

COMS 4030A/7047A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

Neural Networks (Representation)

Non-Linear Classification

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

House type prediction $(x_1, x_2 \dots x_{100})$ house/townhouse

Image classification

cat vs no cat

Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

The "One Learning Algorithm" Hypothesis

Auditory cortex learns to see

[Roe et al., 1992]

Somatosensory cortex learns to see

[Metin & Frost, 1989]

Biology of a Neuron

Neuron Model: Logistic Unit

Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

Neural Network

Neural Network

 $a_i^{(j)} =$ "activation" of unit i in layer j

 $h_{m{ heta}^{(3)}}
ightharpoonup h_{m{ heta}}(\mathbf{x}) \qquad \Theta^{(j)} = ext{weight matrix controlling function}$ mapping from layer j to layer j + 1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_i units in layer j and s_{i+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{i+1} imes (s_i \! + \! 1)$

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Vectorization

$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right) = g\left(z_{1}^{(2)}\right)$$

$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right) = g\left(z_{2}^{(2)}\right)$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right) = g\left(z_{3}^{(2)}\right)$$

$$h_{\Theta}(\mathbf{x}) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}\right) = g\left(z_{1}^{(3)}\right)$$

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$

$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$

$$\text{Add } a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)}\mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

Multiple Output Units: One-vs-Rest

We want:

$$h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

Multiple Output Units: One-vs-Rest

We want:

We want:
$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

- Given $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Must convert labels to 1-of-K representation

– e.g.,
$$\mathbf{y}_i = \left[egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right]$$
 when motorcycle, $\mathbf{y}_i = \left[egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right]$ when car, etc.

Neural Network Classification

Given:

$$\begin{aligned} &\{(\mathbf{x}_1,y_1),\ (\mathbf{x}_2,y_2),\ ...,\ (\mathbf{x}_n,y_n)\}\\ &\mathbf{s} \in \mathbb{N}^{+L} \text{ contains \# nodes at each layer}\\ &-s_\theta = d \text{ (\# features)} \end{aligned}$$

Binary classification

$$y = 0 \text{ or } 1$$

1 output unit $(s_{L-1}=1)$

Multi-class classification (K classes)

$$\mathbf{y} \in \mathbb{R}^K \quad \text{e.g.} \left[\begin{smallmatrix} 1 \\ 0 \\ 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 1 \end{smallmatrix} \right]$$
 pedestrian car motorcycle truck

 K output units $(\mathit{s_{L-1}} = \mathit{K})$

Understanding Representations

Representing Boolean Functions

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2)$$

x_1	x_{2}	$\mathrm{h}_{\Theta}(\mathbf{x})$
0	0	<i>g</i> (-30) ≈ 0
0	1	<i>g</i> (-10) ≈ 0
1	0	<i>g</i> (-10) ≈ 0
1	1	$g(10) \approx 1$

Representing Boolean Functions

Layering Representations

Each image is "unrolled" into a vector x of pixel intensities

Layering Representations

Visualization of Hidden Layer