1 point	1.	For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.
		Given many emails, you want to determine if they are Spam or Non-Spam emails.
		Given a set of news articles from many different news websites, find out what are the main topics covered.
		Given historical weather records, predict if tomorrow's weather will be sunny or rainy.
		From the user usage patterns on a website, figure out what different groups of users exist.
1 point	2.	Suppose we have three cluster centroids $\mu_1=egin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=egin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=egin{bmatrix}4\\2\end{bmatrix}$.
		Furthermore, we have a training example $x^{(i)} = egin{bmatrix} 3 \\ 1 \end{bmatrix}$. After a cluster assignment step, what
		will $c^{(i)}$ be?
		$c^{(i)}=2$
		$igcup_{i} c^{(i)} = 1$
		$c^{(i)}$ is not assigned
		\bigcirc $c^{(i)}=3$
1 point	3.	K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?
		The cluster centroid assignment step, where each cluster centroid μ_i is assigned (by setting $c^{(i)}$) to the closest training example $x^{(i)}$.
		The cluster assignment step, where the parameters $c^{(i)}$ are updated.
		Move each cluster centroid μ_k , by setting it to be equal to the closest training example $x^{(i)}$
		Move the cluster centroids, where the centroids μ_k are updated.

1
point

4. Suppose you have an unlabeled dataset $\{x^{(1)},\ldots,x^{(n)}\}$. You run K-means with 50 different random

initializations, and obtain 50 different clusterings of the

data. What is the recommended way for choosing which one of

these 50 clusterings to use?

Use the elbow method.
Manually examine the clusterings, and pick the best one.

Plot the data and the cluster centroids, and pick the clustering that gives the most "coherent" cluster centroids.

1 point 5. Which of the following statements are true? Select all that apply.

The standard way of initializing K-means is setting $\mu_1=\dots=\mu_k$ to be equal to	ĉ
vector of zeros.	

Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.

For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.