Ergebnis

Wie sieht der resultierende Automat aus?

Er hat drei Zustände $p = \{z_0, z_2\}$, $q = \{z_1, z_3\}$ und z_4 .

Frage: Welche Sprache akzeptiert dieser Automat?

Antwort:

$$\{xaay \mid x, y \in \{a, b\}^*\}$$

Einschub: Erkennung durch Monoide

Achtung: Diese Einheit finden Sie NICHT im Buch von Schöning.

Sei $L \subseteq \Sigma^*$ eine formale Sprache und M ein Monoid.

Wir sagen M erkennt L, wenn eine Teilmenge $A \subseteq M$ und ein Homomorphismus $\varphi : \Sigma^* \to M$ existieren, so dass gilt:

$$L = \varphi^{-1}(A)$$
 (d.h. $w \in L \iff \varphi(w) \in A$)

Eine alternative Definition ist:

M erkennt *L*, wenn ein Homomorphismus $\varphi : \Sigma^* \to M$ existiert, so dass gilt:

$$L = \varphi^{-1}(\varphi(L))$$
 (d.h. $w \in L \iff \varphi(w) \in \varphi(L)$)

Einheit 17 – Folie 17.2 – 28.11.2019

Zur Äquivalenz der Erkennbarkeitsdefinitionen

Wir zeigen jetzt, dass die beiden Definitionen der Erkennbarkeit auf der vorherigen Folie tatsächlich äquivalent sind:

Es sei $L = \varphi^{-1}(\varphi(L))$. Wähle $A = \varphi(L)$. Dann ist $L = \varphi^{-1}(A)$. Also folgt die erste Definition aus der zweiten.

Sei $L = \varphi^{-1}(A)$. Dann erhalten wir

$$\varphi(L) = \varphi(\varphi^{-1}(A)) \subseteq A$$

und folglich

$$\varphi^{-1}(\varphi(L)) \subseteq \varphi^{-1}(A) = L$$

also $\varphi^{-1}(\varphi(L)) \subseteq L$; dass umgekehrt $L \subseteq \varphi^{-1}(\varphi(L))$ gilt, ist klar.

Damit ist der Beweis komplett.

Einheit 17 – Folie 17.3 – 28.11.2019

Noch eine Äquivalenzrelation

Eine Sprache $L \subseteq \Sigma^*$ heißt erkennbar, wenn sie von einem endlichen Monoid erkannt wird.

Wir fixieren jetzt eine Sprache $L \subseteq \Sigma^*$ und definieren weiter:

 $w_1, w_2 \in \Sigma^*$ sind *äquivalent*, wenn folgendes gilt:

$$\forall x, y \in \Sigma^* : xw_1y \in L \iff xw_2y \in L.$$

Offenbar ist auch diese Relation eine Verfeinerung der Myhill-Nerode-Äquivalenz.

Diese Äquivalenz notieren wir mit dem Symbol \equiv_L oder einfach \equiv . Dass es sich um eine Äquivalenzrelation handelt, sollte klar sein. Wir behaupten nun aber, dass \equiv_L sogar eine *Kongruenz* darstellt, das heißt zusätzlich gilt:

$$[w_1 \equiv z_1 \text{ und } w_2 \equiv z_2] \implies w_1 w_2 \equiv z_1 z_2.$$

Können Sie das beweisen?

Einheit 17 – Folie 17.4 – 28.11.2019

Das syntaktische Monoid

Die eben eingeführte Kongruenz heißt syntaktische Kongruenz. Bezüglich einer Kongruenz kann man zu einem Monoid immer ein sogenanntes *Quotientenmonoid* definieren, dessen Elemente die Äquivalenzklassen der Kongruenz sind. Wegen der Kongruenz-Eigenschaft ist die Verknüpfung solcher Klassen in der natürlichen Weise eine wohldefinierte Operation.

Das Quotientenmonoid bezüglich der syntaktischen Kongruenz wird mit Σ^*/\equiv_L notiert. Wir nennen es das

syntaktische Monoid (Synt(L))

der Sprache L und behaupten, dass für jede Sprache L gilt, dass das syntaktische Monoid von L die Sprache L erkennt, und zwar mit dem Homomorphismus $\varphi: w \mapsto [w]$.

 $L \subseteq \varphi^{-1}(\varphi(L))$ ist trivial. Die Rückrichtung ist aber auch nicht so schwer: Sei $v \in \varphi^{-1}(\varphi(L))$, d.h. $\varphi(v) \in \varphi(L)$, also $\varphi(v) = \varphi(w)$ für ein $w \in L$. Damit ist $v \equiv_L w$ und folglich $v \in L$, weil ja $w \in L$ gilt.

Syntaktisches Monoid und Typ-3

Der folgende Satz klärt den Zusammenhang zwischen Typ-3, Erkennbarkeit und syntaktischem Monoid:

Satz: Für jede formale Sprache $L \subseteq \Sigma^*$ sind die folgenden drei Aussagen äquivalent:

- a) L ist regulär.
- b) *L* ist erkennbar.
- c) Synt(L) ist endlich.

Den Beweis werden wir auf den nächsten zwei Folien über die Implikationen c) \Longrightarrow a), a) \Longrightarrow b) und b) \Longrightarrow c) erbringen.

Beweis c) \Longrightarrow a) und a) \Longrightarrow b)

c) \Longrightarrow a):

Das syntaktische Monoid von L sei endlich, d.h. die syntaktische Kongruenz hat nur endliche viele Klassen. Die Myhill-Nerode Äquivalenz R_L wird durch die syntaktische Kongruenz verfeinert, hat also selbst höchstens so viele Klassen wie \equiv_L . Damit ist der Index von R_L endlich und nach dem Satz von Myhill-Nerode ist L regulär.

 $a) \Longrightarrow b)$:

M sei ein DEA mit T(M) = L, seine Zustandsmenge sei Z. Jedes Wort $w \in \Sigma^*$ erzeugt eine Transformation $t_w : Z \to Z$ vermöge der Definition $t_w(z) = \hat{\delta}(z, w)$. Die Menge aller Transformationen $Z \to Z$ bildet ein endliches Monoid X und $\varphi : \Sigma^* \to X$ mit $\varphi(w) = t_w$ ist offenbar ein Homomorphismus, der die Bedingung $\varphi^{-1}(\varphi(L)) = L$ erfüllt.

Einheit 17 – Folie 17.7 – 28.11.2019