Supplementary Material: Analysis of COVID-19 Vaccination Trends Between 2021 and 2023

1 Overview

Analysis of COVID-19 Vaccination Trends: Distribution and Administration

This document provides supplementary material for the manuscript "Analysis of COVID-19 Vaccination Trends: Distribution and Administration". It includes additional details on the methods used in the analysis, as well as additional results that were not included in the main manuscript.

2 Code and file information

- "Cann-MADA-project.Rproj": Establishes relative file paths for project
- "README.md": Provides brief order of scripts for reproducing and summarizes the folders within the project
- "code" folder: Contains all code for processing, exploratory data analysis, and modeling analysis
 - "processing-code" subfolder:
 - * "processing.qmd": Contains code for processing the raw data into the processed data
 - "eda-code" subfolder:
 - * "eda.qmd": Contains code for exploratory data analysis
 - "analysis-code" subfolder:
 - * "analysis.qmd": Contains code for modeling analysis
- "data" folder:

- "raw-data" subfolder: Contains the raw COVID-19 Vaccine data
- "processed-data" subfolder: Contains the processed data used in the analysis
- "results" folder: Contains all results from the analysis
 - "figures" subfolder: Contains all figures generated from eda and analysis
 - "tables" subfolder: Contains all tables generated from eda and analysis
- "assets" folder:
 - Contains workflow schematic image
 - Contains the CDC U.S. Regions image
 - Contains american journal of epidemiology reference style and vancouver reference style (.csl files)
 - "references" subfolder:
 - * "project-citations.bib": Contains the references used in the manuscript
- "products" folder:
 - "manuscript" subfolder: Contains manuscript.qmd file to create project manuscript
 - \ast "supplement" subfolder: Contains this file and the supplementary figures and tables

3 Reproducing Results

Reproducing this project requires R, RStudio, and Microsoft Word. Files should be run in the following order.

- 1) In the code > processing-code folder: processing.qmd
- 2) In the code > eda-code folder: exploratoryanalysis.qmd
- 3) In the code > analysis-code folder: analysis.Rmd
- 4) In the products > manuscript folder: manuscript.qmd
- 5) In the products > manuscript > supplement folder: Supplementary-Material.qmd

4 Supplementary Results

Table one displays a summary of each variable of the COVID-19 vaccine dataset.

Figure 1: Table One: Summary Statistics of the Vaccination Data

Figure one displays the correlatins between all variables within the COVID-19 vaccine dataset.

Figure 2: Figure One: Overall Correlation Plot of COVID-19 Vaccine Data

Figure two shows the correlations of specifically the distribution and administration variables in the dataset. The correlation between total_administered and total_distributed is 0.99; the correlation between total_admin_janssen and total_dist_janssen is 0.99; the correlation between total_admin_moderna and total_dist_moderna is 0.99; the correlation between total_admin_pfizer and total_dist_pfizer is 0.99; the correlation between total_admin_novavax and total_dist_novavax is 0.86, which is the lowest of all manufacturers; and the correlation between total admin unk and total dist unk is 0.03.

Figure 3: Figure Two: Correlation Plot of Distributed vs. Administrated COVID-19 Vaccine Data

Below, you will several scatterplots. Figure three is an overall scatterplot of the relationship between administered and distributed doses. The points closely follow the diagonal line, indicating a strong relationship between the two variables (confirmed by the correlation coeffecient of 0.99).

Figure 4: Figure Three: Scatterplot of Distributed vs Administered Doses

Figures 4.1, 4.2, 4.3, and 4.2 show the scatterplots of the relationship between administered and distributed doses for each vaccine manufacturer. It appears as though all regions have a strong positive correlation between the number of vaccines distributed and administered. However, Pfizer and Moderna's points still follow the diagonal line the closest.

Figure 5: Figure 4.1: Scatterplot of Distributed vs Administered Moderna Doses

Figure 6: Figure 4.2: Scatterplot of Distributed vs Administered Janssen Doses

Figure 7: Figure 4.3: Scatterplot of Distributed vs Administered Pfizer Doses

Figure 8: Figure 4.4: Scatterplot of Distributed vs Administered Novavax Doses

Figures 5.1, 5.2, 5.3, and 5.4 show the scatterplots of the relationship between administered and distributed doses for each region of the U.S..

Figure 9: Figure 5.1: Scatterplot of Distributed vs Administered Doses in the South

Figure 10: Figure 5.2: Scatterplot of Distributed vs Administered Doses in the Northeast

Figure 11: Figure 5.3: Scatterplot of Distributed vs Administered Doses in the Midwest

Figure 12: Figure 5.4: Scatterplot of Distributed vs Administered Doses in the West

Table two shows the correlations between doses administered and distributed in each region of the U.S.. All four regions have high correlations, however the west is the highest.

Region	cor
Midwest	0.9980132
Northeast	0.9983011
South	0.9987066
West	0.9990827

Table Two: Regional Correlations Between Doses Administered and Distributed

Table three shows the percent rate change in distribution and administration of the COVID-19 vaccine across time in each region of the U.S.. The drops depicted in figures 3 and 4 in the

manuscript can be seen in this table by the large percent drops in doses administered and distributed.

Year	Region	total_distributed	dtotal_administere p ct_	_change_distributed_	_change_administered
2021	Midwest	24555140480	20187443217	NA	NA
2021	Northeast	23150152060	19674659552	NA	NA
2021	South	46149547900	35805677422	NA	NA
2021	West	30421086245	25387091552	NA	NA
2022	Midwest	27431307710	21402228470	11.71310	6.017529
2022	Northeast	26339708355	21361831614	13.77769	8.575356
2022	South	51282910065	38338925179	11.12332	7.074989
2022	West	33682007550	27511629525	10.71928	8.368576
2023	Midwest	3671695345	2491217667	-86.61495	-88.360008
2023	Northeast	3460208875	2467206770	-86.86315	-88.450397
2023	South	6551831030	4312412188	-87.22414	-88.751870
2023	West	4408413035	3209234256	-86.91167	-88.334990

Table Three: Percent Rate Change in Distribution and Administration of COVID-19 Vaccine with time in each Region

Table 4.1 and 4.2 show the percent rate change in distribution (4.1) and administration (4.2) of the COVID-19 vaccine across time for each manufacturer. The drops depicted in figures 5 and 6 in the manuscript can be seen in this table by the large percent drops in doses administered and distributed.

Manufacturer	Year	Total Doses Distributed	Rate of Change
Janssen	2021	6175408550	-
Janssen	2022	5881340100	-4.76%
Janssen	2023	591262800	-89.95%
Moderna	2021	48667627880	-
Moderna	2022	51287641510	5.38%
Moderna	2023	6284176640	-87.75%
Novavax	2021	0	-
Novavax	2022	17008700	$\mathrm{Inf}\%$
Novavax	2023	22520600	32.41%
Pfizer	2021	66166755725	-
Pfizer	2022	81547873670	23.25%
Pfizer	2023	10313691355	-87.35%

Table 4.1: Percent Rate Change in Distribution of COVID-19 Vaccine with time for each Manufacturer

Manufacturer	Year	Total Doses Administered	Rate of Change
Janssen	2021	3580220161	-
Janssen	2022	3529276616	-1.42%
Janssen	2023	351643618	-90.04%
Moderna	2021	40522029628	-
Moderna	2022	40942762461	1.04%
Moderna	2023	4527384067	-88.94%
Novavax	2021	0	-
Novavax	2022	753416	$\mathrm{Inf}\%$
Novavax	2023	1485876	97.22%
Pfizer	2021	56854386805	-
Pfizer	2022	64035402590	12.63%
Pfizer	2023	7194506084	-88.76%

Table 4.2: Percent Rate Change in Administration of COVID-19 Vaccine with time for each Manufacturer

Table 5 shows the RMSE value of the null model (with no predictors) from the modeling analysis.

.metric	.estimator	.estimate
rmse	standard	0.1693047
rsq	standard	NA

Table 5: Null Model RMSE