Inference of average Bayes accuracy

Charles Zheng and Yuval Benjamini

October 18, 2016

These are preliminary notes.

1 Introduction

Suppose X and Y are continuous random variables (or vectors) which have a joint distribution with density p(x,y). Let $p(x) = \int p(x,y)dy$ and $p(y) = \int p(x,y)dx$ denote the respective marginal distributions, and p(y|x) = p(x,y)/p(x) denote the conditional distribution.

ABE_k, or k-class Average Bayes accuracy is defined as follows. Let $X_1, ..., X_K$ be iid from p(x), and draw Z uniformly from 1, ..., k. Draw $Y \sim p(y|X_Z)$. Then, the average Bayes accuracy is defined as

$$ABA_k[p(x,y)] = \sup_{f} \Pr[f(X_1,...,X_k,Y) = Z]$$

where the supremum is taken over all functions f. A function f which achieves the supremum is

$$f_{Bayes}(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z),$$

where an arbitrary rule can be employed to break ties. Such a function f_{Bayes} is called a Bayes classification rule. It follows that ABA_k is given explicitly by

$$ABA_k = \frac{1}{k} \int \left[\prod_{i=1}^k p(x_i) dx_i \right] \int dy \max_i p(y|x_i),$$

as stated in the following theorem.

Theorem 1.1 For a joint distribution p(x,y), define

$$ABA_k[p(x,y)] = \sup_{f} \Pr[f(x_1,...,x_k,y) = Z]$$

where $X_1, ..., X_K$ are iid from p(x), Z is uniform from 1, ..., k, and $Y \sim p(y|X_Z)$, and the supremum is taken over all functions $f: \mathcal{X}^k \times \mathcal{Y} \to \{1, ..., k\}$. Then,

$$ABA_k = \frac{1}{k} \int \left[\prod_{i=1}^k p(x_i) dx_i \right] \int dy \max_i p(y|x_i).$$

Proof. First, we claim that the supremum is attained by choosing

$$f(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z).$$

To show this claim, write

$$\sup_{f} \Pr[f(X_1, ..., X_k, Y) = Z] = \sup_{f} \frac{1}{k} \int p_X(x_1) ... p_X(x_k) p(y | x_{f(x_1, ..., x_k, y)}) dx_1 ... dx_k dy$$

We see that maximizing $\Pr[f(X_1, ..., X_k, Y) = Z]$ over functions f additively decomposes into infinitely many subproblems, where in each subproblem we are given $\{x_1, ..., x_k, y\} \in \mathcal{X}^k \times \mathcal{Y}$, and our goal is to choose $f(x_1, ..., x_k, y)$ from the set $\{1, ..., k\}$ in order to maximize the quantity $p(y|x_{f(x_1, ..., x_k, y)})$. In each subproblem, the maximum is attained by setting $f(x_1, ..., x_k, y) = \underset{z \in \mathcal{Y}}{\operatorname{argmax}} p(y|x_z)$ —and the resulting function f attains the supremum to the functional optimization problem. This proves the claim.

We therefore have

$$p(y|x_{f(x_1,...,x_k,y)}) = \max_{i=1}^k p(y|x_i).$$

Therefore, we can write

$$ABA_{k}[p(x,y)] = \sup_{f} \Pr[f(X_{1},...,X_{k},Y) = Z]$$

$$= \frac{1}{k} \int p_{X}(x_{1}) \dots p_{X}(x_{k}) p(y|x_{f(x_{1},...,x_{k},y)}) dx_{1} \dots dx_{k} dy.$$

$$= \frac{1}{k} \int p_{X}(x_{1}) \dots p_{X}(x_{k}) \max_{i=1}^{k} p(y|x_{i}) dx_{1} \dots dx_{k} dy.$$

2 Variability of Bayes Accuracy

We have

$$ABA_k = \mathbf{E}[BA(X_1, ..., X_k)]$$

where the expectation is over the independent sampling of $X_1, ..., X_k$ from p(x).

Therefore, $BA_k = BA(X_1, ..., X_k)$ is already an unbiased estimator of ABA_k . However, to get confidence intervals for ABA_k , we also need to know the variability.

We have the following upper bound on the variability.

Theorem 2.1 Given joint density p(x,y), for $X_1,...,X_k \stackrel{iid}{\sim} p(x)$, we have

$$Var[BA(X_1,...,X_k)] \le \frac{1}{4k}.$$

Proof. According to the Efron-Stein lemma,

$$Var[BA(X_1, ..., X_k)] \le \sum_{i=1}^k \mathbf{E}[Var[BA|X_1, ..., X_{i-1}, X_{i+1}, ..., X_k]].$$

which is the same as

$$Var[BA(X_1, ..., X_k)] \le k \mathbf{E}[Var[BA|X_1, ..., X_{k-1}]]$$

The term $Var[BA|X_1,...,X_{k-1}]$ is the variance of $BA(X_1,...,X_k)$ conditional on fixing the first k-1 curves $p(y|x_1),...,p(y|x_{k-1})$ and allowing the final curve $p(y|X_k)$ to vary randomly.

Note the following trivial results

$$-p(y|x_k) + \max_{i=1}^k p(y|x_i) \le \max_{i=1}^{k-1} p(y|x_i) \le \max_{i=1}^k p(y|x_i).$$

This implies

$$BA(X_1,...,X_k) - \frac{1}{k} \le \frac{k-1}{k} BA(X_1,...,X_{k-1}) \le BA(X_1,...,X_k).$$

i.e. conditional on $(X_1, ..., X_{k-1})$, BA_k is supported on an interval of size 1/k. Therefore,

$$Var[BA|X_1, ..., X_{k-1}] \le \frac{1}{4k^2}$$

since $\frac{1}{4c^2}$ is the maximal variance for any r.v. with support of length c. \square

In the next section we report on some empirical results which suggest that the constant in the bound can be greatly improved.

3 Empirical results

In this section we search over a class of distributions p(x, y) in an attempt to find a distribution which achieves close to the maximum variability.

The theoretical upper bound is

$$\operatorname{sd}(\operatorname{BA}_k) \le \frac{1}{2\sqrt{k}}.$$

We compare the theoretical bound with the largest sd found for any distribution.

k	2	3	4	5	6	7	8
$\frac{1}{2\sqrt{k}}$	0.353	0.289	0.250	0.223	0.204	0.189	0.177
Worst-case sd	0.25	0.194	0.167	0.150	0.136	0.126	0.118

3.1 Methodology

We search over discrete distributions where $Y \in \{1, ..., d\}$ and $X = (X_1, ..., X_d)$ lies in the space of all d-permutations. The pmf p(x, y) is defined as

$$p(x,y) = \frac{1}{d!}v_{x_y}$$

where

$$0 < v_1 < v_2 < \dots < v_d$$

and

$$\sum_{i} v_i = 1.$$

Define the random vector $M^{(k)}$ by

$$M_i^{(k)} = \max_{j=1}^k X_i^{(j)}$$

where $X^{(1)},...,X^{(k)}$ are independent random permuations for i=1,..,d. Then define the random vector $C^{(k)}$ by

$$C_i^{(k)} = \sum_{j=1}^d I\{M_j^{(k)} = i\}.$$

For this class of distributions, the variance is given by

$$Var(BA_k) = v'\Gamma^{(d,k)}v$$

where $\Gamma^{(d,k)}$ is the $d \times d$ covariance matrix with entries

$$\Gamma_{ij}^{(d,k)} = \operatorname{Cov}(C_i^{(k)}, C_j^{(k)}).$$

Therefore, having computed $\Gamma^{(d,k)}$, one can find distributions which solve the constrained optimization problem:

$$\text{maximize}_{v_1,\dots,v_d} v' \Gamma^{(d,k)} v \text{ subject to } 0 \le v_1 \le v_2 \le \dots \le v_d \text{ and } \sum_{i=1}^d v_i = 1$$
(1)

3.2 Empirical worst-case distributions

An empirical result is as follows: for all (d, k) examined, maximizers of (1) take the form

$$v = (0, ..., 0, 1). (2)$$

While the problem (1) is non-convex, to show that (2) is the global maximizer, it suffices to examine the matrix $\Gamma^{(d,k)}$.

The following properties have been seen to hold for small (d, k), but there may be counterexamples. (In the following, we omit the superscript in $\Gamma^{(d,k)}$.)

P1. For all j, $\max_{i>j} \Gamma_{ij} = \Gamma_{dj}$.

P2. For all i,

$$\alpha^2 \Gamma_{ii} + 2\alpha (1 - \alpha) \Gamma_{di} + (1 - \alpha)^2 \Gamma_{dd}$$

where $\alpha \in [0, \frac{1}{d-i}]$ is maximized by $\alpha = 0$. Equivalently,

$$\max\left\{\frac{\Gamma_{ii} + 2(i-1)\Gamma_{di}}{2i-1}, \Gamma_{di}\right\} \le \Gamma_{dd}.$$

If P1 and P2 hold, then it follows that (2) maximizes (1), as stated in the following theorem.

Theorem 3.1 Consider the optimization problem

$$maximize_{v_1,...,v_d}v'\Gamma^{(d,k)}v$$
 subject to $0 \le v_1 \le v_2 \le ... \le v_d$ and $\sum_{i=1}^d v_i = 1$

If properties P1 and P2 hold for Γ , then the solution is

$$v = (0, ..., 0, 1).$$

Proof.

Let S_i be the set of all feasible vectors v such that $v_1 = ... = v_{d-i} = 0$ for i = 1, ..., d. Let $v^{(i)}$ be the element of S_i which maximizes $v'\Gamma v$ over S_i .

It is clear that $v^{(1)} = (0, ..., 0, 1)$. Now we proceed to show by induction that if $v^{(i)} = (0, ..., 0, 1)$, then also $v^{(i+1)} = (0, ..., 0, 1)$.

Suppose $v^{(i)} = (0, ..., 0, 1)$. Now, any element $v \in S^{(i+1)}$ can be written

$$v = (0, ..., 0, \alpha, (1 - \alpha)w)$$

where $w \in S_i$, for $\alpha \in [0, 1/i]$. Therefore, we have

$$v'\Gamma v = \alpha^{2}\Gamma_{ii} + 2\alpha(1-\alpha)(\Gamma_{i+1,i},...,\Gamma_{di})'w + (1-\alpha)^{2}w'\Gamma_{(i+1)\cdots d,(i+1)\cdots d}$$

$$\leq \alpha^{2}\Gamma_{ii} + 2\alpha(1-\alpha)(\Gamma_{i+1,i},...,\Gamma_{di})'w + (1-\alpha)^{2}\Gamma_{dd}$$

$$\leq \alpha^{2}\Gamma_{ii} + 2\alpha(1-\alpha)\Gamma_{di} + (1-\alpha)^{2}\Gamma_{dd}.$$

$$\leq \Gamma_{dd} \text{ by property P2.}$$

But

$$v'\Gamma v \leq \Gamma_{dd} = (0, ..., 0, 1)'\Gamma(0, ..., 0, 1)$$

implies that

$$v^{(i+1)} = (0, ..., 0, 1).$$

 \Box .

Consequences.

Suppose that (2) does maximize all the optimization problems (1). The resulting worst-case variance for given (d, k) is given by

$$Var^{(d,k)} \approx \frac{1}{d}e^{-d/k}(1 - e^{-d/k})$$

for $d \geq k$, and therefore we could obtain a variance bound of the form

$$\sup_{p(x,y)} \operatorname{Var}(BA_k) \approx \max_{d \ge k} \frac{1}{d} e^{-d/k} (1 - e^{-d/k}).$$