Professor: Hans Knüpfer Tutor: Leon Happ

Aufgabe 10.1

Sei $\emptyset \neq \Omega \subset \mathbb{R}^n$ offen. Aufgrund der Offenheit existiert zu jedem $x^* \in \Omega$ eine Umgebung $U \subset \Omega$ mit $x^* \in U$. Wähle dann $\varphi = \mathrm{id}$. Dann ist $\varphi \in C^1(U,\mathbb{R}^n)$, rang $D\varphi(x) = n$ und $\varphi \colon U \to \Omega \cap U = U$ ist offensichtlich ein Homöomorphismus. Also ist Eigenschaft (iii) aus Satz 5.2 erfüllt und Ω ist eine C^1 -Mannigfaltigkeit. Um die Rückrichtung zu zeigen, betrachten wir eine nichtleere C^1 -Mannigfaltigkeit $\emptyset \neq \Omega \subset \mathbb{R}^n$ der Dimension n. Dann existiert für jedes $x^* \in \Omega$ eine Umgebung U und eine Abbildung $f \colon U \to \mathbb{R}^{n-n} = \mathbb{R}^0 = \{0\}$ mit $\Omega \cap U = f^{-1}(0)$. Wegen $f(U) = \{0\}$ ist aber $f^{-1}(0) = U$. Daher muss $\Omega \cap U = U$ gelten, also $U \subset \Omega$. Folglich existiert zu jedem $x^* \in \Omega$ eine Umgebung U mit $U \subset \Omega$, also ist Ω offen.

Aufgabe 10.2

(a) Betrachte die Abbildung

$$f \colon \mathbb{R}^n \to \mathbb{R}$$

$$(x_1, \dots, x_n) \mapsto \left(\sum_{i=1}^n x_i^2\right) - 1$$

Man sieht durch partielles Ableiten sofort, dass $f \in C^1(\mathbb{R}^n, \mathbb{R})$. Es gilt $Df(x) = 2x^T$. Für $x \neq 0$ ist daher rang Df(x) = 1 = k = n - (n - 1), wie in der Definition einer n - 1-dimensionalen Mannigfaltigkeit gefordert. Wir können also für jeden Punkt x^* die offene Kugel $\Omega = U_{1/2}(x^*)$ als Umgebung wählen. Wir haben f gerade so gewählt, dass Bedingung (i) aus Definition 5.1 für eine beliebige Teilmenge des \mathbb{R}^n erfüllt ist, also insbesondere für $U_{1/2}(x^*)$. Es gilt

$$x \in U_{1/2}(x^*) \implies ||x - x^*|| \le 1/2 \xrightarrow{||x|| = 1} ||x|| \ge 1/2 > 0 \implies x \ne 0.$$

Insbesondere hat also Df(x) vollen Rang für alle $x \in U_{1/2}(x^*)$. Damit ist auch die zweite Bedingung erfüllt und S ist eine C^1 -Mannigfaltigkeit.

(b) Betrachte die Abbildung

$$f \colon \mathbb{R}^n \to \mathbb{R}$$

$$(x_1, \dots, x_n) \mapsto x_n^2 - \sum_{i=1}^{n-1} x_i^2$$

Man sieht durch partielles Ableiten sofort, dass $f \in C^1(\mathbb{R}^n, \mathbb{R})$. Darüberhinaus sieht man leicht, dass $Df(x) = (-2x_1, \dots, -2x_{n-1}, 2x_n)$. Für $x \neq 0$ ist daher rang Df(x) = 1 = k = n - (n-1), wie in der Definition einer n-1-dimensionalen Mannigfaltigkeit gefordert. Wir können also für jeden Punkt x^* die offene Kugel $\Omega = U_{1/2||x^*||}(x^*)$ als Umgebung wählen. Wir haben f gerade so gewählt, dass Bedingung (i) aus Definition 5.1 für eine beliebige Teilmenge des \mathbb{R}^n erfüllt ist, also insbesondere für $U_{1/2}(x^*)$. Wegen $0 \notin K^{n-1} \setminus \{0\}$ gilt

$$x \in U_{1/2||x^*||}(x^*) \implies ||x - x^*|| \le 1/2 ||x^*|| \implies ||x|| \ge 1/2 ||x^*|| > 0 \implies x \ne 0$$

Insbesondere hat also Df(x) vollen Rang für alle $x \in U_{1/2}(x^*)$. Damit ist auch die zweite Bedingung erfüllt und K^{n-1} ist eine C^1 -Mannigfaltigkeit.

(c) Sei $x^* = 0$. Wir betrachten eine beliebige Umgebung von 0, o.B.d.A $U = U_{\epsilon}(0)$ für ein $\epsilon > 0$. Dann gilt $K^{n-1} \cap U = \{x \in \mathbb{R}^n : x_n^2 = \sum_{k=1}^{n-1} x_k^2, ||x|| < \epsilon\}$. Bezeichne e^i den *i*-ten Einheitsvektor. Definiere $v_{\pm}^i := \pm e^i + e^n$ Für $t \in (-\epsilon, \epsilon)$ und gilt dann $tv_{\pm} \in K^{n-1} \cap U$. Insbesondere erhalten wir

$$\pm \partial_i f + \partial_n f = (\nabla f, v_{\pm}^i) = \lim_{t \to 0} \frac{f(v_{\pm}^i \cdot t) - f(0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$$

Daraus folgt $\forall i \in \{1, ..., n-1\} \partial_i f = \partial_n f = -\partial_i f$, also $\partial_i f = 0 \forall i \in \{1, ..., n\}$. Daher gilt rang $Df(0) = 0 \neq 1$. Folglich kann K^{n-1} keine Mannigfaltigkeit sein.

Aufgabe 10.3

(a) Sei $v \in T_{\xi}(M)$. Dann existiert ein $\gamma \in C^{1}((-\epsilon, \epsilon), M)$ mit $\gamma(0) = \xi$ und $\gamma'(0) = v$. Weil F in ξ ein lokales Minimum annimmt, nimmt die Funktion $F \circ \gamma \colon \mathbb{R} \to \mathbb{R}^{n}, t \mapsto F(\gamma(t))$ ein Minimum bei t = 0 an. Daher gilt

$$0 = \frac{\partial F \circ \gamma}{\partial t} \bigg|_{t=0} \overset{\text{Kettenregel}}{=} (\nabla F(\gamma(t)), \frac{\partial \gamma}{\partial t}) \bigg|_{t=0} = (\nabla F(\xi), v).$$

Da $v \in T_{\xi}(M)$ völlig beliebig war, folgt $\nabla F(\xi) \in T_{\xi}(M)^{\perp} = N_{\xi}M$.

(b) f erfüllt genau die in Definition 5.1 geforderten Eigenschaften. Daher lässt sich Satz 5.6 (ii) anwenden und wir erhalten

$$\nabla F(\xi) \in N_{\xi}M = \operatorname{span}\langle \nabla f_1(x), \dots, \nabla f_{m-n}(x) \rangle,$$

also

$$\nabla F(\xi) = \sum_{k=1}^{n-m} y_k \nabla f_k(\xi)$$

für ein geeignetest $y \in \mathbb{R}^{n-m}$.

Zusatzaufgabe 10.1

Wir nutzen im Folgenden häufig aus, dass $f \in \mathscr{S}(\mathbb{R})$ gilt, ohne das jedes Mal dazuzuschreiben. Definiere

$$u = -\mathcal{F}^* \frac{1}{k^2 + \lambda} \mathcal{F} f$$

Wegen $0 < \frac{1}{k^2 + \lambda} < \frac{1}{\lambda}$ und $\mathcal{F}f \in \mathscr{S}(\mathbb{R})$ gilt $\frac{1}{k^2 + \lambda} \mathcal{F}f \in \mathscr{S}(\mathbb{R})$ und damit auch $u = -\mathcal{F}^* \frac{1}{k^2 + \lambda} \mathcal{F}f \in \mathscr{S}(\mathbb{R})$. Daher gilt

$$\mathcal{F}u = -\frac{1}{k^2 + \lambda} \mathcal{F}f$$
$$-k^2 \mathcal{F}u - \lambda \mathcal{F}u = \mathcal{F}f$$
$$\mathcal{F}u'' - \mathcal{F}\lambda u = \mathcal{F}f$$
$$\mathcal{F}^* \mathcal{F}u'' - \mathcal{F}^* \mathcal{F}\lambda u = \mathcal{F}^* \mathcal{F}f$$
$$u'' - \lambda u = f$$

Angenommen, es existiert eine Lösung $u \in \mathscr{S}(\mathbb{R})$. Dann gilt

$$u''(x) - \lambda u(x) = f(x)$$

$$\mathcal{F}u'' - \mathcal{F}\lambda u = \mathcal{F}f$$

$$-k^2 \mathcal{F}u - \lambda \mathcal{F}u = \mathcal{F}f$$

Es gilt $k^2 + \lambda \neq 0$ wegen $\lambda > 0$.

$$\mathcal{F}u = -\frac{1}{k^2 + \lambda}\mathcal{F}f$$

$$\mathcal{F}^*\mathcal{F}u = -\mathcal{F}^*\frac{1}{k^2 + \lambda}\mathcal{F}f$$

$$u = -\mathcal{F}^*\frac{1}{k^2 + \lambda}\mathcal{F}f$$

und u ist eindeutig bestimmt.