

Unidad Métodos Numéricos

- * Resuelva cada uno de los siguientes problemas numéricos en un script por separado usando algún software de cálculo numérico (Matlab/Octave/Scilab).
- * Responda las preguntas o explique las consignas mediante un comentario (%) en el mismo script. Si necesita hacer cálculos matemáticos manualmente puede hacerlos en una hoja en papel.
- * Suba al campus todos los scripts y funciones usadas, así como también los cálculos escaneados.
 - 1. Considere la función:

$$g(x) = \frac{sen(x)}{1 - \sqrt{x^2 + 1}}, \qquad x \neq 0.$$

- (a) Explique por qué evaluando numéricamente g(x) cerca de $x \approx 0$ puede ser inexacto.
- (b) Reescriba g(x) de modo de evitar el error generado en (a).
- (c) Plotee la función g(x) usando las dos expresiones algebraicas en la misma gráfica con distintos colores para los intervalos: $[-1 \times 10^{-5}, \ 1 \times 10^{-5}], \ [-1 \times 10^{-6}, \ 1 \times 10^{-6}]$ y $[-1 \times 10^{-7}, \ 1 \times 10^{-7}]$. Utilice un tamaño del paso de $h = \frac{b-a}{100}$ para la discretización.
- 2. Considere el sistema de ecuaciones lineales dado en su forma ampliada:

$$\begin{bmatrix}
16 & -120 & 240 & -140 \\
-120 & 1200 & -2700 & 1680 \\
240 & -2700 & 6480 & -4200 \\
-140 & 1680 & -4200 & 2800
\end{bmatrix} \mathbf{e_i}$$

donde $\mathbf{e_i}$ es el versor de la base canónica en \mathbb{R}^4 .

- (a) Obtenga la factorización LU de la matriz de coeficientes A. Explique cuál es la ventaja de usar esta descomposición factorial al resolver sistemas lineales.
- (b) Usando la descomposición anterior, resuelva con algoritmos específicos de sustitución progresiva y regresiva los sistemas de ecuaciones lineales $\mathbf{A}\mathbf{x_i} = \mathbf{e_i}$ para $\mathbf{i} = \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$.
- (c) ¿Qué matriz representa $\mathbf{B} = [\mathbf{x_1} \ \mathbf{x_2} \ \mathbf{x_3} \ \mathbf{x_4}]$ formada por los vectores columnas soluciones de los sistemas lineales anteriores? Compruebe.
- 3. Considere el siguiente PVI:

$$\frac{dy}{dt} = (y-t)^2, \qquad y(0) = 0.$$

- (a) Aproxime la solución en el [0,1] con un paso h=0.1 por el método de Euler.
- (b) En una nueva función, modifique el esquema de Euler con las siguientes fórmulas:

$$y_{k+1}^* = y_k + h f(t_k, y_k),$$

$$y_{k+1} = y_k + \frac{h}{2} \left[f(t_k, y_k) + f(t_{k+1}, y_{k+1}^*) \right].$$

Este esquema se conoce como el método de Euler mejorado o método de Heun.

(c) Resuelva nuevamente y compare gráficamente las dos aproximaciones anteriores con la solución exacta dada por y(t) = t - tanh(t).