Generalized Iterative Closest Point

Mündliche Prüfung in der Vorlesung Autonome Roboter bei Prof. Dr.-Ing. Michael Blaich 15.07.2024

Johannes Brandenburger, Moritz Kaltenstadler, Fabian Klimpel

Agenda

- 1. Einführung
- 2. Theorie
- 3. Demo: Eigene Implementierung in Python
- 4. Implementierung in ROS
- 5. Experiment
 - 1. Aufbau
 - 2. Durchführung
 - 3. Ergebnisse
 - 4. ...
- 6. Fazit

Theorie

- Einzige wirkliche Quelle: "Generalized-ICP" von Segal, Haehnel & Thrun (2010)
 - ▶ Ziel: Iterative-Closest-Point-Algorithmus (ICP) verbessern
 - ▶ Standard-ICP & point-to-plane in **generelles Framework** überführen
 - Probabilistische Betrachtung
 - Nutzung **Oberflächenstruktur** aus beiden Scans (Kovarianzmatrizen) ightarrow **plane-to-plane**

Theorie - Standard-ICP, point-to-plane, Generalized-ICP

- point-to-point (Standard-ICP)
- point-to-plane
 - vergleicht Punkt mit Ebene durch Normalenvektor
- Generalized-ICP
 - quasi "plane-to-plane"
 - vergleicht die Kovarianzmatrizen der nächsten Punkte \rightarrow probabilistisch
 - ▶ wenn in Ebene → Kovarianzmatrix ist "flach"

Abbildung 1: Kovarianzmatrizen (eigene Darstellung)

Theorie - Standard-ICP

- Einzige wirkliche Quelle: "Generalized-ICP" von Segal, Haehnel & Thrun (2010)
 - ▶ Ziel: Iterative-Closest-Point-Algorithmus (ICP) verbessern
 - ▶ Standard-ICP & point-to-plane in **generelles Framework** überführen
 - Probabilistische Betrachtung
 - Nutzung Oberflächenstruktur aus beiden Scans (Kovarianzmatrizen)

Theorie - GICP Algorithmus

```
1 T \leftarrow T_0
 2 while not converged do
        for i \leftarrow 1 to N do
          \mid m_i \leftarrow \texttt{FindClosestPointInA}(T \cdot b_i)
       d_i^{(T)} \leftarrow b_i - T \cdot m_i // Residuum / Abstand
       | | \mathbf{if} \parallel d_i^{(T)} \parallel \leq d_{\max} \mathbf{then} |
       \mid C_i^A \leftarrow \mathsf{computeCovarianceMatrix}(T \cdot b_i)
        C_i^B \leftarrow \mathsf{computeCovarianceMatrix}(m_i)
            else
 9
           \mid C_i^A \leftarrow 0; \quad C_i^B \leftarrow 0
10
          end
11
        end
12
       \left| \ T \leftarrow \operatorname{arg\,min}_T \left\{ \sum_i d_i^{(T)^T} \left( C_i^B + T C_i^A T^T \right)^{-1} d_i^{(T)} \right\} \right| 
14 end
```

Theorie - GICP Algorithmus - Variationen für Kovarianzmatrizen

$$\begin{split} C_i^A \leftarrow \text{computeCovarianceMatrix}(T \cdot b_i) \\ C_i^B \leftarrow \text{computeCovarianceMatrix}(m_i) \end{split}$$

- für **Standard-ICP** (point-to-point):
 - $C_i^A \leftarrow 0$
 - $C_i^B \leftarrow 1$ \longrightarrow keine Oberflächenstruktur berücksichtigt
- für point-to-plane:
 - $C_i^A \leftarrow 0$
 - $C_i^B \leftarrow P_i^{-1} \longrightarrow P_i$ ist die Projektionsmatrix auf die Ebene (beinhaltet Normalenvektor)
- für **plane-to-plane** (im Paper vorgeschlagene Methode):
 - computeCovarianceMatrix berechnet Kovarianzmatrix unter Betrachtung der n\u00e4chsten 20
 Punkte
 - verwendet **PCA** (Principal Component Analysis/Hauptkomponentenanalyse)

Demo: Eigene Implementierung in Python

- Paper sehr mathematisch
- zwar Implementierungen auf GitHub, aber nicht wirklich lesbar
- daher eigene Implementierung vor allem für Verständnis
- eigene 2D-GICP-Funktion
 - ▶ Input: Punktwolken A und B, ...
 - ightharpoonup Output: Transformationsmatrix T, \dots
- Version 1:
 - Visualisierung mit generierten Input-Wolken
 - iterativ durch die Steps klicken
- Version 2:
 - ► Simulation eines Roboters mit LiDAR-Sensor
 - Live-Berechnung der Transformation + Visualisierung
- \rightarrow LIVE DEMO
- \rightarrow CODE OVERVIEW