Neuromorphic Drone Detection: an Event-RGB Multimodal Approach

Gabriele Magrini¹, Federico Becattini², Pietro Pala¹, Alberto Del Bimbo¹, Antonio Porta³

University of Florence – Media Integration and Communication Center (MICC)

Target

- Drone Detection: Struggles with lighting and fast-moving objects in RGB data.
- **Event-based Strengths**: Can captures rapid scene changes in varying lighting conditions.
- Lack of Dataset: Scarcity of both RGB-EV and Drone Datasets.
- Multimodal Model: Integrate both modalities for robust detection.

Key contributions

- 1. Multimodal Architecture: Integrates Eventbased and RGB data for drone detection.
- 2. NeRDD Dataset: novel dataset with over 3.5 hours of spatio-temporally synchronized **Event-RGB recordings.**
- 3. Performance Improvements: Demonstrates the effectiveness of combining both modalities for improved accuracy.

Hybrid Architectures

Methodology: The proposed model is based on the DETR¹ architecture. We implement diverse fusion strategies:

- ☐ Asymmetric Fusion: A unidirectional approach that informs one "main" modality using information form the other domain.
- **□** Symmetric Fusion: A bidirectional approach that informs both modalities about each other.

□ Pooling-Based Fusion: Combines features from both modalities at an intermediate layer.

NeRDD Dataset

Released NeRDD dataset comprising over 3.5 hours of synchronized Event-RGB recordings, manually annotated with drone bounding boxes.

Dataset	Resolution	RGB/Event	Hours	Drone-Centric
VisEvent [2]	346 x 260	√/√	< 5	×
EventVOT [3]	1280 x 720 (HD)	×/ √	< 5	×
F-UAV-D [4]	1280 x 720 (HD)	√/√	0.5	\checkmark
$\overline{\mathbf{NeRDD}(\mathrm{Ours})}$	1280 x 720 (HD)	√ / √	3.5	<u> </u>

Results

\mathbf{Model}	AP50	AP50:95	AP75	Parameters
DETR Event	80.5	34.8	21.6	41.302.368
DETR RGB	32.7	9.1	2.0	41.302.368
Asymmetric RGB-to-EV	84.4	39.0	27.4	60.746.247
Asymmetric EV-to-RGB	40.8	13.0	3.8	60.746.247
Symmetric Fusion	80.9	33.6	18.7	90.869.255
Pooling (Encoder)	85.2	39.3	27.2	59.166.983

Pooling	AP50	AP50:95	AP75	Symm.	AP50	AP50:95	AP75
Encoder	85.2	39.3	27.2	Encoder	80.9	33.6	18.7
ResNet	84.7	35.2	17.9	Decoder	79.9	33.4	17.9

Conclusions

- Proposed a multimodal Event-RGB Architecture for Drone Detection.
- Presented a novel hybrid Event-RGB Spatio-Temporally synchronized drone dataset.

Event-RGB integration strengthens both modalities

References

[1] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.:End-to-end object detection with transformers. CoRR abs/2005.12872 (2020),https://arxiv.org/abs/2005.12872

[2] X. Wang, J. Li, L. Zhu, Z. Zhang, Z. Chen, X. Li, Y. Wang, Y. Tian, and F. Wu, "Visevent: Reliable object tracking via collaboration of frame and event flows," IEEETransactions on Cybernetics, 2023.

[3] X. Wang, S. Wang, C. Tang, L. Zhu, B. Jiang, Y. Tian, and J. Tang, "Event stream-based visual object tracking: A high-resolution benchmark dataset and a novel base-line," in Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition, pp. 19248-19257, 2024.

[4] J. Mandula, J. Kühne, L. Pascarella, and M. Magno, "Towards real-time fastunmanned aerial vehicle detection using dynamic vision sensors," arXiv preprintarXiv:2403.11875, 2024.

