

Prof. Dr. Sebastian Wild

Outline

8 Randomized Complexity

- 8.1 Randomized Complexity Classes
- 8.2 Pseudorandom Generators
- 8.3 Derandomization of BPP?
- 8.4 Nisan-Wigderson Pseudorandom Generator
- 8.5 Summary

The Power of Randomness

We've seen examples where randomized algorithms are provably more powerful . . . but how general are such improvements?

Before we consider algorithmic design techniques, we will consider the theoretical power of randomization:

Does randomization extend the range of problems solvable by polytime algorithms?

→ back to *decision* problems.

8.1 Randomized Complexity Classes

Randomization for Decision Problems

- ► Recall: P and NP consider decision problems only
- \rightsquigarrow equivalently: languages $L \subseteq \Sigma^*$

Can make some simplifications for algorithms:

- ▶ Only 3 sensible output values: 0, 1, ?
- ► Unless specified otherwise, allow unlimited #random bits, i. e., $random_A(x) = time_A(x)$ (Can't read more than one random bit per step)

Randomized Complexity Classes

Definition 8.1 (ZPP)

ZPP ($\underline{zero-error\ probabilistic\ polytime}$) is the class of all languages L with a polytime Las Vegas algorithm A, i. e.,

- (a) $\exists c : Time_A(n) = O(n^c) \text{ as } n \to \infty$ (In particular: always terminate!)
- **(b)** $\mathbb{P}[A(x) = [x \in L]] \ge \frac{1}{2}$
- (c) $A(x) \neq [x \in L] \text{ implies } A(x) = ?$

Definition 8.2 (BPP)

BPP ($\underline{bounded\text{-}error\ probabilistic\ polytime}$) is the class of languages L with a polytime **bounded-error Monte Carlo** algorithm A, i. e.,

- (a) $\exists c : Time_A(n) = O(n^c) \text{ as } n \to \infty$
- **(b)** $\exists \varepsilon > 0$: $\mathbb{P}[A(x) = [x \in L]] \ge \frac{1}{2} + \varepsilon$

Definition 8.3 (PP)

PP (*probabilistic polytime*) is the class of languages L with a polytime **unbounded-error Monte Carlo** algorithm: (a) as above (b) $\mathbb{P}[A(x) = [x \in L]] > \frac{1}{2}$.

Error Bounds

Remark 8.4 (Success Probability)

From the point of view of complexity classes, the success probability bounds are flexible:

- ▶ BPP only requires success probability $\frac{1}{2} + \varepsilon$, but using *Majority Voting*, we can also obtain any fixed success probability $\delta \in (\frac{1}{2}, 1)$.
- ► Similarly for ZPP, we can use probability amplification on Las Vegas algorithms
- → Unless otherwise stated,

for BPP and ZPP algorithms
$$A$$
, require $\mathbb{P}[A(x) = [x \in L]] \ge \frac{2}{3}$

But recall: this is *not* true for **unbounded** errors and class PP.

In fact, we have the following result:

Theorem 8.5 (PP can simulate nondeterminism)

 $NP \cup co-NP \subseteq PP$.

→ Useful algorithms must avoid unbounded errors.

PP can simulate nondeterminism [1]

Proof (Theorem 8.5):

PP can simulate nondeterminism [2]

Proof (Theorem 8.5):

One-Sided Errors

In many cases, errors of MC algorithm are only *one-sided*.

Example: (simplistic) randomized algorithm for SAT:

Guess assignment, output [ϕ satisfied].

(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ϕ always yield 0.

... could this help?

Definition 8.6 (One-sided error Monte Carlo algorithms)

A randomized algorithm *A* for language *L* is a *one-sided-error Monte-Carlo (OSE-MC) algorithm* if we have

- (a) $\mathbb{P}[A(x) = 1] \ge \frac{1}{2}$ for all $x \in L$, and
- **(b)** $\mathbb{P}[A(x) = 0] = 1 \text{ for all } x \notin L.$

 \rightarrow OSE-MC: A(x) = 1 must always be correct; A(x) = 0 may be a lie

One-Sided Error Classes

Definition 8.7 (RP, co-RP)

The classes RP and co-RP are the sets of all languages L with a polytime OSE-MC algorithm for L resp. \overline{L} .

Theorem 8.8 (Complementation feasible → errors avoidable)

 $RP \cap co-RP = ZPP$.

Proof:

See exercises.

Note the similarity to the wide open problem $NP \cap co-NP \stackrel{?}{=} P$.

For the latter, the common belief is $NP \cap co-NP \supseteq P$, in sharp contrast to the randomized classes.

8.2 Pseudorandom Generators

Derandomization

- ► Suppose we have a BPP algorithm *A*, i. e., a polytime TSE-MC algorithm
- \rightsquigarrow *Random*_A(n) bounded
- There are at most $2^{Random_A(n)}$ different random-bit inputs ρ and hence at most so many different computations for A on inputs $x \in \Sigma^n$
- ► The *derandomization* of *A* is a deterministic algorithm that simply simulates all these computations one after the other (and outputs the majority).
- ▶ In general, the exponential blowup makes this uninteresting.
- \log_2 But: If $Random_A(n) \le c \cdot \lg(n)$, the derandomization of A runs in polytime: $n^c \cdot Time_A(n)$
- **7** Typical randomized algorithms use $\Omega(n)$, not $O(\log n)$ random bits.

Pseudorandom Generators

• "Typical randomized algorithms use $\Omega(n)$, not $O(\log n)$ random bits."

But how would an algorithm actually *know* whether what we give it is truly random?

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}

https://xkcd.com/221/
```

- must somehow keep the random distribution . . . in general not clear what "sufficiently random" would mean
- → Breakthrough idea in TCS: *Pseudorandom Generators*
 - generate an exponential number of bits from a n given truly random bits such that no efficient algorithm can distinguish them from truly random

```
in a model to be specified
```

- ► **Key (Open!) Question:** Do they exist?!
- ► **Surprising answer:** We have good evidence in favor (!)

Excursion: Boolean Circuits Complexity

Definition 8.9 (Boolean circuit)

An *n*-input *Boolean circuit* is a connected DAG C = (V, E)

- ▶ with *n sources* (labeled $x_1, ..., x_n$)
- ightharpoonup a single *sink* c (the output)
- ▶ any number of *gates* (non-sink vertices) labeled with \land , \lor , or \neg .
- ▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)

The *value* of C, $C(x_1, ..., x_n)$ for a given variable assignment is computed inductively: We assign the variable value to sources and apply the Boolean function at gates to inputs.

The *size* of *C* is the number of vertices |C| = |V(C)|.

A circuit *C* computes function $f: \{0,1\}^n \to \{0,1\}$ if $\forall x \in \{0,1\}^n : C(x) = f(x)$.

Definition 8.10 (Circuit complexity)

The circuit complexity $\mathcal{H}(f)$ of a Boolean function $f: \{0,1\}^n \to \{0,1\}$ is the size of the smallest Boolean circuit C that computes f.

Excursion: Formula vs. Circuit

Parity function:
$$P_n(x_1, ..., x_n) = \bigoplus_{i=1}^n x_i = \sum_{i=1}^n x_i \mod 2$$
 (odd number of 1-bits)

- ▶ By associativity, $P_n(x_1,...,x_n) = P_{n-1}(x_1,...,x_{n-1}) \oplus x_n$
- ▶ also: $a \oplus b = (a \land \neg b) \lor (\neg a \land b)$
- \rightsquigarrow Can built a circuit for P_n using 5(n-1) gates
- ▶ Obvious boolean formula: (over basis $\{\land,\lor,\neg\}$) $P_n(x_1,\ldots,x_n) = (x_n \land \neg P_{n-1}(x_1,\ldots,x_{n-1})) \lor (\neg x_n \land P_{n-1}(x_1,\ldots,x_{n-1}))$
- \rightarrow 5 · 2^{*n*-1} operators
- ▶ optimal (assuming $n = 2^k$): $P_n(x_1, ..., x_n) = (P_{n/2}(x_1, ..., x_{n/2}) \cap \neg P_{n/2}(x_{n/2+1}, ..., x_n))$ $\vee (\neg P_{n/2}(x_1, ..., x_{n/2}) \cap P_{n/2}(x_{n/2+1}, ..., x_n))$
- $\rightsquigarrow \Theta(n^2)$ still much more than for circuits!

Excursion: Circuits Complexity Classes

```
Poly-size circuits: (somewhat analogous to P, but not quite...)
```

- ightharpoonup P_{/poly} = all functions computable by *polynomial-sized* circuits
- ► Can prove: $P \subseteq P_{/poly}$

Theorem 8.11 (TM to circuit)

```
For f \in TIME(T(n)) and input size n, we can compute in polytime a circuit C for f on inputs of size n of size |C| = O(T(n)^2). (Arora & Barak, Theorem 6.6)
```

- actually P ⊆ P/poly:

 allows some "cheating" that we use later
 circuits are non-uniform model of computation: different circuit for each n

 → has some weird properties in general (P/poly contains a version of halting problem . . .)
- ► Probably NP ⊈ P_{/poly} (unless polynomial hierarchy collapses)

Circuit Lower Bounds:

- ► Can show: almost all Boolean functions f have *exponential* C(f) (counting argument)
- ▶ But: *Very* hard to prove circuit lower bounds for concrete functions *f*
 - ▶ Showing $\mathcal{H}(f)$ exponential for any $f \in NP$ would imply $P \neq NP$

Excursion: Monte Carlo Circuits

We need a somewhat peculiar, weaker form of circuit complexity, where we assume that inputs $X \in \{0, 1\}^n$ are chosen *uniformly at random*.

Definition 8.12 (Average-case hardness)

The ρ -average-case hardness $\mathcal{H}^{\rho}_{avg}(f)$ of a Boolean function $f:\{0,1\}^n \to \{0,1\}$ is the largest size S, such that every circuit C with $|C| \leq S$ we have $\mathbb{P}\left[C(X) = f(X)\right] < \rho$. (Need circuits larger than $\mathcal{H}^{\rho}_{avg}(f)$ for confidence ρ .)

The average-case hardness then is $\mathcal{H}_{avg}(f) = \max \left\{ S : \mathcal{H}_{avg}^{\frac{1}{2} + \frac{1}{5}} \geq S \right\}$. (Allow larger circuits and worse confidence until f probabilistically computable)

Hypothesis 8.13 (Hard functions exist)

There exists a function $f \in NP$ with $\mathcal{H}_{avg}(f) = 2^{\Omega(n)}$.

- ▶ **Deep result** (that we skip): From existence of function with large $\mathcal{H}(f)$, can conclude existence of function with large $\mathcal{H}_{avg}(f)$. (see *Arora & Barak* Chapter 19)
- ▶ 3SAT probably has exponential $\mathcal{H}(f)$ (≈ ETH) (and other candidates exist)

Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)

A r.v. $R \in \{0,1\}^m$ is (S, ε) -pseudorandom if for every circuit C with $|C| \leq S$

$$\Big| \mathbb{P} \big[C(R) = 1 \big] - \mathbb{P} \big[C(U_m) \big] \Big| < \varepsilon \quad \text{where} \quad U_m \stackrel{\mathcal{D}}{=} \mathcal{U}(\{0,1\}^m)$$

Pseudorandom bits are indistinguishable from truly random for any small circuit.

think: fast-running algorithm

Definition 8.15 (Pseudorandom generator)

Let $S: \mathbb{N}_{\geq 1} \to \mathbb{N}_{\geq 1}$.

A function $G: \{0,1\}^* \to \{0,1\}^*$ computable in 2^n time ($G \in TIME(2^n)$) is an $S(\ell)$ -pseudorandom generator ($S(\ell)$ -PRG) if

- (a) |G(z)| = S(|z|) for every $z \in \{0, 1\}^*$
- **(b)** $\forall \ell \in \mathbb{N}_{\geq 1} : G(U_{\ell}) \text{ is } (S(\ell)^3, \frac{1}{10}) \text{-pseudorandom.}$

Seeding a generator with ℓ *truly random bits yields* $S(\ell)$ *pseudorandom bits.*

8.3 Derandomization of BPP?

Pseudorandom Generator for BPP Derandomization

The *Nisan-Wigderson construction* shows that the existence of any hard-on-average function implies a strong pseudorandom generator.

exponentially many pseudorandom bits(!)

Theorem 8.16 (Strong NW PRG)

Assume Hypothesis 8.13, i. e., $f \in TIME(2^{O(n)})$ exists with $\mathcal{H}_{avg}(f) \geq S$ with $S(n) = 2^{\delta n}$ for a constant $\delta > 0$.

Then there is an $\varepsilon = \varepsilon(\delta)$ such that there is a $2^{\varepsilon \ell}$ -pseudorandom generator.

(We will prove this over the course of the next subsection.)

BPP Derandomization

Theorem 8.17 (Hard-on-average function \rightarrow **BPP** = **P**)

Hypothesis 8.13 implies BPP = P.

Proof:

By Theorem 8.16, Hypothesis 8.13 implies a $S(\ell)$ -PRG $G: \{0,1\}^{\ell} \to \{0,1\}^{S(\ell)}$ with $S(\ell) = 2^{\varepsilon \ell}$.

Let $L \in \mathsf{BPP}$. $\leadsto \exists \mathsf{algorithm}\, A \, \mathsf{with}\, \mathit{Time}_A(n) \leq n^c \, (\mathsf{polytime}) \, \mathsf{and} \, \mathbb{P}_R[A(x,R) = L(x)] \geq \frac{2}{3};$ here $R \stackrel{\mathcal{D}}{=} \mathcal{U}(\{0,1\}^m) \, \mathsf{for} \, m = \mathit{Random}_A(n) \leq \mathit{Time}_A(n) \leq n^c.$

We now obtain a **deterministic** polytime algorithm *B* as follows:

- **1.** Replace R by G(Z) for $Z \stackrel{\mathcal{D}}{=} \mathcal{U}(\{0,1\}^{\ell})$ for $\ell = \ell(n) = \frac{c}{\varepsilon} \lg n$ so that $m \leq S(\ell) = 2^{\varepsilon \ell} = n^{c}$.
- **2.** Instead of this probabilistic TM, simulate A(x, G(z)) for **all** possible $z \in \{0, 1\}^{\ell}$
- **3.** Output the majority.

The trick here is that number of possible seeds z is $2^{\ell(n)} = n^c$, hence the running time remains polynomial and $B \in P!$

It remains to show that *B* accepts *L*.

(Intuition: *A* is too fast to notice a difference of more than $\frac{1}{10}$ between *R* and *G*(*Z*).)

BPP Derandomization [2]

Proof (cont.):

Formally, suppose that there is an infinite sequence of x's with $\mathbb{P}_Z[A(x, G(Z)) = L(x)] < \frac{2}{3} - \frac{1}{10} = 0.5\overline{6}$.

Then, we can build a *distinguisher* circuit C for the PRG: C simply computes the function $r \mapsto A(x, r)$, where x is hard-wired into the circuit C.

(Recall that $\mathbb{P}_R[A(x,R)=L(x)] \geq \frac{2}{3}$)

We don't have a circuit for A, just a TM; we can convert A using Theorem 8.11 to a circuit C with $|C| = O((Time_A(n))^2) = O(n^{2c})$.

For sufficiently large n, |C| is thus smaller than $S(\ell(n))^3 = n^{3c}$, so C is a valid distinguisher for the PRG. \P

Hence, the majority vote in B is correct (for all but a finite number of inputs, which can be tested in constant time). $\leadsto L \in P$.

Consequences

- → Since the existence of hard-on-average functions is rather likely,
 - ▶ it must be assumed that randomization alone does not solve NP-hard problems(!);
 - ▶ ... and it seems that there is some heavy lifting going on in this Nisan-Wigderson construction!

8.4 Nisan-Wigderson Pseudorandom Generator

Overview

▶ In this section, we will describe a conditional construction for pseudorandom generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound S(n) for our hard function f, the more pseudorandom bits we can generate from a fixed seed of ℓ truly random bits.

- ► Key construction is due to *Noam Nisan* and *Avi Wigderson* (2023 Turing Award)
 - many further refinements followed
- ► This is pretty cool stuff, but also complex. → Quantitative parts ∉ exam.

Theorem 8.18 (PRG from average-case hard function)

Let $S: \mathbb{N}_{\geq 1} \to \mathbb{N}_{\geq 1}$.

If there exists a function $f \in TIME(2^{O(n)})$ with $\mathcal{H}_{avg}(f)(n) \geq S(n)$ for all n, then there exists a $S(\delta \ell)^{\delta}$ -pseudorandom generator for some constant $\delta > 0$.

This general result is for a refined construction and works also for weaker assumptions.

We will show the version sufficient for Theorem 8.16; see Arora & Barak Remark 20.8

Nisan-Wigderson Generator

The idea of the *Nisan-Wigderson (NW) generator* is to feed many (partially overlapping) subsets $I \in \mathcal{I}$ of ℓ truly random input bits into a (hard) function $f : \{0,1\}^n \to \{0,1\}$

$$NW_{\mathfrak{I}}^{f}(Z) = f(Z_{I_{1}}) f(Z_{I_{2}}) \dots f(Z_{I_{m}})$$

where $Z \stackrel{\mathcal{D}}{=} \mathcal{U}(\{0,1\}^{\ell})$ is the random seed and z_I for $I = \{i_1, \ldots, i_n\}$. denotes $(z_{i_1}, \ldots, z_{i_n})$

A key component is a sufficiently large subset system I without too much overlap.

Definition 8.19 (Combinatorial Design)

For $\ell > n > d$, a family $\mathcal{I} = \{I_1, \dots, I_m\}$ of m subsets of $[\ell]$ is an (ℓ, n, d) -design if for all j and $k \neq j$, we have $|I_j| = n$ and $|I_j \cap I_k| \leq d$.

We will eventually want to use this with $m = 2^{\varepsilon \ell}$.

Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (ℓ, n, d) with $\ell > n > d$ and $\ell > 10n^2/d$ an (ℓ, n, d) -design \Im with $|\Im| = 2^{d/10}$ subsets of $[\ell]$ in time $2^{O(\ell)}$.

Proof:

A is a simple greedy strategy: We start with $\mathcal{I} = \emptyset$. For $m \in [2^{d/10}]$, iterate over all 2^{ℓ} subsets of $[\ell]$ and include into \mathcal{I} the first set I with $\max_{I \in \mathcal{I}} |I \cap I| \leq d$.

To show: *A* succeeds. We use the probabilistic method! If we create *I* by picking each element $x \in [\ell]$ independently with probability $2n/\ell$.

By Chernoff:

- $(1) \mathbb{P}[|I| \ge n] \ge 0.9$
- (2) $\mathbb{P}[|I \cap J| \ge d] \le \frac{1}{2} \cdot 2^{-d/10}$ for any $J \in \mathcal{I}$

Since $|\mathcal{I}| \leq 2^{d/10}$ and union bound on (2), $\mathbb{P}[\max_{J \in \mathcal{I}} |J \cap I| \geq d] \leq \frac{1}{2}$.

Hence, with probability at least $0.9 \cdot 0.5 = 0.45$, our random set I has intersection $\leq d$ with all old sets and $\geq n$ elements. Dropping random elements until |I| = n does not change that.

Hence, in each step we have probability ≥ 0.45 to succeed, so picking m random sets succeeds with probability $\geq 0.45^m > 0$, so some choice of sets \mathfrak{I} as claimed must exist.

Unpredictable Next Bits

The second ingredient shows the (nontrivial) fact that having an unpredictable next bit implies pseudorandomness.

Definition 8.21 (unpredictable)

Let $G : \{0,1\}^* \to \{0,1\}^*$ be a polytime-computable function with $|G(x)| = \ell(|x|)$ for all $x \in \{0,1\}^*$ (*stretch* ℓ).

G is *unpredictable* if for every polytime PTM *B*, we have for $X \stackrel{\mathcal{D}}{=} \mathcal{U}(\{0,1\}^n)$, Y = G(X) and $I \stackrel{\mathcal{D}}{=} [1..\ell(n)]$ and all *c* that

$$\mathbb{P}_{X,I} \left[B(1^n Y_1 \dots Y_{I-1}) = Y_I \right] \leq \frac{1}{2} + o(n^{-c})$$
give B time $n^{O(1)}$

(We require *B* to predict a randomly chosen bit *I*, so it must work for all positions.)

Circuit version: *G* is *unpredictable* if for every *i* and circuit *C* with $|C| \le 2\ell(n)$ we have

$$\mathbb{P}_{X,I}[C(Y_1 \dots Y_{i-1}) = Y_i] \leq \frac{1}{2} + o(n^{-c}).$$

Unpredictable → **Pseudorandom**

Theorem 8.22 (Yao's Theorem)

Let $\ell : \mathbb{N}_{\geq 1} \to \mathbb{N}_{\geq 1}$ be polytime computable and G as above with stretch ℓ .

If *G* is unpredictable, then *G* is an $\ell(n)$ -pseudorandom generator.

Proof (Sketch):

If G was not a PRG, there is an algorithm A that behaves substantively different on $G(\mathcal{U}(\{0,1\}^n))$ and $\mathcal{U}(\{0,1\})$ bits, ε more likely to output 1.

We construct PTM *B* from *A*:

Run A with Y[1..I-1] followed by truly random bits $Z[I..\ell(n)]$; if A outputs 1 output Z[I], otherwise 1-Z[I].

Careful analysis shows that *B* predicts Y_I correctly with prob. $\geq \frac{1}{2} + \varepsilon/\ell(n)$, so *G* is not unpredictable.

The proof can be adapted to the circuit version, too.

(For full details, see Arora & Barak, Theorem 9.11)

NW Pseudorandom Generator

Lemma 8.23 (NW Pseudorandom)

Let \Im be an (ℓ, n, d) -design with $m = |\Im| = 2^{d/10}$ and $f : \{0, 1\}^n \to \{0, 1\}$ a (hard) function with $\mathcal{H}_{avg}(f) > 2^{2d}$. Then $\mathrm{NW}_{\Im}^f \left(\mathcal{U}(\{0, 1\}^\ell)\right)$ is $(\frac{1}{10}\mathcal{H}_{avg}(f), \frac{1}{10})$ -pseudorandom.

Proof (Sketch):

By Yao's Theorem, we only need to show that NW is unpredictable; we will show that a predictor circuit C would lead to a small circuit B for f.

Let $S = \mathcal{H}_{avg}(f)$, i. e., on inputs of size n, f requires circuits larger than $S = S(n) > 2^{2d}$ to be computed with confidence $\geq \frac{1}{2} + \frac{1}{S}$.

Towards **refuting** the circuit-predictability of NW, suppose for some $i \in [m]$ there is a circuit C with $|C| \le m/2 < S/2$ and

$$\mathbb{P}_{Z}\big[C(R[1..i-1])=R[i]\big] \geq \frac{1}{2} + \frac{1}{10m} \quad \text{where} \quad R=\mathrm{NW}(Z) \quad \text{and} \quad Z \stackrel{\mathcal{D}}{=} \mathfrak{U}(\{0,1\}^{\ell}) \quad (*)$$

Recall that $R[j] = f(Z_{I_j})$; by renaming, let R[i] = f(Z[1..n]) and write $Z_1 = Z[1..n]$ and $Z_2 = Z(n..\ell]$.

$$\rightarrow$$
 $\mathbb{P}_{Z}[C(f(Z_{I_{1}})...f(Z_{I_{i-1}})) = f(Z_{1})] \ge \frac{1}{2} + \frac{1}{10m}$

NW Pseudorandom Generator [2]

Proof (cont):

Averaging Principle: For event A = A(X,Y) holds $\exists x : \mathbb{P}_Y[A(x,Y)] \ge \mathbb{P}_{X,Y}[A(X,Y)]$ (effectively the probabilistic method on event probabilities)

We apply this to event $C(f(Z_{I_1})...f(Z_{I_{i-1}})) = f(Z_1)$ and Z_2 . So there are $n - \ell$ bits z_2 , so that:

$$Arr$$
 $\mathbb{P}_{Z_1}[C(f(Z_{I_1})...f(Z_{I_{i-1}})) = f(Z_1)] \ge \frac{1}{2} + \frac{1}{10m}$ with $Z = Z_1 z_2$

Since \Im is an (ℓ, n, d) -design, each $f(Z_{I_j})$ has $\leq d$ bits from Z_1 ; the other n - d are hardcoded bits from Z_2 . So we can compute $f(Z_{I_j})$ with a circuit of size $d2^d$ (CNF formula suffices).

Putting all $i-1 \le m = 2^{d/10}$ of these circuits and C together, we obtain a circuit B of size $2^{d/10} \cdot d2^d + S/2 < S$, with

$$\mathbb{P}_{Z_1}[B(Z_1) = f(Z_1)] \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}} > \frac{1}{2} + \frac{1}{S}$$

This contradicts the fact that $S = \mathcal{H}_{avg}(f)$.

Picking Parameters

► Generic algorithm:

- ▶ Setup: $f \in TIME(2^{O(n)})$ and $S : \mathbb{N}_{\geq 1} \to \mathbb{N}_{\geq 1}$ with $\mathcal{H}_{avg}(f) \geq S$
- ▶ Input: Random seed $Z \in \{0,1\}^{\ell}$ (truly random bits)

Algorithm:
$$n := \max \left\{ n : \frac{10n^2}{\lg S(n)/10} < \ell \right\}$$

$$d := \lg S(n)/10$$

$$\Im := (\ell, n, d)\text{-design with } m = |\Im| = 2^{d/10} \text{ (algorithm from Lemma 8.20)}$$
Output $\mathrm{NW}_{\Im}^f(Z)$

 \rightarrow By Lemma 8.23, the output is $(S(n)/10, \frac{1}{10})$ pseudorandom.

► Parameters for Theorem 8.16

- ► Assuming Hypothesis 8.13: f exists with $\mathcal{H}_{avg}(f) \geq S$ with $S(n) = 2^{\delta n}$.
- ► The inequality becomes $\ell > \frac{10n^2}{\lg S(n)/10} = \frac{100n^2}{\delta n} = \frac{100}{\delta} n$, so $n \approx \frac{\delta}{100} \ell$.
- $d = \lg S(n)/10 = \delta n/10 = \frac{\delta^2}{1000} \ell$
- NW can generate $m = 2^{d/10} = 2^{\delta n/100} = 2^{(\frac{\delta}{100})^2 \ell}$ pseudorandom bits
- Pseudorandom against circuits of size $S(n)/10 = 2^{\delta^2\ell/100}/10$ $\underset{\ell\to\infty}{\gg}$ $2^{3(\frac{\delta}{100})^2\ell} = m^3$
- $\,\leadsto\,$ ${\rm NW}_{\rm J}^f$ is a $2^{\varepsilon\ell}\text{-pseudorandom generator}$ with $\varepsilon=(\delta/100)^2$

8.5 Summary

Overview Randomized Complexity Classes

Proven facts:

- ightharpoonup P \subseteq ZPP \subseteq RP \subseteq BPP \subseteq PP
- $ightharpoonup RP \subseteq NP$
- $ightharpoonup NP \cup co-NP \subseteq PP$
- ► $ZPP = RP \cap co-RP$
- ▶ $NP \subseteq co-RP \implies NP = ZPP$

Widely held belief (but not proven):

- ► P = BPP and hence P = ZPP = RP = BPP
- ▶ $BPP \subseteq NP \subseteq PP$

Consequences

- don't try to solve NP-hard problems exactly using randomization in polytime
- ▶ **do** seek *easier and faster* algorithms for problems in P! *They often exist!*
- do seek randomized algorithms for problems of unknown complexity status Some exist!