Question 1					
Correct					
Marked out of 1.00					
F Flag question					

A binary number is a combination of 1s and 0s. Its nth least significant digit is the nth digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

NAME: HANSIGA.K. G REG NO: 240701162

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- \cdot . The value of the 4^{th} index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Constraints

 $0 \le \text{number} < 2^{31}$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The only line contains an integer, number.

STDIN Function $32 \rightarrow number = 32$ Sample Output 0 Explanation 0 Convert the decimal number 32 to binary number: $32_{10} = (100000)_2$. The value of the 4th index from the right in the binary representation is 0. Sample Case 1 Sample Input 1 STDIN Function 77 \rightarrow number = 77 Sample Output 1 Explanation 1

Convert the decimal number 77 to binary number: $77_{10} = (1001101)_2$.

The value of the 4th index from the right in the binary representation is 1.

Sample Input 0

```
1 - /*
     * Complete the 'fourthBit' function below.
2
3
     * The function is expected to return an INTEGER.
4
     * The function accepts INTEGER number as parameter.
     */
 6
    int fourthBit(int number)
8
9
10
        int binary[32];
        int i=0;
11
12
        while(number>0)
13
            binary[i]=number%2;
14
            number/=2;
15
            i++;
16
17
        if(i>=4)
18
19
20
            return binary[3];
21
22
        else
23
        return 0;
24
25
26
```

		Test	Expected	Got	
	~	printf("%d", fourthBit(32))	0	ø	~
	~	printf("%d", fourthBit(77))	1	1	~

Passed all tests! 🗸

Question 2 Correct Marked out of 1.00	Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p th element of the list, sorted ascending. If there is no p th element, return 0.				
⟨► Flag question	Example				
	n = 20				
	p = 3				
	The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if $p = 3$, then 4 is returned. If $p > 6$, 0 would be returned.				
	Function Description				
	Complete the function pthFactor in the editor below.				
	pthFactor has the following parameter(s):				
	int n: the integer whose factors are to be found				
	int p: the index of the factor to be returned				
	Returns:				
	int: the long integer value of the p th integer factor of n or, if there is no factor at that index, then 0 is returned				
	The the folig meger value of the particle of thos, it there is no factor at that made, then of stetamed				
	Constraints				
	$1 \le n \le 10^{15}$				
	$1 \le p \le 10^9$				

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

Sample Case 0 Sample Input 0

Input from stdin will be processed as follows and passed to the function.

STDIN Function $10 \rightarrow n = 10$ $3 \rightarrow p = 3$

Sample Output 0

5

Explanation 0

Factoring n = 10 results in $\{1, 2, 5, 10\}$. Return the $p = 3^{rd}$ factor, 5, as the answer.

Sample Case 1

Sample Input 1

STDIN Function

 $10 \rightarrow n = 10$

 $5 \rightarrow p = 5$

Sample Output 1

0

Explanation 1

Factoring n = 10 results in $\{1, 2, 5, 10\}$. There are only 4 factors and p = 5, therefore 0 is returned as the answer.

Sample Case 2

Sample Input 2

STDIN Function

 $1 \rightarrow n = 1$

 $1 \rightarrow p = 1$

Sample Output 2

1

Explanation 2

Factoring n = 1 results in {1}. The p = 1st factor of 1 is returned as the answer.

```
1 - /*
     * Complete the 'pthFactor' function below.
     * The function is expected to return a LONG INTEGER.
     * The function accepts following parameters:
     * 1. LONG INTEGER n
     * 2. LONG_INTEGER p
    long pthFactor(long n, long p)
10
11
12
        int count=0;
13
        for(long i=1;i<=n;++i)</pre>
14
15
            if(n\%i==0)
16 -
17
                count++;
                if(count==p)
18
19
20
                    return i;
21
22
23
24
        return 0;
25
26 }
```

	Test	Expected	Got	
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	printf("%ld", pthFactor(10, 5))	ø	ø	~
~	<pre>printf("%ld", pthFactor(1, 1))</pre>	1	1	~

Passed all tests! 🗸