Présentation

- Les ACL (Access Control Lists) permettent de filtrer des packets suivant des critères définis par l'utilisateur
- Sur des packets IP, il est ainsi possible de filtrer les paquets entrants ou sortant d'un routeur en fonction
 - De l'IP source
 - De l'IP destination
 - **>** ...
- ►II existe 2 types d'ACL
 - Standard : uniquement sur les IP sources
 - Etendue : sur quasiment tous les champs des en-têtes IP, TCP et UDP

Schéma du principe

Fonctionnement et configuration

La logique des ACL

- ll est possible de résumer le fonctionnement des ACL de la façon suivante :
 - Le pâquet est vérifié par rapport au 1er critère défini
 - S'il vérifie le critère, l'action définie est appliquée
 - Sinon le paquet est comparé successivement par rapport aux ACL suivants
 - S'il ne satisfait aucun critère, l'action deny est appliquée
- Les critères sont définit sur les informations contenues dans les en-têtes IP, TCP ou UDP
- Des masques ont été défini pour pouvoir identifier une ou plusieurs adresses IP en une seule définition
 - Ce masque défini la portion de l'adresse IP qui doit être examinée
 - 0.0.255.255 signifie que seuls les 2 premiers octets doivent être examinés
 - deny 10.1.3.0 avec 0.0.0.255 : refus de toutes les IP commencant par 10.1.3

Standard IP Access List Configuration

- Fonctionnement des ACL
 - Test des règles les unes après les autres
 - Si aucune règle n'est applicable, rejet du paquet
- Définition d'une règle
 - access-list number [deny|permit] source [source-wildcard]
 - Number compris entre 1 et 99 ou entre 1300 et 1999
 - **access-list** number remark test
- Activation d'une ACL sur une interface
 - ip access-group [number | name [in | out]]
- Visualiser les ACL
 - **show access-lists** [*number* | *name*] : toutes les ACL quelque soit l'interface
 - show ip access-lists [number | name] : les ACL uniquement liés au protocole IP
 Master 3 Professionnal STIC Informatique

Exemple (1/3)

```
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
ip access-group 1 out
```

```
access-list 1 remark stop tous les paquets d'IP source 172.16.3.10 access-list 1 deny 172.16.3.10 0.0.0.0 access-list 1 permit 0.0.0.0 255.255.255.255
```

- access-list 1 deny 172.16.3.10 0.0.0.0
 - Refuse les paquets d'IP source 172.16.3.10
 - Le masque (également appelé wildcard mask) signifie ici que tous les bits de l'adresse IP sont significatifs
- access-list 1 permit 0.0.0.0 255.255.255.255
 - Tous les paquets IP sont autorisés
 - Le masque 255.255.255.255 signifie qu'aucun bit n'est significatif

Exemple (2/3)

```
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
ip access-group 1 out
access-list 1 remark stop tous les paquets d'IP source 172.16.3.10
access-list 1 deny host 172.16.3.10
```

- Une notation améliorée est possible pour remplacer
 - le masque 255.255.255.255 qui désigne une machine
 - Utilisation du terme host

access-list 1 permit any

- 0.0.0.0 avec le wildcard masque à 255.255.255 qui désigne tout le monde
 - ▶ Utilisation du terme any

Exemple (3/3)

```
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
ip access-group 1 out

interface Ethernet1
ip address 172.16.2.1 255.255.255.0
ip access-group 2 in

access-list 1 remark Stoppe tous les paquets d'IP source 172.16.3.10
access-list 1 deny host 172.16.3.10
access-list 2 remark Autorise que les trames d'IP source 172.16.3.0/24
access-list 2 permit 172.16.3.0 0.0.0.255
```

Les extended ACL

- Les extended ACL permettent filtrer des paquets en fonction
 - de l'adresse de destination IP
 - ▶ Du type de protocole (TCP, UDP, ICMP, IGRP, IGMP, ...)
 - Port source
 - Port destination
 - **>** ..

La syntaxe et exemple

- ▶ access-list number { deny | permit } protocol source sourcewildcard destination dest.-wildcard
 - number : compris entre 100 et 199 ou 2000 et 2699
- access-list 101 deny ip any host 10.1.1.1
 - ▶ Refus des paquets IP à destination de la machine 10.1.1.1 et provenant de n'importe quelle source
- access-list 101 deny tcp any gt 1023 host 10.1.1.1 eq 23
 - Refus de paquet TCP provenant d'un port > 1023 et à destiantion du port 23 de la machine d'IP 10.1.1.1
- access-list 101 deny tcp any host 10.1.1.1 eq http
 - Refus des paquets TCP à destination du port 80 de la machine d'IP 10.1.1.1

Les ACL nommés

- Une ACL numéroté peut être composé de nombreuses régles. La seule façon de la modifier et de faire
 - no access-list number
 - Puis de la redéfinir
- Avec les ACL nommées, il est possible de supprimer qu'une seule ligne au lieu de toute l'ACL
- Sa définition se fait de la manière suivante
 - Router(config)# ip access-list extended bart
 - Router(config-ext-nacl)# deny tcp host 10.1.1.2 eq www any
 - Router(config-ext-nacl)# deny ip 10.1.1.0 0.0.0.255 any
 - Router(config-ext-nacl)# permit ip any any
- Pour supprimer une des lignes, il suffit de refaire un
 - ip access-list extended bart
 - Puis un no deny ip 10.1.1.0 0.0.0.255 any

L'accès au Telnet avec une ACL

- Pour utiliser une ACL dans le but de controler l'accès au telnet (donc au vty)
 - ightharpoonup access-class $number\ \{$ in | out $\}$

```
line vty 0 4
login
password Cisco
access-class 3 in
!
!
access-list 3 permit 10.1.1.0 0.0.0.255
```

En production

Quelques conseils

- La création, la mise à jour, le debuggage nécessitent beaucoup de temps et de rigeur dans la syntaxe
- Il est donc conseillé
 - De créer les ACL à l'aide d'un éditeur de texte et de faire un copier/coller dans la configuration du routeur
 - Placer les extended ACL au plus près de la source du paquet que possible pour le détruire le plus vite possible
 - Placer les ACL standard au plus près de la destination sinon, vous risquez de détruire un paquet trop top
 - Rappel : les ACL standard ne regardent que l'IP source
 - Placer la règle la plus spécifique en premier
 - Avant de faire le moindre changement sur une ACL, désactiver sur l'interface concerné celle-ci (no ip access-group)