# FINAL DELIVERABLES - PROJECT REPORT

# **UNIVERSITY ADMISSION ELIGIBILITY PREDICTOR**

| DOMAIN          | APPLIED DATA SCIENCE                   |  |  |
|-----------------|----------------------------------------|--|--|
| TOPIC           | UNIVERSITY ADMIT ELIGIBILITY PREDICTOR |  |  |
| TEAM ID         | PNT2022TMID14806                       |  |  |
| TEAM MEMBERS    | 1. JAGADEESH KUMAR R - TEAM LEAD       |  |  |
|                 | 2. SARAVANAN P                         |  |  |
|                 | 3. GOWTHAM M                           |  |  |
|                 | 4. OHMPRAKASH V                        |  |  |
| SUBMISIION DATE | 19/11/2022                             |  |  |

# UNIVERSITY ADMISSION PREDICTION SYSTEM USING MACHINE LEARNING



# **TABLE OF CONTENTS**

#### 1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

# 2. LITERATURE SURVEY

- 1. Existing problem
- 2. References
- 3. Problem Statement Definition

#### 3. IDEATION & PROPOSED SOLUTION

- 1. Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

# 4. **REQUIREMENT ANALYSIS**

- 1. Functional requirement
- 2. Non-Functional requirements

#### 5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

#### 6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- 3. Reports from JIRA

# 7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1. Feature 1
- 2. Feature 2
- 3. Database Schema (if Applicable)

#### 8. TESTING

- 1. Test Cases
- 2. User Acceptance Testing

#### 9. RESULTS

- 1. Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. **CONCLUSION**
- 12. **FUTURE SCOPE**
- 13. **APPENDIX**

Source Code

GitHub & Project Demo Link

#### 1. INTRODUCTION

#### 1.1. PROJECT OVERVIEW

The project uses a machine-learning model to estimate, using information like marks and other details, whether the user is qualified for admission to the rating universities that have been chosen. The algorithm's operation ensures that the % of likelihood of admission is displayed when the user enters information such (GRE Score, TOEFL Score, University Rating, SOP, LOR, CGPA, Research). The user is given access to a user interface (UI) (Web-based application) where they can enter the above-mentioned information for prediction. The key benefit of this is that the user may use this programme to estimate eligibility and possibility of admission rather than going through the time-consuming procedure of manually determining eligibility for university admission.

#### 1.2. PURPOSE

The goal of this project is to easily estimate an applicant's eligibility for admission to a rated university using a user interface and the given user information (GRE Score, TOEFL Score, University Rating, SOP, LOR, CGPA, Research). Additionally, this removes the chance of human mistake.

#### 2. LITERATURE SURVEY

#### 2.1. EXISTING PROBLEM

Previous studies in this field used the Naive Bayes algorithm to assess the likelihood that a student will be admitted to a particular university, but their main flaw was that they failed to take into account all the variables that would affect admission, such as TOEFL/IELTS, SOP, LOR, and undergraduate GPA. An evaluation network for the applications submitted by university's international students has been built using the Bayesian Networks technique. By comparing prospective students' scores to those of university students currently enrolled, this model was created to predict how well they will do. On the basis of various student scores, the model thus predicted whether the prospective student should be admitted to the university. This method won't be as accurate because comparisons are only made with students who were accepted into the universities, not with those whose admission was denied.

#### 2.2 REFERENCES

- Borah M.D., Application of knowledge based decision technique to predict student enrolment decision, Recent Trends in Information Systems (Re TIS), 21-23 Dec. 2011,180-184.
- Ragab, A.H.M., Hybrid recommender system for predicting college admission, Intelligent Systems Design and Applications (ISDA), 29 Nov. 2012, 107-113
- L. Chang, Applying Data Mining to Predict College Admissions Yield, Chapter 4 in J. Luan and C. Zhao (Eds.), Data mining in action: Case studies, Spring 2008 College of Education.
- S. Nadi, M.H. Saraee, and A. Bagheri," Hybrid Recommender System for Dynamic Web Users", International Journal Multimedia and Image Processing (IJMIP), Vol. 1, Issue 1, March 2011.

• J. A. Freeman, and D. M. Skapura, "Neural Networks: Algorithms. Applications. And Programming", AddisonWesley Pub (Sd), June 1991

#### 2.3. PROBLEM STATEMENT DEFINITION

Finding an acceptable college for their future study is the students' biggest challenge. For many students, choosing which institution to apply to is a difficult decision. Our method proposes universities in the order of the student's selection after comparing the student's information with historical admissions data.

#### 3. IDEATION AND PROPOSED SOLUTION

#### 3.1. EMPATHY MAP CANVAS

An empathy map is a collaborative visualization used to articulate what we know about a particular type of user. It externalizes knowledge about users in order to

- 1) Create a shared understanding of user needs, and
- 2) Aid in decision making.

Traditional empathy maps are split into 4 quadrants (Says, Thinks, Does, and Feels), with the user or persona in the middle. Empathy maps provide a glance into who a user is as a whole and are not chronological or sequential.



#### 3.2. IDEATION & BRAINSTORMING

Brainstorming is a method design teams use to generate ideas to solve clearly defined design problems. In controlled conditions and a free-thinking environment, teams approach a problem by such means as "How Might We" questions. They produce a vast array of ideas and draw links between them to find potential solutions.



#### 3.3. PROPOSED SOLUTION

The aim of the proposed system is to address the limitations of the current system. The requirements for the system have been gathered from the defects recorded in the past and also based on the feedback from users of previous metrics tools. Following are the objectives of the proposed system: • Reach to geographically scattered student. • Reducing time in activities • Paperless admission with reduced man power • Operational efficiency

These problems can be resolved by using regression algorithms /classification algorithms as they can consider most of the features for prediction. Linear regression / KNN classification / Random Forest Regressor can be used as the machine learning model for the model. XG boost model can also be used which performs better on small to medium scale datasets but the model giving accurate and desired results only will be selected. The aim of the proposed system is to address the limitations of the current system.

The requirements for the system have been gathered from the defects recorded in the past and also based on the feedback from users of previous metrics tools.

| S. No | Parameter                        | Description                                      |  |  |  |  |
|-------|----------------------------------|--------------------------------------------------|--|--|--|--|
| 1.    | Problem Statement (Problem to be | Concerns about getting into college are          |  |  |  |  |
|       | solved)                          | common among students. This project's goal       |  |  |  |  |
|       |                                  | is to assist students in narrowing down          |  |  |  |  |
|       |                                  | institutions based on their profiles. The        |  |  |  |  |
|       |                                  | anticipated results offer students a good        |  |  |  |  |
|       |                                  | indication of their prospects of admission to a  |  |  |  |  |
|       |                                  | certain university. This analysis should also    |  |  |  |  |
|       |                                  | assist students who are preparing for            |  |  |  |  |
|       |                                  | admission to a master's programme at a           |  |  |  |  |
|       |                                  | university or who will be prepared to do so.     |  |  |  |  |
| 2.    | Idea / Solution description      | With their GRE, CGPA, and TOFEL scores,          |  |  |  |  |
|       |                                  | the undergrads who are shortlisted for master's  |  |  |  |  |
|       |                                  | programmes will benefit from our project. If     |  |  |  |  |
|       |                                  | the anticipated results would offer them a       |  |  |  |  |
|       |                                  | realistic notion of their prospects of admission |  |  |  |  |
|       |                                  | to the university. Students who are presently    |  |  |  |  |
|       |                                  | preparing can also benefit from this analysis    |  |  |  |  |
|       |                                  | in order to have a better understanding.         |  |  |  |  |
|       |                                  | Additionally, it will let students learn more    |  |  |  |  |
|       |                                  | about the university's research possibilities,   |  |  |  |  |
|       |                                  | entrance requirements, course offerings, and     |  |  |  |  |
|       |                                  | notable alumni.                                  |  |  |  |  |
| 3.    | Novelty / Uniqueness             | The project website can include a summary of     |  |  |  |  |
|       |                                  | the many amenities offered by the institutions   |  |  |  |  |
|       |                                  | as well as directions to get there. Obtain       |  |  |  |  |
|       |                                  | financial aid and scholarship opportunities as   |  |  |  |  |
|       |                                  | well.                                            |  |  |  |  |
| 4.    | Social Impact / Customer         | This method will lessen students' anxiety as     |  |  |  |  |
|       | Satisfaction                     | well as their worry about being admitted to      |  |  |  |  |
|       |                                  | the university of their dreams. Then this        |  |  |  |  |
|       |                                  | The better scores for the pupils will determine  |  |  |  |  |
|       |                                  | whether they are admitted to the institution or  |  |  |  |  |
|       |                                  | not.                                             |  |  |  |  |

| ĺ | 5. | Business Model (Revenue Model) | Additionally, marketing the GRE/TOEFL          |  |  |
|---|----|--------------------------------|------------------------------------------------|--|--|
|   |    |                                | coaching facilities might bring in money. An   |  |  |
|   |    |                                | the University will pay for the website's      |  |  |
|   |    |                                | upkeep and development.                        |  |  |
|   | 6. | Scalability of the Solution    | A conversation room with candidates,           |  |  |
|   |    |                                | instructors, current students, and alumni will |  |  |
|   |    |                                | be available in a future update. It can be     |  |  |
|   |    |                                | scaled for universities anywhere.              |  |  |
|   |    |                                | searce for any crostness any wherev            |  |  |

#### 3.4. PROBLEM SOLUTION FIT

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem.



#### 4. REQUIREMENT ANALYSIS

#### **4.1. FUNCTIONAL REQUIREMENT**

Functional requirements may involve calculations, technical details, data manipulation and processing, and other specific functionality that define what a system is supposed to accomplish. Behavioral requirements describe all the cases where the system uses the functional requirements, these

are captured in use cases.

Following are the functional requirements of the proposed solution

| FR No. | Functional Requirement (Epic) | Sub Requirement (Story / Sub-<br>Task)                                |
|--------|-------------------------------|-----------------------------------------------------------------------|
| FR-1   | User Registration             | Registration through Form                                             |
|        |                               | Registration through     Gmail                                        |
| FR-2   | User Confirmation             | Confirmation via Email                                                |
|        |                               | Confirmation via OTP                                                  |
| FR-3   | User Details                  | • Enter user details                                                  |
|        |                               | Upload proof documents                                                |
| FR-4   | User Requirement              | Upload SSLC and     HSLC documents                                    |
|        |                               | <ul><li>Upload Marksheets</li><li>All possible universities</li></ul> |
|        |                               | for the student can be listed after analysing.                        |

# 4.2. NON-FUNCTIONAL REQUIREMENTS

In systems engineering and requirements engineering, a non-functional requirement (NFR) is a requirement that specifies criteria that can be used to judge the operation of a system, rather than specific behaviours

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement | Description |  |  |
|--------|----------------------------|-------------|--|--|
|        |                            |             |  |  |

| NFR-1 | Usability    | <ul> <li>Good UI.</li> <li>User friendly.</li> <li>Fast detail fetching, analysing and displaying capability.</li> <li>Technical Prerequisite not required.</li> </ul> |
|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-2 | Security     | Only authenticated user can able to view and edit the user data.                                                                                                       |
| NFR-3 | Reliability  | The system would always strive for maximum reliability due to the importance of data and damages that could be cause by incomplete and incorrect data                  |
| NFR-4 | Performance  | <ul> <li>Database should be backed up every hour</li> <li>Under any error, the system should be able to come back to normal operation as soon as possible.</li> </ul>  |
| NFR-5 | Availability | <ul> <li>Less prone to errors</li> <li>The system will run</li> <li>7 days a week, 24</li> <li>hours a day</li> </ul>                                                  |

| NFR-6 | Scalability | <ul> <li>The admission</li> </ul> |
|-------|-------------|-----------------------------------|
|       |             | season is probably                |
|       |             | when the system will              |
|       |             | be under the most                 |
|       |             | Strain. So, it must be            |
|       |             | able to manage                    |
|       |             | numerous concurrent               |
|       |             | users.                            |
|       |             |                                   |

## 5. PROJECT DESIGN

# **5.1. DATA FLOW DIAGRAMS**

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.



# 5.2. SOLUTION & TECHNICAL ARCHITECTURE

Solution Architecture:

A solution architecture (SA) is an architectural description of a specific solution. SAs combine guidance from different enterprise architecture viewpoints (business, information and technical), as well as from the enterprise solution architecture (ESA).



# Technical Architecture:

Technical Architecture (TA) is a form of IT architecture that is used to design computer systems. It involves the development of a technical blueprint with regard to the arrangement, interaction, and interdependence of all elements so that systemrelevant requirements are met.



# **5.3. USER STORIES**

A user story is an informal, general explanation of a software feature written from the perspective of the end user or customer. The purpose of a user story is to articulate how a piece of work will deliver a particular value back to the customer

| User Type | Functional  | User   | User Story /                                                                        | Acceptance criteria                                                  | Priority | Release  |
|-----------|-------------|--------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|----------|
|           | Requirement | Story  | Task                                                                                |                                                                      |          |          |
|           | (Epic)      | Number |                                                                                     |                                                                      |          |          |
| Customer  | Login       | USN-1  | As a user, I can login to the site.                                                 | I can enter my login details.                                        | High     | Sprint-1 |
|           |             | USN-2  | As a user, I can<br>navigate to<br>Form page                                        | I can enter my personnel details, scores and preferred universities. | High     | Sprint-1 |
|           |             | USN-3  | As a user, I can navigate to dashboard.                                             | I can view the dashboard after entering my details.                  | High     | Sprint-2 |
|           | Dashboard   | USN-4  | As a user, I can view the dashboard.                                                | I can view the university details.                                   | Medium   | Sprint-1 |
|           |             | USN-5  | As a user, I can<br>see testimonials<br>of<br>students who<br>graduated from<br>the | I can access<br>the<br>Testimonials.                                 | Medium   | Sprint-1 |

|                   |         | University.                                                                       |                                                       |         |          |
|-------------------|---------|-----------------------------------------------------------------------------------|-------------------------------------------------------|---------|----------|
| Administra        | LICNI C | A I                                                                               | I and decorled the                                    | 11: -1. | Cardat 2 |
| Admissions        | USN-6   | As a user, I can see the previous year cut- off marks                             | I can download the previous year cut-off details      | High    | Sprint-2 |
|                   | USN-7   | As a user, I can view review of alumni of the university.                         | I can access the details of alumni of the university  | Medium  | Sprint-2 |
|                   | USN-8   | As a user, I can predict my eligibility for admission at the university           | I can get result as<br>either<br>eligible/noneligible | High    | Sprint-2 |
| Course<br>Offered | USN-9   | As a user, I can see the courses offered by the university for PG students        | I can access the course details                       | Medium  | Sprint-2 |
| Events            | USN-10  | As a user, I can check various technical events about to happen in the university | I can register for the events                         | Low     | Sprint-3 |

| Administrator | Dashboard | USN-11 | As an administratOr, I can update the details about the university | I can check if the<br>update is reflected<br>or<br>not | Medium | Sprint-4 |
|---------------|-----------|--------|--------------------------------------------------------------------|--------------------------------------------------------|--------|----------|

# 6. PROJECT PLANNING & SCHEDULING 6.1. SPRINT PLANNING & ESTIMATION

In Scrum Projects, Estimation is done by the entire team during Sprint Planning Meeting. The objective of the Estimation would be to consider the User Stories for the Sprint by Priority and by the Ability of the team to deliver during the Time Box of the Sprint.

| Sprint   | Functional<br>Requirement(Epic) | User Story<br>Number | User Story / Task                                                                                         | Story<br>points | Priority | Team<br>Members                  |
|----------|---------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|-----------------|----------|----------------------------------|
| Sprint-1 | Registration                    | USN-1                | As a user, I can register for the application by entering my email, password, and confirming my password. | 5               | High     | Jagadeesh Kumar<br>R Saravanan P |
| Sprint-1 |                                 | USN-2                | As a user, I will receive confirmation email once I have registered for the application                   | 5               | High     | Gowtham M<br>Ohmprakash<br>V     |
| Sprint-2 |                                 | USN-3                | As a user, I can register for the application through Gmail                                               | 6               | Medium   | Ohmprakash V                     |

Page No: 16

| Sprint-1 | Login          | USN-4  | As a user, I can log into the application by entering email & password                               | 5  | High   | Saravanan P<br>Gowtham M                            |
|----------|----------------|--------|------------------------------------------------------------------------------------------------------|----|--------|-----------------------------------------------------|
| Sprint-3 | Selection      | USN-5  | As a user, I can confirm the available college or reapply to other college                           | 10 | Medium | Jagadeesh Kumar<br>R                                |
| Sprint-4 | Queries        | USN-6  | As a user, I can ask queries<br>to the system regarding the<br>help / support or technical<br>issues | 10 | High   | Gowtham M                                           |
| Sprint-1 | Authentication | USN-7  | As an admin, I can authenticate the login credentials of user                                        | 5  | High   | Ohmprakash V                                        |
| Sprint-2 | Dashboard      | USN-8  | As an admin, I can verify the details of the user                                                    | 7  | High   | Saravanan P                                         |
| Sprint-2 | Prediction     | USN-9  | As an admin, I can train the user details with ML algorithm                                          | 7  | High   | Gowtham M<br>Ohmprakash V                           |
| Sprint-3 | Chances        | USN-10 | As an admin, I can solve the queries of users                                                        | 10 | High   | Saravanan P<br>Gowtham M                            |
| Sprint-4 | Solution       | USN-11 | As an admin, I can update the university database depends on the user confirmation                   | 10 | High   | Jagadeesh Kumar<br>R<br>Saravanan P<br>Ohmprakash V |

# **6.2. SPRINT DELIVERY SCHEDULE**

A sprint schedule is a document that outlines sprint planning from end to end. It's one of the first steps in the agile sprint planning process—and something that requires adequate research, planning, and communication.

| Sprint | Total | Durati | Sprint Start | Sprint End     | Story Points | Sprint Release |
|--------|-------|--------|--------------|----------------|--------------|----------------|
|        | Story | on     | Date         | Date (Planned) | Completed    | Date (Actual)  |

|          | Points |        |             |             | (as on<br>Planned End<br>Date) |             |
|----------|--------|--------|-------------|-------------|--------------------------------|-------------|
| Sprint-1 | 20     | 6 Days | 24 Oct 2022 | 29 Oct 2022 | 20                             | 29 Oct 2022 |
| Sprint-2 | 20     | 6 Days | 31 Oct 2022 | 05 Nov 2022 |                                | 05 Nov 2022 |
| Sprint-3 | 20     | 6 Days | 07 Nov 2022 | 12 Nov 2022 |                                | 12 Nov 2022 |
| Sprint-4 | 20     | 6 Days | 14 Nov 2022 | 19 Nov 2022 |                                | 19 Nov 2022 |

#### 6.3. REPORTS FROM JIRA

Jira helps teams plan, assign, track, report, and manage work and brings teams together for everything from agile software development and customer support to startups and enterprises. Software teams build better with Jira Software, the #1 tool for agile teams.

#### **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.



Page No: 18



# 7. CODING & SOLUITONING

# 7.1. DATA DICTIONARY

We have used the dataset for building the ML Model and training it. Some of the datas from our dataset are tabulated below.

| Serial<br>No. | GRE<br>Score | TOEFL<br>Score | Universi<br>ty<br>Rating | SOP | LOR | CGPA | Resear<br>ch | Chance<br>of Admit |
|---------------|--------------|----------------|--------------------------|-----|-----|------|--------------|--------------------|
| 1             | 337          | 118            | 4                        | 4.5 | 4.5 | 9.65 | 1            | 0.92               |
| 2             | 324          | 107            | 4                        | 4   | 4.5 | 8.87 | 1            | 0.76               |
| 3             | 316          | 104            | 3                        | 3   | 3.5 | 8    | 1            | 0.72               |
| 4             | 322          | 110            | 3                        | 3.5 | 2.5 | 8.67 | 1            | 0.8                |
| 5             | 314          | 103            | 2                        | 2   | 3   | 8.21 | 0            | 0.65               |
| 6             | 330          | 115            | 5                        | 4.5 | 3   | 9.34 | 1            | 0.9                |

| 7  | 321 | 109 | 3 | 3   | 4   | 8.2 | 1 | 0.75 |
|----|-----|-----|---|-----|-----|-----|---|------|
| 8  | 308 | 101 | 2 | 3   | 4   | 7.9 | 0 | 0.68 |
| 9  | 302 | 102 | 1 | 2   | 1.5 | 8   | 0 | 0.5  |
| 10 | 323 | 108 | 3 | 3.5 | 3   | 8.6 | 0 | 0.45 |

# 7.2. LIBRARIES USED

- > Pandas
- > Numpy
- > Scikit learn
- > Matplotlib
- > Seaborn

#### 7.3. TECHNOLOGIES USED

- > Software
  - > Python
  - ➤ Anaconda
  - ➤ Jupyter Notebook
  - ➤ Windows 11
  - ➤ IBM Watson Studio
- ➤ Hardware
  - ➤ Processor Quad Core
  - ➤ Hard Disk and SSD
  - ➤ Memory 2 GB and Above RAM

# 7.4. EVALUATION METRIC

The evaluation metric for this competition is 100\*RMSLE where RMSLE is Root of Mean Squared Logarithmic Error across all entries in the test set.

#### 7.5. INITIAL APPROACH

- Simple Linear Regression model without any feature engineering and data transformation which gave a RMSE: 196.402.
- Without feature engineering and data transformation, the model did not perform well and

- could'nt give a good score.
- Post applying feature engineering and data transformation (log and log1p transformation), Linear Regression model gave a RMSLE score of 0.734.

# 7.6. ADVANCED MODELS

- With improvised feature engineering, built advanced models using Ensemble techniques and other Regressor algorithms.
- Decision Tree Regressors performed well on the model which gave much reduced RMSLE.
- With proper hyper-parameter tuning, Decision Tree Regressor performed well on the model and gave the lease RMSLE of 0.5237.

#### 8. TESTING

# 8.1. TEST CASES

| Test case ID     | Feature Type | Component          | Test Scenario                                                                                        |
|------------------|--------------|--------------------|------------------------------------------------------------------------------------------------------|
| LoginPage_TC 001 | Functional   | Home Page          | Verify user is able to<br>see the<br>Login/Signup popup<br>when user clicked on<br>My account button |
| LoginPage_TC_002 | UI           | Home<br>Page/Dem02 | Verify the UI elements in home page                                                                  |
| LoginPage_TC_003 | Functional   | Chance             | Verify that the Candidate Having chance to Admit/Not                                                 |
| LoginPage_TC_004 | Functional   | NoChance           | Verify that the<br>Candidate Having<br>chance to Admit/Not                                           |

| 1. Run the Python Flask code              |                                             |
|-------------------------------------------|---------------------------------------------|
| 2. Open your browser                      | http://127.0.0.1:5000/                      |
| 3. Enter the URL and click go             |                                             |
| 4. Enter the required details             |                                             |
| 5. Click the predict button               |                                             |
| 6. As per the Student details, the score  | http://127.0.0.1:5000/chance/99.13900931466 |
| will be calculated                        | 966                                         |
| 7. If score is above 50%, then the Chance |                                             |
| page will appear                          |                                             |
| 8. If predicted score is below 50%, then  | http://127.0.0.1:5000/nochance/38.727968544 |
| the nochance page will appear             | 02236                                       |

| S. No. | <b>Expected Result</b> | Actual Result | Status | Comments        |
|--------|------------------------|---------------|--------|-----------------|
| 1.     | Working as             | Working as    | Pass   | Perfect Working |
|        | expected               | expected      |        |                 |
| 2.     | Working as             | Working as    | Pass   | Perfect Working |
|        | expected               | expected      |        |                 |
| 3.     | Working as             | Working as    | Pass   | Perfect Working |
|        | expected               | expected      |        |                 |
| 4.     | Working as             | Working as    | Pass   | Perfect Working |
|        | expected               | expected      |        |                 |

# **8.2. USER ACCEPTANCE TESTING**

Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

| Resolution | Severity1 | Severity2 | Severity3 | Severity4 | Sub Total |
|------------|-----------|-----------|-----------|-----------|-----------|
| By Design  | 7         | 3         | 2         | 3         | 15        |
| Duplicate  | 1         | 0         | 3         | 0         | 4         |
| Extemal    | 2         | 3         | 0         | 1         | 6         |

| Fixed             | 7  | 3  | 2  | 17 | 29 |
|-------------------|----|----|----|----|----|
| Not<br>Reproduced | 0  | 0  | 1  | 0  | 1  |
| Skipped           | 0  | 0  | 1  | 1  | 2  |
| Won'tFix          | 0  | 3  | 2  | 1  | 6  |
| Totals            | 17 | 12 | 11 | 23 | 63 |

Test Case Analysis:

This report shows the number of test cases that have passed, failed and untested.

| Section                | TotalCases | Not Tested | Fail | Pass |
|------------------------|------------|------------|------|------|
| PrintEngine            | 7          | 0          | 0    | 7    |
| ClientAppIication      | 51         | 0          | 0    | 51   |
| Security               | 2          | 0          | 0    | 2    |
| OutsourceShippi<br>ng  | 3          | 0          | 0    | 3    |
| ExceptionReporti<br>ng | 9          | 0          | 0    | 9    |
| FinalReportOutput      | 4          | 0          | 0    | 4    |
| VersionControI         | 2          | 0          | 0    | 2    |

# 9. RESULTS

# 9.1. PERFORMANCE METRICS

| S. No. | Parameter      | Values                                                                                                                                                                                                               | Screenshot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Metrics        | Regression Model:  MAE -0.03790692243018498, MSE-O.003058753436307664, RMSE — 0.05530599819465936, R2 score — 0.8647260941958439  Classification Model:  Confusion Matrix - , Accuray Score- & Classification Report | The state of the s |
| 2.     | Tune the Model | Hyperparameter Tuning:  0.91666666666666666666666666666666666666                                                                                                                                                     | The second secon |

# 10. ADVATAGES & DISADVANTAGES

# Advantages:

- It helps student for making decision for choosing a right college.
- Here the chance of occurrence of error is less when compared with the existing system.
- Avoids data redundancy and inconsistency.
- It is fast, efficient and reliable.

# Disadvantages:

- Machine errors are unavoidable when occurred. (Hardware failure, network failure, others).
- The predictions made are not 100% accurate but accurate to an acceptable value.

# 11. APPLICATIONS

- Reach to geographically scattered student.
- Reducing time in activities

- Paperless admission with reduced man power
- Operational efficiency

#### 12. CONCLUSION

The project employs a Random forest regressor to forecast the output, and a web application is created utilising a variety of technologies, including Python, HTML5, CSS, Flask, Scikit, Matplot, Numpy, Pandas, Seaborn, and other libraries, to make the user interface (UI) more accessible and simple. The web application may be viewed from any location with an internet connection after it has been deployed. With this project, you can estimate your eligibility for admission to a ranked university in a fraction of the time.

# 13. FUTURE SCOPE

Some of the future scopes of this project are:

- This can be implemented quickly and properly during admission process.
- This can be accessed anytime, anywhere, since it is a web application provided only an internet connection.
- The user does not need to travel a long distance for the admission and his/her time is also saved as a result of this automated system.

#### 14. APPENDIX

**Source Code:** 

## 1. HTML Codes:

## a. INDEX.HTML:

```
margin:15;
}
.researchlabel{
  margin-top: 10;
  text-align: left;
}
#research,#noresearch{
  margin-top: 7;
  text-align: left;
  margin-left: 20px;
}
.submit{
  margin-top: 30px;
}
.raise:hover,.raise:focus {
 box-shadow: 0 0.5em 0.5em -0.4em var(--hover);
 transform: translateY(-0.25em);
 color: white;
}
.index_body{
  background-image: url('../static/university_bgimg.webp');
  background-repeat: no-repeat;
  background-size: 100% 100%;
  font-size: 18px;
}
. border\text{-}cls\{
  max-width: fit-content;
  padding: 10px;
  margin-left: 7%;
  width: 60%;
}
p{
  margin-left: 7%;
}
.inline-block{
  display: inline-block;
}
```

```
.gif-outline{
  margin-left: 15%;
}
.img-hor-flip {
  -moz-transform: scaleX(-1);
    -o-transform: scaleX(-1);
    -webkit-transform: scaleX(-1);
    transform: scaleX(-1);
    filter: FlipH;
    -ms-filter: "FlipH";
}
    </style>
  </head>
  <body class="index body">
    <h1 style="margin-top:40 ;color: blue;text-align: center;">University Admission Prediction
System</h1>
    <b>Enter your details and get
probability of your admission</b>
    <div class="border-cls inline-block">
      <form action="{{url_for('predict')}}" method="post">
      <label for="GREscore">Enter GRE Score : </label>
      <input type="number" id="GREscore" name="GRE Score" placeholder="GRE Score (1</pre>
to 340)" required="required" min="0" max="340"/>
      <hr>
      <label for="TOEFLscore">Enter TOEFL Score : </label>
      <input type="number" id="TOEFLscore" name="TOEFL Score" placeholder="TOEFL</pre>
Score (1 to 120)" required="required" min="0" max="120"/>
      <br>
      <label for="rating">Enter University Rating : </label>
      <input type="number" id="rating" name="University Rating" placeholder="University</pre>
Rating (1 to 5)" required="required" min="1" max="5"/>
      <hr>
      <label for="SOP">Enter SOP : </label>
      <input type="number" id="SOP" name="SOP" placeholder="SOP (1 to 5)"
required="required" onkeypress="return check(event,value)" step="0.1" min="1" max="5"/>
      <br>
      <label for="LOR">Enter LOR : </label>
```

```
<input type="number" id="LOR" name="LOR" placeholder="LOR (1 to 5)"</pre>
required="required" onkeypress="return check(event,value)" step="0.1" min="1" max="5"/>
       <br>
       <label for="CGPA">Enter CGPA : </label>
       <input type="number" id="CGPA" name="CGPA" placeholder="CGPA (1 to 10)"</pre>
required="required" onkeypress="return check(event,value)" step="0.1" min="1"
max="10"/><br>
       <label for="research" class="researchlabel">Research : </label><br>
       <input type="radio" id="research" name="research_radio" value="1">
       <label for="research">Research</label><br>
       <input type="radio" id="noresearch" name="research radio" value="0">
       <label for="noresearch">No Research</label>
       <div class="submit">
       <input type="submit" class="raise" style="width: fit-content;padding: 7px;padding-left:</pre>
10%;padding-right: 10%;font-size: 17px;margin-left: 30%;border-radius: 8px;background-color:
rgb(247, 161, 0);border-color: orange;" value="Predict"/>
       </div>
    </form>
    </div>
    <div class="inline-block gif-outline">
       <img src="../static/search.webp" height="250px" width="350px">
    </div>
  </body>
</html>
```

# b. CHANCE.HTML:

```
input:not(#research,#noresearch,input[type="submit"]){
  width:350;
  font-size: 17px;
  padding-left:5%;
  margin:15;
}
.researchlabel{
  margin-top: 10;
  text-align: left;
}
#research,#noresearch{
  margin-top: 7;
  text-align: left;
  margin-left: 20px;
}
.submit{
  margin-top: 30px;
}
.raise:hover,.raise:focus {
 box-shadow: 0 0.5em 0.5em -0.4em var(--hover);
 transform: translateY(-0.25em);
 color: white;
}
.index_body{
  background-image: url('../static/university_bgimg.webp');
  background-repeat: no-repeat;
  background-size: 100% 100%;
  font-size: 18px;
}
.border-cls{
  max-width: fit-content;
  padding: 10px;
  margin-left: 7%;
  width: 60%;
}
p{
  margin-left: 7%;
```

```
}
.inline-block{
  display: inline-block;
}
.gif-outline{
  margin-left: 15%;
}
.img-hor-flip {
  -moz-transform: scaleX(-1);
    -o-transform: scaleX(-1);
    -webkit-transform: scaleX(-1);
    transform: scaleX(-1);
    filter: FlipH;
    -ms-filter: "FlipH";
}
    </style>
  </head>
  <body style="background-color:lightgray;">
     <div>
       <div style="text-align:center;margin-top:10%;">
          <img src="../static/thumbsup.webp" height="230px" width="230px" style="border-
radius:30%">
       </div>
       <div style="text-align: center">
          <h1>Prediction Result</h1>
          <div style="display:flex ;width: 60%;margin-left: 20%;">
         <img style="flex:1" src="../static/party-popper-joypixels.gif" width="100px">
          <h2 style="flex:12">Congratulations! You have a chance to get admission</h2>
         <img style="flex:1;" class="img-hor-flip" src="../static/party-popper-joypixels.gif"</pre>
width="100px">
          </div>
       </div>
     </div>
  </body>
</html>
```

#### c. NOCHANCE.HTML:

```
<html>
  <head>
     <title>No Chance</title>
     <style>
       label{
  display:inline-block;
  width:200px;
  text-align: left;
}
input:not(#research,#noresearch,input[type="submit"]){
  width:350;
  font-size: 17px;
  padding-left:5%;
  margin:15;
}
. research label \{\\
  margin-top: 10;
  text-align: left;
}
#research,#noresearch{
  margin-top: 7;
  text-align: left;
  margin-left: 20px;
}
.submit{
  margin-top: 30px;
}
.raise:hover,.raise:focus {
 box-shadow: 0 0.5em 0.5em -0.4em var(--hover);
 transform: translateY(-0.25em);
 color: white;
}
.index_body{
  background-image: url('../static/university_bgimg.webp');
  background-repeat: no-repeat;
```

```
background-size: 100% 100%;
  font-size: 18px;
}
.border-cls{
  max-width: fit-content;
  padding: 10px;
  margin-left: 7%;
  width: 60%;
}
p{
  margin-left: 7%;
.inline-block{
  display: inline-block;
}
.gif-outline{
  margin-left: 15%;
}
.img-hor-flip {
  -moz-transform: scaleX(-1);
    -o-transform: scaleX(-1);
    -webkit-transform: scaleX(-1);
    transform: scaleX(-1);
    filter: FlipH;
    -ms-filter: "FlipH";
}
    </style>
  </head>
  <body style="background-color:lightgray;">
     <div>
       <div style="text-align:center;margin-top:10%;">
         <img src="../static/sad.webp" height="230px" width="230px" style="border-
radius:30%">
       </div>
       <div style="text-align: center">
         <h1>Prediction Result</h1>
         <h2 style="flex:12">Sorry! You don't have enough score<br>You have chance to get
```

```
into other best universities </h2>
         </div>
       </div>
    </div>
  </body>
</html>
   2. PYTHON CODE:
          a. APP.PY:
import pandas as pd
from flask import Flask, request, jsonify, render_template, redirect, url_for
import requests
import ison
API_KEY = "13S6-gvuJHw0EgY7HAmtl8ae5tQlGcbahHYBYAacEOQn"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey":API_KEY,"grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask(__name__, template_folder='templates')
@app.route('/')
def home():
  return render_template('index.html')
@app.route('/predict', methods=['GET', 'post'])
def predict():
  GRE Score = int(request.form['GRE Score'])
  TOEFL Score = int(request.form['TOEFL Score'])
  University Rating = int(request.form['University Rating'])
  SOP = float(request.form['SOP'])
  LOR = float(request.form['LOR'])
  CGPA = float(request.form['CGPA'])
  Research = int(request.form['research_radio'])
  final_features = [[GRE_Score, TOEFL_Score, University_Rating, SOP, LOR, CGPA]]
```

```
payload_scoring = {'input_data': [
     {'field': [["GRE Score", "TOEFL Score", "University Rating", "SOP", "LOR ", "CGPA"]],
     'values': final features}]}
  print("hello")
  response_scoring = requests.post('https://us-
south.ml.cloud.ibm.com/ml/v4/deployments/3ef17bf1-d7c8-475c-88b4-
1216d3e59253/predictions?version=2022-11-17',
    json=payload_scoring,
    headers={'Authorization': 'Bearer ' + mltoken})
  print("scoring response")
  pred = response_scoring.json()
  print(pred)
  output = pred['predictions'][0]['values'][0][0]
  print(output)
  if output > 0.5:
    return redirect(url_for('chance', percent=output * 100))
  else:
     return redirect(url_for('no_chance', percent=output * 100))
@app.route("/chance/<percent>")
def chance(percent):
  return render_template("chance.html", content=[percent])
@app.route("/nochance/<percent>")
def no_chance(percent):
  return render_template("nochance.html", content=[percent])
if __name__ == "__main__":
  app.run(debug=True)
```

#### b. REGRESSION METHODS.IPYNB

# **Importing the Libraries**

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

```
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
Load the dataset
import os, types
import pandas as pd
from botocore.client import Config
import ibm_boto3
def __iter__(self): return 0
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your
credentials.
# You might want to remove those credentials before you share the notebook.
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id='NgS5Cy5_ZLQF6mBGDOhVIA7GfRn5bRxmnryffm-IuADk',
  ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
  config=Config(signature_version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'universityadmitpredictor-donotdelete-pr-pkdavbjvhsmouo'
object_key = 'Admission_Predict.csv'
body = cos_client.get_object(Bucket=bucket,Key=object_key)['Body']
# add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType( __iter__, body )
df = pd.read_csv(body)
df.head()
Analyse the data
df.head()
df.tail()
Drop Serial No. Column
df.drop("Serial No.",axis=1,inplace=True)
df.head()
Checking for Null values
df.isnull().sum()
```

# **Getting Information about dataframe**

df.info()

# **Statistical Summary of Dataframe**

df.describe()

#### To find correlation of columns

```
corr_matrix=df.corr()
corr_matrix
```

# Correlation matrix as a heatmap

```
fig = plt.figure(figsize=(12,8))
sns.heatmap(corr_matrix,annot=True)
plt.show()
```

#### **Data Visualization**

```
Univariant Analysis
sns.distplot(df["GRE Score"])
sns.distplot(df["TOEFL Score"])
sns.distplot(df["University Rating"])
sns.distplot(df["SOP"])
sns.distplot(df["LOR "])
sns.distplot(df["CGPA"])
sns.distplot(df["Research"])
sns.distplot(df["Chance of Admit "])
Bivariant Analysis
sns.relplot(data=df,x="GRE Score",y="Chance of Admit ",hue="Research")
plt.title("GRE Score vs Chance of Admit")
plt.show()
sns.relplot(data=df,x="TOEFL Score",y="Chance of Admit
",hue="Research",kind="line",ci=None)
plt.title("TOEFL vs Chance of Admit")
plt.show()
sns.relplot(data=df,x="CGPA",y="Chance of Admit ",hue="Research")
```

```
plt.show()
sns.relplot(data=df,x="SOP",y="Chance of Admit ",hue="Research",kind="line",ci=None)
plt.title("GRE Score vs Chance of Admit")
plt.show()
sns.relplot(data=df,x="LOR ",y="Chance of Admit ",hue="Research",kind="line",ci=None)
plt.title("GRE Score vs Chance of Admit")
plt.show()
sns.barplot(data=df,x="University Rating",y="Chance of Admit")
plt.show()
sns.barplot(data=df,x="University Rating",y="Chance of Admit")
plt.title("University Rating vs Chance of Admit")
plt.show()
df.hist(bins = 30, figsize = (20,20), color = 'blue')
```

# Importing the required Libraries for regression model

from sklearn.model\_selection import train\_test\_split from sklearn.linear\_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2\_score

# Splitting dataset into dependent and independent columns

```
x = df[["GRE Score","TOEFL Score","University Rating","SOP","LOR ","CGPA"]]
y = df["Chance of Admit "]
x.head()
y.head()
```

# Splitting dataset into training and testing data

```
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=1)
```

# **Multiple Linear Regression**

```
multiple_lin_reg = LinearRegression()
multiple_lin_reg.fit(x_train,y_train)
y_pred_mlr = multiple_lin_reg.predict(x_test)
r2_score_mlr = r2_score(y_test,y_pred_mlr)
print("Mutiple Linear Regression's Score = {:.3f}".format(r2_score_mlr))
```

#### **Random forest regression**

```
ran for reg = RandomForestRegressor(n estimators=100,random state=1)
ran_for_reg.fit(x_train,y_train)
y_pred_rfr = ran_for_reg.predict(x_test)
r2_score_rfr = r2_score(y_test,y_pred_rfr)
print("Random Forest Regression's Score = {:.3f}".format(r2_score_rfr))
Save the model
import pickle
pickle.dump(multiple_lin_reg,open("model.pkl","wb"))
!pip install ibm_watson_machine_learning
from ibm_watson_machine_learning import APIClient
wml credentails={
  "url": "https://us-south.ml.cloud.ibm.com",
  "apikey":"13S6-gvuJHw0EgY7HAmtl8ae5tQlGcbahHYBYAacEOQn"
}
client=APIClient(wml credentails)
def guid_from_space_name(client,space_name):
  space=client.spaces.get_details()
  return(next(item for item in space['resources'] if
item['entity']["name"]==space_name)['metadata']['id'])
space_uid=guid_from_space_name(client,'models')
print("Space UID = "+space uid)
client.set.default_space(space_uid)
client.software specifications.list()
software_spec_uid=client.software_specifications.get_id_by_name('runtime-22.1-py3.9')
software_spec_uid
model_details=client.repository.store_model(model=multiple_lin_reg,meta_props={
  client.repository.ModelMetaNames.NAME:"Multiple_Linear_Regression",
  client.repository.ModelMetaNames.TYPE:'scikit-learn 1.0',
  client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_spec_uid,
},
training_data=x_train,
training_target=y_train
```

model\_details

# **GitHub Link:**

https://github.com/IBM-EPBL/IBM-Project-10758-1659202034

# **Project Demo Video Link:**

 $\underline{https://drive.google.com/file/d/1wkEg34DJyhkRcSDFr3vzNoMRnZocU93z/view?usp=s}\\ \underline{hare\ link}$ 

 $https://www.youtube.com/embed/J1seZumhS\_Y$ 

# **Output Screenshots:**

**Index Page** 



# Chance Page



# No Chance Page

