Traitement des Signaux Aléatoires Estimation de densités de probabilité

4 ETI – CPE Lyon

Travaux Pratiques TSA

Noms, Prénoms: Antoine CAUQUIL et Adrien HERNANDEZ

Groupe: C

Date: 4 octobre 2021

Objectifs du TP

- Synthèse et filtrage de processus aléatoires

- Estimation empirique de densités de probabilités de différents processus aléatoires
- Filtrage passe-bas de processus non gaussiens.

Consignes:

- Le répertoire de travail sera exclusivement sur le compte d'un des membres du binôme (changer le répertoire courant de Matlab®). Mais pour certains traitements, on fera appel à des fonctions préprogrammées. Les fonctions utiles sont accessibles sur CPe-campus dans le cours Traitement des signaux aléatoires, rubrique Travaux Pratiques. Récupérer les fichiers .m.
- Utiliser la trame de compte-rendu fournie en répondant directement aux questions dans les espaces ménagés à cet effet.
- Regrouper dans un fichier annexe (type word ou text) les Codes Matlab® développés ainsi que les Figures obtenues. Veiller à associer systématiquement une légende explicite à chaque Figure ou Tableau.
- **Préparation obligatoire** (une seule par binôme) à rédiger directement sur le compte-rendu et à fournir en début de séance

1 Préparation

Il faudra avoir pris connaissance de la totalité de l'énoncé et de la documentation des diverses fonctions Matlab fournie en Annexe.

Pour estimer la densité de probabilité d'un signal aléatoire \mathbf{x} , on s'appuie ici sur l'histogramme d'une seule réalisation échantillonnée du signal aléatoire. Soient $(x[n] = x(n \cdot T_s))_{n=1,\dots,N}$, la série temporelle correspondante échantillonnée à la fréquence $F_s = T_S^{-1}$:

$$\widehat{p_{\mathbf{x}}}(x) = \frac{\text{Nbre d'échantillons compris dans l'intervalle } \left[x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right]}{N \, \Delta x}.$$

Question 1 Quelles propriétés le signal aléatoire x doit il vérifier : :

- pour que les échantillons $(x[n])_{n=1,...N}$ soient identiquement distribués (i.e. suivent tous la même loi, quelque soit l'instant n)

réponse ci-dessous _

- pour que les échantillons $(x[n])_{n=1,...N}$ soient décorrélés?

___ réponse ci-dessous _

- pour que la décorrélation des échantillons $(x[n])_{n=1,\dots N}$ entraine également leur indépendance?

____ réponse ci-dessous _

Question 2 Sans calculs, indiquer quelle est l'influence du choix de Δx sur le biais et sur la variance de l'estimation $\widehat{p_{\mathbf{x}}}(x)$.

_ réponse ci-dessous _

Si $\Delta x \searrow \Longrightarrow$ précision sur $m_X \nearrow \Longrightarrow$ biais \searrow

Si $\Delta x \nearrow \Longrightarrow$ la répartition des éléments dans les ensembles $\left[x - \frac{\Delta x}{2}; x + \frac{\Delta x}{2}\right]$ varie de moins en moins. \Longrightarrow la variance de l'estimation \searrow

Question 3 Quelles opérations (arithmétiques simples, il ne s'agit pas de filtrage ici!) permettent de synthétiser un processus gaussien de moyenne m_2 et d'écart-type σ_2 à partir d'un processus gaussien stationnaire de moyenne $m_1 \neq m_2$ et d'écart-type $\sigma_1 \neq \sigma_2$?

_ réponse ci-dessous _

On appelle f le processus gaussien de moyenne m_1 et d'écart type σ_1 et g le processus gaussien centré en m_2 et d'écart type σ_2 que l'on souhaite réaliser. On sait que la convolution par une distribution de Dirac centrée en a entraine une translation de a du signal convolué. On peut alors écrire :

$$g(t) = (f * \delta_{m_2 - m_1})(t)$$

De plus on sait que pour une variable aléatoire quelconque $X:\sigma(aX)=|a|\sigma(X),$ donc si on multiplie le processus f par une constante adéquate, on peut modifier son écart-type. Donc, si on souhaite avoir $\sigma(g(t))=\sigma_2$ à partir de $\sigma(f(t))=\sigma_1$. On peut écrire : $\sigma(g(t))=a\sigma(f(t))$ avec a une constante à déterminer. Si on pose $a=\frac{\sigma_2}{\sigma_1}$, alors il vient :

$$\sigma(\frac{\sigma_2}{\sigma_1}f(t)) = \frac{\sigma_2}{\sigma_1}\sigma(f(t)) = \frac{\sigma_2}{\sigma_1}\sigma_1 = \sigma_2 = \sigma(g(t))$$

Donc les opérations à effectuer sur f pour obtenir g sont une convolution par un Dirac et une multiplication par le rapport des écart-type.

Question 4 Le Kurtosis est un indice qui permet de mesurer le caractère normal (gaussien) d'une série d'échantillons d'une variable aléatoire. Il est défini par le rapport : $K = \frac{\mathbb{E}\left\{\mathbf{x}^4\right\}}{\mathbb{E}^2\left\{\mathbf{x}^2\right\}}$

On rappelle que si x est gaussien et centré, alors

$$\mathbb{E}\{x(t_1)x(t_2)x(t_3)x(t_4)\} = \mathbb{E}\{x(t_1)x(t_2)\}\mathbb{E}\{x(t_3)x(t_4)\} + \mathbb{E}\{x(t_1)x(t_3)\}\mathbb{E}\{x(t_2)x(t_4)\} \dots + \mathbb{E}\{x(t_1)x(t_4)\}\mathbb{E}\{x(t_2)x(t_3)\}$$

Montrer alors que dans le cas d'un signal aléatoire gaussien, centré et stationnaire, le Kurtosis vaut 3.

réponse ci-dessous

Comme notre signal X(t) est stationnaire, l'instant considéré pour les échantillons n'a pas d'influence car les propriété statistiques sont invariantes par translation temporelle. Donc on peut écrire :

$$\mathbb{E}\{x(t_1)x(t_2)x(t_3)x(t_4)\} = \mathbb{E}\{\mathbf{x}\mathbf{x}\mathbf{x}\} = \mathbb{E}\{\mathbf{x}^4\}$$

$$\mathbb{E}\{x(t_1)x(t_2)x(t_3)x(t_4)\} = \mathbb{E}\{\mathbf{x}\mathbf{x}\}\mathbb{E}\{\mathbf{x}\mathbf{x}\} + \mathbb{E}\{\mathbf{x}\mathbf{x}\}\mathbb{E}\{\mathbf{x}\mathbf{x}\} + \mathbb{E}\{\mathbf{x}\mathbf{x}\}\mathbb{E}\{\mathbf{x}\mathbf{x}\}$$

$$\mathbb{E}\{\mathbf{x}^4\} = \mathbb{E}^2\{\mathbf{x}^2\} + \mathbb{E}^2\{\mathbf{x}^2\}$$

$$\mathbb{E}\{\mathbf{x}^4\} = 3\mathbb{E}^2\{\mathbf{x}^2\}$$

$$K = \frac{\mathbb{E}\{\mathbf{x}^4\}}{\mathbb{E}^2\{\mathbf{x}^2\}} = 3$$

Question 5 Soit $\mathbf{x}(t)$ un bruit gaussien de valeur moyenne m_B et d'écart-type σ_B .

Soit $\mathbf{y}(t)$ un signal carré d'amplitude A, centré, périodique de période T_0 , de rapport cyclique égal à 1 et retardé par rapport à l'origine d'un retard τ uniformément distribué entre 0 et T_0 . Donner l'expression de la densité de probabilité de la somme $\mathbf{z}(t) = \mathbf{x}(t) + \mathbf{y}(t)$.

_ réponse ci-dessous _

On rappelle la formule de la ddp d'une somme de deux Variables Aléatoires, Z = X + Y:

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(z) p_Y(z-y) dz = (p_X * p_Y)(z)$$

De plus on rappelle la ddp du signal carré à retard aléatoire : On peut donc écrire :

$$p_Z(z) = (p_X * (\frac{1}{2}(\delta_A + \delta_{-A}))(z)$$

avec

$$p_X(z) = \frac{1}{\sigma_B \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{z-m_B}{\sigma_B})^2}$$

Donc, on peut réécrire :

$$p_Z(z) = \frac{1}{2\sigma_B \sqrt{2\pi}} \left(e^{-\frac{1}{2}\left(\frac{(z+A)-m_B}{\sigma_B}\right)^2} + e^{-\frac{1}{2}\left(\frac{(z-A)-m_B}{\sigma_B}\right)^2}\right)$$

Traitement des Signaux Aléatoires Estimation de densités de probabilité 4 ETI – CPE Lyon

Travaux Pratiques TSA

Noms, Prénoms: Antoine CAUQUIL et Adrien HERNANDEZ

Groupe: C

Date: 4 octobre 2021

2 Bruit gaussien filtré, échantillonné

On souhaite générer un bruit gaussien $x_3(t)$ blanc dans la bande [-B, B], de moyenne m_3 non nulle et d'écart-type $\sigma_3 > 1$. Pour cela, on applique la procédure décrite dans la préparation (Question 3) et schématisée ci-dessous :

où $x_1(t)$ est un bruit blanc gaussien, centré, d'écart-type $\sigma_1 = 1$.

2.1 Programmation

Programmer deux fonctions Matlab distinctes dont vous reproduirez les codes ci-dessous.

2.1.1 Fonction synthèse des signaux aléatoires

- Paramètres d'entrée :
 - le nombre N d'échantillons à générer
 - la largeur de bande B du filtre passe-bas
 - la moyenne m_3 et l'écart-type σ_3 du bruit $x_3(t)$.
- Traitements à effectuer dans la fonction :
 - génération d'une séquence $x_1(t)$ de bruit gaussien échantillonné (à la fréquence F_s), centré et d'écarttype $\sigma_1 = 1$
 - synthèse d'un filtre de Butterworth de type passe-bas, de fréquence de coupure f_c correspondant à la largeur de bande B et d'ordre m=8
 - filtrage du bruit $x_1(t)$ par le filtre passe-bas pour obtenir le bruit filtré $x_2(t)$
 - transformation de $x_2(t)$ pour obtenir $x_3(t)$ de valeur moyenne m_3 et d'écart-type σ_3 .
- Variables de sortie :
 - les vecteurs des échantillons de x_1 , x_2 et x_3
 - les coefficients de la fonction de transfert du filtre passe-bas (coefficients des polynômes A(z) et B(z)).

code ci-dessous	
code et debbodb	

2.1.2 Fonction Calcul d'histogramme

- Paramètres d'entrée :
 - le vecteur des N échantillons d'un signal aléatoire x(t)
 - paramètre **optionnel** : M le nombre d'intervalles imposés pour le calcul de l'histogramme
- Traitements à effectuer :
 - si le nombre d'intervalles M n'est pas spécifié :
 - o appliquer la règle empirique de calcul optimal de Δx (vue en TD)
 - o calculer le centre de chaque intervalle de l'histogramme correspondant à ce choix de Δx
 - o calculer l'histogramme correspondant
 - si le nombre d'intervalles M est spécifié :
 - o déterminer la largeur des intervalles Δx correspondant à ce choix de M
 - o calculer l'histogramme correspondant
 - déduire de l'histogramme calculé une estimation de la densité de probabilité de ${f x}$
 - afficher dans la figure et le graphe courants la densité de probabilité estimée
 - labéliser les axes en indiquant la valeur de Δx utilisée (et préciser si celle-ci est *optimale* ou *imposée*). Donner un titre pertinent (distinctif) au graphe.
- Variables de sortie :
 - le vecteur des valeurs de la densité de probabilité estimée
 - le vecteur des centres d'intervalles calculés

code ci-dessous	

2.2 Expérimentation

2.2.1 Cas général

On supposera que le signal est échantillonné à la fréquence $F_s=1\,KHz$. Ce choix est il important? Pourquoi?

réponse ci-dessous

Le choix de la fréquence n'a pas d'importance car notre signal est généré pour un certain nombre de points et non sur une durée fixe. Néanmoins, si la durée d'échantillonnage avait été fixée, le choix de cette fréquence aurait influé le nombre d'échantillons de notre signal généré. Cela aurait impacté la valeur optimal du $\hat{\Delta}x$.

Dans les conditions suivantes :

- N = 1000 échantillons de signal
- Filtre passe-bas avec $B = 100 \, Hz$ (ordre m = 8)
- $m_3 \neq 0$ et $\sigma_3 > 1$ (choix libres que l'on précisera clairement dans le compte-rendu)
- choix empirique optimal de la largeur Δx des intervalles,

afficher ci-dessous, sur une même figure partagée en 2×4 sous-graphes (subplots):

- sur la première ligne : les séries temporelles $x_1(k.T_s)$, $x_2(k.T_s)$ et $x_3(k.T_s)$, ainsi que le module du gain complexe du filtre passe-bas

_	sur la deuxième ligne : sous chacune des 3 séries temporelles, les d	densités d	de probabilité	$\operatorname{estim} \operatorname{\acute{e}es}$
	auxquelles on superposera les densités théorique correspondantes. D	Donner a	aussi le code	utilisé
	pour calculer et afficher ces d.d.p. théoriques.			

figure ci-dessor	us
code ci-dessou	IS

Pour chacun des 3 processus, vérifier par la mesure sur les densités estimées et en utilisant des estimateurs empiriques (disponibles sous Matlab) :

a) la conformité entre moyennes mesurées et théoriques

	$\widehat{m_1}$	$\widehat{m_2}$	$\widehat{m_3}$
Décrire une 1ère méthode de mesure de la moyenne	réponse et mesures ci-dessous avec la fonction mean(signal) on peut estimer la moyenne de ces 1000 échantillons.		_
Mesure de la moyenne par la méthode 1	$\hat{m}_1 = 0.00487$	$\hat{m}_2 = 0.00481$	$\hat{m}_3 = 4.0000$
Décrire une 2ème méthode de mesure de la moyenne	réponse et mesures ci-dessous le maximum de la gaussienne est atteint à la valeur moyenne. La valeur pour laquelle on a la plus grosse densité de probabilité devrait donc être proche de la moyenne réelle.		
Mesure de la moyenne par la méthode 2	$\widehat{m}_1 = 0.324$	$\hat{m}_2 = -0.0335$	$\widehat{m}_3 = 3.50$

b) idem pour les écart-type (avec <u>au moins deux méthodes</u> de mesure distinctes que l'on détaillera)

	$\widehat{\sigma_1}$	$\widehat{\sigma_2}$	$\widehat{\sigma_3}$
Décrire une 1ère méthode de mesure de l'écart-type	réponse et mesures ci-dessous avec la fonction std(signal) on peut estimer l'écart-type de ces 1000 échantillons		
Mesure de l'ecart- type par la mé- thode 1	$\widehat{\sigma}_1 = 0.957$	$\widehat{\sigma}_2 = 0.429$	$\widehat{\sigma}_3 = 3.000$
Décrire une 2ème méthode de mesure de l'écart-type	_	se et mesures ci-desso à mi hauteur de la gaussier	
Mesure de l'écart- type par la mé- thode 2	$\widehat{\sigma}_1 = 0.91$	$\widehat{\sigma}_2 = 0.40$	$\widehat{\sigma}_3 = 2.57$
Décrire une 3ème méthode de mesure de l'écart-type	réponse et mesures ci-dessous On mesure la largeur total de la répartition des densité de probabilité qui correspond à 6σ .		
Mesure de l'écart- type par la mé- thode 3	$\widehat{\sigma}_1 = 1$	$\widehat{\sigma}_2 = 0.45$	$\widehat{\sigma}_3 = 2.6$
Décrire une 4ème méthode de mesure de l'écart-type	répon	se et mesures ci-desso	us
Mesure de l'écart- type par la mé- thode 4			

T	esquelles de ce	s méthodes s	vous naraissent	les plus	nrécises?	Pouranoi?
	resonienes de cei	s mernodes v	vous naraissem	סטוט פטו	DI COLSES :	i ourauor:

réponse	ci-dessous	

plus précis comparé aux autres car ils se basent sur des principes d'estimation non biaisés. Les méthodes graphiques employées se basent sur des approximations mathématiques et sur un relevé graphique. Ils paraissent donc plus sensibles à des paramètres comme l'écart entre deux bars de l'histogramme et de la valeur du maximum considéré.

2.2	.2 Influence de N
	ne considère ici que le signal aléatoire $x_1(t)$, le nombre d'intervalles pour le calcul des histogrammes ant constant et égal à $M = 20$.
a)	Sur une même figure, afficher dans différents sous-graphes (pour une meilleure lisibilité des courbes, on pourra utiliser la commande $\mathtt{stem.m}$ en lieu et place de la commande $\mathtt{bar.m}$), les densités de probabilité de $x_1(t)$ estimées pour plusieurs valeurs du nombre d'échantillons : pour cela faire varier dans une boucle \mathtt{forend} , le nombre N de 2^4 à 2^{11} . Superposer systématiquement les densités théoriques ainsi que les intervalles de précision théoriques $\mathbb{E}\{\widehat{p_{\mathbf{x}}}(x)\} \pm \mathrm{std}(\widehat{p_{\mathbf{x}}}(x))$ calculés en TD. Veiller à commenter précisément chaque figure (légendes, labels,) Donner aussi le code Matlab de calcul de ces intervalles de confiance.
	figures ci-dessous
	code ci-dessous
b)	Qualitativement, expliquez à partir de ces tracés, l'évolution de la variance (ou de l'écart-type) d'estimation.
	réponse ci-dessous
	Nous pouvons constater que plus le nombre d'échantillons augmente, plus l'écart type de l'histogramme autour de la densité de probabilité théorique diminue. Ce résultat paraît cohérent car intuitivement, une faible quantité d'échantillons est plus susceptible d'être mal répartie dans un histogramme (avec 16 échantillons, tous les intervalles de répartition contiennent quelques valeurs mais aucune n'est plus importante que les autres). Augmenter cette valeur diminue donc les chances d'avoir une bonne répartition (avec 256 échantillons on peut voir que les bars de l'histogramme sont de plus en plus importants quand on se rapproche de 0).
c)	Peut on conclure sur le biais d'estimation à partir de cette seule expérience? Expliquez.
	réponse ci-dessous
	Cette observation ne permet pas de conclure sur le biais d'estimation mais sur la variation de l'estimateur. En effet, en augmentant le nombre d'échantillons on devrait tendre vers une estimation de la densité de probabilité qui ne varie de moins en moins. Mais cette information sur la variation ne permet pas d'apporter de conclusion par le biais de l'estimateur.
d)	Quelle expérience faudrait il mener pour caractériser empiriquement et précisément le biais et la variance d'estimation?
	réponse ci-dessous

Afin de caractériser le biais, il faut faire varier la valeur de M pour modifier la largeur de la bande de répartition des échantillons.

2.2.3 Influence de Δx

Ici encore, on ne s'intéresse qu'à $x_1(t)$ et à une de ses réalisations sur N=1000 points.

a) En faisant varier M, le nombre d'intervalles de l'histogramme, sur une plage incluant les 2 situations extrêmes (**que l'on indiquera et justifiera**), calculer et afficher (sur une même figure partagée en sous-graphes) les densités de probabilité estimées. Superposer les densités théoriques ainsi que les intervalles de précision.

____ réponse ci-dessous

On a vu en TD qu'une faible valeur de Δx implique un biais nul avec l'estimateur employé. Néanmoins, la variation de l'estimateur est détériorée en fonction de cette même valeur lorsqu'elle est faible. On prendra donc une valeur de M=10 pour Δx grand et M=100 pour Δx petit

b) Dans un dernier sous-graphe de la même figure, représenter la densité de probabilité estimée avec un choix optimal de Δx .

_____ figures ci-dessous _

c) Comme pour la question précédente, décrivez qualitativement en l'expliquant, l'évolution de la variance et du biais d'estimation en fonction de Δx .

_ réponse ci-dessous _

D'un point de vu théorique, la variance d'estimation s'écrit comme suit :

$$\varepsilon^2 = \frac{1}{N} \left(\frac{1}{\Delta x f_X(c_i)} - 1 \right)$$

à noter que la valeur de Δx est inversement proportionnelle à celle de M. On peut écrire la valeur du biais de la façon suivante :

$$biais\left(\widehat{f_X}(c_i)\right) = \mathbb{E}(\widehat{f_X}(c_i)) - f_X(c_i)$$

$$= \int_{\Delta x \to 0} f_X(c_i) - f_X(c_i)$$

 $biais\left(\widehat{f_X}(c_i)\right) \underset{\Delta x \to 0}{=} 0$

Pour une faible valeur de M on force un Δx grand avec une variance d'estimation plus faible mais un biais plus important (M=10). Et pour une valeur de M grande, on a Δx petit et notre estimateur tend vers un estimateur non biaisé au détriment de la variance (M=100).

2.2.4 Influence de B

On se place dans les conditions suivantes :

- N=1000 échantillons
- $m_3 \neq 0$ et $\sigma_3 > 1$ (garder les mêmes valeurs que celles choisies pour la première expérience)
- choix empirique optimal des largeurs d'intervalles Δx

	bas correspondant, le processus filtré $x_2(t)$ et la densité de probabilité estimé sur le processus filtré $x_2(t)$. Superposer la densité théorique.
	figures ci-dessous
b)	Le signal $x_2(t)$ est il gaussien? Justifiez votre réponse (on pourra par exemple calculer le Kurtosis sur la série temporelle $(x_2[n])_{n=1,N}$).
	réponse ci-dessous
	En réalisant plusieurs essais sur différents signaux on se rend compte que ce Kurtosis est réparti entre $1,9$ et $3,5$. Il est donc assez grossier de dire qu'il est semblable à un signal Gaussien.
c)	Pourquoi l'estimation de la densité de probabilité de x_2 est elle aussi différente de la densité gaussienne $\mathcal{N}(m_2, \sigma_2)$? En gardant $B = 5Hz$, proposer une nouvelle configurations de paramètres pour corriger cet effet. Vérifier la solution proposée, en affichant la densité de probabilité ainsi estimée.
	réponse ci-dessous
	Sur un nombre faible d'échantillons, on peut constater que les composantes du bruit sont moins bien réparties dans le spectre de son signal. En prenant un bruit gaussien généré sur N échantillon on se rend compte en observant son spectre qu'il présente des composantes spectrales sur l'intégralité de son spectre. En appliquant un passe bas on ne laisse passer que les composantes situées dans la bande passante de ce dernier. Ainsi on supprime une très grande partie des informations qui caractérisent le bruit. Pour pallier ce problème, on peut tout simplement augmenter le nombre d'échantillons.
	intégrer les déroulés (x2,ddp2,filtre passe bas) pour N =1 000, N=10 000 et N= 100 000
	Avec $N=10000$ la valeur du kurtosis varie plus précisément autour de 3 écart variance d'environ 0,3 Avec $N=100000$ on peut faire une bonne approximation en disant que le signal est gaussien variation de 0,1 au maximum
	_

3 Somme d'un signal carré à retard équiparti et d'un bruit gaussien

On veut étudier la densité de probabilité de la somme d'un signal carré à retard équiparti \mathbf{y} et d'un bruit gaussien \mathbf{x} de valeur moyenne m_B et d'écart-type σ_B .

Pour cela, utiliser la fonction Matlab carbr(moy,ecartype,N), où :

moy: moyenne du bruit ecartype: écart-type du bruit

N: nombre de points de signal à analyser

Le signal carré, de fréquence $\nu_0 = 110\,Hz$, d'amplitude ± 1 , a pour retard à l'origine, une variable aléatoire τ distribuée uniformément sur l'intervalle $[0, T_0[$, où $T_0 = 1/\nu_0$ est la période du signal carré.

En quelques mots, expliquer alors, en quoi le signal carré est un signal aléatoire?

Le signal carré est aléatoire car sa phase à l'origine varie uniformément dans $[0; T_0]$. Cette variation de phase entraı̂ne alors une variation de l'amplitude en fonction du temps de la réalisation considéré.

La somme \mathbf{z} des 2 signaux aléatoires est échantillonnée à 100 kHz. La fonction affiche le mélange signal carré + bruit et la d.d.p. estimée $\widehat{P}_{\mathbf{z}}(z)$.

En choisissant la moyenne du bruit $m_B=0$, trouver, en la justifiant, la valeur de l'écart-type σ_B correspondant à chacune des 2 situations suivantes :

1)
$$\mathbb{P}\{z \in [-0.5, 0.5]\} \le 0.5\%$$

____ réponse ci-dessous __

On rappelle que:

$$p_Z(T) = (p_Y * p_X)(T) = \dots = \frac{1}{2} (p_X(T+A) + p_X(T-A))$$

Elle est donc constituée de deux gaussiennes décalées de +A et -A.

$$P(Z \in [-0.5; 0.5]) = 0.5\%$$

par symétrie de la distribution,

$$\iff 2P(Z \in [0; 0.5]) = 0.5\%$$

si on considère la distribution $\frac{1}{2}p_X(T-A)$

$$\iff 2 \times \frac{1}{2}P(Z < 0.5) = 0.5\%$$

$$\iff P(Z < 0.5) = 0.5\%$$

si on pose X = Z - A:

$$\iff P(X < 0.5 - 1)$$

$$\iff P\left(X<-\frac{1}{2}\right)=0.5\%$$

Comme X suit une loi uniforme centrée en 0:

$$\iff P\left(X<-\frac{1}{2}\right)=P(X<-3\sigma_B)$$

$$\iff \frac{1}{2} = 3\sigma_B$$

$$\iff \sigma_B = \frac{1}{6}$$

2)	$p_{\mathbf{z}}(0)$	=	$\frac{1}{2} p_{\mathbf{x}}(0)$
----	---------------------	---	---------------------------------

réponse ci-dessous

Afficher sur une même figure, les deux densités correspondantes.

figures ci-dessous