

Национальный исследовательский университет "МЭИ"

IT Академия Samsung, трек «Интернет вещей», проект

Медицинский пирометр

Автор:

студент 4 курса, Останин И.А.

Преподаватель:

к.т.н., доцент, Стрелков Н.О.

Актуальность работы

В последние годы наблюдается существенный рост устройств интернета вещей в области здравоохранения.

Преимущества использования ІоТ устройств:

- персонал становится продуктивнее
- ускоряется процесс сбора, передачи, анализа данных и постановки диагноза
- снижается влияние человеческого фактора
- уменьшается стоимость лечения

Цель и задачи работы

Цель: создание автономного устройства для контроля температуры объектов на базе микроконтроллера ESP32 с последующей беспроводной передачей данных в облачный

сервис для анализа и мониторинга в реальном времени.

Поставленные задачи:

- Выбор оптимального пирометрического датчика
- Разработка технической части устройства
- Разработка алгоритма и написание программы
- Реализация отправки данных в облачный сервис для хранения и обработки информации
- Сборка устройства, программирование, тестирование

Архитектура проекта Датчик Питание Устройства ввода Микропроцессор Устройства вывода Питание Рисунок 1 – Структурная схема устройства

Архитектура проекта Пирометрический датчик

Основные характеристики MLX90614					
Рабочее напряжение	3 B				
Рабочее напряжение (предельное)	3.6 B				
Рабочая температура	-40°C+85°C				
Диапазон измеряемых температур	-40°С+85°С (внутр.) -70°С+380°С (внеш.)				
Точность измерения (внеш.)	±0.1°C				
Точность измерения (внутр.)	±0.5°C				

Рисунок 2 – Внешний вид MLX90614

Архитектура проекта. Плата микроконтроллера

Микроконтроллер ESP32 D1 R32					
Рабочее напряжение	3.3 B				
Напряжение питания	5 – 12 B				
Рабочая температура	-40°C+85°C				
Wi-Fi	802.11 b/g/n/e/i/n				
Bluetooth	v4.2 BR/EDR + BLE				
SPI Flash	4M6				
ROM	448кб				
SRAM	520кб				
Тактовая частота	80 – 240 МГЦ				

Архитектура проекта Периферийные устройства

Рисунок 5 – Внешний вид дисплея

Архитектура проекта Подключение устройств

Алгоритм работы

Сборка прототипа

Энергопотребление				
Компонент	Максимальное потребление тока, м А			
WEMOS D1 R32	250			
LCD1602A	200			
MLX90614	25			
Зуммер	20			
Итог	495			

Рисунок 9 – Прототип устройства

Тестирование прототипа

```
16:47:06.371 -> Initialization..
16:47:06.643 -> Display... OK!
16:47:07.733 -> MLX90614... OK!
16:47:07.835 -> Attempting to connect to SSID: Wifi
16:47:07.869 -> .....
16:47:17.900 -> Connected.
16:47:17.900 -> READY!
16:49:01.810 -> Channel update successful.
16:49:08.520 -> Problem updating channel. HTTP error code -401
```

Рисунок 10 – Вывод диагностической информации в консоль

Рисунок 11 – Вывод информации на дисплей

Анализ данных на сервере

Смета компонентов				
Компонент	цена, руб			
WEMOS D1 R32	805			
LCD1602A	340			
Зуммер	175			
MLX90614	910			
Кнопки	126			
Итог	2356			

- ◆ Контроль температуры людей в общественных местах
- Сбор температурной статистики для последующего анализа
- Бесконтактный автономный контроль температуры биообъектов

Сравнение с аналогами

	ПрофКиП СтражниК	HTi HT-806	AndesFit ADF-B38A	Viatom by Lepu AOJ-20A	Разрабатываемо е устройство
Диапазон, °С	+ 30+ 42	- 20+ 550	+ 35+ 42.2	+ 32+ 42.9	- 40+ 85
Точность, °С	± 0.3	± 2	± 0.3	± 0.2	± 0.1
Питание	От сети	Автономное	Автономное	Автономное	Автономное
Интерфейс	WiFi	Bluetooth LE	Bluetooth LE	Bluetooth LE	WiFi
Тип	Медицинский	Промышленный	Медицинский	Медицинский	Медицинский
Цена, руб	35 000	2 850	4748	2 067	2 356

- Рассмотрено оборудование и программное обеспечение, на основе которого будет сделано устройство.
- Выполнено построение портативного прототипа медицинского пирометра
- Реализован пример хранения и обработки данных на удаленном сервере

Репозиторий GitHub

В последствие, проект может быть доработан.

Спасибо за внимание!

