MOTION PLANNING FOR AUTONOMOUS VEHICLES

HAMILTONIAN (OPTIMAL CONTROL THEORY)

GEESARA KULATHUNGA

FEBRUARY 25, 2023

HAMILTONIAN (OPTIMAL CONTROL

THEORY)

CONTENTS

- Constrained Minimization of functions
 - Elimination method (direct method)
 - The Lagrange multiplier method: examples, general formulation
- Constrained Minimization of functional: Point constraints, differential equation constraints
- Hamiltonian
- The necessary condition for optimal control
- Boundary conditions for optimal control: with the fixed final time and the final state specified or free
- Boundary conditions for optimal control: with the free final time and the final state specified, free, lies on the moving point $x_f = \theta(t_f)$, or lies on a moving surface m(x(t)))

CONSTRAINED MINIMIZATION OF FUNCTIONS

Find the point on the line $y_1 + y_2 = 5$ that is nearest the origin.

$$\label{eq:subjection} \begin{array}{ll} \underset{y_1,y_2\in\mathbb{R}}{\text{minimize}} & f(y_1,y_2)=y_1^2+y_2^2, \quad \text{square distance} \\ \text{subject to} & y_1+y_2=5 \end{array}$$

3 4

 $\label{eq:force_point} \begin{array}{ll} \underset{y_1,y_2\in\mathbb{R}}{\text{minimize}} & f(y_1,y_2)=y_1^2+y_2^2, \quad \text{square distance} \\ \text{subject to} & y_1+y_2=5 \end{array}$

■ The differential

$$df(y_1, y_2) = \left(\frac{\partial f(\cdot)}{\partial y_1}\right) \Delta y_1 + \left(\frac{\partial f(\cdot)}{\partial y_2}\right) \Delta y_2 \tag{1}$$

where $f(\cdot) = f(y_1, y_2)$.

3

 $\label{eq:minimize} \begin{array}{ll} \mbox{minimize} & f(y_1,y_2) = y_1^2 + y_2^2, \quad \mbox{square distance} \\ \mbox{subject to} & y_1 + y_2 = 5 \end{array}$

■ The differential

$$df(y_1, y_2) = \left(\frac{\partial f(\cdot)}{\partial y_1}\right) \Delta y_1 + \left(\frac{\partial f(\cdot)}{\partial y_2}\right) \Delta y_2 \tag{1}$$

where $f(\cdot) = f(y_1, y_2)$.

■ If $f(y_1^*, y_2^*)$ is the extreme point,

$$df(y_1^*, y_2^*) = \left(\frac{\partial f(y_1^*, y_2^*)}{\partial y_1}\right) \Delta y_1 + \left(\frac{\partial f(y_1^*, y_2^*)}{\partial y_2}\right) \Delta y_2 \tag{2}$$

3

■ If and only if y_1 and y_2 are **independent** Δy_1 and Δy_2 can be selected arbitrarily.

- If and only if y_1 and y_2 are independent Δy_1 and Δy_2 can be selected arbitrarily.
- That result in $\left(\frac{\partial f(y_1^*,y_2^*))}{\partial y_1}\right)\Delta y_1 = 0$ and $\left(\frac{\partial f(y_1^*,y_2^*))}{\partial y_2}\right)\Delta y_2 = 0$.

- If and only if y_1 and y_2 are independent Δy_1 and Δy_2 can be selected arbitrarily.
- $\blacksquare \text{ That result in } \Big(\frac{\partial f(y_1^*, y_2^*))}{\partial y_1} \Big) \Delta y_1 = 0 \text{ and } \Big(\frac{\partial f(y_1^*, y_2^*))}{\partial y_2} \Big) \Delta y_2 = 0.$
- However, in this example, y_1 and y_2 are dependent.

- If and only if y_1 and y_2 are independent Δy_1 and Δy_2 can be selected arbitrarily.
- That result in $\left(\frac{\partial f(y_1^*,y_2^*)}{\partial y_1}\right)\Delta y_1 = 0$ and $\left(\frac{\partial f(y_1^*,y_2^*)}{\partial y_2}\right)\Delta y_2 = 0$.
- However, in this example, y_1 and y_2 are dependent.
- Hence, considering $f(y_1, y_2)$ only function of y_2

$$df(y_2^*) = \left(-10 + 4y_2^*\right) \Delta y_2 = 0$$

$$\Rightarrow y_2^* = 2.5, \ y_1^* = 2.5$$
(3)