LA BP	
Thursday, Novem	ber 12, 2020 02:42 PM
	LA 1
	Transfer Orbits: Lambert Arcs
	Transfer Offices. Lambert Arcs
	Two approaches to mission planning:
	(a) Given the transfer orbit → initial and final positions are specified; relate to the time of flight
	(b) Given the initial (departure) and final (target) points → determine the orbit that passes through the points
	Transfer Orbit Design
	(special class of boundary value problem)
	1. Geometrical relationships
	Conic paths connecting two points that are fixed in space
	with focus at the attracting center
	2. Analytical Relationships
	3. Lambert's Theorem

Analytical Relationships

Objective: expression for p; e

$$r = \frac{p}{1 + e \cos \theta^*}$$

$$e\cos\theta_{1}^{*} = \frac{p}{r_{1}} - 1 \qquad \theta_{2}^{*}$$

$$e\cos\theta_{2}^{*} = e\cos\left(\theta_{1}^{*} + \varphi\right) = \frac{p}{r_{2}} - 1$$

Also known:

$$a\,e^2=a-p \qquad \text{ cosine law}$$

$$c^2=r_1^2+r_2^2-2r_1\,r_2\cos\phi$$

Given the following trig identity

$$\cos^2(\theta_1^* + \ell) - 2\cos(\theta_1^* + \ell)\cos\theta_1^*\cos\ell + \cos^2\theta_1^* - \sin^2\ell = 0$$

Sub above 5 expressions into trig identity and produce a quadratic in p only unknown: 0, ?

$$ac^{2} \frac{p^{2}}{p^{2}} + r_{1} r_{2} (1 - \cos \phi) \Big[-2 a(r_{1} + r_{2}) + r_{1} r_{2} (1 + \cos \phi) \Big] \frac{p}{p} \\ + a r_{1}^{2} r_{2}^{2} (-1 + \cos \phi)^{2} = 0$$

$$\text{modify to more convenient form}$$

Quadratic for p

$$c^{4} \frac{p^{2}}{2} - 4a(s - r_{1})(s - r_{2}) \left[\sin^{2}\left(\frac{\alpha + \beta}{2}\right) + \sin^{2}\left(\frac{\alpha - \beta}{2}\right) \right] c^{2} \frac{p}{p}$$
$$+ 4a^{2}(s - r_{1})^{2}(s - r_{2})^{2} \sin^{2}\left(\frac{\alpha + \beta}{2}\right) \sin^{2}\left(\frac{\alpha - \beta}{2}\right) = 0$$

Roots

$$p = \frac{4a(s-r_1)(s-r_2)}{c^2} \sin^2\left(\frac{q+\beta}{2}\right)$$

If know a, produces two possible paths; Each path possesses different values of p and e

$$a = a_{\min}$$

$$2a_{\min} = s \implies \alpha = \pi$$

$$P = \frac{4a(s-r_1)(s-r_2)}{c^2} \sin^2\left(\frac{\pi \pm \beta}{2}\right) \Rightarrow P$$

Return to page LA 2:

IF transfer is hyperbolic arc

$$a' = 2 \operatorname{arcsinh} \int \frac{s}{2|\alpha|}$$

$$\beta' = 2 \operatorname{arcsinh} \int \frac{s-c}{2|\alpha|}$$

$$s-c-2a=2|a|\cosh^2\left(\frac{\beta'}{2}\right)$$

$$s=2|a|\sinh^2\left(\frac{\alpha'}{2}\right)$$

$$s=2|a|\sinh^2\left(\frac{\alpha'}{2}\right)$$

LA 5

C

