帅	>
J: 1	

2016-2017 概率论与数理统计 II (16300101) 模拟试题

题号	1	11	111	四	五	六	七	八	九	+	总分
得分											
签字											

注意事项: 所有的答案都必须写在答题纸(答题卡)上,答在试卷上一律无效。

一、填空题(本题共5小题,每小题3分,满分15分)

- 1. 设一组样本值为 11.20, 11.28, 11.12, 11.20, 11.40, 则样本均值 $\bar{x} = _____;$ 样本方差 $s^2 = _____;$ 中位数 $m_{0.5} = _____.$
- 2. X与Y相互独立,且均服从N(0,1),则 $\frac{X^2}{V^2}$ 服从分布_____.
- 3. 设总体 $X \sim P(\lambda), (\lambda > 0)$, $(X_1, X_2 \cdots X_n)$ 是来自总体的样本, \bar{X} 为样本 均值, S^2 为样本方差,则 $E\overline{X} = _____,D\overline{X} = _____;$ $ES^2 = _____.$
- 4. 设 $\hat{\theta}_1$, $\hat{\theta}_2$ 是未知参数 θ 的两个无偏估计量,如果 $a\hat{\theta}_1 + b\hat{\theta}_2$ 也是参数 θ 的 无偏估计量, 则 a,b 应满足
- 5. 在假设检验中, 当拒绝原假设时, 会犯 错误.

二、单项选择题(本题共4小题,每小题3分,满分12分)

1. 样本 X_1, X_2, X_3, X_4 取自正态总体X, $EX = \mu$ 已知, $DX = \sigma^2$ 未知, 下列随机变量不是统计量的是().

(A)
$$\overline{X} = \frac{1}{4} \sum_{i=1}^{4} X_i$$

(B)
$$X_1 + X_4 - \mu$$

(C)
$$k = \frac{1}{\sigma^2} \sum_{i=1}^4 (X_i - \overline{X})^2$$

(D)
$$S^2 = \frac{1}{3} \sum_{i=1}^4 (X_i - \overline{X})^2$$

- 2. $X \sim N(\mu, \sigma^2)$, σ^2 已知, 当样本容量 $n \geq ($)时, μ 的置信水平为 0.95 的置信区间长不大于L (注: $\Phi(1.96) = 0.975$)

 - (A) $15 \sigma^2/L^2$ (B) $15.3664 \sigma^2/L^2$ (C) $16 \sigma^2/L^2$ (D) 16

3.	如果随机变量 X_1, X_2, \dots, X_n 相互独立,且 $S_n = \sum_{i=1}^n X_i$,则当 n 为	已分大	:时,
随	机变量 S_n 近似服从正态分布,只要满足().		
	(A) 有相同期望和方差 (B) 服从同一离散型分布		
4.	(C)服从同一指数分布 (D) 服从同一连续型分布 在比较两个正态总体方差是否相等的假设检验中,选用().	
三、	u 检验法 B t 检验法 C F 检验法 D χ^2 检验法 判断题(本题共 5 小题,每小题 2 分,满分 10 分;正确的划"" χ ")		
1.	若随机变量序列 $\{X_n\}$ 依概率收敛于 X ,则 $\{X_n\}$ 依分布收敛于 X	. ()
2.	设 $\hat{\theta}$ 为 θ 的无偏估计量,且 $D(\hat{\theta}) \neq 0$,则 $\hat{\theta}^2$ 必为 θ^2 的无偏估计量.	. ()
3.	总体均值 μ 的 95%置信区间的含义为这个区间以 95%的概率含 μ	的真	值.
		()
4.	一致最小方差无偏估计一定是有效估计.	()
5.	假设检验中,若显著性水平 α 小于检验的 p 值,则我们应接受原	假设	H_0 .
		()
1. 其	计算题(本题共 4 小题,满分 47 分) (本题满分 15 分)设 x_1, x_2, \dots, x_n 为来自正态母体 $N(\mu, 1)$ 的一中 μ 为未知参数,求(1) μ 的矩法估计;(2) μ 的极大似然何(本题满分 12 分)设总体 X 服从指数分布 $Exp(\frac{1}{\theta})$,其密度函	古计.	本,
	$p(x;\theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}, x > 0, \theta > 0$		
试	计算 θ 的费希尔信息量 $I(\theta)$;并验证样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 是 θ	的有数	效估

第2页共8页

计.

3. (本题满分 10 分)已知某种材料的抗压强度 $X \sim N(\mu, \sigma^2)$,现随机地从中抽取 10 个,测得 $\overline{x} = 457.5$,s = 35.2176,分别对下列两种情况求出均值 μ 的 95%置信度的置信区间.

(1)
$$\sigma = 30$$
 (2) σ 未知.

(注: $\Phi(1.96) = 0.975$ $t_{0.975}(9) = 2.2622$)

4. (本题满分10分)在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:

水平	数据					
A_1	8	5	7	4		
$\overline{A_2}$	6	10	12	9		
$\overline{A_3}$	0	1	5	2		

试计算误差平方和 S_e ,因子 A 的平方和 S_A ,总平方和 S_T ,并指出它们各自的自由度.

五、应用分析题(本题共2小题,满分16分)

- 1. (本题满分 7 分)某百货商场的日销售额服从正态分布,去年的日均销售额为 53.6 (万元),方差为 36,今年随机抽查了 10 个日销售额,测得日均销售额为 $\bar{x}=57.7$ 。根据经验,方差没有变化,问今年的日均销售额与去年相比有无显著变化?($\alpha=0.05$, $\Phi(1.96)=0.975$)
- 2. (本题满分 9 分) 现收集了 12 组合金钢中的碳含量 x 及强度 y 的数据,经计算得 $\bar{x} = 0.1583$, $\bar{y} = 49.125$,

$$\sum x_i^2 = 0.3194$$
, $\sum y_i^2 = 29304.25$, $\sum x_i y_i = 95.8050$

- (1) 建立y关于x的一元线性回归方程 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$;
- (2) 对建立的回归方程作显著性检验($\alpha = 0.05$). (注: $F_{0.95}(1,10) = 4.96$)

一、填空题(本大题共5小题,每小题3分,共15分)

1.	11.24,	0.0112,	11.20	2.	F (1,1)	3.
λ,	$\frac{\lambda}{n}$, λ					
4.	a+b=1		:	5. 第一	类(或弃真)	
Ξ,	选择题	〔(本大题	共4小题,	每小题:	3分, 共12	分)
三、	判断题	〔(本大题		每小题 2	4. 分,共 10 分 5. ✓	})
四、	计算题	[(本题共	4 小题,满	持分 47 分	·)	
1.	解: (1	.) 因为 x ·	$\sim N(\mu,1)$,	F以 Ex = ,	<i>u</i> •	
	解		ı			得
$\hat{\mu} =$	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$c_i^{}$				•••••
••••	5'					
	(2) :	$X \sim N(\mu,$	1), $\therefore p(x; \mu)$	$e) = \frac{1}{\sqrt{2\pi}} ex$	$\exp\left[-\frac{(x-\mu)^2}{2}\right]$	
	似然函	数 L(μ)=]	$\prod_{i=1}^n p(x_i; \mu) = $	$\prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}} \mathbf{e} \right]$	$\mathbf{xp}[-\frac{(x_i-\mu)^2}{2}]$]
	$=\left(\frac{1}{\sqrt{2\pi}}\right)$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{n}$	$\frac{(x_i - \mu)^2}{2}$			

.....4 ′

对数似然函数为
$$\ln L(\mu) = -\frac{n}{2} \ln(2\pi) - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$$

似

然

方

程

组

为

$$\frac{d \ln L(\mu)}{d \mu} = -\sum_{i=1}^{n} (x_i - \mu) = 0$$

,

解

之

得

:

$$\hat{\mu} = \overline{x}$$

.... 2

2. #: $\ln p(x;\theta) = -\ln \theta - \frac{x}{\theta}$

$$\frac{\partial}{\partial \theta} \ln p(x; \theta) = -\frac{1}{\theta} + \frac{x}{\theta^2} = \frac{x - \theta}{\theta^2}$$

干

是

$$I(\theta) = E\left(\frac{x-\theta}{\theta^2}\right)^2 = \frac{Var(x)}{\theta^4} = \frac{1}{\theta^2}$$

.6′

 $\overline{m} E\overline{x} = Ex = \theta$

 \bar{x} 是 θ 的无偏估计;

且其方差 $D\overline{x} = \frac{Dx}{n} = \frac{\theta^2}{n} = (nI(\theta))^{-1}$, 达到了 C—R 下界,

所以 \bar{x} 是 θ 的有效估计.

.....6

3. 解: (1) $1-\alpha=0.95, \alpha=0.05$,查表知 $u_{1-\frac{\alpha}{2}}=u_{0.975}=1.96$,

于是这种材料抗压强度均值μ的 0.95 置信区间为

$$[\overline{x} - u_{1-\alpha/2} \sigma / \sqrt{n}, \overline{x} + u_{1-\alpha/2} \sigma / \sqrt{n}]$$
= [457.5 \pm 1.96 \times 30 / \sqrt{10}] = [438.9058, 476.0942]

• • •

......5 ′

(2)
$$1-\alpha=0.95, \alpha=0.05$$
,查表知 $t_{1-\frac{\alpha}{2}}(n-1)=t_{0.975}(9)=2.2622$

 $当 \sigma$ 未知时,这种材料抗压强度均值 μ 的 0.95 置信区间为

$$[\overline{x} - t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}]$$

$$= [457.5 \pm 2.2622\frac{35.2176}{\sqrt{10}}] = [432.3064, 482.6936]$$

......5

4. 解: 列计算表如下:

水平		数据		T_i	T_i^2	$\sum y_{ij}^2$
A1	8 4	5	7	24	576	154
A2	6 9	10	12	37	1369	361
A3	0 2	1	5	8	64	30
和			·	69	2009	545

••

$$r=3$$
 $m=4$ $n=r\times m=3\times 4=12$

$$S_T = \sum_{i=1}^r \sum_{j=1}^m y_{ij}^2 - \frac{T^2}{n} = 545 - \frac{69^2}{12} = 148.25$$
 $f_T = n - 1 = 11$

$$S_A = \frac{1}{m} \sum_{i=1}^r T_i^2 - \frac{T^2}{n} = \frac{1}{4} \times 2009 - \frac{69^2}{12} = 105.5 \qquad f_A = r - 1 = 2$$

$$S_e = S_T - S_A = 148.25 - 105.5 = 42.75 \qquad f_e = n - r = 9$$

.....6

五、应用分析题(本题共2小题,满分16分)

1. 设 X 表示超市的日销售额,且设 $X \sim N(\mu, \sigma^2)$,其中 μ 未知, $\sigma^2 = 36$

在
$$H_0$$
 成立时, $U = \frac{\bar{X} - 53.6}{\sigma / \sqrt{10}} \sim N(0,1)$

对于
$$\alpha = 0.05$$
, $u_{1-\frac{\alpha}{2}} = u_{0.975} = 1.96$

•••••

..... 3 ′

对于
$$\bar{x} = 57.7$$

$$|u| = \frac{57.7 - 53.6}{6 / \sqrt{10}} = 2.16 > 1.96$$

故应拒绝 H。, 今年的日均销售额与去年相比有显著变化

.....3 ′

2. 解: (1) 由条件计算得

$$l_{xx} = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = 0.3194 - 12 \times 0.1583^2 = 0.0187$$

$$l_{yy} = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = 29304.25 - 12 \times 49.125^2 = 345.0625$$

$$l_{yy} = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = 29304.25 - 12 \times 49.125^2 = 345.0625$$

$$l_{xy} = \sum_{i=1}^{n} x_i y_i - n\overline{x} \cdot \overline{y} = 95.8050 - 12 \times 0.1583 \times 49.125 = 2.4872$$

则 β_0 , β_1 的最小二乘估计为

$$\hat{\beta}_1 = \frac{l_{xy}}{l_{xx}} = \frac{2.4872}{0.0187} = 133.0053$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 49.125 - 133.0053 \times 0.1583 = 28.0703$$

因此y关于x的一元线性回归方程为 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 28.0703 + 133.0053x$

...... 5 *′*

(2) 由(1) 计算各平方和得

$$S_T = l_{yy} = 345.0625$$
 $f_T = n - 1 = 11$

$$S_R = \hat{\beta}_1^2 I_{xx} = 133.0053^2 \times 0.0187 = 330.8107$$
 $f_R = 1$

$$S_e = S_T - S_R = 345.0625 - 330.8107 = 14.2518$$
 $f_e = n - 2 = 10$

$$|| F = \frac{MS_R}{MS_e} = \frac{S_R / f_R}{S_e / f_e} = \frac{330.8107 / 1}{14.2518 / 10} = 232.1185$$

对于 $\alpha = 0.05$, $F_{1-\alpha}(1, n-2) = F_{0.95}(1,10) = 4.96 < 232.1185$

因此在显著性水平 0.05 下, 回归方程是显著的.

•••••

.....4 ′