Review: "Evidence for an aspherical Population III supernova explosion inferred from the hyper metal-poor star HE 1327-2326"

2020/06/23, Sho Nishijima Colloquium

Today's paper

Title

Evidence for an aspherical Population III supernova explosion inferred from the hyper metal-poor star HE 1327–2326

Authors

Rana Ezzeddine, Anna Frebel, Ian U. Roederer, Nozomu Tominaga, Jason Tumlinson, Miho Ishigaki, Ken'ichi Nomoto, Vinicius M. Placco, and Wako Aoki

Journal

ApJ 876 97, 2019

ADS

https://ui.adsabs.harvard.edu/abs/2019ApJ...876...97E/abstract

Outline

- 1. Background
- 2. Previous work
- 3. This work

Background

We can know about First stars from ultra metal-poor stars

- First stars formed from primordial gas, mostly H and He.
- Second-gen stars formed from mixture of ejecta of First SNe explosion and primordial gas. ([Fe/H]<-3.0)
 - \circ Especially, ultra-metal poor (UMP) stars with ${
 m [Fe/H]} < -4.0$ are likely formed from gas enriched by individual first-SNe events (Frebel+ 2015; Hartwig+ 2018)
- Intersteller medium became homogeneous after cycles of those. (-3.0<[Fe/H]<-2.5) (Argast+ 2000; Tumlinson 2006)
- ightarrow Evidence on the first stars/SNe can be obtained from the chemical signatures of surviving low-mass, UMP stars with ${
 m [Fe/H]} < -4.0$ (Beers & Christlieb 2005)

$$^*\left[\mathrm{A/B}
ight] = \log_{10}\left(N_\mathrm{A}/N_\mathrm{B}
ight)_\mathrm{star} - \log_{10}\left(N_\mathrm{A}/N_\mathrm{B}
ight)$$

Abundance profiling

Compare observed chemical abundance pattern to theoretical SNe nucleosynthesis yield

Characteristics of MP star

- ullet Fe-peak rich: $[{
 m Co,Zn/Fe}]>0$
- lpha element rich: $[lpha/{
 m Fe}]>0$
- Light element rich: [C, N, O/Fe] > 1

ightarrow "What kind of SN explosion can reproduce these characteristic chemical abundance?"

Previous work

Difficulty of spherical explosion models

Spherical explosion model cannot produce those 3 characteristics at the same time

- Small energy:
 - \circ cannot produce $[\mathrm{Co,Zn/Fe}] > 0$
- Large energy:
 - \circ produce $[\mathrm{Co,Zn/Fe}] > 0$ (Nomoto+ 2013)
 - \circ but high $[{
 m Fe}/{
 m H}]$

(Cayrel+ 2004, Woosley+ 1995)

→ Needs aspherical effects?

Mixing & Fallback Model was developed

"mixing and fallback" (MF) SNe model was developed (Umeda & Nomoto 2002) and it can mimic 2 different mechanisms:

- (a) Faint quasi-spherical MF SNe
 - Rayleigh-Taylor instability (Joggerst+ 2009, 2010)
- (b) Aspherical bipolar jet SNe
 - Jet-like explosion (Tominaga+ 2007, Tominaga 2009)

Jet-like explosion is favored on MP with -4.5<[Fe/H]<-3.0

	Picture	Characteristics
Faint, quasi- spherical	(a) M _{mix} (out) M _{cut} (fin) M _{cut} (ini)	- Elements mixed before explosion - Low energy ($E\leqslant 10^{51}{\rm erg}$) is required to the extensice fallback - Light elements & α elements are reproduced - But Fe-peak is NOT enough bcause of weak energy
Bi-porlar jet	(b) M _{mix} (out)	- Density reduced artificially to mimic jet-like explosion - High energy enough to reproduce Fe-peak elements - Light elements & α elements are also reproduced

This work

How about HMP star with [Fe /H]<-5.0?

- They determine $[{\rm Zn/Fe}]=0.80\pm0.25$ of hyper metal-poor (HMP) star, HE1327--2326, with $[{\rm Fe/H}]=-5.2$ for the first time
- The goal of this work is interpretation of new zinc abundance on such a metalpoor star

Faint, quasi-spherical model

- Performed statistical fitting tests following Placco+ 2016
 - Grid has 16,800 models
 - ullet mass: $10 100 M_{\odot}$
 - ullet energies: $(0.3 10) imes 10^{51}$ erg
- $ightarrow 27 M_{\odot}$ progenitor with $0.3 imes 10^{51}$ erg explosion's yield is best fit(82%)
- → None of them matches high [Zn/Fe] abundance

Aspherical model

- Tominaga+ 2007
 - \circ mass: $20 50 M_{\odot}$
 - \circ energy:(5 -- 40) imes 10^{51} erg
 - density factor: 1/4 -- 1/2
- Density modified MF model mimicking an aspherical explosion with bipolaroutflows in certain range of mass and higher energy
- ullet The yield of $25 M_{\odot}$ progenitor's exploding with $E=5 imes 10^{51} {
 m ergs}$ is best match

Result

- ullet Determine the abundance of ${
 m Zn}$ on HMP (${
 m [Fe/H]}=-5.2$) star for the first time
- Found the yields of density-modified MF model mimicking aspherical SN explosion with bipolar outflow matches better than other models

Interpretation

• A high-velocity ejecta could facilitate carrying the SNe yields out of the parent host minihalo to enrich a neighboring minihalo.

