

Gravity Amplitudes from the Ultraviolet

Julio Parra-Martinez

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

w/ A. Edison, E. Herrmann, J. Trnka

Brown Bag Seminar

@ UM Ann Arbor, April 2019

Main goals of the talk:

- Explain first hints (and challenges) in understanding geometry behind gravity amplitudes
- Convince you that the UV properties of gravity are "good"

Main goals of the talk:

- Explain first hints (and challenges) in understanding geometry behind gravity amplitudes
- Convince you that the UV properties of gravity are "good"

More modest goal:

 At least convince you that the UV properties of gravity are not well understood and deserve more attention

Outline

Puzzles about gravity in the UV

Hidden symmetry in SYM and the Amplituhedron

Explorations of gravity towards the UV

Gravity amplitudes from the UV

Puzzles about gravity in the UV

Gravity as an EFT

Non-renormalizable but very fine EFT

• EFT totalitarian principle:

"everything that is allowed is compulsory"

- Counterterms tied to divergences
- Check by explicit calculation

On-shell methods

Factorization and unitarity as basic principles

$$\begin{cases} \{(e_i - q_i)^2 = 0\}_{i,i} & \text{goins on-shell} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} & \text{--} \\ 00 & \text{--} \\ 00$$

Double copy

- Gravity = Yang-Mills x Yang Mills
- Double copy of amplitudes

$$\frac{\sum_{i} \frac{n_{i} c_{i}}{p_{i}}}{p_{i}} \longrightarrow \frac{\sum_{i} \frac{n_{i} \tilde{n}_{i}}{p_{i}}}{c_{i}}$$

$$\leq + c_{i} + c_{i} = 0$$

$$\leq n_{i} + n_{i} = 0$$

$$\leq n_{i} + n_{i} = 0$$

Progress over last decade

Counterterm available respecting known symmetries

Progress over last decade

- Counterterm available respecting known symmetries
- Only divergences in four dimensions

One loop finiteness of gravity

Evanescent counterterm

Divergence not numerically zero

Related to "trace anomaly"

$$T''_{n} = -\frac{1}{(4\pi)^{1/360}} \left(\alpha E_{4} + c W^{2} \right) + \cdots$$

$$E_{4} = w^{2} \text{ on-shel}$$

Contamination at two loops

$$\frac{1}{2^{2-1}} \sim (M_R^2)^{26} \frac{c_1}{\epsilon}$$

$$\frac{1}{2^{2-1}} \sim (M_R^2)^{26} \frac{c_2}{\epsilon}$$

Divergence and scale dependence disconnected

$$M_{grav}^{2-loop} = \left(\frac{1}{\epsilon} \frac{209}{24} - \frac{1}{4} los MR^{2}\right) MR^{3} + \cdots$$

$$M_{N=1}^{2-loop} = \left(\frac{1}{\epsilon} \frac{341}{32} - \frac{0}{2} los MR^{2}\right) MR^{3} + \cdots$$

• Simple scale dependence $\sim \frac{N_B - N_{\sharp}}{8}$

Simplest example

- Gravity minimally coupled to a Weyl fermion is finite at two loops!
- Despite existing counterterm compatible with all known symmetries...
- If EFT lore applies, there must be a hidden symmetry. And it should be quite generic.

Hidden symmetry in SYM and the Amplituhedron

Hidden symmetry in SYM

Dual Conformal Invariance (DCI)

• Hidden symmetry of planar SYM integrands $\delta_{x_i} = \frac{1}{2} x_i^2 \delta_y^2 - (x_i \cdot b) x_i^2$

- DCI analytic structure of the integrand
 - Logarithmic singularities

No poles at infinity

- Homogeneous cuts
 - Spurious singularities
 - Wrong helicity assignment

The two together fix the integrand completely

Dual Amplituhedron

• Amplitude = Volume of "positive space"

• Zero conditions ensure poles at right boundaries

Non-planar N=4 SYM

- Non-planar integrand not well-defined (labels)
- Can still define amplitude as a sum over diagrams

- Homogeneous cuts fix all coefficients α;
- Considered evidence for non-planar Amplituhedron

Explorations of gravity towards the UV

Gravity analog?

- Gravity amplitudes certainly have poles at infinity
- In fact they can have multiple poles at infinity

Homogeneous cuts do not contain enough info

Q: What else is special about gravity?

0. Tree level

Large [→] behavior under BCFW deformation

$$\lambda_i \rightarrow \lambda_i - \lambda_j$$
 $\lambda_i \rightarrow \lambda_j + \lambda_j$
 $\lambda_i \rightarrow \lambda_j + \lambda_j$

- \bar{z} scaling required for recursion
- However £⁻¹ required for factorization
- Does not depend on number of legs

1. One loop

Tree level behavior feeds into 1 loop through cuts

- "No triangle" in ୬-۶ supergravity
- Bubble cuts directly related to divergence
- Role of SUSY is minor, cancellations generic

2. Two loops

Maximal vs. minimal cuts

2-loop d-dimensions (2017) - no cancellations

$$\begin{pmatrix}
\frac{1}{2} & \frac$$

2-loop d-dimensions (2017) - no cancellations

2-loop 4-dimensions (2018) - yes cancellations!!

7. Higher loops

Yang-Mills scaling = diagram p.c. dominated by planar (WYSIWYG)

Nontrivial cancellation in gravity Compare to worst diagram!

7. Higher loops

Yang-Mills scaling = diagram p.c. dominated by planar (WYSIWYG)

Nontrivial cancellation in gravity Compare to worst diagram!

Tree origin

- Good UV behavior still comes from trees
- No cancellations between different cont. to cut
- Cut scaling multi-line shift

$$\ell_{i} = \lambda_{e_{i}} (\bar{\eta} + \zeta_{i} \neq \bar{\chi}) \quad i = 1, ..., L$$

$$\ell_{i+1} = \bar{\xi} - \frac{P^{2}}{2\bar{\xi} \cdot P} \quad \bar{\xi} = \lambda_{i+1} (\bar{\eta} + \zeta_{i+1} \neq \bar{\chi})$$

More comments later...

A: Improved UV behavior in cuts is special in gravity

Analog of logarithmic singularities and no poles at ∞ in \mathcal{N} : 4 ?

Gravity amplitudes from the UV

Tentative Program

- Start with an ansatz
- Constrain using forbidden cuts
- Constrain using improved UV behaviour
- Is the amplitude uniquely fixed?

One-loop n-pt MHV

Forbidden cuts: first pass

Forbidden cuts: second pass

$$0 = \frac{1}{\sqrt{1 + (e - e_*)^2}}$$

$$0 = \frac{1}{\sqrt{1 + (e - e_*)^2}}$$

$$0 = -\frac{1}{\sqrt{1 + (e - e_*)^2}}$$

Improved UV behavior

Left-over ansatz like in SYM

$$A = \frac{7}{4} q; LS; \qquad + \frac{7}{3} c^{\frac{1}{3}} c^{\frac{1}{3}}$$

$$O = Res \left[-\frac{1}{2} c^{\frac{1}{3}} \right] - \frac{1}{2} c^{\frac{1}{3}} c^{\frac{1}{3$$

• Amplitude fixed up to overall scale!

Two-loop four point

Initial ansatz

● Usual power counting: ᠘ powers for ኣ+ነ -gon

UV scaling alone fixes the whole amplitude

$$Ans \sim \frac{a}{2^3} + \frac{b}{2^3} + \frac{c}{2^4} + \cdots$$

$$a = b = c = 0$$

Three-loop four point

Initial ansatz

UV scaling fixes everything but ladders

Working on using forbidden cuts to fix this

Challenges ahead

Order of poles at infinity that grows with n

Polynomial/rational terms unfixed by 4d cuts

Still have not defined an integrand...

Unanswered questions

- Can trees be fixed by requiring large 2 scaling?
- Relation to UV divergences after integration
- Geometric structure

Summary

- UV behavior of gravity is surprising
- Hints of an unknown symmetry
- UV behavior strongly constrains (fixes!) amplitudes
- Still a lot to be learned from gravity in the UV