	
2	Класс допустимых значений $n1 \in (0; +\infty), n1 > 0$ $n2 \in (0; +\infty), n1 > 0$	n1 = 2 n2 = 3 Ожидаемые ответы: ДоЛОЛре //сначала из исходной строки удаляются символы в определённом диапазоне, при этом
3	Класс недопустимых значений $n1 < 0, n2 < 0$	первый символ строки имеет нулевой индекс n1=-1 n2=-1 Ожидаемые ответы: ошибка ввода диапазона
4	Класс недопустимых значений $n1 > n2$	n1 = 5 n2 = 3 Ожидаемые ответы: ошибка ввода диапазона
5	Класс недопустимых значений $n < n1, n < n2$	n = 10 n1 = 40 n2 = 50 Ожидаемые ответы: ошибка ввода диапазона

Тема 5: «Работа с файлами»

Цель: получить практические навыки по работе с файлами.

Задача 5.1:

Создать в редакторе текстовый файл, внести в него 10 строк произвольного текста. Разработать программу, которая:

- выводит на экран строки файла, в которых встречается заданный символ
- формирует другой файл, в который переписывает строки исходного файла, содержащие латинские буквы, и указывает после каждой строки количество латинских букв в ней.

Входные данные:

string bukva – ввод буквы для поиска;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (буквы для поиска);
- 2 вывод строк, содержащих искомую букву;
- 3 запись строк в файл, содержащих латиницу;

Выходные данные:

 $string \ s$ — вывод строки с найденной буквой, записывается в файл, если найдена латиница;


```
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
#include <windows.h>
using namespace std;
bool latfind(string s)
{
      for each (char c in s)
              if (c >= 'A' && c <= 'Z' || c >= 'a' && c <= 'z')
                     return true;
      return false;
int main()
      SetConsoleCP(1251); // Ввод с консоли в кодировке 1251
      SetConsoleOutputCP(1251); // Вывод на консоль в кодировке 1251. Нужно только
будет изменить шрифт консоли на Lucida Console или Consolas
      ifstream file("1.txt"); // открыли файл с текстом
      string s, bukva;
      char c;
      int pos;
      cout << "Тыкни букву: ";
      cin >> bukva;
      cout << "\n";</pre>
      while (!file.eof()) // поиск
             getline(file,s);
             if (s.find(bukva) != -1)
                     cout << s << endl;</pre>
      file.close();
      file.open("1.txt");
      cout << "\n\nПредложения с ин.язом (также запишуться в файл):\n\n";
      ofstream zap("2.txt");
      while (!file.eof()) // поиск
             getline(file, s);
             if (latfind(s))
              {
                     cout << s << endl;</pre>
                     zap << s << endl;</pre>
      zap.close();
      file.close(); // обязательно закрыли
      system("Pause");
}
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений bukva – любой символ	bukva = o Ожидаемые ответы: вывод строк с буквой «о» и запись предложений с кириллицей в другой файл
2	Класс недопустимых значений если не удалось открыть файл (path)	Ожидаемые ответы: Ошибка открытия файла!

Задача 5.2:

Разработать программу для заполнения двоичного файла целыми числами в интервале [1; N]. Получить новый файл из компонент исходного файла, являющимися полными квадратами.

Входные данные:

int n — предел для целых чисел;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (предела для целых чисел);
- 2 заполнение двоичного файла целыми числами в заданном диапазоне;
- 3 вывод чисел в заданном диапазоне на экран;
- 4 запись во 2ой компонент исходного файла, являющимися полными квадратами.
- 5 вывод полных квадратов на экран;

Выходные данные:

int i — вывод чисел;

int i2 — вывод полных квадратов;


```
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
#include <windows.h>
using namespace std;
bool IsSquare(int n,)//используется тот факт, что любой квадрат это сумма
последовательных нечетных чисел
{
       int i = 1;
       while (n>0)
       {
              n -= i;
              i += 2;
       if (n == 0)return true;
       return false;
};
void main()
       setlocale(0, ""); // локализация
       int n = 0, x = 1; // i - счетчик, n - количество чисел
       ofstream F("1.bin", std::ios::binary); // создание файловой переменной, поток
для записи в файл
       ofstream F2("2.bin", std::ios::binary);
       if (F.fail()) // если открытие файла прошло некорректно, то
       cerr << "Ошибка открытия файла. Проверьте местоположение и имя файла! \n"; //
вывод сообщения об ошибке
       }
       else
       {
              cout << "Введите n = ";
              if (n <= 0)
              {
                     cout << "Ошибка!";
                     return 0;
              }
              cin >> n; cout << endl;</pre>
              for (int i = 1; i <= n; i++)// цикл для ввода целых чисел и записи их в
файл
              {
                     F.write((char*)&i, sizeof(int));
                     cout << i << ' ';
              cout <<"\n";</pre>
              for (int i = 1; i <= n; i++)// проверка числа на полный квадрат
                     int i2 = i*i;
                     if (i2 < n)
                     {
                            F2.write((char*)&i2, sizeof(int));
                            cout << i2 << ' ';
                     }
              }
       }
       cout << "\n";</pre>
       F.close(); // закрытие потока
       F2.close();
       system("pause");
}
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений $n \in [1;2147483647), n \in N$	n = 10 Ожидаемые ответы: 1,2,3,4,5,6,7,8,9,10 и полные квадраты: 1,4,9
2	Класс недопустимых значений $n \in (-\infty;0], n <= 0$	n = 0 n = -1 Ожидаемые ответы: сообщение об ошибке

Результаты тестирования:

Тема 6: «Динамические структуры данных»

Цель: получить практические навыки по работе с динамическими структурами данных;

Задача 6:

Составить программу обработки динамической структуры данных: поменять местами первый и последний элементы односвязной очереди Q.

Входные данные:

int n — ввод длины очереди; queue < int > queue - ввод очереди;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (длины очереди, затем и самой очереди);
- 2 замена в очереди местами первого и последнего элементов;
- 3 вывод измененной очереди на экран;

Выходные данные:

replace(queue) – вывод измененной очереди;


```
#include <iostream>
#include <string>
#include <queue>
#include <conio.h>
#include <Windows.h>
using namespace std;
       //Функция смены местами первого и последнего элемента очереди работает следующим
      образом:
      //Создаём результирующую очередь, в которую отправляем последний элемент
      основной очереди, т.е. получается, что последний элемент станет первым.
      //Затем из основной мы сохраняем первый элемент во временную переменную. После
      сохранения этого элемента удаляем его.
      //Циклически проверяем всю основную очередь до тех пор, пока её размер больше
      одного.
      //В этом цикле мы переписываем первый элемент основной очереди в результирующую
      и удаляем его из основной очереди. (очередь будет опустошаться, поэтому каждый
      раз передаём первый элемент)
      //После прохода цикла - возвращаем в конец результирующей очереди первый
      элемент, который мы запоминали.
template <typename T> //параметр шаблона, принимающий любой встроенный тип данных
queue<T> replace(queue<T> q)
{ //Функция для замены, q - очередь
      queue<T> result; //делаем результирующую очередь
      result.push(q.back()); //выводим последний элемент в начало
      T tmp = q.front(); //сохраняем во временную переменную первый элемент
      q.pop(); //удаляем первый элемент
      while (q.size() > 1)
      { //очередь должна содержать больше одного элемента
             result.push(q.front()); //передать в результат очереди первый элемент
             q.pop(); //удаляет первый элемент
      result.push(tmp); //добавить в конец сохранённый элемент
      return result;
}
      //Функция вывода очереди на экран:
      //Выводим описание очереди.
      //Проходимся в цикле по элементам очереди, выводя и удаляя первый элемент
      очереди. (Так как мы выводим первый элемент, нам нужно его удалить, чтобы
      вывести следующий)
template <typename T> //параметр шаблона, принимающий любой встроенный тип данных
void print(queue<T> q, string name)
{ //передаётся очередь и строка с описанием
      cout << name;</pre>
      while (!q.empty())
      { //пока очередь не пустая
             cout << q.front() << " "; //вывод первого элемента
             q.pop(); //удаляет первый элемент
      cout << endl;</pre>
}
      //Функция чтения очереди:
      //Выводим описание функции.
      //Т x - x может принимать любой тип данных, в зависимости от указанного к
      очереди.
      //Ручной ввод элементов очереди в зависимости от количества элементов
template <typename T> //параметр шаблона, принимающий любой встроенный тип данных
queue<T> read(int n, string invite)
{ //чтение очереди по количеству элементов, передаётся количество элементов и строка с
описанием
      queue<T> result;
      cout << invite;</pre>
      T x;
      for (int i = 0; i < n; i++)
             cin >> x;
```

```
result.push(x); //Передать в конец элементы
       if (n == 0)
              cout << endl;</pre>
       return result;
}
int main()
       setlocale(LC_ALL, "Rus");
       SetConsoleCP(1251);
       SetConsoleOutputCP(1251);
cout << "Длина очереди: ";
       int n;
       cin >> n; //Ввод длины очереди
       if (n <= 0 || n == 1)
              cout << "Неверный ввод!" << endl;
              return -1;
       }
       queue<int> queue = read<int>(n, "Очередь: "); //очередь работает с целыми
числами (чтение очереди)
       print(replace(queue), "Очередь с заменой: "); //вывести очередь с изменёнными
элементами
       _getch();
       return 0;
}
```

Nº	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений $n \in (0; +\infty), n > 0$	n = 5 Ожидаемые ответы: 5 2 3 4 1
2	Класс недопустимых значений $n \in (-\infty; 0], n <= 0$	n = -1 n = 0 Ожидаемые ответы: сообщение об ошибке
4	Класс недопустимых значений $n=1$	n = 1 Ожидаемые ответы: сообщение об ошибке

Результаты тестирования:

Тема 7: «Работа с файловой системой»

Цель: получить практические навыки по работе с файловой системой.

Задача 7:

Составить программу по работе с файловой системой, которая позволяет узнать системное время, и если время от 845 до 1115 — выводит сообщение «Доброе утро!» и даёт звуковой сигнал, а также отыскивает в указанном каталоге файлы, созданные в это время.

Входные данные:

string str – ввод директории;

Функциональные характеристики:

- 1 ввод данных пользователем с клавиатуры (директории);
- 2 проверка времени на «утро»;
- 3 получение информации о времени создания файлов;
- 4 сравнение времени создания файла и времени «утра»;
- 5 вывод файлов, созданных « утром»;

Выходные данные:

```
wfd.cFileName — имя файла;
(time.wHour + UTC) — часы создания;
time.wMinute — минуты создания;
time.wSecond — секунды создания;
```



```
#include <iostream>
#include <conio.h>
#include <windows.h>
#include <time.h>
#include <ctime>
#include <string>
#define UTC (+3)
using namespace std;
int main()
{
      time t t;
      struct tm *t m;
      t = time(NULL);
      t m = localtime(&t);
      wstring str;
      cout << "Current time is: " << ctime(&t); //вывод текущего времени
      float utro = t_m->tm_hour * 60 + t_m->tm_min + t_m->tm_sec/60;
      if (utro >= 525 && utro <= 675) //675
       //вывод сообщения с последующей звуковой темой из фильма «Миссия невыполнима»
             cout << "Good morning!\n";</pre>
             Beep(784, 150); Sleep(300); Beep(784, 150); Sleep(300);
             Beep(932, 150);Sleep(150);Beep(1047, 150);Sleep(150);
             Beep(784, 150);Sleep(300);Beep(784, 150);Sleep(300);
             Beep(699, 150);Sleep(150);Beep(740, 150);Sleep(150);
             Beep(784, 150);Sleep(300);Beep(784, 150);Sleep(300);
             Beep(932, 150);Sleep(150);Beep(1047, 150);Sleep(150);
             Beep(784, 150);Sleep(300);Beep(784, 150);Sleep(300);
             Beep(699, 150); Sleep(150); Beep(740, 150); Sleep(150);
             Beep(932, 150); Beep(784, 150); Beep(587, 1200); Sleep(75);
             Beep(932, 150); Beep(784, 150); Beep(554, 1200); Sleep(75);
             Beep(932, 150); Beep(784, 150); Beep(523, 1200); Sleep(150);
              Beep(466, 150); Beep(523, 150); Beep(784, 150); Sleep(300);
              Beep(784, 150);Sleep(300);Beep(932, 150);Sleep(150);
              Beep(1047, 150);Sleep(150);Beep(784, 150);Sleep(300);
             Beep(784, 150);Sleep(300);Beep(699, 150);Sleep(150);
             Beep(740, 150); Sleep(150); Beep(784, 150);
      cout << "\nEnter directory: "; //ввод директории
      wcin >> str;
      str = str + L"/*.txt";
      SYSTEMTIME time;
      WIN32 FIND DATAW wfd;
      HANDLE const hFind = FindFirstFileW(str.c_str(), &wfd); //поиск файлов
      if (INVALID_HANDLE_VALUE != hFind)
      {
             do
              {
                    FileTimeToSystemTime(&wfd.ftCreationTime, &time);
                    float make = (time.wHour + UTC) * 60 + time.wMinute + time.wSecond
/ 60; //задание формулы для времени создания файла
                    if (make >= 525 && make <= 675) //вывод информации о времени
создания файлов
                    wcout << wfd.cFileName << ' ' << (time.wHour + UTC) << ':' <</pre>
time.wMinute << ':' << time.wSecond << endl;</pre>
              } while (NULL != FindNextFileW(hFind, &wfd));
             FindClose(hFind);
      _getch();
}
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений адрес существующего каталога	Ожидаемые ответы: вывод имен файлов и времени их создания. //выводятся только те файлы, которые были созданы с 8 ⁴⁵ до 11 ¹⁵
2	Класс недопустимых значений адрес несуществующего каталога	Ожидаемые ответы: завершение программы

Результаты тестирования:

F:\Y4E6A\NN\Practice 2017 #7\Practice2017-7\Debug\Practice2017-0000 \\
Current time is: Sat Oct 14 16:26:07 2017 \\
Good morning!

Enter directory: F:\1\2\
5.txt 9:12:19 \\
6.txt 9:12:42

Тема 8: «Организация многопоточной обработки данных»

Цель: получить практические навыки по организации многопоточной обработки данных;

Задача 8:

Напишите программу, которая создает процесс. Используйте атрибуты по умолчанию. Родительский и вновь созданный процесс должны распечатать строки текста так, чтобы вывод родительского и дочернего процесса был синхронизован: сначала родительский процесс выводил бы три строки, затем дочерний пять строк, затем родительский следующие три строки и т.д. Используйте мьютексы.

Входные данные:

file – исходный файл строк для вывода их на экран;

Функциональные характеристики:

- 1 открываем файл на чтение;
- 2 создаём два процесса
- 3 берём строки из файла;
- 4 вызываем функцию печати и раскраски строк из файла;
- 5 печатаем строки файла по очереди;

Выходные данные:

line – *строки исходного файла*;


```
#pragma once
#include <windows.h>
typedef HANDLE Mutex;
//mutex is locking mechanism
//Semaphore is signaling mechanism
DWORD WINAPI lock(Mutex sem)
{
      //DWORD WaitForSingleObject(
      // sem - идентификатор объекта
             //Идентификатор объекта идентифицирует процесс который нужно задержать...
                    //Второй параметр означает насколько времени нужно задержать
процесс(в миллисекундах) с момента выполнения данной функции... Либо вечно : INFINITE
             //Данная функция возвращает значение :
             //WAIT_OBJECT_0 в случае перехода "объекта" в сигнальное
cocтoяниe(SetEvent(THandle)), при этом оставшийся интервал времени cooтветственно
игнорируеться;
             //WAIT_TIMEOUT в случае истечения заданного интервала времени, т.е.
"объект" сигнал не получил...
      return WaitForSingleObject(sem, INFINITE);
DWORD WINAPI unlock(Mutex sem) //Семафор является одним из объектов синхронизации и
содержит счетчик, учитывающий количество потоков, обратившихся к данному ресурсу.
      return ReleaseMutex(sem); //После завершения работы с ресурсом поток
увеличивает значение счетчика
BOOL WINAPI join(HANDLE pThreadHandle)
{
      WaitForSingleObject(pThreadHandle, INFINITE);
      return CloseHandle(pThreadHandle);//закрывает дескриптор pThreadHandle открытого
объекта.
}
Mutex mutex(int c)
{
      return CreateMutex(NULL, c, (LPCWSTR)"Test");
#include <iostream>
#include <fstream>
#include <string>
#include <windows.h>
#include "lib.h"
using namespace std;
bool func;
Mutex mut1, mut2;
HANDLE console = GetStdHandle(STD OUTPUT HANDLE);
inline ostream& red(ostream &s)
{SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT HANDLE), FOREGROUND INTENSITY |
FOREGROUND_RED | BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED); return s;}
inline ostream& white(ostream &s)
{SetConsoleTextAttribute(GetStdHandle(STD OUTPUT HANDLE), BACKGROUND BLUE |
BACKGROUND_GREEN | BACKGROUND_RED); return s;}
bool line(bool isred, ifstream &in) //выводит строки в опр цвете
{
      string line;
      if (!getline(in, line)) //проверка на возможность считывания строки
             return false;
      if (isred)
      {SetConsoleTextAttribute(console, (WORD)(6)); cout << line << endl;}//зеленый
       {SetConsoleTextAttribute(console, (WORD)(7)); cout << line << endl;}//серый
      return true;
```

```
DWORD WINAPI process(LPVOID)
{
      ifstream in("1.txt");// разделяемый ресурс
      {
             lock(mut1);//лок 2 мьютекса
             for (int i = 0; i < 5; i++)
                    func = line(0, in);//вывод дочерних строк
             unlock(mut2);//разблок мьютекса 1
      while (func);
      return 0;
int main()
      ifstream in("1.txt");// разделяемый ресурс
      if (!in.is_open())
       { cout << "Файл не найден!!!" << endl; }
      DWORD dwThreadId;
      mut1 = mutex(0);
      mut2 = mutex(1);
      HANDLE pThreadHandle = CreateThread(NULL, 0, process, NULL, 0,
&dwThreadId);//создание процесса
      do
      {
             lock(mut2); //лок 2 мьютекса
             for (int i = 0; i < 3; i++)</pre>
                    func = line(1, in); //вывод родительского класса
             Sleep(300);
             unlock(mut1); //разблок мьютекса 1
      while (func);
      join(pThreadHandle); //закрытие процесса
      CloseHandle(mut1);
      CloseHandle(mut2);
      return 0;
}
```

№	Классы эквивалентности	Тестовый набор
1	Класс допустимых значений 29 цифр в файле	Ожидаемые ответы: 0120123434556789 и так далее до 29 //программа заканчивает работу родительским процессом
2	Количество значений в файле значений 29 цифр в файле	Ожидаемые ответы: 0120123434556789 и так далее до 29 //программа заканчивает работу дочерним процессом
3	Класс недопустимых значений: файл не существует	Ожидаемые ответы: файл не найден
4	Класс недопустимых значений: пустой файл	Ожидаемые ответы: файл пуст

Результаты тестирования:

