

# Analyse d'incertitude, analyse de sensibilité. Objectifs et principales étapes

#### David Makowski INRA

makowski@grignon.inra.fr

- 1. Définitions et objectifs
- 2. Analyse d'incertitude
- 3. Analyse de sensibilité
- 4. Etude de cas

## 1. Définitions et objectifs

#### Sources d'incertitude dans un modèle



#### Types d'incertitude

#### • Manque de connaissance

Ex: Température optimale pour le développement d'un champignon pathogène

#### • Erreur de mesures / Echantillonnage

Ex: Erreur de mesure de la densité de plantes dans une parcelle agricole

#### • Variabilité des caractéristiques du système

Ex: Variabilité de la « température moyenne journalière » entre années

#### Notation

z = variables d'entrée et paramètres incertains

= facteurs incertains

$$z = (z_1, z_2, \ldots, z_p)$$

Sortie du modèle  $y(z_1, z_2, ..., z_p) = y(z)$ 

## Analyse d'incertitude

Permet de répondre à la question suivante:

« Quel est le niveau d'incertitude dans y(z) qui résulte de l'incertitude dans z?»



### Analyse de sensibilité

Son objectif est de répondre à la question:

« Quelles sont les principales sources d'incertitude parmi  $z_1, z_2, ..., z_p$ ? »



Variance de y(z) = effet de  $z_1$  + effet de  $z_2$  + ...

## Intérêt pratique

#### de l'analyse d'incertitude

- donner des informations sur l'incertitude associée aux prédictions d'un modèle
- optimiser des variables décisionnelles

#### de l'analyse de sensibilité

- identifier les paramètres et les variables d'entrée qui ont une forte influence sur les sorties d'un modèle
- → Important de les connaître avec précision
- identifier les paramètres et les variables d'entrée qui ont une influence moindre sur les sorties
- → Moins important de les connaître avec précision

## Exemples de questions pouvant être traitées par AI ou AS

- Est-il important de mesurer précisément les caractéristiques du sol pour prédire le rendement d'une culture ?
- Probabilité qu'une nouvelle mesure de gestion du stock de langoustines soit plus efficace que la mesure actuelle ?
- Quelle est la probabilité de perdre plus de 0.2 t ha<sup>-1</sup> si la dose d'engrais appliquée sur du blé est réduite de 20%?
- Quels sont les paramètres d'un modèle de culture à estimer en priorité génotype par génotype ?

## Simulations de la biomasse du blé à l'aide du modèle dynamique AZODYN





Jeuffroy et Recous, 1999

## Incertitude associée à 13 paramètres potentiellement génotypiques

| Parameter  | Definition                                        | Range         | Unit               |
|------------|---------------------------------------------------|---------------|--------------------|
| RDTMAXVAR  | Maximal yield                                     | 10.0 - 13.7   | t.ha <sup>-1</sup> |
| Ebmax      | Radiation use efficiency                          | 2.7-3.3       | g.MJ <sup>-1</sup> |
| D          | Ratio of leaf area index to critical nitrogen     | 0.02-0.045    | -                  |
| REM2       | Fraction of remobilized nitrogen                  | 0.5-0.9       | -                  |
| K          | Extinction coefficient                            | 0.6-0.8       | -                  |
| Emax       | Ratio of intercepted to incident radiation        | 0.9-0.99      |                    |
| Tep.flo    | Duration between earing and flowering             | 100-200       | °C.day             |
| R          | Ratio of total to above ground nitrogen           | 1.0-1.5       | -                  |
| P1GMAXVAR  | Maximal weight of one grain                       | 47-65         | mg                 |
| Lambda     | Parameter for calculating nitrogen use efficiency | 25-45         | -                  |
| Mu         | Parameter for calculating nitrogen use efficiency | 0.6-0.9       | -                  |
| DJPF       | Temperature threshold                             | 150-250       | °C.day             |
| NGM2MAXVAR | Maximal grain number                              | 107.95-146.05 | -                  |

#### Quels paramètres doit-on estimer?



#### Coûteux!

#### Indices de sensibilité totale pour les simulations de rendement et de teneur en protéines

#### Rendement

#### Teneur en protéines



Makowski et al. 2005

## 2. Analyse d'incertitude

## Analyse d'incertitude

Permet de répondre à la question suivante:

« Quel est le niveau d'incertitude dans y(z) qui résulte de l'incertitude dans z ? »



### Application à un modèle très simple

Equation:  $y(z_1, z_2) = z_1 + 2 z_2$ 

Incertitude sur  $z_1$  et  $z_2$ :  $z_1 \sim N(20, 16)$  et  $z_2 \sim N(60, 64)$ 





Question: Réaliser une analyse d'incertitude

### Application à un modèle très simple

« Vous devez déterminer la distribution de probabilité de  $y(z_1, z_2)$  à partir des distributions de  $z_1$  et  $z_2$ ».

#### Propriétés:

Si  $z_1$  et  $z_2$  sont deux variables indépendantes de distribution Gaussienne alors

 $A z_1 + B z_2$  suit une distribution Gaussienne

$$E(A z_1 + B z_2) = A E(z_1) + B E(z_2)$$

$$var(A z_1 + B z_2) = A^2 var(z_1) + B^2 var(z_2)$$

## Application à un modèle très simple

Pour ce modèle simple, on peut déterminer l'expression exacte de  $y(z_1,z_2)$ :

$$y(z_1,z_2) \sim N(140, 272)$$



#### En général, c'est plus dur!

- Equations plus complexes, relation non linéaire entre y(z) et z
- $\rightarrow$  Pas possible de déterminer l'expression analytique de la distribution de y(z)

- La distribution de z n'est pas toujours connue
- → Choix subjectif

- Temps de calcul parfois long avec certains modèles
- → Le nombre de simulations est limité

## Quatre étapes

- 1. Définir les distributions de  $z_1, ..., z_p$ .
- 2. Générer des échantillons à partir des distributions définies à l'étape 1
- 3. Calculer y(z) pour chaque série de  $z_1, ..., z_p$  générée
- 4. Estimer la distribution de y(z)

## Étape 1. Définition des distributions

Les distributions de probabilité des facteurs incertains (paramètres ou variables d'entrée) peuvent être définies en utilisant :

• La littérature scientifique et l'expertise

• Des séries de mesures (série climatique...)

• Les valeurs des paramètres estimées

## Étape 1. Définition des distributions

#### Exemple:

d'après un article publié par Jeuffroy et Recous en 1999 dans EJA, l'efficacité d'utilisation de rayonnement intercepté varie entre **1.09 et 3.8 g.MJ**<sup>-1</sup> pour le blé





### Parfois, plusieurs choix sont possibles

- 1. Définition des distributions de  $z_1, ..., z_p$ .
- 2. Génération d'échantillons à partir des distributions définies à l'étape 1.

# Étape 2. Génération d'échantillons à partir des distributions de $z_1$ , ..., $z_p$

- Il faut générer suffisamment de valeurs de  $z_1, z_2, ..., z_p$
- Différentes méthodes d'échantillonnage peuvent être utilisées:
  - échantillonnage aléatoire
  - échantillonnage en hypercube latin

- . . .

• En pratique, on utilise un logiciel pour générer N valeurs de  $z_1, z_2, ..., z_p$  (ex: N=20000).

# Étape 2. Génération d'échantillons à partir des distributions de $z_1$ , ..., $z_p$



On génère un échantillon de valeurs de Eb issues de sa distribution :

1.2, 1.9, 2.1, 2.2, 2.3, 2.5, 2.7, 3.1, 3.7...

# Étape 2. Génération d'échantillons à partir des distributions de $z_1$ , ..., $z_p$

|         | $\mathbf{z}_1$ | $\mathbf{z}_2$ | •••   | Z <sub>p</sub> |
|---------|----------------|----------------|-------|----------------|
| Série 1 | 1.21           | 0.85           | •••   | 0.99           |
| Série 2 | 1.97           | 0.72           | • • • | 0.92           |
|         | •••            | •••            | •••   | •••            |
| Série N | 3.70           | 0.75           | • • • | 0.91           |

- 1. Définition des distributions de  $z_1, ..., z_p$ .
- 2. Génération d'échantillons à partir des distributions définies à l'étape 1.
- 3. Calcul de y(z) pour chaque série  $z_1, ..., z_p$  générée.

## Étape 3. Calcul de y(z) pour chaque série de $z_1$ , ..., $z_p$ générée

• La difficulté de cette étape dépend du niveau de complexité du modèle.

• Le temps de calcul peut être long avec certains modèles particulièrement complexes.

Étape 3. Calcul de y(z) pour chaque série  $z_1, ..., z_p$  générée

|         | $\mathbf{z}_1$ | $\mathbf{z}_2$ | ••• | Z <sub>p</sub> | y(z) |
|---------|----------------|----------------|-----|----------------|------|
| Série 1 | 1.21           | 0.85           | ••• | 0.99           | 90.9 |
| Série 2 | 1.97           | 0.72           | ••• | 0.92           | 95.2 |
|         | •••            | •••            | ••• | •••            | •••  |
| Série N | 3.70           | 0.75           | ••• | 0.91           | 81.5 |

- 1. Définition des distributions de  $z_1, ..., z_p$ .
- 2. Génération d'échantillons à partir des distributions définies à l'étape 1.
- 3. Calcul de y(z) pour chaque série  $z_1, ..., z_p$  générée.
- 4. Approximation de la distribution de y(z).

## Étape 4. Approximation de la distribution de y(z)

- Décrire les N valeurs de y(z) calculées à l'étape 3.
- Étape souvent assez facile.
- Différentes approches possibles
  - calcul de la moyenne et de la variance,
  - calcul de quantiles (quartiles, déciles...),
  - histogramme,
  - fonction de distribution cumulée,
  - box plot ...

### Application au modèle simple

• Approche en 4 étapes pas nécessaire pour ce modèle car on peut calculer analytiquement la distribution de  $y(z_1, z_2)$ 

• On applique cette approche à ce modèle uniquement pour montrer qu'elle marche bien.

## Application au modèle simple Etape 1

Equation :  $y(z_1, z_2) = z_1 + 2 z_2$ 

Incertitude sur  $z_1$  et  $z_2$ :  $z_1 \sim N(20, 16), z_2 \sim N(60, 64)$ 





# Application au modèle simple Etape 2

- N valeurs de  $z_1$  et  $z_2$  sont générées
- Plusieurs valeurs de N sont considérées successivement

$$N = 10$$

$$N = 100$$

$$N = 1000$$

#### Application. Etape 2. N=10









38

#### Application. Etape 2. N=100









#### Application. Etape 2. N=1000









40

# Application. Etape 3

| $z_1$ | $z_2$ | $y(z_1,z_2)$ |
|-------|-------|--------------|
| 16.83 | 59.30 |              |
| 23.18 | 52.33 |              |
| 16.43 | 57.85 |              |
| 20.45 | 49.25 |              |
| 25.48 | 66.11 |              |
| 25.67 | 55.53 |              |
| 24.67 | 61.55 |              |
| 17.88 | 52.58 |              |
| 23.69 | 58.54 |              |
| 17.69 | 47.38 |              |

# Application. Etape 3

| $z_1$ | $z_2$ | $y(z_1,z_2)$ |
|-------|-------|--------------|
| 16.83 | 59.30 | 135.43       |
| 23.18 | 52.33 | 127.84       |
| 16.43 | 57.85 | 132.13       |
| 20.45 | 49.25 | 118.95       |
| 25.48 | 66.11 | 157.71       |
| 25.67 | 55.53 | 136.73       |
| 24.67 | 61.55 | 147.77       |
| 17.88 | 52.58 | 123.04       |
| 23.69 | 58.54 | 140.78       |
| 17.69 | 47.38 | 112.45       |

### Application. Etape 4. N=1000



# Application. Etape 4

|             | Mean   | Variance | Standard-<br>deviation |
|-------------|--------|----------|------------------------|
| N = 10      | 133.28 | 183.85   | 13.56                  |
| N = 100     | 138.71 | 294.96   | 17.17                  |
| N = 1000    | 141.34 | 258.23   | 16.07                  |
| N = 5000    | 139.72 | 272.51   | 16.51                  |
| N = 7000    | 139.90 | 269.45   | 16.42                  |
| True values | 140    | 272      | 16.49                  |

# 3. Analyse de sensibilité

# Analyse de sensibilité locale ou Analyse de sensibilité globale ?

#### AS locale

Variation de y(z) « autour »  $z_0$ 



#### AS globale

Variation globale de y(z) quand z varie dans son domaine d'incertitude



#### Intérêt pratique de l'analyse de sensibilité

- i) Identifier les paramètres et les variables d'entrée qui influencent fortement les sorties du modèle
- → Important de les connaître précisément
- ii) Identifier les paramètres et les variables d'entrée qui n'ont pas une forte influence sur les sorties du modèle
- → Moins important de les connaître précisément
- iii) Analyser le comportement du modèle

## Analyse de sensibilité locale

Basée sur le calcul de dérivé

### Analyse de sensibilité globale

#### Elle consiste à

- Définir des indices de sensibilité
- Calculer ces indices en faisant varier les facteurs incertains  $z_1, ..., z_p$  sur leurs domaines

# Un indice de sensibilité simple

#### Bauer and Hamby (1991)

- On définit une série de valeurs pour chaque facteur.
- On fixe tous les facteurs sauf  $z_i$  à des valeurs de référence.
- On calcule pour le facteur  $z_i$  l'indice:

$$I_{zi} = \{ \max_{zi} [y(z)] - \min_{zi} [y(z)] \} / \max_{zi} [y(z)]$$



# Application

Equation: 
$$y(z_1, z_2) = z_1 + 2 z_2$$

Définir cinq valeurs pour  $z_2$ : 40, 50, 60, 70, 80.

Fixer  $z_1$  à 20.

Quelle est la valeur de l'indice de Bauer-Hamby index pour  $z_2$ ?

# Application

$$\max_{z_2} [y(z_1=20, z_2)] = 20 + 2*80 = 180$$
  
 $\min_{z_2} [y(z_1=20, z_2)] = 20 + 2*40 = 100$ 

$$I_{z2} = (180 - 100) / 180 = 0.444$$

# Limite de l'indice de Bauer-Hamby

- Chaque facteur est analysé séparément
- La valeur de l'indice peut dépendre des valeurs de référence

#### Exemple:

$$y(z_1, z_2, z_3) = z_1 + 2*z_2*z_3.$$

$$I_{z2} = 0$$
 si  $z_3 = 0$ .

$$I_{z2} \neq 0 \text{ si } z_3 \neq 0.$$

Interactions entre facteurs non prise en compte

# AS globale = les <u>trois premières étapes</u> de l'AI + une <u>quatrième étape</u> spécifique

- 1. Définition des distributions de  $z_1, ..., z_p$ .
- 2. Génération d'échantillons à partir des distributions définies à l'étape 1.
- 3. Calcul de y(z) pour chaque série  $z_1, ..., z_p$  générée.
- 4. Calcul d'indices de sensibilité.

# Il existe de nombreuses méthodes pour calculer les indices de sensibilité

ANOVA

Corrélation

Régression

Morris

Sobol

FAST/FAST étendu

etc.

### Trois méthodes (relativement) simples

- Regression/Correlation
- ANOVA
- Morris

### **Regression/Correlation**



#### **Regression/Correlation**

Différents coefficient de corrélation peuvent être utilisés

• Coefficient de corrélation linéaire

$$\frac{\operatorname{cov}(y(z),z)}{\sigma_z\sigma_{y(z)}}$$

• Corrélation des rangs (Spearman)

#### 

#### **ANOVA**

- Définir un plan d'expérience en combinant k valeurs de chacun des facteurs incertains
- Faire une ANOVA de y(z) en fonction de  $z_1, ..., z_p$

$$y_{i_1,i_2,...i_p} = \mu + \alpha_{i_1} + \beta_{i_2} + ...$$



### Indices de sensibilité basés sur une décomposition de la variance



variable de sortie facteurs incertains

Variance totale de la Effets principaux des Termes d'interactions

Indice de premier ordre de  $z_1 = V_{z1} / Var[y(z)]$ 

Indice de sensibilité total de  $z_1 = (V_{z1} + V_{z1,z2} + V_{z1,z3} + ...) / Var[y(z)]$ 

$$y(\mathbf{z}) = f(z_1, ..., z_s)$$

Indice de sensibilité de 1<sup>er</sup> ordre pour z<sub>i</sub>

$$\frac{\operatorname{var}\big[\mathrm{E}[y(z)\,|\,z_i\,]\big]}{\operatorname{var}[y(z)]}$$

Indice de sensibilité total pour z<sub>i</sub>

$$\frac{\mathbb{E}\left[\operatorname{var}[y(z) \mid z_{j}, j \neq i]\right]}{\operatorname{var}[y(z)]}$$

### Signification de l'indice de sensibilité totale

• Indice de sensibilité total de  $z_i$  ( $IT_i$ ) = Fraction de la variance totale de y si seulement  $z_i$  est inconnu.

•  $IT_i$  est compris entre 0 et 1.



#### Méthode de Morris

- Définir un plan d'expérience en combinant *k* valeurs de *p* facteurs incertains
- Choisir un élément z de ce plan
- Ajouter un « saut »  $\Delta_{ij}$  au ième facteur incertain
- Calculer un « effet élémentaire »

$$d_{ij} = \frac{\left[y(z_1, ..., z_{i-1}, z_i + \Delta_{ij}, ..., z_p) - y(z)\right]}{\Delta_{ij}}$$

- Répéter la procédure pour tous les facteurs incertains (i=1,...,p)
- Répéter r fois (j=1, ..., r)
- Calculer la moyenne et la variance des effets élémentaires à partir des *r* répétitions

$$\mu_i = \frac{\sum_{j=1}^r d_{ij}}{r} \qquad \sigma_i = \sqrt{\sum_{j=1}^r \left(d_{ij} - \mu_i\right)^2 / r}$$

Morris
Deux exemples de trajectoires (p=2, k=3, r=2)



# **Morris Présentation des résultats**



# Etude de cas

# Un modèle générique pour calculer la durée (en heures) requise d'humidité pour qu'un champignon puisse infecter une plante

(Magarey et al., 2005)



W = durée d'humidité requise (h)

T = température moyenne (°C)

# Un modèle générique pour calculer la durée (h) requise d'humidité pour qu'un champignon puisse infecter une plante

(Magarey et al., 2005)

$$W = W_{\min} / f(T)$$
, mais inférieure à  $W_{\max}$ 

$$f(T) = \left(\frac{T_{\text{max}} - T}{T_{\text{max}} - T_{opt}}\right) \left(\frac{T - T_{\text{min}}}{T_{opt} - T_{\text{min}}}\right)^{\left(T_{opt} - T_{\text{min}}\right) / \left(T_{\text{max}} - T_{opt}\right)}$$

Cinq paramètres :  $T_{min}$ ,  $T_{opt}$ ,  $T_{max}$ ,  $W_{min}$ ,  $W_{max}$ 

 Les paramètres peuvent être estimés à partir de données et d'articles scientifiques pour différents champignons pathogènes

Il reste des incertitudes sur ces paramètres

#### Important

- d'analyser l'incertitude induite par les paramètres sur W
- d'identifier les paramètres les plus influents afin de réaliser des expérimentations spécifiques

#### Exemple de valeurs estimées de paramètres pour les pycnidiospores de Guignardia citricarpa Kiely et valeurs simulées de W.

Tmin= 10 °C, Topt= 25 °C, Tmax=35 °C, Wmin=12 h, Wmax= 35 h



# Incertitude sur les valeurs des paramètres (pycnidiospores de *Guignardia citricarpa* Kiely)

|      |       | Min | Max |
|------|-------|-----|-----|
| Tmin | (°C): | 10  | 15  |
| Tmax | (°C): | 32  | 35  |
| Topt | (°C): | 25  | 30  |
| Wmin | (h):  | 12  | 14  |
| Wmax | (h):  | 35  | 48  |

Panel on Plant Health, EFSA (2008)

#### **Questions**

- 1. Réaliser une analyse d'incertitude pour W
- 2. Réaliser une analyse de sensibilité sur W

#### Analyse d'incertitude pour W

- i. Définir les distributions des paramètres
- ii. Générer *N* séries de valeurs de paramètres (*N*=500)
- iii. Calculer W pour chaque série
- iv. Décrire la distribution de W

#### Une fonction R pour calculer W



## Génération des valeurs des paramètres

Num <- 500

Tmin\_vec <- runif(Num, 10, 15)</pre>

Topt\_vec <- runif(Num, 25, 30)

Tmax\_vec <- runif(Num, 32, 35)

Wmin\_vec <- runif(Num, 12, 14)

Wmax vec <- runif(Num, 35, 48)

#### Simulation de W

```
T vec <- seq(from=15, to=32, by=0.1)
W mat <- matrix(nrow=Num, ncol=length(T vec))
for (i in 1:Num) {
W_mat[i,] <- Wetness(T_vec, Tmin_vec[i], Topt_vec[i],
             Tmax vec[i], Wmin vec[i], Wmax vec[i])
lines(T vec, W mat[i,])
```

## **Analyse des sorties**

```
mean vec <- apply(W mat, 2, mean)
Q0.01 vec <- apply(W mat, 2, quantile, 0.01)
Q0.1 vec <- apply(W mat, 2, quantile, 0.1)
Q0.9 vec <- apply(W mat, 2, quantile, 0.9)
Q0.99 vec <- apply(W mat, 2, quantile, 0.99)
plot(c(0), c(0), pch=" ", xlab="Temperature (°C)",
ylab="Wetness duration requirement (h)", xlim=c(10, 35),
ylim=c(10, 60)
lines(T vec, mean vec, lwd=3)
lines(T vec, Q0.9 vec, lty=2)
lines(T vec, Q0.1 vec, lty=2)
lines(T vec, Q0.99 vec, lty=9)
lines(T vec, Q0.01 vec, lty=9)
```

78



### Analyse de sensibilité - Corrélation

- i. Définir les distributions des paramètres
- ii. Générer *N* séries de valeurs de paramètres
- iii. Calculer W pour chaque série
- iv. Calculer les corrélations entre W et les paramètres

#### Plots of model outputs obtained by Monte Carlo simulations



## **Correlation-based sensitivity analysis**



#### Analyse de sensibilité - ANOVA

- i. Définir un plan d'expérience (plan fact. complet avec trois valeurs par paramètre)
- ii. Générer toutes les combinaisons possibles
- iii. Calculer W pour chaque combinaison
- iv. Réaliser une ANOVA et calculer les indices de sensibilité

#### Plan d'expérience

# Tableau incluant 243 valeurs de paramètres

```
para.mat <- expand.grid(Tmin=c(10, 12.5, 15), Topt=c(25, 27.5, 30),Tmax=c(32, 33.5, 35), Wmin=c(12, 13, 14), Wmax=c(35, 41.5, 48)) print(para.mat)
```

plot(para.mat\$Wmin, para.mat\$Wmax, pch=19) plot(para.mat\$Tmin, para.mat\$Tmax, pch=19)

|    | Tmin | Topt | Tmax | Wmin | Wmax |
|----|------|------|------|------|------|
| 1  | 10.0 | 25.0 | 32.0 | 12   | 35.0 |
| 2  | 12.5 | 25.0 | 32.0 | 12   | 35.0 |
| 3  | 15.0 | 25.0 | 32.0 | 12   | 35.0 |
| 4  | 10.0 | 27.5 | 32.0 | 12   | 35.0 |
| 5  | 12.5 | 27.5 | 32.0 | 12   | 35.0 |
| 6  | 15.0 | 27.5 | 32.0 | 12   | 35.0 |
| 7  | 10.0 | 30.0 | 32.0 | 12   | 35.0 |
| 8  | 12.5 | 30.0 | 32.0 | 12   | 35.0 |
| 9  | 15.0 | 30.0 | 32.0 | 12   | 35.0 |
| 10 | 10.0 | 25.0 | 33.5 | 12   | 35.0 |
| 11 | 12.5 | 25.0 | 33.5 | 12   | 35.0 |
| 12 | 15.0 | 25.0 | 33.5 | 12   | 35.0 |
|    |      |      |      |      |      |

• • • •



## Calcule de W pour chaque combinaison

```
# Temperature values
T.vec <- c(20, 25, 30)
# Create an empty matrix to store the simulated values
W.Mat <- matrix(nrow=243, ncol=3)
# Loop for simulating W
for (i in 1:243) {
W.mat[i,] <- Wetness(T.vec, para.mat$Tmin[i], para.mat$Topt[i],
para.mat$Tmax[i], para.mat$Wmin[i], para.mat$Wmax[i])
```

#### Indices de sensibilité

#Define the sets of parameter values as factors

Tmin <- as.factor(para.mat\$Tmin)
Topt <- as.factor(para.mat\$Topt)
Tmax <- as.factor(para.mat\$Tmax)
Wmin <- as.factor(para.mat\$Wmin)
Wmax <- as.factor(para.mat\$Wmax)

#Select the simulations obtained for T=30
W <- W.mat[,3]

#Create a table

TAB <- data.frame(W, Tmin, Topt, Tmax, Wmin, Wmax)

```
#ANOVA (sum of squared associated with main effects and interactions)
Fit <- summary(aov(W~Tmin*Topt*Tmax*Wmin*Wmax, data=TAB))
print(Fit)
#Computation of sensitivity indices
SumSq <- Fit[[1]][,2]
Total <- 242*var(W)
Indices <- 100*SumSq/Total
print(Indices)
TabIndices <- cbind(Fit[[1]],Indices)
print(TabIndices)
TabIndices <- TabIndices[order(Indices, decreasing=T),]
print(TabIndices)
```

#### > print(TabIndices)

| •         | Sum Sq       | Mean Sq      | Indices      |
|-----------|--------------|--------------|--------------|
| Topt      | 2.315226e+03 | 1.157613e+03 | 6.362759e+01 |
| Tmax      | 5.907681e+02 | 2.953841e+02 | 1.623563e+01 |
| Topt:Tmax | 4.555308e+02 | 1.138827e+02 | 1.251901e+01 |
| Wmin      | 2.570847e+02 | 1.285423e+02 | 7.065261e+00 |
| Topt:Wmin | 9.133042e+00 | 2.283260e+00 | 2.509964e-01 |
| Tmin:Topt | 3.191415e+00 | 7.978539e-01 | 8.770723e-02 |
| Tmin      | 3.029813e+00 | 1.514906e+00 | 8.326603e-02 |
| Tmax:Wmin | 2.330446e+00 | 5.826115e-01 | 6.404587e-02 |

## **Conclusions**

- L'analyse d'incertitude et l'analyse de sensibilité n'ont pas les mêmes objectifs
- Plusieurs méthodes existent: Appliquez les et comparez les résultats!
- Rendez les hypothèses transparentes (e.g., distributions de probabilités)
- Le temps de calcul peut être un problème avec certains modèles
- Software:
  - Tableurs (@risk, crystalball)
  - R (package sensitivity)
  - C, Fortran routines...

# Quelques références

- EFSA. 2008. Scientific Opinion of the Panel on Plant Heath on a request from the European Commission on Guignardia citricarpa Kiely. *The EFSA Journal* 925, 1-108
- Lacroix, A., N. Beaudoin, D. Makowski. 2005. Agricultural water nonpoint pollution control under uncertainty and climate variability. *Ecological Economics* 53:115-127
- Lamboni M., Makowski D., Lehuger S., Gabrielle B., Monod H. 2009. Multivaiate global sensitivity analysis for dynamic crop models. *Field Crop Research* 113, 312-320
- Magarey RD, Sutton TB, Thayer CL. 2005. A simple generic infection model for foliar fungal plant pathogens. *Phytopathology* 95, 92-100.
- Makowski, D., C. Naud, M-H. Jeuffroy, A. Barbottin, H. Monod. 2006. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model predictions. *Reliability Engineering and System Safety* 91:1142-1147.
- Makowski D. 2011. Uncertainty and sensitivity analysis for models used in pest risk analysis. HPPJ 4, 1-11.
- Makowski D, Monod H. 2011. Analyse statistique des risques agro-environnementaux. Springer
- Monod, H., C. Naud, D. Makowski. 2006. Uncertainty and sensitivity analysis for crop models. *In: Working with dynamic crop models*. D. Wallach, D. Makowski, J. Jones Eds, Elsevier. p. 55-100.
- Saltelli, A., S. Tarantola, F. Campolongo, M. Ratto. 2004. « *Sensitivity analysis in practice, a guide to assessing scientific models* ». Wiley.