Introduction to Operator Algebras

Alcides Buss Notes by: Linus Mußmächer 2336440

Summer 2023

Contents

1	Algebras	4
2	Normed algebras	5
3	Algebras	6
4	Homomorphisms of algebras	8
5	Spectral theory	9
6	Spectral Radius	13
7		15 18 29 32
8	Ideals in C^* -algebras	34
9	Gelfand-Neymark representation	36
10	10 Positive linear maps and functionals	
11	The Gelfand-Naimark-Theorem	39
12	Inverse Semigroups	43

The set of all linear bounded operators $\mathcal{L}(H) = \mathcal{B}(H)$ on a given Banach space H is a (Banach) algebra with $S \cdot T = S \circ T$. $M \subseteq \mathcal{L}$ is a Subalgebra such that $M^* \subseteq M$ where T^* is the adjoint of T. This is also a closed subspace with respect to the strong topology. This is equivalent to M = M'' (when $X \subseteq \mathcal{B}(H), X' = \{T \in \mathcal{B}(H) \mid TS = ST \forall_{S \in X}\}$)

Some topological basics

Definition 0.1

- Topology, Open
- Hausdorff, locally Hausdorff
- compact

Definition 0.2 A topological space X is **locally Hausdorff** if every $x \in X$ admits a compact neighborhood basis, that is for every $x \in X$ and every open set $U \ni x$ there exists an open set $V \ni x$ with \overline{V} is compact.

Corollary 0.3 If a set V is compact in any subset $U \subseteq X$, it is also compact in X.

Example 0.4 (Snake with two heads) Consider I = [0,1] with the standard topology and extend the set with an element 1^+ such that $I \cup 1^+ \setminus 1$ is isomorphic to I. Then $I \cup 1^+$ is locally Hausdorff and compact, but not Hausdorff.

Some results about locally compact Hausdorff spaces

Lemma 0.5 (Uryson's Lemma) Let X be locally compact and Hausdorff. For all $F \subseteq X$ closed and $K \subseteq X$ compact with $F \cap K = \emptyset$, there exists an $f : X \to [0,1]$ continuous such that $f|_K \equiv 1$ and $f|_F \equiv 0$.

Theorem 0.6 (Tietze's extension theorem) Let X be locally compact, $K \subseteq X$ compact and $f: K \to \mathbb{C}$ continuous. Then there exists a continuous $\tilde{f}: X \to \mathbb{C}$ such that $\tilde{f}|_K = f$.

Theorem 0.7 (Alexandroff's conpactification) If X is locally compact and Hausdorff, then $\tilde{X} \sqcup \{\infty\}$ is a compact Hausdorff space $\mathcal{O}(\tilde{X}) = \mathcal{O}(X) \cup \{K^{\complement} \cup \{\infty\} \mid K \text{ compact}\}.$

Example 0.8 Compacting the real line \mathbb{R} yields the space $\tilde{\mathbb{R}}$, which is isomorphic to the unit circle $\Pi = \mathbb{S}^1$.

Theorem 0.9 Conversely, if Y is a compact Hausdorff space, then for all $y_0 \in Y$, $X := Y \setminus \{y_0\}$ is locally compact (in respect to the subspace topology).

More generally, if Y is locally compact and Hausdorff, and $Z \subseteq Y$ is a difference of open and closed subsets, of Y (i.e. $Z = U \setminus F$, where U is open in Y and F is closed in Y), then Z is locally compact.

1 Algebras

Definition 1.1 An algebra is a (complex) vector space \mathcal{A} endowed with a bilinear and associative multiplication: $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, $(a,b) \mapsto a \cdot b$. So

- (i) $(a + \alpha b) \cdot (c + \beta d) = ac + \alpha bc + \beta ad + \alpha \beta bd$
- (ii) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

for all $a, b, c \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$. We say that \mathcal{A} is

- (i) **commutative**, if ab = ba for all $a, b \in \mathcal{A}$ and
- (ii) unital, if there exists $1 = 1_{\mathscr{A}} \in \mathscr{A}$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathscr{A}$.

Example 1.2

- (i) \mathbb{C} , or more generally $\mathbb{C}^n = \mathbb{C} \oplus \cdots \oplus \mathbb{C}$, is an algebra.
- (ii) Say X is any set; let $\mathbb{C}^X = \{f : X \to \mathbb{C}\}$ with point wise multiplication $(f \cdot g)(x) = f(x) \cdot g(x)$. These are commutative unital algebras (with $1(x) = 1 \in \mathbb{C}$).
- (iii) Consider the polynomials $\mathbb{C}[X] = \{\sum_{i=0}^n \lambda_i x^i \mid \lambda_i \in \mathbb{C}, n \in \mathbb{N}\}$ with the usual operations. This is a commutative unital algebra.
- (iv) Let X be a topological space and $C(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous}\} \subseteq \mathbb{C}^X$ the set of continuous functions on X. This is a commutative unital (sub)algebra (of \mathbb{C}^X).
- (v) Take any vector space A define a (trivial) multiplication $a \cdot b := 0$. This is a commutative Algebra (that is not unital unless A = 0).
- (vi) $M_n(\mathbb{C})$ (the complex $n \times n$ matrices) with the usual multiplication are a non-commutative (unless n = 1) unital algebra.
- (vii) Let V be any (complex) vector space. The set of all linear operators $L(V) := \{T : V \to VT \text{ linear operator}\}$ is a unital (non-commutative for dim V > 1). We observe $\mathcal{L}(\mathbb{C}^n) \simeq M_n(\mathbb{C})$.
- (viii) Let S be a semigroup (i.e. a set with an associative operation $S \times S \to S$, e.g. $(\mathbb{N}, +)$). Then $\mathbb{C}[S] = \{ \sum_{s \in S} \lambda_s s \mid \lambda_s \in \mathbb{C}, |\{s : \lambda_s \neq 0\}| < \infty \}$ (the finite formal sums of elements of S) with the following product

$$\left(\sum_{s \in S'} \lambda_s s\right) \cdot \left(\sum_{t \in S} \lambda_t' t\right) := \sum_{s, t \in S} (\lambda_s \cdot \lambda_t')(s \cdot t) \in S$$

Observe: As a vector space: $\mathbb{C}[S] \subseteq \mathbb{C}^S$. In general, this is neither commutative nor unital.

2 Normed algebras

Definition 2.1 An algebra \mathcal{A} is **normed**, if it is endowed with a (vector space) norm $\|\cdot\|$: $\mathcal{A} \to [0,\infty)$ satisfying $\|a \cdot b\| \le \|a\| \cdot \|b\|$. If \mathcal{A} is unital with unit $1_{\mathcal{A}}$, we usually assume $\|1_{\mathcal{A}}\| = 1$ except for $\mathcal{A} = 0$.

Definition 2.2 A Banach algebra is a normed algebra that is also complete (as a metric space with respect to the distance d(a,b) := ||a-b||), i.e. every Cauchy sequence converges.

Example 2.3 (i) If X is a compact space then C(X) is a commutative unital Banach algebra with respect to the norm $||f||_{\infty} := \sup_{x \in X} |f(x)| < \infty$ (since X is compact).

- (ii) If V is a normed (respectively Banach) vector space, e.g. \mathbb{C}^n or $\ell^p(\mathbb{N})$, then $\mathcal{L}(V) = \{T \in L(V) \mid T \text{ is bounded/continouus}\}$ with $\|T\| := \sup_{\|v\| \le 1} \|T(v)\| < \infty$ is a normed Banach algebra.
- (iii) If X is a topological space, then $C_b(X) = \{ f \in C(X) \mid ||f||_{\infty} < \infty \}$ (bounded continuous functions) is a Banach space.
- (iv) Let X again be a topological space. Then the set of all functions vanishing at ∞ ,

$$\begin{split} C_0(X) &= \{ f \in C(X) \mid \forall_{\varepsilon > 0} \exists_{K \subseteq X, K \text{ compact}} \forall_{x \notin K} |f(x)| < \varepsilon \} \\ &= \{ f \in C(X) \mid \forall_{\varepsilon > 0} \{ x \in X \mid |f(x)| \ge \varepsilon \} \text{ is compact} \} \subseteq C_b(X), \end{split}$$

is also a Banach algebra.

Exercise 2.1 Assume X is locally compact and Hausdorff. Prove the following are equivalent:

- (1) X is compact.
- (2) $C(X) = C_0(X)$
- (3) $C_0(X)$ is unital.
- (4) The unit function $1 \in C_b(X)$ belongs to $C_0(X)$.

PROOF: • (1) \Rightarrow (2): Recall the definition of $C_0(X)$. If X is compact, every closed subset (especially every $\{x : |f(x)| \geq \varepsilon\}$) is compact, so the condition of $C_0(X)$ is trivial.

- (2) \Rightarrow (3): Since C(X) is unital, $C_0(X)$ is as well.
- (3) \Rightarrow (4): Suppose C_0 is unital, and let $f \in C_0(X)$ be the unit. Then $f \cdot g = g$ for all $g \in C_0(X)$, i.e. $f(x)g(x) = g(x) \forall_{x \in X} \forall_{g \in C_0(X)}$. By Uryson's lemma, given any $x_0 \in X$, there exists $g \in C_0(X)$ with $g(x_0) = 1$ (by looking at $K = \{x_0\}$ and taking F as the complement of any relatively compact environment of x_0 .). Then $f(x_0) = f(x_0)g(x_0) = g(x_0) = 1$. Doing this for every $x_0 \in X$ yields $f \equiv 1$.
- (4) \Rightarrow (1): Since $1 \in C_0(X)$, for every $\varepsilon > 0$ the set $\{x \mid |f(x)| \ge \varepsilon\}$ is compact. Choose $\varepsilon = \frac{1}{2}$. Then, $\{x \mid |f(x)| = |1| \ge \frac{1}{2}\} = X$ is compact.

Exercise 2.2 Let X be a locally compact Hausdorff space. Prove that $C_0(X) \cong \{f \in C(X) \mid f(\infty) = 0\}$

3 Algebras

Definition 3.1 A *-algebra is a complex algebra $\mathscr A$ with an involution * : $\mathscr A \to \mathscr A$ satisfying

- $(i) (a + \lambda b)^* = a^* + \overline{\lambda}b^*$
- (ii) $(a^*)^* = a$
- (iii) $(ab)^* = b^*a^*$

for all $a, b \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$.

Definition 3.2 A normed *-algebra is a normed algebra \mathcal{A} with an involution (such that \mathcal{A} is a *-algebra) also satisfying $||a^*|| = ||a||$ for all $a \in \mathcal{A}$.

A Banach-*-algebra is a complete normed *-algebra.

Definition 3.3 A C^* -algebra is a Banach-*-algebra satisfying $||a^* \cdot a|| = ||a||^2$.

Observation: Recall that $\|a \cdot b\| \le \|a\| \cdot \|b\|$ in all normed algebras. Applying this to a C^* -algebra we get $\|a \cdot a^*\| \le \|a^*\| \cdot \|a\|$. If $\mathscr A$ is a C^* -algebra, then $\|a\|^2 = \|a \cdot a^*\| \le \|a^*\| \cdot \|a\|$, so $\|a\| = \|a^*\|$.

Example 3.4

- (i) If X is a set, then \mathbb{C}^X is a *-algebra with $f^* = \overline{f}$ and $\mathscr{C}^{\infty}(X)$ is a C^* -algebra.
- (ii) If X is a topological space, then $C(X) \subseteq \mathbb{C}^X$ is also a *-subalgebra and for $\{f \in C(X) \mid \sup_{x \in X} | |f(x)| \neq 0\}$ compact} we have

$$C_c(X) = \subseteq C_0(X) \subseteq C_b(X) \subseteq C(X) \subseteq C^{\infty}(X)$$

and C^{∞} is a C^* -algebra. C_c is a *-algebra, but not Banach in general.

If X is compact, it follows $C_c(X) = C_0(X) = C_b(X)$.

Observation: If X is locally compact and Hausdorff, then $\overline{C_c(X)} = C_0(X)$.

(iii) Let X be a measured space (X is endowed with a σ -algebra). Then $B_{\infty}(X) = \{f \in C^{\infty} \mid f \text{ is measurable}\}\$ is a C^* -algebra. If μ is a measure on X (e.g. $X = \mathbb{R}^n$ and μ the Lebesgue measure) then $L^{\infty}(X,\mu)$ are the essentially bounded functions and

$$L^{\infty}(X) = \{ f : X \to \mathbb{C} \mid ||f|| := \inf\{c \ge 0 \mid \mu(\{x \mid |f(x)| > c\}) = 0 \} \}$$

is also a C^* -algebra.

Observation: $L^2(X,\mu) = \mu$ -separable function, $L^{\infty}(X,\mu) \xrightarrow{\mu} B(L^2(X,\mu)), f \mapsto \mu_f = \{g \mapsto f \cdot g\}$

(iv) A non-example: Let \mathbb{D} be the unit disk and $\mathcal{A}(d) = \{ f \in \mathbb{C}(\mathbb{D}) \mid \text{ analytic in } \mathbb{D}^{\circ} \}$

Morera's Theorem from complex analysis states that $f \in C(\mathbb{D})$ is analytic if and only if $\int_{\gamma} f(z)dz = 0$ for all closed and piece wise smooth paths in \mathbb{D}° . From this, it follows that $\mathscr{A}(\mathbb{D})$ is closed in $C(\mathbb{D})$, therefore a Banach algebra. It is also a Banach-*-algebra with, but $f^* = \overline{f}$ (point wise) is not possible, as $z \mapsto \overline{z}$ is not analytic. Thus, we have to choose $f^*(z) = f(\overline{z})$. But $\mathscr{A}(\mathbb{D})$ is not a C^* -algebra, as $\|f^*f\|_{\infty} \neq \|f\|_{\infty}^2$ for some $f \in \mathscr{A}(\mathbb{D})$.

(v) A non-commutative example: Let H be a Hilbert space and $B(H) = \mathcal{L}(H) = \{T : H \to H \mid T \text{bounded, continuous, linear}\}$ and $\|H\| \coloneqq \sup_{\|z\| < 1} \|T(z)\| < \infty$. This is a C^* -algebra where T^* is the adjoint of T, that is $\langle T^*z, w \rangle = \langle z, Tw \rangle$ for all $z, w \in H$.

 C^* -axiom: $||T^* \cdot T|| \leq ||T||^2$ since $\mathcal{L}(H)$ is a Banach algebra, and we also have

$$\begin{split} \|T\|^2 &= \sup_{\|z\| < 1} \|T(z)\|^2 = \sup_{\|z\| < 1} \langle Tz, Tz \rangle = \sup_{\|z\| < 1} \langle z, T^*Tz \rangle \\ &\leq \sup_{\|z\| < 1} \|z\| \|T^*Tz\| \leq \sup_{\|z\| < 1} \|z\| \|T^*T\| \leq \|T^*T\| \end{split}$$

In particular, $M_n(\mathbb{C}) \simeq \mathcal{L}(\mathbb{C}^n)$ is a unital C^* -algebra.

(vi) To produce more examples, take any subset $S \subseteq \mathcal{L}(H)$ and take $C^*(S) \subseteq \mathcal{L}(H) = \operatorname{span}\{S_i \mid S_i \in S \cup S^*, i \leq n \in \mathbb{N}\}.$

Example 3.5 Let $s \in \mathcal{L}(\ell^2(\mathbb{N}))$. The shift s, defined by $s(e_i) = e_{i+1}$ for all $i \in \mathbb{N}$ (where $\{e_i\}$ is the canonical basis of the sequence space), is an isometry, that is $s^* \cdot s = \text{id}$. Since $s \cdot s^* \neq \text{id}$, it is not surjective and not a proper isometry. We define

$$T = C^*(s) = \overline{\operatorname{span}\{s^n(s^*)^m \mid m, n \in \mathbb{N}_0\}} \subseteq \mathcal{L}(\ell^2(\mathbb{N}))$$

as the Toeplitz algebra.

Example 3.6 Let H be a Hilbert space and S the set of all finite rank operators on H.

Example 3.7

- (i) Commutative: $C_0(X)$ for a locally Hausdorff space X.
- (ii) Non-commutative: $\mathcal{L}(\mathfrak{H}) = \mathcal{B}(\mathfrak{H})$ for any Hilbert space \mathfrak{H} (with dimension greater 1).
- (iii) More generally: Take any subset $S \subseteq \mathcal{L}(\mathfrak{H})$ and construct $C^*(S) \subseteq \mathcal{L}(H)$ as

$$\overline{\operatorname{span}}\{S_1,\ldots,S_n\mid S_i\in S\cap S^*\}$$

Example 3.8 (Cuntz algebras) Take again $\mathfrak{H} = \{(\lambda_n)_{n \in \mathbb{N}_0} \mid \sum_{n=0}^{\infty} |\lambda_n|^2 < \infty\}$ where $\langle \lambda, \lambda' \rangle = \sum_{i \in \mathbb{N}_0} \overline{\lambda_i} \lambda_i'$ and which has the orthonormal base $(e_n)_{n \in \mathbb{N}}$ where $(e_n) = (\delta_{in})_{i \in \mathbb{N}_0}$. On this algebra, define

- $S_1(e_n) = e_{2n}$.
- $S_2(e_n) = e_{2n+1}$.

We have partitioned the natural numbers into evens and odds. This defines two (proper) isometries $S_1, S_2 \in \mathcal{L}(\mathfrak{H})$, that is $S_i^*S_i = \mathrm{id}_{\mathfrak{H}}$, to subspaces of \mathfrak{H} . Notice: $S_i^*S_j = 0$ for $i \neq j$ as well as $S_1S_1^* + S_2S_2^* = \mathrm{id}_{\mathfrak{H}}$. Define $\mathcal{O}_2 = C^*(S_1, S_2) = \overline{\mathrm{span}}\{S_{\alpha}S_{\beta}^* \mid \alpha, \beta \text{ finite words in } \{1, 2\}\}$. For example, for $\alpha = 121211$ we have $S_{\alpha} = S_1S_2S_1S_2S_1^2$. \mathcal{O}_2 is called the **Cuntz algebra**. More generally, one can define $\mathcal{O}_3, \mathcal{O}_4, \ldots$ Cuntz algebras. Joachim Cuntz proved that these are simple C^* -algebras with additional interesting properties we will see later.

Example 3.9 (Rotation algebras) Let $\mathfrak{H} = \ell^2(\mathbb{Z})$ (bi-infinite sequences) with basis $(e_n)_{n \in \mathbb{Z}}$ Define:

• $U(e_n) := e_{n+1}$ (bilateral shift)

• $V(e_n) := \lambda^n e_n$ where $\lambda \in \mathbb{C}$ is some fixed number $|\lambda| = 1$.

This defines two unitary operators: $UU^* = 1 = U^*U$ and $V^*V = 1 = V^*V$. If $\exp(2\pi i\theta), \theta \in \mathbb{R}$ define $A_{\theta} := C^*(U, V) \subseteq \mathcal{L}(\ell^2 \mathbb{N}).$

There is a special relation between U and V where $UV = \lambda VU = \exp(2\pi i\theta)VU$. From this relation, we can describe $A_{\theta} = \overline{\operatorname{span}} \{ \sum_{n,m \in \mathbb{Z}}^{\text{finite}} a_{n,m} U^n V^m \mid a_{n,m} \in \mathbb{C} \}.$

Furthermore, if $\theta \in \mathbb{R} \setminus \mathbb{Q}$, A_{θ} is simple.

Example 3.10 (C^* -algebras of groups) Let G be a (discrete) group. Look at $\mathfrak{H} = \ell^2(G) = \ell^2(G)$ $\{(a_g)_{g\in G}\mid \sum_{g\in G}|a_g|^2<\infty\}$ (Note: This limit will only converge if there are countably (or finitely) many non-zero parts) with ONB $(\delta_g)_{g\in G}$ where $\delta_g(h)=\delta_{gh}$. Define for each $g\in G$ an operator $\lambda_g \in \mathcal{L}(\ell^2 G)$ by $\lambda_g(\delta_h) = \delta_{gh}$. Notice that $h \mapsto gh$ is a bijection, and thus λ_g is a unitary operator with $\lambda_g^* = \lambda_{g^{-1}}$. We can now define the **reduced** C^* -algebra of the group:

$$C_R^*(G) := C_\lambda^*(G) \subseteq \mathcal{L}(\ell^2 G) = C^*(\lambda_g \mid g \in G)$$

Here, we have the relation $\lambda_g \cdot \lambda_h = \lambda_{gh}$ and thus $C_R^*(G) = \{ \sum a_g \lambda_g \mid a_g \in \mathbb{C} \}$. In general, take $U: G \to \mathcal{L}(H), g \mapsto U_g$ a **unitary representation of** G with $U_g U_h = U_{gh}$ and $U_1 = \text{id}$ as well as $U_g^{-1} = U_{g^{-1}}$. Then $C_U^*(G) := \{\sum_{g \in G} a_g U_g \mid a_g \in \mathbb{C}\} \subseteq \mathcal{L}(H)$. There exists a **universal unitary representation** $C_{\text{max}}^*(G)$, a full C^* -algebra of G.

Remark 3.11

- (i) If G is Abelian, then $C_U^*(G)$ is also abelian (commutative). In particular, C_λ^* is abelian. Later, we will prove $C^*_{\lambda}(G) \simeq C(\hat{G})$ where \hat{G} is the dual of G, i.e. $\{X : G \to \mathbb{C} \text{ characters}\}$.
- (ii) For many groups, like $G = \mathbb{F}_n$ (the free groups) the reduced C^* -algebra $C_{\lambda}(G)$ is simple.

Homomorphisms of algebras

Definition 4.1 If \mathcal{A}, \mathcal{B} are algebras, a **homomorphism** from \mathcal{A} to \mathcal{B} is a linear map $\varphi : \mathcal{A} \to \mathcal{B}$ such that $\varphi(ab) = \varphi(a)\varphi(b)$ for any $a, b \in \mathcal{A}$.

If \mathscr{A} and \mathscr{B} are *-algebras, a *-homomorphism is a homomorphism $\varphi: \mathscr{A} \to \mathscr{B}$ such that $\varphi(a^*) = \varphi(a)^* \text{ for all } a \in \mathcal{A}.$

If A, \mathcal{B} are Banach algebras, then usually we want to have **continuous** homomorphisms. Even more, we usually ask for **contractive** homomorphisms $\varphi: \mathcal{A} \to \mathcal{B}$, (that is $\|\varphi\| \leq 1$).

We will be especially interested in **characters**:

Definition 4.2 A character of an algebra \mathcal{A} is a non-zero homomorphism $\chi:\mathcal{A}\to\mathbb{C}$.

Example 4.3 Take any subalgebra $\mathscr{A} \subseteq \mathbb{C}^X$. Take $x_0 \in X$ and set $\chi_{x_0} := \operatorname{ev}_{x_0} : \mathscr{A} \to \mathbb{C}, f \mapsto$ $f(x_0)$. This is not necessarily a character, but it is for example, if $\mathcal{A} = C(X)$ or $C_b(X)$ or $C_0(X)$ (if X is "nice", like Hausdorff).

Definition 4.4 A (*)-isomorphism between two (*)-algebras A and B is a bijective (*)-homomorphism $\varphi: \mathcal{A} \xrightarrow{\sim} \mathcal{B}$.

Definition 4.5 A (*)-ideal of a *-algebra \mathcal{A} is a subspace $I \subset A$ such that $I \cdot A \subseteq I$, $A \cdot I \subseteq I$ (if only one condition applies, we call this a left ideal or right ideal). For *-ideals, we also want $I^* = I$. We notate this as $I \leq A$.

Example 4.6 If $\varphi : \mathcal{A} \to \mathcal{B}$ is a (*)-homomorphism, then $\ker \varphi \subseteq \mathcal{A}$.

Example 4.7 If $I \subseteq \mathcal{A}$ for \mathcal{A} a (*)-algebra

$$\mathcal{A}/I = \{a + I \mid a \in \mathcal{A}\}\$$

with $(a+I)\cdot(b+I):=ab+I$ and $(a+I)^*=a^*+I$ is a (*)-algebra.

Theorem 4.8 If \mathcal{A} is a Banach-*-algebra, then $I \subseteq \mathcal{A}$ is a closed ideal, then the quotient I/\mathcal{A} is also a Banach-*-algebra.

Proof: Later.

5 Spectral theory

Notation 5.1 If \mathcal{A} is a unital algebra, we write

$$\operatorname{inv}(\mathcal{A}) = \{ a \in \mathcal{A} \mid a \text{ is invertible in } \mathcal{A} \} = \{ a \in \mathcal{A} \mid \exists_{a^{-1} \in \mathcal{A}} aa^{-1} = 1 = a^{-1}a \}$$

This is a group. Sometimes we also write $GL(\mathcal{A})$.

Definition 5.2 Given a unital algebra \mathcal{A} and $a \in \mathcal{A}$, we define its **spectrum** (in \mathcal{A}) as

$$\sigma_{\mathcal{A}}(a) = \sigma(a) = \{ \lambda \in \mathbb{C} \mid \lambda \cdot 1 - a \notin \text{inv}(\mathcal{A}) \}$$

and the resolvent of a (in \mathcal{A}) as

$$\rho_{\mathcal{A}}(a) = \rho(a) = \mathcal{A} \setminus \sigma_{\mathcal{A}}(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \in \text{inv}(\mathcal{A}) \}$$

Example 5.3 (Linear Algebra) Let $\mathcal{A} = M_m(\mathbb{C})$ and $a \in \mathcal{A}$. Then we have

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \notin \operatorname{inv}(\mathcal{A}) \} = \{ \lambda \in \mathbb{C} \mid \det(\lambda - a) = 0 \}$$

and these are the roots of the characteristic polynomial $\det(\lambda - a)$. This is exactly the usual spectrum from linear algebra.

Example 5.4 (Functional Analysis) Let $\mathcal{A} = \mathcal{L}(\mathfrak{H})$ – where \mathfrak{H} is any Hilbert- or Banach space – and $T \in \mathcal{A}$. Then $\sigma_{\mathcal{A}}(T)$ is exactly the spectrum as defined in functional analysis. If S is the shift in $\mathcal{L}(\ell^2\mathbb{N})$, then we have $\sigma(S) = \mathbb{D}$.

Example 5.5 Let $\mathcal{A} = \mathbb{C}[X]$. Here we have $\operatorname{inv}(\mathcal{A}) = \{a_0 X^0 \mid a_0 \in \mathbb{C} \setminus \{0\}\}$ the constant non-zero polynomials. If $a = \sum_{k=0}^{N} a_k x^k \in \mathcal{A}$, then we have two cases:

$$\sigma(a) = \begin{cases} \{a_0\} & a = a_0 \text{ (constant)} \\ \mathbb{C} & \text{otherwise} \end{cases}$$

Example 5.6 Let $\mathcal{A} = \mathbb{C}(X) = \{p, q \mid p, q \in \mathbb{C}[X], q \neq 0\}$. Now we have $\operatorname{inv}(\mathcal{A}) = \mathcal{A} \setminus \{0\}$. If $a \in \mathcal{A}$, then

$$\sigma(a) = \begin{cases} \{a_0\} & a = a_0 \text{ (constant)} \\ \emptyset & \text{otherwise} \end{cases}$$

Example 5.7 Let $\mathcal{A} = C(X)$ for any topological space X. Then

$$\operatorname{inv}(\mathcal{A}) = \{ f \in C(X) \mid \forall_{x \in X} f(x) \neq 0 \}$$

and

$$\sigma(f) = \{\lambda \in \mathbb{C} \mid \lambda - f \notin \operatorname{inv}(\mathscr{A})\} = \{\lambda \in \mathbb{C} \mid \exists_{x \in X} f(x) = \lambda\} = \operatorname{im}(f) = f(X).$$

Example 5.8 Let X be any topological space and consider $\mathcal{A} = C_b(X)$. Then

$$\operatorname{inv}(C_b(X)) = \{ f \in C_b(X) \mid \exists_{\varepsilon > 0} \forall_{x \in X} | f(x) | \ge \varepsilon \}$$

and

$$\sigma(f) = \{\lambda \in \mathbb{C} \mid \lambda - f \notin \operatorname{inv}(\mathcal{A})\} = \{\lambda \in \mathbb{C} \mid \exists_{(x_n)} f(x_n) \to \lambda\} = \overline{\operatorname{im}(f)} = \overline{f(X)}.$$

This is a compact subset of \mathbb{C} .

Theorem 5.9 (Algebraic spectral mapping theorem) Let \mathcal{A} be an algebra, $a \in \mathcal{A}$ and $p \in \mathbb{C}[X], p(X) = \sum_{k=0}^{n} \lambda_k X^k$ and define $p(a) = \sum_{k=0}^{n} \lambda_k a^k$. Recall that the mapping $\mathbb{C}[X] \to \mathcal{A}, p \mapsto p(a)$ is a unital homomorphism.

Then $\sigma(p(a)) = p(\sigma(a))$ assuming $\sigma(a) \neq \emptyset$.

PROOF: If $p(X) = \lambda_0$ constant, this is clear (the spectrum is exactly λ_0 on both sides). Assume p(x) is not constant. Fix $\mu \in \mathbb{C}$ and write

$$\mu - p(x) = \lambda_0(x - \lambda_1) \cdots (x - \lambda_n)$$

as per the fundamental theorem of algebra (note that these are not the same λ as before) with $\lambda_0 \neq 0$. Then $\mu - p(a) = \lambda_0(a - \lambda_1) \cdots (a - \lambda_n)$. Since these expressions commute, this product is invertible if and only if $(a - \lambda_i)$ is invertible for every i. So $\mu \in \sigma(p(a)) \Leftrightarrow \mu - p(a)$ is not invertible if and only if there exists an i for which $\lambda_i - a$ is not invertible, so $\lambda_i \in \sigma(a)$. But the λ_i are exactly the numbers satisfying $p(\lambda) = \mu$. Thus, μ is in $\sigma(p(a))$ if it is in the image of $\sigma(a)$ under p. Therefore, we conclude $\sigma(p(a)) = p(\sigma(a))$.

We now focus on invertible elements in Banach algebras.

Theorem 5.10 If \mathcal{A} is a unital Banach algebra and $a \in \mathcal{A}$ with ||a|| < 1 then 1 - a is invertible and $(1 - a)^{-1} = \sum_{n=0}^{\infty} a^n$.

PROOF: Observe that, since ||a|| < 1, we have $\sum_{n=0}^{\infty} ||a||^n = \frac{1}{1-||a||} < \infty$. This implies the (absolute) convergence of $\sum_{n=0}^{\infty}$ by the characteristic property of Banach spaces. Hence, $b := \lim_{N \to \infty} \sum_{n=0}^{N} a^n \in \mathcal{A}$. No, if $N \in \mathbb{N}$, then

$$(1-a)\left(\sum_{n=0}^{N} a^n\right) = \left(\sum_{n=0}^{N} a^n\right) - \left(\sum_{n=1}^{N+1} a^n\right) = 1 - a^{N+1} \to 1$$

because of ||a|| < 1. This yields (1 - a)b = 1.

Theorem 5.11 Let \mathcal{A} be a non-empty, non-zero unital Banach algebra. Then $\operatorname{inv}(\mathcal{A})$ is an open subset of \mathcal{A} and the function $f:\operatorname{inv}(\mathcal{A})\to\mathcal{A}, a\mapsto a^{-1}$ is Frechet-differentiable and in particular continuous as well as $f'(a)b=-a^{-1}ba^{-1}$.

П

Recall from calculus that $\frac{d}{dx}\frac{1}{x}=-\frac{1}{x^2}$. Also recall that $f:U\overset{\text{open}}{\subseteq}X\to Y$ with X,Y Banach spaces is **differentiable** at $x_0\in U$ there exists an operator $D_{x_0}=f'(x_0)\in\mathcal{L}(X,Y)$ such that

$$\lim_{h \to 0} \frac{f \|(x_0 + h) - f(x_0) - D_{x_0}(h)\|}{\|h\|} = 0$$

PROOF: Take $a \in \text{inv}(\mathcal{A})$. If $b \in \mathcal{A}$ such that $||a-b|| < ||a^{-1}||^{-1}$. From this, we have $||ba^{-1}-1|| = ||ba^{-1} - aa^{-1}|| = ||(b-a)a^{-1}|| \le ||b-a|| \cdot ||a^{-1}|| < 1$. Per the previous theorem, $ba^{-1} \in \text{inv}(\mathcal{A})$. This implies that b is also invertible. This shows that $\text{inv}(\mathcal{A})$ is open.

Furthermore, if ||b|| < 1, then also (||-b|| < 1). Thus, $1 + b \in \text{inv}(\mathcal{A})$ and $(1 + b)^{-1} = \sum_{n=0}^{\infty} (-1)^n b^n$. Thus,

$$\|(1+b)^{-1} - 1 + b\| = \left\| \sum_{n=0}^{\infty} (-1)^n b^n - 1 + b \right\| \le \left\| \sum_{n=2}^{\infty} (-1)^n b^n \right\| \le \sum_{n=2}^{\infty} \|b^n\| \le \sum_{n=2}^{\infty} \|b\|^n = \frac{\|b\|^2}{1 - \|b\|}$$

Now let $a \in \inf(\mathcal{A})$ and $c \in \mathcal{A}$ such that $||c|| < \frac{1}{2}||a^{-1}||^{-1}$. Then $||a^{-1}c|| \le ||a^{-1}|| ||c|| \le \frac{1}{2}$. So if $b = a^{-1}$, then

$$\|(1+a^{-1}c)^{-1}-1+a^{-1}c\| = \le \frac{\|a^{-1}c\|^2}{1=\|a^{-1}c\|} < 2\|a^{-1}c\|^2$$

Now, define $U: \mathcal{A} \to \mathcal{A}, b \mapsto -a^{-1}ba^{-1}$. Then this is a linear odd operation with $||U|| \leq ||a^{-1}||^2$, and we have

$$\begin{split} \|(a+c)^{-1} - a^{-1} - U(c)\| &= \|(a+c)^{-1} - a^{-1} + a^{-1}ca^{-1}\| \\ &= \|(1+a^{-1}c)^{-1}a^{-1} - a^{-1} + a^{-1}ca^{-1}\| \\ &\leq \|(1+a^{-1}c)^{-1} - 1 + a^{-1}c\| \cdot \|a^{-1}\| \\ &\leq 2\|a^{-1}c\|^2\|a^{-1}\| \leq 2\|a^{-1}\|^3\|c\|^2 \end{split}$$

and thus

$$\lim_{c \to 0} \frac{\|(a+c)^{-1} - a^{-1} - U(c)\|}{\|c\|} = 0$$

Example 5.12 If we choose $\mathcal{A} = \mathbb{C}[X]$ and the norm $||p|| = \sup_{\lambda \in [0,1]} |p(x)|$. Then $(\mathcal{A}, ||\cdot||)$ is a normed (but not Banach) algebra. For example, we see that $\lim_{m \to 0} 1 + X/m = 1 \in \text{inv}(\mathcal{A})$, but $1 + X/m \notin \text{inv}(\mathcal{A})$ and thus $\text{inv}(\mathcal{A})$ is not open (because the complement is not closed).

Theorem 5.13 If \mathcal{A} is a Banach algebra with unit 1, then for all $a \in \mathcal{A}$ the spectrum $\sigma(a) \subseteq \mathbb{C}$ is closed and $\sigma(a) \subseteq \overline{B(0, \|a\|)} = D(0, \|a\|) := \{\lambda \in \mathbb{C} \mid |\lambda| \leq \|a\|\}$. Therefore, $\sigma(a)$ is compact by the Heine-Borell theorem.

Proof: By definition

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \notin \mathrm{inv}(\mathcal{A}) \}$$

is the inverse image of the closed subset $\mathcal{A} \setminus \text{inv}(\mathcal{A}) \subseteq \mathcal{A}$ by the continuous function $\lambda \mapsto \lambda - a$. Therefore, $\sigma(a)$ is closed.

Now if $|\lambda| \leq ||a||$ then $||\lambda^{-1}a|| < 1$. Then $1 - \lambda^{-1}a \in \text{inv}(\mathcal{A})$. Multiplying by λ yields $\lambda - a \in \text{inv}(\mathcal{A})$. Thus, $\{\lambda \in \mathbb{C} \mid |\lambda| > ||a||\} \subseteq \rho(a)$ and thus $\sigma(a) \subseteq D(0, ||a||)$.

Lemma 5.14 Let \mathcal{A} be a unital Banach algebra and $a \in \mathcal{A}$. Then, the map $R_a : \rho(a) \subseteq \mathbb{C} \to \mathcal{A}$, $\lambda \mapsto (a - \lambda)^{-1}$ is Frechet-differentiable.

PROOF: This follows from the following general result: If $g: U \subseteq X \to Y$ and $f: V \subseteq Y \to Z$ for Banach spaces X, Y, Z with $g(U) \subseteq V$ are differentiable at $x_0 \in U$ or respectively $y_0 = g(x_0) \in V$, then $f \circ g$ is differentiable and $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$

Observation: For $R_a(\lambda) = (a - \lambda)^{-1}$ we get $R'_a(\lambda) = (a - \lambda)^{-2}$. We have $\mathcal{L}(\mathbb{C}, \mathcal{A}) \simeq \mathcal{A}$ by $T \mapsto T(1)$. Recall that if $f(a) = a^{-1}$ yields $f'(a)b = -a^{-1}ba^{-1}$.

Theorem 5.15 (Gelfand) If $\mathcal{A} \neq 0$ is a unital Banach algebra and $a \in \mathcal{A}$ then $\sigma(a) \neq \emptyset$.

PROOF: Suppose $\sigma(a) = \emptyset$. Idea: Show that $R_a : \rho(a) \subseteq \mathbb{C} \to \mathcal{A}, \lambda \mapsto (a - \lambda)^{-1} = \frac{1}{a - \lambda}$ is bounded and differentiable and achieve a contradiction by Liouville's theorem.

Claim: $\|(a-\lambda)^{-1}\| < \|a\|^{-1}$ if $|\lambda| > 2\|a\|$. Indeed, if $|\lambda| > 2\|a\|$ then $\|\lambda^{-1}a\| < \frac{1}{2}$, and in particular $1 - \lambda^{-1}a \in \text{inv}(\mathcal{A})$ and

$$\left\| (1 - \lambda^{-1}a)^{-1} - 1 \right\| = \left\| \sum_{n=1}^{\infty} (\lambda^{-1}a)^{-1} \right\| \le \sum_{n=1}^{\infty} \|\lambda^{-1}a\|^n = \frac{\|\lambda^{-1}a\|}{1 - \|\lambda^{-1}a\|} \le 2\|\lambda^{-1}a\| < 1.$$

From here we deduce that $||(1-\lambda^{-1}a)^{-1}|| < 2$ and thus

$$\|(a-\lambda)^{-1}\|<\|\lambda^{-1}(\lambda^{-1}a-1)^{-1}\|=\frac{\|(1-\lambda^{-1}a)^{-1}\|}{|\lambda|}<\frac{2}{\lambda}<\frac{1}{\|\lambda\|}.$$

So $R_a:\mathbb{C}\to\mathscr{A}$ is bounded outside $\overline{B(0,2||a||}$. Since R_a is continuous, it is bounded on $\mathbb{C} \to \mathcal{A}$. Let $\varphi \in \mathcal{A}^*$ be a bounded linear functional in $\mathcal{L}(\mathcal{A}, \mathbb{C})$. Thus, φ is differentiable with $\varphi'(a) = \varphi$ for all $a \in \mathcal{A}$. Then $\varphi \circ R_a$ is differentiable and bounded, so it is an "integer" function. By Liouville's theorem, $\varphi \circ R_a$ is constant. Therefore, $\varphi \circ R_a(x) = \varphi \circ R_a(y)$ for all $x, y \in \mathcal{A}$. Especially, we have $\varphi((a-\lambda)^{-1}) = \varphi(a^{-1})$ for all φ . Hahn-Banach shows $(a-\lambda)^{-1} = a^{-1}$ for all λ , proving $a - \lambda = a$ for all a, λ . This is a contradiction.

Theorem 5.16 (Gelfand-Mazur) If \mathcal{A} is a unital Banach algebra and every $a \neq 0$ admits an inverse (\mathcal{A} is a field), then $\mathcal{A} = \mathbb{C} \cdot 1$.

PROOF: By the assumption, $inv(\mathcal{A}) = \mathcal{A} \setminus \{0\}$. By the previous theorem, if $a \in \mathcal{A}$ there exists some $\lambda \in \sigma(a)$, so $a - \lambda \notin \text{inv}(\mathcal{A})$, so $a - \lambda = 0$ and thus $a = \lambda \cdot 1$.

Corollary 5.17 Let $\mathbb{C}(X) = \left\{ \frac{p(x)}{q(x)} \mid p(x), q(x) \in \mathbb{Q}[X] \right\}$ is a field, but it cannot be turned into a Banach algebra.

Theorem 5.18 (Adjointing units - unitization of algebras) Let A be any algebra. Consider $A = A \oplus \mathbb{C}$ as a vector space. We write elements of A as $a + \lambda \cdot 1 := (a, \lambda)$. Think of a = (a, 0) and $\lambda = (a, \lambda)$. Define

$$(a + \lambda 1)(b + \lambda' 1) = (ab + \lambda' a + \lambda b) + \lambda \cdot \lambda'.$$

Ten (exercise \mathscr{A}) becomes a unital algebra with $1_{\mathscr{A}} = 1 = (0,1)$.

Notice that \mathcal{A} is an ideal in $\tilde{\mathcal{A}}$.

Moreover, we get a short exact sequence

$$0 \to \mathcal{A} \hookrightarrow \tilde{\mathcal{A}} \to \mathbb{C} \to 0$$

so $1 + \lambda \mapsto \lambda$.

If \mathscr{A} is a normed algebra, then $\widetilde{\mathscr{A}}$ is normed by $||a + \lambda \cdot 1|| := ||a|| + |\lambda|$

If \mathcal{A} is Banach and closed, then so is $\tilde{\mathcal{A}}$.

If \mathscr{A} is a *-algebra, then so is $\widetilde{\mathscr{A}}$ with $(a + \lambda 1)^*$.

If \mathcal{A} is a (Banach) normed *-algebra, then so is \tilde{A} .

If \mathscr{A} is a C^* -algebra, in general the norm given above is not a Norm on \mathscr{A} , but $\|a + \lambda \cdot 1\| \coloneqq \sup_{b \in \mathscr{A}, b \in \mathscr{B}, b \leq 1} \|ab + \lambda b\|$ is.

Exercise 5.1 If \mathscr{A} is already unital, then $\tilde{A} \simeq A \oplus \mathbb{C}$ as algebras by $a + \lambda \cdot 1 \mapsto (a + \lambda 1_{\mathscr{A}}, -\lambda)$.

Definition 5.19 Re-Definition: If \mathscr{A} is non-unital, then $\tilde{A} + \mathbb{C} \cdot 1$ is a (*-)Banach algebra, and we define $\sigma_A(a) := \sigma_{\tilde{\mathscr{A}}}(a)$.

Observation: If \mathscr{A} is already unital, then for $\tilde{A} \simeq \mathscr{A} \oplus \mathbb{C}$ we have $\sigma_{\tilde{\mathscr{A}}}(a) = \sigma_{\mathscr{A}}(a) \cup \{0\}$.

Remark 5.20 If \mathscr{A} is a C^* -algebra, then $\tilde{\mathscr{A}}$ is a C^* -algebra.

- (i) If \mathscr{A} is unital, then $\tilde{\mathscr{A}} \simeq \mathscr{A} \oplus \mathbb{C}$ and $||a + \lambda \cdot 1|| = \max\{||a + \lambda \cdot 1||, |\lambda|\}$.
- (ii) If \mathscr{A} is not unital, then $||a + \lambda \cdot 1|| = \sup_{||b|| \le 1} ||ab + \lambda b||$.

6 Spectral Radius

Definition 6.1 Let \mathcal{A} be an algebra. Given $a \in \mathcal{A}$, we define:

$$r(a) := \sup\{|\lambda| \mid \lambda \in \sigma_{\mathcal{A}}(a)\}$$

as the **spectral radius** of a if $\emptyset \neq \sigma_{\mathcal{A}}(a)$ is bounded (e.g. if \mathcal{A} is Banach).

Observation: In a Banach algebra, we have $0 \le r(a) \le ||a||$.

Example 6.2

(i) Let
$$f \in \mathcal{A} = C_0(X)$$
 using $\sigma_A(f) = \overline{f(X)}$. Thus,

$$r(f) = \sup\{|\lambda| \mid \lambda \in \overline{f(X)} = \sup_{x \in X} |f(x)| = ||f||_{C_0(X)}$$

(ii) Let
$$\mathcal{A} = M_2(\mathbb{C})$$
 and $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $\sigma_{\mathcal{A}} = \{0\}$ and $r(a) = 0$, but $||a|| = 1 \neq 0$.

Theorem 6.3 (Beurling-Gelfand) Let A be a Banach algebra, then

$$r(a) = \inf_{n \in \mathbb{N}} \|a^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}$$

PROOF: We may assume \mathcal{A} is unital (otherwise we consider $\tilde{\mathcal{A}}$). If $\lambda \in \sigma(a)$, then

$$\lambda^n \in \sigma(a^n) \Rightarrow |\lambda^n| \le ||a^n|| \Rightarrow |\lambda| \le ||a||^{\frac{1}{n}} \quad \forall_{n \in \mathbb{N}}$$

and therefore

$$r(a) \le \inf_{n \in \mathbb{N}} \|a^n\|^{\frac{1}{n}} \le \liminf_{n \to \infty} \|a^n\|^{\frac{1}{n}}.$$

We prove now that $\limsup_{n\to\infty}\|a^n\|^{\frac{1}{n}}\leq r(a)$. Set $\Delta\coloneqq B\Big(0,\frac{1}{r(a)}\Big)$. Where per convention we set $\frac{1}{r(a)} = \infty$ if r(a) = 0. If $\lambda \in \Delta$, then $1 - \lambda a \in \text{inv}(\mathcal{A})$ (because $|\lambda| < \frac{1}{r(a)}$ implies $|\lambda^{-1}| > r(a)$ and therefore $\lambda^{-1} \notin \sigma(a) \Rightarrow \lambda^{-1} - a \in \text{inv } A \Rightarrow 1 - \lambda a \in \text{inv}(A)$. Now fix $\varphi \in \mathscr{A}^*$. Then $f : \Delta \to \mathbb{C}, \lambda \mapsto \varphi((1 - \lambda a)^{-1})$ is analytic, so it can be written as

$$f(x) = \sum_{n=0}^{\infty} a_n \lambda^n, a_n = \frac{f^{(n)}(0)}{n!} \in \mathbb{C}, \lambda \in \Delta.$$

On the other hand, if

$$|\lambda| < \frac{1}{\|a\|} \le \frac{1}{r(a)}$$

then $\|\lambda a\| < 1$, so

$$(1 - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n \Rightarrow f(\lambda) = \varphi((1 - \lambda)^{-1}) = \sum_{k=0}^{\infty} \varphi(a^k) \lambda^k$$

for $|\lambda| < \frac{1}{\|\lambda\|}$.

By uniqueness of the Taylor series expansion, it follows that

$$a_n = \varphi(a^n) \forall_{n \in \mathbb{N}}.$$

In particular, $(\varphi(a^n)\lambda^n)$ converges to zero for all $\lambda \in \Delta$ and thus $(\varphi(a^n)\lambda^n)$ is bounded for all $\lambda \in \Delta$.

From the principle of uniform convergence, it follows that $(a^n \lambda^n)$ is bounded. So there exists an $M = M_{\lambda}$ such that

$$\begin{split} & \|\lambda^n a^n\| \leq M \forall_{n \in \mathbb{N}} \\ \Rightarrow & \|\lambda^n\|^{\frac{1}{n}} \leq \frac{M^{\frac{1}{n}}}{|\lambda|} \forall_{n \in \mathbb{N}}, \forall_{\lambda \in \Delta, \lambda \neq 0} \\ \Rightarrow & \limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}} \leq \frac{1}{\lambda} \forall_{\lambda \in \Delta \text{ i.e. } |\lambda| < \frac{1}{r(a)}} \end{split}$$

Letting $\lambda < \frac{1}{r(a)}$ yields $\limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}} \le r(a)$.

Example 6.4 Let $A = C^1([0,1]) = \{I \in C[0,1] \mid \exists_{f'(t)} \forall_{t \in [0,1]}, t \mapsto f'(t) \text{ continuous} \}$ with $||f|| = ||f||_{\infty} + ||f'||_{\infty}.$

Then \mathcal{A} is unital, commutative and a Banach algebra. Consider $x \in \mathcal{A}$, x(t) = t. We have $x^n(t) = t^n$ and

$$||x^n|| = \sup_{t \in [0,1]} |t^n| + \sup_{t \in [0,1]} |nt^{n-1}| = 1 + n$$
$$r(x) = \lim_{n \to \infty} (1+n)^{\frac{1}{n}} = 1$$
$$||x|| = 2$$

Observation: $\sigma(x) = im(x) = [0, 1].$

Theorem 6.5 Let $\mathscr{B} \nsubseteq \mathscr{A}$ be an inclusion of unital Banach algebras with $1 = 1_{\mathscr{A}} = 1_{\mathscr{B}}$. Then $\sigma_{\mathscr{A}}(b) \subseteq \sigma_{\mathscr{B}}(b)$ for all $b \in \mathscr{B}$ and the inclusion may be proper. If $\sigma_{\mathscr{A}}(b)$ is simply connected (not holes), then $\sigma_{\mathcal{A}}(b) = \sigma_{\mathcal{B}}(b)$.

The holes of a compact subset $K \subseteq \mathbb{C}$ are the bounded connected components of $\mathbb{C} \setminus K$. So saying that K has no holes means that $\mathbb{C} \setminus K$ is connected.

PROOF: See Murphy, 1.2.8.

Example 6.6 Let $\mathcal{B} := A(\mathbb{D}) = \{ f \in C(\mathbb{D}) \mid f \text{ analytic on } \mathbb{D}^{\circ} \}$ and $\mathcal{A} = C(\mathbb{S}^{1})$. Then we have an embedding by $\iota : \mathcal{B} \hookrightarrow \mathcal{A}, f \mapsto f|_{\mathbb{S}^{1}}$.

By the principle of maximum modules, ι is an embedding of (unital) Banach algebras. Consider: f(z) = z for $z \in \mathbb{D}$. (Observation: $\overline{Alg}(1, z) = A(\mathbb{D})$) Then:

$$\sigma_{A(\mathbb{D})}(f) = f(\mathbb{D}) = \mathbb{D}$$

and $\sigma_{C(\mathbb{S}^1)}(f|_{\mathbb{S}^1}) = \mathbb{S}^1$.

Definition 6.7 (Exponentials) Let \mathcal{A} be a unital Banach algebra, given $a \in \mathcal{A}$ we define

$$e^{a} = \exp(a) = \sum_{n=0}^{\infty} \frac{a^{n}}{n!}$$

Note $\left\|\frac{a^n}{n!}\right\| \leq \frac{\|a\|^n}{n!}$, so the series converges and $\|\exp(a)\| \leq \exp(\|a\|)$.

Theorem 6.8

(i) Let \mathcal{A} be a unital Banach algebra. If $a \in \mathcal{A}$, then $f : \mathbb{R} \to \mathcal{A}, t \mapsto \exp(ta)$ is the unique solution of

$$\begin{cases} f'(t) &= af(t) \\ f(0) &= 1 \end{cases}$$

- (ii) $e^a \in \text{inv}(\mathcal{A}) \text{ and } (e^a)^{-1} = e^{-a}$.
- (iii) If $a, b \in \mathcal{A}$ then $e^{a+b} = e^a \cdot e^b$ (here some commutativity is necessary).

PROOF: See Murphy, 1.2.9.

7 Gelfand Representation for commutative Banach algebras

<u>Idea</u>: Given a commutative algebra \mathcal{A} , we want to represent \mathcal{A} by a homomorphism $\varphi : \mathcal{A} \to C_0(X)$ for X some locally compact Hausdorff space. We hope that φ is injective, or even isometric, on an isomorphism. But what is X, and what is φ ?

Notice that, if $\mathcal{A} = C_0(X)$ already, then for each $x \in X$ we get a character $\operatorname{ev}_x : \mathcal{A} \to \mathbb{C}, f \mapsto f(x)$.

Definition 7.1 Given an algebra \mathcal{A} , we define

$$\hat{\mathcal{A}} = \Omega(\mathcal{A}) \coloneqq \{\chi: \mathcal{A} \to \mathbb{C} \mid \chi \text{ non-zero homomorphism}\}.$$

Example 7.2

(i) For $\mathcal{A} = C_0(X)$ we get a map

$$X \to \Omega(\mathcal{A}), x \mapsto \operatorname{ev}_x$$

that is a bijection. After we give $\Omega(\mathcal{A})$ an appropriate topology, it will also be a homomorphism.

(ii) Let $\mathcal{A} = M_2(\mathbb{C})$ (or any $M_n(\mathbb{C})$). This is a simple algebra, so non-zero homomorphisms $\chi : \mathcal{X} \to \mathbb{C}$ do not exist (same for any \mathcal{A} with dimension > 1).

So in this case we have $\Omega(\mathcal{A}) = \emptyset$. This can also happen in commutative algebras.

(iii) Consider

$$\mathcal{A} = \left\{ \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix} \mid \lambda \in \mathbb{C} \right\}$$

Then for all $a \in \mathcal{A}$ we have $a^2 = 0$, so if $\chi : \mathcal{A} \to \mathbb{C}$ is an homomorphism, then $\chi(a)^2 = \chi(a^2) = 0$, so $\chi(a) = 0$ for all $a \in \mathcal{A}$. So again, $\Omega(\mathcal{A}) = \emptyset$ (and \mathcal{A} is commutative with dim $\mathcal{A} = 1$).

Question: Given an abstract algebra \mathcal{A} how do we possibly find its characters?

Idea: Assume that $I \triangleleft \mathcal{A}$ is a maximal ideal and \mathcal{A} is a unital Banach algebra. Then $\mathcal{A}/I \simeq \mathbb{C}$ and $\chi \in \Omega(\mathcal{A})$.

Theorem 7.3 Let \mathscr{A} be a unital non-zero Banach algebra. If $\chi \in \Omega(\mathscr{A})$ then $\|\chi\| = \sup_{\|a\|=1} |\chi(a)| = 1$ and $\ker(\chi) \triangleleft \mathscr{A}$. So $\chi \in \mathscr{A}^*$ (the topological dual of $\Omega(\mathscr{A}) \subseteq D_{\mathscr{A}^*}(0,1)$).

Moreover, if \mathcal{A} is a unital Banach commutative algebra, then $\Omega(\mathcal{A}) \ni \chi \mapsto \ker(\chi) \triangleleft \mathcal{A}$ is a bijection between of characters of \mathcal{A} and maximal ideals of \mathcal{A} .

PROOF: If $a \in \mathcal{A}$ and χ a character, then $\chi(a) \in \sigma(\mathcal{A})$, because $\chi(a - \chi(a) \cdot 1) = \chi(a) - \chi(a) \cdot \chi(1) = 0$, so $a - \chi(a) \cdot 1 \in \ker(\chi) \triangleleft \mathcal{A}$ and thus $a - \chi(a) \cdot 1 \notin \operatorname{inv}(\mathcal{A})$.

Therefore: $|\chi(a)| \le r(a) \le ||a||$. So $||\chi|| \le 1$. Since $\chi(1) = 1$ and ||1|| = 1 we have $||\chi|| = 1$.

Now, apply linear algebra. Then $\ker(\chi)$ is a maximal proper subspace, in particular a maximal ideal. And $\ker(\chi)$ is closed, because χ is continuous. Now assume that $\mathscr A$ is commutative (in addition to unital and Banach). Then we have the mapping

$$\varphi: \Omega(\mathcal{A}) \to \text{MaxIdeals}(\mathcal{A}), \chi \to \text{ker}(\chi).$$

- φ is injective. If $\ker(\chi_1) = \ker(\chi_2)$ for $\chi_1, \chi_2 \in \mathcal{A}$, then for every $a \in \mathcal{A}$ we have $a \chi_1(a) \cdot 1 \in \ker(\chi_1) = \ker(\chi_2)$. Thus, $\chi_2(a = \chi_1(a) \cdot 1) = 0$ and therefore $\chi_2(a) = \chi_1(a)$ for every \mathcal{A} .
- φ is surjective. Take $I \triangleleft \mathscr{A}$ a maximal ideal. Then $I = \overline{I}$ because $\overline{I} \neq \mathscr{A}$, otherwise $1 \in \overline{I}$ and since $\operatorname{inv}(\mathscr{A})$ is open in \mathscr{A} , we get $I \cap \operatorname{inv}(\mathscr{A}) \neq \emptyset$. But then we have an invertible element in the ideal I already, but this implies the contradiction $I = \mathscr{A}$. Therefore, \mathscr{A}/I is a commutative, unital Banach algebra which is simple (I is maximal).

Exercise: If $I \triangleleft \mathcal{A}$, then \mathcal{A}/I is field if and only if there exists no $J \triangleleft \mathcal{A}$ such that $I \triangleleft J$.

Thus, \mathcal{A}/I is a field and $\mathcal{A}/I \simeq \mathbb{C}$. Then the composition

$$\mathcal{A} \xrightarrow{q} \mathcal{A}/I \simeq \mathbb{C}$$

is a character with $ker(\chi) = I$.

Exercise 7.1 An application of Zorn's Lemma. Show that every ideal $I \triangleleft \mathscr{A}$ in a unital algebra \mathscr{A} is contained in a maximal ideal.

In particular, we can apply this to I = 0 in $\mathcal{A} \neq 0$ (with \mathcal{A} is unital and commutative) and thus $\Omega(\mathcal{A}) \neq \emptyset$.

Topology on $\Omega(\mathcal{A})$

We have for \mathscr{A} a Banach algebra. We can add a unit to receive $\tilde{\mathscr{A}}$, which is a Banach algebra. Observe: If $\chi \in \Omega(\mathscr{A})$, then there exists a unique $\tilde{X} \in \Omega(\tilde{\mathscr{A}})$ via $\tilde{X}(a+\lambda \cdot 1)=\chi(a)+\lambda$. Thus, $\|\chi\| \leq \|\tilde{X}\| = 1$ (Note that it may still be smaller than 1. See exercises 2023-05-09). In any case,

$$\Omega(\mathcal{A}) \subseteq D_{\mathcal{A}^*}(0,1) = \{ \varphi \in \mathcal{A}^* \mid ||\varphi|| \le 1 \}$$

and \mathcal{A}^* carries the weak *-topology (the smallest topology to make all point-evaluations continuous, that is for a net $(\varphi_i) \subset *$ weakly converging to $\varphi \in \mathcal{A}^*$ if and only if $\varphi_i(a) \to \varphi(a)$ for all $a \in A$).

Definition 7.4 Given a Banach algebra \mathcal{A} , we endow $\Omega(\mathcal{A})$ with the weak *-topology and call this the **Gelfand spectrum** of \mathcal{A} .

Proposition 7.5 $\Omega(\mathcal{A})$ is a locally compact Hausdorff space. If \mathcal{A} is unital, then $\Omega(\mathcal{A})$ is compact.

PROOF: By Banach-Alaoglu-Theorem, $D_{\mathscr{A}^*}(0,1)$ is compact and Hausdorff with the weak *-topology. Let

$$S := \{ \chi : A \to \mathbb{C} \mid \chi \text{ hom.} \}$$
$$= \Omega(\mathcal{A}) \cup \{0\}$$

Then $S \subseteq D_{\mathscr{A}^*}(0,1)$. So $\chi(ab) = \lim_{i \to \infty} K_i = \lim_{i \to \infty} \chi_i(a)\chi_i(b) = \chi(a)\chi(b)$ and therefore $x \in S$. Thus, S is a compact Hausdorff space and $\Omega(\mathscr{A}) = S \setminus \{0\}$ is relatively compact.

If \mathscr{A} is unital, then $\Omega(\mathscr{A}) \subseteq D_{\mathscr{A}^*}(0,1)$ is closed. Then we have $(X_i) \subseteq \Omega(\mathscr{A})$ and $X_i \to X \in \mathscr{A}^*$ and thus $X \in S = \text{hom}(\mathscr{A}, \mathbb{C})$.

Observation: Given a Banach algebra \mathcal{A} , we have an isomorphism

$$\Omega(\tilde{\mathscr{A}}) \to \Omega(\mathscr{A}) \sqcup \{\chi_{\infty}\}, \varphi \mapsto \begin{cases} \varphi|_{\mathscr{A}} & \varphi|_{\mathscr{A}} \neq 0 \\ \chi_{\infty} & \varphi|_{\mathscr{A}} = 0, \end{cases}$$

where $\chi_{\infty}(a + \lambda \cdot 1) = \lambda$. Thus, $\Omega(\mathcal{A}) \sqcup \{\chi_{\infty}\}$ is already the unitization of $\Omega(\mathcal{A})$.

Theorem 7.6 Let \mathcal{A} be a Banach algebra. Then for every $a \in \mathcal{A}$.

$$\{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} \subseteq \sigma(a)$$

If \mathcal{A} is commutative, then

- $\{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} = \sigma(a)$ in case \mathcal{A} is unital.
- $\{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} \cup \{0\} = \sigma_{\mathcal{A}}(a)$.

Proof:

• \mathscr{A} is unital and $a \in \mathscr{A}$. $\chi(a - \chi(a) \cdot 1) = 0$, so $\chi(a) \in \sigma(a)$, so $\{\chi(a) \mid x \in \Omega(a)\} \subseteq \sigma(a)$. Now if $\lambda \in \sigma(a)$, consider $\mathsf{I} := (a - \lambda \cdot 1)\mathscr{A} \triangleleft \mathscr{A}$ if \mathscr{A} is commutative. By Zorns Lemma, we get $I \subseteq J \triangleleft \mathscr{A}$ with $J = \ker(\chi)$ for some $\chi \in \Omega(\mathscr{A})$. Thus we have $a - \lambda \cdot 1 \in \mathsf{I} \subseteq J = \ker(\chi)$ so $\chi(a) = \lambda$. • \mathscr{A} is not unital. Consider $\tilde{\mathscr{A}}$. By the first part,

$$\sigma_{\mathcal{A}}(a) = \sigma_{\tilde{\mathcal{A}}}(a) \supseteq \{\chi(a) \mid \chi \in \Omega(\tilde{\mathcal{A}})\} = \{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} \cup \{0\}$$

If \mathscr{A} is commutative, by the first part again:

$$\sigma_{\mathcal{A}}(a) = \sigma_{\tilde{\mathcal{A}}}(a) = \{\chi(a) \mid \chi \in \Omega(\tilde{\mathcal{A}})\} = \{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} \cup \{0\}$$

7.1 Gelfand-Transformation

Definition 7.7 Given a Banach algebra \mathcal{A} and $a \in \mathcal{A}$, we define $\hat{a} : \Omega(\mathcal{A}) \to \mathbb{C}, \chi \mapsto \chi(a)$.

Observe that $\hat{a} \in C(\Omega(\mathcal{A}))$, because if $\chi_i \to \chi$ then we have $\hat{a}(\chi_i) = \chi_i(a) \to \chi(a) = \hat{a}(\chi)$. So we have a map $\Gamma : \mathcal{A} \to C(\Omega(\mathcal{A}))$. This map is called the **Gelfand transform** of \mathcal{A} .

Theorem 7.8 (Gelfand Representation) $\operatorname{im}(\Gamma) \subseteq C_0(\Omega(\mathcal{A}))$ and $\Gamma: \mathcal{A} \to C_0(\Omega(\mathcal{A}))$ is a contractive homomorphism, i.e. $\|\Gamma(a)\| \le r(a) \le \|a\|$ for every Banach algebra \mathcal{A} . If moreover \mathcal{A} is commutative, then $\|\Gamma(a)\| = r(a)$. Also, for all $a \in \mathcal{A}$, we have

$$\sigma(a) = \begin{cases} \operatorname{im}(\hat{a}) & \mathcal{A} \text{ unital} \\ \operatorname{im}(\hat{a}) \cup \{0\} & \text{otherwise} \end{cases}.$$

PROOF: If \mathscr{A} is unital, then $\Omega(\mathscr{A})$ is compact so $\operatorname{im}(\Gamma) \subseteq C(\Omega(\mathscr{A})) = C_0(\Omega(\mathscr{A}))$. If \mathscr{A} is not unital, we use observation 7. Then we have $\Omega(\tilde{\mathscr{A}}) \simeq \Omega(\mathscr{A}) \cup \{\chi_{\infty}\}$ so that

$$C_0(\Omega(\mathcal{A})) \simeq \{ f \in C(\Omega(\tilde{\mathcal{A}})) \mid f(x_\infty) = 0 \}.$$

Now if $a \in \mathcal{A}$, then $\hat{a}(\chi_{\infty}) = \chi_{\infty}(a) = 0$.

 Γ is a homomorphism: The linearity is obvious, as is the homomorphism property:

$$(\Gamma(a)\Gamma(b))(\chi) = (\hat{a} \cdot \hat{b})(\chi) = \hat{a}(\chi)\hat{b}(\chi) = \chi(a)\chi(b) = \chi(ab) = \hat{a}b(\chi) = \Gamma(ab)(\chi).$$

<u> Γ is contractive</u>: Given $a \in \mathcal{A}$, $\chi \in \Omega(\mathcal{A})$, we have $\hat{a}(\chi) = \chi(a) \in \sigma(a)$, so $\|\hat{a}(\chi)\| \leq r(a)$ yielding $\|\Gamma(a)\|_{\infty} = \|\hat{a}\|_{\infty} \leq r(a) \leq \|a\|$. If \mathcal{A} is commutative, we have

$$\sigma(a) = \begin{cases} \{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} & 1 \in \mathcal{A} \\ \{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} \cup \{0\} & \text{otherwise} \end{cases} = \begin{cases} \{\hat{a}(\chi) \mid \chi \in \Omega(\mathcal{A})\} & 1 \in \mathcal{A} \\ \{\hat{a}(\chi) \mid \chi \in \Omega(\mathcal{A})\} \cup \{0\} & \text{otherwise} \end{cases}$$

and thus

$$\|\Gamma(a)\| = \|\hat{a}\|_{\infty} = \sup_{\chi \in \Omega(\mathscr{A})} |\chi(a)| = \sup_{\lambda \in \sigma(a)} |\lambda| = r(a)$$

As a convention, if $\Gamma(\mathcal{A}) =$, then $C_0(\Omega(\mathcal{A})) = \{0\}$ and thus $\hat{a} = 0$ for all $a \in \mathcal{A}$.

Example 7.9

(i) If $\mathcal{A} = M_n(\mathbb{C})$ with n > 1 or \mathcal{A} is any unital simple Banach algebra with dim $\mathcal{A} > 1$, then $\Omega(\mathcal{A}) = \emptyset$ so $\Gamma \equiv 0$.

(ii) Take the commutative subalgebra

$$\mathcal{A} = \left\{ \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix} \mid \lambda \in \mathbb{C} \right\} \subseteq M_2(\mathbb{C})$$

then \mathscr{A} is not unital, commutative, Banach and dim $\mathscr{A}=1$. Once again, $\Omega(\mathscr{A})=\emptyset$ and thus $\Gamma\equiv 0$.

(iii) Take

$$\mathscr{A} = \left\{ \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \mid \lambda, \alpha \in \mathbb{C} \right\} \subseteq M_2(\mathbb{C})$$

is a unital, commutative Banach algebra with dim $\mathcal{A}=2$. We have

$$\Omega(\mathcal{A}) = \{\chi_{\infty}\} \qquad \chi_{\infty} : \mathcal{A} \to \mathbb{C}, \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \mapsto \lambda$$

and thus

$$\Gamma: \mathcal{A} \to C_0(\Omega(\mathcal{A})) = C_0(\{\chi_\infty\}) \simeq \mathbb{C}, a = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \mapsto \hat{a} \equiv \lambda$$

This shows that Γ is not injective, as dim $\mathcal{A}=2$ but dim $\Gamma(\mathcal{A})=1$.

Definition 7.10 Let \mathscr{A} be a Banach algebra. We say that $a \in \mathscr{A}$ is quasi-nilpotent if $r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}} = 0$. Sometimes, you will read

$$Rad(\mathcal{A}) = \{ a \in \mathcal{A} \mid a \text{ quasi-nilpotent} \}$$

If $\operatorname{Rad}(\mathcal{A}) = 0$, we say that \mathcal{A} is **semi-simple**. Notice that if $a \in \mathcal{A}$ is quasi-nilpotent, then $\Gamma(a) = \hat{a} = 0$ because $\Gamma(a) \leq r(a) = 0$. If \mathcal{A} is commutative, then $\ker(\Gamma) = \operatorname{Rad}(\mathcal{A})$.

Example 7.11

(iv) $\mathcal{A} = \ell^1(\mathbb{Z}) = \{(a_n)_{n \in \mathbb{Z}} \mid \sum_{n \in \mathbb{Z}} |a_n| < \infty.$

Recall from exercises, that $\Omega(\ell^1(\mathbb{Z})) \simeq \mathbb{D}$ with $\mathbb{D} \to \Omega(\ell^1(\mathbb{Z})), z \mapsto \chi_z$ defined as $\chi_z(a) = \hat{a}(z) = \sum_{n=0}^{\infty} a_n z^n$.

We define a multiplication $\delta_m \cdot \delta_n = \delta_{n+m}$. Then δ_0 is the unit and δ_1 is a generator of $\mathcal{A} = \ell^1(\mathbb{Z})$.

The elements $\delta_m - (\dots, 0, 1, 0, \dots)$ form a basis for \mathscr{A} . We have $a = \sum_{n \in \mathbb{Z}} a_n \delta_n$ and for $\chi \in \mathscr{A}^*$ it follows $\chi(a) = \sum_{n \in \mathbb{Z}} a_n \chi(\delta_n)$.

We now want to calculate the spectrum. We have seen that $\chi(\delta_0) = \chi(1_{\mathscr{A}}) = 1$ and $\chi(\delta_n) = \chi(\delta_1^n)\chi(\delta_1)^n$. Therefore, χ is determined by $z = \chi(\delta_1) \in \mathbb{C}$. We know at least that $|z| = |\chi(\delta_1)| \le ||\delta_1|| = 1$, so $z \in \mathbb{D}$. Claim: $z \in \Pi = \mathbb{S}^1$.

General fact: If $a \in \text{inv } \mathcal{A}$ for \mathcal{A} a unital Banach algebra, then $\sigma(a^{-1}) = \sigma(a)^{-1} = \{\lambda^{-1} \mid \lambda \in \sigma(a)\}.$

Observe that $\mathbb{S}^1 = \operatorname{inv}(\mathcal{A})$ with $\delta_1^{-1} = \delta_{-1}$. So $\sigma(\delta) \subseteq \mathbb{D}$ and $\sigma(\delta_1)^{-1} = \sigma(\delta_{-1}) \subseteq \mathbb{D}$, so $\sigma(\delta_1) \subseteq \mathbb{S}^1$. So $z = \chi(\delta_1) \in \sigma(\delta_1) \subseteq \mathbb{S}^1$. Conversely, if $z \in \mathbb{S}^1$, then $\chi_z : \mathcal{A} \to \mathbb{C}, \chi_z(a) = \sum_{n \in \mathbb{Z}} a_n z^n \in \mathbb{C}$ is well-defined (as the sum converges) and is a character, as

$$\chi_z(\delta_n \cdot \delta_m) = \chi(\delta_{n+m}) = z^{n+m} = z^n z^m = \chi_z(\delta_n) \cdot \chi + z(\delta_m)$$

and checking in the basis also proves the homomorphism property for all of \mathcal{A} . Notice that $z = \chi_z(\delta_1)$. This shows the injectivity of

$$\Pi \simeq \Omega(\mathcal{A}) = \Omega(\ell^1(\mathbb{Z})), z \mapsto \chi_z, \chi(\delta_1) \leftarrow \chi$$

which is continuous and therefore a homeomorphism (isomorphism), as both spaces are compact. Notice

$$\sigma(\delta_1) = \{\chi(\delta_1) \mid \chi \in \Omega(\mathcal{A})\} = \{\chi_z(\delta_1) \mid z \in \mathbb{S}^1\} = \mathbb{S}^1$$

The Gelfand transformation is now

$$\Gamma: \mathcal{A} = \ell^1(\mathbb{Z}) \to C(\Omega(\mathcal{A})) \simeq C(\mathbb{S}^1), a \mapsto \left(\hat{a}: z \mapsto \sum_{n \in \mathbb{Z}} a_n z^n\right)$$

 Γ is always a contractive algebra homomorphism, as $\|\hat{a}\|_{\infty} \leq \|a\|_1$. Γ is a *-homomorphism where $\ell^1(\mathbb{Z})$ carries the involution $a^* = \left(\sum_{n \in \mathbb{Z} a_n \delta_n}\right) = \sum_{n \in \mathbb{Z}} \overline{a}_n \delta_{-n}$ because of $\delta_n^* = \delta_{-n}$. The involution of $C(\mathbb{S}^1)$ is complex conjugation. But on the unit circle, $\overline{z} = z^{-1}$, so we have a *-homomorphism.

 Γ is injective. If $f \in C(\mathbb{S}^1)$, we can define its "inverse Fourier-Transform"

$$\check{f}(n) = \int_{\mathbb{S}^1} f(z) z^{-n} dz = \frac{1}{2\pi} \int_0^{2\pi} f(\exp(it)) \exp(-int) dt$$

This is **not** the line integral from functional analysis, as the derivative of the path is not included. You can now check that $(\hat{a})^{\check{}}(n) = a_n$. $g \mapsto \int_{\mathbb{S}^1} g$ is a continuous function on $C(\mathbb{S}^1)$ and we have

$$\hat{a}(z) = \sum_{n \in \mathbb{Z}} a_n z^n = \lim_{F \subseteq \mathbb{Z} \text{ finite}} \sum_{n \in F} a_n z^n = \lim_{N \to \infty} \sum_{n = -N}^N a_n z^n$$

so

$$(\hat{a})(n) = \sum_{m \in \mathbb{Z}} a_m (\hat{\delta_m})(n)$$

Because of $\int_{\mathbb{S}^1} z^k = \delta_{k,0}$, we have

$$\int_{\mathbb{S}^1} z^m z^n dz = \delta_{n,m}$$

and using $\hat{\delta_m}(z) = z^m$ we can show $(\hat{\delta_m})(n) = \delta_{n,m}$ and thus

$$(\hat{a})(n) = \sum_{m \in \mathbb{Z}} a_m (\hat{\delta_m})(n) = \sum_{m \in \mathbb{Z}} a_m \delta_{m,n} = a_m$$

This shows that we can re-gain the elements of the sequence from \hat{a} , so $\Gamma:(a_n)\mapsto \hat{a}$ must be injective.

 Γ has dense range because the polynomials are dense in $C(\mathbb{S}^1)$ because of Stone-Weierstraß theorem.

 Γ is <u>not isometric</u>. If Γ was isometric, then Γ were an isometric *-homomorphism with dense range. Since isometric homomorphisms have closed image, Γ were surjective and thus an isometric *-isomorphism $\ell^1(\mathbb{Z}) = C(\mathbb{S}^1)$. Then $\ell^1(\mathbb{Z})$ would be a C^* -algebra with the $\ell^1(\mathbb{Z})$ -norm, and thus $||a^*a||_1 = ||a||_1^2$ (with the involution as described above). Then, using the C^* -property of $C(\mathbb{S}^1)$ and isometry of Γ , we have

$$||a^*a||_1 = ||\Gamma(a^*a)||_{\infty} = ||\Gamma(a)^*\Gamma(a)||_{\infty} = ||\Gamma(a)||_{\infty}^2 - ||a||_1^2.$$

Now we only need to find $a \in \ell^1(\mathbb{Z})$ with $||a^*a||_1 \neq ||a||_1^2$. Choose $a = \alpha \delta_0 + \beta \delta_1 + \gamma \delta_{-1} = \alpha + \beta \delta_1 + \gamma \delta_{-1}$ (not writing δ_0 as it is the unit).

$$a^*a = (\overline{\alpha} + \overline{\beta}\delta_{-1} + \overline{\gamma}\delta_1)(\alpha + \beta\delta_1 + \gamma\delta_{-1}) = \dots$$

and thus

$$||a^*a||_1 = |\alpha|^2 + |\beta|^2 + |\gamma|^2 + 2|\overline{\alpha}\beta + \alpha\overline{\gamma}| + 2|\gamma\beta|$$

while

$$||a||_1^2 = (|\alpha| + |\beta| + |\gamma|)^2.$$

Now choosing $\alpha = i$ and $\beta = \gamma = 1$ yields $||a^*a||_1 = 5$ and $||a||_1^2 = 9$. This shows that $\ell^1(\mathbb{Z})$ does not fulfil the *-property and cannot be a C^* -algebra. This is a contradiction, so Γ cannot be isometric.

This is also a valid counterexample for the isometry directly, because a has Norm 3, but $\Gamma(a) = (z \mapsto \frac{1}{z} + i + z = 2\Re(z) + i)$ has maximum 2 + i with Norm $\sqrt{5} < 3$ on the unit circle. Γ is not surjective. This is complicated.

Recall: For \mathcal{A} a Banach algebra, we have a Gelfand representation

$$\Gamma: \mathcal{A} \to C_0(\Omega(\mathcal{A})), a \mapsto (\hat{a}: \Omega(\mathcal{A}) \to \mathbb{C}, \chi \mapsto \chi(a))$$

where $\Omega(\mathcal{A}) = \{\chi : \mathcal{A} \to \mathbb{C} \mid \text{ non-zero hom}\} \subseteq D_{\mathcal{A}^*}(0,1)$ with the weak *-topology. Γ is a contractive homomorphism, and if \mathcal{A} is commutative $\|\Gamma(a)\| = r(a) \le \|a\|$ for all $a \in \mathcal{A}$.

We now want to consider commutative C^* -algebras.

Theorem 7.12 (Gelfand) If \mathscr{A} is a commutative C^* -algebra, then $\Gamma : \mathscr{A} \to C_0(\Omega(\mathscr{A}))$ is an isometric *-isomorphism.

For this proof we require a set of lemmas.

Lemma 7.13 If $a \in \mathcal{A}$, \mathcal{A} a C^* -algebra, with $a = a^*$ then r(a) = ||a||.

PROOF: Use $r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}$. Notice $\|a^2\| = \|a^*a\| = \|a\|^2$ and $\|a^4\| = \|(a^2)^*a^2\| = \|a^2\|^2 = \|a\|^4$ and likewise for all powers that are powers of 2 we have $\|a^{2^n}\| = \|a\|^{2^n}$. So $r(a) = \lim_{n \to \infty} \|a^{2^n}\|^{\frac{1}{2^n}} = \|a\|$ is the limit of the subsequence and therefore the limit of the sequence.

Remark 7.14 In general, $||a|| \neq r(a)$ if $a \neq a^*$ in a C^* -algebra, e.g. $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{C})$. But if $a^*a = aa^*$ (a is normal), then ||a|| = r(a).

Proof: Exercise.

Corollary 7.15 There exists at most one norm that makes a *-algebra $\mathcal A$ into a C^* -algebra.

PROOF: If \mathcal{A} is a C^* -algebra with norm $\|\cdot\|$, then for all $a \in \mathcal{A}$ we have $\|a\| = \|aa^*\|^{\frac{1}{2}}$. Note that a^*a is self-adjoint, so by the previous lemma we have

$$||a|| = ||aa^*||^{\frac{1}{2}} = r(a^*a)^{\frac{1}{2}} = \sup_{\lambda \in \sigma(a^*a)} |\lambda|^{\frac{1}{2}}$$

and this only depends on the algebra structure, not its norm.

Corollary 7.16 If $\varphi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism from a Banach-*-algebra \mathcal{A} into a C*-algebra \mathcal{B} then φ is contractive, i.e. $\|\varphi(a)\|_{\mathcal{B}} \leq \|a\|_{\mathcal{A}}$ for all $a \in \mathcal{A}$

PROOF: Replacing \mathcal{A}, \mathcal{B} by their unitizations $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{B}}$ and extending φ to $\tilde{\varphi}: \tilde{A} \to \tilde{B}, a + \lambda 1_{\mathcal{B}} \mapsto \varphi(a) + \lambda 1_{\mathcal{B}}$ shows that we can just assume $\mathcal{A}, \mathcal{B}, \varphi$ to be unital.

Now, if $a \in \text{inv}(\mathcal{A})$, then $\varphi(a) \in \text{inv}(\mathcal{B})$, so it follows

$$\lambda \in \rho_{\mathcal{A}}(a) \Leftrightarrow a - \lambda \in \operatorname{inv}(\mathcal{A}) \Leftrightarrow \varphi(a) - \lambda \in \operatorname{inv}(\mathcal{B}) \Leftrightarrow \lambda \in \rho_{\mathcal{B}}(\varphi(a))$$

so $\rho_{\mathscr{A}}(a) \subseteq \rho_{\mathscr{B}}(\varphi(a))$ and $\sigma_{\mathscr{A}}(a) \supseteq \sigma_{\mathscr{B}}(\varphi(a))$. It follows for the spectral radius: $r(\varphi(a)) \leq r(a)$. As \mathscr{B} is a C^* -algebra, this implies

$$\|\varphi(a)\|_{\mathcal{B}}^{2} = \|\varphi(a)^{*}\varphi(a)\|_{\mathcal{B}} = \|\varphi(a^{*}a)\|_{\mathcal{B}} = r(\varphi(a^{*}a))$$

$$\leq r(a^{*}a) \leq \|a^{*}a\|_{\mathcal{A}} \leq \|a^{*}\|_{\mathcal{A}} \cdot \|a\|_{\mathcal{A}} = \|a\|_{\mathcal{A}}^{2}$$

and therefore $\|\varphi(a)\|_{\mathscr{B}} \leq \|a\|_{\mathscr{A}}$.

Lemma 7.17 If \mathscr{A} is a C^* -algebra and $a \in \mathscr{A}$, then

- (i) If a is self-adjoint, $\sigma(a) \subseteq \mathbb{R}$.
- (ii) If \mathscr{A} is unital and $u \in \mathcal{U}(\mathscr{A})$ is unitary (that is, $u^*u = uu^* = 1$) then $\sigma(u) \subseteq \mathbb{S}^1$.
- (iii) If $a \in \text{inv}(\mathcal{A})$, then $\sigma(a^{-1}) = \sigma(a)^{-1} = \{z^{-1} \mid z \in \sigma(a)\}$.
- (iv) $\sigma(a^*) = \overline{\sigma(a)}$.

PROOF: (iii) If $\lambda \in \mathbb{C}$, $\lambda \neq 0$ and $\lambda - a \notin \operatorname{inv}(\mathcal{A})$. Because $\lambda - a$ is not invertible, $\lambda^{-1}(\lambda - a) = 1 - \lambda^{-1}a$ and $a^{-1}(1 - \lambda^{-1}a) = a^{-1} - \lambda^{-1}$ is also not invertible. So we have $\lambda^{-1} - a^{-1} \notin \operatorname{inv}(\mathcal{A})$ and therefore $\sigma(a^{-1}) \subseteq \sigma(a)^{-1}$. The result follows by symmetry.

- (iv) Similarly, you can prove (iv).
- (ii) If $u \in \mathcal{U}(\mathcal{A})$, then $\sigma(a) \subseteq \mathbb{D} = \{z \in \mathbb{C} \mid |z| \leq 1\}$ because

$$||u|| = ||u^*u||^{\frac{1}{2}} = ||1||^{\frac{1}{2}} = 1.$$

So, since $u \in \mathcal{U}(\mathcal{A})$, $u^{-1} = u^* \in \mathcal{U}(\mathcal{A})$ and therefore $\sigma(u)^{-1} = \sigma(u^{-1}) \subseteq \mathbb{D}$. This implies $\|\lambda\| = 1$ for all $\lambda \in \sigma(u)$ and thus $\sigma(u) \subseteq \mathbb{S}^1$.

(i) Assume that \mathcal{A} is unital, otherwise work in $\tilde{\mathcal{A}}$. If a is self-adjoint then $u = \exp(ia) =$ $\sum_{n=0}^{\infty} \frac{i^n a^n}{n!} \in \mathcal{U}(\mathcal{A}) \text{ because } \exp(ia)^* = \exp(-ia) \text{ and therefore } u^*u = \exp(-ia) \exp(ia) = \exp(0) = 1 = uu^*. \text{ Because of (i) we know } \sigma(u) \subseteq \mathbb{S}^1. \text{ Now, let } \lambda \in \sigma(u) \text{ and define } b = \sum_{n=1}^{\infty} \frac{i^n (a-\lambda)^n}{n!} = \exp(i(a-\lambda)) - 1 \text{ as well as } c = \sum_{n=1}^{\infty} \frac{i^n (a-\lambda)^{n-1}}{n!} \in \mathcal{A} \text{ . Consider }$

$$\exp(ia) - \exp(i\lambda 1) = (\exp(i(a - \lambda)) - 1) \exp(i\lambda) = b \exp(i\lambda)$$

$$= \left(\sum_{n=1}^{\infty} \frac{i^n (a - \lambda)^n}{n!}\right) \exp(i\lambda)$$

$$= (a - \lambda) \left(\sum_{n=1}^{\infty} \frac{i^n (a - \lambda)^{n-1}}{n!}\right) \exp(i\lambda)$$

$$= (a - \lambda)c \exp(i\lambda).$$

Since $\lambda \in \sigma(a)$ and $c, (a - \lambda)$ commute, $\exp(ia) - \exp(i\lambda)$ is not invertible (or $a - \lambda$ would also be invertible) and we have $\exp(i\lambda) \in \sigma(u) \subseteq \mathbb{S}^1$. But for this to happen, we require $\lambda \in \mathbb{R}$.

Corollary 7.18 If \mathscr{A} is a C^* -algebra and $\chi \in \Omega(\mathscr{A})$, then $\chi(a^*) = \overline{\chi(a)}$ for all $a \in \mathscr{A}$. So χ is a *-homomorphism.

PROOF: If $a \in \mathcal{A}$ is self-adjoint, then $\chi(a) \in \sigma(a) \subseteq \mathbb{R}$ so $\overline{\chi(a)} = \chi(a) = \chi(a^*)$. Now, if $a \in \mathcal{A}$ is any element we can write it as a = b + ic where $b = \frac{a+a^*}{2}$ and $c = \frac{a-a^*}{2i}$ so that b, c are self-adjoint. Now $\chi(b), \chi(c) \in \mathbb{R}$ so

$$\chi(a^*) = \chi(b - ic) = \chi(b) - i \cdot \chi(c) = \overline{\chi(b) + i\chi(c)} = \overline{\chi(b + ic)} = \overline{\chi(a)}$$

Corollary 7.19 If \mathscr{A} is a commutative C^* -algebra and $\mathscr{A} \neq 0$, then $\Omega(\mathscr{A}) \neq \emptyset$.

PROOF: If $\mathcal{A} \neq 0$ there is some self-adjoint non-zero element $a \in \mathcal{A}$ so that $r(a) = ||a|| \neq 0$. But $\sigma(a) \subseteq \{\chi(a) \mid \chi \in \Omega(\mathcal{A})\} \cup \{0\}$. But for this to be true there must exist a character $\chi \in \Omega(\mathcal{A})$, so $\Omega(\mathcal{A}) \neq \emptyset$.

PROOF (GELFAND):

• Γ is a *-homomorphism: Consider

$$\Gamma(a)^*(\chi) = \hat{a}^*(x) = \overline{\hat{a}(\chi)} = \overline{\chi(a)} = \chi(a^*) = \hat{a}^*(\chi) = \Gamma(a^*)(\chi)$$
 so $\Gamma(a)^* = \Gamma(a^*)$.

• Γ is isometric: We have

$$\|\Gamma(a)\|^2 = \|\Gamma(a)^*\Gamma(a)\| = \|\Gamma(a^*a)\| = r(a^*a) = \|a^*a\| = \|a\|^2$$

using our lemmas and the C^* -property.

- Γ is surjective: Let $\mathscr{B} := \operatorname{im}(\Gamma) \subseteq C_0(\mathscr{A})$. Then \mathscr{B} is a C^* -subalgebra of $C_0(\Omega(\mathscr{A}))$. Then
 - $-\mathcal{B}$ does not vanish at any point, i.e. for every point $\chi \in \Omega(\mathcal{A})$ there is a $b \in \mathcal{B}$ with

As $\chi \in \Omega(\mathcal{A})$ means $\chi \neq 0$, there exists an $a \in \mathcal{A}$ with $\chi(a) \neq 0$. But we can rewrite this as $b(\chi) = \hat{a}(\chi) = \chi(a) \neq 0$ for $b = \hat{a}$.

- \mathscr{B} sperates points in $\Omega(\mathscr{A})$, i.e. for every $\chi_1 \neq \chi_2$ in $\Omega(\mathscr{A})$ there exists $b \in \mathscr{B}$ with $b(\chi_1) \neq b(\chi_2)$.

If $\chi_1 \neq \chi_2$ there exists $a \in \mathcal{A}$ with $\chi_1(a) \neq \chi_2(a)$. Taking $b = \hat{a}$ yields the result.

The result $\mathcal{B} = C_0(\Omega(\mathcal{A}))$ follows from the Stone-Weierstraß-theorem:

If X is a locally compact Hausdorff space and $B\subseteq C_0(X)$ is a *-subalgebra satisfying

- -B does not vanish on any point of X
- -B separates points of \mathcal{A}

then B is dense in $C_0(X)$.

So im(Γ) is dense and closed in $C_0(\Omega(\mathcal{A}))$, so Γ is surjective.

Proposition 7.20 Conclusion: Every commutative C^* -algebra is (up to *-isomorphism) of the form $C_0(X)$ for a locally compact Hausdorff space X. Let $\mathcal{A} = C_0(X)$ for a locally compact Hausdorff space X. Then $\Omega(\mathcal{A}) \simeq X$ with isomorphism

$$\varphi: X \to \Omega(C_0(X)), x \mapsto (\operatorname{ev}_x: C_0(X) \to \mathbb{C}, f \mapsto f(x)).$$

Proof:

- φ is well-defined, because characters are never zero.
- φ is **continuous**. Take $x_i \to x$ in X. Then, for all $f \in C_0(X)$ we have $\operatorname{ev}_{x_i}(f) \to \operatorname{ev}_x(f)$ because f is continuous and therefore $f(x_i) \to f(x)$. This shows $\operatorname{ev}_{x_i} \to \operatorname{ev}_x$ in the weak *-topology.
- φ is **injective**. If $x_1 \neq x_2$ there exists a function $f \in C_0(X)$ that separates them, but then $\operatorname{ev}_{x_1}(f) \neq \operatorname{ev}_{x_2}(f)$, so $\operatorname{ev}_{x_1} \neq \operatorname{ev}_{x_2}$.
- φ is surjective. Prove that every $\chi \in \Omega(\mathcal{A})$ is $\chi = \operatorname{ev}_x$ for some $x \in X$.

We know that the characters of \mathcal{A} are equivalent to the ideals in $C_0(X)$, so this is equivalent to: Every maximal ideal $I \triangleleft C_0(X)$ is of the form $I = C_0(X \setminus \{x_0\}) = \{f \in C_0(X) \mid f(x_0) = 0\}$.

In Exercise 01-08 we have proven that every closed (2-sided) ideal $I \triangleleft C_0(X)$ has the form $I = C_0(U) := \{ f \in C_0(X) \mid f|_{X \setminus U} \equiv 0 \}$ for some open $U \subseteq X$.

See 01-08 for more details.

Take any $f \in I \triangleleft C_0(X)$. First, prove $I^* = I$. Consider $f \in I$ and

$$f_n \coloneqq \sqrt[n]{f^*f} = (\overline{f}f)^{\frac{1}{n}} = |f|^{\frac{2}{n}}.$$

We have $f_n \in I$ for all n, because $g := f^*f \in I$ and $t \mapsto \sqrt[n]{t}$ is a continuous function that can be uniformly approximated by polynomials on the compact sets. It follows that $f_n = \lim g_n$ where g_n is a polynomial in $g \in I$, so $f_n \in I$. So $f^*f_n \in I$ for all n. Then

$$||f^* = f_n f^*||_{\infty}^2 = ||(f^* - f_n f^*)(f^* - f_n f^*)||_{\infty} = ||(f = f_n f)(f^* - f_n f^*)||_{\infty}$$
$$= ||f^* f - 2f^* f f_n + f_n^2 f^* f||_{\infty}$$

$$\leq \|g - g \sqrt[n]{g}\| + \|g - g \sqrt[n]{g}\| \|f_n\| \to 0,$$

because $|g(x)-g(x)\sqrt[n]{g(x)}| \to 0$ pointwise (as the n-th square root converges to the 1 on the support and 0 elsewhere) and $|g(x)| \le \varepsilon$ everywhere except a compact set K, and on that K we have $\sup_{x \in K} |g(x)| |1 - \sqrt[n]{g(x)}| = |g(x_0)| |1 - \sqrt[n]{g(x_0)}| < \varepsilon$ for some $n \in \mathbb{N}$. We therefore have $f^* = \lim_{n \to \infty} f^* f_n \in I$ and thus $f^* = \lim_{n \to \infty} f_n f^*$. Now let $I \triangleleft C_0(X)$ closed, so $I^* = I$ and I is a C^* -subalgebra of X.

Define $U^{\complement} := \{x \in X \mid f(x) = 0 \forall f \in I\}$. This is closed (because for $x_i \to x$ in X, $x_i \in U^{\complement}$, we have $0 = f(x_i) \to f(x)$), so U is open. We claim $I = C_0(U)$.

If $f \in I$, $f|_{U^{\complement}} \equiv 0$ per Definition, so $f \in C_0(U)$. Therefore, I is a closed subideal of $C_0(U)$.

I does not vanish on U, because if there was an $x \in U$ with f(x) = 0 for all $f \in I$, we would have $x \in U^{\complement}$.

I separates the points of U. Take $x_1 \neq x_2$. We can choose $h \in C_0(X)$ with $h(x_1) = 1$ and $h(x_2) = 0$ (Uryson) as well as $g \in I$ with $g(x_1) \neq 0$, then $f = g \cdot h \in I$ separates x_1 from x_2 .

Stone-Weierstraß now proves $I = C_0(U)$.

Notice $U \subseteq V \subseteq X$ (open) iff $C_0(U) \subseteq C_0(V) \subseteq C_0(X)$ (see exercise 08-01). So we have a bijection between the opens of X and the ideals of $C_0(X)$. Especially, the maximal ideals of $C_0(X)$ correspond to the maximal open sets, that is the sets of form $X \setminus \{x_0\}$ for some x_0 , of X.

Therefore, if $\chi \in \Omega(C_0(X))$ we have $\ker \chi = C_0(X \setminus \{x_0\})$, so χ maps a function to 0 if and only if f is zero on x. This proves and $\chi = \operatorname{ev}_x$.

• φ is **open**. If X is compact, this is clear because $C_0(X) = C(X)$ and unital, so $\Omega(C_0(X))$ is compact and we have a bijection between two compact sets. In general, consider \tilde{X} (the compactification) and use $C_0(X) \simeq C(\tilde{X})$. So we have a homeomorphism

$$\tilde{X} \to \Omega(C(\tilde{x})) = \Omega(\widetilde{C_0(X)}) \simeq \Omega(C_0(X)) \sqcup \{\chi_\infty\}$$

where $\infty \mapsto \chi_{\infty}$, so we can restrict the homeomorphism to X and are done.

Theorem 7.21 (Spectral inclusion for C^* -algebras) Let $\mathcal{A} \subseteq \mathcal{B}$ be an inclusion of unital C^* -algebras with $1 = 1_{\mathcal{A}} = 1_{\mathcal{B}}$. Then for all $a \in \mathcal{A}$ we have $\sigma_{\mathcal{A}}(a) = \sigma_{\mathcal{B}}(a)$, so $\operatorname{inv}(\mathcal{A}) = \operatorname{inv}(\mathcal{B}) \cap \mathcal{A}$.

PROOF: If a is self-adjoint, that is $a^* = a$, then $\sigma_{\mathscr{A}}(a) \setminus \mathbb{R}$, so $\sigma_{\mathscr{A}}$ has no holes, i.e. the complement $\mathbb{C} \subseteq \sigma_{\mathscr{A}}(a)$ is connected in \mathbb{C} . By the general result on Banach algebras $\sigma_{\mathscr{A}}(a) = \sigma_{\mathscr{B}}(a)$. In particular, this implies $a \in \text{inv}(\mathscr{A}) \Leftrightarrow a \in \text{inv}(\mathscr{B})$ for all self-adjoint $a \in \mathscr{A}$.

We now prove that this holds for all $a \in \mathcal{A}$. Of course, $\operatorname{inv}(\mathcal{A}) \subseteq \operatorname{inv}(\mathcal{B}) \cap \mathcal{A}$. Let $a \in \mathcal{A}$ such that $a \in \operatorname{inv}(\mathcal{B})$. Then there exists $b \in \mathcal{B}$ such that ab = ba = 1 and $b^*a^* = a^*b^* = 1 \Leftrightarrow bb^*a^*a = 1 = a^*abb^*$. Therefore, $a^*a \in \operatorname{inv}\mathcal{B} \cap \mathcal{A} \subseteq \operatorname{inv}(\mathcal{A})$ because a^*a is self adjoint. So there exists $c \in albebraA$ with $ca^*a = 1 = a^*ac$ and thus $ca^*ab = ca^* = b$, so $b \in \mathcal{A}$ as it is the product of two elements a^* , $c \in \mathcal{A}$. This concludes the proof, as a is now invertible in \mathcal{A} .

Definition 7.22 We say $a \in \mathcal{A}$ (for \mathcal{A} a C^* -algebra) is **normal** if $a^*a = aa^*$. This means $C^*(a)$ (the C^* -subalgebra of \mathcal{A} generated by a) is commutative. Then $C^*(a) \simeq C_0(X)$.

Lemma 7.23 Let $a \in \mathcal{A}$ (C^* -algebra) be a normal element. Assume that $1 \in \mathcal{A}$ (unital). Then $\Omega(C^*(a,1)) \simeq \sigma(a)$ by homeomorphism $\chi \mapsto \chi(a)$. In general, if \mathcal{A} is possibly not unital, then $\Omega(C^*(a)) \simeq \sigma(a) \setminus \{0\}$. In particular, $\chi(a) = 0$ only if a = 0 but then $C^*(a)$ is just the zero space.

PROOF: It is enough to consider the unital case.

Consider $\varphi: \Omega(C^*(a,1)) \to \sigma(a), \chi \to \chi(a)$ which is well-defined because $\chi(a) \in \sigma(a)$.

- φ is **continuous**. If $\chi_i \to \chi$ in $\Omega(C^*(a,1))$ then this also converges point wise, so $\chi_i(a) \to \chi(a)$.
- φ is **injective**. Take $\chi_1, \chi_2 \in \Omega(C^*(a, 1))$ with $\chi_1(a) = \chi_2(a)$. Since $\chi_1(1) = 1 = \chi_2(1)$, so the two characters coincide on the generators and are thus equal by linearity and continuity.
- φ is surjective. We know that $\sigma(a) = \{\chi(a) \mid \chi \in \Omega(B)\}$ for all commutative unital Banach algebras B, in particular for $B = C^*(a, 1)$.

Because both spaces are compact this concludes the proof.

Theorem 7.24 (Fundamental theorem of continuous functional calculus)

Let \mathscr{A} be a unital C^* -algebra and $a \in \mathscr{A}$ normal. Then there exists a unique unital *-homomorphism $\varphi : C(\sigma(a)) \to \mathscr{A}$ such that $\mathrm{id}_{\sigma(a)} \mapsto a$.

In general, if \mathscr{A} is possibly not unital, there exists a unique *-homomorphism $\varphi: C_0(\sigma(a)) \to \mathscr{A}$ where $C_0(\sigma(a)) := \{ f \in C(\sigma(a)) \mid f(0) = 0 \}.$

Both of these morphisms are also isometric.

Notation: If $f \in C(\sigma(a))$ we write $f(a) := \varphi(a)$. Notice: If f is a polynomial in z, \overline{z} then $f(a) = \varphi(a)$ as usual.

PROOF: Consider $1 \in \mathcal{A}$ and let $\mathscr{B} = C^*(a,1) \subseteq \mathcal{A}$. Then \mathscr{B} is commutative because a is normal (i.e. commutes with its adjoint). By Gelfand, we get an isometric *-isomorphism $T: \mathscr{B} \to C(\Omega(\mathscr{B})), b \mapsto \hat{b}$. By the Lemma, $\Omega(\mathscr{B}) \equiv \sigma(a), \chi \mapsto \chi(a)$. Via this identification (homeomorphism), we have $\hat{b}(\chi) = \chi(b)$ and $\hat{a}(\chi) = \chi(a)$. So \hat{a} corresponds to $z \in C(\sigma(a)) \simeq C(\Omega(\mathscr{B}))$. Therefore, considering the inverse of T and identifying $\Omega(\mathscr{B}) \simeq \sigma(a)$ we get an isometric

$$C(\sigma(a)) \simeq C(\Omega(C^*(a,1))) \simeq C^*(a,1) \simeq \mathcal{A}.$$

This gives φ as defined.

The **non-unital case**: Just consider $\tilde{\mathcal{A}}$.

Example 7.25 Let $f(z) = \exp(z) = e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$. f is a continuous function on the whole plane. If $a \in \mathcal{A}$ is normal, then $f(a) = \exp(a) = \sum_{n=0}^{\infty} \frac{a^n}{n!}$. In general, $f(z) = \sum_{n=0}^{\infty} \lambda_n z^n$ (or $f(z) = \sum_{n=0}^{\infty} \lambda_n (z-z_0)^n$), so $f(a) = \sum_{n=0}^{\infty} \frac{a^n}{n!}$ if $\sigma(a) \subseteq \operatorname{Domain}(f)$.

Theorem 7.26 Let \mathcal{A} be unital C^* -algebra and $a \in \mathcal{A}$ be normal. If $f \in C(\sigma(a))$, then $\sigma(f(a)) = \{f(\lambda) \mid \lambda \in \sigma(a)\}.$

Moreover, if $g \in C(\sigma(f(a)))$, then $g(f(a)) = (g \circ f)(a)$.

PROOF: Let $\mathscr{B} = C^*(a,1) \subseteq \mathscr{A}$. \mathscr{B} is commutative and unital. Then $f(a) \in \mathscr{B}$ and $\sigma(f(a)) = \sigma_{\mathscr{B}}(f(a))$. Now notice $\chi(f(a)) = f(\chi(a))$ since both maps

$$f \mapsto \chi(f(a))$$

$$f \mapsto f(\chi(a))$$

are unital *-homomorphisms that coincide on z. Therefore,

$$\sigma(f(a)) = \{\chi(f(a)) \mid \chi \in \Omega(\mathcal{B})\} = \{f(\chi(a)) \mid \chi \in \Omega(\mathcal{B})\} = f(\sigma(a)).$$

Now to prove $(g \circ f)(a) = g(f(a))$. Let $C = C^*(1, f(a)) \subseteq \mathcal{B} = C^*(1, a) \subseteq \mathcal{A}$. Let $\chi \in \Omega(\mathcal{B})$. Then $\chi_C := \chi|_C \in \Omega(C)$. So $(g \circ f)(a)$ is sensibly defined and an element of \mathcal{B} , so we can apply a character:

$$\chi((g \circ f)(a)) = (g \circ f)(\chi(a)) = g(f(\chi(a))) = g(\chi(f(a))) = g(\chi_C(f(a)))$$
$$= \chi_C(g(f(a))) = \chi(\underbrace{g(f(a))}_{\in \mathcal{A}})$$

Because the Gelfand-transform is injective, this implies $(g \circ f)(a) = g(f(a))$.

Proposition 7.27 Let \mathcal{A} be a unital C^* -algebra and $u \in \mathcal{U}(\mathcal{A}) = \{u \in \mathcal{A} \mid u^*u = 1 = uu^*\}$. If $\sigma(u) \neq \mathbb{S}^1$ there exists a self-adjoint $a \in \mathcal{A}$ with $u = \exp(ia)$.

PROOF: The idea is to take $\log \approx \exp^{-1}$. Problem: exp is not invertible as a complex function, because it is $2\pi i$ -periodic. We will need to restrict it. Consider the principal branch of the logarithm, $\log(z) = \log|z| + i \arg(z)$.

Given that $\sigma(a) \neq \mathbb{S}^1$, there exists an $\lambda \in \mathbb{S}^1 \setminus \sigma(a)$ and therefore also an $f_\lambda \in C(\mathbb{S}^1 \setminus \{\lambda\})$ (so some form of argument-mapping of z) such that $\exp(if_\lambda(z)) = z$. This f_λ is real-valued, continuous and analytical. Now use functional calculus: Let $a := f_\lambda(u) \in \mathcal{A}$. Since f_λ is real-valued, it is self-adjoint in the algebra, so a is also self-adjoint. By the previous theorem $\exp(ia) = \exp(if_\lambda(u)) = (\exp \circ if_\lambda)(u) = u$.

Multiplier Algebras

This is another kind of unitization. We will consider $\mathcal{A} \to M(\mathcal{A}) \ni \mu$ such that $\mu \cdot a \in \mathcal{A} \ni a \cdot \mu$ so $\mathcal{A} \subseteq M(\mathcal{A})$. Remember that this was the case for the usual unitization, with Quotient \mathbb{C} . Here, the multiplier is usually much bigger, so the quotient is as well. In fact, $\mathcal{A} \times \mathbb{C}$ is the 'smallest' unitization while $M(\mathcal{A})$ is the 'largest' one.

Definition 7.28 (Multiplier, see Murphy) Let \mathscr{A} be an algebra. A multiplier of \mathscr{A} is a pair $\mu = (L, R)$ where $L, R : \mathscr{A} \to \mathscr{A}$ are linear maps such that

- (i) $L(ab) = L(a) \cdot b$ or $\mu(ab) = (\mu a)b$
- (ii) $R(ab) = a \cdot R(b)$ or $(ab)\mu = a(b\mu)$
- (iii) $a \cdot L(b) = R(a) \cdot b$ or $a(\mu b) = (a\mu)b$.

To simplify this, use the notation $\mu \cdot a := L(a)$ and $a \cdot \mu := R(a)$.

For the space of all multipliers we write $M(A) = \{ \mu = (L, R) \mid \mu \text{ multiplier} \}$. This is a \mathbb{C} -vector space with

$$(L_1, R_1) + (L_2, R_2) = (L_1 + L_2, R_1 + R_2)$$
 $\lambda(L_1, R_1) = (\lambda L_1, \lambda R_2)$

and an algebra with

$$(L_1, R_1) \cdot (L_2, R_2) = (L_1 \cdot L_2, R_2 \cdot R_1).$$

If \mathcal{A} is a *-algebra, we further define

$$(L,R)^* = (R^*,L^*)$$
 where $L^*(a) := L(a^*)^*$ and $R^*(a) := R(a^*)^*$

Moreover, we have a canonical (*)-homomorphism $\iota : \mathcal{A} \to M(\mathcal{A}), a \mapsto (L_a, R_a)$ where $L_a(b) = ab$ and $R_a(b) = ba$. Note: ι is always a (*)-homomorphism but injective if and only if

$$\forall_{a \in \mathcal{A}} \ a \cdot b = 0 \ \forall_b \Rightarrow a = 0$$
$$b \cdot a = 0 \ \forall_b \Rightarrow a = 0$$

i.e. \mathscr{A} is an essential ideal of itself. This is not always true for a general algebra, consider the algebra with the 0-product $a \cdot b = 0$, but it always holds for C^* -algebras or if \mathscr{A} is unital already.

More generally this holds if \mathcal{A} is a Banach algebra with an **approximate unit**, a net $e_i \subseteq \mathcal{A}$ such that $e_i a \to a$ and $a \cdot e_i \to a$ for any $a \in \mathcal{A}$ as well as $||e_i||$. This is always the case for unital and C^* -algebras.

Assume ι is injective. Then \mathscr{A} is identified with an essential (*)-ideal of $M(\mathscr{A})$.

Remark 7.29 (Norms on the multiplier) If \mathcal{A} is a Banach algebra with an approximate unit, we define for $\mu = (L, R) \in M(A)$ the norm

$$\|\mu\| := \|L\| = \|R\| < \infty.$$

PROOF: To show $||L||, ||R|| < \infty$ we use the Closed Graph Theorem. Say we have $(a_n) \subseteq \mathcal{A}$ with $a_n \to a$ and $L(a_n) \to b$. Take $c \in \mathcal{A}$ and consider

$$c \cdot L(a) = R(c) \cdot a = \lim_{n \to \infty} R(c) \cdot a_n = \lim_{n \to \infty} c \cdot L(a_n) = c \cdot b.$$

Because of the approximate unit (or ι injective) we have L(a) = b. This shows that L (and, analogously, R) are bounded. Now to prove ||L|| = ||R||. Take any $a \in \mathcal{A}$ and consider

$$\|L(a)\| \stackrel{\text{approx. unit}}{=} \sup_{\|b\| \le 1} \|bL(a)\| = \sup_{\|b\| \le 1} \|R(b)a\| \le \sup_{\|b\| \le 1} \|R(b)\| \|a\| \le \|R\| \cdot \|a\|$$

which implies $||L|| \le ||R||$. By symmetry of the situation, we have ||L|| = ||R||.

With the norm above, $M(\mathcal{A})$ becomes a Banach algebra.

Proposition 7.30 If \mathscr{A} is a C^* -algebra then $M(\mathscr{A})$ is too.

PROOF: Write $\mu = (L, R)$. We compute $\mu^* \mu = (R^*, L^*) \cdot (L, R) = (R^*L, RL^*)$. So $\|\mu \mu^*\| = \|R^*L\|$. Take $a \in \mathcal{A}$ with $\|a\| \le 1$. Then

$$||L(a)||^2 = ||L(a)L(a)^*|| = ||L(a)L^*(a^*)|| = ||R^*(L(a))a^*|| \le ||R^*(L(a))|| \le ||R^*L||$$

This shows $||L||^2 \le ||R^*L||$ and therefore $||\mu||^2 = ||L||^2 \le ||R^*L|| = ||\mu^*\mu||$. Because $||\mu||^2 \ge ||\mu\mu^*||$ is clear by submultiplicativity, the C^* -property follows.

Compare now $\tilde{\mathcal{A}}$ and $M(\mathcal{A})$. We have $\mathcal{A} \subseteq \tilde{A}$ and $\mathcal{A} \subseteq M(\mathcal{A})$. When are these ideals essential?

Lemma 7.31 Let \mathcal{A} be a C^* -algebra or Banach algebra with approximate unit. $\mathcal{A} \subseteq \tilde{\mathcal{A}}$ if and only if \mathcal{A} is not unital.

PROOF: Suppose that \mathscr{A} is unital with $1_{\mathscr{A}}$ as the unit. In this case, take $p = 1 - 1_{\mathscr{A}} \in \tilde{\mathscr{A}}$ (where 1 = (0, 1) is the unit in $\tilde{\mathscr{A}}$). Notice that $p \cdot \mathscr{A} = 0$, but $p \neq 0$. So \mathscr{A} is not essential in $\tilde{\mathscr{A}}$.

Suppose that \mathscr{A} is not unital. To prove: For $a + \lambda \cdot 1 \in \widetilde{\mathscr{A}}$ and $(a + \lambda \cdot 1)\mathscr{A} = 0$ we have a = 0, $\lambda = 0$. So take any $(a + \lambda \cdot 1) \cdot b = 0$ for all $b \in \mathscr{A}$, that is $ab + \lambda b = 0$. This means $L_a(b) = -\lambda b$, that is $L_a = -\lambda \operatorname{id}_{\mathscr{A}}$. Notice $L : \mathscr{A} \to \mathscr{L}(\mathscr{A})$, a unital algebra with unit $\operatorname{id}_{\mathscr{A}}$, is an injective (because ι is injective) algebra homomorphism. If $\lambda \neq 0$, then division by λ implies $\operatorname{id}_{\mathscr{A}} \in \operatorname{im}(L) \simeq \mathscr{A}$. But then \mathscr{A} has a unit, a contradiction. So $\lambda = 0$. Then $a \cdot b = 0$ for every b, so a = 0 as well. This shows that \mathscr{A} is an essential ideal of $\widetilde{\mathscr{A}}$.

Remark 7.32 Let \mathscr{A} be a C^* -algebra or Banach algebra with approximate unit. Then \mathscr{A} is unital if and only if $M(\mathscr{A}) = \mathscr{A}$.

PROOF: One direction is simple: $M(\mathcal{A})$ is always unital, so $\mathcal{A} \simeq M(\mathcal{A})$ implies that \mathcal{A} is unital. Let now \mathcal{A} be unital and prove that every multiplier is of the form (L_a, R_a) . Let $\mu = (L, R) \in M(\mathcal{A})$ and define $a := L(1_{\mathcal{A}})$. Then $L_a(b) = ab = L(1_{\mathcal{A}})b = L(b)$, so $L = L_a$. Analogously we can prove $R = R_a$. This shows that ι is surjective, and since it is already injective (because \mathcal{A} is either C^* or has an approximate unit) it is an isomorphism.

Say \mathcal{A} is a C^* -algebra (or a Banach algebra with an approximate unit) and not unital. Then $\iota: \mathcal{A} \to M(\mathcal{A}), a \mapsto \mu_a = (L_a, R_a)$ extends to a (*)-embedding

$$\tilde{\iota}: \tilde{\mathcal{A}} \to M(\mathcal{A}), a + \lambda \cdot 1 \mapsto \iota(a) + \lambda \cdot \underbrace{(\mathrm{id}, \mathrm{id})}_{=\mathrm{id}_{M(\mathcal{A})}}.$$

More generally: If \mathscr{B} is any C^* -algebra that contains \mathscr{A} as an essential ideal (closed), then \mathscr{B} embeds in the multiplier algebra via the following map:

$$\lambda: \mathcal{B} \to M(\mathcal{A}), b \mapsto (L_b, R_b)$$

where L_b, R_b are the usual left and right multiplication. We have $L_b(a), R_b(a) \in \mathcal{A}$ for any $a \in \mathcal{A}$ because \mathcal{A} is an ideal. The above is a universal property of the multiplier algebra. $M(\mathcal{A})$ is the largest unital C^* -algebra that contains \mathcal{A} as an essential ideal.

Example 7.33 Take $\mathcal{A} = C_0(X)$ (for a locally compact Hausdorff-space, so a commutative C^* -algebra). Then $\tilde{\mathcal{A}} = C(\tilde{X})$ where $\tilde{X} = X \sqcup \{\infty\}$. One can now show $M(\mathcal{A}) \simeq C(\beta X)$ where βX is the Stone-Cech-compactification of X. This can be proven using the universal property and the universal property of βX : βX is a compact Hausdorff space such that $X \hookrightarrow \beta X$ as a dense open topological subspace and for every other compact Hausdorff space K such that $X \to K$ via a continuous function K there exists a unique continuous extension K beta K is a compact Hausdorff space K such that K is a continuous function K there exists a unique continuous extension K is a compact K such that K is a continuous function K is a continuous function K.

First: Prove that $M(\mathcal{A})$ is even commutative. Then it is the continuous functions on some space, use the spectrum and compare the universal properties. For commutativity, one can show $M(C_0(X)) \simeq C_b(X)$ via the universal property.

7.2 Positive Elements of C^* -algebras

Definition 7.34 Let \mathcal{A} be a C^* -algebra. We say that $a \in \mathcal{A}$ is positive (and write $a \geq 0$) if $a = a^*$ and $\sigma(a) \subseteq [0, \infty)$.

The set of all positive elements of a given algebra we notate as \mathcal{A}_{+} .

Example 7.35 Let $A = C_0(X)$ (commutative) and $f \in \mathcal{A}$. Then $f = f^*$ iff f is real (that is $f: X \to \mathbb{R}$). Since $\sigma(f) = \overline{\operatorname{im}(f)}$ we see that $f \ge 0$ iff $f(x) \ge 0$ for all $x \in X$.

Theorem 7.36 If $a \in \mathcal{A}$ for \mathcal{A} a C^* -algebra and $a \geq 0$ then there exists a unique $b \in \mathcal{A}_+$ such that $b^2 = a$. We sometimes notate this as $b = \sqrt{a} = a^{\frac{1}{2}}$.

Proof: Since a is positive, it is self-adjoint and therefore normal. Continuous functional calculus:

$$\varphi: C_0(\sigma(a)) \to \mathcal{A}, f \mapsto f(a)$$

Apply this to $f(x) = \sqrt{x}$. Notice that $f \in C_0(\sigma(a))$ because $\sigma(a) \subseteq [0, \infty)$. Now simply choose $b = f(a) = \sqrt{a}$. Since φ is a *-homomorphism, we have $b^2 = \varphi(f)^2 = \varphi(f^2) = \varphi(id) = a$.

Reminder: Writing f(a) does not mean to imply that $a \in \mathcal{A}$ can simply be plugged into the function $f: \sigma(\mathcal{A}) \to \mathbb{C}$ but is simply a different way of writing $\varphi(f) \in \mathcal{A}$.

Uniqueness: Suppose $c \in \mathcal{A}_+$ such that $c^2 = a$. Then c commutes with $c^2 = a$ and therefore c commutes with $b = \sqrt{a}$ since $b = \lim_{n \to \infty} p_n(a)$ (polynomial approximation). Then $B := C^*(b,c) \subseteq \mathcal{A}$ is a commutative C^* -algebra so $B \simeq C_0(X)$ for some locally compact Hausdorff space X. Since $a,b,c \in B = C_0(X)$ we have $a \simeq f,b \simeq g,c \simeq h \in C_0(X)$ with $f = g^2 = h^2$ where all these functions are positive. But then $f(x) = g(x)^2 = h(x)^2$ for all x. Because $g(x), h(x) \geq 0$ for all x, this shows g(x) = h(x) for all x and therefore g = h and b = c. \Box

Remark 7.37 Given any self-adjoint element $a \in \mathcal{A}$ $(a^* = a)$ we can write it as $a^+ - a^-$ where $a^+, a^- \geq 0$ and $a^+ \cdot a^- = 0$. Just define $f(x) = \frac{|x| + x}{2}$ and $g(x) = \frac{|x| - x}{2}$. Both are positive functions with $f \cdot g = 0$. Define $a^+ = f(a)$ and $a^- = g(a)$ (once again per continuous functional calculus), transferring the necessary properties:

$$f(a) - g(a) = \varphi(f) - \varphi(g) = \varphi(f - g) = \varphi(\mathrm{id}) = a$$

$$f(a) \cdot g(a) = \varphi(f) \cdot \varphi(g) = \varphi(f \cdot g) = \varphi(0) = 0$$

$$\sigma(f(a)) = \sigma(\varphi(f)) \subseteq \sigma(f) = \overline{\mathrm{im}(f)} = [0, \infty)$$

Remark 7.38 If \mathcal{A} is unital C^* -algebra and $a \in \mathcal{A}$ is self-adjoint with $||a|| \leq 1$, so $\sigma(a) \subseteq [-1, 1]$. Define

$$f(x) = x + i\sqrt{1 - x^2}$$
 $q(x) = x - i\sqrt{1 - x^2}$

This means that $f,g \in \mathcal{U}C(\sigma(a))$ (Recall that unitaries of $\mathcal{U}(\mathcal{A}) = \{u \in \mathcal{A} \mid u^*u = 1 = uu^*\}$) and $\frac{f+g}{2} = \mathrm{id}_{\sigma(a)}$. So if we now define $u \coloneqq f(a), v \coloneqq g(a) \in C^*(a,1) \subseteq \mathcal{A}$ we have $\frac{u+v}{2} = a$. In particular $\mathcal{A} = \mathrm{span}(\mathcal{U}(\mathcal{A}))$.

Lemma 7.39 Let \mathscr{A} be a unital C^* -algebra, $a \in \mathscr{A}$ self-adjoint and $t \in \mathbb{R}_+$.

- (i) If $a \ge 0$ and $||a|| \le t$ then $||a t|| \le t$.
- (ii) Conversely, if ||a = t|| < t then a > 0.

PROOF: Replace \mathcal{A} by $C^*(a,1)$ we may assume that $\mathcal{A}=C(X)$ is commutative and X compact. Let $a=f\in C(X)$ be a self-adjoint, real function and $t\geq 0$ a real number.

- (i) $f \ge 0$ and $||f||_{\infty} \le t$ and thus $f(x) t \in [-t, 0]$ for all $x \in X$, so $||f t|| \le t$.
- (ii) Let $f \in C(X)$ be a self-adjoint real function with $||f t|| \le t$, so $|f(x) t| \le t$ for every x. But if f(x) < 0 for any $x \in X$ we have f(x) t < t and thus |f(x) t| > t, a contradiction. So f must be positive.

Corollary 7.40 If \mathcal{A} is a C^* -algebra, then \mathcal{A}_+ is a closed subset (but not subspace!) of \mathcal{A} .

PROOF: Taking unitization, we may assume that \mathcal{A} is unital. Let $(a_n) \subseteq \mathcal{A}_+$ and $a_n \to a \in \mathcal{A}$. Then $a_n^* = a_n$ for all $n \in \mathbb{N}$ and therefore a is also self-adjoint. There also exists $t \geq 0$ with $||a_n|| \leq t$ for all $n \in \mathbb{N}$ and by the Lemma $||a_n - t|| \leq t$ and therefore $||a - t|| \leq t$. Again by the Lemma $a \geq 0$.

Corollary 7.41 If \mathcal{A} is a C^* -algebra and $a, b \in \mathcal{A}_+$ then $a + b \in \mathcal{A}_+$.

PROOF: Taking unitization, we may assume that \mathcal{A} is unital. Since $a, b \ge 0$ by t = ||a||, ||b|| we have $||a - ||a||| \le ||a||$ and $||b - ||b||| \le ||b||$. Then

$$\|(a+b)-(\|a\|+\|b\|)\|=\|(a-\|a\|)+(b-\|b\|)\|\leq \|(a-\|a\|)\|+\|(b-\|b\|)\|\leq \|a\|+\|b\|$$

and a + b is positive by the lemma.

Theorem 7.42 If \mathcal{A} is a C^* -algebra and $a \in \mathcal{A}$ then $a^*a \geq 0$.

PROOF: First, we prove that if $-a^*a \ge 0$ then a = 0. For this we use the following observation $\sigma(bc) \setminus \{0\} = \sigma(cb) \setminus \{0\}$ (the two sets are equal except for the zero, which may be contained in one but not the other) because for b, c in a unital algebra and $1 - bc \in \text{inv } \mathcal{A}$ iff $1 - cb \in \text{inv } (\mathcal{A})$ and if $d := (1 - bc)^{-1}$ then $(1 - cb)^{-1} = 1 + cdb$.

Therefore, if $-a^*a \in \mathcal{A}_+$ then also $-a^*a \in \mathcal{A}_+$ (notice that a, a^* are self-adjoint). Then write a = b + c with $b, c \in \mathcal{A}$ self-adjoint. Then

$$a^*a + aa^* = (b - ic)(b + ic) + (b + ic)(b - ic) = b^2 + c^2 + ibc - icb + b^2 + c^2 + icb - icb = 2b^2 + 2c^2.$$

and we can write $a^*a = 2b^2 + 2c^2 - aa^*$. The squares are certainly positive and we have assumed $-aa^* \ge 0$, but then $a^*a \ge 0$. We see that $aa^* \ge 0$ as well, so the spectrum has to be zero.

Now suppose that $a \in \mathcal{A}$ arbitrarily. We show that $a^*a \geq 0$. Let $b := a^*a$. Then $b \in \mathcal{A}$ is self adjoint with $b = b^+ - b^-$ where $b^+, b^- \geq 0$. Let $c := ab^-$. Then

$$-c^*c = -b^-a^*ab^- = -b^-(b^+ - b^-)b^- = (b^-)^3 > 0$$

and c must be 0 by our first result. This implies $(b^-)^3 = 0$ so $b^- = 0$. It follows that $b = b^+ \ge 0$.

Definition 7.43 Let \mathcal{A} be a self-adjoint algebra and $a, b \in \mathcal{A}$. We write $a \leq b$ if $b - a \geq 0$. This turns \mathcal{A} into a poset. Because A_+ is a cone, that is $A_+ + A_+ \subseteq A_+$ and $\mathbb{R}_+ \cdot \mathcal{A}_+ \subseteq \mathcal{A}$ as well as $A_{self-adjoint} = A_+ - A_+$ and $A_+ \cap -A_+ = \{\}$.

Theorem 7.44 Let \mathscr{A} be a C^* -algebra.

- $(i) A_{+} = \{a^*a \mid a \in \mathcal{A}\}\$
- (ii) a, b self-adjoint and $c \in \mathcal{A}$. Then $a \leq b$ imples $c^*ac \leq c^*bc$.
- (iii) $0 \le a \le b$ implies $||a|| \le |b||$
- (iv) If \mathcal{A} is unital and $a, b \ge 0$ with $a \le b$ and $a, b \in \operatorname{inv}(\mathcal{A})$ then $b^{-1} \le a^{-1}$.

Proof:

- (i) It follows from the previous theorem. The fact that $a \in \mathcal{A}_+$ has a square root $a = b^2 = b^*b$ with b > 0.
- (ii) $c^*bc c^*ac = c^*(b-a)c$ and if we set $b-a = d^*d$ for a $d \in \mathcal{A}$ we receive $c^*(b-a)c = c^*d^*dc = (dc)^*dc \ge 0$.

- (iii) We may assume $1 \in \mathcal{A}$. Notice that $b \leq ||b|| \cdot 1$ (consider the commutative case). So wie have $a \leq b \leq ||b|| \cdot 1$ and therefore $a \leq ||b|| \cdot 1$ so $||a|| \leq ||b||$.
- (iv) Let $a, b \in \text{inv } \mathcal{A}$, $a, b \geq 0$ and $a \leq b$. We know that $\sigma(b^{-1}) = \sigma(b)^{-1} \subseteq \mathbb{R}_+$ and thus $b^{-1} \geq 0$ and Similarly $a^{-1} \geq 0$. Notice that if $c \geq 1$ (in \mathcal{A}) then $c \in \text{inv } \mathcal{A}$ (as $\sigma(c-1) \subseteq [0, \infty)$ and thus $\sigma(c) \subseteq [1, \infty)$) and $c^{-1} \leq 1$ (think once again commutative).

Now we have $a \leq b$. Then $1 = a^{-\frac{1}{2}}aa^{-\frac{1}{2}} \leq a^{-\frac{1}{2}}ba^{-\frac{1}{2}}$. Then $(a^{-\frac{1}{2}}ba^{-\frac{1}{2}}) = (a^{\frac{1}{2}}b^{-1}a^{\frac{1}{2}}) \leq 1$ by the above, so conjugation yields $b^{-1} < a^{-1}$.

7.3 Approximate units

Definition 7.45 Let \mathscr{A} be a Banach algebra. An approximate unit for \mathscr{A} is a net $(e_i)_{i\in I}\subseteq \mathscr{A}$ such that $||e_i||\leq 1$ and $e_ia\to a$, $ae_i\to a$ for all $a\in \mathscr{A}$. If \mathscr{A} is a C^* -algebra, then we (usually) also assume that $e_i\geq 0$ and (e_i) is increasing.

Example 7.46 Let $\mathcal{A} = C_0(X)$ be a commutative C^* -algebra (X locally compact and Hausdorff). Then a net $(f_i)_{i \in I}$ is an approximate unit if and only if $1 \geq f_i(x) \geq f_j(x) \geq 0$ for all $x \in X$ and $j \leq i$ and $f_i g \to g$ for all $g \in C_0(X)$, that is $f_i(x)g(x) \to g(x)$ uniformly on X. This is equivalent to $f_i(x) \to 1$ uniformly on compacts.

Example 7.47 Let $\mathcal{A} = \mathcal{K}(H)$, the span of the compact operators on a Hilbert space H, and use physics notation: $|\xi\rangle\langle\eta|(\zeta) = \xi\langle\eta,\zeta\rangle$. Let $(\xi_i)_{i\in I}\subseteq H$ be an orthonormal basis. For each $F\subseteq I$ finite we define

$$e_F := \sum_{i \in F} |\xi_i\rangle\langle\xi_i| \in \mathcal{K}(H)$$

In particular, $0 \le e_F \le 1$ (because $||e_F|| \le 1$) and $e_F \le e_G$ if $F \subseteq G$. Then $(e_F)_{F \subseteq I \text{ finite}}$, if ordered by size, is an approximate unit of for \mathcal{K} .

If H is separable, we could also take $e_n = \sum_{i=1}^n |\xi_i\rangle\langle\xi_i|$. Just check that $e_F(\zeta) = \sum_{i\in F} \xi_i\langle\xi_i,\zeta\rangle \to \zeta$, so $e_F \to 1$ strongly in B(H) (the bounded operators). Then it follows $e_F a \to a$ for all $a \in \mathcal{K}(H)$ and $ae_F \to a$ likewise.

Remark 7.48 If \mathscr{A} already has a unit $1 \in \mathscr{A}$, then $(e_i) \subseteq \mathscr{A}$ is an approximate unit iff $e_i \to 1$ (by the norm) and $0 \le e_i \le e_j \le 1$ for $i \le j$.

In particular, the constant net (1) is an approximate unit in any unital Banach algebra.

Theorem 7.49 Every C^* -algebra has an approximate unit. Moreover if $\mathscr A$ is a C^* -algebra and

$$\Lambda := \{ a \in \mathcal{A}_+ \mid ||a|| < 1 \}$$

then Λ is directed with the canonical order of $\mathcal{A}_+ \subseteq \mathcal{A}_{self-adjoint}$ and the canonical net

$$(e_{\lambda})_{\lambda \in \Lambda} e_{\lambda} = \lambda$$

is an approximate unit.

PROOF: Λ is directed. To prove: For every $a,b\in\Lambda$ there is a $c\in\Lambda$ such that $a,b\leq c$. Indeed, if $a\in\mathcal{A}_+$, then $1+a\geq 1$ in $\tilde{\mathcal{A}}=\mathcal{A}+\mathbb{C}\cdot 1$. Here, we work in the unitization for a moment, but do not assume we have a unit in \mathcal{A} ! In particular, $1+a\in\operatorname{inv}(\tilde{\mathcal{A}})$ and $a\cdot(1+a)^{-1}\in\mathcal{A}$ as $A\leq\tilde{A}$. Notice: $a(1+a)^{-1}=(a+1-1)(1+a)^{-1}=1-(1+a)^{-1}$ in the unitization.

Claim: For $a, b \in \mathcal{A}_+$ and $a \leq b$ we have $a(1+a)^{-1} \leq b(1+b)^{-1}$. This should be true because $a(1+a)^{-1} = f(a)$ where $f: [0,\infty) \to [0,1), x \mapsto \frac{x}{x+1} = x(1+x)^{-1}$ is increasing. f is a homeomorphism with $g = f^{-1}: [0,1) \to [0,\infty)$ given by $g(x) = \frac{x}{x-1}$.

homeomorphism with $g=f^{-1}:[0,1)\to [0,\infty)$ given by $g(x)=\frac{x}{x-1}$. Indeed, take $0\le a\le b$ then $1+a\le 1+b$ so $(1+b)^{-1}\le (1+a)^{-1}$ and therefore $a(1+a)^{-1}=1-(1+a)^{-1}\le 1-(1+b)^{-1}=b(1+b)^{-1}$. Now observe that if $a\in \mathcal{A}_+$ then $f(a)=a(1+a)^{-1}\in \Lambda$ because $\|f\|_{\sigma(a)\subseteq [0,\infty)}$ and thus $0\le f<1$. So we get an increasing map $\mathcal{A}_+\to\Lambda$, $a\mapsto a(1+a)^{-1}$. Now suppose $a,b\in\Lambda$, consider $g=f^{-1}:[0,1)\to [0,\infty), x\mapsto \frac{x}{x-1}$. Define a':=g(a),b':=g(b) and let $c:=(a'+b')(1+a'+b')^{-1}=f(a'+b')$. Then $c\in\Lambda$ and since $a'\le a'+b'$ we have $a=f(a')\le f(a'+b')=c$ and likewise $b\le c$. This shows that Λ is a directed set.

Now we have to check that $(e_{\lambda})_{\lambda \in \Lambda}$ with $e_{\lambda} = \lambda$ is an approximate unit for \mathcal{A} . Notice that (e_{λ}) is increasing and $e_{\lambda} = \lambda \geq 0$ and $||e_{\lambda}|| < 1$ for all λ . So we need only prove $e_{\lambda} \cdot a \to a \leftarrow a \cdot e_{\lambda}$ for every $a \in \mathcal{A}$. But using the involution, these two are equivalent:

$$(e_{\lambda}a) \to a \Leftrightarrow (e_{\lambda}a)^* \to a^* \Leftrightarrow a^*e_{\lambda} \to a \Leftrightarrow a^*e_{\lambda} \to a^*$$

It is even enough to prove $ae_{\lambda} \to a$ for only $a \in \Lambda$ because $\operatorname{span} \Lambda = \operatorname{span}(\mathcal{A}_+) = \mathcal{A}$. Let $a \in \Lambda$, in particular $a \in \mathcal{A}_+$. Consider 'its' Gelfand representation $\varphi : C^*(a) \to C_0(X)$ and let $f = \varphi(a) \in C_0(X)$. This function fulfils $0 \le f(x) < 1$ for all $x \in X$ because it comes from $a \in \mathcal{A}_+$.

Let furthermore $\varepsilon > 0$ and $K := \{x \in X \mid |f(x)| \ge \varepsilon\} \subseteq X$ compact. By Uryson's Lemma, we have a $g \in C_0(X), g : X \to [0,1]$ such that g(x) = 1 for all $x \in K$. Next, choose $\delta > 0$ with $\delta < 1$ and $1 - \delta < \varepsilon$. Then $g_{\delta} = \delta \cdot g \le \delta$ and therefore

$$||f - g_{\delta} \cdot f|| = ||f - \delta g f|| = \sup_{x \in X} ||f(x)|| \cdot ||1 - \delta g(x)||$$

$$\leq \max\{\sup_{x \in K} ||f(x)|| \cdot ||1 - \delta g(x)||, \sup_{x \notin K} ||f(x)|| \cdot ||1 - \delta g(x)||\}$$

$$\leq \max\{\varepsilon, 1 - \delta\} \leq \varepsilon$$

Now let $b := \varphi^{-1}(g_{\delta}) \in \mathcal{A}_+$ with ||b|| < 1 and $||a - ba|| < \varepsilon$.

This shows that for any $a \in \Lambda$ we can find $\lambda_0 = b \in \Lambda$ such that $||a - e_{\lambda_0}a|| < \varepsilon$. If now $\lambda \in \Lambda, \lambda \ge \lambda_0$ we have $e_{\lambda_0} \le e_{\lambda}$, so $1 - e_{\lambda} \le 1 - e_{\lambda_0}$ (in $\tilde{\mathscr{A}}$) and therefore $a(1 - e_{\lambda})a \le a(1 - e_{\lambda_0})a$ (*) (by conjugation property and because a is self-adjoint). But then

$$||a - e_{\lambda}a||^{2}||(1 - e_{\lambda}a)||^{2} = ||\underbrace{(1 - e_{\lambda})^{\frac{1}{2}} \cdot (1 - e_{\lambda})^{\frac{1}{2}}}_{\in \tilde{\mathcal{A}}} a|| \le ||(1 - e_{\lambda})^{\frac{1}{2}}a||^{2}$$

$$\stackrel{(*)}{\le} ||a(1 - e_{\lambda})a|| \le ||a(1 - e_{\lambda_{0}})a|| \stackrel{||a|| \le 1}{\le} ||(1 - e_{\lambda_{0}})a||$$

$$= ||a - e_{\lambda_{0}}|| < \varepsilon$$

so $e_{\lambda}a \to a$.

Definition 7.50 In general, C*-algebras do not admit a sequential approximate unit.

We say that a C^* -algebra \mathcal{A} is σ -unital if there exists such a sequential approximate unit $(e_n)_{n\in\mathbb{N}}$.

Example 7.51 $\mathcal{A} = C_0(X)$ is σ -unital if and only if X is σ -compact: $X = \bigcup_{n=1}^{\infty} K_n$ where $K_n \subseteq X$ are compact spaces.

8 Ideals in C^* -algebras

Theorem 8.1 Let \mathcal{A} be a C^* -algebra and $L \subseteq \mathcal{A}$ a left closed ideal. Then there exists a net $(u_{\lambda})_{\lambda \in \Lambda} \subseteq A_{+,1} \cap L$ (that is, elements with $0 \le u_{\lambda}$ and $||u_{\lambda}|| \le 1$) such that $a = \lim_{\lambda} au_{\lambda}$ for all $a \in L$.

PROOF: Set $B = L \cap L^*$. This is clearly a C^* -subalgebra. There is now an approximate unit $(u_{\lambda}) \subseteq B_{+,1} \subseteq A_{+,1}$ for B. Let $a \in L$. Then $a^*a \in L \cap L^* \in B$ and we have $\lim_{\lambda} a^*au_{\lambda} = a^*a = \lim_{\lambda} u_{\lambda}a$. It follows that

$$\lim_{\lambda} \|a - au_{\lambda}\|^{2} = \lim_{\lambda} \|(a - au_{\lambda})^{*}(a - au_{\lambda})\| = \lim_{\lambda} \|a^{*}a - a^{*}au_{\lambda} - u_{\lambda}a^{*}a - u_{\lambda}a^{*}au_{\lambda}\|$$

$$\leq \lim_{\lambda} \|a^{*}a - a^{*}au_{\lambda}\| + \lim_{\lambda} \|u_{\lambda}\| \cdot \|a^{*}a - a^{*}au_{\lambda}\| = 0$$

Let $L \subseteq \mathcal{A}$ be a closed left ideal and $(u_{\lambda}) \subseteq B = L \cap L^* \subseteq \mathcal{A}$. Then $\lim_{\lambda} au_{\lambda} = a$ for all $a \in L$. As a consequence:

Theorem 8.2 Every closed two-sided ideal $I \subseteq \mathcal{A}$ of a C^* -algebra satisfies $I^* = I$, so it is a *-ideal and in particular a C^* -algebra.

PROOF: By the lemma above, we find a net $(u_{\lambda}) \subseteq I$, $u_{\lambda} \ge 0$, such that $a = \lim_{\lambda} au_{\lambda}$ Then $a^* = \lim_{\lambda} u_{\lambda} a^* \in I$ (because $u_{\lambda} \in I$).

Corollary 8.3 Let $I \leq \mathcal{A}$ be a closed two-sided ideal of a C^* -algebra \mathcal{A} . Then for all $a \in \mathcal{A}$, $||a + I|| = \lim_{\lambda} ||a - u_{\lambda}a|| = \lim_{\lambda} ||a - u_{\lambda}a||$ where (u_{λ}) is an approximate unit for I.

PROOF: Let $\varepsilon > 0$ and take $b \in I$ such that $||a+b|| \le ||a+I|| + \frac{\varepsilon}{2}$. Recall that $||a+I|| = \operatorname{dist}(a,I) = \inf_{b \in I} ||a+b||$.

Since $\lim_{\lambda} u_{\lambda} b = b$. Then there exists λ_0 such that $||b - u_{\lambda}b|| < \frac{\varepsilon}{2}$ for all $\lambda \geq \lambda_0$. Then

$$\begin{aligned} \|a - u_{\lambda}a\| &\leq \|(1 - u_{\lambda})(a + b)\| + \|b - u_{\lambda}b\| \\ &\leq \|a + b\| + \|b - u_{\lambda}b\| \\ &< \|a + I\| + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \|a + I\| + \varepsilon \end{aligned}$$

On the other hand, $||a - u_{\lambda}a|| \ge ||a + I||$ for all λ and $||a + I|| = \lim_{\lambda} ||a + u_{\lambda}a|| = \inf_{\lambda} ||a - u_{\lambda}a||$. This shows the existence of the limit and therefore that the norm equals the distance.

Theorem 8.4 If $I \subseteq \mathcal{A}$ is a closed *-ideal in a C*-algebra \mathcal{A} , then \mathcal{A}/I is itself a C*-algebra.

PROOF: We already know that \mathcal{A}/I is a Banach *-algebra. We only need to show that $||a+I|| = ||(a+I)^*(a+I)||$.

Let $(u_{\lambda}) \subseteq I$ be an approximate unit and take $b \in I$. Then

$$||a + I||^2 = \lim_{\lambda} ||a - au_{\lambda}||_A^2 \stackrel{*}{=} \lim_{\lambda} ||(1 - u_{\lambda})a^*a(1 - u_{\lambda})||$$

$$\leq \sup_{\lambda} ||(1 - u_{\lambda})(a^*a + b)(1 - u_{\lambda})|| + \lim_{\lambda} ||(1 - u_{\lambda})b(1 - u_{\lambda})||$$

$$\leq ||a^*a + b||$$

Where * is because we can use the C^* -property of \mathcal{A} and $(1-u_{\lambda})$ is self-adjoint. The last inequality follows because the latter limit tends to 0.

Since b was arbitrary, we get

$$||a+I||^2 \le \inf_{b \in I} ||a^*a+b||_{\mathscr{A}} = ||a^*a+I|| = ||(a+I)^*(a+I)||$$

Theorem 8.5 If $\varphi : \mathcal{A} \to \mathcal{B}$ (where \mathcal{A}, \mathcal{B} are C^* algebras) is an injective *-homomorphism, then φ is isometric, i.e. $\|\varphi(a)\| = \|a\|$ for all $a \in \mathcal{A}$.

PROOF: It suffices to show that $\|\varphi(a)\|^2 = \|a\|^2$ or $\|\varphi(a^*a)\| = \|a^*a\|$. Replacing $\mathcal A$ by the C^* -algebra $C^*(a^*a)$ and B by $C^*(\varphi(a^*a)) \subseteq B$ (with $a^*a, \varphi(a^*a) = B$) $\varphi(a)^*\varphi(a) \geq 0$) we may assume that \mathscr{A}, \mathscr{B} are commutative. Also by adding units and extending φ to the unitization $\tilde{\varphi}: \tilde{\mathcal{A}} \to \tilde{\mathcal{B}}$ we may assume that $\mathcal{A}, \mathcal{B}, \varphi$ are unital. Now given $\chi \in \Omega(\mathcal{B})$ notice that $\chi \circ \varphi \in \Omega(\mathcal{A})$. So we get a map $\varphi_* : \Omega(\mathcal{B}) \to \Omega(\mathcal{A}), \chi \mapsto \chi \circ \varphi$. This is clearly continuous. Since $\Omega(\mathcal{B})$ is compact, $K := \varphi_*(\Omega(\mathcal{B}))$ is compact (in particular closed). By Uryson's Lemma, we find some continuous function $f \in C(\Omega(\mathcal{A}))$ such that $f|_K \equiv 0$ and $f \neq 0$ (if we assume $K \neq \Omega(\mathcal{A})$). By Gelfand-Representation we find $(\mathcal{A} \simeq C(\Omega(\mathcal{A})))$ and $a \in \mathcal{A}$ such that $\hat{a} = f$. Then for each $\chi \in \Omega(\mathcal{B})$,

$$\chi(\varphi(a)) = \hat{a}(\chi \circ \varphi) = \underbrace{\hat{a}}_{f} \underbrace{(\varphi_{*}(\chi))}_{\in K} = 0 \Rightarrow \varphi(a) = 0$$

and if $f \neq 0$, then $a \neq 0$. But we have $\varphi(a) = 0$ for all a, a contradiction. Therefore, φ_* is surjective. Now

$$||a||_{\mathscr{A}} = ||\hat{a}||_{\infty} = \sup_{\chi \in \Omega(\mathscr{A})} |\chi(a)| = \sup_{\chi \in \Omega(\mathscr{B})} |(\chi \circ \varphi)(a)| = ||\widehat{\varphi(a)}||_{\infty} = ||\varphi(a)||_{\mathscr{B}} \qquad \Box$$

Corollary 8.6 If $\varphi : \mathcal{A} \to \mathcal{B}$ is any *-homomorphism $(\mathcal{A}, \mathcal{B} \ C^*$ -algebras) then $\varphi(\mathcal{A})$ is closed, hence a C^* -subalgebra of \mathcal{B} .

PROOF: Consider $\psi: \mathcal{A}/_{\ker \varphi} \to \mathcal{B}, a + \ker \varphi \mapsto \varphi(a)$. Then ψ is a well-defined *-homomorphism and ψ is injective and therefore isometric. This shows that $\psi(\mathcal{A}/_{\ker \varphi}) = \varphi(\mathcal{A})$ is closed.

Remark 8.7 For some other related consequences, see Murphy's book.

- (i) If $\mathscr{A} \subseteq \mathscr{B}$ are C^* -algebras and $I \preceq \mathscr{B}$ is a closed 2-sided ideal then $\mathscr{A} + I$ is a C^* -subalgebra of \mathcal{B} . In particular, the sum of ideals in C^* -algebras are ideals: For any $I, J \leq \mathcal{A}$ have that $I + J \subseteq \mathcal{A}$ as well.
- (ii) If $I, J \triangleleft \mathcal{A}$ then $I \cdot J = I \cap J$. The product here is defined as the linear span of products $(I \cdot J = \overline{\operatorname{span}} \{i \cdot j \mid i \in I, j \in J\})$ but is actually just the products.

PROOF (IDEAS):

(i) To prove that $\mathcal{A} + I$ is closed, check that (A + I)/I is Banach by identifying it with

$$(A+I)/I \simeq \mathcal{A}/(\mathcal{A} \cap I), a+I \leftarrow a+A \cap I$$

Can also build arbitrary familys of ideals and the sum will be an ideal, also the intersection and product of ideals exist.

(ii) $I \cdot J \subseteq I \cap J$ is clear. To prove the converse, use the approximate unit. $I \cap J$ is clearly a C^* -algebra, take an approximate unit $(u_\lambda) \subseteq I \cap J$ and $x \in I \cap J$. Then $x = \lim_\lambda x u_\lambda$ where xu_{λ} is in $I \cdot J$ at all times.

9 Gelfand-Neymark representation

We know for commutative \mathcal{A} that $\mathcal{A} = C_0(\Omega(\mathcal{A}))$. But if \mathcal{A} is not commutative, $\Omega(\mathcal{A}) - \emptyset$ and this is useless. So we want to look at non-homomorphism functionals (the elements of the spectrum are homomorphism functionals) and hope that this is not empty. Hence we want to study positive linear functionals.

Definition 9.1 Let \mathcal{A}, \mathcal{B} C^* -algebras. A linear map $\varphi : \mathcal{A} \to \mathcal{B}$ is called **positive** if $\varphi(\mathcal{A}_+) = \mathcal{B}_+$. We write $\varphi \geq 0$ for this.

Remark 9.2 Let \mathcal{A}, \mathcal{B} C^* -algebras and $\varphi \geq 0$.

- (i) $\varphi \geq 0$ implies that $\varphi(\mathcal{A}_{sa}) = \mathcal{B}_{sa}$ (self-adjoint to self-adjoint). This follows because for any $a \in \mathcal{A}_{sa}$, we have $a = a^+ = a^-$ and $\varphi(a) = \varphi(a^+) \varphi(a^-) \in B_{sa}$.
- (ii) $a_1 \leq a_2$ in $\mathscr A$ yields $\varphi(a_1) \leq \varphi(a_2)$. This is because every *-homomorphism is primitive because $\varphi : \mathscr A \to \mathscr B$ a *-homomorphism and $a \geq 0$ in $\mathscr A$ imply $a = x^*x$ for some $x \in \mathscr A$ and thus $\varphi(a) = \varphi(x)^*\varphi(x) \geq 0$.

Example 9.3 Let $\varphi: M_m(\mathbb{C}) \to M_m(\mathbb{C}), a \mapsto a^T$ is positive but not a homomorphism. For this, consider $(a^*)^T = (a^T)^*$ and therefore $(a^*a)^T = (a^T)(a^T)^* \geq 0$, but not $(a^*a)^T \neq (a^T)^*(a^T)$.

Example 9.4 $\mathcal{A} = C_0(X)$. If B(X) are the Borell-subsetes of $X \mu : B(X) \to [0, \infty]$ is a positive bounded measure, then

$$\varphi_{\mu}: C_0(X) \to \mathbb{C}, f \mapsto \int_X f(x) d\mu(x)$$

is clearly positive, linear but (usually) not a homomorphism. If μ is a Dirac-measure this is a homomorphism and a character.

10 Positive linear maps and functionals

Definition 10.1 Let \mathcal{A}, \mathcal{B} be C^* -algebras, a linear map $\varphi : \mathcal{A} \to \mathcal{B}$ is called positive if $\varphi(\mathcal{A}_+) \subseteq \mathcal{B}_+$, that is $a \geq 0 \Rightarrow \varphi(a) \geq 0$. We write this as $\varphi \geq 0$.

Remark 10.2 Observe that $\varphi \geq 0$ implies $\varphi(a^*) = \varphi(a)^*$ for all $a \in \mathcal{A}$ and $\varphi(\mathcal{A}_{sa}) \subseteq \mathcal{B}_{sa}$. Also, φ respects inequality.

PROOF: Just write $a \in \mathcal{A}_{sa}$ as $a = a_+ - a_-$ with $a_+, a_- \in \mathcal{A}_+$.

Example 10.3 (i) Let $\mathscr{A} = M_n(\mathbb{C})$ the usual trace tr : $M_n(\mathbb{C}) \to \mathbb{C}$, $A \mapsto \sum_{i=1}^n a_{ii}$ is a positive linear functional In general a **trace** in a C^* -algebra is any positive linear map $\varphi : \mathscr{A} \to \mathbb{C}$ with $\varphi(ab) = \varphi(ba)$.

Proposition 10.4 If $\varphi : \mathcal{A} \to \mathcal{B}$ is a positive linear map, then φ is bounded (i.e. continuous).

PROOF: Let $M = \sup_{a \in \mathcal{A}_+} \|\varphi(a)\|$. If we had $M = \infty$ there exists $(a_n) \in \mathcal{A}_{+,1}$ where $\|\varphi(a_n)\| \ge 2^n$ for all n. Define $a := \sum_{n=1}^\infty \frac{a_n}{2^n} \in \mathcal{A}_{+,1}$. Since $\varphi \ge 0$ and $\sum_{n=1}^N \frac{a_n}{2^n} \le a$, we have $\sum_{n=1}^N \frac{\varphi(a_n)}{2^n} \le \varphi(a)$. Notice that $\varphi(a_n) \ge 2^n$ in $\tilde{\mathcal{B}}$ because whenever $b \in \mathcal{B}_+$ and $\|b\| \ge c \ge 0$ so $b \ge c \cdot 1$. So in conclusion $\varphi(a) \ge \sum_{n=1}^N \frac{\varphi(a_n)}{2^n} \ge N \cdot 1$ (in $\tilde{\mathcal{B}}$), implying $\|\varphi(a)\| \ge N$ for all $N \in \mathbb{N}$, a contradiction.

Now given any $a \in \mathcal{A}$ write it as a = b + ic where $b, c \in \mathcal{A}_{sa}$ where $b = \frac{a + a^*}{2}$ and $c = \frac{a - a^*}{2i}$. If $||a|| \le 1$ then $||b||, ||c|| \le 1$ and $b = b_+ - b_-$, $c = c_+ - c_-$ so $b_+ = \frac{b + |b|}{2}$, $b_- = \frac{b = |b|}{2}$, $c_+ = \frac{c + |c|}{2i}$ and $c_- = \frac{c - |c|}{2i}$ where $|b| = \sqrt{bb^*}$ so $||b_+||^2$, $||b_-|| \le 1$. Then

$$\|\varphi(a)\| = \|\varphi(b) + i\varphi(c)\| = \|\varphi(b_{+}) + \varphi(b_{-}) + i\varphi(c_{+}) + i\varphi(c_{-})\| \le 4M$$

We concentrate from now on positive linear functionals $\varphi : \mathcal{A} \to \mathbb{C}$. The main point is the following observation:

Remark 10.5 If $\varphi: \mathcal{A} \to \mathbb{C}$ is a positive linear functional, then $\langle a,b\rangle_{\varphi} \coloneqq \varphi(a^*b)$ is a semi-inner product on the vector space (fulfilling all requirements of an inner product except for $\langle a,a\rangle_{\varphi}=0 \Rightarrow a=0$). So Cauchy-Schwarz-inequality holds: $|\langle a,b\rangle_{\varphi}| \leq \|a\|_{\varphi} \cdot \|b\|_{\varphi}$ where $\|a\|_{\varphi} \coloneqq \langle a,a\rangle_{\varphi}^{\frac{1}{2}} = \varphi(a^*a)^{\frac{1}{2}}$ is the semi-norm implied by $\langle \cdot,\cdot\rangle_{\varphi}$. Therefore, $|\varphi(a^*b)|^2 \leq \varphi(a^*a) \cdot \varphi(b^*b)$ for all $a,b\in\mathcal{A}$.

Proposition 10.6 Let \mathscr{A} be a C^* -algebra and $\varphi \in \mathscr{A}_+^* = \{\varphi : \mathscr{A} \to \mathbb{C} \mid positive linear \}$. Then $|\varphi(a)|^2 \leq ||\varphi|| \varphi(a^*a)$ for all $a \in \mathscr{A}$.

PROOF: Let $(e_{\lambda}) \subseteq \mathcal{A}_{+,1}$ be an approximate unit. Using CS, we get

$$|\varphi(e_{\lambda}a)|^2 \le \varphi(e_{\lambda}^2) \cdot \varphi(a^*a) \le ||\varphi||\varphi(a^*a)$$

and taking the limit yields the statement.

Theorem 10.7 Let $\varphi \in \mathcal{A}^* = \{\varphi : \mathcal{A} \to \mathbb{C} \mid bounded linear \}$. Then the following are equivalent

- (i) $\varphi \geq 0$
- (ii) For each approximate unit $(e_{\lambda}) \subseteq \mathcal{A}_{+,1}$ we have $\|\varphi\| = \lim_{\lambda} \varphi(e_{\lambda}) = \sup_{\lambda} \varphi(e_{\lambda})$.
- (iii) For some approximate unit $(e_{\lambda}) \subseteq \mathcal{A}_{+,1}$ we have $\|\varphi\| = \lim_{\lambda} \varphi(e_{\lambda}) = \sup_{\lambda} \varphi(e_{\lambda})$.

Proof:

(i) \Rightarrow (ii): B the previous proposition, $|\varphi(a)|^2 \leq ||\varphi|| \varphi(a^*a)$. Applying this for $a = e_\lambda$, we get $|\varphi(e_\lambda)|^2 \leq ||\varphi|| \varphi(e_\lambda)^2$ Notice $e_\lambda^2 = e_\lambda^{\frac{1}{2}} e_\lambda e_\lambda^{\frac{1}{2}} \leq e_\lambda$. Since φ preserves inequality, we have $|\varphi(e_\lambda)|^2 \leq ||\varphi|| \varphi(e_\lambda)$, so $\varphi(e_\lambda) \leq ||\varphi||$ and therefore $\limsup_\lambda \varphi(e_\lambda) \leq \sup_\lambda \varphi(e_\lambda) \leq ||\varphi||$. We apply CS again: $|\varphi(e_\lambda a)|^2 \leq \varphi(e_\lambda)^2 \varphi(a^*a) \leq \varphi(e_\lambda) \varphi(a^*a)$ and hence $|\varphi(a)|^2 = \liminf_\lambda |\varphi(e_\lambda a)|^2 \liminf_\lambda \varphi(e_\lambda) ||a||^2 ||\varphi||$, as $\varphi(a^*a) \leq ||a||^2 ||\varphi||$.

Now taking sup over $||a|| \le 1$ yields

$$\|\varphi\|^2 \le \liminf_{\lambda} \varphi(e_{\lambda}) \|\varphi\| \Rightarrow \|\varphi\| \le \liminf_{\lambda} \varphi(e_{\lambda})$$

- (ii) \Rightarrow (iii): This is clear, as some linear morthpisms always exist.
- (iii) \Rightarrow (i): Let $a \in \mathcal{A}_{sa}$ and $||a|| \leq 1$. Write $\varphi(a) = \alpha + i\beta$ with $\alpha, \beta \in \mathbb{R}$. We prove that $\beta = 0$, that is $\varphi(a) \in \mathbb{R}$. We may assume $\beta \leq 0$ (or just take -a instead). Let $n \in \mathbb{N}$. Then

$$||a - ine_{\lambda}||^2 = ||(a + ine_{\lambda})(a - ine_{\lambda})|| = ||a^2n^2e_{\lambda}^2 - 2n(ae_{\lambda} - e_{\lambda}a)| \le 1 + n^2 + n||ae_{\lambda} - e_{\lambda}a||$$

THen we h and we have

$$\|\varphi(a - ine_{\lambda})\|^2 \le \|a - ine_{\lambda}^2 \le 1 + n^2 + n\underbrace{\|ae_{\lambda} - e_{\lambda}a\|}_{\to 0}$$

Taking $\lambda \to \infty$, we get $\varphi(e_{\lambda}) \le 1 + n^2$. Using $\varphi(a) = \alpha + i\beta$ and we get

$$\|\alpha + i\beta - in\|^2 \le 1 + n^2 \Rightarrow \alpha^2 + \beta^2 - 2n\beta + in^2 \le 1 + n^2 \Rightarrow -2n\beta \le 1 - \alpha^2 - \beta^2$$

. Because $\beta \leq 0$, we have to take $\beta = 0$.

Now to prove $\varphi \geq 0$: Take $a \in \mathcal{A}_+$ with $||a|| \leq 1$. Then $e_{\lambda} - a \in \mathcal{A}_{sa}$ and

$$-1 \le -a \le e_{\lambda} \le e_{\lambda} \le$$

So $||e_{\lambda}|| \leq 1$.

$$\underbrace{\varphi(e_{\lambda} - a)}_{\in \mathbb{R}} \le |\varphi(e_{\lambda})| \le 1$$

Letting $\lambda \to \infty$, then $1 - \varphi(a) \le 1$ so $\varphi(a) \ge 0$.k

Corollary 10.8 If \mathscr{A} is unital and $\varphi \in \mathscr{A}^+$ then $\varphi \geq 0 \Leftrightarrow \varphi(1) = ||\varphi||$.

Corollary 10.9 If \mathscr{A} is a unital C^* -algebra and $\varphi \in \mathscr{A}^*$, then $\varphi \geq 0 \Leftrightarrow \varphi(1) = ||\varphi||$.

Definition 10.10 A state on a C^* -algebra \mathcal{A} is a positive linear functional $\varphi \in \mathcal{A}_+^*$ with $\|\varphi\| = 1$.

We denote the set of all states by S(A).

Example 10.11 If $\mathcal{A} = B(H)$ or $\mathcal{A} = K(H)$ (bounded/compact operators on a hilbert space \mathcal{A}) or \mathcal{A} a subalgebra of any of these sets with non-degenerate $e_{\lambda} \to 1$. Let $\zeta, \eta \in H$ and define $\varphi_{\zeta,\eta}(a) := \langle \zeta, a\eta \rangle$. Then $\varphi_{\zeta,\eta} \in \mathcal{A}^*$ with $\|\varphi_{\zeta,\eta}\| \le \|\zeta\| \cdot \|\eta\|$. If $(e_{\lambda}) \subseteq \mathcal{A}_{+,1}$ is an approximate unit, then, using $e_{\lambda} \to 1$ (strictly) shows $\varphi_{\zeta,\eta}(e_{\lambda}) \to \langle \zeta, \eta \rangle$. If $\zeta = \eta$, then $\varphi_{\zeta} := \varphi_{\zeta,\zeta}$ is positive and so $\varphi_{\zeta}(a^*a) = \langle a\zeta, a\zeta \rangle = \|a\zeta\|^2 \ge 0$. By the previous theorem, $\|\varphi_{\zeta}\| = \lim_{\lambda} \varphi_{\zeta}(e_{\lambda}) = \|\zeta\|^2$. So φ_{ζ} is a state if and only if $\|\zeta\| = 1$.

Note that there are states that are not of this form at all! The ones presented here are the so-called **pure states**.

Theorem 10.12 If \mathscr{A} is a C^* -algebra and $a \in \mathscr{A}$ is normal with $\mathscr{A} \neq 0$ there exists a state $\varphi \in S(\mathscr{A})$ with $|\varphi(a)| = ||a||$

PROOF: We may assume $a \neq 0$ (we would only need to prove that any state exists, but this follows from the construction). Let $\mathscr{B} = C^*(a,1) \subseteq \tilde{\mathscr{A}}$. \mathscr{B} is abelian, $\hat{a} \in C(X)$ and $X = \Omega(\mathscr{B})$ (compact). Then there exists a $\chi \in \Omega(\mathscr{B}) = X$ (compact) such that $|\hat{a}(\chi)| = |\chi(a)| = ||\hat{a}||_{\infty} = ||a||$. By Hahn-Banach, extend $\chi : \mathscr{B} \to \mathbb{C}$ to $\psi \in (\tilde{\mathscr{A}})^*$ with $||\psi|| = ||\varphi|| = 1$. So $|\psi(a)| = |\chi(a)| = ||a||$ and also $|\psi(1)| = |\chi(1)| = 1$. By the corollary, $\psi \geq 0$ and $\psi \in S(\mathscr{A})$. Taking $\varphi := \psi|_{\mathscr{A}} \in \mathscr{A}_+^*$ shows $||\varphi|| \leq ||\psi|| = 1$ and $|\varphi(a)| = |\psi(a)| = ||a||$, so $||\varphi|| \geq 1$, so $||\varphi|| = 1$ and φ is also a state.

Theorem 10.13 (Extension of positive linear functionals) Let $\mathcal{A} \subseteq \mathcal{B}$ be an inclusion of C^* -algebras and $\varphi \in \mathcal{A}_+^*$. Then, there exists $\tilde{\varphi} \in \mathcal{B}_+^*$ with $\tilde{\varphi}|_{\mathcal{A}} = \varphi$ and $\|\tilde{\varphi}\| = \|\varphi\|$.

PROOF: First consider the case $\mathscr{B} = \tilde{\mathscr{A}}$. In this case, define $\tilde{\varphi} : \tilde{\mathscr{A}} \to \mathbb{C}, a + \lambda \cdot 1 \mapsto \varphi(a) + \lambda \|\varphi\|$. Of course, $\tilde{\varphi}$ is linear and $\tilde{\varphi}|_{\mathscr{A}} = \varphi$. To prove that $\tilde{\varphi}$ is bounded, let $(e_i) \subseteq \mathscr{A}$ be an approximate unit. Then

$$\begin{split} |\tilde{\varphi}(a+\lambda\cdot 1) &= |\varphi(a)+\lambda\|\varphi\|| = |\lim_{i}\varphi(ae_{i})+\lambda\lim_{i}\varphi(e_{i})| = \lim_{i}|\varphi(ae_{i}+\lambda e_{i})| \\ &= \lim_{i}|\varphi((a+\lambda 1)e_{i})| \leq \|\varphi\|\|a+\lambda 1\|\|e_{i}\| \leq \|\varphi\|\|a+\lambda 1\| \end{split}$$

because φ is bounded. So $\tilde{\varphi}$ is also bounded and $\|\tilde{\varphi}\| \leq \|\varphi\|$. But $\tilde{\varphi}(1) = \|\varphi\|$, so $\|\tilde{\varphi}\| = \|\varphi\|$ and $\tilde{\varphi}$ is therefore also positive.

Now the general case: Passing to the unitizations, we have an embedding $\tilde{\mathscr{A}} \subseteq \tilde{\mathscr{B}}$ and may assume that both \mathscr{A}, \mathscr{B} are unital with the same unit. By the unital case above, φ extends to $\tilde{\mathscr{A}}$ and then also to \mathscr{A} by Hahn-Banach. So there exists $\tilde{\varphi} \in \mathscr{B}^*$ with $\tilde{\varphi}|$. Since $\varphi \geq 0$, we know that $\varphi(1) = \varphi(1) = ||\varphi|| = ||\tilde{\varphi}|$, so $\tilde{\varphi} \geq 0$.

Remark 10.14

- (i) In certain cases the extension φ to $\tilde{\varphi}$ is unique. This is true if $\mathscr{A} \subseteq \mathscr{B}$ ore more generally if $\mathscr{A} \subseteq \mathscr{B}$ is a hereditary C^* -subalgebra (see Murphy: $\mathscr{A}\mathscr{B}\mathscr{A} = \mathscr{B}$ or $\mathscr{A} = L \cap L^*$ for some left-handed ideal L). In this case, $\tilde{\varphi}(b) = \lim \varphi(u_{\lambda}au_{\lambda})$ where $(u_{\lambda}) \subseteq \mathscr{A}$ where (u_{λ}) is an approximate unit.
- (ii) Say $\varphi \in \mathscr{A}^*$ is self-adjoint. If $\varphi^* = \varphi$ where $\varphi^*(a) = \overline{\varphi(a^*)}$ (involution on \mathscr{A}^*). We can write $\varphi \in \mathscr{A}^*$ as $\varphi = \Re(\varphi) + i\Im(\varphi)$ where $\Re(\varphi) = \frac{\varphi + \varphi^*}{2}$ and $\Im(\varphi) = \frac{\varphi \varphi^*}{2i}$ are self-adjoint, contained in \mathscr{A}^*_{sa} . Observe that $\mathscr{A}^*_{sa} = (\mathscr{A}_{sa})'$, the topological dual of \mathscr{A}_{sa} as an \mathbb{R} -vecotr Banach space.
- (iii) Any $\varphi \in \mathcal{A}_{sa}^*$ can be uniquely written as $\varphi = \varphi_+ \varphi_-$ where $\varphi_+, \varphi_- \in \mathcal{A}_+^*$ and $\|\varphi\| = \|\varphi_+\| + \|\varphi_-\|$.

11 The Gelfand-Naimark-Theorem

Definition 11.1 Let \mathcal{A} be a C^* -algebra. A **representation** of \mathcal{A} is a *-homomorphism π : $\mathcal{A} \to \mathcal{L}(H)$ for some Hilbert space H.

We say that π is

- (i) **faithful** if π is injective (and therefore isometric).
- (ii) non-degenerate if span $\pi(\mathcal{A})H = H$.
- (iii) irreducible if for all closed subspaces $K \subseteq H$ with $\pi(\mathcal{A})K \subseteq K$ (K is π -invariant) we have K = 0 or K = H.

Remark 11.2 The exercises show that π non-degenerate is equivalent to $\pi(e_{\lambda}) \to 1$ (strongly) for an approximate unit $(e_{\lambda}) \subseteq \mathcal{A}$

We want to show that there is always a faithful homomorphism.

Definition 11.3 Let $\pi: \mathcal{A} \to \mathcal{L}(H)$, $\rho: \mathcal{A} \to \mathcal{L}(K)$ two representations. We say that π, ρ are (unitarily) equivalent if there exists a surjective isometry $u: H \to K$ such that $u^*\rho(a)u = \pi(a)$, i.e. $\rho = \operatorname{Ad}_{u^*}\pi$.

Definition 11.4 (Spectrum) We define

$$\hat{\mathcal{A}} = \{ [\pi] \mid \pi : \mathcal{A} \to \mathcal{L}(H), \pi \neq 0 \}$$

Also define $Prim(\mathcal{A}) = \{ \ker(\pi) \mid [\pi] \in \hat{\mathcal{A}} \}$ and $\hat{\mathcal{A}} \to Prim(\mathcal{A}), [\pi] \mapsto \ker \pi$ (primitive ideals). Let $\chi \in \Omega(\mathcal{A})$ be a character $\chi : \mathcal{A} \to \mathbb{C} = \mathcal{L}(\mathbb{C})$. Then $[\chi] \in \widehat{\mathcal{A}}$ and $\ker \chi \in \operatorname{Prim}(\mathcal{A})$.

How do we get representations of \mathcal{A} ?

Gelfand-Naimark-Siegal-Construction (GNS)

Theorem 11.5 Let $\varphi \in \mathcal{A}_+^*$ be any positive linear functional. We know that $\langle a,b\rangle_{\varphi} := \varphi(a^*b)$ defines a semi-inner-product and $||a||_{\varphi} = \varphi(a^*a)^{\frac{1}{2}}$ is a semi-norm. Let $N_{\varphi} := \{ a \in \mathcal{A} \mid ||a||_{\varphi} = 0 \}.$

Remark 11.6 Notice: $N_{\varphi} \subseteq \mathcal{A}$ is a closed left ideal.

Proof: From Cauchy-Schwarz:

$$|\varphi(a^*b)|^* \le \varphi(a^*a)\varphi(b^*b)$$

and therefore

$$N_{\varphi} = \{ b \in \mathcal{A} \mid \varphi(ab) = 0 \}$$

Let $H_{\varphi}^{\circ} \coloneqq \mathscr{A}/N_{\varphi}$ the quotient vector space. Then $\langle , \dot{,} \dot{\rangle}_{\varphi}$ factors through an inner product of H_{φ}°

$$\langle a + N_{\varphi}, b + N_{\varphi} \rangle = \langle a, b \rangle = \varphi(a^*b)$$

By completion we get a Hilbert space $H_{\varphi}=\overline{H_{\varphi}^{\circ}}^{\langle\cdot,\cdot,\cdot\rangle}$. Now we define (with L the linear operators)

$$\pi_\varphi^\circ:\mathscr{A}\to L(H_\varphi^\circ)$$

and thus

$$\pi_{\omega}^{\circ}(a)(b+N_{\varphi}) := ab+N_{\varphi}$$

meaning that $\pi_{\varphi}^{\circ}(a) \cdot \pi_{\varphi}^{\circ}(b) = \pi_{\varphi}^{\circ}(ab)$ and $\pi_{\varphi}^{\circ}(a^{*}) = (\pi_{\varphi}^{\circ}(a))^{*}$. Then

$$\varphi(b^*ac) = \langle \varphi_{\varphi}^{\circ}(a^*)(b+N_{\varphi}), c+N_{\varphi} \rangle = \langle b+N_{\varphi}, \pi_{\varphi}(a)(c+N_{\varphi}) \rangle.$$
 (11.1)

We claim now that π_{φ}° is bounded for $\|\cdot\|_{\varphi}$ and therefore show that $\pi_{\varphi}(a)$ extends to $\pi_{\varphi}(a) \in$ $\mathcal{L}(H_{\varphi}).$

Take

$$\|\pi_{\varphi}^{\circ}(a)(b+N_{\varphi})\|_{\varphi}^{2} = \|ab+N_{\varphi}\|_{\varphi}^{2} = \varphi((ab^{*}ab)) = \varphi(b^{*}a^{*}ab) \leq \|a\|^{2}\varphi(b^{*}b) \leq \|a\|^{2}\|b+N_{\varphi}\|_{\varphi}^{2} + \|a\|^{2}\|a\|^{$$

Therefore we get a representation: The GNS-Representation associated to φ .

$$\pi_{\varphi}: \mathcal{A} \to \mathcal{L}(H_{\varphi}), a \mapsto \pi_{\varphi}(a) = [b + N_{\varphi} \mapsto ab + N_{\varphi}]$$

If $(\pi_i)_{i\in I}$ is a family of representations $\pi_i: \mathcal{A} \to H$. We define the direct sum $\bigoplus_{i\in I} \pi_i: A \to \mathbb{R}$ $\mathcal{L}(\bigoplus_{i\in I} H_i), a\mapsto (\pi_i(a))_{i\in I} \text{ where } (\pi_i(a))_{i\in I}: \zeta\mapsto (\pi_i(a)\zeta).$

Theorem 11.7 (Gelfand-Naimar-Representation) Let \mathscr{A} be a C^* -algebra and define $\pi_U :=$ $\bigoplus_{\varphi \in S(\mathscr{A})} \pi_{\varphi} : \mathscr{A} \to \mathscr{L}(H_U) \text{ with } H_U = \bigoplus_{\varphi \in S(\mathscr{A})} H_{\varphi} \text{ for } H_{\varphi} = \mathscr{A}/N_{\varphi} \text{ with the semi-inner product}$ $\langle \cdot, \cdot \rangle_{\varphi}$ and $\pi_{\varphi}(a)(b+N_{\varphi})=ab+N_{\varphi}$. Then (π_U, H_U) is **faithful**.

PROOF: Suppose $0 \neq a \in \mathcal{A}$, $pi_U(a) = 0$ and $pi_U(a) = 0$. Then there exists $\varphi \in S(\mathcal{A})$ such that $\varphi(a^*a) = \|a^*a\| = \|a\|^2$. We know $\langle a, a \rangle_{\varphi} = \|a\|_{\varphi}$. Then $\pi_U(a) = 0$, so $\pi_{\varphi}(a) = 0$, so $\pi_{\varphi}(a^*a) = 0$ and therefore $\pi_{\varphi}(a)(b + N_{\varphi}) = ab + N_{\varphi} = 0$. This shows

$$i0 = \langle \pi_{\varphi}(a)(b+N_{\varphi}), \pi_{\varphi}(a)(b+N_{\varphi}) \rangle = \varphi(b^*a^*ab)$$

for all $b \in \mathcal{A}$, so $b = e_{\lambda}$ (for $\lambda \to \infty$). But then $\varphi(a^*a) = 0$ and thus a = 0.

Observe that (π_U, H_U) is called the universal representation of \mathcal{A} . This is always nondegenerate. Indeed, each $(\pi_{\varphi}, H_{\varphi})$ is non-degenerate. Moreover, these are cyclic representations:

Definition 11.8 A representation $\rho: \mathcal{A} \to L(H)$ is **cyclic** if there is a $\zeta \in H$, $\|\zeta\| = 1$ such that $\overline{\rho(\mathcal{A})\zeta} = H$. ζ is called a cyclic vector for (ρ, H) .

Observe: Every non-degenerate representation is a sum of cyclic representations (proof via Zorn's Lemma omitted).

Proposition 11.9 Every GNS-representation (π_U, H_U) is cyclic.

PROOF: If \mathscr{A} is unital, then $\zeta \varphi := 1 + N_{\varphi} \in H_{\varphi}$ is a cyclic vector for π_{φ} . Then $\pi_{\varphi}(a)(\zeta \varphi) = a + N_{\varphi}$ and thus $\pi_{\varphi}(\mathcal{A})\zeta_{\varphi} = \mathcal{A}/N_{\varphi} \subseteq H_{\varphi}$ (dense). Therefore ζ_{φ} is cyclic and

$$\|\zeta\varphi\|^2 = \langle 1 + N_{\varphi}, 1 + N_{\varphi} \rangle = \varphi(1) = \|\varphi\| = 1$$

so $\varphi \in S(\mathcal{A})$. Moreover: $\langle \zeta_{\varphi}, \pi_{\varphi}(a)\zeta_{\varphi} \rangle = \langle 1 + N_{\varphi}, 1 + N_{\varphi} \rangle = \varphi(a)$.

Let us now look at the general case. Consider the linear map $\varphi_0: \mathcal{A}/N_\varphi \to \mathbb{C}, a+N_\varphi \to \varphi(a)$. This is well-defined and bounded:

$$\|\varphi(a)\|^2 < \|\varphi\|\varphi(a^*a) = \varphi(a^*a)$$

as φ is a state (and thus $\|\varphi\|=1$). So $\|\varphi\|\leq 1$. So φ_0 extends to a bounded linear factorial map on $\tilde{\varphi}_0 H_{\varphi} :\to \mathbb{C}$. By Riesz-Representation theorem, we have a $\zeta_{\varphi} \in_{\varphi}$ such that $\tilde{\varphi}_0(\eta) = \langle \zeta_{\varphi}, \eta \rangle$ and $\|\zeta_{\varphi}\| = \|\varphi_0\| = 1$. In particular $\varphi(a) = \varphi_0(a + N_{\varphi}) = \langle \zeta_{\varphi}, a + N_{\varphi} \rangle$. Now for $a, b \in \mathcal{A}$ we have

$$\langle \pi_{\varphi}, b + N_{\varphi} \rangle = \langle \zeta_{\varphi}, \pi_{\varphi}(a^*)(b + N_{\varphi}) \rangle = \langle \zeta_{\varphi}, a^*b \rangle = \varphi(a^*b) = \langle a + N_{\varphi}, b + N_{\varphi} \rangle$$

Therefor $\pi_{\varphi}(a)\zeta_{\varphi} = a + N_{\varphi}$ (*) as well as $\overline{\pi_{\pi}(\mathcal{A})\zeta_{\varphi}} = H_{\varphi}$ and $\varphi(a) = \langle \zeta_{U}, \pi_{\varphi}(a)\zeta_{\varphi} \rangle$. If $(e_{\lambda}) \subseteq \mathcal{A}$ is an approximate unit so $\pi_{\varphi}(a^{\lambda}) \to 1$ strong as $a \to \infty$. Then $\|\varphi\| \leftarrow \varphi(e_{\lambda}) = 0$ $\langle \zeta_{\varphi}, \pi_{\varphi}(e_{\lambda})\zeta_{\varphi} \rangle \to \|\zeta_{\varphi}\|^2$, so $\|\zeta_{\varphi}\| = 1$ and it is a cyclic representation.

Also, from (*) we know $\zeta_{\varphi} = \lim_{\lambda} \pi_{\varphi}(e_{\lambda}) \zeta_{\varphi} = \lim_{\lambda} e_{\lambda} + N_{\varphi}$.

So the GNS-construction gives a triple $(\pi_{\varphi}, H_{\varphi}, \zeta_{\varphi})$ satisfying our conditions.

Conversely, if (π, H, ζ) is a cyclic representation of \mathcal{A} , then $\varphi(a) := \langle \zeta, \pi(a)\zeta \rangle$ defines a style $\varphi \in S(\mathcal{A}).$

Remark 11.10 (irreducible representations and pure states) Notice: $\Omega(\mathcal{A}) \subseteq S(\mathcal{A}) \subseteq$ \mathcal{A}_1^* . In particular, we can endow this with the weak *-topology.

This is closed and therefore compact: Take $\varphi_i \in S(\mathcal{A})$ with $\pi_i \to \varphi \in \mathcal{A}_1^*$ ($\|\varphi\| leq 1$). Then

$$1 \stackrel{\lambda}{\leftarrow} \varphi_i(e_\lambda) \stackrel{i}{\rightarrow} \varphi(e_\lambda)$$

with $\|\varphi\| = 1 = \lim_{\lambda} \varphi(e_{\lambda})$.

Moreover, $S(\mathcal{A})$ is convex, so for $\varphi_1, \ldots, \varphi_n \in S(\mathcal{A})$ and $t_1, \ldots, t_n \in \mathbb{R}_+$ with $\sum_{i=1}^n t_i = 1$ we have $\sum_{i=1}^n t_i \varphi_i \in S(\mathcal{A})$.

Recall the Kreim-Milman-Theorem: If K is a compact convex subset of \mathcal{A}_1^* , then $K = \overline{\text{conv}(\text{Ext}(K))}$ where conv is the convex hull and Ext are the extremal points, that is all points in K that cannot be reached as linear combinations of other points (e.g. the corners of a closed triangle). In particular, any compact convex set must have extremal points (unless it is empty).

We will apply this to the states $K = S(\mathcal{A})$.

Definition 11.11 Call $PS(\mathcal{A}) := \operatorname{Ext}(S(\mathcal{A}))$ the **pure states** of \mathcal{A} .

Theorem 11.12 A state $\varphi \in S(\mathcal{A})$ is pure if and only if $\pi_{\varphi}\mathcal{A} \to \mathcal{B}(H_{\varphi})$ is irreducible if and only iff $\pi_{\varphi}(\mathcal{A})' := \{T \in \mathcal{B}(H_{\varphi}) \mid T\pi_{\varphi}(a) = \pi_{\varphi}(a)T\} = \mathbb{C} \cdot 1$ by Schur's lemma.

Proof: See Murphy.

Example 11.13 Let $\mathcal{A} = C_0(X)$. Take $\varphi \in C_0(X)^* \simeq$ Complex bounded Radon measure of X. If $\mu : \operatorname{Borells}(X) \to \mathbb{C}, E \to \mu(E)$ has $\mu = \Re \mu + i \Im \mu$. $\Re \mu = \Re (\mu)_+ - \Re (\mu)_-$ is a complex (Radon) measure, then the associated $\varphi = \varphi_\mu \in C_0(X)^*$ is $\varphi_\mu(f) = \int_X f(x) d\mu(x)$.

Moreover, $\varphi_{\mu} \geq 0 \Leftrightarrow \mu \geq 0$, so $C_0(X)_+^*$ consists of the positive Radon measures on X.

Note: Characters correspond to Dirac measures: $\mu_{x_0}(E) = 1$ if $x_0 \in E$ and 0 otherwise. The real measures correspond to the self-adjoint elements and the states correspond to those measures with $\mu(X) = 1$, that is the probability (positive Radon) measures on X.

Remark 11.14 Look at the GNS construction for $\varphi = \varphi_{\mu}$. Define

$$\langle f, g \rangle_{\varphi} = \varphi(f^* \cdot g) = \varphi(\overline{f} \cdot g) = \int_X \overline{f(x)} g(x) d\mu(x)$$

Then

$$N_{\varphi} = \left\{ f \in C_0(X) \mid \varphi(\overline{f}f) = \int_X |f(x)|^2 d\mu(x) = 0 \right\} \leq C_0(X)$$

Indeed, N_{φ} corresponds to the support of μ : supp $(\mu) = \{x \in X \mid \forall_{U \subseteq X \text{ open}} x \in U \Rightarrow \mu(U) > 0\}$ (this is always closed). Now we want to show for $U = \text{supp}(\mu)^{\complement}$:

$$N_{\omega} = C_0(U) = \{ f \in C_0(X) \mid f|_{U^{\mathbb{Q}}} \equiv 0 \}$$

"\(\text{\text{"}}\): If $f \in C_0(U)$, $f|_{\text{supp}(\mu)} \equiv 0$ then $\int_X |f(x)|^2 d\mu(x) = 0$. TODO

Then $H_{\varphi} = L^2(X, \mu) = \overline{C_0(X)}$ (with closure in respect to $\langle \cdot, \cdot \rangle_{2,\mu}$) and $\pi_{\varphi}(f)(\zeta + N_{\varphi}) = f \cdot \zeta + N_{\varphi}$ (where the added class N_{φ} represents that the functions are equal μ -almost everywhere). These correspond to $M_f(\zeta) = f \cdot \zeta$.

12 Inverse Semigroups

Our main results so far:

- Every commutative C^* -algebra \mathcal{A} is $\mathcal{A} \simeq C_0(X)$ where X is a locally compact Hausdorff space.
- Every C^* -algebra can be embedded into $\mathfrak{B}(H)$ for some Hilbert space H.

How to now model C^* -algebras in general? We look for general constructions of C^* -algebras and hope that many C^* -algebras in practice are 'part' of this construction. We are going to look at the class of C^* -algebras associated to (inverse) semigroups and groupoids. These include, in particular, groups. One of the motivating examples:

Example 12.1 Recall that the Cuntz- C^* -algebra is the (universal, unital) C^* -algebra \mathcal{O}_n generated by n isometries $S_1, \ldots, S_n \in \mathcal{O}_n$ satisfying the relations $S_i^* S_j = \delta_{ij} \cdot 1$ and $S_1 S_1^* + \cdots + S_n S_n^* = 1$. Then we can look at the set

$$S := \{S_{\alpha}S_{\beta}^* \mid \alpha, \beta \text{ finite words in } \{1, 2, \dots, n\}\} \cup \{0\} \subseteq \mathcal{O}_n$$

where for $\alpha = \alpha_1 \alpha_2 \cdots \alpha_k$ with $\alpha_i \in \{1, \dots, n\}$ we have $S_{\alpha} = S_{\alpha_1} \cdots S_{\alpha_k}$ and we convention that for the empty word ε we have $S_{\varepsilon} = 1$.

Note that $\mathcal{O}_n = C^*(S)$ and each non-zero element $s \in S$ is an isometry, and every element is a partial isometry, that is $ss^*s = s$. Also, S is closed under multiplication (of \mathcal{O}_n). So, this means that S is a sub semigroup of the multiplicative semigroup of \mathcal{O}_n . So S is a *-semigroup of partial isometries. We now consdier only C^* -algebras that thusly arise.

Definition 12.2 An inverse semigroup is a semigroup S (it is endowed with an associative multiplication $S \times S \to S$) which is also a *-semigroup (it is endowed with an involution *: $S \to S$ sometimes also called a 'pseudo-inverse') satisfying:

- $(s^*)^* = s \ (involution)$
- $(st)^* = t^*s^*$ (antimultiplicative)
- $ss^*s = s$
- The elements of $E(S) = \{s^*s \mid s \in S\}$ should commute. These elements are called **idem**potents and $E(S) = \{e \in S \mid e = e^2\}$.

Remark 12.3

- Where the first two properties makes it a *-semigroup and the last makes it a *-semigroup of partial isometries.
- E(S) is a commutative (inverse) subsemigroup of S and $e^* = e$ for all $e \in E(S)$.
- Given $s \in S$, $t = s^* \in S$ is the unique element of S satisfying sts = s and tst = t.

Example 12.4

(i) Groups are always inverse semigroups with exactly 1 idempotent, that is $E(S) = \{e\}$. Furthermore, we have $E(S) = \{s^*s \mid s \in S\} = \{ss^* \mid s \in S\}$.

If s^*sess^* for all s then $ss^*s = s = ss^*s$.

- (ii) **Commutative Inverse**: Semigroups that are exactly the () semilattices, that is partially order set (E, \leq) for which every $e, f \in E$ s has $e \land f = \in \{e, f\} = e \cdot f = f \cdot e$.
- (iii) If S is an inverse semigroup which is commutative, then S = E(S) =is the set of idempotents and this is a semilattice with $e \le f \Leftrightarrow e \cdot f = e$.
- (iv) Let X be any set (with the natural order) and $\mathfrak X$ the powerset of X, then $A \cdot B = A \cap B$ is a commutative ISG.
- (v) Consider $(\mathbb{N}_0, +)$. This can be viewed multiplicatively or additively. We will look at the addition. Certainly, this is a semigroup. Can it be an inverse semigroup? No, because we would need an element $n \in \mathbb{N}$ with n + m + n = 0 but that would imply n = 0. For (\mathbb{N}, \cdot) , we have the same problem.

Lets look at (IN, min) with multiplication $n \cdot m = \min(n, m)$ in compliance with the lattice. This is commutative and therefore an Inverse Semigroup.

- (vi) Take now $M_n(\mathbb{C})$ with basis $(e_{ij})^n$, then $e_{ij}e_{kl}=\delta_{j,k}e_{i,l}$ and $e_{ij}^*=e_{ji}$. Then $e_{ij}:\mathbb{C}\to\mathbb{C}$, $e_j\to e_i$ and partial isometries $e_{ij}e_{ij}^*e_{ij}=e_{ij}$. So $S=\{e_{ij}\mid i,j=1,\ldots,n\}\cup\{0\}\subseteq M_n(\mathbb{C})$ is a *-semigroup of partial isometries, so it is an inverse semigroup. The C^* -algebra of this inverse semigroup is $M_n(\mathbb{C})$.
- (vii) Let X be any set. Then

$$I(X) = \{f \mid f \text{ is partial bijection between subsets of } X\}$$

i.e. $f:U\to V$ is a bijection where $U,V\subseteq X$ (note that these may be any set, even the empty set and need not be open, as X does not even have a topology). We must still find a suitable product.

Take $f: U \to V$, $g: U' \to V'$. Take $\tilde{U} = f^{-1}(U' \cap V)$ and define $f \cdot g: \tilde{U} \to g(V \cap U'), x \mapsto f(g(x))$.

So I(X) is an inverse semigroup with $f^* = f^{-1}$ and $f(f^{-1}f) = \mathrm{id}_{D(f)} \cdot f = f$.

Additionally, we get $E(I(X)) = \{ id_U \mid U \subseteq X \} = 2^X$.

Example 12.5 (About I(X)) Take $X = \{1, 2\}$. Then

$$I(X) = \{0 = \emptyset, \mathrm{id}_{\{1\}}, \mathrm{id}_{\{2\}}, \mathrm{id}_X = 1, \{1\} \to \{2\}, \{2\} \to \{1\}, (\{i1\} \to \{2\}, \{2\} \to \{1\}) = (12)\}$$

whereas $Bij(X) = S_2 = \{id_X, (12)\}.$

One can also consider $I(\mathcal{A})$

- $\supseteq Aut(\mathcal{A}) = \{ f : \mathcal{A} \to \mathcal{A} : f \text{*-automorphism} \}$
- $\supseteq pAut(\mathcal{A}) = \{f : I \to J \mid I, J \trianglelefteq \mathcal{A}, f \text{*-automorphism}\}$

Theorem 12.6 (Vagner-Preston-Theorem) Every inverse semigroup S can be embedded (as an inverse sub semigroup) into I(X) for some X.

This is somewhat of a generalization of Caley's theorem.

PROOF (IDEA): Take $s \in S$ and $\overline{X} = S$ defines a partial bijection. $f_s(x) = sx$. Take $D_s = \{x \in X \mid s^*sx = x\} \subseteq X$, so $f_s : D_s \to R_s$, $f_s^{-1} = f_{s^*}$ where $R_s = \{x \mid ss^*x = x\} = D_{s^*}$ is the partial inverse..

Definition 12.7 Let S be an inverse semigroup (that is, S is a semigroup and for all $s \in S$ we have $s^* \in S$ and $ss^*s = s$). Then $C^*(S)$ is the <u>universal</u> C^* -algebra generated by (a 'copy' of) S as a *-semigroup.

More precisely: $C^*(S)$ is a C^* -algebra endowed with a *-homomorphism $\iota: S \to C^*(S)$ such that for every other C^* -algebra $\mathscr B$ with a *-homomorphism $\pi: S \to \mathscr B$ there exists a unique *-homomorphism $\tilde \pi: C^*(S) \to \mathscr B$ such that $\tilde \pi \circ \iota = \pi$.

Remark 12.8

- (i) We are going to prove that the C^* -algebra $C^*(S)$ exists.
- (ii) An inverse semigroup S might have a unit $1 \in S$ (i.e. 1s = s = s1). If this is the case, $C^*(S)$ and $\iota: S \to C^*(S)$ will be unital, and in the universal property we may assume \mathcal{B} and π to be unital.

Also, you can always formally add such a unit (and only this unit) to any inverse semigroup. Therefore, we will most of the time only consider such unital semigroups.

- (iii) An inverse semigroup S might have a zero 0 (i.e. 0s=0=s0). If this is the case, we would like that $0\in S$ "is" also $0\in C^*(S)$, that is the embedding ι is zero-preserving: $\iota(0)=0$. This is not automatic, but we can change the definition and force this to be true. Formally, we define another C^* -algebra $C_0^*(S)$ in a similar way by asking ι, \mathcal{B}, π to be zero-preserving.
- (iv) We will proof that $C_0^*(S)$ exists. It is actually $C_0^*(S) = C^*(S)/\langle \iota(0) \rangle$.

Example 12.9 Let $S = \{s\}$ be a single-element semigroup (with $s = s^* = s^2$). In this case s = 0 = 1. Then $C^*(S)$ is the universal C^* -algebra generated by a projection. We claim $C^*(S) = \mathbb{C}$. Indeed, $p = 1 \in \mathbb{C}$ is a projection with $\mathbb{C} = C^*(1) = \mathcal{C} \cdot 1$. So this means we have $\iota: S \to \mathbb{C}, s \mapsto 1$. If \mathcal{B} is any algebra with *-homomorphism $\pi: S \to \mathcal{B}$, this just means that $p = \pi(s) \in \mathcal{B}$ is a projection. Then $\tilde{\pi}: \mathbb{C} \to \mathcal{B}, \lambda \mapsto \lambda \cdot p$.

If, however, we treat $s \in S$ as the zero, then $C_0^* * = 0$.

Example 12.10 Set $S = \{p, q\}$ the inverse semigroup with two elments qq = q, and pp = qq = qp = p. $C^*(S)$ is the universal C^* -algebra generated. So there are two projections P, Q mit P = P ($P \leq Q$). Then the C^* -algebra is Commutative!i. Claim: $C^*(S) \simeq C^2 \to \mathbb{C}$. This is indeed that case as P(1,0) = Q(1,1). So we have $C_0^*(S) \simeq \mathbb{C}$.

Example 12.11 Let $S = \{1, g\}$ and $g = g^* = g^{-1}$ (and $g^2 = 1$). This is a full group. Then $C^*(S)$ is the universal unital C^* -algebra generated by a self-adjoint unit, so $C^*(S) = C^*_{univ}(1, u)$ for osme self-adjoint with $u^2 = 1$ and $u^* = u$. Then $C^*_0(S) = \mathbb{C}^2$.

Take $\iota: S \to \mathbb{C} \oplus \mathbb{C}$ where $1 \mapsto (1,1)$ and $g \mapsto u = (\alpha,\beta)$ with $\alpha,\beta \in \mathbb{R}$ and $\alpha^2 = 1 = \beta^2$. Then $\mathbb{C} \oplus \mathbb{C}$

PROOF (EXISTENCE OF $C^*(S)$): First, consider the *-algebra of S. Take

$$\mathbb{C}[S] = \left\{ \sum_{s \in S} a_s S_s \mid a_s \in \mathbb{C} \right\}$$

then $\delta_s \cdot \delta_t = \delta(st)$ and $\delta_s^* = \delta_{s^*}$.

The idea is now to complete this to a C^* -algebra. To get $C^*(S)$, take $C^*(S) = \overline{C[S]}^{\|\cdot\|}$. For C^* to be 'universal', it must be the largest and its norm must be the largest $\|\cdot\|$ C^* -algebra

norm. As a *-homomorphism between C^* -algebras is automatically contractive, we can define for $a \in \mathbb{C}[S]$. Then $\|a\|_{\max} = \sup\{p(a) \mid p : \mathbb{C}[S] \to [0,\infty), C^*$ seminorm $\}$. This set is non-empty, but it could be unbounded. We prove that, in the current case of a semigroup construction, this is not the case, and the supremum thus itself defines a C^* -seminorm. Write $a = \sum_{s \in S}^{\text{fin}} a_s \delta_s = \sum_{i=1}^m a_{s_i}$. Take $p \in \mathbb{C}[S] \to [0,\infty)$ a C^* -seminorm. Idea:

$$p(a) \le \sum_{i=1}^{n} |a_{s_i}| p(\delta_{s_i})$$

if $s \in S$, $p(\delta_s)^2 = p(\delta_s^* \delta_1) = \dots$

"L"et \mathscr{A} be a C^* -algebra, $p: \mathscr{A} \to [0,\infty)$ with a C^* -seminorm and $a \in \mathscr{A}$ a partial isometry. Then p(a) < 1.

Proof: Omitted. Define $N_p = \{a \in \mathcal{A} \mid p(a) = 0\} \leq \mathcal{A}$. Then

$$\mathcal{A}/N_p \xrightarrow{\|\cdot\|_p} [0,\infty), \|a+N_p\|_p := p(a)$$

is a C^* -norm and $C_p^*(\mathscr{A}) = \overline{\mathscr{A}/N_p}^{\|\cdot\|_p}$. Then $\pi: \mathscr{A} \xrightarrow{q} \mathscr{A}$ is a *-homomorphism. Furthermore, $p(a)^2 = \|a + N_p\|^2 = \|\pi(a)\|^2 = \|\pi(a^*a)\| \le 1$. Then $\pi(a)$ is a partial isometry of a C^* -algebra. So $\|\cdot\|_{\max}$ defined by the supremum is a C^* -seminorm. As in the lemma, define $C^*(S) = \overline{\mathbb{C}[S]/N_{\|\cdot\|}}^{\|\cdot\|}$. Then $C^*(S)$ is a C^* -algebra and we have a *-homomorphism $q: \mathbb{C}[S] \to C^*(S)$ as a quotient map (in completion plus embedding). Concatenating this with $s \mapsto \delta_s$ yields the final *-homomorphism.

Universal property: Take $\mathscr B$ any C^* -algebra with *-homomorphism $\pi:S\to\mathscr B$. This induces a *-homomorphism $\rho:\mathbb C[S]\to\mathscr B$ by $\rho(\sum a_s\delta_s)=\sum a_s\pi(s)$ and then $\|a\|_\rho:=\|\rho(a)\|_{\mathscr B}$ defines a C^* -seminorm. So $\rho(a)=\|a\|_\rho\leq \|a\|_{\max}$. This means that ρ is contractive and continuous (for the max norm). In particular, ρ vanishes on $N_{\|\cdot\|_m ax}$ and therefore induces a *-homomorphism $\tilde\pi:C^*(S)\to\mathscr B$.

This also shows the existence of $C_0^*(S)$.