Homework 3

ISyE 6420: Fall 2024

Question 1

Three devices are monitored until failure. The observed lifetimes are 1.1, 2.2, and 0.4 years. If the lifetimes are modeled as exponential distribution with rate λ ,

$$T_i \sim \mathcal{E}xp(\lambda), \quad f(t \mid \lambda) = \lambda e^{-\lambda t}, t > 0, \lambda > 0$$

Assume an exponential prior on λ :

$$\lambda \sim \mathcal{E}xp(2), \quad \pi(\lambda) = 2e^{-2\lambda}, \lambda > 0$$

- (a) Find the posterior distribution of λ .
- (b) Find the Bayes estimator for λ .
- (c) Find the MAP estimator for λ .
- (d) Numerically find both the equi-tailed and highest posterior density credible sets for λ , at the 95% credibility level.
 - (e) Find the posterior probability of hypothesis $H_0: \lambda \leq 1/2$.

Question 2

Let

$$y_i \mid \theta_i \sim^{ind.} \text{Poisson}(\theta_i)$$

 $\theta_i \sim^{iid} \text{Gamma}(2, b)$

for $i=1,\ldots,n$, where b is unknown. Find the empirical Bayes estimator of $\theta_i, i=1,\ldots,n$ (Note: If $X \sim \mathrm{Gamma}(a,b)$, then its pdf is $p(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}$ for $x \geq 0, a,b > 0$.).

Question 3

Suppose $y \mid \beta \sim \text{Gamma}(\alpha, \beta)$, where α is known.

- (a) Find the Jeffreys prior for β .
- (b) Using the Jeffreys prior from Part 1, derive the posterior distribution $p(\beta \mid y_1, \dots, y_n)$ for n i.i.d. observations y_1, \dots, y_n .