Instructions and codes for "Non-rigid registration for two-photon imaging using triangulation and piecewise affine transformation" Feng Su¹*, Yonglu Tian²*

¹Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

²Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China.

Summary

Triangulation and piecewise affine transformation (TPAT) registration method was developed and tested on MATLAB R2019b in a PC with Intel Core i7-7800X CPU and 32G RAM. The source code is available at https://github.com/SuFeng-SF/Triangulation-and-piecewise-affine-transformation.

The rest of this document is organized as follows: section of "TPAT toolbox" describes the files in this toolbox; section of "Graphical User Interface" describes the example to register images by TPAT GUI; section of "Image registration results" describes the results of image registration; and section of "Image stack registration" describes the example to register image stacks.

^{*}These are co-first authors.

[#]Correspondence to: Yonglu Tian, yonglutian@pku.edu.cn

1 TPAT toolbox

1.1 File description

■ Benchmark data
■ image stack registration demo
■ FeaMatch_SF_V2.m
■ FeatureIntraDistM_SF_V3.m
■ FFT_Trans_SF_V1.m
⑤ ImReg_Triangle.fig
■ ImReg_Triangle.m
■ ImRegTformtriEsti_SF_V1.m
⑥ Instructions for TPAT toolbox.pdf
■ main.m

README.md

TPAT-overview-1.jpg

Fig. 1 Folders or files in TPAT toolbox

Table 1 Description for Folders or files in TPAT toolbox

Folder or file	Description
Benchmark data	Benchmark test dataset for image registration
image stack registration demo	Demo for image stack registration
FeaMatch_SF_V2.m	Function of feature matching
FeatureIntraDistM_SF_V3.m	Calculate distance between features
FFT_Trans_SF_V1.m	Function of 2D FFT
ImReg_Triangle.fig	GUIDE file
ImReg_Triangle.m	GUIDE file
ImRegTformtriEsti_SF_V1.m	Function of estimating transformation matrix
Instructions for TPAT toolbox.pdf	TPAT instruction file
README.md	Introduction file in GitHub
main.m	Main function to implement TPAT toolbox
TPAT-overview-1.jpg	Summary image of TPAT toolbox

1.2 Run

Run the file "main.m" to implement TPAT toolbox.

2 Graphical User Interface

2.1 Overview of TPAT toolbox

Fig. 2 Illustration of GUI

2.2 Function of buttons

Table 2 Function of buttons

Button	Description
Static	Import the reference image.
Moving	Import the deformed target image.
Auto	Calculate the pairing features automatically
Clear	Clear all the pairing features.
ADD	Add feature point pair manually.
Delete	Delete feature point pair manually.
Register	Register the two image using the chosen features.
Cancel	Cancel the image registration.
Load	Load the registered results (*.mat file).
Save	Save the registered results as *.mat file.
Slider	Drag the slider to switch the images.

3 Image registration results

Reference image: 0_BaseImage.tif; target image: 001.tif.

3.1 Auto-TPAT

Fig. 3 Automatically recognized pairing feature points

3.2 Semi-auto-TPAT

On the basis of automatically recognized pairing feature points, delete the incorrect pairing feature points or add new pairing feature points manually.

Fig. 4 Semi-automatically recognized pairing feature points

3.3 Registration results

Registration results files: 001_RegtriEsti.mat, 001_RegtriEsti.tif.

Fig. 5 False-color fusion plot of two images before registration

Fig. 6 False-color fusion plot of two images after registration

4 Image stack registration

Locate to the folder of "image stack registration demo".

Run the file "demo_ApplyToTiff.m" to implement image stack registration.

3#-0d
3#-10d
3#-0d.tif
3#-10d.tif

1 3#-10d_RegtriEsti.mat 3#-10d_RegtriEsti.tif

demo_ApplyToTiff.m

Fig. 7 Folders or files in the folder of "image stack registration demo"

Table 3 Description for Folders or files in the folder of "image stack registration demo"

Folder or file	Description
3#-0d	Image stack for mouse 3# in day 0
3#-10d	Image stack for mouse 3# in day 10
3#-0d.tif	Reference image of day0 (average time-series projection)
3#-10d.tif	Reference image of day 10 (average time-series projection)
3#-10d_RegtriEsti.mat	Accomplished registration results.
3#-10d_RegtriEsti.tif	Accomplished registration results.
demo_ApplyToTiff.m	Main function to run.

Image stack registration results file: Substack (1-100)_Reg.tif.