

planetmath.org

Math for the people, by the people.

proof of Tychonoff's theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfTychonoffsTheorem}$

Date of creation 2013-03-22 17:25:24 Last modified on 2013-03-22 17:25:24 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 8

Author asteroid (17536)

Entry type Proof

Classification msc 54D30

This is a proof in of nets. Recall the following facts:

- **1** A net $(x_{\alpha})_{\alpha \in \mathcal{A}}$ in $\prod_{i \in I} X_i$ converges to $x \in \prod_{i \in I} X_i$ if and only if each coordinate $(x_{\alpha}^i)_{\alpha \in \mathcal{A}}$ converges to $x^i \in X_i$
- ${f 2}$ A topological space X is compact if and only if every net in X has a convergent subnet.
 - **3 -** Every net has a universal subnet.
- 4 A http://planetmath.org/Ultranetuniversal net $(x_{\alpha})_{\alpha \in \mathcal{A}}$ in a compact space X is convergent. (see this http://planetmath.org/UniversalNetsInCompactSpacesAnd We now prove Tychonoff's theorem.

Proof (Tychonoff's theorem): Let $(x_{\alpha})_{\alpha \in \mathcal{A}}$ be a net in $\prod_{i \in I} X_i$.

Using Lemma 3 we can find a subnet $(y_{\beta})_{\beta \in \mathcal{B}}$ of $(x_{\alpha})_{\alpha \in \mathcal{A}}$.

It is easily seen that each coordinate net $(y_{\beta}^{i})_{\beta \in \mathcal{B}}$ is a net in X_{i} .

Using Lemma 4 we see that each coordinate net converges, because X_i is compact.

Using Lemma 1 we see that the whole net $(y_{\beta})_{\beta \in \mathcal{B}}$ converges in $\prod_{i \in I} X_i$. We conclude that every net in $\prod_{i \in I} X_i$ has a convergent subnet, so, by Lemma 2, $\prod_{i \in I} X_i$ must be compact. \square