Online algorithms for combinatorial auctions

Samuel Boïté

Combinatorial auctions

An introduction

Offline allocation

Offline optimal allocation: OPT, welfare v(OPT).

Combinatorial auctions

An introduction

Online allocation: ALG(p), welfare v(ALG(p)).

Competitive ratio?

Warm-up An important example

Warm-up With less agents

$X \subset M$	$\{a\}$	$\{b\}$	$\{a,b\}$
$v_1(X)$	1	1	2
$v_2(X)$	2	2	[2;3)

WLOG,
$$p_a \le p_b$$
. If $p_b \le 1$,
$$2-p_a-p_b \ge 1-p_a \ge 1-p_b.$$
 If $p_b > 1$...

$$v(OPT) = 3$$
 $v(ALG) = 2$

Conclusion: $CR \leq 2/3$.

Valuation classes

- Additive when $v(S \sqcup T) = v(S) + v(T)$.
- Fractionally subadditive when $v = \max a_i$ with $(a_i)_{1 \le i \le n}$ additive.
- Subadditive when $v(S \cup T) \le v(S) + v(T)$.

What is the worst possible deterministic instance we can build?

(with posted price mechanisms)

Conjecture: CR = 2/3

2 items case

Towards a general proof

Prop. With 2 items & subadditive valuations, CR is 2/3.

CR is even 1 when OPT is unique.

Proof. (When OPT is unique)

For item x, we note $\max x := \max v_i(x)$.

Then, v(OPT) can only be of the forms: $v_i(\{a,b\})$, $\max a + \max b$, $\max a + \max a + \max b$... In each case, we set explicit prices, we verify that they work.

Proof. (When OPT is non-unique)

We have an equation like $v(OPT) = v_k(b) + v_i(a) = v_k(a) + v_j(b)$. We rewrite $v_i(a) + v_j(b) = 2 \, v(OPT) - \left(v_k(a) + v_k(b)\right) \ge \frac{2}{3} v(OPT)$.

Putting prices $p_a = v_i(a) - \varepsilon$ and $p_b = v_i(b) - \varepsilon$ works.

Beyond the 2 items case

• In general, we can have v(ALG) < v(OPT) without ties.

$X \subset M$	any item	any pair	M
$v_1(X)$	1	1	2
$v_2(X)$	1/2	1/2	1/2

To have v(ALG) = v(OPT), we need $\forall x, \ p_x > 1/2$. But then $v_1(a) + p_b + p_c > 2 = v_1(M)$.

- Proof scheme: v(ALG) = v(OPT) requires a lot of conditions on valuations & prices.
- Contradicting them yields $v(ALG) \ge 2/3 \cdot v(OPT)$.

Let's sum things up

- $CR \leq 2/3$.
- CR = 2/3 for 2 items + subadditive (and even 1 when OPT unique).
- As soon as 3 items, we often have CR < 1 without ties.
- Full proof for 3 items would be tedious and uninformative.
- Time to introduce some simplifications!

Introducing simplifications

"Max-min greedy matching"

Eden et al., 2020

CR > .51

- Valuations only take values 0 and 1.
- Buying multiple items is not allowed.
- Always contains one perfect matching.

Prices $p \equiv$ priorities π over items.

First results

Prop. When OPT is unique, CR = 1.

Interesting case: $\mathcal{G} \supset$ two perfect matchings.

2/3 case: $\mathcal{G}=$ two disjoint perfect matchings.

Def. \mathcal{G}_p : graph of utility-maximizing items.

Prop. Finding p such that \mathcal{G}_p is the union of 2 perf. matchings is enough to guarantee a CR of 2/3.

Order 1

Order 2

Removing all edges that do not belong in a perfect matching?

Order 3

- - -

Removing all edges that do not belong in a perfect matching?

We cannot guarantee more than $\alpha/(2\alpha-1) \sim 1/2$.

Also demonstrates that pricing items based on number of buyers is not enough.

Definition

First observations

- Acyclic graph \Longrightarrow we can guarantee v(OPT).
 - Alternative proof of CR = 1 when OPT is unique!
- Graph condensation:

Feedback set approach

• Is removing 1/3 of the edges enough to make D acyclic?

No!

Imagine we removed at most (n-3)/2 nodes.

Consider two consecutive nodes u and v:

 v_5 the arc goes from u to v.

We formed a directed cycle.

We have to remove at least 1/2 of the edges!

Hamiltonian case

• Hamiltonian: there is a cycle containing all the items.

• Eden et al.'s approach:

Odd is cheaper

CR ≥ 5/9

Conclusion

- $CR \leq 2/3$.
- Conjecture: CR = 2/3 for comb. auctions & max-min greedy matching.
- Proven for simple cases.
- For max-min greedy matching, many natural approaches fail.
- Beating 5/9 on Hamiltonian graphs would be nice towards general answer!