group is an ordered pair whose components are the set and the operation in question.

Definition: An ordered pair (G, \circ) , where G is a nonempty set and \circ is a binary operation on G, is called a *group* provided the following hold.

- (i) \circ is a (well defined) binary operation on G. Thus, for any $a, b \in G$, $a \circ b$ is a uniquely determined element of G.
- (ii) For all $a, b, c \in G$, we have $(a \circ b) \circ c = a \circ (b \circ c)$.
- (iii) There is an element e in G such that

$$a \circ e = a$$
 for all $a \in G$

and which is furthermore such that

(iv) for all $a \in G$, there is an x with

$$a \circ x = e$$
.

When (G, \circ) is a group, we also say that G is (or builds, or forms) a group with respect to \circ (or under \circ). Since a group is an ordered pair, two groups (G, \circ) and (H, *) are equal if and only if G = H and the binary operation \circ on G is equal to the binary operation * on G (i.e., \circ and * are identical mappings from $G \times G$ into G). On one and the same set G, there may be distinct binary operations \circ and * under which G is a group. In this case, the groups (G, \circ) and (G, *) are distinct.

The four conditions (i)-(iv) of Definition 7.2 are known as the *group axioms*. The first axiom (i) is called the *closure axiom*. When (i) is true, we say G is *closed under* \circ .

A binary operation \circ on a nonempty set G is said to be associative when (ii) holds. The associativity of \circ enables us to write $a \circ b \circ c$ without ambiquity. Indeed, $a \circ b \circ c$ has first no meaning at all. We must write either $(a \circ b) \circ c$ or $a \circ (b \circ c)$ to denote a meaningful element in G. By associativity, we may and do make the convention that $a \circ b \circ c$ will mean $(a \circ b) \circ c = a \circ (b \circ c)$, for whether we read it as $(a \circ b) \circ c$ or $a \circ (b \circ c)$ does not make any difference. This would be wrong if \circ were not associative. For instance, : (division) is not an associative operation on $\mathbb{Q} \setminus \{0\}$ and $(a : b) : c \neq a : (b : c)$ unless c = 1 (here $(a, b, c \in \mathbb{Q} \setminus \{0\})$). Thus a : b : c is ambiguous.

An element e of a set G, on which there is a binary operation \circ , is called a *right identity element* or simply a *right identity* if $a \circ e = a$ for all a in