1. Introduction:

Project Objective: The objective is to build a classification model to determine the accuracy of the classification from a particular dataset based on Naïve Bayes, KNN, and Decision Tree.

Project Description: In Data Mining, Classification is such thing that points out through data mining how can we construct a model based on some predicting attributes. In this project, we have selected the dataset from Kaggle and Completed all related Data Mining processes using Weka. To complete this project, we have taken the dataset "Play Store APK" from Kaggle which analyzes the user satisfaction of a particular app based on its attributes. We have used Weka to preprocess them and classify them using KNN, Naïve Bayes, and Decision tree.

2. Project Outcome: Possible outcome: For our project, we will implement supervised learning models to our play store mobile app analysis dataset. By using three types of classification models, we might get a proper idea of which classification method would be best for prediction and give a more accurate value. In the end, the comparison between all classification models will give a better understanding.

3. Dataset Details

Name of dataset: Google Play store Dataset.

A data set is a collection of numbers or values that relate to a particular subject. In the case of tabular data, a data set corresponds to one or more database tables. In our project, we used real data. Real data is data from a production system, vendor, public records, or any other dataset which otherwise contains operational data. we are working on the public records dataset. From Play Store's download records and others attributes, we can predict which types of mobile applications are mostly used in our daily life as well as which one is preferable for other users who want to use it. In our project, we consider 7 attributes and 999 instances from the dataset. Rows represent the value of an instance. Seven attributes are -category, Rating, Size, Installs, Types, Content Rating, and Android Version. A special attribute is a sentiment which is the class or target attribute for our project .our dataset is a labeled dataset, where one attribute is given special significance(Sentiment) and the aim is to predict objectives. From dataset,

In a nutshell, we have

- Labelled Dataset
- Instance =999
- Attribute = 7
- Target attribute/class = Sentiment

• Attribute (7) = category, Rating, Size, Installs, Types, and Content Rating, Android Version

Dataset Link:

 $\frac{https://www.kaggle.com/datasets/lava18/google-play-store-}{apps?fbclid=IwAR2PCbqFonzuvFrsbCtTPXK97X1XqTntKfLAra0ADvuooQZcviL_tM-VzOY}$

d	A	В	C	D	E	F	G	Н	J	K	L
1	Category	Rating	Size	Installs	Туре	Content Rating	Android Version	Sentiment			
2	ART_AND_DESIGN	4.	1 19M	10,000+	Free	Everyone	4.0.3 and up	Positive			
3	ART AND DESIGN	3.9	14M	500,000+	Free	Everyone	4.0.3 and up	Positive			
4	ART_AND_DESIGN	4.7	8.7M	5,000,000+	Free	Everyone	4.0.3 and up	nan			
5	ART AND DESIGN		25M	50,000,000+	Free	Teen	4.2 and up	Positive			
6	ART AND DESIGN		2.8M	100,000+	Free	Everyone	4.4 and up	Positive			
7	ART AND DESIGN		5.6M	50,000+	Free	Everyone	2.3 and up	Positive			
8	ART_AND_DESIGN		3 19M	50,000+	Free	Everyone	4.0.3 and up	Positive			
9	ART AND DESIGN		1 29M	1,000,000+	Free	Everyone	4.2 and up	nan			
10	ART AND DESIGN		33M	1,000,000+	Free	Everyone	3.0 and up	Neutral			
11	ART AND DESIGN		3.1M	10,000+	Free	Everyone	4.0.3 and up	Neutral			
12	ART AND DESIGN		28M	1,000,000+	Free	Everyone	4.1 and up	Positive			
13	ART_AND_DESIGN		12M	1.000.000+	Free	Everyone	4.0 and up	Positive			
14	ART AND DESIGN		20M	10,000,000+	Free	Teen	4.1 and up	Positive			
15	ART AND DESIGN		21M	100,000+	Free	Everyone	4.4 and up	Positive			
16	ART AND DESIGN		37M	100,000+	Free	Everyone	2.3 and up	Positive			
17	ART AND DESIGN		2.7M	5.000+	Free	Everyone	4.2 and up	nan			
18	ART AND DESIGN		2.7M 5.5M	500.000+	Free	Everyone	4.2 and up	Positive			
19	ART AND DESIGN		3.5M 5 17M	10,000+	Free	Everyone	2.3 and up	Positive			
20	ART_AND_DESIGN		39M	5,000,000+	Free	Everyone	4.0.3 and up	Positive			
21	ART_AND_DESIGN		31M	10,000,000+	Free	Everyone	4.1 and up	Positive			
22	ART_AND_DESIGN		14M	100,000+	Free	Everyone	4.1 and up	Positive			
23	ART_AND_DESIGN		1 12M	100,000+	Free	Everyone	4.0.3 and up	Positive			
24	ART_AND_DESIGN		4.2M	500,000+	Free	Everyone 10+	4.0.3 and up	Neutral			
25	ART_AND_DESIGN	NaN	7.0M	100,000+	Free	Everyone	4.1 and up	Positive			
26	ART_AND_DESIGN		23M	50,000+	Free	Everyone	4.1 and up	Positive			
27	ART_AND_DESIGN		8 6.0M	10,000+	Free	Everyone	3.0 and up	Neutral			
28	ART_AND_DESIGN		25M	500,000+	Free	Everyone	4.0.3 and up	Positive			
29	ART_AND_DESIGN		1 6.1M	100,000+	Free	Everyone	4.0.3 and up	Positive			
30	ART_AND_DESIGN		4.6M	10,000+	Free	Everyone	2.3 and up	Positive			
31	ART_AND_DESIGN	4.1	1 4.2M	100,000+	Free	Everyone	2.3 and up	Neutral			
32	ART_AND_DESIGN	4.2	9.2M	100,000+	Free	Everyone	4.0.3 and up	Positive			
33	ART_AND_DESIGN	4.	1 5.2M	50,000+	Free	Everyone	2.3 and up	Positive			
34	ART_AND_DESIGN	4.5	11M	100,000+	Free	Everyone	4.0 and up	Negative			
35	ART_AND_DESIGN	4.2	2 11M	100,000+	Free	Everyone	4.1 and up	Positive			
36	ART_AND_DESIGN	4.7	4.2M	10,000+	Free	Teen	4.1 and up	Positive			
37	ART_AND_DESIGN	3.8	9.2M	100,000+	Free	Everyone	4.1 and up	Positive			
38	ART_AND_DESIGN	4.7	24M	500,000+	Free	Everyone	4.4 and up	Positive			
39	ART_AND_DESIGN	4.	Varies with dev	5,000,000+	Free	Everyone	2.3.3 and up	Positive			
40	ART_AND_DESIGN		11M	10,000+	Free	Everyone	4.0.3 and up	Positive			
41	ART_AND_DESIGN		9.4M	500,000+	Free	Everyone	4.0 and up	Positive			
42	ART_AND_DESIGN		2 15M	10,000+	Free	Everyone	4.0.3 and up	Positive			
43	ART AND DESIGN		10M	100,000+	Free	Everyone	4.0.3 and up	Positive			
44	ART AND DESIGN		Varies with dev		Free	Everyone		Positive			
45	ART AND DESIGN		3 1.2M	100.000+	Free	Everyone	4.1 and up	Negative			
46	ART AND DESIGN		2 12M	10,000+	Free	Everyone	4.1 and up	Positive			
47	ART_AND_DESIGN		24M	10,000,000+	Free	Everyone	4.1 and up	Positive			
48	ART_AND_DESIGN		26M	100,000+	Free	Everyone	4.1 and up	Positive			
	ART AND DESIGN		2.0M	100,000+	Free	Everyone	4.1 and up	Positive			
	Sheet1			100,000+	i lee	L veryone	+. ranu up	i ositive			

Fig: Table of the dataset

Here is, Visualization of attributes from the Weka tool- Separately for all attributes:

4. Model Development

1. Data Examine:

➤ Missing Values:

In this Dataset, there were a huge number of missing values in the Rating Column. Around 5% of the total data was garbage. In That, case we have replaced it with the most frequent value.

➤ Data Cleaning: In this dataset, there were so many unusual distinct values. We have cleaned the values out.

2. Classification:

Naïve Bayes: The Naïve Bayes classifier constructed based on bays theorem. It's so easy to build and can easily work on a comparatively large dataset. The classification method of this classifier is more sophisticated that's why people widely use it. We have performed naïve Bayes classification on our dataset using Weka. And Here's the result:

Here, we can easily see that, after 10 folds, the technique easily classifies 74% of Data and the mean absolute error is 0.1868.

Herein, we have visualized the classifier error, Naïve Bayes, in the graph. The sentiment is the target variable here and based on that it's showing the error.

Decision Tree: It is a sequential model which always determines the decision that has been made, the probable incident, and the probable outcomes graphically. The major purpose to implement this tree is to determine the best decision for an event. Here we have implemented our dataset through Weka:

Here, we can easily see that, after 10 folds, the technique easily classifies 76% of the Data and the mean absolute error is 0.1996.

Herein we have visualized the classifier error if the decision tree in the graph. The sentiment is the target variable here and based on that it's showing the error.

KNN: KNN is a great classification technique. It normally classifies the unseen and new instance based on the previously stored instance using the Euclidian distance measurement technique. Here we have implemented our dataset through Weka:

For 1st nearest Neighbor

Here, we can easily see that, after 10 folds, the technique easily classifies 69% of the Data, and the mean absolute error is 0.1935.

For 2nd Nearest Neighbor

```
Android Version
              Sentiment
            10-fold cross-validation
 === Classifier model (full training set) ===
IB1 instance-based classifier
using 2 nearest neighbour(s) for classification
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ==:
Correctly Classified Instances
                                                        72.2723 %
                                                        27.7277 %
Incorrectly Classified Instances
                                       0.4821
Mean absolute error
                                        0.1999
Root mean squared error
Relative absolute error
                                       66.1557 %
Root relative squared error
                                        88.4336 %
  = Detailed Accuracy By Class ==
                TP Rate FP Rate Precision Recall
                                                      F-Measure MCC
                                                                          ROC Area PRC Area Class
                                                                          0.754
                                                      0.792
                0.895
                         0.453 0.710
0.076 0.804
                                             0.895
                                                                 0.479
                                                                                    0.737
                0.827
                                             0.827
                                                      0.815
                                                                 0.745
                                                                          0.927
                                                                                    0.797
                                                                                              nan
```

Here, we can easily see that, after 10 folds, the technique easily classifies 72% of the Data, and the mean absolute error is 0.1999.

For 10th Nearest Neighbor

```
=== Classifier model (full training set) ===
IB1 instance-based classifier
using 10 nearest neighbour(s) for classification
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                                       74.4745 %
Incorrectly Classified Instances
                                     255
                                                       25.5255 %
                                       0.5179
Kappa statistic
Mean absolute error
                                       0.2251
Root mean squared error
                                       0.3309
Relative absolute error
                                      74.4702 %
Root relative squared error
                                      85.1808 %
Total Number of Instances
                                     999
=== Detailed Accuracy By Class ===
                TP Rate FP Rate Precision Recall F-Measure MCC
                                                                        ROC Area PRC Area Class
                0.919
                         0.444
                                 0.720
                                            0.919
                                                     0.807
                                                               0.518
                                                                        0.736
                                                                                  0.716
                                                                                            Positive
                0.868
                         0.074
                                 0.814
                                            0.868
                                                    0.840
                                                               0.778
                                                                        0.923
                                                                                  0.787
                0.000
                         0.001
                                 0.000
                                            0.000
                                                     0.000
                                                                -0.011
                                                                        0.610
                                                                                  0.133
                                                                                            Neutral
                0.000
                         0.002
                                 0.000
                                            0.000
                                                    0.000
                                                               -0.012 0.655
                                                                                  0.126
                                                                                            Negative
Weighted Avg.
                0.745
                        0.266
                                 0.620
                                            0.745
                                                     0.675
                                                               0.497
                                                                        0.768
                                                                                  0.633
```

Here, we can easily see that, after 10 folds, the technique easily classifies 74% of the Data, and the mean absolute error is 0.2251.

Herein we have visualized the classifier error 10 Nearest Neighbor in the graph. The sentiment is the target variable here and based on that it's showing the error.

Result:

Techniques	Folds	Correction	Mean Absolute
			Error
Naïve Bayes	10	74%	0.1868
Decision Tree	10	76%	0.1996
KNN	10	74%	0.2251

The Below tables and the graph show the accuracy and the error details of the three classification techniques we have used here. Here we can easily see in terms of correction, The correction of Na $\ddot{\text{v}}$ Bayes and KNN(k=10) are the same, but the decision tree gives the best result. Again, in terms of mean absolute error, Na $\ddot{\text{v}}$ Bayes Gives less error.

5. Discussion

The chosen data set has a huge number of missing values in the rating column which were replaced by the most frequent values. And also has garbage values that were replaced in the same manner as the missing value. Unusual values are also cleaned. Naïve Byes, KNN, and Decision Tree classification technique is applied in the dataset in the same settings (10 folds) using Weka and extracted the desired values and then compared with each other to choose the best technique. Naïve Byes produced the best result as it has a 74% accuracy rate and a Mean absolute error of 0.1868). Decision Tree (76% accuracy rate and Mean absolute error 0.1996) produced a better result than KNN but not good as Naïve Byes. KNN produced the worst result (74% accuracy rate and Mean absolute error of 0.2251).

6. Conclusion

Classification fills a very human need to impose order on nature and find hidden relationships. By grouping organisms and species together it was originally hoped that huge masses of data could be stored and retrieved more easily. The accuracy is also an important thing in classification to learn or acknowledge from the classification. For this purpose, Naïve Byes, KNN, and Decision Tree are used in the project to determine which gives the best accuracy in a certain setting. The outcomes show that the accuracy of the Decision tree classification technique is higher (76%) than KNN and Naïve Byes. But Decision tree technique also has the highest mean absolute error of the other two techniques. Overall Naïve Byes produces the best result having a 74% accuracy rate and the least mean absolute error (0.1868).