CHE261 PATENT APPLICATION

APPLICANT Mollycule

INVENTORS Dhruv Bajaj, Somya Yadav

CHEMICAL FORMULA $C_{10}H_{11}N_5O$.

CHEMICAL NAME Pymetrozine

Intoduction

Pymetrozine is a specialty insecticide that uniquely targets insect feeding behavior, making it effective against pests like aphids while being safer for beneficial insects.

a) Synthesis of Pymetrozine

Pymetrozine can be prepared at lab scale by a simple 3-step process.

Abstract:

This process is a three-step synthesis for pymetrozine. In the first step, a hydrazidation reaction converts the carbonate ester (II) into hydrazide (III) using hydrazine hydrate in a suitable solvent. The second step involves a condensation reaction between hydrazide (III) and 3-formylpyridine, forming intermediate (IV). Finally, a cyclization reaction between intermediate (IV) and monochloroacetone, in the presence of an acid-binding agent, yields pymetrozine (I).

Raw Materials & Reagents:

- 1. Carbonate ester (ROCOOR)
- 2. Hydrazine hydrate
- 3. methanol, ethanol (solvent)
- 4.3-formylpyridine
- 5. monochloroacetone
- 6. potassium carbonate/sodium carbonate (acid binding agent)

Overall Reaction:

ROOR
$$\frac{NH_2-NH_2\cdot H_2O}{H_2NHN}$$
 $\frac{O}{NHNH_2}$ $\frac{CHO}{N}$ $\frac{C$

Stage 1 - preparation of Carbodihydrazide (III)

- In step (1), the hydrazidation reaction of the **carbonate ester (II)** and **hydrazine hydrate** is carried out in solvent A, preferably, the solvent A is one or a combination of two or more of water, methanol or ethanol; the mass ratio of the solvent A to the compound of formula II is (3-7).
- Preferably In step (1), the hydrazidation reaction temperature of the compound of formula II and hydrazine hydrate is **75-80°C**.
- In (1) preferably, the molar ratio of the hydrazine hydrate and the compound of formula II is (2.2 3.0 mol). Generally reaction takes 2-4 hrs to complete.
- In a 1000 ml four-necked flask equipped with a stirrer, thermometer, and reflux condenser was charged with 200 g of ethanol, 200 g of water, 118.1 g (1.0 mol) of diethyl carbonate (II), and 275.0 g (2.2 mol) of 40% hydrazine hydrate. The mixture was heated and stirred at 75–80°C for 2 hours.
- After completion of the reaction, the mixture was cooled to 20–25°C, filtered, and the filter cake was washed with 20 g of water. The solid product was then dried to yield 88.9 g of carbodihydrazide (III) with a yield of **98.8%** and a liquid-phase purity of **99.9%**..

Stage 2- The synthesis of pyridin-3-ylmethylenecarbodihydrazide (IV)

- In step (2), the condensation reaction of 3-formylpyridine and Carbodihydrazide (III) is carried out in solvent B, Preferably, the solvent B is one or a combination of water, methanol, ethanol, isopropanol, tert-butanol, acetonitrile, chloroform, 1,2-dichloroethane, tetrahydrofuran, 2-methyltetrahydrofuran or toluene.
- Preferably, the mass ratio of the solvent B and the compound of formula III is (5-10). and the molar ratio of the Carbodihydrazide (III) and 3-formylpyridine is (0.95-1.1).
- In step (2), 3-formylpyridine is added to the system in a dropwise manner, the dropping temperature is **45-90°C**, and the dropping time is 2-4 hrs.
- Into a 1000 ml four-necked flask equipped with a stirrer, a thermometer, a constant pressure dropping funnel and a reflux condenser were charged 200 g of ethanol, 100 g of water, 45.0 g (0.5 mol) of carbonyldihydrazide (III) were heated while maintaining the temperature between 65 and 70 °C.
- The solution of 53.0 g (0.5 mol) of 3-formylpyridine and 100 g of ethanol was added dropwise thereto over 3 hours, followed by stirring at 70 to 75 °C for 3 hours, cooling to 20 to 25 °C, filtration, washing the filter cake with 30 g of water, and drying to obtain 89.0 g of pyridin-3-ylmethylenecarbonyldihydrazide (IV).

The yield obtained was 99.4%, and liquid phase purity 99.9%.

Stage 3- Preparation of pymetrozine (I)

- now, the cyclization reaction of the compound of formula IV and monochloroacetone is carried out in solvent C under the action of an acid binding agent.
- Preferably, the solvent C is one or a combination of water, methanol, ethanol, isopropanol, tert-butanol, acetonitrile, chloroform, 1,2-dichloroethane, tetrahydrofuran, 2-methyltetrahydrofuran or toluene.
- Preferably, the mass ratio of the solvent C and the compound of formula IV is (4-9) and the acid binding agent is potassium carbonate or sodium carbonate.

- The mol ratio of acid binding agent to compound IV is 0.5-1.1 and the mol ratio of monochloroacetone to compound IV is 0.95-1.1.
- Preferably, the cyclization reaction temperature is 40-70°C and cyclization reaction time is 2-6 hours.
- now In a 1000 ml four-necked flask equipped with a stirrer, a thermometer, a constant pressure dropping funnel and a reflux condenser, 200 g of ethanol, 100 g of water, 34.5 g (0.25 mol) of potassium carbonate, 71.6 g (0.4 mol) of pyridin-3-ylmethylenecarbonyldihydrazide (IV) prepared earlier are heated and maintained at 50 to 55 °C and added dropwise with a mixed solution of 40.7 g (0.44 mol) of monochloroacetone and 50 g of ethanol.
- after 3 hours of dropwise addition, stirred at 55 to 60 °C for 3 hours of reaction, cooled to 20 to 25 °C, filtered, and the filter cake was washed with 30 g of water and dried to obtain 83.9 g of pymetrozine (I), the yield was 96.6%, and the liquid phase purity was 99.3%.

Reaction conditions (Summary)

1. Hydrazidation

• Materials: Dialkyl carbonate (1 mol) + hydrazine hydrate (2.2-3.0 mol)

• Solvent: Water or methanol

• Temperature: 75-80°C

• Time: 2-4 hours

2. Condensation

• Materials: Carbodihydrazide (1 mol) + 3-formylpyridine (1 mol)

Solvent: Ethanol or THFTemperature: 50-90°C

• Time: 2-4 hours

3. Cyclization

• Materials: Compound IV (1 mol) + monochloroacetone (1.05 mol)

Solvent: Ethanol or THFTemperature: 40-70°C

• Time: 2-6 hours

Seperation step for final purity

The separation process involves crystallization, filtration, washing, drying, and optional recrystallization to achieve high purity.

1. Cooling Crystallization

- Procedure: After the final cyclization reaction, the reaction mixture is cooled to 30–80 °C to initiate crystallization.
- Purpose: cooling allows pymetrozine to precipitate out of the solution as solid crystals.

Ensuring gradual cooling to avoid impurities being trapped within the crystal lattice.

2. Suction Filtration

- Procedure: The crystallized pymetrozine is collected using suction filtration.
- Equipment: Use a Buchner funnel and vacuum pump for efficient filtration.
- Purpose: It's to separate solid pymetrozine from the liquid reaction mixture (mother liquor).

3. Washing

- Procedure: Wash the filtered solid twice with distilled water (100 mL per wash) or ethanol (150 mL per batch).
- Purpose: Remove residual solvents, by-products, and impurities adhering to the crystal surface.

Using cold washing solutions to prevent dissolution or degradation of pymetrozine.

4. Drying

- Procedure: Dry the washed pymetrozine under warm air at 100–105°C for 2–4 hours.
- Equipment: Use a hot-air oven or vacuum dryer for uniform drying.
- Purpose: To remove moisture and residual solvents completely.

5. Recrystallization (Optional)

- Procedure: Dissolving crude pymetrozine in hot ethanol or methanol until fully dissolved and then gradually cooling the solution to room temperature and then further to 0–10°C for recrystallization.
- Purpose: This enhances purity by removing remaining impurities trapped in the initial crystallization process.

This step is usually performed slowly to ensure high-quality crystal formation and with high-purity solvents for optimal results.

After the synthesis process, the crude pymetrozine typically has a purity of approximately 99.3%. and after the separation process, the purity increases to ≥99.5%. This improvement was achieved by removing residual impurities and byproducts trapped during synthesis.

Reference(s)

- https://patents.google.com/patent/CN111943931A/en
- https://www.proquest.com/docview/2103953502
- https://patents.google.com/patent/CN104803936A/en

b) Another method for the synthesis of Pymetrozine

The alternative synthesis route for the pymetrozine, a selective insecticide is below and mainly a **three** step process.

Raw Materials and Chemicals Needed

- Kharophen triazone
- Acid (HCl or H₂SO₄) Used for acidolysis reaction.
- Nicotinaldehyde
- Solvents: Ethanol, Methanol, Water
- Alkali (NaOH or KOH)

Reaction Steps

Step 1: Acidolysis Reaction (Formation of Aminotriazine Acid Salt)

$$\mathrm{C_5H_5N_3O} + HCl
ightarrow \mathrm{C_5H_6N_3O}^+Cl^-$$

The first step involves the **acidolysis** of **kharophen triazone** in the presence of a mineral acid (e.g., HCl, H_2SO_4 , H_3PO_4) to form aminotriazine acid salt. This reaction enhances stability and prevents unwanted decomposition. The raw materials for lab scale are kharophen triazone (100.0 g), acid (preferred 31% HCL and pure solvent(31%). The yield is **98%** for this step.

In a 1000 mL four-necked reaction flask equipped with a stirrer, thermometer, condenser, and dropping funnel, add 500 mL of pure water at room temperature, with continuous stirring, slowly add 100.0 g of kharophen triazone to the flask. Now gradually add 99.0 g of 31% hydrochloric acid dropwise while maintaining a reaction temperature of **30–60°C**. Continue stirring and heating for **3.0–10.0** hours until the reaction is complete. Upon completion, cool the reaction mixture to 30–40°C before proceeding to the next step.

Step 2: Condensation Reaction (Formation of Pymetrozine Hydrochlorate)

• The aminotriazine acid salt undergoes a condensation reaction with nicotinaldehyde, forming pymetrozine hydrochlorate, an essential intermediate before final neutralization. The raw materials for this step are Aminotriazine acid salt (formed in Step 1), Nicotinaldehyde solution (20–30% concentration) – 295 g and as a solvent: Methanol or ethanol – 500 mL. The yield is 96-98%.

In a 1000 mL reaction flask (equipped with a stirrer, thermometer, and dropping funnel), maintain the reaction temperature at **30–90°C**, add 500 mL of methanol and stir while gradually adding 295 g of nicotinaldehyde solution over **1.5–3.0** hours and after complete addition, continue stirring for another 1.0–2.0 hours at the same temperature. Upon completion, cool the reaction mixture to 30°C before moving to the next step.

$${
m C_5H_6N_3O^+}Cl^- + {
m C_6H_5NO}
ightarrow {
m C_{11}H_{11}N_5O^+}Cl^-$$

Step 3: Neutralization Reaction (Formation of Pymetrozine)

Pymetrozine hydrochlorate is neutralized using an alkali to yield **pymetrozine** in its final purified form. The pH is carefully controlled to optimize product crystallization. The raw materials required are

- Pymetrozine hydrochlorate (from Step 2)
- Alkali: 17% Ammoniacal liquor 105.5 g
- Solvent: Water or ethanol 500 mL

In a 1000 mL reaction flask, add 500 mL of ethanol or water and begin stirring. Slowly add 105.5 g of 17% ammoniacal liquor dropwise over **1.0–3.0 hours**, maintaining a temperature of **30–90°C**. Monitor the pH of the reaction system, ensuring it remains within 6.5–7.5. Continue stirring for 3.0–8.0 hours to ensure complete neutralization. After reaction completion, cool the mixture to 20–30°C, induce crystallization, and filter the solid product and Wash with 100 mL of water, then dry at 100–105°C for 3–4 hours.

The purity generally is **97.2–98.0%** (after crystallization and drying).

$$\mathrm{C_{11}H_{11}N_5O^+}Cl^- + NH_3 \to \mathrm{C_{10}H_{11}N_5O} + NH_4Cl$$

Separation and Purification

<u>Crystallization</u>: Cool the reaction mixture from 90°C to room temperature, then further cool to approximately 0–10°C to promote crystallization.

<u>Filtration</u>: using suction filtration to separate solid pymetrozine from the mother liquor.

<u>Washing</u>: Washing the filtered solid with cold ethanol (approximately 150 mL per batch) to remove impurities.

<u>Drying</u>: Drying the product under warm air at approximately 100–105°C for several hours.

<u>Recrystallization (optional)</u>: Dissolve crude pymetrozine in hot ethanol and allow slow cooling for recrystallization to enhance purity further.

After the synthesis process, the yield of pymetrozine is approximately 95% based on optimized reaction conditions. On improving efficiency and reducing waste can give a higher yield increased by 2.0–5.0%. The final purity can go as high as 97%.

Reference(s)

- https://patents.google.com/patent/CN104844574A/en
- https://pmc.ncbi.nlm.nih.gov/articles/PMC8588918/
- https://www.mdpi.com/1420-3049/23/1/134

Contribution of each member

Dhruv Bajaj(230365)

- Identified the main synthesis route for pymetrozine by researching and analyzing process efficiency and yield optimization, selecting appropriate reactant ratios for optimal yield and time efficiency.
- found the necessary separation & purification steps for main synthesis route to achieve a high purity of >99%.

Somya Yadav(231023)

- Contributed towards the development of an alternative synthesis route for Pymetrozine by researching and analyzing process efficiency and yield optimization
- Optimize the reaction conditions to enhance yield and gain a clearer understanding of the reaction mechanism. Additionally, analyzed the separation process to effectively compare and evaluate the yield across different conditions.

Sign the pdf and upload

NAME	ROLL NO	SIGNATURE
HARSHITJAISWAL	230460	Harshit Jaiswal
SOMYA YADAV	231023	Qu-
DHRUV BAJAJ	230365	8 Byes