שיעור 2 חוגים מתמטיים

\mathbb{Z}_m החוג 2.1

m-בחלוקה בחלוקה ב- \mathbb{Z}_m 2.1 הגדרה

נגדיר \mathbb{Z}_m להיות הקבוצה של מספרים שלמים

$$\mathbb{Z}_m = \{0, 1, \dots, m-1\}$$

יחד עם הפעולות ⊕ ו- ⊙ המוגדרות כך:

, $a,b\in\mathbb{Z}_m$ לכל

$$a \oplus b = (a+b)$$
 % m , $a \odot b = ab$ % m .

 \cdot או imes וואילך נסמן חיבור וכפל ב- עם הסימנים הרגילים חיבור וכפל מכאן מכאן ואילך או

דוגמה 2.1

 \mathbb{Z}_{16} -ם 11 imes 13 חשבו את

פתרון:

16 ב- 13 מצא את השארית בחלוקה ב- 143.

$$(11 \times 13)$$
 % $16 = 143$ % $16 = 15$.

 \mathbb{Z}_{16} -ב $11 \times 13 = 15$ לפיכך

\mathbb{Z}_m משפט 2.1 תכונות של הקבוצה משפט

. התנאים מתקיימים מתקיימים $a,b,c\in\mathbb{Z}_m$ לכל

בור: סגירה תחת חיבור:

$$a+b\in\mathbb{Z}_m$$
.

2. חוק החילוף לחיבור:

$$a+b=b+a \ .$$

3. חוק הקיבוץ לחיבור:

$$(a+b) + c = a + (b+c)$$
.

4. קיום איבר הניטרלי ביחס לחיבור:

$$a + 0 = 0 + a = a$$
.

.-a = m-a ז"א m-a הסבר: הסבר.

$$a + (m - a) = (m - a) + a = m = 0$$

 \mathbb{Z}_m -ב

6. סגירה תחת כפל:

 $ab \in \mathbb{Z}_m$.

.7 חוק החילוף לכפל:

ab = ba.

8. חוק הקיבוץ לכפל:

(ab)c = a(bc) .

9. קיום איבר הניטרלי ביחס לכפל:

 $a \times 1 = 1 \times a = a$.

.10 חוק הפילוג:

(a+b)c = (ac) + (bc) .

תכונות 1, 3-5 אומרות כי \mathbb{Z}_m הינו "חבורה מתמטית". יחד עם תכונה 2, הוא חבורה אָבֶּלִית. כל התכונות 1-10 אומרות כי \mathbb{Z}_m הוא חוג מתמטי.

\mathbb{Z}_m -בי ההופכי ב- איבר הגדרה 2.2

עבורו $a' \in \mathbb{Z}_m$ נניח כי האיבר האיבר האיבר $a \in \mathbb{Z}_m$ עבורו

 $a'a \equiv a'a \equiv 1 \mod m$.

כלל 2.1

הם: \mathbb{Z}_{26} של 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25 הטברים של האיברים ההופכיים של

 $1^{-1} = 1$,

 $3^{-1} = 9$,

 $5^{-1} = 21$,

 $7^{-1} = 15$,

 $9^{-1} = 3$,

 $11^{-1} = 19$,

 $15^{-1} = 7$,

 $17^{-1} = 23$,

 $19^{-1} = 11$,

 $21^{-1} = 5$,

 $23^{-1} = 17$,

 $25^{-1} = 25$.

משפט 2.2

נתון היחס שקילות

 $ax \equiv y \mod m$.

 $\gcd(a,m)=1$ אם ורק אם $y\in\mathbb{Z}_m$ לכל $x\in\mathbb{Z}_m$ יש פתרון יחיד

a>m ללא הגבלת כלליות נניח כי

 $\gcd(a,m)=1$ -ו פניח ברך השלילה כי וויד. נוכיח נניח כי יש פתרון יחיד.

 $\gcd(a,m)=d>1$ ננית כי

אם $x_1+\dfrac{m}{d}$ פתרון, $ax\equiv y\mod m$ ל- פתרון, מכיוון ש- $x_1=a^{-1}y$ אם אם $x_1=a^{-1}y$ פתרון ל- $ax\equiv a$ אלם. $ax_1+\dfrac{am}{d}=ax_1+km\equiv ax_1\mod m$

נניח כי הפתרון יחיד.
 $\gcd(a,m)=1$ כי מניח כי gcd(a,m)=1 נניח כי קיים שני פתרונות שונים: מניח כי קיים שני פתרונות שונים: מניח כי קיים שני פתרונות שונים: מ

א"ז

 $ax_1 \equiv y \mod m$, $ax_2 \equiv y \mod m$.

לכן

 $ax_1 \equiv ax_2 \mod m$.

לכן

$$m \mid ax_1 - ax_2$$
.

לפיכך gcd(a,m)=1

$$m\mid x_1-x_2\;,$$

א"ז

$$x_1 \equiv x_2 \mod m \ ,$$

 $x_1 \not\equiv x_2 \mod m$ בסתירה לכך ש-

מסקנה 2.1

יהי $a^{-1} \in \mathbb{Z}_m$ יחיד כך ש $a \in \mathbb{Z}_m$ יהי

 $aa^{-1} \equiv 1 \mod m$

.gcd(a,m)=1 אם ורק אם געם ורק אם געם האיבר האו]כי של ב- a^{-1}

דוגמה 2.2

. הוכיחו שקיים איבר הופכי ל- 11 ב- \mathbb{Z}_{26} ואם כן מצאו אותו

פתרון:

קיים איבר הופכי של $\gcd(26,11)$ אם ורק אם $\gcd(a,m)=1$ אם ורק אם ב- \mathbb{Z}_m אם ורק אם מיים איבר הופכי של אוקליד המוכלל.

$$.a=26,b=11$$
 יהיו

$$r_0 = a = 26$$
, $r_1 = b = 11$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1=2$	$t_2 = 0 - 2 \cdot 1 = -2$	$s_2 = 1 - 2 \cdot 0 = 1$	$r_2 = 26 - 2 \cdot 11 = 4$:i=1 שלב
$q_2=2$	$t_3 = 1 - 2 \cdot (-2) = 5$	$s_3 = 0 - 2 \cdot 1 = -2$	$r_3 = 11 - 2 \cdot 4 = 3$:i=2 שלב
	$t_4 = -2 - 1 \cdot (5) = -7$		$r_4 = 4 - 1 \cdot 3 = 1$:i=3 שלב
$q_4 = 3$	$t_5 = 5 - 3 \cdot (-7) = 28$	$s_5 = -2 - 3 \cdot (3) = -11$	$r_5 = 3 - 3 \cdot 1 = 0$:i=4 שלב

$$gcd(a,b) = r_4 = 1$$
, $x = s_4 = 3$, $y = t_4 = -7$.

$$ax + by = 3(26) - 7(11) = 1$$
.

מכאן

$$-7(11) = 1 - 9(26) \quad \Rightarrow \quad -7(11) = 1 \mod 26 \quad \Rightarrow \quad 19(11) = 1 \mod 26 \quad \Rightarrow \quad 11^{-1} = 19 \mod 26 \; .$$

$\phi(m)$ הגדרה 2.3 פונקצית אוילר

נתון החוג באפר את מספר את מספר הנותנת להיות להיות נגדיר נגדיר נגדיר מספר מספר איברים ב- $m\geq 2$ כאשר כאשר m להיות אשר אירים ל- mאשר ארים ל- \mathbb{Z}_m

(ראו הגדרה 1.7)

\mathbb{Z}_m הפיכת מטריצות בחוג 2.2

הגדרה 2.4 המטריצה של קופקטורים

 $A \in \mathbb{R}^{n imes n}$ תהי

i הקופקטור ה- (i,j) של A מוגדר להיות הדטרמיננטה של המטריצה המתקבלת מ-A ע"י מחיקת שורה ועמודה i, כפול $(i,j)^{i+j}$.

המטריצה A מוגדרת של המטריצה של קופקטורים המטריצה

$$C = \begin{pmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{pmatrix}$$

A של (i,j) -משר ה-קופקטור הקופקטור כאשר

הגדרה 2.5 המטריצה המצורפת

תהי adj(A) שמסומנת n imes n מטריצה מטריצה של A היא מטריצה המצורפת . $A \in \mathbb{R}^{n imes n}$

$$\operatorname{adj}(A) = C^t$$

A אם קופקטורים של המטריצה של כאשר C

משפט 2.3 נוסחת קיילי המילטון

נניח כי $A\in\mathbb{R}^{n imes n}$ מטריצה ריבועית. אם A הפיכה, כלומר אם לומר אז המטריצה ההופכית נתונה ע"י נוסחת קיילי המילטון:

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) ,$$

A באשר $\operatorname{adj}(A)$ המטריצה המצורפת

דוגמה 2.3

מצאו את ההופכית של

$$A = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \in \mathbb{Z}_{26}^{2 \times 2} .$$

פתרון:

$$|A| = 11 \cdot 7 - 8 \cdot 3 = 53 = 1 \mod 26 \ .$$

 \mathbb{Z}_{26} -ב הפיכה הפיכה לכן $\gcd(1,26)=1$

$$\begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{11} = (-1)^{1+1}7 = 7$$

$$\begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{12} = (-1)^{1+2}7 = -3$$

$$\begin{pmatrix} 1 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{21} = (-1)^{2+1} 8 = -8$$

$$\begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{22} = (-1)^{2+2} 11 = 11$$

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} 7 & -3 \\ -8 & 11 \end{pmatrix}$$

$$\operatorname{adj}(A) = C^t = \begin{pmatrix} 7 & -8 \\ -3 & 11 \end{pmatrix}$$

$$A^{-1} = |A|^{-1} \mathrm{adj}(A) \ .$$

$$|A|^{-1} = 1^{-1} = 1 \in \mathbb{Z}_{26}$$

לפיכד

$$A^{-1} = |A|^{-1} \operatorname{adj}(A) = 1 \cdot \begin{pmatrix} 7 & -8 \\ -3 & 11 \end{pmatrix} = \begin{pmatrix} 7 & 22 \\ 23 & 11 \end{pmatrix} \in \mathbb{Z}_{26}^{2 \times 2} \ .$$

דוגמה 2.4

מצאו את ההופכית של

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} .$$

פתרון:

$$|A| = 1 \cdot \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} + 0 \begin{vmatrix} 0 & 0 \\ 2 & 3 \end{vmatrix} + 1 \begin{vmatrix} 0 & 5 \\ 2 & 0 \end{vmatrix} = 1 \cdot 15 + 1 \cdot (-10) = 5$$
.

 \mathbb{Z}_{26} -ב הפיכה הפיכה לכן $\gcd(15,26)=1$

$$\begin{pmatrix} \frac{1 & 0 & 1}{0 & 5 & 0} \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{11} = (-1)^{1+1} \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} = 15 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 0 \\ 2 & 3 \end{vmatrix} = 0 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 5 \\ 2 & 0 \end{vmatrix} = -10 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{21} = (-1)^{2+1} \begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix} = 0 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \Rightarrow C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = 0.$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{31} = (-1)^{3+1} \begin{vmatrix} 0 & 1 \\ 5 & 0 \end{vmatrix} = -5 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0 .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \Rightarrow C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 0 \\ 0 & 5 \end{vmatrix} = 5 \ .$$

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = \begin{pmatrix} 15 & 0 & -10 \\ 0 & 1 & 0 \\ -5 & 0 & 5 \end{pmatrix}$$

$$\operatorname{adj}(A) = C^t = \begin{pmatrix} 15 & 0 & -5 \\ 0 & 1 & 0 \\ -10 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 15 & 0 & 21 \\ 0 & 1 & 0 \\ 16 & 0 & 5 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} \ .$$

$$A^{-1} = |A|^{-1} \operatorname{adj}(A) \ .$$

$$|A|^{-1} = 5^{-1} = 21 \in \mathbb{Z}_{26}$$

לפיכד

$$A^{-1} = |A|^{-1} \mathrm{adj}(A) = 21 \cdot \begin{pmatrix} 15 & 0 & 21 \\ 0 & 1 & 0 \\ 16 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 315 & 0 & 441 \\ 0 & 21 & 0 \\ 336 & 0 & 105 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} \;.$$

$$315 \% \; 26 = 315 - 26 \cdot \left\lfloor \frac{315}{26} \right\rfloor = -23 \equiv 3 \mod 26 \; \Rightarrow \; 315 \equiv 3 \mod 26 \;.$$

$$441 \% \; 26 = 441 - 26 \cdot \left\lfloor \frac{441}{26} \right\rfloor = 25 \; \Rightarrow \; 441 \equiv 25 \mod 26 \;.$$

$$336 \% \; 26 = 336 - 26 \cdot \left\lfloor \frac{336}{26} \right\rfloor = 24 \; \Rightarrow \; 336 \equiv 24 \mod 26 \;.$$

$$105 \% \; 26 = 105 - 26 \cdot \left\lfloor \frac{105}{26} \right\rfloor = 1 \; \Rightarrow \; 105 \equiv 1 \mod 26 \;.$$

לפיכד

$$A^{-1} = \begin{pmatrix} 3 & 0 & 25 \\ 0 & 21 & 0 \\ 24 & 0 & 1 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} .$$

בדיקה:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 0 & 25 \\ 0 & 21 & 0 \\ 24 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 27 & 0 & 26 \\ 0 & 105 & 0 \\ 78 & 0 & 53 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mod 26 \ .$$