MAT347 Abstract Algebra

Jonah Chen

1 Groups

Groups are generally associated with symmetries. Consider the equilateral triangle:

We know that there are six symmetries of the triangle:

- \bullet Identity transformation (do nothing) denoted as id or e
- ullet Two rotations (A o B o C o A and A o C o B o A)
- Three reflections $A \leftrightarrow B$, $A \leftrightarrow C$, $B \leftrightarrow C$

Note that these symmetries preserve the structure of the triangle, hence the composition of two symmetries must also be a symmetry. Let

- ullet ho be the rotation A o B o C o A
- ullet σ be the reflections $B \leftrightarrow C$

Note that $\rho\sigma$ is the $A\leftrightarrow C$ reflection and $\sigma\rho$ is the $A\leftrightarrow B$ reflection. Hence they may not be commutative.

We also know that all symmetries can be reversed. α has an inverse α^{-1} such that $\alpha\alpha^{-1}=\alpha^{-1}\alpha=e$. These inspires the following definition:

 $\textbf{Definition} \colon \mathsf{A} \ \mathbf{group} \ \mathsf{is} \ \mathsf{a} \ \mathsf{set} \ G \ \mathsf{with} \ \mathsf{a} \ \mathsf{composition}$

$$G \times G \to G$$
 (1)

$$(g,h) \mapsto g \cdot h$$
 (2)

Satisfying:

• Associativity: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$

1.1 Cyclic Groups 1 GROUPS

- \bullet Identity: $\exists\, e\in G$ such that $g\cdot e=e\cdot g=g$ for all $g\in G$
- Inverse: $\forall g \in G, \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e$

Examples:

- \mathbb{Z} with + is a group. It is associative, e = 0 and $g^{-1} = -g$.
- $\mathbb{Z}/n\mathbb{Z}$ with addition modulo n.
- \bullet If F is a field, it implicitly has two group structures:
 - Additive group: (F,+) is a group. It is associative, e=0 and $g^{-1}=-g$.
 - Multiplicative group: $(F \setminus \{0\}, \times)$ is a group. It is associative, e = 1 and $g^{-1} = 1/g$.
- GL(n,F) "general linear group" contains all invertiable $n \times n$ matrices.
- SL(n,F) "special linear group" contains all invertiable $n \times n$ matrices with determinant 1.
- SO(n, F) "special orthogonal group" = $\{A \in SL(n, F) | A^t = A^{-1}\}.$

1.1 Cyclic Groups

One of the simplest groups is $\mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}$ with the operation addition modulo n. This is known as the "cyclic group of order n" or C_n . i.e. for n=8, $5+7=4 \pmod 8$, which we denote $\overline{5}+\overline{7}=\overline{4}$.

We know the inverse $\bar{k}^{-1} = \overline{n-k}$ for nonzero k or $\bar{0}^{-1} = \bar{0}$.

Another way to express the cyclic group is $\bar{k} \leftrightarrow e^{2\pi i k/n}$ with multiplication operation. Then,

$$\overline{k+n} = e^{2\pi i(k+n)/n} = e^{2\pi ik/n}e^{2\pi in/n} = e^{2\pi ik/n} = \bar{k}.$$
(3)

Definition: [Order] The **order** of a group G is its cardinality denoted ord(G) or |G|. It could be a finite or infinite ordinal. In particular, $|C_n| = n$.

1.2 QUATERNION GROUP

The quaternion group $\mathbb{H}=\{\pm 1,\pm i,\pm j,\pm k\}$ is a group of order 8 with the multiplication operation. It has

Definition: [Subgroup] A **subgroup** of a group G is a subset $H \subseteq G$ such that H is a group.

Definition: [Coset] If G is a group and $H \leq G$, consider sets of the form

$$Hg = \{hg|h \in H\} \tag{4}$$

This is a **right coset** of H.

Theorem: [Partitioning with Cosets] Consider Hg and Hg' for $g.g' \in G$. There are two cases:

- They might be disjoint: $Hg \cap Hg' = \emptyset$.
- ullet They might intersect. Suppose hg=h'g' for some $h,h'\in H$

$$h^{-1}hg = h^{-1}h'g' (5)$$

$$g = h^{-1}h'g' \in Hg' \tag{6}$$

Similarly, $g'\in Hg$. Consider an arbitrary element of $kg\in Hg$ with $k\in H$. Then, $kg=kh^{-1}h'g'\in Hg'$ i.e. $Hg\leq Hg'$. Similarly, $Hg'\leq Hg$. Thus, Hg=Hg'.

The right cosets of H partition G. In particular,

$$G = \bigsqcup Hg_i \tag{7}$$

For fixed g, if hg = h'g for $h, h' \in H$ then $hgg^{-1} = h'gg^{-1}$ so h = h'. So in Hg, every element can be matched with an element of H. So, |Hg| = |H|.

Theorem: [Lagrange] If $|G| < \infty$ and $H \le G$, then $|H| \big| |G|$

Definition: [Index] For $H \leq G$, the **index** of H in G is [G:H] = |G|/|H|.

If |G| = 13, the only subgroups or G are $\{e\}, G$.

If $G=\mathbb{Z}$ and $H=2\mathbb{Z}$ (even numbers). Then H+0=H is one coset, and H+1= the odd integers is another coset. So, $\mathbb{Z}=(2\mathbb{Z})\sqcup(2\mathbb{Z}+1)$.

Same for Left Cosets Interaction of left and right cosets?

Consider the triangle group with rotations e, ρ, ρ^2 and reflections $\sigma_A, \sigma_B, \sigma_C$ Consider the subgroup $H = \{e, \sigma_A\}$.

$$He = \{e, \sigma_A\} \tag{8}$$

$$H\rho = \{\rho, \sigma_B\} \tag{9}$$

$$H\rho^2 = \{\rho^2, \sigma_C\} \tag{10}$$

$$eH = \{e, \sigma_A\} \tag{11}$$

$$\rho H = \{\rho, \sigma_C\} \tag{12}$$

$$\rho^2 H = \{\rho^2, \sigma_B\} \tag{13}$$

Note that the left and right cosets are different. They are the same if the group is commutative.

Definition: [Action] An **action** of a group G on a set X is a map

$$G \times X \to X$$
 (14)

$$(g,x) \mapsto gx \tag{15}$$

such that

$$(gh)x = g(hx) \tag{16}$$

$$ex = x \tag{17}$$

If G is a group, it acts on itself. This is called a "left translation" or "left regular action".

How about the right action $(g,x)\mapsto xg$. The second condition may not be true

$$(gh, x) = xgh (18)$$

$$(g,(hx)) = (g,xh) = xhg \tag{19}$$

which is not true. Instead, let $(g,x) = xg^{-1}$. Then,

$$(gh, x) = x(gh)^{-1} = xh^{-1}g^{-1}$$
(20)

$$(g,(h,x)) = (g,xh^{-1}) = xh^{-1}g^{-1}$$
(21)

This is the definition of the right action.

There is a third action of G on itself by $(g,x)=gxg^{-1}$. This action is called conjugation.

Take the following example: Let G=SO(3) and let $X=S^2$. G acts on X by rotation. Let $H=\left\{\begin{pmatrix}\cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1\end{pmatrix}\right\}$ be the subgroup of rotations that fixes the z-axis.

H also acts on X ??

Definition: [Orbit] If G acts on X, the **orbit** of $x \in X$ is the set $Gx = \{gx | g \in G\}$. i.e. the set of all points x is taken to by elements of G.

The orbits of $H \approx SO(2)$ on the sphere are the lines of latitude (and the north and south poles).

H fixes the north pole, thus every coset gH takes the north pole to a point. Suppose gH and g'H are cosets such that $gHN=g'HN\implies gN=g'N\implies (g')^{-1}gN=N\implies (g')^{-1}g\in H\implies gH...$ so the points ofn the sphere are in 1-1 correspondence with the left cosets of H.

Definition: [Stabilizer] If G acts on X and $x \in X$, the "stabilizer" of x in G is $\{g \in G | gx = x\}$

Definition: [Centralizer] If $A \subset G$, the **centralizer** of A in G is $C_G(A) = \{g \in G | ga = ag \forall a \in A\}$

- If G is abelian, then $C_G(A) = G$ for any A.
- In the triangle group, $C_G(\{\rho\}) = \{e, \rho, \rho^2\}$

Definition: [Center] The **center** of G is $Z(G) = \{g \in G | gg' = g'g \forall g' \in G\} = C_G(G)$

Proposition: For any $A \subset G$, $C_G(A) \leq Z(G)$ (is a subgroup).

Consider the regular n-gon ($n \ge 3$), what are its rigid motion symmetries?

- There are always n rotations by $\frac{2\pi}{n}$ about the origin.
- When n is even, there are n/2 reflections in each pair of edges, and each pair of vertices. When n is odd, there are n reflections in each pair of (edge, vertex). There are always n reflections.
- Write ρ for clockwise rotation by $\frac{2\pi}{n}$. Fix one vertex and let σ be the reflection that fixes that vertex.
- Note that $\rho\sigma = \sigma\rho^{-1}$. To show this, it suffices to find where two of the vertices gets mapped.

Proposition: The symmetries are $e, \rho, \rho^2, \dots, \rho^{n-1}, \sigma, \sigma\rho, \sigma\rho^2, \dots, \sigma\rho^{n-1}$

Definition: [dihedral group] The group of symmetries of the regular n-gon is D_{2n} , the **dihedral group** of order 2n.

Given $H \leq G$ we write G/H as the set of left cosets

$$G/H = \{gH|g \in G\} \tag{22}$$

$$H \setminus G = \{ Hg | g \in G \} \tag{23}$$

Both of these are called " $G \mod H$ ". In general, the two are different.

Now we want to ask, is $H \setminus G$ a group?

- The most naive idea is to reuse multiplication in G, i.e. $Hg \cdot Hg' = Hgg'$, but it only sometimes works.
- This formula means: $hg \cdot h'g' = h''gg'$. For any $h, h' \in H, \exists h''$ s.t. this holds.
- Trick: $hg \cdot h'g' = hgh'eg' = hgh'(g^{-1}g)g' = h(ghg^{-1})gg'$. Now we can ask if $ghg^{-1} \in H$ (for every $h' \in H$)

Definition: [Normal Subgroup] A subgroup $H \leq G$ is **normal** if $ghg^{-1} \in H \forall g \in G, h \in H$, which is abbreviated as $gHg^{-1} = H$. $H \leq G$ means H is a normal subgroup of G

• Notice that if $gHg^{-1} = H$ then gH = Hg. So H is normal, the left and right cosets must be the same.

Definition: [Quotient Group] If $H \subseteq G$, then G/H is called the quotient group.

1.3 Homomorphisms

Definition: [Homomorphism] If G, K are groups, a **homomorphism** is a map $\varphi: G \to K$ such that $\varphi(gg') = \varphi(g)\varphi(g') \, \forall g,g' \in G$.

Observations: IF $\varphi: G \to K$ is a homomorphism and $g \in G$, then

- 1. $\varphi(g) = \varphi(eg) = \varphi(e)\varphi(g)$, so $\varphi(e) = e$ (the identity element of K)
- 2. $e = \varphi(e) = \varphi(gg^{-1}) = \varphi(g)\varphi(g^{-1})$, so $\varphi(g^{-1}) = \varphi(g)^{-1}$

Examples

- $G=\mathbb{Z}$ and $\varphi:\mathbb{Z}\to\mathbb{Z}, \varphi(n)=2n$ is a homomorphism, as $\varphi(n+m)=2(n+m)=2n+2m=\varphi(n)+\varphi(m)$
- $G = \mathbb{Z}, K = \mathbb{R}$ and $\varphi : \mathbb{Z} \to \mathbb{R}, \varphi(n) = n$. This mapping is called an **inclusion** as $Z \subset \mathbb{R}$.
- If G is a group and $g_0 \in G$, then $C_{g_0} : G \to G, g \mapsto g_0 g g_0^{-1}$ is a homomorphism.
- A linear transformation $T: V \to W$ if V, W are vector spaces (the additive group).
- Note that $\varphi: g \mapsto g^{-1}$ is **only** a homomorphism if G is abelian.

Definition: [Kernel/Image] If $\varphi: G \to G'$ is a homomorphism, then the **kernel** of φ is

$$\ker(\varphi) = \{ g \in G | \varphi(g) = e \}. \tag{24}$$

The **image** of φ is

$$\operatorname{im}(\varphi) = \{ \varphi(g) | g \in G \} \subseteq G' \tag{25}$$

Theorem: $\ker(\varphi) \leq G$ and $\operatorname{im}(\varphi) \leq G' \ker(\varphi) \leq G$

Proof. Since
$$\varphi(e) = e$$
, $e \in \ker(\varphi)$, and $e \in \operatorname{im}(\varphi)$. So both are nonempty. Suppose $g, h \in \ker(\varphi)$, $e = \varphi(e) = \varphi(hh^{-1}) = \varphi(h)\varphi(h^{-1}) \dots$

- Suppose $N \subseteq G$ and then define $G \to G/N, g \mapsto Ng$. We claim this is a homomorphism. Proof is simple $\varphi(gg') = Ngg', \ \varphi(g)\varphi(g') = NgNg' = NgN(g^{-1}gg') = N(gNg^{-1})gg' = NNgg' = Ngg'$
- This map is called the (natural) **projection** of G onto G/N. Sometimes written $\Pi_{G/N}$ or $\operatorname{proj}_{G/N}$.
- $\operatorname{im}(\Pi_{G/N}) = G/N$ and $\ker(\Pi_{G/N}) = N$.
- Any homomorphism is related to this one, so this could be considered as the "generic homomorphism".

Definition: [Isomorphism] If $\varphi:G\to H$ is a homomorphism, and $\ker(\varphi)=\{e\}$ then φ is injective. If $\varphi(G)=H$ then φ is surjective. Thinking of G and H as sets, there is an inverse $\varphi^{-1}:H\to G$ such that $\varphi^{-1}\circ\varphi=1_G$ and $\varphi\circ\varphi^{-1}=1_H$. It is easy to check that φ^{-1} is also a homomorphism. In this case, φ is an **isomorphism**

• Suppose we have an injective homomorphism $\varphi: G \to H$ where $\ker(\varphi) = \{e\}$. Then, we can consider $\varphi: G \to \operatorname{im}(\varphi) < H$. Sometimes we say $\varphi: G \to H$ is an **isomorphism into** H, as opposed to an isomorphism **onto** H or between G and H.

Definition: [Automorphism] If G is a group, an **automorphism** of G is an isomorphism $\varphi: G \to G$.

Examples:

1.3 Homomorphisms 1 GROUPS

- If $G = \mathbb{Z}, n \mapsto -n$ is the only automorphism apart from the identity.
- If G is abelian, $q \mapsto q^{-1}$ is an automorphism.
- ullet If F is a field, and G=GL(n,F) then $g\mapsto (g^t)^{-1}$ (transposed inverse) is an automorphism.
- If we fix $g_0 \in G$ then the conjugation $C_{q_0} : G \to G$ where $C_{q_0}(g) = g_0 g g_0^{-1}$ is an automorphism.

Definition: [Automorphism Group] Alt(G) is the **group** of automorphisms of G.

Definition: [Inner/Outer Automorphisms] The **inner automorphisms** of G are

$$\operatorname{Inn}(G) = \{ \varphi \in \operatorname{Alt}(G) | \varphi = C_{q_0} \text{ for some } g_0 \in G \}.$$
 (26)

If an element of Alt(G) that is not inner is **outer**.

- It is easy to show that $Inn(G) \leq Alt(G)$.
- Observe that if G is abelian, then $Inn(G) = {id}$
- In general, $\{id\} \leq Inn(G) \leq Alt(G)$.
- The map

$$G \to \text{Alt}(G)$$
 (27)

$$g \to C_g$$
 (28)

is a homomorphism. Its image is Inn(G) and its kernel is Z_G (the center).

Definition: [Fiber] If p is a projection, then $p^{-1}(x)$ is the **fiber** over x

- If $N \triangleleft G$, the projection $\pi: G \to G/N$ is a homomorphism. The fibers of π is the cosets gN = Ng, and they are all the same size.
- Suppose $\varphi: G \to H$ is a homomorphism, and $N = \ker(\varphi) \subseteq G$. The fibers of φ is the cosets of G/N.
- We have $\varphi:G\to H$ and $\pi:G\to G/N$. Wouldn't it be nice if $G/N\to H$ "induced by φ " were a homomorphism? Well, it is.

Theorem: [(First) Isomorphism] If $\varphi:G\to H$ is a homomorphism, and $N=\ker(\varphi)$, then there is a homomorphism $\bar{\varphi}:G/N\to H$ such that $\bar{\varphi}\circ\pi=\varphi$. Moreover, $\ker(\bar{\varphi})=\{eN\}$, the trivial subgroup of G/N, so $\bar{\varphi}$ is injective. So, $\bar{\varphi}:G/N\to \operatorname{im}(\varphi)$ is an isomorphism.

• This theorem suggests that you can construct an isomorphism from an arbitrary homomorphism. First, φ factors through G/N, then we can include it into H.

$$G \to^{\pi} G/N \to^{\bar{\varphi}} \operatorname{im}(\varphi) \to^{\operatorname{inclusion}} H$$
 (29)

Theorem: [(Third) Isomorphism] $N \subseteq G$ and $H \subseteq G$, then $N \subseteq H \implies N \subseteq G$.

Proof. ????

Theorem:

$$G/H \cong G/N / H/N \tag{30}$$

Proof. Define $\varphi: G \to G/N/H/N$ by

$$\varphi(g) = (gN)H/N \tag{31}$$

We need to show φ is a homomorphism. Let

$$\varphi(gg') = gg'N H/N \tag{32}$$

$$= gNg'NH/N \tag{33}$$

$$= gN H/N \cdot g'N H/N \tag{34}$$

$$=\varphi(g)\varphi(g')\tag{35}$$

(36)

We will then ask what is $\ker(\varphi)$. Suppose $\varphi(g)=H/N$, so $gN\,H/N=H/N$. But g is a representation for gN, so gH/N for this to be in H/N we want $g\in H$ so $\ker(\varphi)=H$. An arbitrary element of G/N/H/N is $gN\,H/N$ for some $g\in G$, so $\operatorname{im}(\varphi)=G/N/H/N$.

• $G = \mathbb{Z}, H = 3\mathbb{Z}, K = 4\mathbb{Z}$. By the second isomorphism theorem, $\mathbb{Z}/3\mathbb{Z} \cong 4\mathbb{Z}/12\mathbb{Z}$, and also $Z/4\mathbb{Z} \cong 3\mathbb{Z}/12\mathbb{Z}$.