Problem Vi vill uppskatta u(x,t) numeriskt genom att formulera u som ett väntevärde. Från uppgiftsbeskrivningen vet vi att u(x,t) är täthetsfunktionen hos en slumpvariabel X_t som beskriver positionen hos en partikel vid tiden t. Det vill säga, sannolikheten att X_t ligger i ett område Ω är

$$\mathbb{P}(X_t \in \Omega) = \int_{\Omega} u(x, t) dx.$$

Notationen X_t står för gränsvärdet man får då man låter $\Delta t \to 0$ i slumpvandringen från uppgift 4. Om Ω är tillräckligt liten så kommer högerledet gå mot $u(x,t) \cdot \int_{\Omega} \mathrm{d}x$ där x ligger i Ω . Det vill säga, $\mathbb{P}(X_t \in \Omega)$ kan ses som en uppskattning av u för x som ligger inuti Ω . Om vi låter $\Omega_m, n = 1, 2, \ldots, M$ vara en diskretisering av någon intressant del av \mathbb{R}^2 (exempelvis ett rutnät, där Ω_m är enstaka celler), kan vi skriva

$$\overline{u}_m(t) := \int_{\Omega_m} u(x, t) dx = \mathbb{P}(X_t \in \Omega_m), \quad m = 1, 2, \dots, M$$

Ett vanligt trick här är att introducera en indikatorfunktion

$$\mathbb{I}_A(x) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Och skriva om $\overline{u}_m(t)$ som ett väntevärde:

$$\overline{u}_m(t) = \int_{\Omega_m} u(x, t) dx = \int_{\mathbb{R}^2} \mathbb{I}_{\Omega_m}(x) u(x, t) dx = \mathbb{E} \left[\mathbb{I}_{\Omega_m}(X_t) \right].$$

För att kunna beräkna väntevärdet måste vi generera utfall av slumpvariabeln X_t , och för att göra det måste vi diskretisera tiden. Låt $t_n, n = 0, \ldots, N$ vara en sådan diskretisering med $t_0 = 0$. Vi kan då uppskatta $\overline{u}_m(t_n)$ genom att generera K stycken slumpvariabler $X_{t_n}^1, X_{t_n}^2, \ldots, X_{t_n}^K$ och beräkna

$$\overline{u}_{m,n} := \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}_{\Omega_m}(X_{t_n}^k).$$

Man kan tänka på $X_{t_n}^k, k=0,1,\ldots,K$ som en mängd partiklar som släpps ut vid tiden $t_0=0$ med fördelningen g, och vandrar slumpmässigt i \mathbb{R}^2 . Då är $\overline{u}_{m,n}$ andelen av dessa partiklar som befinner sig i Ω_m vid tiden t_n .

Överkurs: importance sampling. Problemet med att uppskatta $\overline{u}_m(t_n)$ enligt ovan, är att om det finns Ω_m där $\mathbb{P}(X_{t_n} \in \Omega_m)$ är väldigt liten, så kommer $\overline{u}_{m,n}$ uppskattas till 0, eftersom inga partiklar hamnar där under simuleringen. För att lösa detta problem kan man initiera partiklarna med en annan fördelning, och korrigera för detta när man beräknar vändevärdet. En sådan metod kallas "importance sampling". För att förklara hur den fungerar börjar vi med att utnyttja en egenskap hos u från uppgiftsbeskrivningen:

$$\int_{\mathbb{R}^2} \mathbb{I}_{\Omega}(x) u(x,t) dx = \int_{\mathbb{R}^2} \mathbb{E} \left[\mathbb{I}_{\Omega}(X_t) \mid X_0 = x \right] g(x) dx$$
$$= \int_{\mathbb{R}^2} \mathbb{E} \left[\frac{g(X_0)}{f(X_0)} \mathbb{I}_{\Omega}(X_t) \middle| X_0 = x \right] f(x) dx.$$

Uttrycket ovan beskriver ett väntevärde som innehåller en annan slumpvariabel Y_t , som följer samma karakteristik som X_t , men är initierad med en fördelning f istället för g. Vi får slutligen

$$\overline{u}_m(t_n) = \int_{\mathbb{R}^2} \mathbb{I}_{\Omega_m}(x) u(x, t_n) dx = \mathbb{E}\left[\frac{g(Y_0)}{f(Y_0)} \mathbb{I}_{\Omega_m}(Y_{t_n}) \right]$$

Och på samma sätt som innan kan vi uppskatta denna kvantitet:

$$\overline{u}_{m,n} = \frac{1}{K} \sum_{k=1}^{K} \frac{g(Y_0^k)}{f(Y_0^k)} \mathbb{I}_{\Omega_m}(Y_{t_n}^k).$$

Vi kan nu välja f så att fler celler Ω_m träffas av partiklarna. Exempelvis, om g är en normalfördelning med standardavvikelse σ , skulle vi kunna låta f vara en normalfördelning med standardavvikelse 2σ för att sprida ut partiklarna lite mer. Denna algoritm kan köras med matlab-funktionen geo_animate_kolmogorov_fwd.mat.