תרגיל בית מספר 5

- $A\subseteq X$ קבוצה סגורה. הוכח כי לכל $x\in \Re$ קיימת נקודה קרובה ביותר ל $A\subseteq \Re$. $|x-a|\geq |x-a_x|: a\in A \text{ cycle}$ כלומר, קיימת $a_x\in A$ כך שלכל
 - הוכח כי \Re,ϕ הן הקבוצות היחידות ב \Re שהן גם פתוחות וגם סגורות.
 - $B=\overline{A}$ אם B צפופה ב A אם . $A\subseteq B$ קבוצות. $A,B\subseteq \Re$ תהינה $\overline{A}=A\cup A'$ כאשר . (A
 - א. תן דוגמא לשתי קבוצות צפופות ב \Re שאינן \Re עצמו.
 - ב. הוכח שB צפופה ב \Leftrightarrow ב בכל סביבה של כל נקודה של B יש איבר ב. הוכח של A של .
 - : מצאו דוגמאות לקבוצה $\phi
 eq A$ עבור כל אחת מהדרישות הבאות
 - , $A'\cap A=\phi, A'\neq \phi$. ד. $A'\subseteq A, A'\neq A$. ג. A'=A . ב. $A'=\phi$
 - $A'' \equiv (A')' = \phi, A' \neq \phi$. ה
 - . $\forall x$, id(x) = x נסמן ב id את פונקצית הזהות:
 - $g \circ f = id$ -ע כך ש- g חח"ע אז קיימת g כך ש
 - $f \circ g = id$ -ב. הוכח כי אם f על אז קיימת g כך ש
 - ג. מצא פונקציה f כך שיש $g\circ f=id$ כך שיש $g\circ f$ כך שיש $g\circ f=id$ -ש- $f\circ h=id$
 - g=h אז $f\circ h=id$ וגם $g\circ f=id$ אז ד. הוכח כי אם
 - : א. מצא דוגמא לפונקציה f שאינה קבועה ואיננה הזהות המקיימת 6

$$|f(x) - f(y)| \le |x - y| \quad \forall x, y \in \Re$$

 $|f(x)-f(y)| \le (x-y)^2$ $\forall x,y \in \Re$ ב. הראה שאם f מקיימת

.($f\left(\frac{x+y}{2}\right)$ אז f קבועה. (רמז : נסו להוסיף ולהפחית