WEAKLY NULL SEQUENCES IN THE BANACH SPACE C(K)

I. GASPARIS, E. ODELL, AND B. WAHL

ABSTRACT. The hierarchy of the block bases of transfinite normalized averages of a normalized Schauder basic sequence is introduced and a criterion is given for a normalized weakly null sequence in C(K), the Banach space of scalar valued functions continuous on the compact metric space K, to admit a block basis of normalized averages equivalent to the unit vector basis of c_0 , the Banach space of null scalar sequences. As an application of this criterion, it is shown that every normalized weakly null sequence in C(K), for countable K, admits a block basis of normalized averages equivalent to the unit vector basis of c_0 .

1. Introduction

We study normalized weakly null sequences in the spaces C(K) where K is a compact metric space. When K is uncountable, C(K) is isomorphic to C([0,1]) ([30], [34], [10]), while for every countable compact metric space K there exist unique countable ordinals α and β with C(K) (linearly) isometric to $C(\alpha)$ [29] and isomorphic (i.e., linearly homeomorphic) to $C(\omega^{\omega^{\beta}})$ [13] (in the sequel, for an ordinal α we let $C(\alpha)$ denote $C([1,\alpha])$, the Banach space of scalar valued functions, continuous on the ordinal interval $[1,\alpha]$ endowed with the order topology).

Every normalized weakly null sequence (f_n) in C(K) for countable K, admits a basic shrinking subsequence ([11], [15]) that is, a subsequence (f_{k_n}) which is a Schauder basis for its closed linear span and whose corresponding sequence of biorthogonal functionals is a Schauder basis for the dual of the closed linear subspace generated by (f_{k_n}) .

It is shown in [28] that while (f_n) must admit an unconditional subsequence in $C(\omega^{\omega})$, it need not admit an unconditional subsequence in $C(\omega^{\omega^2})$.

We remark here that if a normalized basic sequence in C(K) for countable K has no weakly null subsequence, then it admits no unconditional subsequence since such a subsequence would have a further subsequence equivalent (this term is explained below) to the unit vector basis of ℓ_1 and C(K) has dual isometric to ℓ_1 which is separable.

¹⁹⁹¹ Mathematics Subject Classification. (2000) Primary: 46B03. Secondary: 06A07, 03E02.

Key words and phrases. C(K) space, weakly null sequence, unconditional sequence, Schreier sets.

Since $C(\alpha)$ is c_0 -saturated for all ordinals α [35] (a Banach space is c_0 -saturated provided all of its infinite-dimensional subspaces contain an isomorph of c_0), some *block basis* of (f_n) is equivalent to the unit vector basis of c_0 .

We recall here that if (e_n) is a Schauder basic sequence in a Banach space then a non-zero sequence (u_n) is called a block basis of (e_n) , if there exist finite sets (F_n) , with max $F_n < \min F_{n+1}$ for all n, and scalars (a_n) with $a_i \neq 0$ for all $i \in F_n$ and $n \in \mathbb{N}$ such that $u_n = \sum_{i \in F_n} a_i e_i$, for all $n \in \mathbb{N}$. We then call F_n the support of u_n . We shall adopt the notation $u_1 < u_2 <$... to indicate that (u_n) is a block basis of (e_n) such that max supp $u_n <$ min supp u_{n+1} , for all $n \in \mathbb{N}$. We also recall that two basic sequences (x_n) , (y_n) are equivalent provided the map T sending x_n to y_n for all $n \in \mathbb{N}$, extends to an isomorphism between the closed linear spans X and Y of (x_n) and (y_n) , respectively. In the case T only extends to a bounded linear operator from X into Y, we say (x_n) dominates (y_n) .

Our main results are presented mostly in Sections 3 and 6. We show in Corollary 6.8 that if (f_n) is normalized weakly null in $C(\omega^{\omega^{\xi}})$, one can always find c_0 as a block basis of normalized α -averages of (f_n) for some $\alpha \leq \xi$, and a quantified description of α is given. Note that the proof given in [35] of the fact that $C(\omega^{\omega^{\xi}})$ is c_0 -saturated is an existential one that is, it only provides the existence of a block basis of (f_n) equivalent to the unit vector basis of c_0 without giving any information about the support of the blocks or the scalar coefficients involved. A normalized 1-average of $(f_m)_{m \in M}$ (where $M = (m_i)$ is an infinite subsequence of $\mathbb N$) is a vector $x = (\sum_{i=1}^{m_1} f_{m_i})/\|\sum_{i=1}^{m_1} f_{m_i}\|$. Thus we have that the support of x is a maximal S_1 -set in M where S_1 is the first Schreier class (see the definition of Schreier classes in the next section). A 2-average is similarly defined by averaging a block basis of 1-averages so that the support is a maximal S_2 -set. This is carried out for all $\alpha < \omega_1$, as in the construction of the Schreier classes S_{α} , yielding the hierarchy of normalized α -averages of (f_n) . The details are presented in Section 5.

Section 3 includes the following results. We show in Theorem 3.7 and Corollary 3.8 that if a normalized weakly null sequence (f_n) in $C(\omega^{\omega^{\xi}})$ is S_{ξ} -unconditional (see Definition 2.1 and the comments after it) then it admits an unconditional subsequence. This result, combined with that of [28] and [32] on Schreier unconditional sequences, yields an easier proof of the aforementioned fact about weakly null sequences in $C(\omega^{\omega})$ [28]. Indeed, as is observed in [28] (see [32] for a proof), every normalized weakly null sequence in a Banach space admits, for every $\epsilon > 0$, a subsequence that is S_1 -unconditional with constant $2 + \epsilon$. It follows from this and Theorem 3.7 that every normalized weakly null sequence in $C(\omega^{\omega})$ admits an unconditional subsequence. Another consequence of Theorem 3.7 is that the example of a normalized weakly null sequence in $C(\omega^{\omega})$ without unconditional subsequence [28], fails to admit an S_2 -unconditional subsequence

although of course it admits S_1 -unconditional subsequences. This shows the optimality of the result in [28], [32] on Schreier unconditional sequences.

We show in Theorem 3.10 that if (χ_{G_n}) is a weakly null sequence of indicator functions in some space C(K) then there exist $\xi < \omega_1$ and a subsequence of (χ_{G_n}) which is equivalent to a subsequence of the unit vector basis of the generalized Schreier space X^{ξ} ([1], [2]) (see Notation 3.3). We thus obtain a quantitative version of Rosenthal's unpublished result, that a weakly null sequence of indicator functions in some space C(K) admits an unconditional subsequence (cf. also [8] and [7] for another proof of this result).

In Section 6 we give a sufficient condition for a normalized weakly null sequence in some C(K) space to admit a block basis of normalized averages equivalent to the unit vector basis of c_0 . We show in Theorem 6.1 that if (f_n) is normalized weakly null in C(K) and there exist a summable sequence of positive scalars (ϵ_n) and a subsequence (f_{m_n}) of (f_n) satisfying $\{n \in \mathbb{N} :$ $|f_{m_n}(t)| \geq \epsilon_{m_n}$ is finite for all $t \in K$, then there exist $\xi < \omega_1$ and a block basis of normalized ξ -averages of (f_n) which is equivalent to the unit vector basis of c_0 . There are two consequences of Theorem 6.1. The first, Corollary 6.8, has been already discussed. The second one is Corollary 6.3, which gives a quantitative version of a special case of Elton's famous result on extremely weakly unconditionally convergent sequences [19] (cf. also [20], [22], [4] for related results). It was shown in [19] that if (x_n) is a normalized basic sequence in some Banach space and the series $\sum_{n} |x^*(x_n)|$ converges for every extreme point x^* in the ball of X^* , then some block basis of (x_n) is equivalent to the unit vector basis of c_0 . We show in Corollary 6.3 that if (f_n) is a normalized basic sequence in some C(K) space satisfying $\sum_{n} |f_n(t)|$ converges for all $t \in K$, then there exist $\xi < \omega_1$ and a block basis of normalized ξ -averages of (f_n) which is equivalent to the unit vector basis of c_0 .

Finally, Sections 4 and 5 contain a number of technical results on α -averages which are used in Section 6.

Some of the results contained in this paper were obtained in B. Wahl's thesis [38] written under the supervision of E. Odell.

2. Preliminaries

We shall make use of standard Banach space facts and terminology as may be found in [27]. c_{00} is the vector space of the ultimately vanishing scalar sequences. If X is any set, we let $[X]^{<\infty}$ denote the set of its finite subsets, while [X] stands for the set of all infinite subsets of X. If $M \in [\mathbb{N}]$, we shall adopt the convenient notation $M = (m_i)$ to denote the increasing enumeration of the elements of M.

A family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ is hereditary if $G \in \mathcal{F}$ whenever $G \subset F$ and $F \in \mathcal{F}$. \mathcal{F} is spreading if for every $\{m_1 <, \ldots, < m_k\} \in \mathcal{F}$ and all choices $n_1 < \cdots < n_k$ in \mathbb{N} with $m_i \leq n_i$ $(i \leq k)$, we have that $\{n_1, \ldots, n_k\} \in \mathcal{F}$. \mathcal{F} is compact,

if it is compact with respect to the topology of pointwise convergence in $[\mathbb{N}]^{<\infty}$. \mathcal{F} is regular if it possesses all three aforementioned properties and contains all singletons. A regular family \mathcal{F} is said to be *stable*, provided that $F \in \mathcal{F}$ is a maximal, under inclusion, member of \mathcal{F} if there exists $n > \max F$ with $F \cup \{n\} \notin \mathcal{F}$.

If E and F are finite subsets of \mathbb{N} , we write E < F when $\max E < \min F$. Given families \mathcal{F}_1 and \mathcal{F}_2 whose elements are finite subsets of \mathbb{N} , we define their *convolution* to be the family

$$\mathcal{F}_2[\mathcal{F}_1] = \{ \bigcup_{i=1}^n G_i : n \in \mathbb{N}, G_1 < \dots < G_n, G_i \in \mathcal{F}_1 \,\forall i \le n, (\min G_i)_{i=1}^n \in \mathcal{F}_2 \} \cup \{\emptyset\}.$$

It is not hard to see that $\mathcal{F}_2[\mathcal{F}_1]$ is regular (resp. stable), whenever each \mathcal{F}_i is

It turns out that for a regular family \mathcal{F} there exists a countable ordinal ξ such that the ξ -th Cantor-Bendixson derivative $\mathcal{F}^{(\xi)}$ of \mathcal{F} is equal to $\{\emptyset\}$. Hence \mathcal{F} is homeomorphic to $[1,\omega^{\xi}]$, by the Mazurkiewicz-Sierpinski theorem [29]. We then say that \mathcal{F} is of order ξ . If we define $\mathcal{F}^+ = \{F \in [\mathbb{N}]^{<\infty} : F \setminus \{\min F\} \in \mathcal{F}\}$, then it is not hard to see, using the Mazurkiewicz-Sierpinski theorem [29], that \mathcal{F}^+ is regular (and stable if \mathcal{F} is) of order $\xi + 1$. It can be shown that if \mathcal{F}_i is regular of order ξ_i , i = 1, 2, then $\mathcal{F}_2[\mathcal{F}_1]$ is of order $\xi_1\xi_2$.

Notation. Given $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ and $M \in [\mathbb{N}]$, we set $\mathcal{F}[M] = \mathcal{F} \cap [M]^{<\infty}$. Clearly, $\mathcal{F}[M]$ is hereditary (resp. compact), if \mathcal{F} is.

We shall now recall the transfinite definition of the Schreier families S_{ξ} , $\xi < \omega_1$. First, given a countable ordinal α we associate to it a sequence of successor ordinals, $(\alpha_n + 1)$, in the following manner: If α is a successor ordinal we let $\alpha_n = \alpha - 1$ for all n. In case α is a limit ordinal, we choose $(\alpha_n + 1)$ to be a strictly increasing sequence of ordinals tending to α .

Now set $S_0 = \{\{n\} : n \in \mathbb{N}\} \cup \{\emptyset\}$ and $S_1 = \{F \subset \mathbb{N} : |F| \leq \min F\} \cup \{\emptyset\}$. Note that $S_1 = S_1[S_0]$. Let $\xi < \omega_1$ and assume S_α has been defined for all $\alpha < \xi$. If ξ is a successor ordinal, say $\xi = \zeta + 1$, define

$$S_{\xi} = S_1[S_{\zeta}].$$

In the case ξ is a limit ordinal, let $(\xi_n + 1)$ be the sequence of successor ordinals associated to ξ . Set

$$S_{\xi} = \bigcup_{n} \{ F \in S_{\xi_n + 1} : n \le \min F \} \cup \{\emptyset\}.$$

It is shown in [1] that the Schreier family S_{ξ} is regular of order ω^{ξ} for all $\xi < \omega_1$. It is shown in [21] that the Schreier families are stable.

Definition 2.1 ([28], [32]). A normalized basic sequence (x_n) in a Banach space is said to be Schreier unconditional, if there exists a constant C > 0 such that $\|\sum_{n \in F} a_n x_n\| \le C \|\sum_n a_n x_n\|$, for every $F \subset \mathbb{N}$ with $|F| \le \min F$, and all choices of finitely supported scalar sequences (a_n) .

It has been already mentioned in the introductory section that every normalized weakly null sequence admits, for every $\epsilon > 0$, a subsequence that is Schreier unconditional with constant $2 + \epsilon$.

The concept of Schreier unconditionality can be generalized in the following manner: Consider a hereditary family \mathcal{F} of finite subsets of \mathbb{N} containing the singletons. A normalized basic sequence (x_n) is now called \mathcal{F} unconditional, if there exists a constant C > 0 such that $\|\sum_{n \in F} a_n x_n\| \le$ $C\|\sum_n a_n x_n\|$, for every $F \in \mathcal{F}$ and all choices of finitely supported scalar sequences (a_n) .

3. Upper Schreier estimates

In this section we show that every normalized weakly null sequence in C(K), K a countable compact metric space, admits a subsequence dominated by a subsequence of the unit vector basis of a certain Schreier space (see the relevant definition after the statement of Theorem 3.9).

Recall, [13], that for every countable compact metric space K, there exists a unique countable ordinal α with C(K) isomorphic to $C(\omega^{\omega^{\alpha}})$. Since most of the properties of weakly null sequences in C(K) that we shall be interested in, are isomorphic invariants, there will be no loss of generality in assuming that $K = [1, \omega^{\xi}]$, for some $\xi < \omega_1$. As is has been already mentioned in the previous section, every regular family \mathcal{F} of order ξ (this means $\mathcal{F}^{(\xi)} = \{\emptyset\}$) is homeomorphic to the ordinal interval $[1, \omega^{\xi}]$. Moreover, it is easy to construct by transfinite induction, a regular family of order ξ , for all $\xi < \omega_1$. We can thus identify $C(\omega^{\xi})$ with $C(\mathcal{F})$, for every regular family of order ξ .

The advantage of such a representation is that one can easily construct a monotone, shrinking Schauder basis of $C(\mathcal{F})$, the so-called *node basis* [3]. Indeed, let $(\alpha_n)_{n=1}^{\infty}$ be an enumeration of the elements of \mathcal{F} , compatible with the natural partial ordering of \mathcal{F} given by initial segment inclusion. This means that whenever α_m is a proper initial segment of α_n , then m < n. In particular, $\alpha_1 = \emptyset$. Such an enumeration is for instance, the anti-lexicographic enumeration of the elements of \mathcal{F} , i.e., $F \prec G$ if and only if either max $F < \max G$, or $F \setminus \{\max F\} \prec G \setminus \{\max G\}$, for all F, G in \mathcal{F} .

Given $\alpha \in \mathcal{F}$, set $G_{\alpha} = \{\beta \in \mathcal{F} : \alpha \leq \beta\}$, where $\alpha \leq \beta$ means that α is an initial segment of β . Clearly, G_{α} is a clopen subset of \mathcal{F} for every $\alpha \in \mathcal{F}$. The sequence $(\chi_{G_{\alpha_n}})_{n=1}^{\infty}$ is called the node basis of $C(\mathcal{F})$. It is not hard to check that $(\chi_{G_{\alpha_n}})_{n=1}^{\infty}$ is a normalized, monotone, shrinking Schauder basis for $C(\mathcal{F})$ [3].

Proposition 3.1. Let \mathcal{F} be a regular family and $u_1 < u_2 < \ldots$ be a block basis of the node basis $(\chi_{G_{\alpha_n}})_{n=1}^{\infty}$ of $C(\mathcal{F})$. Then there exist positive integers $n_1 < n_2 < \ldots$ with the following property: For every $\gamma \in \mathcal{F}$, $\{n_i : i \in \mathbb{N}, u_{n_i}(\gamma) \neq 0\} \in \mathcal{F}^+$.

Proof. Define $F_n = \{\alpha_i : i \in \text{supp } u_n\}$, for all $n \in \mathbb{N}$. Clearly, the F_n 's are pairwise disjoint, finite subsets of \mathcal{F} . We observe that whenever $\alpha_i \in F_n$

and $\alpha_j \in F_m$ satisfy $\alpha_i \leqslant \alpha_j$, then $n \leq m$. This is so since $\alpha_i \leqslant \alpha_j$ implies that $i \leq j$ and, subsequently, that $u_n \leq u_m$. Hence, $n \leq m$.

We next choose inductively, integers $2 = n_1 < n_2 < \dots$ such that $\max \beta < n_{i+1}$ for every $\beta \in F_{n_i}$ and all $i \in \mathbb{N}$ (where, $\max \beta$ denotes the largest element of the finite subset β of \mathbb{N}). We claim (n_i) is as desired. Indeed, let $\gamma \in \mathcal{F}$. Then

$${n_i: i \in \mathbb{N}, u_{n_i}(\gamma) \neq 0} \subset {n_i: i \in \mathbb{N}, \exists \beta \in F_{n_i}, \beta \leqslant \gamma},$$

for writing $u_{n_i} = \sum_{\beta \in F_{n_i}} \lambda_{\beta} \chi_{G_{\beta}}$ for some suitable choice of scalars $(\lambda_{\beta})_{\beta \in F_{n_i}}$, we see that $u_{n_i}(\gamma) \neq 0$ implies $\chi_{G_{\beta}}(\gamma) = 1$, for some $\beta \in F_{n_i}$ with $\beta \leqslant \gamma$. In particular, $\{n_i : i \in \mathbb{N}, u_{n_i}(\gamma) \neq 0\}$ is finite. Let now $\{n_{i_1} <, \ldots, < n_{i_k}\}$ be an enumeration of $\{n_i : i \in \mathbb{N}, u_{n_i}(\gamma) \neq 0\}$, and choose $\beta_j \in F_{n_{i_j}}$ with $\beta_j \leqslant \gamma$, for all $j \leq k$. Since $\{\beta_1, \ldots, \beta_k\}$ is well-ordered with respect to the partial ordering \emptyset of \mathcal{F} (all the β_j 's are initial segments of γ), our preliminary observation yields $\beta_1 < \cdots < \beta_k$. Note that $\beta_1 \neq \emptyset$. By the choices made, $\max \cup \beta_j < n_{i_j+1} \leq n_{i_{j+1}}$ for all $j \leq k$. Because \mathcal{F} is hereditary and spreading, we infer that $\{n_{i_2}, \ldots, n_{i_k}\} \in \mathcal{F}$ whence $\{n_i : i \in \mathbb{N}, u_{n_i}(\gamma) \neq 0\} \in \mathcal{F}^+$, as required.

Corollary 3.2. Suppose K is homeomorphic to $[1, \omega^{\xi}]$, $\xi < \omega_1$, and that (f_i) is a normalized weakly null sequence in C(K). Let \mathcal{F} be a regular family of order ξ . Then for every $N \in [\mathbb{N}]$ and every non-increasing sequence of positive scalars (ϵ_i) , there exists $M \in [N]$, $M = (m_i)$, such that for every $t \in K$ the set $\{m_i : i \in \mathbb{N}, |f_{m_i}(t)| \geq \epsilon_i\}$ belongs to \mathcal{F}^+ .

Proof. We identify $C(\mathcal{F})$ with C(K) and apply Proposition 3.1 to find a normalized, shrinking, monotone Schauder basis (e_i) for C(K) with the following property: For every block basis $u_1 < u_2 < \ldots$ of (e_i) there exist positive integers $n_1 < n_2 < \ldots$ such that for all $t \in K$, $\{n_i : i \in \mathbb{N}, u_{n_i}(t) \neq 0\} \in \mathcal{F}^+$.

Now let (f_i) be normalized weakly null in C(K). A classical perturbation result [11] yields a subsequence (f_{l_i}) of (f_i) and a block basis (u_i) of (e_i) , $u_1 < u_2 < \ldots$, such that $l_i \in N$ and $||f_{l_i} - u_i|| < \epsilon_i/2$, for all $i \in \mathbb{N}$. We next choose positive integers $n_1 < n_2 < \ldots$ such that $\{n_i : i \in \mathbb{N}, u_{n_i}(t) \neq 0\} \in \mathcal{F}^+$, for all $t \in K$. Set $m_i = l_{n_i}$, for all $i \in \mathbb{N}$. It is not hard to check using the spreading property of \mathcal{F} , that $M = (m_i)$ satisfies the desired conclusion. \square

Notation 3.3. Let \mathcal{F} be a regular family and let (e_i) denote the unit vector basis of c_{00} . We define a norm $\|\cdot\|_{\mathcal{F}}$ on c_{00} by the rule

$$\left\| \sum_{i} a_{i} e_{i} \right\|_{\mathcal{F}} = \sup \{ \sum_{i \in F} |a_{i}| : F \in \mathcal{F} \}, \text{ for all } (a_{i}) \in c_{00}.$$

The completion of $(c_{00}, \|\cdot\|_{\mathcal{F}})$ is a Banach space having (e_i) as a normalized, unconditional, shrinking, monotone Schauder basis (see [1], [2]). When $\mathcal{F} = S_{\xi}$, the ξ -th Schreier class, we obtain the generalized Schreier space X^{ξ} introduced in [1], [2].

Our next result yields that every normalized weakly null sequence in $C(\omega^{\omega^{\xi}})$ admits a subsequence dominated by a subsequence of the unit vector basis of the generalized Schreier space X^{ξ} .

Proposition 3.4. Suppose K is homeomorphic to $[1, \omega^{\xi}]$, $\xi < \omega_1$, and that (f_i) is a normalized weakly null sequence in C(K). Let \mathcal{F} be a regular family of order ξ . Given $0 < \epsilon < 1$, there exists $M \in [\mathbb{N}]$, $M = (m_i)$, such that

$$\left\| \sum_{i} a_{i} f_{m_{i}} \right\| \leq \frac{2}{1 - \epsilon} \sup \left\{ \left\| \sum_{i \in F} a_{i} f_{m_{i}} \right\| : F \subset \mathbb{N}, (m_{i})_{i \in F} \in \mathcal{F} \right\}$$
$$\leq \frac{2}{1 - \epsilon} \left\| \sum_{i} a_{i} e_{m_{i}} \right\|_{\mathcal{F}}, \text{ for all } (a_{i}) \in c_{00}.$$

Proof. We may assume that (f_i) is 2-basic. Choose a decreasing sequence of positive scalars (ϵ_i) such that $\sum_i \epsilon_i < \epsilon/3$. We next choose $M \in [\mathbb{N}]$, $M = (m_i)$, satisfying the conclusion of Corollary 3.2 applied to (f_i) and the scalar sequence (ϵ_i) .

Let $(a_i) \in c_{00}$ be such that $\|\sum_i a_i f_{m_i}\| = 1$, and let $t \in K$ satisfy $|\sum_i a_i f_{m_i}(t)| = 1$. Since $\{m_i : i \in \mathbb{N}, |f_{m_i}(t)| \ge \epsilon_i\}$ belongs to \mathcal{F}^+ , we obtain

$$1 \le 2 \sup \left\{ \left\| \sum_{i \in F} a_i f_{m_i} \right\| : F \subset \mathbb{N}, (m_i)_{i \in F} \in \mathcal{F} \right\} + \epsilon$$

from which the assertion of the proposition follows.

Remark 3.5. S. Argyros has discovered an alternate proof of Corollary 3.2. He shows that given a weakly null sequence (f_i) in $C(\omega^{\xi})$ and a summable sequence of positive scalars (ϵ_i) then, by identifying $C(\omega^{\xi})$ with $C(\mathcal{F})$, one can select positive integers $1 = m_1 < m_2 < \dots$ such that if $|f_{m_i}(F)| \ge \epsilon_i$ for some $i \in \mathbb{N}$ and $F \in \mathcal{F}$, then $F \cap (m_{i-1}, m_{i+1}) \ne \emptyset$ $(m_0 = 0)$. Therefore, $\{m_{2i}: i \in \mathbb{N}, |f_{m_{2i}}(F)| \ge \epsilon_{2i}\} \in \mathcal{F}^+$, for every $F \in \mathcal{F}$ which clearly implies Corollary 3.2.

Remark 3.6. Proposition 9 and Lemma 13 in [26] yield that for a normalized weakly null sequence (f_i) in $C(\omega^{\xi})$ there exist a subsequence (f_{m_i}) , a compact hereditary family \mathcal{D} with $\mathcal{D}^{(\xi+1)} = \emptyset$ and a constant d > 0 such that $\|\sum_i a_i f_{m_i}\| \le d \sup\{\|\sum_{i \in A} a_i f_{m_i}\| : A \in \mathcal{D}\}$ for every $(a_i) \in c_{00}$.

Theorem 3.7. Suppose K is homeomorphic to $[1, \omega^{\xi}]$, $\xi < \omega_1$, and that (f_i) is a normalized weakly null sequence in C(K). Let \mathcal{F} be a regular family of order ξ . Assume (f_i) is \mathcal{F} -unconditional. Then (f_i) has an unconditional subsequence.

Proof. Suppose (f_i) is \mathcal{F} -unconditional with constant C > 0. This means that $\|\sum_{i \in F} a_i f_i\| \le C \|\sum_i a_i f_i\|$, for all $F \in \mathcal{F}$ and every $(a_i) \in c_{00}$. Let $M = (m_i)$ satisfy the conclusion of Proposition 3.4, for (f_i) and \mathcal{F} with $\epsilon = 1/2$. We claim that (f_{m_i}) is unconditional. Indeed, let $(a_i) \in c_{00}$ and

 $I \in [\mathbb{N}]$. Proposition 3.4 yields

$$\left\| \sum_{i \in I} a_i f_{m_i} \right\| \le 4 \sup \left\{ \left\| \sum_{i \in F \cap I} a_i f_{m_i} \right\| : F \subset \mathbb{N}, (m_i)_{i \in F} \in \mathcal{F} \right\}.$$

Since \mathcal{F} is hereditary and (f_i) is \mathcal{F} -unconditional, we have that

$$\left\| \sum_{i \in F \cap I} a_i f_{m_i} \right\| \le C \left\| \sum_i a_i f_{m_i} \right\|, \text{ whenever } (m_i)_{i \in F} \in \mathcal{F}.$$

Therefore, $\|\sum_{i\in I} a_i f_{m_i}\| \le 4C \|\sum_i a_i f_{m_i}\|$ which proves the claim. This completes the proof.

From Theorem 3.7 we easily obtain the next

Corollary 3.8. A normalized weakly null sequence in $C(\omega^{\omega^{\xi}})$, $\xi < \omega_1$, admits an unconditional subsequence if, and only if, it admits a subsequence which is S_{ξ} -unconditional.

Theorem 3.9. Let (f_i) be a normalized weakly null sequence in $C(\omega^{\omega^{\xi}})$, $\xi < \omega_1$. Assume that (f_i) is an ℓ_1^{ξ} -spreading model. Then (f_i) admits a subsequence equivalent to a subsequence of the unit vector basis of X^{ξ} , the generalized Schreier space of order ξ (see Notation 3.3).

We recall that $X^0 = c_0$ while X^1 was implicitly considered by Schreier [37]. The generalized Schreier spaces X^{ξ} , $\xi < \omega_1$, were introduced in [1], [2]. They can be thought as the higher ordinal unconditional analogs of c_0 .

We also recall ([8]), that a normalized basic sequence (x_n) is said to be an ℓ_1^{ξ} -spreading model, $\xi < \omega_1$, if there is a constant $\delta > 0$ such that $\|\sum_{n \in F} a_n x_n\| \ge \delta \sum_{n \in F} |a_n|$, for every $F \in S_{\xi}$ and all choices of scalars $(a_n)_{n \in F}$. Saying (x_n) is an ℓ_1^1 -spreading model means that ℓ_1 is a spreading model for the space generated by some subsequence of (x_n) , in the sense of [14], [9], [31]. ℓ_1^{ξ} -spreading models are instrumental in the study of asymptotic ℓ_1 -spaces [33]. It is shown in [6] that a weakly null sequence which is an ℓ_1^{ξ} -spreading model, admits a subsequence which is S_{ξ} -unconditional. The unit vector basis of X^{ξ} is an ℓ_1^{ξ} -spreading model with constant $\delta = 1$.

Proof of Theorem 3.9. We first apply Proposition 3.4 with $\epsilon = 1/2$, to obtain an infinite subset $M = (m_i)$ of \mathbb{N} with $\|\sum_i a_i f_{m_i}\| \le 4 \|\sum_i a_i e_{m_i}\|_{S_{\xi}}$ for all $(a_i) \in c_{00}$, where (e_i) denotes the unit vector basis of X^{ξ} . On the other hand, as (f_i) is an ℓ_1^{ξ} -spreading model, there exists a constant $\delta > 0$ such that

$$\|\sum_{i} a_{i} f_{m_{i}}\| \ge \delta \|\sum_{i} a_{i} e_{m_{i}}\|_{\xi}, \text{ for all } (a_{i}) \in c_{00}.$$

We infer from the preceding inequalities that (f_{m_i}) and (e_{m_i}) are equivalent.

Our final result in this section yields a quantitative version of Rosenthal's result, that a weakly null (in C(K)) sequence of indicator functions

of clopen subsets of a compact Hausdorff space K, admits an unconditional subsequence (cf. also [8] and [7] for another proof of this result).

Theorem 3.10. Let K be a compact Hausdorff space. Suppose that (f_n) is a normalized weakly null sequence in C(K) such that there exists $\epsilon > 0$ with the property $f_n(t) = 0$ or $|f_n(t)| \ge \epsilon$ for all $t \in K$ and $n \in \mathbb{N}$. Then there exist $\xi < \omega_1$ and a subsequence of (f_n) equivalent to a subsequence of the natural Schauder basis of X^{ξ} .

Proof. We first employ the results of [1] in order to find the smallest countable ordinal η for which there is a subsequence (f_{m_n}) of (f_n) , such that no subsequence of (f_{m_n}) is an ℓ_1^{η} -spreading model. Such an ordinal exists because (f_n) is weakly null. We claim that η is a successor ordinal. To see this we shall need a result from [6] (Corollary 3.6) which states that a weakly null sequence (f_n) in a C(K) space admits a subsequence which is an ℓ_1^{α} -spreading model, for some $\alpha < \omega_1$ if, and only if, there exist a constant $\delta > 0$ and $L \in [\mathbb{N}]$, $L = (l_n)$, so that for every $F \in S_{\alpha}$ there exists $t \in K$ satisfying $|f_{l_n}(t)| \geq \delta$, for all $n \in F$.

Define $G_n = \{t \in K : f_n(t) \neq 0\}$. Our assumptions yield $G_n = \{t \in K : |f_n(t)| \geq \epsilon\}$, for all $n \in \mathbb{N}$. Observe that for every $\alpha < \eta$ and $P \in [\mathbb{N}]$, there exists $Q \in [P]$, $Q = (q_n)$, so that (f_{q_n}) is an ℓ_1^{α} -spreading model. It follows now, from the previously cited result of [6], that for every $\alpha < \eta$ and $P \in [\mathbb{N}]$, there exists $Q \in [P]$, $Q = (q_n)$, so that for every $F \in S_{\alpha}$, $\bigcap_{n \in F} G_{q_n} \neq \emptyset$. This in turn yields that every subsequence of (f_{m_n}) admits, for every $\alpha < \eta$, a further subsequence which is an ℓ_1^{α} -spreading model with constant independent of α and the particular subsequence. Were η a limit ordinal, we would have that some subsequence of (f_{m_n}) is an ℓ_1^{η} -spreading model, contrary to our assumption.

Hence, $\eta = \xi + 1$, for some $\xi < \omega_1$. Let (e_n) be the natural basis of X^{ξ} . We show that some subsequence of (f_{m_n}) is equivalent to a subsequence of (e_n) . Because $\xi < \eta$, we can assume without loss of generality, after passing to a subsequence if necessary, that (f_{m_n}) is an ℓ_1^{ξ} -spreading model and thus there exists a constant $\rho > 0$ such that $\|\sum_n a_n f_{m_n}\| \ge \rho \|\sum_n a_n e_n\|_{S_{\xi}}$ for all $(a_n) \in c_{00}$. Define

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} : \cap_{i \in F} G_{m_i} \neq \emptyset \}.$$

Clearly, \mathcal{F} is hereditary. It is shown in [6], based on the fact that no subsequence of (f_{m_n}) is an $\ell_1^{\xi+1}$ -spreading model, that there exist $L \in [\mathbb{N}]$, $L = (l_n)$, and $d \in \mathbb{N}$ so that every member of $\mathcal{F}[L]$ is contained in the union of d members of $S_{\xi}[L]$. Let $k_n = m_{l_n}$, for all $n \in \mathbb{N}$. We deduce from our preceding work that $\|\sum_n a_n f_{k_n}\| \leq d \|\sum_n a_n e_{l_n}\|_{S_{\xi}}$, for every $(a_n) \in c_{00}$. Therefore, (f_{k_n}) and (e_{l_n}) are equivalent.

4. Normalized averages of a basic sequence

Let $\vec{s} = (e_n)$ be a normalized basic sequence in a Banach space, and let \mathcal{F} be a regular and stable family. We shall introduce an hierarchy

 $\{(\alpha_n^{\mathcal{F},\vec{s},M})_{n=1}^{\infty}, M \in [\mathbb{N}], \alpha < \omega_1\}$ of normalized block bases of \vec{s} , similar to that of the repeated averages introduced in [8]. The latter however consists of convex block bases of \vec{s} , not necessarily normalized.

We fix a normalized basic sequence $\vec{s} = (e_n)$ and a regular and stable family \mathcal{F} . To simplify our notation, we shall write α_n^M instead of $\alpha_n^{\mathcal{F},\vec{s},M}$. We shall next define, by transfinite induction on $\alpha < \omega_1$, a family of normalized block bases $(\alpha_n^M)_{n=1}^{\infty}$ of \vec{s} , where $M \in [\mathbb{N}]$, so that the following properties are fulfilled for every $\alpha < \omega_1$ and $M \in [\mathbb{N}]$:

- (1) $\alpha_n^M < \alpha_{n+1}^M$, for all $n \in \mathbb{N}$.
- (2) $M = \bigcup_{n \text{supp}} \alpha_n^M$, for all $M \in [\mathbb{N}]$.

If $\alpha = 0$ and $M = (m_n)$ set $\alpha_n^M = e_{m_n}$, for all $n \in \mathbb{N}$. Suppose $(\beta_n^N)_{n=1}^{\infty}$ has been defined so that (1) and (2), above, are satisfied for all $\beta < \alpha$ and $N \in [\mathbb{N}]$. Let $M \in [\mathbb{N}]$. In order to define $(\alpha_n^M)_{n=1}^{\infty}$, assume first that α is successor, say $\alpha = \beta + 1$. Let k_1 be the unique integer such that the set $\{\min \sup \beta_i^M : i \leq k_1\}$ is a maximal member of \mathcal{F} . We define

$$\alpha_1^M = \left(\sum_{i=1}^{k_1} \beta_i^M\right) / \|\sum_{i=1}^{k_1} \beta_i^M\|.$$

Suppose that $\alpha_1^M < \cdots < \alpha_n^M$ have been defined and that the union of their supports forms an initial segment of M. Set

$$M_{n+1} = \{ m \in M : \max \operatorname{supp} \alpha_n^M < m \}.$$

Let k_{n+1} be the unique integer such that the set $\{\min \operatorname{supp} \beta_i^{M_{n+1}}: i \leq 1\}$ k_{n+1} is a maximal member of \mathcal{F} . We define

$$\alpha_{n+1}^{M} = \left(\sum_{i=1}^{k_{n+1}} \beta_i^{M_{n+1}}\right) / \|\sum_{i=1}^{k_{n+1}} \beta_i^{M_{n+1}}\|.$$

This completes the definition of $(\alpha_n^M)_{n=1}^{\infty}$ when α is a successor ordinal. Note that the construction described above can be carried out because \mathcal{F} is stable. (1) and (2) are now satisfied by $(\alpha_n^M)_{n=1}^{\infty}$.

Now suppose α is a limit ordinal. Let (α_n+1) be the sequence of successor ordinals associated to α . Let $M \in [\mathbb{N}]$ and set $m_1 = \min M$. In case $m_1 = 1$, set $\alpha_1^M = e_1$. If $m_1 > 1$, define

$$\alpha_1^M = u^M / \|u^M\|, \text{ where } u^M = (1/m_1)e_{m_1} + [\alpha_{m_1}]_1^{M\setminus\{m_1\}}.$$

Suppose that $\alpha_1^M < \cdots < \alpha_n^M$ have been defined and that the union of their supports forms an initial segment of M. Set

$$M_{n+1} = \{ m \in M : \max \operatorname{supp} \alpha_n^M < m \}$$

and $m_{n+1} = \min M_{n+1}$. Define

$$\begin{aligned} &\alpha_{n+1}^M = u^{M_{n+1}} \, / \, \|u^{M_{n+1}}\|, \text{ where} \\ &u^{M_{n+1}} = (1/m_{n+1})e_{m_{n+1}} + \left[\alpha_{m_{n+1}}\right]_1^{M_{n+1} \setminus \{m_{n+1}\}}. \end{aligned}$$

Note that $\alpha_{n+1}^M=\alpha_1^{M_{n+1}}$. This completes the definition $(\alpha_n^M)_{n=1}^\infty$ when α is a limit ordinal. It is clear that (1) and (2) are satisfied.

Remark 4.1. In case $\mathcal{F} = S_1$, the first Schreier family, it is not hard to see that supp $\alpha_n^M \in S_\alpha$, for all $\alpha < \omega_1$, all $M \in [\mathbb{N}]$ and all $n \in \mathbb{N}$.

The next lemma is an immediate consequence of the preceding definition.

Lemma 4.2. Let $\alpha < \omega_1$, $M \in [\mathbb{N}]$ and $n \in \mathbb{N}$. Then there exists $N \in [\mathbb{N}]$ such that $\alpha_n^M = \alpha_1^N$.

Our next result will be applied later, in conjunction with the infinite Ramsey theorem, in order to determine if there exists a block basis of the form (α_n^M) , equivalent to the c_0 -basis.

Lemma 4.3. Let $\alpha < \omega_1$, $M \in [\mathbb{N}]$ and $n \in \mathbb{N}$. Let $L_i \in [\mathbb{N}]$ and $k_i \in \mathbb{N}$, for $i \leq n$, be so that $\alpha_{k_1}^{L_1} < \cdots < \alpha_{k_n}^{L_n}$ and $\bigcup_{i=1}^n \operatorname{supp} \alpha_{k_i}^{L_i}$ is an initial segment of M. Then $\alpha_i^M = \alpha_{k_i}^{L_i}$, for all $i \leq n$.

Proof. By Lemma 4.2 we may assume that $k_i = 1$ for all $i \leq n$. We prove the assertion of the lemma by transfinite induction on α . The case $\alpha = 0$ is trivial. Suppose the assertion holds for all ordinals smaller than α , and all $M \in [\mathbb{N}]$ and $n \in \mathbb{N}$. Let $M \in [\mathbb{N}]$. We prove the assertion for α by induction on n. If n = 1, we first consider the case of α being a successor ordinal, say $\alpha = \beta + 1$. We know from the definitions that

$$\operatorname{supp} \alpha_1^{L_1} = \bigcup_{j=1}^{p_1} \operatorname{supp} \beta_j^{L_1},$$

where $\{\min \sup \beta_j^{L_1}: j \leq p_1\}$ is a maximal member of \mathcal{F} . In particular, the set $\cup_{j=1}^{p_1} \sup \beta_j^{L_1}$ is an initial segment of M. The induction hypothesis on β now implies that $\beta_j^M = \beta_j^{L_1}$, for all $j \leq p_1$. It follows now that $\alpha_1^M = \alpha_1^{L_1}$. To complete the case n=1, we consider the possibility that α is a limit

To complete the case n=1, we consider the possibility that α is a limit ordinal. Let (α_n+1) be the sequence of ordinals associated to α and suppose that $m=\min M$. Then $m=\min \sup \alpha_1^{L_1}$ and so $m=\min L_1$. In case m=1 we have, trivially, $\alpha_1^M=\alpha_1^{L_1}=e_m$. When m>1, $u^M=(1/m)e_m+[\alpha_m]_1^{M\setminus\{m\}}$, $u^{L_1}=(1/m)e_m+[\alpha_m]_1^{L_1\setminus\{m\}}$ and $\alpha_1^M=u^M/\|u^M\|$, $\alpha_1^{L_1}=u^{L_1}/\|u^{L_1}\|$.

It follows that supp $[\alpha_m]_1^{L_1\setminus\{m\}}$ is an initial segment of $M\setminus\{m\}$, and so we infer from the induction hypothesis applied to α_m , that $[\alpha_m]_1^{L_1\setminus\{m\}} = [\alpha_m]_1^{M\setminus\{m\}}$. Thus $\alpha_1^M = \alpha_1^{L_1}$ which completes the case n = 1.

Assume now the assertion holds for n-1 and write $M = \bigcup_{i=1}^n \operatorname{supp} \alpha_1^{L_i} \cup N$, where $\bigcup_{i=1}^n \operatorname{supp} \alpha_1^{L_i}$ is an initial segment of M, which is disjoint from N. The induction hypothesis for n-1 yields $\alpha_i^M = \alpha_1^{L_i}$ for all i < n. Hence $M = \bigcup_{i=1}^{n-1} \operatorname{supp} \alpha_i^M \cup P$, where $P = \operatorname{supp} \alpha_1^{L_n} \cup N$. It follows from the definition that $\alpha_n^M = \alpha_1^P$. But now the case n=1 guarantees that $\alpha_1^P = \alpha_1^{L_n}$ and the assertion of the lemma is settled.

Terminology. Let (e_n) be a normalized Schauder basic sequence in a Banach space and let \mathcal{F} be a regular family. A finite block basis $u_1 < \cdots < u_m$ of (e_n) is said to be \mathcal{F} -admissible if $\{\min \sup u_i : i \leq m\} \in \mathcal{F}$. It is called maximally \mathcal{F} -admissible, if \mathcal{F} is additionally assumed to be stable and $\{\min \sup u_i : i \leq m\}$ is a maximal member of \mathcal{F} .

Definition 4.4. A normalized block basis (u_n) of (e_n) with $u_1 < u_2 < ...$ is a c_0^{ξ} -spreading model, if there exists a constant C > 0 such that $\|\sum_{i \in F} a_i u_i\| \le C \max_{i \in F} |a_i|$, for every $F \in [\mathbb{N}]^{<\infty}$ with $(u_i)_{i \in F}$ S_{ξ} -admissible, and every choice of scalars $(a_i)_{i \in F}$.

In what follows we fix a normalized basic sequence $\vec{s} = (e_n)$ and a regular and stable family \mathcal{F} . We abbreviate $\alpha_n^{\mathcal{F},\vec{s},M}$ to α_n^M .

Terminology. Suppose that $\alpha < \omega_1$ and $M \in [\mathbb{N}]$. An α -average of (e_n) supported by M, is any vector of the form α_1^L for some $L \in [M]$.

In the sequel we shall make use of the infinite Ramsey theorem [17], [31] and so we recall its statement. $[\mathbb{N}]$ is endowed with the topology of pointwise convergence.

Theorem 4.5. Let \mathcal{A} be an analytic subset of $[\mathbb{N}]$. Then there exists $N \in [\mathbb{N}]$ so that either $[N] \subset \mathcal{A}$, or $[N] \cap \mathcal{A} = \emptyset$.

Our next result is inspired by an unpublished result of W.B. Johnson (see [31]).

Lemma 4.6. Let α and γ be countable ordinals and suppose there exists $N \in [\mathbb{N}]$ such that for every $M \in [N]$ there exists a block basis of α -averages of (e_n) , supported by M, which is a c_0^{γ} -spreading model. Then there exist $M \in [N]$ and a constant C > 0 so that $\|\sum_{i=1}^{n_L} \alpha_i^L\| \leq C$, for every $L \in [M]$, where n_L stands for the unique integer satisfying $\{\min \sup \alpha_i^L : i \leq n_L\}$ is maximal in S_{γ} .

Proof. Define $\mathcal{D}_k = \{L \in [N] : \| \sum_{i=1}^{n_L} \alpha_i^L \| \leq k \}$, for all $k \in \mathbb{N}$. \mathcal{D}_k is closed in the topology of pointwise convergence, thanks to Lemma 4.3. We claim that there exist $k \in \mathbb{N}$ and $M \in [N]$ so that $[M] \subset \mathcal{D}_k$. The assertion of the lemma clearly follows once this claim is established. Were the claim false, then Theorem 4.5 would yield a nested sequence $M_1 \supset M_2 \supset \ldots$ of infinite subsets of N such that $[M_k] \cap \mathcal{D}_k = \emptyset$, for all $k \in \mathbb{N}$. Choose an infinite sequence of integers $m_1 < m_2 < \ldots$ with $m_i \in M_i$ for all $i \in \mathbb{N}$. Set $M = (m_i)$. Since $M \in [N]$ our assumptions yield a block basis (u_i) of α -averages of (e_i) , supported by M, which is a c_0^{γ} -spreading model. Therefore there exists a constant C > 0 such that $\| \sum_{i \in F} u_i \| \leq C$, whenever $(u_i)_{i \in F}$ is S_{γ} -admissible. Choose $k \in \mathbb{N}$ with k > C. Then choose $i_0 \in \mathbb{N}$ so that supp $u_i \subset M_k$, for all $i > i_0$. If we set $L = \bigcup_{i=i_0+1}^{\infty} \sup u_i$, then $L \in [M_k]$, and $\alpha_i^L = u_{i+i_0}$, for all $i \in \mathbb{N}$, by Lemma 4.3. Hence, $L \notin \mathcal{D}_k$. However,

$$\left\| \sum_{i=1}^{n_L} \alpha_i^L \right\| = \left\| \sum_{i=1}^{n_L} u_{i_0+i} \right\| \le C < k$$

which is a contradiction.

5. Convolution of transfinite averages

We fix a normalized 2-basic, shrinking sequence $\vec{s} = (e_i)$ in some Banach space. We shall often make use of the following result established in [32]: Given $\epsilon > 0$ there exists $M \in [\mathbb{N}]$ such that for every finitely supported scalar sequence $(a_i)_{i \in M}$ with $\|\sum_{i \in M} a_i e_i\| = 1$, we have $\max_{i \in M} |a_i| \le 1 + \epsilon$. For the rest of this section, we let $\mathcal{F} = S_1$. All transfinite averages of \vec{s} will be taken with respect to \mathcal{F} . As in the previous section, α_n^M abbreviates $\alpha_n^{\mathcal{F}, \vec{s}, M}$.

The purpose of the present section is to deal with the following problem: Let α and β be countable ordinals and suppose that (u_i) is a block basis of $(\alpha + \beta)$ -averages of \vec{s} . Does there exist a block basis (v_i) of α -averages of \vec{s} such that (u_i) is a block basis of β -averages of (v_i) ?

It follows directly from the definitions that this is indeed the case when $\beta < \omega$. However, if β is an infinite ordinal, the preceding question has, in general, a negative answer.

In Proposition 5.9, we give a partially affirmative answer to this question which, roughly speaking, states that every $(\alpha + \beta)$ average of \vec{s} can be represented as a finite sum $\sum_{i=1}^{n} \lambda_i w_i$, where $w_1 < \cdots < w_n$ is an S_{β} -admissible block basis of α -averages of \vec{s} and $(\lambda_i)_{i=1}^n$ is a sequence of positive scalars which are almost equal each other. We employ this result in order to prove the following theorem about transfinite c_0 -spreading models of \vec{s} , which will in turn be applied in subsequent sections. In the sequel, when we refer to a block basis we shall always mean a block basis of \vec{s} . Also all transfinite averages will be taken with respect to \vec{s} .

Theorem 5.1. Let α and β be countable ordinals and $N \in [\mathbb{N}]$. Suppose that for every $P \in [N]$ there exists $M \in [P]$ such that no block basis of α -averages supported by M is a c_0^{β} -spreading model. Then for every $P \in [N]$ and $\epsilon > 0$ there exists $Q \in [P]$ with the following property: Every $(\alpha + \beta)$ -average u supported by Q admits a decomposition $u = \sum_{i=1}^{n} \lambda_i u_i$, where $u_1 < \cdots < u_n$ is a normalized block basis and $(\lambda_i)_{i=1}^n$ is a sequence of positive scalars such that

- (1) There exists $I \subset \{1, ..., n\}$ with $(u_i)_{i \in I}$ S_{β} -admissible, and such that u_i is an α -average for all $i \in I$, while $\|\sum_{i \in \{1, ..., n\} \setminus I} \lambda_i u_i\|_{\ell_1} < \epsilon$.
- (2) $\max_{i \in I} \lambda_i < \epsilon$.

Recall that if $\sum_{i=1}^{n} a_i e_i$ is a finite linear combination of \vec{s} then we denote by $\|\sum_{i=1}^{n} a_i e_i\|_{\ell_1}$ the quantity $\sum_{i=1}^{n} |a_i|$. To prove this theorem we shall need to introduce some terminology.

Definition 5.2. Let α and β be countable ordinals and $\epsilon > 0$. A normalized block u is said to admit an $(\epsilon, \alpha, \beta)$ -decomposition, if there exist normalized blocks $u_1 < \cdots < u_n$ and positive scalars $(\lambda_i)_{i=1}^n$ with $u = \sum_{i=1}^n \lambda_i u_i$ and so that the following conditions are satisfied:

- (1) There exists $I \subset \{1, ..., n\}$ with $(u_i)_{i \in I}$ S_{β} -admissible, and such that u_i is an α -average for all $i \in I$, while $\|\sum_{i \in \{1, ..., n\} \setminus I} \lambda_i u_i\|_{\ell_1} < \epsilon$.
- (2) $|\lambda_i \lambda_j| < \epsilon$ for all i and j in I.

Terminology. The quantity $\max_{i \in I} \lambda_i$ is called the *weight* of the decomposition. If u is an $(\alpha + \beta)$ -average admitting an $(\epsilon, \alpha, \beta)$ -decomposition, $u = \sum_{i=1}^{n} \lambda_i u_i$, satisfying (1), (2), above, and $I \subset \{1, \ldots, n\}$ is as in (1), then every subset of $\{\min \sup u_i : i \in I\}$ will be called an $(\epsilon, \alpha, \beta)$ -admissible subset of \mathbb{N} resulting from u. It is clear that the collection of all $(\epsilon, \alpha, \beta)$ -admissible subsets of \mathbb{N} resulting from some (not necessarily the same) $(\alpha + \beta)$ -average (for some fixed choices of ϵ, α, β), forms a hereditary family.

Lemma 5.3. Let $P \in [\mathbb{N}]$ and $\epsilon > 0$. Assume that for every $L \in [P]$ there exists an $(\alpha + \beta)$ -average supported by L which admits an $(\epsilon, \alpha, \beta)$ -decomposition. Then there exists $Q \in [P]$ such that every $(\alpha + \beta)$ -average supported by Q admits an $(\epsilon, \alpha, \beta)$ -decomposition.

Proof. Let

$$\mathcal{D} = \{ L \in [P] : [\alpha + \beta]_1^L \text{ admits an } (\epsilon, \alpha, \beta) - \text{decomposition} \}.$$

Lemma 4.3 yields that \mathcal{D} is closed in the topology of pointwise convergence. Theorem 4.5 now implies the existence of some $Q \in [P]$ such that either $[Q] \subset \mathcal{D}$, or $[Q] \cap \mathcal{D} = \emptyset$. Our assumptions rule out the second alternative for Q. Hence $[Q] \subset \mathcal{D}$ which proves the lemma.

In the next series of lemmas (Lemma 5.4 and Lemma 5.5), we describe some criteria for embedding a Schreier family into an appropriate hereditary family of finite subsets of \mathbb{N} . These criteria, as well as their proofs, are variants of similar results contained in [8], [6]. We shall therefore omit the proofs and refer the reader to the aforementioned papers (see for instance Propositions 2.3.2 and 2.3.6 in [8], or Theorems 2.11 and 2.13 in [6]). These lemmas will be applied in the proof of Proposition 5.9, which constitutes the main step towards the proof of Theorem 5.1.

Notation. Let \mathcal{F} be a family of finite subsets of \mathbb{N} and $M \in [\mathbb{N}]$. Let $M = (m_i)$ be the increasing enumeration of M. We set $\mathcal{F}(M) = \{\{m_i : i \in F\} : F \in \mathcal{F}\}$. Clearly, $\mathcal{F}(M) \subset \mathcal{F}$ if \mathcal{F} is spreading. We also recall that $\mathcal{F}[M] = \mathcal{F} \cap [M]^{<\infty}$. Finally, for every $L \in [\mathbb{N}]$ and $\alpha < \omega_1$, we let $(F_i^{\alpha}(L))_{i=1}^{\infty}$ denote the unique decomposition of L into successive, maximal members of S_{α} .

Lemma 5.4. Suppose that $1 \leq \xi < \omega_1$, \mathcal{D} is a hereditary family of finite subsets of \mathbb{N} and $N \in [\mathbb{N}]$. Assume that for every $n \in \mathbb{N}$ and $P \in [N]$ there exists $L \in [P]$ such that $\bigcup_{i=1}^n (F_i^{\xi}(L) \setminus \{\min F_i^{\xi}(L)\}) \in \mathcal{D}$. Then there exists $M \in [N]$ such that $S_{\xi+1}(M) \subset \mathcal{D}$.

Lemma 5.5. Suppose that \mathcal{D} is a hereditary family of finite subsets of \mathbb{N} and $N \in [\mathbb{N}]$. Let $\xi < \omega_1$ be a limit ordinal and let (α_n) be an increasing sequence

of ordinals tending to ξ . Assume there exists a sequence $M_1 \supset M_2 \supset \ldots$ of infinite subsets of N such that $S_{\alpha_n}(M_n) \subset \mathcal{D}$, for all $n \in \mathbb{N}$. Then there exists $M \in [N]$ such that $S_{\xi}(M) \subset \mathcal{D}$.

In the sequel we shall make use of the following permanence property of Schreier families established in [33]:

Lemma 5.6. Suppose that $\alpha < \beta < \omega_1$. Then there exists $n \in \mathbb{N}$ such that for every $F \in S_{\alpha}$ with $n \leq \min F$ we have $F \in S_{\beta}$.

We shall also make repeated use of the following result from [5]:

Lemma 5.7. For every $N \in [\mathbb{N}]$ there exists $M \in [N]$ such that for every $\alpha < \omega_1$ and $F \in S_{\alpha}[M]$ we have $F \setminus \{\min F\} \in S_{\alpha}(N)$.

Lemma 5.7 combined with Proposition 3.2 in [33] yields the next

Lemma 5.8. Let α and β be countable ordinals and $N \in [\mathbb{N}]$. Then there exists $M \in [N]$ such that

- (1) For every $F \in S_{\beta}[S_{\alpha}][M]$ we have $F \setminus \{\min F\} \in S_{\alpha+\beta}$.
- (2) For every $F \in S_{\alpha+\beta}[M]$ we have $F \setminus \{\min F\} \in S_{\beta}[S_{\alpha}]$.

Proposition 5.9. Let α and β be countable ordinals and $N \in [\mathbb{N}]$. Then given $\epsilon > 0$ and $P \in [N]$ there exist $Q \in [P]$ and $R \in [Q]$ such that

- (1) Every $(\alpha + \beta)$ -average supported by Q admits an $(\epsilon, \alpha, \beta)$ decomposition.
- (2) For every $F \in S_{\beta}[R]$, $F \setminus \{\min F\}$ is an $(\epsilon, \alpha, \beta)$ -admissible set resulting from some $(\alpha + \beta)$ -average supported by Q.

Proof. Fix $\alpha < \omega_1$. We prove the assertion of the proposition by transfinite induction on β . The case $\beta = 1$ follows directly from the definitions since every $(\alpha + 1)$ -average admits an $(\epsilon, \alpha, 1)$ -decomposition. In fact, in this case, we may take Q = P and $R = \{\min \text{supp } \alpha_i^P : i \in \mathbb{N}\}$ and check that (1) and (2) hold.

Now let $\beta > 1$ and suppose the assertion holds for all ordinals smaller than β . Assume first β is a successor ordinal and let $\beta - 1$ be its predecessor. Let $\epsilon > 0$ and $P \in [N]$ be given and choose a sequence of positive scalars (δ_i) such that $\sum_i \delta_i < \epsilon/4$. Let $M \in [P]$. The induction hypothesis for $\beta - 1$ yields infinite subsets $R_1 \subset Q_1$ of M satisfying (1) and (2) for $(\delta_1, \alpha, \beta - 1)$. Choose a maximal member F_1 of $S_{\beta-1}$ with $F_1 \subset R_1$. We may choose an $(\alpha + \beta - 1)$ -average u_1 , supported by Q_1 and such that $F_1 \setminus \{\min F_1\}$ is $(\delta_1, \alpha, \beta - 1)$ -admissible resulting from u_1 .

Choose $M_2 \in [M]$ with $\min M_2 > \max \sup u_1$. Arguing similarly, we choose a maximal member F_2 of $S_{\beta-1}$ with $F_2 \subset M_2$, and an $(\alpha + \beta - 1)$ -average u_2 supported by M_2 , which admits a $(\delta_2, \alpha, \beta - 1)$ -decomposition from which $F_2 \setminus \{\min F_2\}$ is resulting. We continue in this fashion and obtain a sequence $F_1 < F_2 < \ldots$, of successive maximal members of $S_{\beta-1}[M]$, and a block basis $u_1 < u_2 < \ldots$, of $(\alpha + \beta - 1)$ -averages supported by M such

that for all $i \in \mathbb{N}$,

(5.1)
$$u_i$$
 admits a $(\delta_i, \alpha, \beta - 1)$ – decomposition.

(5.2)
$$F_i \setminus \{\min F_i\}$$
 is $(\delta_i, \alpha, \beta - 1)$ – admissible, resulting from u_i .

We next let, for all $i \in \mathbb{N}$, d_i denote the weight of the $(\delta_i, \alpha, \beta - 1)$ -decomposition of u_i , from which $F_i \setminus \{\min F_i\}$ is resulting. Clearly, $d_i \in (0, 3]$. Therefore, without loss of generality, by passing to a subsequence if necessary, we may assume that

$$(5.3) |d_i - d_j| < \epsilon/4, \text{ for all } i, j \text{ in } \mathbb{N}.$$

Now let $n \in \mathbb{N}$ and choose $n < i_1 < \cdots < i_m$ such that $(u_{i_k})_{k=1}^m$ is maximally S_1 -admissible. Set $u = (\sum_{k=1}^m u_{i_k}) / \|\sum_{k=1}^m u_{i_k}\|$. It is clear that u is an $(\alpha + \beta)$ -average supported by M. It is easy to check, using (5.1) and (5.3), that u admits an $(\epsilon, \alpha, \beta)$ -decomposition. On the other hand, (5.2) implies that $\bigcup_{k=1}^n (F_{i_k} \setminus \{\min F_{i_k}\})$ is $(\epsilon, \alpha, \beta)$ -admissible, resulting from u.

Taking in account the stability of $S_{\beta-1}$, we conclude the following: Given $n \in \mathbb{N}$ and $M \in [P]$

- (5.4) There exists an $(\alpha + \beta)$ average u supported by M which admits an $(\epsilon, \alpha, \beta)$ decomposition.
- (5.5) There exists $L \in [M]$ such that $\bigcup_{i=1}^{n} (F_i^{\beta-1}(L) \setminus \{\min F_i^{\beta-1}(L)\})$ is $(\epsilon, \alpha, \beta)$ admissible, resulting from u.

(Recall that for $\gamma < \omega_1$, $(F_i^{\gamma}(L))_{i=1}^{\infty}$ denotes the unique decomposition of L into consecutive, maximal members of S_{γ}).

Lemma 5.3 and (5.4) now yield some $Q \in [P]$ satisfying (1) for $(\epsilon, \alpha, \beta)$. Let \mathcal{D} denote the hereditary family of the $(\epsilon, \alpha, \beta)$ -admissible subsets of Q resulting from some $(\alpha + \beta)$ -average supported by Q. We infer from (5.5) that for every $n \in \mathbb{N}$ and $M \in [Q]$ there exists $L \in [M]$ such that $\bigcup_{i=1}^{n} (F_i^{\beta-1}(L) \setminus \{\min F_i^{\beta-1}(L)\}) \in \mathcal{D}$. We deduce from Lemma 5.4 that $S_{\beta}(R_0) \subset \mathcal{D}$ for some $R_0 \in [Q]$. Employing Lemma 5.7, we find $R \in [R_0]$ such that $F \setminus \{\min F\} \in \mathcal{D}$, for all $F \in S_{\beta}[R]$. Thus Q and R satisfy (1) and (2) for $(\epsilon, \alpha, \beta)$, when β is a successor ordinal.

We now consider the case of β being a limit ordinal. We may choose an increasing sequence of ordinals (β_n) having β as its limit, and such that $(\alpha + \beta_n + 1)$ is the sequence of successor ordinals associated to the limit ordinal $\alpha + \beta$. Let $\epsilon > 0$ and $P \in [N]$ be given. Let $M \in [P]$ and choose $m \in M$ with $1/m < \epsilon/4$. Next choose $M_1 \in [M]$ with $m < \min M_1$ and such that $S_{\beta_m}[M_1] \subset S_{\beta}$ (see Lemma 5.6). We now apply the induction hypothesis for β_m to obtain an $(\alpha + \beta_m)$ -average v supported by M_1 and admitting an $(\epsilon/4, \alpha, \beta_m)$ -decomposition. It is clear that $u = ((1/m)e_m + v) / ||(1/m)e_m + v||$, is an $(\alpha + \beta)$ -average supported by M and admitting

an $(\epsilon, \alpha, \beta)$ -decomposition. Note also that if F is $(\epsilon/4, \alpha, \beta_m)$ -admissible resulting from v, then it is also $(\epsilon, \alpha, \beta)$ -admissible resulting from u.

It follows now, by lemma 5.3, that there exists $Q \in [P]$ such that (1) holds for $(\epsilon, \alpha, \beta)$. Next choose positive integers $k_1 < k_2 < \ldots$ such that $S_{\beta_n}[k_n, \infty) \subset S_{\beta}$ (see Lemma 5.6), for all $n \in \mathbb{N}$. Successive applications of the inductive hypothesis applied to each β_n and Lemma 5.7, yield infinite subsets $Q_1 \supset R_1 \supset Q_2 \supset R_2 \supset \ldots$ of Q with $k_n < \min Q_n$ and such that each member of $S_{\beta_n}(R_n)$ is an $(\epsilon/4, \alpha, \beta_n)$ -admissible set resulting from some $(\alpha+\beta_n)$ -average supported by Q_n , for all $n \in \mathbb{N}$. Let \mathcal{D} denote the hereditary family of the $(\epsilon, \alpha, \beta)$ -admissible subsets of Q resulting from some $(\alpha + \beta)$ -average supported by Q. Our preceding argument shows that $S_{\beta_n}(R_n) \subset \mathcal{D}$, as long as $n \in Q$ and $1/n < \epsilon/4$. We deduce now from Lemma 5.5, that there exists $R_0 \in [Q]$ such that $S_{\beta}(R_0) \subset \mathcal{D}$. Once again, Lemma 5.7 yields some $R \in [R_0]$ with the property $F \setminus \{\min F\} \in \mathcal{D}$, for all $F \in S_{\beta}[R]$. Hence, $Q \supset R$ satisfy (1) and (2) for $(\epsilon, \alpha, \beta)$, when β is a limit ordinal. This completes the inductive step and the proof of the proposition.

In the proof of Theorem 5.1 we shall need Elton's nearly unconditional theorem ([18], [31]).

Theorem 5.10. Let (f_i) be a normalized weakly null sequence in some Banach space. There exists a subsequence (f_{m_i}) of (f_i) with the following property: For every $0 < \delta \le 1$ there exists a constant $C(\delta) > 0$ such that $\|\sum_{i \in F} a_i f_{m_i}\| \le C(\delta) \|\sum_i a_i f_{m_i}\|$, for every finitely supported scalar sequence (a_i) in [-1,1] and every $F \subset \{i \in \mathbb{N} : |a_i| \ge \delta\}$.

Proof of Theorem 5.1. Let $P \in [N]$ and $\epsilon > 0$. Set

$$\mathcal{D} = \{ L \in [P] : [\alpha + \beta]_1^L \text{ admits an}$$
$$(\epsilon, \alpha, \beta) - \text{decomposition of weight smaller than } \epsilon \}.$$

Lemma 4.3 yields that \mathcal{D} is closed in the topology of pointwise convergence. The theorem asserts that $[Q] \subset \mathcal{D}$, for some $Q \in [P]$. Suppose this is not the case and choose, according to Theorem 4.5, $Q_0 \in [P]$ such that $[Q_0] \cap \mathcal{D} = \emptyset$. Next choose $Q_1 \in [Q_0]$ such that no block basis of α -averages supported by Q_1 is a c_0^{β} -spreading model. Let $M \in [Q_1]$. We infer from Proposition 5.9 that there exist infinite subsets $R \subset Q$ of M such that

- (5.6) Every $(\alpha + \beta)$ average supported by Q admits an $(\epsilon/2, \alpha, \beta)$ decomposition.
- (5.7) If $F \in S_{\beta}[R]$, then $F \setminus \{\min F\}$ is $(\epsilon/2, \alpha, \beta)$ admissible resulting from some $(\alpha + \beta)$ average supported by Q.

Choose a maximal member F of $S_{\beta}[R]$. (5.6) and (5.7) allow us to find normalized blocks $u_1 < \cdots < u_n$, positive scalars $(\lambda_i)_{i=1}^n$ and $I \subset \{1, \ldots, n\}$

such that

(5.8)
$$\sum_{i=1}^{n} \lambda_{i} u_{i} \text{ is an } (\alpha + \beta) - \text{average supported by } Q,$$

$$(u_{i})_{i \in I} \text{ is } S_{\beta} - \text{admissible and } F \setminus \{\min F\} \subset \{\min \text{ supp } u_{i} : i \in I\},$$

$$u_{i} \text{ is an } \alpha - \text{average for all } i \in I \text{ and } \|\sum_{i \in \{1, \dots, n\} \setminus I} \lambda_{i} u_{i}\|_{\ell_{1}} < \epsilon/2,$$

$$|\lambda_{i} - \lambda_{j}| < \epsilon/2, \text{ for all } i, j \text{ in } I.$$

Since $\sum_{i=1}^{n} \lambda_i u_i$ is supported by $Q \subset Q_0$, and $[Q_0] \cap \mathcal{D} = \emptyset$, we must have that $\max_{i \in I} \lambda_i \geq \epsilon$. We deduce from (5.8) that

$$\lambda_i \geq \epsilon/2$$
 for all $i \in I$.

Set $J_0 = \{i \in I : \min F < \min \sup u_i\}$ and note that (5.8) implies that $F \setminus \{\min F\} \subset \{\min \sup u_i : i \in J_0\}$. It follows now, since F is maximal in S_{β} , that $\{\min F\} \cup \{\min \sup u_i : i \in J_0\}$ contains a maximal member of S_{β} as a subset and therefore, as S_{β} is stable, there exists an initial segment J of J_0 such that $\{\min F\} \cup \{\min \sup u_i : i \in J\}$ is a maximal member of S_{β} . Note also that $\|\sum_{i \in J} \lambda_i u_i\| \leq 3$.

Summarizing, given $M \in [Q_1]$ we found a block basis of α -averages $v_1 < \cdots < v_k$, supported by $M, m \in M$ with $m < \min \sup v_1$, and scalars $(\mu_i)_{i=1}^k$ in $[\epsilon/2, 2]$ so that

(5.9)
$$\{m\} \cup \{\min \text{ supp } v_i : i \leq k\} \text{ is maximal in } S_\beta \text{ and } \|\sum_{i=1}^k \mu_i v_i\| \leq 3.$$

Define

$$\mathcal{D}_1 = \left\{ L \in [Q_1] : \exists (\mu_i)_{i=1}^k \subset [\epsilon/2, 2], \| \sum_{i=1}^k \mu_i \alpha_i^{L \setminus \{\min L\}} \| \le 3, \text{ and } \right.$$

$$\left\{ \min L \right\} \cup \left\{ \min \text{supp } \alpha_i^{L \setminus \{\min L\}} : i \le k \right\} \text{ is maximal in } S_\beta \right\}.$$

Lemma 4.3 and the stability of S_{β} yield that \mathcal{D}_1 is closed in the topology of pointwise convergence. We now infer from (5.9) that every $M \in [Q_1]$ contains some $L \in \mathcal{D}_1$ as a subset. Thus, we deduce from Theorem 4.5 that there exists $M_0 \in [Q_1]$ with $[M_0] \subset \mathcal{D}_1$.

Now let $L \in [M_0]$ and denote by n_L the unique integer such that $(\alpha_i^L)_{i=1}^{n_L}$ is maximally S_{β} -admissible. Because $L \in \mathcal{D}_1$, we must have that

(5.10)
$$\|\sum_{i=1}^{n_L} \mu_i \alpha_i^L\| \le 4, \text{ for some choice of scalars}$$
$$(\mu_i)_{i=1}^{n_L} \text{ in the interval } [\epsilon/2, 2].$$

Set $g_i = \alpha_i^{M_0}$, for all $i \in \mathbb{N}$. Then (g_i) is a normalized weakly null sequence, as \vec{s} is assumed to be shrinking. Theorem 5.10 now yields a constant C > 0

and a subsequence of (g_i) (which, for clarity, is still denoted by (g_i)), such that

$$\|\sum_{i\in G} a_i g_i\| \le C \|\sum_{i=1}^{\infty} a_i g_i\|,$$

for every finitely supported scalar sequence (a_i) in [-2, 2] and every $G \subset \{i \in \mathbb{N} : |a_i| \geq \epsilon/2\}$. It follows from this, Lemma 4.3 and (5.10) that, whenever $F \in [\mathbb{N}]^{<\infty}$ is so that $(g_i)_{i \in F}$ is maximally S_{β} -admissible, then we have some choice of scalars $(\mu_i)_{i \in F}$ in $[\epsilon/2, 2]$ such that

$$\|\sum_{i\in F} \sigma_i \mu_i g_i\| \le 8C,$$

for every choice of signs $(\sigma_i)_{i \in F}$. We conclude from the above, that some subsequence of (g_i) is a c_0^{β} -spreading model. Lemma 4.3 finally implies that there is some $L \in [M_0]$ (and thus $L \in [Q_1]$) such that (α_i^L) is a c_0^{β} -spreading model, contradicting the choice of Q_1 . Therefore, we must have that $[Q] \subset \mathcal{D}$, for some $Q \in [P]$, and the proof of the theorem is now complete.

6. Transfinite averages of weakly null sequences in C(K) equivalent to the unit vector basis of c_0

In this section we present the following

Theorem 6.1. Let K be a compact metric space and let (f_n) be a normalized, basic sequence in C(K). Suppose that there exist $M \in [\mathbb{N}]$ and a summable sequence of positive scalars (ϵ_n) such that for all $t \in K$, the set $\{n \in M : |f_n(t)| \geq \epsilon_n\}$ is finite. Then there exist $\xi < \omega_1$ and a block basis of ξ -averages of (f_n) equivalent to the unit vector basis of c_0 .

(Note that all transfinite averages of (f_n) are considered with respect to $\mathcal{F} = S_1$.)

Remark 6.2. The hypotheses in Theorem 6.1 imply that $\sum_{n\in M} |f_n(t)|$ is a convergent series, for all $t\in K$. It follows then from Rainwater's theorem [36], that every normalized block basis of $(f_n)_{n\in M}$ is weakly null and therefore, the subsequence $(f_n)_{n\in M}$ of (f_n) is shrinking. Moreover, the convergence of the series $\sum_{n\in M} |f_n(t)|$ for all $t\in K$, implies that some block basis of $(f_n)_{n\in M}$ is equivalent to the unit vector basis of c_0 . This is a special case of a famous result, due to J. Elton [19], which states that if (x_n) is a normalized basic sequence in some Banach space and the series $\sum_n |x^*(x_n)|$ converges for every extreme point x^* in the ball of X^* , then some block basis of (x_n) is equivalent to the unit vector basis of c_0 . An alternate proof of this special case of Elton's theorem is given in [22]. See also [20], [4] for related results. We wish to indicate however, as our next corollary shows, that this special case of Elton's theorem is also a consequence of Theorem 6.1. Hence, our result may be viewed as a quantitative version of this special case of Elton's theorem.

Corollary 6.3. Let (f_n) be a normalized basic sequence in C(K) such that $\sum_n |f_n(t)|$ is a convergent series, for all $t \in K$. Then there exist $\xi < \omega_1$ and a block basis of ξ -averages of (f_n) equivalent to the unit vector basis of c_0 .

The proof is given at the end of this section.

The ordinal ξ that appears in the conclusion of Theorem 6.1, is related to the complexity of the compact family $\{F \in [M]^{<\infty} : \exists t \in K \text{ with } |f_n(t)| \ge \epsilon_n, \forall n \in F\}$. It follows from Corollary 3.2, that every normalized weakly null sequence in C(K), for K a countable compact metric space, admits a subsequence satisfying the hypotheses of Theorem 6.1. Moreover, if K is homeomorphic to $[1, \omega^{\omega^{\alpha}}]$, for some $\alpha < \omega_1$, then as is shown in Corollary 6.8, the ordinal ξ in the conclusion of Theorem 6.1 can be taken not to exceed α .

We shall next describe how to obtain the "optimal" ξ satisfying the conclusion of Theorem 6.1.

The following conventions hold throughout this section. K is a compact metric space and $\vec{s} = (f_n)$ is a normalized shrinking basic sequence in C(K). We shall assume, without loss of generality, by passing to a subsequence if necessary, that \vec{s} is 2-basic. We let $\mathcal{F} = S_1$. All transfinite averages of \vec{s} will be taken with respect to \mathcal{F} . As in the previous section, α_n^M abbreviates $\alpha_n^{\mathcal{F},\vec{s},M}$. In the sequel, when we refer to a block basis we shall always mean a block basis of $\vec{s} = (f_n)$. Also all transfinite averages will be taken with respect to \vec{s} .

- **Definition 6.4.** (1) Given $N \in [\mathbb{N}]$ and $1 \leq \alpha < \omega_1$, we say that N is α -large, if for every $\beta < \alpha$ and $M \in [N]$ there exists $L \in [M]$ such that no block basis of β -averages supported by L is a c_0^{γ} -spreading model, where $\beta + \gamma = \alpha$.
 - (2) Given $N \in [\mathbb{N}]$ set $\xi^N = \sup\{\alpha < \omega_1 : \exists \ an \ \alpha large \ M \in [\mathbb{N}]\}$. Put $\xi^N = 0$, if this set is empty. Finally put $\xi^0 = \min\{\xi^N : N \in [\mathbb{N}]\}$.

Note that if $\xi^0 = \xi^{N_0}$ for some $N_0 \in [\mathbb{N}]$, then $\xi^L = \xi^0$, for all $L \in [N_0]$. In fact, if $1 \leq \xi^0 < \omega_1$, then every infinite subset of N_0 is ξ^0 -large.

Proposition 6.5. Suppose that $\xi^N < \omega_1$, for some $N \in [\mathbb{N}]$. Then there exists a block basis of ξ^N -averages, supported by N, which is equivalent to the unit vector basis of c_0 .

We postpone the proof and observe that if $\xi^0 < \omega_1$ and $\xi^0 = \xi^{N_0}$, then Proposition 6.5 yields that every infinite subset of N_0 supports a block basis of ξ^0 -averages, equivalent to the unit vector basis of c_0 and, moreover, it follows by our preceding comments, that ξ^0 is the smallest ordinal with this property. Therefore, the optimality of ξ^0 is considered in this sense. In order to prove Theorem 6.1, we need to introduce some more notation and terminology.

Definition 6.6. (1) Let $\beta < \alpha < \omega_1, p \in \mathbb{N}$ and $\epsilon > 0$. An α -average $u = \sum_i a_i f_i$, is said to be (β, p, ϵ) -large, if for every choice $I_1 < \epsilon$

- $\cdots < I_k$ of k consecutive members of S_{β} , $k \le p$, and all $t \in K$, we have $|\sum_{i \in I} a_i f_i(t)| \le \epsilon + \sum_{i \notin I} a_i |f_i(t)|$, where $I = \bigcup_{j=1}^k I_j$.
- (2) Let $N \in [\mathbb{N}]$, $1 \leq \alpha < \omega_1$ We say that N is α -nice if for every $\beta < \alpha$, every $M \in [N]$, every $p \in \mathbb{N}$ and all $\epsilon > 0$, there exists an α -average supported by M which is (β, p, ϵ) -large.

The main step for proving Theorem 6.1 is

Theorem 6.7. Suppose that $N \in [\mathbb{N}]$ is α -large, for some $1 \leq \alpha < \omega_1$. Then N is α -nice.

We postpone the proof in order to give the

Proof of Theorem 6.1. Let

$$\mathcal{G} = \{ F \in [\mathbb{N}]^{<\infty} : \exists t \in K \text{ with } |f_n(t)| \ge \epsilon_n, \forall n \in F \}.$$

Clearly, \mathcal{G} is hereditary. The compactness of K and our assumptions, imply that $\mathcal{G}[M]$ is compact in the topology of pointwise convergence. It follows that there is a countable ordinal ζ such that $\mathcal{G}[M]^{(\zeta)}$ is finite. Write $\zeta = \omega^{\gamma}k + \eta$, for some $k \in \mathbb{N}$ and $\eta < \omega^{\gamma}$. We infer now by the result of [21], that there exists $N \in [M]$ with the property $\mathcal{G}[N] \subset S_{\gamma+1}$.

We claim that $\xi^N \leq \gamma + 1$ (see Definition 6.4). Indeed, were this claim false, we would choose $P \in [N]$ and a countable ordinal $\beta > \gamma + 1$ such that P is β -large. Theorem 6.7 then yields P is β -nice (see Definition 6.6). Next, let $\epsilon > 0$ and choose $Q \in [P]$ such that $\sum_{n \in Q} \epsilon_n < \epsilon/12$. Since $\gamma + 1 < \beta$ and P is β -nice, there exists a β -average $u = \sum_i a_i f_i$, supported by Q which is $(\gamma + 1, 1, \epsilon/2)$ -large. This means

$$\left| \sum_{i \in I} a_i f_i(t) \right| \le \epsilon/2 + \sum_{i \notin I} a_i |f_i(t)|,$$

for all $t \in K$ and every $I \in S_{\gamma+1}$. Given $t \in K$, put $\Lambda_t = \{n \in \mathbb{N} : |f_n(t)| \ge \epsilon_n\}$. Note that u is supported by N and so $\Lambda_t \cap \text{supp } u \in S_{\gamma+1}$, for all $t \in K$, as $\Lambda_t \cap \text{supp } u \in \mathcal{G}[N]$. Taking in account that ||u|| = 1, we have $0 \le a_i \le 3$, for all $i \in \mathbb{N}$. Hence,

$$|u(t)| \le \left| \sum_{i \in \Lambda_t \cap \text{supp } u} a_i f_i(t) \right| + \left| \sum_{i \notin \Lambda_t} a_i f_i(t) \right|$$
$$\le \epsilon/2 + 2 \sum_{i \notin \Lambda_t} a_i |f_i(t)|$$
$$< \epsilon/2 + 6\epsilon/12 = \epsilon,$$

for all $t \in K$. Since ϵ was arbitrary, we have reached a contradiction. Therefore, our claim holds. In particular, $\xi^N < \omega_1$ and the assertion of the theorem is a consequence of Proposition 6.5.

Corollary 6.8. Let (f_n) be a normalized weakly null sequence in $C(\omega^{\omega^{\xi}})$, $\xi < \omega_1$. Then there exist $\alpha \leq \xi$ and a block basis of α -averages of (f_n) equivalent to the unit vector basis of c_0 .

Proof. Set $K = [1, \omega^{\omega^{\xi}}]$. Corollary 3.2 yields $M \in [\mathbb{N}]$ and a summable sequence of positive scalars (ϵ_n) such that for all $t \in K$ the set $\{n \in M : |f_n(t)| \geq \epsilon_n\}$ belongs to S_{ξ}^+ . In particular, $\Lambda_t \cap M$ is the union of two consecutive members of S_{ξ} . The argument in the proof of Theorem 6.1 shows that $\xi^M \leq \xi$. The assertion of the corollary now follows from Proposition 6.5.

We shall now give the proof of Proposition 6.5. This requires two lemmas.

Lemma 6.9. Suppose that $1 \le \alpha < \omega_1$. Let m < n in \mathbb{N} and $F \in [\mathbb{N}]^{<\infty}$ with $n < \min F$ be such that $\{n\} \cup F$ is a maximal member of S_{α} . Then $\{m\} \cup F \notin S_{\alpha}$.

Proof. We use transfinite induction on α . When $\alpha = 1$, we must have that |F| = n - 1, in order for $\{n\} \cup F$ be maximal in S_1 . Hence, $|\{m\} \cup F| = n > m = \min(\{m\} \cup F)$. Thus the assertion of the lemma holds in this case.

Next assume the assertion holds for all ordinals smaller than α ($\alpha > 1$). Suppose first α is a limit ordinal and let (α_n) be the sequence of successor ordinals associated to α . Since $\{n\} \cup F$ is maximal in S_{α} , we have that $\{n\} \cup F$ is maximal in S_{α_k} , for all $k \leq n$ such that $\{n\} \cup F \in S_{\alpha_k}$. Suppose we had $\{m\} \cup F \in S_{\alpha}$. Then there is some $k \leq m$ such that $\{m\} \cup F \in S_{\alpha_k}$. We infer from the spreading property of S_{α_k} , as m < n, that $\{n\} \cup F \in S_{\alpha_k}$. Therefore, $\{n\} \cup F$ is maximal in S_{α_k} . The induction hypothesis applied on α_k now yields $\{m\} \cup F \notin S_{\alpha_k}$, a contradiction which proves the assertion when α is a limit ordinal.

We now assume α is a successor ordinal, say $\alpha = \beta + 1$. Since $\{n\} \cup F$ is maximal in S_{α} , there exist $F_1 < \cdots < F_n$, successive maximal members of S_{β} such that $\{n\} \cup F = \bigcup_{i=1}^n F_i$ (see [21]). We shall assume m > 1 or else the assertion holds since $\{1\}$ is maximal in every Schreier family and $F \neq \emptyset$. Note that the induction hypothesis on β implies that $G_1 = \{m\} \cup (F_1 \setminus \{n\}) \notin S_{\beta}$. It follows, as S_{β} is stable, that G_1 contains a maximal member H_1 of S_{β} as an initial segment, and so we may write $G_1 = H_1 \cup H_2$ with $H_2 \neq \emptyset$. Of course, $m = \min H_1$. Set $H = H_1 \cup \bigcup_{i=2}^m F_i$. Then H is maximal in S_{α} . This completes the proof of the lemma since H is a proper subset of $\{m\} \cup F$. \square

Lemma 6.10. Let $P \in [\mathbb{N}]$, $\beta \leq \alpha < \omega_1$ and $\tau < \omega_1$. Assume that every block basis of β -averages supported by P is a c_0^{γ} -spreading model, where $\beta + \gamma = \alpha$, while every block basis of α -averages supported by P is a c_0^{τ} -spreading model. Then there exists $Q \in [P]$ such that every block basis of β -averages supported by Q is a $c_0^{\gamma+\tau}$ -spreading model.

Proof. We assume that both γ and τ are greater than or equal to 1, or else the assertion of the lemma is trivial. We also assume, without loss of generality thanks to Lemma 4.6, that there exists a constant C > 0 such that every block basis of β -averages (resp. α -averages) supported by P is a c_0^{γ} (resp. c_0^{τ})-spreading model with constant C. We shall further assume, without loss of generality thanks to Lemma 5.8, that for every $F \in S_{\gamma+\tau}[P]$ we have $F \setminus \{\min F\} \in S_{\tau}[S_{\gamma}]$.

Let $M \in [P]$. Choose a sequence of positive scalars (δ_i) with $\sum_i \delta_i < 1/(4C)$. We apply Proposition 5.9, successively, to obtain the following objects:

- (1) A maximally S_{τ} -admissible block basis $v_1 < \cdots < v_n$ of α -averages, supported by M, with min $M < \min \sup v_1$.
- (2) Successive, maximal members $F_1 < \cdots < F_n$ of $S_{\gamma}[M]$ such that $\max \sup v_i < \min F_{i+1}$, for all i < n.
- (3) Successive finite subsets of \mathbb{N} $J_1 < \cdots < J_n$ such that for each $i \leq n$, there exist a normalized block basis $(u_j)_{j \in J_i}$, a subset I_i of J_i and positive scalars $(\lambda_j)_{j \in J_i}$ which satisfy the following properties:

(6.1)
$$v_i = \sum_{j \in J_i} \lambda_j u_j, \text{ and } \left\| \sum_{j \in J_i \setminus I_i} \lambda_j u_j \right\|_{\ell_1} < \delta_i.$$

(6.2) $(u_j)_{j \in I_i}$ is an S_{γ} – admissible block basis of β – averages and $|\lambda_r - \lambda_s| < \delta_i$, for all r, s in I_i .

(6.3)
$$F_i \setminus \{\min F_i\} \subset \{\min \operatorname{supp} u_j : j \in I_i\}.$$

Our assumptions yield that $\|\sum_{i=1}^n v_i\| \leq C$ and that

$$1 - \delta_i \le \left\| \sum_{j \in I_i} \lambda_j u_j \right\| \le C \max_{j \in I_i} \lambda_j$$
, for all $i \le n$.

(6.2) now implies

(6.4)
$$1/(2C) \le \lambda_j \le 3$$
, for all $j \in I_i$ and $i \le n$.

We also obtain from (6.1) that

(6.5)
$$\left\| \sum_{i=1}^{n} \sum_{j \in I_i} \lambda_j u_j \right\| \le C + \sum_{i=1}^{n} \delta_i < 2C.$$

We next observe that for all i < n and $j_0 \in I_i$, $\{\min \sup u_{j_0}\} \cup \{\min \sup u_j : j \in I_{i+1}\} \notin S_{\gamma}$. This is so since $F_{i+1} \setminus \{\min F_{i+1}\} \subset \{\min \sup u_j : j \in I_{i+1}\}$, (by (6.3)), $\max \sup v_i < \min F_{i+1}$, and thus, as a consequence of Lemma 6.9, we have that $\{\min \sup u_{j_0}\} \cup (F_{i+1} \setminus \{\min F_{i+1}\}) \notin S_{\gamma}$.

It follows from this that for all $i \leq n$ there exists an initial segment I_i^* of I_i (possibly, $I_i^* = \emptyset$) with $\max I_i^* < \max I_i$, such that $\{\min \sup u_j : j \in (I_i \setminus I_i^*) \cup I_{i+1}^*\}$ is a maximal member of S_{γ} , for all i < n. Note that $I_1^* = \emptyset$.

Set $T_i = (I_i \setminus I_i^*) \cup I_{i+1}^*$, for all i < n. Then $(u_j)_{j \in T_i}$ is maximally S_{γ} -admissible for all i < n. We also infer from (6.4) and (6.5) that

$$\left\| \sum_{j \in \cup_{i < n} T_i} \lambda_j u_j \right\| \le 4C, \ \lambda_j \in [1/(2C), 3], \text{ for all } j \in \cup_{i < n} T_i.$$

Note also that min supp $u_{\min T_i} < \min \text{supp } v_{i+1}$, for all i < n. Since min $M < \min \text{supp } v_1$ and $(v_i)_{i=1}^n$ is maximally S_{τ} -admissible, Lemma 6.9 and the

spreading property of S_{τ} , yield that $\{\min M\} \cup \{\min \sup u_{\min T_i} : i < n\}$ is not a member of S_{τ} . Hence, by the stability of S_{τ} , there exists m < n such that $\{\min M\} \cup \{\min \sup u_{\min T_i} : i \leq m\}$ is a maximal member of S_{τ} . Note also that $\|\sum_{j \in \cup_{i \leq m} T_i} \lambda_j u_j\| \leq 4C$ and $\lambda_j \in [1/(2C), 3]$, for all $j \in \cup_{i \leq m} T_i$.

Summarizing, given $M \in [P]$ there exists a maximally $S_{\tau}[S_{\gamma}]$ -admissible block basis $(u_i)_{i=1}^k$ of β -averages, supported by M, and scalars $(\lambda_i)_{i=1}^k$ in [1/(2C), 3] such that $\|\sum_{i=1}^k \lambda_i u_i\| \leq 5C$. Given $L \in [P]$ let n_L denote the unique integer such that $(\beta_i^L)_{i=1}^{n_L}$ is maximally $S_{\tau}[S_{\gamma}]$ -admissible. Define

$$\mathcal{D} = \left\{ L \in [P] : \exists (\lambda_i)_{i=1}^{n_L} \subset [1/(2C), 3], \| \sum_{i=1}^{n_L} \lambda_i \beta_i^L \| \le 5C \right\}.$$

Lemma 4.3 and the stability of $S_{\tau}[S_{\gamma}]$ yield that \mathcal{D} is closed in the topology of pointwise convergence. We infer from our preceding discussion, that every $M \in [P]$ contains some $L \in \mathcal{D}$ as a subset. Thus, we deduce from Theorem 4.5 that there exists $M_0 \in [P]$ with $[M_0] \subset \mathcal{D}$. Arguing as in the last part of the proof of Theorem 5.1, using Theorem 5.10 and our assumptions on P, we obtain a block basis of β -averages which is a $c_0^{\gamma+\tau}$ -spreading model. The assertion of the lemma now follows from Lemma 4.6.

Proof of Proposition 6.5. To simplify our notation, let us write ξ instead of ξ^N . We assert that for every $M \in [N]$ and all $\beta < \omega_1$ there exists a block basis of ξ -averages supported by M which is a c_0^{β} -spreading model. Once this is accomplished, the proposition will follow from the Kunen-Martin boundedness principle (see [16], [25]). To see this, let $N \in [\mathbb{N}]$. Given $n \in \mathbb{N}$, let \mathcal{T}_n^N denote the family of those finite subsets of N that are initial segments of sets of the form $\bigcup_{i=1}^k \operatorname{supp} \xi_i^L$, for some $k \in \mathbb{N}$ and $L \in [N]$ such that $\|\sum_{i=1}^k \xi_i^L\| \le n$. We claim there is some $n \in \mathbb{N}$ so that \mathcal{T}_n^N is not compact in the topology of pointwise convergence. Otherwise, the Mazurkiewicz-Sierpinski theorem [29], yields $\zeta < \omega_1$ so that \mathcal{T}_n^N is homeomorphic to a subset of $[1,\omega^{\omega^{\zeta}}]$, for all $n\in\mathbb{N}$. We may now choose, according to our assertion combined with Lemma 4.6, some $L_0 \in [N]$ and $n \in \mathbb{N}$ such that $(\xi_i^L)_{i=1}^{\infty}$ is a $c_0^{\zeta+1}$ -spreading model with constant n, for all $L \in [L_0]$. It follows from this that for all $L \in [L_0]$, $\bigcup_{i=1}^{n_L} \operatorname{supp} \xi_i^L \in \mathcal{T}_n^N$, where n_L stands for the unique integer such that $(\xi_i^L)_{i=1}^{n_l}$ is maximally $S_{\zeta+1}$ -admissible. Since S_{α} is homeomorphic to $[1, \omega^{\omega^{\alpha}}]$ for all $\alpha < \omega_1$ (see [1]), this implies that $S_{\zeta+1}$ is homeomorphic to a subset of $[1,\omega^{\omega^{\zeta}}]$ which is absurd. Hence, indeed, there is some $n \in \mathbb{N}$ with \mathcal{T}_n^N non-compact. Subsequently, there exists $M \in [N]$, $M = (m_i)$, such that $\{m_1, \ldots, m_k\} \in \mathcal{T}_n^N$, for all $k \in \mathbb{N}$. We now infer from Lemma 4.3, that $\|\sum_{i=1}^k \xi_i^M\| \le n$, for all $k \in \mathbb{N}$. Using an argument based on Theorem 4.5, similar to that in the proof of Lemma 4.6, we conclude that some block basis of ξ -averages is equivalent to the unit vector basis of c_0 .

We shall next prove our initial assertion by transfinite induction on β . The assertion is trivial for $\beta = 0$. Assume $\beta \geq 1$ and that the assertion

holds for all $M \in [N]$ and all ordinals smaller than β yet, for some $P \in [N]$ there is no block basis of ξ -averages, supported by P, which is a c_0^{β} -spreading model. We now show that P is $(\xi + \beta)$ -large which, of course, is absurd.

To see this, first consider an ordinal $\gamma < \xi$ and let $M \in [P]$. Write $\xi = \gamma + \delta$. We claim that there exists $L \in [M]$ such that no block basis of γ -averages supported by L is a $c_0^{\delta+\beta}$ -spreading model (note that $\gamma+(\delta+\beta)=\xi+\beta$). Were this claim false, then Lemma 4.6 would yield a constant C>0and $L_0 \in [M]$ such that, every block basis of γ -averages supported by L_0 is a $c_0^{\delta+\beta}$ -spreading model with constant C. By employing Lemma 5.8 we may assume, without loss of generality, that for all $F \in S_{\beta}[S_{\delta}], F \subset L_0$, we have $F \setminus \{\min F\} \in S_{\delta+\beta}$. But now, we shall exhibit a block basis of ξ -averages supported by L_0 (and thus also by P), which is a c_0^{β} -spreading model. Indeed, as $\xi = \gamma + \delta$, we may apply Proposition 5.9, successively, to obtain block bases $u_1 < u_2 < \dots$ and $v_1 < v_2 < \dots$ consisting of ξ and γ averages, respectively, both supported by L_0 ; A sequence of positive scalars (λ_i) and a sequence $F_1 < F_2 < \dots$ of successive finite subsets of N so that the following requirements are satisfied:

- (1) $||u_i \sum_{j \in F_i} \lambda_j v_j|| < \epsilon_i$, for all $i \in \mathbb{N}$. (2) $(v_j)_{j \in F_i}$ is S_{δ} -admissible and $\sup v_j \subset \sup u_i$, for all $j \in F_i$ and $i \in \mathbb{N}$.

In the above, (ϵ_i) is a summable sequence of positive scalars. Since $(\lambda_j)_{j\in\cup_i F_i}$ is bounded and (v_i) is a $c_0^{\delta+\beta}$ -spreading model, our assumptions on L_0 readily imply that (u_i) is a block basis of ξ -averages supported by P which is a c_0^{β} spreading model. This contradicts the choice of P. Therefore our claim holds.

Next, let $M \in [P]$, $\gamma < \beta$ and write $\beta = \gamma + \delta$. Note that $\xi + \beta = (\xi + \gamma) + \delta$. We now claim that there exists $L \in [M]$ such that no block basis of $(\xi + \gamma)$ averages supported by L is a c_0^{δ} -spreading model. If that were not the case then, thanks to Lemma 4.6, there would exist $L_0 \in [M]$ such that every block basis of $(\xi + \gamma)$ -averages supported by L_0 is a c_0^{δ} -spreading model.

Since $\gamma < \beta$, the induction hypothesis combined with Lemma 4.6 implies the existence of some $L_1 \in [L_0]$ such that every block basis of ξ -averages supported by L_1 is a c_0^{γ} -spreading model. We deduce from Lemma 6.10 that some block basis of ξ -averages supported by L_0 (and thus also by P) is a $c_0^{\gamma+\delta}$ -spreading model. Since $\beta=\gamma+\delta$, we contradict the choice of P. Therefore, this claim holds as well.

Summarizing, we showed that for every $\gamma < \xi + \beta$ and all $M \in [P]$ there exists $L \in [M]$ such that no block basis of γ -averages supported by L is a c_0^{δ} -spreading model, where $\gamma + \delta = \xi + \beta$. But this means $P \in [N]$ is $(\xi + \beta)$ -large, contradicting the definition of ξ . The proof of the proposition is now complete.

In the next part of this section we give the proof of Theorem 6.7. We shall need a few technical lemmas.

Lemma 6.11. Suppose that $N \in [\mathbb{N}]$ is α -nice (see Definition 6.6). Then for every $P \in [N]$, every $\beta < \alpha$, every $p \in \mathbb{N}$ and all $\epsilon > 0$, there exists $M \in [P]$ such that every α -average supported by M is (β, p, ϵ) -large.

Proof. Define $\mathcal{D} = \{L \in [P] : \alpha_1^L \text{ is } (\beta, p, \epsilon) - \text{large}\}$. Lemma 4.3 yields \mathcal{D} is closed in the topology of pointwise convergence. Because N is α -nice, we deduce that $[L] \cap \mathcal{D} \neq \emptyset$, for all $L \in [P]$. We infer now, from Theorem 4.5, that $[M] \subset \mathcal{D}$, for some $M \in [P]$. Clearly, M is as desired. \square

Lemma 6.12. Suppose that $N_1 \supset N_2 \supset \ldots$ are infinite subsets of \mathbb{N} and $\alpha_1 < \alpha_2 < \ldots$ are countable ordinals such that N_i is α_i -nice for all $i \in \mathbb{N}$. Let $N \in [\mathbb{N}]$ be such that $N \setminus N_i$ is finite, for all $i \in \mathbb{N}$. Then, N is α -nice, where $\alpha = \lim_i \alpha_i$.

Proof. Let $M \in [N]$, $\beta < \alpha$, $p \in \mathbb{N}$ and $\epsilon > 0$. It suffices to find an α -average u supported by M which is (β, p, ϵ) -large. Choose a sequence of positive scalars (δ_i) with $\sum_i \delta_i < \epsilon/6$.

Let $k \in \mathbb{N}$ be such that $\beta < \alpha_k$. Since N_k is α_k -nice, we may apply Lemma 6.11, successively, to obtain infinite subsets $P_1 \supset P_2 \supset \ldots$ of $M \cap N_k$ such that, for all $i \in \mathbb{N}$, every α_k -average supported by P_i is (β, p, δ_i) -large. Next choose integers $p_1 < p_2 < \ldots$ such that $p_i \in P_i$, for all $i \in \mathbb{N}$, and set $P = (p_i)$.

We now employ Proposition 5.9 to find $Q \in [P]$ with the property that every α -average supported by Q admits an $(\epsilon/2, \alpha_k, \beta_k)$ -decomposition (see Definition 5.2), where $\alpha_k + \beta_k = \alpha$. Let u be an α -average supported by Q. Write $u = \sum_{i=1}^n \lambda_i u_i$, where $u_1 < \cdots < u_n$ are normalized blocks, $(\lambda_i)_{i=1}^n$ are positive scalars for which there exists $I \subset \{1, \ldots, n\}$ satisfying

$$u_i$$
 is an α_k – average for all $i \in I$, while $\left\| \sum_{i \in \{1, ..., n\} \setminus I} \lambda_i u_i \right\|_{\ell_1} < \epsilon/2$.

If $u_i = \sum_s a_s^i f_s$, for $i \leq n$, then, clearly, $\sum_{i \in \{1,\dots,n\} \setminus I} \lambda_i \sum_s a_s^i < \epsilon/2$.

We are going to show that u is (β, p, ϵ) -large. To this end, let J be the union of less than, or equal to, p consecutive members of S_{β} and let $t \in K$. Write $I = \{i_1 < \ldots, < i_m\}$. Observe that u_{i_j} is an α_k -average supported by P_j and thus by the choice of P_j ,

$$\left|\sum_{s\in J} a_s^{i_j} f_s(t)\right| \le \delta_j + \sum_{s\notin J} a_s^{i_j} |f_s(t)|, \text{ for all } j \le m.$$

Therefore, letting $I^c = \{1, \dots, n\} \setminus I$,

$$\left| \sum_{i=1}^{n} \lambda_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) \right| \leq \left| \sum_{i \in I^{c}} \lambda_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) \right| + \left| \sum_{i \in I} \lambda_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) \right|$$

$$\leq \sum_{i \in I^{c}} \lambda_{i} \sum_{s} a_{s}^{i} + \sum_{i \in I} \lambda_{i} \left| \sum_{s \in J} a_{s}^{i} f_{s}(t) \right|$$

$$\leq \epsilon/2 + \sum_{i=1}^{m} \lambda_{i} \left(\delta_{j} + \sum_{s \notin J} a_{s}^{i} |f_{s}(t)| \right)$$

$$\leq \epsilon/2 + 3\sum_{j=1}^{|I|} \delta_j + \sum_{i=1}^n \lambda_i \sum_{s \notin J} a_s^i |f_s(t)|$$

$$\leq \epsilon + \sum_{i=1}^n \lambda_i \sum_{s \notin J} a_s^i |f_s(t)|.$$

The proof of the lemma is now complete.

Lemma 6.13. Let $u_1 < \cdots < u_n$ be a normalized finite block basis of (f_i) . Write $u_i = \sum_s a_s^i f_s$, and set $k_i = \max \sup u_i$ for all $i \le n$. Let $\alpha < \omega_1$ and denote by $(\alpha_j + 1)_{j=1}^{\infty}$ the sequence of ordinals associated to α . Let \mathcal{G} be a hereditary and spreading family, and $(\delta_i)_{i=1}^n$ be a sequence of non-negative scalars. Suppose that $J \in \mathcal{G}[S_{\alpha}]$ satisfies the following property: If $2 \le i \le n$ is so that $J \cap \sup u_i$ is contained in the union of less than, or equal to, k_{i-1} consecutive members of S_{α_i} , for some $j \le k_{i-1}$ then,

$$\left|\sum_{s\in J} a_s^i f_s(t)\right| \le \delta_i + \sum_{s\notin J} |a_s^i| |f_s(t)|, \text{ for all } t\in K.$$

Then for every scalar sequence $(b_i)_{i=1}^n$ and all $t \in K$, we have the estimate (6.6)

$$\left| \sum_{i=1}^{n} b_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) \right| \leq \max \left\{ \left| \sum_{i \in I} b_{i} u_{i}(t) \right| : (u_{i})_{i \in I} \text{ is } \mathcal{G}^{+} - admissible \right\} + \left(\sum_{i=1}^{n} \delta_{i} \right) \max_{i \leq n} |b_{i}| + \sum_{i=1}^{n} |b_{i}| \sum_{s \notin J} |a_{s}^{i}| |f_{s}(t)|.$$

Proof. We may assume that $J \cap \bigcup_{i=1}^n \operatorname{supp} u_i \neq \emptyset$, or else the assertion of the lemma is trivial. We may thus write $J \cap \bigcup_{i=1}^n \operatorname{supp} u_i = \bigcup_{l=1}^p J_l$, where $J_1 < \cdots < J_p$ are non-empty members of S_α with $\{\min J_l : l \leq p\} \in \mathcal{G}$.

Define $I_l = \{i \leq n : r(u_i) \cap J_l \neq \emptyset\}$ (where $r(u_i)$ denotes the range of u_i) and $i_l = \min I_l$, for all $l \leq p$. Put $I = \{i_l : l \leq p\}$ and let I^c be the complement of I in $\{1, \ldots, n\}$. Then $(u_i)_{i \in I}$ is \mathcal{G}^+ -admissible.

Indeed, set $L_i = \{l \leq p : i_l = i\}$, for all $i \in I$. Observe that L_i is an interval and that $L_i < L_{i'}$ for all i < i' in I. Hence, $\min J_{\min L_i} \leq \max \sup u_i$, for all $i \in I$. Since \mathcal{G} is hereditary and spreading, we infer that $(k_i)_{i \in I} \in \mathcal{G}$. It follows now, by the spreading property of \mathcal{G} , that $(u_i)_{i \in I \setminus \{\min I\}}$ is \mathcal{G} -admissible.

Next assume that $i \in I^c \cap \bigcup_{l \leq p} I_l$. Then there is a unique $l \leq p$ with $i \in I_l$. Otherwise, $r(u_i) \cap J_l \neq \emptyset$ for at least two distinct l's, and so $i \in I$.

It follows now that $J \cap \operatorname{supp} u_i = J_l \cap \operatorname{supp} u_i$, for some $l \leq p$. Note that $i_l < i$ and that $J_l \cap r(u_{i_l}) \neq \emptyset$. Therefore $\min J_l \leq k_{i_l}$. We deduce from this that $J_l \in S_{\alpha_j+1}$ for some $j \leq k_{i_l}$ and, subsequently, that J_l is contained in the union of less than or equal to k_{i_l} consecutive members of S_{α_j} , for some $j \leq k_{i_l}$. The same holds for $J \cap \operatorname{supp} u_i$ and as $i_l < i$, we infer from our

hypothesis, that

$$\big| \sum_{s \in J} a_s^i f_s(t) \big| \leq \delta_i + \sum_{s \notin J} |a_s^i| |f_s(t)|, \text{ for all } i \in I^c \text{ and } t \in K.$$

Now let $(b_i)_{i=1}^n$ be any scalar sequence and let $t \in K$. Then

$$\sum_{i=1}^{n} b_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) = \sum_{i \in I} b_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) + \sum_{i \in I^{c}} b_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t).$$

Our preceding discussions yield

(6.7)
$$|\sum_{i \in I^{c}} b_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t)| \leq \sum_{i \in I^{c}} |b_{i}| |\sum_{s \in J} a_{s}^{i} f_{s}(t)|$$

$$\leq \sum_{i \in I^{c}} |b_{i}| (\delta_{i} + \sum_{s \notin J} |a_{s}^{i}| |f_{s}(t)|)$$

$$\leq (\max_{i \leq n} |b_{i}|) \sum_{i \in I^{c}} \delta_{i} + \sum_{i \in I^{c}} |b_{i}| \sum_{s \notin J} |a_{s}^{i}| |f_{s}(t)|$$

and

(6.8)
$$\left| \sum_{i \in I} b_i \sum_{s \in J} a_s^i f_s(t) \right| = \left| \sum_{i \in I} b_i \left(u_i(t) - \sum_{s \notin J} a_s^i f_s(t) \right) \right|$$

$$\leq \left| \sum_{i \in I} b_i u_i(t) \right| + \sum_{i \in I} |b_i| \sum_{s \notin J} |a_s^i| |f_s(t)|.$$

Combining (6.7) with (6.8) we obtain (6.6), since $(u_i)_{i \in I}$ is \mathcal{G}^+ -admissible.

Lemma 6.14. Suppose that $N \in [\mathbb{N}]$ is α -nice and that there exist $\Gamma \in [N]$ and $\gamma < \omega_1$ such that no block basis of α -averages supported by Γ is a c_0^{γ} -spreading model. Then there exist $M \in [N]$ and $1 \leq \beta \leq \gamma$ such that M is $(\alpha + \beta)$ -nice.

Proof. Define

$$\beta = \min\{\psi < \omega_1 : \exists \Psi \in [N] \text{ such that no block basis of } \alpha - \text{averages supported by } \Psi \text{ is a } c_0^{\psi} - \text{spreading model}\}.$$

Our assumptions yield $1 \leq \beta \leq \gamma$. Choose $M \in [N]$ such that no block basis of α -averages supported by M is a c_0^{β} -spreading model. We are going to show that M is $(\alpha + \beta)$ -nice. Let $M_0 \in [M]$ and $\tau < \alpha + \beta$. Let $p \in \mathbb{N}$ and $\epsilon > 0$. We shall exhibit an $(\alpha + \beta)$ -average supported by M_0 which is (τ, p, ϵ) -large. Choose a decreasing sequence of positive scalars (δ_i) such that $\sum_i \delta_i < \epsilon/6$.

We first consider the case $\tau < \alpha$. Because N is α -nice, we may apply Lemma 6.11, successively, to obtain infinite subsets $P_1 \supset P_2 \supset \ldots$ of M_0 such that, for all $i \in \mathbb{N}$, every α -average supported by P_i is (τ, p, δ_i) -large. Choose integers $p_1 < p_2 < \ldots$ such that $p_i \in P_i$, for all $i \in \mathbb{N}$, and set $P_0 = (p_i)$. Proposition 5.9 now yields an $(\alpha + \beta)$ -average u supported

by P_0 and admitting an $(\epsilon/2, \alpha, \beta)$ -decomposition (see Definition 5.2). In particular, there exist normalized blocks $u_1 < \cdots < u_n$, positive scalars $(\lambda_i)_{i=1}^n$ and $I \subset \{1, \ldots, n\}$ such that $u = \sum_{i=1}^n \lambda_i u_i$, u_i is an α -average for all $i \in I$ and $\|\sum_{i \in \{1, \ldots, n\} \setminus I} \lambda_i u_i\|_{\ell_1} < \epsilon/2$. Let J be the union of less than, or equal to, p consecutive members of S_{τ} , and let $t \in K$. By repeating the argument in the last part of the proof of Lemma 6.12 we conclude that u is (τ, p, ϵ) -large. This proves the assertion when $\tau < \alpha$.

Next suppose $\alpha \leq \tau < \alpha + \beta$ and choose $\zeta < \beta$ with $\tau = \alpha + \zeta$. Recall that the definition of β implies that every infinite subset of M_0 supports a block basis of α -averages which is a c_0^{ζ} -spreading model. Hence, thanks to Lemma 4.6, there will be no loss of generality in assuming that for some positive constant C, every block basis of α -averages supported by M_0 is a c_0^{ζ} -spreading model with constant C. We shall further assume, because of Lemma 5.8, that for every $F \in S_{\tau}[M_0]$ we have $F \setminus \{\min F\} \in S_{\zeta}[S_{\alpha}]$.

Let (α_j+1) be the sequence of ordinals associated to α . We shall construct $m_1 < m_2 < \ldots$ in M_0 with the following property: If $n \in \mathbb{N}$ and $j \leq m_n$, then every α -average supported by $\{m_i : i > n\}$ is $(\alpha_j, m_n, \delta_n)$ -large. This construction is done inductively as follows: Choose $m_1 \in M_0$. Apply Lemma 5.6 to find $L_1 \in [M_1]$ with $m_1 < \min L_1$ and such that $S_{\alpha_j}[L_1] \subset S_{\alpha_{m_1}}$ for all $j \leq m_1$. We then employ Lemma 6.11, as N is α -nice, to obtain $M_1 \in [L_1]$ such that every α -average supported by M_1 is $(\alpha_{m_1}, m_1, \delta_1)$ -large. It follows that every α -average supported by M_1 is $(\alpha_j, m_1, \delta_1)$ -large, for all $j \leq m_1$. Set $m_2 = \min M_1$.

Suppose $n \geq 2$ and that we have selected integers $m_1 < \cdots < m_n$ in M_0 , and infinite subsets $M_1 \supset \cdots \supset M_{n-1}$ of M_0 with $m_{i+1} = \min M_i$ and such that every α -average supported by M_i is $(\alpha_j, m_i, \delta_i)$ -large for all $j \leq m_i$ and i < n.

We next choose, by Lemma 5.6, $L_n \in [M_{n-1}]$ with $m_n < \min L_n$ and such that $S_{\alpha_j}[L_n] \subset S_{\alpha_{m_n}}$, for all $j \leq m_n$. Because N is α -nice, Lemma 6.11 allows us select $M_n \in [L_n]$ such that every α -average supported by M_n is $(\alpha_j, m_n, \delta_n)$ -large for all $j \leq m_n$. Set $m_{n+1} = \min M_n$. This completes the inductive step. Evidently, $m_1 < m_2 < \ldots$ satisfy the required property.

We set $P=(m_n)$. The preceding construction yields the following fact that will be used later in the course of the proof: Suppose v is an α -average supported by P and min supp $v=m_n$, for some $n\geq 2$, then v is $(\alpha_j, m_{n-1}, \delta_{n-1})$ -large, for all $j\leq m_{n-1}$.

Recall that no block basis of α -averages supported by P is a c_0^{β} -spreading model. Let $0 < \delta < \epsilon/(p(C+1)+3)$ and apply Theorem 5.1 to find an $(\alpha+\beta)$ -average u supported by P, normalized blocks $u_1 < \cdots < u_n$, positive scalars $(\lambda_i)_{i=1}^n$ and $I \subset \{1,\ldots,n\}$ such that $u = \sum_{i=1}^n \lambda_i u_i$, u_i is an α -average for all $i \in I$, $\|\sum_{i \in \{1,\ldots,n\}\setminus I} \lambda_i u_i\|_{\ell_1} < \delta$ and $\max_{i \in I} \lambda_i < \delta$. We show u is (τ, p, ϵ) -large which will finish the proof of the lemma. Set

$$\mathcal{G} = \{ F \in [\mathbb{N}]^{<\infty} : \exists F_1 < \dots < F_p \text{ in } S_{\zeta}^+, F \subset \bigcup_{i=1}^p F_i \}.$$

 \mathcal{G} is a hereditary and spreading family.

Let $J \subset M_0$ be the union of less than, or equal to, p consecutive members of S_{τ} , and let $t \in K$. Our assumptions on M_0 yield $J \in \mathcal{G}[S_{\alpha}]$. Let $\{i_1 < \ldots, < i_m\}$ be an enumeration of I and put $m_{d_k} = \max\sup u_{i_k}$, for all $k \leq m$. It has been already remarked that u_{i_k} is $(\alpha_j, m_{d_{k-1}}, \delta_{d_{k-1}})$ -large, for all $2 \leq k \leq m$ and $j \leq m_{d_{k-1}}$. It follows that the hypotheses of Lemma 6.13 are fulfilled for the block basis $u_{i_1} < \cdots < u_{i_m}$ and the given $J \subset M_0$, with " δ_1 " = 0 and " δ_k " = $\delta_{d_{k-1}}$ for $2 \leq k \leq m$. Writing $u_i = \sum_s a_s^i f_s$, for all $i \leq n$, we infer from (6.6) that

$$\left| \sum_{i \in I} \lambda_i \sum_{s \in J} a_s^i f_s(t) \right| \le \max \left\{ \left| \sum_{i \in E} \lambda_i u_i(t) \right| : E \subset I, (u_i)_{i \in E} \text{ is} \right.$$

$$\mathcal{G}^+ - \text{admissible} \right\}$$

$$+ \left(\sum_{i=1}^{\infty} \delta_i \right) \max_{i \in I} \lambda_i + \sum_{i \in I} \lambda_i \sum_{s \notin J} a_s^i |f_s(t)|.$$

Note that when $(u_i)_{i\in E}$ is \mathcal{G}^+ -admissible, we have

$$\left\| \sum_{i \in E} \lambda_i u_i \right\| \le \left(p(C+1) + 1 \right) \max_{i \in E} \lambda_i < \left(p(C+1) + 1 \right) \delta.$$

Hence,

$$\left| \sum_{i \in I} \lambda_i \sum_{s \in J} a_s^i f_s(t) \right| < \left(p(C+1) + 2 \right) \delta + \sum_{i \in I} \lambda_i \sum_{s \notin J} a_s^i |f_s(t)|.$$

Next, put $I^c = \{1, \dots, n\} \setminus I$. Then,

$$\sum_{i \in I^c} \lambda_i \sum_s a_s^i < \delta, \text{ as } \left\| \sum_{i \in I^c} \lambda_i u_i \right\|_{\ell_1} < \delta.$$

Combining the preceding estimates we conclude

$$\left| \sum_{i=1}^{n} \lambda_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) \right| \leq \sum_{i \in I^{c}} \lambda_{i} \sum_{s} a_{s}^{i} + \left| \sum_{i \in I} \lambda_{i} \sum_{s \in J} a_{s}^{i} f_{s}(t) \right|$$

$$< \delta + \left(p(C+1) + 2 \right) \delta + \sum_{i \in I} \lambda_{i} \sum_{s \notin J} a_{s}^{i} |f_{s}(t)|$$

$$< \epsilon + \sum_{i=1}^{n} \lambda_{i} \sum_{s \notin J} a_{s}^{i} |f_{s}(t)|.$$

Therefore, u is (τ, p, ϵ) -large. This completes the proof.

We are now ready for the

Proof of Theorem 6.7. We claim that every infinite subset of N contains a further infinite subset which is α -nice. If this claim holds, then evidently, N is itself α -nice. So suppose on the contrary, that the claim is false and

choose $N_0 \in [N]$ having no infinite subset which is α -nice. We now claim that there exist $1 \le \beta_1 < \alpha$ and $N_1 \in [N_0]$ which is β_1 -nice. Indeed, define

$$\beta_1 = \min\{\zeta < \omega_1 : \exists M \in [N_0] \text{ such that no block basis of } 0 - \text{averages supported by } M \text{ is a } c_0^{\zeta} - \text{spreading model}\}.$$

Since N is α -large, α belongs to the set and so $1 \leq \beta_1 \leq \alpha$. Choose $N_1 \in [N_0]$ such that no block basis of 0-averages supported by N_1 is a $c_0^{\beta_1}$ -spreading model. We show N_1 is β_1 -nice. Because N_0 is assumed to contain no infinite subset which is α -nice, we shall also obtain $\beta_1 < \alpha$.

Let $M \in [N_1]$, $\beta < \beta_1$, $p \in \mathbb{N}$ and $\epsilon > 0$. We shall find a β_1 -average supported by M which is (β, p, ϵ) -large. Since $\beta < \beta_1$, there exist $M_1 \in [M]$ and a constant C > 0 such that the block basis $(f_m)_{m \in M_1}$ is a c_0^{β} -spreading model with constant C > 0. Let $0 < \delta < \epsilon/(pC)$. Since no block basis of 0-averages supported by M_1 is a $c_0^{\beta_1}$ -spreading model, Theorem 5.1 yields a β_1 -average u, supported by M_1 , positive scalars $(\lambda_i)_{i \in F}$ (where F = supp u) and $I \subset F$ with $I \in S_{\beta_1}$, such that

$$u = \sum_{i \in F} \lambda_i f_i, \, \max_{i \in I} \lambda_i < \delta, \ \text{ and } \sum_{i \in F \setminus I} \lambda_i < \delta.$$

Let $t \in K$ and let J be the union of less than, or equal to, p consecutive members of S_{β} . It follows that

$$\left| \sum_{i \in J \cap F} \lambda_i f_i(t) \right| \le \left\| \sum_{i \in J \cap F} \lambda_i f_i \right\|$$
$$\le pC \max_{i \in F} \lambda_i < pC\delta < \epsilon.$$

Thus, u is a β_1 -average, (β, p, ϵ) -large, and so N_1 is β_1 -nice, as claimed.

We shall now construct, by transfinite induction on $1 \le \tau < \omega_1$, families $\{N_\tau\}_{1 \le \tau < \omega_1} \subset [N_0]$ and $\{\beta_\tau\}_{1 \le \tau < \omega_1} \subset [1, \alpha)$ with the following properties:

- (1) $N_{\tau_2} \setminus N_{\tau_1}$ is finite, for all $1 \le \tau_1 < \tau_2 < \omega_1$.
- (2) N_{τ} is β_{τ} -nice, for all $1 \leq \tau < \omega_1$.
- (3) $\beta_{\tau_1} < \beta_{\tau_2}$, for all $1 \le \tau_1 < \tau_2 < \omega_1$.

Of course, (3) is absurd since $\alpha < \omega_1$. Hence, our assumption that N_0 contained no infinite subset which is α -nice, was false. The proof of the theorem will be completed, once we give the construction of the above described families, satisfying conditions (1)-(3). N_1 and β_1 have been already constructed. Suppose that $1 < \tau_0 < \omega_1$ and that $\{N_\tau\}_{1 \le \tau < \tau_0} \subset [N_0]$, $\{\beta_\tau\}_{1 \le \tau < \tau_0} \subset [1, \alpha)$ have been constructed fulfilling properties (1)-(3), above, with ω_1 being replaced by τ_0 .

Assume first that τ_0 is a successor ordinal, say $\tau_0 = \tau_1 + 1$. We know by the inductive construction, that N_{τ_1} is β_{τ_1} -nice. By assumption, N is α -large. Since $\beta_{\tau_1} < \alpha$, there exists $\Gamma \in [N_{\tau_1}]$ such that no block basis of β_{τ_1} -averages supported by Γ is a $c_0^{\eta_{\tau_1}}$ -spreading model, where $\beta_{\tau_1} + \eta_{\tau_1} = \alpha$. Lemma 6.14 now implies the existence of $N_{\tau_0} \in [N_{\tau_1}]$ and $1 \leq \zeta_{\tau_1} \leq \eta_{\tau_1}$

such that N_{τ_0} is $(\beta_{\tau_1} + \zeta_{\tau_1})$ -nice. Set $\beta_{\tau_0} = \beta_{\tau_1} + \zeta_{\tau_1}$. Necessarily, $\beta_{\tau_0} < \alpha$, by the choice of N_0 . It is easy to see that the families $\{N_{\tau}\}_{1 \leq \tau < \tau_0 + 1}$ and $\{\beta_{\tau}\}_{1 \leq \tau < \tau_0 + 1}$ satisfy conditions (1)-(3), above, with ω_1 being replaced by $\tau_0 + 1$.

Next assume that τ_0 is a limit ordinal and choose a strictly increasing sequence of ordinals $\tau_1 < \tau_2 < \ldots$ such that $\tau_0 = \lim_n \tau_n$. By the inductive construction we have that $\beta_{\tau_1} < \beta_{\tau_2} < \ldots$ and thus we may define the limit ordinal $\beta_{\tau_0} = \lim_n \beta_{\tau_n}$. In addition to this, $N_{\tau_n} \setminus N_{\tau_m}$ is finite for all integers m < n. We deduce from the above, that $\bigcap_{i=1}^k N_{\tau_i}$ is β_{τ_k} -nice, for all $k \in \mathbb{N}$. Finally, choose $N_{\tau_0} \in [N_0]$ such that $N_{\tau_0} \setminus \bigcap_{i=1}^k N_{\tau_i}$ is finite, for all $k \in \mathbb{N}$. We infer from Lemma 6.12, that N_{τ_0} is β_{τ_0} -nice. It is easily verified now, that the families $\{N_{\tau}\}_{1 \leq \tau < \tau_0 + 1}$ and $\{\beta_{\tau}\}_{1 \leq \tau < \tau_0 + 1}$ satisfy conditions (1)-(3), above, with ω_1 being replaced by $\tau_0 + 1$. This completes the inductive step and the proof of the theorem.

Proof of Corollary 6.3. Assume without loss of generality, that (f_n) has no subsequence equivalent to the unit vector basis of c_0 . By the Kunen-Martin boundedness principle (see [16], [25]), we may choose an ordinal $1 \leq \gamma < \omega_1$ such that no subsequence of (f_n) is a c_0^{γ} -spreading model. Set $K_m = \{t \in K : \sum_n |f_n(t)| \leq m\}$, for all $m \in \mathbb{N}$. Clearly, (K_m) is an increasing sequence of closed subsets of K and $K = \bigcup_m K_m$. We claim that for every $m \in \mathbb{N}$, every $N \in [\mathbb{N}]$, and all $\epsilon > 0$, there exists a γ -average u of (f_n) supported by N and such that $|u|(t) < \epsilon$, for all $t \in K_m$ (if $u = \sum_i a_i f_i$, we define $|u|(x) = \sum_i |a_i||f_i(x)|$, for all $x \in K$).

To see this, let $0 < \delta < \epsilon/m$. Since no subsequence of (f_n) is a c_0^{γ} -spreading model, Theorem 5.1 allows us choose a γ -average u of (f_n) , supported by N and such that there exist non-negative scalars $(\lambda_i)_{i=1}^p$ and $I \subset \{1, \ldots, p\}$ satisfying the following: (1) $u = \sum_{i=1}^p \lambda_i f_i$ and $\max_{i \in I} \lambda_i < \delta$. (2) $(f_i)_{i \in I}$ is S_{γ} -admissible (i.e. $I \in S_{\gamma}$) and $\sum_{i \in \{1, \ldots, p\} \setminus I} \lambda_i < \delta$. It is easy to check now that for every $t \in K_m$ we have $|u|(t) < \epsilon$ and thus our claim holds.

Now let (ϵ_n) be a summable sequence of positive scalars and $N \in [\mathbb{N}]$. Successive applications of the previous claim yield a block basis $v_1 < v_2 < \ldots$ of γ -averages of (f_n) , supported by N and satisfying $|v_n|(t) < \epsilon_n$ for every $t \in K_n$ and all $n \in \mathbb{N}$. It follows that for all $t \in K$ the set $\{n \in \mathbb{N} : |v_n(t)| \ge \epsilon_n\}$ is a subset of $\{1, \ldots, q_t\}$, where q_t is the least $m \in \mathbb{N}$ such that $t \in K_m$. We deduce from Theorem 6.1, that there exist $\beta < \omega_1$ and a block basis of β -averages of (v_n) , equivalent to the unit vector basis of c_0 .

In order to get a block basis of averages of (f_i) equivalent to the unit vector basis of c_0 , one needs a somewhat more demanding argument which goes as follows. Choose a countable limit ordinal α with $\gamma < \alpha$ and let $(\alpha_j + 1)_{j=1}^{\infty}$ be the sequence of ordinals associated to α . Let $N \in [\mathbb{N}]$ and choose $n \in N$ with $n \geq 2$, such that $\gamma < \alpha_n$. Let $m \in \mathbb{N}$. Since no subsequence of (f_i) is a $c_0^{\alpha_n}$ -spreading model, our preceding argument allows us choose an α_n -average v of (f_i) , supported by $\{i \in N : n < i\}$, and such that |v|(t) < 1/(2n), for all

 $t \in K_m$. Set $u = ((1/n)f_n + v)/||(1/n)f_n + v||$. Clearly, u is an α -average of (f_i) supported by N and satisfying |u|(t) < 3/n, for all $t \in K_m$. Note that $n = \min \operatorname{supp} u$.

Summarizing, given $N \in [\mathbb{N}]$ we can select a block basis $u_1 < u_2 < \dots$ of α -averages of (f_i) supported by N and satisfying $|u_n|(t) < 3/m_n$, for all $t \in K_n$ and $n \in \mathbb{N}$. In the above, we have let $m_n = \min \sup u_n$, for all $n \in \mathbb{N}$. It follows that for all $n \in \mathbb{N}$, if $t \in K_n$ and $|u_i|(t) \geq 3/m_i$, then i < n. Given $L \in [\mathbb{N}]$, set $l_n = \min \sup \alpha_n^L$, for all $n \in \mathbb{N}$. We now define

$$\mathcal{D} = \{ L \in [\mathbb{N}] : \forall n \in \mathbb{N}, \forall t \in K_n, \text{ if } |\alpha_i^L|(t) \ge 3/l_i, \text{ then } i < n \}.$$

 \mathcal{D} is closed in the topology of pointwise convergence, thanks to Lemma 4.3. Our preceding discussion and Lemma 4.3, show that every $N \in [\mathbb{N}]$ contains some $L \in \mathcal{D}$ as a subset. We infer from Theorem 4.5, that $[N] \subset \mathcal{D}$ for some $N \in [\mathbb{N}]$.

Next, let \mathcal{T}_0 be the collection of those finite subsets E of N that can be written in the form $E = \bigcup_{i=1}^m \operatorname{supp} \alpha_i^L$, for some $L \in [N]$ (depending on E) for which there exists some $t \in K$ (depending on E and E) such that $|\alpha_i^L|(t) \geq 3/l_i$, for all $i \leq m$.

Let \mathcal{T} be the collection of all initial segments of elements of \mathcal{T}_0 . We claim that \mathcal{T} is compact in the topology of pointwise convergence. Indeed, were this false, there would exist $M \in [N]$, $M = (m_i)$, such that $\{m_1, \ldots, m_n\} \in \mathcal{T}$, for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$. It follows that $\bigcup_{i=1}^n \operatorname{supp} \alpha_i^M \in \mathcal{T}$. Hence, there exist $L_n \in [N]$, $k_n \in \mathbb{N}$ and $t_n \in K$ such that $\bigcup_{i=1}^n \operatorname{supp} \alpha_i^M$ is an initial segment of $\bigcup_{i=1}^{k_n} \operatorname{supp} \alpha_i^{L_n}$ and $|\alpha_i^{L_n}|(t_n) \geq 3/d_i$, for all $i \leq k_n$, where $d_i = \min \operatorname{supp} \alpha_i^{L_n}$, for all $i \in \mathbb{N}$. We now deduce from Lemma 4.3, that $n \leq k_n$ and that $\alpha_i^M = \alpha_i^{L_n}$, for all $i \leq n$. Therefore, $|\alpha_i^M|(t_n) \geq 3/m_i$, for all $i \leq n$, where $m_i = \min \operatorname{supp} \alpha_i^M$, for all $i \in \mathbb{N}$. The compactness of K now implies that there is some $t \in K$ satisfying $|\alpha_i^M|(t) \geq 3/m_i$, for all $i \in \mathbb{N}$. This is a contradiction, as $M \in \mathcal{D}$. Thus, our claim holds and so \mathcal{T} is indeed compact.

We next apply a result from [31] to obtain $P \in [N]$ such that $\mathcal{T}[P]$ is a hereditary and compact family. The result in [21] now yields $Q \in [P]$ and a countable ordinal $\eta > \alpha$, such that $\mathcal{T}[Q] \subset S_{\eta}$. It follows that for every $L \in [Q]$ and all $n \in \mathbb{N}$ such that there exists some $t \in K$ satisfying $|\alpha_i^L|(t) \geq 3/l_i$, for all $i \leq n$, we have $\bigcup_{i=1}^n \operatorname{supp} \alpha_i^L \in S_{\eta}$.

We now claim that $\xi^Q \leq \eta$ (see Definition 6.4). If this is not the case, we may choose $R \in [Q]$, $R = (r_i)$, which is ζ -large, for some countable ordinal ζ with $\eta < \zeta$. Let $\epsilon > 0$. We shall assume, as we clearly may, that $\sum_i (1/r_i) < \epsilon$. Since $\alpha < \eta$, we may choose an ordinal β with $\alpha + \beta = \zeta$. By passing to an infinite subset of R, if necessary, we may assume without loss of generality, thanks to Proposition 5.9, that every ζ -average of (f_i) supported by R admits an $(\epsilon, \alpha, \beta)$ -decomposition.

Because R is ζ -large, it is also ζ -nice, by Theorem 6.7. We may thus select a ζ -average u of (f_i) , supported by R, which is $(\eta, 1, \epsilon)$ -large. We infer from

Proposition 5.9 that there exist normalized blocks $u_1 < \cdots < u_n$, positive scalars $(\lambda_i)_{i=1}^n$ and $I \subset \{1,\ldots,n\}$ such that $u = \sum_{i=1}^n \lambda_i u_i$ and u_i is an α -average for all $i \in I$, while $\|\sum_{i \notin I} \lambda_i u_i\|_{\ell_1} < \epsilon$.

Now let $t \in K$ and define $H = \{i \in I : |u_i|(t) \geq 3/q_i\}$, where $q_i = \min \sup u_i$, for all $i \in I$. Let $\{i_1 < \ldots, < i_k\}$ be an enumeration of H. Lemma 4.3 yields some $L \in [R]$ such that $u_{i_j} = \alpha_j^L$, for all $j \leq k$. Set $J = \bigcup_{i \in H} \sup u_i$. Since $L \in [Q]$, it follows that $J \in S_\eta$. Writing $u_i = \sum_s a_s^i f_s$, for all $i \leq n$, we conclude, as u is $(\eta, 1, \epsilon)$ -large, that

$$\left| \sum_{i \in H} \lambda_i \sum_{s} a_s^i f_s(t) \right| \le \epsilon + \sum_{i \notin H} \lambda_i \sum_{s} a_s^i |f_s(t)|.$$

We now have the estimates

$$\begin{aligned} |u(t)| &= \left| \sum_{i \in H} \lambda_i \sum_s a_s^i f_s(t) + \sum_{i \notin H} \lambda_i \sum_s a_s^i f_s(t) \right| \\ &\leq \left| \sum_{i \in H} \lambda_i \sum_s a_s^i f_s(t) \right| + \left| \sum_{i \notin H} \lambda_i \sum_s a_s^i f_s(t) \right| \\ &\leq \epsilon + 2 \sum_{i \notin H} \lambda_i \sum_s a_s^i |f_s(t)| \\ &\leq \epsilon + 2 \sum_{i \in I \setminus H} \lambda_i \sum_s a_s^i |f_s(t)| + 2 \sum_{i \notin I} \lambda_i \sum_s a_s^i |f_s(t)| \\ &\leq \epsilon + 6 \sum_{i \in I \setminus H} |u_i|(t) + 2 \left\| \sum_{i \notin I} \lambda_i u_i \right\|_{\ell_1} \\ &< \epsilon + 18 \sum_{i \in I \setminus H} (1/q_i) + 2\epsilon \end{aligned}$$

Since ||u|| = 1, we reach a contradiction for ϵ small enough. Therefore, $\xi^Q \leq \eta$. Proposition 6.5 now yields a block basis of ξ -averages of (f_i) , for some $\xi \leq \eta$, equivalent to the unit vector basis of c_0 .

References

- [1] D. Alspach and S.A. Argyros, *Complexity of weakly null sequences*, Dissertationes Mathematicae, **321**, (1992), 1–44.
- [2] D. Alspach and E. Odell, Averaging weakly null sequences, Lecture Notes in Math. Vol. 1332, Springer, Berlin, 1988, 126–144.
- [3] D. Alspach, R. Judd and E. Odell, The Szlenk index and local ℓ_1 -indices, to appear in Positivity.
- [4] G. Androulakis, A subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces, Studia Math. 127 (1998), no.1, 65–80.
- [5] G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999), 125–149.
- [6] S.A. Argyros and I. Gasparis, Unconditional structures of weakly null sequences, Trans. Amer. Math. Soc. 353 (2001), 2019–2058.

- [7] S.A. Argyros, G. Godefroy and H.P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol.2, (W.B. Johnson and J. Lindenstrauss eds.), North Holland (2003), 1007–1069.
- [8] S.A. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157–193.
- [9] B. Beauzamy and J.T. Lapreste, Modeles etales des espaces de Banach. Travaux en cours, Hermann, Paris, 1984.
- [10] Y. Benyamini, An extension theorem for separable Banach spaces, Israel J. Math. 29 (1978), 24–30.
- [11] C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [12] C. Bessaga and A. Pelczynski, A generalization of results of R.C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165–174.
- [13] C. Bessaga and A. Pelczynski, Spaces of continuous functions IV, Studia Math. 19 (1960), 53–62.
- [14] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294–299.
- [15] D.W. Dean, I. Singer and L. Sternbach, On shrinking basic sequences in Banach spaces, Studia Math. 40 (1971), 23–33.
- [16] C. Dellacherie, Les derivations en theorie descriptive des ensembles et le theoreme de la borne (French), Seminaire de Probabilites, XI (Univ. Strasbourg, Strasbourg, 1975/76) p. 34–46, Lecture Notes in Math., Vol. 581, Springer, Berlin, 1977.
- [17] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163–165.
- [18] J. Elton, Thesis, Yale University (1978).
- [19] J. Elton, Extremely weakly unconditionally convergent series, Israel J. Math. 40 (1981), no.3-4, 255–258.
- [20] V. Fonf, A property of Lindenstrauss-Phelps spaces, Functional Anal. Appl. 13 (1979), no.1, 66-67.
- [21] I. Gasparis, A dichotomy theorem for subsets of the power set of the natural numbers, Proc. Amer. Math. Soc. **129** (2001), 759–764.
- [22] R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications in Banach space theory, Functional analysis (Austin, TX, 1987/89) 1– 35, Lecture Notes in Math., Vol. 1470, Springer, Berlin, 1991.
- [23] R.C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518–527.
- [24] R. Judd, A dichotomy on Schreier sets, Studia Math. 132 (1999), 245–256.
- [25] A. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, NY, 1995.
- [26] D.H. Leung, Symmetric sequence subspaces of $C(\alpha)$, J. London Math. Soc. (2) **59** (1999), 1049–1063.
- [27] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, New York (1977).
- [28] B. Maurey and H.P. Rosenthal, Normalized weakly null sequence without unconditional subsequence, Studia Math. 61 (1977), 77–98.
- [29] S. Mazurkiewicz and W. Sierpinski, Contributions a la topologie des ensembles denomrables, Fund. Math. 1 (1920), 17–27.
- [30] A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum (Russian), Teor. FunkciiFunkcional. Anal. i Priložen. Vyp 2 (1966), 150–156.
- [31] E. Odell, Applications of Ramsey theorems to Banach space theory, Notes in Banach spaces, (H.E. Lacey, ed.), Univ. Texas Press (1980), 379–404.

- [32] E. Odell, On Schreier unconditional sequences, Contemp. Math. 144 (1993), 197– 201.
- [33] E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to ℓ₁ and distortion in asymptotic ℓ₁ spaces, J. Funct. Anal. 150 (1997), 101–145.
- [34] A. Pelczynski, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozpraway Mat. 58 (1968).
- [35] A. Pelczynski and Z. Semadeni, Spaces of continuous functions III. Spaces $C(\Omega)$ for Ω without perfect subsets, Studia Math. 18 (1959), 211–222.
- [36] J. Rainwater, Weak convergence of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 999.
- [37] J. Schreier, Ein Gegenbeispiel zur theorie der schwachen konvergenz, Studia Math. 2, (1930), 58–62.
- [38] B. Wahl, *Thesis*, The University of Texas (1993).

Department of Mathematics, University of Crete, Knossou Avenue, Heracleion 71409, Greece.

E-mail address: ioagaspa@math.uoc.gr

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712, U.S.A.

E-mail address: odell@math.utexas.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, HANOVER COLLEGE, P.O. BOX 890, HANOVER, INDIANA 47243, U.S.A.

 $E ext{-}mail\ address:$ wahl@hanover.edu