

Duomenų bazės

DAUGIAREIKŠMĖS PRIKLAUSOMYBĖS

Paskaitos tikslas

Išklausius gebėti:

- Apibrėžti daugiareikšmę duomenų priklausomybę
- Paaiškinti kaip nustatomos duomenų daugiareikšmės priklausomybės
- Suformuluoti daugiareikšmių priklausomybių išvedimo taisykles
- Apibrėžti trivialią daugiareikšmę priklausomybę

Dalykinės srities pavyzdys

Svarbi savybė. Informacija apie tai, kokiomis operacijomis gaminys gaminamas, yra nepriklausoma nuo informacijos apie to gaminio sandėliavimo vietą ir kiekį joje.

Daugiareikšmės priklausomybė (DP)

Paimkime schemos **R** atributy poaibius **X**, **Y** ir **Z**=**R**-**X**-**Y**.

Schemos R duomenys tenkina daugiareikšmę priklausomybę X-->>Y, jei bet kokiame schemos R egzemplioriuje r(R) esant dviem eilutėms s ir t, kurių X reikšmės sutampa s(X)=t(X), tame pačiame egzemplioriuje r(R) būtinai egzistuos tokios u ir v eilutės, kad bus tenkinamos tokios sąlygos:

u(X)=v(X)=s(X)=t(X)

u(Y)=s(Y)

u(Z)=t(Z)

v(Y)=t(Y)

v(Z)=s(Z)

r(R)

	GAMINYS	OPERACIJA	SANDĖLIS	KIEKIS
S	G1	01	S2	K2
t	G1	02	S1	K1
u	G1	01	S1	K1
V	G1	02	S2	K2
	G2	02	S2	К3
	G2	03	S2	К3
	G3	01	S1	K4
	X	Υ	Z	

Korektiškos DP

u(X)=v(X)=s(X)=t(X) u(Y)=s(Y) u(Z)=t(Z)v(Y)=t(Y) v(Z)=s(Z)

Iš *s* ir *t* gautos eilutės *u* ir *v* neturi pasakyti nieko naujo, o tik tą patį ką *s* ir *t*.

Nekorektiškos DP

u(X)=v(X)=s(X)=t(X) u(Y)=s(Y) u(Z)=t(Z)v(Y)=t(Y) v(Z)=s(Z) Eilutėje *u* teigiama, kad gaminys G1 saugomas sandėlyje S1, o eilutėje *v* – kad gaminys G2 saugomas sandėlyje S2, nors nei *s*, nei *t* eilutėse to nebuvo pasakyta.

DP išvedimo taisyklė 1

Kiekviena funkcinė priklausomybė yra ir daugiareikšmė priklausomybė:

Atvirkščias teiginys, kad kiekviena DP kartu yra ir FP, yra neteisingas.

DP išvedimo taisyklė 2

```
Jei teisinga DP X -->> Y, tai
teisinga ir DP X -->> Z; čia Z = R-X-Y.
```

Pavyzdys:

R={GAMINYS, OPERACIJA, SANDĖLIS, KIEKIS} X={GAMINYS} Y={OPERACIJA}

GAMINYS -->> OPERACIJA
GAMINYS -->> SANDĖLIS, KIEKIS

Trivialioji DP

Schemoje R DP X-->>Y yra trivialioji, jei:

1) X,Y=R – schemoje nėra kitų atributų išskyrus atributus iš aibių X ir Y

arba

Y⊆X – Y atributų aibė sutampa su aibe X arba yra X poaibis.

```
* leidyklos pavadinimas * gaminys * išleidimo vieta * v x y x
```


Apibendrinimas

- Duomenų daugiareikšmės priklausomybės apibrėžimas
- Kaip nustatomos duomenų daugiareikšmės priklausomybės
- Daugiareikšmių priklausomybių išvedimo taisyklės
- Trivialiosios daugiareikšmės priklausomybės apibrėžimas

Pabaiga