Evaluating the Performance of the Model Selection with Average ECE and Naive Calibration in Out-of-Domain Generalization Problems for Binary Classifiers

Anxian Liu (A.Liu-2@student.tudelft.nl) Supervised by Rickard Karlsson, Stephan Bongers Responsible Professor: Jesse Krijthe

1. Introduction

- Out-of-domain (OOD) generalization **problem:** learn a model from one or more domain(s) that can be used in an unknown test domain.
- **Solution:** Multi-domain calibration
- Naive calibration and model selection with average expected calibration error (ECE) across training domains are two of the approaches to optimize models, so they achieve this type of calibration.

2. Motivation

Both are **easy to apply** but **limited in their** power to learn a model that is truly wellcalibrated across multiple domains [1]

3. Research question

- How well does naive calibration and model selection with average ECE perform in the out-of-domain (OOD) generalization problem for binary classifiers?
- RQ1: Does naive calibration improve average prediction performance, as measured in the accuracy or AUROC1, across unseen domains?
- RQ2: Does OOD Accuracy² improve as the number of training domains grows?
- RQ2: Is model selection with average ECE a reasonable model selection strategy in the OOD generalization problem?

4. Methods

Experiment A:

- 200 datasets
- Train and calibrate seven binary classifiers
- Calculate the difference in OOD accuracy/OOD AUROC³ before and after naive calibration
- Bootstrapping hypothesis test

Experiment B:

- 10 datasets
- Train and calibrate seven binary classifiers
- A positive linear relationship between the number of training domains and OOD accuracy?

• Experiment C:

6. Results

Logistic Regression

Linear SVM

AdaBoost

Naive Bayes

Decision Tree

Random Forest

Neural Network

- 3 datasets
- Train 400 neural networks on each dataset

Avg Diff OOD ACC

PCC between the

domains and

OOD ACC

0.85

0.88

0.92

0.90

0.86

0.37

0.90

number of training

A linear relationship between OOD accuracy and average ECE? And how strong is it?

5. Data generation

• Causal relation:

Figure 1: The causal diagram of the synthetic data [1]

Illustration:

AUROC

Figure 2: The Illustration of a dataset

There are similar results for OOD

Logistic Regression 0.0320.0 (0.024, 0.041)Linear SVM 0.0210.0 (0.014, 0.031)Decision Tree 0.0090.056(-0.001, 0.021)0.010 Random Forest (-0.004, 0.023)Neural Network 0.015(0.011, 0.019)0.0AdaBoost 0.0050.0008(0.0033, 0.010)(-0.004, 0.005)Naive Bayes 0.0010.371

-0.94

0.49

0.17

0.31

-0.88

0.04

0.21

P-value

Table 1: Results of Experiment A

- The models that have a statistically significant improvement in OOD accuracy are in **bold**
- PCC between the number of training the Partial Correlation data and OOD ACC 0.81domains and OOD accuracy 0.850.920.890.810.370.90

Confidence interval of the mean

Table 2: Results of Experiment B

	PCC between	PCC between	
	\mid ECE	validation accuracy	the Partial Correlation
	and OOD accuracy	and OOD accuracy	
Dataset A	-0.84	0.37	-0.82
Dataset B	-0.64	0.37	-0.56
Dataset C	-0.70	0.31	-0.71

Table 3: Results of Experiment C

- A positive linear correlation between the number of training
- PCC: Pearson correlation coefficient
- A relatively strong **negative linear** correlation between average ECE and OOD accuracy

7. Conclusion

- Naive calibration can improve OOD accuracy and OOD AUROC of some binary classifiers. At least, It does not make the model worse.
- For most classifiers, training the model on data from more training domains leads to higher OOD accuracy.
- Average ECE is a **reasonable** metric for selecting a model, and it is **better** than validation accuracy in the OOD generalization problem.

8. Limitations

- All experiments are based on synthetic data.
- Isotonic regression is the only method to implement naive calibration.
- PCC and the partial correlation only measure linear relationships.

9. Future work

- Use real-world datasets.
- Try another method to implement naive calibration, such as Bayesian Binning into Quantiles [2].
- Conduct Experiments B and C on more datasets and analyze results with statistical tools.

10. References

[1] Wald, Y., Feder, A., Greenfeld, D., & Shalit, U. (2022). On Calibration and Out-of-domain Generalization. ArXiv:2102.10395 [Cs]. http://arxiv.org/abs/2102.10395

[2] Naeini, M. P., Cooper, G. F., & Hauskrecht, M. (n.d.). Obtaining Well Calibrated Probabilities Using Bayesian Binning. 7.