FINDING ARTICULATION POINTS

ALGORITHM

Step 1. Do a dfs of the graph, say starting from node 1.

Step 2. Give a depth first numbering(dfn) to the nodes of the graph.

Step 3. The L or LOW or Least value of a node is the least numbered(dfn) node that can be obtained by a back edge from the node to one of its ancestors, or the least node that can be obtained by a back edge from any one of its descendants.

Step 4. If the dfn of a node is less than or equal to the L value of one of its children then the node is a articulation point.

TO COMPUTE THE L VALUES TRAVERSE THE DEPTH FIRST

SPANNING TREE IN POSTORDER AND APPLY THE FORMULA:

L of a node = min{dfn of the node, min{L of the children of the node}, dfn of a node that is obtained by a back edge from the node or its children}

NOTE:- FOR A SMALL GRAPH THE L VALUES CAN BE OBTAINED BY INSPECTION

In the graph below, in the dfs spanning tree:

N means not an ariculation point Y means it is an articulation point

SAMPLE GRAPH

Node N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
L _{node=low,least value}	1	1	1	1	6	8	6	6	5	4	10	10	10	10	17	15	15	14	13
DFN _{node}	1	6	3	2	7	8	9	10	5	4	15	12	11	16	17	18	19	14	13
$DFN_{node} \le L_{child}$	N	Y	Y	N	Y	N	N	Y	N	N	Y	Y	N	Y	N	N	N	N	N

.