Mantıksal Tasarım ve Uygulamaları

Dr. Burcu KIR SAVAŞ

- Tümleyen Aritmetiği
- r Tümleyeni Aritmetiği
- r-1 Tümleyeni Aritmetiği
- İkili Sayı Kodları
- BCD Kodu
- Ağırlıklı Kodlar
- Ağırlıksız Kodlar

- Tümleyen alınacak sayıların negatif sayılar olduklarını varsayacağız.
- Tümleyen ifadesi için sayıcıları örnek gösterilebilir. Sayıcılar yukarı doğru sayarken 01,02 diye artar.
- Aşağı doğru sayarken ise 09,08 diye azalır.
- Burada 09 un tümleyenine 01, 08 in tümleyenine is 02 denilmektedir.

- İkili sayı sisteminde iki tümleyen kullanılmaktadır. Bunlar 1'in tümleyeni ve 2'nin tümleyeni r tabanlı bir sayı sisteminde tümleyenler r (r:radix (tümleyeni ve r-1 tümleyeni olarak ifade edilir.
- ÖRNEK: 10 tabanlı bir sayı sisteminde r tümleyeni 10, r-1 tümleyeni 9 dur.

•

r-Tümleyeni

r tabanlı bir tam sayı sisteminde n basamaklı pozitif tamsayı N ile gösterilirse N sayısının r tümleyeni N^r=rⁿ-N olarak tanımlanabilir (n: kullanılan bit veya basamak sayısı.)

ÖRNEK 1: $(125.456)_{10}$ sayısının 10 tümleyenini bulunuz. $(125)_{10}$ sayısının tamsayı kısmı 3 basamaklıdır. Bu nedenle $r^n = 10^3$ tür. $N^{r=}r^n$ - $N = 10^3$ -125.456 = 874.544

Örnek (21.426)₁₀ sayısının 10'a tümleyenini ve 9'a tümleyenini bulunuz.

10'a tümleyeni:

N^r=10ⁿ-N=100.000-21.456=78.544 olur.

9'a tümleyeni:

r-1 tümleyen= N^{r-1} = r^n - r^{-m} -N N^{r-1} = 10^2 - 10^{-3} -21.426=100-0.001-21.426=78.543 olur.

- ÖRNEK 2: (110010.1011)₂ sayısının 2'ye tümleyenini bulunuz.
- (110010.1011)₂ sayısının tamsayı kısmı 6 basamaklıdır. Bu nedenle rⁿ = 2⁶ dır.
- $N^{r=r^n}$ $N = 2^6 110010.1011 = 1000000-110010.1011 = 0001101.0101 olur.$
- İkili sayı sisteminde 2'nin tümleyeni iki şekilde bulunabilir (ikili sayı sisteminde r=2 dir).
- N sayısındaki bitlerin tersi alınır (1'ler 0, 0'lar 1 yapılır) ve LSB'e 1 eklenir.

r-1 Tümleyeni

- Bir N tam sayının r-1 tümleyeni N^{r-1}=rⁿ-1-N olur.
- Kesirli bir N sayının tümleyeni N^{r-1}=rⁿ-r^{-m}-N dir.
- n: tamsayı kısmındaki basamak (digit) sayısı
- m: kesirli kısımdaki basamak (digit) sayısı
- ÖRNEK 5: 2314 desimal sayısının 9'a tümlenini bulalım. Çözüm n=4, r=10. 10⁴-1-2314=
- =10000-1-2314 =9999-2314=7685 elde edilir.

 ÖRNEK 6: Binary (101101)₂ sayısının r-1 (r=2) veya 1' tümleyenini bulunuz.

Normalde 0 ları 1 birleri 0 yapmak yeter: Sonuç= 010010 elde edilir.

Fomül uygulanırsa:

26-1-101101=1000000-0000001-101101=0010010 aynı sonuç bulunur.

- ÖRNEK 7: 2314 desimal sayısının 9 tümlenini bulalım.
- n=4, r=10. 10⁴-1-2314=10000-1-2314=9999-2314=7685 elde edilir.
- ÖRNEK 8: Binary (101101)₂ sayısının r-1 (r=2) veya 1 tümleyenini bulunuz.
- Normalde 0 ları 1 birleri 0 yapmak yeter:
 Sonuç= 010010 elde edilir.

Kesirli sayıların r-1 tümleyeni N^{r-1}= rⁿ-r^{-m}-N dir.

Örnek 9: (624.125)₁₀ sayısının 10'a ve 9'a tümleyenlerini bulunuz.

Çözüm: r=10, n=3, m=3 Sayının 10'a tümleyeni=10³-624.125=375.875 olur. 9'a tümleyeni=10³-10⁻³-624.125=375.874

Örnek 10: (100110.011)₂ binary (ikili) sayısının 2'ye ve 1'e tümleyenlerini bulunuz.

Çözüm: r=2, n=6, m=3

Sayının 2'ye tümleyeni: 26-100110.011=011000.101

1'e tümleyeni:

1000000-0.001-100110.011=1000000-100110.100

=0011001.1 olur

Işaretli büyüklük aritmetiği

İşaretli büyüklük aritmetiğini kullanarak 100100112 (–19) ile 000011012 (+13) 'ü toplayınız:

r tümleyen aritmetiği ile çıkarma

- R tabanındaki iki pozitif sayının 'M N' işlemi aşağıdaki gibi özetlenebilir.
- a) M sayısının kendisi ile N sayısının r tümleyeni toplanır
- b) Toplama sonucunda bulunan değerin 'elde' si varsa bu değer atılır ve sayının pozitif Iduğu kabul edilir. Eğer elde değeri yoksa bulunan değerin r tümleyeni alınır ve önüne - işareti konur.

- ÖRNEK 1: (72532-3250) işleminin sonucunu 10'a tümleyen kullanarak bulunuz.
- 03250 sayısının 10 tümleyeni 100000 3250 = 96750.
- Ohalde sonuç: 72532 + 96750 = 169282 (Elde 1 var)

ÖRNEK 3: $(1010100)_2$ - $(1000100)_2$ işleminin sonucunu 2'nin tümleyenini kullanarak bulunuz.

(1000100)2 sayısının 2 tümleyeni 0111100 dir. Dolayısiyle sonuç: 1010100 + 0111100 = 10010000 (İşaret biti 1)

Taşma

- Pozitif+ Pozitif = Negatif
- Negatif + Negatif = Pozitif
- Örnek: +4 + 5
- =0100+0101
- =1001
- =-7

- +3= 0011 -3=1101
- +3= 000011 -3=1111101

İkili sayı sisteminde kodlar (Binary Kodlar)

Binary Coded Decimal- BCD

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

937.25 sayısı BCD olarak aşğıdaki gibi kodlanır:

1001 0011 0111 . 0010 0101

9

3

5

İkili sayı sisteminde kodlar (Binary Kodlar)

BCD Sayılarda Toplama

Örnek 1: 146₁₀+259₁₀=405₁₀

Herhangi bir BCD blok 9 dan büyük olunca o bloka düzeltme sayısı olarak 6 (binary 0110) eklenir.

Ağırlıklı Kodlar

2) 8-4-2-1 KODU (bu kod ağırlıklı bir koddur)

8	8-4-2-1 K	DDU			
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
a	- 1	0	0	1	

3) 4-3-2-1 CODE (Ağırlıklı kod)

0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	1	0	0	
4	1	0	0	0	
5	1	0	0	1	
6	1	0	1	0	
7	1	1	0	0	
8	1	1	0	1	
a	1	1	1	0	

3) 6-3-1-1 KODU (AĞIRLIKLI KOD)

0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	1	
3	0	1	0	0	
4	0	1	0	1	
5	0	1	1	1	
6	1	0	0	0	
7	1	0	0	1	
8	1	0	1	1	
9	1	1	0	0	

Ağırlıklı Kodlar

3) 4-3-2-1 CODE (Ağırlıklı kod)

-					
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	1	0	0	
4	1	0	0	0	
5	1	0	0	1	
6	1	0	1	0	
7	1	1	0	0	
8	1	1	0	1	
9	1	1	1	0	

Ağırlıksız Kodlar

4) ARTI 3 (EXCESS 3) Kodu (Ağırlıksız kod)

0	0	0	1	1
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
4	0	1	1	1
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0

Bu kod 8-4-2-1 kodunun her sayısına 3 (0011) eklenerek bulunmustur ve ağırlıksız bir koddur.

49 sayısını Excess-3 kodu ile gösteriniz.

Digit		BCD
4	4+3=7	0111
9	9+3=12	1100

 $(49)=(01111100)_{+3}$

Decimal Digit	BCD Code	Excess-3 Code
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

 $(01111100)_{+3}$

Sayısının decimal karşılığını bulunuz.

 Excess-3 formatındaki sayı 4'lü gruplanır ve her grubun 10 luk karşılığı bulunur.

$$(0111\ 1100)_{+3} = (7\ 12)_{+3}$$

• Her basamaktan 3 çıkarılır.

$$(7\ 12)_{+3} = (49)$$

Ağırlıksız Kodlar

5. 5'te 2 Kodu (AĞIRLIKSIZ KOD)

0	0	0	0	0	0	
1	0	0	1	0	1	
2	0	0	1	1	0	
3	0	1	0	0	1	
4	0	1	0	1	0	
5	0	1	1	0	0	
6	1	0	0	0	1	
7	1	0	0	1	0	
8	1	0	1	0	0	
9	1	1	0	0	0	

her ondalık sayı 5 bit ile yazılmıştır ve her satırda sadece iki tene 1 vardır. Analog-digital ölçmelerde cok kullanılan bir koddur.

6) GRAY Kodu (Ağırlıksız kod)

	•			
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	1	0	0
8	1	1	0	0
9	1	1	0	1

Ölçülmüş anlog işaretlerin dijital işarete dönüştürülmesine sıkça kullanılan bir koddur (A/D converters), örneğin motorların hızını when mesuring mil encoderi kullanarak ölçülmesinde.

Gray Kodu

İkilik tabandaki 1011 sayısını Gray koda çevirin

İkilik tabandaki (1001111) Gray sayısını ikilik koda çevirin

ASCII Kod:
American
Stadart code
for Information
Interchange

Char-	har- ASCII Code			Char-			ASC	II C	Code						
acter	A ₆	A,	A ₄	A_3	A ₂	A_1	A ₀	acter	A ₆	A,			A ₂		Ao
space	0	1	0	0	0	0	0	@	1	0	0	0	0	0	0
!	0	1	0	0	0	0	1	A	1	0	0	0	0	0	1
"	0	1	0	0	0	1	0	В	1	0	0	0	0	1	0
#	0	1	0	0	0	1	1	C	1	0	0	0	0	1	1
\$	0	1	0	0	1	0	0	D	1	0	0	0	1	0	0
%	0	1	0	0	1	0	1	E	1	0	0	0	1	0	1
&	0	1	0	0	1	1	0	F	1	0	0	0	1	1	0
,	0	1	0	0	1	1	1	G	1	0	0	0	1	1	1
(0	1	0	1	0	0	0	Н	1	0	0	1	0	0	0
)	0	1	0	1	0	0	1	I	1	0	0	1	0	0	1
*	0	1	0	1	0	1	0	J	1	0	0	1	0	1	0
+	0	1	0	1	0	1	1	K	1	0	0	1	0	1	1
,	0	1	0	1	1	0	0	L	1	0	0	1	1	0	0
_	0	1	0	1	1	0	1	M	1	0	0	1	1	0	1
	0	1	0	1	1	1	0	N	1	0	0	1	1	1	0
1	0	1	0	1	1	1	1	O	1	0	0	1	1	1	1
0	0	1	1	0	0	0	0	P	1	0	1	0	0	0	0
1	0	1	1	0	0	0	1	Q	1	0	1	0	0	0	1
2	0	1	1	0	0	1	0	R	1	0	1	0	0	1	0
3	0	1	1	0	0	1	1	S	1	0	1	0	0	1	1
4	0	1	1	0	1	0	0	T	1	0	1	0	1	0	0

Table 1-3 ASCII code (incomplete)

Kaynakça

- 1. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 4. Baskı, 2005
- 2. Thomas L. Floyd, Digital Fundamentals, Prentice-Hall Inc. New Jersey, 2006
- 3. M. Morris Mano, Michael D. Ciletti, Digital Design, Prentice-Hall, Inc., New Jersey, 1997
- 4. Hüseyin Demirel, Dijital Elektronik, Birsen Yayınevi, İstanbul, 2012