

Caracterizarea funcțiilor booleene

Definiția 1.75

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu: Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n = |Var(\varphi)|$.

Teorema 1.76

Fie $n \geq 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă φ în FND a.î. $H=F_{\varphi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=0$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$, luăm $\varphi:=\bigvee_{i=0}^{n-1}(v_i\wedge\neg v_i)$. Avem că $Var(\varphi)=\{v_0,\ldots,v_{n-1}\}$, așadar, $F_\varphi:\{0,1\}^n\to\{0,1\}$. Cum $v_i\wedge\neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_φ este de asemenea funcția constantă 0.

Caracterizarea funcțiilor booleene

Altcumva, multimea

$$T := H^{-1}(1) = \{(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n \mid H(\varepsilon_1, \dots, \varepsilon_n) = 1\}$$

este nevidă.

Considerăm formula

$$arphi := igvee_{(arepsilon_1,...,arepsilon_n) \in \mathcal{T}} \left(igwedge_{arepsilon_i = 1} v_i \wedge igwedge_{arepsilon_i = 0}
eg v_i
ight).$$

Deoarece $Var(\varphi) = \{v_1, \dots, v_n\}$, avem că $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$.

Demonstrăm că pentru orice $(\delta_1, \dots, \delta_n) \in \{0, 1\}^n$, avem că

$$F_{\varphi}(\delta_1,\ldots,\delta_n)=1\iff H(\delta_1,\ldots,\delta_n)=1,$$

de unde va rezulta imediat că $H = F_{\varphi}$.

Caracterizarea funcțiilor booleene

Fie $e: V \to \{0,1\}$ a.î. $e(v_i) = \delta_i$ pentru orice $i \in \{1,\ldots,n\}$. Atunci

Reduces
$$e^{+}(\varphi) = 1 \iff \bigvee_{(\varepsilon_{1}, \dots, \varepsilon_{n}) \in \mathcal{T}} (\bigwedge_{\varepsilon_{i} = 1} e(v_{i}) \land \bigwedge_{\varepsilon_{i} = 0} \neg e(v_{i})) = 1$$

$$\iff \bigvee_{(\varepsilon_{1}, \dots, \varepsilon_{n}) \in \mathcal{T}} (\bigwedge_{\varepsilon_{i} = 1} \delta_{i} \land \bigwedge_{\varepsilon_{i} = 0} \neg \delta_{i}) = 1$$

$$\iff \text{există} (\varepsilon_{1}, \dots, \varepsilon_{n}) \in \mathcal{T} \text{ a.î. } \bigwedge_{\varepsilon_{i} = 1} \delta_{i} = 1$$

$$\iff \text{există} (\varepsilon_{1}, \dots, \varepsilon_{n}) \in \mathcal{T} \text{ a.î. } \delta_{i} = \varepsilon_{i}$$

$$\text{pentru orice } i \in \{1, \dots, n\}$$

$$\iff (\delta_{1}, \dots, \delta_{n}) \in \mathcal{T}$$

$$\iff H(\delta_{1}, \dots, \delta_{n}) = 1.$$

Prin urmare,
$$F_{\varphi}(\delta_1, \ldots, \delta_n) = 1 \iff e^+_{\delta_1, \ldots, \delta_n}(\varphi) = 1$$

 $\iff e^+(\varphi) = 1$ pentru orice $e: V \to \{0, 1\}$ a.î. $e(v_i) = \delta_i$
pentru orice $i \in \{1, \ldots, n\} \iff H(\delta_1, \ldots, \delta_n) = 1$.

Caracterizarea funcțiilor booleene

Teorema 1.77

Fie $n \geq 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H=F_{\psi}$.

Dem.: Dacă $H(\varepsilon_1, \dots, \varepsilon_n) = 1$ pentru orice $(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=0}^{n-1} (v_i \vee \neg v_i).$$

Altcumva, mulțimea

$$F:=H^{-1}(0)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=0\}$$

este nevidă.

Considerăm formula
$$\psi := \bigwedge_{\substack{(\varepsilon_1, \dots, \varepsilon_n) \in F}} \left(\bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i\right).$$
 Se demonstrează că $H = F_{\psi}$ (exercițiu!).

3

Caracterizarea funcțiilor Booleene

Exemplu: Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

ε_1	ε_2	ε_3	$H(\varepsilon_1, \varepsilon_2, \varepsilon_3)$	
0	0	0	0	$D_1 = v_1 \vee v_2 \vee v_3$
0	0	1	0	$D_2 = v_1 \vee v_2 \vee \neg v_3$
0	1	0	1	$C_1 = \neg v_1 \wedge v_2 \wedge \neg v_3$
0	1	1	0	$D_3 = v_1 \vee \neg v_2 \vee \neg v_3$
1	0	0	1	$C_2 = v_1 \wedge \neg v_2 \wedge \neg v_3$
1	0	1	1	$C_3 = v_1 \wedge \neg v_2 \wedge v_3$
1	1	0	1	$C_4 = v_1 \wedge v_2 \wedge \neg v_3$
1	1	1	1	$C_5 = v_1 \wedge v_2 \wedge v_3$

$$\varphi = C_1 \vee C_2 \vee C_3 \vee C_4 \vee C_5$$
 în FND a.î. $H = F_{\varphi}$.

$$\psi = D_1 \wedge D_2 \wedge D_3$$
 în FNC a.î. $H = F_{\eta h}$.

4

Forma normală conjunctivă / disjunctivă

Teorema 1.78

Orice formulă φ este echivalentă cu o formulă φ^{FND} în FND și cu o formulă φ^{FNC} în FNC.

Dem.:

Fie $Var(\varphi)=\{x_1,\ldots,x_n\}$ și $F_{\varphi}:\{0,1\}^n \to \{0,1\}$ funcția booleană asociată. Aplicând Teorema 1.76 cu $H:=F_{\varphi}$, obținem o formulă φ^{FND} în FND a.î. $F_{\varphi}=F_{\varphi^{FND}}$. Așadar, conform Propoziției 1.74.(ii), $\varphi\sim\varphi^{FND}$.

Similar, aplicând Teorema 1.77 cu $H:=F_{\varphi}$, obţinem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

4

a înlocui

Forma normală conjunctivă / disjunctivă

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 și $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi) \text{ cu } \neg\varphi \land \neg\psi \quad \text{ si } \quad \neg(\varphi \land \psi) \text{ cu } \neg\varphi \lor \neg\psi.$$

Pasul 3. Pentru FNC, se aplică distributivitatea lui ∨ fața de ∧, pentru a înlocui

$$\varphi \vee (\psi \wedge \chi) \text{ cu } (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ si } \quad (\psi \wedge \chi) \vee \varphi \text{ cu } (\psi \vee \varphi) \wedge (\chi \vee \varphi).$$
 Pentru FND, se aplică distributivitatea lui \wedge fața de \vee , pentru

$$\varphi \wedge (\psi \vee \chi) \operatorname{cu} (\varphi \wedge \psi) \vee (\varphi \wedge \chi) \quad \text{si} \quad (\psi \vee \chi) \wedge \varphi \operatorname{cu} (\psi \wedge \varphi) \vee (\chi \wedge \varphi).$$

Forma normală conjunctivă / disjunctivă

Exemplu

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

Avem

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența, că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

6

8

Definiția 1.79

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obținem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 1.80

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 1.81

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \to \{0,1\}$ este model al lui C.

Clauze

Definiția 1.82

O clauză C este trivială dacă există un literal L a.î. $L, L^c \in C$.

Propoziția 1.83

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Dem.: Exercițiu.

Clauze

 $S = \{C_1, \dots, C_m\}$ este o mulțime de clauze. Dacă m = 0, obținem mulțimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 1.84

Fie $e: V \to \{0,1\}$. Spunem că e este model al lui \mathcal{S} sau că e satisface \mathcal{S} și scriem $e \models \mathcal{S}$ dacă $e \models C_i$ pentru orice $i \in \{1, ..., m\}$.

Definiția 1.85

 ${\mathcal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e:V \to \{0,1\}$ este model al lui $\mathcal{S}.$

Clauze

Propoziția 1.86

- ▶ Dacă S conține clauza vidă \Box , atunci S nu este satisfiabilă.
- ▶ ∅ este validă.

Dem.: Exercițiu.

Exemplu

 $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\} \text{ este satisfiabilă}.$

Dem.: Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu

 $S = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$ nu este satisfiabilă.

Dem.: Presupunem că \mathcal{S} are un model e. Atunci

 $e(v_1) = e(v_3) = 1$ și, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem

 $e(v_2)=0$. Rezultă că $e(v_2)=e(\neg v_1)=0$, deci e nu satisface $\{\neg v_1,v_2\}$. Am obținut o contradicție.

Unei formule φ în FNC îi asociem o mulțime de clauze \mathcal{S}_{φ} astfel:

Fie

$$\varphi := \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obținută considerând toți literalii $L_{i,j}, j \in \{1, \ldots, k_i\}$ distincți. Fie \mathcal{S}_{φ} mulțimea tuturor clauzelor $C_i, i \in \{1, \ldots, n\}$ distincte.

 \mathcal{S}_{φ} se mai numește și forma clauzală a lui φ .

Propoziția 1.87

Pentru orice evaluare $e:V \to \{0,1\}$, $e \vDash \varphi$ ddacă $e \vDash \mathcal{S}_{\varphi}$.

Dem.: Exercițiu.