- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- 5. Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- Problema a 10-a a lui Hilbert

O MT poate fi descrisa in 3 moduri:

-formal:

sunt date complet Q, Σ , Γ , δ ;

-la nivelul implementarii MT:

se utilizeaza limba naturala pt a defini:

- >modul in care se deplaseaza cursorul,
- modul de memorare a informatiei de pe banda de lucru;
- la nivelul cel mai inalt:

se utilizeaza limba naturala pt a descrie un algoritm, ignorand complet modul de implementare a acestuia.

Definim formatul si notatia utilizate pt a descrie o MT:

datele de intrare constau intotdeauna dintr-o secventa de simboluri;

daca intrarea trebuie sa fie un obiect (un graf, un polinom, un automat etc. sau o combinatie a acestora), atunci va trebui mai intai sa-l reprezentam printr-o secventa.

Intrucat codificarile alternative pot fi decodificate unele in altele de catre MT (eficient) => putem alege orice codificare pt obiectul de intrare.

Vom nota

- 1! obiect O, codificat printr-o secventa, prin <O>;
- mai multe obiecte $O_1, O_2, ..., O_n$, codificate printr-o unica secventa, prin $< O_1, O_2, ..., O_n >$.

- prima linie a textului va descrie datele de intrare ale MT;
- daca intrarea este:
- chiar o secventa de simboluri w => ea este interpretata ca un cuvant peste un alfabet si notata w;
- codificarea unui obiect <A> => MT incepe automat cu VERIFICAREA CORECTITUDINII CODIFICARII.
- bloc → indentare.

Problema:

Sa se gaseasca un algoritm care sa verifice daca un graf neorientat oarecare este conex sau nu.

Formalizare:

Fie A = un limbaj care consta din toate secventele care reprezinta grafuri neorientate conexe =>

 $A = {<G> | G \text{ este un graf neorientat, conex}};$

trebuie sa gasim o MT decidenta care sa decida asupra limbajului A.

M = "Fie intrarea <G> (adica: o codificare a grafului G):

- 1. Se selecteaza "primul" nod din G si se marcheaza.
- 2. Se reia pasul urmator pana cand nu se mai pot marca noi noduri:
 - 3. Fie un nod oarecare v din G; daca el este legat printr-o muchie de un nod deja marcat, atunci nodul v trebuie marcat si el.
- 4. Se scaneaza toate nodurile din G pt a verifica daca sunt toate marcate sau nu. Daca sunt marcate toate nodurile, atunci M accepta; altfel, M respinge."

Exemplu

<G>=((1,2,3,4);(1,2),(1,3),(1,4),(2,3)).

Explicam modul de codificare a lui G:

MT incepe prin a verifica corectitudinea codificarii <G>.

Daca testul se incheie cu succes (codificarea e corecta), atunci MT trece la prima etapa a algoritmului.

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- 5. Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- Problema a 10-a a lui Hilbert

Exemplu

```
Fie MT = (Q, \Sigma, \Gamma, \delta, q<sub>0</sub>, q<sub>a</sub>, q<sub>r</sub>) unde:

\delta: Q x \Gamma \rightarrow Q x \Gamma x { L, R };

Fie MT' = (Q', \Sigma, \Gamma, \delta', q'<sub>0</sub>, q'<sub>a</sub>, q'<sub>r</sub>) unde:

\delta': Q' x \Gamma \rightarrow Q' x \Gamma x { L, R, S };

\delta'(q<sub>i</sub>, a) = (q<sub>j</sub>,b,S)

\delta (q<sub>i</sub>, a) = (q<sub>k</sub>,b,R), \delta (q<sub>k</sub>, b) = (q<sub>j</sub>,b,L).
```

- => Cele 2 modele sunt computational echivalente dar:
- e nevoie de cate o o stare auxiliara suplimentara;
- sunt necesare 2 tranzitii in loc de una.

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- Problema a 10-a a lui Hilbert

Definitia 1

- O MT cu mai multe benzi este o MT standard
 - $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ care:
- (i) are n≥1 benzi de lucru si n≥1 cursoare corespunzatoare;
- (ii) initial prima banda contine secventa de intrare iar celelalte n-1 benzi sunt vide;
- (iii) $\delta : Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R, S\}^n,$ $\delta(q_i, a_1, a_2, ..., a_n) = (q_i, b_1, b_2, ..., b_n, L, R, S, L, ..., S).$

Teorema 1

```
∀ M = MT cu mai multe benzi =>
```

 \exists S = MT standard a.i. L(S) = L(M).

Corolar 1

```
\forall L \subseteq \Sigma^* este Turing-acceptat \Leftrightarrow
```

∃ o MT cu mai multe benzi, M, a.i. L=L(M).

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- 5. Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- 7. Problema a 10-a a lui Hilbert

- MTN ≈ AFN, APDN;
- Modelul de calcul: arbore;

Definitia 2

O MT nedeterminista este o MT standard

M =
$$(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$$
 unde:
 $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$

Teorema 2

```
\forall N = MT nedeterminista =>
```

 \exists S = MT standard a.i. L(S) = L(N).

Corolar 2

 $\forall L \subseteq \Sigma^*$ este Turing-acceptat \Leftrightarrow

∃ o MT nedeterminista, N, a.i. L=L(N).

Definitie 3

O MT nedeterminista se numeste decidenta \Leftrightarrow $\forall w \in \Sigma^*$, toate ramurile ei de calcul se opresc.

Corolar 3

 $\forall L \subseteq \Sigma^*$ este decidabil \Leftrightarrow \exists o MT nedeterminista decidenta, N, a.i. L=L(N).

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- 5. Enumeratoare
- Echivalenta modelelor de calculabilitate
- Problema a 10-a a lui Hilbert

Limbajele Turing acceptate = limbaje recursiv enumerabile

Enumerator

Imprimanta

Modul de lucru:

- initial: banda de intrare este vida;
- limbajul enumerat de E: multimea tuturor secventelor de simboluri printate de imprimanta;
- situatia de ciclare: tiparirea unei liste infinite de cuvinte.

Teorema 3

Fie $L\subseteq\Sigma^*$; L este Turing-acceptat \Leftrightarrow \exists $E\in MT$ a.i. L=L(E).

<u>Observatii</u>

- 1. Pentru a construi E a fost nevoie se o listare a cuvintelor din Σ : orice listare (fara repetitii) este acceptabila.
- 2. Evident, daca M accepta un cuvant oarecare $s \in \Sigma^*$, acesta apare la un moment dat in lista tiparita de E. De fapt, el va fi tiparit de o infinitate de ori deoarece M reia calculul de la pasul 1 pt fiecare i, oridecateori lista s_1, s_2, \ldots, s_i se lungeste cu inca un cuvant.
- 3. Procedura de mai sus simuleaza rularea lui M in paralel pe toate cuvintele de intrare posibile.

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- 4. MT nedeterminsite
- 5. Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- Problema a 10-a a lui Hilbert

Am definit mai multe variante de **MT** şi am demonstrat echivalenţa lor.

Există și alte modele de calculabilitate:

- funcţiile λ-calculabile: Alonzo CHURCH, Stephen Cole KLEENE,1934;
- funcţiile general recursive: Kurt Godel, 1935
- sistemele (masinile) Post: Emil POST, 1936
- algoritmii normali Markov: A.A.MARKOV, 1954.

Toate au aceeași caracteristică: acces nerestricţionat la o memorie nelimitată.

În plus, toate sunt echivalente cu MT (și deci unele cu altele)

=> clasa algoritmilor pe care o descriu este unică şi naturală. vezi si clasa limbajelor de programare.

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- 5. Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- 7. Problema a 10-a a lui Hilbert

Algoritm: o notiune primara

Problema a 10-a a lui Hilbert

Congresul Internaţional al matematicienilor, 1900, Paris;

Conferinta lui David HILBERT: lista celor 23 probleme

să se găsească un algoritm care să verifice dacă un polinom în oricâte variabile admite o rădăcină în **Z**.

Observatii

- "... un proces cu ajutorul căruia, după un număr finit de operaţii, să se determine"
- -Hilbert presupunea că algoritmul există si trebuie doar descoperit.
- Lipsa unei definitii formale pentru notiunea de algoritm → solutii pentru cazuri particulare ale problemelor dar nu pentru o clasa intreaga.

Teza Church-Turing

Clasa algoritmilor (functiilor intuitiv calculabile) coincide cu clasa functiilor λ -calculabile (functiilor calculabile cu MT).

Problema a 10a a lui Hilbert.

1970, Yuri MATIJASEVIČ, (Martin DAVIS, Hilary PUTNAM, Julia ROBINSON):

nu există nici un algoritm care să verifice dacă un polinom oarecare are radacini intregi ⇔

Problema a 10a a lui Hilbert este nerezolvabilă algoritmic.

Fie D = $\{p \mid p \text{ este un polinom care admite cel putin o radacina in } Z\}$

D este decidabil?

D este Turing-acceptat dar nu este decidabil.

Cazul unar:

Fie $D_1=\{p_1|p_1 \text{ este un polinom intr-o singura variabila } x$, care admite cel putin o radacina intreaga $\}$.

Construim o MT, M₁, care accepta D₁:

 M_1 = "Fie p_1 un polinom oarecare in variabila x:

- 1. Se evalueaza p₁ succesiv pentru x=0, x=1, x=-1, x=2, x=-2, x=3, ...,
- 2. Daca la un moment oarecare se obtine 0, atunci M₁ accepta p₁."

Cazul general:

putem construi o MT, M, similara care va testa fiecare polinom de intrare pentru diferite combinatii de valori, in functie de numarul de variabile.

$$\begin{array}{lll} n{=}2{:} & (x_1,x_2){\in}\{(0,0),\,(0,1),\,(1,0),\,(1,1),\,(0,2),\,(2,0),\,(1,2),\\ & (2,1),\,(2,2),\,(0,3),\,(3,0),\ldots\};\\ n{=}3{:} & (x_1,x_2,x_3){\in}\{(0,0,0),\,(0,0,1),\,(0,1,0),\,(0,1,1),\,(1,0,0),\\ & & (1,0,1),\ldots. \end{array}$$

Observam ca: M₁ si M recunosc limbajele D₁, respectiv D, dar nu decid asupra lor.

Teorema 4

Daca un polinom p de o singura variabila admite radacini intregi,

\[\begin{align*} \cup c_{\text{max}} & |c_{\text{max}}| \end{align*} \]

acestea se afla in intervalul $\begin{bmatrix} -k \cdot \frac{|c_{\max}|}{|c_1|}, k \cdot \frac{|c_{\max}|}{|c_1|} \end{bmatrix}$

unde: k=nr de termeni (monoame) din p;

 c_{max} = coeficientul cel mai mare in valoare absoluta c_1 = coeficientul termenului de grad maxim.

- => M_{11} = "Fie p_1 un polinom oarecare in variabila x:
 - 1. Se calculeaza $t_2 = k^* |c_{max}/c_1|$, $t_1 = -t_2$ si $z = [t_2]$.
 - 2. Se evalueaza p₁ pentru z.
 - 3. Daca $p_1(z)=0$, atunci M_{11} accepta; altfel, z:=z-1.
 - 4. Daca z<t₁ atunci M₁₁ respinge; altfel, reia de la P2."

Teorema lui MATIJASEVIČ

- 1. Terminologia de descriere a MT
- 2. MT cu 3 "deplasari"
- MT cu mai multe benzi
- MT nedeterminsite
- Enumeratoare
- 6. Echivalenta modelelor de calculabilitate
- 7. Problema a 10-a a lui Hilbert