Magični kvadrati

Prirejeno iz virov:

- http://mathworld.wolfram.com/MagicSquare.html
- http://en.wikipedia.org/wiki/Magic_square

Kazalo

1	Uvo	od	2
2	_	dovina	2
	2.1	Kvadrat »Lo Shu«	2
	2.2	Kulturna pomembnost	2
	2.3	Zgodnji kvadrati reda 4	3
3	Osn	novne lastnosti	5
4	Pri	meri	6

1 Uvod

Definicija 1.1. *Magični kvadrat* reda n je nabor n^2 različnih števil, ki so razvrščena v kvadratno tabelo tako, da vedno dobimo enako vsoto, če seštejemo vsa števila poljubne vrstice, vsa števila poljubnega stolpca ali vsa števila v katerikoli od glavnih diagonal.

Primer magičnega kvadrata reda 3 je prikazan v tabeli 1.

Tabela 1: Magični kvadrat reda 3

8	1	6
3	5	7
4	9	2

Definicija 1.2. Magični kvadrat reda n je *normalen*, če v njem nastopajo števila

$$1, 2, 3, \dots, n^2 - 1, n^2. \tag{1}$$

Magični kvadrat v tabeli 1 je normalen. To je tudi najmanjši netrivialen normalen magični kvadrat. Poleg normalnih magičnih kvadratov so zanimivi tudi magični kvadrati praštevil.

2 Zgodovina

2.1 Kvadrat »Lo Shu«

Kitajska literatura iz časa vsaj 2800 let pred našim štetjem govori o legendi *Lo Shu* – »zvitek reke Lo«. V antični Kitajski je prišlo do silne poplave. Ljudje so skušali rečnemu bogu narasle reke Lo ponuditi daritev, da bi pomirili njegovo jezo. Iz vode se je prikazala želva z zanimivim vzorcem na oklepu: v tabeli velikosti tri krat tri so bila predstavljena števila, tako da je bila vsota števil v katerikoli vrstici, kateremkoli stolpcu in na obeh glavnih diagonalah enaka: 15. To število je tudi enako številu dni v 24 ciklih kitajskega sončnega leta. Ta vzorec so na določen način uporabljali upravljalci reke.

2.2 Kulturna pomembnost

Magični kvadrati so fascinirali človeštvo skozi vso zgodovino. Najdemo jih v številnih kulturah, npr. v Egiptu in Indiji, vklesane v kamen ali kovino, uporabljane kot talismane za dolgo življensko dobo in v izogib boleznim.

Tabela 2: Kvadrat Lo Shu

4	9	2
3	5	7
8	1	6

Kubera-Kolam je talna poslikava, ki se uporablja v Indiji, in je v obliki magičnega kvadrata reda 3. Ta je v bistvu enak kot kvadrat Lo Shu, vendar je vsako število povečano za 19.

Tabela 3: Kvadrat Kubera-Kolam

23	28	21
22	24	26
27	20	25

Z magičnimi kvadrati so se ukvarjali tudi najbolj znani matematiki kot na primer Euler, glej [3].

2.3 Zgodnji kvadrati reda 4

Najzgodnejši znani magični kvadrat reda 4 je bil odkrit na napisu v Khajurahu v Indiji in v Enciklopediji Bratovščine Čistosti iz enajstega ali dvanajstega stoletja. Vrh vsega gre celo za »panmagični kvadrat«. V Evropi sta morda najbolj znana naslednja magična kvadrata reda 4:

Magični kvadrat v litografiji Melancholia I (glej sliko 1 za izsek s kvadratom) Albrechta Dürerja naj bi bil najzgodnejši magični kvadrat v evropski umetnosti. Zelo podoben je kvadratu Yang Huija, ki je nastal na Kitajskem približno 250 let pred Dürerjevim časom.

Slika 1: Dürerjev magični kvadrat

Vsoto 34 je mogoče najti pri seštevanju števil v vsaki vrstici, vsakem stolpcu, na vsaki diagonali, v vsakem od štirih kvadrantov, v sredinskih štirih poljih, v štirih kotih, v štirih sosedih kotov v smeri urinega kazalca (3+8+14+9), v štirih sosedih kotov v nasprotni smeri urinega kazalca (2+5+15+12), v dveh naborih simetričnih parov (2+8+9+15 in 3+5+12+14), in še na nekaj drugih načinov. Števili na sredini spodnje vrstici tvorita letnico litografije: 1514.

Tabela 4: Dürerjev magični kvadrat 4×4

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Pasijonska fasada na katedrali Sagrada família v Barceloni (glej sliko 2 za fotografijo) vsebuje magični kvadrat reda 4.

Slika 2: Pasijonska fasada, Sagrada Família

Vsota števil v vrsticah, stolpcih oziroma na diagonalah je 33 – Jezusova starost v času pasijona. Strukturno je kvadrat podoben Dürerjevemu, vendar so števila v štirih poljih zmanjšana za 1. Posledica je, da sta števili 10 in 14 podvojeni in zato kvadrat ni normalen.

Tabela 5: Pasijonska fasada, Sagrada Família

1	14	14	4
11	7	6	9
8	10	10	5
13	2	3	15

3 Osnovne lastnosti

Definicija 3.1. Vsoto ene vrstice, enega stolpca ali ene od glavnih diagonal v magičnem kvadratu imenujemo *magična konstanta*.

Izrek 3.2. Magična konstanta normalnega magičnega kvadrata reda n je enaka

$$\mathcal{M}_2(n) = \frac{1}{2}n(n^2 + 1) \tag{2}$$

Dokaz izreka. V normalnem magičnem kvadratu reda n je vsota vseh nastopajočih števil (glej (1) na strani 2) enaka $1+2+3+\cdots+n^2=\sum_{k=1}^{n^2}k=\frac{1}{2}n^2(n^2+1)$. Ker imamo v kvadratu n vrstic z enako vsoto, je vsota števil v eni vrstici enaka številu $\mathcal{M}_2(n)$.

Preprost račun pokaže, da je konstanti (2) analogna konstanta $\mathcal{M}_2(n; A, D)$ za magični kvadrat, v katerem so nameščena števila $A, A+D, A+2D, \ldots, A+(n^2-1)D$, enaka

$$\mathcal{M}_2(n; A, D) = \frac{1}{2}(2A + D(n^2 - 1)) \tag{3}$$

Kvadratu v tabeli 3 ustrezata konstanti A = 20 in D = 1.

Definicija 3.3. Če vsako od števil v normalnem magičnem kvadratu reda n odštejemo od števila $n^2 + 1$, dobimo nov magični kvadrat, ki je prvotnemu komplementaren.

Na primer, magičnemu kvadratu Lo Shu (glej tabelo 2) priredimo komplementarni kvadrat, prikazan v tabeli 6.

Vidimo, da je dobljeni kvadrat moč dobiti iz kvadrata Lo Shu tudi z zasukom za 180 stopinj okrog središča, kvadrat iz tabele 1 pa je mogoče dobiti iz kvadrata Lo Shu z zrcaljenjem preko sredinske vodoravne črte.

Število različnih normalnih magičnih kvadratov

Definicija 3.4. Pravimo, da sta dva magična kvadrata *različna*, če enega ni mogoče dobiti iz drugega s pomočjo zasukov oziroma zrcaljenj.

Tabela 6: Kvadratu Lo Shu komplementarni kvadrat

6	1	8
7	5	3
2	9	4

točna vre	ost			približek		
red	1	2	3	4	5	6
število kvadratov	1	0	1	880	275305224	$(1,7445 \pm 0,0016)10^{19}$

Tabela 7: Število različnih normalnih magičnih kvadratov

Števila različnih normalnih magičnih kvadratov se nahajajo v tabeli 7. Vse normalne magične kvadrate reda 4 je oštevilčil Frénicle de Bessy leta 1693, glej [2], in jih je moč najti v knjigi [1] iz leta 1982. Število normalnih kvadratov reda 5 je izračunal R. Schroeppel leta 1973 (glej Gardner [4]). Natančno število vseh različnih normalnih magičnih kvadratov reda 6 ni znano. Avtorja navedenega približka sta Pinn in Wieczerkowski (glej [5]), ki sta za oceno uporabila simulacijo Monte Carlo in metode statistične mehanike.

4 Primeri

V tabelah 8, 9 in 10 so prikazani magični kvadrati redov 5, 6 in 9.

Tabela 8: Magični kvadrat reda 5

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

Tabela 9: Magični kvadrat reda 6

6	32	3	34	35	1
7	11	27	28	8	30
19	14	16	15	23	24
18	20	22	21	17	13
25	29	10	9	26	12
36	5	33	4	2	31

Tabela 10: Magični kvadrat reda 9

47	58	69	80	1	12	23	34	45
57	68	79	9	11	22	33	44	46
67	78	8	10	21	32	43	54	56
77	7	18	20	31	42	53	55	66
6	17	19	30	41	52	63	65	76
16	27	29	40	51	62	64	75	5
26	28	39	50	61	72	74	4	15
36	38	49	60	71	73	3	14	25
37	48	59	70	81	2	13	24	35

Literatura

- [1] E. R. Berlekamp, J. H. Conway, and R. K. Guy, *Games in particular*, in Winning Ways for Your Mathematical Plays, vol. 2, Academic Press, London, 1982.
- [2] B. F. DE BESSY, *Des quarrez magiques*, De l'imprimerie Royale par Jean Anisson, Paris, 1693.
- [3] L. EULER, *De quadratis magicis*, Commentationes arithmeticae, 2 (1849), pp. 593–602.
- [4] M. GARDNER, *Mathematical games*, Scientific American, 234 (1976), pp. 118–122.
- [5] K. PINN AND C. WIECZERKOWSKI, Number of magic squares from parallel tempering monte carlo, Int. J. Mod. Phys. C, 9 (1998), pp. 541–547.