AMENDMENTS

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Withdrawn) A calcium channel blocker compound having at least one of the following characteristics:
 - a. the compound is metabolized both by CYP450 and by a non-oxidative metabolic enzyme or system of enzymes;
 - b. the compound has a short (up to four (4) hours) non-oxidative metabolic half-life;
 - c. the compound contains a hydrolysable bond that can be cleaved non-oxidatively by hydrolytic enzymes;
 - d. the primary metabolites of the compound result from the non-oxidative metabolism of the compound;
 - e. the primary metabolites are soluble in water at physiological pH;
 - f. the primary metabolites have negligible inhibitory activity at the IK_R (HERG) channel at normal therapeutic concentration of the parent drug in plasma;
 - g. the compound, as well as the metabolites thereof, does not cause metabolic DDI when coadministered with other drugs; and
 - h. the compound, as well as metabolites thereof, does not elevate LFT values when administered alone.
- 2. (Withdrawn) The compound, according to claim 1, having the following structure:

wherein:

X=a bond, $(CH_2)_n$, O, S, or $O(CH_2)_n$,

wherein n=1-6;

R₁=C₁₋₆ alkyl, optionally substituted with OH or NH₂:

R2=F or COOR5.

wherein R₅ is C_{1.6} alkyl, optionally substituted with OH or NH₂:

 $R_3=CH_3$ or $(CH_2)_0-COOR_6$.

wherein n=1-6 and R₆ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

McDONNELL BOEHNEN HULBERT & BERGHOFF LLP 300 South Wacker Drive Chicago, Illinois 60606

2

Appl. No.: 10/643,699

 $R_4 = (CH_2)_n - COR_7R_8$, $-(CH_2)_n - R_{10}R_{11}$ or

$$--(CH_2)\Pi$$
 R_{15}
 R_{17}

R₇=0, NH, or NR₉,

R₈=optionally substituted aryl or heterocycle,

 $R_9=C_{1-6}$ alkyl,

R₁₀=O, S, SO, SO₂, NH, or NR₁₂ or N(CH₂), COOR₁₃,

R₁₁=aryl or heterocyclyl optionally substituted with (CH₂)_nCOOR₁₄,

R₁₂=C_{1.6} alkyl, optionally substituted with OH or NH₂,

R₁₃=C_{1.6} alkyl, optionally substituted with OH or NH₂,

R₁₄=C_{1.6} alkyl, optionally substituted with OH or NH₂,

R₁₅=(CH₂)₀COOR₁₆,

R₁₆=C₁₆ alkyl, optionally substituted with OH or NH₂,

 R_{17} =not present or COOR₁₈ wherein R_{18} is C_{1-6} alkyl, optionally substituted with OH or NH₂, and wherein n=1-6.

3. (Withdrawn) The compound, according to claim 2, having a formula selected from the group consisting of:

X=band, CH₂, or OCH₂

R=lower alkyl optionally substituted OH or NH2;

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2;

n-1 to 3

R=lower alkyl optionally substituted by OH or NH₂;

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3 X=0, NH, NR where R is lower alkyl

Y=optionally substituted aryl or heterocyclyl; and

n=0 to 2

X=0, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2 Y=aryl or heterocyclyl substituted with $(CH_2)_m$ COOH where m is 0 to 2.

4. (Withdrawn) The compound, according to claim 3, having the following structure:

X=bond, CH2, or OCH2

R=lower alkyl optionally substituted OH or NH2.

5. (Withdrawn) The compound, according to claim 3, having the following structure:

X=bond, CH2, or OCH2

R=lower alkyl optionally substituted OH or NH₂.

6. (Withdrawn) The compound, according to claim 3, having the following structure:

R=lower alkyl optionally substituted by OH or NH2.

7. (Withdrawn) The compound, according to claim 3, having the following structure:

n=1 to 3

R=lower alkyl optionally substituted by OH or NH₂.

8. (Withdrawn) The compound, according to claim 3, having the following structure:

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2.

9. (Withdrawn) The compound, according to claim 3, having the following structure:

Relower alkyl optionally substituted by OH or NH2.

10. (Withdrawn) The compound, according to claim 3, having the following structure:

n=1 to 3

X=O, NH, NR where R is lower alkyl

Y=optionally substituted anyl or heterocyclyl.

11. (Withdrawn) The compound, according to claim 3, having the following structure:

n=0 to 2

X=O, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y=aryl or heterocyclyl substituted with (CH₂)_mCOOH where m is 0 to 2.

- 12. (Withdrawn) A pharmaceutical composition comprising a calcium channel blocker compound having at least one of the following characteristics:
 - a. the compound is metabolized both by CYP450 and by a non-oxidative metabolic enzyme or system of enzymes;
 - b. the compound has a short (up to four (4) hours) non-oxidative metabolic half-life;
 - c. the compound contains a hydrolysable bond that can be cleaved non-oxidatively by hydrolytic enzymes;
 - d. the primary metabolites of the compound result from the non-oxidative metabolism of the compound:
 - e. the primary metabolites are soluble in water at physiological pH;
 - f. the primary metabolites have negligible inhibitory activity at the IK_R (HERG) channel at normal therapeutic concentration of the parent drug in plasma;
 - g. the compound, as well as the metabolites thereof, does not cause metabolic DDI when coadministered with other drugs; and
 - h. the compound, as well as metabolites thereof, does not elevate LFT values when administered alone; wherein said composition further comprises a pharmaceutical carrier.
- 13. (Withdrawn) The pharmaceutical composition, according to claim 12, wherein said compound has the following structure:

wherein:

X=a bond, $(CH_2)_n$, O, S, or $O(CH_2)_n$,

wherein n=1-6:

R₁=C₁₋₆ alkyl, optionally substituted with OH or NH₂:

R₂≂F or COOR₅,

wherein R₅ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

 $R_3 = CH_3$ or $(CH_2)_n - COOR_6$,

wherein n=1-6 and R₆ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

 $R_4 = (CH_2)_n - COR_7R_8$, $-(CH_2)_n - R_{10}R_{11}$ or

$$--(CH_2)n$$

 $R_7=0$, NH, or NR₉,

R₈=optionally substituted aryl or heterocycle,

R9=C1-6 alkyl,

R10=O, S, SO, SO2, NH, Or NR12 or N(CH2)mCOOR137

R₁₁=aryl or heterocyclyl optionally substituted with (CH₂)_nCOOR₁₄,

R₁₂=C₁₋₆ alkyl, optionally substituted with OH or NH₂,

R₁₃=C₁₋₆ alkyl, optionally substituted with OH or NH₂,

R₁₄=C₁₋₆ alkyl, optionally substituted with OH or NH₂,

 $R_{15}\simeq (CH_2)_nCOOR_{16}$

R₁₆=C₁₋₆ alkyl, optionally substituted with OH or NH₂,

 R_{17} =not present or COOR₁₈ wherein R_{18} is $C_{1.6}$ alkyl, optionally substituted with OH or NH₂, and wherein n=1-6.

14. (Withdrawn) The composition, according to claim 13, comprising a compound having a formula selected from the group consisting of:

X=bond, CH₂, or OCH₂

R=lower alkyl optionally substituted OH or NH2;

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2;

R=lower alkyl optionally substituted by OH or NH₂;

n=1 to 3 X=0, NH, NR where R is lower alkyl

Y=optionally substituted aryl or heterocyclyl; and

n=0 to 2

X=0, S, SiO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2 Y=aryl or heterocyclyl substituted with (CH₂)_mCOOH where m is 0 to 2.

15. (Withdrawn) The compound, according to claim 14, comprising a compound having the following structure:

X=bond, CH₂, or OCH₂

R=lower likyl optionally substituted OH or NH₂.

16. (Withdrawn) The compound, according to claim 14, having the following structure:

Relower alkyl optionally substituted by OH or NH2.

17. (Withdrawn) The compound, according to claim 14, having the following structure:

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2.

18. (Withdrawn) The compound, according to claim 14, having the following structure:

n=1 to 3

R=lower alkyl optionally substituted by OH or NH₂.

19. (Withdrawn) The compound, according to claim 14, having the following structure:

R=lower alkyl optionally substituted by OH or NH2.

20. (Withdrawn) The commound, according to claim 14, having the following structure:

n=1 to 3

X=O, NH NR where R is lower alkyl

Y=optionally substituted aryl or heterocyclyl.

21. (Withdrawn) The compound, according to claim 14, having the following structure:

n=0 to 2

X=0, S, 30, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y=aryl or heterocyclyl substituted with (CH₂)_mCOOH where m is 0 to 2.

22. (Canceled)

23. (Currently Amended) The method, according to claim 22, A method for blocking a calcium channel in a patient in need of such blocking wherein said method comprises administering to said patient a calcium channel blocking compound wherein said compound has the following structure:

wherein:

X=a bond, $(CH_2)_n$, O, S, or $O(CH_2)_n$,

wherein n=1-6:

R₁=C₁₋₆ alkyl, optionally substituted with OH or NH₂;

R2=F or COOR5,

wherein R₅ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

 $R_3 = CH_3$ or $(CH_2)_n - COOR_6$,

wherein n=1-6 and R₆ is C_{1.6} alkyl, optionally substituted with OH or NH₂;

R4=(CH2)n-COR7R8, -(CH2)n-R10R-11 or

$$-(CH_2)n - N$$

R₇=0, NH, or NR₉,

Re-optionally substituted anyl or heterocycle,

 $R_9 = C_{1-6}$ alkyl,

R₁₀=O, S, SO, SO₂, NH, ot NR₁₂-or N(CH₂), COOR₁₃,

R₁₁=aryl or heterocyclyl or flonally substituted with (CH₂)_nCOOR₁₄,

R₁₂=C₁₆ alkyl, optionally substituted with OH or NH₂.

R₁₂=C₁₄ alkyl, optionally substituted with OH or NH₂,

R₁₄=C_{1.6} alkyl, optionally substituted with OH or NH₂.

 $R_{15} = (CH_2)_n COOR_{16}$

R₁₆=C₁₋₆ alkyl, optionally substituted with OH or NH₂.

 R_{17} =not present or COOR_{1 i} wherein R_{18} is $C_{1.6}$ alkyl, optionally substituted with OH or NH₂, and wherein n=1-6.

24. (Currently Amended) The method, according to claim 23, A method for blocking a calcium channel in a patient in need of such blocking wherein said method comprises administering to said patient a calcium channel blocking compound wherein said compound has a formula selected from the group consisting of:

X=bond, CH₂, or OCH₂

R=lower alkyl optionally substituted OH or NH2;

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3

R=lower alkyl optionally substituted by OH or NH2;

R=lower alkyl optionally substituted by OH or NH2;

n=1 to 3 X=0, NH, NR where R is lower alkyl

Y=optionally substituted aryl or heterocyclyl; and

n=0 to 2

X=0, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2

Y=aryl or heterocyclyl substituted with (CH2)mCOOH where m is 0 to 2.

25. (Original) The compound, according to claim 24, wherein said compound has the following structure:

X=bond, CH₂, or OCH₂

R=lower alkyl optionally substituted OH or NH2.

26. (Original) The compound, according to claim 24, wherein said compound has the following structure:

McDONNELL BOEHNEN HULBERT & BERGHOFF LLP 300 South Wacker Drive

Chicago, Illinois 60606

14

Appl. No.: 10/643,699

3129130002

R=lower alkyl optionally substituted by OH or NH₂.

27. (Original) The compound, according to claim 24, wherein said compound has the following structure:

n=1 to 3

R=lower alkyl optionally substituted by OH or NH₂.

28. (Original) The compound, according to claim 24, wherein said compound has the following structure:

n=1 to 3

R=lower alkyl optionally substituted by OH or NH₂.

29. (Original) The compound, according to claim 24, wherein said compound has the following structure:

R=lower alkyl optionally substituted by OH or NH2.

30. (Withdrawn) The compound, according to claim 24, wherein said compound has the following structure:

n=1 to 3

McDONNELL BOEHNEN HULBERT & BERGHOFF LLP 300 South Wacker Drive Chicago, Illinois 60606 15

Appl. No.: 10/643,699

X=O, NH, NR where R is lower alkyl
Y=optionally substituted aryl or heterocyclyl.

31. (Withdrawn) The compound, according to claim 24, wherein said compound has the following structure:

$$F \xrightarrow{\mathsf{OR}} \mathsf{OR}$$

$$\mathsf{CH}_2)_{\mathsf{n}}\mathsf{-X-Y}$$

n=0 to 2

X=0, S, SO, SO₂, NH NR or N(CH₂)_mCOOH where m is 0 or 2 Y=aryl or heterocyclyl substituted with (CH₂)_mCOOH where m is 0 to 2.

- 32. (Currently Amended) The method, according to claim-2223, wherein the patient is a human.
- 33. (Currently Amended) The method, according to claim 2223, wherein said method is used to treat a condition selected from the group consisting of hypertension, angina, ischemia, arrhythmia, congestive heart failure, and cardiac insufficiency.
- 34. (New) A method for blocking a calcium channel in a patient in need of such blocking wherein said method comprises administering to said patient a calcium channel blocking compound wherein said compound has the following structure:

wherein:

X=a bond, $(CH_2)_n$, O, S, or $O(CH_2)_n$,

wherein n=1-6:

R₁=C_{1.6} alkyl, optionally substituted with OH or NH₂:

R2=F or COOR5,

wherein R₅ is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

R3=CH3 or (CH2)n-COOR6,

wherein n=1-6 and R_d is C₁₋₆ alkyl, optionally substituted with OH or NH₂;

 $R_4 = (CH_2)_n - COR_7R_8$, $-(CH_2)_n - R_{10}R_{11}$ or

$$-(CH_2)_0$$

 $R_7=0$, NH, or NR_9 ,

R₈=optionally substituted aryl or heterocycle,

R₉=C₁₋₆ alkyl,

R₁₀=O, S, SO, SO₂, NH, or NR₁₂,

R₁₁=aryl or heterocyclyl optionally substituted with (CH₂)_nCOOR₁₄,

R₁₂=C₁₋₆ alkyl, optionally substituted with OH or NH₂,

R₁₃=C_{1.6} alkyl, optionally substituted with OH or NH₂.

R₁₄=C₁₋₆ alkyl, optionally substituted with OH or NH₂,

 $R_{15} = is H,$

 R_{17} =not present or COOR₁₈ wherein R_{18} is $C_{1.6}$ alkyl, optionally substituted with OH or NH₂, and wherein n=1-6.