LECTUR 01:(Introduction to computing with python)

Lecture 02:(Function and Modules)

Lecture 03:(Bisection Method)

Example1: A root of $x^3 - 10x^2 + 5 = 0$ lies in the interval (0, 1). Use rootsearch to compute this root with four-digit accuracy.

Class Task:

1. Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1,2] and use the Bisection method to determine an approximation to the root that is accounted to at least within 10^{-4} .

2. Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x = 0$ on [0,1].

Homework

b. Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 - 7x^2 + 14x - 6 = 0$ on each interval.

```
O localhost:8888/notebooks/Untitled9.ipynb?
Jupyter Untitled9 Last Checkpoint: 2 hours ago
File Edit View Run Kernel Settings Help
1 + % □ □ ▶ ■ C >> Code
                                                                            JupyterLab ☐ # Python [conda env:base] * ○ ■ =
    [20]:
          def f(x):
              return x**3-7*x**2+14*x-6
          def find_root(a, b):
              for i in range(100):
                  mid = (a + b) / 2
                  if f(mid) == 0 or abs(b - a) < 0.0001:
                      return mid
                  if f(a) * f(mid) < 0:</pre>
                      b = mid
                  else:
              return mid
           root = find_root(0,1)
          print("Root is:", root)
           Root is: 0.585784912109375
```

Lecture 04:(Newton-Raphson Method)

Use Newton's method to find solutions accurate to within 10^{-4} for the following problems.

```
1. x^3 + 3x^2 - 1 = 0, [-3,-2]
```


3. The equation $x^3 - 1.2x^2 - 8.19x + 13.23 = 0$ has a double root close to x = 2. Determine this root with the Newton-Raphson method within four decimal places.

2. Determine the two roots of sinx + 3cosx - 2 = 0 lies in the interval (-2,2). Use the Newton-Raphson method.

2. x - cosx = 0, $[0, \pi/2]$

```
Jupyter 2 Last Checkpoint: 11 hours ago
File Edit View Run Kernel Settings Help
                                                                                                                                          Trusted
1 + % □ □ 1 • 1 C • Code
                                                                                                   JupyterLab ☐ # Python [conda env:base] * ○ ■ =
    [12]: import math
          def f(x):
              return x-math.cos(x)
          def df(x):
              return 1+math.sin(x)
          def newton_raphson(x0, tol, max_iter):
              for i in range(max_iter):
                 x1 = x0 - f(x0) / df(x0)
                  if abs(x1 - x0) < tol:</pre>
                     return x1
                  x0 = x1
              return x0
          x0 = 1
          tol = 0.0001
          max_iter = 20
          root = newton_raphson(x0, tol, max_iter)
          print("Approximate root:", round(root, 4))
          Approximate root: 0.7391
```

Lecture 05:(Newton's Interpolation)

Example: The following table given the population of a town during the last six censuses.

Using the Newtown's interpolation formula estimate the population in 1923.

Year (x)	1911	1921	1931	1941	1951	1961
Population (y) (in thousands)	12	15	20	27	39	52

Class Work:

Exercise 01: The population of a town in the census is given below. Estimate the increase in population during the year 1895 to 1925.

Year	1891	1901	1911	1921	1931
Population (in thousands)	46	66	81	93	101

Exercise 05: Use appropriate interpolation formula to calculate the value of $e^{1.75}$ from the following data.

х	1.7	1.8	1.9	2.0
$y = e^x$	5.474	6.050	6.686	7.389

Exercise 05: Use appropriate interpolation formula to calculate the value of $e^{1.75}$ and $e^{1.96}$ from the following data.

x	1.7	1.8	1.9	2.0
$y = e^x$	5.474	6.050	6.686	7.389

```
Jupyter check Last Checkpoint: 2 days ago
File Edit View Run Kernel Settings Help
1 + % □ □ ▶ ■ C >> Code
    [10]: x = [1.7, 1.8, 1.9, 2.0]
          y = [5.474, 6.050, 6.686, 7.389]
          xp = 1.96
          n = len(x)
          h = x[1] - x[0]
          u = (xp - x[-1]) / h
          for i in range(1, n):
              for j in range(n-1, i-1, -1):
                 y[j] -= y[j-1]
          res = y[-1]
          term = 1
          for i in range(1, n):
              term *= (u + i -1) / i
              res += term * y[-(i+1)]
          print("Value at x =", xp, "is", round(res, 6))
          Value at x = 1.96 is -0.436456
```

Lecture 06:(Gauss Forward and Backward)

Example: Find the value of $e^{-1.7425}$ by Gauss Forward formula, given that

х	1.72	1.73	1.74	1.75	1.76
e-x	0.17907	0.17728	0.17552	0.17377	0.17204

Homework:

Exercise 03: Apply Gauss forward formula to find the value of f(x) at x = 3.75 given

x	2.5	3.0	3.5	4.0	4.5	5.0
f(x)	24.145	22.043	20.225	18.644	17.262	16.047

```
Jupyter check Last Checkpoint: 2 days ago
                                                                                                                                                   2
File Edit View Run Kernel Settings Help
1 + % □ □ 1 • 1 C → Code
                                                                                                        JupyterLab ☐ 🌼 Python [conda env:base] * 🔘 🗮 🧮
           Value at x = 1895 is 54.8528
    [12]: x = [2.5,3.0,3.5,4.0,4.5,5.0]
          y = [24.145,22.043,20.225,18.644,17.262,16.047]
xp = 3.75
           u = xp - x[1]
           for i in range(1, len(x)):
              for j in range(len(x)-1, i-1, -1):
                  y[j] -= y[j-1]
           r = y[1]; p = 1; f = 1
           for i in range(1, len(x)):
    f *= i
              k = (i+1)//2 if i%2 else i//2
              p *= (u - k + 1) if i%2 else (u + k - 1)
r += p * y[1 - k] / f
           print(round(r, 6))
           22.797655
```

Example: Apply Stirling's and Bessel's formula to find the value of f(1.22) from the following table which gives the values of $f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-x^2/2} dx$ at intervals of h = 0.5 from x = 0 to 2.5.

х	0.0	0.5	1.0	1.5	2.0	2.5
f(x)	0.0	0.19146	0.34134	0.43319	0.47725	0.49379

Lecture 07:(Lagranges's Interpolation)

Class Work

Example2: Using Lagrange's interpolation formula find y(2) from the following data

x	0	1	3	4	5
y	0	1	8	265	625

Example 5: By Lagrange's formula for inverse interpolation, determine the value of t when A = 85 given that.

x	2	5	8	4
y	94.8	87.9	81.3	68.7

