MAP361T : Exercices de révision - 3

Luca Ganassali

Mots clés : TCL, estimation.

Exercice 1 (Etude de l'EMV pour le paramètre p de la loi binomiale).

On fixe , $N \in \mathbb{N}$ et considère le modèle $\mathcal{P} = \{\mathcal{B}(N,p), p \in [0,1]\}$. On fixe $p^* \in [0,1]$, et on dispose d'un échantillon $\mathbf{x} = (x_i)_{1 \le i \le n}$ de n variables i.i.d. de loi $\mathcal{B}(N,p^*)$.

- 1) Pour tout $p \in [0,1]$, calculer la log-vraisemblance $l_n(\mathbf{x}, p)$. Astuce : Ce sont des lois discrètes, donc on a juste a calculer le log d'un produit de probas.
- 2) En déduire l'expression de l'estimateur du maximum de vraisemblance \hat{p}_{MV} pour le paramètre p^* .
- 3) Est-il sans biais, convergent, asymptotiquement normal?
- 4) Donner un intervalle de confiance asymptotique à 95% pour le paramètre p^* .
- 5) On s'intéresse aux estimateurs linéaires de p^* , c'est-à-dire à tous les estimateurs \hat{p} de la forme $\langle \mathbf{x}, u \rangle$, où u est un vecteur de \mathbb{R}^n et $\langle \cdot, \cdot \rangle$ est le produit scalaire canonique. On rappelle qu'on appelle risque quadratique associé à un estaimteur \hat{p} la quantité

$$\mathcal{R}(\hat{p}) := \mathbb{E}_{p^*} \left[(\hat{p}(\mathbf{x}) - p^*)^2 \right]$$

Exercice 2 (Power laws).

La power law de paramètre $\alpha > 1$, notée $\operatorname{Pow}(\alpha)$ dans la suite, est la loi de densité $f_{\alpha} := C_{\alpha} x^{-\alpha} \mathbf{1}_{x>1}$, où C_{α} est une constante.

- 1) Calculer C_{α} pour tout $\alpha > 1$. Pour $X \sim \text{Pow}(\alpha)$, X admet-il une espérance? une variance? Si oui, les donner.
- 2) Soient $X \sim \text{Pow}(\alpha)$ et $Y \sim \text{Pow}(\beta)$ indépendantes. Quelle est la loi de $\min(X, Y)$? Astuce : avec les \min , on sait maintenant que l'on utilise souvent la...
- 3) Soit $(\alpha_n)_n$ une suite de réels strictement supérieurs à 3, tels que $\alpha_n \to +\infty$. On considère une suite de v.a. $(X_n)_n$ indépendantes telle que chaque X_n est de loi $\operatorname{Pow}(\alpha_n)$.
 - (a) Montrer que $(X_n)_n$ converge dans L^2 vers une variable à préciser.
 - (b) La suite $(X_n)_n$ converge-t-elle presque sûrement? Discuter.
- 4) Si $X \sim \text{Pow}(\alpha)$, quelle est la loi de $\log X$?

 Dans la suite de l'exercice, on fixe $\alpha^* > 1$ et on se donne un échantillon $\mathbf{x} = (x_i)_{1 \le i \le n}$ de n variables i.i.d. de loi $\text{Pow}(\alpha^*)$.
- 5) On veut estimer le paramètre α^* , qui est supposé inconnu.
 - (a) Montrer que l'estimateur du maximum de vraisemblance $\hat{\alpha}_{MV}$ est donné par :

$$\hat{\alpha}_{MV} = 1 + \left(\frac{1}{n} \sum_{i=1}^{n} \log x_i\right)^{-1}.$$

Astuce : passer la vraisemblance en log doit être un réflexe.

- (b) Montrer qu'il est convergent. Astuce : LFGN.
- (c) Montrer qu'il est asymptotiquement normal, et donner les caractéristiques de la loi limite. $Astuce: m\'ethode\ Delta.$
- (d) L'estimateur $\hat{\alpha}_{MV}$ est-il biaisé? Astuce : En fait, on peut reconnaître la loi de certaines choses dans l'estimateur, si l'on cherche bien. Avec quelques calculs, c'est faisable.
- **6)** On suppose dans la suite que $\alpha^* > 3$.
 - (a) A l'aide de l'estimateur de la moyenne, donner un autre estimateur $\hat{\alpha}$ de α^* .
 - (b) Montrer qu'il est convergent.
 - (c) Montrer qu'il est asymptotiquement normal, et donner les caractéristique de la loi limite
- 7) Au vu des résultats précédents, quel estimateur privilégeriez-vous?