@ EPODOC / EPO

PN - JP10079979 A 19980324

PD - 1998-03-24

PR - JP19960232196 19960902

OPD - 1996-09-02

TI - CODE DIVISION MULTIPLE ACCESSING METHOD AND DEVICE

IN - KUDO EISUKE; HATTORI TAKESHI; NAKASE HIROYUKI; OGOSE SHIGEAKI

PA - NIPPON TELEGRAPH & TELEPHONE

ICO - T04J13/00B4

- H04Q7/38; H04L12/56; H04L12/50; H04Q7/22; H04Q7/24; H04Q7/26; H04Q7/30

._ ...

CDMA method used in multiplex wireless communication - involves assigning different spreading codes for traffic channels of line-switching and packet-switching wireless communication

PR - JP19960232196 19960902

PN - JP10079979 A 19980324 DW199822 H04Q7/38 009pp

PA - (NITE) NIPPON TELEGRAPH & TELEPHONE CORP

IC - H04L12/50 ;H04L12/56 ;H04Q7/22 ;H04Q7/24 ;H04Q7/26 ;H04Q7/30 ;H04Q7/38

AB - J10079979 The method involves performing wireless communication using spread spectrum.
Different spreading code are assigned for traffic channels of line switching and packet-switching wireless communications, in a control channel. The proportion of spreading code for traffic channels, is varied depending on use situation of network.

- ADVANTAGE - Attains line switching and packet switching service, simultaneously.

- (Dwg. 1/10)

OPD - 1996-09-02

AN - 1998-247858 [22]

@PAJ/JPO

PN - JP10079979 A 19980324

PD - 1998-03-24

AP - JP19960232196 19960902

IN - NAKASE HIROYUKI; OGOSE SHIGEAKI; KUDO EISUKE; HATTORI TAKESHI

PA - NIPPON TELEGR & TELEPH CORP & It; NTT & gt;

TI - CODE DIVISION MULTIPLE ACCESSING METHOD AND DEVICE

 PROBLEM TO BE SOLVED: To simultaneously enable service of both radio communications by separately allocating plural diffusion codes to each diffusion code for a control channel and for a traffic channel of radio communications of line switching and packet switching among used diffusion codes.

SOLUTION: A diffusion code controller 44 allocates diffusion codes of communication form series to traffic channels for a line switching communication and a packet switching communication in accordance with a communication request, stores them in each allocation setting storage device 47 and 48, changes the number of allocations in accordance with a request from a radio equipment 43 and secures a traffic channel of each radio communication. In allocation of diffusion codes to a control channel, when each communication form is separately controlled, a different control diffusion code is allocated to each communication form, and when a communication request that simultaneously uses both communication forms occurs, a diffusion code which commonly controls both is allocated. Thereby, both communication forms are simultaneously realized and also communication disability that is caused by the lack of diffusion codes can be avoided.

- H04Q7/38 ;H04L12/56 ;H04L12/50 ;H04Q7/22 ;H04Q7/24 ;H04Q7/26 ;H04Q7/30

none

AB

(19) 日本国特許庁 (J P) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-79979

(43)公開日 平成10年(1998) 3月24日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
H04Q 7/38			H04B 7/	/26 1 0 9 M
H04L 12/56				109N
12/50		9744-5K	H04L 11/	/20 1 0 2 Z
H 0 4 Q 7/22		9744-5K		1 0 3 Z
7/24			H04Q 7/	/04 A
		審査請求	未請求 請求項の	D数9 OL (全 9 頁) 最終頁に続く
(21)出願番号	特顧平8-232196		(71)出願人 (000004226
				日本電信電話株式会社
(22)出願日	平成8年(1996)9	月2日]	東京都新宿区西新宿三丁目19番2号
			(72)発明者	中瀬(博之)
]	東京都新宿区西新宿三丁目19番2号 日本
			1	電信電話株式会社内
			(72)発明者	生越 重章
			1	東京都新宿区西新宿三丁目19番2号 日本
			1	電信電話株式会社内
			(72)発明者	工藤 栄亮
]	東京都新宿区西新宿三丁目19番2号 日本
			1	電信電話株式会社内
			(74)代理人	弁理士 井出 直孝 (外1名)
				最終頁に続く

(54) 【発明の名称】 符号分割多重アクセス方法および装置

(57)【要約】

【課題】 回線交換無線通信とパケット交換無線通信と を同時にサービスできるようにする。

【解決手段】 スペクトル拡散通信における拡散符号 を、回線交換無線通信のトラフィックチャネルに用いる ものと、パケット交換無線通信のトラフィックチャネル に用いるものと、制御チャネルに用いるものとで区別し て使用する。

【特許請求の範囲】

【請求項1】 拡散符号によるスペクトル拡散を行って 多重無線通信を行う符号分割多重アクセス方法におい て

回線交換無線通信のトラフィックチャネルと、パケット 交換無線通信のトラフィックチャネルと、制御チャネル とに、異なる拡散符号を割り当てることを特徴とする符 号分割多重アクセス方法。

【請求項2】 回線交換無線通信のトラフィックチャネルに用いる拡散符号の数と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号の数とをそれぞれの無線通信で使用しているチャネル数の状況に応じて適応的に変更する請求項1記載の符号分割多重アクセス方法。

【請求項3】 回線交換無線通信のトラフィックチャネルに用いる拡散符号と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号とに、それぞれ他方のトラフィックチャネルに使用されることのない最低限の数を確保する請求項2記載の符号分割多重アクセス方法。

【請求項4】 回線交換無線通信の制御チャネルとパケット交換無線通信の制御チャネルとで異なる拡散符号を割り当てるとともに、回線交換無線通信とパケット交換無線通信との双方を同時に利用するための制御チャネルにさらに別の拡散符号を割り当てる請求項1記載の符号分割多重アクセス方法。

【請求項5】 拡散符号によるスペクトル拡散を行って 移動端末との間の多重無線通信を行う基地局を備えた符 号分割多重アクセス装置において、

前記基地局は、

回線交換網に接続される第一のインターフェース手段

パケット交換網に接続される第二のインターフェース手段と、

回線交換無線通信のトラフィックチャネルと、パケット 交換無線通信のトラフィックチャネルと、制御チャネル とで、移動端末との通信に用いる拡散符号を切り替える 手段とを含むことを特徴とする符号分割多重アクセス装 置

【請求項6】 前記拡散符号を切り替える手段は、回線交換無線通信のトラフィックチャネルに用いる拡散符号の数と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号の数とをそれぞれの無線通信で使用しているチャネル数の状況に応じて適応的に変更する手段を含む請求項5記載の符号分割多重アクセス装置。

【請求項7】 前記適応的に変更する手段は、回線交換無線通信のトラフィックチャネルに用いる拡散符号と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号とに、それぞれ他方のトラフィックチャネルに使用されることのない最低限の数を確保する手段を含む

請求項6記載の符号分割多重アクセス装置。

【請求項8】 前記拡散符号を切り替える手段は、回線交換無線通信の制御チャネルと、パケット交換無線通信の制御チャネルと、回線交換無線通信とパケット交換無線通信との双方を同時に利用するための制御チャネルとで拡散符号を切り替える手段を含む請求項5記載の符号分割多重アクセス装置。

【請求項9】 拡散符号によるスペクトル拡散を行って 基地局との間の通信を行う移動端末装置において、

回線交換無線通信のトラフィックチャネルと、パケット 交換無線通信のトラフィックチャネルと、制御チャネル とについて、前記基地局から通知された拡散符号を用い て共通のスペクトル拡散処理を行う手段を含むことを特 徴とする移動端末装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はスペクトル拡散を用いた無線通信に関する。

[0002]

【従来の技術】図9は従来例の無線通信アクセス装置を 示すブロック構成図であり、回線交換無線通信とパケッ ト交換無線通信との双方のサービスを提供するための装 置構成を示す。この装置は、回線交換無線通信用移動端 末91が無線接続される回線交換無線通信用基地局93 と、パケット交換無線通信用移動端末92が無線接続さ れるパケット交換無線通信用基地局94とを備え、回線 交換無線通信用基地局93は回線交換機95を介して固 定通信網97に接続され、パケット交換無線通信用基地 局94はネットワークゲートウェイ96を介して固定通 信網97に接続される。そして、回線交換無線通信のト ラフィックは、上り回線は回線交換無線通信用移動端末 91から回線交換無線通信用基地局93および回線交換 機95を介して固定通信網97ヘアクセスし、下り回線 は固定通信網97から回線交換機95および回線交換無 線通信用基地局93を介して回線交換無線通信用移動端 末91ヘアクセスする。また、パケット無線通信のトラ フィックは、上り回線はパケット交換無線通信用移動端 末92からパケット交換無線通信用基地局94およびネ ットワークゲートウェイ96を介して固定通信網97へ アクセスし、下り回線は固定通信網97からネットワー クゲートウェイ96およびパケット交換無線通信用基地 局94を介してパケット交換無線通信用移動端末92へ アクセスする。

【0003】図10はスペクトル拡散通信による符号分割多重アクセスを行う場合の従来の拡散符号割当を説明する図である。符号分割多重アクセスを行う場合、従来は、回線交換無線通信のトラフィックチャネルと、パケット交換通信のトラフィックチャネルとで、独立に行われていた。したがって、割当可能な拡散符号は、制御チャネル用拡散符号と、回線交換無線通信のトラフィック

チャネル用またはパケット交換無線通信のトラフィック チャネル用の拡散符号とに分類される。そして、移動端 末から、あるいは移動端末への通信要求が発生すると、 割当可能な拡散符号の中から、要求のあった通信に対し て一つの拡散符号を割り当てる。割当可能な拡散符号が 存在しない場合は、通信不能となる。

[0004]

【発明が解決しようとする課題】しかし、従来は回線交換通信網とパケット交換通信網とで独立に符号分割多重アクセスが行われるため、同時に双方の通信を実現できず、また、基地局を別々に設け、異なる移動端末を使用する必要があった。また、割当可能な拡散符号数以上の通信要求が発生した場合に、割り当てる拡散符号が存在しないために通信不能に陥ることがあった。

【0005】本発明は、このような課題を解決し、回線 交換通信とパケット交換通信とのいずれでも符号分割多 重通信を行うことができる符号分割多重アクセス方法お よび装置を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明の第一の観点は符号分割多重アクセス方法であり、回線交換無線通信のトラフィックチャネルと、パケット交換無線通信のトラフィックチャネルと、制御チャネルとに、異なる拡散符号を割り当てることを特徴とする。これにより、回線交換無線通信とパケット交換無線通信とを同時にサービス可能となる。

【0007】回線交換無線通信のトラフィックチャネルに用いる拡散符号の数と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号の数とをそれぞれの無線通信で使用しているチャネル数の状況に応じて適応的に変更することが望ましい。これにより、回線交換無線通信あるいはパケット交換無線通信の一方で通常は割当可能な拡散符号数以上の通信要求が発生した場合でも、他方の系列の拡散符号を融通することで、通信不能に陥ることを防止することができる。この場合、回線交換無線通信のトラフィックチャネルに用いる拡散符号と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号とに、それぞれ他方のトラフィックチャネルに使用されることのない最低限の数を確保することが望ましい

【0008】回線交換無線通信の制御チャネルとパケット交換無線通信の制御チャネルとで異なる拡散符号を割り当てるとともに、回線交換無線通信とパケット交換無線通信との双方を同時に利用するための制御チャネルに、さらに別の拡散符号を割り当てることができる。

【0009】本発明の第二の観点は符号分割多重アクセス装置であり、基地局に、回線交換網に接続される第一のインターフェース手段と、パケット交換網に接続される第二のインターフェース手段と、回線交換無線通信のトラフィックチャネルと、パケット交換無線通信のトラ

フィックチャネルと、制御チャネルとで、移動端末との 通信に用いる拡散符号を切り替える手段とを備えたこと を特徴とする。

【0010】基地局と無線接続される移動端末としては、回線交換無線通信専用のもの、あるいはパケット交換無線通信専用のものを用いることもできるが、双方の通信が可能なものを用いることもできる。すなわち、本発明の第三の観点は移動端末装置であり、回線交換無線通信のトラフィックチャネルと、パケット交換無線通信のトラフィックチャネルと、制御チャネルとについて、基地局から通知された拡散符号を用いて共通のスペクトル拡散処理を行う手段を備えたことを特徴とする。

[0011]

【発明の実施の形態】図1は本発明の実施形態を示す図 であり、符号分割多重アクセス装置のブロック構成を示 す。この装置は、拡散符号によるスペクトル拡散を行っ て移動端末11~13との間の多重無線通信を行う基地 局14を備える。基地局14は、回線交換機15を介し て固定通信網17に接続され、また、ネットワークゲー トウェイ16を介して固定通信網17に接続される。移 動端末11~13は、通信形態を回線交換無線通信の み、パケット交換無線通信のみ、あるいは回線交換無線 通信およびパケット交換無線通信両用と、アクセスする 通信形態のいずれかに属し、通信形態に応じてトラフィ ックチャネル用拡散符号と制御チャネル用拡散符号とが 基地局14から通知されて通信を行う。ここでは、移動 端末11は回線交換無線通信用であり、移動端末12は 回線交換無線通信とパケット交換無線通信との双方に利 用でき、移動端末13はパケット交換無線通信用である とする。

【0012】移動端末11~13で行うスペクトル拡散 処理については、回線交換無線通信のトラフィックチャネルと、パケット交換無線通信のトラフィックチャネル と、制御チャネルとで違いはない。したがって、回線交換無線通信とパケット交換無線通信との双方に対応した移動端末12では、各チャネルについて、基地局14から通知された拡散符号を用いて共通のスペクトル拡散処理を行う。

【0013】図2は拡散符号割当を説明する図である。使用する拡散符号N個のうち、制御チャネル用拡散符号 N_c 個を除いた $N-N_c$ 個の拡散符号系列について、回線交換通信用のトラフィックチャネル用に N_{tc} 個、パケット交換通信のトラフィックチャネル用に N_{tp} 個の系列を割り当て、発生した通信要求の通信形態に対応した系列の拡散符号を割り当てる。

【0014】図3は拡散符号の適応割当を説明する図である。通常の通信状態では、図2に示した割当を行う。 そして、回線交換無線通信およびパケット交換無線通信 のそれぞれに使用しているトラフィックチャネル数の状態により、それぞれのトラフィックチャネルに割り当て ることのできる拡散符号数を適応的に設定する。このとき、回線交換無線通信のトラフィックチャネルに用いる拡散符号と、パケット交換無線通信のトラフィックチャネルに用いる拡散符号とに、それぞれ他方のトラフィックチャネルに使用されることのない最低限の数を確保することが望ましい。

【0015】図4は基地局の構成例を示すブロック図である。この基地局は、回線交換機(回線交換網)に接続される回線交換網インターフェース41と、ネットワークゲートウェイ(パケット交換網)に接続されるパケット交換網インターフェース42と、移動端末との間で符号分割多重通信を行う無線装置43と、この無線装置43が用いる拡散符号を制御し、回線交換無線通信のトラフィックチャネルとパケット交換無線通信のトラフィックチャネルと制御チャネルとで拡散符号の系列を切り替える拡散符号制御装置44、トラフィックカウンタ45、46および拡散符号割当設定値記憶装置47、48と、この基地局の動作を制御する基地局制御装置49とを備える。

【0016】基地局制御装置49は、回線交換網インターフェース41およびパケット交換網インターフェース42を通じて固定通信網との通信回線制御を行い、無線装置43を通じて無線通信網の回線制御を行う。基地局制御装置49はまた、無線装置43からの通信接続要求、通信切断要求に応じて、拡散符号制御装置44に拡散符号の割当、解放の手続きを要求する。

【0017】無線装置43は、割り当てられた拡散符号を用いて、移動端末との通信を行う。

【0018】拡散符号制御装置44は、無線装置43からの通信要求に対して拡散符号の割り当てを行い、回線交換無線通信に対する割当数をトラフィックカウンタ45によりカウントし、パケット交換無線通信に対する割当数をトラフィックカウンタ46により計数する。また、拡散符号割当設定値記憶装置47には回線交換無線通信に対する割当設定値記憶装置48にはパケット交換無線通信に対する割当設定値が記憶される。拡散符号制御装置44はまた、トラフィックカウンタ45、46の計数値に基づいて、拡散符号割当設定値記憶装置47、48に記憶された値を変更し、回線交換無線通信のトラフィックチャネル用拡散符号とパケット交換無線通信のトラフィックチャネル用拡散符号の割合を変化させる。例えば、使用している回線交換通

信のトラフィックチャネル数、すなわちトラフィックカ ウンタ45の計数値が、割り当てられたトラフィックチ ャネルの拡散符号の数と等しくなった場合には、パケッ ト交換無線通信のトラフィックチャネル用拡散符号の数 を減じて、回線交換無線通信のトラフィックチャネル用 拡散符号の数を増加することにより、回線交換無線通信 のトラフィックチャネルを確保する。使用しているパケ ット交換無線通信のトラフィック数、すなわちトラフィ ックカウンタ46の計数値が、割り当てられトラフィッ クチャネルの拡散符号の数と等しくなった場合にも、同 様に、回線交換無線通信のトラフィックチャネル用拡散 符号の数を減じて、パケット交換無線通信のトラフィッ クチャネル用拡散符号の数を増加することにより、パケ ット交換無線通信のトラフィックチャネルを確保する。 【0019】表1に拡散符号の具体的な割当例を示す。 この表において、「チャネル数」は実際に使用している チャネル数であり、図4に示したトラフィックカウンタ 45、46の計数値を表す。また、「割当設定値」は使 用可能として割り当てられた拡散符号の系列数であり、 図4に示した拡散符号割当設定値記憶装置47、48に 記憶される値を表す。ここで、拡散符号の集合Aとし て、直交m系列(64チップ、系列数64個)を用い る。制御チャネル用拡散符号として8系列を用いると し、初期状態では、回線交換無線通信のトラフィックチ ャネル用拡散符号として16系列、回線交換無線通信の トラフィックチャネルとして40系列を割り当てる。こ こで、回線交換無線通信のトラフィックチャネルとして 6チャネル、パケット交換無線通信のトラフィックチャ ネルとして38チャネル使用しているとする。この状態 で、回線交換無線通信のトラフィックチャネルが2チャ ネル終了したとする。このとき、回線交換無線通信のト ラフィックチャネル数は4となる。次に、パケット交換 無線通信のトラフィックが2チャネル増加したとする。 この場合には、パケット交換無線通信のトラフィックチ ャネル数は40になる。このような場合、拡散符号制御 装置44は、回線交換無線通信に割り当てる拡散符号系 列数を15に、パケット交換無線通信に割り当てる拡散 符号系列数を41に変更し、それぞれ拡散符号割当設定 値記憶装置47、48に記憶する。

[0020]

【表1】

	回線交換無線通信		パケット交換無線通信	
	チャネル数	割当設定值	チャネル数	割当設定值
初期値	6	1 6	3 8	4 0
回線交換2ch減	4	16	38	40
パケット交換 2ch増	4	16	4 0	4 0
割当設定値変更	4	15	4 0	4 1

【0021】図5は制御チャネルに対する拡散符号割当を説明する図である。回線交換無線通信およびパケット交換無線通信という別々の通信形態を制御する場合には、それぞれの通信形態に対して別々の制御チャネル用拡散符号を割り当てる。また、回線交換無線通信とパケット交換無線通信とを同時に使用する通信要求が発生した場合には、回線交換無線通信とパケット交換無線通信とを共通に制御する制御チャネル用拡散符号を割り当てる。

【0022】図6は本発明における通信方式のレイヤ構 成を示す。レイヤ1では、物理伝送媒体の維持管理を行 う。回線交換無線通信およびパケット交換無線通信の双 方の共通の項目として、基本伝送速度、変調方式、同期 方式、占有帯域幅、移動局送信電力制御などの規定を行 う。さらに、回線交換無線通信ではVOX制御を、パケ ット交換無線通信では、パケットのトラフィックに応じ た伝送速度の割当と、チャネル割当に伴う拡散符号割当 および管理とを行う。レイヤ2では、ノード間の論理リ ンクの設定維持を行う。回線交換無線通信およびパケッ ト交換無線通信双方共通の項目として、移動局の論理的 なアドレス制御、通信情報の誤り検出および制御を行 う。さらに、パケット交換無線通信では、送信パケット の信号順序の確保、および誤り検出に伴う再送制御を行 う。レイヤ3で、無線管理、移動管理、呼制御を各モジ ュール化して規定する。無線管理および移動管理は、回 線交換およびパケット交換ともに共通で行う。無線管理 では、在圏セル選択、制御回線の維持、無線回線の障害 および性能の管理、および秘匿の設定を行う。移動管理 では、移動局の位置管理、端末認証、移動局活性化情報 の登録制御を行う。呼制御としては、回線交換無線通信 では移動局発信制御、移動局着信制御、および付加サー ビス制御を行う。パケット交換無線通信では、移動局バ ケット発信制御およびブロードキャストパケット制御を 行う。

【0023】図7は回線交換無線通信を行う場合の制御チャネルシーケンスを示し、図8はパケット交換無線通信を行う場合の制御チャネルシーケンスを示す。ここでは、回線交換無線通信とパケット交換無線通信の制御チャネルを分離し、それぞれに別の制御チャネルを割り当てるものとする。回線交換無線通信の制御チャネルシーケンスでは、移動端末が発呼を行う場合もしくは着呼す

る場合のそれぞれの呼毎に、リンクチャネル確立、呼制 御、無線管理および移動管理の手続きを行う。リンクチ ャネル確立、符号同期等は制御チャネルで行い、呼制 御、無線管理および移動管理を各トラフィックチャネル を用いることにより、制御チャネルを解放する。一方、 パケット交換無線通信の制御チャネルシーケンスでは、 移動端末が通信可能エリア内に入ったときにリンクチャ ネル確立、呼制御、無線管理および移動管理の手続きを 呼毎に割り当てられた制御チャネルを用いて行う。パケ ット送出時には、パケット送出要求および要求応答の手 続きみのを交わした後、パケット送出を行うことによ り、パケット送信時のリンクチャネル確立に伴う伝送遅 延を大幅に低減する。回線交換無線通信とパケット交換 無線通信とを同時に行う場合には、パケット交換無線通 信の制御チャネルシーケンスを用い、制御情報は共有す る。

[0024]

【発明の効果】以上説明したように、本発明によれば、使用する拡散符号のうち、制御チャネル用拡散符号と、回線交換無線通信のトラィックチャネル用拡散符号と、パケット交換無線通信のトラフィックチャネル用拡散符号とのそれぞれに複数の拡散符号を割り当てることにより、双方の通信形態を同時に実現させることができる。さらに、回線の使用状況に応じて回線交換無線通信のトラフィックチャネル用拡散符号とパケット交換無線通信のトラフィックチャネル用拡散符号の割合を変化させることにより、回線交換もしくはパケット交換どちらかの通信要求が通常割り当てられた拡散符号の数以上発生した場合でも、通信不可能となることがない。

【図面の簡単な説明】

- 【図1】本発明の実施形態を示すブロック構成図。
- 【図2】拡散符号割当を説明する図。
- 【図3】拡散符号の適応割当を説明する図。
- 【図4】基地局のブロック構成図。
- 【図5】制御チャネルに対する拡散符号割当を説明する 図。
- 【図6】本発明における通信方式のレイヤ構成を示す 図。
- 【図7】回線交換無線通信を行う場合の制御チャネルシーケンスを示す図。
- 【図8】パケット交換無線通信を行う場合の制御チャネ

ルシーケンスを示す図。

【図9】従来例の無線通信アクセス装置を示すブロック 構成図。

【図10】スペクトル拡散通信による符号分割多重アクセスを行う場合の従来の拡散符号割当を説明する図。

【符号の説明】

- 11~13 移動端末
- 14 基地局
- 15、95 回線交換機
- 16、96 ネットワークゲートウェイ
- 17、97 固定通信網

- 41 回線交換網インターフェース
- 42 パケット交換網インターフェース
- 43 無線装置
- 44 拡散符号制御装置
- 45、46 トラフィックカウンタ
- 47、48 拡散符号割当設定値記憶装置
- 49 基地局制御装置
- 91 回線交換無線通信用移動端末
- 92 パケット交換無線通信用移動端末
- 93 回線交換無線通信用基地局
- 94 パケット交換無線通信用基地局

【図1】

【図3】

【図4】

【図6】

	回線交換	パケット交換	
レイヤ3 呼制御 : 呼の設定保持	移動局発信制御 移動局発信制御 付加サービス制御	移動局パケット送出制御 無線 PPP の確立 ブロードキャストパケット制御	
無線管理:無線回線の設定維持	在国セル・セクタ選択 情報回線形定・維持・特別 野別回線の維持・特別 無限回線の障害・性能管理 を短の配定		
移動管理:移動性の保証	位置管理 反死 移動局活性(・ : 情報の登録制御	
レイヤ 2 ノード間の論理的リンク の設定維持	アドレ 誤りを	・大制御 僧号順序性の確保 出 再送制御	
ノイヤ1	伝送速度·変調方式 品質管理·送信出力	・同期・干砂制御 部御・占有帯域幅の設定	
物理伝送媒体の維持管理	VOX 都御	伝送速度割当制御 拡散符号割当・管理	

【図5】

【図7】 【図8】

【図9】

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

H O 4 Q 7/26 7/30

(72) 発明者 服部 武

東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内