Automatic Synthesis of Boolean Networks from Biological Knowledge and Data

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone

ASPOCP — July 31, 2022

ola 2021

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone. **Automatic Synthesis of Boolean Networks from Biological Knowledge and Data.** International Conference on Optimization and Learning, Jun 2021, online.

Boolean Network (BN)

set of n Boolean functions (one per component)

$$\{f_i: \mathbb{B}^n \to \mathbb{B}, \forall i \in V\}$$

```
V: set of n components (= genes, proteins...) \mathbb{B} = \{0/\text{inactive}, 1/\text{active}\} configuration: a vector of \mathbb{B}^n
```

Boolean Network — an example

$$\mathcal{B} = \begin{cases} f_{A} := 0 \\ f_{B} := (B \land \neg C) \lor (\neg B \land C) \\ f_{C} := \neg C \end{cases}$$

Boolean functions in minimal disjonctive normal form (minDNF)

Boolean Network — an example, its structure

$$\mathcal{B} = \begin{cases} f_{A} := 0 \\ f_{B} := (B \land \neg C) \lor (\neg B \land C) \\ f_{C} := \neg C \end{cases}$$

interaction graph:

Boolean Network — an example, its dynamics

$$\mathcal{B} = \begin{cases} f_{A} := 0 \\ f_{B} := (B \land \neg C) \lor (\neg B \land C) \\ f_{C} := \neg C \end{cases}$$

state transition graph under an update scheme U:

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

	1													
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0 100 0	27	36	42	60	75	54	44	38	48	60	72	88	

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

	1													
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0 100 0	27	36	42	60	75	54	44	38	48	60	72	88	

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

	1													
Α	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0 100 0	27	36	42	60	75	54	44	38	48	60	72	88	

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

t	1	2	3	4	5	6	7	8	9	10	11	12	13	<u> </u>
	0													
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

		(010	-	\rightarrow	011	-	\rightarrow	100	-	\rightarrow		1	
t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

Our Wishes VS Existing Approaches

- ▶ use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of config.

Our Wishes VS Existing Approaches

- ▶ use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of config.

	signed PKN	all minDN	IF, all class	assumption on TS $\&$ config. seq.
REVEAL	X	Х	1	each timestep = sync. transition
Best-Fit	X	X ✓		each timestep $=$ sync. transition
caspo-TS	✓	✓ moi	notonous	async. reachability

Our Wishes VS Existing Approaches

- use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of config.

	signed PKN	all minDl	NF, all class	assumption on TS & config. seq.
REVEAL	X	Х	✓	each timestep = sync. transition
Best-Fit	X	X	✓	each timestep $=$ sync. transition
caspo-TS	✓	✓ mo	notonous	async. reachability

Our own approach: ASKeD-BN

For each component: use ASP to generate all the possible transition functions (in minDNF) compatible with a given PKN and TS. Then: use python to produce all the possible BNs.

Why ASP? Because...

- several tools are now developed with ASP in systems biology
- we can focus only on modeling the problem and not on the way to get the solutions
- we were told it is very fast and efficient, fun to learn, ... (and at the end we happy of this choice! :))))

ASKeD-BN— modeling a candidate DNF

. . .

ASP picks a subset of conjunctions among all the possible ones (given) 1{ conjTakenID(0..maxNbPossibleConj)}. $conjTaken(I, N, V) := conj(I, _, _); conjTakenID(I).$ % GIVEN : conj(ID, Component, Sign) conj(0, a, 0). conj(0, b, 0). conj(0, c, 0). $conj(1, a, 1). conj(1, b, -1). conj(1, c, 0). % <math>A \wedge \neg B$ $conj(2, a, -1). conj(1, b, 0). conj(1, c, -1). \% \neg A \wedge \neg C$ $conj(3, a, -1). conj(3, b, -1). conj(3, c, -1). % <math>\neg A \land \neg B \land \neg C$ $conj(4, a, 1). conj(4, b, 1). conj(4, c, 1). % <math>A \wedge B \wedge C$

Example: taken = $\{1,2\} \rightarrow \mathsf{candidate} = (\mathsf{A} \land \neg \mathsf{B}) \lor (\neg \mathsf{A} \land \neg \mathsf{C})$

ASKeD-BN— structural constraints

"it is false to select a conjunction that uses a literal that is not allowed by the PKN"

```
ig(ParentID, x, V):- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V); not pkn(ParentID, x, V).
```

(1) Use configurations sequence with the parcimonious update schema possible + the PKN to build partial truth tables

		putative input	output
for	A:	С	
	0	0	0
	1	1	1
for	B:	B, C	
	0	00	
	1	01	
	2	10	
	3	11	0
for	C:	A, C	
	0	00	
	1	01	0
	2	10	1
	3	11	

(2) discard candidates that doesn't match the truth table

		putative	output
		input	
examples of eliminated candidates for A:	for A:	С	
0	0	0	0
¬C	1	1	1
for B:	for B:	B, C	
1	0	00	
$B \lor C$	1	01	
$B \wedge C$	2	10	
$(A \wedge B) \vee (\neg A \wedge \neg B)$	3	11	0
for C:	for C:	A, C	
0	0	00	
1 C	1	01	0
C	2	10	1
	3	11	

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{E02 : error(E)}. % highest priority

 i_t : continuous value of i at time t θ_i : binarisation threshold for i

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{E02 : error(E)}. % highest priority

 i_t : continuous value of i at time t

 θ_i : binarisation threshold for i

T: # time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{E02 : error(E)}. % highest priority

 i_t : continuous value of i at time t

 θ_i : binarisation threshold for i

T: # time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{E02 : error(E)}. % highest priority

 i_t : continuous value of i at time t

 θ_i : binarisation threshold for i

T: # time steps

 \mathscr{U} : set of unexplained time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{E02 : error(E)}. % highest priority

 i_t : continuous value of i at time t θ_i : binarisation threshold for i

T: # time steps

 \mathscr{U} : set of unexplained time steps

minimise the Mean Absolute Error (ideally 0)

$$\mathsf{MAE}_{f_i} = \frac{\sum_{t \in \mathscr{U}_{f_i}} |\theta_i - i_t|}{T}$$

ASKeD-BN— minimality constraint

Find the smallest minDNF(s) among the minDNFs compatible with the (partial) truth table

	putative input	output	possible guess						
0	00		0	1	0	1			
1	01	0	0	0	0	0			
2	10	1	1	1	1	1			
3	11		0	0	1	1			
		minDNF	$\neg A \wedge B$	$\neg A$	В	$\neg A \lor B$			
		size	2	1	1	2			

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
% N elements in conjunction C
#minimize{S@1 : sizeDNF(S)}. % lower priority
```

ASKeD-BN— Evaluation and Results

Main goal: transforming existing ODE-like biological models to Boolean networks.

2 papers so far.

Nice results on our criteria, on this (very specific) application case

- ightarrow better than REVEAL, Best-Fit and caspo-TS
 - ► IG ⊆ PKN (by construction)
 - the mixed STG BNs recovers a good proportion of the transitions of the sequence.
 - small number of BNs syntesised (thanks to mincard minDNF)

Remaining Things to Investigate

- overfitting to the given seq. of configurations? (drawback of mincard minDNF)
- choice binarisation procedure and error measure
- ▶ long solving time & a lot of memory (> 30h, > 700 Go RAM)
 - ightarrow is there a better encoding possible? better clingo options?

ASP for a system biologist: 🗸

Thanks for your attention.

Enjoy the workshop and conference, and come try the "Bergamotes de Nancy" I brought (available starting tomorrow)

athenais.vaginay@loria.fr (looking for "write a PhD thesis" and "find a post-doc" advice :)))

$$\mathcal{R} = \begin{cases} r_{\rm on} = e_{\rm on} & : \mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & : \mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & : \mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathcal{R} = \begin{cases} r_{\rm on} = e_{\rm on} & : \mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & : \mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & : \mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathcal{R} = \begin{cases} r_{\rm on} = e_{\rm on} & : \mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & : \mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & : \mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathcal{R} = \begin{cases} r_{\rm on} = e_{\rm on} & : \mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & : \mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & : \mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathcal{R} = \begin{cases} r_{\rm on} = e_{\rm on} & : \mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & : \mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & : \mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathscr{R} = \underbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \underbrace{-e_{\mathrm{cat}}}_{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{}$$

$$\mathcal{R} = \underbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \underbrace{\mathsf{C} \xrightarrow{e_{\mathrm{cat}}}_{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{}^{r_{\mathrm{cat}}}$$

$$\mathscr{R} = \underbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \underbrace{\mathsf{C} \xrightarrow{e_{\mathrm{cat}}}_{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{}^{r_{\mathrm{cat}}}$$

$$\mathscr{R} = \underbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \underbrace{\mathsf{C} \xrightarrow{e_{\mathrm{cat}}}_{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{}^{r_{\mathrm{cat}}}$$

$$\mathscr{R} = \underbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \underbrace{\mathsf{C} \xrightarrow{e_{\mathrm{cat}}}_{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{}^{r_{\mathrm{cat}}}$$

Chemical Reaction Network — ODEs

Chemical Reaction Network — ODEs

$$\mathscr{R} = \underbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \underbrace{\mathsf{E} + 2 \times \mathsf{P}}_{e_{\mathrm{off}}}$$

$$\forall i \in V : \frac{\mathrm{d}i}{\mathrm{d}t} = \sum_{r \in \mathscr{R}} e_r \times \delta_r(i)$$

Chemical Reaction Network — ODEs

$$\mathscr{R} = \overbrace{ \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C} \xrightarrow{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P} }^{r_{\mathrm{cat}}}$$

$$\begin{split} \forall i \in V : \frac{\mathrm{d}i}{\mathrm{d}t} &= \sum_{r \in \mathscr{R}} e_r \times \delta_r(i) \\ \frac{\mathrm{d}[\mathsf{C}]}{\mathrm{d}t} &= \underbrace{e_{\mathrm{on}} \times 1}_{r_{\mathrm{on}}} + \underbrace{e_{\mathrm{off}} \times -1}_{r_{\mathrm{off}}} + \underbrace{e_{\mathrm{cat}} \times -1}_{r_{\mathrm{cat}}} \end{split}$$

Reaction Network — Structure and Dynamics

$$\mathcal{R} = \underbrace{\mathsf{E} + \mathsf{S} \xleftarrow{e_{\mathrm{on}}}_{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \xrightarrow{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}$$

Structure:

- 1. If Y is a reactant and X disappears then $Y \xrightarrow{-} X$
- 2. If Y is a reactant and X appears then $Y \xrightarrow{+} X$

[Fages et al. 2008]

Dynamics:

numerical simulation of the ODEs + binarisation

	putative input	output	candidate functions							
for B:	B, C									
0	00		0	1	0	1	0	1	0	1
1	01		0	0	1	1	0	0	1	1
2	10		0	0	0	0	1	1	1	1
3	11	0	0	0	0	0	0	0	0	0
			rota	rota	rota	rota	rota	rota	rota	rota
	putative input	output	I	wit	:h gı	ıess				
for C:	A, C									
0	00			0	1) 1			
1	01	0		0	C	0	0			
2	10	1		1	1	. 1	. 1			
3	11			0	C	1	. 1			
			$\neg A \wedge B$							

ASKeD-BN— minimality constraints

 \rightarrow For finding the minDNF(s) given a truth table

	putative input	output
0	00	1
1	01	1
2	10	1
3	11	0

Several candidate DNFs, but only one minimal

