Compito n. 1 Nome	Comomo	Namara di matricala
Nome	Cognome	Numero di matricola
Corso di Laurea in Informatica Fisica - Corso A+B - A.A. 2017-2018 - II Prova in itinere - Pisa, 1 Giugno 2018. Modalità di risposta: Sul presente foglio, per ogni risposta, si scriva la formula risolutiva in forma algebrica nell'apposito riquadro e si barri la lettera associata al valore numerico corretto (presente con tolleranza massima ±5 %). Ciascuna risposta sarà valutata come segue: 3.3 punti se corretta, -1 punti se sbagliata, 0 punti se non presente. Problema 1: Un corpo di massa 0.850 kg si muove sulla parete interna di un profilo liscio che consiste in 1/4 di cilindro di raggio 4.40 m posto sul piano verticale. A t=0 il corpo si trova all'apice del profilo e possiede una velocità pari a 3.80 m/s diretta in verticale verso il basso. Determinare:		
	ta agente sul corpo quando passa per	r l'angolo $\pi/4$.
$ \mathbf{F}_{centr} [N] = \frac{m}{m} \left(\frac{mo^2}{R} + 3\right)$.9 cm (r) A 407 B	C 20.2 D 52.9 E 280
2. il modulo della variazione della quantità di moto tra la base del profilo cilindrico ed il punto iniziale.		
$ \Delta P $ [Ns] = $M \sqrt{2 \pi^2 + 2}$.g R A 15.8 B 6	6.38 C 5.27 D 4.99 E 9×2
Problema 2: Un pendolo è realizzato da un corpo di massa 0.280 Kg connesso all'estremità di un filo lungo 1.40 m, inestensibile e di massa nulla, fissato con un chiodo ad una parete verticale. Il pendolo inizia il suo moto ad un angolo 1.20 rad rispetto alla verticale con filo teso e velocità nulla. Quando giunge lungo la verticale, sfiora il pavimento urtando un corpo inizialmente immobile e di massa 1.00 Kg. Determinare:		
3. la velocità del secondo corpo		
$v_2 [\text{m/s}] = \left[\frac{2 m_1}{m_1 + m_2} \sqrt{29} \ell \right]$	(1-c _∞ β _e) A 0.0978 B	0.679 C 0.0788 D 138 E 0.321
4. l'ampiezza delle oscillazioni se l'urto è completamente anelastico.		
$A_{anelast} [rad] = \left[\begin{array}{c} \mathcal{A}(1 - m_1) \\ \mathcal{A}(1 - m_2) \end{array} \right] $ $A = \begin{bmatrix} 0.0634 \\ 0.0634 \end{bmatrix} $ $A = \begin{bmatrix} 0.0634 \\ 0.0634 \end{bmatrix} $ $A = \begin{bmatrix} 0.0198 \\ 0.0340 \end{bmatrix} $ $A = \begin{bmatrix} 0.0428 \\ 0.0428 \end{bmatrix} $		
Problema 3: Una sfera piena, carica uniformemente e di raggio $r_s = 0.440$ m è circondata da un guscio sottile sferico concentrico di raggio 2 r_s , carico uniformemente sulla superficie. Il flusso del campo elettrico attraverso due superfici sferiche concentriche alle sorgenti vale: 4.70×10^{12} Nm ² /C per un raggio di 1.5 r_s e 1.50×10^{12} Nm ² /C per un raggio di 3 r_s .		
	nsità di carica depositata sul guscio s	
$\sigma \left[\mathrm{C/m^2} \right] = \frac{\mathcal{E}_0 \left(\phi_1 - \phi_1 \right)}{16\pi \mathcal{F}_5^2}$	A -8.37 B -	-290 C -10.8 D -3.99 E -27.2
6. determinare il lavoro necessario per posizionare una carica 1.80 pC sulla superficie della sfera piena, inizialmente posta a distanza infinita.		
$L[J] = \frac{9}{8\pi Y_s} (\phi_1 + \phi_1)$	A 1381 B 6.53	C $\boxed{1.57}$ D $\boxed{0.867}$ E $\boxed{0.323}$
Problema 4: Un blocco di massa 0.680 Kg è accelerato da una molla di costante elastica 1.50 N/m compressa su un piano orizzontale. Nella zona di accelerazione il piano è liscio mentre presenta attrito dinamico con coefficiente 0.230 altrove.		
	rsa dal blocco prima di fermarsi sape	endo che il lavoro della forza di attrito vale -5.00 J;
$d[m] = \frac{-L_{fd}}{mg\mu_{d}}$	A 6.09 B 2.80	C 3.88 D 4.09 E 336
8. determinare il valore della con	npressione iniziale della molla.	× /
$\Delta [m] = \sqrt{-2LfJ/K}$	A 39.3 B 8.02	C 2.86 D 288 E 20.9
liscio, il cui altro estremo è connesse 2.50 N/C uniforme, parallelo al pian	o alla parete. Il corpo è carico con 2. o e diretto verso la parete. A t=0 il c	era di una molla disposta su di un piano orizzontale 2.70 C e nello spazio è presente un campo elettrico di corpo ha velocità nulla e la molla si trova in posizione si consiglia di utilizzare l'equazione differenziale):
9. il periodo delle oscillazioni;		\ /
$T[s] = 2\pi \sqrt{mA/qE}$	A 15.4 B 48.7	C 75.6 D 11.0 E 4×6
10. il valore massimo della velocità del punto materiale.		
$v [m/s] = \sqrt{q EA/m}$	A 0.864 B 0.2	.240 C 5 4 D 1.52 E 1.03
Compito n. 1		

E8= K8+ U8= 1 m VB+ mg R (1-500 PD)

· l'uni deppine le lègle di sonservazione dell'energie tre il purt A e il purto B: Ea = Ka + Ua = 1 m vo² + mg R l'unice forme di energie pternicle è quelle delle forme per

de cui: Ea=Es => $\frac{1}{z}$ phroz+phg R= $\frac{1}{z}$ phroz+phg R(1-500) => v_0^2 +zg R= v_0^2 +zg R(1-500) prevo v_0^2 = v_0^2 +zg R 5000 Odingue le forme contripte in 8 vole: $\frac{1}{z}$ = $\frac{v_0^2}{R}$ = $\frac{v_0^2}{R}$ +zg cool

• Per coladore la quantità di moto in C (bene del profito cilindrico), miuni muoranente la sons. dell'energia: $E_A = E_C \Rightarrow \frac{1}{2} m \pi c^2 + mg R = \frac{1}{2} m \pi c^2 \Rightarrow \pi c^2 = \pi c^2 + 2g R$ privo: $\vec{P}_A = (0, -m\tau_0)$; $\vec{P}_C = (m\tau_C, 0) = (m\tau_0^2 + 2g R, 0)$ e quindi $|\Delta \vec{P}| = |\vec{P}_C - \vec{P}_A| = m\sqrt{\tau_0^2 + \tau_C^2} = m\sqrt{2\tau_0^2 + 2g R}$

Es. 2

m₁ m₂

Calcoliano daprima la relaita della Marse M1 quando roppiunge la restricle. Procedere some sope, son la sonservanione dell'energia: M19 l(1-20080) = 1 m1 10 2

Ohunque le relacté son sui m, incontre m è: Vb= /2gl(1-sarlo)

· Utto elastico. le il sorpoz è fermo ni la: \ \text{01} = \frac{m_1 - m_2}{m_1 + m_2} \text{01}; \ \ \text{Convenionione enegar} \)

=> \text{01} = \frac{m_1 - m_1}{m_1 + m_2} \left{12} \left{(1-esso)} \\
\text{02} = \frac{2m_1}{m_1 + m_2} \text{01}; \\
\text{02} = \frac{2m_1}{m_1 + m_2} \text{01};

Try = $\frac{2m_1}{m_1+m_2}$ / 2gl(1-colo)Who a nelestico (totalmente). Dele consideration di moto vike: $N_5 = \frac{m_1}{m_1+m_2}$ Prigliando quindi le construerione dell'energia

dapo l'unto, vike: $\frac{1}{2}$ (m_1+m_2) $N_5^2 = (m_1+m_2)g \cdot l(1-colo)$

 $= \frac{1}{2} \cdot 2g \left(1 - \cos \theta_0 \right) = g \left(1 - \cos \theta_0 \right) = \frac{1}{2} \cdot 2g \left(1 - \cos \theta_0 \right) = \frac{1}{2}$

Pail teoreme di Guer:
$$\oint_{1} = \frac{Q_{1}}{E_{0}}$$

soniei sontinute
$$z = \frac{\alpha_1 + \alpha_2}{\epsilon_0}$$

a: sonie sortenute nelle fere 1

a: cono sull supplier spino ?

Pictome
$$\sigma = \frac{Q_2}{4\pi(2K_s)^2}$$
, in he: $\sigma = \frac{\mathcal{E}(\Phi_2 - \Phi_1)}{16\pi K_s^2}$ $\mathcal{E} = 8.854 \cdot 10^{-12} \left[\frac{C^2}{N \cdot m^2} \right]$

Il brond personal allab et et a conte de teta a tets è date dalle rariarione di energie potentiale elettree $\Delta U = \Delta U_1 + \Delta U_2 = \frac{1}{4\pi\epsilon_0} \left(\frac{Q_1 q}{F_c} + \frac{Q_2 q}{2F_c} \right) =$ $=\frac{1}{4\pi g}\left(\frac{\frac{1}{4}\pi g_{1}}{t_{s}}+\frac{(\frac{1}{4}-\frac{1}{4})g_{2}}{2t_{s}}\right)^{2}\frac{9}{4\pi t_{s}}\left(\frac{1}{4}+\frac{\frac{1}{4}-\frac{1}{4}}{2}\right)=\frac{9}{8\pi t_{s}}\left(\frac{1}{4}+\frac{1}{4}\right)$

· les définisiones di lavore, abbierros:

de companione invide delle molle

pro
$$d = \frac{mg\mu d}{-L_{29}}$$

n' devise del teoreme delle force vic: 2 K D2 = - L50 => D= \-12150/K

- Ple partible X og. Contante mel Temps

$$\Rightarrow X_{0} = -\frac{9E}{k}$$

-D fol. eq. progenee: Xom(t)= A con wt + Bs in wt => bol. generale dw (x): x(t)=-9E+Account+Bsinwt

•
$$A = \frac{qE}{K} \Rightarrow K = \frac{qE}{A}$$
 de sui: $T = 2\pi \sqrt{\frac{m}{K}} = 2\pi \sqrt{\frac{mA}{qE}}$

•
$$\mathcal{N}_{HAX} = |\mathcal{O}\left(\frac{\pi}{\ell}\right)| = \frac{qE}{\ell} \cdot W = \frac{qE}{\ell km} = \sqrt{\frac{qEA}{m}}$$

condition $X(0)=0 \Rightarrow 0=-\frac{9E}{K}+A$ imisiali: $V(0)=0 \Rightarrow 0=-WB$ V(0)=0 => 0 = -wB

$$X(t) = \frac{9E}{k} \left(\text{goolatt} \right) - 1$$