Vaja 45: Tuljava v magnetnem polju

Matevž Demšar

26. julij 2024

Uvod. Pri vaji opazujemo navor na tuljavo v magnetnem polju, skozi katero teče tok. V splošnem velja:

$$\overrightarrow{M} = NI\overrightarrow{S} \times \overrightarrow{B}$$

Ker pri vaji uporabljamo magnetno polje, ki ga ustvarjata Helmholtzovi tuljavi, lahko gostoto magnetnega polja v izračunih izrazimo kot:

$$B = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 N_H I_H}{R_H}$$

Na tuljavo, skozi katero teče tok I, torej deluje navor z velikostjo

$$M = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 N N_H S \sin \varphi}{R_H} \cdot I \cdot I_H$$

Kot φ predstavlja kot met vektorjem gostote magnetnega polja B in površinskim vektorjem S. Pri merjenju bo φ enak $\pi/2$. Z merjenjem navora v odvisnosti od produkta tokov I in I_H lahko ocenimo vrednost indukcijske konstante μ_0 .

Meritve. Najprej moramo izmeriti dimenzije in število ovojev tuljav. Za Helmholtzovi tuljavi uporabimo podani vrednosti $R_H = 200 \ mm$ in $N_H = 154$, izmeriti pa moramo ročico sile na tuljavo $l, S = \pi R^2$ in število navojev N.

$$l = 0,114 m$$

$$R = 6,0 cm \pm 0,1 cm$$

$$S = 11,3 \times 10^{-3} m^2 \pm 0,4 \times 10^{-3} m^2$$

$$N = 3$$

Nato spreminjamo tok skozi tuljave (z I_H označimo tok skozi Helmholtzovi tuljavi, z I pa tok skozi tuljavo med njima) in merimo silo na tuljavo - to pomnožimo z l, da dobimo navor. Podatke zapišemo v Tabelo 1.

I[A]	$I_H [A]$	F[mN]
0	0	0
0,5	0,5	0,1
0,5	1,0	0,2
0,5	2,0	0,2
1,0	1,0	0,3
1,0	1,5	0,4
1,0	2,0	0,5
1,5	1,5	0,5
1,5	2,0	0,7
2,0	2,0	0,9
2,0	2,5	1,1
2,5	2,0	1,1
2,5	2,5	1,4
2,5	3,0	1,6
3,0	0,5	0,3
3,0	1,0	0,6
3,0	1,5	1,0
3,0	2,0	1,3
3,0	2,5	1,6
3,0	3,0	1,9

Tabela 1: Hitro lahko opazimo, da pri konstantnem toku I=3,0 A navor narašča linearno v odvisnosti od toka I_H .

Ker pričakujemo, da bo navor linearno odvisen od produkta $I \cdot I_H$, narišemo graf $M(I \cdot I_H)$. Le-tega prikazuje Slika 1. Iz koeficienta premice (k), ki jo priredimo podatkom, lahko izračunamo indukcijsko konstanto μ_0 .

$$M = k \cdot I \cdot I_H$$

$$k = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 N N_H S}{R_H}$$

$$\mu_0 = \left(\frac{4}{5}\right)^{-3/2} \frac{k R_H}{N N_H S}$$

$$\mu_0 = 9, 5 \times 10^{-7} \frac{V s}{Am}$$

Ocena napake. Do napak je prišlo pri vrednostih k in S. Predvidevamo:

$$\begin{split} \frac{\Delta k}{k} &= 0, 1\\ \frac{\Delta S}{S} &= 0, 04\\ \mu_0 &= 10 \times 10^{-7} \ \frac{Vs}{Am} \pm 1 \times 10^{-7} \ \frac{Vs}{Am} \end{split}$$

Odstopanje od znane vrednosti $\mu_0=12,5\times 10^{-7}~Vs/Am$ ni v okviru ocenjene napake, znaša pa okoli 20%, s čimer sem še kar zadovolje.

Slika 1: S pythonovo knjižnico scipy.optimize poiščemo linearno funkcijo, ki najbolje ustreza podatkom. Dobimo premico s smernim koeficientom $k=2,48\times 10^{-5}$. Napako pri vrednosti smernega koeficienta scipy.optimize ocenjuje na red velikosti 10^{-13} , kar je nenavadno, saj imajo podatki gotovonapako reda velikosti okoli 10%. Za nadaljnje računanje napake torej uporabimo kar 10%.