Conteúdos da Matéria Equações Diferencias Ordinárias

Lucas Moschen Fundação Getulio Vargas

9 de Março de 2020

Resumo

Neste documento irei constar os principais temas cobertos pela matéria, que tem foco em um cálculo de edos, sem grandes definições precisas e estudo do comportamento qualitativo. Qualquer correção nesse documento pode ser sugerida pelo leitor através de um *pull request*. Para iniciar, irei listar os temas até agora cobertos e também inserirei um pequeno resumo sobre o determinado tópico.

Conteúdo

1	Equações Diferenciais Lineares de Primeira Ordem	2
	1.1 Equações de Bernoulli	2
2	Equações com Variáveis Separáveis	2
3	Equações Exatas 3.1 Fator de Integração	2 3
4	Modelos da Dinâmica de uma População	3
5	Sistema Autônomo	3
6	Modelos das Ciências Naturais	3

1 Equações Diferenciais Lineares de Primeira Ordem

Formato: $\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$. Observe a linearidade de y e que a sua derivada de maior ordem é a primeira. Para resolver esse exemplo, usamos oo fator de integração $u(x) = e^{\int p(x)dx}$ e multiplicamos em ambos os lados. Observe que escolhemos ele, porque queremos $(y \cdot u)' = y' \cdot u + y \cdot u' = u \cdot q$ e $u' = u \cdot p$. A partir disso, obstemos que $y(x)u(x) = \int u(x)q(x)dx$.

1.1 Equações de Bernoulli

Formato: $y' + p(x)y = q(x)y^n$. Neste caso temos que o expoente de y é de ordem n. Para resolver esse problema, supomos que $y \neq 0$ e fazemos uma transformação de variável $z(x) = [y(x)]^{1-n}$, $\forall x$. Essa transformação vai noos permitir obter a equação em um formato desejado. Para ver isso, primeiro façamos $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x} = (1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$, logo, substituindo os valores, teremos que $\frac{1}{1-n}y^nz' + p(x)zy^n = q(x)y^n \implies z' + (1-n)p(x)z = q(x)$ e resolvemos pelo formato anterior.

2 Equações com Variáveis Separáveis

Formato: $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) = \phi(x)\psi(y)$, isto é, a derivada pode ser escrita como um produto de uma função que só depende de x por outra que só depende de y. Nesse caso, usamos a reescrita diferencial para poder escrever isso da seguinte forma: $\int \frac{\mathrm{d}y}{\psi(y)} = \int \phi(x) dx$. Isso pode ser extendido quando a função pode ser escrita como uma divisão de funções desse tipo, bastando vê-la como um produto.

3 Equações Exatas

Formato: Seja $\frac{\mathrm{d}dy}{\mathrm{d}dx} = f(x,y) = -\frac{M(x,y)}{N(x,y)}$ que pode ser reescrita da forma M(x,y)dx + N(x,y)dy = 0. Ela é caracterizada como **exata** se $\exists g(x,y)$, tal que dg = Mdx + Ndy, onde dg é o diferencial de g. Isto é, $\frac{\partial g}{\partial x} = M$ e $\frac{\partial g}{\partial y} = N$. Nesse caso, podemos provar pelo teorema de Clairaut-Schwars que $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$ (*).

3.1 Fator de Integração

Suponha que a equação M(x,y)dx + N(x,y)dy = 0 seja não exata. Nesse caso, a ideia é encontrar uma função u que ao multiplicar a equação, obtenhase a hipótese do teorema de Clairaut-Schwars, como mencionado acima (*).

- 4 Modelos da Dinâmica de uma População
- 5 Sistema Autônomo
- 6 Modelos das Ciências Naturais