Overview and applications of dimensionality reduction

Samuele Soraggi

Data Scientist
Bioinformatics Research Center,
Aarhus University

Overview and applications of dimensionality reduction

Slides here

https://samuelesoraggi.github.io/Projection and clustering tutorial/

- Recognize types of dim.red. methods
- Master principles of how they work
- Some examples and practical issues
- Manifold learning: tSNE & UMAP
- Computational improvements of tSNE
- Conclusions
- Break
- Exercise illustration and setup

• Mapping data from a space of dimension p to a space of dimension d << p

Dimensionality reduction: some applications

SNPs (columns) from individual genomes (rows) reflect geographical structure

Dimensionality reduction: some applications

SNPs (columns) from individual genomes

Dimensionality reduction: some applications

Transcriptomics: 1.3 Million cells (rows) and ~30_000 genes (columns)

Art: categorizing and exploring large quantities of paintings

Dimensionality reduction: methods types

	Linear (Parametric)	Non-linear	Non parametric
Unsupervised	PCA	kPCA ISOMAP	MDS tSNE UMAP
Supervised	LDA	kLDA	

Dimensionality reduction: methods types

	Linear (Parametric)	Non-linear	Non parametric
Unsupervised	PCA UMAP (only parametric)	kPCA ISOMAP	MDS tSNE UMAP
Supervised	LDA	kLDA	UMAP

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

Based on

$$XX^t = U \Sigma^2 U^t$$

$$Y = XU = U\Sigma$$

minimizing reconstruction error

$$||U\Sigma - U_{red}\Sigma_{red}||_{2}^{2}$$
 or $||X - X_{red}||_{2}^{2}$

Dimensionality reduction: limits of linearity

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

$$p=2 \rightarrow p' \rightarrow d=1$$

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

Analogous to PCA

$$XX^{t}$$
 \longleftrightarrow $\varphi(X)\varphi(X)^{t} = [\varphi(x_{i})\varphi(x_{j})^{t}]_{ij}$
 $Y = U\Sigma \longleftrightarrow$ $Y = Q \Lambda^{1/2}$

$$Y = U\Sigma \longleftrightarrow Y = Q \Lambda^{1/2}$$

by assuming centered kernel φ and a centered kernel matrix

$$\tilde{M}_{ij} = \varphi(x_i)\varphi(x_j)^{t} = Q\Lambda Q^{t}$$

Dimensionality re duction: kernel trick

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

$$p=2 \rightarrow p' \rightarrow d=1$$

$$[M]_{ij} = [\varphi(x_{i,x_{j}})]$$

Avoids dot-products

Gaussian/RBF $\varphi(x_{i,}x_{j}) = exp(-||x_{i}-x_{j}||^{2}/2\sigma^{2}) \sigma \geqslant 0$ Polynomial $\varphi(x_{i,}x_{j}) = (x_{i}^{T} \cdot x_{j} + c)^{d} c \geqslant 0, d \geqslant 1$ Linear $\varphi(x_{i,}x_{j}) = x_{i}^{T} \cdot x_{j}$ Laplacian $\varphi(x_{i,}x_{j}) = exp(-\alpha/|x_{i}-x_{j}||) \alpha \geqslant 0$

.

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

Trade-off between distancing means and

keeping low scatter (covariance) between

(Unsupervised) PCA

(Supervised) LDA

points

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

Non-parametric methods → MDS

Non-parametric methods → MDS

The cost function

$$C = \Sigma_{i < j} [x_{ij} - || y_i - y_j ||]^2$$

is optimized (wrt projections y)
to preserve distances

- Cost quadratic in nr. of data points
- There are LARGER DISTANCES in high dimensions!

Distances: curse of dimensionality

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

Distances increase in higher dimensions. <u>Actually,</u>

$$\forall \varepsilon > 0 : \lim_{d \to \infty} P \left[dist_d \left(\frac{Dmax_d - Dmin_d}{Dmin_d}, 0 \right) \le \varepsilon \right] = 1$$

The ratio of distance between nearest and farthest neighbour against the distance to nearest neighbor **tends to zero** with increasing dimensions

Distances: curse of dimensionality

Distances increase in higher dimensions. <u>Actually,</u>

$$\forall \varepsilon > 0 : \lim_{d \to \infty} P \left[dist_d \left(\frac{Dmax_d - Dmin_d}{Dmin_d}, 0 \right) \le \varepsilon \right] = 1$$

So distances increase and we have no smaller distances to preserve

Distance preserving → Manifold learning

- Your data points are part of a geometric surface of dimension d
- This surface is embedded in more dimensions p
- Learn the structure and not the distances

Embedded in 3D through $\boldsymbol{\theta}$ (Rotation angle)

Unsup PCA kPCA
Sup LDA kLDA

Distance preserving → Manifold learning

	L	Non-L
Unsup	PCA	kPCA
Sup	LDA	kLDA

- All the iris flowers in the world (with the four measures as in the *iris* dataset) will not cover all \mathbb{R}^4
- Most points of \mathbb{R}^4 are actually **noise** and not flowers
- This set of points is part in a **subspace** of dimension d of \mathbb{R}^4 , d < 4
- The difference of two points will likely not give an existing flowers' data (non-linear surface)
- The surface has good geometric properties (locally flat, differentiable, ...) making it a Riemannian manifold

- Datapoints as vertices of a graph
- Pairwise edges are weighted by a distance function (local flatness)
- Graph algorithms are well-known and implemented

Example: graph-exploration computational packages make it fast to find the closest k elements of a data point x_1 (the **k-nearest-neighbors** of a point). In figure: k=7.

- Build outgoing edges weighted by distance in the k-nearest neighborhood of each data point
- Normalize them so they sum to one

- Build outgoing edges weighted by distance in the k-nearest neighborhood of each data point
- Normalize them so they sum to one

- Average edges weight between each pair of nodes
- normalize ALL edges of the graph so that their sum is 1

It corresponds to the formula

$$p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$$

A procedure of the same type is done in the low-dimension (d << D) space

- Average edges weight between each pair of nodes
- normalize ALL edges of the graph so that their sum is 1

It corresponds to the formula Mean of two normalized edges Between i and j $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2 n}$

A procedure of the same type is done in the low-dimension (d << p) space

- Average edges weight between each pair of nodes
- normalize ALL edges of the graph so that their sum is 1

A procedure of the same type is done in the low-dimension (d << p) space

tSNE: high-dim graph implementation

In the book's code (p.280) ALL Distances are calculated and evaluated in a gaussian kernel for each point *i*

```
D <- as.matrix(dist(X))^2
Pji <- exp(-D[i, -i] / (2 * svals[i]))</pre>
```

P_{ji}'s are normalized and assigned to the matrix P, so we have the ingoing and outgoing edges normalized separately

```
Pji <- Pji / sum(Pji)
P[i, -i] <- Pji
```

The final normalization is then return(0.5 * (P + t(P)) / sum(P))

```
function(X, perplexity=15)
  D <- as.matrix(dist(X))^2</pre>
  P <- matrix(0, nrow(X), nrow(X))</pre>
  svals <- rep(1, nrow(X))</pre>
  for (i in seq_along(svals))
    srange <-c(0, 100)
    tries <- 0
    for(j in seq_len(50))
      P_{ji} \leftarrow exp(-D[i, -i] / (2 * svals[i]))
      Pji <- Pji / sum(Pji)
      H < -1 * Pji %*% log(Pji, 2)
      if (H < log(perplexity, 2))</pre>
         srange[1] <- svals[i]</pre>
         svals[i] <- (svals[i] + srange[2]) / 2</pre>
      } else {
         srange[2] <- svals[i]</pre>
         svals[i] <- (svals[i] + srange[1]) / 2</pre>
    P[i, -i] <- Pji
  return(0.5 * (P + t(P)) / sum(P))
```

tSNE: high-dim graph implementation – Adaptive variance

```
Calculate entropy of i-th neighbors
H <- -1 * Pji %*% log(Pji, 2)
If H is less than the log-perplexity,
increase sigma, otherwise reduce it
if (H < log(perplexity, 2)){
```

```
function(X, perplexity=15)
  D <- as.matrix(dist(X))^2</pre>
  P <- matrix(0, nrow(X), nrow(X))</pre>
  svals <- rep(1, nrow(X))</pre>
  for (i in seq_along(svals))
    srange <-c(0, 100)
    tries <- 0
    for(j in seq_len(50))
      Pji <- exp(-D[i, -i] / (2 * svals[i]))
      Pji <- Pji / sum(Pji)
      H <- -1 * Pji %*% log(Pji, 2)
      if (H < log(perplexity, 2))</pre>
        srange[1] <- svals[i]</pre>
        svals[i] <- (svals[i] + srange[2]) / 2</pre>
      } else {
        srange[2] <- svals[i]</pre>
        svals[i] <- (svals[i] + srange[1]) / 2
    P[i, -i] <- Pji
  return(0.5 * (P + t(P)) / sum(P))
```

tSNE: optimization

In dimension D the edges are fixed

In dimension d<<D points must be arranged so that the edges' weights optimize a cost function

tSNE: optimization

Cost function (KL divergence)

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

- The p's are <u>all fixed</u> (D-dimensional space)
- To make C small (ideally zero), you want q's similar to p's
- Normalization helps avoiding <u>clusters of packed</u> <u>points</u>
- tSNE mostly cares about how points are <u>distributed</u>
 <u>locally</u> even though it uses a t-student distribution

tSNE: optimization

Cost function (KL divergence)

$$C = KL(P|Q) = \sum_{ij} p_{ij} \log \left(\frac{p_{ij}}{q_{ij}}\right)$$

- The p's are <u>all fixed</u> (D-dimensional space)
- To make C small (ideally zero), you want q's similar to p's
- Normalization helps avoiding <u>clusters of packed</u> <u>points</u>
- tSNE mostly cares about how points are <u>distributed</u>
 <u>locally</u> even though it uses a t-student distribution

- Optimization done with gradient descent.
- The gradient is w.r.t. the low-dimensional variables, then
- It is a vector of length *d* with each component being

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) \left(1 + \|y_i - y_j\|_2^2 \right)^{-1} \left[y_i - y_j \right]$$

The gradient of C is

$$\frac{\partial \mathcal{C}}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) \left(1 + \left\| y_i - y_j \right\|_2^2 \right)^{-1} \left[y_i - y_j \right]$$
With $d_{ij} = \left\| y_i - y_j \right\|_2^2$
helps in doing the derivative

Why? $\frac{\partial c}{\partial y_i} = \frac{\partial c}{\partial d_{ij}} \frac{\partial d_{ij}}{\partial y_i}$ With $d_{ij} = \left\| y_i - y_j \right\|_2^2$ helps in doing the derivatives. $\frac{\text{Look here.}}{}$

Or also, multiplying both sides by q_{ij} :

$$4\left(\sum_{j\neq i} p_{ij}q_{ij}Z\left(\mathbf{y}_{i}-\mathbf{y}_{j}\right)-\sum_{j\neq i} q_{ij}^{2}Z\left(\mathbf{y}_{i}-\mathbf{y}_{j}\right)\right)$$

$$Z = \sum_{k \neq l} \left(1 + ||\mathbf{y}_k - \mathbf{y}_l||^2 \right)^{-1}$$

Optimization done with gradient descent. The gradient of C is

$$4\left(\sum_{j\neq i} p_{ij}q_{ij}Z\left(\mathbf{y}_{i}-\mathbf{y}_{j}\right)-\sum_{j\neq i} q_{ij}^{2}Z\left(\mathbf{y}_{i}-\mathbf{y}_{j}\right)\right)$$

Attractive forces P: keep close points together

Repulsive forces Q: push points away from each other

- Calculate pairwise distances Q_{ij} with t-distribution
- Normalize distances
- Calculate the first part of the cost function's gradient

$$4 \cdot \sum_{j \neq i} (P_{i,j} - Q_{i,j}) \cdot (1 + ||y_i - y_j||_2^2)^{-1}$$

- Multiply by the difference (y_i-y_j). This is done all
 at once with the matrix Y and by casting the dimensions
- Apply gradient descent and zero-center the data

```
function(X, perplexity=30, k=2L, iter=1000L, rho=100) {
  Y <- matrix(rnorm(nrow(X) * k), ncol = k)
  P <- casl_tsne_p(X, perplexity)</pre>
  del <- matrix(0, nrow(Y), ncol(Y))</pre>
  for (inum in seq len(iter))
    num <- matrix(0. nrow(X). nrow(X))</pre>
    for (j in seq_len(nrow(X))) {
      for (k in seq_len(nrow(X))) {
        num[j, k] = 1 / (1 + sum((Y[j,] - Y[k,])^2))
    diag(num) <- 0
    Q <- num / sum(num)
    stiffnesses <- 4 * (P - Q) * num
    for (i in seq_len(nrow(X)))
      del[i, ] <- stiffnesses[i, ] %*% t(Y[i, ] - t(Y))</pre>
    Y \leftarrow Y - rho * del
    Y \leftarrow t(t(Y) - apply(Y, 2, mean))
```

- Effective makes good projections on non-linear manifolds
- It makes sense in the way it is formulated
- The locality of tSNE can be tuned (perplexity parameters)
- Exponential cost in the number d of tSNE dimensions
- Does not work "online": if you get a new data point, you have to redo
 ALL the calculations
- Labels informative of data points cannot be used

Those issues are solved by another graph-based technique called **UMAP**

UMAP: Method in brief

- It improves tSNE by use of topology theory
- Topological construction leads to a cost function with different attractive/repulsive forces
- Key to this is to use distances rendering the points uniform on the manifold

UMAP: Method in brief

- It improves tSNE by use of topology theory
- Topological construction leads to a cost function with different attractive/repulsive forces
- Key to this is to use distances rendering the points uniform on the manifold
- The manifold is approximated by an open cover of simplicial complexes

UMAP: Flavours

- Standard umap (both <u>python</u> and <u>R</u>) is unsupervised non-parametric
- It can be used to project labelled data, and to assign a test dataset to each class afterwards (supervised non-parametric)
- An update optimizes the cost function with a neural network and the NN weights are used as a parametric function to assign test data (supervised parametric)

Figure 1: Overview of UMAP (A \rightarrow B) and Parametric UMAP (A \rightarrow C).

UMAP: Iris data

tSNE and UMAP: more resources

- <u>UMAP for tSNE</u>: webpage of the author of the R *uwot* package, with deep and detailed explanations about how tSNE and UMAP work. Worth reading.
- A page for the python package openTSNE: Here they explain some other improvements for tSNE, like interpolation and Barnes-Hut approximation.
- <u>Barnes-Hut approximation</u>. How does the Barnes-Hut approximation work? Here you find the explanation and a clear animation you can tune to see the results of the algorithm.
- <u>Misread tSNE</u>. Some simple interactive use cases to see how parameters of tSNE change an output.
- Nice <u>theoretical paper</u> on tSNE.

Break – Questions

And

Exercise

tSNE: projection improvements - early exaggeration

Solves the crowding problem (points in general very close with the risk of breaking clusters of similar points)

How: In the factor 4(P - Q) of the gradient, multiply P by a factor (e.g. 12), and in the gradient descent divide the learning rate by the same factor. Go back to normal after a few iterations.

tSNE: projection improvements – momentum

Local optima of the gradient descent can create poor solutions. We can add a term to the descent to avoid such optima.

How: At iteration t+1 of gradient descent, add the two previous values of Y as follows

$$Y^{(t+1)} = Y^{(t)} - \rho 4(P - Q) - \alpha (Y^{(t-1)} - Y^{(t-2)})$$

 α must be small for some iterations (e.g. between 0.1 and 0.5) and close to 1 (e.g. 0.9) afterwards.

tSNE: speed improvements – early stop

You can avoid running all iterations of the gradient descent by evaluating if the relative change of KL divergence

$$|KL_{i+1} - KL_i|/|KL_i|$$

Is lower than a fixed value ϵ , for example $\epsilon = 1e - 5$:

$$|KL_{i+1} - KL_i| < \epsilon |KL_i|$$

tSNE : speed improvements – kNN and dist

Calculating distances in has quadratic cost.

- Use KNN from the package dbscan to calculate distances in the function casl_tsne_p
- Use a transformation of dist(Y) instead of the double for loop inside the casl_tsne function

```
for (inum in seq_len(iter)) {
    num <- matrix(0, nrow(X), nrow(X))
    for (j in seq_len(nrow(X))) {
        for (k in seq_len(nrow(X))) {
            num[j, k] = 1 / (1 + sum((Y[j,] - Y[k, ])^2))
        }
    }
}</pre>
```

tSNE: misc improvements – inputs

- Provide an initialization from PCA or other algorithms
- If the data has 100s/1000s of dimensions, provide as proxy input a PCA or other projection with fewer dimensions (e.g. 100)
- Remember to center/standardize your data, e.g.

```
X_{std} = apply(X, 2, function(x){(x-mean(x))/sd(x)})
```

 Clean you NaNs, Inf, ... values, transform large values (e.g. income to log(income))

tSNE: Other speed improvements (not for class)

- <u>Barnes-Hut approximation</u>: creates a grid where distances are from the average of the points in each square

 Interpolation: calculate distances on new points and combine them to extrapolate distances on your data

tSNE: benchmarking

```
MB['time (s)'] = MB['time']/1e9
```

MB

```
expr time time (s)
<fct> <dbl> <dbl>
Improved 5214781303 5.214781

CASL 63844027879 63.844028
```

A microbenchmark: 2 x 3

Questions

And

Exercise

Find exercise and code at the webpage

https://samuelesoraggi.github.io/Projection_and_clustering_tutorial/