Child Mind Institute: Problematic Internet Use

Relating Physical Activity to Problematic Internet Use Evaluation and Optimization of Classification Models

Submitted by: Aishwarya Malhotra
Under the Guidance of: Prof. Eugene Pinsky

Objective

Predict the Severity Impairment Index (sii) to assess Problematic Internet Use (PIU) in children and young people, various classification models.

Data Overview:

- Train Data: 3,960 records with 81 features (excluding ID).
- Target Variable: si
- Test Data: Formatted sample with 58 columns; actual hidden test set includes ~3,800 instances.

Missing Data: Significant missing data challenges exist:

- Over 100,000 values missing across the dataset.
- 1,224 records lack both the target and all PCIAT fields.
- Only **2,736** records include the target variable.

Models Explored:

- Logistic Regression
- 2. k-Nearest Neighbors (kNN)
- Naive Bayes
- Decision Trees and Random Forest
- 5. Linear Discriminant Analysis (LDA)
- 6. Quadratic Discriminant Analysis (QDA)
- 7. Support Vector Machines (SVM)
- 8. AdaBoost

Project Prompts - Classification

- 1. Dropping Columns which are not needed for this project
- 2. EDA
- 3. Correlation
- 4. Handling Missing Values
- 5. Feature and Label Extraction
- 6. Data Preprocessing
 - a. Handling Missing Values
 - b. Feature Normalization
- 7. Data Splitting (70/30)
- 8. Model Training
 - a. Classification: Logistic regression, k-NN, Naive Bayes, LDA, QDA, Decision tree, Random forest, AdaBoost, and SVM
 - b. Regression: Linear Regression, kNN Regressor, Random Forest Regressor, Gradient Boosting Regressor.
- 9. Model Evaluation
- 10. Hyperparameter Tuning on the Best Model
- 11. Optimization and Final Evaluation
- 12. Predictions on Test Set

Model Comparison

	Model	Accuracy	Precision	Recall	F1-Score
0	Logistic Regression	0.470732	0.562596	0.470732	0.503278
1	k-Nearest Neighbors (kNN)	0.460976	0.582017	0.460976	0.498562
2	Naive Bayes	0.485366	0.573116	0.485366	0.509037
3	Linear Discriminant Analysis (LDA)	0.482927	0.573729	0.482927	0.515174
4	Quadratic Discriminant Analysis (QDA)	0.334146	0.524316	0.334146	0.317619
5	Decision Tree	0.465854	0.501083	0.465854	0.480261
6	Random Forest	0.551220	0.557075	0.551220	0.551851
7	AdaBoost	0.465854	0.559262	0.465854	0.502562
8	SVM (Multiclass)	0.512195	0.553524	0.512195	0.526671

Model Evaluation & Deployment: Random Forest

Best Model: Random Forest

Test Accuracy: 0.5620437956204379

Test Classification Report:

		precision	recall	f1-score	support
0.	0	0.69	0.79	0.74	239
1.	0	0.37	0.28	0.32	110
2.	.0	0.21	0.19	0.20	57
3.	.0	0.00	0.00	0.00	5
accurac	у			0.56	411
macro av	/g	0.32	0.32	0.32	411
weighted av	/g	0.53	0.56	0.54	411

Final Predictions on Test Dataset:
[2. 0. 1. 1. 2. 0. 0. 1. 3. 2. 1. 0. 1. 2. 1. 2. 0. 0. 0. 2.]

The model demonstrates reasonable effectiveness for Class 0 but struggles significantly with Classes 1, 2, and particularly 3.

Feature Importance for Optimized Random Forest

Some key risk factors appear

- age of the child
- the level of sleep disturbance experienced
- hours per week of internet usage.

Regression Models

Models tested: Linear Regression, kNN Regressor, Random Forest Regressor, Gradient Boosting Regressor.

Best model: Linear Regression (R²: 0.233, MSE: 0.467).

Challenges in regression: Lower accuracy in predicting SII categories.

	Model	Mean Squared Error	R^2 Score
0	Linear Regression	0.467007	0.232784
1	k-Nearest Neighbors (kNN)	0.482943	0.206603
2	Random Forest Regressor	0.493368	0.189477
3	Gradient Boosting Regressor	0.488677	0.197183

Challenges and Solutions

Challenges:

- Missing values and incomplete features.
- Imbalanced class distribution.

Solutions:

Imputation, SMOTE, and feature engineering.

Conclusion

- Best Model: RANDOM FOREST
- Classification performed better for SII prediction.
- Regression provided granular insights into PCIAT_Total but struggled with category accuracy.
- Some key risk factors appear to be the age of the child, the level of sleep disturbance experienced and of course hours per week of internet usage.
- The model demonstrates reasonable effectiveness for Class 0 but struggles significantly with Classes 1, 2, and particularly 3.

Errors in data [Performed Winsorization]

- A significant number of participants, especially for BMI and blood pressure, fall outside the expected normal ranges
- Most participants' heights and weights are within reasonable ranges, but many have BMIs outside the approximate normal range, suggesting that many participants may have disproportionate body proportions (or incorrect measurements?).
- Most of the **bioelectrical impedance analysis** data is highly skewed. The majority of participants have values at the extreme ends, with a few outliers that might be measurement errors. Some variables, like fat mass index and body fat percentage, even have implausibly negative values.