國立虎尾科技大學機械與機電工程研究所

期中報告

系統整合設計

System Integration Design

研究生:李玠廷

指導教授:嚴家銘

目錄

目錄		i
圖目錄		ii
作者簡介		iv
前言		v
第一章	使用工具	1
第二章	範例與結果比較	
第三章	心得討論	20
第四章	參考文獻	22
第五章	附錄	22

圖目錄

昌	1	機電光資控制整合	iv
圖	2.	Scicos 類比計算方法模擬 Rossler attractor ··············	3
邑	3.	ScicosLab 數值分析方法模擬 Rossler attractor	3
圖	4.	C+gnuplot 數值分析方法模擬 Rossler attractor	4
昌	5.	Dynamic system - example1 ·····	5
圖	6.	cicos 類比計算方法模擬 examplel 之 M1 位移曲線圖	5
昌	7.	Scicos 類比計算方法模擬 examplel 之 M2 位移曲線圖	5
昌	8.	Scicos 類比計算方法模擬 examplel 之 M3 位移曲線圖	6
昌	9.	Scicos 類比計算方法模擬 example1 ······	6
昌	10.	ScicosLab 數值分析方法模擬 example1 ·······	6
昌	11.	C+gnuplot 數值分析方法模擬 examplel······	7
啚	12.	20-sim 鍵結圖法模擬 example1······	7
啚	13.	Dynamic system - example2	7
啚	14.	Scicos 類比計算方法模擬 example2·····	8
啚	15.	ScicosLab 數值分析方法模擬 example2······	8
啚	16.	C+gnuplot 數值分析方法模擬 example2······	9
啚	17.	20-sim 鍵結圖法模擬 example2······	9
啚	18.	Dynamic system - example3	10
啚	19.	Scicos 類比計算方法模擬 example3······	10
啚	20.	ScicosLab 數值分析方法模擬 example3······	11
啚	21.	C+gnuplot 數值分析方法模擬 example3······	11
啚	22.	20-sim 鍵結圖法模擬 example3······	12
啚	23.	Dynamic system - example4·····	12
啚	24.	Scicos 類比計算方法模擬 example4······	13
啚	25.	ScicosLab 數值分析方法模擬 example4······	13
啚	26.	C+gnuplot 數值分析方法模擬 example4······	14
啚	27.		14
啚	28.	Dynamic system - example5	15
啚	29.	Scicos 類比計算方法模擬 example5·····	15
啚	30.	ScicosLab 數值分析方法模擬 example5······	16
啚	31.	C+gnuplot 數值分析方法模擬 example5······	16
圖	32.		17
啚	33.		17
昌	34.	20-sim 鍵結圖法模擬 example6······	18

圖 35.	Dynamic system - example7·····	18
圖 36.	20-sim 鍵結圖法模擬 example7······	19
圖 37.	20sim-2.3 之 examplel 絕對位置圖形輸出··············	21
圖 38.	20sim-4.0 之 examplel 絕對位置圖形輸出	21

作者簡介

姓名	李玠廷	性別		男	
E-Mail	E-Mail ting911111@gmail.com			9	
最高學歷	國立虎尾科技大學機械設計工程系				
次高學歷	私立大同高級中學機械科				
最高學歷:國	最高學歷:國立虎尾科技大學機械設計工程系				
次高學歷:私立大同高級中學機械科					
休閒興	趣	閱讀書籍、打籃球、音樂賞析			
個	性		樂觀積極的	句上	
参加過的技能檢定名稱:					
全國技能檢定	鉗工丙級				考取

前言

現今許多系統是由諸多領域技術之結合,在整合部分更是所面臨難題之一,由不同領域之整合可創造出不同之系統或產品,如圖 1.機電光資控整合所示,圖中包括了機電工程、軟體工程、電機工程、控制工程等領域,而將各個領域做整合則可開發出新式電動車、綠色環保大樓等產品。

開發產品時盡可能擴大所涵蓋之範圍,納入各領域之考量,在系統所包覆之 範圍內依序相互支援,減少損耗功率,並使資源可重複使用,期系統永續運作, 以延長產品生命週期。

課程中使用了四種工具來模擬系統狀態,包括了 Scicos 類比法、 Scicoslab 數值分析法、C + Runge-kutta 數值分析法、和 20sim-鍵結圖法,利用此四種工具來解課堂範例,並觀察其結果與比對。

圖 1. 機電光資控整合

第一章 使用工具

ScicosLab:

一套自由開源的軟體,是由 Scilab 改名而來。改名是爲了避免與 Scilab 中混淆而做的決定,因爲 INRIA1 不在對其進行開發。早期是由 INRIA1 和 ENPC2 的研發人員來發展 Scilab 。 ScicosLab 是 Metalau 團隊特別開發出來的新軟體,如 Scicos (Scicos 4.3 in ScicosLab 4.3) 和 Maxplus algebra toolbox。

Scicos:

是一個圖形化模組和動態模擬系統。用於 signal processing, systems control, queuing systems, 和研究 physical 與 biological systems。使用者以方塊圖來建立動態模擬系統模組,透過編譯模組轉成可執行碼。

With Scicos you can:

- 圖形化模組,編譯,和動態模擬系統
- 在同模組下結合連續時間和離散時間
- 可從模板選取標準模塊
- 用 C、Fortran、或 Scilab 語言來創建新模塊
- 在 Scilab 環境中以 batch mode 來模擬
- 從 Scicos 模組使用程式碼產生器來生成 C 程式碼
- 使用 Scicos-HIL3 設備來進行即時模擬
- 使用 Scicos-RTAI4 和 Scicos-FLEX 產牛即時硬體控制文件
- 在 Modelica 語言中使用 implicit blocks 發展
- 使用 toolboxes 探索 Scicos 性能

Bond Graph:

是使用圖示表示物理動態系統之方法,它類似知名的方塊圖和信號流圖,最主要的區別在於鍵結圖裡的箭頭是雙向交流之物理能量,而方塊圖和信號流圖是單向的信息流。

在 Bond Graph 模擬法中,共定義了 C (儲位能元件) , I (儲動能元件) , R (阻尼元件) , TF (轉能結) , GY (迴能結) , 1 (共流結) , 0 (共勢結) , Se (勢源) , Sf (流源) 等九種基本的動態系統模擬元件。

¹ Institut National de Recherche en Informatique et en Automatique (法國國立計算機及自動化研究院)

² Ecole Nationale des Ponts et des Chauss'ees (法國國立路橋大學校)

³ Scicos-HIL: Scicos Hardware In The Loop (Scicos硬體迴路)

⁴ Scicos-RTAI: Scicos code generation for hard real time Linux (Scicos產生實時硬體之編碼)

第二章 範例與結果比較

Rossler attractor (羅斯勒吸引子)

Chaotic Dynamics of a Rössler Attractor

The Rössler system [54] given below has chaotic behavior for certain values of the parameters $a,\,b$ and c:

$$\begin{split} \dot{x} &= -(y+z),\\ \dot{y} &= x+ay,\\ \dot{z} &= b+z(x-c). \end{split}$$

This system is modeled in Figure 7.11 with a=b=0.2 and c=5.7. The initial conditions are set to zero. The 2D scope is used to plot y against x. The result is given in Figure 7.12.

Figure 7.11. Scicos implementation of the Rössler attractor.

[54] O. E. Rössler. An equation for continuous chaos. Phys. Lett., 35A:397-398, 1976.

採類比計算方法,以 Scicos 進行模擬:

圖 2. Scicos 類比計算方法模擬 Rossler attractor

採數值分析方法,以 ScicosLab 進行模擬:

圖 3. ScicosLab 數值分析方法模擬 Rossler attractor

Rossler attractor —

圖 4. C+gnuplot 數值分析方法模擬 Rossler attractor

數值比較

0.1 secends				
Scicoslab:	-0.0008335	-0.0000292	0.0152444	
c+gnuplot:	-0.000836	-0.000029	0.015228	
50 secends				
Scicoslab:	1.973459	3.583959	0.0718807	
c+gnuplot:	1.973563	3.583796	0.071883	
100 secends				
Scicoslab:	-0.1898455	-4.0130424	0.0310632	
c+gnuplot:	-0.193913	-4.021986	0.031040	
165.5 secends				
Scicoslab:	4.6029931	-8.1284318	0.0656321	
c+gnuplot:	4.588904	-8.104739	0.065488	
209.5 secends				
Scicoslab:	-2.9381544	0.3679995	0.0246335	
c+gnuplot:	-3.472098	1.944704	0.025917	
259.6 secends				
Scicoslab:	8.7183042	-8.418317	0.2212893	
c+gnuplot:	4.977530	-5.016318	0.084720	
300 secends				
Scicoslab:	4.1561223	-8.1124	0.0595277	
c+gnuplot:	-0.167372	-10.115570	0.028255	

Dynamic system

Example 1:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 5. Dynamic system – example1

若 fa(0)=0,在 x2=-1,x1=x3=0 的起始條件下,試利用類比計算器與數值分析的方法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 6. Scicos 類比計算方法模擬 example1 之 M_1 位移曲線圖

圖 7. Scicos 類比計算方法模擬 example1 之 M_2 位移曲線圖

圖 8. Scicos 類比計算方法模擬 example $1 \ge M_3$ 位移曲線圖

圖 9. Scicos 類比計算方法模擬 example1

採數值分析方法,以 ScicosLab 進行模擬:

圖 10. ScicosLab 數值分析方法模擬 example1

採數值分析方法,以C+Gnuplot 進行模擬:

圖 11. C+Gnuplot 數值分析方法模擬 example1

採 Bond Graph,以 20-sim 進行模擬:

圖 12. 20-sim 鍵結圖法模擬 example1

Example 2:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 13. Dynamic system – example2

若 fa(0)=0,x1=-3 的起始條件下,試利用類比計算器、數值分析的方法、與 鍵結圖模擬法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 14. Scicos 類比計算方法模擬 example2

採數值分析方法,以 ScicosLab 進行模擬:

圖 15. ScicosLab 數值分析方法模擬 example2

採數值分析方法,以C + Gnuplot 進行模擬:

採 Bond Graph,以 20-sim 進行模擬:

圖 17. 20-sim 鍵結圖法模擬 example2

Example 3:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 18. Dynamic system – example3

若 fa(0)=0,x1=-1 的起始條件下,試利用類比計算器、數值分析的方法、與 鍵結圖模擬法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 19. Scicos 類比計算方法模擬 example3

採數值分析方法,以 ScicosLab 進行模擬:

圖 20. ScicosLab 數值分析方法模擬 example3

採數值分析方法,以C + Gnuplot 進行模擬:

圖 22. 20-sim 鍵結圖法模擬 example3

Example 4:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 23. Dynamic system – example4

若 fa(t) = Sine wave ,x = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 24. Scicos 類比計算方法模擬 example4

採數值分析方法,以 ScicosLab 進行模擬:

圖 25. ScicosLab 數值分析方法模擬 example4

採數值分析方法,以C + Gnuplot 進行模擬:

圖 26. C+GnuPlt 數值分析方法模擬 example4

採 Bond Graph,以 20-sim 進行模擬:

圖 27. 20-sim 鍵結圖法模擬 example4

Example 5:

根據下列的動態系統 (所有質量與對應係數皆設爲 1)

圖 28. Dynamic system – example5

若 fa(t) = Sine wave , x_1 = 0 , x_2 = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 29. Scicos 類比計算方法模擬 example5

採數值分析方法,以 ScicosLab 進行模擬:

圖 30. ScicosLab 數值分析方法模擬 example5

採數值分析方法,以C+Gnuplot 進行模擬:

圖 31. C+GnuPlt 數值分析方法模擬 example5

圖 32. 20-sim 鍵結圖法模擬 example5

Example 6:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 33. Dynamic system – example6

若 fa(t) = Sine wave , x_1 = 0 , x_2 = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

圖 34. 20-sim 鍵結圖法模擬 example6

Example 7:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 35. Dynamic system – example7

若 fa(t) = Sine wave , x_1 = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

圖 36. 20-sim 鍵結圖法模擬 example7

第三章 心得討論

在練習範例 Rossler attractor 時使用方塊圖法與數值分析法來做解題,比較結果發現三張結果皆有些許差異性,其中 Scicoc 與 ScicosLab 圖形線段較爲疏散,而使用 C 語言數值方法解微分方程式之圖形線段較爲密集,接著去比較其數值可發現大約在 200 秒左右數值的精確度已低於個位數,初始條件設爲零,則都以中心點出發,如設爲大於零時,則會偏離中心點。

在練習範例 Dynamic system 時使用類比模擬法、數值分析法、與鍵結圖法來做解題,主要比較其物體之位移量,並將各方法求得之結果做比對。鍵結圖法與方塊圖主要不同之一在於傳遞物理能量,鍵結圖法是雙向性傳遞,方塊圖法則是單向性傳遞,所以須考量到鍵結圖法方向與動態系統方向要爲一致。鍵結圖法繪出之圖形是採用絕對座標,而數值分析法則是相對座標,所以爲了使圖形相輔,鍵結圖法做了信號加減之處理,以達到圖形之一致性。

在練習此些範例中理解到不同系統中某些原件有共通之處,如電容與彈簧、電阻 與摩擦等關係,使用鍵結圖法模擬系統時可視爲同一能量,並利用能量鍵定義出「勢」與「流」,來模擬物理系統。

求解課堂範例時使用鍵結圖法比其它方法來的直覺,可以依題目圖形來建構 鍵結圖,不用推倒運動方程式,是用起來也比其他方法方便很多,但也因爲這原 因,在建構鍵結圖時要注意能量的方向,也必滿足能量守恆。

在使用 20 sim 軟體繪製 Example 1 之圖形,且建構之鍵結圖完全一樣,發現 20 sim-2.3 版繪製出來的圖形有誤,檢查其值時 M_1 與 M_3 值都爲 0.3,但繪製出圖形卻不在同一直線上,且 M_2 值爲 0.6 卻比 0.3 還來的低。使用 20 sim-4.0 版來繪製圖形並檢查其值,可以發現值與 20 sim-2.3 版一樣,但輸出結果卻不同,比對後以 20 sim-4.0 版爲正確,之後範例則使用 20 sim-4.0 版來求解。

圖 37. 20sim-2.3 之 example1 絕對位置圖形輸出

圖 38. 20sim-4.0 之 example1 絕對位置圖形輸出

第四章 參考資料

KMOL Blog: http://blog.kmol.info/

ScicosLab Homepage: http://www.scicoslab.org/
Scicos Homepage: http://www-rocq.inria.fr/scicos/

Scilab manual: http://help.scilab.org/docs/5.3.0/en_US/section_4834819644bddf2de

deef2520b2ca171.html

Wikipedia: http://en.wikipedia.org/

第五章 附錄

範例檔案:

 $\underline{\text{http://www.mde.tw/2011data/index.php?Student_data\&act=download\&wid=495\&file} \\ \underline{\text{order=0}}$