

<u>Sample Question Format</u> (For all courses having end semester Full Mark=50)

KIIT Deemed to be University Online End Semester Examination(Autumn Semester-2021)

Subject Name & Code: Operating Systems (CS 2002)

Applicable to Courses: All brances

Full Marks=50

Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

(7×2=14 Marks)

Question No	Quest ion Type	Question	CO Mapping	Answer Key (For MCQ Questions only)
	(MCQ /SAT)			
Q.No:1	MCQ	 Which one of the following is not true? A. Kernel is made of various modules which cant be loaded in running operating system B. Kernel remains in the memory during the entire computer session C. Kernel is the first part of os to loaded into memory during booting. D. Kernel is a program that constitutes the central core of 	CO1	A
	MCO	OS.	CO ₁	D
	MCQ	System calls are usually invoked by using: A. Polling B. An direct jump C. A priviledged instruction D. A software interrupt	COI	D
	MCQ	Which of the following is not a function of Operating system? A. Process management B. Coordination between other software and users	CO1	С

		C. Anti virus protection D. Resource management		
	MCO	Consider the following statements	CO ₁	В
	MCQ	l e	COI	В
		with respect to user-level threads and kernel-supported threads.		
		1 1		
		kernel- supported threads.		
		II. For user-level threads, a		
		system call can block the		
		entire process		
		III. Kernel-supported threads can		
		be scheduled independentl		
		IV. Use-level threads are		
		transparent to the kernel		
		Which of the above statements are		
		true?		
		A. II,IIIonly		
		B. II,III,IV only		
		C. I and IV only		
- N	7.00	D. All of the above	90	<i>P</i>
Q.No:2	MCQ	Which scheduling policy is most	CO ₂	D
		suitable for a time-shared operating		
		systems?		
		A. First come first serve		
	7.00		90	
	MCQ	<u> </u>	CO2	
		 		
		I 		
		 		
		scheduling algorithm is used.		
		l -		
		B. 4ms		
		C. 5ms		
		D. 9ms		_
	MCQ		CO ₂	В
		scheduling may cause starvation		
		II. Preemptive scheduling may cause		
	MCQ	P1 1ms 4ms P2 2ms 9ms The pre-emptive shortest job first scheduling algorithm is used. Scheduling is carried out only at arrival or completion of processes. What is the average waiting time for the three processes? A. 6ms B. 4ms C. 5ms D. 9ms Which of the following statements are true? I. Shortest remaining time first scheduling may cause starvation	CO2	В

		starvation		
		III. Round robin is better than FCFS in terms of response time		
		_		
		A. I and II		
		B. I,II and III		
		C. III only D. All of the above		
	MCQ	In which of the following scheduling	CO ₂	С
		criteria, context switching will never		
		take place ? A. Priority		
		B. Preemptive SJF		
		C. Non premeptive SJF		
		D. Round robin		
Q.No:3	MCQ	Consider the following set of	CO ₂	C
		processes, assumed to have arrived at		
		time o. Consider the CPU scheduling		
		algorithms Shortest Job First (SJF)		
		and Round Robin (RR). For RR, assume that the processes are		
		scheduled in the order P_1 , P_2 , P_3 , P_4 .		
		PId Burst time		
		P1 8		
		P2 7		
		P ₃ 2		
		P4 4		
		If the time quantum for RR is 4 ms,		
		then the absolute value of the		
		difference between the average turnaround times (in ms) of SJF and		
		RR (round off to one decimal places)		
		is		
		A. 5.5ms		
		B. 5.3ms		
		C. 5.2ms		
		D. 5.7ms		_
	MCQ	consider the 3 processes, S1, S2 and	CO2	С
		S3 shown in the table pid Arrival Burst		
		time Time		
		S1 0 5		
		S ₂ 1 7		
		S ₃ 3 4		
		The completion order of the 3		
		processes under the policies FCFS		
		and RRS (round robin scheduling		
		with CPU quantum of 2 time units)		
	<u> </u>	are		

		(A) FCFS:S1,S2,S3		
		RR2: S1, S2, S3		
		(B) FCFS:S1,S3,S2		
		RR2: S1, S3, S2		
		(C) FCFS:S1,S2,S3		
		RR2: S1, S3, S2		
		(D) FCFS: S1, S3, S2		
		RR2: S1, S2, S3		
	MCQ	A thread is usually defined as a 'light	CO ₃	С
	MCQ	weight process' because an operating	003	
		system (OS) maintains smaller data		
		structures for a thread than for a		
		process. In relation to this, which of		
		the followings is TRUE?		
		A. On per-thread basis, the OS		
		maintains only CPU register		
		state		
		B. The OS does not maintain a		
		separate stack for each thread		
		C. On per-thread basis, the OS		
		does not maintain virtual		
		memory state		
		D. On per thread basis, the OS		
		maintains only scheduling and		
		accounting information.		
	MCQ	Consider three processes (process id	CO ₃	В
	MCQ		003	ь
		0, 1, 2 respectively) with compute		
		time bursts 2, 4 and 8 time units. All		
		processes arrive at time zero.		
		Consider the longest remaining time		
		first (LRTF) scheduling algorithm. In		
		LRTF ties are broken by giving		
		priority to the process with the lowest		
		process id. The average turn around		
		time is:		
		A. 12		
		В. 13		
		C. 14		
		<u>D.</u> 15		
Q.No:4	MCQ	A counting semaphore was initialized	CO4	С
		to 10. Then 8 P (wait) operations and	,	
		6 V (signal) operations were		
		completed on this semaphore. The		
		resulting value of the semaphore		
		A. 6		
		B. 6		
		C. 8		
	Mco	D. 12	CO :	Α.
	MCQ	When several processes access the	CO ₄	A
		same data concurrently and the		
		outcome of the execution depends on		

		the particular order in which the		
		access takes place is called		
		A. Race ccondition		
		B. Data inconsistency		
		C. essential condition		
		D. critical condition		
	MCQ	If a process is executing in its critical	CO4	A
	MCQ	1	CO4	A
		section, then no other processes can		
		be executing in their critical section.		
		What is this condition called?		
		A) mutual exclusion		
		B) critical exclusion		
		C) synchronous exclusion		
		D)asynchronous exclusion		
	MCQ	Which of the following for Mutual	CO ₄	С
	MCQ	<u> </u>	CO4	
		exclusion can be provided by the		
		A. mutex lock		
		B. binary semaphore		
		C. mutex lock and binary		
		semaphore		
		D. none of the above		
Q.No:5	MCQ	Consider a system having P resources	CO ₅	В
		of the same type. These resources are		
		shared by 3 processes M, N and O,		
		which have peak demands of 3, 4 and		
		6 respectively. For what value of P		
		deadlock will not occur?		
		<u>A.</u> 12		
		<u>B.</u> 13		
		<u>C.</u> 14		
		<u>D.</u> 15		
	MCQ	Which of the following is NOT a	CO ₅	С
		necessary condition for deadlock to		
		occur?		
		A. Hold and wait		
		B. Non prememption		
		C. Bounded waiting		
		D. Circular wait		
	MCQ	Which of the following is NOT a valid	CO ₅	D
		deadlock prevention scheme?		
		A. No of resources uniquely and		
		never request a lowered		
		number resources than the		
		last one requested		
		B. Releasing all acquired		
		resources before requestiong		
		for new resource		
		C. All requested and required		
		resources will be allocated		
	<u>L_</u> _	prior to execution		

		D. Never request a new resource		
		after releasing old resource		
	MCQ	A system is in the safe state if	CO ₅	В
	MCQ	A system is in the saic state in	605	Б
		A. There exist a safe sequence		
		B. the system can allocate		
		resources to each process in		
		some order and still avoid a		
		deadlock		
		C. all of the mentioned		
		D. none of the mentioned		
O No.6	MCO		CO6	C
Q.No:6	MCQ	Let the page fault service time be	CO6	C
		10ms in a computer with average		
		memory access time being 20ns. If		
		one page fault is generated for every		
		10^6 memory accesses, what is the		
		effective access time for the memory?		
		<u>A.</u> 35ns		
		<u>B.</u> 23ns		
		<u>C.</u> 30ns		
		<u>D.</u> 10ns		
	MCQ	Which page replacement policy	CO6	D
		sometimes leads to more page faults		
		when size of memory is increased?		
		<u>A.</u> LRU		
		B. Optimal		
		<u>C.</u> LIFO		
		D. FIFO		
	MCQ	Consider a system where main	CO6	A
		memory is 32 MB and length of		
		logical address is 32 bit, if size of each		
		page is 1 KB, find the number of offset		
		bit.		
		A. 10		
		B. 12		
1		C. 14		
1		D. 16		
	MCQ	A process to collect all free block	CO6	В
		spaces to form a large memory chunk		
		for allocating new process is called as		
		A. External fragmentation		
		B. Compaction		
		C. Internal fragmentation		
		D. Local fragmentation		
Q.No:7	MCQ	A process refers to 5 pages, A, B, C, D,	CO6	D
<u>V.110.7</u>	MCQ	E in the order: A, B, C, D, A, B, E, A,	200	
		B, C, D, E. If the page replacement		
		algorithm is FIFO, the number of		
		page transfers with an empty internal		
		store of 3 frames is?		
	<u> </u>	A. 6		

D =	
B. 7	
C. 8	
<u>D. 9</u>	
MCQ A virtual memory system uses First In CO6	В
First Out (FIFO) page replacement	
policy and allocates a fixed number of	
frames to a process. Consider the	
following statements.	
S1 :Increasing the number of page	
frames allocated to a process	
sometimes increases the page fault	
rate	
S2 :Some programs do not exhibit	
locality of reference	
A. Both S1 and S2 are true and	
S2 is the reason for S1	
B. S1 is true and S2 is false	
<u>C.</u> S2 is true and S1 is false	
<u>D.</u> Both are false	
MCQ In which of the disk scheduling CO7	D
algorithm, the disk head moves from	
one end to other end of the	
disk,serving the requests along the	
way.when the head reaches the other	
end,it immediately returns to the	
beginning of the disk without	
servicing any request on the return	
trip.	
A. C-LOOK	
B. LOOK	
C. SCAN	
D. C-SCAN	
MCQ The content of the matrix Need is in	
Bankers Algorithm can be evaluated	
as	
A. MAX-ALLOCATION	
B. MAX-AVAILABLE	
C. ALLOCATION-MAX	

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

<u>Time: 1 Hour and 30 Minutes</u> (3×12=36 Marks)

Questi			Ques	tion		CO	
on No			Ques			<u>co</u> Mappi	
<u>on re</u>							
						ng (Each	
						questi	
						on	
						shoul	
						<u>d be</u>	
						from	
						the	
						<u>same</u>	
						<u>CO(s)</u>	
						<u> </u>	
Q.No:	Assume fol	lowing prod	cesss arriv	e in the sys	steam with a single	CO ₂	
<u>8</u>	processor.						
	Process	Execution	Arrival	Priority			
	Id	time	time	no			
	P	55	0	4			
	Q	20	10	3			
	R	10	10	2			
	S	25	40	4]		
	T	65	55	1			
	(a)What wi	ll be the ave	rage waitir	ng time and a	average turn around		
	time if Rou	nd Robin C	PU schedu	ling algorith	m is followed with a		
	time quantı	ım 15units?	[5marks]				
	(b)Consider	ring the low	est numbe	r as the high	nest priority find the		
	-		-		h individual waiting		
	time of the processes for Preemptive priority Scheduling						
	algorithm.	[5mark	_				
	(c)Find the CPU utilization if context switch time is 2 unit by						
	U		U		consider the arrival		
	time given in the question) [2marks] Conider the following set of processes with length of CPU burst						
			_	sses with len	gth of CPU burst		
		n in miliseco			$\overline{}$		
	Process Id		time	Arrival time	<u>e</u>		
	Po	3		0			
	P1	6		2			
	P2	4		4			
	P3	5		6			
	P4	2	1	8			
	(a) Draw the gantt charts to illustrate the execution of the						
	following processess using Shortest remaining time						
	first(SRTF) CPU scheduling algorithm.(i.e preemptive						
	SJF)						
	[5marks] (b) Prove the cents to illustrate the execution of the						
	(b) Draw the gantt charts to illustrate the execution of the following processess using Round Robin scheduling with a						
		e slice 2ms.	_	Round ROD	in scheduling with a		
				ırn around t	ime (TAT)and		
			_	for both the			
	avea	ase maring	(11 1)	101 DOLLI LIIC	- Circuming		

algorithm and find the best algorithm for this problem.[2
marks]

Consider the set of 6 processes whose arrival time and burst time are given below

Process Id	Arrival time	Burst time
P1	0	4
P2	1	5
Р3	2	2
P4	3	1
P ₅	4	6
P6	6	3

- (a) If the CPU scheduling policy is Round Robin with time quantum = 2, calculate the average waiting time and average turn around time [5marks]
- (b) AVG WT,AVG TAT,Response time for both preemptive and non preemptive SJF [5marks]
- (c) Calculate the CPU utilization if FCFS cpu scheduling algorithm is followed with a context switching time as 3ms.[2marks]

Q.No:

9

An operating system uses the Banker's algorithm for deadlock avoidance when managing the allocation of three resource types Ro, R1, and R2 to three processes Po, P1, and P2. The snapshot of current system state is shown in the following table. The Allocation matrix shows the number of resources of each type already allocated to each process and the Max matrix shows the maximum number of resources of each type required by each process during its execution.

Proces	Max			Allo			ocation	
S	R ₀	R ₁	R ₂		R_0	$\mathbf{R}_{\scriptscriptstyle 1}$	R ₂	
\mathbf{P}_0	7	3	3		1	0	1	
P ₁	5	2	1		2	2	1	
P ₂	6	3	3		2	1	1	

There are 3 instances of resource type Ro, 2 instances of resource type R1 and 2 instances of resource type R3 still available in the system. Check the system is currently in a safe state. Find out

CO₅

which process will complete its execution at end?[10 marks] (b) What is the difference between RAG and WFG?

[2 marks]

Processes	Allocation A B C	Мах А В С	Available A B C
Р0	112	4 3 3	2 1 0
P1	212	3 2 2	
P2	4 0 1	902	
Р3	0 2 0	7 5 3	
P4	112	112	

- (a) Calculate the content of the need matrix?
- (b) Check if the system is in a safe state?
- (c) Determine the total sum of each type of resource? [10 marks]
- (b) What is the difference between safe state and unsafe state?[2 mark]
 - (a) Write the necessary conditions for deadlock. [4 mark]
 - (b) Considering a system with five processes P_o through P_4 and three resources of type A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t_o following snapshot of the system has been taken:

Process	Allocation	Max		
	АВС	АВС		
P ₀	0 1 0	7 5 3		
P ₁	2 0 0	3 2 2		
P ₂	3 0 2	9 0 2		
P ₃	2 1 1	2 2 2		
P ₄	0 0 2	4 3 3		

- 1. What will be the content of the Need matrix?
- **2.** Is the system in a safe state? If Yes, then what is the safe sequence?

[8 marks]

Q.No: 10 (a) Given four memory partitions of 100K, 200K, 300K and 200K size(in order) and three processes of 174K, 212K and 190K(in order). In which partition the 190K process will be loaded if the allocation policy is Best fit?

CO6

[4marks]

- (b) Consider a system with byte-addressable memory, 32-bit logical addresses, 4KB page size and page table entries of 4bytes each. What would be the size of page map table in the system? [6marks]
- © Explain how internal fragmentation is different from external fragmentation

[2 marks]

a)If the virtual address space is represented by 32 bits, the page size is 4Kbyte, the size of the physical memory is 64Mbyte and only 2 bits are used as control bits, calculate the size of the page table

[6marks]

b) In the memory four partitions are there of size 4KB, 8KB, 20KB and 2KB (in order) respectively. Total 5 processes arrive at time 0 with memory request size(in Bytes) and usage time (in ms) as given in the following table: Calculate the time at which process P5 will be completed if the Best fit method is used for fixed sized partitioned memory.

Request	P1	P2	Р3	P4	P5
no					
Request	2K	12K	3K	6K	10K
size					
Usage	4	10	2	8	4
Usage time					

[6 marks]

(a)Consider a logical address space of 8pages of 1024words in each mapped on to a physical memory of 32 frames. How many numbers of bits are needed for logical address?

[4 marks]

(b) The main memory has been divided into fixed size partitions as-

200KB	400K	600KB	500KB	зооКВ	200KB
	В				

If there 4 processes(P1,P2,P3,P4) request for the size 357KB,210KB,468KB,491KB. Discuss the allocation of processes following First fit and best fit Algorithm [6marks]

© What do you mean by demand paging in virtual memory? [2marks]

Q.No:

11

(a) Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame. Find number of page fault through LRU and optimal page replacement algorithm.

[6 marks]

(b)Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65, 67. The FCFS scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders are numbered from 0 to 199. Calculate the total head movement (in number of cylinders) incurred while servicing these requests.

[6 marks]

CO₇

(a)Suppose the time to service a page fault is on the average 10 milliseconds, while a memory access takes 2 microseconds. Then, what is the result of average memory access time of-a 99.99% hit ratio?

[4 marks]

(b)Consider a disk with 200 tracks and the queue has random requests from different processes in the order: 55, 58, 39, 18, 90, 160, 150, 38, 184.Initially arm is at 100. Find the Average Seek length using SCAN and C-SCAN algorithm

[8 marks]

(a)Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2, 3 with frame size 4(i.e. maximum 4 pages in a frame). Calculate total no of page fault and page fault ration for FIFO and LRU cpu scheduling algorithm.

[4 mark]

(b)Consider a disk with 200 tracks and the queue has random requests from different processes in the order: 55, 58, 39, 18, 90, 160, 150, 38, 184. Initially arm is at 100. Find the Average Seek length using LOOK and C-LOOK algorithm. [8 mark]