XI. TURUNAN

Ringkasan Materi:

- 1. Menentukan turunan fungsi aljabar
 - Misalkan suatu fungsi dituliskan dengan f(x) = y, maka turunan pertama fungsi tersebut terhadap variabel x

dituliskan dengan $f^1(x)$ atau $\mathbf{y^1}$ atau $\frac{df(x)}{dx}$ atau $\frac{dy}{dx}$

- > Rumus pokok turunan fungsi aljabar
- (i). Jika $f(x) = ax^n$, maka $f^1(x) = n.a.x^{n-1}$
- (ii). Jika f(x) = a (konstanta), maka $f^{1}(x) = 0$
- (iii). Jika f(x)=ax, maka $f^{1}(x)=a$

Contoh:

- (i). $f(x)=2x^3+5$, maka $f^1(x)=3.2x^{3-1}+0=6x^2$
- (ii). $f(x) = \frac{3}{x^5} 5x$, maka bentuknya diubah dulu

menjadi $f(x)=3.x^{-5}-5x$, sehingga:

$$f^{1}(x)=(-5).3x^{-5-1}-5=-15x^{-6}-5=-\frac{15}{x^{6}}-5$$

2. Menentukan nilai turunan fungsi aljabar Jika $f^1(x)$ adalah turunan fungsi f(x), maka nilai turunan fungsi f(x) di x = a adalah $f^1(a)$.

Contoh:

 $f(x) = 2x^2-3x$, tentukanlah nilai turunan fungsi f(x) di x=-2! Penyelesaian:

Jelas
$$f^1(x) = 4x-3$$
, maka $f^1(-2) = 4.(-2)-3 = -8-3 = -11$

- 3. Aplikasi/ Penerapan konsep turunan
 - ➤ Menentukan gradien dan persamaan garis singgung di suatu titik pada kurva y = f (x)
 - (i).Gradien (m) garis singgung di titik (x_1,y_1) pada kurva y = f(x) dapat ditentukan dengan : m = f¹(x_1)
 - (ii). Persamaan garis singgung pada kurva y=f(x) di titik (x_1,y_1), dirumuskan dengan :

$$y - y_1 = m.(x - x_1)$$

- ➤ Menentukan nilai maksimum atau minimum fungsi f(x)
 - (i). Fungsi f(x) akan mencapai maksimum/ minimum, untuk x yang memenuhi $f^1(x) = 0$

Ingat!

Untuk menentukan nilai maksimum atau minimum fungsi jika fungsinya berupa fungsi kuadrat juga bisa menggunakan konsep pada fungsi kuadrat yaitu pakai rumus untuk mencari y_b (y-nya titik balik) <u>lihat kisi 5</u>

(ii). Menentukan nilai maksimum/minimum fungsi $f(x) \text{ pada interval tertutup a } \le x \le b$

Langkahnya:

- ✓ Carilah x yang memenuhi $f^1(x) = 0$
- ✓ Periksalah nilai f(x) untuk x = a, x = b, dan x yang diperoleh dari langkah pertama, dengan catatan x tersebut nilainya lebih dari a dan kurang dari b.
- ✓ Jika yang diminta adalah nilai maksimum maka pilihlah nilai − nilai f(x) dari langkah dua yang nilainya paling besar, dan sebaliknya jika yang diminta adalah nilai minimum, maka pilihlan nilai f(x) dari langkah dua yang nilainya paling kecil.
- Menerapkan turunan pada soal cerita Untuk penerapan jenis ini Ringkasan Materi sama dengan saat mencari nilai maksimum/ minimum, vaitu;
 - f (x) akan mencapai maksimum atau minimum untuk x yang memenuhi $f^{1}(x) = 0$

(biasanya soal dalam bentuk soal cerita, dan f(x) perlu dirumuskan dahulu)

- > Menentukan interval fungsi naik atau turun
 - (i). f(x) naik jika $f^{1}(x) > 0$
 - (ii). f(x) turun jika $f^{1}(x) < 0$

Contoh Soal:

1. Turunan pertama dari $f(x) = \frac{1}{2}x^4 + \frac{2}{3}x^3 - 4x + 1$

adalah
$$f^1(x) = \dots$$

- a. $x^3 + x^2 2$
- d. $2x^3 + 2x^2 4x$
- b. $x^3 + 2x^2 4$
- e. $2x^3 + 2x^2 4$
- c. $2x^3 + 2x^2 4x + 1$

Penyelesaian:

Jelas
$$f^{1}(x) = 4.\frac{1}{2}x^{4-1} + 3.\frac{2}{3}x^{3-1} - 4$$

$$\Leftrightarrow f^{1}(x) = 2x^{3} + 2x^{2} - 4$$
 jadi jawabannya C

2. Turunan pertama dari fungsi

$$f(x) = 2x^3 + 3x^2 - x + 2 \ \ \text{adalah} \ \ f^1(x) \ . \ \ \text{Nilai}$$

$$f^1(1) = \dots$$

a. 4

d. 11

b. 6

e. 13

c. 8

Penyelesaian:

Jelas $f^{1}(x) = 6x^{2} + 6x - 1$, maka $f^{1}(1) = 2.1^{3} + 3.1^{2} - 1 = 4$.

Jadi jawabannya A

- 3. Persamaan garis singgung pada kurva $y = x^2 + 4x + 1$ di titik (2,13) adalah
 - a. y = 8x 3
- d. y = 2x + 9
- b. y = 8x + 13
- e. y = 4x + 5
- c. y = 8x 16

Penyelesaian:

Jelas
$$y^1 = f^1(x) = 2x + 4$$
, maka m = $f^1(2) = 2.2 + 4 = 8$

Sehingga persamaan garis singgungnya:

$$y - y_1 = m(x - x_1)$$

$$\Leftrightarrow$$
 y - 13 = 8 (x - 2)

$$\Leftrightarrow$$
 y - 13 = 8x - 16

$$\Leftrightarrow$$
 y = 8x -16 + 13

$$\Leftrightarrow$$
 y = 8x - 3 jadi jawabannya A

- 4. Nilai maksimum dari $f(x) = -2x^2 2x + 13$ adalah
 - a. $6\frac{5}{8}$
- d. 14 $\frac{1}{2}$
- b. $8\frac{7}{8}$
- e. $15\frac{5}{8}$
- c. $13\frac{1}{2}$

Penyelesaian:

Cara I:

Untuk mencapai maksimum, maka x harus memenuhi $f^1(x)=0$ Jelas $f^1(x)=-4x-2$

Syaratnya f¹(x)=0

$$\Leftrightarrow$$
 -4x - 2 = 0

fmaks =
$$f(-\frac{1}{2})$$

= $-2.(-\frac{1}{2})^2 - 2.(-\frac{1}{2}) + 13$
= $-2.\frac{1}{4} + 1 + 13$
= $-\frac{1}{2} + 14 = 13\frac{1}{2}$ Jadi jawabannya C

Cara II: pakai konsep titik balik pada fungsi kuadrat

Dari fungsi di atas, jelas a = -2, b = -2, c = 13.

$${\rm Ingat!} \ x_b = -\frac{b}{2a} = -\frac{(-2)}{2.(-2)} = -\frac{1}{2}$$

Maka
$$f_{maks} = y_b = -2.(-\frac{1}{2})^2 - 2.(-\frac{1}{2}) + 13$$

$$= -2.\frac{1}{4} + 1 + 13$$

$$=-rac{1}{2}+14=$$
 13 $rac{1}{2}$ Jadi jawabannya

C

5. Sebuah home industry memproduksi x unit barang dengan biaya yang dinyatakan dengan

 $(x^2-30x+125)$ ribu rupiah, dan pendapatan setelah barang tersebut habis terjual adalah (60x) ribu rupiah.

Keuntungan maksimal home industry tersebut adalah

- a. Rp1.900.000,00
- b. Rp1.150.000,00
- c. Rp550.000,00
- d. Rp300.000,00
- e. Rp100.000,00

Penyelesaian:

Langkah pertama:

buat model fungsi keuntungan = pendapatan - biaya

$$f(x) = (60x) - (x^2 - 30x + 125)$$
 ribu rupiah

$$f(x) = -x^2 + 90x - 125$$
 ribu rupiah

kita pakai cara II: pakai konsep fungsi kuadrat

jelas $x_b = -\frac{90}{2.(-1)} = 45$, maka keuntungan maksimum

adalah (
$$y_b$$
) = $f(45) = -45^2 + 90.45 - 125$
= $-2025 + 4050 - 125 = 1900 \, \mathrm{rb}$

Jadi jawabannya Rp1.900.000,00 (A)

Paket Soal 17:

Kelompok Menentukan $f^1(x)$ dan nilai nilai turunan

- 1. Diketahui $f(x) = 3x^3+4x+8$. Jika turunan pertama f(x) adalah f'(x), maka f'(x) adalah....
 - a. x^2+4
 - b. $9x^2+4$
 - c. $27x^2+4$
 - d. $9x^2 + 4x + 8$
 - e. $27x^2+4x+8$
- 2. Diketahui f'(x) adalah turunan pertama dari f(x). Jika $f(x) = 4 5x 2x^3$ maka f'(x) = ...
 - a. $2x^2 5$
 - b. $-2x^2 5$
 - c. -6x + 5
 - d. $-6x^2 + 5$
 - e. $-6x^2 5$

a.
$$x^3 - x^2 - 4$$

b.
$$x^3 - 2x^2 - 4$$

c.
$$2x^3 - 2x^2 + 4$$

d.
$$2x^3 - 2x^2 + 4x$$

e.
$$2x^3 - 2x^2 + 4x - 1$$

- 4. Diketahui $f(x) = (2x-3)^4$ dan f^1 adalah turunan pertama fungsi f. Nilai f¹ (3) adalah
 - a. 24
 - b. 36
 - c. 72
 - d. 108
 - e. 216
- 5. Diketahui $f(x) = (2x 1)^4 \operatorname{dan} f'$ adalah turunan pertama fungsi f. Nilai f'(2) adalah
 - a. 216
 - b. 108
 - c. 72
 - d. 36
- 6. Diketahui $f(x) = 5 + 2x 3x^2$, maka f'(-2) = ...
 - a. -11
 - b. -10
 - c. -4
 - d. 13
 - e. 14
- 7. Diketahui $f(x) = x^6 + 12x^4 + 2x^2 6x + 8 dan f^1(x)$ adalah turunan pertama dari f(x). Nilai $f^{1}(1) = ...$ (UN 2010)
 - a. 64
- d. 56
- b. 60
- e. 52
- c. 58
- 8. Diketahui $f(x) = (3x^2 5)^4$. Jika f' adalah turunan pertama f, maka f'(x) = (UN 2011)
 - a. $4x(3x^2-5)^3$ d. $24x(3x^2-5)^3$
 - b. $6x(3x^2-5)^3$ e. $48x(3x^2-5)^3$
 - c. $12x(3x^2-5)^3$

Kelompok penerapan turunan

9. Persamaan garis singgung pada kurva

$$y = x^3 + 4x^2 + 5x + 8$$
 di titik (-3, 2) adalah

a.
$$y = -8x - 26$$

b.
$$y = -8x + 26$$

c.
$$y = 8x + 22$$

d.
$$y = 8x + 26$$

e.
$$y = 8x - 26$$

10. Persamaan garis singgung pada kurva $y = 3x^2 - 8x + 1$ di titik (1,-4) adalah

a.
$$y - 2x + 6 = 0$$

b.
$$y + 2x - 2 = 0$$

c.
$$y + 2x + 2 = 0$$

d.
$$y - 5x + 9 = 0$$

e.
$$y + 5x - 1 = 0$$

catatan: persamaan garis dapat disajikan dalam bentuk y = ax + b atau dalam bentuk ax+by+c =0, atau dalam bentuk by + ax + c = 0

11. Diketahui kurva $y = 8x^2-14x-15$ dan titik P berabsis 1. Gradien garis singgung kurva yang melalui titik P adalah

- a. -30
- d. 2
- b. -18
- e. 30

- c. -2
- 12. Persamaan garis singgung pada kurva $y = x^2 2x + 3 di$ titik (2, 3) adalah

b.
$$y = 2x - 7$$

c.
$$y = 2x + 1$$

d.
$$y = 3x - 1$$

e.
$$y = 3x - 7$$

13. Nilai maksimum untuk fungsi f(x) = $x^3 - 3x^2 + 3$ pada

interval
$$-1 \le x \le 2$$
 adalah

- a. **–**6
- b. -1
- d. 6
- 14. Nilai maksimum untuk fungsi f (x) = $2x(x^2 12)$ pada selang $-3 \le x \le 2$ adalah
 - a. 8
 - b. 12
 - c. 16

- d. 24
- e. 32
- 15. Diketahui suatu kurva dengan persamaan $f(x)=4+3x-x^3$ untuk x>0 nilai maksimum dari f(x) adalah
 - a. 4
 - b. 5
 - c. 6
 - d. 7
 - e. 8
- 16. Nilai minimum fungsi kuadrat $f(x) = 3x^2 24x + 7$ adalah
 - a. **–**151
 - b. -137
 - c. -55
 - d. -41
 - e. -7
- 17. Sebuah perusahaan furnitur mempunyai sebanyak x orang pegawai yang masing-masing memperoleh gaji yang dinyatakan dengan fungsi $G(x) = (3x^2 900x)$ dalam rupiah. Jika biaya tetap satu juta rupiah dan agar biayanya minimum, maka banyaknya karyawan seharusnya
 - a. 200 orang
 - b. 400 orang
 - c. 600 orang
 - d. 800 orang
 - e. 900 orang
- 18. Untuk memproduksi barang perhari diperlukan biaya ($x^3 2000 \, x^2 + 3000000x$) rupiah per unit. Agar biaya produksi per hari minimum maka jumlah barang yang harus diproduksi adalah unit
 - a. 1000
 - b. 1500
 - c. 2000
 - d. 3000
 - e. 4000
- 19. Beaya produksi per x unit barang dirumuskan $B(x) = x^2 6x + 20$. Banyak unit barang akan mencapai beaya minimum pada saat diproduksi sebanyak ... unit.
 - a. 8
 - b. 9
 - c. 10
 - d. 11
 - e. 12
- 20. Tinggi h meter dari sebuah peluru yang ditembakkan ke atas setelah t detik dinyatakan dengan h(t) = $25 + 16 t 4t^2$. Tinggi maksimum yang dicapai peluru adalah

- a. 40 meter
- b. 41 meter
- c. 42 meter
- d. 43 meter
- e. 44 meter
- 21. Suatu persegi panjang dengan panjang (2x + 4) cm dan lebar (4-x) cm. Agar luas persegi panjang maksimum, ukuran panjang adalah
 - a. 4 cm
 - b. 6 cm
 - c. 8 cm
 - d. 10 cm
 - e. 12 cm
- 22. Biaya produksi barang dinyatakan dengan fungsi $f(x) = (x^2 100x + 4500) \text{ ribu rupiah. Biaya minimum}$ untuk memproduksi barang tersebut adalah(UN 2010)
 - a. Rp1.000.000,00
 - b. Rp2.000.000,00
 - c. Rp3.500.000,00
 - d. Rp4.500.000,00
 - e. Rp5.500.000,00
- 23. Grafik fungsi $f(x) = x^3 + 6x^2 36x + 20$ turun pada interval (UN 2010)
 - a. -2 < *x* < 6
- d. x < -6 atau x > 2
- b. -6 < x < 2
- e. x < -2 atau x > 6
- c. -6 < *x* < -2
- 24. Biaya produksi barang dinyatakan dengan fungsi $B(x) = (2x^2 180x + 2500) \text{ ribu rupiah. Agar biaya}$ minimum , maka harus diproduksi barang sebanyak (UN 2011)
 - a. 30
- d. 90
- b. 45
- e. 135
- c. 60
- 25. Grafik fungsi $f(x) = x^3 3x^2 9x + 15$ turun pada interval (UN 2011)
 - a. 1 < x < 3
- d. x < -1 atau x > 3
- b. -1 < x < 3
- e. x < -3 atau x > 1
- c. x < -3 atau x > -1