Ответы на теоретические вопросы к экзамену по математике. Семестр 1, 2019

по конспектам лекций Рачковского Н.Н. студентов группы 950501 Кагановича М.М., Поддубного Д.П., Веселова М.С. Под редакцией Рачковского Н.Н. и К°

12 января 2020 г.

Оглавление

PUBLIC SERVICE ANNOUNCEMENT

Todo list

- 1. add pictures to latter questions
- 2. fix types and mistakes, pointed out by redactors
- 3. align pictures properly
- 4. fill out the progress table
- 5. fix chapter names
- 6. rearrange misaligned questions
- 7. redo tikzpictures for the 2^{nd} quesiton

Элементы теортии Множеств

1.1 Множества и операции над ними

Множество - совокупность некоторых объектов, обладающих определёнными свойствами. Каждый из объектов называется элементом обозначение множества: $\{a|P(a)\}$ где P(a) - свойство, объединяющее объекты а.

Специльные символы, обозначающие операции над множествами:

- 1. содержится: $A \subseteq B$. Каждый элемент множества A содержится в B.
- 2. совпадает: $A = B \Leftrightarrow A \subseteq B, B \subseteq A$
- 3. объединение: $A \cup B = \{c | c \in A$ или $c \in B\}$
- 4. пересечение: $A \cap B = \{c | c \in A \mathbf{u} c \in B\}$
- 5. теоритическо-множественная разность: $A \setminus B = \{c | c \in A \ {\bf n} \ c \notin B\}$
- 6. декартово произведение: $A \times B = \{(a,b) | a \in A; b \in B\}^{-1}$

Операции с ∅:

- 1. $A \cup \emptyset = A$
- $A \cap \emptyset = \emptyset$
- 3. $A \setminus \emptyset = A$
- 4. $\emptyset \setminus A = \emptyset$

1.2 Замкнутость множеств

Рассматривая операции умножения и и деления над \mathbb{N} мы $ocma\"{e}мc$ я в $\mathbb{N} \Rightarrow \mathbb{N}$ замкнуто относительно операции умножения. Для того, чтобы \mathbb{N}

стало замкнуто относительно операции вычитания нужно добавить к нему отрицательные числа и ноль тем самым привратив его в \mathbb{Z} . Таким образом \mathbb{Z} замкнуто относительно \times, \pm но не \div . Для того, чтобы замкнуть \mathbb{Z} относительно \div , нужно дополнить его дробями вида $\frac{m}{n}$, где $m \in \mathbb{Z}$ и $n \in \mathbb{N}$. Т. О. получили \mathbb{Q} Получили: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ где \mathbb{R} - действительные числа.

1.3 Ограниченность множеств

А ограничено сверху, если $\exists M, \forall a \in A: a \leq M$ и А ограничено снизу, если $\exists M, \forall a \in A: a > M$

Таким образом, если множество ограничено **и** сверху **и** снизу, оно называется *ограниченным*. $\Rightarrow \exists M, \forall a \in A : |a| \leq M(1)$

$$\begin{split} \exists M_1, M_2, \forall a \in A: M_1 \leq a \leq M_2 \\ M &= \max(|M_1|, |M_2|) \\ M \geq |M_1| \geq M_2 \\ M \geq |M_1| \Rightarrow -M \leq -|M_1| \leq M_1 \Rightarrow \\ \forall a \in A: -M \leq -M_1 \leq a \leq M_2 \leq M \rightarrow -M \leq a \leq M \end{split}$$

Следовательно из ограниченности А получается (1).

1.4 Окрестности

Рассмотрим $a \in \mathbb{R}$. Окрестностью а является отрезок (b;c), содержущюю а. Рассмотрим $\epsilon > 0$. ϵ -окрестностью а является отрезок $(a - \epsilon; a + \epsilon)$, содержущюю а.

 $\mathcal{U}_{\epsilon}(a)$ есть отрезок длиной 2ϵ , центром которого является а:

 $\mathcal{U}_{\epsilon}(a) = \{ x \in \mathbb{R} | |x - a| < \epsilon \}$

Оно бывает и проколото: т.е. из отрезка удалена точка а: $\dot{\mathcal{U}}_{\epsilon}(a) = \mathcal{U} \setminus \{a\}$

Функции

обведи пж важные уравнения в коробку boxedeq{eq:*}{...}

Пусть даны 2 непустых множества A и В. Отображением из A и В называется правило, согласно которому каждому элементу множества A соответствует не более одного элемента В. Это обозначается $f:A\to B$ Областью определения f называется множество $D(f)=\{a\in A|\exists b=f(a)\}^1$ Множеством значений f называется множество $E(f)=\{b\in B|\exists a\in A;b=f(a)\}^2$ Запись b=f(a) обозначает, что $a\in A$ в отображениии f соответствует $b\in B$ тут b - образ, а a - прообраз.

Свойства биективного 2 отображения $f:A\to B$:

- 1. D(f) = A
- 2. E(f) = B
- 3. $\forall a_1, a_2 \in A, a_1 \neq a_2 : f(a_1) \neq f(a_2)$
- 4. обратное оторажение: $f^{-1}: B \to A; a = f^{-1}(b) \Leftrightarrow b = f(a)$

График отображения $fA \to B = \{(a,b)|b=f(a)\} \subset A \times B$ Если A и B - числовые, то это функция тогда график функции есть подмножество в декартовом квадрате³. Рассмотрим полскость с прямоугольной системой координат: элементам множества \mathbb{R}^2 можно поставить в соответствие точки этой полскости, координаты которой в этой С.К. являются эти элементы \mathbb{R}^2 . Тогда график функции можно предстваить как множество точек, причем ясно, что не каждое множество точек задает график функции. Множество точек задает график функции тогда и только тогда, когда любая вертикальная прямая параллельная оси ординат пересекает множество данных не более одного раза. Функция может задаваться аналитически, графичекси и неявно. Неявный способ: Рассмотрим $F: \mathbb{R}^2 \to R$ и Рассмотрим F(x;y) = 0. На Координатной плоскости рассмотрим множество решений

¹f - заданное нами правило

 $^{^2}$ взаим ооднозначного

 $^{^{3}\}mathbb{R}^{2}=\mathbb{R}\times\mathbb{R}$

этого уравнения: $\{(x;y) \in \mathbb{R}^2 | F(x;y) = 0\}$: если оказывается, что это множество является графиком функции, функция задана нефвно унавнением F(x;y) = 0.

2.1Типовые функции, график функции

Линейная функция:

Функция вида $y = kx + b; k, b \in \mathbb{R}$ имеет графиком невертикальную прямую при b = 0 график функции проходит через (0;0). К - угловой коеффициент равный тангенсу кгла наклона графика к Ох. Взаимное расположение двух прямых, заданных функциями $y_1 = k_1 x + b_1$ и $y_2 = k_2 x + b_2$:

- 1. совпаление прямых $\Leftrightarrow k_1 = k_2; b_1 = b_2$
- 2. параллельность прямых $\Leftrightarrow k_1 = k_2$ и $b_1 \neq b_2$
- 3. пересечение прямых $\Leftrightarrow k_1 \neq k_2$ доказательство свойства 2:
 - \Rightarrow) Пусть прямые $y_1 = k_1 x + b_1$ и $y_2 = k_2 x + b_2$ параллельны.

Следовательно у них не общих точек:

Следовательно у них не общих точек:
$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \end{cases}$$
 не имеет решений
$$\Rightarrow x(k_1 - k_2) = b_2 - b_1$$
 не имеет решений Следовательно
$$x = \frac{b_2 - b_1}{k_1 - k_2} \notin \mathbb{R} \Rightarrow \begin{cases} k_1 = k_2 \\ b_1 \neq b_2 \end{cases}$$

$$\Leftarrow$$
) Предположим, что $egin{cases} k_1=k_2 \\ b_1
eq b_2 \end{cases}$ и проведем все эти действия в

Формула получения угла между двумя прямыми

$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \end{cases}$$

обозначим угол между красной и синей линиями за θ , наклон линий соответственно ϕ_1 и ϕ_2 $\theta=\phi_1-\phi_2$ $k_1=\tan\phi_1$

$$k_2 = \tan \phi_2$$

 $\theta = \tan \phi_1 - \tan \phi_2 \Rightarrow$

$$\theta = \frac{k_1 - k_2}{1 + k_1 k_2} \tag{2.1}$$

Таким образом 2 прямые взаимоперпендикулярны тогда и только тогда когда $k_1 = \frac{-1}{k_2}$

2.1.2 Основные элементарные функции

Степенная функция

Окружность, Эллипс, Гипербола, Парабола

Пусть Существует прямоугольная система координат Оху; Пусть даны две точки $A(x_1; y_1), B(x_2; y_2)$; Тогда расстояние между A и B вычисляется так:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (3.1)

3.1 Фигуры и канонические уравнения фигур

Говорят, что уравнение на плоскости задет некоторую фигуру, если принадлежность M(x;y) этой фигуре равносильно выполнению равенства f(x;y)=0 для каждой точки этой фигуры.

3.1.1 Окружность

Окружностью называется множество всех точек в плоскости, удаленных от данной фиксированной точки, называемой центром окружности на одно и то же расстояние, называемое радиусом окружности.

дана точа M(x;y) и окружность с центром $O(x_0,r_0)$. $\in \omega(O,r) \Leftrightarrow |MO|=R\Leftrightarrow |MO|^2=r^2\Leftrightarrow$

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
(3.2)

Равенство 3.2 есть уравнение окружности т.к. оно равносильно принадлежности точки M к окружности.

3.1.2 Эллипс

Пусть на плоскости заданы 2 точки F_1, F_2 , расстояние между которыми равно 2c; и пусть дано некоторое число a > c. Эллипсом называется

множество всех точек ранной плоскости, длял которых сумма расстояний от этой точки до точек F_1 и $F_2=2a$. Точки F называются фокусами эллипса. Вывод:

Зададим на плоскости ПСК с $Ox = F_1F_2$; координаты точек F получаются: $F_1(-c;0), F_2(c;0)$ Возьмем произвольную точку $M(x;y)\Rightarrow (MF_1+F_1F_2)=2a\Rightarrow \sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$ $\therefore (x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2$ $\therefore a^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2$ $\therefore b^2x^2+a^2y^2=a^2b^2$, делим на a^2b^2

Так как обе переменных х и у в четных степенях, эллипс симметричен относительно начала координат. Эллипс ограничен прямоугольником 2a на 2b. В случае совпадения a и b получим $\omega(0,a)$. эксцентриситет эллипса: $\varepsilon = \frac{c}{a}$. $\varepsilon \in [0;1]$... $\varepsilon = 0$ для окружности.

3.1.3 Гипербола

На плоскости заданы несовпадающие точки F_1, F_2 , расстояние между которыми равно 2с. Пусть $a \in (0;c)$. Гиперболой называется множество точек, для которых разность расстояний от точки до F_1 и F_2 . F_1 и F_2 это фокусы гиперболы. На плоскости задана ПСК с $Ox = F_1F_2$; координаты точек F получаются: $F_1(-c;0), F_2(c;0)$

 $^{^{1}}$ неуверен в записи, особенно в $(MF_{1}+F_{1}F_{2})=2a$

wywod urawnenija giperboly zdesja.

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = -1$$
 (3.4)

Так как обе переменных x и y в четных степенях, эллипс симметричен относительно начала координат. $y=\pm \frac{b}{a}x$ - асимптоты гиперболы. а и b - полуоси гиперболыб точки пересеччения с Ох - вершины. эксцентриситет гиперболы: $\varepsilon=\frac{c}{a}.\ c>a\Rightarrow\varepsilon>1$

3.1.4 Парабола

На плоскости задана прямая Δ и $F \notin \Delta$. Параболой называется множество точек плоскости равноудаленных от Δ и F. При этом Δ -директрисса параболы, F - фокус Параболы. Введем ПСК: Ох проходит через F и \bot Δ \Rightarrow $F(\frac{p}{2};0)$ где p - расстояние от F до Δ .

Уравнение параболы wywod urawnenija tuta

$$y = \pm 2px \tag{3.5}$$

у в уравнении в чтной степени \Rightarrow парабола симметрична относительно Ох при $x \ge 0$ получается, что парабола расположена в правой полуплоскости.

Бином Ньютона

Бином Ньютона:
$$(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i}$$

Сочетания: $C_n^i = \frac{n!}{i!(n-i)!}$

Применим метод математической индукции:

- 1. При n=1 имеем: $a+b=C_1^0a^0b^1+C_1^1a^1b^0=\frac{1!}{0!(1-0)!}b+\frac{1!}{1!(1-1)!}a=b+a$ Таким образом, при n=1 формула верна
- 2. При n = 2:

$$(a+b)^2 = C_2^0 a^0 b^2 + C_2^1 a^1 b^1 + C_2^2 a^2 b^0 = \frac{2!}{0!(2-0)!} b : 2 + \frac{2!}{1!(2-1)!} ab + \frac{2!}{2!(2-2)!} a^2 = b^2 + 2ab + a^2$$

Для n=2 также справедлива формула бинома Ньютона

3. Предположим, что она верна и при n = k:

$$(a+b)^k = \sum_{i=0}^k C_k^i a^i b^{k-i}$$

4. Предположим, что она верна и при n=k+1 Действительно:

$$(a+b)^{k+1} = (a+b)^k(a+b) = (\sum_{i=0}^k C_k^i a^i b^{k-i})(a+b) = \sum_{i=0}^k C_k^i a^{i+1} b^{k-i} + \sum_{i=0}^k C_k^i a^i b^{k-i+1} = C_k^k a^{k+1} b^0 + \sum_{i=0}^{k-1} C_k^i a^{i+1} b^{k-i} + \sum_{i=1}^k C_k^i a^i b^{k-i+1} + C_k^0 b^{k+1} a^0 =$$

Заметим, что в обеих суммах сумма показателей степеней a и b в каждом слагаемом равна одному и тому же (k+1). С другой стороны, каждая из этих сумм содержит ровно одно слагаемое с множителями ab^k и ровно одно слагаемое с показателями a^2b^{k-1} и a^kb , поэтому:

$$=C_k^ka^{k+1}b^0+\sum_{i=0}^{k-1}(C_k^i+C_k^{i+1}a^{i+1}b^{k-i}+C_k^0b^{k+1}a^0\\C_k^i+C_k^{i+1}=\frac{k!}{i!(k-1)!}+\frac{k!}{(i+1)!(k-i-1)!}=\frac{k!(i+1)+k!(i-1)}{(i+1)!(k-i)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}=\frac{k!(k+1)}{(i+1)!(k+1)!}$$

$$= \frac{(k+1)!}{(i+1)!(k-i)!} = \frac{(k+1)!}{(i+1)!((k+1)-(i+1))!} = C_{k+1}^{i+1}$$

Продолжая цепочку равенств в вычисляемом $(a+b)^{k+1}$, получаем:

$$\begin{aligned} &1*a^{k+1}b^0 + \sum\limits_{i=0}^{k+1} C_{k+1}^{i+1}a^{i+1}b^{k-1} + 1*a^0b^{k+1}\\ &1 = C_{k+1}^{k+1} = C_{k+1}^0 \end{aligned}$$

В сумме сделаем замену j = i + 1:

$$\textstyle C_{k+1}^{k+1}a^{k+1}b^0 + \sum\limits_{i=1}^k C_{k+1}^j a^j b^{(k+1)-j} + C_{k+1}^0 a^0 b^{k+1} = \sum\limits_{j=0}^k C_{k+1}^j a^j b^{(k+1)-j}$$

Таким образом, мы показали, что формула Бинома Ньютона справедлива при $n=k+1\Rightarrow$ эта формула справедлива для любого натурального п

Числовая последовательность и ее предел. Свойства сходящихся последовательностей.

Числовая последовательность называется отображением в котором каждому $\mathbb N$ числу соответствует некоторое число. Последовательности принято изображать $\{x_n\}=x_1;x_2;\dots x_n$ Если из $\{x_n\}$ взято некое бесконечное подмножество, из которого сформирована другая последовательность, в которой порядок следования членов такой же как и в исходной последовательности, то она называется подпоследовательностью. Обозначение $\{x_{nm}\}$. Из определения последовательности: если $k_1 < k_2 \Rightarrow m_1 < m_2$. Число а называется пределом последовательности

 $\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N}, \forall n \geq N : |x_n - a| < \epsilon \Rightarrow \lim_{n\to\infty} x_n = a \Leftrightarrow$ в сколь угодно малой $\mathcal{U}_{\epsilon}(a)$ может находиться конечное число членов этой последовательности.

Предел числовой последовательности есть точчка, в которой кучкуются почти все члены последовательности за исключением, может последнего члена.

Последовательность, имеющая предел называется *сходящейся*; в противном случае - *расходящейся*. Расходящиеся последовстельности также включают бесконечно большие последовательности.

бесконечно большие последовательности:

$$\lim_{n\to\infty} k_n = \infty \Leftrightarrow$$

$$\forall M > 0, \exists N = N(M) \in \mathbb{N}, \forall n \ge N : |x_n| > M$$

бесконечно малые последовательности:

$$\lim_{n \to \infty} k_n = -\infty \Leftrightarrow$$

$$\forall M < 0, \exists N = N(M) \in \mathbb{N}, \forall n \ge N : |x_n| < M$$

5.1 Свойства сходящихся последовательностей DOKAZAT' SWOJSTWA

- 1. Сходящаяся последовательность имеет единственный предел. Действительно, если предположть, что пределов 2, можноуказать несколько \mathcal{U}_{ϵ} этих пределов, не пересекающте друг друга. По определению предела внутри каждой из этих $\mathcal{U}_{\epsilon}(a)$ должно содержаться бесконечно много членов последовательности, что есть противоречие.
- 2. Если Последовательность сходится к а, то любая подпоследовательность этоц последовательности сходиться к а.
- 3. Любая мходящаяся последовательность ограничена:

Пусть
$$\epsilon=1:\exists\in\mathbb{N}, n\geq N: |x_n-a|<1\Leftrightarrow |x_n|-|a|\leq |x_n-a|<1\Leftrightarrow |x_n|-|a|<1\Rightarrow |x_n|<|a|+1$$

Пусть члены $x_1 \dots x_{N-1}$, не попавшие в рассматриваемую окрестность точки а. и Пусть $M = \max(|x_1|\dots|x_{N-1}|,|a+1|) \ \forall n,|x_n| \leq M$

4. Если для 2х членов последоватеьностей x_n и y_n , сходящихся к числам а и b соответственно, начиная с некоторого номера $x_n < y_n, a \le b$:

Пусть
$$\lim_{n\to\infty} x_n = a$$

$$\lim_{n\to\infty} y_n = b$$
 $a < b \Rightarrow \exists N \in \mathbb{N}, A_n \geq N : x_n < y_n$
Примем $\epsilon = \frac{b-a}{2}$

$$\exists N_1, N_2 \in \mathbb{N}, \forall n \geq N_1, |x_n - a| < \frac{b-a}{2},$$

$$\forall n \geq N_2, |y_n - b| < \frac{b-a}{2}$$

$$\therefore \text{ при } N = \max(N_1, N_2)$$

$$\forall n \geq N : \begin{cases} x_n > a - \frac{b-a}{2} \\ x_n > a + \frac{b-a}{2} \\ b - \frac{b-a}{2} < y_n < b + \frac{b-a}{2} \end{cases}$$

- 5. Если для 3х последовательностей $x_n,\,y_n,\,z_n$ выполняется $x_n\leq y_n\leq z_n$ $\lim_{x_n\to\infty}x_n=a\,\lim_{x_n\to\infty}z_n=a,$ то y_n также сходится к a
- 6. Если $\lim_{x_n\to\infty}x_n=a\neq 0$, то начиная с некоторого номера $|x_m|>\frac{a}{2}$ все члены этой последовательности имеют тот же знак, что и a.

7.

Тероэма 5.1. Пусть x_n и y_n сходятся κ а и b, тогда

- (a) $\{x_n \pm y_n\} = k \lim_{n \to \infty} k_n = a \pm b$
- (b) $\forall c \{c \cdot x_n\} \lim_{n \to \infty} = c \cdot a$
- (c) $\lim_{n\to\infty} \{x_n \cdot y_n\} = a \cdot b$

- (d) $\lim_{n\to\infty} \left\{ \frac{1}{x_n} \right\} = \frac{1}{a}$, ecau $a \neq 0$ (e) $\lim_{n\to\infty} \left\{ \frac{y_n}{x_n} \right\} = \frac{b}{a}$, ecau $a \neq 0$

Бесконечно малые и бесконечно большие последовательности и их свойства

Выделяют бесконечно большие последовательности - последовательности, имеющие пределом бесконечность. Говорят, что последовательность $\{x_n\}$ имеет бесконечный предел, если $\forall M>0 \exists N=N(M)\in \mathbb{N}, \forall n\geq N: |x_n|>M$ Последовательность называется бесконечно малой последовательностью (б.м.п.), если $\forall \epsilon>0 \exists n_0\in \mathbb{N}: \forall n\geq n_0$ выполняется равенство $|x_n|<\epsilon$

6.1 Основные свойства б.м. и б.б. последовательностей

- 1. Сумма б.м. последовательностей есть б.м.п.
- 2. Произведение ограниченной последовательности и б.м. есть б.м.п.
- 3. Если $\{x_n\}$ б.м.п., то $\{x_n\}$ ограниченная последовательность
- 4. Произведение б.м.п. есть последовательность б.м.
- 5. Если $\{x_n\}$ б.м.п. и $x_n=c,\, \forall n\in\mathbb{N},\, {
 m To}\,\, c=0,\, {
 m T.e.}\,\, x_n=c, \forall n\in\mathbb{N}$
- 6. Если $\{x_n\}$ б.м.п. и $x_n \neq 0, \forall n \geq n_0: \{\frac{1}{x_n}\}_{n=n_0}^{\infty}$ б.б.п
- 7. Если $\{x_n\}$ б.б.п., то $\exists n_0 \in \mathbb{N}: x_n \neq 0, \forall n \geq n_0$ и последовательность $\{\frac{1}{x_n}\}_{n=n_0}^\infty$ б.м.п

Число е

Рассмотрим последовательность $x_n = (1 + \frac{1}{n})^n, n \in \mathbb{N}$

8.1 Сходимость

Докажем, что она сходится. Для этого используем вспомогательную после-

довательность
$$y_n = x_n(1+\frac{1}{n}) = (1+\frac{1}{n})^{n+1}$$
 Заметим, что $1+\frac{1}{n}>1$, поэтому: $y_n = x_n(1+\frac{1}{n})>x_n = (1+\frac{1}{n})^n = 1^n+n*1^{n-1}(\frac{1}{n})+...(\frac{1}{n})^n>1+1=2$

Таким образом, $\forall n \in \mathbb{N} : y_n > 2$

Т.е. последовательность ограниченна снизу числом 2

8.2 Убывание

Теперь покажем, что она является убывающей. Для этого рассмотрим отношение $\frac{y_n}{y_{n-1}} = \frac{(1+\frac{1}{n})^{n+1}}{(1+\frac{1}{n-1})^n} = \frac{(\frac{n+1}{n})^{n+1}}{(\frac{n}{n-1})^n} = \frac{(n+1)^{n+1}}{n^{n+1}} * \frac{(n-1)^n}{n^n} = \frac{(n+1)^{n+1}(n-1)^n}{n^{2n+1}} = \frac{n}{n-1} * \frac{(n^2-1)^{n+1}}{(n^2)^{n+1}} = \frac{n}{n-1} * (\frac{n^2-1}{n^2})^{n+1} = \frac{1}{\frac{n-1}{n}*(1+\frac{1}{n^2-1})^{n+1}} = (*)$ $(1+\frac{1}{n^2-1})^{n+1} = 1^{n+1} + (n+1) * 1^n * \frac{1}{n^2-1} + \dots + (\frac{1}{n^2-1})^{n+1} < 1 + \frac{1}{n-1} = \frac{n}{n-1} * (\frac{1}{n-1})^{n+1} = 1$

$$\frac{n}{n-1} * \frac{(n^2-1)^{n+1}}{(n^2)^{n+1}} = \frac{n}{n-1} * (\frac{n^2-1}{n^2})^{n+1} = \frac{1}{\frac{n-1}{n} * (1+\frac{1}{2})^{n+1}} = (*)$$

$$(1 + \frac{1}{n^2 - 1})^{n+1} = 1^{n+1} + (n+1) * 1^n * \frac{1}{n^2 - 1} + \dots + (\frac{1}{n^2 - 1})^{n+1} < 1 + \frac{1}{n-1} = \frac{n}{n-1} * < \frac{1}{n-1} = 1$$

$$\frac{y_n}{y_{n-1}} < 1 \Leftrightarrow y_n < y_{n-1} \Rightarrow \{y_n\}$$

По теореме 4, последовательность y_n сходящаяся. Вернемся к исходной последовательности $x_n \ x_n = \frac{y_n}{1+\frac{1}{n}}$

 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{y_n}{1 + \frac{1}{n}} = \lim_{n \to \infty} y_n$ (по пункту 5 теоремы 1) Таким образом, последовательность x_n также сходящаяся.

8.3 Число е

Пределом этой функции является число Эйлера (е). Таким образом, получаем следующее определение числа е:

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

 $e=\lim_{n\to\infty}(1+\frac{1}{n})^n$ Логарифм по основанию е - натуральный (ln) $\ln a=b\Leftrightarrow e^b=a$

$$\ln a = b \Leftrightarrow e^b = a$$

Предел функции в точке и на бесконечности, Односторонние пределы.

КАК-ТО МАЛО НАПИСАНО

Предел функции на бесконечности определяется так:

9.1 Бесконечный предел, Предел на бесконечности

- $\lim_{x\to\infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x, |x| > \delta; |f(x) A| < \epsilon$
- $\lim_{x \to x_0} f(x) = \infty \Leftrightarrow$ $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \dot{\mathcal{U}}_{\delta(x_0)}, |f(x)| > \epsilon$

9.2 Односторонние пределы

y = f(x) определена на $(x - \delta; x)$.

 $\lim_{x \to x_0 - 0} f(x) = A$: Односторонним пределом слева функции y = f(x) называется $A: \forall \epsilon > 0, \exists \delta_1 > 0, \forall x \in (x_0 - \delta_0; x_0): |f(x) - A| < \epsilon$, если A существует.

Анологично определяется предел справа: $\lim_{x\to x_0+0} f(x) = A \ \forall \epsilon > 0, \exists \delta_1 > 0, \forall x \in (x_0+\delta_0;x_0): |f(x)-A| < \epsilon$

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0 - 0} f(x) = A = \lim_{x \to x_0 + 0} f(x)$$

$$(9.1)$$

ГЛАВА 9. ПРЕДЕЛ ФУНКЦИИ В ТОЧКЕ И НА БЕСКОНЕЧНОСТИ, 9.2. ОДНОСТОРОННИЕ ПРЕДЕЛЫ ОДНОСТОРОННИЕ ПРЕДЕЛЫ.

предел слева(точка на красном) и справа(точка на синем)

в данном случае предела у функции нет

Бесконечно малые и бесконечно большие функции

БНФ не люди Пусть функция y=f(x) определена в окрестности $U(x_0)$. Эта функция называется бесконечно малой при $x\to x_0$, если $\lim_{x\to x_0}f(x)=0$ А бесконечно большой при $x\to x_0$ - если $\lim_{x\to x_0}f(x)=\infty$

- 1. Сумма и произведение любого конечного числа и б.м.ф. является б.м.ф
- 2. Пусть функция y=f(x) б.м.ф. при $x\to x_0$, а функция y=g(x) ограничена в $U(x_0)$, то есть $\exists c>0: \forall x\in U(x_0): |g(x)|\le c$. Тогда функция y=f(x)*g(x) является б.м.ф. при $x\to x_0$
- 3. произведение конечного числа б.б.ф является б.б.ф.при $x \to x_0$
- 4. Пусть функция y=f(x) б.б.ф. при $x\to x_0$, а функция y=g(x) удовлетворяет свойству: $\exists c>0: \forall x\in U(x_0): |g(x)|>c$, тогда функция y=f(x)*g(x) является б.б.ф.при $x\to x_0$
- 5. Пусть функция y=f(x) б.м.ф. при $x\to x_0$ и $f(x)\ne 0$ в $U(x_0)$, тогда функция $y=\frac{1}{f(x)}$ является б.б.ф.при $x\to x_0$
- 6. Если функция y=f(x) б.б.ф. при $x\to x_0$, тогда функция $y=\frac{1}{f(x)}$ является б.м.ф.при $x\to x_0$

Непрерывность функций в точке, их свойства.

y=f(x) непрерывна в точке x_0 , если она определена в этой точке, а также в $\mathcal{U}_{(x)}$ и при этом $\lim_{x\to x_0}f(x_0)\Leftrightarrow \forall \epsilon>0, \exists \delta>0, \forall x, |x-x_0|<\delta:|f(x)-f(x_0|<\epsilon$ $\Delta_x=x-x_0$ - приращение аргумента $\Delta f(x_0)=f(x)-f(x_0)$ - есть приращение функции в x_0 y=f(x) непрерывна в x_0 \Leftrightarrow

$$\forall \epsilon > 0, \exists \delta > 0, |\Delta x| < \delta \Rightarrow |\Delta f(x_0)| < \epsilon \Leftrightarrow \lim_{\Delta x \to 0} \Delta f(x_0) = 0$$
 (11.1)

Непрерывность функции в точке означает то, что в любой, сколь угодно маленькой окрестности, бесконечно малое приращение аргумента влечёт за собой бесконечно маое приращение функции.

Свойства непрерывной функции в точке

- 1. Если функция непрерывна в точке x_0 , тов некоторой окрестности этой точки эта функция ограничена.
- 2. Если функция непрерывна в точке x_0 и $f(x_0) \neq 0$, то в некоторой окрестности x_0 функция имеет тот же знак, что и $f(x_0)$
- 3. Если $y = f(x_0)$ и $y = g(x_0)$ непрерывна в точке x_0 и $f(x_0) < g(x_0)$, то $\exists \mathcal{U}_{(x_0)}$ где f(x) < g(x)
- 4. Если $y = f(x_0)$ и $y = g(x_0)$ непрерывна в точке x_0 , то так же непрерывны $y = f(x_0) \pm y = g(x_0), \ y = f(x_0) \cdot y = g(x_0), \ y = f(x_0)y \div g(x_0)$
- 5. Непрерывность композиции функций: Если $y=g(x_0)$ непрерывна в точке $x_0, z=f(x_0)$ непрерывна в точке $y_0=g(x_0)$, то y=f(g(x)) непрерывна в точке x_0 .

Доказатель ство. $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{\delta(x_0)}: |g(x) - g(x_0)| < \epsilon$

$$\forall \sigma > 0, \exists \tau > 0, \forall y \in \mathcal{U}_{\tau(y_0)}: |f(y) - f(y_0)| < \sigma$$
 $\forall \sigma > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{\delta(x_0)}: |f(g(x)) - f(g(x_0))| < \sigma$ что и означает непрерывность $y = f(g(x))$ в точке x_0

11.1 Односторонняя непрерывность

y=f(x) определена на $(x_0-\delta;x_0]$ такая функция называется непрерывной слева, если $\lim_{x\to x_0-0}f(x)=f(x_0)$ аналогично функция называется непрерывной справа, если $\lim_{x\to x_0+0}f(x)=f(x_0)$. Так как функция непрерывна, она непрерывна слева и справа.

Функция называется разрывна в точке x_0 , если она либо не определена в этой точке, либо определена, но не непрерывна.

Классификация точек разрыва:

- 1. Если существуют и конечны оба односторонних пределаи эти односторонние пределы не равны друг другу, то эта точка точка разрыва первого рода.
- 2. Если функции справа равен пределу слева и не равен значению функции в точке, это точка устранимого разрыва. $\lim_{x\to x_0+0} f(x) = \lim_{x\to x_0-0} f(x) \neq f(x_0)$
- 3. Если хотя бы один из односторонних пределов бесконечен или не существует точка разрыва второго рода

Точки разрыва

11.2 непрерывны $\forall x \in \mathcal{D}(f(x))$

- постоянные функции
- $\bullet \ y = x$
- $y = a_n x^m + a_{n-1} x^{m-1} + \dots + a_0$
- дробно-рациональные функции $y = \frac{P(x)}{Q(x)}, \ P(\mathbf{x}), \ Q(\mathbf{x})$ многочлены степени \mathbf{x}
- функции sin, cos, tan, cot

Непрерывность элементарных функций. Замечательные пределы

12.1 Непрерывность элементарных функций

Заметим, что непрерывными в любой точке определения являются:

- 1. Постоянная функция: y = c
- 2. y = x
- 3. $y = a_n * x^n + a_{n-1} * x^{n-1} + ...a_0$ многочлен
- 4. Дробно-рациональная функция $y=rac{P(x)}{Q(X)},$ где P(x) и Q(x) многочлены
- 5. Тригонометрические функции

12.2 Непрерывность синуса

Докажем непрерывность sin

Рассмотрим произвольный
$$x_0$$
 и $x=x_0+\Delta x$ $|\Delta sin(x_0)|=|sin(x_0+\Delta x)-sinx_0|=|2sin\frac{x_0+\Delta x-x_0}{2}cos\frac{2x_0+\Delta x}{2}|=2|sin\frac{\Delta x}{2}|*$ $*|cos(\frac{2x_0+\Delta x}{2})|\leq 2|sin\frac{\Delta x}{2}|\leq 2|\frac{\Delta x}{2}|=|\Delta x|\leq 1$ $\forall \varepsilon>0\exists \delta=\varepsilon, \forall |\Delta x|<\delta:|\Delta sinx_0|\leq |\Delta x|<\delta=\varepsilon \Rightarrow \lim_{\Delta x\to 0}\Delta sinx_0=0 \Rightarrow 0$

sinx - непрерывна

Непрерывность со
я получаем из уже даказанной непрерывности синуса, теоремы о непрерывности композиции функций. Формула приведения:
 $cosx = sin(\frac{pi}{2} - x)$

Непрерывность tg и ctg получаем из непрерывности sin и cos, частного непрерывных функций

12.3 Еще непрерывные функции

Можно также доказать непрерывность

- 1. показательной функции $y = a^x, a > 0, a \neq 1$
- 2. $y = \log_a x, a > 0, a \neq 1$
- 3. А также функций, обратных к тригонометричесим, в каждой точке области их определения
- 4. Непрерывной является также степенная функция $y = x^{\alpha}, \alpha > 0$ в каждой точке своей области определения
- 5. Если $\alpha < 0$ и данная функция имеет смысл при x < 0, то данная функция непрерывна в каждой точке своей области определения. При этом заметим, что точка x = 0 является точкой разрыва второго рода

12.4 Замечательные пределы

При вычислении приделов функций часто удобно использовать так называемые "Замечательные пределы"

- 1. $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ (1-й замечательный предел)
- 2. $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$ (2-й замечательный предел) $\lim_{x\to 0}(1+\frac{1}{x})^{\frac{1}{x}}=e$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e = \frac{1}{\ln a};$$

- 3. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$ (3-й замечательный предел)
- $4.\lim_{x \to 0} rac{a^x-1}{x} = \ln a \ (4$ -й замечательный предел) $\lim_{x \to 0} rac{e^x-1}{x} = 1$
- 5. $\lim_{x\to 0} \frac{(1+x)^{\beta}-1}{x} = \beta(5$ -й замечательный предел)

При вычислении пределов удобно также пользоваться следующим следствием из теоремы о непрерывност композиции функций:

 $\lim_{x \to x_0} f(g(x)) = f(\lim_{x \to x_0} g(x))$ При условии, что функция $g(x_0)$ непрерывна в точке x_0 , а функция f непрерывна в точке $y_0 = g(x_0)$ - доказать самостоятельно

Сравение функций, эквивалентные функции

Пусть y=f(x) и y=g(x) определены в \mathcal{U}_{x_0} . Говорят, что f(x) сравнима с g(x), если

$$\exists \epsilon, \exists \mathcal{U}_{x_0}, \forall x_0 \in \mathcal{U}_{x_0} : |f(x)| \le \epsilon |g(x)|$$
(13.1)

В этом случае пишут, что f(x) = O(g(x)).

Очевидно, что f(x) = O(g(x)) при $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{f(x)} \le \epsilon$ а это означает, что $\frac{f(x)}{f(x)}$ ограничена в \mathcal{U}_{x_0} .

Говорят, что y = f(x) бесконечно мала по сравнению y = g(x) при $x \to x_0$, если $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{x_0} : |f(x)| <$ $HILFE_MIR!_ICH_HABE_DAS_KONSPEKT_NICHT!$ тогда пишут, что f(x) = o(f(x)) при $x \to x_0 \Rightarrow \lim_{x \to x_0} |\frac{f(x)}{f(x)}| = 0 \Leftrightarrow f(x0 = f(x) \cdot \alpha(x))$ где $\alpha(x)$ - БМФ при $x \to x_0$.

13.1 Эквивалентность

Функции y=f(x) и y=g(x) квивалентны при $x\to x_0$, если $\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$ или конечному числу A, тогда пишется $f(x)\sim g(x)$ при $x\to x_0\Rightarrow f(x)\sim g(x)\Leftrightarrow f(x)=g(x)+o(g(x))$, тут y=g(x) - главная часть y=f(x)

Тероэма 13.1. Если $f(x) \sim g(x)$ при $x \to x_0$, то $\forall x$:

- $\lim_{x \to x_0} f(x) \cdot h(x) = \lim_{x \to x_0} g(x) \cdot h(x)$
- $\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{g(x)}{h(x)}$

Таблица эквивалентных при $x \to x_0$:

13.1. ЭКВИВАЛЕНТНОСТЬ ГЛАВА 13. СРАВНЕНИЕ ФУНКЦИЙ

$$\begin{array}{c|cccc} \sin(\mathbf{x}) & \mathbf{x} \\ \operatorname{tg}(\mathbf{x}) & \mathbf{x} \\ \operatorname{arcsin}(\mathbf{x}) & \mathbf{x} \\ \operatorname{arctg}(\mathbf{x}) & \mathbf{x} \\ 1 - \cos(x) & \frac{x^2}{2} \\ \ln a & \mathbf{x} \\ a^x - 1 & \mathbf{x} \cdot \ln a \\ \log_a 1 + x & \frac{x}{\ln a} \\ e^x - 1 & \mathbf{x} \\ (1 + x)^{\beta} - 1 & \beta x \\ x^{\beta} - 1 & \beta(x - 1) \end{array}$$

Точки разрыва

закопипастить

Непрерывность функции на отрезке

Пусть $y = f(x), [a; b] \subset \mathcal{D}(y).$ y = f(x) непрерывна на [a; b], если она непрерывна в каждой точке интервала (a;b) и непрерывна справа в точке a и слува в точке b.

Тероэма 15.1. Кантора о вложенных отрезках.

Имеется [a;b] и совокупность вложенных отрезков $[a;b]\supset [a_1;b_1]\supset [a_2;b_2]\supset$ $\cdots\supset [a_n;b_n]\supset\ldots$ и при этом $\lim_{n\to\infty}b_n-a_n=0^1$, тогда

$$\exists a \in [a; b] : \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$
 (15.1)

Используя теорему Кантора Докажем теорему Больцана-Вейерштрасса

Доказательство. $\forall \{x_n\} \subset [a;b]$ можно выделить мходящуюся подпоследовательность:

Разобьём [a;b] точкой С пополам и рассмотрим $[a_1;b_1]$, половину первоначального отрезка.

Эта половна содержит бесконечно много точек из $\{x_n\}$. Пусть $x_{n_1} \in [a_1; b_1]$. Точкой C_2 Разобьём отрезок $[a_1;b_1]$ пополам и мрассмотрим $[a_2;b_2]$, она содержит бесконечно много точек из $\{x_n\}$

и в этом отрезке обозначим x_{n_k} , чтобы $n_2 > n_1$ и так далее. Получим

$$\begin{aligned} \{x_{n_k}\} \in [a_k;b_k], \forall k \in \mathbb{N} \Rightarrow \\ a_k \leq x_{n_k} \leq , b_k - a_k = \frac{b_k - a_k}{2^k} \\ \lim_{n \to \infty} \frac{b_k - a_k}{2^k} = 0 \end{aligned}$$
 По теореме Кантора имеем: $\lim_{n \to \infty} a_k = \lim_{n \to \infty} b_k = a$

В неравенстве $a_k \leq x \leq b_k$ перейдём к пределам.

¹вложены друг в друга и уменьшаются

По теореме о 2х милиционерах: $a_0 \leq \lim_{n \to \infty} x_{n_k} \leq a_0 \Rightarrow \lim_{n \to \infty} x_{n_k} = a_0 \in [a;b]$

Тероэма 15.2. Если y = f(x) непрерывна на [a;b], то она ограничена на этом отрезке.

 $\exists c > 0, \forall x \in [a; b] : |f(x)| \le c$

Доказательство. Пусть y=f(x) непрерывна на [a;b]. Предположим, что она неограничена на этом отрезке.

Отсюда $\forall n \in \mathbb{N}, \exists x_n \in [a;b] : |f(x)| \ge n$

Отсюда по Больцана-Вейерштрасса в $\{x_n\}$ можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$ с пределом $x_0 \in [a;b]$

Отсюда $\forall k, |f(x_{x_k})| > n_k, \lim_{k \to \infty} |f(x_{x_k})| \ge \infty$

Поскольку $\{x_n\} \to x_0$, в x_0 функция не является непрерывной, а терпит разрыв второго рода, что протеворечит нашему утверждению.

Тероэма 15.3. Вейерштрасса.

Hепрерывная на [a;b] функция достинает на нём своего максимального и минимального значений.

Теорема Коши о прохождении через ноль. Теорема Коши о промежуточном значении

16.1 Теорема Больцано-Коши о среднем значении

Пусть функция y = f(x) непрерывна на отрезке [a;b] и пусть $f(a) \neq f(b)$. Тогда для любого числа $c: c \in (f(a); f(b)), \exists \xi \in [a;b]: f(\xi) = c$ (Для определенности предположем, что f(a) < f(b))

16.1.1 Доказательство

Рассмотрим x_0 -середина отрезка [a;b]. Возможны 2 случая:

- 1. $f(x_0) = c \Rightarrow \xi = x_0 \Rightarrow$ доказано
- 2. $f(x_0) \neq c \Rightarrow [a_1;b_1]$ половина [a;b], для которой $f(a_1) < c < F(b_1)$ x_1 середина $[a_1;b_1]$, если $f(x_1) = c \Rightarrow x_1 = \xi$. А если $f(x_1) \neq c \Rightarrow [a_2;b_2], f(a_2) < c < f(b2)$

Продолжим этот процесс

В результате мы либо через число шагов найдем $x_n: f(x_n)=c\Rightarrow \xi=x_1$, либо построим совокупность вложенных отрезков $[a;b]>[a_1;b_1]>\ldots>[a_n;b_n]>\ldots$

 $f(a_n) < c < f(b_n)$

В этом случае, по теореме Кантора о вложенных стяг. отрезках $\exists a_0 \in [a;b]; a_0 = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$

ГЛАВА 16. ТЕОРЕМА КОШИ О ПРОХОЖДЕНИИ ЧЕРЕЗ НОЛЬ. 16.2. ВАЖНОЕТ**СОРДОГАВИО**НИИ О ПРОМЕЖУТОЧНОМ ЗНАЧЕНИИ

Перейдя к пределу в последнем двойном неравенстве и, учитывая непрерывность функции, получим, что:

$$f(a_0) = c \Rightarrow \xi = a_0 \in [a; b]$$

16.2 Важное следствие

Из теоремы Больцано-Коши очевидным образом вытекает следствие: Пусть функция y=f(x) непрерывна на отрезке [a;b] и пусть значения f(a) и f(b) имеют различные знаки. Тогда найдется точка ξ in[a;b] : $f(\xi)=0$, т.е. график пересекает ось Ох в некоторой точке отрезка [a;b].

Производная функции, односторонние производные

Пусть $y = f(x), x_0 \in \mathcal{D}(f(x))$. Рассмотрим график функции. и прямые y = $k(x-x_0) + f(x_0)$ Среди всех таких прямвх рассмотрим ту, которая наиболее тесно прижимается к графику функции f(x). Такая прямая называется касательной к графику функции в точке $(x_0; f(x_0))$. Эту прямую можно найти так: На графике функции рассмотрим кроме $(x_0; f(x_0))$ рассмотрим $(x_1; f(x_1))$ и прямую, проходящую через эти точки. Эта прямая - секущая, приближённая¹

Уравнение секущей с угловым коеффициентом. Так как секущая должна роходить через $(x_0; f(x_0))$ должно выпоняться равенство $k = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \Rightarrow$ $(x_1;f(x_1)) o (x_0;f(x_0)) \Leftrightarrow x_1-x_0 \Rightarrow k = \lim_{x \to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}$ Если этот преел конечен и существует, то он есть производная функции y=f(x) в x_0 и обозначается $f'(x_0)$

$$x_1 - x_0 = \Delta x, f(x_1) - f(x_0) = \Delta f(x_0)$$

 $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$ иногда обозначается $\frac{df(x_0)}{dx}$

 $x_1-x_0-\Delta x$, $f(x_1)=f(x_0)-\Delta f(x_0)$ $f'(x_0)=\lim_{\Delta x\to 0}\frac{\Delta f(x_0)}{\Delta x}$ иногда обозначается $\frac{df(x_0)}{dx}$ Может оказаться, что $\lim_{\Delta x\to 0}\frac{\Delta f(x_0)}{\Delta x}$ бесконечен, в этом случае касательая к графику в точке вертикальна

Как известно, существование конечного предела равносильно существованию и равенству между собой односторонних пределов $\lim_{\Delta x \to 0+0} \frac{\Delta f(x_0)}{\Delta x}$ и $\lim_{\Delta x \to 0-0} \frac{\Delta f(x_0)}{\Delta x}$ Эти односторонние пределы, если они конечны и существуют, называются односторонними производными и обозначаются $f'(x_{0-0})$ и $f'(x_{0+0})$ Их существование означает существование касательной к фрагменту графика функции левее и правее $(x_0; f(x_0))$. Справедливо и обратное.

Возможны случаи, когда односторонние пределы существуют, но не равны друг другу это значит, что в точке $(x_0; f(x_0))$ терпит излом и не является гладким.

 $^{^{1}}$ Размытое определение

Излом графика функции

Тероэма 17.1. Если f(x) имеет конечную производную в точке x_0 , то она непрерывна в этой точке.

$$\mathcal{A}$$
оказательство. Пусть Существует конечный предел $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = f'(x_0) \Leftrightarrow \Delta f(x_0) = f'(x_0) + o(\Delta x)$ Перейдём к пределу при $\Delta x \to 0$: $\lim_{\Delta x \to 0} \Delta f(x_0) = 0 \Leftrightarrow f(x) \Leftrightarrow f(x_0)$ непрерывна в x_0 Заметим, что обратное утверждение неверно.

Так как производная - предел, из свойств пределов можно вывести свойства производных:

1.
$$(f \pm g)' = f' \pm g'$$

2.
$$(cf)' = c(f)'$$

3.
$$(f \cdot g)' = f'g \cdot g'f$$

4.
$$(\frac{f}{g})' = \frac{f'g - g'f}{g^2}$$

5.
$$c' = 0$$

²proofs are pending

ГЛАВА 17. ПРОИЗВОДНАЯ ФУНКЦИИ, ОДНОСТОРОННИЕ ПРОИЗВОДНЫЕ

f(x)	f'(x)
tg(x)	$\frac{1}{\cos^2(x)}$
ctg(x)	$\frac{-1}{\cos^2(x)}$
x^k	$k \cdot x^{x-1}$
e^x	e^x
$log_a x$	$\frac{1}{x \cdot ln(a)}$
ln(x)	$\frac{1}{x}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctg(x)	$\frac{1}{1+x^2}$
arcctg(x)	$\frac{-1}{1+x^2}$

Производная сложной функции:

- $\bullet \ (f(g(x)))' = f'(g(x)) \cdot g'(x)$
- $(f^{-1}(y))' = \frac{1}{f'(x)}$ при y = f(x)
- $f'(x) = \frac{1}{f^{-1}(y)}$ при y = f(x)

Уравнение касательной и нормали к графику функции

Не найдено в конспекте. Собрано из интернета

Предположим, что ф-я y = f(x) определена на интервале (a, b) и непрерывна в точке $x_0 \in (a,b)$. В этой точке функция имеет значение $y_0 = f(x_0)$. Пусть независимая переменная в точке x_0 получает приращение Δx . Соответствующее приращение функции Δy выражается формулой $\Delta y = f(x0 +$ Δx) — $f(x_0)$. На рисунке 1 точка M_1 имеет координаты $(x_0 + \Delta x, y_0 + \Delta y)$. Построим секущую MM_1 . Ее уравнение имеет вид $y - y_0 = k(x - x_0)$, где k - угловой коэффициент, зависящий от приращения Δx и равный $k=k(\Delta x)=\Delta y\Delta x$. При уменьшении Δx точка M_1 стремится к точке $M:M1\to M$. В пределе $\Delta x\to 0$ расстояние между точками M и M_1 стремится к нулю. Это следует из непрерывности функции f(x) в точке x_0 :

 $\lim_{\Delta x\to 0}\Delta y=0, \Rightarrow \lim_{\Delta x\to 0}|MM_1|=\lim_{\Delta x\to 0}\sqrt{(\Delta x)^2+(\Delta y)^2}=0$ Предельное положение секущей MM_1 как раз и представляет собой каса-

тельную прямую к графику функции y = f(x) в точке M.

Возможны два вида касательных - наклонные и вертикальные.

Если существует конечный предел $\lim_{\Delta x \to 0} k(\Delta x) = k_0$, то прямая, имеющая уравнение

 $y - y_0 = k(x - x_0)$, называется наклонной касательной к графику функции y = f(x) в точке (x_0, y_0) .

Если предельное значение k при $\Delta x \to 0$ является бесконечным: $\lim_{\Delta x \to 0} k(\Delta x) =$ $\pm \infty$, то прямая, имеющая уравнение $x=x_0$ называется вертикальной касательной к графику функции y = f(x) в точке (x_0, y_0) .

 $k_0=\lim_{\Delta x \to 0} k(\Delta x)=\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}=f'(x_0)$, то есть угловой коэффициент касательной равен значению производной функции f(x0) в точке касания x_0 .

ГЛАВА 18. УРАВНЕНИЕ КАСАТЕЛЬНОЙ И НОРМАЛИ К ГРАФИКУ ФУНКЦИИ

Поэтому уравнение наклонной касательной можно записать в таком виде: $y-y_0=f'(x_0)(x-x_0)$ или $y=f'(x_0)(x-x_0)+f(x_0)$.

Поскольку угловой коэффициент прямой равен тангенсу угла наклона α , который прямая образует с положительным направлением оси абсцисс, то справедливо следующее тройное равенство:

$$k = \tan \alpha = f'(x_0).$$

Уравнение нормали в декартовых координатах Прямая, перпендикулярная касательной и проходящая через точку касания (x_0, y_0) , называется нормалью к графику функции y = f(x) в этой точке (рисунок 2).

Из геометрии известно, что произведение угловых коэффициентов перпендикулярных прямых равно -1. Поэтому, зная уравнение касательной в точке (x_0, y_0) :

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

Основные правила дифференцирования, производные элементарных функций.

Так как производная - предел, из свойств пределов можно вывести свойства производных:

1.
$$(f \pm g)' = f' \pm g'$$

2.
$$(cf)' = c(f)'$$

3.
$$(f \cdot g)' = f'g \cdot g'f$$

4.
$$(\frac{f}{g})' = \frac{f'g - g'f}{g^2}$$

^{5.} c' = 0

¹proofs are pending

f(x)	f'(x)
tg(x)	$\frac{1}{\cos^2(x)}$
ctg(x)	$\frac{-1}{\cos^2(x)}$
x^k	$k \cdot x^{x-1}$
e^x	e^x
$log_a x$	$\frac{1}{x \cdot ln(a)}$
ln(x)	$\frac{1}{x}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctg(x)	$\frac{1}{1+x^2}$
arcctg(x)	$\frac{-1}{1+x^2}$

Производная сложной функции:

- $\bullet \ (f(g(x)))' = f'(g(x)) \cdot g'(x)$
- $(f^{-1}(y))' = \frac{1}{f'(x)}$ при y = f(x)
- $f'(x) = \frac{1}{f^{-1}(y)}$ при y = f(x)

Дифференциал функции

Функция называется дифференцируемой в точке x_0 , если её $\Delta f(\Delta x)$ можно предстваить так: $f(x)-f(x_0)=A(x-x_0)+o(x-x_0)$ где A - конечное число; $A(x-x_0)$ называется дифференциалом.

Тероэма 20.1. Функция y = f(x) дифференцируема в точке x_0 тогда и только тогда, когда функция имеет конечную производную в этой точке и производная функции равна A

Доказательство. Если y=f(x) дифференцируема в x_0 , то

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0)|_{\div(x - x_0)}$$

при перезоде к пределам:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{A + o(x - x_0)}{x - x_0} = A \Rightarrow f'(x_0) = A$$

Предположим, что f(x) имеет конечную производную

$$\Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

$$\frac{f(x) - f(x_0)}{x - x_0} = f'x_0 + o(x - x_0)$$

$$f(x) = f'(x_0)(x - x_0) + o(x - x_0) \cdot (x - x_0) \Rightarrow A = f'(x_0)$$

20.1. СВ. ПРОИЗВОДНОЙ ГЛАВА 20. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Таким образом дифференцируемость функции равносильна существованию её конечной производной.

$$f(x) - f(x_0) = df(x_0) + (x - x_0)$$
(20.1)

При $x \to x_0, df(x_0) = f'(x_0)(x - x_0)$

Бесконечно малое приращение аргумента Δx обозначается dx, отсюда

$$df(x_0) = f'(x_0)dx$$
(20.2)

Заметим, что формула справедлива и когда x - функция.

$$df(x(t)) = (f'(x(t)))'dt = f'(x) \cdot x(t)dt = f'(x)dx$$
 (20.3)

Дифференциал можно использовать и при приблиэённом вычислении значения функции:

$$f(x) - f(x_0) = df(x_0) + o(x - x_0), x \to x_0 \Rightarrow$$

при x близких к x_0 $o(x-x_0)\approx 0 \Rightarrow f(x)-f(x_0)\approx df(x_0)\Rightarrow$

$$f(x) \approx f(x_0) + df(x_0)$$
(20.4)

Пример:

$$\sqrt[100]{1.1} \approx |_{x_0 \approx 1 = \sqrt{x}|_{x=1}}$$

$$(1.1-1) + \sqrt[100]{1} = (x^{\frac{1}{100}})|_{x=1} \cdot 0.1 + 1 = \frac{1}{100} \cdot x^{-0.99}|_{x=1} \Rightarrow$$

$$0.1 \cdot \frac{1}{100} + 1 = 1.001$$

20.1 Основные свойства производной на отрезке

Тероэма 20.2. Ферма: Пусть y = f(x) в точке x_0 имеет локальный экстремум¹ \Rightarrow если

$$\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)} : f(x_0) \leq f(x)$$

 $^{^{1}}$ max || min

для мин. экстр $f(x_0) \geq f(x)$

Доказательство. Если x_0 - точка локального максимума функции f(x), то $\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)}: f(x_0) \leq f(x)$. Рассмотрим односторонние пределы:

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0, f(x) - f(x_0) \le 0, x < x_0$$

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0, f(x) - f(x_0) \le 0, \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Так как функция дифференцируема в точке, то Существует предел, равный производной функции, равный обоим односторонним пределам и

$$\begin{cases} f'(x_0) \ge 0 \\ f'(x_0) \le 0 \end{cases} \Rightarrow f'(x_0) = 0$$

Тероэма 20.3. Ролля: Пусть y = f(x) непрерывна на [a;b] и дифференцируема на (a;b) и Если $f(a) = f(b), \exists c \in [a;b]: f'(c) = 0 \forall (a;b)$

Доказатель ство. Если f(x) не постоянна, то по теореме Вейерштрасса она достигает на этом отрезке своего маесимального и минимального значений, что не равны друг другу, а значит, чтчо хоть один их нах отличается от f(a) = f(b). Обозначим такую точку экстремума $c \in (a;b)$

 $f(c) \neq f(a) = f(b)$ и по теореме Ферма f'(c) = 0

удовлетв. усл.

Для функции удовлетворяющей условиям теоремы Ролля обязательно найдётся точка на графике, касательной в которой будет горизонтальная прямая

20.1. СВ. ПРОИЗВОДНОЙ ГЛАВА 20. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Тероэма 20.4. Коши: Пусть y = f(x) и Пусть y = g(x) непрерывны на [a;b] и дифференцируемы на $(a;b), g'(x) \neq 0$, тогда

$$\exists c \in (a;b): \frac{f(a)-f(b)}{g(a)-g(b)} = \frac{f'(c)}{g'(c)}$$

Доказатель ство. Пусть функция $F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}\cdot (g(x)-g(a)).$ Функция F уодвлетворяет условиям теоремы Ролля \Rightarrow $\exists c\in (a;b): F'(x)=0$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x)$$

$$F'(c) = 0 \Leftrightarrow f(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$$

Производные и дифференциалы высших порядков

Рассмотрим функцию y=f(x), и предположим, что она дифференцируема, значит для любого х определена f'(x). Таким образом получим первую произвводную. Эта функция также может быть дифференцируема в каждой точке.

Вычислив ее производную, получим вторую производную.

Рассуждая аналогичным образом, можно получить производную любого порядка

$$f''(x) = (f'(x))'$$

$$f^{(n)}(n) = (f^{(n-1)}(x))'$$

Аналогично определяются дифференциалы высших порядков

$$\begin{aligned} d^2f(x) &= d(df(x)) = f''(x)dx^2 \\ d^3f(x) &= d(d^2f(x)) = f'''(x)dx^3 \\ d^nf(x) &= d(d^{n-1}f(x)) = f^{(n)}(x)dx^n \end{aligned}$$

Производные высших порядков используются для вычисления приблизительных значений функций.

Локальный экстремум функции, теорема Ферма

Определение локального максимума и локального минимума Пусть функция y = f(x) определена в некоторой δ -окрестности точки x_0 , где $\delta > 0$. Говорят, что функция f(x) имеет локальный максимум в точке x_0 , $\forall x \neq x_0 \in \mathcal{U}_{\delta(x_0)}: f(x) \leq f(x_0)$. Если поменять знак на строгий, то максимум строгий, если знак перевернуть, то будет смнимум, а если знак перевернуть и поменять на строгий, то строгого минимума.

Тероэма 23.1. Φ ерма: Пусть y = f(x) в точке x_0 имеет локальный экстремум¹ \Rightarrow если

$$\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)} : f(x_0) \leq f(x)$$

для мин. экстр $f(x_0) \ge f(x)$

Доказательство. Если x_0 - точка локального максимума функции f(x), то $\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)}: f(x_0) \leq f(x)$. Рассмотрим односторонние пределы:

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0, f(x) - f(x_0) \le 0, x < x_0$$

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0, f(x) - f(x_0) \le 0, \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Так как функция дифференцируема в точке, то Существует предел, равный производной функции, равный обоим односторонним пределам и

$$\begin{cases} f'(x_0) \ge 0 \\ f'(x_0) \le 0 \end{cases} \Rightarrow f'(x_0) = 0$$
 (23.1)

 $^{1 \}max || \min$

Теоремы Ролля, Лагранжа, Коши

Тероэма 24.1. Ролля: Пусть y = f(x) непрерывна на [a;b] и дифференцируема на (a;b) и Если $f(a) = f(b), \exists c \in [a;b]: f'(c) = 0 \forall (a;b)$

Доказательство. Если f(x) не постоянна, то по теореме Вейерштрасса она достигает на этом отрезке своего маесимального и минимального значений, что не равны друг другу, а значит, чтчо хоть один их нах отличается от f(a) = f(b). Обозначим такую точку экстремума $c \in (a;b)$ $f(c) \neq f(a) = f(b)$ и по теореме Ферма f'(c) = 0

удовлетв. усл.

Для функции удовлетворяющей условиям теоремы Ролля обязательно найдётся точка на графике, касательной в которой будет горизонтальная прямая

Тероэма 24.2. Коши: Пусть y = f(x) и Пусть y = g(x) непрерывны на [a;b] и дифференцируемы на $(a;b), g'(x) \neq 0$, тогда

$$\exists c \in (a;b) : \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть функция $F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}\cdot(g(x)-g(a)).$ Функция F уодвлетворяет условиям теоремы Ролля \Rightarrow $\exists c\in(a;b):F'(x)=0$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x)$$

$$F'(c) = 0 \Leftrightarrow f(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$$
 \square

Тероэма 24.3. Лагранжа о конечном приращении.

Пусть y=f(x) непрерывна на [a;b] и дифференцируема на (a;b) тогда $\exists c\in (a;b): \frac{f(b)-f(a)}{b-a}=f'(c)$

Доказательство. наряду с y=f(x) рассмотрим $g(x)\equiv x$. Заметим, что эти 2 функции удовлетворяют всем условиям теоремы Коши. Тогда получается, что $\exists c\in (a;b): \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{b-a}=\frac{f'(c)}{1}$

Геосмысл теоремы Лагранжа: Прямая, прохлдящая через точки (a;f(a)),(b;b(b)) задаётся уравнением y=k(x-a)+f(a). k найдём из условия прохождения этой прямой через точку (b;f(b)). f(b)=k(b-a)+f(a) $k=\frac{f(b)-f(a)}{b-a}\Rightarrow$ на (a;b) в условиях теоремы Лагранжа Существует такая точка c, в которой касательная к графику функции параллельна хорде, стягивающей (a;f(a)),(b;b(b))

Правило Лопиталя

Пусть функции f(x) и g(x) непрерывны и дифференцируемы в окрестности точки x_0 и обращаются в нуль в этой точке: $f(x_0) = g(x_0) = 0$. Пусть $g'(x_0) \neq 0$. Если существует предел $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Замечание: Правило Лопиталя также справедливо, если $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=\infty$

Доказательство

Функции f(x) и g(x) непрерывны и дифференцируемы в окрестности точки x_0 , значит $f(x_0)=\lim_{x\to x_0}f(x)=0$ и $g(x_0)=\lim_{x\to x_0}g(x)=0$. По теореме Коши для отрезка $[x_0;x]$, лежащего в окрестностях x_0 существует $\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(c)}{g'(c)}$, где c лежит между точками x и x_0 . Учитывая, что $f(x_0)=g(x_0)=0$, получаем

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$

При $x \to x_0$ с также стремится к x_0 ; перейдем к пределу:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{c \to x_0} \frac{f'(c)}{g'(c)}.$$

Получается $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{c\to x_0} \frac{f'(c)}{g'(c)}$, а $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \lim_{c\to x_0} \frac{f'(c)}{g'(c)}$, значит

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
 (25.1)

А если кратенько, то полученную формулу можно читать так: **предел** отношения двух бесконечно малых равен пределу отношения их производных, если по следний существует.

Замечания:

- 1. Правило Лопиталя справедливо и в случае, когда функции f(x) и g(x) не определены при $x=x_0$, но $\lim_{x\to x_0} f(x)=0$ и $\lim_{x\to x_0} g(x)=0$. В этом случае $f(x_0)=\lim_{x\to x_0} f(x)=0$ и $g(x_0)=\lim_{x\to x_0} g(x)=0$
- 2. Правило Лопиталя справедливо и в случае, когда $x \to \infty$:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

3. Если производные f'(x) и g'(x) удовлетворяют тем же условиям, что и f(x) и g(x), то правило Лопиталя можно применить еще раз:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f''(x)}{g''(x)}$$
 (25.2)

Виды неопределенностей:

1. Неопределенность вида $\frac{0}{0}$:

$$\lim_{x \to 0} \frac{1 - \cos(6x)}{2x^2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 0} \frac{(1 - \cos(6x))'}{(2x^2)'} = \lim_{x \to 0} \frac{6\sin(6x)}{4x} = \frac{3}{2} \lim_{x \to 0} \frac{\sin(6x)}{x} = \frac{3}{2} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \frac{3}{2} \lim_{x \to 0} \frac{(\sin(6x))'}{(x)'} = \frac{3}{2} \lim_{x \to 0} \frac{6\cos(6x)}{1} = \frac{3}{2} \times 6 = 9$$

2. Неопределенность вида $\frac{\infty}{\infty}$:

$$\lim_{x \to \frac{\pi}{2}} \frac{tg(3x)}{tg(5x)} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \frac{\pi}{2}} \frac{(tg(3x))'}{(tg(5x))'} = \lim_{x \to \frac{\pi}{2}} \frac{3\cos^2(5x)}{5\cos^2(3x)} = \frac{3}{5} \times \left[\frac{0}{0}\right] = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{\cos^2(5x) - 1 + 1}{\cos^2(3x) - 1 + 1} = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{\cos(10x) + 1}{\cos(6x) + 1} = \frac{3}{5} \times \left[\frac{0}{0}\right] = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{(\cos(10x) + 1)'}{(\cos(6x) + 1)'} = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{10\sin(10x)}{6\sin(6x)} = \lim_{x \to \frac{\pi}{2}} \frac{\sin(10x)}{\sin(6x)} = \left[\frac{0}{0}\right] = \lim_{x \to \frac{\pi}{2}} \frac{(\sin(10x))'}{(\sin(6x))'} = \lim_{x \to \frac{\pi}{2}} \frac{10\cos(10x)}{6\cos(6x)} = \frac{5}{3}$$

Для пунктов 3-7 рассмотрим преобразования в общих случаях:

3. Неопределенность вида $\infty - \infty$:

Пусть
$$f(x) \to \infty, g(x) \to \infty$$
 при $x \to x_0$, тогда:

$$\lim_{x \to x_0} (f(x) - g(x)) = [\infty - \infty] = \lim_{x \to x_0} \left(\frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} \right) = \lim_{x \to x_0} \left(\frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)} \frac{1}{g(x)}} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \dots$$

4. Неопределенность вида $\infty \times 0$: Пусть $f(x) \to 0, g(x) \to \infty$ при $x \to x_0$, тогда:

$$\lim_{x \to x_0} (f(x)g(x)) = [\infty \times 0] = \lim_{x \to x_0} \frac{f(x)}{\frac{1}{g(x)}} = \frac{0}{0} = \dots$$

- 5. Неопределенность вида 1^{∞}
- 6. Неопределенность вида ∞^0
- 7. Неопределенность вида 0^0

Для неопределенностей вида 4-7 воспользуемся следующим преобразованием:

Пусть $f(x) \to 1, g(x) \to \infty$; или $f(x) \to \infty, g(x) \to 0$; или $f(x) \to 0, g(x) \to 0$ при $x \to x_0$. Для нахождения предела вида $\lim_{x \to x_0} f(x)^{g(x)}$ удобно сначала прологарифмировать выражение

$$A = f(x)^{g(x)}$$

Признаки монотонности функции

```
\Phiункция y = f(x)
```

- 8. возрастающей (неубывающей) на интервале (a,b), если $\forall \ x_1,x_2\in (a,b): x_1< x_2\Rightarrow f\left(x_1\right)\leq f\left(x_2\right);$
- 9. строго возрастающей на интервале (a,b), если $\forall x_1, x_2 \in (a,b)$: $x_1 < x_2 \Rightarrow f(x_1) f(x_2)$;
- 10. убывающей (невозрастающей) на интервале (a,b), если $\forall \ x_1,x_2 \in (a,b): x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$; строго убывающей на интервале (a,b), если $\forall \ x_1,x_2 \in (a,b): x_1 < x_2 \Rightarrow f(x_1) f(x_2)$.

Если функция f(x) дифференцируема на интервале (a,b) и принадлежит к одному из четырех рассмотренных типов (т.е. является возрастающей, строго возрастающей, убывающей или строго убывающей), то такая функция называется монотонной на данном интервале.

Комплексные числа и действия над ними. Формы записи комплексного числа

30.1 Комплексные числа

Мнимой единицей называется число i, квадрат которого равен -1 $i^2=-1$

Число i не является действительным.

Если существует какое-то действительное число $a(a \in \mathbb{R})$, то произведение $a \cdot i$ называется мнимым числом. Сумма действительного и мнимомго числа называется комплексным числом:

При этом число a называется действительной частью и обозначается a=Re(a+ib), а число b называется мнимой частью и обозначается b=Im(a+ib). Таким образом:

$$\forall z : z = Re(x) + i \cdot Im(z)$$

Для любого комплексного числа z=x+iy определено сопряженное ему число $\overline{z}=x-iy$.

Два числа $z_1=x_1+iy_1$ и $z_2=x_2+iy_2$ называются равными друг другу, если равны их действительные и мнимые части:

$$\begin{cases} x_1 = x_2, \\ y_1 = y_2. \end{cases}$$

Заметим, что действительные числа являются частным случаем комплексных чисел, у которых мнимая часть равна 0.

ГЛАВА 30. КОМПЛЕКСНЫЕ ЧИСЛА И ДЕЙСТВИЯ НАД НИМИ. 30.2. ДЕЙСТВИЯ НАД **КЮМРИЛЬЕВАНЫЮШКИМОЛІАРИ**СНОГО ЧИСЛА

Другими словами, это значит, что любое действительное число x представимо в виде $x = x + i \cdot 0$

Нетрудно также видеть, что комплексное число z является действительным $\Leftrightarrow z = \overline{z}$

Действительно:

$$z = \overline{z} \Leftrightarrow \begin{cases} x_1 = x_2, \\ y_1 = y_2. \end{cases} \Leftrightarrow y = 0 \Leftrightarrow z \in \mathbb{R}$$

30.2Действия над комплексными числами

Над множеством комплексных чисел вводятся операции сложения, вычитания, умножения и деления.

Суммой (разностью) двух комплексных чисел $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ называется комплексное число $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$. Т.е. действительная часть $Re(z_1 \pm z_2) = Rez_1 \pm Rez_2$ и $Im(z_1 \pm z_2) = Imz_1 \pm Imz_2$. Произведением чисел z_1 и z_2 называется число $z_1z_2=x_1x_2-y_1y_2+i(y_1x_2+y_2x_1)$

Таким образом произведение двух комплексных чисел вычисляется как произведение двухчленов $x_1 + iy_1$ и $x_2 + iy_2$ с учетом того, что $i^2 = -1$

Нетрудно убедиться, что введенные такимо образом операции сложения, вычитания, умножения имеют те же свойства, что и соответствующие операции для вещественных чисел: коммутативность, ассоциативность, дистрибутивность

Частным двух комплексных чисел z_1 и z_2 называется такое комплексное число z, для которого выполняется равенство $z \cdot z_2 = z_1$. Это частное обозначается $\frac{z_1}{z_2}$. Покажем, что для любых комплексных чисел z_1 и z_2 существует единственное частное $\frac{z_1}{z_2}$:

$$\frac{z_1}{z_2} = \frac{x_1+iy_1}{x_2+iy_2} = \frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2+-iy_2)} = \frac{x_1x_2+y_1y_2+i(x_2y_1-x_1y_2)}{x_2^2+y_2^2} = \frac{x_1x_2+y_1y_2+i(x_1x_1-x_1y_2)}{x_2^2+y_2^2} = \frac{x_1x_2+x_1y_1x_1+i(x_1x_1-x_1y_1)}{x_1^2+x_1^2$$

$$\frac{z_1:}{(\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\cdot\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2})\cdot(x_2+iy_2)}=\frac{x_1x_2^2+y_1y_2x_2-(-x_1y_2^2+y_1y_2x_2)}{x_2^2+y_2^2}+i\cdot\frac{x_1x_2y_2-x_2x_1y_2+x_2^2y_1+y_1y_2^2}{x_2^2+y_2^2}=\frac{x_1(x_2^2+y_2^2)}{x_2^2+y_2^2}+i\cdot\frac{y_1(x_2^2+y_2^2)}{x_2^2+y_2^2}=x_1+iy_1=z_1$$
 Таким образом деление комплексных чисел друг на друга осуществля-

Таким образом деление комплексных чисел друг на друга осуществляется по следующему правилу:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}$$

 $-\frac{1}{z_2\cdot\overline{z_2}}$ Для комплексного числа z определяется модуль этого числа: $|z| = \sqrt{x^2 + y^2}$. Получаем, что $|z|^2 = z \cdot \overline{z}$

30.3.Г.П**АОМ ВО**Р **КОРОТКАЖОНЫЕРЧИРОЛТА ПИДЛЕЖОМ НИВ КСАЧЫХ**ИМИ. ЧИСЕЛ ФОРМЫ ЗАПИСИ КОМПЛЕКСНОГО ЧИСЛА

$$|z| = \sqrt{z\overline{z}}$$

Учитывая, что для действительного числа z имеем равенство $z=\overline{z},$ получаем, что модель действительного числа можно понимать как модуль комплексного числа.

Частное комплексных чисел можно вычислять по формуле:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z|^2}$$

Уравнение n-ой степени имеет ровно n корней (комплексных чисел). Свойства комплексно-сопряженных чисел:

- 1. $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$
- 2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- $3. \ \overline{\frac{z_1}{z_2}} = \overline{\frac{z_1}{\overline{z_2}}}$
- 4. $\overline{z^n} = \overline{z}^n, n \in \mathbb{N}$

ДОКАЗАТЬ ЭТИ СВОЙСТВА

Запись z=x+iy называется алгебраической формой комплексного числа.

Множество всех комплексных чисел обозначается C

30.3 Геометрическая интерпритация комплексных чисел

Комплексные числа допускают геометрическую интерпритацию.

Рассмотрим Декартову систему координат (Oxy)

На горизонтальной оси будем откладывать действительную часть, а на вертикальной - мнимую

Часто удобно изображать комплексные числа не точками, а радиусвекторами этих точек. Нетрудно видеть, что $|z|=\sqrt{x^2+y^2}$ действительно является длиной соответствующего вектора.

ЗДЕСЬ РИСУНОК РАДИУС-ВЕКТОРА

Рассмотрим теперь два комплексных числа $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ Из геометрической интерпритации видно, что:

ЗДЕСЬ РИСУНКИ СЛОЖЕНИЯ И ВЫЧИТАНИЯ ВЕКТОРОВ

$$|z_1 + z_2| \le |z_1| + |z_2|$$

 $|z_1 - z_2| \ge |z_1| - |z_2|$

Координатная плоскость, на которой изображены в виде радиус-векторов точек комплексных чисел, называется комплексной плоскостью.

30.4 Тригонометрическая форма записи комплексных чисел

СЮДА РИСУНОК УГЛА ФИ

На комплексной плоскости рассмотрим число, равное z=x+iy и угол ϕ от положительного направления Ox против часовой стрелки до радиус вектора, который изображает число z.

```
x = |z| \cos \phi \ y = |z| \sin \phi
```

Отсюда получим, что $z=|z|cos\phi+i|z|\sin\phi=|z|(cos\phi+i\sin\phi)$, что есть тригонометрическая форма записи комплексного числа.

Учитывая то, что sin и сов периодические с периодом 2π , получаем, что $z=|z|(\cos\phi+i\sin\phi)$ определена для бесконечного множества значений угла ϕ , отличающихся друг от друга на 2π . Множество всех таких значений ϕ называется аргументом комплексного числа z и обозначается Argz. В этом множестве значений ϕ особо рассматриваются значения в промежутка $[-\pi;\pi)$ (иногда $[0;2\pi)$). Значения из этого промежутка называют главными значениями числа z и оюозначаются z.

Таким образом, $Argz = \arg z + 2\pi k, k \in \mathbb{Z}$.

Заметим, что в качестве ϕ можно рассматривать $\phi = \arctan \frac{y}{x}$. Однако учитывая, что множество значений $\arctan (-\frac{\pi}{2}; \frac{\pi}{2})$, заметим, что если $\phi \in [\frac{\pi}{2}; \pi)$, то $\arg z = \arctan y + \pi$

```
если \phi \in [\pi; \frac{3\pi}{2}), то \arg z = \operatorname{arctg} yx + \pi если \phi \in [-\frac{\pi}{2}; \frac{\pi}{2}), то \arg z = \operatorname{arctg} yx
```

30.4.1 Действия над комплексными числами в тригонометрической форме

Рассмотрим два комплексных числа $z_1 = x_1 + y_1$ и $z_2 = x_2 + y_2$, запишем их в тригонометрической форме:

```
z_1 = |z_1|(\cos\phi_1 + i\sin\phi_1)

z_2 = |z_2|(\cos\phi_2 + i\sin\phi_2)
```

Рассмотрим их произведение:

 $z_1 \cdot z_2 = z_1 = |z_1|(\cos\phi_1 + i\sin\phi_1) \cdot z_2 = |z_2|(\cos\phi_2 + i\sin\phi_2) = |z_1||z_2|(\cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2 + i\cos\phi_1\sin\phi_2 + i\cos\phi_2\sin\phi_1) = |z_1||z_2|(\cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2))$

```
\Rightarrow получаем формулу: z_1 \cdot z_2 = |z_1||z_2|(\cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2))
```

С помощью математической индукции можно показать (САМОСТОЯ-ТЕЛЬНО!!!), что:

```
z_1 \cdot z_2 \cdot \ldots \cdot z_n = |z_1||z_2|\ldots|z_n|(\cos(\phi_1 + \phi_2 + \ldots + \phi_n) + i\sin(\phi_1 + \phi_2 + \ldots + \phi_n) Рассмотрим случай, если z_1 = z_2 = \ldots = z_n: z^n = |z|^n(\cos n\phi + i\sin n\phi)
```

Корнем n-ой степени комплексного числа z называется такое число w,

для которого выполняется равенство $w^n=z$. Запишем число w в тригонометрической форме: $w=|w|(\cos\theta+i\sin\theta)$

$$w^{n} = |w|^{n}(\cos n\theta + i\sin n\theta) = |z|(\cos\phi + i\sin\phi)$$

Отсюда получаем, что:

$$\begin{cases} |w|^n = |z|, \\ n\theta = \phi + w\pi k, k \in \mathbb{Z} \end{cases} \Rightarrow \begin{cases} |w| = \sqrt[n]{|z|}, \\ \theta = \frac{\phi + w\pi k}{n}, k \in \mathbb{Z} \end{cases}$$
(30.1)

Заметим, что

$$\sqrt[n]{z} = \sqrt[n]{|z|} \cdot \left(\cos\frac{\phi + w\pi k}{n} + i\sin\frac{\phi + w\pi k}{n}\right)$$

различные значения корня получаются при различных значениях k=0,1,2,...,n-1

Заметим, что из-за периодичности sin и cos эти значения могут повторяться

30.4.2 Пример 1

тут идут примеры вычислений, не думаю, что они нужны в теории

30.5 Показательная форма записи комплексного числа

30.5.1 Формула Эйлера

Обозначим
$$e^{i\phi} = \cos\phi + i\sin\phi$$
, а $e^{-i\phi} = \cos\phi - i\sin\phi$ - формула Эйлера $|e^{i\phi}| = |\cos\phi + i\sin\phi| = \sqrt{\cos^2\phi + \sin^2\phi} = 1$ $|e^{-i\phi}| = |\cos\phi - i\sin\phi| = \sqrt{\cos^2\phi + (-\sin\phi)^2} = 1$ $|e^{i\phi}| = |\cos\phi - i\sin\phi| = \sqrt{\cos^2\phi + (-\sin\phi)^2} = 1$ $e^{i\phi_1}e^{i\phi_2} = (\cos\phi_1 + i\sin\phi_1)(\cos\phi_2 + i\sin\phi_2) = \cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2 + i(\cos\phi_1\sin\phi_2 + \cos\phi_2\sin\phi_1) = \cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2) = e^{i(\phi_1 + \phi_2)}$ $e^{i\phi_1}e^{i\phi_2} = \frac{\cos\phi_1 + i\sin\phi_1}{\cos\phi_2 + i\sin\phi_2} = \frac{\cos\phi_1\cos\phi_2 + \sin\phi_1\sin\phi_2 + i(\sin\phi_1\cos\phi_2 - \cos\phi_1\sin\phi_2)}{\cos^2\phi_2 + \sin^2\phi_2} = \cos(\phi_1 - \phi_2) + i\sin(\phi_1 - \phi_2) = e^{i(\phi_1 - \phi_2)}$

Т.о. для функции мнимого аргумента $e^{i\phi}$ выполняются известные свойства показательной функции

30.5.2 Показательная форма

Рассмотрим теперь произвольное комплексное число z и запишем его в по-казательной форме:

$$z = |z|(\cos\phi + i\sin\phi) = |z|e^{i\phi}$$

Таким образом получили показательную форму записи комплексного числа ТАК. ТАМ ДАЛЬШЕ КОМПЛЕКСНЫЕ ФУНКЦИИ И СТРАННЫЕ ТЕОРЕМЫ ПРО НИХ. НО ЭТОГО НИХУЯ НЕТ В ВОПРОСАХ. ОНО ОТНОСИТСЯ СЮДА ИЛИ НЕТ? ТАМ ЕЩЕ ПРИМЕРНО СТОЛЬКО ЖЕ ТЕКСТА КАК ЗДЕСЬ НАПИСАНО

Извлечение корня из комплексного числа

Корнем n-ой степени комплексного числа z называется такое число w, для которого выполняется равенство $w^n = z$. Запишем число w в тригонометрической форме: $w = |w|(\cos \theta + i \sin \theta)$

 $w^{n} = |w|^{n}(\cos n\theta + i\sin n\theta) = |z|(\cos\phi + i\sin\phi)$

Отсюда получаем, что:

$$\begin{cases} |w|^n = |z|, \\ n\theta = \phi + w\pi k, k \in \mathbb{Z} \end{cases} \Rightarrow \begin{cases} |w| = \sqrt[n]{|z|}, \\ \theta = \frac{\phi + w\pi k}{n}, k \in \mathbb{Z} \end{cases}$$
(31.1)

Заметим, что
$$\sqrt[n]{z} = \sqrt[n]{|z|} \cdot (\cos\frac{\phi + w\pi k}{n} + i\sin\frac{\phi + w\pi k}{n})$$

различные значения корня получаются при различных значениях k=0,1,2,...,n-

Заметим, что из-за периодичности sin и соз эти значения могут повторяться

31.0.1Пример 1

тут идут примеры вычислений, не думаю, что они нужны в теории

Неопределённый интеграл и его свойства

32.1 Понятие первообразной

Пусть y=f(x) - непрерывная функция, Первообразной для f(x) является F(x):F'(x)=f(x) Если F(x) - первообразная для f(x), то $\forall C:(F(x)+C)'=f(x)$

Тероэма 32.1. Если функция y=g(x) непрерывно-дифференцируема и её $\forall x: g'(x)=0, \ g(x)=C$

Доказательство. Пусть $\forall x: g'(x) = 0 \Rightarrow \forall x_1, x_2: g(x_1) = g(x_2)$. Тогда по теореме Лагранжа: $\xi \in (x_1; x_2): g(x-2) - g(x_1) = g'(\xi) \cdot (x_2 - x_1) \Rightarrow$ так как $g'(\xi) = 0, g(x_2) - g(x_1) = 0 \Rightarrow g(x_2) = g(x_1)$

Тероэма 32.2. Если F(x) первообразная для f(x), то любая первообразная для f(x) представима в виде G(x) = F(x) + C

Доказательство. Пусть 2 различные первообразные
$$F(x)$$
, $G(x)$ для $f(x) \Leftrightarrow F'(x) = f(x)$ и $G'(x) = f(x)$. Тогда $\forall x: (G(x) - F(x))' = G'(x) - F'(x) = f(x) - f(x) = 0 \Rightarrow$ по теорете 1 $G(x) - F(x) = C \Rightarrow G(x) = F(x) + C$

совокупность всех первообразных для функции называется неопределённым интегралом этой функции $\int f(x) dx = F(x) + C$

32.2 Свойства неопределённого интервала

- 1. $d(\int f(x)dx) = f(x)dx$
- 2. $\int f'(x)dx = f(x) + C$
- 3. $\forall \alpha, \beta \in \mathbb{R}, \forall f(x), g(x) : \int \alpha f(x) + \beta g(x) dx = \alpha \int f(x) dx + \beta \int g(x) dx$
- 4. $\forall \alpha, \beta : F'(x) = f(x), \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$

Из таблицы производных получаем таблицу интегралов:

32.3 Таблица Интегралов

 $\int 0dx = C \tag{32.1}$

$$\int dx = x + C \tag{32.2}$$

 $\int x^n = \frac{x^{n+1}}{n+1} + C, n \neq 1$ (32.3)

$$\int \frac{dx}{x} = \ln(|x|) + C \tag{32.4}$$

$$\int a^x dx = \frac{a^x}{\ln(a)} + C \tag{32.5}$$

$$\int e^x dx = e^x + C \tag{32.6}$$

$$\int \sin(x)dx = -\cos(x) + C \tag{32.7}$$

$$\int \cos(x)dx = \sin(x) + C \tag{32.8}$$

$$\int \operatorname{tg}(x)dx = \ln(\frac{1}{|\cos(|x|)}) + C$$
(32.9)

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C \tag{32.10}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin(\frac{x}{a}) + C \tag{32.11}$$

$$\int \frac{dx}{x^2 + 1} = arctg(x) + C \tag{32.12}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg}(\frac{x}{a}) + C \tag{32.13}$$

32.3. ТАБЛИЦА ИНТЕГРАЛОВ

ГЛАВА 32. НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} ln(|\frac{x - a}{x + a}|) + C$$
 (32.14)

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2}) + C$$
 (32.15)

Метод замены переменной в неопределённом интеграле

Тероэма 33.1. Пусть функция f(x) непрерывна, а $x=\phi(t)$ непрерывнодифференцируема, причём $\mathcal{D}(\phi(t))\subset\mathcal{D}(f)$, тогда $\int f(x(t))\phi'(t)dt=\int f(x)dx$ Произведём по t:

$$(\int f(x(t))\phi'(t)dt)_t' = \int x(t) \cdot \phi'(t)$$

$$(\int f(x)dx)_t' = (\int f(x(t))dx)_t' = f_t'(x(t)) = f_t'(x(t))x'(t) = f_t'(x(t))\phi'(t)$$

Пример:

$$\int tg(x)dx = \int \frac{\sin(x)}{\cos(x)}dx \left[t = \cos(x), dt = -\sin(x)dx, \sin(x)dx = -dt \right]$$

$$= \int \frac{-dt}{t} = -\ln(|t|) + C = -\ln(|\cos(x)|) + C$$
 (33.1)

Интегрирование по частям

Пусть есть 2 нерерывно-дифференцируемые функции u(x), v(x):

$$d(uv) = (uv)'dx = (u'v + v'u)dx = u'vdx + v'udx = vdu + udv \Rightarrow d(uv) = vdu + udv$$

 $\Rightarrow \int u dv = uv - \int v du (34.1)$ Когда использовать? (за u берём многочлен и корячим столько раз,какова степень)

- подинтегральная функция есть произведение многочлена и синуса/косинуса
- подинтегральная функция есть произведение многочлена и показательной функции

Определённый интеграл и его свойства

Пусть задана y=f(x), предположим, что $\forall x\in [a;b]\subset \mathcal{D}(f):f(x)\geq 0$ Излом графика функции

Рассмотрим фигуру, ограниченную сниху Ox, сверху графиком функции, слева и справа - вертикальными прямыми x=a, x=b это называется криволинейной трапецией. Чтоб найти площадь этой фигуры, разобьём её на досаточно большое количество очень узких вертикальных полосок, чтобы ступенчатая форма была ближе к кривой. Площадь криволинейной трапеции буде равна сумме площадей полосок.

Разбиение [a;b] (конечное множество точек) таких, что $a=x_0 < x_1 < x_2 \cdots < x_n = b$. На каждом $x_{[i-1;x_i]}$ выберем ξ_i и рассмотрим $f(\xi_i)$ Рассмотрим итый прямоугольник со сторонами x_i-x_{i-1} , площадь которого равна $f(\xi_i)\cdot (x_i-x_{i-1})$ Обозначим (x_i-x_{i-1}) за Δ_i и пусть $\Delta=\max(\Delta_i...\Delta_n)$ Δ -диаметр разбиения.

Интегральная сумма соответствующая данному разбиению:

$$\sum_{i=1}^{n} \Delta_i \cdot f(\xi_i)$$

Рассмотрим $\lim_{\Delta\to 0}\sum_{i=1}^n \Delta_i\cdot f(\xi_i)$. Если такой предел существует и конечен, не зависит от разбиения и от выбора ξ_i , то этот предел называется определённым интегралом $\int_a^b f(x)dx$

Тероэма 35.1. необходимые условия интегрируемости. Если функция интегрируема на отрезке, то она ограничена на этом отрезке.

Доказательство. Произведём разбиение [a;b]. Если функция неограничена на [a;b], она неограничена хотя бы на одном из отрезков $[x_i-x_{i-1}]$. Следовательно точку ξ_i можно выбрать так, что $|\xi_i|$ будет сколь угодно велик. В этом случае интегральная сумма стремится к бесконечности и предел интегральной суммы будет зависеть от выбора ξ_i и, при некотором ξ_i он будет бесконечным, что противоречит условиям интегрирования.

Тероэма 35.2. Если функция непрерывна на [a;b], она интегрируема на [a;b].

Следствие: Если функция на [a;b] имеет конечное количество точек разрыва первого рода¹, то она интегрируема на [a;b].

Доказательство. Функция кусочно-непрерывна на [a;b] тогда и только тогда, когда этот отрезок разбивается на конечное число меньших отрезков, на каждом из которых эта функция непрерывна и ограничена, по теореме 2 доказательство.

Тероэма 35.3. Если функция монотонна на [a;b], она интегрируема на [a;b].

35.1 Свойства определённго интеграла

- 1. $\int_a^a f(x)dx = 0$
- 2. $\int_{a}^{b} dx = b a$
- 3. $\forall f(x), g(x)$ интегрируемой на $[a;b], \forall \alpha, \beta$

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

4. Если $f(x) \ge 0$ на $[a;b], \forall x \in [a;b]: f(x) \ge g(x),$

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$$

¹ кусочно-непрерывна

5.

$$\left| \int_{a}^{b} g(x)dx \right| \le \int_{a}^{b} g(x)dx$$

Доказательство.

$$\forall |\sum_{i=1}^{n} \Delta_i \cdot f(\xi_i)| \le \sum_{i=1}^{n} |\Delta_i \cdot f(\xi_i)| \le \sum_{i=1}^{n} \Delta_i \cdot |f(\xi_i)|$$

При $\Delta \to 0$ доказывается

6. $\int_a^b f(x)dx = -\int_b^a f(x)dx$

7.

$$\forall a, b, c : \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

Доказательство(а) Пусть $c \in (a;b)$, тогда рассмотрим разбиения отрезка [a;b], содержащие c. Тогда интегральная сумма разивается на 2 суммы: слева от c и справа от c. При $\Delta \to 0$ доказывается.

(b) $c \notin (a; b) \Rightarrow b \in (a; c)$ по пункту i:

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

$$\Rightarrow \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

- (c) $a \in (c; b)$ аналогично
- (d) c = a или c = b: по первому свойству.

Тероэма 35.4. о среднем: Если функция непрерывна на $[a;b], \exists \xi \in [a;b]: f(\xi) \cdot (b-a) = \int_a^b f(x) dx$

Доказательство. Пусть y = f(x) непрерывна на $[a;b] \Rightarrow$ на этом отрезке она достигает своих максимального и минимального значений. $m = min(f(x)); M = max(f(x)), x \in [a;b]$

$$\forall x \in [a;b] : m \le f(x) \le M. \Rightarrow \int_a^b m dx \le \int_a^b f(x) dx \le \int_a^b M dx$$

$$\Rightarrow m(b-a) \le \int_a^b f(x)dx \le M(b-a).a < b \Rightarrow m \le \frac{1}{b-a} \int_a^b f(x)dx \le M$$

по теореме о промежуточных значениях непрерывной функции:

$$\exists \xi \in [a;b]: f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$$

умножив на (b-a) > 0 получим доказываемое равенство.

Формула Ньютона-Лейбница

Для y=f(x) на [a;b] рассмотрим функцию $\Phi(x)=\int_a^x f(t)dt, x\in [a;b]$ **Тероэма 36.1.** Если функция интегрируема на [a;b], $\Phi(x)$ непрерывна на [a;b]

$$\exists M>0, \forall x\in [a;b]: |f(x)|\leq M.$$

Возьмём произвольное $x \in [a;b], \Delta_x > 0$. Рассмотрим

$$|-\Phi(x) + \Phi(x + \Delta_x)| = |\int_a^{x + \Delta_x} f(t)dt - \int_a^x f(t)dt =$$

$$\left| \int_{a}^{x} f(t)dt + \int_{x}^{x+\Delta_{x}} f(t)dt - \int_{a}^{x} f(t)dt \right| =$$

$$\left| \int_{x}^{x+\Delta_{x}} f(t)dt \right| \le \left| \int_{x}^{x+\Delta_{t}} |f(t)|dt \right|$$

$$\leq |\int_{x}^{x+\Delta_{x}} Mdt| \leq M|\int_{x}^{x+\Delta_{x}} dt| = M\Delta_{x}$$

 $0\leq |\Phi(x+\Delta_x)-\Phi(x)|\leq M\Delta_x\ M\Delta_x\to 0$ при $\Delta_x\to 0\Rightarrow \lim_{\Delta_x\to 0}\Phi(x+\Delta_x)=\Phi(x)$ Следовательно $\Phi(x)$ непрерывна из-за того, что x выбран произвольно. \square

Тероэма 36.2. y = f(x) непрерывна, отсюда $\Phi(x)$ дифференцируема на [a;b]. При этом $\Phi'(x) = f(x)$.

Доказательство.

$$x \in (a; b), x + \Delta_x \in (a; b).$$

$$\Phi(x + \Delta_x) - \Phi(x) = \int_{x}^{x + \Delta_x} f(t)dt|_{\div \Delta_x}$$

$$\frac{\Phi(x + \Delta_x) - \Phi(x)}{\Delta_x} = \frac{1}{\Delta_x} \int_{x}^{x + \Delta_x} f(t) dt$$

По теореме о среднем

$$\frac{1}{\Delta_x} f(\xi)(x + \Delta_x - x) = f(\xi), \xi \in [x; x + \Delta_x]$$

Если $\Delta_x \to 0, \xi \to x$

$$\frac{\Phi(x + \Delta_x) - \Phi(x)}{\Delta_x} = f(\xi)$$

При переходе к пределу с $\Delta_x \to 0$ получим $\Phi'(x) = f(x)$ Таким образом, Если функция y = f(x) непрерывна на $[a;b], \Phi(x)$ - первообразная для f(x)

Рассмотрим Вас первообразные F(x) для f(x). $\int_a^x f(t)dt = \Phi(t) = F9x) + C$. Найдём z, взяв $x=a\Rightarrow \int_a^a f(t)dt = f(a) + C \Rightarrow C = -F(a) \Rightarrow \int_a^x f(t)dt = F(x) - F(a)$

При
$$x = b$$
: $\int_a^b f(t)dt = \int_a^x f(x)dx = F(b) - f(a) \Rightarrow F(b) - F(a) = F(x)|_a^b$

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$
(36.1)

Несобственные интегралы, их свойства и вычисление

Если существует конечный предел $\lim_{b\to +\infty} \int_a^b f(x)dx$, функции f(x), которая определена на промежутке $[a;+\infty)$, то его называют *несобственным* интегралом первого рода и обозначают

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$
 (37.1)

Если он существует и конечен, то это cxodsumuucs интеграл. В противном случае такой интеграл называют pacxodsumuscs. Аналогично рассматривается несобственный интеграл на промежутке $(-\infty; b]$. Так как несобственный интеграл первого рода определен как предел, то из свойств интеграла и предела получаем nuneunocmu nuneunocmu nuneunocomu nune

Для любого $\alpha, \beta \in$ и для любых интегрируемых на промежутке [a;b] функций f(x) и g(x):

$$\int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{+\infty} f(x) dx + \beta \int_{a}^{+\infty} g(x) dx$$
 (37.2)

Данное свойство также выполняется для и для интегралов с пределами интегрирования $(-\infty;b)$ и $(-\infty;+\infty)$

Из свойств интеграла и предела получаем формулы замены переменной в собственном интеграле и формулы интегрирования по частям. Пусть

функция y=f(x) интегрируема на [a;b] и пусть $x=\varphi(t)$ непрерывна и дифференцируема на $[\alpha;\beta]$ и монотонна, причем $\varphi(\alpha)=a$, $\lim_{t\to\beta-0}\varphi(t)=\infty$ тогла:

$$\int_{0}^{+\infty} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t)dt$$

Я НЕ ПОНИМАЮ, ЧТО ДАЛЬШЕ НА-ПИСАНО. ЧТО ЭТО ЗНАЧИТ? ПО-МОГИТЕ!!!

Пусть и и v непрерывно дифференцируемы, тогда

$$\int_{a}^{+\infty} u dv = \lim_{b \to \infty} u(b)v(b) - u(a)v(a) - \int_{a}^{+\infty} v du$$

Аналогично можно продифференцировать и оставшиеся интегралы.

Пример: Выяснить, сходится ли несобственный интеграл.

$$\int_{1}^{+\infty} \frac{dx}{x^{p}}$$

Рассмотрим случаи:

1. p=0

$$\int_1^{+\infty} dx = \lim_{b\to +\infty} \int_1^b dx = \lim_{b\to +\infty} (x\Big|_1^b) = \lim_{b\to +\infty} (b-1) = +\infty$$
 – интеграл расходится

2. p < 0

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \left(\frac{x^{1-p}}{1-p} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(\frac{b^{1-p}}{1-p} - \frac{1}{1-p} \right) = +\infty$$
 – интеграл расходится

3. 0

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} (\frac{x^{1+p}}{1+p}\Big|_{1}^{b}) = \lim_{b \to +\infty} (\frac{b^{1+p}}{1+p} - \frac{1}{1+p}) = +\infty$$
 – интеграл расходится

4. p=1

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \int_{1}^{+\infty} \ln x = \infty$$

5. p > 1

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \left(\frac{x^{1-p}}{1-p}\Big|_{1}^{b}\right) = \lim_{b \to +\infty} \left(\frac{b^{1-p}}{1-p} - \frac{1}{1-p}\right) = \frac{1}{p-1}$$

Из этого можно сделать вывод, что при p<1 - интеграл расходится, а при p>1 - интеграл сходится к $\frac{1}{p-1}$

37.1 Вопрос о сходимости интегралов

А признаки нужно доказывать или и так норм?

37.2 Множества и операции над ними

При выяснении неудобно пользоваться определениями, поэтому принимают $признак u \ cxodumocmu$

37.2.1 Признак сравнения

Пусть y=f(x) и y=g(x) неотрицательны и интегрируемы. Для любого $x\in [a;+\infty]$ справедливо $f(x)\leq g(x)$. Тогда из сходимости несобственного интеграла $\int_a^{+\infty}g(x)dx$ следует сходимость $\int_a^{+\infty}f(x)dx$, а из расходимости $\int_a^{+\infty}g(x)dx$ следует расходимость $\int_a^{+\infty}f(x)dx$.

37.2.2 Предельный признак сравнения

называется элементом обозначение множества: $\{a|P(a)\}$ где P(a) - свойство, объединяющее объекты a.

Пусть y=f(x) и y=g(x) неотрицательны и интегрируемы на промежутке [a;b] и пусть существует $\lim_{x\to +\infty} \frac{f(x)}{g(x)=1>0},$ значит они либо обе сходятся, либо обе расходятся.

37.2.3 Признак Абеля-Дирихле

КАК ЭТИ ВЕЩИ ВООБЩЕ СВЯЗА-

НЫ? Пусть y = f(x) интегрируема на промежутке [a; b] и имеет первообразную F(x), а y = g(x) непрерывно дифференцируема на $(a; +\infty)$ и

ГЛАВА 37. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ИХ СВОЙСТВА И 37.2. МНОЖЕСТВА И ОПЕРАЦИИ НАД НИМИ ВЫЧИСЛЕНИЕ

интегрируема на [a;b], стремится к 0 при $x \to +\infty$, тогда

$$\int_{a}^{+\infty} g(x)dx$$

- сходится

Замечание:

содержится: $A \subseteq B$. Каждый элемент множества A содержится в B. Предыдущий признак удобно использовать при рассмотрении несобственных интегралов дробно-рациональной функции. Его удобно сравнивать с интегралами, сходимость которых исследована. Аналогичные признаки сравнения справедливы и для оставшихся двух интегралов.

Рассмотрим случай, когда на [a;b] y=f(x) имеет особенную точку, то есть существует $c\in [a;b]$:

$$\lim_{x\to c+0} = \infty$$

или

$$\lim_{x\to c-0}=\infty$$

В этом случае вычислить $\int_a^b f(x) dx$ нельзя.

На этом месте Я опять отключился при с-а

$$\lim_{x\to a+0} = \infty$$

$$\int_{a}^{b} f(x)dx - \lim \int_{a}^{b} f(x)dx$$

— это несобственный интеграл второго рода, если предел существует, то он сходящийся, а в противном случае рассходящийся. Тут Чет то ${\rm HeBHSTHOe}\ {\rm Пропустил}$

37.2.4 Свойства несобственного интеграла второго рода

Так как несобственный интеграл определяется как предел, то исходя из свойств предела получаем несобственного интеграла второго рода.

1. $\forall \alpha, \beta \in f(x), g(x)$ интегрируемых на $[a; b], a < \alpha < b$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2. если y=f(x) интегрируема на [a;b] , $a<\alpha< b,$ x=varphi(t) (a;b) монотонна $lim_{t\to\alpha}\varphi(t)=a, \varphi(b)=b,$ то

$$\int_{a}^{b} f(x)dx = \int_{C}^{\beta} f(\varphi(t)) \cdot \varphi'(t)dt$$

3. интегрирование по частям

Матрицы и операции над ними

Матрица— прямоугольная таблица, составленная из чисел, которые называются элементами матрицы. Элементы матрицы располагаются в горизонтальных и вертикальных рядах, которые называются строками и столбцами. Их принято нумеровать. Для матрицы важны также ее размеры, которые записываются в виде $m \times n$, где m — строки, а n — столбцы.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Матрицы принято обозначать заглавными буквами. Иногда, чтобы указать размеры матрицы пишут $A_{m\times n}$, $B_{m\times n}$. Элементы обозначают строчными буквам a_{ij} , b_{ij} .

Матрицы, где все элементы равны 0 называются **нулевыми** и записываются $O_{m \times n}$.

Для квадратной матрицы определяют диагонали (главная — слево на право, **побочная** — справа налево)

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется **диагональной**.

$$\lambda = \begin{pmatrix} \lambda_{11} & 0 & 00 & 0\\ 0 & \lambda_{22} & 0 & 0\\ 0 & 0 & \lambda 33 & 0\\ 0 & 0 & 0 & \lambda 44 \end{pmatrix}$$

Диагональная матрица, элементы главной диагонали которой равны между собой и не равны 0, называется *скалярной*.

Скалярная матрица, где элементы на главной диагонали равны единице

38.1. СВОЙСТВА С**ГГОЭК АНВ**Я**ЛИАНЫ ИШЫ ИЖ**ЕРАЦИИ НАД НИМИ

называется единичной.

$$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Для любой матрицы определяется операция транспонирования: каждая строка матрицы записывается ввиде столбца.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightarrow A^t = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

$$(A^t)^t = A$$

38.1 Свойства сложения и вычитания

Для двух матриц одинаковых размеров определяются операции сложение и вычитание. Для матриц A и B суммой/разностью называется матрица $(A\pm B)$, элементы которой равны сумме/разности элементов матриц A и B то есть $A\pm B=(a_{ij}\pm b_{ij})_{m\times n}$.

- 1. A + B = B + A сложение матриц коммутативно
- 2. $A_{m \times n} \pm O_{m \times n} = A_{m \times n}$ идемпотентность сложения с нулевой матрицей
- 3. $(A_{m\times n} + B_{m\times n}) + C_{m\times n} = A_{m\times n} + (B_{m\times n} + C_{m\times n})$ ассоциативность сложения
- 4. $(A \pm B)^t = A^t \pm B^t$
- 5. $A_{m\times n}\exists B_{m\times n}:A_{m\times n}+B_{m\times n}=O_{m\times n}$ Отсюда следует, что B противоположна A и обозначается -A

38.2 Свойства умножения матриц

38.2.1 Умножение матрицы на число

Также для матриц определяется операция умножения на число: $A_{m\times n}\cdot \alpha=\alpha A_{m\times n},$ элементы которой являются произведением элементов матрицы A и α

- 1. $-1 \cdot A = -A$
- 2. $(\alpha + \beta)A = \alpha A + \beta A$ дистрибутивность
- 3. $\alpha(A+B) = \alpha A + \alpha B$
- 4. $\alpha \cdot \beta A = (\alpha \beta) A$

38.2.2 Перемножение матриц

Для матриц также определяется операция умножения на матрицу. Для этого матрица должна быть **согласованной** (иметь согласованные размеры): то есть количество столбцов левого множителя должно совпадать с количеством строк правого.

Пусть матрицы $A_{m \times n}$ и $B_{k \times p}$ имеют согласованные размеры (n = k). Произведением AB будет называться матрица размерами $m \times p$, где

$$c_{ij} = \sum_{1}^{m} a_{ik} \cdot b_{kj};$$

i = 1, 2...mj = 1, 2...p

Свойства перемножения матриц

- 1. Произведение матриц не коммутативная операция то есть $AB \neq BA$, более того даже если $\exists AB$, то может $\nexists BA$
- 2. $\forall AB$ справедливо $E_{m\times n}\cdot Am\times n=E_{n\times m}\cdot Am\times n=Am\times n,$ где E-единичная матрица.
- 3. $\forall Am \times n \cdot O_{m \times n} = O_{m \times n}$
- 4. $(AB)^t = A^t \cdot B^t$
- 5. $\forall A,B,C$ согласованных матриц справедливо свойство ассоциативности (AB)C=A(BC)
- 6. $\forall Am \times n, Bm \times n, Cn \times p$ справедливо: (A+B)C = AC + BC

38.3 Определитель матрицы

Для любой квадратной матрицы вводится понятие **определителя**, который обозначается как det A

Введем это понятие рекурентным образом

$$A_{1\times 1} \Rightarrow A = (a) \Rightarrow det A = a$$

Для матриц размером больше 1×1 введем понятие алгебраических дополнений. Алгебраическим дополнением к $a_{i \times j}$ называется $A_{i \times j} = (-1)^{i+j} \cdot M_{i \times j}$, где M - матрица, полученная из матрицы A путем вычеркивания і-ой строки и j-столбца.

Определитель будет равен сумме произведений элементов первой строки и их алгебраических дополнений.

Определитель матрицы 2×2 является разностью произведений элементов на главной и побочной диагоналях:

$$det A_{2\times 2} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$
 (38.1)

38.3. ОПРЕДЕЛИТ**ЕЛА ВЛАЗЭ**РИ**ЩЫ**ГРИЦЫ И ОПЕРАЦИИ НАД НИМИ

Определитель матрицы 3×3 можно найти по правилу Саррюса:

```
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} a_{11} \quad a_{12} \\ a_{21} = a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33} \\ a_{31} = a_{32} \quad a_{33} \begin{vmatrix} a_{31} & a_{32} \\ a_{31} & a_{32} \end{vmatrix} a_{31} \quad a_{32} \end{vmatrix}
```

Свойства определителя

1. Определитель можно вычислить по любой строке матрицы (не только первой) как сумму произведений этой строки и их алгебраических дополнений:

$$det A = a_{i1} \cdot A_{i1} + a_{i2} \cdot A_{i2} + \dots + a_{in} \cdot A_{in}$$
 (39.1)

2. Определитель матрицы не изменяется при транспонировании:

$$det A^t = det A \tag{39.2}$$

Потому все свойства строк будут верными и для столбцов. В частности определитель матрицы можно вычислить как сумму элеметов матрицы и их алгебраических дополнений:

$$det A = a_{1j} \cdot A_{1j} + a_{2j} \cdot A_{2j} + \dots + a_{nj} \cdot A_{nj}$$
(39.3)

3. Если какая либо строка или столбец состоит только из нулей, то

$$det A = 0 (39.4)$$

- 4. Если в матрице поменять две строки(или столбца) местами, то определитель изменит знак.
- 5. Если в матрице имеется две одинаковые строки(столбца), то ее определитель равен 0.
- 6. Если все элементы строки(столбца) матрицы имеют один и тот же общий множитель, то его можно вынести за знак определителя.

ГЛАВА 39. СВОЙСТВА ОПРЕДЕЛИТЕЛЯ

7.

$$det A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{n1} \\ b_{i1} \pm c_{i1} & b_{i2} \pm c_{i2} & \dots & b_{in} \pm c_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{n1} \\ b_{i1} & b_{i2} & \dots & b_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \pm det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{n1} \\ c_{i1} & c_{i2} & \dots & c_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

- 8. Определитель не изменится, если к какой-нибудь её строке прибавить другую, умноженное на некоторое число.
- 9. Сумма произведений элементов в какой-нибудь строке (столбце) матрицы и их алгебраических дополнений равна 0.

Векторы и линейные операции над ними

Пусть даны A и B, **направленным отрезком** \overline{AB} будет называться отрезок, для которого указано, что A - начало, B - конец. AB

При этом \overline{AA} отображается как точка, и если $A \neq B$, то $\overline{AB} \neq \overline{BA}$ Говорят, что направленые отрезки \overline{AB} и \overline{CD} – сонаправлены, если лучи [AB) и [CD) – сонаправлены. ¹ Говорят, что отрезки \overline{AB} и \overline{CD} – противоположно направлены, если лучи [AB) и [CD) – противоположно направлены.

Два луча сонаправленны, если:

- 1. Они лежат на одной прямой и один целиком содержится в другом.
- 2. Они лежат на параллельных прямых по одну сторону прямой, проходящей через начало этих лучей.

Длинна \overline{AB} — называется длинна отрезка AB. Отрезок \overline{AA} имеет длинну 0. \overline{AB} и \overline{CD} — эквивалентны, если они имеют одинаковые длинны и направления. Совокупность всех сонаправленных отрезков называется вектором. Каждый направленный отрезок является элементом вектора и называется представителем вектора \overline{AB} или \overline{a} .

Класс нулевых направленных отрезков называется **нуль-вектором**($\vec{0}$). Для вектора определяются операции откладывания от заданной точки. Пусть существуют A и \vec{a} , тогда отложить \vec{a} от A означает найти такое B, что $\overline{AB} \in \vec{a} \iff \vec{AB} \in \vec{a}$

Рассмотрим параллелограмм ABCD: $\vec{AB} = \vec{DC} \\ \vec{BC} = \vec{AD}$

 $^{^{1}[}AB)$ – луч; [AB]–отрезок; (AB)–прямая

 \vec{AB} и \vec{BA} противоположные, значит $\vec{AB} = -\vec{BA}$.

Для векторов также определяются операции сложения и умножения:

Отложим \vec{a} от O; $\vec{a} = \vec{OA}$

Отложим \vec{b} от $\vec{a}; \vec{b} = \vec{AB};$

 $\vec{a} + \vec{b} = \vec{OB}$

 $\vec{OA} + \vec{AB} = \vec{OB}$ — правило замыкающей (из начала первого в конец последнего; применимо для любого количества векторов)

Разностью \vec{a} и \vec{b} будет \vec{c} , представляется направленным отрезком, соединяющим концы этих векторов и имеющим направление «к концу того вектора, из которого вычитают».

 $\vec{a} = \vec{OA}$ $\vec{b} = \vec{OB}$

 $\vec{c} = \vec{BA} = \vec{OA} - \vec{OB}$

Умножение на число:

 \vec{a} и $\lambda \in$:

- 1. $\lambda = 0$, to $\lambda \vec{a} = \vec{0}$
- 2. $\lambda > 0$, то $\lambda \vec{a} \uparrow \uparrow \vec{a}$ и имеющий длинну $l = \lambda \mid a \mid$
- 3. $\lambda < 0$, то $\lambda \vec{a} \uparrow \downarrow \vec{a}$ и имеющий длинну $l = \lambda \mid a \mid$

Поверхности второго порядка, метод сечения

Пусть в пространсве задана ПСК Oxyz. Фигурой, задаваемой уравнением F(x,y,z)=0 называется множество тех точек, координаты которых удовлетворяют этому уравнению. Если F(x,y,z) многочлен, т.е. конечная сумма вида $ax^py^qz^r$, $a\in athbbR$; $p,q,r\in\mathbb{N}$, фигура на выходе - алгебраическая поверхность. Если F(x,y,z) - многочлен степени k, фигура будет порядка k. Таким образом поверхности второго порядка задаются уравнением вида $a_1x^2+a_2y^2+a_3z^2+a_4xy+a_5xz+a_6yz+a_7x+a_8y+a_9z+a_0=0;$ $a_0,a_1\ldots a_9\in\mathbb{R}$ $\exists x\in\{a_1,a_2\ldots,a_6\}:x\neq 0$

46.1 Метод сечений

Тероэма 46.1. Пусть задано уравнение F(x, y, z) = 0, тогда проекция на Оху, пересечения поверхности с плоскостью z = h Задаётся уравнением F(x, y, h) = 0.

Доказательство. F(x,y,z)=0 // Пусть $M(x_1,y_1,z_1)$ - произвольная точка. Тогда проекция этой точки на $Oxy=M_1(x_1,y_1,0)$. Пусть M принадлежит пересечению этой поверхности с плоскостью $z=h\Leftrightarrow M(x_1,y_1,h)$ при этом $F(x_1,y_1,h)=0$

Тогда M_1 в $Oxy=M(x_1,y_1)$ есть проекция пересечения данной поверхностии плоскость. z=h тогда и только тогда, когда $M(x_1,y_1,h)$ принадлежит этому пересечению, что значит, что $F(x_1,y_1,h)=0$

Поверхности вращения

Пусть в пространстве задана некая линия γ и прямая d. Фигура, получающаяся при вращении γ вокруг d называется поверхностью вращения. Выберем в пространсве ПСК Oxyz так, чтбы ось вращения совпадала с $Ox \Rightarrow$ поверхность вращения можно задать так: $y \in Oxz = x = f(z)$, где f некоторая функция, и рассмотрим Поверхность вращения, полученную при вращении γ вокруг Oz. Рассмотрим $M(x,y,z) \in$ этой поверхности, и плокость, проходящую через $M \perp Oz$ и M_0 , точку пересечения этой плоскости с $Oz \Rightarrow M_0 = M_0(0,0,z_1) \Rightarrow$ вся окружность с центром в M_0 , проходящая через M, целиком лежит нв этой поверхности.

Рассмотри пересечение этой окружности с $Oxz: M_1$ и M_2 . Заметим, что M_0M_1, M_0M_2, M_0M - радиусы одной окружности(поэтому они равны друг другу). $\Rightarrow M_0M_1 = M_0M_2 = M_0M = = \sqrt{(x_1-0)^2+(y_1-0)^2+(z_1-z_1)^2} = \sqrt{x_1^2+y_1^2}$ $\Rightarrow M_1(\sqrt{x_1^2+y_1^2},0,z_1), M_2(-\sqrt{x_1^2+y_1^2},0,z_1)$. Так как M принадлежит поверхности вращения, $\sqrt{x_1^2+y_1^2}=f(z_1)\Rightarrow x_1^2+y_1^2=(f(z_1))^2\Rightarrow$ эта линия вращения задана

$$x^2 = y^2 = f^2(z) (47.1)$$

Поверхнощение второго порядка тогда, когда многочлен от z не более второго порядка:

- f(z) = a
- $f(z) = \sqrt{az^2 + b}$
- $f(z) = \sqrt{az^2 + bz + c}$

Добавить рисунки сюды, кто-нитьб похуйб на редактуре добавим

Циллиндрические поверхности

Пусть в пространстве задага линия γ и ненулевой вектор \vec{p} . Поверхность нахывается циллиндрической, если вместе с любой своей точкой она содержит и всю прямую, параллельную \vec{p} и проходящую через эту точку. Такие прямые называются образующими. В пространствк рассмотрим СК Oxyz такую, что $Oz \parallel \vec{p} \Rightarrow$ Все образующие Ц.П. параллельны Oz и имеют направляющим вектором \vec{p} . Ц.П. можно задать следующим образом: Пусть в плоскости Oxy задана линия $\gamma:=f(x,y)=0$; через каждую точук этой линии проведём прямую, параллельную Ox. Тут γ называется направляющей для этой Ц.П.

Найдём уравнение, задающее Ц.П. Рассмотрим произвольную точку M(x,y,z) в пространстве. Её проекция M_1 на Oxy имеет координаты $M_1(x,y,0)\Rightarrow M_1\in\gamma\Rightarrow f(x,y)=0$. Если направляющая γ в Oxy задаётся уравнением f(x,y)=0, Ц.П. так же задаётся уравнением f(x,y)=0 и $f(x,y)=a_1x^2+a_2y^2+a_3xy+a_4x+a_5y+a_0=0$ - второго порядка. Из a_1,a_2,a_2 хотя бы один ненулевой.

48.1 Примеры

48.1. ПРИМЕРЫ ГЛАВА 48. ЦИЛЛИНДРИЧЕСКИЕ ПОВЕРХНОСТИ

./pics/.png

(а) Эллиптический циллиндр

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(48.2)

 Π ри a = b получаем цилиндр вращения (школьный).

Гиперболический циллиндр

$$\boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1}$$

(48.4)

(с) Параболический циллиндр

$$x^2 = \pm 2py$$
(48.6)

(d) Пара плоскостей (e) Пара плоскостей

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

(48.8)

$$\frac{x^2}{a^2} = 1$$
 (48.10)

Конические поверхности

Пусть в пространстве зафиксирована точка A и линия γ . Конической поверхностью с центром в A называется множество точек, лежащих на всех прямых, проходящих через A и некоторую точку $\in \gamma$. Выберем в пространстве ПСК Oxyz так, чтобы начало координат было центром данной К.П. Тогда этоу К.П. можно задать так:

Рассмотрим плоскость z=1, в этой плоскости рассмотрим γ , заданную уравнением f(x,y)=0 и рассмотрим все прямые, прохрдящие через начало координат и точку, принадлежащую γ . Относительно прямых, проходящих через O: если $M(x,y,z)\neq O$ принадлежит такой прямой, $\forall t\in\mathbb{R}:M_t(t_x;t_y;t_z)\in$ этой прямой \mathbb{R} .

Пусть К.П. K имеет центром O(0,0,0) и определена линией γ , заданной уравнением f(x,y)=0, тогда рассматривая произвольную точку $M(x;y;z):M\in K\Leftrightarrow \exists t:M_t(t_x;t_y;t_z)\in\gamma\Leftrightarrow \exists t:f(x_t,y_t)=0\Leftrightarrow \exists t=\frac{1}{z}:f(\frac{x}{z},\frac{y}{z})=0\Rightarrow f(\frac{x}{z},\frac{y}{z})$ - уравнение К.П. $K\setminus\{0\}$.

Рассмотрим сечения конуса вращения различными плоскостями. 3 случая, если через начало координат:

1. Сечение К.В. есть точка O

¹Господа редакторы, что?

[1]Эллиптический конус

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z^2 = 0 \tag{49.1}$$

ГЛАВА 49. КОНИЧЕСКИЕ ПОВЕРХНОСТИ

- 2. Сечение К.В. есть касательная прямая
- Пара пересекающихся прямых (в начале координат)
 Рассмотрим плоскости, не проходящие через начало координат:
- 1. Плоскость $\perp Ox$ окружность.
- 2. Эллипс (при небольшом угле наклона секущей плоскости).
- 3. Параболаб если секущая плоскость параллельна одной из образующих.
- 4. Гипербола, если угол наклона велик.

Эллипсоид, Параболоиды, Гиперболоиды

50.1 Эллипсоид

Пусть задана ПСК Oxyz. Эллипсоидом называется фигура, заданная уравнением:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 (50.1)

Все переменные в чётных степенях: Симметричнсть относительно каждой координатной плоскости, оси, начала координат. Он лежит в коробке размерами $2a \times 2b \times 2c$ ака Дыня в коробке. Выведем через метод сечений: Режем плоскостями z=h, тогда проекция на Oxy:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2} \tag{50.2}$$

3 случая:

1. $|h|>c\Leftrightarrow 1-\frac{h^2}{c^2}<0\Rightarrow$ нет таких точек

2.
$$|h| = c \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 0 \Rightarrow \begin{cases} x = 0 \\ y = 0 \\ z = \pm h = \pm c \end{cases}$$

$$3. \ |h| < c \Leftrightarrow rac{x^2}{a^2} + rac{y^2}{b^2} = 1 - rac{h^2}{c^2}, rac{h^2}{c^2} < 1 \Rightarrow$$
 Эллипс

Аналогичные результаты получим при резании и другими плоскостями. Вершины эллипсоида: (a;0;0), (-a;0;0), (0;b;0), (0;0;c), (0;0;c), (0;0;c), (0;0;c), (0;0;c) центр эллипсоида: (0;0;0)

50.2 Гиперболоиды

50.2.1 Однополостные

$$\frac{x^2}{a^2} + \frac{y^2}{b^2 2} - \frac{z^2}{c^2} = 1 \tag{50.3}$$

симметриность как у гиперболоида.

Выведем через сечения:

- 1. $z=h:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1+\frac{h^2}{a^2},1+\frac{h^2}{a^2}>0\Rightarrow \forall h$ эллипс, он растёт, при h=0 горловой эллипс, он самый мелкий.
- 2. $x = h : \frac{y^2}{b^2} \frac{z^2}{c^2} = 1 \frac{h^2}{a^2}$:
- (a) $|h| < a, 1 \frac{h^2}{a^2} > 0 \Rightarrow$ Гипербола
- (b) $|h|=a, \frac{y^2}{b^2}-\frac{z^2}{c^2}=0 \Rightarrow$ Пара пересекающихся прямых
- (c) $|h|>a, 1-\frac{h^2}{a^2}<0\Rightarrow$ Перевёрнутая начальная парабола (свопнуты действительная и мнимая оси)
- 3. y = h cm. x = h

50.3 Двуполостный гиперболоид, виброчаша

$$\frac{x^2}{a^2} + \frac{y^2}{b^2 2} - \frac{z^2}{c^2} = -1$$
 (50.4)

симметричность, как у остальных посонов

сечём z=h

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1 \tag{50.5}$$

- 1. $|h| < c : \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} 1 \Rightarrow \emptyset$
- 2. $|h| = c : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 0 \Rightarrow$ Точки, низ и верх виброчаш
- 3. $|h| > c : \frac{h^2}{c^2} 1 > 0 \Rightarrow Эллипс$

теперь сечём x=h

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 - \frac{h^2}{a^2} \Rightarrow \tag{50.6}$$

Гипербола

50.4 Параболоиды

50.4.1 Эллиптический

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z \tag{50.7}$$

симметричен, но не как виброчаша, его нет сверху, он яма. сечём z=h:

- 1. $h < 0: \frac{x^2}{a^2} + \frac{y^2}{b^2} < 0 \Rightarrow \emptyset$
- 2. $h = 0: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 0 \Rightarrow (0; 0; 0)$
- 3. h > 0: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2h \Rightarrow Эллипс$

теперь режем x = h (также будет и с y = h)

$$\frac{h^2}{a^2} + \frac{y^2}{b^2} = 2z \Leftrightarrow \frac{y^2}{b^2} = 2(z - \frac{h^2}{2a^2})$$
 (50.8)

получаем сдвигающуюсю вверх на $\frac{h^2}{2b^2}$ параболу.

50.4.2 Гиперболический Параболоил ака Седло для коня из коничесикх поверхноствей

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z \tag{50.9}$$

Чёткий, симметричный, но не относительно Oxy, O Режем z=h

- 1. $h < 0 : \frac{x^2}{a^2} \frac{y^2}{b^2} < 0 \Rightarrow$ Гипербола(действительная Oy)
- 2. $h=0: \frac{x^2}{a^2} \frac{y^2}{b^2} = 0 \Rightarrow 2$ пересекающиеся прямвые
- 3. $h>0:\frac{x^2}{a^2}-\frac{y^2}{b^2}=2h\Rightarrow$ Гипербола
(действительная Ox) Теперь x=h

$$\frac{h^2}{a^2} - \frac{y^2}{b^2} = 2z \Rightarrow \frac{-y^2}{b^2} = 2(z - \frac{h^2}{a^2})$$
 (50.10)

это парабола, полученная сдвигом на $\frac{h^2}{2a^2}$ Теперь y=h

$$\frac{x^2}{a^2} = 2(z + \frac{h^2}{b^2})\tag{50.11}$$

Это парабола, сдвигающаяся вниз