

planetmath.org

Math for the people, by the people.

syntactic congruence

Canonical name SyntacticCongruence
Date of creation 2013-03-22 18:52:08
Last modified on 2013-03-22 18:52:08
Owner Ziosilvio (18733)
Last modified by Ziosilvio (18733)

Numerical id 6

Author Ziosilvio (18733)

Entry type Definition Classification msc 68Q70 Classification msc 20M35

Defines syntactic semigroup Defines syntactic monoid Defines syntactic morphism

Defines maximality property of syntactic congruence

Let S be a semigroup and let $X \subseteq S$. The relation

$$s_1 \equiv_X s_2 \text{ iff } \forall l, r \in S(ls_1 r \in X \text{ iff } ls_2 r \in X)$$
 (1)

is called the *syntactic congruence* of X. The quotient S/\equiv_X is called the *syntactic semigroup* of X, and the natural morphism $\phi: S \to S/\equiv_X$ is called the *syntactic morphism* of X. If S is a monoid, then S/\equiv_X is also a monoid, called the *syntactic monoid* of X.

As an example, if $S = (\mathbb{N}, +)$ and $X = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} \mid n = 3k\}$, then $m \equiv_X n$ if $m \mod 3 = n \mod 3$, and the syntactic monoid is isomorphic to the cyclic group of order three.

It is straightforward that \equiv_X is an equivalence relation and X is union of classes of \equiv_X . To prove that it is a congruence, let $s_1, s_2, t_1, t_2 \in S$ satisfy $s_1 \equiv_X s_2$ and $t_1 \equiv_X t_2$. Let $l, r \in S$ be arbitrary. Then $ls_1t_1r \in X$ iff $ls_2t_1r \in X$ because $s_1 \equiv_X s_2$, and $ls_2t_1r \in X$ iff $ls_2t_2r \in X$ because $t_1 \equiv_X t_2$. Then $s_1t_1 \equiv_X s_2t_2$ since l and r are arbitrary.

The syntactic congruence is both left- and right-invariant, *i.e.*, if $s_1 \equiv_X s_2$, then $ts_1 \equiv_X ts_2$ and $s_1t \equiv_X s_2t$ for any t.

The syntactic congruence is maximal in the following sense:

- if χ is a congruence over S and X is union of classes of χ ,
- then $s\chi t$ implies $s\equiv_X t$.

In fact, let $l, r \in S$: since $s\chi t$ and χ is a congruence, $lsr\chi ltr$. However, X is union of classes of χ , therefore lsr and ltr are either both in X or both outside X. This is true for all $l, r \in S$, thus $s \equiv_X t$.