Dynamic Parking Pricing System Analysis Report

Summer Analytics Capstone Team

July 5, 2025

Contents

1	Executive Summary	2
2	System Architecture and Data Pipeline	2
3	Data Preprocessing Code	2
4	Model 1: Baseline Linear Pricing	3
5	Model 2: Demand-Based Pricing	4
6	Model 3: Competitive Location-Based Pricing	5
7	Revenue Comparison	11
8	Conclusion	11
9	Recommendations for Model Usage in Real-Life Scenarios	11

1 Executive Summary

This report analyzes a sophisticated dynamic parking pricing system implemented using three distinct pricing models, real-time data processing with the Pathway framework, and interactive visualization tools. The analysis demonstrates how different pricing strategies impact revenue generation and occupancy management across 14 parking lots.

2 System Architecture and Data Pipeline

Data Ingestion

The system ingests real-time data from a Kaggle dataset including occupancy, capacity, queue lengths, vehicle type, traffic condition, and special day indicators.

Real-Time Processing

- Framework: Pathway
- Mode: Continuous streaming with 10-second autocommit
- Output: model3_price.csv with timestamped pricing info

Visualization

Implemented using Bokeh:

- Real-time plots
- Dashboard filtering
- Interactive lot-wise charts

3 Data Preprocessing Code

```
df.columns = df.columns.str.lower()
df['timestamp'] = pd.to_datetime(
df['lastupdateddate'] + ' ' + df['lastupdatedtime'],
format="%d-%m-%Y %H:%M:%S",
errors='coerce'
)
```

Listing 1: Timestamp Conversion

4 Model 1: Baseline Linear Pricing

Python Code

```
def BaselineModelPrice(occupancy, capacity, alpha=5, base_price=10):
    ratio = occupancy / capacity
    if ratio < 1:
        return round(base_price + alpha * ratio, 2)
    else:
        return round(base_price + alpha, 2)</pre>
```

Characteristics

• Simple, deterministic

• Price range: \$ 10.15 - \$ 15.00

• Average Price: \$ 11.90

Figure 1: Model 1: Price Trends Across Lots

Explanation

Model 1 defines a simple linear pricing function that increases price as occupancy increases:

$$Price = \begin{cases} base_price + \alpha \cdot \frac{occupancy}{capacity}, & if \frac{occupancy}{capacity} < 1 \\ base_price + \alpha, & otherwise \end{cases}$$

Where:

- $base_price = 10$
- $\alpha = 5$ (scaling factor)

The price increases up to 15 as occupancy nears capacity.

5 Model 2: Demand-Based Pricing

Python Code

```
def nonlinear_demand_score(row):
    ratio = row['occupancy'] / row['capacity']
    occ_component = 1 / (1 + np.exp(-10 * (ratio - 0.6)))
    queue_component = 1.05 ** min(row['queuelength'], 10)
    traffic_component = get_traffic_weight(row['trafficconditionnearby'])
    vehicle_component = get_vehicle_weight(row['vehicletype'])
    special_day_component = 1.2 if row['isspecialday'] else 1.0

demand_score = occ_component * queue_component * traffic_component * vehicle_component * special_day_component
    return min(demand_score, 5.0)
```

Key Characteristics

• Price Range: \$ 8.00 - \$ 14.82

• Average Price: \$8.64

• Considers: occupancy, queue, traffic, vehicle type, special days

Figure 2: Model 2: Demand-Based Pricing Over Time

Explanation

Model 2 determines a price based on a composite demand score from multiple factors:

Occupancy Component =
$$\frac{1}{1 + e^{-10(r-0.6)}}$$

Queue Component = $1.05^{\min(\text{queue_length},10)}$

Traffic Component = traffic weight (lookup) Vehicle Component = vehicle weight (lookup)

Special Day Component =
$$\begin{cases} 1.2 & \text{if special day} \\ 1.0 & \text{otherwise} \end{cases}$$

 $score = min(5.0, Occ \cdot Queue \cdot Traffic \cdot Vehicle \cdot SpecialDay)$

Price is scaled based on this demand score.

6 Model 3: Competitive Location-Based Pricing

Python Code

```
def model3_competitor_logic(lot_id, timestamp, occupancy, capacity,
    model2_price):
    ratio = occupancy / capacity
    nearby_ids = nearby_map.get(str(lot_id)) or nearby_map.get(int(lot_id))
    or []
    competitors = df[
        (df['lot_id'].isin(nearby_ids)) &
```

```
(df['timestamp'] == timestamp)
      ]
      if competitors.empty:
9
          return model2_price
      avg_price = competitors['model2_price'].mean()
      cheaper_exists = (competitors['model2_price'] < model2_price).any()</pre>
13
14
      if ratio >= 1 and cheaper_exists:
          return round(model2_price * 0.95, 2)
16
      elif ratio < 1 and avg_price > model2_price:
17
          return round(model2_price * 1.05, 2)
18
19
      else:
          return model2_price
```

Explanation

Model 3 adjusts pricing based on nearby competitor lots within 2 km. Rules applied:

```
 Price = \begin{cases} 0.95 \cdot model2\_price & \text{if lot full and cheaper competitor exists} \\ 1.05 \cdot model2\_price & \text{if lot has space and avg nearby price $\xi$ model2\_price} \\ model2\_price & \text{otherwise} \end{cases}
```

Nearby lots are determined using Haversine distance.

Location Based

```
2 from math import radians, cos, sin, asin, sqrt
3 import json
5 # Haversine distance in km
6 def haversine(lat1, lon1, lat2, lon2):
      R = 6371
      dlat = radians(lat2 - lat1)
      dlon = radians(lon2 - lon1)
      a = \sin(dlat/2)**2 + \cos(radians(lat1)) * \cos(radians(lat2)) * \sin(lat2)
10
     dlon/2)**2
      return 2 * R * asin(sqrt(a))
11
# Generate nearby_map: {lot_id: [nearby_lot_ids]}
14 locations = df[['lot_id', 'latitude', 'longitude']].drop_duplicates()
15 nearby_map = {}
for i, row in locations.iterrows():
     lot_i = row['lot_id']
nearby = []
```

```
for j, r2 in locations.iterrows():
          if row['lot_id'] == r2['lot_id']:
21
               continue
          d = haversine(row['latitude'], row['longitude'], r2['latitude'],
     r2['longitude'])
          if d <= 2: # within 2 km</pre>
24
25
               nearby.append(r2['lot_id'])
      nearby_map[lot_i] = nearby
26
27
28 # Save for reference (optional)
  with open("nearby_map.json", "w") as f:
      json.dump(nearby_map, f)
31
32 # Define the competitor-aware pricing logic
def model3_competitor_logic(lot_id, timestamp, occupancy, capacity,
     model2_price):
      ratio = occupancy / capacity
34
      nearby_ids = nearby_map.get(str(lot_id)) or nearby_map.get(int(lot_id))
     ) or []
      competitors = df[
36
          (df['lot_id'].isin(nearby_ids)) &
          (df['timestamp'] == timestamp)
38
      ]
39
40
      if competitors.empty:
41
          return model2_price
42
43
      avg_price = competitors['model2_price'].mean()
44
      cheaper_exists = (competitors['model2_price'] < model2_price).any()</pre>
45
46
      if ratio >= 1 and cheaper_exists:
47
          return round(model2_price * 0.95, 2)
48
      elif ratio < 1 and avg_price > model2_price:
          return round(model2_price * 1.05, 2)
50
      else:
          return model2_price
```

Haversine Distance Formula

$$d = 2R \arcsin\left(\sqrt{\sin^2\left(\frac{\Delta\phi}{2}\right) + \cos\phi_1\cos\phi_2\sin^2\left(\frac{\Delta\lambda}{2}\right)}\right)$$

Where:

- R = 6371 km (Earth radius)
- ϕ, λ are latitude, longitude in radians

Lot ID	Start Time	End Time	Min Price (\$)	Max Price (\$)	Avg Price (\$)
1	05-07-2025 10:10	05-07-2025 12:50	7.45	12.60	8.84
2	05-07-2025 10:15	05-07-2025 12:55	8.00	13.25	9.13
3	05-07-2025 10:20	05-07-2025 12:45	7.70	12.90	8.71
4	05-07-2025 10:30	05-07-2025 13:10	8.05	13.10	8.98
5	05-07-2025 10:25	05-07-2025 12:40	7.80	12.40	8.62

Table 1: Model 3 Price Ranges per Lot

Key Characteristics

• Price Range: \$ 8.05 - \$ 14.46

• Average Price: \$8.79

• Geographic intelligence using Haversine distance

Figure 3: Model 3: Competitor-Aware Pricing Variation

Figure 4: Revenue Comparison Model 3

Figure 5: Revenue Comparison

7 Revenue Comparison

Based on Figure 5

Model	Revenue (\$)	Avg Price	vs M1
Model 1	\$ 5,107,911.51	\$ 11.90	_
Model 2	\$ 3,673,131.32	\$ 8.64	-28.1%
Model 3	\$ 3,703,313.21	\$ 8.79	-27.5%

Table 2: Revenue Summary

8 Conclusion

While Model 1 yields highest revenue, Models 2 and 3 offer more adaptive and fair pricing. Model 3 outperforms Model 2 by 0.8% while integrating location-aware competitive intelligence.

9 Recommendations for Model Usage in Real-Life Scenarios

- Model 1: Use in high-demand urban hubs
- Model 2: Deploy in dynamic event-prone areas
- Model 3: Ideal for commercial zones with nearby parking alternatives