

## planetmath.org

Math for the people, by the people.

## equivalent grammars

Canonical name EquivalentGrammars
Date of creation 2013-03-22 17:37:17
Last modified on 2013-03-22 17:37:17

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 91F20
Classification msc 68Q42
Classification msc 68Q45
Classification msc 03D05

Two formal grammars  $G_1 = (\Sigma_1, N_1, P_1, \sigma_1)$  and  $G_2 = (\Sigma_2, N_2, P_2, \sigma_2)$  are said to be *equivalent* if they generate the same formal languages:

$$L(G_1) = L(G_2).$$

When two grammars  $G_1$  and  $G_2$  are equivalent, we write  $G_1 \cong G_2$ .

For example, the language  $\{a^nb^{2n} \mid n \text{ is a non-negative integer}\}$  over  $T = \{a, b, c\}$  can be generated by a grammar  $G_1$  with three non-terminals  $x, y, \sigma$ , and the following productions:

$$P_1 = \{ \sigma \to \lambda, \sigma \to x\sigma y, x \to a, y \to b^2 \}.$$

Alternatively, it can be generated by a simpler grammar  $G_2$  with just the starting symbol:

$$P_2 = \{ \sigma \to \lambda, \sigma \to a\sigma b^2 \}.$$

This shows that  $G_1 \cong G_2$ .

An alternative way of writing a grammar G is  $(T, N, P, \sigma)$ , where  $T = \Sigma - N$  is the set of terminals of G. Suppose  $G_1 = (T_1, N_1, P_1, \sigma_1)$  and  $G_2 = (T_2, N_2, P_2, \sigma_2)$  are two grammars. Below are some basic properties of equivalence of grammars:

- 1. Suppose  $G_1 \cong G_2$ . If  $T_1 \cap T_2 = \emptyset$ , then  $L(G_1) = \emptyset$ .
- 2. Let  $G = (T, N, P, \sigma)$  be a grammar. Then the grammar  $G' = (T, N', P, \sigma)$  where  $N \subseteq N'$  is equivalent to G.
- 3. If  $(T_1, N_1, P_1, \sigma_1) \cong (T_1, N_1, P_2, \sigma_2)$ , then  $(T, N, P_1, \sigma_1) \cong (T, N, P_2, \sigma_2)$ , where  $T = T_1 \cup T_2$  and  $N = N_1 \cup N_2$ .
- 4. If we fix an alphabet  $\Sigma$ , then  $\cong$  is an equivalence relation on grammars over  $\Sigma$ .

So far, the properties have all been focused on the underlying alphabets. More interesting properties on equivalent grammars center on productions. Suppose  $G = (\Sigma, N, P, \sigma)$  is a grammar.

1. A production is said to be trivial if it has the form  $v \to v$ . Then the grammar G' obtained by adding trivial productions to P is equivalent to G.

- 2. If  $u \in L(G)$ , then adding the production  $\sigma \to u$  to P produces a grammar equivalent to G.
- 3. Call a production a *filler* if it has the form  $\lambda \to v$ . Replacing a filler  $\lambda \to v$  by productions  $a \to va$  and  $a \to av$  using all symbols  $a \in \Sigma$  gives us a grammar that is equivalent to G.
- 4. G is equivalent to a grammar G' without any fillers. This can be done by replacing each filler using the productions mentioned in the previous section. Finally, if  $\lambda \in L(G)$ , we add the production  $\sigma \to \lambda$  to P if it were not already in P.
- 5. Let S(P) be the set of all symbols that occur in the productions in P (in either antecedents or consequents). If  $a \in S(P)$ , then G' obtained by replacing every production  $u \to v \in P$  with production  $u[a/b] \to v[a/b]$  and  $b \to a$ , with a symbol  $X \notin \Sigma$ , is equivalent to G. Here, u[a/b] means that we replace each occurrence of a in u with X.
- 6. G is equivalent to a grammar G', all of whose productions have antecedents in  $N^+$  (non-empty words over N).

**Remark**. In fact, if we let

- 1.  $X \to XY$ ,
- 2.  $XY \rightarrow ZT$ ,
- 3.  $X \to \lambda$ ,
- $4. X \rightarrow a$

be four types of productions, then it can be shown that

- any formal grammar is equivalent to a grammar all of whose productions are in any of the four forms above
- any context-sensitive grammar is equivalent to a grammar all of whose productions are in any of forms 1, 2, or 4, and
- and any context-free grammar is equivalent to a grammar all of whose productions are in any of forms 1, 3, or 4.

## References

[1] A. Salomaa Computation and Automata, Encyclopedia of Mathematics and Its Applications, Vol. 25. Cambridge (1985).