Moviment Circular Uniforme (MCU)

Pablo Trik Marín

April 8, 2025

Contents

1	Introducció												2								
	1.1	Cinemàtic	ca																		2
	1.2	Radians																			2
2	Fór	mules																			3

Chapter 1

Introducció

1.1 Cinemàtica

El MCU estudia el moviment, i no les causes del moviment, dun objecte que orbita. És a dir, la seva posició, velocitat i aceleració a cada moment del temps.

1.2 Radians

La llargada d'una circumferència és $2\pi R$. Els radians són definits de manera en que els radians necessaris per complir tot un cercle són 2π . Per tant, el perimetre que tenen 3 radians a una circumferència de radi 4 és 3*4=12.

$$2\pi rad * R = \delta x \tag{1.1}$$

Chapter 2

Fórmules

$$x = v * t \tag{2.1}$$

$$\theta = \omega * t \tag{2.2}$$

$$a_c = \frac{v^2}{R} \tag{2.3}$$