Introduction to Quantum Algorithms

Quantum Oracles

1. Consider an oracle U_f such that $U_f|x\rangle|y\rangle = |x\rangle|y\oplus f(x)\rangle$. Given $f(x):\{0,1\}\to\{0,1\}$, write down the explicit circuits that implement U_f for the four different possible choices in f.

Deutsch-Jozsa

Deutsch's problem. Bob has a function $f(x): \{0,1,\ldots,2^n-1\} \to \{0,1\}$. He promises Alice that the function is either constant, i.e. either all outputs are 0 or all outputs are 1, or balanced, i.e. exactly half the outputs are 0 and half the outputs are 1. Classically, Alice can query the value of f(x) for one input x at a time.

2. In the worst case, how many queries will it take for Alice to determine classically with certainty whether f is constant or balanced?

The Deutsch-Jozsa algorithm is a quantum algorithm that solves Deutsch's problem using a single query. The circuit to implement the Deutsch-Jozsa algorithm is shown below:

FIG. 1. Deutsch-Jozsa Algorithm.

- 3. Compute the states $|\psi_1\rangle$ and $|\psi_2\rangle$.
- 4. Show that $H|x\rangle = \frac{1}{\sqrt{2}} \sum_z (-1)^{xz} |z\rangle$. Hence show that $H^{\otimes n}|x_1,...,x_n\rangle = \frac{1}{\sqrt{2^n}} \sum_{z_1,...,z_n} (-1)^{x_1z_1+...+x_nz_n} |z_1,...,z_n\rangle$.
- 5. Use the previous identity to show that $|\psi_3\rangle = \frac{1}{2^n} \sum_z \sum_x (-1)^{x_1 z_1 + \dots + x_n z_n + f(x)} |z_1, \dots, z_n\rangle |-\rangle$.
- 6. $|\psi_3\rangle$ is measured in the computational basis. What is the probability of measuring the all zero state if f is a balanced function? What is the probability of measuring the all zero state if f is a balanced function? What can we conclude from this?

		polity of measuring the all zero state in zero state if f is a balanced function?	
	((v) , v3		
143>= 1 =	(-1) f(x)+ x=	12> 1->	W-15
	2	J S(x): \(\frac{5}{2}0,4, \ldots \)	,2 3
$P(x=0) = \left(\frac{1}{2^n}\right)$	- (-1) f(x)	30,	13 sa lanced
×eş	٥,٨١٠	all 0 or all 1	wolf o
If f is constant	P(x=0) = 1	$\frac{1}{5}$, $\frac{1}{(-1)^{0}} = (\frac{2^{1}}{2^{1}})^{3}$	
	2^	x650,1300 (21)	1,
	$\rho(x=1) = 1$	5 (-1) ⁴ - 1-2 ⁿ	7
	2^	xe50,13800 20	= 1//
if f is balanced	$P(x=0) = \frac{1}{2}$) (-1) × = -1-1 +4+1 half(-1) half (+1)	
		0,,	