

Introdução à Máquina de Turing

- O modelo de formalização de algoritmo mais utilizado, proposto inicialmente em 1936 por Alan Turing;
- Formaliza a ideia de uma pessoa que realiza cálculos, usando uma fita, um instrumento de escrita e um apagador;
- Existem três maneiras de abordar o estudo de Máquinas de Turing:
 - Reconhecimento de linguagens formais;
 - Processamento de funções;
 - Solucionabilidade de problemas (computáveis, não computáveis, intratáveis).

Alan Turing (1912 - 1954)

Máquinas de Turing Modelo Padrão

- Fita composta por infinitas células;
- Leitura (R) ou Escrita (W) de símbolo contido na célula abaixo do cabeçote;
- Movimentação do cabeçote para a Esquerda (E) ou Direita (D), exatamente uma célula;
- Estados finais: (i) Parada em *Aceito*; (ii) Parada em *Rejeitado*; (iii) Sem parada (*loop*).

Máquinas de Turing Modelo Padrão - Definição Formal

- Uma Máquina de *Turing M* pode ser definida a partir da sétupla $(Q, \Sigma, \Gamma, q_0, q_a, q_r, \delta)$, onde:
 - Q: conjunto não vazio dos Estados;
 - Σ: conjunto não vazio do Alfabeto da String, tal que □ € Σ;
 - ∘ Γ : conjunto do Alfabeto da Fita, onde $\coprod \subseteq \Gamma$ e $\Sigma \subset \Gamma$;
 - \circ q_0 : estado inicial, tal que $q_0 \subseteq Q$;
 - \circ q_a : estado de *aceite*, tal que $q_a \in Q$;
 - q_r : estado de *rejeitado*, tal que $q_r \in Q$ e $q_a \neq q_r$;
 - δ : função de transição, tal que $Q * \Gamma \rightarrow Q * \Gamma * \{E, D\}$;
 - Exemplo: $\delta(q_0, a) \rightarrow (q_1, x, D)$.

Hierarquia de Chomsky

Exemplo de Aplicação - Linguagem Livre de Contexto (LLC)

• Projete uma MT que reconheça a *string 'bbaa'* a partir da linguagem $L = \{a^nb^n | n > 0\}$

$$O = \{q_0, q_1, q_2, q_3, q_3, q_r\};$$

- \circ $\Sigma = \{a, b\};$
- \circ $\Gamma = \{a, b, x, y, \sqcup\};$
- \circ δ = transições (arestas) do autômato finito determinístico.

Exemplo de Aplicação - Linguagem Livre de Contexto (LLC)

Exemplo de Aplicação - LLC (string rejeitada)

 $\overline{}$

Máquinas de *Turing*Exemplo de Aplicação - LLC (*string* aceita)

Projete uma MT que reconheça a string 'aabb' a partir da linguagem L = {aⁿbⁿ | n > 0}

$$O = \{q_0, q_1, q_2, q_3, q_4, q_r\};$$

- \circ $\Sigma = \{a, b\};$
- \circ $\Gamma = \{a, b, x, y, \sqcup\};$
- \circ δ = transições (arestas) do autômato finito determinístico.

- 1. $\delta(q_0, a) \rightarrow (q_1, x, D)$
- 2. $\delta(q_1, a) \rightarrow (q_1, a, D)$

- 1. $\delta(q_0, a) \rightarrow (q_1, x, D)$
- 2. $\delta(q_1, a) \rightarrow (q_1, a, D)$
- 3. $\delta(q_1, b) \rightarrow (q_2, y, E)$

- 1. $\delta(q_0, a) \rightarrow (q_1, x, D)$
- 2. $\delta(q_1, a) \rightarrow (q_1, a, D)$
- 3. $\delta(q_1, b) \rightarrow (q_2, y, E)$
- 4. $\delta(q_2, a) \rightarrow (q_2, a, E)$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$

2.
$$\delta(q_1, a) \rightarrow (q_1, a, D)$$

3.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

4.
$$\delta(q_2, a) \rightarrow (q_2, a, E)$$

5.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

- 1. $\delta(q_0, a) \rightarrow (q_1, x, D)$ 6. $\delta(q_0, a) \rightarrow (q_1, x, D)$
- 2. $\delta(q_1, a) \rightarrow (q_1, a, D)$
- 3. $\delta(q_1, b) \rightarrow (q_2, y, E)$
- 4. $\delta(q_2, a) \rightarrow (q_2, a, E)$
- 5. $\delta(q_2, x) \rightarrow (q_0, x, D)$

- 1. $\delta(q_0, a) \rightarrow (q_1, x, D)$ 6. $\delta(q_0, a) \rightarrow (q_1, x, D)$
- 2. $\delta(q_1, a) \rightarrow (q_1, a, D)$ 7. $\delta(q_1, y) \rightarrow (q_1, y, D)$
- 3. $\delta(q_1, b) \rightarrow (q_2, y, E)$
- 4. $\delta(q_2, a) \rightarrow (q_2, a, E)$
- 5. $\delta(q_2, x) \rightarrow (q_0, x, D)$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$
 6. $\delta(q_0, a) \rightarrow (q_1, x, D)$

2.
$$\delta(q_1, a) \rightarrow (q_1, a, D)$$
 7. $\delta(q_1, y) \rightarrow (q_1, y, D)$

3.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

4.
$$\delta(q_2, a) \rightarrow (q_2, a, E)$$

5.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

6.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$

7.
$$\delta(q_1, y) \rightarrow (q_1, y, D)$$

$$\delta(q_1, b) \rightarrow (q_2, y, E)$$
 8. $\delta(q_1, b) \rightarrow (q_2, y, E)$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$

2.
$$\delta(q_1, a) \rightarrow (q_1, a, D)$$
 7. $\delta(q_1, y) \rightarrow (q_1, y, D)$

3.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

4.
$$\delta(q_2, a) \rightarrow (q_2, a, E)$$

5.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

- 6. $\delta(q_0, a) \rightarrow (q_1, x, D)$
- 8. $\delta(q_1, b) \rightarrow (q_2, y, E)$
- 9. $\delta(q_2, x) \rightarrow (q_0, x, D)$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$

2.
$$\delta(q_1, a) \rightarrow (q_1, a, D)$$
 7. $\delta(q_1, y) \rightarrow (q_1, y, D)$

3.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

4.
$$\delta(q_2, a) \rightarrow (q_2, a, E)$$

5.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$
 6. $\delta(q_0, a) \rightarrow (q_1, x, D)$

7.
$$\delta(q_1, y) \rightarrow (q_1, y, D)$$

8.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

9.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

10.
$$\delta(q_0, y) \rightarrow (q_3, y, D)$$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$
 7. $\delta(q_1, y) \rightarrow (q_1, y, D)$

2.
$$\delta(q_1, a) \rightarrow (q_1, a, D)$$
 8. $\delta(q_1, b) \rightarrow (q_2, y, E)$

3.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$
 9. $\delta(q_2, x) \rightarrow (q_0, x, D)$

4.
$$\delta(q_2, a) \rightarrow (q_2, a, E)$$

5.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

6.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$

7.
$$\delta(q_1, y) \rightarrow (q_1, y, D)$$

8.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

9.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

10.
$$\delta(q_0, y) \rightarrow (q_3, y, D)$$

11.
$$\delta(q_3, y) \rightarrow (q_3, y, D)$$

1.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$
 7. $\delta(q_1, y) \rightarrow (q_1, y, D)$

2.
$$\delta(q_1, a) \rightarrow (q_1, a, D)$$
 8. $\delta(q_1, b) \rightarrow (q_2, y, E)$

3.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

4.
$$\delta(q_2, a) \rightarrow (q_2, a, E)$$

5.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

6.
$$\delta(q_0, a) \rightarrow (q_1, x, D)$$

7.
$$\delta(q_1, y) \rightarrow (q_1, y, D)$$

8.
$$\delta(q_1, b) \rightarrow (q_2, y, E)$$

9.
$$\delta(q_2, x) \rightarrow (q_0, x, D)$$

10.
$$\delta(q_0, y) \rightarrow (q_3, y, D)$$

11.
$$\delta(q_3, y) \rightarrow (q_3, y, D)$$

12.
$$\delta(q_3, \sqcup) \rightarrow (q_a, \sqcup, E)$$

Hierarquia de Chomsky

Autômato de Pilhas - Exemplo de Aplicação: $L = \{a^nb^n|n > 0\}$

Hierarquia de Chomsky Linguagens Regulares - solução via AFD

• Construa um Autômata Finito Determinístico (AFD) que reconheça a seguinte linguagem $L = \{todas as strings que contêm 'aabb'\}$. Utilize o alfabeto $\Sigma = \{a, b\}$.

Hierarquia de Chomsky Linguagens Regulares - solução via Máquina de Turing

Construa uma Máquina de Turing (MT) que reconheça a seguinte linguagem $L = \{todas as strings que contêm 'aabb'\}$. Utilize o alfabeto $\Sigma = \{a, b\}$.

Hierarquia de Chomsky

Linguagens Regulares - solução via Máquina de Turing

• Construa uma Máquina de Turing (MT) que reconheça a seguinte linguagem $L = \{todas as strings que contêm 'aabb'\}$. Utilize o alfabeto $\Sigma = \{a, b\}$.

Exercícios (entrega para o dia 06/09)

- 1. Construa uma Máquina de Turing que reconheça a linguagem $L = \{w \mid w \text{ possui o mesmo número de símbolos 'a' e 'b'\};}$
 - E.g.: string aceita: "ababab", string recusada: "abaa".
- 2. Construa uma Máquina de Turing que reconheça a linguagem palíndromos de comprimento par $L = \{ww^r t.q. w \in \{a,b\} e \mid ww^r \mid mod \ 2 = 0\}$.
 - E.g.: string aceita: "abba", string recusada: "aabb".
- 3. Construa uma Máquina de Turing que realize a soma de dois números inteiros. Considere $\Sigma = \{1, \#\}$, onde '#' fará a separação entre os números a serem somados.
 - E.g.: string de entrada: "1111#11111" -> saída: "111111111".

