Prove the following propositions. Format your proof so each step of the proof is on its own line; each line should still be a complete sentence.

Proposition 1. Suppose $a, b, p \in \mathbb{Z}$ and p is prime. Prove that if p|ab, then p|a or p|b. (Suggestion: Use the Proposition on page 152.)

```
Proof. Suppose p \nmid a and p \nmid b. Then p is not a prime factor of a or b. ab is simply adding the multiplicities of each prime factor of a and of b together. p's multiplicity in a is 0, same with b. Because 0 + 0 = 0, p's multiplicity in ab is 0.
```

Proposition 2. If A, B, and C are sets, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

```
Proof.
Suppose A, B, and C are sets.
Consider the following sequence of equalities:
     A \cup (B \cap C) = \{x : (x \in A) \cup (B \cap C)\}\
                                                                                      (definition of set)
     = \{x : (x \in A)\} \cup \{x : x \in B \land x \in C\}
                                                                           (definition of intersection)
     = \{x : (x \in A) \lor (x \in B \land x \in C)\}\
                                                                                  (definition of union)
     = \{x : (x \in A \lor x \in B) \land (x \in A \lor x \in C)\}\
                                                                 (logical 'or' distributive property)
     = \{x : (x \in A \lor x \in B)\} \cap \{x : (x \in A \lor x \in C)\}\
                                                                           (definition of intersection)
     = (A \cup B) \cap \{x : (x \in A \lor x \in C)\}\
                                                                                  (definition of union)
     = (A \cup B) \cap (A \cup C)
                                                                                  (definition of union)
```

Problem 3. Determine whether the following statement is true. If it is true, prove it; if it is false, give a disproof.

If
$$X \subseteq A \cup B$$
, then $X \subseteq A$ or $X \subseteq B$.

Solution.

Suppose $A = \{1\}$, $B = \{2\}$, and $X = \{1, 2\}$.

Then $A \cup B = \{1, 2\}$.

So, $X = A \cup B$.

Thus, $X \subseteq A \cup B$.

But also, $X \nsubseteq A$ and $X \nsubseteq B$.