Reinforcement learning

why and how?

Nima H. Siboni https://github.com/nima-siboni

Intro to myself

Former position: Machine learning team-lead in DeepMetis Future position: Senior RL research engineer in InstaDeep

Short CV (in pictures)

- B.Sc. Mechanical Engineer
- M.Sc. Simulation Science
- PhD in Simulation of Complex Systems
- Postdoc in Simulation of Complex Fluids
- Data Science and Machine learning training

- Data Science Retreat (lecturer)
- Max-Planck-Institute (guest researcher)
- Al-grid

Course disclaimer!

Course outline

Introduction

What sort of problems you can solve with it? How is it new to you?

- What is Machine Learning?
- Different tasks in ML
- What is Reinforcement, what is Learning?
- Some examples
- Course disclaimer

RL problem formulation

Lots of new terms to be defined and connected to each other

- RL's basic ingredients
- RL's problem formulation
- Exercise
- Anatomy of a RL solution

Solution of a RL problem

Zoo of different methods

What is Machine Learning?

Machine Learning: leveraging data to perform tasks

Task

Predicting the consumption and generation of renewable energy

Data

- What should prediction be based on?
 - Weather: wind, temperature, time of sun, pressure,
 - Features: day, week, month, holidays
 - Time series data
- What should the prediction mimic?
 - History
 - Expertise

The knowledge to be *learned*

Different Tasks in ML

Machine Learning: leveraging data to perform tasks

• Sequential Decision Making

Some examples

Chip Design with Deep Reinforcement Learning

Thursday, April 23, 2020

Posted by Anna Goldie, Senior Software Engineer and Azalia Mirhoseini, Senior Research Scientist, Google Research, Brain Team

Article Open Access | Published: 16 February 2022

Magnetic control of tokamak plasmas through deep reinforcement learning

Not RL but fun to watch

RL vs. SL & UL

Unsupervised Learning

Clusters or dimension reduction k-means, PCA, etc.

Supervised Learning

Classifier or regressor Neural networks, SVMs, etc.

Reinforcement Learning

Find an optimal behavior Monte-Carlo, Q-learning, etc.

Course outline

Introduction

What sort of problems you can solve with it? How is it new to you?

- What is Machine Learning?
- Different tasks in MI
- What is Reinforcement, what is Learning?
- Some examples
- Course disclaimer

RL problem formulation

Lots of new terms to be defined and connected to each other

- RL's basic ingredients
- RL's problem formulation
- Exercise
- Anatomy of a RL solution

Solution of a RL problem

Zoo of different methods

RL's basic ingredients

How do we make good decisions?!

What is the situation?!

State

What are the possible actions?

Action space

What are the consequences of each action?

nvironme ?:

How rewarding/costly is each action?
 REWARD

Where do I end up after this action?

Policy

The mapping between the state and the actions

State Policy Action

RL agent's job

Finding a behavior for maximizing the sum of all rewards, i.e. current reward and what comes after.

Examples

Give me examples!

- What are the states?
- What are the actions?
- What are the rewards at each step?
- What is your policy?

RL's problem formulation

Can you cast your decision making problem into a problem for the RL agent?

Reward hypothesis

"All of what we mean by

goals and purposes can be well thought of as

maximization of the expected value of

the cumulative sum of

a received scalar signal (reward)." Richard Sutton

Reward mess up

Can you think of a badly designed reward?

Anatomy of a RL solution

Find the optimal behavior

- Start with a policy
- Make it better (?!)
 until you reach the optimal policy.

The questions will answer by the end of the course

- How good is a policy? (policy evaluation)
 - Use to policy in interaction with the env.
 - Measure certain quantities to evaluate your policy
- How can you make a policy better? (policy improvement)

Anatomy of a RL solution

Find the optimal behavior

- Start with a policy
- Make it better (?!)
 until you reach the optimal policy.

The questions will answer by the end of the course

- How good is a policy? (policy evaluation)
 - Use to policy in interaction with the env.
 - Measure certain quantities to evaluate your policy
- How can you make a policy better? (policy improvement)

The rest of the course

- Interaction with Environment
 - The interface between agent and environment
 - Where are the env.? How can I write my own?
- Your 1st Agent
 - Random agent
 - Learning agent
- Policy Evaluation
 - How to represent policy in a computer?
 - Measure of a good policy, Value function
 - O Why values are important?
 - Ways to calculate those measures
 - Trial and error: Monte-Carlo
- Policy Improvement
 - A simple algorithm
 - Revisiting policy evaluation (SARSA)
 - o Combining eval. and improv. (Q-learning)
- Introducing Deep Neural Nets
 - DQN: back to supervised learning

Interaction with Env.

Let's find a minimalistic
 Agent <--> Environment interface together!
 Gedankenexperiment: controlling from far far away!

- Where can I find an environment?
- When do I need to write my own?
- Properties of a good env.?
- Let's investigate an environment together!

Your 1st agents

An overview of RL-algorithms taxonomy

An overview of RL-algorithms taxonomy

The four routes to deep RL

► Four different ways to come to Deep RL

How to represent a policy?

Some possibilities

- Table,
- Function, or
- Deep neural network (Deep RL)

Different policy types

- Deterministic
- Stochastic

The core questions

How good is a policy?

How can you make a policy better?

My claim: The optimization problem is solved if you can find how good your policy is

Policy Evaluation

Q: What are the measures of a good policy?

Let's say you are in a particular state and you are offered two policies, how do you choose?

- Immediate reward? Probably not a good idea.
- Some of all rewards you get? That seems more appropriate!
- Is future that important? Maybe, yes, Maybe no!

Let's formally define values function.

Q: How to find out V(s) for all the states?

- Directly solving the Bellman Equation
- Guessing based on the experimenting [Monte Carlo method, Q-Learning, DQN]

(Finally) Bellman Equation

What happens until eternity is what happens now plus what happens after that

Let's derive the Bellman equation together!

- Assumptions:
 - A Markovian process (is it an important assumption?)
 - O The dynamics is known!
 - States and actions are discrete!

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \Big]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \text{ for all } s \in \mathcal{S},$$

Bellman equation has a good mathematical property! A lovely one!

What did we do?

Goal: finding the optimal behavior, without prior knowledge of the environment.

These are methods which require only experience!

Experience: sample sequences of states, actions, and rewards (from interaction with the environment).

Policy Evaluation Cntd.

Different policy types

- Deterministic
- Stochastic

Q1: How do you evaluate a deterministic policy?

Don't think of computational cost, we deal with that later.

Q2: What about a stochastic policy?

Q3: Why are stochastic policy important even for deterministic problem?

Policy Improvement

Q-values

Quality of an action:

How good is action **a** from state **s**, if I follow policy **pi** after that action?

Policy improvement

At one state change the policy to argmax Q(s,a)!

cover oxived ox control

cover oxived ox control

norte coxlo

es deterministic. Can

ag stochastic?

Q1: By the suggested policy improvement, the policy becomes deterministic. Can you suggest some way of making the policy better but staying stochastic?

How to solve the Bellman equation?

How to solve an equation?

- Direct analytical methods
- Numerical (iterative/approximate) methods: Not "the" solution but a good enough solution

When to use which?

- ullet exists an analytical approach and if it is computationally feasible o analytical
- otherwise → numerical methods

How to solve the Bellman equation? (Cntd.)

$$x = f(x)$$

- Drawing (yes, why not?!)
- Midpoint method
- Iterative fixed-point methods
- FfT: Perturbative methods (start from where you know the best!)

How to solve the Bellman equation? (Cntd.)

Exercise

- Choose a policy
- Evaluate the policy
- (Use the evaluation to) Improve the policy
 - Unless you are happy(!) go back to Evaluation Step

```
Policy Iteration (using iterative policy evaluation) for estimating \pi \approx \pi_*
```

- 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation Loop:

```
\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathcal{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{s',r} p(s',r \, | s,\pi(s)) \big[ r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \end{array}
```

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement $\begin{array}{l} policy\text{-stable} \leftarrow true \\ \text{For each } s \in \mathbb{S}: \\ old\text{-}action \leftarrow \pi(s) \\ \pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \text{If } old\text{-}action \neq \pi(s), \text{ then } policy\text{-}stable \leftarrow false \\ \text{If } policy\text{-}stable, \text{ then stop and return } V \approx v_* \text{ and } \pi \approx \pi_*; \text{ else go to } 2 \\ \end{array}$

What if?

- What if the states/actions do not fit into a table?
- What if the environment is not fully observable?
- What if the environment is stochastic?
- What if the optimal policy is stochastic?
- What if the process is not Markovian?
- What if we do not know the dynamics of the environment?

Summary so far

- Basics of an RL problem
- The cornerstone of $RL \rightarrow Bellmann Eq.$
- An iterative evaluation of a policy & Improving the policy to the optimal one

Monte Carlo

Algorithms relying on repeated random sampling!

Applications: any problem having a probabilistic interpretation.

Give me examples!

Examples:

- Finding a probability distribution of dice
- Finding the area of lake
- Finding the value function!

Monte Carlo Control

Monte-Carlo Control

- Choose a policy
- For many iterations:
 - Evaluate the Q values of this policy using MC
 - o Improve the policy using the Qs
 - Make the new policy "soft"

Q-learning

How could we make the previous algorithm better?

- What was in-efficient?
- How is it different from the way we learn?
- When did it took so long?

Let's Bootstrap!

Let's make the best out of what we have learned!

SARSA method

Q-learning (Cntd.)

"SARSA" method for policy evaluation

lets derive SARSA together!

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big].$$

We can use replace the MC policy evaluation with "SARSA" in the general scheme.

But we can also do better: Q-learning!

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_t + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right].$$

Q-learning (Cntd.)

until S is terminal

Exercise

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'
```

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Q-Learning with target networks

Q-learning with replay buffer and target network:

1. save target network parameters: $\phi' \leftarrow \phi$

2. collect dataset
$$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$$
 using some policy, add it to \mathcal{B}

1. \mathbf{x}
2. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathbf{B}
4. \mathbf{x}
4. \mathbf{x}
4. \mathbf{x}
4. \mathbf{x}
6. \mathbf{x}
6. \mathbf{x}
8. \mathbf{x}
8. \mathbf{x}
9. \mathbf{x}
9. \mathbf{x}
1. \mathbf{x}
9. \mathbf{x}
1. \mathbf{x}
1. \mathbf{x}
1. \mathbf{x}
2. \mathbf{x}
2. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ using some policy, add it to \mathbf{B}
3. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathbf{B}
4. \mathbf{x}
4. \mathbf{x}
4. \mathbf{x}
6. \mathbf{x}
8. \mathbf{x}
8. \mathbf{x}
9. \mathbf{x}

targets don't change in inner loop!