Charlie's notes

December 3, 2015

1 CS31310 - AGILE

- 2 CS36110 Machine Learning
- 3 CS34110 COMPUTER VISION
- 3.1 November 20: Motion Models

Modelling Change & Tracking

MOTION:

- Background Subtraction
- Optical Flow

MIXTURE OF GAUSSIANS (MoG):

- Robust to noise
- Handles shadows ok
- Common first step

3.1.1 Tracking: Modelling Change

VIDEO:

- detections in each frame
- \bullet detections are noisy & computationally expensive
- ullet tracking mitigates both issues

Noise can occur if the camera on a robot/car is moving up/down

3.1.2 A GENERAL FRAMEWORK FOR TRACKING

RECURSIVELY:

- An idea about how something will change (Model)
- Make a prediction (Predict)
- See what happens (Measure)
- Update model (*Update*)

Advantages:

- Smooths the data
 - estimate location upon predictions & the measurement
- Constrains search
 - start looking for target in the location it was last seen

3.1.3 Kalman Filter

- Like predict, measure, update from earlier
- Useful for tracking
- Copes well with missing information (occlusions)

Figure 3.1: Sourced from Wikipedia

Background subtraction	\rightarrow	Pixels grouped into objects	\rightarrow	
Sparse Optical Flow	\rightarrow	Features grouped into objects	\rightarrow	Tracker
Face Detection	\rightarrow	\rightarrow	\rightarrow	

USE KALMAN TO SMOOTH ANY MEASUREMENT

- X,Y location
- size
- colour

See also: Particle filtering: works with combining and splitting objects (e.g. people holding hands, then letting go)

Hannah's video: https://www.youtube.com/watch?v=NYdwpX1a7-Y

3.1.4 Mean Shift

Computer the mean of the data within the window

Shift the window to the mean every time

Notes:

- Changes size can use CAM-Shift to mitigate?
- Lighting change not really, gradually changes mean over time
- If it picks up something you're not looking for, will slowly drift off

3.1.5 Problems with Tracking

- Initialisation (what are you tracking?)
- Having more than 1 item to track
- Losing target due to motion / occlusion
- Losing target due to appearance change

Usually initialise from a detector of some sort Useful speed up for detectors & accuracy Look into: TLD: Tracking Learning Description

3.1.6 Closing Note

Vision Systems tend to have multiple layers Tracking is extremely common in anything which deals with change.

HOG FOR EXAMPLE, HAS SEVERAL LAYERS:

- 2D filters
- Tangent
- Histogram
- Superimpose grid
- \bullet SVM

May be more, however couldn't write quick enough... You get the idea...

3.2 November 24: Shape from Shading

3.2.1 Shape

3D STRUCTURE OF:

- Object
- Scenes

WHY?

- Science (surface of Mars)
- Graphical (3D model of heritage)

There is a table in the slides of the topics that will be covered in the 'Shape' series

3.2.2 Shape from Shading

Brightness depends on:

- where light source is
- where viewer is
- local orientation of surface
- properties of surface (matt vs glossy)

зеотнесту.

• i: incident angle

e: emittance angle

g: phase angle

BRDF:

• Bidirectional Reflectance Distribution Function

• fraction of light reflected in the direction of the viewer

• Lambertian: $\Phi(i, e, g) = \cos i$

• Specular: $\Phi(i, e, g) = 1$ when i = eand g = i + e

• Largely property of the surface

• Used in graphics a lot

• Difficult to establish wavelength of light & properties of surface

• Determined experimentally

3D Surface information Look up - 'Normal Mapping' wikipedia page Orientation of surface described by a normal vector (x,y,z):

• Change in z when x changes (p)

• Change in z when y changes (q)

3.2.3 Gradient Space

$$p = \frac{\delta z}{\delta x}$$
$$q = \frac{\delta z}{\delta y}$$

REFLECTANCE MAP:

• For surface of 'x' orientation, we expect this reflection back

Light Change: 1 = lightest, 0 = darkest

- Global solution found by integration in gradient and image space + smoothness assumption:
 - Maths in confusing!
 - Don't need to know the maths for the exam

3.2.4 Photometric Stereo

We can reduce assumptions if we have multiple lighting conditions. Example: 2 overlapping reflectance maps on sphere

- Use same point in image plane under different lighting
- You know where the lights are (calibrated)
- Nothing moves just the lights on/off
- Calibration with sphere of similar reflectance
- There is always noise
- Reasonably robust

This is at the heart of light-stage imaging

- Illuminate with 1 source at a time
- Calibrate & results in look-up table

Have to reduce inter-reflections!

X,Y,Z MAPPED TO RGB FIGURES:

• gives diagram of 3D structure

Fewer images \rightarrow More assumptions

* Look up ISO-contours

3.3 NOVEMBER 27: SHAPE FROM X

3.3.1 Shape from Texture

1 + images, with a lot of assumptions.

Marr 1982:

- ullet 2 textured gradients
- Limited information
- Circles turn into ellipses (illusion of depth)

Types of textures:

Isotropic: rotation perpendicular to texture plane does not 'change' the texture

Homogeneous: texture looks 'the same' everywhere

Texel: basic texture elements, the repetition of which creates the texture

LOCAL BINARY PATTERNS

- 3x3 filters
- Capture changes in greyscale

1	1	0
0	Т	1
0	1	0

0	1	1
0	Т	1
0	0	1

Figure 3.2: Top: Standard output. Bottom: Could be used to detect edges

0 = darker than T 1 = lighter than T

GLOBAL PLANES

- Find the plane, uphill, downhill etc
- Gradients in texture
- Isotropic texture:
 - circles \rightarrow ellipses

- Major axes of ellipses to work out slant & tilt
- Homogeneous texture:
 - textures made of dots
 - look for a density change

Generally you fit methods locally rather than globally

3.3.2 Shape from Motion

Look up Marr (again)

Can also do structure from Motion: this is next week!

The examples on BB are really good: biomotionlab!

Things further away move more slowly - can infer things from this

Assumes:

- rigidity
- parallel projection

Works both long and short range...

- Initial guess on 3D model of world (flat screen)
- \bullet + new image
- update on those which disagree with the initial model

Very popular!

3.3.3 Shape from Occlusions

Infer shapes from which bits are in front of other parts

OCCLUSION CONTOURS:

- discontinuity in depth signal
- corresponds to silhouette (shadow)

Assumptions (1 image):

- each point on contour corresponds to a single point on the object (except when a 'T' junction)
- nearby points on the contour correspond to nearby points on the object
- points on contour correspond to planar points on the object

When you have 2+ images:

- Space Carving
- Volumetric reconstruction
- Gives where the object is isn't
- Object is intersection of several generalised cones

Watch the Youtube video on BB - Greenvision

Figure 3.3: Can the cameras see the points on the other side of the object? Make a map of what it can / can't see to build a shape of the object using multiple cameras (bottom row).

FROM A VIDEO SEQUENCE:

- inferred from motion & occlusion
- what occludes people in the scene?

Things at the front = black, as it's never occluded from you Lots of motion = white

3.3.4 Shape from focal length

Depth from defocus

Things are blurry past a depth of focus Take 10 pictures, at different lengths, with different focuses

- Texture really helps focus
- Assumptions about smoothness

Markov-Random Field

How to tell if in focus?

- Look for sharp edges = \checkmark
- Only low-frequency components = X
 - 4 CS32310 ADVANCED COMPUTER GRAPHICS
 - 5 SE31520 Internet-based Applications

Fred Long's lecture slides contain all the content.

6 OTHER