

Purpose

- Update progress
- Define objective of project

Data

Cycling

Glucose

Devices

Cycling

power

bike computer

Glucose

dexcom

--- june 2020

libre

Platforms

Example training session (with preprocessed data)

Cohort selection

Start

Remove data with unknown/incorrect timezone

Select devices

Remove duplicate training sessions

15 athletes 4110 training sessions 38,988,915 samples

Cohort selection

Merge trainingpeaks with libre data

Resample from 1 sec to 1 min

Remove missing data of features

Remove missing data of shifted features

9 athletes 395 training sessions 17,841 samples

Calendar training sessions

TrainingPeaks

Libre

Scan at request

Historic 15 min average

Bubble imitates scan every 5 min

Glucose mg/dL

hyper

hypo

normal

Libre

Scan at request

Historic 15 min average

Bubble imitates scan

every 5 min

Hypo in 0.7 to 3.5% of measurements

Correlation

Feature engineering

- Add features: e.g. acceleration
- Sliding window approach: get historic information of features
 - Feature x_i at different timesteps

$$x_i(t), \ldots, x_i(t-15)$$

 Summary information over time period

sum, mean, std, iqr, etc.

Heart rate variability?

Objective

ETH zürich

Use machine learning to support patients with Type 1 Diabetes in glucose management

In which way?

Machine Learning

Use *large quantities* of (complex) data to find patterns/relations that more traditional statistical methods cannot find

Can model interactions between variables

Transfer Learning: use data from one model as information for another model

Example: model dexcom glucose data and use it for a model of libre glucose data

Possible prediction tasks

What is relevant?

- Predicting glucose levels at shorter intervals (every minute)?
- Predicting risk of hypoglycemia?
- Insight in real-time glycaemic response (which variables increase/decrease glucose levels)?
- .. different prediction task ?

Model

INPUT

Cycling variables of the last 15 (?) min

$$x_0(t),\ldots,x_0(t-15),\ldots$$

$$x_M(t),\ldots,x_M(t-15),$$

Summary statistics of cycling variables of the last 30 (?) min

$$\sum_s x_0(t-s), \ldots$$

$$\sum_s x_M(t-s),$$

Static variables (e.g. body weight)

$$x_{M+1},\ldots,x_K$$

Past glucose values

$$y(t-5), y(t-10), y(t-15), y(t-30), y(t-45)$$

black box model

OUTPUT

Subcutaneous glucose at current time

OR

Subcutaneous glucose in the future

$$y(t + 15)$$

