

Página 1 de 21

ATIVIDADE SITUAÇÃO PROBLEMA 1: CENTRAL DE ALARME

TEXTO

Uma central de Alarme deve ser programada, de modo a monitorar o estado de diversos sensores, e, caso necessário, acionar uma sirene.

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O sistema entrará em funcionamento se o botão liga estiver habilitado (posição fixa);
- *A sirene deverá ser acionada se:
- 2-) O sinal da barreira de infravermelho seja interrompido (= 0);
- 3-) Os sinais dos sensores da Janela 1 e Janela 2 sejam interrompidos (= 0)
- 3-) Alguns dos sensores de presença (Sala, Cozinha, Quintal ou Corredor) detectatem alguma presença (= 1);

MAPA DE ENTRADAS / SAÍDAS:

- **0** = botão liga **1** = Barreira infravermelho **2** = Sensor Janela 1 **3** = Sensor Janela 2
- 4 = Sensor Presença Sala 5 = Sensor Presença Cozinha 6 = Sensor Presença Quintal
- 7 = Sensor Presença Corredor 8 = Sirene

Dicas:

- *Não é necessário criar *borda*, pois o botão é de posição fixa, ou seja, se botão == 1, sistema ligado.
- *Utilize a lógica "ou" (||) em todos os sensores, ou faça sequenciamento de if's

Página 2 de 21

ATIVIDADE SITUAÇÃO PROBLEMA 2: COMPRESSOR
TEXTO

Um motor que aciona um compressor está trabalhando em regime intermitente, isto é, ligando e desligando de acordo com o nível de pressão no reservatório:

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O botão de habilitação do compressor é de posição fixa, ou seja, enquanto o botão Liga estiver sendo habilitado o sistema deverá funcionar;
- 2-) Toda vez que o pressostato for acionado, deve-se acionar o motor do compressor, ou seja, a pressão está abaixo do ideal;
 - 3-) Um indicador sinalizará se o compressor está ligado;
- 4-) Somente será considerado motor ligado caso haja o recebimento do sinal do contato NA do contator que liga o motor;
 - 5-) Informe no Monitor Serial o estado do compressor

MAPA DE ENTRADAS / SAÍDAS:

2 = botão liga 3 = Pressostato 4 = Contato NA do Contator 5 = Bobina Contator do Motor

Dicas:

*Não é necessário criar *borda*, pois o botão é de posição fixa, ou seja, se botão == 1, sistema ligado.

Página 3 de 21

ATIVIDADE

SITUAÇÃO PROBLEMA 3: REFRIGERAÇÃO À ÓLEO

TEXTO

Sabe-se que a Refrigeração de Ferramentas em certas usinagens é imprescindível, desse modo, construa a parte do software que permitirá o acionamento do sistema de refrigeração pelo operador.

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O botão de habilitação da refrigeração é de posição fixa, ou seja, enquanto o botão Liga estiver sendo habilitado o sistema deverá funcionar;
- 2-) O indicador Luminoso Verde deverá estar aceso quando o sistema estiver em funcionamento:
- 3-) O indicador Luminoso Vermelho deverá estar aceso quando o sistema estiver em modo alarme:
- 4-) Basicamente o Motor da Bomba Hidráulica deverá entrar em funcionamento quando for acionado o botão de Liga e estiver nas situações de segurança favoráveis;
- 5-) O motor deverá ser desacionado caso o Sensor de Nível estiver desligado, ou seja, sem nível de óleo o suficiente;
- 6-) O motor também deverá ser desacionado caso as condições do óleo não estejam adequadas, detectado pelo Sensor de Qualidade do Óleo (1 = óleo bom);
- 7-) O motor não deverá funcionar caso o Pressostato estiver indicando que o Filtro do Óleo ficou obstruído (1 = Filtro Entupido);
 - 8-) O alarme deverá ser acionado quando não estiver em situações favoráveis acima;
 - 9-) Informe no Monitor Serial o estado da refrigeração.

Página 4 de 21

MAPA DE ENTRADAS / SAÍDAS:

- 2 = botão liga 3 = Sensor de Nível 4 = Sensor de Qualidade do Óleo
- **5** = Pressostato do Filtro do Óleo **6** = Motor **7** = Indicador Verde
- 8 = Indicador Vermelho

Dicas:

*Não é necessário criar *borda*, pois o botão é de posição fixa, ou seja, se botão == 1, sistema ligado.

*Utilize a lógica "E" (&&) em todos os sensores, ou faça sequenciamento de if's

ATIVIDADE SITUAÇÃO PROBLEMA 4: CARIMBADORA

TEXTO

Uma carimbadora necessita ser programada para executar o ciclo de avanço e recuo.

DESCRITIVO DE FUNCIONAMENTO:

1-) Toda a lógica do sistema funciona se o botão liga estiver pressionado;

Página 5 de 21

- 2-) Se o sensor S1 estiver acionado (comprovando que o cilindro esteja na posição inicial) então o cilindro deve avançar (acionando-se válvula Y1);
 - 3-) A válvula Y1 deverá ser acionada;
 - 4-) Se o sensor S2 for acionado, esperar 3 segundos com o cilindro acionado;
 - 5-) Após, pode-se desligar a válvula Y1, fazendo com que o cilindro retorne.
 - 6-) Um indicador sinalizará se a carimbadora está ligada;
 - 7-) Informe no Monitor Serial o estado da carimbadora.

MAPA DE ENTRADAS / SAÍDAS:

- 2 = botão liga 3 = Sensor de Cilindro Recuado 4 = Sensor de Cilindro Avançado
- 5 = Válvula 6 = Carimbadora Ligada

ATIMDADE

Dicas:

*Não é necessário criar *borda*, pois o botão é de posição fixa, ou seja, se botão == 1, sistema ligado.

Agora, o controle da Refrigeração deverá ser modificado, com objetivo de incluir um botão PULSANTE em substituição ao alavanca e um BOTÃO DE EMERGÊNCIA para segurança dos usuários do equipamento. MOTOR PRESSOSTATO FILTRO DO ÓLEO SENSOR DE NÍVEL SENSOR QUALID. ÓLEO

SITUAÇÃO PROBLEMA 5 : REFRIGERAÇÃO À ÓLEO 2

Página 6 de 21

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O botão de habilitação da refrigeração é PULSANTE, ou seja, quando for pressionado e solto será habilitado o funcionamento
- 2-) O botão de habilitação também funcionará como botão desliga, caso seja pressionado com o sistema ligado
- 3-) O botão de emergência dever permitir o desligamento do motor e acendimento do alarme (botão de emergência é NF, ou seja, Sinal 1 = OK, Sinal 0 = Emergência);
- 4-) O indicador Luminoso Verde deverá estar aceso quando o sistema estiver em funcionamento;
- 5-) O indicador Luminoso Vermelho deverá estar aceso quando o sistema estiver em modo alarme;
- 6-) Basicamente o Motor da Bomba Hidráulica deverá entrar em funcionamento quando for acionado o botão de Liga e estiver nas situações de segurança favoráveis;
- 7-) O motor deverá ser desacionado caso o Sensor de Nível estiver desligado, ou seja, sem nível de óleo o suficiente:
- 8-) O motor também deverá ser desacionado caso as condições do óleo não estejam adequadas, detectado pelo Sensor de Qualidade do Óleo (1 = óleo bom);
- 9-) O motor não deverá funcionar caso o Pressostato estiver indicando que o Filtro do Óleo ficou obstruído (1 = Filtro Entupido);
 - 10-) O alarme deverá ser acionado quando não estiver em situações favoráveis acima;
 - 11-) Informe no Monitor Serial o estado da refrigeração.

MAPA DE ENTRADAS / SAÍDAS:

- 2 = botão liga/desliga 3 = Sensor de Nível 4 = Sensor de Qualidade do Óleo
- **5** = Pressostato do Filtro do Óleo **6** = Motor **7** = Indicador Verde
- 8 = Indicador Vermelho 9 = Botão de Emergência

Dicas:

- *Crie uma borda, pois o botão é PULSANTE, sendo necessário criar uma variável auxiliar para a borda (buffer).
- *Não se esqueça que o mesmo botão que Liga, também desliga, portanto, utilize uma porta lógica NOT (!) para inverter o estado de uma variável de Sistema Ligado.

Página 7 de 21

ATIVIDADE SITUAÇÃO PROBLEMA 6: NÍVEL RESERVATÓRIO
TEXTO

Faça o controle de um reservatório que deverá operar em dois modos diferentes de funcionamento:

RESERVATORIO NIVEL:

DESCRITIVO DE FUNCIONAMENTO:

Modo 1 (Seletora desligada):

- 1-) Com o reservatório vazio, deve-se desligar o funcionamento dos dois motores, ligar alarme, e desligar as válvulas;
 - 2-) No nível E deve-se ligar o Motor 1, mantendo as válvulas e o alarme ligados;
 - 3-) No nível D deve-se manter o Motor1 e as válvulas ligadas, desligando o alarme;
 - 4-) No nível C deve-se ligar os dois Motores, mantendo as válvulas ligadas;
 - 5-) No nível B deve-se desligar a válvula Y2, mantendo os motores ligados;
 - 6-) No nível A deve-se desligar as válvulas, mantendo os dois motores ligados;

Página 8 de 21

Modo 2 (Seletora ligada):

- 1-) Com o reservatório vazio, deve-se desligar o funcionamento dos dois motores, ligar alarme, e desligar as válvulas;
 - 2-) No nível E deve-se ligar o Motor 1, mantendo as válvulas e o alarme ligados;
- 3-) No nível D deve-se manter o Motor1 e apenas a válvula Y1 ligada, desligando o alarme;
 - 4-) No nível C deve-se ligar os dois Motores, mantendo a válvula Y1 ligada;
 - 5-) No nível B deve-se desligar as válvulas, mantendo os motores ligados;
- 6-) No modo de funcionamento 2, o nível A nunca deverá ser alcançado, e, caso ocorra, deve-se considerar situação de alarme, desligando-se todos as saídas menos o alarme;

MAPA DE ENTRADAS / SAÍDAS:

A1 = botão liga A2 = Botão Emergência A3 = Seletora modo de funcionamento A4 = Sensor A

A5 = Sensor B 0 = Sensor C 1= Sensor D 2 = Sensor E 3 = Motor1 4 = Motor2

5 = Y1 6 = Y2 7 = LCD 8 = LCD 9 = LCD 10 = LCD 11 = LCD 12 = LCD

Dicas:

*Crie uma *borda*, pois o botão é PULSANTE, sendo necessário criar uma variável auxiliar para a borda (*buffer*).

*Não se esqueça que o mesmo botão que Liga, também desliga, portanto, utilize uma porta lógica NOT (!) para inverter o estado de uma variável de Sistema Ligado.

*Faça as comparações das combinações dos sensores para orientação do que deve ou não ser ligado;

Página 9 de 21

ATIVIDADE SITUAÇÃO PROBLEMA 7: INJETORA

TEXTO

Uma injetora é uma máquina que realiza inúmeros tipos de peças à partir do processo de aquecimento e transformação do plástico.

Projete parte do software desta máquina, onde é necessário o controle da velocidade de uma extrusora e do aquecimento de resistências.

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O botão de habilitação da injetora é PULSANTE, ou seja, quando for pressionado e solto será habilitado o funcionamento
- 2-) O botão de habilitação também funcionará como botão desliga, caso seja pressionado com o sistema ligado
- 3-) O botão de emergência dever permitir o desligamento das resistências e motor (botão de emergência é NF, ou seja, Sinal 1 = OK, Sinal 0 = Emergência);
- 4-) O potenciômetro irá realizar a regulagem da velocidade da extrusora, de modo que ela possa ser ajustada de 0 à 100% da velocidade.

Página 10 de 21

5-) O aquecimento da resistência deve ser realizado em 5 níveis diferentes 0%, 25%, 50%, 75% e 100%, selecionado pelo teclado matricial nos números correspondentes 0,1,2,3 e 4.

MAPA DE ENTRADAS / SAÍDAS:

A0 = Potenciômetro 2= Botão Liga/Desliga 3 = Emergência 4 à 11 = Teclado

12 = Motor 13 = Resistências

Dicas:

*Crie uma borda, pois o botão é PULSANTE, sendo necessário criar uma variável auxiliar para a borda (buffer).

*Não se esqueça que o mesmo botão que Liga, também desliga, portanto, utilize uma porta lógica NOT (!) para inverter o estado de uma variável de Sistema Ligado.

*Use o PWM para controlar as resistências e velocidade do motor;

Página 11 de 21

ATIVIDADE SITUAÇÃO PROBLEMA 8: DOSADORA

TEXTO

No campo da indústria, existem tantas substâncias e materiais que devem ser dosados para a garantia de uma produção de qualidade.

Realize o software de controle da dosadora abaixo:

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O botão de habilitação da injetora é PULSANTE, ou seja, quando for pressionado e solto será habilitado o funcionamento
- 2-) O botão de habilitação também funcionará como botão desliga, caso seja pressionado com o sistema ligado
- 3-) O potenciômetro irá realizar a regulagem do ângulo do servo da dosadora, de modo que ela possa ser ajustado de 0 à 180°.
- 4-) O ângulo do dosador deve ser mostrado no lcd, assim como a porcentagem de dosagem de 0 à 100%.

MAPA DE ENTRADAS / SAÍDAS:

A1 = Potenciômetro 0 à 4= LCD 5 = Botão Liga/Desliga

6 = Servo

Página 12 de 21

Dicas:

*Crie uma borda, pois o botão é PULSANTE, sendo necessário criar uma variável auxiliar para a borda (buffer).

*Não se esqueça que o mesmo botão que Liga, também desliga, portanto, utilize uma porta lógica NOT (!) para inverter o estado de uma variável de Sistema Ligado.

*Use uma biblioteca para controlar o servo

ATIMDADE SITUAÇÃO PROBLEMA 9: CONTROLE DE ACESSO

TEXTO

Dentro de empresas e indústrias existem diversos locais cujo controle de acesso deve ser restrito, seja devido à potenciais riscos (áreas controladas) ou segurança patrimonial.

Projete o software para acesso em uma sala através de uma senha específica.

DESCRITIVO DE FUNCIONAMENTO:

- 1-) A senha correta é 501, que fará a liberação do acesso por meio da rotação do motor de passo no sentido ANTI-HORÁRIO em 4 voltas.
- 2-) De modo oposto, para fechar a porta deve-se acionar o motor de passo no sentido HORÁRIO em 4 voltas.
- 3-) Toda vez que a porta estiver aberta deve estar aceso o indicador verde, e, quando fechada, o indicador vermelho.
 - 4-) Toda vez que ocorrer a liberação do acesso de alguém e, após isso, ocorrer o

Página 13 de 21

fechamento da porta, o motor de passo deve realizar o procedimento de trancamento da porta.

5) Após a digitação incorreta da senha 3 vezes, deve-se aguardar 1 minuto para a liberar novas tentativas.

MAPA DE ENTRADAS / SAÍDAS:

A0 = Sensor da Porta 0= Indicador Verde 1 = Indicador Vermelho 2 à 9 = Teclado

10 à 13 = Motor de passo

ATIVIDADE SITUAÇÃO PROBLEMA 10: COMUNICAÇÃO ENTRE DISPOSITIVOS

TEXTO

A comunicação entre máquinas diferentes, cada um com seu controle próprio, apenas com o objetivo de realizar a troca de informações, é tão comum quanto se parece.

Realize a comunicação entre os equipamentos abaixo.

Página 14 de 21

DESCRITIVO DE FUNCIONAMENTO:

- 1-) O botão de habilitação da máquina1 é PULSANTE, ou seja, quando for pressionado e solto será habilitado o funcionamento;
- 2-) O botão de habilitação também funcionará como botão desliga, caso seja pressionado com o sistema ligado;
 - 3-) Na máquina1, se o nível for abaixo de 20%, o motor da bomba não deve funcionar;
 - 4-) Se o nível for acima de 90%, a válvula não deve funcionar;
- 5-) Se o nível for entre os especificados, o motor da bomba e a válvula devem funcionar juntamente;
- 6-) Caso a temperatura enviada pela máquina 2 esteja acima de 35°C, suspender o funcionamento da bomba da máquina 1;
- 7-) Toda vez que o nível da máquina 1 estiver abaixo de 10% OU a máquina 1 estiver desligada, deve-se acender o Indicador Vermelho da máquina 2.

MAPA DE ENTRADAS / SAÍDAS:

*Máquina1:

0 e 1= Comunicação Serial 2 e 3 = Sensor Ultrassônico 4= Botão Liga/Desliga 5 = Bomba

6 = Válvula

*Máquina2:

0 e 1= Comunicação Serial A4 e A5 = Sensor de Pressão e Temperatura

Página 15 de 21

ATIVIDADE SITUAÇÃO DE APRENDIZAGEM - Formativa
TEXTO

O mercado profissional na área de Manutenção Elétrica torna-se cada vez mais exigente, necessitando de pessoal qualificado e com conhecimento nas mais diversas tecnologias.

Portanto, este profissional deve estar constantemente capacitado para poder implementar soluções tecnológicas que integrem sistemas automatizados para a resolução de processos de produção/manufatura! Desse modo, chega à você a oportunidade de aplicar seus conhecimentos atendendo uma necessidade de uma indústria de processo, conforme imagem abaixo:

Nesta empresa, é necessário realizar a automação de um processo de mistura que anteriormente era realizado de forma semi-automatizada.

Página 16 de 21

DESCRITIVO DE FUNCIONAMENTO:

- 1- O tanque misturador abaixo realiza a mistura dos produtos A e B mais vapor (produto C), para a composição final do produto;
- **2-** O processo se inicia com acionamento do botão **SB1** para adição do produto **A**, através de sua bomba correspondente por 3 segundos.
- **3-** Atingido o tempo do produto A, iniciará a adição do produto **B** com acionamento de sua bomba correspondente por 4 segundos.
- 4- Desligar bomba do produto B e esperar 2 segundos
- 5- Ligar a válvula do produto C, liberando vapor ao processo durante 5 segundos.
- 6- Após o desligamento da válvula C, o motor do misturador é acionado por 10 segundos.
- 7- Desligar motor e esperar 2 segundos
- **8-** Ligar a válvula de escoamento do **produto final**, <u>até que o manômetro digital</u> <u>ligue</u> seu contato (pressão de escoamento alcançada).
- 9- Faça a lógica do botão desliga SB2, que irá desligar e parar o processo atual.
- 10- O botão de emergência desliga imediatamente todos os atuadores e liga uma LAMPADA DE EMERGÊNCIA.

Página 17 de 21

INSTRUMENTO DE REGISTRO DE AVALIAÇÃO

S.				Alunos
Natureza dos Critérios	Fundamentos Técnicos e Científicos ou Capacidades Técnicas	Critérios de avaliação Crítico Desejável 0 NÃO Atingiu 1 Atingiu F Formativa S Somativa		
		Consegue abrir um projeto no Arduino, incluir bibliotecas, declarar variáveis necessários para a correta compilação?	F S	
		Consegue realizar um algoritmo sem apresentar problemas de compilação devido erros de sintaxe e configuração?	F S	
	5. Elaborar programas em microcontroladores	Usou estruturas condicionais (IF/ELSE – SWITCH/CASE – FOR – WHILE) corretamente para resolver a situação problema;	F	
		Entregou o fluxograma operacional adequado à automação solicitada?	F	
Competências Técnicas		Declarou a quantidade suficiente de variáveis e as nomeou de acordo com sua funcionalidade?	F	
Competên		Us ou sub-rotinas para algoritmos de us o comum no circuito?	F	
			S	
	6. Simular circuitos e a programaçã o de dispositivos em softwares específicos	Elaborou esquema elétrico no Proteus, conecta ndo corretamente a pinagem dos componentes, com alimentação e suas	F	
		interfaces de potência compatíveis?	S	
		Consegue des carregar corretamente o software no microcontrolador Arduino?	F S	
		De monstrou entendimento ao simular o funcionamento conforme a proposta de automação sugerida?	F S	
	1. Demonstrar capacidade de	Identificou corretamente quais entra da s	F	

Página 18 de 21

	Tagina to ac 21								
		análise	e saídas serão necessárias ao projeto?	S					
Sociais	 Demonstrar raciocínio lógico Demonstrar visão sistêmica 	Consegue aplicar os conhecimentos obtidos em sala de aula em Situações	F						
		Problemas diversas e inusitadas?	s						
		Agrupou corretamente no código em Cas condições para apresentar exatamente a	F						
		funcionalidade exigida ao projeto?	S						
idade		Identificou combinações possíveis que poderiam resultar erro de lógica ao se	F						
Capacidades		analisar o projeto como um todo?	S						
		Consegue identificar os conteúdos que foram trabalhados nas Situações	F						
			Problema para serem aplicados na Situação de Aprendizagem?	S					
	Nível de Desempenho								
Nota									

Página 19 de 21

Página 19 de 21						
PLANO DE AULA (Estratégia de ensino e aprendizagem)						
CONHECIMENTOS	ESTRATÉGIAS	MEDIAÇÂO				
Apresentação da Unidade Curricular; Apresentação da Matéria	Exposição Dialogada, demonstração de funcionamento de microcontroladores;	- Você sabe aonde são usados os microcontroladores? - Qual a diferença entre microcontroladores e microprocessadores?				
Microcontroladores: - Definição - Arquitetura - Tipos de memória - Parâmetros - Aplicações	Exposição Dialogada, apresentação em PPT elaborada pelo professor, interpretação de datasheets;	- Quais são os principais parâmetros de um microcontrolador?				
Interfaces de entrada e saída; Circuito padrão para funcionamento do uC;	Exposição Dialogada, apresentação em PPT elaborada pelo professor;	- Quais são circuitos externos mínimos para o microcontrolador funcionar?				
Algoritmos e fluxograma: - Simbologia; - Aplicação;	Exposição Dialogada, apresentação de PPT elaborada pelo professor, resolução de exercícios;	- O que é um algoritmo? - Pra que serve um fluxograma num projeto?				
Software de edição, compilação e gravação;	Exposição Dialogada com Projetor	- O que é compilação, para que serve? - Quais os procedimentos para gravação?				
Exercícios de aprendizagem e aplicação de programação	Utilização das Situações de Aprendizagem	- Consegue associar os comandos de linguagem C com os problemas de lógica das Situações Problema?				
Elementos e comandos em linguagem C: - Ambiente de programação; - Tipos de dados; - Entradas e saídas de dados; - Variáveis e constantes;	Exposição Dialogada, apresentação em PPT elaborada pelo professor, resolução de exercícios;	Quais são os tipos de linguagem de programação que você conhece? Qual a principal vantagem e des vantagem da linguagem C em relação à outros métodos de programação que você conhece?				
Elementos e comandos em linguagem C: - Estruturas de decisão; - Estruturas de laços e repetições;	Exposição Dialogada, apresentação em PPT elaborada pelo professor, resolução de exercícios;	Para que serve uma estrutura de decisão? Para que serve uma estrutura de laço e repetição?				
Elementos e comandos em linguagem C: - Funções e sub-rotinas; - Matrizes, vetores e ponteiros;	Exposição Dialogada, apresentação em PPT elaborada pelo professor, leitura do livro base, resolução de exercícios;	Como é o funcionamento de sub- rotinas na linguagem C? Aonde eu utilizaria vetores e ponteiros no microcontrolador?				

Página 20 de 21

Tagina zo de zi				
Microcontroladores: Software de editoração, compilação, programação e simulação	Exposição Dialogada, apresentação em PPT elaborada pelo professor, demonstração de criação de projetos através do MPLABX	Qual é a função da IDE? E do compilador para o microcontrolador? O que é o bootloader?		
Periféricos internos ou externos: - Interrupções;	Exposição Dialogada, apresentação em PPT elaborada pelo professor, demonstração e simulação de funcionamento, exercícios práticos;			
Periféricos internos ou externos: Entradas e saídas digitais	Exposição Dialogada, apresentação em PPT elaborada pelo professor, demonstração e simulação de funcionamento, exercícios práticos;	· · ·		
Periféricos internos ou externos: GLCD	Exposição Dialogada, apresentação em PPT elaborada pelo professor, demonstração e simulação de funcionamento, exercícios práticos;	No seu ponto de vista qual é a importância de uma IHM num projeto de automação atual?		
Periféricos internos ou externos: Temporizadores e contadores	Exposição Dialogada, apresentação em PPT elaborada pelo professor, demonstração e simulação de funcionamento, exercícios práticos;	Até agora, qual é a maior vantagem e des vantagem que você viu nos microcontroladores?		

Página 21 de 21

NÍVEIS DE DESEMPENHO	NÍVEIS	NOTA
Atendeu todos os critérios críticos (8) e todos os desejáveis (6)	10	100
Atendeu todos os critérios críticos (8) e 4 ou 5 desejáveis	9	90
Atendeu todos os critérios críticos (8) e 3 desejáveis	8	80
Atendeu todos os critérios críticos (8) e 2 desejáveis	7	70
Atendeu todos os critérios críticos (8) e 1 desejáveis	6	60
Atendeu todos os critérios críticos (8) e nenhum desejável	5	50
Atendeu 6 critérios críticos e qualquer quantidade de desejáveis	4	40
Atendeu 4 ou 5 critérios críticos e qualquer quantidade de desejáveis	3	30
Atendeu 2 ou 3 critérios críticos e qualquer quantidade de desejáveis	2	20
Atendeu 0 ou 1 critérios críticos e qualquer quantidade de desejáveis	1	10

NÍVEL MÍNIMO DE DESEMPENHO ESPERADO	5
-------------------------------------	---

ELABORAÇÃO	DATA	APROVAÇÃO	DATA
André Felipe Savedra Cruz	22 / 07 / 2019		1 1