Il Livello Fisico nel Modello OSI

1 Introduzione al Livello Fisico

Il livello fisico è il primo strato del modello ISO/OSI e si occupa della trasmissione effettiva dei dati attraverso un mezzo fisico, come cavi, fibra ottica o onde radio. Questo livello stabilisce le caratteristiche hardware e i meccanismi di trasmissione necessari per trasferire i dati tra i dispositivi sulla rete, ma non si occupa del contenuto dei dati stessi. Il suo obiettivo principale è quello di assicurare che i bit possano essere correttamente trasmessi da un dispositivo all'altro senza errori.

1.1 Obiettivi principali

Il livello fisico si occupa di vari aspetti chiave della trasmissione di dati:

- Conversione dei dati in segnali fisici: I dati, che sono in formato binario (sequenze di 0 e 1), vengono convertiti in segnali fisici, che possono essere elettrici, ottici o elettromagnetici, a seconda del mezzo trasmissivo utilizzato.
- Trasmissione e ricezione dei bit: Il livello fisico si assicura che i bit vengano trasmessi correttamente attraverso il mezzo e che il ricevente possa interpretare correttamente questi bit.
- Definizione delle caratteristiche dei mezzi trasmissivi: Stabilisce le specifiche fisiche dei mezzi trasmissivi, come il tipo di cablaggio (rame, fibra ottica) o la modalità di trasmissione wireless (onde radio, microonde).
- Sincronizzazione tra mittente e destinatario: Garantisce che il trasmettitore e il ricevitore siano sincronizzati nel tempo per evitare errori nella lettura dei bit.

2 Funzioni del Livello Fisico

Il livello fisico ha una serie di funzioni vitali per garantire che i dati possano essere trasmessi correttamente.

2.1 Rappresentazione dei Dati

Il primo compito del livello fisico è la **conversione dei dati** in segnali fisici che possono viaggiare attraverso il mezzo trasmissivo. A seconda del tipo di mezzo, i dati possono essere convertiti in segnali elettrici, ottici o elettromagnetici.

• Segnali Analogici: I segnali analogici sono onde continue che possono variare in ampiezza e frequenza. Questi segnali sono comunemente usati nelle trasmissioni audio e video. Un esempio classico è la trasmissione televisiva analogica.

• Segnali Digitali: I segnali digitali, utilizzati nelle moderne comunicazioni di rete, sono discreti e rappresentano i dati sotto forma di sequenze di bit (0 e 1). Ogni bit è rappresentato da un cambiamento o una variazione in un segnale fisico.

2.2 Codifica

Per trasmettere i dati, è necessario convertirli in segnali adatti alla trasmissione attraverso il mezzo fisico. La **codifica** è il processo mediante il quale i bit vengono trasformati in segnali. Esistono diversi metodi di codifica, tra i più comuni troviamo:

- NRZ (Non-Return to Zero): In questa codifica, i bit 0 e 1 sono rappresentati da due livelli di tensione distinti, senza un ritorno al livello zero durante la trasmissione.
- Manchester: La codifica Manchester combina la sincronizzazione del segnale con la codifica dei dati. Ogni bit è rappresentato da una transizione al mezzo del periodo del bit.
- Codifica Differenziale: In questa tecnica, i bit sono rappresentati da cambiamenti di stato del segnale, piuttosto che da livelli di tensione fissi. Questo tipo di codifica è utile per ridurre gli errori dovuti a disturbi.

2.3 Sincronizzazione

La **sincronizzazione** è essenziale per garantire che il ricevitore interpreti correttamente i bit trasmessi. Senza sincronizzazione, il ricevitore non saprebbe quando ogni bit inizia o finisce, il che porterebbe a errori di interpretazione. Esistono due principali modalità di sincronizzazione:

- Sincronizzazione basata su clock: In questo caso, il trasmettitore e il ricevitore condividono un orologio sincronizzato, il che significa che entrambi i dispositivi trasmettono e ricevono i dati a intervalli temporali definiti.
- Sincronizzazione incorporata nella codifica: Alcuni schemi di codifica, come la codifica Manchester, incorporano la sincronizzazione direttamente nei segnali, eliminando la necessità di un clock separato.

2.4 Controllo dell'Accesso al Mezzo

Sebbene il livello fisico non gestisca direttamente il controllo dell'accesso al mezzo, questo è un aspetto cruciale per i mezzi trasmissivi condivisi, come Ethernet e le reti wireless. Il controllo dell'accesso assicura che più dispositivi possano utilizzare lo stesso mezzo senza interferire tra loro. Il livello fisico supporta i meccanismi di accesso attraverso specifici standard hardware.

2.5 Caratteristiche del Mezzo Trasmissivo

Il livello fisico definisce anche le **caratteristiche fisiche** del mezzo trasmissivo, che comprendono la velocità di trasmissione e le specifiche fisiche del cavo o della connessione. La velocità di trasmissione (bit rate) è un parametro importante che determina la quantità di dati che possono essere trasmessi in un determinato intervallo di tempo.

3 Mezzi Trasmissivi del Livello Fisico

I mezzi trasmissivi si dividono in due categorie principali: **guidati** e **non guidati**. I mezzi guidati trasmettono segnali attraverso un percorso fisico, mentre i mezzi non guidati utilizzano l'aria o altre forme di radiazione elettromagnetica per trasmettere i segnali.

3.1 Mezzi Guidati

- Cavi Coassiali: Composto da un conduttore centrale circondato da un isolante, uno schermo metallico e una guaina esterna, è resistente alle interferenze e usato per reti locali e sistemi televisivi via cavo.
- Cavi a Doppino Intrecciato: Due fili di rame intrecciati insieme. Esistono due varianti:
 - UTP (Unshielded Twisted Pair): Non schermato, economico, ma vulnerabile alle interferenze.
 - STP (Shielded Twisted Pair): Schermato contro interferenze elettromagnetiche, usato in ambienti più soggetti a disturbi.
- Fibra Ottica: Usa la luce per trasmettere segnali, con una capacità di trasmissione molto alta e una bassa perdita di segnale. Si distingue in:
 - Monomodale: Per lunghe distanze, con trasmissione di un singolo raggio.
 - Multimodale: Per distanze più corte, con trasmissione di più raggi simultanei.

3.2 Mezzi Non Guidati

- Onde Radio: Utilizzate per trasmissioni wireless come Wi-Fi, Bluetooth e reti mobili. Le onde radio possono coprire ampie aree, ma sono suscettibili a interferenze.
- Microonde: Utilizzate per comunicazioni punto a punto, come nelle trasmissioni satellitari, che richiedono una linea visiva diretta tra i dispositivi.
- Infrarossi: Usati per comunicazioni a breve distanza, come nelle telecomunicazioni tra dispositivi elettronici (es. telecomandi).

4 Parametri Fisici della Trasmissione

4.1 Banda (Bandwidth)

La banda è la capacità del mezzo trasmissivo di supportare segnali a diverse frequenze. Maggiore è la banda, maggiore è la quantità di dati che il mezzo può trasmettere in un determinato intervallo di tempo. La banda viene solitamente espressa in hertz (Hz) per segnali analogici, o in bit per secondo (bps) per segnali digitali.

4.2 Latenza

La latenza è il ritardo temporale che intercorre tra l'invio e la ricezione di un segnale. Essa dipende dalla distanza, dalla tecnologia di trasmissione e dai dispositivi coinvolti.

4.3 Attenuazione

L'attenuazione si riferisce alla perdita di potenza del segnale durante la trasmissione attraverso il mezzo. Questa perdita è una funzione della distanza e delle proprietà fisiche del mezzo. Le soluzioni per ridurre l'attenuazione includono l'uso di amplificatori e rigeneratori, che riafforzano o ricostruiscono i segnali.

4.4 Rumore

Il **rumore** è un disturbo che altera i segnali trasmessi. Esistono diversi tipi di rumore:

- Rumore termico: Generato dal movimento casuale delle particelle nei conduttori.
- Interferenza elettromagnetica: Disturbi causati da altre sorgenti elettromagnetiche.
- Diafonia (Crosstalk): Interferenza tra cavi che trasmettono segnali.

4.5 Velocità di Trasmissione

La **velocità di trasmissione** è la quantità di dati che possono essere trasmessi per unità di tempo. La velocità può essere espressa come:

- Bit Rate: Numero di bit trasmessi al secondo.
- Baud Rate: Numero di segnali trasmessi al secondo (un segnale può rappresentare più bit).