Mingsong Jiang

Ph.D. in Mechanical Engineering (Soft Robotics)

Email: jason123jms@gmail.com Web: https://mingsongj.github.io

Phone: +1 8608405104 Current Labpage: https://www.eng.yale.edu/faboratory/

EDUCATION University of California San Diego, La Jolla, CA, USA

Ph.D., Mechanical Engineering

4/2018-12/2021

Fields: Soft Robotics (Design & Fabrication), Reconfigurable Robotics, 3D Printing Thesis: Towards Reconfigurable and Adaptive Soft Robots via Hybrid Materials,

Designs and Mechanisms Advisor: Prof. Nick Gravish

Committee: Prof. Nick Gravish, Mike Tolley, Marc Meyers, Shengqiang Cai, and Ken Loh

M.S., Mechanical Engineering (GPA 3.7/4.0)

9/2016-3/2018

Fields: Soft Robotics (Design & Fabrication)

Thesis: Sliding-layer laminates: a new robotic material enabling robust and adaptable

undulatory locomotion Advisor: Prof. Nick Gravish

Committee: Prof. Nick Gravish, Mike Tolley, and Mike Yip

Xi'an Jiaotong University, Xi'an, Shaanxi, China

B.Eng., Mechanical Engineering (Major GPA 90/100)

9/2012-6/2016

Thesis: Design and fabrication of a 3D printed rehabilitative hand exoskeleton device (Best student thesis nominee)

PUBLICATIONS

- Jiang, M.; and Gravish, N. Reconfigurable laminates enable multifunctional robotic building blocks. Smart Materials and Structures. 2021. 30 (3), 035005.
- 2. **Jiang, M.**; Yu, Q.; and Gravish, N. Vacuum induced tube pinching enables reconfigurable flexure joints with controllable bend axis and stiffness. *IEEE*4th International Conference on Soft Robotics (Robosoft). 2021. pp. 315–320.
- 3. Yu, Q.; **Jiang, M.**; and Gravish, N. Flexoskeleton Fingers: 3D Printed Reconfigurable Ridges Enabling Multi-functional and Low-cost Underactuated Grasping. *IEEE Robotics and Automation Letters.* 2021. pp. 3971-3978.
- 4. **Jiang, M.**; Zhou, Z.; and Gravish, N. Flexoskeleton printing enables versatile fabrication of hybrid soft and rigid robots. *Soft Robotics*. 2020. 7 (6), 770-778.
- Jiang, M.; Song, R.; and Gravish, N. Knuckles that buckle: compliant underactuated limbs with joint hysteresis enable minimalist terrestrial robots. *IEEE/RSJ Int'l* Conference on Intelligent Robots and Systems (IROS). 2020. pp. 3732-3738
- 6. **Jiang, M.**; and Gravish, N. Rapid prototyping of insect-exoskeleton inspired robots. 9th International Symposium on Adaptive Motion of Animals and Machines. 2019.
- 7. **Jiang, M.**; and Gravish, N. Sliding-layer laminates: a robotic material enabling robust and adaptable undulatory locomotion *IEEE/RSJ Int'l Conference on Intelligent Robots and Systems (IROS)*. 2018. pp. 5944-5951.

Graduate Research Assistant

Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) 9/2019–12/2021

- New reconfigurable soft robot paradigms with on-demand mechanical "virtual" joints based on curvature control and planar fabrications (sewing, lamination, and 3D printing).
- Funded by NSF Award: EFRI C3 SoRo, No. 1935324
- Multi-disciplinary team collaboration among four universities

PIs: Prof. Nick Gravish, Dan Aukes, Cindy Harnett and Ross Hatton.

- Bi-weekly group discussions on: 3D soft robot printing, embroidered sensors and actuators, bio-inspired mechanisms and geometric methods for robot controls
- Mentored two students and published two papers.

Flexoskeleton Printing Enables Hybrid Functional Robots

12/2018-4/2020

- Low-cost rapid prototyping of multi-material robots based on commercial 3D printers.
- Embedded compliance, rigid chassis, actuators and sensors via simple fabrication steps
- Demonstrated a series of underactuated robots as multi-legged walking robots, multi-fingered grippers, and tailed and limbed swimmers.
- Mentored two students and published three papers.
- Press highlights on multiple major tech-sites.

Reconfigurable Laminates as Multifunctional Robotic Materials 5/2017–1/2020

- Geometric reconfiguration of hybrid material compositions to achieve tunable properties
- Laser cutting and manual lamination of various robotic fabrics and prototypes.
- Research outreach to high school students in laminate robot fabrication.
- Mentored several undergrads and published two papers.

Other Lab Duties

- Early stage lab establishment: building experimental stages and lab arrangements, self-built DPSS laser micro-fabrication stage with Prof. Gravish.
- As a safety coordinator, in charge of lab daily operation and training new students.

WORK EXPERIENCE

XPeng Robotics, affiliate of XPeng Inc., Shenzhen, China

3/2022-6/2022

System Design Expert

- Worked in a startup team (300 people) to build next-generation quadruped robots for urban transportation and in-house entertainment.
- Directly reported to CEO and board committee on product definition, concerning key technical parameters of robot actuation, transmission and power systems.
- System-level optimization of design parameters, e.g., robot form factors (weights, sizes), length distribution associated by robot vision, passability, safety and user experience.
- Drawing technical solutions for robot's user safety.

Yale University, the Faboratory (PI: Prof. Kramer-Bottiglio) 4/2023–present Postdoctoral Associate

- Lead author in system design of a flexible atmospheric diving suit via granular metamaterials (more than 100-meter water depths).
- Lead author in reconfigurable soft pouch sensors using pneumatic pressureand geometry-based design variations.
- Collaboration with two other world-leading research groups (PI Josh Bongard and PI Corey O'Hern) to achieve robotization and evolutionary computation of granular metamaterials.

Graduate Teaching Assistant

MAE156A, Fundamental Principles of Mechanical Design I, Fall 2017- Fall 2019

- Undergrad class on engineering science to the design and analysis of mechanical components.
- Held lab courses on design and control of motorized robotic systems via self-built electronics and microcontrollers. Also taught robot fabrication based on 3D printing and laser cutting.
- Held office hours and contributed to the design and grading of homework and midterms. Course by: Prof. Nate Delson and Nick Gravish.

MAE207, Bioinspired Mobile Robotics, Spring 2018 & Spring 2019

- Graduate-level bioinspired robotics class focusing on the theories and experimentation of dynamic robot locomotion and interesting biological mechanisms
- Held lab-based courses on control of legged robot locomotion via direct drive motors, on board sensors and controllers (ODrive motor controllers), coded by Python.
- As the lead TA, held office hours and contributed to designing and grading of homework. Course by: Prof. Nick Gravish.

Robot Inventors (Cluster 10), COSMOS summer high school, Summer 2019

- UCSD STEM program for high school students interested in engineering and robotics
- Lectures on introduction of robotics, operation of motors, computer vision and basic programming using Python.

Course by: Prof. Nick Gravish and Curt Schurgers.

MENTORSHIP Gravish Lab, UC San Diego (3 Undergrads & 5 MS students) (SELECTED)

Qifan Yu, Undergrad student, Mechanical Engineering, UCSD

- \bullet First author IEEE RAL paper: Flexoskeleton Fingers: 3D Printed Reconfigurable Ridges Enabling Multi-Functional and Low-Cost Underactuated Grasping
- Received best paper nominee in Robosoft 2021.
- Day-to-day research mentorship and instructions on scientific writing.
- Successfully admitted to MIT Ph.D. program (Mechanical Engineering).

Jiangsong Wang, Undergrad student, Aerospace Engineering, UCSD 9/2020–12/2021

• Successfully admitted to CMU M.S. program (Robotics).

Shuhang Zhang, MS student, Mechanical Engineering, UCSD

6/2020-6/2021

10/2020-10/2021

- Lead author in original research of flexoskeleton printing combined with pouch actuation
- Successfully admitted to EPFL Ph.D. program (Robotics).

PRESENTATIONS

(SELECTED) IEEE Robosoft 2021 Poster Session, virtual

4/2021

IROS 2020 Poster Session, virtual

10/2020

Jacobs School of Engineering Research Expo, UCSD

4/2019 & 4/2018

Invited talk on robotic laminates, Contextual Robotics Institute, UCSD

11/2017

PRESS Flexoskeleton Printing

(SELECTED)

TechXplore – Flexoskeleton printing: Fabricating flexible exoskeletons for insect-inspired robots

 ${\tt EEPOWER-3D}$ Printed Insect-Inspired 'Flexoskeleton' Robots are Fast and Inexpensive

Hackster.io – 3D-Printed Flexoskeleton Soft Robots Developed Using Insect Inspiration

Engadget – Scientists can 3D print insect-like robots in minutes

Workshop	Robosoft2021 Workshop Organization: Breaking the Mold: Challenging Current Paradigms in Soft Robotics	4/2021
AWARDS	Co-author of Best Paper Award Nominee, IEEE Robosoft 2021	4/2021

12/2015

5/2014

GITHUB Original Project Website: https://github.com/gravish-lab/Flexoskeleton-printing

Dancing Robot Competition, 3rd place, Robocon China 2014

References Nicholas G. Gravish

Dept. of Mechanical & Aerospace Engineering University of California San Diego Email:ngravish@eng.ucsd.edu

Chinese National Student Fellowship (8000 RMB)

Rebecca Kramer-Bottiglio

Mechanical Engineering & Materials Science

Yale University

Email: rebecca. kramer@yale.edu

Michael T. Tolley

Dept. of Mechanical & Aerospace Engineering University of California San Diego Email:tolley@ucsd.edu

Cindy K. Harnett

J.B. Speed School of Engineering University of Louisville Email:cindy.harnett@louisville.edu

Daniel M. Aukes

Ira A. Fulton Schools of Engineering Arizona State University Email:danaukes@asu.edu

PERSONAL Enjoy running, hiking, swimming, tennis, basketball, frisbee, and many other team sports.