Control de Transmisión de Datos Grupo 20. 30 de noviembre de 2005

Notas:

- 1. Los resultados no justificados no serán tenidos en cuenta.
- 2. Los problemas se entregarán por separado, numerando las hojas y poniendo nombre y apellidos en cada hoja.
- 3. Un error conceptual grave anula todo el problema.

PROBLEMA 1 (3,5 PUNTOS)

¿Existe algún código lineal binario (7,3) capaz de detectar 3 errores? En caso negativo justifique la respuesta, y en caso afirmativo:

- a) Indique la matriz de generación de dicho código.
- b) Encuentre la distancia mínima del código y la distancia máxima. A partir de los resultados obtenidos, ¿podría considerarse que si hay 3 errores los detecto siempre y si hay más nunca los detecto?

PROBLEMA 2 (3,5 PUNTOS)

Sea una fuente de información con memoria cuyo alfabeto es de 3 símbolos $\{A, B, C\}$ con $p(A \mid A)=0,5$; $p(B \mid A)=0,25$; $p(A \mid B)=p(B \mid B)=0,5$; $p(A \mid C)=0,25$; $p(B \mid C)=0$.

- a) Calcule la relación señal a ruido mínima a la entrada del receptor (en escala lineal) para que sea posible transmitir 10.000 símbolos de fuente por un canal de W=1KHz en un tiempo de 2 segundos.
- b) Decodifique la secuencia 1124670 mediante un codificador de LZW, con un diccionario cargado inicialmente con A en la posición 0, B en la 1 y C en la 2. Indique la secuencia de salida y el diccionario creado en recepción.
- c) Realice una codificación de Huffman (binaria) de la fuente extendida de orden 2. Calcule la eficiencia de codificación.

PROBLEMA 3 (3 PUNTOS)

Se dispone de un cifrador de cuatro bits de entrada y cuatro bits de salida que, para una cierta clave ${\bf k}$ tiene la siguiente relación entrada salida [M, $E_k(M)$]

М	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
$C=E_k(M)$	7	4	1	Ε	В	8	5	2	F	С	9	6	3	0	D	Α

Se pide:

- a) ¿Cuál es el tamaño mínimo de la clave para que pueda suponerse perfectamente aleatorio?
- b) El cifrado del mensaje **FFF** es **6A6**. Razone por qué puede asegurarse que el cifrado no se está usando en modo nativo o ECB.
- c) En el sistema propuesta se utiliza un encadenamiento y un vector de inicialización. Sabiendo que la únicas operaciones usadas son $Ek(\cdot)$ y XOR, encuentre de forma razonada las ecuaciones del cifrador y del descifrador. ¿Cuánto vale el vector inicial?