Logical and Theoretical Foundation of CS

CAU

Dependable Systems Group D. Nowotka, P. Fleischmann

Example solution for Series #6

Christian-Albrechts-Universität zu Kiel

Technische Fakultät

Exercise 1	1	0 Points
You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer	er.	
a) If $\varphi \in \Phi$ is a formula in CNF and C is a clause in φ that is a contradiction then φ is a contradiction.	⊗ true) false
b) If a clause containts $p \lor \neg p$ for an atom $p \in A$ then the clause is a tautology.	⊗ true) false
c) For checking the validity of a formula in CNF it suffices to check one clause for validity.) true	⋈ false
d) The naïve algorithm for transforming a formula into CNF has polynomial run-time in the number of atoms.) true	⋈ false
e) The CNF of a formula is unique.	○ true	\bigotimes false
f) The Horn-SAT algorithm has exponential run-time.	\bigcirc true	\bigotimes false
g) The Horn-SAT algorithm is non-deterministic.	\bigcirc true	\bigotimes false
h) An atom $p \in A$ is a clause.	⊗ true	○ false
i) An atom $p \in A$ is a formula in CNF.	⊗ true	○ false
j) Two clauses of a formula in CNF are not allowed to have the same clauses.	\bigcirc true	\bigotimes false
Exercise 2 Give the following definitions and notations:	3.	.5 Points
a) Clause. b) Formula $\varphi \in \Phi$ in CNF. c) Horn clause.		(1P) (1P) (1.5P)
Solution: a) A formula is a clause if it is a disjunction of literals. b) φ is a conjunction of clauses. c) A clause is a Horn clause if exactly one literal is a positive atom. 		(0.5+0.5P) (0.5+0.5P) (0.5+0.5+0.5P)
 Exercise 3 a) Prove the following remaining cases from the theorem that if η is a tautology the 1) For formulae φ₁, φ₂ ∈ Φ it holds ¬φ₁ ∧ (φ₂ ∨ ¬φ₂) ⊢ φ₁ → φ₂. 2) For formulae φ₁, φ₂ ∈ Φ it holds φ₁ ∧ ¬φ₂ ⊢ ¬(φ₁ → φ₂). b) Transform the following formula into CNF by using the naïve algorithm: φ = ¬(ρ 	n η is a the	(4.5P) (4P)
c) Apply the Horn-SAT algorithm on $(a - (n)/(-a)/(-e)) \wedge (a/(-e)/(-r)) \wedge r$	` -	(4D)

Solution:

Logical and Theoretical Foundation of CS

a) 1) We have $\neg \varphi_1 \land (\varphi_2 \lor \neg \varphi_2)$ as premise. (1)	(0.5P)
The \land elimination rules on (1) give $\neg \varphi_1$ (2)	(0.5P)
and $(\varphi_2 \vee \neg \varphi_2)$ (3)	(0.5P)
For proving $\varphi_1 \to \varphi_2$ the \to -introduction rule needs to be applied.	(0.5P)
Thus assume φ_1 . (4)	(0.5P)
The \wedge -introduction rule on (2) and (4) gives $\neg \varphi_1 \wedge \varphi_1$. (5)	(0.5P)
(5) is a contradiction and by (cd) we get \perp . (6)	(0.5P)
By ex falso quodlibet we get φ_2 . (7)	(0.5P)
By \rightarrow -introduction we get finally $\varphi_1 \rightarrow \varphi_2$.	(0.5P)
2) We have $\varphi_1 \wedge \neg \varphi_2$ as premise. (1)	(0.5P)
Suppose $\varphi_1 \to \varphi_2$. (2)	(0.5P)
The first \land -elimination rule on (1) gives us φ_1 . (3)	(0.5P)
By modus ponens on (2) and (3) we get φ_2 . (4)	(0.5P)
The second \land -elimination rule on (1) delivers $\neg \varphi_2$. (5)	(0.5P)
The \wedge -introduction rule on (4) and (5) gives us $\varphi_2 \wedge \neg \varphi_2$. (6)	(0.5P)
Thus we have a contradiction.	(0.5P)
By (tnd) we finally get $\neg(\varphi_1 \to \varphi_2)$.	(0.5P)

b) For applying the naı̈ve algorithm we need to build the truth table for φ .

p	q	s	φ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Now we have to consider the rows where φ is evaluated to false and to negate them:

p	q	s	clause
0	0	0	$p \lor q \lor s$
0	0	1	$p \lor q \lor \neg s$
0	1	0	$p \vee \neg q \vee s$
0	1	1	$p \lor \neg q \lor \neg s$
1	1	1	$\neg p \lor \neg q \lor \neg s$

This delivers

$$(p \vee q \vee s) \wedge (p \vee q \vee \neg s) \wedge (p \vee \neg q \vee s) \wedge (p \vee \neg q \vee \neg s) \wedge (\neg p \vee \neg q \vee \neg s).$$

c) The given formula is of the form

$$\varphi \equiv ((q \wedge s) \to p) \wedge ((s \wedge r) \to q) \wedge \top \to r.$$

Since we have to mark atoms, we have to maintain the following array

$$p \mid q \mid r \mid s \mid \top \mid \bot$$

In the first step we mark \top , i.e.

(0.5P)

(1P)

(1P)

(2.5P)

Logical and Theoretical Foundation of CS

3	

p	q	r	s	Τ	1
				Х	

The while loop is executed with $\top \to r$ and r is marked

p	q	r	s	Т	T
		х		X	

Now the while-loop constraint is not satisfied. Since \bot is not marked, the algorithm returns SAT.

(0.5P)

(0.5P)

(0.5P)

(0.5P)

(0.5P)

Winter Semester 2019/20 Example solution for Series #6