15. dN = PN(1-N) = TN - TN2 dN = FN What are the Fixed Points? Steely Status? DEENETH Ø = dN = NN (1- N) WE NEW EN vindependent of " Palar

Palar

| d'=d+cN (HNP) | CL

| b'=b-aN |
| dN = WMM [b'-d']N (MNP) chos > [(b-AN)-(dtcN)]N dt = TN [1- (a+c) N] -> PN [1- N] Define K= (5-d) Lo (Ze point aler 6'=d' N the dust of NK=K

NKK then dN 200 - Small perfurbation off N* + K What happent?

= N = K IS STABLE

- We have a system given by of dx = f(x)

- We can find fixed points by setting x = px

- We can see from previous examples tent the

quality of the f.p. is crucial for determing

system dynamics.

We want to know what hoppens when a system is pushed near it's fixed point:

Short are the dynamis of a publishetism of

terms of perturbation dynamics... new the fixed point

-Vishable: free perturbation Grows! dt > p - Fable: perhabetion Declare! life > p

Say & x = g(x) is the Eystern with F.P. x*

let $\eta(t) = x(t) - x^*$ ~ small perturbation accord from x^t Q! Does the perturbation grow or decline?

 $\dot{\eta} = \frac{d}{dt}(x(t) - x^*) = \frac{dx(t)}{dt} - \emptyset$ b/c x^* is constant $\dot{\eta} = \dot{x}$

i=x= f(x)= f(x*+7) 6/e x(t)=x*+7

 $f(x(t)) = f(x^* + \eta) \approx f(x^*) + \eta f'(x^*)$ $\delta(x^*) = \frac{dx}{dt} \mathcal{Q} x^* = \emptyset$ nang (xx) this is the linearization about xx か = ら(x*) カ → れ(と)=カモがか What does 7(t) bot like? looks familian ... MINE TORESTONE (AC) lagter) N = r N.... igrap, exponential Same with i = g'(x") 7 if $f(x^*) = \frac{26}{2x}|_{x^*} > x$, $7 \uparrow = if < 0$, exponential ducy if f(x)= 3/2/x < Ø, 7 + STABLE how, Toffer of (N) Ex) The Logistic Equ: N= -N(1-N) B(N) = -N - - N2 [tetolar] N = 3(N) **接** $\frac{\partial f(v)}{\partial v} = r - \frac{2rN}{k}$ $\frac{\partial f(v)}{\partial v} \Big|_{N^*} = \sqrt{r - \frac{2r(\phi)}{k}} = r \cdot \sqrt{spk}$ $\frac{\partial f(v)}{\partial v} \Big|_{N^*} = \sqrt{r - \frac{2rK}{k}} = r - 2r$ $= -r < \phi \neq \frac{\pi}{k}$ Not Note

3.6	4
	(+,-) Sloped & (x*) @ fixed point determines stability ~But How stable? Magnitude of 6'(x*)
	Characteristic timescale of the system - The time required for x(t) to vary significantly in the neighborhood of x*
	$=\frac{1}{15'(x^{*})1}$
	Given Kent for ree Jogistic eju, b'(10)=1 unshille g'(k)=-1 shille
	Tomescale = + High growth role -> short timescale
	Nonlinear shibility Analysis B'(x*) = Ø? -Sd': Normy can be said except on cose-by-cose basis.
	(a) $\dot{x} = -x^3$ (b) $\dot{x} = x^3$ (c) $\dot{x} = x^2$ (d) $\dot{x} = x^3$ In each case, $x^{\mu} = p$ if $b'(x^{\mu}) = p$ but shability different \dot{x} \dot{x}
	X X X
	Half-stable Perturbations neither (Induterminant) grow or decay!