Liste wesentlicher Formelsymbole

Elektrische Grundgrößen:

USpannung (Einheit V = Volt)

u, u(t)zeitabhängige Spannung

Ι **Strom** (Einheit A = Ampere)

R Widerstand (Einheit $\Omega = Ohm$)

Q Ladung (Einheit C = Coulomb)

n Ladungsträgerdichte (Einheit mm³)

Spezifischer Widerstand (Einheit Ω mm² m⁻¹)

Konstanten:

Elementarladung = $1,602 \cdot 10^{-19} \text{ C}$

elektrische Feldkonstante = $8,854 \cdot 10^{-12}$ C/Vm ϵ_0

Gravitationskonstante = 9.81 m/s^2 g

Elektrische und magnetische Felder:

elektrische Feldstärke (Einheit V/m) E

Flächenladungsdichte (Einheit C/m²) σ

 $\varepsilon = \varepsilon_0 \cdot \varepsilon_r$ Permittivität (Einheit C/Vm)

relative Permittivität (ohne Einheit) ε_{r}

CKapazität (Einheit F = Farad = C/V)

Übersetzungsverhältnis eines Transformators (ohne Einheit) ü

<u>Leistung – Energie – Arbeit:</u>

P Leistung (Einheit W = Watt)

E Energie (Einheit J = Joule = Ws = Wattsekunde)

WArbeit (Einheit s. Energie J)

Wirkungsgrad (ohne Einheit) η

Zeit und Frequenz:

Zeit t

f Frequenz

 f_0 Grundfrequenz periodischer Signale

 T_0 Periodendauer

k Diskreter Frequenzindex (Fourierreihe)

Spezielle Signale:

 $\delta(t)$ Dirac'scher Deltaimpuls

 $\sigma(t)$ Einheitssprung

 $\sigma(t)$ Einheitssprung

Signale:

Signal x(t), y(t)

 $\tilde{x}(t)$ periodisches Signal

komplexes Signal x(t)

LTI-Systeme:

h(t)Impulsantwort

Spektraldarstellungen:

komplexe Koeffizienten der Fourierreihe (FR) \underline{X}_k

reelle Koeffizienten der Fourierreihe (FR) a_k, b_k

<u>X</u>(f) Fouriertransformierte (FT)

<u>H</u>(f) Übertragungsfunktion, Frequenzgang