Record Display Form

First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L5: Entry 5 of 6

File: DWPI

Mar 23, 1993

Su patent 1803460

DERWENT-ACC-NO: 1994-175289

DERWENT-WEEK: 199421

COPYRIGHT 2007 DERWENT INFORMATION LTD

TITLE: Grey wear-resistant cast iron for continuous casting of shaped blanks contains silicon, manganese, chromium, titanium, vanadium, nickel, aluminium, copper, boron carbide(s), calcium, rare earth metals, niobium and nitrogen

INVENTOR: KARPENKO, M I; LEVIKOV, V I; SOLENOVA, T I

PRIORITY-DATA: 1991SU-4949222 (June 25, 1991)

Search ALL

Clear

PATENT-FAMILY:

PUB-NO SU 1803460 A1 PUB-DATE

March 23, 1993

LANGUAGE

PAGES

MAIN-IPC

004

C22C037/10

INT-CL (IPC): C22C 37/10

ABSTRACTED-PUB-NO: SU 1803460A

BASIC-ABSTRACT:

Iron contains (in wt.%) C 3.6-4.0, Si 1.2-2.6, Mn 0.3-0.8, Cr 0.02-0.07, Ti 0.15-0.5, V 0.05-0.15, Ni 0.07-0.25, Al 0.05-0.25, Cu 0.35-0.85, B carbide 0.05-0.25, Ca 0.03-0.07, rare earth metals 0.02-0.08, Nb 0.02-0.35 and N 0.13-0.27.

Nitrogen added to the iron combines with the Ti, rare earth metals, Al and V to form nitrides and carbonitrides that improve the structural uniformity and the microhardness.

The iron, which is melted in an induction furnace, has a tensile strength of 486 MPa and an impact strength of 39 Joules/sq.cm. These values may be compared with 320 MPa and 22 Joules/sq.cm for a known iron compsn..

USE/ADVANTAGE - In the prodn. of shaped castings with homogeneous structure and obtd. by continuous casting. The strength, impact strength and operational properties are improved.

ABSTRACTED-PUB-NO: SU 1803460A

EOUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/0

Previous Doc

Next Doc

Go to Doc#

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(19) SU (11) 1803460 A1

(51)5 C 22 C 37/10

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР)

RAHERWUDDE RENGERREST-ONTHERA BHETONNERA

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4949222/02

(22) 25.06.91

(46) 23.03.93. Бюл. № 11.

(71) Производственное объединение "Гом-сельмаш"

(72) М.И.Карпенко, В.И.Левиков, Т.И.Соленова и С.М.Бадюкова

(56) Авторское свидетельство СССР № 831851, кл. С 22 С 37/10, 1981,

(54) ИЗНОСОСТОЙКИЙ ЧУГУН

(57) Изобретение относится к черной металлургии и может быть использовано для изготовления термостойких и фрикционных

изделий. Износостойкий чугун дополнительно содержит карбиды бора, ниобий, азот и никель при следующем соотношении компонентов, мас. %: углерод 3,6-4,0; кремний 1,2-2,6; марганец 0,3-0,8; никель 0,07-0,25; хром 0,02-0,07; титан 0,15-0,5; ванадий 0,05-0,15; алюминий 0,05-0,25, медь 0,35-0,85; кальций 0,03-0,07; РЗМ 0,02-0,08; карбиды бора 0,05-0,25; ниобий 0,02-0,35; азот 0,13-0,27 и железо - остальное. Чугун обладает высокой износостойкостью, прочностью, ударной вязкостью, его термостойкость составляет 1821-1936 циклов. 2 табл.

2.

Изобретение относится к металлургии, в частности к изысканию серых износостой-ких чугунов, применяемых для изготовления профильных заготовок с однородной структурой методами непрерывного литья.

Цель изобретения – повышение износостойкости и эксплуатационных свойств.

Износостойкий чугун, по данному изобретению, содержащий углерод, кремний, марганец, хром, титан, ванадий, алюминий, редкоземельные металлы, медь и железо; дополнительно содержит карбиды бора, ниобий, никель и азот при следующем соотношении компонентов, мас. %:

Углерод 3.6 - 4.0Кремний 1,2-2,6 Марганец 0.3 - 0.8Хром 0.2 - 0.7Титан 0,15-0,5 Ванадий 0,05-0,15 Алюминий 0.05 - 0.25Медь 0,35-0,85 Карбиды бора 0,05-0,25 Кальций 0,03-0,07 Никель 0,07-0,25 Редкоземельные металлы 0,02-0,08 Ниобий 0,02-0,35 Азот 0,13-0,27 Железо Остальное

Введение в известный чугун бора в пределах 0,05-0,25 мас. % обеспечивает повышение дисперсности структуры, степени перлитизации металлической основы отливок, увеличение однородности структуры ударостойкости износостойкости и твердости, что приводыт к повышению стабильности механических свойств. Содержание карбидов бора выше верхнего предела нецелесообразно, так как в этом случае, в связи с малой их растворимостью увеличивается их ликвация в аустенит и коагуляция, что снижает однородность структуры и динамическую прочность чугуна. Введение в

(19) SU (11) 1803460 A1

чугун карбидов бора в количестве ниже нижнего предела не обеспечивает получение желаемых преимуществ по однородности структуры, износостойкости, теплостойкости и служебных свойств.

Введение в чугун ниобия обусловлено тем, что он упрочняет матрицу и измельчает литое зерно в центральной зоне слитков, измельчает графит, изменяя его форму, структуру металлической основы в отлив-ках, повышает теплостойкость, стабильность микротвердости, динамической прочности и других физико-механических свойств.

Введение в чугун ниобия в количествах менее 0.02 мас.% существенного влияния на повышение стабильности микротвердости, теплостойкости и физико-механических свойств не оказывает, а содержание ниобия выше 0,35 мас.% нецелесообразно, так как в этом случае значительно возрастает длительность плавки чугуна и усложняется технология внепечной обработки, снижаются удароустойчивость, однородность структуры и свойств.

Азот в износостойкий чугун в количестве 0,13-0,27% введен как эффективный легирующий компонент, который связывает титан, редкоземельные металлы алюминий, ванадий и другие элементы в чугуне в 30 дисперсные нитриды и карбонитриды, обеспечивающие повышение однородности структуры, микротвердости, теплопрочности и термической стойкости. При содержании азота менее 0,13 мас.% не 35 обеспечивается существенное повышение микротвердости и ее стабильности по сечению непрерывнолитых слитков, заметное повышение термической стойкости чугуна. Увеличение концентрации азота более 0.27 40 мас.% снижает однородность структуры, ударную вязкость, стабильность механических свойств.

Никель в заданных пределах от 0,07 до 0,25 мас. % способствует повышению пластических свойств, измельчению и стабилизации структуры, что обеспечивает повышение стабильности микротвердости и термической стойкости. При содержании никеля ниже 0,07 мас. % стабильности и структуры, микротвердости и термической стойкости не достигается, а при увеличении его содержания более 0.25 мас. % снижаются удароустойчивость и микротвердость.

Введение карбидов бора, ниобия, нике- 55 ля и азота в заданных соотношениях обеспечивает получение в отливках более однородной структуры, стабильной микротвердости, комплекс новых свойств, сочетающих в себе значения эксплуатационных

свойств. динамической прочности. износостойкости и термической стойкости.

Чугун выплавляют в индукционных печах. Для микролегирования использовали ферросплавы. Модифицирование чугуна РЗМ, карбидами бора и алюминием производят в литейных ковшах при выпуске чугуна из печи после продувки азотом.

Химический состав исследованных чугунов приведен в таблице 1, а механические свойства и термическая стойкость в табл.2.

Угар РЗМ составляет 26-32%, карбидов бора 14-18%. Усвоение ниобия, присаженного в печь, составило 76-80, никеля 89-93%.

Температура металла перед выпуском из электропечи для модифицирования в ковш емкостью 2 т составляла 1480–1500°С, а температура чугуна при заливке расплава в кристаллизатор установки для непрерывного литья — 1410–1430°С.

На установках УНГЛ-2 вытягивают круглые заготовки диаметрами 30 и 120 мм.

Механические свойства и термостойкость чугунов определяли на образцах, вырезанных из профилей диаметром 30 мм. Микротвердость металлической основы определяют на микротвердомере ПМТ-3 на образцах, вырезанных из заготовок диаметрами 30 и 120 мм.

Содержание основных компонентов (углерод 3,6-4,0 мас. %, кремний 1,2-2,6 мас. % и марганец 0,3-0,8 мас. %) определены из практики производства износостойких и термостойких чугунов с повышенной микротвердостью матрицы и со стабильной структурой. При концентрации углерода до 3.6 мас. %, кремния до 1,2 мас. % и марганца более 0.8 мас. % увеличивается количество цементита в структуре, снижаются ее стабильность и термическая стойкость. При содержании углерода более 4.0 мас.% кремния более 2,6 мас. % и марганца менее 0,3 мас. % увеличивается ликвация, загрязненность чугуна неметаллическими включениями и снижаются стабильность структуры и микротвердости по сечению заготовок, служебные свойства.

Содержание микролегирующих добавок (хром 0,02-0,07 мас. %, титан 0,15-0,5; медь 0,35-0,85; ванадий 0.05-0,15; РЗМ 0,02-0,08; алюминий 0,05-0,25 мас. %) определены экспериментально и ограничены пределами, обеспечивающими однородную структуру и оптимальные прочностные и пластические свойства, стабильную микротвердость и повышенную износостойкость и теплостойкость. При более низком их содержании прочностные и фракционные

свойства недостаточны, а при увеличении их концентрации выше верхних пределов снижается удароустойчивость. динамическая стойкость и стабильность структуры, что приводит к снижению микротвердости и других свойств и их стабильности. Верхние пределы концентрации отбеливающих элементов (хрома, ванадия, РЗМ) снижены, а графитизирующих - повышены.

фикатор, очищающий границы зерен от неметаллических включений и повышающий стабильность структуры и микротвердости.

Верхний предел концентрации кальция ограничен его растворимостью в перлите, а 15 следующем соотношении компонентов. при концентрации его 0,03 мас. % модифицирующий эффект недостаточен.

Как видно из данных табл.2, предложенный износостойкий чугун обладает более однородным и стабильными значениями 20 микротвердости и износостойкости, чем базовый чугун.

Термическую стойкость определяют в условиях термоциклирования в интервале температур 20-900°С.

Технологические свойства определяют на стандартных технологических пробах. Эрозионную стойкость определяют на струеударной испытательной установке с использованием в качестве эталона стали 45Л 30 после закалки ее с 840°C в воду и отпуска при 200°C.

Исследование прочностных свойств определяют на цилиндрических образцах диаметром 10 мм.

Формула изобретения

Износостойкий чугун, содержащий углерод, кремний, марганец, хром, ванадий, титан, алюминий, редкоземельные метал-Кальций введен как эффективный моди- 10 лы, кальций, медь и железо, о т л и ч а ю щийся тем, что, с целью повышения прочности ударной вязкости и эксплуатационных свойств, он дополнительно содержит карбиды і бора, ниобий, никель и азот при мас.%:

Углерод	3.6-4.0
Кремний	1,2-2,6
Марганец	0.3-0.8
Хром	0,020,07
Титан	0,15-0,5
Ванадий	0.05-0.15
Никель	0.07-0.25
Алюминий	0.05-0.25
Медь	0,35-0,85
Карбиды бора	0.05-0.25
Кальций	0.03-0,07
Редкоземельные	
металлы	0,02-0.08
Ниобий	0.02-0.35
Азот	0.13-0,27
Железо	остальное

Компоненты	Содержание компонентов, мас.% Чугун							
	известный			предложенный				
	1	2	3	4	5	6		
Углерод	3,2	3,6	3,8	4,0	4,3	2.8		
Кремний	1,2	2,6	1,6	1,2	2.8	1.0		
Марганец	0.8	0,3	0,5	0.8	1.0	0,2		
Хром	0,8	0.02	0,05	0.07	0,2	. 0,01		
Титан	0,4	0,15	0.2	0.5	0,6	0.02		
Ванадий	0,2	0.05	0,1	0,15	0,18	0.02		
Алюминий	0,3	0,05	0,1	0,25	0,27	0,01		
Медь	1,2	0,35	0,5	0,85	1,05	0,1		
Карбиды бора		0.05	0.12	0.25	0.28	0,03		
Кальций	0,3	0,03	0,05	0.07	0,10	0.02		
РЗМ	0:1	0,02	0,05	80.0	0,09	0,01		
Ниобий	-	0.02	0,03	0,35	0.47	0.01		
Азот	-	0,13	0,15	0,27	0,32	0,07		
Никель	-	0,07	0.12	0,25	0,28	0.04		
Железо	ОСТ	ОСТ	ОСТ	ОСТ	ост	-ocr		

25

Таблица 2

Чугун	Литейные свойства			Мехнические свойства			Терми-		
	жидко- теку- честь, мм	линей- ная усадка, %	отбел в клине, мм	трещи- ностой- кость, см	Предел прочно- сти при растя- жении, МПа	Износ, мг/м ² ч	Удар-	Ударо- устойчи- вость	ческая
1 /Изве- стный/	630	1,4	9	17	320	160	22	985	1160
2 3 4 5 6	670 686 680 645 636	1,2 1,1 1,1 1,3 1,4	6 4 5 9 7	10 6 8 12 16	452 486 470 386 354	26 18 21 132 108	34 39 35 28 24	1274 1342 1308 1046 997	1821 1936 1870 "1387 1242

Составитель Г. Дудик Техред М.Моргентал

Корректор В. Петраш

Редактор

Заказ 1035 Тираж Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5