§1. Условие постоянства функции на промежутке

В §5 главы 1 было установлено, что производная функции, являющейся постоянной на некотором промежутке X, равна нулю. Здесь рассматривается обратное утверждение.

Теорема 1.1 (достаточное условие постоянства функции на промежутке). Если производная функции f(x) равна нулю в любой точке некоторого промежутка X, то функция f(x) является постоянной на этом промежутке.

▶Из условия теоремы имеем f'(x) = 0 для $\forall x \in X$. Фиксируем некоторую точку x_0 из промежутке X и рассмотрим любую другую его точку x. На отрезке $[x_0,x]$ или $[x,x_0]$ для функции f(x) выполнены все условия теоремы Лагранжа (см. §4 предыдущей главы), поэтому справедливо равенство:

$$f(x) - f(x_0) = f'(c)(x - x_0), (1.1)$$

где c — некоторая точка между x_0 и x. Поскольку c принадлежит промежутку X, то f'(c) = 0, так что для $\forall x \in X$ в силу (1.1) верно равенство $f(x) - f(x_0) = 0$ или $f(x) = f(x_0)$. Итак, все значения данной функции на промежутке X равны одному и тому же числу $f(x_0)$, поэтому заключаем, что она постоянна на X.

Замечание 1.1. Равенство нулю производной функции на промежутке X – необходимое и достаточное условие её постоянства на этом промежутке.