高等数学 AI 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2022年10月13日

目录

1	第 1	次习题课	2
	1.1	Questions	2
	1.2	Solutions	2
	1.3	Supplements (not required!)	3
2	第 2	次习题课	3
	2.1	Questions	3
	2.2	Solutions	3
	2.3	Supplements (not required!)	4
3	第 3	次习题课	4
	3.1	Questions	4
	3.2	Solutions	5
	3.3	Supplements (not required!)	6
4	第 4	次习题课	6
	4.1	Questions	6
	4.2	Solutions	7
	4.3	Supplements (not required!)	8
5	第 5	次习题课	8
	5.1	Questions	8
	5.2	Solutions	9
	5.3	Supplements (required!)	10
6	第 6	次习题课	10
	6.1	Questions	10
	6.2	Solutions	11
	6.3	Supplements (not required!)	11

第 1 次习题课 1

1.1 Questions

- 1. $f(x) = |x \sin^3 x| e^{\cos x}$. Bounded? Monotonic? Even? Odd?
- 2. Show that f(x) = x [x] is bounded and periodic.

3.
$$f(x) = \begin{cases} x^2 & x \le 0 \\ \cos x + \sin x & x > 0 \end{cases}$$
. Calculate $f(-x)$.

- 4. $f(x) = e^{x^2}$ and $f \circ \phi = 1 3x$ and $\phi(x) \ge 0$, find $\phi(x)$ and its domain.
- 5. Show that $\lim_{n\to\infty} \frac{4n^2}{n^2-n} = 4$. 6. q > 1, show that $\lim \frac{n^k}{q^n} = 0$.
- 7. Calculate $\lim_{n\to\infty} \frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n}$. 8. Let $x_1 > 0$ and $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$. Calculate $\lim_{n\to\infty} x_m$.
- 9. Show that $\lim n^{1/n} = 1$.
- 10. Calculate $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$.
- 11. Show that $\lim_{1 \to 2} \frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \exists$.
- 12. $\sum_{n=1}^{\infty} b_n = \infty, \frac{a_n}{b_n} \to 0, a_n, b_n > 0$, show that $\frac{\sum_{n=1}^{\infty} a_n}{\sum_{n=1}^{\infty} b_n} = 0$.
- 13. (Stolz) $0 < b_n \uparrow +\infty, a_n > 0$, if $(a_n a_{n-1})/(b_n b_{n-1}) \to L$ then $a_n/b_n \to L$.

- 1. Note that $f(2k\pi + \frac{\pi}{4}) = \frac{\sqrt{2}}{4}(2k\pi + \frac{\pi}{4})e^{\frac{1}{\sqrt{2}}} \to \infty$, so f(x) is not bounded. And $f(k\pi) \equiv 0$ and $f(x) \neq 0$, otherwise, so f(x) is not monotonous. Obviously it is odd.
- 2. It is relatively trivial to show that f(x) has the period 1 and $|f(x)| \leq 1$ holds for all $x \in \mathbb{R}$.

3.
$$f(-x) = \begin{cases} x^2 & x \ge 0\\ \cos x - \sin x & x < 0 \end{cases}$$

- $\begin{cases}
 \cos x \sin x & x < 0 \\
 4. \ f(\phi) = e^{\phi^2} = 1 3x \Rightarrow \phi = \sqrt{\log(1 3x)} \text{ and its domain is } \log(1 3x) \ge 0 \Leftrightarrow x \le 0.
 \end{cases}$
- 5. $\left|\frac{4n^2}{n^2-n}-4\right|=\frac{4}{n-1}$, when $n\geq \frac{4}{\epsilon}+1$, the difference is smaller than ϵ .
- 6. Note that $q^n = (1+q-1)^n \ge C_n^{k+1}(q-1)^{k+1} = a_{k+1}n^{k+1} + a_kn^k + \dots + a_0$ is a higher-order cumulant than n^k . 7. Use squeeze theorem. (*) $\ge \frac{\sum_{i=1}^n i}{(n+1)^2} = \frac{n(n+1)}{2(n+1)^2} \to \frac{1}{2}$, (*) $\le \frac{\sum_{i=1}^n i}{n^2+n} = \frac{n(n+1)}{2(n+n)} \to \frac{1}{2}$.
- 8. x_n is bound to be monotonous in this kind of problem. First we assume the limit exists and calculate the answer: let $n \to \infty$, we have $a = \frac{3(1+a)}{3+a} \Rightarrow a = \sqrt{3}$. Then using recurrence formula, it is relatively simple to show by induction that if $0 < x_1 < \sqrt{3}$ then $0 < x_n < x_{n+1} < \sqrt{3}$ if $x_1 > \sqrt{3}$ then $x_n > x_{n+1} > \sqrt{3}$. This means the limit $\lim x_n$ exists. Let $n \to \infty$ in both two sides, and we will get the answer.
- 9. $n^{1/n} > (n+1)^{1/(n+1)} \Leftrightarrow n > (1+1/n)^n$ hold for $n \ge 3$, which means a_n is monotonically decreasing. And we have proved that $n^{1/n} < 1 + \epsilon \Leftrightarrow n < (1 + \epsilon)^n$ hold for large n. Use squeeze theorem.
- 10. $3 \le \sqrt[n]{2^n + 3^n} \le \sqrt[n]{2 \times 3^n} \to 3$.
- 11. 单调上升性显然. 由于 $\frac{1}{n^2} < \frac{1}{(n-1)n}$, 从而有上界 2.
- 12. Use truncation. $\forall \epsilon > 0, \exists m, \forall M > m, |a_M/b_M| < \epsilon/2$. Then $\sum a_n / \sum b_n = \sum_{i=1^m} a_i / \sum b_n + \sum_{i=m+1}^n a_i / \sum b_n := \sum_{i=m+1}^n a_i / \sum b_i = \sum_{i=m+1}^n$ $I_1 + I_2$. When n is large enough, $I_1 < \epsilon/2$; $I_2 < \epsilon$ hold for all n. Thus when n is large enough, $I_1 + I_2 < \epsilon$.
- 13. 用定义. $(L-\epsilon)(b_n-b_{n-1}) \le (a_n-a_{n-1}) \le (L+\epsilon)(b_n-b_{n-1}), \forall n > N \Rightarrow (L-\epsilon)(b_n-b_N) \le a_n-a_N \le (L+\epsilon)(b_n-b_N) \Rightarrow L-\epsilon < \frac{a_n-a_N}{b_n-b_N} < L+\epsilon.$ Then $\left|\frac{a_n-a_N}{b_n-b_N}-\frac{a_n}{b_n}\right| \le \left|\frac{(a_n-a_N)b_N}{(b_n-b_N)b_n}+\frac{a_Nb_N}{(b_n-b_N)b_n}+\frac{a_N}{b_n-b_N}\right| \le (L+\epsilon)\frac{b_N}{b_n}+\frac{a_Nb_N}{(b_n-b_N)b_n}+\frac{a_N}{b_n-b_N}\right| \to 0$ when n is large enough.

1.3 Supplements (not required!)

作为一个已经学习数学这么多年的北京大学练习生,我相信你一定关心过下面这个问题:可导函数和连续函数之间差多少?事实上,我们有以下定义和结论:

- (1) Open set: We call a set $A \in \mathbb{R}$ open, iff $\forall x \in A$, there exists $\delta > 0$, such that $(x \delta, x + \delta) \subset A$.
- (2) Closed set: We call a set $B \in \mathbb{R}$ closed, iff its complementary set is open.
- (3) Define $f^{-1}(A) = \{x : f(x) \in A\}$, where f is a function.
- (4) One can show that a function f is continuous iff \forall open set $A \in \mathbb{R}$, $f^{-1}(A)$ is open.
- (5) We call $x \in A$ is an interior point of the set A iff $\exists \delta > 0$, such that $(x \delta, x + \delta) \subset A$.
- (6) We call a set A is countable iff there exists a one-to-one map from A to N or $|A| < \infty$, where |A| = the number of elements in A.
- (7) We call x is a limit point of the set A, iff there exists a sequence $\{x_i\}_{i=1}^{\infty} \subset A$ such that $x_i \to x$. Use A' to denote the set made up of all the limit points of A.
- (8) We call $\bar{A} = A \cup A'$ is the closure of A.
- (9) Then, 对于所有 [a,b] 上的连续函数,至少存在一点可导的函数构成的集合是无处稠密集的可列并 (第一纲集). 这里,无处稠密集是指其闭包不存在内点的集合,连续函数之间的度量定义为 $\rho_{[a,b]}(f,g) = \max_{x \in [a,b]} |f-g|$.
- (10) Baire 纲集定理: 闭集 B_n 无内点, 则 $\cup_n B_n$ 也无内点. 由此容易知道第一纲集是没有内点的.

2 第 2 次习题课

2.1 Questions

- 1. Show that $\lim_{x\to 2} \frac{1}{x-1} = 1$.
- 2. Calculate $\lim_{x\to 0} x^2 \sin \frac{1}{x}$.
- 3. Calculate $\lim_{h\to 0} \frac{(x+h)^3 x^3}{h}$.
- 4. Calculate $\lim_{x\to+\infty} x(\sqrt{x^2+1}-x)$.
- 5. Calculate $\lim_{x\to+\infty}\cos\sqrt{x+1}-\cos\sqrt{x}$.
- 6. Calculate $\lim_{x\to 0} \frac{\cos x \cos 3x}{x^2}$.
- 7. Calculate $\lim_{x\to+\infty} \left(\frac{x^2+1}{x^2-2}\right)^{x^2}$.
- 8. 设数列 $a_n \to 0$ and $\lim |a_{n+1}/a_n| = a$. Show that $a \le 1$.
- 9. Let $a_n = \sum_{k=1}^n (\sqrt{1 + \frac{k}{n^2}} 1)$, calculate $\lim a_n$.
- 10. $\lim_{n \to \infty} \frac{\sum a_n}{n} \exists$, show that $a_n/n \to 0$.
- 11. Show that $(n!)^{1/n^2} = 1$.
- 12. $a_1 = b, a_2 = c, a_n = \frac{a_{n-1} + a_{n-2}}{2}$, calculate $\lim a_n$.
- 13. Calculate $\lim_{x\to+\infty} \left(\frac{1}{x} \frac{a^x-1}{a-1}\right)^{1/x}$.
- 14. $f(x) = a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx$, $\exists |f(x)| \le \sin x$. Show that $|a_1 + 2a_2 + \dots + na_n| \le 1$.
- 15. f(x) is bounded in the interval $(-\delta, \delta)$. $\exists a > 1, b > 1$ such that f(ax) = bf(x). Show that $f(x) \to 0$ as $x \to 0$.

- 1. Trivial.
- 2. Note that $|x^2 \sin \frac{1}{x}| \le |x^2| \to 0$.
- 3. $\frac{(x+h)^3-x^3}{h} = \frac{3x^2h+3xh^3+h^3}{h} \to 3x^2$.
- 4. $\lim_{x \to +\infty}^{n} x(\sqrt{x^2 + 1} x) = \lim_{x \to +\infty} \frac{x}{x + \sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{1}{1 + \sqrt{1 + \frac{1}{x^2}}} \to 2.$
- 5. $|\cos\sqrt{x+1} \cos\sqrt{x}| = |2\sin\frac{\sqrt{x+1} + \sqrt{x}}{2}\sin\frac{\sqrt{x+1} \sqrt{x}}{2}| \le |\sin\frac{\sqrt{x+1} \sqrt{x}}{2}| \le \frac{\sqrt{x+1} \sqrt{x}}{2} \to 0.$

- 6. $\frac{\cos x \cos 3x}{x^2} = \frac{2\sin 2x \sin x}{x^2} \sim \frac{2 \times 2x \times x}{x^2} = 4.$ 7. 原式 = $[(1 + \frac{3}{x^2 2})^{\frac{x^2 2}{3}}]^{\frac{3x^2}{x^2 2}} \to e^3.$
- 8. If a > 1, then $\exists N, \forall n > N, |a_{n+1}/a_n| > (1+a)/2$, then $|a_n| > |a_N|(\frac{1+a}{2})^{n-N} \Rightarrow |a_n| \to \infty$.
- 9. 分子有理化后利用夹逼原理知答案是 1/4.
- 10. $a_n/n = \sum a_n/n \frac{n-1}{n} \sum a_{n-1}/(n-1) \to 0$.
- 11. 使用夹逼定理知 $1 \le (n!)^{1/n^2} \le n^{1/n} \to 1$. (PLUS: Stirling: $n! \sim (\frac{n}{a})^n \sqrt{2\pi n}$).
- 12. It is easy to show that $a_n a_{n-1} = (-1)^n \frac{a_1 a_0}{2^{n-1}}$, so $a_n a_0 = (a_1 a_0)[1 + (-0.5) + \dots + (-0.5)^{n-1} + (-0.5)^{n-1}] \rightarrow (-0.5)^n + ($ $\frac{2}{3}(a_1-a_0)$.
- 13. We have shown $(a-1)^{1/x} \to 1$, $(1/x)^{1/x} \to 1$, thus the original limit is equivalent to $\lim_{x \to 1} (a^x 1)^{1/x}$. Thus if a > 1, $\lim = a$, if 0 < a < 1, $\lim = 1$.
- 14. $|f(x)/\sin x| \le 1$ and let $x \to 0$.
- 15. $x \in (-\delta, \delta), |f(x)| < M; x \in (-\delta/a, \delta/a), |f(x)| = \frac{1}{b}|f(ax)| \le \frac{M}{b} \Rightarrow x \in (-\delta/a^n, \delta/a^n), |f(x)| \le \frac{M}{b^n} \Rightarrow f(x) \to 0$ as $x \to 0$.

Supplements (not required!)

闭区间套定理: $a_n \uparrow, b_n \downarrow, 0 < b_n - a_n \to 0$, then \exists a unique point $x \in \cap_n [a_n, b_n]$.

Proof: Let $x = \lim a_n = \lim b_n$.

有限覆盖定理: Assume $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ is a group of open sets (might be uncountable). If $[a,b]\subset \cup_{{\lambda}\in\Lambda}I_{\lambda}$, then $\exists I_1,\cdots,I_m\in A$ $\{I_{\lambda}\}$ such that $[a,b] \subset \bigcup_{i=1}^{m} I_{i}$.

Proof. If the claim is wrong, i.e. there does not exist a finite sub-covering, then for [a, (a+b)/2] and [(a+b)/2, b], \cong 少有一个区间不存在有限子覆盖, 这样一直切半, 由闭区间套, 必然夹出一个点 x. 由于这是开覆盖, 因此存在开集 O_x 使得 $x \in O_x$. 从而由极限知这个开区间迟早会覆盖前面的从某项开始的闭区间列, 这与假设 (不存在有限覆盖) 矛盾.

聚点原理: $|a_n| < M$, then $\exists \{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$, such that $a_{n_k} \to a$ as $k \to \infty$. (Bounded sequence must have some subsequence which converges)

我们给出几种证明方法:

- (1) 取 M 使得 $\forall n, |x_n| \leq M$, 取 $a_1 = -M, b_1 = M$. 对 $[a_n, b_n]$ 多次迭代, 每次找到 $\frac{a_n + b_n}{2}$, 这个点将当前区间划分为 两个子区间. 两个子区间中必然至少有一个含有无穷项. 任取其中一个含有无穷项的区间作为 $[a_{n+1},b_{n+1}]$. 由闭区间 套定理, 最终 a_n, b_n 有相同的极限 ξ , 同时 x_n 中有无穷项与 ξ 任意接近. 选取 $x_{n_k} \in [a_i, b_i]$, 则 $x_{n_k} \to \xi$.
- (2) 如果不存在这样的子列, 那么 $\forall x \in [a,b], \exists \delta > 0$ such that $|(x-\delta,x+\delta) \cap \{x_i\}_{i=1}^n| \leq 1$. 这样构造出的开区间集合 覆盖了 [a,b], 由有限覆盖定理, 必然存在有限个开区间覆盖整个区间. 而由假设, 对于取出的每个开区间中至多只有原 序列中的一个点, 由于开区间的数量为有限个, 可以得出原序列长度也是有限的, 这显然不成立.

柯西收敛: $\forall \epsilon > 0, \exists N, \forall n, m > N, |a_n - a_m| < \epsilon$. Equivalent to the previously-defined limit.

Proof. 取 $\epsilon = 1$ 以及满足条件的 N, 那么 $\max_{i=1}^{N} \{|x_i| + 1\}$ 给出了整个序列的上下界. 即 $\{x_n\}$ 有界. 取它的一个收敛 子列 x_{n_k} , 并记这个极限为 ξ . 从而 $|x_n - \xi| \le |x_{n_k} - \xi| + |x_n - x_{n_k}| \to 0$.

一个结论: 数列收敛到 a 当且仅当其任意子列都收敛到 a.

第 3 次习题课

3.1 Questions

- 1. Calculate $\lim \frac{(2n-1)!!}{(2n)!!}$.
- 2. $\{x_n\}$ converges and $\{y_n\}$ diverges, show that $\{x_n + y_n\}$ diverges. $\{x_n\}$ and $\{y_n\}$ diverges, is $\{x_n + y_n\}$ or $\{x_n y_n\}$ bound to diverge? If $\{x_ny_n\}$ is infinitesimal, is $\{x_n\}$ or $\{y_n\}$ bound to be infinitesimal?
- 3. 求极限. $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \cdots$.

- 4 (not required). $0 \le x_{n+m} \le x_n + x_m$. Show that $\lim \frac{x_n}{n} \exists$. (This lemma is useful in large deviation theory).
- 5. $\lim a_n = a$. 求证 $\lim \frac{\sum_{i=1}^n p_i a_{n+1-i}}{\sum_{i=1}^n p_i} = a$. 其中 $p_k > 0$ and $\lim \frac{p_n}{\sum_{p_n}} = 0$. 6. 求极限. $\lim_{x\to 0} \frac{e^{ax} e^{bx}}{x}$, $\lim_{x\to \infty} \sqrt{x + \sqrt{x + \sqrt{x}}} \sqrt{x}$, $\lim_{x\to \infty} (\sin \frac{1}{x} + \cos \frac{1}{x})^x$.
- 7. $\lim_{x\to 0} f(x) \exists \Leftrightarrow \lim_{x\to 0} f(x^3) \exists$, but $\lim_{x\to 0} f(x) \exists \Leftrightarrow \lim_{x\to 0} f(x^2)$.
- 8. 存在 f(x) 在 \mathbb{R} 上处处不连续, 但 |f(x)| 处处连续.
- 9. $a_1, a_2, \cdots, a_p > 0$, calculate $\lim_{x \to 0+0} (\frac{\sum_{i=1}^p a_i^x}{p})^{1/x}$. 10. 求极限. $\lim_{x \to 0+0} \frac{x \log(1+3x)}{(1-\cos 2\sqrt{x})^2}, \lim_{x \to 0} \frac{2^x 3^x}{3^x 4^x}$.
- 11. 举出一个函数处处不连续, 定义域 [0,1] 但是值域为区间.
- 12. $f(x) \in C[a,b]$, |f(x)| 单调, 则 f(x) 单调.
- 13 (not required). $|f(x) f(y)| \le k|x y|$. 0 < k < 1. Show that kx f(x) 单调上升 and $\exists c, f(c) = c$.
- 14. $f(x) \in C[a,b], \forall x, \exists y, \text{ such that } |f(y)| \leq \frac{1}{2}|f(x)|$. Show that $\exists \xi, \text{ such that } f(\xi) = 0$.
- 15 (not required). f(x) 在 [a,b] 上只有第一类间断点, 证明 f(x) 有界.
- 17. 非负函数 $f \in C[0,1], f(0) = f(1) = 0$. Show that $\forall a \in (0,1), \exists x_0 \in [0,1]$ such that $x_0 + a \in [0,1]$ and $f(x_0) = f(x_0 + a)$. 如果去掉非负条件还对吗?
- 18. $f_n(x) = x^n + x$. Show that (1) $\forall n \ f_n(x) = 1$ 在 [0.5,1] 中有且仅有一个根 c_n . (2) find $\lim c_n$.
- 19. 不等于常数的连续周期函数一定有最小正周期. 如果把连续性去掉结论如何?
- 20 (not required). f 在 [a,b] 内处处有极限. 证明 $\forall \epsilon > 0$, 在 [a,b] 中使得 $|\lim_{t\to x} f(t) f(x)| > \epsilon$ 的点至多有有限个.
- (2) f(x) 至多有可列个间断点.

- 1. $\frac{(2n-1)!!}{(2n)!!} < \frac{(2n)!!}{(2n+1)!!}$ (use $\frac{i}{i+1} < \frac{i+1}{i+2}$), then $x_n^2 < \frac{1}{2n+1}$ which means $x_n \to 0$.
- 2. If $\{x_n\}$ and $\{x_n + y_n\}$ converge then $\{x_n + y_n x_n = y_n\}$ converges. $x_n = (-1)^n, y_n = (-1)^n, \{x_n\}$ and $\{y_n\}$ diverge but $\{x_n + y_n\}$, $\{x_n y_n\}$ converge. $x_{2k} = 1$, $x_{2k-1} = \frac{1}{2k-1}$, $y_{2k} = \frac{1}{2k}$, $y_{2k-1} = 1$. $\{x_n\}$ or $\{y_n\}$ are not infinitesimal but $\{x_ny_n\}$ is infinitesimal.
- 3. $\lim x_n = \sqrt{2} \lim x_{n-1} \Rightarrow \lim x_n = 2$.
- 4. 考虑 $\left\{\frac{x_n}{n}\right\}$ 的下确界 α . $\exists n$ such that $x_n/n < a + \epsilon$. Let $\max_{i=1}^n \left\{x_i\right\} = M$. Then $\frac{x_m}{m} \leq \frac{x_n}{m} + \frac{x_{m-n}}{n} \leq \frac{2x_n}{m} + \frac{x_{m-2n}}{m}$ (assume m = kn + b) $\leq \cdots \leq \frac{kx_n}{m} + \frac{x_b}{m} \leq \frac{kx_n}{kn + b} + \frac{M}{m} \leq \frac{x_n}{n} + \frac{M}{m}$. Choose enough large m such that $\frac{M}{m} < \epsilon$. Then $\frac{x_m}{m} < a + 2\epsilon$.
- 5. WLOG let a=0. Let $\sup_n \{a_n\} = M$. $\forall \epsilon > 0, \exists N_1, \forall n \geq N_1, \text{ s.t. } |a_n| < \epsilon; \exists N_2, \forall n \geq N_2, \text{ s.t. } p_n / \sum_n p_n < \epsilon / N_1.$ Let $n > N_1 + N_2$, $|\sum_{i=1}^n a_i p_{n+1-i} / \sum_{i=1}^n p_i| \le |\sum_{i=1}^{n-N_1} p_i a_{n+1-i} / \sum_{i=1}^n p_i| + |\sum_{i=n-N_1+1}^n p_i a_{n+1-i} / \sum_{i=1}^n p_i| < \epsilon + \frac{\epsilon}{N_1} \times \frac{\epsilon}{N_1} + \frac{\epsilon$ $N_1 \times M = (M+1)\epsilon$.
- $6. \ (e^{ax} e^{bx})/x = a \cdot \frac{e^{ax} 1}{ax} + b \frac{1 e^{bx}}{b} \to a b, \sqrt{x + \sqrt{x + \sqrt{x}}} \sqrt{x} = \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x + \sqrt{1/x^3}}} + 1} \to \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x + \sqrt{1/x^3}}}} \to \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x + \sqrt{1/x^3}}}} \to \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x}}} \to \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1$
- $0.5, (\sin 1/x + \cos 1/x)^x = \left[(1 + \cos 1/x + \sin 1/x 1)^{\frac{1}{\cos 1/x + \sin 1/x 1}} \right]^{x \cos 1/x + \sin 1/x 1} = (1/x = t) = e^{(\cos t + \sin t 1)}$
- 7. Trivial.
- 8. $f(x) = 1_{\mathbb{Q}} 1_{\mathbb{R} \setminus \mathbb{Q}}$.
- 9. $\left(\frac{\sum_{i=1}^{p} a_i^x}{p}\right)^{1/x} = \left[1 + \frac{\sum_{i=1}^{p} (a_i^x 1)}{p}\right]^{1/x} = \left\{\left[1 + \frac{\sum_{i=1}^{p} (a_i^x 1)}{p}\right]^{\frac{p}{\sum_{i=1}^{p} (a_i^x 1)}}\right\}^{\frac{p}{\sum_{i=1}^{p} (a_i^x 1)}} \xrightarrow{\frac{\sum_{i=1}^{p} \log a_i}{px}} \to e^{\frac{\sum_{i=1}^{p} \log a_i}{p}} = (a_1 a_2 \cdots a_p)^{1/p}.$ 10. $\lim_{x \to 0+0} \frac{x \log(1+3x)}{(1-\cos 2\sqrt{x})^2} \sim \frac{x \cdot 3x}{(2x)^2} = \frac{3}{4}, \lim_{x \to 0} \frac{2^x 3^x}{3^x 4^x} = \frac{(2/3)^x 1}{1 (4/3)^x} \sim \frac{x \log(2/3)}{-x \log(4/3)} = \frac{\log 3 \log 2}{\log 4 \log 3}.$
- 11. $f(x) = \begin{cases} x & x \in \mathbb{Q} \\ x + 0.5 & x \in [0, 0.5] \& x \in \mathbb{R} \setminus \mathbb{Q}. \\ x 0.5 & x \in [0.5, 1] \& x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$
- 12. 只需注意到如果 $f(x_0) = 0$, then for any $x \in [a, x_0]$, f(x) = 0.

- 13. 第一问是定义, 第二问用 Cauchy 收敛准则, 证明 $x, f(x), f(f(x)), \cdots$ 是柯西列.
- 14. If there does not exists ξ such that $f(\xi) = 0$. Then WLOG let f(x) > 0. Let $x_0 = \arg \min f(x)$. Then there does not exist some y such that $|f(y)| \leq \frac{1}{2}f(x)$. This is contradictory.
- 15. 第一类间断点 ⇒ 每一点都有一个邻域有界 ⇒ 所有邻域构成开覆盖, 必有有限子覆盖, 有限个有界总能找到最大的那个.
- 16. $\exists \eta > 0$, such that $f([a,b]) \supset [-\eta,\eta]$, which further means $e^{f([a,b])} \supset [e^{-\eta},e^{\eta}] \supset [1-\epsilon,1+\epsilon]$ (\exists a relatively small $\epsilon > 0$). Thus when n is odd, choose $e^{f(\xi_1)} = 1$, $e^{f(\xi_2)} = 1 \epsilon/2$, $e^{f(\xi_3)} = 1 + \epsilon/2$, $e^{f(\xi_4)} = 1 \epsilon/3$, $e^{f(\xi_5)} = 1 + \epsilon/3$, \cdots . When n is even, choose $e^{f(\xi_1)} = 1 \epsilon/2$, $e^{f(\xi_2)} = 1 + \epsilon/2$, $e^{f(\xi_3)} = 1 \epsilon/3$, $e^{f(\xi_4)} = 1 + \epsilon/3$, \cdots .
- 17. Let g(x) = f(x+a) f(x). $g(0) \ge 0$, $g(1-a) \le 0$, 用介值定理. 去掉非负条件不对, 比如说 $f(x) = \sin(2\pi x)$, a = 0.7.
- 18. (1) Note that $f_n \uparrow \in [0.5, 1]$ 且 f(0.5) < 1, f(1) > 1, 使用介值定理. (2) 由于 $\forall \epsilon, \exists N$, such that $\forall n > N, (1 \epsilon)^n + 1 \epsilon < 1$. 由于 $f(1 \epsilon) < 1 = f(c_n)$ and $f_n \uparrow \Rightarrow c_n > 1 \epsilon$. 由极限定义知 $c_n \to 1$.
- 19. 反证法. Assume $f(a) \neq f(b)$, 考虑正周期序列 $T_n \to 0$, then $(b-a) \div T_n = S_n \cdots m_n$, 其中 $0 \le m_n < T_n \to 0$. Thus $a + S_n T_n \to b$, $f(a) = f(a + S_n T_n) \to f(b)$ (连续性) $\Rightarrow f(a) = f(b)$. 矛盾. 把连续性去掉则结论不对, 比如说 Dirichlet 函数.
- 20. (1) 如果集合有无穷多个元素那一定有聚点 (有界序列必有收敛子列). 从而 $x_n \to x$. 考虑 y_n 使得 $|y_n x_n| < 1/n$, 且 $|f(y_n) f(x_n)| > \epsilon$ (这是集合的定义). 那么 $y_n \to x$, f 在 x 的极限何在?(极限存在当且仅当任意趋于其的数列极限均相等, 而这里 $\lim_{n \to \infty} f(y_n)$ 显然与 $\lim_{n \to \infty} f(x_n)$ 不同). (2) 记 (1) 中集合为 A_{ϵ} . 注意到间断点集合可以写成 $\cup A_{1/n}$. 可列个有限元素集合的并元素一定是可列个的.

3.3 Supplements (not required!)

有界性定理: $f(x) \in C[a,b]$, then f(x) is bounded.

Proof. If not bounded, then choose x_n such that $f(x_n) \to \infty$, then there exists $\{x_{n_k}\} \subset \{x_n\}$ which converges to some x. This means $f(x) = \infty$, which is contradictory.

最值定理: $f(x) \in C[a,b]$, then $\arg \max f(x) \exists$.

Proof. 找一个数列 $\{x_n\}$ 使得 $f(x_n) \to \max f(x)$. 利用有界数列必有收敛子列和 f(x) 的连续性.

介值定理: $f(x_1) > 0, f(x_2) < 0, f(x) \in C[x_1, x_2], \exists x_0 \text{ such that } f(x_0) = 0.$

Proof. Use Lebesgue method. Let $x_0 = \sup\{x : f(x) > 0\}$. 利用连续性知如果 $f(x_0) > 0$ 则 x_0 不是上界, 如果 $f(x_0) < 0$ 则有更好的上确界.

4 第 4 次习题课

4.1 Questions

- 1. $f(x) \in C(\mathbb{R})$, $\lim_{x \to \infty} f(x) = +\infty$. Show that $\arg \min_{x \in \mathbb{R}} f(x) \exists$.
- 2. Show that $\cos x = 1/x$ has infinite positive roots.
- 3. $f(x) \in C[a, b], x_1, x_2, \dots, x_n \in [a, b]$. Show that $\exists \xi \in [a, b]$ such that $f(\xi) = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.
- 4. $f(x) = |x|^{1/4} + |x|^{1/2} 0.5 \cos x$. How many roots in \mathbb{R} ?
- 5. $f(x) \in C[0,2], f(0) = f(2)$, show that $\exists x_1, x_2 \in [0,2]$ such that $|x_1 x_2| = 1$ and $f(x_1) = f(x_2) = 1$.
- 6. $f(x) = \lim_{n \to \infty} \frac{x^{n+2} x^{-n}}{x^n + x^{-n-1}}$. Discuss its continuity.
- 7. $f(x) \in C(\mathbb{R}), f(x+y) = f(x) + f(y)$. Calculate f(x).
- 8. f(x) 连续, |f(x)| 连续否?
- 9. $f(x) \in C[0,1], 0 \le f(x) \le 1$, show that $\exists t \in [0,1]$ such that f(t) = t.
- 10. (not required) $f(x) \uparrow \in C[0,1], 0 \le f(x) \le 1$, show the same proposition.
- 11. f(x) 在 x = 3 连续, $\lim_{x \to 3} \frac{f(x)}{x-3} = 2$. 求 f'(3).

- 12. $f(x) \in D(\{x_0\})$, calculate $\lim_{x\to 0} \frac{f(x_0+x)-f(x_0-x)}{f(x)}$.
- 13. 证明奇函数导数是偶函数, 偶函数导数是奇函数.
- 14. 求导数 $y = \sqrt[3]{2+3x^3}$, $y = \arcsin\frac{1}{x^2}$, $y = \log(\arctan 5x) + \log(1-x)$, $y = e^{\sin^2 x} + \sqrt{\cos x} 2^{\sqrt{\cos x}}$.
- 16. $f(x), x \in [-1, 1], x < f(x) < x^2 + x$, show that f'(0) = 1.
- 17. 求导数. $e^{xy} = 3x^2y$, $\arctan y/x = \log \sqrt{x^2 + y^2}$.
- 18. 求导数. $f(x)^{g(x)}, x^{x^x}$.
- 19. 求 n 阶导数. $\frac{x^n}{1-x}$, $\sin^4 x + \cos^4 x$.
- 20. 求 0 处的 n 阶导数. $\arcsin^2 x$.
- 21. 求极限. $\lim_{x\to+\infty} \sqrt{x^2+x+1} x$, $\lim_{n\to\infty} n(\sqrt[n^2]{n} 1)$, $\lim_{x\to 0} (1+2x)^{\frac{(x+1)^2}{x}}$.
- 22. $f([a,b]) \subset [a,b], |f(x)-f(y)| \leq |x-y|, x_{n+1} = \frac{1}{2}(x_n+f(x_n)),$ 证明 $\forall x_1 \in [a,b],$ 则 x_n 收敛.

Solutions

- 1. It is easy to show that $\exists X > 0, \forall |x| > X, f(x) > f(0)$. Then $\arg\min_{x \in [-X,X]} f(x) = \arg\min_{x \in \mathbb{R}} f(x)$, 由最值定理
- 2. Let $f(x) = \cos x 1/x$, then $f(2k\pi) > 0$, $f(2k\pi + \frac{\pi}{2}) < 0$, 由介质定理立得.
- 3. Note that $\min f(x) \leq \frac{1}{n} \sum_{i=1}^{n} f(x_i) \leq \max f(x)$. 使用介质定理.
- 4. Note that f(x) is even. Then $\forall x > 1$, f(x) > 0. And f(x) is monotonically increasing in [0,1]. f(0) < 0, $f(1) > 0 \Rightarrow$ one root. So in \mathbb{R} two roots.
- 5. Let g(x) = f(x+1) f(x). Then $g(0)g(1) \le 0 \Rightarrow \exists x \in [0,1]$ such that g(x) = 0.

6.
$$f(x) = \begin{cases} x^2 & |x| > 1 \\ -x & 0 < |x| < 1 \end{cases}$$

- 7. $f(n) = f(1) + f(n-1) = 2f(1) + f(n-2) = \dots = nf(1), f(1) = f(1/n) + f((n-1)/n) = 2f(2/n) + f((n-2)/n) = nf(1) + f(n-2) = \dots = nf(1)$ $\cdots = nf(1/n) \Rightarrow f(m/n) = mf(1/n) = m/n \times f(1)$. 有理数点满足 f(x) = xf(1), 无理数点用有理数逼近就可以了.
- 8. Note that $||f(x)| |f(y)|| \le |f(x) f(y)|$. 因此连续.
- 9. Let g(t) = f(t) t, $g(0) \ge 0$, $g(1) \le 1$, 利用介质定理.
- 10. Use Lebesgue method. Let $x_0 = \sup_x \{f(x) > x\}$. Show that $f(x_0) = x_0$. If $f(x_0) > x_0$ then $\forall x_1, x_0 < x_1 < f(x_0)$, $f(x_1) \geq f(x_0) > x_1$. This means x_0 is not an upper bound. If $f(x_0) < x_0$ then for all $x_1, f(x_0) < x_1 < x_0$, $f(x_1) \le f(x_0) < x_1$. This also means x_0 is not an upper bound. Thus $f(x_0) = x_0$.

$$f(x_1) \leq f(x_0) < x_1. \text{ This also means } x_0 \text{ is not an upper bound. Thus } f(x_0) = x_0.$$

$$11. \ f(3) = f(x)/(x-3) \times (x-3) \sim 2 \times (x-3) = 0 \text{ as } x \to 3. \text{ Thus } f'(3) = \lim \frac{f(x)-f(3)}{x-3} = 2.$$

$$12. \ \frac{f(x_0+x)-f(x_0-x)}{x} = \frac{f(x_0+x)-f(x_0)}{x} + \frac{f(x_0)-f(x_0-x)}{x} \to 2f'(x_0).$$

$$13. \ \underline{\text{I}} \text{ } \underline{\text{H}} \text{$$

- 17. 两边同时求导数, $y' = \frac{y(2-xy)}{x(xy-1)}$, $y' = \frac{x+y}{x-y}$.

 18. 方法都是写成指数函数, $e^{g\log f}$, $e^{e^{x\log x}\log x}$. 结果是 $f^g(g'\log f + \frac{f}{g}f')$, $x^{x^x}(x^x(1+\log x)\log x + x^{x-1})$.

 19. $\frac{x^n}{1-x} = \frac{x^n-x^{n-1}+x^{n-1}-x^{n-2}+\cdots+x-1+1}{1-x} = -(x^{n-1}+\cdots+x+1) + \frac{1}{1-x}$, 因此 n 阶导数是 $\frac{n!}{(1-x)^{n+1}}$. 第二个用倍角公式写出来是 $1-0.5\sin^2 2x$. $y' = -\sin 4x$. 由课上已知结论知是 $y^{(n)} = -4^{n-1}\sin(4x + \frac{n-1}{2}\pi)$.

- 20. $f'(x) = 2\arcsin(x)\sqrt{1-x^2}$, 从而 $(1-x^2)f'(x)^2 = 4f(x)$. 两边求导 $-2xf'(x)^2 + 2(1-x^2)f'(x)f''(x) = 4f'(x)$ $-xf'(x)+(1-x^2)f''(x)=2$. 两边求 n-2 次导数, 并带入 x=0, 利用 Leibniz 公式知道 $f^{(n)}(0)=(n-2)^2f^{(n-2)}(0)$. 然后再手动把 f'(0), f''(0) 算出来用递推就可以了.
- 21. $\sqrt{x^2 + x + 1} x = \frac{x+1}{\sqrt{x^2 + x + 1} + x} = \frac{1+1/x}{\sqrt{1+1/x+1/x^2} + 1} \rightarrow 0.5, n(\sqrt[n^2]{n} 1) = n(e^{\log n/n^2} 1) \sim n \log n/n^2 \rightarrow 0, (1 + 1)^2$ $(2x)^{\frac{(x+1)^2}{x}} = [(1+2x)^{1/(2x)}]^{2(x+1)^2} \to e^2.$
- 22. 回忆: 这种题一定是单调数列. 容易验证数列是良定义的, 即不会跑出区间 [a,b] 外. 如果 $x_n \geq x_{n-1}$, 有 $x_{n+1} = x_n \leq x_n$ $\frac{1}{2}(f(x_n)+x_n)$ (利用 $f(x_n)-f(x_{n-1})\geq x_{n-1}-x_n$) $\geq \frac{1}{2}(f(x_{n-1})+x_{n-1})=x_n$. 从而如果 $x_2\geq x_1$, 则这成为单调上升 有界数列, 必收敛. 同理若 $x_{n-1} \ge x_n$ 也可以推出 $x_n \ge x_{n+1}$.

Supplements (not required!)

See https://wqgcx.github.io/courses/analysis1.pdf.

5 第 5 次 习 题 课

5.1Questions

Hint: If you find it difficult to calculate $\lim_{x\to a} \frac{f(x)}{g(x)}$ but simple to calculate $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, then by L'Hospital, $\lim_{x \to a} \frac{f(x)}{g(x)} = L.$

- 1. 求出闭区间 [-1,1] 上的一元函数 $f(x) = x^{\frac{2}{3}} (x^2 1)^{\frac{1}{3}}$ 达到最小值的所有 [-1,1] 上的点. 2. 考虑函数 $f(x) = \begin{cases} x^m \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$, 其中 m 为正整数. 在 $x \neq 0$ 处, 求 f'(x) 和 f''(x). 求 m 满足的条件, 使得

f(x) 有连续的二阶导函数

3. 设
$$f(x) = \begin{cases} \frac{\log(1+x)}{x} + \frac{x}{2} & x > 0 \\ a & x = 0 \text{ 在 } x = 0 \text{ 处可导, 确定常数 } a, b, c, \text{ 的值 (You may want to use the hint mentioned } \frac{\sin bx}{x} + cx & x < 0 \end{cases}$$

above).

- 4. $y = e^{-x^2}$, $\Re y^{(4)}|_{x=0}$.
- 5. $y = \frac{x}{2}\sqrt{a^2 x^2} + \arccos\frac{x}{a}, \ \ \frac{dy}{dx}$.
- 6. $y^2 \tan(x+y) \sin(x-y) = 0$, $\Re \frac{dy}{dx}$
- 7. $y = x^{a^a} + a^{x^a} + a^{a^x}$, $\vec{x} \frac{dy}{dx}$.
- 8. 求函数 $f(x) = x^{\arcsin x} (0 < x < 1)$ 的导函数 f'(x).
- 9. 求函数 $f(x) = \arctan x$ 在 x = 0 点的 3 阶导数 f'''(0).
- 10. 设 $f(x) = \frac{1}{x^2-4}$, 求 $f^{(n)}(x)$, $n \in \mathbb{N}$.
- 11. 求方程 $y^2 + 2\log y = x^4$ 所确定的函数 y = f(x) 的二阶导数.
- 12. 判断下列结论是否正确.
- (1) 设 f(x) 在 x_0 处可导, 且 $f'(x_0) > 0$, 那么
- (1.1) f(x) 在 x_0 点一定连续.
- (1.2) f(x) 在 x_0 点的某个邻域内一定连续.
- (1.3) f(x) 在 x_0 点的某个邻域内一定单调上升.
- (2) f(x) 在 x_0 点二阶可导,那么
- (2.1) f(x) 在 x_0 点一定连续.
- (2.2) f(x) 在 x_0 的某个邻域内一定连续.
- 13. 设 $f(x) = e^{x(x-1)\cdots(x-2021)}$, 求 f'(2021).

- $\sqrt{1+t^2}, y \arccos \frac{\sqrt{1+t^2}}{\sqrt{1+t^2}}, x \frac{z}{dx}.$ 15. 设 $y = \frac{1}{4\sqrt{2}} \log \frac{x^2 + \sqrt{2}x + 1}{x^2 \sqrt{2}x + 1} \frac{1}{2\sqrt{2}} \arctan \frac{\sqrt{2}x}{x^2 1}, x \frac{dy}{dx}$ 并化简.
 16. 求积分 $\int \frac{4x^3 + 2x^2 + 3x + 1}{x(x+1)(x^2+1)} dx.$ 17. 求积分 $\int \frac{2x^2 + x + 5}{x^4 x^2 6} dx.$

- 18. 求积分 $\int \frac{\cos^3 x}{\sin x + \cos x} dx$. 19. 求积分 $\int \frac{\cos^3 x}{\sin x + \cos x} dx$ (Hint: $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \log|x + \sqrt{x^2 + a^2}| + C$).
- (1) 当把 t 作为自变量时, 函数 y = f(g(t)) 的二阶微分记为 $d_t^2 y$, 函数 x = g(t) 的一阶微分记为 $d_t x$. 计算出: 当
- $t=1, \Delta t=0.1$ 时, 函数 y=f(g(t)) 的二阶微分 $d_t^2y|_{t=1,\Delta t=0.1}$ 和函数 x=g(t) 的一阶微分 $d_tx|_{t=1,\Delta t=0.1}$.
- (2) 当把 x 作为自变量时, 函数 y = f(x) 的二阶微分记为 $d_x^2 y$, x(看作 x 的函数) 的一阶微分记为 $d_x x$. 计算出: 当 $x = 1, \Delta x = 0.21$ 时, 函数 y = f(x) 的二阶微分 $d_x^2 y|_{x=1,\Delta x=0.21}$ 和函数 x(看作 x 的函数) 的一阶微分 $d_x x|_{x=1,\Delta x=0.21}$.
- (3) $\frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1}$ 与 $\frac{d_x^2 y}{(d_x x)^2}|_{x=1,\Delta x=0.21}$ 相等吗?
- 21. 求极限 $\lim_{x\to 0+0} x^x$.
- 22. 求极限 $\lim_{x\to 0} \frac{\sqrt[3]{1+x}-1}{x+\tan x}$
- 23. 求极限 $\lim_{n\to\infty}\cos\frac{a}{2}\cos\frac{a}{2^2}\cdots\cos\frac{a}{2^n}$ $(a\in(0,1)).$
- 24. 求极限 $\lim_{x\to+\infty} \left(\frac{\sqrt{1+x^2}}{x}\right)^{x^2}$.
- 25. 求极限 $\sqrt{n}(\sqrt[n]{n}-1)$.
- 26. 设 $\lim_{n\to+\infty} (x_n x_{n-2}) = 0$, 证明 $\lim_{n\to+\infty} \frac{x_n}{n} = 0$.
- 27. 设 $f(x) \in C[0,1]$, 如果极限 $\lim_{x \to +\infty} \frac{f(0) + f(1/n) + f(2/n) + \dots + f(1)}{n} = M$, 其中 M 是 f(x) 在 [0,1] 上的最大值, 则 $f(x) \equiv M$.

- 1. f(1) = f(-1) = 1, $f'(x) = \frac{2}{3x^{1/3}} \frac{2x}{3(x^2 1)^{2/3}} = \frac{2[(x^2 1)^{2/3} x^{4/3}]}{3x^{1/3}(x^2 1)^{2/3}} \ge 0 \Rightarrow 0 < x \le \frac{\sqrt{2}}{2}$ 或者 $-1 < x \le -\frac{\sqrt{2}}{2}$. 注意到 f(0) = 1. 从而达到最小值的点是 -1, 0, 1.
- $2. \ f'(x) = -x^{m-2}\cos\frac{1}{x} + mx^{m-1}\sin\frac{1}{x}, \\ f''(x) = -x^{m-4}\sin\frac{1}{x} (m-2)x^{m-3}\cos\frac{1}{x} mx^{m-3}\cos\frac{1}{x} m(m-1)x^{m-2}\sin\frac{1}{x}.$ 要使得 f''(0) 存在需要 f'(0)∃, $f'(x) \to f'(0)$ 且 $\lim_{x\to 0} \frac{\ddot{f'(x)} - f'(0)}{x}$ ∃ $\Rightarrow m \ge 4$, 二阶导函数连续性意味着 $f''(x) \to f'(x)$ $f''(0) \Rightarrow m \geq 5$.
- 3. 连续性: $f(0+0) = a \Rightarrow a = 1, b = 1$. $f'_{+}(0) = 0, f'_{-}(0) = 0 \Rightarrow c = 0$ (需要用 L'Hospital).
- $4. \ \ y' = -2xe^{-x^2}, \\ y'' = 4x^2e^{-x^2} 2e^{-x^2}, \\ y''' = -2x(4x^2 2)e^{-x^2} + 8xe^{-x^2}, \\ y'''' = (-24x^2 + 12)e^{-x^2} + (16x^4 24x^2)e^{-x^2}.$
- 5. $\frac{dy}{dx} = \frac{\sqrt{a^2 x^2}}{2} \frac{x^2}{2\sqrt{a^2 x^2}} \frac{1}{\sqrt{a^2 x^2}}$.
- 6. 两边求导, $2yy'\tan(x+y) + \frac{y^2}{\cos^2(x+y)}(y'+1) + (y'-1)\cos(x-y) = 0 \Rightarrow y' = \frac{\cos^2(x+y)\cos(x-y) y^2}{\cos^2(x+y)\cos(x-y) + y^2 + 2y\sin(x+y)\cos(x+y)}$.
- 7. $y' = a^a x^{a^a 1} + a^{x^a + 1} x^{a 1} \log a + a^{a^x + x} (\log a)^2$

- 8. $f(x) = e^{\arcsin x \log x}$, $f'(x) = x^{\arcsin x} (\frac{\log x}{\sqrt{1-x^2}} + \frac{\arcsin x}{x})$. 9. $f'(x) = \frac{1}{1+x^2}$, $f''(x) = -\frac{2x}{(1+x^2)^2}$, $f'''(x) = -\frac{2(1+x^2)^2 8x^2(1+x^2)}{(1+x^2)^4} \Rightarrow f'''(0) = -2$. 10. $\frac{1}{x^2-4} = \frac{1}{(x-2)(x+2)} = \frac{1}{4}(\frac{1}{x-2} \frac{1}{x+2}) \Rightarrow f^{(n)}(x) = \frac{(-1)^n n!}{4}(\frac{1}{(x-2)^{n+1}} \frac{1}{(x+2)^{n+1}})$. 11. 两边求导, $2yy' + 2\frac{y'}{y} = 4x^3 \Rightarrow y^2y' + y' = 2x^3y$, 再求一次, $2y(y')^2 + y^2y'' + y'' = 6x^2y + 2x^3y'$, 利用 $y' = \frac{2x^3y}{y^2+1}$, 得 到 $y'' = \frac{6x^2y}{y^2+1} + \frac{4x^6y}{(y^2+1)^2} - \frac{8x^6y^3}{(y^2+1)^3}$.
- 12. (1.1) 可导一定连续. (1.2)(1.3) 不一定, $f(x) = \begin{cases} x & x \in \mathbb{Q} \\ x + x^2 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$.
- (2.1)(2.2)都是对的.
- 13. $f'(x) = e^{x(x-1)\cdots(x-2021)}[x(x-1)\cdots(x-2021)]'$, $\forall \vec{m} \ f'(2021) = 2021!$.
- 14. $\frac{dx}{dt} = \frac{1}{1+t^2}, \frac{dy}{dt} = \frac{1}{1+t^2} \operatorname{sgn}(t)$, 注意到 t, x 同号, 因此 $\frac{dy}{dx} = \operatorname{sgn}(x)$.

- 15. $y'(x) = \frac{1}{x^4 + 1}$.
- 16. $\frac{4x^3 + 2x^2 + 3x + 1}{x(x+1)(x^2+1)} = \frac{2}{x+1} + \frac{1}{x} + \frac{x}{(x^2+1)},$ 因此积分后是 $2\log|x+1| + \log|x| + \frac{1}{2}\log(x^2+1) + C$.
 17. $\frac{2x^2 + x + 5}{x^4 x^2 6} = \frac{11}{10\sqrt{3}} \frac{1}{x \sqrt{3}} \frac{11}{10\sqrt{3}} \frac{1}{x + \sqrt{3}} \frac{1}{5\sqrt{2}} \frac{\sqrt{2}}{x^2 + 2} + \frac{1}{5} \frac{x}{x^2 3} \frac{1}{5} \frac{x}{x^2 + 2},$ 因此积分后是 $\frac{11}{10\sqrt{3}} \log|x \sqrt{3}| \frac{11}{10\sqrt{3}} \log|x + \sqrt{3}| \frac{1}{5\sqrt{2}} \arctan(\frac{x}{\sqrt{2}}) + \frac{1}{10} \log|x^2 3| \frac{1}{10} \log(x^2 + 2) + C$.

- 20. (1) $d_t^2 y|_{t=1,\Delta t=0.1} = 30t^4 (\Delta t)^2|_{t=1,\Delta t=0.01} = 0.3, d_t x|_{t=1,\Delta t=0.1} = 2t\Delta t|_{t=1,\Delta t=0.1} = 0.2.$
- $(2) \ d_x^2 y|_{x=1,\Delta x=0.21} = 6x(\Delta x)^2 = 0.2646, d_x x|_{x=1,\Delta x=0.21} = 1\Delta_x|_{x=1,\Delta x=0.21} = 0.21.$
- $(3) (d_t x)^2|_{t=1,\Delta t=0.1} = 0.2^2 = 0.04, (d_x x)^2|_{x=1,\Delta x=0.21} = 0.21^2 = 0.0441, \frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1} = \frac{0.3}{0.04} = 7.5 \neq 6 = \frac{0.2646}{0.0441} = \frac{0.21}{0.04} = \frac{0.21}{0.04}$ $\frac{d_x^2 y}{(d_x x)^2}|_{x=1,\Delta x=0.21}$, 因此不相等. 21. $x^x = e^{x \log x} \to e^0 = 1$.
- 22. $\sqrt[3]{1+x}-1\sim \frac{1}{3}x, x+\tan x\sim 2x$, 因此极限值为 $\frac{1}{6}$.
- 23. $\cos \frac{a}{2} \cdots \cos \frac{a}{2^n} \sin \frac{a}{2^n} = \frac{\sin a}{2^n}$, 因此极限值为 $\frac{\sin a}{a}$. 24. $(1 + \frac{\sqrt{1+x^2}-x}{x})^{\frac{x}{\sqrt{1+x^2}-x}} x^{(\sqrt{1+x^2}-x)}$, 由于 $x(\sqrt{1+x^2}-x) = \frac{x}{\sqrt{1+x^2}+x} \to 0.5$, 因此原极限为 \sqrt{e} .
- 25. $\sqrt{n}(\sqrt[n]{n}-1) \sim \sqrt{n}(e^{(\log n)/n}-1) \sim \sqrt{n}(\log n)/n \to 0.$
- 26. 分奇偶讨论.
- 27. 如果结论不对, 则存在一个长度为 δ 的区间, 在这个区间上 $f(x) \leq M \epsilon$, 则至少有 $[\delta/n] 1$ 个 f(i/n) 落在这个 区间里, 这样一来极限值就会小于等于 $M(1-\delta) + (M-\epsilon)\delta$, 矛盾.

5.3Supplements (required!)

Riemann-Lebesgue's Lemma: $f \in R[a,b], g \in C[0,T], g(x+T) = g(x), \forall x \in \mathbb{R}$. Then

$$\int_a^b f(x)g(nx)dx = \int_a^b f(x)dx \frac{1}{T} \int_0^T g(x)dx$$

Proof: WLOG $\int_0^T g(x)dx = 0$, otherwise let $h(x) = g(x) - \frac{1}{T} \int_0^T g(x)dx$.

Then by the definition of Riemann integral, $\forall \epsilon > 0$, there exists some step function $s_{\epsilon}(x)$, such that $s_{\epsilon}(x) =$

$$\begin{cases} C_1 & a = x_0 \le x < x_1 \\ C_2 & x_1 \le x < x_2 \\ \cdots & \text{and } \int_a^b |f(x) - s_{\epsilon}(x)| dx < \epsilon. \text{ Let } M = \sup_{x \in [0, T]} g(x). \text{ Then } \\ C_m & x_{m-1} \le x \le b \end{cases}$$

 $|\int_{a}^{b} f(x)g(nx)dx| = |\int_{a}^{b} (f(x) - s_{\epsilon}(x))g(nx)dx + \int_{a}^{b} s_{\epsilon}(x)g(nx)dx| \le \int_{a}^{b} |f(x) - s_{\epsilon}(x)|g(nx)dx + |\sum_{i=1}^{m} C_{i} \int_{x_{i-1}}^{x_{i}} g(nx)dx < |\sum_{i=1}^{m} C_{i} \int_{x_{i-1}}^{x_{i}} g(nx)dx| \le \int_{a}^{b} |f(x) - s_{\epsilon}(x)|g(nx)dx + |\sum_{i=1}^{m} C_{i} \int_{x_{i-1}}^{x_{i}} g(nx)dx| \le \int_{a}^{b} |f(x) - s_{\epsilon}(x)|g(nx)dx| \le \int_{a}^{b} |f(x) -$ $M\epsilon + \frac{1}{n}\sum_{i=1}^{m}C_{i}\int_{nx_{i-1}}^{nx_{i}}g(x)dx \leq M\epsilon + \frac{1}{n}\sum_{i=1}^{m}C_{i}MT.$ The last equation uses the fact that $\int_{0}^{T}g(x)dx = 0$, which further means $\int_{c}^{d}g(x)dx = \int_{c}^{c+T}g(x)dx + \int_{c+T}^{c+2T}g(x)dx + \cdots + \int_{c+kT}^{d}g(x)dx$ $(c+kT \leq d < c+(k+1)T) = \int_{c+kT}^{d}g(x)dx \leq MT.$ Choose a large enough n, and we can let $\frac{1}{n} \sum_{i=1}^{m} C_i MT < \epsilon$. #.

6 第6次习题课

6.1 Questions

- 1. 求极限. $\lim_{n\to+\infty}\frac{1}{n}(\sqrt{1+\frac{1}{n}}+\cdots+\sqrt{1+\frac{n}{n}}),\lim_{n\to+\infty}\sum_{k=1}^{n}\frac{n}{n^2+k^2},\lim_{n\to\infty}\sum_{i=1}^{n}(1+\frac{i}{n})\sin\frac{i\pi}{n^2},\lim_{n\to+\infty}\sum_{k=1}^{n}\frac{1}{n+k}.$ 2. 求导数. $\int_{x^3+1}^{2^x}\frac{\sin t}{t^4+2}dt,\int_{e}^{e^x}\frac{dt}{1+\log t}(x>1),(\int_{a}^{x}f(t)dt)^2.$

- 3. 求积分. $\int \frac{dx}{\sqrt{a^2-x^2}}, \int \frac{dx}{\sqrt{x^2+a^2}}, \int \frac{dx}{\sqrt{x^2-a^2}}, \int \sqrt{a^2-x^2} dx, \int \sqrt{x^2+a^2} dx, \int \sqrt{x^2-a^2} dx, \int \frac{dx}{\sqrt{x^2-a^2}}, \int \sqrt{\tan x} dx, \int \frac{e^x(2-x^2)}{(1-x)\sqrt{1-x^2}} dx, \int x^2 \sqrt{x^2+1} dx, \int \frac{dx}{x(x^3+2)}, \int x^2 \arctan x dx, \int \frac{1}{\cos^3 x} dx.$

- 5. 函数 f(x) 在 [0,1] 上有连续的导函数. 证明: 对于任意 $x \in [0,1]$, 有 $|f(x)| \le \int_0^1 |f(t)| dt + \int_0^1 |f'(t)| dt$, 并写出取等 号条件.
- 6. $x_1 > 0$, 对于每个正整数 n, 有 $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{x_n})$. 证明 $\lim x_n$ 存在并求之.
- 7. 设 x > 0, 定义 $p(x) = \int_0^x \frac{dt}{\sqrt{t^3 + 2021}}$, 证明方程 $p(x+1) = p(x) + \sin x$ 有无穷个互不相等的正实数解.
- 8. $\c \oplus f(x) \in R[a,b], \int_a^b f(x) dx > 0$, show that $\c \exists [\alpha,\beta] \subset [a,b]$ such that $f(x) > 0, x \in [\alpha,\beta]$.
- 9 (not required). $f(x) \in R[a,b]$, 是否有 [f(x)] 可积? 其中 $[\cdot]$ 表示向下取整.
- 10. 设 $f(x) \in C[0,\pi]$ 满足 $\int_0^\pi f(x) \cos dx = \int_0^\pi f(x) \sin x dx = 0$, show that $\exists \alpha, \beta \in (0,\pi), \alpha \neq \beta$, such that $f(\alpha) = 0$ $f(\beta) = 0.$
- 11. 设 $f(x) \in C[a,b]$ 满足 $\forall \phi(x) \in C[a,b]$, 只要 $\int_a^b \phi(x) dx = 0$, 就有 $\int_a^b f(x) \phi(x) dx = 0$. 证明 $f(x) \equiv C$.
- 12. $a_n/n^{\alpha} \to 1$, $\Re \lim_{n\to\infty} \frac{1}{n^{1+\alpha}} (a_1 + a_2 + \cdots + a_n)$.
- 13. f(x) 在 [a,b] 上可导, f'(a) = m, f'(b) = n, 证明存在 $c \in [a,b]$ 使得 $f'(c) = \xi$, 其中 ξ 是 [m,n] 或 [n,m] 中的任意 一个数.
- 14. f(x) 在 [a,b] 上可导, 证明存在 $c \in [a,b]$ 使得 $f'(c) = \frac{f(b) f(a)}{b-a}$.
- 15. 证明柯西不等式 $[\int_a^b f(x)g(x)dx]^2 \le \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx$.
- 16. 证明 Holder 不等式 $\int_a^b f(x)g(x)dx \leq [\int_a^b f^p(x)dx]^{1/p} [\int_a^b g^q(x)dx]^{1/q}$, 其中 1/p + 1/q = 1, $f(x), g(x) \geq 0$. 17. 证明 Minkowski 不等式 $[\int_a^b [f(x) + g(x)]^p dx]^{1/p} \leq [\int_a^b f^p(x)]^{1/p} + [\int_a^b g^p(x)]^{1/p}$, 其中 $p \geq 1$, $f(x), g(x) \geq 0$.
- 19. 记 $f_n(x) = \frac{\sin nx}{n}$, 求 $\lim_{n \to \infty} f'_n(x)$ 和 $(\lim_{n \to \infty} f_n(x))'$.

6.2Solutions

Supplements (not required!)

你也许认为生活中很多函数都是可积的, 但是实际上不对!

See https://wqgcx.github.io/courses/analysis2.pdf 了解更多可积性理论.

测度: 我们把满足以下性质的非负集函数 (定义域是集合, 且函数值非负) 叫做测度: $m(\emptyset) = 0$, and for disjoint sets $A_1, A_2, \cdots, \sum_i m(A_i) = m(\cup A_i).$

 π 系: 一族集合构成的集合 \mathscr{P} , 且满足 $\forall A, B \in \mathscr{P} \Rightarrow A \cap B \in \mathscr{P}$.

半环: \mathscr{P} 是 π 系, 若 $A, B \in \mathscr{P}, A \supset B$, 则存在有限个两两不交的集合 C_1, C_2, \cdots, C_k 使得 $A \setminus B = \cup_k C_k$.

外测度: 我们把满足以下性质的非负集函数 (定义域是集合, 且函数值非负) 叫做外测度: $m(\emptyset) = 0$, and for sets $A_1, A_2, \cdots, \sum_i m(A_i) \ge m(\cup A_i).$

 σ -域: 如果 $\emptyset, \Omega \in \mathcal{P}; A \in \mathcal{P} \Rightarrow A^c \in \mathcal{P}; A_1, A_2, \dots \in \mathcal{P} \Rightarrow \cup_i A_i \in \mathcal{P}, 则称 \mathcal{P} \in \sigma$ -域.

容易验证所有形如 $(a,b],a,b\in\mathbb{R}$ 的区间构成的集合是半环, 定义 m((a,b])=b-a, 这是半环上的外测度. 由测度扩张 定理, 这个外测度可以扩张到 $\sigma(\{(a,b)\})$ 上. 利用 Caratheodory 条件可以完备化. 这个测度成为 Lebesgue 测度.

More on Lebesgue measure: Cantor set, fat Cantor set, Cantor-Lebesgue function, etc.

Lebesgue 定理: $f(x) \in R[a,b]$ iff $m(\{x: f(x) \in x \notin ax \notin b\}) = 0$, 其中 $m \notin b$ Lebesgue 测度.

Proof. "⇒"对于区域 [a,b] 的任何分割 $a = x_0 < x_1 < x_2 < \cdots < x_n = b$, 定义 $\omega_i = \sup\{|f(x) - f(y)|, x, y \in a\}$ $[x_{i-1},x_i]$, $\Delta_i=|x_i-x_{i-1}|$, $\Delta=\max\{\Delta_i\}$. 因而 f 是 Riemann 可积等价于 $\lim_{\Delta\to 0}\sum_i\omega_i\Delta_i=0$. 再定义 $\omega_\epsilon(f)=0$ $\{x: \lim_{\delta \to 0} \sup_{y \in [x-\delta,x+\delta]} |f(y)-f(x)| \geq \epsilon\}. \ \text{ 先假设如果 } f \text{ 的不连续点集测度为正, 那么存在 } \epsilon_0 \text{ 使得 } \omega_{\epsilon_0}(f) > 0. \ \text{ 对}$ 任意分割, 我们有 $\sum_{i} \omega \Delta_{i} \geq \sum_{[x_{i-1},x_{i}] \cap \omega_{\epsilon_{0}}(f) \neq \emptyset} \omega_{i} \Delta_{i} \geq \epsilon_{0} \sum_{[x_{i-1},x_{i}] \cap \omega_{\epsilon_{0}}(f) \neq \emptyset} (x_{i} - x_{i-1}) \geq \epsilon_{0} m(\omega_{\epsilon}(f))$. 这表明 f 不是 Riemann 可积的. 因此如果 f 是 Riemann 可积的, 那么不连续点集必定是零测集.

"←"现在我们假设 $\omega_{\epsilon}(f)$ 是零测集, 我们证明 f 是 Riemann 可积的. 对任意 $\epsilon > 0$, 存在闭集 $A_{\epsilon} \subset [a,b]$ 使得 f 在 A_{ϵ} 上连续. 对 $x_0 \in A_{\epsilon}$, 存在 $\delta > 0$ 使得 $|f(x) - f(y)| < \epsilon, \forall x, y \in (x_0 - \delta, x_0 + \delta)$. 由于 A_{ϵ} 是有界闭集, 因此存在 有限个开区间 $(x_l - \frac{1}{2}\delta_l, x_l + \frac{1}{2}\delta_l)$ 覆盖住 A_{ϵ} . 取 $\delta = \min\{\frac{1}{3}\delta_l\}$. 这表明对于任意 $x_0 \in A_{\epsilon}$, 必定有某个 $x_l \in A_{\epsilon}$, 使得 $x_0 \in (x_l - \frac{1}{2}\delta_l, x_l + \frac{1}{2}\delta_l)$. 这表明 $[x_0 - \delta, x_0 + \delta] \subset (x_l - \delta_l, x_l + \delta_l)$, 因而有 $|f(x) - f(y)| < \epsilon, \forall x, y \in [x_0 - \delta, x_0 + \delta]$. 取 [a, b] 分割使得 $\Delta < \frac{1}{2}\delta$. 现在我们来考虑 $\sum_i \omega_i \Delta_i$. 如果区间 $[x_{i-1},x_i]$ 与 A_ϵ 的交集非空,含有某个点 $y_0 \in [x_{i-1},x_i] \cap A_\epsilon$,那么对于任意 $x,y \in [y_0-\delta,y_0+\delta]$ 都有 $|f(x)-f(y)| < \epsilon$. 注意到 $[x_{i-1},x_i] \subset [y_0-\delta,y_0+\delta]$,故而 $\omega_i < \epsilon$. 这样我们可以估计 $\sum_i \omega_i \Delta_i = \sum_{[x_{i-1},x_i] \cap A_\epsilon \neq \emptyset} \omega_i \Delta_i + \sum_{[x_{i-1},x_i] \cap A_\epsilon = \emptyset} \omega_i \Delta_i \le \epsilon(b-a) + 2Mm([a,b] \setminus A_\epsilon)$. 这里 M 为 f 在 [a,b] 上的上界. 这就表明如果 f 的不连续点零测且 f 有界,则 f 在 [a,b] 上 Riemann 可积.