

LibXil SKey for Zynq-7000 UltraScale and Zynq UltraScale+ MPSoC AP SoC Devices (v6.1)

Overview

The LibXil SKey library provides a programming mechanism for user-defined eFUSE bits and for programming the KEY into battery-backed RAM (BBRAM) of Zynq® SoC, provides programming mechanisms for eFUSE bits and BBRAM key of UltraScale[™] and the Zynq® UltraScale+[™] MPSoC devices.

In Zyng:

- PS eFUSE holds the RSA primary key hash bits and user feature bits, which can enable or disable some Zyng®-7000 processor features.
- PL eFUSE holds the AES key, the user key, and some of the feature bits.
- BBRAM holds the AES key.

In UltraScale™:

- PL eFuse holds the AES key, the user key, RSA key hash and some of the feature bits.
- PL BBRAM holds AES key.

In Zyng® UltraScale+™ MPSoC:

PS eFUSE holds the AES key, the user key, PPK0 and PPK1 hash, SPK ID, JTAG user code and some user feature bits, which can be used to enable or disable some Zynq UltraScale+ MPSoC features. BBRAM holds the AES key.

The following user application (example) files are provided:

- xilskey_bbram_example.c file lets you write the key to BBRAM of Zyng.
- xilskey_efuse_example.c file lets you write into the PS/PL eFUSE of Zynq and Ultrascale.
- xilskey_efuseps_zynqmp_example.c file lets you write into eFUSE PS of Zynq UltraScale+ MPSoC.
- xilskey_bbramps_zynqmp_example.c file lets you write BBRAM key of Zynq UltraScale+ MPSoC.
- xilskey_bbram_ultrascale_example.c file lets you write BBRAM key of UltraScale.
- xilskey_puf_registration.c file lets you to do PUF (Physically Uncloneable Function) registration, generate Black key (encrypted AES key with PUF helper data) and program eFUSe with Black key and PUF data.

Caution! Make sure to enter the correct information before writing or "burning" eFUSE bits. Once burned, they cannot be changed. The BBRAM key can be programmed any number of times.

Note: POR reset is required for the eFUSE values to be recognized.

SDK Project File and Folders

 $\label{thm:condition} \textbf{Table 1} \ \ \textbf{lists the eFUSE application SDK project files, folders, and macros.}$

Table 1: eFUSE SDK Application Project Files

File or Folder	Description
xilskey_efuse_example.c	Contains the main application code. Does the PS/PL structure initialization and writes/reads the PS/PL eFUSE based on the user settings provided in the xilskey_input.h.
xilskey_input.h	Contains all the actions that are supported by the eFUSE library. Using the preprocessor directives given in the file, you can read/write the bits in the PS/PL eFUSE. More explanation of each directive is provided in the following sections. Burning or reading the PS/PL eFUSE bits is based on the values set in the xilskey_input.h file. Also contains GPIO pins and channels connected to MASTER JTAG primitive and hardware module to access Ultrascale eFUSE In this file, specify the 256 bit key to be programmed into BBRAM.
	In this file, specify the AES(256 bit) key, User (32 bit and 128 bit) keys and RSA key hash(384 bit) key to be programmed into eFuse of UltraScale.
XSK_EFUSEPS_DRIVER	Define to enable the writing and reading of PS eFUSE.
XSK_EFUSEPL_DRIVER	Define to enable the writing of PL eFUSE.
xilskey_bbram_example.c	Contains the example to program a key into BBRAM and verify the key.
	Note: This algorithm only works when programming and verifying key are both done, in that order.
xilskey_efuseps_zynqmp_example.c	Contains the example code to program the PS eFUSE and read back of eFUSE bits from the cache.
xilskey_efuseps_zynqmp_input.h	Contains all the inputs supported for eFUSE PS of Zynq UltraScale+ MPSoC. eFUSE bits are programmed based on the inputs from the xilskey_efuseps_zynqmp_input.h file.
xilskey_bbramps_zynqmp_example.c	Contains the example code to program and verify BBRAM key. Default is zero. You can modify this key on top of the file.
xilskey_bbram_ultrascale_example.c	Contains example code to program and verify BBRAM key of UltraScale.
	Note: Programming and verification of BBRAM key cannot be done separately.
xilskey_bbram_ultrascale_input.h	Contains all the preprocessor directives you need to provide. In this file, specify BBRAM AES key or Obfuscated AES key to be programmed, DPA protection enable and, GPIO pins and channels connected to MASTER JTAG primitive.
xilskey_puf_registration.c	Contains all the PUF related code. This example illustrates PUF registration and generating black key and programming eFUSE with PUF helper data, CHash and Auxilary data along with the Black key.
xilskey_puf_registration.h	Contains all the preprocessor directives based on which read/write the eFUSE bits and Syndrome data generation. More explanation of each directive is provided in the following sections.

User-Configurable Zynq PS eFUSE Parameters

Define the $XSK_EFUSEPS$ DRIVER macro to use the PS eFUSE. After defining the macro, provide the inputs defined with $XSK_EFUSEPS$ to burn the bits in PS eFUSE.

If the bit is to be burned, define the macro as \mathtt{TRUE} ; otherwise define the macro as \mathtt{FALSE} . See Table 2.

Table 2: User Configurable Zyng PS eFUSE Parameters

Macro Name	Description
XSK_EFUSEPS_ENABLE_WRITE_PROTECT	Default = FALSE. TRUE to burn the write-protect bits in eFUSE array. Write protect has two bits. When either of the bits is burned, it is considered write-protected. So, while burning the write-protected bits, even if one bit is blown, write API returns success. As previously mentioned, POR reset is required after burning for write protection of the eFUSE bits to go into effect. It is recommended to do the POR reset after write protection.
	Also note that, after write-protect bits are burned, no more eFUSE writes are possible. If the write-protect macro is TRUE with other macros, write protect is burned in the last iteration, after burning all the defined values, so that for any error while burning other macros will not effect the total eFUSE array. FALSE does not modify the write-protect bits.
XSK_EFUSEPS_ENABLE_RSA_AUTH	Default = FALSE. Use TRUE to burn the RSA enable bit in the PS eFUSE array. After enabling the bit, every successive boot must be RSA-enabled apart from JTAG. Before burning (blowing) this bit, make sure that eFUSE array has the valid PPK hash. If the PPK hash burning is enabled, only after writing the hash successfully, RSA enable bit will be blown. For the RSA enable bit to take effect, POR reset is required. FALSE does not modify the RSA enable bit.
XSK_EFUSEPS_ENABLE_ROM_128K_CRC	Default = FALSE. TRUE burns the ROM 128K CRC bit. In every successive boot, BootROM calculates 128k CRC. FALSE does not modify the ROM CRC 128K bit.
XSK_EFUSEPS_ENABLE_RSA_KEY_HASH	Default = FALSE. TRUE burns (blows) the eFUSE hash, that is given in XSK_EFUSEPS_RSA_KEY_HASH_VALUE when write API is used. TRUE reads the eFUSE hash when the read API is used and is read into structure. FALSE ignores the provided value.
XSK_EFUSEPS_RSA_KEY_HASH_VALUE	00000000000000000000000000000000000000

Table 2: User Configurable Zynq PS eFUSE Parameters (Cont'd)

Macro Name	Description
XSK_EFUSEPS_DISABLE_DFT_JTAG	Default = FALSE TRUE disables DFT JTAG permanently. FALSE will not modify the eFuse PS DFT JTAG disable bit
XSK_EFUSEPS_DISABLE_DFT_MODE	Default = FALSE TRUE disables DFT mode permanently. FALSE will not modify the eFuse PS DFT mode disable bit

Table 3 shows the user-configurable PL eFUSE parameters.

User-Configurable Zynq PL eFUSE

Zynq PL eFUS Parameters

Table 3:	User-Configurable Zynq PL eFUSE Parameters
----------	---

Macro Name	Definition
XSK_EFUSEPL_FORCE_PCYCLE_RECONFIG	Default = FALSE. If the value is set to TRUE, then the part has to be power-cycled to be reconfigured. FALSE does not set the eFUSE control bit.
XSK_EFUSEPL_DISABLE_KEY_WRITE	Default = FALSE. TRUE disables the eFUSE write to FUSE_AES and FUSE_USER blocks. FALSE does not affect the EFUSE bit.
XSK_EFUSEPL_DISABLE_AES_KEY_READ	Default = FALSE. TRUE disables the write to FUSE_AES and FUSE_USER key and disables the read of FUSE_AES. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_USER_KEY_READ	Default = FALSE. TRUE disables the write to FUSE_AES and FUSE_USER key and disables the read of FUSE_USER. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_FUSE_CNTRL_WRITE	Default = FALSE. TRUE disables the eFUSE write to FUSE_CTRL block. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_FORCE_USE_AES_ONLY	Default = FALSE. TRUE forces the use of secure boot with eFUSE AES key only. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_JTAG_CHAIN	Default = FALSE. TRUE permanently disables the Zynq ARM DAP and PL TAP. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_BBRAM_KEY_DISABLE	Default = FALSE. TRUE forces the eFUSE key to be used if booting Secure Image. FALSE does not affect the eFUSE bit.

MIO Pins for Zynq PL JTAG Operations

You can change the listed pins at your discretion. See Table 4.

Table 4: MIO Pins for PL JTAG

Pin Name	Pin Number ¹
XSK_EFUSEPL_MIO_JTAG_TDI	(17)
XSK_EFUSEPL_MIO_JTAG_TDO	(18)
XSK_EFUSEPL_MIO_JTAG_TCK	(19)
XSK_EFUSEPL_MIO_JTAG_TMS	(20)

Notes:

MUX

The following subsections describe MUX usage, the MUX selection pin, and the MUX parameter.

MUX Usage Requirements

To write the PL eFUSE using a driver you must:

- Use four MIO lines (TCK,TMS,TDO,TDI)
- Connect the MIO lines to a JTAG port

If you want to switch between the external JTAG and JTAG operation driven by the MIOs, you must:

- Include a MUX between the external JTAG and the JTAG operation driven by the MIOs
- Assign a MUX selection PIN

To rephrase, to select JTAG for PL EFUSE writing, you must define the following:

- The MIOs used for JTAG operations (TCK,TMS,TDI,TDO), shown in Table 4.
- The MIO used for the MUX Select Line, shown in Table 5.
- The Value on the MUX Select line, shown in Table 6, to select JTAG for PL eFUSE writing.

Figure 1 illustrates correct MUX usage.

5

^{1.} The pin numbers listed are examples. You must assign appropriate pin numbers per your hardware design.

X-Ref Target - Figur

Figure 1: MUX Usage

Note: If you use the Vivado Device Programmer tool to burn PL eFUSEs, there is no need for MUX circuitry or MIO pins.

Selection Pin

Table 5 shows the MUX selection pin.

Table 5: MUX Selection Pin

Pin Name	Pin Number	Description
XSK_EFUSEPL_MIO_JTAG_MUX_SELECT	(21)	This pin toggles between the external JTAG or MIO driving JTAG operations.

MUX Parameter

Table 6 shows the MUX parameter.

Table 6: MUX Parameter

Parameter Name	Description
XSK_EFUSEPL_MIO_MUX_SEL_DEFAULT_VAL	Default = LOW. LOW writes zero on the MUX select line before PL_eFUSE writing. HIGH writes one on the MUX select line before PL_eFUSE writing.

AES and User Key Parameters

Table 7 shows the AES and user key parameters.

Table 7: AES and User Key Parameters

Parameter Name	Description
XSK_EFUSEPL_PROGRAM_AES_AND_USER_LOW_KEY	Default = FALSE. TRUE burns the AES and User Low hash key, which are given in the XSK_EFUSEPL_AES_KEY and the XSK_EFUSEPL_USER_LOW_KEY respectively. FALSE ignores the provided values. You cannot write the AES Key and the User Low Key separately.
XSK_EFUSEPL_PROGRAM_USER_HIGH_KEY	Default =FALSE. TRUE burns the User High hash key, given in XSK_EFUSEPL_PROGRAM_USER_HIGH_KEY. FALSE ignores the provided values.
XSK_EFUSEPL_AES_KEY	Default = 00000000000000000000000000000000000
	This value converted to hex buffer and written into the PL eFUSE array when write API is used. This value should be the AES Key, given in string format. It must be 64 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered an invalid string and will not burn AES Key.
	To write AES Key, XSK_EFUSEPL_PROGRAM_AES_ AND_USER_LOW_KEY must have a value of TRUE.
XSK_EFUSEPL_USER_LOW_KEY	Default = 00 This value is converted to a hexadecimal buffer and written into the PL eFUSE array when the write API is used. This value is the User Low Key given in string format.
	It must be two characters long; valid characters are 0-9,a-f, and A-F. Any other character is considered as an invalid string and will not burn the User Low Key.
	To write the User Low Key, XSK_EFUSEPL_PROGRAM_AES_AND_USER_LOW_KEY must have a value of TRUE.
XSK_EFUSEPL_USER_HIGH_KEY	Default = "000000"
	The default value is converted to a hexadecimal buffer and written into the PL eFUSE array when the write API is used. This value is the User High Key given in string format.
	The buffer must be six characters long: valid characters are 0-9,a-f, A-F.
	Any other character is considered to be an invalid string and does not burn User High Key.
	To write the User High Key, the XSK_EFUSEPL_PROGRAM_ USER_HIGH_KEY must have a value of TRUE.

Zynq User-Configurable BBRAM Parameters

MIO Pins Used for PL JTAG Signals

The MIO pins shown in Table 8 are used for PL JTAG signals. These can be changed depending on your hardware

Table 8: MIO Pins Used for PL JTAG Signals

JTAG Signal	PIN Number
XSK_BBRAM_MIO_JTAG_TDI	17
XSK_BBRAM_MIO_JTAG_TDO	21
XSK_BBRAM_MIO_JTAG_TCK	19
XSK_BBRAM_MIO_JTAG_TMS	20

MUX Parameter

Table 9 shows the MUX parameter.

Table 9: MUX Parameter

Parameter	Default Value	Description
XSK_BBRAM_MIO_MUX_SEL_DEFAULT_VAL	LOW	Default value to enable the PL JTAG.

AES Key and Related Parameters

Table 10 shows the AES key and related parameters.

Table 10: AES Key and Related Parameters

Parameter Name	Default Value	Description
XSK_BBRAM_AES_KEY	XX	AES key (in HEX) that must be programmed into BBRAM.
XSK_BBRAM_AES_KEY_SIZE_IN_BITS	256	Size of AES key. Must be 256 bits.
XSK_BBRAM_PGM_OBFUSCATED_KEY	FALSE	Default value is FALSE. Setting the value to TRUE programs BBRAM with the Obfuscated key provided in XSK_BBRAM_OBFUSCATED_KEY, DPA protection feature cannot be enabled and the value provided in the XSK_BBRAM_DPA_PROTECT_ENABLE macro be ignored. Setting the value to FALSE programs BBRAM with key provided in XSK_BBRAM_AES_KEY and DPA protection can be enabled or disabled.
XSK_BBRAM_OBFUSCATED_KEY	xx	The Obfuscated key that must be programmed into BBRAM when XSK_BBRAM_PGM_OBFUSCATED_KEY is TRUE.
XSK_BBRAM_DPA_PROTECT_ENABLE	FALSE	Default value is False. Setting the value to TRUE will enable DPA protection for BBRAM key, values provided at XSK_BBRAM_DPA_COUNT and XSK_BBRAM_DPA_MODE will be considered otherwise they are ignored. DPA protection cannot be enable for Obfuscated key.

Table 10: AES Key and Related Parameters (Cont'd)

Parameter Name	Default Value	Description
XSK_BBRAM_DPA_COUNT	0	Default value is 0. This value is considered only when macro XSK_BBRAM_DPA_PROTECT_ENABLE is TRUE. Valid range is 1 to 255.
XSK_BBRAM_DPA_MODE	XSK_BBRAM_INVALID_ CONFIGURATIONS	Default value is XSK_BBRAM_INVALID_CONFIGURATIONS This value will be considered only when XSK_BBRAM_DPA_PROTECT_ENABLE is TRUE. Valid inputs are XSK_BBRAM_INVALID_CONFIGURATIONS or XSK_BBRAM_ALL_CONFIGURATIONS

User-Configurable eFuse Parameters of UltraScale

Table 11 shows the user-configurable eFuse parameters.

Table 11: User-Configurable eFuse Parameters

Parameter	Default Value	Description
XSK_EFUSEPL_DISABLE_AES_KEY_READ	FALSE	TRUE permanently disables AES CRC check and programming of the AES key. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_USER_KEY_READ	FALSE	TRUE permanently disables reading and programming of 32 bit User key. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_SECURE_READ	FALSE	TRUE permanently disables reading and programming of Secure bits. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_FUSE_CNTRL_WRITE	FALSE	Default = FALSE. TRUE permanently disables programming of Control bits FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_RSA_KEY_READ	FALSE	Default = FALSE. TRUE permanently disables reading and programming of RSA hash key. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_KEY_WRITE	FALSE	Default = FALSE. TRUE permanently disables programming of AES key FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_USER_KEY_WRITE	FALSE	Default = FALSE. TRUE permanently disables programming of 32 bit User key. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_SECURE_WRITE	FALSE	Default = FALSE. TRUE permanently disables programming of Secure bits FALSE does not affect the eFUSE bit.

Table 11: User-Configurable eFuse Parameters (Cont'd)

Parameter	Default Value	Description
XSK_EFUSEPL_DISABLE_RSA_HASH_WRITE	FALSE	Default = FALSE. TRUE permanently disables programming of RSA key Hash. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_128BIT_USER_KEY_ WRITE	FALSE	Default = FALSE. TRUE permanently disables programming 128 bit User key. FALSE does not affect the eFUSE bit
Secure bits		
XSK_EFUSEPL_ALLOW_ENCRYPTED_ONLY	FALSE	Default = FALSE. TRUE permanently forces to use only encrypted bitstreams. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_FORCE_USE_FUSE_AES_ONLY	FALSE	Default = FALSE. TRUE permanently forces to use secure boot with eFUSE key only. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_ENABLE_RSA_AUTH	FALSE	Default = FALSE. TRUE will permanently enable RSA authentication of bitstream. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_JTAG_CHAIN	FALSE	Default = FALSE. TRUE permanently sets the Ultrscale device in bypass mode. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_TEST_ACCESS	FALSE	Default = FALSE. TRUE permanently disables test access for UltraScale. FALSE does not affect the eFUSE bit.
XSK_EFUSEPL_DISABLE_AES_DECRYPTOR	FALSE	Default = FALSE. TRUE permanently disables AES decryptor. FALSE does not affect the eFUSE bit.

GPIO Pins Used for PL Master JTAG Signal

The following GPIO pins are used for PL master JTAG signals. These can be changed depending on your hardware. Table 12 shows the GPIO pins used for PL JTAG signals.

Table 12: GPIO Pins Used for PL JTAG Signals

Master JTAG Signal	PIN Number (Default)
XSK_EFUSEPL_AXI_GPIO_JTAG_TDO	0
XSK_EFUSEPL_AXI_GPIO_JTAG_TDI	0
XSK_EFUSEPL_AXI_GPIO_HWM_READY	1
XSK_EFUSEPL_AXI_GPIO_HWM_END	2
XSK_EFUSEPL_AXI_GPIO_JTAG_TMS	1
XSK_EFUSEPL_AXI_GPIO_JTAG_TCK	2
XSK_EFUSEPL_AXI_GPIO_HWM_START	3

GPIO Channels

Table 13 shows GPIO channel number.

Table 13: GPIO Channel Numbers

Parameter	Channel Number (Default)
XSK_EFUSEPL_GPIO_INPUT_CH	2
XSK_EFUSEPL_GPIO_OUTPUT_CH	1

Note: GPIO input (Master JTAG's TDO, Hardware module's READY and END) and output (Hardware module's START, Master JTAG's TDI, TMS and TCK) signals can belongs to same channel *or* inputs in one channel and outputs in the other channel. But some inputs in one channel and others in different channels are not accepted in this library.

Keys and Related Parameters

Table 14 shows AES key and related parameters.

Table 14: AES Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPL_PROGRAM_AES_KEY	FALSE	Default = FALSE If TRUE will program the AES key provided in the macro XSK_EFUSEPL_AES_KEY into eFUSE. FALSE ignores the provided values in XSK_EFUSEPL_AES_KEY
XSK_EFUSEPL_AES_KEY	00000000000 000000000000 00000000000 0000	Default = 00000000000000000000000000000000000
XSK_EFUSEPL_CHECK_AES_KEY_CRC	FALSE	Default = FALSE If TRUE will perform CRC check of AES key with provided CRC of estimated AES key in macro XSK_EFUSEPL_CRC_OF_EXPECTED_AES_KEY FALSE ignores the provided values
XSK_EFUSEPL_CRC_OF_EXPECTED_AES_KEY	0x621C42AA	Default is 0x621C42AA. This is the 32 bit hexadecimal CRC value of AES key. 0x621C42AA is CRC of AES key all zeros. In this place have to provide CRC of AES key. The result will be saved in PL instance parameter AESKeyMatched

Table 15 shows 32 bit user key and related parameters.

Table 15: 32 bit User Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPL_PROGRAM_USER_KEY	FALSE	Default = FALSE If TRUE will program the User key provided in the macro XSK_EFUSEPL_USER_KEY into eFUSE. FALSE ignores the provided values in XSK_EFUSEPL_USER_KEY
XSK_EFUSEPL_USER_KEY	0000000	This value converted to hex buffer and written into the PL eFUSE array when write API is used. This value should be the User Key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered an invalid string and will not burn User Key. To write USER Key, XSK_EFUSEPL_PROGRAM_USER_KEY_must have a value of TRUE.
XSK_EFUSEPL_READ_USER_KEY	FALSE	Default = False. TRUE will read the 32 bit user key of eFUSE and store it in PL instance. FALSE will not read the 32 bit user key.

Table 16 shows 128 bit user key and related parameters.

Table 16: 128 bit User Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPL_PROGRAM_USER_KEY_128B IT	FALSE	Default = FALSE If TRUE will program the 128 bit User key provided in the macros XSK_EFUSEPL_USER_KEY_128BIT_* into eFUSE FALSE ignores the provided values in XSK_EFUSEPL_USER_KEY_128BIT_*
XSK_EFUSEPL_USER_KEY_128BIT_0	0000000	This value converted to hex buffer and written into the PL eFUSE array when write API is called. This Value should be the User key, given in string format. It must be 8 character long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn eFUSE. This macro holds 31:0 bits of 128 bit User key. To write 128 bit user key XSK_EFUSEPL_PROGRAM_USER_KEY_128BIT must have a value of TRUE.
XSK_EFUSEPL_USER_KEY_128BIT_1	0000000	This value converted to hex buffer and written into the PL eFUSE array when write API is called. This Value should be the User key, given in string format. It must be 8 character long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn eFUSE. This macro holds 63:32 bits of 128 bit User key. To write 128 bit user key XSK_EFUSEPL_PROGRAM_USER_KEY_128BIT must have a value of TRUE.

12

Table 16: 128 bit User Key and Related Parameters (Cont'd)

Parameter Name	Default Value	Description
XSK_EFUSEPL_USER_KEY_128BIT_2 00000000	This value converted to hex buffer and written into the PL eFUSE array when write API is called. This Value should be the User key, given in string format. It must be 8 character long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn eFUSE. This macro holds 95:64 bits of 128 bit User key.	
		To write 128 bit user key XSK_EFUSEPL_PROGRAM_USER_KEY_128BIT must have a value of TRUE.
XSK_EFUSEPL_USER_KEY_128BIT_3	0000000	This value converted to hex buffer and written into the PL eFUSE array when write API is called. This Value should be the User key, given in string format. It must be 8 character long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn eFUSE.
		This macro holds 127:96 bits of 128 bit User key. To write 128 bit user key XSK_EFUSEPL_PROGRAM_USER_KEY_128BIT must have a value of TRUE.
XSK_EFUSEPL_READ_USER_KEY128_BIT	FALSE	Default value is FALSE TRUE will read 128 bit user key of eFUSE and store it in PL instance. FALSE will not read the 12 bit user key.

Note: Single bit programming facility is provided for both 32 and 128 bit USER keys, library throws an error if user requested to program a non-zero bit to zero. For ease of use whole 128 bit of User key has broken into 4 macros.

Table 17 shows the RSA hash key and related parameters.

Table 17: RSA Hash Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPL_PROGRAM_RSA_KEY_HASH	FALSE	Default = FALSE If TRUE will program the RSA key hash provided in the macro XSK_EFUSEPL_RSA_KEY_HASH_VALUE into eFUSE. FALSE ignores the provided values in XSK_EFUSEPL_RSA_KEY_HASH_VALUE
XSK_EFUSEPL_RSA_KEY_HASH_VALUE	0000000000 00000000000 0000000000 000000	Default = 00000000000000000000000000000000000
XSK_EFUSEPL_READ_RSA_KEY_HASH	FALSE	Default = Read. TRUE will reads RSA key hash of eFUSE and stores in PL instance. FALSE will not read the user key.

www.xilinx.com

User-Configurable BBRAM Parameters of UltraScale

Following parameters need to be configured. Based on your inputs, BBRAM is programmed with the provided AES key.

GPIO Pins Used for PL Master JTAG Signal

The following GPIO pins are used for PL master JTAG signals. These can be changed depending on your hardware. Table 18 shows the GPIO pins used for PL MASTER JTAG signals.

Table 18: GPIO Pins Used for PL JTAG Signals

Master JTAG Signal	PIN Number (Default)
XSK_BBRAM_AXI_GPIO_JTAG_TDO	0
XSK_BBRAM_AXI_GPIO_JTAG_TDI	0
XSK_BBRAM_AXI_GPIO_JTAG_TMS	1
XSK_EFUSEPL_AXI_GPIO_JTAG_TCK	2

GPIO Channels

Table 19 shows GPIO channel number.

Table 19: GPIO Channel Numbers

Parameter	Channel Number (Default)
XSK_BBRAM_GPIO_INPUT_CH	2
XSK_BBRAM_GPIO_OUTPUT_CH	1

Note: GPIO input (TDO) and output (TDI, TMS and TCK) signals can belongs to same channel *or* inputs in one channel and outputs in the other channel. But some inputs in one channel and others in different channels are not accepted in this library.

Keys and Related Parameters

Table 20 shows AES key and related parameters.

Table 20: AES Key and Related Parameters

Parameter Name	Default Value	Description
XSK_BBRAM_AES_KEY	XX	AES key (in HEX) that must be programmed into BBRAM.
XSK_BBRAM_AES_KEY_SIZE_IN_BITS	256	Size of AES key. Must be 256 bits.
XSK_BBRAM_PGM_OBFUSCATED_KEY	FALSE	Default = FALSE. when XSK_BBRAM_PGM_OBFUSCATED_KEY is FALSE, BBRAM is programmed with a non-obfuscated key provided in XSK_BBRAM_AES_KEY and DPA protection can be either in enabled/disabled state. If TRUE programs the BBRAM with key provided in XSK_BBRAM_OBFUSCATED_KEY and DPA protection cannot be enabled.
XSK_BBRAM_OBFUSCATED_KEY	XX	This is an Obfuscated key(in HEX) of length 256 bits that has to be programmed into BBRAM when XSK_BBRAM_PGM_OBFUSCATED_KEY is TRUE.

Table 21 shows DPA protection for BBRAM Key related parameters.

Note: Below inputs are valid only when BBRAM is programmed with a non-obfuscated key.

Table 21: DPA Protection for BBRAM key

Parameter Name	Default Value	Description
		Default = FALSE
		FALSE will not enable DPA protection.
XSK_BBRAM_DPA_PROTECT_ENABLE	FALSE	TRUE will enable DPA protection with provided DPA count and configuration in XSK_BBRAM_DPA_COUNT and XSK_BBRAM_DPA_MODE respectively.
		DPA protection cannot be enabled if BBRAM is programming with an Obfuscated key.
		This input is valid only when DPA protection is enabled.
XSK_BBRAM_DPA_COUNT	0	Valid range of values are 1 -255 when DPA protection is enabled else 0.
	XSK_BBRAM_IN VALID_CONFIG URATIONS	Default value is XSK_BBRAM_INVALID_CONFIGURATIONS
XSK_BBRAM_DPA_MODE		when DPA protection is enabled DPA mode can be XSK_BBRAM_INVALID_CONFIGURATIONS or XSK_BBRAM_ALL_CONFIGURATIONS. If DPA protection is disabled this input value is ignored.

UserConfigurable
eFuse PS
Parameters of
Zynq
UltraScale+
MPSoC

Table 22 shows the user-configurable eFuse parameters of Zynq UltraScale+ MPSoC.

Table 22: User-Configurable eFuse PS Parameters of Zynq UltraScale+ MPSoC

Parameter	Default Value	Description
XSK_EFUSEPS_AES_RD_LOCK	FALSE	TRUE permanently disables the CRC check of FUSE_AES.
		FALSE does not modify this control bit of eFuse.
XSK_EFUSEPS_AES_WR_LOCK	FALSE	TRUE permanently disables the writing to FUSE_AES block.
		FALSE does not modify this control bit of eFuse.
XSK_EFUSEPs_FORCE_USE_AES_ONLY	FALSE	TRUE permanently disables encrypted booting only using the Fuse key.
		FALSE does not modify this control bit of eFuse.
XSK_EFUSEPS_BBRAM_DISABLE	FALSE	TRUE permanently disables the BBRAM key.
		FALSE does not modify this control bit of eFuse.
XSK_EFUSEPS_ERR_OUTOF_PMU_DISABLE	FALSE	TRUE permanently disables the error output from the PMU.
		FALSE does not modify this control bit of eFuse.
XSK_EFUSEPS_JTAG_DISABLE		TRUE permanently disables JTAG controller.
	FALSE	FALSE does not modify this control bit of eFuse.
XSK_EFUSEPS_DFT_DISABLE		TRUE permanently disables DFT boot mode.
	FALSE	FALSE does not modify this control bit of eFuse.

Table 22: User-Configurable eFuse PS Parameters of Zynq UltraScale+ MPSoC (Cont'd)

TRUE permanently disables PROG_GATE 0 feature in PPD. FALSE does not modify this control bit of eFuse. XSK_EFUSEPS_PROG_GATE_1_DISABLE FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables PROG_GATE 1 feature in PPD. FALSE does not modify this control bit of eFuse. TRUE permanently disables PROG_GATE 2 feature in PPD. FALSE does not modify this control bit of eFuse. TRUE permanently disables reboot into JTAG mode when doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPKO efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPKO. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPKO. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not	Parameter	Default Value	Description
PALSE PPD. FALSE does not modify this control bit of eFuse. TRUE permanently disables PROG_GATE 2 feature in PPD. FALSE does not modify this control bit of eFuse. TRUE permanently disables reboot into JTAG mode when doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanen	XSK_EFUSEPS_PROG_GATE_0_DISABLE	FALSE	PPD.
TRUE permanently disables PROG_GATE 2 feature in PPD. TALSE does not modify this control bit of eFuse. TRUE permanently disables reboot into JTAG mode when doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables reboot into JTAG mode when doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanentl	XSK_EFUSEPS_PROG_GATE_1_DISABLE	FALSE	PPD.
XSK_EFUSEPS_PROG_GATE_2_DISABLE FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables reboot into JTAG mode when doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes pPK0. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disa			,
TRUE permanently disables reboot into JTAG mode when doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER 6 efuses. FALSE does not modify this control bit of eFuse.	XSK_EFUSEPS_PROG_GATE_2_DISABLE	FALSE	PPD.
ASK_EFUSEPS_SECURE_LOCK FALSE doing a secure lockdown. FALSE does not modify this control bit of eFuse. TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not m			,
TRUE permanently disables RSA authentication during boot. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. FALSE does not modify this control bit of eFuse.	XSK_EFUSEPS_SECURE_LOCK	FALSE	doing a secure lockdown.
XSK_EFUSEPS_PPK0_WR_LOCK FALSE TRUE permanently disables writing to PPK0 efuses. TRUE permanently revokes PPK0. TRUE permanently revokes PPK0. FALSE TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse.			,
FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to PPK0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse.	XSK EFTISEDS RSA ENABLE	FALSE	
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK0. FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse.		111101	FALSE does not modify this control bit of eFuse.
TRUE permanently revokes PPK0. EALSE does not modify this control bit of eFuse. TRUE permanently disables writing PPK1 efuses. FALSE TRUE permanently revokes PPK0. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse.	Way Dayana Daya In Loay	DAT CE	TRUE permanently disables writing to PPK0 efuses.
TRUE permanently disables writing to USER_0 efuses. TRUE permanently disables writing PPK1 efuses. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_PPKU_WR_LOCK	FALSE	FALSE does not modify this control bit of eFuse.
TRUE permanently disables writing PPK1 efuses. TRUE permanently disables writing PPK1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse.	ACK EBIICEDC DDAU DEMOKE	FALSE	TRUE permanently revokes PPK0.
FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_PPKU_REVOKE		FALSE does not modify this control bit of eFuse.
FALSE does not modify this control bit of eFuse. XSK_EFUSEPS_PPK1_REVOKE FALSE TRUE permanently revokes PPK1. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse.	XSK_EFUSEPS_PPK1_WR_LOCK	FALSE	TRUE permanently disables writing PPK1 efuses.
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_0 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. FALSE does not modify this control bit of eFuse.			FALSE does not modify this control bit of eFuse.
TRUE permanently disables writing to USER_0 efuses. **TRUE permanently disables writing to USER_1 efuses.** **TRUE permanently disables writing to USER_1 efuses.** **TRUE permanently disables writing to USER_1 efuses.** **TRUE permanently disables writing to USER_2 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_2 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_3 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_3 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_4 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_5 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_6 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_6 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_6 efuses.** **FALSE does not modify this control bit of eFuse.** **TRUE permanently disables writing to USER_7 efuses.** **TRUE permanently disabl	XSK EFIISEDS DDK1 REVOKE	FALSE	
FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.			FALSE does not modify this control bit of eFuse.
TRUE permanently disables writing to USER_1 efuses. TRUE permanently disables writing to USER_1 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.	XSK EFUSEPS USER WRLK 0	FALSE	
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_2 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.			,
FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_USER_WRLK_1	FALSE	
TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_3 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses.	ACA EBIICEDO HOLA 3	ENTOE	TRUE permanently disables writing to USER_2 efuses.
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_4 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.	ASK_EFUSEPS_USER_WRLK_2	FALSE	FALSE does not modify this control bit of eFuse.
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_USER_WRLK_3	FALSE	
TRUE permanently disables writing to USER_5 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses. TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_USER_WRLK_4	FALSE	
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_6 efuses. FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses.			,
FALSE FALSE does not modify this control bit of eFuse. TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_USER_WRLK_5	FALSE	
TRUE permanently disables writing to USER_7 efuses.	XSK_EFUSEPS_USER_WRLK_6	FALSE	
YCK FFIICFDC IICFD WDI.K '/ FAI.CF I FAI.CF			,
	XSK_EFUSEPS_USER_WRLK_7	FALSE	FALSE does not modify this control bit of eFuse.

Keys and Related Parameters

Table 23 shows AES key and related parameters.

Table 23: AES Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPS_WRITE_AES_KEY	FALSE	Default = FALSE
		If TRUE, programs the AES key provided in the macro XSK_EFUSEPS_AES_KEY into eFUSE.
		FALSE ignores the provided values in XSK_EFUSEPL_AES_KEY
XSK_EFUSEPS_AES_KEY	00000000000 000000000000 000000000000 0000	Default = 00000000000000000000000000000000000

Single bit programming is allowed for all the USER fuses. If user requests to revert already programmed bit. Library throws an error. If user fuses is non-zero also library will not throw an error for valid requests

Table 24 shows user key and related parameters.

Table 24: User Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPS_WRITE_USERO_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_0 key provided in the macro XSK_EFUSEPS_USER0_FUSES into eFUSE. FALSE ignores the provided value in XSK_EFUSEPS_USER0_FUSES.
XSK_EFUSEPS_USERO_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 0 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 0 key. To program the key provided XSK_EFUSEPS_WRITE_USER0_FUSE must be TRUE.
XSK_EFUSEPS_WRITE_USER1_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_1 key provided in the macro XSK_EFUSEPS_USER1_FUSES into eFUSE FALSE ignores the provided value in XSK_EFUSEPS_USER1_FUSES
XSK_EFUSEPS_USER1_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 1 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 1 key. To program the key provided XSK_EFUSEPS_WRITE_USER1_FUSE must be TRUE.

Table 24: User Key and Related Parameters (Cont'd)

Parameter Name	Default Value	Description
XSK_EFUSEPS_WRITE_USER2_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_2 key provided in the macro XSK_EFUSEPS_USER2_FUSES into eFUSE. FALSE ignores the provided value in XSK_EFUSEPS_USER2_FUSES.
XSK_EFUSEPS_USER2_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 2 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 2 key. To program the key provided XSK_EFUSEPS_WRITE_USER2_FUSE must be TRUE.
XSK_EFUSEPS_WRITE_USER3_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_3 key provided in the macro XSK_EFUSEPS_USER3_FUSES into eFUSE. FALSE ignores the provided value in XSK_EFUSEPS_USER3_FUSES.
XSK_EFUSEPS_USER3_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 3 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 3 key. To program the key provided XSK_EFUSEPS_WRITE_USER3_FUSE must be TRUE.
XSK_EFUSEPS_WRITE_USER4_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_4 key provided in the macro XSK_EFUSEPS_USER4_FUSES into eFUSE. FALSE ignores the provided value in XSK_EFUSEPS_USER4_FUSES.
XSK_EFUSEPS_USER4_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 4 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 4 key. To program the key provided XSK_EFUSEPS_WRITE_USER4_FUSE must be TRUE.
XSK_EFUSEPS_WRITE_USER5_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_5 key provided in the macro XSK_EFUSEPS_USER5_FUSES into eFUSE. FALSE ignores the provided value in XSK_EFUSEPS_USER5_FUSES.

18

Table 24: User Key and Related Parameters (Cont'd)

Parameter Name	Default Value	Description
XSK_EFUSEPS_USER5_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 5 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 5 key. To program the key provided XSK_EFUSEPS_WRITE_USER5_FUSE must be TRUE.
XSK_EFUSEPS_WRITE_USER6_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_6 key provided in the macro XSK_EFUSEPS_USER6_FUSES into eFUSE. FALSE ignores the provided value in XSK_EFUSEPS_USER6_FUSES.
XSK_EFUSEPS_USER6_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 6 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 6 key. To program the key provided XSK_EFUSEPS_WRITE_USER6_FUSE must be TRUE.
XSK_EFUSEPS_WRITE_USER7_FUSE	FALSE	Default = FALSE If TRUE, programs the USER_7 key provided in the macro XSK_EFUSEPS_USER7_FUSES into eFUSE FALSE ignores the provided value.
XSK_EFUSEPS_USER7_FUSES	0000000	Default = 00000000 This value is converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the USER 7 key, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered as invalid string and will not burn the USER 7 key. To program the key provided XSK_EFUSEPS_WRITE_USER7_FUSE must be TRUE.

Table 25 shows the PPKO hash key and related parameters.

Table 25: PPK0 Hash Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPS_WRITE_PPK0_HASH	FALSE	Default = FALSE If TRUE, programs the PPK0 hash provided into the macro XSK_EFUSEPS_PPK0_HASH into eFUSE. FALSE ignores the provided values in XSK_EFUSEPS_PPK0_HASH
XSK_EFUSEPS_PPK0_IS_SHA3	TRUE	Default = TRUE If TRUE, XSK_EFUSEPS_PPK0_HASH is considered as SHA3 hash and hexa-decimal string should be of length 96 characters If FALSE, XSK_EFUSEPS_PPK0_HASH is considered as SHA2 hash and hexa-decimal string should be of length 64 characters
XSK_EFUSEPS_PPKO_HASH	0000000000 00000000000 0000000000 000000	Default = 00000000000000000000000000000000000

Table 26 shows the PPK1 hash key and related parameters.

Table 26: PPK1 Hash Key and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPS_WRITE_PPK1_HASH	FALSE	Default = FALSE If TRUE, programs the PPK1 hash provided into the macro XSK_EFUSEPS_PPK1_HASH into eFUSE. FALSE ignores the provided values in XSK_EFUSEPS_PPK1_HASH

Table 26: PPK1 Hash Key and Related Parameters (Cont'd)

Parameter Name	Default Value	Description
XSK_EFUSEPS_PPK1_IS_SHA3	FALSE	Default = FALSE If FALSE, XSK_EFUSEPS_PPK1_HASH is considered as SHA2 hash and hexa-decimal string should be of length 64 characters If TRUE, XSK_EFUSEPS_PPK1_HASH is considered as SHA3 hash and hexa-decimal string should be of length 96 characters
XSK_EFUSEPS_PPK1_HASH	0000000000 0000000000 0000000000 000000	Default = 00000000000000000000000000000000000

Table 27 shows the SPK ID and related parameters.

Table 27: SPK ID and Related Parameters

Parameter Name	Default Value	Description
XSK_EFUSEPS_WRITE_SPKID	FALSE	Default = FALSE If TRUE, programs the SPK ID provided in the macro XSK_EFUSEPS_SPK_ID into eFUSE. FALSE ignores the provided values in XSK_EFUSEPS_SPK_ID
XSK_EFUSEPS_SPK_ID	00000000	Default = 00000000 This value converted to hex buffer and written into the PS eFUSE array when write API is used. This value should be the SPK ID, given in string format. It must be 8 characters long. Valid characters are 0-9, a-f, A-F. Any other character is considered an invalid string and will not burn the SPK ID. To write SPK ID, XSK_EFUSEPS_WRITE_SPKID must have a value of TRUE

UserConfigurable
PUF Parameters
of Zynq
UltraScale+
MPSoC

Table 28 shows the user-configurable PUF parameters of Zynq UltraScale+ MPSoC.

Table 28: PUF Registration and Programming Related Parameters

Parameter	Default Value	Description
XSK_PUF_INFO_ON_UART	FALSE	TRUE displays PUF syndrome data on UART com port FALSE will not display any data on UART but data will be stored in InstancePtr.
XSK_PUF_PROGRAM_EFUSE	FALSE	TRUE will program the generated sydrome data, Black key, Chash and Auxilary values into eFUSE FALSE will not program any PUF related data into eFUSE
XSK_PUF_IF_CONTRACT_MANUFATURER	FALSE	This should be enabled when application is hand over to contract manufacturer. TRUE will allow only authenticated application. FALSE authentication is not mandatory.
XSK_PUF_REG_MODE	XSK_PUF_MODE4K	PUF registration is performed in 4K mode. Do not modify the value. Modifying the value will result in errors and unsuccessful PUF registration.
XSK_PUF_AES_KEY	"0000000000000000000000000000000000000	The value mentioned in this will be converted to hex buffer and encrypts this with PUF helper data and generates a black key and written into the ZynqMP PS eFUSE array when XSK_PUF_PROGRAM_EFUSE macro is TRUE. This value should be given in string format. It should be 64 characters long, valid characters are 0-9,a-f,A-F. Any other character is considered as invalid string and will not burn AES Key. Note: Provided here should be red key and application calculates the black key and programs into eFUSE if XSK_PUF_PROGRAM_EFUSE macro is TRUE. To avoid programming eFUSE results can be displayed on UART com port by making XSK_PUF_INFO_ON_UART to TRUE.
XSK_PUF_IV	"00000000000000000000000000000000000000	The value mentioned here will be converted to hex buffer. This is Initialization vector(IV) which is used to generated black key with provided AES key and generated PUF key. This value should be given in string format. It should be 24 characters long, valid characters are 0-9,a-f,A-F. Any other character is considered as invalid string.

Table 29 shows the PUF secure bits related parameters.

Table 29: PUF Secure Bits Related Parameters

Parameter	Default Value	Description
XSK_PUF_READ_SECUREBITS	FALSE	TRUE will read status of the puf secure bits from eFUSE and will be displayed on UART. FALSE will not read secure bits.
XSK_PUF_PROGRAM_SECUREBITS	FALSE	TRUE will program PUF secure bits based on the user input provided at XSK_PUF_SYN_INVALID, XSK_PUF_SYN_WRLK and XSK_PUF_REGISTER_DISABLE FALSE will not program any PUF secure bits.
XSK_PUF_SYN_INVALID	FALSE	TRUE will permanently invalidates the already programmed syndrome data. FALSE will not modify anything

Table 29: PUF Secure Bits Related Parameters (Cont'd)

Parameter	Default Value	Description
XSK_PUF_SYN_WRLK	FALSE	TRUE will permanently disables programming syndrome data into eFUSE. FALSE will not modify anything.
XSK_PUF_REGISTER_DISABLE	FALSE	TRUE permanently does not allows PUF syndrome data registration. FALSE will not modify anything.

Error Codes

The application error code is 32 bits long.

For example, if the error code for PS is 0x8A05:

- 0x8A indicates that a write error has occurred while writing RSA Authentication bit.
- 0x05 indicates that write error is due to the write temperature out of range.

Applications have the following options on how to show error status. Both of these methods of conveying the status are implemented by default. However, UART is required to be present and initialized for status to be displayed through UART.

- Send the error code through UART pins
- Write the error code in the reboot status register

PL eFUSE Error Codes

Table 30 shows the PL eFUSE error codes. PS eFUSE Error Codes

Table 30: PL eFUSE Error Codes

Error Code	Value	Description
XSK_EFUSEPL_ERROR_NONE	0	No error
EFUSE Read Error Codes		
XSK_EFUSEPL_ERROR_ROW_NOT_ZERO	0x10	Row is not zero
XSK_EFUSEPL_ERROR_READ_ROW_OUT_OF_RANGE	0x11	Row is out of range
XSK_EFUSEPL_ERROR_READ_MARGIN_OUT_OF_RANGE	0x12	Margin is out of range
XSK_EFUSEPL_ERROR_READ_BUFFER_NULL	0x13	No buffer
XSK_EFUSEPL_ERROR_READ_BIT_VALUE_NOT_SET	0x14	Bit not set
XSK_EFUSEPL_ERROR_READ_BIT_OUT_OF_RANGE	0x15	Bit is out of range
XSK_EFUSEPL_ERROR_READ_TEMPERATURE_OUT_OF_RANGE	0x16	Temperature obtained from XADC is out of range
XSK_EFUSEPL_ERROR_READ_VCCAUX_VOLTAGE_OUT_OF_RANGE	0x17	VCCAUX obtained from XADC is out of range
XSK_EFUSEPL_ERROR_READ_VCCINT_VOLTAGE_OUT_OF_RANGE	PL	VCCINT obtained from XADC is out of range
EFUSE Write Error Codes	1	
XSK_EFUSEPL_ERROR_WRITE_ROW_OUT_OF_RANGE	0x19	Row is out of range
XSK_EFUSEPL_ERROR_WRITE_BIT_OUT_OF_RANGE	0x1A	Bit is out of range

Table 30: PL eFUSE Error Codes (Cont'd)

Error Code	Value	Description
XSK_EFUSEPL_ERROR_WRITE_TEMPERATURE_OUT_OF_RANGE	0x1B	Temperature obtained from XADC is out of range
XSK_EFUSEPL_ERROR_WRITE_VCCAUX_VOLTAGE_OUT_OF_RANGE	0x1C	VCCAUX obtained from XADC is out of range
XSK_EFUSEPL_ERROR_WRITE_VCCINT_VOLTAGE_OUT_OF_RANGE	0x1D	VCCINT obtained from XADC is out of range
XSK_EFUSEPL_ERROR_IN_PROGRAMMING_ROW	0x29	Error occured when programming row of eFUSE
XSK_EFUSEPL_ERROR_PRGRMG_ROWS_NOT_EMPTY	0x2A	Error when tried to program non Zero rows of eFUSE.
EFUSE Hardware module Error Codes		
XSK_EFUSEPL_ERROR_HWM_TIMEOUT	0x80	Error when hardware module is exceeded the time for programming eFUSE.
XSK_EFUSEPL_ERROR_USER_FUSE_REVERT	0x90	Error occurs when user requests to revert already programmed user eFUSE bit.
EFUSE CNTRL Error Codes		
XSK_EFUSEPL_ERROR_FUSE_CNTRL_WRITE_DISABLED	0x1E	Fuse control write is disabled
XSK_EFUSEPL_ERROR_CNTRL_WRITE_BUFFER_NULL	0x1F	Buffer pointer that is supposed to contain control data is null
EFUSE KEY Error Codes	<u> </u>	
XSK_EFUSEPL_ERROR_NOT_VALID_KEY_LENGTH	0x20	Key length invalid
XSK_EFUSEPL_ERROR_ZERO_KEY_LENGTH	0x21	Key length zero
XSK_EFUSEPL_ERROR_NOT_VALID_KEY_CHAR	0x22	Invalid key characters
XSK_EFUSEPL_ERROR_NULL_KEY	0x23	Null key
XSK_EFUSEPL_ERROR_FUSE_SEC_WRITE_DISABLED	0x24	Secure bits write is disabled
XSK_EFUSEPL_ERROR_FUSE_SEC_READ_DISABLED	0x25	Secure bits reading is disabled
XSK_EFUSEPL_ERROR_SEC_WRITE_BUFFER_NULL	0x26	Buffer to write into secure block is NULL
XSK_EFUSEPL_ERROR_READ_PAGE_OUT_OF_RANGE	0x27	Page is out of range
XSK_EFUSEPL_ERROR_FUSE_ROW_RANGE	0x28	Row is out of range
XSKEfusepl_Program_Efuse() Error Codes		
XSK_EFUSEPL_ERROR_KEY_VALIDATION	0xF000	Invalid key
XSK_EFUSEPL_ERROR_PL_STRUCT_NULL	0x1000	Null PL structure
XSK_EFUSEPL_ERROR_JTAG_SERVER_INIT	0x1100	JTAG server initialization error
XSK_EFUSEPL_ERROR_READING_FUSE_CNTRL	0x1200	Error reading fuse control
XSK_EFUSEPL_ERROR_DATA_PROGRAMMING_NOT_ALLOWED	0x1300	Data programming not allowed
XSK_EFUSEPL_ERROR_FUSE_CTRL_WRITE_NOT_ALLOWED	0x1400	Fuse control write is disabled
XSK_EFUSEPL_ERROR_READING_FUSE_AES_ROW	0x1500	Error reading fuse AES row
XSK_EFUSEPL_ERROR_AES_ROW_NOT_EMPTY	0x1600	AES row is not empty
XSK_EFUSEPL_ERROR_PROGRAMMING_FUSE_AES_ROW	0x1700	Error programming fuse AES row
		•

www.xilinx.com

Table 30: PL eFUSE Error Codes (Cont'd)

Error Code	Value	Description
XSK_EFUSEPL_ERROR_READING_FUSE_USER_DATA_ROW	0x1800	Error reading fuse user row
XSK_EFUSEPL_ERROR_USER_DATA_ROW_NOT_EMPTY	0x1900	User row is not empty
XSK_EFUSEPL_ERROR_PROGRAMMING_FUSE_DATA_ROW	0x1A00	Error programming fuse user row
XSK_EFUSEPL_ERROR_PROGRAMMING_FUSE_CNTRL_ROW	0x1B00	Error programming fuse control row
XSK_EFUSEPL_ERROR_XADC	0x1C00	XADC error
XSK_EFUSEPL_ERROR_INVALID_REF_CLK	0x3000	Invalid reference clock
XSK_EFUSEPL_ERROR_FUSE_SEC_WRITE_NOT_ALLOWED	0x1D00	Error in programming secure block
XSK_EFUSEPL_ERROR_READING_FUSE_STATUS	0x1E00	Error in reading FUSE
		status
XSK_EFUSEPL_ERROR_FUSE_BUSY	0x1F00	Fuse busy
XSK_EFUSEPL_ERROR_READING_FUSE_RSA_ROW	0x2000	Error in reading FUSE RSA block
XSK_EFUSEPL_ERROR_TIMER_INTIALISE_ULTRA	0x2200	Error in initiating Timer
XSK_EFUSEPL_ERROR_READING_FUSE_SEC	0x2300	Error in reading FUSE secure bits
XSK_EFUSEPL_ERROR_PRGRMG_FUSE_SEC_ROW	0x2500	Error in programming Secure bits of efuse
XSK_EFUSEPL_ERROR_PRGRMG_RSA_HASH	0x8000	Error in programming RSA hash
XSK_EFUSEPL_ERROR_PRGRMG_128BIT_USER_KEY	0x5000	Error in programming 128 bit User key
XSK_EFUSEPL_ERROR_PRGRMG_USER_KEY	0x4000	Error in programming 32 bit user key

Table 31 shows the PS eFUSE error codes. These error codes are applicable for both Zynq and Zynq UltraScale+ MPSoC eFUSE PS.

Table 31: PS eFUSE Error Codes

Error Code	Value	Description
XSK_EFUSEPL_ERROR_NONE	0	No error
EFUSE Read Error Codes		
XSK_EFUSEPS_ERROR_ADDRESS_XIL_RESTRICTED	0x01	Address is restricted
XSK_EFUSEPS_ERROR_READ_TMEPERATURE_OUT_OF_RANGE	0x02	Temperature obtained from XADC is out of range
XSK_EFUSEPS_ERROR_READ_VCCAUX_VOLTAGE_OUT_OF_RANGE	0x03	VCCAUX obtained from XADC is out of range
XSK_EFUSEPS_ERROR_READ_VCCINT_VOLTAGE_OUT_OF_RANGE	0x04	VCCINT obtained from XADC is out of range
XSK_EFUSEPS_ERROR_READ	0x00B0	Error in reading rows
EFUSE Write Error Codes	1	
XSK_EFUSEPS_ERROR_WRITE_TEMPERATURE_OUT_OF_RANGE	0x05	Temperature obtained from XADC is out of range
XSK_EFUSEPS_ERROR_WRITE_VCCAUX_VOLTAGE_OUT_OF_RANGE	0x06	VCCAUX obtained from XADC is out of range
XSK_EFUSEPS_ERROR_WRITE_VCCINT_VOLTAGE_OUT_OF_RANGE	0x07	VCCINT obtained from XADC is out of range

25

Table 31: PS eFUSE Error Codes (Cont'd)

Error Code	Value	Description
XSK_EFUSEPS_ERROR_VERIFICATION	0x08	Verification error
XSK_EFUSEPS_ERROR_RSA_HASH_ALREADY_PROGRAMMED	0x09	RSA hash was already programmed
XSK_EFUSEPS_ERROR_AES_ALREADY_PROGRAMMED	0x12	AES key is already programmed
XSK_EFUSEPS_ERROR_SPKID_ALREADY_PROGRAMMED	0x13	SPK ID is already programmed
XSK_EFUSEPS_ERROR_PPKO_HASH_ALREADY_PROGRAMMED	0x14	PPK0 hash is already programmed
XSK_EFUSEPS_ERROR_PPK1_HASH_ALREADY_PROGRAMMED	0x15	PPK1 hash is already programmed
EFUSE CNTRL Error Codes	<u>'</u>	
XSK_EFUSEPS_ERROR_CONTROLLER_MODE	0x0A	Controller mode error
XSK_EFUSEPS_ERROR_REF_CLOCK	0x0B	Reference clock not between 20 to 60 MHz
XSK_EFUSEPS_ERROR_READ_MODE	0x0C	Not supported read mode
XADC Error Codes		
XSK_EFUSEPS_ERROR_XADC_CONFIG	0x0D	XADC configuration error
XSK_EFUSEPS_ERROR_XADC_INITIALIZE	0x0E	XADC initialization error
XSK_EFUSEPS_ERROR_XADC_SELF_TEST	0x0F	XADC self-test failed
Utils Error Codes		
XSK_EFUSEPS_ERROR_PARAMETER_NULL	0x10	Passed parameter null
XSK_EFUSEPS_ERROR_STRING_INVALID	0x20	Passed string is invalid
XSKEfuse_Write/Read()common Error Codes		
XSK_EFUSEPS_ERROR_PS_STRUCT_NULL	0x8100	PS structure pointer is null
XSK_EFUSEPS_ERROR_XADC_INIT	0x8200	XADC initialization error
XSK_EFUSEPS_ERROR_CONTROLLER_LOCK	0x8300	PS eFUSE controller is locked
XSK_EFUSEPS_ERROR_EFUSE_WRITE_PROTECTED	0x8400	PS eFUSE is write protected
XSK_EFUSEPS_ERROR_CONTROLLER_CONFIG	0x8500	Controller configuration error
XSK_EFUSEPS_ERROR_PS_PARAMETER_WRONG	0x8600	PS eFUSE parameter is not TRUE/FALSE
XSKEfusePs_Write() Error Codes		
XSK_EFUSEPS_ERROR_WRITE_128K_CRC_BIT	0x9100	Error in enabling 128K CRC
XSK_EFUSEPS_ERROR_WRITE_RSA_HASH	0x9400	Error in writing RSA key
XSK_EFUSEPS_ERROR_WRITE_RSA_AUTH_BIT	0x9500	Error in enabling RSA authentication bit
XSK_EFUSEPS_ERROR_WRITE_WRITE_PROTECT_BIT	0x9600	Error in writing write-protect bit
XSK_EFUSEPS_ERROR_READ_HASH_BEFORE_PROGRAMMING	0x9700	Check RSA key before trying to program
XSK_EFUSEPS_ERROR_WRTIE_DFT_JTAG_DIS_BIT	0x9800	Error in programming DFT JTAG disable bit
XSK_EFUSEPS_ERROR_WRTIE_DFT_MODE_DIS_BIT	0x9900	Error in programming DFT MODE disable bit
XSK_EFUSEPS_ERROR_WRONG_TBIT_PATTERN	0xA200	Error in programming TBIT pattern
XSK_EFUSEPS_ERROR_WRITE_AES_KEY	0xA300	Error in programming AES key

Table 31: PS eFUSE Error Codes (Cont'd)

Error Code	Value	Description
XSK_EFUSEPS_ERROR_WRTIE_AES_CRC_LK_BIT	0x9A00	Error in enabling AES's CRC check lock
XSK_EFUSEPS_ERROR_WRTIE_AES_WR_LK_BIT	0x9B00	Error in programming AES write lock bit
XSK_EFUSEPS_ERROR_WRTIE_USE_AESONLY_EN_BIT	0x9C00	Error in programming use AES only bit
XSK_EFUSEPS_ERROR_WRTIE_BBRAM_DIS_BIT	0x9D00	Error in programming BBRAM disable bit
XSK_EFUSEPS_ERROR_WRTIE_PMU_ERR_DIS_BIT	0x9E00	Error in programming PMU error disable bit
XSK_EFUSEPS_ERROR_WRTIE_JTAG_DIS_BIT	0x9F00	Error in programming JTAG disable bit
XSK_EFUSEPS_ERROR_WRITE_SPK_ID	0xA400	Error in programming SPK ID
XSK_EFUSEPS_ERROR_WRITE_USER_KEY	0xA500	Error in programming User Key
XSK_EFUSEPS_ERROR_WRITE_PPK0_HASH	0xA600	Error in programming PPK 0 hash
XSK_EFUSEPS_ERROR_WRITE_PPK1_HASH	0xA700	Error in programming PPK 1 hash
XSK_EFUSEPS_ERROR_BEFORE_PROGRAMMING	0x80	Error occurred before programming
XSK_EFUSEPS_ERROR_PROGRAMMING_TBIT_PATTERN	0x16	Error in programming TBITS
XSK_EFUSEPS_ERROR_CACHE_LOAD	0xB000	Error in re-loading CACHE
XSK_EFUSEPS_ERROR_WRITE_USER0_FUSE	0xC000	Error in programming USER 0 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER1_FUSE	0xC100	Error in programming USER 1 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER2_FUSE	0xC200	Error in programming USER 2 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER3_FUSE	0xC300	Error in programming USER 3 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER4_FUSE	0xC400	Error in programming USER 4 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER5_FUSE	0xC500	Error in programming USER 5 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER6_FUSE	0xC600	Error in programming USER 6 Fuses
XSK_EFUSEPS_ERROR_WRITE_USER7_FUSE	0xC700	Error in programming USER 7 Fuses
XSK_EFUSEPS_ERROR_WRTIE_USERO_LK_BIT	0xC800	Error in programming USER 0 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER1_LK_BIT	0xC900	Error in programming USER 1 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER2_LK_BIT	0xCA00	Error in programming USER 2 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER3_LK_BIT	0xCB00	Error in programming USER 3 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER4_LK_BIT	0xCC00	Error in programming USER 4 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER5_LK_BIT	0xCD00	Error in programming USER 5 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER6_LK_BIT	0xCE00	Error in programming USER 6 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_USER7_LK_BIT	0xCF00	Error in programming USER 7 fuses lock bit
XSK_EFUSEPS_ERROR_WRTIE_PROG_GATE0_DIS_BIT	0xD000	Error in programming PROG_GATE0 disabling bit

Table 31: PS eFUSE Error Codes (Cont'd)

Error Code	Value	Description
XSK_EFUSEPS_ERROR_WRTIE_PROG_GATE1_DIS_BIT	0xD100	Error in programming PROG_GATE1 disabling bit
XSK_EFUSEPS_ERROR_WRTIE_PROG_GATE2_DIS_BIT	0xD200	Error in programming PROG_GATE2 disabling bit
XSK_EFUSEPS_ERROR_WRTIE_SEC_LOCK_BIT	0xD300	Error in programming SEC_LOCK bit
XSK_EFUSEPS_ERROR_WRTIE_PPK0_WR_LK_BIT	0xD400	Error in programming PPK0 write lock bit
XSK_EFUSEPS_ERROR_WRTIE_PPK0_RVK_BIT	0xD500	Error in programming PPK0 revoke bit
XSK_EFUSEPS_ERROR_WRTIE_PPK1_WR_LK_BIT	0xD600	Error in programming PPK1 write lock bit
XSK_EFUSEPS_ERROR_WRTIE_PPK1_RVK_BIT	0xD700	Error in programming PPK0 revoke bit
XSK_EFUSEPS_ERROR_FUSE_PROTECTED	0x00080 000	Error when attempted to program a write locked fuse
XSK_EFUSEPS_ERROR_USER_BIT_CANT_REVERT	0x00800 000	Error when already programmed bit(1) is requested to revert (0). This error only occurs for User_Fuses, as single bit programming is allowed only for User fuses
XSKEfusePs_Read() Error Codes		
XSK_EFUSEPS_ERROR_READ_RSA_HASH	0xA100	Error in reading RSA key

Table 32 shows the PUF error codes for Zynq UltraScale+ MPSoC.

Table 32: PUF Error Codes

Error Code	Value	Description
XSK_EFUSEPS_ERROR_WRITE_PUF_SYN_INVLD	0xD800	Error while programming invalidate the PUF syndrome data bit
XSK_EFUSEPS_ERROR_WRITE_PUF_SYN_WRLK	0xD900	Error while programming Syndrome write lock bit
XSK_EFUSEPS_ERROR_WRITE_PUF_SYN_REG_DIS	0xDA00	Error while programming PUF syndrome register disable bit
XSK_EFUSEPS_ERROR_PUF_INVALID_REG_MODE	0xE000	Error when PUF registration is requested with invalid registration mode
XSK_EFUSEPS_ERROR_PUF_REG_WO_AUTH	0xE100	Error when authentication is not enabled
XSK_EFUSEPS_ERROR_PUF_REG_DISABLED	0xE200	Error when trying to do PUF registration and when PUF registration is disabled
XSK_EFUSEPS_ERROR_PUF_INVALID_REQUEST	0xE300	Error when an invalid mode is requested
XSK_EFUSEPS_ERROR_PUF_DATA_ALREADY_PROGRAMMED	0xE400	Error when PUF is already programmed in eFUSE
XSK_EFUSEPS_ERROR_PUF_DATA_OVERFLOW	0xE500	Error when an over flow occurs

Table 33 shows the BBRAM error codes for Zynq UltraScale+ MPSoC.

Table 33: BBRAM Error Codes for Zynq UltraScale+ MPSoC

Error Code	Value	Description
XSK_ZYNQMP_BBRAMPS_ERROR_IN_PRGRMG_ENABLE	0x01	Error in programming enable
XSK_ZYNQMP_BBRAMPS_ERROR_IN_CRC_CHECK	0xB000	Error in CRC check after programming AES key
XSK_ZYNQMP_BBRAMPS_ERROR_IN_PRGRMG	0xC000	Error in programming AES key

Status Code

For Zynq and UltraScale in $xilskey_efuse_example.c$ the status is conveyed through a UART or reboot status register in the following format:

0xyyyyzzzz, where:

- YYYY Represents the PS eFUSE Status.
- zzzz Represents the PL eFUSE Status.

Error codes are as described in Table 30, and Table 31. Table 34 shows the status codes.

Table 34: Status Codes

Status Code Value	Description
0x0000ZZZZ	Represents PS eFUSE is successful and PL eFUSE process returned with error.
0xYYYY0000	Represents PL eFUSE is successful and PS eFUSE process returned with error.
0xFFFF0000	Represents PS eFUSE is not initiated and PL eFUSE is successful.
0x0000FFFF	Represents PL eFUSE is not initiated and PS eFUSE is successful.
0xFFFFZZZZ	Represents PS eFUSE is not initiated and PL eFUSE is process returned with error.
0xYYYYFFFF	Represents PL eFUSE is not initiated and PS eFUSE is process returned with error.

For Zynq UltraScale+ MPSoC in xilskey_bbramps_zynqmp_example.c, xilskey_puf_registration.c and xilskey_efuseps_zynqmp_example.c files, the status is conveyed as 32 bit error code.

Where Zero represents that no error has occurred and if the value is other than Zero, a 32 bit error code is returned.

Procedures

eFUSE Writing Procedure Running from DDR as an Application

This sequence is same as the existing flow described below.

- 1. Provide the required inputs in xilskey_input.h, then compile the SDK project.
- 2. Take the latest FSBL (ELF), stitch the <output>.elf generated to it (using the bootgen utility), and generate a bootable image.
- 3. Write the generated binary image into the flash device (for example: QSPI, NAND).
- 4. To burn the eFUSE key bits, execute the image.

eFUSE Driver Compilation Procedure for OCM

- 1. Open the linker script (lscript.ld) in the SDK project.
- 2. Map all the sections to point to ps7_ram_0_S_AXI_BASEADDR instead of ps7_ddr_0_S_AXI_BASEADDR.

Example: Click the **Memory Region** tab for the .text section and select $ps7_ram_0_S_AXI_BASEADDR$ from the drop-down list.

- 3. Copy the ps7_init.c and ps7_init.h files from the hw_platform folder into the example folder.
- In "xilskey_efuse_example.c, un-comment the code that calls the "ps7_init()" routine".
- 5. Compile the project.

The <Project name>.elf file is generated and is executed out of OCM.

When executed, this example displays the success/failure of the eFUSE application in a display message via UART (if UART is present and initialized) or the reboot status register.

Status/Error codes are as described in Error Codes.

UltraScale eFUSE Access Procedure

Accessing UltraScale MicroBlaze eFuse is done by using block RAM initialization. Ultrascale eFUSE programming is done through MASTER JTAG. Crucial Programming sequence will be taken care by Hardware module. So Hardware module should be added compulsory in the design. Using hardware module's vhd code and instructions provided to add Hardware module in the design is recommended.

- You need to add the Master JTAG primitive to design, that is, the MASTER_JTAG_inst
 instantiation has to be performed and AXI GPIO pins have to be connected to TDO, TDI,
 TMS and TCK signals of the MASTER_JTAG primitive.
- Along with master JTAG, hardware module(HWM) has to be added in design and it's signals XSK_EFUSEPL_AXI_GPIO_HWM_READY,
 XSK_EFUSEPL_AXI_GPIO_HWM_END and XSK_EFUSEPL_AXI_GPIO_HWM_START, needs to be connected to AXI GPIO pins to communicate with HWM.
- All inputs (Master JTAG's TDO and HWM's HWM_READY, HWM_END) and all outputs (Master Jtag's TDI, TMS, TCK and HWM's HWM_START) can be connected in one channel (or) inputs in one channel and outputs in other channel.
- Some of the outputs of GPIO in one channel and some others in different channels are not supported.
- The design should contain AXI BRAM Ctrl memory mapped (1MB).

Note: MASTER_JTAG will disable all other JTAGs

The procedure is as follows:

1. After providing the required inputs in xilskey_input.h, compile the project.

- 2. Generate a memory mapped interface file using TCL command write_mem_info \$Outfilename
- 3. Update memory has to be done using the tcl command updatemem.

```
updatemem -meminfo $file.mmi -data $Outfilename.elf -bit $design.bit
-proc design_1_i/microblaze_0 -out $Final.bit
```

- 4. Program the board using \$Final.bit bitstream
- 5. Output can be seen in UART terminal.
- 6. For calculating CRC of AES key reverse polynomial is 0x82F63B78 or you can use the API u32 Xilskey CrcCalculation(u8 *Key)

UltraScale BBRAM Access Procedure

Accessing UltraScale MicroBlaze BBRAM is done by using block RAM initialization.

- You need to add the Master JTAG primitive to your design, that is, the MASTER_JTAG_inst instantiation has to be performed and AXI GPIO pins have to be connected to TDO, TDI, TMS and TCK signals of the MASTER_JTAG primitive.
- All inputs (TDO) and all outputs (TDI, TMS, TCK) of MASTER_JTAG can be connected in one channel (or) inputs in one channel and outputs in other channel.
- Some of the outputs of GPIO in one channel and some others in different channels are not supported.
- The design should contain AXI BRAM Ctrl memory mapped (1MB).

Note: MASTER_JTAG will disable all other JTAGs

The procedure is as follows:

- 1. After providing the required inputs in xilskey_bbram_ultrascale_input.h, compile the project.
- Generate a memory mapped interface file using TCL command write_mem_info \$Outfilename
- 3. Update memory has to be done using the tcl command updatemem:

```
updatemem -meminfo $file.mmi -data $Outfilename.elf -bit $design.bit
-proc design_1_i/microblaze_0 -out $Final.bit
```

- 4. Program the board using \$Final.bit bitstream
- 5. Output can be seen in UART terminal.

LibXil SKey Library APIs

This section provides linked summary and detailed descriptions of the LibXil SKey library APIs.

API Summary

The following is a summary list of APIs provided by the LibXil SKey library. Descriptions of the APIs follow the list.

```
u32 XilSKey_EfusePs_Write (XilSKey_EPs *InstancePtr)
```

u32 XilSKey_EfusePs_Read(XilSKey_EPs *InstancePtr)

u32 XilSKey_EfusePI_Program (XilSKey_EPI *InstancePtr)

u32 XilSKey_EfusePs_ReadStatus(XilSKey_EPs *InstancePtr, u32 *StatusBits);

u32 XilSKey_EfusePI_ReadStatus(XilSKey_EPI *InstancePtr, u32 *StatusBits);

u32 XilSKey_EfusePl_ReadKey(XilSKey_EPl *InstancePtr);

u32 XilSKey_EfusePs_Write (XilSKey_EPs *InstancePtr)

Parameters InstancePtr: The pointer to the PS eFUSE handler that describes which

PS eFUSE bit should be burned.

Returns XST_SUCCESS on success.

In case of error, value is as defined in xilskey_utils.h.

The error value is a combination of an upper 8-bit value and a lower 8-bit value. For example, $0 \times 8A03$ should be checked in $xilskey_utils.h$ as $0 \times 8A00$ and 0×03 . The upper 8-bit value signifies the major error, and the lower 8-bit value requires the major error.

value provides more detail about the error.

Description When called, this API

• Initializes the timer, XADC subsystems.

- · Unlocks the PS eFUSE controller.
- · Configures the PS eFUSE controller.
- Writes the hash and control bits if requested.
- Programs the PS eFUSE to enable the RSA authentication if requested.
- · Locks the PS eFUSE controller.

Returns an error if:

- The reference clock frequency is not in between 20 and 60 MHz.
- The system not in a position to write the requested PS eFUSE bits (because the bits are already written or not allowed to write)
- The temperature and voltage are not within range

Includes xilskey_eps.h, xilskey_epshw.h, xilskey_utils.h

u32 XilSKey_EfusePs_Read(XilSKey_EPs *InstancePtr)

Parameters InstancePtr: The pointer to the PS eFUSE handler.

Returns XST_SUCCESS on success.

In case of error, the value is as defined in xilskey_utils.h.

The error value is a combination of an upper 8-bit value and a lower 8-bit value. For example, 0x8A03 should be checked in xilskey_utils.h as 0x8A00 and 0x03. The upper 8-bit value signifies the major error and the

lower 8-bit values provides more detail about the error.

Description When called:

- This API initializes the timer, XADC subsystems.
- · Unlocks the PS eFUSE Controller.
- Configures the PS eFUSE Controller and enables read-only mode.
- Reads the PS eFUSE (Hash Value), and enables read-only mode.
- · Locks the PS eFUSE Controller.

Returns error if:

- The reference clock frequency is not in between 20 and 60MHz.
- Unable to unlock PS eFUSE controller or requested address corresponds to restricted bits.
- Temperature and voltage are not within range

Includes xilskey_eps.h, xilskey_epshw.h, xilskey_utils.h

u32 XilSKey_EfusePl_Program (XilSKey_EPl *InstancePtr)

Parameters InstancePtr is input data to be written to PL eFUSE

Returns XST SUCCESS on success.

In case of error, the value is defined in xilskey_utils.h. The error value is a combination of the upper 8-bit value and lower 8-bit value. For example, 0x8A03 should be checked in xilskey_utils.h as 0x8A00 and 0x03. The upper 8-bit value signifies the major error, and the lower 8-bit value provides more detail.

Description When called, this API:

- Initializes the timer, XADC and JTAG server subsystems.
- Writes the AES & User Keys if requested.
- Writes the Control Bits if requested.
- In UltraScale, it also programs the RSA key Hash

Returns an error if:

- The reference clock frequency is not in between 20 and 60 MHz.
- The PL DAP ID is not identified.
- The system is not in a position to write the requested PL eFUSE bits (because the bits are already written or not allowed to write)
- Temperature and voltage are not within range.

Includes xilskey_utils.h, xilskey_epl.h

u32 XilSKey_EfusePs_ReadStatus(XilSKey_EPs *InstancePtr, u32 *StatusBits);

• InstancePtr - Pointer to PS eFUSE instance

• StatusBits - Buffer to store status register value

Returns XST_SUCCESS on success.

On failure, returns error codes as described in "Error Codes," page 23.

Description This API unlocks the controller and reads the PS eFUSE status register.

Includes xilskey_eps.h, xilskey_utils.h

Parameters • InstancePtr - Pointer to PL eFUSE instance

· StatusBits - Buffer to store status bits

Returns XST_SUCCESS on success.

On failure, returns error codes as described in "Error Codes," page 23.

Description This API reads the status bits from row 0. It initializes the timer, XADC

and JTAG server subsystems, if not already done so. In UltraScale it reads the Status register and gets all the secure and control bits.

Includes xilskey_epl.h, xilskey_utils.h

u32 XilSKey_EfusePl_ReadKey(XilSKey_EPl *InstancePtr);

Parameters InstancePtr - Pointer to PL eFUSE instance

Returns XST SUCCESS on success.

On failure, returns error codes as described in "Error Codes," page 23.

Description This API reads the AES and user key and stores them in the corresponding

arrays in instance structure. It initializes the timer, XADC and JTAG server subsystems, if not already done so. In UltraScale eFuse, this API performs

same as the above but reads extra key RSA key hash.

Includes xilskey_epl.h, xilskey_utils.h

BBRAM API Description

This section provides a linked summary and detailed descriptions of the battery-backed RAM (BBRAM) APIs.

API Summary

int XilSKey_Bbram_Program(XilSKey_Bbram *InstancePtr)

Parameters BBRAM instance pointer

Returns XST_SUCCESS on success, or XST_FAILURE on failure.

Description API to program and verify the key. This API can be used to program BBRAM

of either Zynq Zynq® or UltraScale™.

Includes xilskey_utils.h, xilskey_bbram.h

Important! This API performs BBRAM program and verify together. This is how the BBRAM algorithm works and it is not possible to do program/verify operations independently.

Zynq UltraScale+ MPSoC API Description

This section provides linked summary and detailed descriptions of the Zynq UltraScale+MPSoC eFUSE and battery-backed RAM (BBRAM) APIs.

BBRAM PS API Summary

The following is a summary list of BBRAM PS APIs for Zynq UltraScale+ MPSoC. Descriptions of the APIs follow the list.

- u32 XilSKey_ZynqMp_Bbram_Program(u32 *AesKey)
- void XilSKey_ZynqMp_Bbram_Zeroise()

u32 XilSKey_ZynqMp_Bbram_Program(u32 *AesKey)

Parameters Aes Key is a pointer to an array which holds AES key to be programmed.

Returns XST_SUCCESS if programming and verification is done successfully.

ErrorCode if it fails to program.

Description This API programs the Zynq UltraScale+ MPSoc's BBRAM key with the

provided key and also performs CRC check of programmed key.

void XilSKey_ZynqMp_Bbram_Zeroise()

Parameters None.

Returns XST_SUCCESS if programming and verification is done successfully.

ErrorCode if it fails to program.

Description This API zeroises the key programmed in BBRAM.

Includes xilskey utils.h, xilskey bbram.h

eFUSE PS API Summary

The following is a summary list of eFUSE APIs for Zynq UltraScale+ MPSoC. Descriptions of the APIs follow the list.

- u32 XilSKey_ZyngMp_EfusePs_CheckAesKeyCrc(u32 CrcValue)
- u32 XilSKey_ZynqMp_EfusePs_ReadUserFuse(u32 *UseFusePtr, u8 UserFuse_Num, u8 ReadOption)
- u32 XilSKey_ZynqMp_EfusePs_ReadPpk0Hash(u32 *Ppk0Hash, u8 ReadOption)
- u32 XilSKey_ZynqMp_EfusePs_ReadPpk1Hash(u32 *Ppk1Hash, u8 ReadOption)
- u32 XilSKey ZyngMp EfusePs ReadSpkld(u32 *Spkld, u8 ReadOption)
- void XilSKey ZyngMp EfusePs ReadDna(u32 *DnaRead)
- u32 XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits(XilSKey_SecCtrlBits *ReadBackSecCtrlBits, u8 ReadOption)
- u32 XilSKey_ZynqMp_EfusePs_CacheLoad()
- u32 XilSKey_ZynqMp_EfusePs_Write(XilSKey_ZynqMpEPs *InstancePtr)
- u32 XilSKey_CrcCalculation(u8 *Key)
- u32 XilSkey_CrcCalculation_AesKey(u8 *Key)

u32 XilSKey_ZynqMp_EfusePs_CheckAesKeyCrc(u32 CrcValue)

Parameters CrcValue is the CRC of expected AES key.

Returns XST_SUCCESS if CRC check is passed.

XST_FAILURE if CRC check is failed.

Description This API performs the CRC check of eFUSE's AES key.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

u32 XilSKey_ZynqMp_EfusePs_ReadUserFuse(u32 *UseFusePtr, u8 UserFuse_Num, u8 ReadOption)

Parameters UseFusePtr is a pointer to an array which holds the readback userkey in.

UserFuse Num is a u8 variable which holds the USER FUSE number which

needs to be read.

ReadOption is a u8 variable which has to be provided by user based on which the input reading happens from cache or from efuse array.

• 0 - Reads from cache

1 - Reads from efuse array

Returns XST_SUCCESS if key is read successfully.

ErrorCode if it fails to read eFUSE user key.

Description This API reads User key from eFUSE memory or Cache based on user input

and stores in UseKeyPtr.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

35

u32 XilSKey_ZynqMp_EfusePs_ReadPpk0Hash(u32 *Ppk0Hash, u8
 ReadOption)

Parameters Ppk0Hash is a pointer to an array which holds the readback PPK0 hash in.

ReadOption is a u8 variable which has to be provided by user based on which the input reading happens from cache or from efuse array.

• 0 - Reads from cache

1 - Reads from efuse array

Returns XST_SUCCESS if key is read successfully.

ErrorCode if it fails to read PPKO hash of eFUSE.

Description This API reads PPK0 hash from eFUSE memory or Cache based on user input

and stores in Ppk0Hash.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

u32 XilSKey_ZynqMp_EfusePs_ReadPpk1Hash(u32 *Ppk1Hash, u8
ReadOption)

Parameters Ppk1Hash is a pointer to an array which holds the readback PPK1 hash in.

ReadOption is a u8 variable which has to be provided by user based on which the input reading happens from cache or from efuse array.

• 0 - Reads from cache

1 - Reads from efuse array

Returns XST_SUCCESS if key is read successfully.

ErrorCode if it fails to read PPK1 hash of eFUSE.

Description This API reads PPK1 hash from eFUSE memory or Cache based on user input

and stores in Ppk1Hash.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

u32 XilSKey_ZynqMp_EfusePs_ReadSpkId(u32 *SpkId, u8
 ReadOption)

Parameters SpkId is a pointer which holds the readback SPK ID in.

ReadOption is a u8 variable which has to be provided by user based on which the input reading happens from cache or from efuse array.

0 - Reads from cache

1 - Reads from efuse array

Returns XST_SUCCESS if key is read successfully.

ErrorCode if it fails to read SPK ID of eFUSE.

Description This API reads SPK ID from eFUSE memory or Cache based on user input and

stores in SpkId.

void XilSKey_ZynqMp_EfusePs_ReadDna(u32 *DnaRead)

Parameters DnaRead is a pointer which holds the readback DNA in.

Returns XST_SUCCESS if key is read successfully.

ErrorCode if it fails to read DNA.

Description This API reads DNA from Cache stores in DnaRead.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

u32 XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits(
 XilSKey_SecCtrlBits *ReadBackSecCtrlBits, u8
 ReadOption)

Parameters ReadBackSecCtrlBits is a pointer to the XilSKey_SecCtrlBits structure which

holds the secure control bits read back.

ReadOption is a u8 variable which has to be provided by user based on which the input reading happens from cache or from efuse array.

0 - Reads from cache

1 - Reads from efuse array

Returns XST_SUCCESS if key is read successfully.

ErrorCode if it fails to read secure and control bits of eFUSE.

Description This API reads secure control bits from eFUSE memory or Cache based on

user input and stores in ReadBackSecCtrlBits.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

u32 XilSKey_ZynqMp_EfusePs_CacheLoad()

Parameters None.

Returns XST SUCCESS if cache reload is successfully.

ErrorCode if it fails to reload cache of efuse.

Description This API reloads caches of efuse, it updates cache with efuse memory.

u32 XilSKey_ZynqMp_EfusePs_Write(XilSKey_ZynqMpEPs
 *InstancePtr)

Parameters InstancePtr is a pointer to efuse PS instance.

Returns XST_SUCCESS if efuse programming is successfully.

ErrorCode if it fails to program eFUSE.

Description This API programs the efuse based on the user inputs.

Includes xilskey_utils.h, xilskey_eps_zynqmp.h

u32 XilSKey_CrcCalculation(u8 *Key)

Parameters Key is a hexa decimal character string for which CRC has to be calculated.

Returns CRC of provided key.

37

Description This API calculates the CRC of provided AES key of eFUSE. (This API

calculates CRC for both Ultrascale and also Zynq MP platform eFUSE).

Includes xilskey_utils.h

u32 XilSkey_CrcCalculation_AesKey(u8 *Key)

Parameters Key is a pointer to buffer of size 32 which contains AES key in hexa decimal.

Returns CRC of provided AES key.

Description This API is calculates CRC on AES key provided.

This API calculates CRC of AES key for UltraScale™ PL eFuse and Zyng®

UltraScale+™ MPSoC PS eFuse.

To calculate CRC on the AES string please use XilSKey_CrcCalculation.

To call this API one can directly pass array of AES key which exists in an

instance.

Example for storing key into Buffer:

If Key is "123456" buffer should be {0x12 0x34 0x56}

Includes xilskey_utils.h

PUF API Summary

The following is a summary list of PUF APIs for Zynq UltraScale+ MPSoC. Descriptions of the APIs follow the list.

- u32 XilSKey_ZynqMp_EfusePs_WritePufHelprData(XilSKey_Puf *InstancePtr)
- u32 XilSKey_ZynqMp_EfusePs_ReadPufHelprData(u32 *Address)
- u32 XilSKey_ZynqMp_EfusePs_WritePufChash(XilSKey_Puf *InstancePtr)
- u32 XilSKey_ZynqMp_EfusePs_ReadPufChash(u32 *Address, u8 ReadOption)
- u32 XilSKey_ZynqMp_EfusePs_WritePufAux(XilSKey_Puf *InstancePtr)
- u32 XilSKey_ZynqMp_EfusePs_ReadPufAux(u32 *Address, u8 ReadOption)
- u32 XilSKey_Write_Puf_EfusePs_SecureBits (XilSKey_Puf_Secure *WriteSecureBits)
- u32 XilSKey_Read_Puf_EfusePs_SecureBits (XilSKey_Puf_Secure *SecureBitsRead, u8 ReadOption)
- u32 XilSKey_Puf_Debug2(XilSKey_Puf *InstancePtr)
- u32 XilSKey_Puf_Registration(XilSKey_Puf *InstancePtr)

u32 XilSKey_ZynqMp_EfusePs_WritePufHelprData(XilSKey_Puf
 *InstancePtr)

Parameters InstancePtr is a pointer to the XilSKey_Puf instance.

Returns XST_SUCCESS if programs successfully

Errorcode on failure

Description This API programs the Zyng UltraScale+ MPSoC PS eFUSE with PUF helper

data

Includes xilskey_eps_zynqmp_puf.h

38

u32 XilSKey_ZynqMp_EfusePs_ReadPufHelprData(u32 *Address)

Parameters Address is a pointer to data array which holds the Puf helper data read from

ZynqMp efuse.

Returns XST_SUCCESS on success.

Errorcode on failure

Description This API reads the PUF helper data from eFUSE.

Includes xilskey_eps_zynqmp_puf.h

Parameters InstancePtr is a pointer to the XilSKey_Puf instance.

Returns XST_SUCCESS if chash is programmed successfully.

Errorcode on failure

Description This API programs Zynq UltraScale+ MPSoC eFUSE with CHash value.

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_ZynqMp_EfusePs_ReadPufChash(u32 *Address, u8
 ReadOption)

Parameters Address is a pointer which holds the read back value of chash ReadOption

is a u8 variable which has to be provided by user based on this input reading

is happend from cache or from efuse array.

" 0(XSK_EFUSEPS_READ_FROM_CACHE)Reads from cache

" 1(XSK_EFUSEPS_READ_FROM_EFUSE)Reads from efuse array

Returns XST_SUCCESS on success.

Errorcode on failure

Description This API reads eFUSE PUF CHash data from eFUSE array or cache based on

the user read option.

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_ZynqMp_EfusePs_WritePufAux(XilSKey_Puf
*InstancePtr)

Parameters InstancePtr is a pointer to the XilSKey_Puf instance.

Returns XST_SUCCESS if Auxiliary data is programmed successfully.

Errorcode on failure

Description This API program Zynq UltraScale+ MPSoC eFUSE with Auxilary data

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_ZynqMp_EfusePs_ReadPufAux(u32 *Address, u8
 ReadOption)

Parameters Address is a pointer which holds the read back value of Auxilary ReadOption

is a u8 variable which has to be provided by user based on this input reading

is happened from cache or from efuse array.

" 0(XSK_EFUSEPS_READ_FROM_CACHE)Reads from cache
" 1(XSK_EFUSEPS_READ_FROM_EFUSE)Reads from efuse array

Returns XST_SUCCESS on success.

Errorcode on failure

Description This API reads efuse puf Auxilary Data from efuse array or cache based on

user read option.

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_Write_Puf_EfusePs_SecureBits (XilSKey_Puf_Secure *WriteSecureBits)

Parameters WriteSecureBits is the pointer to the XilSKey_Puf_Secure.

Returns XST_SUCCESS on success.

Errorcode on failure

Description This function programs the PUF secure/control bits of eFUSE.

The PUF configuration which is inteded to program should be made 1 all

other members of structure should be 0.

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_Read_Puf_EfusePs_SecureBits

(XilSKey_Puf_Secure *SecureBitsRead, u8 ReadOption)

Parameters Secure BitsRead is the pointer to the XilSKey_Puf_Secure which holds the read

data of PUF eFUSE secure bits.

ReadOption is a u8 variable which has to be provided by user based on this input

reading is happend from cache or from efuse array.

 ${\it "O(XSK_EFUSEPS_READ_FROM_CACHE)} \\ Reads from cache$

" 1(XSK_EFUSEPS_READ_FROM_EFUSE)Reads from efuse array

Returns XST_SUCCESS on success.

Errorcode on failure

Description This function reads PUF secure bits from eFUSE ZynqMP+ SoC and updates

the members of the structure.

" 1 - indicates the corresponding eFUSE bit is programmed

" 0 - indicates the corresponding eFUSE bit is not programmed

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_Puf_Debug2(XilSKey_Puf *InstancePtr)

Parameters InstancePtr is a pointer to the XilSKey_Puf instance

Returns XST_SUCCESS if debug 2 mode was successful.

ERROR if unsuccessful.

Description This API generates debug 2 result and the result is updated at InstancePtr ->

Debug2Data

Includes xilskey_eps_zynqmp_puf.h

u32 XilSKey_Puf_Registration(XilSKey_Puf *InstancePtr)

Parameters InstancePtr is a pointer to the XilSKey_Puf instance

Returns XST_SUCCESS if registration/re-registration was successful.

ERROR if registration was unsuccessful

Description This API performs PUF registration and stores the PUF syndrome data at

InstancePtr ->SyndromeData

Includes xilskey_eps_zynqmp_puf.h