Compare_cohorts

Quynh Tran

November 4, 2015

This script was most recently run on Tue Nov 24 18:34:52 2015. This script is to compare the mice body weight across different cohorts. The script also explores the relationship between initial weight, weight loss and the weights after HFD.

Weight data from cohort 5 and 6 were read in from ../data/processed/fasting_weights_file.csv.

Weight data from cohort 7 and 8 were read in from ../data/raw/Cohort_7_Raw_Data.csv and ../data/raw/Cohort_8_Raw_Data.csv.

Tukey post-hoc analysis of body weight

[&]quot;Tukey's post-hoc pairwise comparisons of Pre_fasted weight"

	diff	lwr	upr	p adj
6-5	-1.97	-3.08	-0.85	0.00
7-5	-2.82	-3.93	-1.71	0.00
8-5	-3.11	-4.16	-2.06	0.00
7-6	-0.85	-1.96	0.26	0.19
8-6	-1.14	-2.20	-0.09	0.03
8-7	-0.29	-1.35	0.76	0.89

"Tukey's post-hoc pairwise comparisons of Fasted weight"

	diff	lwr	upr	p adj
6-5	-1.42	-2.45	-0.38	0.00
7-5	-1.13	-2.16	-0.10	0.03
8-5	-1.24	-2.22	-0.26	0.01
7-6	0.29	-0.75	1.32	0.89
8-6	0.18	-0.80	1.16	0.96
8-7	-0.11	-1.09	0.87	0.99

[&]quot;Tukey's post-hoc pairwise comparisons of Fasted weight"

	diff	lwr	upr	p adj
6-5	-1.86	-4.49	0.77	0.26
7-5	-6.26	-8.89	-3.63	0.00
8-5	-5.72	-8.21	-3.22	0.00
7-6	-4.41	-7.04	-1.78	0.00
8-6	-3.86	-6.36	-1.37	0.00
8-7	0.55	-1.95	3.04	0.94

Overall, body weight appeared to be normally distributed across different feeding stages, except for cohort 5. This may be due to one or two mice with outlier weights.

Checking the normality of weight loss and weight gain

Histogram of WL with Density Plot

Histogram of WG with Density Plot

Histogram of %WL with Density Plot

Histogram of %WG with Density Plot

WL and WG are not normally distributed as shown in the QQ plots, density plots and histograms. Shapiro p-values for WL and WG are 0.6206632 and 0.0097316, respectively. Therefore, Spearman's rho or Kendall's tau correlation coefficient will be computed.

Relationship between Weight Loss after fasting and Weight Gain after HFD

1 - alpha = 0.95 two-sided CI for tau: ## 0.149, 0.375

There is a negative correlation between weight loss (or % weight loss) and weight gain (or %weight gain) after HFD in cohort 5 and 6 while the direction of the relationship reverse in cohort 8 and 9. Only the relationship in cohort 9 is significant after Benjamini Hochberg adjustment with p-adjust=0.01536. When combining all 4 cohorts together, there is a 0.204 correlation between WL and WG and this correlation is statistically significant with p-value=0.00304. This is likely due to the increase in sample size from about 20 mice in each cohort to about 100 mice in all. A more reliable information to look at is the 95% CI for the spearman correlation coefficient. The . The range of this CI is wide, indicating that we don't have much knowledge about the effect and more information or more murine experiments are needed.

Relationship between Fat mass and HFD Weight

Correlation between %Fat Mass initial and % WG in each cohort

Correlation between %Fat Mass fasted and WG in each cohort

There is no correlation between percent fat mass after fasting and the absolute weight gain, r=-0.027 and p-value=0.855.

Session Information

```
## R version 3.2.2 (2015-08-14)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.10.5 (Yosemite)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
##
## other attached packages:
    [1] NSM3_1.3
                          survival_2.38-3
                                             partitions_1.9-18
##
##
   [4] MASS_7.3-44
                          combinat_0.0-8
                                             sm_2.2-5.4
   [7] xtable_1.8-0
                          ggplot2_1.0.1
                                             plyr_1.8.3
  [10] reshape2_1.4.1
##
## loaded via a namespace (and not attached):
   [1] Rcpp_0.12.1
                            mvtnorm_1.0-3
                                                 lattice_0.20-33
##
##
   [4] deldir_0.1-9
                            zoo_1.7-12
                                                 gtools_3.5.0
   [7] digest_0.6.8
                            gmp_0.5-12
                                                 AlgDesign_1.1-7.3
##
## [10] MatrixModels_0.4-1 acepack_1.3-3.3
                                                 stats4_3.2.2
## [13] evaluate_0.8
                            coda_0.18-1
                                                 spdep_0.5-88
## [16] multcomp_1.4-1
                            SparseM_1.7
                                                 cubature_1.1-2
```

шш	[40]		Materia 1 0 0	
		rpart_4.1-10	Matrix_1.2-2	agricolae_1.2-3
##	[22]	rmarkdown_0.8.1	proto_0.3-10	labeling_0.3
##	[25]	splines_3.2.2	polynom_1.3-8	stringr_1.0.0
##	[28]	foreign_0.8-66	munsell_0.4.2	fANCOVA_0.5-1
##	[31]	htmltools_0.2.6	nnet_7.3-11	<pre>gridExtra_2.0.0</pre>
##	[34]	km.ci_0.5-2	binom_1.1-1	coin_1.1-1
##	[37]	Hmisc_3.17-0	codetools_0.2-14	np_0.60-2
##	[40]	SuppDists_1.1-9.1	grid_3.2.2	nlme_3.1-122
##	[43]	gtable_0.1.2	magrittr_1.5	formatR_1.2.1
##	[46]	metafor_1.9-8	scales_0.3.0	stringi_1.0-1
##	[49]	LearnBayes_2.15	Rfit_0.22.0	sp_1.2-1
##	[52]	<pre>latticeExtra_0.6-26</pre>	boot_1.3-17	sandwich_2.3-4
##	[55]	ash_1.0-15	nortest_1.0-4	Formula_1.2-1
##	[58]	TH.data_1.0-6	klaR_0.6-12	RColorBrewer_1.1-2
##	[61]	tools_3.2.2	epitools_0.5-7	yaml_2.1.13
##	[64]	colorspace_1.2-6	cluster_2.0.3	$waveslim_1.7.5$
##	[67]	BSDA_1.01	SemiPar_1.0-4.1	knitr_1.11
##	[70]	quantreg_5.19	modeltools_0.2-21	