Lab 6 - Funções

~ .			
()r	מוו	tı\/	UC.
ΟL	ᇧᆫ	uν	os:

☐ Compreender o uso de funções, parâmetros, retornos

Exercício 1 – Divisível ou não?

Escreva uma função que receba dois números e retorne verdadeiro (True) ou falso (False) indicando se o primeiro número é divisível pelo segundo. O programa principal deve imprimir "DIVISÍVEL" ou "nop" dependendo do retorno da função. O programa deve prosseguir a verificação até que o usuário digite 0 para o segundo número.

Entrada	4 2 11 5 12 0
Saída correta	DIVISIVEL nop

Exercício 2 – Qual quadrante?

Escreva uma função que receba como parâmetro o ângulo que uma linha faz com o eixo positivo X e determina e retorna o quadrante em que essa linha reside. A determinação do quadrante é dada através da seguinte tabela:

Ângulo com o eixo positivo X	Quadrante
Entre 0 e 90 graus	1
Entre 90 e 180 graus	2
Entre 180 e 270 graus	3

Entre 270 e 360 graus	4
-----------------------	---

Se o ângulo for exatamente 0, 90, 180, ou 270 graus, a linha correspondente não reside em nenhum quadrante, mas fica em cima de um eixo. Para esta situação, sua função deve retornar 5 para eixo horizontal e 6 para eixo vertical. Um ângulo fora do intervalo entre 0 e 360 deve resultar no retorno do valor –1. A função principal deve imprimir o número do quadrante, "eixo vertical" ou "eixo horizontal", ou ainda "not an angle, man!" dependendo do valor retornado pela função.

Entrada	36	5
Saída correta	no	t an angle, man!
Entra	da	90
Saída corre	eta	eixo vertical

Exercício 3 – N-ésimo número de Fibonacci

Faça uma função que dado um número n, retorne o n-ésimo número de Fibonacci. O número de fibonacci é dado por $N_0=0$, $N_1=1$, $N_i=N_{i-1}+N_{i-2}$. O programa deve imprimir o resultado e prosseguir enquanto N>0.

Entrada	1
	4
	13
	-1
Saída correta	1
Jaida Correta	3

Exercício 4 – Soma dos pares do intervalo

Escreva um programa que contenha uma função que receba dois valores inteiros n1 e n2, e retorne a soma de todos os valores pares entre n1 e n2 (inclusive ambos, se for o caso). A função principal deve imprimir o resultado obtido e prosseguir enquanto n1 < n2.

Entrada	2
	3
	7
	3
Saída correta	12
Saida correta	1

Exercício 5 – Somando algarismos de inteiros

Escreva um programa que contenha um procedimento que recebe como parâmetro um número inteiro, calcule e retorne a soma de todos os algarismos deste número. O programa deve imprimir o resultado e prosseguir enquanto o número informado pelo usuário for diferente de zero.

Entrada	25 625 3125
Saída correta	7
	13
	11

Exercício 6 – Ordenando números

Escreva um programa que receba 3 números inteiros e os retorne em ordem crescente – sem usar a função *sort*. A função principal deve imprimir o resultado na tela em uma única linha.

Entrada	13 4 19
Saída correta	4 13 19

Exercício 7 – Classificando triângulos

Escreva um programa que receba 3 números reais, correspondentes aos comprimentos de três segmentos, e chame uma função que receba estes valores como parâmetros.

Esta função deve retornar "não é um triângulo", caso os valores dos segmentos informados não constituam um triângulo. Caso constituam um triângulo, chame outra função que retorne a classificação angular do triângulo, que pode ser: "acutangulo", "retângulo" ou "obtusangulo". A função principal deve imprimir o valor retornado e prosseguir enquanto os 3 valores informados forem positivos.

Entrada	3
	2
	5
	5
	3
	4
	-1
	-2
	-3
Saída correta	not a triangle
	retangulo
	3

Exercício 8 – Cálculo de Fatorial

Crie uma função que receba um número inteiro não negativo **n** e retorne o seu fatorial (**n!**). O fatorial de um número é o produto de todos os inteiros de 1 até o próprio número (5!=5×4×3×2×1). Lembre-se que o fatorial de 0 é 1 (0!=1). O programa principal deve continuar pedindo números e imprimindo seus fatoriais até que um número negativo seja inserido.

Entrada	5
	0
	7
	-1
Saída correta	120
	1
	5040
	(programa encerra)

Exercício 9 – Verificador de Número Primo

Desenvolva uma função que receba um número inteiro como parâmetro e retorne **True** se o número for primo e **False** caso contrário. Um número primo é aquele que é divisível apenas por 1 e por ele mesmo. O programa principal deve ler um número, chamar a função e exibir uma mensagem indicando se o número é primo ou não. O programa deve parar quando o usuário digitar 0.

Entrada	7
	10
	29
	0
Saída correta	é primo
	não é primo
	é primo
	(programa encerra)

Exercício 10 – Potenciação

Faça uma função que receba dois números inteiros como parâmetros: a **base** e o **expoente**. A função deve calcular e retornar o resultado da base elevada ao expoente (sem usar o operador de potência ** ou a função **pow()**). O programa principal deve ler a base e o expoente, chamar a função e imprimir o resultado. O processo se repete até que o valor **0** seja digitado para a **base**.

Entrada	28
	3 4
	5 0
	0 10

Saída correta 256 81

1

(programa encerra)