Computer Architecture-Homework VI 107 Fall semester, Chapter 10

10.14 Given x = 0101 and y = 1010 in two complement notation (i.e., x = 5, y = -6), compute the product $p = x \times y$ with Booth's algorithm.

Sol:						
A	Q	Q_{-1}	${\bf M}$	Count		
0000	1010	0	0101	4	Initial values	
0000	0101	0	0101	3	Arithmetic shift right	$\Leftarrow Q_0 Q_{-1} = 00$
1011	0101	0	0101	3	A=A-M	$\Leftarrow Q_0 Q_{-1} = 10$
1101	1010	1	0101	2	Arithmetic shift right	
0010	1010	1	0101	2	A=A+M	$\Leftarrow Q_0 Q_{-1} = 01$
0001	0101	0	0101	1	Arithmetic shift right	
1100	0101	0	0101	1	A=A-M	$\Leftarrow Q_0 Q_{-1} = 10$
1110	0010	1	0101	0	Arithmetic shift right	
1110	0010					

The product p is in the A and Q registers; i.e., 1110 0010 in two complement notation, -30 in decimal form.

10.20 Divide -14 by 13 in binary twos complement notation, using 5-bit words. Use the algorithm described in Section 10.3.

۲	Sol:				
	A	Q	\mathbf{M}	Count	
-	11111	10010	01101	5	Initial values
-	11111	0010 <u>0</u>	01101	5	Shift left
	01100	00100	01101	5	A=A+M
	11111	$0010\underline{0}$	01101	4	A=A-M (Restore)
-	11110	010 <u>00</u>	01101	4	Shift left
	01011	010 <u>00</u>	01101	4	A=A+M
	11110	010 <u>00</u>	01101	3	A=A-M (Restore)
-	11100	10 <u>000</u>	01101	3	Shift left
	01001	10000	01101	3	A=A+M
	11100	10 <u>000</u>	01101	2	A=A-M (Restore)
	11001	0 <u>0000</u>	01101	2	Shift left
	00110	0 <u>0000</u>	01101	2	A=A+M
	11001	0 <u>0000</u>	01101	1	A=A-M (Restore)
-	10010	00000	01101	1	Shift left
	11111	00000	01101	1	A=A+M
	11111	<u>00001</u>	01101	0	Set $Q_0 = 1$
	11111	11111	1 .		

The remainder is in the A register; i.e., 11111 in two complement notation, -1 in decimal form. Since the dividend and the divisor have different signs, the quotient is the two complement (negation) of the value in the Q register; i.e., 11111 in two complement notation, -1 in decimal form.