Diophantine and tropical geometry

David Zureick-Brown joint with Eric Katz (Waterloo) and Joe Rabinoff (Georgia Tech)

Slides available at http://www.mathcs.emory.edu/~dzb/slides/

SERMON March 28-29, 2015

$$a^2 + b^2 = c^2$$

Basic Problem (Solving Diophantine Equations)

Analysis

Let $f_1, ..., f_m \in \mathbb{Z}[x_1, ..., x_n]$ be polynomials.

Let R be a ring (e.g., $R = \mathbb{Z}, \mathbb{Q}$).

Problem

Describe the set

$$\{(a_1,\ldots,a_n)\in R^n: \forall i, f_i(a_1,\ldots,a_n)=0\}.$$

Basic Problem (Solving Diophantine Equations)

Analysis

Let $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$ be polynomials.

Let R be a ring (e.g., $R = \mathbb{Z}, \mathbb{Q}$).

Problem

Describe the set

$$\{(a_1,\ldots,a_n)\in R^n: \forall i,f_i(a_1,\ldots,a_n)=0\}.$$

Fact

Solving diophantine equations is hard.

Hilbert's Tenth Problem

The ring $R = \mathbb{Z}$ is especially hard.

Hilbert's Tenth Problem

The ring $R = \mathbb{Z}$ is especially hard.

Theorem (Davis-Putnam-Robinson 1961, Matijasevič 1970)

There does not exist an algorithm solving the following problem:

input: $f_1, ..., f_m \in \mathbb{Z}[x_1, ..., x_n]$;

output: YES / NO according to whether the set

$$\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\}$$

is non-empty.

Hilbert's Tenth Problem

The ring $R = \mathbb{Z}$ is especially hard.

Theorem (Davis-Putnam-Robinson 1961, Matijasevič 1970)

There does not exist an algorithm solving the following problem:

input: $f_1, ..., f_m \in \mathbb{Z}[x_1, ..., x_n]$;

output: YES / NO according to whether the set

$$\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\}$$

is non-empty.

This is *still open* for many other rings (e.g., $R = \mathbb{Q}$).

Fermat's Last Theorem

Theorem (Wiles et. al)

The only solutions to the equation

$$x^n + y^n = z^n, n \ge 3$$

are multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), (0,\pm 1,\pm 1).$$

Fermat's Last Theorem

Theorem (Wiles et. al)

The only solutions to the equation

$$x^n + y^n = z^n, n \ge 3$$

are multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), (0,\pm 1,\pm 1).$$

This took 300 years to prove!

Fermat's Last Theorem

Theorem (Wiles et. al)

The only solutions to the equation

$$x^n + y^n = z^n, n \ge 3$$

are multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), (0,\pm 1,\pm 1).$$

This took 300 years to prove!

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Implicit question

- Why do equations have (or fail to have) solutions?
- Why do some have many and some have none?
- What underlying mathematical structures control this?

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem $\overline{(Faltings)}$

For $n \geq 5$, the equation

$$y^2 + x^n = 1$$

has only finitely many solutions.

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem (Faltings)

For $n \geq 5$, the equation

$$y^2 + x^n = 1$$

has only finitely many solutions.

Theorem (Faltings)

For $n \geq 5$, the equation

$$y^2 = f(x)$$

has only finitely many solutions if f(x) is squarefree, with degree > 4.

Fermat Curves

Question

Why is Fermat's last theorem believable?

- $x^n + y^n z^n = 0$ looks like a surface (3 variables)
- $x^n + y^n 1 = 0$ looks like a curve (2 variables)

Mordell Conjecture

Example

$$y^2 = (x^2 - 1)(x^2 - 2)(x^2 - 3)$$

This is a cross section of a two holed torus. The **genus** is the number of holes.

Conjecture (Mordell)

A curve of genus $g \ge 2$ has only finitely many rational solutions.

Fermat Curves

Question

Why is Fermat's last theorem believable?

- ① $x^n + y^n 1 = 0$ is a curve of genus (n-1)(n-2)/2.
- ② Mordell implies that for **fixed** n > 3, the nth Fermat equation has only finitely many solutions.

Fermat Curves

Question

What if n = 3?

- **1** $x^3 + y^3 1 = 0$ is a curve of genus (3-1)(3-2)/2 = 1.
- 2 We were lucky; $Ax^3 + By^3 = Cz^3$ can have infinitely many solutions.

Faltings' theorem / Mordell's conjecture

Theorem (Faltings, Vojta, Bombieri)

Let X be a smooth curve over $\mathbb Q$ with genus at least 2. Then $X(\mathbb Q)$ is finite.

Example

For $g \geq 2$, $y^2 = x^{2g+1} + 1$ has only finitely many solutions with $x, y \in \mathbb{Q}$.

Uniformity

Problem

- Given X, compute $X(\mathbb{Q})$ exactly.
- **2** Compute bounds on $\#X(\mathbb{Q})$.

Conjecture (Uniformity)

There exists a constant N(g) such that every smooth curve of genus g over \mathbb{Q} has at most N(g) rational points.

Theorem (Caporaso, Harris, Mazur)

Lang's conjecture \Rightarrow uniformity.

Uniformity numerics

g	2	3	4	5	10	45	g
$B_{g}(\mathbb{Q})$	642	112	126	132	192	781	16(g+1)

Remark

Elkies studied K3 surfaces of the form

$$y^2 = S(t, u, v)$$

with lots of rational lines, such that S restricted to such a line is a perfect square.

Coleman's bound

Theorem (Coleman)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime of good reduction. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + 2g - 2.$$

Remark

- **1** A modified statement holds for $p \leq 2g$ or for $K \neq \mathbb{Q}$.
- Note: this does not prove uniformity (since the first good p might be large).

Tools

p-adic integration and Riemann-Roch

Chabauty's method

(*p*-adic integration) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \geq g - r$ such that,

$$\int_{P}^{Q} \omega = 0 \qquad \forall P, Q \in X(\mathbb{Q}), \omega \in V$$

(**Coleman, via Newton Polygons**) Number of zeroes in a residue disc D_P is $\leq 1 + n_P$, where $n_P = \# (\text{div } \omega \cap D_P)$

(Riemann-Roch)
$$\sum n_P = 2g - 2$$
.

(Coleman's bound)
$$\sum_{P \in X(\mathbb{F}_p)} (1 + n_P) = \#X(\mathbb{F}_p) + 2g - 2$$
.

Example (from McCallum-Poonen's survey paper)

Example

$$X: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1$$

1 Points reducing to $\widetilde{Q} = (0,1)$ are given by

$$x = p \cdot t$$
, where $t \in \mathbb{Z}_p$
$$y = \sqrt{x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1} = 1 + x^2 + \cdots$$

Chabauty's method

(*p*-adic integration) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \geq \underline{g} - \underline{r}$ such that,

$$\int_{P}^{Q} \omega = 0 \qquad \forall P, Q \in X(\mathbb{Q}), \omega \in V$$

(**Coleman, via Newton Polygons**) Number of zeroes in a residue disc D_P is $\leq 1 + n_P$, where $n_P = \#(\text{div }\omega \cap D_P)$

(Riemann-Roch)
$$\sum n_P = 2g - 2$$
.

(Coleman's bound)
$$\sum_{P \in X(\mathbb{F}_p)} (1 + n_P) = \#X(\mathbb{F}_p) + 2g - 2$$
.

Stoll's hyperelliptic uniformity theorem

Theorem (Stoll)

Let X be a hyperelliptic curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q})$. Suppose r < g - 2.

Then

$$\#X(\mathbb{Q}) \le 8(r+4)(g-1) + \max\{1,4r\} \cdot g$$

Tools

p-adic integration on annuli

comparison of different analytic continuations of p-adic integration

Main Theorem (partial uniformity for curves)

Theorem (Katz, Rabinoff, ZB)

Let X be any curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q})$. Suppose $r \leq g-2$. Then

$$\#X(\mathbb{Q}) \le 84g^2 - 123g + 48$$

Tools

p-adic integration on annuli

comparison of different analytic continuations of *p*-adic integration Non-Archimedean (Berkovich) structure of a curve [BPR] Combinatorial restraints coming from the Tropical canonical bundle

Comments

Corollary ((Partially) effective Manin-Mumford)

There is an effective constant N(g) such that if g(X) = g, then

$$\#(X\cap\mathsf{Jac}_{X,tors})(\mathbb{Q})\leq N(g)$$

Corollary

There is an effective constant N'(g) such that if g(X) = g > 3 and X/\mathbb{Q} has totally degenerate, trivalent reduction mod 2, then

$$\# (X \cap \mathsf{Jac}_{X,tors})(\mathbb{C}) \leq N'(g)$$

The second corollary is a big improvement

- 1 It requires working over a non-discretely valued field.
- 2 The bound only depends on the reduction type.
- 3 Integration over wide opens (c.f. Coleman) instead of discs and annuli.

Baker-Payne-Rabinoff and the slope formula

(Dual graph Γ of $X_{\mathbb{F}_p}$)

(Contraction Theorem) $\tau \colon X^{\operatorname{an}} \to \Gamma$.

(Combinatorial harmonic analysis/potential theory)

f a meromorphic function on X^{an}

 $F:=\left(-\log|f|
ight)ig|_{\Gamma}$ associated tropical, piecewise linear function

 $\operatorname{div} F$ combinatorial record of the slopes of F

(Slope formula) $\tau_* \operatorname{div} f = \operatorname{div} F$