JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

CONTINUOUS ASSESSMENT TEST 2019/2020

STA 2408: REGRESSION MODELLING CAT

INSTRUCTIONS TO CANDIDATES:

- * Answer question all the questions
- * Be neat and show all your workings

U. Differentiate between parametric and non parametric regression

[2 marks]

- 2. Define what is meant by a spline and illustrate using two examples. Show that splines are linear smoothers.
- 3. Draw a well labelled diagram of a neural network with two hidden layers and X1; X2 and X3 as the input variables.
- 4. Define stochastic and deterministic designs under Kernel regression estimation stating their mean functions.
- 5. K-NN is a weighted average in a varying neighborhood (defined through those X variables which are among the K nearest neighbors of X in Euclidean distance (linear real distance)). Let $(X_i, Y_i)_{i=1}^5$ be (1, 5), (7, 12), (3, 1), (2, 0), (5, 4) Compute (K-NN estimate) $\hat{m}_k(x)$ (i.e) for x = 4 and k = 3.
- X6. Show that a linear regression estimator is a special case of non parametric estimator.

7. Given the data

X	20`	30	15	(25)	28	
Y	45.6	35.3	40.3	20.0	43.2	

where X and Y are predictor and response variables, respectively. Using a rectangular Kernel function and 3-nearest neighbour (K-NN) find the estimate of

i) Density function of X at point x=29

[3 marks]

ii) regression function at point x=29

[3 marks]

8. There is a functional relationship between the mass density p of air and the altitude h above the sea level.

Altitude above the sea level, h-(km)	0.32	0.64	1.28	1.60
Mass Density, $\rho(kg/m^3)$	1.15	1.10	1.05	0.95

In the regression model $\rho = k_1 e^{-k_2 h}$, the constant k_2 is found as $k_2 = 0.1315$. assuming that the mass density of air at the top of the atmosphere is $\frac{1}{1000^{th}}$ of the mass density of air at the sea level.

Calculate the altitude in kilometers of the top of the atmosphere.

[8 marks]

0.000208 = 02030

- 1. Differentiate between the following models
 - (a) Linear and non-linear models

[2 marks]

(b) Parametric and non-parametric models

2 marks

- 2. For an exponential model $y = \gamma e^{\zeta x}$ that is best fit to the data $(x_1, y_1), ..., (x_n, y_n)$ derive a non-linear equation that can be used to estimate the value ζ . [5 marks]
- 3. Empirical results have shown that the rate of gas flow from a container is proportional to some power of the nozzle pressure. Below is given the flow rate, in cm^3 per second as a function of pressure.

Flowr mate E/ 3/						
Flow rate, $F(cm^3/sec)$	88	134	135	148	172	240
Pressure, P (psi)	15	22	26	28	52	60

The rate of gas flow is related to the nozzle pressure via the regression model $F = \alpha e^{P\beta}$. By transforming the above data, find

(a) The value of the regression parameters α and β

[6 marks]

(b) The rate of gas flow if the nozzle pressure is increased to 80 psi

2 marks

4. The following data contains measurements of yield from an experiment done at six different temperature levels.

Temperature (T)	Yield (Y)
5	6.26
10	4.24
15	3.88
20	2.26
25	1.44
30	0.60

If the Yield behaves as a second order polynomial function of temperature fit the above data to the model $Y = a_0 + a_1T + a_2T^2$

[7 marks]

5. There exists a functional relationship between the mass density ρ of air and the altitude h above the sea level. A sample data of the two variables is given below

Altitude about 1 1 1/1				
Altitude above sea level, h(km)	0.32	0.64	1.28	1.60
Mass Density, $\rho (kg/m^3)$	1.15	1.10	1.05	0.95

The functional relationship can be expressed using the regression model $\rho = k_1 e^{-k_2 h}$, where the constant k_2 is found as $k_2 = 0.1315$. Assuming that the mass density of air at the top of the atmosphere is $1/1000^{\rm th}$ of the mass density of air at sea level find the altitude in kilometers of the top of the atmosphere. [6 marks]

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

CONTINUOUS ASSESSMENT TEST 2019/2020

STA 2408: REGRESSION MODELLING CAT

INSTRUCTIONS TO CANDIDATES:

* Answer question all the questions

* Be neat and show all your workings

1. Differentiate between parametric and non parametric regression [2 marks]

2. Define the term smoothing with respect to non parametric regression. [2 marks]

3 What is Kernel regression. Illustrate your explanation with examples. [4mks]

4. State the steps involved in fitting a Local Polynomial Regression Curve [3mks]

5. K-NN is a weighted average in a varying neighborhood(defined through those X variables which are among the K nearest neighbors of X in Euclidean distance (linear real distance)). Let $(X_i, Y_i)_{i=1}^5$ be (1, 5), (7, 12), (3, 1), (2, 0), (5, 4) Compute (K-NN estimate) $\hat{m}_k(x)$ (i.e) for x = 4 and k = 3.

Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time.

U	1	3	5	7	0
1.000	0.891	0.708	0.562	0.447	0 255
	1.000	1.000 0.891	1.000 0.891 0.708	1.000 0.891 0.708 0.562	0 1 3 5 7 1.000 0.891 0.708 0.562 0.447

In the regression model $\rho = Ae^{\lambda t}$, the constant λ is found as $k_2 = 0.11505$. Find the value of the constant term A, the half-life of Technium-99m, and the radiation intensity after 24 hours.

7. For a given sample (X_i, Y_i) , $i = 1, 2, \dots n$ from an NPR model $Y_i = m(X_i) + \epsilon_i$, where n = 140, $X_i \in [0.1894, 2.6855]$ and ϵ_i are i.i.d with $\mathrm{E}\epsilon_1^2 = \sigma^2$, we define $s_n(x) = \sum_{i=1}^n K_h(X_i - x)(X_i - x)^l$ and $T_{nl}(x) = \sum_{i=1}^n K_h(X_i - x)(X_i - x)^l Y_i$. We used the standard Gaussian kernel and h = 0.2420. Let $x_0 = 1$. We obtained $s_{nl}(x_0)$, l = 0, 1, 2 as 22.8038, -0.5758, 1.1189 respectively, and $T_{nl}(x_0)$, l = 0, 1 as 24.0092, 0.1631 respectively. Compute the local linear estimators of $m(x_0)$ and $m'(x_0)$ respectively.

1. Differentiate between the following models

(a) Linear and non-linear models

[2 marks]

(b) Parametric and non-parametric models

[2 marks

- 2. For an exponential model $y = \gamma e^{\zeta x}$ that is best fit to the data $(x_1, y_1), ..., (x_n, y_n)$ derive a non-linear equation that can be used to estimate the value ζ . [5 marks]
- 3. Empirical results have shown that the rate of gas flow from a container is proportional to some power of the nozzle pressure. Below is given the flow rate, in cm³ per second as a function of pressure.

Flour rate D (31						
Flow rate, $F(cm^3/\text{sec})$	88	134	135	148	172	240
Pressure, P (psi)	15	22	26	28	52	60

The rate of gas flow is related to the nozzle pressure via the regression model $F = \alpha e^{P\beta}$. By transforming the above data, find

(a) The value of the regression parameters α and β

[6 marks]

(b) The rate of gas flow if the nozzle pressure is increased to 80 psi

[2 marks]

4. The following data contains measurements of yield from an experiment done at six different temperature levels.

Temperature (T)	Yield (Y)
5	6.26
10	4.24
15	3.88
20	2.26
25	1.44
30	0.60

If the Yield behaves as a second order polynomial function of temperature fit the above data to the model $Y=a_0+a_1T+a_2T^2$

[7 marks]

5. There exists a functional relationship between the mass density ρ of air and the altitude h above the sea level. A sample data of the two variables is given below

Altitude above sea level, h(km)	0.32	0.64	1 28	1.60
		1.10		

The functional relationship can be expressed using the regression model $p = k_1 e^{-k_2 h}$, where the constant k_2 is found as $k_2 = 0.1315$. Assuming that the mass density of air at the top of the atmosphere is $1/1000^{th}$ of the mass density of air at sea level find the altitude in kilometers of the top of the atmosphere. [6 marks]