Power-Set Domains: U and ∩

- Consider a power-set domain.
 - As set union and intersection are monotonic functions, we can use them in systems of fixpoint equations.

Power-Set Domains: U and ∩

- Consider a power-set domain.
 - As set union and intersection are monotonic functions, we can use them in systems of fixpoint equations.
- Example:

$$f(x,y) = \{a\}$$

Equations:

$$x = f(x, y)$$
$$y = x \cup y$$

Power-Set Domains: U and ∩

- Consider a power-set domain.
 - As set union and intersection are monotonic functions, we can use them in systems of fixpoint equations.
- Example:

$$f(x,y) = \{a\}$$

Equations:

$$x = f(x, y)$$
$$y = x \cup y$$

 Can we generalize this idea to domains that are not power-sets?

- If $D = (S, \sqsubseteq)$ is a poset and $T \subseteq S$, then $\ell \in S$ is a *lower bound* of T if $\forall x \in T$. $\ell \sqsubseteq x$.
 - Example: lower bounds of $\{c, d\}$ are d and f.
- In general, a given T may have multiple lower bounds.

- If $D = (S, \sqsubseteq)$ is a poset and $T \subseteq S$, then $\ell \in S$ is a *lower bound* of T if $\forall x \in T$. $\ell \sqsubseteq x$.
 - Example: lower bounds of $\{c, d\}$ are d and f.
- In general, a given T may have multiple lower bounds.
- The *greatest lower bound* (glb) of T is the greatest element of S that is a lower bound of T, if such an element exists.
 - Caveat: The glb may not always exist. E.g., d, e, and f are all lower bounds of $\{b,c\}$, but there is no glb.

- If $D = (S, \sqsubseteq)$ is a poset and $T \subseteq S$, then $\ell \in S$ is a *lower bound* of T if $\forall x \in T$. $\ell \sqsubseteq x$.
 - Example: lower bounds of $\{c, d\}$ are d and f.
- In general, a given T may have multiple lower bounds.
- The greatest lower bound (glb) of T is the greatest element of S that is a lower bound of T, if such an element exists.
 - Caveat: The glb may not always exist. E.g., d, e, and f are all lower bounds of $\{b, c\}$, but there is no glb.
- If $glb(\{x,y\})$ exists for every pair of elements $x,y \in S$, we can define a function called meet $(\land: D \times D \to D)$ as $x \land y = glb(\{x,y\})$.

- If $D = (S, \sqsubseteq)$ is a poset and $T \subseteq S$, then $\ell \in S$ is a *lower bound* of T if $\forall x \in T$. $\ell \sqsubseteq x$.
 - Example: lower bounds of $\{c, d\}$ are d and f.
- In general, a given T may have multiple lower bounds.
- The greatest lower bound (glb) of T is the greatest element of S that is a lower bound of T, if such an element exists.
 - Caveat: The glb may not always exist. E.g., d, e, and f are all lower bounds of $\{b, c\}$, but there is no glb.
- If glb($\{x,y\}$) exists for every pair of elements $x,y \in S$, we can define a function called meet ($\Lambda: D \times D \to D$) as $x \wedge y = \text{glb}(\{x,y\})$.
- A meet semilattice is a partially ordered set in which every pair of elements has a glb.

- If $D = (S, \sqsubseteq)$ is a poset and $T \subseteq S$, then $\ell \in S$ is a *lower bound* of T if $\forall x \in T$. $\ell \sqsubseteq x$.
 - Example: lower bounds of $\{c, d\}$ are d and f.
- In general, a given T may have multiple lower bounds.
- The greatest lower bound (glb) of T is the greatest element of S that is a lower bound of T, if such an element exists.
 - Caveat: The glb may not always exist. E.g., d, e, and f are all lower bounds of $\{b, c\}$, but there is no glb.
- If glb($\{x,y\}$) exists for every pair of elements $x,y \in S$, we can define a function called meet ($\Lambda: D \times D \to D$) as $x \wedge y = \text{glb}(\{x,y\})$.
- A meet semilattice is a partially ordered set in which every pair of elements has a glb.
- Analogous notions:
 - upper bounds, least upper bounds, join (V), join semilattice.

- If $D = (S, \sqsubseteq)$ is a poset and $T \subseteq S$, then $\ell \in S$ is a *lower bound* of T if $\forall x \in T$. $\ell \sqsubseteq x$.
 - Example: lower bounds of $\{c, d\}$ are d and f.
- In general, a given T may have multiple lower bounds.
- The greatest lower bound (glb) of T is the greatest element of S that is a lower bound of T, if such an element exists.
 - Caveat: The glb may not always exist. E.g., d, e, and f are all lower bounds of $\{b, c\}$, but there is no glb.
- If glb($\{x,y\}$) exists for every pair of elements $x,y \in S$, we can define a function called meet ($\Lambda: D \times D \to D$) as $x \wedge y = \text{glb}(\{x,y\})$.
- A meet semilattice is a partially ordered set in which every pair of elements has a glb.
- Analogous notions:
 - upper bounds, least upper bounds, join (V), join semilattice.
- A lattice is a poset that is both a meet and a join semilattice. We write $L = (D, \sqsubseteq, \land, \lor)$.

• The powerset of a finite set under subset ordering is a canonical example of a lattice, with $\bot = \emptyset$, $\land = \cap$, and $\lor = \cup$.

- The powerset of a finite set under subset ordering is a canonical example of a lattice, with $\bot = \emptyset$, $\land = \cap$, and $\lor = \cup$.
- If you "flip" this lattice over, you get another lattice, in which $\bot = \{a, b, c\}$, $\land = \cup$, and $\lor = \cap$.

- The powerset of a finite set under subset ordering is a canonical example of a lattice, with $\bot = \emptyset$, $\land = \cap$, and $\lor = \cup$.
- If you "flip" this lattice over, you get another lattice, in which $\bot = \{a, b, c\}$, $\land = \cup$, and $\lor = \cap$.
- Another canonical example of a lattice is the set of divisors of a composite number under "is-a-divisor-of" ordering, with meet being GCD and join being LCM.

- The powerset of a finite set under subset ordering is a canonical example of a lattice, with $\bot = \emptyset$, $\land = \cap$, and $\lor = \cup$.
- If you "flip" this lattice over, you get another lattice, in which $\bot = \{a, b, c\}$, $\land = \cup$, and $\lor = \cap$.
- Another canonical example of a lattice is the set of divisors of a composite number under "is-a-divisor-of" ordering, with meet being GCD and join being LCM.

- Examples of posets that are not lattices
 - See previous slide.