

Trait-based analyses reveal global patterns in diverse albacore tuna diets

Journal:	Fish and Fisheries
Manuscript ID	FaF-22-Dec-OA-372
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	05-Dec-2022
Complete List of Authors:	Hardy, Natasha; University of Alberta, Biological Sciences Matuch, Cindy; University of California Santa Cruz Roote, Zachary; University of Alberta, Biological Sciences George, Iris; University of Alberta, Biological Sciences Muhling, Barb; University of California Santa Cruz Institute of Marine Sciences; NOAA Fisheries Southwest Fisheries Science Center Jacox, Michael; NOAA Fisheries Southwest Fisheries Science Center Environmental Research Division; NOAA Physical Sciences Laboratory Hazen, Elliott; NOAA Fisheries Southwest Fisheries Science Center; NOAA Fisheries Southwest Fisheries Science Center Environmental Research Division Bograd, Steven; University of California Santa Cruz Institute of Marine Sciences; NOAA Fisheries Southwest Fisheries Science Center Environmental Research Division Crowder, Larry; Stanford University Hopkins Marine Station Green, Stephanie J.; University of Alberta, Biological Sciences
Key terms:	Highly migratory species, Macro-ecology, Functional biogeography, Pelagic predators, Predator-prey interactions, Tuna
Abstract:	Simplifying complex species interactions can facilitate prediction of changes in ecosystem function and structure under climate change. This is particularly important for highly migratory pelagic predators, which exploit diverse prey fields as they respond to dynamic environments. We reconstructed the historical resource use of albacore tuna (Thunnus alalunga) globally and confirmed highly biodiverse diets with 308 prey identified to species, and 279 at lower taxonomic resolution. We quantitatively synthesised prey diversity into 7 functional trait guilds using four traits that influence predator-prey encounter rates – prey habitat association, seasonal and diel vertical migration behaviour – using hierarchical divisive clustering algorithms. We further explore variability in historical composition of albacore diets across geographies based on species identity, individual trait information, and functional trait guilds using a multi-matrix modelling framework. Species-based diet composition was highly variable across geographies and years sampled. Trait-based models of albacore diets highlight the historical importance of near-surface epipelagic prey resources from coastal to oceanic habitats, and seasonally-migrating continental shelf prey, compared to less frequent pulses of deeper water and demersal taxa. Our results indicate that trait information and trait guilds serve as useful

classification frameworks for identifying functionally redundant food web linkages involving biodiverse prey, and will prove useful in tracking predators' foraging responses to changing ecological states.

SCHOLARONE™ Manuscripts

- 1 **Title:** Trait-based analyses reveal global patterns in diverse albacore tuna diets
- 2
- 3 **Authors:** Natasha A. Hardy*1, <u>Cindy Matuch</u>2, <u>Zachary Roote</u>1, <u>Iris George</u>1, Barbara A.
- 4 Muhling^{3,4}, Michael G. Jacox^{5,6}, Elliott L. Hazen^{4,5}, Steven J. Bograd^{3,5}, Larry B. Crowder⁷,
- 5 Stephanie J. Green¹

- 7 **Corresponding authors:** nahardy.wildlife@gmail.com & stephanie.green@ualberta.ca;
- 8 Department of Biological Sciences, CW 422 Biological Sciences Building, University of
- 9 Alberta, Edmonton, Alberta, Canada, T6G 2E9

10

- 11 Author affiliations
- 12 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- ² University of California Santa Cruz, Santa Cruz, CA, United States
- ³ Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, United
- 15 States
- ⁴ NOAA Southwest Fisheries Science Center, La Jolla, CA, United States
- 17 5 NOAA Southwest Fisheries Science Center, Environmental Research Division, Pacific Grove,
- 18 CA, United States
- 19 ⁶ NOAA Physical Sciences Laboratory, Boulder, CO, United States
- ⁷ Hopkins Marine Station of Stanford University, Pacific Grove, CA, United States

Abstract

22

21

23 Simplifying complex species interactions can facilitate prediction of changes in ecosystem 24 function and structure under climate change. This is particularly important for highly migratory 25 pelagic predators, which exploit diverse prey fields as they respond to dynamic environments. 26 We reconstructed the historical resource use of albacore tuna (Thunnus alalunga) globally and 27 confirmed highly biodiverse diets with 308 prey identified to species, and 279 at lower 28 taxonomic resolution. We quantitatively synthesised prey diversity into 7 functional trait guilds 29 using four traits that influence predator-prey encounter rates – prey habitat association, seasonal 30 and diel vertical migration behaviour – using hierarchical divisive clustering algorithms. We 31 further explore variability in historical composition of albacore diets across geographies based on 32 species identity, individual trait information, and functional trait guilds using a multi-matrix 33 modelling framework. Species-based diet composition was highly variable across geographies 34 and years sampled. Trait-based models of albacore diets highlight the historical importance of 35 near-surface epipelagic prey resources from coastal to oceanic habitats, and seasonally-migrating 36 continental shelf prey, compared to less frequent pulses of deeper water and demersal taxa. Our

37	results indicate that trait information and trait guilds serve as useful classification frameworks for
38	identifying functionally redundant food web linkages involving biodiverse prey, and will prove
39	useful in tracking predators' foraging responses to changing ecological states.
40	
41	Table of Contents
42	1. Introduction
43	2. Methods
44	2.1 Historical diet data collation
45	2.2 Prey life stage estimation
46	2.3 Prey trait information
47	2.4 Trait-based analyses
48	Taxonomic and trait diversity in albacore diets
49	Albacore prey trait guilds
50	Trait-based vs taxonomic diet variation
51	3. Results
52	3.1 Taxonomic and trait diversity in albacore diets
53	3.2 Albacore prey trait guilds
54	3.3 Historical trait-based albacore diet composition
55	4. Discussion
56	4.1 Synthesis of albacore diet diversity and historical trait relationships

57	4.2 Synthesis limitations, knowledge accessibility and gaps to overcome
58	5. Conclusions
59	Acknowledgements
60	Authorship Statement
61	References
62	Data Accessibility
63	<u>Tables</u>
64	Figure Legends
65	Supplementary Materials
66	
67	1. Introduction
68	
69	Pelagic ecosystems are among the last frontiers on Earth, politically and ecologically. Yet
70	stressors such as climate change and intensive fishing efforts (Casini et al., 2009; Poloczanska et
71	al., 2016) are altering the distributions and composition of pelagic communities (Hazen et al.,
72	2013; Cheung et al., 2015; Morley et al., 2018), causing widespread species extirpations and
73	undesirable ecosystem states (Polovina et al., 2011; Molinos et al., 2016). Altered pelagic
74	ecosystem states can lead to changes in fisheries production and uncertain economic futures
75	(Cheung et al., 2010; Blenckner et al., 2015; Free et al., 2015). Within pelagic systems, highly
76	migratory predators such as tunas and billfishes contribute to valuable and extensive

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2022).

international fisheries (Sala et al., 2018). These species evolved to migrate across ocean basin scales in order to exploit seasonal food resources for growth and warmer waters for reproduction (Mariani et al., 2016). However, anomalies and long-term changes in climate are producing mismatches among predator migration and the productivity of forage resources, with implications for fisheries productivity (Thackeray et al., 2010; Scheffers et al., 2016). Accounting for trophic interactions is often the missing link to forecasting species redistributions under climate change (Lan et al., 2021; Green et al., 2022), especially for highly migratory marine species (Muhling et al., 2019). Marine species redistributions are typically predicted on the basis of habitat use and changing physical oceanographic properties (Morley et al., 2018). Despite empirical relationships between the biomass of prey species and their prevalence in predator diets, efforts to model predator distributions in relation to the distribution of key prey are often plagued by numerous issues including the accuracy of prey distribution information (Muhling et al. 2019), the number and functional redundancy of interacting species (Link, 2007; Carroll et al., 2019). These hurdles may be overcome by modelling functional ecological relationships using synthetic parameters, or traits (Zakharova et al., 2019; Green et al.

Trait-based approaches to modelling predator-prey interactions aim to simplify taxonomically complex interactions among hundreds of species to synthetic and non-taxonomic predictors for those relationships, positioning scientists to predict ecological outcomes in new contexts (McGill et al., 2006; Kiørboe et al., 2018; Green et al., 2022). For example, the strength of predator-prey interactions can be modelled as a function of single or multiple individual prey trait variables influencing the predation process (Arrizabalaga-Escudero et al., 2019; Green et al., 2022). Additionally functional groupings of prey into 'guilds' are a common ecological practice of dimension or variable reduction (Pomerleau et al., 2015; Parravicini et al., 2020), based on shared traits describing similar roles for those species in ecosystem processes (Gitay & Noble, 1997) in order to model complex species distribution and interactions.

Trait-based approaches may be particularly useful for tunas – that have taxonomically broad diets (Duffy et al., 2017; Pethybridge et al., 2018) and there is little evidence for the influence of predator size on prey size selection (Romanov et al., 2020). While these foraging properties make them salient indicator species to track changing prey communities and predator-prey interactions under climate change, they also make them excellent candidates for trait-based modelling to synthesise complex interactions with numerous prey species and investigate

evidence for selection for certain types of forage (Glaser, 2010; Valls et al., 2022). Previous diet analyses related shifts and niche partitioning in the diets of yellowfin, bluefin, bigeye and albacore tunas across predator species, latitude, predator life stage, environmental drivers (Allain et al., 2012; Young et al., 2015; Duffy et al., 2017; Pethybridge et al., 2018; Portner et al., 2022; Valls et al., 2022; Nickels et al., 2023), and shifts in albacore distribution have been linked to prey availability (Pearcy, 1973). Many of these studies hypothesise about the role of traits in driving observed patterns and shifts. However, the extent to which trait information could explicitly be used to explain tuna foraging ecology across space and time and predict their resource use under changing environmental states remains poorly understood.

Using albacore (*Thunnus alalunga*) as a case study, we seek to move beyond descriptive diet analyses to identifying non-taxonomic predictors for trophic relationships in highly-migratory pelagic predators and commercially valuable species. Our synthesis aggregates historical data on albacore diets from published and grey literature dating from 1880–2020 globally. Our aims are threefold, to: (1) reconstruct historical resource use for albacore across geographies from published aggregate mean diet composition data, (2) use functional traits to distil diverse predator-prey interactions into key trait-based guilds, and (3) explore species-based and trait-based variability in the historical composition of albacore diets across the geographies sampled.

2. Methods

2.1 Historical diet data collation

Our synthesis required quantitative data on adult or juvenile albacore diet composition obtained from stomach content analyses that identified consumed prey to species-level. To obtain these data, we compiled published and grey literature, research theses, and historical reports for albacore diets by searching bibliographic databases (Table S1) queried from 1900 until 2020 using diet analysis search terms and synonymous scientific names for albacore (*Thunnus alalunga*; Supporting Information, Table S1). We also investigated diet reports cited within articles, which expanded our range to include several reports from the 1880s. Studies typically reported a mix of data types (i.e., frequency of occurrence and other metrics).

We obtained diet data from 26 studies that were suitable for meta-analysis (Supporting Information, Table S2); this included 69 independent, aggregate (i.e. by geographic region, year, or season sampled) observations of adult and juvenile albacore diet composition, from 1880–2015 (Supplementary Data, Table S3). We digitised and transcribed data reported typically for a specific geographic location (Figure 1a), year, and season sampled. However, several reports presented information that was further aggregated for multi-year sampling programs (Table S3) and for analyses in these cases, we use the last year of sampling completed. Albacore were typically collected either via scientific sampling programs (i.e., National Oceanic and Atmospheric Administration [NOAA], Centre National de la Recherche Scientifique [CNRS]),

or in collaboration with commercial fishing operations (Bello, 1999; Joubin & Rouie, 1918; Glaser et al., 2015; Romanov et al., 2020), and using surface troll, pole-and-line, longlining at specified depths, or purse seining gear (Table S3).

152

153

149

150

151

2.2 Prey life stage estimation

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

Albacore consume post-larval and juvenile prey as well as adult life stages. Given that traits could vary between life stages for many species, we aimed to match traits to the life stage most commonly consumed by albacore predators for each prey species. Of the 308 prey recorded to species, 72 (or 23%) had associated life stage information reported within their corresponding diet study, with 42 reported as post-larvae, young-of-year, or juveniles, and 37 species consumed as adults (Supplementary Information, Figure S1). Albacore rarely consumed larvae (i.e., 11 species in total). Of these 72 species, 13 were reported at multiple life stages in albacore diets, however, one life stage was typically dominant across diet studies (i.e., with an order of magnitude greater frequency of occurrence than any other life stage). For example, of 11 species with reported consumption of the larval life stage, 6 species were typically consumed as juveniles (i.e. across multiple studies) and thus were assigned as juveniles for the purpose of this meta-analysis (Supplementary Data, Table S4; Supplementary Information, Figure S1). When life stage information was not provided, it was necessary to estimate prey life stage from available information on the size and age class of either the predator or prey in a given study (Figure S1; Table S4). For an additional 15 species (nearly 5% of species), prey length

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

information was reported but not life stage. Reported total lengths ranged from 1.5–24.5 cm, and these prev species' life stages were inferred relative to their known length at maturity (Figure S1; Table S4). The remaining 221 species (72% of the species) were identified in albacore diets without metainformation and assumed to be either juveniles or adults. Trait information was often similar between juvenile and adult life stages (Gleiber et al., 2022). Thus for 127 of these taxa (41% of the species), no further estimation of prev life stage was needed. Trait information differed by life stage for 94 prey species (31% of the species) remaining; for example, these could include a benthic adult with a pelagic juvenile life stage (Figure S1). Here, the most plausible life stage consumed was then assessed on a case-by-case basis (Table S4). As albacore are epipelagic predators, the pelagic stage of these prey was most likely consumed, and albacore are more likely to consume smaller juvenile prey, for example epipelagic juvenile hake (less than 10 cm and up to 20 cm length) than benthopelagic adult hake (~40–90 cm) (Bailey et al., 1982). We corroborated these decisions based on calculated maxillary length (or 'gape limit') for albacore sampled to determine whether adult prey could feasibly have been consumed from a published relationship between length and gape for closelyrelated yellowfin tuna (Ménard et al., 2006). Depending on the data reported, we used either a measured maximum albacore fork length (FL) (51 species [16%]), or an estimated maximum FL for the population of albacore sampled for each study that did not measure or report albacore lengths sampled (43 species [14%]), as inputs to the equation (Figure S1) (Ménard et al., 2006). Where albacore lengths were not reported, we matched gear-specific length data (range and mean FL) from relevant regional fisheries management organisations (ICCAT, 2020; ISC, 2006) to albacore diet studies by year. There was no significant difference between the variances of

mean, minimum and maximum FL for studies where these parameters were measured or where these parameters were estimated in this study (Figure S2). This process of estimating albacore length information resulted in estimated gape limits of 6.4–11.5 cm across studies and locations sampled, and affected only 14% of decisions on prey life stage and selection of appropriate trait information (Figure S1). Further detail in estimating the mean and range in albacore lengths for a given study are further described in Supplementary Information (Supplementary Information, Appendix B). Overall, our synthesis uses the following prey life stages consumed by albacore: 5 larval life stages, 210 juveniles, and 93 adult prey (Supplementary Data, Table S5). Police.

200

201

192

193

194

195

196

197

198

199

2.3 Prey trait information

202

203

204

205

206

207

208

209

For each prey species and life stage (i.e., larva, juvenile, adult), we collected information for four habitat use traits known to affect the likelihood of pelagic predators encountering and consuming prey (Green et al., 2019). These were: (i) vertical and (ii) horizontal habitat association, (iii) presence of diel vertical migration, and (iv) presence of seasonal migration and seasonal aggregation behaviour (Table 1; Table S5). These trait data were compiled for a broader database of traits that inform predator-prey interactions for albacore (Gleiber et al., 2022). We further describe how prey species' trait values were used in Supporting Information, Appendix C.

210

211

2.4 Trait-based analyses

213	All data manipulation, statistical analysis and graphical illustrations were performed in R
214	(version 4.2.1) (R Core Team, 2022).
215	
216	Taxonomic and trait diversity in albacore diets
217	
218	Species accumulation was calculated and plotted using <i>BiodiversityR</i> (version 2-14.1; Kindt &
219	Coe, 2005) in relation to ocean basins where sampling locations occurred and the final year
220	sampled ($n = 69$ observations) by each study ($n = 26$). Prey species' phylogenetic information
221	were extracted from the Open Tree of Life Data using the package <i>rotl</i> (version 3.0.12)
222	(Michonneau et al., 2016) and parsed to a phylogenetic tree using ape (version 5.6-2) (Paradis &
223	Schliep, 2019) and <i>stringr</i> (version 1.4.0) (Wickham, 2021) with integrated species-specific trait
224	information displayed using ggtree (v3.3.1.900) (Yu et al., 2017) to visualise relationships
225	between taxonomic and trait diversity in the data.
226	
227	Albacore prey trait guilds
228	

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

For the 292 prey species with complete trait information, key prey trait guilds were identified using a divisive hierarchical clustering algorithm (Anderberg, 1973; Legendre & Legendre, 1998) on a Gower dissimilarity matrix (Gower, 1971) to identify relational structure among albacore prey in relation to ecological trait data for the four habitat use variables: two binomial variables (seasonal and diel vertical migration) and two multi-level categorical variables (vertical and horizontal habitat use) (Table 1; Supplementary Data, Table S4) using the diana algorithm in vegan (v2.5-7) (Oksanen et al., 2020) and cluster (v2.1.2) (Maechler et al., 2021) and visualised with *ggplot2* (v3.3.5) (Wickham, 2016) and *dendextend* (v1.15.2) (Galili, 2015). We used a consensus approach for validating cluster results – optimising cluster selection and partition by assessing several stability and internal validation metrics (Supplementary Data, Table S6) (Brock et al., 2008) and visualised using non-metric multidimensional scaling (nMDS) plots (Field et al., 1982) using *vegan*. Specifically, we assessed: (1) inter-cluster variation – maximum separation of species between clusters – indicated by higher average distance between species clusters (Rousseeuw, 1987); (2) intra-cluster variance or minimum separation of species within clusters indicated by lower average distance within species clusters (Handl et al., 2005);

(3) high silhouette width coefficient value and Dunny Smith residuals (Dunn[†], 1974;

Rousseeuw, 1987) representing optimal cluster compactness and separation qualities; and lastly, (4) optimal evenness or balance of cluster composition indicated by the number of species in each cluster (Legendre & Legendre, 1998). Trait values that influence a species' occupancy within a cluster were visualised using heat maps illustrating the importance of trait values to the composition of each cluster.

Trait-based vs taxonomic diet variation

Historical albacore diet composition across geographies were visualised using frequency of occurrence data from 26 studies that yielded 60 observations of diet composition, because the other 3 dies in this dataset and their 9 observations included presence only data. To visualise overall contributions of prey trait guilds to albacore diets, we calculated a normalised index of contribution for each prey species relative to (i) the trait guild they were classified in and (ii) the sum of frequency of occurrence data within each observation per study. Of note, several species with incomplete trait information are therefore 'not classified' with trait guilds and are included in illustrations of diet composition.

For further statistical analysis of trait-based variance in albacore diet composition across geographies, all data from the 26 studies and 69 observations were transformed to presence/absence to meet the model data distribution requirements. Poorly sampled locations were excluded from analyses (samples from South Pacific, South Atlantic and Indian Oceans),

as well as rare species that only occurred once or twice in this reduced dataset. We therefore compare the diet composition for albacore from sampling locations in the North Pacific (samples mainly come from the California Current System), North Atlantic (largely representing North Atlantic Drift), and Mediterranean Sea, providing us with 57 observations of albacore diet composition and including 98 species.

We use a fourth-corner, model-based approach (Dray & Legendre, 2008; Brown et al., 2014), which builds on the generalised linear modelling (GLM) framework (Nelder & Wedderburn, 1972) to simultaneously test how the composition of albacore diets (L matrix of species presence/absence) differed as a function of two different types of explanatory variables: an environmental variable (R matrix, here containing geographic locations sampled) and prey trait information (Q matrices), producing the trait-environment interaction (QxR) or the fourth corner solution to a multi-matrix problem. We therefore built 3 models to test the role of species identity (no traits) or two types of trait information (individual trait values Q1 and seven trait guilds Q2), and geographic location (R) in explaining the presence of prey types (L) across the global data set (Table 2).

We used a binomial distribution for presence/absence data, analysed via logistic regression (with logit link function) using the *traitglm* function in the R package *mvabund* (version 4.1.12) (Wang et al., 2021). We include a species effect in models (i.e., a different intercept term for each species), akin to fitting a random effect variable to account for differences in absolute number of species occurrences (Brown et al., 2014; Wang et al., 2021). Additionally, models were fit with a LASSO penalty, specifying the fitting method as '*glm1path*', using penalised likelihood to impose a constraint on estimates of model parameters (Hastie et al., 2009;

Brown et al., 2014). This constraint shrinks coefficients to zero when not statistically significant, providing a combined approach for variable selection, p-value adjustment for multiple models, and parameter estimation to evaluate the magnitude and significance of an explanatory variable (Hastie et al., 2009). Trait-environment relationships for individual trait variables and constructed trait guilds were illustrated as heat maps indicating the interaction strength, and positive or negative correlation between trait information and geographies sampled. Model fit was assessed by plotting multivariate residuals against fitted values and plotting quantile-quantile (Q-Q) plots. Multivariate data were previously screened for broad trends using conditional boxplots (Zuur et al., 2010), for overdispersion and outliers by nMDS plots (Field et al., 1982) using *vegan*. All model assumptions were met.

3. Results

3.1 Taxonomic and trait diversity in albacore diets

Page 18 of 182

Our synthesis reveals the large biodiversity of prey consumed by albacore globally (Figure 1).
Prey hailed from 7 classes representing 203 families; mainly of ray-finned fishes (n = 108
families of prey), cephalopods ($n = 29$), and crustaceans (Malacostraca $n = 45$, Hexanauplia $n = 45$, Hexa
6), and also including pelagic gastropods ($n = 6$), salps ($n = 2$), one appendicularian, one
branchiopod, one hydrozoan, and one elasmobranch (an unknown Squalidae species)
(Supplementary Information, Figure S3). Of these, 308 taxa were reported to species level, with
a further 279 taxa identified at variable resolutions from genus to order. Whilst the rate of
species accumulation appears to level off in well-sampled locations such as the North Pacific,
North Atlantic, and in the Mediterranean Sea (Figure 1b/c), an unknown and likely just as large
diversity of prey remains to be studied in the South Pacific, South Atlantic, and Indian Oceans
(Figure 1b/c). Additionally, out of 308 prey species, 201 were observed in < 10% of stomach
samples within any study (Figure S3). Individual traits varied across phylogeny and recurred
across unrelated prey taxa (Figure 2).

3.2 Albacore prey trait guilds

We obtained complete trait information for 292 prey species and these were optimally classified into seven trait guilds reflecting different combinations of four traits affecting predator-prey encounter processes (Table 1, Figure 3a). We selected 7 clusters by optimising cluster validation outputs: (1) higher average distance between species clusters (Rousseeuw, 1987); (2) lower average distance within species clusters (Handl et al., 2005); (3) high silhouette width coefficient value and Dunny Smith residuals (Dunn†, 1974; Rousseeuw, 1987); and lastly, (4) optimal evenness or balance of cluster composition indicated by the number of species in each cluster (Legendre & Legendre, 1998) (Supplementary Data, Table S6).

The most taxonomically abundant trait guild consisted of diel migrating mesopelagics (trait guild 2), distinct from the non-diel migrating mesopelagics (1) and least taxonomically abundant (Figure 3). The second and third most abundant groups included the oceanic (or 'offshore') epipelagics (5) and coastal and shelf epipelagics (3), followed by seasonal, continental shelf taxa (6) and resident continental shelf taxa (7). Finally, the rarest prey guild globally was the coastal and shelf demersal taxa (4). The hierarchical divisive clustering technique for 7 optimal clusters performed well in grouping taxa that are also clustered based on their trait values in multivariate space (Figure 3b; Supplementary Information, Figure S4).

3.3 Historical trait-based albacore diet composition

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

335

Almost all trait guilds were observed in albacore diets in nearly all locations sampled (Figure 4). The Mediterranean was characterised by a relatively high contribution of samples containing seasonal shelf taxa, with pulses of resident shelf taxa, diel migrating mesopelagics and oceanic epipelagics at different points in time (Figure 4). North Atlantic samples were also characterised by high prevalence of samples containing the seasonal shelf taxa and resident shelf taxa (Figures 4 & 5), the latter group mainly prevalent in earlier 1930's samples alongside consistent albeit relatively low prevalence of non-diel migrating mesopelagics at that time. From 1968 however, North Atlantic samples oscillate between higher contributions of the seasonal shelf taxa, coast and shelf epipelagics and oceanic epipelagics. These guilds were also highly prevalent in North Pacific diets, and samples from this basin were also characterised by oscillations between coast and shelf epipelagics and oceanic epipelagics (Figures 4 & 5). Oceanic epipelagics appeared to dominate South Pacific sampling in most years, with intermittent higher prevalences of seasonal shelf taxa and non-diel migrating mesopelagics. Notably in this region, a relatively high contribution of unclassified species were observed in albacore diets lacking complete trait information. Indian Ocean observations were few in number, and diets varied including two important seasons for resident shelf taxa, one season dominated by coast and shelf epipelagics, and consistent but low prevalences of non-diel migrating mesopelagics.

353354

355

356

Overall, non-diel migrating mesopelagics were primarily observed in diets prior to 1950's samples from the North Atlantic and with high prevalence in select years in the mid-2010s in the Indian and South Pacific Oceans. The coast and shelf demersals were the rarest group across

geographies, and observed mainly in North Pacific samples in the 1940's and North Atlantic samples from 1957. Due to low sample sizes, data from locations in the South Pacific, South Atlantic, and Indian Oceans are illustrated (Figure 4) but were not used in further trait-based models. Taxonomic variation in regional dietary signatures (Supplementary Information, Figure S5) was significantly mediated by trait information and trait guilds, particularly for samples from the North Pacific and the Mediterranean (Figure 5).

4. Discussion

4.1 Synthesis of albacore diet diversity and historical trait relationships

variability.

We reconstructed historical resource use for albacore tuna (*Thunnus alalunga*) globally, highlighting biodiverse diets in this predator (n = 308 prey identified to species, plus an additional 279 prey taxa identified to genus or higher). We quantitatively synthesised this large prey diversity into 7 functional trait guilds using four sets of traits influencing predator-prey encounter rates: prey habitat association, seasonal and diel vertical migration behaviour.

Importantly, this study identifies both taxonomic and trait-based variability in diets of albacore tuna globally, and identifies trait-based dietary signatures in albacore beyond taxonomic

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Our results indicate that both trait information and constructed functional trait guilds serve as useful and rapid classification tools for tracking large-scale shifts in albacore diets in time and space. Importantly, trait-based frameworks enable functional simplification of diverse prey and functionally redundant food web linkages (Link, 2007), especially involving highly migratory pelagic predators. A traits approach may be of particular use for retaining data on diets containing less common species in analysis such as species distribution models and networkbased food web models, as these typically risk being excluded from analyses seeking to investigate predator-prey interactions due to insufficient data or insufficient weighting of these species in models. Rare prey species likely contribute to diet characterization in sharing forms of traits likely to be consumed with more common prey species. Thus, trait values or trait guilds are more tractable analytical currencies for ecologists in the context of changing species distributions and trophic interactions (Green et al., 2022). In applying traits to analysing ecological interactions, it will be important to quantify the extent to which traits recur across unrelated taxa (i.e. phylogenetically conserved or not) (Ives & Helmus, 2011). Trait and phylogenetic information are likely not redundant and ideally should both be accounted for in modelling frameworks (Ovaskainen et al., 2017), as both provide different and useful information in characterising trophic interactions between albacore and their prey.

Traits have proven useful in describing albacore foraging dynamics in prior studies. In the South Pacific, previous studies describe albacore diets as largely consisting of mesopelagic and epipelagic prey, and to a lesser extent include surface migrating bathypelagic and coastal reef-associated taxa (Allain, 2005; Allain et al., 2012; Young et al., 2017). Albacore diets in the Indian Ocean have previously been characterised by a reliance on mixed epipelagic to mesopelagic resident prey stocks (Romanov et al., 2020). Our reanalysis of these data within the global synthesis corroborated and extended these previous descriptive observations.

Trait information was rarely used in an explanatory capacity in the North Pacific, North Atlantic and Mediterranean. Most studies from the North Atlantic and Mediterranean, home to some of the earliest and most detailed investigations of albacore diets (especially from the 1930's; Bouxin & Legendre, 1936; Legendre, 1934, 1940), categorised the diets of albacore as 'specialised' (Consoli et al., 2008), of narrow trophic niche width (Teffer et al., 2015), of short food chain length and low trophic adaptability (Pethybridge et al., 2018) compared to the longer food chain lengths and higher trophic complexity of Pacific tuna diets. Our reanalysis of the same data found that three habitat trait guilds accounted for a large proportion of diet composition observations from the North Atlantic and Mediterranean. Mediterranean samples

were especially dominated by two trait guilds overall: the seasonal and resident continental shelf taxa. However, in the North Atlantic dominant prey trait guilds shifted over time, and the detailed taxonomic identification by Bouxin and Legendre in the 1930's revealed particularly trait-diverse diet composition. Trait guilds identified in sampling locations from the North Atlantic and North Pacific were also more diverse than observed elsewhere, and included prevalent consumption of continental shelf, offshore to coastal, mesopelagic and epipelagic trait guilds.

We posit that investigating trait-based diet shifts in albacore will be a powerful framework for tracking foraging responses to environmental variability. Our review shows clear differences in trait-based diet composition across years and locations sampled. Investigating the extent to which the consumption of trait guilds relates to environmental drivers and climate states requires access to disaggregated diet data (i.e. prey from each individual predator) sampled consistently over time and space. It may be that individual species productivity alternate and shift across environmental gradients and inter-annual cycles, whilst that of trait guilds may be more stable and offer predictive insights (e.g., the productivity of offshore mesopelagics and coastal to offshore epipelagics in relation to environmental shifts). The extent to which species

taxonomic, phylogenetic and trait information explains variation in diet composition needs to be formally tested.

427

428

425

426

4.2 Synthesis limitations, knowledge accessibility and gaps to overcome

429

430

431

432

433

434

435

436

437

438

439

440

441

This review also highlights how variable the sampling of albacore tuna diets has been in space and time, with long gaps between studies ranging from a few years to over fifty years apart depending on ocean basin. Historically, the North Pacific and Atlantic basins were the most studied and taxonomically diverse regions for albacore diet composition, with over 100 species of prey identified in each region, particularly in the productive upwelling system of the Northeast Pacific where most samples were taken in this basin (from 1942 to 2010). In contrast, Pethybridge et al. (2018) found decreased dietary diversity in the productive upwelling regions of the Southeast Pacific (from 2000 to 2015) and for which aggregate diet data for albacore were not available for this meta-analysis. Additionally, sampled locations tended to be aggregated within biogeographic provinces of an ocean basin, such as the California Current System for the North Pacific and North Atlantic Drift for the North Atlantic. In most studies examined in this meta-analysis, samples were concentrated in either frontal, upwelling or offshore gyre zones,

thus likely more indicative of regional-scale rather than basin-scale processes. We note that published or open-access historical data were sparse for the South Pacific, South Atlantic and Indian Oceans, where we expect the taxonomic and trait biodiversity of prey consumed could be just as large as in the North Pacific.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Very large disaggregated datasets are needed to understand resource use in highly migratory pelagic predators at both broad and finer spatial scales. Indeed, several project-based, global-scale databases exist for the trophic ecology and resource use of albacore, yellowfin, bluefin and bigeye tunas (Young et al., 2015; Duffy et al., 2017; Bizzarro et al., 2022). The maintenance, expansion and collaborative accessibility of these datasets will enable the production of powerful and predictive models for tuna resource use under climate change. Critically, Young et al. (2015) note both a lack of long-term monitoring and inadequate sampling in some regions, and to that we add that the availability of such data after collection is also a significant hurdle. Tewksbury et al. (2014) and Young et al. (2015) also highlight the ongoing need for international cooperation and collaboration on data. While disaggregated historical data cannot be expected back to the late 1800's, we highlight the need for open science practices moving forward – publicly available raw diet data on commercially valuable pelagic predators.

Access to disaggregated diet data at high taxonomic resolution where information on predator size information and prey size (e.g. lengths and widths) are recorded will enable more accurate pairing of trait information with individual prey items (Zakharova et al., 2019). For each trait in this meta-analysis, we needed to select a single trait value per species, and also estimate the most likely life stage consumed for a large proportion of the data. We believe that traits for prey consumed are representative of the life stage-appropriate habitat use and migratory behaviour traits, but greater accuracy could be achieved and a very lengthy data curation process used to ensure current accuracy in trait data could be significantly shortened with disaggregated data.

Further, the need for sound design, maintenance and accessibility of large databases is echoed for species' trait information. Many such efforts are publicly available for some taxonomic groups and classes (Froese & Pauly, 2020; Palomares & Pauly, 2020). However, researchers often expend significant effort and personnel towards further processing data from these databases to fill knowledge gaps (Kim et al., 2018), as well as testing and creating synthetic classifications from species-level data. Knowledge on the underlying distribution of traits across environmental gradients is critical to their use as synthetic predictors in changing

ecosystems (McGill et al., 2006). This is a key knowledge gap in marine and freshwater ecosystems (Green et al., 2022).

476

474

475

5. Conclusions

478

479

480

481

482

483

484

485

486

487

488

489

490

477

Syntheses of historic trophic interactions are crucial for establishing baselines in understudied systems and understanding how they may change. We reveal a comprehensive taxonomic and trait-based portrait of the trophic plasticity of albacore. We generate 7 functional trait-based guilds of prey consumed, applicable beyond this work to classifying prey in albacore and other tunas. We highlight the utility of both functional trait guilds and prey trait information for synthesising variation in predator diets. Trait-based models revealed broad biogeographic signatures in albacore diets and corroborated known ecological differences between sampled geographies, warranting further development of trait-based analyses and investigation to understand how stable or flexible trait-based biogeographic resource use may be for highly migratory pelagic predators, as pelagic ecosystems are altered by climate change and shift to novel states. Ultimately, further modelling applications that use trait database products in predator diet analyses frameworks will shed light on the extent to which future data collection

and modelling efforts in pelagic systems will benefit from a focus on traits (rather than taxonomic identity alone) when seeking to characterise the effect of trophic interactions on predator redistribution.

Acknowledgements

We are grateful to the Lenfest Ocean Program, and Pew Charitable Trust (GRANT 00032174), and MEOPAR (GRANT 0052372) for funding and regular support. Future Seas I and II (NOAA's Coastal and Ocean Climate Application COCA Program (NA17OAR4310268); NOAA's Climate and Fisheries Adaptation CAFA Program (NA20OAR4310507)). We sincerely thank Prof. David Warton in the School of Mathematics and Statistics at UNSW for support in multi-matrix modelling and use of *mvabund* R package. We thank Dr. Miram Gleiber, and all anonymous reviewers, for providing valuable feedback on manuscript drafts. We are especially grateful to innumerable scientists, fishermen, government-based ecosystem monitoring and data collection initiatives for over 100 years of historical data, collected, published or reported, archived, at least in aggregate form, and made available to us through many online requests to numerous libraries across the world. The authors declare no conflict of interest.

data collection, analysis and writing. LC, SG and BM contributed to the
sign of the meta-analysis. NH, SG, CM, IG and ZR co-developed data
s. NH, CM, IG and ZR co-developed methods for data re-analysis and
EH, SB and MJ acquired funding for and supervised this project, providing
support and contributions from the conceptualization through to publication of
uthors contributed text and substantial revision to the final manuscript.
DIET OF FOUR TUNA SPECIES OF THE WESTERN AND CENTRAL
OCEAN. SPC Fisheries Newsletter, 114.
lez, E., Hoyle, S. D., Caillot, S., Jurado-Molina, J., Andréfouët, S., & Nicol, S
nteraction between Coastal and Oceanic Ecosystems of the Western and
eific Ocean through Predator-Prey Relationship Studies. PLOS ONE, 7(5),
ps://doi.org/10.1371/journal.pone.0036701
(1973). CHAPTER 6—HIERARCHICAL CLUSTERING METHODS. In M.
erg (Ed.), Cluster Analysis for Applications (pp. 131–155). Academic Press.

528	https://doi.org/10.1016/B978-0-12-057650-0.50012-0
529	Arrizabalaga-Escudero, A., Merckx, T., García-Baquero, G., Wahlberg, N., Aizpurua, O., Garin,
530	I., Goiti, U., & Aihartza, J. (2019). Trait-based functional dietary analysis provides a
531	better insight into the foraging ecology of bats. Journal of Animal Ecology.
532	Bailey, K. M., Francis, R. C., & Stevens, P. R. (1982). The life history and fishery of Pacific
533	whiting, Merluccius productus. CalCOFl Report, Vol. XXIII.
534	Bello, G. (1999). Cephalopods in the Diet of Albacore, Thunnus alalunga, from the Adriatic Sea
535	Journal of Molluscan Studies, 65(2), 233–240. https://doi.org/10.1093/mollus/65.2.233
536	Bizzarro, J. J., Curtis, K. A., Field, J., Santora, J. A., & Wells, B. (2022, October 18). California
537	Current Trophic Database. NOAA ERRDAP. https://oceanview.pfeg.noaa.gov/cctd/
538	Blenckner, T., Llope, M., Möllmann, C., Voss, R., Quaas, M. F., Casini, M., Lindegren, M.,
539	Folke, C., & Chr. Stenseth, N. (2015). Climate and fishing steer ecosystem regeneration
540	to uncertain economic futures. Proceedings of the Royal Society B: Biological Sciences,
541	282(1803), 20142809. https://doi.org/10.1098/rspb.2014.2809
542	Bouxin, J., & Legendre, R. (1936). La faune pélagique de l'Atlantique au large du Golfe de
543	Gascogne, recueillie dans des estomacs de Germons—Deuxième Partie: Céphalopodes.
544	Annales de l'Institute Océanographique, 16(1), 1–102.
545	Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). ClValid, an R package for cluster validation.
546	Journal of Statistical Software, 25(4), 1–22. https://doi.org/10.18637/jss.v025.i04
547	Brown, A. M., Warton, D. I., Andrew, N. R., Binns, M., Cassis, G., & Gibb, H. (2014). The
548	fourth-corner solution – using predictive models to understand how species traits interact
549	with the environment. Methods in Ecology and Evolution, 5(4), 344–352.
550	https://doi.org/10.1111/2041-210X.12163

551	Carroll, G., Holsman, K. K., Brodie, S., Thorson, J. T., Hazen, E. L., Bograd, S. J., Haltuch, M.
552	A., Kotwicki, S., Samhouri, J., Spencer, P., Willis-Norton, E., & Selden, R. L. (2019). A
553	review of methods for quantifying spatial predator-prey overlap. Global Ecology and
554	Biogeography, 28(11), 1561–1577. https://doi.org/10.1111/geb.12984
555	Casini, M., Hjelm, J., Molinero, JC., Lövgren, J., Cardinale, M., Bartolino, V., Belgrano, A., &
556	Kornilovs, G. (2009). Trophic cascades promote threshold-like shifts in pelagic marine
557	ecosystems. Proceedings of the National Academy of Sciences, 106(1), 197–202.
558	https://doi.org/10.1073/pnas.0806649105
559	Cheung, W. W. L., Brodeur, R. D., Okey, T. A., & Pauly, D. (2015). Projecting future changes in
560	distributions of pelagic fish species of Northeast Pacific shelf seas. Progress in
561	Oceanography, 130, 19-31. https://doi.org/10.1016/j.pocean.2014.09.003
562	Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., &
563	Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the
564	global ocean under climate change. Global Change Biology, 16(1), 24-35.
565	https://doi.org/10.1111/j.1365-2486.2009.01995.x
566	Consoli, P., Romeo, T., Battaglia, P., Castriota, L., Esposito, V., & Andaloro, F. (2008). Feeding
567	habits of the albacore tuna Thunnus alalunga (Perciformes, Scombridae) from central
568	Mediterranean Sea. Marine Biology, 155(1), 113–120. https://doi.org/10.1007/s00227-
569	008-1012-1
570	Dray, S., & Legendre, P. (2008). Testing the Species Traits-Environment Relationships: The
571	Fourth-Corner Problem Revisited. <i>Ecology</i> , 89(12), 3400–3412.
572	https://doi.org/10.1890/08-0349.1
573	Duffy, L. M., Kuhnert, P. M., Pethybridge, H. R., Young, J. W., Olson, R. J., Logan, J. M., Goñi,

574	N., Romanov, E., Allain, V., Staudinger, M. D., Abecassis, M., Choy, C. A., Hobday, A.
575	J., Simier, M., Galván-Magaña, F., Potier, M., & Ménard, F. (2017). Global trophic
576	ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on
577	micronekton communities at ocean-basin scales. Deep Sea Research Part II: Topical
578	Studies in Oceanography, 140, 55-73. https://doi.org/10.1016/j.dsr2.2017.03.003
579	Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of
580	Cybernetics, 4(1), 95–104. https://doi.org/10.1080/01969727408546059
581	Field, J. G., Clarke, K. R., & Warwick, R. M. (1982). A Practical Strategy for Analysing
582	Multispecies Distribution Patterns. Marine Ecology Progress Series, 8(1), 37–52.
583	Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019)
584	Impacts of historical warming on marine fisheries production. Science, 363(6430), 979-
585	983. https://doi.org/10.1126/science.aau1758
586	Froese, R., & Pauly, D. (2020). FishBase. World Wide Web electronic publication, accessed
587	07/2020: www.fishbase.org.
588	Galili, T. (2015). dendextend: An R package for visualizing, adjusting and comparing trees of
589	hierarchical clustering. <i>Bioinformatics</i> , 31(22), 3718–3720.
590	https://doi.org/10.1093/bioinformatics/btv428
591	Gitay, H., & Noble, I. (1997). What are functional types and how should we seek them? In Plan
592	Functional Types. In Smith, M. M., Shugart, H. H. and Woodward, F. I. (eds).
593	Glaser, S. (2010). Interdecadal variability in predator-prey interactions of juvenile North Pacific
594	albacore in the California Current System. Marine Ecology Progress Series, 414, 209-
595	221. https://doi.org/10.3354/meps08723
596	Glaser, S. M., Waechter, K. E., & Bransome, N. C. (2015). Through the stomach of a predator:

597	Regional patterns of forage in the diet of albacore tuna in the California Current System
598	and metrics needed for ecosystem-based management. Journal of Marine Systems, 146,
599	38–49. https://doi.org/10.1016/j.jmarsys.2014.07.019
600	Gleiber, M. R., Hardy, N. A., Roote, Z., Morganson, C. J., Krug-Macleod, A., George, I.,
601	Matuch, C., Brookson, C. B., Crowder, L. B., & Green, S. J. (2022). Pelagic Species
602	Trait Database [Data set]. Scholars Portal Dataverse.
603	https://doi.org/10.5683/SP3/0YFJED
604	Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties. <i>Biometrics</i>
605	27(4), 857–871. https://doi.org/10.2307/2528823
606	Green, S. J., Brookson, C. B., Hardy, N. A., & Crowder, L. B. (2022). Trait-based approaches to
607	global change ecology: Moving from description to prediction. Proceedings of the Royal
608	Society B: Biological Sciences, 289(1971), 20220071.
509	https://doi.org/10.1098/rspb.2022.0071
610	Green, S. J., Dilley, E. R., Benkwitt, C. E., Davis, A. C. D., Ingeman, K. E., Kindinger, T. L.,
611	Tuttle, L. J., & Hixon, M. A. (2019). Trait-mediated foraging drives patterns of selective
612	predation by native and invasive coral-reef fishes. <i>Ecosphere</i> , 10(6), e02752.
613	https://doi.org/10.1002/ecs2.2752
614	Handl, J., Knowles, J., & Kell, D. B. (2005). Computational cluster validation in post-genomic
615	data analysis. Bioinformatics, 21(15), 3201–3212.
616	https://doi.org/10.1093/bioinformatics/bti517
617	Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data
618	Mining, Inference, and Prediction, Second Edition. Springer Science & Business Media.
619	Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. G., Jonsen, I. D.,

620	Shaffer, S. A., Dunne, J. P., Costa, D. P., Crowder, L. B., & Block, B. A. (2013).
621	Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate
622	Change, 3(3), Article 3. https://doi.org/10.1038/nclimate1686
623	ICCAT. (2020). Albacore (Thunnus alalunga) Task 2 size/weight frequencies from ICCAT (as of
624	Jan/2021) for the period 1956-2019. Public statistical databases, accessed 07/2020:
625	https://www.iccat.int/en/accesingdb.html
626	ISC. (2006). Report of the ISC - Albacore Working Group Stock Assessment Workshop. National
627	Research Institute of Far Seas Fisheries, Shimizu.
628	Ives, A. R., & Helmus, M. R. (2011). Generalized linear mixed models for phylogenetic analyses
629	of community structure. Ecological Monographs, 81(3), 511–525.
630	https://doi.org/10.1890/10-1264.1
631	Joubin, L., & Rouie, L. (1918). Observations sur la nourriture des Thons de l'Atlantique (Germo
632	alalonga Gmelin). Bulletin de l'Institut Océanographique de Monaco, 348, 21–27.
633	Kim, S. W., Blomberg, S. P., & Pandolfi, J. M. (2018). Transcending data gaps: A framework to
634	reduce inferential errors in ecological analyses. <i>Ecology Letters</i> , 21(8), 1200–1210.
635	https://doi.org/10.1111/ele.13089
636	Kindt, R., & Coe, R. (2005). Tree diversity analysis. A manual and software for common
637	statistical methods for ecological and biodiversity studies. World Agroforestry Centre
638	(ICRAF), Nairobi, Kenya. http://www.worldagroforestry.org/output/tree-diversity-
639	analysis
640	Kiørboe, T., Visser, A., & Andersen, K. H. (2018). A trait-based approach to ocean ecology.
641	ICES Journal of Marine Science, 75(6), 1849–1863.
642	https://doi.org/10.1093/icesjms/fsy090

643	Lan, KW., Wu, YL., Chen, LC., Naimullah, M., & Lin, TH. (2021). Effects of Climate
644	Change in Marine Ecosystems Based on the Spatiotemporal Age Structure of Top
645	Predators: A Case Study of Bigeye Tuna in the Pacific Ocean. Frontiers in Marine
646	Science, 8. https://doi.org/10.3389/fmars.2021.614594
647	Legendre, P., & Legendre, L. (1998). Numerical ecology: Developments in environmental
648	modelling.
649	Legendre, R. (1934). La faune pélagique de l'Atlantique au large du Golfe de Gascogne,
650	recueillie dans des estomacs de Germons—Première Partie: Poissons. Annales de
651	l'Institute Océanographique, 14, 249–418.
652	Legendre, R. (1940). La faune pélagique de l'Atlantique au large du Golfe de Gascogne,
653	recueillie dans des estomacs de Germons—Troisième partie: Invertébrés (Céphalopodes
654	exclus). Annales de l'Institute Océanographique, 16, 1–99.
655	Link, J. S. (2007). Underappreciated Species in Ecology: "Ugly Fish" in the Northwest Atlantic
656	Ocean. Ecological Applications, 17(7), 2037–2060. https://doi.org/10.1890/06-1154.1
657	Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2021). cluster: Cluster
658	Analysis Basics and Extensions. R Package Version 2.1.2. https://CRAN.R-
659	project.org/package=cluster
660	Mariani, P., Křivan, V., MacKenzie, B. R., & Mullon, C. (2016). The migration game in habitat
661	network: The case of tuna. <i>Theoretical Ecology</i> , 9(2), 219–232.
662	https://doi.org/10.1007/s12080-015-0290-8
663	McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology
664	from functional traits. <i>Trends in Ecology & Evolution</i> , 21(4), 178–185.
665	https://doi.org/10.1016/j.tree.2006.02.002

666	Menard, F., Labrune, C., Shin, YJ., Asine, A. S., & Bard, FX. (2006). Opportunistic predation
667	in tuna: A size-based approach. Marine Ecology Progress Series, 323, 223-231.
668	https://doi.org/10.3354/meps323223
669	Michonneau, F., Brown, J. W., & Winter, D. J. (2016). rotl: An R package to interact with the
670	Open Tree of Life data. Methods in Ecology and Evolution, 7(12), 1476–1481.
671	https://doi.org/10.1111/2041-210X.12593
672	Molinos, J. G., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W., Moore, P. J.,
673	Pandolfi, J. M., Poloczanska, E. S., Richardson, A. J., & Burrows, M. T. (2016). Climate
674	velocity and the future global redistribution of marine biodiversity. Nature Climate
675	Change, 6(1), Article 1. https://doi.org/10.1038/nclimate2769
676	Morley, J. W., Selden, R. L., Latour, R. J., Frölicher, T. L., Seagraves, R. J., & Pinsky, M. L.
677	(2018). Projecting shifts in thermal habitat for 686 species on the North American
678	continental shelf. PLOS ONE, 13(5), e0196127.
679	https://doi.org/10.1371/journal.pone.0196127
680	Muhling, B., Brodie, S., Snodgrass, O., Tommasi, D., & Jacox, M. (2019). DYNAMIC HABITAT
681	USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA
682	CURRENT SYSTEM. 60, 15.
683	Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. <i>Journal of the Royal</i>
684	Statistical Society: Series A (General), 135(3), 370–384. https://doi.org/10.2307/2344614
685	Nickels, C., Portner, E. J., Snodgrass, O., Muhling, B. A., & Dewar, H. (2023). Juvenile
686	Albacore Tuna (Thunnus alalunga) foraging ecology varies with environmental
687	conditions in the California Current Large Marine Ecosystem. Fisheries Oceanography.
688	Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R.,

689 OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. 690 (2020). vegan: Community Ecology Package. R package version 2.5-7. 691 https://cran.ism.ac.jp/web/packages/vegan/vegan.pdf 692 Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T., & 693 Abrego, N. (2017). How to make more out of community data? A conceptual framework 694 and its implementation as models and software. *Ecology Letters*, 20(5), 561–576. 695 https://doi.org/10.1111/ele.12757 696 Palomares, M., & Pauly, D. (2020). SeaLifeBase. World Wide Web electronic publication, 697 accessed 07/2020: www.sealifebase.org 698 Paradis, E., & Schliep, K. (2019), ape 5.0: An environment for modern phylogenetics and 699 evolutionary analyses in R. *Bioinformatics*, 35(3), 526–528. 700 https://doi.org/10.1093/bioinformatics/bty633 701 Parravicini, V., Casey, J., Schiettekatte, N., Brandl, S., Pozas-Schacre, C., Carlot, J., Edgar, G., 702 Graham, N., Harmelin-Vivien, M., Kulbicki, M., Strona, G., & Stuart-Smith, R. (2020). 703 Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. 704 PLOS Biology, 18, e3000702. https://doi.org/10.1371/journal.pbio.3000702 705 Pearcy, W. G. (1973). Albacore oceanography off Oregon – 1970. Fish Bulletin, 71, 489–177. 706 Pethybridge, H., Choy, C. A., Logan, J. M., Allain, V., Lorrain, A., Bodin, N., Somes, C. J., 707 Young, J., Ménard, F., Langlais, C., Duffy, L., Hobday, A. J., Kuhnert, P., Fry, B., 708 Menkes, C., & Olson, R. J. (2018). A global meta-analysis of marine predator nitrogen 709 stable isotopes: Relationships between trophic structure and environmental conditions. 710 Global Ecology and Biogeography, 27(9), 1043–1055. https://doi.org/10.1111/geb.12763 711 Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-

712	Guldberg, O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S., &
713	Sydeman, W. J. (2016). Responses of Marine Organisms to Climate Change across
714	Oceans. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00062
715	Polovina, J. J., Dunne, J. P., Woodworth, P. A., & Howell, E. A. (2011). Projected expansion of
716	the subtropical biome and contraction of the temperate and equatorial upwelling biomes
717	in the North Pacific under global warming. ICES Journal of Marine Science, 68(6), 986-
718	995. https://doi.org/10.1093/icesjms/fsq198
719	Pomerleau, C., Sastri, A. R., & Beisner, B. E. (2015). Evaluation of functional trait diversity for
720	marine zooplankton communities in the Northeast subarctic Pacific Ocean. Journal of
721	Plankton Research, 37(4), 712–726. https://doi.org/10.1093/plankt/fbv045
722	Portner, E. J., Snodgrass, O., & Dewar, H. (2022). Pacific bluefin tuna, Thunnus orientalis,
723	exhibits a flexible feeding ecology in the Southern California Bight. PLOS ONE, 17(8),
724	e0272048. https://doi.org/10.1371/journal.pone.0272048
725	R Core Team. (2022). R: A language and environment for statistical computing, version 4.2.1.
726	Vienna, Austria, R Foundation for Statistical Computing.
727	Romanov, E. V., Nikolic, N., Dhurmeea, Z., Bodin, N., Puech, A., Norman, S., Hollanda, S.,
728	Bourjea, J., West, W., & Potier, M. (2020). Trophic ecology of albacore tuna (Thunnus
729	alalunga) in the western tropical Indian Ocean and adjacent waters. Marine and
730	Freshwater Research. https://doi.org/10.1071/MF19332
731	Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of
732	cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
733	https://doi.org/10.1016/0377-0427(87)90125-7
734	Sala, E., Mayorga, J., Costello, C., Kroodsma, D., Palomares, M. L. D., Pauly, D., Sumaila, U.

735 R., & Zeller, D. (2018). The economics of fishing the high seas. Science Advances, 4(6), 736 eaat2504. https://doi.org/10.1126/sciadv.aat2504 737 Scheffers, B. R., Meester, L. D., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. 738 T., Butchart, S. H. M., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., 739 Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., & Watson, J. E. M. 740 (2016). The broad footprint of climate change from genes to biomes to people. Science, 741 354(6313). https://doi.org/10.1126/science.aaf7671 742 Teffer, A. K., Staudinger, M. D., & Juanes, F. (2015). Trophic niche overlap among dolphinfish 743 and co-occurring tunas near the northern edge of their range in the western North 744 Atlantic. Marine Biology, 162(9), 1823–1840. https://doi.org/10.1007/s00227-015-2715-745 8 746 Tewksbury, J. J., Anderson, J. G. T., Bakker, J. D., Billo, T. J., Dunwiddie, P. W., Groom, M. J., 747 Hampton, S. E., Herman, S. G., Levey, D. J., Machnicki, N. J., del Rio, C. M., Power, M. 748 E., Rowell, K., Salomon, A. K., Stacey, L., Trombulak, S. C., & Wheeler, T. A. (2014). 749 Natural History's Place in Science and Society. *BioScience*, 64(4), 300–310. 750 https://doi.org/10.1093/biosci/biu032 751 Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., Botham, M. 752 S., Brereton, T. M., Bright, P. W., Carvalho, L., Clutton-Brock, T., Dawson, A., 753 Edwards, M., Elliott, J. M., Harrington, R., Johns, D., Jones, I. D., Jones, J. T., Leech, D. 754 I., ... Wanless, S. (2010). Trophic level asynchrony in rates of phenological change for 755 marine, freshwater and terrestrial environments. Global Change Biology, 16(12), 3304— 756 3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x 757 Valls, M., Saber, S., Gómez, M. J., Reglero, P., & Mele, S. (2022). Diet and feeding behaviour

/58	of albacore Thunnus alalunga in the western Mediterranean Sea during the spawning
759	period. Journal of Fish Biology, 100(1), 203-217. https://doi.org/10.1111/jfb.14935
760	Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J., & Warton, D. I. (2021). mvabund:
761	Statistical Methods for Analysing Multivariate Abundance Data. R Package Version
762	4.1.12. https://CRAN.R-project.org/package=mvabund
763	Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (v. 3.3.5).
764	Wickham, H. (2021). stringr: Simple, Consistent Wrappers for Common String Operations.
765	http://stringr.tidyverse.org, https://github.com/tidyverse/stringr
766	Young, J. W., Lansdell, M. J., Campbell, R. A., Cooper, S. P., Juanes, F., & Guest, M. A. (2010).
767	Feeding ecology and niche segregation in oceanic top predators off eastern Australia.
768	Marine Biology, 157(11), 2347–2368. https://doi.org/10.1007/s00227-010-1500-y
769	Young, J. W., Olson, R. J., Ménard, F., Kuhnert, P. M., Duffy, L. M., Allain, V., Logan, J. M.,
770	Lorrain, A., Somes, C. J., Graham, B., Goñi, N., Pethybridge, H., Simier, M., Potier, M.,
771	Romanov, E., Pagendam, D., Hannides, C., & Choy, C. A. (2015). Setting the stage for a
772	global-scale trophic analysis of marine top predators: A multi-workshop review. Reviews
773	in Fish Biology and Fisheries, 25(1), 261–272. https://doi.org/10.1007/s11160-014-9368-
774	4
775	Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. TY. (2017). ggtree: An r package for
776	visualization and annotation of phylogenetic trees with their covariates and other
777	associated data. Methods in Ecology and Evolution, 8(1), 28–36.
778	https://doi.org/10.1111/2041-210X.12628
779	Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling in ecology: A review
780	of two decades of research. Ecological Modelling, 407, 108703.

https://doi.org/10.1016/j.ecolmodel.2019.05.008
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid
common statistical problems. <i>Methods in Ecology and Evolution</i> , 1(1), 3–14.
https://doi.org/10.1111/j.2041-210X.2009.00001.x
Data Accessibility
The database for global and historical albacore diet composition from digitised published and
grey literature will be made available on Dataverse's Borealis repository. All code for analyses
will be made publicly available on Github (https://github.com/CHANGE-Lab/albacore-diet-
global). Both the data and code will be made publicly available through a CC BY 4.0 public-use
licence upon acceptance of this manuscript for publication. Given the nature of the data and
commercial value of the study species we cannot make data publicly available prior to
acceptance for publication of this product.

Page 43 of 182 Fish and Fisheries

794 Tables

795

796

Table 1. Trait variables and values that influence the prey encounter phase of the predation process (Green et al., 2019).

Trait	Variable type	Definitions & relationships of traits for predator-prey interactions
Vertical habitat use	Categorical (demersal, epipelagic, mesopelagic)	Represents the water column position that prey resources primarily occupy (note that species can occur elsewhere, but this trait informs us of their main habitat use).
Horizontal habitat use	Categorical (coastal, continental shelf, oceanic)	Represents the typical position from the coastal to offshore waters that prey resources primarily occupy (note that species can occur elsewhere, but this trait informs us of their main habitat use). Coastal = coastal and reef associated; continental shelf = shelf and slope; oceanic = offshore taxa.
Diel migration	Binary (yes/no)	The relationship of this trait with predation is complicated due to an evolutionary arms race whereby prey species, particularly at larval, young-of-year and juvenile life stages, evolved to undertake these diel migrations to avoid predation, however, visual predators in turn evolved to mirror these migrations and intercept prey at crepuscular hours. We include this trait for exploratory analyses and generation of hypotheses on how this may affect predator-prey interactions for albacore tuna.
Seasonal migration	Binary (yes/no)	Represents whether prey species are seasonally abundant in the system, either in the form of seasonal spawning aggregations or seasonal migrations within the system, or local resident prey present at similar abundances year-round.

797

Table 2. Model design, variables and matrices used in multi-matrix fourth corner analysis.

Diet data (L)	Trait variables (Q)	Environmental variable (R)	Model
	None	Ocean basin	Diet composition ~ ocean basin
Diet composition (SPP)	Q1 – Trait variables (Table 1/S1)		Diet composition ~ traits variables + ocean basin
	Q2 – Trait guilds (Figure 3)		Diet composition ~ trait guilds + ocean basin

Figure Legends

Figure 1. a) Geographic distribution of published albacore diet papers, reports and grey literature from 1880–2020, including Longhurst biogeographical province codes. A total of 26 studies reported diet data for 69 individual sampling locations and 36 distinct sampling years. Of the 308 prey identified to species-level in albacore tuna diets, we illustrate the: b) mean species accumulation

curve in relation to the number of seasons sampled in each ocean basin; and c) step-wise species accumulation in relation to year and ocean basin sampled from the 1880's to 2020.

Figure 2. Prey and trait diversity across phylogeny. Grey shading indicates no data available for a particular species and trait.

Figure 3. Seven optimal albacore prey trait guilds generated by divisive hierarchical clustering for 292 species with complete trait information for vertical and horizontal habitat use, seasonal and diel vertical migration. Displayed: a) a radial cluster dendrogram and overlaid description of the main trait values associated with each cluster (including the number of species within clusters), and b) non-metric multidimensional scaling (nMDS) plot illustrating each species as an assemblage of four trait values and coloured in relation to their classified trait guild.

817

818

819

820

821

822

823

824

825

826

827

828

829

Figure 4. Composition of prey trait guilds within historical albacore diets (y axis; relative % frequency of occurrence [FO]) across locations and dates sampled from 1880–2015 (x axis; including first author and publication date information). Studies (x axis) are ordered by year from oldest on the left to most recent on the right. Diet composition is illustrated using a normalised metric of relative contribution to the total frequency of occurrence of all species' within each trait guild, normalised for each replicate diet observation. Figure 5. Correlation coefficients for the trait-environment relationship modelled using the fourth corner solution for a) individual trait information, and b) the trait guilds model and their interaction with the explanatory variable for ocean basin sampled. Coefficients for all trait-environment interactions are presented using a (GLM)-LASSO model (Brown et al. 2014). Significant trait-based relationships between albacore diet composition and geography sampled are coloured in relation to their correlation coefficient, and the strength and direction of the relationship. Supplementary Materials

Page 47 of 182 Fish and Fisheries

Supplementary Information includes literature search terms, treatment of albacore diet data, metainformation and prey trait information, as well as supplementary results illustrations. Supplementary Data contain tables that further support data treatment and decisions described in the manuscript and Supplementary Information

Figure 1. a) Geographic distribution of published albacore diet papers, reports and grey literature from 1880–2020, including Longhurst biogeographical province codes. A total of 26 studies reported diet data for 69 individual sampling locations and 36 distinct sampling years. Of the 308 prey identified to species-level in albacore tuna diets, we illustrate the: b) mean species accumulation curve in relation to the number of seasons sampled in each ocean basin; and c) step-wise species accumulation in relation to year and ocean basin sampled from the 1880's to 2020.

338x190mm (111 x 111 DPI)

Figure 2. Prey and trait diversity across phylogeny. Grey shading indicates no data available for a particular species and trait.

1481x1058mm (72 x 72 DPI)

Fish and Fisheries Page 50 of 182

Figure 3. Seven optimal albacore prey trait guilds generated by divisive hierarchical clustering for 292 species with complete trait information for vertical and horizontal habitat use, seasonal and diel vertical migration. Displayed: a) a radial cluster dendrogram and overlaid description of the main trait values associated with each cluster (including the number of species within clusters), and b) non-metric multidimensional scaling (nMDS) plot illustrating each species as an assemblage of four trait values and coloured in relation to their classified trait guild.

338x190mm (111 x 111 DPI)

Unable to Convert Image

The dimensions of this image (in pixels) are too large to be converted. For this image to convert, the total number of pixels (height x width) must be less than 40,000,000 (40 megapixels).

Figure 4. Composition of prey trait guilds within historical albacore diets (y axis; relative % frequency of occurrence [FO]) across locations and dates sampled from 1880–2015 (x axis; including first author and publication date information). Studies (x axis) are ordered by year from oldest on the left to most recent on the right. Diet composition is illustrated using a normalised metric of relative contribution to the total frequency of occurrence of all species' within each trait guild, normalised for each replicate diet observation.

Figure 5. Correlation coefficients for the trait-environment relationship modelled using the fourth corner solution for a) individual trait information, and b) the trait guilds model and their interaction with the explanatory variable for ocean basin sampled. Coefficients for all trait-environment interactions are presented using a (GLM)-LASSO model (Brown et al. 2014). Significant trait-based relationships between albacore diet composition and geography sampled are coloured in relation to their correlation coefficient, and the strength and direction of the relationship.

338x190mm (111 x 111 DPI)

Supplemental Information

2

3

1

Appendix A – Literature Search

4

- 5 **Table S1.** Literature search terms used to identify published papers and historical reports of
- 6 albacore tuna diets queried from 1900 until 2020 using the Web of Science (Clarivate Analytics,
- 7 2020), Aquatic Sciences and Fisheries Abstracts (ASFA, 2020) and Federal Science Library
- 8 Canada (FSLN, 2020) bibliographic databases. Both the diet research terms and synonymous
- 9 scientific names for albacore tuna were combined by a Boolean 'AND' clause.

Diet research terms	Albacore tuna synonymous scientific names			
(diet* OR forag* OR prey) AND	("Thunnus alalunga" OR "Scomber alalunga" OR "Albacora alalonga" OR "Germo alalonga" OR "Germo alalunga" OR "Germo germo" OR "Germo germon" OR "Germo germon steadi" OR "Orcynus alalonga" OR "Orcynus alatunga" OR "Orcynus germon" OR "Orcynus germon" OR "Scomber alalunga" OR "Scomber alalunga" OR "Scomber alatunga" OR "Scomber germo" OR "Scomber germo" OR "Scomber germon" OR "Thunnus alalonga" OR "Thunnus alalonga" OR "Thunnus alalonga" OR "Thynnus alalonga" O			

10

11

12

13

14

15

16

Table S2. Published and historical reports of albacore tuna diet that provided detailed stomach content data. Several older papers, typically prior to the 1980's, needed to be scanned and digitised to PDF format. These are available upon request and all data digitised from published papers and reports are available in our diet database. For every diet report, we recorded the date range, months and seasons of sampling, the median geographic location of albacore tuna collections, the number of albacore tuna collected, fishing gear and time of day for collections.

Fish and Fisheries Page 54 of 182

CiteAuth	CiteYear	CiteSource	CiteTitle
Aloncle, H.	1973	Thesis	Rythmes alimentaires et circadiens chez le germon <i>Thunnus alalunga</i> dans le Nord-Est atlantique
Bello, G.	1999	Journal of Molluscan Studies	Cephalopods in the diet of albacore, Thunnus alalunga, from the Adriatic Sea
Bernard et al.	1985	CalCOFI Reports	Stomach contents of albacore, skipjack, and bonito
Clemens & Iselin	1963	FAO World Sci. Meet. Biol. Tunas and Related Species, Sec. 5, Exper. Pap., (30): 1–13	Food of Pacific albacore in the California fishery
Consoli et al.	2008	Marine Biology	Feeding habits of the albacore tuna Thunnus alalunga (Perciformes, Scombridae) from central Mediterranean Sea
Dos Santos & Haimovici	2002	Bulletin of Marine Science	Cephalopods in the Trophic Relations off Southern Brazil
Glaser et al.	2015	Journal of Marine Systems	Through the stomach of a predator: Regional patterns of forage in the diet of albacore tuna in the California Current System and metrics needed for ecosystem-based management
Goni et al.	2011	Marine Biology	Variability of albacore (<i>Thunnus</i> alalunga) diet in the Northeast Atlantic and Mediterranean Sea
Hart, JL	1948	Pacific Biological Station	Accumulated Data on Albacore
Iversen, RTB	1962	Fishery Bulletin	Food of albacore tuna, <i>Thunnus germo</i> (Lacepède), in the central and northeastern Pacific
Jordan & Gilbert	1880	Proceedings of the National Academy of Sciences	Description of two species of scopeloid fishes, <i>Sudis ringens</i> and <i>Myctophum crenulare</i> from Santa Barbara Channel, California.

Joubin & Rouie	1918	Bulletin de l'Institut Océanographique de Monaco	Observations sur la nourriture des thons de l'Atlantique (<i>Germo alalonga</i> Gmelin)
Legendre & Bouxin†	1934; 1936; 1940	Blondel la Rougery	La Faune pélagique de l'Atlantique au large du Golfe de Gascogne recueillie dans des estomacs de Germons: première partie: poissons; deuxième partie: céphalopodes; troisième partie: invertébrés (céphalopodes exclus), parasites du germon.
Logan et al.‡	2013	Deep Sea Research Part II: Topical Studies in Oceanography	Contribution of Cephalopod prey to the Diet of Large Pelagic Fish Predators in Central North Atlantic Ocean
Madigan et al.	2015	Proceedings of the National Academy of Sciences	Assessing niche width of endothermic fish from genes to ecosystem
Matthews et al.	1977	NOAA Technical Report	Food of Western North Atlantic Tunas (<i>Thunnus</i>) and Lancetfishes (<i>Alepisaurus</i>)
McHugh, JL	1952	Bulletin of the Scripps Institution of Oceanography	The food of albacore (<i>Germo alalunga</i>) off California
Ortiz de Zarate, V	1987	Instituto Español de Oceanografía	Datos sobre la alimentacion del atun blanco (<i>Thunnus alalunga</i>) juvenil capturado en el golfo de vizcaya
Pinkas et al.	1971	Fish Bulletin	Food habits of albacore, bluefin tuna, and bonito
Prince Albert de Monaco	1888	Comptes Rendus de l'Académie des Sciences	Sur l'alimentation des naufragés en pleine mer (On the nutrition of castaways in the open ocean)
Pusineri et al.	2005	Journal of Marine Science	Food and feeding ecology of juvenile albacore, <i>Thunnus alalunga</i> , off the Bay of Biscay: a case study
Romanov et al.	2020	Marine and Freshwater Research	Trophic ecology of albacore tuna (<i>Thunnus alalunga</i>) in the western tropical Indian Ocean and adjacent waters
Romero et al.	2012	Helgoland Marine	Pelagic cephalopods of the central

		Research	Mediterranean Sea determined by the analysis of the stomach content of large fish predators
Salman & Karakulak	2009	Journal of Marine Biological Association of the United Kingdom	Cephalopods in the diet of albacore, Thunnus alalunga, from the eastern Mediterranean
Teffer et al.‡	2015	Marine Biology	Trophic niche overlap among dolphinfish and co-occurring tunas near the northern edge of their range in the western North Atlantic
Watanabe et al.	2004	Fisheries Science	Feeding habits of albacore <i>Thunnus</i> alalunga in the transition region of the central North Pacific
Williams et al.		Deep Sea Research Part II: Topical Studies in Oceanography	Vertical behavior and diet of albacore tuna (<i>Thunnus alaguna</i>) vary with latitude in the South Pacific Ocean
Young et al.	2010	Marine Biology	Feeding ecology and niche segregation in oceanic top predators off eastern Australia

[†]These publications were combined as they consisted of three part publication on the taxonomic composition of albacore diets

[‡]These publications met nearly all criteria for review, but are not included in further analyses as prey were reported at Family, Order and Class levels.

Appendix B – Estimation of albacore prey size/age consumed

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

18

For 94 prey species, we lacked metainformation to assist in their direct life stage estimation and selection of appropriate trait information among different traits for juvenile and adult life stages. We corroborated decisions on selection of appropriate trait information among these species using albacore gape length limits calculated from maximum measured or estimated albacore fork lengths and using the equation developed by (Ménard et al., 2006) for yellowfin tuna to estimate gape limits ranging here from 6.4–11.5 cm across studies and locations sampled. Here we described how data on measured albacore length information were handled and how we estimated fork length information if this was also not measured or reported (Figure S1). Out of 26 research papers, 16 measured albacore fork length (FL) range, minima and maxima (Figure S2). Of these, seven also reported the mean FL and five an estimated age range or life stage for albacore sampled (e.g., adult, juvenile) (Supplementary Data, Table S3). We also estimated mean FL for the 9 studies that reported FL range but not means (Figure S2), and all FL data for the remaining 10 studies that lacked size or life history information using metadata collected on fishing gear used and matched to gear-specific length data from relevant regional fisheries management organisations. Of the 10 studies that lacked size or life history information for albacore, four reported the method of sampling (i.e. troll, trawl, longline). For these four studies and to complete the missing mean fork length (FL) for 7 studies noted above, we matched gear-specific length data (range and mean FL) from relevant regional fisheries management organisations (ICCAT, 2020;

ISC, 2006) to albacore diet studies by year. We then estimated the likely life stage(s) sampled

using region-specific age and growth curves, and reported sizes at maturity (described in
 Supplementary Data, Table S3).

Finally, six historical studies lacked any information about sampled albacore length or age, did not provide catch method and/or were outside any record-keeping time-frames for fisheries catch data. Here, we estimated likely life stage(s) for albacore based on studies that sampled the same geographic area (Supplementary Data, Table S3). We confirmed our life-stage estimations using known albacore ontogenetic and migratory behaviours in the large marine ecosystems sampled (Nikolic et al., 2017). There was no significant difference between the variances of mean, minimum and maximum FL for studies where these parameters were measured or where these parameters were estimated in this study (Figure S2). Overall, we estimate that sampled albacore ranged from 37–119 cm with mean fork lengths of 47–101 cm (Supplementary Information, Figure S2).

Page 59 of 182 Fish and Fisheries

Figure S1. Prey species life stage estimation decision tree.

52

Page 60 of 182

Figure S2. Albacore tuna fork length minima (min), mean and maxima (max) obtained from measured and reported data from 16 publications and estimated for a further 10 publications. Of the 16 reporting length information, 9 publications (annotated with •) did not include a mean and this value was estimated in the protocol described in the methods of this manuscript.

Appendix C – Trait-data collection & Analyses

Four trait variables (Table 1) were extracted from a global database of albacore prey traits (Gleiber et al., 2022) for taxa identified to species and for the estimated life stage consumed (Supplementary Data, Table S5). We used online repositories for species-level information, primarily FishBase (Froese & Pauly, 2020), SeaLifeBase (Palomares & Pauly, 2020), and the IUCN Red List of Threatened Species (IUCN, 2020), and by searching descriptive published literature for each species using Web of Science and Google Scholar. Of the 308 species identified in albacore diets, we obtained complete trait information for 292 species for the life stage consumed, for the four habitat use traits used in this meta-analysis: (i) vertical and (ii) horizontal habitat association, (iii) presence of diel vertical migration, and (iv) presence of seasonal migration (Supplementary Data, Table S5).

Vertical and horizontal habitat use traits were directly extracted from online repositories and corroborated alongside species distribution maps, reported depth range and typical depth strata inhabited (Gleiber et al., 2022). Where published literature expanded on or differed from a general value reported by species information repositories, we used the published literature and data. For example, if a species is listed as 'bathypelagic' in FishBase, but we do not have access to the original data and published papers report their distribution as typically 'mesopelagic', we selected their vertical habitat use trait to be 'mesopelagic' for the purposes of this analysis. Trait values for the presence and nature of diel vertical migration or seasonal migration behaviour were collected by keyword searching for each of these terms and for the prey species scientific name on Google Scholar (2020), Web of Science (Clarivate Analytics, 2020), Aquatic Sciences and Fisheries Abstracts (ASFA, 2020) and Federal Science Library Canada (FSLN, 2020)

bibliographic databases. This task was performed and repeated by up to 6 individual data collectors and values were cross-checked between data collectors, multiple published papers and data.

83

84

85

86

87

88

89

90

91

92

93

Of note, we further edited vertical habitat use information for two species, Janicella spinicauda (Oplophoroidae) and Lampanyctus crocodilus (Myctophidae), which were classified primarily as 'bathypelagic' (> 1300 m depth) and appear as such in the database but are also known to occur in the mesopelagic zone listed as secondary habitat in our database. The mesopelagic zone is where these prey were most likely encountered by albacore tuna that are not known to occur in or be able to dive to the bathypelagic at all. Thus for analyses, we relabelled those two species as 'mesopelagic' in order to retain them rather than exclude them from rac analyses.

Appendix D – Supplemental Results

95

94

97 **Figure S3.** The maximum percent frequency of occurrence observed across phylogeny. Grey

shading indicates no quantitative diet data were available for a particular species and trait.

99

Figure S4. Trait heatmap illustrating the distribution of trait values within each trait guild (cluster), as a proportion of species within each trait guild associated with each trait value, using hierarchical divisive clustering algorithms (k = 7), for vertical habitat ('Vertical'), horizontal habitat use ('Horizontal'), diel vertical migration ('Diel Migrant') and seasonal habitat use ('Seasonal Migrant').

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Figure S5. Correlation coefficients for the fourth corner solution and significant relationships between taxonomic variability and ocean basins sampled. Here we aggregate 98 species by their phylogenetic order to illustrate the results of taxonomic variability. Coefficients for all traitenvironment interactions are presented using a (GLM)-LASSO model (Brown et al. 2014). Significant trait-based relationships between albacore diet composition and geography sampled are coloured in relation to their correlation coefficient, and the strength and direction of the POLICE. relationship. References ASFA. (2020). Aquatic Sciences and Fisheries Abstracts. World Wide Web electronic publication, accessed 07/2020: http://www.ala.org.au http://www.fao.org/fishery/asfa/en. Accessed July 2020. Clarivate Analytics. (2020). Web of Science. World Wide Web electronic publication, accessed 07/2020: www.webofknowledge.com. Froese, R., & Pauly, D. (2020). FishBase. World Wide Web electronic publication, accessed 07/2020: www.fishbase.org. FSLN. (2020). Federal Science Libraries Network. World Wide Web electronic publication, accessed 07/2020: https://science-libraries.canada.ca/eng/home/ Gleiber, M. R., Hardy, N. A., Roote, Z., Morganson, C. J., Krug-Macleod, A., George, I.,

127	Matuch, C., Brookson, C. B., Crowder, L. B., & Green, S. J. (2022). Pelagic Species
128	Trait Database [Data set]. Scholars Portal Dataverse.
129	https://doi.org/10.5683/SP3/0YFJED
130	Google Scholar. (2020). Google Scholar. https://scholar.google.com/
131	ICCAT. (2020). Albacore (Thunnus alalunga) Task 2 size/weight frequencies from ICCAT (as of
132	Jan/2021) for the period 1956-2019. Public statistical databases, accessed 07/2020:
133	https://www.iccat.int/en/accesingdb.html
134	ISC. (2006). Report of the ISC – Albacore Working Group Stock Assessment Workshop. National
135	Research Institute of Far Seas Fisheries, Shimizu.
136	IUCN. (2020). The IUCN Red List of Threatened Species. World Wide Web publication,
137	accessed 07/2020: https://www.iucnredlist.org.
138	Ménard, F., Labrune, C., Shin, YJ., Asine, A. S., & Bard, FX. (2006). Opportunistic predation
139	in tuna: A size-based approach. Marine Ecology Progress Series, 323, 223-231.
140	https://doi.org/10.3354/meps323223
141	Nikolic, N., Morandeau, G., Hoarau, L., West, W., Arrizabalaga, H., Hoyle, S., Nicol, S. J.,
142	Bourjea, J., Puech, A., Farley, J. H., Williams, A. J., & Fonteneau, A. (2017). Review of
143	albacore tuna, Thunnus alalunga, biology, fisheries and management. Reviews in Fish
144	Biology and Fisheries, 27(4), 775-810. https://doi.org/10.1007/s11160-016-9453-y
145	Palomares, M., & Pauly, D. (2020). SeaLifeBase. World Wide Web electronic publication,
146	accessed 07/2020: www.sealifebase.org
147	

List of supplementary information tables

Table 1. Trait variables and values that influence the prey encounter (habitat use, diel vertical and seasons).

Table 2. Model design, variables and matrices used in multi-matrix fourth corner analysis.

Table S1. Literature search terms used to identify published papers and historical reports of albacore t

Table S2. Published and historical reports of albacore tuna diet that provided detailed stomach content

Table S3. Metainformation for published papers and reports on location, year, months, seasons of sam

Table S4. Prey species information (class, order, family, species), estimated prey life stages and assoc

Table S5. Reported information for prey species life stage (pre age reported 1), lengths (maxL) and

Table S6. Clustering algorithm statistical output table. We selected 7 clusters by optimising c

Table S7. Extended list of taxonomic identifications from albacore stomach contents from published ε

sonal migration) phase of the predation process (Green et al., 2019). We used these traits for building r

tuna diets queried from 1900 until 2020 using the Web of Science (Clarivate Analytics, 2020), Aquatic t data. Several older papers, typically prior to the 1980's, needed to be scanned and digitised to PDF fo apling, fishing gear used, depth sampled and time of day, the number of non-empty stomachs, measured attack and trait variables and values that influence the prey encounter (habitat use, diel vertical at attype of length measurement taken (maxl_type), as well as the associated maximum gape limit (maxG cluster validation outputs: (1) higher average distance between species clusters (Rousseeuw, and grey literature form the 1880's to 2020.

prey functional groups and for investigating differences in albacore diets across the world.

Sciences and Fisheries Abstracts (ASFA, 2020) and Federal Science Library Canada (FSLN, 2020) bi rmat. These are available upon request and all data digitised from published papers and reports are available upon life history data, and description of our estimation for albacore life history stage, nd seasonal migration) phase of the predation process (Green et al., 2019). We used these traits for buil ape) for the albacore sampled from the same study as the prey taxa. Appended are the estimated life states 1987); (2) lower average distance within species clusters (Handl et al., 2005); (3) high silhou

bliographic databases. Both the diet research terms and synonymous scientific names for albacore tuna allable in our diet database. For every diet report, we recorded the date range, months and seasons of sa age and lengths based on basin-scale fisheries catch data and age and growth work. Several reports prolating prey functional groups and for investigating differences in albacore diets across the world. age (life_stage) and associated notes used to select the final life stage assigned to each species for select the width coefficient value and Dunny Smith residuals (Dunn†, 1974; Rousseeuw, 1987); and

ı were combined by a Boolean 'AND' clause.

impling, the median geographic location of albacore tuna collections, the number of albacore tuna collections.

ction of appropriate trait information. ***See notes below table.

d lastly, (4) optimal evenness or balance of cluster composition indicated by the number of sp

ected, fishing gear and time of day for collections.

pecies in each cluster (Legendre & Legendre, 1998).

Table 1. Trait variables and values that influence the prey encounter (

Trait	Variable type
Vertical habitat use	Categorical
Horizontal habitat use	Categorical
Diel vertical	Binary (yes/no)
Seasonal migration	Binary (yes/no)

Page 75 of 182

(habitat use, diel vertical and seasonal migration) phase of the predation process (Green et al., 2019). V

Definitions & relationships of traits for predator-prey
Represents the water column position that prey resources
Represents the typical position from the coastal to
The relationship of this trait with predation is
Represents whether prey species are seasonally abundant

We used these traits for building prey functional groups and for investigating differences in albacore die

ets across the world.

Table 2. Model design, variables and matrices used in multi-matrix fourth corner analysis.

Diet data (L)	Trait variables (Q)	Environmental variable (R)
	None	
Diet composition (SPP)	Phylogeny	Ocean basin
	Trait variables (Table 1/S1)	Ocean basin
	Trait guilds (Figure 3)	

ysis.

Model
iet composition ~ ocean basis
nposition ~ phylogeny + ocea
osition ~ traits variables + ocea
nposition ~ trait guilds + ocea

Table S1. Literature search terms used to identify published papers and historical reports of albacore

Diet	Albacore tuna synonymous scientific names
(diet* OR forag* OR prey) AND	("Thunnus alalunga" OR "Scomber alalunga" OR "Albacora alalonga" OR "Germo alalonga" OR "Germo alalunga" OR "Germo germo" OR "Germo germon" OR "Germo germon steadi" OR "Orcynus alalonga" OR "Orcynus alatunga" OR "Orcynus germo" OR "Orcynus germon" OR "Orcynus pacificus" OR "Scomber alalunga" OR "Scomber alalunga" OR "Scomber alalunga" OR "Scomber alalunga" OR "Scomber germo" OR "Scomber germon" OR "Thunnus alalonga" OR "Thunnus alalonga" OR "Thunnus pacificus" OR "Thynnus alalonga" OR "Thynnus alalunga" OR "Thynnus alalunga" OR "Thynnus pacificus")

tuna diets queried from 1900 until 2020 using the Web of Science (Clarivate Analytics, 2020), Aquatic

2 Sciences and Fisheries Abstracts (ASFA, 2020) and Federal Science Library Canada (FSLN, 2020) bi

ibliographic databases. Both the diet research terms and synonymous scientific names for albacore tuna

a were combined by a Boolean 'AND' clause.

Table S2. Published and historical reports of albacore tuna diet that provided detailed stomach cc

	-		provided detailed stolliach et			
CiteAuth	CiteYear	CiteSource	CiteTitle			
Aloncle, H.	1973	Thesis	Rythmes alimentaires et circa			
Bello, G.	1999	Journal of Molluscan Studies	Cephalopods in the diet of all			
Bernard et al.		CalCOFI Reports	Stomach contents of albacore			
Clemens & Iselin	1963	FAO World Sci. Meet. Biol.	Food of Pacific albacore in the			
Consoli et al.	2008	Marine Biology	Feeding habits of the albacor			
Dos Santos & Haimovi	2002	Bulletin of Marine Science	Cephalopods in the Trophic I			
Glaser et al.	2015	Journal of Marine Systems	Through the stomach of a pre			
Goni et al.	2011	Marine Biology	Variability of albacore (Thun			
Hart, JL	1948	Pacific Biological Station	Accumulated Data on Albacc			
Iversen, RTB	1962	Fishery Bulletin	Food of albacore tuna, Thunn			
Jordan & Gilbert	1880	Proceedings of the National A	Description of two species of			
Joubin & Rouie	1918	Bulletin de l'Institut Océanog	Observations sur la nourriture			
Legendre & Bouxin†	1934; 1936; 19	Blondel la Rougery	La Faune pélagique de l'Atlaı			
Logan et al.‡	2013	Deep Sea Research Part II: T	Contribution of Cephalopod 1			
Madigan et al.	2015	Proceedings of the National A	Assessing niche width of end			
Matthews et al.	1977	NOAA Technical Report	Food of Western North Atlan			
McHugh, JL	1952	Bulletin of the Scripps Institu	The food of albacore (Germo			
Ortiz de Zarate, V	1987	Instituto Español de Oceanog	Datos sobre la alimentacion c			
Pinkas et al.	1971	Fish Bulletin	Food habits of albacore, blue			
Prince Albert de Monac	1888	Comptes Rendus de l'Acadén	Sur l'alimentation des naufras			
Pusineri et al.	2005	Jounal of Marine Science	Food and feeding ecology of			
Romanov et al.	2020	Marine and Freshwater Resea	Trophic ecology of albacore			
Romero et al.	2012	Helgoland Marine Research	Pelagic cephalopods of the ce			
Salman & Karakulak	2009	Journal of Marine Biological	Cephalopods in the diet of all			
Teffer et al.‡	2015	Marine Biology	Trophic niche overlap among			
Watanabe et al.		Fisheries Science	Feeding habits of albacore Th			
Williams et al.	2015	Deep Sea Research Part II: T	Vertical behavior and diet of			
Young et al.		Marine Biology	Feeding ecology and niche se			
†These publications		ed as they consisted of thre	e part			

ontent data. Several older papers, typically prior to the 1980's, needed to be scanned and digitised to PI

adiens chez le germon Thunnus alalunga dans le Nord-Est atlantique

bacore, Thunnus alalunga, from the Adriatic Sea

e, skipjack, and bonito

he California fishery

e tuna Thunnus alalunga (Perciformes, Scombridae) from central Mediterranean Sea

Relations off Southern Brazil

edator: Regional patterns of forage in the diet of albacore tuna in the California Current System and me *unus alalunga*) diet in the Northeast Atlantic and Mediterranean Sea

ore

nus germo (Lacepède), in the central and northeastern Pacific

f scopeloid fishes, Sudis ringens and Myctophum crenulare from Santa Barbara Channel, California.

e des thons de l'Atlantique (Germo alalonga Gmelin)

ntique au large du Golfe de Gascogne recueillie dans des estomacs de Germons: première partie: poisse

prey to the Diet of Large Pelagic Fish Predators in Central North Atlantic Ocean

lothermic fish from genes to ecosystem

ntic Tunas (*Thunnus*) and Lancetfishes (*Alepisaurus*)

alalunga) off California

del atun blanco (Thunnus alalunga) juvenil capturado en el golfo de vizcaya

fin tuna, and bonito

gés en pleine mer (On the nutrition of castaways in the open ocean)

juvenile albacore, *Thunnus alalunga*, off the Bay of Biscay: a case study

tuna (Thunnus alalunga) in the western tropical Indian Ocean and adjacent waters

entral Mediterranean Sea determined by the analysis of the stomach content of large fish predators

bacore, Thunnus alalunga, from the eastern Mediterranean

3 dolphinfish and co-occurring tunas near the northern edge of their range in the western North Atlantic hunnus alalunga in the transiton region of the central North Pacific

'albacore tuna (Thunnus alaguna) vary with latitude in the South Pacific Ocean

egregation in oceanic top predators off eastern Australia

DF format. These are available upon request and all data digitised from published papers and reports ar

etrics needed for ecosystem-based management

ons; deuxième partie: céphalopodes; troisième partie: invertébrés (céphalopodes exclus), parasites du g

re available in c

germon.

Table S3. Metainformation for published papers and reports on location, year, months, seasor

		for published pape				
StudyID		LocatName Lo				
	N Atlantic	NE Atlantic, S	44.632016		May-Sep	
Bello1999	Mediterranear		41.096462		Sep-Oct	1992
Bello1999	Mediterranear		41.2		Sep-Oct	1994
Bernard1985		Southern CA	35.358333		Aug-Sep	1983
Bouxin&Lege		Golfe de Gasc	48		Jul-Aug	1929
Bouxin&Lege	N Atlantic	Golfe de Gasc	48	-11.681	Jul-Nov	1933
Bouxin&Lege	N Atlantic	Golfe de Gasc	48	-11.681	Jul-Oct	1930
Bouxin&Lege	N Atlantic	Golfe de Gasc	48	-11.681	Jul-Oct	1931
Bouxin&Lege	N Atlantic	Golfe de Gasc	48	-11.681	Jul-Oct	1932
Bouxin&Lege	N Atlantic	Golfe de Gasc	48	-11.681	Oct	1928
Clemens&Isel	N Pacific	A	38	-124	Jul-Sep	1955–61
Clemens&Isel	N Pacific	A-B	36.046601	-123.62	Jul-Sep	1955–61
Clemens&Isel	N Pacific	A-B-C	32.5	-121.84	Jul-Sep	1955–61
Clemens&Isel	N Pacific	В	33.5	-121.84	Jul-Sep	1955–61
Clemens&Isel	N Pacific	B-C	31.5	-119.5	Jul-Sep	1955–61
Clemens&Isel	N Pacific	C	30	-120	Jul-Sep	1955–61
Clemens&Isel	N Pacific	D	26	-115	Jul-Sep	1955–61
Consoli2008	Mediterranear	nCentral Medite	38.744181	15.0595	Year-rour	12005–06
DosSantos&H	S Atlantic	Southern Braz	-30	-47.036	Multi-mo	11980–98
Glaser2015	N Pacific	Mexico to Car	42	-128.99	Jun-Sep	2005–06
Goni2011	Mediterranear		40.158082		Oct	2005
Goni2011	Mediterranear		41.824403	16.7668		2006
Goni2011	Mediterranear		40.658373	11.4454		2008
Goni2011	N Atlantic	Bay of Biscay	48		Jul-Aug	2005
Goni2011	N Atlantic	Bay of Biscay	47.8		Aug-Oct	
Goni2011	N Atlantic	Bay of Biscay	47.8	-10	•	2005
Goni2011	N Atlantic	Bay of Biscay	47.8	-10		2006
Goni2011	N Atlantic	Bay of Biscay	46.7		Aug	2005
Goni2011	N Atlantic	Bay of Biscay	46.7		Sep-Oct	2006
Goni2011	N Atlantic	Bay of Biscay	45.4		Jul-Sep	2006
Goni2011	N Atlantic	Bay of Biscay	44		Aug-Oct	
Goni2011	N Atlantic	Bay of Biscay	44		Jun-Oct	2005
Goni2011	N Atlantic	Bay of Biscay	44		Jun-Oct	2006
Hart1948	N Pacific	Vancouver Isla	49.117928	-127.55		1941
Hart1948	N Pacific	Vancouver Isla	49.117928	-127.55		1946
Hart1948	N Pacific	Washington C	47.046499	-124.79		1941
Hart1948	N Pacific	Washington C	47.046499	-124.79 -124.79		1941
	N Pacific	-	47.046499	-124.79 -124.79		
Hart1948		Washington C				1946
Hart1948	N Pacific	Washington C	47.046499	-124.79		1947
Iversen1962	N Pacific	Central NE Pa	15		Year-rour	
Jordan 1880	N Pacific	Central CA, Sa	34.345859	-119.72		1880
Joubin1918	N Atlantic	Golfe de Gasc	46.307336	-12.25		1918
Madigan2015		Mexico to Cal	34.633208		Jul-Oct	2008–10
Matthews197		NW Atlantic	38		NA	1957–64
McHugh1952		Baja to norther	32.5		Jun & Oc	
Monaco1888	Mediterranear	nMediterranean	34.061761	19.2096	Sep	1888

OrtizZarate19{N Atlantic	Bay of Biscay	46.986108	-5.4076 NA	1968
Pinkas1971 N Pacific	Central Califor	35.28333333	-122 Jul-Nov	1968
Pinkas1971 N Pacific	Oregon-Washi	45	-126 Jul-Nov	1968
Pinkas1971 N Pacific	Oregon-Washi	45	-126 Jul-Sep	1969
Pinkas1971 N Pacific	Southern Calif	32	-119.5 Jul-Nov	1968
Pinkas1971 N Pacific	Southern Calif	32	-119.5 Jul-Sep	1969
Pusineri2005 N Atlantic	Bay of Biscay	45	-17.5 Jun-Sep	1993
Romanov2020 Indian	Indian Monsoo	-8	57 Multi-mor	2001–15
Romanov2020 Indian	Indian South S	-19	53 Multi-mor	2003-14
Romanov2020 Indian	Mozambique (-15.5	42.76 Multi-mor	2003-14
Romanov2020S Atlantic	Atlantic Ocear	-35	18 Multi-mor	2013–14
Romeo2012 Mediterranea	nS. Tyrrhenian	38.6	15 NA	2002-08
Salman&Kara Mediterranea	nAntalya Bay (1	36.5	31.5 May-July	2007
Watanabe2004N Pacific	central North 1	36	160 July	2002
Watanabe2004N Pacific	central North 1	36	160 May-June	2002
Watanabe2004N Pacific	central North 1	40	163 Septembe	2001
Williams2015 S Pacific	NE New Zeala	-40	178 Apr–May	2010
Williams2015 S Pacific	New Caledoni	-19	168 Feb-Oct	2010
Williams2015 S Pacific	SW New Zeal:	-42.5	170 Jan–Apr	2008
Williams2015 S Pacific	SW New Zeal:	-42.5	170 Jan–Mar	2009
Williams2015 S Pacific	Tonga (TO_L	-20	-175.09 Jun-Jul	2010
Young2010 S Pacific	Eastern Austra	-31	160 Year-roun	2004–06
Young2010 S Pacific	Eastern Austra	-30	160 Year-roun	2004–06

ns of sampling, fishing gear used, depth sampled and time of day, the number of non-empty sto

			eptn sampled a SampleDepth		pred life	pred life	_
1971	1754		surface	day		Estimated:	
1992		troll, trawl,		2	•	Estimated: Estimated:	-
1994				day, night	5	Estimated:	-
1983		troll, pole-li			3	Estimated: Estimated:	-
1983			NA	•	juvenile, adult		-
1929			NA NA	•	•		-
1933			NA NA		juvenile, adult		
				•	juvenile, adult		-
1931			NA NA	day	juvenile, adult		-
1932			NA NA	day	juvenile, adult		
1928				day	juvenile, adult		-
1961 1961		troll, live-ba			•	Estimated:	-
		troll, live-ba			•	Estimated:	-
1961		troll, live-ba			J	Estimated:	2
1961		troll, live-ba			•	Estimated:	-
1961		troll, live-ba			•	Estimated:	-
1961		troll, live-ba			=	Estimated:	-
1961		troll, live-ba			5	Estimated:	-
2006		•	surface, >500r	•	juvenile, adult		•
1998		_	surface	day	juvenile, adult		-
2006		troll, pole-li		•	3	Estimated:	
2005		\mathcal{C}		night	•	Estimated:	-
2006		_			•	Estimated:	-
2008		C		night	5	Estimated:	-
2005		troll, pole-li		day	juvenile, adult		-
2004				night	juvenile, adult		-
2005		troll/ pole-li		day	juvenile, adult		-
2006		troll/ pole-li			juvenile, adult		
2005				night	juvenile, adult		
2006				night	juvenile, adult		-
2006				=	juvenile, adult		-
2007		1	surface	•	juvenile, adult		-
2005		1	surface	day	juvenile, adult		-
2006		1	surface	day	juvenile, adult		-
1941				NA	•	Estimated:	-
1946					3	Estimated:	2
1941				NA	•	Estimated:	-
1945					•	Estimated:	-
1946					•	Estimated:	-
1947					•	Estimated:	-
1957		-	surface, subsur	-	•	Estimated:	-
1880			NA		5	Estimated:	-
1918			surface	•	juvenile, adult		-
2010		troll, pole-li		day	J	Estimated:	
1964		longline	10-60 m	day		Estimated:	-
1949			surface	•	•	Estimated:	-
1888	NA	troll	surface	day	juvenile, adult	Estimated:	by

1968	97 troll surface	day	juvenile Estimated: by
1968	286 most caugh surface	day	juvenile Estimated: by
1968	177 most caugh surface	day	juvenile Estimated: by
1969	20 most caugh surface	day	juvenile Estimated: by
1968	222 most caugh surface	day	juvenile Estimated: by
1969	200 most caugh surface	day	juvenile Estimated: by
1993	27 driftnets surface	night	juvenile Estimated: stu-
2015	150 mixed scien NA	multiple	juvenile, adultEstimated: by
2014	184 mixed scien NA	multiple	juvenile, adultEstimated: by
2014	63 mixed scien NA	multiple	juvenile, adultEstimated: by
2014	290 mixed scien NA	multiple	juvenile, adultEstimated: by
2008 NA	drifting lon; surface	day	juvenile Estimated: by
2007	61 long-line surface	day	juvenile Estimated: by
2002	46 pole-line, g surface	day, night	juvenile Estimated: by
2002	64 pole-line, g surface	day, night	juvenile Estimated: by
2001	14 pole-line, g surface	day, night	juvenile Estimated: by
2010	11 trolling < 100m	day	juvenile, adultEstimated: by
2010	342 longline 50-150m	day, night	juvenile, adultEstimated: by
2008	152 trolling < 100m	day	juvenile Estimated: by
2009	61 trolling < 100m	day	juvenile Estimated: by
2010	42 longline 50-150m	day, night	juvenile, adultEstimated: stu-
2006	10 longline 25–385 m	day, night	adult Estimated: by
2006	36 longline 25–385 m	day, night	juvenile, adultEstimated: by

omachs, measured albacore length and life history data, and description of our estimation for albacore

pred_age		pred flm(pred					pred flmpred fles
1–5 yo	Estimated: by			Estim		39	
1+ yo	Estimated: stu			Estim		45	
2+ yo	Estimated: stu			Estim		60	
2–3 yo	Estimated: by			Estim		61.13	
1–8 yo	Estimated: by			Estim		40	
1–8 yo	Estimated: by	72.9		Estim		40	
1–8 yo	Estimated: by			Estim		40	
1–8 yo	Estimated: by	72.9		Estim		40	
1–8 yo	Estimated: by			Estim		40	
1–8 yo	Estimated: by	72.9		Estim		40	
1–3 yo	Estimated: by Estimated: stu			Estim		50	
1–3 yo	Estimated: stu			Estim		50	
1–3 yo	Estimated: stu			Estim		50	
1–3 yo 1–3 yo	Estimated: stu			Estim		50	
1–3 yo 1–3 yo	Estimated: stu			Estim		50	
1–3 yo 1–3 yo	Estimated: stu			Estim		50	
1–3 yo 1–3 yo	Estimated: stu			Estim		50	
-	Estimated: Stu			Estim Estim		38.9	
1–7 yo 4+ yo	Estimated: by	89.9		Estim Estim		50.9 50	
•	Estimated: by Estimated: stu			esum Measi		54	
2–4 yo							
2–3 yo	Estimated: stu			Measi		58.5	
2–3 yo	Estimated: stu			Meas		58.5	
3–5+ yo	Estimated: stu			Meas		58.5	
1–4 yo	Estimated: stu			Meas		39.6	
2–5+ yo	Estimated: stu			Meas		39.6	
1–3 yo	Estimated: stu			Meas		39.6	
1–3 yo	Estimated: stu			Measi		39.6	
1–3 yo	Estimated: stu			Measi		39.6	
2–4 yo	Estimated: stu			Measi		39.6	
1–4 yo	Estimated: stu			Measi		39.6	
1–5+ yo	Estimated: stu			Measi		39.6	
1–5+ yo	Estimated: stu			Measi		39.6	
1–5+ yo	Estimated: stu			Measi		39.6	
2–5+ yo	Estimated: by	68.4		Estim		37	
2-5+ yo	Estimated: by	68.4		Estim		37	
2–5+ yo	Estimated: by			Estim		37	
2–5+ yo	Estimated: by	68.4		Estim		37	
2–5+ yo	Estimated: by	68.4		Estim		37	
2–5+ yo	Estimated: by	68.4		Estim		37	
2–4 yo	Estimated: by	67		Measi		50	
2–5 yo	Estimated: by	68.4		Estim		37	
1–8 yo	Estimated: by			Estim		40	
2–4 yo	Estimated: by	75.6		Estim		54	
6–8 yo	Estimated: by	101		Measi		96	
2–5 yo	Estimated: by	68.4		Estim		37	
1–8 yo	Estimated: by	63.4875	I	Estim	ated:	40	110 Estimatec

1–5 yo	Estimated: by	72.9	Estimated	52	90 Measured
2–5 yo	Estimated: by	68.4	6.5 Estimated:	52.2	93.2 Measured
2–5 yo	Estimated: by	68.4	6.5 Estimated:	52.2	93.2 Measured
2–5 yo	Estimated: by	68.4	6.5 Estimated:	52.2	93.2 Measured
2–5 yo	Estimated: by	68.4	6.5 Estimated:	52.2	93.2 Measured
2–5 yo	Estimated: by	68.4	6.5 Estimated:	52.2	93.2 Measured
2–3 yo	Estimated: par	72.9	Estimated	53	93 Measured
2+ yo	Estimated: by	95.5	Measured:	67	119 Measured
2+ yo	Estimated: by	95.5	Measured:	67	119 Measured
2+ yo	Estimated: by	95.5	Measured:	67	119 Measured
2+ yo	Estimated: by	95.5	Measured:	67	119 Measured
1–5 yo	Estimated: by	72.84	Estimated	48	91 Measured
2–5 yo	Estimated: by	73.9	4.9 Measured:	64	91 Measured
1–3 yo	Estimated: by	64.006	3.219 Estimated:	48.9	76.2 Measured
1–3 yo	Estimated: by	64.006	3.219 Estimated:	50.5	75.8 Measured
1 yo	Estimated: by	54.763	5.849 Estimated:	51.7	56.4 Measured
2–6 yo	Estimated: by	84.409	4.064 Estimated	69	95 Measured
3–9 yo	Estimated: by	90.13	4.291 Estimated:	73	106 Measured
1–4 yo	Estimated: by	64.006	3.219 Estimated:	43	86 Measured
1–5 yo	Estimated: by	74.248	4.543 Estimated:	43	90 Measured
3–9 yo	Estimated: by	90.13	4.291 Estimated:	76	105 Measured
8–12 yo	Estimated: by	90.5	Measured:	100	113 Measured
2–8 yo	Estimated: by	90.5	Measured:	63	100 Measured

```
ore life history stage, age and lengths based on basin-scale fisheries catch data and age and growth wor
est note
               est ref
Synthesis effo Aloncle & Delaporte (1974); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Synthesis effo Santiago & Arrizabalaga (2005)
Synthesis effo Santiago & Arrizabalaga (2005)
Bernard (1985 Bernard (1985); ISC (2006); Xu et al. (2014)
Used albacore ICCAT (2020); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Used albacore ICCAT (2020); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Used albacore ICCAT (2020); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Used albacore ICCAT (2020); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Used albacore ICCAT (2020); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Used albacore ICCAT (2020); Goni et al. (2011); Santiago & Arrizabalaga (2005)
Synthesis effor Clemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Synthesis efforClemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Synthesis effor Clemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Synthesis effor Clemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Synthesis effor Clemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Synthesis effor Clemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Synthesis effor Clemens et al. (1963, 1965) catch data; ISC (2006); Xu et al. (2014)
Consoli et al. (Consoli et al. (2008); ICCAT (2020); Santiago & Arrizabalaga (2005)
Synthesis effor Chang et al. (1999); ICCAT (2020); Santiago & Arrizabalaga (2005)
Glaser et al. (2Glaser (2010); Xu et al. (2014)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Goni et al. (20 Goni et al. (2011); Santiago & Arrizabalaga (2005)
Synthesis effo ISC (2006); Xu et al. (2014)
Synthesis effoi ISC (2006); Xu et al. (2014)
Synthesis effor ISC (2006); Xu et al. (2014)
Synthesis effoiISC (2006); Xu et al. (2014)
Synthesis effor ISC (2006); Xu et al. (2014)
Synthesis effo ISC (2006); Xu et al. (2014)
Study reported Iversen (1962); Xu et al. (2014)
Synthesis estir ISC (2006); Xu et al. (2014)
Synthesis efforGoni et al. (2011) length values for the Mediterranean; Santiago & Arrizabalaga (2005)
Madigan et al. Glaser (2010); Xu et al. (2014)
Matthews et al. (1977); Santiago & Arrizabalaga (2005)
Synthesis effo ISC (2006); Xu et al. (2014)
Synthesis effor Goni et al. (2011) length values for the Mediterranean; Santiago & Arrizabalaga (2005)
```

```
Ortiz de Zaratí Ortiz de Zarate (1987); ICCAT (2020); Santiago & Arrizabalaga (2005)
Pinkas et al. (1Pinkas et al. (1971); ISC (2006); Xu et al. (2014)
Pinkas et al. (1Pinkas et al. (1971); ISC (2006); Xu et al. (2014)
Pinkas et al. (1Pinkas et al. (1971); ISC (2006); Xu et al. (2014)
Pinkas et al. (1Pinkas et al. (1971); ISC (2006); Xu et al. (2014)
Pinkas et al. (1Pinkas et al. (1971); ISC (2006); Xu et al. (2014)
Pusineri et al. (2005); Santiago & Arrizabalaga (2005)
Romanov et al Romanov et al. (2020); Santiago & Arrizabalaga (2005); Xu et al. (2014)
Romanov et al Romanov et al. (2020); Santiago & Arrizabalaga (2005); Xu et al. (2014)
Romanov et al Romanov et al. (2020); Santiago & Arrizabalaga (2005); Xu et al. (2014)
Romanov et al Romanov et al. (2020); Santiago & Arrizabalaga (2005); Xu et al. (2014)
Romeo et al. (¿Romeo et al. (2012); Santiago & Arrizabalaga (2005);
Salman & Kar Salman & Karakulak (2009); Santiago & Arrizabalaga (2005)
Watanabe et al Watanabe et al. (2004); ISC (2006); Xu et al. (2014)
Watanabe et al Watanabe et al. (2004); ISC (2006); Xu et al. (2014)
Watanabe et al Watanabe et al. (2004); ISC (2006); Xu et al. (2014)
Williams et al. Williams et al. (2015); ISC (2006); Xu et al. (2014)
Williams et al. Williams et al. (2015); ISC (2006); Xu et al. (2014)
Williams et al. Williams et al. (2015); ISC (2006); Xu et al. (2014)
Williams et al. Williams et al. (2015); ISC (2006); Xu et al. (2014)
```

Williams et al. Williams et al. (2015); ISC (2006); Xu et al. (2014)

Young et al. (2Young et al. (2010); Xu et al. (2014) Young et al. (2Young et al. (2010); Xu et al. (2014)

Table S4. Reported information for prey species life stage (pre_age_reported_1_), lengths (maxL)

nrev sn			maxL (cm)	maxGape (cm)
prey_sp Abralia redfieldi	prey_age_reported_1	maxl_type NO	maxl (cm)	9.15677
	none	NO NO	0	9.15677 7.97988
Abraliopsis affinis Abraliopsis felis	none	NO NO	0	7.97988
1	none	NO NO	0	9.61765
Abraliopsis gilchristi	none			
Abraliopsis morisii	none	NO NO	0	9.61765
Acanthephyra pelagica	adult	NO NO	0	7.75767
Alletauthia subulata	none	NO NO	0	9.61765
Alloteuthis subulata	none	NO NO	0	9.52712
Alpheus glaber	none	NO NO	0	7.75767
Anarrhichthys ocellatus	none	NO NO	0	7.38732
Anchylomera blossevillei	none	NO NO	0	9.52712
Ancistrocheirus lesueurii	none	NO MI	0	9.61765
Ancistroteuthis lichtenstein		ML	12.8	7.75767
Ancistroteuthis lichtenstein		NO	0	9.52712
Anoplopoma fimbria	none	NO	0	7.38732
Anotopterus nikparini	none	NO	0	7.97988
Anotopterus pharao	none	NO	0	7.75767
Antigonia capros	none	NO	0	10.0703
Antimora rostrata	none	NO	0	9.61765
Arctozenus risso	none	NO	0	7.75767
Arctozenus risso	none	SL	20.4	7.75767
Argonauta argo	none	NO	0	9.61765
Argonauta nodosus	none	NO	0	9.20615
Argonauta nouryi	none	NO	0	7.38732
Argyropelecus aculeatus	none	NO	0	9.61765
Argyropelecus olfersii	none	NO	0	7.75767
Argyropelecus olfersii	none	SL	6.8	7.75767
Arnoglossus imperialis	none	NO	0	7.75767
Ateleopus natalensis	none	NO	0	9.61765
Atherinopsis californiensis	s none	PB	9.46	7.97988
Atlanta peronii	none	NO	0	7.75767
Axius stirhynchus	none	NO	0	7.75767
Balistes punctatus	none	NO	0	9.61765
Barathronus parfaiti	none	NO	0	7.75767
Bathophilus flemingi	none	NO	0	7.38732
Bathyagonus pentacanthus	s none	NO	0	7.97988
Bathylagoides wesethi	none	NO	0	7.38732
Belone belone	none	NO	0	7.75767
Benthosema glaciale	none	NO	0	6.95936
Benthosema glaciale	none	SL	2.5	7.75767
Berryteuthis anonychus	none	NO	0	7.38732
Beryx splendens	none	NO	0	9.61765
Blennius ocellaris	none	NO	0	7.75767
Boops boops	none	NO	0	7.75767
Brachioteuthis riisei	none	NO	0	7.75767
Brachyscelus crusculum	adult	NO	0	7.75767

Brachyscelus crusculum	none	NO	0	9.61765
Brachyscelus macrocephalu	none	NO	0	7.38732
Brama brama	none	NO	0	7.38732
Brama orcini	none	NO	0	10.0703
Bregmaceros mcclellandi	none	NO	0	9.61765
Calanus finmarchicus	none	NO	0	7.75767
Canthidermis maculata	none	NO	0	9.61765
Capros aper	none	NO	0	9.52712
Carinaria lamarckii	none	NO	0	7.75767
Cavolinia tridentata	none	NO	0	9.20615
Centrolophus niger	none	NO	0	7.75767
Ceratias tentaculatus	none	NO	0	9.61765
Ceratoscopelus maderensis	adult	NO	0	7.75767
Ceratoscopelus townsendi	larva	NO	0	7.38732
Ceratoscopelus townsendi	none	NO	0	7.38732
Ceratoscopelus warmingii	none	NO	0	7.0256938
Chelophyes appendiculata	none	NO	0	7.75767
Chiasmodon niger	none	NO	0	9.61765
Chilara taylori	none	NO	0	7.38732
Chiroteuthis veranii	none	NO	0	9.15677
Chlorophthalmus agassizi	none	NO	0	7.75767
Chromis punctipinnis	none	NO	0	7.38732
Chtenopteryx sicula	none	NO	0	7.75767
Citharichthys sordidus	none	NO	0	7.38732
Clio pyramidata	none	NO	0	7.75767
Clupea pallasii	none	NO	0	7.38732
Cololabis saira	adult	NO	0	7.38732
Cololabis saira	juvenile	NO	0	7.2721
Cololabis saira	juvenile	PB	11.91	7.97988
Cololabis saira	3	NO	0	7.97988
	none	NO NO	0	9.61765
Cookeolus japonicus	none	NO NO	0	7.2721
Coryphaena hippurus Cranchia scabra	none	NO NO	0	
	none			9.61765
Cubiceps capensis	none	NO NO	$0 \\ 0$	9.61765 7.38732
Cubiceps gracilis Cubiceps gracilis	none	TL	12	7.38732 7.75767
1 6	none	NO		
Cubiceps pauciradiatus	none		0	9.61765
Cymatogaster aggregata	none	NO NO	0	7.38732
Cyphocaris faurei	none	NO NO	0	9.61765
Dactyloptena orientalis	none	NO NO	0	9.61765
Decapterus macarellus	none	NO NO	0	9.61765
Decapterus macrosoma	none	NO NO	0	9.61765
Desmodema polystictum	none	NO	0	7.38732
Diacria trispinosa	none	NO NO	0	9.61765
Diaphus effulgens	none	NO NO	0	9.61765
Diaphus lucidus	none	NO	0	9.61765
Diaphus luetkeni	adult	NO	0	7.75767
Diaphus ostenfeldi	none	NO	0	9.61765

Diaphus perspicillatus	none	NO	0	9.61765
Diaphus theta	adult	PB	6.6	7.97988
Diaphus theta	none	NO	0	7.38732
Diplodus sargus	none	NO	0	7.75767
Diplospinus multistriatus	none	SL	15.1	10.0703
Diretmus argenteus	none	NO	0	9.61765
Doryteuthis opalescens	juvenile	PB	0.06	7.97988
Doryteuthis opalescens	none	NO	0	7.97988
Dosidicus gigas	none	ML	0	7.97988
Dosidicus gigas	none	NO	0	7.38732
Echinosquilla guerinii	none	NO	0	7.2721
Electrona risso	adult	NO	0	7.75767
Electrona risso	none	NO	0	9.61765
Eledone cirrhosa	none	NO	0	7.83997
Engraulis capensis	none	NO	0	9.61765
Engraulis encrasicolus	juvenile	NO	0	7.9305
Engraulis encrasicolus	none	NO	13	7.75767
Engraulis japonicus	juvenile	NO	0	7.0256938
Engraulis mordax	juvenile	NO	0	7.38732
Engraulis mordax	juvenile	PB	3.47	7.97988
Engraulis mordax	juvenile	SL	4.7	7.46139
Engraulis mordax	juvenile	TL	4	7.38732
Engraulis mordax	none	NO	0	7.97988
Entelurus aequoreus	none	NO	0	7.75767
Eucleoteuthis luminosa	none	NO	0	9.61765
Euphausia pacifica	adult	NO	0	7.38732
Eusergestes arcticus	adult	NO	0	7.75767
Eusergestes arcticus	juvenile	NO	0	7.75767
Eusergestes similis	adult	NO	0	7.38732
Eusergestes similis	none	PB	3.6	7.97988
Eutrigla gurnardus	none	NO	0	7.75767
Funchalia taaningi	none	NO	0	9.61765
Funchalia woodwardi	none	NO	0	9.61765
Gaidropsarus vulgaris	none	NO	0	7.75767
Galiteuthis armata	none	NO	0	7.75767
Galiteuthis phyllura	none	NO	0	7.38732
Gempylus serpens	none	NO	0	9.61765
Gennadas elegans	juvenile	NO	0	7.75767
Glyptocephalus zachirus	none	NO	0	7.38732
Gonatopsis borealis	juvenile	NO	0	7.97988
Gonatopsis borealis	none	NO	0	7.0256938
Gonatus berryi	none	NO	0	7.0256938
Gonatus californiensis	juvenile	PB	0.12	7.97988
Gonatus onyx	juvenile	PB	0.15	7.97988
Gonatus pyros	juvenile	NO	0	7.97988
Gonatus steenstrupi	none	ML	10.8	7.75767
Gonatus steenstrupi	none	NO	0	7.75767
Grimalditeuthis bonplandi	none	NO	0	9.61765

Halichoeres nicholsi	none	NO	0	7.38732
Haliphron atlanticus	none	NO	0	9.15677
Helicocranchia pfefferi	none	NO	0	7.75767
Helicolenus dactylopterus	none	NO	0	7.75767
Heterocarpus laevigatus	none	NO	0	9.61765
Heteroteuthis dispar	adult	ML	2.58	7.1075
Heteroteuthis dispar	adult	NO	0	9.52712
Heteroteuthis dispar	none	NO	0	7.83997
Histioteuthis bonnellii	juvenile	NO	0	7.1075
Histioteuthis bonnellii	none	NO	0	7.75767
Histioteuthis heteropsis	none	NO	0	7.38732
Histioteuthis meleagroteuth	none	NO	0	9.61765
Histioteuthis reversa	none	NO	0	9.52712
Hyaloteuthis pelagica	none	NO	0	9.175699
Hygophum hygomii	none	NO	0	9.61765
Hyperia galba	adult	NO	0	7.75767
Hyperia galba	none	NO	0	7.75767
Icichthys lockingtoni	none	NO	0	7.97988
Idotea metallica	none	NO	0	7.75767
Illex argentinus	juvenile	NO	0	9.15677
Illex coindetii	none	NO	0	9.52712
Janicella spinicauda	none	NO	0	9.61765
Janthina exigua	none	NO	0	7.75767
Japetella diaphana	none	NO	0	9.61765
Japetella heathi	none	NO	0	9.175699
Katsuwonus pelamis	none	NO	0	7.2721
Lactoria diaphana	none	NO	0	7.2721
Lagocephalus lagocephalus	none	NO	0	9.61765
Lampadena luminosa	none	NO	0	9.61765
Lampanyctodes hectoris	none	NO	0	9.61765
Lampanyctus alatus	adult	NO	0	7.75767
Lampanyctus crocodilus	adult	NO	0	7.75767
Lampanyctus intricarius	adult	NO	0	7.75767
Lampanyctus mexicanus	larva	NO	0	7.38732
Lanceola sayana	adult	NO	0	7.75767
Lepidocybium flavobrunne	none	NO	0	9.61765
Leptocotis tenuirostris	none	NO	0	7.0256938
Lestidiops ringens	none	NO	0	7.97988
Lestidiops similis	none	NO	0	9.61765
Lestidiops sphyrenoides	none	NO	0	7.75767
Lestrolepis intermedia	none	NO	0	9.61765
Leuroglossus stilbius	none	NO	0	7.38732
Liocranchia reinhardtii	none	NO	0	7.75767
Lobianchia gemellarii	adult	NO	0	7.75767
Lobianchia gemellarii	none	NO	0	9.61765
Lycoteuthis lorigera	none	NO	0	9.61765
Lysiosquilla tredecimdentat	none	NO	0	9.61765
Macroparalepis affinis	none	SL	16.9	7.75767
	110110	SE.	10.7	1.15101

Macroramphosus scolopax	none	NO	0	9.20615
Magnisudis atlantica	none	NO	0	9.61765
Makaira mazara	none	NO	0	9.61765
Mastigoteuthis dentata	none	NO	0	7.97988
Masturus lanceolatus	none	NO	0	9.61765
Maurolicus imperatorius	none	NO	0	7.0256938
Maurolicus muelleri	none	NO	4	9.61765
Maurolicus muelleri	none	SL	6.2	7.75767
Medialuna californiensis	none	NO	0	7.97988
Meganyctiphanes norvegica	adult	NO	0	7.75767
Meganyctiphanes norvegica	none	NO	0	9.52712
Meganyctiphanes norvegica	none	TL	4	7.75767
Melamphaes lugubris	none	NO	0	7.38732
Melanostomias valdiviae	none	NO	0	7.38732
Merluccius productus	juvenile	PB	6.09	7.97988
Merluccius productus	larva	NO	0	7.38732
Merluccius productus	none	NO	0	7.38732
Microgadus proximus	none	NO	0	7.38732
Micromesistius poutassou	none	NO	16	7.75767
Microstomus pacificus	none	NO	0	7.38732
Monacoa grimaldii	none	NO	0	9.61765
Mugil cephalus	none	NO	0	7.38732
Mullus barbatus barbatus	none	NO	0	7.75767
Myctophum asperum	none	NO	0	9.61765
Myctophum punctatum	adult	NO	0	7.75767
Nannobrachium regale	larva	NO	0	7.38732
Nannobrachium ritteri	larva	NO	0	7.38732
Nannobrachium ritteri	none	NO	0	7.38732
Nansenia macrolepis	none	NO	0	9.61765
Natosquilla investigatoris	none	NO	0	9.61765
Nealotus tripes	none	NO	0	10.0703
Nematoscelis megalops	adult	NO	0	7.75767
Nematoscelis megalops	adult	TL	4	7.75767
Nematoscelis megalops	none	NO	0	9.52712
Neoanchisquilla tuberculata	none	NO	0	9.61765
Neognathophausia gigas	adult	NO	0	7.38732
Neognathophausia ingens	none	NO	0	7.75767
Nesiarchus nasutus	none	NO	0	10.0703
Notoscopelus kroyeri	adult	NO	0	7.75767
Notoscopelus kroyeri	none	NO	0	6.95936
Nyctiphanes australis	none	NO	0	7.8686104
Octopoteuthis nielseni	juvenile	NO	0	7.38732
Octopoteuthis rugosa	none	NO	0	9.61765
Octopoteuthis sicula	none	NO	0	7.97988
Octopus bimaculatus	juvenile	NO	0	7.38732
Octopus bimaculatus	none	ML	0	7.97988
Octopus vulgaris	none	NO	0	9.15677
Ocythoe tuberculata	none	NO	0	9.61765

Odontodactylus hansenii	none	NO	0	7.2721
Odontodactylus scyllarus	none	NO	0	9.61765
Ommastrephes bartramii	none	NO	0	9.61765
Omosudis lowii	none	NO	0	10.0703
Onychoteuthis banksii	juvenile	NO	0	7.38732
Onychoteuthis banksii	none	NO	0	9.61765
Onychoteuthis borealijapon	none	NO	0	7.97988
Onychoteuthis borealijapon	none	PB	0.8	7.97988
Onykia loennbergii	none	NO	0	9.61765
Onykia robusta	none	NO	0	7.38732
Onykia robusta	none	PB	0.1	7.97988
Opisthoteuthis californiana	none	NO	0	7.38732
Oplophorus typus	none	NO	0	9.61765
Ornithoteuthis antillarum	juvenile	NO	0	9.15677
Ornithoteuthis volatilis	none	NO	0	9.61765
Ostracion cubicus	none	NO	0	9.61765
Palinurus mauritanicus	juvenile	NO	0	7.75767
Palinurus mauritanicus	larva	NO	0	7.75767
Paralepis coregonoides	adult	NO	0	9.52712
Paralepis coregonoides	none	NO	0	7.75767
Paralepis speciosa	adult	NO	0	9.52712
Parapasiphae sulcatifrons	none	NO	0	7.75767
Parapronoe crustulum	none	NO	0	7.0256938
Parribacus antarcticus	none	NO	0	9.61765
Peprilus simillimus	none	NO	0	7.38732
Peristedion gracile		NO	0	10.0703
Photonectes margarita	none	NO	0	7.38732
Phrosina semilunata	none adult	NO	0	7.38732 7.75767
Phrosina semilunata		NO NO	0	10.0703
	none			
Platyscelus armatus	none	NO	0	7.38732
Platyscelus ovoides	none	NO NO	0	9.61765
Platyscelus serratulus	none	NO NO	0	9.52712
Pleuroncodes planipes	adult	NO	0	7.38732
Pleuroncodes planipes	adult	PB	3.38	7.97988
Pleuroncodes planipes	none	NO	0	7.97988
Pleuronichthys decurrens	none	NO	0	7.38732
Pleuronichthys decurrens	none	PB	1.8	7.97988
Polybius henslowii	adult	NO	0	7.75767
Polybius henslowii	larva	NO	0	7.75767
Polybius henslowii	none	NO	0	6.95936
Primno macropa	none	NO	0	9.52712
Protomyctophum crockeri	none	NO	0	7.38732
Psenes pellucidus	none	NO	0	10.0703
Pteroctopus tetracirrhus	juvenile	NO	0	7.752732
Pterycombus petersii	none	NO	0	9.61765
Pterygioteuthis giardi	none	NO	0	7.83997
Pterygioteuthis microlampa	juvenile	NO	0	7.38732
Pyrosoma atlanticum	none	NO	0	7.75767

Pyroteuthis margaritifera	none	NO	0	9.61765
Ranzania laevis	none	NO	0	9.61765
Rexea prometheoides	none	NO	0	9.61765
Rhinogobiops nicholsii	none	NO	0	7.38732
Robustosergia robusta	none	NO	0	7.75767
Salpa maxima	none	NO	0	9.61765
Sardina pilchardus	none	NO	0	9.52712
Sardinella aurita	none	NO	0	9.52712
Sardinops sagax	juvenile	PB	4.92	7.97988
Sardinops sagax	juvenile	TL	0	7.97988
Sardinops sagax	larva	NO	0	7.38732
Scaeurgus unicirrhus	juvenile	NO	0	7.752732
Scaeurgus unicirrhus	none	NO	0	7.83997
Scomber japonicus	larva	NO	0	7.38732
Scomber japonicus	none	NO	0	10.0703
Scomber japonicus	none	TL	0	7.97988
Scomber scombrus	none	NO	0	7.75767
Scomberesox saurus	none	NO	1.5	9.61765
Scomberesox saurus	none	SL	22.1	7.75767
Scombrolabrax heterolepis	none	NO	0	9.61765
Scopelarchus analis	none	NO	0	9.61765
Scopelogadus bispinosus	none	NO	0	7.38732
Scopelosaurus hoedti	none	NO	0	9.61765
Scyllarus arctus	adult	NO	0	7.75767
Scyllarus arctus	juvenile	NO	0	7.75767
Scyllarus arctus	larva	NO	0	7.75767
Scyllarus arctus	none	NO	0	6.78653
Sebastes aleutianus	juvenile	PB	1.18	7.97988
Sebastes brevispinis	juvenile	PB	1.25	7.97988
Sebastes diploproa	juvenile	PB	1.68	7.97988
Sebastes helvomaculatus	juvenile	NO	0	7.97988
Sebastes maliger	juvenile	NO	0	7.97988
Sebastes miniatus	juvenile	PB	0.99	7.97988
Sebastes proriger	juvenile	PB	1.44	7.97988
Sebastes wilsoni	juvenile	PB	1.3	7.97988
Sebastes zacentrus	juvenile	PB	1.93	7.97988
Selene setapinnis	none	NO	0	10.0703
Sepietta oweniana	none	NO	0	7.75767
Soestia zonaria	none	NO	0	7.75767
Spirula spirula	none	NO	0	9.61765
Spondyliosoma cantharus	none	NO	0	7.75767
Stenobrachius leucopsarus	adult	PB	5.98	7.97988
Stenobrachius leucopsarus	none	NO	0	7.38732
Sternoptyx diaphana	none	NO	0	10.0703
Sternoptyx obscura	adult	NO	0	7.38732
Sthenoteuthis oualaniensis	none	NO	0	9.61765
Stigmatoteuthis dofleini	none	NO	0	9.61765
Stigmatoteuthis hoylei	none	NO	0	9.61765

Streetsia challengeri	none	NO	0	9.52712
Strongylura exilis	adult	NO	0	7.38732
Stylocheiron abbreviatum	none	NO	0	7.75767
Sudis hyalina	adult	NO	0	9.52712
Symbolophorus barnardi	none	NO	0	9.61765
Symbolophorus evermanni	none	NO	0	9.61765
Syngnathus californiensis	none	NO	0	7.97988
Systellaspis debilis	none	NO	0	7.75767
Taningia danae	none	NO	0	9.61765
Taractes asper	none	NO	0	7.38732
Tarletonbeania crenularis	adult	NO	7.48	7.97988
Tarletonbeania crenularis	larva	NO	0	7.38732
Tarletonbeania crenularis	none	NO	0	7.38732
Tetragonurus atlanticus	none	NO	0	7.75767
Tetragonurus cuvieri	none	NO	0	7.38732
Teuthowenia megalops	none	ML	12.9	7.75767
Teuthowenia megalops	none	NO	0	7.75767
Thaleichthys pacificus	none	NO	0	7.38732
Themisto gaudichaudii	adult	NO	0	7.75767
Themisto gaudichaudii	none	NO	0	7.75767
Themisto gaudichaudii	none	TL	1.8	7.75767
Thyrsitoides marleyi	none	NO	0	9.61765
Thysanoteuthis rhombus	none	NO	0	9.61765
Todarodes pacificus	none	NO	0	7.0256938
Todarodes sagittatus	juvenile	NO	0	7.1075
Todarodes sagittatus	none	NO	0	7.83997
Todaropsis eblanae	none	NO	0	9.20615
Trachinotus ovatus	none	NO	0	7.75767
Trachipterus trachypterus	none	NO	0	7.38732
Trachurus japonicus	none	NO	0	6.2649949
Trachurus symmetricus	juvenile	NO	0	7.38732
Trachurus symmetricus	juvenile	TL	0	7.97988
Trachurus symmetricus	none	NO	0	7.38732
Trachurus symmetricus	none	PB	6.47	7.97988
Trachurus trachurus	none	NO	12	7.75767
Tremoctopus gracilis	none	NO	0	9.61765
Tremoctopus violaceus	none	NO	0	9.15677
Triphoturus mexicanus	none	NO	0	7.97988
Vampyroteuthis infernalis	none	NO	0	7.38732
Vampyroteuthis infernalis	none	PB	0.28	7.97988
Vibilia gibbosa	none	NO	0	9.52712
Vinciguerria lucetia	juvenile	NO	0	7.38732
Vinciguerria lucetia	none	NO	0	7.38732
Walvisteuthis rancureli	none	NO	0	9.61765

^{*} Note that TL = total length, SL = standard length, ML = mantle length, PB = a problematic meas

^{**} Note that we converted SL and ML to TL for taxa with known conversion ratios (Gleiber et al. 1

^{***} Note that multiple observations per species occurred whereby multiple life stages and reported

and type of length measurement taken (maxl_type), as well as the associated maximum ga

and type of le	ength measurement taken (maxl_type), as well as the asso
life_stage	life_note
adult	NA
juvenile	NA
juvenile	NA
larva	rvae; Bouxin & Legendre reported mostly larvae
juvenile	NA
adult	NA
juvenile	y juvenile / young-of-year
juvenile	NA
juvenile	based on size and trait information
adult	NA
adult	NA
juvenile	papers typically reporting unique larvae like these
juvenile	papers typically reporting unique larvae like these
juvenile	papers typically reporting unique larvae like these
adult	NA
adult	NA
adult	NA
juvenile	tentially even larva
juvenile	NA
juvenile	NA
adult	NA
juvenile	y juvenile / young-of-year
juvenile	ı based on vertical habitat trait
adult	NA
juvenile	NA B
juvenile	Based on traits
juvenile	NA
juvenile	at larvae based on size
juvenile	oth adult & juvenile life stage possible based on Lmax
juvenile	oth adult & juvenile life stage possible based on Lmax
juvenile	NA NA
adult	NA

```
adult
                 NA
 adult
                 NA
juvenile
                 NA
juvenile
                 NA
 adult
                 NA
 adult
                 NA
iuvenile
                 NA
juvenile
                 NA
 adult
                 NA
 adult
                 NA
iuvenile
                 NA
juvenile
            ife stage and we know almost nothing of the larval stage
 adult
           & Legendre reported age
            ", most likely were post-larvae -- juvenile / young-of-year
iuvenile
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
 adult
                 NA
 adult
                 NA
juvenile
                 NA
                 NA
juvenile
            likely to be larva consumed
juvenile
juvenile
                 NA
                 NA
juvenile
juvenile
                 NA
juvenile
           tentially even larva
 adult
                 NA
juvenile
                 NA
           at larvae based on size
juvenile
           at larvae based on size
juvenile
juvenile
           at larvae based on size
           at larvae based on size
juvenile
juvenile
                 NA
                 NA
juvenile
juvenile
                 NA
juvenile
           o be larvae, based on size ratios
juvenile
                 NA
juvenile
                 NA
juvenile
                 NA
 adult
                 NA
 adult
                 NA
juvenile
                 NA
juvenile
                 NA
juvenile
                 NA
juvenile
                 NA
 adult
                 NA
juvenile
                 NA
juvenile
                 NA
 adult
           & Legendre reported age
                 NA
 adult
```

```
migration, could be juvenile.
 adult
 adult
            ased on diel migration, could be juvenile.
 adult
            ased on diel migration, could be juvenile.
juvenile
                  NA
juvenile
            there are pelagic eggs and larvae
juvenile
                  NA
juvenile
             Glaser (2010)
juvenile
             Glaser (2010)
juvenile
            y juvenile / young-of-year
            y juvenile / young-of-year
juvenile
iuvenile
            y juvenile / young-of-year
 adult
            & Legendre reported age
 adult
            & Legendre reported age
iuvenile
                  NA
juvenile
                  NA
            11) reported juvenile life stage
iuvenile
            11) reported juvenile life stage
juvenile
juvenile
            primarily consumed, secondary was the adult life stage.
juvenile
            and Bernard et al. (1985) all reported juvenile life stage consumed
            and Bernard et al. (1985) all reported juvenile life stage consumed
juvenile
            and Bernard et al. (1985) all reported juvenile life stage consumed
juvenile
juvenile
            and Bernard et al. (1985) all reported juvenile life stage consumed
juvenile
            and Bernard et al. (1985) all reported juvenile life stage consumed
juvenile
            y juvenile / young-of-year
juvenile
                  NA
 adult
                  NA
 adult
            ouxin & Legendre
            ouxin & Legendre
 adult
 adult
            nkas et al. (1971)
 adult
            nkas et al. (1971)
juvenile
            y juvenile / young-of-year
 adult
                  NA
 adult
                  NA
            va based on trait information
juvenile
juvenile
                  NA
juvenile
            y juvenile / young-of-year
juvenile
                  NA
            Legendre reported juveniles
juvenile
juvenile
            y juvenile / young-of-year
juvenile
            tanabe et al. (2004) reported juveniles
juvenile
            tanabe et al. (2004) reported juveniles
juvenile
                  NA
            2010) reported juveniles
juvenile
juvenile
            2010) reported juveniles
juvenile
            2010) reported juveniles
juvenile
                  NA
juvenile
                  NA
juvenile
                  NA
```

```
Based on traits
juvenile
           y juvenile / young-of-year
juvenile
            Very little info
 adult
juvenile
                 NA
                 NA
juvenile
 adult
                 NA
 adult
                 NA
 adult
                 NA
           sello et al. (1999)
juvenile
juvenile
           sello et al. (1999)
juvenile
                 NA
juvenile
                 NA
juvenile
                 NA
           y juvenile / young-of-year
juvenile
 adult
                 NA
 adult
                 NA
 adult
                 NA
juvenile
                 NA
 adult
           ly to have eaten larva
juvenile
                 NA
juvenile
                 NA
 adult
                 NA
 adult
                 NA
juvenile
           sed on habitat traits
juvenile
           sed on habitat traits
juvenile
           y juvenile / young-of-year
juvenile
                 NA
juvenile
           arval but lacking size info
juvenile
                 NA
                 NA
 adult
 adult
           & Legendre reported age
           & Legendre reported age
juvenile
           & Legendre reported age
juvenile
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
 adult
                 NA
juvenile
                 NA
 adult
                 NA
 adult
                 NA
 adult
                 NA
juvenile
                 NA
juvenile
                 NA
juvenile
                 NA
juvenile
                 NA
 adult
           & Legendre reported age
 adult
           & Legendre reported age
juvenile
                 NA
            Based on trait
juvenile
                 NA
juvenile
```

```
NA
 adult
juvenile
                 NA
juvenile
           on size and other traits
juvenile
                 NA
           y juvenile / young-of-year
juvenile
 adult
                 NA
 adult
           in the review reported lengths ~6 cm (SL)
 adult
           in the review reported lengths ~6 cm (SL)
juvenile
                 NA
 adult
           ) and Pusineri et al. (2005) reported 33-40 mm individuals in guts
 adult
           ) and Pusineri et al. (2005) reported 33-40 mm individuals in guts
 adult
           ) and Pusineri et al. (2005) reported 33-40 mm individuals in guts
 adult
                 NA
                 NA
iuvenile
juvenile
            stage, McHugh (1952) reported larvae / postlarvae
iuvenile
            stage, McHugh (1952) reported larvae / postlarvae
juvenile
            stage, McHugh (1952) reported larvae / postlarvae
juvenile
                 NA
                 NA
juvenile
           y juvenile / young-of-year
juvenile
 adult
                 NA
juvenile
                 NA
juvenile
                 NA
 adult
                 NA
 adult
           & Legendre reported age
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
                 NA
juvenile
            Based on trait
 adult
juvenile
            Based on traits
 adult
            Legendre reported adults
            Legendre reported adults
 adult
 adult
            Legendre reported adults
juvenile
           y juvenile / young-of-year
 adult
                 NA
juvenile
            giant red mysid shrimp
juvenile
            Based on traits
 adult
           but based on gape length more likely juveniles
 adult
           but based on gape length more likely juveniles
 adult
                 NA
           (1952) reported juveniles
juvenile
                 NA
juvenile
juvenile
                 NA
juvenile
           ted pelagic juvenile Octopus bimaculatus
           ted pelagic juvenile Octopus bimaculatus
juvenile
juvenile
           d on O. bimaculatus
juvenile
           y juvenile / young-of-year
```

```
juvenile
            y juvenile / young-of-year
juvenile
            y juvenile / young-of-year
juvenile
                  NA
juvenile
                  NA
juvenile
            (1952) reported juveniles
juvenile
            (1952) reported juveniles
                  NA
juvenile
juvenile
                  NA
juvenile
                  NA
            y juvenile / young-of-year
juvenile
juvenile
            y juvenile / young-of-year
            ot-yet settled juvenile phase
juvenile
 adult
                  NA
iuvenile
            ntos reported juveniles
juvenile
                  NA
juvenile
            arval but lacking size info
            n occurence of juveniles, extremely unlilely to eat adults.
 larva
 larva
            n occurence of juveniles, extremely unlilely to eat adults.
juvenile
            i et al. (2008) reported
            i et al. (2008) reported
juvenile
juvenile
            i et al. (2008) reported
 adult
                  NA
 adult
                  NA
 larva
            ted by similar species consumed in Bouxin & Legendre study
juvenile
                  NA
            Probably larva
juvenile
            y juvenile / young-of-year
juvenile
 adult
                  NA
 adult
                  NA
 adult
                  NA
 adult
                  NA
 adult
                  NA
            t juveniles (see season note)
juvenile
juvenile
            t juveniles (see season note)
juvenile
            t juveniles (see season note)
            y juvenile / young-of-year
juvenile
juvenile
            y juvenile / young-of-year
            orted larvae and an occurence of adults
 larva
 larva
            orted larvae and an occurence of adults
 larva
            orted larvae and an occurence of adults
                  NA
 adult
 adult
                  NA
juvenile
                  NA
juvenile
            1. (2012) reported juveniles
juvenile
                  NA
 adult
                  NA
juvenile
            (1952) reported juveniles
                  NA
 adult
```

```
adult
                  NA
juvenile
            y juvenile / young-of-year
juvenile
            Based on traits
            Based on traits
juvenile
 adult
                  NA
 adult
                  NA
iuvenile
                  NA
juvenile
            ed multiple life stages
juvenile
            5) reported juvenile and y-o-y life stages consumed
            5) reported juvenile and y-o-y life stages consumed
juvenile
iuvenile
            5) reported juvenile and y-o-y life stages consumed
            1. (2012) reported juveniles
juvenile
juvenile
            1. (2012) reported juveniles
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
            ", most likely were post-larvae -- juvenile / young-of-year
juvenile
            ", most likely were post-larvae -- juvenile / young-of-year
iuvenile
            y juvenile / young-of-year
juvenile
juvenile
            ile life stage based on reported length
juvenile
            ile life stage based on reported length
            y juvenile / young-of-year
juvenile
 adult
                  NA
 adult
                  NA
 adult
                  NA
 larva
            arvae and an occurence of juveniles and adults
            arvae and an occurence of juveniles and adults
 larva
            arvae and an occurence of juveniles and adults
 larva
            arvae and an occurence of juveniles and adults
 larva
juvenile
            1 by Glaser (2010), but could also be larvae
            1 by Glaser (2010), but could also be larvae
juvenile
juvenile
            1 by Glaser (2010), but could also be larvae
juvenile
            1 by Glaser (2010), but could also be larvae
juvenile
            1 by Glaser (2010), but could also be larvae
juvenile
            1 by Glaser (2010), but could also be larvae
            1 by Glaser (2010), but could also be larvae
juvenile
juvenile
            1 by Glaser (2010), but could also be larvae
juvenile
            1 by Glaser (2010), but could also be larvae
juvenile
                  NA
 adult
                  NA
 adult
                  NA
 adult
                  NA
juvenile
                  NA
 adult
            0) reported age, length info
 adult
            0) reported age, length info
 adult
                  NA
 adult
                  NA
juvenile
                  NA
juvenile
                  NA
juvenile
                  NA
```

```
NA
 adult
           at larvae based on size
juvenile
 adult
                 NA
juvenile
            i et al. (2008) reported
juvenile
                 NA
 adult
                 NA
iuvenile
           y juvenile / young-of-year
 adult
juvenile
           y juvenile / young-of-year
juvenile
                 NA
 adult
           1 adults, McHugh (1952) - post-larvae
 adult
           1 adults, McHugh (1952) - post-larvae
 adult
           1 adults, McHugh (1952) - post-larvae
           n tunicates in albacore diets?
iuvenile
           n tunicates in albacore diets?
juvenile
juvenile
           ted 20 cm total lengths, and juvenile sizes
juvenile
           ted 20 cm total lengths, and juvenile sizes
juvenile
                 NA
                 NA
 adult
 adult
                 NA
 adult
                 NA
juvenile
           on size and other traits
           y juvenile / young-of-year
juvenile
juvenile
                 NA
juvenile
           . (1999) reported juveniles
juvenile
           . (1999) reported juveniles
juvenile
                 NA
           y juvenile / young-of-year
juvenile
juvenile
           y juvenile / young-of-year
 adult
                 NA
iuvenile
                 NA
juvenile
                 NA
 adult
                 NA
juvenile
           (1952) reported juveniles
juvenile
           (1952) reported juveniles
juvenile
                 NA
```

surement lacking enough information to use it, NO = no measurement information 2022)

1 sizes were reported.

ape limit (maxGape) for the albacore sampled from the same study as the prey taxa. Appended are the

estimated life stage (life stage) and associated notes used to select the final life stage assigned to each

species for selection of appropriate trait information. ***See notes below table.

Table S5. Prey species information (class, order, family, species), estimated prey life stages and assoc

Table S5. Prey species	information	(class, order	, family, specie	s), estimated prey life	stages and assoc
prey_class prey_or		amily prey			vert_habitat
Actinopterygii Aulopifo	ormes Notosu	ididae Scop	elosaurus adult	NA	mesopelagic
Actinopterygii Aulopifo	ormes Paralep	oididae Arct	ozenus ris adult	NA	mesopelagic
Actinopterygii Aulopifo	ormes Paralep	oididae Lest	idiops ringadult	NA	mesopelagic
Actinopterygii Aulopifo	ormes Paralep	oididae Lest	idiops sim adult	NA	mesopelagic
Actinopterygii Aulopifo	ormes Scopela	archida/Scop	elarchus adult	NA	mesopelagic
Actinopterygii Gadiforn	mes Bregma	acerotic Breg	maceros 1 adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Cera	toscopelu adult	Bouxin & Le	g mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Cera	toscopelu adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Diap	hus luetkeadult	Bouxin & Le	eg mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Diap	hus osten adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Diap	hus persp adult	Based on die	l:mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Diap	hus theta adult	Glaser (2010) mesopelagic
ActinopterygiiMyctoph	niform Mycto	phidae Elec	trona risscadult	Bouxin & Le	g mesopelagic
ActinopterygiiMyctoph	niform Mycto	phidae Hyg	ophum hy adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto	phidae Lam	panyctode adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto	phidae Lam	panyctus ; adult	Bouxin & Le	g mesopelagic
ActinopterygiiMyctoph	niform Mycto	phidae Lobi	anchia ge adult	Bouxin & Le	g mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Myc	tophum as adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Myc	tophum pıadult	Bouxin & Le	eg mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Noto	scopelus adult	Bouxin & Le	g mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Prote	omyctoph adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Sten	obrachius adult	Glaser (2010) mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Sym	bolophort adult	NA	mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Tarle	etonbeania adult	Glaser (2010) mesopelagic
ActinopterygiiMyctoph	niform Mycto _l	phidae Trip	hoturus m adult	NA	mesopelagic
ActinopterygiiOphidiif	ormes Aphyo	nidae Bara	thronus padult	NA	bathypelagic
Actinopterygii Osmerif	ormes Opistho	oprocticMon	acoa grim adult	NA	mesopelagic
Actinopterygii Percifor	mes Embio	tocidae Cym	atogaster adult	NA	demersal
ActinopterygiiStephano	oberycMelam	phaida&Mela	amphaes hadult	NA	mesopelagic
ActinopterygiiStephano	oberycMelam	phaidaeScop	elogadus adult	NA	mesopelagic
Actinopterygii Stomiifo	ormes Sternop	otychid:Argy	ropelecus adult	NA	mesopelagic
Actinopterygii Stomiifo	ormes Sternop	otychid:Argy	ropelecus adult	NA	mesopelagic
Actinopterygii Stomiifo	ormes Sternop	otychid:Mau	rolicus im adult	NA	mesopelagic
Actinopterygii Stomiifo	ormes Sternop	otychid:Mau	rolicus mıadult	Several of th	e mesopelagic
Actinopterygii Stomiifo	ormes Sternop	otychid:Steri	noptyx dia adult	NA	mesopelagic
Actinopterygii Stomiifo	ormes Sternop	otychid:Steri	noptyx ob: adult	NA	mesopelagic
ActinopterygiiSygnathi	iforme Centris	scidae Mac	roramphoadult	NA	demersal
Cephalopoda Oegopsi	da Cranch	iidae Heli	cocranchi; adult	Very little in	fc mesopelagic
Cephalopoda Oegopsi	da Enoplo	teuthid:Abra	ılia redfiel adult	NA	epipelagic
Cephalopoda Oegopsi	da Enoplo	teuthid:Abra	liopsis af adult	NA	epipelagic
Cephalopoda Oegopsi	da Enoplo	teuthid:Abra	liopsis feladult	NA	epipelagic
Cephalopoda Oegopsi		teuthid:Abra	lliopsis giladult	NA	mesopelagic
Cephalopoda Oegopsi			lliopsis meadult		mesopelagic
Cephalopoda Oegopsi	da Pyrote	uthidae Ptery	gioteuthiadult	NA	mesopelagic
Cephalopoda Oegopsi	da Pyrote	uthidae Pyro	teuthis madult	NA	mesopelagic
Cephalopoda Sepiida	Sepioli	dae Hete	roteuthis (adult	NA	mesopelagic

Cephalopoda Spirulida Spirulidae Spirula spirula adult NA mesopelagic Gastropoda Caenogastropc Epitoniodea Janthina exigu adult NA epipelagic Gastropoda Littorinimorph Atlantidae Atlanta peroni adult NA epipelagic Gastropoda Littorinimorph Carinariidae Carinaria lama adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Cavolinia trida adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Diacria trispin adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Diacria trispin adult NA epipelagic	astropoda astropoda astropoda astropoda
Gastropoda Littorinimorph Atlantidae Atlanta peroni adult NA epipelagic Gastropoda Littorinimorph Carinariidae Carinaria lama adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Cavolinia trida adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Diacria trispin adult NA epipelagic	Sastropoda Sastropoda Sastropoda
Gastropoda Littorinimorph Carinariidae Carinaria lama adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Cavolinia trida adult NA epipelagic Gastropoda Pteropoda Cavoliniidae Diacria trispin adult NA epipelagic	astropoda astropoda
Gastropoda Pteropoda Cavoliniidae Cavolinia trideadult NA epipelagic Gastropoda Pteropoda Cavoliniidae Diacria trispin adult NA epipelagic	astropoda
Gastropoda Pteropoda Cavoliniidae Diacria trispin adult NA epipelagic	-
	'agtrop a da
Continued Discount Cities Cities and Cities NA	rastropoda
Gastropoda Pteropoda Cliidae Clio pyramida adult NA epipelagic	astropoda
Hexanauplia Calanoida Calanidae Calanus finma adult NA epipelagic	[exanauplia
Hydrozoa Siphonophora Diphyidae Chelophyes ar adult NA epipelagic	lydrozoa
Malacostraca Amphipoda Brachyscelida Brachyscelus (adult NA epipelagic	Ialacostraca
Malacostraca Amphipoda Brachyscelida Brachyscelus 1 adult NA epipelagic	1alacostraca
Malacostraca Amphipoda CyphocarididaCyphocaris faradult NA mesopelagic	1alacostraca
Malacostraca Amphipoda Eupronoidae Parapronoe criadult NA epipelagic	
Malacostraca Amphipoda Hyperiidae Hyperia galba adult NA epipelagic	1alacostraca
Malacostraca Amphipoda Hyperiidae Themisto gauc adult NA epipelagic	
Malacostraca Amphipoda Lanceolidae Lanceola saya adult NA bathypelagi	
Malacostraca Amphipoda Oxyccephalida Leptocotis ten adult NA epipelagic	
Malacostraca Amphipoda Oxyccephalidi Streetsia chall adult NA epipelagic	
Malacostraca Amphipoda Phrosinidae Anchylomera adult NA epipelagic	
Malacostraca Amphipoda Phrosinidae Phrosina semiladult NA epipelagic	
Malacostraca Amphipoda Phrosinidae Primno macro adult NA epipelagic	
Malacostraca Amphipoda Platyscelidae Platyscelus arı adult NA epipelagic	
Malacostraca Amphipoda Platyscelidae Platyscelus ov adult NA epipelagic	
Malacostraca Amphipoda Platyscelidae Platyscelus seradult NA epipelagic	
Malacostraca Amphipoda Vibiliidae Vibilia gibbos adult NA epipelagic	
Malacostraca Decapoda AcanthephyricAcanthephyra adult NA mesopelagic	
Malacostraca Decapoda Oplophoroida Janicella spini adult NA bathypelagi	
Malacostraca Decapoda Oplophoroida(Oplophorus ty adult NA mesopelagic	
Malacostraca Decapoda Oplophpridae Systellaspis de adult NA mesopelagio	
Malacostraca Decapoda Pasiphaeidae Parapasiphae adult NA mesopelagi	
Malacostraca Decapoda Penaeidae Funchalia taan adult NA mesopelagi	
Malacostraca Decapoda Penaeidae Funchalia wocadult NA mesopelagi	
Malacostraca Decapoda Sergestidae Eusergestes ar adult Bouxin & Leg demersal	
Malacostraca Decapoda Sergestidae Eusergestes ai adult Bouxii & Leg demersai Malacostraca Decapoda Sergestidae Eusergestes sii adult Pinkas et al. (1epipelagic	
Malacostraca Decapoda Sergestidae Robustosergia adult NA bathypelagi	
Malacostraca Euphausiacea Euphausiidae Meganyctipha adult Malacostraca Euphausiacea Euphausiidae Meganyctipha adult Bouxin & Leg epipelagic Payrin & Leg epipelagic	
Malacostraca Euphausiacea Euphausiidae Nematoscelis 1 adult Bouxin & Leg epipelagic Notational and the second of	
Malacostraca Euphausiacea Euphausiidae Nyctiphanes a adult NA epipelagic	
Malacostraca Euphausiacea Euphausiidae Stylocheiron a adult NA epipelagic	
Malacostraca Isopoda Idoteidae Idotea metallicadult unlikely to havepipelagic	
Malacostraca Lophogastrida Gnathophausii Neognathopha adult NA bathypelagi	
Malacostraca Stomatopoda Squillidae Natosquilla in adult Based on trait epipelagic	
Thaliacea Pyrosomatida Pyrosoma atla adult NA epipelagic	
Thaliacea Salpida Salpidae Salpa maxima adult NA epipelagic	
Thaliacea Salpida Salpidae Soestia zonari; adult NA epipelagic	nanacea

siated notes, and trait variables and values that influence the prey encounter (habitat use, diel vertical ar

	l_migrant diel_migrant			maxFO	maxN
oceanic	1 diel yes	NA	season NA	0.5	0
oceanic	1 diel_yes	1,12	1 season yes	52	4
oceanic	1 diel yes		1 season yes	4	0
oceanic	1 diel yes		1 season yes	1.6	0.2
oceanic	1 diel_yes		0 season no	6	1
oceanic	1 diel yes		1 season yes	2.1	0.3
oceanic	1 diel_yes		1 season yes	29.62962963	0.0
oceanic	1 diel yes		1 season yes	5.6	0.8
oceanic	1 diel yes		1 season yes	2.857142857	0.0
oceanic	1 diel yes		1 season yes	0.7	0
oceanic	1 diel yes		1 season yes	7.9	5.8
oceanic	1 diel yes		1 season yes	5.6	9.8
oceanic	1 diel_yes		1 season yes	5.714285714	0.1
oceanic	1 diel_yes		1 season yes	0.7	0
oceanic	1 diel yes		1 season yes	23.4	11.7
oceanic	1 diel yes		1 season yes	5.55555556	0
oceanic	1 diel yes		1 season yes	4	0.1
oceanic	1 diel_yes		1 season yes	2.2	0.9
oceanic	1 diel_yes		1 season_yes	68.51851852	0
oceanic	1 diel_yes		1 season yes	15.8	0
oceanic	1 diel yes		1 season yes	2.7	0.2
oceanic	1 diel_yes		1 season_yes	7.6	0.2
oceanic	1 diel_yes		1 season_yes	0.3	0
oceanic	1 diel_yes		1 season_yes	100	5.4
oceanic	1 diel_yes		1 season_yes	6.976744186	0.459066565
oceanic	1 diel_yes		0 season_no	1.851851852	0
oceanic	1 diel_yes		0 season_no	0.5	0
coastal	0 diel_no		1 season_yes	0.5	0.1
oceanic	0 diel_no		0 season_no	5.9	1.1
oceanic	1 diel_yes		0 season_no	2.7	0.4
oceanic	1 diel_yes		0 season_no	0.5	0
oceanic	1 diel_yes		1 season_yes	100	0
oceanic	1 diel_yes		1 season_yes	4.2	0.2
continental she	1 diel_yes		1 season_yes	85.71428571	78.5
oceanic	0 diel_no		1 season_yes	44.4444444	0.1
oceanic	1 diel_yes		0 season_no	0.996677741	0
continental she	1 diel_yes		1 season_yes	30	0
oceanic	0 diel_no		0 season_no	7.407407407	0
oceanic	1 diel_yes		1 season_yes	5	0
oceanic	1 diel_yes		0 season_no		0.076511094
oceanic	1 diel_yes		1 season_yes	36.4	11.3
continental slo	1 diel_yes		1 season_yes	0.7	0.2
oceanic	1 diel_yes		1 season_yes	4.9	3.4
oceanic	1 diel_yes		1 season_yes	1.63	0.16
oceanic	1 diel_yes		0 season_no	1.63	0.16
continental slo	1 diel_yes		0 season_no	66	88.2

continental she	1 diel yes		1 season yes	2.857142857	0
continental slo	1 diel yes		0 season no	0.7	0.1
oceanic	0 diel no		0 season_no	5.714285714	0
oceanic	1 diel yes		0 season no	1.851851852	0
oceanic	1 diel yes		1 season yes	34.28571429	0
oceanic	1 diel yes		1 season yes	10	0
oceanic	1 diel yes	NA	season NA	5.714285714	0.3
oceanic	1 diel yes		1 season yes	11.11111111	0
oceanic	1 diel yes		1 season yes	3.703703704	0
continental she	1 diel_yes		1 season yes	16	0
continental she	1 diel yes		0 season no	92.59259259	6.2
continental she	1 diel yes	NA	season NA	0	0
continental slo	1 diel yes		0 season no	1.6	0.1
continental she	1 diel_yes		0 season_no	1.5	0.2
oceanic	1 diel yes		1 season_yes	5.714285714	0
oceanic	1 diel yes		1 season_yes	54.3	5.1
oceanic	1 diel yes		0 season_no	1.851851852	0
oceanic	1 diel_yes		1 season_yes	2.1	0.1
continental she	1 diel_yes		1 season_yes	40	0.19
continental she	1 diel_yes		1 season_yes	4.2	1.65
continental she	1 diel_yes		1 season_yes	65	4.2
oceanic	1 diel_yes		0 season_no	2.857142857	0.49
continental she	1 diel_yes		• 0 season_no	0	0
continental she	1 diel_yes		0 season_no	9.259259259	1.1
continental she	1 diel_yes		1 season_yes	1.851851852	0.06
continental she	1 diel_yes		1 season_yes	0.862068966	0.24
oceanic	1 diel_yes		1 season_yes	38.88888889	0
continental slo	1 diel_yes		0 season_no	2.2	0.5
continental slo	1 diel_yes		0 season_no	3.2	0.5
oceanic	1 diel_yes		1 season_yes	8	0
oceanic	1 diel_yes		0 season_no	4	0
continental she	1 diel_yes		0 season_no	1.6	0.2
continental slo	1 diel_yes		0 season_no	0.7	0.1
continental she	1 diel_yes		1 season_yes	52	0
oceanic	1 diel_yes		1 season_yes	45	76.5
oceanic	1 diel_yes		1 season_yes	2.857142857	0
oceanic	1 diel_yes		1 season_yes	38.9	43.1
continental she	1 diel_yes		1 season_yes	89.7	7.3
continental she	1 diel_yes		1 season_yes	80	0.61
coastal	1 diel_yes		1 season_yes	27.9	0
coastal	0 diel_no		1 season_yes	16.66666667	0
continental she	0 diel_no		1 season_yes	3.703703704	0
oceanic	1 diel_yes		0 season_no	0.7	0.1
oceanic	0 diel_no	NA	season_NA	2	1.8
oceanic	1 diel_yes	NA	season_NA	2.857142857	0
oceanic	1 diel_yes		1 season_yes	4.8	1.9
coastal	1 diel_yes		1 season_yes	8.571428571	0

nd seasonal migration) phase of the predation process (Green et al., 2019). We used these traits for buil

ilu scasonai iili	gration) phase of the predation process (Oreen et al., 2019).
maxM	
0.2	
0.5	
0	
0.1	
0.9	
0.2	
0	
0.2	
0	
0	
5	
0.2	
0.1	
0	
10.8	
0	
0	
0.6	
0	
6.3	
0	
0.2	
0	
0	
0.000609243	
0	
0	
0	
0	
0	
0	
0	
0.1	
24.6	
0	
0	
0.07	
0	
0	
0.006092434	
2.132352045	
0.1	
3.4	
0	
0	
3.68	
5.00	

0

0.1

0.1

0

0

0

2.2

0 0

0.1

0

27.3

0

0.1

0.05

3.3 6.5

0.24

0

1.3

0.08

0.05

0

0.1

0.3

0

0

0.3

0.1

0

0

0

0

84.3

4.2

20.4

0 0

0

1.5

0

1.3

0

lding prey functional groups and for investigating differences in albacore diets across the world.

Page 145 of 182

Table S6. Clustering algorithm statistical output table. We selected 7 clusters by optimising cluster va

Output statistTest 1		Test 2	Test 3	Test 4	Test 5	Test 6
cluster.numbei	2	3	4	5	6	7
n (species)	292	292	292	292	292	292
within.cluster.	29.53	27.62	25.09	15.84	10.62	7.85
average.within	0.39	0.37	0.35	0.26	0.21	0.18
average.betwe	0.67	0.66	0.66	0.6	0.58	0.58
dunn2	1.71	1.31	1.25	1.04	1.28	1.43
avg.silwidth	0.41	0.24	0.23	0.4	0.49	0.54
Cluster- 1 size	77	12	12	12	12	12
Cluster- 2 size	215	215	215	88	88	88
Cluster- 3 size	0	65	51	51	51	51
Cluster- 4 size	0	0	14	14	14	14
Cluster- 5 size	0	0	0	127	55	55
Cluster- 6 size	0	0	0	0	72	44
Cluster- 7 size	0	0	0	0	0	28
Cluster- 8 size	0	0	0	0	0	0
Cluster- 9 size	0	0	0	0	0	0
Cluster- 10 siz	0	0	0	0	0	0
Cluster- 11 siz	0	0	0	0	0	0
Cluster- 12 siz	0	0	0	0	0	0
Cluster- 13 siz	0	0	0	0	0	0
Cluster- 14 siz	0	0	0	0	0	0
Cluster- 15 siz	0	0	0	0	0	0

ılidation outputs: (1) higher average distance between species clusters (Rousseeuw, 1987); (2) lower av

Test 7	Test 8	Test 9		Test 10	Test 11		Test 13
	8	9	10	11	12	13	14
	292	292	292	292	292	292	292
	7.76	6.5	6.07	5.02	4.6	4.46	4.05
	0.18	0.16	0.15	0.14	0.13	0.13	0.12
	0.58	0.58	0.58	0.57	0.57	0.57	0.57
	1.19	1.19	1.57	1.57	1.47	1.47	1.53
	0.51	0.54	0.54	0.54	0.54	0.53	0.57
	11	11	11	11	11	8	8
	88	88	88	88	88	88	88
	51	40	40	40	40	40	13
	14	14	8	8	8	8	8
	55	55	55	44	44	44	44
	44	44	44	44	44	44	27
	1	1	6	6	6	6	44
	28	28	1	1	1	1	6
	0	11	28	28	25	25	1
	0	0	11	11	11	11	25
	0	0	0	11	11	11	11
	0	0	0	0	3	3	11
	0	0	0	0	0	3	3
	0	0	0	0	0	0	3
	0	0	0	0	0	0	0

rerage distance within species clusters (Handl et al., 2005); (3) high silhouette width coefficient value a

and Dunny Smith residuals (Dunn[†], 1974; Rousseeuw, 1987); and lastly, (4) optimal evenness or balan

ice of cluster composition indicated by the number of species in each cluster (Legendre & Legendre, 19

998).

Table S7. Extended list of taxonomic identifications from albacore stomach contents from published ε

prey_class	prey_order	prey_family	prey_genus	prey_species	prey_tax	tax_level
Actinopterygii	=	Nemichthyidae		NA	Nemichthyidae	-
Actinopterygii	•	Nettastomatida			Leptocephalus	•
Actinopterygii	Argentiniformes	•	NA	NA	Argentinidae	family
Actinopterygii	Argentiniformes	Bathylagidae	Bathylagoides	wesethi	Bathylagoides v	species
Actinopterygii	Argentiniformes	Bathylagidae	Bathylagus	NA	Bathylagus	genus
Actinopterygii	Argentiniformes	Bathylagidae	Leuroglossus	stilbius	Leuroglossus st	species
Actinopterygii	Argentiniformes	Microstomatida	Nansenia	NA	Nansenia	genus
Actinopterygii	Argentiniformes	Opisthoproctida	Dolichopteryx	NA	Dolichopteryx	genus
Actinopterygii	Ateleopodiform	Ateleopodidae	Ateleopus	natalensis	Ateleopus natal	species
Actinopterygii	Atheriniformes	Atherinidae	Atherinopsis	californiensis	Atherinopsis ca	species
Actinopterygii	Aulopiformes	Alepisauridae	Alepisaurus	ferox	Alepisaurus fere	species
Actinopterygii	Aulopiformes	Alepisauridae	Alepisaurus	NA	Alepisaurus	genus
Actinopterygii	Aulopiformes	Alepisauridae	NA	NA	Alepisauridae	family
Actinopterygii	Aulopiformes	Anotopteridae	Anotopterus	NA	Anotopterus	genus
Actinopterygii	Aulopiformes	Anotopteridae	Anotopterus	nikparini	Anotopterus nik	species
Actinopterygii	Aulopiformes	Anotopteridae	Anotopterus	pharao	Anotopterus ph	species
Actinopterygii	Aulopiformes	Chlorothalmidae	:Chlorophthalmu	agassizi	Chlorophthalmu	species
Actinopterygii	Aulopiformes	Notosudidae	Scopelosaurus	hoedti	Scopelosaurus	species
Actinopterygii	Aulopiformes	Notosudidae	Scopelosaurus	NA	Scopelosaurus	genus
Actinopterygii	Aulopiformes	Omosudidae	Omosudis	lowii	Omosudis Iowii	species
Actinopterygii	Aulopiformes	Paralepididae	Arctozenus	risso	Arctozenus riss	species
Actinopterygii	Aulopiformes	Paralepididae	Lestidiops	ringens	Lestidiops ringe	species
Actinopterygii	Aulopiformes	Paralepididae	Lestidiops	similis	Lestidiops simil	
Actinopterygii	Aulopiformes	Paralepididae	Lestidium	NA	Lestidium	genus
Actinopterygii	Aulopiformes	Paralepididae	Lestrolepis	intermedia	Lestrolepis inter	species
Actinopterygii	Aulopiformes	Paralepididae	Macroparalepis	affinis	Macroparalepis	•
Actinopterygii	Aulopiformes	Paralepididae	Magnisudis	atlantica	Magnisudis atla	species
Actinopterygii	Aulopiformes	Paralepididae	NA	NA	Paralepididae	family
Actinopterygii	Aulopiformes	Paralepididae	Paralepis	coregonoides	Paralepis coreg	species
Actinopterygii	Aulopiformes	Paralepididae	Paralepis	NA	Paralepis	genus
Actinopterygii	Aulopiformes	Paralepididae	Paralepis	speciosa	Paralepis speci	•
Actinopterygii	Aulopiformes	Paralepididae	Paralepis		Lestidiops sphy	
Actinopterygii	Aulopiformes	Paralepididae	Sudis	hyalina	Sudis hyalina	species
Actinopterygii	Aulopiformes	Scopelarchidae		NA	Benthalbella	genus
Actinopterygii	Aulopiformes	Scopelarchidae		analis	Scopelarchus a	•
Actinopterygii	Aulopiformes	Scoperlarchidae	•	NA	Scoperlarchidae	
Actinopterygii	Aulopiformes	Scoperlarchidae		NA	Scopelarchus	genus
Actinopterygii	Aulopiformes	Synodontidae	NA	NA	Synodontidae	family
Actinopterygii	Beloniformes	Belonidae	Belone	belone	Belone belone	•
Actinopterygii	Beloniformes	Belonidae	Strongylura	exilis	Strongylura exil	•
Actinopterygii	Beloniformes	Exocoetidae	Cypselurus	NA	Cypselurus	genus
Actinopterygii	Beloniformes	Scomberesocid	• •	saira	Cololabis saira	•
Actinopterygii	Beloniformes	Scomberesocid		NA	Scomberesocid	•
Actinopterygii	Beloniformes	Scomberesocid		saurus	Scomberesox s	•
Actinopterygii	Beryciformes	Anoplogastridae		NA	Anoplogastridae	
Actinopterygii	Beryciformes	Berycidae	Beryx	splendens	Beryx splenden	=
Actinopterygii	Beryciformes	Berycidae	NA	NA	Berycidae spp.	•
	=	Diretmidae	Diretmus			•
Actinopterygii	Beryciformes	Diretilidae	Directifics	argenteus	Diretmus argen	species

Actinopterygii	Beryciformes	Holocentridae	Holocentrus	NA
Actinopterygii	Beryciformes	Holocentridae	NA	NA
Actinopterygii	Beryciformes	Trachichthyidae		NA
Actinopterygii	Clupeiformes	Clupeidae	Clupea	NA
Actinopterygii	Clupeiformes	Clupeidae	Clupea	pallasii
Actinopterygii	Clupeiformes	Clupeidae	Sardina	pilchardus
Actinopterygii	Clupeiformes	Clupeidae	Sardinella	aurita
Actinopterygii	Clupeiformes	Clupeidae	Sardinops	NA
Actinopterygii	Clupeiformes	Clupeidae	Sardinops	sagax
Actinopterygii	Clupeiformes	Engraulidae	Engraulis	encrasicolus
Actinopterygii	Clupeiformes	Engraulidae	Engraulis	japonicus
Actinopterygii	Clupeiformes	Engraulidae	Engraulis	mordax
Actinopterygii	Clupeiformes	Engraulidae	Engraulis	capensis
Actinopterygii	Clupeiformes	Engraulidae	NA	NA
Actinopterygii	Gadiformes	Bregmacerotida	-	mcclellandi
Actinopterygii	Gadiformes	Gadidae	Microgadus	proximus
Actinopterygii	Gadiformes	Gadidae	Micromesistius	poutassou
Actinopterygii	Gadiformes	Gadidae	NA	NA
Actinopterygii	Gadiformes	Lotidae	Gaidropsarus	vulgaris
Actinopterygii	Gadiformes	Merlucciidae	Merluccius	NA
Actinopterygii	Gadiformes	Merlucciidae Merlucciidae	Merluccius	productus NA
Actinopterygii	Gadiformes Gadiformes	Moridae	Merluccius Antimora	rostrata
Actinopterygii Actinopterygii	Lampriformes	Trachipteridae	Desmodema	polystictum
Actinopterygii	Lampriformes	Trachipteridae	Trachipterus	NA
Actinopterygii	Lampriformes	Trachipteridae	Trachipterus	trachypterus
Actinopterygii	Lophiiformes	Ceratiidae	Ceratias	tentaculatus
Actinopterygii	Lophiiformes	Ogcocephalidae		NA
Actinopterygii	Myctophiformes	•	Benthosema	glaciale
Actinopterygii	Myctophiformes		Ceratoscopelus	-
Actinopterygii	Myctophiformes	•	Ceratoscopelus	
Actinopterygii	Myctophiformes	• •	Ceratoscopelus	
Actinopterygii	Myctophiformes		Diaphus	lucidus
Actinopterygii	Myctophiformes		Diaphus	luetkeni
Actinopterygii	Myctophiformes	•	Diaphus	ostenfeldi
Actinopterygii	Myctophiformes		Diaphus	effulgens
Actinopterygii	Myctophiformes	•	Diaphus	NA
Actinopterygii	Myctophiformes		Diaphus	perspicillatus
Actinopterygii	Myctophiformes		Diaphus	theta
Actinopterygii	Myctophiformes		Electrona	rissoi
Actinopterygii	Myctophiformes	Myctophidae	Gymnoscopelus	NA
Actinopterygii	Myctophiformes	Myctophidae	Hygophum	hygomii
Actinopterygii	Myctophiformes	Myctophidae	Hygophum	NA
Actinopterygii	Myctophiformes	Myctophidae	Lampadena	luminosa
Actinopterygii	Myctophiformes	Myctophidae	Lampanyctodes	hectoris
Actinopterygii	Myctophiformes	•	Lampanyctus	alatus
Actinopterygii	Myctophiformes		Lampanyctus	crocodilus
Actinopterygii	Myctophiformes		Lampanyctus	intricarius
Actinopterygii	Myctophiformes		Lampanyctus	mexicanus
Actinopterygii	Myctophiformes	•	Lampanyctus	NA
Actinopterygii	Myctophiformes	•	Lobianchia	gemellarii
Actinopterygii	Myctophiformes		Myctophum	punctatum
Actinopterygii	Myctophiformes	•	Myctophum	asperum
Actinopterygii	Myctophiformes		Myctophum	NA
Actinopterygii	Myctophiformes	Myctophidae	NA	NA
A atinantanyaji				
Actinopterygii	Myctophiformes		Nannobrachium	-
Actinopterygii	Myctophiformes Myctophiformes	Myctophidae	Nannobrachium	ritteri
	Myctophiformes	Myctophidae		-

Holocentrus genus Holocentridae family Trachichthyidae family Clupea genus Clupea pallasii species Sardina pilcharc species Sardinella aurita species Sardinops genus Sardinops saga species Engraulis encra species Engraulis japon species Engraulis morda species Engraulis caper species Engraulidae family Bregmaceros m species Microgadus pro species Micromesistius species Gadidae family Gaidropsarus vi species Merluccius genus Merluccius prod species Merluccius aenus Antimora rostral species Desmodema po species **Trachipterus** genus Trachipterus tra species Ceratias tentacı species Ogcocephalida: family Benthosema glaspecies Ceratoscopelus species Ceratoscopelus species Ceratoscopelus species Diaphus lucidus species Diaphus luetker species Diaphus ostenfe species Diaphus effulge species Diaphus genus Diaphus perspic species Diaphus theta species Electrona rissoi species Gymnoscopelus genus Hygophum hygospecies Hygophum genus Lampadena lur species Lampanyctodes species Lampanyctus al species Lampanyctus cr species Lampanyctus in species Lampanyctus m species Lampanyctus genus Lobianchia gem species Myctophum pur species Myctophum asp species Myctophum genus Myctophidae family Nannobrachium species Nannobrachium species Notoscopelus ki species Actinopterygii Myctophiformes Myctophidae Protomyctophur crockeri Protomyctophur species Myctophiformes Myctophidae Actinoptervaii Stenobrachius leucopsarus Stenobrachius I species Actinopterygii Myctophiformes Myctophidae Symbolophorus barnardi Symbolophorus species Myctophiformes Myctophidae Actinoptervaii Symbolophorus evermanni Symbolophorus species Actinopterygii Myctophiformes Myctophidae Tarletonbeania crenularis Tarletonbeania species Actinopterygii Myctophiformes Myctophidae Tarletonbeania NA NA genus Actinopterygii Myctophiformes Myctophidae **Triphoturus** mexicanus Triphoturus mes species Actinopterygii NA NA NA NA Actinopterygii class NA Actinoptervaii NA NA NA Teleostei subclass Actinoptervaii Ophidiiformes Aphyonidae Barathronus parspecies Barathronus parfaiti Actinopterygii Ophidiiformes Ophdiidae Chilara taylori Chilara taylori species Actinopterygii Osmeriformes Nansenia macrospecies Microstomatida Nansenia macrolepis Actinopterygii Osmeriformes Opisthoproctida Monacoa grimaldii Monacoa grima species Actinopterygii Osmeriformes Osmeridae Thaleichthys pacificus Thaleichthys pa species Actinoptervaii Perciformes Acanthuridae NA NA Acanthuridae family Actinopterygii Perciformes Acropomatidae Synagrops NA **Synagrops** genus Ammodytes Actinopterygii Perciformes Ammodytidae tobianus Ammodytes tob species Ammodytidae Ammodytidae family Actinopterygii Perciformes NA NA Anarhichadidae Anarrhichthys Anarrhichthys o species Actinopterygii Perciformes ocellatus Actinopterygii Perciformes Apogonidae NA NA Apogonidae family Actinopterygii Benniidae NA NΑ Benniidae Perciformes family ocellaris Blennius ocellar species Actinopterygii Perciformes Blenniidae **Blennius** Actinoptervaii Perciformes Bramidae Brama brama Brama brama species Actinopterygii Perciformes Bramidae **Brama** orcini Brama orcini species Actinopterygii Perciformes Bramidae NA NA Bramidae family Actinopterygii Perciformes Bramidae Pteraclis NA Pteraclis genus Actinopterygii Bramidae Pterycombus Perciformes NA Pterycombus genus Pterycombus Pterycombus pespecies Actinopterygii Perciformes Bramidae petersii Actinoptervaii Bramidae **Taractes** Taractes asper species Perciformes asper Actinopterygii Perciformes Callionymidae Callionymus NA Callionymus spigenus Actinoptervaii Perciformes Caproidae Antigonia capros Antigonia capro species Caproidae Actinopterygii Perciformes Capros Capros aper species aper Actinopterygii Perciformes Caproidae NA NA Caproidae family NA Actinopterygii Perciformes Carangidae Decapterus Decapterus genus Actinopterygii Perciformes Carangidae Decapterus Decapterus macspecies macarellus Actinopterygii Carangidae Decapterus Decapterus macspecies Perciformes macrosoma Actinopterygii Perciformes Carangidae NA NA Carangidae family Selene Actinopterygii Perciformes Carangidae Selene setapinr species setapinnis Actinopterygii Perciformes Carangidae Trachinotus ovatus Trachinotus ova species Actinopterygii Perciformes Carangidae Trachurus Trachurus japor species japonicus Actinoptervaii Perciformes Carangidae Trachurus symmetricus Trachurus symr species Actinopterygii Trachurus Perciformes Carangidae trachurus Trachurus trach species Actinopterygii Perciformes Centrolophidae Centrolophus niger Centrolophus ni species Centrolophidae Icichthys Icichthys locking species Actinopterygii Perciformes lockingtoni Actinopterygii Perciformes Chaetodontidae NA NA Chaetodontidae family Actinopterygii Perciformes Champsodontid NA NA Champsodontid family Actinopterygii Perciformes Chiasmodontida Chiasmodon niger Chiasmodon nic species Actinopterygii Perciformes Chiasmodontide NA NA Chiasmodontida family Actinoptervaii Perciformes Chiasmodontida Pseudoscopelu: NA Pseudoscopelu: genus Actinopterygii Perciformes Coryphaenidae Coryphaena Coryphaena hip species hippurus Actinopterygii Perciformes Embiotocidae Cymatogaster aggregata Cymatogaster a species Actinopterygii Gempylidae Diplospinus multistriatus Diplospinus mul species Perciformes Actinopterygii Perciformes Gempylidae Gempylus NA Gempylus genus Actinopterygii Perciformes Gempylidae Gempylus Gempylus serpespecies serpens Gempylidae flavobrunneum Lepidocybium fl species Actinoptervqii Perciformes Lepidocybium Actinopterygii Perciformes Gempylidae NA NA Gempylidae family Actinopterygii Gempylidae tripes Perciformes Nealotus Nealotus tripes species Actinopterygii Perciformes Gempylidae Nesiarchus Nesiarchus nas species nasutus

	5		_		_
Actinopterygii	Perciformes	Gempylidae	Rexea	NA	Rexea genus
Actinopterygii	Perciformes	Gempylidae	Rexea	•	Rexea prometh species
Actinopterygii	Perciformes	Gempylidae	Thyrsitoides	marleyi	Thyrsitoides maspecies
Actinopterygii	Perciformes	Gobiidae	Gobius	NA	Gobius genus
Actinopterygii	Perciformes	Gobiidae	Rhinogobiops	nicholsii	Rhinogobiops n species
Actinopterygii	Perciformes	Haemulidae	NA	NA	Haemulidae family
Actinopterygii	Perciformes	Holocentridae	Sargocentron	NA	Sargocentron genus
Actinopterygii	Perciformes	Istiophoridae	Makaira	mazara	Makaira mazara species
Actinopterygii	Perciformes	Kyphosidae	Medialuna	californiensis	Medialuna califo species
Actinopterygii	Perciformes	Labridae	Halichoeres	nicholsi	Halichoeres nick species
Actinopterygii	Perciformes Perciformes	Malacanthidae	NA Liza	NA NA	Malacanthidae family Liza genus
Actinopterygii	Perciformes	Mugilidae	Mugil		3
Actinopterygii	Perciformes	Mugilidae Mullidae	Mullus	cephalus barbatus	Mugil cephalus species Mullus barbatus species
Actinopterygii	Perciformes	NA	NA	NA	Perciformes order
Actinopterygii Actinopterygii	Perciformes	Nomeidae	Cubiceps	gracilis	Cubiceps gracili species
Actinopterygii	Perciformes	Nomeidae	Cubiceps	capensis	Cubiceps gracin species Cubiceps caper species
Actinopterygii	Perciformes	Nomeidae	Cubiceps	pauciradiatus	Cubiceps capel species Cubiceps paucil species
Actinopterygii	Perciformes	Nomeidae	NA	NA	Nomeidae family
Actinopterygii	Perciformes	Nomeidae	Psenes	pellucidus	Psenes pellucid species
Actinopterygii	Perciformes	Pomacanthidae		NA	Pomacanthidae family
Actinopterygii	Perciformes	Pomacentridae		punctipinnis	Chromis punctir species
Actinopterygii	Perciformes	Pomacentridae		NA	Pomacentridae family
Actinopterygii	Perciformes		Plectroglyphido		Plectroglyphido genus
Actinopterygii	Perciformes	Priacanthidae	Cookeolus	japonicus	Cookeolus japo species
Actinopterygii	Perciformes	Scombridae	Auxis	NA	Auxis genus
Actinopterygii	Perciformes	Scombridae	Katsuwonus	pelamis	Katsuwonus pel species
Actinopterygii	Perciformes	Scombridae	NA	NA	Scombridae family
Actinopterygii	Perciformes	Scombridae	Scomber	japonicus	Scomber japoni species
Actinopterygii	Perciformes	Scombridae	Scomber	NA	Scomber genus
Actinopterygii	Perciformes	Scombridae	Scomber	scombrus	Scomber scomt species
Actinopterygii	Perciformes	Scombridae	Thunnus	NA	Thunnus genus
Actinopterygii	Perciformes		Scombrolabrax	heterolepis	Scombrolabrax species
Actinopterygii	Perciformes	Serranidae	NA	NA	Serranidae family
Actinopterygii	Perciformes	Sparidae	Boops	boops	Boops boops species
Actinopterygii	Perciformes	Sparidae	Diplodus	sargus	Diplodus sargus species
Actinopterygii	Perciformes	Sparidae	Spondyliosoma	_	Spondyliosoma species
Actinopterygii	Perciformes	Sphyraenidae	NA	NA	Sphyraenidae s family
Actinopterygii	Perciformes	Stromateidae	Peprilus	simillimus	Peprilus simillim species
Actinopterygii	Perciformes	Stromateidae	NA	NA	Stromateidae family
Actinopterygii	Perciformes	Tetragonuridae	Tetragonurus	atlanticus	Tetragonurus at species
Actinopterygii	Perciformes	Tetragonuridae	Tetragonurus	cuvieri	Tetragonurus cı species
Actinopterygii	Perciformes	Trichiuridae	NA	NA	Trichiuridae family
Actinopterygii	Perciformes	Zanclidae	NA	NA	Zanclidae spp. family
Actinopterygii	Pleuronectiform		Arnoglossus	imperialis	Arnoglossus im species
Actinopterygii	Pleuronectiform		NA	NA	Bothidae family
Actinopterygii	Pleuronectiform		NA	NA	Pleuronectiform order
Actinopterygii		n Paralichthyidae	-	NA	Citharichthys genus
Actinopterygii		n Paralichthyidae	-	sordidus	Citharichthys sc species
Actinopterygii		Pleuronectidae		NA	Microstomus genus
Actinopterygii		Pleuronectidae	•		Pleuronichthys species
Actinopterygii		Pleuronectidae	-		Pleuronichthys genus
Actinopterygii		Pleutonectidae		pacificus	Microstomus pa species
Actinopterygii		Pleuronectidae	• • •		Glyptocephalus species
Actinopterygii	Polymixiiformes	•	Polymixia	NA	Polymixia genus
Actinopterygii	Scorpaeniforme	-	Bathyagonus	pentacanthus	Bathyagonus pespecies
Actinopterygii	Scorpaeniforme	-	NA Ananlanama	NA finalania	Agonidae family
Actinopterygii	Scorpaeniforme	eAnoplopomatida	: Anopiopoma	fimbria	Anoplopoma fin species

Actinopterygii	Scorpaeniforme	Dactylonteridae	Dactylontena	orientalis	Dactyloptena or	species
Actinopterygii	Scorpaeniforme	• •	• •	NA	Dactylopteridae	•
Actinopterygii	Scorpaeniforme (• •	Heliocolenus	dactylopterus	Helicolenus dac	-
Actinopterygii	Scorpaeniforme F		NA	NA	Peristediidae sp	•
Actinopterygii	Scorpaeniforme F		Peristedion	gracile	Peristedion grad	-
Actinopterygii	Scorpaeniforme F		NA	NA	Psychrolutidae	•
Actinopterygii	Scorpaeniforme S	-	NA	NA		family
Actinopterygii	Scorpaeniforme S	•	Scorpaena	NA	Scorpaena	genus
Actinopterygii	Scorpaeniforme	•	Sebastes	aleutianus	Sebastes aleutic	•
Actinopterygii	Scorpaeniforme S		Sebastes	brevispinis	Sebastes brevis	•
Actinopterygii	Scorpaeniforme		Sebastes	diploproa	Sebastes diplop	•
Actinopterygii	Scorpaeniforme				Sebastes helvo	•
Actinopterygii	Scorpaeniforme		Sebastes	maliger	Sebastes malig	•
Actinopterygii	Scorpaeniforme		Sebastes	miniatus	Sebastes minia	•
Actinopterygii	Scorpaeniforme		Sebastes	NA	Sebastes	genus
Actinopterygii	Scorpaeniforme		Sebastes	proriger	Sebastes prorig	-
Actinopterygii	Scorpaeniforme S		Sebastes	wilsoni	Sebastes wilsor	•
Actinopterygii	Scorpaeniforme S		Sebastes	zacentrus	Sebastes zacer	•
Actinopterygii	Scorpaeniforme		Eutrigla	gurnardus	Eutrigla gurnard	•
Actinopterygii	Stephanoberyci I		•	lugubris	Melamphaes lug	•
Actinopterygii	Stephanoberyci I		•	mizolepis	Scopelogadus t	•
Actinopterygii	•	Gonostomatida	. •	NA	Gonostoma	genus
Actinopterygii		Gonostomatida		NA	Gonostomatidae	•
Actinopterygii		Phosichthyidae		lucetia	Vinciguerria luc	-
Actinopterygii		Sternoptychidae	_	aculeatus	Argyropelecus a	•
Actinopterygii		Sternoptychidae		olfersii	Argyropelecus of	•
Actinopterygii		Sternoptychidae	- -	imperatorius	Maurolicus impe	
Actinopterygii		Sternoptychidae		muelleri	Maurolicus mue	
Actinopterygii		Sternoptychidae		NA	Sternoptychidae	•
Actinopterygii		Sternoptychidae		diaphana	Sternoptyx diap	-
Actinopterygii		Sternoptychidae		NA		genus
Actinopterygii		Sternoptychidae		obscura	Sternoptyx obso	-
Actinopterygii			Bathophilus	flemingi	Bathophilus flen	•
Actinopterygii			Idiacanthus	NA	Idiacanthus	genus
Actinopterygii			Melanostomias		Melanostomias	•
Actinopterygii			Melanostomias.		Melanostomias	•
Actinopterygii			Photonectes	margarita	Photonectes ma	-
Actinopterygii			Cyclothone	NA	Cyclothone	genus
Actinopterygii	Sygnathiformes (Macroramphosi		Macroramphosi	•
Actinopterygii	Syngnathiforme S		Entelurus	aequoreus	Entelurus aequo	•
Actinopterygii	Syngnathiforme S		NA	NA	Syngnathidae	•
Actinopterygii	Syngnathiforme S		Syngnathus	californiensis	Syngnathus cali	-
Actinopterygii	Syngnathiforme S		Syngnathus	NA	Syngnathus	genus
Actinopterygii	Tetraodontiform E		Balistes	punctatus	Balistes punctat	•
Actinopterygii	Tetraodontiform E		Canthidermis	maculata	Canthidermis m	
Actinopterygii	Tetraodontiform E	Balistidae	NA	NA	Balistidae	family
Actinopterygii	Tetraodontiform [Chilomycterus	NA	Chilomycterus	,
Actinopterygii	Tetraodontiform I		Masturus	lanceolatus	Masturus lance	-
Actinopterygii	Tetraodontiform I	Molidae	NA	NA	Molidae	family
Actinopterygii	Tetraodontiform I	Molidae	Ranzania	laevis	Ranzania laevis	species
Actinopterygii	Tetraodontiform I		Cantherhines	NA		genus
Actinopterygii	Tetraodontiform I			NA	Monacanthidae	•
Actinopterygii	Tetraodontiform I			NA	Stephanolepis	-
Actinopterygii	Tetraodontiform (Lactoria	diaphana	Lactoria diapha	-
Actinopterygii	Tetraodontiform (Ostraciidae	Lactoria	NA .	Lactoria	genus
Actinopterygii	Tetraodontiform (Ostraciidae	NA	NA	Ostraciidae	family
Actinopterygii	Tetraodontiform (Ostracion	cubicus	Ostracion cubic	•
Actinopterygii	Tetraodontiform 7	Tetraodontidae	Lagocephalus	lagocephalus	Lagocephalus la	•

Actinopterygii	Tetrandontiform	Tetraodontidae	NΔ	NA	Tetraodontidae	family
Actinopterygii		Tricanthodidae			Halimochirurgus	-
Appendicularia		NA	NA	NA	Appendicularia	-
Branchiopoda	Cladocera	NA	NA	NA	Cladocera	order
Branchiopoda	Onychopoda	Podonidae	Evadne	NA	Evadne	genus
Branchiopoda	Onychopoda	Podonidae	Pseudevadne	tergestina	Pseudevadne te	•
Cephalopoda	•	Chtenopterygid		sicula	Chtenopteryx si	•
Cephalopoda	Myopsida	Loliginidae	Alloteuthis	subulata	Alloteuthis subu	
Cephalopoda	Myopsida	Loliginidae	Doryteuthis	opalescens	Doryteuthis opa	•
Cephalopoda	Myopsida	Loliginidae	Loligo	NA	Loligo	genus
Cephalopoda	Myopsida	Loliginidae	NA	NA	Loliginidae	family
Cephalopoda	Myopsida	Loliginidae	Sepioteuthis	NA	Sepioteuthis sp	•
Cephalopoda	Myopsida	NA	NA	NA	Myopsida	order
Cephalopoda	NA	NA	NA	NA	Cephalopoda	class
Cephalopoda	NA	NA	NA	NA	Decapodiforme	
Cephalopoda	Octopoda	Alloposidae	Haliphron		Haliphron atlant	•
Cephalopoda	Octopoda	Amphitretidae	Japetella	diaphana	Japetella diapha	•
Cephalopoda	Octopoda	Amphitretidae	Japetella	heathi	Japetella heathi	
Cephalopoda	Octopoda	Amphitretidae	Vitreledonella	NA	Vitreledonella	genus
Cephalopoda	Octopoda	Argonautidae	Argonauta	argo	Argonauta argo	•
Cephalopoda	Octopoda	Argonautidae	Argonauta	nodosus	Argonauta nodo	•
Cephalopoda	Octopoda	Argonautidae	Argonauta	nouryi	Argonauta nour	•
Cephalopoda	Octopoda	Argonautidae	NÄ	NA	Argonautidae	family
Cephalopoda	Octopoda	Eledonidae	Eledone	cirrhosa	Eledone cirrhos	
Cephalopoda	Octopoda	NA	NA	NA	Octopoda	order .
Cephalopoda	Octopoda	Octopodidae	NA	NA	Octopodidae	family
Cephalopoda	Octopoda	Octopodidae	Octopus	bimaculatus	Octopus bimacı	species
Cephalopoda	Octopoda	Octopodidae	Octopus	vulgaris	Octopus vulgari	species
Cephalopoda	Octopoda	Octopodidae	Octopus	NA	Octopus	genus
Cephalopoda	Octopoda	Octopodidae	Pteroctopus	tetracirrhus	Pteroctopus tetr	species
Cephalopoda	Octopoda	Octopodidae	Scaeurgus	unicirrhus	Scaeurgus unic	species
Cephalopoda	Octopoda	Opisthoteuthida	Opisthoteuthis	californiana	Opisthoteuthis of	species
Cephalopoda	Octopoda	Tremoctopodida	Tremoctopus	violaceus	Tremoctopus vi	species
Cephalopoda	Octopoda	Tremoctopodida	Tremoctopus	gracilis	Tremoctopus gr	species
Cephalopoda	Oegopsida	Ancistrocheirida	Ancistrocheirus	lesueurii	Ancistrocheirus	species
Cephalopoda	Oegopsida	Architeuthidae	NA	NA	Architeuthidae	•
Cephalopoda	Oegopsida	Brachioteuthida	Brachioteuthis	NA	Brachioteuthis	genus
Cephalopoda	Oegopsida	Brachioteuthida		riisei	Brachioteuthis r	•
Cephalopoda	Oegopsida	Chiroteuthidae		NA	Chiroteuthis spr	-
Cephalopoda	Oegopsida	Chiroteuthidae		veranii	Chiroteuthis ver	•
Cephalopoda	Oegopsida		Grimalditeuthis	•	Grimalditeuthis	•
Cephalopoda	Oegopsida	Chiroteuthidae		NA	Chiroteuthidae	-
Cephalopoda	Oegopsida	Cranchiidae	Cranchia	scabra	Cranchia scabra	•
Cephalopoda	Oegopsida	Cranchiidae	Teuthowenia	hyperborea	Teuthowenia m	•
Cephalopoda	Oegopsida	Cranchiidae	Galiteuthis	armata	Galiteuthis arma	•
Cephalopoda	Oegopsida	Cranchiidae	Galiteuthis	phyllura	Galiteuthis phyl	•
Cephalopoda	Oegopsida	Cranchiidae	Heliococranchia	•	Helicocranchia	
Cephalopoda	Oegopsida	Cranchiidae	Leachia	NA	Leachia	genus
Cephalopoda	Oegopsida	Cranchiidae	Liocranchia	reinhardtii	Liocranchia rein	•
Cephalopoda	Oegopsida	Cranchiidae	Liocranchia	NA	Liocranchia	genus
Cephalopoda	Oegopsida	Cranchiidae	NA	NA	Cranchiidae	family
Cephalopoda	Oegopsida	Cranchiidae	NA	NA	Taoniinae	subfamily
Cephalopoda	Oegopsida	Cranchiidae	NA Taonius	NA	Cranchiidae sp	-
Cephalopoda	Oegopsida	Cranchiidae	Taonius	NA	Taonius	genus
Cephalopoda	Oegopsida	Cranchiidae	Teuthowenia	megalops	Teuthowenia m	•
Cephalopoda	Oegopsida	Enoploteuthidae		Abralia redfield	i Abralia redfieldi	•
Cephalopoda	Oegopsida	Enoploteuthidae		affinis	Abraliansis affin	genus
Cephalopoda	Oegopsida	Enoploteuthidae	Anialiopsis	allilis	Abraliopsis affin	species

0 1 1 1			A. I	6 11	
Cephalopoda	Oegopsida	Enoploteuthidae	•	felis	Abraliopsis felis species
Cephalopoda	Oegopsida	Enoploteuthidae	•	gilchristi	Abraliopsis gilcl species
Cephalopoda	Oegopsida	Enoploteuthidae	•	morisii	Abraliopsis mor species
Cephalopoda	Oegopsida	Enoploteuthidae	•	NA	Abraliopsis genus
Cephalopoda	Oegopsida	Enoploteuthidae		NA	Enoploteuthida family
Cephalopoda	Oegopsida	Enoploteuthidae		NA .	Enoploteuthida family
Cephalopoda	Oegopsida	Gonatidae	Berryteuthis	anonychus	Berryteuthis and species
Cephalopoda	Oegopsida	Gonatidae	Gonatopsis	borealis	Gonatopsis bor species
Cephalopoda	Oegopsida	Gonatidae	Gonatopsis	NA 	Gonatopsis genus
Cephalopoda	Oegopsida	Gonatidae	Gonatus	berryi	Gonatus berryi species
Cephalopoda	Oegopsida	Gonatidae	Gonatus	californiensis	Gonatus califorr species
Cephalopoda	Oegopsida	Gonatidae	Gonatus	NA	Gonatus genus
Cephalopoda	Oegopsida	Gonatidae	Gonatus	onyx	Gonatus onyx species
Cephalopoda	Oegopsida	Gonatidae	Gonatus	pyros	Gonatus pyros species
Cephalopoda	Oegopsida	Gonatidae	Gonatus	steenstrupi	Gonatus steens species
Cephalopoda	Oegopsida	Gonatidae	NA	NA	Gonatidae family
Cephalopoda	Oegopsida	Histioteuthidae		bonnellii	Histioteuthis bo species
Cephalopoda	Oegopsida	Histioteuthidae		heteropsis	Histioteuthis het species
Cephalopoda	Oegopsida	Histioteuthidae		NA	Histioteuthis genus
Cephalopoda	Oegopsida	Histioteuthidae		reversa	Histioteuthis rev species
Cephalopoda	Oegopsida	Histioteuthidae		meleagroteuthis	Histioteuthis me species
Cephalopoda	Oegopsida	Histioteuthidae		NA	Histioteuthidae family
Cephalopoda	Oegopsida		Stigmatoteuthis	-	Stigmatoteuthis species
Cephalopoda	Oegopsida	Histioteuthidae	Stigmatoteuthis		Stigmatoteuthis species
Cephalopoda	Oegopsida	Lycoteuthidae	Lycoteuthis	Iorigera	Lycoteuthis loriç species
Cephalopoda	Oegopsida	Mastigoteuthida	Mastigoteuthis	dentata	Mastigoteuthis (species
Cephalopoda	Oegopsida	Mastigoteuthida	Mastigoteuthis	NA	Mastigoteuthis genus
Cephalopoda	Oegopsida	NA	NA	NA	Oegopsida order
Cephalopoda	Oegopsida	Octopoteuthidae	Octopoteuthis	NA	Octopoteuthis genus
Cephalopoda	Oegopsida	Octopoteuthidae	Octopoteuthis	nielseni	Octopoteuthis n species
Cephalopoda	Oegopsida	Octopoteuthidae	Octopoteuthis	rugosa	Octopoteuthis respecies
Cephalopoda	Oegopsida	Octopoteuthidae	Octopoteuthis	sicula	Octopoteuthis s species
Cephalopoda	Oegopsida	Octopoteuthidae	Taningia	danae	Taningia danae species
Cephalopoda	Oegopsida	Ocythoidae	Ocythoe	tuberculata	Ocythoe tuberci species
Cephalopoda	Oegopsida	Ommastrephida	Dosidicus	gigas	Dosidicus gigas species
Cephalopoda	Oegopsida	Ommastrephida	Eucleoteuthis	luminosa	Eucleoteuthis lu species
Cephalopoda	Oegopsida	Ommastrephida	Hyaloteuthis	pelagica	Hyaloteuthis pe species
Cephalopoda	Oegopsida	Ommastrephida	Illex	argentinus	Illex argentinus species
Cephalopoda	Oegopsida	Ommastrephida	Illex	coindetii	Illex coindetii species
Cephalopoda	Oegopsida	Ommastrephida	NA	NA	Ommastrephida family
Cephalopoda	Oegopsida	Ommastrephida	Ommastrephes	NA	Ommastrephes genus
Cephalopoda	Oegopsida	Ommastrephida	Ommastrephes	bartramii	Ommastrephes species
Cephalopoda	Oegopsida	Ommastrephida	Ornithoteuthis	antillarum	Ornithoteuthis a species
Cephalopoda	Oegopsida	Ommastrephida	Ornithoteuthis	volatilis	Ornithoteuthis v species
Cephalopoda	Oegopsida	Ommastrephida	Sthenoteuthis	NA	Sthenoteuthis genus
Cephalopoda	Oegopsida	Ommastrephida		oualaniensis	Sthenoteuthis o species
Cephalopoda	Oegopsida	Ommastrephida		pacificus	Todarodes paci species
Cephalopoda	Oegopsida	Ommastrephida		sagittatus	Todarodes sagi species
Cephalopoda	Oegopsida	Ommastrephida		NĂ	Todarodes genus
Cephalopoda	Oegopsida	Ommastrephida		eblanae	Todaropsis ebla species
Cephalopoda	Oegopsida		Ancistrocheirus		Ancistroteuthis species
Cephalopoda	Oegopsida	Onychoteuthida		NA	Onychoteuthida family
Cephalopoda	Oegopsida	Onychoteuthida		banksii	Onychoteuthis species
Cephalopoda	Oegopsida	Onychoteuthida		banksii	Onychoteuthis t species
Cephalopoda	Oegopsida	Onychoteuthida			Onychoteuthis I species
Cephalopoda	Oegopsida	Onychoteuthida	-	NA	Onychoteuthis genus
Cephalopoda	Oegopsida	Onychoteuthida	-	loennbergii	Onykia loennbe species
Cephalopoda	Oegopsida	Onychoteuthida	-	robusta	Onykia robusta species
Sopridiopoda	Jogopolaa	ony on occurring	- Origina	. 354314	onyma robuota species

Cephalopoda	Oegopsida	Onychoteuthida	Walvisteuthis	rancureli	Walvisteuthis ra	•
Cephalopoda	Oegopsida	Pyroteuthidae	NA	NA	Pyroteuthidae	•
Cephalopoda	Oegopsida	Pyroteuthidae	Pterygioteuthis	•	Pterygioteuthis	•
Cephalopoda	Oegopsida	Pyroteuthidae	Pterygioteuthis	•	Pterygioteuthis	•
Cephalopoda	Oegopsida	Pyroteuthidae	Pterygioteuthis		Pterygioteuthis	•
Cephalopoda	Oegopsida	Pyroteuthidae	Pyroteuthis	margaritifera	Pyroteuthis mar	
Cephalopoda	Oegopsida	Thysanoteuthid	•		Thysanoteuthis	•
Cephalopoda	Sepiida	Sepiolidae	Heteroteuthis	dispar	Heteroteuthis di	•
Cephalopoda	Sepiida	Sepiolidae	Heteroteuthis	NA	Heteroteuthis	genus
Cephalopoda	Sepiida	Sepiolidae	NA	NA	Sepiolidae	family
Cephalopoda	Sepiida	Sepiolidae	Sepietta	NA	Sepietta	genus
Cephalopoda	Sepiida	Sepiolidae	Sepietta	oweniana	Sepietta owenia	
Cephalopoda	Spirulida	Spirulidae	Spirula	spirula	Spirula spirula	•
Cephalopoda	Teuthida	NA	NA	NA	Teuthida	order
Cephalopoda		Vampyroteuthid			Vampyroteuthis	•
Elasmobranchii	•	Squalidae	NA	NA	Squalidae	family
Gastropoda	Caenogastropo	•	Janthina	•	Janthina exigua	•
Gastropoda	Caenogastropo		Janthina	NA	Janthina	genus
Gastropoda	NA	NA	NA	NA	Unidentified Mo	
Gastropoda	Littorinimorpha		Atlanta	•	Atlanta peronii	•
Gastropoda	Littorinimorpha		NA .	NA 	Atlantidae	family
Gastropoda	Littorinimorpha		Carinaria	lamarckii	Carinaria lamar	•
Gastropoda	Littorinimorpha		Littorinimorpha		Littorinimorpha	•
Gastropoda	NA	NA	NA	NA	Gastropoda	class
Gastropoda	Pteropoda	Cavoliniidae	Cavolinia	NA	Cavolinia	genus
Hexanauplia	Calanoida	Calanidae	Calanus		Calanus finmar	
Hexanauplia	Calanoida	Calanidae	Cosmocalanus		Cosmocalanus	•
Hexanauplia	Calanoida	Clausocalanida			Clausocalanus	•
Hexanauplia	Calanoida	Clausocalanida			Clausocalanus	-
Hexanauplia	Calanoida	NA	NA	NA	Calanoida	order
Hexanauplia	Calanoida	Paracalanidae		NA	Paracalanus	genus
Hexanauplia	Copepoda(subc		NA	NA	Copepoda	subclass
Hexanauplia	Copepoda(subo		Oithona	NA	Oithona	family
Hexanauplia	Cyclopoida	Corycaeidae	Corycaeus	NA	Corycaeus	genus
Hexanauplia	Cyclopoida	Corycaeidae	Farranula	gibbula	Farranula gibbu	•
Hexanauplia	Cyclopoida	NA Diabolida	NA Objekted	NA Chalanhuas	Cyclopoida	order
Hydrozoa	Siphonophorae		Chelophyes	, , , , , , , , , , , , , , , , , , ,	Chelophyes app	•
Hydrozoa	Siphonophorae		Diphyes	NA	Diphyes	genus
Hydrozoa	Siphonophorae		Sulculeolaria	NA	Sulculeolaria	genus
Malacostraca	Amphipoda	Brachyscelidae	-	crusculum	Brachyscelus ci	•
Malacostraca	Amphipoda	Brachyscelidae	•	•	Brachyscelus m	•
Malacostraca	Amphipoda	Brachyscelidae	•	NA formai	Brachyscelus	genus
Malacostraca	Amphipoda	Cyphocarididae	• •	faurei NA	Cyphocaris faur	•
Malacostraca	Amphipoda	Cyproideidae	Cyproidea		Cyproidea	genus
Malacostraca	Amphipoda	Eupronoidae	Parapronoe	crustulum	Parapronoe cru	
Malacostraca	Amphipoda	Eupronoidae	Parapronoe	NA	Parapronoe	genus
Malacostraca	Amphipoda	Gammaridae	NA	NA	Gammaridae	family
Malacostraca	Amphipoda	Hyperiidae	Hyperia	galba NA	Hyperia galba	species
Malacostraca	Amphipoda	Hyperiidae	NA Thomisto		Hyperiidae	family
Malacostraca	Amphipoda	Hyperiidae Lanceolidae	Themisto	gaudichaudii	Themisto gaudi	•
Malacostraca	Amphipoda		Lanceola	•	Lanceola sayan	
Malacostraca	Amphipoda	Lycaediae	NA NA	NA NA	Lycaediae	family
Malacostraca	Amphipoda	NA Ovvecephalidae		NA topuirostris	Amphipoda	order
Malacostraca	Amphipoda Amphipoda	Oxyccephalidae	•	tenuirostris	Leptocotis tenui	
Malacostraca		Oxyccephalidae	JUEEISIA	challengeri	Streetsia challe	species
Malacostraca	•	• •	Strootoic	NIA	Strootoio	aonuc
	Amphipoda	Oxyccephalidae		NA blossevillei	Streetsia	genus
Malacostraca Malacostraca	•	• •	Streetsia Anchylomera NA	NA blossevillei NA	Streetsia Anchylomera bl Phrosinidae	-

		DI	ы :	A 1 A	DI :	
Malacostraca	Amphipoda	Phrosinidae	Phrosina	NA	Phrosina	genus
Malacostraca	Amphipoda	Phrosinidae	Phrosina	semilunata	Phrosina semilu	species
Malacostraca	Amphipoda	Phrosinidae	Primno	macropa	Primno macrop	species
Malacostraca	Amphipoda	Phrosinidae	Primno	NA .	Primno	genus
Malacostraca	Amphipoda	Platyscelidae	Platyscelus	armatus	Platyscelus arm	•
Malacostraca	Amphipoda	Platyscelidae	Platyscelus	NA	Platyscelus	genus
		•	-		•	•
Malacostraca	Amphipoda	Platyscelidae	Platyscelus	ovoides	Platyscelus ovo	
Malacostraca	Amphipoda	Platyscelidae	Platyscelus	serratulus	Platyscelus ser	•
Malacostraca	Amphipoda	Vibiliidae	Vibilia	gibbosa	Vibilia gibbosa	species
Malacostraca	Decapoda	Acanthephyrida	Acanthephyra	pelagica	Acanthephyra p	species
Malacostraca	Decapoda	Acanthephyrida	NA	NA	Acanthephyrida	family
Malacostraca	Decapoda	Alpheidae	Alpheus	glaber	Alpheus glaber	species
Malacostraca	Decapoda	Axiidae	Axius	•	Axius stirhynch	•
Malacostraca	Decapoda	Benthesicymida		-	≀Gennadas eleg	•
	•	•		NA	-	•
Malacostraca	Decapoda	Benthesicymida			Gennadas	genus
Malacostraca	Decapoda		Enoplometopus		Enoplometopus	-
Malacostraca	Decapoda	Enoplometopida	: NA	NA	Enoplometopida	family
Malacostraca	Decapoda	Homolidae	NA	NA	Homolidae	family
Malacostraca	Decapoda	Munididae	Pleuroncodes	NA	Pleuroncodes	genus
Malacostraca	Decapoda	Munididae	Pleuroncodes	planipes	Pleuroncodes p	species
Malacostraca	Decapoda	NA	NA	NA .	Decapoda	order
Malacostraca	Decapoda	NA	NA	NA	Anomura	infraorder
	•	NA	NA	NA		infraorder
Malacostraca	Decapoda				Brachyura	
Malacostraca	Decapoda	NA	NA	NA	Caridea	infraorder
Malacostraca	Decapoda	NA	NA	NA	Decapoda	order
Malacostraca	Decapoda	NA	NA	NA	Majoidea	superfamily
Malacostraca	Decapoda	NA	NA	NA	Paguroidea	superfamily
Malacostraca	Decapoda	Nephropidae	NA	NA	Nephropidae	family
Malacostraca	Decapoda	Oplophoroidae	Janicella	spinicauda	Janicella spinic	species
Malacostraca	Decapoda	Oplophoroidae		NA	Oplophoridae s	•
Malacostraca	Decapoda	Oplophoroidae		typus	Oplophorus typ	
	•					•
Malacostraca	Decapoda	Oplophoroidae		NA	Oplophorus	genus
Malacostraca	Decapoda	Oplophpridae	Systellaspis		tSystellaspis del	
Malacostraca	Decapoda	Paguridae	NA	NA	Paguridae spp.	tamily
Malacostraca	Decapoda	Palinuridae	Jasus	NA	Jasus	genus
Malacostraca	Decapoda	Palinuridae	NA	NA	Palinuridae	family
Malacostraca	Decapoda	Palinuridae	Palinurus	mauritanicus	Palinurus mauri	i species
Malacostraca	Decapoda	Pandalidae	Heterocarpus	NA	Heterocarpus	genus
Malacostraca	Decapoda	Pandalidae	Heterocarpus	laevigatus	Heterocarpus la	•
Malacostraca	Decapoda	Pandalidae	Thalassocaris	NA	Thalassocaris	genus
Malacostraca	Decapoda	Pasiphaeidae	NA	NA	Pasiphaeidae	family
Malacostraca	•	•		sulcatifrons	•	•
	Decapoda	Pasiphaeidae	Parapasiphae		Parapasiphae s	•
Malacostraca	Decapoda	Pasiphaeidae	Pasiphaea	NA	Pasiphaea	genus
Malacostraca	Decapoda	Penaeidae	Funchalia	taaningi	Funchalia taani	•
Malacostraca	Decapoda	Penaeidae	Funchalia	woodwardi	Funchalia wood	l species
Malacostraca	Decapoda	Penaeidae	NA	NA	Penaeidae	family
Malacostraca	Decapoda	Polybiidae	Polybius	henslowii	Polybius henslo	species
Malacostraca	Decapoda	Portunidae	NA	NA	Portunidae	family
Malacostraca	Decapoda	Scyllaridae	NA	NA	Scyllaridae	family
Malacostraca	Decapoda	Scyllaridae	Parribacus	antarcticus	Parribacus anta	•
Malacostraca	•	•				•
	Decapoda	Scyllaridae	Scyllarus	arctus	Scyllarus arctus	
Malacostraca	Decapoda	Sergestidae	Eusergestes	arcticus	Eusergestes ar	
Malacostraca	Decapoda	Sergestidae	Eusergestes	similis	Eusergestes sir	•
Malacostraca	Decapoda	Sergestidae	NA	NA	Sergestidae	family
Malacostraca	Decapoda	Sergestidae	Robustosergia	robusta	Robustosergia	rspecies
Malacostraca	Euphausiacea	Euphausiidae	Euphausia	NA	Euphausia	genus
Malacostraca	Euphausiacea	Euphausiidae	Euphausia	pacifica	Euphausia paci	•
Malacostraca	Euphausiacea	Euphausiidae	Meganycitphan	•	Meganyctiphan	•
			garry ontprium		9 , 0 p	- 500000

Malacostraca	Euphausiacea	•	NA	NA .	Euphausiidae	family
Malacostraca	Euphausiacea	Euphausiidae	Nematoscelis	megalops	Nematoscelis n	species
Malacostraca	Euphausiacea	Euphausiidae	Nematoscelis	NA	Nematoscelis	genus
Malacostraca	Euphausiacea	Euphausiidae	Nyctiphanes	australis	Nyctiphanes au	species
Malacostraca	Euphausiacea	Euphausiidae	Stylocheiron	Stylocheiron	Stylocheiron ab	species
Malacostraca	Euphausiacea	NA	NA	NA	Euphausiacea	order
Malacostraca	Isopoda	Idoteidae	Idotea	Idotea metallica	aldotea metallica	species
Malacostraca	Isopoda	Idoteidae	NA	NA	Idoteidae	family
Malacostraca	Isopoda	NA	NA	NA	Isopoda	order
Malacostraca	Lophogastrida	Gnathophausiid	l Negnathophaus	gigas	Neognathophau	species
Malacostraca	Lophogastrida	•	•			•
Malacostraca	Mysida	Mysidae	NA .	NA .	Mysidae	family
Malacostraca	Mysida	NA	NA	NA	Mysida	order
Malacostraca	NÁ	NA	NA	NA	Malacostraca	class
Malacostraca	Stomatopoda	Coronididae	Coronida	NA	Coronida	genus
Malacostraca	Stomatopoda	Lysiosquillidae			Lysiosquilla tre	-
Malacostraca	Stomatopoda	Lysiosquillidae	•	NA	Lysiosquilla	genus
Malacostraca	Stomatopoda	NA _	NA	NA	Stomatopoda	order
Malacostraca	Stomatopoda		Odontodactylus		Odontodactylus	
Malacostraca	Stomatopoda		Odontodactylus		Odontodactylus	•
Malacostraca	Stomatopoda		Odontodactylus		Odontodactylus	-
Malacostraca	Stomatopoda	Psuedosquillida	•	NA	Pseudosquilla	•
Malacostraca	Stomatopoda	Squillidae	NA	NA	Squillidae	family
Malacostraca	•	Squillidae	Natosquilla		•	•
	Stomatopoda		•	investigatoris NA	Natosquilla inve	•
Malacostraca	Stomatopoda	Squillidae	Squilla		Squilla	genus
Malacostraca	Stromatopoda	Squillidae	Neoanchisquilla		Neoanchisquilla	•
Malacostraca	Stromatopoda	Gonodactylidae		NA	Gonodactylus	-
Malacostraca	Stromatopoda	Protosquillidae		guerinii	Echinosquilla g	
NA	NA	NA	NA	NA	Gelatinous zoo	_
NA	NA	NA	NA	NA	Mollusca	class
Other	NA	NA	NA	NA	Unidentified rer	
Other	Other	NA	NA	NA	Invertebrates u	
Thaliacea	Salpida	Salpidae	Salpa	maxima	Salpa maxima	•
Actinopterygii	NA	NA	NA	NA	Coastal and red	
Actinopterygii	NA	NA	NA	NA	Open-ocean fis	l class
Cestoda		Sphyriocephalic		NA	Hepatoxylon	genus
Hexanauplia	Copepoda(sub		NA	NA	Cirripedia	subclass
Hexanauplia	•	Lepadidae	Dosima	fascicularis	Dosima fascicu	•
Hexanauplia	Lepadiformes	Lepadidae	Lepas	Lepas anatifera	a Lepas anatifera	•
Hexanauplia	Lepadiformes	Lepadidae	NA	NA	Lepadidae	family
Hexanauplia	Sessilia	Pyrgomatidae	Pyrgopsella	NA	Pyrgopsella	genus
Hexanauplia	Siphonostomat	i Pennellidae	Pennella	filosa	Pennella filosa	species
Hexanauplia	Siphonostomat	i Pseudocycnida	Psuedocycnus	appendiculatus	Pseudocycnus	species
Hydrozoa	Anthoathecata	Porpitidae	Velella	velella	Velella velella	species
Hydrozoa	Siphonophorae	· NA	NA	NA	Calycophorae	suborder
Hydrozoa	Siphonophorae	· NA	NA	NA	Siphonophorae	order
Malacostraca	Amphipoda	Oxycephalidae	Oxycephalus	NA	Oxycephalus	genus
Malacostraca	Amphipoda	Phronimidae	NA	NA	Phronimidae	family
Malacostraca	Amphipoda	Phronimidae	Phronima	atlantica	Phronima atlan	t species
Malacostraca	Amphipoda	Phronimidae	Phronima	NA	Phronima	genus
Malacostraca	Amphipoda	Phronimidae	Phronima	sedentaria	Phronima sede	rspecies
Ostracoda	Halocyprida	Halocyprididae	Conchoecia	NA	Conchoecia	genus
Other	NA	NA	NA	NA	Parasite	NA
Other	NA	NA	NA	NA	Plastics	NA
Other	NA	NA	NA	NA	Seaweed	NA
Other	NA	NA	NA	NA	Trash	NA
Other	NA	NA	NA	NA	Unidentified Pla	
Other	NA	NA	NA	NA	Unidentified Bir	-
J						2.2.00

Other	Other	NA	NA	NA	Amphipods, sea	NA
Polychaeta	NA	NA	NA	NA	Polychaeta	class
Polychaeta	Phyllodocida	Alciopidae	Naiades	cantrainii	Naiades cantrai	species
Polychaeta	Phyllodocida	Alciopidae	Torrea	Torrea candida	Torrea candida	species
Scyphozoa	Semaeostomea	a Pelagiidae	Pelagia	noctiluca	Pelagia noctiluo	species
Thaliacea	NA	NA	NA	NA	Thaliacea	class
Thaliacea	Salpida	Salpidae	NA	NA	Salpidae	family
Trematoda	Plagiorchiida	Didymozoidae	Didymocystis	NA	Didymocystis sp	genus
Trematoda	Plagiorchiida	Hirudinellidae	Hirudinella	Hirudinella vent	tHirudinella vent	species
Cephalopoda	Oegopsida	Chiroteuthidae	Chiroteuthis	NA	Chiroteuthis sp	genus
Cephalopoda	Oegopsida	Chiroteuthidae	Chiroteuthis	NA	Chiroteuthis sp	genus
Gastropoda	Pteropoda	Cavoliniidae	Cavolinia	tridentata	Cavolinia triden	species
Gastropoda	Pteropoda	Cavoliniidae	Diacria	Diacria trispinos	Diacria trispinos	species
Gastropoda	Pteropoda	Cavoliniidae	Diacria	NA	Diacria	genus
Gastropoda	Pteropoda	Cliidae	Cilo	Clio pyramidata	Clio pyramidata	species
Thaliacea	Pyrosomatida	Pyrosomatidae	Pyrosoma	atlanticum	Pyrosoma atlan	species
Thaliacea	Salpida	Salpidae	Soestia	zonaria	Soestia zonaria	species

and grey literature form the 1880's to 2020.

and grey literature form the					
prey_sp PreyLife					Classification
Nemichthyidae :NA	Not assessed i	•	NA	Wikipedia	WoRMS
Leptocephalus :adult		conger eels	NA	NA	WoRMS
Argentinidae sp adult		argentines	-	NOAA AFSC, F	
Bathylagoides v adult		snubnose black	NA	FishBase	WoRMS
Bathylagus spp.larvae; post-la	rvae	smelt	NA	NOAA AFSC	WoRMS
Leuroglossus stadult		California smoo	NA	FishBase	WoRMS
Nansenia spp. adult		pencil smelt	NA	Wikipedia	WoRMS
Dolichopteryx s _l adult		barreleyes fish	NA	Wikipedia	WoRMS
Ateleopus natal NA	Not assessed i	r jelly-head fish	NA	FishBase	WoRMS
Atherinopsis cal adult		jacksmelt	jack sivlerside	${\it FishBase, web}$:WoRMS
Alepisaurus fercNA	Not assessed i	rlong snouted la	ilongnose lance	t FishBase	WoRMS
Alepisaurus sppadult		lancetfish	NA	Wikipedia	WoRMS
Alepisauridae s∣adult		lancetfishes	NA	NOAA AFSC	WoRMS
Anotopterus spradult		daggertooth	NA	Wikipedia	WoRMS
Anotopterus nik adult		North Pacific da	NA	FishBase	WoRMS
Anotopterus phadult		daggertooth	NA	FishBase	WoRMS
Chlorophthalmu adult		shortnose greei	· NA	FishBase	WoRMS
Scopelosaurus NA	Not assessed i	Hoedt's waryfis	l NA	FishBase	WoRMS
Scopelosaurus NA	Not assessed i	•	NA	NA	WoRMS
Omosudis lowii adult		hammerjaw	omosudid	Wikipedia/FishE	WoRMS
Arctozenus risscadult		spotted barracu		FishBase	WoRMS
Lestidiops ringe adult; juvenile		slender barracu		FishBase	WoRMS
Lestidiops simili NA	Not assessed i		NA	FishBase	WoRMS
Lestidium spp. adult		barracudina	NA	Wikipedia	WoRMS
Lestrolepis inter NA	Not assessed i		NA	NA	WoRMS
Macroparalepis adult	. 101 0.0000000 .	NA	NA	NA	WoRMS
Magnisudis atla adult		duckbill barracu		FishBase	WoRMS
Paralepididae s adult; juvenile		barracudinas	NA	NOAA AFSC	WoRMS
Paralepis coreg adult		sharpchin barra		FishBase	WoRMS
Paralepis spp. adult		barracudinas	NA	Fishbase	WoRMS
Paralepis specicadult		NA	NA	NA	WoRMS
Lestidiops sphy adult		NA	NA NA	NA	WoRMS
Sudis hyalina adult		NA	NA	NA	WoRMS
Benthalbella sp _I NA	Not assessed i		NA	NA	WoRMS
Scopelarchus a NA		rshort fin pearley		FishBase	WoRMS
Scopelarchidae adult	Not assessed i	pearleyes	NA	FishBase	WoRMS
·			NA	Wikipedia	WoRMS
Scopelarchus siadult		pearleyes fish lizardfish	NA	•	
Synodontidae sadult				FishBase	WoRMS
Belone belone adult		garfish	NA	FishBase	WoRMS
Strongylura exil adult		Californian nee		FishBase	WoRMS
Cypselurus spp adult		flying fish	NA	FishBase	WoRMS
Cololabis saira adult; juvenile		Pacific saury	saury	FishBase	WoRMS
Scomberesocid adult		sauries	NA	FishBase	WoRMS
Scomberesox s adult		Atlantic saury	NA	Wikipedia	WoRMS
Anoplogastrida adult		fangtooth fish	NA	Wikipedia	WoRMS
Beryx splenden: NA		rsplendid alfonsi			WoRMS
Berycidae spp. NA	Not assessed i		shorefishes	Smithsonian Tr	
Diretmus argentNA	Not assessed i	r silver spinyfin	discfish	FishBase	WoRMS

l la la a a mémora, a mora a doulé		:	NIA	Cialala a a a	W-DMC
Holocentrus spradult		squirrelfishes	NA	Fishbase	WoRMS
Holocentridae s adult		squirrelfishes	soldierfishes	Fishbase	WoRMS
Trachichthyidae adult		slimeheads	NA	FishBase	WoRMS
Clupea spp. adult		herrings	NA	Wikipedia	WoRMS
Clupea pallasii adult		Pacific herring	NA	FishBase	WoRMS
Sardina pilcharcadult		European sardi		Fishbase	WoRMS
Sardinella auritaadult		round sardinella		FishBase	WoRMS
Sardinops spp. adult		NA	NA	NA	WoRMS
Sardinops sagalarvae; post-lar	vae; young-of-y			FishBase, Wikir	WoRMS
Engraulis encra adult		European anch		FishBase	WoRMS
Engraulis japon adult; juvenile		Japanese anch	NA	FishBase	WoRMS
Engraulis mordadult; postlarva	e; juvenile; larv	a California ancho	NA	FishBase	WoRMS
Engraulis caper NA	Not assessed	ir Southern Africa	n anchovy	FishBase	WoRMS
Engraulidae spradult		anchovy	NA	FishBase	WoRMS
Bregmaceros mNA	Not assessed	ir unicorn cod	spotted codlet,	FishBase	WoRMS
Microgadus pro adult		Pacific tomcod	NA	FishBase	WoRMS
Micromesistius adult		blue whiting	NA	FishBase	WoRMS
Gadidae spp. adult		cods and haddo	true cods	FishBase/Wikip	WoRMS
Gaidropsarus vradult		three-bearded r		FishBase	WoRMS
Merluccius merl adult		European lake		FishBase	WoRMS
Merluccius prodadult; juvenile;	postlarvae	•		FishBase, IUCN	
Merluccius spp. NA	Not assessed		NA	NA	WoRMS
Antimora rostral NA		ir blue antimora	NA	FishBase	WoRMS
Desmodema po adult	1101 43303304	polka-dot ribonf		FishBase	WoRMS
Trachipterus spilarvae; post-lar	vae	ribbonfish	NA	Fishbase	WoRMS
Trachipterus tra adult	vac	Mediterranean		FishBase/Wikip	
Ceratias tentaci NA	Not assessed	ir southern seade		FishBase	WoRMS
	Not assessed	batfishes	NA	FishBase	WoRMS
Ogcocephalidae adult					
Benthosema glaadult		glacier lantern f			WoRMS
Ceratoscopelus adult		madiera lantern			WoRMS
Ceratoscopelus adult		dogtooth lampfi		FishBase	WoRMS
Ceratoscopelus adult		warming's lante		FishBase	WoRMS
Diaphus lucidus NA	Not assessed	ir spotlight lantern			WoRMS
Diaphus luetker adult		Luetken's lanter			WoRMS
Diaphus ostenf∈NA		ir Ostenfeld's lant		FishBase	WoRMS
Diaphus effulge NA		ir headlight fish	NA	FishBase	WoRMS
Diaphus spp. adult; larvae; p		headlight fish	NA	NOAA AFSC	WoRMS
Diaphus perspic NA	Not assessed	ir transparent lant			WoRMS
Diaphus theta adult		California headl		FishBase	WoRMS
Electrona rissoi adult		electric lantern		FishBase	WoRMS
Gymnoscopelus NA	Not assessed		NA	NA 	WoRMS
Hygophum hygcNA		ir Bermuda lanter			WoRMS
Hygophum spp. NA	Not assessed		NA	NA	WoRMS
Lampadena lum NA		ir luminous lanter		FishBase	WoRMS
Lampanyctodes NA	Not assessed	ir Hector's lantern	NA	FishBase	WoRMS
Lampanyctus al adult		winged lanternfi		FishBase	WoRMS
Lampanyctus cradult		jewel lanternfish	NA	FishBase	WoRMS
Lampanyctus in adult		diamindcheek la	NA	FishBase	WoRMS
Lampanyctus madult		lanterfish	NA	NA	Not found in Wo
Lampanyctus sradult		lanternfish	NA	Wikipedia	WoRMS
Lobianchia gemadult		Cocco's lantern	NA	FishBase	WoRMS
Myctophum punadult		spotted lanternf	NA	FishBase	WoRMS
Myctophum asp NA	Not assessed	ir prickly lanternfis		FishBase	WoRMS
Myctophum spp adult; larvae; p		lanternfish	NA	NOAA AFSC	WoRMS
Myctophidae sp adult		lanternfishes	NA	Fishbase	WoRMS
Nannobrachium larvae; postlarv	⁄ae	pinpoint lampfis		Fishbase	WoRMS
Nannobrachium adult		broadfin lampfis		FishBase	WoRMS
Notoscopelus kradult		lancet fish	NA	Fishbase	WoRMS
•					

Protomyctophuradult		California flashl		FishBase	WoRMS
Stenobrachius l-adult		northern lampfis		FishBase	WoRMS
Symbolophorus NA		Barnards lanter		FishBase	WoRMS
Symbolophorus NA	Not assessed in	Evermann's lan		FishBase	WoRMS
Tarletonbeania adult; larvae		blue lanternfish	NA	FishBase	WoRMS
Tarletonbeania adult		blue lanternfish		FishBase	WoRMS
Triphoturus meadult		Mexican lampfis	NA	FishBase	WoRMS
Actinopterygii sı adult; larvae		fishes unknown	NA	NA	WoRMS
Teleostei spp. adult		NA	NA	NA	WoRMS
Barathronus paradult		NA	NA	NA	WoRMS
Chilara taylori adult		spotted cusk-ee	NA	FishBase	WoRMS
Nansenia macroNA	Not assessed in	· NA	NA	NA	WoRMS
Monacoa grima NA	Not assessed in	mirrorbelly	NA	FishBase	WoRMS
Thaleichthys pa adult		eulachon	NA	FishBase	WoRMS
Acanthuridae sradult			tangs, and unico		WoRMS
Synagrops spp. adult		ocean bass	NA	Fishbase	WoRMS
Ammodytes tob adult			launce	FishBase	WoRMS
Ammodytidae s adult		sand lances	NA	FishBase	WoRMS
Anarrhichthys o adult		wolf eel	NA	FishBase	WoRMS
Apogonidae spradult		cardinalfishes	NA	Fishbase	WoRMS
Blenniidae spp. adult		combtooth blen		Wikipedia	WoRMS
Blennius ocellar adult				FishBase	WoRMS
		butterfly blenny			
Brama brama adult		Atlantic pomfret		FishBase	WoRMS
Brama orcini adult		bigtooth pomfre		Fishbase	WoRMS
Bramidae spp. adult		promfets	NA	Fishbase	WoRMS
Pteraclis spp. adult		fanfishes	NA	Fishbase	WoRMS
Pterycombus sr adult		NA	NA	NA	WoRMS
Pterycombus peadult		prickly fanfish	NA	FishBase	WoRMS
Taractes asper adult		rough pomfret	NA	FishBase	WoRMS
Callionymus sp¡adult		dragonets	NA	Wikipedia	WoRMS
Antigonia capro adult		deepbody boarf		FishBase	WoRMS
Capros aper adult		boarfish	NA	FishBase	WoRMS
Caproidae spp. NA		boarfishes	NA	FishBase	WoRMS
Decapterus spp NA	Not assessed in	mackerel scads	round scads, ho	Wikipedia	WoRMS
Decapterus macNA	Not assessed in	mackerel scad	NA	FishBase	WoRMS
Decapterus macNA	Not assessed in	shortfin scad	slender scad	FishBase	WoRMS
Carangidae spp adult		carangid unknow	NA	NA	WoRMS
Selene setapinr adult		Atlantic moonfis	NA	FishBase	WoRMS
Trachinotus ova adult		pompano	NA	FishBase	WoRMS
Trachurus japor adult		Japanese jack r	NA	FishBase	WoRMS
Trachurus symr adult; juvenile		Pacific jack mad	NA	FishBase	WoRMS
Trachurus trach adult		Atlantic horse m	NA	FishBase	WoRMS
Centrolophus ni adult		rudderfish	NA	FishBase	WoRMS
lcichthys lockinçadult; juvenile		medusafish	NA	FishBase	WoRMS
Chaetodontidae adult		chaetodontid ur	NA	NA	WoRMS
Champsodontid adult		crocodile toothfi		Fishbase	WoRMS
Chiasmodon niçadult		black swallower		Fishbase	WoRMS
Chiasmodontide adult		snaketooth fishe			Wikip WoRMS
Pseudoscopelu: NA	Not assessed in		NA		Muse WoRMS
Coryphaena hip adult		mahi mahi	common dolphi		WoRMS
Cymatogaster a adult		shiner perch	NA	FishBase	WoRMS
Diplospinus muladult		striped escolar		FishBase	WoRMS
Gempylus spp. adult		snake mackerel		NA	WoRMS
Gempylus serpradult		snake mackerel			Wikip WoRMS
Lepidocybium fl NA	Not assessed in		black oilfish	FishBase,	WoRMS
•	INUL ASSESSEU II		snake mackere		WoRMS
Gempylidae spradult		black snake ma		FishBase	WoRMS
Nealotus tripes adult Nesiarchus nas adult					WoRMS
incolarcino nao audit		black gemfish	INA	FishBase	VVURIVIS

Rexea spp. adult		escolars	gemfish	FishBase	WoRMS
• •	Not accessed in		NA	FishBase	WoRMS
Rexea prometh NA	Not assessed in	-			
Thyrsitoides ma NA	Not assessed in		blacksail snake		WoRMS
Gobius spp. adult		NA	NA	NA Field Dagge	WoRMS
Rhinogobiops n adult		blaceye giby	NA	FishBase	WoRMS
Haemulidae spradult	Nist seems of the	grunts	NA	FishBase	WoRMS
Sargocentron si NA	Not assessed in		NA	NA	WoRMS
Makaira mazara NA	Not assessed ii	Indo-Pacific blu			WoRMS
Medialuna califcadult		halfmoon	NA	FishBase	WoRMS
Halichoeres nicladult		spinster wrasse		FishBase	WoRMS
Malacanthidae adult		tilefish	NA	FishBase	WoRMS
Liza spp. NA	Not assessed in		NA	NA	WoRMS
Mugil cephalus adult		flathead grey m		FishBase	WoRMS
Mullus barbatus adult		red mullet	NA	FishBase	WoRMS
Perciformes spradult		ray-finned fish	NA	Wikipedia	WoRMS
Cubiceps gracili adult		driftfish	NA	FishBase	WoRMS
Cubiceps caper NA	Not assessed in	cape flathead	cape cigarfish	FishBase	WoRMS
Cubiceps pauci NA	Not assessed in	bigeye cigarfish	longfin cubehea	FishBase	WoRMS
Nomeidae spp. adult		driftfishes	NA	Fishbase	WoRMS
Psenes pellucid adult		bluefin driftfish	NA	FishBase	WoRMS
Pomacanthidae NA		angelfishes	NA	FishBase	WoRMS
Chromis punctir adult		blackfish	NA	FishBase	WoRMS
Pomacentridae adult		damselfish	NA	FishBase	WoRMS
Plectroglyphido(NA	Not assessed in	· NA	NA	NA	WoRMS
Cookeolus japo NA	Not assessed in	longfinned bulls	longfin bigeve	FishBase	WoRMS
Auxis spp. adult		frigate tuna	NA	Wikipedia	WoRMS
Katsuwonus peladult		skipjack tuna	balaya	Fishbase, Wikip	
Scombridae spradult		Scombrid unknown	•	NA	WoRMS
Scomber japoni adult; larvae; p	ost-larvae			FishBase, IUCN	
Scomber spp. adult		mackerel	NA	Wikipedia	WoRMS
Scomber scomt adult		Atlantic macker		Fishbase	WoRMS
Thunnus spp. NA	Not assessed in		NA	NA	WoRMS
Scombrolabrax NA		longfin escolar		FishBase	WoRMS
Serranidae spp. adult		groupers and fa		FishBase	WoRMS
Boops boops adult		bogue	NA	FishBase	WoRMS
Diplodus sargus adult		white seabream		FishBase	WoRMS
Spondyliosoma adult		black seabream		FishBase	WoRMS
Sphyraenidae s NA	Not assessed in		sea pikes	Fishes of Austra	
Peprilus simillim adult		Pacific pompan		FishBase	WoRMS
Stromateidae sradult		butterfish	NA	FishBase	WoRMS
Tetragonurus at adult		bigeye squareta	NA	FishBase	WoRMS
Tetragonurus cı adult		smalleye square		FishBase	WoRMS
Trichiuridae spp adult		cutlassfish	NA	FishBase	WoRMS
Zanclidae spp. NA	Not assessed in	moorish idol fish	NA	Wikipedia	WoRMS
Arnoglossus imլadult		imperial saldfish	NA	FishBase	WoRMS
Bothidae spp. adult		lefteye flounder		FishBase	WoRMS
Pleuronectiform adult		flatfishes	NA	FishBase	WoRMS
Citharichthys spadult		whiffs	NA	FishBase	WoRMS
Citharichthys scadult		Pacific sanddab	NA	FishBase	WoRMS
Microstomus splarvae; postlarv	/ae	righteye flounde		Wikipedia	WoRMS
Pleuronichthys (adult; juvenile		curlfin sole	NA	FishBase	WoRMS
Pleuronichthys :adult		right-eye flound		FishBase	WoRMS
Microstomus paadult		dove sole	NA	FishBase	WoRMS
Glyptocephalus adult		rex sole	NA	FishBase	WoRMS
Polymixia spp. adult		beardfishes	NA	FishBase	WoRMS
Bathyagonus peadult		bigeye poacher		FishBase	WoRMS
Agonidae spp. adult		poacher	NA	FishBase	WoRMS
Anoplopoma fin adult		sablefish	black cod	FishBase/ Wikip	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-	= = ='	· · · · · · · · · · · · · · · · ·	

Dactyloptena or NA	Not assessed in	noriental flying gu	purple flying gu	ıFishBase	WoRMS
Dactylopteridae adult		flying gurnards	NA	FishBase	WoRMS
Helicolenus dac adult		blackbelly rosef	NA	FishBase	WoRMS
Peristediidae spadult		armored searob	NA	FishBase	WoRMS
Peristedion gracadult		slender searobi	NA	Wikipedia	WoRMS
Psychrolutidae : juvenile		flatheads	NA	FishBase	WoRMS
Scorpaenidae s adult		scorpionfish	NA	FishBase	WoRMS
Scorpaena spp. adult		scorpionfish	NA	Fishbase	WoRMS
Sebastes aleuti; juvenile		rougheye rockfis	NA	Fish Base,	NOA WoRMS
Sebastes brevisjuvenile		silvergray rockfi	NA	Fish Base,	NOA WoRMS
Sebastes diplopjuvenile		splitnose rockfis	NA	Fish Base,	NOA WoRMS
Sebastes helvorjuvenile		rosethorn rockfi	NA	FishBase,	NOA WoRMS
Sebastes maligrjuvenile		quillback rockfis	NA	FishBase,	NOA WoRMS
Sebastes miniatjuvenile		vermilion rockfis	NA	Fish Base,	NOA WoRMS
Sebastes spp. juvenile		rockfish	NA	FishBase	WoRMS
Sebastes prorigjuvenile		redstripe rockfis	NA	Fish Base,	NOA WoRMS
Sebastes wilsor juvenile		pygmy rockfish	NA	FishBase,	NOA WoRMS
Sebastes zacenjuvenile		sharpchin rockfi	NA	FishBase,	NOA WoRMS
Eutrigla gurnardadult		grey gurnard	NA	FishBase	WoRMS
Melamphaes luçadult		highsnout melai	NA	FishBase	WoRMS
Scopelogadus Ładult		twospine bigsca	NA	Wikipedia	WoRMS
Gonostoma spp adult		bristlemouths	NA	NA	WoRMS
Gonostomatida: adult		bristlemouths	NA	Wikipedia	WoRMS
Vinciguerria lucijuvenile; adult		Panama lightfis	NA	FishBase	WoRMS
Argyropelecus & NA	Not assessed in	lovely hatchetfis	Atlantic silver ha	FishBase	WoRMS
Argyropelecus cadult		NA	NA	FishBase	WoRMS
Maurolicus impeadult		emperor seamo	NA	FishBase	WoRMS
Maurolicus mue adult		silvery lightfish	NA	FishBase	WoRMS
Sternoptychidae adult		marine hatchetf	NA	FishBase	WoRMS
Sternoptyx diap adult		diaphanous hat	NA	FishBase	WoRMS
Sternoptyx spp. adult		hatchetfish	NA	FishBase	WoRMS
Sternoptyx obscadult		diaphanous hat	NA	wikipedia	WoRMS
Bathophilus flenadult		highfin dragonfi	NA	FishBase	WoRMS
Idiacanthus spp adult; larvae		barbeled dragor	NA	Wikipedia	WoRMS
Melanostomias adult		Valdivia black d	NA	FishBase	WoRMS
Melanostomias adult		barbeled dragor	NA	Wikipedia	WoRMS
Photonectes madult		NA	NA	NA	WoRMS
Cyclothone spp larvae; post-lar	vae	bristlemouth	NA	NOAA AF	
Macroramphost adult		longspine snipe		FishBase	WoRMS
Entelurus aequcadult		snake pipefish		FishBase	WoRMS
Syngnathidae s adult		pipefishes	NA	FishBase	WoRMS
Syngnathus cali adult; juvenile		kelp pipefish	NA	FishBase	WoRMS
Syngnathus spradult		pipefish	NA	FishBase	WoRMS
Balistes punctat NA		bluespotted trig	_	-	WoRMS
Canthidermis m NA	Not assessed in	rough triggerfish	•		WoRMS
Balistidae spp. adult		triggerfishes	NA	Fishbase	WoRMS
Chilomycterus sadult		burrfishes	NA	Wikipedia	WoRMS
Masturus lance(NA	Not assessed in	•	sharptail sunfisl		WoRMS
Molidae spp. larvae?		molas	sunfish		Wikip WoRMS
Ranzania laevis NA		slender sunfish		FishBase	WoRMS
Cantherhines sr NA	Not assessed in		NA	NA	WoRMS
Monacanthidae NA		filefishes	NA	FishBase	WoRMS
Stephanolepis s NA	Not assessed in		NA	NA	WoRMS
Lactoria diapha adult		roundbelly cowf		Fishbase	WoRMS
Lactoria spp. adult		boxfish	NA	Fishbase	WoRMS
Ostraciidae spp adult		boxfish	NA	FishBase	WoRMS
Ostracion cubic NA	Not assessed in	-	NA	FishBase	WoRMS
Lagocephalus l≀NA	Not assessed in	oceanic puffer	NA	FishBase	WoRMS

T (**		E: 1 B	\\\ D\\\
Tetraodontidae NA		puffers		FishBase	WoRMS
Halimochirurgus adult		spikefish	NA	Fishbase	WoRMS
Appendicularia :adult	NA	larvacea	NA	Wikipedia	WoRMS
Cladocera spp. adult		water flea	NA	Wikipedia	WoRMS
Evadne spp. adult		NA	NA	NA	WoRMS
Pseudevadne t∈adult		NA	NA	NA	WoRMS
Chtenopteryx si adult		Sicilian comb-fir	NA	SeaLifeBase	WoRMS
Alloteuthis subuadult		European comn	NA	SeaLifeBase	WoRMS
Doryteuthis opa adult; juvenile		opalescent insh		SeaLifeBase	WoRMS
Loligo spp. juvenile		myopsid squid		Wikipedia	WoRMS
Loliginidae spp. adult		pencil squid	NA	Wikipedia	WoRMS
Sepioteuthis spladult		Reef squids	oval squids	Wikipedia	WoRMS
Myopsida spp. adult		Myopsida unkno	•	NA	WoRMS
Cephalopoda sradult; juvenile		cephalopods un		NA	WoRMS
Decapodiforme: adult		squid unknown		Wikipedia	WoRMS
Haliphron atlant adult	Lauria	seven-arm octo		Wikipedia	WoRMS
Japetella diaphalarvae	larvae	pelagic octopus		Wikipedia	WoRMS
Japetella heathi adult; larvae		pelagic octopod		Wikipedia	WoRMS
Vitreledonella s _l adult		glass octopus		Wikipedia	WoRMS
Argonauta argo adult; juvenile		greater argonau		Wikipedia	WoRMS
Argonauta nodcadult		knobbed argona		SeaLifeBase	WoRMS
Argonauta nour adult		rough-keeled ar	Noury's argona	ısealifebase, wik	WoRMS
Argonautidae sradult		paper nautiluses	NA	Wikipedia	WoRMS
Eledone cirrhos adult		curled octopus	NA	Wikipedia	WoRMS
Octopoda spp. adult; juvenile		octopod unknov	NA	NA	WoRMS
Octopodidae sp adult; juvenile		octopuses unkn	NA	NA	WoRMS
Octopus bimacı adult		California two-s	Verill's two-spot	FishBase, Wikip	WoRMS
Octopus vulgari adult		common octopu		SeaLifeBase	WoRMS
Octopus spp. adult; juvenile		common octopu		NA	WoRMS
Pteroctopus tetradult		fourhorn octopu		SeaLifeBase	WoRMS
Scaeurgus unic adult		unihorn octopus		SeaLifeBase	WoRMS
Opisthoteuthis cadult		flapjack octopus		SeaLifeBase	WoRMS
Tremoctopus vicadult		violet blacket oc		SeaLifeBase	WoRMS
Tremoctopus gr NA	Not assessed in		NA	NA	WoRMS
Ancistrocheirus adult	NOL assessed II			SeaLifeBase	WoRMS
		sharpear enope			
Architeuthidae sadult		giant squid	NA	Wikipedia	WoRMS
Brachioteuthis sadult		bioluminescent		Wikipedia	WoRMS
Brachioteuthis r adult		common arm so		Wikipedia	WoRMS
Chiroteuthis spr NA	Not assessed in	chiroteuthid squ			
Chiroteuthis ver adult		long-armed squ		Wikipedia	WoRMS
Grimalditeuthis NA	Not assessed in		NA	NA	WoRMS
Chiroteuthidae adult; juvenile		deep-sea squid		Wikipedia	WoRMS
Cranchia scabra adult		rough cranch so		SeaLifeBase	WoRMS
Teuthowenia meadult		NA	NA	NA	WoRMS
Galiteuthis armadult		armed cranch s	NA	FishBase	WoRMS
Galiteuthis phylladult		cockatoo squid	NA	Wikipedia	WoRMS
Helicocranchia adult		Pfeffer's cranch	NA	SeaLifeBase	WoRMS
Leachia spp. adult		glass squids	NA	Wikipedia	WoRMS
Liocranchia rein adult		Reinhardt's crar	NA	SeaLifeBase	WoRMS
Liocranchia spp adult		glass squid	NA	Wikipedia	WoRMS
Cranchiidae spradult; juvenile		glass squid	cockatoo squid	•	WoRMS
Taoniinae spp. adult		glass squid	NA	Wikipedia	WoRMS
Cranchiidae spr adult; juvenile	Not assessed in	•		Timpodia	7701 (1710
Taonius spp. NA	Not assessed in	• •	NA	NA	WoRMS
Teuthowenia madult	. tot doocooed II	Atlantic cranch		Wikipedia	WoRMS
Abralia redfieldi adult		NA	NA	NA	WoRMS
		NA NA	NA NA	NA NA	WoRMS
• •					
Abraliopsis affin adult		enoploteuthid so	INA	SeaLifeBase	WoRMS

Abraliopsis felis adult	enoploteuthid s	(NA	SeaLifeBase	WoRMS
Abraliopsis gilch NA	Not assessed ir NA	NA	NA	WoRMS
Abraliopsis mor NA	Not assessed in Pfeffer's firefly s	: NA	SeaLifeBase	WoRMS
Abraliopsis spp.adult; juvenile	enoploteuthid s	(NA	NA	WoRMS
Enoploteuthidaeadult; juvenile	Enoploteuthid u	ı NA	NA	WoRMS
Enoploteuthida NA	Not assessed in paper			
Berryteuthis ancadult	_		:SeaLifeBase, V	
Gonatopsis boreadult	boreopacific go	ıboreopacific arı	nSeaLifeBase, V	WoRMS
Gonatopsis spp adult	gonatid squid	NA	NA	WoRMS
Gonatus berryi adult	berry armhook		SeaLifeBase	WoRMS
Gonatus califorradult	California armh	(NA	SeaLifeBase	WoRMS
Gonatus spp. adult; juvenile	armhook squid	NA	SeaLifeBase	WoRMS
Gonatus onyx adult	clawed armhoo	lblack-eyed squ	iSeaLifeBase, V	WoRMS
Gonatus pyros adult	fiery armhook s	· NA	SeaLifeBase	WoRMS
Gonatus steens adult	Atlantic gonate	NA	Sealife Base	WoRMS
Gonatidae spp. adult	armhook squid	NA	Wikipedia	WoRMS
Histioteuthis boradult; juvenile	umbrella squid	NA	SeaLifeBase	WoRMS
Histioteuthis hetadult	strawberry squi	cockeyed squid	dmbari/ Wikipedi	WoRMS
Histioteuthis sp¡adult; juvenile	cock-eyed squi	(NA	NIWA	WoRMS
Histioteuthis revadult	elongate jewell	NA	SeaLifeBase	WoRMS
Histioteuthis me NA	Not assessed ir pearly jewel squ	l NA	SeaLifeBase	WoRMS
Histioteuthidae :adult	cock-eyed squi	(NA	Wikipedia	WoRMS
Stigmatoteuthis NA	Not assessed inflowervase jewe	: NA	SeaLifeBase	WoRMS
Stigmatoteuthis NA	Not assessed ir NA	NA	NA	WoRMS
Lycoteuthis loriçadult	NA	NA	NA	WoRMS
Mastigoteuthis cadult; juvenile	mastigoteuthid	:NA	SeaLifeBase	WoRMS
Mastigoteuthis sadult	whip-lash squid	NA AN	Wikipedia	WoRMS
Oegopsida spp. adult	Oegopsid unkn	(NA	NA	WoRMS
Octopoteuthis s adult; juvenile	pelagic squid	NA	SeaLifeBase	WoRMS
Octopoteuthis n juvenile	oceanic squid	NA	uniprot	WoRMS
Octopoteuthis rt NA	Not assessed irrough-skin octo	NA	SeaLifeBase	WoRMS
Octopoteuthis s adult	Rüppell's octop	NA	SeaLifeBase	WoRMS
Taningia danae NA	Not assessed ir Dana octopus s	s NA	SeaLifeBase	WoRMS
Ocythoe tubercradult	tuberculate pela	football octopus	swikipedia	WoRMS
Dosidicus gigas adult	jumbo flying sq	Humboldt squid	SeaLifeBase, V	WoRMS
Eucleoteuthis luadult	luminous flying	Striped flying so	SeaLifeBase, V	WoRMS
Hyaloteuthis peladult	glassy flying sq	ιNA	SeaLifeBase	WoRMS
Illex argentinus adult	Argentine short	1NA	SeaLifeBase	WoRMS
Illex coindetii adult	shortfin squid	NA	SeaLifeBase	WoRMS
Ommastrephida adult; juvenile	Ommaestrephic	: NA	NA	WoRMS
Ommastrephes adult	NA	NA	NA	WoRMS
Ommastrephes adult	neon flying squ	i NA	SeaLifeBase	WoRMS
Ornithoteuthis aadult	bird squid	NA	SeaLifeBase	WoRMS
Ornithoteuthis v adult	shiny bird squid	INA	SeaLifeBase	WoRMS
Sthenoteuthis s adult	purpleback flyir	n NA	SeaLifeBase	WoRMS
Sthenoteuthis o adult	purpleback flyir	n NA	SeaLifeBase	WoRMS
Todarodes paci adult	Japanese flying	j NA	SeaLifeBase	WoRMS
Todarodes sagi adult; juvenile	European flying	j NA	SeaLifeBase	WoRMS
Todarodes spp. NA	Not assessed ir NA	NA	NA	WoRMS
Todaropsis eblaadult	lesser flying sqı	. NA	SeaLifeBase	WoRMS
Ancistroteuthis adult	angel squid	angel clubhook	SeaLifeBase/W	WoRMS
Onychoteuthida adult; juvenile	hooked squid	NA	Wikipedia	WoRMS
Onychoteuthis kNA	Not assessed ir common clubho	ook squid	-	
Onychoteuthis tadult; juvenile	common clubho	NA	Wikipedia	WoRMS
Onychoteuthis tadult; juvenile	boreal clubhool	∢NA	SeaLifeBase	WoRMS
Onychoteuthis sadult	NA	NA	NA	WoRMS
Onykia loennbe NA	Not assessed ir Japanese hook	(NA	SeaLifeBase	WoRMS
Onykia robusta adult; juvenile	robust clubhool	∢NA	SeaLifeBase	WoRMS
-				

Walvisteuthis ra NA	Not assessed in		NA	NA	WoRMS
Pyroteuthidae s adult		NA	NA	NA	WoRMS
Pterygioteuthis adult		roundear enope		SeaLifeBase	WoRMS
Pterygioteuthis juvenile		pyroteuthid squi		NA	WoRMS
Pterygioteuthis adult		pyroteuthid squi	NA	NA	WoRMS
Pyroteuthis mar adult		jewel enope squ	NA	SeaLifeBase	WoRMS
Thysanoteuthis NA	Not assessed in	rhomboid squid	diamondback so	SeaLifeBase	WoRMS
Heteroteuthis di adult; juvenile		odd bobtail	NA	SeaLifeBase	WoRMS
Heteroteuthis sradult		bobtail squid	NA	Wikipedia	WoRMS
Sepiolidae spp. adult		bobtail squid	NA	Wikipedia	WoRMS
Sepietta spp. adult		bobtail squid	NA	Wikipedia	WoRMS
Sepietta owenia adult		common bobtail	NA	SeaLifeBase	WoRMS
Spirula spirula NA	Not assessed in	ram's horn squi	NA	SeaLifeBase	WoRMS
Teuthida spp. adult		squids	NA	Wikipedia	WoRMS
Vampyroteuthis adult; juvenile		vampire squid	NA	Wikipedia	WoRMS
Squalidae spp. adult		dogfish sharks	NA	FishBase	WoRMS
Janthina exigua adult	NA	dwarf janthina	NA	SeaLifeBase	WoRMS
Janthina spp. adult	NA _	purple shells	violet shells	Wikipedia	WoRMS
Unidentified Mo NA	Not assessed in	molluscs unkno		·	
Atlanta peronii adult	NA	NA	NA	NA	WoRMS
Atlantidae spp. adult		Atlantid unknow	NA	NA	WoRMS
Carinaria lamar adult		NA	NA	NA	WoRMS
Littorinimorpha :adult		gastropod unkn	NA	Wikipedia	WoRMS
Gastropoda spp adult		Gastropod unkr		NA .	WoRMS
Cavolinia spp. adult	Not assessed in	NA .	NA	NA	WoRMS
Calanus finmarcadult	NA	NA	NA	NA	WoRMS
Cosmocalanus adult		NA	NA	NA	WoRMS
Clausocalanus †adult		NA	NA	NA	WoRMS
Clausocalanus :adult		NA	NA	NA	WoRMS
Calanoida spp. adult; larvae; eg	gadult; nauplii; eg	NA	NA	NA	WoRMS
Paracalanus sp adult		NA	NA	NA	WoRMS
Copepoda spp. adult; larvae	nauplius; naupli	copepods	NA	Wikipedia	WoRMS
Oithona spp. adult		copepods	NA	Wikipedia	WoRMS
Corycaeus spp. adult		NA .	NA	NA .	WoRMS
Farranula gibbu adult		NA	NA	NA	WoRMS
Cyclopoida spp.adult		NA	NA	NA	WoRMS
Chelophyes apradult	NA	NA	NA	NA	WoRMS
Diphyes spp. adult		colonial jellyfish	NA	gbri	WoRMS
Sulculeolaria spadult	NA	NA	NA	NA	WoRMS
Brachyscelus cradult		NA	NA	NA	WoRMS
Brachyscelus madult		NA	NA	Wikipedia	WoRMS
Brachyscelus sradult		NA	NA	NA	WoRMS
Cyphocaris faur NA	Not assessed in	NA	NA	NA	WoRMS
Cyproidea spp. adult		NA	NA	NA	WoRMS
Parapronoe cru:adult		NA	NA	NA	WoRMS
Parapronoe sppadult		NA	NA	NA	WoRMS
Gammaridae spadult		scuds	NA	Wikipedia	WoRMS
Hyperia galba adult		NA	NA	NA	WoRMS
Hyperiidae spp. adult		amphipods unki	NA	NA	WoRMS
Themisto gaudicadult		NA	NA	NA	WoRMS
Lanceola sayan adult	NA	NA	NA	NA	WoRMS
Lycaeidae spp. adult		lycaeid unknow	NA	Wikipedia	WoRMS
Amphipoda spp adult		amphipods unki	NA	NA	WoRMS
Leptocotis tenui adult		NA	NA	NA	WoRMS
Streetsia challeradult		NA	NA	NA	WoRMS
Streetsia spp. NA	Not assessed in		NA	NA	WoRMS
Anchylomera bl adult		NA	NA	NA	WoRMS
Phrosinidae spr adult		NA	NA	NA	WoRMS

Phrosina spp. adult		NA	NA	NA	WoRMS
Phrosina semilu adult		NA	NA	NA	WoRMS
Primno macrop≀adult		NA	NA	NA	WoRMS
Primno spp. adult		NA	NA	NA	WoRMS
Platyscelus arm adult		NA	NA	NA	WoRMS
Platyscelus spp adult		NA	NA	NA	WoRMS
Platyscelus ovo adult		NA	NA	NA	WoRMS
Platyscelus serradult		NA	NA	NA	WoRMS
Vibilia gibbosa adult		NA	NA	NA	WoRMS
Acanthephyra p adult; juvenile		deep-sea shrim	NA	Wikipedia	WoRMS
Acanthephyrida adult; juvenile		deep-sea shrim	NA	Wikipedia	WoRMS
Alpheus glaber juvenile; larvae		red snapping sh	NA	SeaLifeBase	WoRMS
Axius stirhynchı juvenile	NA	shrimp	NA	NA	WoRMS
Gennadas elegadult		shrimp	NA	NA	WoRMS
Gennadas spp. juvenile		shrimp	NA	Wikipedia	WoRMS
Enoplometopus NA	Not assessed in	reef lobsters	NA	Wikipedia	WoRMS
Enoplometopida adult		reef lobsters	NA	inaturalist	WoRMS
Homolidae spp. adult		carrier crabs	NA	Wikipedia	WoRMS
Pleuroncodes s adult		tuna crabs	NA	Wikipedia	WoRMS
Pleuroncodes p adult		pelagic red crab	tuna crab	SeaLifeBase	WoRMS
Achelata spp. adult; larvae		spiny lobsters, s	slipper lobsters &	Wikipedia	WoRMS
Anomura spp. larvae	larvae	anomuran crabs	NA	Wikipedia	WoRMS
Brachyura spp. adult; larvae		crabs	NA	Wikipedia	WoRMS
Caridea spp. adult		caridean shrimp	NA	Wikipedia	WoRMS
Decapoda spp. adult; larvae		decapod unkno	NA	NA	WoRMS
Majoidea spp. adult		spider crabs	NA	Wikipedia	WoRMS
Paguroidea spp adult; post-larva	ae	hermit crab	NA	Wikipedia	WoRMS
Nephropidae spadult		lobsters	NA	Wikipedia	WoRMS
Janicella spinica NA	Not assessed in	NA	NA	NA .	WoRMS
Oplophoridae si NA	Not assessed in	· NA	NA	NA	WoRMS
Oplophorus typi NA	Not assessed in	NA	NA	NA	WoRMS
Oplophorus spp NA	Not assessed in	NA	NA	NA	WoRMS
Systellaspis det adult	NA	NA	NA	NA	WoRMS
Paguridae spp. NA	Not assessed in	· NA	NA	NA	WoRMS
Jasus spp. NA	Not assessed in	· NA	NA	NA	WoRMS
Palinuridae spp adult		spiny lobsters	NA	Wikipedia	WoRMS
Palinurus mauri adult; larvae; ju	venile	pink spiny lobst		SeaLifeBase	WoRMS
Heterocarpus stadult		deep-sea shrim		Wikipedia	WoRMS
Heterocarpus la NA	Not assessed in	smooth nylon sl		SeaLifeBase	WoRMS
Thalassocaris s adult		NA	NA	NA	WoRMS
Pasiphaea spp. adult		glass shrimp	NA	SeaLifeBase	WoRMS
Parapasiphae s adult		grooveback shri		SeaLifeBase	WoRMS
Pasiphae spp. adult		NA	NA	NA	WoRMS
Funchalia taanii NA	Not assessed in	prawn	NA	SeaLifeBase	WoRMS
Funchalia wood NA		Woodward's pe		SeaLifeBase	WoRMS
Penaeidae spp. adult		penaeid shrimp		Wikipedia	WoRMS
Polybius hensloadult; larvae; ju	megalopa + adı			Wikipedia	WoRMS
Portunidae spp. adult	0 1	swimming crabs		Wikipedia	WoRMS
Scyllaridae spp.adult; larvae; ju	nisto	slipper lobster		Wikipedia	WoRMS
Parribacus anta NA		sculptured mitte		•	WoRMS
Scyllarus arctusadult; juvenile; l		•		SeaLifeBase	WoRMS
Eusergestes arcadult; juvenile; l		sergestid shrim		NA	WoRMS
Eusergestes sinadult		sergestid shrim		SeaLifeBase,	
Sergestidae spradult		prawns	NA	Wikipedia	WoRMS
Robustosergia radult		sergestid shrim		Wikipedia	WoRMS
Euphausia spp. adult		NA	NA	NA	WoRMS
Euphausia pacitadult			North Pacific kri		
Meganyctiphan adult	adult; larvae?	Norwegian Krill		SeaLifeBase	WoRMS
- 37					

English and Salara and delik		120	NIA	AACL:	\A/- D\AO
Euphausiidae s _l adult		krill	NA	Wikipedia	WoRMS
Nematoscelis madult		krill	NA	Wikipedia	WoRMS
Nematoscelis si adult		NA	NA	NA	WoRMS
Nyctiphanes au adult		NA	NA	NA	WoRMS
Stylocheiron ab adult		NA	NA	NA	WoRMS
Euphausiacea sadult		krill	NA	Wikipedia	WoRMS
Idotea metallica adult	NA	NA	NA	NA	WoRMS
ldoteidae spp. adult		isopod	NA	Wikipedia	WoRMS
Isopoda spp. adult		isopod unknowr		NA	WoRMS
Neognathophau adult		NA	NA	NA	WoRMS
Neognathophau adult	NA	giant red mysid	NA	SeaLifeBase	WoRMS
Mysidae spp. adult		mysid shrimp	NA	NA	WoRMS
Mysida spp. adult		opossum shrim	NA	Wikipedia	WoRMS
Malacostraca sradult; larvae		crustaceans un	NA	NA	WoRMS
Coronida spp. adult		Coronid unknov	NA	NA	WoRMS
Lysiosquilla trec NA	Not assessed in	1NA	NA	NA	WoRMS
Lysiosquilla spp adult		mantis shrimp	NA	Sealifebase	WoRMS
Stomatopoda sradult		mantis shrimp	NA	Wikipedia	WoRMS
Odontodactylus adult		NA .	NA	NA .	WoRMS
Odontodactylus adult		mantis shrimp	NA	Wikipedia	WoRMS
Odontodactylus NA	Not assessed in	reef odontodact		•	WoRMS
Pseudosquilla s adult		mantis shrimp		Wikipedia	WoRMS
Squillidae spp. adult		squillid mantis s		SeaLifeBase	WoRMS
Natosquilla inve NA	Not assessed in	·	NA	NA	WoRMS
Squilla spp. adult	Not deceeded in	mantis shrimp	NA	SeaLifeBase	WoRMS
Neoanchisquilla NA	Not assessed in		NA	NA	WoRMS
Gonodactylus s adult	Not assessed in	mantis shrimp	NA	Wikipedia	WoRMS
Echinosquilla gradult		urchin mantis sl		Sealifebase	WoRMS
Gelatinous zoor	0	jellyfish & zoopl		NA	NA
Mollusca spp. adult	U	molluscs unkno		NA	WoRMS
Unidentified renadult		Unidentified ren		NA	NA
Invertebrates ur NA		Invertebrates ur		NA NA	NA
	Not assessed in				
Salpa maxima NA	Not assessed in	• .	NA	Atlantic Gozo	WoRMS
Coastal and ree NA	Not assessed i				
Open-ocean fisl NA	Not assessed i		110	NIA	\A/- DA40
Hepatoxylon sp adult	NA	tapeworm	NA	NA	WoRMS
Cirripedia spp. adult		barnacle	NA flooriis and several	Wikipedia	WoRMS
Dosima fascicul adult	NIA	•	floating barnacl	•	WoRMS
Lepas anatifera adult	NA	pelagic goosene		Wikipedia	WoRMS
Lepadidae spp. adult	NA	goose barnacle		Wikipedia	WoRMS
Pyrgopsella sprjuvenile		NA	NA	NA	WoRMS
Pennella filosa adult		NA	NA	NA	WoRMS
Pseudocycnus adult		NA	NA	NA	WoRMS
Velella velella adult		Sea raft	NA	Wikipedia	WoRMS
Calycophorae s adult		NA	NA	NA	WoRMS
Siphonophorae adult		siphonophores		Wikipedia	WoRMS
Oxycephalus spadult		NA	NA	NA	WoRMS
Phronimidae sp adult		amphipod crust		Wikipedia	WoRMS
Phronima atlant adult		NA	NA	NA	WoRMS
Phronima spp. adult		NA	NA	NA	WoRMS
Phronima seder adult		parasitic hyperii		SeaLifeBase	WoRMS
Conchoecia spr adult	NA	NA	NA	NA	WoRMS
Parasite adult		Parasite	NA	NA	NA
Plastics NA		Plastics	NA	NA	NA
Seaweed	0	Seaweed	NA	NA	NA
Trash NA		Trash	NA	NA	NA
Unidentified Pla NA	Not assessed in	Plants	NA	NA	NA
Unidentified BircNA	Not assessed in	Birds	NA	NA	NA

Amphipods, sea NA Polychaeta spp. adult Naiades cantrai adult	NA	Amphipods, se Bristle worms pelagic polycha	polychaetes	NA Wikipedia NA	NA WoRMS WoRMS
Torrea candida adult	NA	NA	NA	NA	WoRMS
Pelagia noctiluc adult		purple-striped j	€ purple stinger	Wikipedia	WoRMS
Thaliacea spp. adult		tunicates unkno	o NA	NA	WoRMS
Salpidae spp. adult		salp	NA	Wikipedia	WoRMS
Didymocystis sradult		trematode	NA	FishBase	WoRMS
Hirudinella vent adult	NA	NA	NA	NA	WoRMS
Chiroteuthis spr NA	Not assessed i	r chiroteuthid sq	uid		
Chiroteuthis spr NA	Not assessed i	r chiroteuthid sq	uid		
Cavolinia triden adult		sea butterfly	NA	Wikipedia	WoRMS
Diacria trispinos adult	NA	three-spine cav	⁄ιNA	SeaLifeBase	WoRMS
Diacria spp. adult		cavolines	NA	Wikipedia	WoRMS
Clio pyramidata adult	NA	sea butterfly	NA	Wikipedia	WoRMS
Pyrosoma atlan adult	NA	NA	NA	NA	WoRMS
Soestia zonaria adult	NA	NA	NA	NA	WoRMS

OldNames	SpRef	IncludeSP
NA	-12	Yes
Leptocephalus	congri vulgaris	Yes
NA	5 5	Yes
Bathylagus wes	ethi	Yes
NA		Yes
Atherinopsidae		Yes
NA		Yes
Omosudis lowe	i	Yes
Paralepis rissoi,	Paralepis risso	oi Yes
Lestidium ringe	ns	Yes
Paralepis similis	3	Yes
NA		Yes
Paralepis intern	nedius	Yes
NA		Yes
Paralepis atlant	ica; Magnisudis	Yes
NA		Yes
Dissomma anal	е	Yes
NA		Yes
Scomberesox s	aurus saurus	Yes
Caulolepidae sp	op.	Yes
NA		Yes
NA		Yes
NA		Yes

NA	Yes
NA	Yes
NA	Yes
NA	Yes
Clupea pallasi	Yes
NA .	Yes
NA	Yes
NA	Yes
NA	Yes
Engraulis encrasicholus	Yes
NA	Yes
NA	Yes
NA	
	Yes
NA	Yes
Onos vulgaris	Yes
Merluccius vulgaris	Yes
Gadidae	Yes
NA	Yes
Haloporphyrus rostrata	Yes
Desmodema polystictus	Yes
Trachypterus spp.	Yes
NA	Yes
Mancalias tentaculatus	Yes
NA	Yes
NA	Yes
Lampanyctus maderensis	Yes
NA	Yes
NA NA	Yes
Aethoprora lucida	Yes
Diaphus lütkeni	Yes
NA	Yes
Aethoprora effulgens	Yes
NA	Yes
Aethoprora perspicillata	Yes Yes
NA	165
Myctophum rissoi	Yes
NA	Yes
Scopelus hygomii	Yes
NA	Yes
Myctophum luminosum	Yes
NA CAN'T FIND O	Yes
NA	Yes
NA	Yes
NA	Yes
Lampanyctus mexicanus (McH	
NA	Yes
Diaphus gemellarii	Yes
NA	Yes
Lampanyctus regalis (McHugh	
Lampanyctus ritteri (McHugh 1	
Notoscopelus elongatus kroyer	1 1 5

NA	Yes
NA	Yes
NA	Yes
Myctophum evermanni	Yes
NA	Yes
Ophidion novaculum	Yes
Bathymacrops macrolepis	Yes
Opisthoproctus grimaldii	Yes
NA	Yes
NA	Yes
Hypoclydonia spp.	Yes
NA	Yes
NA NA	Yes
NA NA	
	Yes
NA	Yes
NA	Yes
NA	Yes
Brama rayi	Yes
Collybus drachme	Yes
NA	Yes
Caranx macarellus	Yes
NA	Yes
NA	Yes
Vomer setapinnMatthews (1977	
Lichia glauca	Yes
NA	Yes
NA	Yes
Caranx trachurus	Yes
Centrolophus pompilius, Centro	
NA	Yes
NA	
	Yes
NA NA	Yes
NA NA	Yes
NA	Yes
NA	Yes
NA NA	Yes
NA	Yes
Cybium flavobrunneum	Yes
NA	Yes
NA	Yes
NA	Yes

NA	Yes
Thyrsites prometheoides Bleeke	
NA	Yes
NA	Yes
Coryphopterus nicholsi	Yes
NA	Yes
NA	Yes
Tetrapturus mazara	Yes
NA	Yes
	Yes
	Yes
	Yes
	Yes
Mullus barbatus	Yes
	Yes
	Yes
•	Yes
NA NA	Yes
	Yes
	Yes Yes
	Yes
NA NA	Yes
NA NA	Yes
	Yes
Priacanthus japonicus NA	Yes
NA	Yes
NA	Yes
Pneumatophorus japonicus dieg	
NA	Yes
NA	Yes
	Yes
NA	Yes
NA	Yes
Boops vulgaris	Yes
NA	Yes

Dactylopterus orientalis	Yes
NA	Yes
Scorpaena dactyloptera	Yes
NA	Yes
NA	Yes
NA	Yes
Scorpaenids spp.	Yes
NA	Yes
NA	Yes
Sebastes brevispinus	Yes
NA	Yes
NA	Yes
Trigla gurnardus	Yes
NA	Yes
NA	Yes
NA	Yes
Gonastomatidae spp.	Yes
NA	Yes
NA	Yes
NA	Yes
Maurolicus borealis; Scopelus	
Maurolicus pennanti	Yes
NA	Yes
NA	Yes
Sternoptyx spp.	Yes
NA	Yes
NA	Yes
NA	Yes Yes
NA	Yes
NA	Yes
NA	Yes
NA	Yes
Balistes maculatus	Yes
NA	Yes
NA	Yes
Orthagoriscus lanceolatus	Yes
NA	Yes
Ostracion laevis	Yes
NA	Yes
NA	Yes
NA	Yes
Lactoria diaphanus	Yes
NA	Yes
NA	Yes
NA	Yes
Tetraodon lagocephalus	Yes

Page 178 of 182

		her	

NA	Yes
NA	Yes
NA	Yes
NA	Yes
NA	Yes
Evadne tergestina	Yes
Ctenopteryx siculus	Yes
NA	Yes
Loligo opalescens	Yes
• .	
NA	Yes
NA	Yes
Bolitaenella diaphana (http://tolv	
Bolitaenidae	Yes
NA	Yes
NA	Yes
Argonauta nodosa	Yes
NA	Yes
NA	Yes
Eledone cirrosa	Yes
NA	Yes
Scaetgus unicirrhus	Yes
NA	Yes
NA	Yes
Octopus gracilis	Yes
NA	Yes
NA .	
.	Yes
Chiroteuthis veranyi	Yes
Loligopsis bonplandii	Yes
NA	Yes
NA	Yes
Teuthowenia (Helicocranchia) p	
NA	Yes
Romanov2020	Yes
NA	Yes
Taonidium pfefferi	Yes
NA	Yes
NA	Yes
NA	Yes

Abraliopsis (Boreabraliopsis) fel	Yes
NA	Yes
Abraliopsis pfefferi	Yes
NA	Yes
NA	Yes
Romanov2020 -	Yes
Gonatus anonychus	Yes
NA	Yes
Gonatus spp. (fabricii), Gonatus	Yes
NA	Yes
Histioteuthis bonelliana	Yes
NA	Yes
NA	Yes
Calliteuthis reversa	Yes
Calliteuthis meleagroteuthis	Yes
NA	Yes
Chiroteuthidae	Yes
NA	Yes
NA	Yes
Enoploteuthidae, Octopodoteuth	Yes
NA	Yes
NA	Yes
Octopodeuthis sicula, Octopodo	Yes
NA	Yes
Ommatostrephes spp.	Yes
NA	Yes
NA	Yes
NA	Yes
Symplecloteuthis spp.	Yes
NA	Yes
NA	Yes
Ommatostrephes sagittatus	Yes
NA	Yes
Romanov2020	Yes
Onychoteuthis banksi	Yes
Onychoteuthis borealijaponicus	
NA	Yes
Moroteuthis loennbergii	Yes
Moroteuthis robusta	Yes

NA	Yes
NA	Yes
NA	Yes
Nautilus spirula	Yes
NA	Yes
NA	Yes
NA	Yes
lanthina exigua	Yes
lanthina spp.	Yes
	Yes
Atlanta peroni	Yes
NA	Yes
Carinaria lamarcki	Yes
Heteropoda (cf. Iversen 1962)	Yes
NA	Yes
NA	Yes
NA	Yes
NA	Yes
Galetta spp.	Yes
NA	Yes
NA	Yes
Themisto gaudichaudi, Euthemi	
_	
NA	Yes
17/1	1 63

NA	Yes
NA	Yes
Euprimno macropus	Yes
NA	Yes
Acantephyra multispina, Acanth	
NA	
	Yes
Alpheus ruber (Anebocaris)	Yes
NA	Yes
Amalopenaeus elegans	Yes
NA	Yes
NA	Yes
Homaridae spp.	Yes
Oplophorus spinicauda	Yes
NA	
	Yes
NA	Yes
NA	Yes
NA	Yes
Palinurus vulgaris	Yes
Heterocarapus spp.	Yes Yes
NA	Yes
NA	Yes
NA	Yes
Scyllarus antarcticus	Yes
NA	Yes
Sergestes arcticus	Yes
Sergestes similis	Yes
NA	Yes
Sergestes robustus; Sergia rob	
NA	Yes
NA	Yes
Meganychtiphanes norvegica	Yes
mogariyoruprianes norvegica	100

NA	Yes
NA	Yes
Idotheidae	Yes
NA	Yes
Gnathophausia gigas	Yes
Gnathophausia ingens	
NA	Yes
Mysidacea spp.	Yes
NA	Yes
NA	Yes
NA NA	
	Yes
NA	Yes
Cancer scyllarus	Yes
NA	Yes
NA	Yes
Squilla investigatoris	Yes
NA	Yes
NA	Yes
Gonadactylus spp.	Yes
Gonadactylus guerinii	Yes
NA NA	Yes
NA	Yes
NA NA	Yes
NA NA	Yes
NA	Yes
	nov2020 No
	nov2020 No
Dibothryorhynchus spr	
NA	No
	_
Pyrgopsis spp. (McHu	
Pennella germonia	No
NA Valalla lata	No
Velella lata	No
NA	No
Siphonophora spp.	No
NA	No
NA NA	No
NA	No
NA NA	No
NA NA	No
NA	No
NA	No
	•

NA	NA	No
NA		No
Alciopa cantrai	nBisby, F.A.,	Ruς No
NA		No
NA		No
NA		No
NA		No
Didymocystis g	juernei	No
Hirudinella fusc	ca	No
		Maybe
		Maybe
NA		Maybe
Salpa zonaria		Maybe