#### **Egret**

3<sup>rd</sup> Place Winner

**AIAA Undergraduate Team Aircraft Design Competition** 



#### **Multi Disciplinary Training for Engineering Students**

Todd W. Erickson • Darin J. Gaytan • Sina S. Golshany
USC's Advanced Commercial Concepts
University of Southern California

#### **USC's Advanced Commercial Concepts**





- -A team of 10 undergraduate students from various disciplines and college standings
- -Training on various subjects pertaining to aircraft design

#### Requirements

- Reflecting a Boeing 737/ Airbus A320 replacement
- Emphasis on FAR's and Industry Practices

| Parameter                                  | Requirement                             | Egret           |
|--------------------------------------------|-----------------------------------------|-----------------|
| FAR                                        |                                         |                 |
| § 25.810 &<br>§ 25.117<br>Emergency Egress | Emergency door sizing                   | Satisfied       |
| § 25.903<br>Blade Loss                     | 1/20 Rule<br>Angular Blade<br>Clearance | Satisfied       |
| § 25.121<br>Climb Performance              | 1.2%                                    | 1.9%            |
| § 25.111<br>OEI Climb<br>Gradient          | 1.2%                                    | 1.9%            |
| § 25.105<br>Take-Off Climb                 | 2.4%                                    | 2.8%            |
| § 25.335<br>Gust Loading                   | 50 ft./sec. max                         | 50 ft./sec. max |
| § 25.925 Propeller Clearance               | 7 <i>in.</i> above the ground           | Satisfied       |

| Parameter                     | Requirement                              | Egret                              |
|-------------------------------|------------------------------------------|------------------------------------|
| RFP                           |                                          |                                    |
| Take-Off Distance             | 8,200 ft.                                | 7,323 ft.                          |
| Landing Speed                 | < 140 KCAS                               | 138 KCAS                           |
| Cruise Speed                  | Mach 0.8                                 | Mach 0.81                          |
| Max Operating<br>Speed        | Mach 0.83/ 340<br>KCAS                   | Mach 0.83/ 340<br>KCAS             |
| Initial Cruise<br>Altitude    | >35,000 ft.                              | 39,000 ft.                         |
| Max Cruise Altitude           | >41,000 ft.                              | 42,000 ft.                         |
| Max Range                     | 3,500 nm                                 | 3,500 nm.                          |
| Nominal Range                 | 1,200 nm.                                | 1,200 nm.                          |
| Payload Capability            | 37,000 <i>lbs</i> .                      | 37,000 <i>lbs</i> .                |
| Alternative Fuel Capabilities | Compatible                               | HRJ related algae<br>based biofuel |
| Passengers                    | ~175                                     | 174                                |
| Cargo Volume                  | 1,240 ft. <sup>3</sup>                   | 1,410 ft. <sup>3</sup>             |
| Materials                     | Composites 787                           | Carbon laminated composites        |
| Cruise L/D                    | 18.2 +25%(737-800)<br>(used as baseline) | 23.8<br>(18.2 +31 %)               |

#### Technology Level

- Goals:
  - -Reduce Fuel Burn (DOC↓)
  - -Reduce Emissions (DOC↓)
  - -Reduce Noise (Market↑)
- Modern Configuration Concepts:
  - Natural Laminar Flow Wing Planforms
  - Laminar Flow Forebody
- Modern Propulsion:
  - Geared Turbofan Engines
  - Open Fan Engines
- Modern Subsystem Architecture:
  - Bleedless Architecture
  - Fully Electric Architecture
- Achieved: -30 % TSFC, +30% L/D -40% DOC (\$2020)

### **Design Family**



Concepts that could not be analyzed in a preliminary level (e.g. strut braced wings ...) were not considered.

### Performance Sizing

-Roskam's method used to size to RFP & FARs.



#### **Forebody Optimization**



-To Minimize Wave & Pressure Drag, and Increase the extent of NLF, CFD and ESDU methods were adopted in design.

# Integration of Natural Laminar Flow Predicting transition to turbulence



#### Integration of Natural Laminar Flow

Custom Airfoil Design & Optimization



# Integration of Natural Laminar Flow Wing Planform: Trading wave drag for NLF



# Integration of Natural Laminar Flow Numerical Verification using COSMOS CFD



-Favorable Pressure Gradient Maintained, Shock delayed.

#### **Balance & Wing Location**

- -Particularly aft ward wing apex to maintain proper SM.
- -Heavy open fan engines are not very suited for aft-mounting.



## Configuration



#### Inboard Profile/Interior Arrangement



#### **Detailed Drag Analysis**

-ESDU Methods are used to verify aerodynamic performance



### Propulsion

- Cycle analysis and preliminary engine configuration using GasTurb
- -3-spool open fan core was developed and optimized using GasTurb software.







Propulsion

- Bleedless system architecture trade-offs:
- Substantial TSFC improvement observed for a small core high BPR engine.
- Bleedless architecture was chosen



#### Propulsion: Engine Performance

- GasTurb was utilized
- Nox Intensity Index selected as a measure of environmental impact



## Propulsion



#### Noise

- Critical In case of an open fan engines.
- Numerical methods were developed per *Hanson* & ESDU items.
- Blade row interaction noise is determined to be the major source of open fan noise.
- Front rotor disengagement can cause substantial noise reduction
- 13 dB cumulative reduction has been observed from ICAO –Ch. 4.



#### **Blade Loss**

- Critical In case of an open fan engines
- Appropriate clearances are maintained per FAR §25.903



### **Materials Selection**



#### Conclusion

- Design contest provide great motivation for learning and application of engineering to real world problems in an academic setting.
- Future challenging rivalries in commercial aerospace will demand more capable, flexible and better trained engineers.
- Improving contests, advertisements and increasing the awards (FYI Contest) may be the most effective way to rapidly adopt such changes.
- Industry involvement in school curriculum development may be the solution for the long term.

## Thank You!



#### Additional Slide – Structural Isometric



## Additional Slides – Folding Wings



#### **Blade Loss**

- Physics based modeling to study the blade loss dynamics
- Clearance values are confirmed analytically

$$\Omega = \arctan\left(\frac{m_b}{P_2 D_p} \ln\left(\frac{P_2 v_{0,plane}}{P_1 v_{0,prop}} \left(e^{\frac{P_1 D_p}{m_b}} - 1\right) + 1\right) - \frac{m_b v_{0,plane}}{P_1 D_p v_{0,prop}} \left(e^{\frac{P_1 D_p}{m_b}} - 1\right)\right)$$



#### Additional Slides – Ground Operations



## Additional Slides – Flap Sizing



## Additional Slides – Drag Rise



## Additional Slides – Tire Spray

