Exponentially Weighted Averages:

为了理解这个概念,我们可以用一个气温的例子引入:

如果我们想观察到气温在这年中的一个动态平均的总体趋势,我们可以使用 exponential weighted average:

$$V_t = \beta V_{t-1} + (1 - \beta)\theta_t$$

以上是 exponential weighted average 的基础表达式,其中 V_t 可以被看作是 $\frac{1}{1-\beta}$ 天气温的一个近似动态平均值,这意味着参数 β 决定了这个平均值的 window 的大小(约等于弱化了当前的值 θ_t 对于 V_t 的影响)。举个例子,如果 $\beta=0.9$ 那么 V_t 就可以被看作是时间点 t 以及之前 10 天的温度的一个近似均值 (approximately average over 10 days). 下图中的红线对应着 $\beta=0.9$,绿线对应 $\beta=0.98$ 。

In a word, small $\,m{\beta}\,$ means more susceptible to outlier but adapts more quickly to the latest value changes