CHAPITRE 2 : GÉOMÉTRIE DES MOLÉCULES ET DIAGRAMMES ORBITALAIRES

Céline JÉGAT

celine.jegat@ens-paris-saclay.fr

Table des matières

1	For	malism	me de Lewis	5
	1.1	Schéma	na de Lewis	
	1.2	Format	ation de liaison covalente	
	1.3	Structu	ture de Lewis	 . 6
	1.4	Limites	es à la règle de l'octet	 . 7
			Composés déficients en électrons	
		1.4.2	Composées hypervalents	 . 7
		1.4.3	Règle des 18 électrons	 . 8
2	Mét	thode V	VSEPR	g
	2.1	Notatio	tion et figure de répulsion électronique	 . 9
			ce polyatomique	

Partie 1

Formalisme de Lewis

1.1 Schéma de Lewis

Schéma de Lewis : représentation d'un atome avec ses électrons de valence disposés autour du symbole chimique de l'atome.

Notations:

- un trait ¹ représente un doublet d'électrons, c'est à dire une orbitale doublement occupée.
- un point représente un électron célibataire, c'est à dire une orbitale occupée par un seul électron.
- une case vide représente une lacune électronique, c'est à dire une orbitale vacante.

$$H:1s^{1}$$

Н●

 ${\rm Li}: 2s^1 \qquad {\rm Be}: 2s^2 \qquad {\rm B}: 2s^22p^1 \quad {\rm C}: 2s^22p^2 \quad {\rm N}: 2s^22p^3 \quad {\rm O}: 2s^22p^4 \quad {\rm F}: 2s^22p^5 \quad {\rm Ne}: 2s^22p^6 \quad {\rm Ne}: 2s^2p^6 \quad {\rm Ne}: 2s^$

1.2 Formation de liaison covalente

Dans le formalisme de Lewis, une liaison covalente peut être formée de deux manières :

— soit par la mise en commun de deux électrons, c'est à dire que chaque atome impliqué apporte un électron

— soit par l'apport de deux électrons par un seul des deux atomes impliqués.

$$\overset{\oplus}{\text{H}_{\square}} \overset{\ominus}{+} \overset{\ominus}{|\underline{C}|} \longrightarrow \text{H-}\underline{\overline{C}|}$$

^{1.} ou deux points dans le modèle anglo-saxon

Notations:

- une demi-flèche représente le mouvement d'un unique électron
- une flèche entière représente le mouvement de deux électrons
- un trait entre deux atomes représente la liaison covalente

Dans le deuxième cas de formation de liaison covalente, on parle d'acide et de base de Lewis pour les atomes mis en jeu.

Acide de Lewis : entité chimique capable de recevoir des électrons.

Base de Lewis : entité chimique capable de donner des électrons.

1.3 Structure de Lewis

Structure de Lewis : représentation d'une molécule à partir des schémas de Lewis des atomes la composant.

Pour construire la structure de Lewis d'une molécule, il faut respecter la règle de l'octet.

Règle de l'octet : les atomes de la deuxième et troisième période de la classification périodique tendent à s'entourer de quatre paires d'électrons afin d'acquérir la configuration électronique stable ns²np⁶ du gaz rare le plus proche.

<u>∧</u>Pour l'hydrogène, on parle de **règle du duet** car celui-ci tend à s'entourer de deux électrons pour atteindre la configuration électronique de l'hélium.

Exemple: formule de Lewis de Cl_2 . Il faut partir du schéma de Lewis du chlore $\cdot \overline{Cl}l$. Pour atteindre l'octet, chacun de ces atomes de chlore a besoin d'un électron. Ils mettent donc en commun un électron chacun, à savoir leur électron célibataire. La formule de Lewis de Cl_2 est donc $|\overline{Cl}| - \overline{Cl}l$.

Exemple: formule de Lewis de N_2 . Il faut partir du schéma de Lewis de l'azote $|\dot{N}|$. Pour atteindre l'octet, chacun de ces atomes d'azote a besoin de trois électrons. Ils mettent donc en commun trois électrons chacun et créent une liaison triple. La formule de Lewis de N_2 est donc $|N| \equiv N|$.

Exemple: formules de Lewis de PH₃ Exemple: formules de Lewis de H₂CO

D'autre part, et ce dans de nombreuses structures, des atomes respectant la règle de l'octet se retrouvent avec un nombre d'électrons environnants ne correspondant pas à leur nombre d'électron de valence. Une charge doit alors être spécifiée : positive si ce nombre est inférieur au nombre d'électrons de valence, négative si ce nombre est supérieur.

^{2.} On parle aussi de formule de Lewis.

^{3.} Règle introduite par Richard Abegg en 1904

Exemple : la formule de Lewis de $\mathrm{NH_4^+}$ est $\mathrm{H-N^\oplus-H}$. L'azote respecte la règle de l'octet mais H

 ${\rm H}$ nécessite cinq électrons de valence. Puisqu'il manque un électron dans cette strucutre, une charge positive doit être ajoutée à l'atome d'azote.

 $\mathit{Exemple}:$ formule de Lewis de $\mathrm{CO_3}^{2-}$

1.4 Limites à la règle de l'octet

1.4.1 Composés déficients en électrons

Sous forme neutre, certains atomes n'ont pas assez d'électrons de valence pour respecter la règle de l'octet. Ils présentent alors une **lacune électronique**.

Exemple : la formule de Lewis de AlCl $_3$ est $|\overline{\underline{\mathbb{C}}}| - \overline{\overline{\mathbb{A}}}| - \overline{\underline{\mathbb{C}}}|$.

Exemple: formule de Lewis de BF_3

1.4.2 Composées hypervalents

À l'inverse, à partir de la troisième période, les atomes peuvent déroger à la règle de l'octet en devenant **hypervalents** car présentant des orbitales vacantes accessibles en énergie.

Atome hypervalent : atome présent à partir de la troisième période dans la classification périodique pouvant s'entourer de plus de huit électrons.

<u>∧</u>L'hypervalence est totalement exclue pour les atomes de la deuxième période.

Exemple: structure de Lewis de SF₆

Exemple : formule de Lewis de PCl_5

1.4.3 Règle des 18 électrons

Règle des 18 électrons : à partir de la quatrième période, les éléments tendent à s'entourer de 18 électrons afin d'acquérir la configuration électronique du gaz rare adjacent ns²(n-1) d¹⁰np⁶.

^{4.} Règle établie par Sidgwick en 1927

Partie 2

Méthode VSEPR

La méthode VSEPR (Valence Shell Electron Pair Repulsion) ou théorie de Gillepsie ⁵ permet de prévoir la géométrie des molécules à partir des électrons de valence des atomes impliqués.

2.1 Notation et figure de répulsion électronique

Les édifices moléculaires sont notés $\mathbf{AX}_p\mathbf{E}_q$ avec A l'atome central, p le nombre d'atomes liés à A et q le nombre de doublets non liants sur A.

 $\mathit{Exemple}: CH_4$ se note AX_4E_0 ou encore plus simplement AX_4 . De même, NH_3 se note AX_3E_1 ou encore plus simplement AX_3E .

À l'intérieur d'un édifice polyatomique, les paires électroniques libres ou liantes autour d'un atome central A sont disposées de façon à minimiser les répulsions entre elles, en s'éloignant le plus possible les unes des autres dans l'espace. En première approximation, on considère qu'il n'y a pas de différence entre les effets d'un doublet liant et d'un doublet non-liant. La figure de répulsion électronique est donc dépendante de la somme p+q.

p + q = n	1	2	3	4	5	6
Figure	Linéaire	Linéaire	Trigonale plane	Tétraèdre	Bipyramide à base triangulaire	Octaèdre

^{5.} Chimiste anglais ayant contribué à cette théorie en 1957

2.2 Édifice polyatomique

$\mathrm{p}+\mathrm{q}=3$						
		$\rm d(B\text{-}F)=0.130nm$				
$\mathrm{AX}_{3}\mathrm{E}_{0}$		$\mathrm{d(S\text{-}O)} = 0.143\;\mathrm{nm}$	~	Triangulaire plane $lpha=120~^\circ$		
		$egin{aligned} ext{d(C-Cl)} &= 0.174 \text{ nm} \ ext{d(C-O)} &= 0.117 \text{ nm} \ lpha &= 113.2 \ ^{\circ} \end{aligned}$				
$\mathrm{AX}_2\mathrm{E}_1$		$\mathrm{d}(\mathrm{Sn ext{-}Cl}) = 0.242\;\mathrm{nm} \ lpha = 95\;^{\circ}$	9	Coudée		
21		$\mathrm{d(O\text{-}O)} = 0.128 \; \mathrm{nm}$ $lpha = 117.47 \; ^{\circ}$		lpha < 120 °		

Il existe un écart aux angles de la figure géométrique régulière en passant de AX_3E_0 à AX_2E_1 car on remplace un doublet liant par un doublet non liant. Ce dernier occupe un volume moyen plus élevé que celui d'un doublet liant car moins confiné dans l'espace internucléaire. Ainsi, la présence de doublet (s) non liant (s) déforme la figure géométrique régulière.

$\mathrm{p}+\mathrm{q}=4$						
$\mathrm{AX_4E_0}$		$ m d(C ext{-H}) = 0.1094 \; nm$ $ m lpha = 109.5 \; ^{\circ}$		Tétraédrique $lpha=109.5$ $^{\circ}$		
		$\mathrm{d(S\text{-}O)} = 0.150 \mathrm{\ nm}$ $lpha = 109 \ ^{\circ}$				
$\mathrm{AX}_3\mathrm{E}_1$		$\mathrm{d(N ext{-}H)} = 0.102 \; \mathrm{nm}$ $lpha = 107.8 \; ^{\circ}$		Pyramide à base triangulaire $lpha < 109.5$ $^{\circ}$		
·		$\mathrm{d(P ext{-}I)} = 0.243 \; \mathrm{nm}$ $lpha = 102 \; ^{\circ}$				
$\mathrm{AX}_2\mathrm{E}_2$		$\mathrm{d(O ext{-H})} = 0.096 \ \mathrm{nm}$ $lpha = 104.5 \ ^{\circ}$		Coudée		
2 2		$\mathrm{d(N ext{-}H)} = 0.103 \; \mathrm{nm}$ $lpha = 104 \; ^{\circ}$		$lpha < 109.5$ $^{\circ}$		

On retrouve là encore la diminution de l'angle de référence en remplaçant des doublets liants par des doublets non liants.

 $\it Exemple$: en passant de $\it CH_4$ à $\it NH_3$ puis à $\it H_2O$, on constate que l'angle de référence diminue.

Tetrahedral (Trigonal) Pyramidal Angular (Bent)

	$\mathrm{p}+\mathrm{q}=5$						
$\mathrm{AX}_5\mathrm{E}_0$		$egin{aligned} ext{d}(ext{P-Cl}_{eq}) &= 0.202 ext{ nm} \ ext{d}(ext{P-Cl}_{ax}) &= 0.214 ext{ nm} \ lpha_{ax} &= 90 ext{ }^{\circ} \ lpha_{eq} &= 120 ext{ }^{\circ} \end{aligned}$		Bipyramide à base triangulaire $\alpha_{ax}=90^{\circ}$ $\alpha_{eq}=120^{\circ}$			

$\mathrm{p}+\mathrm{q}=6$						
$\mathrm{AX}_6\mathrm{E}_0$		$\mathrm{d(S\text{-}F)} = 0.1594~\mathrm{nm}$		Octaèdre $lpha_{eq}=90~^{\circ}$		

Ces deux dernières figures existent également avec des doublets non liants à la place de doublets liants, mais ne seront pas détaillées dans ce cours car moins rencontrées.