1 z.B. Widerstand, Teilversuch 4.1

1.1 Versuchsbeschreibung

$$g = \omega^{2} l_{p} \left(1 + \frac{r_{p}^{2}}{2l_{p}^{2}}\right)$$

$$\sigma_{g} = \sqrt{\left(2\omega l_{p} \left(1 + \frac{r_{p}^{2}}{2l_{p}^{2}}\right)\right)^{2} \cdot \sigma_{\omega}^{2} + \left(\omega^{2} \cdot \frac{r_{p}}{l_{p}}\right)^{2} \cdot \sigma_{r}^{2} + \left(\omega^{2} \left(1 - \frac{r_{p}^{2}}{2l_{p}^{2}}\right)\right)^{2} \cdot \sigma_{l}^{2}}$$

$$\kappa = \frac{D_{F} l_{F}^{2}}{mg l_{s} + D_{F} l_{F}^{2}} = \frac{\omega_{sf}^{2} - \omega_{s}^{2}}{\omega_{sf}^{2} + \omega_{s}^{2}}$$

$$J \cdot \ddot{\phi} = -m_{s} \cdot g \cdot l \cdot \phi$$

$$T^{2} = \frac{1}{g} \cdot 4\pi^{2} \cdot \frac{J}{m \cdot l_{s}}$$

$$J_{p} = \frac{1}{2} \cdot m_{p} r_{p}^{2} + m_{p} l_{p}^{2}$$

$$\frac{1}{\kappa} = 1 + \frac{m l_{s} g}{D_{F}} \cdot \frac{1}{l_{F}^{2}}$$

1.2 Versuchsaufbau und Durchführung

Genaue Beschreibung der verwendeten Aufbauten unter Verwendung von Skizzen oder Photos Beschreibung der Messwerterfassungseinstellungen (eingestellte Messzeiten, Messbedingungen, Trigger, Anzahl der Messungen) und der Durchführung der Versuche. (max. 1 Seite)

1.3 Versuchsauswertung

1.3.1 Rohdaten

1 Seite

1.3.2 Transformation der Rohdaten

Transformation der Rohdaten und Modellanpassung. (1 Seite)

1.3.3 Analyse

Analyse der Daten inklusive Fehlerrechnung Residuen und Pullverteilung. (1 Seite)

1.3.4 Fazit

Diskussion der Ergebnisse und Vergleich der erzielten Ergebnisse mit theoretischen Vorhersagen. (1 Seite)