

Arquitectura de Computadoras

Trabajo Práctico 1

Unidad Aritmética Lógica

Alumno:

Mirada Rodrigo: 41106889Worley Agustina: 39071465

Índice

	Pág.
Objetivos	3
Desarrollo	4
Descripción	4
Interfaces	4
Entradas	4
Salidas	4
ALU	5
Entradas	5
Salidas	5
Тор	5
Entradas	5
Salidas	5
Conectores	5
Esquema	5
Test Aleatorios	6
Análisis	6
Utilización	6
Consumo	6

Objetivos

- Implementar en FPGA una ALU.
- La ALU debe ser parametrizable (bus de datos) para poder ser utilizada posteriormente en el trabajo final.
- Validar el desarrollo por medio de Test Bench.
 - El testbench debe incluir generación de entradas aleatorias y código de chequeo automático.
- Simular el diseño usando las herramientas de simulación de vivado incluyendo análisis de tiempo.

Operación	Código
ADD	100000
SUB	100010
OR	100100
XOR	100101
SRA	100110
SRL	000010
NOR	100111

Desarrollo

Descripción

Tenemos un conjunto de N switches y un set de tres botones que en los casos:

- Se presiona el botón 1: El valor de los switches se inserta en el dato A.
- Se presiona el botón 2: El valor de los switches se inserta en el dato B.
- Se presiona el botón 3: El valor de los switches se inserta en el dato Operación.

Estos datos van ingresan en la ALU para que dependiendo del dato Operación se obtenga la salida LEDS.

Interfaces

Entradas

Definimos cuatro entradas:

- input_switches: encargada de tomar el dato de los switches.
- input buttons: encargada de tomar el dato de los botones.
- input clock.
- input reset.

<u>Salidas</u>

Definimos tres salidas

- output_a: contiene la información de los switches seleccionados para el dato A.
- output_b: contiene la información de los switches seleccionados para el dato B.
- output_op: contiene la información de los switches seleccionados para la operación a realizar.

ALU

Entradas

Definimos tres entradas:

- date_a: dato de ingreso a la ALU referido a A.
- date_b: dato de ingreso a la ALU referido a B.
- op: dato de ingreso a la ALU referido a la operación a realizar.

Salidas

Definimos una salida:

- result: dato de salida tras la operación dentro de la ALU.

Top

Entradas

Definimos cuatro entradas:

- i switches: información a mandar a las interfaces como switches.
- i_buttons: información a mandar a las interfaces como botones.
- i_clock: información a mandar a las interfaces como señal de clock.
- i_reset: información a mandar a las interfaces como botón de reset.

Salidas

Definimos una salida:

- o_leds: información de salida del conjunto interfaces + ALU.

Conectores

Definimos tres conectores:

- conn_a: bus de cables de conexión entre la salida output_a de la interfaz y la entrada date_a de la ALU.
- conn_b: bus de cables de conexión entre la salida output_b de la interfaz y la entrada date_b de la ALU.
- conn_op: bus de cables de conexión entre la salida output_op de la interfaz y la entrada op de la ALU.

Esquema

Test Aleatorios

Para los tests aleatorios se van a realizar una cantidad "test_amout" por cada operación de manera que podamos escoger la cantidad de pruebas por operación.

En caso de ser correcto el resultado en la consola no se notificará nada, pero en caso de ser incorrecto saldrá el mensaje "Error en la operación XXX" y a posterior la operación con los valores que fallaron.

Análisis

Utilización

Luego del proceso de implementación quedamos con los siguientes datos:

Util	Utilization Post-Synthesis Post-Implementation					
	Graph Table					
	Resource	Utilization	Available	Utilization %		
	LUT	63	20800	0.30		
	FF	22	41600	0.05		
	IO	20	106	18.87		
	BUFG	1	32	3.13		

Consumo

Análisis de consumo:

Como se puede observar en el gráfico el consumo total es:

- Entradas y salidas: 66% del total.

- Señales: 15% del total.

- Lógica. 8% del total.

- Consumo básico: 11% del total.