\bigcirc $\sigma(W\mathbf{x})$	
○ Wx+b	
$\bigcirc \tanh(W\mathbf{x} + b)$	
(a) $\sigma(W \mathbf{x} + b)$.	
∠ ⁿ Expand	
Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y , referred to as $\hat{\mathbf{y}}$, such that $0<\hat{y}<1$.	
an output y , referred to as y , such that $0 < y < 1$.	
2. Which of these is the "Logistic Loss"?	1/1 pc
(a) $\mathcal{L}^{(t)}(\hat{y}^{(t)}, y^{(t)}) = -(y^{(t)}\log(\hat{y}^{(t)}) + (1 - y^{(t)})\log(1 - \hat{y}^{(t)}))$	
$\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} - \hat{y}^{(i)})$	
\bigcirc $\mathcal{L}^{(t)}(\hat{y}^{(t)}, y^{(t)}) = y^{(t)} - \hat{y}^{(t)} $	
∠ ⁷ Expand	
Correct, this is the logistic loss you've seen in lecture!	
3. Consider the Numpy array x :	1 / 1 poi
x = np.array([[[1], [2]], [[3], [4]])	
What is the shape of x?	
(1, 2, 2)	
(3.25)	
(4)	
(22,1)	
∠ ⁷ Expand	
∠ ⁷ Expand ○ Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1.	
⊙ Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1.	
	1/1 poi
 ✓ Correct Ves. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b, and c: 	1/1 poi
\odot Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a=np.random.randn(3,4) \neq a.shape=(3,4)$	1/1po
\odot Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a=np.random.randn(3,4) = a.shape = (3,4)$ $b=np.random.randn(1,4) = b.shape = (1,4)$	1/1 po
Ornect Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a=np.random.randn(3,4) \neq a.shape=(3,4)$ $b=np.random.randn(1,4) \neq b.shape=(1,4)$ $c=a+b$	1/1 po
\odot Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a=np.random.randn(3,4) = a.shape = (3,4)$ $b=np.random.randn(1,4) = b.shape = (1,4)$	1/1po
Ornect Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a=np.random.randn(3,4) \neq a.shape=(3,4)$ $b=np.random.randn(1,4) \neq b.shape=(1,4)$ $c=a+b$	1/1po
Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a=np.random.randn(3,4) \neq a.shape=(3,4)$ $b=np.random.randn(1,4) \neq b.shape=(1,4)$ $c=a+b$ What will be the shape of c ?	1/1po
\bigcirc Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a = np.random.randn(3, 4) ≠ a.shape = (3, 4)$ $b = np.random.randn(1, 4) ≠ b.shape = (1, 4)$ $c = a + b$ What will be the shape of c ? ⓐ c.shape = (3, 4) ○ c.shape = (3, 1) ○ the computation cannot happen because it is not possible to broadcast more than one	1/1po
○ Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a = np.random.randn(3, 4) = a.shape = (3, 4)$ $b = np.random.randn(1, 4) = b.shape = (1, 4)$ $c = a + b$ What will be the shape of c ? ② c.shape = (3, 4) ○ c.shape = (3, 1) ○ The computation cannot happen because it is not possible to broadcast more than one dimension.	1/1po
\bigcirc Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a = np.random.randn(3, 4) ≠ a.shape = (3, 4)$ $b = np.random.randn(1, 4) ≠ b.shape = (1, 4)$ $c = a + b$ What will be the shape of c ? ⓐ c.shape = (3, 4) ○ c.shape = (3, 1) ○ the computation cannot happen because it is not possible to broadcast more than one	1/1po
○ Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a = np.random.randn(3, 4) = a.shape = (3, 4)$ $b = np.random.randn(1, 4) = b.shape = (1, 4)$ $c = a + b$ What will be the shape of c ? ② c.shape = (3, 4) ○ c.shape = (3, 1) ○ The computation cannot happen because it is not possible to broadcast more than one dimension.	1/1po
○ Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1. 4. Consider the following random arrays a and b , and c : $a = np.random.randn(3, 4) = a.shape = (3, 4)$ $b = np.random.randn(1, 4) = b.shape = (1, 4)$ $c = a + b$ What will be the shape of c ? ② c.shape = (3, 4) ○ c.shape = (3, 1) ○ The computation cannot happen because it is not possible to broadcast more than one dimension.	1/1po

What is the output of J?

- $\bigcirc \quad a^2 + b^2 c^2$
- $\bigcirc a^2-b^2$
- (a) $a^2 c^2$
- $\bigcirc (a-b)*(a-c)$

∠ Expand

Ocorrect
Yes.