Aufgabe der Woche

zur Analysis in einer Variable für das Lehramt

für 18.05.2020

8 Exponential- und Winkelfuntkionen. Zeige, dass die Formel

$$(\cos(\varphi) + i\sin(\varphi))^n = (\cos(n\varphi) + i\sin(n\varphi)) \tag{*}$$

für alle $\varphi \in \mathbb{R}$, $n \in \mathbb{Z}$ gilt.

Verwende nun die Formel (*) um die Aussage

$$\cos(2n\varphi) = \sum_{k=0}^{n} (-1)^k \binom{2n}{2k} \cos^{2(n-k)}(\varphi) \sin^{2k}(\varphi)$$

für alle $\varphi \in \mathbb{R}$, $n \in \mathbb{N}$ zu beweisen.

Hinweis: Verwende für den ersten Teil der Aufgabe die Euler'sche Formel und im zweiten Teil den binomischen Lehrsatz, sowie die Tatsache, dass der Cosinus als Realteil der komplexen Exponentialfunktion definiert ist.

Lösungsvorschlag: Aufgrund der Euler'schen Formel (vgl. 2.3.15(i)) folgt sofort für alle $\varphi \in \mathbb{R}$, $n \in \mathbb{Z}$, dass

$$(\cos(\varphi) + i\sin(\varphi))^n = (e^{i\varphi})^n = e^{in\varphi} = (\cos(n\varphi) + i\sin(n\varphi))$$

gilt.

Betrachten wir nun die zweite Formel. Aufgrund des Binomischen Lehrsatzes gilt, dass für alle $\varphi \in \mathbb{R}, n \in \mathbb{N}$

$$(\cos(\varphi) + i\sin(\varphi))^{2n} = \sum_{k=0}^{2n} {2n \choose k} \cos^{2n-k}(\varphi) i^k \sin^k(\varphi)$$
 (**)

ist. Verwenden wir nun die Definition des Cosinus als Realteil der komplexen Exponentialfunktion (vgl. 2.3.14) und die Formel (*) sowie (**), dann erhalten wir

$$\cos(2\varphi n) \stackrel{2.3.14,(*)}{=} \operatorname{Re}((\cos(\varphi) + i\sin(\varphi))^{2n})$$

$$\stackrel{(**)}{=} \operatorname{Re}\left(\sum_{k=0}^{2n} {2n \choose k} \cos^{2n-k}(\varphi) i^k \sin^k(\varphi)\right). \tag{***}$$

Für den Realteil bleiben nur die Terme in der Summe mit geradem k übrig und daher ist

$$\cos(2\varphi n) \stackrel{\text{(****)}}{=} \sum_{k=0}^{n} \binom{2n}{2k} \cos^{2n-2k}(\varphi) i^{2k} \sin^{2k}(\varphi)$$
$$= \sum_{k=0}^{n} (-1)^k \binom{2n}{2k} \cos^{2(n-k)}(\varphi) \sin^{2k}(\varphi),$$

was zu zeigen war.