Modèle relationnel

Dr N. BAME

PLAN

- Modèle relationnel
- Passage E/A vers modèle relationnel
- Normalisation du MR

Rappels: construction des BD

1. Analyse des besoins

→ Document technique décrivant les données de l'applications

→ Schéma dans un langage de haut niveau (Entité-Association)

3. Implantation des données

→ Schéma relationnel

Le modèle relationnel

- Données = collection de tables (ou relations)
- Table = ensemble de n-uplets avec les mêmes attributs
- N-uplet = séquence de valeurs atomiques (nombre, chaine de caractères, date, ...)

La table Modules

<u>code</u>	intitulé	niveau
LI341	Bases de Données	L ₃
LI ₃₄₅	BD Web	L3
LI399	Crypto	L ₃

Avantages du modèle relationnel

Proche de la réalité et simple

- La plupart des entités du monde réel partagent les mêmes attributs
- Familiarité des utilisateurs avec les tableaux

Repose sur des fondements solides

- Théorie des Ensembles
- Logique du Premier Ordre

Doté de langages de requêtes puissant

- Algèbre relationnelle, Calcul des Prédicats
- SQL (Structured Query Language)

Schéma relationnel: aperçu

Un schéma définit les instances valides

- Nom et contenu des attributs des tables
- Domaine des attributs (nombre, chaine de caractères, date, ...)
- Clés des tables et contraintes d'intégrité

clé							
<u>matricule</u>	nom	prénom	adresse	primaire			
1753	Smith	Joe	11 CP NYC	matricule	nom	prénom	adresse
2410	Hersh	Dan	22 Rd NJ	numérique	caractères	caractères	caractères
0148	Clay	Maissa	7 HW NJ		'		'
Etudiants				Etudian	ts		
Instance			Schéi	na			

Schéma relationnel

Un schéma de relation

$$R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$$

- est composé
 - d'un nom de relation R et
 - d'un *ensemble d'attributs* $A=\{A_1, A_2, ..., A_n\}$ définis sur *n* domaines de valeurs $D=\{D_1, D_2, ..., D_n\}$
 - Autre notation (sans domaines):

$$R(A_1, A_2, ..., A_n)$$

 Un schéma relationnel est un ensemble de schémas de relations.

Schéma relationnel

Schéma d'une BD = schéma relationnel
 S = {SR₁, SR₂, ..., SR_n} où SR_i schéma de relation

```
Etudiants(matricule :Number, nom : Varchar, prenom : Varchar, adresse : Varchar)
Modules(code : Number, intitule : Varchar, niveau : Varchar, salle :
```

Salles(numero: Number, capacite: Number)

Number)

Schéma relationnel

EMP

ENO

ENAME

TITLE

EMP(ENO, ENAME, TITLE) **PROJ** (PNO, PNAME, BUDGET)

WORKS(#ENO,#PNO, RESP, DUR)

PNO PNAME BUDGET

WORKS

Les attributs soulignés sont les clés (identificateurs de n-uplets)

Clés

Sous-ensemble d'attributs qui *identifient* un n-uplet Les valeurs de ces attributs doivent être *distinctes*!

matricule	nom	prénom	dateNaiss	adresse
1753	Smith	Joe	1992-01-12	11 CP NYC
9832	Smith	Dan	1989-04-03	22 Rd NJ
4755	Smith	Joe	1994-11-29	7 HW NJ
6842	Roy	Ian	NULL	NULL

Est-ce que les ensembles suivants peuvent être des clés?

{nom, prénom}
{nom, prénom, dateNaiss}

Clé primaire

Clé dont chacun des attributs est renseigné (≠ de NULL)

Une seule par table (peut servir à organiser physiquement la table)

<u>matricule</u>	nom	prénom	dateNaiss	adresse
1753	Smith	Joe	1992-01-12	11 CP NYC
9832	Smith	Dan	1989-04-03	22 Rd NJ
4755	Smith	Joe	1994-11-29	7 HW NJ
6842	Roy	Ian	NULL	NULL

La clé primaire est {matricule}

Clés étrangères

- Une clé étrangère = <u>sous-ensemble d'attributs</u> dont les <u>valeurs proviennent</u> des <u>clés primaires</u> de la même table ou d'autre table
- Mécanisme de référencement des n-uplets

Clés étrangères : autre exemple

Une clé étrangère = <u>sous-ensemble d'attributs</u> dont les valeurs proviennent des clés primaires de la même table ou d'autre table.

Mécanisme de référencement des n-uplets.

Matérialise les assocations de E/A.

Clés étrangères : exemple complet

Notations

Convention de notation

- Clé primaire : soulignement
- Clés étrangères : dièse ou astérisque et désignation de la table référencée (# ou *)

Etudiants(matricule, nom, prenom, adresse, #collaborateur)
Collaborateur fait référence à (la clé primaire de) Etudiants

Modules(code, intitule, niveau, #salle)

Salle fait référence à Salles

Salles(numero, capacite, précédente*, suivante*)

Précédente et suivante font chacune référence à Salles

Concepts et notations

Nous pouvons aussi adopter la notation textuelle suivante :

Client(NumeroClient, nom client, prenom, adresse)

Commande(NumeroCmd, date, #NumeroClt)

Conception de schémas relationnels

 Une schéma relationnel peut contenir des centaines de tables avec des milliers d'attributs.

 Problème: comment éviter des erreurs de conception?

 Solution : Génération (automatique) à partir d'un schéma E/A

Règles de passage du Modèle E/A au MR Notations

On dit qu'une association binaire (entre deux entités ou réflexive) est de type :

- 1:1 (un à un) si aucune des 2 cardinalités maximales n'est n
- 1: n (un à plusieurs) si une des 2 cardinalités maximales est n
- n : m (plusieurs à plusieurs) si les 2 cardinalités maximales sont n

Règle 1 : Entités

Créer pour chaque entité une table

Attributs entité deviennent attributs de la table Identifiant entité deviennent clé primaire de la table

Exemple

Module(Code, Intitule, Niveau)

Règle 2 : Association de type un-à-plusieurs

- Une association binaire de type 1: n disparaît, au profit d'une clé étrangère dans la table du coté 0,1 ou 1,1 qui référence la clé primaire de l'autre table.
 - Cette clé étrangère ne peut pas recevoir la valeur vide si la cardinalité est 1,1.

Exemple

Module(Code, Intitule, Niveau, #numeroSalle, heureDebut, duree)

NumeroSalle référence numero de la table Salle

Salle(<u>numero</u>, NbrePlaces)

Règle 3 : Association de type plusieurs-à-plusieurs

 Une association binaire de type n: m devient une table supplémentaire (table de jonction) dont la clé primaire est composée des deux clés étrangères.

Exemple

Etudiant(matricule, nom, prenom, adresse)

Module(code, intitule, niveau, adresse)

Inscription(matricule*, code*, anneeUniv)

Règle 4: Association de type un-à-un

- Une association binaire de type 1:1 est traduite comme une association binaire de type 1:n
 - sauf que la clé étrangère se voit imposer une contrainte d'unicité

Exemple

Compte(numéro, type)

Client(code, Nom, DateN, NumeroCompte*, dateOuverture)

NumeroCompte référence numéro de la table Compte

Si Compte n'est associé à aucune autre entité, mettre tout dans la relation Client

Exemple 1 : cardinalité 1,1 des deux cotés

Exemple 2 : cardinalité 0,1 d'un coté et 1,1 de l'autre

Règle 5: association n-aire n:m:k

- Une association non binaire est traduite par une table supplémentaire dont la clé primaire est composée d'autant de clés étrangères que d'entité en association.
- Les attributs de l'association deviennent les colonnes de cette nouvelle table.

Règle 6 : plusieurs associations entre les mêmes entités

• Les règles générales s'appliquent

Règle 7 : Relations réflexives

 On applique les règles générales avec la seule différence que la relation est reliée deux fois à la même entité.

Règle 8: association n-aire avec 1:n:m..k

• Si une **association n-aire** possède une branche avec une cardinalité **1:1**, on place les références dans la table reliée par 1:1.

Règle 9 : Traduction des entités faibles

- Créer une table pour l'entité faible
- Clé= identifiant de l'entité forte + attributs discriminants de l'entité faible
 - Identifiant entité forte est une clé étrangère et (*) fait partie de la clé

Entité faible se traite comme une association 1:1 avec (*) en plus

Exemple

Livre(référenceLivre*, numVolume, intitulé, NB_pages)

Règle 10: Traduction de la spécialisation

- Créer une table par sous-entités
 - Attributs des sous-entités → attributs des tables
 - Identifiant de la super-entité devient clé primaire des sous-entités

Exemple

Employe(NumeroSS, Nom, prenom, Adresse)

Electricien(#NumeroSS, Diplome, Experience)

Mecanicien(#NumeroSS, Specialite, Email, Tel)

Traduction de la spécialisation

- Créer une table par sous-entités
 - Attributs des sous-entités → attributs des tables
 - Identifiant de la super-entité devient clé primaire des sous-entités
 - Cas particulier: si la super entité est abstraite (pas d'instance), on peut supprimer la table qui la représente mais il faut rajouter ses attributs aux sous-entités

Exemple

Employe(NumeroSS, Nom, prenom, Adresse)

Electricien(NumeroSS, Nom, prenom, Adresse Diplome, Experience)

Mecanicien(NumeroSS, Nom, prenom, Adresse Specialite, Email, Tel)

Normalisation du modèle relationnel

- Le modèle relationnel procure des outils destinés à tester la qualité et la cohérence des relations dans un schéma relationnel.
- Cette étape, appelée normalisation, permettra de vérifier certaines propriétés des relations et le cas échéant de les transformer.
- La normalisation d'un schéma relationnel suggère une autre méthode pour obtenir un ensemble de relations.
- L'objectif de la normalisation est de construire un schéma de base de données cohérent.
 - Un mauvais schéma relationnel peut conduire à un certain nombre d'anomalies pendant la phase d'exploitation de la base de donnée.
- Pour qu'un modèle relationnel soit normalisé, il faut qu'il respecte certaines contraintes appelées les formes normales.
- Les **formes normales** s'appuient sur les **dépendances fonctionnelles** entre attributs.

DF: Définition

- On dit que b est en dépendance fonctionnelle (DF) de a
- si à une valeur quelconque de l'attribut a, on ne peut faire correspondre qu'une seule valeur au plus de l'attribut b.

On note $\mathbf{a} \rightarrow \mathbf{b}$

- Autrement dit, si on connaît la valeur de a, on peut en déduire une seule valeur de b.
- Mais la réciproque n'est pas vrai (si on connaît b, on ne peut pas en déduire a).

Num_client -> Nom_client

Il existe une DF entre num_client et Nom_client, car si on connaît une valeur de la propriété num_client (ex : 4553), il ne peut lui correspondre qu'une seule valeur de la Nom client

n'est pas une DF

- La réciproque est fausse :
 - Si l'on connaît la valeur de la propriété Nom_client, on ne peut pas en déduire la propriété Num_client, car il peut y avoir des homonymes.

DF: Terminologie

- Si on a une dépendance fonctionnelle a b, on peut employer les expressions suivantes de façon équivalente :
 - Il y a une dépendance fonctionnelle de a vers b
 - b est en dépendance fonctionnelle de a
 - b dépend fonctionnellement de a
 - a est la source et b est le but (ou la cible) de la dépendance fonctionnelle

DF à partir de propriétés concaténées (partie gauche composée de plusieurs attributs)

 Il peut exister des dépendances fonctionnelles à partir de propriétés concaténées, c'est-à-dire qui forment un tout indissociable, comme si elles étaient soudées.

Exemple: Considérons une commande qui comporte plusieurs produits

Num_Commande + Ref_Produit → quantité commandée

Propriétés des DF

- Union:
 - Si on a deux DF ayant la même source, on peut les rassembler en une seule, en séparant les cibles par une virgule.
 - Si a → b et a → c alors ont peut écrire que a → b,c
- Transitivité :
 - Si $a \rightarrow b$ et $b \rightarrow c$ alors on a : $a \rightarrow c$

Première forme normale

- s'intéresse au contenu des champs.
- Interdit la présence de plusieurs valeurs dans un même champ d'une relation.
 - En effet, la notion de dépendance fonctionnelle entre les champs ne peut plus être vérifiée s'ils possèdent plusieurs valeurs.
- Elle s'exprime de la manière suivante :

Tout champ contient une valeur atomique.

Comment passer en première forme

• La relation suivante n'est pas en première forme normale; le champ 'Auteurs' contient plusieurs

valeur	NumPubli	Titre	Auteurs
Pub	13490	Le vin et l'avenir	Jean Lasso, Hubert De la Tuque, Stanislas Wilski
	21322	Bière et progrès social	Aristide Salem, Jean Lasso, Salome Dupont
	45333	Le champagne et la France	Penelope Light, Vanessa Martinez, Salome Dupont

Comment passer en première forme normale ?

- Une solution pour résoudre ce problème est de décomposer le champ 'Auteurs' en 'Auteur_1', 'Auteur_2', 'Auteur_3', 'Auteur_4', etc.
- Ainsi, la relation est bien en première forme normale.
- L'ennui est que l'on ne sait pas à l'avance le nombre d'auteurs que peut posséder une publication, et le problème consiste donc à savoir combien de champs ajouter.
- La solution plus correcte, mais également plus lourde à mettre en œuvre, est de **décomposer cette relation en trois relations** :

Publication(NumPubli, Titre),

Auteur(NumAuteur, Nom, Prenom)

EstEcrite(#NumPubli, #NumAuteur)

- Ces trois relations sont la représentation de la réalité « une publication est écrite par des auteurs ».
- Elle se modélise par deux entités 'Publication' et 'Auteur' reliées par l'association 'EstEcrite'.

On obtient alors le résultat suivant

EstEcrite(#NumPubli, #NumAuteur)

Auteur(NumAuteur, Nom, Prenom)

ratear(<u>itamiratear</u>) itom, i renom,			
NumAuteur	Nom	Prenom	
1	Lasso	Jean	
2	De la Tuque	Hubert	
3	Wilski	Stanislas	
4	Salem	Aristide	
5	Dupont	Salome	
6	Light	Penelope	
7	Martinez	Vanessa	

NumPubli	NumAuteur
13490	1
13490	2
13490	3
21322	4
21322	1
21322	5
45333	6
45333	7
45333	5

Publication(NumPubli, Titre)

NumPubli	Titre
13490	Le vin et l'avenir
21322	Bière et progrès social
45333	Le champagne et la France

- On doit alors effectuer des **jointures** sur les différentes relations afin de reconstituer l'information dans son intégralité.
- Cette décomposition en trois relations se fait sans perte d'information.

Deuxième forme normale

- Bien évidemment, une relation doit déjà se trouver en première forme normale pour être en deuxième forme normale.
- Cette dernière recherche la redondance d'information dans une relation.
- Elle interdit les dépendances fonctionnelles possibles entre les champs qui composent la clé et les autres champs.
- On peut l'exprimer de la manière suivante :
 - La relation est en première forme normale.
 - Tout champ qui n'appartient pas à la clé ne dépend pas d'une partie de la clé.

Comment passer en deuxième forme normale ?

- La solution consiste à décomposer la relation en deux relations.
- La nouvelle relation créée a pour clé la partie de la clé dont dépendent les autres champs qui constituent ses champs.

Produit(Article, Fournisseur, Adresse, Prix)

Article	Fournisseur	Adresse	Prix
Marteau	SOGENO	Paris	5
Tournevis	ARTIFACT	Lille	10
Tournevis	SOGENO	Paris	23
Pince	LEMEL	Paris	34
Mètre	ARTIFACT	Lille	24

- La clé est constituée des champs 'Article' et 'Fournisseur'.
- Or, il y a une relation de dépendance entre le champ 'Fournisseur', qui est une partie de la clé, et le champ 'Adresse'.
 - On décompose alors la relation pour éliminer la redondance ainsi créée.
 - La nouvelle relation aura pour clé la partie de la clé de la relation d'origine dont dépendent fonctionnellement les autres champs. Il s'agit du champ 'Fournisseur'.
 - Les autres champs dépendants constituent le reste de la relation. Il s'agit ici du champ 'Adresse'.

On obtient alors le résultat suivant

Fournisseur(Fournisseur, Adresse)

Fournisseur	Adresse
SOGENO	Paris
ARTIFACT	Lille
LEMEL	Paris

Produit(Article, #Fournisseur, Prix)

Article	Fournisseur	Prix
Marteau	SOGENO	5
Tournevis	ARTIFACT	10
Tournevis	SOGENO	23
Pince	LEMEL	34
Mètre	ARTIFACT	24

- Comme précédemment, il est nécessaire de faire une jointure pour reconstituer l'information.
- La décomposition en deux relations se fait sans perte d'information.

Remarque

 Si la clé d'une relation est atomique, c'est-à-dire composée d'un seul champ, elle est naturellement en deuxième forme normale.

Troisième forme normale

- La troisième forme normale recherche également la redondance d'information dans une relation.
- On cherche s'il existe une dépendance entre deux champs qui ne font pas partie d'une clé.
- Si c'est le cas, on se trouve dans la situation où un champ dépend d'un autre champ qui dépend lui même d'une clé.
- La clé considérée peut être primaire ou secondaire.
- La troisième forme normale interdit donc les dépendances fonctionnelles dites « transitives » entre les champs.
- Elle s'exprime de la manière suivante :
 - La relation est en deuxième forme normale (donc en première forme normale).
 - Tout champ n'appartenant pas à une clé ne dépend pas d'un autre champ non clé.

Comment passer en troisième forme normale ?

- La solution est également de décomposer la relation de départ en deux relations.
- La nouvelle relation créée a pour clé le champ dont dépendent les autres champs qui constituent ainsi la dépendance transitive.

Baladeur(NumBal, Marque, Type, Couleur)

NumBal	Marque	Type	Couleur
12	Apple	Ipod	Blanc
43	Creative	Zen	Noir
23	Apple	Ipod	Noir
29	Creative	Zen	Gris
34	Sony	MZ-RH910	Rouge

Comment passer en troisième forme normale?

Baladeur(NumBal, Marque, Type, Couleur)

NumBal	Marque	Туре	Couleur
12	Apple	Ipod	Blanc
43	Creative	Zen	Noir
23	Apple	Ipod	Noir
29	Creative	Zen	Gris
34	Sony	MZ-RH910	Rouge

- La clé de cette relation est un numéro, 'NumBal', car il peut y avoir dans notre stock plusieurs baladeurs de même marque, de même type et de même couleur.
- Les marques déposent les noms des objets qu'elles fabriquent de façon à les identifier sur le marché.
 - Il existe donc une dépendance fonctionnelle entre le champ 'Type' (qui n'appartient pas à la clé) et le champ 'Marque' (qui n'appartient pas à la clé).
- On décompose la relation en créant une nouvelle qui a pour clé le champ dont dépendent les autres champs constituant la dépendance transitive.
 - Il s'agit dans ce cas du champ 'Type'.
 - Les autres champs de la nouvelle relation sont composés des champs qui en dépendent fonctionnellement : ici, le champ 'Marque

Baladeur(NumBal, Marque, Type, Couleur)

NumBal	Marque	Туре	Couleur
12	Apple	Ipod	Blanc
43	Creative	Zen	Noir
23	Apple	Ipod	Noir
29	Creative	Zen	Gris
34	Sony	MZ-RH910	Rouge

Baladeur(NumBal, #Type, Couleur)

NumBal	Type	Couleur
12	Ipod	Blanc
43	Zen	Noir
23	Ipod	Noir
29	Zen	Gris
34	MZ-RH910	Rouge

Baladeur_type(Type, Marque)

Type	Marque
Ipod	Apple
MZ-RH910	Sony
Zen	Creative

- Comme précédemment, il est nécessaire de faire une jointure pour reconstituer l'information dans son intégralité.
- La décomposition en deux relations se fait sans perte d'information.

Conclusion

- Présentation du modèle relationnel
 - Tables de n-uplets
 - Clés et contraintes d'intégrité
- Traduction d'un schéma EA vers un schéma relationnel
- Schéma EA à partir d'un schéma relationnel
- Normalisation d'un schéma relationnel