## 第一节 数字高程模型



### 知识点

数字高程模型的基本概念

高程矩阵的生成方法

不规则三角网的建立

本

概

念

### 数字高程模型

### 基本概念

数字地面 模型



数字高程 模型

 被描述的连续表面是地形面,即高程值在地理空间上的起伏变化,称为数字高程模型(Digital Elevation Model, 简称DEM)。



### 高程矩阵的基本概念

高程矩阵是DEM最普通的形式,将地形表面用一组规则分布的 采样点的高程组成的矩阵来表示。

| 91  | 78 | 63 | 50 | 53 | 63 | 44 | 55  | 43 | 25 |
|-----|----|----|----|----|----|----|-----|----|----|
| 94  | 81 | 64 | 51 | 57 | 62 | 50 | 60  | 50 | 35 |
| 100 | 84 | 66 | 55 | 64 | 66 | 54 | 65  | 57 | 42 |
| 103 | 84 | 66 | 56 | 72 | 71 | 58 | 74  | 65 | 47 |
| 96  | 82 | 66 | 63 | 80 | 78 | 60 | 84  | 72 | 49 |
| 91  | 79 | 66 | 66 | 80 | 80 | 62 | 86  | 77 | 56 |
| 86  | 78 | 68 | 69 | 74 | 75 | 70 | 93  | 82 | 57 |
| 80  | 75 | 73 | 72 | 68 | 75 | 86 | 100 | 81 | 56 |
| 74  | 67 | 69 | 74 | 62 | 66 | 83 | 88  | 73 | 53 |
| 70  | 56 | 62 | 74 | 57 | 58 | 71 | 74  | 63 | 45 |





灰度显示



三维显示

#### 高程矩阵的生成



空间插值

通过使用现有数据点 的变量值,估计一个非样 点位置的变量值的方法。





#### 空间插值方法



#### 线性内插法

● 用线性曲面方程 Zp=a<sub>0</sub>+a<sub>1</sub>x+a<sub>2</sub>y 拟合待定点附近的地形面。



可用与待求点最邻近的3个数据点求解待定系数a<sub>0</sub>,
 a<sub>1</sub>, a<sub>2</sub>。



● 把待求点的x, y坐标代入方程,即可计算待定点的高程值。

#### 双线性内插法

- 用<mark>曲面方程Zp=a<sub>0</sub>+a<sub>1</sub>x+a<sub>2</sub>y+a<sub>3</sub>xy</mark>拟合待定点附近的地形面,也可以表示为 Zp=(ax+b)(cy+d)。
- 认为待定点附近的地形面的高程Zp在x轴方向呈线性变化,同时在y轴方向上也呈 线性变化。





- 可用待定点附近的4个数据点来计算双线 性曲面函数的待定系数a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>。
- 再根据曲面函数计算待定点的高程值。

### 移动拟合法

- 移动拟合法是用二次多项式来拟合地面高程,即
  Zp=Ax²+Bxy+Cy²+Dx+Ey+F
- 通常把坐标原点平移到待定点之后利用上式,采用待定点为圆心的圆周内6个数据点求解函数的待定系数,然后根据曲面方程计算Zp。



#### 趋势面插值



属于整体内插法,假设地形表面的一般趋势与高程值的局部变化无关,利用曲面方程模拟 待定点附近地面的一般趋势。

### 高程矩阵的评价

### 优点

- 计算机处理矩阵比较方便,以栅格数据为基础的GIS中,采用高程矩阵比较普遍。
- 高程矩阵有利于计算等高线、坡度、坡向等。



### 缺点

- 在内插过程中将损失高程精度。
- 采样工作量较大。
- 存在数据冗余与精度不 足的矛盾。

### 地形分析

### 不规则三角网模型的基本概念

不规则三角网(TIN)是用相互连接的三角平面来表示地形表面,每个三角平面表示地形面的一部分。





- 三角形的形状和大小取决于不规则分布 的高程数据点的位置和密度。
- 能根据地形变化和地形复杂性决定采样 点的位置和采样点的密度,因而能够有 效地反映各种地性线并减少数据冗余。

#### TIN模型的建立

样点选择

决定TIN模型包括哪些样点而删除哪些样点?

2

生成方法选择

用哪一种方法建 立TIN?

存储方法选择

建立TIN之后,如何存储这个TIN?



特殊点在地表起着特定作用而应该被采用。



● 鉴别样点相对于地形的重要性程度选择样点。



• 结合优化算法,进行样点的选择。

### 将点连成三角形

在三角网表示的地面模型中,顶点处的高程值与实际地面高程一致,而三角形内部点的高程则与实际地面高程存在偏差。



与实际 地面存 在偏差



- 构造三角网时,力求使三角形的最小内角最大化。
- 所有内角接近60度的"胖"三角形效果最好的。







#### 按照Delaunay三角剖分产生三角形

Delaunay三角剖分的原则是其产生 的任何三角形的外接圆内部不包含该三角 形顶点之外的其它点。







- 在寻找地性线,并调整三角 网,使其成为三角形的边。
- 由于地性线处高程发生跳 跃式变化,它们构成地形 面的边界,断裂线理应构 成三角网的边,而不是位 于三角形内部。







Delaunay三角网



### 不规则三角网的存储

#### 三角形的顺序存储

- 一个记录通常包含:
- 三角形的ID号等相关参数;
- 三个顶点的X、Y、Z坐标值;
- 三个相邻三角形的ID号等参数。 通过创建一个独立的顶点文件, 并将它与三角形文件联结起来, 以避免坐标的重复。

#### 用顶点和它们的邻点存储

顶点的存放方式:

- ID码;
- X、Y、Z坐标值;
- 指向相邻顶点(可以按顺时针 或逆时针方向计算)的ID参数。

- 坡度分析采用前者比较好,
- 等高线或其它横断面分析工作则以后者为宜。

### 不规则三角网模型的特点

不规则三角网模型的吸引力在于其简单性和实用性。

1

对于地形的表达具有一定的局限性。

2

通常需要具有足够的离散数 据点才能保证模型的精度;

3

数据存储量一般较大;

4

在进行大规模大区域的规范 化管理以及与GIS的图形数据 或遥感影像数据进行联合分 析时存在一些困难。



# 谢谢大家!

