1º Trabalho de Física Computacional (MEFT/IST)

 1° semestre 2020-21

Fernando Barão, Jorge Vieira, Miguel Orcinha

Entrega do trabalho

Até às 19H de dia 14 de Novembro (sábado) através do svn.

Não se esqueçam de fazer commit de todos ficheiros com excepção dos ficheiros *.o

A operação svn status permite identificar os ficheiro ainda não commited ou ainda não sob controlo de svn.

Correcção do exercício

Em cada grupo, foi criada a pasta **trab01** que contém as seguintes pastas e ficheiros (não se esqueça de fazer syn update):

De notar:

- O programa principal que usarem para testar o vosso código deve estar em main/.
- As classes (ficheiros "header" e "source") desenvolvidos devem estar na pasta src/.
- O Makefile a usar deve possuir as seguintes tarefas definidas:
 - make clean: apagar os ficheiros objecto "bin/*.o" e a biblioteca "lib/libFC.a"
 - make trab01: compilação do programa main main_trab01.C existente en main/
 - make lib: produção da biblioteca do trabalho libFC.a

Passos que serão seguidos na correcção do exercício.

- Usaremos o programa main_trab01.C que se encontra na pasta main/ e cujo conteúdo se lista ao longo das alíneas abaixo.
 - Essas linhas de código servem de guião para a construção dos métodos que se pedem no programa e que serão testados através da execução do programa principal.
- Utilizaremos o Makefile de cada grupo existente em trab01 para testar o trabalho, ou seja, criar o executável e a biblioteca
- Correremos o executável de cada grupo situado na pasta do grupo trab01, fazendo:
 - ./bin/main_trab01.exe

Quotação

alíneas	quotação
a,b,c,d	15 valores
f,g	5 valores

Enunciado

A actividade solar varia no tempo, possuindo uma correlação directa com um indicador que corresponde ao número de manchas solares que se observam na sua superfície. O número de manchas solares ao longo do tempo é fornecido no ficheiro SunspotNumberDATA2020.txt, que pode ser obtido em sidc¹.

Conteúdo do ficheiro

```
Column 1-3: Gregorian calendar date

- Year

- Month

- Day

Column 4: Date in fraction of year

Column 5: Daily total sunspot number.

A value of -1 indicates that no number is available for that day (missing value).

Column 6: Daily standard deviation of the input sunspot numbers from individual stations.

Column 7: Number of observations used to compute the daily value.

Column 8: Definitive/provisional indicator.

- A blank indicates that the value is definitive.

- A `*` symbol indicates that the value is still provisional and is subject to a possible revision (Usually the last 3 to 6 months)
```

Com este trabalho pretende-se fazer a leitura de um sinal que é variável em tempo ($s(t) \equiv$ número de sunspots , $time\ series$) e a sua análise.

O trabalho assenta na construção de duas classes C++, DataReader e DataManip, com a segunda a herdar da primeira.

Os métodos de leitura do ficheiro de dados e os dados devem fazer parte da classe *DataReader*. Os métodos de análise do sinal devem ser incluídos na classe *DataManip*.

O trabalho será testado usando o programa que se segue (a lista de include files pode não estar completa), e que visa testar a seguinte sequência:

a) Implemente a leitura do ficheiro de dados que deve ser realizada na classe **DataReader**, nomeadamente a leitura da coluna 4 do ficheiro (coordenada temporal em anos) e a leitura do número de spots do sol (sunspot number), que se encontra na coluna 5, e armazene a informação ("date in fraction of year", "sunspot number") num *container* vector<pair<double, double>> no interior da classe **DataReader**.

Na parte inicial do programa implementamos também um vector de objectos ROOT que permitirá armazenar os objectos ROOT criados no programa. Instanciamos finalmente, após termos testado a existência do ficheiro de dados, a class *DataManip*.

Nota: Existem medidas sem significado físico com o valor -1 nos anos mais antigos (até ao final de 1848). Sugere-se assim que o armazenamento de valores e a análise seja feita a partir do ano de 1849 (inclusive).

```
#include "DataReader.h"
#include "DataManip.h"

#include <iostream>
#include <iomanip>
#include <vector>
#include <utility>
```

¹http://sidc.be/silso/datafiles#total

```
8
    #include <complex>
9
      #include <vector>
10
      #include "TObject.h"
11
      #include "TFile.h"
12
      #include "TGraph.h"
13
      #include "TMultiGraph.h"
14
15
      int main() {
       // create a ROOT object manager
16
17
       // that will allow us to keep track of object created and use it to store them into a file and
            delete them
        std::vector<T0bject*> R00Tmanager;
19
20
        // check if data file exists otherwise quit
21
        if (!DataReader::FileExists("SunspotNumberDATA2020.txt")) exit(1);
22
23
        // create DataManip object
24
        DataManip D("SunspotNumberDATA2020.txt");
```

b) Obtenha o vector de dados (coordenada tempo em anos, sunspot number) e o seu gráfico.

```
// get vector with all data read (time, value)
auto V = D.GetDataVector();
std::cout << "number of data points read: " << V.size() << std::endl;

// get a graph (R00T TGraph) with all data
auto Gdata = D.GetDataGraph(); // use marker style 20, marker size 0.4 and color kBlue+1. the TGraph should be named 'Gdata'
R00Tmanager.emplace_back(Gdata);</pre>
```

c) Obtenha um novo vector de dados Vsort (coordenada tempo em ano fraccionário, sunspot number)
que esteja ordenado por ordem decrescente do sunspot number.
 Imprima para o ecran os 10 valores mais elevados.

```
34
      // make a new vector (value, time) sorted by sunspot number (from higher to lower values)
35
      // vector name: Vsort
36
      auto Vsort = D.GetDataVectorSorted(\theta); // \theta= descending order, 1=ascending order
37
38
      // print 10 highest values
39
      int c = 0;
40
      for (auto const& x: Vsort ) {
          std::cout << c << " | " << "(" << std::setprecision(7) << x.first << ", " << x.second << ")" <<
41
              std::endl;
42
          C++;
43
          if (c == 10)break;
44
```

d) Obtenha as derivadas temporadas temporais em cada ponto, calculando com o auxílio da biblioteca STL as diferenças entre pontos consecutivos.

Obtenha o gráfico das derivadas ao longo do tempo e o histograma dos valores das derivadas. A fórmula numérica da derivada é:

$$\frac{df}{dt}(x_i) = \frac{f(x_{i+1}) - f(x_i)}{t_{i+1} - t_i}$$

```
// get and plot the data time derivatives: df/dx(xi) = [s(i+1) - s(i)] / Delta t_i
// use STL to make differences
// use again TGraph
auto Vderiv = D.GetDataDerivativeVector(); // (time, derivative)
auto GdataDeriv = D.GetDataDerivativeGraph(); // use marker style 20, marker size 0.4 and color kGreen+2. the TGraph should be named 'GdataDeriv'
auto HdataDeriv = D.GetDataDerivativeHisto(); // the Histogram should be named 'HdataDeriv'
R00Tmanager.emplace_back(GdataDeriv);
R00Tmanager.emplace_back(HdataDeriv);
```

e) As variações do sinal com pequeno intervalo de tempo correspondem a variações de alta frequência. A filtragem destas frequências altas pode ser conseguida através da realização da média deslizante com M medidas. Assim, para um sinal amostrado (sampled) em tempo N vezes,

$$\{s_0, s_1, s_2, \cdots, s_{N-3}, s_{N-2}, s_{N-1}\}$$

vamos criar um sinal médio com o mesmo número de N elementos, de acordo com o seguinte algoritmo:

$$\bar{s}_M = \{s_0, s_1, \cdots, s_{\frac{M}{2}-1}, \frac{1}{M} \sum_{i=0}^{M-1} s_i, \frac{1}{M} \sum_{i=1}^{M} s_i, \cdots, s_{N-\frac{M}{2}}, s_{N-\frac{M}{2}+1}, \cdots, s_{N-1}\}$$

No código que se segue deve implementar os métodos que permitam:

- obter os gráficos dos sinais médios com M=11,181 dias cujas características gráficas devem ser as seguintes: usar a opção "L" do TGraph e ainda definir as cores de acordo com 11 dias=kYellow, 181 dias=kMagenta
- obter um gráfico TMultiGraph onde o sinal original é representado por MarkerStyle=20,
 MarkerSize=0.4 e MarkerColor=kBlue+1 e os sinais médios apareçam sobrepostos com as cores e opções definidas anteriormente
- obter um gráfico TMultiGraph onde os sinais médios apareçam sobrepostos com as cores e opções definidas anteriormente

```
55
      // A way of smoothing a signal (get rid of very high frequencies) is making a moving average
56
      // Get a vector with the moving average time array (time, moving average signals)
57
      auto Vsmooth181 = D.GetMovingAverage(181);
58
      auto Gsmooth11 = D.GetMovingAverageGraph(11, "g11"); // args: números de dias, nome do objecto.
          LineColor=kYellow
59
      auto Gsmooth181 = D.GetMovingAverageGraph(181, "g181"); // args: números de dias, nome do objecto.
          LineColor=kMagenta
60
61
      // make a new graph superimposing the two graphs: Gdata and Gsmooth
      TMultiGraph *G1 = new TMultiGraph("Gmult1", "Gmult1");
62
      G1->Add(Gdata, "P"); //only points
63
64
      G1->Add(Gsmooth11, "L"); // lines
65
      G1->Add(Gsmooth181, "L"); // lines
66
67
      // make a new graph superimposing the two graphs: Gdata and Gsmooth
68
      TMultiGraph *G2 = new TMultiGraph("Gmult2", "Gmult2");
69
      G2->Add(Gsmooth11, "L"); // lines
70
      G2->Add(Gsmooth181, "L"); // lines
71
72
      ROOTmanager.emplace_back(G1);
73
      R00Tmanager.emplace_back(G2);
```

74 R00Tmanager.emplace_back(Gsmooth11);
75 R00Tmanager.emplace_back(Gsmooth181);

f) Uma outra forma de analisarmos a periodicidade temporal de um sinal é através do estudo das auto-correlações, ou seja, a correlação cruzada com o próprio sinal. Para isso, tomamos uma sub-amostra de dados composta de n elementos

$$X : \{s_i, s_{i+1}, s_{i+2}, \cdots, s_{i+n-2}, s_{i+n-1}\}$$

que consideremos representativos da amostra total (ou seja, que possua a variabilidade temporal que procuramos) e vamos procurar ver a sua relação com uma outra sub-amostra consecutiva com o mesmo número de elementos n e que se inicie num outro instante avançado, ou seja, após um certo "time shift" k

$$X':\{s_{i+k},s_{i+k+1},s_{i+k+2},\cdots,s_{i+k+n-2},s_{i+k+n-1}\}$$

A maneira gráfica de ver esta correlação será fazer um gráfico simultâneo dos pontos das duas subamostras: $\{(s_i,s_{i+k}),(s_{i+1},s_{i+k+1}),\cdots,(s_{n-k-1},s_{n-1})\}$. Caso existisse uma boa correlação linear, veríamos os pontos fortemente alinhados ao longo de uma recta. Quanto mais forte este alinhamento maior a sua correlação.

Em termos estatísticos, a forma de medir esta correlação entre as sub-amostras cuja composição depende do "time shift" k, X=[1849,2020-k] e X'=[1849+k,2020], faz-se usando o seguinte coeficiente:

$$R = \frac{E[(x_i - \mu_1)(x_{i+k} - \mu_2)]}{\sigma_1 \sigma_2} = \frac{\sum_i \left[(x_i - \mu_1)(x_{i+k} - \mu_2) \right]}{\sqrt{\sum_i \left(x_i - \mu_1 \right)^2 \sum_i \left(x_{i+k} - \mu_2 \right)^2}}$$

onde:

- μ_1 : valor médio da amostra X
- μ_2 : valor médio da amostra X'
- σ_1,σ_2 : desvios padrão das duas amostras

Procure determinar as componentes periódicas do sinal estudando as correlações de pequeno período (até 1 ano) e de grande período (anos). O factor chave para a identificação das frequências é o passo temporal Δt que irá utilizar na análise do sinal. Note que o passo mínimo de tomada do sinal é 1 dia.

No código que se segue propôe-se assim que determine e faça gráficos:

- do coeficiente de auto-correlação do sinal para grandes períodos de tempo utilize um "time shift" k que varie no intervalo [1,25] anos e com um passo temporal grande ($\Delta t=1/4$ ano).
- do coeficiente de auto-correlação do sinal para pequenos períodos de tempo utilize um "time shift" k que varie no intervalo [0,1] ano e com um passo temporal pequeno ($\Delta t=1$ dia, ou seja, $\Delta t=1/365$ ano).

Faça os gráficos que mostrem a evolução do coeficiente de correlação com o k para o passo temporal grande e pequeno.

Nota: Os objectos TGraph possuem por defeito todos o mesmo nome ("graph"). Por isso para que possam ser armazenados no ficheiro com nomes diferentes, devem ser renomeados, de acordo com os argumentos que se mostram de seguida.

```
auto Gcorr = D.GetAutocorrelationGraph(1.,25.,1./4, "Gcorr"); // use marker style 22, marker size 0.4
and color kGreen+2. the TGraph should be named 'Gcorr'

auto Gcorr_detailed = D.GetAutocorrelationGraph(0.,1.,1./365, "Gcorr_detailed"); // use marker style
22, marker size 0.4 and color kGreen+4. the TGraph should be named 'Gcorr_detailed'

ROOTmanager.emplace_back(Gcorr);
ROOTmanager.emplace_back(Gcorr_detailed);
```

Com base nos dois gráficos anteriores determine as componentes principais periódicas do sinal. Escreva e justifique a sua resposta no ficheiro grupoID trab01.txt.

Nota final do exercício

No programa main a ser testado que inclui todas as linhas de código aqui listadas, é ainda realizada a salvaguarda de todos os objectos ROOT para um ficheiro *ftrab01.root*.

Fim do enunciado do 1º trabalho de Física Computacional