

Projeto com Circuitos Reconfiguráveis Projeto de Sistemas em Chip

Fault Tolerant System Design

Prof. Daniel M. Muñoz Arboleda

FGA - UnB

Overview

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

Fault tolerance

- Targets development of a system which functions correctly in presence of faults
- Achieved by some kind of redundancy
 - redundancy allows either to detect or to mask a fault
- Fault detection/masking are followed by fault location, containment and recovery
- the goal is to reconfigure the system to remove faulty components

Fault detection, localization, containment and recovery

Fault detection is the process of recognising that a fault has occurred

Fault location is the process of determining where a fault has occurred

Fault containment (contenção) is the process of isolating a fault and preventing its effect to propagate throughout a system

Fault recovery is the process of regaining operational status

Summary

- fault detection
 - identify that a fault has occurred
- fault location
 - find where the fault is
- fault containment
 - prevent propagation of the fault
- fault recovery
 - modify structure to remove faulty component
 - graceful degradation: continue operation with a degraded performance

Evaluation techniques

- Qualitative evaluation
- aims to identify, classify and rank the failure modes, or event combinations that would lead to system failures
- Quantitative evaluation
- aims to evaluate in terms of probabilities the attributes of dependability:
 - failure rate
 - mean time to failure
 - mean time to repair
 - mean time between failures
 - fault coverage

Failure rate

- failure rate
 - expected number of failures per time-unit
 - example
 - 1000 controllers working at t₀
 - after 10 hours: 950 working
 - failure rate for each controller:

0.005 failures / hour

(50 failures / 1000 controllers) / 10 hours

Failure rate

• typical evolution of $\lambda(t)$ for hardware:

- bathtub: I infant mortality, II useful life, III wear-out
- for useful life period λ = constant, the reliability is given by

$$R(t) = e^{-\lambda t}$$

Exponential failure law

If λ is constant, R(t) varies exponentially as a function of time

$$R(t) = e^{-\lambda t}$$

Failure rate calculation

- determined for components
 - systems: combination of components
 - $-\lambda$ of the system = sum of λ of the components
- determine λ experimentally
 - slow
 - e.g. 1 failure per 100 000 hours (=11.4 years)
 - expensive
 - many components required for significance
- use standards for λ

MTTF

- MTTF: mean time to failure
 - expected time until the first failure occurs
- If we have a system of N identical components and we measure the time t_i before each component fails, then MTTF is given by

$$MTTF = \frac{1}{N} \sum_{i=1}^{N} t_i$$

MTTF

- MTTF is meaningful only for systems which operate without repair until they experience a failure
- Most of mission-critical systems a undergo a complete checkup before the next mission
 - all failed redundant components are replaced
 - system is returned to fully operational state
- When evaluating reliability of such system, mission time rather then MTTF is used

MTTR

- MTTR: mean time to repair
 - expected time until repaired
- If we have a system of N identical components and i^{th} component requires time t_i to repair, then MTTR is given by

$$MTTR = \frac{1}{N} \sum_{i=1}^{N} t_i = \frac{1}{\mu}$$

- difficult to calculate
- determined experimentally
- normally specified in terms of repair rate μ , which is the average number of repairs that occur per time period

MTBF

- MTBF: mean time between failures
 - functional + repair
 - MTBF = MTTF + MTTR
 - small time difference: MTBF ≈ MTTF
 - conceptual difference

Dependability modelling

- up to now: λ and R(t) for components
- systems are sets of components
- system evaluation approaches:
 - reliability block diagrams (RBD)
 - Markov processes

Serial system

• system functions if and only if all components function

• If C_i are independent:

Rseries
$$(t) = \prod R_i(t)$$

$$\lambda series(t) = \sum_{i=1}^{N} \lambda_i$$

Parallel system

- system works as long as one component works
- unreliabity: Q(t) = 1 R(t)
- If C_i are independent:

$$Qparallel(t) = 1 - \prod_{i=1}^{N} Q_i(t)$$

Rparallel(t)=1-
$$\prod_{i=1}^{N} (1-R_i(t))$$

