(10) JAPANESE PATENT OFFICE

Patent Gazette

- (11) Examined Patent Publication No. S45-11026
- (44) Date of Publication: 21st April, 1970
- (52) Japanese Classification

23 D 1

24 A 5

23 D 3

Number of Inventions: One

Number of Pages in the Japanese Text: Six

- (54) A method for the manufacture of yellow azo-based pigments
- (21) Application Number: 40-35740
- (22) Date of Application: 17th June, 1965
- (72) Inventor: K. Hashizume c/o Toyo Ink Seizo K.K., 2-6-6-7 Kyobashi, Chuo-ku, Tokyo-to, Japan
- (72) Inventor: A. Kashioka c/o Toyo Ink Seizo K.K., 2-6-6-7 Kyobashi, Chuo-ku, Tokyo-to, Japan
- (72) Inventor: J. Tamai c/o Toyo Ink Seizo K.K., 2-6-6-7 Kyobashi, Chuo-ku, Tokyo-to, Japan
- (72) Inventor: K. Yamaguchi c/o Toyo Ink Seizo K.K., 2-6-6-7 Kyobashi, Chuo-ku, Tokyo-to, Japan
- (72) Inventor: K. Ino
 c/o Toyo Ink Seizo K.K., 2-6-6-7 Kyobashi, Chuo-ku, Tokyo-to,
 Japan
- (71) Applicant: Toyo Ink Seizo K.K.
 2-6-6-7 Kyobashi, Chuo-ku, Tokyo-to, Japan
 Representative: T. Nagashima

Scope of the Patent Claim

A method for the manufacture of yellow azo-based pigments, characterized in that alkaline earth metal salts or organic amine salts of a sulphonic acid of pigment (I) or pigment (II), which can be represented by the general formulae indicated below, are mixed with pigment (I) or pigment (II) or a mixture of these pigments.

(X and Y in these formulae signify one or more substituent groups selected from among the group comprising H, CH₃, CI, NO₂ and OCH₃.)

Detailed Description of the Invention

The invention concerns a method for the manufacture of yellow azo-based pigments which can be dispersed in a low viscosity non-aqueous vehicle and provide dispersions which have excellent fluidity.

Dispersions of the Fast Yellow-based pigments which can be represented by general formula (I) indicated below and the Benzidine Yellow-based pigments which can be represented by general formula (II) indicated below in a low-viscosity non-aqueous vehicle, such as paints and gravure inks and the like for example, sometimes exhibit a high viscosity, and there are cases where gelling occurs during prolonged storage and the materials become difficult to use.

(X and Y in these formulae signify one or more substituent groups selected from among the group comprising H, CH₃, CI, NO₂ and OCH₃.)

The inventors have already recognized that the admixture of the sulphonic acid organic amine salts or sulphonic acid alkaline earth metal salts of the copper phthalocyanine-based pigments with copper

phthalocyanine-based pigments is very effective for preventing a rise in viscosity during storage of non-aqueous vehicle dispersions of copper phthalocyanine-based pigments (Japanese Examined Patent Publications S39-28884 and S40-4143). The present invention is an extension of this technology and provides a method for the manufacture of yellow azo-based pigments which have excellent fluidity as low viscosity non-aqueous vehicle dispersions of the abovementioned yellow azo-based pigments (I) and (II) with acetoacetoanilide as coupler, and with which there is virtually no rise in viscosity even on prolonged storage.

Thus, the present invention involves the admixture of a sulphonic acid alkaline earth metal salt or organic amine salt of a pigment which can be represented by general formula (I) or general formula (II), or a mixture of both (I) and (II). More precisely, it involves the admixture of a sulphonic acid alkaline earth metal salt or sulphonic acid amine salt of the azo-based pigment (I) or (II) with the pigments, or carrying out coupling by mixing a diazo component or coupler which has a sulpho group -SO3H as an intermediate of (I) or (II), which is to say in the diazo component or the coupler, and forming a lake of the dye with an alkaline earth metal salt or an organic amine.

If the amount of intermediate to which a sulpho group is bonded or pigment which has a sulphonic acid salt group which is admixed is too small then the effect of improving the fluidity of the dispersion is slight, and if the amount is too great then the alkali-resistance of the film which is produced is adversely affected, and so a suitable amount should be determined for each individual case, but in general the amount of pigment which has sulphonic acid salt groups is best selected within the range from 5 to 20 wt% with respect to the whole of the pigment. Furthermore, it is possible to control the hue, light resistance and solvent resistance of the target pigment by means of different combinations of the type of intermediate which has a sulpho group or pigment which has sulphonic acid salt group and different types of intermediate which do not have a sulpho group or pigment which does not have sulphonic acid salt groups. In this case as well the fluidity is improved in the same way, and illustrative examples are described below.

Example 1

3,3'-Dichlorobenzidine hydrochloric salt (58.7 g, 0.18 mol) was added to 200 cc of hot water and then 75 g (0.72 mol) of 35% hydrochloric acid were added and a solution was obtained, ice-water was added (liquid volume 2500 cc) and, while maintaining the liquid at a temperature of 0°C, 62 g of a 40% sodium nitrite aqueous solution (0.36 mol) were added and tetrazotization was achieved. Then 4 g of active carbon were added to decolorize the solution, the mixture was filtered, the excess nitrous acid was removed with sulphamic acid and tetrazotized solution (I) was obtained.

On the other hand, 2 g of sodium carbonate were dissolved in 200 cc of water at 50°C, 7.5 g (0.04 mol) of p-toluidine-m-sulphonic acid were added and dissolved and then 10.4 g (0.1 mol) of 35% hydrochloric acid were added and the p-toluidine-m-sulphonic acid was precipitated out. Ice-water was added to this (liquid volume 400 cc) and 6.9 g of 40% sodium nitrite aqueous solution (0.04 mol) was added while maintaining a liquid temperature of 5°C and diazotization was carried out, and the excess nitrous acid was removed with sulphamic acid and diazotized liquid (II) was obtained.

Separately, 48 g (1.2 mol) of caustic soda was dissolved in 2 l of water, 78 g (0.44 mol) of acetoacetoanilide were dissolved in the resulting solution, 80 g of 90% acetic acid were then added and ice-water was added to adjust the liquid temperature to 20°C and the liquid volume to 3 l, and a coupler solution was obtained. The abovementioned diazotized liquid (II) was added to this solution at from 5 to 10°C and coupling was carried out, and then the tetrazotized liquid (I) was added at from 0 to 5°C and coupling was carried out. After stirring the mixture for about 1 hour, the mixture was filtered and the precipitate was redispersed in 5 l of water, sodium carbonate was added and the pH was adjusted to from 8.0 to 8.5, and then 60 g of 10% barium chloride aqueous solution were added and, after heating to 80°C, the pigment was filtered off, washed with water and dried. Recovery 130 g.

Separately, for comparison, coupling was carried out in the conventional way with acetoacetoanilide and just the tetrazotized liquid (I) in the same way as described above, and a pigment with no sulphonic acid salt

group was obtained.

The two pigments prepared in this way were each dispersed using a ball mill in a lime rosin-toluene based vehicle (solid fraction 55%) and the viscosity (BM type rotation viscometer, 25°C) of the dispersion (pigment fraction 7%) with the pigment which contained the sulphonic acid salt groups was found to be considerably lower than that of the conventional product which did not contain sulphonic acid salt groups, as indicated below. Moreover, virtually no change in viscosity from the initial viscosity was seen when the pigment dispersion had been stored for 3 months.

	Pigment of the Invention		Conventional Product	
Rate of	When	After 3	When	After 3
Rotation	Prepared	Months	Prepared	Months
6 r.p.m.	650 c.p.s.	800 c.p.s.	5240 c.p.s.	6560 c.p.s
12 ·	387	550	2810	3820
30	225	320	1340	2650
60	158	250	722	2200

Example 2

A tetrazotized liquid (I) of 55.5 g (0.17 mol) of 3,3'-dichlorobenzidine hydrochloric acid salt was prepared in the same way as in Example 1. On the other hand, a coupler solution was prepared in the same way as in Example 1 by adjusting an acetic acid solution of 65.5 g (0.37 mol) of acetoacetoanilide to a liquid temperature of 20°C and a liquid volume of 2 l. The tetrazotized liquid (I) was added to the coupler solution at from 0 to 5°C, coupling was carried out and a pigment slurry (II) was obtained. Separately, 3 g of sodium carbonate were dissolved in 300 cc of water at 60°C, 13.3 g (0.06 mol) of C-Acid (2-amino-4-methyl-5-chlorobenzenesulphonic acid) were dissolved in this solution and then 18.8 g (0.18 mol) of 35% hydrochloric acid were added and the C-Acid was precipitated out. Ice-water was added, the liquid temperature was set to 5°C and the liquid volume was set to 500 cc, 10.3 g (0.06 mol) of 40% sodium nitrite aqueous solution were added while maintaining the same temperature and diazotization was carried out, the excess nitrous acid was removed with sulphamic acid and diazotized liquid

(III) was obtained. Separately again, 6 g of caustic soda were dissolved in 300 cc of water, 12.6 g (0.066 mol) of acetoaceto-o-toluidide were dissolved in this solution, 10 g of 90% acetic acid were added and the toluidide was precipitated out, and the liquid temperature was adjusted to 25°C and the liquid volume was adjusted to 600 cc. The abovementioned diazotized liquid (III) was added to this liquid and, after coupling, the precipitate was filtered off and redispersed in 1.5 l of water and, after adjusting to pH from 8.0 to 8.5 with sodium carbonate, it was heated to 50°C, a solution obtained by dissolving 15 g of the acetic acid salt of palmitylamine in 100 cc of water was added and a lake was formed, and this was pigment lake (IV). This was added to the abovementioned pigment slurry (II), filtered off and dried. Recovery 132 g.

Separately, for comparison, coupling was carried out in the conventional way with acetoacetoanilide and just the tetrazotized liquid (I) in the same way as described above, and a pigment with no sulphonic acid salt groups was obtained.

These two pigments were each dispersed using a ball mill in a nitrocellulose-based vehicle (solid fraction 17%) and the viscosity (BM type rotation viscometer, 24°C) of the dispersion (pigment fraction 5.5%) which contained sulphonic acid salt groups was found to be considerably lower than that of the conventional product which did not contain sulphonic acid salt groups as indicated below. Moreover, virtually no change in viscosity from the initial viscosity was seen when the pigment dispersion had been stored for 3 months.

	Pigment of the Invention		Conventional Product	
Rate of	When	After 3	When	After 3
Rotation	Prepared	Months	Prepared	Months
6 r.p.m.	1580 c.p.s.	1780 c.p.s	4300 c.p.s.	6200 c.p.s
	982	1130	2380	4300
30 r.p.m.	500 c.p.s.	620 c.p.s	1160 c.p.s.	3200 c.p.s
60	338	450	686	2560

Example 3

A tetrazotized liquid (I) was obtained in the same way as in Example 1

by tetrazotizing 65.2 g (0.2 mol) of 3,3'-dichlorobenzidine hydrochloric acid salt and adjusting the liquid volume to 2.8 l and the liquid temperature to from 0 to 5°C. Separately, 40 g of caustic soda were dissolved in 2 l of water at 25 °C, 11.8 g (0.04 mol) of acetoacetosulphonic acid anilide potassium salt and 65.5 g (0.37 mol) of acetoacetoanilide were dissolved in this solution, 72 g of 90% acetic acid were added and the acetoacetoanilide was precipitated out, and the liquid volume was set to 2.8 l and the liquid temperature was set to 20 °C. The abovementioned tetrazotized liquid (I) was added to this and coupling was carried out and, after filtration, the precipitate was redispersed in 5 l of water, sodium carbonate was added to set the pH to from 8.0 to 8.5, and the dispersion was heated to 60°C and 40 g of a 10% calcium chloride aqueous solution were added to form a lake and, after stirring for 10 minutes, this was filtered off and dried. Recovery 128.5 g.

The pigment obtained in this way was dispersed with a ball mill in a lime rosin-toluene based vehicle (solid fraction 55%) in the same way as in Example 1 and the viscosity (BM type rotation viscometer, 25°C) of the dispersion (pigment fraction 7%) was found to be considerably lower than that of the conventional product indicated in Example 1 as indicated below. Moreover, virtually no change in viscosity from the initial viscosity was seen when the pigment dispersion had been stored for 3 months.

When Prepared	After 3 Months
430 c.p.s.	490 c.p.s.
•	450
	410
	390
	When Prepared 430 c.p.s. 400 370 350

Example 4

3,3'-dichlorobenzidine hydrochloric acid salt 9.8 g (0.03 mol) was tetrazotized in the same way as in Example 1 to prepare tetrazotized liquid (I). Separately, 19.5 g (0.066 mol) of acetoaceto-p-sulphonic acid anilide potassium salt was reprecipitated and a coupler liquid was obtained in the same way as in Example 3. Tetrazotized liquid (I) was added to this and coupling was carried out, the material was filtered off and washed with water

and then redispersed in 1.5 I of water, the pH was adjusted to from 8.0 to 8.5 with sodium carbonate and 60 g of 10% calcium chloride aqueous solution were added, while heating to 60°C, and a lake was formed, and this was taken as pigment slurry (II).

Separately, 3,3'-dichlorobenzidine was tetrazotized with sodium nitrite in the usual way and coupled with acetoaceto-o-toluidide in sodium acetate buffer solution to prepare pigment slurry (III). The abovementioned pigment slurry (III) (pigment content 34 g) was added to pigment slurry (III) (pigment content 300 g) and, after stirring, the pigment was filtered off and dried. Recovery 334 g.

When this pigment was dispersed in a lime rosin-toluene based vehicle (solid fraction 55%) in a ball mill, the viscosity of the dispersion (pigment fraction 7%) (BM type rotation viscometer, 25°C) was very low when compared with that of the conventional product indicated in Example 1, as indicated below. The viscosity on storing this pigment dispersion for 3 months showed virtually no change from the initial viscosity.

Rate of Rotation	When Prepared	After 3 Months
6 r.p.m.	700 c.p.s.	800 c.p.s.
12	415	500
30	270	360
60	178	250

Example 5

35% hydrochloric acid 10.5 g (1.0 mol) was added to 58.7 g (0.34 mol) of 4-chloro-2-nitroaniline, ice-water was added and the liquid temperature was set to 0°C and the liquid volume was set to 2 l. A 40% sodium nitrite solution 58.6 g (0.34 mol) at the same temperature was added and diazotization was carried out, 7 g of active carbon were added and the mixture was decolorized and then filtered and the excess nitrous acid was removed with sulphamic acid and diazotized liquid (I) was obtained.

Separately, 65.5 g (0.37 mol) of acetoacetoanilide were added to 2 I of water at 25°C and dissolved, 61.2 g of 90% acetic acid were added and the material was reprecipitated, the liquid volume was adjusted to 2.5 I and the

liquid temperature was adjusted to 15°C and a coupler liquid was obtained.

The abovementioned diazotized liquid (I) was added to this coupler liquid and coupling was carried out, and pigment slurry (II) was obtained. Recovery 120 g. A slurry corresponding to 10 g of the pigment lake (IV) which was the palmitylamine salt of the coupling product of C-Acid and acetoaceto-o-toluidide indicated in Example 2 was added to the pigment slurry (II) obtained in this way and, after stirring, the pigment was filtered off and dried. Recovery 130 g.

Separately, for comparison, acetoacetoanilide was coupled with 4-chloro-2-nitroaniline in the usual way and a pigment which had no sulphonic acid salt groups was obtained.

When these two pigments were dispersed in a nitrocellulose-based vehicle based vehicle (solid fraction 17%) in a ball mill the viscosities (BM type rotation viscometer, 25°C) of the dispersions (pigment fractions 5.5%) were such that the viscosity of the pigment which contained sulphonic acid salt groups was very low when compared with that of the conventional product which did not have sulphonic acid salt groups, as indicated below. Moreover, the viscosity on storing this pigment dispersion for 3 months showed virtually no change from the initial viscosity.

	Pigment of the Invention		Conventional Product	
Rate of	When	After 3	When	After 3
Rotation	Prepared	Months	Prepared	Months
6 r.p.m.	1220 c.p.s.	1320 c.p.s.	5560 c.p.s.	7200 c.p.s
12	930	1030	3120	4600
30	475	560	1360	2850
60	325	405	870	2360

Example 6

4-Chloro-2-nitroaniline 69 g (0.4 mol) was diazotized in the same way as in Example 5 and diazotized liquid (I) was obtained.

On the other hand, 40 g of caustic soda was dissolved in 2 l of water at 25°C and then 11.8 g (0.04 mol) of the potassium salt of acetoaceto-p-sulphonic acid anilide and 65.5 g (0.37 mol) of acetoacetoanilide

were added and dissolved, and then 72 g of 90% acetic acid were added, the liquid volume was adjusted to 2.5 l, the liquid temperature was adjusted to 15° C and a coupler liquid was obtained. The abovementioned diazotized liquid (I) was added to this coupler liquid and coupled, and then the precipitate was filtered off and washed with water and then dispersed in 5 l of water, 40 g of 10% calcium chloride aqueous solution were added and a lake was formed, and the material was filtered off, washed with water and dried. Recovery 140 g.

When this pigment was dispersed in a nitrocellulose-based vehicle (solid fraction 17%) as shown in Example 5 in a ball mill the viscosity (BM type rotation viscometer, 25°C) of the dispersion (pigment fraction 5.5%) was very low when compared with that of the conventional product indicated in Example 5, as indicated below. Moreover, the viscosity on storing this pigment dispersion for 3 months showed virtually no change from the initial viscosity.

Rate of Rotation	When Prepared	After 3 Months
6 r.p.m.	1080 c.p.s.	1180 c.p.s.
12	970	1080
30	495	580
60	308	400

Example 7

4-Chloro-2-nitroaniline 62.1 g (0.36 mol) was diazotized in the same way as in Example 5, the liquid volume was adjusted to 2.5 I and the liquid temperature was adjusted from 0 to 5°C, and diazotized liquid (I) was obtained.

Separately, 6.9 g (0.04 mol) of sulphanilic acid were added to 200 cc of water, 2 g of sodium carbonate were added and the sulphanilic acid was dissolved at 50°C. 35% hydrochloric acid 12.5 g (0.12 mol) and ice-water were then added and the solution volume was adjusted to 300 cc and the liquid temperature was adjusted to 5°C and 7 g of a 40% sodium nitrite solution were added at the same temperature and diazotization was carried out and then the excess nitrous acid was removed with sulphamic acid. The

liquid volume was adjusted to 400 cc and the liquid temperature was adjusted to from 0 to 10°C and diazotized liquid (II) was obtained.

Caustic soda (40 g) was dissolved in 2 l of water and then 76 g (0.43 mol) of acetoacetoanilide were added and dissolved, 72 g of 90% acetic acid were added and the anilide was precipitated and then the liquid volume was adjusted to 2.5 l and the liquid temperature was adjusted to 15°C. The abovementioned diazotized liquid (II) was added to this liquid and coupling was carried out, and then the abovementioned diazotized liquid (I) was added and coupling was carried out. The precipitate was filtered off and washed with water and then redispersed in 5 l of water, sodium carbonate was added and the pH was adjusted to from 8.0 to 8.5 and then the dispersion was heated to 85°C, 60 g of 10% calcium chloride aqueous solution were added and a lake was formed, and the material was filtered off, washed with water and dried. Recovery 137 g.

Separately, for comparison, just acetoacetoanilide was coupled with 4-chloro-2-nitroaniline in the usual way and a pigment was obtained.

When these two pigments were dispersed in a lime rosin-toluene based vehicle based vehicle (solid fraction 17%) in a ball mill the viscosities (BM type rotation viscometer, 25°C) of the dispersions (pigment fractions 7%) were such that the viscosity of the pigment which contained sulphonic acid salt groups was very low when compared with that of the conventional product which did not have sulphonic acid salt groups, as indicated below. Moreover, the viscosity on storing this pigment dispersion for 3 months showed virtually no change from the initial viscosity.

·	Pigment of the Invention		Conventional Product	
Rate of	When	After 3	When	After 3
Rotation	Prepared	Months	Prepared	Months
6 r.p.m.	1700 c.p.s.	1810 c.p.s.	3760 c.p.s.	5770 c.p.s
12	10800	1180	3010	5020
30	476	570	1030	3040
60	320	400	576	2180

A tetrazotized liquid (I) of 55.5 g (0.17 mol) of 3,3'-dichlorobenzidine hydrochloric acid salt was obtained in the same way as in Example 1. Furthermore, an acetic acid solution of 65.5 g (0.37 mol) of acetoacetoanilide was adjusted to a liquid temperature of 20°C and a liquid volume of 2 l and a coupler liquid was obtained in the same way as in Example 1. The tetrazotized liquid (I) was added to this at from 0 to 5°C and coupling was carried out, and pigment slurry (I) was obtained.

Separately, 3 g of sodium carbonate were dissolved in 300 cc of water mol) of 12 (0.06)dissolved at 60°C, and 3-amino-4-methoxybenzenesulphonic acid were dissolved in the solution and then 18.8 g (0.18 mol) of 35% hydrochloric acid were added and the abovementioned sulphonic acid was precipitated out. Ice-water was added and the liquid temperature was set to 5°C and the liquid volume was set to 50 cc and 10.3 g (0.06 mol) of 40% sodium nitrite aqueous solution were added while maintaining the same temperature and diazotization was carried out, the excess nitrous acid was removed with sulphamic acid and diazotized liquid (III) was obtained. Furthermore, separately, 6 g of caustic soda were added to 300 cc of water and dissolved, 12.6 g (0.066 mol) of acetoaceto-o-toluidide were dissolved in the solution, 10 g of 90% acetic acid were added and the toluidide was precipitated out, and the liquid volume was adjusted to 600 cc and the liquid temperature was adjusted to 25°C. The abovementioned diazotized liquid (III) was then added to this liquid, and then the precipitate was filtered off and redispersed in 1.5 l of water and, after adjusting the pH to from 8.0 to 8.5 with sodium carbonate, the mixture was heated to 50°C and a solution obtained by dissolving 9.2 g of aniline sulphuric acid salt in 100 cc of water was added and a lake was formed, and pigment lake (IV) was obtained. This was added to the abovementioned pigment slurry (II), filtered and dried. Recovery 125 g.

When this pigment was dispersed in a nitrocellulose-based vehicle (solid fraction 17%) in a ball mill the viscosity (BM type rotation viscometer, 25 °C) of the dispersion (pigment fraction 5.5%) was very low when compared with that of the conventional product indicated in Example 2, as indicated

below. The viscosity on storing this pigment dispersion for 3 months showed virtually no change from the initial viscosity.

Rate of Rotation	When Prepared	After 3 Months
6 r.p.m.	1600 c.p.s.	1900 c.p.s.
12	1010	1120
30	600	700
60	420	460

120日本分類

日本国特許庁

①特許出願公告 昭45-11026

23 D 1

24 A 5 23 D 3

⑩特 許 公 報

5

(4)公告 昭和 45年(1970) 4月 21日

発明の数 1

(全 6 頁)

2

1

.....

※ ⑩発明者 井野倉治

東京都中央区京橋2の6の7

東洋インキ製造株式会社内

⑪出 顧 人 東洋インキ製造株式会社

東京都中央区京橋2の6の6の6

代 表 者 永島豊次郎

◎黄色アゾ系館料の製造法

; ;

顧 昭40-35740

願 昭40(1965)6月17日

砂発 明 者 橋爪清

②特

22出

東京都中央区京橋2の6の6の7 東洋インキ製造株式会社内

同 柏岡既

同所

同 玉井淳

同所

同 山口健

同所

発明の詳細な説明

本発明は低粘度非水性ビビクルに分散させ、流 10 動性の優れた分散体を与える黄色アゾ系顔料の製 造法に関する。

一般式(I)で表わされるフアストエロー系顔料お ※ よびII)で表わされるペンジジンエロー系顔料の低

$$V = N - CH$$
 $CONH$

(但し、式中×およびYはH・C H $_3$ ・C ℓ ・N O $_2$ およびO C H $_3$ の群から選ばれた 1 個以上の置換基を意味する)

の低粘度非水性ビビクル中での分散体、たとえば塗料 およびグラビアインキなどは往々高粘度を示し、 長期間の貯蔵中ゲル化を生じ、使用困難となる場 合がある。

本発明者らは、さきに銅フタロシアニン系顔料 の非水性ビヒクル分散体の貯蔵中の粘度上昇を防 止するため、銅フタロシアニン系顔料にそれらの

スルホン酸アルカリ土金属塩またはスルホン酸有機アミン塩を混合するのが極めて有効であることを認めた(特公昭39-28884および昭4035-4143)。本発明はこの技術をさらに拡張したもので、アセトアセトアリリドをカップラーとする上記黄色アン系顔料(I)および(II)を低粘度非水性ビビクル分散体として、優れた流動性を有し、

長期間貯蔵してもほとんど粘度上昇することのな い黄色アゾ系顔料の製造法を提供するものである。

すなわち本発明は一般式(1)もしくは(11)で表わさ れる顔料またはそれらの混合物に(1)または(11)のス ルホン酸のアルカリ土金属塩または有機アミン塩 5 溶解し、これにアセトアセトアニライド7 8 g を混有せしめることである。さらに詳言すれば、 アソ系顔料(I)または(II)にそれらのスルホン酸アル カリ土金属塩またはスルホン酸有機アミン塩を混 カップラー液とする。この液に上記ジアゾ化液(II) 合するか、あるいは(」)または(皿)の中間体すなわち シアン成分またはカツブラーに スル ホン 基 ー 10 でテトラン化液(I)を0~5 cで加えてワップリン SO3Hを有するジアゾ成分またはカップラーを 混合してカップリングを行い、得られた染料をア ルカリ土金属塩または有機アミンでレーキ化する ことである。

スルホン基を結合する中間体またはスルホン酸 15 水洗、乾燥する。収量130g。 塩基を有する顔料の混合量は、過少ならば分散体 の流動性向上に効果少く、過大ならば生成被膜の 耐アルカリ性を阻害するので、その適量は個々の 場合について決定すべきであるが、一般に完成全 顔料に対しスルホン酸塩基を有する顔料が5~ 20 このようにして作製した両顔料をそれぞれライ 20重量%となるように選定するのがよい。また、 スルホン基を有す る中間体またはスルホン酸塩基 を有する顔料の種類とスルホン基を有しない中間 体またはスルホン酸塩基を有しない顔料と異種に 組合せることにより、目的とする顔料の色相、耐 25 ホン酸塩基を含有しない従来品に比べ、著しく低 光性および耐溶剤性を調整することができる。こ の場合も同様に流動性を向上する、つぎに実施例 を示す。

実施例 1

熱湯200 cc に3.3′ージクロルベンジジン塩 30 酸基5 8.7g(0.1 8モル)を加え、つぎに35 %塩酸75g(0.72モル)を加えてこれを溶解 し、氷水を加えて(液量2500 cc)液温を 0 ℃に保ちつつ40%亜硝酸ナトリウム水溶液62 g (0.36モル)を一度に加えてテトラゾ化する。35 これに活性炭4gを加えて脱色、適過し過剰の亜 硝酸をスルフアミン酸で消去しこれをテトラゾ化 液(1)とする。

一方炭酸ナトリウム2gを水200cc 中に50 ℃で溶解し、これにPートルイジンーmースルホ 40. ン酸7.5 g (0.0 4 モル)を加えて溶解し、つぎ に35%塩酸10.4g(0.1モル)を加えてp-トルイジンーm-スルホン酸を析出せしめる。こ れに氷水を加えて(液量400 cc)液温5 ℃ に 保ちつつ、40%亜硝酸ナトリウム水溶液6.9g 45

(0.04モル)を加えてジアゾ化し過剰の亜硝酸 をスルフアミン酸で消去しこれをジアゾ化液([[])と する。

別に水2 ℓにカ性ソーダ4 8g (1.2モル)を (0.44モル)を溶解し、90%酵酸80gを加 え、氷水を加えて液温20℃、液量3月に調整し、 を5~10℃で加え、カップリングを行い、つい グを行う。約1時間かきまぜた後濾過し、沈殿を 5 ℓの水に再分散し、炭酸ナトリウムを加えて PH 8.0~8.5 に調整し、ついで10%塩化パリ ウム水溶液60gを加え、80℃に加熱後、濾過、

別に比較のため従来法に従い、上記と同一要領 でアセトアセトアニライドとテトラゾ化液(1)のみ をカツプリングさせ、スルホン酸塩基を含有した い顔料を作る。

ムロジンートルエン系ピヒクル(固形分55%) にポールミル で分散させたときの分散体 (顔料分 7%)の粘度(BM型回転粘度計,25℃)はつ ぎのようにスルホン酸塩基を含有する顔料はスル 粘度である。なお本顔料分散体を3カ月間貯蔵し たときの粘度は初期粘度とほとんど変化は認めら

1	本:	頌 料	従 来 品	
回転数	調製時	3 カ月後	調製時	3 カ月後
6 r.p.m.	6 5 0 c.p.s.	800c.p.s.	5 2 4 0 c.p.s.	6560 c.p.s.
1 2	387	5 5 0	2810	3820
3 0	2 2 5	3 2 0	1340	2650
6 0	158	2 5 0	7 2 2	2200

実施例 2

例1と同じ要領で3.3 / ージクロルベンジジン 塩酸塩 5 5.5 g (0.1 7 モル) のテトラゾ化液[] 10 後、濾過し、沈殿を 1.5 ℓの水に再分散し、炭酸 をつくる。一方例1と同じ要領でアセトアセトア※ ナトリウムでPH8.0~8.5 に調整後50℃に加 ニライド 65.5 g (0.37モル)の酢酸溶液を液 温20℃、液量2ℓに調整しカップラー液とする。 これにテトラゾ化液(I)を0~5℃で加えてカップ リングを行い、顔料スラリー(II)を得る。 別 K 水 15 歯過、乾燥する。 収量1 3 2 g 。 3 00 cc に炭酸ナトリウム3gを60℃で溶解 し、これにC一酸(2-アミノー4ーメチルー5 -- クロルペンゼンスルホン酸) 1 3.3 g (0.0 6 モル)を溶解し、ついで35% 塩酸18.8g (0.18 モル)を加えてC-酸を析出させる。氷 20 これら両顔料をニトロセルロース 系ピヒクル 水を加えて液温5℃、液量500ccとし、 同温 度に保ちながら40%亜硝酸ナトリウム水溶液 1 0.3 g (0.0 6 モル)を加えてジアゾ化し、過 剰の亜硝酸をスルフアミン酸で消去し、ジアゾ化 液 (III)とする。また別に水300 cc にカ性ソーダ 25 、従来品に比べ、著しく低粘度である。なお本顔 6 gを加えて溶解し、これにアセトアセト -0 -トルイダイド1 2.6 g (0.0 66モル)を溶解し 9 0 %酢酸 1 0 gを加えてトルイダイドを析出さ^な

^双せ、液温25℃、液量600cc に調整する。こ の液に上記ジアゾ化液 (III)を加えてカップリング 熱し、パルミチルアミンの酢酸塩1 5 g を水100 cc に溶解した液を加えてレーキ化し、顔料レー キ(IV)とする。これを上記顔料スラリー(II)に加え、

別に比較のため常法に従い上記と同一要領でア セトアセトアニライドとテトラゾ化液(1)のみをカ ップリングさせ、スルホン酸塩基を有しない顔料 を作る。

(固形分17%)にポールミルで分散させたとき、 の分散体(顔料分5.5%)の粘度(BM型回転粘 度計, 24℃) は、つぎのように、スルホン酸塩 基を含有する顔料は、スルホン酸塩基を含有した 料分散体を3カ月間貯蔵したときの粘度は初期粘 度とほとんど変化は認められない。

	本質料		従来 品	
回転数	調製時	3 カ月後	調製時	3カ月後
6 r.p.m	1580 c.p.s.	1.780 c.p.s.	4 3 0 0 c.p.s.	6 20 0 c.p.s.
1 2	982	1130	2380	4 3 0 0
30 r.p.m	5 0 0 c.p.s.	6 2 0 c.p.s.	J 1 6 0 c.p.s.	3 2 0 0 c.p.s.
6 0	3 3 8	450	686	2560

実施例 3

例1と同じ要領で3.3 ′ - ジクロルペンジジン 塩酸塩65.2g(0.2モル)をテトラゾ化し、液 盘 2.8 ℓ、液温 0~5 ℃に調整 Lテトラゾ化液(I)40 再分散し、炭酸ナトリウムを加えてP H 8.0 ~ とする。別に水2 lに 25℃でカ性ソーダ40g を溶解し、これにアセトアセト -pースルホン酸 アニライドカリウム塩11.8g(0.04モル)お よびアセトアセトアニライド65.5g(0.37モ

アセトアニライドを析出せしめ液量2.8 €、液温 20℃とする。これに 上記テトラゾ化液 I)を加え カップリングを行い、濾過後沈殿を5 ℓの水中に 8.5 とし60℃に加熱し、10%塩化カルシウム 水溶液40gを加えてレーギ化し10分かきまぜ たのち、濾過、乾燥する。収量1 2 8.5 g。

このようにして得られた顔料を例1と同じょう ル)を溶解し、90%酢酸72gを加えてアセト45 にライムロジンートルエン系ピヒクル(固形分55

%)にポールミルで分散(顔料分7%)させたと 、実施例 5 きの分散体の粘度(BM型回転粘度計,25℃) は、つぎのように例1に示した従来品と比べて著 しく低く、また構造粘性をほとんど示さずニュー 分散体を3カ月間貯蔵したときの粘度は、初期粘 度とほとんど変化は認められない。

_	回転数	調製時	3 カ月後
	6 r.p.m	4 3 0 c.p.s.	4 9 0 c.p.s.
	1 2	400	450
	3 0	370	410
	6 0	350	390

実施例 4

塩酸塩 9.8 g (0.0 3 モル)をテトラゾ化し、こ れをテトラゾ化液(I)とする。別に例3と同じ要領 で、アセトアセト -p - スルホン酸アニライドカ リウム塩1 9.5 g (0.0 6 6 モル)を再沈殿させ てカツブラー液をつくる。これにテトラゾ化液(I) 20 する。収量1 30 g。 を加えてカップリングを行い、協過、水洗後、水 1.5 ℓ 中に再分散し、炭酸ナトリウムでpH 8.0~8.5 に調整し、60℃に加熱しながら10 %塩化カルシウム水溶液 60gを加えてレーキ化 し顔料スラリー(II)とする。

別に3.3′ージクロルペンジジンを常法のこと く 亜硝酸ソーダ でテトラゾ化しこれを酢酸ソ ―ダ の緩衝容液中でアセトアセトーoートルイダイド とカップリングを行い、顔料スラリー(III) をつ 上記顔料スラリー(11)(顔料分34g)を加え、か きまぜた後躑過して乾燥する。収量334g。

本顔料をライムロジンートルエン系ピヒクル (回形分55%)にポールミルで分散(顔料分7 %)させたときの分散体の粘度(BM型回転粘度 35 計・25℃)は、つぎのように例1に示した従来 品と比べて著しく低粘度である。また本顔料の分 散体を3カ月間貯蔵したときの粘度は、初期粘度 とほとんど変化は認められない。

回転数 细烛触 3カ月後 6 r.p.m. 7 0 0 c.p.s. 800 c.p.s. 1 2 4 1 5 5 0 0 270 3 0 3 6 0 6 0 1 7 8 250

40

45

4 ークロル - 2 ーニトロアニリン 5 8.7 g (0.34モル)に35%塩酸10.5g(1.0モル) を加え、氷水を加えて液温0℃、液量2ℓとする。 トン流動に近い流動性を示している。また本顔料 5 これに同温度で40%亜硝酸ナトリウム水溶液 5 8.6 g (0.34 モル)を加えてジアゾ化し、活 性炭7gを加えて脱色後濾過し、過剰の亜硝酸を スルフアミン酸で消去しジアゾ化液[]とする。

> 別に水 2 ℓに 2 5 ℃ でアセトアセトアニライド 10 65.5 g (0.37 モル)を加えて溶解し、90% 酢酸 6 1.2 g を加えて再析出させ、液量 2.5 ℓ、 液温15℃に調整してカップラー液とする。

このカップラー液に上記ジアゾ化液(1)を加えて カップリングを行い、顔料スラリー([[]をつくる。 例1と同じ要領で3.3′ージクロルペンジジン 15 収量 1 2 0 g 。このようにして得られた顔料スラ リー(II)に、例2に示したc酸とアセトブセトー0 ートルイダイドのカップリング生成物のパルミチ ルアミン塩である顔料レーキ (TV)10g に相当す るスラリーを加え、かきまぜたのち、濾過、乾燥

> 別に比較のため、常法に従い、4ークロルー2 ーニトロアニリンとアセトアセトアニライトをカ ツブリングさせ、スルホン酸塩基を有しない顔料 をつくる。

これら両顔料をニトロセルロース系ピ ヒ ク ル 25 (固形分17%) にポールミルで分散させたとき の分散体(顔料分5.5%)の粘度(BM型回転粘 度計, 25℃)は、つぎのように、スルホン酸塩 基を含有する顔料は、スル ホン酸塩基を含有した くる。顔料ス ラリー(Ⅲ)(顔料 分300g)に 30 い従来品に比べ、著しく低粘度である。なお本顔 料分散体を3カ月間貯蔵したときの粘度は初期粘 度とほとんど変化は認められない。

	本質料		従 来 品	
回転数	調製時	3 カ月後	調製時	3カ月後
6 r.p.m.	1 2 2 0 c.p.s.	1 3 2 0 c.p.s.	5 5 6 0 c.p.s.	7 2 0 0 c.p.s.
1 2	930	1030	3 1 2 0	4600
3 0	475	560	1360	2850
6 0	3 2 5	4 0 5	870	2 3 6 0

35

実施例 6

例5と同じ要領で4ークロルー2ーニトロアニ リン69g (0.4 モル) をジアゾ化し、ジアゾ化 10 の亜硝酸をスルフアミン酸で消去する。液骨400 液(工)とする。

一方水2ℓに25℃でカ性ソーダ40gを溶解 し、ついでアセトアセト -p -スルホン酸アニラ イドのカリウム塩11.8 g (0.0 4 モル)とアセ 解し、90%酢酸72gを加え、液量2.5 ℓ、液 温15℃に調整し、カツブラー液をつくる。この カップラ -液に上記ジアゾ化液(I)を加えてカップ リング後、濾過、水洗し、沈殿を5 ℓの水中に分 散し10%塩化カルンウム水溶液40gを加えて 20 散し、炭酸ナトリウムを加えて p H8.0~ 8.5 に レーキ化し、濾過、水洗、乾燥する。収量1 4 0 g o

本剱料を例5に示したようにニトロセルロース 系ピヒクル(固形分17%)にポールミルで分散 させたときの分散体(顔料分5.5%)の粘度(B 25 ーニトロアニリンとアセトアセトアニライドのみ M型回転粘度計, 25 C)は、つきのように、例 5 の従来品に比べ著しく低い。 たお、本顔料分散 体を3カ月間貯蔵したときの粘度は、初期粘度と ほとんど変化は認められない。

回転数	調製時	3カ月後	
6 r.p.m.	1 0 8 0 c.p.s.	1 1 80 c.p.s.	
1 2	970	1080	
3 0	495	580	
6 0	308	400	

実施例 7

例5と同じ要領で4ークロルー2ーニトロアニ リン62.1g(0.36モル)をジアゾ化し、液量 2.5 ℓ、液温0~5℃に調整してジアゾ化液(I)と 40

別にスルフアニル酸6.9g(0.04モル)を水 200cc に加え、炭酸ナトリウム 2gを加え50 ℃でスルフアニル酸を溶解する。これに35%塩 酸12.5g(0.1 2モル)および氷水を加え、液 45

量300cc、液温5℃に調整し、同温度で40% 亜硝酸ナトリウム7gを加えてジアン化し、過剰 cc、液温0~10℃に調整し、ジアゾ化液(II)とす る。

2 ℓの水に20℃でカ性ソーダ40gを溶解し、 アセトアセトアニライド76g(0.4 3モル)を ト アセトアニライド 6 5.5 g (0.3 7モル)を溶 15 加えて溶解し、90 %酢酸 7 2 g を加え、アニラ イトを析出後液量2.5 ℓ、液温15℃に調整する。 この液に上記ジアゾ化液(11)を加えてカップリング を行い、ついで上記ジアゾ化液 I)を加えてカツブ リングを行う。濾過、水洗後、5 ℓの水中に再分 調整したのち、85℃に加熱し、10%塩化バリ ウム水溶液60gを加えてレーキ化し、濾過 水 洗、乾燥する。収量137g。

> 別に比較のため、常法に従い、4-クロルー2 をカツプリングさせて顔料をつくる。

これら両顔料をライムロジンートルエン系ピヒ クル(固形分17%)にポールミルで分散させた ときの分散体(顔料分7%)の粘度(BM型回転 30 粘度計, 25℃)は、つぎのように、スルホン酸 塩基を含有する顔料は、スルホン酸塩基を含有し ない従来品に比べ、著しく低粘度である。なお、 本顔料分散体を3カ月間貯蔵したときの粘度は、 初期粘度とほとんど変化は認められない。

	本翁	頁 料	従き	表 品
回転数	調製時	3カ月後	調製時	3ヵ月後
6 r.p.m.	1 700 c.p.s.	1 8 1 0 c.p.s.	3760 c.p.s.	5 7 7 0 c.p.s.
1 2	1080	1180	3010	5020
3 0	476	570	1030	3040
6 0	320	400	576	2 1 8 0

実施例 8

例1 と同じ要領で、3.31 - ジクロルペンジジ ン塩酸塩5 5.5 g (0.1 7 モル)のテトラゾ化液 10 ℓの水に再分散し、炭酸ナトリウムでPH 8.0 ~ (I)をつくる。また例1と同じ要領でアセトアセト アニライド65.5 g (0.3 7 モル)の酢酸溶液を 液温20℃、液量2 ℓに調整しカップラ −液とす る。これにテトラゾ化液(1)を0~5℃で加えてカ ップリングを行い、顔料スラリー(II)を得る。別に 15 g。 水300cc に炭酸ナトリウム3gを60℃で溶 解し、これに3一アミノー4ーメトキシベンゼン スルホン酸12g(0.06モル)を溶解し、つい で35%塩酸18.8g(0.18モル)を加えて上 記スルホン酸を析出させる。氷水を加えて液温5 20 の従来品に比べ碧しく低い。なお、本顔料分散体 で、液量5 0 ccとし、同温度に保ちながら 4 0% 亜硝酸ナトリウム水溶液10.3g(0.06モル) を加えてジアゾ化し、過剰の亜硝酸をスルフアミ ン酸で消去し、ジアゾ化液 (III) とする。また別 に水300cc にカ性ソーダ6gを加えて溶解し、25 これれアセトアセトー0ートルイダイド12.6g (0.066モル)を溶解し、90%酢酸10gを 加えてトルイダイトを析出させ液量600cc 、 特許 請求の範囲

液温25℃に調整する。この液に上記ジアソ化液 (Ⅲ)を加えてカップリン後、濾過し、沈殿を1.5 8.5 に調整後50℃に加熱し、アニリン剤酸塩 9.2 g を水1 0 0 cc に溶解した液を加えてレー ※キ化し、顔料レーキ (IV)とする。これを上記顔料 スラリー(川)に加え、濾過、乾燥する。収量125

本顔料を例2に示したようにニトロセルロース 系ピヒクル(固形分17%)にポールミルで分散 させたときの分散体(顔料分5.5%)の粘度(B M型回転粘度計・25℃)は、つぎのように例2 を 3 カ月間貯蔵したときの粘度は、初期粘度とほ とんど変化は認められない。

回転数	調製時	3カ月後	
6 r.p.m.	1 600 c.p.s.	1 9 0 0 c.p.s.	
1 2	1010	1120	
3 0	600	700	
6 0	4 2 0	460	

一般式

(ただし、式中×およびYはH・CH3・Cℓ・NO2および OCH3 の群から 選ばれた1 個以 上の饋換基を意味する)

で表わされる顔料(1)もしくは(11)またはそれらの混 塩または有機アミン塩を混有せしめることを特徴 合物に(])または([])のスルホン酸のアルカリ土金属 45 とする黄色アゾ系顔料の製造法。