Introduction to Alpine

Kevin Fotso

Logging into Alpine(1)

Logging into Alpine from the Shell App

Note

Make sure you already have your XSEDE/ACCESS user name and password set up before proceeding and Duo 2-factor authentication set up for your ACCESS/XSEDE account

1. Visit https://ondemand-rmacc.rc.colorado.edu You will be redirected to CILogon. From there, make sure you select the ACCESS CI (XSEDE) as your identity provider and then click the "Log On" button.

CILogon

Consent to Attribute Release

OOD RMACC requests access to the following information. If you do not approve this request, do not proceed.

- · Your CILogon user identifier
- Your name
- Your email address
- · Your username and affiliation from your identity provider

Select an Identity Provider

☐ Remember this selection ②

Logging into Alpine(2)

ssh project

Worked with the Boulder team, to establish ssh over VPN.

Successfully passed Beta mode and Beta plus mode.

Still working with new group of users

Not official yet

Files transfer (Globus)

Creation of Globus Connect Personal endpoint.

CU Boulder endpoint for Anschutz is CU Boulder Research Computing ACCESS.

Data Transfer node (dtn3) is 10 years old (1GB/sec)

Boulder is building 4 new DTN and upgrading configuration (2-4 weeks)

Storage(1)

Home filesystem (2G). Backed up + for hosting config files.

Project filesystem (250G). Backed up -> for package installation

"cd .snapshot" to access those back ups

'curc-quota' or 'du' to check on space

- Scratch space (10 TB)
- GPFS filesystem
- Very suitable for parallel application + heavy I/O
- Purged every 90 days

Petalibrary

Preliminary conditions (1)

CREATION OF AN ACCESS
GROUP

ALL MEMBER ADDED TO THE GROUP WILL NEED ACCESS/XSEDE ACCOUNTS.

/pl/active/<your_allocation_name>
/pl/archive/<your_allocation_name>

Preliminary conditions (2)

Owner must be designated

Owner can make changes to the allocation

Billing contact: can make any change except change the owner.

Technical contact: identical to billing contact.

Application

- Application submitted here:https://www.colorado.edu/rc/resources/petalibrary
- The request form will need a speedtype: account# to which they plan to charge the allocation.

Billing

- On active storage: \$45/TB/yr.
- ZFS Raidz2 allow for frequent read/write + parity.
- It is highly suggested that total TB size for the year is determined in advanced by the owner.


```
__mod = modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
mirror_mod.use_x = True
mirror_mod.use_y = False
 irror_mod.use_z = False
 _operation == "MIRROR_Y"
 lrror_mod.use_x = False
 !Tror_mod.use_y = True
 !rror_mod.use_z = False
  operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modified
    rror ob.select = 0
  bpy.context.selected_obj
   lata.objects[one.name].sel
  int("please select exaction
  --- OPERATOR CLASSES ----
      mirror to the selected
    ject.mirror_mirror_x"
  ext.active_object is not
```

Terms of usage

- Data will need to be in full compliance with term of service.
- No PHI data, no FERPA, no ITAR, no GDPR and data that comply with IRB requirements.
- More information here:
 https://www.colorado.edu/rc/res
 ources/petalibrary/tos

Data redundancy (1)

PL allocations are of single-copy nature.

All users should fill out the PL single copy acknowledgment.

Snapshots monitoring in place so that they are not missed unless on snapshot custom schedule

Sort term back up solutions (1)

- Microsoft OneDrive: 5TB per person through A3 licensing.
- S3 buckets: customer paid & rates located here:
 https://aws.amazon.com/s3/pricing/?p=pm&c=s3&z=4
- Multiple PL allocations as though customer requested 2 allocations (X2 price).

Sort term back up solutions (2)

- [BETA]Replicated PetaLibrary active +archive allocation.
- Nothing is charged during beta period but will likely look like Multiple PL allocations.
- CURC only takes data replication responsibility for BETA

Alpine computing

Official Github pages:

CU Anschutz HPC official Github page.

- CU Boulder curc doc:

https://curc.readthedocs.io/en/latest/access/logging-in.html

Hardware (1)

317 compute nodes and 18,080 nodes officially.

184 CPU nodes (HDR IB interconnect)

12 high memory nodes (1TB)

8 NVIDIA A100 GPU and 8 AMD GPU MI100 nodes. (3 GPUs per node) + (2X25 Ethernet interconnect)

NVIDIA GPU tend to be more busy but AMD GPU are popular.

Hardware (2)

GPU debug nodes are now available with --qos=atesting.

1 hour and up to 2 GPUs.

Users are now limited to up to 2/3 of the GPU partition (not per node)

Scheduler Slurm

- acompile --ntasks=1 --time=00:30:00 to build packages and do some testing.
- sinteractive --ntasks-per-node=2 --nodes=2 --partition=atesting to test pipelines
- NVIDIA gpu partitions are aa100, amc and atesting_a100.
- AMD gpu partitions are ami100 and atesting_mi100

Slurm example

```
#!/bin/bash
#SBATCH --partition=amilan
#SBATCH -- job-name=example-job
#SBATCH --output=example-job.%j.out
#SBATCH --time=01:00:00
#SBATCH --qos=normal
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --mail-type=ALL
#SBATCH --mail-user=youridentikey@colorado.edu
module purge
module load anaconda
conda activate custom-env
python myscript.py
```

Slurm Quality of service (qos)

- Used to modify or constrain characteristics that a job can have.
- --qos=normal corresponds to a walltime of 24 hours and is the default.
- --qos=long corresponds to a walltime of up to 7 days
- --qos=mem corresponds to high memory jobs only (up to 1TB)

Fairshare overview

- Difference between the portion of computing resource that has been promised and the amount of resources that has been consumed.
- Level fairshare of 1 indicates average priority compared to other users in that account (amcgeneral)
- module load slurmtools; levelfs\$USER

Job priority calculation formula

```
Job_priority =
        site_factor +
        (PriorityWeightAge) * (age_factor) +
        (PriorityWeightAssoc) * (assoc_factor) +
        (PriorityWeightFairshare) * (fair-share_factor) +
        (PriorityWeightJobSize) * (job_size_factor) +
        (PriorityWeightPartition) * (partition_factor) +
        (PriorityWeightQOS) * (QOS_factor) +
        SUM(TRES_weight_cpu * TRES_factor_cpu,
            TRES_weight_<type> * TRES_factor_<type>,
            ...)
        nice_factor
```

Package availability (1)

Some packages that have been built and accessible through Imod.

Adding new packages through Imod takes a lot of round of approval so it is recommended to build them locally.

Solutions: (cmake+make), Anaconda, pip, containers, spack etc ...

Submit a ticket at <u>rc-help@Colorado.edu</u> so that I can build it for you locally.

Package availability for ML (2)

- Cuda 11.2, Cuda 11.3 andCuda 11.4 on Alpine.
- Only cudnn 8.1 and 8.2on Alpine.
- Can be problematic for DL build with GPU compatibility

GPU

Version	Python version	Compiler	Build tools	cuDNN	CUDA
tensorflow-2.13.0	3.8-3.11	Clang 16.0.0	Bazel 5.3.0	8.6	11.8
tensorflow-2.12.0	3.8-3.11	GCC 9.3.1	Bazel 5.3.0	8.6	11.8
tensorflow-2.11.0	3.7-3.10	GCC 9.3.1	Bazel 5.3.0	8.1	11.2
tensorflow-2.10.0	3.7-3.10	GCC 9.3.1	Bazel 5.1.1	8.1	11.2
tensorflow-2.9.0	3.7-3.10	GCC 9.3.1	Bazel 5.0.0	8.1	11.2
tensorflow-2.8.0	3.7-3.10	GCC 7.3.1	Bazel 4.2.1	8.1	11.2
tensorflow-2.7.0	3.7-3.9	GCC 7.3.1	Bazel 3.7.2	8.1	11.2
tensorflow-2.6.0	3.6-3.9	GCC 7.3.1	Bazel 3.7.2	8.1	11.2
tensorflow-2.5.0	3.6-3.9	GCC 7.3.1	Bazel 3.7.2	8.1	11.2
tensorflow-2.4.0	3.6-3.8	GCC 7.3.1	Bazel 3.1.0	8.0	11.0
tensorflow-2.3.0	3.5-3.8	GCC 7.3.1	Bazel 3.1.0	7.6	10.1

Containers (1)

- Singularity only and it needs to be built offline and then imported back to the cluster.
- Can be built either from a definition file or converted from a docker image.
- e.g. sudo singularity -v
 build
 splice_conda_v7.sif
 splice_conda.def

Containers (2)

module load singularity

- export ALPINE_SCRATCH=/gpfs/alpine1/scratch/\$USER
- export SINGULARITY_TMPDIR=\$ALPINE_SCRATCH/singularity/tmp
- export SINGULARITY_CACHEDIR=\$ALPINE_SCRATCH/singularity/cachemkdir -pv \$SINGULARITY_CACHEDIR \$SINGULARITY_TMPDIR

