Задача 1. Проверьте, что функции вида

$$u_k(x) = \left\{ \begin{array}{ll} x+1-\frac{i}{2^{k-1}}, & x \in \left[-1+\frac{i}{2^{k-1}}, -1+\frac{2i+1}{2^k}\right), \\ -x-1-\frac{i+1}{2^{k-1}}, & x \in \left[-1+\frac{2i+1}{2^k}, -1+\frac{i+1}{2^{k-1}}\right), \end{array} \right.$$

где $i=0,1,2,\ldots 2^k-1$, липшицевы на [-1,1], почти всюду дифференцируемы и в точках дифференцируемости удовлетворяют уравнению $|u'(x)|^2=1$ и граничным условиям u(-1)=u(1)=0.

Задача 2. Для каждого $\varepsilon > 0$ решите задачу Дирихле

$$-\varepsilon u_{\varepsilon}'' + |u_{\varepsilon}'|^2 = 1$$
, $u_{\varepsilon}(-1) = u_{\varepsilon}(1) = 0$, $x \in (-1, 1)$.

Найдите предел $u_{\varepsilon}(x)$ при $\varepsilon \to 0$. Что измениться, если в уравнении слагаемое $-\varepsilon u_{\varepsilon}''$ заменить на $+\varepsilon u_{\varepsilon}''$?

Задача 3. Пусть H – гладкая функция на \mathbb{R}^2 , причем H и H_p ограничены на $\mathbb{R} \times [-R,R]$ для всякого R>0,

$$\lim_{|p|\to\infty} \inf_{x} \left(\frac{1}{2} H(x,p)^2 + H_x(x,p)p \right) = +\infty.$$

Рассмотрим гладкие ограниченные (вместе с производными) решения u^{ε} задач Коши

$$u_t^{\varepsilon} + H(x, u_x^{\varepsilon}) = \varepsilon u_{xx}^{\varepsilon}, \quad u^{\varepsilon}(x, 0) = g(x).$$

Используя метод Бернштейна докажите, что

$$|u_t^{\varepsilon}(x,t)| + |u_x^{\varepsilon}(x,t)| \le C,$$

где C не зависит от t, x, ε . Выведите из этой оценки существование такой последовательности $\varepsilon_j \to 0$, что u^{ε_j} сходится равномерно на всяком множестве $[0,T] \times [-R,R]$ к некоторой функции u. Докажите, что u— вязкостное решение.

Задача 4. Пусть g — липшицева функция и

$$u(x,t) = \min_{y} \left\{ \frac{|x-y|^2}{2t} + g(y) \right\}.$$

Проверьте, что u является вязкостным решением уравнения $u_t + \frac{u_x^2}{2} = 0$.

Задача 5. Пусть $u(x) = x \sin(\ln|x|)$ при $x \neq 0$ и u(0) = 0. Докажите, что это липшицева функция, не существует такой функции $\varphi \in C^1(\mathbb{R})$, что $u-\varphi$ имеет в точке x=0 локальный экстремум.

Задача 6.

- (a) Докажите, что $u \in C((0,1))$ является вязкостным супер-решением u'=0 тогда и только тогда, когда функция u неубывающая.
- (b) Докажите, что $u \in C((0,1))$ является вязкостным субрешением -u''=0 тогда и только тогда, когда функция u выпукла. Всегда ли выпуклая функция является вязкостным супер-решением u''=0?

Задача 7. Пусть U — открытое множество в \mathbb{R}^n . Докажите, что всякое вязкостное решение уравнения $\Delta u = 0$ в U является гармонической функцией.

1