Dokazi u matematici

DISKRETNE STRUKTURE S TEORIJOM GRAFOVA

Damir Horvat

FOI, Varaždin

$A \Rightarrow B$					
pretpostavka	zaključak				

Α	В	$A \rightarrow B$
1	1	1
1	0	0
0	1	1

0 0 1

- A je dovoljan uvjet za B
- B je nužan uvjet za A
- Ukoliko postoji slučaj kod kojeg istinita pretpostavka vodi do lažnog zaključka, tvrdnja ne vrijedi.
- Tvrdnja je trivijalno istinita ako je istinit zaključak.

Direktni dokaz

• Provodi se tako da se uzima da je pretpostavka istinita i tada se pomoću konačnog niza implikacija pokaže da je i zaključak istinit.

$$A \Rightarrow A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_n \Rightarrow B$$

Zadatak 1

Neka su $m, n \in \mathbb{N} \setminus \{1\}$ za koje vrijedi $n^2 + 1 = 2m$. Dokažite da je m suma kvadrata dva uzastopna prirodna broja.

Rješenje

Pretpostavka $m, n \in \mathbb{N} \setminus \{1\}, n^2 + 1 = 2m$

Zaključak m je suma kvadrata dva uzastopna prirodna broja

$$n^2 + 1 = 2m \implies n^2 + 1$$
 je paran $\implies n^2$ je neparan \implies
 $\implies n$ je neparan $\implies \exists k \in \mathbb{N}, \boxed{n = 2k + 1} \implies$

$$\implies (2k + 1)^2 + 1 = 2m \implies 4k^2 + 4k + 2 = 2m/: 2 \implies$$

$$\implies m = 2k^2 + 2k + 1 \implies m = k^2 + (k^2 + 2k + 1) \implies$$

$$\implies m = k^2 + (k + 1)^2$$
 $2/38$

Napomena

- Neki dokazi u matematici daju odmah određeni algoritam za rješavanje problema. Takve dokaze zovemo konstruktivnim dokazima.
- U teoriji grafova imat ćemo dosta primjera konstruktivnih dokaza.
- Isto tako, u teoriji brojeva pojavit će se primjeri konstruktivnih dokaza.
- Dokaz kojeg smo dali u prethodnom zadatku također je primjer konstruktivnog dokaza.
- U prošlom zadatku smo zapravo dokazali da se brojevi oblika

$$\frac{n^2+1=2m}{2}$$

mogu napisati kao suma kvadrata dva uzastopna prirodna broja za svaki neparni prirodni brojn > 1.

Primjer

$$4373^2 + 1 = 2 \cdot 9561565$$

Napišite broj 9 561 565 kao sumu kvadrata dva uzastopna prirodna broja.

- $n^2 + 1 = 2m$, n = 4373, m = 9561565
- Iz dokaza znamo da je $m = k^2 + (k+1)^2$ i vrijedi n = 2k + 1.
- Sada iz n = 2k + 1 lagano dobivamo

$$k = \frac{n-1}{2} = \frac{4373 - 1}{2} = \frac{4372}{2} = 2186$$

• Stoga je

$$9\,561\,565 = 2186^2 + 2187^2$$

4 / 38

Zadatak 2

Ako 2 dijeli 5n, tada je n parni prirodni broj. Dokažite.

Rješenje

Pretpostavka $n \in \mathbb{N}, 2 \mid 5n$

Zaključak n je parni prirodni broj

$$2 \mid 5n \implies \exists k \in \mathbb{N}, \ 5n = 2k \implies$$

- U jednakosti 5n = 2k lijeva strana je djeljiva s 5 pa mora biti i desna strana djeljiva s 5.
- Kako su 2 i 5 relativno prosti brojevi (nemaju zajedničkih prostih faktora), slijedi da broj k mora biti djeljiv s brojem 5.

$$\implies n = 2 \cdot \left(\frac{k}{5}\right) \implies n$$
 je parni prirodni broj $\in \mathbb{N}$

6/38

Relacija *dijeli* na skupu cijelih brojeva

$$a \mid b \iff \exists k \in \mathbb{Z}, \ b = ak$$

- $2 \mid 6$ jer je $6 = 2 \cdot 3$ (k = 3)
- 6 ∤ 2, 3 ∤ 10
- $a \mid 0$ jer je $0 = a \cdot 0$ (k = 0) \leftarrow ovo vrijedi za svaki $a \in \mathbb{Z}$
- $0 \mid 0$ jer je $0 = 0 \cdot k$ za svaki $k \in \mathbb{Z}$
- $0 \mid a \iff a = 0 \quad (a = 0 \cdot k)$

$A \Rightarrow B$

 Ponekad je tvrdnju lakše dokazati tako da se pretpostavka A (ili neka druga tvrdnja koja se dobije iz pretpostavke A) podijeli na više disjunktnih pojedinačnih slučajeva A₁, A₂,..., A_k od kojih svaki mora dati tvrdnju B.

Dokaz po slučajevima

$$A_1 \lor A_2 \lor \cdots \lor A_k \Rightarrow B$$

$$\begin{cases} eliminacija \ disjunkcije \end{cases}$$

$$A_1 \Rightarrow B$$

$$A_2 \Rightarrow B$$

$$\vdots$$

$$A_k \Rightarrow B$$

Zadatak 3

Neka je n neparni prirodni broj. Dokažite da postoji $m \in \mathbb{N} \cup \{0\}$ takav da je n = 4m + 1 ili n = 4m + 3.

Rješenje

Pretpostavka *n* je neparni prirodni broj

Zaključak postoji $m \in \mathbb{N} \cup \{0\}$ takav da je n = 4m+1 ili n = 4m+3

Neka je n neparni prirodni broj. Tada postoji $k \in \mathbb{N} \cup \{0\}$ takav da je n = 2k + 1.

Sada razlikujemo dva slučaja.

8 / 38

n=2k+1

• *k* je parni broj

U tom slučaju postoji $m \in \mathbb{N} \cup \{0\}$ takav da je k = 2m.

$$n = 2k + 1 = 2 \cdot 2m + 1 = 4m + 1$$

• k je neparni broj

U tom slučaju postoji $m \in \mathbb{N} \cup \{0\}$ takav da je k = 2m + 1.

$$n = 2k + 1 = 2 \cdot (2m + 1) + 1 = 4m + 3$$

Binomni teorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \cdots + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}a^0b^n$$

Binomni koeficijent

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad \binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdots k}$$

$$\binom{7}{3} = \frac{7!}{3! \cdot 4!} = \frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} = 35$$

10 / 38

Zadatak 4

Ako prirodni broj n nije djeljiv s 5, tada je $n^4 - 1$ djeljiv s 5. Dokažite.

Rješenje

Pretpostavka $n \in \mathbb{N}, 5 \nmid n$

Neka je *n* prirodni broj koji nije djeljiv s 5. Razlikujemo četiri slučaja.

• n = 5k + 1 za neki $k \in \mathbb{N} \cup \{0\}$

$$n^{4} - 1 = (5k + 1)^{4} - 1 =$$

$$= (5k)^{4} + {4 \choose 1} \cdot (5k)^{3} \cdot 1 + {4 \choose 2} \cdot (5k)^{2} \cdot 1^{2} + {4 \choose 3} \cdot 5k \cdot 1^{3} + 1^{4} - 1 =$$

$$= 625k^{4} + 500k^{3} + 150k^{2} + 20k + 1 - 1 =$$

$$= 625k^{4} + 500k^{3} + 150k^{2} + 20k =$$

$$= 5 \cdot (125k^{4} + 100k^{3} + 30k^{2} + 4k)$$

$$\in \mathbb{Z}$$

Dakle, $n^4 - 1$ je djeljiv s 5.

12 / 38

• n = 5k + 3 za neki $k \in \mathbb{N} \cup \{0\}$

$$n^{4} - 1 = (5k + 3)^{4} - 1 =$$

$$= (5k)^{4} + {4 \choose 1} \cdot (5k)^{3} \cdot 3 + {4 \choose 2} \cdot (5k)^{2} \cdot 3^{2} + {4 \choose 3} \cdot 5k \cdot 3^{3} + 3^{4} - 1 =$$

$$= 625k^{4} + 1500k^{3} + 1350k^{2} + 540k + 81 - 1 =$$

$$= 625k^{4} + 1500k^{3} + 1350k^{2} + 540k + 80 =$$

$$= 5 \cdot (125k^{4} + 300k^{3} + 270k^{2} + 108k + 16)$$

$$\in \mathbb{N}$$

Dakle, $n^4 - 1$ je djeljiv s 5.

14 / 38

• n = 5k + 2 za neki $k \in \mathbb{N} \cup \{0\}$

$$n^{4} - 1 = (5k + 2)^{4} - 1 =$$

$$= (5k)^{4} + {4 \choose 1} \cdot (5k)^{3} \cdot 2 + {4 \choose 2} \cdot (5k)^{2} \cdot 2^{2} + {4 \choose 3} \cdot 5k \cdot 2^{3} + 2^{4} - 1 =$$

$$= 625k^{4} + 1000k^{3} + 600k^{2} + 160k + 16 - 1 =$$

$$= 625k^{4} + 1000k^{3} + 600k^{2} + 160k + 15 =$$

$$= 5 \cdot (125k^{4} + 200k^{3} + 120k^{2} + 32k + 3)$$

$$\in \mathbb{N}$$

Dakle, $n^4 - 1$ je djeljiv s 5.

• n = 5k + 4 za neki $k \in \mathbb{N} \cup \{0\}$

$$n^{4} - 1 = (5k + 4)^{4} - 1 =$$

$$= (5k)^{4} + {4 \choose 1} \cdot (5k)^{3} \cdot 4 + {4 \choose 2} \cdot (5k)^{2} \cdot 4^{2} + {4 \choose 3} \cdot 5k \cdot 4^{3} + 4^{4} - 1 =$$

$$= 625k^{4} + 2000k^{3} + 2400k^{2} + 1280k + 256 - 1 =$$

$$= 625k^{4} + 2000k^{3} + 2400k^{2} + 1280k + 255 =$$

$$= 5 \cdot (125k^{4} + 400k^{3} + 480k^{2} + 256k + 51)$$

$$\in \mathbb{N}$$

Dakle, $n^4 - 1$ je djeljiv s 5.

$$A \Rightarrow B$$
 $\longrightarrow \overline{A}$

• Ponekad je teško ili nemoguće direktno dokazati tvrdnju $A \Rightarrow B$ pa se umjesto toga dokazuje **kontrapozicija** $\overline{B} \Rightarrow \overline{A}$.

Dokaz kontrapozicijom

• Pretpostavi se da je istinita tvrdnja \overline{B} i pokaže se da ta pretpostavka vodi do istinitosti tvrdnje \overline{A} .

Α	В	$A \rightarrow B$	\overline{B}	\overline{A}	$\overline{B} o \overline{A}$
1	1	1	0	0	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

16/38

Pretpostavimo da je a < 10, b < 10, c < 10 i d < 10. Tada je

$$a + b + c + d < 40$$
 /: 4

odnosno

$$\frac{a+b+c+d}{a}<10.$$

Iz posljednje nejednakosti slijedi

$$\frac{a+b+c+d}{4}\neq 10.$$

18 / 38

Zadatak 5

Prosječna starost četvero djece je 10 godina. Dokažite da je barem jedno dijete staro barem 10 godina.

Rješenje

• $a, b, c, d \leftarrow$ starost pojedinog djeteta

$$A \Rightarrow B$$

De Morganovi zakoni

$$\overline{x \vee y} \equiv \overline{x} \wedge \overline{y}$$

$$\overline{x \wedge y} \equiv \overline{x} \vee \overline{y}$$

$$\frac{a+b+c+d}{4}=10 \implies (a\geqslant 10) \lor (b\geqslant 10) \lor (c\geqslant 10) \lor (d\geqslant 10)$$

$$\overline{B} \Rightarrow \overline{A}$$

$$(a < 10) \land (b < 10) \land (c < 10) \land (d < 10) \implies \frac{a+b+c+d}{4} \neq 10$$

Vrijedi li obrat dokazane tvrdnje?

Ako je aritmetička sredina četiri broja jednaka 10, tada je barem jedan od brojeva veći ili jednak od 10.

$$\frac{a+b+c+d}{4}=10 \implies (a\geqslant 10) \lor (b\geqslant 10) \lor (c\geqslant 10) \lor (d\geqslant 10)$$

Ako je barem jedan od četiri broja veći ili jednak od 10, tada je njihova aritmetička sredina jednaka 10.

$$(a\geqslant 10)\lor(b\geqslant 10)\lor(c\geqslant 10)\lor(d\geqslant 10)\quad\longrightarrow\quad \frac{a+b+c+d}{4}=10$$

Obrat tvrdnje ne vrijedi. Jedan **protuprimjer**:

$$a = 12, b = 1, c = 1, d = 18, \frac{a+b+c+d}{4} = 8$$

17 / 38

Zadatak 6

Dokažite sljedeću tvrdnju:

Ako je x iracionalni broj, tada je 2x također iracionalni broj. Ispitajte vrijedi li obrat navedene tvrdnje.

Rješenje

$$A \Rightarrow B$$

x je iracionalni broj \implies 2x je iracionalni broj

$$\overline{B} \Rightarrow \overline{A}$$

2x je racionalni broj $\implies x$ je racionalni broj

20 / 38

Pretpostavimo da je $2x\in\mathbb{Q}$. Tada postoje $m\in\mathbb{Z}$ i $n\in\mathbb{N}$ takvi da je

$$2x=\frac{m}{n}$$
.

Dijeljenjem zadnje jednakosti s brojem 2 dobivamo

$$x=\frac{m}{2n}$$
.

Kako je $m \in \mathbb{Z}$ i $2n \in \mathbb{N}$, slijedi $x \in \mathbb{Q}$.

Pretpostavimo da je $x \in \mathbb{Q}$. Tada postoje $m \in \mathbb{Z}$ i $n \in \mathbb{N}$ takvi da je

$$x=\frac{m}{n}$$
.

Množenjem zadnje jednakosti s brojem 2 dobivamo

$$2x=\frac{2m}{n}.$$

Kako je $2m \in \mathbb{Z}$ i $n \in \mathbb{N}$, slijedi $2x \in \mathbb{Q}$.

Time smo dokazali da također vrijedi i obrat zadane tvrdnje.

21 / 38

Ekvivalentne tvrdnje

 $A \Leftrightarrow B \longleftrightarrow A \Rightarrow B, B \Rightarrow A$

A je nužan i dovoljan uvjet za B

- A je dovoljan uvjet za $B: A \Rightarrow B, \overline{B} \Rightarrow \overline{A}$
- A je nužan uvjet za B: $B \Rightarrow A$, $\overline{A} \Rightarrow \overline{B}$

B je nužan i dovoljan uvjet za A

- B je dovoljan uvjet za A: $B \Rightarrow A$, $\overline{A} \Rightarrow \overline{B}$
- B je nužan uvjet za A: $A \Rightarrow B$, $\overline{B} \Rightarrow \overline{A}$

24 / 38

$(3 \mid n^2 \Rightarrow 3 \mid n)$

 $n \in \mathbb{N}, \ 3 \mid n \Leftrightarrow 3 \mid n^2$

Dokaz 1 (direktni dokaz)

Neka je $n \in \mathbb{N}$ takav da je n^2 djeljiv s 3. Tada se u rastavu broja n^2 na proste faktore broj 3 mora pojaviti kao prosti faktor jer u protivnom n^2 ne bi bio djeljiv s 3. Međutim, u rastavu broja n^2 na proste faktore svaki se prosti faktor javlja na parnu potenciju pa se i broj 3 mora javiti na parnu potenciju. Dakle,

$$n^2 = 3^{2\alpha_1} p_2^{2\alpha_2} \cdots p_k^{2\alpha_k}$$

gdje su $3, p_2, \ldots, p_k$ svi različiti prosti faktori broja n^2 i $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{N}$. Stoga je

$$n=3^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}.$$

Kako je $\alpha_1 \in \mathbb{N}$, tj. $\alpha_1 \geqslant 1$, zaključujemo da je *n* djeljiv s 3.

26 / 38

Zadatak 7

Dokažite: prirodni broj n je djeljiv s 3 ako i samo ako je n^2 djeljiv s 3.

Rješenje

 $A \Leftrightarrow B$

$$n \in \mathbb{N}, \ 3 \mid n \iff 3 \mid n^2$$

 $\implies (3 \mid n \Rightarrow 3 \mid n^2)$

Pretpostavimo da je $n \in \mathbb{N}$ djeljiv s 3. Tada postoji $k \in \mathbb{N}$ takav da je n = 3k

Kvadriranjem zadnje jednakosti dobivamo

$$n^2 = 9k^2 = 3 \cdot 3k^2$$

iz čega slijedi da je n^2 djeljiv s 3.

$(3 \mid n^2 \Rightarrow 3 \mid n)$

Dokaz 2 (dokaz kontrapozicijom)

kontrapozicija $3 \nmid n \implies 3 \nmid n^2$

 $n \in \mathbb{N}, \ 3 \mid n \Leftrightarrow 3 \mid n^2$

Ako $n \in \mathbb{N}$ nije djeljiv s 3, tada n^2 pri dijeljenju s 3 daje ostatak 1.

Pretpostavimo da $n \in \mathbb{N}$ nije djeljiv s 3. Tada razlikujemo dva slučaja.

• n = 3k + 1 za neki $k \in \mathbb{N} \cup \{0\}$ $\in \mathbb{N} \cup \{0\}$ $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3 \cdot (3k^2 + 2k) + 1$

Dakle, n^2 nije djeljiv s 3 jer daje ostatak 1 pri dijeljenju s 3.

• n = 3k + 2 za neki $k \in \mathbb{N} \cup \{0\}$ 3 + 1 $\in \mathbb{N} \cup \{0\}$ $n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3 \cdot (3k^2 + 4k + 1) + 1$

Dakle, n^2 nije djeljiv s 3 jer daje ostatak 1 pri dijeljenju s 3.

7

Dokaz kontradikcijom

 Ako negacija tvrdnje A implicira laž (kontradikciju), tada je tvrdnja A istinita.

$$\begin{array}{c|cccc}
A & \overline{A} & \overline{A} \to \bot \\
\hline
1 & 0 & 1 \\
0 & 1 & 0
\end{array}$$

28 / 38

Pretpostavimo suprotno, tj. da se svaka od znamenki $1,2,\ldots,9$ pojavljuje samo konačno mnogo puta u decimalnom prikazu broja π . Tada postoji mjesto u decimalnom prikazu broja π nakon kojeg se pojavljuju samo znamenke 0.

ovdje su sve znamenke
$$\neq$$
 0, eventualno i neke znamenke 0
$$\pi=3.1 \qquad \qquad 100\cdots 0$$

Zaključujemo da broj π ima konačni decimalni prikaz pa je $\pi \in \mathbb{Q}$. Međutim, to je kontradikcija jer znamo da je π iracionalni broj.

Dakle, u decimalnom prikazu broja π barem jedna od znamenki $1,2,\ldots,9$ pojavljuje se beskonačno mnogo puta.

30 / 38

Zadatak 8

Dokažite da se barem jedna od znamenki 1, 2, ..., 9 pojavljuje beskonačno mnogo puta u decimalnom prikazu broja π .

Rješenje

Tvrdnja

Barem jedna od znamenki $1, 2, \dots, 9$ se pojavljuje beskonačno mnogo puta u decimalnom prikazu broja π .

Negacija tvrdnje

Svaka od znamenki $1, 2, \dots, 9$ se pojavljuje samo konačno mnogo puta u decimalnom prikazu broja π .

Napomena

- Dokazali smo samo da se barem jedna od znamenki $1, 2, \dots, 9$ pojavljuje beskonačno mnogo puta u decimalnom prikazu broja π .
- Iz samog dokaza nije vidljivo koja je to znamenka.
- Isto tako, moguće je da se više različitih znamenki pojavljuje beskonačno mnogo puta, ali to nismo ovdje dokazali.
- Dokaz je jednostavni i kratki, ali se unutar dokaza pozivamo na netrivijalnu činjenicu da $\pi \notin \mathbb{Q}$ čiji dokaz nije toliko jednostavan niti elementaran.

Definicija tangente kružnice

Neka je k(S, r) kružnica polumjera r sa središtem u točki S. Neka je D bilo koja točka na toj kružnici. Pravac t koji prolazi točkom D i okomit je na pravac SD zove se **tangenta** te kružnice u točki D. Točku D u tom slučaju zovemo **diralište** tangente t.

32 / 38

33 / 38

Neka je t tangenta kružnice k(S,r) s diralištem D. Pretpostavimo da tangenta t i kružnica k(S,r) osim dirališta D imaju još jednu zajedničku točku D'.

- Trokut SDD' je jednakokračni trokut jer je |SD| = |SD'| = r.
- $\alpha = 90^{\circ}$ jer je *D* diralište tangente *t*.
- $\beta=90^\circ$ jer nasuprot jednakim stranicama u trokutu leže jednaki kutovi.

Dobili smo da trokut *SDD'* ima dva prava kuta što je nemoguće u euklidskoj geometriji pa slijedi tvrdnja zadatka.

34 / 38

Zadatak 9

Dokažite da tangenta kružnice ima s tom kružnicom samo jednu zajedničku točku koja je upravo diralište te tangente.

Rješenje

Naime, jasno je iz definicije da svaka tangenta kružnice ima s tom kružnicom barem jednu zajedničku točku i to baš diralište te tangente. Želimo dokazati da osim dirališta nema drugih zajedničkih točaka.

Tvrdnja

Diralište tangente kružnice je jedina zajednička točka tangente i te kružnice.

Negacija tvrdnje

Osim dirališta, tangenta kružnice ima s tom kružnicom i drugih zajedničkih točaka.

Zadatak 10

Dokažite ili opovrgnite sljedeću tvrdnju:

Ako je
$$a^b \in \mathbb{Q}$$
, tada je $a \in \mathbb{Q}$ (ili) $b \in \mathbb{Q}$.

 $a^{\log_a x} = x$

 $\overline{A \to B} \equiv A \wedge \overline{B}$

Rješenje

barem jedan od brojeva a i b je racionalni

• Želimo opovrgnuti navedenu tvrdnju.

$$a^b \in \mathbb{Q} \ o \ ig((a \in \mathbb{Q}) ee (b \in \mathbb{Q})ig)$$

• Treba pronaći jedan **protuprimjer** na kojemu tvrdnja ne vrijedi.

$$a^b \in \mathbb{Q} \ \land \ ((a \notin \mathbb{Q}) \land (b \notin \mathbb{Q}))$$

• Uzmimo, na primjer $a = \sqrt{3}$ i $b = \log_{\sqrt{3}} 2$. Tada je

$$a^b = \sqrt{3}^{\log_{\sqrt{3}} 2} = 2.$$

• $a^b \in \mathbb{Q}$, ali $a \notin \mathbb{Q}$ i $b \notin \mathbb{Q}$. Stoga navedena tvrdnja ne vrijedi.

Pretpostavimo suprotno, tj. $\sqrt{3}\in\mathbb{Q}$. Kako je $\sqrt{3}>0$, postoje $m,n\in\mathbb{N}$ takvi da je

$$\sqrt{3}=\frac{m}{n}$$
.

Kvadriranjem dobivamo

$$\frac{m^2}{n^2}=3$$

odnosno

$$m^2 = 3n^2. \tag{\bigstar}$$

Kako je prirodni broj m^2 potpuni kvadrat, iz (\bigstar) slijedi da je prirodni broj $3n^2$ također potpuni kvadrat. Međutim, to je moguće jedino ako je broj 3 potpuni kvadrat, što je kontradikcija. Dakle, $\sqrt{3} \notin \mathbb{Q}$.

36 / 38

37 / 38

 $\log_{\sqrt{3}} 2 \notin \mathbb{Q}$

$$\log_a x = b \iff x = a^b$$

Pretpostavimo suprotno, tj. $\log_{\sqrt{3}}2\in\mathbb{Q}$. Kako je $\log_{\sqrt{3}}2>0$, postoje $m,n\in\mathbb{N}$ takvi da je

$$\log_{\sqrt{3}} 2 = \frac{m}{n}$$

$$2 = \sqrt{3}^{\frac{m}{n}}$$

$$2 = 3^{\frac{m}{2n}} / 2^{n}$$

$$2^{2n} = 3^{m}$$

Dobili smo kontradikciju jer je u zadnjoj jednakosti lijeva strana djeljiva s 2, a desna nije. Dakle, $\log_{\sqrt{3}} 2 \notin \mathbb{Q}$.

Napomena

Tvrdnja 1

barem jedan od brojeva a i b je racionalni

Ako je $a^b \in \mathbb{Q}$, tada je $a \in \mathbb{Q}(\widehat{\mathsf{ili}})b \in \mathbb{Q}$.

Tvrdnja 2

oba broja *a* i *b* su racionalni

Ako je $a^b \in \mathbb{Q}$, tada je $a \in \mathbb{Q}[\hat{i}]b \in \mathbb{Q}$.

- Obje tvrdnje nisu istinite.
- $a = \sqrt{3}$, $b = \log_{\sqrt{3}} 2$ je jedan protuprimjer za obje tvrdnje.
- $a = \sqrt{3}$, b = 2 je jedan protuprimjer samo za drugu tvrdnju.

38 / 38