GEOMETRÍA I. DGIIM

ESPACIO DUAL

Relación de problemas

- 1. Sea V un espacio vectorial sobre K finitamente generado. Demostrar que si $v \in V$ y $v \neq 0$ entonces existe $\varphi \in V^*$ tal que $\varphi(v) \neq 0$. ¿Es φ única en estas condiciones?
- 2. Calcular la base dual de la base B del espacio V en estos casos:
 - a) $B = \{(1,0,0), (1,1,0), (1,1,1)\}, V = \mathbb{R}^3.$
 - b) $B = \{(i,0), (0,i)\}, V = \mathbb{C}^2.$
 - c) $B = \{1, 1+x, 1+x^2, 1+x^3\}, V = \mathbb{R}_3[x].$
- 3. En el espacio $\mathbb{R}_2[x]$ de los polinomios con coeficientes reales y grado menor o igual a 2 se considera la aplicación $\varphi : \mathbb{R}_2[x] \to \mathbb{R}$ dada por:

$$\varphi(p(x)) = \int_{-1}^{1} p(x) dx.$$

Se pide lo siguiente:

- *a*) Demostrar que $\varphi \in (\mathbb{R}_2[x])^*$. Calcular las coordenadas de φ en la base dual de $\{1, x, x^2\}$.
- *b*) Construir una base \overline{B} de $(\mathbb{R}_2[x])^*$ a partir de φ .
- c) Obtener una base B de $\mathbb{R}_2[x]$ de forma que $B^* = \overline{B}$.
- 4. Sea V un espacio vectorial sobre K finitamente generado. Dados dos subespacios vectoriales U y W de V, demostrar que:

$$\operatorname{an}(U+W) = \operatorname{an}(U) \cap \operatorname{an}(W), \qquad \operatorname{an}(U \cap W) = \operatorname{an}(U) + \operatorname{an}(W).$$

Deducir que si $V = U \oplus W$ entonces $V^* = \operatorname{an}(U) \oplus \operatorname{an}(W)$.

5. Sea V un espacio vectorial sobre K finitamente generado. Sabemos que si $\varphi \in V^*$ y $\varphi \neq \varphi_0$, entonces $\text{Nuc}(\varphi)$ es un hiperplano de V. Demostrar que, dado un hiperplano H de V, existe $\varphi \in V^*$ con $\text{Nuc}(\varphi) = H$. ¿Qué relación hay entre dos formas lineales φ y ψ sobre V tales que $\text{Nuc}(\varphi) = \text{Nuc}(\psi) = H$?

- 6. En cada uno de los siguentes casos, obtener unas ecuaciones implícitas para el subespacio U del espacio vectorial V:
 - a) $U = L((1,-1,1),(2,1,0),(5,-2,3)), V = \mathbb{R}^3.$
 - b) $U = L((-1,1,1,1),(1,-1,1,1)), V = \mathbb{R}^4.$
 - c) $U = L((1,-1,0),(0,1,-1)) \cap L((0,1,0)).$
 - d) U = L((1,-1,1,0)) + L((1,0,0,0),(0,1,0,0),(2,0,1,0)).
- 7. Se considera la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ dada por:

$$f(1,1,0) = (1,-1), \quad f(1,0,1) = (3,0), \quad f(0,1,1) = (-2,1).$$

Calcular la matriz de f^t con respecto a las bases duales de las bases usuales de \mathbb{R}^2 y de \mathbb{R}^3 , respectivamente. Calcular bases de Nuc (f^t) e Im (f^t) .

- 8. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas:
 - a) Toda forma lineal $\varphi \neq \varphi_0$ sobre un espacio vectorial V es un epimorfismo.
 - b) Existe un subespacio de \mathbb{R}^{12} que está definido por 7 ecuaciones implícitas independientes y está generado por 4 vectores.
 - c) Para cada $v \in \mathbb{R}^3$ con $v \neq 0$, existe un epimorfismo $f : \operatorname{an}(\{v\}) \to \mathbb{R}^3$.
 - *d*) Una aplicación lineal entre dos espacios vectoriales sobre *K* finitamente generados es un isomorfismo si y sólo si también lo es su aplicación traspuesta.