Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1 «НАЗВАНИЕ РАБОТЫ» по дисциплине «Название дисциплины»

Выполнили: студенты гр. Р4135

Фамилия И.О.,

Фамилия И.О.

Преподаватель: Фамилия И.О.,

должность каф. СУиИ

Санкт-Петербург

Содержание

, , ±	
Введение	3
1 Описание манипулятора	4
2 Математическая модель манипулятора	5
2.1 Кинематика манипулятора	5
2.1.1 Прямая задача кинематики	8
2.1.2 Обратная задача кинематики	10
3 Синтез систем управления	13
Заключение	14
Список использованных источников	15
Приложение А Название приложения	16

	Изм.	Лист	№ докум.	Подп.	Дата	İ
	Разраб.		Антонов, Артемов			
	Пров. Н. контр.		Котельников Ю.П.			İ
						İ
						İ
	Утв					

Инв. № дубл.

Взам. инв. №

КСУИ.101.4135.001 ПЗ

Разработка системы управления для манипулятора Kuka Youbot Пояснительная записка

Введение

В данном документе будет рассказано о процессе разработке системы управления для манипулятора робота Kuka Youbot [1], дающей ему возможность для совершения двух действий: занятия позиции, при которой его схват будет принимать заданные положение и ориентацию, а также перемещения схвата по заданной траектории*. В целом содержание пояснительной записки можно описать примерно так:

- в разделе 1 будут приведены технические сведения о роботе, необходимые для решения поставленных задач;
- раздел 2 расскажет о процессе составления математической модели манипулятора, а именно о решении применительно к нему прямой и обратной задач кинематики и о составлении дифференциальных уравнений, описывающих протекающие в роботе электрические и механические процессы;
- в разделе 3 речь пойдет о синтезе соответствующих систем управления, о проверке их работоспособности с помощью моделирования, о результатах аппробации на реальном роботе и проч.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.101.4135.001 ПЗ

^{*} Здесь и далее, когда речь будет идти о траектории движении схвата, под последней будет подразумеваться не просто кривая, описываемая при этом схватом в пространстве, но таковая, явно параметризованная временем.

КСУИ.101.4135.001 ПЗ Описание манипулятора 1 Инв. № дубл. Взам. инв. № Подп. и дата Инв. № подл. Лист $KCУИ.101.4135.001\ \Pi 3$ Подп. Лист $N_{\overline{o}}$ докум. Дата

Математическая модель манипулятора

2.1 Кинематика манипулятора

Представим рассматриваемый манипулятор в виде последовательной кинематической цепи, каждое звено которой входит в состав одной или двух кинематических пар (КП). Все КП вращательные, V-класса – цилиндрические шарниры. Принципиальная схема изображена на рисунке 2.1 а.

Рисунок 2.1 - Схемы

Звенья будем рассматривать как абсолютно твердые тела, определяющие связь между двумя соседними шарнирами. Для описания шарнирных соединений между смежными звеньями воспользуемся методом Денавита и Хартенберга (ДХ-представление), который может быть представлен, как последователь-

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

 \overline{M}_{HB} . $N^{\underline{o}}$

Взам. инв. №

Подп. и дата

IHВ. $N^{\underline{0}}$ ПОДЛ.

КСУИ.101.4135.001 ПЗ

ность из двух описанных ниже шагов*.

Первым шагом, следует сформировать системы координат для каждой $K\Pi$, руководствуясь следующими правилами:

- а) ось z_{i-1} направлена вдоль оси i-ой $K\Pi$;
- б) ось x_i параллельна общему перпендикуляру: $x_i = z_i \times z_{i-1}$. Если оси z_i и z_{i-1} пересекаются, то x_i выбирается, как нормаль к образованной ими плоскости;
- в) ось y_i дополняет оси z_i и x_i до правой декартовой системы координат.

Вторым шагом, нужно определить параметры ДХ:

- а) a_i расстояние от z_{i-1} до z_i вдоль x_i ;
- б) α_i угол от z_{i-1} до z_i вокруг x_i ;
- в) d_i расстояние от x_{i-1} до x_i вдоль z_{i-1} ;
- г) θ_i угол от x_{i-1} до x_i вокруг z_{i-1} .

Таким образом, ДХ-представление твердых звеньев зависит от четырех геометрических параметров, соответствующих каждому звену. Эти четыре параметра полностью описывают любое вращательное или поступательное движение.

Для вращательных КП параметры d_i , a_i и α_i не изменяются и являются их геометрическими размерами. В то время, как θ_i переменная величина, изменяющаяся при вращении i-го звена относительно (i-1)-го.

Для каждого звена этот алгоритм формирует ортонормированную систему координат. Системы координат нумеруются в порядке возрастания от основания к схвату манипулятора. Для обследуемого манипулятора, выбранные системы координат изображены на рисунке 2.1 б.

Параметры ДХ указаны в таблице 2.1

^{*} Представление Денавита-Хартенберга состоит в формировании однородной матрицы преобразования, имеющей размерность 4×4 и описывающей положение системы координат каждого звена относительно системы координат предыдущего звена.

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КСУИ.101.4135.001 ПЗ

Таблица 2.1 – Параметры Денавита-Хартенберга

Звено	a_i	α_i	d_i	θ_i
1	0	0	d_1	0
2	a_2	$\pi/2$	d_2	θ_1
3	a_3	0	0	$\theta_2 + \pi/2$
4	a_4	0	0	θ_3
5	0	$\pi/2$	0	θ_4
6	0	0	d_6	θ_5

Взаимное расположение соседних звеньев описывается однородной матрицей преобразования (2.2) размерностью 4×4 , которая формируется в соответствии с формулой (2.1).

$$^{i}A_{i+1} = R_{z_i,\theta_i} \cdot T_{z_i,d_i} \cdot T_{x_i,a_i} \cdot R_{x_i,\alpha_i}$$

$$\tag{2.1}$$

где R_{z_i,θ_i} — матрица поворота вокруг оси z_i на угол θ_i , T_{z_i,d_i} — матрица трансформации вдоль оси z_i на расстояние d_i , T_{x_i,a_i} —матрица трансформации вдоль оси x_i на расстояние a_i , R_{x_i,α_i} — матрица поворота вокруг оси x_i на угол α_i .

$${}^{i}A_{i+1} = \begin{bmatrix} R_{3\times3} & p_{3\times1} \\ 0_{1\times3} & 1 \end{bmatrix}$$
 (2.2)

где $R_{3\times 3}$ — матрица поворота CK_i в $\mathrm{CK}_{i+1},\ p_{3\times 1}$ — вектор соединяющий CK_i и $\mathrm{CK}_{i+1}.$

Для описания движения манипулятора, в робототехнике решаются две основные задачи кинематики: прямая и обратная.

Решением прямой задачи, находят положение схвата манипулятора в декартовой системе координат, при заданных обобщенных координатах.

Решение обратной задачи позволяет найти обобщенные координаты при заданном положении и ориентации схвата.

Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

 $KCУИ.101.4135.001\ \Pi 3$

2.1.1 Прямая задача кинематики

Представим прямую задачу кинематики (ПЗК) манипулятора выражением:

$${}^{0}A_{6} = \prod_{i=1}^{6} {}^{i-1}A_{i}(q_{i}) = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} \cdot {}^{5}A_{6}$$
 (2.3)

где 0A_6 — матрица 4×4 , первые 3 столбца которой представляют ориентацию, последний — положение схвата; ${}^{i-1}A_i$ — однородная матрица преобразования из (i-1) в i-ую СК в общем виде:

$$^{i-1}A_{i} = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i})\cos(\alpha_{i}) & \sin(\alpha_{i})\sin(\theta_{i}) & a_{i}\cos(\theta_{i}) \\ \sin(\theta_{i}) & \cos(\alpha_{i})\cos(\theta_{i}) & -\sin(\alpha_{i})\cos(\theta_{i}) & a_{i}\sin(\theta_{i}) \\ 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.4)

Теперь, учитывая ДХ-параметры из таблицы 2.1 находим матрцы преобразования СК, рисунок 2.1 б.

$${}^{0}A_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{1}A_{2} = \begin{bmatrix} c_{\theta_{1}} & 0 & s_{\theta_{1}} & a_{2}c_{\theta_{1}} \\ s_{\theta_{1}} & 0 & -c_{\theta_{1}} & a_{2}s_{\theta_{1}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{2}A_{3} = \begin{bmatrix} c_{\theta_{2}} & -s_{\theta_{2}} & 0 & a_{3}c_{\theta_{2}} \\ s_{\theta_{2}} & c_{\theta_{2}} & 0 & a_{3}s_{\theta_{2}} \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$${}^{3}A_{4} = \begin{bmatrix} c_{\theta_{3}} & -s_{\theta_{3}} & 0 & a_{4}c_{\theta_{3}} \\ s_{\theta_{3}} & c_{\theta_{3}} & 0 & a_{4}s_{\theta_{3}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{4}A_{5} = \begin{bmatrix} c_{\theta_{4}} & 0 & s_{\theta_{4}} & 0 \\ s_{\theta_{4}} & 0 & -c_{\theta_{4}} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{5}A_{6} = \begin{bmatrix} c_{\theta_{5}} & -s_{\theta_{5}} & 0 & 0 \\ s_{\theta_{5}} & c_{\theta_{5}} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Таким образом, для любого вектора q, позьзуясь выражением (2.3) и ДХ-параметрами маниплятора, можно определить однозначное положение и ориентацию схвата манипулятора в пространстве.

Для проверки, зададим вектор обобщенных координат:

$$q = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 90 & 0 \end{bmatrix}$$
 (2.5)

		1		
Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. $N^{\underline{\varrho}}$

KCVN.101.4135.001 FI3

Рисунок 2.2 – Конфигурация манипулятора для заданного вектора q

В результате решения ПЗК должны получить:

$$p = \begin{bmatrix} 0.033 \\ 0 \\ 0.655 \end{bmatrix}, o = \begin{bmatrix} 0 \\ 0 \\ 180 \end{bmatrix},$$

где p — положение схвата, o — ориентация схвата (крен, рыскание, тангаж). Вычислим матрицу 0A_6 :

$${}^{0}A_{6} = \begin{bmatrix} -1 & 0 & 0 & 0.033\\ 0 & -1 & 0 & 0\\ 0 & 0 & 1 & 0.655\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.6)

Из приведенного примера следует, что ДХ-параметры и матрицы трансформации найдены верно.

Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КСУИ.101.4135.001 ПЗ

Обратная задача кинематики 2.1.2

$${}^{0}T_{6} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} \cdot {}^{5}A_{6}$$

$$(2.7)$$

где ${}^{0}T_{6}$ — матрица задающая положение и ориентацию схвата в пространстве относительно базовой системы координат.

Заданная матрица:

$${}^{0}T_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.8)

Уравнение (2.7) домножим с обеих сторон на $({}^{0}A_{1}\cdot {}^{1}A_{2})^{-1}$ и получим выражение:

$$({}^{0}A_{1} \cdot {}^{1}A_{2})^{-1} \cdot {}^{0}T_{6} = {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} \cdot {}^{5}A_{6}$$

$$(2.9)$$

$${}^{2}T_{6} = ({}^{0}A_{2})^{-1} \cdot {}^{0}T_{6} = {}^{2}A_{6}$$
 (2.10)

В матричном виде:

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

$${}^{2}T_{6} = \begin{bmatrix} r_{11}c_{1} + r_{21}s_{1} & r_{12}c_{1} + r_{22}s_{1} & r_{13}c_{1} + r_{23}s_{1} & -a_{2} + p_{x}c_{1} + p_{y}s_{1} \\ r_{31} & r_{32} & r_{33} & -d_{1} - d_{2} + p_{z} \\ r_{11}s_{1} - r_{21}c_{1} & r_{12}s_{1} - r_{22}c_{1} & r_{13}s_{1} - r_{23}c_{1} & p_{x}s_{1} - p_{y}c_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{6} = \begin{bmatrix} c_{5}c_{234} & -s_{5}c_{234} & s_{234} & a_{3}c_{2} + a_{4}c_{23} + d_{6}s_{234} \\ s_{234}c_{5} & -s_{5}s_{234} & -c_{234} & a_{3}s_{2} + a_{4}s_{23} - d_{6}c_{234} \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{6} = \begin{bmatrix} c_{5}c_{234} & -s_{5}c_{234} & s_{234} & a_{3}c_{2} + a_{4}c_{23} + d_{6}s_{234} \\ s_{234}c_{5} & -s_{5}s_{234} & -c_{234} & a_{3}s_{2} + a_{4}s_{23} - d_{6}c_{234} \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Из равенства элементов (3,4) матриц:

$$p_x s_1 - p_y c_1 = 0 (2.11)$$

Найдем θ_1 :

$$\theta_1 = Atan2(p_u, p_x) \tag{2.12}$$

Изм.	Лист	№ докум.	Подп.	Дата

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 II3

Из равенств элементов (3,1) и (3,2):

$$s_5 = r_{11}s_1 - r_{21}c_1,$$
$$c_5 = r_{12}s_1 - r_{22}c_1$$

Вычислим θ_5 :

$$\theta_5 = Atan2(r_{11}s_1 - r_{21}c_1, r_{12}s_1 - r_{22}c_1)$$
(2.13)

Из равенств элементов (2,3) и (1,3):

$$-c_{234} = r_{33},$$

$$s_{234} = r_{13}c_1 + r_{23}s_1$$

Вычислим θ_{234} :

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$\theta_{234} = Atan2(r_{13}c_1 + r_{23}s_1, -r_{33}) \tag{2.14}$$

Далее применим геометрический подход.

Рисунок 2.3 – Плоская часть манипулятора

$\cos \theta_0 = \frac{1}{2}$	$p_x^2 + p_y^2 + p_z^2 - l_2^2 - l_3^2$	(2.15)
cos v3 —	$2l_2l_3$	(2.10)

Изм.	Лист	№ докум.	Подп.	Дата

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FI3

$$\theta_3 = Atan2(\sqrt{1 - \cos^2 \theta_3}, \cos \theta_3) \tag{2.16}$$

Из рисунка видно что $\theta_2 = -\phi - \beta$ или

$$\theta_2 = -Atan2(p_z, \sqrt{p_x^2 + p_y^2}) - Atan2(l_3 \sin \theta_3, l_2 + l_3 \cos \theta_3)$$
 (2.17)

И, наконец:

$$\theta_4 = \theta_{234} - \theta_2 - \theta_3 \tag{2.18}$$

Подп. и дата			
Инв. № дубл.			
Взам. инв. №			
Подп. и дата			
Инв. № подл.		КСУИ.101.4135.001 ПЗ	Лист

	EH 10)0°98I†°I	KCNN 10		
		3 C	интез сис	стем управления	
Подп. и дата					
Инв. № дубл.					
Взам. инв. №					
Подп. и дата					
подл.					
Инв. № подл.	Изм. Лист	№ докум.	Подп. Дата	КСУИ.101.4135.001 ПЗ	Лист 13

	KCVM,101,4135,001 ПЗ		
	Заключение		
	Текст заключения		
e e			
Подп. и дата			
Инв. № дубл.			
Взам. инв. №			
Подп. и дата			
Инв. № подл.		КСУИ.101.4135.001 ПЗ	Лист
Ин	Изм. Лист № докум. Подп. Дата		14

ΣII	I00.	$G\mathcal{E}$	$I \mathcal{V}$	TG) T :	И	\mathcal{K}) И

Список использованных источников

1 KUKA YOUBOT. — URL: http://www.technomatix.ru/kuka-youbot (дата обращения: 08.03.2017).

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
Инв. № подл.		
Инв. Л	C	Лист 15
	Копировал	Φ ормат $A4$

КСУИ.101.4135.001 ПЗ Приложение А (обязательное) Название приложения Текст приложения Инв. № дубл. Взам. инв. № Подп. и дата \overline{N} нв. N $^{\underline{0}}$ подл. Лист $KCУИ.101.4135.001\ \Pi 3$ 16 Дата Подп. Изм. Лист $N_{\overline{o}}$ докум.