1. 代码对应函数

函数 1: 随机生成状态 S。函数 $S = f_1(I, L, W, M, x, \mathcal{H}, \lambda)$ 。

参数 I, L, W, M, x 都是常数; 向量 $\mathcal{H} = (h_1, h_2, ..., h_M)$, 其中 $h_m \in \{1, ..., I\}$; 矩阵 $\lambda = (\lambda_{il})$ 是 $I \times L$ 维矩阵。

函数用于随机生成状态 $S, S = ((n_{il}), (i_1, w_1), \dots, (i_M, w_M))$, 其中 (n_{il}) 是 $I \times L$ 维矩阵,且矩阵中的任意元素取值为 $0, 1, \dots, x$,服从 Possion 分布,即对于 (n_{il}) 中的第 i 行第 l 列的元素 n_{il} 取值为 $j = 0, \dots, x$ 的概率为

$$P_j = \frac{\lambda_{il}^j}{j!} \cdot e^{-\lambda}$$

这样便生成了 (n_{il}) 。

对于 $m = 1, \dots, M$, (i_m, w_m) 中 $i_m \in \{1, 2, \dots, I\}$, 均匀分布,即取到任何一个值的概率为 1/I; $w_m \in \{0, 1, 2, \dots, W\}$, 取值也是均匀分布,1/(W+1)。特别注意: 当 $w_m = W$,则 $i_m = h_m$ 是固定的。

这样给定各参数,就可以随机生成一个状态S。

函数 2: 生成 S 到 \bar{S} 的函数。函数 $\bar{S} = f_2(Z, S, X)$

参数: 给定状态 $S=((n_{il}),(i_1,w_1),\ldots,(i_M,w_M))$, 和常数 Z 和 X。

函数用于生成压缩后的状态 $\bar{S} = ((N)_{zl}, (g_1, \ldots, g_Z), w)$,其中 Z 将 L 切分为 Z 份,每一份有 L/Z 元素,如 L = 15,Z = 4,则 $\mathcal{Z}_1 = \{1, 2, 3, 4\}$, $\mathcal{Z}_2 = \{5, 6, 7, 8\}$, $\mathcal{Z}_3 = \{9, 10, 11, 12\}$, $\mathcal{Z}_4 = \{13, 14, 15\}$ 四份,尽量平均分配,有余数则余数作为一类。

 (N_{zl}) 是 $Z \times L$ 维的矩阵, 如 z=1 中第 l 列的元素为 $N_{1l}=\max\{X,n_{1l}+n_{2l}+\ldots+n_{L/Z,l}\}$,表示在 \mathscr{Z}_1 这一份中的元素之和,以此类推。

令 $e_z=\sum_{m=1}^M\mathbb{I}(i_m\in\mathcal{Z}_z)$ 是在聚类 z 中的数量。并且令 $\bar{M}=\sum_{m=1}^M\mathbb{I}(w_m\neq 0)$,这里 $\mathbb{I}(\cdot)$ 是指示函数,等于括号中的就为 1,否则为 0。

令 g_z 满足:

$$g_z = \begin{cases} 0, & e_z = 0; \\ 1, & e_z < \frac{\bar{M}}{Z}; \\ 2, & e_z \ge \frac{\bar{M}}{Z}. \end{cases}$$
 (1)

最后, 令 $W \leftarrow w_1$ 。

函数 3: 生成 S 到 A 的函数: $A = f_3(S, \mathcal{L}, \mathcal{H}, r_1, (c_1(ij)), c_2)$

参数为 $S = ((n_{il}), (i_1, w_1), \dots, (i_M, w_M))$ 和 $\mathcal{L} = (l_1, \dots, l_M)$,其中 $l_m \in \{1, \dots, L\}$; $\mathcal{H} = (h_1, h_2, \dots, h_M)$; $r_1 = (r_1(0), r_1(1), \dots, r_1(L))$; $(c_1(i,j))$ 是 $I \times I$ 的矩阵, c_2 是常数。

状态生成决策 $A = [(i^1, l^1), \dots, (i^M, l^M)]$ 。其中 $i^m \in \{1, 2, \dots, I\}$, $l^m \in \{0, 1, 2, \dots, L\}$ 。

A 中 (i^m, l^m) 需要满足如下约束条件:

$$(i^m, l^m) = (h_m, 0),$$
 if $w_m = 0,$ (2)

$$(i^m, l^m) \in \{(i, l) | n_{il} > 0, l \ge l_m\} \cup \{(h_m, 0)\}, \quad if \ w_m > 0,$$
 (3)

$$\phi_A(i,l) := \sum_m \mathbb{I}(i^m = i, l^m = l) \le n_{il}, \qquad \forall i, l. \qquad (4)$$

目标函数是:

$$R(S,A) = \max \sum_{m} (r(l^m) - c_1(i_m, i^m)) - c_2 \sum_{i,l} [n_{il} - \phi_A(i, l)],$$
 (5)

这是一个线性规划问题,需要找到最优的决策 A。

函数 4: 生成 S 到 \mathcal{L} 的函数: $\mathcal{L} = f_4(S, \mathcal{L})$

参数 S, \mathcal{L} 以上都有介绍。

输出分类之后的 l,如 $\mathcal{L} = [(l(1), \dots, l(k_1)), (l(k_1+1), \dots, l(k_2)), \dots, (k_n, \dots, L)]$ 的形式类似,其中 k_1, \dots, k_n 是根据 S 的变化而变化的,具体对应如下:

令
$$N_1(l=j) = \sum_{m=1}^{N} \mathbb{I}(l_m=j, w_m \neq 0)$$
, 其中 $j=1, \ldots, L$, 这里 $N(l=j)$

表示 l=j 的 m 的数量。令 $N_2(l=j)=\sum_{k=1}^l (n_{il})_{kj}$,表示矩阵中第 j 列的加和,表示 l=j 的 n 的数量。

这样,我们假设 L=7,则能够列出 $N_1(l=1),\ldots,N_1(l=7)$ 和 $N_2(l=1),\ldots,N_2(l=7)$ 如下表,tag 用于比较每一行的大小,则有 6>5,6+2>2+1, $6+2+3\leq 5+1+6$;遇到小于等于号则终止,将 l=1,2,3 归为一类;接着,2>1, $2+4\leq 1+17$,所以 l=4,5 归为一类;最后一类不论最后一个 tag 是 > 或 \leq ,都归为一类。所以在这个例子中的输出结果为 $\mathcal{L}=[(1,2,3),(4,5),(6,7)]$ 。注意,若 tag 全为 >,则只有一类 $[(1,\ldots,L)]$ 。

表 1: example

l	N_1	tag	N_2
1	6	>	5
2	2	>	1
3	3	\leq	6
4	$\frac{1}{2}$	>	1
5	4	\leq	17
6	5	>	4
7	7	>	3

函数 5: 生成 S 到 $A = [A^1, \ldots, A^n]$ 的函数(这里的 A 和函数 3 中的 A 不一样): $A = f_5(S, \mathcal{L}, N_1, N_2)$.

参数: 这里利用了函数 4 得到的结果 N_1 和 N_2 , 以及 \mathcal{L} 。

函数 3 是对所有的 m 做分配,而这里函数 5 是对在一个 \mathcal{L} 中的每个元组(类)做分配,例如在表 1 中的 l=1,2,3, l=2,4 以及 l=6,7 独立进行分配,分配的方式和函数 3 一致。

每个类的目标函数为:

$$R^{k}(S, A^{k}) = \max \sum_{m \in \mathcal{M}^{k}(S)} \left[r(l^{m}) - c_{1}(i_{m}, i^{m}) \right]$$
$$- c_{2} \sum_{i \in \mathcal{I}, l \in \mathcal{L}^{k}} \left[n_{il} - \sum_{m \in \mathcal{M}^{k}(S)} \mathbb{I}(i^{m} = i, l^{m} = l) \right]. \tag{6}$$

当每个类中的最后一个 tag 是 ≤ 时,则有数学规划满足:

$$(i^m, l^m) = (h_m, 0),$$
 if $w_m = 0,$ (7)

$$(i^m, l^m) \in \{(i, l) | n_{il} > 0, l \ge l_m\},$$
 if $w_m > 0,$ (8)

$$\sum_{m \in \mathcal{M}^k(S)} \mathbb{I}(i^m = i, l^m = l) \le n_{il}, \qquad \forall i \in \mathcal{I}, l \in \mathcal{L}^k, \tag{9}$$

当最后一个 tag 是 > 时,则有数学归纳满足:

$$(i^m, l^m) = (h_m, 0),$$
 if $w_m = 0,$ (10)

$$(i^m, l^m) \in \{(i, l) | n_{il} > 0, l \ge l_m\} \cup \{(h_m, 0)\},$$
 if $w_m > 0$, (11)

$$\sum_{m \in \mathcal{M}^k} \mathbb{I}(i^m = i, l^m = l) = n_{il}, \qquad \forall i \in \mathcal{I}, l \in \mathcal{L}^K.$$
 (12)

以上有三个变量需要解释: A^k , \mathcal{L}^K 和 $\mathcal{M}^k(S)$ 。其中 $A^k = (i^m, l^m)_{m \in \mathcal{M}^k(S)}$, $\mathcal{M}^k(S) = \{m = 1, ..., M \mid l_m \in \mathcal{L}^k, w_m \neq 0\}$ 是在 \mathcal{L} 中类 k 对应的 m。 \mathcal{L}^k 是类 k 对应的 l,如表 1 中 $\mathcal{L}^1 = (1, 2, 3)$; $\mathcal{L}^2 = (4, 5)$, $\mathcal{L}^3 = (6, 7)$ 。

最终对于任意的类 k, 得到 $A^k = (i^m, l^m)_{m \in \mathcal{M}^k(S)}$ 。 $A = [A^1, \ldots, A^n]$,实际上,这个也可以写成和函数 3 的输出一样的形式: $A = [(i^1, l^1), \ldots, (i^M, l^M)]$ 。

函数 6: 函数 5 是输出最优决策,而另一个输出是决策空间 A。记为 $A = f_6(S, \mathcal{L}, N_1, N_2)$ 。

 $\mathcal{A} = [\mathcal{A}^1, \dots, \mathcal{A}^L]$,其中 $\mathcal{A}^m = [(i_1^m, l_1^m), \dots, (i_n^m, l_n^m)]$,表示所有 m = 1 可能的决策,这个决策满足约束条件(7)-(12)。

换句话说函数 f_5 就是在 f_6 的基础上确定了最优的决策。

函数 7: 生成 $\Xi = f_7(T,x)$

T 和 x 是常数, $\Xi = ((\xi_{il})_1, \ldots, (\xi_{il})_T)$ 。任意的 $(\xi_{il})_t$ 是一个 $I \times L$ 的矩阵,矩阵中的任意元素取值为 $0,1,\ldots,x$,服从 Possion 分布,即对于 $(\xi_{il})_t$ 中的第 i 行第 l 列的元素 ξ_{il} 取值为 $j=0,\ldots,x$ 的概率为

$$P_j = \frac{\lambda_{il}^j}{j!} \cdot e^{-\lambda}$$

这样便生成了 (n_{il}) 。

函数 8 (带起始探索的强化学习算法): 生成最优值函数和最优策略: $[S_1, V^1, \pi^1] = f_8(f_1, V^0, \Xi, \pi^0)$ 。

参数介绍: S_1 是由函数 f_1 随机生成的; $V^0 = [V_1^0(S_1), V_2^0, \dots, V_T^0]$,除了 $V_1^0(S_1)$ 是一个常数值,其他的均为向量: $V_t^0 = (V_t^0(\bar{S}))_{\bar{S} \in \bar{S}}$,其中, \bar{S} 是函数 2 中 \bar{S} 的状态空间,即 \bar{S} 所有可能的情况,这里设 V^0 中所有的元素都为 0。令第 0 次迭代的策略 $\pi^0 = [A_1^0, \dots, A_T^0]$,对于 $t = 1, 2, \dots, T$,满足

$$A_t^0 = \underset{A_t \in f_6(S_t)}{\arg \max} [R(S_t, A_t)]$$
 (13)

这里的 $R(S_t, A_t)$ 是(5)中 max 内的部分(简化记为 R_t)。而在 t+1 阶段, $S_{t+1} = S_t + (\xi_{il})_t$ 指的是 S_t 中的 (n_{il}) 加上由函数 7 产生的 $(\xi_{il})_t$ 部分。

以下介绍如何得到 V^1 和 π^1 。令 $G_t = G_{t+1} + R_t$,从 $T, \ldots, 1$ 逆向进行计算,其中 $G_{t+1} = 0$,这样可以计算出所有的 $G_t, t = 1, \ldots, T$ 。更新 V^1

如下:

$$V_t^1(\bar{S}_t) = V_t^0(\bar{S}_t) + \frac{1}{\mathbb{N}(\bar{S}_t)} [G_t - V_t^0(\bar{S}_t)], \tag{14}$$

这里 $V_t^0(\bar{S}_t)$ 表示 V_t^0 这个向量中的第 \bar{S}_t 这个状态的值需要进行更新,更新为 $V_t^1(\bar{S}_t)$,其余向量中的元素不变; $\frac{1}{\mathbb{N}(\bar{S}_t)}$ 表示 \bar{S}_t 这个状态在 t 阶段之前迭代出现的次数,比如这是第一次迭代,肯定都是第一次出现,因此 $\frac{1}{\mathbb{N}(\bar{S}_t)}=1$;随着出现次数的增加, $\frac{1}{\mathbb{N}(\bar{S}_t)}$ 的值越来越小。

更新 $\pi^1 = (A_1^1, \dots, A_T^1)$ 如下,对于任意的阶段 t,有:

$$A_t^1 = \underset{A_t \in f_6(S_t)}{\arg\max} [R(S_t, A_t) + V_{t+1}^1(\overline{S_t + (\xi_{il})_t})]$$
 (15)

这里 $\overline{S_t + (\xi_{il})_t}$ 表示状态 S_t 加上 $(\xi_{il})_t$) 之后形成下阶段状态后再进行状态 压缩(函数 2)。从而我们获得更新后的状态。

函数 9 按照函数 8 进行的规律学习 $[S_1, V^j, \pi^j] = f_8(f_1, V^{j-1}, \Xi, \pi^{j-1})$, 只是将 V^0 变为 V^{j-1} , V^1 变为 V^{j-1} 。 $j = 1, \ldots, J$ 。特别注意:在每次迭代中,第一个状态 S_1 都要重新根据 f_1 获取。

最终在第 J 次迭代后,我们获得 $V^J = [V_1^J(S_1), V_2^J, \dots, V_T^J]$ 。

函数 10 $[V_t, A_t] = f_{10}(S_t)$

给定任意的状态 S_t , 能够得到该状态下的最优值 V_t (一个常数) 和最优策略 A_t (一个分配策略), 满足以下公式:

$$A_{t} = \underset{A_{t} \in f_{6}(S_{t})}{\operatorname{arg} \max} [R(S_{t}, A_{t}) + V_{t+1}^{J} (\overline{S_{t} + (\xi_{il})_{t}})]$$

$$V_{t} = \underset{A_{t} \in f_{6}(S_{t})}{\operatorname{max}} [R(S_{t}, A_{t}) + V_{t+1}^{J} (\overline{S_{t} + (\xi_{il})_{t}})]$$
(16)

基准策略:

函数 11 (随机分配): $v_1 = f_{11}(\Xi, S_t)$

表示给定 $\Xi = ((\xi_{il})_t, \dots, (\xi_{il})_T)$ 和状态 S_t 就能够得到在状态 S_t 下的值 v_1 。

生成的轨迹如下: $S_t, A_t, R_t, (\xi_{il})_t, S_{t+1}, \ldots, S_T, A_T, R_t$ 。在这个轨迹中, A_t 的确定是随机的,只需要 $A_t = (i^m, l^m)$ 满足(2)-(4)中,随机选择一个决策即可。

函数 11 (就近分配): $v_2 = f_{11}(\Xi, S_t)$

生成的轨迹如下: $S_t, A_t, R_t, (\xi_{il})_t, S_{t+1}, \ldots, S_T, A_T, R_t$ 。在这个轨迹中, A_t 的确定是就近的,需要 $A_t = (i^m, l^m)$ 满足(2)-(4)的约束,同时有目标函数:

$$R^{2} = \min \sum_{m=1}^{M} c_{1}(i_{m}, i^{m})$$
(17)

函数 12 (单阶段最优分配): $v_2 = f_{12}(\Xi, S_t)$

生成的轨迹如下: $S_t, A_t, R_t, (\xi_{il})_t, S_{t+1}, \ldots, S_T, A_T, R_t$ 。在这个轨迹中, A_t 的确定是就近的,需要 $A_t = (i^m, l^m)$ 满足(2)-(4)的约束,同时有目标函数(5)。这个是保证每个阶段内是最优的决策。