Power law and scale-free networks

I. Makarov & L.E. Zhukov

Moscow Institute of Physics and Technology

Network Science

Node degree distribution

- k_i node degree, i.e. number of nearest neighbors, $k_i = 1, 2, ... k_{max}$
- n_k number of nodes with degree k, $n_k = \sum_i \mathcal{I}(k_i == k)$
- total number of nodes $N = \sum_k n_k$
- ullet Degree distribution is a fraction of the nodes with degree k

$$P(k_i = k) = P_k = \frac{n_k}{\sum_k n_k} = \frac{n_k}{N}$$

Node degree distribution

Degree distribution

Degree distribution

Power law degree distribution

Power law degree distribution

Discrete power law distribution

• Power law distribution, $k \in \mathbb{N}$, $\gamma \in \mathbb{R} > 0$

$$P_k = Ck^{-\gamma} = \frac{C}{k^{\gamma}}$$

Log-log coordinates

$$\log P_k = -\gamma \log k + \log C$$

Normalization

$$\sum_{k=1}^{\infty} P_k = C \sum_{k=1}^{\infty} k^{-\gamma} = C\zeta(\gamma) = 1; \quad C = \frac{1}{\zeta(\gamma)}$$

• Riemann zeta function, $\gamma > 1$

$$P_k = \frac{k^{-\gamma}}{\zeta(\gamma)}$$

Power law continuous approximation

• Power law, $k \in \mathbb{R}$, $\gamma \in \mathbb{R} > 0$

$$p(k) = Ck^{-\gamma} = \frac{C}{k^{\gamma}}, \text{ for } k \ge k_{min}$$

• Normalization $(\gamma > 1)$

$$1 = \int_{k_{min}}^{\infty} p(k)dk = C \int_{k_{min}}^{\infty} \frac{dk}{k^{\gamma}} = \frac{C}{\gamma - 1} k_{min}^{-\gamma + 1}$$

$$C=(\gamma-1)k_{\mathsf{min}}^{\gamma-1}$$

Power law normalized PDF

$$p(k) = (\gamma - 1)k_{\min}^{\gamma - 1}k^{-\gamma} = \frac{\gamma - 1}{k_{\min}}\left(\frac{k}{k_{\min}}\right)^{-\gamma}$$

Moments

• Power law PDF, $\gamma > 1$:

$$p(k) = \frac{C}{k^{\gamma}}, \ k \ge k_{min}; C = (\gamma - 1)k_{min}^{\gamma - 1}$$

• First moment (mean value), $\gamma > 2$:

$$\langle k \rangle = \int_{k_{\min}}^{\infty} k p(k) dk = C \int_{k_{\min}}^{\infty} \frac{dk}{k^{\gamma - 1}} = \frac{\gamma - 1}{\gamma - 2} k_{\min}$$

• Second moment, $\gamma > 3$:

$$\langle k^2 \rangle = \int_{k_{\min}}^{\infty} k^2 p(k) dk = C \int_{k_{\min}}^{\infty} \frac{dk}{k^{\gamma - 2}} = \frac{\gamma - 1}{\gamma - 3} k_{\min}^2$$

• m-th moment, $\gamma > m+1$:

$$\langle k^m \rangle = \int_{k_{\min}}^{k_{\max}} k^m p(k) dk = C \frac{k_{\max}^{m+1-\gamma} - k_{\min}^{m+1-\gamma}}{m+1-\gamma}$$

Hubs in networks

- How does the network size affect the size of its hubs(natural cutoff)?
- Probability of observing a single node with degree $k > k_{max}$:

$$Pr(k \ge k_{\max}) = \int_{k_{\max}}^{\infty} p(k)dk$$

• Expected number of nodes with degree $k \ge k_{\text{max}}$:

$$N \cdot Pr(k \ge k_{\mathsf{max}}) = 1$$

• Expected largest node degree in exponential network $p(k) = Ce^{-\lambda k}$

$$k_{max} = k_{min} + \frac{\ln N}{\lambda}$$

• Expected largest node degree in power law network $p(k) = Ck^{-\gamma}$

$$k_{max} = k_{min} N^{\frac{1}{\gamma-1}}$$

Moments

$$\langle k \rangle = C \frac{k_{\max}^{2-\gamma} - k_{\min}^{2-\gamma}}{2-\gamma}, \qquad \langle k^2 \rangle = C \frac{k_{\max}^{3-\gamma} - k_{\min}^{3-\gamma}}{3-\gamma}$$

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2$$

Clauset et.al. 2009

Scale free network

Degree of a randomly chosen node:

$$k = \langle k \rangle \pm \sigma_k, \quad \sigma_k^2 = \langle k^2 \rangle - \langle k \rangle^2$$

Poisson degree distribution (random network) has a scale $\langle k \rangle$:

$$k = \langle k \rangle \pm \sqrt{\langle k \rangle}$$

Power law network with $2 < \gamma < 3$ is scale free:

$$k = \langle k \rangle \pm \infty$$

Hubs in networks

from A.-L., Barabasi, 2016

Degree fluctuation in real networks

Network	N	L	(k)	$\langle k_{in}^2 \rangle$	$\langle k_{out}^2 \rangle$	(k²)	Yin	Yout	y
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*-

Degree fluctuation in real networks

Scale-free networks

In- and out- degrees of WWW crawl 1999

Broder et.al. 1999

Scale-free networks

from A.-L. Barabasi, 2016

Properties of scale free networks

from A.-L., Barabasi, 2016

Scale free networks in real world

from A. Clauset, 2018

Plotting power Laws

Power law PDF

$$p(k) = Ck^{-\gamma}; \log p(k) = \log C - \gamma \log k$$

• Cumulative distribution function (CDF)

$$F(k) = Pr(k_i \le k) = \int_0^k p(k)dk$$

Complimentary cumulative distribution function cCDF

$$\bar{F}(k) = Pr(k_i > k) = 1 - F(k) = \int_k^\infty p(k)dk$$

Power law cCDF

$$ar{F}(k) = rac{C}{\gamma - 1} k^{-(\gamma - 1)}$$

$$\log ar{F}(k) = \log rac{C}{\gamma - 1} - (\gamma - 1) \log k$$

Plotting power laws

Parameter estimation: γ

Maximum likelihood estimation of parameter γ

• Let $\{x_i\}$ be a set of n observations (points) independently sampled from the distribution

$$P(x_i) = \frac{\gamma - 1}{x_{\min}} \left(\frac{x_i}{x_{\min}}\right)^{-\gamma}$$

Probability of the sample sequence

$$P(\lbrace x_i \rbrace | \gamma) = \prod_{i}^{n} \frac{\gamma - 1}{x_{\min}} \left(\frac{x_i}{x_{\min}} \right)^{-\gamma}$$

Maximum likelihood

log-likelihood

$$\mathcal{L} = \ln P(\gamma | \{x_i\}) = n \ln(\gamma - 1) - n \ln x_{\min} - \gamma \sum_{i=1}^{n} \ln \frac{x_i}{x_{\min}}$$

• maximization $\frac{\partial \mathcal{L}}{\partial \gamma} = \mathbf{0}$

$$\gamma = 1 + n \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{\min}} \right]^{-1}$$

error estimate

$$\sigma = \sqrt{n} \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{\min}} \right]^{-1} = \frac{\gamma - 1}{\sqrt{n}}$$

Parameter estimation: k_{min}

Kolmogorov-Smirnov test (compare model and experimental CDF)

$$D = \max_{x} |F(x|\gamma, x_{min}) - F_{exp}(x)|$$

find

$$x_{min}^* = argmin_{x_{min}}D$$

References

- Power laws, Pareto distributions and Zipf's law, M. E. J. Newman, Contemporary Physics, pages 323–351, 2005.
- Power-Law Distribution in Empirical Data, A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Review, Vol 51, No 4, pp. 661-703, 2009.
- A Brief History of Generative Models for Power Law and Lognormal Distributions, M. Mitzenmacher, Internet Mathematics Vol 1, No 2, pp 226-251.