

Sardar Patel Institute of Technology, Mumbai Department of Electronics and Telecommunication Engineering B.E. Sem-VII (2022-2023) OEIT6 - Data Analytics

Experiment: Statistical Analysis

Name: Pushkar Sutar Roll No. 2019110060

Objective: Perform statistical data analysis such as: Estimators of the main statistical measures (mean, variance, standard deviation, covariance correlation, standard error), Main distributions (Normal distribution, chi-square distribution), Hypothesis testing, pairwise association (Pearson correlation test, t-test, ANOVA), Non-parametric test.

Dataset Description:

Dataset contains the annual profit of a company till 2020. The data is normally distributed and hence hypothesis testing can be done appropriately.

Attribute Information -

- Year : Year on which profit/loss is recorded.
- Profit/Loss: Profit in thousands. If negative, then loss, else its profit made by the company for a given year.

Code and Output:

First we import the csv data.

```
proc import out=my_data
    datafile="/home/u62322946/DA2/CompanyABCProfit.csv"
    dbms=csv
    replace;
    getnames=YES;
run;
```

We print the data to verify.

```
PROC PRINT DATA=my_data;
RUN;
```

2013	1053
2014	1302
2015	636
2016	988
	895
	-178
	543
	316
	2014

Generating summary information about the contents of the dataset.

Data Set Name	WORK.MY_DATA	Observations	200
Member Type	DATA	Variables	2
Engine	V9	Indexes	0
Created	11/08/2022 23:49:35	Observation Length	16
Last Modified	11/08/2022 23:49:35	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64		
Encoding	utf-8 Unicode (UTF-8)		

	Engine/Host Dependent Information				
Data Set Page Size	131072				
Number of Data Set Pages	1				
First Data Page	1				
Max Obs per Page	8126				
Obs in First Data Page	200				
Number of Data Set Repairs	0				
Filename	/saswork/SAS_workB08500014267_odaws02-apse1.oda.sas.com/SAS_work481F00014267_odaws02-apse1.oda.sas.com/my_data.sas7bdat				
Release Created	9.0401M6				
Host Created	Linux				
Inode Number	1460444				
Access Permission	NV-ff				
Owner Name	u62322946				
File Size	256KB				
File Size (bytes)	262144				

Hence, the dataset has 200 observations with two attributes.

We perform univariate analysis to get basic statistical information about the profit attribute.

```
PROC UNIVARIATE DATA=my_data;

VAR "Profit(Rs '000)"n;

RUN;
```

We see that the profit is normally distributed with a mean of 1021.99Rs and standard deviation of 487.95. Other parameters can also be seen from the table

The UNIVARIATE Procedure Variable: Profit(Rs '000)

Moments						
N	N 200 Sum Weights					
Mean	1021.99	Sum Observations	204398			
Std Deviation	487.955626	Variance	238100.693			
Skewness	-0.1289021	Kurtosis	-0.0479365			
Uncorrected SS	256274750	Corrected SS	47382038			
Coeff Variation	47.7456361	Std Error Mean	34.5036732			

	Basic Statistical Measures						
Location Variability							
Mean	1021.990	Std Deviation	487.95563				
Median 1024.000		Variance	238101				
Mode 1082.000		Range	2468				
		Interquartile Range	602.00000				

Note: The mode displayed is the smallest of 2 modes with a count of 3.

Tests for Location: Mu0=0						
Test Statistic p Value						
Student's t	t	29.61974	Pr > t	<.0001		
Sign	M	97	Pr >= M	<.0001		
Signed Rank	S	10007	Pr >= S	<.0001		

Quantiles (Definition 5)				
Level	Quantile			
100% Max	2055.0			
99%	2036.0			
95%	1900.0			
90%	1683.5			
75% Q3	1318.5			
50% Median	1024.0			
25% Q1	716.5			
10%	399.5			
5%	180.0			
1%	-211.0			
0% Min	-413.0			

Extreme Observations					
Low	est	High	est		
Value	Obs	Value	Obs		
-413	168	1973	59		
-244	106	1996	169		
-178	198	2027	102		
26	177	2045	158		
49	147	2055	43		

proc sgplot data=my_data;
 histogram "Profit(Rs '000)"n;
 density "Profit(Rs '000)"n;
run;

We take a random sample of 100 points for performing hypothesis testing.

Selection Method	Simple	e Random Samplir
Input Data Set		MY_DATA
Random Number Seed		777781619
Sample Size	100	
Selection Probab	oility	0.5
Sampling Weight		2
Output Data Set		SAMPLE DATA

We can view the sampled data using the print procedure.

```
PROC PRINT DATA=sample_data;
RUN;
```

Hypothesis Testing -

We perform t-test on the data with 100 samples as data is numeric and the number of samples is also not very large.

We define the hypothesis as, with significance level of 0.05.

```
Ho: \mu = 1000 (\mu indicates the population mean of profit per year)
Ha: \mu \neq 1000
```

```
/* t test */
ods noproctitle;
ods graphics / imagemap=on;

/* Test for normality */
proc univariate data=WORK.SAMPLE_DATA normal mu0=1000;
  ods select TestsForNormality;
  var 'Profit(Rs ''000)'n;
run;
```

```
/* t test */
proc ttest data=WORK.SAMPLE_DATA sides=2 h0=1000 plots(showh0);
  var 'Profit(Rs ''000)'n;
run;
```

Variable: Profit(Rs '000)

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.988539	Pr < W	0.5487		
Kolmogorov-Smirnov	D	0.050464	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.057871	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.348669	Pr > A-Sq	>0.2500		

Variable: Profit(Rs '000)

1	V	Mean	Std Dev	Std Err	Minimum	Maximum
10	0	981.8	475.2	47.5191	-413.0	2045.0

Mean	95% CL Mean		Std Dev	95% CL	Std Dev
981.8	887.5	1076.1	475.2	417.2	552.0

DF	t Value	Pr > t
99	-0.38	0.7028

Here, the p value is 0.702 which is greater than 0.05. Hence we do not reject the null hypothesis. It can be concluded that the mean of profit is 1000Rs.

Correlation Analysis:

```
/* correlation */
ods noproctitle;
```

```
ods graphics / imagemap=on;
proc corr data=WORK.SAMPLE_DATA pearson nosimple noprob plots=none;
  var 'Profit(Rs ''000)'n;
  with Year;
run;
```

	1 With Variables:	Year
	1 Variables:	Profit(Rs '000)
Pea	arson Correlation C	oefficients, N = 10
Pea	arson Correlation C	oefficients, N = 10 Profit(Rs '000

The two variables Year and Profit are not very correlated. There is no significant increase or decrease in profit as the year increases.

Conclusions:

- Statistical Analysis suggests that the population mean is 1000Rs, which means that the company had an average profit of 1000 Rs since its inception.
- Using t-test we can confirm from the randomly selected sample that indeed the profit is equal to 1000 Rs on average.
- Hypothesis testing provides a reliable framework for making any data decisions for your population of interest.
- Hypothesis testing is one of the most important processes for measuring the validity and reliability of outcomes in any systematic investigation. In this case it was the annual profit of a company.
- Profit and Year attributes are not related to each other.