

RES 101

L'architecture de l'Internet

- Routage et Relayage
- Les algorithmes de routage classiques

Routing & Forwarding Le routage et le relayage

(How to know where to send a packet?)

Routing & Forwarding

- Qu'est-ce que c'est que le routage ?
 - Processus pour échanger les information sur la topologie entre les nœuds d'un réseau .
 - Il fournit les moyens pour calculer le "meilleur" chemin vers un nœud destination.
 - Il utilise une structure de données : la table de routage (routing table).
 - RIB Routing Information Base
- Qu'est-ce que c'est que le relayage ?
 - Processus qui redirige un paquet entrant un port / interface (input) vers un autre port / interface (output)
 - Il utilise les informations obtenues grâce aux fonctions de routage.
 - Il utilise une structure de données : la table de forwarding (forwarding table).
 - FIB Forwarding Information Base

Routing & Forwarding: en gros

- Le routage (**routing**) permet de remplir la **table de routage** (routing table) qui contient les information sur quel destination est en quelle direction
 - Le routage est traité dans le prochain chapitre
- Le relayage (forwarding) utilise le contenu de la table de routage pour envoyer les paquets dans la bonne direction
 - Le relayage est traité dans ce chapitre

L'architecture d'un routeur | composants hardware

- Les interfaces, ou NICs sont aussi appelés line cards (cartes de ligne)
- 1 Line card → plusieurs ports
- Chaque line card contient un FIB :
 Forwarding Information Base
- Le FIB n'a pas les informations de routage complètes, mais seulement ce qui sert pour le forwarding

Data Plane

(All operations in hardware)

Control Plane

(Operations de management, quelque traitement de paquets specifiques (in software). Jusqu'à 1000x plus lent que le data plane)

Software Router Architecture (Linux/FreeBSD/ etc..)

Control Plane

(Le management et quelques cas particulière de traitement de paquets sont effectués en software. Il peut être même plus rapide que le data plane)

Routeurs....

Gateway

IP PARIS

Définition

- Un GW est un routeur qui connecte deux ou plusieurs (sous)réseaux

Luigi lannone

Following a path...

Longest Prefix Match

IP PARIS

LPM & Routing Table

IP PARIS

Longest-Prefix Match Rule

geo router fe0

E.g. 22.11.2.65

Address	Mask		Next Hop	Interface
17.24.0.0	255.255.0.0	(/16)	15.129.57.254	ge0
208.233.65.0	255.255.255.0	(/24)	123.79.17.254	ge1
22.11.2.0	255.255.255.0	(/24)	15.129.57.254	ge0
22.11.2.64	255.255.255.192	(/27)	15.129.57.253	ge0
15.129.57.0	255.255.255.0	(/24)	Link	ge0
123.79.17.0	255.255.255.0	(/24)	Link	ge1
67.234.14.128	255.255.255.128	(/25)	Link	fe0
0.0.0.0	0.0.0.0	(/0)	67.234.14.254	<u>fe0</u>

Luigi lannone

Transmission bout-en-bout - Les opérations dans un routeur

Transmission bout-en-bout – Source/Dest.

Physical Tx

Relayage vers un **next hop**

Relayage vers la **Default Route** la route par défaut

Relayage vers une destination locale

Destination locale | Les couches supérieures

Rappelle: Routing & Forwarding

- Qu'est-ce que c'est que le routage ?
 - Processus pour échanger les information sur la topologie entre les nœuds d'un réseau .
 - Il fournit les moyens pour calculer le "meilleur" chemin vers un nœud destination.
 - Il utilise une structure de données : la table de routage (routing table).
 - RIB Routing Information Base
- Qu'est-ce que c'est que le relayage ?
 - Processus qui redirige un paquet entrant un port / interface (input) vers un autre port / interface (output)
 - Il utilise les informations obtenues grâce aux fonctions de routage.
 - Il utilise une structure de données : la table de forwarding (forwarding table).
 - FIB Forwarding Information Base

Agenda

- Routage dynamique
- Inter-Domain Routing
 - BGP Border Gateway Protocol
- Intra-Domain Routing
 - OSPF Open Shortest Path First
 - RIP Routing Information Protocol

19

Routage dynamique

(How to know where to send a packet?)

Comment remplir la table de routage ?

IP PARIS

Routage statique

IP PARIS

- Applicable aux petit réseaux
- Administration intensive chaque changement est fait manuellement dans chaque routeur
- Principalement utilisé pour définir la route par défaut

- 0.0.0.0/0 Next Hop Router

IP Networks Graph http://www.netdimes.org/community.html

Routage dynamique – les avantages

- Possibilité de détecter automatiquement les changement de topologie et s'adapter
- Scalability
- Récupération algorithmique du meilleur chemin
- Robustness
- Simplicité
- Convergence rapide
- Possibilité de « bidouiller » avec les routes (Traffic Engineering)
 - E.g. quel lien est-il souhaitable pour des raisons d'optimisation?

Les caractéristiques du routage dynamique

- Ce qu'il fait
 - Mécanismes pour partager la connaissance sur les préfixes IP
 - ► Et donc, remplir les tables de routage
- Ce qu'il **ne fait pas** !
 - Configurer les adresses IP pour les interfaces réseau
 - On utilise DHCP pour les end-host
 - Adressage statique dans les routeurs
 - Static ≠ Manually configured
 - Fournir des routes par défaut
 - Sauf si explicitement configuré
 - Décider les policies pour les liens
 - ► E.g., quelles informations propager et vers qui
 - Ceci sera fait par d'autres techniques (BGP)
 - Filtrage

L'architecture de l'Internet n'est pas « monolithique »

- Il existes plusieurs ...
 - Routing Protocol
 - Routing Configuration
 - Routing State
 - Routing Management
- tout est distribué dans l'Internet!
- Le système architectural de l'Internet est basé sur plusieurs composant qui sont censés operér de manière consistante (hopefully...)
 - On appelle **convergence** quand tous les routeurs partagent les mêmes informations de routage

Le principe du routage dynamique : Gossip!

- Tous les systèmes de routage dynamique partagent la même approche :
 - « I tell you what I know and you tell me what you know! »
- Tous les systèmes de routage ont les objectives :
 - De créer une vision consistante de l'Internet
 - D'éviter les boucles
 - D'éviter les « trous noirs » (morceaux du réseau non joignable)
 - Trouver des chemins "optimaux" (or "best path")
 - La définition d'optimalité peut varier

Pourquoi partager les informations de routage ?

Luigi lannone

Routage dynamique – échange des informations

IP PARIS

- Detection automatique des connexions (reachability)
- Computation automatique du « meilleur » chemin

Routage dynamique : réaction aux défauts

Address Aggregation

10000110.00100011.00000100.00000000

10000110.00100011.00000100.00000000

10000110.00100011.00000101.00000000

10000110.00100011.00000100.00000000

10000110.00100011.00000110.00000000

10000110.00100011.00000110.00000000

10000110.00100011.00000111.00000000

Aggregation.... Yes! But be careful

10000110.00100011.0001000100000000

10000110.00100011.00010100.00000000

10000110. 00100011.00010110.00000000

10000110. 00100011.00010111.00000000

10000113.00100011.00010100.035000000

134.35.20.0/22 ?

Luigi lannone

Le routage entre différents réseaux

(How are address information spread in the Internet?)

Luigi lannone 33

L'organisation de l'Internet

IP PARIS

- AS Autonomous Systems
 - Un AS est un réseau qui est géré par une seule entité administrative

Routage inter AS

• Chaque AS:

- Propage (selectivement) les infos sur le meilleur chemin qui permet de joindre les préfixes administrés par l'AS
- Attende les infos propagées par les autres ASes

Luigi lannone

Routage intra AS

IP PARIS

- Chaque AS:
 - Géstion autonome de son propre routage
 - Routage basé sur le plus-court-chemin

Interior Gateway Protocol (IGP)

Les deux types de routage

Luigi lannone

IGP

(Intra-Domain Routing)

Interior Gateway Protocol – IGP

- Principe
 - Choisir le "shortest-path" à l'intérieur d'un AS
 - Basé sur une métrique additive :

$$f\left(Link_A + Link_B\right) = f\left(Link_A\right) + f\left(Link_B\right)$$

Les algorithmes de routage

Distance Vector

- I tell you all my "best" routes for all destinations that I know and you tell me yours.
- DV construit une topologie simplifié à partir d'une perspective locale
- E.g. **RIP** (Routing Information Protocol)

Link State

- I announce to everyone about my links and the addresses I originate on each link and listen to everyone's announcement.
- LS construit une topologie complète du réseau
- E.g. OSPF (Open Shortest-Path First)

OSPF

(Open Shortest-Path First)

Link State (OSPF) Formally Defined

- Is an instantiation of the Dijkstra Algorithm:
 - Set: $i = 0, S_0 = \{u_0 = s\}, L(u_0) = 0, \text{ and } L(v) = \infty, \text{ for } v \neq u_0$
 - Compute: $\forall v \in (V \setminus S_i) \, L\left(v\right) = \min\{L\left(v\right), L\left(u_i\right) + d_v^{u_i}\}$
 - Select: $u_{i+1} = v' : L(v') = \min_{\forall v \in (V \setminus S_i)} \{L(v)\}$
 - Update: $S_{i+1} = S_i \cup u_{i+1}, i = i+1$
 - If $\begin{aligned} & \text{Stop, otherwise go to 2} \\ & i = \mid V \mid -1 \end{aligned}$

OSPF: Open Shortest-Path First Informally Defined

- Le routeur propage les infos sur toutes ses connexions (liens), et l'état des liens (up/down)
 → les infos propagées s'appellent announcements
- Le routeur propage aussi les adresses qu'il garde sur chaque lien
- Le routeur reste à l'écoute pour les announcements des autres routeurs
- À partir de ça, il est possible de construire une topologie pour chaque lien (map)
- Gràce à la map du réseau, le routeur peut calculer le shortest path pour tous préfixes

Assumption: chaque routeur a construit la topologie du réseau et on a « consensus » que tout le monde partage la meme vision de la topologie (et le même choix des plus courts chemins)

• Routing information (reachability, link state) is broadcasted

- Routers build global view of the topology
- Routing table obtained by computing the shortest path on the topology

- Convergence is rapid
- One broadcast round and everybody has the same view

- Convergence is rapid
- One broadcast round and everybody has the same view

- Convergence is rapid even in case of failures
- One broadcast round and everybody has the same view

RIP

(Routing Information Protocol)

Distance Vector (RIP) Formally Defined

- Algorithme de Bellman-Ford
 - Define Dx(Y) := cost of the least-cost path from X to Y
 - Then: $d_{(me)}(Dst) = \min_{\substack{All \ my \\ neighbors}} \{d_{(me)}(n_x) + d_{(n_x)}(Dst)\}$

RIP: Routing Information Protocol Informally Defined

- Le routeur propage les "best" chemins pour toutes destinations qui sont connues
- À partir de cette connaissance (locale) il construit une topologie simplifiée
- Si jamais d'autres chemins sont meilleurs, le routeur va mettre à jour avec ces informations
- Dans le cas d'une mise à jour, le routeur envoie des advertisements.

RIP: Initialisation

IP PARIS

- Chaque routeur connaît les réseaux directement connectés
- Les tables de routage sont envoyés seulement aux voisins

RIP: Transient Phase

IP PARIS

- (si necessaire) les tables de routage sont mis à jour dans le routeur
- Les tables à jour sont envoyées (seulement aux voisins)

RIP: Convergence

- Convergence : tout le monde a atteint les mêmes informations de routage
- Régime Permanent (sauf si changement de topologie)

RIP: Adaptation

- E.g., ajoute d'un lien : Distance Vector (DV) est envoyé dans le nouveau lien
- Ceci permet de mettre à jour les tables de routage

RIP: Failure Detection

- Basée sur des timeouts
 - Les updates ne sont pas reçus pour un certain temps

RIP: Loops Happens

• Vision partielle : peut générer des boucles

RIP: Count to infinity

• Les deux routeurs font une escalade des coûts jusqu'à l'infini

- In original RIP : Infinity = 16
 - Updates chaque 30 secs → 8 minutes de boucle...

RIP vs OSPF

RIP

- Très simple
- Très lent pendent convergence
 - Good news : propagation plutot rapide
 - Bad news : propagation très lente
- Difficilè détecter des boucles
- Flat
- Non scalable (16 hops = infinity)

OSPF

- Plutôt complexe
 - Neighbour adjacency*
 - Topology Database
 - Shortest Path Routing Table
- Très efficace et à convergence rapide
- Les boucles et/ou inconsistances sont faciles à détecter
- Hiérarchique*
- Scalable

^{*} En détail dans GIN201

Link State vs. Distance Vector

Criterion	Distance-Vector	Link-State	
Complexity (CPU)	Simple	Complex	
Memory Usage	Low	Hi	gh
Load	High	Lo	w (*)
Convergence	Slow**	Fast	

- (*) Low refresh period (30minutes), but requires broadcasts.
- (**) Unless triggered updates used, but still slower than link-state

Done for today

You are now a Internet Routing Pro!

- Plus de détail seront traité dans GIN201!