Математическая статистика.

Андрей Тищенко @AndrewTGk 2024/2025

Лекция 10 января

Преамбула

Статистика. Мнения о появлении этого слова:

- 1. Статистиками в Германии назывались люди, собирающие данные о населении и передающие их государству.
- 2. В определённый день в Венеции народ выстраивался для выплаты налогов (строго фиксированных, в зависимости от рода действий). Государство собирало данные обо всём населении. Это происходило до появления статистиков в Германии, поэтому мы будем считать, что статистика пошла из Венеции.

Задача статистики— по результатам наблюдений построить вероятностную модель наблюдаемой случайной величины.

Основные определения

Определение

Однородной выборкой объёма n называется случайный вектор $X=(X_1,\ldots,\,X_n)$, компоненты которого являются независимыми и одинаково распределёнными. Элементы вектора X называются <u>элементами</u> выборки.

Определение

Если элементы выборки имеют распределение $F_{\xi}(x)$, то говорят, что выборка соответствует распределению $F_{\xi}(x)$ или порождена случайной величиной ξ с распределением $F_{\xi}(x)$.

Определение

Детерминированный вектор $x=(x_1,\ldots,x_n)$, компоненты которого x_i являются реализациями соответствующих случайных величин X_i ($i=\overline{1,n}$), называется реализацией выборки.

Уточнение

Если X — однородная выборка объёма n, то его реализацией будет вектор x, каждый элемент x_i которого является значением соответствующей ему случайной величины (элемента выборки) X_i .

Определение

Выборочным пространством называется множество всех возможных реализаций выборки

$$X = (X_1, \dots, X_n)$$

Пример

У вектора $X=(X_1,\ldots,\ X_{10})$ каждый элемент X_i которой порождён случайной величиной $\xi\sim U(0,\ 1)$, выборочным пространством является \mathbb{R}^{10} (так как X_i может принять любое значение на \mathbb{R})

Определение

Обозначим $x_{(i)}$ — i-ый по возрастанию элемент, тогда будет справедливо:

$$x_{(1)} \leqslant x_{(2)} \leqslant \cdots \leqslant x_{(n)}$$

Обозначим $X_{(k)}$ случайную величину, реализация которой при каждой реализации x выборки X принимает значение $x_{(k)}$. Тогда последовательность $X_{(1)},\ldots,\,X_{(n)}$ называется вариационным рядом выборки.

Определение

Случайная величина $X_{(k)}$ называется k-ой порядковой статистикой выборки.

Определение

Случайные величины $X_{(1)},\ X_{(n)}$ называются эстремальными порядковыми статистиками.

Определение

Порядковая статистика $X_{([n\cdot p])}$ называется выборочной квантилью уровня p, где $p\in[0,\ 1]$

Определение

Пусть каждый элемент выборки X объёма п имеет распределение $F_{\xi}(x)$. Эмпирической функцией распределения такой выборки называется

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x)$$

I — индикаторная функция. $I = \begin{cases} 1, \text{ если аргумент верен} \\ 0, \text{ иначе} \end{cases}$

Пусть x_1, \ldots, x_n — реализация выборки X_1, \ldots, X_n

Свойства $\hat{F}_n(x)$

1.
$$\forall x \in \mathbb{R}$$
 $E\hat{F}_n(x) = E\left(\frac{1}{n}\sum_{k=1}^n I(X_k \leqslant x)\right) = \frac{1}{n}\sum_{k=1}^n EI(X_k \leqslant x) = P(X_1 \leqslant x) = F_{\xi}(x)$

2. По усиленному закону больших чисел (УЗБЧ)

$$\forall x \in \mathbb{R} \quad \hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x) \xrightarrow[n \to \infty]{\text{II. H.}} EI(X_k \leqslant x) = F_{\xi}(x)$$

Гистограмма

Разбить $\mathbb R$ на (m+2) непересекающихся интервала. Рассматриваются $x_{(1)},\ldots,\ x_{(m)}$

Название	Обозначение	Формула
Количество	m	
интервалов		
Размах		
выборки	r	$r = x_{(m)} - x_{(1)}$
Ширина	Λ	$\Lambda = \frac{r}{}$
интервала		$\Delta = \frac{r}{m}$
Количество		
попаданий на	$ u_i $	
i-ый интервал		
Частота		
попаданий на	h_i	$h_i = \frac{ u_i}{\Delta}$
i-ый интервал		

Лекция 17 января

Определение

Пусть $X_1, \ldots, X_n \sim F(x, \theta)$. <u>k</u>-ым начальным выборочным моментом называется

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k, \ k \in \mathbb{N}$$

Выборочным средним называется:

$$\hat{\mu}_1 = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Определение

k-ым центральным выборочным моментом называется

$$\hat{\nu}_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, \ k = 2, \ 3, \dots$$

$$\hat{
u}_2 = S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 называется выборочной дисперсией

Пусть $(x_1,\ y_1),\ldots,\ (x_n,\ y_n)$ соответствует распределению $F(x,\ y,\ \theta)$

Определение

Выборочной ковариацией называется

$$\hat{K}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Определение

Выборочным коэффициентом корреляции называется

$$\hat{\rho}_{xy} = \frac{\hat{K}_{xy}}{\sqrt{S_x^2 S_y^2}}$$

Свойства выборочных моментов

1.
$$E\hat{\mu}_k = E\left(\frac{1}{n}\sum_{i=1}^n X_i^k\right) = \frac{1}{n}\sum_{i=1}^n EX_i^k = EX_1^k = \mu_k$$

2.
$$E\overline{X} = m_x$$

3.
$$\mathcal{D}\hat{\mu}_k = \mathcal{D}\left(\frac{1}{n}\sum_{i=1}^n x_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n \mathcal{D}X_i^k = \frac{1}{n}\mathcal{D}X_i^k = \frac{1}{n}\left(EX_1^{2k} - (EX_1^K)^2\right) = \frac{1}{n}(\mu_{2k} - \mu_k^2)$$

4.
$$\mathcal{D}\overline{x} = \frac{\sigma_{x_1}^2}{n}$$

5. По УЗБЧ

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k \xrightarrow[n \to \infty]{\text{II. H.}} E\hat{\mu}_k = \mu_k$$

$$\hat{\nu}_k \xrightarrow[n \to \infty]{\text{II. H.}} \nu_k$$

6. По ЦПТ

$$\frac{\hat{\mu}_k - \mu_k}{\sqrt{\frac{\mu_{2k} - \mu_k^2}{n}}} \xrightarrow[d]{n \to \infty} U, \ U \sim N(0, \ 1)$$
$$\frac{\sqrt{n}(\overline{x} - m_{x_1})}{\sigma} \xrightarrow[n \to \infty]{d} U$$

7.
$$ES^2 = E\left(\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2\right) = \frac{n-1}{n}\sigma^2$$

8.
$$E\hat{K}_{xy} = \frac{n-1}{n} cov(x, y)$$

Определение

Оценкой $\hat{\theta}$ параметра θ , называется функция:

$$\hat{ heta} = T(x_1, \ldots, \ x_n)$$
, не зависящая от $heta$

Например, отвратительная оценка среднего роста людей в аудитории.

$$\hat{m} = \frac{2x_2 + 5x_5 + 10x_{10}}{3}$$

Определение

Оценка $\hat{\theta}$ называется несмещённой, если $E\hat{\theta}=\theta$ для любых возможных значений этого параметра.

Определение

Оценка $\hat{\theta}(x_1,\ldots,x_n)$ называется асимптотически несмещённой оценкой θ , если

$$\lim_{n\to\infty} E\hat{\theta}(x_1,\ldots,x_n) = \theta$$

$$\lim_{n \to \infty} ES^2 = \lim_{n \to \infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$

Несмещённой выборочной (или исправленной) выборочной дисперсией называется

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Оценки

$$\hat{m}_{1} = \frac{x_{1} + x_{2} + x_{3}}{3}$$

$$\hat{m}_{2} = \frac{\sum_{i=1}^{10} x_{i}}{10}$$

$$\hat{m}_{3} = \overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

Являются несмещёнными.

Определение

Оценка $\hat{\theta}(x_1, ..., x_n)$ называется: Состоятельной оценкой θ , если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n \to \infty]{p} \theta$$

Сильно состоятельной оценкой, если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n \to \infty]{\text{II. H.}} \theta$$

Определение

Пусть $\hat{\theta}$ — несмещённая оценка параметра θ . Если $\mathcal{D}\hat{\theta} \leqslant \mathcal{D}\theta^*$, где θ^* — любая несмещённая оценка параметра θ . Тогда $\hat{\theta}$ называется эффективной оценкой параметра θ .

R-эффективные оценки

Рассматриваем выборку $X_1, \ldots, X_n \sim f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^1$. Назовём модель $(S, f(x, \theta))$ регулярной, если она удовлетворяет следующим условиям:

1. $\forall x \in S \quad$ функция $f(x, \theta) = f(x_1, \ldots, x_n, \theta) > 0$ и дифференцируема по θ .

2.
$$\begin{cases} \frac{\delta}{\delta\theta} \int_{S} f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} f(x, \theta) dx \\ \frac{\delta}{\delta\theta} \int_{S} T(x) f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} T(x) f(x, \theta) dx \end{cases}$$

Пусть $\hat{\theta} = T(x) = T(x_1, \dots, x_n)$ — несмещённая оценка параметра θ :

$$\int_{S} \frac{\delta}{\delta \theta} f(x, \theta) dx = \frac{\delta}{\delta \theta} \int_{S} f(x, \theta) dx = \frac{\delta}{\delta \theta} 1 = 0$$

$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} \int_{S} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} ET(x) = \frac{\delta}{\delta \theta} \theta = 1$$

Определение

Информацией Фишера о параметре θ , содержащейся в выборке $X_1,\ldots,\ X_n$ называется величина

$$I_n(\theta) = E\left(\frac{\delta \ln \left(f(x, \theta)\right)}{\delta \theta}\right)^2 = \int_{S} \left(\frac{\delta \ln \left(f(x, \theta)\right)}{\delta \theta}\right)^2 f(x, \theta) dx$$

Неравенство Рао-Крамера

Если $S,\ f(x,\ \theta)$ — регулярная модель и $\hat{\theta}$ — несмещённая оценка θ , то

$$\mathcal{D}(\hat{\theta}) \geqslant \frac{1}{I_n(\theta)}$$

Доказательство

Выпишем некоторые равенства (пригодятся в доказательстве):

$$\int_{S} \frac{\delta}{\delta \theta} f(x, \theta) dx = \int_{S} \frac{\delta f(x, \theta)}{\delta \theta} \frac{f(x, \theta)}{f(x, \theta)} dx \stackrel{*}{=} \int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 0$$

Пояснение *. Логарифм — сложная функция. По правилу дифференцирования сложной функции:

$$\frac{\delta \ln f(x, \theta)}{\delta \theta} = \frac{1}{f(x, \theta)} \cdot \frac{\delta f(x, \theta)}{\delta \theta}$$
$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \int_{S} T(x) \frac{\delta}{\delta \theta} f(x, \theta) \frac{f(x, \theta)}{f(x, \theta)} dx = \int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 1$$

Чуть преобразуем последнее полученное равенство:

$$\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = \int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx - \theta \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta}$$

$$= \int_{S} (T(x) - \theta) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 1 \Rightarrow 1 = 1^{2} = \left(\int_{S} (T(x) - \theta) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx \right)^{2} dx$$

Далее нам понадобится неравенство Коши-Буняковского, которое выглядит так:

$$\left(\int \varphi_1(x)\varphi_2(x)\,dx\right)^2 \leqslant \int \varphi_1^2(x)\,dx\int \varphi_2^2(x)\,dx$$

Подгоним полученное равенство $\left(f(x,\;\theta)>0\Rightarrow f(x,\;\theta)=\sqrt{f(x,\;\theta)}^2\right)$:

$$\left(\int_{S} \left(T(x) - \theta\right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx\right)^{2} = \left(\int_{S} \underbrace{\left(T(x) - \theta\right) \sqrt{f(x, \theta)}}_{\varphi_{1}(x)} \cdot \underbrace{\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)}}_{\varphi_{2}(x)} dx\right)^{2} = 1$$

И применим неравенство Коши-Буняковского:

$$1 = \left(\int_{S} \underbrace{\left(T(x) - \theta \right) \sqrt{f(x, \theta)}}_{\varphi_{1}(x)} \cdot \underbrace{\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)}}_{\varphi_{2}(x)} dx \right)^{2} \leqslant$$

$$\leqslant \int_{S} \left((T(x) - \theta) \sqrt{f(x, \theta)} \right)^{2} dx \cdot \int_{S} \left(\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)} \right)^{2} dx =$$

$$= \int_{S} \left(T(x) - \theta \right)^{2} f(x, \theta) dx \cdot \int_{S} \left(\frac{\delta \ln \left(f(x, \theta) \right)}{\delta \theta} \right)^{2} f(x, \theta) dx$$

$$= D\hat{\theta}$$

$$= I_{n}(\theta)$$

Получаем:

$$1 \leqslant \mathcal{D}(\theta) \cdot I_n(\theta) \Rightarrow \mathcal{D}(\theta) \geqslant \frac{1}{I_n(\theta)}$$

Оценка $\hat{\theta}$ называется R-эффективной, если $E\hat{\theta}=\theta$ и $\mathcal{D}\hat{\theta}=\frac{1}{I_n(\theta)}$

Лекция 24 января

Замечание 1

$$I_n(\theta) = \mathcal{D}\left(\frac{\delta \ln f(x, \theta)}{\delta \theta}\right)$$

Замечание 2

$$I_n(\theta) = nI_1(\theta)$$

$$f(x, \theta) = f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n f(x_i, \theta)$$

$$E\left(\frac{\delta \ln f(x, \theta)}{\delta \theta}\right)^{2} = E\left(\sum_{i=1}^{n} \frac{\delta \ln f(x_{i}, \theta)}{\delta \theta}\right)^{2} = \sum_{i \neq j} E\left(\frac{\delta \ln f(x_{i}, \theta)}{\delta \theta} \cdot \frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right) + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2} \left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \frac{1}{2}$$

$$= \sum_{i \neq j} \left(\underbrace{E\left(\frac{\delta \ln f(x_i, \theta)}{\delta \theta}\right)}_{=0} \cdot \underbrace{E\left(\frac{\delta \ln f(x_j, \theta)}{\delta \theta}\right)}_{=0} \right) + nE\left(\frac{\delta \ln f(x_1, \theta)}{\delta \theta}\right)^2 = nE\left(\frac{\delta \ln f(x_1, \theta)}{\delta \theta}\right)^2 = nI_1(\theta)$$

Замечание 3

Пример: $X_1,\dots,\,X_n\sim N(\theta,\,\sigma^2)$ Рассмотрим оценку $\hat{\theta}=\overline{X},$ её дисперсия $\mathcal{D}\overline{X}=\frac{\sigma^2}{n}$. Посчитаем информацию Фишера:

$$I_1(\theta) = E\left(\frac{\delta \ln f(x,\theta)}{\delta \theta}\right)^2 = E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\theta)^2}{2\sigma^2}}\right)\right)^2 = E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma} - \frac{(x-\theta)^2}{2\sigma^2}\right)\right)^2 = E\left(\frac{\pi}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma} - \frac{(x-\theta)^2}{2\sigma^2}\right)\right)^2$$

 $=rac{1}{\sigma^4}E(x- heta)^2=rac{\sigma^2}{\sigma^4}=rac{1}{\sigma^2}\Rightarrow I_n(heta)=rac{n}{\sigma^2}$ Знаем, что $\mathcal{D}\hat{ heta}\geqslantrac{1}{nI_1(heta)}=rac{\sigma^2}{n}=\mathcal{D}(\overline{X})\Rightarrow$ оценка $\hat{ heta}=\overline{X}$ является R-эффективной. Критерий эффективности $X_1,\ldots,\ X_n\sim F_\xi(x,\ heta),\ heta\in\Theta\subset\mathbb{R}^1$ выполнены условия регулярности, то есть

$$\int T(x) \frac{\delta f(x, \theta)}{\delta \theta} dx = \frac{\delta}{\delta \theta} \int T(x) f(x, \theta) dx = E \hat{\theta}$$

Определение

Функцией вклада выборки X_1, \ldots, X_n называется

$$U(x, \theta) = \sum_{i=1}^{n} \frac{\delta \ln f(x_i, \theta)}{\delta \theta}$$

Пусть $0 < U(x, \theta) < \infty$.

 $\hat{ heta}=T(x_1,\dots,x_n)$ — R-эффективная оценка $heta\Leftrightarrow\hat{ heta}- heta=a(heta)U(x,\, heta)$, где $a(heta)=\mathcal{D}\hat{ heta}$

Доказательство \Rightarrow :

Пусть $\hat{\theta} - \theta = a(\theta)U(x,\;\theta) \Rightarrow \hat{\theta}$ — R-эффективная оценка θ .

Посчитаем математическое ожидание частей равенства:

$$E(\hat{\theta} - \theta) = a(\theta)EU(x, \theta) = a(\theta) \int \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 0$$

Посчитаем дисперсию частей:

$$\mathcal{D}(\hat{\theta} - \theta) = a^2(\theta)\mathcal{D}U(x, \ \theta) = \underbrace{a^2(\theta)}_{=(\mathcal{D}(\hat{\theta}))^2} I_n(\theta) \Rightarrow \mathcal{D}(\hat{\theta}) = (\mathcal{D}(\hat{\theta}))^2 I_n(\theta) \Rightarrow 1 = \mathcal{D}(\theta)I_n(\theta)$$

Значит оценка является R-эффективной.

Доказательство ⇐:

Пусть $\hat{\theta}$ — R-эффективная оценка $\Rightarrow \hat{\theta} - \theta = a(\theta)U(x, \theta)$. Хотим доказать, что $\rho(\hat{\theta}, U(x, \theta)) = 1$. Для подсчёта корреляции нужно посчитать ковариацию:

$$\operatorname{cov}(\hat{\theta},\ U(x,\ \theta)) = E(\hat{\theta} - \theta)U(x,\ \theta) = E\hat{\theta}U(x,\ \theta) - \theta \underbrace{EU(x,\ \theta)}_{0} =$$

$$= \int_{S} T(x)U(x, \theta)f(x, \theta) dx = \int_{S} T(x)\frac{\delta \ln f(x, \theta)}{\delta \theta}f(x, \theta) dx = 1$$

Так как $\hat{\theta}$ — R-эффективная оценка, то $\mathcal{D}\hat{\theta}=\frac{1}{I_n(\theta)}$. Знаем, что $\mathcal{D}U(x,\;\theta)=I_n(\theta)$, тогда:

$$\rho(\hat{\theta}, U(x, \theta)) = \frac{\text{cov}(\hat{\theta}, U(x, \theta))}{\sqrt{\mathcal{D}\hat{\theta}\mathcal{D}U(x, \theta)}} = \frac{1}{\sqrt{\frac{I_n(\theta)}{I_n(\theta)}}} = 1 \Rightarrow$$
$$\Rightarrow \hat{\theta} = c_1 + c_2 U(x, \theta)$$

$$E\hat{ heta}=c_1+Ec_2U(x,~ heta)=c_1+0= heta$$
, так как оценка эффективная $\mathcal{D}\hat{ heta}=c_2^2I_n(heta)=rac{1}{I_n(heta)}\Rightarrow c_2^2=rac{1}{I_n^2}\Rightarrow c_2=rac{1}{I_n}=\mathcal{D}\hat{ heta}=a(heta).$ Итак, $\hat{ heta}= heta+a(heta)U(x,~ heta)\Rightarrow\hat{ heta}- heta=U(x,~ heta).$

Метод моментов

 $X_1, \ldots, X_n \sim F_{\varepsilon}(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^k$

$$\exists \mu_j < \infty, \ j = \overline{1, \ k} \quad \underbrace{\mu_j}_{=\mu_j(\theta)} = E\xi^j = \int_{-\infty}^{+\infty} x^j f(x, \ \theta) \, dx = 1$$

Тогда можно получить систему уравнений:

$$\begin{cases} \hat{\mu_1} = \mu_1(\theta) \\ \vdots \\ \hat{\mu_n} = \mu_n(\theta) \end{cases} \tag{1}$$

Если система уравнений (1) однозначно разрешима относительно $\theta_1, \ldots, \theta_k$, то решения $\hat{\theta_1}, \ldots, \hat{\theta_k}$ называется равной $\theta_1, \ldots, \theta_k$ по методу моментов.

Пример

 $X_1, \ldots, \ X_n \sim N(\theta_1, \ \theta_2^2), \ \theta = (\theta_1, \ \theta_2^2)$, тогда:

$$\begin{cases} \hat{\mu_1} = \frac{1}{n} \sum_{i=1}^{n} x_i = \theta_1 \Rightarrow \hat{\theta_1} = \overline{X} \\ \hat{\mu_2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \theta_2^2 + \theta_1^2, \ \left(E\xi^2 = \mathcal{D}\xi + (E\xi)^2 \right) \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \overline{X}^2 \end{cases}$$

Метод максимального правдоподобия (ММП)

Определение

Функцией правдоподобия называется функция

$$L(x_1,\dots,\,x_n,\,\theta)=egin{cases} \prod\limits_{i=1}^n f(x_i,\,\theta),\ \text{если }\xi$$
 — непрерывная случайная величина $\prod\limits_{i=1}^n P(\xi=x_i,\,\theta),\ \text{если }\xi$ — дискретная случайная величина

Реализацией оценки максимального правдоподобия (ОМП) называется значение $\hat{\theta} \in \Theta$, такое что:

$$\hat{\theta} = \operatorname{argmax} L(x_1, \ldots, x_n, \theta)$$
, где $\theta \in \Theta$

Для нахождения точки максимума нужно взять частные производные по всем составляющим heta от функции правдоподобия. Однако считать производную произведения нам впадлу, поэтому мы введём следующую вещь:

Определение

Функция $\ln L(x_1, \ldots, x_n, \theta)$ называется логарифмической функцией правдоподобия.

Итак, получаем систему уравнений:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = 0 \\ \vdots \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_k} = 0 \end{cases}$$

Логарифм монотонный, поэтому его argmax совпадёт с argmax функции $L(x_1,\ldots,x_n,\theta)$ (НАУКА!).

Пример

Для Гауссовской величины $N(\theta_1, \theta_2^2)$:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\theta^1)^2}{2\theta_2^2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{\theta_2}\right)^n e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}}$$

Логарифмируем:

$$\ln L(x_1, \dots, x_n, \theta) = \ln \left(\frac{1}{\sqrt{2\pi}}\right)^n - n \ln \theta_2 - \frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2\theta_2^2}$$

Возьмём частные производные:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = \frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)}{\hat{\theta}_2^2} \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_2} = -\frac{n}{\hat{\theta}_2} + \frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)^2}{\hat{\theta}_2^3} \end{cases}$$

Посчитаем θ_1 , θ_2 :

$$\begin{cases} \sum_{i=1}^{n} (x_i - \hat{\theta}_1) = 0 \Rightarrow \hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{X} \\ -n\hat{\theta}_2^2 + \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0 \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \end{cases}$$

Лекция 31 января.

Робастные оценки

От слова robust.

Определение

Пусть оценка $\hat{\theta}_n$ построена по выборке $X_1,\dots,\ X_n$. Затем добавлено наблюдение x и построена оценка $\hat{\theta}_{n+1}$, тогда кривой чувствительности, изучающей влияние наблюдения x на оценку $\hat{\theta}$ называется функция:

$$SC_n(x) = \frac{\hat{\theta}_{n+1} - \hat{\theta}_n}{\frac{1}{n+1}} = (n+1) \left(\hat{\theta}_{n+1} - \hat{\theta}_n\right)$$

Оценка $\hat{\theta}$ называется B-робастной, если $SC_n(x)$ ограничена.

Пример

Пусть $\hat{\theta} = \overline{X}$

$$SC_n(x) = (n+1)\left(\frac{1}{n+1}\left(\sum_{i=1}^n (x_i) + x\right) - \frac{1}{n}\sum_{i=1}^n x_i\right) = \sum_{i=1}^n x_i + x - \left(\sum_{i=1}^n x_i + \frac{1}{n}\sum_{i=1}^n x_i\right) = x - \overline{X}$$

Это линейная функция от x, то есть кривая чувствительности неограничена.

Пусть $\hat{\theta} = \hat{\mu}$ (выборочная медиана)

$$\hat{\mu} = \begin{cases} X_{(k+1)}, & n = 2k+1\\ \frac{X_{(k)} + X_{(k+1)}}{2}, & n = 2k \end{cases}$$

Определение

Пороговой точкой (ВР) ε_n^* оценки $\hat{\theta}$, построенной на выборке $X_1,\dots,\ X_n$ называется:

$$\varepsilon_n^* = \frac{1}{n} \max \left\{ m : \max_{i_1, \dots, i_m} \sup_{y_1, \dots, y_m} |\hat{\theta}(z_1, \dots, z_m)| < \infty \right\}$$

Где выборка $z_1,\ldots,\ z_m$ получена заменой значений $X_{i_1},\ldots,\ X_{i_m}$ на произвольные значения $y_1,\ldots,\ y_m$

Доверительные интервалы

Определение

Пусть для $X_1,\ldots,\ X_n \sim F(x,\ \theta),\ \theta \subset \Theta \subset \mathbb{R}^1$ построены статистики $T_1(x_1,\ldots,\ x_n)$ и $T_2(x_1,\ldots,\ x_n)$, такие что

$$\begin{cases} T_1(x) < T_2(x) \\ P(T_1(x) < \theta < T_2(x)) = 1 - \alpha, \ 0 < \alpha < 1 \end{cases}$$

Тогда интервал $(T_1(x), T_2(x))$ называется доверительным интервалом уровня надёжности (доверия) $1-\alpha$ параметра θ .

Определение

Случайная функция $G(x_1, \ldots, x_n, \theta) = G(x, \theta)$ называется центральной (опорной) статистикой, если

- 1. $G(x, \, \theta)$ непрерывна и монотонна по θ
- 2. $F_G(x)$ не зависит от θ

Односторонние доверительные интервалы:

$$P(G(x, \theta) < Z_{1-\alpha}) = 1 - \alpha$$
$$P(Z_{\alpha} < G(x, \theta)) = 1 - \alpha$$

Квантили не зависят от θ , с их помощью можно выразить односторонние доверительные интервалы. Центральным доверительным интервалом будет:

$$P(Z_{\frac{\alpha}{2}} < G(x, \theta) < Z_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Определение

Пусть случайные величины $\xi_1, \dots, \; \xi_m \sim N(0, \; 1)$ и независимы.

Тогда случайная величина $\eta = \sum_{i=1}^m \xi_i^2 \sim \chi^2(m)$ (удовлетворяет распределению хи-квадрат (χ^2) с m степенями свободы).

Пусть $\xi_0,\ \xi_1,\dots,\ \xi_m \sim N(0,\ 1)$ и независимы. Тогда случайная величина $\zeta=\frac{\xi_0}{\sqrt{\frac{1}{m}\sum_{i=1}^m \xi_i^2}}\sim t(m)$ (распределение Стьюдента с m степенями свободы)

Определение

Пусть случайная величина $\xi_1 \sim \chi^2(m), \; \xi_2 \sim \chi^2(n)$ и ξ_1 и ξ_2 — независимы. Тогда случайная величина $F=\frac{\frac{1}{m}\xi_1}{\frac{1}{n}\xi_2} \sim F(m,\; n)$ (распредление Фишера со степенями свободы $n,\; m$)

Теорема Фишера

Пусть X_1, \ldots, X_n порождены случайной величиной $X \sim N(m, \sigma^2)$, тогда:

- 1. $\frac{nS^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{x_i \overline{x}}{\sigma}\right)^2 \sim \chi^2(n-1)$ (так как мы знаем \overline{X} , и все наблюдения, а по n-1 наблюдению и \overline{X} можно восстановить последнее наблюдение)
- 2. \overline{X} и S^2 независимые случайные величины.

Пример 1

 $X_1,\ldots,~X_n \sim N(\theta,~\sigma^2),~\sigma^2$ — известно. Построить доверительный инртервал для θ

$$\hat{\theta} = \overline{X} \sim N(\theta, \frac{\sigma^2}{n})$$

$$\frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} \sim N(0, 1)$$

$$P\left(Z_{\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} < Z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

Поскольку по середине стоит стандартное гауссовское распределение: $Z_{\frac{\alpha}{2}}=-Z_{1-\frac{\alpha}{2}}$

$$P\left(-\frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} - \overline{X} < -\theta < \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} - \overline{X}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} < \theta < \overline{X} + \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$(-Z_{1-\frac{\alpha}{2}}\sigma - Z_{1-\frac{\alpha}{2}}\sigma)$$

Итак, доверительный интервал: $\left(\overline{X} - \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}, \ \overline{X} + \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}\right)$

Пример 2

 $X_1,\dots,\;X_n \sim N(m,\; heta_2^2).$ Построить доверительный интервал для $heta_2^2$

$$\sum_{i=1}^{n} \left(\frac{x_i - m}{\theta_2}\right)^2 \sim \chi^2(n)$$

$$P\left(\chi_{n, \frac{\alpha}{2}}^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\theta_2^2} < \chi_{n, 1 - \frac{\alpha}{2}}^2\right) = 1 - \alpha$$

$$P\left(\frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, 1 - \frac{\alpha}{2}}^2} < \theta_2^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, \frac{\alpha}{2}}^2}\right) = 1 - \alpha$$

Здесь $\chi^2_{n,\;\alpha}$ — квантиль уровня α распределения $\chi^2(n)$

Пример 3

Если нам неизвестны оба параметра $N(\theta_1, \theta_2^2)$. Заменяем m на \overline{X} : Доверительный интервал для θ_2 :

$$P\left(\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{\chi_{n, 1 - \frac{\alpha}{2}}^2} < \theta_2^2 < \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{\chi_{n, \frac{\alpha}{2}}^2}\right) = 1 - \alpha$$

Доверительный интервал для θ_1 :

$$\frac{\sqrt{n}\left(\frac{\overline{X}-\theta}{\sigma}\right)}{\sqrt{\frac{1}{n-1}\sum\left(\frac{(x_i-\overline{X})}{\sigma}\right)^2}} = \frac{\sqrt{n}(\overline{X}-\theta_1)}{\tilde{S}} \sim t(n-1)$$

Обозначим $t_{n,\;\alpha}$ квантиль уровня α распределения t(n), заметим, что $t_{n,\;1-\alpha}=t_{n,\;1-\frac{\alpha}{2}}$

$$P(t_{n, 1-\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \theta_1)}{\tilde{S}} < t_{n, \frac{\alpha}{2}}) = 1 - \alpha$$

$$P(\overline{X} - \frac{\tilde{S} \cdot t_{n, 1 - \frac{\alpha}{2}}}{\sqrt{n}} < \theta_1 < \overline{X} + \frac{\tilde{S} \cdot t_{n, 1 - \frac{\alpha}{2}}}{\sqrt{n}}) = 1 - \alpha$$