

Sebastian Lunz[†], Özan Öktem[‡], Carola-Bibiane Schönlieb[†]

[†]University of Cambridge [‡]KTH - Royal Institute of Technology

1 Inverse Problems

- ightharpoonup Reconstruct image x from measurement $y=Ax+\epsilon$, A linear operator.
- lacksquare Difficulty: Applying pseudo-inverse A^\dagger to measurement amplifies noise.
- Examples in medical imaging: Computed Tomography, Magnetic Resonance Imaging, Photo-Acoustic Tomography.

2 The variational approach

Insert prior knowledge into reconstruction by adding regularization functional $oldsymbol{R}$. (Benning&Burger 2018, Acta Num. 27) Reconstruct from y by

$$\operatorname{argmin}_x \|Ax - y\| + \lambda R(x)$$

- Popular choice: TV regularization $R = \|
 abla x \|_1$.
- Allows for stability theory and explicit use of the data model, but hand-crafted functionals do not reflect true prior.
- Example of measurements for the Radon transform A used in Computed Tomography.

4 Results for Computed Tomography and Denoising

Computed Tomography Reconstruction on LIDC dataset of Lung Scans

Filtered Backprojection

Noisy Image

Total Variation

Post-Processing

Adversarial Regularizer

Denoising Results on BSDS

Ground truth

Ground truth

Denoising Neural Net

Quantitative Results for Computed Tomography

Method	PSNR (dB)	SSIM
Model-based		
Filtered Backprojection	14.9	.227
Total Variation	27.7	.890
Supervised		
Post-Processing	31.2	.936
RED	29.9	.904
Unsupervised		
Adversarial Reg.	30.5	.927

5 Distributional Analysis

- lacktriangle Analyze impact of gradient descent over Ψ_Θ on distributions.
- ightharpoonup Define \mathbb{P}_{η} to be distribution obtained from \mathbb{P}_{n} after one step of gradient descent $x o x - \eta
 abla_x \Psi_\Theta(x)$.
- lackbox Assume Ψ_Θ is trained to perfection for $\lambda=\infty$ and $\eta \to \operatorname{Wass}(\mathbb{P}_r,\mathbb{P}_\eta)$ is differentiable at $\eta=0$, where Wass denotes the Wasserstein distance. Then

$$rac{\mathrm{d}}{\mathrm{d}\eta} \mathrm{Wass}(\mathbb{P}_r,\mathbb{P}_\eta)|_{\eta=0} = -\mathbb{E}_{X\sim\mathbb{P}_n} \left[\|
abla_x \Psi_\Theta(X) \|^2
ight].$$

- In particular, if $\| \nabla_x \Psi_{\Theta}(x) \| = 1$, have explicit control over decay rate of Wasserstein distance.
- lacktriangle The decay in Wasserstein distance induced by $\Psi_{m{\Theta}}$ is the fastest amongst any regularization functional with gradients of unit norm.

6 Analysis and the Data Manifold

- lacksquare Data Manifold Assumption: Ground truth data \mathbb{P}_r is supported on low-dimensional manifold \mathcal{M} .
- Assume projecting noisy data \mathbb{P}_n onto \mathcal{M} gives rise to the distribution of clean images \mathbb{P}_r .
- Corresponds to a low-noise assumption in comparison to curvature of Data Manifold.
- lacktriangle Then the optimal critic for $\lambda=\infty$ is given by the distance function to \mathcal{M}

$$\Psi_{\Theta}(x) = \min_{y \in \mathcal{M}} \|x - y\|_2.$$

Description of the Description of the Optimal Critic can be non-unique. It can in particular be changed arbitrarily outside the support of \mathbb{P}_r and \mathbb{P}_n .

3 Learning a Regularization Functional

- lacktriangle Learning regularization functional allows to incorporate prior knowledge on data. Use a neural network Ψ_Θ to parametrize functional.
- Training the neural network by evaluating performance as regularization functional would require solving nested optimization problem (De Los Reyes et al. 2013, *Inv. Prob. & Imag. 7.4*). Computationally unfeasible.
- Instead train the network as a *critic*. Suppress characteristic noise by *discriminating* between distribution of ground truth data \mathbb{P}_r and of unregularized inverse \mathbb{P}_n .
- lacktriangle Additional term to enforce a Lipschitz constraint leads to Ψ_Θ parameterizing the Wasserstein distance as in WGANs (Arjovsky et al. 2017, *ICML*; Gulrajani et al. 2017, *NIPS*)

$$\mathbb{E}_{X \sim \mathbb{P}_r} \left[\Psi_\Theta(X)
ight] - \mathbb{E}_{X \sim \mathbb{P}_n} \left[\Psi_\Theta(X)
ight] + \lambda \cdot \mathbb{E} \left| \left(\left\|
abla_x \Psi_\Theta(X)
ight\| - 1
ight)_+^2
ight|.$$

lackbox Once trained, Ψ_{Θ} is employed to reconstruct from measurement y by solving

$$\operatorname{argmin}_x \|Ax - y\|_2^2 + \lambda \Psi_{\Theta}(x).$$

The minimization problem is solved using first-order methods like gradient descent.

8 Advantages

- Direct control over data fidelity during reconstruction along with stability theory allows for qualitative guarantees.
- Unsupervised data is sufficient for training, allowing to use real measurement data for training.
- Model-based approach well-suited for applications in medical imaging.

7 Stability

- Stability theory for variational problems can be adapted to learned setting. Difference: Regularization functional additionally 1-Lipschitz, but not necessarily bounded below.
- lacktriangle Assumptions: $\Psi_{oldsymbol{\Theta}}$ lower semi-cts., 1 -Lipschitz, A continuous.
- lacksquare Either A or $\Psi_{lacksquare}$ are coercive.
- Let $y_n
 ightarrow y$ and let x_n denote x_n corresponding minimizers of variational problem. Then x_n converge to some x weakly and x is a minimizer of

$$||Ax-y||_2^2 + \lambda \Psi_{\Theta}(x).$$

► Conclusion: The solution of the variational problem is weakly stable under changes in the data.