Tutorial 2 &3: Numerical Methods Interpolation & Curve Fittings

1. Using Lagrange interpolation. Find the value of y at x=10 from

Χ	9	3	1
Υ	6	5	12

- 2. Find the value of y at x = 0 given some set of values (-2, 5), (1, 7), (3, 11), (7, 34) by Lagrange Interpolation Method.
- 3. The age and height of the Students in a school are given below. By using Lagrange Interpolation method. Find the height of the student whose age is 13 and 15

Age(years)	1	5	7	9
Height(cm)	80	95	105	125

- 4. How interpolation differs from regression? Write down algorithm and program for Lagrange interpolation.
- 5. Define the terms interpolation and extrapolation. Write down the algorithm and program for Newton's divided difference interpolation.
- 6. What is Newton's interpolation? Obtain the divided difference table from the following data set and estimate the f(x) at x = 2 and x = 5.

х	3.2	2.7	1.0	4.8	5.6
f(x)	22.0	17.8	14.2	38.3	51.7

7. Find solution using Newton's Forward Difference Formula as well as Newton's Backward Formula find the value at x=1895 and 1935

х	1891	1901	1911	1921	1931
f(x)	46	66	81	93	101

8. Find the Solution using Newton's Forward Difference as well as Newton's Backward Formula at x=-1

Х	0	1	2	3	4
f(x)	1	0	1	10	11

9. Find the Solution using Divided Difference Interpolation formula at x=301 and 309

х	300	304	305	307
f(x)	2.4771	2.4829	2.4843	2.4871

10. Find the Solution of an equation x^3 -x+1 using Divided Difference Formula x1=2 and x2=4 x=3.8 step value (h)=0.5. Find f(2).

11. Construct Newton's backward difference table for given data points and approximate the value of f(x) at x=45.

х	10	20	30	40	50
f(x)	0.985	0.934	0.866	0.766	0.643

12. Fit the quadratic curve through the following data points and estimate the value of f(x) at x=2.

Х	1	3	4	5	6
Υ	2	7	8	7	5

13. How spline interpolation differs with the Langrage's interpolation? Estimate the value of f (0) and f(4) using cubic spline interpolation from the following data.

Х	-1	1	2	3
f(x)	-10	-2	14	86

14. Fit the quadratic function for the data given below using least square method.

Х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Υ	2.7	4	5.8	8.3	11.2	15	19

15. What is linear regression? Fit the linear function to the following data

Х	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4
Υ	2.0	2.6	3.9	6.0	9.3	15	20.6	30.4

16. Construct Newton's forward difference table for the given data points and approximate the value of f(x) at x = 15.

х	10	20	30	40	50
f(x)	0.173	0.342	0.5	0.643	0.766

17. Fit the curve $y=ae^{bx}$ through the following data points.

х	1	2	3	4
Υ	1.65	2.70	4.50	7.35

18. The fit function of type y = a + bx for the following points using the least square method.

Х	-1	1.2	2	2.7	3.6	4
f(x)	1	20	27	33	41	45

19. Fit the curve $y=ae^{bx}$ through the following data points.

Х	1	3	5	7	9
Υ	1.0	0.891	0.563	0.447	0.355

20. Find the Langrange interpolation polynomial to fit the following data and find value of y(10).

Х	5	6	9	11
f(x)	12	13	14	16

21. Estimate the value of y (1.5) and y (2) using cubic spline interpolation from the following data.

Х	5	6	9	11
f(x	12	13	14	16

22. Estimate the value of y (1.5) using cubic spline interpolation from the following data.

Х	1	2	3	4	5
f(x)	0	1	0	1	0

Note:

- 1. Hand written/Computer typed Numerical work shall be submitted by 26th of Kartik 2081(11th November 2024).
- 2. Algorithm and Python/C++ or C (Python Preferred) Code shall be submitted by 3rd of Mangsir 2081.
- 3. Copying of other's work shall be disqualified for marking.
- 4. Plagiarism shall be less than 25%. Above 25% will lead to marks deduction. Plag above 50% shall be disqualified.
- 5. Failed to submission of work by given date shall be disqualified.
- 6. The time for submission is 11.59.59 PM of the given date.
- 7. Please write your name and tutorial name during submission (for eg: Rajan_Tutorial_1). You should strictly follow the naming standard.
- 8. Code shall be submitted as run on IDE and Screenshot shall be submitted.
- 9. Report format shall be strictly followed to submit the document. Just photos will not be accepted for algorithm and code.
- 10. NQ will be granted if no assignment are taken into consideration.
- 11. I was absent in the class won't be the excuses for assignment.

Please submit the assignment to: assignment.bca81@gmail.com

No other medium shall be accepted.

Best of Luck