## Pratique de situation-problème : Le métro

## 1) Variables

x: Nombre de wagons de type A y: Nombre de wagons de type B

### 2) Inéquations

$$25x + 40y \ge 520$$

$$x + 1,25y \le 18$$

$$y > x$$

$$y - x \le 10$$

$$x \ge 0, y \ge 0$$

## 3) Polygone de contraintes



# 4) Fonction objectif Maximiser le nombre de passagers, P = 25x + 40y

#### 5) Droite baladeuse et recherche de la solution optimale

Pente = 
$$\frac{-25}{40} = \frac{-5}{8}$$

Le sommet « maximal » est A.

Comme le sommet A n'a pas de coordonnées entières, il faut étudier les points à l'intérieur du polygone, mais près du sommet A, comme (2, 12) et (3, 12).

À l'aide de la droite baladeuse, on détermine que (3, 12) engendrera le maximum de passagers, soit 555.

### 6) Réponse

Pour maximiser le nombre de passagers (555), il faudrait que chaque rame soit composée de 3 wagons de type A et 12 wagons de type B.

# 7) Réponse de la question bonus

Pour transporter 525 passagers par rame, il faudrait qu'elle soit composée de 5 wagons de type A et 10 wagons de type B. Une telle rame coûterait 17,5 M\$.