विषय कोड

पुरितका कोड

2017(I) भौतिक विज्ञान प्रश्न पत्र

समय : 3:00 घंटे

पूर्णांक : 200 अंक

अनुदेश

- आपने हिन्दी को माध्यम चुना है । इस परीक्षा पुरितका में पचहत्तर (20 माग 'A' में + 25 माग 'B' + 30 माग 'C' में) बहुल विकल्प प्रश्न (MCQ) दिए गए हैं । आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 20 तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं । यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तब केवल पहले भाग 'A' से 15, भाग 'B' से 20 तथा भाग 'C' से 20 उत्तरों की जांच की जाएगी ।
- 2. ओ. एम.आर. उत्तर पत्रक अलग से दिया गया है। अपना रोल नम्बर और केन्द्र का नाम लिखने से पहले यह जांच लीजिए कि पुस्तिका में पृष्ठ पूरे और सही हैं तथा कहीं से कटे-फटे नहीं हैं। यदि ऐसा है तो आप इन्विजीलेटर से उसी कोड़ की पुस्तिका बदलने का निवेदन कर सकते हैं। इसी तरह से औ. एम.आर. उत्तर पत्रक को भी जांच लें। इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं।
- 3. औ.एम.आर. उत्तर पत्रक के पृष्ठ 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम तथा इस परीक्षा पुस्तिका का क्रमांक लिखिए, साथ ही अपना हस्ताक्षर भी अवश्य करें।
- 4. आप अपनी औ.एम.आर. उत्तर पत्रक में रोल नंबर, विषय कोड, पुश्तिका कोड और केन्द्र कोड से संबंधित समुवित वृतों को काले बॉल पेन से अवश्य काला करें। यह एक मात्र परीक्षार्थी की जिम्मेदारी है कि वह ओ.एम.आर. उत्तर पत्रक में दिए गए निर्देशों का पूरी सावधानी से पालन करें, ऐसा न करने पर कम्प्यूटर विवरणों का सही तरीके से अकूटित नहीं कर पाएगा, जिससे अंततः आपको हानि, जिसमें आपकी ओ.एम.आर. उत्तर पत्रक की अस्वीकृति भी शामिल है, हो सकती है।
- 5. भाग 'A' में प्रत्येक प्रश्न के 2 अंक , भाग 'B' में प्रत्येक प्रश्न के 3.5 अंक तथा 'C' में प्रत्येक प्रश्न 5 अंक का है। प्रत्येक गलत उत्तर का ऋणात्मक मूल्यांक 25 % (भाग 'A' में 0.50 अंक, भाग 'B' में 0.875 अंक तथा 'C' में 1.25 अंक) की दर से किया जाएगा।
- 6. प्रत्येक प्रश्न के नीचे चार विकल्प दिए गए हैं । इनमें से केवल एक विकल्प ही "सही" अथवा "सर्वोत्तम हल" है । आपको प्रत्येक प्रश्न का सही अथवा सर्वोत्तम हल दुँढना है ।
- 7. नकल करते हुए या अनुचित तरीकों का प्रयोग करते हुए पाए जाने वाले परीक्षार्थियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य ठहराया जा सकता है ।
- 8. परीक्षार्थी को उत्तर या रफ पन्नों के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए ।
- 9. केलकुलेटर का उपयोग करने की अनुमति नहीं है ।
- 10. परीक्षा समाप्ति पर छिद्र बिन्दु चिन्हित स्थान से औः एमः आरः उत्तर पत्रक को विभाजित करें। इन्विजीलेटर को मूल ओः एमः आरः उत्तर पत्रक साँपने के पश्चात आप इसकी कॉर्बनलैस प्रतिलिपि ले जा सकते हैं।
- 11. हिन्दी माध्यम/संस्करण के प्रश्न में विसंगति होने/पाये जाने पर अंग्रेजी संस्करण प्रमाणिक होगा ।
- 12. केवल परीक्षा की पूरी अवधि तक बैठने वाले परीक्षार्थी को ही परीक्षा पुस्तिका साथ ले जाने की अनुमति दी जाएगी ।

रोल नंबर :		 परीक्षार्थी द्वारा भरी गई जानकारी को मैं सत्यापित करता हूँ ।		
नाम	1	इन्त्रिजीलेटर के हस्ताक्षर		

FOR ROUGH WORK

उपयोगी मूलभूत नियतांक/ USEFUL FUNDAMENTAL CONSTANTS

-(414) 1014(114)	$63 \times 10^{-34} \text{ J s}$ $1.6 \times 10^{-19} \text{ C}$
	$1.6 \times 10^{-19} \mathrm{C}$
e इलेक्ट्रान का आवेश Charge of electron 1	
¥11.12.11.11.11.11.11.11.11.11.11.11.11.1	$38 \times 10^{-23} \text{ J/K}$
The Samuel Control of the Control of	3.0×10^8 m/s
	14 J K ⁻¹ mole ⁻¹
	$097 \times 10^7 \mathrm{m}^{-1}$
	$3 \times 10^{23} \text{ mole}^{-1}$
On an angle cross	× 10 ⁻¹¹ N m ² kg ⁻²
εο परावैद्युत अचर Permittivity of 8.85	$64 \times 10^{-12} \text{ F m}^{-1}$
1/1/201/00/201/	$t \times 10^{-7} \text{ H m}^{-1}$
1 eV 1 eV	1.6×10^{-19} J
amu amu 1.	$.67 \times 10^{-27} \text{ kg}$

4

LIST OF THE ATOMIC WEIGHTS OF THE ELEMENTS

Element	Symbol	Atomic Number	Atomic . Weight	Element	Symbol	Atomic Number	Atomic Weight
Actinium	Ac	89	(227)	Mercury	Hg	80	200.59
Aluminium	Al	13	26.98	Molybdenum	Mo	42	95.94
Americiam	Am	95	(243)	Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75	Neon	Ne	10	20.183
Argon	Ar	18	39.948	Neptunium	Np	93	(237)
Arsenic	As	33	74.92	Nickel	Ni	28	58.71
Astatine	At	85	(210)	Nlobium	Nb	41	92.91
Barium	Ba	56	137.34	Nitrogen	N	7	14.007
Berkelium	Bk	97	(249)	Nobelium	No	102	(253)
Beryllium	Be	4	9.012	Osmium	Os	76	190.2
Bismuth	Bi	83	208,98	Oxygen	0	8	15,9994
Вогон	B	5	10.81	Palladium	Pd	46	106.4
Bromine	Вг	3.5	79.909	Phosphorus	P	15	30,974
Cadmium	Cd	48	112.40	Platinum	Pt	78	195.09
Caicium	Ca	20	40.08	Plutonium	Pu	94	(242)
Californium	Cf	98	(251)	Polonium	Po	84	(210)
Carbon	C	6	12.011	Potassium	K	19	39.102
Cerium	Ce	58	140.12	Praseodymium	Pr	59	140.91
Cesium	Cs	55	132.91	Promethium	Pm	61	(147)
Chlorine	CI	17	35.453	Protactinium	Pa	91	(231)
Chromium	Cr	24	52.00	Radium	Ra	88	(226)
Cobalt	Cit	27	58.93	Radon	Rn	86	(222)
Copper	Cu	29	63.54	Rhenium	Re	75	186.23
Curian	L.m	96	(247)	Rhodium	Kh	45	102.91
Dysprostam	Dv	66	162.50	Rubidium	Rb	37	85.47
Einsteinium	Es	99	(254)	Ruthenium	Ru	44	101.1
Erbium	Er	68	167.26	Samarium	Sm	62	
Europium	Eu	63	151.96	Scandium			150.35
Permium	Fai	100			Se	21	44.96
Fluorine	F	9	(253)	Selenium	Se	34	78.96
			19.00	Silicon	Si	14	28.09
Francium	Fr	87	(223)	Silver	Ag	47	107.870
Gadolinium	Gd	64	157.25	Sodium	Na	11	22.9898
Gallium	Ga	31	69.72	Strontium	Sr	38	87.62
Germanium	Ge.	32	72.59	Sulfur,	S	16	32.064
Gold	Air_	79	196.97	Tantalum	Ta	73	180 95
Hafnium	Hf	72	178.49	Technetium	Tc	43	(99)
Hetium	He	2	4.003	Tellurium	Те	52	127.60
Holmium	Ho	67	164.93	Terbium	Tb	65	158.92
Hydrogen	10	1	1.0080	Thallium	TI	81	204.37
Indium	In	49	114.82	Thorium	Th	90	232.04
todine	1	53	126.90	Thulium	Tim	69	168.93
Iridiam	Ir.	77	192.2	Tia	Sn	50	118.69
iron	Fe	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83.80	Tungsten	W	74	183.85
Lanthanum	La	57	138.91	Uranium	U	92	238.03
Lawrencium	Er	103	(257)	Vanadium	V	23	50.94
Lead	Ph	82	207.19	Xenon	Xe	54	131.30
Lithium	Li	3	6.939	Ytterbium	Yb	70	173.04
Luretium	Lu	71	174.97	Yttrium	Y	39	88.91
Magnesium	Mg	12	24.312	Zinc	Zn	30	65.37
Manganese	Mn	25	54.94	Zirconium	Zr	40	91.22
Mendelevium	Md	101	(256)				

Based on mass of C⁴⁴ at 12.000.... The ratio of these weights of those on the order chemical scale (in which oxygen of natural isotopic composition was assigned a mass of 16.0000...) is 1.000050. (Values in parentheses represent the most stable known isotopes)

PART A

- 1. एक चींटी निर्देश मूल बिन्दु से प्रारम्भ करके y-अक्ष पर '1' दरी चलती है। यह उसकी यात्रा का पहला चरण है। प्रत्येक अगले चरण में चींटी को दाहिने तरफ मुझ्कर पिछले चरण में चली दूरी की आधी द्री चलना है। 5th चरण के बाद उसके निर्देशांक क्या होंगे?

- 1. An ant starts at the origin and moves along the y-axis and covers a distance l. This is its first stage in its journey. Every subsequent stage requires the ant to turn right and move a distance which is half of its previous stage. What would be its coordinates at the end of its 5th stage?
 - $1. \quad \left(\frac{3l}{8}, \frac{13l}{16}\right)$

- 4. $\left(\frac{3l}{16}, \frac{13l}{8}\right)$
- 2. एक भाई-बहनों का समूह में सात बहनें हैं, तथा प्रत्येक बहन का एक भाई है। कुल कितने भाई-बहन 37
 - 1. 15 3. 8

- 2. In a group of siblings there are seven sisters, and each sister has one brother. How many siblings are there in total?
 - 1. 15

2. 14

3. 8

- 4. 7
- 3. नीचे दिये गये चित्र में x की परिसर के अंदर y का औसत मान क्या है?

- 1. 0 3. 1.5
- 3. What is the average value of y for the range of x shown in the following plot?

1. 0 3. 1.5

- 4.
- d. एक बेड में 40% (आयतन अनुसार) खाने यौग्य पदार्थ है तथा शेष हवा द्वारा भरा हुआ है। यदि खाने योग्य पदार्थ का घनत्व 2 ग्राम/घन सेंगी, है तो ब्रेड का परिमाण घनत्व (ग्राम/घन सेमी, में) क्या
 - होगा? 1. 0.4

2. 0.8

3. 1.2

- 4. 1.6
- 4. A bread contains 40% (by volume) edible matter and the remaining space is filled with air. If the density of edible matter is 2 g/cc, what will be the bulk density of the bread (in g/cc)?
 - 1. 0.4

2. 0.8

3. 1.2

- 4. 1.6
- 5. एक पट पर 8 भौतिज एवं 8 अध्वध्य पंक्तियां हैं। एक चाल दो कदम उध्वं के बाद एक कदम क्षैतिज या इसके विपरीत कम से परिभाषित हैं। कम से कम कितनी चालों में एक कोने से दूसरे कर्णीय कोने पर पहुंचा जा सकता है?
 - 1, 5 3. 7

- 4 9
- 5. A board has 8 rows and 8 columns. A move is defined as two steps along a column followed by one step along a row or vice-versa. What is the minimum number of moves needed to go from one corner to the diagonally opposite corner?
 - 1. 5

6

3. 7

4. 9

6. एक नौकरी के लिए 21 पुरुष तथा 17 महिलायें साक्षात्कार दे रहें हैं। अभ्यर्थियों को याद्रच्छिकत: बुलाया जा रहा है। कम-से-कम कितने अभ्यर्थियों का बुलाये जाने पर कम से कम दो पुरुष अथवा दो महिलाओं का साक्षात्कार अवश्य हुआ हो?

1. 17 3. 3

2. 2

4. 21

6. A job interview is taking place with 21 male and 17 female candidates. Candidates are called randomly. What is the minimum number of candidates to be called to ensure that at least two males or two females have been interviewed?

1. 17

2. 2

3. 3

4. 21

7.

ग्राफ में शोध छात्रों की प्रतिशत संचयी आवृत्ति तथा शोध छात्रों द्वारा छापे गये शोध पत्रों की संख्या को दर्शाया गया है। निम्न में से कौन-सा कथन सत्य है?

- 1. अधिकांश शोध छात्रों ने 4 से अधिक शोध पत्र छापे
- 2. 60 % शोध छात्रों ने कम से कम 2 शोध पत्र छापे
- 3. 80% शोध छात्रों ने कम से कम 6 शोध पत्र छापे
- 4. 30% शोध छात्रों ने एक भी शोध पत्र नहीं छापा।

7.

The graph shows cumulative frequency % of research scholars and the number of

papers published by them. Which of the following statements is true?

- Majority of the scholars published more than 4 papers.
- 60 % of the scholars published at least 2 papers.
- 3. 80% of the scholars published at least 6 papers.
- 4. 30% of scholars have not published any paper.
- 8. 'A' सोमवार, मंगलवार और बुधवार को केवल झूठ बोलता है तथा अन्य दिनों में केवल सच बोलता है। 'B' गुरुवार, शुक्रवार तथा शनिवार को केवल झूठ बोलता है तथा अन्य दिनों में केवल सच बोलता है। यदि आज दोनों बताते हैं कि कल दोनों ने झूठ बोला था तो आज कौन सा दिन है?

1. सोमवार

2. गुरुवार

3. रविवार

4. मंगलवार

8. A tells only lies on Monday, Tuesday and Wednesday and speaks only the truth for the rest of the week. B tells only lies on Thursday, Friday and Saturday and speaks only the truth for the rest of the week. If today both of them state that they have lied yesterday, what day is it today?

1. Monday

2. Thursday

3. Sunday

4. Tuesday

 एक न्याय्य पासा तीन बार फेंका गया तथा हर बार
 छ: आया। यदि पासा पुन: फैंका जाये तो छ: आने की प्रायिकता कितनी है?

1. 1/6

2. 1/216

3. 1/1296

4. 1

9. A fair die was thrown three times and the outcome was repeatedly six. If the die is thrown again what is the probability of getting six?

1. 1/6

2. 1/216

3. 1/1296

4. 1

10. निम्न में से कौन सा एक भाज्य परीक्षण के आधार पर अन्यों से भिन्न है? 154, 286, 363, 474, 572, 682

1. 474

2. 572

3. 682

4. 154

10. Which is the odd one out based on a divisibility test?

154, 286, 363, 474, 572, 682

1. 474

2. 572

3. 682

- 4. 154
- 11. मेरा जन्मदिन जनवरी में है। 'हां/नहीं' उत्तर वाले उन प्रश्नों की पर्याप्त संख्या क्या है, जिनके द्वारा कोई मेरा जन्म दिन ज्ञात कर पायेगा?
 - 1. 6

2. 3

3. 5

- 4. 2
- 11. My birthday is in January. What would be a sufficient number of questions with 'Yes/No' answers that will enable one to find my birth date?
 - 1. 6

2. 3

3. 5

- 4. 2
- 12. एक लंबकोणीय त्रिभुज के कर्ण को एक भुजा मान कर चित्रानुसार एक वर्ग खींचा जाता है। छांयाकित वृत्त का क्षेत्रफल क्या है?

- $1. \frac{25\pi}{1} \div \text{सं. मी.}^2$
- 2. $\frac{25\pi}{3}$ सें. मी.
- $3. \frac{25\pi}{3}$ सं. मी. 2
- 4. $\frac{25\pi}{4}$ सें. मी. 2
- 12. A square is drawn with one of its sides as the hypotenuse of a right angled triangle as shown in the figure. What is the area of the shaded circle?

- 1. $\frac{25\pi}{1}$ cm²
- $2 \quad \frac{25\pi}{2} \ cm^2$
- 3. $\frac{25\pi}{3}$ cm²
- 4. $\frac{25\pi}{4}$ cm²

- 13. दो संख्याओं 983713 तथा 983719 के गुणनफल में क्या जोड़ा जाये कि एक पूर्ण वर्ग बनाया जा सके?
 - 1. 9

- 2. 13 4. 27
- 19
- 13. What should be added to the product of the two numbers 983713 and 983719 to make it a perfect square?
 - 1. 9

2. 13

3. 19

- 4. 27
- 14. ∆ABC ਸੋਂ, AB = AC ਰਥਾ ∠BAC = 90°; EF ||AB ਰਥਾ DF||AC.

छायांकित क्षेत्र का कुल क्षेत्रफल है

- 1. $AF^2/2$
- 2. AF²
- 3. BC2/2
- 4. BC2
- In ΔABC, AB = AC and ∠BAC = 90°; EF ||AB and DF||AC.

The total area of the shaded region is

- 1. AF²/2
- 2. AF2
- 3. BC²/2
- 4. BC2
- 15. एक r त्रिज्या वाले वृत्त को लें, इस वृत्त में सबसे बड़े संभाव्य वर्ग को बैठायें तथा वर्ग में सबसे बड़ा संभाव्य वृत्त बैठायें। सबसे अंदर वाले वृत्त की त्रिज्या क्या है?
 - 1. $r/\sqrt{2}$
- 2. $\pi r/\sqrt{2}$
- $3. \quad \frac{r}{2\pi\sqrt{2}}$
- 4. r/2
- 15. Consider a circle of radius r. Fit the largest possible square inside it and the largest possible circle inside the square. What is the radius of the innermost circle?
 - 1. $r/\sqrt{2}$
- 2. $\pi r/\sqrt{2}$
- $3. \ \frac{r}{2\pi\sqrt{2}}$
- 4. r/2

- 16. N क्षैतिज पंक्तियों तथा N ऊर्ध्व पंक्तियों वाले बोर्ड पर N सिक्कों को कितने प्रकार से रखा जा सकता है ताकि प्रत्येक क्षैतिज पंक्ति व प्रत्येक ऊर्ध्व पंक्ति में ठीक-ठीक एक सिक्का हो?
 - 1. N
 - 2. N(N-1)(N-2)....2×1
 - 3. N2
 - 4. NN
- 16. In how many ways can you place N coins on a board with N rows and N columns such that every row and every column contains exactly one coin?
 - 1. N
 - 2. N(N-1)(N-2)....2×1
 - 3. N^2
 - 4. N^N
- 17. दो एकरूप पहिये B व C, एक वृत्त A की परिधि पर गतिज हैं। दोनों पहिये एक ही बिन्दु से प्रारम्भ कर उसी बिन्दु पर लौटते हैं। B, A के अंदर चलता है तथा C, A के बाहर। कौन-सा कथन सही है?

- 1. С की अपेक्षा Β, π गुणा अधिक घिसता है।
- 2. В की अपेक्षा С, π गुणा अधिक घिसता है।
- 3. B व C समान रूप से घिसते हैं।
- 4. C का घिसना B की अपेक्षा दो गुणा है।
- 17. Two identical wheels B and C move on the periphery of circle A. Both start at the same point on A and return to it, B moving inside A and C outside it. Which is the correct statement?

- 1. B wears out π times C
- 2. C wears out π times B
- 3. B and C wear out about equally
- 4. C wears out two times B
- 18. निम्न में से कौन सा विषम है?
 - 1. द्वि-समबाह् त्रिभ्ज
 - 2. वर्ग
 - 3. सम षटभुज
 - 4. आयत
- 18. Which of the following is the odd one out?
 - 1. Isosceles triangle
 - 2. Square
 - 3. Regular hexagon
 - 4. Rectangle
- 19. तुप्त शब्द ज्ञात करें: A, AB, ____, ABBABAAB
 - 1. AABB
 - 2. ABAB
 - 3. ABBA
 - 4. BAAB
- Find the missing word: A, AB, _____, ABBABAAB
 - 1. AABB
 - 2. ABAB
 - 3. ABBA
 - 4. BAAB
- 20. एक 100 मी. लम्बी रेलगाड़ी एक 200 मी. लम्बे एवं 20 मी. चौड़े पुल को 20 सेकेन्ड में पार करती है। रेलगाड़ी की गति किमी./घंटा में कितनी है?
 - 1. 45

2. 36

3. 54

- 4. 57.6
- 20. A 100 m long train crosses a bridge 200 m long and 20 m wide bridge in 20 seconds. What is the speed of the train in km/hr?
 - 1. 45

2. 36

3. 54

4. 57.6

भाग \PART B

- 21. निम्न में से कौन-सा एक 3 x 3 वास्तविक आव्यूह के अभिलक्षणिक मान नहीं हो सकता?
 - 1. 2i, 0, -2i
 - 2. 1,1,1
 - 3. $e^{i\theta}$, $e^{-i\theta}$, 1
 - 4. i, 1, 0
- 21. Which of the following cannot be the eigenvalues of a real 3 × 3 matrix
 - 1. 2i, 0, -2i
 - 2. 1, 1, 1
 - 3. $e^{i\theta}$, $e^{-i\theta}$, 1
 - 4. i.1.0
- 22. मार्ने कि सम्मिश्र चर z = x + iy के फलन f(z) = u(x,y) + iv(x,y) का वास्तविक भाग $u(x,y) = e^{ax}\cos(by)$ है, जहां a,b वास्तविक भचर हैं तथा $a \neq 0$. फलन f(z) सम्मिश्र तल में सर्वत्र सम्मिश्र-विश्लेषिक (complex analytic) है यदि एवं मात्र यदि
 - 1. b = 0
- 2. $b = \pm a$
- 3. $b = \pm 2\pi a$
- 4. $b = a + 2\pi$
- 22. Let $u(x,y) = e^{ax} \cos(by)$ be the real part of a function f(z) = u(x,y) + iv(x,y) of the complex variable z = x + iy, where a, b are real constants and $a \ne 0$. The function f(z) is complex analytic everywhere in the complex plane if and only if
 - 1. b = 0
- 2. $b = \pm a$
- 3. $b = \pm 2\pi a$
- 4. $b = a \pm 2\pi$
- 23. चित्र पर दर्शाये गये संवृत कांटूर Γ पर समाकल $\oint_\Gamma \frac{ze^{i\pi z/2}}{z^2-1}dz$ है

1. 0 3. -2π

- $2. 2\pi$
- 4. 4πί
- 23. The integral $\oint_{\Gamma} \frac{ze^{i\pi z/2}}{z^2-1} dz$ along the closed contour Γ shown in the figure is

1. 0

 $2. 2\pi$

3. -2π

- 4. 4πi
- **24.** फलन y(x) अवकल समीकरण $x\frac{dy}{dx} + 2y = \frac{\cos \pi x}{x}$ का समाधान करता है। यदि y(1) = 1 है, तो y(2) का मान है
 - 1. π

2. 1

3. 1/2

- 4. 1/4
- 24. The function y(x) satisfies the differential equation $x \frac{dy}{dx} + 2y = \frac{\cos \pi x}{x}$. If y(1) = 1, the value of y(2) is
 - 1. π

2. 1

3. 1/2

- 4. 1/4
- 25. याद्दिछक चर $x \ (-\infty < x < \infty)$ प्रसामान्य बंटन $P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$ के अनुसार बंटित है। याद्दिछक चर $y = x^2$ का प्रायिकता बंटन है
 - 1. $\frac{1}{\sqrt{2\pi\sigma^2 y}}e^{-y/2\sigma^2}, \quad 0 \le y < \infty$
 - 2. $\frac{1}{2\sqrt{2\pi\sigma^2y}}e^{-y/2\sigma^2}$, $0 \le y < \infty$
 - 3. $\frac{1}{\sqrt{2\sigma^2}}e^{-y/2\sigma^2}$, $0 \le y < \infty$
 - 4. $\frac{1}{\sqrt{2\pi\sigma^2 y}}e^{-y/\sigma^2}, \quad 0 \le y < \infty$

25. The random variable $x \ (-\infty < x < \infty)$ is distributed according to the normal distribution $P(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$. The probability density of the random variable $y = x^2$ is

1.
$$\frac{1}{\sqrt{2\pi\sigma^2 y}}e^{-y/2\sigma^2}, \quad 0 \le y < \infty$$

2.
$$\frac{1}{2\sqrt{2\pi\sigma^2y}} e^{-y/2\sigma^2}, \quad 0 \le y < \infty$$

3.
$$\frac{1}{\sqrt{2\sigma^2}}e^{-y/2\sigma^2}, \quad 0 \le y < \infty$$

4.
$$\frac{1}{\sqrt{2\pi\sigma^2 y}}e^{-y/\sigma^2}, \quad 0 \le y < \infty$$

26. व्यापकीकृत निर्देशांक x तथा व्यापकीकृत संवेग p द्वारा वर्णित, किसी तंत्र की हैमिल्टनी है

$$H = \alpha x^2 p + \frac{p^2}{2(1 + 2\beta x)} + \frac{1}{2}\omega^2 x^2$$

जहां α, β तथा ω अचर हैं। संगत लंगांजी है

1.
$$\frac{1}{2}(\dot{x} - \alpha x^2)^2(1 + 2\beta x) - \frac{1}{2}\omega^2 x^2$$

2.
$$\frac{1}{2(1+2\beta x)}\dot{x}^2 - \frac{1}{2}\omega^2x^2 - \alpha x^2\dot{x}$$

3.
$$\frac{1}{2}(\dot{x}^2 - \alpha^2 x)^2 (1 + 2\beta x) - \frac{1}{2}\omega^2 x^2$$

4.
$$\frac{1}{2(1+2\beta x)}\dot{x}^2 - \frac{1}{2}\omega^2 x^2 + \alpha x^2 \dot{x}$$

26. The Hamiltonian for a system described by the generalized coordinate x and generalised momentum p is

$$H = \alpha x^2 p + \frac{p^2}{2(1 + 2\beta x)} + \frac{1}{2}\omega^2 x^2$$

where α , β and ω are constants. The corresponding Lagrangian is

1.
$$\frac{1}{2}(\dot{x} - \alpha x^2)^2(1 + 2\beta x) - \frac{1}{2}\omega^2 x^2$$

2.
$$\frac{1}{2(1+2\beta x)}\dot{x}^2 - \frac{1}{2}\omega^2x^2 - \alpha x^2\dot{x}$$

3.
$$\frac{1}{2}(\dot{x}^2 - \alpha^2 x)^2 (1 + 2\beta x) - \frac{1}{2}\omega^2 x^2$$

4.
$$\frac{1}{2(1+2\beta x)}\dot{x}^2 - \frac{1}{2}\omega^2x^2 + \alpha x^2\dot{x}$$

27. एक जड़त्वीय प्रेक्षक दो घटनाओं E_1 तथा E_2 को एक ही स्थान पर घटते देखता है परंतु $6 \mu s$ के समयांतर पर। (पहले प्रेक्षक के संदर्भ में) अचर गति ν के साथ गतिशील दूसरा प्रेक्षक उन्हीं घटनाओं को $9 \mu s$ समयांतर के साथ घटते देखता है। दूसरे प्रेक्षक से नापी गयी दोनों घटनाओं के बीच की दूरी लगभग है

1. 300 m

2. 1000 m

3. 2000 m

4. 2700 m

27. An inertial observer sees two events E_1 and E_2 happening at the same location but $6 \mu s$ apart in time. Another observer moving with a constant velocity v (with respect to the first one) sees the same events to be $9 \mu s$ apart. The spatial distance between the events, as measured by the second observer, is approximately

1. 300 m

2. 1000 m

3. 2000 m

4. 2700 m

28. 100 gm द्रव्यमान का एक गेंद्र, जिसे 5 मी. ऊँचाई से छोड़ा जाता है, एक प्लेट से पूर्णतः प्रत्यास्थतः उछलता है। गेंद्र तथा प्लेट के बीच टक्कर का समय काल 0.5 से. है। प्लेट पर औसत बल है लगभग

1. 3 N

2. 2 N

3. 5 N

4. 4 N

28. A ball weighing 100 gm, released from a height of 5 m, bounces perfectly elastically off a plate. The collision time between the ball and the plate is 0.5 s. The average force on the plate is approximately

1. 3 N

2. 21

3. 5 N

4. 4 N

29. लंबाई L तथा अनुप्रस्थ काट क्षेत्रफल A का एक ठोस उध्वीधर छड़, यंग का गुणांक (Young's modulus) Y वाले पदार्थ से बना है। छड़ पर भार M लादे जाने के कारणवश, वह साम्यावस्था स्थिति में एक लघु मात्रा ΔL से विस्तृत होता है। तद्पश्चात् भार अचानक घटकर M/2 होता है। इसके कारण छड़ अनुदैर्घ्य दोलन अनुभव करेगा इस कोणीय आवृति के साथ

- 1. $\sqrt{2YA/ML}$
- 2. $\sqrt{YA/ML}$
- 3. $\sqrt{2YA/M\Delta L}$
- 4. $\sqrt{YA/M\Delta L}$
- 29. A solid vertical rod, of length L and cross-sectional area A, is made of a material of Young's modulus Y. The rod is loaded with a mass M, and, as a result, extends by a small amount ΔL in the equilibrium condition. The mass is then suddenly reduced to M/2. As a result the rod will undergo longitudinal oscillation with an angular frequency
 - 1. $\sqrt{2YA/ML}$
- 2. $\sqrt{YA/ML}$
- 3. $\sqrt{2YA/M\Delta L}$
- 4. $\sqrt{YA/M\Delta L}$
- 30. एक-विमीय सरल आवर्त विभव की आद्य स्थिति में रहते एक कण का वर्ग-माध्य-मूल संवेग p_0 है। पहली उत्तेजित स्थिति में उसका वर्ग-माध्य-मूल संवेग है
 - 1. $p_0\sqrt{2}$
- 2. $p_0 \sqrt{3}$
- 3. $p_0 \sqrt{2/3}$
- 4. $p_0 \sqrt{3/2}$
- 30. If the root-mean-squared momentum of a particle in the ground state of a one-dimensional simple harmonic potential is p_0 , then its root-mean-squared momentum in the first excited state is
 - 1. $p_0 \sqrt{2}$
- 2. $p_0 \sqrt{3}$
- 3. $p_0 \sqrt{2/3}$
- 4. $p_0 \sqrt{3/2}$
- 31. विभव रोध A की ऊँचाई V_0 है तथा चौड़ाई b है। दूसरा विभव रोध B की ऊँचाई $2V_0$ है पर उसकी चौड़ाई b है। ऊर्जा $V_0/100$ के एक कण के लिए A तथा B से गुजरने की सुरंगन प्रायिकताओं (क्रमश: T_A तथा T_B) का अनुपात T_A/T_B का सबसे अच्छा सन्निकटन है
 - 1. $\exp \left[\left(\sqrt{1.99} \sqrt{0.99} \right) \sqrt{8 \, m \, V_0 b^2 / \hbar^2} \right]$
 - 2. $\exp[(\sqrt{1.98} \sqrt{0.98})\sqrt{8 \, m \, V_0 b^2/\hbar^2}]$
 - 3. $\exp[(\sqrt{2.99} \sqrt{0.99})\sqrt{8 \, m \, V_0 b^2/\hbar^2}]$
 - 4. $\exp[(\sqrt{2.98} \sqrt{0.98})\sqrt{8 \, m \, V_0 b^2/\hbar^2}]$

- 31. Consider a potential barrier A of height V_0 and width b, and another potential barrier B of height $2V_0$ and the same width b. The ratio T_A/T_B of tunnelling probabilities T_A and T_B , through barriers A and B respectively, for a particle of energy $V_0/100$, is best approximated by
 - 1. $\exp\left[\left(\sqrt{1.99} \sqrt{0.99}\right)\sqrt{8 \, m \, V_0 b^2/\hbar^2}\right]$
 - 2. $\exp\left[\left(\sqrt{1.98} \sqrt{0.98}\right)\sqrt{8 \, m \, V_0 b^2/\hbar^2}\right]$
 - 3. $\exp\left[\left(\sqrt{2.99} \sqrt{0.99}\right)\sqrt{8\,m\,V_0b^2/\hbar^2}\right]$
 - 4. $\exp\left[\left(\sqrt{2.98} \sqrt{0.98}\right)\sqrt{8 \, m \, V_0 b^2/\hbar^2}\right]$
- 32. एक तंत्र पर समय Δt के लिए अचर क्षोभ H' (जहां $H'\Delta t \ll \hbar$) लागू किया जाता है। इसकी वजह से ऊर्जा स्तर E_t से E_f स्तर तक संक्रमण घटित होता है। यदि लागूकरण का समय काल दुगुना किया जाता है, तो संक्रमण प्रायिकता होगी
 - 1. अपरिवर्तित
- 2. दुगुनी
- 3. चौगुनी
- 4. आधी
- 32. A constant perturbation H' is applied to a system for time Δt (where $H'\Delta t \ll \hbar$) leading to a transition from a state with energy E_i to another with energy E_f . If the time of application is doubled, the probability of transition will be
 - 1. unchanged
- 2. doubled
- 3. quadrupled
- 4. halved
- 33. दो सदिश $\binom{a}{0}$ तथा $\binom{b}{c}$ प्रसामान्य लांबिक होंगे यदि
 - 1. $a = \pm 1$, $b = \pm 1/\sqrt{2}$, $c = \pm 1/\sqrt{2}$
 - 2. $a = \pm 1$, $b = \pm 1$, c = 0
 - 3. $a = \pm 1$, b = 0, $c = \pm 1$
 - 4. $a = \pm 1$, $b = \pm 1/2$, c = 1/2
- 33. The two vectors $\binom{a}{0}$ and $\binom{b}{c}$ are orthonormal if
 - 1. $a = \pm 1$, $b = \pm 1/\sqrt{2}$, $c = \pm 1/\sqrt{2}$
 - 2. $a = \pm 1$, $b = \pm 1$, c = 0
 - 3. $a = \pm 1$, b = 0, $c = \pm 1$
 - 4. $a = \pm 1$, $b = \pm 1/2$, c = 1/2

34. चित्र में दर्शाये अनुसार दो लंबे खोखले समाक्ष चालक बेलन, त्रिज्याओं R_1 तथा R_2 ($R_1 < R_2$) वाले, निर्वात में रखा गया है।

अंदर का बेलन प्रति इकाई लंबाई पर + λ आवेश रखता है, तथा बाहर का बेलन प्रति इकाई लंबाई - रे आवेश रखता है। इस तंत्र की प्रति इकाई लंबाई विद्युतस्थैतिक ऊर्जा है

- $1. \ \frac{\lambda^2}{\pi \epsilon_0} \ln(R_2/R_1)$
- 2. $\frac{\lambda^2}{4\pi\epsilon_0} (R_2^2/R_1^2)$
- 3. $\frac{\lambda^2}{4\pi\epsilon_0}\ln(R_2/R_1)$ 4. $\frac{\lambda^2}{2\pi\epsilon_0}\ln(R_2/R_1)$

34. Two long hollow co-axial conducting cylinders of radii R_1 and R_2 ($R_1 < R_2$) are placed in vacuum as shown in the figure below.

The inner cylinder carries a charge $+\lambda$ per unit length and the outer cylinder carries a charge $-\lambda$ per unit length. The electrostatic energy per unit length of this system is

- 1. $\frac{\lambda^2}{\pi \epsilon_0} \ln(R_2/R_1)$ 2. $\frac{\lambda^2}{4\pi \epsilon_0} (R_2^2/R_1^2)$
- 3. $\frac{\lambda^2}{4\pi\epsilon_0} \ln(R_2/R_1)$ 4. $\frac{\lambda^2}{2\pi\epsilon_0} \ln(R_2/R_1)$

35. समतल पर प्रत्येक एक ही दिशा में स्थाई विदय्त धारा 1 वहन करते तार के समकेंद्री N पाशों का एक समुच्चय समायोजित किया गया है। पहले पाश की त्रिज्या $r_1 = a$ है तथा n-वां पाश की त्रिज्या $r_n = n \, r_{n-1}$ द्वारा व्यक्त किया गया है। सीमा $N \to \infty$ पर वर्त्लो के केंद्र पर चंबकीय क्षेत्र B का परिमाण है

- 1. $\mu_0 I(e^2 1)/4\pi a$
- 2. $\mu_0 I(e-1)/\pi a$

- 3. $\mu_0 I(e^2-1)/8a$
- 4. $\mu_0 I(e-1)/2a$
- 35. A set of N concentric circular loops of wire, each carrying a steady current I in the same direction, is arranged in a plane. The radius of the first loop is $r_1 = a$ and the radius of the n^{th} loop is given by $r_n = n r_{n-1}$. The magnitude B of the magnetic field at the centre of the circles in the limit $N \to \infty$, is
 - 1. $\mu_0 I(e^2 1)/4\pi a$
 - 2. $\mu_0 I(e-1)/\pi a$
 - 3. $\mu_0 I(e^2 1)/8a$
 - 4. $\mu_0 I(e-1)/2a$
- 36. परावैद्युत विद्युतशीलता $\varepsilon = \varepsilon_R + i\varepsilon_I$, $\frac{\varepsilon_I}{\varepsilon_R} = \sqrt{3}$, वाले अवशोषक माध्यम से विद्युतचुंबकीय तरंग (जिसका तरंगदैर्घ्य मुक्त आकाश में 🛵 है) पारित होता है। यदि त्वचा महराई $\frac{\lambda_0}{4\pi}$ है, माध्यम में विद्युत क्षेत्र E तथा चुंबकीय क्षेत्र B के आयामों का अन्पात (ओहम में) है
 - 1. 120 π
- 2. 377
- 3. $30\sqrt{2}\pi$
- 30 π
- 36. An electromagnetic wave (of wavelength λ_0 in free space) travels through an absorbing medium with dielectric permittivity given by $\varepsilon=\varepsilon_R+i\varepsilon_I$ where $\frac{\varepsilon_I}{\varepsilon_R}=\sqrt{3}$. If the skin depth is $\frac{\lambda_0}{4\pi}$, the ratio of the amplitude of electric field E to that of the magnetic field B, in the medium (in ohms) is
 - 1. 120π
- 2. 377
- 3. $30\sqrt{2}\pi$
- 4. 30π
- 37. एक विद्युत चुंबकीय क्षेत्र से संगत सदिश विभव $\vec{A} = ke^{-at}r\hat{r}$ (जहां a तथा k अचर हैं) से $\vec{A}' = -ke^{-at}r\hat{r}$ पर परिवर्तित किया जाता है। यह एक प्रमापी रूपांतरण होगा यदि संगत अदिश विभव का परिवर्तन $\phi' - \phi$ ऐसे होता है
 - 1. akr2e-at
- 2. $2akr^2e^{-at}$
- $3. -akr^2e^{-at}$

37. The vector potential $\vec{A} = ke^{-at}r\hat{r}$ (where a and k are constants) corresponding to an electromagnetic field is changed to $\vec{A}' =$ $-ke^{-at}r\hat{r}$. This will be a gauge transformation if the corresponding change $\phi' - \phi$ in the scalar potential is

1.
$$akr^2e^{-at}$$

2.
$$2akr^2e^{-at}$$

$$3. -akr^2e^{-at}$$

4.
$$-2akr^2e^{-at}$$

38. ऊष्मागतिक फलन G(T, P, N) = U - TS + PVआंतरिक ऊर्जा U, ताप T, एंट्रॉपी S, दाब P, आयतन V तथा कणों की संख्या N में दिया गया है। निम्न संबंधों में से कौन-सा सही है? (निम्न में μ रासायनिक विभव है)

1.
$$S = -\frac{\partial G}{\partial T}\Big|_{NP}$$

$$2. \quad S = \frac{\partial G}{\partial T}\Big|_{NP}$$

3.
$$V = -\frac{\partial G}{\partial P}\Big|_{NS}$$

3.
$$V = -\frac{\partial G}{\partial P}\Big|_{NT}$$
 4. $\mu = -\frac{\partial G}{\partial N}\Big|_{PT}$

38. A thermodynamic function

$$G(T, P, N) = U - TS + PV$$

is given in terms of the internal energy U, temperature T, entropy S, pressure P, volume V and the number of particles N. Which of the following relations is true? (In the following μ is the chemical potential.)

1.
$$S = -\frac{\partial C}{\partial T}\Big|_{N}$$

1.
$$S = -\frac{\partial G}{\partial T}\Big|_{N,P}$$
 2. $S = \frac{\partial G}{\partial T}\Big|_{N,P}$

3.
$$V = -\frac{\partial G}{\partial P}\Big|_{V}$$

3.
$$V = -\frac{\partial G}{\partial P}\Big|_{NT}$$
 4. $\mu = -\frac{\partial G}{\partial N}\Big|_{PT}$

39. एक बक्से के दो कक्ष एक गतिशील दीवार से वियुक्त हैं। उसमें $\frac{C_P}{C_V} = \gamma$ वाले एक एकपरमाणवीय गैस भरा है। प्रारंभ में दोनों कक्षों के आयतन समान हैं, परंतु दाब क्रमश: 3Po तथा Po हैं। जब दीवार को गतिशील होने दिया जाता है, दोनों कक्षाओं में अंतिम दाब समान हो जाते हैं। यह अंतिम दाब है:

$$1. \left(\frac{2}{3}\right)^{\gamma} P_0$$

2.
$$3\left(\frac{2}{3}\right)^{\gamma}P_0$$

3.
$$\frac{1}{2}(1+3^{1/\gamma})^{\gamma}P_{0}$$

3.
$$\frac{1}{2} (1 + 3^{1/\gamma})^{\gamma} P_0$$
 4. $\left(\frac{3^{1/\gamma}}{1 + 3^{1/\gamma}}\right)^{\gamma} P_0$

39. A box, separated by a movable wall, has two compartments filled by a monoatomic gas of $\frac{C_P}{C_V} = \gamma$. Initially the volumes of the two compartments are equal, but the pressures are $3P_0$ and P_0 , respectively. When the wall is allowed to move, the final pressures in the two compartments become equal. pressure is

1.
$$\left(\frac{2}{3}\right)^{\gamma} P_0$$

2.
$$3\left(\frac{2}{3}\right)^{\gamma} P_0$$

3.
$$\frac{1}{2}(1+3^{1/\gamma})^{\gamma}P_0$$
 4. $\left(\frac{3^{1/\gamma}}{1+3^{1/\gamma}}\right)^{\gamma}P_0$

4.
$$\left(\frac{3^{1/\gamma}}{1+3^{1/\gamma}}\right)^{\gamma} P_0$$

40. फ़ोटॉन गैस आयतन V वाली एक गृहिका के अंदर ताप T पर साम्यावस्था में है। यदि गृहिका के ताप को 27 पर परिवर्तित किया जाता है, विकिरण दाब इस ग्णक से परिवर्तित होगा

40. A gas of photons inside a cavity of volume V is in equilibrium at temperature T. If the temperature of the cavity is changed to 2T, the radiation pressure will change by a factor of

41. किसी साम्यावस्था में रहता ऊष्मागतिक तंत्र में हर अण् प्रायिकताओं 1/2,1/3 तथा 1/6 के साथ तीन अवस्थाओं में रह सकता है। प्रति अण् एंट्रॉपी है

2.
$$\frac{1}{2} k_B \ln 2 + \frac{2}{3} k_B \ln 3$$

3.
$$\frac{2}{3} k_B \ln 2 + \frac{1}{2} k_B \ln 3$$

4.
$$\frac{1}{2} k_B \ln 2 + \frac{1}{6} k_B \ln 3$$

41. In a thermodynamic system in equilibrium, each molecule can exist in three possible states with probabilities 1/2,1/3 and respectively. The entropy per molecule is

$$l. k_B \ln 3$$

2.
$$\frac{1}{2} k_B \ln 2 + \frac{2}{3} k_B \ln 3$$

3.
$$\frac{2}{3} k_B \ln 2 + \frac{1}{2} k_B \ln 3$$

4.
$$\frac{1}{2} k_B \ln 2 + \frac{1}{6} k_B \ln 3$$

42. निम्न चित्र में दर्शाये गये n-चैनल JFET में, $V_l = -2 \text{ V}, \ C = 10 \text{ pF}, \ V_{DD} = +16 \text{ V}, \ \pi$ था $R_D = 2 \text{ k}\Omega$ हैं।

यदि ड्रेईन D - स्रोत S संतृप्तता घारा I_{DSS} 10 mA है तथा पिंच-आफ़ वोल्टता V_P -8 V है, तो बिंदुऔं D तथा S के बीच का वोल्टता है

- 1. 11.125 V
- 2. 10.375 V
- 3. 5.75 V
- 4. 4.75 V
- 42. In the *n*-channel JFET shown in figure below, $V_i = -2 \text{ V}$, C = 10 pF, $V_{DD} = +16 \text{ V}$, and $R_D = 2 \text{ k}\Omega$.

If the drain D - source S saturation current I_{DSS} is 10 mA and the pinch-off voltage V_P is -8 V, then the voltage across points D and S is

- 1. 11.125 V
- 2. 10.375 V
- 3. 5.75 V
- 4. 4.75 V
- 43. निम्न दिये गये परिपथ की लब्धि है $-\frac{1}{\omega RC}$.

एक dc पुनर्निवेश को पाने के लिए परिपथ में आवश्यक परिवर्तन है एक प्रतिरोधक को जोड़ना

- 1. a तथा b के बीच
- संक्रियात्मक प्रवर्धक के धन टर्मिनल तथा भसंपर्क के बीच
- 3. C के साथ श्रेणी में
- 4. C के समांतर
- 43. The gain of the circuit given below is $-\frac{1}{\omega RC}$.

The modification in the circuit required to introduce a dc feedback is to add a resistor

- 1. between a and b
- 2. between positive terminal of the op-amp and ground
- 3. in series with C
- 4. parallel to C
- 44. एनेबल निवेश युक्त एक 2 x 4 डीकोडर कार्य कर सकता है इस रूप में
 - 1. 4×1 मल्टिप्लैक्सर
 - 2. 1 × 4 डीमल्टिप्लैक्सर
 - 3. 4×2 एंकोडर
 - 4. 4 × 2 प्राथमिकत एंकोडर
- 44. A 2 × 4 decoder with an enable input can function as a
 - 1. 4 × 1 multiplexer
 - 2. 1 × 4 demultiplexer
 - 3. 4 × 2 encoder
 - 4. 4 × 2 priority encoder
- 45. चरों x तथा y के प्रेक्षणतः मापित मान क्रमशः 2.00 ± 0.05 तथा 3.00 ± 0.02 है। इन मापनों से परिकलित मान z = 3y 2x की क्या त्रृटि है?
 - 1. 0.12
- 2. 0.05
- 3. 0.03

4. 0.07

45. The experimentally measured values of the variables x and y are 2.00 ± 0.05 and 3.00 ± 0.02 , respectively. What is the error in the calculated value of z = 3y - 2x from the measurements?

भाग \PART C

46. सीमा प्रतिबंध $g(-L,x_0)=0=g(L,x_0)$ युक्त $\frac{d^2}{dx^2}g(x,x_0)=\delta(x-x_0)$

को समाधान करता ग्रीन-फलन है:

1.
$$\begin{cases} \frac{1}{2L}(x_0 - L)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 + L)(x - L), & x_0 \le x \le L \end{cases}$$

2.
$$\begin{cases} \frac{1}{2L}(x_0 + L)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 - L)(x - L), & x_0 \le x \le L \end{cases}$$

3.
$$\begin{cases} \frac{1}{2L}(L-x_0)(x+L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0+L)(L-x), & x_0 \le x \le L \end{cases}$$

4.
$$\frac{1}{2L}(x-L)(x+L), -L \le x \le L$$

46. The Green's function satisfying

$$\frac{d^2}{dx^2}g(x,x_0)=\delta(x-x_0)$$

with the boundary conditions $g(-L, x_0) = 0 = g(L, x_0)$, is

1.
$$\begin{cases} \frac{1}{2L}(x_0 - L)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 + L)(x - L), & x_0 \le x \le L \end{cases}$$

2.
$$\begin{cases} \frac{1}{2L}(x_0 + L)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 - L)(x - L), & x_0 \le x \le L \end{cases}$$

3.
$$\begin{cases} \frac{1}{2L}(L - x_0)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 + L)(L - x), & x_0 \le x \le L \end{cases}$$

4.
$$\frac{1}{2L}(x-L)(x+L), -L \le x \le L$$

47. $\sigma_x, \sigma_y, \sigma_z$ पाउली आव्यूह हैं तथा $x'\sigma_x + y'\sigma_y + z'\sigma_z = \exp\left(\frac{i\theta\sigma_z}{2}\right) \times$

$$\left[x\sigma_x + y\sigma_y + z\sigma_z\right] \exp\left(-\frac{i\theta\sigma_z}{2}\right)$$
 है।

तो निर्देशांक इस प्रकार संबंधित हैं

1.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

2.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} & 0 \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

4.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} & 0 \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

47. Let σ_x , σ_y , σ_z be the Pauli matrices and $x'\sigma_x + y'\sigma_y + z'\sigma_z = \exp\left(\frac{i\theta\sigma_z}{2}\right) \times \left[x\sigma_x + y\sigma_y + z\sigma_z\right] \exp\left(-\frac{i\theta\sigma_z}{2}\right)$.

Then the coordinates are related as follows

1.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

2.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} & 0 \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

4.
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} & 0 \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

48. सिम्पसन एक तिहाई विधि के उपयोग से समाकल $\int_0^1 e^{i2\pi x} dx$ के परिकलन के लिए अंतराल [0,1], समान लंबाई के 2n भागों में विभाजित किया जाता है। परिणाम के ठीक-ठीक होने के लिए n का न्यूनतम मान क्या है?

48. The interval [0,1] is divided into 2n parts of equal length to calculate the integral $\int_0^1 e^{i2\pi x} dx$ using Simpson's $\frac{1}{3}$ -rule. What is the minimum value of n for the result to be exact?

1.00 2. 2 3. 3

49. आव्यूह ग्णन के अंदर निम्न 3 x 3 आव्यूहों (जिनमें a तथा b वास्तविक संख्यायें हैं) के सम्च्चयों में से कौन-सा एक समूह निर्माण करता है?

4. 4

1. $\left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ b & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\}$

 $2. \quad \left\{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}; \ a, b \in \mathbb{R} \right\}$

3. $\left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\}$

 $4. \quad \left\{ \begin{pmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \ a, b \in \mathbb{R} \right\}$

49. Which of the following sets of 3×3 matrices (in which a and b are real numbers) form a group under matrix multiplication?

1. $\left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ b & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\}$

 $2. \left\{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\}$

3. $\left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\}$

 $4. \left\{ \begin{pmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\}$

50. (एक विम में) द्रव्यमान m के एक म्कत आपेक्षिकीय कण की लग्रांजी $L = -m\sqrt{1-\dot{x}^2}$, जहां $\dot{x} = dx/dt$, से दिया जाता है। यदि ऐसे कण पर एक अचर बल उसकी गतिशीलता की दिशा में लाग् किया जाता है, संगत हैमिल्टनी से प्राप्त अवस्था-समष्टि प्रपथ होंगे

1. दीर्घवृत्त

2. चक्रज

3. अतिपरवलय

4. परवलय

50. The Lagrangian of a free relativistic particle (in one dimension) of mass m is given by L = $-m\sqrt{1-\dot{x}^2}$ where $\dot{x}=dx/dt$. If such a particle is acted upon by a constant force in the direction of its motion, the phase space trajectories obtained from the corresponding Hamiltonian are

1. ellipses

2. cycloids

3. hyperbolas

4. parabolas

51. एक हैमिल्टनी तंत्र विहित निर्देशांक q तथा विहित संवेग p से वर्णित है। एक नया निर्देशांक Q इस प्रकार परिभाषित किया जाता है Q(t) = $q(t+\tau)+p(t+\tau)$ जहां t समय तथा τ एक अचर है, अर्थात नया निर्देशांक समय-विलंबित प्राने निर्देशांक तथा संवेग का एक संयोजन है। नये विहित संवेग P(t) को इस प्रकार अभिव्यक्त किया जाता सकता है

1. $p(t+\tau)-q(t+\tau)$

2. $p(t+\tau)-q(t-\tau)$

3. $\frac{1}{2}[p(t-\tau)-q(t+\tau)]$

4. $\frac{1}{2}[p(t+\tau)-q(t+\tau)]$

51. A Hamiltonian system is described by the canonical coordinate q and canonical momentum p. A new coordinate Q is defined as $Q(t) = q(t+\tau) + p(t+\tau)$, where t is the time and τ is a constant, that is, the new coordinate is a combination of the old coordinate and momentum at a shifted time. The new canonical momentum P(t) can be expressed as

1. $p(t+\tau)-q(t+\tau)$

2. $p(t+\tau)-q(t-\tau)$

3. $\frac{1}{2}[p(t-\tau)-q(t+\tau)]$

4. $\frac{1}{2}[p(t+\tau)-q(t+\tau)]$

52. लग्रांजी $L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^{2n}$ से नियंत्रित एक एक-विमी तंत्र, जहां k तथा n दो धन अचर हैं, की ऊर्जा E_0 है। दोलन का आवर्त काल τ इस प्रकार है

1. $\tau \propto k^{\frac{1}{n}}$

2. $\tau \propto k^{-\frac{1}{2n}} E_0^{\frac{1-r}{2n}}$

3. $\tau \propto k^{-\frac{1}{2n}} E_0^{\frac{2n}{2n}}$

4. $\tau \propto k^{-\frac{1}{n}} E_0^{\frac{1+\alpha}{2n}}$

52. The energy of a one-dimensional system, governed by the Lagrangian

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^{2n}$$

where k and n are two positive constants, is E_0 . The time period of oscillation τ satisfies

- 1. τ ∝ k n
- $2. \quad \tau \propto k^{-\frac{1}{2n}} E_0^{\frac{1-n}{2n}}$
- 3. $\tau \propto k^{-\frac{1}{2n}} E_0^{\frac{n-2}{2n}}$
- 4. $\tau \propto k^{-\frac{1}{n}} E_0^{\frac{1+n}{2n}}$
- 53. एक इलैक्ट्रॉन को अपनी प्रारंभिक गति μ (जहां $u \ll c$ है) से u/2 तक नियत रूप से अवत्वरणित किया जाता है, जिस दौरान वह दुरी s पारित करता है। विकिरण दवारा नष्ट होती ऊर्जा है

- 53. An electron is decelerated at a constant rate starting from an initial velocity u (where $u \ll$ c) to u/2 during which it travels a distance s. The amount of energy lost to radiation is
 - $1.\ \frac{\mu_0e^2u^2}{3\pi mc^2s}$
- 3. $\frac{\mu_0 e^2 u}{8\pi mcs}$
- 4. $\frac{\mu_0 e^2 u}{16 \pi m cs}$
- 54. यंग (Young) के दवि-विदर प्रयोग में विदरों तथा पर्दे के विन्यास को निम्न चित्र दर्शाता है। Si में विदर की चौड़ाई a है तथा S2 में विदरों की चौड़ाई नगण्य है।

यदि प्रकाश का तरंगदैर्घ्य λ है, तो d का जिस मान के लिये पर्दा अदीप्त होगा, है

- 1. $b\sqrt{\left(\frac{a}{\lambda}\right)^2-1}$

54. The figure below describes the arrangement of slits and screens in a Young's double slit experiment. The width of the slit in S₁ is a and the slits in S2 are of negligible width.

If the wavelength of the light is λ , the value of d for which the screen would be dark is

- 1. $b\sqrt{\left(\frac{a}{1}\right)^2-1}$ 2. $\frac{b}{2}\sqrt{\left(\frac{a}{1}\right)^2-1}$

- 55. एक तार के टुकड़े, जो चित्र में दर्शाये अनुसार एक पाश में मोड़ा गया है, में अचर विद्यृत धारा / प्रवाहित हो रही है।

बिंद् O पर चुंबकीय क्षेत्र का परिमाण है

- 1. $\frac{\mu_0 I}{4\pi\sqrt{5}} \ln \left(\frac{a}{b}\right)$
- 2. $\frac{\mu_0 l}{4\pi\sqrt{5}} \left(\frac{1}{a} \frac{1}{b} \right)$

- 55. A constant current I is flowing in a piece of wire that is bent into a loop as shown in the

The magnitude of the magnetic field at the point O is

1.
$$\frac{\mu_0 I}{4\pi\sqrt{5}} \ln\left(\frac{a}{b}\right)$$

2. $\frac{\mu_0 I}{4\pi\sqrt{5}} \left(\frac{1}{a} - \frac{1}{b} \right)$

3.
$$\frac{\mu_0 I}{4\pi\sqrt{5}} \left(\frac{1}{a}\right)$$

4. $\frac{\mu_0 I}{4\pi\sqrt{5}} \left(\frac{1}{b}\right)$

- 56. ਰਿਮਰ $V(\vec{r}) = \sum_{i} V_0 a^3 \delta^{(3)}(\vec{r} \vec{r}_i)$ पर ਰਿਚਾरें, जहां रें, जो निर्देश मुल बिंद में केंद्रित पार्श्व a के एक घन के शीर्षों के स्थिति-सदिश हैं तथा 🗸 एक अचर है। यदि $V_0 a^2 \ll \frac{\hbar^2}{m}$ है, तो अल्प-ऊर्जा सीमा में कुल प्रकीर्णन अन्प्रस्थ काट है
 - 1. $16a^2 \left(\frac{mV_0a^2}{k^2} \right)$
 - 2. $\frac{16a^2}{\pi^2} \left(\frac{mV_0a^2}{h^2} \right)^2$
 - 3. $\frac{64a^2}{\pi} \left(\frac{mV_0a^2}{\hbar^2} \right)^2$
 - 4. $\frac{64a^2}{r^2} \left(\frac{mV_0a^2}{r^2} \right)$
- 56. Consider the potential

$$V(\vec{r}) = \sum_i V_0 a^3 \delta^{(3)}(\vec{r} - \vec{r}_i)$$

where \vec{r}_i are the position vectors of the vertices of a cube of length a centered at the origin and V_0 is a constant. If $V_0 a^2 \ll \frac{\hbar^2}{m}$, the total scattering cross-section, in the low-energy

- 1. $16a^2 \left(\frac{mV_0a^2}{\hbar^2} \right)$
- 2. $\frac{16a^2}{\pi^2} \left(\frac{mV_0 a^2}{\hbar^2} \right)^2$
- 3. $\frac{64a^2}{\pi} \left(\frac{mV_0 a^2}{\hbar^2} \right)^2$
- 4. $\frac{64a^2}{\pi^2} \left(\frac{mV_0 a^2}{\hbar^2} \right)$
- 57. किसी हाईड्रोज़न परमाणु के क्लुंब विभव $V(r) = -e^2/r$ को, उसके हैमिल्टनी के साथ $H' = bx^2$ (जहां b एक अचर है) जोड़कर क्षोभित किया जाता है। आदयावस्था ऊर्जा की प्रथम कोटि की संश्दि है

(आद्यावस्था तरंग फलन है $\psi_0 = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$.)

- 1. $2ba_0^2$
- 2. ba_0^2
- 3. $b a_0^2/2$
- 4. $\sqrt{2}ba_0^2$

57. The Coulomb potential $V(r) = -e^2/r$ of a hydrogen atom is perturbed by adding H' = bx^2 (where b is a constant) to the Hamiltonian. The first order correction to the ground state energy is (The ground state wavefunction is

$$\psi_0 = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}.)$$

- 1. $2ba_0^2$ 3. $ba_0^2/2$
- 58. अभिप्रयोग फलन

$$\psi(x) = \begin{cases} A(a^2 - x^2), & -a < x < a \\ 0 & \text{अन्यथा} \end{cases}$$
 के उपयोग से पायी गयी, एक-विमी प्रसंवादी दोलक की आदयावस्था ऊर्जा है

1. ħw

2. $\sqrt{\frac{5}{14}} \hbar \omega$

 $3. \frac{1}{2}\hbar\omega$

- 4. 5 ħω
- 58. Using the trial function

 $\psi(x) = \begin{cases} A(a^2 - x^2), & -a < x < a \\ 0 & \text{otherwise} \end{cases}$ the ground state energy of a one-dimensional harmonic oscillator is

1. ħω

- 2. $\sqrt{\frac{5}{14}} \hbar \omega$
- $3. \frac{1}{2}\hbar\omega$
- 4. $\sqrt{\frac{5}{7}} \hbar \omega$
- 59. किसी हाईड्रोजन जैसे परमाण् की अवस्थाओं के लिए सामान्य संकेतन पद्धति (n l m) में, स्वत: |210) → |100) ਰथा |310) → |100) पर विचारें। यदि प्रथम तथा दवितीय क्षय अवस्थाओं के आयुकाल क्रमश: t_1 तथा t_2 हैं, तो $\frac{t_1}{t_2}$ इस अनुपात में है $1. \left(\frac{32}{27}\right)^3$

3. $(\frac{2}{3})^{\frac{1}{3}}$

- 4. $\left(\frac{3}{-1}\right)^{3}$
- 59. In the usual notation |n| lm for the states of a hydrogen like atom, consider the spontaneous transitions $|210\rangle \rightarrow |100\rangle$ and $|310\rangle \rightarrow$ $|100\rangle$. If t_1 and t_2 are the lifetimes of the first and the second decaying states respectively, then the ratio $\frac{t_1}{t_2}$ is proportional to
 - 1. $\left(\frac{32}{27}\right)^3$

3. $\left(\frac{2}{3}\right)^3$

4. $\left(\frac{3}{2}\right)^3$

60. याद्दिछक चर n प्वासों सांख्यिकी के अनुकरण करते है। n = 0 पाने की प्रायिकता 10^{-6} है। n का प्रत्याशा मान इसका निकटतम है

1. 14

 $2. 10^6$

3. e

 $4. 10^{2}$

60. A random variable n obeys Poisson statistics. The probability of finding n = 0 is 10^{-6} . The expectation value of n is nearest to

3. e

 $4. 10^{2}$

61. संवेग k से लेबलित एक अन्योन्यक्रियाहीन समदैशिक त्रिविम तंत्र के एकल कण ऊर्जा k3 के अनुपात में हैं। किसी नियत ताप पर औसत दाब P तथा ऊर्जा घनत्व ϵ का अन्पात \bar{P}/ϵ है

1. 1/3

3. 1

- 61. The single particle energy levels of a noninteracting three-dimensional isotropic system, labelled by momentum k, are proportional to k^3 . The ratio \bar{P}/ϵ of the average pressure \bar{P} to the energy density ϵ at a fixed temperature, is

1. 1/3

3. 1

62. तीन आईसींग प्रचक्रण S_0, S_1 तथा S_2 , जो मान ± 1 लेते हैं, की हैमिल्टनी है

$$H = -JS_0(S_1 + S_2)$$
.

यदि तंत्र ताप T पर साम्यावस्था में है, तो $\beta =$ $(k_BT)^{-1}$ की इकाइयों में तंत्र की औसत ऊर्जा है

 $1, -\frac{1+\cosh(2\beta I)}{2}$ $2\beta \sinh(2\beta I)$

2. $-2J[1 + \cosh(2\beta J)]$

3. $-2/\beta$

4. $-2J \frac{\sinh(2\beta J)}{1 + \cosh(2\beta J)}$

62. The Hamiltonian for three Ising spins S_0 , S_1 and S_2 , taking values ± 1 , is

$$H = -JS_0(S_1 + S_2) .$$

If the system is in equilibrium at temperature T, the average energy of the system, in terms of $\beta = (k_B T)^{-1}$, is

- $1. -\frac{1+\cosh(2\beta J)}{2\beta \sinh(2\beta J)}$
- 2. $-2J[1 + \cosh(2\beta J)]$
- 3. $-2/\beta$
- 4. $-2J \frac{\sinh(2\beta J)}{1 + \cosh(2\beta J)}$
- 63. किसी डायोड के लिए मानें कि Io संतृप्ता विद्युत धारा, η आदर्शता गुणांक, तथा v_F तथा v_R क्रमश: अग्र तथा उत्क्रम विभव हैं। उसके उत्क्रम R_R तथा अग्र R_F प्रतिरोधों का अनुपात R_R/R_F इसके अनुसार परिवर्तित होता है

(निम्न में k_B बोल्ट्ज़मान अचर, T निरपेक्ष ताप तथा व आवेश हैं।)

1. $\frac{v_R}{v_F} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ 2. $\frac{v_F}{v_R} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ 3. $\frac{v_R}{v_F} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$ 4. $\frac{v_F}{v_R} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$

63. Let I_0 be the saturation current, η the ideality factor and v_F and v_R the forward and reverse potentials, respectively, for a diode. The ratio R_R/R_F of its reverse and forward resistances R_R and RF respectively, varies as (In the following k_B is the Boltzmann constant, T is the absolute temperature and q is the charge.)

1. $\frac{v_R}{v_F} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ 2. $\frac{v_F}{v_R} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ 3. $\frac{v_R}{v_F} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$ 4. $\frac{v_F}{v_R} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$

64. निम्न चित्रों में X तथा Y एक-बिट निवेश हैं। एक-बिट तुलनाकर्ता से संगत परिपथ है

64. In the figures below, X and Y are one bit inputs. The circuit which corresponds to a one bit comparator is

65. किसी प्रतिरोधक की विद्युत धारा बनाम वोल्टता, आंकड़े बिंदु तथा उनका रैखिक फिट दोनों, निम्न रेखाचित्र में दर्शाये गये हैं।

यदि प्रवणता में त्रृटि $1.255 \times 10^{-3} \, \Omega^{-1}$ है, तो रेखाचित्र से आकलित प्रतिरोधकता का मान है

- 1. $(0.04 \pm 0.8) \Omega$
- 2. $(25.0 \pm 0.8) \Omega$
- 3. $(25 \pm 1.25) \Omega$
- 4. $(25 \pm 0.0125) \Omega$

65. Both the data points and a linear fit to the current vs voltage of a resistor are shown in the graph below.

If the error in the slope is $1.255 \times 10^{-3} \Omega^{-1}$, then the value of resistance estimated from the graph is

- 1. $(0.04 \pm 0.8) \Omega$
- 2. $(25.0 \pm 0.8) \Omega$
- 3. $(25 \pm 1.25) \Omega$
- 4. $(25 \pm 0.0125) \Omega$

66. निम्न संक्रियात्मक प्रवर्धक परिपथ में

$$C_{in}=10~{
m nF}, R_{in}=20~{
m k}\Omega,~R_{
m F}=200~{
m k}\Omega$$
 तथा $C_F=100~{
m pF}$ है।

निवेश संकेत बारंबारता 16 kHz के लिए लब्धि का परिमाण है

1. 67

2. 0.15

3, 0.3

- 4. 3.5
- 66. In the following operational amplifier circuit $C_{in} = 10 \text{ nF}, R_{in} = 20 \text{ k}\Omega, R_{F} = 200 \text{ k}\Omega$ and $C_{\rm F} = 100 \, {\rm pF}.$

The magnitude of the gain at a input signal frequency of 16 kHz is

1. 67

2. 0.15

3. 0.3

- 4. 3.5
- 67. एक परमाणवीय स्पैक्ट्रल रेखा को जीमान स्थानांतरण के कारण, नौ घटकों में विभक्त होते देखा गया। यदि परमाण् की ऊपरी स्थिति 3D2 है, तो निचली स्थिति होगी
 - 1. 3F2 3. 3P1

- 2. ³F₁ 4. ³P₂
- 67. An atomic spectral line is observed to split into nine components due to Zeeman shift. If the upper state of the atom is 3D2 then the lower state will be
 - 1. 3F2

2. ³F₁ 4. ³P₂

3. 3P1

- 68. किसी विशिष्ट संक्रमण के लिए यदि प्रस्फ़्रित उत्सर्जन ग्णांक $2.1 \times 10^{19} \,\mathrm{m}^3 \,\mathrm{W}^{-1} \mathrm{s}^{-3}$ है तथा उत्सर्जित फ़ोटॉन का तरंगदैर्घ्य 3000 Å है, तो उत्तेजित अवस्था का आय्काल है लगभग
 - 1. 20 ns

2. 40 ns

- 3. 80 ns
- 4. 100 ns
- 68. If the coefficient of stimulated emission for a particular transition is $2.1 \times 10^{19} \,\mathrm{m}^3 \,\mathrm{W}^{-1} \mathrm{s}^{-3}$ and the emitted photon is at wavelength 3000 Å, then the lifetime of the excited state is approximately
 - 1.20 ns

2. 40 ns

- 3.80 ns
- 4. 100 ns

- 69. यदि चाँदी परमाण के K तथा L कोषों की आबंधन ऊर्जायें क्रमश: 25.4 keV तथा 3.34 keV हैं, तो ओज़े (Auger) इलैक्ट्रॉन की गतिक ऊर्जा होगी लगभग
 - 1. 22 keV
- 2. 9.3 keV
- 3. 10.5 keV
- 4. 18.7 keV
- 69. If the binding energies of the electron in the K and L shells of silver atom are 25.4 keV and 3.34 keV, respectively, then the kinetic energy of the Auger electron will be approximately
 - 1. 22 keV
- 2. 9.3 keV
- 3. 10.5 keV
- 4. 18.7 keV
- 70. किसी परोक्ष बैंड अंतराल अर्धचालक के ऊर्जा अंतराल तथा जालक अचर क्रमश: 1.875eV तथा 0.52nm हैं। सरलता के लिए पदार्थ के परावैद्युतांक को इकाई मान लीजिए। जब वह अनेकावृत्ति विकिरण दवारा उत्तेजित किया जाता है, प्रारंभ में k = 0 में संयोजक बैंड में रहता इलैक्ट्रॉन चालकता बैंड में संक्रमण करता है। संक्रमण के बाद, ब्रिल्वां क्षेत्र के छोर पर के तरंग सदिश k_{max} की इकाइयों पर, चालकता बैंड इलेक्ट्रॉन का तरंग सदिश का निकटतम मान है
 - 1. $k_{\text{max}}/10$
- 2. kmax/100
- 3. $k_{\text{max}}/1000$
- 4. 0
- 70. The energy gap and lattice constant of an indirect band gap semiconductor are 1.875 eV 0.52 nm, respectively. For simplicity take the dielectric constant of the material to be unity. When it is excited by broadband radiation, an electron initially in the valence band at k = 0makes a transition to the conduction band. The wavevector of the electron in the conduction band, in terms of the wavevector k_{max} at the edge of the Brillouin zone, after the transition is closest to
 - 1. $k_{\rm max}/10$
- 2. kmax/100
- 3. $k_{\text{max}}/1000$
- 4. 0
- 71. तांबे की विद्युत चालकता, चाँदी की विद्युत चालकता का लगभग 95% है, जबकि चाँदी का इलैक्ट्रॉन घनत्व तांबे के इलैक्ट्रॉन घनत्व का लगभग 70% है। डूड के प्रतिमान में औसत टक्कर समय (TCu) तथा चाँदी में औसत टक्कर समय (रAg) का अन्पात रCu/रAg है

1. 0.44

2. 1.50

3. 0.33

4. 0.66

71. The electrical conductivity of copper is approximately 95% of the electrical conductivity of silver, while the electron density in silver is approximately 70% of the electron density in copper. In Drude's model, the approximate ratio $\tau_{\rm Cu}/\tau_{\rm Ag}$ of the mean collision time in copper ($\tau_{\rm Cu}$) to the mean collision time in silver ($\tau_{\rm Ag}$) is

1. 0.44

2. 1.50

3. 0.33

4. 0.66

- 72. (विद्युत) चालकता σ तथा (विद्युत) अनुमतता (परावैद्युतांक) ϵ के एक पदार्थ के अंदर आवेश बंटन प्रारंभिक समय t=0 पर $\rho(r,0)=\rho_0$ (जहां ρ_0 एक अचर) है। बाद के समयों पर $\rho(r,t)$ ऐसा दिया जाता है
 - 1. $\rho_0 \exp(-\frac{\sigma t}{\epsilon})$
 - 2. $\frac{1}{2}\rho_0[1 + \exp\left(\frac{\sigma t}{\epsilon}\right)]$
 - 3. $\frac{\rho_0}{[1-\exp(\frac{\sigma t}{\epsilon})]}$
 - 4. $\rho_0 \cosh \frac{\sigma t}{\epsilon}$
- 72. The charge distribution inside a material of conductivity σ and permittivity ϵ at initial time t=0 is $\rho(r,0)=\rho_0$, a constant. At subsequent times $\rho(r,t)$ is given by
 - 1. $\rho_0 \exp(-\frac{\sigma t}{\epsilon})$
 - 2. $\frac{1}{2}\rho_0[1+\exp\left(\frac{\sigma t}{\epsilon}\right)]$
 - 3. $\frac{\rho_0}{[1-\exp(\frac{\sigma t}{\epsilon})]}$
 - 4. $\rho_0 \cosh \frac{\sigma t}{\epsilon}$
- 73. विराम में रहते एक ^{232}U के लिए स्वत: α -क्षय में यदि अभिक्रिया में मुक्त की गयी कुल ऊर्जा Q है तो α -कण से वहित ऊर्जा है

1. 57Q/58

2. Q/57

3. Q/58

4. 230/58

73. If in a spontaneous α -decay of $^{232}_{92}$ U at rest, the total energy released in the reaction is Q, then the energy carried by the α -particle is

1. 57Q/58

2. Q/57

3. Q/58

4. 230/58

74. दो न्यूक्लियानों के बीच पॉयानों (pion) के विनिमय द्वारा उद्भवित नाभिक बल का परास 1.40 fm है। यदि पॉयान का द्रव्यमान 140 MeV/c² है तथा rho-मैसॉन का द्रव्यमान 770 MeV/c² है, तो rho-मैसॉनों के विनिमय से उद्भवित बल का परास है

1. 1.40 fm

2. 7.70 fm

3. 0.25 fm

4. 0.18 fm

74. The range of the nuclear force between two nucleons due to the exchange of pions is 1.40 fm. If the mass of the pion is 140 MeV/c² and the mass of the rho-meson is 770 MeV/c², then the range of the force due to exchange of rho-mesons is

1. 1.40 fm

2. 7.70 fm

3. 0.25 fm

4. 0.18 fm

75. एक बैरियॉन X बलवान अन्योन्यक्रिया द्वारा इस प्रकार क्षयित होता है $X \to \Sigma^+ + \pi^- + \pi^0$, जहां Σ^+ आइसोट्रिप्लेट ($\Sigma^+, \Sigma^0, \Sigma^-$) का एक सदस्य है। X के आइसोस्पिन का तीसरा घटक I_3 है

1. 0

2. 1/2

3. 1

4. 3/2

75. A baryon X decays by strong interaction as $X \to \Sigma^+ + \pi^- + \pi^0$, where Σ^+ is a member of the isotriplet $(\Sigma^+, \Sigma^0, \Sigma^-)$. The third component I_3 of the isospin of X is

1. 0

2. 1/2

3. 1

4. 3/2

FOR ROUGH WORK

FOR ROUGH WORK