Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.

 Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la 	manera más clara posible.
---	---------------------------

Pregunta	1	2	3	Total
Puntos	2	8	13	23
Puntaje				

Nombre: Diana Karen Casas

Considera la forma cuadrática dada por la expresión:

$$Q((X,Y,Z)) = \frac{61X^2}{20} + \frac{39XY}{10} + \frac{9\sqrt{2}XZ}{10} + \frac{61Y^2}{20} - \frac{9\sqrt{2}YZ}{10} + \frac{11Z^2}{10}$$

Sea $\lambda_1 = \frac{1}{3}$.

El objetivo es simplificar la forma cuadrática Q.

1. (2 Puntos) Encuentra una transformación lineal y autoadjunta T tal que para todo vector \vec{v} se cumple que:

$$\langle \vec{v}, T(\vec{v}) \rangle = Q(\vec{v})$$

Recuerda que la transformación T arriba mencionada, tiene como matríz a la matríz simétrica correspondiente a Q.

- 2. (a) (2 Puntos) Encuentra un vector \vec{v}_1 tal que $T(\vec{v}_1) = \lambda_1 \vec{v}_1$ Esto implica que λ_1 es un valor propio de T y que \vec{v}_1 es un vector propio.
 - (b) (2 Puntos) Encuentra una base ortonormal $\gamma = \{\vec{z}_1, \vec{z}_2, \vec{z}_3\}$ tal que \vec{z}_1 es paralelo a \vec{v}_1 (Sugerencia: Aplicar el algoritmo de Gram-Schmidt al vector \vec{v}_1 y a algunos otros dos vectores de la base canónica $\vec{e}_1, \vec{e}_2, \vec{e}_3$)
 - (c) (2 Puntos) Calcula la matríz de la transformación T en la base γ
 - (d) (2 Puntos) Calcula el polinomio característico de T a partir de su matríz en la base γ
- 3. (a) (3 Puntos) Encuentra los tres valores propios de $T: \lambda_1, \lambda_2 y \lambda_3$
 - (b) (3 Puntos) Encuentra tres vectores propios correspondientes a los tres valores propios de T:

$$T(\vec{v}_1) = \lambda_1 \vec{v}_1$$

$$T(\vec{v}_2) = \lambda_2 \vec{v}_2$$

$$T(\vec{v}_3) = \lambda_3 \vec{v}_3$$

- (c) (1 Pt) Verifica que los tres vectores anteriores son ortogonales y obtén una base ortonormal δ a partir de ellos.
- (d) (4 Puntos) Calcula la matríz de [T] en la base δ Sean $\tilde{X}, \tilde{Y}, \tilde{Z}$ las coordenadas en la base δ .
- (e) (2 Puntos) Expresa Q en las coordenadas $\tilde{X}, \tilde{Y}, \tilde{Z}$.