Efficient directed scattering of XUV radiation using high-density spherical clusters

L.A. Litvinov, A.A. Andreev

December 27, 2021

Department of General Physics I Saint Petersburg State University

Introduction

Mie theory

Introduction 000000

XUV wavelength range

Spherical vs cylindrical

lonized cluster gas

Figure 1: Ionized cluster gas generation process.

Interaction scheme

Figure 2: The plane of polarization is parallel to one of the faces of cubic region. The dimensions of spherical clusters are about a few nanometers, distance between them is at least wavelength. In general, the distribution of clusters within a cubic region is arbitrary without intersections.

Base model

Base model scheme

Figure 3: Base model scheme.

Zero-order approximation

Figure 4: Spherical harmonics coefficients. ka = 0.5 (a), ka = 1.5 (b) in zero-order approximation, $\beta_e = 0$.

First-order approximation

Figure 5: Spherical harmonics coefficients. ka = 1.5, (a) — in zero-order approximation, (b) — in first-order approximation, $\beta_e = 0$.

Resonance electron density

Figure 6: Resonance electron density depending on radius. Curves were calculated for resonant m values, $\beta_e = 0$.

Single cluster

Considered cases

- $\lambda = \lambda_L = 830 \text{ nm}, \ \lambda = \lambda_{10} = 83 \text{ nm};$
- $ka = 0.5, 0.7 \Rightarrow m_{0.5} = 1.635i, m_{0.7} = 1.851i.$

Figure 7: Laser harmonic scattering by a single cluster. $|\overrightarrow{\mathbf{E}}|$ plotted in the plane of polarization, near-field (a) and far-field (b).

Figure 8: 10-th harmonic scattering by a single cluster. $|\overrightarrow{\mathbf{E}}|$ plotted in the plane of polarization, near-field (a) and far-field (b).

Figure 9: Laser harmonic scattering by a single cluster. $|\overrightarrow{\mathbf{E}}|$ plotted in the plane of polarization, near-field (a) and far-field (b).

$ka = 0.7 \ (a \approx 8.9 \ nm); \ \lambda = \lambda_{10} = 83 \ nm$

Figure 10: 10-th harmonic scattering by a single cluster. $\lambda = \lambda_L$, $a \approx 8.9$ nm (ka = 0.5); $|\overrightarrow{\mathbf{E}}|$ plotted in the plane of polarization far-field (a). For qualitative assessment field scattered by a single nanocylinder with the same ka added (b) — here the incident wave propagates from right to left (along negative x axis direction), polarization is along y axis.

Multiple clusters

Configuration

Figure 11: Model scheme, generalized target geometry.

$$ka = 0.5 \ (a \approx 6.4 \ nm); \ \lambda = \lambda_{10} = 83 \ nm, \ b = \lambda_{10}$$

Figure 12: 10-th harmonic scattering by multiple clusters. Incidence at 45° angle; a — near-field; b — far-field.

$$ka = 0.5 \ (a \approx 6.4 \ nm); \ \lambda = \lambda_{10} = 83 \ nm, \ b = 3\lambda_{10}$$

Figure 13: 10-th harmonic scattering by multiple clusters. Incidence at 30° angle; a — near-field; b — far-field.

Thanks for your attention