IN THE CLAIMS

The status of each claim is listed below.

Claims 1-81: Canceled.

82. (Currently Amended) A compound represented by formula (I):

$$\begin{array}{c|c}
X & 6 & N & 2 & NHR^1 \\
X & 6 & N & 2 & NHR^2 & R^4
\end{array}$$

$$\begin{array}{c|c}
X & 1 & R^3 \\
Y & NHR^2 & R^4
\end{array}$$
(I)

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

$$\begin{split} & \text{ each } R^2 \text{ is, independently, -R}^7, -(CH_2)_m - OR}^8, -(CH_2)_m - NR}^7 R^{10}, \\ & -(CH_2)_n (CHOR^8) (CHOR^8)_n - CH_2 OR}^8, -(CH_2 CH_2 O)_m - R}^8, \\ & -(CH_2 CH_2 O)_m - CH_2 CH_2 NR}^7 R^{10}, -(CH_2)_n - C(=O)NR}^7 R^{10}, -(CH_2)_n - Z_g - R}^7, -(CH_2)_m - NR}^{10} - CH_2 (CHOR^8) (CHOR^8)_n - CH_2 OR}^8, -(CH_2)_n - CO_2 R}^7, \text{ or } \end{split}$$

$$C(CH_2)_n$$
 R^7 ;

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl, phenyl-lower alkyl, (halophenyl)-lower alkyl,

lower-(alkylphenylalkyl), lower alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyllower alkyl, with the proviso that at least one of \mathbb{R}^3 and \mathbb{R}^4 is a group represented by formula (A):

$$---(C(R^{L})_{2})_{\overline{0}}-x--(C(R^{L})_{2})_{\overline{p}}$$

$$Q = Q$$

$$Q$$

$$Q$$

$$Q$$

$$(R^{6})_{3}$$

$$(A)$$

wherein

each R^L is, independently, -R⁷, -(CH₂)_n-OR⁸, -O-(CH₂)_m-OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

 $-O-(CH_2CH_2O)_m-R^8$, $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$

-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8,\\$

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose, or

$$-O \leftarrow CH_2$$
 R^7
 R^7
, or $-(CH_2)_n$
 R^7

each x is, independently, O, NR⁷, C=O, CHOH, C=N-R⁶, or represents a single bond;

each o is, independently, an integer from 0 to 10;

each p is, independently, an integer from 0 to 10;

with the proviso that (a) the sum of o and p in each contiguous chain is from 1 to 10 when x is O, NR^7 , C=O, or C=N-R⁶ or (b) that the sum of o and p in each contiguous chain is from 4 to 10 when x represents a single bond; each R⁶ is, independently, -R⁷, -OH, -OR¹¹, -N(R⁷)₂, -(CH₂)_m-OR⁸,

 $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,

 $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-(CH₂CH₂O)_m-R⁸, -O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$.

 $-O-(CH_2)_m-C(=O)NR^7R^{10}$, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2$$
 $\longrightarrow O$
 $\longrightarrow R^7$
 $\longrightarrow O$
 $\longrightarrow R^7$
 $\longrightarrow O$
 $\longrightarrow R^7$
 $\longrightarrow O$
 $\longrightarrow R^7$

wherein when two R^6 are $-OR^{11}$ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R⁷ is, independently, hydrogen or lower alkyl;

each R^8 is, independently, hydrogen, lower alkyl, -C(=O)- R^{11} , glucuronide, 2-tetrahydropyranyl, or

$$O$$
 OR^{11}
 $OCOR^{11}$
 $OCOR^{11}$
 $OCOR^{11}$

each R^9 is, independently, $-CO_2R^7$, $-CON(R^7)_2$, $-SO_2CH_3$, or $-C(=O)R^7$; each R^{10} is, independently, -H, $-SO_2CH_3$, $-CO_2R^7$, $-C(=O)NR^7R^9$,

 $-C(=O)R^7$, or $-CH_2-(CHOH)_n-CH_2OH$:

each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰:

each R¹¹ is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, $C-R^5$; $C-R^6$; or a nitrogen atom, wherein one Q in a ring is a nitrogen atom;

or a pharmaceutically acceptable salt thereof, and

inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

- 83. (Previously Presented) The compound of Claim 82, wherein Y is -NH₂.
- 84. (Previously Presented) The compound of Claim 83, wherein R² is hydrogen.
- 85. (Previously Presented) The compound of Claim 84, wherein R¹ is hydrogen.

- 86. (Previously Presented) The compound of Claim 85, wherein X is chlorine.
- 87. (Previously Presented) The compound of Claim 86, wherein R³ is hydrogen.
- 88. (Previously Presented) The compound of Claim 87, wherein each R^L is hydrogen.
 - 89. (Previously Presented) The compound of Claim 88, wherein o is 4.
 - 90. (Previously Presented) The compound of Claim 89, wherein p is 0.
- 91. (Previously Presented) The compound of Claim 90, wherein x represents a single bond.
- 92. (Previously Presented) The compound of Claim 91, wherein each R⁶ is hydrogen.
 - 93. (Previously Presented) The compound of Claim 82, wherein

X is halogen;

Y is
$$-N(R^7)_2$$
;

R¹ is hydrogen or C₁-C₃ alkyl; and

$$R^2$$
 is $-R^7$, $-(CH_2)_m$ -OR⁷, or $-(CH_2)_n$ -CO₂R⁷.

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl;

94. (Previously Presented) The compound of Claim 93, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

 R^2 is hydrogen or C_1 - C_3 alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

95. (Previously Presented) The compound of Claim 94, wherein Y is -NH₂.

96. (Previously Presented) The compound of Claim 95, wherein

R⁴ is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

- 97. (Previously Presented) The compound of Claim 96, wherein x is O, NR^7 , C=O, CHOH, or C=N-R⁶.
- 98. (Previously Presented) The compound of Claim 96, wherein x represents a single bond.
- 99. (Previously Presented) The compound of Claim 82, wherein x is O, NR⁷, C=O, CHOH, or C=N-R⁶.

- 100. (Previously Presented) The compound of Claim 82, wherein x represents a single bond.
- 101. (Previously Presented) The compound of Claim 82, wherein each R⁶ is hydrogen.
- 102. (Previously Presented) The compound of Claim 82, wherein at most two R⁶ are other than hydrogen as defined in Claim 82.
- 103. (Previously Presented) The compound of Claim 82, wherein one R⁶ is other than hydrogen as defined in Claim 82.
 - 104. (Previously Presented) The compound of Claim 82, wherein one R⁶ is -OH.
- 105. (Previously Presented) The compound of Claim 82, wherein each R^L is hydrogen.
- 106. (Previously Presented) The compound of Claim 82, wherein at most two R^L are other than hydrogen as defined in Claim 82.
- 107. (Previously Presented) The compound of Claim 82, wherein one R^L is other than hydrogen as defined in Claim 82.
- 108. (Previously Presented) The compound of Claim 82, wherein x represents a single bond and the sum of o and p is 4 to 6.

109. (Previously Presented) The compound of Claim 82, which is represented by the formula

- 110. (Previously Presented) The compound of Claim 109, which is in the form of a pharmaceutically acceptable salt.
- 111. (Previously Presented) The compound of Claim 110, which is in the form of a hydrochloride salt.
- 112. (Previously Presented) The compound of Claim 82, which is in the form of a pharmaceutically acceptable salt.
- 113. (Previously Presented) The compound of Claim 82, which is in the form of a hydrochloride salt.
- 114. (Previously Presented) The compound of Claim 82, which is in the form of a mesylate salt.
- 115. (Previously Presented) A pharmaceutical composition, comprising the compound of Claim 82 and a pharmaceutically acceptable carrier.

116. (Currently Amended) A composition, comprising: the compound of Claim 82; and a P2Y2 receptor agonist inhibitor.

117. (Previously Presented) A composition, comprising: the compound of Claim 82; and a bronchodilator.

118. (Previously Presented) A method of blocking sodium channels, comprising contacting sodium channels with an effective amount of the compound of Claim 82.