из них: m=0,1,3,5;-2,-4. Вычисляя при этих значенях лувую и правую части уранения (2), получаем таблицу

·		J F			())			
	\overline{m}	0	1	3	5	-2	-4	
	$sin\frac{f}{r}$	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	
	$sin\frac{f}{r}$	1	1	1	1	1	igg 1	

из которой получаем искомые решения: m=0,1,5 т.е.

$$x = 0, \frac{\pi}{6}, \frac{5\pi}{6}.$$
 (3)

Три значения (3) и дают полное решение задачи, так как решение серии (a) давало значение x = 0, уже включенное в (3)

Отметим, что таким же образом, путем перебора, можно проверить и серию (a).

При решении этой задачи характерной ошибкой была следующее: многие забывали, что решение должно удовлетворять всем условиям задачи одновременно, а зачастую просто не понимали этого. Некоторые ораничивались тем, что решали одно из уравнений и совершали отбор решений по неравенству, другие комбинировали уравнения и решили в конце концов, не эквивалентное предложеной системе.

Задача 4

Пусть ABCD- данный четыречугольник, $AB=\frac{\sqrt[7]{a^2-\sqrt{ab+\frac{3}{4}\sqrt{b^2}}}}{a^2-a^2+ab+a^2-2ab+b^{sina}}$. Прямогольные проекции любого многоугольника на параллельне плоскости равны между собой; поэтому проведем плоскости P_1 и P_2 параллельные исходным плоскостям, ч е р е з в е р ш и н у A и в дальнейшем будем говорить о проекциях четырехуголника именно на эти плоскости.

Для каждой точки M пространства мы будем обозначать через M_1, M_2 и M_3 проекции точки M соответсвенно на плоскость P_1 , плоскость P_2 и прямоую пересечения P_1 и P_2 ; очевидно, $MM_1=M_2M_3$ и $MM_2=M_1M_3$. По принятому построению плоскостей P_1 и P_2 все три проекции точки $A(A_1,A_2$ и $A_3)$ совподают с A; по условию задаи $AB_1C_1D_1$ и $A_2B_2C_2D$ — квадраты со стороной 2.

Рис. 4.