```
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from numpy.ma.core import nonzero
linear=LinearRegression()
linear.fit(xtrain,ytrain)
print("intercept is",linear.intercept_,"coef is",linear.coef_)
→ intercept is -808214.8941724668 coef is [682.979958]
ypred=linear.predict(xtest)
print("predicted value",ypred)
→ predicted value [557745.0218229 548183.30241093 561159.92161289 ... 546134.36253694
      542036.48278895 546817.34249494]
rsquare=linear.score(xtest,ytest)
print("r square value", rsquare)
→ r square value 0.001334799698434308
from sklearn.metrics import mean_squared_error
mse=mean_squared_error(ytest,ypred)
rmse=mean_squared_error(ytest,ypred,squared=False)
print("mse=",mse)
print("rmse", rmse)
print("r_Squared=",rsquare)
→ mse= 172370583344.17865
     rmse 415175.36456800834
     r_Squared= 0.001334799698434308
```

Tast 2 K-Means Clustring(Mall_customers DataSet)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv('/content/drive/MyDrive/Mall_Customers.csv')
df.head()
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
0	1	Male	19	15	39	ılı
1	2	Male	21	15	81	
2	3	Female	20	16	6	
3	4	Female	23	16	77	
4	5	Female	31	17	40	
	1 2 3	0 1 1 2 2 3 3 4	 1 Male 2 Male 3 Female 4 Female 	 0 1 Male 19 1 2 Male 21 2 3 Female 20 3 4 Female 23 	0 1 Male 19 15 1 2 Male 21 15 2 3 Female 20 16 3 4 Female 23 16	1 2 Male 21 15 81 2 3 Female 20 16 6 3 4 Female 23 16 77

Next steps:

Generate code with df

View recommended plots

from sklearn import preprocessing label_encoder=preprocessing.LabelEncoder() df['Gender']=label_encoder.fit_transform(df['Gender']) df.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	1	19	15	39	ılı
	1	2	1	21	15	81	
	2	3	0	20	16	6	
	3	4	0	23	16	77	
	4	5	0	31	17	40	

Next steps:

Generate code with df

View recommended plots

X_train =df[["Annual Income (k\$)", "Spending Score (1-100)"]] X_train.plot.scatter(x="Annual Income (k\$)", y="Spending Score (1-100)", c="darkred", marker="x", alpha=.5)

Based on the scatter plot we divide the data into 5 different clusters

```
from sklearn.cluster import KMeans
model = KMeans(n_clusters=5)
model.fit(X_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1 warnings.warn(

```
KMeans
KMeans(n_clusters=5)
```

[25.72727273 79.36363636]

```
      3
      4
      3
      4
      0
      4
      3
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

```
clusters = pd.Series(clusters).map({
   0: "r",
    1: "b",
    2: "y",
    3: "g",
    4: "c",
},na_action='ignore')
print(clusters)
→ 0
            С
     1
            g
     2
            С
     3
            g
            С
     195
          b
     196
            У
     197
            b
     198
            У
     199
     Length: 200, dtype: object
X_train.plot.scatter(x="Annual Income (k$)", y="Spending Score (1-100)",
                     c=clusters, marker="x", alpha=.5, title="Mall Customers Data")
```

<Axes: title={'center': 'Mall Customers Data'}, xlabel='Annual Income (k\$)',
ylabel='Spending Score (1-100)'>

from sklearn.metrics import silhouette_score
from scipy.spatial import distance # To calculate distances

```
sse = {}
for k in range(1,10):
    model = KMeans(n_clusters=k)
    model.fit(X_train)
    # y_kmeans = kmeans.predict(X)
    sse[k] = model.inertia_
    print("For cluster = {}, WCSS is {}".format(k, sse[k]))

plt.figure()
plt.plot(list(sse.keys()),list(sse.values()),linewidth=3, color = 'Yellow', marker='o', mark
plt.xlabel("Number of Cluster")
plt.ylabel("WCSS")
plt.title("Elbow Method")
plt.show()

print('Optimum Number of Cluster : 5')
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: 1
\rightarrow
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
      warnings.warn(
    For cluster = 1, WCSS is 269981.28
    For cluster = 2, WCSS is 181363.59595959593
    For cluster = 3, WCSS is 106348.37306211122
    For cluster = 4, WCSS is 73679.78903948836
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
      warnings.warn(
    For cluster = 5, WCSS is 44448.4554479337
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
      warnings.warn(
    For cluster = 6, WCSS is 37233.814510710006
    For cluster = 7, WCSS is 30273.394312070042
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: 1
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
      warnings.warn(
    For cluster = 8, WCSS is 25354.360937251142
    For cluster = 9, WCSS is 21900.341350107527
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: 1
```



```
ss = \{\}
for k in range(2,10):
    model = KMeans(n clusters=k)
    model.fit(X_train)
    label = model.labels
    sil coeff = silhouette_score(X_train,label,metric = 'euclidean')
    ss[k] = sil coeff
    print('For cluster= {}, Silhouette Coefficient is {}'.format(k,sil_coeff))
plt.figure()
plt.plot(list(ss.keys()),list(ss.values()), linewidth=3, color = 'Yellow', marker='o', marker
plt.xlabel("Number of Cluster")
plt.ylabel("Silhouette Score")
plt.title("Silhouette Analysis")
plt.show()
print('Optimum Number of Cluster : 5')
🚁 ɹsr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
     warnings.warn(
    usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
    warnings.warn(
    or cluster= 2, Silhouette Coefficient is 0.2968969162503008
    or cluster= 3, Silhouette Coefficient is 0.46761358158775435
    or cluster= 4, Silhouette Coefficient is 0.4931963109249047
    or cluster= 5, Silhouette Coefficient is 0.553931997444648
```