

--	--	--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

DIM5068 – MATHEMATICAL TECHNIQUES 2 (For DIT students only)

14 MARCH 2018
09.00 am - 11.00 am
(2 Hours)

INSTRUCTIONS TO STUDENT

1. This question paper consists of 2 pages with 4 questions. Key formulae are given in the Appendix.
2. Answer **ALL** questions.
3. Write your answers in the answer booklet provided.
4. All necessary working steps must be shown.

Question 1

a) Differentiate the following functions with respect to x by using **Chain Rule**.

i) $y = \sin(x^4 - 6x^2 - 2x)$. (5 marks)

ii) $y = -\frac{4}{\sqrt[3]{3x^2 + 5x}}$. (6 marks)

b) Differentiate $9y^2 - 5x^4 + 3xy^2 = x^3y^3$ by using implicit differentiation. (7 marks)

c) Find the coordinates of the critical points of the given function $f(x) = x^3 - x^2 - x$. (7 marks)

[TOTAL 25 MARKS]**Question 2**

a) Evaluate the following definite integral.

i) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2y^3 + \cos y) dy$. [Note: leave your answer in terms of π] (5 marks)

ii) $\int_0^{\pi} (3x + 5) \sin x dx$. [Hint: use **Integration by Parts**] (8 marks)

b) Find the indefinite integral $\int (3x^4 - 7)^6 (12x^3) dx$.
[Hint: use **Substitution Method**] (5 marks)

c) Find the area of the region bounded by the graphs of $y = 4 - x^2$, $y = -x + 2$, $x = -1$, $x = 2$ as shown below. (7 marks)

[TOTAL 25 MARKS]**Continued...**

Question 3

a) Solve the first order differential equation $\frac{dy}{dx} = \frac{x^3 + 6x + 2}{y}$, by using the Separable Method. (5 marks)

b) Given the differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{29}{x}$.

- Identify the $p(x)$ and $q(x)$. (2 marks)
- Calculate the integrating factor, μ . (1.5 marks)
- Find y given $\mu y = \int \mu q(x) dx$. (3.5 marks)
- From your answer in part b(iii), determine the solution of the initial value problem if $y(7) = 33$. (2 marks)
- State the general solution of y . (1 mark)

c) Given the non-homogeneous differential equation $8y'' - 6y' + y = 29x + 4$.

- Determine the complementary solution, y_c . (3 marks)
- Compute the particular solution, y_p . (7 marks)

[TOTAL 25 MARKS]**Question 4**

a) Let $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = 7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$.

- Compute $3\mathbf{b} \cdot (-2\mathbf{a})$. (4 marks)
- Find the value of x and y if $\mathbf{a} + \mathbf{b} = \langle 9, y + 3x, x \rangle$. (3 marks)

b) Given that $|\mathbf{u}| = 5$, $|\mathbf{v}| = 7$, $\mathbf{u} \cdot \mathbf{v} = 3x - 15$ and angle between \mathbf{u} and \mathbf{v} is $\frac{\pi}{2}$, find x . (3 marks)

c) Anita wants to design a card with a triangular shape. Given the vertices of the triangle $P = (2, 9, 0)$, $Q = (-4, 1, 9)$, and $R = (8, -7, 0)$.

- Determine \overrightarrow{PQ} and \overrightarrow{PR} . (2 marks)
- Calculate the cross product of \overrightarrow{PQ} and \overrightarrow{PR} . (3 marks)
- Compute the total area of the card. Round your answer to 2 decimal points. (3 marks)

d) If a line passing through the points $(6, 6, 2)$ and $(7, -5, 5)$, compute;

- The parametric equations of the line. (4 marks)
- The symmetric equations of the line. (3 marks)

[TOTAL 25 MARKS]**End of page.**

APPENDIX

Derivatives: $f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$

Differentiation Rules*General Formulae*

1. $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$
2. $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$
3. $\frac{d}{dx}(x^n) = nx^{n-1}$
4. $\frac{d}{dx}[f(u)] = \frac{dy}{du} \cdot \frac{du}{dx}$

Exponential and Logarithmic Functions

1. $\frac{d}{dx}(e^x) = e^x$
2. $\frac{d}{dx}(a^x) = a^x \ln a$
3. $\frac{d}{dx}(\ln x) = \frac{1}{x}$
4. $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$

Trigonometric Functions

1. $\frac{d}{dx}(\sin x) = \cos x$
2. $\frac{d}{dx}(\cos x) = -\sin x$
3. $\frac{d}{dx}(\tan x) = \sec^2 x$
4. $\frac{d}{dx}(\csc x) = -\csc x \cot x$
5. $\frac{d}{dx}(\sec x) = \sec x \tan x$
6. $\frac{d}{dx}(\cot x) = -\csc^2 x$

Table of Integrals

1. $\int u \, dv = uv - \int v \, du$
2. $\int u^n \, du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$
3. $\int \frac{du}{u} = \ln|u| + C$
4. $\int e^u \, du = e^u + C$
5. $\int \sin u \, du = -\cos u + C$
6. $\int \cos u \, du = \sin u + C$
7. $\int \sec^2 u \, du = \tan u + C$
8. $\int \csc^2 u \, du = -\cot u + C$
9. $\int \sec u \tan u \, du = \sec u + C$
10. $\int \csc u \cot u \, du = -\csc u + C$

Application of Integrals:

Areas between Curve, $A = \int_a^b [f(x) - g(x)] \, dx$

Differential Equations

Linear Differential Equations

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \mu y = \int \mu q(x) dx, \text{ where } \mu = e^{\int p(x) dx}$$

Constant Coefficient of Homogeneous Equations

$$\text{Roots of Auxiliary Equation, } r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

General Solutions to the Auxiliary Equation:

$$2 \text{ Real \& Unequal Roots } (b^2 - 4ac > 0) \quad y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

$$\text{Repeated Roots } (b^2 - 4ac = 0) \quad y = c_1 e^{rx} + c_2 x e^{rx}$$

$$2 \text{ Complex Roots } (b^2 - 4ac < 0) \quad y = e^{\alpha x} (c_1 \cos bx + c_2 \sin bx)$$

Constant Coefficient of Non-Homogeneous Equations

$$y = y_c + y_p \quad [y_c: \text{complementary solution, } y_p: \text{particular solution}]$$

Vector

Length of Vector

The length of the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Dot Product

If θ is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Cross Product

If θ is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

Area for parallelogram PQRS

$$= \left| \vec{PQ} \times \vec{PR} \right|$$

Area for triangle PQR

$$= \frac{1}{2} \left| \vec{PQ} \times \vec{PR} \right|$$

Equation of Lines

Vector equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$

Parametric equations: $x = x_0 + at$ $y = y_0 + bt$ $z = z_0 + ct$

$$\text{Symmetric equation: } \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Equation of Planes

Vector equation: $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$

Scalar equations: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

Linear equation: $ax + by + cz + d = 0$

$$\text{Angle between Two Planes: } \theta = \cos^{-1} \left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} \right)$$