

Tablas de Mortalidad de la Población Asegurada Española PASEM 2010

Tablas de Mortalidad PASEM2010

- 1. Introducción
- 2. Compañías participantes
- 3. Descripción de la muestra.
- 4. Análisis dinámico de la muestra
- 5. Metodología para el cálculo de las tasas de mortalidad
- 6. Análisis de mortalidad por año calendario
- 7. Análisis de mortalidad por tramos de sumas aseguradas
- 8. Análisis de mortalidad por años desde el momento de la selección
- 9. Índices de mortalidad
 - 9.1. Tasas brutas de mortalidad
 - 9.2. Suavización de tasas brutas
 - 9.3. Ajustes de los tasas de mortalidad para edades jóvenes/avanzadas con datos poblacionales y extrapolación para edades superiores a los 100 años
- 10. Recargos de seguridad
 - 10.1. Recargos de seguridad por riesgos de desviación
 - 10.2. Recargos de seguridad por riesgo de nivel
 - 10.3. Recargos de seguridad por riesgo de tendencia
 - 10.4. Recargos de seguridad totales
- 11. Comparativa con la tabla GKMF95

Anexo: Tablas finales

1. Introducción

El mercado español en general utiliza las tablas suizas GKMF 95 para el cálculo de prima y reservas del negocio de Vida que involucre riesgo de fallecimiento. El periodo de observación de estas tablas concluyó en 1990. Según la regulación española, las tablas de mortalidad solo pueden ser utilizadas como máximo hasta 20 años después del fin del periodo de observación, por lo que las tablas GKMF95 no pueden ser aplicadas más allá del año 2010. UNESPA solicitó a ICEA la elaboración de unas nuevas tablas de mortalidad no vinculantes sobre la población asegurada española en enero de 2009, encargándose a Munich Re el desarrollo técnico de las mismas, sometidas al cumplimiento de todos los requisitos de exención previstos en el Reglamento 267/2010, de exención de determinadas categorías de acuerdos, decisiones y prácticas concertadas en el sector de seguros. El presente documento recoge los resultados de tal proceso de elaboración.

2. Compañías participantes

Las siguientes compañías participaron en el estudio:

- Allianz
- Aviva
- Axa
- BBVA
- Caifor
- Caser
- Generali
- Mapfre

Las compañías enviaron información de sus carteras de fallecimiento correspondientes al periodo 2003 - 2007.

3. Descripción de la muestra

Se han elaborado tablas exclusivamente para el negocio individual, pues el negocio colectivo muestra un comportamiento incoherente con el puro fenómeno biométrico, debido a la estructura de la línea de negocio; especialmente en lo referido al aseguramiento de la Invalidez Absoluta y Permanente y la Incapacidad Total y Permanente, que provoca una salida temprana del colectivo asegurado por siniestralidad en estas coberturas, antes que en la de Fallecimiento. Adicionalmente, la diversidad en los procesos de selección y suscripción de pólizas lleva a comportamientos atípicos en la medida de siniestralidad dependiente del año de suscripción.

Esta práctica de centrar la elaboración de la tabla en el negocio individual, fue la seguida también en la DAV 2008 T.

La muestra consta de 8.911.875 pólizas con 19.354.690,5 años de exposición, distribuidos en función de los siguientes parámetros:

Pólizas Hombre/Mujer:

Las mujeres representan un 34,8% y los hombres un 65,2% de la muestra.

4 Análisis dinámico de la muestra

Hombre

Año	Cartera al 1.Ene	Entradas	Salidas	Muerte	Venci- mientos	Cancela- ciones	Otros	Cartera al 31.Dic
2003	1.771.606	674.062	285.315	3.008	105.260	176.228	819	2.160.353
2004	2.160.353	800.954	451.688	3.824	139.695	307.025	1.144	2.509.619
2005	2.509.619	856.096	566.553	4.040	151.512	409.754	1.247	2.799.162
2006	2.568.274	884.289	572.908	4.138	178.879	388.713	1.178	2.879.655
2007	2.879.655	800.580	660.373	4.048	234.584	420.670	1.071	3.019.862

Mujer

Año	Cartera al 1.Ene	Entradas	Salidas	Muerte	Venci- mientos	Cancela- ciones	Otros	Cartera al 31.Dic
2003	875.397	356.759	133.517	688	49.376	83.180	273	1.098.639
2004	1.098.639	438.343	217.798	964	69.025	147.429	380	1.319.184
2005	1.319.184	478.580	279.062	951	74.833	202.834	444	1.518.702
2006	1.376.599	497.734	291.461	1.021	91.676	198.355	409	1.582.872
2007	1.582.872	477.475	350.385	1.069	126.151	222.737	428	1.709.962

Observamos un elevado número de nuevas entradas en la cartera de asegurados

Observación: no en todos los años observados el dato de cartera a 1 de enero se deriva del cálculo cartera del año anterior + entradas – salidas, ya que en el caso de algunas compañías, los datos no estuvieron disponibles durante el periodo completo de observación, 2003-2007

5 Metodología para el cálculo de las tasas de mortalidad

El cálculo bruto de la probabilidad de muerte a la edad X, definida como q_x^{bruta} se calcula siguiendo el método de duración de la permanencia, descrito a continuación:

Se utiliza la siguiente notación:

- l_x permanencia de los expuestos de edad x en la cartera durante el período de observación, calculada en base mensual
- t_x Numero de muertes a la edad X durante el periodo de observación
- q_x Probabilidad bruta de muerte de una persona de edad X, calculada sobre los datos observados

A continuacion estimamos la probabilidad de muerte a la edad X como:

$$q_x^{bruta} = t_x/(I_x + 0.5 t_x)$$

6 Análisis de mortalidad por año calendario

Hombre

Año				Muertes esperadas	. /=
calendario	Total de exposiciones	Total muertes	qx	según GKM 95	A/E
2003	1,972,780	3,008	0.00152	6,674	45%
2004	2,331,789	3,824	0.00164	7,602	50%
2005	2,627,554	4,040	0.00154	8,459	48%
2006	2,736,111	4,138	0.00151	8,271	50%
2007	2,944,560	4,048	0.00137	8,890	46%

Mujer

Año calendario	Total de exposiciones	Total muertes	qx	Muertes esperadas según GKF 95	A/E
2003	989,617	688	0.00069	1.609	43%
2004	1,210,355	964	0.00080	1.850	52%
2005	1,408,114	951	0.00068	2.115	45%
2006	1,488,323	1,021	0.00069	2.099	49%
2007	1,645,489	1,069	0.00065	2.324	46%

Se observa un comportamiento uniforme en todos los años de observación escogidos. Por lo tanto el periodo completo desde el 1.1.2003 al 31.12.2007 puede ser considerado para la elaboración de la tabla.

7. Analisis de mortalidad por tramos de sumas aseguradas

Hombre

Tramo de suma asegurada	Exposiciones totales	Muertes totales	Qx	Muertes esperadas según GKM 95	A/E
Desconocido	59.137	84	0,001419	581	14%
1-10,000	4.915.455	8.313	0,001690	18.948	44%
10,001 –					
50,000	5.301.236	8.214	0,001548	14.978	55%
50,001 –					
100,000	1.759.415	1.972	0,001120	4.122	48%
100,001 –					
200,000	531.836	430	0,000808	1.134	38%
>200,000	45.715	45	0,000984	135	33%

Mujer

Tramo de suma asegurada	Exposiciones totales	Muertes totales	Qx	Muertes esperadas según GKF 95	A/E
Desconocido	57.861	46	0,000795	288	16%
1-10,000	2.657.712	2.198	0,000827	4.690	47%
10,001 –					
50,000	2.721.403	1.866	0,000685	3.683	51%
50,001 –					
100,000	1.005.921	477	0,000474	1.041	46%
100,001 –					
200,000	281.969	98	0,000347	271	36%
>200,000	17.031	8	0,000470	22	36%

Tanto para los hombres como para las mujeres, los ratios esperados respecto de los reales para los tres primeros tramos son bastante estables.

Para las sumas aseguradas mayores de 100.000 euros se observa un pronunciado descenso en la mortalidad; sin embargo, se debe tener en cuenta que la base de datos para sumas aseguradas elevadas es bastante escasa.

8. Análisis de mortalidad por años desde el momento de la selección

Han sido analizados los primeros 6 años de selección y comparados respecto a las tablas de mortalidad GKMF 95:

Hombre

Año				Muertes esperadas	
calendario	Total de exposiciones	Total de muertes	qx	según GKM 95	A/E
1	3,737,733	3,588	0.00096	9,849	36%
2	2,688,071	3,701	0.00138	7,233	51%
3	1,867,519	2,735	0.00146	5,256	52%
4	1,252,154	2,018	0.00161	3,732	54%
5	872,892	1,416	0.00162	2,906	49%
6+	2,194,423	5,600	0.00255	10,920	51%

Mujer

Año				Muertes esperadas	
calendario	Total de exposiciones	Total de muertes	qx	según GKF 95	A/E
1	2,068,966	752	0.00036	2,709	28%
2	1,465,827	851	0.00058	1,947	44%
3	997,731	673	0.00067	1,399	48%
4	653,911	506	0.00077	988	51%
5	444,607	340	0.00076	807	42%
6+	1,110,855	1,571	0.00141	2,146	73%

Se observa un efecto de la selección de 5 años (final 6+). El efecto de selección para mujeres aseguradas es algo más largo (9 años), pero, mediante análisis adicionales, se puede establecer un efecto de selección total de 5 años para el negocio individual para ambos sexos agregados. De esta manera, solo las exposiciones y muertes desde el sexto año de póliza en adelante son consideradas para el desarrollo de la tabla. Se decidió no incluir factores de selección en el cálculo de las tasas de mortalidad, ya que tales factores dependen en gran medida del tipo de proceso de selección de las distintas compañías y de los diferentes tipos de productos. Por consiguiente, la no consideración de efectos de selección en la tabla final se puede considerar un margen de seguridad adicional.

9. Tasas de mortalidad

9.1. Tasas brutas de mortalidad

Se muestra una comparativa grafica de los tasas brutas de mortalidad con las tablas GKM 95 en escala logarítmica

Sólo son consideradas pólizas del 6º año en adelante.

Hombre (escala logarítmica):

Podemos observar que para el intervalo entre los años 30 y 70 años la curva es relativamente suave. Para edades muy jóvenes o muy elevadas (90 años y superiores) se observan altas fluctuaciones. Esto es debido al hecho que la base de datos es bastante escasa para estas edades. Por consiguiente, sería recomendable usar datos de población para edades aun más jóvenes o mayores.

Mujer (escala logarítmica)

Para las mujeres aseguradas vemos por un lado una elevada oscilación entre las distintas edades debido a un bajo número de muestras y a la falta de datos sobre edades bajas/altas. Por consiguiente, también para mujeres aseguradas deberían haberse tomado datos de población teniendo en consideración edades más jóvenes y más mayores

9.2 Suavización de tasas brutas

Las tasas brutas se suavizan mediante el algoritmo de Whittaker-Henderson, usado también para la suavización de las tablas de mortalidad alemanas DAV 2008. Los parámetros deben ser escogidos de tal manera que las tasas de mortalidad sean lo suficientemente suaves sin que pierdan las características propias de los datos de mortalidad, como el típico *bathtubshape*.

Al observarse elevadas fluctuaciones para edades jóvenes/ancianas, el intervalo de edad sometido a la suavización se limitó a los siguientes intervalos de edades:

Mujer: rango de edad: 25 – 84 años, parámetros para suavización s=2, g=0.5

Hombre: rango de edad: 15 – 79 años, parámetros para suavización s=2, g=0.5

En las siguientes tablas se observa una muy buena aproximación entre las tasas brutas y las suavizadas.

Hombre- Comparativa de tasas brutas y suavizadas

Mujer- Comparativa de tasas brutas y suavizadas

9.3 Ajuste de qx para edades jóvenes/ancianas con datos poblacionales y extrapolación para edades por encima de los 100 años

Como hemos mencionado anteriormente, para edades jóvenes y ancianas la base de datos no es lo suficientemente grande para ser usada en la elaboración de la tabla. Por eso para estas edades jóvenes y ancianas, la tabla se ajusta tomando datos poblacionales

La mortalidad para la población se obtuvo usando tasas de mortalidad desde el 2003 al 2007 de la población española, publicados por el Instituto Nacional de Estadística (INE).

La tabla usada para los limites de edad se obtiene de la suavización de mortalidad de la media poblacional de 2003 a 2007 con el Algoritmo de Whittaker Henderson (Parámetros: s=2, g=0.1).

Para edades por encima de los 100 años, las tasas de población suavizadas qx para edades entre los 85 y los 95 fueron extrapolados usando un modelo logístico de cuatro parámetros, similar a la metodología utilizada en la tabla DAV 2008T. Los parámetros fueron estimados mediante el uso de rutinas de optimización MATLAB

La mortalidad para edades a partir de los 100 años resultan de la siguiente función:

$$q_x^{log} = 1 - exp\left(-\left(\frac{\beta \cdot \exp(b \cdot x)}{1 + \alpha \cdot \exp(b \cdot x)}\right) + c\right)$$

Con los parámetros:

Parámetro	Hombre	Mujer
A	-2.5041	-3.5016
В	-0.8918	-1.0771
В	-0.0065	-0.0098
С	-1.0440	-0.8128

En análisis adicionales, los intervalos de edad fueron escogidos de tal manera que la transición desde la mortalidad asegurada hasta la mortalidad población fuese lo más suave posible.

La mejor aproximación final se obtuvo de la siguiente manera:

Definimos $q_x^{2^o \text{ orden}}$ la tabla de mortalidad final (sin recargos de seguridad) $q_x^{\text{población}}$ la mortalidad de la población suavizada del INE 2003-2007 y $q_x^{\text{asegurado}}$ las tasas de mortalidad suavizadas de carteras de asegurados y q_x^{log} la extrapolación de las tasas de mortalidad con el modelo logístico:

Mujer:

x<25:
$$q_x^{2^{\circ} \text{ orden}} = q_x^{\text{ población}}$$

25<=
$$x < 30$$
: $q_x^{2^{\circ} \text{ orden}} = (x-25)/5 * q_{x \text{ asegurado}} + (30-x)/5 * q_x^{\text{ población}}$

$$30 \le x < 72$$
: $q_x^{2^{\circ} \text{ orden}} = q_x^{\text{asegeurado}}$

72<=
$$x$$
<75 $q_x^{2^{\circ} \text{ orden}} = (75-x)/3 * q_x^{\text{asegurado}} + (x-72)/3 * q_x^{\text{población}}$

$$75 \le x < 100$$
: $q_x^{2^0 \text{ orden}} = q_x^{\text{ población}}$

100 <=x <= 120:
$$q_x^{2^{\circ} \text{ orden}} = q_x^{\log}$$

121:
$$q_x^{2^0 \text{ orden}} = 1$$

Hombre:

x< 18:
$$q_x^{2^{\circ} \text{ orden}} = q_x^{\text{ población}}$$

$$18 \le x < 65: q_x^{2^0 \text{ orden}} = q_x^{\text{ asegurado}}$$

65<=x<79
$$q_x^{2^{\circ} \text{ orden}} = (79-x)/14 * q_x^{\text{asegurado}} + (x-65)/14 * q_x^{\text{población}}$$

$$79 \le x \le 100$$
: $q_x^{2^0 \text{ orden}} = q_x^{población}$

100 <= x <= 120:
$$q_x^{2^{\circ} \text{ orden}} = q_x^{\log}$$

121:
$$q_x^{2^0 \text{ orden}} = 1$$

10. Recargos de seguridad

Para obtener una tabla de primer orden, se añadieron los recargos de seguridad a las tablas de segundo orden desarrolladas en la sección previa. En las próximas líneas, consideraremos cargas por riesgo aleatorio, riesgo de desviación y tendencia de riesgo.

10.1. Recargo de seguridad por riesgo de desviación

Para el riesgo de desviación (por ejemplo el riesgo de desviaciones aleatorias de la tabla), se calculara un factor independiente del genero y la edad. Según el desarrollo de la tabla de mortalidad alemana DAV2008 T, se tomará una cartera modelo de 200.000 asegurados cuya distribución de la edad se obtendrá de la cartera observada.

La cartera modelo incluye I 132,695 pólizas masculinas y 67,305 femeninas

Para calcular los recargos de seguridad por riesgo de desviación independientes de la edad y del género se utiliza la siguiente notación:

$$l_x^{Mod} = 200,000 \cdot \frac{l_x}{\sum_x l_x + \sum_y l_y}$$
 cartera modelo. v con

Define los hombres supervivientes a la edad X en la

T_x variable binomial de personas muertas a la edad X en la cartera modelo. Para mujeres aseguradas usamos la notación "y". La suma se construye desde los 20 hasta los 65 años

 s^{α} representa el recargo porcentual de seguridad independiente del sexo y la edad para un nivel de seguridad 1- α .

El número de muertes esperadas incluyendo recargos por desviación debería ser el límite superior de un intervalo de nivel 1-α. Por consiguiente debería ser:

$$P(\sum_{x} T_{x} + \sum_{y} T_{y} \leq \sum_{x} l_{x}^{mod} \cdot (1 + s^{\alpha}) \cdot q_{x}^{2.0rd} + \sum_{y} l_{y}^{mod} \cdot (1 + s^{\alpha}) \cdot q_{y}^{2.0rd}) \geq 1 - \infty$$

Análogamente al desarrollo de la tabla DAV 2008 T se obtiene con el $(1-\alpha)$ - cuantil de la distribución de la normal estándar $u_{1-\alpha}$:

$$s^{\alpha} = \frac{\sqrt{\sum_{x} l_{x}^{Mod} \cdot q_{x}^{2.0rd} \left(1 - q_{x}^{2.0rd}\right) + \sum_{y} l_{y}^{Mod} \cdot q_{y}^{2.0rd} \left(1 - q_{y}^{2.0rd}\right)}}{\sum_{x} l_{x}^{Mod} \cdot q_{x}^{2.0rd} + \sum_{y} l_{y}^{Mod} \cdot q_{y}^{2.0rd}} \cdot u_{1-\alpha}}$$

Con este procedimiento se obtiene para un nivel de seguridad del 99% (análogamente al nivel de seguridad para la tabla de invalidez española PEAIMF 2007) un recargo de seguridad por riesgo de desviación de:

$$s^{\alpha} = 11.6\%$$

10.2. Recargo de seguridad por riesgo de nivel

El recargo de seguridad por riesgo de nivel considera las incertidumbres en la estimación de los parámetros, así como en la construcción del modelo de riesgo. Tiene dos componentes. El primer componente cubre los riesgos subyacentes basados en la diferencia entre la cartera modelo y la cartera real de la compañía:

- Diferencias en la estructura de la cartera (estructura de edad, de líneas de negocio) modelo y la real de cada compañía, incluyendo los cambios en el comportamiento de los clientes y el proceso de selección de riesgos.
- Diferencias en el nivel de mortalidad en distintas compañías.
- Fluctuación estadística en la cartera utilizada para la determinación de las tablas.

Adicionalmente debe considerarse el riesgo implícito en las asunciones realizadas al construir la tabla:

- No se consideró la dependencia de la mortalidad respecto de la suma asegurada.
- La omisión de parte de la muestra que presentaba efectos de selección.

La no consideración de los siniestros tardíos.

Para la primera parte del recargo de seguridad por riesgo de nivel, el cual considera errores por cambios estructurales en nuevos negocios, proponemos el 10%.

Para la segunda parte, la cual tiene en cuenta los distintos niveles de mortalidad observados en las diferentes compañías que intervinieron en la muestra, proponemos un 15%. Ambas sugerencias están en línea con los recargos de seguridad aplicados en la tabla de mortalidad alemana DAV 2008 T.

10.3. Recargos de seguridad por riesgo de tendencia

Al no ser considerado por la tabla futuras mejoras en la mortalidad, se da un margen de seguridad implícito. De esta manera, proponemos no añadir un recargo de seguridad explicito por futuros cambios en la mortalidad.

10.4 Recargo de seguridad total

El recargo de seguridad total se calcula según: $(1+s^{\alpha})(1+r)-1$, donde $r = r_1 + r_2 = 10\% + 15\%$ es el recargo de seguridad por riesgo de error.

El recargo de seguridad es de un 39,5%. Por lo tanto la mortalidad final de primer orden es:

$$q_x^{1. \text{ Ord}} = 1,395 q_x^{2. \text{ Ord}}$$

11. Comparativa con GKMF 95

Se ha comparado gráficamente la nueva tabla con la tabla GKMF 95 en escala logarítmica y en el tramo de edades entre los 20 y los 70 años, tramo en el que se concentra la cartera de una compañía de seguros de vida típica.

En el siguiente gráfico se puede observar que en general para edades más jóvenes la qx de la nueva tabla es más baja que la qx de la GKMF95. Para edades desde aproximadamente los 40 hasta los 50 años observamos que para los hombres asegurados la nueva tabla casi alcanza el nivel de la GKM 95, mientras que para las mujeres de edades comprendidas entre los 41 y los 63 años, las tasas de la nueva tabla son más elevadas que las de la tabla GKF 95.

Comparativa con GKMF 95

Anexo – Tablas finales PASEM 2010 Hombres y PASEM 2010 Mujeres.

Edad	Hombre qx	Mujer qx	GKM95	GKF95
0	0,005807	0,004744	0,000000	0,000000
1	0,000418	0,000376	0,000000	0,000000
2	0,000349	0,000307	0,000000	0,000000
3	0,000287	0,000245	0,000000	0,000000
4	0,000236	0,000195	0,000000	0,000000
5	0,000200	0,000157	0,000000	0,000000
6	0,000177	0,000132	0,000000	0,000000
7	0,000165	0,000118	0,000000	0,000000
8	0,000159	0,000113	0,000000	0,000000
9	0,000159	0,000115	0,000000	0,000000
10	0,000169	0,000123	0,000000	0,000000
11	0,000191	0,000134	0,000000	0,000000
12	0,000232	0,000149	0,000000	0,000000
13	0,000294	0,000169	0,000000	0,000000
14	0,000379	0,000194	0,000000	0,000000
15	0,000486	0,000223	0,001579	0,000296
16	0,000604	0,000253	0,001595	0,000332
17	0,000720	0,000279	0,001601	0,000343
18	0,000719	0,000300	0,001595	0,000339
19	0,000732	0,000312	0,001579	0,000330
20	0,000748	0,000318	0,001550	0,000326
21	0,000765	0,000319	0,001509	0,000336
22	0,000785	0,000317	0,001464	0,000361
23	0,000803	0,000315	0,001424	0,000391
24	0,000819	0,000317	0,001388	0,000421
25	0,000830	0,000322	0,001357	0,000451
26	0,000831	0,000301	0,001333	0,000482
27	0,000823	0,000290	0,001314	0,000513
28	0,000807	0,000284	0,001302	0,000545
29	0,000785	0,000282	0,001297	0,000578
30	0,000767	0,000277	0,001300	0,000613
31	0,000755	0,000301	0,001310	0,000649
32	0,000755	0,000328	0,001330	0,000688
33	0,000774	0,000362	0,001359	0,000729
34	0,000818	0,000414	0,001397	0,000773
35	0,000888	0,000478	0,001445	0,000819
36	0,000974	0,000556	0,001505	0,000869
37	0,001070	0,000641	0,001575	0,000922
38	0,001170	0,000732	0,001659 0,001757	0,000976
39 40	0,001274	0,000848	•	0,001030
41	0,001389 0,001530	0,000978 0,001117	0,001869 0,001998	0,001085 0,001139
42	0,001530	0,001117	0,001998	0,001139
43	0,001710	0,001231	0,002143	0,001191
44	0,001927	0,001370	0,002310	0,001242
4 4 45	0,002173	0,001477	0,002497	0,001294
45 46	0,002439	0,001386	0,002711	0,001332
40 47	0,002727	0,001767	0,002933	0,001420
48	0,003393	0,001830	0,003233	0,001602
49	0,003393	0,002017	0,003948	0,001002
50	0,004187	0,002452	0,004309	0,001723
00	0,001101	0,002 102	0,00 1000	0,001071

51	0,004634	0,002725	0,004761	0,002053
52	0,005092	0,003012	0,005266	0,002265
53	0,005572	0,003280	0,005827	0,002506
54	0,006094	0,003517	0,006447	0,002770
55	0,006676	0,003732	0,007129	0,003053
56	0,007300	0,003947	0,007876	0,003350
57	0,007959	0,004169	0,008688	0,003656
_		,		
58	0,008602	0,004393	0,009570	0,003965
59	0,009213	0,004598	0,010524	0,004273
60	0,009793	0,004801	0,011552	0,004575
61	0,010350	0,005030	0,012657	0,004865
62	0,010892	0,005293	0,013842	0,005138
63	0,011451	0,005598	0,015108	0,005508
64	0,012051	0,005984	0,016460	0,006090
65	0,012703	0,006501	0,018071	0,006888
66	0,014059	0,007148	0,020031	0,007906
67	0,015664	0,007931	0,022342	0,009149
68	0,017562	0,008878	0,025002	0,010623
69	0,019807	0,009992	0,028012	0,012332
70	0,022460	0,011267	0,031371	0,014281
71	0,025605	0,012705	0,035081	0,016474
72	0,029354	0,014313	0,039140	0,018916
73	0,033833	0,017578	0,043549	0,021612
74	0,039202	0,021666	0,048308	0,024568
75	0,045637	0,026885	0,053416	0,027786
76	0,053345	0,030905	0,058875	0,031273
77	0,062555	0,035669	0,064683	0,035033
78	0,073532			
_	•	0,041312	0,070840	0,039071
79	0,086547	0,047972	0,077348	0,043392
80	0,096814	0,055808	0,084205	0,048000
81	0,108179	0,064946	0,091412	0,052900
82	0,120688	0,075514	0,098969	0,058097
83	0,134417	0,087641	0,106876	0,063596
84	0,149484	0,101439	0,115132	0,069401
85	0,166049	0,117042	0,123739	0,075517
86	0,184195	0,134524	0,132695	0,081950
87	0,203925	0,153931	0,142000	0,088703
88	0,225150	0,175256	0,151656	0,095781
89	0,247704	0,198432	0,161661	0,103190
90	0,271358	0,223304	0,172016	0,110934
		•		
91	0,295823	0,249693	0,182721	0,119017
92	0,320854	0,277406	0,193775	0,127445
93	0,346242	0,306291	0,205180	0,136223
94	0,371835	0,336236	0,216934	0,145354
95	0,397550	0,367161	0,229038	0,154845
96	0,423336	0,398976	0,241491	0,164699
97	0,449171	0,431530	0,254295	0,174921
98	0,475035	0,464635	0,267448	0,185517
99	0,500918	0,498080	0,280951	0,196490
100	0,526808	0,531667	0,294803	0,207846
101	0,583877	0,559229	0,309006	0,219590
102	0,618746	0,595678	0,323558	0,231725
103	0,654849	0,633277	0,338460	0,244258
104	0,692209	0,672036	0,353712	0,257192
105	0,730838	0,711950	0,369313	0,270533

106	0,770736	0,753003	0,385264	0,284285
107	0,811884	0,795159	0,401566	0,298454
108	0,854241	0,838361	0,418216	0,313042
109	0,897733	0,882519	0,435217	0,328057
110	0,942245	0,927507	0,452567	0,343502
111	0,987609	0,973152	0,470267	0,359382
112	1,000000	1,000000	0,488317	0,375701
113	1,000000	1,000000	0,506717	0,392465
114	1,000000	1,000000	0,525466	0,409679
115	1,000000	1,000000	0,544565	0,427347
116	1,000000	1,000000	0,564014	0,445474
117	1,000000	1,000000	0,583813	0,464064
118	1,000000	1,000000	0,603962	0,483123
119	1,000000	1,000000	1,000000	1,000000
120	1,000000	1,000000		