Exemple 1 – Evaluation Individuelle TP N2 : Statistiques –

Les données analysées ici sont celles proposées dans le fichier cardiaque.csv.

Notations : Dans ce sujet on se propose d'étudier la variable **cardiaque** selon la classe d'âge d'un patient. La classe dite "jeune" correspond aux patients d'âge \in [10, 30], celle appelée "âge moyen" à ceux d'âge \in [30, 50] et celle appelée "plus de 50" à ceux d'âge \in [50, 70]. On notera X la variable cardiaque chez les "jeunes", Y la variable cardiaque chez les "âge moyen" et Z la variable cardiaque chez les "plus de 50". On utilisera les notations suivantes :

- $\mu_X = p$ pour l'espérance de X et $\sigma_X^2 = p(1-p)$ pour sa variance.
- μ_Y pour l'espérance de Y et σ_Y^2 pour sa variance.
- μ_Z pour l'espérance de Z et σ_Z^2 pour sa variance.
- 1. (2 pts) Charger le jeu de données cardiaque.csv dans card. En extraire les échantillon de X (resp. Y et Z) qu'on affectera à x (resp. y et z). Indiquer les instructions utilisées, depuis le répertoire de travail contenant le fichier cardiaque.csv, pour construire card et x:

-				
card	$\overline{}$	•	r —	-
	_		· —	

2. (6 pts : 1/2 par cellule du tableau, 2 pour les commentaires) Compléter et commenter le tableau ci-dessous avec les estimations sans biais des espérances et écart-type des trois variables étudiées (à 10^{-4} pour X et 10^{-2} pour Y et Z) :

	n	$\hat{\mu}$	$\hat{\sigma}$
X			
Y			
Z			

a	
L'ammantaire	
Commentaires	

- •
-

3. (5 pts: 1 pt par valeur et 1pt pour l'explication)

Donner des intervalles de confiance de niveaux asymptotiques (ou exacts) 98% et 80% pour le paramètre $p = \mu_X$ (à 10^{-4}) dans le tableau suivant. Préciser s'ils sont obtenus avec la procédure prop.test() ou à la "main" en calculant les intervalles asymptotiques vus en cours.

borne inf. IC niv 98% pour μ_X	borne sup. IC niv 98% pour μ_X
borne inf. IC niv 80% pour μ_X	borne sup. IC niv 80% pour μ_X

4. (2pts) Evaluer à 10^{-2} près, le niveau de confiance $1-\alpha_0$ pour lequel l'intervalle est de longueur 0.1.

5. (6 pts) On sait que pour une personne quelconque la probabilité de faire un incident cardiaque vaut $p_0 = 35\%$. Faire un test statistique pour savoir si chez les "jeunes" la probabilité de faire un incident cardiaque est inférieure à cette valeur de référence p_0 .

(a) Préciser les éventuelles conditions requises pour pouvoir faire le test mis en oeuvre ainsi que la procédure utilisée (1pt).

(b) Décrire les deux hypothèses testées (1pt):

 \mathcal{H}_0 : \mathcal{H}_1 :

(c) Indiquer les instruction R exécutées pour réaliser le test précédent (1,5 pts).

(d) Donnez la valeur de la statistique de test et la p-valeur du test (1 pt):

 $tcalc = \dots pval = \dots pval = \dots$

(e) Conclusion littérale (1,5 pts):