

Automatisierung der Kartographierung von Straßenschildern

Abschlusspräsentation
Bachelorarbeit
Philipp Unger

Überblick

- Hintergrund
- Grundidee
- Ziel der Arbeit
- Android Applikation: ,GPStreetCam^e
- Java Programm: ,GPStreetTracker¹
 - Framework zur Objekterkennung
 - Plugin zur Straßenschilderkennung
- Schilderkennung anhand eines Beispiels
- Demonstration des Programms
- Fazit

UNIVERSITÄT PASSAU

OpenStreetMap

- Projekt wurde 2004 gegründet
- Ziel: Erschaffung einer freien Weltkarte
- Es werden geographische Daten über Flüsse, Wälder, Häuser und auch Straßen gesammelt.
- Daten sind lizenzkostenfrei und dürfen von jedem benutzt und weiterverarbeitet werden.
- Um die Rechte an diesen Daten zu erhalten, müssen die geographischen Daten von den Mappern selbst erhoben werden.
- Erfassen der Daten ist ein großer Aufwand und stellt im Straßenverkehr ein erhebliches Risiko dar.

Idee

- Arbeitserleichterung für den OpenStreetMapper
- Automatische Objekterkennung im Straßenverkehr
- Speicherung der GPS-Daten zu den erkannten Objekten

In dieser Arbeit

Aufgabe:

- Automatische Erkennung von Objekten im Straßenverkehr
- Kartographierung der erkannten Objekte

• Lösungsansatz:

- Entwicklung einer Android-Applikation zur Aufzeichnung der gefahrenen Strecke
- Aufzeichnung von Video- und GPS-Daten
- Verarbeitung der gesammelten Daten in einem entwickelten Framework
- Straßenschilderkennung mithilfe eines entwickelten Plugins

Android App: ,GPStreetCam'

- Aufzeichnung der gefahrenen Strecke über die interne Smartphone-Kamera
- Aufzeichnung mit bestmöglicher Videoqualität
- Gleichzeitiges Aufzeichnen von GPS-Daten
- Speicherung der GPS-Daten als GPX-Track
 - Gängiges Format zur Speicherung von Geodaten
 - Einfache Weiterverarbeitung
- Zweckmäßigkeit und einfache Bedienung

Android App: ,GPStreetCam'

- Einfaches Hauptmenü
- **GPS-Verbindung wird** beim Aufruf des Recorders gesucht
- Nach erfolgreicher Verbindung werden dem Benutzer GPS-Daten Angezeigt
- Bei stehender Verbindung kann die Aufnahme beliebig oft gestartet und gestoppt werden
- Aufnahme wird rot angezeigt

Java Framework: ,GPStreetTracker'

- Verarbeitung der erfassten Daten
- Einlesen des aufgezeichneten Videos
- Verarbeitung der einzelnen Frames mit Objekterkennungsalgorithmen
 - Erweiterbarkeit durch Plugins
 - Einheitliches Plugin-Interface
- Speicherung und Kartographierung der erkannten Objekte

Java Framework: ,GPStreetTracker'

Plugin zur Schilderkennung: ,HoughSignRecognition'

- Einfaches Verfahren zur Erkennung von Straßenschildern
- Finden der Regions of Interest über einen Farbfilter und Blob-Erkennung
- Formerkennung mit Hilfe von Hough-Transformation
- Schildverfolgung über einen einfachen Tracking-Algorithmus
- Verwendung von OpenCV-Algorithmen zur Bildverarbeitung

- Extrahiere Frame aus Video
- Umwandlung in HSV-Farbraum

HSV-Raum ermöglicht die Manipulation der Farben über die 3 Kanäle:

Farbe(Hue) – Sättigung(Saturation) – Dunkelstufe(Value)

 Dunkelstufe im HSV-Farbraum wird auf den Maximalwert gesetzt

- Farben werden reiner
- Farbflächen heben sich stärker voneinander ab
- Die schlechten Lichtverhältnisse der Aufnahme wurden ausgeglichen

Schilderkennung

- Anwendung des Farbfilters
- Weichzeichnung des Bildes
- Finden von Blobs

- Weichzeichner verwischt Unregelmäßigkeiten und lässt kleine Störungen verschwinden
- Blob: zusammenhängende Fläche von Pixeln mit der selben Farbinformation
- Bild wird anhand der gefundenen Blobs segmentiert

- Segmentierung des Bildes für die weitere Erkennung
- Zu kleine/große Blobs werden verworfen

- Anwendung einer Kantendetektion (Canny-Edge)
- Anwendung von Hough-Transformation zur Linienfindung
- Um eine gute Linienerkennung zu erreichen muss ein niedriger Threshold gesetzt werden
- Führt zur Erkennung von Geradenbüscheln
- Linien müssen zur weiteren Verarbeitung gefiltert werden

UNIVERSITÄT PASSAU

Schilderkennung

- Filterung der Geraden
- Betrachtung der Schnittwinkel zur Formerkennung
- Schneiden sich die 3 Linien jeweils in einem Winkel von 60°, wurde ein Dreieck erkannt
- In einem Viereck schneiden sich 4 Linien jeweils in einem Winkel von 90°
- In einem Achteck schneidet sich jeweils eine Linie mit der Übernächsten in einem Winkel von 90°
- Achtecke werden oft als Vierecke erkannt

Schilderkennung

- Das Objekt besitzt die gefilterte Farbe
- Und die erkannte Form

Automatisierung der Kartographierung von Straßenschildern

- Mit hoher Wahrscheinlichkeit ein Straßenschild
- Schilder treten in vielen Frames hintereinander auf, was zu vielen Erkennungen führt
- Schilder müssen getrackt werden
- Tracking mittels einfacher Klassifizierung über Form und einfachem Bewegungsschema

- Zwei Tracking-Objekte:
 - Tracking-Punkte
 - Tracking-Linien
- Tracking-Algorithmus:
 - Such zu Linien gehörende Punkte
 - Suche Punkte in einer Linie

- Vorgegebener Radius
- Vorgegebener
 Maximalabstand zur
 Linie
- Vorgegebenes maximales Framealter

Resultat

Es wurden 4 Schilder erkannt

• Frame:

Automatisierung der Kartographierung von Straßenschildern

- Trotz Tracking kann ein Schild mehrfach erkannt werden
- Mehrfacherkennungen selten und überschaubar
- Schilder werden dem Benutzer zur Auswahl und Speicherung angezeigt

Demonstration

Fazit

- Es wurde ein funktionierendes System zur Objekterkennung im Straßenverkehr geschaffen
- Plugin zur schnellen Schilderkennung
 - Skalierbare Erkennungsmethode: Hough-Transformation
 - Erkennung von Schildern mit Formerkennung
 - Erkennung beliebiger Schilder
 Frameverarbeitung
 HoughSignRecognition

Kreis- und Polygonerkennung

Segmentgröße in Pixel²

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT