

CLUSTER ANANLYSIS IN DATA MINING

Presented by: Naghmeh Pakgohar

What is clustering?

What is clustering?

The aim of clustering

Summarize variation of the data

to get useful and practical information from multivariate data sets

Hierarchical clustering

Hierarchical clustering

Non-Hierarchical clustering

Partitioning

Grid Based

Density Based

Model based clustering

Fuzzy clustering

3D scatter map with privacy budget of 0.5

Main problems of clustering

- ❖ 1- Lack of previous information about data
- ❖ 2- Different clustering methods are available
- ❖ 3. Objective decision

Even if the clustering algorithm is fixed, the grouping depends on the number of clusters.

Fundamental questions

Which algorithm can achieve the best classification?

What is the optimal number of clusters?

Goodness-of-clustering evaluators

1) Internal evaluators

- ✓ Internal evaluators use the characteristics of the clusters themselves to gauge effectiveness
- Geometric evaluators ——— e.g. Average Silhouette Width
 - non-geometric evaluators ——— e.g. Crispness

2) External evaluators

✓ External evaluators compare the results of a classification with a previously established standard —— e.g. recovery of clusters embedded within simulated datasets

DOI: 10.1111/jvs.13042

RESEARCH ARTICLE

A comparative study of hard clustering algorithms for vegetation data

Naghmeh Pakgohar¹ | Javad Eshaghi Rad¹ | Gholamhossein Gholami² | Ahmad Alijanpour¹ | David W. Roberts³

Correspondence

Javad Eshaghi Rad, Department of Forestry,

Abstract

Questions: Which clustering algorithms are most effective according to different cluster validity evaluators? Which distance or dissimilarity measure is most suitable for clustering algorithms?

Location: Hyrcanian forest, Iran (Asia), Virginia region forest, United States (North America), beech forests, Ukraine (Europe).

¹Department of Forestry, Faculty of Natural Resources, Urmia University, Urmia, Iran

²Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

³Department of Ecology, Montana State University, Bozeman, MT, USA

Quantitative evaluation of internal clustering validation indices using binary datasets

Abstract

Different clustering methods often classify the same dataset differently. Selecting the 'best' clustering solution out of a multitude of alternatives is possible with cluster validation indices. The behavior of validity indices changes with the structure of the sample and the properties of the clustering algorithm. Unique properties of each index cause increasing or decreasing performance in some conditions. Due to the large variety of cluster validation indices, choosing the most suitable index concerning

Hierarchical clustering

---- Cluster Analysis

Distance/dissimilarity indices

- ✓ Sorensen Distance
- ✓ Relative Sorensen Distance
- ✓ Jaccard Distance
- ✓ Euclidean Distance
- ✓ Relative Euclidean Distance
- ✓ Squared Euclidean Distance
- **✓** Correlation
- ✓ Chi-squared Distance
- ✓ Manhattan
- **✓** Hellinger

Distance/dissimilarity matrix

	1	2	3	4	5	6	7	8	9	10
1	0	87.85	26.99	28.15	60.87	60.01	59.2	59.46	17.39	34.63
2	87.85	0	74.39	101.5	75.22	77.78	76.07	74.92	79.92	71.65
3	26.99	74.39	0	42.47	45.83	44.32	46.36	45.47	21.09	22.2
4	28.15	101.5	42.47	0	80.5	80.14	79.05	79.12	29.28	55.91
5	60.87	75.22	45.83	80.5	0	34.71	38.11	35.27	54.3	39.63
6	60.01	77.78	44.32	80.14	34.71	0	28.93	26.35	56.33	33.38
7	59.2	76.07	46.36	79.05	38.11	28.93	0	23.34	55.06	36.84
8	59.46	74.92	45.47	79.12	35.27	26.35	23.34	0	55.05	37.38
9	17.39	79.92	21.09	29.28	54.3	56.33	55.06	55.05	0	30.27
10	34.63	71.65	22.2	55.91	39.63	33.38	36.84	37.38	30.27	0

<u>linkage method</u>

- ✓ Nearest neighbor or single linkage
- ✓ Farthest neighbor or complete linkage
- ✓ Between-group average linkage (UPGMA)
- ✓ Centroid
- ✓ Median
- ✓ Ward's method
- ✓ Flexible Beta

Kmeans

Mclust

Finite Gaussian mixture modeling fitted

About me

Naghmeh Pakgohar Postdoc fellow in Saskatchewan university, Postdoc Position at Centre for Ecological Research, Ph.D. of forestry(Quantitative ecology), Interested in Vegetation Community, Spatial Pattern, Environmental Ecosystem, Numerical Modeling

npakgohar@gmail.com

@Naghmeh.Pakgohar

https://scholar.google.com/citations?user= PkYZtCQAAAAJ&hl=en

Naghmeh Pakgohar