

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/943,780	08/30/2001	Kevin P. Baker	P2548P1C10	2570

28442 7590 06/11/2003

BRINKS HOFER GILSON & LIONE
P.O. BOX 10395
CHICAGO, IL 60610

EXAMINER

HELMS, LARRY RONALD

ART UNIT	PAPER NUMBER
----------	--------------

1642

10

DATE MAILED: 06/11/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	09/943,780	BAKER ET AL.
Examiner	Art Unit	
Larry R. Helms	1642	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on ____.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 22-34 is/are pending in the application.

4a) Of the above claim(s) ____ is/are withdrawn from consideration.

5) Claim(s) ____ is/are allowed.

6) Claim(s) 22-34 is/are rejected.

7) Claim(s) ____ is/are objected to.

8) Claim(s) ____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on ____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11) The proposed drawing correction filed on ____ is: a) approved b) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.

12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. ____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
a) The translation of the foreign language provisional application has been received.

15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413) Paper No(s). ____.
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449) Paper No(s) ____.	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

1. Claims 22-34 are pending and under examination.

Oath/Declaration

2. The oath or declaration is defective. A new oath or declaration in compliance with 37 CFR 1.67(a) identifying this application by application number and filing date is required. See MPEP §§ 602.01 and 602.02.

The oath or declaration is defective because:

- a. Non-initialed and/or non-dated alterations have been made to the oath or declaration. See 37 CFR 1.52(c). The oath or declaration has changes to the address of inventor Dan L. Eaton that are non-initialed and non-dated.

Claim Rejections - 35 USC § 101

3. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

4. Claims 22-34 are rejected under 35 U.S.C. 101 because the claimed invention is not supported by either a substantial asserted utility or a well established utility.

Claims 22-34 are directed to isolated polypeptides that are 80-100% identical to SEQ ID NO:69 or full length or extracellular domain or sequences lacking the signal sequence as well as polypeptide encoded by the full-length of the cDNA deposited under ATCC 209527 and fusion proteins comprising such. The specification discloses the isolation of a nucleic acid, SEQ ID NO:68, which encodes a protein, SEQ ID NO:69

which is disclosed as PRO 357 (see pages 6-7, 13-14, Figure 25-26). The protein is disclosed to have significant homology to insulin-like growth factor (see page 7). Based on the structural similarity, the specification asserts that the newly disclosed protein has the utility of having similar activities as insulin-like growth factor. The specification discloses that the mRNA of SEQ ID NO:68 is elevated in tumor, but the specification does not disclose that the protein of SEQ ID NO:69 is expressed at any increased level.

The increased copy number of DNA does not provide a readily apparent use for the polypeptide, for which there is no information regarding level of expression, activity, or role in cancer. This is underscored by Pennica et al (PNAS 95:14717-14722, 1998) which provides an example where the copy number is amplified but the RNA expression is actually reduced.

The assertion that the disclosed protein has biological activities similar to known insulin-like growth factors is not credible in the absence of supporting evidence, because the relevant literature reports numerous examples of polypeptide families wherein individual members have distinct, and even opposite, biological activities. For example, Tischer et al. (U.S. Patent 5,194,596) establishes that VEGF (a member of the PDGF, or platelet-derived growth factor, family) is mitogenic for vascular endothelial cells but not for vascular smooth muscle cells, which is opposite to the mitogenic activity of naturally occurring PDGF which is mitogenic for vascular smooth muscle cells but not for vascular endothelial cells (column 2, line 46 to column 3, line 2). The differences between PDGF and VEGF are also seen *in vivo*, wherein endothelial-pericyte associations in the eye are disrupted by intraocular administration of PDGF but

accelerated by intraocular administration of VEGF (Benjamin et al., 1998, Development 125:1591-1598; see Abstract and pp. 1594-1596). Vukicevic et al. (1996, PNAS USA 93:9021-9026) disclose that OP-1, a member of the TGF- β family of proteins, has the ability to induce metanephrogenesis, whereas closely related TGF- β family members BMP-2 and TGF- β 1 had no effect on metanephrogenesis under identical conditions (p. 9023, paragraph bridging columns 1-2). See also Massague, who reviews other members of the TGF- β family (1987, Cell 49:437-8, esp. p. 438, column 1, second full paragraph to the end). Similarly, PTH and PTHrP are two structurally closely related proteins which can have opposite effects on bone resorption (Pilbeam et al., 1993, Bone 14:717-720; see p. 717, second paragraph of Introduction). Finally, Kopchick et al. (U.S. Patent 5,350,836) disclose several antagonists of vertebrate growth hormone that differ from naturally occurring growth hormone by a single amino acid (column 2, lines 37-48).

Generally, the art acknowledges that function cannot be predicted based solely on structural similarity to a protein found in the sequence databases. For example, Skolnick et al. (2000, Trends in Biotech. 18:34-39) state that knowing the protein structure by itself is insufficient to annotate a number of functional classes, and is also insufficient for annotating the specific details of protein function (see Box 2, p. 36). Similarly, Bork (2000, Genome Research 10:398-400) states that the error rate of functional annotations in the sequence database is considerable, making it even more difficult to infer correct function from a structural comparison of a new sequence with a sequence database (see especially p. 399). Such concerns are also echoed by Doerks

et al. (1998, Trends in Genetics 14:248-250) who state that (1) functional information is only partially annotated in the database, ignoring multi functionality, resulting in underpredictions of functionality of a new protein and (2) overpredictions of functionality occur because structural similarity often does not necessarily coincide with functional similarity. Smith et al. (1997, Nature Biotechnology 15:1222-1223) remark that there are numerous cases in which proteins having very different functions share structural similarity due to evolution from a common ancestral gene. Brenner (1999, Trends in Genetics 15:132-133) argues that accurate inference of function from homology must be a difficult problem since, assuming there are only about 1000 major gene superfamilies in nature, then most homologs must have different molecular and cellular functions. Bork et al. (1996, Trends in Genetics 12:425-427) add that the software robots that assign functions to new proteins often assign a function to a whole new protein based on structural similarity of a small domain of the new protein to a small domain of a known protein. Such questionable interpretations are written into the sequence database and are then considered facts. Finally, Bowie et al. (1990, Science 247:1306-1310) state that determination of three dimensional structure from primary amino acid sequence, and the subsequent inference of detailed aspects of function from structure is extremely complex and unlikely to be solved in the near future (p. 1306). Thus, the specification fails to support the asserted credible, specific and substantial utility of growth factor activity.

The specification does not support a substantial utility regarding the claimed polypeptides for purposes unrelated to the asserted biological activity. For example, the

specification does not teach an increase in the expressed polypeptide of SEQ ID NO:69. The specification does not disclose a correlation between any specific disorder and an altered level or form of the claimed polypeptides. Also, the specification does not predict whether the claimed polypeptides would be overexpressed or underexpressed in a specific, diseased tissue compared to the healthy tissue control.

The instant application has failed to provide guidance as to how one of skill in the art could use the claimed invention in a way that constitutes a substantial utility. The proposed uses of the claimed invention are simply starting points for further research and investigation into potential practical uses of the claimed polypeptides. "Congress intended that no patent be granted on a chemical compound whose sole 'utility' consists of its potential role as an object of use-testing." *Brenner v. Manson*, 148 USPQ at 696.

Thus, one skill in the art would conclude that absence evidence that the polypeptide is expressed at an elevated level one would conclude that claimed invention is not supported by either a substantial asserted utility or a well established utility.

Claim Rejections - 35 USC § 112

5. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

6. Claims 39-51 are also rejected under 35 U.S.C. 112, first paragraph. Specifically, since the claimed invention is not supported by either a specific asserted utility or a well

established utility for the reasons set forth above, one skilled in the art clearly would not know how to use the claimed invention.

7. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

8. Claims 22-27, 30-31, 33-34 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

a. Claims 22-27, 30-31, 33-34 are indefinite because the protein identified as PRO357 is a soluble protein, and is not disclosed as being expressed on a cell surface. Accordingly, the limitation that the claimed protein comprises an "extracellular domain" (for example see claim 22 parts (c) and (d)) is indefinite, as the art does not recognize soluble proteins as having such domains. Further, if the protein had an extracellular domain, the recitation of "the extracellular domain"..."lacking its associated signal sequence" (claim 22, part (d), for example) is indefinite as a signal sequence is not generally considered to be part of an extracellular domain, as signal sequences are cleaved from said domains in the process of secretion from the cell.

9. Claims 22-26, 33-34 are rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as

to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

The claims are drawn to polypeptides having at least 80%, 85%, 90%, 95% or 99% sequence identity with a particular disclosed sequence. The claims do not require that the polypeptide possess any particular biological activity, nor any particular conserved structure, or other disclosed distinguishing feature. Thus, the claims are drawn to a genus of polypeptides that is defined only by sequence identity.

To provide adequate written description and evidence of possession of a claimed genus, the specification must provide sufficient distinguishing identifying characteristics of the genus. The factors to be considered include disclosure of compete or partial structure, physical and/or chemical properties, functional characteristics, structure/function correlation, methods of making the claimed product, or any combination thereof. In this case, the only factor present in the claim is a partial structure in the form of a recitation of percent identity. There is not even identification of any particular portion of the structure that must be conserved. Accordingly, in the absence of sufficient recitation of distinguishing identifying characteristics, the specification does not provide adequate written description of the claimed genus.

Vas-Cath Inc. v. Mahurkar, 19USPQ2d 1111, clearly states "applicant must convey with reasonable clarity to those skilled in the art that, as of the filing date sought, he or she was in possession of the invention. The invention is, for purposes of the 'written description' inquiry, whatever is now claimed." (See page 1117.) The specification does not "clearly allow persons of ordinary skill in the art to recognize that

[he or she] invented what is claimed." (See *Vas-Cath* at page 1116). As discussed above, the skilled artisan cannot envision the detailed chemical structure of the encompassed genus of polynucleotides, and therefore conception is not achieved until reduction to practice has occurred, regardless of the complexity or simplicity of the method of isolation. Adequate written description requires more than a mere statement that it is part of the invention and reference to a potential method of isolating it. The compound itself is required. See *Fiers v. Revel*, 25 USPQ2d 1601 at 1606 (CAFC 1993) and *Amgen Inc. v. Chugai Pharmaceutical Co. Ltd.*, 18 USPQ2d 1016.

One cannot describe what one has not conceived. See *Fiddes v. Baird*, 30 USPQ2d 1481 at 1483. In *Fiddes*, claims directed to mammalian FGF's were found to be unpatentable due to lack of written description for that broad class. The specification provided only the bovine sequence.

Therefore, only isolated polypeptides comprising the sequence set forth in SEQ ID NO: 69, but not the full breadth of the claim meets the written description provision of 35 U.S.C. §112, first paragraph. Applicant is reminded that *Vas-Cath* makes clear that the written description provision of 35 U.S.C. §112 is severable from its enablement provision (see page 1115).

10. Claims 22-27, 32-34 are rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention.

The specification is objected to under 35 U.S.C. § 112, first paragraph, as failing to provide an adequate written description of the invention and failing to provide an enabling disclosure without complete evidence either that the claimed biological materials are known and readily available to the public or complete evidence of the deposit of the biological materials.

The specification lacks complete deposit information for the deposit of the cell line containing cDNA deposited under ATCC accession No. 209527. It is not clear that the cDNA deposited as ATCC no. 209527 is known and publicly available or can be reproducibly isolated from nature without undue experimentation or is the same as SEQ ID NO:68 or encodes SEQ ID NO:69 or contains additional sequences in addition to SEQ ID NO:68.

Applicant's referral to the deposit of the cDNA on page 147-148 of the specification is an insufficient assurance that the required deposit has been made and all the conditions of 37 CFR 1.801-1.809 met.

If the deposit is made under the provisions of the Budapest Treaty, filing of an affidavit or declaration by applicant or assignees or a statement by an attorney of record who has authority and control over the conditions of deposit over his or her signature and registration number stating that the deposit has been accepted by an International Depository Authority under the provisions of the Budapest Treaty and that all restrictions upon public access to the deposited material will be irrevocably removed upon the grant of a patent on this application. This requirement is necessary when deposits are made

Art Unit: 1642

under the provisions of the Budapest Treaty as the Treaty leaves this specific matter to the discretion of each State.

If the deposit is not made under the provisions of the Budapest Treaty, then in order to certify that the deposits comply with the criteria set forth in 37 CFR 1.801-1.809 regarding availability and permanency of deposits, assurance of compliance is required. Such assurance may be in the form of an affidavit or declaration by applicants or assignees or in the form of a statement by an attorney of record who has the authority and control over the conditions of deposit over his or her signature and registration number averring:

(a) during the pendency of this application, access to the deposits will be afforded to the Commissioner upon request:

(b) all restrictions upon the availability to the public of the deposited biological material will be irrevocably removed upon the granting of a patent on this application:

(c) the deposits will be maintained in a public depository for a period of at least thirty years from the date of deposit or for the enforceable life of the patent or for a period of five years after the date of the most recent request for the furnishing of a sample of the deposited biological material, whichever is longest; and

(d) the deposits will be replaced if they should become nonviable or non-replicable.

If a deposit is made after the effective filing date of the application for patent in the United States, a verified statement is required from a person in a position to corroborate that the biological material described in the specification as filed is the same as that deposited in the depository, stating that the deposited material is identical to the biological material described in the specification and was in the applicant's possession at the time the application was filed.

Applicant's attention is directed to In re Lundak, 773 F.2d. 1216, 227 USPQ 90 (CAFC 1985) and 37 CFR 1.801-1.809 for further information concerning deposit practice.

11. Claims 39-43, 50-51 are rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention.

The factors considered when determining if the disclosure satisfies the enablement requirement and whether any necessary experimentation is undue include, but are not limited to: 1) nature of the invention, 2) state of the prior art, 3) relative skill of those in the art, 4) level of predictability in the art, 5) existence of working examples, 6) breadth of claims, 7) amount of direction or guidance by the inventor, and 8) quantity of experimentation needed to make or use the invention. *In re Wands*, 858 F.2d 731, 737, 8 USPQ2d 1400, 1404 (Fed. Cir. 1988).

The claims are drawn to a polypeptides having at least 80% amino acid sequence identity to the polypeptide of SEQ ID NO:28 or the extracellular domain thereof. There is no functional limitation in the claims as far as to the polypeptide. Applicants have taught the polypeptide consisting of the extracellular domain or, more accurately, the mature form of SEQ ID NO:69, as well as the putative signal sequence (approximately amino acids 1-23 of SEQ ID NO:69, Figure 25-26). This polypeptide is disclosed to be homologous to insulin-like growth factor. The specification discloses the polynucleotide is expressed in lung tumors. The specification does not teach an activity for the polypeptide or any active regions of the polypeptide or even if the polypeptide is expressed in any disease state. Thus one would not know if the polypeptide with the claimed homology would function as a polypeptide of SEQ ID NO:69 or even be expressed at an elevated level.

The claim encompasses an unreasonable number of inoperative polypeptides, which the skilled artisan would not know how to use, or the polynucleotide which encodes these polypeptides. While the specification suggests that the polypeptide of SEQ ID NO:68 is homologous to insulin-type growth factor, what related function it possesses is undisclosed. Since PRO375 is a secreted protein, it would be expected that the mature form would be sufficient for function in the absence of the secretory signal. The functional domain of the protein is the mature form. Knowledge of one insulin-type growth factor structure and function does not provide predictability about function of a structurally related protein, even within the same class.

There are no working examples of polypeptides less than 100% identical to the polypeptide SEQ ID NO:69 or the mature form thereof. The skilled artisan would not know how to use non-identical polypeptides on the basis of teachings in the prior art or specification. Even if the claimed polypeptides had a function. The specification does not provide guidance for using SEQ ID NO:69 or guidance for using polypeptides related to (*i.e.*, 80%-99% identity) but not identical to SEQ ID NO:69. The claims are broad because they do not require the claimed polypeptide to be identical to the disclosed sequence and because the claims have no functional limitation.

It is well known in the art that even a single modification or substitution in a protein sequence can alter the proteins function. Protein chemistry is probably one of the most unpredictable areas of biotechnology. For example, the replacement of a single lysine at position 118 of the acidic fibroblast growth factor by a glutamic acid led to a substantial loss of heparin binding, receptor binding, and biological activity of the protein (see Burgess et al, Journal of Cell Biology Vol 111 November 1990 2129-2138). In transforming growth factor alpha, replacement of aspartic acid at position 47 with asparagine, did not affect biological activity while the replacement with serine or glutamic acid sharply reduced the biological activity of the mitogen (see Lazar et al Molecular and Cellular Biology Mar 1988 Vol 8 No 3 1247-1252). Replacement of the histidine at position 10 of the B-chain of human insulin with aspartic acid converts the molecule into a superagonist with 5 times the activity of nature human insulin. Schwartz et al, Proc Natl Acad Sci USA Vol 84:6408-6411 (1987). Removal of the amino terminal histidine of glucagon substantially decreases the ability of the molecule to bind to its

Art Unit: 1642

receptor and activate adenylate cyclase. Lin et al Biochemistry USA Vol 14:1559-1563 (1975).

These references demonstrate that even a single amino acid substitution or what appears to be an inconsequential chemical modification, will often dramatically affect the biological activity of the protein.

The specification has not demonstrated expression of the polypeptide. Those of skill in the art recognize that expression of mRNA, specific for a tissue type, does not necessarily correlate nor predict equivalent levels of polypeptide expression. In fact, evidence abounds in which protein levels do not correlate with steady-state mRNA levels or alterations in mRNA levels. For example, Fu et al (EMBO Journal, 1996, Vol. 15, pp. 4392-4401) teach that levels of p53 protein expression do not correlate with levels of p53 mRNA levels in blast cells taken from patients with acute myelogenous leukemia, said patients being without mutations in the p53 gene. Further, Powell et al (Pharmacogenesis, 1998, Vol. 8, pp. 411-421, abstract) teach that mRNA levels for cytochrome P450 E1 did not correlate with the level of corresponding protein, and conclude that the regulation of said protein is highly complex. Vallejo et al (Biochimie, 2000, vol. 82, pp. 1129-1133, abstract) teach that no correlation was found between NRF-2 mRNA and protein levels suggesting post-transcriptional regulation of NRF-2 protein levels. These references serve to demonstrate that the analysis of levels of polynucleotide transcripts cannot be relied upon to anticipate levels of protein expression. Further, Jang et al (Clinical and Experimental Metastasis, 1997, vol. 15, pp. 469-483, abstract) teach that further studies are necessary to determine if changes in

protein levels track with changes in mRNA levels for metastasis associated genes in murine tumor cells, thus providing further evidence that one of skill in the art cannot anticipate that the level of a specific mRNA expressed by a cell will be paralleled at the protein level due to complex homeostatic factors controlling translation and post-translational modification.

Thus, the predictability of protein translation and its possible utility as a diagnostic are not necessarily contingent on the levels of mRNA expression due to the multitude of homeostatic factors affecting transcription and translation. Therefore, absent evidence of the protein's expression including the correlation to a diseased state, one of skill in the art would be unable to predictably use the polypeptides in any diagnostic setting without undue experimentation.

In view of the lack of guidance, lack of examples, and lack of predictability in the art as evidenced from the above references, one skilled in the art would be forced into undue experimentation in order to practice the broadly claimed invention.

Conclusion

12. No claim is allowed.

13. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Larry R. Helms, Ph.D, whose telephone number is (703) 306-5879. The examiner can normally be reached on Monday through Friday from 7:00

am to 4:30 pm, with alternate Fridays off. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Anthony Caputa, can be reached on (703) 308-3995. Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 308-0196.

14. Papers related to this application may be submitted to Group 1600 by facsimile transmission. Papers should be faxed to Group 1600 via the PTO Fax Center located in Crystal Mall 1. The faxing of such papers must conform with the notice published in the Official Gazette, 1096 OG 30 (November 15, 1989). The CM1 Fax Center telephone number is (703) 308-4242.

Respectfully,

Larry R. Helms Ph.D.

703-306-5879

A handwritten signature in black ink, appearing to read "Larry R. Helms". The signature is fluid and cursive, with a prominent 'L' at the beginning and a 'H' at the end.