

(Rest)

It is a branch of physics where we study about the charge and its effect.

Static Electricity: A branch of physics which deals with the study of the electrical

charges at rest and their effects is known as electrostatics or

static electricity.

Current electricity: A branch of physics which deals with the study of the electrical

charges in motion and their effects is known as electrostatics

or static electricity.

- ➤ It is a physical quantity of matter which causes it to experience a force when placed near other electrically charged matter.
- ➤ Its S.I. unit is coulomb (C).
- Quantisation of charge

$$Q = ne$$

Where n = No. of electrons

e = charge on electron

- ➤ The charge on an electron is -1.6×10^{-19} C.
- ➤ It is a scalar quantity.

Smaller units:
$$\rightarrow 1\mu$$
C = 10^{-6} C

$$\rightarrow$$
 1mC = 10⁻³ C

$$-1MC = 10^6 C$$

Electric Current

- ➤ The rate of flow of electric charge through a conductor.
- ➤ Its S.I. unit is Ampere (A).
- I = Charge/Time = Q/t = ne/t
 1A = 1C/s
- One Ampere: one ampere of current represents on coulomb of electrical charge, i.e., 6.25 × 10¹⁸ charge carriers, moving in one second.
- > It is a scalar quantity.

$$1\mu A = 10^{-6} A$$

 $1m C = 10^{-3} A$
 $1M C = 10^{6} A$

Measure by an instrument called Ammeter and always connected in series.

Ammeter

An unclosed/open switch through which electric current does not flows.

CLOSED CIRCUIT

A closed and continuous path through which electric current flows

Potential Difference

- Work done on a unit positive charge from one point to other.
- ➤ Its S.I unit is Volt (V)
- V = Work done/Charge = W/Q $\Delta v = v_B - v_A$
- > 1 V = 1 J/C
- One Volt: 1 Joule of work is done in bringing 1 coulomb of positive charge from infinity to a point in an electric field, then the potential at that point is 1 volt.
- It is a scalar quantity.

Measured by an instrument called Voltmeter and always connected in parallel.

Direction of Current

> The water flows from higher level to lower level

- Positive terminal of battery called higher potential.
- ➤ Negative terminal of battery called lower potential. ✓
- Similarly, the direction of current is from higher potential to lower potential i.e., positive to negative.

Conventional Symbols

Simple ckt. diagram

Battery

Switch

S.N	Components	Symbols
1.	Electric cell	+
2.	Battery	+1111=
3.	Plug key	
	(switch open)	
4.	Plug key	(·)
	(switch closed)	ì
5.	A wire joint	-
6.	Wires crossing without	5
	joining	
7.	Electric bulb	W or
8.	A resistor of resistance R	_^^_
9.	Variable resistance or	_/\/ / /_or
	rheostat	
10.	Ammeter	
11.	Voltmeter	_ + (v)=
12.	Fuse	-0-

Basically it is a Relationship between current and voltage.

- The electric current flowing through a conductor is directly proportional to the potential difference across its ends, provided the physical conditions like temperature, pressure, etc. do not change.
- > Val

$$V = IR$$
 Where $R = resistance$

Resistance

- ➤ The property of a conductor by virtue of which it opposes the flow of electric current through it is called its resistance (*R*).
- \triangleright Its S.I. unit is ohm (Ω) .
- ➤ R = voltage/current = V/I
- ► It is a scalar quantity.

$$V = IR$$
Constant $\leftarrow R = V$
 I

Slope =

Graphs of Ohmic Conductors

Slope =
$$\left(\frac{\Delta V}{V-I}\right) = \left(\frac{V_z - V_z}{I_z - I_z}\right)$$

Factors Affecting Resistance

- Nature of material
- Conductors: having very less resistance ∫ ∫ ↓ i ↑
 Semi Conductors: having resistance
 Insulators: having very large resistance ↑ ↑ i ↓
- 2 Temperatue

TIRT

$$R\alpha l$$
 $R\alpha 1/A$
 $R\alpha l/A$
 $R = \rho \frac{l}{A}$
 $\rho = Resistivity$

Resistivity

- It refers to resistance of a conductor of unit length and cross sectional area.
- \triangleright Its S.I. unit is ohm-metre (Ω m).
- It depends upon the nature and temperature.

$$R = P \frac{1}{A}$$

$$pud l = 1m, A = 1m^{2}$$

$$R = P \frac{1}{1}$$

$$P = D$$

Material	Resistivity p (ohm m)
Silver	1,59 x 10 ⁻⁸
Copper	1.68 x 10 ⁻⁸
Copper, annealed	1.72 x 10 ⁻⁸
Aluminum	2.65 x 10 ⁻⁸
Tungsten	5.6 x 10 st
Iron	9.71 x 10 ⁻⁸
Platinum	10.6 x 10 °
Manganin	48.2 x 10 ⁻⁸
Lead	22 x 10 ⁸
Mercury	98 x 10 ⁻⁸
Nichrome (Ni.Fe.Cr alloy)	100 x 10 a
Constantan	49 x 10 8
Carbon* (graphite)	3-60 x 10 ⁻⁵
Germanium*	1-500 x 10 ⁻³
Silicon*	0.1-60
Glass	1-10000 x 10°
Quartz (fused)	7.5 x 10 ¹⁷
Hard rubber	1-100 x 10 ¹³

Resistance of System

- Maximum effective resistance
- Two/more resistors are connected end to end
- Current remains constant but voltage varies.

$$R = R_1 + R_2 + R_3$$

- Minimum effective resistance
- Two/more resistors are connected simultaneously between two points
- Voltage remains constant but current varies.

$$> 1/R = 1/R_1 + 1/R_2 + 1/R_3$$

Heating Effect

According to Joule's Law of Heating

When current flows, the electrons move and when they move collide with each other. When they collide, heat is produced

$$H = I^2RT$$

➤ Its S.I. Unit is Joule.

$$H = VIt$$
 $H = I^2Rt$
 $H = V_D^2t$

Practical Applications of Heating Effect

Electrical Appliances (Nichrome wire is used) P1 R1 H1

L> heating element _]

Iron

Heater

Partical Applications of Heating Effect

Bulb (Tungsten wire is used)

Partical Applications of Heating Effect

Fuse (alloy of lead and tin is used)

Fuse Wire

M.P. low => Inline melts

(urrent overload | (kt. breaks

Electric Power

- The rate at which electric energy is dissipated or consumed in an electric circuit.
- ➤ Its S.I. Unit is Watt.
- Power = energy/time = $Vl = I^2R = V^2/R$

1 Horsepower = 746 watts

Commercial unit of electric energy is kWh.

$$1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$$

Formulae + Units AII

$$I = \frac{Q}{t}$$

$$V = \frac{Q}{M}$$

$$R = \int \frac{L}{A}$$

$$V\Delta = 90012$$
 $I\Delta \quad (I-V)$

$$R_{s} = R_{1} + R_{2} + R_{3}$$
...

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$P = \frac{E}{t} \longrightarrow E = Pxt$$

$$E = I^2Rt$$

$$P = \frac{V^2}{R}$$

$$E = \frac{V^2}{R}t$$

- · I Ambere
- · WE > Joule
- · R > ohm
- · l M
- · (commercial unit of Energy - KWh

- · Q-Cowlomb · V- Valt
- · P > Wath . P > ohm-metre · A -> m2