Statistical Data Analysis

Exercise 2

December 12, 2022

Here we can define the following variables for each $L \in \{I, H, O\}$, where I stands for the input layer, H stands for the hidden layer and O stands for the output layer. For the index $k \in \mathbb{N}$ the following is assumed $0 \le k \le N_L$.

 N_L is the number of neurons in layer L.

 w_{ii}^L is the weight in layer L for neuron j with the incoming neuron i.

 $O_k^{L'}$ is the output of the k-th neuron in layer $L' \in \{H, O\}$ which is produced by the perceptron with the activation function:

$$O_k^{L'} = sig(x_k^{L'})$$

 $x_k^{L'}$ is the input of the k-th neuron in layer $L' \in \{H, O\}$. If (L-1) represents the previous layer, then:

$$x_k^{L'} = \sum_{n=1}^{N_L} w_{nk}^L O_n^{(L-1)} + b_k^O$$

sig(x) is the sigmoid function of x. It is the activation function for every neuron in the hidden and output layer.

 t_k is the k-th target value

 b_k^L is the bias of the k-th neuron in layer L

Here ...

$$O_k = sig(x_k) \tag{1}$$

Where \dots

$$x_k = \sum_{l=1}^{N_O} w_{lk}^O \cdot O_l^H + b_k \tag{2}$$

And \dots

$$\frac{\delta}{\delta w_{ii}^{O}} sig(x_k) = sig(x_k)(1 - sig(x_k)) \frac{\delta}{\delta w_{ii}^{O}} (x_k)$$
(3)

Because of (1) only O_i is influenced by w_{ji} , so,

$$\frac{\delta}{\delta w_{ji}^{O}} \sum_{k=1}^{N_{O}} (O_{k} - t_{k})^{2} = 2(O_{i} - t_{i}) \frac{\delta}{\delta w_{ji}^{O}} (O_{i} - t_{i}) = 2(O_{i} - t_{i}) \frac{\delta}{\delta w_{ji}^{O}} O_{i}$$
(4)

Because we are looking at a weight w_{ji}^H of the hidden layer, every O_k is influenced by w_{ji}^H , therefore (also (4)):

$$\frac{\delta}{\delta w_{ji}^{O}} \sum_{k=1}^{N_{O}} (O_{k} - t_{k})^{2} = 2 \sum_{l=1}^{N_{O}} (O_{k} - t_{k}) \frac{\delta}{\delta w_{ji}^{O}} (O_{k})$$
 (5)

Only O_i^H is influenced by w_{ji}^H because:

$$O_i^H = sig(x_i^H) \text{ with } x_i^H = \sum_{k=1}^{N_H} w_{li}^O O_l^H + b_i^O$$
 (6)

 \rangle

Also, the following holds:

$$\frac{\delta O_i^H}{\delta w_{ji}^H} = sig(x_i^H)(1 - sig(x_i^H))\frac{\delta}{\delta w_{ji}^H} \sum_{j=1}^{N_H} (O_j^I w_{ji}^H + b_j) = sig(x_i^H)(1 - sig(x_i^H))O_j^I$$
 (7)

...... [Because $\forall l \neq j : \frac{\delta}{\delta w_{ji}^O} w_{lk}^O.O_l^H + b_k^O = 0$]

Now, we have to **determine** $\frac{\delta E}{\delta w_{ji}^H}$

$$\frac{\delta E}{\delta w_{ji}^{H}} = \frac{\delta}{\delta w_{ji}^{H}} \frac{1}{2} \sum_{k \in N_{O}} (O_{k} - t_{k})^{2}$$

$$= \sum_{k \in N_{C}} (O_{k} - t_{k}) * \frac{\delta}{\delta w_{ji}} O_{k}$$
\(\langle \text{from (5)}

$$= \sum_{k \in N_O} (O_k - t_k) * \frac{\delta}{\delta w_{ji}} sig(x_k)$$
 \(\frac{\delta}{t_k} \) \(\frac{\delta}{t_k} \

$$= \sum_{k \in N_O} (O_k - t_k) * sig(x_k) * (1 - sig(x_k)) * \frac{\delta}{\delta w_{ji}} \sum_{l=1}^{N_H} w_{lk}^O O_l^H + b_k^O$$
 (from (2) and (3))

$$= \sum_{k \in N_O} (O_k - t_k) * sig(x_k) * (1 - sig(x_k)) * w_{ik}^O \frac{\delta}{\delta w_{ji}} O_i^H$$
 \(\sqrt{from (6)}\)

$$= \sum_{k \in N_{O}} (O_{k} - t_{k}) * sig(x_{k}) * (1 - sig(x_{k})) * w_{ik} * sig(x_{i}^{H}) * (1 - sig(x_{i}^{H})) * O_{j}^{I} \qquad \langle \text{from (7)} \rangle$$