SYSTEM CALLS AND CACHING

Huang Bo itakejgo@gmail.com

SYS_CALL:

I/O: open, close, read, write, etc.

Files: delete, dup, dup2, etc.

Process: fork, exec*, etc.

Network: socket, etc.

. . .

Q. Why we need system calls?

- What should we do a system call?
- The same as function call.
 - We need pass arguments.
 - And run the system function.

Is this right?

- Do you remember the import concept pr otection?
 - Every system call should be run in kernel mode
 - Thus, when we run a system call, we must switch h to kernel mode

- What should we do a system call?
- The same as function call.
 - We need pass arguments.
 - And run the system function. Switch to kernel mode

CACHING

Computer Memory Hierarchy

Pictures from wiki

CACHING

- Direct-mapped cache with Y bits
 - Each cache line contain 2a bytes, we use the least significant a bits to discard them
 - Using M bits to identify each cache line
 - Tag field is the most N bits

DIRECT MAPPED CACHE

DIRECT MAPPED CACHE

- All address with the same least significa nt a + M bits will mapped to same place
- Eg. 40004<mark>03X</mark>, 50328<mark>03X</mark>
- May cause a lot of fix problem

SET ASSOCIATIVE CACHE

How to avoid a lot of fix problem? We store many of them!

- We have N-direct mapped caches
 - Each time we compare cache tag in N sets
- We can find faster but more expensive

SET ASSOCIATIVE CACHE

FULLY ASSOCIATIVE CACHE

- We don't use cache index. We can use c ache tag to distinguish them.
- We need to compare all cache tags.

FULLY ASSOCIATIVE CACHE

WRITE PROBLEM

We know that I/O is really slow...

- We use cache to solve "I" problem.
- How about "O"?

TLB

Translation Lookaside Buffer: The same idea as cache but more complicated...
Why?

TLB

Remember VIRTUAL?

The virtual address is the same, but the physical address is changed!

TLB

TLB

Q. How to make TLB more efficient?

LAB REQUIREMENT

1. Write a direct cache simulator.

Requirement: Cache size is 1KB, cache line size is 16 bytes, cache memory size is 256MB

- 2. You can try to simulate other cache strategy, which will give you bonus points.
- 3. Package should be named as: OS_lab6_Name_ xxxxxxxx where xxxxxxxx is your student id, Name is your name. This package should contain: your report, your code.
- 4. Check blackboard for ddl.

THANKS