

Table of Content Apa yang Akan Kita Pelajari Hari Ini?

- 1. Perceptron
- 2. Multilayer perceptron
- 3. Backpropagation

Brief History

History of ANN

- 1943: McCulloch and Pitts: First mathematic model of neuron
- 1958: Rosenblatt: Perceptron Single layer NN
- 1986: Rumelhart: Back Propagation algorithm
- 1995: Y. LeCun, Y. Bengio, et al.: Convolutional neural network
- 2006: G. E. Hinton, et al.: Deep belief nets.

Artificial Neural Network

- Artificial Neural Network (Jaringan saraf tiruan) terdiri dari kumpulan unit pemrosesan sederhana yang berkomunikasi dengan mengirimkan sinyal satu sama lain melalui sejumlah besar koneksi berbobot.
- Model yang terinspirasi oleh bagaimana neuron dalam otak manusia bekerja

Types of ANN

Types of ANN

- Feedforward neural network
- Recurrent neural network (RNN)
- Convolutional neural network (CNN)
- etc,

Biological motivation

- Neural Networks awalnya terinspirasi oleh tujuan pemodelan sistem saraf biologis.
- Unit komputasi dasar otak adalah neuron.
- Sekitar 86 miliar neuron dapat ditemukan di sistem saraf manusia

Perceptron

- Perceptron adalah pengklasifikasi linier (linear classifier).
- Frank Rosenblatt, seorang psikolog Amerika, mengusulkan model perceptron klasik pada tahun 1958

Perceptron

- Digunakan untuk mengklasifikasikan data input yang diberikan.
- The perceptron terdiri dari 4 bagian
 - Input values atau one input layer
 - Weights dan Bias
 - Net sum
 - Activation Function

Perceptron (how does it work?)

- Semua inputs x dikalikan dengan weights w
- Jumlahkan semua hasil perkalikan tersebut (kita sebut Weighted Sum)
- Mengaplikasikan activation function ke weighted sum

Input nodes Black box	
$X_1 \mid X_2 \mid X_3 \mid Y$	
	utput
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ode
1 1 0 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,
0 0 1 0	
0 1 0 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0 0 0 0 b = -0.4	

Multilayer perceptron

- Model ini terdiri dari tiga jenis layer input layer, hidden layer, output layer.
- Kecuali node input, setiap node adalah neuron yang menggunakan fungsi aktivasi nonlinier.
- MLP menggunakan backpropagation untuk training-nya.

General Structure of MLP

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Multilayer perceptron

Hidden nodes

$$O_k = \frac{1}{1 + e^{-\sum h_j w_{jk} + \theta_k}}$$

$$h_j = \frac{1}{1 + e^{-\sum x_i w_{ij} + \theta_j}}$$

Network Training

- Tujuan dari training
 - Mendapatkan weights yang membuat hampir semua sampel dalam training data dapat diklasifikasikan dengan benar
- Langkah-langkah
 - Inisialisasi weights w_{ij} dengan nilai acak(random)
 - Masukkan (feed) sample training X ke dalam jaringan satu persatu
 - Untuk setiap unit
 - Hitung output value **O** dengan mengaplikasikan activation function
 - Hitung error *E*
 - Update weights w_{ij} dan biases

Backpropagation Learning

Input vector X

Hi	dd	en	no	des
	-	• • • •		J. J.

Output nodes

X ₁	X ₂	X ₃	Υ
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

- Net Input $I_i = 0.2 + 0 + -0.5 0.4 = -0.7$
- Output $O_i = (1/(1+e^{0.7})=0.332)$
- Net Input $I_k = -0.3(0.332) (0.2)(0.525) + 0.1 = -0.105$
- Output $O_k = (1/(1+e^{0.105}) = 0.474$

Input vector X

Hide	net	nod	es
	-		

Output nodes

X ₁	X_2	X ₃	Υ
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

- delta_k=(0.474)(1-0.474)(1-0.474)=0.131
- $w_{jk} = -0.3 + (0.9)(0.1311)(0.332) = -0.261$
- Dan seterusnya...

Discussion on NN

- Keuntungan
 - Robust -berfungsi baik ketika training set mengandung error
 - Output bisa discrete, real-valued, atau vector
- Criticism
 - Waktu yang lama saat training
 - Sulit untuk dipahami
 - Tidak mudah memasukkan domain knowledge

MLP in Sklearn

Sklearn menyediakan class MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]

Hyperparameter	Description
hidden_layer_sizes	Jumlah hidden layer dan node-nya
activation	Activation function
max_iter	Jumlah iterasi

How to use it?

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#scaling
scaler = StandardScaler().fit(X train)
X train = scaler.transform(X train)
X test = scaler.transform(X test)
model=MLPClassifier(max iter=1000, random state=42, activation='logistic')
model.fit(X_train, y_train)
y pred = model.predict(X test)
print('Accuracy ',accuracy score(y test, y pred))
print('Precision ',precision_score(y_test, y_pred, average='macro'))
print('Recall ',recall_score(y_test, y_pred, average='macro'))
print('Confusion matrix ', confusion_matrix(y_test, y_pred))
plot confusion matrix(model, X test, y test, cmap=plt.cm.Blues)
plt.show()
```


Thank YOU

