The Algorithm

```
Iterative-Compute-Opt M[-1]=0 M[0]=0 for j=1,2,\ldots,n M[j]=max(v_j+M[j-2],M[j-1]) endfor return\ M[n]
```

Proof of Correctness

First, some terminology: v_i means salary at shift j.

Observe that for an optimal solution O, shift n (the last shift) either belongs or doesn't belong to O. If $n \in O$, then $n-1 \notin O$ because of labor laws. Moreover, if $n \in O$, then O *must* include an optimal solution to the problem consisting of shifts $\{1, ..., n-2\}$. On the other hand, if $n \notin O$, then O simply equals to the optimal solution to the problem consisting of shifts $\{1, ..., n-1\}$. We summarize this in a formula that essentially says $\forall j$, either $j \in O_j$, in which case Max_Salary = v_j + Max_Salary(j-2), or $j \notin O_j$, in which case Max_Salary = Max_Salary(j-1). So

Max Salary(j) =
$$max(v_i + Max Salary(j-2), Max Salary(j-1))$$

We will now prove by **strong induction** that the algorithm above returns the optimal answer.

Base Case

We want to prove M[1] returns the maximum amount of money Alice can earn if there were only the first shift available to her. By definition,

$$M[1] = max(v_1 + M[-1], M[0])$$

$$= max(v_1 + 0, 0)$$

$$= max(v_1, 0)$$

$$= v_1$$

Which is correct because if she only had the first shift available, that's the most she could earn.

Inductive Case

We need to prove M[j]= Max_Salary(j).

Since we're using strong induction, we can assume that \forall i < j, M[i] is the maximum salary Alice can earn if she only had the first i shifts available to her. Thus,

$$M[j]= max(v_j + M[j-2], M[j-1])$$

$$= max(v_j + Max_Salary[j-2], Max_Salary[j-1])$$

Which was our definition given above (before the base case was proved).

Runtime Analysis

Iterating through the M array is O(n). Calculating $v_j + M[j-2]$ is O(1) because array lookup is O(1). Looking up M[j-1] is also O(1). Getting the max of the two is also O(1). In total, the algorithm is O(n).