|--|

## **MASTERY QUIZ DAY 18**

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

**S1.** Determine if the set of matrices  $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$  is linearly dependent or linearly independent.

Solution:

$$RREF\left(\begin{bmatrix} 3 & 1 & 3\\ -1 & 2 & -8\\ 0 & -2 & 6\\ 4 & 1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 2\\ 0 & 1 & -3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

**S3.** Let W be the subspace of  $\mathcal{P}_3$  given by  $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$ . Find a basis for W.

**Solution:** 

$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis is  $\{x^3 + x^2 + 2x + 1, 3x^3 - x^2 + 3x - 2\}.$ 

**S4.** Let  $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$ . Compute the dimension of W.

**Solution:** 

$$RREF \left( \begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

**A1.** Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of  $\mathbb{R}^3$  and  $\mathbb{R}^4.$ 

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

**A2.** Determine if  $T: \mathbb{R}^2 \to \mathbb{R}^2$  given by  $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$  is a linear transformation.

Solution: It is not linear. For example,

$$\begin{bmatrix} e^2 \\ 1 \end{bmatrix} = T \left( \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) \neq 2T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2e \\ 1 \end{bmatrix}$$

S3:

S4:

A1:

A2: