tf.keras.layers.Flatten(),

In []: history8 = model8.fit(x_train, y_train,

In [38]: model8.evaluate(x_test, y_test, verbose=2)

m_normal'),

m_normal'),

])

ndom_normal')

tf.keras.layers.Dropout(0.2),

tf.keras.layers.BatchNormalization(),

In [36]: model8.compile(optimizer=tf.keras.optimizers.Adam(0.0001),

tf.keras.layers.Dense(16, activation='relu', kernel_initializer='rando

tf.keras.layers.Dense(16, activation='relu', kernel_initializer='rando

tf.keras.layers.Dense(10, activation='softmax', kernel_initializer='ra

validation_data=(x_test, y_test),

313/313 - 1s - loss: 0.1959 - sparse_categorical_accuracy: 0.9413 - 570m

loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']

batch_size=128,
epochs=100,

verbose=2

In [1]: import tensorflow as tf

Baseline model

tfds.list_builders()

info=True, as_supervised=True)

model = tf.keras.Sequential([

In [2]: # Load Data

()

)),

load_data()

In [3]: # Baseline model definition

#import tensorflow_datasets as tfds

(train, test), info = tfds.load("mnist", split=['train', 'test'], with_

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data

 $\#(x_{train}, y_{train}), (x_{test}, y_{test}) = tf.keras.datasets.fashion_mnist.$

tf.keras.layers.Flatten(input_shape=(28, 28

