Question: 3

Use the division algorithm to find q(x) and r(x) such that a(x) = q(x)b(x) + r(x) with $\deg r(x) < \deg b(x)$ for each of the following pairs of polynomials.

a.
$$a(x) = 5x^3 + 6x^2 - 3x + 4$$
 and $b(x) = x - 2$ in $\mathbb{Z}_7[x]$

b.
$$a(x) = 6x^4 - 2x^3 + x^2 - 3x + 1$$
 and $b(x) = x^2 + x - 2$ in $\mathbb{Z}_7[x]$

c.
$$a(x) = 4x^5 - x^3 + x^2 + 4$$
 and $b(x) = x^3 - 2$ in $\mathbb{Z}_5[x]$

d.
$$a(x) = x^5 + x^3 - x^2 - x$$
 and $b(x) = x^3 + x$ in $\mathbb{Z}_2[x]$

Solution:

a.
$$5x^3 + 6x^2 - 3x + 4 = (5x^2 + 4x + 6)(x - 2) + (2x + 5) \pmod{7}$$
.

b.
$$6x^4 - 2x^3 + x^2 - 3x + 1 = (6x^2 - 8x + 21)(x^2 + x - 2) + (-40x + 43) = (6x^2 - x)(x^2 + x - 2) + (2x + 1)$$
 (mod 7).

c.
$$4x^5 - x^3 + x^2 + 4 = (4x^2 + 3x + 1)(x^3 - 2) + (3x^2 + 3x + 2) \pmod{5}$$
.

d.
$$x^5 + x^3 - x^2 - x =$$

Question: 4

Find the greatest common divisor of each of the following pairs p(x) and q(x) of polynomials. If $d(x) = \gcd(p(x), q(x))$, find two polynomials a(x) and b(x) such that d(x) = a(x)p(x) + b(x)q(x).

a.
$$p(x) = x^3 - 6x^2 + 14x - 15$$
 and $q(x) = x^3 - 8x^2 + 21x - 18$, where $p(x), q(x) \in \mathbb{Q}^x$.

b.
$$p(x) = x^3 + x^2 - x + 1$$
 and $q(x) = x^3 + x - 1$, where $p(x), q(x) \in \mathbb{Z}_2[x]$.

c.
$$p(x) = x^3 + x^2 - 4x + 4$$
 and $q(x) = x^3 + 3x - 2$, where $p(x), q(x) \in \mathbb{Z}_5[x]$.

d.
$$p(x) = x^3 - 2x + 4$$
 and $q(x) = 4x^3 + x + 3$, where $p(x), q(x) \in \mathbb{Q}^x$.

Solution:

- a. d
- b. d

c.

Question: 5

Find all of the zeros for each of the following polynomials.

a.
$$5x^3 + 4x^2 - x + 9$$
 in $\mathbb{Z}_{12}[x]$

b.
$$3x^3 - 4x^2 - x + 4$$
 in $\mathbb{Z}_5[x]$

c.
$$5x^4 + 2x^2 - 3$$
 in $\mathbb{Z}_7[x]$

d.
$$x^3 + x + 1$$
 in $\mathbb{Z}_2[x]$

Solution: You just have to plug all the numbers from 0 to n-1 in \mathbb{Z}_n to see if there are any zeros (mod n).

- a. There are no zeroes.
- b. $x \cong 2 \pmod{5}$.
- c. $x \cong 3, 4 \pmod{7}$.
- d. There are no zeroes.

Question: 6

Find all of the units in \mathbb{Z}^x .

Solution:

Question: 7

Find a unit p(x) in $\mathbb{Z}_4[x]$ such that deg p(x) > 1.

Solution: If we look at $p(x) = (2x + 1)^2 = 4x^2 + 4x + 1 = 1 \pmod{4}$, we have found at degree 2 unit.

Question: 10

Give two different factorizations of $x^2 + x + 8$ in $\mathbb{Z}_{10}[x]$.

Solution: Testing all values of x from 0 to 9, we see that the zeroes $x \cong 1, 3, 6, 8$. Pairing these numbers to add up to -1, we see that they can't. Therefore, we have to make two of these values negative. So, we can say that $x \cong 1, 3, -4, -2$ and pair as follows:

$$x^{2} + x + 8 = (x - 1)(x + 2)$$
$$= (x - 3)(x + 4).$$

Question: 25

Let F be a field and $f(x) = a_0 + a_1x + \cdots + a^nx^n$ be in F[x]. Define $f'(x) = a_1 + 2a_2x + \cdots + na_nx^{n-1}$ to be the **derivative** of f(x).

a. Prove that

$$(f+g)'(x) = f'(x) + g'(x)$$

Conclude that we can define a homomorphism of abelian groups $D: F[x] \to F[x]$ by D(f(x)) = f'(x).

b. Calculate the kernel of D if char F = 0.

- c. Calculate the kernel of D if $\operatorname{char} F = p$.
- d. Prove that

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

e. Suppose that we can factor a polynomial $f(x) \in F[x]$ into linear factors, say

$$f(x) = a(x - a_1)(x - a_2) \cdots (x - a_n).$$

Prove that f(x) has no repeated factors if and only if f(x) and f'(x) are relatively prime.

Solution:

a.