Class 16: Structural Induction

Schedule

Problem Set 6 is due **tomorrow at 6:29pm**. Make sure to read the corrected version of Problem 7.

Lists

Definition. A *list* is an ordered sequence of objects. A list is either the empty list (λ) , or the result of prepend(e, l) for some object e and list l.

```
first(prepend(e, l)) = e

rest(prepend(e, l)) = l

empty(prepend(e, l)) = False

empty(null) = True
```

Definition. The *length* of a list, p, is:

```
\begin{cases} 0 & \text{if } p \text{ is } \textbf{null} \\ length(q) + 1 & \text{otherwise } p = prepend(e,q) \text{ for some object } e \text{ and some list } q \end{cases} \text{def } \begin{array}{l} \text{list\_length(1):} \\ \text{if } \text{list\_empty(1):} \\ \text{return } 0 \\ \text{else:} \\ \text{return } 1 + \text{list\_length(list\_rest(1))} \end{cases}
```

Prove: for all lists, p, list_length(p) returns the length of the list p.

Concatenation

Definition. The *concatenation* of two lists, $p=(p_1,p_2,\cdots,p_n)$ and $q=(q_1,q_2,\cdots,q_m)$ is

$$(p_1, p_2, \cdots, p_n, q_1, q_2, \cdots, q_m).$$

Provide a *constructuve* definition of *concatenation*.

Structural Induction

To prove proposition P(x) for element $x \in D$ where D is a recursively-constructed data type, we do two things:

- 1. Show P(x) is true for all $x \in D$ that are defined using base cases.
- 2. Show that if P(y) is true for element y and x is constructed from y using any "construct case" rules, then P(x) is true as well.

Comparing Various forms of Induction

	Regular Induction	Invariant Principle	Structural Induction
Works on:	natural numbers	state machines	data types
To prove $P(\cdot)$	for all natural numbers	for all reachable states	for all data type objects
Prove base case(s)	P(0)	$P(q_0)$	P(base object(s))
and inductive step	$\forall m \in \mathbb{N}.$	$\forall (q,r) \in G.$	$\forall s \in \mathit{Type}.$
	$P(m) \implies P(m+1)$	$P(q) \implies P(r)$	$P(s) \implies P(t)$
			$\forall t \text{ constructable from } s$

Prove. For any two lists, p and q, length(p + q) = length(p) + length(q).