L1-MASS - FONCTIONS DE 2 VARIABLES

FEUILLE DE TRAVAUX DIRIGÉS N° 6

Analyse vectorielle - Fonctions harmoniques

Enseignant : H. El-Otmany

A.U.: 2013-2014

Exercice $n^{\circ}1$ (Laplacien en coordonnées polaires). On appelle laplacien d'un champ scalaire F de classe C^2 le champ scalaire défini par :

$$\Delta F = \operatorname{div}\left(\overrightarrow{grad}\right)$$

- (a) Montrer que $\Delta F = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$.
- (b) Exprimer $\frac{\partial F}{\partial \rho}(M)$ et $\frac{\partial F}{\partial \theta}(M)$ en fonction de $\frac{\partial F}{\partial x}(M)$ et $\frac{\partial F}{\partial y}(M)$
- (c) Exprimer ΔF en fonction de $\frac{\partial^2 F}{\partial \rho^2}$, $\frac{\partial F}{\partial \rho}$ et $\frac{\partial^2 F}{\partial \theta^2}$

Exercice n°2 (Laplacien en coordonnées sphériques). Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ une fonction de classe \mathbb{C}^2 et $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$ la fonction définie par

$$g(r, \varphi, \theta) = f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi).$$

Montrer que pour tout $(r, \theta, \varphi) \in \mathbb{R}^* \times \{t \in \mathbb{R} \ t \neq k\pi, \ k \in \mathbb{N}\} \times \mathbb{R}$

$$\Delta f = \frac{\partial^2 g}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 g}{\partial \varphi^2} + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 g}{\partial \theta^2}$$

$$+ \frac{1}{r} \frac{\partial g}{\partial r} + \frac{\cot}{r^2} \frac{\partial g}{\partial \varphi}.$$

Faire la même chose pour les coordonnées cylindriques

Exercice n°3 Soit F un champ scalaire de classe C^1 de l'espace. Exprimer $\overrightarrow{grad}F(M)$ en fonction $\frac{\partial F}{\partial o}(M)$, $\frac{\partial F}{\partial o}(M)$ et $\frac{\partial F}{\partial z}(M)$ et des vecteurs du repère cylindrique associé au point M.

Exercice n°4

Soit F le champ de vecteurs du plan défini par $\overrightarrow{F}(M) = \frac{\overrightarrow{OM}}{OM}$

- 1. Calculer $\operatorname{div} \overrightarrow{F}(M)$.
- 2. Le champ de vecteurs \overrightarrow{F} dérive-t-il d'un potentiel?

Exercice n°5

Soit F le champ de vecteurs de l'espace défini par $\overrightarrow{F}(M) = \frac{\overrightarrow{OM}}{OM}$.

- 1. Le champ de vecteurs \overrightarrow{F} dérive-t-il d'un potentiel?
- 2. Calculer $\operatorname{div} \overrightarrow{F}(M)$ et $\operatorname{Rot} \overrightarrow{F}(M)$.

Exercice n°6 Calculer $\frac{\partial Z}{\partial u}$ et $\frac{\partial Z}{\partial v}$ lorsque Z=f(x,y) avec x=uv, $y=\frac{u}{v}$ et f est de classe \mathbb{C}^1 .

Exercice n°7 (Un peu difficile) Soit $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ deux fonctions continues. Montrer que $\{x \in \mathbb{R}^n : f(x) = g(x)\}$ est un sous ensemble fermé de \mathbb{R}^n .

Exercice n°8 Une application $f: U \to \mathbb{R}$, de classe \mathbb{C}^2 sur un ouvert U de \mathbb{R}^n est dite harmonique si et seulement si $\Delta f = 0$. Où $\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}$ est le Laplacien de f.

a) Pour $(x,y) \in \mathbb{R}^2$. Soient z = x + iy, $f(x,y) = \ln \left| e^{ze^{-z}} \right|$. Montrer que f est harmonique sur \mathbb{R}^2 .

b) Montrer que si f est harmonique sur \mathbb{R}^2 et de classe \mathcal{C}^3 , alors $\frac{\partial f}{\partial x}$ et $y\frac{\partial f}{\partial x}-x\frac{\partial f}{\partial y}$ sont harmoniques. c) Vérifier que $f(x,y,z)\longrightarrow \arctan\frac{y}{x}+\arctan\frac{z}{y}+\arctan\frac{x}{z}$ est harmonique sur \mathbb{R}^{*3} .

(peu difficile) Montrer que sur un ouvert que l'on précisera : Exercice n°9

$$\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 1 \text{ si } U = x + \frac{x - y}{y - z}$$