Homework One: Problem Three

- 5 Points: Solve the following exercises and submit your answers in a pdf file using any formatting (+2 points for using LATEX formatting):
 - 1. What are the approximate absolute and relative errors in approximating π by each of the following quantities (**Absolute error** = approximate value true value and **Relative error** = (approximate value true value)/true value)?
 - (a) 3 Absolute error = $(3-\pi)$ = -0.1415926535897932384626433832795 Relative error = $(3-\pi)/pi$ = -0.04507034144862798538669741976491
 - (b) 3.14 Absolute error = $(3.14-\pi)$ = -0.0015926535897932384626433832795 Relative error = $(3.14-\pi)/pi$ = -5.0695738289729137140996602060981e-4
 - (c) 22/7 Absolute error = $((22/7)-\pi) = 0.00126448926734961868021375957764$ Relative error = $((22/7)-\pi)/pi = 4.0249943477068197584079834151885e-4$
 - 2. Consider the problem of evaluating the function sin(x), in particular, the propagated data error, i.e., the error in the function value due to a perturbation h in the argument x.
 - (a) Estimate the absolute error in evaluating sin(x)
 Absolute error = DON'T UNDERSTAND HOW TO FIGURE
 THIS OUT
 - (b) Estimate the relative error in evaluating sin(x)

 Relative error = DON'T UNDERSTAND HOW TO FIGURE

 THIS OUT
 - (c) Estimate the condition number for this problem. Condition number = $(\sin(x+h)-\sin(x)/\sin(x))/((x+h)-x/x)$
 - (d) For what values of the argument x is this problem highly sensitive? If you look at the graph for $\sin(x)$ you find curve peaks at ..., 2π , $-\pi$, 0, π , 2π , ... and this is where it's highly sensitive as the derivative changes drastically ...