8.1. Soit $(a_n)_{n=0}^{\infty}$ une suite de nombres réels. Montrer scrupuleusement que

$$\sum_{n=0}^{\infty} \left(a_{n+1} - a_n \right)$$

est une série convergente si et seulement si la suite $(a_n)_{n=0}^{\infty}$ est convergente.

8.2. Soient $(a_n)_{n=0}^{\infty}$ et $(b_n)_{n=0}^{\infty}$ deux suites de nombres réels positifs pour lesquelles il existe $n_0 \in \mathbf{N}$ tel que pour tout entier $n \ge n_0$:

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}.$$

Montrer que:

$$\sum_{n=0}^{\infty} b_n < +\infty \Rightarrow \sum_{n=0}^{\infty} a_n < +\infty$$

 et

$$\sum_{n=0}^{\infty} a_n = +\infty \Rightarrow \sum_{n=0}^{\infty} b_n = +\infty.$$

Indication: montrer que pour tout $n > n_0$, $a_n \le \beta b_n$ où $\beta = \frac{a_{n_0}}{b_{n_0}}$.

8.3. Trouver les trois constantes α, β et μ de sorte que pour tout entier $n \geq 3$:

$$\frac{n^3}{n!} = \frac{\alpha}{(n-1)!} + \frac{\beta}{(n-2)!} + \frac{\mu}{(n-3)!}.$$

En déduire la somme de la série:

$$\sum_{n=1}^{\infty} \frac{n^3}{n!}.$$

Indication: On suppose connue la relation suivante: $\sum_{k=0}^{\infty} \frac{1}{k!} = e$.