

Photo-induced charge transport in metal-insulator-metal (MIM) multilayer structures

D. Kovacs, J. Winter, D. Diesing

DPG Frühjahrstagung Regensburg, 26-30 März 2007

Particle induced electronic excitations at metal surfaces

Ion neutralization spectroscopy

Particle induced electronic excitations in MIM structures

Insulator Metal Ar + 10-100 nm ~ 10 nm ~ 1 nm

Ion induced tunnel current

Ion induced internal emission

Observation:

➤ Hole-induced polarity change in particle induced tunnel currents!

In this talk:

- Comparison with photo-induced tunnel currents
- Comparison with existing theory* on internal photoemission in MIM structures

^{*} J. Kadlec, Phys. Rep. 26, No.2 (1976) 69-98

Theory

Excitation of electron-hole pairs in the back electrode

Theory

Assumptions

- photoabsorption:
 - → Fresnel optics
- electron-hole pair excitation:
 - → Fermi electron gas
- transport through metal:
 - → ballistic transport
 - → inelastic scattering
- transport through oxide:
 - → WKB approximation
 - → no scattering

Experimental setup

Metal-Insulator-Metal structure

- Source: Nd-YAG laser
- Wavelength: $\lambda = 266 \text{ nm}$
- Angle of incedence : 0°

Theory

Photoabsorption in Au/AlO_x/Al at 266 nm

Results

Photoconduction in Au/AlO_x/Al at 266 nm

 γ : net number of electrons flowing through the oxide barrier per incident photon

Results

Influence of Al→Au emission

Summary

- ➤ hole induced polarity change of the photo-induced tunnel current in metal-insulator-metal structures
- > cross over point (for polarity change) independent on illuminated layer thickness in agreement with theoretical predictions
- > minor influence of the back electrode

Acknowledgements

- > Kristian Laß and Eckart Hasselbrink for technical support
- > DFG for financial support in the framework of the SFB 616