M1F Notes

David Burgschweiger October 15, 2015

Contents

1	Sets		3
	1.1	Set Operators	3
	1.2	Intervals in \mathbb{R}	4
	1.3	Infinite Unions and Intersections	4
2	Pro	ofs	4
	2.1	Elements of the propositional calculus	4
	2.2	Inference rules	6

1 Sets

Definition 1.0.1. A set S is a collection of objects (called *elements* of the set). If x is an *element* of S let us write $x \in S$ otherwise $x \notin S$.

Remark 1.1. The order of the elements or any repetition is unimportant.

Example 1.1.

$$\{1,3\} = \{3,1,1\}$$

Definition 1.0.2. For two sets S and T let us write $S \subseteq T$ (S is contained in T) if

$$x \in S \Rightarrow s \in T$$

Result 1.0.1. S = T iff $S \subseteq T$ and $T \subseteq S$.

Remark 2.1. $S \notin S$ (Foundation Axiom)

Nonetheless, elements can be sets.

Definition 1.0.3. \emptyset is the set with no elements.

Property 3.1. $\emptyset \subseteq S$ and $S \subseteq S$ for all sets S

1.1 Set Operators

Definition 1.1.1. The intersection $S \cap T$ of two sets S and T is

$$\{x | x \in S \text{ and } x \in T\}$$

Definition 1.1.2. The union $S \cup T$ of two sets S and T is

$$\{x | x \in S \text{ or } x \in T\}$$

Definition 1.1.3. The difference $S \setminus T$ of two sets S and T is

$$(S \cup T) \setminus (S \cap T)$$

Definition 1.1.4. The symmetric difference $S \triangle T$ of two sets S and T is

$$\{x | x \in S \text{ and } x \in T\}$$

Definition 1.1.5. In $A \subseteq \Omega$ then

$$A^C = \{ x \in \Omega | x \notin A \}$$
 = $\Omega \setminus A$

Remark 5.1. The complement is only used when the reference set Ω is clear.

Some sets we will work with in this course are

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

$$\mathbb{Z} = \{0, 1, -1, 2, -2\}$$

$$\mathbb{Q} = \{\frac{p}{q} | P \in \mathbb{N}, q \in \mathbb{Z} \setminus \{0\}\}$$

 $\mathbb{R}\,\mathrm{reals}$

 \mathbb{C} complex numbers

Definition 1.1.6. \mathbb{N} is defined by two axioms:

- 1. $0 = \emptyset \in \mathbb{N}$
- 2. If $n \in \mathbb{N}$ then $n+1 \stackrel{def}{=} n \cup \{n\} \in \mathbb{N}$

Example 6.1.

$$1 = 0 + 1 = \emptyset \cup \{\emptyset\} = \{\emptyset\}$$
$$2 = 1 + 1\{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}$$

1.2 Intervals in \mathbb{R}

Definition 1.2.1. If $a \leq b$:

$$[a,b] = \{t \in \mathbb{R} | a \le t \le b\}$$

$$(a,b) = \{t \in \mathbb{R} | a < t < b\}$$

$$[a,b) = \{t \in \mathbb{R} | a \le t < b\}$$

$$(a,b] = \{t \in \mathbb{R} | a < t \le b\}$$

$$[a,\infty) = \{t \in \mathbb{R} | a < t\}$$

$$(-\infty,b] = \{t \in \mathbb{R} | t \le b\}$$

1.3 Infinite Unions and Intersections

Definition 1.3.1. Suppose that, for all $n \in \mathbb{N}$, we are given a set A_n .

$$\bigcup_{n=a}^{\infty} A_n = \{x | \text{ there exists a } n \in \mathbb{N}, n \geq a : x \in A_n \}$$

$$\bigcap_{n=a}^{\infty} A_n = \{x | \text{ for all } n \in \mathbb{N}, n \geq a : x \in A_n \}$$

Example 1.1.

$$\bigcup_{n=1}^{\infty} [0, 1 - \frac{1}{n}] = [0, 1)$$

$$\bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 1 + \frac{1}{n}) = \{1\}$$

2 Proofs

2.1 Elements of the propositional calculus

Definition 2.1.1. A statement (proposition) is an assertion that can be either true (T) or false (F).

Remark 1.1. In maths such an assertion usually takes the form: "If such and such assumptions are made, then we can infer such and such conclusions"

Example 1.1. • n = 3

- $(A+B)^2 = A^2 + 2AB + B^2$
- If it n^2 is odd, then n is odd too.
- If it rains, then it is cloudy.
- For all real numbers ≥ 0 there exists a square root.

M1M1 notes David Burgschweiger

Definition 2.1.2. A proof is a chain of statements linked by logical implications (inferences) that establish the truth of the last statement. In the course of the proof one is allowed to "call up"

- assumptions that are made.
- statements proven previously.
- axioms (statements that are generally accepted and never proven).

"Grammar elements" of mathematical statements are Quantifiers:

Type	Sign	Meaning
Existential	∃ ∃ ₁	there exists there exists a unique
Universal	\forall	for all
	:,	such that

Ways to form new statements from old ones:

- If P is a statement then notP "non-P" is the statement which is true if P is false and false if P is true.
- ullet If P and Q are statements then we can form:

Sign	Meaning
$P \wedge Q, P \& Q$	P and Q .
$P \lor Q$	either P or Q or both.
$P \ \underline{\lor} \ Q$	either P or Q but not
	both.
$P \Rightarrow Q$	If P then Q .
$P \Leftrightarrow Q$	P if and only if Q .

Remark 2.1. $P \Rightarrow Q$ means any of the following:

- If P then Q.
- \bullet Q if P.
- P is true only if Q is true.
- P only if Q.
- P is sufficient for Q.
- Q is necessary for P.
- ullet If Q is false then P is false.
- $notQ \Rightarrow notP$

Similarly, $P \Leftrightarrow Q$ means any of the following:

- $(P \Rightarrow Q) \land (Q \Rightarrow P)$
- P if and only if Q. P is necessary and sufficient for Q.

The rigorous definition of $P \wedge Q$, $P \Rightarrow Q$ can be made through a truth table

Definition 2.1.3. $P \wedge Q$ is defined by:

P	Q	$P \wedge Q$
Т	Τ	T
${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

Definition 2.1.4. Also, $P \Rightarrow Q$ is defined by:

P	Q	$P \Rightarrow Q$
Т	Τ	${ m T}$
${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$

Example 4.1. The statement "If $x \in \{n \in \mathbb{N} | n^2 < 0\}$ then x is a sheep." is true as well as the statement "If $x \in \{n \in \mathbb{N} | n^2 < 0\}$ then x is not a sheep."

2.2 Inference rules

Example 0.2. Premise 1. If it is raining then it's cloudy.

Premise 2. It's raining.

Conclusion. It is cloudy.

We can write this more abstractly as follows:

P: it is raining

Q: it is cloudy

In this form:

Premise 1. $P \Rightarrow Q$

 $Premise\ 2.\ P$

Conclusion. Q

This is an example of an inference rule which we write like this:

$$((P \Rightarrow Q) \land P) \Rightarrow Q$$

There are other inference rules

$$\begin{split} ((P\Rightarrow Q)\wedge(Q\Rightarrow R))\Rightarrow(P\Rightarrow R)\\ ((P\vee Q)\wedge\overline{P})\Rightarrow Q\\ (P\wedge Q)\Rightarrow P\\ ((P\Rightarrow Q)\vee(P\Rightarrow R))\Rightarrow P\Rightarrow(Q\vee R)\\ ((P\vee Q)\wedge(P\Rightarrow (P\wedge Q)))\Rightarrow(R\Rightarrow R)\\ ((P\Rightarrow Q)\wedge(P\Rightarrow\overline{Q}))\Rightarrow\overline{P} \end{split}$$

Exercise proof that

$$\forall n \in \mathbb{N}, n^2 \text{ odd} \Rightarrow n \text{ odd}$$