∽ Corrigé du Baccalauréat S Antilles-Guyane 9 septembre 2020 ∾

EXERCICE 1 6 points

Partie A

1. On traduit cette situation à l'aide de l'arbre pondéré suivant :

2. En utilisant l'arbre pondéré précédent, on obtient :

$$P(M \cap S) = 0,55 \times 0,7 \approx 0,385.$$

La probabilité que Louise emmène Zoé le matin et qu'elle la ramène le soir est à peu près égale à 0,385.

3.
$$P(S) = P(M \cap S) + P(M \cap \overline{S}) = 0.385 + 0.45 \times 0.24 \approx 0.493.$$

4. Il s'agit de calculer $P_S(M)$.

$$P_S(M) = \frac{P(M \cap S)}{P(S)} = \frac{0,385}{0,493} \approx 0,781.$$

Partie B

X qui suit la loi normale d'espérance 28 et d'écart-type 5.

En utilisant la calculatrice, on obtient les résultats suivants :

- 1. $P(X \le 25) \approx 0.274$.
- **2.** $P(18 \le X \le 38) \approx 0.954$.
- **3.** $P(X \ge d) = 0, 1$, on obtient $d \approx 34$.

La durée du trajet (arrondie à la minute), telle que $P(X \ge d) = 0,1$ est de 34 minutes.

4. Y suit la loi normale d'espérance 26 et d'écart-type σ alors $Z = \frac{Y-26}{\sigma}$ suit la loi normale d'espérance 0 et d'écart type 1.

On sait que $P(Y \ge 30) = 0, 1$.

$$P(Y \geqslant 30) = 0, 1 \Longleftrightarrow P(Y - 26 \geqslant 30 - 26) = 0, 1 \Longleftrightarrow P\left(\frac{Y - 26}{\sigma} \geqslant \frac{4}{\sigma}\right) = 0, 1 \Longleftrightarrow P\left(Z \geqslant \frac{4}{\sigma}\right) = 0, 1$$

À l'aide de la calculatrice on trouve $\frac{4}{\sigma} \approx 1,281$ d'où $\sigma \approx \frac{4}{1,281} \approx 3,12$

Partie C

Ici on interroge N = 254 salariés de manière indépendante.

La proportion annoncée des salariés pratiquant le covoiturage est p = 0,35.

On a $N \ge 30$, $Np = 88, 9 \ge 5$ et $n(1-p) = 165, 1 \ge 5$.

On peut donc établir un intervalle de fluctuation asymptotique au seuil de 95%.

$$I_N = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{N}}; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{N}} \right].$$
Or $p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{N}} \approx 0,291$ et $p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{N}} \approx 0,409$ donc $I_N = [0,291; 0,409].$

La fréquence observée est $f = \frac{82}{254} \approx 0.323 \in I_N$.

Ce sondage ne remet pas en cause l'information publiée par l'entreprise sur son site internet.

EXERCICE 2 6 points

Commun à tous les candidats

Partie A

La fonction g est définie sur [0; $+\infty$ [par $g(x) = 1 - e^{-x}$.

1.
$$\lim_{x \to +\infty} -x = -\infty$$
 donc $\lim_{x \to +\infty} e^{-x} = 0$ et $\lim_{x \to +\infty} 1 - e^{-x} = 1$

2.
$$g(x) = 1 - e^{-x}$$
 donc $g'(x) = e^{-x}$

Pour tout réel x, $e^{-x} > 0$ donc g'(x) > 0 sur $[0; +\infty[$.

La fonction g est donc strictement croissante sur $[0; +\infty[$.

Partie B

1. **a.**
$$f(x) = (x-1)e^{-kx} + 1$$
.

$$u(x) = x - 1 v(x) = e^{-kx}$$

$$u'(x) = 1 v'(x) = -ke^{-kx}$$

$$f = uv + 1 \text{ et } (uv)' = u'v + uv'$$

$$f'(x) = 1 \times e^{-kx} + (x - 1) \times (-ke^{-kx}) + 0 = e^{-kx} (1 + (x - 1)(-k)) = e^{-kx} (1 - kx + k) = e^{-kx} (-kx + k + 1)$$

b. La tangente
$$T$$
 a pour équation $y = f'(1)(x-1) + f(1)$.

or
$$f(1) = 1$$
 et $f'(1) = e^{-k}$

Donc *T* a pour équation $y = e^{-k}(x-1) + 1 = e^{-k}x - e^{-k} + 1$

B est le point de T d'abscisse 0, donc $y_B = -e^{-k} + 1 = g(k)$

2. D'après le tableau de variation de la fonction g de la partie A, pour tout réel positif $k, g(k) \in [0; 1]$.

Le point B ayant pour coordonnées $(0 \; ; \; g(k))$ avec $0 \leqslant g(k) \leqslant 1$, il appartient bien au segment [OJ].

Partie C

La fonction h est définie sur \mathbb{R} par $h(x) = (x-1)e^{-2x} + 1$.

1. Voir **ANNEXE** 1. Sur l'intervalle [0; 1] : la courbe \mathscr{C}_h est au-dessus de la droite d d'équation y = x donc $h(x) \geqslant x$,

 $\mathcal D$ est le domaine du plan délimité par la courbe $\mathcal C_h$ et la droite d. $\mathcal A$ est l'aire de $\mathcal D$ exprimée en unité d'aire, donc

$$\mathscr{A} = \int_0^1 (h(x) - x) \, \mathrm{d}x.$$

2. a.
$$h(x) - x = (x - 1)e^{-2x} + 1 - x = -(1 - x)e^{-2x} + (1 - x) = (1 - x)(-e^{-2x} + 1) = (1 - x)(1 - e^{-2x}).$$

b. On admet que, pour tout réel x, $e^{-2x} \ge 1 - 2x$.

$$e^{-2x} \geqslant 1 - 2x \iff -e^{-2x} \leqslant 2x - 1 \iff 1 - e^{-2x} \leqslant 1 + 2x - 1 \iff 1 - e^{-2x} \leqslant 2x$$

Sur [0; 1], $x \leqslant 1$ donc $1 - x \geqslant 0$ d'où

$$1 - \mathrm{e}^{-2x} \leqslant 2x \Longleftrightarrow (1 - x)(1 - \mathrm{e}^{-2x}) \leqslant (1 - x)2x \Longleftrightarrow h(x) - x \leqslant 2x - 2x^2$$

c.
$$h(x) - x \le 2x - 2x^2$$
 donc $\int_0^1 (h(x) - x) dx$. $\le \int_0^1 (2x - 2x^2) dx$.

$$\int_0^1 (2x - 2x^2) \, \mathrm{d}x = \left[x^2 - \frac{2}{3} x^3 \right]_0^1 = 1 - \frac{2}{3} = \frac{1}{3}$$

on obtient donc $\mathscr{A} \leqslant \frac{1}{3}$.

3.
$$\mathscr{A} = \int_0^1 (h(x) - x) \, dx = \left[H(x) - \frac{x^2}{2} \right]_0^1 = H(1) - \frac{1}{2} - H(0) = \frac{1}{4} (1 - 2) e^{-2} - \frac{1}{2} + 1 - \frac{1}{4} e^{0} = -\frac{1}{4} e^{-2} - \frac{1}{2} + 1 - \frac{1}{4} = -\frac{1}{4} e^{-2} + \frac{1}{4}$$

Antilles–Guyane 2 9 septembre 2020

EXERCICE 3 4 points

Commun à tous les candidats

On se place dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1. H(0; 1; 1), M(0,5; 0; 0) et N(1; 0,5; 0).
- 2. a. La droite (MN) est définie par le point M et le vecteur MN.

$$M(0,5; 0; 0) \text{ et } \overrightarrow{MN} \begin{pmatrix} 0,5\\0,5\\0 \end{pmatrix}$$

Une représentation paramétrique de la droite (MN) est donc :

$$\begin{cases} x = 0,5+0,5k \\ y = 0,5k \\ z = 0 \end{cases}, k \in \mathbb{R}.$$

b. Une représentation paramétrique de la droite (CD) est

$$\begin{cases} x = t \\ y = 1 \\ z = 0 \end{cases}, t \in \mathbb{R}.$$

K étant le point d'intersection des droites (CD) et (MN), ses coordonnées sont solutions du système suivant:

$$\begin{cases} x = t \\ y = 1 \\ z = 0 \\ x = 0, 5 + 0, 5k \\ y = 0, 5k \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} 1 = 0, 5k \\ t = 0, 5 + 0, 5k \\ x = t \\ y = 1 \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} k = 2 \\ t = 1, 5 \\ x = 1, 5 \\ y = 1 \\ z = 0 \end{cases}$$

C'est pourquoi K (1,5; 1; 0)

3. a.
$$\overrightarrow{HM} \begin{pmatrix} 0,5 \\ -1 \\ -1 \end{pmatrix} \quad \overrightarrow{HN} \begin{pmatrix} 1 \\ -0,5 \\ -1 \end{pmatrix} \quad \overrightarrow{n} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$$
 \overrightarrow{HM} et \overrightarrow{HN} ne sont pas colinéaires $\cot \frac{1}{0,5} \neq \frac{-0,5}{-1}$

$$\overrightarrow{n} \cdot \overrightarrow{HM} = 2 \times 0, 5 - 2 \times (-1) + 3 \times (-1) = 1 + 2 - 3 = 0$$

$$\overrightarrow{n} \cdot \overrightarrow{HN} = 2 \times 1 - 2 \times (-0,5) + 3 \times (-1) = 2 + 1 - 3 = 0$$

Le vecteur \overrightarrow{n} est orthogonal à deux vecteurs non colinéaires du plan (HMN), c'est donc un vecteur normal à ce plan.

b.
$$\overrightarrow{n} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$$
 étant un vecteur normal du plan (HMN),

une équation cartésienne de ce plan est 2x - 2y + 3z + d = 0, H(0; 1; 1) appartient à ce plan donc ses coordonnées vérifient l'équation, on a donc $2 \times 0 - 2 \times 1 + 3 \times 1 + d = 0$ soit d = -1

Une équation du plan (HMN) est donc 2x - 2y + 3z - 1 = 0

c. Déterminons une représentation paramétrique de la droite (CG). Cette droite est déterminée par le point

$$C(1; 1; 0)$$
 et $\overrightarrow{CG} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Une représentation paramétrique de la droite (MN) est donc :

$$\begin{cases} x = 1 \\ y = 1 \\ z = p \end{cases}, p \in \mathbb{R}.$$

L est le point d'intersection de la droite (CG) et du plan (HMN), ses coordonnées sont donc solutions du système suivant :

$$\begin{cases} 2x - 2y + 3z - 1 = 0 \\ x = 1 \\ y = 1 \\ z = p \end{cases} \Leftrightarrow \begin{cases} 2 - 2 + 3p - 1 = 0 \\ x = 1 \\ y = 1 \\ z = p \end{cases} \Leftrightarrow \begin{cases} p = \frac{1}{3} \\ x = 1 \\ y = 1 \\ z = \frac{1}{3} \end{cases}$$

C'est pourquoi L (1; 1; $\frac{1}{3}$)

4. Sur la face (ABCD), on trace le segment [MN], sur la face (BCGF), on trace le segment [NL], sur la face (CDHG), on trace le segment [LH],

Les faces (ABFE) et (CDHG) sont parallèles donc les droites d'intersection des ces deux plans avec le plan (HMN) sont parallèles. On trace la parallèle à (LH) passant par M, elle coupe la droite (AE) en un point S. Sur la face (ADHE), on trace le segment [SH],(on peut remarquer que (SH) est parallèle à (NL).

La section du cube par le plan (HMN) est donc MNLHS.

Voir ANNEXE 2.

EXERCICE 4 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

1.
$$u_0 = 4$$
 et pour tout entier naturel $n, u_{n+1} = -\frac{2}{3}u_n + 1$ et $v_n = u_n - \frac{2}{3}$.
 $u_0 = 4$ $v_0 = 4 - \frac{2}{3} = \frac{10}{3}$ $v_1 = -\frac{2}{3} \times 4 + 1 = -\frac{8}{3} + 1 = -\frac{5}{3}$ $v_1 = -\frac{5}{3} - \frac{2}{3} = -\frac{7}{3}$ $v_2 = -\frac{2}{3} \times \left(-\frac{5}{3}\right) + 1 = \frac{10}{9} + 1 = \frac{19}{9}$ $v_2 = \frac{19}{9} - \frac{2}{3} = \frac{13}{9}$ $v_2 = \frac{13}{9} - \frac{2}{3} = -\frac{13}{9} \times \frac{3}{7} = -\frac{13}{21}$

 $\frac{v_1}{v_0} \neq \frac{v_2}{v_1}$, donc (v_n) n'est pas une suite géométrique. L'affirmation 1 est donc fausse.

2. Pour tout entier naturel *n* non nul, $-1 \le \cos(n) \le 1$

$$\iff 3 - 1 \leqslant 3 + \cos(n) \leqslant 3 + 1 \iff 2 \leqslant 3 + \cos(n) \leqslant 4$$

$$\iff \frac{2}{n^2} \leqslant \frac{3 + \cos(n)}{n^2} \leqslant \frac{4}{n^2}$$
or $\lim_{n \to +\infty} \frac{2}{n^2} = \lim_{n \to +\infty} \frac{4}{n^2} = 0$,

d'après le théorème des gendarmes $\lim_{n\to+\infty} \frac{3+\cos(n)}{n^2} = 0$, l'affirmation 2 est donc vraie.

3. À la fin de l'exécution, la variable U contient la première valeur strictement supérieur à 5 000.

En effet l'algorithme ne s'arrête pas tant que $U \leq 5000$. En utilisant la calculatrice, on obtient la valeur 6565.

L'affirmation 3 est donc fausse.

4.
$$(z-i)(z^2 + z\sqrt{3} + 1) = 0$$
. \iff $(z-i) = 0$ ou $(z^2 + z\sqrt{3} + 1) = 0$
 $(z-i) = 0 \iff z = i$

$$z^2 + z\sqrt{3} + 1 = 0$$
 $\Delta = \sqrt{3}^2 - 4 \times 1 = -1 = i^2$

 Δ est un réel strictement négatif donc l'équation a pour solution deux nombres complexes conjugués :

$$z_1 = \frac{-\sqrt{3} - i}{2}$$
 et $z_2 = \overline{z_1} = \frac{-\sqrt{3} + i}{2}$

L'équation
$$(z-i)(z^2+z\sqrt{3}+1)=0$$
 a donc comme ensemble solution : $S=\left\{i,\frac{-\sqrt{3}-i}{2},\frac{-\sqrt{3}+i}{2}\right\}$

$$|i|=1$$
, $\left|\frac{-\sqrt{3}-i}{2}\right|=\left|\frac{-\sqrt{3}+i}{2}\right|=\frac{3+1}{4}=1$. L'affirmation 4 est donc vraie.

5.
$$z_0 = 2$$
 et pour tout entier naturel $z_{n+1} = 2e^{i\frac{\pi}{2}}z_n$.

$$z_{n+1} = 2e^{i\frac{\pi}{2}}z_n = 2iz_n$$

$$z_1 = 2iz_0 = 2i \times 2 = 4i$$

$$z_2 = 2iz_1 = 2i \times 4i = -8$$

Soit K le milieu du segment $[M_0M_2]$, $z_K = \frac{z_0 + z_2}{2} = \frac{2 - 8}{2} = -3$.

le point O n'est donc pas le milieu du segment $[M_0M_2]$, l'affirmation 5 est fausse.

EXERCICE 4 5 points

Candidats ayant suivi l'enseignement de spécialité

On considère l'équation (E) $x^2 - 5y^2 = 1$ où x et y sont des entiers naturels.

Partie A

1. Si x et y sont deux entiers naturels pairs, il existe deux entiers naturels p et q tels que x = 2p et y = 2q.

$$(x; y)$$
 est un couple solution de l'équation $(E) \iff x^2 - 5y^2 = 1$

$$\iff$$
 $(2p)^2 - 5(2q)^2 = 1 \iff 4p^2 - 5 \times 4q^2 = 1 \iff 4(p^2 - 5q^2) = 1$

On en déduit 4 est un diviseur de 1, ce qui est impossible. Donc x et y ne peuvent pas être tous les deux pairs.

Si x et y sont deux entiers naturels impairs, il existe deux entiers naturels p et q tels que x = 2p + 1 et y = 2q + 1.

(x; y) est un couple solution de l'équation $(E) \iff x^2 - 5y^2 = 1$

$$\iff$$
 $(2p+1)^2 - 5(2q+1)^2 = 1 \iff 4p^2 + 4p + 1 - 5(4q^2 + 4q + 1) = 1$

$$\iff 4p^2 + 4p + 1 - 20q^2 - 20q - 5 = 1 \iff 4p^2 + 4p - 20q^2 - 20q - 4 = 1$$

$$\iff$$
 4 $(p^2 + p - 5q^2 - 5q - 1) = 1$

On en déduit que 4 est un diviseur de 1, ce qui est impossible. Donc x et y ne peuvent pas être tous les deux impairs.

En conclusion, x et y ne peuvent pas avoir la même parité.

2. Soit d un diviseur commun à x et y, il existe deux entiers naturels X et Y tels que x = dX et y = dY.

$$(x; y)$$
 est un couple solution de l'équation $(E) \iff x^2 - 5y^2 = 1$

$$\iff$$
 $(dX)^2 - 5(dY)^2 = 1 \iff d^2X^2 - 5(d^2Y^2) = 1$

$$\iff$$
 $d^2(X^2 - 5Y^2) = 1$

On en déduit que d^2 est un diviseur de 1, donc d = 1.

Le seul diviseur commun à x et y est 1, x et y sont donc premiers entre eux.

3. Soit *k* un entier naturel.

Reste de la division euclidienne de <i>k</i> par 5	0	1	2	3	4
Reste de la division euclidienne de k^2 par 5	0	1	4	4	1

4. (x; y) est un couple solution de l'équation (E) donc $x^2 = 1 + 5y^2$ On en déduit que $x^2 = 1$ [5], d'après le tableau précédent on a alors x = 1 [5] ou x = 4 [5].

Partie B

1.
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 9 & 20 \\ 4 & 9 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
 d'où $\begin{cases} x_{n+1} = 9x_n + 20y_n \\ y_{n+1} = 4x_n + 9y_n \end{cases}$

- **2.** Démontrons par récurrence que, pour tout entier naturel n, (x_n, y_n) est solution de l'équation (E).
 - Initialisation : $x_0 = 1$ et $y_0 = 0$ donc $x_0^2 5y_0^2 = 1$ La propriété est vraie au rang 0.
 - **Hérédité**: Supposons la propriété vraie au rang n, c'est-à-dire $x_n^2 5y_n^2 = 1$ et démontrons qu'alors elle est vraie au rang (n+1), c'est à dire $x_{n+1}^2 5y_{n+1}^2 = 1$

$$\begin{split} &(x_{n+1})^2 - 5(y_{n+1})^2 = (9x_n + 20y_n)^2 - 5(4x_n + 9y_n)^2 \\ &= 81x_n^2 + 360x_ny_n + 400y_n^2 - 5(16x_n^2 + 72x_ny_n + 81y_n^2) \\ &= 81x_n^2 + 360x_ny_n + 400y_n^2 - 80x_n^2 - 360x_ny_n - 405y_n^2 = x_n^2 - 5y_n^2 = 1 \end{split}$$

Donc la propriété est vraie au rang (n+1); elle est héréditaire.

• **Conclusion** : la propriété est vraie au rang 0 et est héréditaire, donc, par application du principe de récurrence, elle est vraie pour tout entier naturel *n*.

3. a.
$$A^2 = \begin{pmatrix} 9 & 20 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 9 & 20 \\ 4 & 9 \end{pmatrix} = \begin{pmatrix} 81 + 80 & 180 + 180 \\ 36 + 36 & 80 + 81 \end{pmatrix} = \begin{pmatrix} 161 & 360 \\ 72 & 161 \end{pmatrix}.$$

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = A^2 \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 161 & 360 \\ 72 & 161 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$d'où \begin{cases} x_2 & = 161 \\ y_2 & = 72 \end{cases}$$

b. Soit *p* un entier naturel.

$$\begin{pmatrix} x_{p+2} \\ y_{p+2} \end{pmatrix} = A \begin{pmatrix} x_{p+1} \\ y_{p+1} \end{pmatrix} = A^2 \begin{pmatrix} x_p \\ y_p \end{pmatrix} = \begin{pmatrix} 161 & 360 \\ 72 & 161 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \end{pmatrix}$$

Si y_p est multiple de 9, il existe un entier naturel k tel que $y_p = 9k$

d'où $y_{p+2} = 72x_p + 161 \times 9k = 9(8x_p + 161k)$, donc x_{p+2} est bien multiple de 9.

- **c.** Démontrons par récurrence que, pour tout entier naturel n, y_{2n} est un multiple de 9.
 - Initialisation: y₀ = 0 est bien multiple de 9.
 La propriété est vraie au rang 0.
 - Hérédité: Supposons la propriété vraie au rang n, et démontrons qu'alors elle est vraie au rang (n+1).
 y_{2(n+1)} = y_{2n+2}, d'après la question précédente, puisque y_{2n} est multiple de 9, alors y_{2n+2} est également multiple de 9.

Donc la propriété est vraie au rang (n+1); elle est héréditaire.

• **Conclusion** : la propriété est vraie au rang 0 et est héréditaire, donc, par application du principe de récurrence, elle est vraie pour tout entier naturel *n*.

 $y_{2020} = y_{(2 \times 1010)}$ est donc un multiple de 9.

ANNEXE 1 (exercice 2, partie C)

ANNEXE 2 (exercice 3)

