Supporting Information for

"Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials" by Wang et al.

Web Appendix A

Derivation of the martingale residual-based bias-corrected sandwich variance estimator

We can write the martingale as

$$M_{ij}(t;\boldsymbol{\beta}) = \widehat{M}_{ij}(t;\boldsymbol{\beta}) - \left\{ \widehat{M}_{ij}(t;\boldsymbol{\beta}) - \widehat{M}_{ij}(t;\boldsymbol{\beta}) \right\} - \left\{ \widehat{M}_{ij}(t;\boldsymbol{\beta}) - M_{ij}(t;\boldsymbol{\beta}) \right\},$$
(1)

where we define

$$\widehat{M}_{ij}(t;\boldsymbol{\beta}) = N_{ij}(t) - \int_0^t Y_{ij}(u)\widehat{\lambda}_0(u)\exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij})du$$

$$= N_{ij}(t) - \int_0^t Y_{ij}(u)\exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij})\sum_{k=1}^n \sum_{l=1}^{m_k} \frac{dN_{kl}(u)}{S^{(0)}(\boldsymbol{\beta};u)}.$$

By the first-order Taylor Series expansion, the second term of (1) can be written as

$$-\left\{\widehat{M}_{ij}(t;\widehat{\boldsymbol{\beta}})-\widehat{M}_{ij}(t;\boldsymbol{\beta})\right\}=\widehat{\boldsymbol{D}}'_{ij}(t;\boldsymbol{\beta}^*)(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}),$$

where $\widehat{\boldsymbol{D}}_{ij}(t;\boldsymbol{\beta}^*) = \frac{\partial \widehat{M}_{ij}(t;\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}|_{\boldsymbol{\beta}^*}, \, \boldsymbol{\beta}^*$ is on the line segment joining $\widehat{\boldsymbol{\beta}}$ and $\boldsymbol{\beta}$, and

$$\frac{\partial \widehat{M}_{ij}(t;\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \int_0^t Y_{ij}(u) \boldsymbol{Z}_{ij} \exp(\boldsymbol{\beta}' \boldsymbol{Z}_{ij}) \sum_{k=1}^n \sum_{l=1}^{m_k} \frac{dN_{kl}(u)}{S^{(0)}(\boldsymbol{\beta}; u)} - \int_0^t Y_{ij}(u) \exp(\boldsymbol{\beta}' \boldsymbol{Z}_{ij}) \sum_{k=1}^n \sum_{l=1}^{m_k} \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}, u) dN_{kl}(u)}{S^{(0)}(\boldsymbol{\beta}; u)^2}$$

$$= \int_0^t \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}, u)}{S^{(0)}(\boldsymbol{\beta}; u)} \right\} Y_{ij}(u) \exp(\boldsymbol{\beta}' \boldsymbol{Z}_{ij}) \widehat{\lambda}_0(u) du.$$

Using the results in Wei et al. (1989) and Spiekerman and Lin (1998), we have

$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \widehat{\boldsymbol{V}}_m \sum_{i=1}^n \sum_{j=1}^{m_i} \boldsymbol{U}_{ij}(\boldsymbol{\beta}) + o_p(n^{-\frac{1}{2}}),$$

in addition to the strong convergence of $\widehat{\beta}$ to β .

Thus we have

$$-\left\{\widehat{M}_{ij}(t;\widehat{\boldsymbol{\beta}})-\widehat{M}_{ij}(t;\boldsymbol{\beta})\right\}=\widehat{\boldsymbol{D}}'_{ij}(t;\boldsymbol{\beta}^*)(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})\approx\widehat{\boldsymbol{D}}'_{ij}(t;\boldsymbol{\beta})\widehat{\boldsymbol{V}}_m\sum_{k=1}^n\sum_{l=1}^{m_k}\boldsymbol{U}_{kl}(\boldsymbol{\beta}).$$

The third term of (1) can be written as

$$\begin{split} -\left\{\widehat{M}_{ij}(t;\boldsymbol{\beta}) - M_{ij}(t;\boldsymbol{\beta})\right\} &= -\left\{N_{ij}(t) - \int_{0}^{t} Y_{ij}(u)\widehat{\lambda}_{0}(u;\boldsymbol{\beta}) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij})du\right\} \\ &+ \left\{N_{ij}(t) - \int_{0}^{t} Y_{ij}(u)\lambda_{0}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij})du\right\} \\ &= \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij}) \left\{\widehat{\lambda}_{0}(u;\boldsymbol{\beta}) - \lambda_{0}(u)\right\}du \\ &= \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij}) \sum_{k=1}^{n} \sum_{l=1}^{m_{k}} \frac{dN_{kl}(u)}{S^{(0)}(\boldsymbol{\beta};u)} - \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij})\lambda_{0}(u)du \\ &= \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij}) S^{(0)}(\boldsymbol{\beta};u)^{-1} \sum_{k=1}^{n} \sum_{l=1}^{m_{k}} dN_{kl}(u) \\ &- \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij}) S^{(0)}(\boldsymbol{\beta};u)^{-1} S^{(0)}(\boldsymbol{\beta};u)\lambda_{0}(u)du \\ &= \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij}) S^{(0)}(\boldsymbol{\beta};u)^{-1} \\ &\times \left\{\sum_{k=1}^{n} \sum_{l=1}^{m_{k}} dN_{kl}(u) - \sum_{k=1}^{n} \sum_{l=1}^{m_{k}} Y_{kl}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{kl})\lambda_{0}(u)du\right\} \\ &= \int_{0}^{t} Y_{ij}(u) \exp(\boldsymbol{\beta}'\boldsymbol{Z}_{ij}) S^{(0)}(\boldsymbol{\beta};u)^{-1}dM(u), \end{split}$$

where we define $M(t) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} M_{ij}(t)$ as the total sum of individual martingales.

That is, the individual martingale residual (1) can be approximated by

$$M_{ij}(t;\boldsymbol{\beta}) \approx \widehat{M}_{ij}(t;\widehat{\boldsymbol{\beta}}) + \widehat{\boldsymbol{D}}'_{ij}(t;\widehat{\boldsymbol{\beta}})\widehat{\boldsymbol{V}}_m \sum_{k=1}^n \sum_{l=1}^{m_k} \boldsymbol{U}_{kl}(\widehat{\boldsymbol{\beta}}) + \int_0^t Y_{ij}(u) \exp(\widehat{\boldsymbol{\beta}}' \boldsymbol{Z}_{ij}) S^{(0)}(\widehat{\boldsymbol{\beta}};u)^{-1} dM(u).$$

Therefore, we have

$$\sum_{j=1}^{m_i} \int_0^\infty \left\{ \mathbf{Z}_{ij} - \frac{\mathbf{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} dM_{ij}(u)$$

$$\approx \sum_{j=1}^{m_i} \int_0^\infty \left\{ \mathbf{Z}_{ij} - \frac{\mathbf{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} d\widehat{M}_{ij}(u; \widehat{\boldsymbol{\beta}})$$

$$+ \sum_{j=1}^{m_i} \int_0^\infty \left\{ \mathbf{Z}_{ij} - \frac{\mathbf{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} d\widehat{\boldsymbol{D}}'_{ij}(u; \widehat{\boldsymbol{\beta}}) \widehat{\boldsymbol{V}}_m \sum_{k=1}^n \sum_{l=1}^{m_k} \boldsymbol{U}_{kl}(\widehat{\boldsymbol{\beta}})$$

$$+ \sum_{j=1}^{m_i} \int_0^\infty \left\{ \mathbf{Z}_{ij} - \frac{\mathbf{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} Y_{ij}(u) \exp(\widehat{\boldsymbol{\beta}}' \mathbf{Z}_{ij}) S^{(0)}(\widehat{\boldsymbol{\beta}}; u)^{-1} dM(u)$$

$$= \widehat{\boldsymbol{U}}_i + \sum_{j=1}^{m_i} \int_0^\infty \left\{ \mathbf{Z}_{ij} - \frac{\mathbf{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} d\widehat{\boldsymbol{D}}'_{ij}(u; \widehat{\boldsymbol{\beta}}) \widehat{\boldsymbol{V}}_m \sum_{k=1}^n \sum_{l=1}^{m_k} \boldsymbol{U}_{kl}(\widehat{\boldsymbol{\beta}})$$

$$+ \sum_{j=1}^{m_i} \int_0^\infty \left\{ \mathbf{Z}_{ij} - \frac{\mathbf{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} Y_{ij}(u) \exp(\widehat{\boldsymbol{\beta}}' \mathbf{Z}_{ij}) S^{(0)}(\widehat{\boldsymbol{\beta}}; u)^{-1} dM(u).$$

Eliminating mean-zero cross-product terms, we define the following bias-corrected version of the estimated martingale-score \hat{U}_i :

$$\widehat{\boldsymbol{U}}_{i}^{BC} = \widehat{\boldsymbol{U}}_{i} + \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} d\widehat{\boldsymbol{D}}'_{ij}(u; \widehat{\boldsymbol{\beta}}) \widehat{\boldsymbol{V}}_{m} \sum_{l=1}^{m_{i}} \boldsymbol{U}_{il}(\widehat{\boldsymbol{\beta}})
+ \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} Y_{ij}(u) \exp(\widehat{\boldsymbol{\beta}}' \boldsymbol{Z}_{ij}) S^{(0)}(\widehat{\boldsymbol{\beta}}; u)^{-1} dM_{i\bullet}(u)
= \left\{ \boldsymbol{I} + \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} d\widehat{\boldsymbol{D}}'_{ij}(u; \widehat{\boldsymbol{\beta}}) \widehat{\boldsymbol{V}}_{m} \right\} \widehat{\boldsymbol{U}}_{i}$$

$$+\sum_{j=1}^{m_i} \int_0^\infty \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\widehat{\boldsymbol{\beta}}; u)}{S^{(0)}(\widehat{\boldsymbol{\beta}}; u)} \right\} Y_{ij}(u) \exp(\widehat{\boldsymbol{\beta}}' \boldsymbol{Z}_{ij}) S^{(0)}(\widehat{\boldsymbol{\beta}}; u)^{-1} dM_{i\bullet}(u),$$

where $M_{i\bullet}(t) = \sum_{j=1}^{m_i} M_{ij}(t)$ is the sum of within-cluster martingales.

Finally, we have

$$\widehat{m{V}}_{MR} = \widehat{m{V}}_m \left\{ \sum_{i=1}^n \widehat{m{U}}_i^{BC} \left(\widehat{m{U}}_i^{BC} \right)'
ight\} \widehat{m{V}}_m.$$

Web Appendix B

Derivation of Equation (8) in the manuscript

By the first-order Taylor expansion, we have

$$U_i \approx \widehat{U}_i - \widehat{\Omega}_i \left(\beta - \widehat{\beta} \right),$$
 (2)

where

$$\Omega_{i} = -\frac{\partial U_{i}}{\partial \boldsymbol{\beta}} = -\frac{\partial}{\partial \boldsymbol{\beta}} \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} \right\} dM_{ij}(u)
= -\frac{\partial}{\partial \boldsymbol{\beta}} \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} \right\} dN_{ij}(u)
+ \frac{\partial}{\partial \boldsymbol{\beta}} \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} \right\} Y_{ij}(u) \lambda_{0}(u) \exp(\boldsymbol{\beta}' \boldsymbol{Z}_{ij}) du
= \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \frac{\boldsymbol{S}^{(2)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u) \boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)'}{S^{(0)}(\boldsymbol{\beta}; u)^{2}} \right\} dN_{ij}(u)
- \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \frac{\boldsymbol{S}^{(2)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u) \boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)'}{S^{(0)}(\boldsymbol{\beta}; u)^{2}} \right\} Y_{ij}(u) \lambda_{0}(u) \exp(\boldsymbol{\beta}' \boldsymbol{Z}_{ij}) du
+ \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} \right\} \boldsymbol{Z}'_{ij} Y_{ij}(u) \lambda_{0}(u) \exp(\boldsymbol{\beta}' \boldsymbol{Z}_{ij}) du,$$

and the hat notation indicates that the evaluation is at the estimator $\hat{\beta}$. By summing across all clusters and re-arranging terms, we obtain

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \approx \hat{\boldsymbol{V}}_m \left(\sum_{i=1}^n \boldsymbol{U}_i \right),$$
 (3)

where $\hat{V}_m = (\sum_{i=1}^n \hat{\Omega}_i)^{-1}$ is the model-based variance estimator. If for small changes in $\hat{\beta}$, \hat{V}_m is approximately constant, then we can use the sandwich estimator $\hat{V}_s = \hat{V}_m \left(\sum_{i=1}^n \hat{U}_i \hat{U}_i'\right) \hat{V}_m$ to estimate the variance of $\hat{\beta} - \beta$.

By (2) and (3), we have

$$\widehat{\boldsymbol{U}}_{i}\widehat{\boldsymbol{U}}_{i}' \approx \left\{ \boldsymbol{U}_{i} + \widehat{\boldsymbol{\Omega}}_{i} \left(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \right) \right\} \left\{ \boldsymbol{U}_{i} + \widehat{\boldsymbol{\Omega}}_{i} \left(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \right) \right\}'$$

$$= \boldsymbol{U}_{i}\boldsymbol{U}_{i}' + \boldsymbol{U}_{i} \left(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \right)' \widehat{\boldsymbol{\Omega}}_{i}' + \widehat{\boldsymbol{\Omega}}_{i} \left(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \right) \boldsymbol{U}_{i} + \widehat{\boldsymbol{\Omega}}_{i} \left(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \right) \left(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}} \right)' \widehat{\boldsymbol{\Omega}}_{i}'$$

$$\approx \boldsymbol{U}_{i}\boldsymbol{U}_{i}' - \boldsymbol{U}_{i} \left(\sum_{i=1}^{n} \boldsymbol{U}_{i}' \right) \widehat{\boldsymbol{V}}_{m}' \widehat{\boldsymbol{\Omega}}_{i}' - \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \left(\sum_{i=1}^{n} \boldsymbol{U}_{i} \right) \boldsymbol{U}_{i}$$

$$+ \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \left(\sum_{i=1}^{n} \boldsymbol{U}_{i} \right) \left(\sum_{i=1}^{n} \boldsymbol{U}_{i}' \right) \widehat{\boldsymbol{V}}_{m}' \widehat{\boldsymbol{\Omega}}_{i}',$$

$$E \left(\widehat{\boldsymbol{U}}_{i} \widehat{\boldsymbol{U}}_{i}' \right) \approx \boldsymbol{\Psi}_{i} - \boldsymbol{\Psi}_{i} \widehat{\boldsymbol{V}}_{m}' \widehat{\boldsymbol{\Omega}}_{i}' - \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \boldsymbol{\Psi}_{i} + \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \boldsymbol{\Psi}_{i} \widehat{\boldsymbol{V}}_{m}' \widehat{\boldsymbol{\Omega}}_{i}' + \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \left(\sum_{j \neq i} \boldsymbol{\Psi}_{j} \right) \widehat{\boldsymbol{V}}_{m}' \widehat{\boldsymbol{\Omega}}_{i}'$$

$$= \left(\boldsymbol{I} - \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \right) \boldsymbol{\Psi}_{i} \left(\boldsymbol{I} - \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \right)' + \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \left(\sum_{j \neq i} \boldsymbol{\Psi}_{j} \right) \widehat{\boldsymbol{V}}_{m}' \widehat{\boldsymbol{\Omega}}_{i}',$$

$$(4)$$

where $\Psi_i = cov(U_i) = E(U_iU_i')$ is the true covariance of the cluster-specific score.

Web Appendix C: Web figures from the simulation study for $p_0 = 0.2$

- Web Figures 1-10 present the results for the percent relative bias of different variance estimators for $p_0 = 0.2$.
 - Web Figure 1 (Page 7) refers to the ROB variance estimator.
 - Web Figure 2 (Page 8) refers to the MR variance estimator.
 - Web Figures 3, 4, 5, and 6 (Page 9-12) refer to the KC, FG, MD, and MBN variance estimators, respectively.
 - Web Figures 7, 8, 9, and 10 (Page 13-16) refer to the KCMR, FGMR, MDMR,
 and MBNMR variance estimators, respectively.
- Web Figures 11-20 present the results for empirical type I error rates based on different variance estimators for $p_0 = 0.2$.
 - Web Figure 11 (Page 17) refers to the ROB variance estimator.
 - Web Figure 12 (Page 18) refers to the MR variance estimator.
 - Web Figures 13, 14, 15, and 16 (Page 19-22) refer to the KC, FG, MD, and MBN variance estimators, respectively.
 - Web Figures 17, 18, 19, and 20 (Page 23-26) refer to the KCMR, FGMR, MDMR,
 and MBNMR variance estimators, respectively.

Web Figure 1: Percent relative bias of the uncorrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 2: Percent relative bias of the martingale residual-based bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 3: Percent relative bias of the KC bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 4: Percent relative bias of the FG bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 5: Percent relative bias of the MD bias-corrected sandwich estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 6: Percent relative bias of the MBN bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 7: Percent relative bias of the KCMR bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 8: Percent relative bias of the FGMR bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 9: Percent relative bias of the MDMR bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 10: Percent relative bias of the MBNMR bias-corrected sandwich variance estimator, for $p_0 = 0.2$ under the marginal Cox model.

Web Figure 11: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the uncorrected sandwich variance estimator.

Web Figure 12: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the martingale residual-based biascorrected sandwich variance estimator.

Web Figure 13: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the KC bias-corrected sandwich variance estimator.

Web Figure 14: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the FG bias-corrected sandwich variance estimator.

Web Figure 15: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the MD bias-corrected sandwich estimator.

Web Figure 16: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the MBN bias-corrected sandwich variance estimator.

Web Figure 17: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the KCMR bias-corrected sandwich variance estimator.

Web Figure 18: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the FGMR bias-corrected sandwich variance estimator.

Web Figure 19: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the MDMR bias-corrected sandwich variance estimator.

Web Figure 20: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ under the marginal Cox model, based on the MBNMR bias-corrected sandwich variance estimator.

Web Appendix D: Web figures from the simulation study for $p_0 = 0.5$

- Web Figures 21-30 present the results for the percent relative bias of different variance estimators for $p_0 = 0.5$.
 - Web Figure 21 (Page 28) refers to the ROB variance estimator.
 - Web Figure 22 (Page 29) refers to the MR variance estimator.
 - Web Figures 23, 24, 25, and 26 (Page 30-33) refer to the KC, FG, MD, and MBN variance estimators, respectively.
 - Web Figures 27, 28, 29, and 30 (Page 34-37) refer to the KCMR, FGMR, MDMR,
 and MBNMR variance estimators, respectively.
- Web Figures 31-40 present the results for empirical type I error rates based on different variance estimators for $p_0 = 0.5$.
 - Web Figure 31 (Page 38) refers to the ROB variance estimator.
 - Web Figure 32 (Page 39) refers to the MR variance estimator.
 - Web Figures 33, 34, 35, and 36 (Page 40-43) refer to the KC, FG, MD, and MBN variance estimators, respectively.
 - Web Figures 37, 38, 39, and 40 (Page 44-47) refer to the KCMR, FGMR, MDMR,
 and MBNMR variance estimators, respectively.

Web Figure 21: Percent relative bias of the uncorrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 22: Percent relative bias of the martingale residual-based bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 23: Percent relative bias of the KC bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 24: Percent relative bias of the FG bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 25: Percent relative bias of the MD bias-corrected sandwich estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 26: Percent relative bias of the MBN bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 27: Percent relative bias of the KCMR bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 28: Percent relative bias of the FGMR bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 29: Percent relative bias of the MDMR bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 30: Percent relative bias of the MBNMR bias-corrected sandwich variance estimator, for $p_0 = 0.5$ under the marginal Cox model.

Web Figure 31: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the uncorrected sandwich variance estimator.

Web Figure 32: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the martingale residual-based biascorrected sandwich variance estimator.

Web Figure 33: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the KC bias-corrected sandwich variance estimator.

Web Figure 34: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the FG bias-corrected sandwich variance estimator.

Web Figure 35: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the MD bias-corrected sandwich estimator.

Web Figure 36: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the MBN bias-corrected sandwich variance estimator.

Web Figure 37: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the KCMR bias-corrected sandwich variance estimator.

Web Figure 38: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the FGMR bias-corrected sandwich variance estimator.

Web Figure 39: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the MDMR bias-corrected sandwich variance estimator.

Web Figure 40: Empirical type I error rates of intervention effect tests for $p_0 = 0.5$ under the marginal Cox model, based on the MBNMR bias-corrected sandwich variance estimator.

References

Spiekerman, C. F. and Lin, D. (1998). Marginal regression models for multivariate failure time data. *Journal of the American Statistical Association* **93**, 1164–1175.

Wei, L.-J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. *Journal of the American Statistical Association* 84, 1065–1073.