

oolong: An R package for validating automated content analysis tools

Chung-hong Chan¹ and Marius Sältzer¹

1 Mannheimer Zentrum für Europäische Sozialforschung, Universität Mannheim

DOI:

Software

- Review ௴
- Repository ☑
- Archive ௴

Submitted: Published:

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC-BY).

Summary

Oolong is an R package providing functions for validating common automated content analysis techniques such as topic modeling and dictionary-based methods. This package is designed for R users needing to validate these methods. Typical users of oolong are communication and political scientists, among others.

Statement of need

Validity is a requirement of content analysis (Krippendorff, 2018; Neuendorf, 2016). Validation of automated methods has been called for by many scholars, e.g. Grimmer & Stewart (2013); Ribeiro, Araújo, Gonçalves, Gonçalves, & Benevenuto (2016); Van Atteveldt & Peng (2018).

Oolong makes it easy to generate standard validation tests suggested by Chang, Gerrish, Wang, Boyd-Graber, & Blei (2009) and Song et al. (2020).

Validation of automated content analysis

The paper by DiMaggio, Nag, & Blei (2013) conceptualizes validation of automated methods as three different operations and the three operations supplement each other. These three operations are: 1) statistical validation – to see if the model results agree with the assumptions of the model. Examples of statistical validation are calculation of pointwise mutual information, perplexity or semantic coherence of a topic model. 2) semantic validation – to see if the model results are semantically meaningful. This procedure involves comparing model results with human judgment (Grimmer & King, 2011). 3) predictive validation – to see if the model results can predict external events (Quinn, Monroe, Colaresi, Crespin, & Radev, 2010). For example, one can study whether external events can explain surges in attention to a topic extracted by a topic model.

This package focuses on semantic validation. The reason is threefold. First, there are existing architecture for conducting statistical validation and predictive validation. Topic modeling packages such as text2vec (Selivanov, Bickel, & Wang, 2020) and topicmodels (Grün & Hornik, 2011) provide functions to calculate metrics such as perplexity. Packages such as textmineR (Jones, 2019), stminsights (Schwemmer, 2018) and LDAvis (Sievert & Shirley, 2015) offers additional methods for statistical validation and predictive validation. As of writing, tosca (Koppers, Rieger, Boczek, & von Nordheim, 2020) is the only package

Cancel
Topic 1 of 20 Which of the following is an intruder word?
○ famili
o parent
○ children
○ sexual
○ femal
○ male
○ gender
○ school
○ adolesc
○ age
○ coverag
confirm skip

Figure 1: A screenshot of word intrusion test

dealing with semantic validation. But the text-based interface might pose challenges to human annotators and it can only support topic models from one package (Chang, 2015).

Second, results from statistical validation do not always agree with those from semantic validation. For example, topics from a topic model with a lower perplexity do not have a better interpretability (Chang et al., 2009). Of course, there are also metrics from statistical validation that are shown to be correlated with semantic validity, e.g. semantic coherence (Mimno, Wallach, Talley, Leenders, & McCallum, 2011). Calculation of semantic coherence is recommended in the best practice paper by Maier et al. (2018). Nonetheless, conducting only statistical validation is not adequate because 3 validation operations supplement each other.

Finally, predictive validation is dependent on research questions and thus it is difficult to be generalized as a reusable software framework. Additionally, the relationship between external (sociopolitical) events and the results from automated content analysis tools is usually what social scientists are eager to study, c.f. using topic models for information retrieval (Yi & Allan, 2008). We do not believe social scientists would forget to conduct any form of predictive validation for their topic models.

Oolong focuses on semantic validation and the "human-in-the-loop" procedure for it has been standardized (Chang et al., 2009; Song et al., 2020). The procedure proposed by Chang et al. (2009) has been adopted in subsequent social science studies as the gold standard to validate topic models, e.g. Bohr (2020), Chuang et al. (2015), and Miller (2017).

Validating topic models

Topic models can be validated by word intrusion test and topic intrusion test (Chang et al., 2009). In these tests, a human rater is asked to pick an odd word from a bunch of words (word intrusion test) or pick an odd topic from a bunch of topics for a document (topic intrusion test). Oolong provides an easy-to-use Shiny interface for these tests (Figure 1).

Currently, oolong supports a variety of topic models, e.g. structural topic models / correlated topic models from stm (Roberts, Stewart, & Tingley, 2019), warp-LDA models

from text2vec (Selivanov et al., 2020), latent dirichlet allocation / correlated-topic models from topicmodels (Grün & Hornik, 2011), biterm topic models from BTM (Wijffels, 2020) and keyword-assisted topic models from keyATM (Eshima, Imai, & Sasaki, 2020).

For instance, abstracts_stm is a structural topic model trained with the text data from abstracts\$text (Chan & Grill, 2020).

```
library(stm)
library(tibble)
library(dplyr)
library(quanteda)
library(oolong)
```

```
abstracts_stm
```

A topic model with 20 topics, 2500 documents and a 3998 word dictionary.

abstracts

```
## # A tibble: 2,500 x 1
##
     text
##
      <chr>>
## 1 This study explores the benefits and risks featured in medical tourism broke
   2 This article puts forth the argument that with the transfer of stock trading
   3 The purpose of this study was to evaluate the effect the visual fidelity of
##
   4 Among the many health issues relevant to college students, overconsumption of
##
   5 This address, delivered at ICA's 50th anniversary conference, calls on the a
## 6 The Internet has often been used to reach men who have sex with men (MSMs) i
## 7 This article argues that the literature describing the internet revolution i
## 8 This research study examined Bud Goodall's online health narrative as a case
## 9 Information technology and new media allow for collecting and sharing person
## 10 Using a national, telephone survey of 1,762 adolescents aged 12-17 years, th
## # ... with 2,490 more rows
```

The function create_oolong creates a test object with both word intrusion test and topic intrusion test.

```
input_corpus = abstracts$text)
colong_test

## An colong test object with k = 20, 0 coded.

## Use the method $do_word_intrusion_test() to do word intrusion test.

## With 25 cases of topic intrusion test. 0 coded.

## Use the method $do_topic_intrusion_test() to do topic intrusion test.
```

oolong_test <- create_oolong(input_model = abstracts_stm,</pre>

The tests can be administered with methods do_word_intrusion_test and do_topic_intrusion_test.

Use the method \$lock() to finalize this object and see the results.

```
oolong_test$do_word_intrusion_test()
oolong_test$do_topic_intrusion_test()
```


After both tests has been done by a human rater, the test object must be locked and then accuracy metrics such as model precision (MP) and TLO (topic log odd) are displayed.

```
oolong_test$lock()
oolong_test

## An oolong test object with k = 20, 20 coded.
## 95% precision
## With 25 cases of topic intrusion test. 25 coded.
## TLO: 0
```

The suggested workflow is to have at least two human raters to do the same set of tests. Test object can be cloned to allow multiple raters to do the test. More than one test object can be studied together using the function summarize_oolong().

```
oolong_test_rater1 <- create_oolong(abstracts_stm, abstracts$text)
oolong_test_rater2 <- clone_oolong(oolong_test_rater1)</pre>
```

```
## Let rater 1 do the test.
oolong_test_rater1$do_word_intrusion_test()
oolong_test_rater1$do_topic_intrusion_test()
oolong_test_rater1$lock()

## Let rater 2 do the test.
oolong_test_rater2$do_word_intrusion_test()
oolong_test_rater2$do_topic_intrusion_test()
oolong_test_rater2$do_topic_intrusion_test()
```

Get a summary of the two objects.

```
summarize_oolong(oolong_test_rater1, oolong_test_rater2)
```

```
## New names:
## * NA -> ...1
## * NA -> ...2

## Mean model precision: 0.275
## Quantiles of model precision: 0.1, 0.1875, 0.275, 0.3625, 0.45
## P-value of the model precision (H0: Model precision is not better than random g
## Krippendorff's alpha: -0.100313479623825
## K Precision: 0.5, 0.5, 0, 0, 0, 0.5, 0, 0, 0.5, 1, 0, 0, 0.5, 0.5, 0, 0, 0.5, 0
## Mean TLO: -2.06
## Median TLO: -2.25
## Quantiles of TLO: -5.23512855891242, -3.34329787252821, -2.24841129291279, 0, 0
## P-Value of the median TLO (HO: Median TLO is not better than random guess): 0.2
```

Validating dictionary-based methods

Dictionary-based methods such as AFINN (Nielsen, 2011) can be validated by creating a gold standard dataset (Song et al., 2020). Oolong provides a workflow for generating such gold standard dataset.

For example, you are interested in studying the sentiment of tweets from Donald Trump. trump2k is a random subset of 2,000 tweets from Donald Trump. And you would like to use AFINN to extract sentiment from these tweets. In this analysis, AFINN sentiment score is the *target value*.

```
tibble(text = trump2k)
```

```
## # A tibble: 2,000 x 1
##
     text
##
      <chr>
##
   1 "In just out book, Secret Service Agent Gary Byrne doesn't believe that Croo
##
   2 "Hillary Clinton has announced that she is letting her husband out to campai
##
  3 "\"@TheBrodyFile: Always great to visit with @TheBrodyFile one-on-one with \
## 4 "Explain to @brithume and @megynkelly, who know nothing, that I will beat Hi
## 5 "Nobody beats me on National Security. https://t.co/sCrj4Ha1I5"
##
   6 "\"@realbill2016: @realDonaldTrump @Brainykid2010 @shl Trump leading LA Time
## 7 "\"@teapartynews: Trump Wins Tea Party Group's 'Nashville Straw Poll' - News
## 8 "Big Republican Dinner tonight at Mar-a-Lago in Palm Beach. I will be there!
## 9 ".@HillaryClinton loves to lie. America has had enough of the CLINTON'S! It
## 10 "\"@brianstoya: @realDonaldTrump For POTUS #2016\""
## # ... with 1,990 more rows
```

A test object can be generated also with create_oolong. The argument construct should be an adjective, e.g. "positive" or "liberal".

```
## An oolong test object (gold standard generation) with 20 cases, 0 coded.
## Use the method $do_gold_standard_test() to generate gold standard.
## Use the method $lock() to finalize this object and see the results.
```

Similarly, we suggest to have at least two human coders to do the same set of tests.

```
trump2 <- clone_oolong(trump)</pre>
```

Instruct two coders to code the tweets and lock the objects.

```
trump$do_gold_standard_test()
trump2$do_gold_standard_test()
trump$lock()
trump2$lock()
```

The method turn_gold converts a test object into a quanteda corpus (Benoit et al., 2018).

```
gold_standard <- trump$turn_gold()
gold_standard</pre>
```



```
## Corpus consisting of 20 documents and 1 docvar.
## text1 :
## "Thank you Eau Claire, Wisconsin. #VoteTrump on Tuesday, Apr..."
##
## text2 :
## ""@bobby990r_1: @realDonaldTrump would lead polls the second ..."
##
## text3 :
## ""@KdanielsK: @misstcassidy @AllAboutTheTea_ @realDonaldTrump..."
##
## "Thank you for a great afternoon Birmingham, Alabama! #Trump2..."
##
## ""@THETAINTEDT: @foxandfriends @realDonaldTrump Trump 2016 ht..."
##
## text6:
## "People believe CNN these days almost as little as they belie..."
##
## [ reached max_ndoc ... 14 more documents ]
## Access the answer from the coding with quanteda::docvars(obj, 'answer')
```

This corpus can be used to calculate the target value, e.g. AFINN.

Summarize all oolong objects with the target value.

```
res <- summarize_oolong(trump, trump2, target_value = afinn_score)</pre>
```

Printing the summary shows Krippendorff's Alpha, an indicator of interrater reliability. The validity metrics of a text analytic method can be tinted by poor interrater reliability of manual annotations (Song et al., 2020). It is important to ensure high interrater reliability first.

```
res
```

```
## Krippendorff's Alpha: 0.931443661971831
## Correlation: 0.744 (p = 0)
## Effect of content length: -0.323 (p = 0.164)
```

Additional diagnostic plots can also be displayed.

Figure 2: Diagnostic plots generated by oolong

plot(res)

The 4 subplots from left to right, top to bottom are: 1) correlation between human judgement and target value; 2) Bland-Altman plot; 3) correlation between target value and content length and 4) Cook's distance of all data point. These plots are helpful to determine criterion validity, agreement, robustness against content length and outliers of the target value.

Acknowledgements

The development of oolong is partially supported by SAGE Concept Grant.

References

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). Quanteda: An R package for the quantitative analysis of textual data. *Journal of Open Source Software*, 3(30), 774. doi:10.21105/joss.00774

Bohr, J. (2020). Reporting on climate change: A computational analysis of us newspapers and sources of bias, 1997–2017. *Global Environmental Change*, 61, 102038. doi:10.1016/j.gloenvcha.2020.102038

Chan, C.-h., & Grill, C. (2020). The highs in communication research: Research topics with high supply, high popularity and high prestige in high-impact journals. *Communication Research*, forthcoming.

- Chang, J. (2015). Lda: Collapsed gibbs sampling methods for topic models. Retrieved from https://CRAN.R-project.org/package=lda
- Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. In *Advances in neural information processing systems* (pp. 288–296). Retrieved from https://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models
- Chuang, J., Roberts, M. E., Stewart, B. M., Weiss, R., Tingley, D., Grimmer, J., & Heer, J. (2015). TopicCheck: Interactive alignment for assessing topic model stability. In *Proceedings of the 2015 conference of the north american chapter of the association for computational linguistics: Human language technologies* (pp. 175–184). doi:10.3115/v1/N15-1018
- DiMaggio, P., Nag, M., & Blei, D. (2013). Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of us government arts funding. *Poetics*, 41(6), 570–606. doi:10.1016/j.poetic.2013.08.004
- Eshima, S., Imai, K., & Sasaki, T. (2020). Keyword assisted topic models. arXiv preprint arXiv:2004.05964.
- Grimmer, J., & King, G. (2011). General purpose computer-assisted clustering and conceptualization. *Proceedings of the National Academy of Sciences*, 108(7), 2643–2650. doi:10.1073/pnas.1018067108
- Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. *Political analysis*, 21(3), 267–297. doi:10.1093/pan/mps028
- Grün, B., & Hornik, K. (2011). topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1–30. doi:10.18637/jss.v040.i13
- Jones, T. (2019). TextmineR: Functions for text mining and topic modeling. Retrieved from https://CRAN.R-project.org/package=textmineR
- Koppers, L., Rieger, J., Boczek, K., & von Nordheim, G. (2020). Tosca: Tools for statistical content analysis. doi:10.5281/zenodo.3591068
- Krippendorff, K. (2018). Content analysis: An introduction to its methodology. SAGE.
- Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., et al. (2018). Applying lda topic modeling in communication research: Toward a valid and reliable methodology. *Communication Methods and Measures*, 12(2-3), 93–118. doi:10.1080/19312458.2018.1430754
- Miller, C. (2017). Australia's anti-islam right in their own words. Text as data analysis of social media content. Australian Journal of Political Science, 52(3), 383–401. doi:10.1080/10361146.2017.1324561
- Mimno, D., Wallach, H., Talley, E., Leenders, M., & McCallum, A. (2011). Optimizing semantic coherence in topic models. In *Proceedings of the 2011 conference on empirical methods in natural language processing* (pp. 262–272).
- Neuendorf, K. A. (2016). The content analysis guidebook. SAGE.
- Nielsen, F. Å. (2011). A new anew: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903.
- Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H., & Radev, D. R. (2010). How to analyze political attention with minimal assumptions and costs. *American Journal of Political Science*, 54(1), 209–228. doi:10.1111/j.1540-5907.2009.00427.x

- Ribeiro, F. N., Araújo, M., Gonçalves, P., Gonçalves, M. A., & Benevenuto, F. (2016). Sentibench-a benchmark comparison of state-of-the-practice sentiment analysis methods. *EPJ Data Science*, 5(1), 1–29. doi:10.1140/epjds/s13688-016-0085-1
- Roberts, M. E., Stewart, B. M., & Tingley, D. (2019). stm: An R package for structural topic models. *Journal of Statistical Software*, 91(2), 1–40. doi:10.18637/jss.v091.i02
- Schwemmer, C. (2018). Stminsights: A 'shiny' application for inspecting structural topic models. Retrieved from https://CRAN.R-project.org/package=stminsights
- Selivanov, D., Bickel, M., & Wang, Q. (2020). Text2vec: Modern text mining framework for R. Retrieved from https://CRAN.R-project.org/package=text2vec
- Sievert, C., & Shirley, K. (2015). LDAvis: Interactive visualization of topic models. Retrieved from https://CRAN.R-project.org/package=LDAvis
- Song, H., Tolochko, P., Eberl, J.-M., Eisele, O., Greussing, E., Heidenreich, T., Lind, F., et al. (2020). In validations we trust? The impact of imperfect human annotations as a gold standard on the quality of validation of automated content analysis. *Political Communication*, 1–23. doi:10.1080/10584609.2020.1723752
- Van Atteveldt, W., & Peng, T.-Q. (2018). When communication meets computation: Opportunities, challenges, and pitfalls in computational communication science. *Communication Methods and Measures*, 12(2-3), 81–92. doi:10.1080/19312458.2018.1458084
- Wijffels, J. (2020). BTM: Biterm topic models for short text. Retrieved from https://CRAN.R-project.org/package=BTM
- Yi, X., & Allan, J. (2008). Evaluating topic models for information retrieval. In *Proceedings of the 17th acm conference on information and knowledge management* (pp. 1431–1432). doi:10.1145/1458082.1458317