Vuoden 1996 pohjoismaisen kilpailun ratkaisut

1. Luvun 1996 numeroiden summa on 25 ja luvun $2 \cdot 1996 = 3992$ numeroiden summa on 23. Koska 1996 = $78 \cdot 25 + 46$, luku, joka saadaan kirjoittamalla peräkkäin 78 1996:tta ja 2 3992:ta toteuttaa tehtävän ehdon. $[3 \cdot 1996 = 5998;$ luvun 5988 numeroiden summa on 30. $1996 = 65 \cdot 30 + 46$, joten $39923992\underbrace{5988\ldots5988}_{65 \text{ kpl}}$ on myös kelvollinen vastaus, selvästi

pienempi kuin edellinen.]

2. Merkitään $f_n(x) = x^n + x^{-n}$. $f_n(0)$ ei ole määritelty millään n:n arvolla, joten on oltava $x \neq 0$. Koska $f_0(x) = 2$ kaikilla $x \neq 0$, tutkittavaksi jää, millä $x \neq 0$ $f_n(x)$ on kokonaisluku kaikilla n > 0. Koska

$$x^{n} + x^{-n} = (x^{1} + x^{-1})(x^{n-1} + x^{1-n}) - (x^{n-2} + x^{2-n})$$

niin jos x^1+x^{-1} on kokonaisluku, niin x^n+x^{-n} on kokokaisluku kaikilla $n\geq 2$. x:n tulee siis toteuttaa ehto

$$x^1 + x^{-1} = m$$
,

missä m on kokonaisluku. Tämän toisen asteen yhtälön ratkaisut ovat

$$x = \frac{m}{2} \pm \sqrt{\frac{m^2}{4} - 1},$$

ne ovat reaalisia, kun $m \neq -1, 0, 1$.

- 3. Olkoon AF kolmion ABC korkeusjana. Voidaan olettaa, että kulma ACB on terävä. Oletetaan, että myös kulma CBA on terävä. Suorakulmaisista kolmioista ACF ja AFE saadaan $\angle AFE = \angle ACF$. Kehäkulmalauseen perusteella edelleen $\angle ADE = \angle AFE = \angle ACB$. Kolmiot ABC ja AED ovat näin ollen yhdenmuotoiset. Jos P ja Q ovat kolmioiden ABC ja AED ympäri piirrettyjen ympyröiden keskipisteet, niin $\angle BAP = \angle EAQ$. Jos kolmion AED korkeusjana on AG, niin $\angle DAG = \angle CAF$. Mutta tästä seuraa, että $\angle BAP = \angle DAG$, eli P on korkeusjanalla AG. Jos CAB on tylppä, toimii sama päättely vähäisin muutoksin.
- **4.** (i) Käytetään toistuvasti kaavaa $f(n+a) = \frac{f(n)-1}{f(n)+1}$:

$$f(n+2a) = f((n+a)+a) = \frac{\frac{f(n)-1}{f(n)+1}-1}{\frac{f(n)-1}{f(n)+1}+1} = -\frac{1}{f(n)},$$

$$f(n+4a) = f((n+2a) + 2a) = -\frac{1}{-\frac{1}{f(n)}} = f(n).$$

(ii) Jos a = 1, niin $f(1) = f(a) = f(1995) = f(3 + 498 \cdot 4a) = f(3) = f(1 + 2a) = -\frac{1}{f(1)}$,

mikä on mahdotonta, koska f(1) ja $\frac{1}{f(1)}$ ovat samanmerkkiset. Siis $a \neq 1$.

Jos a=2, saadaan $f(2)=f(a)=f(1995)=f(3+249\cdot 4a)=f(3)=f(a+1)=f(1996)=f(4+249\cdot 4a)=f(4)=f(4)=f(2+a)=\frac{f(2)-1}{f(2)+1}$ eli $f(2)^2+f(2)=f(2)-1$. Tällä toisen asteen yhtälöllä ei ole reaalisia ratkaisuja. Siis $a\neq 2$.

Jos a=3, niin f voidaan konstruoida valitsemalla f(1), f(2) ja f(3) mielivaltaisesti ja laskemalla f:n muut arvot palautuskaavasta $f(n+3)=\frac{f(n)-1}{f(n)+1}$. a=3 on siten pienin mahdollinen a:n arvo. Tarkistetaan, että näin määritelty f toteuttaa tehtävän ehdot. Ensinnäkin konstruktion perusteella

$$f(n+a) = f(n+3) = \frac{f(n)-1}{f(n)+1}.$$

Edelleen (i):n perusteella

$$f(n+12) = f(n+4a) = f(n),$$

joten

$$f(a) = f(3) = f(3 + 166 \cdot 12) = f(1995),$$

$$f(a+1) = f(4) = f(4 + 166 \cdot 12) = f(1996),$$

$$f(a+2) = f(5) = f(5 + 166 \cdot 12) = f(1997)$$

kuten pitää.

Jos f(n) = -1, f(n+3) ei ole määritelty. Jos f(n) = 0, f(n+3) = -1 ja f(n+6) ei ole määritelty. Jos f(n) = 1, f(n+3) = 0 ja f(n+9) ei ole määritelty. On siis valittava f(1), f(2) ja f(3) eri suuriksi kuin -1, 0, 1.