

OREGON STATE UNIVERSITY SCHOOL of CBEE DEPARTMENT OF CHEMICAL ENGINEERING

CHE 331 Transport Phenomena I Non-Newtonian Fluids

Dr. Goran Jovanovic

Reading Assignment:

- Liquid Viscosity Correlations for Flowmeter Calculations;
 Roger Gilmont
- 2) Non-Newtonian Flow I Characterization of Fluid Behavior; Boger D.V and Halmos A.

Please turn-off cell phones

Fluids give and flow under stress. Newtonians are the simplest of fluids, and they are characterized by the following property:

The velocity gradient (Shear Rate) at a point within the fluid flow field is proportional to the Shear Stress at that point.

Shear rate
$$\propto$$
 Shear sterss
$$\frac{du}{dy} \propto \tau \qquad \tau_{xy} = \mu \left(\left| \frac{du_x}{dy} \right| \right)$$
Newton's Law
$$\tau_{xy} = -\mu \left(\frac{d\vec{u}_x}{dy} \right)$$

All other fluids whose Shear rate – Shear stress relationship cannot be described by the above equation are non-Newtonian Fluids!!

Newtonian Fluids

Air

Water

Steam

Almost all Gases

Fluids of simple molecules

Non-Newtonian Fluids

Suspensions

Slurries

Emulsions

Polymer Solutions

Paints

Biological Fluids

Concrete Mix

Time Independent

$$\binom{Shear}{Rate} = f \binom{Shear}{Stress}$$

Time Dependent

 $\begin{pmatrix}
\text{Non elastic} \\
\text{Shear} \\
\text{Rate}
\end{pmatrix} = f \begin{pmatrix}
\text{Shear Stress} + \\
\text{History of Stress}
\end{pmatrix}$

How about this fluid:

Is it time dependent?

Is it elastic?

Does it have memory?

So, what kind of fluid this is?

CLASSIFICATION OF FLUIDS (time independent)

CLASSIFICATION OF FLUIDS (time dependent viscoelastic)

Newtonian Fluids - The velocity gradient is proportional to the imposed shear stress on fluid.

Bingham Plastic Fluids - The velocity gradient is proportional to the shear stress but these fluids have Initial Yield Stress τ_0

Power Law Fluids - Shear stress Shear rate relationship is not linear. K is not viscosity (shear thickening and shear thinning)

$$\Rightarrow \qquad \tau = \mu \left(\left| \frac{du}{dy} \right| \right)$$

$$\leftarrow \tau = \tau_o + \eta \left(\left| \frac{du}{dy} \right| \right)$$

$$\Leftarrow \qquad \tau = K \left(\left| \frac{du}{dy} \right| \right)^n$$

 $\downarrow \downarrow$

$$\Leftarrow \qquad \tau = \tau_o + K \left(\left| \frac{du}{dy} \right| \right)^n$$

CLASSIFICATION OF FLUIDS - Average Velocity in Pipe

Newtonian Fluids

$$\tau = \mu \left(\left| \frac{du}{dy} \right| \right)$$

Average velocity in Pipe

$$u_{avg} = \frac{d_p^2 \rho \sum F}{32\mu L}$$

Bingham Plastic Fluids

$$\tau = \tau_o + \eta \left(\left| \frac{du}{dy} \right| \right)$$

$$u_{avg} = \frac{d_p^2 \rho \sum F}{32\eta L} \left(1 - \frac{4}{3} m + \frac{1}{3} m^4 \right)$$

where
$$m = \frac{4\tau_o L}{\rho d_p \sum F} = \frac{\tau_o}{\tau_w}$$
 and $m \le 1$

if
$$\tau_o \ge \tau_w$$
 or $m \ge 1$ or $\frac{4\tau_o L}{d_p} \ge \rho \sum F$ the flow is frozen

Power Law Fluids

$$\tau = K \left(\left| \frac{du}{dy} \right| \right)^n \qquad u_{avg} = \frac{d_p^2 \rho \sum F}{32K \cdot L} \frac{4n}{1 + 3n} \left(\frac{d_p \rho \sum F}{4K \cdot L} \right)^{\frac{(1-n)}{n}}$$

General Plastic Fluids

$$\tau = \tau_o + K \left(\left| \frac{du}{dy} \right| \right)^n \qquad u_{avg} = \frac{d_p^2 \rho \sum_{i=1}^{n} F}{32K \cdot L} \left(\frac{d_p \rho \sum_{i=1}^{n} F}{4K \cdot L} \right)^{\frac{(1-n)}{n}} \times 4n(1-m)^{\frac{(n+1)}{n}} \left(\frac{(1-m)^2}{1+3n} + \frac{2m(1-m)}{1+2n} + \frac{m^2}{1+n} \right)$$

where
$$m = \frac{4\tau_o L}{\rho d_n \sum_i F} = \frac{\tau_o}{\tau_w}$$
 and $m \le 1$

if $\tau_o \ge \tau_w$ or $m \ge 1$ or $\frac{4\tau_o L}{d_s} \ge \rho \sum F$ the flow is frozen

CLASSIFICATION OF FLUIDS - Velocity Distribution in Pipe

Newtonian Fluid Laminar Flow

Bingham Plastic Fluid Laminar Flow

CLASSIFICATION OF FLUIDS - Velocity Distribution in Pipe

Power Law Fluid

$$\tau = K \left(\frac{du}{dy}\right)^n$$

CLASSIFICATION OF FLUIDS – Bingham Plastic - Friction Factor

He =
$$\frac{\tau_o d^2 \rho}{\eta^2}$$
 $\tau = \tau_o + \eta \left(\left| \frac{du}{dy} \right| \right)$

Example He=1,000,000.

CLASSIFICATION OF FLUIDS – Power law Fluids Friction Factor

CHE 331 Fall 2022

People. Ideas. Innovation.

Thank you for your attention!