Problem: Trigonometric Equation – Bài Tập: Phương Trình Lượng Giác

Nguyễn Quản Bá Hồng*

Ngày 17 tháng 9 năm 2023

Muc luc

1	Giá Trị Lượng Giác của Góc Lượng Giác	1
2	Trigonometrical Formulas – Công Thức Lượng Giác	2
3	Trigonometrical Function – Hàm Số Lượng Giác	3
4	Trigonometrical Equation – Phương Trình Lượng Giác	4
5	Trigonometrical Identity & Inequality – Đẳng Thức & Bất Đẳng Thức Lượng Giác	5
6	Miscellaneous	5
Tà	ài liêu	5

1 Giá Tri Lương Giác của Góc Lương Giác

Bài toán 1 ([Hùn+23], Ví dụ 1, p. 8). Cho hình vuông $A_0A_1A_2A_3$ nội tiếp đường tròn tâm O (4 đỉnh được sắp xếp theo chiều ngược chiều quay của kim đồng hồ). Tính số đo của các góc lượng giác (OA_0,OA_i) , (OA_i,OA_j) , i,j=0,1,2,3, $i\neq j$.

Bài toán 2 ([Hùn+23], Ví dụ 2, p. 9). Tính giá trị biểu thức: (a)
$$A = \sin\frac{7\pi}{6} + \cos 9\pi + \tan\left(-\frac{5\pi}{4}\right) + \cot\frac{7\pi}{2}$$
. (b) $B = \frac{1}{\tan 368^{\circ}} + \frac{2\sin 2550^{\circ}\cos(-188^{\circ})}{2\cos 638^{\circ} + \cos 98^{\circ}}$. (c) $C = \sin^2 25^{\circ} + \sin^2 45^{\circ} + \sin^2 60^{\circ} + \sin^2 65^{\circ}$. (d) $D = \tan^2\frac{\pi}{8}\tan\frac{5\pi}{8}$.

Bài toán 3 ([Hùn+23], Ví dụ 3, p. 9). Chứng minh đẳng thức (giả sử các đẳng thức sau đều có nghĩa): (a) $\cos^4 + 2\sin^2 x = 1 + \sin^4 x$. (b) $\frac{\sin x + \cos x}{\sin^3 x} = \cot^3 x + \cot^2 x + \cot x + 1$. (c) $\frac{\cot^2 x - \cot^2 y}{\cot^2 x \cot^2 y} = \frac{\cos^2 x - \cos^2 y}{\cos^2 x \cos^2 y}$. (d) $\sqrt{\sin^4 x + 4 \cos^2 x} + \sqrt{\cos^4 x + 4 \sin^2 x} = 3\tan\left(x + \frac{\pi}{3}\right)\tan\left(\frac{\pi}{6} - x\right)$.

Bài toán 4 ([Hùn+23], Ví dụ 4, p. 10). Đơn giản biểu thức (giả sử các đẳng thức sau đều có nghĩa): (a) $A = \cos(5\pi - x) - \sin\left(\frac{3\pi}{2} + x\right) + \tan\left(\frac{3\pi}{2} - x\right) + \cot(3\pi - x)$. (b) $B = \frac{\sin(900^\circ + x) - \cos(450^\circ - x) + \cot(1080^\circ - x) + \tan(630^\circ - x)}{\cos(450^\circ - x) + \sin(x - 630^\circ) - \tan(810^\circ + x) - \tan(810^\circ - x)}$. (c) $C = \sqrt{2} - \frac{1}{\sin(x + 2013\pi)} \sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}}$ với $\pi < x < 2\pi$.

Bài toán 5 ([Hùn+23], Ví dụ 5, p. 11). Chứng minh biểu thức không phụ thuộc vào x (i.e., độc lập với biến x) (giả sử các biểu thức đều có nghĩa): (a) $A = \frac{\sin^6 x + \cos^6 x + 2}{\sin^4 x + \cos^4 x + 1}$. (b) $B = \frac{1 + \cot x}{1 - \cot x} - \frac{2 + 2\cot^2 x}{(\tan x - 1)(\tan^2 x + 1)}$. (c) $C = \sqrt{\sin^4 x + 6\cos^2 x + 3\cos^4 x} + \sqrt{\cos^4 x + 6\sin^2 x + 3\sin^4 x}$.

Bài toán 6 ([Hùn+23], 1.1., p. 12). Tìm số đo a° của góc lượng giác (Ou,Ov) với $0 \le a \le 360$, biết 1 góc lượng giác cùng tia đầu, tia cuối với góc đó có số đo là: (a) 395° . (b) -1052° . (c) $(20\pi)^{\circ}$.

Bài toán 7 ([Hùn+23], 1.2., p. 12). Không dùng máy tính bỏ túi, tính giá trị biểu thức: (a) $A = 5\sin^2\frac{151\pi}{6} + 3\cos^2\frac{85\pi}{3} - 4\tan^2\frac{193\pi}{6} + 7\cot^2\frac{37\pi}{3}$. (b) $B = \cos^2\frac{\pi}{5} + \cos^2\frac{2\pi}{5} + \cos^2\frac{\pi}{10} + \cos^2\frac{3\pi}{10}$. (c) $C = \tan\frac{\pi}{9}\tan\frac{2\pi}{9}\tan\frac{5\pi}{18}\tan\frac{7\pi}{18}$.

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $\begin{aligned} \mathbf{B\grave{a}i} \ \ \mathbf{to\acute{a}n} \ \ 8 \ ([\mathbf{H\grave{u}n+23}], \ 1.3., \ \mathbf{p}. \ 12). \ \ R\acute{u}t \ \ gon \ \ biểu \ \ thức: \ (a) \ A &= \cos\left(\frac{\pi}{2}+x\right) + \cos(2\pi-x) + \cos(3\pi+x). \ \ (b) \ B &= 2\cos x - 3\cos(\pi-x) + 5\sin\left(\frac{7x}{2}-x\right) + \cot\left(\frac{3\pi}{2}-x\right). \ \ (c) \ \ C &= 2\sin(90^\circ+x) + \sin(900^\circ-x) + \sin(270^\circ+x) - \cos(90^\circ-x). \ \ (d) \\ D &= \frac{\sin(5\pi+x)\cos\left(x-\frac{9\pi}{2}\right)\tan(10\pi+x)}{\cos(5\pi-x)\sin\left(\frac{11\pi}{2}+x\right)\tan(7\pi-x)}. \end{aligned}$

 $\begin{aligned} \mathbf{B\grave{a}i} \ \mathbf{to\acute{a}n} \ \mathbf{9} \ ([\mathbf{H\grave{u}n} + \mathbf{23}], \ 1.4., \ \mathbf{p}. \ 12). \ \ Ch\acute{u}ng \ minh \ d\mathring{a}ng \ th\acute{u}c \ (gi\^{a} \ s\mathring{u} \ c\acute{a}c \ bi\^{e}u \ th\acute{u}c \ d\grave{e}u \ c\acute{o} \ ngh\~{i}a) : \ (a) \ \tan^2 x - \sin^2 x = \tan^2 x \sin^2 x. \\ (b) \ \frac{\tan^3 x}{\sin^2 x} - \frac{1}{\sin x \cos x} + \frac{\cot^3 x}{\cos^2 x} = \tan^3 x + \cot^3 x. \ (c) \sin^2 x - \tan^2 x = \tan^6 x (\cos^2 x - \cot^2 x). \ (d) \ \frac{\tan^2 a - \tan^2 b}{\tan^2 a \tan^2 b} = \frac{\sin^2 a - \sin^2 b}{\sin^2 a \sin^2 b}. \end{aligned}$

Bài toán 10 ([Hùn+23], 1.5., p. 12). Chứng minh biểu thức không phụ thuộc vào α : (a) $(\tan \alpha + \cot \alpha)^2 - (\tan \alpha - \cot \alpha)^2$. (b) $2(\sin^6 \alpha + \cos^6 \alpha) - 3(\sin^4 \alpha + \cos^4 \alpha)$. (c) $\cot^2 30^\circ (\sin^8 \alpha - \cos^8 \alpha) + 4\cos 60^\circ (\cos^6 \alpha - \sin^6 \alpha) - \sin^6 (90^\circ - \alpha)(\tan^2 \alpha - 1)^3$. (d) $(\sin^4 \alpha + \cos^4 \alpha - 1)(\tan^2 \alpha + \cot^2 \alpha + 2)$.

Bài toán 11 ([Hùn+23], 1.6., p. 13). Biết $\tan x + \cot x = m$. Tính: (a) $\tan^2 x + \cot^2 x$. (b) $\frac{\tan^6 x + \cot^6 x}{\tan^4 x + \cot^4 x}$. (c) Chứng minh $|m| \ge 2$. (d) Biện luận theo tham số m để tìm x thỏa mãn phương trình $\tan x + \cot x = m$.

 $\begin{aligned} \mathbf{B\grave{a}i} \; \mathbf{to\acute{a}n} \; \mathbf{12} \; ([\mathbf{H\grave{u}n+23}], \, 1.7., \, \mathbf{p}. \; 13). \; \; (a) \; \mathit{Cho} \; \cos a &= \frac{2}{3}. \; \mathit{Tinh} \; A = \frac{\cot a + 3 \tan a}{2 \cot a + \tan a}. \; (b) \; \mathit{Cho} \; \sin a &= \frac{1}{3}. \; \mathit{Tinh} \; B = \frac{3 \cot a + 2 \tan a + 1}{\cot a + \tan a}. \\ (c) \; \mathit{Cho} \; \tan a &= 2. \; \mathit{Tinh} \; C &= \frac{2 \sin a + 3 \cos a}{\sin a + \cos a}. \; (d) \; \mathit{Cho} \; \cot a &= 5. \; \mathit{Tinh} \; D &= 2 \cos^2 a + 5 \sin a \cos a + 1. \end{aligned}$

2 Trigonometrical Formulas – Công Thức Lượng Giác

Bài toán 13 ([Hùn+23], Ví dụ 1, p. 14). Tính giá trị biểu thức lượng giác: (a) $A = \sin 22^{\circ}33' \cos 202^{\circ}30'$. (b) $B = 4 \sin^4 \frac{\pi}{16} + 2 \cos \frac{\pi}{8}$. (c) $C = \frac{\sin \frac{\pi}{5} - \sin \frac{2\pi}{15}}{\cos \frac{\pi}{5} - \cos \frac{2\pi}{15}}$. (d) $D = \sin \frac{\pi}{9} - \sin \frac{5\pi}{9} + \sin \frac{7\pi}{9}$.

Bài toán 14 ([Hùn+23], Ví dụ 2, p. 14). Tính giá trị biểu thức lượng giác: (a) $A = \frac{1}{\cos 290^{\circ}} + \frac{1}{\sqrt{3}\sin 250^{\circ}}$. (b) $B = (1 + \tan 20^{\circ})(1 + \tan 25^{\circ})$. (c) $C = \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$. (d) $D = \sin^{2}\frac{\pi}{9} + \sin^{2}\frac{2\pi}{9} + \sin\frac{\pi}{9}\sin\frac{2\pi}{9}$.

Bài toán 15 ([Hùn+23], Ví dụ 3, p. 15). Tính giá trị biểu thức lượng giác: (a) $A = \sin\frac{\pi}{32}\cos\frac{\pi}{32}\cos\frac{\pi}{16}\cos\frac{\pi}{8}$. (b) $B = \sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$. (c) $C = \cos\frac{\pi}{5} + \cos\frac{3\pi}{5}$. (d) $D = \cos^{2}\frac{\pi}{7} + \cos^{2}\frac{2\pi}{7} + \cos^{2}\frac{3\pi}{7}$.

Bài toán 16 ([Hùn+23], Ví dụ 4, p. 16). Cho α , β thỏa mãn $\sin \alpha + \sin \beta = \frac{\sqrt{2}}{2}$ & $\cos \alpha + \cos \beta = \frac{\sqrt{6}}{2}$. Tính $\cos(\alpha - \beta)$, $\sin(\alpha + \beta)$.

Bài toán 17 ([Hùn+23], Ví dụ 5, p. 17). Cho $\frac{1}{\tan^2 \alpha} + \frac{1}{\cot^2 \alpha} + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} = 7$. Tính $\cos 4\alpha$.

Bài toán 18 ([Hùn+23], Ví dụ 6, p. 17). Chứng minh: (a) $\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha = 4 \sin \alpha \sin \left(\frac{\pi}{3} - \alpha\right) \sin \left(\frac{\pi}{3} + \alpha\right)$. (b) $\sum_{i=1}^{n} 3^{i-1} \sin^3 \frac{\alpha}{3^i} = \sin^3 \frac{\alpha}{3} + 3 \sin^3 \frac{\alpha}{3^2} + \dots + 3^{n-1} \sin^3 \frac{\alpha}{3^n} = \frac{1}{4} \left(3^n \sin \frac{\alpha}{3^n} - \sin \alpha\right)$.

Bài toán 19 (Công thức nhân 3). Chứng minh: (a) $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$. (b) $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$.

Bài toán 20 ([Hùn+23], 2.1., p. 18). Tính giá trị của biểu thức: (a) $A = \cos^2 73^\circ + \cos^2 47^\circ + \cos 74^\circ \cos 47^\circ$. (b) $B = \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ$.

Bài toán 21 ([Hùn+23], 2.2., p. 18). *Tính giá trị của biểu thức:* (a) $A = \sin^2 50^\circ + \sin^2 70^\circ - \cos 50^\circ \cos 70^\circ$

Bài toán 22 ([Hùn+23], 2.3., p. 18). Tính giá trị của biểu thức: (a) $A = \cos\frac{\pi}{7}\cos\frac{4\pi}{7}\cos\frac{5\pi}{7}$. (b) $B = \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$.

Bài toán 23 ([Hùn+23], 2.4., p. 18). Tính giá trị của biểu thức: (a) $A = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}$. (b) $B = \cos\frac{\pi}{7}\cos\frac{3\pi}{7} + \cos\frac{3\pi}{7}\cos\frac{5\pi}{7}$.

Bài toán 24 ([Hùn+23], 2.5., p. 18, Đề nghị Olympic 30.4 2006). Chứng minh $\sqrt[3]{\cos\frac{2\pi}{7}} + \sqrt[3]{\cos\frac{4\pi}{7}} + \sqrt[3]{\cos\frac{8\pi}{7}} = \sqrt[3]{\frac{5-3\sqrt[3]{7}}{2}}$.

Bài toán 25 ([Hùn+23], 2.6., p. 18). Cho α, β thỏa $m\tilde{a}n\sin\alpha + \sin\beta = m \ \mathcal{E}\cos\alpha + \cos\beta = n, \ mn \neq 0$. Tính $\cos(\alpha - \beta), \cos(\alpha + \beta), \sin(\alpha + \beta)$.

Bài toán 26 ([Hùn+23], 2.7., p. 18). $Tinh A = \prod_{i=1}^{45} (1 + \tan i^{\circ}) = (1 + \tan 1^{\circ})(1 + \tan 2^{\circ}) \cdots (1 + \tan 45^{\circ}).$

Bài toán 27 ([Hùn+23], 2.8., p. 18). $Tinh \ A = \prod_{i=1}^{999} \cos i\alpha = \cos \alpha \cos 2\alpha \cos 3\alpha \cdots \cos 999\alpha \ v \dot{\sigma} i \ \alpha = \frac{2\pi}{999}$.

Bài toán 28 ([Hùn+23], 2.9., p. 18). Chứng minh $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{4\pi}{9} = \cos \frac{\pi}{18} \cos \frac{5\pi}{18} \cos \frac{7\pi}{18} = \frac{\sqrt{3}}{8}$.

Bài toán 29 ([Hùn+23], 2.10., p. 18). Chứng minh: (a) $\cos x = \frac{\sin 2x}{2\sin x}$. (b) $\prod_{i=1}^{n} \cos \frac{x}{2^{i}} = \cos \frac{x}{2} \cos \frac{x}{2^{2}} \cdots \cos \frac{x}{2^{n}} = \frac{\sin x}{2^{n} \sin \frac{x}{2^{n}}}$.

Bài toán 30 ([Hùn+23], 2.11., p. 18). Chứng minh: (a) $\frac{1}{\sin x} = \cot \frac{x}{2} - \cot x$. (b) $\sum_{i=1}^{n} \frac{1}{\sin 2^{i-1}\alpha} = \frac{1}{\sin \alpha} + \frac{1}{\sin 2\alpha} + \cdots + \frac{1}{\sin 2^{n-1}\alpha} = \cot \frac{\alpha}{2} - \cot 2^{n-1}\alpha$ với $2^{n-1}\alpha \neq k\pi$, $\forall k \in \mathbb{Z}$.

Bài toán 31 ([Hùn+23], 2.12., p. 18). Chứng minh: (a) $\tan x = \cot x - 2 \cot 2x$. (b) $\sum_{i=1}^{n} \frac{1}{2^{i}} \tan \frac{a}{2^{i}} = \frac{1}{2} \tan \frac{a}{2} + \frac{1}{2^{2}} \tan \frac{a}{2^{2}} + \cdots + \frac{1}{2^{n}} \tan \frac{a}{2^{n}} = \frac{1}{2^{n}} \cot \frac{a}{2^{n}} - \cot a$.

Bài toán 32 ([Hùn+23], 2.13., p. 18). Cho $n \in \mathbb{N}^*$. Chứng minh: $\sum_{i=1}^{n-1} \frac{1}{\sin i^\circ \sin(i+1)^\circ} = \frac{1}{\sin 1^\circ \sin 2^\circ} + \frac{1}{\sin 2^\circ \sin 3^\circ} + \cdots + \frac{1}{\sin(n-1)^\circ \sin n^\circ} = \cot 1^\circ - \cot n^\circ$.

Bài toán 33 ([Hùn+23], 2.14., p. 18). Chứng minh $\sum_{i=1}^{89} 2i \sin 2i^{\circ} = 2 \sin 2^{\circ} + 4 \sin 4^{\circ} + \cdots + 178 \sin 178^{\circ} = 90 \cot 1^{\circ}$.

3 Trigonometrical Function – Hàm Số Lượng Giác

Bài toán 34 ([Hùn+23], Ví dụ 1, p. 21). Vẽ đồ thị mỗi hàm số sau trong 1 chu kỳ: (a) $y = 2\cos 2\theta$. (b) $y = \frac{1}{2}\sin\frac{x}{2}$.

Bài toán 35 ([Hùn+23], Ví dụ 2, p. 21). 1 bánh xe được gắn cố định trên tường sao cho 1 điểm A trên bánh xe cách mặt đất 1 khoảng cách d cm theo công thức $d=100-60\cos\frac{4\pi t}{3}$ với t là thời gian được tính bằng giây. (a) Tính khoảng cách từ điểm A so với mặt đất khi t=0. (b) Tính thời gian để bánh xe quay 1 vòng. (c) Tìm khoảng cách lớn nhất \mathcal{E} nhỏ nhất của A so với mặt đất. (d) Vẽ đồ thị hàm số d theo t. (e) Trong vòng quay đầu tiên, tìm khoảng thời gian mà điểm A cách mặt đất 1 khoảng nhỏ hơn 70 cm.

Bài toán 36 ([Hùn+23], Ví dụ 3, p. 22). *Tìm* TXĐ *của hàm số* $y = \sqrt{\frac{\cos x - 1}{4 + \cos x}}$.

Bài toán 37 ([Hùn+23], Ví dụ 4, p. 22). Xét tính chắn lẻ của hàm số $y = \frac{\sin 2x}{2\cos x - 3}$

Bài toán 38 ([Hùn+23], Ví dụ 5, p. 22). Tìm tập giá trị của hàm số $y = \sqrt{3}\sin x - \cos x - 2$.

Bài toán 39 ([Hùn+23], Ví dụ 6, p. 22). GTLN, GTNN *của hàm số* $y = (3-5\sin x)^{2018}$ *là* M, m. Tính M+m.

Bài toán 40 ([Hùn+23], Ví dụ 7, p. 22). Trong tập giá trị của hàm số $y = \frac{2\sin 2x + \cos 2x}{\sin 2x - \cos 2x + 3}$ có tất cả bao nhiều giá trị nguyên?

Bài toán 41 ([Hùn+23], 3.1., p. 23). Cho hàm số $h(x) = \sqrt{\sin^4 x + \cos^4 x - 2m \sin x \cos x}$. Tìm tất cả các giá trị của tham số m để hàm số xác định $\forall x \in \mathbb{R}$.

Bài toán 42 ([Hùn+23], 3.2., p. 23). *Tìm m để hàm số* $y = \frac{3x}{\sqrt{2\sin^2 x - m\sin x + 1}}$ xác định trên \mathbb{R} .

Bài toán 43 ([Hùn+23], 3.3., p. 23). Xét tính chẳn lẻ của hàm số $f(x) = \sin^{2007} x + \cos nx$, với $n \in \mathbb{Z}$.

Bài toán 44 ([Hùn+23], 3.4., p. 23). Tìm GTLN của hàm số $y = 3\sin^2\left(x + \frac{\pi}{12}\right) + 4$.

Bài toán 45 ([Hùn+23], 3.5., p. 23). *Tập giá trị của hàm số* $y = \sin 2x + \sqrt{3}\cos 2x + 1$ *là đoạn* [a,b]. *Tính tổng* S = a + b.

Bài toán 46 ([Hùn+23], 3.6., p. 23). *Tìm* GTLN *của hàm số* $y = \cos^2 x + \sin x + 1$.

Bài toán 47 ([Hùn+23], 3.7., p. 23). Gọi M, m lần lượt là GTLN, GTNN của hàm số $y = \cos 2x + \cos x$. Tính M + m.

Bài toán 48 ([Hùn+23], 3.8., p. 23). *Tìm* GTLN, GTNN của hàm số $y = \sin^2 x - \sin x + 2$.

Bài toán 49 ([Hùn+23], 3.9., p. 23). Tìm GTLN của hàm số $y = 2\cos x + \sin\left(x + \frac{\pi}{4}\right)$.

Bài toán 50 ([Hùn+23], 3.10., p. 23). Tìm GTLN của hàm số $y = \sqrt{1 + \frac{1}{2}\cos^2 x} + \frac{1}{2}\sqrt{5 + 2\sin^2 x}$.

 $\textbf{Bài toán 51} \ ([\texttt{Hùn+23}], \ 3.11., \ \textbf{p. 23}). \ \textit{Cho hàm số } y = \frac{1}{2-\cos x} + \frac{1}{1+\cos x} \ \textit{với } x \in \left(0,\frac{\pi}{2}\right). \ \textit{Tìm GTNN của hàm số.}$

Bài toán 52 ([Hùn+23], 3.12., p. 23). Vẽ đồ thị hàm số $y = \sin |x|$.

Bài toán 53 ([Hùn+23], 3.13., p. 23). Chiều cao của thủy triều tại Warnung vào ngày 1.1 so với mực nước biển trung bình là h(t) m được đưa ra gần đúng theo quy tắc $h(t) = 4\sin\frac{\pi t}{6}$ với t là thời gian (tính bằng giờ) sau nửa đêm. (a) Vẽ đồ thị hàm số y = h(t) với $0 \le t \le 24$. (b) Thủy triều dâng cao khi nào? (c) Tính độ cao cao nhất của thủy triều. (d) Tính độ cao của thủy triều lúc 8:00. (e) Tàu thuyền chỉ được rời bến cảng khi thủy triều cao hơn mực nước biển trung bình ít nhất 1 m. Khi nào tàu thuyền có thể rời bến cảng vào ngày 1.1?

4 Trigonometrical Equation – Phương Trình Lượng Giác

Bài toán 54 ([Hùn+23], Ví dụ 1, p. 25). Người ta quan sát thấy Mặt Trời mọc đầu tiên là tại vùng núi đảo ở Maine, Mỹ. Thời điểm Mặt Trời mọc được biểu diễn theo công thức $t(m) = 1.665 \sin \frac{\pi}{6}(m+3) + 5.485$ với t là thời điểm (được tính từ nửa đêm) \mathcal{E} m là tháng (tính từ tháng 1). Khi nào Mặt Trời mọc lúc 7:00?

Bài toán 55 ([Hùn+23], Ví dụ 2, p. 25). Từm góc $\alpha \in \left\{\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ để phương trình $\cos 2x + \sqrt{3}\sin 2x - 2\cos x = 0 \Leftrightarrow \cos(2x - \alpha) = \cos x$.

Bài toán 56 ([Hùn+23], Ví dụ 3, p. 25). Cho phương trình $\sin^4 x + \cos^4 x + \cos^2 4x = m$ với m là tham số. (a) Giải phương trình khi $m = \frac{3}{2}$. (b) Tìm m để phương trình trên có 4 nghiệm phân biệt thuộc đoạn $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.

Bài toán 57 ([Hùn+23], Ví dụ 4, p. 26, IMO1963). *Giải phương trình* $\cos^2 x + \cos^2 2x + \cos^2 3x = 1$.

Bài toán 58 ([Hùn+23], Ví dụ 5, p. 27). *Giải phương trình* $\sin x \left(1 + \tan x \tan \frac{x}{2}\right) + \tan x + 2\sqrt{3} = \frac{\sqrt{3}}{\cos^2 x}$.

Bài toán 59 ([Hùn+23], 4.1., p. 27). Phương trình $\sqrt{3}\cos x + \sin x = -2$ có bao nhiều nghiệm trên đoạn $[0,4035\pi]$.

Bài toán 60 ([Hùn+23], 4.2., p. 27). Giải phương trình $(\sin x + \cos x)^2 + 2\sin^2\frac{x}{2} = \sin x(2\sqrt{3}\sin x + 4 - \sqrt{3})$.

Bài toán 61 ([Hùn+23], 4.3., p. 27). *Giải phương trình* $(\sqrt{3}+1)\cos^2 x + (\sqrt{3}-1)\sin x\cos x + \sin x - \cos x = \sqrt{3}$.

Bài toán 62 ([Hùn+23], 4.4., p. 27). $Gi \dot{a}i \ phương \ trình \ 2\sin^3 x - \cos 2x + \sin 2x - 2\sin x + 2\cos x - 1 = 0.$

Bài toán 63 ([Hùn+23], 4.5., p. 27). Giải phương trình $\frac{\sin^{10} 2x + \cos^{10} 2x}{\sin^2 2x - \cos^2 2x} = -\frac{29\cos^3 4x}{16}.$

Bài toán 64 ([Hùn+23], 4.6., p. 27). Giải phương trình $\frac{8}{\sin^3 2x} + \tan x = \cot^3 x$.

Bài toán 65 ([Hùn+23], 4.7., p. 27). Giải phương trình $\sin 3x + \cos 3x - 2\sqrt{2}\cos\left(x + \frac{\pi}{4}\right) + 1 = 0$.

Bài toán 66 ([Hùn+23], 4.9., p. 27). Giải phương trình $3 \tan 2x - \frac{3}{\cos 2x} - 2\frac{1-\cot x}{1+\cot x} + 2\cos 2x = 0$.

Bài toán 67 ([Hùn+23], 4.10., p. 27). Giải phương trình $3 \tan 2x - 2 \sin \left(2x - \frac{3\pi}{2}\right) + 2 \frac{\cos x - \sin x}{\cos x + \sin x} = \frac{1}{\cos 2x}$.

Bài toán 68 ([Hùn+23], 4.11., p. 27). Giải phương trình $\frac{\sin^4 2x + \cos^4 2x}{\tan(\frac{\pi}{4} - x)\tan(\frac{\pi}{4} + x)} = \cos^4 4x$.

Bài toán 69 ([Hùn+23], 4.12., p. 27). *Giải phương trình* $3 + \cot^2 x = 3\left(\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x}\right)$.

Bài toán 70 ([Hùn+23], 4.13., p. 27). Giải phương trình $\frac{(\cos x - 1)(2\cos x - 1)}{4 - \sin x} = 1 - \sin 2x + 2\cos^2 x.$

Bài toán 71 ([Hùn+23], 4.14., p. 27). Giải phương trình $4\sin^2\frac{x}{2} - \sqrt{3}\cos 2x = 1 + 2\cos^2\left(x - \frac{3\pi}{4}\right)$.

Bài toán 72 ([Hùn+23], 4.15., p. 27). Giải phương trình $\frac{4\sin^2\frac{x}{2} - \sqrt{3}\cos 2x - 1 - 2\cos^2\left(x - \frac{3\pi}{4}\right)}{\sqrt{2\cos 3x + 1}} = 0.$

Bài toán 73 ([Hùn+23], 4.16., p. 28). Cho phương trình $\frac{(\sin x - \cos x)(\sin 2x - 3) - \sin 2x - \cos 2x + 1}{2\sin x - \sqrt{2}} = 0. \text{ Hỏi phương trình }$ có bao nhiều nghiệm thuộc khoảng $(2018\pi, 2019\pi)$?

Bài toán 74 ([Hùn+23], 4.17., p. 28). *Giải phương trình* $\sin^2 3x \cos 2x + \sin^2 x = 0$.

Bài toán 75 ([Hùn+23], 4.18., p. 28). Giải phương trình $2\cos^3 x - \sin 2x \sin x = -2\sqrt{2}\cos\left(x + \frac{2019\pi}{4}\right)$.

Bài toán 76 ([Hùn+23], 4.19., p. 28). Phương trình $\sin 5x + \sqrt{3}\cos 5x = 2\sin 7x$ có bao nhiều nghiệm trên khoảng $\left(0, \frac{\pi}{2}\right)$?

5 Trigonometrical Identity & Inequality – Đẳng Thức & Bất Đẳng Thức Lượng Giác

Cho ΔABC , đặt $a\coloneqq BC,b\coloneqq CA,c\coloneqq AB,\,p,R,r$ lần lượt là nửa chu vi, bán kính đường tròn ngoại tiếp, bán kính đường tròn nội tiếp ΔABC .

Bài toán 77 ([Hùn+23], p. 28, 1 số đẳng thức lượng giác cơ bản trong tam giác). Chứng minh: (a) $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$. (b) $\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$. (c) $\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos A\cos B\cos C$. (d) $\tan A + \tan B + \tan C = \tan A \tan B \tan C$. (c) $\tan\frac{A}{2}\tan\frac{B}{2} + \tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} = 1$. (d) $\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} = \cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}$. (e) $\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$.

Bài toán 78 ([Hùn+23], Ví dụ 1, p. 29). Cho $\triangle ABC$. Chứng minh: (a) $ab+bc+ca=p^2+r^2+4Rr$. (b) $a^2+b^2+c^2=2(p^2-r^2-4Rr)$. (c) $(a-b)^2+(b-c)^2+(c-a)^2=2p^2-24Rr-6r^2$.

Bài toán 79 ([Hùn+23], Ví dụ 2, p. 29). Cho $\triangle ABC$. Chứng minh: $\cos A + \cos B + \cos C = \frac{R+r}{R}$.

Bài toán 80 ([Hùn+23], Ví dụ 3, p. 30). Cho $\triangle ABC$. Chứng minh: $\cos A + \cos B + \cos C \le \frac{3}{2} - \frac{(\sin B - \sin C)^2 + (\sin C - \sin A)^2 + (\sin C - \sin A)^2}{4}$

Bài toán 81 ([Hùn+23], Ví dụ 4, p. 30). Cho $\triangle ABC$. Chứng minh: $\frac{r}{R} + \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{16R^2} \leq \frac{1}{2}$.

Bài toán 82 ([Hùn+23], Ví dụ 5, p. 30, Bất đẳng thức Gerretsen trong tam giác). Cho $\triangle ABC$. Chứng minh: (a) $p^2 \le 4R^2 + 4Rr + 3r^2$. (b) $a^2 + b^2 + c^2 \le 8R^2 + 4r^2$.

Bài toán 83 ([Hùn+23], 5.1., p. 31). Cho đa giác đều 31-cạnh $A_0A_1 \dots A_{30}$. Chứng minh $\frac{1}{A_0A_1} = \frac{1}{A_0A_2} + \frac{1}{A_0A_4} + \frac{1}{A_0A_8} + \frac{1}{A_0A_{15}}$.

Bài toán 84 ([Hùn+23], 5.2., p. 31). Cho $\triangle ABC$ nội tiếp đường tròn (O). Dường tròn (I) là 1 đường tròn bất kỳ. Từ 3 điểm A,B,C theo thứ tự kẻ 3 tiếp tuyến ', BB', CC' tới (I). Chứng minh: (a) Nếu (I) \cap (O) = \emptyset thì aAA', bBB', cCC' là 3 cạnh của 1 tam giác. (b) Nếu (I) \cap (O) \neq \emptyset & cụ thể là: (I) giao cung BC không chứa A thì $aAA' \geq bBB' + cCC'$, (I) giao cung CA không chứa B thì $bBB' \geq cCC' + aAA'$, (I) giao cung AB không chứa C thì $cCC' \geq aAA' + bBB'$. Dấu bằng ở 3 bất đẳng thức xảy ra khi & chỉ khi đường tròn (I) tiếp xúc (trong hoặc ngoài) với đường tròn (O) tại các điểm thuộc các cung tương ứng.

Bài toán 85 ([Hùn+23], 5.3., p. 31). Cho đa giác $A_1A_2...A_n$ vừa nội tiếp vừa ngoại tiếp & có tâm ngoại tiếp là O ta ký hiệu các góc $A_i\widehat{OA}_{i+1}=\theta_i,\ i=\overline{1,n},\ n+1\equiv 1,\ \text{& các góc đa giác lần lượt là }A_1,A_2,\ldots,A_n.$ Chứng minh $\sum_{i=1}^n\cos\frac{A_i}{2}\geq\sum_{i=1}^n\sin\frac{\theta_i}{2},$ i.e., $\cos\frac{A_1}{2}+\cos\frac{A_2}{2}+\cdots+\cos\frac{A_n}{2}\geq\sin\frac{\theta_1}{2}+\sin\frac{\theta_2}{2}+\cdots+\sin\frac{\theta_n}{2}.$

6 Miscellaneous

Tài liệu

[Hùn+23] Trần Quang Hùng, Lê Thị Việt Anh, Phạm Việt Hải, Khiếu Thị Hương, Tạ Công Sơn, Nguyễn Xuân Thọ, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 11 Tập 1. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 176.