Rapport de projet

paul.patault@universite-paris-saclay.fr

2. Validation top-down non-déterministe

Question 1

Un run d'un automate d'arbre $A=(Q,\delta,I,F,\Sigma)$ pour un arbre $t\in\mathcal{T}(\Sigma)$ est une fonction $r:dom(t)\to Q$ telle que $\forall p\in dom(t), (t(p),r(p),r(p1),r(p2))\in\delta$. Un run est dit acceptant si et seulement si $r(\epsilon)\in I$.

Question 2

Question 3

La complexité de l'expression

```
\exists \ q \in I \ \text{tel que validate\_td} \ a \ t \ \text{eps} \ q
```

est $O(|\mathbf{a}|^{|\mathbf{t}|})$. En effet, l'algorithme nous fait prendre $|\mathbf{a}|$ fois chaque arête de l'arbre \mathbf{t} .

3. Validation bottom-up

Question 1

Question 2

Question 3

4. Compilation

Question 1

Question 2