CADMAS-STR Program Description

Table of contents

	page
1. Program Outline	1
2. Formulation	
2. 1 Governing equations, discretization	
2. 1. 1 Structural Analysis (Geotechnical)	3
2. 1. 2 Seepage Flow Analysis (Pore Water)	1 0
2. 1. 3 Structural Analysis,	
Coupled discretization equations for seepage flow analysis	1 5
2. 1. 4 Structural Analysis,	
Separation of discretization equations for seepage flow analysis	1 5
2. 1. 5 Porous Material	1 7
2. 2 Multipoint Constraint (MPC) Processing	1 8
2. 3 Calculation of constraining force and residual force	2 0
2. 4 Overview of Processing Contact Analysis	2 1
2. 5 Friction model	2 4
3. Input data	
3. 1 Composition of input data	2 5
3. 2 Case control section	2 5
3. 3 Bulk data section	2 6
4. Data table	
4. 1 Control data table	5 2
4. 2 Input Data Table	5 7
4. 3 Global variable table	
4. 3. 1 Module name : M_VAL (file name : m_val.f90)	7 0
4. 3. 2 Module name: M_PART (file name: m_part.f90)	8 8
4. 3. 3 Module name: MPI_PARAM (file name: mpi_param.f90)	9 1
5. Program processing flow	9 2
Appendix 1. Method of calculating nodal forces due to surface loads 1	0 0
Appendix 2. How to specify damping in transient response analysis 1	0 1
Appendix 3. FEM formulation when geometric nonlinearity is taken	
into account 1	0 3

1. Program Outline

The developed structural analysis code for performing coupled analyses with the gas-liquid two-phase flow analysis code CADMAS-SURF/3D-2F is described below.

- [1] Overview of Functions
 - (1) Analysis type: Direct transient response analysis (static analysis is used for initial conditions)
 - (2) Nonlinear analysis: Geometric nonlinear (Total Lagrange method)

Material nonlinear (elastoplasticity)

Contact (static friction, dynamic friction)

(3) Element library: Tetrahedron, Pentahedron, Hexahedron

Each primary and secondary element

Beam element (rectangular section)

(4) Special materials: Geotechnical (based on Biot's formula)

Porous Material

(5) Matrix solver: Multi-Frontal method, Domain Decomposition CG method (both can be computed in parallel)

[2] Coupled with CADMAS-SURF/3D-2F

The following two types of coupled analysis are possible. A flow diagram is shown on next page.

- (1) One-way coupling
 - ① At first, the CADMAS calculation is performed. At that time, the structural analysis mesh data is read by CADMAS and considered as obstruction.
- ② When CADMAS calculations executed, the pressure on the surface of the structure is obtained by interpolation of cell pressure in CADMAS, and the history is output to a file.
- ③ Next, the structural analysis is performed. The file② is read in and the pressure on the surface of the structure is take into account as a load.
- (2) Bidirectional coupling
 - ① CADMAS and structural analysis are executed in parallel. The parallel computation method is MPMD Multiple Program Multiple Data).
 - ② The calculation proceeds by exchanging the following data with each other.

Structural analysis → CADMAS : Structure location

CADMAS → Structural Analysis: Structure Surface Pressure

One-way coupling

Bidirectional

CADMAS Input file data.bdf

CADMAS STR Input file data.bdf

CADMAS Output file STR Output file

data.lst etc.

data.neu

2. Formulation

2. 1 Governing equations, discretization

2. 1. 1 Structural Analysis (Geotechnical)

[1] Governing equations

(1) Equation of motion

$$\nabla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{g} = \rho \ddot{\boldsymbol{u}} - 1$$

 σ : Stress tensor

 ρ : Density of the geotechnical

$$\rho = (1 - n)\rho_s + n\rho_f$$

n: Porosity

 ρ_s : Density of soil particles

 ρ_f : Density of pore water

g: Gravitational acceleration

u: Displacement

(2) Relation between stress and effective stress

$$\sigma' = \sigma + pI - 2$$

 σ' : Effective stress tensor

p: Pressure of pore water

I: Unit tensor

[2] Application of the weighted residual method

Applying the weighted residual method to the equation if motion in \odot with the weight function as δu

$$\begin{split} &\int_{V} \delta \boldsymbol{u} \cdot (\nabla \cdot \boldsymbol{\sigma}) dV + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV = \int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV \\ &- \int_{V} \boldsymbol{\sigma} : \delta \boldsymbol{\epsilon} dV + \int_{S} \delta \boldsymbol{u} \cdot (\boldsymbol{\sigma}^{T} \cdot \boldsymbol{n}) dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV = \int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV \\ &- \int_{V} \boldsymbol{\sigma} : \delta \boldsymbol{\epsilon} dV + \int_{S_{2}} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV = \int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV \\ &\int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV + \int_{V} \boldsymbol{\sigma} : \delta \boldsymbol{\epsilon} dV = \int_{S_{2}} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV \end{split}$$

 ϵ : Strain tensor

n: Outward normal vector to the surface

t: Surface forces

S: Boundary surface

$$S = S_1 + S_2$$

 S_1 : Type 1 boundary (on $S_1 \delta u = 0$)

 S_2 : Type 2 boundary (on $S_2 \boldsymbol{\sigma}^T \cdot \boldsymbol{n} = \boldsymbol{t}$)

Substituting equation (2) into this equation

$$\int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV + \int_{V} (\boldsymbol{\sigma}' - p\boldsymbol{I}) : \delta \boldsymbol{\epsilon} dV = \int_{S_{2}} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV$$

$$\int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV + \int_{V} \boldsymbol{\sigma}' : \delta \boldsymbol{\epsilon} dV - \int_{V} p\boldsymbol{I} : \delta \boldsymbol{\epsilon} dV = \int_{S_{2}} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV$$

$$\int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV + \int_{V} \boldsymbol{\sigma}' : \delta \boldsymbol{\epsilon} dV - \int_{V} \delta \boldsymbol{\epsilon}_{v} p dV = \int_{S_{2}} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV$$

Change the tensor to vector notation

$$\int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV + \int_{V} \delta \hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{\sigma}}' dV - \int_{V} \delta \epsilon_{v} p dV = \int_{S_{2}} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS + \int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV - 3$$

$$\epsilon_{v} = \epsilon_{x} + \epsilon_{y} + \epsilon_{z}$$

$$\hat{\boldsymbol{\epsilon}} = \begin{cases}
\epsilon_{x} \\
\epsilon_{y} \\
\epsilon_{z} \\
\gamma_{xy} \\
\gamma_{yz} \\
y
\end{cases}$$

$$\hat{\boldsymbol{\sigma}}' = \begin{cases}
\sigma'_{x} \\
\sigma'_{y} \\
\sigma'_{z} \\
\tau'_{xy} \\
\tau'_{yz} \\
\tau'
\end{cases}$$

[3] Spatial discretization

For interpolation function and their derivatives, as well as calculation methods for volume and areas integrals, see "Motoki Yagawa and Shinobu Yoshimura, Finite Element Method, Computational Mechanics and CAE Series 1, Baifukan, 1995, Chapter 5". Also, for interpolation function for pentahedral elements and the calculation of shear strain see MacNeal, R.H., The PENTA Solid Element, MSC Internal Memo No. RHM-43, Oct. 22, 1976".

(1) To discretize equation (3) spatially, define the following matrix

$$p = \begin{bmatrix} N_1 & N_2 & \cdots \end{bmatrix} \begin{Bmatrix} P_1 \\ P_2 \\ \vdots \end{Bmatrix} = \begin{bmatrix} N \end{bmatrix} \{ P \}$$

$$\boldsymbol{u} = \begin{bmatrix} N_1 & & & N_2 & & & & \\ & N_1 & & & N_2 & & & & \\ & & N_1 & & & N_2 & & & & \\ & & & N_1 & & & N_2 & & & & \end{bmatrix} \begin{bmatrix} U_1 \\ W_1 \\ W_2 \\ V_2 \\ W_2 \\ \vdots \end{bmatrix} = [N^3] \{U\}$$

$$\hat{\epsilon} = \begin{cases} \frac{\epsilon_x}{\epsilon_y} \\ \epsilon_y \\ \epsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{cases} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial w}{\partial z} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \\ \frac{\partial w}{\partial z} + \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial z} + \frac{\partial u}{\partial z} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} & & & \\ & \frac{\partial}{\partial y} & & \\ & & \frac{\partial}{\partial z} & \\ & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ & & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \end{bmatrix} [N^3] \{U\} = [B] \{U\}$$

$$\epsilon_{v} = \nabla \cdot \boldsymbol{u} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} [N^{3}] \{U\} = \begin{bmatrix} \frac{\partial N_{1}}{\partial x} & \frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial z} & \frac{\partial N_{2}}{\partial x} & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial z} & \cdots \end{bmatrix} \{U\}$$
$$= [E] \{U\}$$

 P_i : Pressure of pore water at node i

 U_i : Displacement of node i (x component)

 V_i : Displacement of node i (y component)

 W_i : Displacement of node i (z component)

 N_i : Interpolation function corresponding to node i

(2) Using the above matrix, discretize each term in equation ③.

$$\int_{V} \delta \boldsymbol{u} \cdot \rho \ddot{\boldsymbol{u}} dV = \{\delta U\}^{T} \int_{V} \rho [N^{3}]^{T} [N^{3}] dV \{\ddot{U}\} = \{\delta U\}^{T} [M] \{\ddot{U}\}$$

$$\int_{V} \delta \hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{\sigma}}' dV = \{\delta U\}^{T} \int_{V} [B]^{T} \hat{\boldsymbol{\sigma}}' dV = \{\delta U\}^{T} \{F\}$$

* See Appendix 3, 3 [3] for {F} when geometric nonlinearity is taken into account.

$$\int_{V} \delta \epsilon_{v} p dV = \{\delta U\}^{T} \int_{V} [E]^{T} p dV = \{\delta U\}^{T} \{F^{p}\}$$

$$\int_{S_2} \delta \boldsymbol{u} \cdot \boldsymbol{t} dS = \{\delta U\}^T \int_{S_2} [N^3]^T \, \boldsymbol{t} dS = \{\delta U\}^T \{R_1\}$$

X Refer t Appendix 1 for the calculation of $\{R_1\}$

$$\int_{V} \delta \boldsymbol{u} \cdot \rho \boldsymbol{g} dV = \{\delta U\}^{T} \int_{V} \rho [N^{3}]^{T} dV \boldsymbol{g} = \{\delta U\}^{T} \{R_{2}\}$$

Substituting these into each term of equation ③

$$\{\delta U\}^T ([M] \{\ddot{U}\} + \{F\} - \{F^p\}) = \{\delta U\}^T (\{R_1\} + \{R_2\})$$

$$[M]\{\ddot{U}\} + \{F\} - \{F^p\} = \{R_1\} + \{R_2\} = \{R\} - 4$$

[4] Temporal discretization

Discretize equation ④ in time. The incremental form is used for nonlinear analysis. In Eq.

 $\{ \}_n : Value at time n$

{ }': Nonlinear iterative computation of the value at pre iteration

 Δt_1 : Time n-1, time increment between time n

 Δt_2 : Time n, time increment between time n+1

 β : Time integration parameter (0.25 $\leq \beta < 0.5$)

Also add on the left side $C_M[M]\{\dot{U}\}_n$, $C_K\{\dot{F}\}_n$ as the attenuation term. See Appendix 2 for how to specify C_K .

$$[M] \{ \ddot{U} \}_n + C_M [M] \{ \dot{U} \}_n + C_K \{ \dot{F} \}_n + \{ \bar{F} \}_n - \{ \bar{F}^p \}_n = \{ \bar{R} \}_n - (5)$$

$$\left\{\dot{U}\right\}_{n} = \frac{\{U\}_{n+1} - \{U\}_{n-1}}{\Delta t_{1} + \Delta t_{2}} = \frac{\{\Delta U\} + \{U\}_{n+1}' - \{U\}_{n-1}}{2\Delta t_{12}} = \frac{\{\Delta U\}}{2\Delta t_{12}} + \left\{\dot{U}\right\}_{n}'$$

$$\left\{\ddot{U}\right\}_{n} = \frac{\frac{\{U\}_{n+1} - \{U\}_{n}}{\Delta t_{2}} - \frac{\{U\}_{n} - \{U\}_{n-1}}{\Delta t_{1}}}{\frac{\Delta t_{1} + \Delta t_{2}}{2}} = \frac{\{\Delta U\} + \{U\}_{n+1}' - \{U\}_{n}}{\Delta t_{2}} - \frac{\{U\}_{n} - \{U\}_{n-1}}{\Delta t_{1}}$$

$$= \frac{\{\Delta U\}}{\Delta t_2 \cdot \Delta t_{12}} + \{\ddot{U}\}_n'$$

$$\{\bar{F}\}_n = \beta\{F\}_{n+1} + (1-2\beta)\{F\}_n + \beta\{F\}_{n-1} = \beta(\{\Delta F\} + \{F\}'_{n+1}) + (1-2\beta)\{F\}_n + \beta\{F\}_{n-1}$$

In this time

$$\begin{split} \{\Delta F\} &= \int_V \ [B]^T \Delta \widehat{\boldsymbol{\sigma}}' \ dV \simeq \int_V \ [B]^T \ [D] \Delta \widehat{\boldsymbol{\epsilon}} dV = \int_V \ [B]^T \ [D] [B] \{\Delta U\} dV = \int_V \ [B]^T \ [D] [B] dV \{\Delta U\} \end{split}$$

$$= [K] \{\Delta U\}$$

- [D]: Constitutive law matrix
- For [D] in the case of plasticity see "Y. Yamada, Plasticity and Viscoelasticity, Fundamentals and Applications of Finite Element Method Series 6, Baifukan, 1995, pp. 93".
- * For [K] when geometric nonlinearity is considered, see Appendix 3, 3 [1], [2].

Base on

$$\begin{split} \{\bar{F}\}_n &\simeq \beta([K]\{\Delta U\} + \{F\}'_{n+1}) + (1 - 2\beta)\{F\}_n + \beta\{F\}_{n-1} = \beta[K]\{\Delta U\} + \{\bar{F}\}'_n \\ \{\bar{F}^p\}_n &= \beta\{F^p\}_{n+1} + (1 - 2\beta)\{F^p\}_n + \beta\{F^p\}_{n-1} \\ &= \beta(\{\Delta F^p\} + \{F^p\}'_{n+1}) + (1 - 2\beta)\{F^p\}_n + \beta\{F^p\}_{n-1} \end{split}$$

In this time

$$\{\Delta F^{p}\} = \int_{V} [E]^{T} \Delta p \, dV = \int_{V} [E]^{T} [N] \{\Delta P\} dV = \int_{V} [E]^{T} [N] dV \{\Delta P\} = [K^{p}] \{\Delta P\}$$

Base on

$$\begin{split} &=\beta[K^p]\{\Delta P\}+\{\bar{F}^p\}_n'\\ &\{\dot{F}\}_n=\frac{1}{2}\bigg(\frac{\{F\}_{n+1}-\{F\}_{n,new}}{\Delta t_2}+\frac{\{F\}_{n,old}-\{F\}_{n-1}}{\Delta t_1}\bigg)\\ &\simeq\frac{1}{2}\bigg(\frac{[K]\{\Delta U\}+\{F\}_{n+1}'-\{F\}_{n,new}}{\Delta t_2}+\frac{\{F\}_{n,old}-\{F\}_{n-1}}{\Delta t_1}\bigg)\\ &=\frac{1}{2\Delta t_2}[K]\{\Delta U\}+\big\{\dot{F}\big\}_n'\\ &\{\bar{R}\}_n=\beta\{R\}_{n+1}+(1-2\beta)\{R\}_n+\beta\{R\}_{n-1} \end{split}$$

 $\{\bar{F}^p\}_n = \beta([K^p]\{\Delta P\} + \{F^p\}'_{n+1}) + (1 - 2\beta)\{F^p\}_n + \beta\{F^p\}_{n-1}$

Substituting the above discretized vectors into equation ⑤ and organizing

$$[M] \left(\frac{\{\Delta U\}}{\Delta t_2 \cdot \Delta t_{12}} + \big\{ \ddot{U} \big\}_n' \right) + C_M[M] \left(\frac{\{\Delta U\}}{2\Delta t_{12}} + \big\{ \dot{U} \big\}_n' \right) + C_K \left(\frac{1}{2\Delta t_2} [K] \{\Delta U\} + \big\{ \dot{F} \big\}_n' \right) + (\beta [K] \{\Delta U\} + \big\{ \bar{F} \big\}_n')$$

$$-(\beta[K^{p}]\{\Delta P\} + \{\bar{F}^{p}\}'_{n}) = \{\bar{R}\}_{n}$$

$$\left(\frac{1}{\Delta t_{12}} \left(\frac{1}{\Delta t_{2}} + \frac{C_{M}}{2}\right) [M] + \left(\frac{C_{K}}{2\Delta t_{2}} + \beta\right) [K]\right) \{\Delta U\} - \beta[K^{p}]\{\Delta P\}$$

$$= \{\bar{R}\}_{n} - \left([M]\{\ddot{U}\}'_{n} + C_{M}[M]\{\dot{U}\}'_{n} + C_{K}\{\dot{F}\}'_{n} + \{\bar{F}\}'_{n} - \{\bar{F}^{p}\}'_{n}\right) - (6)$$

$$[A^{uu}]\{\Delta U\} + [A^{up}]\{\Delta P\} = \{Q^{u}\} - (7)$$

[5] Correspondence with variables in the program

The correspondence between each term on the right side of equation ⑥ (the 'indicating the value of the previous iteration is omitted) and the variables in the program is shown below (blue letters: variables in the program).

FTO FTI

$$\{\bar{R}\}_{n} - \left([M]\{\ddot{U}\}_{n} + C_{M}[M]\{\dot{U}\}_{n} + C_{K}\{\dot{F}\}_{n} + \{\bar{F}\}_{n} - \{\bar{F}^{p}\}_{n}\right)$$

FCO(:,:,3) FCO(:,:,2) FCO(:,:,1)
$$\{\bar{R}\}_{n} = \beta\{R\}_{n+1} + (1-2\beta)\{R\}_{n} + \beta\{R\}_{n-1}$$

FCM(:,:,3) FCM(:,:,2) FCM(:,:,1)
$$[M]\{\ddot{U}\}_{n} = \frac{1}{\Delta t_{12}} \left(\frac{1}{\Delta t_{2}} \underbrace{[M]\{U\}_{n+1}} - \left(\frac{1}{\Delta t_{2}} + \frac{1}{\Delta t_{1}}\right) \underbrace{[M]\{U\}_{n}} + \frac{1}{\Delta t_{1}} \underbrace{[M]\{U\}_{n-1}}\right)$$

FCMD(:,:,3) FCMD(:,:,1)
$$C_{M}[M]\{\dot{U}\}_{n} = \frac{C_{M}[M]\{U\}_{n+1} - C_{M}[M]\{U\}_{n-1}}{2\Delta t_{12}}$$

FCD(:,:,4) FCD(:,:,3) FCD(:,:,2) FCD(:,:,1)
$$C_{K}\{\dot{F}\}_{n} = \frac{1}{2} \left(\frac{C_{K}\{F\}_{n+1} - C_{K}\{F\}_{n,new}}{\Delta t_{2}} + \frac{C_{K}\{F\}_{n,old} - C_{K}\{F\}_{n-1}}{\Delta t_{1}}\right)$$

FCK(:,:,3) FCK(:,:,2) FCK(:,:,1)
$$\{\bar{F}\}_{n} = \beta\{F\}_{n+1} + (1-2\beta)\{F\}_{n} + \beta\{F\}_{n-1}$$
FCP(:,:,1)

$$\{\bar{F}^p\}_n = \beta \{F^p\}_{n+1} + (1-2\beta) \{F^p\}_n + \beta \{F^p\}_{n-1}$$

2. 1. 2 Seepage Flow (Pore water)

- [1] Governing equations
 - (1) Equation of motion

$$\dot{\boldsymbol{w}} = k(-\nabla p + \rho_f \boldsymbol{g} - \rho_f \ddot{\boldsymbol{u}}) - 8$$

w: Displacement of pore water relative to geotechnical

$$\mathbf{w} = n(\mathbf{U} - \mathbf{u})$$

U: Displacement of pore water

k: Permeability coefficient

(2) Mass conservation equation

$$\nabla \cdot \dot{\boldsymbol{w}} = -\nabla \cdot \dot{\boldsymbol{u}} - C_{Kf} \dot{\boldsymbol{p}} - 9$$

$$C_{Kf} = \frac{n}{K_f}$$

 K_f : Volumetric modulus of pore water

[2] Application of the weighted residual method

Applying the weighted residual method to the mass conservation equation in $\ \$ with the weight function as $\ \ \delta p$.

$$\begin{split} &\int_{V} \delta p \, \nabla \cdot \dot{\boldsymbol{w}} dV = -\int_{V} \delta p \, \nabla \cdot \dot{\boldsymbol{u}} dV - \int_{V} \delta p \, C_{Kf} \dot{p} dV \\ &-\int_{V} \nabla \delta p \cdot \dot{\boldsymbol{w}} dV + \int_{S} \delta p \, \dot{\boldsymbol{w}} \cdot \boldsymbol{n} dS = -\int_{V} \delta p \, \nabla \cdot \dot{\boldsymbol{u}} dV - \int_{V} \delta p \, C_{Kf} \dot{p} dV \\ &-\int_{V} \nabla \delta p \cdot \dot{\boldsymbol{w}} dV + \int_{S_{2}} \delta p \, q dS = -\int_{V} \delta p \, \nabla \cdot \dot{\boldsymbol{u}} dV - \int_{V} \delta p \, C_{Kf} \dot{p} dV \end{split}$$

n: Outward normal vector to the surface

q: Runoff flux from surface

S: Boundary surface

$$S = S_1 + S_2$$

 S_1 : Type 1 boundary (on $S_1 \delta \mathbf{u} = \mathbf{0}$)

 S_2 : Type 2 boundary (on $S_2 \dot{\boldsymbol{w}} \cdot \boldsymbol{n} = q$)

Substituting equation (8) into this equation

$$-\int_{V} \nabla \delta p \cdot k \left(-\nabla p + \rho_{f} \mathbf{g} - \rho_{f} \ddot{\mathbf{u}}\right) dV + \int_{S_{2}} \delta p \, q dS = -\int_{V} \delta p \, \nabla \cdot \dot{\mathbf{u}} dV - \int_{V} \delta p \, C_{Kf} \dot{p} dV$$

$$k\rho_f \int_V \nabla \delta p \cdot \ddot{\boldsymbol{u}} dV + \int_V \delta p \, \nabla \cdot \dot{\boldsymbol{u}} dV + C_{Kf} \int_V \delta p \, \dot{p} dV + k \int_V \nabla \delta p \cdot \nabla p dV$$

$$= - \int_{S_2} \delta p \ q dS + k \rho_f \int_V \ \nabla \delta p \cdot \boldsymbol{g} dV \ - \ 0$$

[3] Spatial Discretization

For interpolation function and their derivatives, as well as calculation methods for volume and areas integrals, see "Motoki Yagawa and Shinobu Yoshimura, Finite Element Method, Computational Mechanics and CAE Series 1, Baifukan, 1995, Chapter 5". Also, for interpolation function for pentahedral elements and the calculation of shear strain see MacNeal, R.H., The PENTA Solid Element, MSC Internal Memo No. RHM-43, Oct. 22, 1976".

(1) To discretize equation (1) spatially, define the following matrix

$$p = \begin{bmatrix} N_1 & N_2 & \cdots \end{bmatrix} \begin{Bmatrix} P_1 \\ P_2 \\ \vdots \end{Bmatrix} = \begin{bmatrix} N \end{bmatrix} \{ P \}$$

$$\boldsymbol{u} = \begin{bmatrix} N_1 & & & N_2 & & & & \\ & N_1 & & & N_2 & & & & \\ & & N_1 & & & N_2 & & & & \\ & & & N_1 & & & N_2 & & & & \\ & & & & & & & & \end{bmatrix} \begin{bmatrix} U_1 \\ V_1 \\ W_1 \\ U_2 \\ V_2 \\ W_2 \\ \vdots \end{bmatrix} = [N^3] \{U\}$$

$$\nabla p = \begin{cases} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial p} \\ \frac{\partial p}{\partial z} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} [N] \{ P \} \\ \frac{\partial}{\partial y} [N] \{ P \} \\ \frac{\partial}{\partial z} [N] \{ P \} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} [N] \\ \frac{\partial}{\partial y} [N] \\ \frac{\partial}{\partial z} [N] \end{bmatrix} \{ P \} = [A] \{ P \}$$

$$\nabla \cdot \boldsymbol{u} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} [N^3] \{U\} = \begin{bmatrix} \frac{\partial N_1}{\partial x} & \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial z} & \frac{\partial N_2}{\partial x} & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial z} & \cdots \end{bmatrix} \{U\}$$
$$= [E] \{U\}$$

 P_i : Pressure of pore water at node i

 U_i : Displacement of node i (x component)

 V_i : Displacement of node i (y component)

 W_i : Displacement of node i (z component)

 N_i : Interpolation function corresponding to node i

(2) Using the above matrix, discretize each term in equation (1).

$$k\rho_{f} \int_{V} \nabla \delta p \cdot \ddot{\boldsymbol{u}} dV = \{\delta P\}^{T} k\rho_{f} \int_{V} [A]^{T} [N^{3}] dV \{\ddot{\boldsymbol{U}}\} = \{\delta P\}^{T} [M^{pu}] \{\ddot{\boldsymbol{U}}\}$$

$$\int_{V} \delta p \nabla \cdot \dot{\boldsymbol{u}} dV = \{\delta P\}^{T} \int_{V} [N]^{T} [E] dV \{\dot{\boldsymbol{U}}\} = \{\delta P\}^{T} [C^{pu}] \{\dot{\boldsymbol{U}}\}$$

$$C_{Kf} \int_{V} \delta p \, \dot{p} dV = \{\delta P\}^{T} C_{Kf} \int_{V} [N]^{T} [N] dV \{\dot{P}\} = \{\delta P\}^{T} [C^{pp}] \{\dot{P}\}\}$$

$$k \int_{V} \nabla \delta p \cdot \nabla p dV = \{\delta P\}^{T} k \int_{V} [A]^{T} [A] dV \{P\} = \{\delta P\}^{T} [K^{pp}] \{P\}$$

$$\int_{S_{2}} \delta p \, q dS = \{\delta P\}^{T} \int_{S_{2}} [N]^{T} \, q dS = \{\delta P\}^{T} \{R_{1}^{p}\}\}$$

$$k\rho_{f} \int_{V} \nabla \delta p \cdot \boldsymbol{g} dV = \{\delta P\}^{T} k\rho_{f} \int_{V} [A]^{T} \, dV \boldsymbol{g} = \{\delta P\}^{T} \{R_{2}^{p}\}$$

Substituting these into each term of equation ¹⁰

$$\{\delta P\}^T \left([M^{pu}] \{ \dot{U} \} + [C^{pu}] \{ \dot{U} \} + [C^{pp}] \{ \dot{P} \} + [K^{pp}] \{ P \} \right) = \{\delta P\}^T \left(-\{R_1^p\} + \{R_2^p\} \right)$$

$$[M^{pu}]\{\ddot{U}\} + [C^{pu}]\{\dot{U}\} + [C^{pp}]\{\dot{P}\} + [K^{pp}]\{P\} = -\{R_1^p\} + \{R_2^p\} = \{R^p\} - (1)$$

[4] Temporal discretization

Discretize equation (1) in time. The incremental form is used for nonlinear analysis. In Eq.

 $\{ \}_n : Value at time n$

{ }': Nonlinear iterative computation of the value at pre iteration

 Δt_1 : Time n-1, time increment between time n

 Δt_2 : Time *n*, time increment between time n+1

 α : Time integration parameter $(0 \le \alpha \le 1)$

$$[M^{pu}] \big\{ \ddot{U} \big\}_n + [C^{pu}] \big\{ \dot{U} \big\}_n + [C^{pp}] \big\{ \dot{P} \big\}_n + [K^{pp}] \big\{ \bar{P} \big\}_n = \{R^p\}_n \ - \ \textcircled{12}$$

$$\left\{\ddot{U}\right\}_{n} = \frac{\frac{\{U\}_{n+1} - \{U\}_{n}}{\Delta t_{2}} - \frac{\{U\}_{n} - \{U\}_{n-1}}{\Delta t_{1}}}{\frac{\Delta t_{1} + \Delta t_{2}}{2}} = \frac{\frac{\{\Delta U\} + \{U\}_{n+1}' - \{U\}_{n}}{\Delta t_{2}} - \frac{\{U\}_{n} - \{U\}_{n-1}}{\Delta t_{1}}}{\Delta t_{12}}$$

$$= \frac{\{\Delta U\}}{\Delta t_2 \cdot \Delta t_{12}} + \{\ddot{U}\}_n'$$

$$\left\{\dot{U}\right\}_{n} = \frac{\{U\}_{n+1} - \{U\}_{n-1}}{\Delta t_{1} + \Delta t_{2}} = \frac{\{\Delta U\} + \{U\}_{n+1}' - \{U\}_{n-1}}{2\Delta t_{12}} = \frac{\{\Delta U\}}{2\Delta t_{12}} + \left\{\dot{U}\right\}_{n}'$$

$$\begin{aligned} \left\{\dot{P}\right\}_{n} &= \frac{\{P\}_{n+1} - \{P\}_{n-1}}{\Delta t_{1} + \Delta t_{2}} = \frac{\{\Delta P\} + \{P\}_{n+1}' - \{P\}_{n-1}}{2\Delta t_{12}} = \frac{\{\Delta P\}}{2\Delta t_{12}} + \left\{\dot{P}\right\}_{n}' \\ \left\{\bar{P}\right\}_{n} &= (1 - \alpha)\{P\}_{n-1} + \alpha\{P\}_{n+1} = (1 - \alpha)\{P\}_{n-1} + \alpha(\{P\}_{n+1}' + \{\Delta P\}) \\ &= \{\bar{P}\}_{n}' + \alpha\{\Delta P\} \end{aligned}$$

Substituting the above discretized vectors into ② and rearranging

$$\begin{split} &[M^{pu}] \left(\frac{\{\Delta U\}}{\Delta t_2 \cdot \Delta t_{12}} + \{\ddot{U}\}_n' \right) + [C^{pu}] \left(\frac{\{\Delta U\}}{2\Delta t_{12}} + \{\dot{U}\}_n' \right) + [C^{pp}] \left(\frac{\{\Delta P\}}{2\Delta t_{12}} + \{\dot{P}\}_n' \right) \\ &+ [K^{pp}] (\{\bar{P}\}_n' + \alpha \{\Delta P\}) = \{R^p\}_n \\ &\left(\frac{1}{\Delta t_2 \cdot \Delta t_{12}} [M^{pu}] + \frac{1}{2\Delta t_{12}} [C^{pu}] \right) \{\Delta U\} + \left(\frac{1}{2\Delta t_{12}} [C^{pp}] + \alpha [K^{pp}] \right) \{\Delta P\} \\ &= \{R^p\}_n - \left([M^{pu}] \{\ddot{U}\}_n' + [C^{pu}] \{\dot{U}\}_n' + [C^{pp}] \{\dot{P}\}_n' + [K^{pp}] \{\bar{P}\}_n' \right) - (13) \end{split}$$

$$[A^{pu}] \{\Delta U\} + [A^{pp}] \{\Delta P\} = \{Q^p\} - (14) \end{split}$$

[5] Correspondence with variables in the program

The correspondence between each term on the right side of equation ⑥ (the 'indicating the value of the previous iteration is omitted) and the variables in the program is shown below (blue letters: variables in the program).

2. 1. 3 Coupled discretization equations for structural and seepage flow analysis

$$\begin{bmatrix} A^{uu} & A^{up} \\ A^{pu} & A^{pp} \end{bmatrix} \begin{pmatrix} \Delta U \\ \Delta P \end{pmatrix} = \begin{pmatrix} Q^{u} \\ Q^{p} \end{pmatrix} - \text{(15)}$$

2. 1. 4 Separation of discretization equations for structural and seepage flow analysis

Equation 5 solves the discretization equation coupling the structural analysis and the seepage flow analysis to obtain $\{\Delta U\}$ and $\{\Delta P\}$ simultaneously. However, the order difference of the coefficients in the coefficient matrix is large, which is a bad condition for the convergence of the parallel CG method described in section 3. Therefore, as an approximate solution method that can be used when the CG method does not converge, we have also prepared a solution method in which the structural analysis and seepage flow analysis are separated and $\{\Delta U\}$ and $\{\Delta P\}$ are obtained by separate equations. The method is shown below.

- (1) Assume that the solutions (i.e., $\{U\}_n$, $\{P\}_n$) of time n are known.
- (2) First, perform a structural analysis to obtain $\{\Delta U\}$ (i.e., $\{U\}_{n+1}$). In doing so, $\{\bar{F}^p\}_n \to \{F^p\}_n$ in equation $\{\bar{G}\}$, and $\{\Delta P\}$ is eliminated from equation $\{\bar{G}\}$. Equation $\{\bar{G}\}$ is modified as follows.

$$\left(\frac{1}{\Delta t_2 \cdot \Delta t_{12}}[M] + \left(\frac{G}{2\Delta t_{12}} + \beta\right)[K]\right)\{\Delta U\}$$

$$= \{R\}_n - \left([M] \{ \ddot{U} \}_n' + G \{ \dot{F} \}_n' + \{ \bar{F} \}_n' - \{ F^p \}_n \right) - (16)$$

(3) Next, seepage flow analysis is performed to obtain $\{\Delta P\}$ (i.e., $\{P\}_{n+1}$). Since $\{U\}_{n+1}$ is known in equation (\mathbb{Q}) , $\{\Delta U\}$ is not included in equation (\mathbb{Q}) and $\{\ddot{U}\}_n$ are also known. Equation (\mathbb{Q}) is modified as follows.

$$\left(\frac{1}{2\Delta t_{12}}[C^{pp}] + \alpha[K^{pp}]\right) \{\Delta P\}$$

$$=\{R^{p}\}_{n}-\left([M^{pu}]\left\{ \dot{U}\right\} _{n}+[C^{pu}]\left\{ \dot{U}\right\} _{n}+[C^{pp}]\left\{ \dot{P}\right\} _{n}^{'}+[K^{pp}]\{\bar{P}\} _{n}^{'}\right)-\text{(17)}$$

The equations $\{\Delta U\}$ and $\{\Delta P\}$ can be obtained by solving each equation independently in the order of 6 and 7. The difference in the solution flow before and after the separation is shown on the next page.

Find the state at time n from the state at time n+1. Unknown values are shown in red.

Before Separation

Equations for both structural and seepage flow analysis.

$$\{U\}_{n-1}$$
, $\{U\}_n$, $\{U\}_{n+1}$
 $\{P\}_{n-1}$, $\{P\}_n$, $\{P\}_{n+1}$

Assembled in (6, 13)

 $\{U\}_{n+1}$, $\{P\}_{n+1}$

Determine variables

After separation

Equations for structural analysis.

$$\{U\}_{n\text{-}1}$$
 , $\{U\}_n$, $\{U\}_{n+1}$
$$\{P\}_n$$

Assembled in (16)

 $\{U\}_{n+1}$

Determine a variable

The equations for seepage flow analysis.

$$\{U\}_{n\text{-}1}$$
 , $\{U\}_n$, $\{U\}_{n+1}$

$$\{P\}_{n-1}$$
, $\{P\}_n$, $\{P\}_{n+1}$

Assembled in (17)

 $\{P\}_{n\pm 1}$

Determine a variable

2. 1. 5 Porous Material

By specifying the porosity as a physical property value, the material can be made porous with the following characteristics. It can be used as a piled stone material, etc.

- (1) The porosity of the CADMAS calculation cell interfering with the porous material structure shall be the porosity specified by the porous material properties.
- (2) Deformed by effective stress as in the geotechnical (consider $\{F^p\}_n$ in equation (6)
- (3) No seepage flow calculations are performed.
- (4) Since pore water pressure is not calculated from (3), the pressure for effective stress calculation is the interpolated value of the pressure in the calculation cell of CADMAS.

Also If the void ratio (a separate input from the void ratio for the seepage flow calculation) is specified for the soil material, the characteristics described in (1) above are added to the soil. This allows water to permeate through the ground in CADMAS

2. 2 Multipoint Constraint (MPC) Processing

[1] Conversion Matrix

Given a multipoint constraint (MPC) condition, the coefficient matrix and right-hand side vector in a simultaneous linear equation are transformed as follows

As an example, assume the following MPC conditional equation with the vector of unknowns $\{U\}$ and U_5 as the dependent variable.

$$\{U\} = \begin{cases} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \\ U_7 \end{cases}$$

$$U_5 = A_1 U_1 + A_2 U_2$$

 $\{U\}$ can be expressed using the transformation matrix $[\lambda]$ and a vector $\{\overline{U}\}$ of independent variables only as follows

Substituting this relationship into the FEM discretization equation yields a simultaneous linear equation with MPC conditions.

$$\{\delta U\}^T [K] \{U\} = \{\delta U\}^T \{R\}$$

$$([\,\lambda\,]\{\delta\overline{U}\})^T[K]([\,\lambda\,]\{\overline{U}\}) = ([\,\lambda\,]\{\delta\overline{U}\})^T\{R\}$$

$$\{\delta \overline{U}\}^T [\lambda]^T [K] [\lambda] \{\overline{U}\} = \{\delta \overline{U}\}^T [\lambda]^T \{R\}$$

$$\{\delta \overline{U}\}^T[\overline{K}]\{\overline{U}\} = \{\delta \overline{U}\}^T\{\overline{R}\}$$

$$[\overline{K}]\{\overline{U}\} = \{\overline{R}\}$$

[2] Element-by-element processing in the overall stiffness matrix assembly

Let the component node numbers of an element be 1, 2, and 3. Two of the 9 degrees of freedom, 3 at each node, are dependent degrees of freedom expressed by the following MPC conditional equation $(U_i^i$ denotes the displacement of node i, component j).

$$U_1^2 = A_1 U_3^1 + A_2 U_1^{10} + A_3 U_2^{11}$$

$$U_2^3 = B_1 U_2^2 + B_2 U_3^8 + B_3 U_1^{10}$$

8, 10, 11 は別要素の節点番号

The MPC transformation matrix $[\lambda]$

NCR = NC-Number of dependent degrees of freedom +

number of independent degrees of freedom outside the element

The kth degree of freedom of the element stiffness matrix $[\overline{K}] = [\lambda]^T [K] [\lambda]$ is embedded in the overall stiffness matrix at

node i = IDCR(1, k)
component j = IDCR(2, k)
i,e., INDOF(j, i).

2. 3 Calculation of constraining force and residual force

[1] Forces balance formula

The force balance relationship in the FEM discretization equation is shown below.

Internal force = external force + external constraint force + internal constraint force

- residual force

FTI FTO RFCO RFCI RES

Internal force: All the force required to cause the present deformed state

External force: Externally applied forces
External constraint force: binding force

Internal constraint force: The force exerted by the MPC on the dependent and independent

Degrees of freedom on each other

Residual force: Disproportionate forces in the convergence process of nonlinear calculations

[2] Calculation of unknown power

When the displacement is calculated, the displacement is

Known power: FTI, FTO

Unknown power: RFCO, RFCI, RES

The force balance relationship for each type of degree of freedom is as follows

INDOF = degrees of freedom for -2: FTI = FTO + RFCI -1

INDOF = degrees of freedom for 0,-1: FTI = FTO + RFCO + RFCI -2

INDOF > degrees of freedom : FTI = FTO + RFCI - RES - 3

Therefore, the following procedure is used to calculate the unknown power.

(1) Calculate the RFCI of the MPC dependent degrees of freedom from equation ①. Based on this, the RFCI of the MPC independent degrees of freedom in equations ② and ③ are calculated. The calculation method is, for example, as follows for the following MPC conditional equation

$$U_3 = A_1 U_1 + A_2 U_2$$

Let RFCI₃ be the internal constraint on the dependent degree of freedom 3

Internal constraint on 1 RFCI₁ = $-A_1 \cdot RFCI_3$

Internal constraint on 2 RFCI₂ = $-A_2 \cdot \text{RFCI}_3$

- (2) determine RFCO from equation 2.
- (3) determine **RES** from equation ③.

2. 4 Overview of Processing in Contact Analysis

- [1] The procedure for contact analysis is as follows.
 - (1) Separate the two contacting bodies into a master and a slave.
 - (2) Detects that a node of the slave body (hereinafter referred to as slave point) has penetrated a surface element of the master body (hereinafter referred to as master surface).
 - (3) Return the slave point to the through point on the master surface.
 - (4) Under the constraint that the slave point moves on the master plane (MPC condition of the displacement of the slave point and the displacement of the constituent nodes of the master plane), the equilibrium state of the forces is recalculated.
 - (5) Since the constraint condition equation in (4) is a linear approximation, the slave point is not perfectly placed on the master plane after determination. Therefore, the slave point is placed back on the master surface, and the solution is performed again under the new MPC conditions. This kind of iterative calculation is used to obtain the equilibrium state of the force.
- [2] The above MPC conditional equation is set as follows. The coordinate vector of each point i is denoted by X_i and the displacement vector by U_i .
 - (1) Case when the master is a triangular surface

The MPC conditionals between the slave point S and the constituent nodes 1,2,3 of the master surface are

$$\boldsymbol{U}_{S} \cdot \boldsymbol{n} = L_{1} \boldsymbol{U}_{1} \cdot \boldsymbol{n} + L_{2} \boldsymbol{U}_{2} \cdot \boldsymbol{n} + L_{3} \boldsymbol{U}_{3} \cdot \boldsymbol{n}$$

 L_i : Area coordinates of slave point S in triangle 123

n: Normal vector of triangle 123

(2) Case when the master is a quadrilateral surface

The coordinate vector of the physical center of gravity point 5 of nodes 1,2,3,4 is

$$X_5 = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$$

The displacement vector shall be as follows

$$\boldsymbol{U}_5 = \frac{1}{4}(\boldsymbol{U}_1 + \boldsymbol{U}_2 + \boldsymbol{U}_3 + \boldsymbol{U}_4)$$

The MPC conditionals between the slave point S and the constituent nodes 1,2,3,4 of the master surface are

$$\mathbf{U}_{S} \cdot \mathbf{n} = L_{2} \mathbf{U}_{2} \cdot \mathbf{n} + L_{3} \mathbf{U}_{3} \cdot \mathbf{n} + L_{5} \mathbf{U}_{5} \cdot \mathbf{n}
= L_{2} \mathbf{U}_{2} \cdot \mathbf{n} + L_{3} \mathbf{U}_{3} \cdot \mathbf{n} + L_{5} \frac{1}{4} (\mathbf{U}_{1} + \mathbf{U}_{2} + \mathbf{U}_{3} + \mathbf{U}_{4}) \cdot \mathbf{n}
= \frac{1}{4} L_{5} \mathbf{U}_{1} \cdot \mathbf{n} + \left(L_{2} + \frac{1}{4} L_{5} \right) \mathbf{U}_{2} \cdot \mathbf{n} + \left(L_{3} + \frac{1}{4} L_{5} \right) \mathbf{U}_{3} \cdot \mathbf{n} + \frac{1}{4} L_{5} \mathbf{U}_{4} \cdot \mathbf{n}$$

 L_i : Area coordinates of slave point S in triangle 235

n: Normal vector c of triangle 235

(3) Case when the master is on edge

The MPC conditionals between the slave point S and the constituent nodes 1 and 2 of the master edge are

$$\boldsymbol{U}_{s} \cdot \boldsymbol{e}_{2} = (1 - t) \boldsymbol{U}_{1} \cdot \boldsymbol{e}_{2} + t \boldsymbol{U}_{2} \cdot \boldsymbol{e}_{2}$$

$$\boldsymbol{U}_{s} \cdot \boldsymbol{e}_{3} = (1 - t) \, \boldsymbol{U}_{1} \cdot \boldsymbol{e}_{3} + t \, \boldsymbol{U}_{2} \cdot \boldsymbol{e}_{3}$$

 \boldsymbol{e}_i : Unit vectors orthogonal to each other (direction of \boldsymbol{e}_1 coincides with 12)

(4) Cases when the master is on the dot

The MPC conditionals between slave point \boldsymbol{S} and master point 1 are

$$\boldsymbol{U}_s = \boldsymbol{U}_1$$

2. 5 Friction model

- (1) The stick-slip model is used for the friction model.
- (2) The lower right graph shows the relationship between u_r and F_t when an external force F is applied as shown in the lower left figure.
- (3) While FF $\leq \mu_0 F_n$, the object does not move (i.e., $u_r = 0$) and a frictional force Ft of the same magnitude as F.
- (4) When $F > \mu_0 F_n$, the object starts to move, but the frictional force acting on the object is then constant and $F_t = E_d F_n$, irrespective of u_r .

u_r: Relative velocity of an object relative to the floor

 F_t : Frictional force acting on an object

 μ_0 : coefficient of static friction $\mu_{\rm d}$: kinetic coefficient of friction

3. Input data

3. 1 Composition of input data

The input data format follows NASTRAN and consists of the following

- Case control section
- BEGIN BULK (a keyword indicating the beginning of the bulk data)
- · Bulk data section

3. 2 Case control section

This section is used to select constraint conditions, loading conditions, etc., for the data set in the bulk data section. The correspondence between the case control commands and the bulk data to be selected is shown below.

Case control	Conditions to be set	Bulk data to be
commnd	Conditions to be set	selected
SPC		SPCADD, SPC1,
SPC	constraint	SPC
DLOAD	dynamic load	DLOAD, TLOAD1
TSTEP	dynamic analysis step"	TSTEP
BCSET	contact	BCTADD, BCTSET

3. 3 Bulk data section

The first field in the first row is the keywords. The first field of the first row is the keywords, and if the keywords are marked with an asterisk (*), the data format is a 16-column field.

[1] Node

GRID

Definition of node coordinates.

Format:

1	2	3	4	5	6	7	8	9	10
GRID	ID		X	Y	Z				

Format (Support for 16 columns):

1	2	3	4	5	6	7	8	9	10
GRID*	ID				Σ		Ŋ	<i>T</i>	
	Z								

Field	Туре	Contents
ID	I	Node numbers
X, Y, Z	R	Node coordinates

$[\ 2\]$ Element, element characterization

PSOLID

Solid element characterization definition.

Format:

1	2	3	4	5	6	7	8	9	10
PSOLID	PID	MID							

Field	Туре	Contents
PID	I	Node numbers
MID	I	Node coordinates

CTETRA

Definition of a tetrahedral element.

Format:

1	2	3	4	5	6	7	8	9	10
CTETRA	EID	PID	G1	G2	G3	G4			

Field	Туре	Contents					
EID	I	Element number					
PID	I	Property number					
G1-G4	I	Configuration node number (see Remark 1.)					

Remarks:

1. The sequence of the configuration node numbers is shown in the figure below.

CPENTA

Definition of a pentahedral element.

Format:

1	2	3	4	5	6	7	8	9	10
CPENTA	EID	PID	G1	G2	G3	G4	G5	G6	

Field	Туре	Contents					
EID	I	Element number					
PID	I	Property number					
G1-G6	I	Configuration node number (see Remark 1.)					

Remarks:

1. The sequence of the configuration node numbers is shown in the figure below.

CHEXA

6面体要素の定義.

Format:

1	2	3	4	5	6	7	8	9	10
CHEXA	EID	PID	G1	G2	G3	G4	G5	G6	
	G7	G8							

Field	Туре	Contents
EID	I	Element number
PID	I	Property number
G1-G8	I	Configuration node number (see Remark 1.)

Remarks:

1. The sequence of the configuration node numbers is shown in the figure below.

PROD

トラス要素の特性定義.

Format:

1	2	3	4	5	6	7	8	9	10
PROD	PID	MID	A						

Field	Туре	Contents					
PID	I	Property number					
MID	I	Referenced material number					
A	R	Cross-sectional area					

CROD

Definition of truss elements.

Format:

1	2	3	4	5	6	7	8	9	10
CROD	EID	PID	G1	G2					

Field	Туре	Contents
EID	I	Element number
PID	I	Property number
G1, G2	I	Configuration node number

PBARL

Characteristic definition of beam elements.

Format:

1	2	3	4	5	6	7	8	9	10
PBARL	PID	MID		TYPE					
	DIM1	DIM2							

Field	Туре	Contents
PID	I	Property beam number
MID	I	Referenced material number
TYPE	A	Cross-sectional shape (for "BAR" only, see Remark 1.)
DIMi	R	Dimensions of the cross-sectional profile (see Remark 1.)

Remarks:

1. Beam cross-sectional profile types and dimensions are shown in the figure below.

 \divideontimes y_{elem} , z_{elem} are coordinate axes in the element coordinate system

CBAR

Sefinition of beam elements.

Format:

1	2	3	4	5	6	7	8	9	10
CBAR	EID	PID	GA	GB	X1	X2	Х3		

Field	Туре	Contents
EID	I	Element beam number
PID	I	Property number
GA, GB	I	Configuration node number (see Remark 1.)
X1, X2, X3	R	Vector v determining the element coordinate axes (see Remark 1.)

Remarks:

 $\textbf{1.} \ Configuration \ node \ number, \ v, \ The \ relationship \ between \ the \ element \ coordinate \ axes \ is \ shown \ in \ the \ figure \ below.$

[3] Material

MAT1
Definition of material properties.

Format:

1	2	3	4	5	6	7	8	9	10
MAT1	MID	Е		NU	RHO	CM	NC	GE	
	N	KF	K						

Field	Туре	Contents
MID	I	Material Identification Number (MID $\!<\!100$: general material, MID $\!\ge\!100$: site material)
E	R	Young's modulus
NU	R	Poisson's ratio
RHO	R	Mass density (see Remark 1.)
CM	R	mass attenuation coefficient
NC	R	Porosity used in CADMAS (see Remark 2.)
GE	R	Damping coefficient (twice the damping ratio)
N	R	Porosity of geomaterials or Tensile strength of general materials
KF	R	Volumetric Modulus of Elasticity of Water in Geomaterials
K	R	Permeability of geomaterials

Remarks:

- 1. Mass density is the density of the material itself without voids (piled stones: density of stones themselves, soil: density of soil particles).
- **2.** Porosity NC is used as the porosity of structural elements interfering with cells in CADMAS during coupled analysis with CADMAS for both general materials and geomaterials.

MATS1

Definition of plastic material properties.

Format:

1	2	3	4	5	6	7	8	9	10
MATS1	MID			Н	YF				

Field	Туре	Contents
MID	I	Material Identification Number (Material Identification Number of MAT1) (see Remark 1.)
Н	R	Strain hardening rate (incremental stress/incremental plastic strain)
YF	I	Descending conditions (=1: von Mieses, =4: Drucker-Prager)

Remarks:

1. The plastic material properties defined here apply to materials defined in MAT1 with the same material property number.

$[\ 4\]$ Single-point restraint

SPCADD

Define constraints as a combination of the constraints defined in SPC1 and SPC.

1	2	3	4	5	6	7	8	9	10
SPCADD	SID	S1	S2	S3	S4	S5	S6	S7	
	S8	S9	•••						

Field	Туре	Contents
SID	I	Constraint set number
Si	I	Constraint set number defined in SPC1, SPC

SPC1

Define node constraint..

Format:

1	2	3	4	5	6	7	8	9	10
SPC1	SID	С	G1	G2	G3	G4	G5	G6	
	G7	G8							

Alternate Format:

1	2	3	4	5	6	7	8	9	10
SPC1	SID	C	G1	"THRU"	G2				

Field	Туре	Contents
SID	I	Constraint set number
C	I	Component number (see Remark 1.)
Gi	I	Node number

Remarks:

1. The correspondence between component numbers and displacement components is shown below. For example, the designation of U_x , θ_x and θ_y is 145.

$$U_x$$
: 1, U_y : 2, U_z : 3, θ_x : 4, θ_y : 5, θ_z : 6

2. If "THRU" is used in the fifth field, the specified condition is applied to all nodes from G1 to G2; non-existent nodes between G1 and G2 are ignored.

SPC

Definition of node constraints and forced displacements.

Format:

1	2	3	4	5	6	7	8	9	10
SPC	SID	G1	C1	D1	G2	C2	D2		

Field	Туре	Contents
SID	I	Constraint set number
Gi	I	Node number
Ci	I	Component number (see Remark 1.)
Di	R	Forced displacement values for Gi and Ci (0. in case of constraint)

Remarks:

1. The correspondence between component numbers and displacement components is shown below. For example, the designation of U_x , θ_x and θ_y is 145.

$$U_x$$
:1, U_y :2, U_z :3, θ_x :4, θ_y :5, θ_z :6

SPCD

Definition of forced displacement of a node.

Format:

1	2	3	4	5	6	7	8	9	10
SPCD	SID	G1	C1	D1	G2	C2	D2		

Field	Туре	Contents
SID	I	Load set number
Gi	I	Node number
Ci	I	Component number (see Remark 1.)
Di	R	Forced displacement values for Gi and Ci

Remarks:

1. The correspondence between component numbers and displacement components is shown below. For example, the designation of U_x , θ_x and θ_y is 145.

$$U_x$$
:1, U_y :2, U_z :3, θ_x :4, θ_y :5, θ_z :6

[5] Static load

LOAD

Define loads as a linear combination of load sets defined using FORCE, MOMENT, PLOAD4, and GRAV.

Format:

1	2	3	4	5	6	7	8	9	10
LOAD	SID	s	S1	L1	S2	L2	S3	L3	
	S4	L4							

Field	Туре	Contents
SID	I	Load set number
S	R	Overall scale Factor
Si	R	Li scale Factor
Li	I	Load set number of FORCE, MOMENT, PLOAD4, GRAV

Remarks:

1. The load vector f is shown below.

$$\mathbf{f} \, \Box \, S \cdot \sum_i S_i \cdot \mathbf{f}_{Li}$$

FORCE

Definition of concentrated loads acting on nodes.

Format:

	1	2	3	4	5	6	7	8	9	10
ſ	FORCE	SID	G		F	N1	N2	N3		

Field	Туре	Contents
SID	I	Load set number
G	I	Node number of Load acting on
F	R	Scale factor (see Remark 1.)
N1, N2, N3	R	Load vector component (see Remark 1.)

Remarks:

1. The load vector \boldsymbol{f} acting on node \boldsymbol{G} is shown below.

$$\mathbf{f} \Box F \cdot \begin{cases} N1 \\ N2 \\ N3 \end{cases}$$

MOMENT

Definition of moments acting on nodes.

Format:

1	2	3	4	5	6	7	8	9	10
MOMENT	SID	G		M	N1	N2	N3		

Field	Туре	Contents
SID	I	Load set number
G	I	Node number of moment acts on
M	R	Scale factor (see Remark 1.)
N1, N2, N3	R	Moment component (see Remark 1.)

Remarks:

1. The moment \boldsymbol{m} acting on node \boldsymbol{G} is shown below.

$$\mathbf{m} \Box \begin{cases} Mx \\ My \\ Mz \end{cases} \Box M \cdot \begin{cases} N1 \\ N2 \\ N3 \end{cases}$$

PLOAD4

Definition of loads acting on solid element surfaces.

Format:

1	2	3	4	5	6	7	8	9	10
PLOAD4	SID	EID	P				G1	G3 or G4	
		N1	N2	N3					

Field	Туре	Contents
SID	I	Load set number
EID	I	Solid element number of the face on which the surface load is applied.
P	R	Magnitude of load per unit area (see Remark 1.)
G1	I	Representative node number of the surface on which the surface load is applied (see Remark 3.)
G3	I	Node number of Surface load acting on surface diagonal to G1 (only for CHEXA, CPENTA quadrilateral surfaces) (see Remark 3.)
G4	I	Node number of Not on plane on which surface load acts (CTETRA only) (see Remark 3.)
N1, N2, N3	R	Vector indicating the direction of the load (see Remark 1,2.)

Remarks:

1. The load vector f per unit area is shown below.

$$\mathbf{f} \Box P \cdot \frac{1}{|\mathbf{N}|} \begin{cases} N1 \\ N2 \\ N3 \end{cases}$$

- 2. For the case N1,N2,N3 = 0, the direction of the load is perpendicular to the plane. The direction is positive from the front to the back of the plane.
- 3. The positions of G1, G3, and G4 for each element type are as follows.

GRAV

Definition of Gravity.

Format:

1	2	3	4	5	6	7	8	9	10
GRAV	SID		A	N1	N2	N3			

Field	Туре	Contents
SID	I	load set number
A	R	Scale factor (see Remark 1.)
N1, N2, N3	R	Load vector component (see Remark 1.)

Remarks:

1. The gravity vector g is shown below.

$$\mathbf{g} \Box A \cdot \begin{cases} N1 \\ N2 \\ N3 \end{cases}$$

[6]動荷重

DLOAD

Define the loads as a linear combination of the load sets defined using TLOAD1.

Format:

1	2	3	4	5	6	7	8	9	10
DLOAD	SID	s	S1	L1	S2	L2	S3	L3	
	S4	L4							

Field	Туре	Contents
SID	I	load set number
S	R	Overall scale factor
Si	R	Li scale factor
Li	I	Load set number of TLOAD1

Remarks:

1. The load vector f is shown below.

$$\mathbf{f} \, \Box \, S \cdot \sum_i S_i \cdot \mathbf{f}_{Li}$$

TLOAD1

Definition of dynamic load.

Format:

1	2	3	4	5	6	7	8	9	10
TLOAD1	SID	EXCITEI D		TYPE	TID				

Field	Туре	Contents
SID	I	Load set number
EXCITEID	I	Static load set number of Use (see Remark 1.)
TYPE	I or A	Load type (see Remark 2.)
TID	I	Table number defining the time variation of the load factor (see Remark 1.)

Remarks:

1. The dynamic load vector \mathbf{f} (t) is shown below.

$$\mathbf{f}(t) = \mathbf{f} \cdot T(t)$$

 \mathbf{f} : Static load vector specified by EXCITED

T(t): Time variation of load factor according to the table specified by TID

2. The load types defined by TYPE are as follows.

TYPE	Load type
0, LOAD	Load
1, DISP	Forced displacement (specified by SPCD)
2, VELO	Velocity (specified by SPCD)
3, ACCE	Acceleration (specified by SPCD)

TABLED2

Defines the time variation of the dynamic load.

1	2	3	4	5	6	7	8	9	10
TABLED2	TID								
	X1	Y1	X2	Y2	Х3	Y3	X4	Y4	
	X5	Y5			ENDT				

Field	Туре	Contents						
TID	I	Table number						
Xi, Yi	R	Table data						

[7] Contact

BCTADD

Definition of Contact pairs as a combination of contact pairs defined in BCTSET.

Format:

1	2	3	4	5	6	7	8	9	10
BCTADD	CSID	S1	S2	S3	S4	S5	S6	S7	
	S8	S9	•••						

Field	Туре	Contents					
CSID	I	ontact set number					
Si	I	Contact set number as defined in BCTSET					

BCTSET

The definition of contact pair

1	2	3	4	5	6	7	8	9	10
BCTSET	CSID	SID1	TID1						
		SID2	TID2						
		•••							

Field	Туре	Contents
CSID	I	Contact set number
SIDi	I	Slave (source) region number
TIDi	I	Master (target) region number

BCTPARA

Setting of Friction Characteristics.

Format:

1	2	3	4	5	6	7	8	9	10
BCTPARA	CSID		MU0		MUD				

Field	Туре	Contents
CSID	I	Contact set number (BCTSET number) (see Remark 1.)
MU0	R	Coefficient of static friction
MUD	R	Coefficient of kinetic friction

Remarks:

1. The friction properties defined here apply to contact pairs defined in BCTSET with the same contact set number.

BSURFS

 $\label{eq:Definition} Definition of Contact Regions.$

1	2	3	4	5	6	7	8	9	10
BSURFS	ID				EID1	G1	G2	G3	
	EID2	G1	G2	G3	EID3	G1	G2	G3	

Field	Туре	Contents			
ID	I	Contact region number			
EIDi	I	Element number to which the contact surface is attached			
G1,G2,G3	I	Number of 3 of the component nodes of the contact surface (tri- or tetragonal surface)			

[8] Analysis Control

TSTEP

Definition of time steps in dynamic analysis.

1	2	3	4	5	6	7	8	9	10
TSTEP	SID	N1	DT1	NO1					
		N2	DT2	NO2					

Field	Туре	Contents
SID	I	Set number
Ni	I	Number of DTi
DTi	A	Time step
NOi	I	Result output interval

[9] Other

Specify the following key word followed by the value shown in parentheses ().

PARAM,LGDISP, (= 1 : Consider large deformations)

PARAM, W4, (Eigen angular frequencies of dominant vibration modes)

PARAM, EPSC, (Tolerance for initial contact determination. Initially, a slave-master that is less than or equal to this distance is considered to be in contact.. default= 10^{-6})

CADMAS, PLOWER2, (Used in CADMAS, the cell porosity is set to 0 if the cells between obstacles are less than or equal to this value.)

4. Data table

4. 1 Control data table

[1] KK Table

The * (region) indicates the value in the relevant region at the time of region segmentation.

No.	Variable name	contents
1		Structural and seepage flow coupling analysis method (0: Simultaneous, 1: Separate)
2		Geometry of non-linear shapes (0: micro-deformation, 1: deformation, 2: Large deformation & driven load)
3		Memory used (MB)
4		SUBCASE Number
5		
6		Maximum number of iterations in nonlinear analysis
7	NSTEP	Number of Steps
8	NNOD	Number of nodes
9	NSHL	Number of SHELL elements
10	NSOL	Number of SOLID elements
11	NMAT	Number of material types
12	NELM	Total number of elements
13	NTHK	Number of SHELL board thickness
14	NROD	Number of ROD elements
15	NRODA	Number of ROD cross-sectional area species
16	NBAR	Number of BEAM elements
17	NBARD	Number of BEAM cross-sectional shapes
18	NELAS	Number of SPRING elements
19	NEQ	Full degrees of freedom (math.)
20	NCGSPC	Number of non-zero elements in the overall stiffness matrix
21		Matrix Solver Type (1 : CG Method, 2 : ASE, 3 : PARDISO)
22		Maximum number of repetitions of the CG method
23		CG method pre-processing (0 : Diagonal component only, 1 : Incomplete Cholesky disassembly)
24		Maximum number of non-zero elements per degree of freedom in the overall stiffness matrix (structural analysis)
25		Maximum number of non-zero elements per degree of freedom in the overall stiffness matrix (seepage flow analysis)
26		(region) Number of inside
27		(region) Number of degrees of freedom corresponding to inside number
28	NNODC	(region) Number of nodes added for contact determination
29	NELMC	(region) Number of elements added for contact determination

30		Mass matrix form (0 : lumped, 1 : consistent)
31	NNODX	(region) Number of nodes added for equation assembly
32	NELMX	(region) Number of elements added for equation assembly
33		Maximum size of element stiffness matrix
34		Maximum number of degrees of freedom of the element stiffness matrix
35		Maximum size of the transformation matrix for MPC processing
36	MGP	Maximum number of integral points of an element
37	NM	Maximum size per element of array IELM
38	NISPD	4.2[6] see SPCD
39	NNSPD	4.2[6] see Sr CD
40	NLOAD	4.2[6] see LOAD
41	NNLOAD	4.2[6] see LOAD
42	NIFC	4.2[6] see FORCE,MOMENT
43	NNFC	4.2[6] see FORCE,MOMEN I
44	NIPL4	4.2[6] see PLOAD4
45	NNPL4	4.2[6] see PLOAD4
46	NISPA	4 o[r] GDGADD
47	NNSPA	4.2[5] see SPCADD
48	NISP1	, of all and
49	NNSP1	4.2[5] see SPC1
50		
51		
52		
53		
54		
55		
56	NISPC	4 of the land
57	NNSPC	4.2[5] see SPC
58		
59		
60	NIGRV	4.2[6] see GRAV
61		
62		
63		
64		
65		
66	NIDLD	, of the property of the prope
67	NSIDL	4.2[7] see DLOAD

68 69 70 NITD1 4.2[7] see TABLED2 71 NTBD1 72 73 74	
70 NITD1 71 NTBD1 72 4.2[7] see TABLED2 73	
71 NTBD1 4.2[7] see TABLED2 72 73	
72 73	
73	
1 '// 1	
74	
75	
76	
77 NITL1 4.2[7] see TLOAD1	
78 NISTP 4.2[9] see TSTEP	
79 NNSTP	
80 Material non-linearity (0: none, 1: yes)	
81 NPFC Number of surface elements	
82 NPTIM Number of times the data is output to the CADMAS red directional coupled	esult file (data.prs) in one-
NRST Number of restart file output times (for bi-directional of flag for CADMAS)	coupled, restart file output
Restart number calculation start step (in bidirectiona restart calculation start step number in CADMAS)	l coupling, this is the the
85	
86 NRANK Number of priorities for position correction in contact a	nalysis
87 NIDEP Number of Dependent Degrees of Freedom of the MP Contact Analysis	C Relational Equation in
88 NICPA 4.2[8] see BCTADD	
89 NNCPA 4.2[8] see BC IADD	
90 NICPR	
91 NNCPR 4.2[8] see BCTSET,BCTPARA	
92 NICRG	
93 NNCRG 4.2[8] see BSURFS	
94 NIGSF Number of face center-of-gravity points of the quadratic component faces of the element connected to the composurface.	_
95 NINDC Number of contact points	
96 Friction model (0: no friction, 1: arctangent, 2: stick-slip	p)
97 NIELC Number of contact surfaces	
98 NIELG Number of contact surfaces attached to the ground surf	face
99 NIEDG Number of contact surface edges	
NIBTE Number of split tetras (elements connected to the constant surface divided into tetrahedra)	ituent nodes of the contact
101 NIELQ Number of contact 4-angled surfaces	

102	NINDC0	(region)Number of contact points for the entire area
103	NINDCX	(region) Number of contact points added for equation assembly
104	NIELCX	(region) Number of contact surfaces added for equation assembly
105	NIEDGX	(region) Number of contact surface edges added for equation assembly
106	NIELQX	(region) Number of contact quadrilateral faces added for equation assembly
107	NIGSFX	(region) Number of quadrilateral surface center-of-gravity points added for equation assembly
108	NIGSFC	(region) Number of quadrilateral surface center-of-gravity points added for contact determination
109		
110	MITERO	Number of calculation iterations to switch convergence method when considering static friction
111	MITER1	Number of calculation iterations to switch friction characteristics when considering static friction
112	MITERD0	Number of calculation iterations to switch friction characteristics and convergence method when considering dynamic friction
113	MITERD1	Number of calculation iterations to switch friction characteristics when considering dynamic friction

[2] RR table

No.	contents
1	Convergence tolerance of CG method
2	
3	
4	Time-integral parameter β for transient response analysis
5	Eigen angular frequencies of deformation modes for which damping ratios are valid in transient response analysis
6	Convergence tolerance of unbalanced forces in nonlinear analysis
7	Time-integral parameter for seepage flow analysis α
8	Water level in CADMAS model
9	Z-coordinate of the top boundary of the CADMAS model
10	Parameters used to calculate friction spring constant (static friction)
11	Parameters used to calculate friction spring constant (dynamic friction)
12	Dynamic friction state \rightarrow Limit value of relative displacement used to determine static friction state
13	Parameters used to determine penetration in contact analysis
14	Limits of master-slave distance for initial contact determination

[3] IFL table

No.	拡張子	contents
10	.dat	Input data
11	.log	Log
12	.wk1	Work for ASE
13	.wk2	Work for ASE
14	.prs	CADMAS result files for one-way coupling
15	.neu	Result file (FEMAP neutral file format)
16		
17	.rst	Restart calculation file
18	.rtm	Data output time file for restart calculation

4. 2 Input Data Table

The following data tables are used to read input data (in NASTRAN BULK data format) and set its contents. Bold type indicates the entry name of the NASTRAN BULK data corresponding to each data table.

[1] Case control

		1	2	 NSUB = KK(4)
	Static load condition 1			
	Single-point constraint condition 2			
	Multipoint constraint condition 3			
	Eigenvalue analysis condition 4			
	Temperature load condition 5			
	Initial temperature conditions 6			
ISUB	Dynamic load condition 7			
	Load set 8			
	Frequency response analysis conditions 9			
	Material temperature conditions 10			
	Nonlinear analysis conditions11			
	Transient response analysis time condition 12			
	Contact set 13			

$\Gamma \cap \Gamma$	AT 1
121	⊢Node

GRID

INDG	node number	1	2	• •	•	NN	IOD = KI	ζ(8)
IGCD	Coordinate system number							
GRID	node coordinate X Y Z							

[3] Element, element characterization

PSOLID, CTETRA, CPENTA, CHEXA PROD, CROD PBARL, CBAR

The contents per element of the array IELM are shown.

element type	SOLID	ROD	BEAM					
1		Element number						
2	(= 2 : structure = 6 : ground)	(=3)	(=4)					
3	Constituent node number							
4	material number							
5	Stone material flag (=0: non-stone =1: stone)	Cross section number (see RODA)	Cross-sectional shape number (see BARD)					
6			Cross Section Type (= 2 : "BAR" only)					
7			Beam element number (BVEC 参照)					
8	Configuration node number 1							
9	(Configuration node number	2					
•		•						
•		•						
•	·							
NM=KK(37)	•							
Ī			,					
Total number of each element type	NSOL = KK(10)	NROD = KK(14)	NBAR = KK(16)					
Total number of elements	NELM = KK(12)							

PROD

PBARL

BARD

 CBAR

BVEC Direction vectors X1 \times X2 \times X3 \times NBAR = KK(16)

[4] Material

MAT1

MAT	Empty Elastic-plasticity	1	2	• •	•	NMAT = KK(11)
	E 1					
	v 2					
	p 3					
	GE 4					
	CM 5					
	n(CADMAS 用) 6					
	n 7					
	K_{f} 8					
AMAT	k 9					
	$ ho_{ m f}~10$					
	σ_y 11					
	H' 12					
	a 13					
	$\sigma_{\rm t}~14$					
	•					
	•					
	33					

 $[\]mbox{\ensuremath{\not{\times}}}$ Elastoplasticity =0 : Elasticity, =1 : Mieses, =2 : Drucker-Prager

[5] Single-point restraint

SPCADD

${\rm SPC1}$

% Restricted flag = 1 : restraint, = 0 : free

 $[\]begin{tabular}{ll} \& Forced displacement flag &= 1: Forced displacement, &= 0: No forced displacement \\ \end{tabular}$

[6] Static load

SPCD

* Forced displacement flag =1 : Forced displacement, = 0 : No forced displacement

LOAD

FORCE, MOMENT

PLOAD4

GRAV

ICDV		1	2		•	• •	N	IGRV	= K V	$\zeta(60)$
IGRV	Load set number									
								_		
			1	1				7		
	A • N1									
GRAV	A • N2									
	A • N3									

[7] Dynamic load

DLOAD

TLOAD1

		1	2		•	NI	TL1 = KK(7)	7)
	Set number							
ITL1	EXCITEID							
	TYPE							
	TID				•			

${\bf TABLED2}$

[8] Contact

BCTADD

BCTSET, BCTPARA

BSURFS

[9] Analysis control

TSTEP

REST, TI , D7 , RU	Γ		
	Restart calculation start time	1	
	Data output time increment for restart calculation	2	
	Data output time for restart calculation 1	3	
RTIM	Data output time for restart calculation 2	4	
		•	
		•	
	Data output time for restart calculation NRST	2+NRST	
	NRST = KK	(83)	

[10] Other

4. 3 Global variable table

The global variables defined in the module are listed below.

4. 3. 1 Module name: M_VAL (file name: m_val.f90) see KK table for array size variables.

Classification.	variable name	type	contents				
input data	see 4.2						
	UG1(6,NNOD+NIGSF)	R8	Displacement (at n-1)				
	UG2(6,NNOD+NIGSF)	R8	Displacement (at n)				
	UG3(6,NNOD+NIGSF)	R8	Displacement (at n+1)				
	UGP(6,NNOD+NIGSF)	R8	Displacement (at n+1) (before iter.)				
	DUG(6,NNOD)	R8	Displacement step				
	POS(3,NNOD+NIGSF)	R8	Position				
	POSO(3,NNOD+NIGSF)	R8	Position (before contact iter.)				
	VG0(3,2,2,NBAR)	R8	Beam element director (initial value)				
	VG(3,2,2,NBAR)	R8	Beam element director				
	VGP(3,2,2,NBAR)	R8	Beam element director (before iter.)				
displacement node force	FTO(6,NNOD)	R8					
node force	FTI(6,NNOD)	R8					
	FTID(6,NNOD)	R8					
	FCO(6,NNOD,3)	R8	0.1.1[#]				
	FCK(6,NNOD,3)	R8	see 2.1.1[5]				
	FCD(6,NNOD,4)	R8					
	FCM(6,NNOD,3)	R8					
	FCP(3,NNOD,2)	R8					
	RFCO(6,NNOD)	R8	Restraint reaction force				
	RFCI(6,NNOD)	R8	Contact reaction forcr				
	FRCI(6,NNOD)	R8	Friction force				
	PPND(NNOD)	R8	Pressure obtained by interpolating CADMAS cell pressure				
	PG1(NNOD+NIGSF)	R8	Pore pressure (at n-1)				
pressure	PG2(NNOD+NIGSF)	R8	Pore pressure (at n)				
velocity	PG3(NNOD+NIGSF)	R8	Pore pressure (at n+1)				
	DPG(NNOD)	R8	Incremental pore water pressure				
	FLO(NNOD)	R8	see 2.1.2[5]				
	FLI(NNOD)	R8	Sec 2.1.2[0]				

	DMT(21*MGP,NELM)	R8	Constitutive matrix
a andition of	•		
condition of the	EPSG(6*MGP,NELM)	R8	Distorted
integration	SIGG(6*MGP,NELM)	R8	Stress
point	IST(MGP,NELM)	I4	State (=0: elasticity, =1: crack, =2: plasticity)
	SIGY(MGP,NELM)	R8	Yield stress
seepage flow	VELG(3,MGP,NELM)	R8	Darcy velocity (element integral point)
scopage no	VELE(3,NELM)	R8	Darcy velocity (element center)
	IPFC(10,NPFC)	I4	Component node data of surface elements
	AFC(NPFC)	R8	Rate of area under pressure
data for coupled analysis from	IPND(NNOD)	I4	State of nodes in CADMAS (≤0: non-pressure, =1: pressure loading, =2: 1 other points on the ground surface)
CADMAS	PTIM(NPTIM)	R8	CADMAS result files for one-way coupling Time of data output to (data.prs)
	PND(NNOD,NPITM)	R8	Node pressure obtained by interpolating cell pressure in CADMAS
time step	D_T(NSTEP)	R8	Calculation time step
ume step	IOUT(NSTEP)	I4	Output flag (=0:non-output, =1 : output)
restart	IROUT(NSTEP)	I4	Restart file output flag (=0:non-output, =1 : output)
	INDOF0(6,NNOD)	I4	Initial value of INDOF
	INDOF(6,NNOD)	I4	The degrees of freedom in a simultaneous linear equation (=-2: follow the MPC, =-1: forced displacement, =0: fixation, >0: degree of freedom)
. ,	INDMPC(2,6,NNOD)	I4	The start and end addresses of the MPCF corresponding to the nodes and components that are subject to the MPC. (see 4.3.1[1])
index	MPCF(2,NIRH)	I4	Nodes of independent degrees of freedom in the MPC relation, component number
	RMPC(NIRH)	R8	Coefficient for the above
	INDOP0(NNOD)	I4	Initial value of INDOP
	INDOP(NNOD)	I4	Degrees of freedom in a simultaneous linear equation for pressure (=-1: fixation, =0: outside scope of calculation, >0: degree of freedom)
	RHV(NEQ)	R8	The right-hand side of a simultaneous linear equation
	X(NEQ)	R8	Solutions to simultaneous linear equations
	IDSK(NEQ+1)	I4	4 2 1[0]
matrix solver	IDCG(NCGSPC)	I4	see 4.3.1[2]
	CGWK(NEQ,6)	R8	CG Method work
	STF(NGCPSC)	R8	Coefficient matrix of simultaneous linear equations
	LOW(NCGSPC)	R8	Work used for incomplete LU decomposition of CG method

work	WRK1-3(6,NNOD)	R8	Work
contact	see 4.3.1[3]		

The array sizes shown above are for the case without domain segmentation. The nodal and element data sizes with domain division are as follows.

Node data size

KK(8)	KK(28)	KK(94)	KK(108)	KK(31)	KK(107)
NNOD	NNODC	NIGSF	NIGSFC	NNODX	NIGSFX
	+ +		 		+
Nodes in	Nodes in other	Surface	Surface center	Nodes in	Surface center
the area	domains	center of	of gravity	other	of gravity
	(Added for	gravity	point of other	domains	point of
	contact	point in	area	(Added for	another domain
	determination)	the area	(for contact	equation	(Added for
			determination)	assembly)	equation
			•		assembly)

Element data size KK(12) KK(29) KK(32) NELM NELMC NELMX Nodes in Nodes in other Nodes in the area elements other (Added for domains contact (Added for

determination)

equation
assembly)

$[\ 1\]$ Examples of INDMPC, MPCF, and RMPC

The MPC conditional equation is

$$U(j, i) = R1 \cdot U(j1, i1) + R2 \cdot U(j2, i2) + R3 \cdot U(j3, i3)$$

the data of this conditional expression is stored as follows.

INDOF(j, i) = -2

INDMPC(1, j, i) = IS

INDMPC(2, j, i) = IE

	 IS		IE	
MPCF	i1	i2	i3	
	j1	j2	j3	
_				
RMPC	R1	R2	R3	

[2] Examples of IDSK and IDCG

(1) The Case for the CG Method

Non-zero elements of the coefficient matrix (The number indicates the address in the STF where the value of the coefficient at that position is stored.)

$$\begin{bmatrix} 1 & & & & & \\ & 2 & & & & \\ 4 & 5 & 3 & & & \\ 7 & & 8 & 6 & & & \\ & 10 & 11 & & 9 & & \\ & & 13 & 14 & & 12 \end{bmatrix}$$

NEQ = 6

IDSK: Non-zero element top address of each line (Diagonal component first in each row)

NEQ+1 puts non-zero element final address +1 in the first piece

IDCG: Column number of non-zero element

(2) The Case for the Direct Method

Non-zero elements of the coefficient matrix (The number indicates the address in the STF where the value of the coefficient at that position is stored.)

$$\begin{bmatrix} 1 & 2 & 3 & & \\ & 4 & 5 & 6 \\ & 7 & 8 & 9 \\ & & 10 & 11 \\ & & 12 & \\ & & & 13 \end{bmatrix}$$

NEQ = 6

IDSK: Non-zero element top address of each line (Diagonal component first in each row)

NEQ+1 puts non-zero element final address +1 in the first piece

IDCG: Column number of non-zero element

- [3] Contact Data Table
- (1) Contact surface (corresponding to input data table NCRG)

The quadrilateral surface is divided into four triangles

(2) Element surface center-of-gravity number

% The surface center-of-gravity point number is the above number plus NNOD = KK(8).

Surface number : ①, ②, ···

(3) Split tetrahedra (elements connected to the constituent nodes of the contact surface are divided into tetrahedra)

	Split tetra number	1	2	• • •	NI	BTE = KK(100)
	Configuration node 1					
IBTE	2					
	3					
	4					

**Hexahedral element is divided into 24 tetrahedral elements and the pentahedral element into 11 tetrahedral elements, using the element's component nodes and face center of gravity points as component nodes.

(4) Contact surface (after dividing into triangular surfaces)

% Affiliation flag =1 : at the area is split, the affiliation of the contact surface with the process in question, =0 : the other

IELG Contact surface number attached to the ground surface NIELG = KK(98)

(5) Contact surface edge

% Affiliation flag =1 : at the area is split, the affiliation of the contact surface with the process in question, =0 : the other

(6) Contact point

(7) Contact point (data table for the entire domain during region partitioning)

(8) 4角形面

	Contact surface number	1	2		NIELC = KK(97)
IFCQ	Tetragon surface number to which the contact surface belongs.				

	Edge number	1	2	• • •	NIEDG = KK(99)
IEDQ	Tetragon surface number to which the edge belongs				

 \divideontimes put the above data in IVRQ (NNOD+1:NNOD+NIGSF).

Contact surface: F1, F2, F3, F4

Edge: E1, E2, E3, E4

Center of gravity point: G5 belongs to this square surface

(9) Node-connected element data

When dividing a region, the table is set only for contact points that are interior points of the process in question.

(10) Contact point state

	Contact point number	1	2	• • •	NINDC = KK(95)
ISLV	State of contact				
	Master number				
ICINO	State of contact (before iter.)				
ISLVO	Master number (before iter.)				
	L1 or t				
RSLV	L2				
	L3				
IRANK	Priority of position correction				

% state of contact =0 : free, =1 : point restraint, =2 : line restraint, =3 : face restraint, =4 : straight-line adherence, =5 : surface adherence

The above number $+\ 10$ represents "new" (e.g., $=\ 13$: new face constraint).

X Master number, master Node number, edge number or contact surface number

(11) Con	tact point state (data table	fo	r th	ne entire region a	t the time of region partitioning
	Contact point number	1	2		NINDC0 = KK(102)
ISLV0	State of contact				
	Master number				
				T	
ISLVP	Process number to which the master belongs				
	L1 or t				
RSLV0	L2				
	L3				
	Position coordinates in				
	previous iter.				
	Current position coordinates				
PSLV	Contact reaction force				
	vector				
	Average normal vector of				

connected surfaces

 $[\]ensuremath{\ensuremath{\%}}$ For PSLV, put 3 components for each item.

(12) Frictional state of contact point

	Contact point number	1	2	• • •	NINDC = KK(95)
	Statue 1				
	Mode 2				
	Type 3				
	Continuation of surface contact flag 4				
IFRIC	Slave belonging Area 5				
	Master's affiliation area 6				
	Unconverged flag 7				
	Reaction flag 8				
	Friction model 9				
	10				

- % state =0: non-friction, =1: new, =2: cotinuous
- % type =0 : dynamic friction, =1 : static friction
- X reaction force =1: non-reaction force of previous iter. in terms of considering friction, =0: the other

	Contact point number	1	2	 NI	NDC = KK(95)
	Coefficient of static				
	friction 1				
	2				
	Contact reaction force 3				
	Coefficient of kinetic				
	friction 4				
FRIC	Relative displacement				
ritio	with contact surface 5				
	Friction spring				
	constant 6				
	Displacement				
	at mode 3 transition 7				
	8				
	9				
	10				

	Contact point number	1	2	 N	NINDC = KK(95)
	Master configuration node G1 displacement				
U0	G2 displacement				
	G3 displacement				
	Slave point displacement				
					-
RL0	Initial L1				

L2		
L3		

 \divideontimes For U0, put 3 components for each item.

(13) Friction state of contact point (data table in the entire region at the time of region division)

ISTICK	Contact point number	1 2 · · · NINDCO				INDC0 = KK(102)		
1511CK	Friction type							

% friction type =0 : kinetic friction, =1 : static friction

(14) Contact pair flag

ICTB

% contact pair flag =1 : consider contact, =0 : not consider

(15) Friction type

※ friction type =0: kinetic friction, =1: static friction

(16) coefficient of friction

💥 put 3 components for each item

(Component 1: coefficient of static friction, component 3: coefficient of kinetic friction).

(17) Edge average length

$\textbf{4. 3. 2 Module name}: M_PART \ (file \ name: m_part.f90)$

classification.	variable name	type	contents		
	NN_INT(NPECG)	I4	Number of inside		
	NN_EXT(NPECG)	I4	Total number of nodes (inner points + outer points)		
data for each calculation	NE(NPECG)	I 4	Number of elements		
process	NPF(NPECG)	I4	Number of face elements		
maintained by the root	NOD(2*MINT,NPECG)	I4	Node number		
process	IEL(2*ME,NPECG)	I4	Element number		
	IPF(MPF,NPECG)	I4	Surface element number		
	NPEW-NODEXPW	I4	Work to create NPE-NODEXP		
	NPE	I4	Number of processes communicating		
	NIMP	I4	Number of nodes to receive data		
	NEXP	I4	Number of nodes to send data		
Node data	IPE(NPE)	I4	Process number for communication		
communication table for each calculation	IDXIMP(2,NPE)	I4	Start and end address of NODIMP where the list of node numbers to receive data from each process is stored.		
process	NODIMP(NIMP)	I 4	Node number to receive data		
	IDXEXP(2,NPE)	I4	Start and end address of NODEXP where the list of node numbers to send data to each process is stored.		
	NODEXP(NEXP)	I4	Node number to send data		

Data for contact analysis

classification.	variable name	type	contents
	NG(NPECG)	I4	Surface gravity points
	NIEC(NPECG)	I4	Number of contact surfaces
	NINC(NPECG)	I4	Number of contact points
	NIEG(NPECG)	I4	Number of contact surface edges
Data for each calculation	NIEQ(NPECG)	I4	Number of contact quadrilateral faces
process	NIBT(NPECG)	I4	Number of split tetras
maintained	NODG(MAX(NG),NPECG)	I 4	Face gravity point number
by the root process	IEC(MAX(NIEC),NPECG)	I4	Contact surface number
	INC(MAX(NINC),NPECG)	I 4	Contact point number
	IEG(MAX(NIEG),NPECG)	I4	Contact surface edge number
	IEQ(MAX(NIEQ),NPECG)	I4	Contact quadrilateral faces number
	IBT(MAX(NIBT),NPECG)	I4	Split tetra number

Process to	NODP(2,NNOD+NIGSF)	I 4	Node, center of gravity point
which each data held in	IELCP(2,NIELC)	I4	Contact surface
the root	INDCP(2,NINDC0)	I4	Contact point
process belongs, local number	IEDGP(2,NIEDG)	I4	Contact surface edge
Data for each	NN_EXTC(NPECG)	I 4	Number of nodes
calculation	NGC(NPECG)	I 4	Number of centers of gravity
process held by the root	NEC(NPECG)	I 4	Number of elements
process	NODC(MAX(NN_EXTC),NPECG)	I4	Node number
(additional for contact	NODGC(MAX(NGC),NPECG)	I 4	Face gravity point number
determination)	IELMC(MAX(NEC),NPECG)	I4	Element number
Data for each calculation process	NN_EXTX(NPECG)	I4	Number of nodes
retained by the root process (additional for equation assembly)	NODX(MAX(NN_INT),NPECG)	I4	Node number
	NPIMPX	I 4	Number of processes receiving data
	NIMPX	I4	Number of nodes to receive data
	IPIMPX(NPIMPX)	I 4	Process number to receive data
Nodal data communication table for each	IDXIMPX(2,NPIMPX)	I4	Start and end address of NODIMPX where the list of node numbers to receive data from each process is stored.
calculation	NODIMPX(NIMPX)	I4	Node number to receive data
process	NPEXPX	I 4	Number of processes sending data
(additional for equation	NEXPX	I 4	Number of nodes to send data
assembly)	IPEXPX(NPEXPX)	I 4	Process number to send data
	IDXEXPX(2,NPEXPX)	I4	Start and end address of NODEXPX where the list of node numbers to send data to each process is stored.
	NODEXPX(NEXPX)	I 4	Node number to send data

Overview of distributed data structures and communication

In parallel computation, all mesh data is first read by the root process (rank=0), where the data is divided into regions and distributed to each computation process (rank>0). Then, the parallel computation is executed while communicating data among the processes.

The mesh data for each process is based on nodal-based domain segmentation, and nodes are classified into the following three types in terms of communication

- · Inner points: Nodes assigned to each domain
- Outer points: Nodes that belong to other regions but are included in the elements of each region.
- Boundary point: An interior point that is an exterior point of another domain

The figure below shows an example of region segmentation data. In PE#3, nodes are classified as follows

- Inner points $\{1, 2, 3, 4, 5, 6\}$
- Outer points { 7, 8, 9, 10, 11, 12 }
- Boundary point { 1, 4, 5, 6 }

The value at the boundary point is sent to the adjacent region, where it is received as an outer point. By communicating with each other, each process obtains the value of the boundary point.

$\textbf{4. 3. Module name}: MPI_PARAM \ (file name: mpi_param.f90)$

classification.	variable name	type	contents		
Overall	CPLWORLD	I4	Overall (CADMAS & Structural Analysis) communicator		
(CADMAS & Structural Analysis)	MYRANK0	I4	Rank your process in the overall (CADMAS & Structural Analysis) communicator		
Communicator	IROOTC	I4	Rank of CADMAS root processes in the overall (CADMAS & Structural Analysis) communicator		
	MYWORLD	I4	Structural Analysis Communicator		
Structural Analysis	NPROCS	I4	Number of processes for structural analysis		
Communicator	MYRANK	I4	Rank your process in the Structural Analysis Communicator		
CG Law Communicator CGWORLD I4		I4	Communicator that calculates the CG method (structural analysis communicator minus the root process)		
coupled analysis	ICPL	I4	Types of coupled analysis (=0:non-coupled, =1: one-way coupling, =2: bidirectional coupling)		

5. Program processing flow

[1] Data input, PART division (in case of parallel CG selection)

$[\ 2\]$ Communication between SUB.GLB_COMM and SUB.ASTEA_MECHANICAL (in case of parallel CG selection)

root process (RANK = 0)	 calculation process (RANK > 0
GLB_COMM	ASTEA_MECHANICAL
RESFRC0 Received residual norm for each PART Convergence determination by adding, Send convergence decision flag to each calculation process	RESFRC Transmit residual norm, convergence decision flag received
NPFLOW0 Residual norm of each PART, flow rate from pressure fixed point is received, added and message output	NPFLOW Transmits residual norm, flow rate from pressure fixed point
FEMAP_OUT0 Receive and output calculation results for each PART	FEMAP_OUT Send calculation results
RDPRESS0 Loads a CADMAS calculation result (pressure) file during one-way coupled analysis and sends it to each calculation process.	RDPRESS Receive CADMAS calculation results (pressure)
RECV_SURF0 Receives surface data from CADMAS during bidirectional coupled analysis and sends it to each calculation process	RECV_SURF Receive surface data
RECV_PRES0 Receive calculation results (pressure) from CADMAS during bidirectional coupled analysis and send them to each calculation process	RECV_PRES Receive CADMAS calculation results (pressure)
SEND_POS0 Receives the structural nodal point positions of each PART during bidirectional coupled analysis and sends them to CADMAS.	SEND_POS Send structural node point position
BCTSET0 Contact pairs, friction coefficient tables received	BCTSET Send contact pair, friction coefficient
SEND_CONT0 Send contact surface data to CADMAS	SEND_CONT Send contact analysis flag
CONT_INIT_0 Receive nodal information of each PART and send node information outside PART to each calculation process, Create and send contact point information Receive contact status, update and send	CONT_INIT_P Send and receive node point information Receive contact point information Determines contact state, transmits, and receives

PART_SEND_TBLX

Receive element information for each PART

Prepare additional data necessary for equation assembly for each PART and send to each calculation process. Prepares and sends data for inter-process communication (additional data) for each process

CONTACT0

Receive nodal information of each PART and send nodal information outside PART to each calculation process Create and send contact point information Receive contact status, update and send Convergence judgment, send convergence flag Update friction state

MDPRESS0

Receives provisional water pressure values for surface nodes with undetermined water pressure from each PART, determines the water pressure, and sends them to each calculation process.

$RECV_TBLX$

Send element information Receive additional data needed for equation assembly Receive additional data for inter-process communication

$COMM_TBLX$

Bidirectional communication between processes for additional nodal data needed for equation assembly

CONTACTP

Send and receive nodal point information Receive contact point information Determines contact state, transmits, and receives Convergence flag is received Transmit friction state

received.

The water pressure at the surface node with undetermined water pressure is calculated by pore water pressure interpolation on the ground surface where the node is in contact with, transmitted, and the determined value is

MDPRESSP

[3] SUB. ASTEA_MECHANICAL Flow (bidirectional coupled, with contact)

Appendix 1. Method of calculating nodal forces due to surface loads

When the pressure p acts perpendicular to the surface, the nodal force on node i, for a given surface element, is

$$\int_{S_2^e} N_i \, t dS = \int_{S_2^e} N_i \, p \, n \, dS = \int_{-1}^1 \int_{-1}^1 N_i \, p \, n |J| \, d\xi \, d\eta$$

$$r = \begin{cases} x(\xi, \eta) \\ y(\xi, \eta) \\ z(\xi, \eta) \end{cases} = \begin{cases} N_1(\xi, \eta) X_1 + N_2(\xi, \eta) X_2 + \cdots \\ N_1(\xi, \eta) Y_1 + N_2(\xi, \eta) Y_2 + \cdots \\ N_1(\xi, \eta) Z_1 + N_2(\xi, \eta) Z_2 + \cdots \end{cases}$$

$$\boldsymbol{r}_{1} = \frac{\partial \boldsymbol{r}}{\partial \xi} = \frac{\partial}{\partial \xi} \begin{cases} N_{1}(\xi, \eta) \ X_{1} + N_{2}(\xi, \eta) \ X_{2} + \cdots \\ N_{1}(\xi, \eta) \ Y_{1} + N_{2}(\xi, \eta) \ Y_{2} + \cdots \\ N_{1}(\xi, \eta) \ Z_{1} + N_{2}(\xi, \eta) \ Z_{2} + \cdots \end{cases} = \frac{\partial N_{1}}{\partial \xi} (\xi, \eta) \begin{cases} X_{1} \\ Y_{1} \\ Z_{1} \end{cases} + \frac{\partial N_{2}}{\partial \xi} (\xi, \eta) \begin{cases} X_{2} \\ Y_{2} \\ Z_{2} \end{cases} + \cdots$$

$$\boldsymbol{r}_{2} = \frac{\partial \boldsymbol{r}}{\partial \eta} = \frac{\partial}{\partial \eta} \begin{cases} N_{1}(\xi, \eta) X_{1} + N_{2}(\xi, \eta) X_{2} + \cdots \\ N_{1}(\xi, \eta) Y_{1} + N_{2}(\xi, \eta) Y_{2} + \cdots \\ N_{1}(\xi, \eta) Z_{1} + N_{2}(\xi, \eta) Z_{2} + \cdots \end{cases} = \frac{\partial N_{1}}{\partial \eta} (\xi, \eta) \begin{cases} X_{1} \\ Y_{1} \\ Z_{1} \end{cases} + \frac{\partial N_{2}}{\partial \eta} (\xi, \eta) \begin{cases} X_{2} \\ Y_{2} \\ Z_{2} \end{cases} + \cdots$$

$$n = \frac{r_1 \times r_2}{\|r_1 \times r_2\|}$$
: Normal vector of a surface

$$|J| = ||\mathbf{r}_1 \times \mathbf{r}_2|| = \sqrt{||\mathbf{r}_1||^2 ||\mathbf{r}_2||^2 - (\mathbf{r}_1 \cdot \mathbf{r}_2)^2}$$

※ For the interpolation function N₁ for a quadrilateral, see "Bathe, K.-J., Finite Element Procedures in Engineering Analysis," Prentice-Hall, 1982, pp.

Case of triangular primary element

$$\int_{S_2^e} N_i \, t dS = \int_{S_2^e} N_i \, p n dS = \int_{S_2^e} L_i \, (L_1 P_1 + L_2 P_2 + L_3 P_3) n dS = \int_{S_2^e} (L_i L_1 P_1 + L_i L_2 P_2 + L_i L_3 P_3) \, n dS$$

This is then integrated using the formula (Motoki Yagawa, Shinobu Yoshimura, Finite Element Method, Computational Mechanics and CAE Series 1, Baifukan, 1995, pp. 262 (11)).

Appendix 2. How to specify damping in transient response analysis

(1) Consider a one-degree-of-freedom system consisting of a mass m, a spring constant k, and a viscous damping coefficient b. The equations of motion for this system are shown below.

$$m\ddot{u} + b\dot{u} + ku = f$$

The damping characteristics of this system are determined by the following damping ratios(Ratio of attenuation coefficient to critical attenuation coefficient).

$$\zeta = \frac{b}{b_{cr}} = \frac{b}{2\sqrt{mk}}$$

 ζ : attenuation ratio, b_{cr} : critical decay coefficient

(2) The equations of motion for a multi-degree-of-freedom system are as follows.

$$[M]{\ddot{u}} + [B]{\dot{u}} + [K]{u} = {F} - 1$$

Free oscillation when {F} is nothing. For simplicity, we assume {F}={0} and consider free vibration. The solution is determined by the initial conditions and is a superposition of multiple vibration modes.

(3) Mode decompose the equation ①. Substitute expression for ① expression

$$\{u\} = \sum_{i=1}^{N} \xi_i \{\phi_i\} = [\phi] \{\xi\} - 2$$

$$\{\phi_i\}$$
: モードベクトル

$$[\phi]: [\{\phi_1\} \ \{\phi_2\} \ \cdots \ \{\phi_N\}]$$

$$\{\xi\}: \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_N \end{pmatrix}$$

Multiply $[\phi]^T$ from left to right

$$[\phi]^{T}[M][\phi]\{\ddot{\xi}\} + [\phi]^{T}[B][\phi]\{\dot{\xi}\} + [\phi]^{T}[K][\phi]\{\xi\} = \{0\}$$

In this time, diagonalized as follows $([\phi]^T[B][\phi], [\phi]^T[K][\phi]$ as well)

$$[\phi]^T[M][\phi] = \begin{bmatrix} m_1 & & & \\ & m_2 & & \\ & & \ddots & \\ & & & m_N \end{bmatrix}$$

So the equations of motion are mode decomposed, leading to

$$m_i \ddot{\xi}_i + b_i \dot{\xi}_i + k_i \xi_i = 0$$

Solving for this and substituting ξ_i into ② yields the free vibration solution of ① in the form of superposition of vibration modes.

(4) In the NASTRAN and CADMAS-STR damping models $[B] = C_K[K]$, so the damping ratio for each mode is as follows.

$$\zeta_i = \frac{b_i}{2\sqrt{m_i k_i}} = \frac{C_K k_i}{2\sqrt{m_i k_i}} = \frac{C_K}{2} \sqrt{\frac{k_i}{m_i}} = \frac{C_K}{2} \omega_i$$

The damping ratio is proportional to the natural angular frequency of each vibration mode. Therefore, in $\{u\}$, which is obtained by superposition of the mode vectors, the modes with larger eigenangular frequencies will decay faster.

(5) How to specify attenuation (input method from FEMAP)

Determine the CK to achieve the intended damping ratio for the dominant vibration mode (the mode with large ξ_i , usually i = 1).

Therefore

$$\zeta_i = \frac{C_K}{2} \omega_i \qquad , \qquad C_K = \underbrace{\frac{2\zeta_i}{\omega_i}} \leftarrow \text{Substituting } 2\text{C/C}_0$$

$$\leftarrow \text{Substituting } \text{W4}$$

If you want to suppress vibration modes above ω_i , set

$$C_K = \frac{2 \cdot 1}{\omega_i}$$

(6) When no damping is used, minimal damping is applied by default to suppress harmonic oscillations caused by contact processing, etc. therefore

$$\omega_{i,max} = \left(\frac{2}{l} \sqrt{\frac{E}{\rho}}\right)_{max}$$

 $\omega_{i,max}$ Maximum value of the natural angular frequency of the element

l: Element size

E Young's modulus of elements

 ρ : Density of elements

In this mode, the default C_K is set so that $\zeta_i = 1$ as follows.

$$C_K = \frac{2 \cdot \zeta_i}{\omega_i} = \frac{2 \cdot 1}{\omega_{i,max}}$$

Appendix 3. FEM formulation when geometric nonlinearity is taken into account

1. Hypothetical work principle equation

The principle expression for virtual work in the state at time t+Δt in total Lagrange form (Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, equation (6-72)) is

$$\int_{{}^0V} {}^{t+\Delta t} S_{ij} \, \delta^{t+\Delta t} {}_0 \epsilon_{ij} d \, {}^0V = {}^{t+\Delta t} \mathcal{R} \ - (1)$$

 $^{t+\Delta t}_{0}S_{ii}$: second Piola – Kirchhoff stress tensor at timet + Δt with respect to the state at time 0

 $^{t+\Delta t}_{0}\epsilon_{ij}: Green-Lagrange$ strain tensor at time $t+\Delta t$ with respect to the state at time 0

 $\delta^{t+\Delta t}_{0}\epsilon_{ij}^{t+\Delta t}_{0}\epsilon_{ij}$ corresponding to the possible virtual displacements at time $t+\Delta t$

 ^{0}V : Volume at time 0

 $^{t+\Delta t}\mathcal{R}: principle\ of\ virtual\ work\$ due to external force at time $t+\Delta t$

2. Incremental decomposition and linear approximation

Decompose ${}^{t+\Delta t}_{0}\epsilon_{ij}$, ${}^{t+\Delta t}_{0}S_{ij}$ incrementally as follows

$$\begin{aligned} & \overset{t+\Delta t}{\circ} \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial^{t+\Delta t} u_i}{\partial {}^{0} x_j} + \frac{\partial^{t+\Delta t} u_j}{\partial {}^{0} x_i} + \frac{\partial^{t+\Delta t} u_k}{\partial {}^{0} x_i} \frac{\partial^{t+\Delta t} u_k}{\partial {}^{0} x_j} \right) \\ & = \frac{1}{2} \left(\frac{\partial \left({}^{t} u_i + u_i \right)}{\partial {}^{0} x_j} + \frac{\partial \left({}^{t} u_j + u_j \right)}{\partial {}^{0} x_i} + \frac{\partial \left({}^{t} u_k + u_k \right)}{\partial {}^{0} x_i} \frac{\partial \left({}^{t} u_k + u_k \right)}{\partial {}^{0} x_j} \right) \\ & = \frac{1}{2} \left(\frac{\partial^{t} u_i}{\partial {}^{0} x_j} + \frac{\partial u_i}{\partial {}^{0} x_j} + \frac{\partial^{t} u_j}{\partial {}^{0} x_i} + \frac{\partial u_j}{\partial {}^{0} x_i} + \frac{\partial^{t} u_k}{\partial {}^{0} x_j} \frac{\partial^{t} u_k}{\partial {}^{0} x_j} + \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial u_k}{\partial {}^{0} x_j} + \frac{\partial u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_i} + \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial u_k}{\partial {}^{0} x_j} \right) \\ & = \frac{1}{2} \left(\frac{\partial^{t} u_i}{\partial {}^{0} x_j} + \frac{\partial^{t} u_j}{\partial {}^{0} x_i} + \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_j} \right) + \frac{1}{2} \left(\frac{\partial u_i}{\partial {}^{0} x_j} + \frac{\partial u_j}{\partial {}^{0} x_i} + \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial u_k}{\partial {}^{0} x_j} + \frac{\partial u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_j} \right) + \frac{1}{2} \left(\frac{\partial u_i}{\partial {}^{0} x_j} + \frac{\partial u_j}{\partial {}^{0} x_i} + \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}{\partial {}^{0} x_i} \right) + \frac{1}{2} \left(\frac{\partial u_i}{\partial {}^{0} x_j} + \frac{\partial u_j}{\partial {}^{0} x_i} \frac{\partial u_k}{\partial {}^{0} x_j} + \frac{\partial u_k}{\partial {}^{0} x_i} \frac{\partial^{t} u_k}$$

$$= {}^t_0 \epsilon_{ij} + {}_0 e_{ij} + {}_0 \eta_{ij}$$

First second Regarding displacement increments

$$= {}^{t}_{0}\epsilon_{ij} + {}_{0}\epsilon_{ij} - (2)$$

 $^{0}x_{i}: Coordinates\ of\ the\ material\ point\ at\ time\ 0$

 tu_i : Displacement of material point at time t

 $u_i: {}^{t+\Delta t}u_i - {}^tu_i$ (displacement of material point at time t)

$${}^{t+\Delta t}_{0}S_{ij} = {}^{t}_{0}S_{ij} + {}_{0}S_{ij} - (3)$$

Furthermore, a linear approximation of ${}_{0}S_{ij}$ (leaving only a first-order term with respect to the displacement increment) is shown below.

103

$${}_{0}S_{ij} \doteq \frac{\partial {}_{0}^{t}S_{ij}}{\partial {}_{0}^{t}\epsilon_{rs}}\bigg|_{t} {}_{0}e_{rs} = {}_{0}C_{ijrs} {}_{0}e_{rs} - (4)$$

Using (2) and (3), the integrand function in (1) is incrementally decomposed into the following.

$${}^{t+\Delta t}{}^{0}S_{ij}\delta^{t+\Delta t}{}^{0}\epsilon_{ij} = \left({}^{t}_{0}S_{ij} + {}_{0}S_{ij}\right)\delta\left({}^{t}_{0}\epsilon_{ij} + {}_{0}\epsilon_{ij}\right) = \left({}^{t}_{0}S_{ij} + {}_{0}S_{ij}\right)\delta_{0}\epsilon_{ij} = \left({}^{t}_{0}S_{ij} + {}_{0}S_{ij}\right)\left(\delta_{0}e_{ij} + \delta_{0}\eta_{ij}\right)$$

Furthermore, a linear approximation using (4) (leaving only the terms below the first order with respect to the displacement increment) is shown below.

$$\doteq \binom{t}{0}S_{ij} + {}_{0}C_{ijrs} {}_{0}e_{rs} (\delta {}_{0}e_{ij} + \delta {}_{0}\eta_{ij}) \doteq {}_{0}^{t}S_{ij}\delta {}_{0}e_{ij} + {}_{0}^{t}S_{ij}\delta {}_{0}\eta_{ij} + {}_{0}C_{ijrs} {}_{0}e_{rs}\delta {}_{0}e_{ij} - (5)$$

$$= \underbrace{\text{Tero} \quad \text{first} \quad \text{Zero} \quad \text{first} \quad \text{Regarding displacement increments} }$$

Substituting (5) into (1), we obtain the following expression, which is an incremental decomposition and linear approximation of the virtual work principle expression (total Lagrange form).

$$\int_{{}^{0}V} \delta_{0} e_{ij} {}_{0} C_{ijrs} {}_{0} e_{rs} d^{0}V + \int_{{}^{0}V} {}_{0}^{t} S_{ij} \delta_{0} \eta_{ij} d^{0}V = {}^{t+\Delta t} \mathcal{R} - \int_{{}^{0}V} {}_{0}^{t} S_{ij} \delta_{0} e_{ij} d^{0}V - (6)$$

3. Discretization

Discretizing (6) by FEM, we obtain

$$\{\delta U\}^T \begin{bmatrix} {}^t_0 K_L \end{bmatrix} \{U\} + \{\delta U\}^T \begin{bmatrix} {}^t_0 K_{NL} \end{bmatrix} \{U\} = \{\delta U\}^T \{ {}^{t+\Delta t} R\} - \{\delta U\}^T \{ {}^t_0 F\}$$

$$\left(\left[{}_{0}^{t}K_{L}\right]+\left[{}_{0}^{t}K_{NL}\right]\right)\left\{ U\right\} =\left\{ {}^{t+\Delta t}R\right\} -\left\{ {}_{0}^{t}F\right\}$$

The calculation methods for each term are shown in [1]-[3] below.

[1] First term of the left-hand side

$$\int_{0_{V}} \delta_{0} e_{ij} {_{0}C_{ijrs}} {_{0}e_{rs}} d^{0}V = \int_{0_{V}} \{\delta_{0}e\}^{T} [_{0}C] \{_{0}e\} d^{0}V = \int_{0_{V}} ([_{0}^{t}B_{L}] \{\delta U\})^{T} [_{0}C] ([_{0}^{t}B_{L}] \{U\}) d^{0}V$$

$$= \{\delta U\}^{T} \int_{0_{V}} [_{0}^{t}B_{L}]^{T} [_{0}C] [_{0}^{t}B_{L}] d^{0}V \{U\} = \{\delta U\}^{T} [_{0}^{t}K_{L}] \{U\}$$

In this time

 $= \begin{bmatrix} {}^t_0 B_L \end{bmatrix} \{ U \}$

$\begin{bmatrix} {}_{0}C \end{bmatrix}$: Tangential stiffness matrix

$$\left\{ {_{0}}e \right\} = \begin{cases} {_{0}}e_{11} \\ {_{0}}e_{22} \\ {_{0}}e_{33} \\ {_{2}}e_{122} \\ {_{2}}e_{23} \\ {_{2}}e_{24} \\$$

$$\left\{ {_{0}e} \right\}_{0} = \left\{ \begin{array}{l} \frac{\partial u_{1}}{\partial {^{0}x_{1}}} \\ \frac{\partial u_{2}}{\partial {^{0}x_{2}}} \\ \frac{\partial u_{3}}{\partial {^{0}x_{3}}} \\ \frac{\partial u_{1}}{\partial {^{0}x_{2}}} + \frac{\partial u_{2}}{\partial {^{0}x_{2}}} \\ \frac{\partial u_{2}}{\partial {^{0}x_{2}}} + \frac{\partial u_{3}}{\partial {^{0}x_{3}}} \\ \frac{\partial u_{2}}{\partial {^{0}x_{2}}} + \frac{\partial u_{3}}{\partial {^{0}x_{3}}} \\ \frac{\partial u_{3}}{\partial {^{0}x_{3}}} + \frac{\partial u_{1}}{\partial {^{0}x_{3}}} \\ \frac{\partial u_{3}}{\partial {^{0}x_{3}}} + \frac{\partial u_{1}}{\partial {^{0}x_{3}}} \\ \end{array} \right\} = \left\{ \begin{array}{l} \frac{\partial}{\partial {^{0}x_{1}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{2}^{n}) \\ \frac{\partial}{\partial {^{0}x_{2}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{3}^{n}) \\ \frac{\partial}{\partial {^{0}x_{3}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{1}^{n}) + \frac{\partial}{\partial {^{0}x_{2}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{2}^{n}) \\ \frac{\partial}{\partial {^{0}x_{3}}} (N_{1}U_{2}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{2}^{n}) + \frac{\partial}{\partial {^{0}x_{2}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{3}^{n}) \\ \frac{\partial}{\partial {^{0}x_{3}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{2}^{n}) + \frac{\partial}{\partial {^{0}x_{2}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{3}^{n}) \\ \frac{\partial}{\partial {^{0}x_{3}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{3}^{n}) + \frac{\partial}{\partial {^{0}x_{3}}} (N_{1}U_{1}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{1}^{n}) \right\}$$

$$=\begin{bmatrix} \frac{\partial N_1}{\partial {}^0 x_1} & \frac{\partial N_2}{\partial {}^0 x_1} & \frac{\partial N_2}{\partial {}^0 x_1} & \frac{\partial N_n}{\partial {}^0 x_1} & \frac{\partial N_n}{\partial {}^0 x_2} & \frac{\partial N_n}{\partial {}^0 x$$

 $= [{}_{0}^{t}B_{L0}]\{U\}$

$$\left\{ {_{0}e} \right\}_{1} = \left\{ \begin{array}{c} \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{1}} \frac{\partial u_{k}}{\partial \ ^{0}x_{1}} \\ \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{2}} \frac{\partial u_{k}}{\partial \ ^{0}x_{2}} \\ \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{3}} \frac{\partial u_{k}}{\partial \ ^{0}x_{3}} \\ \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{1}} \frac{\partial u_{k}}{\partial \ ^{0}x_{2}} + \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{2}} \frac{\partial u_{k}}{\partial \ ^{0}x_{1}} \\ \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{2}} \frac{\partial u_{k}}{\partial \ ^{0}x_{3}} + \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{3}} \frac{\partial u_{k}}{\partial \ ^{0}x_{2}} \\ \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{3}} \frac{\partial u_{k}}{\partial \ ^{0}x_{1}} + \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{1}} \frac{\partial u_{k}}{\partial \ ^{0}x_{3}} \\ \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{3}} \frac{\partial u_{k}}{\partial \ ^{0}x_{1}} + \frac{\partial \ ^{t}u_{k}}{\partial \ ^{0}x_{1}} \frac{\partial u_{k}}{\partial \ ^{0}x_{3}} \end{array} \right\}$$

$$= \begin{cases} \frac{\partial^{t} u_{1}}{\partial^{0} u_{1}} \frac{\partial u_{1}}{\partial^{0} u_{1}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{1}} \frac{\partial u_{2}}{\partial^{0} u_{1}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{1}} \frac{\partial u_{3}}{\partial^{0} u_{1}} \\ \frac{\partial^{t} u_{1}}{\partial^{0} u_{2}} \frac{\partial u_{1}}{\partial^{0} u_{2}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{2}} \frac{\partial u_{2}}{\partial^{0} u_{2}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{2}} \frac{\partial u_{3}}{\partial^{0} u_{2}} \\ \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} \\ \frac{\partial^{t} u_{1}}{\partial^{0} u_{1}} \frac{\partial u_{1}}{\partial^{0} u_{2}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{2}} \frac{\partial u_{2}}{\partial^{0} u_{2}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{2}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} \\ \frac{\partial^{t} u_{1}}{\partial^{0} u_{2}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{2}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{1}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{2}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{2}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial u_{3}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial u_{1}}{\partial^{0} u_{3}} + \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial^{u_{1}}}{\partial^{0} u_{3}} \frac{\partial^{u_{1}}}{\partial^{0} u_{3}} \frac{\partial^{u_{1}}}{\partial^{$$

$$= \begin{cases} \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{1}} \frac{\partial}{\partial {}^{0} x_{1}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{1}} \frac{\partial}{\partial {}^{0} x_{1}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{1}} \frac{\partial}{\partial {}^{0} x_{1}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{2}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{2}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{2}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{1}} \frac{\partial}{\partial {}^{0} x_{2}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{1}} \frac{\partial}{\partial {}^{0} x_{2}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{2}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial {}^{0} x_{3}} \frac{\partial}{\partial {}^{0} x_{3}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n}) \\ \frac{\partial^{t} u_{1}}{\partial {}^{0} x_{3}} \frac{\partial^{t} u_{2}}{\partial {}^{0} x_{3}} (N_{$$

$$+ \frac{\partial^{t} u_{1}}{\partial^{0} u_{2}} \frac{\partial}{\partial^{0} u_{1}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial^{0} u_{2}} \frac{\partial}{\partial^{0} u_{1}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial^{0} u_{2}} \frac{\partial}{\partial^{0} u_{1}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n})$$

$$+ \frac{\partial^{t} u_{1}}{\partial^{0} u_{3}} \frac{\partial}{\partial^{0} u_{2}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial}{\partial^{0} u_{2}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial}{\partial^{0} u_{2}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n})$$

$$+ \frac{\partial^{t} u_{1}}{\partial^{0} u_{1}} \frac{\partial}{\partial^{0} u_{3}} (N_{1} U_{1}^{1} + \dots + N_{n} U_{1}^{n}) + \frac{\partial^{t} u_{2}}{\partial^{0} u_{3}} \frac{\partial}{\partial^{0} u_{3}} (N_{1} U_{2}^{1} + \dots + N_{n} U_{2}^{n}) + \frac{\partial^{t} u_{3}}{\partial^{0} u_{3}} \frac{\partial}{\partial^{0} u_{3}} (N_{1} U_{3}^{1} + \dots + N_{n} U_{3}^{n})$$

$$=\begin{bmatrix} \frac{\partial^{t}u_{1}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{1}} & \frac{\partial^{t}u_{2}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{1}} & \frac{\partial^{t}u_{2}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{1}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{1}} \\ \frac{\partial^{t}u_{1}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{2}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{2}} \\ \frac{\partial^{t}u_{1}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{2}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{3}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{3}}\frac{\partial N_{1}}{\partial^{0}x_{3}} \\ \frac{\partial^{t}u_{1}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} + \frac{\partial^{t}u_{1}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{1}} & \frac{\partial^{t}u_{2}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} + \frac{\partial^{t}u_{2}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} + \frac{\partial^{t}u_{3}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} + \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{1}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{2}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{2}}\frac{\partial N_{1}}{\partial^{0}x_{3}} & \frac{\partial^{t}u_{3}}{\partial^{0}x_{3}}\frac{\partial N_{1}}{\partial^{0}$$

$$\frac{\partial^{t} u_{1}}{\partial^{0} x_{1}} \frac{\partial N_{n}}{\partial^{0} x_{1}} \qquad \frac{\partial^{t} u_{2}}{\partial^{0} x_{1}} \frac{\partial N_{n}}{\partial^{0} x_{1}} \qquad \frac{\partial^{t} u_{3}}{\partial^{0} x_{2}} \frac{\partial N_{n}}{\partial^{0} x_{2}} \qquad \frac{\partial^{t} u_{3}}{\partial^{0} x_{2}} \frac{\partial N_{n}}{\partial^{0} x_{3}} \qquad \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \qquad \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \qquad \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \qquad \frac{\partial^{t} u_{3}}{\partial^{0} x_{3}} \frac{\partial^{$$

 $= \begin{bmatrix} {}^t_0 B_{L1} \end{bmatrix} \{ U \}$

[2] Second term of the left-hand side

$$\int_{{}^{0}V} {}^{t}_{0}S_{ij} \, \delta_{0} \eta_{ij} \, d^{0}V = \int_{{}^{0}V} {}^{t}_{0}S_{ij} \left(\{\delta U\}^{T} \left[{}_{0}E_{ij} \right] \{U\} \right) d^{0}V = \{\delta U\}^{T} \int_{{}^{0}V} {}^{t}_{0}S_{ij} \left[{}_{0}E_{ij} \right] d^{0}V \{U\} = \{\delta U\}^{T} \left[{}_{0}^{t}K_{NL} \right] \{U\} d^{0}V = \{U\}^{T} \left[{}_{0}^{t}K_{NL} \right] \{U\}$$

In this case

$${}_{0}\eta_{ij} = \frac{1}{2} \frac{\partial u_{k}}{\partial {}^{0}x_{i}} \frac{\partial u_{k}}{\partial {}^{0}x_{j}} = \frac{1}{2} \frac{\partial \mathbf{u}}{\partial {}^{0}x_{i}} \cdot \frac{\partial \mathbf{u}}{\partial {}^{0}x_{j}}$$

$$\frac{\partial \mathbf{u}}{\partial {^{0}x_{i}}} = \frac{\partial}{\partial {^{0}x_{i}}} \begin{Bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{Bmatrix} = \frac{\partial}{\partial {^{0}x_{i}}} \begin{Bmatrix} N_{1}U_{1}^{1} + N_{2}U_{1}^{2} + \cdots + N_{n}U_{1}^{n} \\ N_{1}U_{2}^{1} + N_{2}U_{2}^{2} + \cdots + N_{n}U_{2}^{n} \\ N_{1}U_{3}^{1} + N_{2}U_{3}^{2} + \cdots + N_{n}U_{3}^{n} \end{Bmatrix}$$

$$= [A_i]\{U\}$$

If it is assumed that

$${}_{0}\eta_{ij} = \frac{1}{2}([A_{i}]\{U\})^{T}([A_{j}]\{U\}) = \frac{1}{2}\{U\}^{T}[A_{i}]^{T}[A_{j}]\{U\}$$

$$\delta_{0}\eta_{ij} = \frac{1}{2}(\{\delta U\}^{T}[A_{i}]^{T}[A_{j}]\{U\} + \{U\}^{T}[A_{i}]^{T}[A_{j}]\{\delta U\}) = \frac{1}{2}(\{\delta U\}^{T}[A_{i}]^{T}[A_{j}]\{U\} + \{\delta U\}^{T}[A_{j}]^{T$$

 $[\ 3\]$ The second term of the right-hand side

$$\int_{0_{V}} {}^{t}_{0}S_{ij} \, \delta_{0} e_{ij} \, d^{0}V = \int_{0_{V}} \left\{ \delta_{0} e \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \int_{0_{V}} \left(\left[{}^{t}_{0}B_{L} \right] \left\{ \delta U \right\} \right)^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \int_{0_{V}} \left[{}^{t}_{0}B_{L} \right]^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{ {}^{t}_{0}S \right\} d^{0}V = \left\{ \delta U \right\}^{T} \left\{$$

In this case

$$\{_{0}^{t}S\} = \begin{cases} _{0}^{t}S_{11} \\ _{0}^{t}S_{22} \\ \\ _{0}^{t}S_{33} \\ _{0}^{t}S_{12} \\ \\ _{0}^{t}S_{23} \\ _{0}^{t}S_{31} \end{cases}$$