

# The role of Python in the data science lifecycle

Katinka Gereb, PhD





### Nice to meet you

Data scientist in Melbourne





#### Nice to meet you

• Data scientist in Melbourne

 PhD in astrophysics at the University of Groningen





#### How did I become a data scientist?



# Why does a data scientist use Python?

Python can support the entire data science lifecycle!



Data wrangling



Statistical analysis



Visualisations



ML models



Deployment

#### **Data Science Cycle**







#### Data cleaning and feature extraction

### | pandas

- DataFrame object for data manipulation
- Reading and writing
- Label-based computations
- Missing data, reshaping
- Group by, merge, concat
- Time-series functionality





#### Data cleaning and feature extraction



```
# Import pandas
     import pandas as pd
     # Read in dataset
     df = pd.read_csv('kaggle_datasets/Churn_Modelling.csv')
     df.head()
        CreditScore Geography Age Tenure
                                             Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
[8]:
     0
               619
                                                0.00
                                                                                            1
                        France
                                                                                                    101348.88
                         Spain
                                41
                                            83807.86
                                                                                                    112542.58
               608
     2
               502
                                        8 159660.80
                                                                                                    113931.57
                        France
                        France
                                                0.00
                                                                                                    93826.63
               850
                         Spain 43
                                        2 125510.82
                                                                                                    79084.10
```



#### Machine learning



- Simple and efficient tools for predictive data analysis
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable



#### Machine learning



```
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> X, y = load_iris(return_X_y=True)
                                              >>> tree.plot_tree(clf)
>>> clf = tree.DecisionTreeClassifier()
```

>>> clf = clf.fit(X, y)





#### Data visualisation



• Interactive visualisations





### Web apps



• Build and deploy apps





## Towards machine learning automation





### MLOps



- Trackable
- Reproducible
- Self-sustaining
- Automated



#### MLOps in the cloud









### Use cases



#### Churn Prediction

```
df = pd.read_csv('Churn_Modelling.csv')
df.head()
```

| CreditScore | Geography | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited |
|-------------|-----------|-----|--------|-----------|---------------|-----------|----------------|-----------------|--------|
| 619         | France    | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | 1      |
| 608         | Spain     | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       | 0      |
| 502         | France    | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | 1      |
| 699         | France    | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | 0      |
| 850         | Spain     | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        | 0      |



#### Churn Prediction

# Train the logistic regression model
from sklearn.linear\_model import LogisticRegression
model = LogisticRegression(random\_state=0)
model.fit(X, y)





### Risk profiling for customer churn analysis











### Clustering



https://cs.stanford.edu/people/karpathy/cnnembed/



#### Customer 360





#### Transactions:

ID, date time, value, SKUs, transaction history)

#### Customer data:

Membership ID, industry, demographics, lifetime value, segmentation metrics, churn risk profile

#### Loyalty:

Discounts, rewards, redemption history

#### Product data:

SKUs, product categories, price, purchase frequency, volume forecasts

#### Customer Insights

#### External data:

- Government data
- Competitor data
- · Ad-hoc, such as COVID-19 data

#### Payment/credit:

Date and time, credit rating and risk, debt history, fraud predictions

#### **Customer interactions:**

Call center data, chatbot interactions, emails, social media posts with # reference

#### Marketing data:

Click-through analysis, response analytics, campaigns, offers, cohort analysis



### Advancing your career







### Advancing your career





### Advancing your career







# Thanks for listening!



