Domain에 강한 데이터 분석가 임태규

Projects

- AI를 활용한 조미니 경도 예측 프로젝트(2021.07~2021.08)
- 모델개발 : pandas, numpy, catboost, xgboost, lightgbm, tensorflow, hyperopt
- 모델배포 : flask
- 프로젝트 주소 : https://github.com/TaeKyulm/seah project

Projects

- WeaTo(2022.07.01~2022.07.23)
- 해당 지역의 실제 날씨를 알 수 있는 웹페이지 개발
- 사용stack : selenium, django, django-restframework
- 프로젝트 관리 : notion, git
 - -selenium을 사용하여 네이버날씨의 정보를 크롤링하고 이를 react 프로젝트에서 rendering 할 수 있도록 json 형식으로 결과를 변환해주는 코드를 작성하였음.
 - -사용자가 작성한 메모에 대한 crud 모델을 만들었음
- 프로젝트 주소 : https://github.com/TaeKyulm/WeaTo

Skill

- Major
- 4학년 1학기 기준 전체평점 4.33/4.5 전공 평점 4.42/4.5로 제조업에서 사용되는 도메인 분야의 내용에 대해 흥미가 높습니다.
- 기계공학과 물리학 복수전공을 통해 철강, 공작법, 반도체, 디스플레이 등 다양한 산업군에서의 변수에 대해 이해를 할 수 있습니다.
 - -이를 기반으로 새로운 파생변수 생성, 또는 통계학적인 eda로만 알 수 없는 가설에 대해 검증을 해보는 등 다양하게 활용할 수 있습니다.

Skill

- Communication
- 전공 멘토 동아리 활동을 통해 다양한 사람 앞에서의 발표를 좋아합니다.
- 전공 TA 조교 활동 및 코딩 동아리 활동을 통해 어려운 내용을 남들에게 쉽게 설명하는 것에 자신이 있습니다.
 - -미적분학, 통계학을 이수하지 않는 팀원에 대해 Generative Model의 원리에 대해 이해를 시킨 경험이 있고, ta활동을 통해 기계공학 전공을 베이스가 없는 학생들을 이해시킨 적이 있습니다.

pandas

Tabular 데이터를 다루는데 익숙합니다. 날짜 형태의 데이터, 위치 정보 형태의 데이터 등을 처리해보았고, 여러 데이터들을 foreign key를 활용하여 join하여 새로운 데이터로 변환 가능합니다. 여러 열들을 적용하여 파생변수를 만든 데 익숙하고, 데이터의 전처리에 있어 도메인의 이해에 기반하여 진행합니다.

numpy

numpy를 활용한 수학 연산에 익숙합니다. 딥러닝에서 Numpy를 활용한 평가지표 작성이나 차원 조절을 할 수 있습니다. 또한 학부수준의 선형대수학의 경우 다양한 수학적인 상황을 코드로 구현할 수 있습니다.

scikit-learn

Scikit-learn을 활용하여 데이터의 전처리 및 비지도학습, 통계해석을 진행합니다. 가령 변수가 많은 경우 Lasso 회귀, Ridge 회귀 및 Random Forest를 활용하여 변수 선택을 하거나 다른 모델들을 활용하여 하나의 ensemble 모델을 만들수 있습니다. 모델의 검증에 있어 k-fold 검증 코드를 작성하여 모델의 과적합 유무를 판단할 수 있습니다. 모델링의 경우 보통 gradient boosting 모델을 선호합니다.

Hyperopt

기존 scikit-learn을 활용한 grid-search 방식의 파라미터 튜닝은 시간이 오래걸리고, global optimum 값이라는 보장이 없습니다. Hyperopt라이브러리를 활용하여 Bayesian 통계학에 활용한 파라미터 튜닝을 진행하여 빠르고 global한 최적의 파라미터 튜닝을 찾을 수 있습니다.

tensorflow / pytorch

CNN, RNN, LSTM 등 다양한 layer에 대해 이해하고 있습니다. 또한 callback 함수들을 활용하여 robust한 모델을 만들 줄 알고, pre-trained 모델을 활용하여 fine tunning을 할 수 있습니다. 최근에는 논문 구현을 통해 실제 문제를 적용해보는 연습을 해보고 있습니다.

arduino

학부시절 관련 교과목을 들으며 다양한 센서에 맞는 제어 코드를 작성할 수 있습니다. 적외선 센서를 활용한 자율주행, python을 활용한 6자유도 로봇암 설계 등 다양한 프로젝트를 진행하였습니다.

Github

https://github.com/TaeKyulm

Education

- 강북고등학교 : 자연계열
 - -2013.03~2016.02
- 영남대학교 기계공학부(물리학 복수전공)
 - -2017.03~2023.02
 - -현재 졸업예정
 - -평점: 4.32 / 4.5

About Me

- 개발태도
- 다양한 기술들을 실제 산업의 문제에 적용을 하려 합니다.
- 내가 아닌 실 사용자가 만족하는 결과물을 만들려고 합니다.
- 부족함을 인정하고 늘 새로 배울려고 합니다.
- 학부시절 동아리 활동 등을 통해 남의 말을 경청하는 법을 배웠습니다.
- 꾸준한 독서 및 다양한 연사와의 만남을 통해 산업이 나아가는 방향, 내가 나아가야 하는 방향을 늘 연구합니다.

About Me

• 목표

- Automative System : 사용자가 통계학, 머신러닝 등을 몰라도 잘 활용할 수 있는 산업 서비스를 만드는 것이 목표입니다.
- Efficient System : 기존 산업군에서 품질 보증 등을 이유로 비효율적인 실험 등이 많이 진행되었습니다. 이를 줄이고 생산성을 극대화 시키는 것이 목표입니다.
- User-friendly: 현장의 엔지니어들은 신기술의 어려움 및 본인들의 일자리 대체 등을 이유로 새로운 시스템 도입을 거절하는 경향이 있습니다. 이들도 좋아하는 서비스를 만드는 것이 목표입니다.

About Me

- 임태규란?
- 취미: 카페 탐방, 맛집 탐방, 운동
- 관심사 : 투자, 트레이딩, 자동차