MA5233 Computational Mathematics

Lecture 11: Krylov Subspace Methods: Theory

Simon Etter

2019/2020

Recap: Krylov subspace methods

Approximate solution to Ax = b by

$$\tilde{x}:=p_{n-1}(A)\,b$$
 where $p_{n-1}:=\mathop{\arg\min}_{p_{n-1}\in\mathcal{P}_{n-1}}ig\|ig(Ap_{n-1}(A)-Iig)\,big\|.$

Cost:

- n matrix-vector products,
- \triangleright $\mathcal{O}(Nn^2)$ (GMRES) or $\mathcal{O}(Nn)$ (MinRes,CG) other FLOP.

Observations:

- ▶ Increasing *n* increases FLOP count but decreases error.
- $\tilde{x} = x$ for n = N since then Krylov subspace has dimension N.
- ▶ Hope: $\tilde{x} \approx x$ already for $n \ll N$.
- To see whether hope is justified, we need a result which bounds error as a function of *n*.

Error measure

Natural error measure for GMRES and MinRes is $||A\tilde{x} - b||_2$ since this is the quantity which is minimised.

Bound on error $\|\tilde{x} - x\|_2$ results from

$$\|\tilde{x} - x\|_2 \le \|A^{-1}\|_2 \|A\tilde{x} - b\|_2.$$

Similarly, the natural error measure for conjugate gradients is $\|\tilde{x} - x\|_A$. We focus on GMRES case in the following, but all statements carry over to conjugate gradient.

Bound on GMRES residual

Assume A has eigendecomposition $A = V \Lambda V^{-1}$. Then,

$$\begin{split} \|A\tilde{x} - b\|_{2} &= \min_{p_{n-1} \in \mathcal{P}_{n-1}} \| (Ap_{n-1}(A) - I) b \|_{2} \\ &\leq \min_{p_{n-1} \in \mathcal{P}_{n-1}} \|V\|_{2} \| \Lambda p_{n-1}(\Lambda) - I \|_{2} \|V^{-1}\|_{2} \|b\|_{2} \\ &\leq \kappa(V) \|b\|_{2} \min_{p_{n-1} \in \mathcal{P}_{n-1}} \max_{\lambda_{k}} |\lambda_{k} p_{n-1}(\lambda_{k}) - 1|. \end{split}$$

 $\lambda_k = \Lambda_{kk}$ on last line are the eigenvalues of A.

Observations:

- Only the last factor depends on n.
- ▶ To get an asymptotic error estimate, we must study the behaviour of

$$\min_{p_{n-1} \in \mathcal{P}_{n-1}} \max_{\lambda_k} |\lambda_k \, p_{n-1}(\lambda_k) - 1|$$

as a function of n.

The GMRES polynomial minimisation problem, observation 1

$$p_{n-1} \in \mathcal{P}_{n-1} \implies q_n(x) := x \, p_{n-1}(x) - 1 \in \mathcal{P}_n, \ q(0) = -1$$

$$q_n \in \mathcal{P}_n, \ q_n(0) = -1 \quad \Longrightarrow \quad q_n(x) := x \, p_{n-1}(x) - 1 \text{ for some } p_{n-1} \in \mathcal{P}_{n-1}.$$

Proof. First implication is obvious.

Second implication: $p_{n-1}(x) = \frac{q_n(x)+1}{x}$ is a polynomial since $q_n(0) = -1$.

Corollary

The GMRES minimisation problem may equivalently be formulated as

$$\min_{q_n\in\mathcal{P}_n}\max_{\lambda_k}\frac{|q_n(\lambda_k)|}{|q_n(0)|}.$$

Hence, we want $q_n \in \mathcal{P}_n$ such that $|q_n(\lambda_k)|$ is small relative to $|q_n(0)|$.

The GMRES polynomial minimisation problem, observation 2

Eigenvalues λ_k typically cluster in certain sets $\mathcal{E} \subset \mathbb{C}$.

The GMRES minimisation problem

$$\min_{q_n \in \mathcal{P}_n} \max_{\lambda_k} \frac{|q_n(\lambda_k)|}{|q(0)|}$$

may then be replaced by

$$\min_{p_{n-1} \in \mathcal{P}_{n-1}} \max_{x \in \mathcal{E}} \frac{|q_n(x)|}{|q(0)|}$$

without losing much in sharpness.

Example

Recall eigenvalues $\lambda_{\ell} := (n+1)^2 (2\cos(\pi\frac{\ell}{n+1})-2)$ of discrete Laplacian.

These eigenvalues cluster in the interval $\mathcal{E} = [-4(n+1)^2, 0]$.

$$n = 39$$
 \longrightarrow $\lambda_{\ell} = \begin{bmatrix} & & & & & & & & & & & & & \\ & -6400 & -4800 & -3200 & -1600 & 0 & & & & & \end{bmatrix}$

The GMRES polynomial minimisation problem, final formulation

$$\min_{q_n \in \mathcal{P}_n} \max_{x \in \mathcal{E}} \frac{|q_n(x)|}{|q_n(0)|}.$$

Idea: choose $q_n(x) = \prod_{k=1}^n (x - x_k)$ with x_k distributed over \mathcal{E} .

Example: $\mathcal{E} = [1, 3]$.

Properties of ${\mathcal E}$ which make GMRES converge fast

- \triangleright \mathcal{E} is small: few x_k are enough to ensure $q_n(x)$ is small on \mathcal{E} .
- \triangleright \mathcal{E} is far away from 0: $|q(0)| \ge (\min_{x \in \mathcal{E}} |x|)^n$.

The above two points are equivalent after scaling.

Example:

- $\triangleright \mathcal{E} = \begin{bmatrix} \frac{1}{n}, 1 \end{bmatrix}$ is small but close to 0
- \triangleright $\mathcal{E} = [1, n]$ is large but far away from 0.

Convergence is the same in both cases (see next slide).

Properties of ${\mathcal E}$ which make GMRES converge slowly

▶ \mathcal{E} surrounds 0, e.g. $\mathcal{E} = [-2, -1] \cup [1, 2]$: GMRES will converge, but convergence will be slower than for $\mathcal{E} = [1, 2]$.

Proof that GMRES convergence is independent of scaling. Assume there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that

$$\min_{q_1 \in \mathcal{P}_n} \max_{\mathbf{x} \in \mathcal{E}} \frac{|q_1(\mathbf{x})|}{|q_1(\mathbf{0})|} \le \min_{q_{\lambda} \in \mathcal{P}_n} \max_{\mathbf{x} \in \lambda \mathcal{E}} \frac{|q_{\lambda}(\mathbf{x})|}{|q_{\lambda}(\mathbf{0})|},\tag{1}$$

and let $q_1(x) = \prod_{k=1}^{n} (x - x_k)$ be the minimiser from the left-hand side.

Then, we obtain for $\tilde{q}_{\lambda}(x) = \prod_{k=1}^{n} (x - \lambda x_k) \in \mathcal{P}_n$ that

$$\max_{x \in \lambda \mathcal{E}} \frac{|\tilde{q}_{\lambda}(x)|}{|\tilde{q}_{\lambda}(0)|} = \max_{x \in \mathcal{E}} \frac{\prod_{k=1}^{n} |\lambda x - \lambda x_k|}{\prod_{k=1}^{n} |\lambda x_k|} = \max_{x \in \mathcal{E}} \frac{|q_1(x)|}{|q_1(0)|}.$$
 (2)

Equation (2) contradicts the assumption (1).

Quantitative convergence estimate

Let $\mathcal{E} = [a, b]$ with 0 < a < b, and set $\kappa := \frac{b}{a}$. Then,

$$\min_{q_n \in \mathcal{P}_n} \max_{x \in \mathcal{E}} \frac{|q_n(x)|}{|q_n(0)|} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^n.$$

We will prove this result in the lecture on approximation theory.

Summary of GMRES convergence theory

$$||A\tilde{x}-b||_2 \leq \kappa(V) ||b||_2 \min_{q_n \in \mathcal{P}_n} \max_{\lambda_k} \frac{|q_n(\lambda_k)|}{|q(0)|}.$$

Previous slides discussed choice of q_n .

Following slides will look at b and λ_k .

Surprisingly, it turns out we can modify b and λ_k to improve convergence of GMRES.

GMRES with initial guess (modifying b)

Assume we already have a good initial guess x_0 for solution to Ax = b. Instead of applying GMRES to Ax = b, we can use GMRES to solve

$$A(x_0 + \Delta x) = b$$

for Δx , i.e. we apply GMRES to

$$A \Delta x = b - Ax_0$$
.

In this case, we obtain using the GMRES error estimate that

$$||A(x_0 + \Delta x) - b||_2 = ||A \Delta x - (b - Ax_0)||_2$$

$$\leq \kappa(V) ||b - Ax_0||_2 \min_{q_n \in \mathcal{P}_n} \max_{\lambda_k} \frac{|q_n(\lambda_k)|}{|q(0)|}.$$

If x_0 is close to x, then $||b - Ax_0||_2$ is small; hence $||A(x_0 + \Delta x) - b||_2$ is small as well.

Preconditioning (modifying λ_k)

Instead of Ax = b, we can solve

$$P^{-1}Ax = P^{-1}b$$

for some invertible matrix P.

Idea: use P to move eigenvalues such that GMRES converges faster.

Example

Assume eigenvalues of A cluster in $\mathcal{E} = [a, b]$.

P is a good preconditioner if

- eigenvalues of $P^{-1}A$ cluster in $\mathcal{E}' = [a', b']$ with $\frac{b'}{a'} < \frac{b}{a}$, and
- $ightharpoonup P^{-1}v$ is cheap to evaluate.

Remark

Preconditioner for MinRes and conjugate gradients must be symmetric positive definite.

Advantages of Krylov subspace methods compared LU

- Require only basic linear algebra operations like Av, w^Tv , $v + \alpha w$. Assume you can represent your matrices and/or vectors in a compressed format. Krylov methods allow you to solve linear systems as long as your format supports the above operations.
- Corollary of previous point: can exploit fast matrix-vector product. Primary example: sparse matrices. LU factorisation typically requires $\mathcal{O}(N^{\alpha})$ FLOP with $\alpha > 1$. Krylov methods may require only $\mathcal{O}(N)$ FLOP.
- ► Can exploit initial guesses. Assume you need to solve $Ax_1 = b$ and $(A + \Delta A)x_2 = b$ for some small ΔA . LU factorisation must be recomputed from scratch for $A + \Delta A$. Krylov methods can use x_1 as initial guess for x_2 .
- ► Can be faster than LU factorisation if matrix is well-conditioned.

Disadvantages of Krylov subspace methods compared LU

- ▶ Errors (rounding errors, truncation tolerance) are hard to control.
- ▶ Almost always require preconditioning to be effective.

Summary

- Krylov methods are much harder to use then LU factorisation.
- Krylov subspace methods allow us to solve problems which we cannot solve using LU.

Advice:

- ▶ Use LU factorisation as long as you can.
- ▶ Only use Krylov methods if you have to.

References and further reading

Recommended since closest to presentation above:

► L. N. Trefethen and D. Bau. *Numerical Linear Algebra*. Society for Industrial and Applied Mathematics (1997),

Other references:

- ► G. H. Golub and C. F. Van Loan. *Matrix Computations*. Johns Hopkins University Press (1996),
- ▶ J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics (1997), doi:10.1137/1.9781611971446
- N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (2002), doi:10.1137/1.9780898718027