Runge-Kutta method

The formula for the fourth order Runge-Kutta method (RK4) is given below. Consider the problem

$$\begin{cases} y' = f(t, y) \\ y(t_0) = \alpha \end{cases}$$

Define h to be the time step size and $t_i = t_0 + ih$. Then the following formula

$$w_{0} = \alpha$$

$$k_{1} = hf(t_{i}, w_{i})$$

$$k_{2} = hf\left(t_{i} + \frac{h}{2}, w_{i} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(t_{i} + \frac{h}{2}, w_{i} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf(t_{i} + h, w_{i} + k_{3})$$

$$w_{i+1} = w_{i} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

computes an approximate solution, that is $w_i \approx y(t_i)$.

Let us look at an example:

$$\begin{cases} y' = y - t^2 + 1\\ y(0) = 0.5 \end{cases}$$

The exact solution for this problem is $y = t^2 + 2t + 1 - \frac{1}{2}e^t$, and we are interested in the value of y for $0 \le t \le 2$.

1. We first solve this problem using RK4 with h = 0.5. From t = 0 to t = 2 with step size h = 0.5, it takes 4 steps: $t_0 = 0$, $t_1 = 0.5$, $t_2 = 1$, $t_3 = 1.5$, $t_4 = 2$.

Step 0
$$t_0 = 0, w_0 = 0.5.$$

Step 1 $t_1 = 0.5$

$$k_1 = hf(t_0, w_0) = 0.5f(0, 0.5) = 0.75$$

 $k_2 = hf(t_0 + h/2, w_0 + k_1/2) = 0.5f(0.25, 0.875) = 0.90625$
 $K_3 = hf(t_0 + h/2, w_0 + k_2/2) = 0.5f(0.25, 0.953125) = 0.9453125$
 $K_4 = hf(t_0 + h, w_0 + K_3) = 0.5f(0.5, 1.4453125) = 1.09765625$
 $w_1 = w_0 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 1.425130208333333$

Step 2
$$t_2 = 1$$

$$k_1 = hf(t_1, w_1) = 0.5f(0.5, 1.425130208333333) = 1.087565104166667$$

 $k_2 = hf(t_1 + h/2, w_1 + k_1/2) = 0.5f(0.75, 1.968912760416667) = 1.203206380208333$
 $K_3 = hf(t_1 + h/2, w_1 + k_2/2) = 0.5f(0.75, 2.0267333984375) = 1.23211669921875$
 $K_4 = hf(t_1 + h, w_1 + K_3) = 0.5f(1, 2.657246907552083) = 1.328623453776042$
 $w_2 = w_1 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 2.639602661132812$

Step 3 $t_3 = 1.5$

```
k_1 = hf(t_2, w_2) = 0.5f(1, 2.639602661132812) = 1.319801330566406
k_2 = hf(t_2 + h/2, w_2 + k_1/2) = 0.5f(1.25, 3.299503326416016) = 1.368501663208008
K_3 = hf(t_2 + h/2, w_2 + k_2/2) = 0.5f(1.25, 3.323853492736816) = 1.380676746368408
K_4 = hf(t_2 + h, w_2 + K_3) = 0.5f(1.5, 4.020279407501221) = 1.385139703750610
w_3 = w_2 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 4.006818970044454
```

Step 4 $t_4 = 2$

```
k_1 = hf(t_3, w_3) = 0.5f(1.5, 4.006818970044454) = 1.378409485022227

k_2 = hf(t_3 + h/2, w_3 + k_1/2) = 0.5f(1.75, 4.696023712555567) = 1.316761856277783

K_3 = hf(t_3 + h/2, w_3 + k_2/2) = 0.5f(1.75, 4.665199898183346) = 1.301349949091673

K_4 = hf(t_3 + h, w_3 + K_3) = 0.5f(2, 5.308168919136127) = 1.154084459568063

w_4 = w_3 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 5.301605229265987
```

Now let's compare what we got with the exact solution

$\overline{t_i}$	Exact solution $y(t_i)$	Numerical solution w_i	Error $ w_i - y(t_i) $
0.0	0.5	0.5	0
0.5	1.425639364649936	1.425130208333333	0.000509156316603
1.0	2.640859085770477	2.639602661132812	0.001256424637665
1.5	4.009155464830968	4.006818970044454	0.002336494786515
2.0	5.305471950534675	5.301605229265987	0.003866721268688

All this can be done by using Matlab:

```
function rungekutta
 h = 0.5;
 t = 0;
 w = 0.5;
 fprintf('Step 0: t = 12.8f, w = 12.8fn', t, w);
 for i=1:4
   k1 = h * f(t, w);
   k2 = h*f(t+h/2, w+k1/2);
   k3 = h*f(t+h/2, w+k2/2);
   k4 = h * f(t+h, w+k3);
   w = w + (k1+2*k2+2*k3+k4)/6;
   t = t + h;
   fprintf('Step %d: t = \%6.4f, w = \%18.15f \n', i, t, w);
 end
function v = f(t, y)
 v = v-t^2+1;
```

2. Solve the problem using RK4 with h = 0.2**.** All you need to do is to replace h = 0.5; and for i=1:4 in the above Matlab program into h = 0.2 and for i=1:10. Then we have

$\overline{t_i}$	Exact solution $y(t_i)$	Numerical solution w_i	Error $ w_i - y(t_i) $
0.0	0.5	0.5	0
0.2	0.829298620919915	0.829293333333333	0.000005287586582
0.4	1.214087651179365	1.214076210666667	0.000011440512698
0.6	1.648940599804746	1.648922017041600	0.000018582763146
0.8	2.127229535753766	2.127202684947944	0.000026850805823
1.0	2.640859085770477	2.640822692728752	0.000036393041726
1.2	3.179941538631726	3.179894170232231	0.000047368399496
1.4	3.732400016577663	3.732340072854980	0.000059943722683
1.6	4.283483787802442	4.283409498318406	0.000074289484036
1.8	4.815176267793527	4.815085694579435	0.000090573214092
2.0	5.305471950534674	5.305363000692655	0.000108949842019

3. Solve the problem using RK4 with h = 0.05**.** Again, all need to do is to set h = 0.05 and for i=1:40. Then we have

$\overline{t_i}$	Exact solution $y(t_i)$	Numerical solution w_i	Error $ w_i - y(t_i) $
0.0	0.5	0.5	0
0.05	0.576864451811988	0.576864446614583	0.000000005197405
0.10	0.657414540962176	0.657414530368210	0.000000010593966
	• • •	• • •	
1.80	4.815176267793529	4.815175898599096	0.000000369194433
1.85	4.942590238699086	4.942589852008494	0.000000386690592
1.90	5.067052778860367	5.067052374183828	0.000000404676539
1.95	5.188156209705356	5.188155786548850	0.000000423156505
2.00	5.305471950534677	5.305471508400809	0.000000442133868

4. Comparing the results By comparing the above results, we can see that

```
for h=0.5, the error at t=2 is 0.003866721268688, using 4 steps for h=0.2, the error at t=2 is 0.000108949842019, using 10 steps for h=0.05, the error at t=2 is 0.000000442133868, using 40 steps
```

This brings out a question. How to find the most appropriate step size, if we want to make sure the error is less than a given ε , for example, $\varepsilon = 0.00001$?

5. Adaptive step size control and the Runge-Kutta-Fehlberg method The answer is, we will use adaptive step size control during the computation. The idea is to start with a moderate step size. When we detect the expected error is larger than ε , reduce the step size and recalculate the current step. When we detect the expected error is less than ε , keep the current step and slightly enlarge the step size in the next step. This requires us to have a good estimation of the "expected error".

Here's the formula for the Runge-Kutta-Fehlberg method (RK45).

$$\begin{split} w_0 &= \alpha \\ k_1 &= hf(t_i, w_i) \\ k_2 &= hf\left(t_i + \frac{h}{4}, w_i + \frac{k_1}{4}\right) \\ k_3 &= hf\left(t_i + \frac{3h}{8}, w_i + \frac{3}{32}k_1 + \frac{9}{32}k_2\right) \\ k_4 &= hf\left(t_i + \frac{12h}{13}, w_i + \frac{1932}{2197}k_1 - \frac{7200}{2197}k_2 + \frac{7296}{2197}k_3\right) \\ k_5 &= hf\left(t_i + h, w_i + \frac{439}{216}k_1 - 8k_2 + \frac{3680}{513}k_3 - \frac{845}{4104}k_4\right) \\ k_6 &= hf\left(t_i + \frac{h}{2}, w_i - \frac{8}{27}k_1 + 2k_2 - \frac{3544}{2565}k_3 + \frac{1859}{4104}k_4 - \frac{11}{40}k_5\right) \\ w_{i+1} &= w_i + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5 \\ \tilde{w}_{i+1} &= w_i + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6 \\ R &= \frac{1}{h}|\tilde{w}_{i+1} - w_{i+1}| \\ \delta &= 0.84\left(\frac{\varepsilon}{R}\right)^{1/4} \end{split}$$

 $\text{if } R \leq \varepsilon \qquad \text{keep w as the current step solution} \\ \text{and move to the next step with step size } \delta h$

if $R > \varepsilon$ recalculate the current step with step size δh

The Matlab program is given below:

```
function rk45
  epsilon = 0.00001;
  h = 0.2;
  t = 0;
  w = 0.5;
  i = 0;
  fprintf('Step %d: t = %6.4f, w = %18.15f\n', i, t, w);
  while t<2
    h = min(h, 2-t);
  k1 = h*f(t,w);</pre>
```

```
k2 = h*f(t+h/4, w+k1/4);
    k3 = h*f(t+3*h/8, w+3*k1/32+9*k2/32);
    k4 = h * f(t+12*h/13, w+1932*k1/2197-7200*k2/2197+7296*k3/2197);
    k5 = h * f(t+h, w+439*k1/216-8*k2+3680*k3/513-845*k4/4104);
    k6 = h * f(t+h/2, w-8*k1/27+2*k2-3544*k3/2565+1859*k4/4104-11*k5/40);
    w1 = w + 25*k1/216+1408*k3/2565+2197*k4/4104-k5/5;
    w2 = w + 16*k1/135+6656*k3/12825+28561*k4/56430-9*k5/50+2*k6/55;
    R = abs(w1-w2)/h;
    delta = 0.84*(epsilon/R)^(1/4);
    if R<=epsilon
      t = t+h;
      w = w1;
      i = i+1;
      fprintf('Step %d: t = \%6.4f, w = \%18.15f \setminus n', i, t, w);
      h = delta * h;
    else
      h = delta * h;
    end
  end
응응응응응응응응응응응응응응응응
function v = f(t, y)
  v = y-t^2+1;
```

Run this program, we see that starting with h = 0.2, the program outputs

Notice the error is

$$|y(2) - w_8| = 0.00001486603807077103$$