0.1. Lección 4.

0.1.1. El valor absoluto.

El valor absoluto de un número real a se define de la siguiente forma:

$$|a| = \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a < 0. \end{cases}$$

El valor absoluto tiene una interpretación geométrica sobre la recta real como la longitud del intervalo que tiene por extremos 0 y a o lo que es lo mismo la distancia entre los números reales 0 y a. Esto permite definir la distancia entre dos puntos de la recta real como

$$d(a,b) = |b - a|.$$

Proposición 1. Las propiedades del valor absoluto son:

- 1. $|a| \ge 0$. Además, |a| = 0 si y sólo si a = 0.
- 2. |ab| = |a||b|
- 3. (Designaldad triangular) $|a+b| \le |a| + |b|$

A partir de esta definición se obtienen muchas de las propiedades del valor absoluto. Destacamos alguna de ellas:

Proposición 2. Sean $a, b \in \mathbb{R}$

- 1. |-a| = |a|.
- 2. $|a|^2 = a^2$ para todo $a \in \mathbb{R}$.
- $3. \ \sqrt{a^2} = |a|.$
- 4. $|a-b| \ge ||a| |b||$

Vemos la prueba de la última desigualdad. Nótese que puesto que los dos lados de la desigualdad son positivos, es decir, $|a-b| \ge 0$ y $||a|-|b|| \ge 0$ se tiene que

$$|a - b| \ge ||a| - |b|| \Leftrightarrow |a - b|^2 \ge ||a| - |b||^2$$

$$\Leftrightarrow a^2 + b^2 - 2ab \ge |a|^2 + |b|^2 - 2|a||b| \Leftrightarrow -2ab \ge -2|a||b| \Leftrightarrow ab \le |ab| \qquad \checkmark$$

 $\mathbf{2}$

Interpretación del valor absoluto como distancia: Si consideramos la representación de los números reales sobre la recta real, dado $a \in \mathbb{R}$ el valor de |a| representa la distancia del punto a al 0 o lo que es lo mismo la longitud del segmento de extremos 0 a. De la misma forma, para dos números reales $a, b \in \mathbb{R}$, |a - b| representa la distancia entre los puntos a y b, o lo que es lo mismo, la longitud del segmento de extremos a y b. Esta interpretación de valor absoluto será de gran utilidad a lo largo del curso.

Vemos a continuación otras propiedades del valor absoluto que son muy útiles en la resolución de ecuaciones o inecuaciones en las que interviene el valor absoluto:

Proposición 3. $Sea \ r > 0$,

1. Si r > 0,

$$|x| < r \iff -r < x < r$$

.

2. Si r > 0,

$$|x| > r \iff x > r$$
 o $x < -r$

A partir de lo anterior podemos calcular el conjunto de puntos cuya distancia a uno fijo a es menor que r lo cual da lugar a los intervalos o entornos centrados en un punto y de radio r > 0:

- 1. Si r > 0, $|x a| < r \iff a r < x < a + r \iff x \in (a r, a + r)$. Llamaremos a (a r, a + r) intervalo abierto de centro a y radio r.
- 2. Si r > 0, $|x a| \le r \iff a r \le x \le a + r \iff x \in [a r, a + r]$. Llamaremos a [a r, a + r] intervalo cerrado de centro a y radio r.

Por otra parte

$$|x-a| > r \iff x > a+r \text{ o } x < a-r \iff x \in (-\infty, a-r) \cup (a+r, \infty).$$

Algunos ejercicios:

- \boxtimes Resuelve las siguientes desigualdades
 - i) |x| < 1
 - ii) $|3x + 1| \ge 1$
 - iii) $|x^2 x| > 2$
 - $|x^2 x| > 2 \Leftrightarrow x^2 x > 2$
- o $x^2 x < -2$

iv)
$$|x+4| < 2$$

v) $|x+1| < |x-3|$
 $|x+1| < |x-3| \Leftrightarrow (x+1)^2 < (x-3)^2 \Leftrightarrow x^2 + 2x + 1 < x^2 - 6x + 9 \Leftrightarrow 8x \le 8 \Leftrightarrow x \le 1$

vi) $|x-1| |x+2| \le 4$

0.1.2. Cotas superiores e inferiores. Máximo y mínimo. Supremo e ínfimo.

Sea $A \subset \mathbb{R}$ y $A \neq \emptyset$.

Definición 4. Sea $\emptyset \neq A \subset \mathbb{R}$.

- 1. Diremos que $R \in \mathbb{R}$ es una cota superior del conjunto A si para todo $x \in A$ se tiene que $x \leq R$. A está acotado superiormente si hay alguna cota superior de A.
- 2. Diremos que $r \in \mathbb{R}$ es una cota inferior del conjunto A si para todo $x \in A$ se tiene que $x \geq r$. A está acotado inferiormente si hay alguna cota inferior de A.

Definición 5. Sea $A \subset \mathbb{R}$ y $A \neq \emptyset$. Diremos que el conjunto A está acotado si está acotado superior e inferiormente.

Un conjunto acotado tiene infinitas cotas superiores e inferiores. Cuando alguna de dichas cotas pertenece al conjunto hablamos de máximos y mínimos.

Definición 6. Sea $\emptyset \neq A \subset \mathbb{R}$.

- Diremos que R ∈ R es el elemento máximo del conjunto A (o el máximo de A) si R es cota superior del conjunto y pertenece al conjunto, es decir, R ∈ A y x ≤ R para todo x ∈ A.
- 2. Diremos que $r \in \mathbb{R}$ es el elemento mínimo del conjunto A (o el mínimo de A) si r es cota inferior del conjunto y pertenece al conjunto A, es decir $r \in A$ y para todo $x \in A$ se tiene que $x \geq r$.

Todo conjunto finito de números reales tiene máximo y mínimo

Es importante señalar que todo conjunto finito de elementos en \mathbb{R} tiene máximo y mínimo. En efecto, en el caso de dos números $a, b \in \mathbb{R}$ se puede comprobar que

$$max\{a,b\} = \frac{a+b+|a-b|}{2}, \qquad min\{a,b\} = \frac{a+b-|a-b|}{2}$$

Por lo tanto, si tenemos tres números $a, b, c \in \mathbb{R}$ se define $\max\{a, b, c\} = \max\{\max\{a, b\}, c\}$ y $\min\{a, b, c\} = \min\{\min\{a, b\}, c\}$. De hecho, se puede probar por inducción el siguiente resultado:

Proposición 7. Todo conjunto finito de números reales no vacío tiene máximo y mínimo.

Los conjuntos infinitos pueden tener o no máximo y mínimo: Indica si los siguientes conjuntos tienen máximo y mínimo.

1. $A = \mathbb{N}$.

Existencia de máximo y mínimo ; Hay algún número natural $n \in \mathbb{N}$ tal que $k \leq n$ para todo $k \in \mathbb{N}$? Por qué????

1: Existe $n \in \mathbb{N}$ tal que: para todo $k \in \mathbb{N}$ se tiene que $k \leq n$V....F No es lo mismo que:

para todo (\equiv para cada) $k\in\mathbb{N}$ Existe $n\in\mathbb{N}$ tal que se tiene que $k\leq n$

NO 1: Para todo $n \in \mathbb{N}$ existe $k \in \mathbb{N}$ tal que k > n.....V...F

2.
$$A = \{\frac{1}{n}: n \in \mathbb{N}\}$$

i.Es $A = (0, 1]$??

Ejercicios:

 \boxtimes Calcula y representa los siguientes conjuntos e indica si tiene máximo y mínimo.

$$B = \{x \in \mathbb{R} : 6x^2 < x\} \cup \{\frac{1}{k} : k = 1, \dots, 5\}$$

$$C = \{ x \in \mathbb{R} : \sqrt{2x - 1} < x \} \cup \{ \frac{1}{k^2} : k \in \mathbb{N} \ \text{y} \ k \ge 3 \}$$

El supremo y el ínfimo de un conjunto:

Definición 8. Sea $A \subset \mathbb{R}$ $y A \neq \emptyset$.

- 1. Diremos que $\alpha \in \mathbb{R}$ es el supremo de A si es la menor de todas las cotas superiores de A. Es decir, α es el supremo de A si
 - i) α es cota superior de A.
 - ii) Para toda α^* cota superior de A se tiene que $\alpha \leq \alpha^*$.
- 2. Diremos que $\beta \in \mathbb{R}$ es el ínfimo de A si es la mayor de todas las cotas inferiores de A. Es decir, β es el ínfimo de A si
 - i) β es cota inferior de A.
 - ii) Para toda β^* cota inferior de A se tiene que $\beta \geq \beta^*$.

Es sencillo probar el siguiente resultado que muestra la relación entre supremos y máximos.

Proposición 9. El máximo de un conjunto (si existe) es el supremo del conjunto y el mínimo del conjunto (si existe) es el ínfimo del conjunto.

Observación: Sin embargo, el supremo en general no es el máximo. Por ejemplo, el conjunto I = (0, 1) tiene supremo que es 1 y sin embargo no tiene máximo.

0.2. Propiedad de completitud en \mathbb{R} .

El conjunto de los números reales \mathbb{R} tiene la siguiente importante propiedad del supremo o de la completitud:

P13 Propiedad del supremo en \mathbb{R} . Todo conjunto no vacío de números reales acotado superiormente tiene supremo. De la misma forma, todo conjunto no vacío de números reales acotado inferiormente tiene ínfimo.

Observación: Es importante señalar que la propiedad del supremo caracteriza al conjunto de los números reales. De hecho, \mathbb{R} es el único cuerpo totalmente ordenado con la propiedad del supremo, a veces llamada propiedad de completitud. Esta propiedad nos permite probar la existencia de $\sqrt{2}$. Efectivamente, si consideramos el conjunto

$$A = \{ \frac{p}{q} \in \mathbb{Q} : \frac{p}{q} > 0 \text{ y } \frac{p^2}{q^2} < 2 \}$$

Es claro que $A \neq \emptyset$ puesto que $1 \in A$. Además, dicho conjunto está acotado superiormente por 2, ya que si $\frac{p^2}{q^2} < 2$ se tiene que $\frac{p}{q} < 2$ (en otro caso, si $\frac{p}{q} \ge 2$ se tendría $\frac{p^2}{q^2} \ge 4$!!!) Por lo tanto, este conjunto tiene supremo y se puede probar que dicho supremo α verifica $\alpha = \sqrt{2}$. Este ejemplo muestra que el cuerpo de los números racionales $\mathbb Q$ no verifica la propiedad del supremo. En efecto, A es un conjunto en $\mathbb Q$ no vacío y acotado superiormente y que no tiene supremo en $\mathbb Q$ puesto que, como vimos, $\sqrt{2}$ no es un número racional.

0.2.1. Propiedad Arquimediana. Propiedades de densidad de los números racionales y reales.

Enunciamos a continuación una formulación de la propiedad Arquimediana de los números reales. Esta propiedad se puede demostar utilizando la propiedad del supremo y significa que el conjunto $\mathbb N$ no está acotado superiormente.

Propiedad Arquimediana en \mathbb{R} : Si $x \in \mathbb{R}$, entonces existe algún $n \in \mathbb{N}$ tal que n > x.

Demostración. Razonamos por red. al absurdo. Si fuese falso, existiría $x \in \mathbb{R}$ tal que para todo $n \in \mathbb{N}$, $n \leq x$. Por tanto, el conjunto, \mathbb{N} estaría acotado superiormente y es obviamente no vacío. Utilizando la propiedad del supremo en \mathbb{R} existiría $\alpha = \sup(A)$. Se sigue entonces que

$$n \le \alpha$$
 para todo $n \in \mathbb{N}$

Y por lo tanto, para todo $n \in \mathbb{N}$ se tiene que

$$n+1 \le \alpha$$
 para todo $n \in \mathbb{N}$

Por tanto,

$$n < \alpha - 1$$
 para todo $n \in \mathbb{N}$

Esto significa que $\alpha - 1$ es cota superior de \mathbb{N} pero $\alpha - 1 < \alpha$!!! esto no es posible puesto que α era el supremo de A y por tanto la menor cota superior de \mathbb{N} .

10

La propiedad Arquimediana tiene distintas formulaciones equivalentes que vemos a continuación:

Formulaciones de la propiedad Arquimediana:

- Dado $\epsilon > 0$ existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \epsilon$.
- \bullet Dados $x,y\in\mathbb{R}$ con x>0,y>0 existe $n\in\mathbb{N}$ tal que nx>y.
- \bullet El conjunto $\mathbb N$ no está acotado superiormente.

La propiedad Arquimediana de los números reales justifica la existencia de la parte entera de un número real que definimos a continuación:

Definición 10. Sea $x \in \mathbb{R}$, el único número entero n tal que $n \le x < n+1$ se llama parte entera de x y se denota por [x].

Propiedades de densidad de los números reales Los números reales verifican las siquientes propiedades, conocidas como propiedades de densidad:

Proposición 11. (Propiedades de densidad)) Sean $a, b \in \mathbb{R}$,

- 1. Si a < b existe algún número racional $\frac{p}{q}$ tal que $a < \frac{p}{q} < b$.
- 2. Si a < b existe algún número irracional α tal que $a < \alpha < b$.

A partir de esta propiedad se puede probar que cada intervalo de números reales (a, b) contiene infinitos números racionales e irracionales y que no hay *huecos* o *agujeros* en la recta real.

0.2.2. Propiedad de los intervalos encajados.

Sea $\{I_n\}_{n=1}^{\infty}$ una sucesión de intervalos. Se define la unión y la intersección infinita de intervalos de la siguiente forma:

$$\bigcap_{n=1}^{\infty} I_n = \{ x \in \mathbb{R} | x \in I_n \text{ para todo } n \in \mathbb{N} \}$$
$$\bigcup_{n=1}^{\infty} I_n = \{ x \in \mathbb{R} | x \in I_n \text{ para algún } n \in \mathbb{N} \}.$$

La propiedad de los intervalos encajados es la siguiente:

Propiedad de los intervalos encajados en \mathbb{R} :

Sea $\{I_n\}_{n=1}^{\infty}$ una sucesión de intervalos tales que:

- Para todo $n \in \mathbb{N}$ el intervalo I_n es cerrado y acotado, es decir, $I_n = [a_n, b_n]$.
- Los intervalos están encajados, es decir, $I_{n+1} \subset I_n$ para todo $n \in \mathbb{N}$.

Entonces $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Además, si ínf $\{|b_n - a_n|, n \in \mathbb{N}\} = 0$ entonces $\bigcap_{n=1}^{\infty} I_n$ es un único punto.

Observación: La propiedad de los intervalos encajados en \mathbb{R} es equivalente a la propiedad del supremo en \mathbb{R} . Estas propiedades son esenciales en las demostraciones de los principales teoremas del curso. Puesto que la propiedad del supremo no es cierta en \mathbb{Q} tampoco lo es la de los intervalos encajados.

Observación: Nótese que en la propiedad de los intervalos encajados es esencial que los intervalos sean cerrados. Por ejermplo, si $I_n = (0, \frac{1}{n})$ para todo $n \in \mathbb{N}$, la sucesión de intervalos $\{I_n\}_{n=1}^{\infty}$ está encajada y sin embargo $\bigcap_{n=1}^{\infty} I_n = \emptyset$. En efecto, si existiese $x \in [\bigcap_{n=1}^{\infty} I_n]$, se tendría que x > 0 y $x < \frac{1}{n}$ para todo $n \in \mathbb{N}$ lo cual no es posible por la propiedad Arquimediana de los números reales.

0.2.3. Breves nociones sobre Numerabilidad

Definimos conjuntos finitos e infinitos.

Definición 12. Diremos que un conjunto $A \neq \emptyset$ es finito si existe $n \in \mathbb{N}$ y una aplicación biyectiva $\varphi : \{1, 2, ..., n\} \rightarrow A$; A dicho número n se le llama el cardinal de A. Si un conjunto no es finito diremos que es infinito.

Definición 13. Diremos que un conjunto es numerable si es finito o existe una aplicación biyectiva $\varphi : \mathbb{N} \to A$.

En el caso de conjuntos finitos de cardinal N podemos denotar el conjunto de la siguiente forma $\{x_1, x_2, \ldots, x_N\}$. Por otra parte, es importante observar que en el caso de conjuntos finitos si $A \subset B$ y ambos tienen el mismo cardinal entonces coinciden. Esto no es cierto en el caso de conjuntos infinitos. Por ejemplo, si consideramos \mathbb{P} el conjunto de los números naturales pares, es claro que se trata de un conjunto infinito numerable. Efectivamente, basta establecer la función biyectiva $\varphi : \mathbb{N} \to \mathbb{P}$ dada por $\varphi(n) = 2n$, sin embargo, claramenente los conjuntos no coinciden y de hecho $\mathbb{P} \subsetneq \mathbb{N}$.

Aunque no veremos la demostración rigurosa ilustraremos la idea para probar la numerabilidad del conjunto de los números racionales: si el conjunto de los racionales fuese numerable podríamos elaborar una lista con los racionales de la siguiente forma, en cada nivel k elegiríamos los números raciones de la forma $\frac{n}{m}$ que son fracciones irreducibles tales que n + m = k y los opuestos:

$$\begin{array}{l} 1 \to 0 \\ 2 \to 1, -1 \\ 3 \to 2, \frac{1}{2}, -2, -\frac{1}{2} \\ 4 \to 3, \frac{1}{3}, -3, -\frac{1}{3} \\ 5 \to 4, \frac{3}{2}, \frac{1}{4}, -4, -\frac{3}{2}, -\frac{1}{4} \\ \vdots \end{array}$$

De esta forma, una fracción cualquiera $\frac{20}{11}$ estaría en el nivel 31 de una lista infinita.

Veamos ahora la prueba de que el conjunto de los números racionales es numerable. Es importante destacar la propiedad siguiente:

Propiedad: Si tenemos una colección A_1, A_2, A_3, \ldots de conjuntos finitos (o incluso numerables) la unión infinita $\bigcup_{n=1}^{\infty} A_n$ sigue siendo un conjunto numerable.

Como consecuencia de este hecho, se puede probar que el conjunto de los números racionales es numerable.

Proposición: El conjunto de los números racionales es numerable.

Prueba: Consideremos la colección de conjuntos $A_1 = \{0\} = A_2$ y si $n \ge 3$

$$A_n = \{\frac{p}{q}, -\frac{p}{q} : p, q \in \mathbb{N}, p+q = n\}$$

Es claro que cada conjunto A_n es finito, de hecho, $A_3 = \{2, \frac{1}{2}, -2, -\frac{1}{2}\},$

 $A_4 = \{\frac{1}{3}, \frac{2}{2}, 3, -\frac{1}{3}, -\frac{2}{2}, -3, \text{ y así de forma más general},$

$$A_{n+1} = \{\frac{1}{n}, \frac{2}{n-1}, \dots, \frac{n-1}{2}, \frac{n}{1}, \frac{1}{n}, \frac{2}{n-1}, \dots, \frac{n-1}{2}, \frac{n}{1}\}$$

Por otra parte, veamos que $\bigcup_{n=1}^{\infty} A_n = \mathbb{Q}$. La inclusión $\bigcup_{n=1}^{\infty} A_n \subset \mathbb{Q}$ es evidente; ahora si $\frac{p}{q} \in \mathbb{Q}$ y $p \in \mathbb{Z}$, y $q \in \mathbb{N}$, es claro que $\frac{p}{q} \in A_{|p|+q}$.

Por otra parte, hay conjuntos que no son numerables. En efecto, el conjunto de los númros reales no es numerable.

Proposición: El conjunto de los números reales no es numerable.

La idea de la prueba de que el conjunto de los números reales no es numerable es la siguiente: si pudiésemos elaborar una lista con los números reales entre 0 y 1 con su expansión infinita formada por ceros y unos tendríamos algo de este tipo:

y ahora consideramos el número real tal que en el dígito n tiene un 1 si en el número n de la lista el dígito n era un 0 y un 0 si el número n en la lista el dígito n era un 1. Este número no estaría en la lista. Esta es la idea del *método de la diagonal de Cantor* para probar que el conjunto $\mathbb Q$ no es numerable.