Les diagrammes UML : Diagrammes d'objets

- Les objets sont les instances des classes du diagramme de classes
 - Représentation graphique

Nom de l'objet

Nom de l'objet:Classe

:Classe

Classe non encore précisée

Objet anonyme

Nom de l'objet:Classe::paquetage::paquetage-englobant

93

UML: Diagrammes d'objets: Objets

Stéréotypes des objets

« exception » Division-par-zéro

Valeurs des attributs des objets

:Voiture

Couleur = rouge

Objets

- ☐ Liens entre objets : instances de relations entre classes
 - Un lien indique qu'il existe un chemin de communication entre les objets reliés

UML : Diagrammes d'objets: Objets

□ Liens instances de relations réflexives :

diagramme de classes

Patron Collaborateur
Personne

S. Ebersold

UML : Diagrammes d'objets: Objets

□ Liens instances de relations ternaires

diagramme de classes

diagramme d'objets

UML : Diagrammes d'objets: Objets

Les objets composites

diagramme de classes

diagramme d'objets

Objets

- Similitudes avec les diagrammes de classes
 - □ Décorations identiques à celles des associations

Les diagrammes UML : Diagrammes d'Etats-Transitions

- Un Diagramme d'Etat Transition est utilisé pour montrer :
 - le cycle de vie d'un objet instance d'une classe,
 - les événements qui provoquent une transition d'un état à un autre,
 - les actions qui résultent d'un changement d'état

UML : Diagrammes d'Etats Transitions : Etats

- L'état d'un objet est l'une des conditions possibles dans lequel un objet peut exister
 - Un objet est toujours dans un état donné, pour un certain temps => un état dure
 - Etat = {valeurs des attributs de l'objet} + {liens vers d'autres objets}
 - L'Etat possède un nom qui l'identifie
- Ex

UML : Diagrammes d'Etats Transitions : Etats

Représentation graphique

En activité

Au chômage

A la retraite

UML: Diagrammes d'Etats Transitions: Etats

□ Etats déterminés par la valeur de l'âge et la présence ou non du lien vers Entreprise

=> Jules retraité, Paul chômeur et Jean actif

UML: Diagrammes d'États Transitions : Etats

- Caractéristiques :
 - un état initial

□ des états intermédiaires

Etat intermédiaire

□ des états finaux

UML : Diagrammes d'Etats Transitions : Transitions

- Une transition entre deux états est une connexion unidirectionnelle reliant ces états.
- L'ensemble des transitions entre états forme un graphe dirigé
- Traduisent le passage d'un état à un autre état (instantané car pas d'état inconnu)
- Sont déclenchées par un événement
- Représentation graphique :

S. Ebersold

UML : Diagrammes d'Etats Transitions : Evènements

- Un Evènement est une occurrence d'une situation donnée qui est instantané
- Déclencheur servant à passer d'un état à un autre
- Indique le chemin à suivre dans le graphe induit par les transitions

UML : Diagrammes d'Etats Transitions : **Evènements**

- Spécification :
 - nom de l'événement
 - liste des paramètres
 - objet expéditeur
 - objets destinataire
 - description de la signification de l'événement

UML : Diagrammes d'Etats Transitions : concepts associés

- Concepts associés aux états et aux transitions :
 - garde : condition booléenne validant ou non le déclenchement d'une transition à l'arrivée d'un événement
 - actions et activités correspondent à des opérations déclarées dans la classe :
 - action : opération attachée à une transition
 - activité : opération associée à un état

S. Ebersold

UML : Diagrammes d'Etats Transitions : actions et activités

Action :

- opération attachée à une transition
- instantanée et ne pouvant être interrompue
- ayant accès aux paramètres de l'événement et aux attributs de l'objet
- les états peuvent aussi contenir des actions pouvant être exécutée en entrée ou en sortie de l'état ou lors de l'arrivée d'un événement alors que l'objet est dans l'état

UML : Diagrammes d'Etats Transitions : actions et activités

Activité :

- Opération attachée à un état
- A une certaine durée
- Peut être interrompue, dés qu'une transition de sortie de l'état est déclenchée
- L'arrêt de certaines est soumis au déclenchement d'une transition (cycliques), d'autres s'arrêtent d'elles mêmes (séquentielles), démarrant à l'entrée dans l'état
- L'arrêt d'une activité séquentielle peut être suivi d'une transition automatique

UML : Diagramme d'Etats Transitions : Actions et activités

S. Ebersold

UML : Diagramme d'états-transitions : Partie de Monopoly

UML : Diagramme d'états-transitions : Entité Propriété

UML 2.0 : Diagrammes de machines à états finis

- Plus de distinctions activités/actions
- Une plus grande utilisation des artefacts:
 - Points de connexion,
 - Points de choix
 - Historique,

...

UML : Diagramme machine-état:

- Etats composites :
 - Les états imbriqués permettent d'appréhender la complexité des diagrammes
 - généralisation : factorisation de transitions
 - agrégation : composition d'états simultanés
 - Les transitions temporisées décrivent l'attente qui n'est plus une activité
 - □ L'atteinte d'un état final non emboîté signifie la mort de l'objet (disparition du système)

Représentation des états composites

États composites et activités

? Que provoque l'arrivée de l'évènement event1?

Points de connexion

- Entrée ou sortie d'un état composite :
 - Nommée
 - Indépendante de l'état initial (resp. final) de l'état composite
 - en entrée:
 - en sortie:

Points de choix

- Alternatives pour le franchissement d'une transition
 - □ Points de jonction
 - Plusieurs transitions entrantes
 - Plusieurs transitions sortantes
 - Pas d'activités internes
 - Pas de déclencheurs d'évènements en sortie
 - Gardes situées avant évaluées avant
 - □ Points de décision ♦
 - Une seule transition entrante
 - Au moins deux transitions sortantes
 - Gardes situées avant évaluées quand l'état est atteint

Jonction

Jonction

Alternative

Représentation d'alternatives

Historique

 Pseudo état qui mémorise le dernier état actif d'un état composite

Quelque soit le niveau d'imbrication pour un historique profond : H*

Historique : Exemple

Abstraction des Etats Composites

Parallélisme

ces deux automates s'exécutent en parallèle

Synchronisation

Concurrence

- Définition d'états orthogonaux
- Etat orthogonal = État composite découpé en régions
- Chaque région représente un flot d'exécution
- Etat composite terminé quand toutes les régions ont atteint leur terminaison

Exemples

Transitions concurrentes: Exemple

Exercice: simplifier

Exercice: solution

Chart ID: UML Distilled Figure 8-5
Chart Name: Fig 8-5: UML Distilled
Chart Type: UML State Diagram
This sample State diagram can be found in the
UML Distilled Book that is included with Visual UML.

(Chapter 8, Page 127, Figure 8-5)

UML : Diagramme d'Etat Transition : Où Commencer ...

- Durant l'analyse, se concentrer sur le comportement des classes avec un comportement dynamique significatif
- Examiner les diagrammes d'interactions entre objets
 - L'intervalle entre deux opérations est un état candidat
- Pour une classe donnée, regarder les états possibles en:
 - Evaluant les valeurs d'attributs
 - Evaluant les opérations
 - Définir les règles pour chaque état et
 - Identifier les transactions valides entre états

Conception orientée processus

- Vue dynamique du système
- Des Cas d'utilisation à la modélisation des interactions entre objets :
 - Diagrammes de collaboration
 - Diagrammes de séquences
- Les diagrammes dédiés aux processus : diagrammes d'activité

UML : Vue dynamique Transition vers les objets

- Vue des cas d'utilisation = description fonctionnelle structurée par rapport à un acteur
- Passage à l'approche objet : par association d'une collaboration à chaque cas d'utilisation (réalisation)
- Collaboration = description des objets du domaine, des connexions entre ces objets, des messages échangés

UML : Cas d'utilisation Transition vers les objets

- Chaque scénario, instance du cas d'utilisation réalisé par la collaboration, se représente par une interaction entre les objets décrits dans le contexte de la collaboration
- Les scénarios, instances du cas d'utilisation sont représentés par des diagrammes d'interaction (diagrammes de collaboration et diagrammes de séquence)

Les diagrammes UML : Diagrammes de collaboration

- Extensions des diagrammes d'objets
- Montrent les collaborations entre objets
- Contexte d'une interaction :
 - arguments,
 - variables locales créées pendant l'exécution,
 - liens entre objets participant à l'interaction

Les diagrammes UML : Diagrammes de collaboration

- Un diagramme de collaboration montre donc :
 - L'existence des objets
 - Les interactions, ou liens, entre objets
 - Les messages entre objets
- Un scénario peut être représenté par un diagramme de collaboration :
 - Un diagramme de collaboration représente la séquence d'événements échangés par un ensemble d'objets durant un scénario

Interactions

- Représentation des interactions:
 - Interaction réalisée par un groupe d'objets qui collaborent en échangeant des messages
 - Numérotation des messages pour exprimer la séquentialité

UML: Diagrammes de collaboration Interactions

 Représentation du déclenchement d'une interaction : présence d'un acteur

UML : Diagrammes de collaboration Interactions

- Représentation des messages :
 - Flèche allant de l'objet client vers l'objet fournisseur
 - Séquence : niveau d'emboîtement de l'envoi de message au sein de l'interaction
 - Résultat : liste de valeurs retournées par le message
 - Nom : correspond en général à une opération définie dans la classe de l'objet destinataire
 - Arguments : liste des paramètres du message

UML : Diagrammes de collaboration Interactions: annotation des liens

UML: Diagrammes de collaboration: exemple

Description du Diagramme de collaboration du cas d'utilisation PayerLoyer du Monopoly

Les diagrammes UML : Diagrammes de Séquences

- Un diagramme de séquences montre:
 - L'existence d'objets
 - Les interactions, ou liens, entre objets
 - Les Messages entre objets
- Il représente la séquence d'événements échangés par un ensemble d'objets durant un scénario
- Il insiste sur les Aspects temporels (chronologie des événements) et non le contexte de l'interaction (<>diagramme de collaboration)

Les diagrammes UML : Diagrammes de Séquences

- Représentation des interactions:
 - Lignes horizontales étiquetées par des noms
 - Messages orientés de l'émetteur vers le destinataire
 - Axe vertical associé à chaque objet exprimant sa ligne de vie (éventuellement gradué)
 - Ordre des envois exprimé par la position sur l'axe vertical
 - Distinction des messages synchrones et asynchrones

Les diagrammes UML : Diagrammes de Séquences

Représentation des interactions:

UML : Diagrammes de Séquences : Scripts

- Pour les scénarios complexes, les diagrammes de séquences peuvent être améliorés par l'utilisation de scripts
- Ecrits
 - □ à gauche du diagramme
 - en langage naturel ou en pseudo code permettant de représenter :
 - les boucles (while loop end loop)
 - les branchements (if else end if)

UML : Diagrammes de Séquences : Scripts

- Les structures de contrôle et les conditions associées peuvent être traduites directement sur le diagramme, associées aux messages
- Une transition (instant d'émission d'un message) peut être nommée à coté de l'origine de la flèche symbolisant le message
- Une transition sert de référence pour construire des contraintes temporelles

UML : Diagrammes de Séquence \$\frac{162}{62}

163

COO et UML

UML : Diagramme de séquence : Acheter

UML : Diagramme de séquence : PayerLoyer

