CPE301 – SPRING 2019

Design Assignment 3A

Student Name: Rocky Yasuaki Gonzalez

Student #: 5003229733

Student Email: gonzar14@unlv.nevada.edu

Primary Github address: https://github.com/rockyg1995/ihswppdar.git

Directory: C:\Users\rocky\Documents\CpE 301+L - Embedded Systems Design\CpE

301\Repository\DesignAssignments\DA3A

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmega328PB Xplained Mini Micro USB Cable (Power Supply)

Block Diagram N/A (Everything done through Atmega328PB Xplained Mini)

Figure 1 – Flow Chart for Coding Algorithm

2. INITIAL/DEVELOPED CODE OF TASK

```
* DA3A.c
 * Created: 3/25/2019 12:05:50 AM
 * Author: rocky
#define F CPU 16000000UL // Frequency of Xplained Mini (16MHz)
#include <avr/io.h>
                       // Standard AVR Library
                       // AVR library containing printf functions
#include <stdio.h>
#include <avr/interrupt.h> // AVR library containing interrupt functions
#include <util/delay.h> // AVR library containing _delay_ms() function
#define BAUDRATE 9600
                                    // Baudrate in Bits per second (bps)
                                                     // Baudrate Prescaler UBRR0
#define BAUD_PRESCALLER ((F_CPU / (BAUDRATE * 16UL)) - 1)
#define MAX_1s 15624
                                    // 1s delay: OCR1A = (16MHz*1000ms/prescaler) -1
//Declaration of our functions
void Timer1_init(void);
                                    // Function to initialize Timer1
void USART_init(void);
                                    // Function to initialize USART
```

```
void USART_putstring(char* StringPtr); // Function to break string into chars and send
char String[] = "DA3A";
                        // 'String[]' is an array treated as a string when between " "
char outs[20];
                         // 'outs[]' to store integer/float values into array of chars
                        // 't[]' use
char t[10];
int main(void) {
      TIMSK1 |= (1 << OCIE1A); // Set Interrupt on Compare Match sei(); // Enable Global Interrupts
                                // Enable Global Interrupts
// Call the Timer1 initialization code
// Call the USART initialization code
      Timer1_init();
      USART_init();
            while (1) {
                   USART_putstring(String); // Pass 'String' to send serial of chars
                   USART_send(' ');
                                            // Puts blank space into terminal monitor
                   snprintf(outs, sizeof(outs), "%3d", rand_int); // Stores integer
                                            // 'rand_int' into the string 'outs'
                   USART_putstring(outs);  // Pass 'outs' to to send serial of chars
USART_send(' ');  // Puts blank space into terminal monitor
                   dtostrf(rand_float, 3, 5, t);
                                                 // Store float readable to
                                                  // 'snprintf'
                   // 'rand_float') into the string 'outs'
USART_putstring(outs); // Pass 'outs' to send serial of chars
USART_send('\n'); // Puts new line into terminal monitor
                   USART_send('\n');
            }
      }
      return 0;
}
void Timer1_init(void) {
    OCR1A = MAX_1s;
    // Function to Initialize Timer1 properties
    // Let the OCR1A be the Max Value used for 1s delay
      TCCR1A = (0<<COM1A1)|(0<<COM1A0); // Normal Operation, Disconnected OC1A COM1A1:0
      TCCR1A = (0<<COM1B1)|(0<<COM1B0); // Normal Operation, Disconnected OC1B COM1B1:0
      }
ISR(TIMER1_COMPA_vect) {      // Function to Truncate Timer1 to delay properly for 1 second
      TCNT1 = 0;
                        // Restart Timer1 from the Beginning
                        // Resume code from where interrupt left off
      return;
}
UBRRØH = (uint8_t)(BAUD_PRESCALLER >> 8); // Store Upper Baudrate into UBRRØH
      UBRRØL = (uint8_t)(BAUD_PRESCALLER);  // Store Lower Baudrate into UBRRØL
UCSRØB = (1 << RXENØ) | (1 << TXENØ);  // Enable Receiver and Enable Transmitter</pre>
      UCSROC = (3 << UCSZOO);
                                           // Set UCSZ02:1 as 8-bit character data
}
```

```
while (!(UCSR0A & (1 << RXC0))); // Keep Checking until RXC0 is 'High' to break</pre>
                                          // Return received serial into unsigned char
       return UDR0;
}
void USART_send(unsigned char data) {
                                          // Function to transmit ASCII value into UDR0
       while (!(UCSR0A & (1 << UDRE0))); // Check until UDRE0 data register 'High'</pre>
                                          // Store unsigned char serial data into UDR0
       UDR0 = data;
}
void USART_putstring(char* StringPtr) {
                                         // Function to break string into chars, and send
       while (*StringPtr != 0x00) {
                                          // Keep Looping until String Completed (null)
              USART send(*StringPtr);
                                          // Send char value pointed by the string pointer
              StringPtr++;
                                          // Increment pointer to next char array location
       }
}
```

3. SCHEMATICS

N/A (Everything done through Atmega328PB Xplained Mini)

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Since the Atmega328P/PB Xplained Mini have a built in AVR RX/TX module, we can send our serial data into a terminal which is able to display the string of chars, a random integer, and arbitrarily chosen float as shown in *Figure 3*:

Figure 2 – Output Terminal of Serial Data

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Figure 3 – Xplained Mini only for Serial Communication

6. VIDEO LINKS OF EACH DEMO

N/A (Not required for assignment)

7. GITHUB LINK OF THIS DA

https://github.com/rockyg1995/ihswppdar/tree/master/DesignAssignments/DA3A

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Rocky Gonzalez