Name: Arpit Parasottambhai Prajapati

Email: aprajap2@asu.edu ASU ID: 1219477402

Project 1: Naïve Bayes and Logistic Regression

Two features for each image:

1. x_1 : The average of all pixel values in the image

2. χ_2 : The standard deviation of all pixel values in the image

The formula that I used to estimate the parameters for the 2-D normal distribution for each class, using the training data:

$$l(\Sigma|D) = -\frac{N}{2}\log|\Sigma| - \frac{1}{2}\sum_{i=1}^{N}(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)$$

Taking derivative with respect to μ :

$$\frac{\partial l}{\partial \mu} = \sum_{i=1}^{N} (x_i - \mu)^T \Sigma^{-1}$$

Setting it as 0 will get us value of μ as:

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Similarly taking derivative with respect to Σ and setting it to zero we get:

$$\hat{\Sigma}_{ML} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{ML}) (x_i - \mu_{ML})^T$$

If we have d dimensional input vector, the $\hat{\mu}_{ML}$ is d dimensional vector and $\hat{\Sigma}_{ML}$ is $d \times d$ dimensional matrix.

The estimated values for the parameters for both classes:

 x_1 : The average value of all pixel values in training images.

 x_2 : The standard deviation of all pixel values in training images.

Estimated value of μ :

	x_1	x_2
Y = 0	0.32560777	0.32003609
Y = 1	0.22290531	0.33394171

Covariance Matrix for Y = 0:

0.01285601	0.00897912
0.00897912	0.00774227

Covariance Matrix for Y = 1:

0.00324396	0.00253005
0.00253005	0.00325322

If we treat x_1 and x_2 as independent variable which is the requirement of Naïve Bayes, the μ per class, per feature remains the same but variance will become a d dimensional vector for each class.

σ^2	x_1	x_2
Y = 0	0.01285387	0.00774097
Y = 1	0.00324342	0.00325268

The expression for the estimated normal distribution. the expression for the estimated normal distributions, an explanation for how the distributions are used in classifying a testing sample.

Naïve Bayes

$$P(y|x) = \frac{P(y,x)}{p(x)}$$

$$\therefore P(y,x) = P(y)P(x|y)$$

$$\therefore P(y|x) = \frac{P(y)P(x|y)}{p(x)}$$

$$\therefore P(y|x) \propto P(y)P(x|y)$$

$$\therefore \hat{y} = argmax_y(P(y)P(x|y))$$

Here we have 2-dimensional input vector thus P(x|y) can be written as follows: d=2

$$P(x|y) = \prod_{i=1}^{d} P(x_i|y)$$

$$\hat{y} = argmax_y(P(y) \prod_{i=1}^{d} P(x_i|y))$$

We can take log of the above expression to make calculations easy.

$$\hat{y} = \underset{y}{\operatorname{argmax}} \left[\log(P(y)) + \sum_{i=1}^{d} \log(P(x_i|y)) \right]$$

Here P(y) is a prior. Which can be calculated as follow:

$$P(y = i) = \frac{Number\ of\ training\ examples\ having\ class = i}{Total\ training\ examples}$$

In out input, we have:

Number of classes = 2

Training examples per class = 6000

Number of training examples = 12000

For this project,
$$P(y = 0) = 0.5$$
 and $P(y = 1) = 0.5$

And
$$log(P(y=0)) = log(P(y=1)) = -0.6931471805599453$$

 $P(x_i|y)$ is the **maximum likelihood** of parameter x_i .

Calculation of **Estimated Normal Distribution** $log(P(x_i|y))$:

$$log(P(x_{i}|y_{j})) = log\left[\frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}}e^{-\frac{(x_{i}-\mu_{ij})^{2}}{2\sigma_{ij}^{2}}}\right]$$

$$log(P(x_{i}|y_{j})) = -\frac{1}{2}log(2\pi\sigma_{ij}^{2}) - \frac{1}{2}\frac{(x_{i}-\mu_{ij})^{2}}{\sigma_{ij}^{2}}$$

$$\hat{y} = \underset{y_{j}}{argmax}\left[log(P(y_{j})) + \sum_{i=1}^{d} -\frac{1}{2}log(2\pi\sigma_{ij}^{2}) - \frac{1}{2}\frac{(x_{i}-\mu_{ij})^{2}}{\sigma_{ij}^{2}}\right]$$

Here μ_i , x_i , σ_i are constants. Shape matches so we can do simple division or subtraction.

Logistic Regression

The sigmoid function $\sigma(t)$ can be written as follow:

$$\sigma(t) = \frac{e^t}{1 + e^t}$$

$$P(Y = 0|x) = \sigma(w^T x)$$

$$P(Y = 1|x) = 1 - \sigma(w^T x)$$

Likelihood can be defined as:

$$l(w) = P(y|x) = (\hat{y})^y (1 - \hat{y})^{1-y} \quad \text{where } \hat{y} = \sigma(w^T x)$$

To make computation easier, we can take loglikelihood.

$$log(l(w)) = log((\sigma(w^T x))^y (1 - \sigma(w^T x))^{1-y})$$
$$log(l(w)) = ylog(\sigma(w^T x)) + (1 - y)log(1 - \sigma(w^T x))$$

The derivative of log-likelihood with respect to w is:

$$\begin{split} \nabla_{w_j} log(l(w)) &= \nabla_{w_j} (y log \left(\sigma(w^T x)\right) + (1-y) log (1-\sigma(w^T x))) \\ \nabla_{w_j} log \left(l(w)\right) &= y \frac{\partial}{\partial w_j} log (\sigma(w^T x) + (1-y) \frac{\partial}{\partial w} log (1-\sigma(w^T x))) \\ \nabla_{w_j} log \left(l(w)\right) &= [y-\sigma(w^T x)] x_j \end{split}$$

Now we can update the parameter w as follows:

$$w_j^{(k+1)} = w_j^{(k)} + \eta \nabla_{w_j^{(k)}} \log(l(w))$$

For bias term or w_0 , we can update it as:

$$w_0^{(k+1)} = w_0^{(k)} + \eta [y - \sigma(w^T x)]$$

Learning rate (η) =5 and Iterations to update weights = **25000**

Accuracy matrix:

Output Class	Naïve Bayes	Logistic Regression
Y=0	0.784	0.917
Y=1	0.879	0.926