内容提纲

- 触发器的实现和功能描述
- 触发器的逻辑功能转换
- 锁存器和触发器的动态特性

D触发器(Flip-Flop)

- 只在时钟信号的 上升沿或下降沿 变化瞬间,根据 输入信号更新状态
 - 最多一次翻转
- 在其他时间状态 保持不变

C	D	Qn+1
<u> </u>	X	D
X	X	Qn

特性表(a)

<u> </u>				
C D Q^{n+1}				
$\overline{\downarrow}$	X	D		
X	X	Qn		

出州丰(1)

D触发器一主从结构

- · 当C=1时,主锁存器M随D变化而变化,从锁存器S保持原先状态不变
- · 当C从1变为0(下降 沿)时,主锁存器M 锁存此时D的值, 从锁存器S按M状态 更新

示例-D触发器波形图

如果在C高电平期间D不变化,则两者行为相同

如果改成低电平和下降沿有效的器件,波形如何?

主从结构SR触发器

- · 主锁存器按输入信号S、R更新时,从锁存器保持
- 主锁存器保持时,从锁存器按主锁存器状态更新
 - 主锁存器可能翻转多次,但从锁存器只能翻转一次

主从结构SR触发器波形图

维持阻塞结构D触发器

- · 当C=0时
 - Q₂=1, Q₃=1, Q、 \(\overline{Q} \)
 - $-Q4=\overline{D}, Q1=D$
- 触发器为状态 更新作好准备

维持阻塞结构D触发器(续1)

- · C由0变为1时
- · 若Q4=1, Q1=0, 即D=0, 则
 - Q3=0, Q2=1
 - Q3=0,将Q置0, 封锁G4,随后D 的变化不影响Q

维持阻塞结构D触发器(续2)

- · C由0变为1时
- · 若Q4=0, Q1=1, 即D=1, 则
 - Q3=1, Q2=0
 - Q2=0,将Q置1, 封锁G1、G3,维持Q,阻止随后D 的变化影响Q

维持阻塞结构D触发器(续2)

• 综合:

- 当C=0时:
 - 触发器保持原先 状态,为更新做 好准备
- 当C从0变1时:
 - Q变为D值,且随 后封锁输入端的 更新,保持这个 D值不变
- →上升沿有效D触发器

触发器逻辑功能描述

- 在时钟信号有效边沿(上升沿或下降沿),触发器 根据输入信号更新状态
 - 现态: 时钟信号有效边沿前触发器的状态,记为Qⁿ
 - 次态: 时钟信号有效边沿后触发器的状态,记为 Q^{n+1}
- 触发器的逻辑功能是指次态与现态和输入信号之间的逻辑关系
 - 描述方法: 特性表(真值表)、特性方程(逻辑表达式)、 状态图(状态转换图)、硬件描述语言(HDL)
- · 触发器按逻辑功能分类: D触发器、SR触发器、 T触发器、JK触发器

D触发器

特性表

D	Qn	Q ⁿ⁺¹	说明
0	0	0	注 0
0	1	0	清0
1	0	1	置1
1	1	1	

特性方程 $Q^{n+1} = D$

T触发器

特性表

T	Qn	Qn+1	说明
0	0	0	但怯
0	1	1	保持
1	0	1	采功大士
1	1	0	翻转

特性方程

$$Q^{n+1} = \overline{T}Q^n + T\overline{Q^n}$$
$$= T \oplus Q^n$$

JK触发器

特性表

J	K	Qn	Qn+1	说明
0	0	0	0	保持
0	0	1	1	
0	1	0	0	(生の
0	1	1	0	清0
1	0	0	1	置1
1	0	1	1	
1	1	0	1	翻转
1	1	1	0	1 11 11 11 11 11 11 11 11 11 11 11 11 1

特性方程
$$Q^{n+1} = J \overline{Q}^n + \overline{K}Q^n$$

JK触发器 (续)

特性表

J	K	Qn	Q ⁿ⁺¹	说明
0	0	0	0	保持
0	0	1	1	
0	1	0	0	上
0	1	1	0	清0
1	0	0	1	罢 1
1	0	1	1	置1
1	1	0	1	翻转
1	1	1	0	1 11 11 11 11 11 11 11 11 11 11 11 11 1

示例-JK触发器波形图

• 画出输出波形(设初态为0)

触发器逻辑功能转换

- 利用某种功能触发器来构造不同功能的触发器
 - 根据两种触发器的特性方程,求解转换电路的逻辑 函数式

D触发器构成JK触发器

$$\mathbf{Q}^{n+1} = \mathbf{D}$$

$$Q^{n+1} = J \ \overline{Q^n} + \overline{K} \ Q^n$$

$$\mathbf{D} = \mathbf{J} \; \overline{\mathbf{Q}}^{\mathbf{n}} + \overline{\mathbf{K}} \; \mathbf{Q}^{\mathbf{n}}$$

D触发器构成T触发器

$$D = T\overline{Q^n} + \overline{T}Q^n = T \oplus Q^n$$

JK触发器构成其他触发器

·构成D触发器

$$- J=D, K=\overline{D}$$

$$\mathbf{Q}^{\mathbf{n}+1} = \mathbf{D}$$

· 构成T触发器

$$- J = K = T \qquad \mathbf{Q}^{n+1} = \mathbf{T} \oplus \mathbf{Q}^n$$

JK触发器特性表

J	K	Qn	Q ⁿ⁺¹	说明
0	0	0	0	伊怯
0	0	1	1	保持
0	1	0	0	(生の
0	1	1	0	清0
1	0	0	1	置1
1	0	1	1	
1	1	0	1	采动龙土
1	1	1	0	翻转

$$\mathbf{Q}^{n+1} = \mathbf{J} \ \overline{\mathbf{Q}^n} + \overline{\mathbf{K}} \mathbf{Q}^n$$

锁存器和触发器的动态特性

- 保证锁存器和触发器可靠地更新状态,输入信号 与时钟信号之间的时间要求
 - 建立时间t_{su (setup)}: 要求输入信号在时钟有效边沿到来 之前,提前一段时间做好准备
 - 保持时间t_{h (hold)}: 在时钟有效边沿到达后,需要输入信号再保持一段时间
- 锁存器和触发器输出信号对时钟信号响应的延迟 时间
 - 传输延迟时间tpd (propagation delay)

D触发器定时波形图

示例—分析D触发器动态参数

· 设所有门的传输 延迟都等于ta, 忽略导线延迟, 求:

tsu, th, tpd

$$tsu = 2td$$

th = td

tpd = 3td

D锁存器定时波形图

