Recherche dichotomique

Recherche dichotomique
Christophe Viroulaud

Algo 03

Recherche dichotomique

Christophe Viroulaud

Première - NSI

Algo 03

Recherche dichotomique

Recherche Hassique dans un ableau

Recherche dans les donnée

Dans un tableau trié - Des données ordonnées

herche dichotomique cacité

Rechercher un élément dans un tableau est une opération courante. Cette tâche a un coût qui dépend de la taille du tableau.

- recherche de 3,
- recherche de 9,
- recherche de 6.

Cependant, si le tableau est déià trié est-il possible

d'accélérer la recherche? Comment implémenter une recherche efficace dans un tableau trié?

> Cependant, si le tableau est déjà trié est-il possible d'accélérer la recherche?

1 2 3 4 5 7 8 9	10 18
-----------------	-------

Comment implémenter une recherche efficace dans un tableau trié?

Recherche dichotomique Recherche classique dans un tableau Recherche classique - Génération des données Génération des données

Imaginers on supermarché qui efficience chaque article par un entirer. Les réferences, au nombre de cent mille, sont continues dans un tableau.

Génération des données

Génération des données

Imaginons un supermarché qui référence chaque article par un entier. Les références, au nombre de cent mille, sont contenues dans un tableau.

Recherche dichotomique

classique dans un

Recherche classique -Génération des données

Recherche dans un tableau trié

Dans un tableau trié - De données ordonnées Recherche dichotomique Efficacité Recherche dichotomique

Recherche classique dans un tableau
Recherche classique - Génération des données

Activité 1 : Construire par compréhension un tableau de cent mille entiers compris entre 0 et 1000000.

Activité 1 : Construire par compréhension un tableau de cent mille entiers compris entre 0 et 1000000.

Recherche dichotomique

Recherche lassique dans un ableau

Recherche classique -Génération des données

bleau trié
ans un tableau trié - Des

ins un tableau trié - Des nnées ordonnées cherche dichotomique

Correction

from random import randint

entiers = [randint(0, 1000000) for _ in range(100000)]

Recherche dans tableau trié - données ordonnées romnées recherche dichotomique Efficachté

Jeu de données

Recherche

dichotomique

Recherche classique -Génération des données

Sommaire

- 1. Recherche classique dans un tableau
- 1.2 Recherche dans les données

Recherche

dichotomique

Recherche dans les données

Recherche dichotomique

Recherche classique dans un tableau

Recherche dans les données

Recherche dans les données

Recherche dans les données

Pour vérifier la présence d'une valeur dans les données, il faut parcourir le tableau élément par élément.

3 180 1007 5	6	2178 8	
--------------------	---	--------	--

FIGURE 1 – Parcours séquentiel

Recherche dichotomique

classique dans ur tableau

Génération des données

Recherche dans les données

ableau trié Dans un tableau trié - Des

données ordonnées Recherche dichotomique Efficacité Dans le pire des cas

Dans le pire des cas

nombre d'éléments	nombre de comparaisons			
100	100			
10000	10000			
1000000	1000000			

Recherche dichotomique

Recherche classique dans un tableau

Génération des données

Recherche dans les données

echerche dans un ableau trié

Dans un tableau trié - Des données ordonnées Recherche dichotomique À retenir

Dans le pire des cas le nombre d'opérations de la recherche dépend du nombre d'éléments.

La complexité est l'inéaire.

cas où l'élément n'est pas présent

Dans le pire des cas le nombre d'opérations de la recherche dépend du nombre d'éléments.

La complexité est **linéaire**.

Recherche dichotomique

techerche lassique dans un ableau

Recherche dans les données

Recherche dans un

ons un tableau trié - Des nnées ordonnées acherche dichotomique ficacité

Recherche dichotomique Recherche classique dans un tableau Recherche dans les données

Activité 2 :

1. Écrire la fonction recherche_classique(tab:
1ist., cherche: isnt) → bool qui renvoie
True si l'entier cherche est présent dans le
tableau.

2. Tester la fonction : vérifier si le nombre 575000 à
été choisi par une personne.

Activité 2 :

- Écrire la fonction recherche_classique(tab: list, cherche: int) → bool qui renvoie True si l'entier cherche est présent dans le tableau.
- 2. Tester la fonction : vérifier si le nombre 575000 a été choisi par une personne.

Recherche dichotomique

Recherche classique dans un tableau

Génération des données Recherche dans les données

> echerche dans un ableau trié

Dans un tableau trié - De données ordonnées Recherche dichotomique Efficacité 2022-01-10

```
for element in tab:
       return True
         Code 1 - Création de la fonction
```

entiers = [randint(0, 1000000) for _ in range(100000)] recherche_classique(entiers, 57500) Code 2 - Utilisation de la fonction

Correction

```
def recherche classique(tab: list, cherche: int) -> bool:
    Renvoie True si 'cherche' est dans 'tab'
    11 11 11
                                                                erche dans les données
    for element in tab:
         if element == cherche:
             return True
    # à la fin de la boucle on n'a pas trouvé 'cherche'
    return False
```

Code 1 – Création de la fonction

```
entiers = [randint(0, 1000000) for _ in range(100000)]
recherche_classique(entiers, 57500)
```

Code 2 – Utilisation de la fonction

Recherche

dichotomique

Recherche dichotomique -Recherche classique dans un tableau Recherche dans les données

Activité 2 : Dans le programme principal, créer une variable COMPTEUR initialisée à 0. Cette variable de test sera utilisée dans la fonction pour compter le nombre d'itérations de la boucle de recherche. On parle alors de variable globale car elle n'est pas propre à la fonction. Il faudra ajouter le code 3 au début de la fonction.

global COMPTEUR

Code 3 – Déclaration d'une variable globale

Recherche dichotomique

Recherche dans les données

Correction

```
COMPTEUR = 0
def recherche_classique(tab: list, cherche: int) -> bool:
                                                                    erche dans les données
     11 11 11
     Renvoie True si 'cherche' est dans 'tab'
     11 11 11
     global COMPTEUR
     for element in tab:
         COMPTEUR += 1
```

```
# à la fin de la boucle on n'a pas trouvé 'cherche'
```

Recherche

dichotomique

```
print(recherche_classique(entiers, 57500))
print(COMPTEUR)
```

if element == cherche: return True

return False

À retenir

La variable COMPTEUR est utilisée ici uniquement pour effectuer des tests.

D'une manière générale, <u>modifier</u> une variable globale dans une fonction est une mauvaise pratique.

Recherche dichotomique

Recherche classique dans un tableau

Recherche dans les données

Dashansha dana un

ans un tableau trié - Des onnées ordonnées echerche dichotomique fficacité

Des données ordonnées

ordre croissant au fur et à mesure de leur ajout dans le tableau de données.

Des données ordonnées

Considérons maintenant que les références sont triées par ordre croissant au fur et à mesure de leur ajout dans le tableau de données.

alimentaire			vêtement			électro-ménager		
3	8	56	180		1007	2178	8000	11600 12130

FIGURE 2 – Références triées

Recherche dichotomique

classique dans un tableau

Recherche classique -Génération des données Recherche dans les données

Recherche dans un tableau trié

Dans un tableau trié - Des données ordonnées Recherche dichotomique

Recherche dichotomique Recherche dans un tableau trié Dans un tableau trié - Des données ordonnées

Activité 3 : Pour simplifier nous allons utiliser la méthode sort pour trier les données.

1. Construire par compréhension un tableau de cent mille entiers compris entre 0 et 1000000.

2. Trier le tableau.

Activité 3 : Pour simplifier nous allons utiliser la méthode **sort** pour trier les données.

- 1. Construire par compréhension un tableau de cent mille entiers compris entre 0 et 1000000.
- 2. Trier le tableau.

Recherche dichotomique

Recherche classique dans un tableau

Génération des données

Recherche dans les données

Recherche dans un tableau trié

Dans un tableau trié - Des données ordonnées Recherche dichotomique

Correction

```
Dans un tableau trié - Des
                                                                            onnées ordonnées
entiers = [randint(0, 1000000) for _ in range(100000)]
entiers.sort()
```

Jeu de données

Recherche

dichotomique

Sommaire

- 1 Pacharcha classique dans un tableau
- 2. Recherche dans un tableau trié
- 2.1 Dans un tableau trié Des données ordonnées
- 2.2 Recherche dichotomique
- 2.3 Efficacit

Recherche

dichotomique

Les données étant triées, le principe de la dichotomie, pour charcher la présence d'un élément, consiste à

 ne garder que la partie contenant l'élément, répéter l'opération jusqu'à trouver l'élément ou bien

Recherche dichotomique

Recherche dichotomique

à peu près égales selon parité

Les données étant triées, le principe de la dichotomie, pour chercher la présence d'un élément, consiste à :

- couper le tableau en deux parties égales,
- ▶ ne garder que la partie contenant l'élément,
- répéter l'opération jusqu'à trouver l'élément ou bien avoir une partie vide.

Cherchons 302 dans le tableau suivant :

3 8 56 180 26 302 765 1007 21

FIGURE 3 – Séparons les données en deux parties

Cherchons 302 dans le tableau suivant :

FIGURE 3 – Séparons les données en deux parties

Recherche dichotomique

Recherche classique dans un tableau

Génération des données Recherche dans les donnée

echerche dans un bleau trié

Dans un tableau trié - Des données ordonnées

FIGURE 4 – 256 n'est pas le nombre recherché et il est inférieur à 302

Recherche

dichotomique

Dans un tableau trié - Des Recherche dichotomique

FIGURE 5 – Séparons les données restantes en deux parties

25 / 52

Recherche

dichotomique

Dans un tableau trié - Des données ordonnées Recherche dichotomique

FIGURE 6 – Nous pouvons éliminer la partie supérieure.

26 / 52

Recherche

dichotomique

Dans un tableau trié - Des données ordonnées Recherche dichotomique

FIGURE 7 – Dernière séparation

27 / 52

Recherche

dichotomique

Dans un tableau trié - Des Recherche dichotomique

FIGURE 8 – 302 a été trouvée en trois itérations

28 / 52

Recherche

dichotomique

Dans un tableau trié - Des données ordonnées Recherche dichotomique

Remarque

En pratique, on utilise les indices pour trouver le milieu.

FIGURE 9 –
$$\frac{8+0}{2}$$
 = 4 l'indice médian est 4

Recherche dichotomique

Recherche classique dans un tableau

Génération des données Recherche dans les données

tableau trié

Dans un tableau trié - De données ordonnées

FIGURE 10 – 256 n'est pas le nombre recherché

Recherche dichotomique

Dans un tableau trié - Des

FIGURE 11 – 256 est inférieur au nombre recherché.

```
1 i_debut = 5
2 | i_fin = 8
```

Recherche

dichotomique

Dans un tableau trié - Des

1. l'indice est un entier

Recherche dichotomique

Recherche classique dans ur tableau

Recherche classique -Génération des données

> echerche dans un bleau trié

Dans un tableau trié - Des données ordonnées

Recherche dichotomique Efficacité

1. l'indice est un entier

FIGURE 13 – 765 n'est pas le nombre recherché.

Recherche dichotomique

Dans un tableau trié - Des

FIGURE 14 – 765 est supérieur au nombre recherché.

Recherche

dichotomique

Dans un tableau trié - Des

cette dernière itération est nécessaire : on ne sait pas si le dernier élément est bien celui recherché.

FIGURE $15 - \frac{5+5}{2} = 5$ l'indice médian est 5.

Recherche classique dans un tableau

Recherche classique -Génération des données

Recherche dans un

ans un tableau trié - Des

données ordonnées

Recherche dichotomique

cacité

FIGURE 16 – On a trouvé l'élément.

Recherche dichotomique

Recherche classique dans un tableau

Génération des données Recherche dans les données

tableau trié

Dans un tableau trié - Des données ordonnées

données ordonnées Recherche dichotomique

cacité

Recherche dichotomique Recherche dans un tableau trié -Recherche dichotomique

Activité 4 : Écrire la fonction recherche dicho(tab: list. cherche: int) bool qui applique le principe de la dichotomie ► Définir les indices i debut et i fin. ► Tant que i fin > i debut ► Vérifier si l'élément d'indice s militeu est celui ► Sinon redéfinir 1_debut et 1_fin pour ne garde

que la partie contenant l'élément cherché.

► Calculer i milieu

Activité 4 : Écrire la fonction recherche_dicho(tab: list, cherche: int) \rightarrow bool qui applique le principe de la dichotomie :

- ▶ Définir les indices i_debut et i_fin.
- ► Tant que i_fin ≥ i_debut
 - ► Calculer i milieu
 - ► Vérifier si l'élément d'indice i milieu est celui cherché
 - ► Sinon redéfinir i debut et i fin pour ne garder que la partie contenant l'élément cherché.

Recherche dichotomique

Recherche dichotomique

Correction

0	1	2	3	4	5	6	7	8	
3	8	56	180	256	302	765	1007	2178	

```
Recherche dichotomique
```

```
def recherche_dicho(tab: list, cherche: int) -> bool:
    i_debut = 0
    i_fin = len(tab)-1
```

Recherche

dichotomique

while i_fin >= i_debut: i_milieu = (i_debut+i_fin) // 2

Correction

si on ne trouve pas l'élément i_fin < i_debut


```
while i_fin >= i_debut:
   i_milieu = (i_debut+i_fin) // 2
```

Recherche dichotomique

Recherche dichotomique

if cherche == tab[i_milieu]:

return True

Correction


```
if cherche == tab[i_milieu]:
return True
```

Recherche dichotomique

Recherche classique dans un tableau

> Génération des données Recherche dans les données

echerche dans un Ibleau trié

Dans un tableau trié - Des données ordonnées Recherche dichotomique

herche dichotomique

Correction


```
elif cherche < tab[i_milieu]:

i_fin = i_milieu-1

else: # cherche > tab[i_milieu]

i_debut = i_milieu+1
```

Recherche dichotomique

Recherche classique dans un tableau

Génération des données Recherche dans les donnée

> echerche dans un bleau trié

onnées ordonnées

Recherche dichotomique Efficacité

Correction

```
def recherche_dicho(tab: list, cherche: int) -> bool:
                                                                       Recherche dichotomique
```

```
i_debut = 0
i fin = len(tab)-1
while i_fin >= i_debut:
    i_milieu = (i_debut+i_fin) // 2
    if cherche == tab[i_milieu]:
        return True
    elif cherche < tab[i milieu]:</pre>
        i fin = i milieu-1
    else: # cherche > tab[i milieu]
        i debut = i milieu+1
# à la fin de la boucle on n'a pas trouvé 'cherche'
return False
```

Recherche

dichotomique

43 / 52

Efficacité

Activité 5 :

1. En utilisant une variable CONPTEUR, compter le

Tester pour différentes tailles de tableau.

Activité 5:

- 1. En utilisant une variable COMPTEUR, compter le nombre d'itérations de la boucle de recherche dichotomique.
- 2. Tester pour différentes tailles de tableau.

Recherche dichotomique

Correction

```
COMPTEUR = 0
def recherche dicho(tab: list, cherche: int) -> bool:
    global COMPTEUR
    i debut = 0
    i fin = len(tab)-1
    while i fin >= i debut:
                                                           Efficacité
        COMPTEUR += 1
        i milieu = (i_debut+i_fin) // 2
        if cherche == tab[i_milieu]:
            return True
        elif cherche < tab[i_milieu]:</pre>
            i_fin = i_milieu-1
        else: # cherche > tab[i milieu]
            i_debut = i_milieu+1
    # à la fin de la boucle on n'a pas trouvé 'cherche'
    return False
```

Recherche

dichotomique

print(recherche_dicho(entiers, 57200))
print(COMPTEUR)

Code 5 – Utilisation de la fonction

Recherche dichotomique

lecherche lassique dans un ableau

> herche dans les données cherche dans un

Dans un tableau trié - Des données ordonnées Recherche dichotomique

Recherche dichotomique Recherche dans un tableau trié -Efficacité

À chaque itération la quantité de données (notée n) à étudier est divisée par deux. Dans le pire des cas, on divise iusqu'à ce que la taille de la partie restante soit inférieure ou

$$\frac{n}{2^x} = 1$$
 $\Leftrightarrow n = 2^x$

0 = pas trouvé

À chaque itération la quantité de données (notée n) à étudier est divisée par deux. Dans le pire des cas, on divise jusqu'à ce que la taille de la partie restante soit inférieure ou égale à 1.

$$\frac{n}{2^x} = 1$$

$$\Leftrightarrow n = 2^x$$

$$=2$$

Recherche

dichotomique

 $n = 2^x$

Activité 6 :

Encadrer la valeur de x par deux entiers, si le tableau contient n = 10000 éléments.

Effectuer le même encadrement pour cent mille, un million d'éléments.

 $n=2^x$

Activité 6 :

- 1. Encadrer la valeur de x par deux entiers, si le tableau contient n=10000 éléments.
- 2. Effectuer le même encadrement pour cent mille, un million d'éléments.

Recherche dichotomique

Recherche classique dans un tableau

> énération des données echerche dans les données

ans un tableau trié - Do

Correction

 $2^{13} = 8192 < x < 2^{14} = 16384$

Recherche

dichotomique

Dans un tableau trié - Des Efficacité

nombre d'éléments nombre de comparaison 10 3-4 100 6-7 1000 9-10 10000 13-14 100000 16-17 1000000 19-20

Dans le pire des cas

Dans le pire des cas

nombre d'éléments	nombre de comparaisons
10	3-4
100	6-7
1000	9-10
10000	13-14
100000	16-17
1000000	19-20

Recherche dichotomique

classique dans ur tableau

echerche classique énération des données echerche dans les données

echerche dans un bleau trié

Dans un tableau trié - Des données ordonnées Recherche dichotomique

Recherche dichotomique Recherche dans un tableau trié Efficacité

$$\begin{tabular}{ll} \hline $\hat{\bf A}$ retenir \\ La complexité temporelle de la recherche dichotomique est logarithmique : \\ & \log_2 n = x \\ \hline \end{tabular}$$

$$\log_2 n = \frac{\ln n}{\ln 2}$$

À retenir

La complexité temporelle de la recherche dichotomique est **logarithmique** :

$$\log_2 n = x$$

Recherche dichotomique

classique dans un tableau

> énération des données echerche dans les données

Recherche dans un tableau trié Dans un tableau trié - Des

Dans un tableau trie - Des données ordonnées Recherche dichotomique Efficacité

Code complet

Recherche

dichotomique

Dans un tableau trié - Des