Guía práctica para elegir los motores de mi robot

Javier Baliñas Santos 12 de Mayo de 2018

Feria de micro robótica e innovación. STEAM Granada

¿Qué vamos a ver?

- 1. ¿Dónde coloco los motores en mi robot?
 - 1.1. Centro de gravedad y transferencia de masa
 - 1.2. Momento de inercia
- 2. ¿Influye el peso del robot en el agarre al suelo?
- 3. ¿De cuánta potencia deberían ser los motores?
- 4. ¿Cómo elegir el motor de la potencia necesaria?
- 5. ¿Cómo elegir la reductora del motor?

 Cuando el robot no está acelerando/frenando, toda la masa está sobre las ruedas

- Centro de gravedad alto
- Transferencia de masa lejos de las ruedas
- Si no hay peso sobre las ruedas, no hay adherencia al suelo :-(

- Centro de gravedad bajo
- Motores finos o ligeros permiten tener un CG bajo
- Más masa sobre las ruedas, mayor agarre para acelerar
- La fuerza resultante actúa
 a través del CG

- Transferencia de masa en una curva de radio r a una velocidad v
- Con un CG alto, mayor probabilidad de derrapar o volcar en las curvas
- Intentar mantener el CG del robot lo más bajo posible
- Intentar hacer el robot lo más ancho posible

1.2. Momento de inercia

• El momento de Inercia (I) es la resistencia que presenta un cuerpo a ser acelerado en rotación.

1.2. Momento de inercia

- Para un par M dado (motor), cuando el momento de inercia es grande, la aceleración en rotación se reduce → El robot gira más despacio
- Ley equivalente a F=ma en rotación:

Par = I * α , siendo α la aceleración angular

- Mantener las partes pesadas como motores o baterías lo más cerca posible del centro del giro del robot
- Si el momento de inercia es grande, se necesitan motores de mayor potencia y por lo tanto baterías más grandes :(

2. ¿Influye el peso del robot en el agarre al suelo?

- Fuerza (Newtons) = masa (kg) x aceleración (m/s²)
- La fuerza para propulsar al robot hacia delante depende de la potencia del motor y del coeficiente de rozamiento u.
- Si el motor es de suficiente potencia → el rozamiento es lo que limita
- Si el motor supera la fuerza de rozamiento, las ruedas derrapan

2. ¿Influye el peso del robot en el agarre al suelo?

Para evitar el derrape:

Fuerza de propulsión < Fuerza de rozamiento 🗸

- \circ $F_R = F_N \times U$
- $F_{P} = mg \times u \rightarrow F_{P} = m (g \times u) \rightarrow F = ma$
- La aceleración límite es = g x u
- Si u=0,7 → el límite de aceleración es aprox. = 7m/s²
- La aceleración no depende de la masa, está limitada por las ruedas.
- La suciedad reduce el rozamiento → limpieza de ruedas y pista

3. ¿De cuánta potencia deberían ser los motores?

3. ¿De cuánta potencia deberían ser los motores?

Fuerza (Newtows) = masa (kg) x aceleración (m/s²)

Fuerza =
$$0.12 \text{kg} \times 7 \text{m/s}^2 = 0.84 \text{N}$$

- Potencia (w) = Fuerza(N) x Velocidad(m/s)
- La potencia máxima se da para una aceleración de 7m/s², cerca de la velocidad máxima de 3m/s

Potencia max. = $0.84N \times 3m/s = 2.52 \text{ w}$

Como tenemos dos motores → Potencia por motor = 1,26w

Datos del fabricante motor DC

Series 1524 SR								
Values at 22°C and nominal voltage	1524 T	003 SR	006 SR	009 SR	012 SR	018 SR	024 SR	
1 Nominal voltage	Un	3	6	9	12	18	24	V
2 Terminal resistance	R	1,1	5,1	10,6	19,8	43,9	79,3	Ω
3 Efficiency, max.	η_{max} .	80	80	80	80	80	80	%
A Na land speed		10 600	0.500	10 000	0.000	0.000	0.000	main-1

Datos del fabricante conjunto motor DC + reductora ("Pololu")

General specifications

Gear ratio:	4.995:1
Free-run speed @ 6V:	6000 rpm
Free-run current @ 6V:	120 mA
Stall current @ 6V:	1600 mA
Stall torque @ 6V:	2 oz·in
Extended motor shaft?:	N
Long-life carbon brushes?:	Υ
Motor type:	1.6A stall @ 6V (HPCB 6V - carbon brush)

¿Potencia?

Potencia (w) = R/4 *
$$(U/R - I_0)^2$$
 [1]

General specifications

Gear ratio:	4,995:1
Free-run speed @ 6V:	6000 rpm
Free-run current @ 6V:	120 mA 🛧
Stall current @ 6V:	1600 mA
Stall torque @ 6V:	2 oz·in

- U (voltios) es la tensión nominal del motor
- I₀ (amperios) es la corriente del motor en vacío
- R (ohmios) es la resistencia del bobinado del motor → R = U/I_H
- I_H (amperios) es la corriente del motor bloqueado

Potencia (w) = R/4 * (U/R - I0)²

$$R = 6V/1,6A = 3,75$$
ohm

Potencia = 3,75ohm/4 * (6V/3,75ohm - 0,12A) → Potencia = 2,05w

- Potencia > Potencia máxima = 1,26w ✓
- Bateria lipo de 2 celdas → U=7,4v → Potencia = 3,22w ✓ ✓

- Una reductora (K_G) permite aumentar el par de salida del motor a costa de disminuir su velocidad
- Par (Nm) = fuerza (Newtows) x distancia (m)
- Par de salida = Par del motor * K_G

$$M_R = M_M * K_G$$

Eje de salida → rueda

Velocidad de salida = Velocidad del motor / K_G

$$W_R = W_M / K_G$$

Eje del motor

Dos condiciones a cumplir por recomendación de los fabricantes [1]:

1. Par necesario en el motor $(M_M) < \frac{1}{2}$ * Par del motor bloqueado (M_H)

$$M_{M} < M_{H} / 2$$

$$M_{R} = M_{M} * K_{G} \rightarrow M_{M} = M_{R} / K_{G}$$

2. Velocidad necesaria en el motor $(w_M) > \frac{1}{2}$ Velocidad del motor en vacío (w_0)

$$\mathbf{w}_{\mathsf{M}} > \mathbf{w}_{\mathsf{0}} / 2$$

$$\mathbf{w}_{\mathsf{R}} = \mathbf{w}_{\mathsf{M}} / \mathbf{K}_{\mathsf{G}} \rightarrow \mathbf{W}_{\mathsf{M}} = \mathbf{W}_{\mathsf{R}} * \mathbf{K}_{\mathsf{G}}$$

Cálculo del par y la velocidad necesaria en la rueda:

- Rueda de diámetro D = 24mm
- Par total necesario M = fuerza x radio de la rueda

$$M = 0.84N \times 12mm = 10.08mNm$$

- El par necesario en la rueda → M_R = 5,04mNm
- La circunferencia de la rueda = Pi x Diametro de rueda = 0,0754m
- Velocidad = 3m/s, las revoluciones del motor w_R = Velocidad / Circunferencia

$$W_R = 3m/s / 0.0754m = 39.8rps \rightarrow W_R = 2387rpm$$

Por lo tanto, **en la rueda** necesitamos un par de **5,04mNm** a una velocidad de **2387rpm.** Pasando a través de la reductora **en el motor** necesitamos un par y una velocidad:

$$M_M = M_R / K_G = 5,04mNm / K_G$$

$$W_{M} = W_{R} * K_{G} = 2387 rpm * K_{G}$$

Datos del fabricante motor DC

Series 1524 SR Values at 22°C and nominal voltage	1524 T	003 SR	006 SR
1 Nominal voltage	Un	3	6
2 Terminal resistance	R	1,1	5,1
3 Efficiency, max.	n_{max}	80	80
4 No-load speed	n _o	10 600	9 500
5 No-load current typ, (with shaft of 15 mm	In In	0.03	0.013
6 Stall torque	Мн	6,95	6,98
/ Friction torque	IVI R	0,08	0,08
		2 5 7 7	4 500

Datos del fabricante conjunto motor DC + reductora ("Pololu")

General specifications		K _G (cte) es el factor de
Gear ratio:	4.995:1	reducción
Free-run speed @ 6V:	6000 rpm	W _R (rpm) es la velocidad en
Free-run current @ 6V:	120 mA	vacío a la salida de la reductora
Stall current @ 6V:	1600 mA	• M _{HR} (Nm) es el par a la salida de
Stall torque @ 6V:	2 oz·in	la reductora con el motor bloqueado

- $W_0 = W_R * K_G = 30000rpm$
- $M_H = M_{HR} / K_G = 2,82mNm$

Reductora 5:1

$$\xi M_{\rm M} < M_{\rm H} / 2$$
?

$$M_{M} = M_{R} / K_{G} = 5,04 \text{mNm} / 5 = 1 \text{mNm}$$

$$M_{H}/2 = 1,41 \text{mNM}$$

$$\frac{1}{2} W_{M} > W_{0} / 2 ?$$

$$W_{M} = W_{R} * K_{G} = 2387 rpm * 5 = 11937 rpm$$

$$w_0 / 2 = 30000 \text{rpm} / 2 = 15000 \text{rpm}$$

Reductora 10:1

$$M_{M} = M_{R} / K_{G} = 5,04 \text{mNm} / 10 = 0,5 \text{mNm}$$

$$M_{H}/2 = 1,41 \text{mNM}$$

$$\dot{v}_{M} > w_{0} / 2 ?$$

$$W_M = W_R * K_G = 2387 rpm * 10 = 23870 rpm$$

$$w_0 / 2 = 30000 \text{rpm} / 2 = 15000 \text{rpm}$$

Referencias y más información

Referencias:

- 1. Technical info 2014. Faulhaber.
- 2. <u>uMouse lecture-Mar17</u>. Ng Beng Kiat. Taiwan 2009
- 3. <u>Datasheet motor 1524 Faulhaber</u>
- 4. <u>Página web motores Pololu</u>

Más información:

- Mi blog: <u>balitronics.wordpress.com</u>
- Mi TFC: <u>github.com/supernudo/tfc_ie_eurobot</u>
- Página FB Puma Pride: <u>FB/pumaprideteam</u>
- Página web Eurobotics Engineering: <u>arc-robots.org</u>
- GitHub: Puma Pride, Eurobotics Engineering, Supernudo, Resaj, JavierlH
- Twitter: @supernudo, @rugidodepuma, @JavierIH

GRACIAS