Exploring the Emergence of Cooperation

Complex Social Systems Group Project 14.10.2020 - Yanninimalhu

Social dilemmas in game theory

Social Dilemmas

incentive to free-ride (T) > incentives to cooperate (R)

P1 / P2	C	D
C	R, R	S, T
D	T, S	P,P

Enhancing cooperation

Iterated prisoner's dilemma (PD)

Imitation

Spatial influences

Small-world networks

Migration

... and many other mechanisms

Maslow's Hierarchy of Needs and Asymmetric Games

Objectives

Explore emergence of cooperation under

Basic Model

9				
Neighbo	rhood of		P2	
Play	er 1		. –	
•		P1		
19)		FI		
	P3		P4	P5
	P6	P7		

We model the world as a grid of cells, some of which are occupied by players.

Players play the prisoner's dilemma game with other players in their neighborhood. Players are either cooperative (C) or defecting (D).

P1 / P2	C	D
C	R, R	S, T
D	T, S	P,P

Basic Model

Imitation

Players update their **strategy** by copying their most successful neighbor

P1/P2	C	D
C	R, R	S, T
D	T, S	P,P

Basic Model

Migration

Players update their **position** by moving to where they would get the best payoff with their current strategy.

Player 2

P1/P2	C	D
C	R, R	S, T
D	T, S	P,P

Simulation

P1 / P2	C	D
C	R, R	S, T
D	T, S	P,P

Update all players in a random, sequential order, then iterate.

- Prisoner's Dilemma game
- Migration
- Imitation

We introduce noise (random strategy mutations) simulate **trial-and-error** behaviour and **unsuccessful imitation**.

Small World Network

- We replace the grid with a small-world network in which nodes represent players.
- Small-world networks characterized by small average node distance and large clustering coefficients.
 - More realistic modelling of real-world interactions

Asymmetric PD

$$egin{array}{|c|c|c|c|c|} P1/P2 & C & D \\ C & eta_1 R, eta_2 R & \gamma_1 S, lpha_2 T \\ D & lpha_1 T, \gamma_2 S & \delta_1 P, \delta_2 P \\ \hline \end{array}$$

Selfactualization:

achievina one's

Self-fulfillment

needs

Temptation to defect:

 $\alpha \propto 1/(sum \ all \ needs)$

Reward for cooperating:

if physiological needs met: $\beta \propto$ other needs

Sucker's payoff

 $\gamma \propto self fulfillment needs$

Punishment for mutual defection:

 $\partial \propto psychological needs$

$$\alpha = \frac{2}{1 + \frac{\sum_{i=1}^{5} \sigma_i}{\sum_{i=1}^{5} i}} \qquad \gamma = 1 + \sigma_5$$

$$\delta = 1 + \frac{(\sigma_3 + \sigma_4)}{2}$$

$$\beta = 1 + \frac{\sum_{i=1}^{5} \sigma_i}{\sum_{i=1}^{5} i}$$

Basic needs

Implementation

100% Python

All code was written in Python, making use of public modules for animation and network analysis.

Code Validation

No Noise

Noise

Imitation

Migration

Imitation & Migration

Cooperative behaviour robust to noise!

Results I: Population structure

p= probability that need is not met

Physiological

Security

Esteem

Self-Actualisation

None

1. Cooperation is strongly contingent upon the fulfilment of needs

2. Cooperation cannot exist in societies where basic needs aren't met

Needs

Physio.

Security

Love

Esteem

Self-Act

Basic needs

Psychological

3. Heterogeneous population structures enhance cooperation

Expected fraction ~ 0.5 Not just a sum of its parts!

3. Heterogeneous population structures enable cooperation

Comparable to unrealistic homogenous populations

Conclusions I

Results highlight the importance of "role-models" in society

Socio-political implication:

... theories of communism and capitalism do not need to be considered opposites or alternatives, but rather systems that satisfy different stages of humanity's technological development.

Results II: Network topology

100 nodes, mean degree=4 and probability of rewiring=0.2

Cooperators vs p

k=mean degree of the network

(1) Cooperators vs k, noise off

(2) Cooperators vs k, noise on

Conclusions II

- Hubs promote cooperation
- © Cooperator hubs are good as long as not too accessible

Discussion and extensions

- Nodes inside are always cooperating
- Nodes on the "walls" are vulnerable but can be lucky...
- Hubs are not robust

Possible extensions:

- ₀ adaptive networks (structure ⇐⇒ dynamics)
- higher order networks (group games)

Thank you!

Any questions?

Appendix

