Section 51: Separable Extensions

Def: Let $f(x) \in F[x]$. An element $\alpha \in \overline{F}$ such that $f(\alpha) = 0$ is a zero of multiplicity v, if v is the greatest integer such that $(x - \alpha)^v$ is a factor of f(x) in $\overline{F}[x]$.

Thm. Let f(x) be irreducible in F[x]. Then all the zeros of f(x) in \overline{F} have the same multiplicity.

Corollary: If f(x) is irreducible in F[x], then f(x) has a factorization in $\overline{F}[x]$ of the form

$$a\prod_{i}(x-\alpha_{i})^{v}$$

where the α_i are the distinct zeros of f(x) in \bar{F} and $a \in F$.

Note: $\{F(\alpha): F\}$ is the number of distinct zeros of $irr(\alpha, F)$.

Thm. If E is a finite extension of F, then $\{E : F\}$ divides [E : F].

Thm. If K is a finite extension of E and E is a finite extension of F, that is, $F \leq E \leq K$, then K is separable over F if and only if K is separable over E and E is separable over F.

Corollary: If E is a finite extension of F, then E is separable over F if and only if each α in E is separable over F.

Lemma: Let \bar{F} be an algebraic closure of F, and let

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

be any monic polynomial in $\bar{F}[x]$. If $(f(x))^m \in F[x]$ and $m \cdot 1 \neq 0$ in F, then $f(x) \in F[x]$, that is, all $a_i \in F$.

Def: A field is *perfect* if every finite extension is a separable extension.

Thm. Every field of characteristic zero is perfect.

Thm. Every finite field is perfect.

Primitive Element Theorem: Let E be a finite separable extension of a field F. Then there exists $\alpha \in E$ such that $E = F(\alpha)$. α is called a *primitive element*. That is, a finite separable extension of a field is a simple extension.

Corollary: A finite extension of a field of characteristic zero is a simple extension.