Lista 4 de Geometria Riemanniana

IMPA, Mar/Jun 2025 - Ivan Miranda

Exercício 1. Exercício 1 do Capítulo 4 do livro do professor Manfredo, quinta edição, sobre a curvatura de um grupo de Lie com métrica bi-invariante.

Exercício 2. Seja (M, g) uma variedade Riemanniana.

- a) Se (M, g) é homogênea, então M possui curvatura escalar constante.
- b) Se (M, g) é 2-homogênea, então M é Einstein.
- c) Se (M,g) é 3-homogênea, então M possui curvatura seccional constante.

Exercício 3. Exercício 6 do Capítulo 4 do livro do professor Manfredo, quinta edição, sobre espaços localmente simétricos.

Exercício 4. Exercício 1 do Capítulo 6 do livro do professor Manfredo, quinta edição, sobre a conexão de Levi-Civita de um produto Riemanniano.

Exercício 5. Exercício 4 do Capítulo 4 do livro do professor Manfredo, quinta edição, sobre uma relação entre o transporte paralelo e a curvatura.

Exercício 6. Sejam $(N,g_N) \xrightarrow{f} (M,g_M) \xrightarrow{h} (P,g_P)$ imersões isométricas. Mostre que $h \circ f: (N,g_N) \to (P,g_P)$ é uma imersão isométrica. E também compute $\alpha_{h \circ f}$ em função de α_f e α_h .

Exercício 7. Seja (M^n,g) uma variedade Riemanniana e $N^m\subset M^n$ uma subvariedade. Prove que são equivalentes:

- a) N é totalmente geodésica.
- b) Para todo $p \in N$ e $v \in T_pN$ existe $\varepsilon > 0$ tal que $(-\varepsilon, \varepsilon) \ni t \mapsto exp_p^M(tv)$ é uma geodésica em N.

Exercício 8. Seja (M^n,g) uma variedade Riemanniana. Suponha que existe $f \in C^{\infty}(M)$ tal que $0 \in \mathbb{R}$ e um valor regular de f e seja $\Sigma \doteq f^{-1}(0)$.

a) Seja $N = \frac{\nabla f}{|\nabla f|} \in \mathfrak{X}^{\perp}(\Sigma)$. Mostre que

$$\langle \alpha_{\Sigma}(X,Y), N \rangle = -\frac{\operatorname{Hess}(f)(X,Y)}{|\nabla f|},$$

para todos $X, Y \in \mathfrak{X}(\Sigma)$.

b) Mostre que a curvatura média de Σ é dada por:

$$H_{\Sigma} = -\frac{1}{n} \operatorname{div} \left(\frac{\nabla f}{|\nabla f|} \right).$$

Comentário: a notação do item (a) identifica campos utilizando a diferencial da inclusão, como é costume.

Exercício 9. Exercício 3 do Capítulo 5 do livro do professor Manfredo, quinta edição, sobre pontos conjugados em curvatura seccional não-positiva.

Exercício 10. Exercício 1 do Capítulo 5 do livro do professor Manfredo, quinta edição, sobre a exponencial em curvatura seccional zero.

Campos de Killing.

Exercício 11. Exercício 5 do Capítulo 3 do livro do professor Manfredo, quinta edição, sobre campos de Killing e suas propriedades básicas.

Comentário: esse exercício define campos de Killing em uma variedade Riemanniana.

Sugestão: para o exercício acima, note que $X \in \mathfrak{X}(M)$ é campo de Killing de (M,g) se, e somente se, $\mathcal{L}_Xg \equiv 0$. Esse resultado é conteúdo do Teorema 12.37 do livro do professor John M. Lee, *Introduction to Smooth Manifolds*. Utilizando esse fato e propriedades da derivada de Lie de tensores (proposição 12.32 do mesmo livro), há uma prova alternativa para o item (d) desse exercício. Pode ser uma boa ideia começar o exercício pela solução do item (d).

Exercício 12. Exercício 8 do Capítulo 5 do livro do professor Manfredo, quinta edição, sobre a restrição de um campo de Killing a uma geodésica.

Comentário: note que esse exercício fornece uma solução alternativa para o exercício 6 do Capítulo 3.

Exercício 13. Seja $\mathit{Kil}(M,g) \subset \mathfrak{X}(M)$ o subespaço dos campos de $\mathit{Killing}$. Mostre que $\left(\mathit{Kil}(M,g),[\cdot,\cdot]\right)$ é uma sub-álgebra de Lie de $\left(\mathfrak{X}(M),[\cdot,\cdot]\right)$, com $\mathit{dim}\left(\mathit{Kil}(M,g)\right) \leq \frac{n(n+1)}{2}$.

Comentário: para a primeira parte, pode ser uma boa ideia consultar o Corolário 9.39 do Capítulo 9 do livro do professor John M. Lee, *Introduction to Smooth Manifolds*, segunda edição.

Exercício 14. Exercício 12 do Capítulo 6 do livro do professor Manfredo, quinta edição, sobre as singularidades de um campo de Killing.

Exercício 15. Fórmula de Bochner para campos de Killing. Seja (M,g) uma variedade Riemanniana, $X \in Kil(M,g)$ e $f:=\frac{1}{2}|X|^2 \in C^\infty(M)$. Mostre que

$$\Delta f = |\nabla X|^2 - Ric(X, X)$$

onde $|\nabla X|(p)$ denota a norma do operador $T_pM \ni v \mapsto \nabla_v X \in T_pM$.

Exercício 16. Teorema de Bochner para campos de Killing. Seja (M^n, g) uma variedade Riemanniana compacta.

- a) Se $Ric_q \leq 0$, então todo campo de Killing de (M,g) é paralelo. Em particular, $dim(Kil(M,g)) \leq n$.
- b) Suponha $Ric_q \leq 0$. Mostre que se existe $p \in M$ tal que $Ric_q(p) < 0$, então dim(Kil(M,g)) = 0.

Comentário: se (M^n, \tilde{g}) é uma variedade Riemanniana compacta, então seu grupo de isometrias $Iso(M, \tilde{g})$ é uma variedade Riemanniana compacta e $dim(Iso(M, \tilde{g})) = dim(Kil(M, \tilde{g}))$. Logo, o exercício acima mostra que uma variedade Riemanniana compacta de curvatura estritamente negativa possui um número finito de isometrias. Além disso, é possível provar que as superfícies orientáveis e compactas de gênero $g \geq 2$ admitem métricas Riemannianas de curvatura seccional constante igual a -1.

Referências

- [1] Livro do professor Manfredo, Geometria Riemanniana.
- [2] Exercícios do professor Luis Florit, https://luis.impa.br/.
- [3] Listas de exercícios do Diego Guajardo, https://luis.impa.br/.
- [4] Listas de exercícios do Luciano Luzzi, https://sites.google.com/impa.br/lucianojunior/.
- [5] Livro do professor P. Petersen, Riemannian Geometry.
- [6] Livro do professor J. Lee, Introduction to Riemannian Manifolds.