## Ejercicios Mecánica Teórica. Capítulo 41

Autor del curso: Javier García

Problemas resueltos por: Roger Balsach

17 de septiembre de 2019

## 1. Cálculo del Corchete de Poisson $\{a, a^*\}$

Tenemos que demostrar que

$$\{\pi(x), \pi(y)\} = 0, \qquad \{\phi(x), \phi(y)\} = 0$$
 (1)

Recordemos del capítulo 38 la definición

$$\{A, B\} = \int \frac{\delta A}{\delta \phi(z)} \frac{\delta B}{\delta \pi(z)} - \frac{\delta B}{\delta \phi(z)} \frac{\delta A}{\delta \pi(z)} dz$$
 (2)

Del mismo capítulo 38 recordemos que teníamos que

$$\frac{\delta\phi(x)}{\delta\pi(y)} = 0, \qquad \frac{\delta\pi(x)}{\delta\phi(y)} = \delta(x - y)$$
 (3)

Entonces, usamos directamente la definición:

$$\{\phi(x), \phi(y)\} = \int \frac{\delta\phi(x)}{\delta\phi(z)} \frac{\delta\phi(y)}{\delta\pi(z)} - \frac{\delta\phi(y)}{\delta\phi(z)} \frac{\delta\phi(x)}{\delta\pi(z)} dz = 0$$
 (4)

Vemos que todos los términos contienen por lo menos una derivada del estilo  $\frac{\delta\phi}{\delta\pi}$ , por lo que se anula todo. Haciendo lo mismo para  $\pi$ 

$$\{\pi(x), \pi(y)\} = \int \frac{\delta \pi(x)}{\delta \phi(z)} \frac{\delta \pi(y)}{\delta \pi(z)} - \frac{\delta \pi(y)}{\delta \phi(z)} \frac{\delta \pi(x)}{\delta \pi(z)} dz = 0$$
 (5)

En este caso, de nuevo todos los términos tienen derivadas del estilo  $\frac{\delta\pi}{\delta\phi}$  por lo que también se anula.