Déterminer une limite à l'aide des règles sur les opérations

103 = (V) 20 min Capacité 3, p. 131

Déterminer la limite des suites (u_n) suivantes définies pour tout entier naturel n non nul.

a.
$$u_n = 3 - 2n - 5\sqrt{n}$$

c. $u_n = 3n^2 + 2n - \frac{1}{n}$

b.
$$u_n = -3n^3 - n^2 - n + 5$$

Déterminer la limite des suites (u_) suivantes définies pour tout entier naturel n non nul.

a.
$$u_n = (1 - n^2)(1 + \sqrt{n})$$
 b. $u_n = (n^3 - 1)(\frac{1}{n} - 1)$

VRAI/FAUX

Indiquer si les affirmations sont vraies ou fausses, puis justifier. On considère les suites (u_n) suivantes définies pour tout entier naturel n par:

1.
$$u_n = -3n^2 + 8n + 1$$
. Alors la suite (u_n) converge vers 1.
2. $u_n = 3n^3 - 2n^2 + 3$. Alors la suite (u_n) a pour limite $+\infty$.

Déterminer la limite des suites (u_n) suivantes définies pour tout entier naturel n non nul.

a.
$$u_n = \frac{1}{n} \left(-5n^2 + \frac{1}{\sqrt{n}} \right)$$
 b. $u_n = (n-1)\frac{1}{\sqrt{n}}$

Utiliser les théorèmes de comparaison

107 = 15 min Capadté 5, p. 133

Déterminer la limite de (u_n) définie pour tout entier naturel n supérieur ou égal à 2 en utilisant les théorèmes de comparaisons.

comparaisons.
a.
$$u_n = n - \sin(n)$$
 b. $u_n = \frac{n - \cos(n)}{n^2 - 1}$

$$u_n = -\sqrt{n} + \cos(n^2)$$

* 108 = 15 min Capacité 5, p. 133

Déterminer la limite de la suite (u,) définie pour tout entier naturel n supérieur ou égal à 2.

a.
$$u_n = \frac{2n^2 + (-1)^n}{n^2 - 1}$$
 b. $u_n = 2n^3 - (-1)^n$

$$n^{2} - 1$$

$$c. u_{n} = \frac{\sqrt{n} + (-1)^{n}}{n}$$

* 109 () 15 min Capacités 5 et 9, p. 133-136

Soit (u_n) la suite définie pour tout entier naturel n par $u_0 = 0$ et $u_{n+1} = u_n^2 + 1$.

1. Montrer que pour tout $n \ge 4$, $u_n \ge 2^n$. En déduire la limite de la suite (u_n).

* 110 = 20 min Capacités 5 et 6, p. 133

- Indiquer si les affirmations sont vraies ou fausses, puis iustifier.
- Toutes les suites arithmétiques sont divergentes. 2. La suite (u_n) définie, pour tout entier naturel n non nul, par :
- $u_n = \frac{\cos(n) n}{\sqrt{n}}$ converge vers 0.

Utiliser la limite d'une suite aéométrique

111 = 30 min Capacité 6, p. 133

Déterminer la limite éventuelle de la suite (u_n) définie pour tout entier naturel n par:

1.
$$u_n = \frac{4 \times 21^n}{12 \times 7^n}$$
 2. $u_n = \left(\frac{\sqrt{3} - 1}{2}\right)^n$ 3. $u_n = \sum_{k=0}^n 3^k$
4. $u_n = -3 \times 15^n + 5^n - 1$ 5. $u_n = \frac{3^n - 4^n}{2^n + 5^n}$

Déterminer la limite éventuelle de la suite (u_n) .

a.
$$u_n = \left(\frac{99}{100}\right)^n \sin(n)$$
 b. $u_n = 4^n - (-1)^n$

c. La suite (u_n) vérifie pour tout entier naturel n_n $4 - 0.9^n \le u_n \le 4 + 0.1^n$.

113 = 10 min Capacité 7, p. 135

- 1. Montrer que la suite (u_n) définie pour tout entier naturel npar $u_n = 2n^2 + 4n - 3$ est minorée par -5. 2. Montrer que la suite (v_n) définie par $v_0 = 0$ et pour tout entier
- naturel $n: v_{n+1} = \sqrt{\frac{1}{2}v_n^2 + 8}$ est majorée par 8.

QCM Choisir la ou les bonnes réponses. La suite (u_n) définie pour tout entier naturel n par

 $u_n = \cos(n) + \sin(n) \operatorname{est}$:

- a. bornée par -2 et 1.
- b. bornée par -1 et 1.
- c. minorée par -2 et majorée par 2. d. minorée par -3 et majorée par 2.

* 115 = 30 min Capacités 9 et 10 pp. 136-137

Fin 2020, un club de rugby comptait 7 000 abonnés. À la fin

de chaque année, le club constate que 20 % des abonnés ne se réabonnent pas et que 4 000 nouveaux abonnés arrivent.

On note a_n le nombre d'abonnés à la fin de l'année 2020 + n. 1. Préciser a_0 et expliquer pourquoi, pour tout entier naturel n,

- $a_{n+1} = 0.80a_n + 4000.$
- Démontrer que la suite (a_n) est majorée par 20 000. 3. Démontrer que la suite (a_n) est croissante.
- En déduire la convergence de la suite (a_e).