AL 2 - DÉTERMINANTS

Dans tout le chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} ; $n \in \mathbb{N}^*$.

1 Déterminant d'une matrice carrée

1.1 Définition

Théorème-Définition 1

On appelle déterminant l'unique application, notée det, définie sur $M_n(\mathbb{K})$ à valeurs dans \mathbb{K} telle que :

- det est linéaire par rapport à chacune des colonnes de sa variable;
- l'échange de deux colonnes de sa variable a pour effet de multiplier le déterminant par -1;
- $\det(I_n)=1$.

On appelle encore déterminant d'une matrice carrée A le scalaire det(A).

Notation :

Pour
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
, $\det(A) = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$

1.2 Propriétés

Proposition 1

Soit $A \in M_n(\mathbb{K})$, dont on note $C_1, ..., C_n$ les vecteurs colonnes.

Pour $(i,j) \in [1,n]^2, i \neq j$, et $\lambda \in \mathbb{K}$, on a les propriétés suivantes :

- Si $\{C_1, ..., C_n\}$ est une famille liée, $\det(A) = 0$; en particulier :
 - si une colonne de A est nulle, alors det(A) = 0.
 - si deux colonnes de A sont proportionnelles det(A) = 0.
- Le remplacement de la colonne C_i par la colonne $C_i + \lambda C_j$ (avec $j \neq i$) ne change pas $\det(A)$; plus généralement, l'ajout à C_i d'une combinaison linéaire des autres colonnes ne change pas $\det(A)$.
- Le remplacement de la colonne C_i par la colonne λC_i change $\det(A)$ en $\lambda \det(A)$.
- $\det(\lambda A) = \lambda^n \det(A)$.

Proposition 2

Soit
$$A \in M_n(\mathbb{K})$$
. On a : $\det({}^t A) = \det(A)$.

Remarque 1

• Cette propriété permet de réécrire la **Proposition 1** en remplaçant colonne par ligne.

Proposition 3

Soit
$$(A, B) \in (M_n(\mathbb{K}))^2$$
. On a : $\det(AB) = \det(A) \times \det(B)$.

Remarque 2

• Soit
$$(A, B) \in (M_n(\mathbb{K}))^2$$
. On a : $\det(AB) = \det(BA)$.

Théorème 1

Soit
$$A \in M_n(\mathbb{K})$$
; $A \in GL_n(\mathbb{K}) \Leftrightarrow \det(A) \neq 0$, et dans ce cas, $\det(A^{-1}) = \frac{1}{\det(A)}$.

Théorème 2

Deux matrices semblables ont le même déterminant.

Attention! $det(A + B) \neq det(A) + det(B)$

1.3 Calcul

Définition 1

Soit $A = (a_{i,j}) \in M_n(\mathbb{K})$. Pour $(i,j) \in [1,n]^2$, on appelle :

- mineur (d'ordre n-1) d'indice (i,j) de det(A), le déterminant $M_{i,j}$ obtenu en supprimant la i-ème ligne et la j-ème colonne de det(A).
- cofacteur de $a_{i,j}$, ou cofacteur d'indice (i,j) de $\det(A)$, le scalaire $A_{i,j} = (-1)^{i+j} M_{i,j}$.

Proposition 4

Avec les notations de la définition précédente :

• La formule de développement de $\det(A)$ par rapport à sa j-ème colonne est l'identité :

$$\det(A) = \sum_{k=1}^{n} a_{k,j} A_{k,j} = \sum_{k=1}^{n} (-1)^{k+j} a_{k,j} M_{k,j}$$

• La formule de développement de det(A) par rapport à sa *i*-ème ligne est l'identité :

$$\det(A) = \sum_{k=1}^{n} a_{i,k} A_{i,k} = \sum_{k=1}^{n} (-1)^{i+k} a_{i,k} M_{i,k}$$

Proposition 5

Le déterminant d'une matrice diagonale et d'une matrice triangulaire (inférieure ou supérieure) est le produit de ses coefficients diagonaux.

Proposition 6

Soit $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ une matrice définie par blocs avec A et C des matrices carrées. $\det(M) = \det(A)\det(C)$.

2 Déterminant d'une famille de vecteurs

Dans toute la suite de ce chapitre, E désigne un \mathbb{K} -espace vectoriel de dimension finie n, muni d'une base \mathcal{B} .

2.1 Rappels

2.1.1 En dimension 2

Dans un repère orthonormé (O, \vec{i}, \vec{j}) du plan orienté, le déterminant de deux vecteurs non nuls $\vec{u} = a\vec{i} + b\vec{j}$ et $\vec{v} = c\vec{i} + d\vec{j}$ est :

$$\det(\vec{u}, \vec{v}) = \|\vec{u}\| \|\vec{v}\| \sin(\vec{u}, \vec{v}) = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc$$

Remarque 3

- Si l'un des vecteurs est nul, le déterminant est nul, et l'identité est toujours vraie.
- Le déterminant de deux vecteurs est nul si, et seulement si les vecteurs sont colinéaires.
- Géométriquement, le déterminant de deux vecteurs \vec{u} et \vec{v} non colinéaires est l'aire orienté du parallélogramme construit sur \vec{u} et \vec{v} .

2.1.2 En dimension 3

Dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ de l'espace orienté, le déterminant de trois vecteurs $\vec{u} = a\vec{\imath} + b\vec{\jmath} + c\vec{k}$, $\vec{v} = d\vec{\imath} + e\vec{\jmath} + f\vec{k}$ et $\vec{w} = g\vec{\imath} + h\vec{\jmath} + l\vec{k}$ est :

$$\det(\vec{u}, \vec{v}, \vec{w}) = \vec{u} \cdot (\vec{v} \wedge \vec{w}) = \begin{vmatrix} a & d & g \\ b & e & h \\ c & f & l \end{vmatrix} = a(el - fh) - b(dl - fg) + c(dh - eg)$$

Remarque 4

- On retrouve la formule de développement du déterminant d'une matrice par rapport à la première colonne.
- Le déterminant de trois vecteurs est nul si, et seulement si les vecteurs sont coplanaires, c'està-dire si l'un des vecteurs s'exprime comme une combinaison linéaire des deux autres.
- Géométriquement, le déterminant de trois vecteurs \vec{u}, \vec{v} , et \vec{w} non coplanaires est le volume orienté du parallélépipède construit sur \vec{u}, \vec{v} , et \vec{w} .

2.2 Généralisation

Définition 2

Soit $\mathcal{F} = (v_1, ..., v_n) \in E^n$. On note $A = M_{\mathcal{B}}(v_1, ..., v_n)$ la matrice de la famille \mathcal{F} dans la base \mathcal{B} . On définit le déterminant de la famille \mathcal{F} dans la base \mathcal{B} par :

$$\det_{\mathcal{B}}(v_1, ..., v_n) = \det(A)$$

Remarque 5

• Si on note $\mathcal{B} = (e_1, ..., e_n)$, alors $\det_{\mathcal{B}}(e_1, ..., e_n) = 1$

Théorème 3

Si \mathcal{F} est une famille de n vecteurs de E, alors :

$$\mathcal{F}$$
 est une base $\Leftrightarrow \det_{\mathcal{B}}(\mathcal{F}) \neq 0$

Attention! La notion de déterminant d'une famille de vecteurs dépend de la base choisie.

3 Déterminant d'un endomorphisme

Soit u un endomorphisme de E.

Théorème-Définition 2

Le scalaire $\det_{\mathcal{B}}(u(\mathcal{B}))$ est indépendant de la base \mathcal{B} choisie.

On l'appelle déterminant de l'endomorphisme u, et on le note det(u).

Proposition 7

- $\det(\mathrm{Id}_E)=1$;
- $\forall \lambda \in \mathbb{K}, \det(\lambda u) = \lambda^n \det(u);$
- $\forall (u, v) \in (\mathcal{L}(E))^2$, $\det(u \circ v) = \det(u) \times \det(v)$;
- $\forall u \in \mathcal{L}(E), u \in \operatorname{Aut}(E) \Leftrightarrow \det(u) \neq 0$, et dans ce cas : $\det(u^{-1}) = \frac{1}{\det(u)}$.

Attention! En général $\det(u+v) \neq \det(u) + \det(v)$.