- 1) O enchimento rápido de um tanque pode ser considerado como um processo adiabático. Supondo que o tanque se encontra vazio no início do processo e que as propriedades da corrente de alimentação não variam durante o enchimento, calcule a quantidade de massa alimentada a um tanque de 100 ft³

 Dados: corrente de alimentação contém 5% (em peso) de liquido a 85 psia.
- 2) O mesmo problema anterior, mas supondo que o tanque encontra-se inicialmente com vapor saturado a 80 psia.

TABLE C.4.	SUPER	HEATED STEA	M ENGLISH U	4175 (Continu	ed)					
ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE 340	DEG F 360	380	400	420	460	500
(312.04)	V H S	0.0176 281.89 282.15 0.4534	5.471 1100 1 1183 1 1 8208	5 715 1114 0 1198 6 1 8406	5 885 1122 1 1209 4 1 6539	6.063 1130 4 1220 0 1.6667	6 218 1136 4 1230 5 1 5790	6.381 1146.3 1240.8 1.6909	1 158 1 1256 1 1 7080	7 018 1177 4 1281 3 1 7349
85 (316.25)	Y U H S	0.0176 286.24 286.62 0.4590	5.167 1102.9 1184.2 1.6159	5.364 1113.1 1197.5 1.6328	5, 525 1121, 5 1206, 4 1, 6463	5.684 1129.1 1219.1 1.6692	5 840 1137 8 1229 1 1 6716	5, 995 1145 8 1240, 1 1, 6836	6 223 1167 6 1255 5 1 7008	6.597 1177.0 1280.8 1.7278
99	¥.	0.0177 290.40	4, 896 1103, 7	5.061 1112.3	5.205 1120.8	5.355 1129.1	5.505 1137.2	8,652 1145.3	5 869 1167 3	6.223 1176.7

1) O enchimento rápido de um tanque pode ser considerado como um processo adiabático. Supondo que o tanque se encontra vazio no início do processo e que as propriedades da corrente de alimentação não variam durante o enchimento, calcule a quantidade de massa alimentada a um tanque de 100 ft³

Dados: corrente de alimentação contém 5% (em peso) de liquido a 85 psia.

2) O mesmo problema anterior, mas supondo que o tanque encontra-se inicialmente com vapor saturado a 80 psia.

