

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

September 14,19, 2023

Recap: Data Mining Process

Recap: Data Preprocessing

• Data cleaning:

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

- Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Binning, Concept hierarchy generation

Similarity and Dissimilarity Measures

- Similarity measure
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data Matrix: n data points with p dimensions.
- Dissimilarity matrix: n data points, but registers only the distance.

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \cdots & \cdots & 0 \end{bmatrix}$$

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$

Proximity Measure for Nominal Attributes

- **Nominal Attributes**: Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- **Method 1**: Simple matching
 - m: number of matches, p: total number of variables;

$$-d(i,j) = \frac{p-m}{p}$$

- **Method 2**: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

Similarity Between Binary Vectors

- Common situation is that objects, x and y, have only binary attributes
- Compute similarities using the following quantities f_{01} = the number of attributes where x was 0 and y was 1 f_{10} = the number of attributes where x was 1 and y was 0 f_{00} = the number of attributes where x was 0 and y was 0 f_{11} = the number of attributes where x was 1 and y was 1
- Simple Matching and Jaccard Coefficients
 SMC = number of matches / number of attribute

```
SMC = number of matches / number of attributes
= (f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})
```

```
J = number of 11 matches / number of non-zero attributes
= (f_{11}) / (f_{01} + f_{10} + f_{11})
```

SMC versus Jaccard: Example

```
x = 1000000000
y = 0000001001
f_{01} = 2 (the number of attributes where x was 0 and y was 1)
f_{10} = 1 (the number of attributes where x was 1 and y was 0)
f_{00} = 7 (the number of attributes where x was 0 and y was 0)
f_{11} = 0 (the number of attributes where x was 1 and y was 1)
SMC = (f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})
        = (0+7) / (2+1+0+7) = 0.7
J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0
```

Cosine Similarity

If d₁ and d₂ are two document vectors, then

$$cos(d_1, d_2) = \langle d_1, d_2 \rangle / ||d_1|| ||d_2||,$$

where <d₁,d₂> indicates inner product or vector dot product of vectors, d₁ and d₂ and || d || is the length of vector d.

• Example:

$$\begin{aligned} d_1 &= \ 3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 0 \ 2 \ 0 \ 0 \\ d_2 &= \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2 \end{aligned} \\ &< d_1, \ d_2 > = \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ &| \ d_1 \ || \ = \ (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = \ (42)^{0.5} = 6.481 \\ &| \ d_2 \ || \ = \ (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = \ (6)^{0.5} = 2.449 \\ &\cos(d_1, \ d_2) = 0.3150 \end{aligned}$$

Euclidean Distance

Euclidean Distance

- Two data objects: $\mathbf{x} = [x_1, x_2, \dots, x_n] \top \in \mathbb{R}^n$ and $\mathbf{y} = [y_1, y_2, \dots, y_n] \top \in \mathbb{R}^n$
- Z-normalization (standardization) is necessary if scales differ.

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where n is the number of dimensions (attributes) and x_i and y_i are, respectively, the i^{th} attributes (components) or data objects x and y.

Euclidean Distance

• If $f(x) \in \mathbb{R}^n$ denotes the feature extracted on x and $f_i(x)$ denotes the i-th dimension.

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (f_i(x) - f_i(y))^2}$$

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Recap: Correlation

Correlation coefficient is the covariance normalized by the standard deviations of the two variables

$$corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \cdot \sigma_Y}$$

- It is also called Pearson's correlation coefficient and it is denoted $\rho(X,Y)$
- The values are in the interval [-1, 1]
- It only reflects linear dependence between variables, and it does not measure non-linear dependencies between the variables

Correlation vs Cosine vs Euclidean Distance

- Compare the three proximity measures according to their behavior under variable transformation
 - scaling: multiplication by a value
 - translation: adding a constant

Property	Cosine	Correlation	Euclidean Distance
Invariant to scaling (multiplication)	Yes	Yes	No
Invariant to translation (addition)	No	Yes	No

$$\rho(\mathbf{x}, \mathbf{y}) = cosine(\mathbf{x} - \overline{\mathbf{x}}, \mathbf{y} - \overline{\mathbf{y}},)$$

Correlation vs Cosine vs Euclidean Distance

Example

- x = (1,2,4,3,0,0,0), y = (1,2,3,4,0,0,0)
- $y_s = y * 2$ (scaled version of y)
- $y_t = y + 5$ (translated version)

Measure	(x , y)	(x , y _s)	(x, y,)
Cosine	0.9667	0.9667	0.7940
Correlation	0.9429	0.9429	0.9429
Euclidean Distance	1.4142	5.8310	14.2127

Correlation vs Cosine vs Euclidean Distance

- Choice of the right proximity measure depends on the domain
- What is the correct choice of proximity measure for the following situations?
 - Example 1: Comparing documents using the frequencies of words
 - Example 2: Comparing the temperature in Celsius of two locations
 - Example 3: Comparing two time series of temperature measured in Celsius

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$d(x,y) = (\sum_{i=1}^{n} |x_i - y_i|^r)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_i and y_i are, respectively, the ith attributes (components) or data objects x and y.

- If r = 1, City block (Manhattan, L1 norm) distance.
 - A common example of this for binary vectors is the Hamming distance, which is just the number of bits that are different between two binary vectors
- If r = 2, Euclidean Distance.
- If $r = \infty$ "supremum" (L_{max} norm, L_{∞} norm) distance, i.e., $\max_i |x_i y_i|$
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance: Examples

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Mahalanobis Distance

same Euclidean distance but different Mahalanobis distance outside cloud within cloud

Mahalanobis Distance is the distance between a point and a distribution, which is defined as:

$$d(\mathbf{x}, \overline{\boldsymbol{\mu}}) = \sqrt{(\mathbf{x} - \overline{\boldsymbol{\mu}})^T \Sigma^{-1} (\mathbf{x} - \overline{\boldsymbol{\mu}})}$$

$$\Sigma = \frac{1}{n-1} \sum (x - \overline{x}) (x - \overline{x})^T$$
 is the covariance matrix

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
- $d(\mathbf{x},\mathbf{y}) \ge 0$ for all x and y, and $d(\mathbf{x},\mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all x and y. (Symmetry)
- $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z})$ for all \mathbf{x}, \mathbf{y} , and \mathbf{z} (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

A distance that satisfies these properties is a **metric**

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$. (does not always hold, e.g., cosine)
 - $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

Information Based Measures

- Information theory is a well-developed and fundamental disciple with broad applications
- Some similarity measures are based on information theory
 - Mutual information in various versions
 - Maximal Information Coefficient (MIC) and related measures
 - General and can handle non-linear relationships
 - Can be complicated and time intensive to compute

Information and Probability

- Information relates to possible outcomes of an event, e.g., flip of a coin.
- The more certain an outcome, the less information that it contains and vice-versa
 - For example, if a coin has two heads, then an outcome of heads provides no information
 - More quantitatively, the information is related the probability of an outcome,
 - i.e., the smaller the probability of an outcome, the more information it provides and vice-versa.
 - Entropy is the commonly used measure

Entropy

- For
 - a variable (event), *X*,
 - with *n* possible values (outcomes), x_1 , x_2 ..., x_n
 - each outcome having probability, p_1 , p_2 ..., p_n
 - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and log₂n and is measured in bits
 - Thus, entropy is a measure of how many bits it takes to represent an observation of *X* on average

Entropy Examples

• For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p\log_2 p - q\log_2 q$$

- For p = 0.5, q = 0.5 (fair coin) H = 1
- For p = 1 or q = 1, H = 0

• What is the entropy of a fair four-sided die?

Entropy for Sample Data: Example

Hair Color	Count	p	$-p\log_2 p$
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

 $-0.75 \cdot \log_2(0.75) = 0.3113$ $-0.15 \cdot \log_2(0.15) = 0.4105$ $-0.05 \cdot \log_2(0.05) = 0.2161$ 0 $-0.05 \cdot \log_2(0.05) = 0.2161$ H=0.3113+0.4105+0.2161 +0+0.2161=1.1540

Maximum entropy is $log_2 5 = 2.3219$

Entropy for Sample Data

- Suppose we have
 - a number of observations (*m*) of some attribute, *X*, e.g., the hair color of students in the class,
 - where there are *n* different possible values
 - And the number of observation in the i^{th} category is m_i
 - Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

• For continuous data, the calculation is harder

Mutual Information

- Information one variable provides about another
 - Formally, I(X,Y) = H(X) + H(Y) H(X,Y), where H(X,Y) is the joint entropy of X and Y
 - $H(X,Y) = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$ Where p_{ij} is the probability that the i^{th} value of X and the j^{th} value of Y occur together
- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is $log_2(min(n_X, n_Y), where n_X(n_Y))$ is the number of values of X(Y)

Mutual Information Example

Student Status	Count	p	$-p\log_2 p$
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	0.9928

Grade	Count	p	$-p\log_2 p$
Α	35	0.35	0.5301
В	50	0.50	0.5000
С	15	0.15	0.4105
Total	100	1.00	1.4406

Student Status	Grade	Count	p	<i>-p</i> log₂ <i>p</i>
Undergrad	A	5	0.05	0.2161
Undergrad	В	30	0.30	0.5211
Undergrad	С	10	0.10	0.3322
Grad	Α	30	0.30	0.5211
Grad	В	20	0.20	0.4644
Grad	С	5	0.05	0.2161
Total		100	1.00	2.2710

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624