Problem: Limit – Bài Tập: Giới Hạn

Nguyễn Quản Bá Hồng*

Ngày 17 tháng 9 năm 2023

Mục lục

1	Limit of Sequence – Giới Hạn của Dãy Số	1
2	Giới Hạn của Hàm Số	3
Тà	i liôn	9

1 Limit of Sequence – Giới Hạn của Dãy Số

Bài toán 1 ([Hùn+23], VD1, p. 86). Cho dãy số $a_n=\frac{n}{n+1}$, $n=1,2,\ldots$ Chứng minh dãy (a_n) có giới hạn là 1.

Bài toán 2 ([Hùn+23], VD2, p. 87). Chứng minh $\lim_{n\to+\infty}\frac{1}{n}=0$.

Bài toán 3 ([Hùn+23], VD3, p. 87). Chứng minh $\lim_{n\to+\infty}q^n=0$ nếu 0<|q|<1.

Bài toán 4 ([Hùn+23], VD4, p. 87). Chứng minh dãy $u_n = (-1)^n$ phân kỳ.

Bài toán 5 ([Hùn+23], VD5, p. 88). $Tim \lim_{n\to+\infty} \frac{n^3+3n+1}{2n^3-1}$.

Bài toán 6 ([Hùn+23], VD6, p. 88). $Tim \lim_{n\to+\infty} \frac{n^4+2n^3+7n^2+8n+9}{2n^4+3n^3+n+10}$.

Bài toán 7 ([Hùn+23], VD7, p. 88). $Tim \lim_{n\to+\infty} (n-\sqrt[3]{n}-\sqrt{n})$.

Bài toán 8 ([Hùn+23], VD1, p. 89). $Tim \lim_{n\to+\infty} \frac{\sin n}{n}$.

Bài toán 9 ([Hùn+23], VD2, p. 89). Chứng minh nếu $\lim_{n\to+\infty} |a_n| = 0$ thì $\lim_{n\to+\infty} a_n = 0$.

Bài toán 10 ([Hùn+23], VD3, p. 89). Chứng minh $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

Bài toán 11 ([Hùn+23], VD4, p. 89). Cho dãy số nguyên dương (u_n) thỏa mãn $u_n > u_{n-1}u_{n+1}$, $\forall n \in \mathbb{N}, n \geq 2$. Tính giới hạn $\lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^n \frac{i}{u_i} = \lim_{n \to +\infty} \frac{1}{n^2} \left(\frac{1}{u_1} + \frac{2}{u_2} + \dots + \frac{n}{u_n} \right).$

Bài toán 12 ([Hùn+23], VD5, p. 90). Tính $\lim_{n\to+\infty} \frac{1}{n^2} \sum_{i=2}^n i \cos \frac{\pi}{i}$.

Bài toán 13 ([Hùn+23], VD1, p. 90). Cho dãy số (u_n) được xác định theo công thức $u_n = f(u_{n-1})$. Giả sử $u_n \in [a,b]$ với mọi chỉ số n & f là hàm tăng trên [a,b]. Chứng minh: (a) Nếu $u_1 \leq u_2$ thì (u_n) là dãy tăng. (b) Nếu $u_1 \geq u_2$ thì (u_n) là dãy giảm. (c) Nếu hàm f bị chặn thì (u_n) hội tụ.

Bài toán 14 ([Hùn+23], VD2, p. 90). Cho dãy (u_n) được xác định bởi $u_n = \frac{1}{3} \left(2u_{n-1} + \frac{1}{u_{n-1}^2} \right)$, $\forall n \in \mathbb{N}, n \geq 2, u_1 > 0$. Chứng minh dãy (u_n) hội tụ & tìm giới hạn của dãy.

Bài toán 15 ([Hùn+23], VD3, p. 91). Tìm u_1 để dãy $u_n = u_{n-1}^2 + 3u_{n-1} + 1$ hội tụ.

Bài toán 16 ([Hùn+23], VD4, p. 92). Chứng minh tồn tại $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$.

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

Bài toán 17 (Số Napier e). Đặt $e := \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$. Chứng minh: (a) $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$, $\forall n \in \mathbb{N}^*$. (b) $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$, trong đó $\ln x$ là logarith cơ số e của x.

Bài toán 18 ([Hùn+23], VD5, p. 91). Chứng minh dãy $u_n = \sum_{i=1}^n \frac{1}{i} - \ln n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$ có giới hạn hữu hạn.

Lưu ý 1. $C = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{1}{i} - \ln n = \lim_{n \to +\infty} 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$ được gọi là hằng số Euler.

Bài toán 19 ([Hùn+23], VD1, p. 92). Chứng minh không tồn tại $\lim_{n\to+\infty}\cos\frac{n\pi}{2}$

Bài toán 20 ([Hùn+23], VD2, p. 92). Cho hàm $f:[0,+\infty)\to(0,b)$ liên tục $\mathscr E$ nghịch biến. Giả sử hệ phương trình

$$\begin{cases} y = f(x), \\ x = f(y), \end{cases}$$

có nghiệm duy nhất x = y = q. Chứng minh dãy $u_n = f(u_{n-1})$ hội tụ tới q với $u_1 > 0$.

Bài toán 21 ([Hùn+23], VD3, p. 93). Cho dãy số $u_n = 1 + \frac{2}{1 + u_{n-1}}$, $u_1 > 0$. Chứng minh dãy hội tụ $\mathscr E$ tìm giới hạn.

Bài toán 22 ([Hùn+23], VD1, p. 93). Cho dãy $a_n = \sum_{i=1}^n \frac{1}{i^2} = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy này hội tụ.

Bài toán 23 ([Hùn+23], VD2, p. 93). Cho dãy $a_n = \sum_{i=1}^n \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy này phân kỳ.

Bài toán 24 ([Hùn+23], VD3, p. 94). Chứng minh $\lim_{n\to+\infty} \frac{1^p+2^p+\cdots+n^p}{n^{p+1}} = \frac{1}{p+1}, \ \forall p\in\mathbb{N}.$

Bài toán 25 ([Hùn+23], VD1, p. 94). Khảo sát sự hội tụ của dãy Héron (u_n) được xác định bởi $u_1 = 1$, $u_n = \frac{1}{2} \left(u_{n-1} + \frac{2}{u_{n-1}} \right)$, $\forall n \in \mathbb{N}, n \geq 2$.

Bài toán 26 ([Hùn+23], VD2, p. 95). Cho dãy số (x_n) thỏa mãn $|x_{n+1}-a| \le \alpha |x_n-a|$, $\forall n \in \mathbb{N}$, trong đó $a \in \mathbb{R}$ & $0 < \alpha < 1$. Chứng minh dãy số (x_n) hội tụ về a.

Bài toán 27 ([Hùn+23], VD3, p. 95). Cho dãy số (x_n) xác định bởi $x_1 = a \in \mathbb{R}$, $x_{n+1} = \cos x_n$, $\forall n \in \mathbb{N}^*$. Chứng minh (x_n) hội $t\mu$.

Bài toán 28 ([Hùn+23], VD4, p. 95, Canada 1985). $D\tilde{a}y \ s\acute{o}(x_n) \ thỏa \ mãn \ 1 < x_1 < 2 \ \& \ x_{n+1} = 1 + x_n - \frac{1}{2}x_n^2, \ \forall n \in \mathbb{N}^*.$ Chứng minh (x_n) hội tụ. Tìm $\lim_{n \to +\infty} x_n$.

Bài toán 29 ([Hùn+23], VD5, p. 95, VMO2023). Xét dãy số (a_n) thỏa mãn $a_1 = \frac{1}{2}$, $a_{n+1} = \sqrt[3]{3a_{n+1} - a_n}$ & $0 \le a_n \le 1$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy (a_n) có giới hạn hữu hạn.

Bài toán 30 ([Hùn+23], VD6, p. 96, VMO2022). Cho dãy số (u_n) xác định bởi $u_1 = 6$, $u_{n+1} = 2 + \sqrt{u_n + 4}$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy (u_n) có giới hạn hữu hạn.

Bài toán 31 ([Hùn+23], VD7, p. 96, VMO2019). Cho dãy số (x_n) xác định bởi $x_1 = 1 \, \& x_{n+1} = x_n + 3\sqrt{x_n} + \frac{n}{\sqrt{x_n}}, \, \forall n \in \mathbb{N}^*.$

(a) Chứng minh $\lim_{n\to+\infty} \frac{n}{x_n} = 0$. (b) Tính giới hạn $\lim_{n\to+\infty} \frac{n^2}{x_n}$.

Bài toán 32 ([Hùn+23], VD1, p. 97, VMO1984). Dãy số (u_n) được xác định như sau: $u_1=1,\ u_2=2,\ u_{n+1}=3u_n-u_{n-1}$. Dãy số (v_n) được xác định như sau: $v_n=\sum_{i=1}^n \operatorname{arccot} u_i$. Tìm giới hạn $\lim_{n\to+\infty} v_n$.

Bài toán 33 ([Hùn+23], VD2, p. 97, VMO1988). Dãy số (u_n) bị chặn thỏa mãn điều kiện $u_n + u_{n+1} \ge 2u_{n+2}$, $\forall n \in \mathbb{N}^*$ có nhất thiết hội tụ không?

Bài toán 34 ([Hùn+23], VD3, p. 98, Olympic 30.4 lần V). Cho $x_k = \sum_{i=1}^k \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{k}{(k+1)!}$. Tính $\lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{1999} x_i^n} = \lim_{n \to +\infty} \sqrt[n]{x_1^n + x_2^n + \cdots + x_{1999}^n}$.

Bài toán 35 ([Hùn+23], VD4, p. 98, VMO2013A). Gọi F là tập hợp tất cả các hàm số $f:(0,+\infty)\to (0,+\infty)$ thỏa mãn $f(3x)\geq f(f(2x))+x,\ \forall x>0$. Tim hằng số A lớn nhất để $f(x)\geq Ax,\ \forall f\in F,\ \forall x>0$.

Bài toán 36 ([Hùn+23], VD5, p. 98, Hải Dương 2019–2020). Cho dãy số thực (x_n) thỏa mãn $x_1 = \frac{1}{6}$, $x_{n+1} = \frac{3x_n}{2x_n+1}$, $\forall n \in \mathbb{N}^*$. Tìm số hạng tổng quát của dãy số \mathcal{E} tính giới hạn của dãy số đó.

Bài toán 37 ([Hùn+23], VD6, p. 99, Hải Dương 2015–2016). Cho đãy số (u_n) thỏa mãn $u_1 = -1$, $u_{n+1} = \frac{u_n}{2} + \frac{2}{u_n}$, $\forall n \in \mathbb{N}^*$. \mathcal{E} đãy số (v_n) thỏa mãn $u_n v_n - u_n + 2v_n + 2 = 0$, $\forall n \in \mathbb{N}^*$. Tính v_{2015} \mathcal{E} $\lim_{n \to +\infty} u_n$.

Bài toán 38 ([Hùn+23], VD7, p. 99, Hải Dương 2013–2014). Cho đãy số (u_n) thỏa mãn $u_1 = \frac{5}{2}$, $u_{n+1} = \frac{1}{2}u_n^2 - u_n + 2$. Tính $\lim_{n \to +\infty} \sum_{i=1}^n \frac{1}{u_i}$.

Bài toán 39 ([Hùn+23], VD1, p. 99). Cho dãy số (u_n) được xác định: u_1 , $u_n = \alpha u_{n-1} + \beta$. Biện luận theo tham số α , β giá trị giới hạn của dãy số.

Bài toán 40 ([Hùn+23], VD1, p. 100). Cho (u_n) là dãy số hội tụ $\mathscr E \lim_{n\to+\infty} u_n = u$. Khi đó, dãy trung bình cộng $v_n = \frac{1}{n} \sum_{i=1}^n u_i$ cũng hội tụ $\mathscr E \lim_{n\to+\infty} v_n = u$.

Bài toán 41 ([Hùn+23], VD2, p. 100). $Gi\mathring{a} s\mathring{u} \lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$. $Ch\mathring{u}ng \ minh \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n a_i b_{n+1-i} = \lim_{n \to +\infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} = ab$. $T\mathring{u} \ \mathring{u} \acute{o}$, $suy \ ra \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n a_i = \lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$.

Bài toán 42 ([Hùn+23], VD3, p. 101). $Gi\mathring{a} s\mathring{u} a_n > 0$, $\forall n \in \mathbb{N}^{\star}$. $Ch\acute{u}ng \ minh \ n\acute{e}u \ \lim_{n \to +\infty} a_n = a > 0 \ thì \ \lim_{n \to +\infty} \sqrt[n]{\prod_{i=1}^n a_i} = \lim_{n \to +\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

Bài toán 43 ([Hùn+23], VD4, p. 101).

Bài toán 44 ([Hùn+23], VD1, p. 100).

Bài toán 45 ([Hùn+23], VD1, p. 100).

Bài toán 46 ([Hùn+23], VD1, p. 100).

Bài toán 47 ([Hùn+23], VD1, p. 100).

2 Giới Hạn của Hàm Số

Tài liệu

[Hùn+23] Trần Quang Hùng, Lê Thị Việt Anh, Phạm Việt Hải, Khiếu Thị Hương, Tạ Công Sơn, Nguyễn Xuân Thọ, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 11 Tập 1. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 176.