LECTURE 4 (January 19, 2022)

1 Predicates

1.1 Some Rules about Predicates

Let S be the set of non-empty strings over alphabet a, b, c

Define binary predicate P with domain $S \times S$ by P(x, y):

"x and y have the same first character"

Another option for this definition without announcing the domain in advance:

Define P(x,y) by/as: "x and y have the same first character", where $x,y \in S$

Both of the above statements are valid. You should not, however, put quantification in the meaning of predicate. eg.

 $x, y \in S$ for each $P(x, y) : \dots$

P(x,y): "x and y have ... where $x,y\in S$ is also invalid as is assumes x, and y are in S.

1.2 Example

$$\forall x \in X, \forall y \in S, P(x, y)$$

This could be translated to:

"For each x in S and for each y in S, x and y have the same first character.

However, To simplify it and make it more natural english:

"For all pair of string over S have the same first character"

1.3 Grouping Quantifiers

Note that variables with the same quantifier can be grouped together so:

$$\forall x \in S, \forall y \in S, P(x, y) \equiv \forall x, y \in S, P(x, y)$$

1.4 Example

Say we wanted to say that there are a pair on non-equal strings to start with the same character, we can combine propositions with and:

$$\exists x,y \in S, x \neq y \land P(x,y)$$

Which is true: eg. x = aaa, y = baab"

1.5 Example

Say we wanted to say if a pair of strings are different, they start with the same first letter

$$\exists x, y \in S, x \neq y \Rightarrow P(x, y)$$

1.6 Example

Given the statement:

In each pair of distinct strings, the strings start with the same character

$$\forall x, y \in S, x \neq y \Rightarrow P(x, y)$$

This statement is **FALSE**

Consider counter-example x = aaa, y = baa

Note that to say that a statement is false is the same as saying that the negation is true so:

$$\neg (\forall x, y \in S, x \neq y \Rightarrow P(x, y))$$

$$\equiv$$

$$\exists x, y \in S, x \neq y \land \neg P(x, y)$$

Where in the negation, the counter-example of the original statement is an example for the negation.

1.7 Examining Commas

Consider the question:

$$\forall x, y \in S, x \neq y, P(x, y)$$

what does the comma mean?

Some possibilities are:

- and
- ullet implication
- such that

The convention is that:

- After universal, comma often means implication (\Rightarrow)
- After existential, comma often means and (\land)

However, DO NOT RELY ON COMMAS. Just use precise language.

Examine Divisibility 2

Definition:

d devides n (also written as d|m)

if n = dk for some $k \in \mathbb{Z}$ Note that in definitions, "if" almost certainly means "iff"