PCT

60/080,665

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/01454 (11) International Publication Number: C07D 471/04, 473/00, A61K 31/505, A1 (43) International Publication Date: 14 January 1999 (14.01.99) 31/535 // (C07D 471/04, 235:00, 221:00) (81) Designated States: AU, BR, CA, CN, CZ, EE, HU, IL, JP, PCT/US98/13913 (21) International Application Number: KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, UA, VN, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (22) International Filing Date: 2 July 1998 (02.07.98) European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (30) Priority Data: 60/051,628 3 July 1997 (03.07.97) US

US

(71) Applicant: DU PONT PHARMACEUTICALS COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

3 April 1998 (03.04.98)

(72) Inventors: WILDE, Richard, G.; 205 Roseman Court, Newark, DE 19711 (US). BAKTHAVATCHALAM, Rajagopal; 125 Berry Drive, Wilmington, DE 19808 (US). BECK, James, P.; 983 Tamara Drive, Smyrna, DE 19977 (US). ARVANITIS, Argyrios, G.; 101 Willow Glen Drive, Kennett Square, PA 19348 (US).

(74) Agent: O'BRIEN, Maureen; Du Pont Pharmaceuticals Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

Published

With international search report.

(54) Title: IMIDAZOPYRIMIDINES AND IMIDAZOPYRIDINES FOR THE TREATMENT OF NEUROLOGICAL DISORDERS

$$R^{2}-X \xrightarrow{N} \stackrel{A}{\longrightarrow} R^{3}$$

(57) Abstract

Corticotropin releasing factor (CRF) antagonists of formula (I) and their use in treating psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in mammals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Słovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic .	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE

IMIDAZOPYRIMIDINES AND IMIDAZOPYRIDINES FOR THE TREATMENT.

OF NEUROLOGICAL DISORDERS

5

FIELD OF THE INVENTION

The present invention relates to novel compounds, compositions, and methods for the treatment of psychiatric disorders and neurological diseases, including major depression, anxiety-related disorders, post-traumatic 10 stress disorder, supranuclear palsy and feeding disorders, as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress. In particular, the present invention relates to novel imidazopyrimidines and imidazopyridines, pharmaceutical compositions containing such compounds and their use in treating psychiatric disorders, neurological diseases, immunological, cardiovascular or heart-related diseases and 20 colonic hypersensitivity associated with psychopathological disturbance and stress.

BACKGROUND OF THE INVENTION

Corticotropin releasing factor (herein referred to as CRF), a 41 amino acid peptide, is the primary physiological 25 regulator of proopiomelanocortin (POMC) -derived peptide secretion from the anterior pituitary gland [J. Rivier et al., Proc. Nat. Acad. Sci. (USA) 80:4851 (1983); W. Vale et al., Science 213:1394 (1981)]. In addition to its endocrine role at the pituitary gland, immunohistochemical 30 localization of CRF has demonstrated that the hormone has a broad extrahypothalamic distribution in the central nervous system and produces a wide spectrum of autonomic, electrophysiological and behavioral effects consistent with a neurotransmitter or neuromodulator role in brain [W. Vale et al., Rec. Prog. Horm. Res. 39:245 (1983); G.F. Koob, Persp. Behav. Med. 2:39 (1985); E.B. De Souza et al., J. Neurosci. 5:3189 (1985)]. There is also evidence that CRF

plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J.E. Blalock, *Physiological Reviews* 69:1 (1989); J.E. Morley, *Life Sci.* 41:527 [1987)].

Clinical data provide evidence that CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders. A role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E.B. De Souza, Hosp. Practice 23:59 (1988)].

15 In affective disorder, or major depression, the concentration of CRF is significantly increased in the cerebral spinal fluid (CSF) of drug-free individuals [C.B. Nemeroff et al., Science 226:1342 (1984); C.M. Banki et 20 al., Am. J. Psychiatry 144:873 (1987); R.D. France et al., Biol. Psychiatry 28:86 (1988); M. Arato et al., Biol Psychiatry 25:355 (1989)]. Furthermore, the density of CRF receptors is significantly decreased in the frontal cortex of suicide victims, consistent with a hypersecretion of CRF 25 [C.B. Nemeroff et al., Arch. Gen. Psychiatry 45:577 (1988)]. In addition, there is a blunted adrenocorticotropin (ACTH) response to CRF (i.v. administered) observed in depressed patients [P.W. Gold et al., Am J. Psychiatry 141:619 (1984); F. Holsboer et al., 30 Psychoneuroendocrinology 9:147 (1984); P.W. Gold et al., New Eng. J. Med. 314:1129 (1986)]. Preclinical studies in rats and non-human primates provide additional support for the hypothesis that hypersecretion of CRF may be involved in the symptoms seen in human depression [R.M. Sapolsky, 35 Arch. Gen. Psychiatry 46:1047 (1989)]. There is preliminary evidence that tricyclic antidepressants can alter CRF

levels and thus modulate the numbers of CRF receptors in

brain [Grigoriadis et al., Neuropsychopharmacology 2:53 (1989)].

It has also been postulated that CRF has a role in the etiology of anxiety-related disorders. CRF produces

5 anxiogenic effects in animals and interactions between benzodiazepine / non-benzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D.R. Britton et al., Life Sci. 31:363 (1982); C.W. Berridge and A.J. Dunn Regul. Peptides 16:83 (1986)].

10 Preliminary studies using the putative CRF receptor antagonist a-helical ovine CRF (9-41) in a variety of behavioral paradigms demonstrate that the antagonist produces "anxiolytic-like" effects that are qualitatively similar to the benzodiazepines [C.W. Berridge and A.J. Dunn 15 Horm. Behav. 21:393 (1987), Brain Research Reviews 15:71 (1990)].

Neurochemical, endocrine and receptor binding studies have all demonstrated interactions between CRF and benzodiazepine anxiolytics, providing further evidence for the involvement of CRF in these disorders. Chlordiazepoxide 20 attenuates the "anxiogenic" effects of CRF in both the conflict test [K.T. Britton et al., Psychopharmacology 86:170 (1985); K.T. Britton et al., Psychopharmacology 94:306 (1988)] and in the acoustic startle test [N.R. Swerdlow et al., Psychopharmacology 88:147 (1986)] in rats. 25 The benzodiazepine receptor antagonist (Ro15-1788), which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dosedependent manner while the benzodiazepine inverse agonist 30 (FG7142) enhanced the actions of CRF [K.T. Britton et al., Psychopharmacology 94:306 (1988)].

It has been further postulated that CRF has a role in immunological, cardiovascular or heart-related diseases such as hypertension, tachycardia and congestive heart

35 failure, stroke, osteoporosis, premature birth, psychosocial dwarfism, stress-induced fever, ulcer, diarrhea, post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress.

4,5

The mechanisms and sites of action through which the standard anxiolytics and antidepressants produce their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the

5 suppression of the CRF hypersecretion that is observed in these disorders. Of particular interest is that preliminary studies examining the effects of a CRF receptor antagonist (a - h elical CRF9-41) in a variety of behavioral paradigms have demonstrated that the CRF antagonist produces

10 "anxiolytic-like" effects qualitatively similar to the benzodiazepines [for review see G.F. Koob and K.T. Britton, In: Corticotropin-Releasing Factor: Basic and Clinical Studies of a Neuropeptide, E.B. De Souza and C.B. Nemeroff eds., CRC Press p221 (1990)].

DuPont Merck PCT application US94/11050 describes corticotropin releasing factor antagonist compounds of the formula:

15

and their use to treat psychiatric disorders and neurological diseases. Included in the description are fused pyridines and pyrimidines of the formula:

25 where: V is CR^{1a} or N; Z is CR^2 or N; A is CR^30 or N; and D is CR^{28} or N.

Other compounds reported to have activity as corticotropin releasing factors are disclosed in WO 95/33750, WO 95/34563 and WO 95/33727.

5

10

SUMMARY OF THE INVENTION

In accordance with one aspect, the present invention provides novel compounds which bind to corticotropin releasing factor receptors, thereby altering the anxiogenic effects of CRF secretion. The compounds of the present invention are useful for the treatment of psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in mammals.

According to another aspect, the present invention provides novel compounds of formula (I) (described below) which are useful as antagonists of the corticotropin releasing factor. The compounds of the present invention exhibit activity as corticotropin releasing factor

25 antagonists and appear to suppress CRF hypersecretion. The present invention also includes pharmaceutical compositions containing such compounds of formula (I), and methods of using such compounds for the suppression of CRF hypersecretion, and/or for the treatment of anxiogenic disorders.

According to yet another aspect, the present invention provides novel compounds, pharmaceutical compositions and methods which may be used in the treatment of affective disorder, anxiety, depression, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal disease, anorexia nervosa or other feeding disorder, drug or alcohol

withdrawal symptoms, drug addiction, inflammatory disorder, fertility problems, disorders, the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, 5 or a disorder selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic, phobias, obsessive-compulsive disorder; posttraumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood 10 disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; fatigue syndrome; stress-induced headache; cancer, human 15 immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases such as ulcers, irritable bowel syndrome, Crohn's disease, spastic 20 colon, diarrhea, and post operative ilius and colonic hypersensitivity associated by psychopathological disturbances or stress; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of 25 inappropriate antidiarrhetic hormone (ADH); obesity; infertility; head traumas; spinal cord trauma; ischemic neuronal damage (e.g., cerebral ischemia such as cerebral hippocampal ischemia); excitotoxic neuronal damage; epilepsy; cardiovascular and hear related disorders 30 including hypertension, tachycardia and congestive heart failure; stroke; immune dysfunctions including stress induced immune dysfunctions (e.g., stress induced fevers, porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, and dysfunctions induced by 35 confinement in chickens, sheering stress in sheep or humananimal interaction related stress in dogs); muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic

lateral sclerosis; chemical dependencies and addictions (e.g., dependencies on alcohol, cocaine, heroin, benzodiazepines, or other drugs); drug and alcohol withdrawal symptoms; osteoporosis; psychosocial dwarfism and hypoglycemia in mammals.

According to a still further aspect of the invention, the compounds provided by this invention (and especially labelled compounds of this invention) are also useful as standards and reagents in determining the ability of a potential pharmaceutical to bind to the CRF receptor.

DETAILED DESCRIPTION OF INVENTION

15

[1] Thus, in a first embodiment, the present invention provides a novel compound of formula I:

$$R^2 - X \longrightarrow N \longrightarrow D$$

20

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

(I)

A is N or $C-R^7$:

25

B is N or C-R8;

provided that at least one of the groups A and B is N;

30 D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a bond;

ζ,

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

10 group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-N(COR^{13a})_2$, $-NR^{15a}CONR^{13a}R^{16a}$, $-NR^{15a}CO_2R^{14b}$, $-CONR^{13a}R^{16a}$, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ - and $-NSO_2R^{14b}$ -, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

20

25

 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-4} alkoxy- C_{1-4} alkyl, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R¹ is other than:

- 30 (a) a cyclohexyl-(CH₂)₂- group;
 - (b) a 3-cyclopropyl-3-methoxypropyl group;
 - (c) an unsubstituted-(alkoxy)methyl group; and,
 - (d) a 1-hydroxyalkyl group;
- 35 also provided that when R^1 alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH_2 ;

S.

R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(0)_nR¹⁸, -COR¹⁷, -OC(0)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

5

- Rlb is heteroaryl and is selected from the group pyridyl, 10 pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indoly1, pyrroly1, oxazoly1, benzofurany1, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, 15 indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, 20 each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl,
- Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(0)_mR^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

Rlc is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a},

-NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO_2R^{14b} , COR^{14b} and SO_2R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl, $-(CH_2)_{1-4}$ -heteroaryl, or $-(CH_2)_{1-4}$ -heterocycle, wherein the aryl, heteroaryl, or heterocycle group is substituted or unsubstituted;

5

10

15

30

 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF3 and C_2F_5 ;

R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;

provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;

R⁹ and R¹⁰ are independently selected at each occurrence 35 from the group H, C₁₋₄ alkyl, C₃₋₆ cycloalkyl-C₁₋₄ alkyl and C₃₋₈ cycloalkyl;

 R^{13} is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;

5

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

10

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;
- 20 R^{14a} is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;

10

 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;

15

25

- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
 - alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
 - R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂,

SH, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C_{1-3} alkyl, C_{1-3} alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF_3 , C_2F_5 , OCF_3 , SO_2Me and acetyl;

5

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, 10 quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 15 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected 20 at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being 25 substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and SO₂R^{14a}; and,

provided that when D is imidazole or triazole, R^1 is other than unsubstituted C_{1-6} linear or branched alkyl or C_{3-6} cycloalkyl.

[2] In a preferred embodiment, the present invention provides a novel compound of formula Ia:

$$R^2 - X \longrightarrow N \longrightarrow R^2$$
(Ia).

- 5 [2a] In a more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
 - X is selected from the group O, $S(0)_n$ and a bond;
- 10 n is 0, 1 or 2;
 - R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;
- 15 R¹ is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;
- 30 provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;
 - R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each

5,5

occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

- 5 R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
 - provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

R² is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

25

30

 R^3 and R^8 are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH_2 , C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;

- \mbox{R}^{9} is independently selected at each occurrence from the group H, $\mbox{C}_{1\text{--}4}$ alkyl and $\mbox{C}_{3\text{--}8}$ cycloalkyl;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

15

20

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 10 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- 25 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in

₹,

1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from 15 the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 20 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 25 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and 30 each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

35 [2b] In an even more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

X is selected from the group O, S and a bond;

 R^1 is substituted C_{1-6} alkyl;

5 R¹ is substituted with 0-1 substituents selected from the group -CN, $-CO_2R^{13a}$, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, and $-NR^{13a}$ -:

10

15

 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

20

- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃), OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- R1b is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each
 heteroaryl being substituted on 0-3 carbon atoms with
 a substituent independently selected at each
 occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂,

 CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,
 OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂
 and each heteroaryl being substituted on any nitrogen

atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 ;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

10

 R^3 and R^8 are independently selected at each occurrence from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

aryl is phenyl substituted with 2-4 substituents

independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

-C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

20

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl,

- 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
- 2,3-dihydrobenzothienyl-S-oxide,
- 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
- OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃,

35 $COCH_3$ and SO_2CH_3 .

PCT/US98/13913 WO 99/01454

[2c] In a still more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

 R^1 is substituted C_1 ;

5

- R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂CH₃, and -CO₂CH₂CH₃;
- R¹ is also substituted with 0-2 substituents independently 10 selected at each occurrence from the group Rla, Rlb, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, $-(CH_2)_3CH_3$, $-CH=CH_2$, - $CH=CH(CH_3)$, -CH=CH, $-CH=C(CH_3)$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃cyclobutyl, cyclopentyl, CH3-cyclopentyl;

15

R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

20

R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl 25 being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 30 0-1 substituents selected from the group CH3, CO2CH3, COCH₃ and SO₂CH₃;

provided that R^1 is other than a -(CH₂)₁₋₄-aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted:

35

 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

ζ,

 R^3 and R^8 are independently selected at each occurrence from the group H and CH_3 ;

aryl is phenyl substituted with 2-4 substituents

independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

-C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

10

15

- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.
- 20 [2d] In a further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
 - R¹ is substituted (cyclopropyl)-C₁ alkyl or (cyclobutyl)-C₁ alkyl;

- R¹ is substituted with 0-1 -CN;
- R¹ is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a}, R^{1b},

 CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
 CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

 F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, and pyrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃.

10

5

[2e] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)-C₁ alkyl

substituted with 1 substituent independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃,

CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

20

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, Cl, F, and CF₃;
- 25 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, and isoxazolyl, each heteroaryl being substituted on 0-2 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, OCH₃, Cl, F, and CF₃.

30

- [2f] In an even further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
- 35 R¹ is selected from the group (cyclopropyl)CH-CH₃, (cyclopropyl)CH-CH₂CH₃, (cyclopropyl)CH-CH₂CH₃, (cyclopropyl)CH-CH₂CH₂CH₃, (cyclopropyl)CH-CH₂CH₂CH₃, (cyclopropyl)₂CH, phenyl(cyclopropyl)CH,

furanyl(cyclopropyl)CH, thienyl(cyclopropyl)CH,
 isoxazolyl(cyclopropyl)CH, (CH3 furanyl)(cyclopropyl)CH, (cyclobutyl)CH-CH3,
 (cyclobutyl)CH-CH2CH3, (cyclobutyl)CH-CH2OCH3,
 (cyclobutyl)CH-CH2CH2CH3, (cyclobutyl)CH-CH2CH2OCH3,
 (cyclobutyl)2CH, phenyl(cyclobutyl)CH,
 furanyl(cyclobutyl)CH, thienyl(cyclobutyl)CH,
 isoxazolyl(cyclobutyl)CH, and (CH3 furanyl)(cyclobutyl)CH;

10

[2g] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

20

[2h] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

- [2i] In another preferred embodiment, the present invention provides a novel compound of formula Ia, wherein the compound is selected from the group:
- 35 3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-ethyl-3H-imidazo[4,5-b]pyridine;

```
3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-
5 (methylsulfanyl)-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-
    cyclopropylpropyl)-2-ethyl-3H-imidazo[4,5-b]pyridine;
10 7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-
    cyclopropylpropyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-
    cyclopropylpropyl)-2-(methylsulfanyl)-3H-imidazo[4,5-
15 b]pyridine;
    3-(1-cyclopropylpropyl)-2-ethyl-7-[2-methyl-4-
    (trifluoromethyl) phenyl] -3H-imidazo[4,5-b] pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-ethyl-
20
    3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
25
    3-(1-cyclopropylpropyl)-2-ethyl-7-(4-methoxy-2,5-
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-methoxy-7-(4-methoxy-2,5-
30 dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
35 7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
```

```
7-(2-chloro-5-fluoro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-
    2-ethyl-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-fluoro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-
   methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenyl)-3-(1-cyclopropylpropyl)-
    2-ethyl-3H-imidazo[4,5-b]pyridine;
10 7-(2-chloro-fluoro-4-methylphenyl)-3-(1-cyclopropylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-ethyl-7-(2,4,5-trimethylphenyl)-3H-
    imidazo[4,5-b]pyridine;
15
    3-(1-cyclopropylpropyl)-2-methoxy-7-(2,4,5-trimethylphenyl)-
    3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-ethyl-7-(2,5,6-trimethyl-3-
20 pyridinyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-methoxy-7-(2,5,6-trimethyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-
25
    3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-7-(2,6-dimethyl-3-pyridinyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
30
    3-(1-cyclopropylpropyl)-7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-2-ethyl-3-(1-ethylpropyl)-3H-
35 imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-3-(1-ethylpropyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
```

₹,

```
7-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-3-(1-
    ethylpropyl)-3H-imidazo[4,5-b]pyridine;
5 7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-ethylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-3-(1-
    ethylpropyl)-3H-imidazo[4,5-b]pyridine;
10
    7-[2-chloro-4-(methylsulfonyl)phenyl]-3-(1-ethylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    2-ethyl-3-(1-ethylpropyl)-7-(4-methoxy-2,5-dimethylphenyl)-3H-
15
    imidazo[4,5-b]pyridine;
    3-(1-ethylpropyl)-2-methoxy-7-(4-methoxy-2,5-dimethylphenyl)-
    3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-2-ethyl-3-(1-ethylpropyl)-3H-
    imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-ethylpropyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
25
    2-ethyl-3-(1-ethylpropyl)-7-[4-methoxy-2-
    (trifluoromethyl) phenyl] -3H-imidazo[4,5-b] pyridine;
    3-(1-ethylpropyl)-2-methoxy-7-[4-methoxy-2-
30 (trifluoromethyl)phenyl]-3H-imidazo[4,5-b]pyridine;
    7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-3-(1-ethylpropyl)-3H-
    imidazo[4,5-b]pyridine;
    7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-3-(1-ethylpropyl)-3H-
    imidazo(4,5-b)pyridine;
```

```
2-ethy1-3-(1-ethy1propy1)-7-(2.5,6-trimethy1-3-pyridiny1)-3H-
    imidazo[4,5-b]pyridine;
    2-ethyl-3-(1-ethylpropyl)-7-(5-fluoro-4-methoxy-2-
5 methylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-ethylpropyl)-7-(5-fluoro-4-methoxy-2-methylphenyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
10 3-chloro-4-[2-ethyl-3-(1-ethylpropyl)-3H-imidazo[4,5-
    b]pyridin-7-yl]benzonitrile;
    3-chloro-4-[3-(1-ethylpropyl)-2-methoxy-3H-imidazo[4,5-
    b]pyridin-7-yl]benzonitrile;
15
    1-{3-chloro-4-[2-ethyl-3-(1-ethylpropyl)-3H-imidazo[4,5-
    b]pyridin-7-yl]phenyl}-1-ethanone;
    1-{3-chloro-4-{3-(1-ethylpropyl)-2-methoxy-3H-imidazo[4,5-
20
    b]pyridin-7-yl]phenyl}-1-ethanone;
    3-(dicyclopropylmethyl)-2-ethyl-7-(5-fluoro-4-methoxy-2-
    methylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(dicyclopropylmethyl)-7-(5-fluoro-4-methoxy-2-methylphenyl)-
25
    2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(dicyclopropylmethyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
30
    7-(2-chloro-4-methoxyphenyl)-3-(dicyclopropylmethyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-3-(dicyclopropylmethyl)-2-ethyl-3H-
35
    imidazo[4,5-b]pyridine;
                                                                     \langle \chi \rangle
    7-(2,4-dichlorophenyl)-3-(dicyclopropylmethyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
```

```
7-[2-chloro-4-(trifluoromethyl)phenyl]-3-
    (dicyclopropylmethyl) -2-ethyl-3H-imidazo[4,5-b]pyridine;
5 7-[2-chloro-4-(trifluoromethyl)phenyl]-3-
    (dicyclopropylmethyl) -2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-2-ethyl-3-(1-ethyl-3-methoxypropyl)-3H-
    imidazo[4,5-b]pyridine;
10
    7-(2,4-dichlorophenyl)-3-(1-ethyl-3-methoxypropyl)-2-methoxy-
    3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-ethyl-3-
    methoxypropyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
20 7-(2-chloro-4-methoxyphenyl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-ethyl-3-methoxypropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
25
    7-(2-chloro-5-fluoro-4-methoxyphenyl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methoxyphenyl)-3-(1-ethyl-3-
30 methoxypropyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    2-\text{ethyl}-3-(1-\text{ethyl}-3-\text{methoxypropyl})-7-(4-\text{methoxy}-2,5-
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-ethyl-3-methoxypropyl)-2-methoxy-7-(4-methoxy-2,5-
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
```

```
2-\text{ethyl-}3-(1-\text{ethyl-}3-\text{methoxypropyl})-7-(5-\text{fluoro-}4-\text{methoxy-}2-
    methylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-ethyl-3-methoxypropyl)-7-(5-fluoro-4-methoxy-2-
    methylphenyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
10
    7-(2-chloro-5-fluoro-4-methylphenyl)-3-(1-ethyl-3-
    methoxypropy1)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
15
    7-[2-chloro-4-(methylsulfonyl)phenyl]-3-(1-ethyl-3-
    methoxypropyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    1-{3-chloro-4-[2-ethyl-3-(1-ethyl-3-methoxypropyl)-3H-
    imidazo[4,5-b]pyridin-7-yl]phenyl}-1-ethanone;
20
    1-\{3-\text{chloro}-4-[3-(1-\text{ethy}1-3-\text{methoxypropy}1)-2-\text{methoxy}-3H-
    imidazo[4,5-b]pyridin-7-yl]phenyl}-1-ethanone;
    1-\{5-[2-\text{ethy}]-3-(1-\text{ethy}]-3-\text{methoxypropy}\}-3\text{H-imidazo}[4,5-
25
    b]pyridin-7-yl]-6-methyl-2-pyridinyl}-1-ethanone;
     1-{5-[3-(1-ethyl-3-methoxypropyl)-2-methoxy-3H-imidazo[4,5-
    b]pyridin-7-yl]-6-methyl-2-pyridinyl}-1-ethanone;
30
     2-ethyl-3-(1-ethyl-3-methoxypropyl)-7-(6-methoxy-2-methyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
     3-(1-ethyl-3-methoxypropyl)-2-methoxy-7-(6-methoxy-2-methyl-3-
35 pyridinyl)-3H-imidazo[4,5-b]pyridine;
     7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-3-(1-ethyl-3-
     methoxypropyl)-3H-imidazo[4,5-b]pyridine;
```

```
7-(2,6-dimethoxy-3-pyridiny1)-3-(1-ethyl-3-methoxypropy1)-2-
   methoxy-3H-imidazo[4,5-b]pyridine;
5 7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
    7-(2,6-dimethyl-3-pyridinyl)-3-(1-ethyl-3-methoxypropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
10
    2-ethyl-3-(1-ethyl-3-methoxypropyl)-7-(2,5,6-trimethyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-\text{ethyl}-3-\text{methoxypropyl})-2-\text{methoxy}-7-(2,5,6-\text{trimethyl}-3-
pyridinyl)-3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-2-ethyl-3-[1-(methoxymethyl)propyl]-3H-
    imidazo[4,5-b]pyridine;
20 7-(2,4-dichlorophenyl)-2-methoxy-3-[1-(methoxymethyl)propyl]-
    3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
25
    7-[2-chloro-4-(trifluoromethyl)phenyl]-2-methoxy-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenyl)-2-ethyl-3-[1-
30
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenyl)-2-methoxy-3-[1-
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
35
    2-ethyl-7-(4-methoxy-2,5-dimethylphenyl)-3-[1-
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
```

Ç,

```
2-methoxy-7-(4-methoxy-2,5-dimethylphenyl)-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    2-ethyl-7-(5-fluoro-4-methoxy-2-methylphenyl)-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(5-fluoro-4-methoxy-2-methylphenyl)-2-methoxy-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    2-\text{ethyl}-3-[1-(\text{methoxymethyl})\text{propyl}]-7-(6-\text{methoxy}-2-\text{methyl}-3-
10
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
    2-methoxy-3-[1-(methoxymethyl)propyl]-7-(6-methoxy-2-methyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
15
    7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2,6-dimethoxy-3-pyridiny1)-2-methoxy-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
20
    7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-3-[1-
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2,6-dimethy1-3-pyridiny1)-2-methoxy-3-[1-
25
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    2-\text{ethyl-}3-[1-(\text{methoxymethyl})\text{propyl}]-7-(2,5,6-\text{trimethyl-}3-
    pyridiny1)-3H-imidazo[4,5-b]pyridine;
30
    2-methoxy-3-[1-(methoxymethyl)propyl]-7-(2,5,6-trimethyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
     7-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-3-[1-
35
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine; and
     7-[2-chloro-4-(methylsulfonyl)phenyl]-2-methoxy-3-[1-
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
```

or a pharmaceutically acceptable salt form thereof.

[2j] In another more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

 R^1 is C_{3-8} cycloalkyl;

10 R¹ is substituted with 0-1 substituents selected from the group -CN, -S(0)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(0)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b}; and,

20

25

30

- R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$.
- [2k] In another even more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

35 R¹ is selected from the group cyclopropyl, cyclobutyl, and cyclopentyl;

Ç

 R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{4-8} cycloalkyl, wherein one carbon atom in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ - and $-NSO_2R^{14b}$ -;

- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and -NR^{13a}R^{16a};
- R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O) $_{n}R^{18}$, -COR¹⁷, -NR¹⁷ $_{a}R^{19}$ $_{a}$, and -CONR¹⁷ $_{a}R^{19}$ $_{a}$;
- 20 R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
 - R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

35

× .

 R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;

- R³ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
 - R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- 25 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and
- 35 dimethylamino;

20

 \leqslant_{V}

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 5 R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

15 $R^{17a} \text{ and } R^{19a} \text{ are independently selected at each occurrence} \\ \text{from the group H, C}_{1-6} \text{ alkyl, C}_{3-10} \text{ cycloalkyl, C}_{3-6} \\ \text{cycloalkyl-C}_{1-6} \text{ alkyl and C}_{1-4} \text{ haloalkyl;}$

20 aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,

benzothienyl, benzothiazolyl, benzoxazolyl,
isoxazolyl, tetrazolyl, indazolyl,

- 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
- 2,3-dihydrobenzothienyl-S-oxide,
- 2,3-dihydrobenzothienyl-S-dioxide, indolinyl,

benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected

at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(0)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(0)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2 R^{14a}, COR^{14a} and SO_2 R^{14a}.

10 [21] In another still more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

X is selected from the group O, S and a bond;

15 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂ R^{13a} , and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

20

- ${\rm R}^1$ is also substituted with 0-2 substituents independently selected at each occurrence from the group ${\rm R}^{1a},~{\rm R}^{1b},$ ${\rm C}_{1-6}$ alkyl, ${\rm C}_{2-8}$ alkenyl, ${\rm C}_{2-8}$ alkynyl, Br, Cl, F, CF3, CF3, -OR\$^{13a}, -OH, -OCH3, -OCH2CH3, -CH2OCH3, CH2CH2OCH3, and -NR\$^{13a}{\rm R}^{16a};
- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- 35 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each

heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(0)NH₂, -C(0)NHCH₃, and -C(0)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

10

5

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

R³ and R⁸ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

the group pyridyl, indolyl, benzothienyl,
2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
2,3-dihydrobenzothienyl-S-oxide,
2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and
benzoxazolin-2-on-yl, each heteroaryl being

substituted on 2-4 carbon atoms with a substituent
independently selected at each occurrence from the
group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
-C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each

-C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃.

 $\leq \gamma$

[2m] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

5

10

15

- R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, and CF₃;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
 - \mathbb{R}^2 is selected from the group CH_3 , CH_2CH_3 , and $\text{CH}(\text{CH}_3)_2$;

- R³ and R⁸ are independently selected at each occurrence from the group H and CH₃;
- aryl is phenyl substituted with 2-4 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

 CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

[2n] In another even further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, CH₃, CH₂CH₃, CH₂CH₃, -(CH₂OCH₃, -CH₂OCH₃, -CH₂OCH₃, -CH₂CH₂OCH₃, F, and CF₃; and,

15

20

25

35

R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃.

[20] In a still further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₃, DCH₃, OCH₃, O

[2p] In another still further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

 $V_{i,j}$

D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

[2q] In another more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

5

- R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} alkoxy- C_{1-4} alkyl;
- R¹ is substituted with a C_{3-8} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl group is replaced by a group selected from the group -0-, -S(0)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;
- R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;
 - provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;
- R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(0)_nR¹⁸, -COR¹⁷, -OC(0)R¹⁸, -NR^{15a}COR¹⁷,

 $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$;

R^{1b} is heteroaryl and is selected from the group pyridyl, 5 pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 10 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms 15 with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(O)_{m}R^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$, -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and 20 -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ; and,

25 Rlc is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄
30 haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized.

[2r] In another even more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

5 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

15

- R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;
 - R^1 is substituted with a C_{3-6} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₆ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;
- 25 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(0)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the

group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, CF₃, -CN, $-OR^{17}$, $-S(O)_mR^{18}$, $-COR^{17}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

- R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- 15 R³ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- 20 R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁴ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
 - R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

35

5

10

4.)

 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

- 5 R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
 - alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;

25

- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_{n}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_{2}R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, 5 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and 10 benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, 15 $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

20

[2s] In another still more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

25 X is selected from the group O, S and a bond;

 R^1 is C_{1-6} alkyl;

- R^1 is substituted with a C_{3-6} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;
- R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, F, CF_3 , $-OR^{13a}$, $-NR^{13}aR^{16a}$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, and C_{3-6} cycloalkyl

which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl- $(CH_2)_2$ - group;

5

- Rla is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
 - R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
- 30 R³ and R⁸ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;
- aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 5 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the 10 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 15 0-1 substituents selected from the group CH3, CO2CH3, COCH₃ and SO₂CH₃.

[2t] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)C₁ alkyl;

R¹ is substituted with 1-2 substituents independently

selected at each occurrence from the group R^{1a}, R^{1b},

CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃
cyclobutyl, cyclopentyl, CH₃-cyclopentyl;

30

35

R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,

pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

10 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

5

35

- ${\tt R}^3$ and ${\tt R}^8$ are independently selected at each occurrence from the group H and ${\tt CH}_3$;
- 15 aryl is phenyl substituted with 2-4 substituents
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

[2u] In another even further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

 R^1 is (cyclopropyl) C_1 alkyl or (cyclobutyl) C_1 alkyl;

 R^1 is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, $-(CH_2)_3CH_3$, $-CH=CH_2$, -

Ų,

CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 and pyrazolyl, each heteroaryl being substituted on
 0-3 carbon atoms with a substituent independently
 selected at each occurrence from the group CH₃, CH₂CH₃,
 CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, and SCH₃.
 - [2v] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

20

25

35

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, DCH₃, D

[2w] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

- 30 D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
 - [3] In another preferred embodiment, the present invention provides a novel compound of formula Ib:

₹_Q

$$R^{2}-X \xrightarrow{R^{1}} N \xrightarrow{R^{7}} R^{3}$$
(1b).

5

[3a] In another more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, $S(0)_n$ and a bond;

10

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

15

20

- \mbox{R}^1 is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO_2R^{13a}, and C3-8 cycloalkyl, wherein 0-1 carbon atoms in the C4-8 cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO_2R^{14b}-, -NCOR^{14b}- and -NSO_2R^{14b}-;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

30

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

- R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
- 20 provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;
- R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;
- R³ and R⁷ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;

 R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

- 5 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 10 R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

20

- R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀

 cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;

alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

10

15

35

5

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, 20 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 25 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, 30 $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$,

 $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

[3b] In another even more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

 ${\tt X}$ is selected from the group O, S and a bond;

 R^1 is substituted C_{1-6} alkyl;

5

- R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂R^{13a}, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, $-OR^{13a}$, $-NR^{13}aR^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

- Pla is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃), OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃), CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,

Ġ

OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(0)NH₂, -C(0)NHCH₃, and -C(0)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

10

20

5

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

 R^3 and R^7 are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

the group pyridyl, indolyl, benzothienyl,
2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
2,3-dihydrobenzothienyl-S-oxide,
2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and
benzoxazolin-2-on-yl, each heteroaryl being

substituted on 2-4 carbon atoms with a substituent
independently selected at each occurrence from the
group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

-C(O)NH₂ -C(O)NHCH₃ and -C(O)N(CH₃)₂ and each

35 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃.

[3c] In another still more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

5
R¹ is substituted C₁;

 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂CH₃, and -CO₂CH₂CH₃;

10

15

20

- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH≡CH, -CH≡C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclopentyl, CH₃-cyclopentyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
- 35 provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

\$5

 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

 R^3 and R^7 are independently selected at each occurrence from the group H and CH_3 ;

5

10

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

20

- [3d] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- 25 R¹ is substituted (cyclopropyl)-C₁ alkyl or (cyclobutyl)-C₁ alkyl;
 - R¹ is substituted with 0-1 -CN;
- 30 R¹ is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), Br, Cl, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

35

 R^1 is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , CH_3

S

CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

- R^{1b} is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 and pyrazolyl, each heteroaryl being substituted on
 0-3 carbon atoms with a substituent independently
 selected at each occurrence from the group CH₃, CH₂CH₃,
 CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F,

 CF₃, -CN, and SCH₃.
 - [3e] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)-C₁ alkyl substituted with 1 substituent independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
 - Rla is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, Cl, F, and CF₃;

25

- R1b is heteroaryl and is selected from the group furanyl, thienyl, and isoxazolyl, each heteroaryl being substituted on 0-2 carbon atoms with a substituent independently selected at each occurrence from the group CH3, OCH3, Cl, F, and CF3.
- [3f] In an even further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
 - R¹ is selected from the group (cyclopropyl)CH-CH₃, (cyclopropyl)CH-CH₂CCH₃, (cyclopropyl)CH-CH₂OCH₃,

Q.

[3g] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

20

- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [3h] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [3i] In another preferred embodiment, the present invention provides a novel compound of formula Ib, wherein the compound is selected from the group:
 - 1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-ethyl-1H-imidazo[4,5-c]pyridine;

```
1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-methoxy-1H-
    imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-ethyl-4-[2-methyl-4-
    (trifluoromethyl)phenyl]-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-
    cyclopropylpropyl)-2-ethyl-1H-imidazo[4,5-c]pyridine;
10
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-
    cyclopropylpropyl)-2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-
15
    cyclopropylpropyl)-2-(methylsulfanyl)-1H-imidazo[4,5-
    c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
20
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-ethyl-4-(4-methoxy-2,5-
25
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-methoxy-4-(4-methoxy-2,5-
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
35
    4-(2-chloro-5-fluoro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-
    2-ethyl-1H-imidazo[4,5-c]pyridine;
```

```
4-(2-chloro-fluoro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-
   methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methylphenyl)-1-(1-cyclopropylpropyl)-
5 2-ethyl-1H-imidazo[4,5-c]pyridine;
    2.4-(2-chloro-fluoro-4-methylphenyl)-1-(1-cyclopropylpropyl)-
    2-methoxy-1H-imidazo[4,5-c]pyridine;
10
    1-(1-cyclopropylpropyl)-2-methoxy-4-(2,4,5-trimethylphenyl)-
    1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-ethyl-4-(2,4,5-trimethylphenyl)-1H-
    imidazo[4,5-c]pyridine;
15
    1-(1-cyclopropylpropyl)-2-ethyl-4-(2,5,6-trimethyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine
    1-(1-cyclopropylpropyl)-2-methoxy-4-(2,5,6-trimethyl-3-
20 pyridinyl)-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-4-(2,6-dimethyl-3-pyridinyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
   1-(1-cyclopropylpropyl)-4-(2,6-dimethyl-3-pyridinyl)-2-
25
    methoxy-1H-imidazo(4,5-c)pyridine;
    1-(1-cyclopropylpropyl)-4-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
30
    4-(2,4-dichlorophenyl)-2-ethyl-1-(1-ethylpropyl)-1H-
    imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(1-ethylpropyl)-2-methoxy-1H-
35 imidazo[4,5-c]pyridine;
                                                                   4
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-ethylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
```

```
4-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-1-(1-
    ethylpropyl)-1H-imidazo[4,5-c]pyridine;
5 4-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-1-(1-
    ethylpropyl)-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(methylsulfonyl)phenyl]-1-(1-ethylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
10
    2-\text{ethyl}-1-(1-\text{ethylpropyl})-4-(4-\text{methoxy}-2,5-\text{dimethylphenyl})-1H-
    imidazo[4,5-c]pyridine;
    1-(1-ethylpropy1)-2-methoxy-4-(4-methoxy-2,5-dimethylpheny1)-
15
    1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-2-ethyl-1-(1-ethylpropyl)-1H-
    imidazo[4,5-c]pyridine;
20
    4-(2-chloro-4-methoxyphenyl)-1-(1-ethylpropyl)-2-methoxy-1H-
    imidazo[4,5-c]pyridine;
    2-ethyl-1-(1-ethylpropyl)-4-[4-methoxy-2-
    (trifluoromethyl)phenyl]-1H-imidazo[4,5-c]pyridine;
25
    1-(1-ethylpropyl)-2-methoxy-4-[4-methoxy-2-
    (trifluoromethyl)phenyl]-1H-imidazo[4,5-c]pyridine;
    1-(1-ethylpropy1)-4-(5-fluoro-4-methoxy-2-methylpheny1)-2-
30
    methoxy-1H-imidazo[4,5-c]pyridine;
    2-ethyl-1-(1-ethylpropyl)-4-(5-fluoro-4-methoxy-2-
    methylphenyl)-1H-imidazo[4,5-c]pyridine;
35
    3-chloro-4-[1-(1-ethylpropyl)-2-methoxy-1H-imidazo[4,5-
    c]pyridin-4-yl]benzonitrile;
```

S.

```
3-chloro-4-[2-ethyl-1-(1-ethylpropyl)-1H-imidazo[4,5-
    c]pyridin-4-yl]benzonitrile;
    1-{3-chloro-4-[2-ethyl-1-(1-ethylpropyl)-1H-imidazo[4,5-
5 c)pyridin-4-yl)phenyl}-1-ethanone;
    1-{3-chloro-4-[1-(1-ethylpropyl)-2-methoxy-1H-imidazo[4,5-
    c]pyridin-4-yl]phenyl}-1-ethanone;
10
   1-(dicyclopropylmethyl)-2-ethyl-4-(5-fluoro-4-methoxy-2-
    methylphenyl)-1H-imidazo[4,5-c]pyridine;
    1-(dicyclopropylmethyl)-4-(5-fluoro-4-methoxy-2-methylphenyl)-
    2-methoxy-1H-imidazo[4,5-c]pyridine;
15
    4-(2-chloro-4-methoxyphenyl)-1-(dicyclopropylmethyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(dicyclopropylmethyl)-2-
20
    methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(dicyclopropylmethyl)-2-ethyl-1H-
    imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(dicyclopropylmethyl)-2-methoxy-1H-
    imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-
    (dicyclopropylmethyl)-2-ethyl-1H-imidazo[4,5-c]pyridine;
30
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-
    (dicyclopropylmethy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(1-ethyl-3-methoxypropyl)-2-methoxy-
35
   1H-imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-2-ethyl-1-(1-ethyl-3-methoxypropyl)-1H-
    imidazo[4,5-c]pyridine;
```

```
4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-ethyl-3-
    methoxypropy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
5 4-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-ethyl-3-methoxypropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
10
    4-(2-chloro-4-methoxyphenyl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methoxyphenyl)-1-(1-ethyl-3-
    methoxypropy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
15
    4-(2-chloro-5-fluoro-4-methoxyphenyl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
20
    1-(1-ethyl-3-methoxypropyl)-2-methoxy-4-(4-methoxy-2,5-
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
    2-\text{ethyl-1-}(1-\text{ethyl-3-methoxypropyl})-4-(4-\text{methoxy-2,5-}
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
25
     2-ethyl-1-(1-ethyl-3-methoxypropyl)-4-(5-fluoro-4-methoxy-2-
    methylphenyl)-1H-imidazo[4,5-c]pyridine;
     1-(1-ethyl-3-methoxypropyl)-4-(5-fluoro-4-methoxy-2-
30
    methylphenyl)-2-methoxy-1H-imidazo[4,5-c]pyridine;
     4-(2-chloro-5-fluoro-4-methylphenyl)-1-(1-ethyl-3-
     methoxypropy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
35
     4-(2-chloro-5-fluoro-4-methylphenl)-2-ethyl-1-(1-ethyl-3-
     methoxypropyl)-1H-imidazo[4,5-c]pyridine;
```

ς,

```
4-[2-chloro-4-(methylsulfonyl)phenyl]-1-(1-ethyl-3-
    methoxypropyl)-2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    1-\{3-\text{chloro}-4-\{1-(1-\text{ethyl}-3-\text{methoxypropyl})-2-\text{methoxy}-1\text{H}-
    imidazo[4,5-c]pyridin-4-yl]phenyl}-1-ethanone;
10
   1-\{3-chloro-4-\{2-ethyl-1-(1-ethyl-3-methoxypropyl)-1H-
    imidazo[4,5-c]pyridin-4-yl]phenyl}-1-ethanone;
    1-\{5-[1-(1-\text{ethy}1-3-\text{methoxypropy}1)-2-\text{methoxy}-1\text{H-imidazo}[4,5-
    c]pyridin-4-yl]-6-methyl-2-pyridinyl}-1-ethanone;
15
    1-{5-[2-ethyl-1-(1-ethyl-3-methoxypropyl)-1H-imidazo[4,5-
    c]pyridin-4-yl]-6-methyl-2-pyridinyl}-1-ethanone;
    1-(1-ethyl-3-methoxypropyl)-2-methoxy-4-(6-methoxy-2-methyl-3-
20
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    2-ethyl-1-(1-ethyl-3-methoxypropyl)-4-(6-methoxy-2-methyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridinyl)-1-(1-ethyl-3-methoxypropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
30
     4-(2,6-dimethyl-3-pyridinyl)-1-(1-ethyl-3-methoxypropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
     4-(2,6-dimethyl-3-pyridinyl)-2-ethyl-1-(1-ethyl-3-
35
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
     2-ethyl-1-(1-ethyl-3-methoxypropyl)-4-(2,5,6-trimethyl-3-
     pyridinyl)-1H-imidazo[4,5-c]pyridine;
```

```
1-(1-ethyl-3-methoxypropyl)-2-methoxy-4-(2,5,6-trimethyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
   4-(2,4-dichlorophenyl)-2-ethyl-1-[1-(methoxymethyl)propyl]-1H-
    imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-2-methoxy-1-[1-(methoxymethyl)propyl]-
    1H-imidazo[4,5-c]pyridine;
10
    4-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-2-methoxy-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
15
    4-(2-chloro-5-fluoro-4-methylphenyl)-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methylphenyl)-2-methoxy-1-[1-
20
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    2-methoxy-4-(4-methoxy-2,5-dimethylphenyl)-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
25
    2-ethyl-4-(4-methoxy-2,5-dimethylphenyl)-1-[1-
     (methoxymethyl) propyl]-1H-imidazo[4,5-c]pyridine;
    2-ethyl-4-(5-fluoro-4-methoxy-2-methylphenyl)-1-[1-
30
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(5-fluoro-4-methoxy-2-methylphenyl)-2-methoxy-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
35
    2-methoxy-1-[1-(methoxymethyl)propyl]-4-(6-methoxy-2-methyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
```

```
2-\text{ethyl-1-}[1-(\text{methoxymethyl})\text{propyl}]-4-(6-\text{methoxy-}2-\text{methyl-}3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridiny1)-2-ethyl-1-[1-
5 (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridinyl)-2-methoxy-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
10
    4-(2,6-dimethyl-3-pyridinyl)-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethyl-3-pyridinyl)-2-methoxy-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
15
    2-\text{ethyl-1-}[1-(\text{methoxymethyl})\text{propyl}]-4-(2,5,6-\text{trimethyl-3-}
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    2-methoxy-1-[1-(methoxymethyl)propyl]-4-(2,5,6-trimethyl-3-
20
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine; and
25
    4-[2-chloro-4-(methylsulfonyl)phenyl]-2-methoxy-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    or a pharmaceutically acceptable salt form thereof.
30
     [3j] In another more preferred embodiment, the present
     invention provides a novel compound of formula Ib, wherein:
    R^1 is C_{3-8} cycloalkyl;
35
    R is substituted with 0-1 substituents selected from the
          group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO_2R^{13a}, -NR^{15a}COR^{13a},
          -N(COR13a)<sub>2</sub>, -NR15aCONR13aR16a, -NR15aCO<sub>2</sub>R14b,
```

S.,

-CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{4-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, -S(0)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO_2 R^{14b}, COR^{14b} and SO_2 R^{14b}; and,

10 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$.

15

30

- [3k] In another even more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- 20 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

- R¹ is selected from the group cyclopropyl, cyclobutyl, and cyclopentyl;
 - R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{4-8} cycloalkyl, wherein one carbon atom in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$;

 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};

20

5

 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

25

- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R^3 and R^7 are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH_2 , C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

Ç,

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

15

20

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 10 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and
- 25 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

dimethylamino;

- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in

•

1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from 15 the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 20 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected 25 at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and 30 each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

35 [31] In another still more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, S and a bond;

 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂R^{13a}, and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;

- 10 selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{2-8
- 15 R^{1a} is aryl and is phenyl substituted with 0-1 substituents
 selected from OCH₃, OCH₂CH₃, OCH₂CH₃)₂, OCH₂CH₂CH₃, and
 OCF₃, and 0-3 substituents independently selected at
 each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃)₂,
 CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃,
 -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and
 -C(O)N(CH₃)₂;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH3, CH2CH3, CH(CH3)2, CH2CH2CH3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2, OCH2CH2CH3, OCF3, Br, Cl, F, CF3, -CN, SCH3, -NH2, -NHCH3, -N(CH3)2, -C(O)NH2, -C(O)NHCH3, and -C(O)N(CH3)2 and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3, COCH3 and SO2CH3;

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and CH_2CH_3 ;

35

 R^3 and R^7 are independently selected at each occurrence from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

10

15

5

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,

2,3-dihydrobenzothienyl-S-oxide,

COCH₃ and SO₂CH₃.

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃,

25

[3m] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

30

R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, and CF₃;

35

R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH (CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and

Š.

0-2 substituents independently selected at each occurrence from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, Br, Cl, F, CF_3 , -CN, and SCH_3 ;

5 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

15

 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

R³ and R⁷ are independently selected at each occurrence from the group H and CH₃;

20

25

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NHCH₃, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

35

[3n] In another even further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, CH₃, CH₂CH₃, CH₂CH₃, -(CH₂)₃CH₃, -CH₂OCH₃, -CH₂CH₂OCH₃, -CH₂CH₂OCH₃, and CF₃; and,

5

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃.
- [30] In another still further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₁(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, DCH₃, DCH₃, DCH₃, DCH₂CH₃, OCH₂CH₃, OCH₂CH₃, DCH₃, DCH₃
- [3p] In another still further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [3q] In another more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} alkoxy- C_{1-4} alkyl;

- 5 R^1 is substituted with a C_{3-8} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl group is replaced by a group selected from the group -0-, -S(0)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;
- 10 R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

- 20 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- R1b is heteroaryl and is selected from the group pyridyl,
 pyrimidinyl, triazinyl, furanyl, quinolinyl,
 isoquinolinyl, thienyl, imidazolyl, thiazolyl,
 indolyl, pyrrolyl, oxazolyl, benzofuranyl,
 benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
 indazolyl, 2,3-dihydrobenzofuranyl,
 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_mR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b}; and,

R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C1-6 alkyl, C3-6 cycloalkyl, Br, Cl, F, I, C1-4 haloalkyl, -CN, nitro, -OR13a, SH, -S(0)nR14b, -COR13a, -OC(0)R14b, -NR15aCOR13a, -N(COR13a)2, -NR15aCONR13aR16a, -NR15aCO2R14b, -NR13aR16a, and -CONR13aR16a and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R13a, CO2R14b, COR14b and SO2R14b and wherein any sulfur atom is optionally monooxidized or dioxidized.

25

- [3r] In another even more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- 30 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl;

 R^1 is substituted with a C_{3-6} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

5

10

 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, $-NR^{13}aR^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

R¹

 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

20

 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

 R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;

- R³ and R⁷ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₁₋₄ alkoxy, NH₂, C₁₋₄ alkylamino, and (C₁₋₄ alkyl)₂-amino;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

20

- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- 25 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

4,4

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 5 R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

15

25

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

- 20 aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_{1}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-NR^{15}CO_{2}R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,
 - heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,
- benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, tetrazolyl, indazolyl,
 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,
- benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected

2,3-dihydrobenzothienyl-S-dioxide, indolinyl,

at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(0)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(0)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2 R^{14a}, COR^{14a} and SO_2 R^{14a}.

10 [3s] In another still more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, S and a bond;

15 R^1 is C_{1-6} alkyl;

 R^1 is substituted with a C_{3-6} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-4} cycloalkyl is replaced by a group selected from the group -0-, -S(0)_n-, and -NR^{13a}-;

20

25

 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, F, CF_3 , $-OR^{13a}$, $-NR^{13a}R^{16a}$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, and C_{3-6} cycloalkyl which is substituted with 0-1 CH_3 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

30 R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;

R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH3, CH2CH3, CH(CH3)2, CH2CH2CH3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2, OCH2CH2CH3, OCF3, Br, Cl, F, CF3, -CN, SCH3, -NH2, -NHCH3, -N(CH3)2, -C(O)NH2, -C(O)NHCH3, and -C(O)N(CH3)2 and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3, COCH3 and SO2CH3;

- R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
 - R³ and R⁷ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;
- 20 aryl is phenyl substituted with 2-4 substituents
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

 $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each

heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 .

5

- [3t] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- R^1 is (cyclopropyl) C_1 alkyl or (cyclobutyl) C_1 alkyl;

10

- R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclopentyl, Cyclopentyl, CH₃-cyclopentyl;
 - R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl
 being substituted on 0-3 carbon atoms with a
 substituent independently selected at each occurrence
 from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃,
 OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each
 heteroaryl being substituted on any nitrogen atom with
 0-1 substituents selected from the group CH₃, CO₂CH₃,
 COCH₃ and SO₂CH₃;
- 35 \mathbb{R}^2 is selected from the group $\mathbb{C}H_3$, $\mathbb{C}H_2\mathbb{C}H_3$, and $\mathbb{C}H(\mathbb{C}H_3)_2$;
 - R³ and R⁷ are independently selected at each occurrence from the group H and CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

5

20

heteroaryl is pyridyl substituted on 2-4 carbon atoms with

a substituent independently selected at each
occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂,
CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,
OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃,
-NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and
-C(O)N(CH₃)₂.

- [3u] In another even further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)C₁ alkyl;
- R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
- R^{1a} is phenyl substituted with 0-2 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃,

 -CN, and SCH₃;
- R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, and pyrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃,

 $CH(CH_3)_2$, $CH_2CH_2CH_3$, OCH_3 , OCH_2CH_3 , OCF_3 , Br, C1, F, CF_3 , -CN, and SCH_3 .

- 5 [3v] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₃, OCH

[3w] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [4] In another preferred embodiment, the present invention 25 provides a novel compound of formula Ic:

30

20

[4a] In another more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

- R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(0) $_n$ R¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

30

35

10

R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN,

 $-OR^{17}$, $-S(O)_mR^{18}$, $-COR^{17}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

5

provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

10 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

- 15 R³ is selected from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
 - R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

25

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 35 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

- 5 R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, and C₃₋₆

 cycloalkyl-C₁₋₆ alkyl;
 - R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
 - alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;

20

- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, 5 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and 10 benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, 15 $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

- [4b] In another even more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- 25 X is selected from the group O, S and a bond;
 - R^1 is substituted C_{1-6} alkyl;
- R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂R^{13a}, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;
- 35 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃,

-OR 13a , -NR 13a R 16a , C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 CH $_3$ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

5

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

Rla is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃), OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;

15

10

R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH3, CH2CH3, CH(CH3)2, CH2CH2CH3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2, OCH2CH2CH3, OCF3, Br, Cl, F, CF3, -CN, SCH3, -NH2, -NHCH3, -N(CH3)2, -C(O)NH2, -C(O)NHCH3, and -C(O)N(CH3)2 and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3, COCH3 and SO2CH3;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

35

 R^3 is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl,

- 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,
 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and
 benzoxazolin-2-on-yl, each heteroaryl being
 substituted on 2-4 carbon atoms with a substituent
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each
- 20 heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 .
- 25 [4c] In another still more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is substituted C_1 ;

- 30 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂CH₃, and -CO₂CH₂CH₃;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b},

 CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
 CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

 F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclobutyl, cyclopentyl, CH₃-cyclopentyl;

R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

25 R³ is selected from the group H and CH₃;

5

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃,

 $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(O)NH_2$, $-C(O)NHCH_3$, and $-C(O)N(CH_3)_2$.

- 5 [4d] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is substituted (cyclopropyl)- C_1 alkyl or (cyclobutyl) C_1 alkyl;

- R¹ is substituted with 0-1 -CN;
- R¹ is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- 25 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, and pyrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃.
- [4e] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is $(cyclopropyl)C_1$ alkyl or $(cyclobutyl)-C_1$ alkyl substituted with 1 substituent independently selected

at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , CH_2CH_3 , $-(CH_2)_3CH_3$, $-CH=CH_2$, $-CH=CH(CH_3)$, $-CH=CH_2$, $-CH=CH(CH_3)$, $-CH=CH_3$, $-CH=CH_3$, $-CH_3$,

5

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH_3 , CH_2CH_3 , Cl, F, and CF_3 ;
- 10 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, and isoxazolyl, each heteroaryl being substituted on 0-2 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, OCH₃, Cl, F, and CF₃.

15

- [4f] In an even further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- 20 R¹ is selected from the group (cyclopropyl)CH-CH₃, (cyclopropyl)CH-CH₂CH₃, (cyclopropyl)CH-CH₂CH₃, (cyclopropyl)CH-CH₂CH₂CH₃, (cyclopropyl)CH-CH₂CH₂CCH₃, (cyclopropyl)₂CH, phenyl(cyclopropyl)CH,

furanyl(cyclopropyl)CH, thienyl(cyclopropyl)CH,

- furanyl(cyclobutyl)CH, thienyl(cyclobutyl)CH, isoxazolyl(cyclobutyl)CH, and (CH₃-furanyl)(cyclobutyl)CH;
- 35 [4g] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, Cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

5

- [4h] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

15

[4i] In another preferred embodiment, the present invention provides a novel compound of formula Ic, wherein the compound is selected from the group:

- 6-(2,4-bis(trifluoromethyl)phenyl-9-(dicyclopropylmethyl)-8-ethyl-9H-purine;
- 6-(2-chloro-4-cyanophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H25 purine;
 - 6-(2-chloro-4-methoxy-5-chlorophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H-purine;
- 30 6-(2-chloro-4-methoxy-5-methylphenyl)-9-(dicyclopropylmethyl)8-ethyl-9H-purine;
 - 6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(2-hexyl)-9H-purine;
- 35 6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
 - 6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(3-heptyl)-9H-purine;

```
6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(3-hexyl)-9H-purine;
    6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(4-heptyl)-9H-purine;
    6-(2-chloro-4-methoxyphenyl)-9-(1-cyclopropylbutyl)-8-ethyl-
    9H-purine;
    6-(2-chloro-4-methoxyphenyl)-9-(1-cyclopropylpropyl)-8-ethyl-
    9H-purine;
10
    6-(2-chloro-4-methoxyphenyl)-9-(dicyclopropylmethyl)-8-ethyl-
    9H-purine;
    6-(2-chloro-4-methoxyphenyl)-9-(dicyclopropylmethyl)-8-
15 methoxy-9H-purine;
    6-(2-chloro-4-methyl-5-fluorophenyl)-9-(dicyclopropylmethyl)-
    8-ethyl-9H-purine;
20 6-(2-chloro-4-methylphenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
    6-(2-chloro-4-methylphenyl)-8-ethyl-9-(4-heptyl)-9H-purine;
    6-(2-chloro-4-methylphenyl)-9-(1-cyclopropylbutyl)-8-ethyl-9H-
25 purine;
    6-(2-chloro-4-methylphenyl)-9-(dicyclopropylmethyl)-8-ethyl-
    9H-purine;
30 6-(2-chloro-4-trifluoromethoxyphenyl)-8-ethyl-9-(2-pentyl)-9H-
    purine;
    6-(2-chloro-4-trifluoromethoxyphenyl)-8-ethyl-9-(3-hexyl)-9H-
    purine;
35
    6-(2-chloro-4-trifluoromethoxyphenyl)-9-(1-cyclopropylbutyl)-
    8-ethyl-9H-purine;
```

```
6-(2-chloro-4-trifluoromethoxyphenyl)-9-(1-cyclopropylpropyl)-
    8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethoxyphenyl)-9-(dicyclopropylmethyl)-
5 8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-hexyn-3-yl)-
    9H-purine;
10 6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-pentyn-3-
    yl)-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-pentyn-4-
    y1)-9H-purine;
15
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-phenyl-2-
    butynyl)-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(2-heptyn-4-
20 yl)-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(2-hexyn-4-yl)-
    9H-purine;
25 6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(2-pentyl)-9H-
    purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(4-heptyl)-9H-
    purine;
30
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-{(2-furanyl)-
    cyclopropylmethyl]-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-[1-(2-
35 furanyl)propyl]-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclobutylethyl)-8-
    ethyl-9H-purine;
```

```
6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropyl-2-
   butynyl)-8-ethyl-9H-purine;
5 6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropyl-2-
   propenyl)-8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropylbutyl)-8-
    ethyl-9H-purine;
10
    6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropylpropyl)-
    8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(dicyclopropylmethyl)-
15 8-ethyl-9H-purine:
    6-(2-chloro-4-trifluoromethylphenyl)-9-(dicyclopropylmethyl)-
    8-methoxy-9H-purine;
20 6-(2-chloro-4-trifluoromethylphenyl)-9-[1-cyclopropyl-1-(2-
    thienyl)methyl]-8-ethyl-9H-purine;
    9-(1-cyclobutylethyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
25
    9-[1-cyclopropyl-(3-methylisoxazol-5-yl)methyl]-6-(2,4-
    dichlorophenyl)-8-ethyl-9H-purine;
    9-(1-cyclopropyl-2-butynyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
30 purine;
    9-(1-cyclopropyl-2-butynyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
35
    9-(1-cyclopropy1-2-propeny1)-6-(2,4-dichloro-6-methylpheny1)-
    8-ethyl-9H-purine;
```

```
9-(1-cyclopropyl-2-propenyl)-6-(2,4-dichlorophenyl)-8-ethyl-
    9H-purine;
    9-(1-cyclopropy1-2-propyny1)-8-ethyl-6-(2-trifluoromethyl-4-
5 methoxyphenyl)-9H-purine;
    9(1-cyclopropyl-4'-fluorobenzyl)-6-(2,4-dichlorophenyl)-8-
    ethyl-9H-purine;
10 9-(1-cyclopropylbenzyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
    9-(1-cyclopropylbenzyl)-8-ethyl-6-(2-trifluoromethyl-4-
    methoxyphenyl)-9H-purine;
15
    9-(1-cyclopropylbutyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
    9-(1-\text{cyclopropylbuty1})-8-\text{ethyl}-6-(2,4,6-\text{trimethylphenyl})-9H-
20
   purine;
    9-(1-cyclopropylbutyl)-8-ethyl-6-(2-methyl-4,5-
    dimethoxyphenyl) -9H-purine;
25 9-(1-cyclopropylbutyl)-8-ethyl-6-(2-methyl-4-chlorophenyl)-9H-
    purine;
    9-(1-cyclopropylbutyl)-8-ethyl-6-(2-methyl-4-methoxyphenyl)-
    9H-purine;
30
    9-(1-cyclopropylbutyl)-8-ethyl-6-(2-trifluoromethyl-4-
    chlorophenyl)-9H-purine;
    9-(1-cyclopropylbutyl)-8-ethyl-6-(2-trifluoromethyl-4-
   methoxyphenyl)-9H-purine;
35
                                                                     5
    9-(1-cyclopropylethyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
```

```
9-(1-cyclopropylethyl)-8-ethyl-6-(2-trifluoromethyl-4-
    chlorophenyl)-9H-purine;
    9-(1-cyclopropylpentyl)-8-ethyl-6-(2-methyl-4-methoxyphenyl)-
    9H-purine;
    9-(1-cyclopropylpropyl)-6-(2,4-dichloro-6-methylphenyl)-8-
    ethyl-9H-purine;
10
    9-(1-\text{cyclopropylpropyl})-6-(2,4-\text{dichlorophenyl})-8-\text{ethyl}-9\textit{H}-
    purine;
    9-(1-\text{cyclopropylpropyl})-8-\text{ethyl}-6-(2,4,6-\text{trimethylphenyl})-9H-
15
   purine;
    9-(1-cyclopropylpropyl)-8-ethyl-6-(2-trifluoromethyl-4-
    chlorophenyl)-9H-purine;
    6-(2,4-dichloro-5-fluorophenyl)-9-(dicyclopropylmethyl)-8-
20
    ethyl-9H-purine;
     6-(2,4-dichloro-6-methylphenyl)-8-ethyl-9-(2-penten-3-yl)-9H-
    purine;
25
     6-(2,4-dichloro-6-methylphenyl)-9-(dicyclopropylmethyl)-8-
     ethyl-9H-purine;
     6-(2,4-dichlorophenyl)-8-ethyl-9-(1-hexyn-3-yl)-9H-purine;
30
     6-(2,4-dichlorophenyl)-8-ethyl-9-(1-methoxycarbonylpropyl)-9H-
     purine;
     6-(2,4-dichloropheny1)-8-ethy1-9-(1-pheny1-2-butyny1)-9H-
 35
    purine;
     6-(2,4-dichlorophenyl)-8-ethyl-9-(2-heptyn-4-yl)-9H-purine;
```

```
6-(2,4-dichlorophenyl)-8-ethyl-9-(2-hexyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(2-hexyn-4-yl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(2-penten-3-yl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(3-heptyl)-9H-purine;
10
    6-(2,4-dichlorophenyl)-8-ethyl-9-(3-hexyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(3-pentyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(4-heptyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-[1-(2-
    methylcyclopropyl)ethyl]-9H-purine;
    6-(2,4-dichlorophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H-
20
    purine;
    6-(2,4-dichlorophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H-
    purine;
25
    6-(2,4-dichlorophenyl)-9-(dicyclopropylmethyl)-8-methoxy-9H-
    purine;
    6-(2,4-dichlorophenyl)-9-(diphenylmethyl)-8-ethyl-9H-purine;
30
    9-(dicyclopropylmethyl)-6-(2,4-dimethylphenyl)-8-ethyl-9H-
    purine;
    9-(dicyclopropylmethyl)-6-(2,4-dimethylphenyl)-8-ethyl-9H-
35 purine;
     9-(dicyclopropylmethyl)-6-(2,6-dimethoxypyridin-3-yl)-8-
```

methoxy-9H-purine;

```
9-(dicyclopropylmethyl)-8-ethyl-6-(2,4,5-trichlorophenyl)-9H-
   purine;
5 9-(dicyclopropylmethyl)-8-ethyl-6-(2-methoxy-4-
    trifluoromethylphenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4,5-
    dimethoxypheny1) -9H-purine;
10
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-chlorophenyl)-
    9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-
15 dimethylaminophenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-methoxy-5-
    chlorophenyl)-9H-purine;
20 9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-methoxy-5-
    fluorophenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-chloro-4-methoxy-5-
    fluorophenyl)-9H-purine;
25
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-methoxyphenyl)-
    9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-trifluoromethyl-4-
30 chlorophenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-trifluoromethyl-4-
    methoxyphenyl)-9H-purine;
35 9-(dicyclopropylmethyl)-8-ethyl-6-(2-trifluoromethyl-4-
    propyloxyphenyl) -9H-purine;
                                                                    1
    6-(2,6-dimethoxypyridin-3-y1)-8-ethyl-9-(2-pentyl)-9H-purine;
```

```
6-(2,4-dimethylphenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
    8-\text{ethyl-}6-(2-\text{methyl-}4,5-\text{dimethoxyphenyl})-9-(2-\text{pentyl})-9H-
5 purine;
    8-\text{ethyl-}6-(2-\text{methyl-}4,5-\text{dimethoxyphenyl})-9-(3-\text{pentyl})-9H-
    purine;
    8-\text{ethyl}-9-(1-\text{hexen}-3-\text{y1})-6-(2-\text{methyl}-4,5-\text{dimethoxyphenyl})-9H-
    purine;
    8-ethyl-9-(1-hexen-3-yl)-6-(2-trifluoromethyl-4-
    methoxyphenyl)-9H-purine;
15
    8-\text{ethyl-9-}(2-\text{hexyl})-6-(2-\text{trifluoromethyl-4-methoxyphenyl})-9H-
    purine;
    8-ethyl-9-(2-pentyl)-6-(2-trifluoromethyl-4-methoxyphenyl)-9H-
20
   purine;
     8-\text{ethyl-9-}(3-\text{hexyl})-6-(2-\text{methyl-4-methoxyphenyl})-9H-purine;
     8-ethyl-9-(3-hexyl)-6-(2-trifluoromethyl-4-methoxyphenyl)-9H-
25
    purine;
     8-ethyl-9-(3-pentyl)-6-(2-trifluoromethyl-4-chlorophenyl)-9H-
     purine;
30 8-ethyl-9-(4-heptyl)-6-(2-methyl-4-chlorophenyl)-9H-purine;
     8-ethyl-9-(4-heptyl)-6-(2-methyl-4-methoxyphenyl)-9H-purine;
     8-ethyl-9-(4-heptyl)-6-(2-trifluoromethyl-4-chlorophenyl)-9H-
35 purine;
     8-ethyl-9-(4-heptyl)-6-(2-trifluoromethyl-4 methoxyphenyl)-
           9H-purine; and
```

N.,

9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-6-methoxy-3-pyridyl)-9H-purine;

- 5 or a pharmaceutically acceptable salt form thereof.
 - [4j] In another more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

10 R^1 is C_{3-8} cycloalkyl;

R¹ is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-N(COR^{13a})_2$, $-NR^{15a}CONR^{13a}R^{16a}$, $-NR^{15a}CO_2R^{14b}$, $-CONR^{13a}R^{16a}$, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{4-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group

selected from the group -O-, -S(0)_n-, -NR^{13a}-,

-NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in

1-piperazinyl is substituted with 0-1 substituents

selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and

SO₂R^{14b}; and,

25 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-9} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$.

30

- [4k] In another even more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- 35 X is selected from the group O, $S(0)_n$ and a bond;

n is 0, 1 or 2;

- 5 R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{4-8} cycloalkyl, wherein one carbon atom in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -;
 - R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13}aR^{16a}$;

15

- R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
 - $\rm R^2$ is selected from the group $\rm C_{1-4}$ alkyl, $\rm C_{2-4}$ alkenyl, and $\rm C_{2-4}$ alkynyl and is substituted with 0-1 substituents

selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
 - R^3 is selected from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- 10 R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 15 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 20 R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

30

ζ.

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 5 R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;

15

25

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

- 20 aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,
 - heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,
- benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, tetrazolyl, indazolyl,
 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,
 2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
- benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected

at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2R^{14a} , CO_2R^{14a} and SO_2R^{14a} .

10 [41] In another still more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, S and a bond;

15 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂ R^{13a} , and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

20

25

30

- R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_3 , $-OR^{13a}$, -OH, $-OCH_3$, $-OCH_2CH_3$, $-CH_2OCH_3$, and $-NR^{13a}R^{16a}$;
- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃), OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- 35 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each

heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

10

20

5

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

 R^3 is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from 25 the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being 30 substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, 35 $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3,

COCH₃ and SO₂CH₃.

 ${\bf V}_{2}$

[4m] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

5

10

- R^1 is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , CH_2CH_3 , CH_2CH_3 , $-(CH_2)_3CH_3$, $-CH=CH_2$, $-CH=CH(CH_3)$, -CH=CH, $-CH=C(CH_3)$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, $-CH_2CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH_2CH_3$, $-CH_3$, $-CH_2CH_3$, $-CH_3$,
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
- R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$; 30 R^3 is selected from the group H and CH_3 ;
- aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

10

- [4n] In another even further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH₂OCH₃, -CH₂CH₂OCH₃, F, and CF₃; and,
- R^{1a} is phenyl substituted with 0-2 substituents

 20 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃,

 -CN, and SCH₃.
- 25 [40] In another still further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, Cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₃, OCH₃,
- 35 [4p] In another still further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

- [4q] In another more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- 10 $R^1 \text{ is selected from the group } C_{1-10} \text{ alkyl, } C_{2-10} \text{ alkenyl,}$ $C_{2-10} \text{ alkynyl, } C_{3-8} \text{ cycloalkyl, } C_{3-6} \text{ cycloalkyl-} C_{1-6}$ $\text{alkyl and } C_{1-4} \text{ alkoxy-} C_{1-4} \text{ alkyl;}$

5

- 15 R¹ is substituted with a C_{3-8} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl group is replaced by a group selected from the group -0-, -S(0)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;
- 20 R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

30 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

R1b is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, 5 indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 10 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, 15 Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from 20 the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ; and,

saturated heteroaryl, each heterocyclyl being
substituted on 0-4 carbon atoms with a substituent
independently selected at each occurrence from the
group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄
haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a},
-OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a},
-NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each
heterocyclyl being substituted on any nitrogen atom
with 0-1 substituents selected from the group R^{13a},
CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom
is optionally monooxidized or dioxidized.

[4r] In another even more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

5

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

10

 R^1 is substituted with a C_{3-6} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;

15

20

 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

30

35

 R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, CF3, -CN,

Ġ

-OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

5

 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

10

20

25

- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R³ is selected from the group H, Br, Cl, F, -CN, C₁₋₄ alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C₁₋₄ alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
 - R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
 - R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

30

- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

Ç.

R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

5

- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀

 cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
 - alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_{1}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-NR^{15}CO_{2}R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,

benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 5 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} 10 cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

[4s] In another still more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

20

15

X is selected from the group O, S and a bond;

 R^1 is C_{1-6} alkyl;

- R^1 is substituted with a C_{3-6} cycloalkyl, wherein 0-1 carbon 25 atoms in the C_{4-4} cycloalkyl is replaced by a group selected from the group -0-, $-S(0)_{n-}$, and $-NR^{13a}-$;
- R¹ is also substituted with 0-2 substituents independently 30 selected at each occurrence from the group Rla, Rlb, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, F, CF_3 , $-OR^{13a}$, $-NR^{13}aR^{16}a$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, and C_{3-6} cycloalkyl which is substituted with 0-1 CH3 and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

35

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

ÝΣ

R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;

5

R1b is heteroaryl and is selected from the group furanyl,
thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each
heteroaryl being substituted on 0-3 carbon atoms with
a substituent independently selected at each
occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂,

CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,
OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂
and each heteroaryl being substituted on any nitrogen
atom with 0-1 substituents selected from the group
CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

- R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
- 25 R^3 is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
- aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is independently selected at each occurence from
 the group pyridyl, indolyl, benzothienyl,
 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃.

[4t] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)C₁ alkyl;

R¹ is substituted with 1-2 substituents independently

selected at each occurrence from the group R^{1a}, R^{1b},

CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃
cyclobutyl, cyclopentyl, CH₃-cyclopentyl;

25

30

35

5

- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each

heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 ;

- 5 \mathbb{R}^2 is selected from the group $\mathrm{CH_3}$, $\mathrm{CH_2CH_3}$, and $\mathrm{CH(CH_3)_2}$;
 - R³ is selected from the group H and CH₃;
- aryl is phenyl substituted with 2-4 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

15

- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,
- 20 OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.
- 25 [4u] In another even further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is $(cyclopropyl)C_1$ alkyl or $(cyclobutyl)C_1$ alkyl;
- 30 R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

35

R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the

group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, Br, C1, F, CF_3 , -CN, and SCH_3 ;

R^{1b} is heteroaryl and is selected from the group furanyl,
thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
and pyrazolyl, each heteroaryl being substituted on
0-3 carbon atoms with a substituent independently
selected at each occurrence from the group CH₃, CH₂CH₃,
CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, and SCH₃.

[4v] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

15

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, Cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, OCH₃, Br, Cl, F, and CF₃.

20

[4w] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

30

35

[5] In a third embodiment, the present invention provides a novel pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I):

$$R^{2}-X \xrightarrow{N \atop N} \stackrel{A}{\longrightarrow} \stackrel{R^{3}}{\longrightarrow} R^{3}$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

5

A is N or $C-R^7$;

B is N or C-R8;

10 provided that at least one of the groups A and B is N;

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

15 X is selected from the group CH-R 9 , N-R 10 , O, S(O) $_n$ and a bond;

n is 0, 1 or 2;

- 20 R¹ is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, -SO₂- C_{1-10} alkyl, -SO₂- R^{1a} , and -SO₂- R^{1b} ;
- 25 R¹ is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-N(COR^{13a})_2$, $-NR^{15a}CONR^{13a}R^{16a}$, $-NR^{15a}CO_2R^{14b}$, $-CONR^{13a}R^{16a}$, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents

selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R1 is other than:

- (a) a 3-cyclopropyl-3-methoxypropyl group;
- (b) an unsubstituted-(alkoxy)methyl group; and,
- (c) a 1-hydroxyalkyl group;

also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;

- 20 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- R1b is heteroaryl and is selected from the group pyridyl,

 pyrimidinyl, triazinyl, furanyl, quinolinyl,
 isoquinolinyl, thienyl, imidazolyl, thiazolyl,
 indolyl, pyrrolyl, oxazolyl, benzofuranyl,
 benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
 indazolyl, 2,3-dihydrobenzofuranyl,
 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,

ς.

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_mR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};

R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized;

25

5

10

 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF_3 and C_2F_5 ;
- R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, amino, C_{1-4}

alkylamino, $(C_{1-4} \text{ alkyl})_2$ amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C_{1-7} alkyl, C_{3-8} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} alkylthio, C_{1-4} alkyl sulfinyl, C_{1-4} alkylsulfonyl, C_{1-6} alkylamino and $(C_{1-4} \text{ alkyl})_2$ amino;

provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;

10

- R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;
- 15 R^{13} is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;
- 20 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 25 R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4}

haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
 - R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

15

35

- 20 R¹⁷ is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 25 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
 - alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl,

V. (

1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

- 5 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF₃, C₂F₅, OCF₃, SO₂Me and acetyl; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, 25 thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 30 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, 35 $-OR^{17}$, SH, $-S(O)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(O)R^{18}$,

 $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$,

Ŋ.

-NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and SO_2R^{14a} .

5

In a second embodiment, the present invention provides a novel method of treating affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-10 traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency 15 virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be 20 effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, in mammals, comprising: administering to the mammal a therapeutically effective amount of a compound of formula (I):

25

K

$$R^2 - \chi \longrightarrow N \longrightarrow D \longrightarrow R^3$$

(I)

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

30

A is N or $C-R^7$:

B is N or C-R8;

provided that at least one of the groups A and B is N;

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

5

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

SO₂R^{14b};

10

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

15

20

25

 ${\rm R}^1$ is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO_2R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})_2, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO_2R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C3-8 cycloalkyl, wherein 0-1 carbon atoms in the C4-8 cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO_2R^{14b}-, -NCOR^{14b}- and -NSO_2R^{14b}-, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group ${\rm R}^{13a}$, ${\rm CO}_2{\rm R}^{14b}$, ${\rm COR}^{14b}$ and

 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

35

provided that R1 is other than:

(a) a 3-cyclopropyl-3-methoxypropyl group;

(b) an unsubstituted-(alkoxy)methyl group; and,

- (c) a 1-hydroxyalkyl group;
- also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;
- R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(0)_nR¹⁸, -COR¹⁷, -OC(0)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

15

- R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,
- benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
 indazolyl, 2,3-dihydrobenzofuranyl,
 2,3-dihydrobenzothienyl,
 - 2,3-dihydrobenzothienyl-S-oxide,
- 25 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH,
- $-S(0)_{m}R^{18}, -COR^{17}, -OC(0)R^{18}, -NR^{15a}COR^{17}, -N(COR^{17})_{2},\\ -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO_{2}R^{18}, -NR^{17a}R^{19a}, \text{ and}\\ -CONR^{17a}R^{19a} \text{ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the substitute of the s$
- 35 the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

1,5

R^{1c} is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized;

 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

alternatively R^2 , in the case where X is a bond, is selected 20 from the group -CN, CF_3 and C_2F_5 ;

R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;

provided that when R^1 is unsubstituted C_{1-10} alky1, then R^3 is other than substituted or unsubstituted pheny1;

 R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;

- 5 R¹³ is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;
- 10 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 15 R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14a} is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl,
 C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆
 cycloalkyl-C₁₋₆ alkyl and benzyl, each benzyl being
 substituted on the aryl moiety with 0-1 substituents
 selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄
 haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and
 dimethylamino;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl

35

Ķ.

being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

5

- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 10 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 15 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- 20 alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents . selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

25

30

- alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

35

aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl

being substituted with 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, methylenedioxy, C_{1-4} alkoxy- C_{1-4} alkoxy, $-OR^{17}$, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, $-NO_2$, SH, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C_{1-3} alkyl, C_{1-3} alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF_3 , C_2F_5 , OCF_3 , SO_2Me and acetyl; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, 15 thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 20 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} 25 cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and 30 SO_2R^{14a} .

In another preferred embodiment, R¹ is other than a cyclohexyl-(CH₂)_{1, 2, 3, 4, 5, 6, 7, 8, 9, or 10- group.}

35

<. .

In another preferred embodiment, R^1 is other than an aryl-(CH₂)₁, 2, 3, 4, 5, 6, 7, 8, 9, or 10⁻ group, wherein the aryl group is substituted or unsubstituted.

- 5 In another preferred embodiment, R¹ is other than a heteroaryl-(CH₂)₁, 2, 3, 4, 5, 6, 7, 8, 9, or 10- group, wherein the heteroaryl group is substituted or unsubstituted.
- In another preferred embodiment, R¹ is other than a heterocyclyl-(CH₂)₁, 2, 3, 4, 5, 6, 7, 8, 9, or 10- group, wherein the heterocyclyl group is substituted or unsubstituted.
- In another preferred embodiment, when D is imidazole or triazole, R^1 is other than unsubstituted C_1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 linear or branched alkyl or C_3 , 4, 5, 6, 7, or 8 cycloalkyl.
- 20 In another preferred embodiment, R^{1a} is not substituted with OR^{17} .

asymmetric centers or planes. Unless otherwise indicated, all chiral (enantiomeric and diastereomeric) and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds, and all such stable isomers are contemplated in the present invention. The compounds may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. All chiral, (enantiomeric and diastereomeric) and racemic forms and all geometric isomeric forms of a structure are intended, unless the specific

stereochemistry or isomer form is specifically indicated.

The term "alkyl" includes both branched and straightchain alkyl having the specified number of carbon atoms. "Alkenyl" includes hydrocarbon chains of either a straight or branched configuration and one or more unsaturated 5 carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like. "Alkynyl" includes hydrocarbon chains of either a straight or branched configuration and one or more triple carboncarbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like. "Haloalkyl" 10 is intended to include both branched and straight-chain alkyl having the specified number of carbon atoms, substituted with 1 or more halogen; "alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge; "cycloalkyl" is intended to 15 include saturated ring groups, including mono-, bi- or polycyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and so forth. "Halo" or "halogen" includes fluoro, chloro, bromo, and iodo.

The term "substituted", as used herein, means that one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

20

25

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound" or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

The term "pharmaceutically acceptable salts" includes acid or base salts of the compounds of formulas (I) and (II). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic

Ć.

salts of acidic residues such as carboxylic acids; and the like.

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug of formula (I) or (II) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of formula (I) and (II) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include compounds wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formulas (I) and (II); and the like.

The term "therapeutically effective amount" of a compound of this invention means an amount effective to antagonize abnormal level of CRF or treat the symptoms of affective disorder, anxiety, depression, immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in a host.

35

30

15

20

25

Synthesis

Compounds of formula (I) can be prepared by the following synthetic routes and schemes. Where a detailed description is not provided, it is assumed that those skilled in the art of organic synthesis will readily understand the meaning.

Synthesis of compounds of formula (I) may be prepared by the reaction shown in Scheme 1.

10

20

25

A compound of formula (II) can be alkylated on the imidazole nitrogen atom with an appropriate reagent. Typical conditions for this transformation include treatment of compound (II) with a base, such as sodium hydride, potassium tert-butoxide, sodium hexamethyldisilazide, etc., followed by a reagent J-R¹, where J represents a halide (chloride, bromide or iodide) or psuedohalide (tosylate, mesylate, triflate, etc.), at an appropriate temperature (0 °C or room temperature, with warming if necessary) in a solvent such as tetrahydrofuran, dimethylformamide or dimethylsulfoxide. Alternatively, this reaction may be performed using the Mitsunobu conditions (Mitsunobu, Synthesis 1981, pp. 1-28). The compound (II) is treated with an alcohol compound R¹OH, along with a phosphine (triphenyl, tributyl, etc.) and a phosphine-activating reagent such as diethyl azodicarboxylate.

Compounds of Formula (II) may be prepared according to the route shown in Scheme 2.

Scheme 2

A compound of Formula (III) may be coupled to an aromatic compound of Formula (IV), with elimination of the elements of M-K. For compound (III), K represents a halide, psuedohalide 5 (such as mesylate, tosylate or triflate), or thiomethyl, and P represents a protecting group (if the conditions of the reaction warrant protection of the imidazole N-H; otherwise, P can be H). Suitable P groups may include benzyl, 4methoxybenzyl, methoxymethyl, trimethylsilylethoxymethyl, tert-butoxycarbonyl or benzyloxycarbonyl. For compound (IV), M 10 represents groups such as lithium, bromomagnesium, chlorozinc, (dihydroxy)boron, (dialkoxy)boron, trialkylstannyl and the like. The coupling reaction may be performed in the presence of an appropriate catalyst, such as 15 tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine)palladium dichloride, [1,3bis(diphenylphosphino)propane]nickel dichloride, etc. Two particularly useful methods involve the coupling of chloroheterocycles with in-situ-prepared arylzinc reagents 20 according to the method of Negishi et al. (J. Org. Chem. 1977, 42, 1821), and the coupling with arylboronic esters according to the method of Suzuki et al. (Chem. Letters 1989, 1405). Appropriate solvents for reactions of this type usually include tetrahydrofuran, diethyl ether, dimethylformamide, or dimethylsulfoxide. Typical temperatures range from ambient up 25 to the boiling point of the solvent. Once coupled, the P group may be removed to afford compound (II). Conditions for the removal of the protecting groups are well known to those familiar to the art of organic synthesis; e.g. hydrogenation

to remove benzyl or benzyloxycarbonyl, a fluoride source (such as tetrabutylammonium fluoride) to remove silylethoxymethyl, an acid source (such as trifluoroacetic acid) to remove tertbutoxycarbonyl or 4-methoxybenzyl, etc.

Compounds of formula (III) can be prepared according to the plan shown in Scheme 3.

A diamine compound of formula (V) (in this case, P is a group such as benzyl, which can be introduced already attached to the nitrogen atom; otherwise, P could represent H initially, and another protecting group being introduced in a later step) is used in a cyclocondensation reaction to make the imidazole ring. The conditions used will, of course, depend on the X group chosen, and may include the intermediacy of the compound (VI). A review of imidazole-forming reactions may be found in Comprehensive Heterocyclic Chemistry (Pergamon Press, 1984) vol. 5, pp. 457-498.

Preparation of compounds of formula (V) wherein both A and B are nitrogen atoms may proceed according to the route of Scheme 4.

Scheme 4

5

15

20

$$\begin{array}{c|c}
 & P \\
 & HN \\
 & N \\
 & N$$

A compound of formula (VII) may be available from commercial sources, particularly for K = chloride. Compounds bearing psuedohalide K groups may be available from the corresponding dihydroxy compounds by treatment with an appropriate activating reagent, such as an organosulfonic anhydride or sulfonyl chloride. Compound (VII) may be converted to (V) by either (i) monoalkylation with a compound P-NH2, followed by reduction of the nitro group; (ii) reduction of the nitro group, to give an amine compound of formula (VIII), followed 10 by monoalkylation with a compound P-NH2; or (iii) use of a source of ammonia (ammonia gas, ammonium hydroxide, etc.) in either route, followed by protection of the amine group with the group P. Pyrimidine chemistry of this type is well represented in the literature, and is reviewed in 15 Comprehensive Heterocyclic Chemistry, vol. 6. Alkylation of chloropyrimidines with amine compounds can be accomplished under either acidic (e.g. HCl or acetic) or basic (trialkylamines, potassium tert-butoxide, etc.) conditions. Nitro groups in compounds of this type can be reduced to amino 20 groups using one of any number of conditions, including catalytic hydrogenation, tin dichloride, sodium dithionite, zinc metal, iron powder, etc.

Preparation of compounds of formula (V) wherein either A or B represent nitrogen atoms is shown in Scheme 5.

****:

An hydroxypyridone compound of formula (IX) can be nitrated to give compound (X) employing conditions such as concentrated or fuming nitric acid, optionally in the presence of concentrated sulfuric or acetic acid. The hydroxypyridone can be selectively monoactivated with a K group to give a compound of formula (XI); one method to do this involves treatment of the dicyclohexylamine salt of compound (X) with phosphorus oxychloride to give (XI) wherein K = Cl. Alternatively, both the hydroxy and pyridone groups in compound (X) can be activated at the same time, using stronger conditions such as phosphorus oxychloride and heat, or excess toluenesulfonic anhydride, to give compound (XII). Compound (XI) may be converted to the protected amine compound (XIII) using the same general route discussed above for the pyrimidines.

10

15

Selective monoalkylation using compound (XII) is also possible, but will probably give mixtures of regioisomeric products (XIV) and (XV). The nitro groups in these compounds can then be reduced as discussed above, to give compounds for formula (V) wherein either A or B is nitrogen.

An alternative approach to the method involving introduction of the R^1 group at the initial step is shown in Scheme 6.

This is particularly useful in the cases where R^1 represents a group where alkylation of compound (II) is impractical (e.g. a very bulky R^1 group), but can also be used in a general manner. Here, compounds of formula (XVI) or (XVII) (either amino- or nitro-pyridines or pyrimidines) are alkylated with an amine reagent R^1 - NH_2 , under either acidic or basic conditions as described above. Nitro compound (XVIII) can be converted to amine compound (XIX) by nitro reduction reactions described earlier. Compound (XIX) can be cyclized to imidazole compound (XX). As above, this reaction will depend upon the choice of X group. For example, for $X = CHR^9$, one can use an orthoester reagent such as $R^2CH(R^9)C(OR)_3$, with heating in neat solution or high-boiling solvents, and the optional presence of an acid catalyst (such as hydrochloric or sulfuric acid) (see

10

15

Montgomery and Temple, J. Org. Chem. 1960, 25, 395). For X = NR^{10} , the cyclization is performed using reagents such as an guanidine reagent of the structure $R^2R^{10}N-C(=NH)NH_2$ or a urea-derived reagent of the structure R²R¹⁰N-C(=NH)D, where D represents a group like OCH_3 , SCH_3 or SO_2CH_3 . For X = O, the ring is formed using a reagent of the structure (R2O) C (with acetic acid catalysis), provided one has access to the reagent with the R2 group of choice (see Brown and Lynn, J. Chem. Soc. Perkin Trans. I 1974, 349). Alternatively, 10 the diamine (XIX) is treated with phosgene, followed by Oalkylation to introduce the R2 group (such as a reagent like R^2 -I or R^2 -Br). A similar route can be used for X = S, which would use thiophosgene or some similar reagent, followed by S-alkylation with the R^2 group. The sulfur atom in this compound (and sulfide groups throughout the molecule in general) can be oxidized to either the sulfoxide or sulfone if desired by treatment with an appropriate oxidizing agent such as potassium permanganate, potassium peroxomonosulfate or m-chloroperbenzoic acid. Finally, compound (XX) can be used in an aryl coupling reaction as described above to 20 replace the K group with the desired aryl group in compound (I).

Methods of synthesis of compounds R¹-OH, R¹-J and R¹-NH₂ are related, in that the alcohol can be used in the synthesis of the other two compounds, as is shown in Scheme 7.

For example, the hydroxy group may be converted to the

following J groups, using the indicated reagents (this route
is not limited to these J groups): methanesulfonate, using
methanesulfonyl chloride or anhydride and an appropriate base;
toluenesulfonate, using toluenesulfonyl chloride or anhydride
and an appropriate base; iodide; using iodine /

triphenylphosphine; bromide, using phosphorus tribromide or

carbon tetrabromide / triphenylphosphine; or trifluoromethanesulfonate, using trifluoromethane-sulfonic anhydride and an appropriate base. Both compounds R¹-OH and R¹-J are used in the methods portrayed in Scheme 1. Conversion of R¹-J to R¹-N₃ requires the use of an azide source, such as sodium azide, and a solvent such as dimethylsulfoxide or dimethylformamide, or water and a phase-transfer catalyst (such as tetrabutylammonium hydrogen sulfate). Reduction of the azide compound R¹-N₃ to R¹-NH₂ may be accomplished using reagents such as sodium borohydride or triphenylphosphine, or hydrogen gas and a catalyst (such as palladium on carbon). The amine R¹-NH₂ may then be employed in the methods portrayed in Scheme 6.

In the cases where the compound R^1 -OH could be represented by a structure of formula (XXI) (Scheme 8), wherein R^{1a} and R^{1b} represents substructures which, taken together with the carbinol methine group, comprise the entire group R^1 , this compound may be prepared by addition to a carbonyl compound.

20

This route is particularly useful in the case where R^{1a} or R^{1b}

represents a cycloalkyl group, such as cyclopropyl. An organometallic reagent (where M' represents a metallic group, such as Li, CuCN, CuI, MgCl, MgBr, MgI, ZnCl, CrCl, etc.) can be allowed to react with an aldehyde reagent to prepare the alcohol compound of formula (XXI). Alternatively, a ketone of formula (XXII) may be treated with a reducing agent, such as sodium borohydride, lithium aluminum hydride, etc., which will

PCT/US98/13913 WO 99/01454

also generate the alcohol of formula (XXI). Standard methods of ketone synthesis may be used where appropriate in the preparation of compounds for formula (XXII), which will be familiar to those skilled in the art of organic synthesis.

An homologous approach may also be employed in the synthesis of alcohols R1-OH, involving the ring-opening reaction of cyclic ether compounds with organometallic reagents (Scheme 9).

Here, an organometallic reagent R1a-M" is used, where M" represents metals such as Mg, Zn or Cu. Especially useful is 15 the method described in Huynh, et al., Tetrahedron Letters 1979, (17), pp. 1503-1506, where organomagnesium reagents are allowed to react with cyclic ethers with catalysis provided by copper (I) iodide. Use of an epoxide compound of formula (XXIII) in this manner would result in synthesis of an alcohol compound of formula (XXIV), and use of an oxetane compound of formula (XXV) would generate an alcohol of formula (XXVI). Both compounds (XXIV) and (XXVI) are variants of R1-OH.

Synthesis of compound R1-NH, with formula (XXVII) is portrayed in Scheme 10.

Scheme 10

20

25

5

-146-

Ç,

A simple reductive amination of ketone (XXII) will produce 5 amine (XXVII). This reaction may be performed using anhydrous ammonia in the presence of hydrogen and a catalyst. Alternatively, addition of an organometallic reagent to a nitrile compound gives and imine, which may be treated in situ with a reducing agent (such as sodium cyanoborohydride) to 10 give amine (XXVII). Finally, a compound of formula (XXVIII), wherein Q is an optionally-substituted oxygen atom (i.e. an oxime) or nitrogen atom (i.e. a hydrazone), may be allowed to react with an organometallic reagent R1b-M'''. Here, metallic groups M''' such as MgBr, CuCl or CeCl, have been used in 15 additions to oximes or hydrazones. The intermediate addition products of formula (XXIX) may be subjected to reductive cleavage (using conditions such as sodium/liquid ammonia or catalytic hydrogenation), which will afford amines (XXVII).

Amino acids, either naturally-occurring or synthetic, are potential sources of useful starting materials for the synthesis of the compounds of this invention. Scheme 11 shows some possible applications of this approach.

Scheme 11

$$R^{1a}$$
 CO_2H R^{1a} CO_2H R^{1a} OH NH_2 $NH-Prot$ $NH-Prot$ $(XXXII)$ $(XXXII)$ R^{1a} R^{1b} R^{1b

Protected amino acids of formula (XXXI) are prepared from the parent compounds of formula (XXX); useful protecting groups ("Prot") include tert-butoxycarbonyl, benzyloxycarbonyl and triphenylmethyl. Standard texts in peptide chemistry describe this protection. The carboxylic acid group may be reduced using reagents such as lithium borohydride, which gives alcohol (XXXII). The hydroxy group may be converted to a leaving group "J" as described before. The compound of formula (XXXIII) may be treated with appropriate reagents to produce a wide variety of functional groups included in the scope of this invention (compound (XXXIV)); displacement of J with 15 cyanide (sodium cyanide in warm dimethylformamide may be used here) gives a nitrile, displacement of J with a mercaptan (in the presence of a base, such as potassium carbonate) gives a disulfide, displacement of J with a secondary amine gives a tertiary amine, etc.

20

25

30

The compounds of Formula (I) with unsaturated R¹ groups can be a further source of compounds covered under this invention. Unsaturated (double and triple) bonds can take part in cycloaddition chemistry with appropriate reagents (Scheme 12). Cycloaddition of an alkyne compound of Formula XXXVI with 1,3-dienes to give six-membered ring compounds like that of Formula XXXVII (commonly known as the Diels-Alder reaction), and cycloaddition with 3-atom dipolar reagents to give heterocyclic compounds of Formula XXXVIII, are familiar to those skilled in the art of organic synthesis. One specific

example of this approach is the synthesis of an isoxazole compounds of Formula XXXIX from the alkyne XXXVI and a nitrile oxide reagent.

The synthetic procedure in Scheme 13 shown below may be used to prepare 4,5-c imidazopyridines.

15

5

10 Nitration of 2,4-dihydroxypyridine (XXXX) with HNO3 as described earlier (Koagel et al. Recl. Trav. Chim. Pays-Bas. 29, 38, 67, 1948) gave the corresponding 3-nitropyridone (XXXXI) which was treated with an organic amine base, such as cycloheptyl amine to give selectively the corresponding 4chloropyridone (XXXXIII). This in turn was reacted with a 15 primary amine RNH2, where R is a group described earlier in an aprotic or protic solvent, such as CH3CN, DMSO, DMF, or an alkyl alcohol in the presence of an organic or inorganic base, such as a trialkylamine, K2CO3, Na2CO3 etc, and in temperature 20 range of 20-200 °C to give the 4-amino adduct (XXXXIII). Pyridone (XXXXIII) was converted to the 2-chloropyridine (XXXXIV) by treatment with POCl₃, and (XXXXIV) was coupled with an arylboronic acid ArB(OH), under palladium catalysis to

give (XXXXV). Nitropyridine (XXXXV) was reduced to the corresponding aminopyridine by use of $Na_2S_2O_4$ or a Fe, Sn or $SnCl_2$ and converted to the imidazo[4,5-c]pyridine in refluxing propionic acid. The same transformation can be affected by the use of a nitrile, an imidate, thioimidate or trialkylorthopropionate.

The synthetic procedure in Scheme 14 shown below may be used to prepare 4,5-b imidazopyridines.

15 Scheme 14

Reaction of 4-chloropyridone (XXXXII) with an aryl halide, such as benzyl bromide in benzene and in the presence of Ag₂CO₃ as described in Scheme 13 (Smith A. M.; et al. J. Med. Chem. 36, 8, 1993) and at temperature ranges of 30-80 °C afforded the corresponding 2-benzyloxypyridine (XXXXVII). This was coupled with an arylboronic acid, ArB(OH), under palladium-catalyzed conditions to give (XXXXIX). The benzyloxy group can be removed by treatment with a strong acid, such as trifluoroacetic, triflic, sulfuric, HCl, etc. to give pyridone (L). This was converted to the 2-halopyridine with the action 10 of POX, PX, or the corresponding triflate, tosylate or mesylate, which was displaced with a primary amine RNH2 to give (LI). The nitro group was reduced under conditions described in scheme 13 and the aminopyridine was cyclized to the imidazolo[4,5-b]pyridine (LII) under conditions described 15 in scheme 13.

The following examples are provided to describe the invention in further detail. These examples, which set forth the best mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention.

The methods discussed below in the preparation of 825 ethyl-9-(1-ethylpentyl)-6-(2,4,6-trimethylphenyl)purine
(Table 1, Example 2, Structure A) and 9-butyl-8-ethyl-6(2,4,6-trimethylphenyl)purine (Table 1, Example 27,
Structure A) may be used to prepare all of the examples of
Structure A contained in Table 1, Table 1A and Table 1B,
30 with minor procedural modifications where necessary and use
of reagents of the appropriate structure.

The methods discussed below in the preparation of 3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-ethyl-3H-imidazo[4,5-b]pyridine (Table 1, Example 38, Structure B) and 1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-ethyl-1H-imidazo[4,5-c]pyridine (Table 1, Example 38, Structure C) may be used to prepare many of the examples of

Structures B and C contained in Table 1, Table 1A, Table 1B and Table 1C, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

5

Example 2

Preparation of 8-Ethyl-9-(1-ethylpentyl)-6-(2,4,6-trimethylphenyl)purine

10 Part A. A solution of 5-amino-4,6-dichloropyrimidine (10.0 g, 61.0 mmol) and triethylamine (12.8 mL, 91.5 mmol) in ethanol (100 mL) was treated with benzylamine (7.30 mL, 67.1 mmol), and heated to 50 °C overnight. The resulting mixture was cooled, and the resulting crystalline solid was collected by filtration. The solid was triturated with hexane, refiltered and dried under vacuum. A second crop was collected from the mother liquor and purified like the first crop to afford in total 12.67 g (48.8 mmol, 80%) of 5-amino-6-benzylamino-4-chloropyrimidine. TLC R_F 0.10 (30:70 ethyl acetate-hexane). ¹H

20 NMR (300 MHz, CDCl₃): d 7.62 (1H, s), 7.13-6.97 (5H, m), 6.61 (1H, br t, J = 5 Hz), 4.43 (2H, d, J = 5.5 Hz), 4.24 (2H, br s). MS (NH₃-CI): m/e 238 (4), 237 (33), 236 (15), 235 (100).

Part B. A solution of the diamine from Part A (10.45 g, 44.5 mmol) and 3 drops concentrated hydrochloric acid in triethyl orthopropionate (70 mL) was heated to 100 °C for 1 hour, then cooled, poured into water (200 mL) and extracted with ethyl acetate (2 x 200 mL). The extracts were washed in sequence with brine (100 mL), then combined, dried over anhydrous sodium sulfate, filtered and evaporated. The residue was separated by column chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford the product, N-(6-benzylamino-4-chloropyrimidin-5-yl)-O-ethyl-propionimidate (12.82 g, 40.2 mmol, 90%) as a crystalline solid, m.p. 85-86 °C. TLC R_r 0.25 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.19 (1H, s), 7.35-7.29 (5H, m), 5.21 (1H, br t, J = 5 Hz), 4.70 (2H, d, J = 5.9 Hz), 4.29 (2H, br), 2.15 (2H, br q, J = 7.3

Hz), 1.35 (3H, t, J = 7.0 Hz), 1.06 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 322 (6), 321 (34), 320 (20), 319 (100).

Part C. A solution of the imidate compound prepared in Part B 5 above (10.66 g, 33.4 mmol) and p-toluenesulfonic acid monohydrate (100 mg) in diphenyl ether (10 mL) was heated to 170 °C for 2 hours. The resulting mixture was cooled and poured into 50 mL water. This was extracted with ethyl acetate $(2 \times 50 \text{ mL})$, and the extracts were washed in sequence with brine (50 mL), combined, dried over anhydrous sodium sulfate, 10 filtered and evaporated. The residual material was separated by column chromatography (silica gel, hexane to remove diphenyl ether, then 30:70 ethyl acetate-hexane) to afford the product, 9-benzyl-6-chloro-8-ethylpurine, as an oil (8.16 gi 29.9 mmol, 89%). TLC $R_{\rm F}$ 0.20 (30:70 ethyl acetate-hexane). $^{1}{\rm H}$ 15 NMR (300 MHz, CDCl₃): d 8.72 (1H, s), 7.37-7.29 (3H, m), 7.19-7.14 (2H, m), 5.46 (2H, s), 2.89 (2H, q, J = 7.7 Hz), 1.38 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 276 (6), 275 (36), 274 (20), 273 (100).

20

Part D. A solution of zinc chloride (5.32 g, 39.1 mmol) in anhydrous, freshly-distilled tetrahydrofuran (50 mL) was treated at ambient temperature with a solution of mesitylmagnesium bromide (39.1 mL, 1.0 M, 39.1 mmol) in diethyl ether. After 45 minutes, a separate flask containing a solution of bis(triphenylphosphine)-palladium dichloride (0.92 g, 1.3 mmol) in tetrahydrofuran (30 mL) was treated with a solution of diisobutylaluminum hydride (2.6 mL, 1.0 M, 2.6 mmol) in hexane. This mixture was allowed to stir for 15 minutes, then treated with the mesitylzinc chloride solution 30 dropwise by cannula. Then, the chloropurine compound in 10 mL tetrahydrofuran solution was added by syringe, and the mixture was allowed to stir for 12 hours at ambient temperature. It was poured into water (150 mL), and acidified with dropwise addition of 1 N aqueous hydrochloric acid until the mixture is 35 homogeneous. This is extracted with ethyl acetate (2 \times 150 \mathtt{mL}), and the extracts were washed in sequence with saturated brine solution (100 mL), combined, dried over anhydrous sodium

sulfate, filtered and evaporated. The residue was separated by
column chromatography (silica gel, 30:70 ethyl acetate-hexane)
to afford the product, 9-benzyl-8-ethyl-6-(2,4,6trimethylphenyl)purine (6.68 g, 18.7 mmol, 72%), as an off
5 white waxy solid, m.p. 121-122 °C. ¹H NMR (300 MHz, CDCl₃): d
9.00 (1H, s), 7.38-7.31 (3H, m), 7.23-7.21 (2H, m), 6.96 (2H,
s), 5.50 (2H, s), 2.84 (2H, q, J = 7.6 Hz), 2.33 (3H, s), 2.06
(6H, s), 1.26 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 359 (3),
358 (26), 357 (100).

10

Part E. A solution of the benzyl compound from Part D above (5.33 g, 14.95 mmol) in trifluoroacetic acid (320 mL) partitioned into four Parr bottles, and each was treated with 0.8 g 20% palladium hydroxide on carbon. The bottles were each subjected to hydrogenation (50 psi) in shaker apparati for 18 15 hours. The atmospheres were purged with nitrogen, and the solutions were combined, filtered through celite and evaporated. The residual material was separated by column chromatography (silica gel, 50:50 ethyl acetate-hexane) to afford the product, 8-ethyl-6-(2,4,6-trimethylphenyl)purine 20 (3.75 g, 14.1 mmol, 94%), as a white crystalline solid, m.p. 215-217 °C. TLC R, 0.17 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 12.35 (1H, br s), 9.03 (1H, s), 6.96 (2H, s), 3.05 (2H, q, J = 7.7 Hz), 2.32 (3H, s), 2.05 (6H, s), 1.5025 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 269 (2), 268 (19), 267 (100).

Part F. A solution of the purine compound from Part E above (200 mg, 0.75 mmol), 3-heptanol (0.13 mL, 0.90 mmol) and triphenylphosphine (0.24 g, 0.90 mmol) in freshly-distilled tetrahydrofuran (5 mL) was cooled to 0 °C, and treated with diethyl azodicarboxylate (0.14 mL, 0.90 mmol) dropwise by syringe. The mixture was allowed to stir for 12 hours, then evaporated. The residual material was separated by column chromatography (silica gel, 15:85 ethyl acetate-hexane) to afford the title product as a white solid (0.152 g, 0.42 mmol, 56%), m.p. 99-100 °C. TLC R_p 0.17 (10:90 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.91 (1H, s), 6.95 (2H, s),

4.22 (1H, br), 2.92 (2H, q, J = 7.7 Hz), 2.41 (2H, br), 2.32 (3H, s), 2.10-1.98 (2H, m), 2.05 (3H, s), 2.04 (3H, s), 1.37 (3H, t, J = 7.5 Hz), 1.34-1.23 (4H, m), 0.84 (3H, t, J = 7.1 Hz), 0.81 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 367 (3), 366 (27), 365 (100).

Example 27

Preparation of 9-Butyl-8-ethyl-6-(2,4,6-trimethylphenyl)purine

10 A solution of 8-ethyl-6-(2,4,6-trimethylphenyl)purine (200 mg, 0.75 mmol) in anhydrous dimethylfomamide (5 mL) was cooled to 0 °C, and treated with sodium hydride dispersion in mineral oil (72 mg 50% w/w, 1.50 mmol). After 1 hour, bromobutane (0.10 mL, 0.90 mmol) was added by syringe, and the mixture was 15 allowed to stir for 12 hours. It was poured into ethyl acetate (120 mL), and was washed with water (3 \times 120 mL) and brine (100 mL). The aqueous layers were back-extracted in sequence with ethyl acetate (120 mL), and the extracts were combined, dried over anhydrous sodium sulfate, filtered and evaporated. 20 The residue was separated by column chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford the title product as a viscous oil (64.2 mg, 0.20 mmol, 27%). TLC R_p 0.20 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 8.96 (1H, s), 6.95 (2H, s), 4.25 (2H, t, J = 7.5 Hz), 2.93 (2H, q, J = 7.7Hz), 2.32 (3H, s), 2.04 (6H, s), 1.91-1.86 (2H, m), 1.50-1.38 (2H, m), 1.39 (3H, t, J = 7.7 Hz), 1.01 (3H, t, J = 7.5 Hz). MS (NH_3-CI) : m/e 325 (3), 324 (23), 323 (100).

Example 35

Preparation of 6-(2,4-Dichlorophenyl)-8-ethyl-9-(1-ethylpentyl)purine

A solution of 2,4-dichlorobenzeneboronic acid (572 mg, 3.00 mmol) and ethylene glycol (205 mg, 3.30 mmol) in benzene (20 mL) was heated to reflux with azeotropic removal of water for a period of 8 h. The resulting solution was cooled, and treated with 6-chloro-8-ethyl-9-(1-ethylpentyl)purine (see Example 2, Part C above; 562 mg, 2.00 mmol), thallium

carbonate (1.03 g, 2.20 mmol) and tetrakis(triphenylphosphine)palladium (116 mg, 0.10 mmol). The resulting mixture was heated to reflux with stirring for 12 h, then cooled, filtered through celite and evaporated. The resulting residue was separated by column chromatography (silica gel, 10:90 ethyl acetate-hexane) to afford the title compound as a viscous oil (530 mg, 1.35 mmol, 68%). TLC $R_{\rm p}$ 0.31 (20:80 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 8.94 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8)10 Hz), 7.41 (1H, dd, J = 8.4, 1.8 Hz), 4.27 (1H, br), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.11-1.98 (2H, br), 1.42 (3H, t, J = 7.3 Hz), 1.37-1.20 (3H, m), 1.09-0.99 (1H, m), 0.84 (3H, t, J = 7.7 Hz), 0.82 (3H, t, J = 7.7 Hz). MS (NH₃-CI):m/e calc'd for $C_{20}H_{25}N_4Cl_2$: 391.1456, found 391.1458; 395 (11), 15 394 (14), 393 (71), 392 (29), 391 (100).

Example 38

Preparation of 3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)20 2-ethyl-3H-imidazo[4,5-b]pyridine

Part A. 2,4-Dihydroxypyridine (15.0 g, 135 mmol) was heated in HNO₃ (85 mL) at 80 °C for 15-20 min at which time it went into solution. The temperature was maintained for 5 min and after cooling it was poured into ice/water (~200 mL). The precipitated solid was collected and dried (19.0 g, 90% yield). ¹H NMR(300 MHz, dmso d6): 12.3-12.5 (1H, brs), 11.75-11.95 (1H, brs), 7.41 (1H, d J = 7.3 Hz), 5.99 (1H, d J = 7.3 Hz).

30

Part B. 4-Hydroxy-3-nitropyridone (8.0 g, 51.25 mmol) and cycloheptyl amine (6.8 mL, 53.4 mmol) were heated at reflux in methanol (100 mL) for 15 min. The solvent was stripped off and the residual solid was washed with 1:1 EWtOAc/hexanes and dried under vacuum. The cycloheptyl amine salt was stirred in POCl₃ (60 mL) for 40 h and poured into ice/water (~600 mL). The precipitated producd was collected and dried under vacuum

(7.0 g, 78% yield). H NMR(300 MHz, dmso d6): 12.8-13.05 (1H, brs), 7.73 (1h, dJ = 7.0 Hz), 6.50 (1H, dJ = 7.0 Hz).

Part C. 4-Chloro-3-nitro-pyridone (0.5 g, 2.86 mmol) Ag₂CO₃

(0.83 g, 3 mmol) and benzyl bromide (0.36 mL, 3 mmol) were stirred in dry benzene (20 mL) at 60 °C for 5 h. The reaction mixture was filtered and stripped in vacuo. The residue was chromatographed on silica gel (10% EtOAc/hexanes eluent) to give the product (0.6 g, 79%). ¹H NMR(300 MHz, CDCl₃): 8.15 (1 H, d J = 4.0 Hz), 7.30-7.42 (5 H, m), 7.04 (1H, d J = 4.0 Hz), 5.50 (2H, s).

Part D. 2-Benzyloxy-4-chloro-3-nitropyridine (0.5 g, 1.9 mmol), 2,4-dichlorophenylboronic acid (0.363 g, 1.9 mmol)

Pd(PPh₃)₂Cl₂ (76 mg, 0.11 mmol) and Ba(OH)₂.8H₂O (0.6 g, 1.9 mmol) were heated at reflux in 1,2-dimethoxyethane (6 mL), and water (6 mL) for 5 h. The mixture was partitioned between EtOAc (100 mL) and water (30 mL) and the EtOAc was washed with water, brine, dried and stripped in vacuo. The residue was chromatographed on silica gel (10% EtOAc/hexanes eluent) to give the product (370 mg, 52% yield). ¹H NMR(300 MHz, CDCl₃): 8.31 (1H, d J = 5.1 Hz), 7.51 (1H, d J = 2.2 Hz), 7.30-7.43 (6 H, m), 7.20 (1H, d J = 8.0 Hz), 6.91 (1H, d J = 5.1 Hz), 5.56 (2h, s).

25

Part E. 2-Benzyloxy-4-(2,4-dichlorophenyl)-3-nitropyridine (1.65 g, 4.39 mmol) was stirred in CF_3CO_2H (5 mL) at 25 °C for 4 h. The CF_3CO_2H was stripped in vacuo and the residue was washed with 20% ECO_2H was and used in the next reaction. ¹H NMR(300 MHz, $CDCl_3$): 7.62 (1H, d J = 7.0 Hz), 7.53 (1H, d J = 2.2 Hz), 7.34 (1H, dd J = 7.0, 2.2 Hz), 7.22 (1H, d J = 8.1 Hz), 6.33 (1H, d J = 7.0 Hz).

Part F. 4-(2,4-dichlorophenyl)-3-nitropyridone (4.39 mmol) was heated at reflux in POCl₃ (5 mL) for 5 h. After cooling it was poured into ice/water (~60 mL) and extracted with EtOAc (2x100 mL). The EtOAc was washed with with satNaHCO₃, brine, dried and stripped in vacuo. Used in the next reaction without

further purification. ^{1}H NMR(300 MHz, CDCl₃):8.60 (1H, d J = 5.2 Hz), 7.54 (1H, d, J = 2.2 Hz), 7.36 (1H, dd J = 8.1, 2.2 Hz), 7.20 (1H, d J = 8.1 Hz).

- 5 Part G. 2-Chloro-4-(2,4-dichlorophenyl)-3-nitropyridine (0.5
 g, 1.65 mmol) 1-cyclopropylpropylamine hydrochloride (461 mg,
 3.4 mmol) and diisopropyl ethylamine (1.26 mL, 0.72 mmol) were
 heated at reflux in CH₃CN (10 mL) for 64 h. The mixture was
 partitioned between EtOAc (70 mL) and water (40 mL). The

 10 aqueous layer was extracted with EtOAc (50 mL) and the
 combined EtOAc exctracts washed with brine, dried and stripped
 in vacuo. The residue was chromatographed on silica gel (10%
 EtOAc/hexanes eluent) to give the product (310 mg, 51% yield).

 1 NMR(300 MHz, CDCl₃): 8.29 (1H, d J = 4.7 Hz), 7.76 (1H, brd)

 15 J = 8.0 Hz), 7.46 (1H, d J = 2.2 Hz), 7.32 (1H, dd J = 8.5,
 2.2 Hz), 7.15 (1H, d J = 8.5 Hz), 3.72-3.85 (1H, m), 1.70-1.80
 (2H, m), 0.90-1.08 (4H, m), 0.30-0.66 (4H, m).
- Part H. 2-(1-cyclopropyl)propylamino-4-(2,4-dichlorophenyl)-3nitropyridine (310 mg, 0.85 mmol) was dissolved in dioxane (8 mL) and water (8 mL) containing concNH₄OH (0.3 mL) was added, followed by Na₂S₂O₄ (1.1 g, 6.86 mmol). The reaction was stirred at 25 °C for 4 h and extracted with EtOAc (100 mL). The EtOAc was washed with brine, dried and stripped in vacuo.

 25 The residue was chromatographed on silica gel (25% EtOAc/hexanes and ~1% conc NH₄OH eluent) to give the product (150 mg, 53% yield). ¹H NMR(300 MHz, CDCl₃): 7.73 (1H, d J = 5.5 Hz), 7.53 (1H, d J = 1.8 Hz), 7.35 (1H, dd J = 8.1, 1.8 Hz), 7.24 (1H, d J = 8.1 Hz), 6.35 (1H, d J = 5.5 Hz), 4.3

 30 (1H, brs), 3.5 (1H, brs), 3.42-3.55 (1H, m), 3.04 (2H, brs), 1.70-1.81 (2H, m), 0.88-1.08 (4H, m), 0.3-0.6 (4H, m).
- Part I. 3-amino-2-(1-cyclopropyl)propylamino-4-(2,4-dichlorophenyl)-pyridine (140 mg, 0.42 mmol) was heated at reflux in propionic acid (5 mL) for 23 h. Then the mixture was diluted with water (50 mL), neutralized with solid NaHCO3 and basified with 50%NaOH. Then it was extracted with EtOAc (80 mL) and the EtOAc was dried and stripped in vacuo. The

residue was chromatographed on silica gel (10% and 20%EtOAc/hexanes eluant) to give the product, which was crystallized from hexanes (70 mg, 45% yield) mp 118-119 °C. 1 H NMR(300 MHz, CDCl₃): 8.31 (1H, d J = 4.7 Hz), 7.62 (1H, d J = 7.2 Hz), 7.55 (1H, d J = 1.8 Hz), 7.37 (1H, dd J = 7.2, 1.8 Hz), 7.23 (1H, d J = 4.7 Hz), 3.50-3.70 (1H, brs), 2.87-2.96 (2H, q), 2.36-2.56(1H, m), 2.18-2.35 (1H, m), 1.90-2.05 (1H, m), 1.38 (3H, t), 0.86 (3H, t), 0.75-0.84 (1H, m), 0.40-0.54 (1H, m), 0.15-0.25 (1H, m).

10

Example 38A

Preparation of 1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-15 2-ethyl-1H-imidazo[4,5-c]pyridine

Part A. A mixture of 4-chloro-3-nitro-2-pyridone (2.0 g, 11.4 mmol), 1-cyclopropylpropyl amine hydrochloride (1.5 g, 11.4 mmol) and N, N-diisopropylethylamine (4.8 ml, 27.4 mmol) in 20 CH,CN (50 ml) were stirred at 25 oC for 16 h and at reflux for 4h. After cooling it was stripped in vacuo, and the residue was partitioned between EtOAc (100 mL) and H2O (50 mL). The insolubles were separated, washed with H_2O and EtOAc and vacuum dried 1.51 g. The filtrate layers were separated and the aqueous layer was extracted with EtOAc (2x50 mL). The Combined extracts were washed with brine, dried over MgSO4, filtered and concd. in vacuo. The residue was washed with EtOAc (2x) and vacuum dried, to give 0.69 g, yellow solid. Combined wt. of 4-(1-cyclopropylpropyl)amino-3-nitro-2pyridone 2.20 g, 81% yield. H NMR (300 MHz, dmso d6): 11.19 (1H, br), 8.94 (1H, d J = 8.8 Hz), 7.33 (1H, t J = 6.9 Hz), 6.03 (1H, d J = 7.7 Hz), 3.18-3.24 (1H, m), 1.60-1.74 (2H, m), 1.03-1.11(1H, m), 0.91 (3H, t), 0.40-0.60 (1H, m), 0.20-0.39 (1H, m).

35

Part B. 4-(1-Cyclopropyl)propylamino-3-nitro-2-pyridone (2.20 g, 9.27 mmol) was stirring in POCl₃ (15 mL) at 25 °C for 16 h. Then it was poured into ice/water (220 mL) and stirred until all the POCl₃ had reacted. The mixture was neutralized

with solid NaHCO₃, filtered and extracted with EtOAc (3x60 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and stripped in vacuo. The crude oil was chromatographed on silica gel (100 g.) and eluted with a gradient from 10-20% EtOAc/hexane to afford 1.91 g 2-chloro-4-(1-cyclopropylpropyl)amino-3-nitropyridine, 81% yield. ¹H NMR(300 MHz, CDCl₃): 7.96 (1H, d J = 6.3 Hz), 6.58 (1H, d J = 6.3 Hz), 6.52 (1H, brd J = 5.5 Hz), 2.90-3.00 (1H, m), 1.61-1.82 (2H, m), 1.01 (3H, t J = 7.7 Hz), 0.90-1.02 (1H, m), 0.51-0.70 (2H, m), 0.21-0.34 (2H, m).

- Part C. In a dried flask, under N₂, a mixture of 2-chloro-4-(1-cyclopropyl)propylamino-3-nitropyridine (730 mg, 2.85 mmol), 2,4-dichlorophenylboronic acid (544 mg, 2.85 mmol), dichlorobis(triphenylphosphine) palladium (III) (114 mg, 0.17 15 mmol) and barium hydroxide octahydrate (899 mg, 2.85 mmol) was heated at reflux in dimethoxyethane (8.6 mL) and H_2O (8.6 mL for 1.5 h. After cooling it was partitioned between EtOAc (100 mL) and water (20 mL) and filtered through celite. The aqueous layer was extracted with EtOAc (2x50 mL). The combined organics were washed with brine, dried over MgSO4, filtered and stripped in vacuo. The residue was chromatographed on silica gel (40 gm), and eluted with 30% EtOAc/hexane to afford a yellow oil, 1.00 g, 90% yield. H NMR(300 MHz, CDCl₃): 8.24 25 (1H, dJ = 6.2 Hz), 7.87 (1H, brd J = 7.3 Hz), 7.43 (1H, s),7.34 (2H, s), 6.71 (1H, d J = 6.2 Hz), 3.00-3.10 (1H, m), 1.70-1.85 (2H, m), 0.95-1.15 (4H, m), 0.50-0.71 (2H, m), 0.25-
- 30 Part D. The product from Part C (0.94 g, 2.57 mmol), by dissolving in dioxane (26 ml), H₂O (26 ml) and conc. NH₄OH (1.0 ml) while adding Na₂S₂O₄ and stirring at room temperature for 2 hrs. Added CH₂Cl₂ and extracted. Extracted the aqueous layer with CH₂Cl₂ (2x). Combined the organics and washed with brine, dried over MgSO₄, filtered and concd. in vacuo to give a yellow solid, 1.01 g. It was carried over to the next reaction without purification.

0.40 (2H, m).

PCT/US98/13913 WO 99/01454

Part E. The amine from Part D (1.01 g, 3.00 mmol) was cyclized by refluxing with propionic acid (27 ml, 365.45 mmol) for 8 hrs.. Allowed to cool to RT. then basified with 1M NaOH and 50% NaOH. Extracted with EtOAc (2x60 mL) and CH_2Cl_2 (60 mL). Combined the organics and washed with H_2O , brine, dried over MgSO4, filtered and concd. in vacuo. The crude oil was chromatographed on silica gel (40 g.) and eluted with 30% EtOAc/hexane to obtain a pale yellow solid (triturated from hexane), 520 mg, 46% yield. H NMR(300 MHz, CDCl₃): 8.43 (1H, d 10 J = 5.8 Hz), 7.63 (1H, dJ = 8.1 Hz), 7.55 (1H, dJ = 1.8 Hz), 7.46 (1H, d J = 5.8 Hz), 7.36 (1H, dd J = 8.1 , 1.8 Hz), 3.40-3.50 (1H, m), 2.80-2.90 (2H, qJ = 7.7 Hz), 2.10-2.30 (2H, m), 1.50-1.64 (1H, m), 1.37 (3H, t J = 7.3 Hz), 0.87 (3H, t J = 1.50 Hz) 7.3 Hz), 0.81-0.91 (1H, m), 0.48-0.58 (2H, m), 0.18-0.26 (1H, m). Elemental analysis calcd for $C_{20}H_{21}N_3Cl_2$: C, 64.18; H, 5.665; N, 11.23; found: C, 64.37; H, 5.66; N, 11.15.

20 Example 831

15

Preparation of 6-(2-Chloro-4-methoxyphenyl)-9dicyclopropylmethyl-8-ethylpurine

Part A. A solution of dicyclopropyl ketone (50 g) in absolute 25 methanol (150 mL) in an autoclave vessel was charged with W4 Raney nickel (12 g, washed free of water and in methanol slurry) and then anhydrous ammonia (17 g). The mixture was subjected to 120 atm of hydrogen at 150-160 °C for 5 hours, then cooled and excess gasses purged. The resulting slurry was 30 filtered through celite, and the filtrate was distilled to about one-third the original volume (atmospheric pressure, Vigreaux column). The pot solution was cooled to 0 °C, diluted with 3 volumes diethyl ether, and treated with 4 N hydrochloric acid solution in anhydrous dioxane until 35 precipitate formation ceased. The solid product (dicyclopropylmethylamine hydrochloride) was collected by filtration, washed with excess diethyl ether, and dried under vacuum (45.22 g, 306 mmol, 67%). ^{1}H NMR (300 MHz, methanol- d_{4}):

d 1.94 (1H, t, J = 9.3 Hz), 1.11-0.99 (2H, m), 0.75-0.59 (4H, m), 0.48-0.37 (4H, m). MS (NH₃-DCI): m/e 114 (5), 113 (100).

Part B. A solution of 5-amino-4,6-dichloropyrimidine (5.00 g, 5 30.5 mmol) and diisopropylethylamine (12.0 mL, 68.9 mmol) in ethanol (100 mL) was treated with the amine from Part A (3.81 g, 25.8 mmol), and heated to reflux for 72 h. The resulting mixture was cooled and poured into water (300 mL), which was extracted with ethyl acetate (2 x 300 mL). The extracts were washed with brine, combined, dried over sodium sulfate, 10 filtered and evaporated. The residual oil was separated by column chromatography (30:70 ethyl acetate-hexane), and the desired product, 5-amino-4-chloro-6dicyclopropylmethylaminopyrimidine, was triturated with warm 15 ether-hexane, collected by filtration, and dried under vacuum (3.15 g, 13.2 mmol, 43%). m.p. 137-138 °C. TLC R_p 0.17 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 8.01 (1H, s), 4.95 (1H, br d, J = 7.3 Hz), 3.45 (1H, q, J = 7.0 Hz), 3.37 (2H, br s), 1.06-0.94 (2H, m), 0.59-0.32 (8H, m). MS (NH_3-CI) : 20 m/e 243 (1), 242 (5), 241 (36), 240 (16), 239 (100).

- Part C. A solution of the diamine from Part B (1.80 g, 7.54 mmol) and 1 drop concentrated hydrochloric acid in triethyl orthopropionate (12 mL) was heated to 100 °C for 6 hours. The excess orthoester was removed by distillation (partial vacuum, short-path), and the pot residue solidified to give the product, N-(4-chloro-6-dicyclopropylmethylaminopyrimidin-5-yl)-O-ethyl-propionimidate. ¹H NMR (300 MHz, CDCl₃): d 8.08 (1H, s), 4.84 (1H, br d, J = 8.0 Hz), 4.35 (2H, br), 3.45 (1H, q, J = 7.7 Hz), 2.14 (2H, q, J = 7.3 Hz), 1.41 (3H, t, J = 7.1 Hz), 1.08 (3H, t, J = 7.7 Hz), 1.03-0.93 (2H, m), 0.58-0.27 (8H, m). MS (NH₃-CI): m/e 327 (1), 326 (7), 325 (36), 324 (21), 323 (100).
- 35 Part D. A solution of the imidate compound prepared in Part C above and p-toluenesulfonic acid monohydrate (50 mg) in diphenyl ether (10 mL) was heated to 170 °C for 2 hours. The resulting mixture was cooled and separated by column

chromatography (silica gel, hexane to remove diphenyl ether, then 30:70 ethyl acetate-hexane) to afford the product, 6-chloro-9-dicyclopropylmethyl-8-ethylpurine, as an solid (1.42 g, 5.13 mmol, 68% for both steps C and D). m.p. 99-100 °C. TLC R_F 0.26 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.63 (1H, s), 2.99 (2H, br), 1.92 (1H, br), 1.50 (3H, t, J = 7.3 Hz), 0.87-0.78 (2H, m), 0.50-0.39 (4H, m), 0.20-0.10 (4H, m). MS (NH₃-CI): m/e 280 (6), 279 (36), 278 (19), 277 (100).

- 10 Part E. A solution of 4-amino-3-chlorophenol hydrochloride (18.6 g, 103 mmol) and sodium acetate (18.6 g, 227 mmol) in glacial acetic acid (200 mL) was heated to gentle reflux for 12 hours, then cooled and poured into 4 volumes water. This was neutralized with portionwise addition of sodium
- bicarbonate, and the resulting mixture was extracted with ethyl acetate (2 x 500 mL). The extracts were washed with brine, combined, dried over magnesium sulfate, filtered and evaporated. The resulting solid was triturated with warm ether; filtration and vacuum drying gave 4-acetamido-3-
- 20 chlorophenol (16.1 g, 86.7 mmol, 84%). m.p. 128-129 °C. TLC R_F 0.14 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, 4:1 CDCl₃•CD₃OD): d 7.66 (1H, d, J = 8.8 Hz), 6.88 (1H, d, J = 1.7 Hz), 6.74 (1H, dd, J = 8.8, 1.7 Hz), 2.19 (3H, s). MS (H₂O-GC/MS): m/e 186 (100).

25

Part F. A solution of the phenol of Part E (14.6 g, 78.8 mmol), methyl iodide (10.0 mL, 160 mmol), and sodium carbonate (10.0 g, 94.3 mmol) in acetonitrile (200 mL) was heated to reflux for 48 hours, the cooled and poured into water (800 mL). This was extracted with ethyl acetate (2 x 800 mL), and the extracts were washed with brine, combined, dried over magnesium sulfate, filtered and evaporated. The resulting solid was recrystallized from ether-ethyl acetate to afford pure product, 2-chloro-4-methoxyacetanilide (13.2 g, 66.3 mmol, 84%), m. p. 118-119 °C (ether-ethyl acetate). TLC R_F (0.30 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d

8.15 (1H, d, J = 9.2 Hz), 7.39 (1H, br s), 6.92 (1H, d, J = 3.0 Hz), 6.82 (1H, dd, J = 9.2, 3.0 Hz), 3.78 (3H, s), 2.22

(3H, s). MS (NH₃-CI): m/e 219 (19), 217 (60), 202 (40), 201 (14), 200 (100).

Part G. A solution of the amide from Part F (10.1 g, 50.7 mmol) and sodium hydroxide (10 mL, 5 N, 50 mmol) in 95% ethanol (200 mL) was heated to 50 °C for 24 hours. Then, an additional 5 mL sodium hydroxide solution was added, and the mixture was heated to full reflux for an additional 48 hours. The solution was cooled and evaporated, and the residual material was partitioned between ether and water. The aqueous phase was extracted a second time with ether, and the extracts were washed with brine, combined, dried over sodium sulfate, filtered and evaporated. The resulting product, 2-chloro-4-methoxyaniline, was purified by elution through a short column of silica gel with 30:70 ethyl acetate-hexane, and the eluant was evaporated (7.98 g, 100%).

Part H. A solution of the aniline from Part G (7.98 g, 50 mmol) in conc. HCl (25 mL) was cooled to -5 °C, and treated 20 dropwise with a concentrated aqueous solution of sodium nitrite (3.80 g, 55.1 mmol). After 30 minutes, the mixture was charged with 15 mL cyclohexane and 15 mL dichloromethane, then treated dropwise with a concentrated aqueous solution of potassium iodide (16.6 g, 100 mmol). This mixture was allowed 25 to stir for 4 hours, then was extracted with dichloromethane (2 x 100 mL). The extracts were washed in sequence with 1 N aqueous sodium bisulfite (100 mL) and brine (60 mL), then combined, dried over magnesium sulfate, filtered and evaporated to afford sufficiently pure product, 3-chloro-4iodoanisole (7.00 g, 26.1 mmol, 52%). TLC R, 0.39 (5:95 ethyl acetate-hexane). ¹H NMR (300 MHz, $CDCl_3$): d 7.69 (1H, d, J = 8.8 Hz), 7.03 (1H, d, J = 3.0 Hz), 6.57 (1H, dd, J = 8.8, 3.0)Hz), 3.78 (3H, s). MS (H_2O-GC/MS): m/e 269 (100).

Part I. A solution of the iodide compound from Part H (7.00 g, 26.1 mmol) in anhydrous tetrahydrofuran (50 mL) was cooled to -90 °C, and treated with a hexane solution of n-butyllithium (16.5 mL, 1.6 M, 26.4 mmol). After 15 minutes, the solution

was treated with triisopropylborate (6.10 mL, 26.4 mmol) and was allowed to warm to ambient temperature over 6 hours. The resulting mixture was treated with 6 N aqueous HCl (5 mL) and water (5 mL), which was stirred for 1 hour, then poured into water (100 mL) and extracted with ethyl acetate (2 x 100 mL). The extracts were washed in sequence with 1 N aqueous sodium bisulfite and brine (80 mL each), combined, dried over sodium sulfate, filtered and evaporated. The residual solid was triturated with 1:1 ether-hexane, collected by filtration and dried under vacuum to afford pure product, 2-chloro-4-methoxybenzeneboronic acid (3.05 g, 16.4 mmol, 63%). m.p. 191-195 °C.

Part J. A solution of the chloride from Part D (770 mg, 2.78 mmol), the boronic acid from Part I (770 mg, 4.13 mmol), 2 N 15 aqueous sodium carbonate solution (4 mL, 8 mmol) and triphenylphosphine (164 mg, 0.625 mmol) in DME (20 mL) was degassed by repeated cycles of brief vacuum pumping followed by nitrogen purging. To this was added palladium (II) acetate (35 mg, 0.156 mmol), and the mixture was degassed again and 20 then heated to reflux for 14 hours. It was cooled, and poured into water (100 mL). This mixture was extracted with ethyl acetate (2 x 100 mL), and the extracts were washed in sequence with brine (60 mL), combined, dried over sodium sulfate, 25 filtered and evaporated. The residual material was separated by column chromatography (silica gel, 15:85 ethyl acetatehexane) to afford the title product as a solid. This was recrystallized to purity from hexane (791 mg, 2.07 mmol, 74%). m.p. 139-140 $^{\circ}$ C (hexane). TLC $R_{\rm p}$ 0.18 (30:70 ethyl acetate-30 hexane). 1 H NMR (300 MHz, CDCl₃): d 8.93 (1H, s), 7.74 (1H, d, J = 8.4, Hz), 7.10 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.4, 2.6 Hz), 4.20 (1H, v br), 3.87 (3H, s), 2.97 (2H, v br), 2.00 (2H, v br), 1.44 (3H, br t, J = 7 Hz), 0.89-0.79 (2H, m),0.62-0.52 (2H, m), 0.51-0.40 (2H, m), 0.26-0.16 (2H, m). MS 35 (NH₃-CI): m/e 387 (1), 386 (9), 385 (41), 384 (30), 383 (100). Analysis calc'd for C21H23ClN4O: C, 65.87; H, 6.05; N, 14.63; found: C, 65.77; H, 6.03; N, 14.57.

In Table 1, Table 1A and Table 1B, melting point data correspond to compounds of Structure A unless otherwise indicated.

5 .

TABLE 1

Ex. No.	R²	х	R³	R ⁴	R ^s	R ¹¹	R ⁶	R ^{1a}	R ^{1b}	м р ,
1	СН	CH ₂	н	CH3	СН	н	CH,	C ₂ H ₅	C ₂ H ₅	128-129
2	CH ₃	CH2	н	CH,	СН	, н	CH3	C ₂ H ₅	C ₄ H ₉	99-100
3	CH,	CH2	н	СН,	CH ₃	н	CH3	C ₂ H ₅	CH2OCH3	oil
4	CH ₃	CH ₂	н	CH ₃	СН₃	н	CH3	C ₂ H ₅	C ₆ H ₅	-
5	- CH ₃	CH2	Н	CH ₃	CH ₃	н	СН	C ₂ H ₅	C-C ₃ H ₅	143-145
6	СН,	CH ₂	н	CH3	CH,	н	CH3	C ₂ H ₅	C ₆ H ₁₃	-
7	СН	CH ₂	н	CH,	сн,	н	сн,	C ₂ H ₅	С,н,	68-71
. 8	CH,	CH2	н	CH,	CH,	н	CH ₃	C ₂ H ₅	(CH ₂) ₂ OCH ₃	oil
9	СН	CH2	н	CH ₃	CH3	н	CH,	C ₂ H ₅	(CH ₂) ₂ OH	196-197
10	CH,	CH2	н	CH,	СН,	н	CH ₃	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	oil
11	CH3	CH ₂	Н	CH ₃	CH,	Н	CH,	C ₂ H ₅	(CH ₂) ₂ -(Q2) b	oil
12	СН,	CH ₂	н	CH,	CH3	н	CH,	C ₂ H ₅	CH ₂ N(CH ₃) ₂	-
13	СН	CH2	н	CH,	СН,	Н	CH,	C-C ₃ H ₅	C ₄ H ₉	120-121
14	СН	CH ₂	Н	CH3	CH,	Н	CH3	C-C ₃ H ₅	(CH ₂) ₃ OH	209-210
15	CH ₃	CH ₂	н	сн,	CH ₃	н	СН	c-C,H,	н	140-150
16	СН	CH2	н	СН,	CH3	н	CH3	c-C ₃ H ₅	c-C ₃ H ₅	186-187
17	СН	CH2	н	СН,	СН	H	CH3	н	C ₆ H ₅	121-122

WO 99	/01454								PCT/US98	/13913
18	СН,	CH2	н	сн,	сн,	Н	CH,	н	3-(CH ₂ O)-C ₆ H ₄	oil
19	CH3	CH2	Н	CH,	сн,	н	CH3	н	2-Br-C ₆ H ₄	84-85
20	CH3	CH,	н	CH3	сн,	н	CH,	н	4-CH3-C4H4	48-50
21	СН	CH ₂	H	CH3	CH3	н	CH3	Н	$4 - C_6 H_5 - C_6 H_4$	-
22	CH,	CH ₂	н	CH3	СН,	н	CH3	Н	2-(C ₄ H ₉)-C ₄ H ₈	. -
23	CH ₃	CH ₂	н	CH3	CH,	н	· CH ₃	н	$3 - (C_4H_9) - C_5H_{10}$	-
24	CH,	CH2	H	CH3	CH3	н	CH,	Н	(CH ₂) 2OCH3	-
25	CH ₃	CH2	н	CH ₃	СН	н	СН₃	н	сн,осн,	-
26	CH ₃	CH,	Н	CH ₃	CH3	Н	CH ₃	н	C ₂ H ₅	120-123
27	CH3	CH2	Н	CH3	CH,	Н	CH,	н	C ₃ H ₇	oil .
28	CH3	CH2	н	CH3	CH3	Н	CH3	н	C ₄ H ₅	oil
29	CH3	CH3	н	CH3	CH ₃	Н	CH,	CH2OCH3	сн,осн,	-
30	CH3	CH ₂	Н	CH ₃	СН₃	Н	CH3	C ₂ H ₅	OC ₂ H ₅	91-93
31	CH,	CH,	Н	CH ₃	CH3	Н	CH,	Н	(CH ₃) ₂ CH	120-121
32	CH,	CH2	н	CH,	CH ₃	н	CH3	н	O(CH ₂) ₂ -OCH ₃	• •
33	CH,	CH2	н	CH,	СН	Н	CH3	сн2осн3	C ₆ H ₅	-
34	СН	CH2	Н	Cl	Cl	Н	H	C ₂ H ₅	C ₂ H ₅	oil
35	CH3	CH3	Н	Cl	Cl	Н	Н	C ₂ H ₅	C ₄ H ₉	oil
36	CH3	CH ₂	н	Cl	Cl	Н	Н	C ₂ H ₅	CH2OCH3	-
37	CH3	CH ₂	Н	C1	Cl	Н	Н	C ₂ H ₅	C ₆ H ₅	-
38	CH,	CH2	Н	Cl	Cl	Н	H	C2H2	c-C,H,	oil
										(A)
										118-119
										(B)
										125-126
				43	_,					(C)
39	CH,	CH ₂	Н	Cl	Cl	н	Н	C,H,	C ₆ H ₁₃	- 23
40	CH3	CH,	Н	Cl	Cl	н	н	C₃H₅	C ₃ H ₇	oil
41	CH,	CH ³	н	Cl	Cl	н	н	C ₂ H ₃	(CH ₂) 2OCH ₃	-
42	CH,	CH ₂	н	Cl	C1	н	н	C ₂ H ₄	CH ₂ CN	-
43	CH,	CH ³	н	c1	Cl	н	н	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
44 45	CH,	CH ³	H H	c1	Cl Cl	н	H	C ₂ H ₅	(CH ₂) ₃ -(Q2) °	<u>-</u> -
	CH,	CH ₂		Cl Cl	Cl	H	H	C₂H₅	CH'N(CH');	<u>-</u> ≟
46	CH,	CH ₂	H	Cl Cl	Cl	H	H	c-C ₃ H ₃	С ₄ Н, СН ₂ ОСН,	-
47 48	CH ₃	CH ₂	Н	c1 c1	Cl Cl	H	н	c-C ₃ H ₃	C ₆ H ₅	oil
49	CH,	CH ₂	н		cl Cl	н	н	c-C ₃ H ₅		156-157
50	сн, сн,	CH ₃	H H	cl cl	cl cl	H H	H H	с-С , Н, Н	c-C ₃ H ₅ C ₄ H ₅	oil 🦠
51	CH ₃	CH ₃	н	C1	Cl	н	н	н	3- (CH ₃ O) -C ₆ H ₄	oil
52	сл _э Сн _э	СН	н	Cl Cl	cı cı	н	н	н	2-Br-C ₄ H ₄	-
26	Cr13	CH2	п	CI	CI	п	n	n	2-81-C6U4	_

53	СН3	CH2	н	Cl	Cl	н	н	н	4-CH,-C,H,	114-115
54	СН	CH2	Н	cl	cı	н	н	н	4-C ₆ H ₅ -C ₆ H ₄	oil
55	CH,	CH2	н	Cl	Cl	Н	Н	н	2-(C4H9)-C4H9	-
56	сн,	CH2	Н	Cl	cl	н	н	н	3-(C4H9)-C5H20	-
57	CH,	CH ₂	н	Cl	Cl	н	н	Н	(CH ₂) 20CH,	-
58	СН	CH ₂	Н	Cl	cl	н	н.	Н	сн,осн,	-
59	СН	CH ₂	н	Cl	Cl	н	H	н	C ₂ H ₅	-
60	CH ₃	CH2	н	C1	Cl	н	н	н	С,Н,	-
61	СН	CH ₂	н	cı	C1	н	Н	н	C₄H,	-
62	СН	CH,	н	Cl	C1	н	Н	сн,осн,	сңосң	-
63	СН,	CH ₂	Н	Cl	Cl	н	Н	C ₂ H ₅	OC₃H₅	· -
64	CH,	CH2	н	Cl	Cl	н	н	н	OC2H2	-
65	CH,	CH2	Н	Cl	Cl	Н	Н	н	O(CH ₂) ₂ -OCH ₃	-
66	CH,	CH ₂	н	Cl	cl	н	Н	CH ₂ OCH ₃	C,H,	-
67	CH,	CH2	Н	CH,	осн,	Н	СН,	C ₂ H ₅	C,H,	
68	CH,	CH2	н	CH ₃	осн,	Н	СН	C ₂ H ₅	C,H,	oil
69	СН,	CH2	Н	CH3	осн,	н	CH3	C ₂ H ₅	сн,осн,	-
70	CH,	CH2	н	CH ₃	OCH ₃	н	CH3	C ₂ H ₅	C₅H₅	-
71	CH,	CH ₂	н	CH,	осн,	н	СН,	C ₂ H ₅	c-C ₃ H ₅	-
72	СН₃	CH ₂	н	СН3	OCH,	н	CH,	C ₂ H ₅	C ₆ H ₁₃	-
73	сн,	CH2	н	CH3	осн,	н	CH3	C ₂ H ₅	С,Н,	-
74	СН	CH2	н	CH3	OCH,	н	CH,	C ₂ H ₅	(CH ₂) 20CH ₃	-
75	CH,	CH ₂	н	CH ₃	OCH ₃	н	CH3	C ₂ H ₅	CH2CN	-
76	СН	CH ₂	н	CH3	OCH ₃	Н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
77	CH3	CH ₂	Н	CH3	OCH ₃	н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q2) ^e	-
78	CH,	CH2	н	CH3	OCH,	Н	CH,	C3H	CH2N(CH3) 3	-
79	СН	CH2	Н	CH3	осн,	Н	CH,	c-C,H,	C_4H_9	-
80	CH,	CH3	н	СН	осн,	Н	CH3	C-C3H5	сносн	
81	СН	CH ₂	Н	CH3	OCH ₃	Н	CH3	C-C3H5	C ₆ H ₅	-
82	СН	CH3	Н	CH,	OCH ₃	Н	CH3	C-C ₃ H ₅	C-C3H3	167-169
83	СН	CH2	н	CH2	OCH ₃	Н	CH3	н	C_6H_5	134-135
84	СН	CH2	Н	CH,	OCH ₃	Н	CH,	н	3-(CH ₃ O)-C ₆ H ₄	-
85	СН	CH2	Н	СН	OCH3	Н	CH3	Н	2-Br-C ₆ H ₄	-
86	сн	CH ₂	н	CH2	осн	Н	CH3	н	4-CH ₃ -C ₆ H ₄	-
87	СН	CH2	н	CH,	OCH,	H	CH3	н	$4-C_6H_5-C_6H_6$	-
88	сн,	CH2	Н	CH3	осн,	Н	CH ₃	н	$2 - (C_4H_9) - C_4H_9$	-
89	СН₃	CH₂	Н	CH3	OCH3	н	CH ₃	н	3-(C ₄ H ₅)-C ₅ H ₂₀	-
90	СН₃	CH2	н	CH3	OCH3	н	CH,	н	(CH ₂) ₂ OCH ₃	- 4
91	сн,	CH2	Н	CH3	осн,	Н	CH,	н	сносн	-
92	СН	CH2	н	СН	осн	н	CH,	н	C ₂ H ₅	-

WO 99/0	01454								PCT/US98/	13913
93	CH ₃ ·	CH2	н	СН,	осн,	н	сн,	н	с,н,	-
94	сн,	CH ₂	н	СН,	осн,	н	CH ₃	н	C ₄ H ₉	-
95	CH,	CH2	н	СН,	осн,	н	CH,	сн,осн,	сносн	-
96	CH ₃	CH2	н	сн,	осн	н	СН	C ₂ H ₅	OC ₂ H ₅	~
97	CH,	CH ₂	н	сн,	OCH ₃	н	СН	Н	OC ₂ H ₅	
98	СН,	CH ₂	Н	СН,	OCH ₃	н	CH _{3.}	Н	O(CH ₂) ₂ -OCH ₃	-
99	сн,	CH2	н	CH,	осн,	н	CH ₃	CH3OCH3	C ₄ H ₅	-
100	CH3	CH2	н	СН,	сн,	н	CH,	н	CH3	138-140
101	н	CH2	н	CH,	сн	н	CH,	C ₂ H ₅	C ₂ H _s	198-199
102	н	CH	н	CH ₃	сн	н	сн,	C ₂ H ₅	C ₄ H ₉	147-148
103	н	CH ₂	н	СН,	сн,	Н	CH ₃	C2H2	CH2OCH3	140-142
104	н	CH ₂	н	CH3	CH,	н	СН,	C3H2	C ₆ H ₅	-
105	Н	CH ₂	н	CH ₃	CH3	н	CH ₃	C ₂ H ₅	C-C3H2	-
106	н	CH ₂	н	сн,	CH3	н	CH ₃	C ₂ H ₅	C ₆ H ₁₃	-
107	н	CH ₂	Н	CH3	CH,	н	CH,	C ₂ H ₅	C3H2	÷, -
108	н	CH2	Н	CH,	CH,	, H	CH3	C2H	(CH ₂) 20CH ₃	-
109	н	CH2	н	CH ₃	СН,	Н	CH,	C ₂ H ₅	CH,CN	-
110	н	CH ₂	н	CH3	CH ₃	н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	· -
111	н	CH ₂	н	CH ₃	CH3	Н	CH,	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	-
112	н	CH3	н	CH3	CH3	н	сн,	C ₂ H ₅	CH ₂ N(CH ₃) ₂	-
113	н	CH2	Н	CH ₃	CH3	Н	CH3	C-C ₃ H ₅	C₄H,	-
114	н	CH2	Н	CH3	CH,	Н	CH,	C-C ₃ H ₅	сносн	-
115	H	CH3	Н	CH,	CH3	H	CH3	c-C ₃ H ₅	C ₆ H ₅	-
116	Н	CH ₂	Н	сн,	CH3	н	CH3	c-C ₃ H ₅	c-C ₃ H ₅	-
117	Н	CH2	н	CH,	CH3	н	CH3	н	C ₆ H ₅	-
118	Н	CH ₂	H	сн,	CH3	Н	CH ₃	. Н	3-(CH ₃ O)-C ₆ H ₄	-
119	н	CH2	н	CH3	CH,	Н	CH3	н	2-Br-C ₆ H ₄	-
120	н	CH2	н	CH3	CH,	Н	CH3	Н	4-CH ₃ -C ₆ H ₄	-
121	Н	CH3	Н	CH3	CH,	Н	CH,	Н	4-C ₆ H ₅ -C ₆ H ₆	-
122	Н	CH2	Н	CH3	CH,	н	СН	Н	3-C ₇ H ₁₅	oil
123	Н	CH2	Н	CH,	CH ₃	Н	СН	H	$2-(C_2H_5)-C_6H_{12}$	oil
124	Н	CH ₂	Н	CH,	CH,	Н	CH,	Н	(CH ₂) ₂ OCH,	~
125	Н	CH2	Н	CH,	СН	Н	CH,	. Н	CH,OCH,	-
126	Н	CH2	Н	CH,	сн,	Н	СН	Н	C ₂ H ₄	-
127	Н	CH ₂	Н	CH,	CH3	Н	СН	Н	C ₃ H ₇	-
128	Н	CH2	Н	CH,	CH3	Н	CH3	. Н	C₄H,	-
129	Н	CH2	. Н	CH3	CH3	Н	CH,	CH2OCH2	CH ₂ OCH ₃	-
130	Н	CH2	Н	CH,	CH3	Н	CH3	C²H²	OC₃H₅	- \$
131	Н	CH2	Н	CH,	CH,	Н	СН	Н	oc,h,	-
132	Н	CH3	H	CH,	CH,	Н	CH,	н	O(CH ₂) ₂ -OCH ₃	· -

WO 99/0	1454								PCT/US98/1	3913
133	н	CH₂	Н	сн,	CH3	Н	СН,	сн,осн,	C ₆ H ₅	-
134	Н	CH2	Н	cl	Cl	Н	Н	C ₂ H ₅	C ₂ H ₅	-
135	н	CH ₂	Н	cl	Cl	H	Н	C2H	C.H.	-
136	н	CH,	н	cl	Cl	н	н	C ₂ H ₅	сңосң	-
137	н	CH2	Н	cl	Cl	н	н	C ₂ H ₅	C ₆ H ₅	-
138	н	CH2	н	Cl	Cl	Н	Н	C ₂ H ₅	c-C ₃ H ₅	-
139	Н	CH2	н	Cl	Cl	н	Н	C ₂ H ₅	C.H.	-
140	н	CH ₂	н	Cl	Cl	н	н	C ₂ H ₃	С,Н,	-
141	н	CH2	Н	Cl	Cl	н	H	C ₂ H ₅	(CH ₂) 2OCH ₃	-
142	Н	CH ₂	Н	Cl	Cl	Н	н	C ₂ H ₅	CH ₂ CN	-
143	н	CH2	Н	Cl	Cl	н	н -	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
144	н	CH2	Н	Cl	Cl	Н	Н	C ₂ H ₅	$(CH_2)_2 - (Q2)^{-c}$	-
145	н	CH ³	Н	cl	Cl	Н	Н	C2H2	CH2N(CH3) 2	-
146	н	CH ₂	Н	Cl	Cl	Н	Н	c-C ₃ H ₅	C₄H,	-
147	н	CH2	н	cl	Cl	Н	н	C-C3H5	сн,осн,	
148	Н	CH2	Н	Cl	Cl	Н	н	C-C ₃ H ₅	C _s H _s	-
149	н	CH2	н	Cl	Cl	Н	н	C-C ₃ H ₅	C-C ₃ H ₅	-
150	н	CH2	н	Cl	Cl	Н	Н	н	C _e H _e	· –
151	н	CH ₂	н	Cl	cı	Н	Н	Н	3-(CH ₃ O)-C ₆ H ₄	-
152	Н	CH ₂	Н	Cl	Cl	Н	Н	н	2-Br-C ₆ H ₄	-
153	Н	CH ₂	Н	Cl	Cl	Н	Н	н	4-CH ₃ -C ₆ H ₄	-
154	н	CH3	Н	Cl	Cl	Н	Н	Н	4-C ₆ H ₅ -C ₆ H ₄	-
155	н	CH3	Н	Cl	cl	H	Н	Н	$2 - (C_4H_9) - C_4H_8$	-
156	н	CH ₂	Н	Cl	Cl	H	Н.	н	$3 - (C_4H_9) - C_5H_{10}$	-
157	Н	CH2	Н	Cl	C1	Н	Н	н	(CH ₂) ₂ OCH ₃	-
158	Н	CH ₂	Н	Cl	Cl	Н	H	Н	CH2OCH3	-
159	н	CH ₂	Н	Cl	Cl	Н	Н	н	C ₂ H ₅	-
160	Н	CH ³	H	Cl	Cl	Н	Н	Н	C3H,	-
161	н	CH2	Н	Cl	C1	н	Н	Н	C ₄ H ₉	-
162	н	CH2	Н	Cl	C1	Н	H	CH2OCH3	сн,осн,	-
163	Н	CH2	Н	C1	Cl	Н	Н	C ₂ H ₅	OC ₃ H ₅	-
164	н	CH ₂	Н	C1	C1	H	н	Н	OC3H	-
165	Н	CH2	Н	Cl	C1	H	Н	Н	O (CH ₂) 2-OCH ₃	-
166	н	CH ₂	H	Cl	C1	н	Н	сносн	C ₆ H ₅	-
167	н	CH2	н	CH,	OCH,	н	CH,	C ₂ H ₅	C₃H₅	-
168	н	CH ³	н	CH ₃	OCH,	н	CH,	C ₂ H ₅	C4H,	-
169	н	CH ²	н	CH3	OCH,	н	CH,	C₂H₅	сн,осн,	-
170	Н	CH ³	н	CH,	OCH,	н	CH,	C ₂ H ₃	C ₆ H ₅	- `
171	н	CH ²	н	CH ₃	OCH,	н	CH,	C ₂ H ₃	c-C ₃ H ₃	-
172	Н	CH3	Н	CH,	OCH,	Н	CH,	C ₂ H ₅	C ₄ H ₁₃	-

WO 99/0	1454	•							PCT/US98/	13913
173	н	СН₂	н	СН,	осн,	н	CH,	C ₂ H ₅	С,Н,	-
174	н	CH2	Н	СН,	OCH,	Н	CH3	C ₂ H ₅	(CH ₂) 2OCH3	-
175	н	CH2	н	CH3	осн,	н	сн,	C ₂ H _s	CH ₂ CN	-
176	н	CH2	н	СН,	осн,	н	CH,	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
177	н	CH₂	Н	СН₃	OCH,	н	CH,	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	-
178	Н	CH2	н	CH ₃	OCH ₃	н	CH ₃	C3H2	CH2N(CH3) 2	-
179	H _.	CH ₂	н	CH3	OCH,	н	CH,	C-C ₃ H ₅	C₄H,	-
180	н	CH ₂	н	CH ₃	OCH,	Н	CH3	c-C,H,	сн,осн,	-
181	н	CH2	н	CH3	OCH ₃	Н	CH3	C-C3H5	C ₆ H ₅	-
182	Н	CH ₂	Н	CH,	OCH,	н	CH3	c-C ₃ H ₅	C-C3H5	-
183	Н	CH2	H	CH,	OCH,	н	сн,	н	C ₆ H ₅	• -
184	н	CH2	Н	CH ₃	OCH ₃	н	CH₃.	H	3-(CH ₃ O)-C ₆ H ₄	-
185	н	CH2	н	CH3	OCH ₃	н	CH,	н	2-Br-C ₆ H ₄	-
186	н	CH2	н	CH,	OCH3	н	CH,	н	4-CH ₃ -C ₆ H ₄	-
187	н	CH2	Н	CH3	осн,	Н	CH,	Н	4-C ₆ H ₅ -C ₆ H ₄	• •
188	Н	CH2	Н	CH,	осн,	Н	CH,	Н	$2 - (C_4H_9) - C_4H_8$	-
189	н	CH3	Н	CH3	OCH,	Н	CH,	Н	$3 - (C_4H_9) - C_5H_{10}$	-
190	н	CH3	Н	CH3	. OCH,	н	CH,	H	(CH ₂) ₂ OCH ₃	
191	Н	CH2	H	CH3	OCH ₃	Н	CH,	Н	CH2OCH2	-
192	Н	CH2	Н	CH ₃	OCH3	Н	CH ₃	H	C ₂ H ₅	-
193	н	CH2	Н	CH,	осн,	Н	CH3	н	C ₃ H ₇	-
194	Н	CH2	Н	CH3	OCH3	Н	CH3	Н	C₄H,	-
195	Н	CH ₂	Н	CH,	OCH,	H	CH3	сн,осн,	сносн	-
196	н	CH3	Н	CH,	OCH ₃	Н	CH,	C₂H₅	OC ₂ H ₅	-
197	H	CH2	Н	CH3	OCH ₃	Н	CH,	н	OC2H2	-
198	H	CH ²	Н	CH3	OCH,	Н	CH,	н	O(CH ₂) ₂ -OCH ₃	-
199	Н	CH3	Н	CH3	осн	Н	СН	сносн,	C ₆ H ₅	-
200	CH ₃	CH ₂	Н	CH,	CH,	H	CH,	CH,	C₃H₅	98-100
201	CH,	0	н	CH,	CH,	н	CH,	C ₂ H ₅	C ₂ H ₅	-:1
202	CH,	0	н	CH,	CH,	н	CH,	C₂H₅	C4H,	oil
203	CH,	0	н	CH ₃	CH,	н	CH,	C₂H₅	сн,осн,	-
204	CH,	. 0	Н	CH ₃	CH,	Н	CH,	C₂H₅	C _e H _s c-C ₃ H _s	_
205 206	CH ³	0	Н	сн, сн,	CH ₃	H H	сн, сн,	C ₂ H ₅	C ₆ H ₁₃	_
207	CH3	0	H	· -	CH,	н	СН	C ₂ H ₅	C ₃ H ₇	_
207	CH₃ CH₃	0	H H	CH,	сн, сн,	н	СН	C ₂ H ₅	(CH ₂) 20CH ₃	_
209	CH,	0	н	CH,	CH ₃	Н	СН	C ₂ H ₅	CH ₂ CN	_
210	CH ₃	0	н	CH,	CH ₃	н	СН	C ₂ , _E	(CH ₂) ₃ -(Q1) b	- 🦠
211	CH ₃	0	н	CH ₃	CH ₃	н	СН	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	- "
212	CH ₃	0	н	CH,	CH,	н	сн	C ₂ H ₅	CH ₂ N(CH ₂)	-
	3	•		,				4		

3	13913	PCT/US98/1								01454	WO 99/
•	-	C ₄ H ₉	c-C ₃ H ₅	СНэ	Н	СН	сн,	н	0	СН,	213
-	-	сн,осн,	c-C,H,	CH,	Н	CH ₃	CH3	н	0	CH ₃	214
-	-	C ₆ H ₅	C-C3H5	CH ₃	н	CH3	CH,	н	0	СН	215
-	-	C-G3H2	c-C,H,	CH3	Н	CH,	CH,	н	0	сн	216
-		C ₆ H ₅	н	CH ₃	Н	CH,	CH3	н	· 0	CH,	217
-	-	3 - (CH ₃ O) -C ₆ H ₄	н	CH ₃	н	CH3	CH ₃	Н	0	CH3	218
-		2-Br-C ₆ H ₄	н	CH,	н	CH3	CH3	н	0	CH,	219
-	-	4-CH3-C6H4	н	CH,	н	CH ₃	CH3	Н	0	CH,	220
-	-	4-C6H5-C6H4	н	CH3	Н	CH3	CH,	Н	0	CH,	221
-	-	2-(C4H9)-C4H9	. н .	CH3	Н	CH3	CH,	н	0	CH,	222
	-	$3 - (C_4H_9) - C_5H_{10}$	Н	CH3	. н	CH ₃	CH3	н	0	СН₃	223
-	-	(CH ₂) 2OCH3	Н	CH,	H	СН	сн,	н	0	СН,	224
-	-	сн,осн,	H	CH ₃	н	CH3	СН	н	0	CH,	225
-	-	C ₂ H ₅	Н	CH,	Н	CH ₃	CH,	н	0	CH,	226
-	: -	C ₃ H ₇	н	CH3.	Н	сн,	CH,	н	0	СН	227
-	;_	C,H,	н	CH,	Н	CH3	CH,	н	0	сн,	228
-	-	CH2OCH3	CH ₂ OCH ₃	CH ₃	Н	CH ₃	CH,	Н	0	CH ₃	229
-	-	OC2H2	C ₂ H ₅	CH,	Н	СН,	CH ₃	Н	0	СН,	230
-	-	OC ₂ H ₅	C3H,	CH,	Н	CH ₃	CH3	н	0	CH,	231
-	-	O(CH ₂) ₂ -OCH ₃	Н	CH,	Н	CH,	CH3	Н	0	CH,	232
-	-	C ₆ H ₅	сносн	CH,	Н	CH3	CH3	Н	0	CH,	233
-	-	C ₂ H ₅	C ₂ H ₅	Н -	н	Cl	C1	Н	0	CH3	234
-	-	C ₄ H ₉	C ₂ H ₅	Н	H	C1	Cl	н	0	CH ₃	235
-	-	CH2OCH3	C ₂ H ₅	н	Н	Cl	cl	н	. 0	CH ₃	236
-	-	C ₆ H ₅	C ₂ H ₅	Н	н	Cl	Cl	Н	0	CH3	237
-	-	C-C ₃ H ₅	C ₂ H ₅	Н	Н	Cl	Cl	н	0	СН,	238
-	-	C ₆ H ₂₃	C,H,	Н	Н	Cl	C1	н	0	CH,	239
-	-	C3H7	C ₂ H ₃	. н	Н	Cl	Cl	Н	0	CH,	240
-	-	(CH ₂) 20CH ₃	C ₂ H ₅	H	Н	Cl	Cl	н	0	CH,	241
-	-	CH_CN	C3H2	н	н	Cl	Cl	Н	0	CH3	242
+	-	(CH ₂) ₂ -(Q1)	C ₂ H ₅	н	Н	cl	Cl	н	0	CH3	243
-	-	(CH ₂) ₂ -(Q2) °	C ₂ H ₅	Н	H	C1	Cl	н	0	CH,	244
-	-	CH2N(CH2)3	C ₂ H ₅	Н	H	Cl	Cl	Н	0	CH,	245
-	-	C ₄ H ₄	C-C3H3	Н	H	Cl	Cl	Н	0	CH,	246
-	-	сносн	C-C3H3	Н	H	Cl	Cl	Н	0	СН	247
-	-	C ₆ H ₅	C-C3H3	Н	Н	Cl	Cl	Н	. 0	СН	248
2-134	132-	C-C ₃ H ₅	C-C ₃ H ₅	Н	H	Cl	Cl	Н	0	CH,	249
- \	-	C ₆ H ₅	Н	н	Н	Cl	Cl	Н	0	CH,	250
-	-	3 - (CH ₃ O) -C ₆ H ₄	н	Н	H	Cl	Cl	н	0	CH,	251
-	-	2-Br-C ₆ H ₄	н	Н	. Н	cl	Cl	Н	0	CH,	252

WO 99/0	1454								PCT/US98/1	3913
253	СН	0	н	C1	cl	н	н	н	4-CH ₃ -C ₆ H ₄	-
254	СН	0	н	cl	cl	н	н	н	4-C ₆ H ₅ -C ₆ H ₄	-
255	CH,	0	H	cl	Cl.	н	н	н	2-(C4H9)-C4H9	- ,
256	СН	0	н	Cl	Cl	н	н	н	3-(C4H9)-C5H10	-
257	CH,	۰ ٥	н	Cl	cl	н	н	н	(CH ₂) 20CH3	-
258	CH ₃	0	н	Cl	Cl	н	н	Н	сн,осн,	-
259	CH ₃	0	н	cl	C1	н	Н	н	C3H2	-
260	CH,	o	н	Cl	C1	н	H	н	C3H,	-
261	СН	0	н	Cl	cl	н	Н	н	C.H.	-
262	CH,	0	н	Cl	cl	н	Н	сн,осн,	сн,осн,	-
263	CH,	0	н	cl	cl	н	н	C ₂ H ₅	OC ₂ H ₅	•
264	CH ₃	0	н	cl	cl	н	Н	н	OC ₂ H ₅	-
265	СН₃	0	н	cl	Cl	н	Н	н	O(CH ₂) ₂ -OCH ₃	-
266	СН	0	Н	Cl	cl	Н	Н	CH2OCH3	C ₆ H ₅	-
267	СН	0	н	CH3	осн,	н	CH,	C ₂ H ₅	C ₂ H ₅	. -
268	сн,	0	н	CH,	OCH3	Н	CH,	C ₂ H ₅	C ₄ H ₅	· -
269	CH3	0	н	CH,	OCH,	н	CH3	C ₂ H ₅	сн,осн,	-
270	CH3	0	н	CH ₃	OCH3	н	CH ₃	C ₂ H ₅	C ₆ H ₅	· -
271	CH3	0	н	CH,	OCH,	Н	CH,	C ₂ H ₅	C-C ₃ H ₅	-
272	CH3	0	Н	CH3	OCH,	н	CH,	C ₂ H ₅	C ₆ H ₁₃	
273	CH3	0	н	CH ₃	OCH3	н	CH,	C ₂ H ₅	C3H2	-
274	CH3	0	Н	CH,	OCH,	Н	CH,	C ₂ H ₅	(CH ₂) 3OCH3	-
275	CH3	0	н	CH,	OCH3	Н	CH3	C ₂ H ₅	CH ₂ CN	-
276	CH ₃	0	Н	CH3	OCH,	H	CH3	C ₂ H ₅	(CH ₂) ₃ -(Q1) b	-
277	CH,	0	Н	CH ₃	OCH3	Н	CH,	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	-
278	CH,	0	Н	CH,	осн,	Н	CH ₃	C₂H₅	CH ₂ N(CH ₃) ₂	-
279	CH ³	0	Н	CH3	OCH,	н	CH,	C-C3H2	C4H,	-
280	CH3	0	Н	CH3	осн,	Н	CH,	C-C3H5	CH,OCH,	-
281	CH,	0	Н	CH,	OCH,	Н	CH,	c-C ₃ H ₅	C ₆ H ₅	-
282	CH,	0	H	CH,	осн,	Н	CH,	c-C ₃ H ₅	c-C,H,	
283	СН	0	Н	CH3	OCH ₃	Н	CH,	н	C ₆ H ₅	-
284	CH,	0	Н	CH3	OCH,	Н	CH,	н	3- (CH ₃ O) -C ₆ H ₆	-
285	CH,	0	Н	CH,	осн,	Н	CH,	н	2-Br-C ₆ H _e	-
286	сн	0	H	CH,	OCH,	Н	CH,	н	4-CH ₃ -C ₆ H ₄	-
287	CH,	0	Н	CH,	OCH ₃	Н	CH,	Н	4-C ₆ H ₅ -C ₆ H ₄	-
288	CH,	0	Н	CH,	OCH,	H	CH ₃	н 	2-(C ₄ H ₉)-C ₄ H ₉	-
289	CH,	0	н	CH,	OCH,	н	CH,	Н	3 - (C ₆ H ₉) -C ₅ H ₃₀	-
290	CH,	0	H	CH,	OCH,	H	CH,	н	(CH ₂) ₂ OCH ₃	- <
291	CH,	0	н	CH,	OCH ₃	н	CH _{3.}	Н	сносн	-
292	CH,	0	Н	CH,	OCH,	Н	CH ₃	н	C₃H₅	•

WO 99/	01454								PCT/US98/	13913
293	CH,	0	н	CH,	осн,	н	СН,	н	C3H4	-
294	CH3	0	н	CH,	осн,	н	CH,	н	C ₄ H ₉	-
295	CH,	0	н	CH,	осн,	Н	СН	сн,осн,	CH,OCH,	-
296	CH3	0	Н	CH,	OCH,	н	СН	C ₂ H ₅	OC2H2	-
297	CH ₃	.0	н	CH3	OCH,	Н	СН,	н	OC2H2	-
298	CH3	0	Н	CH,	OCH,	Н	CH2	Н	O(CH ₂) ₂ -OCH ₃	-
299	CH3	0	Н	CH,	OCH,	н	CH3	CH2OCH3	C ₆ H ₅	-
300	CH,	CH2	CH,	н	Cl	н	н	C-C ₃ H ₅	c-C ₃ H ₅	106-109
301	CH3	s	н	CH,	СН	н	CH,	C ₂ H ₅	C ₂ H ₅	-
302	CH,	s	H	CH,	CH,	н	CH,	C₂H₅	C ₄ H ₉	-
303	CH ₃	s	н	CH3	CH,	H	CH ₃	C ₂ H ₅	сн,осн,	• -
304	CH3	s	Н	СН,	CH3	H	CH2	C ₂ H ₅	C ₆ H ₅	. -
305	CH3	s	Н	CH3	CH3	н	CH ₃	C ₂ H ₅	C-C ₃ H ₅	-
306	CH3	s	н	CH,	CH,	Н	CH3	C ₂ H ₅	C4H13	-
307	CH,	S	Н	CH,	CH ₃	Н	CH,	C ₂ H ₅	C3H	: -
308	CH3	s	Н	CH,	CH,	H	CH,	C ₂ H ₅	(CH ⁵) ³ OCH ³	-
309	CH,	s	Н	CH ₃	CH ₃	н	CH,	C ₂ H ₅	CH ₂ CN	-
310	CH3	s	Н	CH ₃	CH ₃	Н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
311	CH,	s	Н	CH ₃	CH3	Н	CH3	C2H2	(CH ₂) ₂ -(Q2) ^c	-
312	СН	s	H	CH3	CH3	Н	CH,	C ₂ H ₅	CH ₂ N(CH ₃) ₂	-
313	CH3	s	Н	CH3	CH,	Н	CH3	C-C ₃ H ₅	C ₄ H ₉	
314	CH,	s	Н	CH,	CH,	н	СН	C-C ₃ H ₅	сносн	-
315	CH3	S	н	CH,	CH,	Н	СН	c-C ₃ H ₅	C₄H₅	
316	CH3	S	Н	CH3	сн₃	Н	CH ₃	c-C ₃ H ₅	c-C,H,	-
317	CH3	S	Н	CH3	CH ₃	Н	СН	Н	C ₆ H ₅	-
318	CH,	S	Н	CH ₃	CH,	Н	CH,	н	3-(CH ₃ O)-C ₆ H ₄	-
319	CH,	S	н	CH,	СН	H	CH,	H	2-Br-C ₆ H ₄	-
320	CH,	S	Н	CH,	CH,	H	СН,	H	4-CH ₃ -C ₆ H ₄	-
321	CH,	s	Н	CH,	CH,	H	CH ₃	H	4-C ₆ H ₅ -C ₆ H ₄	-
322	CH,	S	н	CH ₃	CH,	н	CH ₃	н	2-(C ₄ H ₉)-C ₄ H ₈	-
323	CH,	s	Н	CH,	CH,	н	CH,	н	3-(C ₄ H ₉)-C ₅ H ₁₀	-
324	CH3	S	н	CH,	CH,	H	CH,	н	(CH ₂) 2OCH ₃	-
325	CH3	s	н	CH ₃	CH,	H	CH3	н	сносн	-
326	СН	S	н	CH ₃	CH	н	CH,	н	C ₂ H ₅	-
327	CH,	s	H	CH ₃	CH,	H	CH,	н	C3H,	_
328	CH,	s	Н	CH ₃	CH,	Н	CH ₃	H	C"H"	-
329	СН	s	н	CH,	СН	H	CH,	CH ₂ OCH ₃	CH,OCH,	-
330	CH,	s	Н	CH,	CH,	н	CH,	C₂H₅ ⊔	OC H	- `;
331	CH ²	s	Н	CH,	CH	Н	CH,	н	OC'H'	-
332	сн,	S	Н	CH ₃	CH,	Н	CH,	Н	O(CH ₂) ₂ -OCH ₃	-

WO 99/	01454								PCT/US98/	13913
333	CH3	s	н	сн,	CH,	н	CH,	сн,осн,	C ₆ H ₅	-
334	CH3	s	н	Cl ·	Cl	н	н	C₃H₅	C₂H₅	-
335	СН	s	Н	Cl	Cl	н	Н	C ₂ H ₅	C₄H,	-
336	CH3	s	Н	Cl	Cl	н	Н	C ₂ H ₅	сносн	-
337	CH ₃	·s	Н	Cl	Cl	Н	н	C ₂ H ₅	C ₆ H ₅	-
338	CH,	s	Н	Cl	Cl	н	н	C ₂ H ₅	C-C3H5	-
339	CH,	s	H	ci	Cl	н	H	C ₂ H ₅	C6H23	-
340	СН	s	н	Cl	Cl	н	н	C ₂ H ₅	C3H4	-
341	СН	s	Н	Cl	Cl	Н	H	C ₂ H ₅	(CH ₂) ₂ OCH ₃	-
342	сн	s	Н	cl	Cl	Н	H	C ₂ H ₅	CH ₂ CN	-
343	СН₃	s	н	cl	C1	Н	Н	C ₂ H ₅	(CH ₂) ₂ -(Q1)	•
344	CH,	s	н	cl	Cl	Н	н	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	-
345	CH,	s	н	Cl	Cl	Н	Н	C ₂ H ₅	CH2N(CH3)3	-
346	CH3	s	H	Cl	Cl	Н	Н	c-C ₃ H ₅	C ₄ H ₉	-
347	CH3	s	Н	cj	Cl	Н	Н .	c-C ₃ H ₅	сн,осн,	•
348	CH3	s	Н	Cl	C1	Н	Н	c-C ₃ H ₅	C ₆ H ₅	-
349	CH3	S	Н	Cl	Cl	Н	Н	c-C ₃ H ₅	c-C ₃ H ₅	-
3 50	CH3	S	Н	C1	Cl	Н	Н	H .	C ₆ H ₅	
351	CH,	s	Н	Cl	Cl	Н	Н	Н	3- (CH ₃ O) -C ₆ H ₄	-
352	CH3	s	Н	Cl	Cl	Н	Н	Н	2-Br-C ₆ H ₄	-
353	CH3	S	Н	Cl	Cl	Н	Н	H	4-CH ₃ -C ₆ H ₄	-
354	CH,	S	Н	Cl	cı	Н	Н	H	4-C ₆ H ₅ -C ₆ H ₄	-
355	CH,	S	н	Cl	Cl	Н	н	Н	2-(C ₄ H ₉)-C ₄ H ₈	-
356	CH3	s	н	Cl	Cl	Н	H.	Н	$3 - (C_4H_9) - C_5H_{10}$	-
357	CH ₃	S	н	Cl	Cl	Н	Н	Н	(CH ₂) ₂ OCH ₃	-
358	CH,	S	н	Cl	C1	Н	н	Н	сн,осн,	-
359	CH,	s	Н	Cl	Cl	Н	н	Н	C₂H₅	-
360	CH,	s	н	Cl	Cl	Н	н	н	C3H4	-
361	CH,	s	Н	Cl	C1	Н	H .	Н	C₄H,	-
362	CH,	s	н	Cl	C1	Н	Н	CH ₂ OCH,	сн,осн,	-
363	CH3	S	Н	Cl	C1	Н	H .	C ₂ H ₅	OC3H2	-
364	CH,	s	Н	Cl	Cl	Н	Н	н	OC ₂ H ₅	-
365	CH,	s	Н	Cl	Cl	н	Н	Н	0 (CH ₂) 3-OCH3	-
366	CH,	S	Н	Cl	Cl	Н	Н	сн,осн,	C ₆ H ₅	-
367	СН	s	Н	CH,	OCH,	Н	CH3	C ₂ H ₅	C ₂ H ₅	-
368	CH3	s	H	CH ₃	OCH,	Н	CH,	C ₂ H ₅	C ₄ H ₄	-
369	CH ₃	S	Н	CH3	OCH,	Н	CH3	C ₂ H ₅	сносн	-
370	CH3	S	Н	CH3	OCH,	Н	сн,	C ₂ H ₅	C₅H₅	-
371	CH,	S	Н	CH,	OCH,	. Н	сн	C ₂ H _s	c-C ₃ H ₅	-
372	СН	S	H	CH3	OCH,	Н	сн	C ₂ H ₅	C4H13	-

WO 99/	01454								PCT/US98/	13913
373	CH,	s	н	сн,	OCH,	н	CH,	C ₂ H ₅	C,H,	-
374	сн,	s	н	сн,	осн,	н	CH,	C ₂ H ₅	(CH ₂) 20CH ₃	-
375	CH,	s	н	сн,	осн	н	CH,	C ₂ H ₅	CH,CN	-
376	CH,	s	н	сн,	осн	н	СН	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
377	сн,	·s	н	сн,	осн,	н	сн,	C³H³	(CH ₂) ₃ -(Q2) °	•
378	CH,	s	н	CH,	осн,	Н	СН	C ₂ H ₅	CH2N(CH3)2	•
379	CH,	s	н	CH,	OCH ₃	н	CH3	c-C,H,	C _e H _e	-
380	CH,	s	н	CH ₃	OCH,	н	CH,	c-C ₃ H ₅	сносн,	-
381	CH3	s	Н	CH,	осн	н	СН	C-C3H5	C ₆ H ₅	-
382	CH,	s	н	CH,	осн,	Н	CH,	c-C ₃ H ₅	c-C ₃ H ₅	-
383	CH3	s	н	CH,	осн,	Н	СН	Н	C ₆ H ₅	· -
384	CH,	s	н	CH,	OCH ₃	н	СН	н	3-(CH ₃ O)-C ₆ H ₄	-
385	CH,	s	н	CH,	OCH ₃	н	сн,	н	2-Br-C ₆ H ₄	-
386	CH,	s	н	сн,	OCH ₃	н	CH3	н	4-CH ₃ -C ₆ H ₄	-
387	сн,	s	н	CH,	осн	Н	СН	н	4-C ₆ H ₅ -C ₆ H ₄	-, -
388	CH,	s	н	CH,	осн,	н	CH,	Н	2-(C ₄ H ₉)-C ₄ H ₉	•
389	CH3	s	Н	CH,	осн,	н	CH3	Н	3-(C ₄ H ₉)-C ₅ H ₂₀	-
390	CH3	s	н	CH,	осн,	н	CH ₃	Н	(CH ₂) 20CH ₃	-
391	CH3	s	н	CH3	OCH,	Н	CH ₃	H	сн,осн,	-
392	CH3	s	н	CH,	OCH,	Н	CH ₃	Н	C₃H₅	-
393	CH ₃	s	н	CH,	OCH ₃	Н	CH3.	H	C ₃ H ₇	-
394	СН	s	Н	CH3	OCH3	H	CH3	Н	C,H,	-
395	CH3	s	H	CH ₃	OCH3	Н	СН	CH2OCH3	сн,осн,	-
396	СН₃	s	Н	CH,	OCH,	Н	CH3	C ₂ H ₅	OC ₂ H ₅	-
397	CH ₃	S	Н	CH3	OCH ₃	Н	СН	Н	OC ₂ H ₅	-
398	CH,	S	Н	CH,	OCH ₃	н	CH,	Н	O(CH ₂) ₂ -OCH ₃	-
399	CH3	s	Н	CH,	OCH,	н	CH,	сн,осн,	C ₆ H ₅	-
400	CH,	CH2	Н	Cl	Cl	Н	CH3	C3H	c-C ₃ H ₅	153-156
401	CH3	CH2	CH ₃	сн,	CH3	H	CH3	C ₂ H ₅	C ₂ H ₅	-
402	СН	CH2	CH,	CH,	CH3	Н	CH3	C-C ₃ H ₅	C ₄ H ₉	107-108
403	CH3	CH2	СН	CH3	CH3	Н	CH,	C-C3H5	c-C ₃ H ₅	187-188
404	CH,	CH2	CH3	CH3	CH3	Н	CH3	H	C ₄ H ₉	oil
405	CH,	CH3	CH3	CH,	CH3	Н	CH,	C ₂ H ₅	C ₄ H ₉	98-99
406	CH3	CH2	CH3	CH,	CH3	Н	CH3	Н	C ₆ H ₅	149-150
407	CH3	CH ₂	CH,	СН,	CH,	н	CH,	C ₂ H ₅	(CH ₂) ₂ OCH ₃	-
408	CH ₃	CH ₂	CH3	CH,	CH,	Н	CH3	н	(CH ₂) 2OCH2	-
409	CH3	CH ³	CH3	сн,	CH,	Н	CH3.	CH ₂ OCH ₃	CH ₂ OCH,	-
410	CH3	CH ₂	CH3	CH3	CH3	Н	CH,	C ₂ H ₅	сн,осн,	- 💘
411	CH,	CH3	Н	CH ₃	Cl	Н	Н	C ₂ H ₅	C ₂ H ₅	-
412	CH,	CH ₂	Н	CH,	Cl	Н	Н	c-C ₃ H ₃	C ₄ H ₉	-

WO 99/	01454								PCT/US98	/13913
413	СН,	CH ₂	н	СН,	Cl	н	н	C-C ₃ H ₅	C-C ₃ H ₅	139-140
414	СН,	CH ₂	н	сн,	Cl	н	н	CH ₃	C,H,	oil
										(A,C)
415	СН	CH2	н	CH,	cl	н	Н	C ₂ H ₅	C_4H_9	oil
416	сн,	СН ₂	н	CH,	Cl	Н	н	н	C ₆ H ₅	-
417	СН,	CH2	н	СН,	Cl	Н	Н	C ₂ H ₅	(CH ₂) 2OCH3	-
418	CH,	CH2	Н	CH,	cl	н	н	н	(CH ₂) 2OCH ₃	-
419	СН,	CH2	н	СН,	C1	н	н	CH2OCH3	CH ₂ OCH ₃	-
420	CH,	CH2	н	CH,	Cl	н	н	C ₂ H ₅	сн,осн,	-
421	СН	CH2	Н	cl	СН	н	H	C ₂ H ₅	C ₂ H ₅	-
422	СН₃	CH2	н	Cl	CH,	Н	н	c-C ₃ H ₅	C ₄ H ₅	-
423	СН	CH ₂	н	cı	CH2	н	н	C-C ₃ H ₅	c-C ₃ H ₅	177-178
424	СН₃	CH2	н	Cl	CH,	н	Н	CH,	C,H,	oil
425	СН	CH2	н	C1	· CH,	н	H	C ₂ H ₅	C ₄ H ₉	-
426	CH3	CH2	н	Cl	сн,	н	Н	н	C ₆ H ₅	57
427	СН	CH2	н	Cl	CH3	H	Н	C ₂ H ₅	(CH ₂) ₂ OCH ₃	· -
428	CH3	CH ₂	Н	Cl	CH3	Н	Н	Н	(CH ₂) ₂ OCH ₃	-
429	CH3	CH2	H	Cl	CH ₃	Н	H	CH2OCH3	сн,осн,	· -
430	СН,	CH2	н	Cl	CH,	н	Н	C ₂ H ₅	сн,осн,	-
431	CH,	CH ₂	н	Cl	Cl	Н	OCH,	C3H4	c-C ₃ H ₅	141-144
432	CH3	CH2	н	CH,	CH,	Н	OCH,	C ₂ H ₅	C,H,	108-110
433	CH,	CH2	Н	Cl	Cl	н	СН	c-C,H,	c-C ₃ H ₅	194-195
434	CH3	CH2	Н	CH3	CH ₃	Н	СН	C ₂ H ₅	C-C3H3CH2	oil
435	CH ₃	CH3	Н	CH,	CH,	Н	CH ₃	C ₂ H ₅	CH ₂ OH	155-157
436	CH3	CH ₂	Н	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	C-C3H4CH2	oil
437	CH3	CH2	н	CH,	OCH,	Н	Н	CH,	C ₃ H ₇	oil
438	CH3	CH2	н	СН	OCH,	Н	H	Н	4-(CH ₃ O)-C ₆ H ₆	· oil
439	сн	CH2	н	CH3	OCH,	Н	Н	C2H2	c-C,H,	oil
440	CH3	CH2	н	CH,	OCH,	Н	н	CH,	C5H11	oil
441	СН	CH2	н	Cl	NMe,	Н	Н	C ₂ H ₅	C ₂ H ₅	-
442	CH,	CH2	Н	C1	NMe ₂	H	Н	C-C3H3	C4H,	-
443	СН	CH2	н	C1	NMe,	H	Н	C-C3H3	C-C ₃ H ₃	-
444	СН	CH3	Н	Cl	NMe,	Н	Н	Н	C,H,	-
445	CH,	CH ²	Н	Cl	NMe,	Н	н	C ₂ H ₅	C ₄ H ₉	-
446	CH3	CH2	Н	Cl	NMe ₂	Н	Н	Н	C ₆ H ₅	-
447	CH3	CH2	H	Cl	NMe ₂	Н	Н	C ₃ H ₅	(CH ₂) ₂ OCH ₃	-
448	CH3	CH2	Н	Cl	NMe ₃	Н	H.	H	(CH ₂) ₂ OCH ₃	-
449	CH,	CH2	Н	Cl	NMe ₂	Н	Н	сн,осн,	сносн	- K
450	СН	CH2	Н	Cl	NMe ₂	Н	H	C ₂ H ₅	сңосң	-
451	CH3	CH2	Н	CH3	NMe ₂	Н	Н	C ₂ H ₅	C ₂ H ₅	-

WO 99/	01454								PCT/US98	/13913
452	СН	CH ₂	н	CH,	NMe,	н	н	c-C ₃ H ₅	C ₄ H ₅	-
453	СН₃	CH ₂	н	CH ₃	NMe2	н	н	C-C3H3	c-C ₃ H ₅	-
454	сн	CH,	н	СН	NMe ₂	н	н	н	C,H,	-
455	сн,	CH ₂	Н	CH,	NMe,	н	H.	C₃H₅	C.H.	-
456	СН	CH,	н	CH,	NMe ₂	Н	н	н	. C ₆ H ₅	
457	СН,	CH ₂	н	CH,	NMe ₂	Н	н	C₃H₅	(CH ₂) ₂ OCH ₃	-
458	СН	CH ₂	н	CH3	NMe,	н	н	Н	(CH ₂) 2OCH ₃	-
459	CH ₃	CH2	H	СН	NMe ₂	н	н	сн₂осн₃	сн,осн,	-
460	сн,	CH2	н	СН	NMe ₂	н	Н	C ₂ H ₃	сн,осн,	-
461	СН	CH2	NMe,	CH,	СН,	Н	CH,	C,H,	C ₂ H ₃	-
462	СН	CH2	NMe,	CH,	СН,	Н	CH,	C-C ₃ H ₅	C ₄ H ₉	-
463	сн,	CH₂	NMe,	CH,	СН₃	н	CH,	c-C ₃ H ₅	c-C ₃ H ₅	- ,
464	СН	CH2	NMe,	CH,	CH ₃	н	CH3	Н	C ₃ H ₇	
465	СН	CH2	NMe ₂	CH,	CH3	н	CH3	C ₂ H ₅	C_4H_9	-
466	СН	CH	NMe,	CH3	CH,	• н	CH3	Н	C ₆ H ₅	.i. = .
467	СН	CH2	NMe,	CH3	CH,	н	CH,	C ₂ H ₅	(CH2) 20CH3	-
468	CH3	CH2	NMe,	СН	CH,	Н	CH,	н	(CH ₂) 20CH ₃	-
469	CH,	CH ₂	NMe,	CH ₃	CH,	Н	CH,	CH2OCH3	сн,осн,	-
470	CH3	CH ₂	NMe ₂	CH ₃	СН,	Н	CH,	C ₂ H ₅	сносн,	-
471	C ₂ H ₅	CH ₃	Н	CH3	CH,	Н	CH,	C ₂ H ₅	C ₂ H ₅	•
472	C ₂ H ₅	CH2	Н	CH,	CH,	Н	CH,	C-C3H5	C ₄ H ₉	-
473	C ₂ H ₅	CH ₂	н	CH,	СН	н	сн,	c-C ₃ H ₅	c-C ₃ H ₅	
474	C ₂ H ₅	CH ₂	н	CH,	CH ₃	Н	CH3	н	C ₃ H ₇	-
475	C ₂ H ₅	CH ₂	Н	CH3	СН,	Н	CH,	C ₂ H ₅	C ₄ H ₉	92-95
476	C ₃ H ₅	CH ₂	н	СН,	СН	H	CH3	н	C ₆ H ₅	-
477	C ₂ H ₅	CH ₂	н	CH,	CH,	Н	CH,	C ₂ H ₅	(CH ₂) 2OCH3	-
478	C,H,	CH2	н	CH,	CH3	Н	CH,	н	(CH ₂) 2OCH ₃	-
479	C_2H_5	CH2	Н	СН,	CH3	н	CH,	сн,осн,	сносн	-
480	C ₂ H ₅	CH3	н	CH,	сн,	Н	CH,	C ₂ H ₅	сносн	-
481	CH,	CHCH,	Н	CH3	CH,	Н	CH,	C ₃ H ₅	C₃H₅	-
482	CH,	снсн,	Н	CH3	СН	н	CH,	C-C3H3	C₄H,	-
483	CH,	СНСН	Н	CH,	CH,	Н	CH,	C-C3H3	C-C ₃ H ₅	-
484	CH,	снен,	Н	CH,	CH,	н	CH,	Н	C ₃ H,	-
485	CH,	CHCH,	Н	CH,	CH,	Н	CH,	C,H,	C.H.	· -
486	CH ₃	снсн,	H	CH3	CH ₃	Н	CH3	Н	C ₆ H ₅	2
487	CH,	CHCH,	H	CH3	CH ₃	Н	CH,	C₃H₅	(CH ₂) 2OCH ₃	-
488	CH3	CHCH,	Н	CH3	CH,	н	CH,	Н	(CH ₂) ₂ OCH ₃	-
489	CH,	CHCH3	Н	CH3	CH,	н	CH,	CH3OCH3	CH ₂ OCH ₃	- <
490	CH,	снсн,	Н	CH3	СН	Н	CH,	C ₂ H ₅	CH,OCH,	-
491	CH2	CH3	Н	CH3	CH,	Н	Н	C ₂ H ₅	C ₂ H ₅	96-97

WO 99/0)1454								PCT/US98	/13913
492	CH,	CH ₂	н	CH,	СН,	н	н	c-C,H,	C4H,	-
493	сн,	CH ₂	н	CH,	СН	н	н.	c-C,H,	c-C ₃ H ₅	149-150
494	сн,	CH,	н	CH,	сн,	н	н	н	С,Н,	99-100
495	СН,	CH2	Н	CH,	CH3	Н	н	C ₂ H ₅	C,H,	-
496	СН	CH,	Н	СН,	CH ₃	Н	Н	н	C ₆ H ₅	
497	СН	CH ₂	н	CH,	CH ₃	Н	Н	C ₂ H ₅	(CH2) 3OCH3	-
498	CH3	CH2	н	CH,	сн,	н	Н	н	(CH ³) ³ OCH ³	-
499	СН₃	CH2	н	СН,	CH,	н	Н	CH ₂ OCH ₃	CH2OCH3	-
500	СН	CH2	н	СН,	CH,	Н	Н	C ₂ H ₅	сн,осн,	-
501	CH3	CH ₂	н	CH3	CH3	н	CH3	CH,	C3H,	-
502	CH ₃	CH2	н	СН,	CH,	Н	CH3	CH,	C.H.	oil
503	CH3	CH2	н	CH,	CH3	Н	CH,	CH,	C,H,,	oil
504	сн₃	CH2	H	CH,	CH3	Н	CH ₃	C ₂ H ₅	2-C ₄ H ₉	109-110
505	сн	CH2	Н	CH3	CH ₃	Н	CH,	C ₂ H ₅	CH2OC3H2	-
506	CH,	CH2	Н	Cl	Cl	Н	H	сн	С,н,	oil
							•			(A,B,C)
507	CH3	CH3	H	Cl	Cl	H	Н	CH3	C₄H₅	oil
508	CH3	CH ₂	H	Cl	C1	Н	Н	CH,	C ₅ H ₁₁	•
509	CH3	CH ₂	Н	Cl	Cl	н	H.	C ₂ H ₅	2-C ₄ H ₉	-
510	CH,	CH3	Н	Cl	Cl	Н	Н	C ₂ H ₅	CH2OC3H2	-
511	сн	CH ₃	Н	Cl	CF,	н	Н	C ₂ H ₅	c-C,H,	oil
										(A) 78-80
										(B) 116-117
										(C)
E1 2	CH,	CU	н	cl	CF,	н	Н	c-C ₃ H ₅	c-C,H,	145-146
512 513		CH,					н	C ₂ H ₅	C ₄ H ₅	oil
513 514	сн, сн,	CH,	H H	C1	CF ₃	н Н	н	C ₂ H ₅	C ₂ H ₅	oil
515	CH ₃	CH ₂	н	Cl	CF,	н	н	C ₂ H ₅	CH ₂ OC ₂ H ₅	-
516	CH,	CH ₃	H	осн	Cl	н	Cl	C ₂ H ₅	c-C ₃ H ₅	-
517	CH,	CH ₂	H	OCH ₃	C1	н	C1	c-C ₃ H ₃	c-C ₃ H ₅	183-184
518	СН	CH,	н	осн	C1	н	Cl	С"Н"	C ₄ H ₉	109-110
519	СН	CH,	Н	осн	Cl	н	Cl	C ₂ H ₃	(CH ₂) ₂ OCH ₃	-
520	CH,	CH2	н	осн,	Cl	н	Cl	C ₂ H ₅	CH2OC3H3	-
521	сн,	CH2	н	СН	сн,	н	СН	C,H,	C ₃ H ₇	115-120
522	СН,	0	н	CH,	CH3	н	CH,	C3H4	C3H,	-
523	сн	CH ₂	н	Cl	Cl	н	н	C ₃ H ₃	C3H,	99-101
524	СН	CH2	н	CH,	OCH,	н	н	C ₃ H ₇	C,H,	oil
525	сн,	CH2	н	OCH,	CH,	н	CH,	C3H2	C3H4	109-111

WO 99/0	1454								PCT/US98	/13913
526	CH,	CH2	н	СН,	Cl	н	н	C,H,	C,H,	oil
527	СН,	CH2	н	CH3	СН,	CH ₃	н	C ₃ H ₇	C3H2	-
528	CH,	CH2	н	Cl	CF,	н	н	С,Н,	C,H,	oil
529	СН	CH2	н	cl	CF,	н	Cl	C,H,	C,H,	-
530	CH,	CH,	н	осн,	Cl	н	Cl	C ₃ H ₇	C ₃ H ₂	129-131
531	СН,	CH ₂	н	CH3	CH,	н	CH3	CH,	(CH ₃) ₂ CHCH ₃	77-85
532	CH,	0	н	CH,	СН	Н	СН,	CH ₃	(CH ₃) ₂ CHCH ₂	-
533	СН,	CH ₂	н	Cl	Cl	н	н	CH,	(CH ₃) 2CHCH ₂	-
534	сн,	CH2	Н	СН	OCH,	н	н	сн,	(CH ₃) ₂ CHCH ₃	-
535	сн	CH2	н	OCH,	СН	H	CH3	СН	(CH ²) ² CHCH ²	-
536	CH,	CH ₂	Н	CH3	Cl	Н	Н	CH,	(CH ₃) ₂ CHCH ₂	-
537	CH ₃	CH2	н	CH3	CH ₃	CH3	Н	CH,	(CH ₃) ₂ CHCH ₂	-
538	CH ₃	CH ₂	Н	Cl	CF,	н	H	C3H2	(CH ₃) ₂ CH	oil
539	CH,	CH2	н	Cl	CF ₃	H	Cl	CH,	(CH ₃) ₂ CHCH ₂	-
540	CH3	CH ₂	Н	OCH,	Cl	Н	Cl	CH,	(CH3) 2CHCH3	: - .
541	CH,	CH3	Н	CH3	CH3	н	CH,	CH3	c-C ₃ H ₅	118-127
542	CH,	0	Н	CH3	CH,	Н	CH,	CH ₃	c-C ₃ H ₅	-
543	сн,	CH	Н	Cl	Cl	Н	н	CH ₃	C-C ₃ H ₅	oil
544	CH ₃	CH ₂	H	CH3	OCH,	Н	Н	CH3	c-C ₃ H ₅	oil
545	CH,	CH3	Н	OCH,	CH ₃	H	CH,	CH3	c-C ₃ H ₅	-
546	CH,	CH2	H	CH,	C1	н	н	CH,	c-C ₃ H ₅	-
547	CH,	CH ₂	H	CH,	CH,	СН	н 	CH ₃	c-C ₃ H ₅	- 43
548	CH,	CH2	н	C1	CF,	н	H	CH,	C-C ₃ H ₄	oil -
549	CH,	CH ₂	н	Cl	CF ₃	н	cī.	CH ₃	c-C ₃ H ₅ c-C ₃ H ₅	-
550	CH ₃	CH ₂	н	OCH ₃	Cl	н н	Cl CH,	CH,	CH ₃	oil
551 552	CH ₃	CH ₂	H H	сн, сн,	CH ₃	н	СН	СН	СН	-
	CH,		Н	Cl	Cl.	н	н	CH,	СН	-
553 554	СН _а	CH ₂	н	CH,	осн	н	н	СН	CH,	_
555	CH ₃	CH ₂	н	осн	CH,	н	СН	CH,	CH,	_
556	СН	CH ₂	н	сн,	Cl	н	н	СН	СН	_
557	CH,	CH,	Н	CH,	CH,	СН	н .	CH,	СН	-
558	СН	CH,	н	Cl	CF,	н	н	CH,	C ₄ H ₅	oil
559	СН	CH2	н	Cl	CF,	н	Cl	CH,	CH,	-
560	СН	CH2	н	OCH,	Cl	Н	cl	сн,	СН	-
561	CH,	CH2	H	CH,	СН	н	СН	C ₂ H ₅	C _s H ₁₁	102-103
562	сн	0	Н	CH,	СН	н	СН	C ₂ H ₃	C5H11	-
563	СН,	CH ₂	н	Cl	cı	н	н	C ₂ H ₅	C ₅ H ₂₁	- 💸
564	CH,	CH,	н	CH,	OCH,	н	н	C ₂ H ₃	C4H	oil
565	CH,	CH,	Н	OCH3	CH,	н	CH,	C3H2	C5H11	-

WO 99	/01454	•					,		PCT/US98/	13913
566	CH3	CH3	Н	CH,	Cl	Н	н	C2H5	C5H11	-
567	CH,	CH ₂	Н	CH3	CH ₃	СН	Н	C ₂ H ₅	C,H,1	-
568	CH3	CH2	Н	Cl	CF,	Н	н	C ₂ H ₅	C ₅ H ₁₁	-
569	CH3	CH2	н	Cl	CF,	Н	Cl	C₃H₅	C ₅ H ₁₁	-
570	СН,	CH2	Н	OCH ₃	Cl	Н	Cl	C ₂ H ₅	C ₅ H ₁₁	, -
571	CH ₃	CH2	Н	CH ₃	СН₃	н	CH3	C ₂ H ₅	C2H2O(CH2)2	oil
572	CH ₃	0	н	CH3	CH3	н	CH3	C ₂ H ₅	C2H2O(CH2)3	-
573	CH ₃	CH2	н	Cl	Cl	H	Н	C ₂ H ₅	C ₂ H ₅ O(CH ₂) ₂	-
574	CH3	CH2	н	CH3	OCH,	н	Н	C3H2	$C_2H_5O(CH_2)_2$	-
575	CH3	CH2	н	OCH,	CH3	Н	CH3	C ₂ H ₅	$C_2H_5O(CH_2)_2$	-
576	CH ₃	CH ₂	н	CH3	Cl	Н	H	C₂H₅	$C_2H_5O(CH_2)_2$	• -
577	CH3	CH2	Н	CH,	CH3	CH ₃	Н	C ₂ H ₅	C2H2O(CH2)2	-
578	CH,	CH2	н	cl	CF,	н	Н	C ₂ H ₅	C ₂ H ₅ O(CH ₂) ₂	-
579	CH3	CH2	Н	Cl	CF,	н	cı	C ₂ H ₅	$C_2H_5O(CH_2)_2$	-
580	CH3	CH3	Н	OCH,	Cl	H	Cl.	C ₂ H ₅	C2H2O(CH2)2	
581	CH3	CH2	Н	CH3	CH3	Н	CH,	C ₂ H ₅	C2H2OCH2	oil
582	CH,	0	н	CH3	CH2	н	CH,	C ₂ H ₅	C2H5OCH2	-
583	CH3	CH2	н	Cl	C1	н	H	C ₂ H ₅	C ₂ H ₅ OCH ₂	-
584	CH3	CH2	Н	CH3	OCH,	Н	Н	C ₂ H ₅	C2H4OCH2	-
585	CH3	CH2	Н	OCH,	CH3	H	CH3	C ₂ H ₅	C2H4OCH2	-
586	CH3	CH2	Н	CH3	Cl	н	Н	C ₂ H ₅	C2H2OCH2	-
587	CH3	CH2	Н	CH3	CH,	СН	Н	C ₂ H ₅	C2H2OCH2	-
588	CH,	CH2	Н	Cl	CF,	Н	Н	C ₂ H ₅	C2H4OCH2	-
589	CH3	CH3	н	Cl	CF3	Н	Cl	C ₂ H ₅	C3H2OCH3	-
590	CH3	CH ₂	н	OCH ₃	Cl	Н	Cl	C ₂ H ₅	C3H2OCH3	-
591	CH3	CH2	Н	CH3	CH3	Н	CH ₃	H	c-C3H5CH(OMe)	oil
									(CH ₂) ₂	
592	CH3	0	H	CH,	сн	Н	CH3	н	c-C ₃ H ₅ CH(OMe)	-
									(CH ₂) ₂	
593	сн	CH	Н	Cl	Cl	Н	Н	Н	c-C ₃ H ₅ CH(OMe)	-
									(CH ₂) ₂	
594	CH3	CH₂	н	CH3	OCH,	Н	H	H	c-C,H,CH(OMe)	-
									(CH ₂) ₂	
595	CH3	CH2	Н	OCH3	CH,	H	CH,	Н	c-C ₃ H ₅ CH(OMe)	-
									(CH ₂) ₂	
596	CH3	CH ₂	Н	CH3	Cl	Н	Н	H	c-C3H3CH(OMe)	÷
									(CH ₂) ₂	
597	CH,	CH ₂	Н	CH,	CH3	CH,	Н	Н	c-C,H,CH(OMe)	- <
									(CH ₂) ₂	
598	CH,	CH2	н	Cl	CF,	Н	Н	Н	c-C,H,CH(OMe)	-

									(CH ₂) ₂	
599	CH,	CH ₂	н	Cl	CF,	н	C1	н	c-C ₃ H ₃ CH(OMe)	_
	•	•			•				(CH ₂),	
600	СН	CH ₂	н	осн,	Cl	Н	Cl	н	c-C3H3CH(OMe)	-
	_			•					(CH ₂) ₂	•
601	CH,	CH ₂	CH,	C1	Cl	н	н	C ₂ H ₅	C₂H₅	-
602	СН,	CH,	CH ₃	Cl	cl	н	н	C-C ₃ H ₅	C4H	-
603	СН	CH2	СН	Cl	cl	н	н.	C-C,H,	c-C ₃ H ₅	155-156
604	СН	CH2	СН3	Cl	cl	н	н	н	C ₄ H ₅	-
605	СН	CH2	СН,	Cl	cl	Н	н	C ₂ H ₅	C4H,	•
606	СН	CH ₂	СН,	Cl	cl	н	н	н	C ₆ H ₅	· -
607	CH,	CH ₂	СН₃	cl	cl	Н	Н	C ₂ H ₅	(CH ₂) 20CH3	-
608	СН₃	CH2	СН,	Cl	C1	Н	н	CH,	C ₄ H ₉	-
609	CH3	CH2	CH,	Cl	C1	н	Н	C3H,	C ₃ H ₇	-
610	СН	CH2	CH3	Cl	Cl	н	н	C ₂ H ₅	C ₃ H ₇	÷ = .
611	сн,	CH ₂	CH3	OCH,	CH,	н	CH,	C ₂ H ₅	C ₂ H ₅	· -
612	CH3	CH ₂	CH3	OCH,	CH3	н	CH,	c-C ₃ H ₅	C ₄ H ₅	-
613	CH ₃	CH2	CH ₃	OCH,	CH3	Н	CH3	c-C ₃ H ₅	C-C ₃ H ₅	-
614	CH3	CH2	CH3	OCH,	CH ₃	н	СН3	н	C ₄ H,	-
615	СН,	CH³	CH3	OCH,	CH3	Н	CH ₃	C ₂ H ₅	C₄H,	-
616	CH,	CH3	CH3	OCH ₃	CH3	Н	СН	Н	C₅H₅	-
617	CH3	CH2	CH3	осн,	CH3	Н	CH,	C ₂ H ₅	(CH ₂) 2OCH,	-
618	CH3	CH3	CH3	OCH,	CH,	Н	CH3	СН	C ₄ H ₉	-
619	CH,	CH2	CH3	OCH,	CH,	н	CH ₃	C3H	C3H4	-
620	CH3	CH2	CH3	OCH,	CH3	Н	CH3	C ₂ H ₅	C,H,	-
621	CH,	CH3	CH,	CH,	OCH ₃	н	Н	C ₂ H ₅	C ₂ H ₅	-
622	CH,	CH2	CH3	CH ₃	OCH ₃	Н	Н	C-C3H2	C₄H,	-
623	CH,	CH,	CH,	CH3	och,	Н	Н	c-C ₃ H ₅	C-C ₃ H ₅	-
624	CH,	CH3	CH3	CH ₃	OCH3	Н	Н	Н	C₄H,	-
625	CH3	CH,	CH3	CH,	осн	Н	н	C3H2	C₄H,	-
626	CH3	CH2	CH3	CH3	OCH,	н	H	Н	C ₆ H ₅	-
627	СН	CH,	CH ₃	CH,	OCH,	н	Н	C ₂ H ₅	(CH ₂) ₂ OCH ₃	-
628	СН	CH,	CH3	сн,	och,	Н	Н	CH3	C ₄ H ₉	-
629	CH ₃	CH2	CH3	CH3	och,	Н	н	C ₃ H ₇	С,Н,	-
630	CH,	CH3	CH ₃	CH3	OCH,	Н	Н	C3H2	C ₃ H ₇	-
631	CH,	CH2	CH,	CH,	cl	H	н	C ₂ H ₅	C ₂ H ₅	-
632	СН	CH2	CH ₃	CH,	Cl	Н	Н	C-C3H5	C4H	-
633	CH3	CH	CH,	CH ₃	Cl	Н	н	c-C ₃ H ₅	c-C ₃ H ₅	- 🔾
634	CH,	CH2	СН	CH,	Cl	Н	H	Н	C ₄ H,	-
635	CH,	CH2	СН	CH,	Cl	Н	Н	C ₂ H ₅	C₄H,	-

WO 99/	01454								PCT/US98	/13913
636	СН,	CH ₂	CH,	CH,	Cl	н	н	н	C _s H _s	-
637	CH,	CH ₂	CH,	CH,	cl	н	н	C₂H₅	(CH ₂) 20CH,	-
638	CH3	CH2	CH,	CH,	cl	н	н	CH,	C.H.	-
639	CH3	CH ₂	CH,	CH,	Cl	н	н	С,Н,	C,H,	-
640	CH3	CH ₂	CH,	CH,	Cl	Н	н	C ₂ H ₅	C ₃ H,	, -
641	CH3	CH2	CH,	Cl	CF ₃	н	н	C ₂ H ₅	C ₂ H ₅	-
642	CH3	CH ₂	CH3	Cl	CF3	Н	н	c-C,H,	C ₄ H ₉	-
643	CH3	CH ₂	CH3	Cl	CF,	Н	н	C-C ₃ H ₅	C-C ₃ H ₅	-
644	CH,	CH2	CH,	cl	CF,	н	н	н	C ₄ H ₉	-
645	CH ₃	CH ₂	CH,	Cl	CF,	н	Н	C ₂ H ₅	C ₄ H ₉	-
646	CH3	CH3	CH3	cl	CF,	Н	Н	н	C ₆ H ₅	-
647	CH3	CH ₂	CH ₃	Cl	CF3	н	н	C ₂ H ₅	(CH ₂) 20CH ₃	-
648	CH,	CH ₂	CH,	Cl	CF,	Н	Н	CH ₃	C ₄ H ₉	-
649	CH ₃	CH ₂	CH3	Cl	CF,	н	Н	C ₃ H ₇	C ₃ H,	-
650	CH3	CH2	CH,	Cl	CF,	Н	Н	C ₂ H ₅	C³H'	: -
651	CH,	CH ₂	CH3	Cl	CF,	Н	C1	C ₂ H ₄	C²H²	-
652	CH,	CH2	CH,	Cl	CF,	Н	Cl	c-C ₃ H ₅	C ₄ H ₉	-
653	CH,	CH2	CH,	Cl	CF,	Н	Cl	c-C,H,	C-C ₃ H ₅	-
654	CH3	CH2	CH ₃	Cl	CF,	Н	Cl	Н	C ₄ H ₉	- .
655	CH3	CH ₂	CH,	Cl	CF,	Н	C1	C ₂ H ₅	C₄H,	-
656	CH,	CH ³	сн	Cl	CF,	Н	C1	Н	C₅H₅	-
657	CH,	CH ₂	CH,	Cl	CF,	Н	Cl	C ₂ H ₅	(CH²) 3OCH?	-
658	CH ₃	CH ₂	CH3	Cl	CF,	Н	Cl	CH ₃	C ₄ H ₄	•
659	CH,	CH ₂	CH,	Cl	CF,	Н	Cl	C ₃ H ₇	C ₃ H ₇	-
660	CH3	CH ₂	CH,	C1	CF,	Н	Cl	C ₂ H ₅	C ₃ H ₇	-
661	CH,	CH ³	CH,	OCH,	Cl	н	cl	C₂H₅	C₂H₅	-
662	CH,	CH2	CH,	OCH,	Cl	н	C1	c-C ₃ H ₅	C,H,	-
663	CH,	CH ²	CH,	OCH,	C1	H	Cl Cl	с-С, ң , н	с-С ₃ ң,	-
664 665	CH,	CH ³	CH,	OCH ³	Cl Cl	Н	cl		C.H.	_
666	CH ₃	CH ²	сн, сн,	осн,	cı cı	H H	C1	С , Н,	C _s H _s	, * _
667	сн, сн,	CH ₂	СН	осн	Cl	Н	cı	C ₂ H ₄	(CH ²) ³ OCH ³	_
668	CH ₃	CH ₂	СН	осн	Cl	н	cl	CH,	C ₄ H ₉	_
669	сн,	CH ₂	СН	осн	Cl	н	c1	С,Н,	C ₃ H ₇	_
670	CH ₃	CH ₂	CH,	осн,	Cl	н	Cl	C ₃ ,1,5 C ₂ H ₅	C ₃ H ₇	_
671	CH,	CH ₂	СН	CH,	СН	н	н	C ₃ H ₃	C ₂ H ₅	_
672	CH,	CH ₂	СН	CH ₃	СН	н	н	c-C,H,	C ₄ H ₅	-
673	CH,	CH ₂	CH,	CH,	CH,	н	н	c-C ₃ H ₃	c~C ₃ H ₅	-
674	CH ₃	CH,	.CH ₃	CH,	СН	н	н	н	C,H,	-
675	CH,	CH	CH,	CH,	СН	н	н	C ₂ H ₅	C,H,	_
	•	3		,	3	•	•		• •	

WO 99/	01454						•		PCT/US98	8/13913
676	CH,	CH2	СН	CH,	CH,	н	н	Н	C₅H₅	
677	CH ₃	CH2	CH,	СН,	сн,	н	Н	C2H2	(CH ₂) 20CH ₃	-
678	CH,	СН	СН	СН,	сн,	н 📑	н	СН	C₄H,	-
679	CH,	CH2	СН	СН	CH,	н	н	С,Н,	C ₃ H ₇	-
680	CH,	CH2	СН	сн,	СН	н	н	C ₂ H,	C3H2	_
681	CH3	CH ₂	н	сн,	OCH,	Н	н	C ₂ H ₅	C ₄ H ₉	-
682	CH,	CH2	н	OCH,	CH,	Н	сн,	C ₂ H ₅	C,H,	107-109
683	CH3	CH ²	н	cl	CF,	н	Cl	C ₂ H ₅	C.H.	-
684	CH,	CH ₂	Н	CH ₃	СН	CH3	н	C ₂ H ₅	C4H9	-
685	CH3	CH ₂	н	CH,	OCH3	н	н	C-C3H5	C-C3H5	101-103
686	CH,	CH3	н	OCH,	CH,	Н	CH3	c-C,H,	C-C ₃ H ₅	187-188
687	CH,	CH ₂	н	cl	CF,	Н	Cl	C-C ₃ H ₅	C-C3H5	-
688	CH,	CH ₂	н	CH,	CH,	CH ₃	Н	C-C ₃ H ₅	C-C3H5	119-121
689	CH,	CH ₂	Н	CH,	OCH,	н	н	н	C_6H_5	108-109
690	CH,	CH ₂	н	OCH,	CH,	Н	CH3	Н	C ₆ H ₅	oil
691	CH,	CH2	н	Cl	CF ₃	н	Cl	Н	C _e H _s	· <u>-</u>
692	CH3	CH2	н	CH,	CH ₃	CH3	н	н	C ₆ H ₅	oil
693	CH,	CH2	Н	CH,	OCH ₃	н	н	C-C ₃ H ₅	C ₄ H ₉	oil
694	CH3	CH2	н	OCH3	CH ₃	н	CH ₃	C-C ₃ H ₅	C ₄ H,	-
695	CH3	CH ₂	н	Cl	CF3	н	cl	C-C ₃ H ₅	C ₄ H ₉	-
696	CH,	CH2	н	CH,	CH,	СН	Н	C-C3H5	C ₄ H ₉	-
697	CH,	CH ₂	н	CH ₃	OCH ₃	н	н	CH3	C4H	oil
698	CH3	CH2	Η.	осн	СН3	н	CH3	CH3	C_4H_9	-
699	CH,	CH ₂	Н	Cl	CF,	н	Cl	CH3	C,H,	-
700	CH,	CH2	Н	CH,	СН	CH3	H	CH,	C ₄ H ₉	-
701	CH3	0	Н	СН,	OCH3	Н	н	C ₂ H ₅	C ₄ H ₉	-
702	CH,	0	Н	осн	CH,	H	CH,	C ₂ H ₅	C,H,	-
703	CH,	0	Н	Cl	CF,	H	Cl	C ₂ H ₅	C4H,	-
704	CH3	0	Н	СН	CH ₃	CH ₃	Н	C3H2	C_4H_9	-
705	CH,	0	Н	CH3	OCH ₃	Н	н	C-C3H5	C-C ₃ H ₅	
706	CH3	0	Н	OCH,	CH,	Н	CH,	c-C ₃ H ₅	C-C ₃ H ₃	-
707	CH,	0	Н	Cl	CF,	Н	Cl	C-C3H5	C-C ₃ H ₃	-
708	CH,	0	Н	CH3	CH3	CH3	Н	c-C,H,	C-C3H5	-
709	CH,	0	Н	CH,	осн	Н	Н	н	C ₆ H ₅	-
710	CH,	0	Н	OCH3	CH3	H	CH,	н .	C ₆ H ₅	
711	СН,	0	Н	Cl	CF,	Н	Cl	н	C ₆ H ₅	-
712	CH,	0	Н	CH3	CH,	CH3	Н	H .	C ₆ H ₅	-
713	CH3	0	Н	СН,	och,	Н	, н	c-C ₃ H ₅	C ₄ H ₉	- (
714	СН	0	Н	OCH,	CH,	Н	CH,	C-C3H3	C_4H_9	-
715	CH,	0	Н	Cl	CF ₃	Н	Cl	C-C3H3	C.H.	-

WO 99/	01454								PCT/US98	3/13913
716	сн,	0	н	CH,	CH,	СН	Н	c-C ₃ H ₅	C.H.	_
717	СН	0	н	СН,	осн,	н	н	CH,	C,H,	-
718	CH3	0	н	осн,	СН,	н	СН	CH,	C,H,	- .
719	CH,	0	Н	C1	CF,	н	Cl .	CH,	C4H9	-
720	CH,	۰ 0	Н	СН,	CH ₃	CH,	н	CH,	C,H,	-
721	CH,	CH ₂	Н	CH,	сн,	н	СН,	C ₂ H ₅	CH(CH ₃) ₂	146~147
722	СН	CH2	Н	Cl	Cl	н	н	C,H,	CH(CH ₃) ₂	-
723	сн,	CH2	H	Cl	CH,	Н	н	C ₂ H ₅	CH(CH ₃) ₂	_
724	CH,	CH2	н	Cl	осн,	Н	н	C ₂ H ₅	CH(CH ₃);	oil
725	сн,	CH2	н	сн,	осн,	Н	н	C2H2	CH(CH ₃),	oil
726	СН₃	CH2	н	Cl	CF,	Н	н	C ₂ H ₅	CH(CH ₃);	-
727	сн,	CH ₃	Н	CF,	Cl	н	н	C ₂ H ₅	CH(CH ₃) ₂	oil
728	CH,	CH ₂	н	СН,	Cl	н	н	C2H	CH(CH ₃) ₂	-
729	СН,	CH ₂	н	CF,	CF,	Н	н	C2H3	CH(CH ₃) ₂	-
730	CH3	CH ₂	н	Cl	CN	Н	н	C ₂ H ₅	CH(CH ₃) ₂	. .
731	CH,	CH ₂	н	Cl	C1	F	н	C2H,	CH(CH ₃) ₂	
732	CH3	CH3	н	Cl	Cl	C1	н	C ₂ H ₅	CH(CH3);	-
733	CH,	CH2	н	CH3	OCH,	F	н	C ₂ H ₅	CH(CH ₃) ₂	-
734	CH,	CH ₂	н	CH,	осн,	Cl	н	C ₂ H ₅	CH(CH ₃);	-
735	CH3	CH2	н	Cl	CH3	F	н	C ₂ H ₅	CH(CH3)3	-
736	CH3	CH ₂	Н	Cl	CF3	Cl	Н	C ₂ H ₅	CH(CH ₃) ₂	-
737	CH,	CH ₂	н	Cl	CF,	F	Н	C2H5	CH(CH ₃) ₃	-
738	CH3	CH2	н	Cl	осн,	Cl	Н	C₃H₅	CH(CH ₃) ₂	-
739	CH,	CH ₂	Н	Cl	осн	F	H.	C3H2	CH(CH ₃) ₂	-
740	CH3	CH2	н	C1	OCH ₃	CH3	Н	C ₂ H ₅	CH(CH ₃);	-
741	CH,	CH2	H	CH3	осн,	CH3	н	C ₂ H ₅	CH(CH ₃);	-
742	CH,	CH2	н	Cl	н	Cl	н	C ₂ H ₅	CH(CH ₃) ₂	-
743	CH3	CH,	н	Cl	Cl	осн	H .	C ₂ H ₅	CH(CH ₃) ₂	•
744	CH,	CH	H	Cl	CH ₃	OCH,	Н	C ₂ H ₅	CH(CH)3	-
745	CH,	CH2	Н	CH3	cl	OCH3	н	C ₂ H ₅	CH(CH ₃) ₂	-
746	CH,	CH	Н	CH,	CH,	OCH3	Н	C ₂ H ₅	CH(CH);	-
747	CH3	CH2	Н	CH ₃	CH,	Н	CH3	C3H,	C-C ₃ H ₅	140-143
748	CH3	CH2	Н	Cl	Cl	н	н	С,Н,	c-C ₃ H _s	107-108
										(A)
										79-82
										(C)
749	CH3	CH2	Н	Cl	CH,	Н	Н	С,Н,	C-C ₃ H ₅	106-108
750	CH3	CH2	Н	Cl	OCH,	H	Н	С,Н,	C-C ₃ H ₅	oil 🔇
751	CH,	CH,	н	CH3	OCH,	Н	Н	С,Н,	c-C ₃ H ₅	oil
752	СН	CH2	Н	Cl	CF,	Н	н	С,н,	C-C3H3	108-109

WO 99/0	1454								PCT/US98	8/13913
753	сн,	CH3	н	CF,	Cl	Н	н	C,H,	c-C ₃ H ₅	oil
										(A)
										95-97
										(C)
754	сн,	CH2	Н	CH ₃	Cl	Н	Н	C,H,	c-C ₃ H ₅	87-88
755	CH ₃	CH ₂	Н	CF,	CF,	Н	н	C3H,	C-C ₃ H ₅	-
756	СН₃	CH2	н	Cl	CN	Н	н	C,H,	c-C ₃ H ₅	-
757	СН	CH2	Н	cı	Cl	F	Н	C,H,	C-C3H5	-
758	CH3	CH ₂	н	cl	C1	Cl	н	C,H,	C-C3H2	-
759	CH3	CH2	Н	CH ₃	OCH,	F	Н	C,H,	C-C ₃ H ₅	-
760	CH3	CH2	Н	CH ₃	OCH3	Cl	Н	C,H,	C-C3H5	· -
761	CH ₃	CH ₂	Н	cl	CH,	F	Н	C,H,	C-C3H	-
762	CH₃	CH2	н	Cl	CF3	Cl	н	C3H,	C-C ₃ H ₅	-
763	CH,	CH2	н	cı	CF,	F	Н	C ₃ H ₇	C-C3H4	-
764	CH3	CH2	Н	Cl	OCH,	Cl	Н	С,Н,	C-C3H5	·, -
765	CH3	CH2	Н	Cl	осн,	F	H	C3H2	c-C ₃ H ₅	-
766	CH3	CH ₂	Н	Cl	OCH3	CH ₃	H	C,H,	C-C ₃ H ₅	-
767	CH3	CH2	Н	CH,	OCH ₃	CH ₃	Н	C,H,	c-C ₃ H ₅	oil
768	CH3	CH ³	Н	Cl	н	Cl	Н	C3H7	C-C ₃ H ₅	-
769	CH3	CH ₂	Н	Cl	Cl	OCH,	Н	С,Н,	C-C3H5	-
770	CH3	CH2	Н	Cl	CH3	OCH,	Н	C,H,	C-C,H,	-
7 71	CH3	CH2	Н	CH3	Cl	och,	Н	C,H,	C-C ₃ H ₅	-
772	CH3	CH ₂	Н	CH,	CH3	OCH ₃	Н	C_3H_7	C-C ₃ H ₅	-
773	CH,	CH2	н	CH3	CH3	Н	CH3	CH ₃	CH,Cl	109-110
774	CH3	CH2	н	Cl	Cl	Н	Н	C ₂ H ₅	C,H,	-
775	CH3	CH2	Н	C1	СН	H	Н	C ₂ H ₅	C ₃ H ₇	-
776	CH3	CH2	Н	Cl	OCH,	Н	Н	C3H2	C ₃ H ₇	oil
777	CH3	CH2	Н	CH3	OCH ₃	Н	Н	C₂H₃	C ₃ H ₇	oil
778	CH3	CH2	Н	Cl	CF,	Н	Н	C3H3	C ₃ H ₇	oil
779	CH,	CH2	Н	CF3	Cl	Н	H	C ₂ H ₅	C_3H_7	oil
780	CH,	CH2	Н	CH3	C1	Н	H	C³H²	C_3H_7	-
781	CH3	CH ₂	Н	CF3	CF,	H	Н.	C ₂ H ₅	C ₃ H ₇	-
782	CH3	CH2	Н	Cl	CN	Н	Н	C ₂ H ₅	C ₃ H ₇	-
783	CH,	CH,	Н	Cl	Cl	F	Н	C ₂ H ₅	C3H4	=
784	СН	CH2	. н	Cl	Cl	Cl	н	C ₂ H ₅	C,H,	-
785	CH,	CH2	Н	CH,	OCH,	F	Н	C ₂ H ₅	C_3H_7	-
786	СН	CH ₂	Н	CH ₃	OCH ₃	Cl	н	C ₂ H ₅	C ₃ H ₇	-
787	CH3	CH2	Н	Cl	CH3	F	Н	C ₂ H ₅	C ₃ H ₇	- <
788	CH,	CH3	Н	Cl	CF,	Cl	Н	C ₂ H ₅	C ₃ H ₇	-
789	СН	CH2	Н	Cl	CF,	F	Н	C ₂ H ₅	С,Н,	

WO 99/	01454								PCT/US98	3/13913
790	СН,	CH³	н	cl	осн,	Cl	н	C ₂ H ₅	C,H,	-
791	CH,	CH2	н	Cl	OCH,	F	н	C ₂ H ₅	C,H,	-
792	CH3	CH2	н	Cl	осн,	СН	н	C ₂ H ₅	C ₃ H ₇	-
793	CH3	CH2	н	CH,	осн	сн	н	C ₂ H ₅	C,H,	oil
794	СН,	CH ₂	Н	Cl	н	cl	н	C ₂ H ₅	С,н,	, -
795	CH3	CH2	н	Cl	cl	осн,	н	C ₂ H ₅	C,H,	-
796	CH,	CH2	H	Cl	CH3	осн,	н	C ₂ H ₅	С,Н,	-
797	CH3	CH ₂	Н	СН,	Cl	осн,	н	C₂H₅	С,Н,	-
798	CH3	CH	н	сн,	СН	осн,	н	C ₂ H ₅	C,H,	-
799	CH,	CH	н	СН,	CH ₃	СН	н	C₃H₅	С,Н,	oil
800	CH,	CH ₂	н	CF,	Cl	Н	н	н	4-CH ₃ O-C ₆ H ₄	138-139
801	CH ₃	CH2	н	CF,	Cl	н.	н	c-C,H,	c-C ₃ H ₅	138-139
802	CH3	CH2	Н	CF,	Cl	Н	н	C ₂ H ₅	c-C ₃ H ₅	oil
										(A)
										122-125
•										(C)
803	CH3	CH ₂	Н	CF,	Cl	Н	Н	CH,	C-C3H2	oil
804	CH3	CH ₂	Н	CF3	Cl	Н	Н	CH,	C3H2	oil
805	CH3	CH ₂	Н	CF,	Cl	Н	н	CH,	C4H	oil
806	CH,	CH,	Н	CF3	C1	Н	Н	CH,	C,H,1	-
807	CH,	CH2	Н	CF,	Cl	н	Н	C ₂ H ₅	C_4H_9	oil
808	CH,	CH ₂	H	CF,	Cl	Н	н	C3H,	C3H3	oil
809	CH,	CH2	н	CF,	cl	н	н	C ₂ H ₅	C ₂ H ₅	oil
810	CH ₃	CH2	Н	Cl	CIN	Н	Н	н	4-CH ₃ O-C ₆ H ₄	<u></u>
811	CH3	CH3	Н	Cl	CN	н	н	C-C ₃ H ₅	c-C ₃ H ₅	180-182
812	CH3	CH3	н	Cl	CN	н	н	C ₂ H ₅	c-C ₃ H ₅	-
813	CH3	CH,	Н	Cl	CN	Н	Н	CH,	c-C ₃ H ₅	-
814	CH3	CH2	Н	Cl	CN	Н	Н	CH,	C ₃ H ₇	-
815	CH ₃	CH2	H	Cl	CN	Н	Н.	CH ₃	C ₄ H ₉	-
816	CH3	CH2	н	Cl	CN	Н	Н	CH,	C ₅ H ₁₁	-
817	CH,	CH2	Н	Cl	CN	Н	н	C ₂ H ₅	C ₄ H ₉	-
818	CH ₃	CH ₂	Н	Cl	CN	Н	Н	C_3H_7	C ₃ H ₇	-
819	СН	CH2	Н	Cl	CN	H	Н	C ₂ H ₅	C ₂ H ₅	-
820	CH,	CH ₂	H	CF,	CF,	Н	H	Н	4-CH ₃ O-C ₆ H ₄	-
821	CH,	CH2	н	CF,	CF,	Н	н	c-C,H,	C-C ₃ H ₅	149-150
822	CH,	CH ₂	H	CF,	CF,	Н	н	C ₂ H ₅	c-C ₃ H ₅	-
823	CH,	CH2	Н	CF,	CF,	Н	Н	CH ₃	c-C ₃ H ₅	-
824	CH,	CH2	н	CF3	CF,	н	Н	CH ₃	C ₃ H ₇	oil 🦠
825	CH,	CH2	Н	CF,	CF,	Н	Н	CH,	C ₄ H,	-
826	СН	CH ₂	н	CF,	CF,	н	н	CH,	C ₅ H ₂₁	_

wos	99/01454								PCT/US98	/13913
827	сн,	CH2	н	CF,	CF,	н	н	C ₂ H ₅	C4H,	-
828	сн,	CH2	н	CF,	CF,	Н	н	С,Н,	C3H,	-
829	сн,	CH,	н	CF,	CF,	н	Н	C,H,	C ₂ H ₅	-
830	сн,	CH ₂	н	Cl	осн,	н	н	Н	4-CH,O-C ₆ H ₄	58-60
831	сн,	CH2	н	Cl	OCH,	н	н	c-C ₃ H _s	C-C ₃ H ₅	139-140
832	2 сн,	CH2	н	Cl	осн	н	н	C ₂ H ₅	C-C3H3	oil
833	з сн,	CH2	н	Cl	OCH3	н	н	Н	C-C ₃ H ₅	oil
834	4 сн,	CH2	н	Cl	осн,	н	н	CH ₃	С,Н,	oil
835	5 сн,	CH2	н	Cl	осн	н	н	СН	C ₄ H,	oil
836	5 сң	CH2	н	cl	осн	н	н	CH,	C,H,	oil
837	7 СН,	CH2	Н	cl	осн,	н	Н	C ₂ H ₅	C₄H,	oil
838	8 сн,	CH2	н	cl	OCH,	Н	Н	C,H,	C ₃ H ₇	oil
839	9 сн,	CH2	Н	cl	OCH ₃	Н	н	C,H,	C ₂ H ₅	oil
840	0 СН,	CH ₂	Н	Cl	cl	F	н `	н	4-CH ₃ O-C ₆ H ₄	-
841	1 СН,	CH ₂	Н	Cl	cl	F	Н	c-C,H,	c-C,H,	148-149
843	2 СН,	CH2	Н	cl	Cl	F	н	C ₂ H ₅	C-C3H3	· -
843	3 СН,	CH ₂	Н	Cl	cl	F	H	CH,	c-C ₃ H ₅	-
84	4 CH ₃	CH ₂	Н	Cl	Cl	F	Н	CH,	C3H2	-
84	5 СН ₃	CH ₂	Н	Cl	Cl	F	н	CH,	C ₄ H ₉	-
84	6 сн₃	CH ³	н	Cl	Cl	F	н.	CH3	C,H,,	-
84	7 сн,	CH2	н	Cl	Cl	F	Н	C ₂ H ₅	C₄H,	-
84	8 сн₃	CH ₂	Н	Cl	Cl	F	Н	С,Н,	C ₃ H ₇	-
84	9 сн,	CH2	н	Cl	Cl	F	н	C ₂ H ₅	C₂H₅	-
85	0 СН,	CH ₂	Н	Cl	Cl	Cl	н	Н	4-CH ₃ O-C ₆ H ₄	-
85	1 сн,	CH ₂	Н	Cl	Cl	Cl	н	C-C3H3	c-C ₃ H ₅	-
85	2 сн,	CH ₂	Н	C1	Cl	Cl	н	C ₂ H ₅	c-C ₃ H ₅	-
85	3 сн,	CH2	Н	Cl	Cl	Cl	Н	CH,	C-C ₃ H ₅	-
85	4 CH ₃	CH2	H	Cl	C1	Cl	Н	CH,	C3H4	-
85	5 CH ₃	CH2	Н	Cl	Cl	Cl	Н	CH3	C ₄ H ₉	-
85	6 сн,	CH2	Н	Cl	Cl	Cl	Н	CH,	C _s H ₁₁	-
85	7 СН	CH2	Н	Cl	Cl	Cl	H	C ₂ H ₃	C ₄ H ₉	-
85	8 СН,	CH2	Н	Cl	_ Cl	Cl	Н	C ₃ H ₇	C3H2	-
85	9 сн	CH2	Н	Cl	Cl	Cl	Н	C ₂ H ₅	C ₂ H _s	-
86	0 сн	CH ₂	Н	CH3	OCH,	F	Н	н	4-CH,O-C ₆ H ₄	-
86	1 сн,	CH ₂	H	CH,	OCH3	F	Н	c-C ₃ H ₅	c-C,H,	128-129
86	2 сн,	CH ³	Н	CH3	OCH ₃	F	Н.	C ₂ H ₅	c-C ₃ H ₅	-
86	3 CH ₃	CH2	Н	CH ₃	OCH,	F	Н	CH ₃	C-C3H3	-
86	•	CH3	Н	CH ₃	OCH ₃	F	Н	CH3	C ₃ H ₄	- 🤄
86	_	CH ³	Н	CH3	OCH,	F	Н	CH,	C4H	-
86	6 сн,	CH2	Н	CH,	OCH,	F	Н	CH,	C_5H_{11}	-

wc	99/01	454								PCT/US98/	13913
8	67	СН,	CH3	Н	СН,	OCH ₃	F	н	C ₂ H ₅	C4H	-
8	68	CH,	CH ₂	Н	СН,	OCH,	F	Н	C ₃ H,	C ₃ H ₇	-
8	69	сн,	CH,	н	СН,	OCH,	F	н .	C ₂ H ₅	C ₂ H ₅	-
8	70	СН	CH2	Н	CH,	OCH,	Cl	н	н	4-CH,0-C,H	oil
. 8	71	СН3	CH₂	Н	CH,	осн,	Cl	н	C-C ₃ H ₅	C-C3H5	179-181
8	72	CH ₃	CH ₂	н	СН	OCH ₃	Cl	н	C ₂ H ₅	c-C ₃ H ₅	-
8	73	сн,	CH ₂	н	СН	осн,	cl	н	СН,	C-C3H5	-
8	174	СН	CH ₂	н	CH ₃	осн,	Cl	Н	CH ₃	C3H,	_
8	175	CH,	CH2	Н	СН,	осн,	Cl	Н	СН	C ₄ H ₉	-
8	176	СН₃	CH2	н	CH,	OCH,	C1	Н	CH,	C,H,	-
8	377	СН,	CH2	Н	CH,	OCH,	Cl	н	C ₂ H ₅	C ₄ H ₉	
8	378	СН	CH ₂	н	CH,	OCH3	Cl	H ·	С,Н,	C3H,	-
8	379	СН,	CH ₂	н	сн,	OCH,	Cl	н	C ₂ H ₅	C₂H₅	-
8	80	СН	CH2	н	Cl	СН,	F	н	н	4-CH3O-C6H4	-
8	81	CH,	CH2	н	cl	сн,	F	H	C-C ₃ H ₅	C-C3H3	130-131
8	82	СН	CH2	н	Cl	CH3	F	Н	C,H,	c-C,H,	•
8	383	CH,	CH2	н	Cl	CH,	F	Н	CH,	C-C ₃ H ₅	-
ε	384	CH,	CH ₂	н	Cl	CH ₃	F	Н	CH,	C ₃ H,	-
8	85	CH,	CH ₂	н	cl	CH,	F	Н	CH,	C_4H_9	-
8	886	CH ₃	CH ₂	Н	cl	CH ₃	F	Н	CH,	C5H11	-
8	887	СН	CH ₂	н	cl	CH,	F	н	C ₂ H ₅	C ₄ H ₉	-
8	888	СН	CH3	Н	Cl	CH,	F	н	C3H4	C ₃ H ₇	-
ε	889	СН	CH2	н	C1	CH3	F	н	C ₂ H ₅	C ₂ H ₅	-
8	890	CH,	CH2	н	Cl	CF,	Cl	н	н	4-CH,0-C,H,	-
8	891	CH,	CH ₂	н	Cl	CF3	Cl	н	C-C ₃ H ₅	c-C ₃ H ₅	-
8	892	CH ₃	CH2	н	Cl	CF3	Cl	Н	C ₂ H ₅	c-C ₃ H ₅	-
	893	CH,	CH2	н	Cl	CF,	Cl	н	CH,	C-C3H2	-
8	894	CH,	CH ₂	н	Cl	CF3	Cl	н	CH ₃	C ₃ H ₇	-
8	895	CH3	CH ₂	Н	Cl ·	CF3	Cl	н	CH ₃	C₄H,	-
1	896	CH,	CH2	н	Cl	CF,	Cl	н	CH,	C,H,,	-
1	897	CH3	CH ₂	н	Cl	CF,	Cl	Н	C ₂ H ₅	C ₄ H ₅	-
1	898	CH3	CH ₂	н	Cl	CF3	Cl	Н	C3H,	C3H2	-
1	899	CH3	CH ₂	Н	Cl	CF,	Cl	Н	C ₂ H ₅	C ₂ H ₅	-
!	900	CH,	CH3	H	CH3	OCH,	Н	Н	. н	C ₄ H ₉	oil
9	901	CH ₃	CH ₂	H	CH ₃	OCH,	H	Н	C ₂ H ₅	C ₂ H ₅	69-73
9	902	CH,	CH ₂	Н	Cl	CH,	Н	Н	С,Н,	C,H,	oil
!	903	CH3	CH ₂	Н	Cl	CF,	F	H .	Н	4-CH30-C6H4	-
	904	СН	CH3	Н	Cl	CF3	F	Н	c-C3H3	C-C ₃ H ₅	- .
•	905	сн,	CH3	Н	Cl	CF,	F	Н	C3H2	C-C ₃ H ₅	-
!	906	CH,	CH3	Н	cl	CF,	F	н	CH,	C-C3H3	-

WO 99/	01454								PCT/US98	/13913
907	CH,	CH3	Н	cı	CF,	F	н	CH,	C,H,	-
908	CH,	CH ₂	Н	Cl	CF,	F	н	сн,	C ₄ H ₉	-
909	CH,	CH ²	н	C1	CF,	F	н	CH3	C_sH_{12}	· .
910	CH,	CH ₂	н	Cl	CF,	F	Н.	C ₂ H ₅	C ₄ H ₉	-
911	CH,	CH ₂	н	Cl	CF,	F	Н	C3H4	C3H,	. -
912	СН,	CH2	H.	Cl	CF,	F	Н	C ₂ H ₅	C ₃ H ₅	-
913	CH3	CH ₃	н	Cl	OCH,	Cl	н	. н	4-CH ₃ O-C ₆ H ₄	-
914	CH ₃	CH ₂	н	Cl	осн,	Cl	н	c-C ₃ H ₅	C-C ₃ H ₅	oil
915	СН,	CH ³	н	Cl	och,	Cl	н	C ₂ H ₅	c-C ₃ H ₃	. -
916	CH ₃	CH ₂	Н	Cl	осн,	Cl	Н	CH ₃	c-C ₃ H ₅	-
917	СН3	CH2	H	Cl	осн,	Cl	Н	CH3	C,H,	• •
918	CH,	CH ₂	Н	Cl	OCH,	Cl	н	CH3	C.H.	-
919	CH,	CH2	H	. c1*	OCH,	Cl	Н	CH ₃	C5H23	-
920	CH3	CH ₂	н	Cl	OCH,	Cl	Н	C ₂ H ₅	C.H.	-
921	сн	CH3	н	cl	осн,	Cl	Н	C ₃ H ₇	C3H2	
922	сн	CH2	н	cı	осн,	Cl	Н	C ₂ H ₅	C ₂ H ₅	
923	CH3	CH2	н	Cl	OCH ₃	F	н	Н	4-CH ₃ O-C ₆ H ₄	-
924	CH3	CH3	H.	. Cl	OCH,	F	Н	C-C3H5	C-C ₃ H ₅	•
925	CH3	CH2	Н	Cl	OCH ₃	F	Н	C ₂ H ₅	c-C ₃ H ₅	-
926	CH ₃	CH ₂	H	Cl.	OCH,	F	н	СН	c-C ₃ H ₅	-
927	СН	CH ₂	H	Cl	осн,	F	Н	CH,	C3H4	-
928	СН	CH2	н	Cl	осн	F	Н	CH,	C ₄ H ₉	-
929	CH,	CH ₂	н	Cl	OCH3	F	Н	CH ₃	C ₅ H ₁₁	-
930	CH ₃	CH3	н	Cl	OCH3	F	H.	C ₂ H ₅	C ₄ H ₉	-
931	CH3	CH ₂	H	Cl	осн,	F	н	C3H2	C3H2	-
932	CH3	CH ₂	Н	Cl	OCH,	F	н	C ₂ H ₅	C ₂ H ₃	-
933	CH,	CH ₂	H	Cl	OCH3	CH,	Н	н	4-CH ₃ O-C ₆ H ₄	-
934	сн	CH3	Н	Cl	OCH ₃	CH ₃	н	c-C ₃ H ₅	C-C ₃ H ₅	150-151
935	CH,	CH2	н	Cl	OCH3	CH3	Н	C ₂ H ₅	C-C ₃ H ₅	<u>.</u>
936	CH,	CH2	н	Cl	OCH,	CH ₃	H	CH,	c-C,H,	-
937	CH,	CH2	Н	Cl	OCH3	CH ₃	н	CH ₃	C3H2	-
938	CH,	CH3	н	Cl	OCH3	CH3	н	CH ₃	C ₄ H ₉	-
939	CH,	CH	Н	C1	OCH,	CH,	H	CH ₃	C ₅ H ₁₁	-
940	CH,	CH2	Н	Cl	осн,	CH,	Н	C ₂ H ₅	C ₄ H ₉	-
941	CH3	CH ₂	н	Cl	OCH,	CH,	Н	C ₃ H ₇	C3H2	-
942	CH,	CH2	Н	Cl	OCH ₃	CH,	Н	C ₂ H ₅	C ₂ H ₅	
943	CH,	CH ₂	Н	CH ₃	осн,	CH,	н	н	4-CH ₃ O-C ₆ H ₄	-
944	CH ₃	CH2	Н	CH ₃	OCH,	CH3	Н	c-C ₃ H ₅	c-C ₃ H ₅	148-151 🔇
945	CH3	CH2	Н	CH,	осн	CH,	Н	C ₂ H ₅	c-C3H2	oil
946	CH,	CH3	Н	CH,	OCH,	CH,	Н	СН	C-C ₃ H ₅	-

WO 99/0	01454								PCT/US98	/13913
947	СН,	CH ₂	н	CH3	осн,	СН,	н	CH,	С,Н,	oil
948	CH,	CH ₂	н	CH ₃	OCH,	СН,	н	СН,	C ₄ H ₉	-
949	CH,	CH2	н	СН,	OCH,	СН	Н	CH ₃	C,H,	-
950	СН	CH2	н	CH,	OCH,	CH,	Н	C₂H₅	C ₄ H ₉	-
951	CH,	CH ₂	н	CH3	OCH ₃	CH3	н	C3H7	C ₃ H ₇	oil
952	CH,	CH ₂	н	CH3	OCH ₃	CH3	н	C ₂ H ₅	C₂H₅	oil
953	CH3	CH ₂	н	Cl	н	Cl	H	н	4-CH ₃ O-C ₆ H ₄	-
954	СН,	CH2	н	Cl	н	Cl	H	c-C,H,	C-C ₃ H ₅	151-153
955	CH,	CH ₂	Н	cı	Н	cl	Н	C ₂ H ₅	C-C3H5	-
956	CH3	CH ₂	н	Cl	Н	C1	Н	CH,	c-C ₃ H ₅	-
957	СН,	CH ₂	Н	Cl	н	cl	Н	CH ₃	C3H2	• -
958	СН,	CH ₂	Н	Cl	Н	cl	н	СН	C ₄ H ₉	-
959	CH,	CH2	н	Cl	Н	Cl	н	CH ₃	C5H11	-
960	CH ₃	CH2	н	cı	Н	cl	н	C ₂ H ₅	C.H.	-
961	CH3	CH	Н	Cl	н	Cl	н	C3H4	C ₃ H ₇	. -
962	CH ₃	CH2	н	cl	н	c1	н	C ₂ H ₅	C ₂ H ₅	·
963	CH3	CH2	Н	Cl	Cl	OCH,	Н	Н	4-CH ₃ O-C ₆ H ₄	-
964	CH,	CH2	Н	Cl	Cl	OCH,	н	C-C3H5	c-C ₃ H ₅	-
965	CH,	CH2	н	Cl	Cl	OCH,	н	C ₂ H ₅	C-C3H5	-
966	CH3	CH2	н	Cl	Cl	OCH,	н	CH,	c-C ₃ H ₅	-
967	CH,	CH,	н	Cl	Cl	OCH,	Н	CH,	C3H4	-
968	CH,	CH2	Н	Cl	Cl	осн ₃	Н	сн	C4H	-
969	СН,	CH3	Н	Cl	Cl	OCH3	Н	СН	C5H11	-
970	сн,	CH ₂	H	Cl	C1	och³	Н	C3H	C ₄ H,	-
971	CH3	CH2	н	Cl	Cl	OCH3	Н	C3H,	C ₃ H ₇	-
972	CH,	CH3	Н	C1	Cl	OCH,	Н	C ₂ H ₅	C ₂ H ₅	-
973	CH,	CH,	н	Cl	CH,	OCH,	Н.	Н	4-CH ₃ O-C ₆ H ₄	-
974	CH,	CH3	Н	Cl	CH,	OCH,	Н	C-C,H,	c-C,H,	-
975	CH,	CH2	н	Cl	CH3	OCH ₃	Н	C ₂ H ₅	C-C ₃ H ₅	-
976	СН	CH2	Н	Cl	CH,	OCH,	Н	CH,	c-C,H,	-
977	CH3	CH2	Н	Cl	СН	OCH,	Н	СН	C3H2	-
978	CH,	CH ₂	Н	Cl	СН	OCH,	Н	CH,	C_4H_9	-
979	CH3	CH2	Н	Cl	СН	OCH,	н	СН	C ₅ H ₁₁	-
980	CH3	CH	Н	Cl	CH ₃	OCH,	Н	C2H2	C ₄ H ₉	-
981	CH3	CH2	H	Cl	CH ₃	OCH,	Н	C3H,	C ₃ H ₇	-
982	CH3	CH2	Н	Cl	CH3	OCH3	Н	C ₂ H ₅	C ₂ H ₅	-
983	CH3	CH2	н	CH,	Cl	осн,	н	н	4-CH ₃ O-C ₆ H ₄	-
984	СН	CH2	H	CH,	Cl	OCH3	Н	c-C ₃ H ₅	c-C ₃ H ₅	- <u>.</u>
985	CH3	CH	H	CH,	Cl	осн,	Н	C ₂ H ₅	c-C ₃ H ₅	-
986	CH3	CH2	н	CH3	Cl	OCH,	н	CH,	c-C ₃ H ₅	-

WO 99/0	01454								PCT/US98	/13913
987	СН,	CH ₂	Н	СН,	Cl	осн,	н	CH,	C3H,	-
988	сн,	CH	н	CH3	Cl	OCH,	н	сн,	C₄H₅	-
989	CH,	CH2	Н	CH3	cl	осн	н	СН₃	C ₅ H ₂₁	-
990	CH,	CH2	н	CH3	Cl	OCH3	н	C2H2	C_4H_9	-
991	CH3	CH3	н	CH ₃	Cl	OCH,	н	C3H2	C ₃ H ₇	-
992	CH ₃	CH2	н	CH3	Cl	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	-
993	CH3	CH ³	н	CH3	CH ₃	OCH3	н	н	4-сңо-с,ң	-
994	CH ₃	CH3	Н	CH,	СН	OCH3	Н	C-C3H5	c-C ₃ H ₅	-
995	CH3	CH2	Н	CH3	CH,	OCH,	Н	C3H2	C-C3H5	-
996	CH3	CH2	н	СН	СН	осн,	Н	CH3	C-C3H3	-
997	CH ₃	CH ₂	Н	сн,	CH ₃	OCH ₃	Н	CH ₃	C,H,	· -
998	CH3	CH ₂	H	CH3	CH3	OCH3	Н	CH,	C₄H,	-
999	CH3	CH2	Н	CH3	CH3	OCH3	Н	CH ₃	C,H,,	-
1000	СН₃	CH ₂	Н	CH,	CH3	OCH ₃	Н	C ₂ H ₅	C ₄ H ₉	-
1001	CH3	CH2	H	CH,	CH3	OCH,	н	C,H,	C3H2	
1002	CH,	CH2	Н	CH,	CH,	OCH,	Н	C ₂ H ₅	C₂H¸	-
1003	CH3	CH2	H	CH,	OCH ₃	OCH3	н	н	4-CH ₃ O-C ₆ H ₄	oil
1004	CH3	CH3	Н	CH3	OCH3	OCH,	Н	C-C3H5	C-C ₃ H ₅	138-140
1005	CH3	CH2	H	CH3	OCH ₃	OCH ₃	Н	C ₂ H ₅	C-C3H3	-
1006	CH3	CH2	Н	CH3	OCH ₃	OCH ₃	н .	CH,	C-C3H5	-
1007	CH3	CH2	Н	CH3	OCH,	OCH,	Н	CH,	C3H4	-
1008	CH3	CH2	Н	CH,	OCH,	OCH,	Н	CH,	C4H	-
1009	CH3	CH ³	Н	CH3	OCH,	OCH,	Н	CH,	C5H11	-
1010	СН	CH2	н	CH,	OCH,	OCH ₃	Н	C ₂ H ₅	C.H.	-
1011	CH,	CH2	Н	CH3	OCH ₃	OCH,	Н	C ₃ H ₇	C₃H,	-
1012	CH ₃	CH2	Н	CH3	OCH,	OCH3	Н	C ₂ H ₅	C₃H₅	oil
1013	CH3	CH2	Н	Cl	OCH,	OCH,	Н	Н	4-CH ₃ O-C ₆ H ₆	-
1014	CH,	CH2	Н	Cl	OCH,	OCH,	Н	c-C ₃ H ₅	c-C,H,	-
1015	CH3	CH2	Н	Cl	och,	OCH,	Н	C ₃ H ₅	c-C ₃ H ₅	-
1016	CH,	CH2	Н	C1	OCH,	OCH3	Н	CH ₃	c-C,H,	-
1017	CH3	CH2	Н	Cl	OCH ₃	OCH,	н	CH,	C ₃ H ₇	-
1018	CH,	CH2	Н	Cl	OCH ₃	OCH,	Н	CH ₃	C ₄ H ₄	-
1019	CH,	CH,	Н	Cl	осн	OCH,	Н	CH ₃	C ₅ H ₂₂	-
1020	CH,	CH2	Н	Cl	och,	OCH,	Н	C ₂ H ₅	C₄H,	-
1021	CH3	CH ₂	Н	Cl	OCH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₂	-
1022	СН	CH ₂	Н	Cl	осн,	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄	-
1023	CH,	CH2	H	Cl	OCF,	Н	Н	н	4-CH ₃ O-C ₆ H ₄	oil
1024	CH,	CH ₂	н	Cl	OCF,	Н	Н	c-C ₃ H ₅	C-C ₃ H ₅	119-120
1025	сн,	CH ₃	Н	Cl	OCF,	Н	Н	C ₂ H ₅	c-C ₃ H ₅	103-104
1026	CH,	CH,	Н	Cl	OCF,	Н	Н	CH,	c-C,H,	-

1045 CH, CH ₂ H CF, Q3 H H C-C ₃ H ₄ C-C ₃ H ₄ 168-1 1046 CH ₃ CH ₂ H C1 Q3 H H C-C ₃ H ₄ C-C ₃ H ₄ 130-1 1047 CH ₃ CH ₂ H CF, SCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ C-C ₃ H ₄ - 1048 CH ₃ CH ₂ H C1 SCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ C-C ₃ H ₄ - 1049 CH ₃ CH ₂ H C1 SCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ C-C ₃ H ₄ - 1050 CH ₃ CH ₂ H C1 COCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ C-C ₃ H ₄ - 1051 CH ₃ CH ₂ H C1 COCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ C-C ₃ H ₄ - 1052 CH ₃ CH ₂ H C1 CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₄ C-C ₃ H ₄ - 1053 CH ₃ CH ₂ H C1 CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₄ 113-1 1054 CH ₃ CH ₂ H CCH CH ₃ H H H H H 4-CH ₃ O-C ₄ H ₄ 113-1 1055 CH ₃ CH ₂ H CCH ₃ CCH ₃ H H C-C ₃ H ₄ C-C ₃	WO 99/	01454								PCT/US98	/13913
1029 CH, CH, CH, H C1 OCF, H H CH, C,H, C,H, - 1030 CH, CH, H C1 OCF, H H C,H, C,H, C,H, - 1031 CH, CH, H C1 OCF, H H C,H, C,H, C,H, - 1032 CH, CH, H C1 OCF, H H C,H, C,H, C,H, - 1032 CH, CH, H C1 OCF, H H C,H, C,H, C,H, - 1033 CH, CH, H C1 SCF, H H C,H, C-C,H, - 1034 CH, CH, H C1 SCF, H H C-C,H, C-C,H, - 1035 CH, CH, H C1 SCF, H H C-C,H, C-C,H, - 1035 CH, CH, H C1 SCF, H H C,H, C-C,H, - 1036 CH, CH, H C1 SCF, H H CH, C,H, C-C,H, - 1037 CH, CH, H C1 SCF, H H CH, C,H, C-C,H, - 1038 CH, CH, H C1 SCF, H H CH, C,H, C-C,H, - 1039 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1040 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1044 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1045 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1046 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1047 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1048 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1049 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1040 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1042 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-1 1045 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-1 1046 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1047 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1048 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1049 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1051 CH, CH, H CF, COCH, H H C-C,H, C-C,H, - 1052 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1053 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1054 CH, CH, H C0H, OCH, H H C-C,H, C-C,H, - 1055 CH, CH, H COH, OCH, H H C-C,H, C-C,H, - 1056 CH, CH, H COH, OCH, H H C-C,H, C-C,H, - 1057 CH, CH, H OCH, OCH, H H C-C,H, C-C,H, - 1058 CH, CH, H OCH, OCH, H H C-H, C,H, C-C,H, - 1059 CH, CH, H OCH, OCH, H H C-H, C,H, C-C,H, - 1060 CH, CH, H OCH, OCH, H H C-H, C,H, C-C,H, - 1061 CH, CH, H OCH, OCH, H H C-H, C,H, C-C,H, - 1062 CH, CH, H OCH, OCH, H H C-H, C,H, C-C,H, - 1063 CH, CH, H OCH, OCH, H H C-C,H, C-C,H, - 1065 CH, CH, H OCH, OCH, H H C-H, C,H, C-C,H, - 1066 CH, CH, H OCH, OCH, H H C-H, C,H, C-C	1027	CH,	CH3	н	Cl	OCF,	н	н	СН,	С,Н,	oil
1030 CH, CH, H C1 OCF, H H C,H, C,H, -1031 CH, CH, H C1 OCF, H H C,H, C,H, C,H, -1032 CH, CH, H C1 OCF, H H C,H, C,H, C,H, -11033 CH, CH, H C1 SCF, H H C,H, C,H, C-C,H, -11034 CH, CH, H C1 SCF, H H C-C,C,H, -11035 CH, CH, H C1 SCF, H H C2-C,H, C-C,H, -1035 CH, CH, H C1 SCF, H H C2-C,H, C-C,H, -11036 CH, CH, H C1 SCF, H H CH, C,H, C-C,H, -11037 CH, CH, H C1 SCF, H H CH, C,H, C-C,H, -11037 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11039 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11039 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11039 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11040 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C-C,H, C-C,H, C-C,H, -11048 CH, CH, H C1 SCF, H H C-C,H, C-C,H, C-C,H, -11048 CH, CH, H C1 SCF, H H C-C,H, C-C,H, C-C,H, -11049 CH, CH, H C1 SCH, H H C-C,H, C-C,H, -11049 CH, CH, H C1 SCH, H H C-C,H, C-C,H, -1051 CH, CH, H C1 SCH, H H C-C,H, C-C,H, -11051 CH, CH, H C1 SCH, H H C-C,H, C-C,H, -11051 CH, CH, H C1 SCH, H H C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H H C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H H C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H H C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H C C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H H C-C,H, C-C,H, -11051 CH, CH, H C1 CH, H H H C-C,H, C-C,H, -11051 CH, CH, H CCH, CCH, H H C1 CH, CH, H H C-C,H, C-C,H, -11051 CH, CH, H CCH, CCH, H H C1 CH, CH, H H CH, C,H, C-C,H, -11051 CH, CH, H CCH, CCH, H H CH, C,H, C-C,H, -11051 CH, CH, H CCH, CCH, H H CH, C,H, C,H,	1028	СН	CH2	н	Cl	ocf,	н	н	CH,	C₄H₅	oil
1031 CH, CH, H C1 OCF, H H C,H, C,H, C,H, -1032 CH, CH, H C1 OCF, H H C,H, C,H, C,H, OC,H, OI1 1033 CH, CH, H C1 SCF, H H C,H, C,H, C,H, C,H, C,H, C,H, C,	1029	сӊ	CH2	н	cl	OCF,	н	н	сн₃	C,H,	٠_
1032 CH, CH, H C1 OCF, H H C4, C,H, C,H, C1,H, C1 1033 CH, CH, H C1 SCF, H H H C-C,H, C-C,H, - 1034 CH, CH, H C1 SCF, H H C-C,H, C-C,H, - 1035 CH, CH, H C1 SCF, H H C2,H, C-C,H, C-C,H, - 1036 CH, CH, H C1 SCF, H H C3, C-C,H, C-C,H, - 1037 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1038 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1039 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1039 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1040 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1044 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1045 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1046 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1047 CH, CH, H C1 SCF, H H C-C,H, C,H, - 1048 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-1 1046 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-1 1047 CH, CH, H C1 SCF, H H C-C,H, C-C,H, - 1048 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1049 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C1 SCH, H H C-C,H, C-C,H, - 1051 CH, CH, H C1 COCH, H H C-C,H, C-C,H, - 1052 CH, CH, H C1 COCH, H H C-C,H, C-C,H, - 1053 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1057 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1058 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1059 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1059 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1051 CH, CH, H CCH, CH, H H CH, C,H, - 1052 CH, CH, H CCH, CH, H H CH, C,H, - 1053 CH, CH, H CCH, CH, H H CH, C,H, - 1054 CH, CH, H CCH, CH, H H CH, C,H, - 1055 CH, CH, H CCH, CH, H H CH, C,H, - 1056 CH, CH, H CCH, CH, H H CH, C,H, - 1057 CH, CH, H CCH, CH, H H CH, C,H, - 1058 CH, CH, H CCH, CH, H H CH, C,H, - 1059 CH, CH, H CCH, CH, H H CH, C,H, - 1050 CH, CH, H CCH, CH, H H CH, C,H, - 1051 CH, CH, H CCH, CH, H H CH, C,H, - 1052 CH, CH, H CCH, CH, H H CH, C,H, - 1053 CH, CH, H CCH, CH, H H CH, C,H, - 1064 CH, CH, H CCH, CCH, H H CH, C,H, - 1065 CH, CH, H CCH, CCH, H H CH, C,H, - 1066 CH, CH, H CCH, CCH, H H CH, C,H, - 1067	1030	сӊ	CH	н	cl	OCF,	Н	Н	C ₂ H ₅	C.H,	-
1033 CH, CH, CH, H C1 SCF, H H H C-C,H, C-C,H, -1034 CH, CH, H C1 SCF, H H C-C,H, C-C,H, C-C,H, -1035 CH, CH, H C1 SCF, H H CH, C-C,H, C-C,H, -11036 CH, CH, H C1 SCF, H H CH, CH, C-C,H, -11037 CH, CH, H C1 SCF, H H CH, CH, C,H, -11038 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11039 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11039 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11040 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11042 CH, CH, H C1 SCF, H H C,H, C,H, C-C,H, -11044 CH, CH, H C1 SCF, H H C,H, C,H, C-C,H, 105-1 1045 CH, CH, H C1 SCF, H H C,H, C,H, C-C,H, 105-1 1046 CH, CH, H C1 SCH, H H C C,C,H, C-C,H, 105-1 1046 CH, CH, H C1 SCH, H H C C,C,H, C-C,H, 105-1 1047 CH, CH, H CF, SCH, H H C-C,H, C-C,H, C-C,H, C-C,H, C-11049 CH, CH, H CF, SCH, H H C-C,H, C-C,H, C-C,H, C-C,H, C-1500 CH, CH, H CF, COCH, H H C-C,H, C-C,H	1031	CH,	CH2	н	cl	OCF,	Н	н	C3H,	С,Н,	. -
1034 CH, CH, CH, H C1 SCF, H H C-C,H, C-C,H, -1035 CH, CH, H C1 SCF, H H CH, CH, C-C,H, -11036 CH, CH, H C1 SCF, H H CH, C-C,H, -11037 CH, CH, H C1 SCF, H H CH, CH, C-C,H, -11038 CH, CH, H C1 SCF, H H CH, CH, C,H, -11039 CH, CH, H C1 SCF, H H CH, CH, C,H, -11039 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11040 CH, CH, H C1 SCF, H H CH, C,H, C,H, -11041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, -11044 CH, CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-11045 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-11045 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-11045 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-11045 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-11045 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-11047 CH, CH, H C1 SCH, H H C-C,H, C-C,H, C-C,H, 105-11047 CH, CH, H C1 SCH, H H C-C,H, C-C,H, C-C,H, 105-11049 CH, CH, H C1 SCH, H H C-C,H, C-	1032	CH,	CH ₂	н	Cl	OCF,	Н	н	C ₂ H ₅	C ₂ H ₅	oil
1035 CH, CH, H Cl SCF, H H C, C,H, C-C,H, - 1036 CH, CH, H Cl SCF, H H CH, CH, C-C,H, - 1037 CH, CH, H Cl SCF, H H CH, CH, C,H, - 1038 CH, CH, H Cl SCF, H H CH, CH, C,H, - 1039 CH, CH, H Cl SCF, H H CH, C,H, C,H, - 1040 CH, CH, H Cl SCF, H H CH, C,H, C,H, - 1041 CH, CH, H Cl SCF, H H C,H, C,H, C,H, - 1042 CH, CH, H Cl SCF, H H C,H, C,H, C,H, - 1044 CH, CH, H Cl SCF, H H C,H, C,H, C-C,H, 105-1 1045 CH, CH, H Cl SCF, H H C,H, C,H, C-C,H, 105-1 1046 CH, CH, H Cl SCF, H H C-C,H, C-C,H, 105-1 1047 CH, CH, H Cl SCF, H H C-C,H, C-C,H, 105-1 1048 CH, CH, H Cl SCF, H H C-C,H, C-C,H, 105-1 1049 CH, CH, H Cl SCF, H H C-C,H, C-C,H, 105-1 1049 CH, CH, H Cl SCF, H H C-C,H, C-C,H, 105-1 1049 CH, CH, H Cl SCH, H H C-C,H, C	1033	СН	CH2	н	Cl	SCF,	н	H.	н	4-CH3O-C4H4	-
1036 CH, CH, H C1 SCF, H H CH, C-C,H, - 1037 CH, CH, H C1 SCF, H H CH, CH, C,H, - 1038 CH, CH, H C1 SCF, H H CH, CH, C,H, - 1039 CH, CH, H C1 SCF, H H CH, CH, C,H, - 1040 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1044 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1045 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1046 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1047 CH, CH, H C1 SCF, H H C-C,H, C-C,H, 105-1 1048 CH, CH, H C1 CF, C3 H H C-C,H, C-C,H, 105-1 1047 CH, CH, H C1 C3 H H C-C,H, C-C,H, C-C,H, 101-1 1047 CH, CH, H CF, SCH, H H C-C,H, C-C,H, C-C,H, - 1048 CH, CH, H CF, SCH, H H C-C,H, C-C,H, - 1050 CH, CH, H CF, CCH, H C-C,H, C-C,H, - 1051 CH, CH, H CF, CCH, H H C-C,H, C-C,H, - 1052 CH, CH, H C1 CCH, H H C-C,H, C-C,H, - 1053 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1053 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1057 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1058 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1059 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1050 CH, CH, H C0H, CCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C0H, CCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C0H, CCH, H H CH, C-C,H, - 1050 CH, CH, H C0H, CCH, H H CH, C-C,H, - 1050 CH, CH, H C0H, CCH, H H CH, C-C,H, - 1050 CH, CH, H C0H, CCH, H H CH, C-H, C-C,H, - 1050 CH, CH, H C0H, CCH, H H CH, C-H, C-C,H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1050 CH, CH, H C0H, CCH, H H CH, CH, C-H, - 1060 CH, CH, H C0H, CCH, H H CH, CH, C-C,H, - 1060 CH, CH, H C0H, CCH, H H CH, CH, C-C,H, - 1060 CH, CH, H C0H, CCH, H H C-H, C-C,H, - 1060 CH, CH, H C0H, CCH, H H C-H, C-C,H, - 1060 CH, CH, H C0H, CCH, H H C-H, C-C,H, - 1061 CH, CH, H C0H, CH,	1034	СН,	CH2	Н	Cl	SCF,	Н	Н	C-C3H4	C−C₃H₅	-
1037 CH, CH, H C1 SCF, H H CH, CH, C,H, - 1038 CH, CH, H C1 SCF, H H CH, CH, C,H, - 1039 CH, CH, H C1 SCF, H H CH, CH, C,H, - 1040 CH, CH, H C1 SCF, H H CJ,H, C,H, - 1041 CH, CH, H C1 SCF, H H CJ,H, C,H, - 1042 CH, CH, H C1 SCF, H H CJ,H, C,H, - 1044 CH, CH, H C1 SCF, H H CJ,H, C,H, - 1045 CH, CH, H C1 SCF, H H CJ,H, C,H, - 1046 CH, CH, H C1 SCF, H H CJ,H, C,H, - 1046 CH, CH, H CT, Q3 H H C-C,H, C-C,H, 105-1 1047 CH, CH, H CT, SCH, H H C-C,H, C-C,H, - 1048 CH, CH, H CT, SCH, H H C-C,H, C-C,H, - 1049 CH, CH, H CT, SCH, H H C-C,H, C-C,H, - 1050 CH, CH, H CT, CCH, H H C-C,H, C-C,H, - 1051 CH, CH, H CT, CHH, H H C-C,H, C-C,H, - 1052 CH, CH, H CT, CHH, H H C-C,H, C-C,H, - 1053 CH, CH, H CT, CH, H H C-C,H, C-C,H, - 1053 CH, CH, H CH, H CT, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, H CT, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, H CT, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, H CT, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, H CH, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, H CH, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CH, CH, H H CH, C-C,H, - 1056 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1057 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1056 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1057 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1056 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1057 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1056 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1057 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1056 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1057 CH, CH, H CCH, CCH, H H CH, CH, C-H, - 1060 CH, CH, H CCH, CCH, H H CH, CH, C-H, - 1060 CH, CH, H CCH, CCH, H H CH, CH, C-H, - 1060 CH, CH, H CCH, CCH, H H CH, CH, C-H, - 1060 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CH, CH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CCH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CCH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CCH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CCH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CCH, C-C,H, - 1060 CH, CH, H CCH, CH,	1035	СН	CH,	н	Cl	SCF,	Н	н	C ₂ H ₅	c-C3H3	-
1038	1036	CH3	CH2	Н	cı	SCF,	Н	Н	CH,	c-C ₃ H ₅	-
1039 CH, CH, H C1 SCF, H H CH, C,H, C,H, - 1040 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1041 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1042 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1044 CH, CH, H C1 SCF, H H C,H, C,H, C,H, - 1044 CH, CH, H C1 CF, H H H C,H, C,H, C,H, - 1045 CH, CH, H CF, Q3 H H C-C,H, C-C,H, 105-1 1045 CH, CH, H CF, SCH, H H C-C,H, C-C,H, 130-1 1047 CH, CH, H CF, SCH, H H C-C,H, C-C,H, 130-1 1048 CH, CH, H CF, SCH, H H C-C,H, C-C,H, - 1049 CH, CH, H CF, COCH, H H C-C,H, C-C,H, - 1050 CH, CH, H CF, COCH, H H C-C,H, C-C,H, - 1051 CH, CH, H CF, CHCH, H H C-C,H, C-C,H, - 1052 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1053 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CHC, H H C-C,H, C-C,H, - 1056 CH, CH, H CCH, CH, H H C-C,H, C-C,H, - 1057 CH, CH, H CCH, CH, H H C-C,H, C-C,H, - 1058 CH, CH, H CCH, CH, H H C-C,H, C-C,H, - 1059 CH, CH, H CCH, CH, H H C-C,H, C-C,H, - 1059 CH, CH, H CCH, CH, H H C-C,H, C-C,H, - 1059 CH, CH, H CCH, CH, H H CH, C,H, C-C,H, - 1050 CH, CH, H CCH, CH, H CH, CH, C-C,H, - 1051 CH, CH, H CCH, CH, H CCH, CH, H C-H, C,H, - 1052 CH, CH, H CCH, CH, H CCH, CH, H C-H, C,H, - 1053 CH, CH, H CCH, CCH, H CCH, CH, H C-H, C,H, - 1056 CH, CH, H CCH, CCH, H CCH, CH, H CH, C,H, - 1057 CH, CH, H CCH, CCH, H CCH, CH, H CH, C,H, - 1060 CH, CH, H CCH, CCH, H CCH, CH, H CCH, C,H, - 1061 CH, CH, H CCH, CCH, H CCH, CCH, H C-C,H, C,H,	1037	СН,	CH2	Н	Cl	SCF ₃	н	н	CH ₃	C3H2	-
1040 CH ₃ CH ₃ H C1 SCF ₃ H H C ₂ H ₃ C ₃ H ₄ - 1041 CH ₃ CH ₂ H C1 SCF ₃ H H C ₃ H ₄ C ₃ H ₄ - 1042 CH ₃ CH ₂ H C1 SCF ₃ H H C ₄ H ₄ C ₃ H ₄ - 1042 CH ₅ CH ₂ H C1 SCF ₅ H H C ₄ H ₄ C ₅ H ₄ C ₅ H ₄ - 1044 CH ₅ CH ₂ H C1 CF ₅ H H H H 4-CH ₅ O-C ₆ H ₄ 105-1 1045 CH ₅ CH ₅ H CF ₅ Q3 H H C-C ₅ H ₆ C-C ₅ H ₆ 168-1 1046 CH ₅ CH ₂ H C1 Q3 H C-C ₅ H ₄ C-C ₅ H ₆ 130-1 1047 CH ₅ CH ₅ H CF ₅ SCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ C-C ₅ H ₆ - 1048 CH ₅ CH ₅ H CF ₅ SCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1049 CH ₅ CH ₅ H CF ₅ COCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1050 CH ₅ CH ₅ H CF ₅ COCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1051 CH ₅ CH ₅ H CF ₅ CHCH ₆ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1052 CH ₅ CH ₅ H C1 CHCH ₆ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1053 CH ₅ CH ₅ H C1 CHCH ₆ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1053 CH ₅ CH ₆ H C1 CH ₅ H H H C-C ₅ H ₆ C-C ₅ H ₆ - 1055 CH ₆ CH ₇ H CC1 CHCH ₇ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1055 CH ₆ CH ₇ H CC1 CHCH ₇ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1055 CH ₇ CH ₇ H CC1 CHCH ₇ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1055 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1056 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1057 CH ₈ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C-C ₇ H ₈ - 1059 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C-C ₇ H ₈ - 1059 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C-C ₇ H ₈ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1050 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CH ₇ C ₇ H ₇ C ₇ H ₇ - 1061 CH ₇ CH ₇ H CCH ₇ CCH CCH ₇	1038	CH,	CH ₂	Н	Cl	SCF ₃	н	н	CH ₃	C ₄ H ₉	-
1041 CH ₃ CH ₂ H Cl SCF ₃ H H C ₂ H ₃ C ₃ H ₄ - 1042 CH ₃ CH ₂ H Cl SCF ₃ H H C ₄ C ₄ H ₄ C ₃ H ₄ - 1044 CH ₅ CH ₂ H Cl CF ₃ H H C C ₄ H ₄ C ₅ H ₄ C ₆ C ₄ H ₄ 105-1 1045 CH ₅ CH ₂ H Cl CF ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ 168-1 1046 CH ₅ CH ₂ H Cl Q3 H H C-2C ₅ H ₆ C-2C ₅ H ₆ 130-1 1047 CH ₅ CH ₂ H Cl SCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1048 CH ₅ CH ₂ H Cl SCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1049 CH ₅ CH ₅ H Cl SCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1050 CH ₅ CH ₅ H Cl CCCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1051 CH ₅ CH ₅ H Cl CCCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1052 CH ₅ CH ₅ H Cl CHCH ₆ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1053 CH ₅ CH ₅ H Cl CHCH ₆ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1055 CH ₅ CH ₆ H Cl CH ₅ H H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1055 CH ₆ CH ₇ H CCH ₅ CCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1055 CH ₆ CH ₇ H CCH ₅ CCH ₅ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1056 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H C-2C ₅ H ₆ C-2C ₅ H ₆ - 1057 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H C-2C ₅ H ₆ C-2C ₅ H	1039	CH,	CH2	Н	cl	SCF,	н	Н	СН	C5H21	-
1042 CH ₃ CH ₃ H C1 SCF ₃ H H C ₃ H ₅ C ₂ H ₅ - 1044 CH ₃ CH ₄ H C1 CF ₅ H H H C ₄ H ₅ C ₅ H ₆ 105-1 1045 CH ₅ CH ₅ H CF ₅ Q3 H H C-C ₅ H ₆ C-C ₅ H ₆ 168-1 1046 CH ₅ CH ₅ H C1 Q3 H H C-C ₅ H ₆ C-C ₅ H ₆ 130-1 1047 CH ₅ CH ₅ H CF ₅ SCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ C-C ₅ H ₆ - 1048 CH ₅ CH ₅ H C1 SCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1049 CH ₅ CH ₅ H CF ₅ COCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1050 CH ₅ CH ₅ H C1 COCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1051 CH ₅ CH ₅ H C1 COCH ₆ H H C-C ₅ H ₆ C-C ₅ H ₆ - 1052 CH ₅ CH ₅ H C1 CHCH ₅ H H C-C ₅ H ₆ C-C ₅ H ₆ C-C ₅ H ₆ - 1053 CH ₅ CH ₅ H C1 CHCH ₆ H H C-C ₅ H ₆ C-C ₅ H ₆ C-C ₅ H ₆ - 1055 CH ₅ CH ₅ H CCH ₅ DCH ₅ H H H C-C ₅ H ₆ C-C ₅	1040	СН₃	CH2	н	cl	SCF ₃	н	н	C ₂ H ₅	C ₄ H ₉	-
1044 CH, CH, H C1 CF, H H C + H 4-CH,O-C,H, 105-1 1045 CH, CH, H CF, Q3 H H C-C,H, C-C,H, 168-1 1046 CH, CH, H C1 Q3 H H C-C,H, C-C,H, 130-1 1047 CH, CH, H CF, SCH, H H C-C,H, C-C,H, 130-1 1048 CH, CH, H C1 SCH, H H C-C,H, C-C,H, C-C,H, - 1049 CH, CH, H CF, CCCH, H H C-C,H, C-C,H, - 1050 CH, CH, H C1 CCCH, H H C-C,H, C-C,H, - 1051 CH, CH, H C1 CCCH, H H C-C,H, C-C,H, - 1052 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1053 CH, CH, H C1 CHCH, H H C-C,H, C-C,H, - 1055 CH, CH, H C1 CH, H H C C-C,H, C-C,H, - 1055 CH, CH, H C1 CH, H H C-C,H, C-C,H, - 1055 CH, CH, H CCH, CCH, H H C-C,H, C-C,H, - 1055 CH, CH, H CCH, CCH, H H C-C,H, C-C,H, - 1056 CH, CH, H CCH, CCH, H H C-C,H, C-C,H, - 1057 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1059 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1059 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1059 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1061 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1062 CH, CH, H CCH, CCH, H CCH, CCH, H C-C,H, - 1063 CH, CH, H CCH, CCH, H H C-C,H, C-C,H, - 1064 CH, CH, H CCH, CCH, H H C-C,H, C-C,H, - 1065 CH, CH, H CCH, CCH, H H C-C,H, C-C,H, - 1066 CH, CH, H CCH, CCH, H H C	1041	CH,	CH2	н	Cl	SCF,	н	н	C,H,	C3H4	<u>.</u> –
1045 CH, CH, CH, H CF, Q3 H H C-C,H, C-C,H, 168-1 1046 CH, CH, H Cl Q3 H H C-C,H, C-C,H, 130-1 1047 CH, CH, H CF, SCH, H H C-C,H, C-C,H, C-C,H, 130-1 1047 CH, CH, H CF, SCH, H H C-C,H, C-C,H, C-C,H, - 1048 CH, CH, H Cl SCH, H H C-C,H, C-C,H, - 1049 CH, CH, H CF, COCH, H H C-C,H, C-C,H, - 1050 CH, CH, H CF, COCH, H H C-C,H, C-C,H, - 1051 CH, CH, H CF, CHCH, H H C-C,H, C-C,H, - 1052 CH, CH, H Cl CHCH, H H C-C,H, C-C,H, - 1053 CH, CH, H Cl CHCH, H H C-C,H, C-C,H, - 1053 CH, CH, H Cl CH, H H H C-C,H, C-C,H, 1313-1 1054 CH, CH, H CH, H H H C-C,H, C-C,H, 1313-1 1055 CH, CH, H CH, H H H C-C,H, C-C,H, 128-1 1056 CH, CH, H CH, H H C-C,H, C-C,H, - 1057 CH, CH, H CH, CH, H H CH, C-C,H, - 1058 CH, CH, H CH, CH, H H CH, C-C,H, - 1059 CH, CH, H CH, CH, H H CH, C-C,H, - 1059 CH, CH, H CCH, CCH, H H CH, C-C,H, - 1060 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1061 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1062 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1063 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1064 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1065 CH, CH, H CCH, CCH, H H C-C,H, C-H, - 1066 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1066 CH, CH, H CCH, CCH, H H CH, C-H, C-H, - 1066 CH, CH, H CCH, CCH, H H C-H, C-H, C-H,	1042	CH,	CH2	н	Cl	SCF,	Н	н	C ₂ H ₅	C₂H₅	-
1046 CH ₃ CH ₂ H Cl Q3 H H C-C ₃ H ₄ C-C ₃ H ₄ 130-1 1047 CH ₃ CH ₂ H CF ₅ SCH ₅ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1048 CH ₃ CH ₂ H Cl SCH ₅ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1049 CH ₅ CH ₂ H CF ₅ COCH ₅ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1050 CH ₅ CH ₆ H Cl COCH ₅ H H C-C ₃ H ₄ C-C ₃ H ₅ - 1051 CH ₅ CH ₆ H Cl COCH ₅ H H C-C ₃ H ₄ C-C ₃ H ₅ - 1052 CH ₅ CH ₂ H Cl CHCH ₂ H H C-C ₃ H ₄ C-C ₄ H ₆ - 1053 CH ₅ CH ₂ H Cl CHCH ₂ H H C-C ₅ H ₄ C-C ₅ H ₄ - 1053 CH ₅ CH ₂ H Cl CHCH ₂ H H H A-C+C ₅ O-C ₆ H ₄ 113-1 1054 CH ₅ CH ₂ H CCH ₅ OCH ₅ H H H H A-C+CH ₅ O-C ₆ H ₄ - 1055 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C-C ₅ H ₅ C-C ₅ H ₆ C-C ₅ H ₆ - 1056 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C-C ₅ H ₅ C-C ₅ H ₆ - 1057 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H CH ₅ C-C ₅ H ₆ - 1058 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H CH ₅ C-C ₅ H ₆ - 1059 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₆ - 1060 CH ₅ CH ₅ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₆ - 1061 CH ₅ CH ₅ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₆ - 1062 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₆ - 1063 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₆ - 1064 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1065 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1067 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1068 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1069 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1060 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1061 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ - 1062 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ C ₅ H ₆ - 1065 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ C ₅ H ₆ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ C ₅ H ₆ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ C ₅ H ₆ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ C ₅ H ₆ C ₅ H ₆ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₅ H ₆ CH	1044	СН,	CH ₂	н	Cl	CF3	Н	н	Н	4-CH,0-C,H,	105-107
1047 CH ₃ CH ₂ H CF ₃ SCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1048 CH ₄ CH ₂ H C1 SCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1049 CH ₃ CH ₂ H CF ₃ COCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1050 CH ₃ CH ₂ H C1 COCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1051 CH ₄ CH ₂ H CF ₃ CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1052 CH ₃ CH ₂ H C1 CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1053 CH ₃ CH ₂ H C1 CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1053 CH ₃ CH ₂ H C1 CH ₄ H H H C-C ₃ H ₄ C-C ₄ H ₄ 113-1 1054 CH ₃ CH ₂ H CCH ₃ OCH ₃ H H H H C-C ₄ H ₄ C-C ₃ H ₄ - 1055 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H H C-C ₄ H ₄ C-C ₃ H ₄ - 1056 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₄ H ₄ C-C ₃ H ₄ C-C ₄ H ₄ - 1057 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₄ H ₄ C-C ₃ H ₄ C-C ₄ H ₄ - 1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₄ H ₄ - 1059 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C-C ₄ H ₄ - 1060 CH ₄ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ - 1061 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₄ C ₄ H ₅ C ₄ H ₅ - 1063 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1064 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1065 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1067 CH ₅ CH ₅ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1068 CH ₅ CH ₅ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1068 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1069 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1066 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1067 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₅ C ₄ H ₅ - 1068 CH ₅ CH ₆ H OCH ₅ CCH ₅ H H C ₄ H C ₄ C ₄ H ₅ C ₄ H ₅ - 1069 CH ₅ CH ₆ H OCH ₅ CCH ₅ H H C ₄ H C ₄ C ₄ H ₅ C	1045	сн,	CH2	н	CF,	Q3	н	Н	C-C3H5	C-C ₃ H ₅	168-169
1048 CH ₃ CH ₂ H Cl SCH ₃ H H C-C ₃ H ₄ C-C ₅ H ₄ - 1049 CH ₄ CH ₂ H CF ₅ COCH ₃ H H C-C ₃ H ₄ C-C ₅ H ₄ - 1050 CH ₅ CH ₂ H Cl COCH ₅ H H C-C ₃ H ₄ C-C ₅ H ₄ - 1051 CH ₅ CH ₂ H Cl COCH ₅ H H C-C ₃ H ₄ C-C ₅ H ₄ - 1052 CH ₅ CH ₂ H Cl CHCH ₂ H H C-C ₃ H ₄ C-C ₅ H ₄ - 1053 CH ₅ CH ₂ H Cl CHCH ₂ H H C-C ₃ H ₄ C-C ₅ H ₄ - 1053 CH ₅ CH ₂ H Cl CH ₅ H H H C-C ₅ H ₄ C-C ₅ H ₄ - 1054 CH ₅ CH ₂ H CCH ₅ OCH ₅ H H H C-C ₅ H ₄ C-C ₅ H ₄ - 1055 CH ₅ CH ₂ H CCH ₅ OCH ₅ H H C-C ₅ H ₅ C-C ₅ H ₄ 128-1 1056 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H C-C ₅ H ₅ C-C ₅ H ₅ - 1057 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H CH ₅ C-C ₅ H ₅ - 1058 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H CH ₅ C-C ₅ H ₅ - 1059 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H CH ₅ C ₅ H ₇ - 1059 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H CH ₅ C ₅ H ₇ - 1060 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H CH ₅ C ₅ H ₇ - 1061 CH ₅ CH ₆ H CCH ₅ OCH ₅ H H CH ₅ C ₅ H ₇ - 1062 CH ₇ CH ₇ H CCH ₅ OCH ₅ H H CH ₇ C ₇ H ₇ - 1063 CH ₇ CH ₇ H CCH ₅ OCH ₅ H H C ₇ C ₇ H ₇ C ₇ H ₇ - 1064 CH ₇ CH ₇ H CCH ₅ CCH ₅ H H CCH ₅ C ₇ H ₇ C ₇ H ₇ - 1065 CH ₇ CH ₇ H CCH ₅ CCH ₅ H H CC ₇ H ₇ C ₇ H ₇ - 1066 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CCH ₇ C ₇ H ₇ C ₇ H ₇ - 1067 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CCH ₇ C ₇ H ₇ C ₇ H ₇ - 1068 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CCH ₇ C ₇ H ₇ C ₇ H ₇ - 1069 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CCH ₇ C ₇ H ₇ C ₇ H ₇ - 1069 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CCH ₇ CC ₇ H ₈ C ₇ H ₈ - 1060 CH ₇ CH ₇ H CCH ₇ CCH ₇ H H CCH ₇ CC ₇ H ₈ C-C ₇ H ₈ C-C ₇ H ₈ C-C ₇ H ₈ C-C ₇ H ₈ CCH ₇ H CCH ₇ CCH ₇ H H CCH ₇ CCH ₇ H H CCH ₇ CC ₇ H ₈ C-C ₇ H ₈ C-C ₇ H ₈ C-C ₇ H ₈ C-C ₇ H ₈ CCH ₇ H CCH ₇ CCH ₇	1046	CH3	CH ₂	н	Cl	Q3	Н	H .	C-C3H5	C-C,H,	130-132
1049 CH, CH, CH, H CF, COCH, H H C-C,H, C-C,	1047	CH3	CH2	н	CF3	SCH	н	Н	C-C3H5	C-C ₃ H ₅	-
1050 CH, CH, H C1 COCH, H H C-C ₂ H, C-C ₃ H, C-C ₃ H, - 1051 CH, CH, H CF, CHCH, H H C-C ₃ H, C-C ₃ H, - 1052 CH, CH, H C1 CHCH, H H C-C ₃ H, C-C ₃ H, - 1053 CH, CH, H C1 CHCH, H H H 4-CH ₃ O-C ₄ H, 113-1 1054 CH, CH, H OCH, OCH, H H H C-C ₃ H, C-C ₃ H, - 1055 CH, CH, H OCH, OCH, H H C-C ₃ H, C-C ₃ H, 128-1 1056 CH, CH, H OCH, OCH, H H C-C ₃ H, C-C ₃ H, - 1057 CH, CH, H OCH, OCH, H H CH, C-C ₃ H, - 1058 CH, CH, H OCH, OCH, H H CH, C-C ₃ H, - 1059 CH, CH, H OCH, OCH, H H CH, C-C ₃ H, - 1059 CH, CH, H OCH, OCH, H H CH, C ₄ H, - 1060 CH, CH, H OCH, OCH, H H CH, C ₄ H, - 1061 CH, CH, H OCH, OCH, H H CH, C ₄ H, - 1062 CH, CH, H OCH, OCH, H H CH, C ₄ H, - 1063 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1064 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1065 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1064 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1065 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1066 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1067 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1068 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1069 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1060 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1061 CH, CH, H OCH, OCH, H H C ₄ H, C ₄ H, - 1065 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C ₄ H, - 1065 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C-C ₄ H, - 1065 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C-C ₄ H, - 1065 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C-C ₄ H, - 1065 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C-C ₄ H, - 1065 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C-C ₄ H, C-C ₄ H, - 1066 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C-C ₄ H, C-C ₄ H, - 1067 CH, CH ₄ H OCH, CF, H H C-C ₄ H, C	1048	CH,	CH2	Н	Cl	SCH,	н	н	C-C3H3	C-C ₃ H ₅	-
1051 CH ₃ CH ₂ H CF ₃ CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₅ - 1052 CH ₃ CH ₂ H C1 CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₅ - 1053 CH ₃ CH ₂ H C1 CH ₃ H H H H 4-CH ₃ O-C ₆ H ₄ 113-1 1054 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H H H 4-CH ₃ O-C ₆ H ₄ - 1055 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₃ H ₅ C-C ₃ H ₅ 128-1 1056 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₅ C-C ₃ H ₅ - 1057 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₄ C-C ₃ H ₅ - 1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₅ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₇ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ - 1060 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₆ - 1061 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₄ C ₄ H ₆ C ₄ H ₆ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₄ H C ₄ H ₅ C ₄ H ₆ - 1063 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1064 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1064 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1065 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1065 CH ₅ CH ₆ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1065 CH ₅ CH ₆ H OCH ₅ CF ₅ H H C-C ₄ H ₆ C-C ₅ H ₆ C-C ₅ H ₆ -	1049	СН	CH ₂	н	CF,	COCH	н	н	c-C ₃ H ₃	c-C ₃ H ₅	-
1052 CH ₃ CH ₂ H Cl CHCH ₂ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1053 CH ₃ CH ₂ H Cl CH ₃ H H H H 4-CH ₃ O-C ₄ H ₄ 113-1 1054 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H H H 4-CH ₃ O-C ₄ H ₄ - 1055 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ - 1056 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₃ C-C ₃ H ₄ 128-1 1056 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1057 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₇ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₉ - 1060 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₉ - 1061 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₉ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₄ H ₉ - 1063 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₄ H ₉ - 1064 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₃ H ₇ - 1065 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₅ C ₃ H ₅ - 1064 CH ₃ CH ₂ H OCH ₃ CF ₃ H H H C ₄ C ₅ C ₅ H ₈ C ₂ C ₅ H ₈ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H H C ₄ C ₅ C ₅ H ₈ C ₅ C ₅ H ₈ 158-1	1050	сн,	CH2	н	Cl	COCH	Н	н .	c-C ₃ H ₃	c-C ₃ H ₅	-
1053 CH ₃ CH ₂ H Cl CH ₃ H H H H H 4-CH ₃ O-C ₆ H ₄ 113-1 1054 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H H H H 4-CH ₃ O-C ₆ H ₄ - 1055 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₃ H ₃ C-C ₃ H ₃ 128-1 1056 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₃ C-C ₃ H ₃ - 1057 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₄ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₃ - 1060 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C ₅ H ₁₁ - 1061 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₄ C ₄ H ₅ C ₆ H ₄ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₄ H C ₃ H, C ₄ H ₄ - 1063 CH ₄ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H, C ₄ H ₄ - 1064 CH ₅ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H, C ₄ H ₄ - 1065 CH ₃ CH ₄ H OCH ₃ CF ₃ H H C-C ₄ H ₅ C ₆ H ₄ - 1065 CH ₃ CH ₄ H OCH ₃ CF ₃ H H C-C ₄ H ₅ C-C ₅ H ₅ 158-1	1051	CH,	CH2	н	CF,	CHCH ₂	Н	н	c-C ₃ H ₅	c-C,H,	-
1054 CH, CH ₂ H OCH ₃ OCH ₃ H H H C-C ₃ H ₄ C-C ₃ H ₄ - 1055 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ 128-1 1056 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₅ C-C ₃ H ₅ - 1057 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ CH ₃ C ₃ H ₇ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ C ₄ H ₅ - 1060 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ C ₄ H ₅ - 1061 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ C ₄ H ₅ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H ₅ C ₄ H ₅ C ₄ H ₅ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₃ H ₇ C ₃ H ₇ - 1063 CH ₅ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₃ H ₇ C ₃ H ₇ - 1064 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₃ H ₇ C ₃ H ₇ - 1065 CH ₇ CH ₂ H OCH ₃ CF ₃ H H C ₄ H C ₄ H ₅ C ₅ H ₆ - 1065 CH ₇ CH ₂ H OCH ₃ CF ₃ H H C ₄ CC ₃ H ₆ C-C ₅ H ₆ 158-1	1052	CH3	CH2	н	Cl	CHCH ₂	H	Н	C-C3H3	C-C3H5	-
1055 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ 128-1 1056 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₂ H ₄ C-C ₃ H ₄ - 1057 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1058 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₄ - 1059 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₆ - 1060 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₄ C ₅ H ₁₁ - 1061 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1062 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₄ H ₆ C ₄ H ₆ - 1063 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₄ H C ₅ H ₇ C ₅ H ₇ - 1064 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₅ H C ₅ H ₆ C ₅ H ₆ - 1065 CH ₅ CH ₆ H OCH ₅ CF ₅ H H C ₅ C ₅ H ₆ C-C ₅ H ₆ - 1065 CH ₅ CH ₇ H OCH ₅ CF ₅ H H C ₅ C ₅ H ₆ C-C ₅ H ₆ 158-1	1053	CH,	CH3	н	Cl	СН	Н	н	н	4-CH ₃ O-C ₆ H ₄	113-115
1056 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₂ H ₄ C-C ₃ H ₅ - 1057 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₄ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ - 1060 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₄ C ₅ H ₁₁ - 1061 CH ₅ CH ₇ H OCH ₅ OCH ₅ H H C ₂ H ₅ C ₄ H ₅ - 1062 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₄ C ₄ H ₅ - 1063 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₄ C ₅ H ₄ - 1064 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₄ H C ₅ H ₅ C ₅ H ₅ - 1065 CH ₅ CH ₂ H OCH ₃ CF ₃ H H C ₄ C-C ₅ H ₄ C-C ₅ H ₄ - 1065 CH ₅ CH ₂ H OCH ₅ CF ₅ H H CC-C ₅ H ₅ C-C ₅ H ₄ 158-1	1054	CH,	CH ₂	Н	OCH3	OCH,	H	н	н	4-CH ₃ O-C ₆ H ₄	-
1057 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H CH ₃ C-C ₃ H ₄ - 1058 CH ₅ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₄ - 1059 CH ₅ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₅ - 1060 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₁₁ - 1061 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₂ H ₄ C ₄ H ₅ - 1062 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₃ H ₄ C ₄ H ₅ - 1063 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₂ H ₅ C ₃ H ₇ - 1064 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₂ H ₅ C ₂ H ₅ - 1065 CH ₅ CH ₂ H OCH ₅ CF ₅ H H H C-C ₂ H ₅ C-C ₅ H ₆ - 1065 CH ₅ CH ₂ H OCH ₅ CF ₅ H H C-C ₂ H ₅ C-C ₅ H ₆ 158-1	1055	СН	CH2	Н	OCH,	OCH,	н	Н	c-C ₃ H ₅	c-C ₃ H ₃	128-130
1058 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₃ H ₇ - 1059 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₄ H ₉ - 1060 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₅ H ₁₃ - 1061 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₂ H ₃ C ₄ H ₃ - 1062 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₃ H ₇ C ₃ H ₇ - 1063 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₃ C ₃ H ₇ - 1064 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C ₂ H ₃ C ₂ H ₄ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C ₂ C ₃ H ₄ C ₂ C ₄ H ₄ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C ₂ C ₃ H ₄ C ₂ C ₄ H ₄ -	1056	CH3	CH2	Н	OCH,	OCH,	Н	н	C2H3	C-C3H3	-
1059 CH ₃ CH ₄ H OCH ₅ OCH ₅ H H CH ₅ C ₄ H ₆ - 1060 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H CH ₅ C ₅ H ₁₁ - 1061 CH ₅ CH ₄ H OCH ₅ OCH ₅ H H C ₂ H ₅ C ₄ H ₆ - 1062 CH ₅ CH ₂ H OCH ₅ OCH ₅ H H C ₃ H ₇ C ₃ H ₇ - 1063 CH ₇ CH ₂ H OCH ₅ OCH ₅ H H C ₂ H ₆ C ₂ H ₆ - 1064 CH ₇ CH ₂ H OCH ₅ CF ₇ H H H C ₂ H ₆ C ₂ H ₆ - 1065 CH ₇ CH ₂ H OCH ₅ CF ₇ H H CC-C ₃ H ₆ C-C ₅ H ₆ 158-1	1057	СН	CH3	Н	OCH3	OCH ₃	H	н	CH,	c-C ₃ H ₅	-
1060 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H CH ₃ C ₅ H ₁₁ - 1061 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₅ C ₄ H ₅ - 1062 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₄ C ₃ H ₄ - 1063 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₅ C ₂ H ₅ - 1064 CH ₃ CH ₂ H OCH ₃ CF ₃ H H H A 4-CH ₃ O-C ₄ H ₄ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C-C ₃ H ₅ C-C ₃ H ₅ 158-1	1058	СН	CH2	H	OCH3	OCH ₃	Н	Н	CH3	C ₃ H ₇	-
1061 CH ₃ CH ₄ H OCH ₃ OCH ₃ H H C ₂ H ₅ C ₄ H ₅ - 1062 CH ₅ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₄ C ₃ H ₄ - 1063 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₅ C ₂ H ₅ - 1064 CH ₃ CH ₂ H OCH ₃ CF ₃ H H H 4-CH ₃ O-C ₄ H ₄ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C-C ₃ H ₅ C-C ₃ H ₆ 158-1	1059	СН	CH2	н	OCH,	OCH,	H	H	CH,	C ₄ H ₉	-
1062 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₃ H ₄ C ₃ H ₄ - 1063 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₅ C ₂ H ₅ - 1064 CH ₃ CH ₂ H OCH ₃ CF ₃ H H H 4-CH ₃ O-C ₄ H ₄ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C-C ₃ H ₄ C-C ₃ H ₄ 158-1	1060	CH,	CH2	Н	OCH,	OCH,	Н	H	CH,	C ₅ H ₁₁	-
1063 CH ₃ CH ₂ H OCH ₃ OCH ₃ H H C ₂ H ₅ C ₂ H ₅ - 1064 CH ₃ CH ₂ H OCH ₃ CF ₃ H H H 4-CH ₃ O-C ₆ H ₆ - 1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C-C ₃ H ₆ C-C ₃ H ₅ 158-1	1061	сн,	CH,	н	осн	OCH,	Н	н	C ₂ H ₅	C₄H,	-
1064 СН ₃ СН ₂ Н ОСН ₃ СF ₃ Н Н Н 4-СН ₃ О-С ₄ Н ₄ - 1065 СН ₃ СН ₂ Н ОСН ₃ СF ₃ Н Н С-С ₃ Н ₄ С-С ₃ Н ₄ 158-1	1062	CH,	CH2	H	OCH,	OCH,	Н	н	C3H	С,н,	-
1065 CH ₃ CH ₂ H OCH ₃ CF ₃ H H C-C ₃ H ₅ C-C ₃ H ₅ 158-1	1063	СН	CH2	H	OCH ₃	OCH ₃	Н	Н	C ₂ H ₅	C₃H₅	-
	1064	CH,	CH ₂	н	OCH,	CF ₃	Н	н	Н	4-CH ₃ O-C ₆ H ₄	-
1066 СН, СН, Н ОСН, СР, Н Н С,Н, с-С,Н, -	1065	CH ₃	CH2	Н	OCH ₃	CF,	н	Н	c-C ₃ H ₅	c-C ₃ H ₅	158-159 🔇
	1066	CH,	CH2	Н	OCH3	CP,	Н	Η.	C ₂ H ₅	c-C ₃ H ₅	-
1067 СН, СН, Н ОСН, СЕ, Н Н СН, С-С,Н, -	1067	СН	CH2	Н	осн	CF,	н	Н	CH,	c-C ₃ H ₅	-

WO 99/	01454								PCT/US9	8/13913
1068	СН	CH ³	н	осн	CF,	н	н	CH ₃	C3H4	-
1069	CH ₃	CH ₂	н	осн,	CF,	н	Н	CH ₃	C ₄ H,	-
1070	CH,	CH2	н	OCH ₃	CF,	Н	н	СН3	C,H,,	-
1071	CH,	CH2	н	осн,	CF,	н	н	C ₂ H ₅	C.H.	-
1072	CH,	CH ₂	н	OCH,	CF,	Н	н	С,Н,	C ₃ H,	-
1073	CH ₃	CH2	Н	осн,	CF,	Н	н	C ₂ H ₅	C₂H₅	-
1074	CH,	CH2	Н	CF,	OCH3	н	н	н	4-CH ₃ O-C ₆ H ₄	oil
1075	СН	CH2	Н	CF,	OCH,	Н	Н	C-C,H,	c-C,H,	129-130
1076	CH3	CH2	Н	CF,	OCH,	Н	н	C2H2	C-C3H3	119-122
1077	СН	CH	н	CF,	OCH3	Н	н	CH3	C-C ₃ H ₅	-
1078	CH,	CH ₂	н	CF,	OCH,	Н	н	CH ₃	C ₃ H ₇	oil
1079	CH3	CH₂	Н	CF,	OCH ₃	Н	Н	СН	C ₄ H ₉	oil
1080	СН₃	CH2	Н	CF3	OCH3	H	н	СН	C5H11	-
1081	CH ₃	CH2	н	CF,	OCH,	Н	н	C ₂ H ₅	C ₄ H ₉	-
1082	CH,	CH2	Н	CF,	OCH,	Н	Н	С,Н,	C3H2	oil
1083	CH3	CH2	Н	CF,	OCH,	H	н	C ₂ H ₅	C ₂ H ₅	77-78
1084	CH3	CH ₂	Н	OCH ₃	Cl	OCH,	Н	Н	4-CH3O-C6H4	-
1085	CH,	CH ₂	Н	OCH3	Cl	OCH,	н	c-C,H,	c-C ₃ H ₅	-
1086	сн,	CH ₂	Н	OCH3	Cl	OCH,	Н	C ₂ H ₅	C-C ₃ H ₅	=
1087	CH,	CH ₂	Н	OCH3	Cl	OCH3	H	CH3	C-C3H3	-
1088	СН	CH2	H	OCH3	Cl	OCH,	Н	CH,	C3H4	-
1089	CH3	CH2	Н	OCH,	Cl	OCH,	Н	CH3	C.H.	-
1090	CH3	CH3	Н	OCH3	Cl	OCH3	Н	CH ₃	C5H11	-
1091	CH,	CH2	Н	осн,	Cl	OCH,	Н	C ₃ H ₅	C ₄ H ₉	•
1092	CH,	CH2	Н	OCH,	Cl	OCH,	Н	C_3H_7	C ₃ H ₇	-
1093	CH3	CH2	Н	OCH ₃	Cl	OCH,	Н	C ₂ H ₅	C₂H₅	-
1094	сн	CH2	H	OCH,	CH,	OCH,	Н	н	4-CH ₃ O-C ₆ H ₄	-
1095	CH,	CH2	H	OCH,	CH,	OCH,	Н.	C-C ₃ H ₃	c-C ₃ H ₄	-
1096	CH3	CH ₂	Н	OCH ₃	CH3	OCH3	н	C3H2	c-C ₃ H ₅	-
1097	CH,	CH2	Н	OCH,	CH,	осн	H	CH ₃	c-C ₃ H ₄	-
1098	CH,	CH ₂	н	och,	СН	OCH ₃	Н	CH,	С,Н,	-
1099	CH,	CH2	н	осн,	СН	OCH,	Н	CH ₃	C ₄ H ₉	-
1100	CH,	CH ₃	Н	осн	СН	och,	Н	СН	C,H,1	-
1101	сн	CH ₂	H	осн,	CH,	осн	Н	C ₂ H ₅	C ₄ H ₅	-
1102	CH3	CH ₂	H	OCH,	CH,	осн,	H	С,н,	C ₃ H ₇	-
1103	CH,	CH ₂	н	OCH,	CH,	осн,	H .	C₂H₅	C ₂ H ₅	-
1104	CH,	CH ₂	H	осн	CF,	OCH,	H	H	4-CH ₃ O-C ₆ H ₄	-
1105	CH,	CH ₂	н	OCH,	CF,	осн	н	c-C ₃ H ₃	c-C ₃ H ₃	- 1
1106	СН	CH	Н	OCH,	CF,	осн,	Н	C ₂ H ₅	c-C ₃ H ₃	-
1107	сн	CH2	н	осн,	CF,	OCH,	H	сн	c-C ₃ H ₅	-

WO 99/	01454								PCT/US98	3/13913
1108	CH3	CH2	н	OCH3	CF,	OCH,	н	СН3	C,H,	-
1109	CH,	CH3	н	OCH3	CF,	OCH,	H	СН	C_4H_9	-
1110	CH,	CH ₂	н	OCH ₃	CF,	осн	Н	СН	C_sH_{11}	-
1111	CH,	CH2	н	OCH,	CF,	OCH,	Н	C ₂ H ₅	C ₄ H,	-
1112	CH ₃	CH2	н	осн,	CF,	OCH,	Н	C ₃ H ₇	C,H,	-
1113	СН	CH ₂	Н	OCH,	CF,	OCH,	Н	C ₂ H ₅	C₂H₅	-
1114	СН,	CH,	н	OCH,	CN	OCH,	н	н	4-CH,O-C,H,	-
1115	CH,	CH2	Н	OCH ₃	CN	OCH,	н	C-C3H5	c-C ₃ H ₅	-
1116	сн,	CH2	Н	OCH,	CN	OCH3	Н	C ₂ H ₅	C-C,H,	-
1117	CH,	CH2	Н	OCH,	CN	OCH,	Н.	CH3	C-C,H,	-
1118	CH3	CH ₂	н	OCH3	CN	OCH ₃	Н	CH3	C₃H,	· -
1119	CH3	CH2	Н	осн	CN	OCH,	н	СН	C ₄ H ₉	-
1120	СН,	CH2	Н	осн,	CN	OCH,	н	CH3	C,H,,	-
1121	CH,	CH ₂	н	OCH,	CN	OCH ₃	н	C ₂ H ₅	C ₄ H ₉	-
1122	CH,	CH,	н	осн,	CN	OCH3	Н	C3H7	C3H2	, -
1123	CH3	CH ₂	Н	OCH,	CN	осн	н	C2H2	C₃H₅	· -
1124	CH ₃	CH2	H	осн,	OCH ₃	OCH,	Н	н	4-CH ₃ O-C ₆ H ₄	-
1125	CH ₃	CH2	н	OCH,	OCH3	OCH,	Н	C-C,H,	C-C ₃ H ₅	· -
1126	CH3	CH2	н	OCH,	OCH ₃	OCH,	Н	C ₂ H ₅	c-C ₃ H ₅	-
1127	CH3	CH2	Н	осн,	OCH3	OCH,	Н	CH,	C-C ₃ H ₅	-
1128	CH3	CH2	н	осн,	OCH,	OCH,	н	CH3	С,Н,	-
1129	СН	CH2	н	OCH,	OCH3	осн	H	CH ₃	C4H9	-
1130	CH,	CH2	Н	OCH3	OCH,	OCH,	н	CH3	C,H,,	-
1131	CH3	CH2	Н	OCH ₃	OCH,	OCH,	H.	C ₂ H ₅	C₄H ₉	-
1132	СН	CH ₂	н	OCH,	OCH3	OCH,	н	C,H,	C3H,	-
1133	СН	CH ₂	H.	осн,	OCH,	OCH,	н	C ₂ H ₅	C ₂ H ₅	-
1134	СН	CH2	н	CH3	CH,	н	CH,	C ₂ H ₅	CH2OSO2CH3	110-111
1135	СН	CH2	H	CH ₃	СН	Н	CH,	C ₂ H ₅	сн, сн,	134-135
1136	СН	CH ₂	Н	CH3	CH,	Н	CH,	C3H2	CH_Cl	140-141
1137	CH,	CH ₂	н	CH3	CH3	Н	CH3	C2H2	CH ₂ CN	142-147
1138	CH,	CH2	н	Cl	C1	н	Н	C ₂ H ₅	CH2OSO3CH3	-
1139	СН	CH2	H	cl	C1	Н	н	C ₂ H ₅	CH,SCH,	-
1140	CH,	CH2	. н	Cl	C1	Н	н	C ₂ H ₅	CH,Cl	-
1141	СН	CH2	н	Cl	C1	Н	н	C ₂ H ₅	CH,CN	-
1142	CH,	CH2	н	cl	CF,	н	н	C2H5	CH2OSO2CH3	-
1143	СН,	CH2	н	Cl	CF,	Н	Н	C3H2	CH ₂ SCH ₃	-
1144	СН,	CH2	Н	c1	CF,	Н	н	C ₂ H ₅	CH ₂ Cl	-
1145	CH3	CH2	н	C1	CF,	н	н	C ₂ H ₅	CH2CN	- 🔾
 1146	CH,	CH2	н	c 1	OCH,	н	н	C ₂ H ₅	CH,OSO,CH,	-
1147	сн,	CH3	Н	Cl	OCH,	H	Н	C ₂ H ₅	CH,SCH,	-

WO 99/	01454								PCT/US9	8/13913
1148	СН3	CH ₂	н	cl	OCH,	н	н	C3H2	CH,Cl	-
1149	СН	CH2	н	Cl .	OCH3	н	н.	C₃H₅	CH ₂ CN	-
1150	сн,	CH,	н	CF,	осн	н	н	C3H,	c-C,H,	oil
1151	CH,	CH ₂	Н	Cl	CF,	Н	н	СН	C3H,	97-98
1152	СН,	CH2	Н	СН,	OCH,	CH,	. н	C ₆ H ₅	c-C ₃ H ₅	-
1153	CH ₃	CH ₂	н	Cl	CF,	Н	н	C ₄ H ₅	c-C ₃ H ₅	oil
1154	CH3	CH ₂	.H	Cl	осн,	н	н	C ₆ H ₅	c-C ₃ H ₅	<i>,</i> -
1155	сн,	CH2	Н	Cl	OCF,	Н	н	C ₆ H ₅	C-C ₃ H ₅	oil
1156	CH ₃	CH2	н	Cl	CH,	н	н	C ₄ H ₅	c-C ₃ H ₅	119-120
1157	CH3	CH2	Н	CF,	OCH,	н	Н	C ₆ H ₅	c-C ₃ H ₅	oil
1158	CH3	CH₂	H	Cl	Cl	н	CH,	C ₆ H ₅	c-C,H,	oil
1159	CH3	CH2	Н	CH3	OCH ₃	Cl	Н	C ₆ H ₅	c-C,H,	-
1160	сн,	CH2	Н	CH3	OCH,	F	н	C_6H_5	c-C,H,	-
1161	CH,	CH2	Н	Cl .	Cl	Н	н	4-F-C ₆ H ₄	c-C ₃ H ₅	oil
1162	CH,	CH,	Н	CH3	осн,	CH3	н	4-F-C ₅ H ₄	C-C3H5	. -
1163	CH ₃	CH2	H	C1	CF,	Н	Н	4-F-C ₆ H ₄	C-C ₃ H ₅	oil
1164	CH3	CH2	Н	C1	OCH3	Н	Н	4-F-C ₆ H ₄	C-C3H5	- .
1165	CH,	CH ³	Н	Cl	OCF ₃	Н	Н.	4-F-C ₆ H ₄	C-C ₃ H ₅	-
1166	CH3	CH3	H	. Cl	CH,	Н	Н	4-F-C ₆ H ₄	c-C,H,	-
1167	CH,	CH2	Н	CF,	och,	Н	Н	4-F-C ₆ H ₄	c-C ₃ H ₅	-
1168	CH,	CH2	Н	Cl	Cl	Н	CH,	4-F-C ₆ H ₄	c-C,H,	-
1169	CH3	CH2	H	CH3	осн	Cl	Н	4-F-C ₆ H ₄	c-C,H,	-
1170	CH,	CH ³	Н	CH3	OCH ₃	F	H	4-F-C ₆ H _e	c-C ₃ H ₅	-
1171	CH3	CH ³	Н	Cl	Cl	Н	Н	CH,	c-C ₄ H,	109-110
1172	сн	CH ₂	Н	CH3	осн,	CH,	н	CH,	c-C ₄ H,	-
1173	CH3	CH2	Н	cl	CF,	Н	Н	CH,	c-C ₄ H,	136-137
1174	СН	CH2	H	Cl	OCH,	Н	Н	CH ₃	c-C ₄ H,	-
1175	сн,	CH2	· H	C1	OCF,	Н	Н	CH,	c-C ₄ H,	-
1176	CH,	CH ₂	Н	Cl	CH,	Н	Н	CH ₃	C-C ₄ H ₇	
1177	CH,	CH ₂	Н	CF,	OCH,	н	Н	CH,	C-C ₄ H ₇	-
1178	CH,	CH ₂	H	Cl	Cl	H	CH,	CH ₃	c-C ₄ H ₇	-
1179	CH,	CH	H	CH,	осн,	C1	н	CH,	c-C ₄ H ₇	-
1180	CH,	CH	H	СН	OCH,	F 	н	CH,	c-C ₄ H,	
1181	СН	CH ²	н `	C1	Cl	H	н	C ₂ H ₅	C-C ₄ H ₇	-
1182	CH,	CH ₂	н	CH,	OCH,	CH,	н	C₂H₅	C-C ₄ H ₇	-
1183	CH3	CH ²	н	Cl	CF,	н	н	C₂H₅	c-C ₄ H ₇	-
1184	CH,	CH ₂	H	Cl	OCH,	H	н	C ₂ H ₃	c-C ₄ H ₇	-
1185	CH,	CH ²	Н	Cl	OCF ₃	Н	Н	C₂H₅	c-C₄H,	- `
1186	CH,	CH	Н	Cl CF	CH,	Н	н	C,H,	c-C ₄ H,	-
1187	СН	CH	Н	CF,	осн	H	Н	C ₃ H ₅	c-C,H,	-

WO 99/0	01454								PCT/US98	/13913
1188	сн,	CH2	н	Cl	Cl	н	СН	C ₂ H ₅	c-C ₄ H,	-
1189	CH3	CH2	н	CH,	OCH,	Cl	н	C ₂ H ₅	C-C4H7	-
1190	сн,	CH2	н	CH,	осн,	F	н	C ₂ H ₅	c-C ₄ H,	-
1191	СН	CH ₂	н	Cl	cl	н	н	С,Н,	c-C ₄ H,	-
1192	СН,	CH ₂	н	СН,	OCH,	CH3	н	С,Н,	C-C4H,	-
1193	CH3	CH ₂	Н	Cl	CF,	н	Н	C3H,	C-C ₄ H ₂	-
1194	сн,	CH2	н	cl	OCH,	н	н	C,H,	C-C ₄ H ₇	-
1195	СН,	CH2	Н	Cl	OCF,	н	Н	C3H2	C-C ₄ H,	-
1196	CH3	CH2	Н	cl	CH,	н	н	C3H,	C-C ₄ H ₇	-
1197	CH,	CH2	Н	CF,	OCH ₃	н	н	C3H,	C-C ₄ H,	-
1198	CH,	CH2	н	Cl	cl	Н	CH3	C3H,	C-C4H7	· -
1199	СН,	CH2	Н	CH ₃	OCH,	Cl	H	C3H2	C-C4H7	-
1200	CH3	CH2	н	CH,	OCH ₃	F	н	C ₃ H ₇	C-C4H,	-
1201	CH3	CH2	Н	Cl	Cl	н	н	C-CaH,	C-C4H2	-
1202	CH,	CH2	н	CH,	OCH,	CH3	н	c-C,H,	c-C ₄ H,	: -
1203	CH3	CH3	н	Cl	CF,	Н	н	c-C ₄ H,	c-C ₄ H,	-
1204	CH,	CH ₂	Н	Cl	OCH,	Н	Н	c-C _e H,	C-C ₄ H ₇	-
1205	CH ₃	CH ₂	H	Cl	OCF,	Н	Н	C-C ₄ H ₇	c-C ₄ H ₇	-
1206	CH ₃	CH ₂	Н	Cl	CH3	Н	Н	C-C ₄ H,	C-C4H7	-
1207	CH3	CH ₂	н	CF ₃	OCH,	н	н	c-C _e H,	c-C ₄ H,	-
1208	CH,	CH3	Н	Cl	Cl	н	СН	c-C ₄ H,	c-C ₄ H,	-
1209	сн	CH3	н	CH,	OCH,	Cl	н	c-C ₄ H,	c-C ₄ H,	-
1210	CH,	CH ³	Н	CH,	OCH,	F	Н	c-C ₄ H,	c-C ₄ H,	-
1211	CH,	s	Н	SCH,	cl	Н	Cl	C₂H₅	С,Н,	63-65
1212	CH3	CH2	Н	OCH,	Cl	н	н	C-C3H3	c−C₃H₅	152-154
1213	СН,	CH2	H	OCH,	Cl	Н	Н	C ₂ H ₅	C-C ₃ H ₅	-
1214	CH,	CH3	Н	OCH,	Cl	Н	Н	C ₃ H ₇	C-C ₃ H ₅	-
1215	CH,	CH2	H	OCH,	Cl	Н	Н	CH,	c-C ₄ H,	-
1216	CH,	CH ₂	Н	OCH ₃	Cl	Н	H	CH ₃	C,H,	-
1217	CH3	CH2	Н	OCH ₃	Cl	Н	Н	C ₂ H ₅	C3H4	-
1218	CH,	CH2	Н	OCH ₃	Cl	Н	Н	C ₂ H ₅	C3H2	-
1219	CH,	CH ₂	H	OCH,	Cl	Н	Н	C3H2	C3H3	-
1220	CH3	CH2	Н	OCH ₃	Cl	Н	Н	CH,	C4H9	-
1221	СН	CH	Н	OCH,	Cl	H	Н	н	4-CH ₃ O-C ₆ H ₄	-
1222	CH,	CH ³	Н	OCH ₃	СН₃	H	Н	c-C3H3	c-C ₃ H ₅	oil
1223	CH,	CH2	Н	OCH,	CH ₃	Н	Н	C ₂ H ₅	c-C ₃ H ₅	-
1224	СН	CH2	Н	OCH3	CH ₃	Н	н	C3H	C-C3H5	-
1225	CH,	CH ₂	Н	OCH,	CH3	Н	Н	CH,	c-C ₄ H,	- 4
1226	СН	CH	Н	осн	CH,	Н	Н	сң	C,H,	-
4007								~		

H .

C₂H₅

C,H,

сн, н

1227

CH2

осн,

WO 99/0	01454								PCT/US98	13913
1228	СН,	CH2	н	осн,	CH ₃	н	н	C ₂ H ₅	C ₂ H ₅	-
1229	СН,	CH2	н	OCH,	СН,	Н	н	C ₃ H ₇	C,H,	-
1230	СН	СН	н	осн,	сн,	Н	Н	СН	C.H.	-
1231	СН	CH2	H	OCH,	CH ₃	н	н	н	4-CH ₃ O-C ₆ H ₄	-
1232	СН	СН ₂	н	осн,	осн,	н	F	C-C3H,	c-C ₃ H ₅	176-178
1233	СН	CH2	Н	осн,	осн,	н	F	C ₂ H ₅	c-C ₃ H ₅	-
1234	сн,	CH2	н	OCH3	осн,	Н	F	C3H,	c-C ₃ H ₅	-
1235	CH,	CH ₂	н	OCH ₃	OCH ₃	н	F	СН	c-C ₄ H,	<u>-</u>
1236	СН	СН	н	OCH,	осн	н	F .	СН	C,H,	-
1237	СН	CH ₂	н	OCH ₃	осн,	Н	F	C ₂ H ₅	C,H,	-
1238	СН,	CH2	н	OCH,	OCH ₃	Н	F	C ₂ H ₅	C ₂ H ₅	-
1239	СН,	CH2	н	OCH,	OCH,	Н	F	C,H,	C,H,	-
1240	СН,	CH ₂	н	OCH,	OCH ₃	Н	F	СН	C₄H,	-
1241	СН	CH ₂	н	OCH,	OCH ₃	н	F	н	4-CH,O-C ₆ H ₄	-
1242	СН	CH ₂	Н	CF,	F	н	н	c-C,H,	c-C ₃ H ₅	: -
1243	CH,	CH2	Н	CF,	F	Н	н	C ₃ H ₅	c-C ₃ H ₅	· -
1244	СН	CH2	н	CF3	F	н	Н	C,H,	c-C ₃ H ₅	115-118
1245	CH3	CH ₂	Н	CF,	F	н	Н	CH,	C-C4H,	-
1246	СН	CH2	Н	CF,	F	H	Н	CH3	C3H2	-
1247	СН	CH2	н	CF,	F	H	Н	C ₂ H ₅	C ₃ H ₇	-
1248	СН	CH2	н	CF,	F	H	Н	C ₂ H ₅	C₃H₅	-
1249	СН	CH3	Н	CF,	F	Н	H	С,Н,	C,H,	-
1250	CH3	CH ₂	Н	CF3	F	н	н	CH3	C,H,	-
1251	CH3	CH ³	Н	CF3	F	н	Н	н	4-CH ₃ O-C ₆ H ₄	57-70
1252	CH,	CH ₂	Н	CF,	F	н	Н	BnOCH ₂	BnOCH ₂	oil
1253	CH,	CH2	H	CF,	F	Н	Н	CH3	C ₆ H ₅	119-120
1254	СН	CH3	Н	CF,	F	Н	Н	C ₆ H ₅	C _e H _s	135-139
1255	CH,	CH3	Н	Cl	ocf,	Н	Н	C3H4	c-C ₃ H ₅	oil
1256	CH3	CH2	н	Cl	OCF,	Н	Н	C,H,	С,Н,	oil
1257	CH3	CH3	Н	Cl	CF3	н	Н	н	СН_=СН-СН=СН	83-85
1258	CH3	CH3	H	CF,	OBn	н	Н	C-C ₃ H ₅	c-C₃H₅	163-165
1259	CH3	CH ³	Н	CF,	OH	н	н	C-C3H5	c-C3H3	245-246
1260	CH3	CH2	Н	CF,	oc,H,	н	Н	c-C ₃ H ₅	C-C3H3	127-128
1261	CH3	CH2	Н	CF,	OC3H2	Н	Н	C ₂ H ₅	C-C ₃ H ₅	-
1262	СН	CH ₂	Н	CF ₃	OC ₃ H ₇	Н	Н	C3H2	C-C3H3	-
1263	CH ₃	CH ₂	Н	CF,	OC3H	Н	Н	CH3	C-C4H7	-
1264	CH ₃	CH2	Н	CF,	OC,H,	Н	Н	CH3	C ₃ H ₂	-
1265	CH3	CH ₂	Н	CF,	ос,н,	Н	H	C3H2	C3H4	- <
1266	CH,	CH2	Н	CF,	ос,н,	н	Н	C³H²	C₃H₅	-
1267	СН	CH ₂	н	CF,	∞с,н,	Н	Н.	С,Н,	C3H4	-

WO 99/	01454								PCT/US98	3/13913
1268	СН,	CH ₃	н	CF,	oc,H,	н	н	сн,	C.H.	-
1269	СН,	CH ₂	Н	CF,	oc,H,	н	Н	н	4-CH,O-C,H,	-
1284	сн,	CH2	н	СН	OH	F	н	c-C ₃ H ₅	c-C ₃ H ₅	-
1285	СН	CH,	Н	CH,	OH	F	Н	C ₂ H ₅	C-C ₃ H ₅	-
1286	СН,	CH ₂	н	CH ₃	OH	F	Н	C,H,	C-C3H5	. •
1287	CH3	CH ₂	Н	CH3	OH	F	н	СН	c-C ₄ H,	-
1288	CH,	CH2	н	СН	OH	F	н	CH,	C ₃ H ₇	+
1289	СН,	CH ₂	Н	CH3	OH	F	н	C ₂ H ₅	C ₃ H ₇	-
1290	CH,	CH2	н	СН,	ОН	F	н	C2H2	C2H2	-
1291	CH,	CH ₂	Н	CH,	OH	F	н	C_3H_7	C ₃ H ₇	-
1292	CH ₃	CH2	Н	сн,	ОН	F	н	CH,	C ₄ H ₉	
1293	CH ₃	CH ₂	H	CH,	OH	F	н	н	4-CH ₃ O-C ₆ H ₆	-
1294	CH3	CH2	H	CH3	осн,	OCH ₃	н	CH,	CH ₃	101-102
1295	CH3	CH2	Н	CH ₃	OCH ₃	OCH,	Н	CH3	C ₂ H ₅	oil
1296	СН	CH2	Н	Cl	Cl	Н	Н	C ₂ H ₅	4-CH3O-C6H6	oil
1297	CH,	CH2	Н	Cl	Cl	н	CH,	C,H,	C ₂ H ₅	133-135
1298	CH3	CH ₂	H	Cl	Cl	н	сн,	C ₂ H ₅	C3H4	123-125
1299	CH3	CH2	н	Cl	cl	н	CH3	C3H7	С,н,	125-127
1300	CH3	CH ₂	Н	cl	Cl	н	CH3	C ₂ H ₅	c-C ₃ H ₅	157-159
1301	CH,	0	н	CH ₃	OCH3	CH3	н	C-C3H5	c-C ₃ H ₅	-
1302	сн,	0	H	Cl	CF,	Н	Н	C-C3H3	c-C ₃ H ₅	149-150
1303	СН	0	Н	Cl	осн	H	н	c-C3H3	C-C3H3	124-125
1304	CH3	0	Н	Cl	OCF,	Н	н	C-C3H5	c-C ₃ H ₅	-
1305	CH,	0	Н	Cl	CH ₃	Н	Н	C-C3H5	c-C ₃ H ₅	-
1306	CH3	0	Н	CF3	OCH,	Н	н	C-C ₃ H ₃	C-C ₃ H ₅	-
1307	CH3	0	Н	Cl	Cl	н	CH,	C-C ₃ H ₅	C-C ₃ H ₅	-
1308	CH3	0	Н	CH,	осн	Cl	Н	c-C3H3	C-C ₃ H ₅	-
1309	CH,	0	Н	CH3	OCH,	F	Н -	c-C ₃ H ₅	c-C ₃ H ₅	-
1310	CH3	0	н	CH3	OCH3	CH ₃	Н	CH,	C ₃ H ₇	-
1311	CH,	0	Н	Cl	CF3	Н	Ή	сң	C3H7	-
1312	CH,	0	Н	Cl	OCH,	Н	Н	CH3	C ₃ H ₇	-
1313	CH3	0	Н	Cl	OCF ₃	н	Н	CH,	C3H	-
1314	CH,	0	H	Cl	CH,	Н	Н	CH,	C3H	-
1315	CH,	0	Н	CF3	OCH3	Н	Н	CH,	C3H	-
1316	CH,	0	Н	Cl	C1	Н	CH3	CH,	C3H	· <u>-</u>
1317	CH,	0	Н	CH3	OCH ₃	Cl	Н	CH,	C ₃ H ₇	-
1318	CH,	0	Н	CH,	OCH,	F	Н	CH,	C ₃ H ₇	-
1319	CH,	CH₂	H	Cl	Cl	H	Н	C ₆ H ₅	C ₆ H ₅	oil
1320	CH,	CH2	H	Cl	Cl	Н	н	C ₆ H ₅	CH,	oil
					_					

Cl

Cl

1321 СН,

CH2

c-C,H,

oil

2-CH3-C6H4

WO 99/0)1454								PCT/US98/	13913
1322	сн,	CH2	н	cı	cl	Н	Н	C.H.	сн (сн,он),	oil
1323	CH,	CH ₂	н.	Cl	Cl	Н	Н	C ₆ H ₅	CO³C³H²	oil
1324	CH,	CH	н	Cl	Cl	Н	н	C ₆ H ₅	CO3H	oil
1325	CH,	CH2	н	cl	cl	н	н	C ₆ H ₅	СНОН	oil
1326	СН,	CH ₂	н	CH ₃	осн,	Cl	н	н	2-Cl-C ₄ H ₄	oil
1327	CH ₃	CH2	н	CH,	осн,	Cl	н	н	3-C1-C,H,	oil
1328	CH ₃	CH2	Н	CH2	осн,	Cl	н	н	4-Cl-C ₆ H ₆	oil
1329	CH,	CH2	н	CH,	OCH,	Cl	н	Н	3-CH ₃ O-C ₆ H ₄	oil
1330	сн,	CH3	н	CH,	OCH,	Cl	н	Н	3-CN-C ₆ H ₄	oil
1331	сн,	CH2	Н	CH ₃	осн,	Cl	н	Н	4-CN-C ₆ H ₄	oil
1332	CH,	CH ₂	Н	CH,	OCH,	Cl	н	Н	$4-BnO-C_6H_4$	oil
1333	CH3	CH2	Н	СН,	OCH3	Cl	H.	н	2,5-(CH ₃ O)-	oil
									C ₆ H ₃	
1334	СН,	CH2	Н	сн,	OCH,	C1	Н	н	2-CH ₃ O-C ₆ H ₆	oil
1335	CH3	CH ₂	Н	Cl	Cl	Н	Н	CIN	c-C ₃ H ₅	oil
1336	CH3	CH ³	Н	Cl	cl	Н	H	CH,	CH,OC,H,	96-97
1337	CH3	CH ₂	н	Cl	cı	н	н	Н	CH (OH) CH ₂ OC ₆ H ₅	oil
1338	CH,	CH ₂	н	Cl	Cl	н	Н	Н	CH (OH) CH2C4H3	oil
1339	CH3	CH2	Н	Cl	Cl	H	H	Н	CH (OH) C3H7	oil
1340	CH3	CH ₂	Н	Cl	Cl	Н	Н	CH(CH ₃) ₂	C(O)-1-	154-155
									morpholinyl	
1341	CH,	CH3	Н	Cl	Cl	H	Н	C ₂ H ₅	CO2CH3	oil
.1342	CH3	CH ₃	н	Cl	Cl	Н	Н	CH,	CO2CH2	oil
1343	CH,	CH ₂	Н	Cl	Cl	Н	Н	СН	CN	oil
1344	CH3	CH ₂	Н	Cl	Cl	н	Н	CH,	сосн,	oil
1345	CH3	CH ₂	Н	Cl	cl	Н	Н	Н	2-C1-C,H,	149-152
1346	сң	CH ₂	н	Cl	Cl	Н	Н	Н	3-C1-C,H,	oil
1347	СН	CH ₂	н	Cl	Cl	Н	Н -	н	4-F-C ₆ H ₄	148-149
1348	СН	CH,	н	C1	Cl	H	Н	Н	4-CN-C ₆ H ₄	199-200
1349	CH3	CH ₂	н	C1	Cl	Н	Н	H	4-C1-C ₆ H ₆	183-184
1350	сн	CH ₂	н	C1	C1	Н	Н	c-C ₃ H ₅	c-C ₄ H,	-
1351	CH,	CH ₂	H	CH3	осн	CH ₃	H	c-C ₃ H ₅	c-C ₄ H ₇	-
1352	CH,	CH ₂	Н	Cl	CF,	H	Н	C-C ₃ H ₃	c-C ₄ H,	-
1353	CH,	CH ₂	н	Cl	OCH,	н	н 	C-C ₃ H ₃	c-C ₄ H,	-
1354	CH,	CH ₂	н	C1	ocf,	н	н	c-C,H,	c-C ₄ H ₇	, -
1355	CH,	CH ₂	н	Cl	CH,	H	H	c-C ₃ H ₃	c-C ₄ H,	-
1356	CH,	CH ₂	н	CF,	OCH,	н	Н	c-C ₃ H ₃	c-C ₄ H ₇	-
1357	CH,	CH ₂	н	Cl CV	C1	Н	СН,	c-C ₃ H ₄	c-C ₄ H,	- 🦎
1358	CH,	CH ₃	н	CH,	OCH,	Cl	н	c-C ₃ H ₅	c-C ₄ H ₇	-
1359	сн	CH2	Н	CH,	осн	F	Н	c-C ₃ H ₅	c-C ₄ H,	-

WO 99/0	1454								PCT/US98/1	3913
1360	CH,	CH2	н	cl	OCH ₃	F	н	c-C ₃ H ₅	C-C ₃ H ₅	-
1361	CH3	CH ₂	н	Cl	OCH,	F	н	C ₂ H ₅	C-C ₃ H ₅	-
1362	СН	CH2	Н	Cl	OCH ₃	F	н	C3H4	c-C,H,	-
1363	СН,	CH2	Н	cl	осн,	F	Н	CH,	C-C ₄ H,	-
1364	CH3	CH2	Н	Cl	OCH ₃	F	Н	CH ₃	С,Н,	-
1365	CH3	CH2	Н	Cl	осн,	F	н	C ₂ H ₅	С,Н,	-
1366	CH3	CH2	н	Cl	осн,	F	н.	C ₂ H ₅	C₃H₅	-
1367	CH3	CH ₂	Н	Cl	OCH ₃	F	н	C3H2	С,н,	-
1368	CH,	CH2	н	Cl	осн,	F	н	CH ₃	C ₄ H ₉	-
1369	CH3	CH2	Н	Cl	осн,	F	н	H	4-CH ₃ O-C ₆ H ₄	-
1370	CH3	CH ₂	н	CF,	OCH ₃	н	н	C ₂ H ₅	C3H2	oil
1371	CH3	CH ₂	н	Cl	cl	Н	н	CH,	2-CH ₃ -c-C ₃ H ₄	oil
1372	CH3	CH3	Н	CH,	OCH ₃	CH3	н	CH,	2-CH ₃ -c-C ₃ H ₄	-
1373	CH,	CH ₂	н	Cl	CF ₃	Н	Н	CH3	2-CH ₃ -c-C ₃ H ₄	-
1374	CH3	CH3	Н	Cl	осн,	Н	Н	CH,	2-CH ₃ -c-C ₃ H ₄	 }
1375	CH,	CH2	Н	Cl	OCF3	H	Н	CH,	2-CH,-c-C,H4	-
1376	CH,	CH2	Н	Cl	CH ₃	Н	Н	CH,	2-CH ₃ -c-C ₃ H ₄	-
1377	CH3	CH ₂	H	CF,	OCH ₃	Н	Н	CH3	2-CH ₃ -C-C ₃ H ₄	-
1378	CH ₃	CH2	Н	Cl	Cl	Н	CH ₃	CH ₃	$2-CH_3-C-C_3H_4$	-
1379	CH ₃	CH2	H	CH3	OCH ₃	Cl	Н	сн,	$2-CH_3-C-C_3H_4$	-
1380	CH,	0	Н	Cl	C1	Н	H	CH,	2-CH ₃ -c-C ₃ H ₄	-
1381	CH,	CH ₂	Н	C1	· Cl	н	Н	сн,	2-C ₆ H ₅ -c-C ₃ H ₄	-
1382	CH ₃	CH2	H	CH3	OCH3	CH,	Н.	CH3	2-C ₆ H ₅ -c-C ₃ H ₆	-
1383	CH3	CH2	Н	Cl	CF3	Н	н	CH3	2-C ₆ H ₅ -c-C ₃ H ₄	-
1384	CH,	CH ₂	Н	Cl	OCH,	H	H	CH ₃	2-C ₆ H ₅ -c-C ₃ H ₆	-
1385	CH,	CH3	Н	Cl	OCF,	Н	н	CH,	2-C ₆ H ₅ -c-C ₅ H ₄	-
1386	CH,	CH2	Н	Cl	CH,	Н	Н	CH ₃	2-C ₄ H ₅ -c-C ₅ H ₄	-
1387	CH,	CH ₃	Н	CF,	och,	Н	Н	СН,	2-C4H5-C-C3H4	-
1388	CH3	CH2	Н	Cl	Cl	Н	CH,	сн,	2-C ₆ H ₅ -c-C ₃ H ₄	-
1389	CH3	CH ₂	Н	CH,	OCH,	Cl	н	CH,	2-C ₄ H ₅ -c-C ₅ H ₄	-
1390	CH,	0	Н	Cl	Cl	Н	Н	CH,	2-C ₄ H ₅ -c-C ₅ H ₄	-
1391	CH,	CH	н	C1	cı	н	н	СН	2-(2- pyridyl)- c-C ₃ H ₄	-
1392	СН3	CH	н	CH3	OCH3	CH,	Н	CH,	2-(2- pyridyl)- c-C ₃ H ₄	-
1393	СН	CH	н	C1	CF,	н	н	СН	2-(2- pyridyl)- c-C ₃ H ₄	-
1394	СН	СН	н	C1	OCH3	н	H .	СН,	2-(2- pyridyl)- c-C ₃ H ₄	-

WO 99/01454									PCT/US98/13913	
1395	сн	CH2	н	cl	OCF,	Н	Н	CH ₃	2-(2- pyridyl)- c-C ₃ H ₄	-
1396	CH3	CH ₂	н .	cl	СН	н .	Н	сн,	2-(2- pyridyl)- c-C ₃ H ₄	· -
1397	CH3	CH ₂	Н	CF,	OCH3	н	Н	СН₃	2-(2- pyridyl)- c-C ₃ H ₄	· -
1398	CH3	CH ₂	н	cı	Cl	Н	сң	сн,	2-(2- pyridy1)- c-C,H ₄	-
1399	сн,	CH ₂	Н -	CH,	∞н,	cl	Н	СН ₃	2-(2- pyridyl)- c-C ₃ H ₄	-
1400	CH,	0	н	Cl	C1	Н	н .	сн,	2-(2- pyridyl)- c-C,H,	

Key:

20

- (a) Where the compound is indicated as an "oil", data is provided below:

 Example 3 spectral data: TLC R, 0.27 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 5 CDCl₃): δ 8.90 (1H, s), 6.95 (2H, s), 4.45 (1H, br), 4.27-4.17 (2H, m), 3.85 (1H, dd, J = 9.5, 4.8 Hz), 3.27 (3H, s), 2.94 (2H, q, J = 7.5 Hz), 2.56-2.46 (1H, m), 2.32 (3H, s), 2.06 (3H, s), 2.03 (3H, s), 1.37 (3H, t, J = 7.5 Hz), 0.85 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 355 (3), 354 (25), 353 (100). Analysis calc'd for $C_{21}H_{28}N_4O \cdot 1.5H_2O$: C, 66.46; H, 8.23; N, 14.76; found: C, 67.00; H, 8.10; N, 14.38.
- 10 Example 8 spectral data: TLC R, 0.34 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 6.95 (2H, s), 4.46 (1H, br), 3.41-3.33 (1H, m), 3.22 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 2.93-2.85 (1H, m), 2.84-2.69 (2H, m), 2.51 (1H, br), 2.32 (3H, s), 2.30-2.20 (1H, m), 2.04 (6H, s), 1.37 (3H, t, J = 7.7 Hz), 0.84 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{20}N_4O$: 366.2420, found 366.2400; 369 (3), 368 (27), 367 (100).
 - Example 10 spectral data: TLC R, 0.13 (ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 8.10 (1H, s), 7.96 (1H, s), 6.96 (2H, s), 4.39 (1H, br), 4.24-4.14 (1H, m), 4.12-4.00 (1H, m), 3.20 (1H, br), 2.80 (2H, q, J = 7.0 Hz), 2.78-2.68 (1H, m), 2.42 (1H, br), 2.33 (3H, s), 2.13-2.04 (1H, m), 2.06 (3H, s), 2.03 (3H, s), 1.33 (3H, t, J = 7.5 Hz), 0.80 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{20}N_{1}$: 404.2563, found 404.2556; 406 (4), 405 (28), 404 (100).
 - Example 11 spectral data: TLC R, 0.60 (ethyl acetate). 3 H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 8.51 (1H, s), 6.96 (2H, s), 4.78-4.68 (1H, m), 4.57-4.47 (1H, m), 4.32-4.22 (1H, m), 3.43 (1H, br), 2.81 (2H, q, J = 6.9 Hz), 2.78 (1H, br), 2.43 (1H, br), 2.33
- 25 (3H, s), 2.10-2.00 (1H, m), 2.07 (3H, s), 2.03 (3H, s), 1.32 (3H, t, J = 7.0 Hz), 0.78

(3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{29}N_9$: 405.2515, found 405.2509; 407 (4), 406 (27), 405 (100).

Example 18 spectral data: TLC R_{p} 0.20 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 9.00 (1H, s), 7.26 (1H, obscurred), 6.96 (2H, s), 6.86-6.76 (3H, m), 5.46

- 5 (2H, s), 3.76 (3H, s), 2.85 (2H, q, J = 7.7 Hz), 2.33 (3H, s), 2.06 (6H, s), 1.28 (3H, t, J = 7.7 Hz). MS (NH₂-CI): m/e 389 (4), 388 (28), 387 (100). Analysis calc'd for $C_{24}H_{24}N_4$ 0: C, 74.58; H, 6.78; N, 14.50; found: C, 74.36; H, 6.73; N, 13.83. Example 27 spectral data: TLC R, 0.20 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 6.95 (2H, s), 4.25 (2H, t, J = 7.5 Hz), 2.93 (2H, q, J = 7.7
- 10 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.91-1.86 (2H, m), 1.50-1.38 (2H, m), 1.39 (3H, t, J = 7.7 Hz), 1.01 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 325 (3), 324 (23), 323 (100). Example 28 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 6.95 (2H, s), 4.24 (2H, t, J = 7.9 Hz), 2.93 (2H, q, J = 7.6 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.90 (2H, m), 1.44-1.36 (7H, m), 0.93 (3H, t, J = 7.6 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.90 (2H, m), 1.44-1.36 (7H, m), 0.93 (3H, t, J = 7.6 Hz)
- 7.1 Hz). MS (NH₃-CI): m/e 339 (3), 338 (25), 337 (100). Analysis calc'd for $C_{21}H_{22}N_4$: C, 74.96; H, 8.40; N, 16.65; found: C, 74.24; H, 8.22; N, 16.25. Example 34 spectral data: MS (ESI): m/e 365 (M+2), 363 (M+H, 100%). Example 35 spectral data: TLC R, 0.31 (20:80 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41
- 20 (1H, dd, J = 8.4, 1.8 Hz), 4.27 (1H, br), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.11-1.98 (2H, br), 1.42 (3H, t, J = 7.3 Hz), 1.37-1.20 (3H, m), 1.09-0.99 (1H, m), 0.84 (3H, t, J = 7.7 Hz), 0.82 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{23}N_4Cl_2$: 391.1456, found 391.1458; 395 (11), 394 (14), 393 (71), 392 (29), 391 (100).
- 25 Example 38 spectral data: MS (NH₃-CI): m/e 375 (M+H^{*}, 100%).

 Example 40 spectral data: MS (NH₃-CI): m/e 377 (M+H^{*}, 100%).

 Example 48 spectral data: MS (NH₃-CI): m/e 423 (M+H^{*}, 100%).

 Example 50 spectral data: TLC R, 0.27 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.03 (1H, s), 7.70 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.41
- 30 (1H, dd, J = 8.0, 1.8 Hz), 7.36-7.30 (2H, m), 7.24-7.19 (3H, m), 5.50 (2H, s), 2.87 (2H, q, J = 7.5 Hz), 1.31 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{14}N_4Cl_2$: 382.0752, found 382.0746; 388 (3), 387 (12), 386 (16), 385 (66), 384 (26), 383 (100).

Example 51 spectral data: MS (NH,-CI): m/e 413 (M+H', 100%).

Example 54 spectral data: MS (NH,-CI): m/e 459 (M+H, 100%).

Example 68 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 6.69 (2H, s), 4.30-4.19 (1H, m), 3.82 (3H, s), 2.92 (2H, q, J = 7.6 Hz), 2.41 (1H, br), 2.08 (3H, s), 2.07 (3H, s), 2.06 (1H, br), 1.38 (3H, t, J = 7.6 Hz), 1.36-1.22 (4H, m), 1.10-0.98 (1H, m), 0.96-0.87 (1H, m), 0.84 (3H, t,

J = 7.0 Hz), 0.81 (3H, t, J = 6.7 Hz). MS (NH₃-CI): m/e 383 (4), 382 (27), 381 (100).

Example 122 spectral data: TLC R, 0.10 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 6.94 (2H, s), 4.14 (2H, d, J = 7.7 Hz), 3.48 (1H, q, J = 7.0 Hz), 2.63 (3H, s), 2.31 (3H, s), 2.01 (6H, s), 1.43-1.19 (8H, m), 0.94 (3H, t, J = 7.3 Hz), 0.84 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e 367 (3), 366 (25), 365 (100).

Example 123 spectral data: TLC R, 0.24 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 6.94 (2H, s), 4.25 (2H, t, J = 8.1 Hz), 3.48 (1H, q, J

10 = 7.1 Hz), 2.63 (3H, s), 2.31 (3H, s), 2.01 (6H, s), 1.81 (2H, m), 1.47-1.19 (8H, m), 0.91 (6H, m). MS (NH₃-CI): m/e 381 (4), 380 (27), 379 (100). Analysis calc'd for C₂₄H₂₄N₄: C, 76.15; H, 9.05; N, 14.80; found: C, 76.29; H, 9.09; N, 14.75. Example 202 spectral data: TLC RF 0.20 (10:90 ethyl acetate-hexane). 1H NMR (300

MHz, CDC13): d 8.82 (1H, s), 6.96 (2H, s), 4.46-4.38 (1H, m), 4.13 (3H, s), 2.34

- 15 (3H, s), 2.28-2.11 (2H, m), 2.07 (6H, s), 1.95-1.81 (2H, m), 1.38-1.17 (3H, m), 1.14-0.99 (1H, m), 0.83 (3H, t, J = 7.7 Hz), 0.80 (3H, t, J = 7.7 Hz). MS (NH3-CI): m/e calc'd for $C_{22}H_{30}N_4O$: 366.2420, found 366.2408; 369 (4), 368 (26), 367 (100). Example 404 spectral data: TLC R, 0.20 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 6.93 (2H, s), 4.20 (2H, t, J = 7.7 Hz), 2.90 (2H, q, J = 7.6 Hz),
- 20 2.83 (3H, s), 2.30 (3H, s), 2.03 (6H, s), 1.88 (2H, m), 1.42-1.34 (7H, m), 0.93 (3H, t, J = 6 Hz). MS (NH₃-CI): m/e 353 (3), 352 (27), 351 (100). Example 414 spectral data: TLC R, 0.36 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.66 (1H, d, J = 8.1 Hz), 7.32-7.26 (2H, m), 4.54 (1H, m), 2.95 (2H, q, J = 7.4 Hz), 2.43 (3H, s), 2.39 (1H, m), 2.03 (1H, m), 1.74 (3H, d, J = 7.0
- 25 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.31 (1H, m), 1.16 (1H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{24}N_4Cl$: 343.1690, found 343.1704; 346 (7), 345 (34), 344 (23), 343 (100).

Example 415 spectral data: TLC R, 0.25 (10:90 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.71 (1H, d, J = 8.1 Hz), 7.34-7.30 (2H, m), 4.30-4.20 (1H, m),

- 30 2.94 (2H, q, J = 7.5 Hz), 2.50-2.35 (2H, m), 2.44 (3H, s), 2.08-1.95 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 1.29 (3H, m), 1.08-0.98 (1H, m), 0.84 (3H, t, J = 7.0 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 374 (7), 373 (33), 372 (25), 371 (100). Analysis calc'd for $C_{21}H_{27}ClN_4$: C, 68.00; H, 7.35; N, 15.10; found: C, 68.25; H, 7.30; N, 14.85.
- 35 MHz, CDCl₃): δ 8.95 (1H, s), 7.60 (1H, d, J = 7.7 Hz), 7.37 (1H, d, J = 0.8 Hz), 7.21 (1H, dd, J = 7.7, 0.8 Hz), 4.58-4.50 (1H, m), 2.96 (2H, dq, J = 7.5, 2.0 Hz), 2.46-2.33 (1H, m), 2.40 (3H, s), 2.08-1.96 (1H, m), 1.74 (3H, d, J = 6.6 Hz), 1.40 (3H, t, J = 7.5 Hz), 1.39-1.22 (1H, m), 1.20-1.08 (1H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI):

Example 424 spectral data: TLC R, 0.28 (5:95 ethyl acetate-dichloromethane). H NMR (300

m/e calc'd for $C_{19}H_{24}ClN_4$: 343.1690, found 343.1697; 346 (8), 345 (38), 344 (25), 343 (100).

Example 434 spectral data: TLC R_r 0.78 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 6.95 (2H, s), 2.97 (2H, J = 7.3 Hz), 2.60-2.50 (1H, m), 2.41-2.33 (1H, m), 2.32 (3H, s), 2.20-2.10 (1H, m), 2.05 (3H, s), 2.02 (3H, s), 1.85-1.80 (1H, m), 1.39 (3H, t, J = 7.5 Hz), 0.85 (3H, t, J = 7.5 Hz), 0.50-0.35 (2H, m), 0.25-0.15 (1H, m), 0.10-0.00 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{22}H_{20}N_4$: 362.2470, found 362.2458; 365 (4), 364 (27), 363 (100).

Example 436 spectral data: TLC R, 0.31 (30:70 ethyl acetate-hexane). 3H NMR (300 MHz, 10 cDCl₃): δ 8.88 (1H, s), 7.77 (1H, d, J = 9.2 Hz), 6.87 (2H, m), 4.40-4.25 (1H, m), 3.86 (3H, s), 2.99 (2H, q, J = 7.5 Hz), 2.60-2.35 (2H, m), 2.47 (3H, s), 2.15-2.00 (1H, m), 1.80-1.70 (1H, m), 1.45 (3H, t, J = 7.5 Hz), 0.84 (3H, t, J = 7.5 Hz), 0.50-0.35 (2H, m), 0.30-0.20 (1H, m), 0.10-0.00 (1H, m), -0.85 - -0.95 (1H, m).

Example 437 spectral data: TLC R, 0.25 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.73 (1H, d, J = 9.2 Hz), 6.89-6.86 (2H, m), 4.58-4.51 (1H, m), 3.86 (3H, s), 2.95 (2H, dq, J = 7.6, 1.8 Hz), 2.47 (3H, s), 2.45-2.34 (1H, m), 2.07-1.97 (1H, m), 1.73 (3H, d, J = 7.0 Hz), 1.42 (3H, t, J = 7.6 Hz), 1.40-1.27 (1H, m), 1.20-1.07 (1H, m), 0.92 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{27}N_4O$: 339.2185, found 339.2187; 341 (3), 340 (22), 339 (100). Analysis calc'd for $C_{20}H_{27}N_4O$: C,

- 20 70.98; H, 7.74; N, 16.55; found: C, 69.97; H, 7.48; N, 15.84.
 Example 438 spectral data: TLC R, 0.42 (40:60 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.77 (1H, d, J = 9.1 Hz), 7.17 (2H, d, J = 8.8 Hz), 6.90-6.83 (4H, m), 5.42 (2H, s), 3.86 (3H, s), 3.78 (3H, s), 2.86 (2H, q, J = 7.5 Hz), 2.49 (3H, s), 1.33 (3H, t, J = 7.5 Hz). MS (NH₂-CI): m/e 391 (4), 390 (26), 389 (100). Analysis calc'd for C₂₃H₂₄N₄O₂: C, 71.11; H, 6.24; N, 14.42; found: C, 71.14; H, 5.97; N, 14.03.
 - Example 439 spectral data: TLC R, 0.41 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.77 (1H, d, J = 3.1 Hz), 6.89 (2H, m), 3.86 (3H, s), 3.53 (1H, m), 2.91 (2H, q, J = 7.5 Hz), 2.49 (3H, s), 2.28 (1H, m), 2.21 (1H, m), 1.43 (3H, t, J = 7.3 Hz), 0.86 (3H, t, J = 7.3 Hz), 0.78 (2H, m), 0.46 (2H, m), 0.20 (1H, m).
- 30 Example 440 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.73 (1H, d, J = 9.1 Hz), 6.90-6.86 (2H, m), 4.60-4.40 (1H, m), 3.86 (3H, s), 2.95 (2H, dq, J = 7.7, 2.2 Hz), 2.47 (3H, s), 2.44-2.36 (1H, m), 2.05-1.98 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.42 (3H, t, J = 7.5 Hz), 1.40-1.20 (5H, m), 1.13-1.05 (1H, m), 0.830 (3H, t, J = 6.6 Hz).
- 25 Example 502 spectral data: TLC R, 0.63 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 6.95 (2H, s), 4.60-4.47 (1H, m), 2.93 (2H, q, J = 7.7 Hz), 2.43-2.33 (1H, m), 2.32 (3H, s), 2.16-2.06 (1H, m), 2.05 (3H, s), 2.03 (3H, s), 1.76 (3H, d, J = 7.0 Hz), 1.36 (3H, t, J = 7.7 Hz), 1.36-1.20 (4H, m), 0.86 (3H, t, J = 7.2

Hz). MS (NH₂-CI): m/e calc'd for $C_{22}H_{30}N_4$: 350.2470, found 350.2480; 353 (3), 352 (28), 351 (100).

Example 503 spectral data: ¹H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 6.94 (2H, s), 4.58-4.48 (1H, m), 2.93 (2H, q, J = 7.3 Hz), 2.32 (3H, s), 2.05 (3H, s), 2.02 (3H, s), 1.76 (3H, d, J = 6.6 Hz), 1.36 (3H, t, J = 7.3 Hz), 1.34-1.05 (8H, m), 0.88 (3H, t, J = 7 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{31}N_4$: 365.2705, found 365.2685; 367 (3), 366 (27), 365 (100).

Example 506 spectral data: TLC R, 0.28 (20:80 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.67 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 1.8 Hz), 7.42-7.37

10 (1H, m), 4.56 (1H, hextet, J = 7.1 Hz), 2.99 (2H, q, J = 7.5 Hz), 2.43-2.33 (1H, m),
2.09-1.97 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.35-1.07 (2H,
m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 367 (12), 366 (14), 365 (67), 364 (24),
363 (100).

Example 507 spectral data: MS (NH,-CI): m/e 377 (M+H, 100%).

- Example 511 spectral data: TLC R, 0.51 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.87 (1H, d, J = 8.1 Hz), 7.83 (1H, d, J = 1.1 Hz), 7.68 (1H, dd, J = 8.1, 1.1 Hz), 3.60-3.51 (1H, m), 2.94 (2H, q, J = 7.5 Hz), 2.53-2.39 (1H, m), 2.36-2.20 (1H, m), 1.96 (1H, br), 1.42 (3H, t, J = 7.5 Hz), 0.88 (3H, t, J = 7.3 Hz), 0.88-0.78 (1H, m), 0.52-0.44 (2H, m), 0.24-0.16 (1H, m). MS (NH₃-CI): m/e 412 (7), 411
 20 (33), 410 (23), 409 (100).
 - Example 513 spectral data: TLC R, 0.62 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 7.83 (1H, d, J = 0.7 Hz), 7.68 (1H, dd, J = 8.0, 0.7 Hz), 4.21 (1H, br), 2.96 (2H, q, J = 7.5 Hz), 2.42 (2H, br), 2.12-1.97 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 1.40-1.20 (4H, m), 0.85 (3H, t, J = 7.3 Hz), 0.83
- 25 (3H, t, J = 7.6 Hz). MS (NH₃-CI): m/e 428 (8), 427 (38), 426 (29), 425 (100).

 Example 514 spectral data: TLC R₇ 0.51 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.86 (1H, d, J = 8.1 Hz), 7.83 (1H, d, J = 0.8 Hz), 7.68 (1H, dd, J = 8.1, 0.8 Hz), 4.20 (1H, br), 2.97 (2H, q, J = 7.7 Hz), 2.54-2.39 (2H, m), 2.15-2.01 (2H, m), 1.43 (3H, t, J = 7.7 Hz), 0.84 (6H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 400 (7), 399 (37), 398 (26), 397 (100).
 - Example 524 spectral data: TLC R, 0.50 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.76 (1H, d, J = 9.1 Hz), 6.90-6.87 (2H, m), 4.35 (1H, v br), 3.86 (3H, s), 2.93 (2H, q, J = 7.6 Hz), 2.48 (3H, s), 2.39 (2H, br), 2.00-1.90 (2H, m), 1.43 (3H, t, J = 7.6 Hz), 1.38-1.22 (2H, m), 1.18-1.02 (2H, m), 0.90 (6H, t, J = 7.3
- 35 Hz). MS (NH₃-CI): m/e calc'd for C₂₂H₃₁N₄O: 367.2498, found 367.2506; 369 (3), 368 (25), 367 (100).

Example 526 spectral data: TLC R, 0.28 (10:90 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.69 (1H, d, J = 8.1 Hz), 7.34-7.30 (2H, m), 4.40-4.35 (1H, m), 2.93 (2H, q, J = 7.4 Hz), 2.44 (3H, s), 2.38 (2H, m), 1.96 (2H, m), 1.43 (3H, t, J =

7.5 Hz), 1.35-1.22 (2H, m), 1.15-1.05 (2H, m), 0.90 (6H, t, J = 7.1 Hz). MS (NH₂-CI): m/e 374 (8), 373 (35), 372 (25), 371 (100). Analysis calc d for $C_{21}H_{27}N_4Cl$: C, 68.00; H, 7.35; N, 15.10; found: C, 67.89; H, 7.38; N, 14.94.

Example 528 spectral data: TLC R, 0.65 (30:70 ethyl acetate-hexane). H NMR (300 MHz,

- 5 CDCl₃): $\delta \cdot 8.97$ (1H, s), 7.86 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 1.1 Hz), 7.67 (1H, dd, J = 8.0, 1.1 Hz), 4.38 (1H, br), 2.95 (2H, q, J = 7.5 Hz), 2.39 (2H, br), 2.04-1.92 (2H, br), 1.42 (3H, t, J = 7.5 Hz), 1.40-1.21 (3H, m), 1.19-1.03 (1H, m), 0.91 (6H, t, J = 7.3 Hz). MS (NH₂-CI): m/e 428 (8), 427 (37), 426 (27), 425 (100).
 - Example 538 spectral data: TLC R, 0.56 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 10 CDCl₃): δ 8.96 (1H, s), 7.88 (1H, d, J = 8.0 Hz), 7.83 (1H, d, J = 0.8 Hz), 7.68 (1H, dd, J = 8.0, 0.8 Hz), 3.77 (1H, br), 2.95 (2H, q, J = 7.5 Hz), 2.61 (1H, br), 2.08 (1H, br), 1.45 (3H, t, J = 7.5 Hz), 1.36-1.25 (1H, m), 1.17 (3H, d, J = 6.6 Hz), 0.71 (3H, t, J = 7.3 Hz), 0.69 (3H, d, J = 7.0 Hz). MS (NH₃-CI): m/e 414 (7), 413 (33), 412 (24), 411 (100).
- Example 534 spectral data: MS (ESI): m/e 363 (M+2), 361 (M, 100 %). Example 544 spectral data: TLC R, 0.63 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.74 (1H, d, J = 9.1 Hz), 6.89-6.86 (2H, m), 3.86 (3H, s), 3.79-3.73 (1H, m), 2.93 (3H, dq, J = 7.7, 2.6 Hz), 2.49 (3H, s), 2.03-1.99 (1H, m), 1.81 (3H, d, J = 6.9 Hz), 1.41 (3H, t, J = 7.3 Hz), 0.84-0.74 (2H, m), 0.53-0.41 (2H,
- 20 m), 0.28-0.21 (1H, m). Example 548 spectral data: TLC R, 0.42 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.84 (1H, d, J = 7.7 Hz), 7.82 (1H, d, J = 0.9 Hz), 7.68 (1H, dd, J = 7.7, 0.9 Hz), 3.83-3.70 (1H, m), 3.00-2.90 (2H, m), 2.09-1.98 (1H, m), 1.83 (3H, d, J = 7.0 Hz), 1.40 (3H, t, J = 7.3 Hz), 0.88-0.78 (1H, m), 0.57-0.41 (2H, m),
- 25 0.30-0.20 (1H, m). MS (NH₃-CI): m/e 398 (6), 397 (31), 396 (22), 395 (100).

 Example 551 spectral data: TLC R_τ 0.56 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 6.94 (2H, s), 4.75 (1H, heptet, J = 7.0 Hz), 2.95 (2H, q, J = 7.7 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.80 (6H, d, J = 7.0 Hz), 1.36 (3H, t, J = 7.7 Hz). MS (NH3-CI): m/e 311 (4), 310 (34), 309 (100); Analysis calc'd for C₁₅H₂₆N₄•0.5H₂O: C, 71.89; H, 7.94; N, 17.65; found: C, 71.59; H, 7.83; N, 17.41.
- 30 c, 71.89; H, 7.94; N, 17.65; found: C, 71.59; H, 7.83; N, 17.41.

 Example 558 spectral data: TLC R, 0.53 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₂): δ 8.98 (1H, s), 7.86-7.81 (2H, m), 7.67 (1H, dd, J = 8.4, 1.1 Hz), 4.60-4.48 (1H, m), 3.01-2.93 (2H, m), 2.49-2.35 (1H, m), 2.13-2.00 (1H, m), 1.76 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.40-1.20 (4H, m), 0.87 (3H, t, J = 7.3 Hz). MS (NH₂-
- 35 CI): m/e 414 (8), 413 (38), 412 (27), 411 (100).

 Example 564 spectral data: TLC R, 0.34 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): 8 8.89 (1H, s), 7.77 (1H, d, J = 9.2 Hz), 6.89 (2H, m), 4.30-4.20 (1H, m), 3.86 (3H, s), 2.93 (2H, q, J = 7.5 Hz), 2.48 (3H, s), 2.45-2.35 (2H, m), 2.10-1.95 (2H, m),

1.44 (3H, t, J = 7.5 Hz), 1.40-1.20 (3H, m), 1.10-0.95 (1H, m), 0.84 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz).

Example 571 spectral data: TLC R, 0.40 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 6.95 (2H, s), 4.51 (1H, br), 3.44-3.24 (4H, m), 2.96 (2H, q, J

- 5 = 7.3 Hz), 2.95-2.87 (1H, m), 2.85-2.75 (1H, m), 2.59-2.49 (1H, m), 2.32 (3H, s), 2.27-2.18 (1H, m), 2.04 (3H, s), 2.04 (3H, s), 1.38 (3H, t, J = 7.7 Hz), 1.12 (3H, t, J = 7.0 Hz), 0.84 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{32}N_4O$: 380.2576, found 380.2554; 383 (4), 382 (28), 381 (100).
- Example 581 spectral data: TLC R, 0.33 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, 10 CDCl₃): δ 8.89 (1H, s), 6.95 (2H, s), 4.49-4.39 (1H, m), 4.23-4.13 (1H, m), 3.91 (1H, dd, J = 9.9, 4.8 Hz), 3.48 (1H, dq, J = 9.1, 7.0 Hz), 3.30 (1H, dq, J = 9.1, 7.0 Hz), 2.95 (2H, q, J = 7.7 Hz), 2.60-2.47 (1H, m), 2.32 (3H, s), 2.15-2.01 (1H, m), 2.04 (3H, s), 2.03 (3H, s), 1.37 (3H, t, J = 7.5 Hz), 1.00 (3H, t, J = 7.0 Hz), 0.86 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc d for $C_{22}H_{31}N_4O$: 367.2498, found 367.2497; 369 (4), 368

15

(27), 367 (100).

- Example 591 spectral data: TLC R, 0.42 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): 8 8.91 (1H, s), 6.95 (2H, s), 3.76 (1H, br), 3.47-3.40 (1H, m), 3.21 (3H, s), 2.99-2.90 (1H, m), 2.88 (2H, q, J = 7.3 Hz), 2.76 (1H, br), 2.51-2.41 (1H, m), 2.32 (3H, s), 2.09 (1H, br), 2.08 (3H, s), 2.04 (3H, s), 1.35 (3H, t, J = 7.3 Hz), 0.84-0.76
- 20 (1H, m), 0.56-0.44 (2H, m), 0.30-0.21 (1H, m). MS (NH₂-CI): m/e calc'd for C₂₃H₂₁N₄O: 379.2498, found 379.2514; 381 (4), 380 (27), 379 (100).

 Example 690 spectral data: TLC R, 0.12 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 9.01 (1H, s), 7.38-7.22 (5H, m), 6.75 (1H, s), 6.69 (1H, s), 5.48 (2H, s),

3.70 (3H, s), 2.84 (2H, q, J = 7.7 Hz), 2.37 (3H, s), 2.05 (3H, s), 1.26 (3H, t, J = 3.70 (3H, s)

- 25 7.7 Hz). MS (NH₃-CI): m/e 375 (4), 374 (28), 373 (100). Example 692 spectral data: TLC R₇ 0.32 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.48 (1H, s), 7.37-7.18 (5H, m), 7.11 (1H, s), 5.49 (2H, s), 2.84 (2H, q, J = 7.3 Hz), 2.38 (3H, s), 2.29 (6H, s), 1.31 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{24}N_4$: 356.2001, found 356.1978; 359 (4), 358 (28), 357
- 30 (100).

 Example 693 spectral data: TLC R, 0.22 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.78 (1H, d, J = 9.5 Hz), 6.90-6.87 (2H, m), 3.86 (3H, s), 3.62 (1H, br), 2.91 (2H, q, J = 7.5 Hz), 2.50 (3H, s), 2.40 (1H, br), 2.26-2.13 (1H, m), 1.92 (1H, br), 1.58 (1H, br), 1.43 (3H, t, J = 7.5 Hz), 1.35-1.25 (1H, m), 1.13-1.03
- 35 (1H, m), 0.95-0.75 (2H, m), 0.85 (3H, t, J = 7.1 Hz), 0.54-0.42 (2H, m), 0.22-0.17 (1H, m). MS (NH₃-CI): m/e 381 (4), 380 (25), 379 (100).
 - Example 697 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.74 (1H, d, J = 9.5 Hz), 6.90-6.86 (2H, m), 4.58-4.45 (1H, m), 2.95 (2H, dq, J = 7.7, 2.2 Hz), 2.48 (3H, s), 2.45-2.35 (1H, m), 2.09-1.99 (1H, m),

1.74 (3H, d, J = 7.0 Hz), 1.42 (3H, t, J = 7.5 Hz), 1.37-1.23 (3H, m), 1.11-1.03 (1H, m), 0.86 (3H, t, J = 7.0 Hz).

Example 724 spectral data: TLC R, 0.45 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.75 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H,

- 5 dd, J = 8.4, 2.6 Hz), 3.87 (3H, s), 3.76 (1H, br), 2.94 (2H, q, J = 7.3 Hz), 2.61 (1H, br), 2.09 (1H, br), 1.45 (3H, t, J = 7.3 Hz), 1.36-1.26 (1H, m), 1.15 (3H, d, J = 6.6 Hz), 0.71 (3H, t, J = 7.3 Hz), 0.68 (3H, d, J = 6.6 Hz). MS (NH₃-CI): m/e 377 (1), 376 (8), 375 (38), 374 (25), 373 (100).
 - Example 725 spectral data: TLC R, 0.31 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 10 CDCl₃): δ 8.88 (1H, s), 7.80 (1H, d, J = 9.2 Hz), 6.89 (2H, m), 3.86 (3H, s), 3.75 (1H, m), 2.92 (2H, q, J = 7.4 Hz), 2.60 (1H, m), 2.48 (3H, s), 2.05 (1H, m), 1.46 (3H, t, J = 7.4 Hz), 1.16 (3H, d, J = 7.0 Hz), 0.70 (3H, t, J = 7.3 Hz), 0.67 (3H, d, J = 6.6 Hz)
 - Example 727 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). 1H NMR (300 MHz,
- 15 CDCl₃): δ 8.90 (1H, s), 7.84 (1H, d, J = 2.2 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.65 (1H, dd, J = 8.4, 2.2 Hz), 3.76 (1H, br), 2.93 (1H, q, J = 7.3 Hz), 2.60 (1H, br), 2.08 (1H, br), 1.42 (3H, t, J = 7.3 Hz), 1.37-1.27 (1H, m), 1.16 (3H, d, J = 7.0 Hz), 0.69 (3H, t, J = 7.3 Hz), 0.67 (3H, d, J = 7.0 Hz). MS (NH₃-CI): m/e 414 (7), 413 (33), 412 (27), 411 (100).
- 20 Example 750 spectral data: TLC R, 0.42 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): 8 8.94 (1H, s), 7.73 (1H, d, J = 8.4 Hz), 7.10 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.4, 2.6 Hz), 3.87 (3H, s), 3.63 (1H, v br), 2.92 (2H, q, J = 7.3 Hz), 2.38 (1H, br), 2.22-2.10 (1H, m), 1.94 (1H, br), 1.42 (3H, t, J = 7.3 Hz), 1.41-1.29 (1H, m), 1.23-1.08 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.89-0.79 (1H, m), 0.51-0.41 (2H, m),
- 25 0.25-0.15 (1H, m). MS (NH₃-CI): m/e 388 (8), 387 (34), 386 (25), 385 (100). Example 751 spectral data: TLC R_r 0.36 (40:60 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.77 (1H, d, J = 9.1 Hz), 6.90 (2H, m), 3.86 (3H, s), 3.62 (1H, m), 2.84 (2H, q, J = 7.5 Hz), 2.49 (3H, s), 2.40 (1H, m), 2.19 (1H, m), 1.90 (1H, m), 1.43 (3H, t, J = 7.5 Hz), 1.38 (1H, m), 1.19 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.80
- 30 (1H, m), 0.49 (2H, m), 0.21 (1H, m).

 Example 753 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.73 (1H, d, J = 8.5 Hz), 7.65 (1H, dd, J = 8.5, 1.8 Hz), 3.65 (1H, br), 2.92 (1H, q, J = 7.5 Hz), 2.38 (1H, br), 2.25-2.14 (1H, m), 1.94 (1H, br), 1.43-1.26 (1H, m), 1.40 (3H, t, J = 7.5 Hz), 1.21-1.06 (1H, m),
- 35 0.92 (3H, t, J = 7.3 Hz), 0.91-0.79 (1H, m), 0.52-0.44 (2H, m), 0.22-0.16 (1H, m). MS (NH₃-CI): m/e 426 (9), 425 (42), 424 (31), 423 (100).
 - Example 767 spectral data: MS (NH,-CI): m/e 379 (M+H*, 100%).
 - Example 776 spectral data: TLC R, 0.41 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.73 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H,

dd, J = 8.4, 2.6 Hz), 4.28 (1H, br), 3.87 (3H, s), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.10-1.93 (2H, m), 1.43 (3H, t, J = 7.3 Hz), 1.40-1.23 (1H, m), 1.18-1.03 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.82 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{26}ClN_{2}O$: 373.1795, found 373.1815; 376 (8), 375 (35), 374 (24), 373 (100).

- 5 Example 777 spectral data: TLC R, 0.46 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.76 (1H, d, J = 9.0 Hz), 6.90-6.87 (2H, m), 4.29 (1H, br), 3.86 (3H, s), 2.94 (2H, q, J = 7.4 Hz), 2.48 (3H, s), 2.40 (2H, br), 2.10-1.92 (2H, m), 1.44 (3H, t, J = 7.4 Hz), 1.37-1.22 (1H, m), 1.18-1.02 (1H, m), 0.90 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{23}N_4O$: 353.2341, found 353.2328; 355 (3), 354 (23), 353 (100).
- Example 778 spectral data: TLC R, 0.58 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.86 (1H, d, J = 8.0 Hz), 7.83 (1H, d, J = 0.8 Hz), 7.68 (1H, dd, J = 8.0, 0.8 Hz), 4.30 (1H, br), 2.96 (2H, q, J = 7.5 Hz), 2.41 (2H, br), 2.11-1.95 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 1.42-1.22 (2H, m), 0.92 (3H, t, J = 7.3 Hz), 0.83
- 15 (3H, t, J = 7.3 Hz). MS (NH₂-CI): m/e 414 (8), 413 (39), 412 (28), 411 (100). Example 779 spectral data: TLC R_s 0.44 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.72 (1H, d, J = 8.0 Hz), 7.65 (1H, dd, J = 8.0, 1.8 Hz), 4.31 (1H, br), 2.94 (1H, q, J = 7.5 Hz), 2.40 (2H, br), 2.10-1.93 (2H, m), 1.40 (3H, t, J = 7.5 Hz), 1.37-1.21 (1H, m), 1.19-1.02 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₂-CI): m/e 414 (9), 413 (43), 412 (31), 411
 - (100).
 - Example 793 spectral data: MS (NH $_3$ -CI): m/e 367 (M+H * , 100%).
 - Example 799 spectral data: TLC R, 0.61 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.47 (1H, s), 7.10 (1H, s), 4.28 (1H, br), 2.93 (2H, q, J = 7.3
- 25 Hz), 2.41 (1H, br), 2.36 (3H, s), 2.28 (6H, s), 2.07-1.91 (3H, m), 1.42 (3H, t, J = 7.3 Hz), 1.35-1.21 (1H, m), 1.19-1.03 (1H, m), 0.90 (3H, t, J = 7.2 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₂-CI): m/e calc'd for $C_{22}H_{30}N_4$: 350.2470, found 350.2476; 353 (3), 352 (24), 351 (100).
 - Example 802 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 30 CDCl₃): 8 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.73 (1H, d, J = 8.4 Hz), 7.65 (1H, dd, J = 8.4, 1.8 Hz), 3.53 (1H, br), 2.91 (1H, q, J = 7.4 Hz), 2.52-2.35 (1H, m), 2.34-2.20 (1H, m), 1.95 (1H, br), 1.40 (3H, t, J = 7.4 Hz), 0.89-0.79 (1H, m), 0.87 (3H, t, J = 7.3 Hz), 0.55-0.42 (2H, m), 0.25-0.15 (1H, m). MS (NH₃-CI): m/e 412 (8), 411 (41), 410 (29), 409 (100).
- 35 Example 803 spectral data: TLC R, 0.33 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.85 (1H, d, J = 2.2 Hz), 7.71 (1H, d, J = 8.4 Hz), 7.64 (1H, dd, J = 8.4, 2.2 Hz), 3.77 (1H, dq, J = 9.9, 7.0 Hz), 2.93 (1H, dq, J = 7.5, 2.0 Hz), 2.09-1.98 (1H, m), 1.82 (3H, d, J = 7.0 Hz), 1.39 (3H, t, J = 7.5 Hz), 0.86-0.78 (1H,

m), 0.59-0.50 (1H, m), 0.49-0.40 (1H, m), 0.29-0.20 (1H, m). MS (NH₃-CI): m/e 399 (2), 398 (8), 397 (39), 396 (24), 395 (100).

Example 804 spectral data: TLC R, 0.31 (20:80 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.71-7.62 (2H, m), 4.55 (1H, m), 2.95

5 (2H, q, J = 7.5 Hz), 2.43-2.32 (1H, m), 2.10-1.98 (1H, m), 1.75 (3H, d, J = 7.0 Hz), 1.39 (3H, t, J = 7.5 Hz), 1.38-1.27 (1H, m), 1.19-1.09 (1H, m), 0.93 (3H, t, J = 7.1 Hz). MS (NH₃-CI): m/e 400 (7), 399 (32), 398 (22), 397 (100). Analysis calc'd for $C_{15}H_{20}ClF_3N_4$: C, 57.51; H, 5.08; N, 14.12; found: C, 57.55; H, 5.06; N, 13.95.

Example 805 spectral data: TLC R, 0.41 (30:70 ethyl acetate-hexane). H NMR (300 MHz,

- 10 CDCl₃): δ 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.70 (1H, d, J = 8.0 Hz), 7.64 (1H, dd, J = 8.0, 1.8 Hz), 4.58-4.49 (1H, m), 2.95 (1H, q, J = 7.5 Hz), 2.45-2.33 (1H, m), 2.11-2.00 (1H, m), 1.75 (3H, d, J = 6.6 Hz), 1.39 (3H, t, J = 7.5 Hz), 1.38-1.21 (4H, m), 0.86 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e 414 (8), 413 (40), 412 (29), 411 (100). Example 807 spectral data: TLC R, 0.49 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 15 CDCl₃): δ 8.91 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.73 (1H, d, J = 8.4 Hz), 7.65 (1H, dd, J = 8.4, 1.8 Hz), 4.38-4.19 (1H, m), 2.94 (1H, q, J = 7.5 Hz), 2.40 (2H, br), 2.10-1.98 (2H, m), 1.41 (3H, t, J = 7.5 Hz), 1.38-1.20 (3H, m), 1.09-0.99 (1H, m), 0.84 (3H, t, J = 7.0 Hz), 0.81 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 428 (7), 427 (32), 426 (25), 425 (100).
- Example 808 spectral data: TLC R, 0.51 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.72 (1H, d, J = 8.4 Hz), 7.64 (1H, dd, J = 8.4, 1.8 Hz), 4.37 (1H, br), 2.93 (1H, q, J = 7.5 Hz), 2.38 (2H, br), 2.02-1.90 (2H, m), 1.40 (3H, t, J = 7.5 Hz), 1.38-1.20 (2H, m), 1.18-1.01 (2H, m), 0.90 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 428 (8), 427 (39), 426 (30), 425 (100).
- 25 Example 809 spectral data: TLC R, 0.40 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.84 (1H, d, J = 2.2 Hz), 7.72 (1H, d, J = 8.1 Hz), 7.65 (1H, dd, J = 8.1, 2.2 Hz), 4.20 (1H, br), 2.94 (1H, q, J = 7.5 Hz), 2.51-2.38 (2H, m), 2.13-2.00 (2H, m), 1.41 (3H, t, J = 7.5 Hz), 0.82 (6H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 400 (7), 399 (36), 398 (25), 397 (100).
- Example 824 spectral data: TLC R, 0.27 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 8.10 (1H, s), 7.94 (1H, d, J = 8.8 Hz), 7.87 (1H, d, J = 8.1 Hz), 4.56 (1H, m), 2.96 (2H, q, J = 7.5 Hz), 2.40 (1H, m), 2.10-2.00 (1H, m), 1.76 (3H, d, J = 7.0 Hz), 1.39 (3H, t, J = 7.5 Hz), 1.33-1.10 (2H, m), 0.93 (3H, t, J = 7.1 Hz).

 ¹⁹F NMR (300 MHz, CDCl₃): δ -58.2, -63.4. MS (NH₃-CI): m/e 433 (3), 432 (24), 431 (100).
- 25 Example 832 spectral data: TLC R, 0.34 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.73 (1H, d, J = 8.5 Hz), 7.10 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.5, 2.6 Hz), 3.87 (3H, s), 3.55 (1H, br), 2.92 (2H, q, J = 7.3 Hz), 2.53-2.35 (1H, m), 2.31-2.18 (1H, m), 1.96 (1H, br), 1.42 (3H, t, J = 7.3 Hz), 0.87 (3H, t, J =

7.5 Hz), 0.87-0.79 (1H, m), 0.53-0.43 (2H, m), 0.25-0.15 (1H, m). MS (NH₃-CI): m/e 374 (8), 373 (34), 372 (24), 371 (100).

Example 833 spectral data: TLC R_r 0.20 (30:70 ethyl acetate-hexane). 3H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.10 (1H, d, J = 2.5 Hz), 6.96 (1H,

- 5 dd, J = 8.4, 2.5 Hz), 4.16 (2H, d, J = 7.0 Hz), 3.87 (3H, s), 3.01 (2H, q, J = 7.3 Hz), 1.46 (3H, t, J = 7.3 Hz), 1.37-1.27 (1H, m), 0.66-0.52 (4H, m). MS (NH₃-CI): m/e 346 (6), 345 (32), 344 (23), 343 (100).
 - Example 834 spectral data: TLC R, 0.18 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 1 Hz), 6.96 (1H, dd,
- - Example 835 spectral data: TLC R, 0.39 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.5 Hz), 6.95 (1H, dd, J = 8.4, 2.5 Hz), 4.53-4.47 (1H, m), 3.87 (3H, s), 3.01-2.92 (2H, m), 2.48-2.35 (1H, m), 2.11-1.99 (1H, m), 1.74 (3H, d, J = 6.9 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.38-
- 20 1.22 (3H, m), 1.14-1.00 (1H, m), 0.86 (3H, t, J = 7.1 Hz). MS (NH₃-CI): m/e 376 (7), 375 (33), 374 (23), 373 (100).
 - Example 836 spectral data: TLC R, 0.42 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.79 (1H, d, J = 8.8 Hz), 7.09 (1H, d, J = 2.5 Hz), 6.95 (1H, dd, J = 8.8, 2.5 Hz), 4.55-4.47 (1H, m), 3.87 (3H, s), 3.01-2.92 (2H, m), 2.48-2.35
- 25 (1H, m), 2.10-1.97 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.35-1.20 (5H, m), 1.18-1.02 (1H, m), 0.84 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{22}ClN_{4}O$: 387.1952, found 387.1944; 391 (1), 390 (8), 389 (35), 388 (25), 387 (100). Example 837 spectral data: TLC R, 0.45 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.73 (1H, d, J = 8.8 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H,
- 30 dd, J = 8.8, 2.6 Hz), 4.25 (1H, br), 3.87 (3H, s), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.10-2.00 (2H, m), 1.43 (3H, t, J = 7.3 Hz), 1.37-1.20 (3H, m), 1.12-0.98 (1H, m), 0.84 (3H, t, J = 7.3 Hz), 0.82 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e 390 (8), 389 (34), 388 (25), 387 (100).
- Example 838 spectral data: TLC R, 0.48 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.72 (1H, d, J = 8.5 Hz), 7.09 (1H, d, J = 2.2 Hz), 6.96 (1H, dd, J = 8.5, 2.2 Hz), 4.36 (1H, v br), 3.87 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 2.39 (2H, br), 2.02-1.90 (2H, m), 1.42 (3H, t, J = 7.3 Hz), 1.39-1.21 (2H, m), 1.18-1.03 (2H, m), 0.90 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{22}ClN_4O$: 387.1952, found 387.1958; 391 (1), 390 (8), 389 (34), 388 (26), 387 (100).

Example 839 spectral data: TLC R, 0.36 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.73 (1H, d, J = 8.5 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.5, 2.6 Hz), 4.19 (1H, br s), 3.87 (3H, s), 2.96 (2H, q, J = 7.5 Hz), 2.52-2.38 (2H, m), 2.13-1.99 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 0.83 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{24}ClN_4O$: 359.1639, found 359.1632; 362 (7), 361 (34), 360 (23), 359 (100).

Example 870 spectral data: MS (NH₂-CI): m/e 423 (M+H², 100%). Example 900 spectral data: TLC R₂ 0.38 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.75 (1H, d, J = 9.2 Hz), 6.90-6.86 (2H, m), 4.23 (2H, t, J =

- 10 7.7 Hz), 3.86 (3H, s), 2.95 (2H, q, J = 7.7 Hz), 2.48 (3H, s), 1.93-1.83 (2H, m), 1.45 (3H, t, J = 7.6 Hz), 1.43-1.36 (4H, m), 0.92 (3H, t, J = 7.0 Hz). Example 902 spectral data: TLC R, 0.28 (5:95 ethyl acetate-dichloromethane). 1 H NMR (300 MHz, CDCl₂): δ 8.94 (1H, s), 7.63 (1H, d, J = 8.1 Hz), 7.37 (1H, d, J = 1.0 Hz), 7.21
 - (1H, dd, J = 8.1, 1.0 Hz), 4.38 (1H, br), 2.94 (2H, q, J = 7.5 Hz), 2.41 (3H, s), 2.40 (2H, br), 2.00-1.90 (2H, m), 1.42 (3H, t, J = 7.5 Hz), 1.35-1.22 (2H, m), 1.17-1.03
- 15 (2H, br), 2.00-1.90 (2H, m), 1.42 (3H, t, J = 7.5 Hz), 1.35-1.22 (2H, m), 1.17-1.03 (2H, m), 0.90 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{22}ClN_4$: 371.2002, found 371.1993; 374 (8), 373 (34), 372 (25), 371 (100).
 - Example 944 spectral data: MS (NH,-CI): m/e 377 (M+H', 100%).
 - Example 945 spectral data: MS (NH3-CI): m/e 365 (M+H', 100%).
- 20 Example 947 spectral data: MS (NH₃-CI): m/e 353 (M+H², 100%).
 - Example 951 spectral data: MS (NH_2-CI) : m/e 381 $(M+H^2, 100\%)$. Example 952 spectral data: MS (NH_3-CI) : m/e 353 $(M+H^2, 100\%)$.
 - Example 1003 spectral data: TLC R, 0.10 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.43 (1H, s), 7.19 (2H, d, J = 8.8 Hz), 6.86 (2H, d, J = 8.8
- 25 Hz), 6.84 (1H, s), 5.42 (2H, s), 3.94 (3H, s), 3.91 (3H, s), 3.78 (3H, s), 2.86 (2H, q, J = 7.7 Hz), 2.45 (3H, s), 1.35 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 421 (4), 420 (27), 419 (100). Analysis calculated for $C_{24}H_{24}N_4O_3$: C, 68.88; H, 6.26; N, 13.39; found: C, 68.53; H, 6.30; N, 12.96.
 - Example 1012 spectral data: m.p. 147-148 °C. TLC R, 0.18 (30:70 ethyl acetate-hexane).
- Example 1023 spectral data: TLC R, 0.22 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.04 (1H, s), 7.78 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 1.1 Hz), 7.30 (1H, dd, J = 8.4, 1.1 Hz), 7.20 (2H, d, J = 8.5 Hz), 6.87 (2H, d, J = 8.5 Hz), 5.44 (2H, s), 3.79 (3H, s), 2.90 (2H, q, J = 7.5 Hz), 1.32 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 467 (1), 466 (8), 465 (35), 464 (27), 463 (100).

Example 1027 spectral data: TLC R_F 0.41 (25:75 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.76 (1H, d, J = 8.4 Hz), 7.45-7.44 (1H, m), 7.27 (1H, dm, J = 8 Hz), 4.61-4.51 (1H, m), 2.98 (2H, dq, J = 7.5, 1.6 Hz), 2.48-2.35 (1H, m), 2.10-1.98 (1H, m), 1.75 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.35-1.22 (2H, m), 0.93

(3H, t, J = 7.2 Hz). MS (NH₂-CI): m/e calculated for $C_{19}H_{21}ClF_3N_4O$: 413.1349, found 413.1344; 416 (8), 415 (35), 414 (24), 413 (100).

Example 1028 spectral data: TLC R, 0.45 (25:75 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.77 (1H, d, J = 8.4 Hz), 7.44 (1H, m), 7.27 (1H, dm, J = 8 Hz), 4.57-4.49 (1H, m), 2.97 (2H, dq, J = 7.7, 1.7 Hz), 2.47-2.36 (1H, m), 2.12-2.02

- 10 (1H, m), 1.75 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.7 Hz), 1.33-1.21 (4H, m), 0.86 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calculated for $C_{20}H_{23}ClF_3N_4O$: 427.1509, found 427.1507; 430 (8), 429 (35), 428 (25), 427 (100).
 - Example 1032 spectral data: TLC R, 0.44 (25:75 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.80 (1H, d, J = 8.4 Hz), 7.45-7.44 (1H, m), 7.30 (1H, dm, J =
- 15 8 Hz), 4.23-4.17 (1H, m), 2.97 (2H, q, J = 7.6 Hz), 2.54-2.39 (2H, m), 2.14-2.00 (2H, m), 1.43 (3H, t, J = 7.6 Hz), 0.84 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calculated for $C_{15}H_{21}ClF_3N_4o$: 413.1368, found 413.1373; 416 (8), 415 (34), 414 (24), 413 (100). Example 1150 spectral data: TLC R, 0.23 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz,
 - Example 1150 spectral data: TLC R, 0.23 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.73 (1H, d, J = 8.8 Hz), 7.36 (1H, d, J = 2.6 Hz), 7.17 (1H,
- 20 dd, J = 8.8, 2.6 Hz), 3.92 (3H, s), 3.70-3.55 (1H, m), 2.91 (2H, q, J = 7.4 Hz), 2.45-2.35 (1H, m), 2.25-2.15 (1H, m), 2.00-1.90 (1H, m), 1.40 (3H, t, J = 7.4 Hz), 1.40-1.30 (1H, m), 1.20-1.10 (1H, m), 0.91 (3H, t, J = 7.2 Hz), 0.87-0.77 (1H, m), 0.54-0.44 (2H, m), 0.25-0.15 (1H, m). MS (NH₂-CI): m/e calc'd for $C_{22}H_{26}F_3N_4O$: 419.2057, found 419.2058; 421 (3), 420 (25), 419 (100).
- Example 1153 spectral data: TLC R, 0.48 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.00 (1H, s), 7.89 (1H, d, J = 8.0 Hz), 7.84 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 7.40-7.30 (5H, m), 5.14 (1H, d, J = 10.2 Hz), 2.82 (1H, dq, J = 15.5, 7.7 Hz), 2.68 (1H, dq, J = 15.5, 7.7 Hz), 2.15 (1H, br), 1.23 (3H, t, J = 7.7 Hz), 1.13-1.03 (1H, m), 0.78-0.62 (2H, m), 0.53-0.43 (1H, m). MS (NH₂-CI): m/e calculated for
- 30 $C_{24}H_{21}ClF_3N_4$: 457.1407, found 457.1389; 460 (9), 459 (35), 458 (29), 457 (100). Example 1155 spectral data: TLC R, 0.46 (25:75 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.83 (1H, d, J = 8.4 Hz), 7.46-7.27 (7H, m), 5.13 (1H, d, J = 10.7 Hz), 2.88-2.62 (2H, m), 2.15 (1H, br), 1.26 (3H, t, J = 7.5 Hz), 1.12-1.02 (1H, m), 0.78-0.62 (2H, m), 0.54-0.44 (1H, m). MS (NH₃-CI): m/e calculated for $C_{24}H_{21}ClF_3N_4O$: 473.1361, found 473.1365; 476 (9), 475 (36), 474 (29), 473 (100).
- Example 1157 spectral data: TLC R, 0.19 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.77 (1H, d, J = 8.8 Hz), 7.40-7.30 (6H, m), 7.19 (1H, dd, J = 8.8, 2.2 Hz), 5.13 (1H, d, J = 10.6 Hz), 3.92 (3H, s), 2.79 (1H, dq, J = 15, 7.7 Hz), 2.64 (1H, dq, J = 15, 7.7 Hz), 2.12 (1H, br), 1.21 (3H, t, J = 7.7 Hz), 1.10-1.00 (1H,

m), 0.77-0.62 (2H, m), 0.55-0.45 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{25}H_{26}F_{3}N_{4}O$: 453.1902, found 453.1903; 455 (4), 454 (28), 453 (100).

Example 1158 spectral data: TLC R, 0.16 (20:80 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.46-7.25 (7H, m), 5.12 (1H, br d, J = 9 Hz), 2.85-2.62 (2H,

- 5 m), 2.14 (1H, br), 2.13 (3H, d, J = 0.7 Hz), 1.18 (3H, dq, J = 7.7, 4.1 Hz), 0.75-0.35 (4H, m). MS (NH₃-CI): m/e calc'd for $C_{24}H_{23}Cl_2N_4$: 437.1300, found 437.1294; 440 (19), 439 (67), 438 (32), 437 (100).
 - Example 1161 spectral data: MS (NH3-CI): m/e 441 (M+H', 100%).
 - Example 1163 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 10 CDCl₃): δ 9.00 (1H, s), 7.89 (1H, d, J = 8.4 Hz), 7.84 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.38 (2H, d, J = 9 Hz), 7.05 (2H, d, J = 9 Hz), 5.08 (1H, d, J = 10.2 Hz), 2.82 (1H, dq, J = 15.5, 7.7 Hz), 2.68 (1H, dq, J = 15.5, 7.7 Hz), 2.14 (1H, m), 1.25 (3H, t, J = 7.7 Hz), 1.10-1.01 (1H, m), 0.74-0.62 (2H, m), 0.51-0.41 (1H, m). MS (NH₃-CI): m/e calculated for $C_{24}H_{20}ClF_4N_4$: 475.1313, found 475.1307; 479 (1), 478 (9), 477 (35), 476
- 15 (30), 475 (100).
 Example 1222 spectral data: MS (NH₃-CI): m/e 363 (M+H', 100%).
 - Example 1252 spectral data: TLC R, 0.24 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.72 (1H, s), 7.87 (1H, dd, J = 8.8, 5.5 Hz), 7.46 (1H, dd, J = 8.8, 2.5 Hz), 7.35-7.26 (1H, m), 7.24-7.18 (6H, m), 7.08-7.01 (4H, m), 4.89-4.79 (1H, m), 4.49 (2H,
- 20 d, J = 12.1 Hz), 4.37 (2H, d, J = 12.1 Hz), 4.27 (2H, t, J = 9.3 Hz), 4.01 (2H, dd, J = 9.9, 5.2 Hz), 2.98 (2H, q, J = 7.7 Hz), 1.39 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calc'd for $C_{31}H_{29}F_4N_4O_2$: 565.2227, found 565.2226; 567 (7), 566 (36), 565 (100). Example 1255 spectral data: TLC R, 0.50 (25:75 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.80 (1H, d, J = 8.4 Hz), 7.45-7.43 (1H, m), 7.31-7.27 (1H, dm,
- 25 J = 8 Hz), 3.80-3.73 (1H, m), 2.93 (2H, q, J = 7.3 Hz), 2.40 (1H, br), 2.25-2.14 (1H, m), 1.95 (1H, br), 1.42 (3H, t, J = 7.5 Hz), 1.35-1.10 (2H, m), 0.92 (3H, t, J = 7.3 Hz), 0.91-0.80 (1H, m), 0.53-0.44 (2H, m), 0.24-0.14 (1H, m). MS (NH₃-CI): m/e calculated for $C_{21}H_{23}ClF_3N_4O$: 439.1519, found 439.1524; 442 (8), 441 (34), 440 (26), 439 (100).
- 30 Example 1256 spectral data: TLC R, 0.48 (25:75 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.79 (1H, d, J = 8.4 Hz), 7.45-7.43 (1H, m), 7.27 (1H, dm, J = 8 Hz), 4.35-4.25 (1H, m), 2.96 (2H, q, J = 7.4 Hz), 2.42 (2H, br), 2.12-1.93 (2H, m), 1.43 (3H, t, J = 7.4 Hz), 1.37-1.22 (2H, m), 0.91 (3H, t, J = 7.2 Hz), 0.83 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calculated for $C_{20}H_{23}ClF_3N_4O$: 427.1514, found 427.1515; 430 (8), 429 (34), 428 (25), 427 (100).
 - Example 1295 spectral data: TLC R, 0.37 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.38 (1H, s), 6.83 (1H, s), 4.46 (1H, m, J = 7.3 Hz), 3.94 (3H, s), 3.91 (3H, s), 2.96 (2H, q, J = 7.6 Hz), 2.49-2.39 (1H, m), 2.43 (3H, s), 2.12-2.02 (1H, m), 1.75 (3H, d, J = 6.5 Hz), 1.44 (3H, t, J = 7.5 Hz), 0.86 (3H, t, J = 7.5 Hz).

```
MS (NH<sub>2</sub>-CI): m/e calc'd for C_{20}H_{22}N_4O_2: 355.2134, found 355.2139; 357 (3), 356 (23), 355
      (100).
      Example 1296 spectral data: TLC R. 0.37 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
      CDCl_3: \delta 9.00 (1H, s), 7.68 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 2.2 Hz), 7.39 (1H,
      dd, J = 8.4, 2.2 Hz), 7.27 (2H, d, J = 8.4 Hz), 6.89 (2H, d, J = 8.4 Hz), 5.56 (1H, dd,
      J = 9.7, 7.4 \text{ Hz}), 3.79 (3H, s), 2.92-2.75 (3H, m), 2.65-2.55 (1H, m), 1.31 (3H, t, J = 9.7, 7.4 \text{ Hz}), 3.79 (3H, s), 2.92-2.75 (3H, m), 2.65-2.55 (1H, m), 1.31 (3H, t, J = 9.7, 7.4 \text{ Hz})
      7.5 Hz), 0.92 (3H, t, J = 6.6 Hz). MS (NH<sub>3</sub>-CI): m/e calc'd for C_{21}H_{21}Cl_2N_4O: 441.1249,
      found 441.1247; 445 (12), 444 (18), 443 (67), 442 (30), 441 (100).
      Example 1319 spectral data: MS (NH,-CI): m/e 459 (M+H*, 100%).
10
      Example 1320 spectral data: ^{1}H NMR (300 MHz, CDCl<sub>3</sub>): \delta 8.99 (s, 1H), 7.68 (d, 1H, J =
      8.4 Hz), 7.58 (d, 1H, J = 1.9 \text{ Hz}), 7.42-7.3 (m, 6H), 6.04 (q, 1H), 2.82, (m, 2H), 2.16
       (d, 3H, J = 7.4 Hz), 1.27 (t, 3H, J = 7.3, 7.7 Hz).
      Example 1321 7906-5 spectral data: ^{1}H NMR (300 MHz, CDCl<sub>1</sub>): \delta 9.02 (s, 1H), 7.98 (d,
      1H), 7.71 (d, 1H), 7.57 (d, 1H), 7.42-7.26 (m, 3H), 7.15 (m, 1H), 5.38 (d, 1H), 2.65
15
      (m, 1H), 2.4 (m, 1H), 1.85 (m, 1H), 1.82 (s, 3H), 0.97 (t, 3H), 0.8 (m, 2H), 0.6 (m,
      2H).
      Example 1322 spectral data: MS (NH,-CI): m/e 437 (M+H, 100%).
       Example 1323 spectral data: MS (NH,-CI): m/e 455 (M+H', 100%).
      Example 1324 spectral data: MS (ESI): m/e 425 (M+H*), 381 (M +H* -CO2, 100%).
20
      Example 1325 spectral data: MS (NH,-CI): m/e 413 (M+H', 100%).
       Example 1326 spectral data: MS (NH,-CI): m/e 427 (M+H', 100%).
       Example 1327 spectral data: MS (NH,-CI): m/e 427 (M+H, 100%).
       Example 1328 spectral data: MS (NH,-CI): m/e 427 (M+H<sup>+</sup>, 100%).
       Example 1329 spectral data: MS (NH<sub>3</sub>-CI): m/e 423 (M+H<sup>4</sup>, 100%).
25
      Example 1330 spectral data: MS (NH,-CI): m/e 418 (M+H', 100%).
       Example 1331 spectral data: MS (NH<sub>3</sub>-CI): m/e 418 (M+H', 100%).
       Example 1332 spectral data: MS (NH<sub>4</sub>-CI): m/e 499 (M+H', 100%).
       Example 1333 spectral data: MS (NH_-CI): m/e 453 (M+H', 100%).
       Example 1334 spectral data: MS (NH,-CI): m/e 423 (M+H', 100%).
30 Example 1335 spectral data: MS (NH,-CI): m/e 372 (M+H*, 100%).
       Example 1337 spectral data: MS (NH,-CI): m/e 443 (M+H*, 100%).
       Example 1338 spectral data: MS (NH,-CI): m/e 427 (M+H', 100%).
       Example 1339 spectral data: MS (NH,-CI): m/e 379 (M+H, 100%).
       Example 1341 spectral data: MS (NH,-CI): m/e 393 (M+H', 100%).
35
      Example 1342 spectral data: MS (NH,-CI): m/e 378 (M+H, 100%).
       Example 1343 spectral data: MS (NH,-CI): m/e 346 (M+H*, 100%).
       Example 1344 spectral data: MS (NH,-CI): m/e 363 (M+H*, 100%).
       Example 1346 spectral data: MS (NH,-CI): m/e 416 (M+H', 100%).
```

Example 1370 spectral data: TLC R, 0.23 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₂): δ 8.89 (1H, s), 7.72 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 2.5 Hz), 7.17 (1H, dd, J = 8.4, 2.5 Hz), 4.27 (1H, br), 3.91 (3H, s), 2.93 (2H, q, J = 7.7 Hz), 2.40 (2H, br), 2.10-1.95 (2H, m), 1.41 (3H, t, J = 7.7 Hz), 1.39-1.27 (1H, m), 1.20-1.07 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.5 Hz). MS (NH₂-CI): m/e calc'd for $C_{21}H_{24}F_{3}N_{4}O$: 407.2058, found 407.2052; 409 (3), 408 (24), 407 (100).

Example 1371 spectral data: MS (ESI): m/e 377 (M+2), 375 (M, 100 %).

- (b) Q1 = 2-tetrazolyl
- (c) Q2 = 1,2,4-triazol-2-yl

10

TABLE 1A

mp, Ex. R² R12 R^{11} R⁶ R1a R1b R3 R^4 X °C No. C_3H_7 1043 CH₃ CH₂ CH₃ CH₃ CH₃ Н CH₃ oil

20 Key:

15

(a) Where the compound is indicated as an "oil", data is provided below:

Example 1043 spectral data: TLC R, 0.40 (30:70 ethyl acetate-hexane). 1 H 25 NMR (300 MHz, CDCl₃): d 8.91 (1H, s), 7.43 (1H, s), 7.10 (1H, s), 4.60-4.50 (1H, m), 2.94 (2H, dq, J = 7.5, 2.0 Hz), 2.45-2.35 (1H, m), 2.35 (3H, s), 2.28 (6H, s), 2.07-1.97 (1H, m), 1.73 (3H, d, J = 6.9 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.40-1.27 (1H, m), 1.20-1.07 (1H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{29}N_4$: 337.2392, found

337.2396; 339 (3), 338 (23), 337 (100). Analysis calc'd for $C_{21}H_{20}N_4\colon C$, 74.96; H, 8.40; N, 16.65; found: C, 74.28; H, 8.02; N, 16.37.

5 TABLE 1B

10

Ex. No.	R ²	х	R ⁴	R ⁵	Ria	R ^{1b}	mp,
1270	СН₃	CH₂	CF ₃	O (CH ₂) ₂ - OH	c-C₃H₅	C-C ₃ H ₅	-
1271	CH3	CH3	CF ₃	OCH ₂ CO ₂ - C ₂ H ₅	c-C ₃ H ₅	c-C ₃ H ₅	-
1272	СН,	CH ₂	CF ₃	$OCH_2CO-N(CH_3)_2$	C-C ₃ H ₅	C-C ₃ H ₅	-
1273	CH ₃	CH ₂	CF3	O(CH ₂) ₂ - NMe ₃ *Cl*	C-C ₃ H ₅	C-C ₃ H ₅	-
1274	CH ₃	CH ₂	CF ₃	OCH ₂ CH- (OH)C ₂ H ₅	C-C ₃ H ₅	C-C ₃ H ₅	-
1275	CH ₃	CH ₂	OCH ₂ OCH ₃	CH ₃	CH3	C ₃ H ₇	77-79
1276	СН,	CH ₂	ОН	CH ₃	CH ₃	C ₃ H ₇	_
1277	CH ₃	CH ₂	OC ₂ H ₅	CH3	CH ₃	C_3H_7	-
1278	CH ₃	CH ₂	OC ₃ H ₇	CH ₃	CH ₃	C_3H_7	-
1279	CH ₃	CH ₂	O(CH ₂) ₂ - OH	CH3	СН₃	C ₃ H ₇	- `
1280	CH3	CH ₂	OCH ₂ CO ₂ ~ C ₂ H ₅	CH ₃	CH ₃	C ₃ H,	-
1281	СН3	CH ₂	OCH ₂ CO- N(CH ₃) ₂	CH₃	СН3	С3Н,	-
1282	СН₃	CH2	$O(CH_2)_2-NMe_3^*Cl^-$	CH ₃	CH ₃	C ₃ H ₇	-

PCT/US98/13913

WO 99/01454

1283 CH₃ CH₂ OCH₂CH- CH₃ CH₃ C $_3$ H $_7$ - (OH) C $_2$ H $_5$

5 TABLE 1C

$$R^{1a}$$
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}

Ex.	х	R ⁴	R ⁵	R ¹¹	R ^{1a}	R ^{1b}	mp, °C
1501	CH ₂	Cl	CF ₃	н	C ₃ H ₇	OCH ₃	76-78
1502	CH ₂	Cl	CF ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	oil
1503	CH ₂	Cl	Cl	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1504	CH ₂	Cl	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1505	CH ₂	CF ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1506	CH ₂	Cl	SO ₂ CH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1507	CH ₂	Cl	COCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	
1508	CH ₂	СН3	OCH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1509	CH ₂	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1510	CH ₂	CH ₃	OCH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1511	CH ₂	CH ₃	CH ₃	СН,	C_2H_5	C ₂ H ₄ OCH ₃	-
1512	CH ₂	Cl	CF3	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1513	CH ₂	C1	Cl	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	· -
1514	CH ₂	C1	OCH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1515	CH ₂	CF3	OCH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	_
1516	CH₂	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1517	CH₂	c1	COCH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1518	CH ₂	СН3	OCH ₃	CH ₃	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1519	CH ₂	C1	CH ₃	F	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-

1520	CH ₂	CH ₃	OCH ₃	F	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1521	CH ₂	CH ₃	СН3	CH ₃	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1522	CH ₂	Cl	CF3	Н	C ₂ H ₅	CH ₂ OCH ₃	oil
1523	CH ₂ .	_ C1	Cl	н	C ₂ H ₅	CH ₂ OCH ₃	-
1524	CH ₂	Cl	OCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1525	CH ₂	CF ₃	OCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1526	CH ₂	C1	SO₂CH₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1527	CH ₂	cı	COCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1528	CH ₂	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	CH₂OCH₃	-
1529	CH ₂	C1	CH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	-
1530	CH ₂	CH ₃	OCH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	-
1531	CH ₂	CH ₃	CH ₃	CH ₃	C ₂ H ₅	CH₂OCH₃	-
1532	CH ₂	cı	CF ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1533	CH ₂	cı	Cl	Н	C-C3H5	CH ₂ OCH ₃	-
1534	CH ₂	Cl	OCH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1535	CH ₂	CF ₃	OCH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1536	CH ₂	C1	SO ₂ CH ₃	H	C-C ₃ H ₅	CH₂OCH₃	-
1537	CH ₂	c1	COCH ₃	Н	C-C ₃ H ₅	CH2OCH3	-
1538	CH ₂	CH ₃	осн3	CH ₃	C-C ₃ H ₅	CH ₂ OCH ₃	-
1539	CH2	<u>cı</u>	CH3	F	c-C ₃ H ₅	CH ₂ OCH₃	
1540	CH ₂	CH ₃	OСН ₃	F	C-C ₃ H ₅	СН ₂ ОСН ₃	· <u>-</u>
1541	CH ₂	CH ₃	СН,	CH ₃	c-C ₃ H ₅	CH ₂ OCH ₃	· –
1542	0	Cl	CF3	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	oil
1543	O .	Cl	Cl	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1544	0	Cl	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	•
1545	0	CF ₃	OCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1546	. 0	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1547	0	Cl	COCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	<u>-</u>
1548	0	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1549	0	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1550	0	CH ₃	OCH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1551	0	CH ₃	CH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	· -
1552	0	Cl	CF ₃	Н	, C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1553	0	Cl	Cl	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1554	. 0	Cl	OCH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1555	0	CF3	OCH3	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1556	0	Cl	SO ₂ CH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	_

WO 99/01454	PCT/US98/13913
WO 33/01434	101,0000,1071

1557	0	Cl	сосн3	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1558	0	СН₃	OCH ₃	CH ₃	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	~
1559	0	Cl	СН3	F	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	•••
1560	Ο.	CH ₃	OCH ₃	F	C-C3H5	C ₂ H ₄ OCH ₃	-
1561	0	CH ₃	СН₃	CH ₃	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1562	0	Cl	CF ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	oil
1563	0	C1	OCH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	-
1564	0	CF ₃	OCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1565	0	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	CH₂OCH₃	-
1566	0	C1	COCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	
1567	0	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	CH ₂ OCH ₃	-
1568	0	Cl	СН,	F	C ₂ H ₅	CH ₂ OCH ₃	- ·
1569	0	CH ₃	OCH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	-
1570	0	CH ₃	CH ₃	CH ₃	C ₂ H ₅	CH ₂ OCH ₃	-
1571	0	Cl	CF ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1572	0	Cl	Cl	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1573	0	Cl	OCH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1574	0	CF ₃	OCH3	н	c-C₃H₅	CH ₂ OCH ₃	-
1575	0	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1576	0	Cl	COCH ₃	Н	c-C ₃ H ₅	CH ₂ OCH ₃	-
1577	0	CH ₃	OCH ₃	CH ₃	C-C ₃ H ₅	CH ₂ OCH ₃	-
1578	0	Cl	CH3	F	c-C ₃ H ₅	CH ₂ OCH ₃	
1579	0	СН3	OCH ₃	F	C-C ₃ H ₅	CH₂OCH₃	
1580	o	CH₃	CH ₃	СН₃	C-C ₃ H ₅	CH₂OCH₃	-

TABLE 1D

5

$$R^{1a}$$
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}

Ex. No.	x	R ⁴	R ⁵	R ¹¹	R1a	R ^{1b}	mp, °C
1601	CH ₂	CH ₃	C1	н	C₂H₅	C-C ₃ H ₅	109-111
1602	CH₂	C1	C1	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1603	CH ₂	Cl	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	_
1604	CH ₂	CF ₃	OCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1605	CH ₂	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1606	CH ₂	Cl	COCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1607	CH ₂	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1608	CH ₂	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1609	CH₂	СН₃	OCH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1610	CH ₂	CH ₃	СН3	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1611	CH ₂	Cl	CF ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1612	CH ₂	Cl	Cl	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1613	CH ₂	C1	OCH ₃	н	C-C3H5	C ₂ H ₄ OCH ₃	-
1614	CH ₂	CF ₃	OCH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1615	CH ₂	Cl	SO2CH3	Н	C-C ₃ H ₅	C2H4OCH3	-
1616	CH ₂	Cl	COCH ₃	Н	C-C3H5	C ₂ H ₄ OCH ₃	-
1617	CH ₂	CH ₃	OCH3	CH ₃	C-C ₃ H ₅	C2H4OCH3	-
1618	CH ₂	c1	СН3	F	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1619	CH ₂	CH ₃	осн,	F	C-C ₃ H ₅	C2H4OCH3	-
1620	CH ₂	CH ₃	СН,	CH ₃	C-C ₃ H ₅	C2H4OCH3	-
1621	CH ₂	cl	CF ₃	н	C ₂ H ₅	CH₂OCH₃	oil
1622	CH ₂	Cl	Cl	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1623	CH ₂	Cl	осн,	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1624	CH ₂	CF ₃	осн,	н	C₂H₅	CH₂OCH₃	-
1625	CH ₂	Cl	SO ₂ CH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	-
1626	CH ₂	C1	COCH3	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1627	CH ₂	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	CH ₂ OCH ₃	-
1628	CH ₂	Cl	СН3	F	C ₂ H ₅	CH ₂ OCH ₃	-
1629	CH₂	СН3	OCH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	-
1630	CH₂	СН3	CH ₃	СН3	C ₂ H ₅	CH ₂ OCH ₃	-
1631	CH ₂	Cl	CF ₃	н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1632	CH ₂	cı	Cl	Н	C-C ₃ H ₅	CH₂OCH₃	_
1633	CH ₂	Cl	OCH ₃	H	c-C ₃ H ₅	CH ₂ OCH ₃	-
1634	CH ₂	CF ₃	OCH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	_

1635	CH ₂	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	CH₂OCH₃	-
1636	CH ₂	cı	COCH ₃	н	C-C ₃ H ₅	CH₂OCH₃	-
1637	CH ₂	CH3	OCH ₃	CH ₃	$C-C_3H_5$	CH ₂ OCH ₃	-
1638	CH ₂ .	Cl	CH ₃	F	C-C ₃ H ₅	CH ₂ OCH ₃	-
1639	CH ₂	CH ₃	OCH3	F	C-C ₃ H ₅	CH ₂ OCH ₃	-
1640	CH ₂	CH ₃	СН3	CH ₃	C-C ₃ H ₅	CH ₂ OCH ₃	-
1641	0	Cl	CF ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	oil
1642	0	Cl	Cl	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1643	0	Cl	OCH ₃	Н	C ₂ H ₅	C2H4OCH3	-
1644	0	CF ₃	OCH3	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	- ·
1645	0	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	C2H4OCH3	-
1646	0	Cl	COCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1647	0	CH ₃	OCH3	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1648	0	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1649	0	CH ₃	OCH3	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1650	0	CH ₃	CH3	CH3	C ₂ H ₅	C ₂ H ₄ OCH ₃	· -
1651	0	Cl	CF ₃	Н	$C-C_3H_5$	C ₂ H ₄ OCH ₃	-
1652	0	C1	Cl	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1653	0	Cl	OCH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1654	0	CF,	осн,	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1655	0	C1_	SO ₂ CH ₃	H	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1656	0	C 1	COCH ₃	Н	c-C3H5	C ₂ H ₄ OCH ₃	-
1657	0	CH3	OCH ₃	СН	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1658	0	<u>c1</u>	CH ₃	F	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1659	0	CH ₃	осн3	F	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1660	0	CH₃	CH ₃	CH ₃	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1661	0	C1	CF ₃	н	C₂H₅	CH ₂ OCH ₃	oil
1662	0	<u>c1</u>	осн,	Н	C ₂ H ₅	CH ₂ OCH ₃	
1663	0	CF ₃	OCH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	
1664	0	_c1	SO ₂ CH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	
1665	0	<u>C1</u>	COCH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	
1666	0	СН₃	OCH ₃	СН3	C ₂ H ₅	CH ₂ OCH ₃	-
1667	0	c1	СН3	F	C ₂ H ₅	CH ₂ OCH ₃	-
1668	0	CH ₃	осн,	F	C ₂ H ₅	CH ₂ OCH ₃	
1669	0	СН3	CH ₃	СН3	C ₂ H ₅	CH ₂ OCH ₃	-
1670	0	Cl	CF,	н	c-C ₃ H ₅	CH ₂ OCH ₃	

1672 O C1 OCH3 H C-C3H5 CH2OCH3 - 1673 O CF3 OCH3 H C-C3H5 CH2OCH3 - 1674 O C1 SO2CH3 H C-C3H5 CH2OCH3 - 1675 O C1 COCH3 H C-C3H5 CH2OCH3 - 1676 O CH3 OCH3 CH3 C-C3H5 CH2OCH3 - 1677 O C1 CH3 F C-C3H5 CH2OCH3 - 1678 O CH3 OCH3 F C-C3H5 CH2OCH3 - 1679 O CH3 CH3 CH3 CC-C3H5 CH2OCH3 -	1671	0	C1	C1	Н	C-C ₃ H ₅	CH₂OCH₃	
1674 O C1 SO ₂ CH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1675 O C1 COCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1676 O CH ₃ OCH ₃ CH ₃ C-C ₃ H ₅ CH ₂ OCH ₃ - 1677 O C1 CH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ - 1678 O CH ₃ OCH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ -	1672	0	C1	осн,	н	C-C ₃ H ₅	CH ₂ OCH ₃	
1675 O C1 COCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1676 O CH ₃ OCH ₃ CH ₃ C-C ₃ H ₅ CH ₂ OCH ₃ - 1677 O C1 CH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ - 1678 O CH ₃ OCH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ -	1673	0	CF ₃	осн₃	Н	c-C ₃ H ₅	CH₂OCH₃	
1676 O CH ₃ OCH ₃ CH ₃ C-C ₃ H ₅ CH ₂ OCH ₃ - 1677 O Cl CH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ - 1678 O CH ₃ OCH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ -	1674	0 .	Cl	SO ₂ CH ₃	н	c-C ₃ H ₅	сн₂осн₃	
1677 O C1 CH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ - 1678 O CH ₃ OCH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ -	1675	0	C1	СОСН₃	н	c-C ₃ H ₅	сн,осн,	-
1678 O CH ₃ OCH ₃ F C-C ₃ H ₅ CH ₂ OCH ₃ -	1676	0	CH ₃	осн3	CH ₃	C-C ₃ H ₅	CH ₂ OCH ₃	
70,0	1677	0	Cl	СН₃	F	C-C3H5	CH ₂ OCH ₃	
1679 O CH ₃ CH ₃ CH ₃ C-C ₃ H ₅ CH ₂ OCH ₃ -	1678	0	CH ₃	ОСН ₃	F	C-C3H5	CH₂OCH₃	·
	1679	0	CH ₃	СН3	CH₃	C-C ₃ H ₅	CH ₂ OCH ₃	

The methods discussed below in the preparation of 1-5 benzyl-6-methyl-4-(2,4,6-trimethylphenyl)imidazo[4,5-c]pyridine (Example 2001, Table 2, Structure A) may be used to prepare all of the examples of Structure A contained in Table 2, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

10

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 2, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

Example 2001

Preparation of 1-benzyl-6-methyl-4-(2,4,6-trimethylphenyl)imidazo[4,5-c]pyridine

20

Part A. A solution of 4-chloro-6-methyl-3-nitropyridone (5.0 g, 26.5 mmol) in acetonitrile (93 mL) was treated with benzylamine (2.89 mL, 26.5 mmol) and diisopropylethylamine (5.54 mL, 31.8 mmol). The mixture was heated to reflux for 4 hrs., then cooled to ambient temperature and allowed to stir for 12 hrs. The mixture was partitioned between dichloromethane and water (200 mL each), and the aqueous layer was extracted with dichloromethane (200 mL). The

1.

extracts were washed in sequence with water (200 mL) and combined, and the resulting precipitate was collected by filtration. The filtrate was dried over sodium sulfate, refiltered and evaporated to afford a second crop of crystalline product, 4-benzylamino-6-methyl-3-nitropyridone (6.74 g total, 26.0 mmol, 98%). m.p. 246-247 °C. TLC R_r 0.35 (10:90 isopropanol-ethyl acetate). ¹H NMR (300 MHz, CDCl₃): d 10.48 (1H, br s), 9.69 (1H, br s), 7.41-7.26 (5H, m), 5.66 (1H, s), 4.57 (2H, d, J = 5.5 Hz), 2.26 (3H, s). MS (NH₃-CI): m/e 261 (10), 260 (70), 226 (100).

Part B. A solution of the pyridone from Part A (6.72 g, 25.9 mmol) in phosphorus oxychloride (52 mL, 25.5 mmol) was stirred at ambient temperature for 3 d. The reaction mixture was poured into a mixture of ice (150 g) and dichloromethane (200 mL). After the ice had melted, 100 mL more dichloromethane was added, and the pH of the mixture was adjusted to 7 with solid NaHCO3. The mixture was separated, and the aqueous phase was extracted with 20 dichloromethane. The extracts were combined, dried over sodium sulfate, filtered and evaporated to afford the product (4-benzylamino-2-chloro-6-methyl-3-nitropyridine) as a bright yellow crystalline solid (6.45 g, 23.2 mmol, 90%). TLC $R_{\rm F}$ 0.76 (ethyl acetate). ¹H NMR (300 MHz, CDCl₃): d 25 7.43-7.26 (5H, m), 7.04 (1H, br), 6.47 (1H, s), 4.48 (2H, d, J = 5.5 Hz), 2.40 (3H, s). MS (NH₃-CI): m/e 281 (5), 280 (35), 279 (17), 278 (100).

Part C. A solution of the nitro compound from Part B above (6.42 g, 23.1 mmol) in methanol (162 mL) was treated with iron powder (13.61 g) and glacial acetic acid (13.6 mL). The resulting mixture was heated to reflux for 2 h, then cooled, filtered through celite (with methanol washing) and evaporated. The residual material was taken up in dichloromethane (231 mL) and 1 N aq. HCl (162 mL), and adjusted to neutral pH by addition of solid NaHCO3. This mixture was filtered through celite and separated, and the aqueous phase was extracted with dichloromethane. The

K)

extracts were combined, dried over Na_2SO_4 , filtered and evaporated to afford the product, 3-amino-4-benzylamino-2-chloro-6-methylpyridine, as a solid (5.59 g, 22.6 mmol, 98%). m.p. 177-178 °C. TLC R_F 0.60 (ethyl acetate). ¹H NMR (300 MHz, CDCl₃): d 7.41-7.32 (5H, m), 6.33 (1H, s), 4.54 (1H, br), 4.36 (2H, d, J = 5.1 Hz), 3.30 (2H, br s), 2.35 (3H, s). MS (NH₃-CI): m/e 251 (6), 250 (37), 249 (19), 248 (100).

- Part D. A suspension of the diamine from Part C above (2.15 10 g, 8.68 mmol) in triethyl orthopropionate (5 mL) was treated with conc. HCl (3 drops), and heated to reflux for 1 h, then cooled and the excess orthoester removed by vacuum distillation. The pot residue was taken up in ethyl acetate (120 mL), which was washed with water and brine (100 mL each). The aqueous phases were back-extracted in sequence with ethyl acetate, and the extracts were combined, dried over Na2SO4, filtered and evaporated to afford N-(4-benzylamino-2-chloro-6-methylpyridin-3yl)propionamide O-ethyl imidate (2.62 g, 91%). TLC $R_{\rm F}$ 0.40 20 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 7.39-7.29 (5H, m), 6.29 (1H, s), 4.64 (1H, br t, J = 5.8Hz), 4.37 (2H, d, J = 5.8 Hz), 4.25 (2H, br), 2.35 (3H, s), 2.18-2.11 (2H, m), 1.36 (3H, t, J = 7.0 Hz), 1.06 (3H, t, J= 7.7 Hz). MS (NH₃-CI): m/e 335 (7), 334 (34), 333 (22), 332 25 (100).
- Part E. A solution of the compound from Part D (2.62 g, 7.90 mmol) in phenyl ether (10 mL) was heated to 170 °C for 6 h, then cooled and poured into ethyl acetate (150 mL). This was washed with water and brine (100 mL each), then dried over Na₂SO₄, filtered and evaporated. The residual liquid was separated by column chromatography (hexane, then ethyl acetate) to afford the product, 1-benzyl-4-chloro-2-ethyl-6-methylimidazo[4,5-c]pyridine, as an oil (2.16 g, 96%). m.p. 140-141 °C. TLC R_F 0.06 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.36-7.32 (3H, m), 7.02-6.98 (2H, m), 6.93 (1H, s), 5.31 (2H, s), 2.89 (2H, q, J =

7.3 Hz), 2.58 (3H, s), 1.39 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 289 (6), 288 (35), 287 (20), 286 (100).

Part F. A solution of zinc chloride (538 mg) in 5 tetrahydrofuran (7 mL) was treated with a tetrahydrofuran solution of 2-mesitylmagnesium bromide (3.95 mL, 1.0 M), and stirred for 1 h. In another flask, a solution of bis(triphenylphosphine)palladium chloride (93 mg, 0.132 mmol) in tetrahydrofuran (5 mL) was treated with a hexane solution of diisobutylaluminum hydride (0.263 mL, 1.0 M), and this solution was stirred for 20 min. The arylzinc solution was then delivered by cannula to the flask containing the palladium catalyst, which was followed by the chloride prepared in Part E. The mixture was heated to reflux for 12 h, then cooled, and poured into water (100 mL). This was extracted with ethyl acetate (2 \times 150 mL), and the extracts were washed with brine, combined, dried over Na2SO4, filtered and evaporated. The residual material was separated by column chromatography (1:1 ethyl acetate-hexane) to afford the title 20 product as a solid, recrystallized to purity from ether (187 mg, 29%). m.p. 177-180 °C (ether). TLC R_F 0.27 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.38-7.32 (3H, m), 7.10-7.05 (2H, m), 6.96 (1H, s), 6.93 (2H, s), 5.32 (2H, s), 2.84 (2H, q, J = 7.3 Hz), 2.64 (3H, s), 2.30 (3H, s), 2.02(6H, s), 1.26 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 372 (4), 25 371 (29), 370 (100). Analysis calc'd for $C_{25}H_{27}N_3$: C, 81.26; H, 7.38; N, 11.37; found: C, 80.70; H, 7.26; N, 11.20.

30

TABLE 2

Ex. No.	х	R ⁴	R ⁵	R ¹¹	R ⁶	R¹	mp, °C:	
2001	CH ₂	Cl	Cl	Н	н	C-C ₄ H ₇	-	•
2002	CH ₂	Cl	Cl	Н	Н	c-C ₅ H ₉	111-112	
2003	CH ₂	Cl	Cl	Н	Н	C-C6H11	oil	
2004	CH ₂	Cl	Cl	Н	Н	C-C7H13	128-130	
2005	CH ₂	Cl	Cl	Н	Н	$C-C_{\theta}H_{15}$	-	
2006	CH_2	C1	Cl	н	Н	2-CH ₃ -C-C ₅ H ₈	oil	
2007	CH ₂	Cl	Cl	Н	Н	3-CH ₃ -C-C ₅ H ₈	-	
2008	CH ₂	Cl	C1	Н	Н	2-OCH ₃ -c-C ₅ H ₈	-	
2009	CH ₂	C1	Cl	Н	н	2,5-(CH ₃) ₂ -c-C ₅ H ₇	-	
2010	CH ₂	Cl	Cl	Н	Н	2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉	<u>.</u> –	
2011	CH ₂	Cl	C1	H	Н	9-fluorenyl	oil	
2012	CH ₂	Cl	Cl	Н	н	1-tetrahydronaphthyl	oil	
2013	CH ₂	Cl	Cl	Н	Н	1-indanyl	oil	
2014	CH ₂	C1	Cl	Н	Н	4-chromanyl	oil	
2015	CH ₂	C1	cl	Н	Н	2-0x0-c-C ₅ H ₇	166-168	
2016	CH ₂	Cl	Cl	Н	Н	5-dibenzosuberyl	-	
2017	CH ₂	Cl	Cl	Н	Н	5-dibenzosuberenyl	-	
2018	CH ₂	Cl	CF ₃	Н	Н	C-C4H7	-	
2019	CH ₂	Cl	CF ₃	Н	Н	c-C ₅ H ₉	146-147	
2020	CH ₂	Cl	CF3	Н	Н	C-C6H11	oil	
2021	CH ₂	C1	CF ₃	н	н	C-C7H13	129-130	
2022	CH ₂	Cl	CF ₃	Н	Н	C-C8H15	-	•
2023	CH ₂	C1	CF3	Н	Н	2-CH ₃ -C-C ₅ H ₈	98-99	

W	O 99/01454						PCT/US	98/13913
	2024	CH ₂	Cl	CF,	н	н	3-CH ₃ -C-C ₅ H ₈	-
	2025	CH ₂	Cl	CF ₃	н	Н	2-OCH3-C-C5H8	-
	2026	CH ₂	Cl	CF ₃	Н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
	2027	CH₂	Cl	CF ₃	Н	н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-
	2028	CH ₂	Cl	CF ₃	Н	н	9-fluorenyl	
	2029	CH ₂	Cl	CF ₃	Н	Н	1-tetrahydronaphthyl	-
	2030	CH ₂	Cl	CF ₃	Н	Н	1-indanyl	-
	2031	CH ₂	Cl	CF ₃	н	н	4-chromanyl	-
	2032	CH ₂	Cl	CF ₃	н	н	2-0x0-c-C ₅ H ₇	-
	2033	CH ₂	Cl	CF ₃	н	н	5-dibenzosuberyl	-
	2034	CH ₂	Cl	CF3	Н	Н	5-dibenzosuberenyl	-
	2035	CH ₂	Cl	OCH ₃	Н	н	C-C4H7	-
	2036	CH ₂	Cl	OCH ₃	Н	Н	C-C ₅ H ₉	-
	2037	CH ₂	Cl	OCH ₃	н	Н	C-C ₆ H ₁₁	-
	2038	CH ₂	Cl	OCH ₃	Н	Н	C-C7H13	-
	2039	CH ₂	Cl	OCH ₃	н	Н	C-C ₈ H ₁₅	-
	2040	CH ₂	Cl	OCH ₃	Н	Н	2-CH ₃ -c-C ₅ H ₈	-
	2041	CH ₂	Cl	OCH ₃	H	H	$3-CH_3-C-C_5H_8$	-
	2042	CH ₂	Cl	OCH ₃	Н	Н	$2-OCH_3-c-C_5H_8$	-
	2043	CH ₂	C1	OCH ₃	Н	Н	$2,5-(CH_3)_2-C-C_5H_7$	-
	2044	CH ₂	Cl	OCH ₃	Н	Н	$2-(CH_3)_2CH-5-CH_3-c-C_6H_9$	· -
	2045	CH ₂	Cl	осн,	Н	н	9-fluorenyl	-
	2046	CH ₂	Cl	OCH ₃	Н	Н	1-tetrahydronaphthyl	-
	2047	CH ₂	Cl	OCH ₃	Н	Н	1-indanyl	-
	2048	CH ₂	C1	OCH ₃	Н	Н	4-chromanyl	-
	2049	CH ₂	Cl	OCH ₃	Н	Н	$2-oxo-c-C_5H_7$	~
	2050	CH ₂	Cl	OCH ₃	H	Н	5-dibenzosuberyl	-
	2051	CH ₂	Cl	OCH ₃	H	H	5-dibenzosuberenyl	-
	2052	CH ₂	Cl	OCF ₃	Н	Н	C-C4H7	-
	2053	CH ₂	Cl	OCF ₃	H	Н	C-C ₅ H ₉	oil
	2054	CH ₂	Cl	OCF ₃	Н	Н	C-C ₆ H ₁₁	_
	2055	CH ₂	Cl	OCF ₃	Н	Н	C-C7H13	-
	2056	CH ₂	Cl	OCF ₃	H	Н	C-C ₈ H ₁₅	
	2057	CH ₂	Cl	OCF ₃	н	Н	$2-CH_3-C-C_5H_8$	-
	2058	CH ₂	Cl	OCF,	н	Н	$3-CH_3-C-C_5H_8$	-
	2059	CH ₂	Cl	OCF ₃	Н	Н	$2-OCH_3-C-C_5H_8$	
	2060	CH ₂	Cl	OCF ₃	н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-

Н

2-(CH₃)₂CH-5-CH₃-c-C₆H₉

2061

CH₂

Cl

OCF,

Н

WO 99/01454	PCT/US98/13913

WO 99/01454						PCT/US	98/13913
2062	CH ₂	Cl	OCF ₃	н	н	9-fluorenyl	_
2063	CH ₂	Cl	OCF ₃	н	 Н	1-tetrahydronaphthyl	_
2064	CH ₂	Cl	OCF ₃	н	н	1-indanyl	_
2065	CH ₂	Cl	OCF ₃	н	н	4-chromanyl	_
2065	CH ₂	Cl	OCF ₃	Н	н	2-0x0-c-C ₄ H ₇	_
	_	C1	•	л Н	н	5-dibenzosuberyl	_
2067	CH ₂		OCF ₃	н	н	5-dibenzosuberenyl	_
2068	CH ₂	c1 c1	OCF ₃	Н	н	c-C ₄ H ₇	_
2069	CH ₂		CH ₃		н	C-C ₅ H ₉	_
2070	CH ₂	C1	CH₃	н	n H	c-C ₆ H ₁₁	_
2071	CH ₂	C1	CH ₃	H		$C - C_7 H_{13}$,
2072	CH₂	C1	CH ₃	H	н		_
2073	CH ₂	Cl	CH ₃	н	H	C-C ₈ H ₁₅	-
2074	CH ₂	Cl	CH ₃	н 	н 	2-CH ₃ -C-C ₅ H ₈	-
2075	CH ₂	C1	CH ₃	н	н 	3-CH ₃ -C-C ₅ H ₈	-
2076	CH ₂	C1	CH ₃	Н	Н	2-OCH ₃ -C-C ₅ H ₈	-
2077	CH ₂	C1	CH ₃	Н	Н	2,5-(CH ₃) ₂ -c-C ₅ H ₇	-
2078	CH ₂	Cl	CH ₃	Н	Н	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	-
2079	CH ₂	Cl	CH ₃	Н	Н	9-fluorenyl	-
2080	CH ₂	Cl	CH ₃	Н	Н	1-tetrahydronaphthyl	-
2081	CH ₂	Cl	CH ₃	Н	Н	1-indanyl	-
2082	CH ₂	Cl	CH ₃	Н	Н	4-chromanyl	-
2083	CH ₂	Cl	CH3	Н	Н	$2-oxo-c-C_5H_7$	-
2084	CH ₂	Cl	CH ₃	Н	Н	5-dibenzosuberyl	-
2085	CH ₂	Cl	CH3	H	Н	5-dibenzosuberenyl	-
2086	CH ₂	CF ₃	Cl	Н	Н	$C-C_4H_7$	-
2087	CH ₂	CF3	Cl	Н	. Н	c-C ₅ H ₉	143-145
2088	CH ₂	CF ₃	Cl	Н	Н	C-C ₆ H ₁₁	-
2089	CH ₂	CF3	Cl	Н	Н	C-C ₇ H ₁₃	~
2090	CH ₂	CF ₃	Cl	Н	Н	C-C ₉ H ₁₅	-
2091	CH ₂	CF ₃	Cl	Н	Н	$2-CH_3-C-C_5H_8$	-
2092	CH ₂	CF ₃	Cl	Н	Н	$3-CH_3-C-C_5H_8$	-
2093	CH ₂	CF ₃	C1	Н	Н	$2-OCH_3-C-C_5H_8$	-
2094	CH ₂	CF ₃	Cl	Н	Н	$2,5-(CH_3)_2-C-C_5H_7$	-
2095	CH ₂	CF3	Cl	Н	Н	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	-
2096	CH ₂	CF3	Cl	н	Н	9-fluorenyl	-
2097	CH ₂	CF ₃	Cl	Н	н	1-tetrahydronaphthyl	- 5
2098	CH ₂	CF3	C1	Н	н	1-indanyl	-
2099	CH ₂	CF ₃	C1	Н	н	4-chromanyl	-

.

N	O 99/01454						PCT/US	598/13913
	2100	CH2	CF ₃	Cl	н	Н	2-0x0-c-C5H7	-
	2101	CH ₂	CF ₃	Cl	Н	Н	5-dibenzosuberyl	-
	2102	CH ₂	CF ₃	Cl	н	н	5-dibenzosuberenyl	-
	2103	CH ₂	CF ₃	OCH ₃	н	Н	C-C4H7	-
	2104	CH ₂	CF ₃	OCH ₃	Н	Н	c-C ₅ H ₉	103-106
	2105	CH ₂	CF ₃	OCH ₃	Н	Н	c-C ₆ H ₁₁	-
	2106	CH ₂	CF3	OCH ₃	н	Н	C-C7H13	-
	2107	CH ₂	CF3	OCH ₃	н	Н	C-C8H15	-
	2108	CH ₂	CF ₃	OCH ₃	Н	н	$2-CH_3-C-C_5H_8$	-
	2109	CH ₂	CF ₃	OCH ₃	н	Н	3-CH ₃ -C-C ₅ H ₈	-
	2110	CH ₂	CF ₃	OCH ₃	н	Н	2-OCH ₃ -C-C ₅ H ₈	-
	2111	CH ₂	CF ₃	OCH ₃	Н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
	2112	CH ₂	CF ₃	OCH ₃	Н	Н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-
	2113	CH ₂	CF ₃	OCH ₃	Н	Н	9-fluorenyl	-
	2114	CH ₂	CF ₃	OCH ₃	н	Н	1-tetrahydronaphthyl	-
	2115	CH ₂	CF ₃	OCH ₃	н	Н	1-indanyl	-
	2116	CH ₂	CF ₃	OCH ₃	Н	Н	4-chromanyl	-
	2117	CH ₂	CF ₃	OCH ₃	н	Н	2-0x0-c-C ₅ H ₇	-
	2118	CH ₂	CF3	OCH ₃	н	Н	5-dibenzosuberyl	-
	2119	CH ₂	CF3	OCH ₃	н	Н	5-dibenzosuberenyl	-
	2120	CH ₂	CF3	F	H	Н	C-C4H7	-
	2121	CH ₂	CF ₃	F	Н	Н	C-C ₅ H ₉	-
	2122	CH ₂	CF ₃	F	Н	Н	C-C6H11	-
	2123	CH ₂	CF ₃	F	Н	H	C-C7H13	119-122
	2124	CH ₂	CF3	F	Н	H	C-C ₈ H ₁₅	-
	2125	CH ₂	CF ₃	F	Н	H	$2-CH_{3}-C-C_{5}H_{8}$	-
	2126	CH ₂	CF3	F	Н	H	$3-CH_3-C-C_5H_8$	-
	2127	CH ₂	CF3	F	Н	Н	$2-OCH_3-C-C_5H_8$	-
	2128	CH ₂	CF ₃	F	Н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
	2129	CH ₂	CF ₃	F	Н	Н	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	155-156
	2130	CH ₂	CF3	F	Н	Н	9-fluorenyl	184-185
	2131	CH ₂	CF3	F	Н	Н	1-tetrahydronaphthyl	-
	2132	CH ₂	CF ₃	F	Н	Н	1-indanyl	-
	2133	CH ₂	CF3	F	Н	Н	4-chromanyl	-
	2134	CH ₂	CF ₃	F	Н	Н	2-0x0-C-C ₅ H ₇	-
	2135	CH ₂	CF ₃	F	H	Η.	5-dibenzosuberyl	-
	2136	CH ₂	CF ₃	F	Н	Н	5-dibenzosuberenyl	- .
	2137	CH ₂	CH3	OCH ₃	CH ₃	н	C-C4H7	. -

2138	CH ₂	CH3	OCH3	CH ₃	Н.	c-C ₅ H ₉	-
2139	CH ₂	CH ₃	OCH ₃	CH3	Н	C-C6H11	-
2140	CH ₂	CH ₃	OCH ₃	CH3	Н	C-C,H13	~
2141	CH ₂	CH ₃	OCH3	CH3	н	C-C ₈ H ₁₅	-
2142	CH ₂	CH ₃	OCH3	CH3	Н	$2-CH_{3}-C-C_{5}H_{8}$	-
2143	CH ₂	CH3	OCH3	CH3	н	$3-CH_3-c-C_5H_8$	-
2144	CH ₂	CH ₃	OCH ₃	CH3	Н	$2-OCH_3-c-C_5H_8$	-
2145	CH ₂	CH ₃	OCH ₃	CH ₃	н	$2,5-(CH_3)_2-c-C_5H_7$	-
2146	CH ₂	CH ₃	OCH3	CH ₃	Н	$2-(CH_3)_2CH-5-CH_3-c-C_6H_9$	-
2147	CH ₂	CH ₃	OCH ₃	CH₃	Н	9-fluorenyl	₹.
2148	CH ₂	CH3	OCH ₃	CH ₃	Н	1-tetrahydronaphthyl	-
2149	CH ₂	CH3	OCH ₃	CH ₃	Н	1-indanyl	-
2150	CH ₂	CH ₃	OCH ₃	CH ₃	Н	4-chromanyl	-
2151	CH ₂	CH3	OCH ₃	CH ₃	Н	$2-oxo-c-C_5H_7$	-
2152	CH ₂	CH ₃	OCH ₃	CH ₃	н	5-dibenzosuberyl	-
2153	CH ₂	CH3	OCH ₃	CH ₃	Н	5-dibenzosuberenyl	-
2154	CH ₂	CH ₃	OCH ₃	Cl	н	C-C4H7	-
2155	CH ₂	CH ₃	OCH ₃	Cl	н -	c-C₅H₅	115-116
2156	CH ₂	CH ₃	OCH ₃	Cl	Н	C-C ₆ H ₁₁	-
2157	CH ₂	CH ₃	OCH ₃	Cl	н	C-C7H13	<u>-</u> .
2158	CH ₂	CH ₃	OCH ₃	Cl	н	C-C ₈ H ₁₅	-
2159	CH ₂	CH ₃	OCH ₃	Cl	Н	2-CH ₃ -c-C ₅ H ₈	-
2160	CH ₂	CH ₃	OCH ₃	Cl	Н	$3-CH_{3}-c-C_{5}H_{8}$	-
2161	CH ₂	CH ₃	OCH ₃	Cl	Н	$2-OCH_3-c-C_5H_8$	-
2162	CH ₂	CH ₃	OCH ₃	Cl	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
2163	CH ₂	CH ₃	OCH ₃	C1	Н	$2-(CH_3)_2CH-5-CH_3-c-C_6H_9$	-
2164	CH ₂	CH ₃	OCH ₃	Cl	Н	9-fluorenyl	-
2165	CH ₂	CH ₃	OCH ₃	Cl	H	1-tetrahydronaphthyl	-
2166	CH ₂	CH ₃	OCH ₃	Cl	Н	1-indanyl	-
2167	CH ₂	CH ₃	OCH ₃	Cl	H	4-chromanyl	-
2168	CH ₂	CH ₃	OCH ₃	Cl	Н	$2-oxo-c-C_5H_7$	-
2169	CH ₂	CH ₃	OCH ₃	Cl	Н	5-dibenzosuberyl	-
2170	CH₂	CH ₃	OCH ₃	Cl	Н	5-dibenzosuberenyl	-
2171	CH ₂	CH ₃	OCH ₃	F	Н	C-C4H7	-
2172	CH ₂	CH ₃	OCH ₃	F	Н	C-C ₅ H ₉	-
2173	CH ₂	CH ₃	OCH ₃	F	Н	C-C6H11	-
2174	CH ₂	CH ₃	OCH ₃	F	Н	C-C,H13	-
2175	CH ₂	CH ₃	OCH ₃	F	н	C-C9H15	

WO 99/01454	PCT/US98/13913

2176	CH ₂	CH3	OCH ₃	F	Н	2-CH ₃ -C-C ₅ H ₈	-	
2177	CH ₂	CH ₃	OCH ₃	F	Н	3-CH ₃ -C-C ₅ H ₈	-	
2178	CH ₂	CH ₃	OCH ₃	F	Н	2-OCH ₃ -c-C ₅ H ₈	-	•
2179	CH ₂	CH3	OCH ₃	F	Н	$2,5-(CH_3)_2-C-C_5H_7$	-	
2180	CH ₂	CH3	OCH ₃	F	Н	2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉	-	
2181	CH ₂	CH ₃	OCH3	F	Н	9-fluorenyl	-	
2182	CH ₂	CH ₃	OCH ₃	F	Н	1-tetrahydronaphthyl	-	
2183	CH ₂	СН₃	OCH ₃	F	Н	1-indanyl	-	
2184	CH ₂	CH ₃	OCH ₃	F	H	4-chromanyl	-	
2185	CH ₂	CH ₃	OCH ₃	F	Н	2-0x0-c-C ₅ H ₇	-	
2186	CH ₂	CH ₃	OCH ₃	F	н	5-dibenzosuberyl	-	
2187	CH ₂	CH ₃	OCH ₃	F	Н	5-dibenzosuberenyl	-	
2188	CH ₂	CH3	CH ₃	Н	CH ₃	C-C ₄ H ₇	-	
2189	CH ₂	CH3	CH ₃	Н	CH3	c-C ₅ H ₉	-	
2190	CH ₂	CH3	CH ₃	Н	CH ₃	C-C ₆ H ₁₁	-	
2191	CH ₂	CH ₃	CH3	H	CH ₃	C-C ₇ H ₁₃	-	
2192	CH ₂	CH ₃	CH ₃	Н	CH ₃	C-C ₀ H ₁₅	- ·	
2193	CH ₂	CH ₃	CH ₃	H	CH3	2-CH ₃ -c-C ₅ H ₈	-	
2194	CH ₂	CH₃	CH ₃	Н	CH3	$3-CH_3-C-C_5H_8$	-	
2195	CH ₂	CH ₃	CH ₃	Н	CH ₃	$2-OCH_3-C-C_5H_8$	-	
2196	CH ₂	CH ₃	CH ₃	Н	CH ₃	$2,5-(CH_3)_2-C-C_5H_7$	-	
2197	CH ₂	CH ₃	CH ₃	Н	CH ₃	2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉	-	
2198	CH ₂	CH ₃	CH ₃	Н	CH ₃	9-fluorenyl	-	
2199	CH ₂	CH ₃	CH ₃	Н	CH ₃	1-tetrahydronaphthyl	-	
2200	CH ₂	CH ₃	CH ₃	Н	CH3	1-indanyl	-	
2201	CH ₂	CH ₃	CH ₃	Н	CH ₃	4-chromanyl		
2202	CH ₂	CH3	CH ₃	Н	CH ₃	$2-oxo-c-C_5H_7$	-	
2203	CH ₂	CH3	CH ₃	Н	CH ₃	5-dibenzosuberyl	-	
2204	CH ₂	CH ₃	CH ₃	Н	CH ₃	5-dibenzosuberenyl	-	
2205	CH ₂	C1	Cl	Н	CH ₃	C-C4H7	-	
2206	CH ₂	Cl	Cl	Н	CH ₃	C-C ₅ H ₉	-	
2207	CH ₂	Cl	Cl	Н	CH ₃	C-C ₆ H ₁₁	-	
2208	CH ₂	C1	C1	Н	CH ₃	C-C7H13	-	
2209	CH ₂	Cl	Cl	Н	CH3	C-C ₈ H ₁₅	-	
2210	CH ₂	Cl	Cl	Н	CH3	$2-CH_3-C-C_5H_8$	-	2
2211	CH ₂	Cl	Cl	Н	CH3	$3-CH_3-C-C_5H_0$	-	₹,
2212	CH ₂	Cl	Cl	Н	CH ₃	$2-OCH_3-C-C_5H_8$	-	
2213	CH ₂	Cl	Cl	Н	CH ₃	$2,5-(CH_3)_2-c-C_5H_7$	-	

WO 99/01454	PCT/US98/13913

2214	CH ₂	Cl	Cl	Н	CH ₃	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	-
2215	CH ₂	Cl	Cl	Н	CH ₃	9-fluorenyl	-
2216	CH ₂	Cl	Cl	Н	CH ₃	1-tetrahydronaphthyl	oil
2217	CH3	Cl	Cl	Н	CH ₃	1-indanyl	-
2218	CH ₂	Cl	Cl	н	CH ₃	4-chromanyl	-
2219	CH ₂	Cl	Cl	Н	CH ₃	$2-oxo-c-C_5H_7$	-
2220	CH ₂	Cl	Cl	Н	CH ₃	5-dibenzosuberyl	-
2221	CH ₂	Cl	Cl	Н	CH ₃	5-dibenzosuberenyl	-
2222	CH ₂	CH ₃	OCH ₃	OCH3	Н	C-C4H2	-
2223	CH ₂	CH ₃	OCH ₃	OCH3	н	C-C5H9	oil
2224	CH ₂	CH,	OCH ₃	OCH ₃	Н	C-C ₆ H ₁₁	-
2225	CH ₂	CH ₃	OCH ₃	OCH ₃	н	C-C7H13	-
2226	CH ₂	CH3	OCH ₃	OCH ₃	Н	C-C ₈ H ₁₅	-
2227	CH ₂	СН,	OCH ₃	OCH ₃	Н	2-CH ₃ -C-C ₅ H ₈	oil
2228	CH ₂	СН,	OCH ₃	OCH ₃	Н	$3-CH_3-C-C_5H_8$	-
2229	CH ₂	СН,	OCH ₃	OCH ₃	Н	$2 - OCH_3 - C - C_5H_8$	-
2230	CH ₂	CH3	OCH ₃	OCH ₃	H	$2,5-(CH_3)_2-C-C_5H_7$	-
2231	CH ₂	CH ₃	OCH3	OCH3	H	2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉	-
2232	CH ₂	СН3	OCH ₃	OCH ₃	H	9-fluorenyl	-
2233	CH ₂	CH3	OCH ₃	OCH ₃	H	1-tetrahydronaphthyl	-
2234	CH ₂	CH ₃	OCH ₃	OCH ₃	н	1-indanyl	-
2235	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	4-chromanyl	-
2236	CH ₂	CH ₃	OCH ₃	OCH ₃	н	2-oxo-c-C5H7	-
2237	CH ₂	CH ₃	OCH ₃	OCH ₃	H	5-dibenzosuberyl	-
2238	CH ₂	CH ₃	OCH ₃	OCH ₃	н	5-dibenzosuberenyl	-
2239	0	Cl	cı	Н	н	C-C ₅ H ₉	-
2240	0	Cl	CF ₃	Н	Н	C-C ₅ H ₉	-
2241	0	Cl	OCH ₃	Н	Н	C-C5H9	-
2242	0	Cl	OCF ₃	Н	H	C-C ₅ H ₉	-
2243	0	Cl	CH ₃	Н	Н	C-C ₅ H ₉	-
2244	Ō	CF ₃	Cl	Н	Н	C-C5H9	-
2245	0	CF3	OCH ₃	Н	Н	C-C ₅ H ₉	-
2246	0	CH ₃	осн,	CH ₃	Н	C-C ₅ H ₉	-
2247	0	CH ₃	OCH ₃	Cl	н	C-C ₅ H ₉	_
2248	0	CH ₃	OCH3	F	H	C-C ₅ H ₉	-
2249	0	CH ₃	CH ₃	Н	CH ₃	C-C ₅ H ₉	-
2250	0	Cl	Cl	Н	CH ₃	C-C5H9	-

Ŋ

Key:

a) Where the compound is listed as an "oil", spectral data is as follows:

Example 2003 spectral data: MS (NH₃-CI): m/e 374 (M+H⁺, 100%).

- 5 Example 2006 spectral data: TLC R, 0.20 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.57 (1H, d, J = 1.8 Hz), 7.40 (1H, dd, J = 8.1, 1.8 Hz), 4.83 (1H, q, J = 8.0 Hz), 3.20-3.04 (1H, m), 2.98 (2H, q, J = 7.3 Hz), 2.50-2.38 (1H, m), 2.30-2.15 (2H, m), 2.03-1.93 (2H, m), 1.75-1.60 (1H, m), 1.42 (3H, t, J
- 10 = 7.3 Hz), 0.68 (3H, d, J = 6.9 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{21}Cl_2N_4$: 375.1143, found 375.1149; 380 (2), 379 (12), 378 (15), 377 (66), 376 (27), 375 (100).

Example 2011 spectral data: MS (NH₃-CI): m/e 457 (M+H⁺, 100%).

Example 2012 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). H

- 15 NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.72 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.47-7.40 (2H, m), 7.24-7.18 (1H, m), 6.56 (1H, d, J = 7.7 Hz), 6.18-6.10 (1H, m), 4.82-4.76 (1H, m), 3.15-2.30 (5H, m), 2.10-1.77 (3H, m), 1.27 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{21}Cl_2N_4$: 423.1143, found 423.1142; 427 (13), 426 (18), 425 (67), 424 (31), 423 (100).
 - Example 2013 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.68 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.46-7.38 (2H, m), 7.22-7.15 (1H, m), 6.91 (1H, d, J = 7.7 Hz), 6.42 (1H, br t, J = 7 Hz), 5.30-5.22 (1H, m), 3.43-3.33 (1H,
- 25 m), 3.20-3.03 (1H, m), 2.89-2.76 (2H, m), 2.56-2.43 (1H, m), 2.01-1.90 (1H, m), 1.31 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{19}Cl_2N_4$: 409.0987, found 409.0987; 413 (12), 412 (17), 411 (67), 410 (29), 409 (100).
- Example 2014 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 2.2 Hz), 7.42 (1H, dd, J = 8.4, 2.2 Hz), 7.26-7.19 (1H, m), 6.98-6.90 (1H, m), 6.58 (1H, d, J = 7.7 Hz), 6.30-6.22 (1H, m), 4.60-4.53 (1H, m), 4.43-4.33 (1H, m), 4.20 (1H, br), 2.82-2.72 (1H, m), 2.69-2.58 (1H, m), 2.46-2.36 (1H, m), 2.18-2.08 (1H, m), 1.29 (3H, t, J = 7.5 Hz).
- 35 MS (NH₃-CI): m/e calc'd for $C_{22}H_{19}Cl_2N_4O$: 425.0936, found 425.0926; 429 (12), 428 (17), 427 (67), 426 (30), 425 (100). Example 2020 spectral data: TLC R, 0.43 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.81 (2H, d, J = 8.4 Hz), 7.67 (1H,

dd, J = 8.0, 0.7 Hz), 4.26 (1H, m), 3.00 (2H, q, J = 7.6 Hz), 2.75-2.66 (2H, m), 2.06-1.90 (4H, m), 1.50-1.36 (4H, m), 1.40 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 412 (7), 411 (34), 410 (25), 409 (100). Example 2053 spectral data: TLC R, 0.36 (25:75 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.73 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 1.1 Hz), 7.28 (1H, dd, J = 8.4, 1.1 hz), 4.79 (1H, pentet, J =8.4 Hz), 3.01 (2H, q, J = 7.7 Hz), 2.62-2.50 (2H, m), 2.23-2.07 (2H, m), 1.89-1.77 (2H, m), 1.66-1.49 (2H, m), 1.41 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calculated for $C_{19}H_{19}C1F_3N_4O$: 411.1205, found 411.1208; 414 (7), 10 413 (34), 412 (24), 411 (100). Example 2216 spectral data: TLC R, 0.13 (20:80 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.48-7.02 (5H, m), 6.53 (1H, dd, J = 7.7, 1.5 Hz), 6.18-6.10 (1H, m), 3.16-2.20 (5H, m), 2.13 (3H, d, J4.8 Hz), 2.06-1.70 (3H, m), 1.23 (3H, dt, J = 7.4, 4.4 Hz). MS (NH₃-CI): 15 m/e calc'd for $C_{24}H_{23}Cl_2N_4$: 437.1300, found 437.1299; 439 (67), 437 (100). Example 2223 spectral data: TLC R, 0.36 (50:50 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.33 (1H, s), 6.83 (1H, s), 4.78 (1H, pentet, J = 8.5 Hz), 3.94 (3H, s), 3.90 (3H, s), 2.98 (2H, q, J =7.6 Hz), 2.58-2.48 (2H, m), 2.42 (3H, s), 2.19-2.07 (2H, m), 1.84-1.56 20 (4H, m), 1.43 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{27}N_4O_2$: 367.2134, found 367.2120; 369 (3), 368 (24), 367 (100).

Example 2227 spectral data: TLC R, 0.45 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.37 (1H, s), 6.83 (1H, s), 4.85 (1H, q, J = 8.4 Hz), 3.94 (3H, s), 3.91 (3H, s), 3.19-3.11 (1H, m), 2.96

(2H, dq, J = 7.9, 1.5 Hz), 2.41 (3H, s), 2.24-2.16 (2H, m), 2.04-1.94 (2H, m), 1.71-1.62 (2H, m), 1.44 (3H, t, J = 7.4 Hz), 0.69 (3H, d, J = 6.9 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{29}N_4O_2$: 381.2290, found 381.2294;

30

25

383 (4), 382 (25), 381 (100).

The methods discussed below in the preparation of 3-benzyl-5-methyl-7-(2,4,6-trimethylphenyl)-imidazo[4,5-b]pyridine (Example 3001, Table 3) may be used to prepare all of the examples of Structure A contained in Table 3, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

 ζ_{i}

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 3, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

Example 3001

Preparation of 3-benzyl-5-methyl-7-(2,4,6-trimethylphenyl)imidazo[4,5-b]pyridine

10

Part A. A solution of 2,4,6-trimethylbenzeneboronic acid in benzene (0.5 M) is treated with excess n-butanol, and the solution is heated to reflux under a Dean-Stark still head to azeotropically remove water. Solvent is removed by evaporation, and the resulting dibutyl 2,4,6-trimethylbenzeneboronate is used directly in Part B.

Part B. The method of Snieckus et al. (Fu, J. M.; Zhao, B. 20 P.; Sharp, M. J.; Snieckus, V. Can. J. Chem. 1994, 72, 227-236) may be employed here. Thus, a solution of 4-chloro-6-methyl-3-nitro-2-pyridone in dimethylformamide (0.1 M) is treated with the boronate from Part A (1.2 eq), tribasic potassium phosphate (2.4 eq), and [1,1'-

bis(diphenylphosphino)-ferrocene]dichloropalladium (0.1 eq). The mixture is stirred at ambient temperature for 30 hrs., then poured into 4 volumes ethyl acetate. This is washed with 3 equal volumes of water, then brine. The extract is dried over Na₂SO₄, filtered and evaporated.

30 Chromatographic separation affords pure 6-methyl-3-nitro-4-(2,4,6-trimethylphenyl)-2-pyridone.

Part C. The pyridone from Part B is suspended in 6 eq phosphorus oxychloride, and stirred with mild heating until the compound dissolves. The mixture is cooled, and poured over ice. After melting, the mixture is extracted twice with dichloromethane, and the extracts are combined, dried over Na₂SO₄, filtered and evaporated. The product, 2-chloro-

\$

6-methyl-3-nitro-4-(2,4,6-trimethylphenyl)pyridine, is purified by either chromatography or recrystallization.

Part D. The chloride from Part C is dissolved in ethanol,
and treated with benzylamine (1.2 eq.). The mixture is
heated to reflux until the starting material is consumed as
determined by thin-layer chromatography. The mixture is
evaporated, and the residual material is partitioned
between water and ethyl acetate. The organic layer is
separated, washed with brine, dried over Na₂SO₄, filtered
and evaporated. The product, 2-benzylamino-6-methyl-3nitro-4-(2,4,6-trimethylphenyl)pyridine, is purified by
either chromatography or recrystallization.

15 Part E. The nitro compound from Part D is dissolved in 1:1 aqueous dioxane, and treated with conc. aq. ammonium hydroxide solution. To this is added solid sodium dithionite in several portions over 2 h. The mixture is allowed to stir for an additional 4 h, then partitioned 20 between water and ethyl acetate. The organic layer is separated, washed with brine, dried over Na₂SO₄, filtered and evaporated. The product, 3-amino-2-benzylamino-6-methyl-4-(2,4,6-trimethylphenyl)pyridine, is purified by either chromatography or recrystallization.

25

30

Part F. A suspension of the diamine from Part E above in triethyl orthopropionate is treated with conc. HCl, and heated to reflux for 1 h, then cooled and the excess orthoester removed by vacuum distillation. The pot residue contains sufficiently pure N-[2-benzylamino-4-(2,4,6-trimethylphenyl)-6-methylpyridin-3-yl]propionamide O-ethyl imidate.

Part G. A solution of the compound from Part F in phenyl ether is treated with a catalytic amount of ptoluenesulfonic acid and heated to 170 °C for 6 h, then cooled. The residual liquid is separated by column

chromatography (hexane, then ethyl acetate) to afford the title product.

5 TABLE 3

Ex. No.	х	R ⁴	R ⁵	R ¹¹	R ⁶	R¹	mp, °C °	_
3001	CH₂	Cl	Cl	н	н	C (=0) OC ₂ H ₅	_	
3002	CH ₂	Cl	Cl	Н	н	$C (=0) OC_3H_7$	90-91	
3003	CH ₂	C1	Cl	Н	н	$C (=0) OC_4H_9$	57-59	
3004	CH ₂	Cĺ	Cl	Н	Н	$C(=0)OCH(CH_3)_2$	80-81	
3005	CH ₂	Cl	Cl	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	60-62	
3006	CH ₂	Cl	Cl	н	н	$C(=0)N(CH_3)_2$	-	
3007	CH ₂	Cl	Cl	н	Н	$C (=0) N (C_2H_5)_2$	120-123	
3008	CH ₂	C1	Cl	Н	н	$C(=0)N[CH(CH_3)_2]_2$	147-149	
3009	CH ₂	Cl	Cl	н	Н	C(=O)(1-morpholinyl)	158-159	
3010	CH ₂	Cl	Cl	Н	Н	SO ₂ C ₆ H ₅	132-133	
3011	CH ₂	Cl	Cl	Н	н	$SO_2(4-CH_3-C_6H_4)$	154-155	
3012	CH ₂	Cl	Cl	Н	Н	SO ₂ (4-OCH ₃ -C ₆ H ₄)	156-158	
3013	CH ₂	Cl	Cl	Н	Н	SO ₂ -(2-thienyl)	176-178	
3014	CH ₂	Cl	Cl	Н	Н	SO ₂ CH ₂ C ₆ H ₅	127-129	
3015	CH ₂	Cl	Cl	н	н	SO ₂ C ₃ H ₇	100-101	
3016	CH ₂	Cl	Cl	н	Н	SO ₂ C ₄ H ₉	79-80	
3017	CH ₂	Cl	Cl	Н	Н	$C(=0) - (2-C1-C_6H_4)$	110-113	
3018	CH ₂	Cl	CF ₃	н	Н	C (=0) OC2H5	-	
3019	CH ₂	Cl	CF3	н	Н	$C (=0) OC_3H_7$	-	

3020	CH ₂	Cl	CF ₃	Н	Н	$C (=0) OC_4H_9$	-
3021	CH ₂	C1	CF ₃	Н	Н	$C(=0)OCH(CH_3)_2$	-
3022	CH ₂	Cl	CF ₃	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	-
3023	CH ₂	Cl	CF ₃	Н	Н	$C(=O)N(CH_3)_2$	-
3024	CH ₂	Cl	CF_3	Н	н	$C(=0)N(C_2H_5)_2$	-
3025	CH ₂	Cl	CF ₃	Н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3026	CH ₂	Cl	CF ₃	н	Н	C(=0)(1-morpholinyl)	-
3027	CH ₂	Cl	CF ₃	н	Н	SO ₂ C ₆ H ₅	-
3028	CH_2	Cl	CF ₃	H	Н	$SO_2(4-CH_3-C_6H_4)$	· -
3029	CH ₂	Cl	CF ₃	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	
3030	CH ₂	Cl	CF ₃	Н	Н	SO_2 -(2-thienyl)	-
3031	CH ₂	Cl	CF ₃	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3032	CH ₂	Cl	CF ₃	Н	Н	SO ₂ C ₃ H ₇	-
3033	CH ₂	Cl	CF ₃	H	Н	SO ₂ C ₄ H ₉	
3034	CH ₂	Cl	CF ₃	Н	Н	$C(=0) - (2-C1-C_6H_4)$	-
3035	CH ₂	Cl	OCH ₃	Н	н	$C (=0) OC_2H_5$	-
3036	CH ₂	Cl	OCH ₃	Н	Н	$C (=0) OC_3H_7$	-
3037	CH ₂	Cl	OCH ₃	Н	Н	$C (=0) OC_4H_9$	-
3038	CH ₂	Cl	OCH ₃	Н	Н	$C(=0)$ OCH $(CH_3)_2$	-
3039	CH ₂	Cl	OCH ₃	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	-
3040	CH ₂	Cl	OCH ₃	Н	Н	$C(=0)N(CH_3)_2$	-
3041	CH₂	Cl	OCH ₃	H	Н	$C(=0)N(C_2H_5)_2$	-
3042	CH ₂	Cl	OCH3	Н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3043	CH ₂	Cl	OCH ₃	Н	H	C(=0)(1-morpholinyl)	-
3044	CH ₂	Cl	OCH ₃	Н	Н	SO ₂ C ₆ H ₅	-
3045	CH ₂	Cl	OCH3	Н	Н	$SO_2(4-CH_3-C_6H_4)$	-
3046	CH ₂	Cl	OCH ₃	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3047	CH ₂	Cl	OCH ₃	Н	Н	SO ₂ -(2-thienyl)	-
3048	CH ₂	Cl	OCH3	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3049	CH ₂	Cl	OCH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3050	CH ₂	Cl	OCH ₃	Н	Н	SO ₂ C ₄ H ₉	-
3051	CH ₂	Cl	OCH ₃	Н	Н	$C(=0) - (2-C1-C_6H_4)$	-
3052	CH ₂	Cl	OCF ₃	Н	Н	$C (=0) OC_2H_5$	-
3053	CH ₂	Cl	OCF ₃	Н	H	$C (=0) OC_3H_7$	-
3054	CH ₂	Cl	OCF ₃	н	Н	$C (=0) OC_4H_9$	-
3055	CH ₂	Cl	OCF ₃	Н	Н	C(=0)OCH(CH3)2	-
3056	CH ₂	Cl	OCF ₃	Н	н	C(=0)OCH2CH(CH3)2	-
3057	CH ₂	Cl	OCF ₃	H	Н	$C(=0)N(CH_3)_2$	-

3058	CH ₂	C1	OCF ₃	Н	Н	$C(=0)N(C_2H_5)_2$	-
3059	CH2	Cl	OCF ₃	н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3060	CH ₂	Cl	OCF ₃	н	H	C(=0)(1-morpholinyl)	- '
3061	CH3	Cl	OCF ₃	Н	Н	SO ₂ C ₆ H ₅	-
3062	CH ₂	Cl	OCF ₃	Н	Н	$SO_2(4-CH_3-C_6H_4)$	-
3063	CH ₂	C1	OCF,	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3064	CH ₂	Cl	OCF ₃	Н	Н	SO_2 -(2-thienyl)	-
3065	CH ₂	Cl	OCF ₃	н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3066	CH₂	Cl	OCF ₃	Н	Н	SO ₂ C ₃ H ₇	-
3067	CH ₂	Cl	OCF ₃	Н	Н	SO ₂ C ₄ H ₉	- .
3068	CH ₂	Cl	OCF ₃	Н	H	$C(=0) - (2-C1-C_6H_4)$	-
3069	CH ₂	Cl	СН3	Н	Н	$C (=0) OC_2H_5$	-
3070	CH ₂	Cl	CH ₃	Н	H	$C (=0) OC_3H_7$	-
3071	CH ₂	C1	CH ₃	Н	Н	$C (=0) OC_4H_9$	-
3072	CH ₂	Cl	CH ₃	H	Н	$C(=0)OCH(CH_3)_2$	-
3073	CH ₂	Cl	CH ₃	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	-
3074	CH ₂	Cl	CH ₃	Н	H	$C(=0)N(CH_3)_2$	-
3075	CH ₂	Cl	CH ₃	Н	Н	$C(=0)N(C_2H_5)_2$	-
3076	CH ₂	Cl	CH ₃	Н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3077	CH ₂	Cl	CH ₃	Н	Н	C(=0)(1-morpholinyl)	-
3078	CH ₂	Cl	CH ₃	Н	H	SO ₂ C ₆ H ₅	-
3079	CH ₂	Cl	CH ₃	H	H	$SO_2(4-CH_3-C_6H_4)$	-
3080	CH ₂	Cl	CH ₃	Н	H	$SO_2 (4-OCH_3-C_6H_4)$	-
3081	CH ₂	Cl	CH3	Н	Н	SO_2 -(2-thienyl)	-
3082	CH ₂	Cl	CH ₃	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3083	CH ₂	Cl	CH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3084	CH ₂	Cl	CH ₃	Н	Н	SO ₂ C ₄ H ₉	
3085	CH ₂	Cl	CH3	Н	Н	$C(=0) - (2-C1-C_6H_4)$	-
3086	CH ₂	CF ₃	Cl	Н	Н	$C (=0) OC_2H_5$	-
3087	CH ₂	CF ₃	C1	Н	н	$C(=0)OC_3H_7$	-
3088	CH ₂	CF ₃	Cl	Н	Н	$C (=0) OC_4H_9$	-
3089	CH ₂	CF3	Cl	Н	Н	$C(=0)OCH(CH_3)_2$	-
3090	CH ₂	CF ₃	Cl	H	H	$C(=0)OCH_2CH(CH_3)_2$	-
3091	CH ₂	CF3	Cl	H	н	$C(=0)N(CH_3)_2$	-
3092	CH ₂	CF ₃	Cl	Н	Н	$C(=O)N(C_2H_5)_2$	-
3093	CH2	CF ₃	Cl	H	н	C(=0)N[CH(CH3)2]2	-
3094	CH ₂	CF ₃	C1	н	н	C(=0)(1-morpholinyl)	-
3095	CH ₂	CF ₃	Cl	H	Н	SO ₂ C ₆ H ₅	-

WO 99/01454 PCT	Γ/US98/13913
-----------------	--------------

3096	CH ₂	CF ₃	Cl	н	н	$SO_2(4-CH_3-C_6H_4)$	-	
3097	CH ₂	CF ₃	Cl	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	-	
3098	CH ₂	CF ₃	Cl	н	Н	SO ₂ -(2-thienyl)	-	
3099	CH ₂	CF ₃	C1	Н	H	SO ₂ CH ₂ C ₆ H ₅	-	
3100	CH ₂	CF_3	C1	Н	H	SO ₂ C ₃ H ₇	-	
3101	CH ₂	CF ₃	Cl	н	н	SO ₂ C ₄ H ₉	-	
3102	CH2	CF3	Cl	Н	н	$C(=0) - (2-C1-C_6H_4)$	-	
3103	CH ₂	CF3	OCH ₃	Н	н	$C (=0) OC_2H_5$	-	
3104	CH ₂	CF ₃	OCH ₃	н	н	$C (=0) OC_3H_7$	-	
3105	CH ₂	CF ₃	OCH ₃	н	Н	$C (=0) OC_4H_9$	- .	
3106	CH ₂	CF ₃	OCH ₃	н	Н	$C(=O)OCH(CH_3)_2$	-	
3107	CH ₂	CF3	OCH ₃	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	-	•
3108	CH ₂	CF ₃	OCH ₃	н	Н	$C(=O)N(CH_3)_2$	-	
3109	CH ₂	CF ₃	OCH ₃	Н	Н	$C (=0) N (C_2H_5)_2$	-	•
3110	CH ₂	CF ₃	OCH ₃	Н	Н	C(=0)N[CH(CH3)2]2	-	
3111	CH ₂	CF ₃	OCH ₃	Н	Н	C(=0)(1-morpholiny1)	-	
3112	CH ₂	CF ₃	OCH ₃	H	Н	SO ₂ C ₆ H ₅	-	
3113	CH ₂	CF_3	OCH ₃	Н	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)	-	
3114	CH ₂	CF3	OCH ₃	H	Н	$SO_2 (4-OCH_3-C_6H_4)$	-	
3115	CH ₂	CF3	OCH ₃	H	Н	SO_2 -(2-thienyl)	-	
3116	CH ₂	CF ₃	OCH ₃	H	Н	SO ₂ CH ₂ C ₆ H ₅	-	
3117	CH ₂	CF ₃	OCH ₃	H	Н	SO ₂ C ₃ H ₇	-	
3118	CH ₂	CF ₃	OCH ₃	H	Н	SO ₂ C ₄ H ₉		
3119	CH ₂	CF ₃	OCH ₃	H	Н	$C(=0) - (2-C1-C_6H_4)$	-	
3120	CH ₂	CF ₃	F	Н	Н	$C (=0) OC_2H_5$	-	
3121	CH ₂	CF ₃	F	H	Н	$C (=0) OC_3H_7$	-	
3122	CH ₂	CF ₃	F	H	Н	$C (=0) OC_4H_9$	-	
3123	CH ₂	CF ₃	F	H	Н	$C(=0)OCH(CH_3)_2$	-	
3124	CH ₂	CF ₃	F	Н	H	$C(=0)OCH_2CH(CH_3)_2$	-	
3125	CH ₂	CF3	F	Н	H	$C(=0)N(CH_3)_2$	-	
3126	CH ₂	CF3	F	Н	Н	$C(=0)N(C_2H_5)_2$	-	
3127	CH ₂	CF ₃	F	Н	Н	C(=0)N[CH(CH3)2]2	-	
3128	CH ₂	CF3	F	Н	H	C(=0)(1-morpholinyl)	-	
3129	CH ₂	CF ₃	F	Н	Н	SO ₂ C ₆ H ₅	_	
3130	CH ₂	CF ₃	F	Н	Н	$SO_2(4-CH_3-C_6H_4)$	-	•
3131	CH ₂	CF ₃	F	н	н	$SO_2(4-OCH_3-C_6H_4)$	-	S
3132	CH ₂	CF ₃	F	H	Н	SO ₂ -(2-thienyl)	-	
3133	CH ₂	CF3	F	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-	

WO 9	9/01454						I	PCT/US98/13913	
3	134	CH ₂	CF ₃	F	Н	Н	SO ₂ C ₃ H ₇	-	
3	135	CH ₂	CF ₃	F	н	н	SO ₂ C ₄ H ₉	-	
3	136	CH ₂	CF ₃	F	Н	Н	$C(=0) - (2-C1-C_6H_4)$	-	
3	137	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C (=0) OC_2H_5$	-	
3	138	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C (=0) OC_3H_7$	-	
3	139	CH ₂	CH3	OCH ₃	CH ₃	Н	$C (=0) OC_4H_9$	-	
3	140	CH ₂	CH ₃	OCH ₃	CH ₃	H	$C(=0)OCH(CH_3)_2$	-	
3	141	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C(=0)OCH_2CH(CH_3)_2$	-	
3	142	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C(=0)N(CH_3)_2$	-	
3	143	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C(=0)N(C_2H_5)_2$	_	
3	144	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C(=0)N[CH(CH_3)_2]_2$	-	
3	145	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C(=O)(1-morpholinyl	L) -	
3	146	CH ₂	CH ₃	OCH3	CH ₃	Н	SO ₂ C ₆ H ₅		
3	147	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$SO_2(4-CH_3-C_6H_4)$	-	
3	148	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$SO_2(4-OCH_3-C_6H_4)$	-	
3	149	CH ₂	CH ₃	OCH ₃	CH ₃	Н	SO_2 -(2-thienyl)	-	
. 3	150	CH ₂	CH ₃	OCH ₃	CH ₃	Н	SO ₂ CH ₂ C ₆ H ₅	-	
3	151	CH ₂	CH3	OCH ₃	CH3	Н	SO ₂ C ₃ H ₇	-	
3	152	CH ₂	CH ₃	OCH ₃	CH ₃	Н	SO ₂ C ₄ H ₉	-	
3	153	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C(=0) - (2-C1-C_6H_4)$	-	
3	154	CH ₂	CH ₃	OCH ₃	Cl	Н	$C (=0) OC_2H_5$	-	
3	155	CH ₂	CH ₃	OCH ₃	Cl	Н	$C (=0) OC_3H_7$	-	
3	1156	CH ₂	CH3	OCH ₃	Cl	Н	C (=0) OC ₄ H ₉	-	
3	3157	CH ₂	CH ₃	OCH ₃	Cl	H	$C(=0)OCH(CH_3)_2$	-	
3	3158	CH ₂	CH ₃	OCH ₃	Cl	Н	$C(=0)OCH_2CH(CH_3)_2$	-	
3	3159	CH ₂	CH ₃	OCH ₃	Cl	Н	$C(=0)N(CH_3)_2$	-	
3	3160	CH ₂	CH ₃	OCH ₃	Cl	Н	$C(=0)N(C_2H_5)_2$	-	
	3161	CH ₂	CH ₃	OCH ₃	Cl	Н	$C(=0)N\{CH(CH_3)_2\}_2$	-	
	3162	CH ₂	CH3	OCH ₃	Cl	Н	C(=0)(1-morpholiny	-	
	3163	CH ₂	CH ₃	OCH3	C1	Н	SO ₂ C ₆ H ₅	-	
	3164	CH ₂	CH ₃	OCH ₃	Cl	Н	$SO_2(4-CH_3-C_6H_4)$	-	
	3165	CH ₂	CH ₃	OCH ₃	Cl	Н	$SO_2(4-OCH_3-C_6H_4)$	-	
	3166	CH ₂	CH ₃	OCH ₃	C1	H	SO ₂ -(2-thienyl)	-	
	3167	CH ₂	CH₃	OCH ₃	Cl	Н	SO ₂ CH ₂ C ₆ H ₅	-	
	3168	CH ₂	CH3	OCH ₃	Cl	Н	SO ₂ C ₃ H ₇	-	
	3169	CH ₂	CH ₃	OCH ₃	Cl	Н	SO ₂ C ₄ H ₉	-	di
3	3170	CH ₂	CH3	OCH ₃	Cl	Н	$C(=0) - (2-C1-C_6H_4)$	-	

Н

C (=0) OC₂H₅

3171

CH₂

CH₃

OCH₃

F

	3172	CH ₂	CH ₃	OCH ₃	F	Н	$C (=0) OC_3H_7$	-
	3173	CH ₂	CH ₃	осн,	F	Н	$C (=0) OC_4H_9$	-
	3174	CH ₂	CH3	OCH ₃	F	Н	C(=0)OCH(CH ₃) ₂	-
	3175	CH ₂	CH ₃	осн,	F	Н	C (=0) OCH2CH (CH3)2	-
	3176	CH ₂	CH ₃	OCH ₃	F	Н	$C(=0)N(CH_3)_2$	-
	3177	CH ₂	CH ₃	осн,	F	Н	$C(=0)N(C_2H_5)_2$	~
	3178	CH ₂	CH ₃	OCH ₃	F	н	C(=O)N[CH(CH3)2]2	-
	3179	CH2	CH ₃	OCH ₃	F	н	C(=O)(1-morpholinyl)	-
	3180	CH ₂	CH ₃	OCH ₃	F	H	SO ₂ C ₆ H ₅	
•	3181	CH ₂	CH ₃	OCH3	F	н	$SO_2(4-CH_3-C_6H_4)$	-
	3182	CH ₂	CH ₃	OCH ₃	F	H ·	$SO_2(4-OCH_3-C_6H_4)$	-
	3183	CH ₂	CH ₃	OCH ₃	F	Н	SO ₂ -(2-thienyl)	-
	3184	CH ₂	CH ₃	OCH3	F	Ĥ	SO ₂ CH ₂ C ₆ H ₅	-
	3185	CH ₂	CH ₃	OCH ₃	F	н	SO ₂ C ₃ H ₇	-
	3186	CH ₂	CH ₃	OCH ₃	F	Н	SO ₂ C ₄ H ₉	· -
	3187	CH ₂	CH ₃	OCH ₃	F	Н	$C(=0) - (2-C1-C_6H_4)$	-
	3188	CH ₂	CH ₃	CH ₃	н	CH ₃	$C (=0) OC_2H_5$	-
	3189	CH ₂	CH3	CH ₃	Н	CH ₃	$C (=0) OC_3H_7$	-
	3190	CH ₂	CH ₃	CH ₃	Н	CH ₃	$C (=O) OC_4H_9$	-
	3191	CH ₂	CH3	CH ₃	Н	CH ₃	C (=0) OCH (CH3)2	-
	3192	CH ₂	CH ₃	CH3	Н	CH3	$C (=0) OCH_2CH (CH_3)_2$	-
	3193	CH ₂	CH ₃	CH ₃	Н	CH ₃	$C(=0)N(CH_3)_2$	-
	3194	CH ₂	CH ₃	CH3	Н	CH ₃	$C (=0) N (C_2H_5)_2$	-
	3195	CH ₂	CH ₃	CH ₃	Н	CH ₃	$C(=O)N[CH(CH_3)_2]_2$	-
	3196	CH ₂	CH ₃	CH ₃	H	CH ₃	C(=0)(1-morpholinyl)	-
	3197	CH ₂	CH ₃	СН₃	Н	CH ₃	SO ₂ C ₆ H ₅	-
	3198	CH ₂	CH ₃	CH3	Н	CH3	$SO_2(4-CH_3-C_6H_4)$	-
	3199	CH ₂	CH ₃	CH3	Н	CH ₃	$SO_2(4-OCH_3-C_6H_4)$	-
	3200	CH ₂	CH3	CH3	Н	CH ₃	SO ₂ -(2-thienyl)	-
	3201	CH2	CH ₃	CH ₃	Н	CH3	SO ₂ CH ₂ C ₆ H ₅	-
	3202	CH ₂	CH3	CH ₃	Н	CH ₃	SO ₂ C ₃ H ₇	-
	3203	CH ₂	СН₃	CH ₃	Н	CH ₃	SO ₂ C ₄ H ₉	-
	3204	CH ₂	CH ₃	CH ₃	H	CH ₃	$C(=0) - (2-C1-C_6H_4)$	-
	3205	CH ₂	Cl	Cl	Н	CH ₃	$C (=0) OC_2H_5$	-
	3206	CH ₂	C1	Cl	Н	CH ₃	$C (=0) OC_3H_7$	-
	3207	CH ₂	- C1	Cl	H	СНэ	$C (=0) OC_4H_9$	-
	3208	CH ₂	Cl	Cl	Н	CH ₃	C(=0)OCH(CH ₃) ₂	
	3209	CH ₂	Cl	Cl	н	CH3	$C(=0)OCH_2CH(CH_3)_2$	-

WO 99	PCT/US98/13913							
32	10	CH ₂	Cl	Cl	Н	CH3	C(=0)N(CH ₃) ₂	-
22	11	CH	Cl	Cl	ш	CH.	C(-0)N(C.H.)-	_

3210	CH ₂	Cl	Cl	Н	CH ₃	$C(=0)N(CH_3)_2$	-
3211	CH ₂	Cl	Cl	Н	CH3	$C (=0) N (C_2H_5)_2$	-
3212	CH ₂	Cl	Cl	Н	CH ₃	$C(=0)N[CH(CH_3)_2]_2$	-
3213	CH3	C1	Cl	Н	CH3	C(=0)(1-morpholinyl)	-
3214	CH ₂	C1	Cl	Н	CH3	SO ₂ C ₆ H ₅	÷
3215	CH ₂	Cl	Cl	Н	CH ₃	$SO_2(4-CH_3-C_6H_4)$	-
3216	CH ₂	cı	Cl	H	CH ₃	$SO_2(4-OCH_3-C_6H_4)$	-
3217	CH ₂	Cl	Cl	Н	CH ₃	SO ₂ -(2-thienyl)	-
3218	CH ₂	Cl	Cl	н	CH ₃	SO ₂ CH ₂ C ₆ H ₅	-
3219	CH₂	Cl	Cl	Н	CH ₃	SO ₂ C ₃ H ₇	-
3220	CH ₂	Cl	Cl	Н	CH ₃	SO ₂ C ₄ H ₉	-
3221	CH₂	· C1	Cl	Н	CH ₃	$C(=0) - (2-C1-C_6H_4)$	-
3222	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	$C (=0) OC_2H_5$	-
3223	CH ₂	CH3	OCH ₃	OCH ₃	н	$C (=0) OC_3H_7$	-
3224	CH₂	CH ₃	OCH ₃	OCH3	Н	$C (=0) OC_4H_9$	-
3225	CH ₂	CH ₃	OCH ₃	OCH ₃	н	C(=0)OCH(CH ₃) ₂	-
3226	CH ₂	CH ₃	OCH ₃	OCH ₃	н	$C(=0)OCH_2CH(CH_3)_2$	-
3227	CH ₂	CH3	OCH ₃	OCH ₃	Н	$C(=0)N(CH_3)_3$	-
3228	CH ₂	CH3	OCH ₃	OCH ₃	Н	$C(=0)N(C_2H_5)_2$	-
3229	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	C(=0)N[CH(CH3)2]2	-
3230	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	C(=0)(1-morpholiny1)	-
3231	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	SO ₂ C ₆ H ₅	_
3232	CH ₂	CH ₃	OCH3	OCH ₃	Н	$SO_2(4-CH_3-C_6H_4)$	-
3233	CH ₂	CH3	OCH ₃	OCH ₃	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3234	CH ₂	CH3	OCH ₃	OCH ₃	Н	SO_2 -(2-thienyl)	_
3235	CH ₂	CH3	OCH ₃	OCH ₃	н	SO ₂ CH ₂ C ₆ H ₅	-
3236	CH ₂	СН,	OCH ₃	OCH ₃	H	SO ₂ C ₃ H ₇	-
3237	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	SO ₂ C ₄ H ₉	-
3238	CH ₂	CH3	OCH ₃	OCH ₃	H ·	$C(=0) - (2-C1-C_6H_4)$	-
3239	0	Cl	Cl	H	Н	SO ₂ C ₃ H ₇	-
3240	0	Cl	CF ₃	H	H	SO ₂ C ₃ H ₇	
3241	0	C1	OCH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3242	0	Cl	OCF ₃	Н	H	SO ₂ C ₃ H ₇	-
3243	0	Cl	CH3	Н	Н	SO ₂ C ₃ H ₇	-
3244	0	CF3	Cl	Н	Н	SO ₂ C ₃ H ₇	-
3245	0	CF ₃	OCH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3246	0	CH3	OCH ₃	CH ₃	Н	SO ₂ C ₃ H ₇	-
3247	0	CH ₃	OCH ₃	C1	Н	SO ₂ C ₃ H ₇	**

Ś

WO 99/0145	54					1	PCT/US98/13913
3248	0	CH ₃	OCH ₃	F	Н	SO ₂ C ₃ H ₇	
3249	0	CH ₃	CH ₃	Н	CH ₃	SO ₂ C ₃ H ₇	-
3250	0	Cl	Cl	Н	CH ₃	SO ₂ C ₃ H ₇	-
3251	CH3	Cl	Cl	Н	Н	$C(=0) - (3-C1-C_6H_4)$	115-118

The methods used in the preparation of the compounds of

Structure A of Table 1 may be used for the compounds of

Structure A of Table 4. For example, replacing variouslysubstituted pyridine- and pyrimidineboronic acids for
benzeneboronic acids in the palladium-catalyzed aryl crosscoupling method (see Examples 35 or 831) will afford the

desired 6-pyridyl- or 6-pyrimidylpurine compounds.

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 4, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

TABLE 4

. 5

Ex. No.	Х	R ⁴	Z	R ⁵	Y	R ⁶	R1a	R ^{1b}	m.p.,
4001	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4002	CH ₂	CH ₃	CH	$N(CH_3)_2$	N	Н	CH ₃	C-C ₃ H ₅	_
4003	CH ₂	CH3	СН	$N(CH_3)_2$	N	н	C ₂ H ₅	C-C ₃ H ₅	-
4004	CH ₂	CH ₃	CH	$N(CH_3)_2$	N	н	C_3H_7	C-C3H5	-
4005	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	H	C₄H ₉	C-C ₃ H ₅	-
4006	CH ₂	CH3	СН	$N(CH_3)_2$	N	Н	CH ₃	C ₃ H ₇	_
4007	CH ₂	CH3	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C ₃ H ₇	-
4008	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	Н	C_3H_7	C ₃ H ₇	-
4009	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	н	C ₂ H ₅	C₄H,	-
4010	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	Н	н	4-CH ₃ O-C ₆ H ₄	-
4011	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C-C ₃ H ₅	c-C ₃ H ₅	-
4012	0	СН₃	СН	$N(CH_3)_2$	N	Н	СН₃	c-C ₃ H ₅	
4013	0	СН3	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	c-C ₃ H ₅	-
4014	0	СН3	СН	$N(CH_3)_2$	N	Н	C_3H_7	C-C ₃ H ₅	-
4015	0	СН₃	СН	$N(CH_3)_2$	N	Н	C ₄ H ₉	c-C ₃ H ₅	-
4016	Ō	CH ₃	СН	$N(CH_3)_2$	N	H	CH ₃ .	C ₃ H ₇	_
4017	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C ₃ H ₇	_
4018	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₃ H ₇	C ₃ H ₇	-
4019	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C ₄ H ₉	_
4020	0	CH ₃	СН	$N(CH_3)_2$	N	Н	н	4-CH ₃ O-C ₆ H ₄	-
4021	CH ₂	CH ₃	СН	CH ₃	N	СН3	c-C3H5	C-C ₃ H ₅	-
4022	CH ₂	CH ₃	СН	CH,	N	CH ₃	CH,	C-C ₃ H ₅	_

4023	CH ₂	CH ₃	СН	CH ₃	N	CH ₃	C ₂ H ₅	C-C3H5	-
4024	CH ₂	CH ₃	СН	CH ₃	N	CH ₃	C_3H_7	C-C ₃ H ₅	-
4025	CH ₂	СН,	СН	CH ₃	N	CH3	C_4H_9	C-C ₃ H ₅	-
4026	CH ₂	СН3	СН	CH ₃	N	CH ₃	CH ₃	C ₃ H ₇	-
4027	CH ₂	СН3	СН	CH ₃	N	CH ₃	C_2H_5	C ₃ H ₇	-
4028	CH ₂	СН3	СН	CH ₃	N	CH ₃	C_3H_7	C ₃ H ₇	-
4029	CH ₂	CH ₃	СН	CH ₃	N	CH ₃	C ₂ H ₅	C ₄ H ₉	-
4030	CH₂	СН₃	СН	СН₃	N	CH ₃	н	4-CH ₃ O-C ₆ H ₄	-
4031	0	CH ₃	СН	CH ₃	N	CH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4032	0	СН₃	СН	CH ₃	N	CH ₃	CH ₃	C-C ₃ H ₅	-
4033	0	СН3	СН	CH ₃	N	CH ₃	C_2H_5	C-C ₃ H ₅	-
4034	0	· CH ₃	СН	CH ₃	N	CH ₃	C_3H_7	C-C ₃ H ₅	-
4035	0	СН3	СН	CH ₃	И	CH3	C₄H,	C-C ₃ H ₅	-
4036	0	CH3	СН	CH ₃	N	CH3	CH3	C_3H_7	·,=
4037	0	CH3	CH	CH ₃	N	CH3	C ₂ H ₅	C_3H_7	· -
4038	0	СН₃	СН	CH ₃	N	CH ₃	C_3H_7	C ₃ H ₇	-
4039	0	СН₃	CH	CH ₃	N	CH3	C ₂ H ₅	C ₄ H ₉	-
4040	0	CH₃	СН	СН3	N	CH3	Н	4-CH ₃ O-C ₆ H ₄	-
4041	CH ₂	CH ₃	СН	SCH ₃	N	H	C-C ₃ H ₅	C-C ₃ H ₅	-
4042	CH ₂	CH ₃	CH	SCH ₃	N	Н	CH3	C-C ₃ H ₅	-
4043	CH ₂	CH ₃	СН	SCH ₃	N	Н	C ₂ H ₅	C-C ₃ H ₅	-
4044	CH ₂	CH ₃	СН	SCH ₃	N	Н	C ₃ H ₇	C-C ₃ H ₅	-
4045	CH ₂	CH ₃	СН	SCH ₃	N	H	C_4H_9	C-C ₃ H ₅	-
4046	CH ₂	CH ₃	СН	SCH ₃	N	Н	CH ₃	C ₃ H ₇	-
4047	CH ₂	CH3	СН	SCH ₃	N	Н	C ₂ H ₅	C ₃ H ₇	-
4048	CH ₂	CH ₃	СН	SCH ₃	N	н	C ₃ H ₇	C ₃ H ₇	-
4049	CH ₂	CH ₃	СН	SCH ₃	N	H	C ₂ H ₅	C_4H_9	-
4050	CH ₂	CH ₃	СН	SCH ₃	N	H	Н	4-CH ₃ O-C ₆ H ₄	-
4051	0	CH ₃	CH	SCH ₃	N	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4052	0	CH3	СН	SCH₃	N	Н	CH ₃	C-C ₃ H ₅	-
4053	0	CH3	СН	SCH ₃	N	Н	C ₂ H ₅	C-C ₃ H ₅	-
4054	0	CH3	CH	SCH ₃	N	Н	C_3H_7	C-C₃H₅	•
4055	0	CH ₃	CH	SCH ₃	N	Н	C_4H_9	C-C ₃ H ₅	-
4056	0	CH ₃	СН	SCH ₃	N	,H	CH ₃	C ₃ H ₇	-
4057	0	CH3	СН	SCH ₃	N	Н	C ₂ H ₅	C ₃ H ₇	-
4058	0	CH ₃	СН	SCH ₃	N	Н	C ₃ H ₇	C ₃ H ₇	-
4059	0	CH ₃	СН	SCH ₃	N	Н	C ₂ H ₅	C ₄ H ₉	-
4060	0	CH ₃	СН	SCH ₃	N	Н	н	4-CH ₃ O-C ₆ H ₄	-

 $\langle \rangle$

VO 99/01454	1							PCT/US98/1	3913
4061	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	c-C ₃ H ₅	C-C ₃ H ₅	-
4062	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	СН3	C-C ₃ H ₅	-
4063	CH ₂	SCH ₃	· N	CH ₃	N	SCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
4064	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
4065	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
4066	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	CH ₃	C ₃ H ₇	-
4067	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C ₃ H ₇	-
4068	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C_3H_7	C ₃ H ₇	-
4069	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C_2H_5	C₄H ₉	-
4070	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	Н	$4-CH_3O-C_6H_4$	
4071	0	SCH ₃	N	CH ₃	N	SCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4072	0	SCH ₃	N	CH ₃	N	SCH ₃	CH ₃	C-C ₃ H ₅	-
4073	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
4074	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
4075	0	SCH ₃	N	CH ₃	N	SCH ₃	C_4H_9	C-C ₃ H ₅	-
4076	0	SCH ₃	N	CH ₃	N	SCH ₃	CH3	C ₃ H ₇	-
4077	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C_3H_7	-
4078	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₃ H ₇	C₃H₁	-
4079	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C ₄ H ₉	-
4080	0	SCH ₃	N	CH ₃	N	SCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
4081	CH ₂	CH ₃	N	CH ₃	N	CH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4082	CH ₂	CH ₃	N	CH ₃	N	CH3	СН₃	C-C ₃ H ₅	-
4083	CH ₂	CH ₃	N	CH ₃	N	CH3	C ₂ H ₅	C-C ₃ H ₅	-
4084	CH ₂	CH ₃	N	CH ₃	N	CH3	C ₃ H ₇	C-C ₃ H ₅	-
4085	CH ₂	CH ₃	N	CH ₃	N	CH3	C ₄ H ₉	C-C ₃ H ₅	-
4086	CH ₂	CH ₃	N	CH ₃	И	CH ₃	CH ₃	C ₃ H ₇	-
4087	CH ₂	CH ₃	N	CH₃	N	CH ₃	C ₂ H ₅	C_3H_7	-
4088	CH ₂	CH ₃	N	CH ₃	N	CH ₃	C ₃ H ₇	C ₃ H ₇	-
4089	CH ₂	CH ₃	N	CH ₃	N	CH ₃	C ₂ H ₅	C₄H,	
4090	CH ₂	CH ₃	N	CH ₃	N	CH ₃	• Н	4-CH ₃ O-C ₆ H ₄	-
4091	0	CH ₃	N	CH ₃	N	CH3	C-C ₃ H ₅		-
4092	0	CH ₃	N	CH ₃	N	CH3	CH3	C-C ₃ H ₅	-
4093	0	СН3	N	CH ₃	N	CH ₃	C ₂ H ₅	C-C ₃ H ₅	-
4094	0	CH ₃	N	CH ₃	N	CH ₃		C-C ₃ H ₅	
4095	0	CH₃	N	CH ₃	N	CH ₃	· ·	C-C ₃ H ₅	-
4096	0	CH ₃	N	CH3	N	CH3	CH ₃	C ₃ H ₇	- <
4097	0	CH ₃	N	CH ₃	N	CH ₃	C ₂ H ₅	C ₃ H ₇	-

N CH₃

 C_3H_7

 C_3H_7

CH₃

N

4098

0

CH₃

WO 99/0145	4					•		PCT/US98/1	13013
			.,	611					13713
4099	0	CH ₃	N	CH ₃	N	CH ₃	C ₂ H ₅	C ₄ H ₉	-
4100	0	CH ₃	N	CH3	N	CH₃	Н	4-CH ₃ O-C ₆ H ₄	-
4101	CH ₂	CH ₃	СН	CH3	N	Н	C-C ₃ H ₅		· -
4102	CH ₂	CH ₃	СН	CH ₃	N	Н	CH3		-
4103	CH ₂	CH ₃	CH	CH₃	N	Н	C ₂ H ₅	C-C ₃ H ₅	-
4104	CH ₂	CH ₃	CH	CH3	N	Н	C ₃ H ₇	c-C ₃ H ₅	-
4105	CH ₂	CH ₃ .	CH	CH₃	N	Н	C ₄ H ₉	C-C ₃ H ₅	-
4106	CH ₂	CH3	CH	CH ₃	N	H	CH ₃	C ₃ H ₇	-
4107	CH ₂	CH3	СН	CH ₃	N	Н	C ₂ H ₅	C ₃ H ₇	-
4108	CH ₂	CH ₃	СН	CH3	N	Н	C ₃ H ₇	C ₃ H ₇	-
4109	CH ₂	CH ₃	СН	CH ₃	N	Н	C_2H_5	C ₄ H ₉	-
4110	CH ₂	CH ₃	СН	CH ₃	N	Н	Н	$4-CH_{3}O-C_{6}H_{4}$	-
4111	0	CH ₃	CH	CH ₃	Ŋ	Н	C-C ₃ H ₅	C-C ₃ H ₅	- ·
4112	0	CH ₃	СН	CH ₃	N	Н	CH ₃	C-C ₃ H ₅	-
4113	0	CH3	CH	CH ₃	N	Н	C ₂ H ₅	C-C ₃ H ₅	-
4114	0	CH ₃	CH	CH ₃	N	н	C_3H_7	C-C ₃ H ₅	-
4115	0	CH3	СН	CH ₃	N	Н.	C_4H_9	C-C ₃ H ₅	-
4116	0	CH ₃	CH	CH ₃	N.	Н	CH ₃	C ₃ H ₇	-
4117	0	CH ₃	CH	CH ₃	N	H	C ₂ H ₅	C ₃ H ₇	-
4118	0	CH3	СН	CH ₃	N	Н	C ₃ H ₇	C ₃ H ₇	-
4119	0	CH ₃	СН	CH ₃	N	Н	C ₂ H ₅	C ₄ H ₉	-
4120	0	CH ₃	СН	CH ₃	N	Н	Н	$4-CH_3O-C_6H_4$	-
4121	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4122	CH ₂	CH ₃	N	$N(CH_3)_2$	CH	Н	CH ₃	C-C ₃ H ₅	-
4123	CH ₂	CH3	N	$N(CH_3)_2$	CH	Н	C_2H_5	C-C ₃ H ₅	-
4124	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	Н	C ₃ H ₇	C-C ₃ H ₅	-
4125	CH ₂	СН,	N	$N(CH_3)_2$	CH	H	C ₄ H ₉	C-C ₃ H ₅	. –
4126	CH ₂	CH ₃	Ŋ	$N(CH_3)_2$	СН	Н	CH ₃	C3H,	-
4127	CH ₂	CH3	N	$N(CH_3)_2$	СН	H	C ₂ H ₅	C3H7	-
4128	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	H	C_3H_7	C ₃ H ₇	_
4129	CH ₂	CH ₃	N	$N(CH_3)_2$	CH	Н	C ₂ H ₅	C ₄ H ₉	-
4130	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	Н	н	4-CH ₃ O-C ₆ H ₄	-
4131	0	CH ₃	N	$N(CH_3)_2$	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4132	0	СН3	N	$N(CH_3)_2$	СН	Н	CH,	c-C ₃ H ₅	
4133	. 0	CH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-
4134	0	CH ₃	N	N(CH ₃) ₂	СН	н	C_3H_7	C-C ₃ H ₅	- <i< td=""></i<>
4135	0	CH ₃	N	N(CH ₃) ₂	СН	Н	C₄H ₉	C-C ₃ H ₅	_

CH

CH3

Н

C₃H₇

N(CH₃)₂

4136

CH3

N

0 .

WO 99/014	54							PCT/US98	3/13913	
4137	0	СН3	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C ₃ H ₇	-	
4138	0	CH ₃	N	$N(CH_3)_2$	СН	н	C_3H_7	C_3H_7	-	
4139	0	CH ₃	N	$N(CH_3)_2$	СН	н	C ₂ H ₅	C ₄ H ₉	-	
4140	0	CH ₃	N	$N(CH_3)_2$	СН	н	Н	4-CH ₃ O-C ₆ H ₄	-	
4141	CH ₂	CH ₃	N	CH3	СН	н	C-C ₃ H ₅	C-C ₃ H ₅	-	
4142	CH ₂	СН₃	N	CH3	СН	н	CH3	C-C ₃ H ₅	-	
4143	CH ₂	CH ₃	N	CH3	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-	
4144	CH ₂	CH ₃	N	CH3	СН	Н	C_3H_7	C-C ₃ H ₅	-	
4145	CH ₂	CH ₃	N	CH ₃	CH	Н	C_4H_9	C-C ₃ H ₅		
4146	CH ₂	CH ₃	N	CH ₃	CH	Н	CH ₃	C ₃ H ₇	-	
4147	CH ₂	CH ₃	N	CH3	СН	Н	C ₂ H ₅	C₃H₁	-	
4148	CH ₂	CH ₃	N	CH ₃	СН	Н	C_3H_7	C ₃ H ₇	-	
4149	CH2	CH ₃	N	CH ₃	СН	Н	C_2H_5	C ₄ H ₉	_	
4150	CH ₂	CH ₃	N	CH ₃	СН	н	Н	4-CH ₃ O-C ₆ H ₄		
4151	0	CH ₃	N	CH ₃	CH	Н	c-C ₃ H ₅	C-C ₃ H ₅	, -	
4152	0	CH ₃	N	CH ₃	СН	Н	CH ₃	C-C ₃ H ₅	-	
4153	0	CH ₃	N	CH ₃	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-	
4154	0	CH ₃	N	CH ₃	СН	Н	C_3H_7	C-C ₃ H ₅	-	
4155	0	CH ₃	N	CH3	СН	н	C ₄ H ₉	C-C ₃ H ₅	-	
4156	0	CH ₃	N	CH ₃	СН	Н	CH ₃	C ₃ H ₇	-	
4157	0	CH ₃	N	CH ₃	СН	Н	C ₂ H ₅	C ₃ H ₇	-	
4158	0	CH ₃	N	CH ₃	СН	H	C_3H_7	C ₃ H ₇	-	
4159	0	CH ₃	N	CH3	СН	Н	C ₂ H ₅	C ₄ H ₉	-	
4160	0	CH ₃	N	CH ₃	СН	Н	Н	4-CH ₃ O-C ₆ H ₄	-	
4161	CH ₂	OCH ₃	N	OCH3	CH	Н	C-C ₃ H ₅	C-C ₃ H ₅	120-121	
4162	CH ₂	OCH ₃	N	OCH ₃	СН	Н	CH ₃	C-C ₃ H ₅	-	
4163	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-	
4164	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C_3H_7	C-C3H	-	
4165	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C_4H_9	C-C ₃ H ₅	-	
4166	CH ₂	OCH ₃	N	OCH3	СН	H	CH ₃	C ₃ H ₇	oil	
4167	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C ₂ H ₅	C ₃ H ₇	-	
4168	CH ₂	OCH3	N	OCH ₃	CH	Н	C ₃ H ₇	C ₃ H ₇	-	
4169	CH ₂	OCH ₃	N	OCH3	СН	Н	C ₂ H ₅	C ₄ H ₉	-	
4170	CH ₂	OCH ₃	N	OCH ₃	CH	Н	н	4-CH ₃ O-C ₆ H ₄	-	
4171	0	OCH3	N	OCH ₃	CH	Н	C-C ₃ H ₅	C-C ₃ H ₅	oil	
4172	0	OCH ₃	N	OCH ₃	СН	Н	CH₃	$C-C_3H_5$	- <u>\ \</u>	•
4173	0	OCH ₃	N	OCH ₃	СН	Ĥ	C ₂ H ₅	$C-C_3H_5$	-	
4174	0	OCH3	N	OCH ₃	CH	Н	C_3H_7	C-C ₃ H ₅	-	

WO 99/014	54							PCT/US98	/13913
4175	0	OCH ₃	N	осн,	СН	н	С₄Н。	C-C3H5	-
4176	0	OCH ₃	N	OCH ₃	СН	н	CH ₃	C ₃ H ₇	-
4177	0	OCH ₃	N	OCH ₃	СН	н	C ₂ H ₅	C ₃ H ₇	-
4178	0	OCH ₃	N	OCH ₃	СН	Н	C ₃ H ₇	C ₃ H ₇	_
4179	0	OCH ₃	N	OCH ₃	СН	Н	C ₂ H ₅	C ₄ H ₉	-
4180	0	OCH ₃	N	OCH ₃	СН	н	Н	4-CH ₃ O-C ₆ H ₄	-
4181	CH ₂	OCH ₃	N	N(CH ₃) ₂	СН	Н	c-C ₃ H ₅	c-C ₃ H ₅	-
4182	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	н	СН3	C-C ₃ H ₅	-
4183	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	c-C ₃ H ₅	-
4184	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₃ H ₇	C-C ₃ H ₅	
4185	CH ₂	OCH3	N	$N(CH_3)_2$	СН	Н	C₄H,	C-C ₃ H ₅	-
4186	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	н	CH3	C ₃ H ₇	-
4187	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	H	C ₂ H ₅	C ₃ H ₇	-
4188	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	н	C_3H_7	C ₃ H ₇	<u>. – </u>
4189	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	C_2H_5	C ₄ H ₉	·
4190	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	Н	$4-CH_3O-C_6H_4$	-
4191	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4192	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	CH3	C-C ₃ H ₅	-
4193	0	OCH ₃	N	$N(CH_3)_2$	CH	Н	C_2H_5	C-C ₃ H ₅	-
4194	0	OCH ₃	N	$N(CH_3)_2$	CH	Н	C_3H_7	C-C ₃ H ₅	-
4195	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₄ H ₉	C-C ₃ H ₅	-
4196	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	CH3	C ₃ H ₇	-
4197	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C ₃ H ₇	-
4198	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₃ H ₇	C_3H_7	-
4199	0	OCH ₃	N	$N(CH_3)_2$	CH	Н	C ₂ H ₅	C ₄ H ₉	-
4200	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	н	4-CH ₃ O-C ₆ H ₄	-
4201	CH ₂	$N(CH_3)_2$	N	OCH ₃	СН	Н	C-C3H5	C-C ₃ H ₅	-
4202	CH ₂	$N(CH_3)_2$	N	OCH ₃	CH	H	CH ₃	C-C ₃ H ₅	-
4203	CH ₂	$N(CH_3)_2$	N	OCH3	CH	Н	C ₂ H ₅	C-C ₃ H ₅	-
4204	CH ₂	$N(CH_3)_2$	N	OCH3	CH	Н	C ₃ H ₇	C-C ₃ H ₅	-
4205	CH ₂	$N(CH_3)_2$	N	OCH ₃	CH	Н	C₄H,	C-C ₃ H ₅	_
4206	CH₂	$N(CH_3)_2$	N	OCH3	CH	Н	CH ₃	C ₃ H ₇	-
4207	CH₂	$N(CH_3)_2$	N	OCH3	CH	Н	C ₂ H ₅	C ₃ H ₇	-
4208	CH ₂	N(CH ₃) ₂	N	OCH ₃	CH	Н	C ₃ H ₇	C ₃ H ₇	-
4209	CH ₂	N(CH ₃) ₂	N	OCH ₃	CH	H	C ₂ H ₅	C ₄ H ₉	-
4210	CH₂	N(CH ₃) ₂	N	OCH3	CH	Н	Н	$4-CH_3O-C_6H_4$	- `
4211	0	N(CH ₃) ₂	N	OCH ₃	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4212	0	И(СН ³) ³	N	OCH ₃	CH	Н	CH ₃	C-C ₃ H ₅	-

WO 99/0145	4							PCT/US98/	13913	
4213	0	$N(CH_3)_2$	N	OCH3	СН	н	C ₂ H ₅	C-C ₃ H ₅		
4214	0	$N(CH_3)_2$	N	OCH ₃	СН	Н	C ₃ H ₇	c-C ₃ H ₅	-	
4215	0	$N(CH_3)_2$	N	OCH ₃	CH	H	C ₄ H ₉	C-C ₃ H ₅	-	
4216	0	$N(CH_3)_2$	N	OCH3	СН	Н	CH ₃	C ₃ H ₇	-	
4217	0	$N(CH_3)_2$	N .	OCH ₃	СН	Н	C_2H_5	C ₃ H ₇	-	
4218	0	$N(CH_3)_2$	N	OCH3	СН	Н	C_3H_7	C ₃ H ₇	-	
4219	0	$N(CH_3)_2$	N	OCH3	СН	Н	C ₂ H ₅	C ₄ H ₉	-	
4220	0	$N(CH_3)_2$	N	OCH ₃	СН	н	н	$4 - CH_3O - C_6H_4$	-	
4221	CH ₂	OCH3	N	OCH ₃	CH	Н	C_2H_5	2-furanyl	-	
4222	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C_3H_7	2-furanyl	-	
4223	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C ₂ H ₅	b	-	
4224	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C ₃ H ₇	ъ	-	
4225	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C ₆ H ₅	b	-	
4226	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C-C ₃ H ₅	b	-	
4227	CH ₂	OCH ₃	N	OCH ₃	CH	Н	CH ₃	CH=CHCH ₃	-	
4228	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C_3H_7	CH=CH ₂	-	
4229	CH ₂	OCH ₃	N	OCH ₃	СН	Н	CH3	C ₆ H ₅	-	
4230	CH₂	OCH ₃	N	OCH ₃	. CH	Н	CH ₃	C-C ₄ H ₇	_	

Key:

a) Where the compound is indicated as an "oil", spectral data is provided below:

Example 4166 elemental analysis: calc. for $C_{19}H_{25}N_5O_2$ C 64.20, H 7.10, N 19.70; observed C 64.13, H 6.67, N 19.30.

Example 4171 elemental analysis: calc. for $C_{20}H_{23}N_5O_3$ C 62.98, H 6.09, N 18.36; observed C 62.80, H 6.10, N 18.19.

10 b) C=C-CH₃

The methods used in the preparation of the compounds of Table 1 may be employed in the synthesis of those compounds of Structure A in Table 5 and Table 5A. The methods employed to make the analogues bearing a benzofuran group are illustrated in the following examples.

The methods of Schemes 13 and 14 may be used to 20 prepare many of the examples of Structure B and Structure C

Ć,

contained in Table 5 and Table 5A, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

5

Example 5001

Preparation of 9-Dicyclopropylmethyl-8-ethyl-6-(6-methyl-2,3-dihydrobenzofuran-5-yl)purine

10 Part A. Sodium hydride dispersion in mineral oil (5.05 g, 50% w/w, 105 mmol) was washed with hexane and dried under vacuum. DMF (100 mL) was added, the slurry was cooled to 0 °C, and treated with a solution of m-cresol (10 mL, 95.6 mmol) in DMF (20 mL). The resulting mixture was allowed to stir for 1 h, then was treated with chloromethyl methyl ether (8.00 mL, 105 mmol) by syringe. The mixture was stirred overnight, then poured into ethyl acetate (200 mL). This was washed with water $(3 \times 200 \text{ mL})$ and brine (100 mL), and the aqueous phases were back-extracted in sequence with ethyl acetate. The extracts 20 were combined, dried over magnesium sulfate, filtered and evaporated. The oily product was purified by elution through a plug of silica gel with 10:90 ethyl acetate-hexane. Evaporation then afforded the pure product, 3-(methoxymethoxy) toluene, as an oil (13.93 g, 91.5 mmol, 96%). TLC R_r 0.46 (10:90 ethyl acetate-hexane). ¹H NMR (300 MHz, $CDCl_3$): d 7.17 (1H, t, J = 7.7 Hz), 6.86-6.81 (3H, m), 5.17 (2H, s), 3.48 (3H, s), 2.33 (3H, s). MS (H₂O-GC/MS): m/e 153

30

(60), 121 (100).

Part B. A solution of 3-(methoxymethoxy)toluene (5.00 g, 32.9 mmol) and TMEDA (5.30 mL, 35.1 mmol) in THF (50 mL) was cooled to 0 °C, and treated with a hexane solution of n-butyllithium (22.0 mL, 1.6 M, 35.2 mmol). After 4 hours, the solution was cooled to -78 °C, and treated dropwise with ethylene oxide (2.00 mL, 40 mmol, condensed from a lecture bottle through a cold-finger into a graduated dropping funnel). The mixture was allowed to stir and warm to ambient temperature overnight,

then was poured into satd. aq. ammonium chloride solution (120 mL). This was extracted with ethyl acetate (2 x 120 mL), and the extracts were washed in sequence with brine, combined, dried over magnesium sulfate, filtered and evaporated. The residual oil was separated by column chromatography (10:90 ethyl acetate-hexane) to afford the desired product, 2-[2-(methoxymethoxy)-4-methylphenyl]ethanol, as a viscous liquid (2.25 g, 11.5 mmol, 35%), along with 2.50 g recovered starting material. The 1H NMR spectrum showed regioselectivity in excess of 10:1. TLC R_p 0.09 (10:90 ethyl acetate-hexane). ¹H 10 NMR (300 MHz, CDCl₃): d 7.06 (1H, d, J = 7.7 Hz), 6.92 (1H, br s), 6.78 (1H, br d, J = 7.7 Hz), 5.20 (2H, s), 3.83 (2H, q, J = 6.4 Hz), 3.49 (3H, s), 2.89 (2H, t, J = 6.6 Hz), 2.32 (3H, s), 1.61 (1H, t, J = 5.9 Hz). MS (NH₃-DCI): m/e 214 (76), 212 15 (100), 197 (9), 182 (30), 165 (38).

Part C. A solution of the MOM compound from Part B (1.84 g, 9.38 mmol) was dissolved in 1:1 THF-isopropanol (20 mL), and treated with HCl in dioxane (2.5 mL, 4 N, 10.0 mmol). The reaction was stirred at ambient temperature overnight. Aqueous workup gave sufficiently pure product, 2-(2-hydroxy-4-methylphenyl)ethanol.

Part D. A solution of the diol from Part C (ca. 9 mmol) and triphenylphosphine (2.83 g, 10.8 mmol) in THF (20 mL) was cooled to 0 °C, and treated with diethyl azodicarboxylate (1.70 mL, 10.8 mmol) by syringe. The solution was stirred overnight, then evaporated, and the residue separated by a flash column to afford the product, 6-methyl-2,3
30 dihydrobenzofuran (780 mg, 5.81 mmol, 65%). TLC R_F 0.29 (2:98 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.07 (1H, d, J = 7.4 Hz), 6.66 (1H, d, J = 7.4 Hz), 6.62 (1H, s), 4.54 (2H, t, J = 8.6 Hz), 3.16 (2H, t, J = 8.6 Hz), 2.30 (3H, s). MS (D₂O-GC/MS): m/e 135 (100).

Part E. A solution of the above compound (780 mg) and N-bromosuccinimide (1.24 g, 6.97 mmol) in dichloroethane (10 mL) was heated to reflux overnight, then cooled, filtered and

evaporated. Column chromatography (hexane, then 2:98 ethyl acetate-hexane) gave first 5-bromo-6-methylbenzofuran (270 mg, 1.27 mmol, 22%), then 5-bromo-6-methyl-2,3-dihydrobenzofuran (923 mg, 4.33 mol, 75%), both as solids. For the dihydro product: TLC R_F 0.35 (2:98 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.31 (1H, s), 6.68 (1H, s), 4.56 (2H, t, J = 8.8 Hz), 3.17 (2H, t, J = 8.8 Hz), 2.33 (3H, s). MS (H₂O-GC/MS): m/e 215 (76), 213 (100).

10 Part F. A solution of the bromide from Part E (923 mg, 4.33 mmol) in tetrahydrofuran (20 mL) was cooled to -78 °C, and treated with a hexane solution of n-butyllithium (3.0 mL, 1.6 M, 4.8 mmol). After 1 hour, the reaction mixture was treated with triisopropylborate (1.00 mL, 4.33 mmol) and allowed to 15 come to ambient temperature over 6 hrs. Then, 1 mL of 6 N aq. HCl and 3 mL water were added, and the resulting mixture was allowed to stir for 1 hr. It was poured into water (100 mL), and extracted with ethyl acetate (2 x 100 mL). The extracts were washed with brine (60 mL), combined, dried over sodium sulfate, filtered and evaporated to afford a solid, which was 20 purified by trituration with hexane to give 6-methyl-2,3dihydrobenzofuran-5-boronic acid (718 mg, 4.03 mmol, 93%).

Part G. A mixture of the boronic acid from Part F (298 mg, 1.67 mmol), 6-chloro-9-dicyclopropylmethyl-8-ethylpurine (309 25 mg, 1.12 mmol), 2 N aqueous sodium carbonate solution (1.7 mL, 3.4 mmol) and triphenylphosphine (61 mg, 0.233 mmol) in DME (20 mL) was degassed by repeated cycles of brief vacuum pumping followed by nitrogen purging. To this was added 30 palladium (II) acetate (13 mg, 0.058 mmol), and the mixture was degassed again and then heated to reflux for 14 hours. It was cooled, and poured into water (100 mL). This mixture was extracted with ethyl acetate $(2 \times 100 \text{ mL})$, and the extracts were washed in sequence with brine (60 mL), combined, dried over sodium sulfate, filtered and evaporated. The residual 35 material was separated by column chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford the title product as a solid. This was recrystallized to purity from ether (253 mg,

0.77 mmol, 69%). m.p. 147-148 °C. TLC R_F 0.18 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.88 (1H, s), 7.60 (1H, s), 6.77 (1H, s), 4.61 (2H, t, J = 8.6 Hz), 3.44 (1H, v br), 3.24 (2H, t, J = 8.6 Hz), 2.94 (2H, br), 2.44 (3H, s), 2.03 (2H, v br), 1.45 (3H, br t, J = 6 Hz), 0.89-0.79 (2H, m), 0.58 (2H, br), 0.50-0.40 (2H, m), 0.27-0.17 (2H, m). MS (NH₃-CI): m/e 377 (4), 376 (27), 375 (100). Analysis calc'd for $C_{23}H_{26}N_4O$: C, 73.77; H, 7.01; N, 14.96; found: C, 73.69; H, 7.08; N, 14.40.

10

15

30

(31), 451 (100).

Examples 5201, 5231 and 5232

Preparation of 9-dicyclopropylmethyl-8-ethyl-6-(6-methylbenzofuran-5-yl)purine, 6-(2-bromo-6-methylbenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine and 6-(7-bromo-6-methyl-2,3-dihydrobenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine

A solution of the compound of Example 5001 (250 mg, 0.668 mmol) and N-bromosuccinimide (119 mg, 0.669 mmol) in 1,2
20 dichloroethane (10 mL) was heated to reflux for 12 hours, then cooled and evaporated. The resulting mixture was taken up in ether, filtered and evaporated, and the residual material was separated by flash chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford, in order, the following three products:

6-(2-Bromo-6-methylbenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine: m.p. 177-178 °C. TLC R_F 0.23 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.92 (1H, s), 7.85 (1H, s), 7.42 (1H, s), 6.74 (1H, s), 4.15 (1H, v br), 2.97 (2H, v br), 2.54 (3H, s), 2.00 (2H, v br), 1.44 (3H, br t, J = 7 Hz), 0.90-0.80 (2H, m), 0.63-0.53 (2H, m), 0.50-0.40 (2H, m), 0.26-0.16 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{23}H_{24}BrN_4O$: 451.1133, found 451.1132; 455 (3), 454 (25), 453 (99), 452

35 9-Dicyclopropylmethyl-8-ethyl-6-(6-methylbenzofuran-5-yl)purine: m.p. 139-141 °C. TLC R_F 0.16 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.92 (1H, s), 7.95 (1H, s), 7.60 (1H, d, J = 2.2 Hz), 7.48 (1H, d, J = 0.7 Hz), 6.78 (1H,

dd, J = 2.2, 0.7 Hz), 4.40 (1H, v br), 2.97 (2H, v br), 2.56 (3H, s), 2.04 (2H, v br), 1.44 (3H, br t, J = 7 Hz), 0.90-0.80 (2H, m), 0.62-0.52 (2H, m), 0.51-0.41 (2H, m), 0.29-0.18 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{23}H_{25}N_4O$: 373.2028, found 373.2033; 375 (3), 374 (26), 373 (100). 6-(7-Bromo-6-methyl-2,3-dihydrobenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine: m.p. 179-180 °C. TLC R_F 0.04 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.89 (1H, s), 7.47 (1H, s), 4.73 (2H, t, J = 8.6 Hz), 3.80 (1H, v br), 3.37 (2H, t, J = 8.6 Hz), 2.95 (2H, v br), 2.44 (3H, s), 1.44 (3H, br t, J = 7 Hz), 0.89-0.79 (2H, m), 0.61-0.52 (2H, m), 0.51-0.41 (2H, m), 0.28-0.18 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{23}H_{26}BrN_4O$: 453.1290, found 453.1285; 455 (98), 453 (100).

15

TABLE 5

20

Ex. No.	Х	R³	R ⁴	a	b	С	R ^{1a}	R ^{1b}	m.p., °C	•
5001	СН₂	н	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C₃H₅	147-148	•
5002	CH ₂	н	CH3	CH ₂	CH ₂	0	Н	4-(CH ₃ O)-C ₆ H ₄	-	
5003	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	CH ₃	C-C ₃ H ₅	-	
5004	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-	N
5005	CH ₂	H	CH ₃	CH ₂	CH ₂	0	C_3H_7	C-C ₃ H ₅	-	

V	VO 99/01	454							PCT/US9	8/13913
	5006	CH ₂	н	СН₃	CH ₂	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-
	5007	CH ₂	Н	CH ₃	CH ₂	CH₂	0	C ₂ H ₅	C ₃ H ₇	-
	5008	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
	5009	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-
	5010	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	CH ₃	C ₃ H ₇	· <u>-</u>
	5011	CH ₂	Н	CH ₃	o	CH ₂	0	$C-C_3H_5$	C-C ₃ H ₅	168-169
	5012	CH ₂	Н	CH ₃	0	CH ₂	0	Н	$4 - (CH_3O) - C_6H_4$	
	5013	CH ₂	Н	CH3	0	CH2	0	CH ₃	C-C3H5	-
	5014	CH ₂	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
	5015	CH_2	Н	CH ₃	0	CH ₂	0	C_3H_7	C-C ₃ H ₅	
	5016	CH_2	Н	CH ₃	0	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-
	5017	CH ₂	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
	5018	CH ₂	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
	5019	CH ₂	Н	CH ₃	0	CH ₂	0	C ₃ H ₇	C ₃ H ₇	. :
	5020	CH ₂	Н	CH3	0	CH ₂	0	CH ₃	C ₃ H ₇	
	5021	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	$C-C_3H_5$	C-C ₃ H ₅	-
	5022	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	Н	$4 - (CH_3O) - C_6H_4$	-
	5023	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	CH ₃	C-C ₃ H ₅	-
	5024	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C ₂ H ₅	C-C ₃ H ₅	-
	5025	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C_3H_7	C-C ₃ H ₅	-
	5026	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C ₄ H ₉	C-C ₃ H ₅	-
	5027	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C ₂ H ₅	C_3H_7	-
	5028	CH ₂	H	CH ₃	0	CH ₂	CH ₂	C ₂ H ₅	C ₄ H ₉	-
	5029	CH₂	Н	CH ₃	0	CH ₂	CH ₂	C ₃ H ₇	C ₃ H ₇	-
	5030	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	CH3	C ₃ H ₇	-
	5031	CH ₂	H	CH ₃	CH ₂	0	CH ₂	C-C ₃ H ₅	C-C ₃ H ₅	-
	5032	CH ₂	Н	CH3	CH ₂	0	CH₂	Н	$4 - (CH_3O) - C_6H_4$	-
	5033	CH ₃	Н	CH3	CH ₂	0	CH ₂	CH₃	C-C ₃ H ₅	-
	5034	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	C ₂ H ₅	c-C ₃ H ₅	-
	5035	CH ₂	Н	CH3	CH ₂	0	CH ₂	C ₃ H ₇ ·	C-C ₃ H ₅	-
	5036	CH ₂	H	CH3	CH ₂	0	CH₂	C_4H_9	c-C ₃ H ₅	
	5037	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	C ₂ H ₅	C ₃ H ₇	-
	5038	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	C_2H_5	C ₄ H ₉	-
	5039	CH ₂	Н	CH3	CH ₂	0	CH ₂	C ₃ H ₇	C₃H ₇	-
	5040	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	CH3	C ₃ H ₇	-
	5041	CH ₂	Н	C1	CH ₂	CH ₂	. 0	C-C ₃ H ₅	C-C ₃ H ₅	- \
	5042	CH ₂	Н	Cl	CH ₂	CH ₂	0	Н	4-(CH ₃ O)-C ₆ H ₄	-

0

CH₃

CH₂

CH₂

5043 CH₂ H Cl

C-C₃H₅

WO 99/0	1454							PCT/US98	3/13913
5044	CH ₂	н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C-C3H5	-
5045	CH ₂	Н	Cl	CH ₂	CH₂	0	C ₃ H ₇	C-C3H5	_
5046	CH ₂	Н	Cl	CH ₂	CH ₂ .	0	C ₄ H ₉	C-C3H5	-
5047	CH ₂	н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5048	CH ₂	Н	Cl	CH ₂	CH ₂	0	C_2H_5	C ₄ H ₉	· -
5049	CH ₂	Н	Cl	CH ₂	CH ₂	0	C ₃ H ₇	C ₃ H ₇	-
5050	CH ₂	Н	Cl	CH ₂	CH ₂	0	CH ₃	C ₃ H ₇	· -
5051	CH ₂	Н	Cl	0	CH ₂	0	C-C3H5	C-C ₃ H ₅	-
5052	CH ₂	H	Cl	0	CH ₂	0	н	$4-(CH_3O)-C_6H_4$	-
5053	CH ₂	Н	Cl	0	CH ₂	0	CH ₃	C-C ₃ H ₅	-
5054	CH ₂	Н	Cl	0	CH ₂	0	C_2H_5	C-C ₃ H ₅	-
5055	CH ₂	Н	Cl	0	CH ₂	0	C_3H_7	C-C ₃ H ₅	-
5056	CH ₂	Н	Cl	0	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-
5057	CH ₂	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5058	CH ₂	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	
5059	CH ₂	Н	Cl	0	CH ₂	0	C_3H_7	C ₃ H ₇	-
5060	CH ₂	Н	Cl	0	CH ₂	0	CH3	C ₃ H ₇	-
5061	0	Н	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5062	0	Н	CH ₃	CH ₂	CH ₂	0	Н	$4 - (CH_3O) - C_6H_4$	-
5063	0	Н	CH ₃	CH₂	CH ₂	0	CH3	C-C ₃ H ₅	-
5064	0	Н	CH₃	CH ₂	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5065	0	Н	CH ₃	CH ₂	CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-
5066	0	Н	СН₃	CH ₂	CH ₂	0	C₄H ₉	C-C ₃ H ₅	-
5067	0	Н	CH3	CH₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5068	0	Н	CH3	CH ₂	CH ₂	0	C ₂ H ₅	C₄H,	-
5069	0	Н	CH ₃	CH ₂	CH ₂	0	C ₃ H ₇	C_3H_7	-
5070	0	Н	CH3	CH ₂	CH ₂	0	CH ₃	C ₃ H ₇	-
5071	0	Н	CH ₃	0	CH ₂	0	$C-C_3H_5$	C-C ₃ H ₅	-
5072	0	Н	CH3	0	CH ₂	0	. Н	$4-(CH_3O)-C_6H_4$	-
5073	0	H	CH3	0	CH ₂	0	CH ₃	C-C ₃ H ₅	-
5074	0	Н	CH3	0	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5075	0	Н	CH ₃	0	CH₂	0	C ₃ H ₇	C-C ₃ H ₅	-
5076	0	H	CH ₃	0	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-
5077	0	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5078	0	H	CH ₃	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
5079	0	H	CH ₃	0	CH ₂	0	C ₃ H ₇	C ₃ H ₇	-
5080	0	Н	CH3	0	CH ₂	0	CH ₃	C ₃ H ₇	-

C-C₃H₅

CH₂ CH₂ O

5081

н

Cl

 ζ_1

C-C3H5 -

WO 99/01	O 99/01454 PCT/US98/13913											
5082	0	Н	Cl	CH ₂	CH ₂	0	н	4-(CH ₃ O)-C ₆ H ₄	-			
5083	0	н	Cl	CH ₂	CH ₂	0	CH ₃	C-C3H5	-			
5084	0	н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-			
5085	0	Н	Cl	CH ₂	CH ₂	0	C_3H_7	C-C ₃ H ₅	-			
5086	0	Н	Cl	CH ₂	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅				
5087	0	н	Cl	CH ₂	CH ₂	0	C_2H_5	C ₃ H ₇	-			
5088	0	н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-			
5089	0	н	Cl	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-			
5090	0	Н	Cl	CH ₂	CH2	0	CH ₃	C ₃ H ₇	-			
5091	0	Н	Cl	0	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-			
5092	0	Н	Cl	0	CH ₂	0	Н	$4-(CH_3O)-C_6H_4$	-			
5093	0	Н	Cl	0	CH ₂	0	CH ₃	C-C3H5	-			
5094	0	н	Cl	0	CH ₂	0	C_2H_5	C-C ₃ H ₅	-			
5095	0	н	Cl	0	CH ₂	0	C_3H_7	c-C ₃ H ₅	-			
5096	0	Н	Cl	0	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	_			
5097	0	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-			
5098	0	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	· 			
5099	0	Н	Cl	0	CH ₂	0	C_3H_7	C_3H_7	-			
5100	0	Н	C1	0	CH ₂	0	CH ₃	C ₃ H ₇	-			
5101	CH ₂	CH3	CH3	CH ₂	CH ₂	0	$C-C_3H_5$	C-C ₃ H ₅	-			
5102	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	н	$4 - (CH_3O) - C_6H_4$	-			
5103	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	CH ₃	$C-C_3H_5$	-			
5104	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C_2H_5	$C-C_3H_5$	-			
5105	CH ₂	CH ₃	СН₃	CH ₂	CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-			
5106	CH ₂	CH3	CH₃	CH ₂	CH ₂	0	C₄H,	C-C ₃ H ₅	-			
5107	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-			
5108	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C₄H ₉	-			
5109	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-			
5110	CH ₂	CH3	CH3	CH ³	CH₂	0	CH ₃	C ₃ H ₇	-			
5111	CH ₂	Н	C1	0	C=0	NH	C-C ₃ H ₅	c-C₃H₅	-			
5112	CH ₂	Н	Cl	0	C=O	NH	Н	$4 - (CH_3O) - C_6H_4$	-			
5113	CH₂	Н	Cl	0	C=0	NH	CH ₃	C-C ₃ H ₅	-			
5114	CH ₂	H	Cl	0	C=0	NH	C ₂ H ₅	C-C ₃ H ₅	-			
5115	CH2	Н	Cl	0	C=0	NH	C_3H_7	C-C ₃ H ₅	-			
5116	CH ₂	Н	Cl	0	C=0	NH	C ₄ H ₉	C-C ₃ H ₅	-			
5117	CH ₂	Н	Cl	0	C=0	NH	C ₂ H ₅	C ₃ H ₇	-			
5118	CH ₂	Н	Cl	0	C=0	NH	C ₂ H ₅	C ₄ H ₉	-			
5119	CH ₂	Н	Cl	0	C=0	NH	C ₃ H ₇	C₃H ₇	-			

WO 99/0	1454							PCT/US9	8/13913
5120	CH ₂	н	Cl	0	C=0	NH	CH ₃	C ₃ H ₇	-
5121	CH ₂	Н	Cl	0	C=O	NCH ₃	C-C3H5	C-C ₃ H ₅	-
5122	CH ₂	н	Cl	.0	C=0	NCH ₃	Н	4-(CH ₃ O)-C ₆ H ₄	-
5123	CH ₂	н	Cl	0	C=O	NCH ₃	CH ₃	C-C3H5	-
5124	CH ₂	Н	Cl	0	C=0	NCH ₃	C ₂ H ₅	C-C ₃ H ₅	· -
5125	CH ₂	н	Cl	0	C=0	NCH ₃	C3H7	C-C ₃ H ₅	-
5126	CH ₂	Н	Cl	0	C=0	NCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
5127	CH ₂	Н	Cl	0	C=O	NCH ₃	C ₂ H ₅	C ₃ H ₇	-
5128	CH ₂	н	Cl	0	C=0	NCH3	C ₂ H ₅	C ₄ H ₉	-
5129	CH ₂	Н	Cl	0	C=0	NCH ₃	C_3H_7	C ₃ H ₇	-
5130	CH ₂	н	Cl	0	C=0	NCH ₃	CH ₃	C ₃ H ₇	-
5131	CH ₂	Н	Cl	0	ссн3	N	C-C ₃ H ₅	C-C ₃ H ₅	-
5132	CH ₂	н	Cl	0	CCH ₃	N	Н	$4-(CH_3O)-C_6H_4$	-
5133	CH ₂	Н	Cl	0	.CCH ₃	N	CH ₃	c-C ₃ H ₅	-
5134	CH ₂	н	C1	0	CCH ₃	N	C ₂ H ₅	C-C ₃ H ₅	
5135	CH ₂	H.	Cl	0	CCH ₃	N	C_3H_7	C-C ₃ H ₅	-
5136	CH ₂	н	Cl	0	CCH ₃	N	C ₄ H ₉	$C-C_3H_5$	-
5137	CH ₂	Н	Cl	0	CCH ₃	· N	C ₂ H ₅	C ₃ H ₇	-
5138	CH ₂	н	Cl	0	CCH ₃	. N	C ₂ H ₅	C ₄ H ₉	-
5139	CH ₂	Н	C1	0	CCH ₃	N	C_3H_7	C ₃ H ₇	- .
5140	CH ₂	Н	Cl	0	CCH ₃	N	CH ₃	C ₃ H ₇	-
5141	CH ₂	Н	Cl	. 0	C=0	NC ₂ H ₅	C-C3H5	C-C ₃ H ₅	-
5142	CH ₂	Н.	Cl	O ,	C=0	NC ₂ H ₅	Н	$4-(CH_3O)-C_6H_4$	-
5143	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	CH3	C-C ₃ H ₅	-
5144	CH ₂	Н	Cl	0	C=0	NC_2H_5	C ₂ H ₅	C-C ₃ H ₅	. -
5145	CH ₂	Н	C1	0	C=0	NC ₂ H ₅	C_3H_7	C-C₃H₅	-
5146	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C₄H,	C-C ₃ H ₅	-
5147	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C ₂ H ₅	C ₃ H ₇	-
5148	CH ₂	H	Cl	0	C=0	NC ₂ H ₅	C ₂ H ₅	C ₄ H ₉	-
5149	CH ₂	Η.	Cl	0	C=0	NC ₂ H ₅	C_3H_7	C ₃ H ₇	-
5150	CH ₂	H	Cl	0	C=0	NC ₂ H ₅	CH3	C ₃ H ₇	-
5151	CH ₂	Н	C1	0	C=O	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5152	CH ₂	Н	Cl	0	C=O	0	Н	$4 - (CH_3O) - C_6H_4$	-
5153	CH ₂	Н	C1	0	C=0	. 0	CH ₃	C-C ₃ H ₅	
5154	CH ₂	Н	Cl	0	C=0	0	C ₂ H ₅	C-C ₃ H ₅	-
5155	CH ₂	н	Cl	0	C=0	0	C ₃ H ₇	C-C ₃ H ₅	-
5156	CH ₂	Н	Cl	0	C=0	0	C ₄ H ₉	C-C ₃ H ₅	-
5157	CH ₂	Н	Cl	0	C=0	, O	C ₂ H ₅	C ₃ H ₇	-

,	WO 99/0	1454							PCT/US98	8/13913	
	5158	CH ₂	н	Cl	0	C=O	0	C ₂ H ₅	C ₄ H ₉	-	
	5159	CH ₂	н	Cl	0	C=O	0	C_3H_7	C ₃ H ₇	_	
	5160	CH₂	н	Cl	0	C=O	0	CH ₃	C₃H,	-	
	5161	CH ₂	Н	Cl	0	CH₂CH₂	0	C-C ₃ H ₅	C-C3H5	-	
	5162	CH ₂	н	Cl	0	CH ₂ CH ₂	0	н	4-(CH ₃ O)-C ₆ H ₄	_	
	5163	CH ₂	н	Cl	0	CH ₂ CH ₂	0	CH ₃	C-C ₃ H ₅	-	
	5164	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-	
	5165	CH ₂	н	Cl	0	CH ₂ CH ₂	0	C_3H_7	C-C ₃ H ₅	-	
	5166	CH ₂	н	Cl	0	CH ₂ CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-	
	5167	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	C ₂ H ₅	C ₃ H ₇	. =	
	5168	CH ₂	H	Cl	0	CH ₂ CH ₂	0	C_2H_5	C ₄ H ₉	-	
	5169	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	C_3H_7	C ₃ H ₇	-	
	5170	CH ₂	н	Cl	0	CH ₂ CH ₂	0	CH3	C ₃ H ₇	-	
	5171	CH ₂	Н	CH ₃	0	C=0	0	C-C ₃ H ₅	c-C ₃ H ₅	-	
	5172	CH ₂	Н	CH ₃	0	C=0	0	Н	$4 - (CH_3O) - C_6H_4$	<u>;</u>	
	5173	CH ₂	Н	CH ₃	0	C=O	0	CH3	c-C ₃ H ₅	-	
	5174	CH ₂	Н	CH ₃	0	C=0	0	C ₂ H ₅	C-C3H5	-	
	5175	CH ₂	Н	CH ₃	0	C=O	0	C_3H_7	C-C ₃ H ₅	-	
	5176	CH ₂	H	CH ₃	0	C=0	0	C ₄ H ₉	C-C ₃ H ₅	-	
	5177	CH ₂	Н	CH ₃	0	C=0	0	C ₂ H ₅	C ₃ H ₇	-	
	5178	CH ₂	H	CH3	0	C=0	0	C_2H_5	C_4H_9	-	
	5179	CH ₂	Н	CH ₃	0	C=0	0	C ₃ H ₇	C ₃ H ₇	-	
	5180	CH ₂	н	CH ₃	0	C=0	0	CH3	C_3H_7	-	
	5181	CH ₂	Н	CH ₃	0	CH ₂ CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-	
	5182	CH ₂	Н	CH3	0	CH ₂ CH ₂	0	Н	$4 - (CH_3O) - C_6H_4$	-	
	5183	CH ₂	Н	CH3	0	CH ₂ CH ₂	0	CH3	C-C ₃ H ₅	-	
	5184	CH ₂	Н	CH3	0	CH ₂ CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-	
	5185	CH ₂	Н	CH3	0	CH ₂ CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-	
	5186	CH ₂	H	CH3	0	CH ₂ CH ₂	0	C_4H_9	C-C ₃ H ₅	-	
	5187	CH ₂	Н	CH3	0	CH ₂ CH ₂	0	C ₂ H ₅	C ₃ H ₇	-	
	5188	CH ₂	Н	CH ₃	0	CH ₂ CH ₂	0	C ₂ H ₅	C ₄ H ₉	-	
	5189	CH ₂	Н	CH3	0	CH ₂ CH ₂	0	C ₃ H ₇	C_3H_7	-	
	5190	CH3	Н	CH3	0	CH ₂ CH ₂	0	CH₃	C ₃ H ₇	-	
	5191	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C-C ₃ H ₅	$C-C_3H_5$	-	
	5192	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	Н	$4-(CH_3O)-C_6H_4$	-	
	5193	CH ₂	Н	Cl	0	CH₂CH₂	NCH ₃	CH ₃	C-C ₃ H ₅	-	K,
	5194	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C ₂ H ₅	C-C ₃ H ₅	-	

5195 CH₂ H Cl O CH₂CH₂ NCH₃ C₃H₇ C-C₃H₅ -

WO 99/01	1454							PCT/US9	98/13913
5196	СН ₂	н	Cl	0	CH ₂ CH ₂	NCH ₃	C₄H,	c-C ₃ H ₅	_
5197	CH ₂	Н	C1	0	CH ₂ CH ₂	NCH,	C ₂ H ₅	C ₃ H ₇	_
5198	CH₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C ₂ H ₅	C ₄ H ₉	-
5199	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C ₃ H ₇	C₃H ₇	-
5200	CH ₂	H	Cl	0	CH ₂ CH ₂	NCH ₃	СН3	C ₃ H ₇	
5201	CH₂	Н	CH ₃	СН	СН	0	C-C ₃ H ₅	C-C ₃ H ₅	139-141
5202	CH ₂	Н	CH₃	СН	СН	0	н	4-(CH ₃ O)-C ₆ H ₄	-
5203	CH ₂	Н	CH ₃	СН	СН	0	CH ₃	C-C ₃ H ₅	-
5204	CH ₂	н	CH ₃	СН	СН	0	C ₂ H ₅	C-C ₃ H ₅	-
5205	CH ₂	Н	СН3	СН	СН	0	C ₃ H ₇	C-C ₃ H ₅	
5206	CH ₂	Н	СН ₃	СН	СН	0	C ₄ H ₉	C-C ₃ H ₅	-
5207	CH ₂	Н	CH ₃	СН	СН	0	C ₂ H ₅	C ₃ H ₇	_
5208	CH ₂	н	CH ₃	СН	СН	0	C ₂ H ₅	C ₄ H ₉	-
5209	CH ₂	н	CH ₃	СН	СН	0	C_3H_7	C ₃ H ₇	-
5210	CH ₂	Н	СН ₃	СН	СН	0	CH3	C ₃ H ₇	<u>-</u> :
5211	CH ₂	Н	Cl	СН	СН	0	c-C ₃ H ₅	C-C3H5	-
5212	CH ₂	Н	Cl	СН	СН	0	Н	4-(CH ₃ O)-C ₆ H ₄	-
5213	CH ₂	Н	Cl	СН	CH	0	CH ₃	C-C ₃ H ₅	-
5214	CH ₂	Н	Cl	СН	СН	0	C ₂ H ₅	C-C ₃ H ₅	-
5215	CH ₂	н	C1	СН	СН	0	C ₃ H ₇	C-C ₃ H ₅	<u>-</u>
5216	CH₂	н	cı	СН	СН	0	C ₄ H ₉	C-C ₃ H ₅	-
5217	CH ₂	Н	cı	СН	СН	0	C ₂ H ₅	C ₃ H ₇	-
5218	CH ₂	Н	Cl	СН	СН	0	C ₂ H ₅	C ₄ H ₉	-
5219	CH ₂	н	Cl	СН	СН	0	C_3H_7	C ₃ H ₇	-
5220	CH ₂	Н	C1	СН	СН	0	CH ₃	C ₃ H ₇	-
5221	CH ₂	Н	CH ₃	СН	СНСН	СН	C-C ₃ H ₅	C-C ₃ H ₅	~
5222	CH ₂	н	CH3	СН	СНСН	СН	Н	$4-(CH_3O)-C_6H_4$	-
5223	CH ₂	Н	CH ₃	СН	СНСН	СН	СН3	c-C ₃ H ₅	-
5224	CH ₂	н	CH ₃	СН	СНСН	СН	C ₂ H ₅	c-C ₃ H ₅	-
5225	CH ₂	Н	CH ₃	СН	СНСН	CH	C ₃ H ₇ ·	c-C ₃ H ₅	-
5226	CH ₂	Н	CH ₃	СН	СНСН	СН	C_4H_9	c-C ₃ H ₅	-
5227	CH ₂	Н	CH3	СН	СНСН	СН	C ₂ H ₅	C_3H_7	-
5228	CH ₂	Н	CH ₃	СН	СНСН	СН	C ₂ H ₅	C ₄ H ₉	-
5229	CH ₂	Н	CH ₃	СН	СНСН	СН	C_3H_7	C_3H_7	-
5230	CH ₂	Н	CH3	СН	СНСН	СН	CH ₃	C ₃ H ₇	-
5231	CH ₂	Н	CH ₃	СН	CBr	0	C-C ₃ H ₅	C-C ₃ H ₅	177-178 😽
5232	CH ₂	н	СН,	CH ₂	CH ₂	0	C-C3H5	C-C ₃ H ₅	179-180
5233	CH ₂	н	CH3	СН	ссн,	0	C-C ₃ H ₅	C-C ₃ H ₅	-

WO 99/0	1454	PC1/US	98/13913						
5234	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5235	CH ₂	H	CH ₃	CH	CSCH ₃	0	$C-C_3H_5$	c-C ₃ H ₅	-
5236	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-

5 TABLE 5A

R1a
$$\stackrel{\text{R1b}}{\longrightarrow}$$
 R1a $\stackrel{\text{R1b}}{\longrightarrow}$ R1a $\stackrel{\text{R1b}}{\longrightarrow}$ R1a $\stackrel{\text{R1b}}{\longrightarrow}$ CH3 $\stackrel{\text{R1c}}{\longrightarrow}$ CH3 $\stackrel{\text{CH3}}{\longrightarrow}$ CH3 $\stackrel{\text{CH3$

10

Ex. No.	х	R ¹²	a	b	С	R ^{1a}	R1b	m.p., °C
5232	CH ₂	Br	CH₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	179-180
5234	CH ₂	CN	CH ₂	CH ₂	0	C−C₃H₅	C-C ₃ H ₅	-
5236	CH ₂	SCH ₃	CH2	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-

The methods used in the preparation of the compounds of Table 1 may be used for the compounds of Structure A of Table 6. For example, replacing variously-substituted pentaatomic heteroaryl boronic acids for benzeneboronic acids in the palladium-catalyzed aryl cross-coupling method (see Examples 35 or 831) will afford the desired 6-heteroarylpurine compounds.

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 6, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

TABLE 6

10

Ex. No.	х	R³	a	b	С	đ	R14	Rlb	m.p.
									°C •
6001	CH₂	Н	ССН₃	N	0	ССН₃	C-C ₃ H ₅	c-C ₃ H ₅	oil
6002	CH ₂	Н	CCH3	N	0	CCH3	CH ₃	$C-C_3H_5$	-
6003	CH ₂	Н	ссн,	N	0	CCH ₃	C_2H_5	C-C ₃ H ₅	-
6004	CH ₂	Н	CCH3	N	0	CCH3	C ₃ H ₇	C-C ₃ H ₅	-
6005	CH ₂	Н	ССН3	N	0	CCH3	C ₄ H ₉	C-C ₃ H ₅	-
6006	CH ₂	Н	ссн,	N	0	CCH3	CH ₃	C_3H_7	-
6007	CH ₂	Н	CCH ₃	N	0	CCH3	C ₂ H ₅	C_3H_7	-
6008	CH ₂	Н	CCH3	N	0	CCH3	C ₃ H ₇	C_3H_7	-
6009	CH ₂	Н	ССН3	N	0	CCH3	C ₂ H ₅	C_4H_9	-
6010	CH ₂	Н	CCH ₃	N	0	CCH ₃	н	4-CH ₃ O-C ₆ H ₄	-
6011	0	Н	CCH ₃	N	0	CCH3	C-C ₃ H ₅	C-C ₃ H ₅	-
6012	0	Н	CCH3	N	0	CCH ₃	CH ₃	C-C ₃ H ₅	-
6013	0	н	ССН3	N	0	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-

6014	0	Н	CCH ₃	N	Ο,	CCH3	С3Н,	C-C3H5	-
6015	0	Н	CCH ₃	N	0	ССН3	C ₄ H ₉	C-C ₃ H ₅	-
6016	0	н	CCH ₃	N	0	CCH ₃	CH3	C_3H_7	-
6017	o.	Н	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6018	0	н	CCH ₃	N	0	ссн,	C ₃ H ₇	C_3H_7	-
6019	0	Н	CCH ₃	N	0	CCH3	C ₂ H ₅	C ₄ H ₉	-
6020	0	н	CCH ₃	N	0	CCH ₃	н	4-CH ₃ O-C ₆ H ₄	-
6021	CH ₂	CH ₃	CCH3	N	0	CCH ₃	C-C ₃ H ₅	$C-C_3H_5$	-
6022	CH ₂	CH ₃	CCH3	N	0	CCH ₃	CH ₃	C-C ₃ H ₅	-
6023	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6024	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C_3H_7	$C-C_3H_5$	-
6025	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C ₄ H ₉	$C-C_3H_5$	-
6026	CH ₂	CH3	CCH3	N	0	CCH ₃	CH ₃	C_3H_7	-
6027	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C_3H_7	
6028	CH ₂	CH ₃	CCH3	N	0	CCH3	C ₃ H ₇	C_3H_7	-
6029	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C_2H_5	C ₄ H ₉	-
6030	CH ₂	CH ₃	CCH ₃	N	0	CCH3	н	4-CH ₃ O-C ₆ H ₄	-
6031	CH ₂	Н	CCH ₃	N	NCH ₃	CCH₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6032	CH ₂	Н	CCH3	N	NCH ₃	CCH ₃	CH ₃	C-C ₃ H ₅	-
6033	CH₂	Н	CCH3	N	NCH ₃	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6034	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
6035	CH ₂	Н	CCH3	N	NCH ₃	CCH3	C ₄ H ₉	C-C ₃ H ₅	-
6036	CH ₂	Н	CCH ₃	N	NCH ₃	CCH₃	CH ₃	C ₃ H ₇	-
6037	CH ₂	Н	CCH₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6038	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₃ H ₇	C ₃ H ₇	-
6039	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6040	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6041	0	Н	CCH ₃	N	NCH ₃	CCH3	C-C ₃ H ₅	C-C ₃ H ₅	-
6042	0	Н	CCH ₃	N	NCH ₃	CCH ₃	CH ₃	C-C ₃ H ₅	-
6043	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6044	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₃ H ₇	$C-C_3H_5$	-
6045	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
6046	0	Н	CCH3	N	NCH ₃	CCH ₃	CH ₃	C ₃ H ₇	-
6047	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6048	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C_3H_7	C ₃ H ₇	-
6049	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₄ H ₉	
6050	0	Н	CCH ₃	N	NCH ₃	CCH3	Н	4-CH ₃ O-C ₆ H ₄	-
6051	CH ₂	СН₃	CCH ₃	N	NCH ₃	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-

6052	CH ₂	CH3	CCH ₃	N	NCH ₃	CCH ₃	CH ₃	C-C ₃ H ₅	- '
6053	CH ₂	CH ₃	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6054	CH ₂	CH3	CCH ₃	N	NCH ₃	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6055	CH ₂	CH ₃	CCH3	N	NCH ₃	CCH ₃	C_4H_9	C-C ₃ H ₅	-
6056	CH ₂	CH ₃	CCH3	N	NCH ₃	CCH ₃	CH ₃	C ₃ H ₇	-
6057	CH ₂	CH ₃	CCH3	N	NCH3	CCH ₃	C ₂ H ₅	C ₃ H ₇	· -
6058	CH ₂	CH3	CCH ₃	N	NCH ₃	CCH ₃	C_3H_7	C ₃ H ₇	-
6059	CH ₂	СН₃	CCH3	N	NCH3	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6060	CH ₂	CH ₃	CCH ₃	N	NCH ₃	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6061	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6062	CH ₂	Н	CCH3	N	NC ₂ H ₅	CCH ₃	CH ₃	C-C ₃ H ₅	-
6063	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	c-C ₃ H ₅	-
6064	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
6065	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	. C ₄ H ₉	C-C ₃ H ₅	-
6066	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	CH ₃	C ₃ H ₇ ·	_
6067	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C_2H_5	C_3H_7	-
6068	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C_3H_7	C ₃ H ₇	-
6069	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	C ₄ H ₉	
6070	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	H	$4-CH_3O-C_6H_4$	-
6071	0	Н	CCH3	N	NC ₂ H ₅	CCH3	C-C ₃ H ₅	C-C ₃ H ₅	-
6072	0	H	CCH3	N	NC_2H_5	CCH ₃	CH3	C-C ₃ H ₅	-
6073	0	Н	CCH ₃	N	NC ₂ H ₅	CCH3	C ₂ H ₅	C-C ₃ H ₅	-
6074	0	Н	CCH3	N	NC_2H_5	CCH3	C ₃ H ₇	C-C ₃ H ₅	<u> </u>
6075	. 0	Н	CCH3	N	NC ₂ H ₅	CCH3	C₄H ₉	C-C ₃ H ₅	-
6076	0	Н	CCH3	N	NC_2H_5	CCH3	CH ₃	C ₃ H ₇	-
6077	0	H	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6078	0	н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₃ H ₇	C ₃ H ₇	- -
6079	0	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6080	0	Н	CCH3	N	NC ₂ H ₅	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6081	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6082	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH ₃	CH3	C-C ₃ H ₅	-
6083	CH ₂	CH ₃	CCH ₃	N	NC_2H_5	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6084	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6085	CH ₂	CH ₃	CCH3	N	NC ₂ H ₅	CCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
6086	CH ₂	СН₃	CCH3	N	NC ₂ H ₅	CCH ₃	CH3	C_3H_7	-
6087	CH ₂	CH ₃	.CCH3	N	NC ₂ H ₅	CCH3	C ₂ H ₅	C_3H_7	-
6088	CH ₂	CH ₃	CCH3	N	NC ₂ H ₅	CCH3	C ₃ H ₇	C ₃ H ₇	-
6089	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	ссн,	C ₂ H ₅	C ₄ H ₉	-

6090	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH3	н	4-CH ₃ O-C ₆ H ₄	-
6091	CH ₂	н	CCH ₃	N	CCH3	NCH ₃	C-C ₃ H ₅	C-C3H5	-
6092	CH ₂	Н	CCH ₃	N	CCH3	NCH ₃	CH ₃	c-C ₃ H ₅	-
6093	CH ₂	Н	CCH3	N	CCH3	NCH ₃	C ₂ H ₅	C-C3H5	-
6094	CH ₂	Н	CCH3	N	CCH3	NCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
6095	CH ₂	Н	CCH ₃	N	CCH ₃	NCH ₃	C_4H_9	C-C ₃ H ₅	-
6096	CH ₂	H	CCH3	N	ССН₃	NCH ₃	СНэ	C ₃ H ₇	-
6097	CH ₂	н	CCH3	N	CCH ₃	NCH ₃	C ₂ H ₅	C ₃ H ₇	-
6098	CH ₂	Н	CCH ₃	N	CCH ₃	NCH ₃	C ₃ H ₇	C ₃ H ₇	-
6099	CH ₂	Н	CCH ₃	N	CCH ₃	NCH ₃	C_2H_5	C ₄ H ₉	-
6100	CH ₂	н	CCH ₃	N	ССН3	NCH ₃	н	4-CH ₃ O-C ₆ H ₄	-
6101	CH ₂	н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C-C ₃ H ₅	c-C ₃ H ₅	-
6102	CH ₂	H	CCH3	N	NC ₆ H ₅	CCH ₃	CH ₃	C-C ₃ H ₅	-
6103	CH ₂	Н	CCH3	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	c-C ₃ H ₅	-
6104	CH ₂	Н	CCH3	N	NC ₆ H ₅	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6105	CH ₂	Н	CCH3	N	NC ₆ H ₅	CCH₃	C₄H,	C-C ₃ H ₅	~
6106	CH ₂	Н	CCH3	N	NC ₆ H ₅	CCH ₃	CH ₃	C ₃ H ₇	-
6107	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6108	CH ₂	Н	CCH ₃	N	NC_6H_5	CCH ₃	C ₃ H ₇	C ₃ H ₇	-
6109	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C ₄ H ₉	-
6110	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6111	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	c-C ₃ H ₅	c-C ₃ H ₅	-
6112	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C-C ₃ H ₅	-
6113	0	H	CCH ₃	N	NC ₆ H ₅	CCH ₃	C_2H_5	c-C ₃ H ₅	-
6114	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C_3H_7	c-C ₃ H ₅	-
6115	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₄ H ₉	c-C ₃ H ₅	-
6116	0	H	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C ₃ H ₇	-
6117	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6118	0	н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₃ H ₇	C ₃ H ₇	-
6119	0	H	CCH ₃	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C ₄ H ₉	-
6120	. 0	Н	CCH3	N	NC ₆ H ₅	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6121	CH ₂	CH ₃	CCH3	N	NC ₆ H ₅	CCH ₃	C-C ₃ H ₅	c-C ₃ H ₅	-
6122	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C-C ₃ H ₅	-
6123	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	ссн,	C ₂ H ₅	C-C ₃ H ₅	-
6124	CH ₂	СН3	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
6125	CH ₂	СН3	CCH ₃	N	NC ₆ H ₅	CCH3	C ₄ H ₉	C-C ₃ H ₅	-
6126	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	CCH3	CH ₃	C ₃ H ₇	-
6127	CH ₂	СН,	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	C ₃ H ₇	

PCT/US98/13913 WO 99/01454

6128	CH ₂	CH ₃	CCH ₃	N	NC_6H_5	CCH3	C_3H_7	C ₃ H ₇	-	
6129	CH ₂	CH3	CCH ₃	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C ₄ H ₉	-	
6130	CH ₂	CH3	CCH ₃	N	NC ₆ H ₅	CCH ₃	н	4-CH ₃ O-C ₆ H ₄	-	

Key:

a) Where the compound is indicated as an "oil", spectral data is provided as follows:

5 Example 6001 spectral data: MS (NH₃-CI): m/e 338 (M+H*, 100%).

The methods used in the preparation of the compounds of Table 1 may be used for preparation of many of the compounds 10 of Structure A of Table 7. The preparation of those compounds derived from cycloaddition of compounds with alkynyl-bearing R¹ groups is illustrated by the following examples.

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 7, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

20

25

15

Example 7409

Preparation of 9-[1-cvclopropyl-1-(3-methyl-isoxazol-5v1)methv11-6-(2.4-dichlorophenv1)-8-ethv1-9H-purine

To a stirring solution of the compound of Example 7241 (90 mg, 0.24 mmol; prepared in a manner similar to that of Example 2 using 6-(2,4-dichlorophenyl)-8-ethyl-9H-purine and 3cyclopropyl-1-propyn-3-ol) in methylene chloride (2 mL) were added chloroacetaldoxime (25 mg, 0.27 mmol) and triethylamine (0.038 mL, 0.27 mmol). (The chloroacetaldoxime used was 30 previously prepared by reacting equimolar amounts of acetaldoxime and N-chlorosuccinimide in DMF, then extracting the product into diethyl ether and washing with water.) The cycloaddition reaction was monitored by TLC and additional

amounts of chloroacetaldoxime and triethylamine were added

until all the starting material was consumed. The reaction mixture was purified by adding directly to a column packed with silica gel and eluting using a gradient of 100% hexane to 25% ethyl acetate in hexane. 72 mg of a white foam was collected. MS (NH₃-CI) 428 (M+H⁺). HRMS: m/e = 428.1037 (M+H⁺, C₂₁H₂₀Cl₂N₅O). Purity by reverse phase HPLC >97%.

Examples 7396 and 7398

Preparation of 6-(2,4-dichlorophenyl)-9-[1-(3-ethoxycarbonyl
isoxazol-5-yl)butyll-8-ethyl-9H-purine and 9-[1-(4-cyano-3ethoxycarbonyl-isoxazol-5-yl)butyll-6-(2,4-dichlorophenyl)-8ethyl-9H-purine

A solution of the compound of Example 7259 (120 mg, 0.321 mmol; prepared prepared in a manner similar to that of Example 2 using 6-(2,4-dichlorophenyl)-8-ethyl-9H-purine and 1-hexyn-15 3-ol), ethyl chlorooximidoacetate (146 mg, 0.963 mmol) and diisopropylethylamine (170 μ L, 0.976 mmol) in toluene (2 mL) was heated to reflux for 20 hours, then cooled and diluted with 20 mL ethyl acetate. This was washed with water (2 \times 20 20 mL) and satd. aq. brine (20 mL), and the aqueous phases were back-extracted in sequence with ethyl acetate (20 mL). The organic extracts were combined, dried over anhydrous sodium sulfate, filtered and evaporated. The residual material was separated by column chromatography (silica gel, 1:4 ethyl acetate-hexane) to afford, in order, unreacted starting 25 material (about 50 mg), then the compound of Example 7396 (58.7 mg, 0.120 mmol, 37%), and finally the compound of Example 7398 (23.8 mg, 0.046 mmol, 14%), the latter two compounds being amorphous solids. Example 7396 spectral data: 30 TLC R_F 0.27 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, $CDCl_3$): δ 8.96 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.1, 1.8 Hz), 6.86 (1H, s), 5.83 (1H, dd, J = 9.9, 6.2 Hz), 4.43 (2H, q, J = 7.3 Hz), 2.98 (2H, q, J = 7.7 Hz), 2.91-2.78 (1H, m), 2.63-2.49 (1H, m),1.42 (3H, t, J = 7.7 Hz), 1.40 (3H, t, J = 7.3 Hz), 1.39-1.19 (2H, m), 1.00 (3H, t, J = 7.3 Hz). MS (NH_3-CI) : m/e calc'd for $C_{23}H_{24}Cl_{2}N_{5}O_{3}$: 488.1256, found 488.1252; 493 (3), 492 (13), 491

(18), 490 (68), 489 (28), 488 (100). Example 7398 spectral data: TLC R_F 0.11 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.72 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.42 (1H, dd, J = 8.1, 1.8 Hz), 5.40 (1H, dd, J = 10.4, 5.0 Hz), 4.42 (2H, q, J = 7.4 Hz), 3.00-2.90 (2H, m), 2.66-2.52 (1H, m), 2.51-2.38 (1H, m), 1.46 (3H, t, J = 7.4 Hz), 1.41 (3H, t, J = 7.3 Hz), 1.40-1.10 (2H, m), 0.98 (3H, t, J = 7.2 Hz). MS (NH₃-CI): m/e calc'd for $C_{24}H_{25}Cl_2N_6O_4$: 531.1315, found 531.1315; 531 (100).

10

15

TABLE 7

m.p., R^4 R5 R11 R6 Rla L G a Ex. No. X °C b bond G1 7001 CH₂ CH₃ CH₃ Н CH₃ CH₃ 7002 CH₂ CH₃ CH₃ Н CH₃ C₂H₅ bond G1 bond G1 7003 CH₃ Н CH₃ C_3H_7 CH₂ CH₃ bond G1 7004 CH₂ CH₃ CH₃ Н CH₃ C-C₃H₅ 7005 CH₂ CH₃ CH₃ Н CH₃ CH₃ bond G2 G2 7006 CH₂ CH₃ CH₃ Н CH₃ C_2H_5 bond 7007 CH₂ CH₃ CH₃ CH₃ C₃H₇ bond G2 Н 7008 CH₂ CH₃ CH₃ Н CH₃ C-C₃H₅ bond G2 bond G3 7009 CH₂ CH₃ CH₃ Н CH₃ CH₃ CH₂ CH₃ Н G3 7010 CH₃ CH₃ C₂H₅ bond 7011 CH₂ CH₃ CH₃ Н CH₃ C₃H₇ bond G3

ζį.

7012	CH ₂	СН3	CH ₃	н	СН₃	C-C ₃ H ₅	bond	G3	-
7013	CH ₂	CH ₃	CH3	н	CH ₃	CH ₃	CH ₂	G4	-
7014	CH2	CH ₃	CH ₃	н	CH3	C ₂ H ₅	CH ₂	G4	-
7015	CH ₂	CH ₃	CH3	н	CH3	C_3H_7	CH ₂	G4	-
7016	CH ₂	CH ₃	CH ₃	Н	CH ₃	C-C3H5	CH ₂	G4	-
7017	CH ₂	CH3	CH3	н	CH ₃	CH3	CH ₂	G5	·-
7018	CH ₂	CH ₃	CH ₃	н	CH ₃	C ₂ H ₅	CH ₂	G5	-
7019	CH ₂	CH ₃	CH ₃	Н	CH3	C ₃ H ₇	CH ₂	G5	-
7020	CH ₂	CH ₃	CH ₃	H	CH3	C-C ₃ H ₅	CH ₂	G5	-
7021	CH ₂	CH3	CH ₃	Н	CH3	CH ₃	bond	G6	-
7022	CH ₂	CH ₃	CH ₃	н	CH3	C ₂ H ₅	bond	G6	-
7023	CH ₂	CH ₃	CH ₃	н	CH3	C_3H_7	bond	G6	-
7024	CH ₂	CH ₃	CH3	Н	CH ₃	C-C3H5	bond	G6	-
7025	CH₂	CH3	CH3	н	CH ₃	CH ₂ =CH	bond	G7	- `
7026	CH ₂	CH ₃	CH3	н	CH3	CH3	bond	G8	-
7027	CH ₂	CH ₃	CH3	Н	CH ₃	C ₂ H ₅	CH ₂	G1	-
7028	CH ₂	CH3	CH ₃	Н	CH ₃	C ₃ H ₇	CH ₂	G1	-
7029	CH ₂	CH ₃	CH ₃	Н	CH ₃	C ₂ H ₅	CH ₂	G2	-
7030	CH ₂	CH ₃	CH3	Н	CH ₃	C_3H_7	CH ₂	G2	-
7031	CH ₂	Cl	Cl	Н	Н	CH₃	bond	G1	-
7032	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	bond	G1	-
7033	CH2	Cl	C1	Н	Н	C ₃ H ₇	bond	G1	-
7034	CH ₂	C1	Cl	Н	Н	C-C ₃ H ₅	bond	G1	-
7035	CH ₂	Cl	Cl	Н	H	CH ₃	bond	G2	-
7036	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	bond	G2	-
7037	CH ₂	Cl	Cl	Н	Н	C_3H_7	bond	G2	-
7038	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G2	-
7039	CH ₂	Cl	C1	Н	Н	CH,	bond	G3	-
7040	CH ³	Cl	Cl	Н	Н	C ₂ H ₅	bond	G3	+
7041	CH ₂	Cl	Cl	Н	Н	C ₃ H ₇	bond	G3	-
7042	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G3	-
7043	CH ₂	Cl	Cl	Н	Н	CH3	CH3	G4	-
7044	CH ₂	Cl	Cl	Н	H	C ₂ H ₅	CH ₂	G4	-
7045	CH ₂	C1	C1	Н	H	C ₃ H ₇	CH ₂	G4	-
7046	CH₂	Cl	C1	Н	Н	C-C ₃ H ₅	CH ₂	G4	-
7047	CH ₂	Cl	Cl	Н	Н	CH3	CH ₂	G5	-
7048	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	CH ₂	G5	-
7049	CH ₂	Cl	Cl	Н	Н	C ₃ H ₇	CH ₂	G5	-

7050	CH₂	Cl	C1	Н	Н	C-C3H5	CH ₂	G5	-
7051	CH ₂	cı ·	Cl	Н	Н	CH3	bond	G6	-
7052	CH ₂	Cl	C1	Н	Н	C ₂ H ₅	bond	G6	- .
7053	CH ₂	Cl	Cl	Н.	Н	C_3H_7	bond	G6	· -
7054	CH ₂	Cl	Cl	H	Н	C-C ₃ H ₅	bond	G6	-
7055	CH ₂	Cl	Cl	н	Н	CH ₂ =CH	bond	G7	· -
7056	CH ₂	Cl	Cl	Н	Н	CH ₃	bond	G8	-
7057	CH ₂	Cl	C1 .	Н	Н	C_2H_5	CH ₂	G1	-
7058	CH ₂	Cl	Cl	Н	Н	C_3H_7	CH ₂	G1	-
7059	CH ₂	Cl	Cl	Ή	Н	C ₂ H ₅	CH ₂	G2	-
7060	CH ₂	Cl	Cl	Н	Н	C_3H_7	CH ₂	G2	-
7061	CH ₂	CH ₃	OCH ₃	Н	н	CH ₃	bond	G1	-
7062	CH ₂	СН₃	OCH ₃	H	Н	C ₂ H ₅	bond	G1	-
7063	CH ₂	CH ₃	OCH ₃	н	Н	C ₃ H ₇	bond	G1	-
7064	CH ₂	CH ₃	OCH ₃	Н	н	$C-C_3H_5$	bond	G1	-
7065	CH ₂	CH ₃	OCH ₃	Н	Н	CH ₃	bond	G2	-
7066	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G2	~ .
7067	CH ₂	CH ₃	OCH ₃	Н	Н	C ₃ H ₇	bond	G2	-
7068	CH ₂	CH3	OCH ₃	Н	н .	C-C ₃ H ₅	bond	G2	-
7069	CH ₂	CH3	OCH ₃	Н	Н	CH ₃	bond	G3	-
7070	CH ₂	CH ₃	OCH ₃	Н	Η.	C_2H_5	bond	G3	-
7071	CH ₂	CH ₃	OCH ₃	Н	H	C_3H_7	bond	G3	-
7072	CH ₂	CH ₃	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G3	-
7073	CH ₂	CH ₃	OCH ₃	H	Н	CH3	CH ₂	G4	-
7074	CH ₂	CH ₃	OCH3	Н	Н	C ₂ H ₅	CH ₂	G4	
7075	CH ₂	СН3	OCH ₃	H	Н	C ₃ H ₇	CH ₂	G4	-
7076	CH ₂	CH ₃	OCH ₃	Н	Н	C-C ₃ H ₅	CH ₂	G4	-
7077	CH ₂	CH ₃	OCH3	н	Н	CH ₃	CH ₂	G5	-
7078	CH ₂	CH3	OCH3	н	Н	C ₂ H ₅	CH ₂	G5	-
7079	CH ₂	CH3	OCH3	Н	Н	C ₃ H ₇	CH ₂	G5	- , .
7080	CH ₂	CH3	OCH3	Н	. Н	C-C ₃ H ₅	CH ₂	G5	-
7081	CH ₂	СНэ	OCH3	Н	Н	CH3	bond	G6	-
7082	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G6	-
7083	CH ₂	CH3	OCH3	Н	H	C ₃ H ₇	bond	G6	-
7084	CH ₂	CH ₃	OCH ₃	Н	H	C-C ₃ H ₅	bond	G6	-
7085	CH ₂	CH ₃	OCH ₃	Н	Н	CH ₂ =CH	bond	G7	-
7086	CH ₂	CH3	OCH ₃	Н	H	CH ₃	bond	G8	oil
7087	CH ₂	CH ₃	OCH ₃	H .	Н	C ₂ H ₅	CH ₂	G1	-

7088	CH ₂	CH ₃	OCH3	Н	н	C_3H_7	CH ₂	G1	-
7089	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G2	-
7090	CH ₂	CH ₃	OCH ₃	Н	Н	C_3H_7	CH ₂	G2	-
7091	CH ₂	Cl	OCH ₃	Н	Н	CH ₃	bond	G1	-
7092	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	bond	G1	-
7093	CH ₂	Cl	OCH ₃	Н	Н	C ₃ H ₇	bond	G1	-
7094	CH ₂	Cl	OCH3	H	Н	C-C ₃ H ₅	bond	G1	-
7095	CH ₂	Cl	OCH3	Н	Н	CH ₃	bond	G2	-
7096	CH ₂	Cl	OCH3	Н	H	C ₂ H ₅	bond	G2	-
7097	CH ₂	Cl	OCH ₃	Н	Н	C_3H_7	bond	G2	-
7098	CH ₂	Cl	OCH ₃	Н	Н	C-C3H5	bond	G2	-
7099	CH ₂	Cl	OCH ₃	Н	Н	CH ₃	bond	G3	-
7100	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	bond	G3	-
7101	CH ₂	Cl	OCH ₃	Н	Н	C_3H_7	bond	G3	-
7102	CH ₂	Cl	OCH ₃	Н	H	C-C ₃ H ₅	bond	G3	-
7103	CH ₂	Cl	OCH ₃	Н	Н	CH ₃	CH ₂	G4	-
7104	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G4	-
7105	CH ₂	Cl	OCH ₃	Н	Н	C_3H_7	CH ₂	G4	-
7106	CH ₂	Cl	OCH ₃	Н	Н	$C-C_3H_5$	CH ₂	G4	-
7107	CH ₂	Cl	OCH ₃	Н	Н	CH ₃	CH ₂	G5	-
7108	CH ₂	Cl	OCH ₃	H	Н	C ₂ H ₅	CH₂	G5	-
7109	CH ₂	Cl	OCH3	Н	H	C ₃ H ₇	CH ₂	G5	-
7110	CH ₂	Cl	OCH3	H	Н	C-C ₃ H ₅	CH ₂	G5	-
7111	CH ₂	Cl	OCH ₃	H	Н	CH ₃	bond	G6	-
7112	CH ₂	Cl	OCH ₃	H	Н	C ₂ H ₅	bond	G6	-
7113	CH ₂	Cl	OCH ₃	Н	Н	C_3H_7	bond	G6	-
7114	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G6	-
7115	CH ₂	Cl	OCH ₃	Н	Н	CH ₂ =CH	bond	G7	-
7116	CH₂	Cl	OCH ₃	Н	Н	CH₃	bond	G8	oil
7117	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	CH₂	G1	-
7118	CH ₂	C1	OCH ₃	Н	Н	C ₃ H ₇	CH ₂	G1	-
7119	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G2	-
7120	CH ₂	C1	OCH ₃	Н	Н	C_3H_7	CH ₂	G2	-
7121	CH ₂	Cl	CF ₃	Н	Н	CH3	bond	G1	-
7122	CH ₂	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G1	-
7123	CH ₂	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G1	-
7124	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G1	-
7125	CH ₂	Cl	CF ₃	Н	Н	CH ₃	bond	G2	-

ζ,

WO 99/01454						PCT/US98/13913
		*				
				_	_	

7126	CH ₂	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G2	-
7127	CH ₂	Cl	CF ₃	н	Н	C_3H_7	bond	G2	-
7128	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G2	-
7129	CH ₂	Ċl	CF ₃	Н	Н	CH3	bond	G3	-
7130	CH ₂	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G3	-
7131	CH ₂	Cl	CF ₃	Н	H	C_3H_7	bond	G3	-
7132	CH ₂	Cl	CF ₃	н	H	C-C ₃ H ₅	bond	G3	<u>-</u> :
7133	CH₂	Cl	CF ₃	H	Н	CH3	CH ₂	G4	-
7134	CH ₂	Cl	CF ₃	H	Н	C ₂ H ₅	CH ₂	G4	-
7135	CH₂	Cl	CF ₃	н	н	C_3H_7	CH ₂	G4	-
7136	CH ₂	Cl	CF ₃	Н	н	$C-C_3H_5$	CH ₂	G4	-
7137	CH₂	C1	CF3	Н	Н	CH ₃	CH ₂	G5	-
7138	CH₂	Cl	CF3	н	Н	C ₂ H ₅	CH ₂	G5	-
7139	CH ₂	Cl	CF3	Н	Н	C_3H_7	CH ₂	G5	-
7140	CH ₂	Cl	CF ₃	н	н	C-C ₃ H ₅	CH ₂	G5	-
7141	CH ₂	Cl	CF ₃	н	Н	CH ₃	bond	G6	-
7142	CH ₂	C1	CF ₃	Н	Н	C ₂ H ₅	bond	G6	-
7143	CH ₂	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G6	-
7144	CH ₂	Cl	CF ₃	Н	Н	$C-C_3H_5$	bond	G6	-
7145	CH ₂	Cl	CF ₃	Н	H	CH ₂ =CH	bond	G7	-
7146	CH ₂	Cl	CF ₃	Н	H	CH3	bond	G8	oil
7147	CH₂	Cl	CF ₃	Н	Н	C ₂ H ₅	CH ₂	G1	
7148	CH ₂	Cl	CF ₃	Н	Н	C_3H_7	CH ₂	G1	-
7149	CH ₂	C1	CF ₃	Н	H	C ₂ H ₅	CH ₂	G2	-
7150	CH ₂	C1	CF ₃	Н	H	C_3H_7	CH ₂	G2	. –
7151	CH ₂	CF ₃	Cl	Н	Н	CH ₃	bond	G1	-
7152	CH ₂	CF3	Cl	Н	Н	C_2H_5	bond	G1	-
7153	CH ₂	CF ₃	Cl	H	Н	C_3H_7	bond	G1	-
7154	CH ₂	CF3	Cl	Н	H	C-C ₃ H ₅	bond	G1	-
7155	CH ₂	CF3	Cl	Н	Н	CH ₃	bond	G2	-
7156	CH ₂	CF ₃	Cl	Н	H	C ₂ H ₅	bond	G2	· -
7157	CH ₂	CF ₃	Cl	Н	Н	C_3H_7	bond	G2	-
7158	CH ₂	CF,	Cl	Н	Н	C-C ₃ H ₅	bond	G2	-
7159	CH ₂	CF ₃	Cl	Н	Н	CH ₃	bond	G3	-
7160	CH ₂	CF ₃	Cl	н	H	C ₂ H ₅	bond	G3	-
7161	CH ₂	CF ₃	Cl	H	Н	C_3H_7	bond	G3	-
7162	CH ₂	CF ₃	Cl	Н	Н	C-C ₃ H ₅	bond	G3	-
7163	CH ₂	CF3	Cl	н	Н	CH;	CH ₂	G4	-

Š

7164	CH ₂	CF ₃	Cl	н	Н	C ₂ H ₅	CH₂	G4	-
7165	CH ₂	CF ₃	Cl	н	н	C ₃ H ₇	CH₂	G4	-
7166	CH ₂	CF ₃	Cl	Н	н	C-C3H5	СН ₂	G4	-
7167	CH ₂	CF ₃ .	Cl	н	Н	СН3	CH ₂	G5	-
7168	CH ₂	CF ₃	Cl	н	Н	C ₂ H ₅	CH ₂	G5	-
7169	CH ₂	CF ₃	Cl	н	Н	C ₃ H ₇	CH ₂	G5	-
7170	CH ₂	CF ₃	Cl	н	н	C-C ₃ H ₅	С₿₂	.G5	-
7171	CH ₂	CF ₃	Cl	н	Н	СН₃	bond	G6	-
7172	CH ₂	CF ₃	Cl	Н	Н	C ₂ H ₅	bond	G6	-
7173	CH ₂	CF ₃	Cl	Н	Н	C_3H_7	bond	G6	-
7174	CH ₂	CF_3	Cl	Н	Н	C-C ₃ H ₅	bond	G6	-
7175	CH ₂	CF ₃	C1	н	Н	CH ₂ =CH	bond	G7	-
7176	CH ₂	CF ₃	Cl	Н	Н	CH ₃	bond	G8	-
7177	CH ₂	CF ₃	Cl	Н	H	C ₂ H ₅	CH ₂	G1	-
7178	CH ₂	CF ₃	Cl	Н	Н	C ₃ H ₇	CH ₂	G1	-
7179	CH ₂	CF ₃	Cl	H	H	C ₂ H ₅	CH ₂	G2	-
7180	CH ₂	CF ₃	Cl	H	н	C ₃ H ₇	CH ₂	G2	-
7181	CH ₂	CH ₃	OCH ₃	CH ₃	Н	CH ₃	bond	G1	-
7182	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C_2H_5	bond	G1	-
7183	CH ₂	CH3	OCH ₃	CH3	н	C_3H_7	bond	G1	-
7184	CH ₂	CH3	OCH ₃	CH ₃	Н	C-C ₃ H ₅	bond	G1	-
7185	CH ₂	CH ₃	OCH ₃	CH ₃	H	CH ₃	bond	G2	-
7186	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C ₂ H ₅	bond	G2	-
7187	CH2	CH ₃	OCH ₃	CH3	Н	C_3H_7	bond	G2	-
7188	CH ₂	CH3	OCH ₃	CH ₃	Н	C-C ₃ H ₅	bond	G2	-
7189	CH ₂	CH3	OCH ₃	CH3	Н	CH ₃	bond	G3	-
7190	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C ₂ H ₅	bond	G3	-
7191	CH ₂	CH3	OCH ₃	CH ₃	Н	C ₃ H ₇	bond	G3	-
7192	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C-C ₃ H ₅	bond	G3	-
7193	CH ₂	CH ₃	OCH ₃	CH ₃	H	CH3	CH ₃	G4	-
7194	CH ₂	CH ₃	OCH ₃	CH3	Н	C ₂ H ₅	CH ₂	G4	-
7195	CH ₂	CH3	OCH ₃	CH ₃	Н	C_3H_7	CH ₂	G4	-
7196	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C-C_3H_5$	CH ₂	G4	-
7197	CH ₂	CH3	OCH ₃	CH ₃	Н	CH ₃	CH ₂	G5	-
7198	CH ₂	CH3	OCH ₃	CH ₃	Н	C ₂ H ₅	CH ₂	G5	-
7199	CH ₂	CH ₃	OCH3	CH3	Н	C ₃ H ₇	CH ₂	G5	-
7200	CH ₂	CH ₃	OCH ₃	CH3	Н	c-C ₃ H ₅	CH ₂	G5	-
7201	CH ₂	CH ₃	OCH ₃	CH ₃	н	CH ₃	bond	G6	-

7202	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C ₂ H ₅	bond	G6	-
7203	CH ₂	CH3	OCH ₃	CH ₃	Н	C_3H_7	bond	G6	-
7204	CH ₂	CH3	OCH3	CH ₃	н	C-C ₃ H ₅ .	bond	G6	-
7205	CH ₂	CH ₃	OCH ₃	CH ₃	Н	CH ₂ =CH	bond	G7	-
7206	CH ₂	CH ₃	OCH ₃	CH ₃	н	CH ₃	bond	G8	-
7207	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C ₂ H ₅	CH ₂	G1	-
7208	CH ₂	CH ₃	OCH ₃	CH ₃	н	C ₃ H ₇	CH ₂	G1	-
7209	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C ₂ H ₅	CH ₂	G2	-
7210	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C_3H_7	CH ₂	G2	-
7211	0	Cl	CF ₃	Н	Н	C ₂ H ₅	CH ₂	G1	-
7212	0	Cl	CF ₃	Н	H	C_3H_7	CH ₂	G1	-
7213	0	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G2	-
7214	0	Cl	CF ₃	н	Н	C_3H_7	bond	G2	-
7215	0	C1	CF ₃	н	Н	C ₂ H ₅	CH ₂	G4	-
7216	CH ₂	C1	CF ₃	н	Н	C ₂ H ₅	CH ₂	G1	-
7217	CH ₂	Cl	CF ₃	Н	Н	C_3H_7	CH ₂	G1	-
7218	CH ₂	Cl	CF ₃	H	Н	C ₂ H ₅	bond	G2	-
7219	CH ₂	Cl	CF3	н	Н	C_3H_7	bond	G2	-
7220	CH ₂	Cl	CF ₃	н	Н	C_2H_5	CH ₂	G4	-
7221	0	CF ₃	C1	Н	H	C_2H_5	CH ₂	G1	-
7222	0	CF ₃	Cl	Н	Н	C ₃ H ₇	CH ₂	G1	-
7223	0	CF ₃	cl	H	Н	C ₂ H ₅	bond	G2	-
7224	0	CF3	Cl	Н	Н	C ₃ H ₇	bond	G2	-
7225	0	CF ₃	Cl	Н	Н	C ₂ H ₅	CH ₂	G4	-
7226	CH ₂	CF ₃	Cl	Н	Н	C ₂ H ₅	CH ₂	G1	-
7227	CH ₂	CF ₃	Cl	Н	Н	C_3H_7	CH ₂	G1	-
7228	CH ₂	CF ₃	Cl	H	Н	C ₂ H ₅	bond	G2	-
7229	CH ₂	CF ₃	Cl	Н	Н	C ₃ H ₇	bond	G2	-
7230	CH ₂	CF ₃	Cl	Н	H	C ₂ H ₅	CH ₂	G4	-
7231	CH ₂	CH3	CH3	Н	CH3	C ₂ H ₅	CH ₂ O	G3	oil
7232	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G9	-
7233	0	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G9	-
7234	CH ₂	Cl	CF3	Н	Н	$C-C_3H_5$	bond	G9	oil
7235	0	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G9	-
7236	CH ₂	Cl	OCH ₃	H	Н	C-C ₃ H ₅	bond	G9	-
7237	CH ₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅	bond	G9	-
7238	CH ₂	CH3	OCH ₃	C1	Н	C-C ₃ H ₅	bond	G9	-
7239	CH ₂	Cl	Cl	Н	CH ₃	C-C ₃ H ₅	bond	G9	-

Ç,

7240	CH₂	CF3	OCH ₃	Н	Н	C-C3H5	bond	G9	-
7241	CH ₂	Cl	C1	Н	н	C-C ₃ H ₅	bond	G10	oil
7242	0	Cl	Cl	Н	н	C-C ₃ H ₅	bond	G10	-
7243	CH ₂	C1	CF ₃	Н	Н	C-C ₃ H ₅	bond	G10	oil
7244	0	Cl	CF ₃	Н	н	C-C ₃ H ₅	bond	G10	-
7245	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G10	-
7246	CH ₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅	bond	G10	-
7247	CH ₂	CH ₃	OCH ₃	Cl	H	c-C ₃ H ₅	bond	G10	-
7248	CH ₂	Cl	Cl	Н	CH ₃	C-C3H5	bond	G10	-
7249	CH ₂	CF ₃	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G10	oil
7250	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	bond	G10	oil
7251	0	Cl	Cl	Н	Н	C_2H_5	bond	G10	-
7252	CH ₂	Cl	CF ₃	H	Н	C ₂ H ₅	bond	G10	98-99
7253	0	Cl	CF ₃	Н	Н	C_2H_5	bond	G10	-
7254	CH ₂	C1	OCH3	Н	Н	C ₂ H ₅	bond	G10	-
7255	CH ₂	Cl	OCF ₃	Н	Н	C_2H_5	bond	G10	-
7256	CH ₂	CH3	OCH3	Cl	Н	C ₂ H ₅	bond	G10	-
7257	CH ₂	Cl	Cl	H	CH3	C ₂ H ₅	bond	G10	-
7258	CH ₂	CF ₃	OCH ₃	H	Н	C ₂ H ₅	bond	G10	-
7259	CH ₂	Cl	Cl	Н	Н	C ₃ H ₇	bond	G10	oil
7260	0	Cl	Cl	H	Н	C ₃ H ₇	bond	G10	-
7261	CH ₂	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G10	oil
7262	0	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G10	-
7263	CH ₂	Cl	OCH ₃	Н	Н	C ₃ H ₇	bond	G10	-
7264	CH ₂	Cl	OCF ₃	н	Н	C_3H_7	bond	G10	-
7265	CH ₂	CH3	OCH ₃	Cl	Н	C ₃ H ₇	bond	G10	-
7266	CH ₂	Cl	Cl	Н	CH ₃	C_3H_7	bond	G10	oil
7267	CH ₂	CF ₃	OCH3	H	Н	C_3H_7	bond	G10	-
7268	CH ₂	C1	C1	H	Н	C5H11	bond	G10	oil
7269	0	Cl	Cl	Н	Н	C5H11	bond	G10	-
7270	CH ₂	Cl	CF,	Н	Н	C ₅ H ₁₁	bond	G10	oil
7271	0	Cl	CF3	Н	H	C5H11	bond	G10	-
7272	CH ₂	Cl	OCH ₃	H	Н	C5H11	bond	G10	-
7273	CH ₂	Cl	OCF ₃	Н	Н	C5H11	bond	G10	-
7274	CH ₂	CH3	OCH ₃	Cl	Н	C5H11	bond	G10	-
7275	CH ₂	Cl	Cl	Н	CH ₃	C5H11	bond	G10	- ,
7276	CH ₂	CF3	OCH ₃	Н	Н	C5H11	bond	G10	-
7277	CH2	Cl	Cl	H	H	CH3	CH ₂	G10	-

VO 99/0145	4							P	CT/US98/1391	3
7278	0	Cl	Cl	Н	н	CH ₃	CH ₂	G10	-	
7279	CH ₂	Cl	CF ₃	Н	Н	CH3	CH ₂	G10	oil	
7280	0	Cl	CF_3	Н	Н	CH ₃	CH ₂	G10		
7281	CH ₂	Cl	OCH3	Н	Н	CH ₃	CH ₂	G10	-	
7282	CH ₂	Cl	OCF3	Н	Н	CH3	CH ₂	G10	-	
7283	CH ₂	CH ₃	OCH ₃	Cl	Н	CH ₃	CH ₂	G10	-	
7284	CH ₂	Cl	Cl	Н	CH ₃	CH ₃	CH ₂	G10	-	
7285	CH₂	CF ₃	OCH3	Н	Н	CH ₃	CH ₂	G10 ·	-	•
7286	CH ₂	Cl	Cl	H	Н	C-C ₃ H ₅	bond	G11	oil	
7287	0	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G11	-	
7288	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G11	oil	
7289	0	Cl	CF3	Н	Н	C-C ₃ H ₅	bond	G11	-	
7290	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G11	-	
7291	CH ₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅	bond	G11	<u>-</u>	
7292	CH ₂	CH3	OCH ₃	Cl	Н	C-C ₃ H ₅	bond	G11	-	
7293	CH ₂	Cl	Cl	Н	CH ₃	C-C ₃ H ₅	bond	G11	-	
7294	CH ₂	CF3	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G11	- ·	
7295	CH_2	Cl	Cl	H	н	C_2H_5	bond	G11	oil	
7296	0	Cl	Cl	Н	Н	C ₂ H ₅	bond	G11	-	
7297	CH ₂	Cl	CF ₃	Н	H ,	C ₂ H ₅	bond	G11	oil	
7298	0	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G11	-	
7299	CH ₂	Cl	OCH ₃	н	Н	C ₂ H ₅	bond	G11	-	
7300	CH ₂	Cl	OCF ₃	Н	Н	C ₂ H ₅	bond	G11	-	
7301	CH ₂	CH3	OCH ₃	Cl	Ĥ	C ₂ H ₅	bond	G11	-	
7302	CH ₂	C1	C1	H	CH3	C ₂ H ₅	bond	G11		
7303	CH ₂	CF,	OCH ₃	Н	Н	C ₂ H ₅	bond	G11	-	
7304	CH ₂	Cl	Cl	. Н	Н	C ₃ H ₇	bond	G11	88-89	
7305	0	Cl	Cl	H	Н	C_3H_7	bond	G11	-	
7306	CH ₂	Cl	CF ₃	Н	Н	C_3H_7	bond	G11	oil	
7307	0	Cl	CF ₃	Н	Н	C_3H_7	bond	G11	-	
7308	CH ₂	Cl	OCH ₃	· H	Н	C_3H_7	bond	G11	-	
7309	CH ₂	Cl	OCF ₃	Н	Н	C_3H_7	bond	G11	+	
7310	CH ₂	CH ₃	OCH ₃	Cl	H	C ₃ H ₇	bond	G11	-	
7311	CH ₂	C1	Cl	Н	CH ₃	C ₃ H ₇	bond	G11	- '	
7312	CH ₂	CF ₃	OCH ₃	Н	Н	C ₃ H ₇	bond	G11	-	
7313	CH ₂	Cl	Cl	Н	Н	C ₆ H ₅	bond	G11	156-157	

C₆H₅

C₆H₅

bond

bond

G11

G11 150-151

7314

7315

Cl

Cl

CH₂

Cl

CF3

WO 99/01454	PCT/US98/13913

7316	0	Cl	CF ₃	Н	Н	C ₆ H ₅	bond	G11	-
7317	CH ₂	Cl	OCH ₃	Н	Н	C ₆ H ₅	bond	G11	-
7318	CH ₂	Cl	OCF ₃	Н	Н	C ₆ H ₅	bond	G11	-
7319	CH ₂	CH ₃	OCH ₃	Cl	Н	C ₆ H ₅	bond	G11	-
7320	CH ₂	Cl	Cl	Н	CH3	C ₆ H ₅	bond	G11	
7321	CH ₂	CF ₃	OCH ₃	H	H	C ₆ H ₅	bond	G11	-
7322	CH ₂	Cl	Cl	Н	H	C ₂ H ₅	bond	G12	-
7323	0	Cl	Cl	Н	Н	C ₂ H ₅	bond	G12	-
7324	CH ₂	Cl	CF ₃	Н	Н	C₂H₅	bond	G12	oil
7325	0	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G12	-
7326	CH ₂	Cl	OCH ₃	Н	. Н	C ₂ H ₅	bond	G12	-
7327	CH ₂	C1	OCF ₃	Н	Н	C ₂ H ₅	bond	G12	~
7328	CH ₂	CH3	OCH ₃	C1	Н	C ₂ H ₅	bond	G12	-
7329	CH ₂	Cl	Cl	Н	CH ₃	C ₂ H ₅	bond	G12	-
7330	CH ₂	CF ₃	OCH ₃	Н	H	C_2H_5	bond	G12	-
7331	CH ₂	Cl	Cl	Н	Н	C_3H_7	bond	G12	-
7332	0	Cl	C1	Н	Н	C ₃ H ₇	bond	G12	-
7333	CH ₂	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G12	-
7334	0	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G12	-
7335	CH ₂	Cl	OCH3	Н	Н	C ₃ H ₇	bond	G12	-
7336	CH ₂	Cl	OCF ₃	Н	Н	С₃Н,	bond	G12	-
7337	CH ₂	CH3	OCH ₃	Cl	. н	C_3H_7	bond	G12	-
7338	CH ₂	Cl	Cl	Н	CH ₃	C ₃ H ₇	bond	G12	-
7339	CH ₂	CF ₃	OCH ₃	H	Н	C_3H_7	bond	G12	-
7340	CH ₂	Cl	Cl	Н	Н	$C-C_3H_5$	bond	G12	
7341	0	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G12	-
7342	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G12	128-130
7343	0	Cl	CF ₃	Н	H	C-C ₃ H ₅	bond	G12	-
7344	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G12	-
7345	CH ₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅	bond	G12	-
7346	CH ₂	CH ₃	OCH3	Cl	Н	C-C ₃ H ₅	bond	G12	-
7347	CH ₂	Cl	Cl	Н	CH ₃	C-C ₃ H ₅	bond	G12	-
7348	CH ₂	CF ₃	OCH ₃	Н	H	C-C ₃ H ₅	bond	G12	-
7349	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G13	oil
7350	CH ₂	C1	Cl	H	Н	C-C3H5	bond	G13	-
7351	CH ₂	Cl	CF ₃	Н	H	C-C ₃ H ₅	bond	G7	oil
7352	CH ₂	Cl	Cl	H	Н	C-C ₃ H ₅	bond	G7	oil
7353	CH ₂	Cl	CF3	Н	н	CH ₃	bond	G7	-

 ζ_1

WO 99/0145	54								PCT/US98/13913
7354	CH ₂	Cl	Cl	н	Н	СН3	bond	G7	-

7354	CH ₂	Cl	Cl	Н	H	CH ₃	bond	G7	-
7355	CH ₂	CH3	OCH3	CH3	Н	CH ₃	bond	G7	oil
7356	CH ₂	CH ₃	OCH ₃	CH3	H	C_3H_7	bond	G7	oil
7357	CH ₂	CF ₃	OCH3	Н	Н	C_3H_7	bond	G7	oil
7358	CH ₂	CH ₃	OCH ₃	СН3	Н	C ₄ H ₉	bond	G7	oil
7359	CH ₂	Cl	Cl	Н	CH3	C-C ₃ H ₅	bond	G7	156-158
7360	CH ₂	CF ₃	OCH ₃	H	н	CH ₃	bond	G8	oil
7361	CH ₂	CH3	OCH ₃	OCH ₃	н	C ₂ H ₅	bond	G10	oil
7362	0	Cl	Cl	Н	Н	CH ₃	bond	G1	-
7363	0	Cl	CF ₃	Н	Н	CH ₃	bond	G1	-
7364	CH₂	Cl	OCF ₃	н	Н	CH ₃	bond	G1	-
7365	CH ₂	CH3	OCH ₃	Cl	Н	CH₃	bond	G1	-
7366	CH ₂	Cl	Cl	Н	CH ₃	СН₃	bond	G1	-
7367	CH ₂	CF3	OCH ₃	Н	Н	CH ₃	bond	G1	-
7368	CH ₂	CH ₃	OCH ₃	F	H	CH ₃	bond	G1	-
7369	0	Cl	Cl	H	Н	C ₂ H ₅	bond	G1	-
7370	0	Cl	CF ₃	H	H	C ₂ H ₅	bond	G1	-
7371	CH ₂	Cl	OCF ₃	H	Н	C_2H_5	bond	G1	-
7372	CH ₂	CH3	OCH ₃	Cl	Н	C_2H_5	bond	G1	-
7373	CH ₂	Cl	Cl	Н	CH3	C ₂ H ₅	bond	G1	-
7374	CH ₂	CF ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G1	-
7375	CH ₂	CH ₃	OCH ₃	F	Н	C ₂ H ₅	bond	G1	_
7376	0	Cl	Cl	н	H	C_3H_7	bond	G1	-
7377	0	Cl	CF ₃	Н	Н	C_3H_7	bond	G1	-
7378	CH ₂	Cl	OCF ₃	Н	Н	C_3H_7	bond	G1	-
7379	CH ₂	CH ₃	OCH ₃	C1	H	C ₃ H ₇	bond	G1	-
7380	CH ₂	Cl	Cl	Н	CH3	C_3H_7	bond	G1	-
7381	CH2	CF ₃	OCH3	H	Н	C_3H_7	bond	G1	-
7382	CH ₂	CH3	OCH3	F	Н	C_3H_7	bond	G1	-
7383	0	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G1	-
7384	0	Cl	CF ₃	H	Н	C-C ₃ H ₅	bond	G1	-
7385	CH ₂	Cl	OCF,	Н	Н	• •			-
7386	CH ₂	CH ₃	OCH ₃	Cl	Н				-
7387	CH ₂	Cl	Cl	Н	CH ₃				-
7388	CH ₂	CF ₃	OCH ₃	Н	Н				-
7389	CH ₂	CH3	OCH ₃	F	Н	• •			-
7390	CH ₂	Cl	CF3	н	Н	C-C ₃ H ₅	bond	G14	oil
7391	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G14	-

Ś

7391	CH ₂	Cl	CF ₃	Н	H	C-C ₃ H ₅	bond	G15	oil	
7392	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G15	-	
7393	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G16	139-140	
7394	CH ₂	Cl	Cl	Н	Н	$C-C_3H_5$	bond	G16	-	
7395	CH ₂	Cl	CF ₃	H	Н	c-C ₃ H ₅	bond	G17	-	
7396	CH ₂	Cl	Cl	Н	н	C-C ₃ H ₅	bond	G17	oil	
7397	CH ₂	.cl	CF ₃	Н	н	c-C ₃ H ₅	bond	G18	-	
7398	CH ₂	Cl	Cl	Н	н	C-C ₃ H ₅	bond	G18	oil	
7399	CH ₂	Cl	Cl	Н	CH3	CH3	bond	G8	oil	
7400	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G19		
7401	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G19	oil	
7402	CH ₂	Cl	C1	Н	Н	$C-C_3H_5$	bond	G20	oil	
7403	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G20	-	
7404	CH ₂	Cl	Cl	Н	Н	C_4H_9	bond	G1	oil	
7405	CH ₂	Cl	Cl	Н	Н	C_6H_5	C=0	C ₆ H	oil	
								5		
7406	CH ₂	Cl	Cl	Н	H	C ₆ H ₅	C=0	G21	oil	
7407	CH ₂	Cl	Cl	Н	H	C ₆ H ₅	C=0	G22	oil	
7408	CH ₂	Cl	Cl	Н	Н	4-F- C ₆ H ₄ CH ₂	C=0	CH ₃	oil	
7409	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G23	oil	

Key:

(a) G groups:

$$G1 = \bigcirc$$
 $G2 = \bigcirc$

$$G5 = N - CH_3$$
 $G6 = N$

$$G7 = CH = CH_2$$

$$G8 = E - CH = CH - CH_3$$

$$G9 = G10 = -C = CH$$

1

G11=
$$-C = CCH_3$$
 G12= $-C = CCH_3$ G12= $-C = CCH_3$ G14= $-C = CCH_3$ G14= $-C = CCH_3$ G16= $-C = CCH_3$ G16= $-C = CCH_3$ G20= $-C = CCH_3$ G22= $-C = CCH_3$ G22= $-C = CCH_3$

- (b) Where a compound is indicated as an "oil", spectral data is provided as follows:
- 5 Example 7056 spectral data: MS (ESI): m/e 363 (M+2), 361 (M*, 100%).
 Example 7086 spectral data: TLC R, 0.25 (30:70 ethyl acetate-hexane). ¹H
 NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.72 (1H, d, J = 9.2 Hz), 6.90-6.84
 (2H, m), 6.08 (1H, ddq, J = 15.4 Hz, 6.6H, 1.4 Hz), 5.67 (1H, dqd, J =
 15.4 Hz, 6.5H, 1.5 Hz), 5.24 (1H, br pentet, J = 7.0 Hz), 3.85 (3H, s),
 2.96 (2H, dq, J = 7.5, 1.1 Hz), 2.47 (3H, s), 1.81 (3H, d, J = 7.0 Hz),

1.73 (3H, dt, J = 6.2, 1.3 Hz), 1.41 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 339 (3), 338 (23), 337 (100).

NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.68 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.4, 2.6 Hz), 6.09 (1H, ddq, J = 15.4 Hz, 6.6H, 1.8 Hz), 5.67 (1H, dqd, J = 15.4 Hz, 6.5H, 1.4 Hz), 5.23 (1H, br pentet, J = 6.8 Hz), 3.87 (3H, s), 2.98 (2H, q, J = 7.5 Hz), 1.82 (3H, d, J = 7.0 Hz), 1.73 (3H, dt, J = 6.6, 1.3 Hz), 1.40 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 360 (7), 359 (33), 358 (23), 357 (100).

Example 7116 spectral data: TLC R, 0.15 (30:70 ethyl acetate-hexane). 1H

Example 7145 spectral data: m.p. 78-79 °C. TLC R, 0.52 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.86-7.81 (2H, m), 7.68 (1H, d, J = 8.0 Hz), 6.38 (2H, ddd, J = 17.2 Hz, 10.6H, 5.8 Hz), 5.90-5.83 (1H, m), 5.40 (2H, dd, J = 10.6, 1.3 Hz), 5.29 (2H, dt, J = 17.2, 0.9 Hz), 2.97 (2H, q, J = 7.6 Hz), 1.41 (3H, t, J = 7.6 Hz). MS (NH₃-CI): m/e 396 (8), 395 (36), 394 (25), 393 (100). Analysis calculated for $C_{19}H_{16}C1F_3N_4$: C, 58.10; H, 4.12; N, 14.26; found: C, 58.14; H, 4.28; N, 13.74.

Example 7146 spectral data: TLC R, 0.43 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.84-7.79 (2H, m), 7.67 (1H, dd, J = 8.5, 1.1 Hz), 6.10 (1H, ddq, J = 15.4 Hz, 6.8H, 1.8 Hz), 5.70 (1H, dqd, J = 15.4 Hz, 6.5H, 1.1 Hz), 5.24 (1H, pentet, J = 7.0 Hz), 2.99 (2H, q, J = 7.5 Hz), 1.83 (3H, d, J = 7.0 Hz), 1.74 (3H, dt, J = 6.6, 1.3 Hz), 1.40 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 398 (7), 397 (36).

15 396 (25), 395 (100).

Example 7231 spectral data: m.p. 78-88 °C. TLC R_r 0.55 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): Major isomer: δ 8.90 (1H, s), 6.95 (2H, s), 4.68-3.05 (6H, m), 3.02-2.92 (2H, m), 2.70-2.55 (2H, m), 2.32 (3H, s), 2.20-2.00 (2H, m), 2.05 (3H, s), 1.96 (3H, s), 1.70-1.45

- 20 (4H, m), 1.39 (3H, t, J = 7.7 Hz), 0.93 (3H, t, J = 7.3 Hz); Minor isomer: δ 8.89 (1H, s), 6.95 (2H, s), 4.68-3.05 (6H, m), 3.02-2.92 (2H, m), 2.70-2.55 (2H, m), 2.32 (3H, s), 2.20-2.00 (2H, m), 2.06 (3H, s), 2.01 (3H, s), 1.70-1.45 (4H, m), 1.38 (3H, t, J = 7.7 Hz), 0.90 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{25}H_{35}N_4O_2$: 423.2760, found
- 25 423.2748; 425 (5), 424 (29), 423 (100). Analysis calc'd for $C_{25}H_{34}N_4O_2 \cdot H_2O$: C, 68.15; H, 8.24; N, 12.72; found: C, 67.80; H, 7.89; N, 12.24. Example 7234 spectral data: TLC R, 0.46 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.68 (1H, d, J = 8.0 Hz), 6.50 (1H, d, J = 3.0 Hz), 5.99 (1H, d, J =
- 30 3.0 Hz), 5.10 (1H, d, J = 10.6 Hz), 2.99-2.79 (2H, m), 2.20 (3H, s), 2.10-2.00 (1H, m), 1.30 (3H, t, J = 7.5 Hz), 1.00-0.90 (1H, m), 0.71-0.59 (2H, m), 0.56-0.46 (1H, m). MS (NH₃-CI): m/e 463 (35), 461 (100). Example 7241 spectral data: MS (NH₃-CI): m/e 371 (M+H⁺, 100%).

Example 7243 spectral data: TLC R, 0.43 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.85 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 5.24 (1H, dd, J = 8.4, 2.5 Hz), 3.28 (1H, dq, J = 15.5, 7.5 Hz), 3.14 (1H, dq, J = 15.5, 7.5 Hz), 2.56 (1H, d, J = 2.5 Hz), 1.78-1.67 (1H, m), 1.48 (3H, t, J = 7.5 Hz), 0.92-0.81 (2H, m),

0.66-0.49 (2H, m). MS (NH₃-CI): m/e calculated for $C_{20}H_{17}ClF_3N_4$: 405.1094, found 405.1098; 408 (8), 407 (34), 406 (25), 405 (100).

Example 7249 spectral data: TLC R, 0.19 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.72 (1H, d, J = 8.5 Hz), 7.37 (1H,

- d, J = 2.5 Hz), 7.18 (1H, dd, J = 8.5, 2.5 Hz), 5.23 (1H, dd, J = 8.1, 2.6 Hz), 3.92 (3H, s), 3.31-3.04 (2H, m), 2.54 (1H, d, J = 2.6 Hz), 1.76-1.64 (1H, m), 1.47 (3H, t, J = 7.5 Hz), 0.90-0.80 (2H, m), 0.64-0.52 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{21}H_{20}F_3N_4O$: 401.1603, found 401.1602; 403 (6), 402 (24), 401 (100).
- 10 Example 7250 spectral data: TLC R, 0.17 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.67 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.5, 1.8 Hz), 5.53 (1H, dt, J = 8.0, 2.6 Hz), 3.20 (1H, dq, J = 15.8, 7.5 Hz), 3.05 (1H, dq, J = 15.8, 7.5 Hz), 2.55 (1H, d, J = 2.6 Hz), 2.42-2.29 (1H, m), 2.28-2.15 (1H, m),
- 15 1.46 (3H, t, J = 7.5 Hz), 1.04 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{18}H_{17}Cl_2N_4$: 359.0830, found 359.0835; 364 (2), 363 (12), 362 (14), 361 (67), 360 (24), 359 (100).

Example 7259 spectral data: TLC R, 0.22 (20:80 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.58 (1H,

- 20 d, J = 1.8 Hz), 7.40 (1H, dd, J = 8.1, 1.8 Hz), 5.63 (1H, dt, J = 7.9, 2.5 Hz), 3.20 (1H, dq, J = 15.7, 7.7 Hz), 3.05 (1H, dq, J = 15.7, 7.7 Hz), 2.54 (1H, d, J = 2.5 Hz), 2.37-2.24 (1H, m), 2.19-2.06 (1H, m), 1.60-1.45 (1H, m), 1.46 (3H, t, J = 7.7 Hz), 1.39-1.25 (1H, m), 0.99 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{19}Cl_2N_4$: 373.0987,
- 25 found 373.0984; 378 (3), 377 (12), 376 (15), 375 (66), 374 (26), 373 (100).

Example 7261 spectral data: TLC R, 0.52 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.03 (1H, s), 7.84 (2H, m), 7.68 (1H, dd, J = 7.3, 0.7 Hz), 5.65 (1H, dt, J = 8.1, 2.6 Hz), 3.24-3.02 (2H, m), 2.55

- 30 (1H, d, J = 2.6 Hz), 2.33-2.25 (1H, m), 2.20-2.12 (1H, m), 1.46 (3H, t, J = 7.5 Hz), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{19}ClF_3N_4$: 407.1250, found 407.1243; 410 (8), 409 (36), 408 (25), 407 (100).
- Example 7266 spectral data: TLC R, 0.19 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, d, J = 1.5 Hz), 7.38 (1H, d, J = 1.8 Hz), 7.24 (1H, d, J = 1.8 Hz), 5.70-5.58 (1H, m), 3.24-3.00 (2H, m), 2.55 (1H, d, J = 2.5 Hz), 2.40-2.25 (1H, m), 2.20-2.05 (1H, m), 2.10 (3H, d, J = 1.8 Hz), 1.62-1.47 (1H, m), 1.43 (3H, t, J = 7.5 Hz), 1.42-

1.27 (1H, m), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{21}Cl_2N_4$: 387.1143, found 387.1144; 392 (3), 391 (12), 390 (16), 389 (66), 388 (27), 387 (100).

Example 7268 spectral data: TLC R, 0.29 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.67 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 2.2 Hz), 7.41 (1H, dd, J = 8.5, 2.2 Hz), 5.60 (1H, dt, J = 7.9, 2.6 Hz), 3.19 (1H, dq, J = 15.3, 7.3 Hz), 3.05 (1H, dq, J = 15.3, 7.3 Hz), 2.54 (1H, d, J = 2.6 Hz), 2.38-2.23 (1H, m), 2.20-2.05 (1H, m), 1.58-1.44 (1H, m), 1.46 (3H, t, J = 7.3 Hz), 1.40-1.23 (5H, m), 0.87

10 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{23}Cl_2N_4$: 401.1300, found 401.1300; 406 (3), 405 (13), 404 (17), 403 (69), 402 (28), 401 (100).

Example 7270 spectral data: TLC R, 0.60 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.03 (1H, s), 7.84 (2H, m), 7.68 (1H, dd, J = ...

- 9.1, 0.7 Hz), 5.62 (1H, dt, J = 8.1, 2.6 Hz), 3.24-3.02 (2H, m), 2.55 (1H, d, J = 2.6 Hz), 2.34-2.27 (1H, m), 2.19-2.13 (1H, m), 1.46 (3H, t, J = 7.3 Hz), 1.40-1.25 (6H, m), 0.88 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{23}C1F_3N_4$: 435.1563, found 435.1566; 438 (9), 437 (36), 436 (27), 435 (100).
- 20 Example 7279 spectral data: TLC R, 0.31 (30:70 ethyl acetate-hexane). ¹H
 NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.84 (2H, m), 7.68 (1H, d, J = 7.7
 Hz), 4.74-4.67 (1H, m), 3.45-3.36 (1H, m), 3.03 (2H, q, J = 7.7 Hz),
 3.00-2.93 (1H, m), 1.93 (1H, t, J = 2.7 Hz), 1.86 (3H, d, J = 7.0 Hz),
 1.43 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 396 (7), 395 (34), 394 (24),
 393 (100).

Example 7286 spectral data: TLC R, 0.29 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.68 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.4, 1.8 Hz), 5.19 (1H, dq, J = 8.4, 2.6 Hz), 3.26 (1H, dq, J = 15.7, 7.3 Hz), 3.14 (1H, dq, J = 15.7, 7.3

30 Hz), 1.88 (3H, d, J = 2.6 Hz), 1.70-1.60 (1H, m), 1.47 (3H, t, J = 7.3 Hz), 0.89-0.78 (2H, m), 0.60-0.43 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{20}H_{19}Cl_2N_4$: 385.0986, found 385.0992; 390 (3), 389 (12), 388 (15), 387 (66), 386 (26), 385 (100).

Example 7288 spectral data: MS (NH₃-CI): m/e 419 (M+H⁺, 100%).

Example 7295 spectral data: TLC R, 0.19 (20:80 ethyl acetate-hexane). ¹H
NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.67 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 2.2 Hz), 7.40 (1H, dd, J = 8.4, 2.2 Hz), 5.49 (1H, tq, J = 7.7, 2.2 Hz), 3.19 (1H, dq, J = 15.3, 7.7 Hz), 3.05 (1H, dq, J = 15.3, 7.7

Hz), 2.26 (1H, dq, J = 21.3, 7.7 Hz), 2.13 (1H, dq, J = 21.3, 7.7 Hz), 1.87 (3H, d, J = 2.2 Hz), 1.45 (3H, t, J = 7.7 Hz), 1.01 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{19}Cl_2N_4$: 373.0987, found 373.0987; 378 (3), 377 (13), 376 (15), 375 (68), 374 (25), 373 (100).

- 5 Example 7297 spectral data: TLC R, 0.48 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.83 (2H, m), 7.67 (1H, dd, J = 7.4, 0.8 Hz), 5.51 (1H, dt, J = 8.1, 2.2 Hz), 3.25-3.03 (2H, m), 2.35-2.13 (2H, m), 1.88 (3H, d, J = 2.2 Hz), 1.45 (3H, t, J = 7.5 Hz), 1.01 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{19}ClF_{3}N_{4}$: 407.1250,
- 10 found 407.1267; 410 (8), 409 (35), 408 (25), 407 (100). Example 7306 spectral data: MS (NH₃-CI): m/e 421 (M+H⁺, 100%). Example 7324 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.84 (1H, d, J = 8.4 Hz), 7.83 (1H, d, J = 1.8 Hz), 7.68 (1H, dd, J = 8.4, 1.8 Hz), 7.36 (1H, d, J = 3 Hz),
- 15 6.51 (1H, d, J = 5 Hz), 6.39 (1H, dd, J = 5, 3 Hz), 5.78 (1H, dd, J = 9, 7 Hz), 3.00-2.85 (2H, m), 2.75-2.52 (2H, m), 1.37 (3H, t, J = 7.5 Hz), 0.98 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 439 (1), 438 (8), 437 (34), 436 (26), 435 (100).
- Example 7349 spectral data: TLC R, 0.20 (30:70 ethyl acetate-hexane). ¹H

 20 NMR (300 MHz, CDCl₃): 8 9.00 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 5.01 (1H, d, J = 10.6 Hz), 2.93 (1H, dq, J = 15.9, 7.5 Hz), 2.75 (1H, dq, J = 15.9, 7.5 Hz), 2.58 (3H, s), 2.04
 1.94 (1H, m), 1.93 (3H, s), 1.33 (3H, t, J = 7.5 Hz), 1.32-1.22 (1H, m), 1.00-0.87 (1H, m), 0.74-0.60 (3H, m). MS (NH₃-CI): m/e calculated for
- 25 $C_{23}H_{22}C1F_3N_5O$: 476.1465, found 476.1469; 478 (35), 476 (100). Example 7351 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.88-7.82 (2H, m), 7.68 (1H, d, J = 8.0 Hz), 6.35 (1H, ddd, J = 17.2 Hz, 10.6H, 5.1 Hz), 5.33 (1H, br d, J = 10.6 Hz), 5.26 (1H, br d, J = 17.2 Hz), 4.43-4.37 (1H, m), 3.02-2.90
- 30 (2H, m), 1.99-1.89 (1H, m), 1.41 (3H, t, J = 7.5 Hz), 0.94-0.84 (1H, m), 0.62-0.52 (2H, m), 0.40-0.30 (1H, m). MS (NH₃-CI): m/e 411 (1), 410 (7), 409 (34), 408 (25), 407 (100).

Example 7352 spectral data: TLC R, 0.13 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.58 (1H,

35 d, J = 2.2 Hz), 7.41 (1H, dd, J = 8.8, 2.2 Hz), 6.33 (1H, ddd, J = 17.2, 10.6, 5.2 Hz), 5.35-5.20 (2H, m), 4.42-4.35 (1H, m), 3.03-2.88 (2H, m), 2.00-1.89 (1H, m), 1.40 (3H, t, J = 7.6 Hz), 0.92-0.82 (1H, m), 0.62-0.52 (2H, m), 0.40-0.30 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{19}H_{19}Cl_2N_4$:

373.1000, found 373.0995; 378 (3), 377 (12), 376 (15), 375 (66), 374 (26), 373 (100).

Example 7355 spectral data: MS (NH_3-CI) : m/e 337 $(M+H^*, 100\%)$. Example 7356 spectral data: MS (NH_3-CI) : m/e 365 $(M+H^*, 100\%)$.

- 5 Example 7357 spectral data: TLC R, 0.19 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 2.6 Hz), 7.19 (1H, dd, J = 8.4, 2.6 Hz), 6.42 (1H, ddd, J = 16.9, 10.3, 6.6 Hz), 5.27 (1H, d, J = 10.2 Hz), 5.14 (1H, d, J = 17.3 Hz), 5.08-4.99 (1H, m), 3.91 (3H, s), 2.99-2.90 (2H, m), 2.42-2.29 (1H, m),
- 10 2.27-2.15 (1H, m), 1.39 (3H, t, J = 7.5 Hz), 1.38-1.10 (2H, m), 0.95 (3H, t, J = 7.1 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{24}F_3N_4O$: 405.1915, found 405.1923; 407 (5), 406 (24), 405 (100). Analysis calc'd for $C_{21}H_{23}F_3N_4O$: C, 62.37; H, 5.73; N, 13.85; found: C, 62.42; H, 5.73; N, 13.48.
- Example 7358 spectral data: MS (NH₃-CI): m/e 379 (M+H^{*}, 100%). Example 7360 spectral data: TLC R, 0.13 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.68 (1H, d, J = 8.8 Hz), 7.35 (1H, d, J = 2.6 Hz), 7.16 (1H, dd, J = 8.8, 2.6 Hz), 6.15-6.05 (1H, m), 5.73-5.63 (1H, m), 5.28-5.18 (1H, m), 3.91 (3H, s), 2.96 (2H, q, J = 7.4 Hz),
- 20 1.82 (3H, d, J = 7.3 Hz), 1.74 (3H, dt, J = 6.6, 1.3 Hz), 1.39 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{22}F_3N_4O$: 391.1733, found 391.1736; 393 (3), 392 (23), 391 (100).

Example 7361 spectral data: TLC R, 0.43 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.42 (1H, s), 6.84 (1H, s), 5.55

- 25 (1H, dt, J = 5.5, 2.2 Hz), 3.94 (3H, s), 3.92 (3H, s), 3.49-2.98 (2H, m), 2.54 (1H, d, J = 2.6 Hz), 2.45 (3H, s), 2.35-2.16 (2H, m), 1.48 (3H, t, J = 7.5 Hz), 1.03 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{25}N_4O_2$: 365.1978, found 365.1966; 367 (6), 366 (24), 365 (100).
- Example 7390 spectral data: TLC R, 0.45 (30:70 ethyl acetate-hexane). 1 H 30 NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.88 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 7.30-7.22 (1H, m), 7.07-7.01 (1H, m), 6.99-6.92 (1H, m), 5.25 (1H, d, J = 10.2 Hz), 2.97-2.78 (2H, m), 2.23 (1H, br), 1.32 (3H, t, J = 7.3 Hz), 1.10-1.00 (1H, m), 0.81-0.71 (1H, m), 0.64-0.54 (1H, m), 0.50-0.40 (1H, m). MS (NH₃-CI): m/e calc'd for
- 35 $C_{22}H_{19}C1F_3N_4s$: 463.0971, found 463.0960; 467 (3), 466 (10), 465 (99), 464 (28), 463 (100).

Example 7392 spectral data: TLC R_r 0.44 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1h, s), 7.88 (1H, d, J = 8.0 Hz), 7.83 (1H,

s), 7.68 (1H, d, J = 8.0 Hz), 7.30 (1H, br d, J = 4.8 Hz), 7.18 (1H, br d, J = 4.8 Hz), 6.92 (1H, m), 5.12 (1H, d, J = 9.9 Hz), 2.92-2.67 (2H, m), 2.13 (1H, br), 1.28 (3H, t, J = 7.5 Hz), 1.08-0.99 (1H, m), 0.79-0.69 (1H, m), 0.55-0.45 (2H, m). MS (NH₃-CI): m/e calculated for

- 5 $C_{22}H_{19}ClF_3N_4S$: 463.0971, found 463.0953; 467 (3), 466 (10), 465 (39), 464 (29), 463 (100).
 - Example 7396 spectral data: TLC R, 0.27 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.1, 1.8 Hz), 6.86 (1H, s), 5.83 (1H,
- 10 dd, J = 9.9, 6.2 Hz), 4.43 (2H, q, J = 7.3 Hz), 2.98 (2H, q, J = 7.7 Hz), 2.91-2.78 (1H, m), 2.63-2.49 (1H, m), 1.42 (3H, t, J = 7.7 Hz), 1.40 (3H, t, J = 7.3 Hz), 1.39-1.19 (2H, m), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{24}Cl_2N_5O_3$: 488.1256, found 488.1252; 493 (3), 492 (13), 491 (18), 490 (68), 489 (28), 488 (100).
- 15 Example 7398 spectral data: TLC R, 0.11 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.72 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.42 (1H, dd, J = 8.1, 1.8 Hz), 5.40 (1H, dd, J = 10.4, 5.0 Hz), 4.42 (2H, q, J = 7.4 Hz), 3.00-2.90 (2H, m), 2.66-2.52 (1H, m), 2.51-2.38 (1H, m), 1.46 (3H, t, J = 7.4 Hz), 1.41 (3H, t, J = 7.3 Hz),
- 20 1.40-1.10 (2H, m), 0.98 (3H, t, J = 7.2 Hz). MS (NH₃-CI): m/e calc'd for $C_{24}H_{25}Cl_2N_6O_4$: 531.1315, found 531.1315; 531 (100).

Example 7399 spectral data: TLC R, 0.13 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.38 (1H, d, J = 1.8 Hz), 7.23 (1H, d, J = 1.8 Hz), 6.15-6.06 (1H, m), 5.76-5.63 (1H, m), 5.26-5.20 (1H, m),

- 25 2.96 (2H, q, J = 7.4 Hz), 2.10 (3H, s), 1.83 (3H, d, J = 7.0 Hz), 1.74 (3H, d, J = 6.6 Hz), 1.37 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{21}Cl_2N_4$: 375.1117, found 375.1123; 380 (2), 379 (12), 378 (15), 377 (66), 376 (26), 375 (100).
 - Example 7401 spectral data: TLC R, 0.20 (ethyl acetate). 1H NMR (300 MHz,
- 30 CDCl₃): δ 8.99 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.4, 1.8 Hz), 7.11 (1H, d, J = 1.1 Hz), 6.87 (1H, d, J = 1.1 Hz), 5.41 (1H, d, J = 10.3 Hz), 3.34 (3H, s), 3.08 (1H, dq, J = 15.8, 7.7 Hz), 2.89 (1H, dq, J = 15.8, 7.7 Hz), 2.39-2.25 (1H, m), 1.14 (3H, t, J = 7.7 Hz), 1.07-0.97 (1H, m), 0.70-0.58 (2H, m), 0.52-
- 35 0.42 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{21}H_{21}Cl_2N_6$: 427.1205, found 427.1196; 429 (66), 427 (100).

Example 7402 spectral data: MS (NH₃-CI): m/e 424 (M+H * , 100%). Example 7404 spectral data: MS (NH₃-CI): m/e 419 (M+H * , 100%).

ζį.

```
Example 7405 spectral data: MS (NH_3-CI): m/e 487 (M+H^*, 100\%). Example 7406 spectral data: MS (NH_3-CI): m/e 501 (M+H^*, 100\%). Example 7407 spectral data: MS (NH_3-CI): m/e 517 (M+H^*, 100\%). Example 7408 spectral data: MS (NH_3-CI): m/e 457 (M+H^*, 100\%). 5 Example 7409 spectral data: MS (NH_3-CI): m/e 429 (M+H^*, 100\%).
```

Utility

10

35

CRF-R1 Receptor Binding Assay for the Evaluation of Biological Activity

The following is a description of the isolation of cell

membranes containing cloned human CRF-R1 receptors for use in
the standard binding assay as well as a description of the
assay itself.

Messenger RNA was isolated from human hippocampus. mRNA was reverse transcribed using oligo (dt) 12-18 and the 20 coding region was amplified by PCR from start to stop codons The resulting PCR fragment was cloned into the EcoRV site of pGEMV, from whence the insert was reclaimed using XhoI + XbaI and cloned into the XhoI + XbaI sites of vector pm3ar (which contains a CMV promoter, the SV40 't' splice and early poly A signals, an Epstein-Barr viral origin of replication, and a hygromycin selectable marker). The resulting expression vector, called phchCRFR was transfected in 293EBNA cells and cells retaining the episome were selected in the presence of 400 mM hygromycin. Cells surviving 4 weeks of selection in hygromycin were pooled, adapted to growth in suspension and used to generate membranes for the binding assay described below. Individual aliquots containing approximately 1 x 108 of the suspended cells were then centrifuged to form a pellet and frozen.

For the binding assay a frozen pellet described above containing 293EBNA cells transfected with hCRFR1 receptors is homogenized in 10 mL of ice cold tissue buffer (50 mM HEPES buffer pH 7.0, containing 10 mM MgCl₂, 2 mM EGTA, 1 mg/L

aprotinin, 1 mg/mL leupeptin and 1 mg/mL pepstatin). The homogenate is centrifuged at 40,000 x g for 12 min and the resulting pellet rehomogenized in 10 mL of tissue buffer. After another centrifugation at 40,000 x g for 12 min, the pellet is resuspended to a protein concentration of 360 mg/mL to be used in the assay.

Binding assays are performed in 96 well plates; each well having a 300 mL capacity. To each well is added 50 mL of test drug dilutions (final concentration of drugs range from 10-10 10 to 10^{-5} M), 100 mL of 125 I-ovine-CRF (125 I-o-CRF) (final concentration 150 pM) and 150 mL of the cell homogenate described above. Plates are then allowed to incubate at room temperature for 2 hours before filtering the incubate over GF/F filters (presoaked with 0.3% polyethyleneimine) using an appropriate cell harvester. Filters are rinsed 2 times with ice cold assay buffer before removing individual filters and assessing them for radioactivity on a gamma counter.

Curves of the inhibition of 125 I-o-CRF binding to cell membranes at various dilutions of test drug are analyzed by 20 the iterative curve fitting program LIGAND [P.J. Munson and D. Rodbard, Anal. Biochem. 107:220 (1980), which provides K, values for inhibition which are then used to assess biological activity.

Alternatively, tissues and cells which naturally express CRF receptors can be employed in binding assays analogous to those described above.

A compound is considered to be active if it has a K, value of less than about 10000 nM for the inhibition of CRF.

30

25

15

Inhibition of CRF-Stimulated Adenvlate Cyclase Activity

Inhibition of CRF-stimulated adenylate cyclase activity can be performed as described by G. Battaglia et al. Synapse 1:572 (1987). Briefly, assays are carried out at 37 °C for 10 min in 200 mL of buffer containing 100 mM Tris-HCl (pH 7.4 at 37 °C), 10 mM MgCl₂, 0.4 mM EGTA, 0.1% BSA, 1 mM isobutylmethylxanthine (IBMX), 250 units/mL phosphocreatine kinase, 5 mM creatine phosphate, 100 mM

quanosine 5'-triphosphate, 100 nM oCRF, antagonist peptides (concentration range 10⁻⁹ to 10⁻⁶ M) and 0.8 mg original wet weight tissue (approximately 40-60 mg protein). Reactions are initiated by the addition of 1 mM ATP/32P]ATP 5 (approximately 2-4 mCi/tube) and terminated by the addition of 100 mL of 50 mM Tris-HCL, 45 mM ATP and 2% sodium dodecyl sulfate. In order to monitor the recovery of cAMP, 1 mL of [3H]cAMP (approximately 40,000 dpm) is added to each tube prior to separation. The separation of [32P]cAMP from 10 [32P] ATP is performed by sequential elution over Dowex and alumina columns.

In vivo Biological Assav

15

25

30

The in vivo activity of the compounds of the present invention can be assessed using any one of the biological assays available and accepted within the art. Illustrative of these tests include the Acoustic Startle Assay, the Stair Climbing Test, and the Chronic Administration Assay. These and other models useful for the testing of compounds 20 of the present invention have been outlined in C.W. Berridge and A.J. Dunn Brain Research Reviews 15:71 (1990). Compounds may be tested in any species of rodent or small mammal.

Compounds of this invention have utility in the treatment of inbalances associated with abnormal levels of corticotropin releasing factor in patients suffering from depression, affective disorders, and/or anxiety.

Compounds of this invention can be administered to treat these abnormalities by means that produce contact of the active agent with the agent's site of action in the body of a mammal. The compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals either as individual therapeutic agent or 35 in combination of therapeutic agents. They can be administered alone, but will generally be administered with a pharmaceutical carrier selected on the basis of the

chosen route of administration and standard pharmaceutical

The dosage administered will vary depending on the use and known factors such as pharmacodynamic character of the 5 particular agent, and its mode and route of administration; the recipient's age, weight, and health; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and desired effect. For use in the treatment of said diseases or conditions, the compounds of this invention can be orally administered daily at a dosage of the active ingredient of 0.002 to 200 mg/kg of body weight. Ordinarily, a dose of 0.01 to 10 mg/kg in divided doses one to four times a day, or in sustained release formulation will be effective in obtaining the desired pharmacological effect.

10

15

30

Dosage forms (compositions) suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions, the active ingredient will ordinarily be 20 present in an amount of about 0.5 to 95% by weight based on the total weight of the composition.

The active ingredient can be administered orally is solid dosage forms, such as capsules, tablets and powders; or in liquid forms such as elixirs, syrups,

25 and/or suspensions. The compounds of this invention can also be administered parenterally in sterile liquid dose formulations.

Gelatin capsules can be used to contain the active ingredient and a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time.

35 Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the tablet in the gastrointestinal tract.

Liquid dose forms for oral administration can contain coloring or flavoring agents to increase patient acceptance.

In general, water, pharmaceutically acceptable oils, 5 saline, aqueous dextrose (glucose), and related sugar solutions and glycols, such as propylene glycol or polyethylene glycol, are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, butter substances. Antioxidizing agents, such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or in combination, are suitable stabilizing agents. Also used are citric acid and its salts, and EDTA. In addition, parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences", A. Osol, a standard reference in the field.

Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

25 Capsules

10

15

20

30

35

A large number of units capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement was pumped into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules were washed and dried.

Ç,

Tablets

A large number of tablets are prepared by conventional procedures so that the dosage unit was 100 mg active ingredient, 0.2 mg of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch, and 98.8 mg lactose. Appropriate coatings may be applied to increase palatability or delayed adsorption.

The compounds of this invention may also be used as reagents or standards in the biochemical study of neurological function, dysfunction, and disease.

Although the present invention has been described and exemplified in terms of certain preferred embodiments, other embodiments will be apparent to those skilled in the art. The invention is, therefore, not limited to the particular embodiments described and exemplified, but is capable of modification or variation without departing from the spirit of the invention, the full scope of which is delineated by the appended claims.

WHAT IS CLAIMED IS:

1. A compound of formula (I)

$$R^{2}-X \xrightarrow{N} A \xrightarrow{A} B$$

5

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

(I)

10 A is N or $C-R^7$;

B is N or C-R8;

provided that at least one of the groups A and B is N;

15

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a 20 bond;

n is 0, 1 or 2;

R¹ is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

 R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-N(COR^{13a})_2$, $-NR^{15a}CONR^{13a}R^{16a}$, $-NR^{15a}CO_2R^{14b}$, $-CONR^{13a}R^{16a}$, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group

selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ - and $-NSO_2R^{14b}$ -, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

- R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-4} alkoxy- C_{1-4} alkyl, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;
- 15 provided that R¹ is other than:
 - (a) a cyclohexyl-(CH₂)₂- group;
 - (b) a 3-cyclopropyl-3-methoxypropyl group;
 - (c) an unsubstituted-(alkoxy)methyl group; and,
 - (d) a 1-hydroxyalkyl group;

20

5

- also provided that when ${\bf R}^1$ alkyl substituted with OH, then the carbon adjacent to the ring N is other than ${\bf CH}_2$;
- 125 Indanyl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, SH, $-S(0)_nR^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$;
- R1b is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl,

isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl,

- 2,3-dihydrobenzothienyl,
- 2,3-dihydrobenzothienyl-S-oxide,
- 5 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl,
- Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;
- R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C1-6 alkyl, C3-6 cycloalkyl, Br, Cl, F, I, C1-4 haloalkyl, -CN, nitro, -OR13a, SH, -S(O)nR14b, -COR13a, -OC(O)R14b, -NR15aCOR13a, -N(COR13a)2, -NR15aCONR13aR16a, -NR15aCO2R14b, -NR13aR16a, and -CONR13aR16a and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R13a,
- 30 provided that R^1 is other than a -(CH_2)₁₋₄-aryl, -(CH_2)₁₋₄-heteroaryl, or -(CH_2)₁₋₄-heterocycle, wherein the aryl, heteroaryl, or heterocycle group is substituted or unsubstituted;

is optionally monooxidized or dioxidized;

CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom

35 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with

0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF_3 and C_2F_5 ;
 - R^3 , R^7 and R^8 are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-4}
- alkylsulfinyl, C_{1-4} alkylsulfonyl, amino, C_{1-4} alkylamino, $(C_{1-4}$ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C_{1-7} alkyl, C_{3-8} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4}
- 15 alkylthio, C_{1-4} alkyl sulfinyl, C_{1-4} alkylsulfonyl, C_{1-6} alkylamino and $(C_{1-4}$ alkyl)₂amino;
 - provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;

- R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;
- 25 R¹³ is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;
- 30 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 35 R¹⁴ is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)- and benzyl, each

benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, C_{1} , F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;

5

10

- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

25

- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 30 R¹⁷ is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 35 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;

Ŋ.

alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

alternatively, in an $NR^{17b}R^{19b}$ moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF₃, C₂F₅, OCF₃, SO₂Me and acetyl;

30

35

5

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,

Ç.

2,3-dihydrobenzothienyl-S-oxide,
2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
benzoxazolin-2-on-yl, benzodioxolanyl and
benzodioxane, each heteroaryl being substituted 0-4

5 carbon atoms with a substituent independently selected
at each occurrence from the group C₁₋₆ alkyl, C₃₋₆
cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro,
-OR¹⁷, SH, -S(O)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸,
-NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸,

10 -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being
substituted on any nitrogen atom with 0-1 substituents
selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and
SO₂R^{14a}; and,

- 15 provided that when D is imidazole or triazole, R^1 is other than unsubstituted C_{1-6} linear or branched alkyl or C_{3-6} cycloalkyl.
- 20 2. A compound according to Claim 1, wherein the compound is of formula Ia:

$$R^2-X$$
 N
 N
 R^3
 R^8
(Ia).

25

3. A compound according to Claim 1, wherein the compound is of formula Ib:

$$R^2 - X \longrightarrow N \longrightarrow N \longrightarrow N$$

 ζ_1

(Ib).

4. A compound according to Claim 1, wherein the compound is of formula Ic:

$$R^2$$
 N
 N
 N
 R^3
(Ic).

10

5

5. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I):

15

$$R^{2}-X \xrightarrow{N \atop N} \stackrel{A}{\longrightarrow} \stackrel{R^{3}}{\longrightarrow} R^{3}$$

(T)

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

20

A is N or $C-R^7$;

B is N or C-R8;

- 25 provided that at least one of the groups A and B is N;
 - D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

5

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

10

- R¹ is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
- R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₄ alkoxy-C₁₋₄ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

30

provided that R¹ is other than:

- (a) a 3-cyclopropyl-3-methoxypropyl group;
- (b) an unsubstituted-(alkoxy)methyl group; and,
- (c) a 1-hydroxyalkyl group;

35

also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;

ζ.

 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR^{17}, SH, -S(O)_nR^{18}, -COR^{17}, -OC(O)R^{18}, -NR^{15a}COR^{17}, -N(COR^{17})_2, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO_2R^{18}, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a}; \label{eq:constraint}

10

35

5

R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothionyl, benzothiazolyl, benzovazolyl,

benzothienyl, benzothiazolyl, benzoxazolyl,
isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
indazolyl, 2,3-dihydrobenzofuranyl,
2,3-dihydrobenzothienyl,

2,3-dihydrobenzothienyl-S-oxide,

20 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl,

Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

R^{1c} is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(0)_nR^{14b}, -COR^{13a},

Q

-OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO_2R^{14b} , COR^{14b} and SO_2R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized;

 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

5

10

- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF_3 and C_2F_5 ;
- R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;
 - provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;
- 30 R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R¹³ is selected from the group H, C₁₋₄ alkyl, C₁₋₄ haloalkyl,

 C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆

 cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-,

 heteroaryl and heteroaryl(C₁₋₄ alkyl)-;

 \mathbf{x}_{1}

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

10

35

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
 - R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

Ý,

 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;

5

10

15

- R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;
- alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_RR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from

Ç,

the group C_{1-3} alkyl, C_{1-3} alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF_3 , C_2F_5 , OCF_3 , SO_2Me and acetyl; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, 5 quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 10 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected 15 at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being 20 substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and SO_2R^{14a} .

A method of treating affective disorder, anxiety, 25 depression, headache, irritable bowel syndrome, posttraumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, 30 inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, 35 hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including

but not limited to disorders induced or facilitated by CRF, in mammals, comprising: administering to the mammal a therapeutically effective amount of a compound of formula (I):

5

$$R^{2}-X \xrightarrow{N} D \xrightarrow{R^{2}} B$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

A is N or $C-R^7$;

B is N or C-R8;

15

provided that at least one of the groups A and B is N;

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

20

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

25

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

30

 $\rm R^1$ is substituted with 0-1 substituents selected from the group -CN, -S(0) $_{\rm n}\rm R^{14b}$, -COR 13a , -CO2 $\rm R^{13a}$, -NR $^{15a}\rm COR^{13a}$, -NR $^{15a}\rm COR^{13a}$, -NR $^{15a}\rm CO_2R^{14b}$, -CONR $^{13a}\rm R^{16a}$, 1-morpholinyl, 1-piperidinyl,

1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO_2 R^{14b}, COR^{14b} and SO_2 R^{14b};

 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-4} alkoxy- C_{1-4} alkyl, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R1 is other than:

5

- (a) a 3-cyclopropyl-3-methoxypropyl group;
- (b) an unsubstituted-(alkoxy)methyl group; and,
- 20 (c) a 1-hydroxyalkyl group;

also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;

25 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with G-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

R1b is heteroaryl and is selected from the group pyridyl,

pyrimidinyl, triazinyl, furanyl, quinolinyl,

isoquinolinyl, thienyl, imidazolyl, thiazolyl,

indolyl, pyrrolyl, oxazolyl, benzofuranyl,

€.

benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 5 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C1-6 alkyl, C3-6 cycloalkyl, 10 Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(0)_{mR}^{18}$, $-COR^{17}$, $-OC(0)_{R}^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$ -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from 15 the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

saturated heteroaryl, each heterocyclyl being
substituted on 0-4 carbon atoms with a substituent
independently selected at each occurrence from the
group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄
haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a},
-OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a},
-NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each
heterocyclyl being substituted on any nitrogen atom
with 0-1 substituents selected from the group R^{13a},
CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom
is optionally monooxidized or dioxidized;

30 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy,

halo and C_{1-4} alkoxy;

35

alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF₃ and C₂F₅;

R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄

alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;

provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;

 R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;

15

- 20 R¹³ is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;
- 25 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 30 R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;

Ġ.

 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6}

cycloalkyl-C₁₋₆ alkyl;

- 25 R¹⁷ is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 30 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- 35 alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in

Ç,

1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

alternatively, in an $NR^{17b}R^{19b}$ moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

10 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF₃, C₂F₅, OCF₃, SO₂Me and acetyl; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-oxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and

benzodioxane, each heteroaryl being substituted 0-4

carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2 R^{14a}, COR^{14a} and SO_2 R^{14a}.

10

5

15

Inter Inal Application No PCT/US 98/13913

A. CLASSIF IPC 6	CO7D471/04 CO7D473/00 A61K31/505 A61K31/535 //(CO7D471/04,235:00,221:00)	
According to	International Patent Classification(IPC) or to both national classification and IPC	
	SEARCHED	
Minimum do IPC 6	cumentation searched (classification system followed by classification symbols) CO7D A61K	
Documentat	ion searched other than minimum documentation to the extent that such documents are included in the fields so	arched
Electronic d	ata base consulted during the international search (name of data base and, where practical, search terms used	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 773 023 A (PFIZER INC.) 14 May 1997 see claims	1-6
A	WO 95 10506 A (THE DU PONT MERCK PHARMACEUTICAL COMPANY) 20 April 1995 cited in the application see claims	1-6
A	WO 95 34563 A (PFIZER INC.) 21 December 1995 cited in the application see claims	1-6
Α	WO 95 33750 A (PFIZER INC.) 14 December 1995 cited in the application see claims	1-6
X Fur	ther documents are listed in the continuation of box C.	
"A" docum consi "E" earlier filing "L" docum which	nent which may throw doubts on priority claim(s) or involve an inventive step when the is cited to establish the publication date of another on or other special reason (as specified) 'Y' document of particular relevance; it cannot be considered to involve as	with the application out in theory underlying the ne claimed invention into the considered to indocument is taken alone in claimed invention in inventive step when the
other	nent referring to an oral disclosure, use, exhibition or document is combined with one or ments, such combination being of in the art.	rmore other such docu- vious to a person skilled
	than the priority date claimed "&" document member of the same pate actual completion of the international search Date of mailing of the international	
	20 October 1998 30/10/1998	
Name and	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Sevi (-31-70) 340-3056 Chouly, J	

Inte. anal Application No
PCT/US 98/13913

:.(Continu	Ition) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication,where appropriate, of the relevant passages	Relevant to claim No.			
P,A	EP 0 812 831 A (PFIZER INC.) 17 December 1997 see claims	1-6	1-6		
Р,А	WO 98 08847 A (PFIZER INC.) 5 March 1998 see claims	1-6			
	·				
	·				
			Ċ		
			٠.		

i. national application No.

PCT/US 98/13913

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 6 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 6 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out. specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

inter onal Application No PCT/US 98/13913

	atent document d in search repor	t	Publication date		atent family nember(s)	Publication date
EP	773023	Α	14-05-1997	CA JP	2189830 A 9132528 A	09-05-1997 20-05-1997
	9510506	 А	20-04-1995	 AU	692484 B	11-06-1998
WU	3310300	М	50 04 1333	AU	8012294 A	04-05-1995
				BR	9407799 A	06-05-1997
				CA	2174080 A	20-04-1995
				CN	1142817 A	12-02-1997
				CZ	9601014 A	13-11-1996
				EP	0723533 A	31-07-1996
				FI	961599 A	07-06-1996
				HR	940664 A	31-12-1996
				HU	74464 A	30-12-1996
				JP	9504520 T	06-05-1997
				NO	961425 A	12-06-1996 27-04-1998
				NZ	274978 A 313973 A	05-08-1996
				PL SK	313973 A 47096 A	01-10-1996
				ZA	9407921 A	11-04-1996
WO	9534563		21-12-1995	AU	687196 B	19-02-1998
., •				AU	2350595 A	05-01-1996
				BR	9502707 A	04-06-1996
				CA	2192820 A	21-12-1995
				CN	1150803 A	28-05-1997 15-10-1997
				CZ	9603670 A 0765327 A	02-04-1997
				EP FI	965022 A	13-12-1996
				HU	75776 A	28-05-1997
				JP	9507855 T	12-08-1997
				NO	965378 A	13-12-1996
				PL	317705 A	28-04-199 7
W(9533750	A	14-12-1995	AU	692548 B	11-06-1998
				AU	2453095 A	04-01-1996
				BR	9502708 A	30-04-1996
				CA	2192354 A	14-12-1995 21-05-1997
				CN	1150428 A 0764166 A	26 - 03-1997
				EP FI	964894 A	05-12-1996

...ormation on patent family members

Interi nal Application No
PCT/US 98/13913

Patent document cited in search report		Publication Patent family date member(s)			Publication date	
WO 9533750	A		HR HU JP NO NZ PL	950321 A 75774 A 9507249 T 965237 A 285442 A 320631 A	28-02-1998 28-05-1997 22-07-1997 06-02-1997 27-05-1998 13-10-1997	
EP 812831	A	17-12-1997	CA JP	2207348 A 10072449 A	11-12-1997 17-03-1998	
WO 9808847	Α	05-03-1998	AU	3456197 A	19-03-1998	