Questions

- Questions on Piazza?
 - Please provide your feedback along with questions
- Question for You!

Why use Python for studying data instead of another programming language?

Questions

- Questions on Piazza?
 - Please provide your feedback along with questions
- Question for You!

Why use Python for studying data instead of another programming language?

DS-UA 112 Introduction to Data Science

Week 5: Lecture 1

Tables - Joining Datasets to Link Records

How can we connect the rows of different datasets using the values in the columns?

DS-UA 112 Introduction to Data Science

Week 5: Lecture 1

Tables - Joining Datasets to Link Records

Announcements

- ► Please check Week 5 agenda on NYU Classes
 - ►Homework 2
 - ►Lab 4
 - ►Survey 2
- ► Remember to post to Piazza

Review

- Operations on Tables
 - Inspecting
 - Sorting
 - Summarizing
- Grouping and Pivoting
 - ► Find the most popular name in New York
 - ▶ Find all names that start with E.
 - Sort names by occurrence of dr and ea
 - ► Find the name whose popularity has changed the most.
 - ► Count the number of female and male babies born in each year

Goals

- Apply
- ▶ Group
 - ▶ agg
 - **▶** size
 - **▶** filter
- ▶ Pivot
 - ► stack, unstack

Review

How can we change the granularity of data in a table?

stack will combine the row labels and columns labels

Review

Review

Agenda

- ▶ Compressing Files
- Joining
 - ▶ Inner, Outer
 - ▶ Left, Right
 - ► Cross
- Properties of Data
 - ► Qualitative or Quantitative
 - Scope
 - **▶** Granularity
 - **▶** Temporality
 - ► Faithfulness

Discussed in Lab 4

References

► Nolan, Lau, Gonzalez (Chapter 5,6)

Cross Join

- Cross Join pairs each of the rows in the tables regardless of the entries in the columns.
- ▶ All pairs of rows appear in the Join.

Inner Join

- Inner Join pairs each of the rows in the tables depending on the entries in specific columns.
- ► The entries of columns must match for the pair to appear in the Join.

Left Join

- ▶ Left Join pairs each of the rows in the left table to rows in the right table depending on the entries in specific columns.
- ► The entries of columns in the right table must match for the pair to appear in the Join.

1	W	null	null
2	Х	Α	Х
3	X	Α	Χ
2	Х	В	Х
3	Х	В	Х
4	Υ	С	Υ

Right Join

- ▶ Right Join pairs each of the rows in the right table to rows in the left table depending on the entries in specific columns.
- ▶ The entries of columns in the left table must match for the pair to appear in the Join.

Outer Join

- Outer Join combines Left Join and Right Join
- Note that Outer Join does not contain duplicate entries for the matching rows, that is, the rows contained in the Inner Join.

Computational Data Types

- We store data as variables with different types.
- While Python does not require us to specify the types, each variable has a type.
- We should know about types because they determine available operations on the variable

Example	Data Type
x = "Hello World"	str
x = 20	int
x = 20.5	float
x = {"name" : "John", "age" : 36}	dict
x = {"apple", "banana", "cherry"}	set
x = ["apple", "banana", "cherry"]	list
x = ("apple", "banana", "cherry")	tuple
x = True	bool

٦8

- We study data with different properties.
- Dividing these properties into types helps us to communicate the information behind the data
- We split between properties involving number for calculations and nonnumbers for labels

Discrete

- We can count discrete variables because they can take finitely many values
- ► For example 1,2,3

Continuous

- We cannot count continuous variables because they can take infinitely many values
- ► For example 1.54, 2.43, 3.14

Nominal

- We use nominal data for labels to distinguish between different categories
- ► For example blue, green

Ordinal

- If we can rank nominal data, then we have an order to the variables
- ► For example high, medium, low

NYC Police Reports

Data Types

Descripti	Column
Randomly generated persistent ID for each complain	CMPLNT_NUM
Exact date of occurrence for the reported event (or starting date of occurrence, if CMPLNT_TO_DT exis	CMPLNT_FR_DT
Exact time of occurrence for the reported event (or starting time of occurrence, if CMPLNT_TO_TM exis	CMPLNT_FR_TM
Ending date of occurrence for the reported event, if exact time of occurrence is unknown	CMPLNT_TO_DT
Ending time of occurrence for the reported event, if exact time of occurrence is unknown	CMPLNT_TO_TM
Date event was reported to police	RPT_DT
Three digit offense classification co	KY_CD
Description of offense corresponding with key co	OFNS_DESC
Three digit internal classification code (more granular than Key Cod	PD_CD
Description of internal classification corresponding with PD code (more granular than Offense Description	PD_DESC
Indicator of whether crime was successfully completed or attempted, but failed or was interrupted premature	CRM_ATPT_CPTD_CD
Level of offense: felony, misdemeanor, violation	LAW_CAT_CD
Jurisdiction responsible for incident. Either internal, like Police, Transit, and Housing; or external, like Correction, Port Authority, etc.	JURIS_DESC
The name of the borough in which the incident occurr	BORO_NM
The precinct in which the incident occurr	ADDR_PCT_CD
Specific location of occurrence in or around the premises; inside, opposite of, front of, rear	OC_OF_OCCUR_DESC
Specific description of premises; grocery store, residence, street, e	PREM_TYP_DESC
Name of NYC park, playground or greenspace of occurrence, if applicable (state parks are not include	PARKS_NM
Name of NYCHA housing development of occurrence, if applicate	HADEVELOPT
X-coordinate for New York State Plane Coordinate System, Long Island Zone, NAD 83, units feet (FIPS 310	X_COORD_CD
Y-coordinate for New York State Plane Coordinate System, Long Island Zone, NAD 83, units feet (FIPS 310	Y_COORD_CD
Latitude coordinate for Global Coordinate System, WGS 1984, decimal degrees (EPSG 432	Latitude
Longitude coordinate for Global Coordinate System, WGS 1984, decimal degrees (EPSG 432	Longitude

- ▶ Granularity
 - ► Amount of detail in the dataset
- Scope
 - ► Coverage of the dataset
- ► Temporality
 - ▶ Date and time of the information and the collection of information
- ► Faithfulness
 - Accuracy of the information

Summary

- Compressing Files
- Joining
 - ► Inner, Outer
 - ▶ Left, Right
 - ▶ Cross
- Properties of Data
 - ► Qualitative or Quantitative
 - ▶ Scope
 - **▶** Granularity
 - **▶** Temporality
 - ► Faithfulness

Goals

- ▶ Zip
- ▶ Merge
- ▶ Data Types
- DescribingTables

Questions

- Questions on Piazza?
 - Please provide your feedback along with questions
- Question for You!

What aspects of charts are most understandable to you?

Questions

- Questions on Piazza?
 - Please provide your feedback along with questions
- Question for You!

What aspects of charts are most understandable to you?

