선형대수 Term Project

SVD and **PCA**

12/14: Video record lecture

12/16: Live zoom lecture for Q/A

Introduction

- 1. Implement SVD for randomly generated 100-D vectors
- 2. Find some principal component
- 3. Represent 100-D vectors with the selected principal component vectors
- 4 Discuss the errors in representing vectors with partial basis (less than 20~30 basis vectors)

Principal Component Analysis

- \Box Correlation/Covariance matrix : $R = A^TA$
 - The origin should be included in the vector space
- ☐ The larger is singular value, the more dominant is the basis vector.

Generate Matrix A (1/2)

- Generate 100-D vectors with random number
 - \blacksquare [x₁, x₂, x₃, , x₁₀₀]
 - Define random number range for elements
 - 1000 vectors are generated
- ☐ Design specific relations between 2 selected elements
 - Ex: $x_1 = x_2, x_5 = -2x_7$
 - Random number range: -100 ~ +100
 - Define 5 relations between 2 elements
 - > Total 10 elements are selected
- ☐ The other elements
 - 45 elements: Random number range: -20 ~ +20
 - 45 elements: -5 ~ +5

Generate Matrix A (2/2)

- ☐ Goal: principal components generation
 - Some elements are widely distributed
- ☐ Example for 5-D vectors generation
 - $x_1 = 2x_2 : x_2 \text{ range } -100 \sim 100$
 - x_3 , x_4 : range $-20 \sim 20$
 - x_5 : range $-5 \sim 5$
- ☐ Generated vectors
 - **■** [90, 45, -12, 14, 2]
 - **■** [-120, -60, 16, -9, -1]
 - **■** [28, 14, -2, 18, 0]

SVD and PCA

- ☐ Generated 100-D vectors in row of matrix A
 - A: 1000x100 matrix
 - A^TA : 100x100 matrix
 - Basis of 100-D vectors are in matrix U
- ☐ Select principal components
 - Select the principal components (eigenvectors) with the largest singular values

Vector Representation

Represent 100-D vectors

- Increase the number of principal components from 10, 15, 20, 25, ..., rank (A)
- 100 randomly generated 100-D vectors

☐ Check the errors in representation

- Vector distances between the generated vector and represented vectors with the basis vector.
- Plot the graph for the average distance of 100 vectors w.r.t the number of basis vectors
 - > X-axis: 10, 15, 20, 25, 30, ···.rank(A)
 - ➤ Y-axis: average distance for each basis

Report Submission

- ☐ Due: 12/19 (Sunday) 21:00
 - Upload pdf file to LMS homework
- Report
 - Ppt type 15~20 pages
 - Describe your definition and discussion
 - No Presentation
 - No codes explanation in the report
- ☐ Use library
 - C/C++/Python(numpy)/matlab …
 - You can use fully the functions and classes in the open sources.

