EXERCISES 5.14 - 5.28

Region	Pollution	Cost of Medical Care
North	30.0	915
Upper South	31.8	891
Deep South	32.1	968
West South	26.8	972
Big Sky	30.4	952
West	40.0	899

- a. Construct a scatterplot of the data. Describe any interesting features of the scatterplot.
- b. Find the equation of the least-squares line describing the relationship between y = medical cost and x = pollution.
- c. Is the slope of the least-squares line positive or negative? Is this consistent with your description of the relationship in Part (a)?
- d. Do the scatterplot and the equation of the leastsquares line support the researchers' conclusion that elderly people who live in more polluted areas have higher medical costs? Explain.
- 5.15 The authors of the paper "Evaluating Existing Movement Hypotheses in Linear Systems Using Larval Stream Salamanders" (Canadian Journal of Zoology [2009]: 292-298) investigated whether water temperature was related to how far a salamander would swim and whether it would swim upstream or downstream. Data for 14 streams with different mean water temperatures where salamander larvae were released are given (approximated from a graph that appeared in the paper). The two variables of interest are x = mean water temperature (°C) and y = net directionality, which was defined as the difference in the relative frequency of the released salamander larvae moving upstream and the relative frequency of released salamander larvae moving downstream. A positive value of net directionality means a higher proportion were moving upstream than downstream. A negative value of net directionality means a higher proportion were moving downstream than upstream.

Mean Temperature (x)	Net Directionality (y)
6.17	-0.08
8.06	0.25
8.62	-0.14
10.56	0.00
12.45	0.08
11.99	0.03
12.50	-0.07
17.98	0.29
18.29	0.23
19.89	0.24
20.25	0.19
19.07	0.14
17.73	0.05
19.62	0.07

- **a.** Construct a scatterplot of the data. How would you describe the relationship between *x* and *y*?
- **b.** Find the equation of the least-squares line describing the relationship between y = net directionality and x = mean water temperature.
- c. What value of net directionality would you predict for a stream that had mean water temperature of 15 °C?
- **d.** The authors state that "when temperatures were warmer, more larvae were captured moving upstream, but when temperatures were cooler, more larvae were captured moving downstream." Do the scatterplot and least-squares line support this statement?
- **e.** Approximately what mean temperature would result in a prediction of the same number of salamander larvae moving upstream and downstream?

5.16 • The article "California State Parks Closure List Due Soon" (*The Sacramento Bee*, August 30, 2009) gave the following data on x = number of visitors in fiscal year 2007–2008 and y = percentage of operating costs covered by park revenues for the 20 state park districts in California:

Number of Visitors	Percentage of Operating Costs Covered by Park Revenues
2,755,849	37
1,124,102	19
1,802,972	32
	(continued)

Bold exercises answered in back

Data set available online

→ Video Solution available