Homework 3 Solutions

Due: Friday Oct. 1, by 11:59pm, via Gradescope

- Failure to submit homework correctly will result in a zero on the homework.
- Homework must be in LaTeX. Submit the pdf file to Gradescope.
- Problems assigned from the textbook come from the 5th edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
 - 1. (21 points) Section 3.1 # 4, 20, 32(b)(d).

Solution: Regarding problem # 4

- (a) Notice that x < y is true while $x^2 < y^2$ is false.
- (b) x = -1, y = 0 would work. Infinitely many correct values of x and y.
- (c) This is because x < y and $x^2 < y^2$ are both true.
- (d) x = 8, y = 3 will work. Do you see why?

Here is problem 20

Every positive real number has a positive square root.

Every real number that has a non-positive square root must be non-positive.

Remark. Non-positive is ≤ 0 .

Both parts (b) and (d) are T. They did not ask for a justification. However, you can always see this from the graph of $y = x^2$. Also, about part (d). Note that $|x| > 2 \leftrightarrow x < -2 \lor x > 2$.

2. (9 points) Section 3.2 # 15(b)(d)(e).

Solution: (b) is T. x = -8, -14 - 48 are the only negative values in D and are all even.

- (d) is T. x = 32 is the only value in D where the ones digit is 2. Note that the tens digit is 3.
- (e) is F. x = 36 has a ones digit equal to 6 and the tens digit is a three.
- 3. (9 points) Section 3.2 # 12, 40, 46.

Solution: Problem 12. The proposed negation is incorrect. I find it useful to write the given statement formally. Then negate. Then write the informal negation. The given statement formally reads

 \forall irrational x, \forall rational y, xy is irrational

The formal negation reads

 \exists irrational x, \exists rational y, xy is rational

The informal negation reads:

There exists a rational number and an irrational number such that the product is rational.

Problem 40. $\forall x \in \mathbb{R}$ if x is divisible by 8, then x is divisible by 4.

Problem 46. The not necessary is the negation of a universal necessary. That is,

$$\sim [\forall x, p(x) \text{ is necessary for } q(x)]$$

This simplies to

$$\exists x, \sim p(x) \land q(x)$$

Here we used the fact that

$$\sim (\sim p \rightarrow \sim q) \equiv \sim (\sim (\sim p) \lor \sim q) \equiv \sim (p \lor \sim q) \equiv \sim p \land \sim (\sim q) \equiv \sim p \land q$$

The final answer reads

Someone does not have a large income and is happy

4. (9 points) Section 3.3 #43, 44, 45

Solution: Problem 43.

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x \in \mathbb{R}, (|x - a| < \delta) \land (x \neq a) \land (|f(x) - L| \ge \varepsilon)$$

Remark. I used the red parenthesis simply because I thought it would be easier to read.

Problem 44. Part (a) is T. The only value for which xy = y for all real numbers y is x = 1. Part (b) is F. The ratio $\frac{1}{x}$ is an integer when set x = 1 and x = -1. Part (c) is F. When x = 1, then y = -1, and when x = 2, we must have y = -2.

Problem 45. There is one and only one value in D for which P is T.

Remark. Problem 4 should be worth 15 points (problem 44 should be worth 9 points). Why didn't anyone send me a friendly email \odot

5. (6 points) Section 3.3 # 56, 57.

Solution: Problem 56. This is false. Let $D = \{1, 2\}$ and

P(x): x is even. Q(x): x is odd.

Then $\exists x \in D, P(x) \land Q(x)$ is F while $\exists x \in D, P(x)$ is T and $\exists x \in D, Q(x)$ is T. Therefore

$$(\exists x \in D, P(x)) \land (\exists x \in D, Q(x))$$
 is T

Problem 57. This is false. Using the same example in problem 56

Then $\forall x \in D, P(x) \lor Q(x)$ is T while $\forall x \in D, P(x)$ is F and $\forall x \in D, Q(x)$ is F. Therefore

$$(\forall x \in D, P(x)) \lor (\forall x \in D, Q(x))$$
 is F