

EE2211 Introduction to Machine Learning

Lecture 5 Semester 2 2023/2024

Yueming Jin ymjin@nus.edu.sg

Electrical and Computer Engineering Department National University of Singapore

Acknowledgement:

EE2211 development team

(Xinchao, Helen, Thomas, Kar-Ann, Vincent, Chen Khong, Robby, and Haizhou)

Course Contents

- Introduction and Preliminaries (Xinchao)
 - Introduction
 - Data Engineering
 - Introduction to Probability and Statistics
- Fundamental Machine Learning Algorithms I (Yueming)
 - Systems of linear equations
 - Least squares, Linear regression
 - Ridge regression, Polynomial regression
- Fundamental Machine Learning Algorithms II (Yueming)
 - Over-fitting, bias/variance trade-off
 - Optimization, Gradient descent
 - Decision Trees, Random Forest
- Performance and More Algorithms (Xinchao)
 - Performance Issues
 - K-means Clustering
 - Neural Networks

Least Squares and Linear Regression

Module II Contents

- Notations, Vectors, Matrices (introduced in L3)
- Operations on Vectors and Matrices
- Systems of Linear Equations
- Set and Functions
- Derivative and Gradient
- Least Squares, Linear Regression
- Linear Regression with Multiple Outputs
- Linear Regression for Classification
- Ridge Regression
- Polynomial Regression

Recap: Linear and Affine Functions

Linear Functions

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **linear** if it satisfies the following two properties:

- Homogeneity $f(\alpha x) = \alpha f(x)$ Scaling
- Additivity f(x + y) = f(x) + f(y) Adding

Inner product function

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d$$

Affine function

 $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + \mathbf{b}$ scalar \mathbf{b} is called the offset (or bias)

Ref: [Book4] Stephen Boyd and Lieven Vandenberghe, "Introduction to Applied Linear Algebra", Cambridge University Press, 2018 (p31)

Functions: Maximum and Minimum

- f(x) has a **local minimum** at x = c if $f(x) \ge f(c)$ for every x in some open interval around x = c
- f(x) has a **global minimum** at x = c if $f(x) \ge f(c)$ for all x in the domain of f

A local and a global minima of a function

$$a < x \le b$$

Note: An **interval** is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.

An **open interval** does not include its endpoints and is denoted using parentheses. E.g. (0, 1) means "all numbers greater than 0 and less than 1".

Ref: [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019 (p6-7 of chp2).

Functions: Maximum and Minimum

Max and Arg Max

- Given a set of values $\mathcal{A} = \{a_1, a_2, ..., a_m\}$,
- The operator $\max_{a \in \mathcal{A}} f(a)$ returns the highest value f(a) for all elements in the set A
- The operator $\arg\max_{a\in\mathcal{A}}f(a)$ returns the element of the set \mathcal{A} that maximizes f(a)
- When the set is **implicit** or **infinite**, we can write

$$\max_{a} f(a) \quad \text{or} \quad \arg\max_{a} f(a)$$

E.g. $f(a) = 3a$, $a \in [0,1] \rightarrow \max_{a} f(a) = 3$ and $\arg\max_{a} f(a) = 1$

E.g.
$$f(a) = 3a$$
, $a \in [0,1] \to \max_{a} f(a) = 3$ and $\max_{a} f(a) = 1$

Min and Arg Min operate in a similar manner

Note: **arg max** returns a value from the **domain** of the function and **max** returns from the range (codomain) of the function.

Ref: [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019 (p6-7 of chp2).

• The **derivative** f' of a function f is a function that $\frac{1}{4}$ describes how fast f grows (or decreases)

- If the derivative is a constant value, e.g. 5 or −3
 - The function *f* grows (or decreases) constantly at any point *x* of its domain
- When the derivative f' is a function
 - If f' is positive at some x, then the function f grows at this point
 - If f' is negative at some x, then the function f decreases at this point
 - The derivative of zero at x means that the function's slope at x is horizontal (e.g. maximum or minimum points)
- The process of finding a derivative is called differentiation.
- Gradient is the generalization of derivative for functions that take several inputs (or one input in the form of a vector or some other complex structure).

Ref: [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019 (p8 of chp2).

The gradient of a function is a vector of partial derivatives

Differentiation of a scalar function w.r.t. a vector

If $f(\mathbf{x})$ is a scalar function of d variables, \mathbf{x} is a d x1 vector. Then differentiation of $f(\mathbf{x})$ w.r.t. \mathbf{x} results in a d x1 vector

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix} \qquad \frac{1}{(\chi, \chi, \chi)}$$

$$\frac{1}{(\chi, \chi, \chi)}$$

This is referred to as the **gradient** of $f(\mathbf{x})$ and often written as $\nabla_{\mathbf{x}} f$.

E.g.
$$f(\mathbf{x}) = ax_1 + bx_2$$
 $\nabla_{\!\mathbf{x}} f = \begin{bmatrix} a \\ b \end{bmatrix}$ Ref: Duda, Hart, and Stork, "Pattern Classification", 2001 (Appendix

Partial Derivatives

Differentiation of a vector function w.r.t. a vector

If f(x) is a vector function of size h x1 and x is a d x1 vector. Then differentiation of f(x) results in a $h \times d$ matrix

$$\frac{d\mathbf{f}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_h}{\partial x_1} & \dots & \frac{\partial f_h}{\partial x_d} \end{bmatrix}$$

The matrix is referred to as the **Jacobian** of f(x)

Ref: Duda, Hart, and Stork, "Pattern Classification", 2001 (Appendix)

$$X = \begin{bmatrix} X_1 \\ Y_2 \\ Y_3 \end{bmatrix}$$

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \end{bmatrix}$$

Some Vector-Matrix Differentiation Formulae

$$\frac{d(\mathbf{A}\mathbf{x})}{d\mathbf{x}} = \mathbf{A}$$

$$\frac{d(\mathbf{b}^{T}\mathbf{x})}{d\mathbf{x}} = \mathbf{b}$$

$$\frac{d(\mathbf{x}^{T}\mathbf{A}\mathbf{x})}{d\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{T})\mathbf{x}$$

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d$$

Derivations: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Ref: Duda, Hart, and Stork, "Pattern Classification", 2001 (Appendix)

 Linear regression is a popular regression learning algorithm that learns a model which is a linear combination of features of the input example.

$$\mathbf{X}\mathbf{w} = \mathbf{y}, \quad \mathbf{X} \in \mathbf{\mathcal{R}}^{m \times d}, \ \mathbf{w} \in \mathbf{\mathcal{R}}^{d \times 1}, \ \mathbf{y} \in \mathbf{\mathcal{R}}^{m \times 1}$$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,d} \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Ref: [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019 (p3 of chp3).

Problem Statement: To predict the unknown y for a given x (testing)

- We have a collection of labeled examples (training) $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$
 - m is the size of the collection
 - $-\mathbf{x}_i$ is the d-dimensional feature vector of example i=1,...,m (input)
 - $-y_i$ is a real-valued target (1-D)
 - Note:
 - when y_i is continuous valued, it is a regression problem
 - when y_i is discrete valued, it is a classification problem
- We want to build a model $f_{\mathbf{w},b}(\mathbf{x})$ as a linear combination of features of example \mathbf{x} : $f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + b$
 - where \mathbf{w} is a d-dimensional vector of parameters and b is a real number.
- The notation $f_{\mathbf{w},b}$ means that the model f is parametrized by two values: \mathbf{w} and b

Ref: [Book4] Stephen Boyd and Lieven Vandenberghe, "Introduction to Applied Linear Algebra", Cambridge University Press, 2018 (chp.14)

Learning objective function

To find the optimal values for w* and b* which minimizes the following expression:

$$\frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

 In mathematics, the expression we minimize or maximize is called an objective function, or, simply, an objective

 $(f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2$ is called the **loss function**: a measure of the difference between $f_{\mathbf{w}}(\mathbf{x}_i)$ and \mathbf{y}_i or a penalty for misclassification of example *i*.

Ref: [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019 (chp3.1.2)

Learning objective function (using simplified notation hereon)

 To find the optimal values for w* which minimizes the following expression:

$$\sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

with
$$f_{\mathbf{w}}(\mathbf{x}_i) = \mathbf{x}^T \mathbf{w}$$
,
where we define $\mathbf{w} = [b, w_1, ... w_d]^T = [w_0, w_1, ... w_d]^T$,
and $\mathbf{x}_i = [1, x_{i,1}, ... x_{i,d}]^T = [x_{i,0}, x_{i,1}, ... x_{i,d}]^T$, $i = 1, ..., m$

This particular choice of the loss function is called squared error loss

Note: The normalization factor $\frac{1}{m}$ can be omitted as it does not affect the optimization.

$$\sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

- All model-based learning algorithms have a loss function
- What we do to find the best model is to minimize the objective known as the cost function
- Cost function is a sum of loss functions over training set plus possibly some model complexity penalty (regularization)
- In linear regression, the cost function is given by the *average* loss, also called the **empirical risk** because we do not have all the data (e.g. testing data)
 - The average of all penalties is obtained by applying the model to the training data

Ref: [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019 (chp3.1.2)

Learning (Training)

• Consider the set of feature vector \mathbf{x}_i and target output y_i indexed by i = 1, ..., m, a linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ can be stacked as

De stacked as
$$f_{\mathbf{w}}(\mathbf{X}) = \mathbf{X}\mathbf{w} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
Learning Model
$$= \begin{bmatrix} \mathbf{x}_1^T \mathbf{w} \\ \vdots \\ \mathbf{x}_m^T \mathbf{w} \end{bmatrix}$$
where
$$\mathbf{x}_i^T \mathbf{w} = [1, x_{i,1}, \dots, x_{i,d}] \begin{bmatrix} b \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

Note: The **bias/offset term** is responsible for **translating** the line/plane/hyperplane away from the origin.

Least Squares Regression

In vector-matrix notation, the minimization of the objective function can be written compactly using $\mathbf{e} = \mathbf{X}\mathbf{w} - \mathbf{y}$:

$$J(\mathbf{w}) = \mathbf{e}^{T}\mathbf{e}$$

$$= (\mathbf{X}\mathbf{w} - \mathbf{y})^{T}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T}\mathbf{X}^{T} - \mathbf{y}^{T})(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$$

$$= \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - 2\mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}.$$

Note: when
$$f_{\mathbf{w}}(\mathbf{X}) = \mathbf{X}\mathbf{w}$$
, then
$$\sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}).$$

Differentiating J(w) with respect to w and setting the

$$\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}) = \mathbf{0}$$

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y}) = \mathbf{0}$$

$$\Rightarrow 2\mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{X}^T \mathbf{y} = \mathbf{0}$$

$$\Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

 \Rightarrow Any minimizer $\hat{\mathbf{w}}$ of $J(\mathbf{w})$ must satisfy $\mathbf{X}^T(\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{0}$.

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

Learning/training:

$$\widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Prediction/testing:

$$\hat{\boldsymbol{f}}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new} \hat{\mathbf{w}}$$

Example 1 Training set $\{(x_i, y_i)\}_{i=1}^m \{x = -9\} \rightarrow \{y = -6\}$

$$\{(x_i, y_i)\}_{i=1}^m$$

$$\{x = -9\} \rightarrow \{y = -6\}$$

$$\{x = -7\} \rightarrow \{y = -6\}$$

 $\{x = -5\} \rightarrow \{y = -4\}$

$$\begin{bmatrix} 1 & -9 \\ 1 & -7 \\ 1 & -5 \\ 1 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} -6 \\ -6 \\ -4 \\ -1 \\ 1 \end{bmatrix}$$

$$\{x = 1\} \rightarrow \{y = -1\}$$

$$\{x = 5\} \rightarrow \{y = 1\}$$

$$\{x = 9\} \rightarrow \{y = 4\}$$

This set of linear equations has no exact solution

However, $\mathbf{X}^T\mathbf{X}$ is invertible

Least square approximation

$$\widehat{\mathbf{w}} = \mathbf{X}^{\dagger} \mathbf{y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

$$= \begin{bmatrix} 6 & -6 \\ -6 & 262 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -9 & -7 & -5 & 1 & 5 & 9 \end{bmatrix} \begin{bmatrix} -6 \\ -6 \\ -4 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.4375 \\ 0.5625 \end{bmatrix}$$

Linear Regression on one-dimensional samples

$\hat{y} = X\hat{\mathbf{w}}$ $= \mathbf{x} \begin{bmatrix} -1.4375 \\ 0.5625 \end{bmatrix}$ y = -1.4375 + 0.5625x

Prediction: Test set

$${x = -1} \rightarrow {y = ?}$$

$$\hat{y} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} -1.4375 \\ 0.5625 \end{bmatrix}$$
$$= -2$$

Python demo 1

Example 2 $\{(x_i, y_i)\}_{i=1}^m$

$$\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$$

Training set

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}$$

$$\{x_1 = 1, x_2 = 1, x_3 = 1\} \rightarrow \{y = 1\}$$

 $\{x_1 = 1, x_2 = -1, x_3 = 1\} \rightarrow \{y = 0\}$
 $\{x_1 = 1, x_2 = 1, x_3 = 3\} \rightarrow \{y = 2\}$
 $\{x_1 = 1, x_2 = 1, x_3 = 0\} \rightarrow \{y = -1\}$

This set of linear equations has no exact solution

However, $\mathbf{X}^T\mathbf{X}$ is invertible

$$\widehat{\mathbf{w}} = \mathbf{X}^{\dagger} \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Least square approximation

$$= \begin{bmatrix} 4 & 2 & 5 \\ 2 & 4 & 3 \\ 5 & 3 & 11 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -0.7500 \\ 0.1786 \\ 0.9286 \end{bmatrix}$$

Prediction:

Test set

$$\{x_1 = 1, x_2 = 6, x_3 = 8\} \rightarrow \{y = ?\}$$

 $\{x_1 = 1, x_2 = 0, x_3 = -1\} \rightarrow \{y = ?\}$

$$\widehat{\mathbf{y}} = \widehat{\mathbf{f}}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\widehat{\mathbf{w}}$$

$$\hat{\mathbf{y}} = \begin{bmatrix} 1 & 6 & 8 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -0.7500 \\ 0.1786 \\ 0.9286 \end{bmatrix}$$
$$= \begin{bmatrix} 7.7500 \\ -1.6786 \end{bmatrix}$$

Learning of Vectored Function (Multiple Outputs)

For one sample: a linear model $\mathbf{f}_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{W}$ Vector function

For m samples: $\mathbf{F}_{\mathbf{w}}(\mathbf{X}) = \mathbf{X}\mathbf{W} = \mathbf{Y}$

Sample 1
$$\mathbf{x}_{1}^{T}$$
 \vdots $\mathbf{w} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m,1} & \dots & x_{m,d} \end{bmatrix} \begin{bmatrix} w_{0,1} & \dots & w_{0,h} \\ w_{1,1} & \dots & w_{1,h} \\ \vdots & \ddots & \vdots \\ w_{d,1} & \dots & w_{d,h} \end{bmatrix}$
Sample 1 \mathbf{w} \mathbf{w}

Sample 1's output
$$y_{1,1}$$
 ... $y_{1,h}$ \vdots $y_{m,1}$... $y_{m,h}$

$$\mathbf{X} \in \mathcal{R}^{m \times (d+1)}$$
, $\mathbf{W} \in \mathcal{R}^{(d+1) \times h}$, $\mathbf{Y} \in \mathcal{R}^{m \times h}$

Objective:
$$\sum_{i=1}^{m} (\mathbf{f_w}(\mathbf{x}_i) - \mathbf{y}_i)^2 = \mathbf{E}^T \mathbf{E}$$

Least Squares Regression of Multiple Outputs

In matrix notation, the sum of squared errors cost function can be written compactly using $\mathbf{E} = \mathbf{XW} - \mathbf{Y}$:

$$J(\mathbf{W}) = \operatorname{trace}(\mathbf{E}^T \mathbf{E})$$
$$= \operatorname{trace}[(\mathbf{X}\mathbf{W} - \mathbf{Y})^T (\mathbf{X}\mathbf{W} - \mathbf{Y})]$$

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

Learning/training: $\hat{\mathbf{W}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

Prediction/testing: $\hat{\mathbf{F}}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{W}}$

Ref: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning", (2nd ed., 12th printing) 2017 (chp.3.2.4)

Least Squares Regression of Multiple Outputs

$$J(\mathbf{W}) = \operatorname{trace}(\mathbf{E}^T \mathbf{E})$$

= trace(
$$\begin{bmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_h^T \end{bmatrix}$$
[$\mathbf{e}_1 \quad \mathbf{e}_2 \dots \mathbf{e}_h$])

$$= \operatorname{trace}(\begin{bmatrix} \mathbf{e}_{1}^{T} \mathbf{e}_{1} & \mathbf{e}_{1}^{T} \mathbf{e}_{2} & \dots & \mathbf{e}_{1}^{T} \mathbf{e}_{h} \\ \mathbf{e}_{2}^{T} \mathbf{e}_{1} & \mathbf{e}_{2}^{T} \mathbf{e}_{2} & \dots & \mathbf{e}_{2}^{T} \mathbf{e}_{h} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_{h}^{T} \mathbf{e}_{1} & \mathbf{e}_{h}^{T} \mathbf{e}_{2} & \dots & \mathbf{e}_{h}^{T} \mathbf{e}_{h} \end{bmatrix}) = \sum_{k=1}^{h} \mathbf{e}_{k}^{T} \mathbf{e}_{k}$$

Linear Regression of multiple outputs

Example 3

Training set
$$\{x_1 = 1, x_2 = 1, x_3 = 1\} \rightarrow \{y_1 = 1, y_2 = 0\}$$

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^m \begin{cases} x_1 = 1, x_2 = -1, x_3 = 1\} \rightarrow \{y_1 = 0, y_2 = 1\} \\ \{x_1 = 1, x_2 = 1, x_3 = 3\} \rightarrow \{y_1 = 2, y_2 = -1\} \\ \{x_1 = 1, x_2 = 1, x_3 = 0\} \rightarrow \{y_1 = -1, y_2 = 3\} \end{cases}$$

$$\mathbf{X} \qquad \mathbf{W} \qquad \mathbf{Y}$$
Bias
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -1 \\ -1 & 3 \end{bmatrix}$$

This set of linear equations has NO exact solution

$$\hat{\mathbf{W}} = \mathbf{X}^{\dagger} \mathbf{Y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$
 $\mathbf{X}^{T} \mathbf{X}$ is invertible

Least square approximation

$$= \begin{bmatrix} 4 & 2 & 5 \\ 2 & 4 & 3 \\ 5 & 3 & 11 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -0.75 & 2.25 \\ 0.1786 & 0.0357 \\ 0.9286 & -1.2143 \end{bmatrix}$$

Linear Regression of multiple outputs

Example 3

Prediction:

Test set: two new samples

$$\{x_1 = 1, x_2 = 6, x_3 = 8\} \rightarrow \{y_1 = ?, y_2 = ?\}$$

 $\{x_1 = 1, x_2 = 0, x_3 = -1\} \rightarrow \{y_1 = ?, y_2 = ?\}$

$$\begin{split} \widehat{\mathbf{Y}} &= \mathbf{X}_{new} \, \widehat{\mathbf{W}} \\ \text{Bias} &= \begin{bmatrix} 1 & 6 & 8 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -0.75 & 2.25 \\ 0.1786 & 0.0357 \\ 0.9286 & -1.2143 \end{bmatrix} \\ &= \begin{bmatrix} 7.75 & -7.25 \\ -1.6786 & 3.4643 \end{bmatrix} \end{split}$$

Python demo 2

Linear Regression of multiple outputs

Example 4

The values of feature x and their corresponding values of multiple outputs target **y** are shown in the table below.

Based on the least square regression, what are the values of **w**? Based on the current mapping, when x = 2, what is the value of y?

X	[3]	[4]	[10]	[6]	[7]
У	[0, 5]	[1.5, 4]	[-3, 8]	[-4, 10]	[1, 6]

$$\widehat{\mathbf{W}} = \mathbf{X}^{\dagger} \mathbf{Y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y} = \begin{bmatrix} 1.9 & 3.6 \\ -0.4667 & 0.5 \end{bmatrix}$$

Python demo 3

$$\widehat{\mathbf{Y}_{new}} = \mathbf{X}_{new}$$

$$\widehat{\mathbf{W}} = [1]$$

$$\widehat{\mathbf{Y}_{new}} = \mathbf{X}_{new} \widehat{\mathbf{W}} = [1 \quad 2] \widehat{\mathbf{W}} = [0.9667 \quad 4.6]$$

Prediction

Summary

- Notations, Vectors, Matrices
- Operations on Vectors and Matrices
 - Dot-product, matrix inverse
- Systems of Linear Equations $f_{\mathbf{w}}(\mathbf{X}) = \mathbf{X}\mathbf{w} = \mathbf{y}$
 - Matrix-vector notation, linear dependency, invertible
 - Even-, over-, under-determined linear systems
- Functions, Derivative and Gradient
 - Inner product, linear/affine functions
 - Maximum and minimum, partial derivatives, gradient
- Least Squares, Linear Regression
 - Objective function, loss function
 - Least square solution, training/learning and testing/prediction
 - Linear regression with multiple outputs

Prediction/testing

- Learning/training $\hat{\mathbf{w}} = (\mathbf{X}_{train}^T \mathbf{X}_{train}^T)^{-1} \mathbf{X}_{train}^T \mathbf{y}_{train}$ $\mathbf{y}_{test} = \mathbf{X}_{test} \, \widehat{\mathbf{w}}$
- Classification
- Ridge Regression
- Polynomial Regression

Python packages: numpy, pandas, matplotlib.pyplot, numpy.linalg, and sklearn.metrics (for mean squared error), numpy.linalg.pinv

Midterm (L1 to L5) Trial quiz