Answers for Homework 1

Textbook 2.

Both (a) and (b) are monoid and **identity** of (a) is b and of (b) is a.

Association and enclosure should be proved.

Textbook 8.

It is a *commutative* monoid with **identity** 1.

Textbook 14.

It is a *commutative* monoid with **identity** 2.

Textbook 16.

It is a *commutative* semigroup with no **identity**.

Let $S_k = \{x | x \in \mathbb{Z}, x \ge k\}, k \ge 0$, show that $\langle S_k, + \rangle$ is a semigroup.

Clearly S_k is **not empty** since there are always some integers larger than a given integer k.

Moreover, + is a valid binary operation on S_k (closed & unique image entry; prove by yourself).

Finally, since addition is associative for all integers, for any elements a, b

and c in S_k , (a+b)+c=a+(b+c) and operation + is associative on S_k .

Show that $\langle P(S), \bigoplus \rangle$ is a monoid. $(A \bigoplus B = (A \cup B) - (A \cap B))$.

Prove that $\langle P(S), \oplus \rangle$ is a semigroup by yourself (the same steps as exercise above).

For any subset \mathbf{A} of \mathbf{S} , $\mathbf{A} \oplus \mathbf{\emptyset} = (\mathbf{A} \cup \mathbf{\emptyset}) - (\mathbf{A} \cap \mathbf{\emptyset}) = \mathbf{A}$ and $\mathbf{\emptyset} \oplus \mathbf{A} = (\mathbf{\emptyset} \cup \mathbf{A})$ $-(\mathbf{\emptyset} \cap \mathbf{A})$. Hence, $\mathbf{\emptyset}$ is the **identity** of $P(\mathbf{S})$ and $P(\mathbf{S})$, $\mathbf{\emptyset} > \mathbf{A}$ is a monoid.

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x)=5^x$, show that f is a homomorphism from $<\mathbb{R}$, +> to $<\mathbb{R}$, $\cdot>$.

For any real numbers a and b, $f(a+b) = 5^{a+b} = 5^a \cdot 5^b = f(a) \cdot f(b)$. Thus, f is a homomorphism from $<\mathbb{R}$, +> to $<\mathbb{R}$, >>.

Let $H=\{x|x=dn\}$, where d is a non-zero certain integer, $n \in \mathbb{Z}$. Show that $<\mathbb{Z}$, +> and $<\mathbb{H}$, +> are isomorphic.

Let f be a function from \mathbb{Z} to \mathbb{H} , which is defined as f(n) = dn.

For any element x in \mathbb{H} , there must be some integer n in \mathbb{Z} such that x = dn and therefore, f is onto.

For any integers $x \neq y$, $f(x) - f(y) = d(x-y) \neq 0$ because neither d nor x-y

equals to 0, suggesting that $f(x) \neq f(y)$ and f is injective.

For any integers x and y, f(x+y) = d(x+y) = dx + dy = f(x) + f(y). So, f is a homomorphism from $<\mathbb{Z}$, +> to $<\mathbb{H}$, +>.

In conclusion, $\langle \mathbb{Z}, + \rangle$ and $\langle \mathbb{H}, + \rangle$ are isomorphic.