AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 (original). A method of inhibiting or reducing the proliferation of prostate cancer cells, the method comprising administering to the cells a PLA₂ inhibitor.

2 (original). A method for the treatment of prostate cancer, the method comprising administering to a subject in need thereof a PLA₂ inhibitor.

3 (currently amended). A method according to claim 1 or claim 2 wherein the prostate cancer cells are androgen independent prostate cancer (AIPC) cells.

4 (currently amended). A method according to any one of claims 1 to 3 claim 1, wherein the PLA_2 inhibitor is a $cPLA_2$ - α inhibitor.

5 (currently amended). A method according to any one of claims 1 to 3 claim 1, wherein the PLA2 inhibitor is an sPLA2-IIA inhibitor.

6 (original). A method according to claim 5, wherein the PLA₂ inhibitor is a conformationally constrained molecule derived from a peptide consisting essentially of amino acid residues 70-74 of a human sPLA₂-IIA protein, or the equivalent residues in other sPLA₂ proteins.

GRAHAM et al Appl. No. Unassigned December 7, 2004

7 (original). A method according to claim 6 wherein the conformationally constrained molecule is a cyclic molecule.

8 (original). A method according to claim 6 wherein the conformationally constrained molecule is a cyclic peptide or derivative thereof.

9 (original). A method according to claim 8, wherein the conformationally constrained peptide is a cyclic peptide of the following formula:

A1-A2-A3-A4-A5

in which

A1 is F or Y or W or 2Nap

A2 is L or I

A3 is S or T

A4 is F or Y or W or 2Nap

A5 is R or K.

10 (original). A method according to claim 9, wherein the peptide is selected from the group consisting of cFLSYK, cFLSYR and c(2NapA)LS(2NapA)R.

11 (currently amended). A method according to any one of claims 1 to 10claim 1, wherein a cPLA₂- α inhibitor is administered in conjunction with an sPLA₂-IIA inhibitor.

12. (original). A method for detecting prostate cancer or a metastases thereof in a subject, said method comprising:

determining the level of PLA₂ mRNA expressed in a test sample from said subject; and

comparing the level of PLA₂ mRNA determined at (i) to the level of PLA₂.mRNA expressed in a comparable sample from a healthy or normal individual,

wherein a level of PLA₂ mRNA at (i) that is enhanced in the test sample relative to the comparable sample from the normal or healthy individual is indicative of the presence of a cancer cell in said subject.

13 (original). A method for detecting prostate cancer or a metastases thereof in a subject, said method comprising:

determining the level of a PLA₂ polypeptide in a test sample from said subject; and

comparing the level of PLA₂ polypeptide determined at (i) to the level of said PLA₂ polypeptide in a comparable sample from a healthy or normal individual,

wherein a level of said PLA₂ polypeptide at (i) that is enhanced in the test sample relative to the comparable sample from the normal or healthy individual is indicative of the presence of a cancer cell in said subject.

14 (original). A method of assessing the predisposition of a subject to prostate cancer, the method comprising the step of determining the presence of a polymorphism or an epigenetic change in a PLA₂ gene of the subject.

GRAHAM et al Appl. No. Unassigned December 7, 2004

15 (currently amended). A method according to any one of claims 12 to 14 claim 12 wherein the prostate cancer cells are androgen independent prostate cancer (AIPC) cells.

16 (currently amended). A method according to any one of claims 12 to 14claim 12, wherein the PLA₂ is cPLA₂-α.

17 (currently amended). A method according to any one of claims 12 to $\frac{14}{12}$, wherein the PLA₂ is sPLA₂-IIA.