Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sea $U = \mathbb{Z}$ el universo de las variables $x \in y$. Consideramos las proposiciones:

 $p; \ \forall x \,\exists y \text{ tal que } 2x + y = 22$

q; $\exists y \, \forall x \text{ tal que } 2x + y = 22$

r; $\forall y \exists x \text{ tal que } 2x + y = 22$

Se tiene:

- a) p y q son falsas.
- b) p y r son falsas.
- c) q y r son falsas.

Ejercicio 2

Sea (G, \bot) un grupo conmutativo de elemento neutro e. Sea un elemento fijo $a \in G$, $a \ne e$. Se define en G la operación \star mediante $x \star y = x \bot a \bot y$. Se tiene:

- a) No existe elemento neutro de \star en G.
- b) Todo elemento de G tiene simétrico respecto de \star .
- c) Ninguna de las otras dos opciones.

Ejercicio 3 En el conjunto \mathbb{N}^* , se consideran las siguientes relaciones:

 $a\Re b$ si y sólo si a < b+1

a\$b si y sólo si a+b es par y a es múltiplo de b

- a) \Re y \Im son relaciones de orden en \mathbb{N}^* .
- b) Sólo \mathcal{R} es relación de orden en \mathbb{N}^* .
- c) Ninguna de las otras dos opciones.

Ejercicio 4 Sean A y B dos conjuntos tales que card(A) = 5 y card(B) = 3. El número de aplicaciones sobreyectivas de A a B es:

- a) 180.
- b) 160.
- c) 150.

Ejercicio 5 Sean un conjunto arbitrario A y $f \colon A \to A$ cualquier aplicación inyectiva. Consideramos los enunciados siguientes:

- 1) f es biyectiva.
- 2) Si A es un conjunto finito entonces f es biyectiva.
- 3) Si A es un conjunto numerable entonces f es biyectiva.

Se tiene:

- a) Los tres enunciados son verdaderos.
- b) Sólo los enunciados de 2) y 3) son verdaderos.
- c) Ninguna de las otras dos opciones.

Soluciones

Ejercicio 1

La proposición p es verdadera pues $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z}$ tal que 2x + y = 22. Basta observar que si x es cualquier número entero entonces y = 22 - 2x es también un número entero.

La proposición q es falsa pues no existe ningún número entero y tal que la igualdad 2x + y = 22 sea verdadera para todo $x \in \mathbb{Z}$.

La proposición r es falsa pues si y es cualquier número entero, el número x cumpliría $x = \frac{22-y}{2}$ y no es cierto que para todo entero y, x sea un número entero. Por ejemplo, para y = 21 no existe ningún entero x tal que 2x + y = 22.

La opción correcta es la c).

Ejercicio 2

La opción correcta es la b).

Veamos que \star tiene elemento neutro. Buscamos un elemento $n \in G$ tal que

$$x \star n = n \star x = x$$

para todo $x \in G$.

De

$$x \star n = x \perp a \perp n = x \perp (a \perp n) = x$$

para todo $x \in G$ se deduce que

$$a \perp n = e$$
, es decir, $n = a^{-1}$,

siendo a^{-1} el simétrico de a para \perp . Para ese valor de n se tiene

$$n \star x = a^{-1} \perp a \perp x = (a^{-1} \perp a) \perp x = e \perp x = x$$

para todo $x \in G$.

Busquemos el simétrico de cualquier x respecto de \star . Buscamos $y \in G$ tal que

$$x \star y = y \star x = a^{-1}.$$

De $x \star y = x \perp a \perp y = a^{-1}$, se obtiene que $a \perp y = x^{-1} \perp a^{-1}$ y por tanto $y = a^{-1} \perp x^{-1} \perp a^{-1}$. Comprobamos que $y \star x = a^{-1}$. En efecto, $y \star x = (a^{-1} \perp x^{-1} \perp a^{-1}) \perp a \perp x$ y teniendo en cuenta que (G, \perp) es un grupo commutativo se obtiene que $y \star x = a^{-1} \perp x^{-1} \perp (a^{-1} \perp a) \perp x = a^{-1} \perp x^{-1} \perp e \perp x = a^{-1} \perp (x^{-1} \perp x) = a^{-1} \perp e = a^{-1}$.

Ejercicio 3

La opción correcta es la a).

En efecto, en \mathbb{N}^* se tiene

$$a\Re b \iff a < b+1 \iff a+1 \leqslant b+1 \iff a \leqslant b$$

Por tanto, la relación \mathcal{R} es una relación de orden en \mathbb{N}^* .

La relación S es también una relación de orden en \mathbb{N}^* .

Reflexiva: Para todo $a \in \mathbb{N}^*$ a\Sa pues a + a = 2a es par y $a = 1 \cdot a$ es múltiplo de a.

Antisimétrica: Para todo $a, b \in \mathbb{N}^*$, si a S b y b S a, entonces a es múltiplo de b y b es múltiplo de a, esto es, a = k b y b = h a con $k, h \in \mathbb{N}^*$. Por tanto a = h k a, es decir, h k = 1 y como $k, h \in \mathbb{N}^*$ resulta que h = k = 1. En consecuencia, a = b.

Transitiva: Para todo $a, b, c \in \mathbb{N}^*$, si a\$b y b\$c, entonces a+b y b+c son pares y a es múltiplo de b que a su vez es múltiplo de c. Por tanto (a+b)+(b+c)=a+(b+b)+c=a+2b+c es par y en consecuencia a+c es par. Por otro lado, a=kb y b=hc con $k,h\in\mathbb{N}^*$. En consecuencia, a=(kh)c y a es múltiplo de c. Por tanto, a\$c.

Ejercicio 4

La opción correcta es la c).

Sabemos que existen $3^5 = 243$ aplicaciones de A a B y supongamos que $B = \{c, d, e\}$. Veamos cuántas aplicaciones no son sobrevectivas.

Son las aplicaciones donde la imagen de A, el conjunto f(A), sólo consta de un elemento o aquellas tales que el conjunto f(A) consta de exactamente 2 elementos.

Hay obviamente 3 aplicaciones tales que f(A) sólo consta de un elemento, una por cada elemento de B.

¿Cuántas aplicaciones hay tales que $f(A) = \{c, d\}$?

Son todas las aplicaciones sobreyectivas del conjunto A al conjunto $B' = \{c, d\}$, y éstas son todas las aplicaciones posibles de A a B' salvo dos, f_1 y f_2 , tales que $f_1(A) = \{c\}$ y $f_2(A) = \{d\}$. Es decir, hay $2^5 - 2 = 30$ aplicaciones tales que $f(A) = \{c, d\}$. Análogamente hay 30 aplicaciones tales que $f(A) = \{c, e\}$ y otras 30 tales que $f(A) = \{d, e\}$.

En consecuencia el número de aplicaciones sobreyectivas de A a B es:

$$243 - 3 - 30 - 30 - 30 = 150$$

Ejercicio 5

La opción correcta es la c).

Por el teorema 5.14, sabemos que si A es un conjunto finito toda aplicación $f: A \to A$ inyectiva es también sobreyectiva. Por tanto el enunciado de 2) es verdadero. Los enunciados de 1) y 3) no son verdaderos. Basta considerar la aplicación $f: \mathbb{N} \to \mathbb{N}$ tal que $f(n) = n^2$ que es inyectiva y no es biyectiva.