

DESENVOLVEDOR BACK-END

QUALIFICAÇÃO PROFISSIONAL

Área Tecnológica
TECNOLOGIA DA INFORMAÇÃO - SOFTWARE

O QUE É LÓGICA?

DEFINIÇÃO

LÓGICA – Origem na palavra grega logos, o pode ser traduzida como palavra ou pensamento, razão.

2 Lógica Formal – Procura validar a veracidade das informações.

Lógica Informal – Preocupa-se com a argumentação em língua natural.

Os 3 princípios da lógica

Princípio de Identidade – Algo é o que é e não pode não ser. Algo que não é, não pode ser.

Princípio de não contradição – não existe uma verdade falsa, ou seja, não há verdadeiro e falso ao mesmo tempo.

Princípio do terceiro excluído – Ou é verdadeiro ou é falso, não existe uma terceira opção.

Exemplo de Silogismo Formal

O Sócrates é um homem

02 Todo <mark>homem</mark> é <mark>mortal</mark>

03 Logo, Sócrates é mortal.

Termo Maior

Termo Médio

Termo Menor

Cópula

Quantidade

Regra de Silogismo

O Analise a conclusão

O2 Termo menor: sujeito da conclusão.

Termo maior: predicado da conclusão.

Silogismo no dia a dia

O A gaveta está fechada.

O2 A caneta está dentro da gaveta.

Portanto, precisamos primeiro abrir a gaveta para depois pegar a caneta.

Termo Maior

Termo Médio

Termo Menor

Cópula

Quantidade

EXERCÍCIOS

Encontre os termos maior, menor e a cópula dos seguintes silogismos:

Todos os gatos são animais domésticos.

Miau é um gato.

Portanto, Miau é um animal doméstico.

Todos os sábados são dias da semana.

O₂ Hoje é sábado.

Portanto, hoje é um dia da semana.

Todos os números pares são divisíveis por 2.

03 26 é par.

Portanto, 26 é divisível por 2.

Se é inverno, então está frio.

()4 Está inverno.

Portanto, está frio.

Mas e a lógica de programação?

Significa o uso correto das leis do pensamento, da "ordem da razão".

O raciocínio é algo abstrato, intangível.

Os seres humanos têm a capacidade de expressá-lo através da palavra falada ou escrita.

Algo similar ocorre com a lógica de programação, que pode ser concebida pela mente treinada e pode ser representada pelas inúmeras linguagens de programação.

ALGORITMOS

O que é um algoritmo?

Um algoritmo pode ser definido como uma sequência de passos que visam atingir um objetivo definido.

É necessário utilizar ordem, ou seja, "pensar com ordem", portanto precisamos utilizar lógica.

O interessante de algoritmos é que uma vez concebida uma solução algorítma, esta pode ser traduzida para qualquer linguagem de programação.

EXEMPLO DE ALGORITMO

- Ol Pegar uma escada;
- 02 Posicionar a escada embaixo da lâmpada;
- 03 Buscar uma lâmpada nova;
- 04 Subir na escada;
- 05 Retirar a lâmpada velha;
- 06 Colocar a lâmpada nova;

EXERCÍCIOS DE ALGORITMO

Construa os seguintes algoritmos:

ALGORITMO PARA ATRAVESSAR A RUA.

() ALGORITMO PARA FAZER UM SUCO DE LARANJA.

3 ALGORITMO PARA SOLTAR UM PARAFUSO.

4 ALGORITMO PARA APERTAR UM PARAFUSO.

TABELA VERDADE

A tabela verdade é uma ferramenta fundamental na lógica.

Ela permite determinar o valor de verdade de proposições compostas de verdade

Para isso precisamos dos operadores

lógicos, são eles: AND (E) – OR (OU) –

NOT (NÃO) – XOR (OU exclusivo)

TABELA VERDADE - OPERADOR AND (E)

A	В	AANDB
V	F	F
F	V	F
F	F	F

TABELA VERDADE - OPERADOR OR (OU)

A	В	AORB
V		
V	F	V
F	V	V
F	F	F

TABELA VERDADE - OPERADOR NOT (NÃO)

A	NOTA
V	F
F	V

TABELA VERDADE - OPERADOR AND E NOT

NOTA	В	AANDB
A=V		F
A=V	F	F
A=F	V	V
A=F	F	F

TABELA VERDADE - OPERADOR XOR (OU EXCLUSIVO)

A	В	AXORB
		F
V	F	V
F	V	V
F	F	F

TABELA VERDADE - OPERADOR XOR E NOT

NOTA	В	AXORB
A=V		
A=V	F	F
A=F	V	F
A=F	F	V

OPERADORES ARITMÉTICOS

Símbolo	olo Significados Subtração	
## =		
-	Adição	
*	Multiplicação	
I	Divisão	
%	Resto da divisão (módulo)	

OPERADORES RELACIONAIS

Símbolo	Nome do Operador	Exemplo	Significado
>	Maior que	x > y	x é maior que y?
>=	Maior ou igual	x >= y	x é maior ou igual a y ?
<	Menor que	x < y	x é menor que y?
<=	Menor ou igual	x <= y	x é menor ou igual a y ?
==	Igualdade	x == y	x é igual a y?
!=	Diferente de	x != y	x é diferente de y?

EXERCÍCIOS – ALGORITMOS ESTRUTURAS CONDICIONAIS

Construa os seguintes algoritmos, considere a tabela verdade:

() ALGORITMO PARA DESCOBRIR SE UM NÚMERO É PAR OU ÍMPAR.

- ALGORITMO QUE TRANSFORME NÚMERO FORNECIDO EM MÊS CORRESPONDENTE.

 CASO SEJA MENOR QUE 1 E MAIOR QUE 12, APRESENTAR MÊS INVÁLIDO
- ALGORITMO PARA VERIFICAR APROVAÇÃO DO ALUNO: CASO SUA NOTA FINAL SEJA
 MAIOR OU IGUAL 50 ESTÁ APROVADO; CASO SEJA ENTRE 45 E 49 VAI PARA
 CONSELHO; E CASO SEJA MENOR QUE 45 REPROVADO.

EXERCÍCIOS – ALGORITMOS ESTRUTURAS DE REPETIÇÃO

Construa os seguintes algoritmos:

- ALGORITMO QUE APRESENTE OS 10 PRIMEIROS NÚMEROS PARES (USE LOOPING WHILE)
- ALGORITMO QUE LEIA A ALTURA DE 10 PESSOAS, EM SEGUIDA APRESENTE A MAIOR E MENOR ALTURA E A MÉDIA DE ALTURA. (USE LOOPING FOR)
- ALGORITMO EM FORMA DE JOGO. APRESENTE UMA TABUADA AO USUÁRIO, O
 USUÁRIO DEVE DIGITAR O RESULTADO CORRETO DA TABUADA, CASO ERRE, O JOGO
 FINALIZA. (USE DO...WHILE)

EXERCÍCIOS – ALGORITMOS VETORES E FUNÇÕES

Construa os seguintes algoritmos:

- ALGORITMO COM FUNÇÃO QUE CONVERTA FAHRENHEIT EM CELSIUS.

 CÁLCULO: C = F-32 / 1,8
- ALGORITMO QUE LEIA O NOME, O CUSTO E O PREÇO DE 3 PRODUTOS, EM SEGUIDA APRESENTE A MARGEM DE LUCRO DE CADA PRODUTO. (USE VETORES)
- ALGORITMO QUE ENCONTRE O MAIOR NÚMERO DE UMA LISTA COM TAMANHO DEFINIDO PELO USUÁRIO. (USE VETORES E FUNÇÕES)

