

Bachelorarbeit

Entwicklung des Avionik-Thermal-Managements einer Experimentalrakete

Viktor Hoffmann

Universität Stuttgart

Institut für Thermodynamik der Luft- und Raumfahrt (ITLR)

Direktor: Prof. Dr.-Ing. habil. Bernhard Weigand

Kurzzusammenfassung

Eine Leistungsstarke Avionik ist ein Grundstein einer jeden erfolgreichen Forschungsrakete. Ob es hierbei um redundante Flugcomputer, Telekommunikation über weite Distanzen oder Datenerfassung während dem Flug geht, Hochleistungsmikroelektronik ist immer gefragt. Diese Elektronik, die zudem noch extrem kompakt sein muss und extremen Bedingungen ausgesetzt ist, kommt jedoch mit einer substantiellen Abwärme, an welcher Stelle eine Thermal Management Lösung entwickelt werden muss, um nicht die Lebensdauer der Komponenten oder sogar die komplette Mission zu gefährden.

Abstract

Inhaltsverzeichnis

K	urzzı	usammenrassung	1	
Tabellenverzeichnis Abbildungsverzeichnis				
				Sy
1	Ein	führung	1	
	1.1	Darstellung des Problems	1	
	1.2	Zielsetzung der Arbeit	1	
	1.3	Lösungsweg	1	
2	Grundlagen			
	2.1	Sensible Wärmespeicher	2	
	2.2	Latente Wärmespeicher	2	
	2.3	Radiator	2	
	2.4	Hybrid Lösung	2	
3	Methodik			
	3.1	PCM	3	
	3.2	Radiator	5	
	3.3	PCM Radiator Hybrid	6	
4	Erg	gebnisse	9	
5	Dis	cussion and conclusions	10	
	5.1	Discussion about including pictures	10	
6	Zus	ammenfassung und Ausblick	11	
$\mathbf{A}_{]}$	Appendix			

Tabellenverzeichnis

Abbildungsverzeichnis

3.1	PCM Auslegung	4
3.2	Radiator Leistung nach Fläche und Temperatur	-
3.3	PCM Wärmestrom während Flug	7

Symbolverzeichnis

Lateinische Symbole

 B_M - mass transfer number

Griechische Symbole

 α W/($m^2 K$) heat transfer coefficient

Indizes

0 initial condition

Hochgestellte Indizes

ct continuum regime

Abkürzungen

PCM Phase Change Material

BLAST Biliquid launch and Space Technology

FCC Flight Control Computer

 \mathbf{HyEnD} Hybrid Engine Development

1 Einführung

Für die im Rahmen des aktuellen Projekts, Biliquid launch and Space Technology (BLAST) der Studentischen Hochschulgruppe Hybrid Engine Development (HyEnD), neu entwickelte Avionik soll eine Therman-Management-Lösung entwickelt werden.

1.1 Darstellung des Problems

- -Neues Projekt mit eigener Avionik
- -Leistungsstarke Avionik mit Redundantem Flight Control Computer (FCC)
- -Schwierige Umweltbedingungen
- -(Pad ist nicht teil des Problems)

Beim Projekt BLAST der studentischen Hochschulgruppe HyEnD wird eine neue Avionik mit einem selbst entwickelten FCC gebaut. Durch

1.2 Zielsetzung der Arbeit

- -Entwicklung eines Thermal-Managements für die komplette Flugdauer
- -Ausfallsicher
- -Leichtbau
- -Wiederverwendbar

1.3 Lösungsweg

- -vorauslegung
- -simulation

[1-11]

 T_c soll auf 85 °C bleiben -> Beispielrechnung der Ausfallwahrscheinlichkeit für STM32?

aus flugmaxx krieg ich dauer und stärke der beschleunigung -> Ansys, transient Rest des Fluges ist Mikrogravitation -> Ansys, transient

2 Grundlagen

2.1 Sensible Wärmespeicher

Unter sensibler Wärmespeicherung versteht man Systeme bei denen die Aufnahme und Abgabe von Wärme einen direkten Einfluss auf die Temperatur hat. Bei einem System mit hoher spezifischer Wärmekapazität kann somit viel Wärme mit einer kleinen Temperaturerhöhung aufgenommen werden und umgekehrt sieht man bei einem System mit geringer spezifischer Wärmekapazität bei der selben Wärmezufuhr einen größeren Temperaturanstieg.

Diese Thermodynamische Eigenschaft lässt sich somit leicht nutzen, um für einen begrenzten Zeitraum die Temperatur gewissermaßen zu dämpfen. Da in der Realität Elektronik keine Wärme produzieren kann, ohne auch Masse im System zu haben, hat jede Avionik inherent eine sogenannte Thermale Masse, welche sich bei Nutzung der sensiblen Wärme leicht durch hinzufügen von Heatsinks erhöhen lässt.

Der eine, und auch größte, Nachteil von dieser Art an Thermal-Management ist, dass die Masse des Systems proportional zur Wärmekapazität steigt.

2.2 Latente Wärmespeicher

2.3 Radiator

2.4 Hybrid Lösung

3 Methodik

3.1 PCM

Hier Steht was zu Phase Change Material (PCM)

Methodik 3.1 PCM

(a) PCM Masse

(b) PCM Wärmeaufnahme

Abbildung 3.1: PCM Auslegung

Methodik 3.2 Radiator

3.2 Radiator

Hier steht was zu Radiatoren.

Abbildung 3.2: Radiator Leistung nach Fläche und Temperatur

3.3 PCM Radiator Hybrid

Eine Hybridlösung wird auch in erwägung gezogen. Hierbei soll die Masse durch nutzung eines Radiators minimiert werden, wobei wegen aerodynamischer Aufheizung für kurze Zeit ein PCM gebraucht wird.

 $\dot{Q}_{\rm Radiator} \geq \dot{Q}_{\rm Umwelt} + \dot{Q}_{\rm Avionik}$ In diesem Fall reicht die Leistung des Radiators, um die Avionik auf Betriebstemperatur zu halten.

 $\dot{Q}_{\mathrm{Radiator}} < \dot{Q}_{\mathrm{Umwelt}} + \dot{Q}_{\mathrm{Avionik}}$ Hier reicht die Leistung des Radiators nicht mehr aus, resultierend schmilzt das PCM und nimmt somit überschüssige Wärme auf.

Abbildung 3.3: PCM Wärmestrom während Flug

4 Ergebnisse

Ein paar Ergebnisse . . .

5 Discussion and conclusions

5.1 Discussion about including pictures

6 Zusammenfassung und Ausblick

Beispielliteraturverweise:

- 1. Fachzeitschrift
- 2. Internetquelle
- 3. Buch
- 4. Vorlesungsskript

Anmerkung: Es gibt verschiedene Referenzierungsstile

Literaturverzeichnis

- [1] M.E. Abdelrahman, A.M.A. Soliman, M. Kassab, and A.A. Hawwash. Experimental and numerical investigations of an open-cell copper foam (occf)/phase change material (pcm) composite-based module for satellite avionics thermal management in a thermal vacuum chamber (tvc). *Journal of Energy Storage*, 75, 2024. 1
- [2] Z. Claudio, R. Giulia, M. Simone, H. Romain, S. Claude, P. Vincent, and Bertrand Truffart. Active and passive cooling technologies for thermal management of avionics in helicopters: Loop heat pipes and mini-vapor cycle systems. Thermal Science and Engineering Progress, 5:107–116, 2018.
- [3] David G. Gilmore. Spacecraft Thermal Control Handbook. The Aerospace Press, 2002.
- [4] J.Y. Ho, Y.S. See, K.G. Leong, and T.N. Wong. An experimental investigation of a pcm-based heat sink enhanced with a topology-optimized tree-like structure. Energy Conversion and Management, 245, 2021.
- [5] Peabody Hume. Thermal design for spaceflight. In Spacecraft Thermal Engineering Course, 2022.
- [6] Kaitlin Liles and Ruth Amundsen. NASA Passive Thermal Control Engineering Guidebook. National Aeronautics and Space Administration, 2023.
- [7] K.V. Pavia, M.B.H. Mantellim, and L.K. Slongo. Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket. *Aerospace Science and Technology*, 45:367–375, 2015.
- [8] I. Steven, A.A. Diego, and S. Greg. Development of a lightweight and low-cost 3d-printed aluminum and pcm panel for thermal management of cubesat applications. In 47th International Conference on Environmental Systems, 2017. Charleston, South Carolina.
- [9] STMicroelectronics. Guidelines for thermal management on stm32 applications. 2024.

- [10] Yu Xu, W. Jiale, and Li Tong. Experimental study on the heat transfer performance of a phase change material based pin-fin heat sink for heat dissipation in airborne equipment under hypergravity. *Journal of Energy Storage*, 52, 2022.
- [11] K. Yang. Ground operations, launch and ascent thermal analysis using thermal desktop. In *Thermal and Fluids Analysis Workshop*, 2015. NASA Goddard Space Flight Center, Silver Spring, MD. 1

Appendix

Appendix A: bla

Hier ist noch mehr Zeug

Appendix B: bla