Astrophysical Sources of Gravitational Waves

Reed Clasey Essick KICP

5 October 2019 Compton Lectures University of Chicago

Gravity (a review)

Newton says

- Objects that are in motion stay in motion unless acted upon by an external force
 - Newton's First Law
- All objects fall at the same rate, regardless of their mass
 - Principle of Equivalence
- There is an universal attractive Force of Gravity between all objects that is proportional to their mass.

Einstein says

- Objects that are in motion stay in motion unless acted upon by an external force
 - Geodesic Motion
- All objects follow the same geodesics
 - Principle of Equivalence
- Gravity is described by the Geometry of Space-time, which is determined by the distribution of mass and energy in the universe
- No information can travel faster than the speed of light

In General Relativity,

Space tells matter how to move and matter tells space how to curve

Gravitational waves (wiggles in space-time) are caused by changes in the motion of matter (accelerations)

Fundamentally, *Gravitational*Waves are traveling wiggles in
the Gravitational potential just
like Electromagnetic Waves (light)
are traveling wiggles in the
Electromagnetic potential.

- Radiation carrying information about gravitating systems
- Travel at the speed of light
- Create extremely tiny changes in length between objects

- Radiation carrying information about gravitating systems
- Travel at the speed of light
- Create extremely tiny changes in length between objects

- Radiation carrying information about gravitating systems
- Travel at the speed of light
- Create extremely tiny changes in length between objects

- Radiation carrying information about gravitating systems
- Travel at the speed of light
- Create extremely tiny changes in length between objects

- Radiation carrying information about gravitating systems
- Travel at the speed of light
- Create extremely tiny changes in length between objects

Accelerating mass or energy create gravitational waves

- Accelerating mass or energy create gravitational waves
- Symmetries limit the type of radiation
 - Mass/Energy is conserved → no monopole radiation
 - Momentum is conserved → no dipole radiation
 - Quadrupolar radiation is the leading-order term

spin period of 33ms slowing down by 38ns/day

must be a perfect sphere to ~ 1 part in 10,000

Why are Astrophysical Objects Needed?

Dimensional analysis: $h \sim \frac{G}{c^2} \left(\frac{m}{D}\right) \left(\frac{v}{c}\right)^n$

Why are Astrophysical Objects Needed?

Dimensional analysis:

$$h \sim \frac{G}{c^2} \left(\frac{m}{D}\right) \left(\frac{v}{c}\right)^n$$
$$\sim 5 \times 10^{-22} \left(\frac{m}{M_{\odot}}\right) \left(\frac{100 \,\mathrm{Mpc}}{D}\right) \left(\frac{v}{c}\right)^n$$

Why are Astrophysical Objects Needed?

Dimensional analysis:

$$h \sim \frac{G}{c^2} \left(\frac{m}{D}\right) \left(\frac{v}{c}\right)^n$$
$$\sim 5 \times 10^{-22} \left(\frac{m}{M_{\odot}}\right) \left(\frac{100 \text{ Mpc}}{D}\right) \left(\frac{v}{c}\right)^n$$

Why do they need to be compact?

Most stars and stellar remnants touch before they are moving at interesting speeds!

$$\left(\frac{v}{c}\right)^2 \sim \frac{Gm}{c^2R}$$

Stellar Evolution

Neutron Stars and **Black Holes** are the end states of massive stars

Binaries containing Compact Objects form through

isolated evolution

Binaries containing Compact Objects form through

Why are CBCs such good sources?

- Why are CBCs such good sources?
- What do CBC signals "sound like"?

Bursts

• Core-Collapse SuperNova (CCSN)

Bursts

- Core-Collapse SuperNova (CCSN)
- General "other stuff"
 - Accretion disk instabilities
 - Pulsar glitches
 - Cosmic strings
 - o ..

Bursts

- Core-Collapse SuperNova (CCSN)
- General "other stuff"
 - Accretion disk instabilities
 - Pulsar glitches
 - Cosmic strings
 - o ..

Continuous Sources

must be a perfect sphere to ~ 1 part in 10,000

Bursts

- Core-Collapse SuperNova (CCSN)
- General "other stuff"
 - Accretion disk instabilities
 - Pulsar glitches
 - Cosmic strings
 - 0 ..

Continuous Sources

Stochastic Sources

must be a perfect sphere to ~ 1 part in 10,000

Next time

Detecting Gravitational Waves on Earth

- Laser interferometers
- Noise Sources
- Other detection techniques

Suggested Reading

- Shallow Water Analogue of the Standing Accretion Shock Instability. PRL 108, 051103 (2012).
- A Carillon of Black Holes. arXiv:1803.08090 (2018).

