Performance of Computer System Evaluation Technique – Simulation

Dr. Lina Xu lina.xu@ucd.ie

School of Computer Science, University College Dublin

September 18, 2018

How You Should See the Problem

- What is system?
- Evaluation techniques
- Metrics to use
- Workload
- Parameters

Evaluation techniques

SIMULATION AND RELATED **ISSUES**

Why simulation?

- System under study may not be available
 - Common in design and proving stages
- Simulation may be preferred alternative to measurement
 - Controlled study of wider range of workloads and environments
- Higher accuracy results than analytical modeling

Sometime simulation is not preferred

- Accurate simulation models take a long time to develop
 - Typically the evaluation strategy that takes the longest

Evaluation techniques — Simulation

- Easy to modify and update
- Due to the cost of changing system configurations, simulation is preferred beforehand.
- With simulations, it may be possible to identify the optimal combination, but often it is not clear what the trade-off is among different parameters.
- Time consuming for a comprehensive simulation environment development, off the shell simulations tools:
 - Smart phone application simulator/emulator: Android Studio
 - Networking simulator: NS-3, Matlab
 - ► Transportation simulation: Simio

Good Tips for Evaluation

- Combining evaluation techniques is useful
 - Analytical model: find interesting range of parameters
 - Simulation: study performance within parameter range
- Until validated, all evaluation results are suspect!
 - Always validate one analysis modality with another
 - Beware of counterintuitive results!

Common Mistakes: Too Much Detail

- Level of detail limited only by time available for development
- A detailed model may not be a better model
- Recipe for success
 - Start with less-detailed model
 - Get some results
 - Study sensitivities
 - Introduce details in key areas that affect results most

Common Mistakes: Initial Conditions

- Initial part of a simulation is generally not representative
 - ► Transient behaviour rather than steady state
- Initial part of simulation should be discarded
 - Several techniques for identifying beginning of steady state

Common Mistakes: Too Short Simulations

- Simulation run times are often very long
- Temptation is to halt simulations ASAP
- However
 - Results may be heavily dependent on initial conditions
 - may not be representative of a real system until steady state
- Correct length for simulations depends on
 - Accuracy desired (width of confidence intervals)
 - Variance of observed quantities

Common Mistakes: Bad Random Numbers

- Bad random numbers can pollute simulation results
 - Period too short
 - Assume global randomness = local randomness
 - Rely on bit subsets: may not be as random as whole
- Use well-known generator rather than rolling your own

Simulation Types

- Monte Carlo Simulation
- Trace-Driven Simulation
- Discrete-Event Simulations

Monte Carlo Simulation

- Model probabilistic phenomenon that do not change over time
- It is used for evaluating nonprobabilistic expressions using probabilistic methods.

Trace-Driven Simulation

- Trace = time ordered record of events on real system
- Advantages
 - Credibility, Easy Validation, Accurate Workload, Detailed Trade-offs, Less Randomness, Fair Comparison, Similarity to the Actual Implementation.
- Disadvantages
 - Complexity, Representativeness, Finiteness, Single Point of Validation, Detail, Trade-off

Trace is different from Statistics

- Statistics (requests, errors, latency, etc.) are calculated based on the full volume of traces
- Examples:
 - Total requests and requests per second
 - ► Total errors and errors per second
 - Latency
 - Breakdown of time spent by service/type

Discrete-Event Simulations

- Discrete-event simulations use discrete-state model of system, the simulation will have the following components
 - Event Scheduler: A list of events
 - Simulation Clock and a Time-advancing Mechanism: Absolute time and Relevant time
 - System State Variables: Global variables that describe the state of the system
 - ► Event Routines: Each event is simulated by its routine
 - Input Routines: Input routines typically allow a parameter to be varied in a specified manner
 - Report Generator: At the end of the simulation
 - Initialisation Routines: Initial state of the system state
 - Trace Routines: Print out intermediate variables as the simulation proceeds for debugging
 - Dynamic Memory Management: Normally automatically
 - Main Program: Brings all the routines together

Discrete-Event Simulations

- Mostly used in Computer Sciences
 - ► Time driven system: auto-sync programs, alert systems, some street or home lighting systems
 - Event driven system: Almost every computer systems

What Simulation to Use

- To model destination address reference patterns in a network traffic, given that the pattern depends upon a large number of factors.
- To model scheduling in a multiprocessor system, given that the request arrivals have a known distribution.
- \circ To determine the value of π

Good Simulations

- Measuring goodness
 - Validation: are assumptions reasonable?
 - Verification: does model implement assumptions correctly?

invalid, unverified	invalid, verified
valid, unverified	valid, verified

Correctly implements bad assumptions Incorrectly implements good assumptions Correctly implements good assumptions

Strategies for Avoiding Bugs – For Validation

- What to check?
 - Assumptions
 - Input parameter values and distributions
 - Output values and conclusions
- How to check?
 - Expert intuition: most common and practical
 - Measurements of real system
 - ► Theoretical results, e.g. queueing model

Strategies for Avoiding Bugs – For Verification

- Software engineering
 - Top-down design: layered (hierarchical) system structure
 - Modularity: well-defined interfaces, unit testing
- Assertions to check invariants
 - No. packets received = No. packets sent No. packets lost No. in flight
- Structured walk through
- Simplified test cases with easily analysed results

Transient Removal

- Transient state: prefix of simulation before steady state
- Steady state performance is usually that of interest
- Heuristic approaches for removing transient state
 - Long runs
 - Proper initialisation
 - Truncation
 - Moving average of independent replications
 - Initial data deletion
 - Batch means

Long runs

- Long run = steady state results long enough to dominate effects of initial transients
- Disadvantages
 - wastes resources (computer time and real time)
 - difficult to ensure length of run is "long enough"
- Avoid this method if you have other choice

Proper initialisation

- Proper initialisation = starting simulation in state close to expected steady state
- Examples:
 - > start CPU scheduling simulation with non-empty job queue
 - start WWW cache trace-driven simulation with most frequently referenced files in cache

Truncation

- Assumption: variability of steady state | transient state
- Truncation algorithm:

```
input: n observations x_1, x_2, ..., x_n

for k = 2, n

\min_k = \min(x_k, ..., x_n)

\max_k = \max(x_k, ..., x_n)

if \min_k != x_k \&\& \max_k != x_k, break

post condition: if k != n then k - 1 = length of transient state
```


Moving Average of Independent Replications

- Compute mean trajectory by averaging across replications
- Find the knee in the curve.

```
for k=1 to n plot trajectory of moving average of successive 2k+1 values if trajectory is "sufficiently smooth", break
```

The knee gives the length of the transient phase

Initial Data Deletion I

- Compute average after some of initial observations omitted
- During steady state average does not change as much as additional observations are deleted
- Problem
 - Randomness in observations causes average to change even in steady state
- Solution
 - Average across several replications

Initial Data Deletion II

- Compute mean trajectory by averaging across replications
- 2 Compute overall mean
- 3 Find knee in a curve showing the relative change in overall mean

Initial Data Deletion III

Find knee in a curve showing the relative change in overall mean

for
$$k = 1$$
, $n - 1$

assume transient state is of length k delete first k observations from mean trajectory compute overall mean from remaining n - k values:

$$\bar{\bar{x}} = \frac{1}{n-k} \sum_{j=k+1}^{n} \bar{x}_j$$

compute relative change in overall mean:

Relative change
$$=\frac{\bar{x}_k - \bar{x}}{\bar{x}}$$

Batch Means

- Run a very long simulation
- Afterward, divide it into several parts of equal duration
- Each part is a batch
- Batch mean = mean of observations in each batch

Evaluation Examples

Criterion	Analytical Modeling	Simulation	Measurement
Stage	any	any	post-prototype
Time required	small	medium	varies
Tools	analysts	programs	instrumentation
Accuracy	low	moderate	varies
Trade-off evaluation	easy	moderate	difficult
Cost	low	medium	high
Saleability	low	medium	high

