3 CHANNEL SMPS JH - 001

제품 규격서

*제품을 사용하시기 전에 반드시 읽고 안전하게 사용하여 주시기 바랍니다.

Designed by Heo Jin Ho

목차

제품 규격

회로도 및 동작원리

추가 설명

제품 자제 리스트

원가 분석표

작업 공정표

제품 사진 및 도면

기판 배치도

제품 규격

항 목	내용	비고
모델명	JH - 001	플라이백 SM PS(타려식)
	AC 85V~265V 50/60HZ	MIDE DAMOES
입력전압	DC 80~240V	WIDE RANGE형
소비전력	21.8W 이하	효율 71% 기준시
출력전압1	+ 40V/0.2A	DC 40V/0.2A
출력전압2	+ 5V/1A	DC + 5V/1A
출력전압3	- 5V/0.5A	DC -5V/0.5A
전압안정도(%)	± 0.3%	오차를 의미
사용주의 온도	-10℃ ~ + 40℃	
사용주의 습도	35~85%	단 결빙되지 않은 상태
외형 SIZE	65 × 50 × 130mm	$W \times H \times D(mm)$
제품 색상	검정색	
케이스 제질	플라스틱(PC)	
	과전류/과전압 보호기능	퓨즈,서미스터/바리스터
보호기능	출력 단락 보호기능	TNY279PN
	감전보호기능	감전 보호용 콘덴서
절연방식	1차 2차 절연	트랜스포머를 사용하여 절연
안전인증	KC인증(추후 예정)	EM I/EM C(B) 기준

● 주의사항

본 제품은 3채널의 직류전압을 출력하는 스위칭 전원(SMPS)장치입니다. 제품을 사용하시기 전에 주의할 사항을 반드시 읽고 사용하여 주시기 바랍니다.

- (1) 입력 전원을 공급하시기 전에 정격 전압 범위 안에 있는지 먼저 확인하여 주시기 바랍니다. 정격전압이란 제품 규격서에 명시된 바와 같이 AC220V±10%에 해당하거나 DC220V±10%의 범위를 말합니다. 이러한 범위를 벗어난 전압을 공급하면 제품이 파손되거나 고장, 오동작을 일으킬 수 있으며 이런 경우 당사는 책임을 지지 않습니다.
- (2) 직류 전압 출력단에 너무 작은 부하를 연결하지 말아 주십시오. 본 제품은 각 채널별 적정 이상의 전류를 흘리는 경우 출력이 자동으로 차단되거나 내부에서 과전류를 감지하여 FUSE를 끊어버리는 경우가 있습니다.
- (3) 전원이 공급된 상태에서 제품의 케이스를 무단으로 열면 감전의 위험이 있습니다.

출력전압 ON

전원을 공급한 후 전원스위치를 ON으로 하고 나서 LED에 점등이 되면 정상적인 전압이 출력됨을 의미합니다.

- 만약 전원 스위치를 ON으로 전환하여도 스위치가 점등이 안 되는 경우 전원 코드가 제대로 꽂혀 있는지 확인해 보시기 바랍니다. 만약 전원 코드가 제대로 꽂혀 있음에도 점등이 안 되는 경우는 내부 FUSE가 끊어진 경우입니 다. 규격에 맞는 FUSE를 교체하고 사용하여 주시기 바랍니다.
- 전원 스위치는 점등이 되었으나 출력표시램프(LED)가 OFF인 경우 이 경우는 출력이 쇼트(단락)되어 있는 경우에 해당하므로 출력단자가 단락되 어 있는지 확인하여 주시기 바랍니다.

만약 단락이 아님에도 출력 표시램프가 OFF인 경우 내부 고장일수 있으므로 케이스를 분해하지 말고 아래의 연락처로 제품을 보내주시면 수리하여 발송하도록 하겠습니다.

■ 제품 SVC 연락처

고객 서비스 센터: 010-3773-1033

고객 서비스를 위한 제품 발송주소: 대전광역시 유성구 문화원로 80

회로도 및 동작원리

• 회로도와 블록 다이어그램

● 동작원리

순서	동작원리
	교류(AC85V ~ 265V)나 직류(DC80V ~ 240V) 전압이 인가되면 바리스타
	로 서지를 막아주고 퓨즈와 서미스터(NTC)는 돌입전류에 의해서 콘덴서 C6가
1	소손 되는 것을 막아줍니다.
	입력신호는 브릿지 다이오드를 거쳐 정류된 후 파이필터에 의해 평활되고 노이
	즈가 제거 되어 직류 전압이 됩니다.
	TNY279 내부의 MOSFET이 132KHz로 스위칭 하는 펄스에 따라서 MOSFET
	가 ON/OFF 스위칭 동작을 하는데 이 때 FET가 ON시 트랜스의 1차측 권선에
2	전류가 흘러 에너지가 축적되고 FET가 OFF 될 시 축척된 에너지가 2차측 권
	선으로 출력됩니다.
	트랜스와 병렬로 스너버 회로를 연결하여 트랜스로 인한 누설 인덕턴스가 FET
	의 스위칭에 의해 발생하는 서지를 스너버 회로로 막아줍니다.
	MOSFET OFF상태일 때 2차로 넘어온 전압은 다이오드를 지나 정류되고 파이
	필터를 거쳐 평활되어 직류 전압(+40V, +5V, -5V)을 얻습니다. 이때 5V에 다이오드와 병렬연결 된 스너버 회로(다이오드 효율 개선용)는 다이오드 trr(역
3	다이오르되 경찰전철 전 드디미 외모(다이오르 묘철 개선용/는 다이오르 데(~ 방향 회복 시간)을 짧게 줄여주는 역할과 ON/OFF시 발생되는 노이즈를 제거
3	하줍니다.
	MIB의의. MOSFET ON 상태가 되면 2차측에 전압이 넘어오지 않아 파이필터의 C에 저
	장된 전압이 방전하여 전압을 유지시킵니다.
	안정적인 전압을 얻기 위해 포토커플러를 이용해 피드백 제어를 합니다.
	TNY279의 EN(UV)핀은 HIGH상태 일 때 정상동작하여 2차측 포토커플러의
4	LED가 OFF 상태여야 합니다. 그러나 출력의 전압이 증가하여 전류가 증가하면
	포토커플러의 LED가 ON되어 TR이 ON이 되면 TNY279의 EN(UV)핀이 0.2V
	로 낮아져 LOW상태가 되므로 동작을 중지합니다.
	 이 상태가 유지되어 2차측 전압이 감소하여 LED로 가는 전류가 감소하면 LED
5	가 OFF되면 EN(UV)핀이 다시 HIGH가 되어 TNY279가 다시 정상적인 작동을
	하게 되어 FET가 ON/OFF 스위칭을 해서 안정적인 전압을 얻습니다.

추가 설명

- SM PS(Switching Mode Power Supply) 특징
- 고주파 제어로 소형화, 경량화 가능
- 효율이 높음
- FET의 ON/OFF 스위칭 방식이라 발열이 작음
- 트랜스 방식에 비해 회로가 복잡
- 높은 피크 전류가 소자에 흘러 고내압의 부품이 많음
- 스위칭 노이즈가 심함
- 플라이백 컨버터(SM PS) 특징
- 최소 부품수로 구성 가능하여 간단하고 가격이 저렴함
- 입력 전압의 범위가 넓음
- 작은 용량의 스위칭 전원에 적합함
- 출력 콘덴서의 리플 전류가 큼
- 트랜스의 권선비로 대략적인 출력 결정 가능
- 감전 보호용 콘덴서

: 고내압용 콘덴서를 사용하여 전원단과 출력단의 그라운드 전위를 같게 만들어 감전 사고를 예방함

● 2차측 정류 다이오드

: 높은 스위칭 주파수(132khz)여서 역방향 회복속도(trr)에 의해 역방향 전압이 순간적으로 통과할 수 있으므로 역방향회복속도(trr)가 빠른 고속 스위칭 다이오드를 선정함.

● 방전용 저항

: 2차의 출력 부분쪽의 저항(R1,R6,R7)은 방전용 저항으로 NO-LOAD 시 콘덴서에 지속적으로 전압이 축적되는 것을 막아 충전된 전압이 방전을 하지 않아 발생하는 문제를 해결함.

<TNY279PN, 포토커플러, 션트 레귤레이터 사진>

● 포토커플러, 션트 레귤레이터 동작설명(PC817,TL431) +C817의 LED는 VF=1.2V의 전압이 걸리면 TR이 ON 됩니다. -TL431은 1번 핀 Ref에 2.5V가 입력 될 시 정전압의 역할을 합니다.

-회로도에서 R1=1K, R2=2.4K Input 이고 Vref=2.5V입니다.

Iref는 매우 작은 마이크로 값 이므로 무시하고 계산을 하면 Vka=3.6V가 나오고 정전압 값은 3.6V가 됩니다.

$$V_{KA} = V_{ref} \left(1 + \frac{R1}{R2} \right) + I_{ref} \times R1$$

(PC817의 LED VF=1.2V) + (TL431 정전압 값 3.6V)=4.8V 4.8V이상의 값이 나오면 LED가 ON되고 이하가 나오면 OFF 됩니다.

-회로도의 R10은 포토커플러에 들어가는 전류의 값을 결정해주는 저항이고 C13은 노이즈 제거용 바이패스 콘덴서입니다.

● TNY279PN 동작 설명(데이터시트 참고)

<고부하시 TNY279 동작>

<저부하시 TNY279 동작>

-TNY279은 전류 제한 모드에서 작동합니다.

-BP/M 에 바이패스 콘덴서를 달아서 전류 제한치를 설정합니다.

그리고 FET 허용 전류치(ISD)를 초과 시 차단기능을 제공합니다.

-활성화되면 오실레이터는 각 사이클이 시작될 때 MOSFET을 켭니다. 전류가 전류 제한(I DRAIN MAX)까지 증가하면 MOSFET이 꺼집니다.

TNY279는 EN/UV 핀을 감지하여 다음 스위칭 사이클을 진행할지 여부를 결정합니다. 사이클이 시작되면 EN/UV 핀이 사이클 중간에 상태를 변경하는 경우에도 항상 사이클을 완료합니다.

TNY279가 ON/OFF되면서 MOSFET의 스위칭 동작을 멈추어 소비전력과 노이즈 발생을 낮추어 줍니다.

높은 부하상태에서는 전류 제한을 가장 높은 값으로 설정합니다. 낮은 부하 상태에서는 전류 제한을 감소된 값으로 설정합니다.

-고부하시에는 출력전압이 증가하여도 출력 쪽으로 가는 전류가 더 많아 LED로가는 전류가 적어져 TNY279가 OFF되는 횟수가 적어지고 높은 듀티비로 안정적인 출력 전압을 만드는 피드백 제어를 합니다.

-저부하시 LED로 가는 전류가 고부하시보다 높아 LED가 자주 ON되어 전압 변화에 민감하게 반응하고 듀티비가 낮아 안정적이지 않습니다.

단 고부하시 고주파로 인한 누설전류가 발생하는데 이것은 PWM 제어를 하므로 일정한 주기를 만들어 해결됩니다.

제품 자제 리스트(BOM)

구분	부품번호	부품규격	수량	비고
	R1	10K	1	1/4W 1%
	R10,R2	1K	2	1/4W 1%
	R3	100K	1	1/4W 1%
저항	R5,R4	100	2	1/4W 1%
	R6,R7,R11	330	3	1/4W 1%
	R8	47	1	1/4W 1%
	R9,R12	2.4K	2	1/4W 1%
코일	L1,L3,L4	10UH	3	TROIDAL
145	L2	1mH	1	TROIDAL
트랜스	T1	MK-8512	1	EE19 CORE
	C1	222(1KV)	1	
	C4	102(1KV)	1	
콘덴서	C5,C12,C13	0.1(MONO)	3	50V
근반시	C3,C2	220UF/50V	2	
	C7,C6	15UF/400V	2	
	C8,C9,C10,C11	220UF/16V	4	
	D1,D3,D4,D5	1N4007	4	
다이오드	D2	DF04G	1	
	D6	LED	1	3 PI
서미스터	F2	5D7	1	
바리스터	RV1	10D471	1	
	ISO1	PC817	1	DIP4
IC	U2	TL431	1	TO-92
	U1	TNY279PN	1	DIP TYPE
스위치	SW 1	TOGGLE SWITCH	1	
퓨즈홀더	F1	FUSE HOLDER	1	
퓨즈	FUSE	250V/1A	1	유리관형
	J1	3.96-4PIN	1	ㄱ 형
커넥터	J2,J9	5267-2P(M)	2	
	J3,J8	5267-2P(F)	2	하네스체결
				형
	 별도품	LED 홀더	1	볼트체결형
전원코드	 별도품	AC 전원코드	1	1.0m
기판	PCB	FR4,1T	1	
케이스	CASE	플라스틱 케이스	1	TW-7-5-13

원가 분석표

구분	부품번호	부품규격	수량	비고	단가	금액
	R1	10K	1	1/4W 1%	6	6
	R10,R2	1K	2	1/4W 1%	6	12
	R3	100K	1	1/4W 1%	6	6
저항	R5,R4	100	2	1/4W 1%	6	12
	R6,R7,R11	330	3	1/4W 1%	6	18
	R8	47	1	1/4W 1%	6	6
	R9,R12	2.4K	2	1/4W 1%	6	12
코일	L1,L3,L4	10UH	3	TROIDAL	40	120
	L2	1mH	1	TROIDAL	50	50
트랜스	Т1	MK-8512	1	EE2218 CORE	2500	2,500
	C1	222(1KV)	1		10	10
	C4	102(1KV)	1		10	10
	C5,C12,C13	0.1(MONO)	3	50V	22	22
콘덴서	C3,C2	220UF/50V	2		25	50
	C7,C6	15UF/400V	2		156	312
	C8,C9,C10,C	220UF/16V	4		25	100
다이오드	D1,D3,D4,D 5	1N4007	4		25	100
나이오드	D2	DF04G	1		15	15
	D6	LED	1	3 PI	16	16
서미스터	F2	5D7	1		30	30
바리스터	RV1	10D471	1		38	38
	ISO1	PC817	1	DIP4	80	80
IC	U2	TL431	1	TO-92	150	150
	U1	TNY279PN	1	DIP 8	1,500	1,500
스위치	SW 1	TOGGLE	1		160	160
퓨즈홀더	F1	SWITCH FUSE HOLDER	1		50	50
퓨즈	FUSE	250V/1A	1		100	100
	J1	3.96-4PIN	1	ㄱ 형	320	320
7111151	J2,J9	5267-2P(M)	2		15	30
커넥터	J3,J8	5267-2P(F)	2	하네스체결 형	25	50

						71
	별도품	LED 홀더	1	볼트체결형	136	136
전원코드	별도품	AC 전원코드	1	1 m	900	900
기판	PCB	FR4,1T	1		20,000	20,000
케이스	CASE	플라스틱 케이스	1	TW-7-5-13	8,000	8,000
재료비합계						34,971
경비		케이스가공비	1		5,000	5,000
제조원가		조립인건비제 외				39,971

- PCB의 경우 샘플제작 (5매 샘플 제작에 10만원 소요되어 개당 2만원이 된 것이며 양산시는 2000원 이하의 가격으로 내려감)
- ■케이스와 케이스 가공비 또한 샘플 단가이므로 양산시 가격하락이 예상됨

작업 공정표

● 기판 조립 작품

작업 순서	작업 내용	주의 사항
	기판 상에 부품 일반 부품 체결	기판 상에 바짝 밀착하게 할 것
	다이오드로	+ - 극성이 일치하게 체결할 것
	브리지 다이오드 D2	+ - 극성이 일치하게 체결할 것
	전해 콘덴서로	+ - 극성이 일치하게 체결할 것
	□ □	핀의 번호가 일치하고 경사지지 않게
부품 장착	트랜스 T1	체결할 것
	IC U1	핀의 번호가 틀리지 않게 체결
	IC ISO1	핀의 번호가 틀리지 않게 체결
	커넥터 J1	기판 상에 바짝 밀착하게 할 것
	LED 커넥터 J8,J9	+ 극성이 일치되게 체결할 것
납땜,(디핑)	부품을 납땜 작업	냉땜이 없고, 쇼트가 없게 할 것
커팅	부품 리드선의 커팅	SHORT,역삽,오삽,미삽확인도 할 것
		TC사용(눈에 들어가지 않게 주의)
세척	기판 패턴의 세척작성	T1,F1,J1등의 플라스틱 기구 물에 TC가
		뭍지 않게 할 것
FUSE장착	F1 퓨즈 홀더에 퓨즈 장착	
전원선 납땜	AC1,AC2에 전원 코드 납땜	
기판고정	기판 ASSY를 케이스에 고정	4개의 볼트를 사용하여 고정 작업
라벨작업	케이스 상단에 라벨작업	테이핑 기능 있는 라벨지 사용함
스위치배선	케이스에 스위치 장착, 고정	고정후 J2 커넥터 체결
LED 배선	케이스에 LED홀더 고정, 장착	고정후 J9에 커넥터 체결
동작검사 작업	동작 검사 작업 수행	아래의 표 2) 참고
케이스 체결	케이스 뚜껑을 체결함	4개의 볼트를 채결하여 작업
완성	제품을 완성	

●검사 작업 순서

작업 순서	작업 내용	주의 사항
전원인가	AC220V 또는 DC 200V인가	쇼트에 주의, 감전에 유의
정류부 검사	TP1 전압 측정	AC시 최대치 309V,평균치 약 200V
발진부 검사	TP2 전압 파형 측정	약 132KHZ의 스위칭 신호
+40V출력 검사	TP3 전압 측정	약 +40V 전압 출력
+5V출력 검사	TP4 전압 측정	약 +5V 전압 출력
-5V출력 검사	TP5 전압 측정	약 -5V 전압 출력
정전압 검사	TP6 전압 측정	약 3V 출력
정전압 검사	TP7 전압 측정	약 2V~2.5V 출력

제품 사진 및 도면

● 제품 사진

● 제품 기판 사진

●케이스 도면

기판 배치도

● 전체 패턴도

● 상부 패턴도

●하부 패턴도

● 상부 인쇄도

