Лекция 6

Ilya Yaroshevskiy

19 марта 2021 г.

Содержание

1	Исч	нисление предикатов	1
	1.1	Расставление скобок	1
	1.2	Вхождение	2
		Свободные подстановки	
	1.4	Пример доказательства	3
		Теорема о дедукции	
		1.5.1 ТООО Доказательсво	

1 Исчисление предикатов

1.1 Расставление скобок

Кванторы имеют наименьший приоритет $\Pi pumep$.

$$\forall x. A\&B\&y. C\&D \lor \exists z. E$$

$$(\forall x. (A\&B\&\forall y. (C\&D \lor \exists z. (E))))$$

Еще раз про правила только со скобками

1.

$$\frac{\varphi \to \psi}{(\exists . \varphi) \to \psi}$$

2.

$$\frac{\psi \to \varphi}{\psi \to (\forall x, \varphi)}$$

Пример.

$$\frac{\varphi \to \psi}{\exists x. (\varphi \to \psi)}$$

— можно доказать, но это не правило вывода для \exists

Определение. α_1,\ldots,α_n — доказательство

- \bullet если α_i аксимома
- либо существует j, k < i, что $\alpha_k = \alpha_j \to \alpha_i$
- либо существует $\alpha_j: \ \alpha_j = \varphi \to \psi$ и $\alpha_i = (\exists x. \varphi) \to \psi$ причем x не входит свободно в ψ
- либо существует $j:\alpha_j=\psi \to \varphi$ и $\alpha_i=\psi \to \forall x. \varphi$ причем x не входит свободно в ψ

1.2 Вхождение

Пример.

$$(P(\underset{1}{x}) \vee Q(\underset{2}{x})) \rightarrow (R(\underset{3}{x}) \& (\underbrace{\forall \underset{4}{x}.P_{1}(\underset{5}{x})}_{\text{область } \forall \text{ по } x}))$$

1, 2, 3 — свободные, 5 — связанное, по пермененной 4

Пример.

$$\underbrace{\forall x. \forall y. \forall x. \forall y. \forall x. P(x)}_{\text{область } \forall \text{ по } x}$$

Здесь x в P(x) связано. x не входит свободно в эту формулу, потому что нет свободных вхождений

Определение. Переменная x входит свободно если существует свободное вхождение

Определение. Вхождение свободно, если не связано

Можно относится к свободно входящим перменным как с перменным из библиотеки, т.е. мы не имеем права их переименовывать

Пример. Некорректная формула

$$\alpha_1 \ x = 0 \rightarrow x = 0$$

$$\alpha_2 \ (\exists x.x=0) \rightarrow (x=0)$$
 — не доказано

$$\alpha_2' \ (\exists t.x=0) \rightarrow (x=0) - (\text{правило } \exists)$$

Пример.

$$(n)$$
 $x=0 \rightarrow y=0$ — откуда то

$$(n+1) \ (\exists x.x = 0) \to (y = 0) - (\text{правило } \exists)$$

1.3 Свободные подстановки

Определение. Θ свободен для подстановки вместо x в φ , если никакая свободная перменная в Θ не станет связанной в $\varphi[x:=\Theta]$

Определение. $\varphi[x:=\Theta]$ — "Заменить все свободные вхождения x в φ на Θ "

Пример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$

Пример.

$$P(x) \lor \forall x. P(x) \ [x := y] \equiv P(y) \lor \forall x. P(y)$$

Пример.

$$(\forall y.x = y) [x := \underbrace{y}_{-\Omega}] \equiv \forall y.y = y$$

 $FV(\Theta) = \{y\}$ — свободные перменные в Θ . Вхождение y с номером 1 стало связанным $\Pi pumep$.

$$P(x)\&\forall y.x = y \ [x := y + z] \equiv P(y + z)\&\forall y.y + z = y$$

Здесь при подстановке вхождение y с номером 1 стало связанным. x — библиотечная функция, переименовали x во что-то другое.

1.4 Пример доказательства

Лемма 1. $\Pi ycmb \vdash \alpha$. $Tor \partial a \vdash \forall x.\alpha$

Доказательство.

1. Т.к. $\vdash \alpha$, то существует $\gamma_1, \ldots, \gamma_2 : \gamma_n = \alpha$

1.5 Теорема о дедукции

Теорема 1.1. Пусть задана Γ , α , β

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$, при условии, если b в доказательстве $\Gamma, \alpha \to \beta$ не применялись правила для \forall, \exists по перменным, входящим свободно в α
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$

1.5.1 ТООО Доказательсво