ML ASSIGNMENT-3

NAME: K.PAVANI

HT.NO:2203A51482

BATCH:12

1 Implement the K Nearest Neighbor Classification using Classified Manufacturing Dataset

Part 1 – Import the required Python, Pandas, Matplotlib, Seaborn packages

- 1. Load the classified dataset into a dataframe using pandas
- 2. Check the data types of each feature(column) in the dataset.
- 3. Generate a summary of the dataset for min, max, stddev, quartile vales for 25%,50%,75%,90%,
- 4. List the names of columns/features in the dataset
- 5. Scale the features using StandardScaler and transform the data

Part 2 – Model training and Fit the data to Model

- 1. Split the data generated from list created as X, Y is distributed using train test split function as X train, Y train, Y train, Y test
- $\hbox{\bf 2. Apply the KNN Classifier model of $\tt sklearn.neighbors import KNeighborsClassifier }$

package

3. Fit the data to the Classier Model using fit.

Part 3 – Evaluate the Classification Quality

- 1. Generate the confusion matrix to estimate the correction among features
- 2. Generate the classification report using classification report

PART-1:-

<pre>df.describe()</pre>											
	WTT	PTI	EQ₩	SBI	LQE	QMG	FDJ	PJF	HQE	NXJ	TARGET CLASS
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	0.949682	1.114303	0.834127	0.682099	1.032336	0.943534	0.963422	1.071960	1.158251	1.362725	0.50000
std	0.289635	0.257085	0.291554	0.229645	0.243413	0.256121	0.255118	0.288982	0.293738	0.204225	0.50025
min	0.174412	0.441398	0.170924	0.045027	0.315307	0.262389	0.295228	0.299476	0.365157	0.639693	0.00000
25%	0.742358	0.942071	0.615451	0.515010	0.870855	0.761064	0.784407	0.866306	0.934340	1.222623	0.00000
50%	0.940475	1.118486	0.813264	0.676835	1.035824	0.941502	0.945333	1.065500	1.165556	1.375368	0.50000
75%	1.163295	1.307904	1.028340	0.834317	1.198270	1.123060	1.134852	1.283156	1.383173	1.504832	1.00000
max	1.721779	1.833757	1.722725	1.634884	1.650050	1.666902	1.713342	1.785420	1.885690	1.893950	1.00000

Check the spread of the features

l=list(df.columns)
l[0:len(1)-2]

['WTT', 'PTI', 'EQW', 'SBI', 'LQE', 'QWG', 'FDJ', 'PJF', 'HQE']

Run a 'for' loop to draw boxlots of all the features for '0' and '1' TARGET CLASS

Instantiate a scaler standardizing estimator

```
[ ] from sklearn.preprocessing import StandardScaler scaler = StandardScaler()
```

Fit the features data only to this estimator (leaving the TARGET CLASS column) and transform

```
[ ] scaler.fit(df.drop('TARGET CLASS',axis=1))
    scaled_features = scaler.transform(df.drop('TARGET CLASS',axis=1))
```

```
df_feat = pd.DataFrame(scaled_features,columns=df.columns[:-1])
df_feat.head()
```

•		WTT	PTI	E Q ₩	SBI	LQE	бме	FDJ	РЈБ	HQE	ИХJ
	0	-0.123542	0.185907	-0.913431	0.319629	-1.033637	-2.308375	-0.798951	-1.482368	-0.949719	-0.643314
	1	-1.084836	-0.430348	-1.025313	0.625388	-0.444847	-1.152706	-1.129797	-0.202240	-1.828051	0.636759
	2	-0.788702	0.339318	0.301511	0.755873	2.031693	-0.870156	2.599818	0.285707	-0.682494	-0.377850
	3	0.982841	1.060193	-0.621399	0.625299	0.452820	-0.267220	1.750208	1.066491	1.241325	-1.026987
	4	1.139275	-0.640392	-0.709819	-0.057175	0.822886	-0.936773	0.596782	-1.472352	1.040772	0.276510

PART-2:-

Train/Test split, model fit and prediction

PART-3:-

Evaluation of classification quality

```
[ ] from sklearn.metrics import classification_report,confusion_matrix
  conf_mat=confusion_matrix(y_test,pred)
  print(conf_mat)

[[233 17]
  [24 226]]
```

```
[ ] print(classification_report(y_test,pred))
```

	pr ecisio n	recall	f1-score	support
0 1	0.91 0.93	0.93 0.90	0.92 0.92	250 250
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	500 500 500

```
print("Misclassification error rate:",round(np.mean(pred!=y_test),3))
```

Misclassification error rate: 0.082

Choosing 'k' by elbow method