Exercise 1

Consider the relational schema R ={A, B, C, D} and F ={AB \rightarrow C, B \rightarrow D}. Let the following be an instance of the relational schema R.

r(R):

А	В	С	D
a1	b1	c1	d1
a2	b2	c2	d2
а3	b3	c3	d3

- (a) What is the candidate key for R?
- (b) Are the following operations valid? (Explain).
 - i) insert (a1, b4, c4, d4)?
 - ii) insert (a3, b4, c3, d4)?
 - iii) insert (a4, b4, c2, d5)?
- (c) Is R in BCNF? If the answer is no, briefly explain why.

Answer.

- (a) The candidate key is the union of all attributes present in the left side of FDs: AB is the only candidate key for R.
- (b)
- i) Yes
- ii) Yes
- iii) No, violates FD: $B \rightarrow D$
- (c) No. AB is a candidate key, and B (in B \rightarrow D) is included in the candidate key AB.

Exercise 2

Assume we have this relation and the following functional dependencies for the relational schema R:

$$R = \{ A, B, C, D, E, F, G, H, I, J, K, M \}$$

```
FD1: A \rightarrow \{J, K\}
FD2: B \rightarrow \{ D, E \}
FD3: F \rightarrow \{G, H\}
FD4: I \rightarrow \{C\}
```

1. Is the normal form relation in BCNF? Why?

Answer.

- 1. This relation is in 1 NF because all attribute values are single and atomic. For example attribute J in FD1 is functionally dependent on A only (Not A, B and C)
- 2. FD3 violates 3NF as it is a transitive FD. Note that FD4 does not violate 3 NF because C is part of the PK.

```
A decomposition to 3NF
is R21(<u>A, B, C</u>, F, I, M)
R22(<u>F</u>, G, H)
```

3. FD4 violates BCNF as I is not a superkey. (R21(A, B, C, F, I, M)) A decomposition into BCNF is R31(<u>A</u>, <u>B</u>, F, <u>L</u>, M) R32(<u>I</u>, C)

The resulting decomposition of the relation R is:

R11(A, J, K)
R12(B, D, E)
R22(F, G, H)_
R31(A, B, F, I, M) attribute I becomes part of the PK as I determines C that is removed R32(F, C).

Exercise 3: If the set of functional dependencies $F = \{A \rightarrow BC, CD \rightarrow E, E \rightarrow C, D \rightarrow$ AEH, ABH \rightarrow BD, DH \rightarrow BC }, then what is the canonical cover of F?

Answer. $\{A \rightarrow BC, E \rightarrow C, D \rightarrow AEH, AH \rightarrow D\}$

Exercise 4: Consider a relation R with five attributes ABCDE. You are given the following dependencies: $A \rightarrow B$, $BC \rightarrow E$, and $ED \rightarrow A$.

- 1. List all keys for R.
- 2. Is R in 3NF?
- 3. Is R in BCNF?

Answer.

- 1. ACD, BCD, ECD
- 2. Yes (All attributes belong to some superkey, hence it satisfies 3NF)
- 3. No (A, BC, ED are not superkeys in the relation R:Multiple overlapping Candidate Keys)

Exercise 5: For the following relation schema and set of FD's:

R(A,B,C,D) with FD's $B \rightarrow C$, and $B \rightarrow D$.

- 1. Indicate all 3 NF violations.
- 2. Decompose the relations, as necessary, into collections of relations that are in 3 NF.

Answer. R(A,B,C,D) with FD's $B \rightarrow C$ and $B \rightarrow D$

- 1. Key is AB,3NFviolations are $B \rightarrow C$, $B \rightarrow D$ (Violates 2NF also)
- 2. R1(BC)R2(BD) R3(BA)

Exercise 6: Check relation is lossless or not.

$$FD = \{ R->NH , RC->G , RH->Rm , H->w \}$$
 Decompositions R1 -> (R,N,H,Rm)
$$R2 -> (H,W)$$

$$R3 -> (R,C,G)$$

ANSWER: lossless

	R	N	Н	W	Rm	С	G
R1	a 1	a 2	a 3	b 14	a 5	b 16	b 17
				a4			
R2	b 21	b 22	a 3	a 4	b 25	b 26	b 27
R3	a 1	b 32	b 33	b 34	b 35	a 6	a 7
		a2	a3	a4	a5		