# . Enhanced tunability in ferroelectric composites through local field enhancement and the effect of disorder

- Benjamin Vial and Yang Hao<sup>1</sup>
- School of Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,
- United Kingdom

We investigate numerically the homogenized permittivities of composites made of low index dielectric inclusions in a ferroelectric matrix under a static electric field. A refined model is used to take into account the coupling between the electrostatic problem and the electric field dependent permittivity of the ferroelectric material, leading to a local field enhancement and permittivity change in the ferroelectric. Periodic and pseudo-random structures in two dimensions are investigated and we compute the effective permittivity, losses, electrically induced anisotropy and tunability of those metamaterials. We show that the tunability of such composites might be substantially enhanced in the periodic case, whereas introducing disorder in the microstructure weaken the effect of enhanced local permittivity change. Our results may be useful to guide the synthesis of novel composite ceramics with improved characteristics for controllable microwave devices.

#### INTRODUCTION

Ferroelectric materials play a crucial role in reconfigurable 8 microwave devices, with typical applications including antenna beam steering, phase shifters, tunable power splitters, filters, voltage controlled oscillators and matching networks<sup>1</sup>. Both bulk ceramics and thin films have been employed to design frequency agile components<sup>2-4</sup> and metamaterials<sup>5,6</sup>. The main reason of using ferroelectric materials is their strong dependence of their permittivity  $\varepsilon$  on an applied electric field E, which is measured by their tunability defined as  $= \varepsilon(0)/\varepsilon(E)$ , along with a non hysteresis behaviour when used in their paraelectric state. The key requirements for antenna and microwave applications are large tunability and low losses. These two characteristics are correlated and one has to find a trade-off for optimal device performance, which can be quantified by the so called commutation quality factor  $K = (n-1)^2/(n \tan \delta(0) \tan \delta(E))$ , where  $\tan \delta$  is the loss tangent. These materials have usually high permittivity values even at microwave frequencies, often leading to slow response time and impedance mismatch, which can be an issue in some practical applications. Thus it has been considered to mix ferroelectric ceramics with low-index and low-loss nontunable dielectrics in order to reduce both permittivity values and losses, or to use porous ceramics to achieve the same goals without unwanted chemical reactions at the boundaries between dissimilar materials. In particular, the addition of magnesium oxide in barium strontium titanate (BST) ceramics have been shown to decrease the losses while keeping good tunability<sup>7,8</sup>. Ceramics such as Pb(Zr,Ti)O<sub>3</sub> (PZT) and BaTiO<sub>3</sub> (BT) have been used as fillers in polymer based composites with high dielectric constant<sup>9</sup>. Other mixtures include metal-polymer composites 10 and electroactive polymers such as poly(vinylidene fluoride) (PVDF) with high index dielectric inclusions<sup>11</sup>.

investigated 12-15 and it has been found that the permittivity 42 can be greatly reduced while losses are much less sensitive to 43 the dielectric phase addition, and in some situations lead to 84 significantly differ. In contrast with earlier studies in the literas a small increase of the tunability of the mixtures. Analytical as ature 18,19, we account for the non-linear coupling beyond the 45 models based on the Bruggeman effective medium approach 86 first iteration and use two-scale convergence homogenization

46 for low concentration of dielectrics were derived for differ-47 ent configurations (columnar, layered and spherical inclusions models) and have been successfully compared with numerical simulations and experiments<sup>12</sup>. In the context of porous 50 ferroelectrics, the homogenized properties strongly depends on the size and morphology of the pores 16,17. Recently, the 52 concept of tailoring the nonlinear properties of ferroelectric 53 and dielectric structures by local field engineering has been 54 introduced<sup>18–20</sup>. It was shown through finite element calcula-55 tion including the nonlinear coupling, that by employing com-56 posite materials made of linear dielectric inclusions into a fer-57 roelectric matrix, one can lower the permittivity while main-58 taining high tunability, due to the local field in the ferroelectric 59 phase which is tuned by the linear dielectric phase. Moreover, 60 the effect of grain sizes in ferroelectric ceramics was studied 61 using a model taking the field enhancement into account at 62 the grain boundaries, and the predicted behaviour successfully 63 compared to experimental data<sup>19</sup>. Generally, there is a need 64 for refined theoretical and numerical models to explain and 65 design tunable materials and composites with tailored nonlin-66 ear properties. Note that the general method followed by our 67 coupled model could be applied to other type of tunable sys-68 tems where local field enhancement and amplification is rel-69 evant, including for example ferromagnetic metamaterials<sup>21</sup>, 70 liquid crystals based devices<sup>22</sup>, or field-enhanced carrier dy-71 namics in doped semiconductors at other frequency ranges, particularly in the THz and near-infrared<sup>23,24</sup>.

This study investigates numerically the effective permittiv-74 ity of composites made of dielectric inclusions in a ferroelec-75 tric matrix by using a two-scale convergence method<sup>25,26</sup>. The 76 originality lies in the fact that a fully coupling model is em-77 ployed to calculate the electrostatic field distribution when a 78 uniform biasing field is applied on the structures, which will 79 result in a local modification of the permittivity in the fer-80 roelectric phase due to the microstructure. As compared to The effective parameters of those composites have been si a simple uncoupled model where the ferroelectric phase is 82 only modified through the biasing field, the resulting effec-83 tive permittivity, dielectric losses, tunability and anisotropy 87 analysis to obtain the effective parameters at higher frequencies, instead of a capacitance-based model. The model we developed has been implemented with the finite element method (FEM) and we realise a systematic computational study of ferroelecric-dielectric mixtures. First, we consider metamaterials consisting of a square array of parallel dielectric rods with circular cross section in a ferroelectric host, and then investigate the effect of random distribution of those rods within 95 the unit cell.

#### THEORY AND NUMERICAL MODEL

We consider a composite made of a ferroelectric material with anisotropic permittivity  $\boldsymbol{\varepsilon}^{\mathrm{f}}(\boldsymbol{E})$  that is dependent on an applied electric field E, and a non tunable dielectric of permittivity  $\varepsilon^{\rm d}$ , which are both non-magnetic. The structures under study are invariant along the z direction, which leads to the standard decomposition of the wave equation in the transverse electric case (TE, electric field parallel to the direction of invariance) and the transverse magnetic case (TM, magnetic field parallel to the direction of invariance). A uniform biasing field is applied in order to be able to tune the effective permittivity. Modelling homogenized properties of this type of mixtures can be done by assuming that the 109 electric field distribution is uniform throughout the sample. 110 so that the study of the tunability is essentially achieved by changing the value of the properties in the ferroelectric phase and computing the effective permittivity of the composite. We refer this approach as to the uncoupled model in the following. However, a more accurate description is to take into 123 gives the dependence of the polarization on the applied elecfind the field distribution within the material, but its solution 126 permittivity is given by: depends on the permittivities of both materials, and the permittivity in the ferroelectric phase depends on this induced electric field: this leads to a strongly coupled problem.

#### Permittivity model

121

in the literature 11,27. The tunability was measured using an 135 components 31, we have: impedance analyzer up to 100 MHz, and at 3.8 GHz using a loaded microstrip split ring resonator<sup>28</sup>. The measured tunability of the in-house BST samples of 27% under 1kv/mm DC bias was in agreement with those reported elsewhere 11,27. The method presented is however general and only relies of the gradient of the dielectric tunability vs electric field and 136 where each of the diagonal components have the functional on Fig. (1).

To describe the permittivity, we make use of the Lan- 140 crowaves. dau potential given by  $F(P,E) = F_0 + aP^2/2 + bP^4/4 + 142$ 



FIG. 1. Variation of the ferroelectric permittivity as a function of the applied electric field (dots: measurements, dashed lines: fit to formula (1)), for the static case (green) and at microwave frequencies (orange, f = 3.8 GHz). The fitting parameters are given in Table I.

 $cP^6/6 - EP$ , where E is the applied electric field and P is the polarization  $^{29,30}$ . Variations of the permittivity with the temperature can be taken into account through the coefficients a, b and c, but we assume we are working at a constant room temperature. We further assume that the material is not subject to any stress, so that the variation of permittivity due to mechanical constraints is irrelevant. The equation of state

$$\frac{\partial F(P,E)}{\partial P} = aP_0 + bP_0^3 + cP_0^5 - E = 0$$

account the change of the electric field by the microstructure, 124 tric field, with  $P_0$  being the equilibrium polarization. Along if any. We therefore need to solve an electrostatic equation to 125 the direction of a uniform applied electric field, the relative

$$\varepsilon^{f}(E) = \left[\frac{\partial^{2} F(P, E)}{\partial P^{2}}\right]^{-1} = \frac{\varepsilon^{f}(0)}{1 + \alpha P_{0}^{2} + \beta P_{0}^{4}},\tag{1}$$

where  $\varepsilon^{\rm f}(0) = 1/a$ ,  $\alpha = 3b/a$  and  $\beta = 5c/a$ . The fitting pa-128 rameters are given in Table I. As the norm of the field in-129 creases, the permittivity decreases with a characteristic bell 130 curve typical for a ferroelectric material in its paraelectric We use barium strontium titanate (BST) as our ferroelec- 131 state. Furthermore, assuming the crystalline principal axes tric material. Ba<sub>x</sub>Sr<sub>1-x</sub>TiO<sub>3</sub> samples were fabricated using 132 of the ferroelectric material are oriented in the coordinate dithe conventional sintering method with a barium ratio of 133 rections, and that the diagonal components of the permittivity x = 0.6 to obtain a dielectrically tunable material as reported 134 tensor are only function of the corresponding bias electric field

$$\boldsymbol{\varepsilon}^{\mathrm{f}}(\boldsymbol{E}) = \begin{pmatrix} \boldsymbol{\varepsilon}_{xx}^{\mathrm{f}}(E_{x}) & 0 & 0\\ 0 & \boldsymbol{\varepsilon}_{yy}^{\mathrm{f}}(E_{y}) & 0\\ 0 & 0 & \boldsymbol{\varepsilon}_{zz}^{\mathrm{f}}(E_{z}) \end{pmatrix}$$
(2)

could be applied to any tunable host material. The normalized 137 form given by Eq. (1). Note that we will use the static values permittivity value as a function of biasing field are reported 138 of permittivity for the electrostatic modelling, while we are interested in the homogenized values of permittivity at mi-



FIG. 2. Convergence of the coupled problem. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i. The values are normalized to the corresponding quantities for the bulk ferroelectric material. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

173

TABLE I. Fitting parameters to model (1) for the measured permittivity values as a function of applied electric field shown on Fig. (1).

| case         | $\varepsilon^{\mathrm{f}}(0)$ | $\alpha  (\mu  \text{m}^2/\text{V}^2)$ | $\beta  (\mu \text{m}^4/\text{V}^4)$ |
|--------------|-------------------------------|----------------------------------------|--------------------------------------|
| static       | 3050                          | 0.120                                  | 0.024                                |
| f = 3.8  GHz | 165                           | 0.240                                  | 0.079                                |

## Electrostatic model

The composites under study are made of two materials, thus their permittivity is represented by a piecewise defined tensor  $\varepsilon(r,E)$  which is equal to  $\varepsilon^{\rm f}(E(r))$  in the ferroelectric phase and diag( $\varepsilon^{\rm d}$ ) in the dielectric phase. In the following, we consider two different cases for the biasing field. Because of the form (2) assumed for the ferroelectric permittivity tensor,  $\varepsilon_{77}$ will not be changing for a field in the plane orthogonal to the z axis. This is the only component being relevant for TE polarization, so we consider in this case a uniform biasing electric field applied along the direction of invariance  $E_0 = E_0 e_7$ . On the other hand, the in-plane components of  $\varepsilon^f$  are tuned <sup>181</sup>  $\psi_j$  of two annex problems  $\mathscr{P}_j$ ,  $j = \{1, 2\}$ : by  $E_x$  and  $E_y$ , therefore, without loss of generality, we con- $^{156}$  sider a uniform applied electric field directed along the x axis 157  $E_0 = E_0 e_x$  for the TM polarization case. To calculate the total 157  $E_0 = E_0 e_x$  for the TM polarization case. To calculate the total 158 electric field in the material, one has to solve for the potential 152 where  $r = (x, y)^T$  is the position vector in the xy plane and 152  $\xi = \varepsilon^T / \det(\varepsilon)$ . The homogenized tensor  $\tilde{\xi}$  is obtained with: V satisfying Gauss' law:

$$\nabla \cdot (\varepsilon \nabla V) = 0 \tag{3}$$

structures are invariant along z, so that the electric field is 185 ments of the matrix  $\phi$  represent correction terms and are given 162 equal to the uniform biasing field, and we will thus not study 186 by  $\phi_{ij} = \langle \xi \nabla \psi_i \rangle_j$ . Finally the effective permittivity tensor can 163 it in the following. However in the TM case, the situation 187 be calculated using  $\tilde{\varepsilon} = \tilde{\xi}^T/\det(\tilde{\xi})$ . 164 is much more complex: this is a coupled problem since the 188 Note that the TE case, which we shall not study here as no

electric field  $E = -\nabla V$  derived from the solution of Eq. (3) depends on the permittivity distribution, which itself depends 167 on the electric field. The coupled system formed of Eqs. (2) and (3) is solved iteratively until there is convergence on the 169 norm of the electric field. Here we would like to emphasise 170 that the permittivity in the ferroelectric material, although uniform initially, is spatially varying due to the non-uniform distribution of the total electric field.

#### Homogenization

When the period of the composite metamaterial is much 176 smaller than the wavelength, one can describe the proper-177 ties of the composite by a bulk medium with homogenized 178 parameters. The effective permittivity for TM polarization is calculated using a two scale convergence homogenization technique 25,26. For this purpose, one has to find the solutions

$$\nabla \cdot \left[ \xi \nabla (\psi_i + r_i) \right] = 0, \tag{4}$$

$$\tilde{\boldsymbol{\xi}} = \langle \boldsymbol{\xi} \rangle + \boldsymbol{\phi},\tag{5}$$

Note that for the TE case, the solution is trivial since the 184 where  $\langle . \rangle$  denotes the mean value over the unit cell. The ele-

189 coupling happens, is trivial since the homogenized permittiv- 241 rounding the inclusion and its concentration in some region 190 ity is simply the average of the permittivity in the unit cell: 242 will cause a higher permittivity change locally. The relative 191  $\tilde{\varepsilon} = \langle \varepsilon \rangle$ .

#### NUMERICAL RESULTS

boundary conditions along x and y. Second order Lagrange 255 the case studied here, the equilibrium permittivity distribution solver (MUMPS<sup>34</sup>).

#### Two dimensional periodic metamaterial

Lets us now consider a periodic square array of infinitely long dielectric rods of circular cross section of radius r embedded in a ferroelectric matrix.

We first study the convergence of the coupled problem on the particular case with dielectric filling fraction  $f = \pi r^2/d^2 =$ 0.5 and  $E_0 = 2$ MV/m. Figures 2(a) and 2(b) show the convergence of the real part and loss tangent of the components <sup>267</sup> B. Pseudo-random case of the homogenized permittivity tensor, respectively. The yy components converge quickly and are almost unaffected by 268 214 stantially from the initial conditions. This is due to the effect 270 composites. This is an important point as fabrication of ran-216 cell (see Figs. (2.c) and (2.d)), where the x component of the 272 logical perspective. For each filling fraction of the dielectric, 217 electric field is still much stronger than the y component, even 273 we generated 21 numerical samples with inclusions of circu-218 if spatially varying in the ferroelectric medium. At equilib- 274 lar cross section of average radius r = d/20 that can vary by mogenized properties of the composite.

226 Fig. (3)). The results of our coupled model differ significantly 282 the larger is the difference. Losses decrease as well and the 236 the x axis,  $\tilde{n}(E) = \tilde{\mathcal{E}}_{xx}(E)/\tilde{\mathcal{E}}_{xx}(0)$ , normalized to the tunability 292 see that the coupled and uncoupled models give similar re-237 of the bulk ferroelectric  $n(E) = \mathcal{E}_{ry}^f(E)/\mathcal{E}_{ry}^f(0)$ . Two concur- 293 sults for the tunability whereas the losses are still smaller for 238 rent effects are at stake here: on the one hand the dilution 294 the coupled case at higher fields. 239 of ferroelectric makes the composite less tunable, but on the 295 The redistribution of electric field, permittivity and conver-

243 strength of those phenomena is governed by the shape of the 244 inclusion and its permittivity and so it is envisioned that the performance of the composites might be enhanced by engi-246 neering their microstructure. The geometry of the unit cell 247 is symmetric so the homogenized material is isotropic when In the following numerical results, the dielectric phase is 248 no field is applied. But when the sample is biased, the persupposed to be lossless and non dispersive with  $\varepsilon^d = 3$  while  $\varepsilon^d = 3$ the ferroelectric material follows the permittivity described in 250 geneity of the electric field, thus making the effective material section II A and has a constant loss tangent  $\tan\delta^f=10^{-2}$ . 251 properties anisotropic. This geometric effect is added to the Equations (3) and (4) are solved with a Finite Element Method 252 anisotropy arising from the material properties of the ferrousing the open source packages Gmsh<sup>32</sup> and GetDP<sup>33</sup>. In both <sup>253</sup> electric phase itself, and depending on the topology and percases we use a square unit cell  $\Omega$  of length d with periodic 254 mittivity of the rods, one effect would be predominant. In elements are used and the solution is computed with a direct 256 varies strongly along the bias direction and much less orthog-257 onally to it, which adds anisotropy by diminishing the effec- $_{258}$  tive permittivity in the x direction. This is local field induced 259 effect is what makes the anisotropy stronger in our coupled 260 model compared to the uncoupled one (cf. Fig. (3.d) where we plot the anisotropy factor  $\alpha = \varepsilon_{xx}/\varepsilon_{yy}$ ). Those subtle phenomena can only be rigorously taken into account by employing a coupling formalism and are responsible for the difference observed when compared to a simple uncoupled model.

We finally study the effect of random distribution of the inthe coupling process whereas the xx components change sub- 269 clusions within the unit cell on the effective parameters of the of the redistribution of the electrostatic field within the unit 271 domly dispersed inclusions is much more easy from a technorium, the electric field is concentrated close to the y axis in 275 ±30%. Their centre is chosen randomly and the rods are albetween two neighbouring rods. This in turn affects the per-  $_{276}$  lowed to overlap. An example of distribution for f = 0.5 is mittivity distribution (see Figs. (2.e) and (2.f)), and the ho- 277 given on Fig. (6). The effective material properties are plotted 278 on Fig. (4). Similarly to the periodic case, the permittivity de-We computed the effective parameters of these metamaterial 270 creases with increasing dilution of ferroelectric, but for idenstructures for different radii of the rods and studied their be- 280 tical filling fraction, the permittivity is lower as compared to haviour when subjected to an external electrostatic field (see 281 the periodic array, and the smaller the dielectric concentration from the uncoupled one. Increasing the dielectric fraction 283 reduction is substantially larger than the periodic case, with lowers the effective permittivity while the losses are slightly  $\frac{1}{284}$  higher variation from sample to sample as f increases. The reduced but much less sensitive. Due to the inhomogeneous 285 effective tunability is on average smaller than that in the peredistribution of the permittivity over the ferroelectric domain, 286 riodic case, and for low biasing fields and for some particular the overall tunability changes. In the case studied here, taking 287 samples can be greater than the bulk tunability. However, at into account the coupling leads to an effective tunability in- 288 higher applied electric fields, normalized tunability becomes crease with higher dielectric concentration, and that is larger 289 smaller than unity and is reduced as one adds more dielectric. than the tunability of bulk ferroelectric. This can be seen in 200 For comparison, the homogenized parameters are plotted on Fig. (3).c where we plot the tunability of the composites along 291 Fig. (7) in the case where the coupling is neglected. One can

240 other hand, the rearrangement of the electrostatic field sur- 296 gence of the effective parameters are displayed in Fig. (5).



FIG. 3. Effective parameters of the 2D metamaterials as a function of the applied electric field for various filling fraction of dielectric. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines correspond to the coupled model and the dashed lines to the uncoupled model. The values are normalized to the corresponding quantities for the bulk ferroelectric material.



FIG. 4. Effective parameters of the pseudo-random composites as a function of the applied electric field for various filling fraction of dielectric, when the coupling is taken into account. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation. The values are normalized to the corresponding quantities for the bulk ferroelectric material.

The effect of disorder plays an important role here: the elec- 305 to ferroelectric properties is important in this case as well, as geometry would cancel for a sufficiently large number of rods 310 case. However even if there is a substantial variability from (which is the case as the mean anisotropy factor is close to 1 311 sample to sample, on average, the anisotropy factor decreases when no bias field is applied). However, the anisotropy due 312 with increasing dielectric concentration.

trostatic field gets concentrated in between neighbouring in- 306 both the x and y components of the electrostatic field are playclusions and the smaller the gap the higher the field, hence 307 ing a role. Because of the relative positions of the rods, both greater local permittivity change. In addition, even if the 308  $\varepsilon_{xx}$  and  $\varepsilon_{yy}$  are affected by the coupling, so that the anisotropy distribution is random, one expects that the anisotropy due to 300 factor for higher fields is reduced as compared to the periodic



FIG. 5. Convergence of the coupled problem in the random case for one sample. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i The values are normalized to the corresponding quantities for the bulk ferroelectric material.. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

### 313 IV. CONCLUSION

into account the coupling between the electrostatic field 349 effective permeability. distribution and the field dependant ferroelectric permittivity 350 After convergence of the coupled problem, the effective permittivity tensor is calculated using two scale convergence homogenization theory. The results obtained by this model differ significantly from a simple assumption that the permittivity of the ferroelectric respond just to the uniform biasing field. We have considered both periodic and 352 Importantly, adding more low index and low loss dielectric 356 Manufacturing (AOTOMAT)". allows to decrease the overall permittivity significantly and 357 The authors would like to thanks Henry Giddens for performis higher than the bulk due to local field enhancement, 359 paper. induce an effective anisotropy that is added to the one arising 362 https://www.github.com/benvial/ferromtm. purely from the ferroelectric material. The properties of the composites are affected by multiple factors: geometry and the spatially dependent electric field that will induce locally 363 a tunable, anisotropic response in the ferroelectric phase 365 depending on its amplitude and direction. This suggest that 366 the performances of the composites may be enhanced by 367 distributing the two phases in an optimal way to get high 368 tunability and low losses. Further work in that direction is needed as well as extending this study to 3D media. Finally, 371 343 because the permittivity of the dielectric is much smaller 372

than the ferroelectric one, it would be of great interest to 345 use high contrast homogenization theory 35,36 to study this 346 kind of mixtures. This would reveal the frequency dependant We have studied the homogenized properties of dielec- 347 artificial magnetism due to "micro-resonances" in the high tric/ferroelectric mixtures using a rigorous model that take 348 index phase and potentially lead to composites with tunable

## 351 ACKNOWLEDGMENTS

This work was funded by the Engineering and Physical random arrays of dielectric rods in a ferroelectric matrix in 353 Sciences Research Council (EPSRC), UK, under a grant 2D, and studied their effective properties for TM polarization 354 (EP/P005578/1) "Adaptive Tools for Electromagnetics and as a function of dielectric concentration and bias field. 355 Materials Modelling to Bridge the Gap between Design and

slightly lower the losses. For the periodic case, the tunability 358 ing the measurements of ferroelectric permittivity used in this

whereas this effect is strongly suppressed when disorder is 360 The codes necessary to reproduce the results in this introduced. The asymmetric redistribution of the permittivity 361 article are freely available online at this address:

> <sup>1</sup>A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, "Ferroelectric Materials for Microwave Tunable Applications," J Electroceram 11, 5-66 (2018).

> <sup>2</sup>O. Vendik, E. Hollmann, A. Kozyrev, and A. Prudan, "Ferroelectric tuning of planar and bulk microwave devices," J. Supercond. 12, 325–338 (1999). <sup>3</sup>M. Lancaster, J. Powell, and A. Porch, "Thin-film ferroelectric microwave devices," Supercond. Sci. Technol. 11, 1323 (1998).

> <sup>4</sup>X. Xi, H.-C. Li, W. Si, A. Sirenko, I. Akimov, J. Fox, A. Clark, and J. Hao, "Oxide thin films for tunable microwave devices," J. Electroceramics 4, 393-405 (2000).

- T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic meta material using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105
   (2008).
- 6H. Zhao, L. Kang, J. Zhou, Q. Zhao, L. Li, L. Peng, and Y. Bai, "Ex- 424 perimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial," Appl. 426 Phys. Lett. 93, 201106 (2008).
- <sup>7</sup>P. Irvin, J. Levy, R. Guo, and A. Bhalla, "Three-dimensional polarization imaging of (Ba,Sr)TiO3:MgO composites," Appl. Phys. Lett. 86, 042903 (2005).
   <sup>428</sup> (2005).
- <sup>8</sup>U.-C. Chung, C. Elissalde, M. Maglione, C. Estournès, M. Paté, and
   J. P. Ganne, "Low-losses, highly tunable Ba0.6sr0.4tio3 / MgO composite," Appl. Phys. Lett. 92, 042902 (2008).
- <sup>9</sup>B. Wang, L. Luo, F. Ni, P. Du, W. Li, and H. Chen, "Piezoelectric and ferrodelectric properties of (Bi1- xNa0. 8k0. 2lax) 0.5 TiO3 lead-free ceramics,"
  <sup>435</sup> Journal of Alloys and Compounds 526, 79–84 (2012).
  <sup>436</sup> 436
- 389 <sup>10</sup>X. Li, Y.-F. Lim, K. Yao, F. E. H. Tay, and K. H. Seah, "Ferroelectric 437 390 Poly(vinylidene fluoride) Homopolymer Nanotubes Derived from Solu- 438 391 tion in Anodic Alumina Membrane Template," Chem. Mater. 25, 524–529 439 392 (2013).
- 393 <sup>11</sup>G. Hu, F. Gao, J. Kong, S. Yang, Q. Zhang, Z. Liu, Y. Zhang, and 441 394 H. Sun, "Preparation and dielectric properties of poly(vinylidene fluo-442 ride)/Ba0.6sr0.4tio3 composites," Journal of Alloys and Compounds 619, 443 396 686–692 (2015).
- 397 <sup>12</sup>V. O. Sherman, A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, 445 "Ferroelectric-dielectric tunable composites," J. Appl. Phys. **99**, 074104 446 (2006).
- 400 <sup>13</sup>L. Jylha and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Prog. Electromagn. Res. **78**, 189–207 (2008).
- 402 <sup>14</sup>V. O. Sherman, A. K. Tagantsev, and N. Setter, "Tunability and loss of the ferroelectric-dielectric composites," in *14th IEEE International Symposium on Applications of Ferroelectrics*, 2004. ISAF-04. 2004 (2004) pp. 33–38.
- 405 15 K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, and N. Setter, "Can the addition of a dielectric improve the figure of merit of a tunable material?"
   407 J. Eur. Ceram. Soc. 23, 2381 2386 (2003).
- 408 <sup>16</sup>K. Okazaki and K. Nagata, "Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics," J. Am. Ceram. Soc. **56**, 82–86 457 (1973).
- 411 <sup>17</sup>R. Stanculescu, C. E. Ciomaga, L. Padurariu, P. Galizia, N. Horchidan, 459
   412 C. Capiani, C. Galassi, and L. Mitoseriu, "Study of the role of porosity on 460 the functional properties of (Ba,Sr)TiO3 ceramics," J. Alloys Compd. 643, 461
   414 79–87 (2015).
- 415 <sup>18</sup>L. Padurariu, L. Curecheriu, C. Galassi, and L. Mitoseriu, "Tailoring non-linear dielectric properties by local field engineering in anisotropic porous ferroelectric structures," Appl Phys Lett 100, 252905 (2012).
- 418 <sup>19</sup>L. Padurariu, L. Curecheriu, V. Buscaglia, and L. Mitoseriu, "Field-dependent permittivity in nanostructured BaTiO\${}\_{3}\$ ceramics: Modeling and experimental verification," Phys Rev B **85**, 224111 (2012).

- <sup>20</sup>A. Cazacu, L. Curecheriu, A. Neagu, L. Padurariu, A. Cernescu, I. Lisiecki,
   and L. Mitoseriu, "Tunable gold-chitosan nanocomposites by local field engineering," Appl Phys Lett 102, 222903 (2013).
- <sup>21</sup>L. Carignan, A. Yelon, D. Menard, and C. Caloz, "Ferromagnetic Nanowire Metamaterials: Theory and Applications," IEEE Trans. Microw. Theory Tech. **59**, 2568–2586 (2011).
- <sup>22</sup>D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negativezero-positive refractive indices," Opt. Express, OE **15**, 3342–3347 (2007).
- <sup>23</sup>G. R. Keiser and P. Klarskov, "Terahertz Field Confinement in Nonlinear Metamaterials and Near-Field Imaging," Photonics 6, 22 (2019).
- 432 <sup>24</sup>K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang,
   433 X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, "Nonlinear Terahertz
   434 Metamaterials via Field-Enhanced Carrier Dynamics in GaAs," Phys. Rev.
   435 Lett. 110, 217404 (2013).
  - <sup>36</sup> <sup>25</sup>G. Allaire, "Homogenization and Two-Scale Convergence," SIAM J. Math. Anal. 23, 1482–1518 (1992).
  - s <sup>26</sup>S. Guenneau and F. Zolla, "Homogenization of Three-Dimensional Finite
     Photonic Crystals," J. Electromagn. Waves Appl. 14, 529–530 (2000).
  - <sup>27</sup>S. Agrawal, R. Guo, D. Agrawal, and A. S. Bhalla, "Tunable BST:MgO Dielectric Composite by Microwave Sintering," Ferroelectrics 306, 155–163 (2004).
  - <sup>32</sup> <sup>28</sup> M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, "Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity," IEEE Sens. J. 15, 7181–7189 (2015).
- <sup>29</sup>L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media, Vol. 8 (elsevier, 2013).
- <sup>30</sup>K. Zhou, S. A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, and S. P. Alpay, "Dielectric response and tunability of a dielectric-paraelectric composite," Appl. Phys. Lett. 93, 102908 (2008).
- 1 31 C. M. Krowne, M. Daniel, S. W. Kirchoefer, and J. A. Pond, "Anisotropic permittivity and attenuation extraction from propagation constant measurements using an anisotropic full-wave Green's function solver for coplanar ferroelectric thin-film devices," IEEE Trans. Microw. Theory Tech. 50, 537–548 (2002).
- is 32C. Geuzaine and J.-F. Remacle, "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. **79**, 1309–1331 (2009).
- so <sup>33</sup>P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Trans. Magn. **34**, 3395–3398 (1998).
- <sup>34</sup>P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L'Excellent, "A Fully
   Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling," SIAM J. Matrix Anal. Appl. 23, 15–41 (2001).
- 35G. Bouchitté and D. Felbacq, "Homogenization near resonances and artificial magnetism from dielectrics," Comptes Rendus Mathématique 339, 377
   382 (2004).
  - <sup>36</sup>K. Cherednichenko and S. Cooper, "Homogenization of the system of high-contrast Maxwell equations," Mathematika 61, 475–500 (2015).

## Random material samples, f = 0.5



FIG. 6. Permittivity distribution of the numerical samples used for f = 0.5. Dark colour indicates the ferroelectric material while light colour represents the dielectric inclusions.



FIG. 7. Effective parameters of the random 2D mixtures as a function of the applied electric field for various filling fraction of dielectric, when the coupling is neglected. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation. The values are normalized to the corresponding quantities for the bulk ferroelectric material.