1 Divisibility

1.1 Rules

For integers a, b, c, d:

- 1. If $a \mid b$ and $c \mid d$ then $ac \mid bd$
- 2. If $a \mid b$ and $a \mid c$, then $a \mid b + c$
- 3. Euclid's algorithm. gcd(a, b) = gcd(a, b a)
- 4. Corollary of Euclid's algorithm. ax + by = n has solution (x, y) in integers if and only if $gcd(a, b) \mid n$

1.2 Problems

- 1. Prove that if $m p \mid mn + pq$, then $m p \mid mq + np$.
- 2. Prove that $17 \mid 2a + 3b \iff 17 \mid 9a + 5b$
- 3. Prove that it is not possible to find positive integers n and m > 1, such that $102^{2017} + 103^{2017} = n^m$
- 4. Find all positive integers d, such that d divides both: $n^2 + 1$ and $(n+1)^2 + 1$
- 5. Find all prime numbers p for which $p^2 + 2543$ has less than 16 positive divisors.
- 6. Prove that $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$
- 7. Prove that any two non-equal integers in form $2^{2^n} + 1$, where n is a positive integer are coprime-
- 8. a_1, a_2, \ldots, a_{2n} are mutually distinct integers. Find all integers x satisfying

$$(x-a_1)\dots(x-a_{2n})=(-1)^n(n!)^2$$

9. Let $a_0, \ldots, a_n \ge -1$ be integers such that at least one of them is non-zero. It is known that $a_0 + 2a_1 + 2^2a_2 + \cdots + 2^na_n = 0$. Show that $a_0 + a_1 + \cdots + a_n > 0$.

2 Congruences

2.1 Rules

For integers a, b, c, d, m, n and prime p.

- 1. $a \equiv b \mod m \iff m \mid a b$
- 2. $a \equiv b \mod m$ and $c \equiv d \mod m \implies a + c \equiv b + d \mod m$
- 3. $a \equiv b \mod m \iff an \equiv bn \mod mn$
- $4. \ a \equiv b \mod m \implies an \equiv bn \mod m$
- 5. Fermat's little theorem. $a^p \equiv a \mod p$
- 6. Wilson's theorem. $(p-1)! \equiv -1 \mod p$

2.2 Problems

- 1. Prove that 2018!! + 2017!! is divisible by 2019
- 2. Find all primes p, such that:
 - (a) p+4, p+14 are primes;
 - (b) $8p^2 + 1$ is a prime;
 - (c) p + 10, p + 1 is a prime;
 - (d) $4p^2 + 1$, $6p^2 + 1$ are primes;
 - (e) $p^2 6$, $p^2 + 6$ are primes;
 - (f) $p^4 6$ is a prime;
 - (g) $p^3 + 6$, $p^3 6$ are primes;
 - (h) $p^2 2$, $2p^2 1$, $3p^2 + 4$ are primes;
 - (i) $2^p + 1$, $2^p 1$ are primes;
 - (j) $p, q, p^q + q^p$ are primes.
- 3. In a series of integers, the next element is obtained by concatenating the element's order number to previous element by using carry. The first elements of the series are therefore:

$$1, 12, 123, 1234, \ldots, 123456789, 1234567900, 12345679011$$

Find all elements in the series which are divisible by 7.

- 4. Prove that there exist no integers n > 1, such that $n \mid 3^n 2^n$.
- 5. Find all positive integers n which satisfy the following condition: For all integers a and b which are coprime with n

$$a \equiv b \mod n \iff ab \equiv 1 \mod n$$

6. Prove that it is not possible to separate 18 consecutive integers into 2 subsets with 9 elements in such way that the product of each subset is equal.