Abstract Algebra - Homework 1

Simon Gustafsson

1 Group Action on the Projective Line

Let $k = \mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$. We define $\mathrm{GL}_2(k)$ as the group of all invertible 2×2 matrices with entries in the field k. In other words,

$$\operatorname{GL}_2(k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(k) \mid ad - bc \neq 0 \right\}.$$

$GL_2(k)$ Forms a Group

Let $A, B \in GL_2(k)$. Then the product AB is defined as:

$$AB = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix},$$

where all entries involve only addition and multiplication of elements in k. Since k is a field, it is closed under addition and multiplication, so all entries of AB lie in k. Furthermore, $\det(AB) = \det(A) \det(B) \neq 0$, so $AB \in \mathrm{GL}_2(k)$. Thus, $\mathrm{GL}_2(k)$ is closed under matrix multiplication.

Since matrix multiplication is associative, the operation on $\mathrm{GL}_2(k)$ is associative.

The identity element in $GL_2(k)$ is the identity matrix

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

For any $A \in GL_2(k)$, we have AI = IA = A, and since the entries 1 and 0 are in k, we conclude $I \in GL_2(k)$.

Since every element of $GL_2(k)$ is invertible by definition, the inverse of

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$$

is given by:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Since $a, b, c, d \in k$, and $\det(A) = ad - bc \neq 0$, we have $\frac{1}{\det(A)} \in k$, because k is a field. As k is closed under addition, subtraction, and multiplication, all entries of A^{-1} lie in k. Hence, $A^{-1} \in \mathrm{GL}_2(k)$.

Therefore, $GL_2(k)$ satisfies the group axioms under matrix multiplication and is a group.