Варіансний аналіз

Варіансний аналіз (B.A.) — це метод статистичного дослідження впливу різних факторів на яке не-будь явище, який базується на порівнянні варіанс. Він застосовується тоді, коли вибірки можна згрупувати. Основна задача варіансного аналізу полягає в тому, щоб дослідити мінливості, викликані різними факторами. При цьому повну мінливість розкладаємо на доданки за факторами.

При B.A. істотно те, що вибірки беруться із нормальної популяції і статистичні доведення проводяться з допомогою критерію Фішера. Якщо генеральна сукупність (популяція) не є нормальною, то оцінки середніх арифметичних не є незалежними від варіанси і відношення варіанс при аналізі стають залежними. B.A. може бути : однофакторний,

двофакторний і т.д.

1. Однофактоний варіансний аналіз

Нехай дано m груп (класів, рівнів) незалежних спостережень над деякою одновимірною кількістю мінливою величиною.

$$m = 2,3,....$$

Позначимо через x_{ij} - j е спостережень в i трупі, а через n_i - обсяг i трупи. Тоді всі m груп спостережень можна записати в такій таблиці:

Позначимо через N обсяг всіх спостережень

$$N = n_1 + \dots + n_i + \dots + n_m$$

через

 $x_{i\bullet}$ - середнє спостереження в i – й групі

$$x_{i\bullet} = \frac{1}{n_i} \sum_{j=1}^{n_{i_i}} x_{ij} \quad (i = 1, m)$$

через

 $x_{\bullet \bullet}$ – загальне середнє всіх спостережень

$$x_{\bullet \bullet} = \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} x_{ij}$$

Повна мінливість всіх спостережень виражається з допомогою дивіації

(1)
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{\bullet \bullet})^2 =$$

Запишемо її у вигляді

$$=\sum_{i=1}^{m}\sum_{j=1}^{n_i}\left[\left(x_{ij}-x_{i\bullet}\right)+\left(x_{i\bullet}-x_{\bullet\bullet}\right)\right]^2=$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{i\bullet})^2 + 2 \sum_{i=1}^{m} (x_{i\bullet} - x_{\bullet\bullet}) \sum_{j=1}^{n_i} (x_{ij} - x_{i\bullet}) + \sum_{i=1}^{m} (x_{i\bullet} - x_{\bullet\bullet})^2 \sum_{j=1}^{n_i} 1 = \sum_{i=1}^{m} n_i (x_i - x_{\bullet\bullet})^2 + \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{i\bullet})^2$$

Подвоєний добуток = 0 на основі доведеного твердження: сума відхилень елементів статистичного матеріалу від середнього арифметичного = 0.

Ця тотожність з алгебри представляє розклад квадратичної форми з ліва на суму двох квадратичних форм справа .

Таким чином повна дивіація розкладається на суму двох дивіацій: дивіація між групами

$$\sum n_i (x_{i\bullet} - x_{\bullet\bullet})^2$$

і дивіація у групах

$$\sum \sum (x_{ij} - x_{i\bullet})^2$$

Кожна з цих дивіацій має своє число ступенів вільності. Повна дивіація має (N-1) ступенів вільності. Дивіація між групами має (m-1) ступенів вільності. Дивіація у групах має (N-m) ступенів вільності. Очевидно, що між цими ступенями вільності існує тотожність

$$N-1 = (m-1) + (N-m)$$

Поділимо тотожність (1) на (N-1) одержимо нову тотожність (2)

$$\frac{1}{N-1} \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{\bullet \bullet})^2 = \frac{m-1}{N-1} \quad \frac{1}{m-1} \sum_{i=1}^{m} n_i (x_{i\bullet} - x_{\bullet \bullet})^2 \quad + \frac{N-m}{N-1} \cdot \frac{1}{N-m} \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{\bullet \bullet})^2$$
повна варіанса

варіанса між групами
$$S_1^2$$
варіанса у групах
$$S_2^2$$

$$S^2 = \frac{m-1}{N-1}S_1^2 + \frac{N-m}{N-1}S_2^2$$

Коефіцієнти при варіансах справа додатні і сума їх =1.

Таким чином тотожність (2) вказує на те, що повна варіанса є опуклою лінійною комбінацією варіанси між групами та варіанси у групах. Позначимо варіанси через S_1^2 і S_2^2 .

Припустимо, що m груп спостережень однорідні, тобто взяті у тої самої генеральної сукупності. Тоді середнє кожної групи буде оцінкою сподівання генеральної сукупності.

Якщо припустити що генеральна сукупність нормально розподілена, то варіанса між групами S_1^2 та варіанса у групах S_2^2 є незалежними і незміщеними оцінками дисперсії нормальної генеральної сукупності

Означення. Оцінка називається незміщеною, якщо її сподівання дорівнює оцінюваному параметру, тобто $E(S_1^2) = E(S_2^2) = \sigma^2$)

Тому для перевірки гіпотези однорідності можна використати критерій Фішера, основану на статистиці

$$F = \frac{S_1^2}{S_2^2}$$

Якщо при заданому рівні значущості α і даних ступенях вільності $d_{\bullet}f_{\bullet}=(m-1,N-m)$ $F_{emn}>F_{kp},$ то гіпотезу однорідності відкидаємо. В протилежному випадку — гіпотеза не суперечить емпіричним даним. Обчислення при однофакторному варіантному аналізу оформляємо у вигляді наступної таблиці.

Мінливість	Девіація	$d_{\bullet}f_{\bullet}$	Варіанса
між групами	$\sum_{i=1}^m n_i (x_{i0} - x_{\bullet \bullet})^2$	m-1	S_1^{2}
у групах	$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{i\bullet})^2$	N-m	S_2^2
повна	$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - x_{\bullet \bullet})^2$	N-1	-

Відмітимо, що останній рядок для девіацій та ступенів вільності ϵ сумою двох попередніх рядків, що служить контролем правильності обчислення найтрудомісткішим бува ϵ обчислення девіації в групі.

<u>Приклад.</u> Тривалість життя в годинах 4-х вибіркових електроламп була такою:

Дано	час (год)	тривалос	ті 4-х виб	бірок еле	ктрични	х лам	П	
1-а вибірка	i: 1600	1610	1650	1680	1700	1720	1800	-
2-а вибірка	i: 1580	1640	1640	1700	1750	-	-	-
3-а вибірка	i: 1450	1550	1600	1620	1640	1660	1740	1820
4-а вибірка	ı: 1510	1520	1530	1600	1600	1800	_	_

На основі цих даних здійснити варіансний аналіз і показати, що критерій Фішера не дозволяє відкинути гіпотезу однорідності

$$x_{1 \bullet} = \frac{1600 + 1610 + 1650 + 1680 + 1700 + 1720 + 1800}{7}$$

$$x_{2\bullet} = \frac{1580 + 1640 + 1620 + 1700 + 1750}{5}$$

Середнє спостережень в 1-й виборці(групі) (це сума всіх ел-в вибірки(групі) (це сума всіх ел-в статистичного матеріалу поділена на обсяг статистичного матеріалу

Тут

$$n_1 = 7$$
 $n_2 = 5$
 $n_3 = 8$
 $m = 4$
 $n_4 = 6$
 $N = 26$

$$x_{1\bullet} = 1680$$
 $x_{2\bullet} = 1662$ $x_{3\bullet} = 1636,25$ $x_{4\bullet} = 1568,33$

 $x_{\bullet \bullet} = 1637,3$ - (загальне середнє спостережень)

Обчислення оформляємо у вигляді таблиці (варіансного аналізу)

Мінливість	Девіація	$d_{\bullet}f_{\bullet}$	Варіанса
між групами	44360	3	$S_1^2 = 14767$
у групах	151351	22	$S_2^2 = 6880$
повна	195711	25	_

$$F_{\rm \tiny \it e,MM} = \frac{14767}{6880} = 2,14$$
 (емпіричне відношення варіанс)
$$\alpha = 0,10$$

$$d_{\bullet}f_{\bullet} = (3,22)$$
 $F_{\kappa p} = 3,05$
$$F_{\rm \tiny \it e,MM} < F_{\kappa p}$$
 Гіпотезу однорідності приймаємо.