PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-221671

(43)Date of publication of application: 11.08.2000

(51)Int.CI.

G03F 7/004 H01J 11/00

H01J 11/02

(21)Application number: 11-021318

(71)Applicant: TAIYO INK MFG LTD

(22)Date of filing:

29.01.1999

(72)Inventor: FUKUSHIMA KAZUNOBU

TOKAI HIROYUKI TAKAGI KOICHI

FURUHASHI TADASHI

(54) PHOTOSETTING ELECTRICALLY CONDUCTIVE COMPOSITION AND PLASMA DISPLAY PANEL WITH ELECTRODE FORMED USING SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a photosetting electrically conductive composition capable of simultaneously satisfying sufficient electric conductivity and blackness after firing without impairing superior adhesion to a substrate, superior resolution and suitability to firing in drying, exposing, developing and firing steps and to obtain a plasma display panel(PDP) with a lower layer (black layer) electrode circuit formed using the composition.

SOLUTION: The photosetting electrically conductive composition contains (A) black electrically conductive fine particles containing at least one selected from ruthenium oxide, ruthenium compounds, copper—chromium black multiple oxide and copper—iron black multiple oxide and having >20 m2/g specific surface area, (B) an organic binder, (C) a photopolymerizable monomer, (D) a photopolymerization initiator and, optionally, (E) inorganic fine particles. The composition is applied on the transparent electrode of a front glass substrate, exposed according to a prescribed pattern, developed and fired to form the lower layer (black layer) electrode circuit of PDP.

LEGAL STATUS

[Date of request for examination]

25.01.2002

[Date of sending the examiner's decision of

04.03.2003

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

3479463

[Date of registration]

03.10.2003

[Number of appeal against examiner's decision

2003-05430

of rejection]

[Date of requesting appeal against examiner's

03.04.2003

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-221671 (P2000-221671A)

(43)公開日 平成12年8月11日(2000.8.11)

(51) Int.Cl.'		識別記号	F I		テーマコート*(参考)
G03F H01J	.,	501	G03F 7/004	501	2H025
			H01J 11/00	K	5 C O 4 O
		*	11/02	В	

審査請求 未請求 請求項の数9 OL (全 17 頁)

(21)出願番号	特願平11-21318	(71) 出頭人	591021305
			太陽インキ製造株式会社
(22)出顧日	平成11年1月29日(1999.1.29)		東京都練馬区羽沢二丁目7番1号
•		(72)発明者	福島 和信
	•		埼玉県比企郡嵐山町大字大蔵388番地 太
			陽インキ製造株式会社嵐山事業所内
		(72)発明者	東海 裕之
			埼玉県比企郡嵐山町大字大蔵388番地 太
	·		陽インキ製造株式会社嵐山事業所内
		(74)代理人	
		,	弁理士 ▲吉▼田 繁宴
			島数百に始く

(54) 【発明の名称】 光硬化型導電性組成物及びそれを用いて電極形成したプラズマディスプレイパネル (57) 【要約】

【課題】 乾燥、露光、現像、焼成の各工程において基板に対する優れた密着性、解像製、焼成性を損なうことなく、焼成後において充分な導電性と黒さを同時に満足し得る、光硬化型導電性組成物及びそれを用いて下層(黒層)電極回路を形成したプラズマディスプレイパネル(PDP)を提供する。

【解決手段】 組成物の基本的な第一の態様は、(A) ルテニウム酸化物、ルテニウム化合物、銅ークロム系黒色複合酸化物及び銅一鉄系黒色複合酸化物の少なくとも 1種類を含む比表面積が20m²/gより大きな黒色導電性微粒子、(B) 有機パインダー、(C) 光重合性モノマー、及び(D) 光重合開始剤を含有し、第二の態様は、上記各成分に加えて、(E) 無機微粒子を含有している。このような光硬化型導電性組成物を前面ガラス基板の透明電極上に塗布し、所定のパターン通りに露光し、現像、焼成することにより、PDPの下層(黒層)電極回路が形成される。

【特許請求の範囲】

【請求項1】 (A) 比表面積が20m²/gより大きな黒色導電性微粒子、(B) 有機パインダー、(C) 光重合性モノマー、及び(D) 光重合開始剤を含有することを特徴とする光硬化型導電性組成物。

【請求項2】 前記黒色導電性微粒子(A)が、ルテニウム酸化物、ルテニウム化合物、銅ークロム系黒色複合酸化物及び銅ー鉄系黒色複合酸化物のいずれか少なくとも1種類であることを特徴とする請求項1に記載の組成物。

【請求項3】 さらに (E) 無機微粒子を含有することを特徴とする請求項1又は2に記載の組成物。

【請求項4】 前記黒色導電性微粒子(A)の配合量が、有機パインダー(B)100重量部当り0.1~100重量部であることを特徴とする請求項1乃至3のいずれか一項に記載の組成物。

【請求項5】 前記有機バインダー(B)は、カルボキシル基を有し、重量平均分子量が1,000~100,000、酸価が20~150mgKOH/gの樹脂であることを特徴とする請求項1乃至4のいずれか一項に記載の組成物。

【請求項6】 前記有機パインダー(B)は、カルボキシル基とエチレン性不飽和二重結合を併せ持ち、重量平均分子量が1,000~100,000、酸価が20~150mgKOH/g、二重結合当量が350~2,000の感光性樹脂であることを特徴とする請求項1乃至4のいずれか一項に記載の組成物。

【請求項7】 前記無機微粒子(E)は、軟化点400~600℃のガラス粉末、導電性粉末、耐熱性黒色顔料、シリカ粉末のうちから選ばれるいずれか少なくとも1種又は2種以上を混合したものであることを特徴とする請求項1万至6のいずれか一項に記載の組成物。

【請求項8】 フィルム状に成形されていることを特徴とする請求項1万至7のいずれか一項に記載の組成物。

【請求項9】 前記請求項1万至8のいずれか一項に記載の光硬化型導電性組成物の焼成物から電極回路が形成されてなるプラズマディスプレイパネル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、プラズマディスプレイパネル(以下、PDPと略称する)の前面基板に精細な電極回路を形成するのに有用なアルカリ現像型でかつ光硬化型の導電性組成物及びそれを用いて電極、特にパス電極の下層(黒層)を形成したPDPに関するものである。

[0002]

【従来の技術】PDPはプラズマ放電による発光を利用して映像や情報の表示を行う平面ディスプレイであり、パネル構造、駆動方法によってDC型とAC型に分類される。PDPによるカラー表示の原理は、リブ(隔壁)

によって離問された前面ガラス基板と背面ガラス基板に形成された対向する両電極間のセル空間(放電空間)内でプラズマ放電を生じさせ、各セル空間内に封入されているHe、Xe等のガスの放電により発生する紫外線で背面ガラス基板内面に形成された蛍光体を励起し、3原色の可視光を発生させるものである。各セル空間は、DC型PDPにおいては格子状のリブにより区画され、一方、AC型PDPにおいては基板面に平行に列設されたリブにより区画されるが、いずれにおいてもセル空間の区画は、リブによりなされている。以下、添付図面を参照しながら簡単に説明する。

【0003】図1は、フルカラー表示の3電極構造の面 放電方式PDPの構造例を部分的に示している。前面ガ ラス基板1の下面には、放電のための透明電極3a又は 3 b と該透明電極のライン抵抗を下げるためのバス電極 4 a 又は 4 b とから成る一対の表示電極 2 a 、 2 b が所 定のピッチで多数列設されている。これらの表示電極2 a、2bの上には、電荷を蓄積するための透明誘電体層 5 (低融点ガラス) が印刷、焼成によって形成され、そ の上に保護層 (MgO) 6が蒸着されている。保護層 6 は、表示電極の保護、放電状態の維持等の役割を有して いる。一方、背面ガラス基板11の上には、放電空間を 区画するストライプ状のリブ (隔壁) 12と各放電空間 内に配されたアドレス電極 (データ電極) 13が所定の ピッチで多数列設されている。また、各放電空間の内面 には、赤 (14a)、青 (14b)、緑 (14c) の3 色の蛍光体膜が規則的に配されている。フルカラー表示 においては、前記のように赤、青、緑の3原色の蛍光体 膜14a、14b、14cで1つの画素が構成される。 上記PDPでは、一対の表示電極2aと2bの間に交流 のパルス電圧を印加し、同一基板上の電極間で放電させ るので、「面放電方式」と呼ばれている。また、放電に より発生した紫外線は背面基板11の蛍光体膜14.a、 146、14cを励起し、発生した可視光を前面基板1 の透明電極3°a、3bを透して見る構造となっている。 (反射型)。

【0004】前記パス電極4a、4bの形成は、従来、Cr-Cu-Crの3層を蒸着やスパッタリングにより成膜した後、フォトリソグラフィー法でパターニングが行われてきた。しかし、工程数が多く高コストとなるため、最近では、銀ペースト等の導電性ペーストをスクリーン印刷した後、焼成する方法、あるいは150μm以下の線幅とするためには、感光性導電性ペーストを逸布し、パターンマスクを通して露光した後、現像し、次いで焼成する方法が行われている。

[0005]

【発明が解決しようとする課題】このようにしてバス電極4a、4bが形成されるPDPの前面基板においては、近年、画面のコントラストを向上させるために、バス電極を形成する際に、表示側となる下層(透明電極3

a、3 bと接触する層)に導電性の劣る黒色導電性ペーストを印刷し、その上に導電性の良い銀ペーストの白層を印刷して、白黒二層構造の電極を形成することが行われている。この場合、黒色導電性ペーストとしては、銀粉末と耐熱性黒色顔料を配合した樹脂組成物が用いられている。そのため、かかる黒色導電性ペーストでは、導電性と黒さのバランスをとりながら銀粉末と黒色顔料の配合量を調整する必要があり、導電性と黒さを同時に満足し得る電極を得ることができないというのが実情であった。つまり、導電性を確保するために銀粉を多く配合すると、銀の色調のために鮮明な黒色を得ることができない。一方、鮮明な黒色を得ることができない。

【0006】そこで本発明は、このような従来技術が抱える課題を解決するためになされたものであり、その主たる目的は、導電性組成物が乾燥、露光、現像、焼成の各工程において基板に対する優れた密着性、解像性、焼成性を損なうことなく、焼成後において充分な導電性と黒さを同時に満足し得る、光硬化型の導電性組成物を提供することにある。本発明の他の目的は、このような光硬化型の導電性組成物から高精細の電極回路、特に前面基板に形成される白黒2層のバス電極において充分な層間導電性(透明電極とバス電極白層との層間導通)と黒さを同時に満足し得る下層(黒層)電極回路を形成したPDPを提供することにある。

[0007]

【課題を解決するための手段】前記目的を達成するため に、本発明によれば光硬化型導電性組成物が提供され、 その基本的な第一の態様は、(A)比表面積が20m² /gより大きなの黒色導電性微粒子、 (B) 有機パイン ダー、(C) 光重合性モノマー、及び(D) 光重合開始 剤を含有することを特徴としており、また第二の態様は、上記各成分に加えて、 (E) 無機緻粒子を含有する ... ことを特徴としている。上記黒色導電性微粒子 (A) と しては、ルテニウム酸化物、ルテニウム化合物、銅ーク ロム系黒色複合酸化物及び銅一鉄系黒色複合酸化物のい ずれか少なくとも1種類が好適に用いられる。このよう な本発明の光硬化型導電性組成物は、ペースト状形態で あってもよく、また予めフィルム状に製膜したドライフ イルムの形態であってもよい。さらに本発明によれば、 このような光硬化型導電性組成物の焼成物から前面基板 の電極回路が形成されてなるPDPが提供される。

[0008]

【発明の実施の形態】本発明者らは、上記目的の実現に向け鋭意研究した結果、光硬化型導電性組成物に、導電性微粒子(A)として比表面積が20m²/gより大きな黒色導電性微粒子、とりわけルテニウム酸化物、ルテニウム化合物及び銅ークロム系黒色複合酸化物及び/又は銅ー鉄系黒色複合酸化物のいずれか少なくとも1種類を含むものからなる比表面積が20m²/gより大きな

黒色導電性微粒子を添加すると、形成される黒色導電性皮膜が緻密なものとなり、薄膜でも充分な黒さを呈することができ、また緻密であるが故に、薄膜化しても導電性に優れ、その結果、乾燥、露光、現像、焼成の各工程において基板に対する優れた密着性、解像性、焼成性を損なうことなく、焼成後において充分な層間導電性及び黒さを同時に満足し得ることを見出した。従って、だのような光硬化型導電性組成物をPDP前面基板に形成で、ルる黒白二層のバス電極の黒層の材料として用いれば、バス電極は、黒層がITOやネサなどの透明電極と白層の間に挟持されたサンドイッチ構造を有するため、透明電極と白層との層間導通、並びに画面側から見たとの異さを共に充分満足させることができるようになる。

【0009】このように、本発明の光硬化型導電性組成 物においては、黒色導電性微粒子として比表面積が20 m^2/g より大きく、好ましくは $100m^2/g$ 以下の微 粒子を用いる。この理由は、比表面積が20m²/gよ り大きければ、少量の添加でも、密着性等を損なうこと なく緻密な焼成皮膜を形成でき、充分な層間導電性及び 黒さを同時に満足し得る下層(黒層)電極用の導電性組 成物を提供することができるからである。一方、黒色導 電性微粒子の比表面積が20m²/gよりも小さくなれ ばなる程焼成皮膜の緻密性が悪くなり、後述する実施例 及び比較例から明らかなように、形成される下層電極膜 の黒色度が劣化し、また抵抗値も大きくなり易い。黒色 度を上げるために黒色導電性微粒子の配合量を増大すれ ば、光の透過を妨げ、充分な光硬化性が得られないとい う問題が発生する。従って、黒色導電性微粒子の比表面 積は20m2/gよりも大きくする必要がある。

【0010】黒色導電性微粒子は、PDP用の電極作成 工程においては500~600℃という高温焼成を伴う ため、高温での色調や導電性の安定性を有するものであ - る必要があり、例えばルテニウム酸化物やルテニウム化 ... 合物、銅ークロム系黒色複合酸化物、銅ー鉄系黒色複合 酸化物等が好適に用いられる。特に、ルテニウム酸化物 やルテニウム化合物は、高温での色調や導電性の安定性 に極めて優れることから最適である。このルテニウム酸 化物又はルテニウム化合物は、いずれも希少金属である ルテニウムを含有しているため高価であり、これを多量 に用いるとコスト高となり好ましくない。この点、本発 明に従って、比表面積が20m²/gより大きな導電性 微粒子を用いれば、少量の添加で所望の特性を得ること ができる。即ち、本発明の光硬化型導電性組成物によれ ば、コスト面で問題はなく、光の透過を妨げる導電性粒 子が少ないことから光の透過性においても有利である。 【0011】上記ルテニウム酸化物としてはRuO。が 好ましい。ルテニウム化合物としては、Ru⁴⁺、Ir⁴⁺ 又はそれらの混合物 (M²) の多成分化合物である下記 一般式で表わされるパイロクロア酸化物の一種であるル テニウム多酸化物が挙げられる:

 $(M_x B i_{2-x})$ $(M^1_y M^2_{2-y})$ O_{7-z} 式中、Mはイットリウム、タリウム、インジウム、カドミウム、鉛、銅及び希土類金属よりなる群から選ばれ、 M^1 は白金、チタン、クロム、ロジウム及びアンチモンよりなる群から選ばれ、 M^2 はルテニウム、イリジウム又はその混合物であり、xは0~2であるが、1 価の銅に対してはxは ≤ 1 であり、yは0~0.5であるが、 M^1 がロジウムであるか、又は白金、チタン、クロム、ロジウム及びアンチモンのうちから複数選ばれる場合にはyは0~1であり、そしてzは0~1であるが、 M^3 2 価の鉛又はカドミウムの場合にはこれは少なくとも約x/2に等しい値である。これらルテニウム系パイロクロア酸化物は、米国特許第3583931号明細書に詳細に記載されている。

【0012】好ましいルテニウム系パイロクロア酸化物は、ルテン酸ピスマスBi₂Ru₂O₇及びルテン酸鉛Pb₂Ru₂O₆である。これらは、容易に精製された状態で得られ、ガラスパインダーにより悪影響を受けず、比較的小さいTCR(抵抗の温度係数)を有しており、空気中で約1000℃まで加熱した場合でも安定であり、そして還元性雰囲気中でも比較的安定である。より好ましいものはルテン酸鉛Pb₂Ru₂O₆である。その他、Pb_{1.5}Bi_{0.5}Ru₂O_{6.25}、CdBiRu₂O_{6.5}、NbBiRu₂O₇、BiInRu₂O₇、BigIrRuO₇、GdBiRu₂O₇、BaRuO₃、Ba₂RuO₄、SrRuO₃、CaRuO₃、Co₂RuO₄、LaRuO₃、LiRuO₃等を用いることもできる。上記のようなルテニウム酸化物及びルテニウム化合物は、単独で又は2種以上を組み合わせて用いることができる。

【0013】銅ークロム系黒色複合酸化物としては、CuO-Cr $_2$ O $_3$ やCuO-Cr $_2$ O $_3$ -Mn $_2$ O $_3$ などがあり、銅ー鉄系黒色複合酸化物としては、CuO-Fe $_2$ O $_3$ やCuO-Fe $_2$ O $_3$ -Mn $_2$ O $_3$ 、CuO-Fe $_2$ O $_3$ -Mn $_2$ O $_3$ -Al $_2$ O $_3$ などがある。

【0014】このような黒色導電性微粒子(A)の形状は、球状、フレーク状、デンドライト状など種々のものを用いることができるが、光特性、分散性を考慮すると、球状のものを用いることが好ましい。黒色導電性微粒子(A)の配合量は、有機パインダー(B)100重量部当り0.1~100重量部、好ましくは5~50重量部の範囲が適当である。この理由は、黒色導電性微粒子の配合量が上記範囲よりも少ないと、焼成後に充分な導電性や黒さが得られず、一方、上記範囲を超える配合量では、光の透過性が劣化する他に、コスト高となり好ましくないからである。

【0015】前記、有機パインダー(B)としては、カルボキシル基を有する樹脂、具体的にはそれ自体がエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂及びエチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のいずれも使用可能である。好適に使

用できる樹脂(オリゴマー及びポリマーのいずれでもよい)としては、以下のようなものが挙げられる。

- (1) (a) 不飽和カルボン酸と (b) 不飽和二重結合 を有する化合物を共重合させることによって得られるカ ルボキシル基含有樹脂
- (2) (a) 不飽和カルボン酸と (b) 不飽和二重結合を有する化合物の共重合体にエチレン性不飽和基をペンダントとして付加させることによって得られるカルボキシル基合有感光性樹脂
- (3) (c) グリシジル基と不飽和二重結合を有する化合物と(b) 不飽和二重結合を有する化合物の共重合体に、(a) 不飽和カルボン酸を反応させ、生成した2級の水酸基に(d) 多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂
- (4) (e) 不飽和二重結合を有する酸無水物と(b) 不飽和二重結合を有する化合物の共重合体に、(f) 水酸基と不飽和二重結合を有する化合物を反応させて得られるカルボキシル基含有感光性樹脂
- (5) (g) エポキシ化合物と(h) 不飽和モノカルボン酸を反応させ、生成した2級の水酸基に(d) 多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂
- (6) (b) 不飽和二重結合を有する化合物とグリシジル (メタ) アクリレートの共重合体のグリシジル基に、
- (i) 1分子中に1つのカルボキシル基を有し、エチレン性不飽和結合を持たない有機酸を反応させ、生成した 2級の水酸基に(d)多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂
- (7) (j) 水酸基含有ポリマーに (d) 多塩基酸無水 物を反応させて得られるカルボキシル基含有樹脂
- (8) (j) 水酸基含有ポリマーに(d) 多塩基酸無水 物を反応させて得られるカルポキシル基含有樹脂に、
- (c) グリシジル基と不飽和二重結合を有する化合物を さらに反応させて得られるカルボキシル基含有感光性樹 脂

上記に列举したもののなかでも、それ自体がエチレン性 不飽和二重結合を有するカルボキシル基含有感光性樹脂 (2)~(5)及び(8)が好ましい。

【0016】前配(1)のカルボキシル基含有樹脂は、不飽和カルボン酸(a)と不飽和二重結合を有する化合物(b)の共重合体であり、前配(2)のカルボキシル基含有感光性樹脂は、不飽和カルボン酸(a)と不飽和二重結合を有する化合物(b)の共重合体のカルボキシル基の一部に、充分な光硬化深度が得られる程度にまで光硬化性を向上させる割合で、例えばグリシジル(メタ)アクリレートを反応させ、該グリシジル(メタ)アクリレートの不飽和二重結合を側鎖に導入した樹脂である。上記共重合体の一方のモノマー成分である不飽和カルボン酸(a)の有するカルボキシル基の一部は未反応のまま残存するため、得られるカルボキシル基含有感光

性樹脂は、アルカリ水溶液に対して可溶性である。そのため、このような樹脂を含有する導電性組成物から形成した皮膜は、選択的露光後にアルカリ水溶液により安定した現像が可能となる。

【0017】前記不飽和カルボン酸(a)の具体的な例としては、アクリル酸、メタアクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ピニル酢酸、又はこれらの酸無水物、さらには、無水マレイン酸、無水イタコン酸、無水ピロメリット酸などの酸無水物と2ーヒドロキシエチル(メタ)アクリレート、2ーヒドロキシアルキル(メタ)アクリレート類などの水酸基を有する不飽和化合物との反応生成物等が挙げられ、これらを単独で入り、アクリル酸及び/又はメタアクリル酸という)が好ましい。また、本明細書中で(メタ)アクリレートとメタアクリレートを総称する用語である。

【0018】前記不飽和二重結合を有する化合物(b)の具体例としては、スチレン、クロロスチレン、αーメチルスチレン;置換基としてメチル、エチル、nープロピル、イソプロピル、nープチル、イソプチル、tープチル、アミル、2ーエチルへキシル、オクチアシル、シクロへキシル、イソボルニル、メトキシエチル、プトキシエチル、2ーヒドロキシブロピル、3ークロロー2ーヒドロキシブロピル等を有する(メタ)アクリレート;ポリエチレングリコールのモノ(メタ)アクリレート又はポリプロピレングリコール

のモノ (メタ) アクリレート; 酢酸ビニル、酪酸ビニル、安息香酸ビニル; アクリルアミド、メタクリルアミド、Nーヒドロキシメチルアクリルアミド、Nーヒドロキシメチルアクリルアミド、Nーメトキシメチルアクリルアミド、Nーエトキシメチルアクリルアミド、Nープトキシメチルアクリルアミド、アクリロニトリル、ビニルエーテル類、もしくはイソプチレン等が挙げられ、これらを単独で又は2種以上を組み合わせて使用することができる。これらの化合物の中でも、好ましくは、スチレン、αーメチルスチレン、低級アルキル (メタ) アクリレート、イソプチレンが用いられ、特に樹脂の熱分解性の点からはメチルメタアクリレートが好ましい。

【0019】エチレン性不飽和基を有するペンダントと

しては、ビニル基、アリル基、アクリロイル基、メタク リロイル基などがある。このようなペンダントを前記共 **重合体に付加させる方法は、共重合体のカルボキシル基** に、グリシジル基を有するエチレン性不飽和化合物や (メタ) アクリル酸クロライドを付加反応させる方法が 一般的である。ここでいうグリシジル基を有するエチレ ン性不飽和化合物や(メタ)アクリル酸クロライドとし ては、グリシジル(メタ)アクリレート、アリルグリシ ジルエーテル、αーメチルグリシジル (メタ) アクリレ ート、αーエチルグリシジル (メタ) アクリレート、ク ロトニルグリシジルエーテル、クロトン酸グリシジルエ ーテル、イソクロトン酸グリシジルエーテル、 (メタ) アクリル酸クロライド、アリルクロライド、メタアリル クロライドや、下記式 (1) ~ (4) で示される化合物 などが挙げられる。これらの中でもグリシジル (メタ) アクリレートが好ましい。

【化1】

$$CH_{z} = \begin{matrix} R^{1} & R^{2} & R^{2} \\ C - C - C - C - R^{2} - C & CH_{z} & \cdots & (1) \\ R & 0 & 0 & CH_{z} \end{matrix}$$

$$0 \longrightarrow_{\mathbb{R}^4}^{\mathbb{R}^4 - 0 - \mathbb{C} - \mathbb{C} = \mathbb{C}H_2} \cdots (2)$$

$$0 \longrightarrow 0 - C - CH = CH^{2} \cdots (3)$$

$$0 \longrightarrow 0 - CH_{1} - CH_{2} - O - CH = CH_{2} \cdots (4)$$

(式中、 R^1 、 R^2 及び R^5 はそれぞれ水素原子又はメチル基を表わし、 R^4 は炭素数 $1\sim 1$ 2の脂肪族炭化水素を表わし、 R^4 は $-CH_2$ -又は $-CH_2$ -0+C-(CH_2) $_5$ + を表わす。)

【0020】前記(3)のカルボキシル基含有感光性樹脂は、(c)分子中にグリシジル基と不飽和二重結合を有する化合物と前記(b)不飽和二重結合を有する化合物の共重合体のエボキシ基に、充分な光硬化深度が得られる程度にまで光硬化性を向上させる割合で、前記

(a) 不飽和カルボン酸のカルボキシル基を反応させ、 該不飽和カルボン酸の不飽和二重結合を側鎖に導入する と共に、上記付加反応で生成した2級の水酸基に(d) 多塩基酸無水物をエステル化反応させ、側鎖にカルボキ シル基を導入した樹脂である。

【0021】上記分子中にグリシジル基と不飽和二重結合を含有する化合物(c)の具体例としては、グリシジル(メタ)アクリレート、αーメチルグリシジル(メタ)アクリレートや、前記式(1)~(4)で示される化合物などが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。一方、多塩基酸無水物(d)の具体例としては、無水コハク酸、無水マレイン酸、無水アジピン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水イタコン酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸等が挙げられ、これらを単独で又は2種以上を組み合わせて使用することができる。

【0022】前記(4)のカルボキシル基含有感光性樹

脂は、(e)不飽和二重結合を有する酸無水物と前記 (b)不飽和二重結合を有する化合物の共重合体の酸無

水物基の一部に、充分な光硬化深度が得られる程度にまで光硬化性を向上させる割合で、(f) 水酸基と不飽和二重結合を有する化合物の水酸基を反応させてハーフエステルとし、該化合物(f) の不飽和二重結合を側鎖に

導入した樹脂である。 ___

【0023】前記不飽和二重結合を有する酸無水物 (e) の具体的な例としては、無水マレイン酸、無水イタコン酸、さらには無水ピロメリット酸と2ーヒドロキシエチル (メタ) アクリレート、2ーヒドロキシプロピル (メタ) アクリレート等のヒドロキシアルキル (メタ) アクリレート類などの水酸基を有する不飽和化合物との部分反応生成物等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。これらの中でも、ポリマーを安定して合成できる無水マレイン酸が好ましい。

【0024】水酸基と不飽和二重結合を有する化合物 (f) の具体例としては、2-ヒドロキシエチル (メタ) アクリレート、2-ヒドロキシプロピル (メタ) アクリレート等のヒドロキシアルキル (メタ) アクリレート類; (メタ) アクリレートにカプロラクトンを反応させたモノマー、 (メタ) アクリレートにポリカプロラクトンオリゴマーを反応させたマクロモノマー等が挙げら

れ、これらを単独で又は2種以上を組み合わせて使用することができる。前記したようなカルボキシル基合有感光性樹脂(2)~(4)は、光硬化性、焼成性に優れると共に、後述する安定剤の効果を損うことはなく、組成物の保存安定性に寄与する。

【0025】前記(5)のカルボキシル基含有感光性樹脂は、(g)エポキシ化合物のエポキシ基に、充分な光硬化深度が得られる程度にまで光硬化性を向上させる割合で、(h)不飽和モノカルボン酸のカルボキシル基を反応させ、例えばエポキシアクリレートを生成させると共に、上記付加反応で生成した2級の水酸基に前記

(d) 多塩基酸無水物をエステル化反応させ、側鎖にカ ルポキシル基を導入した樹脂である。このようなカルボ キシル基含有感光性樹脂は、光硬化性に優れると共に、 パックボーンポリマーのエポキシアクリレートは疎水性 を示す。従って、該樹脂を含有する光硬化型導電性組成 物を用いた場合、エポキシアクリレートの疎水性が有利 に利用され、光硬化しにくいバターン深部の耐現像性が 向上する。その結果、現像及び露光工程における条件設 定の余裕度が広がり、量産時の歩留りを向上できると共 に、焼成後のパターンエッジのカール発生を大幅に低減 でき、高アスペクト比、高精細な電極回路を形成でき る。なお、焼成時の熱により解重合し易いアクリル系共 重合樹脂を上記カルボキシル基含有感光性樹脂と混合 し、それによって導電性組成物の焼結温度を下げ、ま た、使用する全樹脂中の二重結合濃度を調整することも できる。

【0026】前記エポキシ化合物(g)としては、全ゆるエポキシ樹脂が使用可能であるが、代表的な例としては、ピスフェノールA型、水添ピスフェノールA型、ピスフェノールF型、ピスフェノールS型、フェノールノボラック型、クレゾールノボラック型、ピスフェノール型、ピオンレノール型、Nーグリシジル型等の公知慣用のエポキシ化合物や、市販品として好適なものとしてはダイセル社製EHP-3150等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。

【0027】不飽和モノカルボン酸(h)の具体例としては、アクリル酸、メタアクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、ケイ皮酸、αーシアノケイ皮酸、βースチリルアクリル酸、βーフルフリルアクリル酸等が挙げられ、これらを単独で又は2種以上を組み合わせて使用することができる。

【0028】前記エポキシ化合物(g)と不飽和モノカルボン酸(h)の反応は、エポキシ基の当量数/カルボキシル基の当量数が0.8~1.2、好ましくは0.9~1.05となる割合で行うことが好ましい。エポキシ基の当量数/カルボキシル基の当量数が0.8未満では、不飽和モノカルボン酸が残るため臭気の問題があり、一方、上記当量数が1.2を越えた場合、エポキシ

基が多く残るため、多塩基酸無水物を反応させる段階でゲル化し易くなるので好ましくない。また、生成した2級の水酸基に対する多塩基酸無水物の反応比率は、最終的に得られる樹脂の酸価が好ましくは30~160mg KOH/gの範囲内となるように調整する。一般には、エポキシ化合物と不飽和モノカルボン酸の反応で生成する水酸基1当量に対し、多塩基酸無水物の当量が0.3以上、好ましくは0.5以上である。

【0029】前記 (6) のカルボキシル基含有樹脂は、 前記(b)不飽和二重結合を有し、水酸基や酸性基を持 たないアルキル(メタ)アクリレート、置換もしくは非 置換スチレンなどの化合物とグリシジル (メタ) アクリ レートを主鎖とする共重合体のグリシジル基に、(i) 1分子中に1つのカルボキシル基を有し、エチレン性不 飽和結合を持たない有機酸を反応させ、生成した2級の OH基に前記(d)多塩基酸無水物を付加反応させて得 られる樹脂である。この樹脂におけるカルボキシル基の 導入は、上記共重合体のペンダントのグリシジル基に有 機酸を反応させることによって生成し、かつ主鎖近傍に 位置する2級の水酸基に、多塩基酸無水物を付加反応さ せて行われるものであるため、カルボキシル基は側鎖の 主鎖近傍部位に結合しており、主鎖と側鎖の立体的障害 により塩基性の導電性粒子との接触が制御される。その 結果、導電性粒子と共にこのようなアルカリ可溶性のカ ルポキシル基含有樹脂を含有する組成物は、優れた保存 安定性を示し、保存中に粘度の変化やゲル化を殆ど生ず ることはない。

【0030】前記1分子中に1つのカルボキシル基を有し、エチレン性不飽和二重結合を持たない有機酸(i)としては、酢酸、プロピオン酸、n-酪酸、イソー酪酸、n-ジメチル酪酸、エチル酪酸、ヘキサン酸、2ーメチルペンタン酸、2ーメチルペンタン酸、ラウリン酸、ステアリン酸、n-ヘブタデカン酸など、炭素数2~17のアルキルカルボン酸、あるいは置換もしくは非置換安息香酸、(R)、(S)-2-フェニルプロピオン酸、(R)-フェニルイソプロピオン酸、2-フェニル酪酸、4-フェニル酪酸等の芳香族基含有アルキルカルボン酸などが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。

【0031】前記(7)のカルボキシル基含有樹脂は、

- (j) 水酸基含有ポリマーに酸性度の比較的弱い前記
- (d) 多塩基酸無水物を反応させてカルボキシル基を導入した樹脂である。このようなカルボキシル基含有樹脂は、親水性基(カルボキシル基、水酸基)を有するため、基板に対する良好な濡れ性を示し、また高温において容易に熱分解し、これを含有する導電性組成物は乾燥、露光、現像、焼成の各工程において基板に対する安定した密着性や良好な保存安定性を示し、しかも焼成性にも優れている。

光性樹脂は、前記カルボキシル基含有樹脂(7)のカル ボキシル基に、充分な光硬化深度が得られる程度にまで 光硬化性を向上させる割合で、前記(c) グリシジル基 と不飽和二重結合を有する化合物のエポキシ基を反応さ せ、該化合物 (c) の不飽和二重結合を側鎖に導入した 樹脂である。このようなカルボキシル基含有感光性樹脂 は、光硬化性に優れ、多量の導電性粉末と共に配合して 導電性組成物を構成しても、充分な光硬化深度を示す。 また、焼成性に優れると共に、後述する安定剤の効果を 損うことはなく、組成物の保存安定性向上に寄与する。 【0033】前記水酸基含有ポリマー(j)としては、 オレフィン系水酸基含有ポリマー、アクリル系ポリオー ル、ゴム系ポリオール、ポリピニルアセタール、スチレ ンアリルアルコール系樹脂、セルロースなどを用いるこ とができる。オレフィン系水酸基含有ポリマーとして は、ポリエチレン、ポリプロピレン、ポリプタジエン等 を主鎖とし、主鎖又は側鎖に水酸基を有する樹脂を用い ることができ、また、アリルアルコールとエチレン又は

【0032】一方、前記(8)のカルボキシル基含有感

【0034】アクリル系ポリオールの具体例としては、三菱レイヨン(株)製のLR2507、LR2516、LR257、LR989、LR2536、LR532、LR598、LR566、LR286、LR511、LR2528等が挙げられ、ゴム系ポリオールの具体例としては三井石油化学(株)製のユニストールP901、クラレ(株)製のクラプレンLIR-506、TL-20、TH-1TH-21、TH-31、クラポールP-510、クラポールP-15610、クラポールP-5010、等が挙げられ、また、スチレンアリルアルコール樹脂の具体例としてはモンサント(株)製のRJ100、RJ101、アーコケミカル(株)製のSAA100、SAA101等が挙げられる。

ブタジエンの共重合物などを用いることができる。

【0035】ポリピニルアセタールとしては、ポリピニ ルプチラール、ポリピニルアセタール、ポリピニルホル マール等を用いることができ、積水化学工業(株)製の エスレックBMS, エスレックBLS, エスレックBH S、エスレックBLSH、エスレックBMSH等が挙げ よれる

【0036】セルロースとしては、セルロース、セルロースの水酸基の一部をエステル化したアセチルセルロース、ニトロセルロースをはじめ、プロピオン酸、酪酸、リン酸、硫酸、フタル酸等の酸のセルロースエステルが挙げられる。また酸を混合した混合エステルも用いることができる。さらにセルロースエーテルとして、セルロースの水酸基の一部をエーテル化したメチルセルロース、エチルセルロース、ベンジルセルロース、カルボキシメチルセルロース等が挙げられる。

【0037】使用する水酸基含有ポリマー(j) としては、上記以外のいかなるポリマーも使用可能であるが、

水酸基価が50~250 (KOH) mg/gのものが好ましい。なお、信越化学工業 (株) 製のヒドロキシプロ ピルメチルセルロースフタレート、ヒドロキシプロピル メチルセルロースアセテートサクシネート、セルロース アセテートへキサヒドロフタレート、ヒドロキシプロピ ルメチルセルロースアセテートフタレート、ヒドロキシ プロピルメチルセルロースへキサヒドロフタレート等 は、そのままカルボキシル基含有樹脂 (7) として使用 できる。

【0038】前記したようなカルボキシル基含有感光性 樹脂及びカルポキシル基含有樹脂は、単独で又は混合し て用いてもよいが、いずれの場合でもこれらは合計で組 成物全量の10~80重量%の割合で配合することが好 ましい。これらのポリマーの配合量が上記範囲よりも少 な過ぎる場合、形成する皮膜中の上記樹脂の分布が不均 一になり易く、充分な光硬化性及び光硬化深度が得られ 難く、選択的欧光、現像によるパターニングが困難とな る。一方、上記範囲よりも多過ぎると、焼成時のパター ンのよれや線幅収縮を生じ易くなるので好ましくない。 【0039】また、上記カルボキシル基含有感光性樹脂 及びカルボキシル基含有樹脂としては、それぞれ重量平 均分子量1,000~100,000、好ましくは5, 000~50,000、及び酸価20~150mgKO H/g、好ましくは40~120mgKOH/gを有 し、かつ、カルボキシル基含有感光性樹脂の場合、その 二重結合当量が350~2,000、好ましくは400 ~1.500のものを好適に用いることができる。上記 樹脂の分子量が1,000より低い場合、現像時の導電・ 性皮膜の密着性に悪影響を与え、一方、100,000 よりも高い場合、現像不良を生じ易いので好ましくな い。また、酸価が20mgKOH/gより低い場合、ア ルカリ水溶液に対する溶解性が不充分で現像不良を生じ 易く、一方、1.50mgKOH/gより高い場合、現像 時に導電性皮膜の密着性の劣化や光硬化部(露光部)の 溶解が生じるので好ましくない。さらに、カルボキシル 基含有感光性樹脂の場合、感光性樹脂の二重結合当量が 350よりも小さいと、焼成時に残渣が残り易くなり、 一方、2,000よりも大きいと、現像時の作業余裕度 が狭く、また光硬化時に高露光量を必要とするので好ま しくない。

【0040】本発明において光重合性モノマー (C) は、組成物の光硬化性の促進及び現像性を向上させるために用いる。光重合性モノマー (C) としては、例えば、2-ヒドロキシエチルアクリレート, 2-ヒドロキシプロピルアクリレート、ジエチレングリコールジアクリレート、ポリウレタンジアクリレート、トリメチロールプロバントリアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロ

パンエチレンオキサイド変性トリアクリレート、トリメチロールプロパンプロピレンオキサイド変性トリアクリレート、ジペンタエリスリトールペンタアクリレート及び上記アクリレートに対応する各メタクリレート類;フタル酸、アジピン酸、マレイン酸、イタコン酸、こはく酸、トリメリット酸、テレフタル酸等の多塩基酸とヒドロキシアルキル(メタ)アクリレートとのモノー、ジー、トリー又はそれ以上のポリエステルなどが挙げられるが、特定のものに限定されるものではなく、またこれらを単独で又は2種以上を組み合わせて用いることができる。これらの光重合性モノマーの中でも、1分子中に2個以上のアクリロイル基又はメタクリロイル基を有する多官能モノマーが好ましい。

【0041】このような光重合性モノマー(C)の配合 量は、前記有機パインダー(カルボキシル基含有感光性 樹脂及び/又はカルボキシル基含有樹脂)(B)100 重量部当り20~100重量部が適当である。光重合性 モノマー(C)の配合量が上記範囲よりも少ない場合、 組成物の充分な光硬化性が得られ難くなり、一方、上記 範囲を超えて多量になると、皮膜の深部に比べて表面部 の光硬化が早くなるため硬化むらを生じ易くなる。

【0042】前記光重合開始剤 (D) の具体例として は、ベンソイン、ベンソインメチルエーテル、ベンソイ ンエチルエーテル、ペンソインイソプロピルエーテル等 のベンゾインとベンソインアルキルエーテル類;アセト フェノン、2, 2ージメトキシー2-フェニルアセトフ エノン、2, 2-ジエトキシー2-フェニルアセトフェ ノン、1,1-ジクロロアセトフェノン等のアセトフェ ノン類;2-メチル-1-[4-(メチルチオ)フェニ ル] -2-モルフォリノプロパン-1-オン、2-ベン ジルー2-ジメチルアミノー1-(4-モルフォリノフ エニル) ープタノン-1等のアミノアセトフェノン類:... 2ーメチルアントラキノン、2-エチルアントラキノ ン、2-t-プチルアントラキノン、1-クロロアント ラキノン等のアントラキノン類;2,4-ジメチルチオ キサントン、2, 4-ジエチルチオキサントン、2-ク ロロチオキサントン、2、4ージイソプロピルチオキサ ントン等のチオキサントン類;アセトフェノンジメチル ケタール、ベンジルジメチルケタール等のケタール類: ベンソフェノン等のペンソフェノン類;又はキサントン 類;(2,6ージメトキシベンソイル)-2,4,4-ペンチルホスフィンオキサイド、ビス(2,4,6-ト リメチルペンソイル) -フェニルフォスフィンオキサイ ド、2、4、6ートリメチルベンソイルジフェニルフォ スフィンオキサイド、エチルー2、4、6ートリメチル ペンプイルフェニルフォスフィネイト等のフォスフィン オキサイド類;各種パーオキサイド類などが挙げられ、 これら公知慣用の光重合開始剤を単独で又は2種以上を 組み合わせて用いることができる。これらの光重合開始

剤(D)の配合割合は、前記有機パインダー(カルボキシル基含有感光性樹脂及び/又はカルボキシル基含有樹脂)(B)100重量部当り1~30重量部が適当であり、好ましくは、5~20重量部である。

【0043】また、上記のような光重合開始剤(D)は、N,Nージメチルアミノ安息香酸エチルエステル、N,Nージメチルアミノ安息香酸イソアミルエステル、ペンチルー4ージメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような光増感剤の1種あるいは2種以上と組み合わせて用いることができる。さらに、より深い光硬化深度を要求される場合、必要に応じて、可視領域でラジカル重合を開始するチバ・スペシャルティー・ケミカルズ社製イルガキュア784等のチタノセン系光重合開始剤、ロイコ染料等を硬化助剤として組み合わせて用いることができる。

【0044】本発明の組成物は、必要に応じて軟化点4 00~600℃のガラス粉末、導電性粉末、耐熱性黒色 顔料、シリカ粉末等の無機微粒子(E)を配合すること ができる。ガラス粉末は、焼成後の導体回路の密着性向 上のため、導電性微粒子(A)100重量部当り200 重量部以下、好ましくは150重量部以下の割合で添加 できる。ガラス粉末としては、ガラス転移点 (Tg) 3 00~500℃、ガラス軟化点(Ts) 400~600 ℃のものが好ましい。また、解像度の点からは、平均粒 径20 μm以下、好ましくは5 μm以下のガラス粉末を 用いることが好ましい。上記のような低融点ガラス粉末 を光硬化型導電性組成物に添加することにより、露光・ 現像後の皮膜は600℃以下で容易に焼成可能となり、 特にPDPの電極形成に有用である。但し、本発明の組 成物では燃焼性の良好な有機バインダーが用いられ、ガ ラス粉末が溶融する前に脱パインダーが完了するように 組成されているものの、ガラス粉末の軟化点が400℃ より低いと、これよりも低い温度で溶融が生じて有機パ インダーを包み込み易くなり、残存する有機パインダー が分解することによって組成物中にプリスターが生じ易 くなるので好ましくない。

【0045】低融点ガラス粉末としては、酸化鉛、酸化ビスマス、又は酸化亜鉛を主成分とするガラス粉末が好適に使用できる。酸化鉛を主成分とするガラス粉末の好ましい例としては、酸化物基準の重量%で、 $PbOが48\sim82\%$ 、 B_2O_3 が0.5~22%、 SiO_2 が3~32%、 Al_2O_3 が0~12%、BaOが0~10%、ZnOが0~15%、 TiO_2 が0~2.5%、 Bi_2O_3 が0~25%の組成を有し、軟化点が420~590℃である非結晶性フリットが挙げられる。

【0046】酸化ピスマスを主成分とするガラス粉末の好ましい例としては、酸化物基準の重量%で、 Bi_2O_3 が35~88%、 B_2O_3 が5~30%、 SiO_2 が0~20%、 Al_2O_3 が0~5%、BaOが1~25%、Z

n Oが 1 ~ 2 0 %の組成を有し、軟化点が 4 2 0 ~ 5 9 0 ℃である非結晶性フリットが挙げられる。

【0047】酸化亜鉛を主成分とするガラス粉末の好ましい例としては、酸化物基準の重量%で、2n0が 25 $\sim 60\%$ 、 K_2O が $2\sim 15\%$ 、 B_2O_3 が $25\sim 45$ %、 SiO_2 が $1\sim 7\%$ 、 Al_2O_3 が $0\sim 10\%$ 、BaOが $0\sim 20\%$ 、MgOが $0\sim 10\%$ の組成を有し、軟化点が $420\sim 590$ ~ 50 ~ 50

【0048】導電性粉末としては、比抵抗値が1×10 3Q・cm以下の導電性粉末であれば幅広く用いること ができ、銀 (Ag)、金 (Au)、ニッケル (Ni)、 銅 (Cu)、アルミニウム (A1)、錫 (Sn)、鉛. (Pb)、亜鉛(Zn)、鉄(Fe)、白金(Pt)、 イリジウム (Ir)、オスミウム (Os)、パラジウム (Pd)、ロジウム (Rh)、ルテニウム (Ru)、タ ングステン (W) 、モリブデン (Mo) などの単体とそ の合金の他、酸化錫 (SnO₂)、酸化インジウム (I n₂O₃)、ITO (Indium Tin Oxide) などを用いるこ とができる。これらは単独で又は2種類以上の混合粉と して導電性微粒子(A)と併せて用いることができる。 【0049】前記導電性粉末の形状は球状、フレーク 状、デンドライト状など種々のものを用いることができ るが、光特性、分散性を考慮すると球状のものを用いる ことが好ましい。また、平均粒径としては、解像度の点 から20μm以下のもの、好ましくは5μm以下のもの。 を用いることが好ましい。また、導電性金属粉の酸化防 止、組成物内での分散性向上、現像性の安定化のため、 特にAg、Ni、Alについては脂肪酸による処理を行 うことが好ましい。脂肪酸としては、オレイン酸、リノ ール酸、リノレン酸、ステアリン酸等が挙げられる。

【0050】導電性粉末の配合量は、前記有機パインダー(B)_100重量部当り100重量部以下となる割合が適当である。100重量部を超えて多量に配合すると、光の透過を損ない、組成物の充分な光硬化性が得られ難くなる。また、黒色を呈さない導電性粉末を添加した場合には、充分な黒さを満足し得る黒層電極用の導電性組成物を得ることができなくなるからである。

【0051】光硬化型導電性組成物に多量の導電性粉末や低融点ガラス粉末を配合した場合、得られる組成物の保存安定性が悪く、ゲル化や流動性の低下により塗布作業性が悪くなる傾向がある。従って、本発明の組成物では、組成物の保存安定性向上のため、導電性粉末やガラスの成分である金属あるいは酸化物粉末との錯体化あるいは塩形成などの効果のある化合物を、安定剤として添加することが好ましい。安定剤としては、無機酸、リン酸化合物(無機リン酸、有機リン酸)などの酸が挙げられる。このような安定剤は、前記のガラス粉末や導電性粉末100重量部当り0.1~10重量部の割合で添加することが好ましい。

【0052】無機酸としては、硝酸、硫酸、塩酸、ホウ 酸等が挙げられる。また、有機酸としては、ギ酸、酢 酸、アセト酢酸、クエン酸、イソクエン酸、アニス酸、 プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、 アゼライン酸、チリック酸、パレリック酸、カプロン 酸、イソカプロン酸、エナント酸、カプリル酸、ペラル ゴン酸、ウンデカン酸、ラウリル酸、トリデカン酸、ミ リスチン酸、パルミチン酸、ステアリン酸、アラキン 酸、ベヘン酸、ベヘニン酸、シュウ酸、マロン酸、エチ ルマロン酸、コハク酸、グルタル酸、アジピン酸、ビメ リン酸、ピルピン酸、ピペロニル酸、ピロメリット酸、 スペリン酸、アゼライン酸、セバシン酸、マレイン酸、 フマル酸、フタル酸、イソフタル酸、テレフタル酸、酒 石酸、レブリン酸、乳酸、安息香酸、イソプロピル安息 香酸、サリチル酸、イソカプロン酸、クロトン酸、イソ クロトン酸、アクリル酸、メタクリル酸、チグリン酸、 エチルアクリル酸、エチリデンプロピオン酸、ジメチル アクリル酸、シトロネル酸、ウンデセン酸、ウンデカン 酸、オレイン酸、エライジン酸、エルカ酸、ブラシジン 酸、フェニル酢酸、ケイ皮酸、メチルケイ皮酸、ナフト 工酸、アピエチン酸、アセチレンジカルボン酸、アトロ ラクチン酸、イタコン酸、クロトン酸、ソルビン酸、バ ニリン酸、パルミチン酸、ヒドロキシケイ皮酸、ヒドロ キシナフトエ酸、ヒドロキシ酪酸、ピフェニルジカルボ ン酸、フェニルケイ皮酸、フェニル酢酸、フェニルプロ ピオル酸、フェノキシ酢酸、プロピオル酸、ヘキサン 酸、ヘプタン酸、ベラトルム酸、ペラルゴン酸、ベンジ ル酸、エナント酸、エライジン酸、エルカ酸、オキサロ コハク酸、オキサロ酢酸、オクタン酸、カブリル酸、没 食子酸、マンデル酸、ミリスチン酸、メサコン酸、メチ ルマロン酸、メリト酸、ラウリン酸、リシノール酸、リ ノール酸、リンゴ酸、等が挙げられる。

【0053】無機リン酸としては、リン酸、亜リン酸、 次亜リン酸、オルトリン酸、二リン酸、トリポリリン・ 酸、ホスホン酸、等が挙げられる。また、有機リン酸と しては、リン酸メチル、リン酸エチル、リン酸プロピ ル、リン酸プチル、リン酸フェニル、リン酸ジメチル、 リン酸ジエチル、リン酸ジプチル、リン酸ジプロピル、 リン酸ジフェニル、リン酸イソプロピル、リン酸ジイソ プロピル、リン酸nプチル、亜リン酸メチル、亜リン酸 エチル、亜リン酸プロピル、亜リン酸ブチル、亜リン酸 フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リ ン酸ジプチル、亜リン酸ジプロピル、亜リン酸ジフェニ ル、亜リン酸イソプロピル、亜リン酸ジイソプロピル、 亜リン酸nプチルー2-エチルヘキシルヒドロキシエチ リレンジホスホン酸、アデノシン三リン酸、アデノシン リン酸、モノ (2-メタクリロイルオキシエチル) アシ ッドホスフェート、モノ (2-アクリロイルオキシエチ ル) アシッドホスフェート、ジ(2-メタクリロイルオ キシエチル) アシッドホスフェート、ジ (2-アクリロ

イルオキシエチル) アシッドホスフェート、エチルジェ チルホスホノアセテート、エチルアシッドホスフェー ト、ブチルアシッドホスフェート、ブチルピロホスフェ ート、ブトキシエチルアシッドホスフェート、2-エチ ルヘキシルアシッドホスフェート、オレイルアシッドホ スフェート、テトラコシルアシッドホスフェート、ジェ チレングリコールアシッドホスフェート、(2-ヒドロ キシエチル) メタクリレートアシッドホスフェート等が 挙げられる。

【0054】その他の酸として、ベンゼンスルホン酸、トルエンスルホン酸、ナフタリンスルホン酸、エタンスルホン酸、ナフトールスルホン酸、タウリン、メタニル酸、スルファニル酸、ナフチルアミンスルホン酸、スルホ安息香酸、スルファミン酸等のスルホン酸系の酸も用いることができる。以上に列挙したような安定剤は、単独で又は2種以上を組み合わせて用いることができる。

【0055】耐熱性黒色顔料としては、耐熱性に優れる無機顔料を広く用いることができる。一般には、Cr、Co、Ni、Fe、Mnなどの酸化物、複合酸化物がこれにあたり、これらを単独で又は2種以上を組み合わせて用いることができる。

【0056】シリカ粉末としては、特に合成アモルファスシリカ微粉末が望ましく、その具体例としては、日本アエロジル(株)製のAEROSIL(登録商標)50、130、200、200V、200CF、200FAD、300、300CF、380、OX50、TT600、MOX80、MOX170、COK84、日本シリカ工業(株)製のNipsil(登録商標)AQ、AQ-S、VN3、LP、L300、N-300A、ER-R、ER、RS-150、ES、NS、NS-T、NS-P、NS-KR、NS-K、NA、KQ、KM、DS等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。これらの中でも、一次粒子径が5~50nm、比表面積が50~500m²/gのものが好ましい。

【0057】上記のようなシラノール基を有する合成アモルファスシリカ微粉末を、前記したようなカルボキシル基を有する樹脂と黒色導電性粉末を組み合わせて含有する光硬化型導電性組成物に添加すると、乾燥、露光、現像、焼成の各工程において基板に対して安定した密着性を示すと共に、バス電極作製の焼成工程において、基板と黒層との間及び黒層と白層との間の剥離やカールの発生を抑制できる。このような作用を奏する理由は未だ充分に解明されてはいないが、焼成前においては、合成アモルファスシリカ表面のシラノール基の電気的に除てシースを基板として用いられるガラス基板や樹脂のカルボキシル基の酸素原子と導電性粉末の電気的に陽性の金属との間のクーロン力により、基板との密着性に優れた緻密な強膜が形成され、焼成後においては、合成アモルファスシ

リカ微粒子がガラス基板と導電性粒子との間の隙間及び 導電性粒子間の隙間に入り込んでそれらの接着強度を増 大させているものと推測される。

【0058】本発明においては、組成物を希釈すること によりペースト化し、容易に塗布工程を可能とし、次い で乾燥させて造膜し、接触露光を可能とさせるために、 適宜の量の有機溶剤を配合することができる。具体的に は、メチルエチルケトン、シクロヘキサノンなどのケト ン類;トルエン、キシレン、テトラメチルベンゼンなど の芳香族炭化水素類;セロソルブ、メチルセロソルブ、 カルビトール、メチルカルビトール、ブチルカルビトー ル、プロピレングリコールモノメチルエーテル、ジプロ ピレングリコールモノメチルエーテル、ジプロピレング リコールモノエチルエーテル、トリエチレングリコール モノエチルエーテルなどのグリコールエーテル類:酢酸 エチル、酢酸ブチル、セロソルブアセテート、ブチルセ ロソルブアセテート、カルピトールアセテート、ブチル カルピトールアセテート、プロピレングリコールモノメ チルエーテルアセテートなどの酢酸エステル類;エタノ ール、プロパノール、エチレングリコール、プロピレン グリコールなどのアルコール類;オクタン、デカンなど の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石 油ナフサ、ソルベントナフサなどの石油系溶剤が挙げら れ、これらを単独で又は2種以上を組み合わせて用いる ことができる。

【0059】本発明の光硬化型導電性組成物は、さらに必要に応じて、シリコーン系、アクリル系等の消泡・レベリング剤、皮膜の密着性向上のためのシランカップリング剤、等の他の添加剤を配合することもできる。さらにまた、必要に応じて、導電性金風粉の酸化を防止するための公知慣用の酸化防止剤や、保存時の熟的安定性を向上させるための熱重合禁止剤、焼成時における基板との結合成分としての金属酸化物、ケイ素酸化物、ホウ素酸化物などの微粒子を添加することもできる。

【0060】本発明の光硬化型導電性組成物は、予めフィルム状に成膜されている場合には基板上にラミネートすればよいが、ペースト状組成物の場合、スクリーン印刷法、バーコーター、プレードコーターなど適宜の塗布方法で基板、例えばPDPの前面基板となるガラス基板に塗布し、次いで指触乾燥性を得るために熱風循環式乾燥炉、遠赤外線乾燥炉等で例えば約60~120℃で5~40分程度乾燥させて有機溶剤を蒸発させ、タックフリーの塗膜を得る。その後、選択的露光、現像、焼成を行って所定のバターンの電極回路を形成する。

【0061】露光工程としては、所定の露光パターンを有するネガマスクを用いた接触露光及び非接触露光が可能であるが、解像度の点からは接触露光が好ましい。露光光源としては、ハロゲンランプ、高圧水銀灯、レーザー光、メタルハライドランプ、ブラックランプ、無電極ランプなどが使用される。露光量としては50~100

0mJ/cm²程度が好ましい。

【0062】現像工程としてはスプレー法、浸漬法等が用いられる。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、珪酸ナトリウムなどの金属アルカリ水溶液や、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン水溶液、特に約1.5重量%以下の浸度の希アルカリ水溶液が好適に用いられるが、粗成物中のカルボキシル基含有樹脂のカルボキシル基がケン化され、未硬化部(未露光部)が除去されればよく、上記のような現像液に限定されるものではない。また、現像後に不要な現像液の除去のため、水洗や酸中和を行うことが好ましい。

【0063】焼成工程においては、現像後の基板を空気中又は窒素雰囲気下で約400~600℃の加熱処理を行い、所望の導体パターンを形成する。なお、この時の昇温速度は、15℃/分以下に設定することが好ましい。

【0064】バス電極の形成においては、まず、図2 (A) に示すように、予めスパッタリング、イオンプレ ーティング、化学蒸着、電着等の従来公知の適宜の手段 によりITO、SnO。等により透明電極3が形成され た前面ガラス基板1に、前記したような黒色導電性微粒 子を含む光硬化型導電性組成物を塗布し、乾燥してタッ クフリーの黒色導電性下層20を形成する。次に、図2 (B) に示すように、前配組成物中の黒色導電性微粒子 がAg、Au、Al、Pt、Pd等の前記した導電性粉 末で置き換えられている以外は前記光硬化型導電性組成 物と同様な組成物を塗布し、乾燥してタックフリーの白 色系導電性上層21を形成する。その後、図2 (C) に 示すように、これに所定の露光パターンを有するフォト マスク22を重ね合わせ、露光する。次いで、アルカリ 水溶液により現像して非露光部分を除去し、図2 (D) に示すような所定の電極パターンを形成する。その後、 焼成することにより、図2 (E) に示すように、透明電 極3の上に下層(黒色)電極20aと上層(白色系)電 極21 a とからなるバス電極4が形成される。なお、黒 色系導電性組成物と白色系導電性組成物が予めフィルム 状に成膜されたドライフィルムの場合、前面ガラス基板 上に熱圧着して順次ラミネートした後、露光、現像及び 焼成の各工程を行えばよい。また、前面ガラス基板上に 前記した光硬化型導電性組成物を塗布し、乾燥、露光、 現像、焼成の各工程を行って下層 (黒色) 電極を形成し た後、白色系導電性組成物を塗布し、乾燥、露光、現

上層(白)用導電性ペースト;

像、焼成の各工程を行って上層(白色系)電極を形成する方法を採用することもできる。

[0065]

【実施例】以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。なお、「部」及び「%」とあるのは、特に断りがない限り全て重量基準である。

【0066】合成例1

温度計、攪拌機、滴下ロート、及び還流冷却器を備えた フラスコに、メチルメタクリレートとメタクリル酸を 0.76:0.24のモル比で仕込み、溶媒としてジプ ロビレングリコールモノメチルエーテル、触媒としてア ソピスイソプチロニトリルを入れ、窒素雰囲気下、80 ℃で2~6時間攪拌し、樹脂溶液を得た。この樹脂溶液 を冷却し、重合禁止剤としてメチルハイドロキノン、触 媒としてテトラブチルホスホニウムプロミドを用い、グ リシジルメタクリレートを、95~105℃で16時間 の条件で、上記樹脂のカルボキシル基1モルに対し0. 12モルの割合の付加モル比で付加反応させ、冷却後取 り出し、有機パインダーAを生成した。この樹脂Aは、 重量平均分子量が約10,000、酸価が59mgKO H/g、二重結合当量が950であった。なお、得られ た共重合樹脂の重量平均分子量の測定は、(株) 島津製 作所製ポンプLCー6 ADと昭和電工(株) 製カラムS hodex (登録商標) KF-804、KF-803、 KF-802を三本つないだ高速液体クロマトグラフィ ーにより測定した。

【0067】合成例2

メチルメタクリレートとメタクリル酸の仕込み比をモル 比で0.87:0.13とし、グリシジルメタクリレートを付加反応させないこと以外は、上記合成例1と同様にして有機パインダーBを生成した。この樹脂Bは、重量平均分子量が約10,000、酸価が74mgKOH/gであった。

【0068】このようにして得られた有機パインダーA 又はBを用い、以下に示す組成比にて配合し、提枠機に より攪拌後、3本ロールミルにより練肉してペースト化 を行った。なお、低融点ガラス粉末としては、PbO 60%、 B_2O_3 20%、 $S_1O_215%$ 、 Al_2O_35 %を粉砕し、熱膨張係数 $\alpha_{300}=70\times10^{-7}$ / $\mathbb C$ 、ガラス転移点 $445\mathbb C$ 、平均粒径 1.6μ mとしたもの を使用した。

[0069]

有機パインダーA 100.0部ペンタエリスリトールトリアクリレート 50.0部 2ーペンジルー 2ージメチルアミノー1ー (4ーモルフォリノフェニル) プタンー1ーオン 5.0部ジプロピレングリコールモノメチルエーテル 80.0部

銀粉	450.0部
低融点ガラス粉末	22.0部
リン酸エステル	1. 0部
[0070]	1. 0 80
下層(黒)用導電性ペースト:	
組成物例1	
有機パインダーA	100.0部
ペンタエリスリトールトリアクリレート	50.0部
2ーベンジルー2ージメチルアミノー1ー	
(4ーモルフォリノフェニル) プタンー1ーオン	5. 0部
ジプロピレングリコールモノメチルエーテル	80.0部
酸化ルテニウム(R u O ₂ 、比表面積 5 0. 5 m²/ g)	20.0部
[0071]	
組成物例 2	
有機パインダーA	100.0部
ペンタエリスリトールトリアクリレート	50.0部
2ーベンジルー2ージメチルアミノー1ー	
(4ーモルフォリノフェニル) プタンー1ーオン	5.0部
ジプロピレングリコールモノメチルエーテル	80.0部
酸化ルテニウム(R u O ₂ 、比表面積 3 5 . 0 m²/g)	20.0部
[0072]	
組成物例3	
有機パインダーA	100.0部
ペンタエリスリトールトリアクリレート	50.0部
2ーベンジルー2ージメチルアミノー1ー	
(4ーモルフォリノフェニル) プタンー1ーオン	5.0部
ジプロピレングリコールモノメチルエーテル	80.0部
酸化ルテニウム (RuO ₂ 、比表面積20.5 m ² /g)	20.0部
[0073]	
組成物例4	
有機パインダーB	100.0部
ペンタエリスリトールトリアクリレート	50.0部
2ーベンジルー2ージメチルアミノー1ー	•
(4ーモルフォリノフェニル) プタンー1ーオン	5. 0部
ジプロピレングリコールモノメチルエーテル	80.0部
酸化ルテニウム(RuO ₂ 、比表面積50.5 m ² /g) 【0074】	20.0部
組成物例5	
有機パインダーA	100 040
ペンタエリスリトールトリアクリレート	100.0部
2ーベンジルー2ージメチルアミノー1ー	50.0部
(4ーモルフォリノフェニル) ブタンー1ーオン	5 0 tm
ジプロピレングリコールモノメチルエーテル	5. 0部
酸化ルテニウム (RuO ₂ 、比表面積50.5m ² /g)	80.0部
合成アモルファスシリカ微粉末	20. Ump
(日本アエロジル(株)製、AEROSIL200;	
1次粒子の平均粒径12nm、BET法による	
比表面積200±25 m²/g)	10.0部
低融点ガラス粉末	20.0部
リン酸エステル	1. 0部
	1. U 副

[0075]		
•	組成物例6	
	有機パインダーA	100.0部
	ペンタエリスリトールトリアクリレート	50.0部
	2ーベンジルー2ージメチルアミノー1ー	
	(4ーモルフォリノフェニル) プタンー1ーオン	5.0部
	ジプロピレングリコールモノメチルエーテル	80.0部
	銅一鉄系黒色複合酸化物	
	(CuO-Fe ₂ O ₃ -Mn ₂ O ₃ 、比表面積28.4m ² /g)	
		20.0部
	次亜リン酸	1.0部
[0076]		
	比較組成物例1	
	有機パインダーA	100.0部
	ペンタエリスリトールトリアクリレート	50.0部
	2ーベンジルー2ージメチルアミノー1ー	•
•	(4ーモルフォリノフェニル) プタンー1ーオン	5.0部
ş	ジプロピレングリコールモノメチルエーテル	80.0部
	酸化ルテニウム (RuO ₂ 、比表面積17.0 m ² /g)	20.0部
[0077]		
	比較組成物例 2	•
•	有機パインダーA	100.0部
	ペンタエリスリトールトリアクリレート	50.0部
	2ーベンジルー2ージメチルアミノー1ー	
	(4ーモルフォリノフェニル) プタンー1ーオン	5.0部
	ジプロピレングリコールモノメチルエーテル	80.0部
	酸化ルテニウム(R u O ₂ 、比表面積 3 . 5 m ² /g)	20.0部
[0078]		
n	比較組成物例3	
: .	有機パインダーA	100.0部
	ペンタエリスリトールトリアクリレート	50.0部
	2ーベンジルー2ージメチルアミノー1ー	
	(4ーモルフォリノフェニル) プタンー1ーオン	
	ジプロピレングリコールモノメチルエーテル	80.0部
	銀粉 Established work	100.0部
	耐熱性黒顔料	100.0部
•	合成アモルファスシリカ徴粉末 (日本アエロジャ、付集) 創 AFROS II 200	
	(日本アエロジル(株)製、AEROSIL200;1次粒子の平均粒径12nm、BET法による	
	1次位于の平均位在12 nm、5 2 1 伝による 比表面積200±25 m²/g)	10.0部
	低融点ガラス粉末	20.0部
•	リン酸エステル	
[0079]	ラン嵌 ーハ / 10	1. 0部
100737	比較組成物例 4	
	有機パインダーA	100.0部
	ペンタエリスリトールトリアクリレート	50.0部
· · · · · · · · · · · · · · · · · · ·	2ーベンジルー2ージメチルアミノー1ー	υ υ . υ α μ
	(4ーモルフォリノフェニル) プタンー1ーオン	5.0部
	ジプロピレングリコールモノメチルエーテル	80.0部
• ,	銅一鉄系黒色複合酸化物	00. Opp
	The section of the se	

次亜リン酸

【0080】このようにして得られた組成物例 $1\sim6$ 及び比較組成物例 $1\sim4$ の各ペーストについて、黒色度と層間導通性を評価した。その評価方法は以下のとおりである。

黒色度:ガラス基板上に、評価用ペーストを300メッ シュのポリエステルスクリーンを用いて全面に塗布し、 次いで、熱風循環式乾燥炉にて90℃で20分間乾燥し て指触乾燥性の良好な被膜を形成した。次に、この被膜 上に、上層(白)用導電性ペーストを200メッシュの ポリエステルスクリーンを用いて全面に塗布し、次い で、熟風循環式乾燥炉にて90℃で20分間乾燥して指 触乾燥性の良好な二層の被膜を形成した。その後、光源 をメタルハライドランプとし、組成物上の積算光量が5 00m J / c m²となるように全面露光した後、液温3 0℃の1wt%Na2CO3水溶液を用いて現像を行い、 水洗した。最後に空気雰囲気下にて5℃/分で昇温し、 550℃で30分間焼成して基板を作製した。こうして 得られた焼成被膜について色彩色差計(ミノルタカメラ (株) 製、CR-221) を用いてL*a*b*表色系の 値をJIS-Z-8729に従って測定し、明度を表す 指数であるL*値を黒色度の指標として評価した。この L*値が小さいほど黒色度に優れる。

【0081】層間導通性:100µm幅の電極を形成し たガラス基板上に、評価用ペーストを300メッシュの ポリエステルスクリーンを用いて全面に塗布し、熱風循 環式乾燥炉を用い、90℃で20分間乾燥して指触乾燥 性の良好な被膜を形成した。次に、この被膜上に、上層 (白) 用導電性ペーストを200メッシュのポリエステ ルスクリーンを用いて全面に塗布し、次いで、熱風循環 式乾燥炉にて90℃で20分間乾燥して指触乾燥性の良 好な二層の被膜を形成した。その後、上記100μm幅 の電極と直交するように、ライン幅100μmとなるネ ガフィルムを用い、光源をメタルハライドランプとし、 組成物上の積算光量が500mJ/cm²となるように 露光した後、液温30℃の1wt%Na₂CO₃水溶液を 用いて現像を行い、水洗した。最後に空気雰囲気下にて 5℃/分で昇温し、550℃で30分間焼成して基板を 作製した。こうして得られた白黒2層電極の白層と前記 100μm幅の電極との間の層間抵抗を測定し、その抵 抗値を黒層の抵抗値としてその層間導通性を評価した。 【0082】これらの評価結果を表1に示す。

【表1】

表1に示す結果から明らかなように、本発明の組成物に 係るペーストは、比較組成物のペーストに比べて黒色度 及び層間導通性のいずれについても優れることがわか る。

【0083】なお、上記評価用ペーストについて、現像後のライン形状、焼成後のライン形状、密着性を評価したが、いずれも問題はなかった。これらの評価方法は、ガラス基板上に形成した二層被膜を、ライン/スペース $=50/100\mu$ mとなるネガフィルムを用いてパターン露光し、次いで、液温が30001w 1% Na_2 CO3水溶液にて現像を行い、水洗し、その後、焼成してパターン焼成基板を作成して評価すること以外は、上記黒色度の評価方法と同様である。その評価基準は、現像後の

ライン形状については、現像まで終了したパターンを顕 微鏡観察し、ラインに不規則なばらつきがなく、よれ等 がないかどうかで評価し、焼成後のライン形状について は、焼成まで終了したパターンを顕微鏡観察し、ライン に不規則なばらつきがなく、よれ等がないかどうかで評 価した。密着性は、セロテープピーリングを行い、パタ ーンの剥離がないかどうかで評価した。

[0084]

【発明の効果】以上説明したように、本発明の光硬化型 専電性組成物によれば、乾燥、露光、現像、焼成の各工 程において基板に対する優れた密着性、解像性、焼成性 を損なうことなく、焼成後において充分な層間導電性及 び黒さを同時に満足し得るPDPパス電極の黒層を形成 することができる。

【図面の簡単な説明】

【図1】面放電方式のAC型PDPの部分分解斜視図である。

【図1】

【図2】本発明の光硬化型導電性組成物を用いてPDPのパス電極を形成する工程例の概略断面図である。

【符号の説明】

- 1 前面ガラス基板
- 2 a, 2 b 表示電極
- 3, 3 a, 3 b 透明電極
- 4, 4a, 4b パス電極
- 5 透明誘電体層
- 6 保護層
- 11 背面ガラス基板
- 12 リプ
- 13 アドレス電極
- 14a, 14b, 14c 蛍光体膜
- 20 黑色導電性下層
- 21 白色系導電性上層
- 20a 下層 (黒色) 電極
- 21a 上層 (白色系) 電極

【図2】

フロントページの続き

(72) 発明者 髙木 幸一

埼玉県比企郡嵐山町大字大蔵388番地 太

陽インキ製造株式会社嵐山事業所内

(72)発明者 古橋 正

埼玉県比企郡嵐山町大字大蔵388番地 太

陽インキ製造株式会社嵐山事業所内

Fターム(参考) 2H025 AA00 AA02 AA04 AA14 AA19

AB15 AB17 AC01 AD01 BC12

BC14 BC31 BC34 BC43 BC52

BC53 BC81 BC82 BC85 BC86

BC92 CA00 CB43 CB51 CB55

CC08 CC09 CC12 DA19 DA20

FA28

5C040 FA01 FA04 GB03 GB14 GC05

GC06 GC18 GC19 GH07 JA09

JA15 KA04 KA14 KA16 KB03

KB04 KB14 KB17 MA04 MA23

MA24