

MT7686 Datasheet

Version: 2.6

Release date: 17 May 2018

© 2017 Airoha Technology Corp.

This document contains information that is proprietary to Airoha Technology Corp. ("Airoha") and/or its licensor(s). Airoha cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with Airoha ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. AIROHA EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description
1.0	5 May 2017	Initial draft
1.1	30 June 2017	Modified performance values
2.0	14 August 2017	 Modified condition values in Table 6.2-5, "Electrical characteristics" Modified performance values Added section 2.4, "Analog baseband" Added section 3.2, "Radio MCU subsystem" Added section 4.5, "Power-on sequence" Modified Table 4.4-1, "Current consumption in different power modes".
2.1	26 October 2017	Modified Table 7.1-1
2.2	21 November 2017	Modified Section 7
2.3	27 December 2017	Modified "Feature" and section 1.2.1
2.4	7 January 2018	Modified Table 5.2-2
2.5	7 February 2018	Modified Table 5.2-2, Table 5.3-2 and Table 7.1-1
2.6	17 May 2018	 Added Section 2.4.3, "external clock source" Modified Section 2.5.1, "UART" Modified Section 2.5.2, "SPI"

Features

Wi-Fi

- IEEE 802.11 b/g/n (2.4GHz, 1x1)
- Supports 20MHz, 40MHz bandwidth in 2.4GHz band
- Wi-Fi security WEP/WPA2/WPS
- SoftAP, sniffer
- Dynamically switching between STA and SoftAP modes at runtime
- Airoha Smart Connection
- Multi-cloud connectivity
- RX antenna diversity
- Integrated balun, PA/LNA
- Optional external LNA and PA support
- Support Wi-Fi/BLE coexistence

Microcontroller subsystem

- 192MHz ARM® Cortex®-M4 with FPU
- 16 DMA channels
- An RTC timer, one 64-bit and five 32-bit general purpose timers
- Hardware DFS from 3MHz to 192MHz
- Development support: SWD, JTAG
- Crypto engine
 - o AES 128, 192, 256 bits
 - o DES, 3DES
 - o MD5, SHA-1, 224, 256, 384, 512
- True random number generator
- JTAG password protection

Memory

- Up to 384KB SRAM, with zero-wait state, max frequency 96MHz
- Up to 32KB L1 cache, with high hit rate, zerowait state, maximum frequency at 192MHz
- Embedded 32Mbits flash, with less than 0.1µA (typical) and 80MHz maximum frequency deep power-down current

 Embedded 32Mbits pseudo SRAM with half sleep mode current: 10μA (PASR 1/8 at 25°C 1x Refresh) and 96MHz maximum frequency

Communication interfaces

- An SDIO 2.0 master and SDIO 2.0 slave
- Two I2C (3.4Mbps) interfaces
- Three UART interfaces (3Mbps)
- An SPI master and SPI slave with up to 48MHz SCK, quad mode
- Two I2S interfaces
 - One 16/24-bit, master/slave mode;
 One 16-bit, master/slave mode with TDM
 - Two TX/RX channels with 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz frequencies
- Six PWM channels
- 21 GPIOs (fast IOs, 5V-tolerant)
- Four channel 12-bit AUXADC

Power management

- Integrated DC-DC
- Power input
 - o V_{RTC}: from 1.62V to 3.63V
 - O V_{PMU} / V_{RF}: 3.3V (+/-10%)
 - o V_{IO*}: 1.8V, 2.8V, 3.3V (+/-10%)
- Off mode: <0.5μA
- Retention mode (with RTC)
 - <2.7μA (RTC only)
 - o $\,$ ~4.7 μ A with 8KB RAM sleep mode
- Deep sleep mode (with external 32kHz clock, SDIO off)
 - 90μA with 0KB RAM sleep mode
 - o 118µA with 384KB RAM sleep mode
- G-band RX power: 42mA
- G-band TX power
 - o FPA: 248mA 19dBm CCK
 - o FPA: 220mA 16.5dBm OFDM
- DTIM interval with 32kHz external clock source and 384KB SRAM

- DTIM=1: 0.63mADTIM=3: 0.30mA
- Ambient temperature from -30°C to 85°C

Clock source

- 26MHz or 40MHz crystal oscillator
- 32kHz crystal oscillator or internal 32kHz RC for RTC

Package type

• 6-mm x 6-mm x 0.9-mm 48-pin QFN with 0.4mm lead pitch

Note:

The power consumption data is measured at 25°C.

Table of Contents

1.	Syste	em Overview	8
	1.1.	Platform features	8
	1.2.	Wi-Fi subsystem features	
	1.3.	System block diagram	10
2.	Func	tional Overview	11
	2.1.	Host processor subsystem	11
	2.2.	Boot source	
	2.3.	Clock architecture	
	2.4.	Analog baseband	
	2.5.	Serial interfaces	
•	2.6.	Peripherals	
3.		i RF Subsystem	
	3.1.	Wi-Fi radio characteristics	
	3.2.	Radio MCU subsystem	
4.	Powe	er Management Unit	
	4.1.	Overview	
	4.2.	Low-power operating mode	
	4.3.	PMU architecture	
	4.4. 4.5.	Power performance	
_		Power-on sequence	
5.		Description	
	5.1.	MT7686D pin list	
	5.2.	MT7686 pins	
	5.3.	MT7686 series pin multiplexing	
6.	Elect	rical Characteristics	
	6.1.	Absolute maximum ratings	
	6.2.	Operating conditions	53
7.	Syste	em Configuration	63
	7.1.	Mode selection	63
8.	Pack	age Description	64
	8.1.	MT7686 mechanical data of the package	64
	8.2.	MT7686 thermal operating specifications	
	8.3.	MT7686 lead-frame packaging	65
9.	Orde	ering Information	66
	9.1.	MT7686 top marking definition	66

Lists of Tables and Figures

Table 2.1-1. MT7686 bus connection	13
Table 2.4-1. Auxiliary ADC input channel	16
Table 2.4-2. Auxiliary ADC specifications	17
Table 2.4-3. XPLL design specifications	18
Table 2.4-4. DCXO Characteristics (TA = 250C, VDD = 1.8V unless otherwise stated) (1)	19
Table 2.4-5. Functional specifications of XOSC32	20
Table 2.4-6. Recommended parameters for 32kHz crystal	20
Table 2.5-1. SPI master controller interface	22
Table 2.5-2. I2S protocol specifications	27
Table 2.5-3. TDM protocol specifications	27
Table 2.6-1. GPIO speeds when the Cortex-M4 cache is enabled	29
Table 3.1-1. 2.4GHz RF receiver specifications	30
Table 3.1-2. 2.4GHz RF transmitter specifications	31
Table 3.2-1. N9 memory map	32
Table 3.2-2. N9 interrupt source	35
Table 4.4-1. Current consumption in different power modes	39
Table 5.1-1. MT7686D pin coordinates	41
Table 5.2-1. Acronym for pin types and I/O structure	42
Table 5.2-2. MT7686D series pin function description and power domain	42
Table 5.3-1. Peripheral functions and signals	48
Table 5.3-2. PinMux description	51
Table 6.1-1. Absolute maximum ratings for power supply	53
Table 6.1-2. Absolute maximum ratings for I/O power supply	53
Table 6.1-3. Absolute maximum ratings for voltage input	53
Table 6.1-4. Absolute maximum ratings for storage temperature	53
Table 6.2-1. General operating conditions	53
Table 6.2-2. Recommended operating conditions for power supply	54
Table 6.2-3. Recommended operating conditions for voltage input	54
Table 6.2-4. Recommended operating conditions for operating temperature	54
Table 6.2-5. Electrical characteristics	54
Table 6.2-6. ESD electrical characteristics of MT7686 series	62
Table 7.1-1. Mode selection table	63
Table 8.2-1. MT7686 thermal operating specifications	65
Table 9.1-1. Ordering information	66
Figure 1.3-1. MT7686 system block diagram	
Figure 2.2-1. Boot source flow	14
Figure 2.3-1. MT7686 clock source architecture	16
Figure 2.4-1. XPLL block diagram	18
Figure 2.4-2. Fractional-N XPLL block diagram	19

MT7686 Datasheet

Figure 2.5-1. Pin connection between SPI master and SPI slave	22
Figure 2.5-2. SPI transmission formats	23
Figure 2.5-3. Operation flow with and without PAUSE mode	23
Figure 2.5-4. CS de-assert mode	24
Figure 2.5-5. SPI master controller critical path sampling	24
Figure 2.5-6. SPI master controller SCK and data delay	25
Figure 2.5-7. SPI transmission formats	26
Figure 2.5-8. SPI slave controller early transmission	27
Figure 3.1-1. 2.4GHz RF Block Diagram	30
Figure 3.2-1. N9 bus fabric	34
Figure 3.2-2. N9 interrupt controller	35
Figure 4.2-1. MT7686 Cortex-M4 and N9 power state and power mode	38
Figure 4.5-1. Power-on sequence	40
Figure 5.1-1. MT7686D pin diagram and top view	41
Figure 5.3-1. GPIO block diagram	48
Figure 8.1-1. Outlines and dimensions of MT7686 SQFN 6 mm x 6 mm x 0.9 mm, 48-ball package	65
Figure 9.1-1. Mass production top marking of MT7686	66

1. System Overview

MT7686D is a highly integrated chipset featuring an application processor, a low power 1x1 11n single-band Wi-Fi subsystem and a power management unit (PMU).

MT7686 is based on ARM® Cortex®-M4 with floating point microcontroller unit (MCU) including 4MB PSRAM and 4MB flash memory. MT7686 also supports interfaces including UART, I2C, SPI, I2S, PWM, SDIO and ADC.

The Wi-Fi subsystem contains 802.11b/g/n radio, baseband and MAC designed to meet both low power and high throughput application requirements. It also contains a 32-bit RISC CPU to fully offload the application processor.

1.1. Platform features

1.1.1. Micro-controller subsystem

- ARM® Cortex®-M4 with FPU as application processor with maximum frequency at 192MHz
- 32KB L1 cache with high hit rate and zero wait state, with maximum frequency at 192MHz
- 384KB SYSRAM with zero wait state, with max frequency at 96MHz
- SiP 32Mbits low power flash with 0.1μA deep-down current (typical condition), with maximum frequency at 80MHz
- SiP 32Mbits low power PSRAM with 10μA half-sleep mode current, with maximum frequency at 96MHz (current condition: PASR 1/8 at 25°C single refresh)
- Crypto engine that supports AES, DES/3DES, MD5, SHA1/SHA2
- True random number generator
- Single RTC timer, one 64-bit and five 32-bit general purpose timers (GPTs)
- 16 DMA channels
- eXecute In Place (XIP) on flash
- Up to 21 GPIO interfaces with 5V-tolerant fast IOs, each IO can be configured as an external interrupt source

1.1.2. Interfaces

The following interfaces are multiplexed with GPIO.

- One SPI master interface, 1, 2 or 4-bit mode, up to 48MHz
- One SPI slave interface, 1, 2 or 4-bit mode, up to 48MHz
- One SDIO host interface (v2.0)
- One SDIO device interface (v2.0)
- One I2S interface supporting 16 or 24-bit, master or slave mode (supports 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz sample rates, transmit or receive, two channels)

- One I2S interface supporting 16-bit, master or slave mode (supports TDM mode) (supports 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz sample rates, transmit or receive, two channels)
- Up to three UART interfaces with hardware flow control (~3Mbps)
- Up to two I2C master interfaces (3.4Mbps)
- Up to four channels of 12-bit ADC
- Up to six PWM channels

1.2. Wi-Fi subsystem features

1.2.1. Wi-Fi MAC

- Supports all data rates of 802.11g including 6, 9, 12, 18, 24, 36, 48 and 54Mbps
- Supports short GI and all data rates of 802.11n including MCS0 to MCS7
- Wi-Fi security WEP, WPA2 and WPS
- Supports SoftAP and sniffer modes
- Supports Airoha Smart Connection
- Supports multi-cloud connectivity
- Supports Wi-Fi/BLE coexistence

1.2.2. WLAN baseband

- 20 and 40MHz channels
- MCSO-7 (BPSK, r=1/2 through 64QAM, r=5/6)
- Supports greenfield, mixed mode and legacy modes
- Short guard interval
- Supports digital pre-distortion to enhance PA performance
- Supports RX antenna diversity

1.2.3. WLAN RF

- Integrated 2.4GHz PA and LNA and T/R switch
- Supports frequency band from 2402 to 2494MHz
- Single-ended RFIO with integrated balun
- Supports an optional external LNA and PA

1.2.4. Core processor

- Dedicated high-performance 32-bit RISC CPU N9 up to 160MHz clock speed
- Feasibility Wi-Fi host subsystem in Cortex-M4 MCU to support custom applications

1.3. System block diagram

Figure 1.3-1. MT7686 system block diagram

2. Functional Overview

2.1. Host processor subsystem

2.1.1. ARM® Cortex®-M4 with FPU

The Cortex-M4 with FPU is a low-power processor with 3-stage pipeline Harvard architecture. It has reduced pin count and low power consumption and delivers very high performance efficiency and low interrupt latency, making it ideal for embedded microcontroller products.

The processor incorporates:

- IEEE754-compliant single-precision floating-point computation unit (FPU).
- A Nested Vectored Interrupt Controller (NVIC) to achieve low latency interrupt processing.
- · Enhanced system debugging with extensive breakpoint.
- An optional Memory Protection Unit (MPU) to ensure platform security robustness.

The Cortex-M4 executes the Thumb®-2 instruction set with 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers. The instruction set is fully backward compatible with Cortex-M3/M0+.

MT7686 has further enhanced the Cortex-M4 with FPU to reduce the power by another 11% (in Dhrystone) compared to the original Cortex-M4. Low power consumption is a significant feature for IoT and Wearables application development.

2.1.2. Cache controller

A configurable 32KB cache is implemented to improve the code fetch performance when CPU accesses a non-zero wait-state memory such as EMI, external flash or boot ROM through the on-chip bus.

The core cache is a small block of memory containing a copy of a small portion of cacheable data in the external memory. If CPU reads a cacheable datum, the datum will be copied to the core cache. Once CPU requests the same datum again, it can be obtained directly from the core cache (called cache hit) instead of fetching it again from the external memory to achieve zero wait-state latency.

The cache can be disabled and this block of memory can be turned into tightly coupled memory (TCM), a high-speed memory for normal data storage. The sizes of TCM and cache can be set to one of the following four configurations:

- 32KB cache, 64KB TCM
- 16KB cache, 80KB TCM
- 8KB cache, 88KB TCM
- 0KB cache, 96KB TCM

2.1.3. Memory management

Three types of memories are implemented for use:

1) On-die memories (SRAMs) with up to 96KB at CPU clock speed with zero wait state.

- 2) Embedded flash of 32Mbits to store programs and data.
- 3) Embedded pseudo SRAM (PSRAM) of 32Mbits for application storage.

The SRAMs are composed of TCMs and L1 caches. The L1 cache (up to 32KB) is implemented to improve processor access performance of the long latency memories (flash and PSRAM).

TCMs are designed for high speed, low latency and low power demanding applications. Each TCM has its own power state; active, retention or power-down. TCM must be in active state for normal read and write access. Retention state saves the SRAM content and consumes the minimum leakage current with no access. Power-down loses the content and consumes almost zero power.

The TCMs can also be accessed by other internal AHB masters like DMA or multimedia subsystem for low power applications. These applications can run on TCM without powering on PSRAM or flash to save more power.

Boot ROM is also implemented for processor boot-up and its content is unchangeable.

2.1.4. Memory protection unit (MPU)

- The MPU is an optional component to manage the CPU access to memory. The MPU provides full support for:
 - Protection regions (up to 8 regions and can be further divided up into 8 sub-regions).
 - Overlapping protection regions, with region priority.
 - Access permissions.
 - Exporting memory attributes to the system.
- The MPU is useful for applications where a critical code has to be protected against the misbehavior of other tasks. It can be used to define access rules, enforce privilege rules and separate processes.

2.1.5. Nested vectored interrupt controller (NVIC)

The NVIC supports up to 32 maskable interrupts and 16 interrupt lines of Cortex-M4 with 32 priority levels. The NVIC and the processor core interface are closely coupled to enable low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked or nested interrupts to enable tail-chaining of interrupts. The processor supports both level and pulse interrupts with programmable active-high or low control.

2.1.6. External interrupt controller

The external interrupt controller consists of up to 32 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising edge or falling edge or both or level). Each line can also be masked independently. A pending register maintains the status line of the interrupt requests. Up to 21 GPIOs can be connected to 21 external interrupt lines.

2.1.7. Bus architecture

To better support various IoT applications, MT7686 adopts 32-bit multi-AHB matrix to provide low-power, fast and flexible data operation. Table 2.1-1 shows the interconnections between bus masters and slaves.

- The bus masters include Cortex-M4, SPM, SPI master, SPI slave, SDIO master, SDIO slave, Crypto engine, Wi-Fi connectivity system and DMA.
- The bus slaves include the Always On (AO) domain APB peripherals, Power Down (PD) domain APB peripherals, TCM, SFC, EMI, SYSRAM, RTC SRAM and Wi-Fi connectivity system.

Table 2.1-1. MT7686 bus connection

Master Slave	ARM Cortex- M4	PD DMA	SPM	SPI Master	SPI Slave	SDIO Master	SDIO Slave	Crypto Engine	CONNSYS Master
AO APB Peripherals	•	•	•					•	
PD APB Peripherals	•	•	•					•	
TCM	•	•	•					•	
EMI	•	•	•	•	•	•	•	•	•
SFC	•	•	•					•	
SYSRAM	•	•	•	•	•	•	•	•	•
RTC SRAM	•	•	•	•	•	•	•	•	•
CONNSYS	•	•	•					•	

2.1.8. Direct memory access (DMA) controller

MT7686 chipset features three DMA controllers, containing 16 channels in power down domain. They manage data transfer between the peripheral devices and memory.

There are three types of DMA channels in the DMA controller – full-size DMA channel, half-size DMA channel and virtual FIFO DMA for different peripheral devices. DMA controllers support ring-buffer and double-buffer memory data transactions.

To improve the bus efficiency, the DMA controllers provide an unaligned-word access function. When this function is enabled, it can automatically convert the address format from the unaligned type to aligned type, ensuring compliance with the AHB/APB protocol.

Each peripheral device is connected to a dedicated DMA channel that can configure transfer data sizes, source address and destination address by software. The DMA controllers can be used with the following peripherals:

- Two I2C interfaces
- A single HIF
- Two I2S interfaces
- Three UART interfaces

2.2. Boot source

There are three boot source options:

- Serial flash
- SPI slave (to load binary from host)
- SDIO slave (to load binary from host)

The host may transmit a binary through SPI slave or SDIO slave to internal SRAM. The MCU (Cortex-M4) can execute on internal SRAM after transmission is complete. The boot source in boot ROM is determined according to the flowchart shown in Figure 2.2-1. HIF_EN and HIF_SEL can be configured at power up using GPIO_4 and GPIO_13, respectively.

Figure 2.2-1. Boot source flow

2.3. Clock architecture

The clock controller (see below Figure 2.3-1) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- **Clock prescaler**. To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- Safe clock switching. The clock sources can be changed safely at runtime through a configuration register.
- Clock management. To reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. The AHB and APB clock supports Dynamic Clock Management (DCM) with a dynamic clock slow down or gating when the bus fabric is idle.
- System clock source. Two different clock sources can be used to drive the master clock (FCPU and FBUS):
 - o 26MHz/40MHz Crystal Oscillator (XO), that can supply reference clock for PLLs.
 - o Baseband PLL1 (BBPLL1) with XO as a reference clock and a maximum frequency at 1040MHz.
 - Baseband PLL2 (BBPLL2) with XO as a reference clock or divided from BBPLL1 and a fixed frequency at 960MHz.
- Auxiliary clock source. Three ultra-low power clock sources that can be used to drive the real-time clock F_FRTC_CK.
 - o Embedded EOSC32K is the default F_FRTC_CK clock source:
 - 32 kHz low-speed internal RC (EOSC32K) with ±5% variation

MT7686 Datasheet

- o The fifth bit (nm_trap_slow_src_sel) of SYSTEM_INFO is 1, users can switch to low-speed internal clock divided from Crystal Oscillator (XO) (XO_DIV_32K_CK) to get more accurate clock source:
 - If XO is 40MHz, XO_DIV_32K_CK is 32.760 kHz (0.024%).
 - If XO is 26MHz, XO DIV 32K CK is 32.745 kHz (0.07%).
- o The fifth bit (nm_trap_slow_src_sel) of SYSTEM_INFO is 0, users can switch to XOSC32K:
- 32.768 kHz low-speed external crystal (XOSC32K)
- Peripheral clock sources. Three types of peripheral clock source options are used. Each peripheral has its own gating register:
 - Several peripherals (SDIOMST (MSDC), SPIMST and SFC) have their own clock independent from the system clock. BBPLL1 and BBPLL2, each having independent outputs allowing the highest flexibility, can generate independent clocks for the SDIOMST (MSDC), SPIMST and SFC.
 - Clock of several peripherals including three I2Cs, crypto engine, DMA and more is the same as fast AHB/APB bus clock (FBUS).
 - Clock of several low speed peripherals (SEJ, AUXADC, EFUSE and more) is from F_FXO_CK (26MHz or 20MHz). The clock frequency of GPTIMER is from either F_FXO_D2_CK (13MHz or 10MHz) or F_RTC_CK (32kHz).

Clock-out

Default output from CLKOUT pin (CLKOO~CLKO4) is the F_FRTC_CK clock. It also can output F_FXO_CK clock (26MHz or 20MHz) or XPLL clock (26MHz, 24.576MHz or 22.5792MHz) by setting
 GPIO CLKO CTRL A and GPIO CLKO CTRL B.

26MHz or 40MHz XO is selected on reset as the default CPU clock. This clock source is input to a set of cascaded PLL (BBPLL1 and BBPLL2) that enables to increase the CPU frequency (F_{CPU}) up to 192MHz when VCORE is 1.15V. Several prescalers allow the configuration of the fast bus clock, the maximum frequency of the AHB and APB bus (F_{BUS}) is 96MHz, while the maximum frequency of low-speed bus domains is 26MHz or 20MHz (divided from 40MHz XO clock). The frequency ratio of F_{CPU} and F_{BUS} needs to be 2:1. The devices with an embedded low jitter XPLL achieve better I2S performance. The XPLL can output either 24.576MHz for 48kHz base I2S sample rate or 22.5792MHz for 44.1kHz base I2S sample rate.

Figure 2.3-1. MT7686 clock source architecture

2.4. Analog baseband

To communicate with analog blocks, a common control interface for all analog blocks is implemented. In addition, there are dedicated interfaces for data transfer. The dedicated data interface of each analog block is implemented in the corresponding digital block. Analog circuits include the following analog functions for data conversion and clocking purposes:

- 1) Auxiliary ADC provides an ADC for the battery and other auxiliary analog functions monitoring.
- 2) Clock generation a PLL providing clock signals to the audio interface unit.
- 3) XOSC32 a 32kHz crystal oscillator circuit for RTC applications on analog blocks.

2.4.1. Auxiliary ADC

2.4.1.1. Block description

The auxiliary ADC includes the following functional blocks:

- 1) Analog multiplexer selects a signal from one of the seven auxiliary input pins. Real-time signals, such as temperature are transferred and monitored in the voltage domain.
- 2) 12-bit A/D converter converts the multiplexed input signal to 12-bit digital data.

Table 2.4-1. Auxiliary ADC input channel

Channel	Application	Input range [V]
0	AGPIO	0V to Min{AVDD25, VDDIO}
Others	No other channel used	N/A

2.4.1.2. Functional specifications

The functional specifications of the auxiliary ADC are listed in Table 2.4-2.

Table 2.4-2. Auxiliary ADC specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
N	Resolution		12		Bit
FC	Clock rate			4	MHz
FS	Sampling rate at N-Bit		FC/(N+4)		MSPS
	Input swing	0		AVDD25	V
CIN	Input capacitance				
	 Unselected channel 		100		fF
	o Selected channel		6.4		pF
RIN	Input resistance				
	 Unselected channel 	400			МΩ
	o Selected channel	0.2			МΩ
	Clock latency		N+4		1/FC
DNL	Differential nonlinearity		± 1		LSB
INL	Integral nonlinearity		± 2		LSB
OE	Offset error (AVDD25 variation is not included,		± 10		mV
	which is dependent on BG accuracy)		_ 10		1114
FSE	Full swing error (AVDD25 variation is not included, which is dependent on BG accuracy)		± 10		mV
SINAD	Signal to noise and distortion ratio (1kHz full swing input and 4MHz clock rate)		65		dB
DVDD	Digital power supply		1.2		V
AVDD25	2.5V analog power supply for auxiliary ADC (regulated from AVDD33)	2.4	2.5	2.6	V
AVDD33	3.3V analog power supply for 2.5V LDO and 2.5V reference generator	3	3.3	3.6	V
Т	Operating temperature	-20		85	°C
	Auxiliary ADC current consumption (from AVDD25)		280		μΑ
	Selected channel AVDD33 current consumption (includes 2.5V LDO and 2.5V reference generator)				
	o Power-up		750		μΑ
	o Power-down		1		μΑ

2.4.2. Audio phase-locked loop (XPLL)

2.4.2.1. Overview

A low-cost fractional-N XPLL for general-purpose clocking is introduced in this section. The PLL is programmable to generate clocks ranging from 0.5GHz to 1.5GHz with a 7-bit integer and 24-bit fractional divisor. Low-to-high level shifters, self-bias circuit, and internal regulators are built-in to enhance portability and performance.

The XPLL design specifications are summarized in Table 2.4-3. Detailed setting instructions and restrictions will be illustrated in following sections.

Mode		Support	Unit	Notes
	Input clock frequency (Fin)	0.1 to 120	MHz	After pre-divider
	Output clock frequency (Fout)	VDD=3.3±10% 500 to 1500	MHz	64 bands; need K-band
		VDD=2.5±10% 500 to 1000	MHz	64 bands; need K-band
SPEC	Feedback divide ratio (integer-N)	1 to 128		
	Output clock long-term jitter (delay 1us)	50ps RMS	ps	
	Output clock period jitter	50ps P-P	ps	
	Output clock phase jitter	100ps RMS	ps	
	Digital power supply (DVDD)	1.08 to 1.26	V	
	Analog power supply (AVDD)	2.25 to 3.63	V	
	Current consumption	< 3	mA	
	Power down current	< 1	μΑ	
	Operating temperature	-20 to 85	°C	

Table 2.4-3. XPLL design specifications

2.4.2.2. Configuration and block diagram

The XPLL top block diagram with a fractional-N PLL and a bandgap bias circuit is shown in Figure 2.4-1. The bandgap bias circuit generates a temperature-independent bias current of 25µA for fractional-N XPLL usage.

Figure 2.4-1. XPLL block diagram

Figure 2.4-2 shows the fractional-N PLL block diagram with typical PLL components such as phase frequency detector (PFD), charge pump (CHP), low pass filter (LPF), voltage-controlled oscillator (VCO) and several frequency dividers. The internal low dropout regulator (LDO) is used for improving the PSRR of sensitive blocks such as PFD, CHP, and VCO.

The PLL feedback divider is implemented by a 7-bit multi-module divider (MMD) which can operate at very high speed with wide divisor range. The MMD divisor is controlled by the DDS for fractional-N frequency multiplication.

The period-controlled word (PCW) of the DDS is a 31-bit binary number which consists of a 7-bit integer part and 24-bit fractional part. The pre-divider and post-divider are both simple binary dividers added to facilitate PLL frequency configuration.

Figure 2.4-2. Fractional-N XPLL block diagram

2.4.3. External clock source

2.4.3.1. Digitally controlled crystal oscillator (DCXO)

The Digitally Controlled Crystal Oscillator (DCXO) uses a two-pin 26MHz crystal resonator. Crystals with a 1612 and a 3225 footprint are both supported. Please refer to Table 2.4-4 for the supported crystal resonator capacitance load and tuning sensitivity range. The on-chip programmable capacitor array is used for frequency-tuning, whereby the tuning range is ±50ppm. This DCXO supports 32kHz crystal-less operation.

the tuning range is ±50ppm. This DCXO supports 32kHz crystal-less operation.								
Table 2.4-4. DCXO Characteristics (TA = 250C, VDD = 1.8V unless otherwise stated) (1)								
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Operating frequency	Fref			26		MHz		
Crystal C load	CL		6	7.5		pF		

rarameter	Symbol	Conditions		. , , ,	IVIUA	Oilit
Operating frequency	Fref			26		MHz
Crystal C load	CL		6	7.5		pF
Crystal tuning sensitivity	TS		12.5	33		ppm/pF
Static range	SR	CDAC from 0 to 511		± 50		Ppm
Start-up time	TDCX0	Frequency error < 10ppm Amplitude > 90 %		0.6	2.5	Ms
Pushing figure				0.2		ppm/V
Fref buffer output level	VFref	Max. loading = 10pF		1.1		V _{p-p}
Fref buffer output phase noise		10kHz offset Jitter noise		-138		dBc/Hz

⁽¹⁾ Guaranteed by design, not tested in production.

2.4.3.2. 32kHz crystal oscillator (XOSC32)

The low-power 32kHz crystal oscillator XOSC32 is designed to work with an external piezoelectric 32.768kHz crystal and a load composed of two functional capacitors. It is designed to be a clock source of RTC for lower-power platforms. Please refer to The minimum VRTC value means the minimum VRTC for the clock to stay alive is 1.4V when the crystal oscillator successfully starts.

The crystal parameters determine the oscillation allowance. Table 2.4-6 shows the recommend crystal parameters to be used with XOSC32.

Table 2.4-5 for more information about the key performance.

The minimum VRTC value means the minimum VRTC for the clock to stay alive is 1.4V when the crystal oscillator successfully starts.

The crystal parameters determine the oscillation allowance. Table 2.4-6 shows the recommend crystal parameters to be used with XOSC32.

Symbol	Parameter	Min.	Typical	Max.	Unit
VRTC	RTC module power		3.3		V
Tosc	Start-up time			1	sec
Dcyc	Duty cycle	30	50		%
	Current consumption		3		μΑ
Т	Operating temperature	-40		85	°C

Table 2.4-5. Functional specifications of XOSC32

Table 2.4-6. Recommended parameters for 32kHz crystal

Symbol	Parameter	Min.	Typical	Max.	Unit
F	Frequency range		32768		Hz
GL	Drive level			1.5	μW
Δf/f	Frequency tolerance		+/- 20		ppm
ESR	Series resistance		50	70	kΩ
С0	Static capacitance		0.9	2	pF
CL1	Load capacitance	6		12.5	pF

The –R is more than 3 times bigger with this CL range and crystal. If a larger CL is selected, the frequency accuracy decreases and the –R degrades.

2.5. Serial interfaces

2.5.1. Universal asynchronous receiver transmitter (UART)

MT7686 chipset houses four UART interfaces that provide full duplex serial communication between the baseband chipset and external devices.

 The universal asynchronous receiver transmitter (UART) provides full duplex serial communication channels between the baseband chipset and external devices.

MT7686 Datasheet

- The UART has both M16C450 and M16550A modes of operation that are compatible with a range of standard software drivers. The extensions are designed to be broadly software compatible with M16550A variants, but certain areas offer no consensus.
- The UART supports word lengths from 5 to 8 bits, an optional parity bit and one or two stop bits and is fully
 programmable by an 8-bit CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch
 register are included together with separate transmit and receive FIFOs. Two modem control lines and a
 diagnostic loop-back mode are provided. The UART also includes two DMA handshake lines, indicating when
 the FIFOs are ready to transfer data to the CPU.
- Note, that the UART is designed so that all internal operation is synchronized by the clock signal. This
 synchronization results in minor timing differences between the UART and industry standard M16550A device,
 which means that the core is not clocked for clock identical to the original device.
- After hardware reset, the UART will be in M16C450 mode. Its FIFOs can then be enabled and the UART can
 enter M16550A mode. The UART also has further additional functions beyond the M16550A mode. Each of
 the extended functions can be selected individually under software control.
- There are three UART channels supporting software flow control. Two of them support hardware flow control. Each UART has an individual interrupt source.
- For transmission, the UART supports word lengths from 5 to 8 bits with an optional parity bit and 1 or 2 stop bits.
- The UART supports standard baud rates of 110bps, 300bps, 1200bps, 2400bps, 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps, 921600bps and non-standard baud rates from 110bps to 3Mbps.
- There are dedicated DMA channels for both transmit (TX) and receive (RX) for each UART.

The UART supports automatic baud rate detection in RX mode. The recommended baud rate range is from 300bps to 115,200bps.

2.5.2. Serial peripheral interface (SPI)

MT7686 chipset features one SPI master controller and one SPI slave controller to receive/transmit device data using single, dual and quad SPI protocols.

• The Serial Peripheral Interface (SPI) is a serial transmission protocol, which supports single mode (four-pin), , dual mode (four-pin) and quad mode (six-pin) for increased data throughput. The maximum serial clock (SCK) frequency is 48MHz. Note that single mode can support full duplex, but dual and quad mode only support half duplex. Figure 2.5-1 is an example of the connection between the SPI master and SPI slave. Table 2.5-1 shows the characteristic of each pin.

Single SPI

Dual SPI Quad SPI

Figure 2.5-1. Pin connection between SPI master and SPI slave

Table 2.5-1. SPI master controller interface

Signal name	Туре	Default value	Description	
CS	0	1 (output)	Active low chip selection signal	
SCK	0	0 (output)	The (bit) serial clock. Maximum SCK clock rate is 48MHz.	
MOSI	I/O	1 (output)	Data signal 0	
MISO	1/0	Pull down (input)	Data signal 1	
SIO2	1/0	1 (output)	Data signal 2	
SIO3	1/0	1 (output)	Data signal 3	

2.5.2.1. SPI master controller

- The SPI master controller supports single mode, dual mode and quad mode. The controller can automatically switch port direction for data input/output according to registers SPIM_TYPE and SPIM_RW_MODE.
- The SCK frequency can be configured as 96/N MHz when core power is 1.1V or 1.3V, and 26/N MHz when core power is 0.9V, where N ranges from 2 to 2¹⁷, with CPOL and CPHA features for different applications. CPOL defines the SCK polarity. CPHA defines the legal timing to sample data. The CS signal setup time, hold time and idle time can be configured, too. The detailed timing diagram of the SCK and CS is shown in Figure 2.5-2.

.

Figure 2.5-2. SPI transmission formats

- There are two modes for data read/write in SPI master controller:
 - o Direct mode. The CPU directly write data to or read data from the SPI master controller FIFO.
 - DMA (Direct Memory Access) mode. The SPI master controller includes DMA design, which can automatically and continuously write data from memory to the SPI master controller or read data from the SPI master controller to memory. In DMA mode, the endian order of memory data is adjustable.
- Unlimited length transmission can be achieved by enabling pause mode. In pause mode, the CS signal will stay
 active after one transfer. During this period, the SPI master controller will be in PAUSE_IDLE state and wait for
 the resume command to start the next transfer. Figure 2.5-3 is the state transition diagram.

Figure 2.5-3. Operation flow with and without PAUSE mode

 A configurable option to control CS de-assertion between byte transfers is available. The SPI master controller supports a special transmission format called CS de-assert mode. Figure 2.5-4 illustrates the waveform in this transmission format.

Figure 2.5-4. CS de-assert mode

- When the SPI master controller operates in dual or quad mode, the transmission package includes three parts: command phase, dummy phase and data phase.
 - Command phase always operates at single mode.
 - Dummy phase cannot transmit or receive data.
 - Data phase operation depends on SPIM_TYPE and SPIM_RW_MODE settings. The command phase and dummy phase are useful for special applications, such as read or write serial flash data.
- The sample clock, SCK and data delay is adjustable to solve the timing skew issue.
 - o If the critical path latency between master and slave is larger than half of SCK cycle, the SPI master controller may samples the wrong data. The critical path of SPI transmission includes two parts:
 - Master transmits SCK to slave
 - Slave feeds back data to master

The sampling clock delay (register **SPIM_GET_DELAY**) and sampling edge (register **SAMPLE_SEL**) can be adjusted to solve this issue. Each interval of **SPIM_GET_DLY** is 10.42 ns. The detailed description is shown in Figure 2.5-5.

Figure 2.5-5. SPI master controller critical path sampling

• If the timing skew between SCK and data is too big, the received data on slave can be corrupted. This issue can be solved by adjusting the delay on SCK and data path (registers SPIM_SEL_ADDR and SPIM_SEL_WDATA), as shown in Figure 2.5-6.

Figure 2.5-6. SPI master controller SCK and data delay

2.5.2.2 SPI slave controller

- The SPI slave controller supports single mode, dual mode and quad mode. The controller can automatically switch port direction for data input/output according to register SPIS TYPE.
- There are two methods to determine the memory address for SPI slave to write/read data
 - When SPIS_DEC_ADDR_EN is 0, the address is determined by SPISLV_BUFFER_BASE_ADDR and CW/CR command from the master. The address and length from master CW/CR command is stored in SPIS_TRANS_ADDR and SPIS_TRANS_LENGTH. The start address of the transfer is "SPISLV_BUFFER_BASE_ADDR + SPIS_TRANS_ADDR", and the end address is "SPISLV_BUFFER_BASE_ADDR + SPIS_TRANS_LENGTH". The CW/CR command can only succeed if the end address does not exceed the maximum available memory address, which is "SPISLV_BUFFER_BASE_ADDR + SPISLV_BUFFER_SIZE".
 - When SPIS_DEC_ADDR_EN is 1, the address is directly determined by SPISLV_BUFFER_BASE_ADDR.
- The maximum SCK frequency supported is 48 MHz with CPOL and CPHA features. CPOL defines the SCK polarity. CPHA defines the legal timing to sample data. The detailed timing diagram of the SCK and CS is shown in Figure 2.5-7.

Figure 2.5-7. SPI transmission formats

- The SPI slave controller support early transmission feature to solve data path latency issue. The timing diagram is shown in
- Figure 2.5-8.

•

Figure 2.5-8. SPI slave controller early transmission

1.3.1. Inter-IC sound interface (I2S)

MT7686 chipset provides two Inter-IC Sound Interface (I2S) controllers. The controllers can be selected as master or slave. There are two types of transfer protocols in the I2S controllers: one is the I2S protocol, supporting 24-bit/16-bit addressing and mono/stereo transaction; the other one is the TDM protocol, supporting 16-bit addressing and TDM32/TDM64/TDM128 transaction. I2S controllers can be served by the DMA controller and the sample rate can support either 16/24/48/96/192kHz or 11.025/22.05/44.1kHz when sharing only one internal PLL. Detailed specifications of the I2S and TDM are shown in Table 2.5-2 and Table 2.5-3.

I2S Protocol	Bit Width	Input/output Sample
Master Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, mono/stereo
	I2S1: 16b/24b	XPLL 22.5792MHz: 11.025, 22.05, 44.1, 88.2, 176.4 kHz, mono/stereo
		XPLL 24.576MHz: 8, 12, 16, 24, 32, 48, 96, 192 kHz, mono/stereo
Slave Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, mono/stereo
I2S1: 16b/24b		XPLL 22.5792MHz: 11.025, 22.05, 44.1, 88.2, 176.4 kHz, mono/stereo
		XPLL 24.576MHz: 8, 12, 16, 24, 32, 48, 96, 192 kHz, mono/stereo

Table 2.5-2. I2S protocol specifications

Table 2.5-3. TDM protocol specifications

TDM Protocol	Bit Width	Input/output Sample
Master Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, TDM32/TDM64 XPLL 22.5792MHz: 11.025, 22.05, 44.1, 88.2, 176.4 kHz, TDM32/TDM64 XPLL 24.576MHz: 8, 12, 16, 24, 32, 48, 96, 192 kHz, TDM32/TDM64
Slave Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, TDM32/TDM64/TDM128 (up to 4 channels for TDM128) XPLL 22.5792MHz (either of the following): • 11.025, 22.05, 44.1, 88.2 kHz, TDM32/TDM64/TDM128 (up to 4 channels for TDM128) • 176.4 kHz, TDM32/TDM64 XPLL 24.576MHz (either of the following): • 8, 12, 16, 24, 32, 48, 96 kHz, TDM32/TDM64/TDM128 (up to 4

TDM Protocol	Bit Width	Input/output Sample
		channels for TDM128)
		• 192 kHz, TDM32/TDM64

1.3.2. SD memory card controller

MT7686 supports SD memory card bus protocol, as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 2.0.

Furthermore, the controller also partially supports the SDIO card specification version 2.0. However, the controller can only be configured as the host of the SD memory card.

Main features of the controller:

- 32-bit access for control registers
- 8, 16, or 32-bit access for FIFO in PIO mode
- Built-in CRC circuit
- Supports PIO mode, basic DMA mode and descriptor DMA mode for SD controller.
- Interrupt capabilities
- Data rate of up to 48Mbps in 1-bit mode, 48x4 Mbps in 4-bit mode. The module is targeted at 48MHz operating clock
- Programmable serial clock rate on SD bus (256 gears)
- Card detection capabilities (MT7686 uses the EINT controller for card detection)
- Does not support SPI mode for SD memory card
- Does not support suspend/resume for SD memory card.

2.6. Peripherals

2.6.1. Pulse-width modulation (PWM)

There are six PWM controllers to generate pulse signals. The duty cycle, high time and low time of pulse signals can be programmed. The PWM controllers can be configured to use 40MHz, 13MHz or 32kHz clock source to support a wide range of output pulse frequencies.

2.6.2. General purpose input/output (GPIO)

Each of the General Purpose Input/Output (GPIO) pins are software configurable as an output (push-pull or open-drain) or as an input (with or without pull-up or pull-down) that supports input floating with buffer gating to reduce power consumption. Most of the GPIOs are multiplexed with peripheral functions and have selectable output driving strength. The maximum toggling speeds of a single GPIO are listed in Table 2.6-1.

If the MCU handles more than one GPIO at a time or receives an interrupt, a rapid performance degradation may occur.

Dedicated IOs operate at higher speeds depending on the peripheral or interface usage. For example, PWM IOs can output 20 MHz when VCORE is 1.15V.

Table 2.6-1. GPIO speeds when the Cortex-M4 cache is enabled

VCORE	Cortex-M4 speed	Maximum toggling speed of single GPIO pins
1.15V	192MHz	1MHz
1.15V	96MHz	500kHz
0.85V	N/A	N/A (Cortex-M4 is in deep sleep mode)

2.6.3. General purpose timer (GPT)

The GPT includes five 32-bit timers and one 64-bit timer. Each timer has four operation modes and can operate on one of the two clock sources; RTC clock (32.768kHz) and system clock (13MHz).

2.6.4. Real time clock (RTC)

The RTC module provides time and data information, as well as 32.768kHz clock source. The clock is selected between three clock sources — one from an external (XOSC32) and two from an internal (XO, EOSC32). The RTC block has an independent power supply. When the MT7686 platform is at retention mode, a dedicated regulator will supply power to the RTC block. In addition to providing timing data, an alarm interrupt will be generated and can be used to power up the baseband core. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches the maximum value. The year span is supported until up to 2,127. The maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

2.6.5. True random number generator (TRNG)

The TRNG is a device in power-down domain that generates random numbers from the ring oscillator (RO) outputs. Various types of ROs are adopted, including Hybrid Fibonacci Ring Oscillator (H-FIRO), Hybrid Ring Oscillator (H-RO) and Hybrid Galois Ring Oscillator (H-GARO). Interrupt request (IRQ) will be issued once the random data is successfully generated.

3. Wi-Fi RF Subsystem

3.1. Wi-Fi radio characteristics

3.1.1. Wi-Fi RF block diagram

Front-end loss with an external balun (2.4GHz band with band insertion loss of 1dB).

Figure 3.1-1. 2.4GHz RF Block Diagram

3.1.2. Wi-Fi 2.4GHz band RF receiver specifications

The specifications listed in Table 3.1-1 are measured at the antenna port, which includes the front-end loss.

Table 3.1-1. 2.4GHz RF receiver specifications

Parameter	Description	Performan	Performance				
		Minimum	Typical	Maximum	Unit		
Frequency range	Center channel frequency	2412		2484	MHz		
RX sensitivity	1 Mbps CCK	-	-97.5	-	dBm		
	2 Mbps CCK	-	-94.5	-	dBm		
	5.5 Mbps CCK	-	-92.5	-	dBm		
	11 Mbps CCK	-	-89.5	-	dBm		
RX sensitivity	BPSK rate 1/2, 6 Mbps OFDM	-	-94.5	-	dBm		
	BPSK rate 3/4, 9 Mbps OFDM	-	-93.3	-	dBm		
	QPSK rate 1/2, 12 Mbps OFDM	-	-91.5	-	dBm		
	QPSK rate 3/4, 18 Mbps OFDM	-	-89.1	-	dBm		
	16QAM rate 1/2, 24 Mbps OFDM	-	-85.8	-	dBm		
	16QAM rate 3/4, 36 Mbps OFDM	-	-82.4	-	dBm		
	64QAM rate 1/2, 48 Mbps OFDM	-	-78.2	-	dBm		
	64QAM rate 3/4, 54 Mbps OFDM	-	-77.0	-	dBm		

Parameter	Description	Perfor	mance		
RX sensitivity	MCS 0, BPSK rate 1/2	-	-93.9	-	dBm
20MHz bandwidth	MCS 1, QPSK rate 1/2	-	-90.7	-	dBm
Mixed mode	MCS 2, QPSK rate 3/4	-	-88.3	-	dBm
800ns guard	MCS 3, 16QAM rate 1/2	-	-85.3	-	dBm
interval	MCS 4, 16QAM rate 3/4	-	-81.8	-	dBm
Non-STBC	MCS 5, 64QAM rate 2/3	-	-77.4	-	dBm
	MCS 6, 64QAM rate 3/4	-	-76	-	dBm
	MCS 7, 64QAM rate 5/6	-	-74.8	-	dBm
RX sensitivity	MCS 0, BPSK rate 1/2	-	-90.5	-	dBm
40MHz bandwidth	MCS 1, QPSK rate 1/2	-	-87.7	-	dBm
Mixed mode	MCS 2, QPSK rate 3/4	-	-85.2	-	dBm
800ns guard	MCS 3, 16QAM rate 1/2	-	-81.7	-	dBm
interval	MCS 4, 16QAM rate 3/4	-	-78.6	-	dBm
Non-STBC	MCS 5, 64QAM rate 2/3	-	-74.0	-	dBm
	MCS 6, 64QAM rate 3/4	-	-72.7	-	dBm
	MCS 7, 64QAM rate 5/6	-	-71.5	-	dBm
Maximum receive	6 Mbps OFDM	-	-10	-	dBm
level	54 Mbps OFDM	-	-10	-	dBm
	MCS0	-	-10	-	dBm
	MCS7	-	-20	-	dBm
Receive adjacent	1 Mbps CCK	-	40	-	dBm
Channel rejection	11 Mbps CCK	-	40	-	dBm
	BPSK rate 1/2, 6 Mbps OFDM	-	34	-	dBm
	64QAM rate 3/4, 54 Mbps OFDM	-	22	-	dBm
	HT20, MCS 0, BPSK rate 1/2	-	33	-	dBm
	HT20, MCS 7, 64QAM rate 5/6	-	15	-	dBm
	HT40, MCS 0, BPSK rate 1/2	-	29	-	dBm
	HT40, MCS 7, 64QAM rate 5/6	-	9	-	dBm

3.1.3. Wi-Fi 2.4GHz band RF transmitter specifications

The specifications listed in Table 3.1-2 are measured at the antenna port, which includes the front-end loss.

Table 3.1-2. 2.4GHz RF transmitter specifications

Parameter	Description	Performance			
		Minimum	Typical	Maximum	Unit
Frequency range		2412	-	2484	MHz
Output power	1 Mbps CCK	-	19	-	dBm
with spectral mask	11 Mbps CCK	-	19	-	dBm
and EVM	6 Mbps OFDM	-	18.5	-	dBm
compliance	54 Mbps OFDM	-	16.5	-	dBm
	HT20, MCS 0	-	17.5	-	dBm
	HT20, MCS 7	-	15.5	-	dBm
	HT40, MCS 0	-	16.5	-	dBm
	HT40, MCS 7	-	14.5	-	dBm
TX EVM	6 Mbps OFDM	-	-	-5	dB
	54 Mbps OFDM	-	-	-25	dB
	HT20, MCS 0	-	-	-5	dB
	HT20, MCS 7	-	-	-28	dB

Parameter	Description	Performance			
	HT40, MCS 0	-	-	-5	dB
	HT40, MCS 7	-	-	-28	dB
Output power	TSSI closed-loop control across all temperature	-1.5	-	1.5	dB
variation ⁽¹⁾	ranges and channels and VSWR \leq 1.5:1.				
Carrier		-	-	-30	dBc
suppression					
Harmonic output	Second harmonic	-	-45	-43	dBm/MHz
power	Third harmonic	-	-45	-43	dBm/MHz

3.2. Radio MCU subsystem

3.2.1. CPU

MT7686 features the 32-bit N9 CPU, with the following features:

- 5-stage pipeline with extensive clock-gating
- Dynamic branch prediction with BTB
- 16/32-bit mixed instruction format
- Multiply-accumulate and multiply-subtract instructions
- Instructions optimized for audio applications
- Instruction and data local memory
- Programmable data endian control
- JTAG based debug interface

3.2.2. **RAM/ROM**

The radio MCU subsystem features instruction local memory (ILM), data local memory (DLM), and SYSRAM. The ROM code is in the ILM.

3.2.3. Memory map

Table 3.2-1 describes how peripherals are mapped to the memory space in the radio MCU subsystem. When the MCU performs a read transaction to an undefined address, the bus returns 0. When the MCU performs a write transaction to an undefined address, the bus regards it as an invalid transaction and does nothing.

Table 3.2-1. N9 memory map

Start address	End address	Function	Description
0x0000_0000	0x0000_FFFF	ILM ROM	Instruction local memory ROM for N9
0x0001_0000	0x0002_3FFF	ILM RAM	Instruction local memory RAM for N9

⁽¹⁾ No SYSRAM data is retained in these scenarios.

Start address	End address	Function	Description	
0x0010_0000	0x0010_7FFF	SYSRAM N9	System RAM for N9	
0x0200_0000	0x0200_021C	Patch & CR	N9 ROM patch engine	
0x0209_0000	0x0209_7FFF	DLM RAM	Data local memory for N9	
0x5000_0000	0x501F_FFFF	HIF_device	Host interface device controller	
0x6000_0000	0x6FFF_FFFF	WIFISYS	Wi-Fi subsystem	
0x7000_0000	0x70FF_FFFF	PDA DMA port	Patch decryption accelerator DMA slave	
0x7800_0000	0x7800_0000	VFF access port0	Virtual FIFO access port 0 of N9 DMA	
0x7800_0100	0x7800_0100	VFF access port1	Virtual FIFO access port 1 of N9 DMA	
0x7900_0000	0x7900_FFFF	VFF_CM4 access port	Virtual FIFO access ports of Cortex-M4 DMA	
0x8000_0000	0x800C_FFFF	APB0	APB bridge 0 (synchronous to N9)	
0x8000_0000	0x8000_FFFF	CONFG	N9 subsystem configuration	
0x8001_0000	0x8001_FFFF	DMA	Generic DMA engine for N9	
0x8002_0000	0x8002_FFFF	TOP_CFG_OFF	TOP_OFF (N9) power domain chip level configuration (GPIO, PinMux, RF, PLL, clock control)	
0x8008_0000	0x8008_FFFF	AHB_MON	AHB bus monitor	
0x800A_0000	0x800A_FFFF	UART_DSN	UART for N9 debug	
0x800B_0000	0x800B_FFFF	SEC	Secure boot configuration	
0x800C_0000	0x800C_FFFF	HIF	Host interface configuration	
0x8100_0000	0x810C_FFFF	APB1	APB bridge 1 (synchronous to N9)	
0x8102_0000	0x8102_FFFF	TOP_CFG_AON	TOP_AON power domain chip level configuration (RGU, PinMux, PMU, XTAL, clock control)	
0x8103_0000	0x8103_FFFF	DBG_CIRQ	Debug interrupt controller for N9	
0x8104_0000	0x8104_FFFF	CIRQ	Interrupt controller for N9	
0x8105_8000	0x8105_FFFF	GPT	General purpose timer for N9	
0x8106_0000	0x8106_FFFF	РТА	Packet traffic arbitrator for Wi- Fi coexistence	
0x8108_0000	0x8108_FFFF	WDT	Watchdog timer for N9	
0x8109_0000	0x8109_FFFF	PDA	Patch decryption accelerator	
0x810A_0000	0x810A_FFFF	RDD	Wi-Fi debug	

Start address	End address	Function	Description
0x810C_0000	0x810C_FFFF	RBIST	RF BIST configuration
0x8300_0000	0x810C_FFFF	APB2	APB bridge 1 (synchronous to Cortex-M4)
0xA000_0000	0xAFFF_FFFF	PSE	Packet switch engine memory

3.2.4. **N9 bus fabric**

Figure 3.2-1. N9 bus fabric

N9 bus fabric functional description:

- Command batch: Used to save and restore critical CR and memory data when entering and leaving low power mode.
- Wi-Fi HIF: The host control and data interface from N9 to Wi-Fi subsystem.
- Wi-Fi PSE: The packet switch engine used to transfer packets from N9 to Wi-Fi MAC/radio or from Cortex-M4 to Wi-Fi MAC/radio, and vice versa.

- PDA: Packet decryption agent, used to download firmware and decipher the encrypted firmware.
- PTA: Packet traffic arbitration, used to execute Wi-Fi traffic arbitration when the two radios are transmitting and receiving at the same time.
- RDD: The Wi-Fi debug function.
- eFUSE: The eFUSE macro used for Wi-Fi MAC and radio configuration.

3.2.5. CIRQ

N9 subsystem uses an interrupt controller CIRQ to control internal interrupt source selection, mask, edge/level sensitivity and software enabling, as well as external interrupt mask and edge/level sensitivity. CIRQ also integrates the de-bounce circuit for external interrupts.

Figure 3.2-2. N9 interrupt controller

There are a total of 23 interrupts and 14 external interrupts. The power domain/subsystem lists the power domain and subsystem from which the interrupt is generated. Table 3.2-2 lists the interrupt sources of internal and external interrupts.

1000 012 1113 men apt 3001 00										
IRQ number	Interrupt source	Power domain /subsystem	External interrupt	Wake-up capability (1)	De- bounce	Description				
INT0	(Reserved)									
INT1	DMA	CONN_OFF/MCUSYS				Generic DMA in N9 subsystem				
INT2	HIFSYS	CONN_AON/HIF				WIFI_HIF(SDIO)				
INT3	(Reserved)									
INT4	THERM	CONN_OFF				Thermometer				
INT5	(Reserved)									
INT6	WIFI	CONN_OFF/MAC				Wi-Fi subsystem				
INT7	ICAP	CONN_OFF/MCUSYS				Internal capture in RBIST module				
INT8	EINT	CONN_AON/MCUSYS				External interrupt				
INT9	(Reserved)									

Table 3.2-2. N9 interrupt source

MT7686 Datasheet

IRQ number	Interrupt source	Power domain /subsystem	External interrupt	Wake-up capability (1)	De- bounce	Description
INT10	WDT_N9	CONN_AON/MCUSYS				Watch dog timer in N9 subsystem
INT11	AHB_MONIT OR	CONN_OFF/MCUSYS				AHB monitor
INT12	(Reserved)					
INT13	PLC_ACCLR	CONN_OFF/MCUSYS				Packet Loss Concealment accelerator
INT14	(Reserved)					
INT15	PSE	CONN_OFF/PSE				Packet switch engine
INT16	(Reserved)					
INT17	HIFSYS	CONN_OFF/HIFSYS				HIF subsystem
INT18	(Reserved)					
INT19	PTA	CONN_OFF/MCUSYS				PTA module
INT20	CMBT	CONN_OFF				Command batch module
INT21	GPT3	CONN_AON/MCUSYS				General purpose timer module
INT22	N9_PM	CONN_OFF/MCUSYS				N9 performance monitor
EINT0	(Reserved)		V	V	Available	
EINT1	CM4_TO_N9_ SW		V	V	Available	Cortex-M4 software interrupt N9
EINT2	HIFSYS	CONN_AON/HIF	V	V	Available	WIFI_HIF (SDIO)
EINT3	(Reserved)		V	V	Available	
EINT4	(Reserved)		V	V	Available	
EINT5	(Reserved)		V	V	Available	
EINT6	GPT	CONN_AON/MCUSYS	V	V	Available	General purpose timer module (GPT0 timer and GPT1 timer)
EINT7	(Reserved)		V	V	Available	
EINT8	(Reserved)		V	V	Available	
EINT9	DSLP_IRQ	CONN_AON	V	V	Available	Deep sleep control
EINT10	(Reserved)		V	V	Available	
EINT11	(Reserved)		V	V	Available	

Note 1: Capable to wake up N9 firmware when "s in sleep mode.

4. Power Management Unit

4.1. Overview

The power management unit (PMU) manages the power supply of the entire chip, including baseband, processor, memory, camera, vibrator and more. There are two power input sources for MT7686:

1) AVDD33_RTC for RTC timer control.

This is operated by wider input voltage range from 1.62V to 3.63V, and supports real time clock control and alarm logic. Because of the ultra-low input voltage and lower current consumption, it can efficiently enhance battery lifetime by alkaline or other portable batteries.

2) AVDD33_BUCK for PMU control.

A single regulated 3.3V power supply is required for the MT7686. It could be from an external DC-DC converter to convert a higher voltage supply to 3.3V or boost from a lower voltage supply to 3.3V. The PMU contains Under-Voltage Lockout (UVLO) circuit, several Low Drop-out Regulators (LDOs), a high efficiency buck converter and a reference band-gap circuit. The circuits are optimized for low quiescent current, low drop-out voltage, efficient line/load regulation, high ripple rejection and low output noise.

4.2. Low-power operating mode

The MT7686 power state diagram is shown in Figure 4.2-1.

In **ACTIVE** mode, the Cortex-M4 and N9 power states operate independently, and both have Idle, Active and Sleep modes. When both are in sleep mode, the chipset enters **SLEEP** mode.

In SLEEP mode, the PMU can be changed to low power mode to further lower current consumption.

RETENTION mode provides a lower current consumption than **SLEEP** mode. It is suitable for applications that remain idle for a long period. To enter **RETENTION** mode is software configurable and to exit, use RTC timer or EINT.

OFF mode is controlled by the CHIP_EN signal and in this state, only always-on PMU logics are alive to maintain the lowest current consumption.

Figure 4.2-1. MT7686 Cortex-M4 and N9 power state and power mode

4.3. PMU architecture

The 3.3V power source is directly supplied to the switching regulator, digital IOs and RF-related circuit. It is converted to 1.45V by the buck converter for low voltage circuits. The built-in digital LDOs and RF LDOs convert 1.45V to 1.15V for digital, RF and BBPLL core circuits. The three LDOs are CLDO, SLDO-H and MLDO. SLDO-H stands for sleep mode LDO, CLDO stands for digital core LDO, and MLDO stands for internal or external memory LDO.

In **ACTIVE** mode, the buck converter converts 1.45V output to other subsystems in MT7686. It can operate in either PFM mode or PWM mode. With an external on-board LC filter ($2.2\mu H$ inductor and $10\mu F$ cap), it outputs a low ripple 1.45V to Wi-Fi RF system and CLDO input power. In **ACTIVE** mode, CLDO is under BUCK domain, and then it outputs 1.15V for whole chip digital logics.

In **SLEEP** mode, BUCK output voltage will be kept by SLDO-H. The SLDO-H also generates 1.45V output voltage to Wi-Fi RF system and CLDO input power. While MT7686 is in **SLEEP** mode, CLDO will reduce its output level from 1.15V to 0.85V for whole chip digital logics used to reduce power consumption.

In **RETENTION** mode, BUCK, CLDO, SLDO-H and MLDO will be shut down. During this mode, only always-on PMU logics, RTC timer controller and retention SRAM are alive to keep lower current consumption.

Once MT7686 goes into **OFF** mode (controlled by CHIP_EN), BUCK, CLDO, SLDO-H, MLDO and RTC controller will be shut down. During this mode, only some PMU AO domain blocks are alive to keep lowest current consumption.

4.4. Power performance

Table 4.4-1 lists example current consumptions in VBAT domain.

Table 4.4-1. Current consumption in different power modes

Operation Mode		Test Conditions	Current	Unit
Power Mode	Scenario		Consumptions (1)	
OFF	OFF	CHIP_EN keeps low	< 0.5	μΑ
RETENTION	RETENTION	RTC TimerOKB SRAM data retention	2.7	μΑ
		RTC Timer8KB SRAM data retention	4.7	μΑ
SLEEP	SLEEP_ext_32Khz	 Cortex-M4 in sleep state TCM 96KB SRAM is retained SYSRAM 384KB SRAM is retained XTAL 32kHz 	120	μΑ
	SLEEP_int_32Khz	 Cortex-M4 in sleep state TCM 96KB SRAM is retained SYSRAM 384KB SRAM is retained Internal 32kHz 	390	μΑ
ACTIVE	Wi-Fi TX	 CCK 19dBm N9 in idle state Cortex-M4 in active state TCM 96KB SRAM is retained XTAL 32kHz 	248	mA
		 OFDM 16.5dBm N9 in idle state Cortex-M4 in active state TCM 96KB SRAM is retained XTAL 32kHz 	220	mA
	Wi-Fi RX	 HT20_MCS7 N9 in active state Cortex-M4 in active state XTAL 32kHz 	42	mA
		 HT20_MCS7 N9 in idle state Cortex-M4 in sleep state XTAL 32kHz 	30	mA
ACTIVE & SLEEP	DTIM = 1	Cortex-M4 in sleep stateTCM 96KB SRAM is retainedXTAL 32kHz	630	μΑ

 $^{^{(1)}}$ Conditions: VBAT and VDDIO at 3.3V, temperature at 25°C, typical corner IC, XTAL at 26MHz

4.5. Power-on sequence

The MT7686 power-on sequence is shown in Figure 4.5-1.

Figure 4.5-1. Power-on sequence

5. Pin Description

5.1. MT7686D pin list

For MT7686D, a QFN 6mm x 6mm, 48-pin, 0.4mm pitch package is offered. Pin-outs and the top view for this package are shown in Figure 5.1-1.

Figure 5.1-1. MT7686D pin diagram and top view

5.1.1. MT7686D pin coordination

Table 5.1-1. MT7686D pin coordinates

Pin#	Net name	Pin#	Net name	Pin#	Net name
1	AVSS33_WF0_G_PA_R	2	AVDD33_WF0_G_TX	3	WF0_G_RFIO
4	AVDD33_WF0_G_PA	5	GPIO20	6	GPIO19
7	GPIO18	8	GPIO17	9	GPIO16
10	GPIO15	11	GPIO14	12	DVDD_IO_0
13	GPIO13	14	GPIO12	15	GPIO11
16	DVDD_CORE	17	XIN	18	XOUT
19	RTC_EINT	20	AVDD33_VRTC	21	EXT_PWR_EN

Pin#	Net name	Pin#	Net name	Pin#	Net name
22	AVSS	23	CHIP_EN	24	AVDD33_MISC
25	AVDD18_MLDO	26	AVDD12_CLDO	27	AVDD15_CLDO
28	AVDD33_BUCK	29	AVSS33_BUCK	30	LXBK
31	AVDD15_V2P5NA	32	DVDD_MLDO	33	GPIO10
34	GPIO9	35	GPIO8	36	GPIO7
37	GPIO6	38	GPIO5	39	DVDD_IO_1
40	DVDD_CORE	41	GPIO4	42	GPIO2
43	GPIO3	44	GPIO1	45	GPIO0
46	XO	47	AVDD15_XO	48	AVDD15_WF0_TRX

5.2. MT7686 pins

Table 5.2-1. Acronym for pin types and I/O structure

Name	Abbreviation	Description
Pin Type	Al	Analog input
	AO	Analog output
	AIO	Analog bi-direction
	DI	Digital input
	DO	Digital output
	DIO	Digital bi-direction
	Р	Power
	G	Ground
I/O Structure	TYPE0	Pull-up/down
		3.63V tolerance
	TYPE1	Pull-up/down
		5V tolerance
	TYPE2	Pull-up/down
		5V tolerance
		SDIO characteristic support
	TYPE3	Pull-up/down
		5V tolerance
		Analog input/output

Table 5.2-2. MT7686D series pin function description and power domain

Pin Number	Pin Name	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain
Real-t	ime clock					

Pin Number	Pin Name	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain
19	RTC_EINT	DIO	TYPE0	Dedicate EINT input in RTC	-	AVDD33_VRTC
18	XOUT	AIO	-	Input pin for 32K crystal	-	AVDD33_VRTC
17	XIN	AIO	-	Input pin for 32K crystal	-	AVDD33_VRTC
Wi-Fi	radio interface					
46	XO	AI	-	Crystal input or external clock input (26/40 MHz)	-	AVDD15_XO
48	AVDD15_WF0_TRX	Р	-	Wi-Fi TRX 1.5V power input	-	-
2	AVDD33_WF0_G_TX	Р	-	Wi-Fi TX 3.3V power input	-	-
4	AVDD33_WF0_G_PA	Р	-	Wi-Fi PA 3.3V power input (V _{RF})	-	-
1	AVSS33_WF0_G_PA_R	G	-	Wi-Fi PA ground	-	-
3	WF0_G_RFIO	AIO	-	Wi-Fi RF IO	-	AVDD33_WF0_ G_PA (AO)/ AVDD15_WF0_ TRX (AI)
47	AVDD15_XO	Р	-	XO 1.5V power input	-	-
Powe	r management unit					
23	CHIP_EN	Al	-	Chip enable	-	AVDD33_VRTC
21	EXT_PWR_EN	AO	-	PMU enable	-	AVDD33_VRTC
24	AVDD33_MISC	Р	-	Power input	-	-
20	AVDD33_VRTC	Р	-	RTC domain power supply (V _{RTC})	-	-
25	AVDD18_MLDO	Р	-	MLDO power output for SF/PSRAM	-	-
27	AVDD15_CLDO	Р	-	CLDO power input from BUCK	-	-
30	LXBK	Р	-	SW node for BUCK	-	-
29	AVSS33_BUCK	G	-	GND of AVDD33_BUCK	-	-
31	AVDD15_V2P5NA	Р	-	Internal power of BUCK	-	-
28	AVDD33_BUCK	Р	-	Buck power input (V _{BAT})	-	-
26	AVDD12_CLDO	Р	-	CLDO power output for core power	-	-
Gene	ral purpose I/O					
45	GPIO0	DIO	ТҮРЕЗ	General purpose input/output, Pin 0 Default pull-up	UART (1) I2C (1) I2S Master/Slave Cortex-M4 JTAG External front-end support	DVDD_IO_1

ber	Pin Name	Pin Type	ture	Pin Description	Alternate Pin Functions	Power domain
Pin Number			/O Structure	·		
			_		BT_PRI1 PWM (0)	
44	GPIO1	DIO	TYPE3	General purpose input/output, Pin 1 Default pull-up	UART (1) I2C (1) I2S Master/Slave Cortex-M4 JTAG External front-end support BT_PRI3 PWM (1)	DVDD_IO_1
42	GPIO2	DIO	TYPE3	General purpose input/output, Pin 2 Default pull-up	UART (1) PWM (0) I2S Master/Slave Cortex-M4 JTAG CLKO0 BT_PRI0 External front-end support	DVDD_IO_1
43	GPIO3	DIO	TYPE3	General purpose input/output, Pin 3 Default pull-down	UART (1) PWM (1) I2S Master/Slave Cortex-M4 JTAG External front-end support	DVDD_IO_1
41	GPIO4	DIO	TYPE1	General purpose input/output, Pin 4 Default no pull	SPI Slave (0) SPI Master (0) Cortex-M4 JTAG External front-end support	DVDD_IO_1
15	GPIO11	DIO	TYPE2	General purpose input/output, Pin 11 Default pull-down	PWM (3) UART (2) SDIO Master SDIO Slave CLKO2 External front-end support I2S Master/Slave	DVDD_IO_0
14	GPIO12	DIO	TYPE2	General purpose input/output, Pin 12 Default pull-down	SPI Slave (1) SPI Master (1) UART (2) SDIO Master SDIO Slave	DVDD_IO_0

Pin Number	Pin Name	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain
					External front-end support I2S Master/Slave	
13	GPIO13	DIO	TYPE2	General purpose input/output, Pin 13 Default pull-down	SPI Slave (1) SPI Master (1) UART (2) SDIO Master SDIO Slave CLKO4 I2S Master/Slave	DVDD_IO_0
11	GPIO14	DIO	TYPE2	General purpose input/output, Pin 14 Default pull-down	SPI Slave (1) SPI Master (1) 12S Master/Slave SDIO Master SDIO Slave PWM (4) CLKO4	DVDD_IO_0
10	GPIO15	DIO	TYPE2	General purpose input/output, Pin 15 Default pull-down	SPI Slave (1) SPI Master (1) I2S Master/Slave SDIO Master SDIO Slave I2C (1) PWM (3)	DVDD_IO_0
9	GPIO16	DIO	TYPE2	General purpose input/output, Pin 16 Default pull-down	SPI Slave (1) SPI Master (1) I2S Master/Slave SDIO Master SDIO Slave I2C (1)	DVDD_IO_0
8	GPIO17	DIO	TYPE3	General purpose input/output, Pin 17 Default pull-down	SPI Slave (1) SPI Master (1) I2S Master/Slave PWM (5) CLKO3 AUXADC0 BT_PRIO	DVDD_IO_0
7	GPIO18	DIO	TYPE3	General purpose input/output, Pin 18 Default no pull	PMU_GOTO_SLEEP I2S Master/Slave CLKO4 I2C (1)	DVDD_IO_0

Pin Number	Pin Name	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain
					ZCV CLKO3 PMU_RGU_RSTB	
6	GPIO19	DIO	TYPE3	General purpose input/output, Pin 19 Default pull-up	UART (0) I2C (1) PWM (5) AUXADC2	DVDD_IO_0
5	GPIO20	DIO	TYPE3	General purpose input/output, Pin 20 Default no pull	UART (0) AUXADC3	DVDD_IO_0
38	GPIO5	DIO	TYPE1	General purpose input/output, Pin 5 Default pull-down	SPI Slave (0) SPI Master (0) UART (0) External front-end support I2S Master/Slave I2C (0) PMU_RGU_RSTB	DVDD_IO_1
37	GPIO6	DIO	TYPE1	General purpose input/output, Pin 6 Default pull-down	SPI Slave (0) SPI Master (0) UART (0) External frontend support I2S Master/Slave I2C (0)	DVDD_IO_1
36	GPIO7	DIO	TYPE1	General purpose input/output, Pin 7 Default pull-down	SPI Slave (0) SPI Master (0) CLKO1 External front-end support I2S Master/Slave BT_PRI3	DVDD_IO_1
35	GPIO8	DIO	TYPE1	General purpose input/output, Pin 8 Default pull-down	SPI Slave (0) SPI Master (0) I2C (0) UART (0) I2S Master/Slave BT_PRI0	DVDD_IO_1
34	GPIO9	DIO	TYPE1	General purpose input/output, Pin 9 Default pull-down	SPI Slave (0) SPI Master (0) I2C (0)	DVDD_IO_1

Pin Number	Pin Name	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain
					UART (0) I2S Master/Slave External front-end support BT_PRI1	
33	GPIO10	DIO	TYPE1	General purpose input/output, Pin 10 Default pull-down	UART (2) PWM (2) PMU_RGU_RSTB PMU_GOTO_SLEEP External frontend support SDA0	DVDD_IO_1
Digita	l IO power	I	<u>I</u>			
39	DVDD_IO_1	Р	-	Power input of GPIO left group (V _{IO_1})	-	-
12	DVDD_IO_0	Р	-	Power input of GPIO right group (V _{IO_0})	-	-
32	DVDD_MLDO	Р	-	Power input of SF/EMI group	-	-
Digita	Digital core power					
16	DVDD_CORE	Р	-	Core power	-	-
40	DVDD_CORE	Р	-	Core power	-	-

5.3. MT7686 series pin multiplexing

The MT7686 series platform offers 21 GPIO pins. By setting up the control registers, the MCU software can control the direction, the output value and read the input values on the pins. The GPIOs and GPOs are multiplexed with other functions to reduce the pin count. To facilitate application use, the software can configure which clock to send outside the chip. There are five clock-out ports embedded in 48 GPIO pins and each clock-out can be programmed to output an appropriate clock source. In addition, when two GPIOs function for the same peripheral IP, the smaller GPIO serial number has higher priority over the bigger one.

© 2017 Airoha Technology Corp.

Figure 5.3-1. GPIO block diagram

The MT7686 series has rich peripheral functions and the peripheral signals are shown in Table 5.3-1. The SDIO, SPI Master and SPI Slave can support signal group allocate on different pins.

Table 5.3-1. Peripheral functions and signals

Alternate Function	Signal List
SDIO Master	MA_MC0_CK
	MA_MC0_CM0
	MA_MC0_DA0
	MA_MC0_DA1
	MA_MC0_DA2
	MA_MC0_DA3
SDIO Slave	SLV_MC0_CK
	SLV _MC0_CM0
	SLV _MC0_DA0
	SLV _MC0_DA1
	SLV _MC0_DA2
	SLV _MC0_DA3
UART (0)	URXD0
	UTXD0
	UORTS
	UOCTS
UART (1)	URXD1
	UTXD1
	U1RTS
	U1CTS
UART (2)	URXD2
	UTXD2
	U2RTS
	U2CTS
I2C (0)	SCL0
	SDA0
I2C (1)	SCL1
	SDA1
I2C (2)	SCL2
	SDA2
I2S Master/Slave	I2S_RX
	I2S_TX
	I2S_WS
	I2S_CK
I2S Master/Slave	TDM_RX
	TDM_TX
	TDM_WS
	TDM_CK
	TDM_MCLK

Alternate Function	Signal List
SPI Master (0)	SPIMST_A_SCK
	SPIMST_A_CS
	SPIMST_A_SIO0
	SPIMST_A_SIO1
	SPIMST_A_SIO2
	SPIMST_A_SIO3
SPI Master (1)	SPIMST_B_SCK
	SPIMST_B_CS
	SPIMST_B_SIO0
	SPIMST_B_SIO1
	SPIMST_B_SIO2
	SPIMST_B_SIO3
SPI Slave (0)	SPISLV_A_SCK
	SPISLV_A_CS
	SPISLV_A_SIO0
	SPISLV_A_SIO1
	SPISLV_A_SIO2
	SPISLV_A_SIO3
SPI Slave (1)	SPISLV_B_SCK
	SPISLV_B_CS
	SPISLV_B_SIO0
	SPISLV_B_SIO1
	SPISLV_B_SIO2
	SPISLV_B_SIO3
PWM (0)	PWM0
PWM (1)	PWM1
PWM (2)	PWM2
PWM (3)	PWM3
PWM (4)	PWM4
PWM (5)	PWM5
AUXADC	AUXADCIN_0
	AUXADCIN_1
	AUXADCIN_2
	AUXADCIN_3
CM4 JTAG	JTDI
	JTMS
	JTCK
	JTRST_B
	JTDO
External frontend	WIFI_ANT_SEL0
support	WIFI_ANT_SEL1
	WIFI_ANT_SEL2
	WIFI_ANT_SEL3

Alternate Fur	nction	Signal List
		WIFI_ANT_SEL4

Table 5.3-2. PinMux description

Ball Name	Aux Func.0	Aux Func.1	Aux Func.2	Aux Func.3	Aux Func.4	Aux Func.5	Aux Func.6	Aux Func.7	Aux Func.8	Aux Func.9	Aux Func.10
GPIO_0	GPIO0	EINT0		U1RTS	SCL1	I2S_RX	JTDI		WIFI_ANT_S EL0	BT_PRI1	PWM0
GPIO_1	GPIO1	EINT1		U1CTS	SDA1	I2S_TX	JTMS		WIFI_ANT_S EL1	BT_PRI3	PWM1
GPIO_2	GPIO2	EINT2		URXD1	PWM0	I2S_WS	JTCK	CLKO0		BT_PRIO	WIFI_ANT_S EL4
GPIO_3	GPIO3	EINT3		UTXD1	PWM1	I2S_CK	JTRST_B			WIFI_ANT_S EL2	I2S_CK
GPIO_4	GPIO4	SPISLV_A_SI O2	SPIMST_A_SI O2	EINT4		I2S_MCLK	JTDO			WIFI_ANT_S EL3	I2S_MCLK
GPIO_5	GPIO5	SPISLV_A_SI O3	SPIMST_A_SI O3	EINT5	URXD0	WIFI_ANT_S EL0	TDM_RX			SCL0	PMU_RGU_R STB
GPIO_6	GPIO6	SPISLV_A_CS	SPIMST_A_C S	EINT6	UTXD0	WIFI_ANT_S EL1	TDM_TX			SDA0	
GPIO_7	GPIO7	SPISLV_A_SC K	SPIMST_A_S CK	EINT7	CLKO1	WIFI_ANT_S EL2	TDM_WS			BT_PRI3	
GPIO_8	GPIO8	SPISLV_A_SI O0	SPIMST_A_SI O0	EINT8	SCL0	UORTS	TDM_CK		BT_PRI0		
GPIO_9	GPIO9	SPISLV_A_SI O1	SPIMST_A_SI O1	EINT9	SDA0	UOCTS	TDM_MCLK		WIFI_ANT_S EL3	BT_PRI1	
GPIO_10	GPIO10	EINT10	SDA0	U2CTS	PWM2	PMU_RGU_R STB	PMU_GOTO_ SLEEP		WIFI_ANT_S EL4		SDA0
GPIO_11	GPIO11	EINT11	PWM3	URXD2	MA_MC0_CK	SLV_MC0_CK	CLKO2			WIFI_ANT_S ELO	I2S_RX
GPIO_12	GPIO12	SPISLV_B_SI O3	SPIMST_B_SI O3	UTXD2	MA_MC0_C M0	SLV_MC0_C M0	EINT12			WIFI_ANT_S EL1	I2S_TX
GPIO_13	GPIO13	SPISLV_B_SI O2	SPIMST_B_SI O2	U2RTS	MA_MC0_D A0	SLV_MC0_D A0	CLKO4		EINT13		I2S_WS
GPIO_14	GPIO14	SPISLV_B_SI O1	SPIMST_B_SI O1	TDM_RX	MA_MC0_D A1	SLV_MC0_D A1	PWM4		EINT14		CLKO4
GPIO_15	GPIO15	SPISLV_B_SI O0	SPIMST_B_SI O0	TDM_TX	MA_MC0_D A2	SLV_MC0_D A2	SCL1		EINT15		PWM3
GPIO_16	GPIO16	SPISLV_B_SC K	SPIMST_B_S CK	TDM_WS	MA_MC0_D A3	SLV_MC0_D A3	SDA1		EINT16		
GPIO_17	GPIO17	SPISLV_B_CS	SPIMST_B_C S	TDM_CK	PWM5	CLKO3	AUXADC0		EINT17		BT_PRIO

GPIO_18	GPIO18	PMU_GOTO_		TDM_MCLK	CLKO4	SDA1	ZCV (SW set	EINT18	CLKO3	PMU_RGU_R
		SLEEP					AUXADC1)			STB
GPIO_19	GPIO19	URXD0	EINT19	SCL1		PWM5	AUXADC2			
GPIO_20	GPIO20	UTXD0	EINT20				AUXADC3			

6. Electrical Characteristics

6.1. Absolute maximum ratings

Table 6.1-1. Absolute maximum ratings for power supply

Symbol or pin name	Description	Min.	Max.	Unit
AVDD33_MISC	Power input	-0.3	3.63	٧
AVDD33_VRTC	RTC domain power supply (V _{RTC})	-0.3	3.63	V
AVDD18_MLDO	MLDO power output for SF/PSRAM	-0.3	3.63	V
AVDD15_CLDO	CLDO power input from BUCK	-0.3	1.595	V
AVDD33_BUCK	Buck power input (V _{BAT})	-0.3	3.63	V
AVDD12_CLDO	CLDO power output for core power	-0.3	1.265	V

Table 6.1-2. Absolute maximum ratings for I/O power supply

Symbol or pin name	Description	Min.	Typ.1	Typ.2	Max.	Unit
DVDD_IO_0	Power supply for GPIO group 0	1.62	1.8	3.3	3.63	V
DVDD_IO_1	Power supply for GPIO group 1	1.62	1.8	3.3	3.63	V
DVDD_MLDO	Power supply for SF/EMI IO 1.8V group	1.62	1.8	-	1.98	V

Table 6.1-3. Absolute maximum ratings for voltage input

Symbol or pin name	Description	Min.	Max.	Unit
VIN0	Digital input voltage for IO Type 0	-0.3	3.63	V
VIN1	Digital input voltage for IO Type 1	-0.3	5.5	V
VIN2	Digital input voltage for IO Type 2	-0.3	5.5	V
VIN3	Digital input voltage for IO Type 3	-0.3	5.5	V

Table 6.1-4. Absolute maximum ratings for storage temperature

Symbol or pin name	Description	Min.	Max.	Unit
Tstg	Storage temperature	-55	125	°C

6.2. Operating conditions

6.2.1. General operating conditions

Table 6.2-1. General operating conditions

Item	Description	Condition	Min.	Тур.	Max.	Unit
FCPU	Internal Cortex-M4 & TCM & Cache clock	VCORE = 1.15V	0	-	192	MHz

Item	Description	Condition	Min.	Тур.	Max.	Unit
FMEMS	Internal memory (SFC and EMI) related AHB and APB clock. Synchronous with FCPU.	VCORE = 1.15V	0	-	96	MHz

Table 6.2-2. Recommended operating conditions for power supply

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
AVDD33_MISC	Power input	2.97	3.3	3.63	V
AVDD33_VRTC	RTC domain power supply (V _{RTC})	1.62	3.3	3.63	V
AVDD18_MLDO	MLDO power output for SF/PSRAM	1.62	1.8	1.98	V
AVDD15_CLDO	CLDO power input from BUCK	1.305	1.45	1.595	V
AVDD33_BUCK	Buck power input (V _{BAT})	2.97	3.3	3.63	V
AVDD12_CLDO	CLDO power output for core power	1.035	1.15	1.265	V

Table 6.2-3. Recommended operating conditions for voltage input

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
VIN0	Digital input voltage for IO Type 0	-0.3	-	DVDIO+0.3	V
VIN1	Digital input voltage for IO Type 1	-0.3	-	DVDIO+0.3	V
VIN2	Digital input voltage for IO Type 2	-0.3	-	DVDIO+0.3	V
VIN3	Digital input voltage for IO Type 3	-0.3	-	DVDIO+0.3	V

Table 6.2-4. Recommended operating conditions for operating temperature

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
Тс	Operating temperature	-30	1	85	°C

6.2.2. Input or output port characteristics

Table 6.2-5. Electrical characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
DIIH0	Digital high input current for IO Type 0	 PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VINO < DVDIO+0.3V 	-5	-	5	μΑ
		 PU enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VINO < DVDIO 	-35	-	5	μΑ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		 PD enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VINO < DVDIO 	7	-	70	μА
DIIL0	Digital low input current for IO Type 0	 PU/PD disabled DVDIO = 3.3/2.8/1.8V, -0.3V < VINO < DVDIO*0.35 	-5	-	5	μА
		 PU enabled, DVDIO = 3.3/2.8/1.8V 0 < VINO < DVDIO*0.25 	-60	-	-6	μΑ
		 PD enabled, DVDIO = 3.3/2.8/1.8V 0 < VINO < DVDIO*0.25 	-5	-	40	μА
DIOH0	Digital high output current for IO Type 0	 DVOH = 2.805V DVDIO = 3.3V Max. driving mode 	24	-	-	mA
		 DVOH = 2.38V DVDIO = 2.8V Max. driving mode 	20	-	-	mA
		 DVOH = 1.53V DVDIO = 1.8V Max. driving mode 	8	-	-	mA
DIOL0	Digital low output current for IO Type 0	 DVOL = 0.495V DVDIO = 3.3V Max. driving mode 	24	-	-	mA
		 DVOL = 0.442V DVDIO = 2.8V Max. driving mode 	20	-	-	mA
		 DVOL = 0.27V DVDIO = 1.8V Max. driving mode 	8	-	-	mA
DRPU0	Digital I/O pull-up resistance for IO Type 0	DVDIO = 3.3VVIN = 0V	40	85	190	kΩ
		• DVDIO = 2.8V	40	85	190	kΩ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• VIN = 0				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 0V				
DRPD0	Digital I/O pull-down	• DVDIO = 3.3V	40	85	190	kΩ
	resistance for IO Type 0	• VIN = 3.3V				
		• DVDIO = 2.8V	40	85	190	kΩ
		• VIN = 2.8V				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 1.8V				
DVOH0	Digital output high voltage for IO Type 0	• DVDIO = 3.3V	2.4	-	-	V
		• DVDIO = 2.8V	1.89	-	-	V
		• DVDIO = 1.8V	1.215	-	-	V
DVOL0	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 0	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V
DIIH1	Digital high input current	PU/PD disabled	-5	-	5	μΑ
	for IO Type 1	• DVDIO =				
		3.3/2.8/1.8V,				
		• DVDIO*0.65 < VIN1 <				
		DVDIO+0.3V				
		• DVDIO = 3.3V	-5	-	5	μΑ
		• 4.5V < VIN1 < 5.5V				
		PU enabled	-35		5	μΑ
		• DVDIO =				
		3.3/2.8/1.8V				
		• DVDIO*0.75 < VIN1 < DVDIO				
		PD enabled	7		70	μΑ
		DVDIO =				
		3.3/2.8/1.8V				
		• DVDIO*0.75 <				
DIIL1	Digital low input current	VIN1 < DVDIO	-5		5	μΑ
DIILL	for IO Type 1	PU/PD disabledDVDIO =	-5		,	μΑ
	,	3.3/2.8/1.8V,				
		• -0.3V < VIN1 <				
		DVDIO*0.35				
		PU enabled	-60	-	-6	μΑ
		• DVDIO = 3.3/2.8/1.8V				

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• 0 < VIN1 < DVDIO*0.25				
		PD enabled	-5	-	40	μΑ
		• DVDIO =				
		3.3/2.8/1.8V				
		• 0 < VIN1 < DVDIO*0.25				
DIOH1	Digital high output current	• DVOH = 2.805V	24	-	-	mA
	for IO Type 1	• DVDIO = 3.3V				
		Max. driving mode				
		• DVOH = 2.38V	20	-	-	mA
		• DVDIO = 2.8V				
		Max. driving mode				
		• DVOH = 1.53V	8	-	-	mA
		• DVDIO = 1.8V				
		Max. driving mode				
DIOL1	Digital low output current	• DVOL = 0.495V	24	-	-	mA
	for IO Type 1	• DVDIO = 3.3V				
		Max. driving mode				
		• DVOL = 0.442V	20	-	-	mA
		• DVDIO = 2.8V				
		Max. driving mode				
		• DVOL = 0.27V	8	-	-	mA
		• DVDIO = 1.8V				
		Max. driving mode				
DRPU1	Digital I/O pull-up	• DVDIO = 3.3V	40	85	190	kΩ
	resistance for IO Type 1	• VIN = 0V				
		• DVDIO = 2.8V	40	85	190	kΩ
		• VIN = 0V				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 0V				
DRPD1	Digital I/O pull-down resistance for IO Type 1	• DVDIO = 3.3V	40	85	190	kΩ
	resistance for 10 Type 1	• VIN = 3.3V				
		• DVDIO = 2.8V	40	85	190	kΩ
		• VIN = 2.8V				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 1.8V				
DVOH1	Digital output high voltage	• DVDIO = 3.3V	2.4	-	-	V
	for IO Type 1	• DVDIO = 2.8V	1.89	-	-	V

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• DVDIO = 1.8V	1.215	-	-	V
DVOL1	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 1	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V
DIIH2	Digital high input current	PU/PD disabled	-5	-	5	μΑ
	for IO Type 2	• DVDIO = 3.3/2.8/1.8V,				
		• DVDIO*0.65 < VIN2 < DVDIO+0.3V				
		DVDIO = 3.3V4.5V < VIN2 < 5.5V	-5	-	5	μΑ
		 PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO 	-60	-	5	μА
		 PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO 	-120	-	5	μА
		 PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO 	10	-	110	μА
		 PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO 	20	-	220	μА
DIIL2	Digital low input current for IO Type 2	 PU/PD disabled, DVDIO = 3.3/2.8/1.8V, -0.3V < VIN2 < DVDIO*0.35 	-5	-	5	μА
		 PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN2 < DVDIO*0.25 	-100	-	-10	μΑ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		PU enabled, RSEL2	-200	-	-20	μΑ
		• DVDIO =				
		3.3/2.8/1.8V • 0 < VIN2 <				
		DVDIO*0.25				
		PD enabled, RSEL1	-5	-	60	μΑ
		DVDIO =				
		3.3/2.8/1.8V				
		• 0 < VIN2 <				
		DVDIO*0.25	-		120	
		PD enabled, RSEL2	-5	-	120	μΑ
		• DVDIO = 3.3/2.8/1.8V				
		• 0 < VIN2 <				
		DVDIO*0.25				
DIOH2	Digital high output current	• DVOH = 2.805V	24	-	-	mA
	for IO Type 2	• DVDIO = 3.3V				
		Max. driving mode	!			
		• DVOH = 2.38V	20	-	-	mA
		• DVDIO = 2.8V				
		Max. driving mode	!			
		• DVOH = 1.53V	8	-	-	mA
		• DVDIO = 1.8V				
		Max. driving mode	!			
DIOL2	Digital low output current	• DVOL = 0.495V	24	-	-	mA
	for IO Type 2	• DVDIO = 3.3V				
		Max. driving mode	-			
		• DVOL = 0.42V	20	-	-	mA
		• DVDIO = 2.8V				
		Max. driving mode				
		• DVOL = 0.27V	8	-	-	mA
		• DVDIO = 1.8V				
		Max. driving mode	-			
DRPU2	Digital I/O pull-up resistance for IO Type 2	• DVDIO = 3.3V	25	45	100	kΩ
	resistance for 10 Type 2	• VIN = 0V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 0V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• VIN = 0V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 0V, RSEL2				
DRPD2	Digital I/O pull-down	• DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 2	• VIN = 3.3V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 3.3V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 2.8V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 2.8V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 1.8V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 1.8V, RSEL2				
DVOH2	Digital output high voltage for IO Type 2	• DVDIO = 3.3V	2.805	-	-	V
		• DVDIO = 2.8V	2.38	-	-	V
		• DVDIO = 1.8V	1.53	-	-	V
DVOL2	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 2	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V
DIIH3	Digital high input current	PU/PD disabled	-5	-	5	μΑ
	for IO Type 3	• DVDIO =				
		3.3/2.8/1.8V				
		DVDIO*0.65 VIN3 				
		DVDIO+0.3V				
		• DVDIO =3.3V	-5	-	5	μΑ
		• 4.5V < VIN3 < 5.5V				
		PU enabled	-35	-	5	μΑ
		• DVDIO =				
		3.3/2.8/1.8V				
		• DVDIO*0.75 < VIN3 < DVDIO				
		PD enabled	7	-	70	μΑ
		• DVDIO =				
		3.3/2.8/1.8V				

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• DVDIO*0.75 < VIN3 < DVDIO				
DIIL3	Digital low input current for IO Type 3	 PU/PD disabled DVDIO = 3.3/2.8/1.8V -0.3V < VIN3 < DVDIO*0.35 	-5	-	5	μА
		 PU enabled DVDIO = 3.3/2.8/1.8V 0 < VIN3 < DVDIO*0.25 	-60	-	-6	μА
		 PD enabled DVDIO = 3.3/2.8/1.8V 0 < VIN3 < DVDIO*0.25 	-5	-	40	μА
DIOH3	Digital high output current for IO Type 3	DVOH = 2.805VDVDIO = 3.3VMax. driving mode	24	-	-	mA
		 DVOH = 2.38V DVDIO = 2.8V Max. driving mode 	20	-	-	mA
		 DVOH = 1.53V DVDIO = 1.8V Max. driving mode 	8	-	-	mA
DIOL3	Digital low output current for IO Type 3	DVOL = 0.495VDVDIO = 3.3VMax. driving mode	24	-	-	mA
		 DVOL = 0.42V DVDIO = 2.8V Max. driving mode 	20	-	-	mA
		 DVOL = 0.27V DVDIO = 1.8V Max. driving mode 	8	-	-	mA
DRPU3	Digital I/O pull-up resistance for IO Type 3	DVDIO = 3.3VVIN = 0V, RSEL1	25	45	100	kΩ
		DVDIO = 3.3VVIN = 0V, RSEL2	10	23	50	kΩ
		• DVDIO = 2.8V	25	45	100	kΩ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• VIN = 0V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 0V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 0V, RSEL2				
DRPD3	Digital I/O pull-down	• DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 3	• VIN = 3.3V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 3.3V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 2.8V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 2.8V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 1.8V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 1.8V, RSEL2				
DVOH3	Digital output high voltage	• DVDIO = 3.3V	2.805	-	-	V
	for IO Type 3	• DVDIO = 2.8V	2.38	-	-	٧
		• DVDIO = 1.8V	1.53	-	-	V
DVOL3	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 3	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V

6.2.3. ESD electrical sensitivity

Table 6.2-6. ESD electrical characteristics of MT7686 series

ESD mode	Description	Pin name	Min.	Max.	Unit
НВМ	All pins exclude RF pins	JESD22-A114-F	-2000	2000	V
	RF pins	JESD22-A114-F	-1000	1000	V
CDM	All pins exclude RF pins	JESD22-C101-D	-500	500	V
	RF pins	JESD22-C101-D	-250	250	V

7. System Configuration

7.1. Mode selection

Strapping pin definition and condition are listed as Table 7.1-1. Core reset refers to the condition chip changes from either OFF or RETENTION mode to ACTIVE mode.

Table 7.1-1. Mode selection table

Mode Selection	Pin name	Description	Trapping condition
XO source frequency select	GPIO_17	GND : XO input is 26MHz (default) DVDD_IO_0 : XO input is 40MHz	Core reset
32kHz clock source select	GPIO_14	GND : External 32kHz source DVDD_IO_0 : Internal 32kHz source (divided from 26/40MHz clock) (default)	Core reset
Boot with host interface (HIF_EN)	GPIO_4	GND : Boot with host interface disabled (default) DVDD_IO_1 : Boot with host interface enabled	Core reset
Host interface select (active if HIF_EN is enabled)	GPIO_13	(Active if HIF_EN = 1) GND : Host interface via SPI slave DVDD_IO_0 : Host interface via SDIO slave (default)	Core reset
Boot ROM bypass select	GPIO_16	GND : Boot up bypass boot ROM (directly jump to flash) DVDD_IO_0 : Boot up with boot ROM (default)	Core reset
JTAG pins fixed for use	GPIO_15	GND : JTAG pins fixed for JTAG use DVDD_IO_0 : JTAG pins as GPIO (configurable after boot up) (default)	Core reset
UART download	GPIO_12	GND : Enter UART download mode in Boot ROM DVDD_IO_0 : Skip UART download in Boot ROM (default)	Core reset or watchdog reset

Note 1: Strapping resistors for default option are implemented as internal pull-down or internal pull-up. (Refer to DRPU* and DRPD* in Table 6.2-5 for internal pull-up and pull-down resistor value.)

Note 2: If non-default option is used, it is recommended to use pull-down or pull-up $10k\Omega$ as external strapping resistors.

Note 3: SDIO master and slave interfaces are limited to 1-bit mode if the 32kHz source is external.

8. Package Description

8.1. MT7686 mechanical data of the package

Item		Symbol	MIN.	NOM.	MAX.	
total height		Α	0.80	0.85	0.90	
stand off		Α1	0.00	0.02	0.05	
mold thickness		A2	0.60	0.65	0.70	
leadframe thickness		А3		0.20 REF.		
lead width		b	0.15	0.20	0.25	
	Χ	D	5.90	6.00	6.10	
package size	Υ	E	5.90	6.00	6.10	
E-PAD size	Χ	D2	4.20	4.30	4.40	
E-PAD SIZE	Υ	E2	4.20	4.30	4.40	
lead length		L	0.30	0.40	0.50	
lead pitch		е		0.40 bsc		
lead arc		R	0.075			
Package profile of a sui	rface	aaa		0.10		
Lead position		bbb		0.07		
Paralleliam		ccc		0.10		
Lead position		ddd	0.05			
Lead profile of a surface		eee	0.08			
Epad position		fff		0.10		

Figure 8.1-1. Outlines and dimensions of MT7686 SQFN 6 mm x 6 mm x 0.9 mm, 48-ball package

8.2. MT7686 thermal operating specifications

Table 8.2-1. MT7686 thermal operating specifications

Description	Value	Unit
Thermal resistance from device junction to package case	57.8	C/W

Note: MTK RFB FR4 2 Layers PCB size: 21.5x35.5mm

8.3. MT7686 lead-frame packaging

9. Ordering Information

9.1. MT7686 top marking definition

Figure 9.1-1. Mass production top marking of MT7686

Table 9.1-1. Ordering information

Product number	Package	Description
MT7686DN	SQFN	6 x 6 x 0.9 mm 48-pin QFN with 0.4mm lead pitch