高壓馬達運轉狀態監測系統

使用手册

目錄

一、 電氣嵌入式信號擷取盒外觀與功能	4
二、電氣訊號擷取系統操作	5
2.1、A/D 片數設定	6
2.2、A/D 參數設定	7
2.3、查看 MQTT 連線狀態	10
三、電氣訊號擷取系統之終端機操作	11
五、振動訊號擷取系統外觀與功能	14
六、振動訊號擷取系統 CHANNEL 設定	16
七、振動訊號擷取系統資料傳輸	21
八、振動訊號擷取系統現場接線示意圖	23
九、後端伺服器布置示意圖	25
十、網頁操作介紹	28
1. 輸入網址	28
2. 輸入帳號登入網頁	28
3. 進入主頁面	29
4.選單介紹	30

本使用手冊及維護手冊主要分為三個部分,電氣嵌入式系統(一~四章節)、振動嵌入式系統(五~九章節)、後端伺服器(十~十一章節),詳細章節如下列。

- 一、 電氣嵌入式信號擷取盒外觀與功能。
- 二、 電氣訊號擷取操作。
- 三、 電氣訊號擷取系統之終端機操作。
- 四、 振動訊號擷取系統外觀與功能。
- 五、 振動訊號擷取系統Channel設定。
- 六、 振動訊號擷取系統資料傳輸。
- 七、 振動訊號擷取系統現場接線示意圖。
- 八、 後端伺服器布置示意圖。
- 九、 網頁操作介紹。

一、 電氣嵌入式信號擷取盒外觀與功能

如下兩圖為電氣嵌入式信號擷取盒之正反面,並在下列出各插孔之功能及使用。

圖 A1 電氣嵌入式信號擷取盒正面

圖 A 2 電氣嵌入式信號擷取盒反面

- 1. 插入 SD 卡(SD card)
- 2. 接上 RJ45 乙太網路線(Ethernet)
- 3. 接上 UART(接電腦)轉 RJ45 乙太網路線(Console)
- 4. 接上電源(24V-1A)※確實接好再送電

二、電氣訊號擷取系統操作

1. 按「Enter」直到出現 Arago Project 字樣

圖 A3 終端機與嵌入式系統連線示意圖

2. 於 am335x-evm login: 輸入「root」, 並且按「Enter

圖 A 4 嵌入式系統登入介面圖

2.1、A/D 片數設定

1. 輸入此指令: #vi /etc/modprobe.d/adc_ti_ads8556.conf

am335x-evm login: root root@am335x-evm:~# vi /etc/modprobe.d/adc ti ads8556.conf

圖 A 5 嵌入式系統之數位類比轉換器設定

2. 按「Enter」進入後之畫面

options adc_ti_ads8556 devices=<mark>2</mark>

圖 A 6 嵌入式系統之數位類比轉換器片數設定

- 3. 按「I」鍵後進入編輯模式,圖上數字部分可以改成 1~4 片
- 4. 更改完畢後按「Esc」並輸入「:wq」即可儲存離開
- 5. 並輸入指令: #reboot
- 6. 即可重開機並載入設定

2.2、A/D 參數設定

1. 輸入此指令: #vi /etc/adc-mqtt/adc-mqtt.properties

root@am335x-evm:~# vi /etc/adc-mqtt/adc-mqtt.properties

圖 A7 嵌入式系統之數位類比轉換器設定

2. 按「Enter」進入後之畫面

```
admin@localhost:~
                                                                          ×
adc-mqtt setting
adc.samplerate=4096
adc.length=16384
adc.channel=18
adc.range=2
adc.vref=2.5
adc.dac=1024
mqtt.uri=tcp://192.168.99.250:1883
mqtt.id=taipower busl
channel.0.id=mbed/lpc1769/ald685d6-b9f6-a000-a000-91f7ca000100
channel.0.rate=4800
channel.0.offset=0
channel.1.id=mbed/1pc1769/ald685d6-b9f6-a000-a000-91f7ca000101
channel.1.rate=4800
channel.1.offset=0
channel.2.id=mbed/lpc1769/ald685d6-b9f6-a000-a000-91f7ca000102
channel.2.rate=4800
channel.2.offset=0
 /etc/adc-mqtt/adc-mqtt.properties 1/92 1%
```

圖 A 8 嵌入式系統之數位類比轉換器設定

3. 按「I」鍵後進入編輯模式,可更改下列各設定

```
admin@localhost:~
                                                                          X
adc-mqtt setting
adc.samplerate=4096
adc.length=16384
adc.channel=18
adc.range=2
adc.vref=2.5
adc.dac=1024
mqtt.uri=tcp://192.168.99.250:1883
nqtt.id=taipower busl
channel.0.id=mbed/1pc1769/ald685d6-b9f6-a000-a000-91f7ca000100
channel.0.rate=4800
channel.0.offset=0
channel.1.id=mbed/1pc1769/a1d685d6-b9f6-a000-a000-91f7ca000101
channel.1.rate=4800
channel.1.offset=0
channel.2.id=mbed/1pc1769/ald685d6-b9f6-a000-a000-91f7ca000102
channel.2.rate=4800
channel.2.offset=0
 /etc/adc-mqtt/adc-mqtt.properties 1/92 1%
```

圖 A9 嵌入式系統之數位類比轉換器參數設定

4. 設定如下

adc.channel=A/D 片數*6(A/D 使用片數決定 channel 數量)

mqtt.uri=mqtt 接收網址(AVR 室電腦: 192.168.XX.XXX:1883)

channel.X.id(設定通道名稱)

channel.X.rate(設定 PT、CT 的倍數)如圖 A 10

channel.X.offset(設定直流準位)

- 5. 更改完畢後按「Esc」並輸入「:wq」即可儲存離開
- 6. 並輸入指令:#reboot即可重開機並載入設定

補充:PT、CT 倍率值設定

FDF MILL						PAF				Main PT:一次降電壓倍率			
Main P	т	60	Mair	Main PT 60		7 [Main PT 60		¬ Second PT:二次降電壓倍 Main CT:一次降電流倍率				
Second	PT	80	Second PT		80		Second P	PT 80		Second CT:二次降電流倍			
Main C	т	80		Main CT			Main CT	T 40		→ VBus1與VBus2之倍率為60			
Second CT 5		Second CT 5			Second C	Г	5	FDF之倍率為80*5					
BUS 1						BU	JS 2			PAF之任	音率為40*	5	
PAF#5-1		FDF#5-1				PAF#5-2			FDF#5-2				
Ratio = 200			Ratio = 400				Ratio = 200			Ratio = 400			
40	17	16	15	14	13		18	17	16	15	14	13	
18	MILL#5-5 Ratio = 100		MILL#5-3 Ratio = 100				MILL#5-4 Ratio = 100			MILL#5-2 Ratio = 100			
	Ratio = 10				7		12	11	10	9	8	7	
	Ratio = 10 11	10	9	8	'						VBus1 Ratio = 4800		
12		L		8 VBus1 tio = 480	,					R		00	

圖A10 PT與CT倍率值設定

2.3、查看 MQTT 連線狀態

1.輸入此指令:# journalctl -f -u adc-mqtt.service

root@am335x-evm:~# journalctl -f -u adc-mqtt.service

圖 A 11 查看 MQTT 連線狀態

2. 按「Enter」進入後之畫面

```
evm adcmqtt[12151]: channel.l.id = mbed/lpc1769/ald685d6-b9f6-a000-a000-91f7ca000101
evm adcmqtt[12151]: channel.l.rate = 4800.000000
 20 06:22:04 am335x-evm adcmqtt[12151]: channel.1.offset = 0.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.2.id = mbed/lpc1769/ald685d6-b9f6-a000-a000-91f7ca000102
20 06:22:04 am335x-evm adcmqtt[12151]: channel.2.rate = 4800.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.2.rate = 4800.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.3.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000103
20 06:22:04 am335x-evm adcmqtt[12151]: channel.3.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.3.rate = 100.000000
20 06:22:04 am35x-evm adcmqtt[12151]: channel.3.offset = 0.000000
20 06:22:04 am35x-evm adcmqtt[12151]: channel.4.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000104
20 06:22:04 am335x-evm adcmqtt[12151]: channel.4.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.4.offset = 0.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.5.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000105
20 06:22:04 am335x-evm adcmqtt[12151]: channel.5.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.5.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.5.fset = 0.0000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.5.offset = 0.0000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.6.ifset = 0.0000000
  20 06:22:04 am335x-evm adcmqtt[12151]: channel.6.1d = mbed/1pc1/e9/alde55de-p9fe-a000-p000-917/6a000106
20 06:22:04 am335x-evm adcmqtt[12151]: channel.6.offset = 0.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.7.id = mbed/1pc1769/ald685d6-b9f6-a000-b000-91f7ca000107
20 06:22:04 am335x-evm adcmqtt[12151]: channel.7.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.7.offset = 0.000000
 20 06:22:04 am335x-evm adcmqtt[2151]: channel.8.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000108
20 06:22:04 am335x-evm adcmqtt[2151]: channel.8.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[2151]: channel.8.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[2151]: channel.8.offset = 0.000000
20 06:22:04 am335x-evm adcmqtt[2151]: channel.9.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000109
20 06:22:04 am335x-evm adcmqtt[2151]: channel.9.rate = 100.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.14.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000114
20 06:22:04 am335x-evm adcmqtt[12151]: channel.14.rate = 400.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.14.rate = 0.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.15.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000115
20 06:22:04 am335x-evm adcmqtt[12151]: channel.15.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000115
20 06:22:04 am335x-evm adcmqtt[12151]: channel.15.rate = 200.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.15.offset = 0.000000
    20 06:22:04 am335x-evm adcmqtt[12151]: channel.16.id = mbed/1pc1769/ald685d6-b9f6-a000-b000-91f7ca000116
20 06:22:04 am335x-evm adcmqtt[12151]: channel.16.rate = 200.000000
  20 06:22:04 am335x-evm adcmqtt[12151]: channel.16.offset = 0.000000
20 06:22:04 am335x-evm adcmqtt[12151]: channel.17.id = mbed/lpc1769/ald685d6-b9f6-a000-b000-91f7ca000117
20 06:22:04 am335x-evm adcmqtt[12151]: channel.17.rate = 200.000000
           06:22:04 am335x-evm adcmqtt[12151]: finish.
06:22:04 am335x-evm systemd[1]: Started Send adc data use MQTT.
```

圖 A 12 嵌入式系統 MQTT 傳輸成功

3. Finish 表示傳輸成功

三、電氣訊號擷取系統之終端機操作

1. Windows10 左下角搜尋「裝置管理員」

圖 A 13 裝置管理員介面

2. 打開連接埠並找尋 USB Serial Port

圖 A 14 尋找 COM Port

3. 打開 PuTTY

圖 A 15 Putty 設定介面圖

4. 先點選 Serial, 再在 Serial line、Speed 內輸入 COM PORT 及鮑率,如圖 A 16

圖 A 16 Serial 設定示意圖

5. 按下 Open(圖 A 16 右下藍框部分)後會出現此畫面

圖 A 17 進入 Putty 介面

四、振動訊號擷取系統外觀與功能

圖 A 18 為嵌入式系統俯視圖,圖 A 19、圖 A 20 為嵌入式系統側視圖,圖四為感測器模組正反面,其功能為圖上所示。

圖 A 18 嵌入式系統俯視圖

圖 A 19 嵌入式系統側視圖

圖 A 20 嵌入式系統側視圖

三軸方向標示

圖 A 21 感測器模組正反面

五、振動訊號擷取系統 Channel 設定

1. 將設定好之記憶卡插入記憶卡插槽,並接上電源開機, 開機畫面如圖 A 22 所示。

圖 A 22 嵌入式系統

2. 待畫面顯示如圖 A 23 時,按「右鍵」進選單層,按「上鍵」或「下鍵」至 Setting,如圖 A 24 所示。

圖 A 23 嵌入式開機畫面

圖 A 24 嵌入式設定畫面

3. 按「右鍵」進入 Setting 後,再按「上鍵」或「下鍵」至 Default,如圖 A 25 所示。

圖 A 25 確認設定畫面

4. 按下「右鍵」, 畫面將顯示 Donefault, 即表示完成設定, 如圖 A 26 所示。

圖 A 26 完成設定畫面

5. 接著檢查 channel 是否成功設定,按「上鍵」或「下鍵」至 channel,如圖 A 27 所示。

圖 A 27 檢查設定

6. 按「右鍵」進入 Channel Setting 層,畫面會顯示 Ch0 UUID,如圖 A 28 所示,按右鍵進入 Ch0 UUID 並檢查 channel 是否成功設定。

圖 A 28 UUID 檢查畫面

7. 按「SET」鍵回到上一層,再按「下」鍵至 Ch1 UUID, 並重複 Step6 直至 Ch0 UUID~Ch3 UUID(三軸和溫度)皆 確認成功設定即可皆確認成功設定即可。

六、振動訊號擷取系統資料傳輸

1. 設定好 channel 後,接上網路線於網路插孔、電源線接 於電源插孔、訊號線接於感測器訊號插孔,若有收到 IP 則嵌入式系統於顯示如圖 A 29,並顯示目前 IP,再顯示 如圖 A 22 之主畫面,若未取得 IP 則顯示(null),如圖 A 30。

圖 A 29 嵌入式系統 IP 顯示

圖 A 30 未接收到 IP

2. 確認是否成功連上網路:若畫面顯時為如圖 A 31 所示, 日期及時間為即時,則資料將每分鐘傳送一次,傳送時 畫面如圖 A 32 所示,若未成功連上網路,則時間會顯示 01/01 08:00:00。

圖 A 31 嵌入式成功連網畫面

圖 A 32 嵌入式失敗連網畫面

七、振動訊號擷取系統現場接線示意圖

圖 A 33 為振動訊號擷取系統嵌入式部分現場安裝結果,右邊為變壓器,其功能為將市電 110V 轉成 12V 供電給振動嵌入式系統,左邊為網路插孔,由網路插孔拉出兩條網路線分別給馬達 DE 端及 NDE 端之嵌入式系統使用。

圖 A 33 振動訊號擷取盒實際畫面

嵌入式系統再透過訊號線連接感測器模組,並將感測器模組裝在馬達之DE及NDE端,如圖A34所示,圖A35為訊號線,其編號為RT-V17X系列,X為訊號線長度。

圖 A 34 感測器模組與訊號線

圖 A 35 訊號線編號 RT-V17X

八、後端伺服器布置示意圖

以下將介紹後端伺服器之布置圖

(1)AVR 室網路布置圖

第一層

圖 A 36 AVR 室網路布置圖

(2)AVR 室機櫃布置實體圖

圖 A 38 AVR 室電腦安裝位置圖

圖 A 39 螢幕顯示之主機切換鍵

九、網頁操作介紹

1. 輸入網址

圖 A 40 網頁登入畫面

2. 輸入帳號登入網頁

圖 A 41 帳密輸入畫面

3. 進入主頁面

進入主畫面可以看到如圖A42所示。

圖A42運轉狀態監測主畫面

4.選單介紹

可以看到左側選單如圖 A 43, 有五個功能選單, 分別為馬達狀態監控、馬達歷史資料查詢、系統管理、相關文件、連絡電話。

圖 A 43 選單介紹

圖 A 43 之各功能敘述如下:

- (1)馬達狀態監控:點選後可見九部機組之馬達運轉狀態,如圖 A 44。
- (2)馬達歷史資料查詢:點選後可進入查詢頁面,能依照選單選取馬達及開始時間與結束時間,如圖 A 45。
- (3)系統管理:點擊後,會出現下個選單,如圖 A 46。
- (4)相關文件:點擊後可進入頁面下載使用手冊及維護手冊。
- (5)連絡電話:點擊可與開發者聯繫。

圖 A 44 馬達狀態監控網頁畫面

圖 A 45 歷史查詢頁面圖

圖 A 46 系統管理之選單

