Numerical Computations Project Phase#2

Fall Semester 2021

Veronica Romany Hanna 19016156

Norah Ahmed Hassan 19016810

Mariam Tarek Mostafa 19016637

Mariam Mohamed Ahmed 19017274

Yara Hossam Abdelaziz 19016871

Problem Statement

- Implementation of a program which takes an input of a system of linear equations and solves it using the desired method.
- Compare and analyze the behavior of the different numerical methods used for calculating roots of equations:
 - 1. Bisection.
 - 2. False Position.
 - 3. Fixed Point.
 - 4. Newton Raphson.
 - 5. Secant Method.

Design Decisions

- 1. The program is written in Python.
- 2. The equations entered don't contain an equal sign. (e.g "exp(-x) -x" is valid)
- 3. Invalid input format generates an error.
- 4. Users can set the decimal rounding value. If not chosen, the default value is 4.
- 5. If not chosen by the user, default Epsilon = 0.00001 and default Max Iterations = 50
- 6. Input criteria:
 - a. 5x as 5*x
 - b. e^x as exp(x).
 - c. sinx as sin(x)

d. Power x³ as x³

Pseudocode for each method

1. Bisection

```
Bisection:
Start
GET xl,xu,e, function,noofiterations,significatnnum
If (function(xu)*function(xl))
   Return "Given values do not bracket the root."
End if
Step→1
condition→true
while (condition or step< noofiterations)
   xr \rightarrow (xu+xI)/2
    if(function(xI)*function(xr)<0.0)
      xu \rightarrow xr
    else
      xl→xr
    step→step+1
    condition→abs(evaluate(xr, function)) > e
      Return xr
```

2. False Position

```
False Position
Start
•GET xl, xu, function, tol, maxIterations .
Declare xold ← 0
If (function(xI)*function(xu) >0)
  Return "Given values do not bracket the root."
End if
For i = 0 \rightarrow maxIterations
     xr \leftarrow (xl^*function(xu) - xu^*function(xl))/(function(xu) - function(xl))
    if (function(xr)==0)
        Return xr
    if function(xr) * function(xl) < 0:
        xu \leftarrow xr
     else:
        xl \leftarrow xr
     if i > 0:
         if(abs(xr - xold)< tol): break
     xold \leftarrow xr
```

Return xr

3. Fixed Point

Input function ,initial value ,Es ,Max_iterations ,significant

Output Xr and runtime

Initially set Xr equals to initial value

Set iterations initially to zero

StartTime=time()

While True

Try:

Let Xr_old=Xr

Xr=Substitute in f(x) with Xr_old +Xr_old

If Xr not equal zero

$$Ea = (Xr_old- Xr/Xr_old) *100$$

End If

Increment iterations

Endtime=time()

Total_time=Endtime -StartTime

If (Ea <Es or Max_iteartions < iterations)

Xr=round(Xr ,significant)

Then return Xr , Total_time

End If

Except:

Then return error

End While

4. Newton Raphson

```
NewtonRaphson(function,intialGuess,MaxInterations,precision,Es):
```

```
Ea=0
i=1

Xi=intialGuess

Xi+1=0

While (Ea<Es and i<MaxIteration){

Xi+1 = round(Xi - f(Xi)/f'(Xi),precision)

If(i!=1){

Ea=abs(Xi+1-Xi)/Xi+1 * 100

}

Xi=Xi+1

i++

}
```

5. Secant Method

Function secant(equation, x1, x2, maxIterations, tolerance):

For i = 1 to maxIterations:

$$x = x2$$

Fnx2 = evaluation(equation(x))

x = x1

Fnx1 = evaluation(equation(x))

$$x3 = x2 - ((fnx2 * (x1-x2)) / (fnx1 - fnx2))$$

If ((x3-x2) / x3) < tolerance:

Return x3

End If

$$x1 = x2$$

$$x2 = x3$$

End For

Return x3

Sample runs

1. Bisection

2. False Position

3. Fixed Point

4. Newton Raphson

5. Secant

6. Input Validation

Comparison between different methods

P.O.C	Time Complexity	Convergence	Best Case	Approximate error
Bisectio n	O (n)	-Guaranteed convergence but slow -Linear convergence rate	Root is the median of the upper and lower values.	The error bound is guaranteed to decrease by one-half with each iteration
False Position	O (n)	-Guaranteed convergence -Linear convergence rate	Root is the median of the upper and lower values.	The error bound is guaranteed to decrease by one-half with each iteration
Fixed Point	O (logn)	-May diverge -Linear convergence rate	When g'(x) <1 where the slope of the line g(x)=x	The error is roughly proportional to or less than the error of the previous step, therefore it is called linearly convergent when g'(x) < 1.

Newton Raphson	O (logn)	-May diverge -Quadratic convergence rate	A function fx with simple derivative and good choice of initial value xi.	-Error in xn+1 is nearly proportional to the square of the error in xn. -When the initial error is sufficiently small, this shows that the error in the succeeding iterates will decrease very rapidly
Secant	O (logn)	-May diverge. -Aureal number (super linear) convergence rate	The initial values x0, x1, are sufficiently close to the root.	-The error formula closely resembles the Newton Raphson error formula. -Newton's method should require fewer iterations to attain a given error tolerance. -However, secant method will require less time per iteration than the Newton method.

Data structures used

• Arrays and Lists: used for storing the points data in plotting graphs.