Universidade Federal de Santa Catarina - Programa de Pós-graduação em Engenharia Elétrica

EEL5102-47: Métodos Numéricos de Otimização I - Prova 1.

Aluno: ______ Data: 3/4/2023.

- (2,0 pontos). Considere uma corda com 4 metros de comprimento. Imagine que seja possível cortar essa corda em duas partes, as quais devem ser usadas para construir um quadrado e uma circunferência. Determine onde deve ser realizado o corte de tal maneira que a soma das áreas das figuras geométricas¹ seja máxima.
- 2 **(2,0 pontos)** Determine e classifique os pontos estacionários de $f(x,y) = 3x^2 12y 2(x-2y)^3$.
- 3 **(3,0 pontos)** Considere a função $f(x,y) = (x-1)^2 + y^2 + x$
 - (a) Encontre um vetor $p = [d \ 0]^T$, diferente de $-\nabla f(x,y)$, que seja uma direção de decida em $[3 \ 0]^T$.
 - (b) Encontre todos os tamanhos de passo que atendem as condições curvatura de Wolfe na direção obtida acima².
 - (c) Mostre ainda o passo ótimo que pode ser obtido em (b).
- 4 **(3,0 pontos)** Aplique (no máximo 3 iterações) do método de Quase-Newton BFGS³, considerando buscalinear exata, para minimizar $f(x) = 10x_1^2 + x_2^2$ a partir de $x^0 = [0.1 \ 1]^T$, $H^0 = I$ e tol $\leq 10^{-5}$.

¹ Um quadrado com lado x tem uma área igual a x^2 e um perímetro igual a 4x. Por sua vez, uma circunferência com raio r possui área igual a πr^2 e um perímetro igual a $2\pi r$.

 $^{|\}nabla f(x_k + \alpha p_k)^T p_k| \le c_2 |\nabla f_k^T p_k|, c_2 = 0.9.$

 $^{^{3} \} p^{k} = -H^{k} \nabla f(x^{k}), \ H^{k+1} = \left[I - \rho^{k} s^{k}(y^{k})^{\mathrm{T}}\right] H^{k} \left[I - \rho^{k} y^{k}(s^{k})^{\mathrm{T}}\right] + \rho^{k} s^{k}(s^{k})^{\mathrm{T}}, \ \rho^{k} = \frac{1}{(y^{k})^{\mathrm{T}} s^{k}}, \\ s^{k} = x^{k+1} - x^{k} \ \mathrm{e} \ y^{k} = \nabla f(x^{k+1}) - \nabla f(x^{k}).$