

LAB(1)

Time allowed: 3 Hrs.

29/05/2018

- 1st Year
- This is a closed book exam.
- The exam has 5 questions in three pages, answer all of them.
- Good Luck!

QUESTION (1) [20 points]:

- a) State the superposition theorem.
- b) List the steps in applying the theorem.
- c) Describe how you can verify it experimentally.

QUESTION (2) [20 points]:

The two voltmeters in Figure 1 indicate the voltages shown.

- a) Determine if there are any opens or shorts in the circuit and, if so, where they are located.
- b) If the voltage source V_s has an internal resistance R_s =100 Ω , determine its effect on the meters readings.
- c) If the only fault in Figure 1 is that R₂ is shorted, what will voltmeters read?

QUESTION (3) [20 points]:

- a) Design and show how to verify experimentally a half wave rectifier circuit.
- b) Briefly discuss the ripple effect on the output from a filtered rectifier circuit.
- c) What is the effect of using the Zener diode in rectifier circuits?

QUESTION (4) [20 points]: Choose the correct answers:

i.	Power dissipation in ideal inductor is				
a)	Maximum	b) Minimum	c) Zero	d) A finite value	
ii.	Which quantity should be measured by the voltmeter?				
a)	Current	b) Voltage	c) Power	d) Speed	
iii.	RMS value is defined based on which of the following?				
a)	Heating effect	b) Charge transfer	c) Current	d) Voltage	
iv.	For steady state current, inductor acts as				
a)	Short circuit	b) Open circuit	c)Voltage source	d) Current source	
٧.	If the supply frequency of a purely inductive circuit is reduced by half, then				
	the circuit current is				
a)	zero	b) remain same.	c) doubled	d) reduced by half	
vi.	Resistor stores the energy in the form of				
a)	a) Magnetic field b) Electrical field			d	
c)	Both A and B		d) None of the a	above	
vii.	ii. An electrolytic capacitor can be used for				
a)	DC only.	b) AC only.	c) both A and B.	d) none of the above	
∕iii.	. The internal conductance of an ideal current source is				
a)	infinite	b) zero	c) the internal	d) the external	
			resistance.	conductance.	
ix.	What kind of filter can be used to select a signal of one particular radio				
	station?				
a)	lowpass	b) highpass	c) <mark>bandpass</mark>	d) bandstop	
X.	The total capacitance of two 40 mF series-connected capacitors in paralle				
	with a 4 mF capacitor is:				
a)	3.8	b) 5 mF	c) 24 mF	d) 44 mF	

QUESTION (5) [20 points]:

In Figure 2, assume that R = 1 k Ω , V1= 4 V, V2= 6 V and the peak value of Vin is 10 V.

- a) Draw the waveform of signals appeared at point A.
- b) If the magnitudes of V1 and V2 had been reversed, what would the output waveform look like? Would the peaks of the output have changed?
- c) What would the output waveform look like if D2 and V2 had been omitted?
- d) What are the applications of such type of circuits?

Figure 2

With my best wishes

H.S. Mogahed