Student Nane: Dhaniswar B.K. And StudentID: NP03A190318 Applying Logistic Regression on Zoo to predict Class type of Animal

In [2]: import pandas as pd import numpy as np importing pandas library and numpy library data = pd.read csv("zoo.csv") data animal_name hair feathers eggs milk airborne aquatic predator toothed backbone breathes venomous fins legs tail domestic cate Out[3]: aardvark antelope bass bear boar wallaby wasp wolf worm wren 101 rows × 18 columns

Reading data and uploading data on programme from csv file using pandas library

```
In [4]: X = data.iloc[ : , :-1]
y = data.iloc[ : , 17: ]
```

Dividing Data on explanetory and responce variable. i.e. eccessing the specific columns using iloc method

In [5]: X

Out[5]:		animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	cat
	0	aardvark	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	
	1	antelope	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	
	2	bass	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	
	3	bear	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	
	4	boar	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	
	96	wallaby	1	0	0	1	0	0	0	1	1	1	0	0	2	1	0	
	97	wasp	1	0	1	0	1	0	0	0	0	1	1	0	6	0	0	
	98	wolf	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	
	99	worm	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	
	100	wren	0	1	1	0	1	0	0	0	1	1	0	0	2	1	0	

101 rows × 17 columns

Displaying the explanetory variable i.e. X data

In [6]: **y**

	class_type
4	1
96	1
97	6
98	1
99	7
100	2

101 rows × 1 columns

Displaying the explanetory variable i.e. X data

```
In [7]: Animal_name =pd.get_dummies(X['animal_name'])
```

In above dataset, animal_name column have all String value so, String values are coverting into numeric value using pandas.get_dummies method.

```
In [8]: X = X.drop("animal_name", axis=1)
```

After coverting into numeric value we have to delete Animal_name column using drop() method.

```
In [9]: X = pd.concat([X,Animal_name], axis=1)
```

After dropping the Animal_column we have to concat replace colimn name with X

In [10]:	Χ																	
Out[10]:		hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	 tuatara	tuna	vampire	vole	vulture	wallaby	wasp
	0	1	0	0	1	0	0	1	1	1	1	 0	0	0	0	0	0	С
	1	1	0	0	1	0	0	0	1	1	1	 0	0	0	0	0	0	C
	2	0	0	1	0	0	1	1	1	1	0	 0	0	0	0	0	0	С
	3	1	0	0	1	0	0	1	1	1	1	 0	0	0	0	0	0	C
	4	1	0	0	1	0	0	1	1	1	1	 0	0	0	0	0	0	C

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	 tuatara	tuna	vampire	vole	vulture	wallaby	wasp
96	1	0	0	1	0	0	0	1	1	1	 0	0	0	0	0	1	С
97	1	0	1	0	1	0	0	0	0	1	 0	0	0	0	0	0	1
98	1	0	0	1	0	0	1	1	1	1	 0	0	0	0	0	0	C
99	0	0	1	0	0	0	0	0	0	1	 0	0	0	0	0	0	C
100	0	1	1	0	1	0	0	0	1	1	 0	0	0	0	0	0	C

101 rows × 116 columns

∢ |

After converting String column into numeric displaying the explanetory variable i.e. X data

```
In [11]: X.shape
Out[11]: (101, 116)
```

Displaying the total row of the X data using shape method

impotring logistic regression from sklearn.linear_model and multi_class='ovr' replace with multi_class='multinomial' because prediction class is more than three and solver='liblinear' is replace with solver='sag' because liblinear is use for binary classification and sag is used for multiclass classification and run time scale of 'sag' is better than liblinear and others.

```
In [13]: from sklearn.model_selection import train_test_split
In [14]: X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.2, random_state = 20)
Sepliting the data into rtain and test importing train test_split from sklearn model, selection.
```

spliting the data into rtain and test importing train_test_split from sklearn.model_selection

```
In [15]: model.fit(X_train, y_train.values.ravel())
```

To run the LogisticRegression we have to use model.fit method

```
In [17]: y predicted = model.predict(X test)
           y predicted
 Out[17]: array([1, 1, 4, 1, 1, 4, 4, 2, 1, 7, 4, 1, 1, 7, 1, 2, 1, 1, 2, 6, 1, 1,
                  7, 1, 1, 6, 2, 1, 1, 1, 1, 7, 1, 2, 4, 1, 4, 4, 1, 1, 1, 3, 2, 6,
                  6, 1, 6, 7, 7, 2, 2, 1, 7, 7, 1, 1, 1, 1, 2, 7, 2, 2, 1, 1, 4, 2,
                  1, 1, 4, 2, 1, 1, 2, 4, 1, 5, 2, 4, 7, 4, 1], dtype=int64)
Displaying the predicted by our model model
           model.score(X test, y test)
 In [18]:
 Out[18]: 0.9012345679012346
Clculating the accuracy of the model which is 90 % using score method
           from sklearn.metrics import confusion matrix
 In [24]:
            fi = confusion matrix(y test, y predicted)
 In [25]: fi
 Out[25]: array([[36, 0, 0, 0,
                  [ 0, 14, 0, 0,
                  [0, 1, 1, 1, 0, 0, 0],
                  [0, 0, 0, 11, 0, 0, 0],
                  [ 1, 0, 0, 0, 1, 0, 1],
                  [0, 0, 0, 0, 0, 4, 3],
                  [ 0, 0, 0, 0, 0, 1, 6]], dtype=int64)
importing confusing matrix from sklearn.metrics to displaying the data in confusing form
           from matplotlib import pyplot as plt
 In [21]:
            %matplotlib inline
           import seaborn as sn
            plt.figure(figsize = (10,7))
            sn.heatmap(fi, annot=True)
            plt.xlabel("Predicted")
            plt.ylabel("Truth")
 Out[21]: Text(69.0, 0.5, 'Truth')
```


plating Predicted vs Truth value by using matplotlib and seaborn

print (pd.DataFrame(confusion matrix(y test, y predict), columns=['Mammal=0','Bird=1','Reptile=2','Fish=3','Amphibia= In [22]: Bird=1 Mammal=0Reptile=2 Fish=3 Amphibia=4 Bug=5 Invertebrate=6 0 36 0 0 0 14 1 3 11 0 0 0 0 0

Displaying confusing matrix with class name

In [23]: from sklearn.metrics import classification_report
 print(classification_report(y_test, y_predict))

	precision	recall	f1-score	support
1	0.97	1.00	0.99	36
2	0.93	1.00	0.97	14
3	1.00	0.33	0.50	3
4	0.92	1.00	0.96	11
5	1.00	0.33	0.50	3
6	0.80	0.57	0.67	7
7	0.60	0.86	0.71	7
accuracy			0.90	81
macro avg	0.89	0.73	0.75	81
weighted avg	0.91	0.90	0.89	81

Calculating the precision, recall, f1-score, accuracy, macro avg and weighted avg using classification_repotr from sklearn.metrics