Cognitive Mapping and Planning for Visual Navigation

Saurabh Gupta UC Berkeley

Problem Statement

Robot equipped with a first person camera

Robot navigation in novel environments

Dropped into a novel environment it has not been in before.

Navigate in the environment

Classical Work

 Over-complete - Precise reconstruction of everything is not necessary

- Incomplete

- Nothing is known till it is explicitly observed, fail to exploit the structure of the world.
- Only geometry, no semantics
- Unnecessarily fragile due to separation between mapping and planning.

Mapping

Planning

Contemporary Work

Human-level control through deep reinforcement learning, Mnih et al., Nature 2014

End-to-End Training of Deep Visuomotor Policies, Levine et al., JMLR 2015

Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning, Zhu et al., ICRA 2017

Control of Memory, Active Perception, and Action in Minecraft, Oh et al., ICML 2016

Contemporary Work

Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning, Zhu et al., ICRA 2017

Feed forward architecture without memory.

- Agent can't systematically explore a new environment or backtrack.
- Agent needs experience with a new environment before it can start navigating successfully.

COGNITIVE MAPS IN RATS AND MEN 1

BY EDWARD C. TOLMAN

University of California

Frg. 15

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and the short-cut. J. exp. Psychol., 1946, 36, p. 16.)

Frg. 16

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and short-cut. *J. exp. Psychol.*, 1946, 36, p. 17.)

Numbers of rate which chose each of the paths

Fig. 17

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and the short-cut. J. exp. Psychol., 1946, 36, p. 19.)

Our Approach

Neural network policy for visual navigation

- a) Joint architecture for mapping and planning
- b) Spatial memory with the ability to plan given partial observations
- c) Is end-to-end trainable

Differentiable Mapper

Differentiable Planner

Value Iteration Networks

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel

$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$

If actions move the agent locally, then can be computed using convolutions

$$V_{n+1}(s) = \max_{a} Q_n(s, a) \quad \forall s$$

Max Pooling over channels

Differentiable Planner

$$Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s')$$
 If actions move the agent locally, then can be computed using convolutions

$$V_{n+1}(s) = \max_{a} Q_n(s, a) \quad \forall s$$

Max Pooling over channels

Can be trained using training data

Differentiable Planner

Differentiable Planner (Multi Scale)

Experimental Setup

- Trained and tested in static simulated real-world environments.
- Testing environment is different from training environments.
- Robot:
 - Robot lives in a grid world. Motion is discrete.
 - Robot has 4 macro-actions:
 - Go Forward, Turn left, Turn right, Stay in place.
 - Robot has access to precise egomotion.
 - Robot has RGB or Depth Cameras.
- All models are trained using DAGGER.
- Geometric Task:
 - Goal is sampled to be at most 32 time steps away. Agent is run for 39 time steps.
- Semantic Task:
 - 'Go to a Chair', agent run for 39 time steps.

Stanford Building Parser Dataset

3D Semantic Parsing of Large-Scale Indoor Spaces, Armeni et al. CVPR 2016

Policy Training using DAGGER

Data Mismatch Problem

Mapper Unit Test

Learned mapper provides more complete output

Navigation Results

7.7

14

Our(CMP)

		RGB Input		Depth Input				
Methods	Mean Distance	75th %ile Distance	Success Rate (in %)	Mean Distance	75th %ile Distance	Success Rate (in %)		
Initial	25.3	30	0.7	25.3	30	0.7		
No Image	20.8	28	0.7	20.8	28	0.7		
React 1	20.9	28	8.2	17.0	26	21.9		
React 4	14.4	25	30.4	8.8	18	56.9		
LSTM	10.3	21	53	5.9	5	71.8		

62.5

4.8

78.3

Additional Comparisons

- Larger improvements for long horizon tasks.
- Better Generalization: Smaller drop in performance when transferring between datasets and training on smaller amount of data.
- CMP performs much better on harder examples.

	75 th %ile			Success Rate (in %)			
	Initial	LSTM	CMP	Initial	LSTM	CMP	
Far away goal (run for 79 steps)	58	29	19.2	0.0	58.4	66.3	
Far away goal (run for 159 steps)	58	19	0	0.0	69.0	78.5	
Train on 5 floors	30	5	1	0.7	71.8	78.3	
Train on 1 floor	30	18	10	0.7	58.9	67.9	
Transfer from internal dataset	30	21	15	0.7	48.6	61.1	

Ablations

- Single scale planner works almost as well, except for being slower
- Removing the planning module hurts performance
- Analytical mapper performs worse than a learned mapper

Method	Mean		75 th percentile		Success Rate (in %)	
	RGB	Depth	RGB	Depth	RGB	Depth
Geometric Task						
Initial Distance	25.3		30		0.7	
No Image LSTM	20.8		28		0.7	
Cognitive Mapper and Planner						
Full model	7.7	4.8	14	1	62.5	78.3
Single-scale planning	7.9	4.9	12	1	63.0	79.5
No planning	8.5	4.8	16	1	58.6	79.0
Single-scale planning, analytical map	1=	8.0	-	14	-	62.9

Visualizations

Reading out representation learned by mapper to predict free space.

Visualizations

Value map at 5 snapshots from an episode

Successful Navigations

Backtracking Behaviour

Trajectories

Failure Cases

Tight spaces (quantization artifacts)

Missed pathways

Thrashing

Navigation Results (Semantic Task)

	RGB Input				Depth Input			
Methods	Mean Distance	75th %ile Distance	Success Rate (%)		Mean Distance	75th %ile Distance	Success Rate (%)	
Initial	16.2	25	11.3	-	16.2	25	11.3	
Reactive (4)	14.2	22	23.4		14.2	23	22.3	
LSTM	13.5	20	23.5		13.4	23	27.2	
Our(CMP)	11.3	18	34.2		11.0	19	40.0	

Navigation Results (Semantic Task)

Per category Results

	RGB Input [Success Rate(%)]			Depth Input [Success Rate(%)]		
Methods	Chair Door Table		Chair	Door	Table	
Initial	9.9	11.9	11.7	9.9	11.9	11.7
Reactive (4)	22.0	24.8	21.9	16.9	26.2	20.7
LSTM	17.9	26.9	23.6	23.1	28.9	28.9
Our(CMP)	32.8	38.3	26.4	40.6	40.3	38.2

Trajectory (Semantic Task)

Thank You

Backup Slides

COGNITIVE MAPS IN RATS AND MEN 1

BY EDWARD C. TOLMAN

University of California

Secondly, we assert that the central office itself is far more like a map control room than it is like an old-fashioned telephone exchange. The stimuli, which

outgoing responses. Rather, the incoming impulses are usually worked over and elaborated in the central control room into a tentative, cognitive-like map of the environment. And it is this

Mapper **Unit Test**

Learned mapper provides more

complete output

Learned Mapper

depth RGB

depth

depth

CNN Architecture

ResNet-50

Analytical Projection

ResNet-50 Randomly Initialized

ResNet-50 Initialized using [20]

Method

Modality

Free Space Prediction AP 56.1 74.9

63.4

78.4

Learned Mapper Learned Mapper

Navigation Results: RGB Images

Navigation Results: Depth Images

Relative performance on problems of different hardness

Relative performance on problems of different hardness

Cross Modal Distillation for Supervision Transfer

Discussion

- Does having such structured architectures improve sample complexity when training with reinforcement learning?
- Metric representation for space v/s 'topological' representation for space?
- Analysis of robustness to imperfect odometry, joint training with inferred visual odometry.