SCRUM Domain Optimization Model Based on Entities, Relationships, Goals, Conditions, and Decision Variables

${\it Generated for TruelyMostWanted}$

August 12, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	4
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	7

1 1. Sets (Entities)

- $P := \text{set of } \mathbf{Project}$ (Entity: Project, attrs: id, name, project_start, project_end, description, budget, status, target_audience, priority).
- T := set of Team (Entity: Team, attrs: id, name, team_size, team_start, team_status, location, team_type).
- W := set of Worker (Entity: Worker, attrs: id, name, first_name, email, start_date, status, availability).
- $F := \text{set of } \mathbf{Feature}$ (Entity: Feature, attrs: id, title, description, status, **priority**, estimated_effort).
- S := set of Skill (Entity: Skill, attrs: id, label, description, level, certified, category).
- $R := \text{set of } \mathbf{Role}$ (Entity: Role, attrs: id, role_name, description, area_of_responsibility).
- $PO := \text{set of } \mathbf{ProductOwner}$ (Entity: ProductOwner, attrs: id, name, email, availability).
- $SM := \text{set of } \mathbf{ScrumMaster}$ (Entity: ScrumMaster, attrs: id, name, email, experience).
- $PB := \text{set of } \mathbf{ProductBacklog}$ (Entity: ProductBacklog, attrs: id, created_on, $\mathbf{last_updated}$, $\mathbf{number_of_entries}$, status).
- $SP := \text{set of } \mathbf{Sprint}$ (Entity: Sprint, attrs: id, $sprint_number$, $start_date$, end_date , status, $achievement_of_goal$).
- $SPP := \text{set of } \mathbf{SprintPlanning}$ (Entity: SprintPlanning, attrs: id, date, duration_(min), moderation, outcome_documentation).
- $DS := \text{set of } \mathbf{DailyScrum}$ (Entity: DailyScrum, attrs: id, date, time, duration, moderation).
- $SR := \text{set of } \mathbf{SprintReview}$ (Entity: SprintReview, attrs: id, date, duration, feed-back_documentation, $\mathbf{attendees_count}$).
- $SRE := \text{set of } \mathbf{SprintRetrospective}$ (Entity: SprintRetrospective, attrs: id, date, duration, improvement_actions, team_satisfaction, moderation).
- $SBL := \text{set of } \mathbf{SprintBacklog}$ (Entity: SprintBacklog, attrs: id, number_of_tasks, last_updated, status, $\mathbf{total_effort}$).
- $SG := \text{set of } \mathbf{SprintGoal}$ (Entity: SprintGoal, attrs: id, objective_description, achievement_status, benefit).
- $E := \text{set of } \mathbf{Epic}$ (Entity: Epic, attrs: id, title, description, $\mathbf{priority}$, status, estimated_effort).
- $US := \text{set of } \mathbf{UserStory} \text{ (Entity: } UserStory, \text{ attrs: id, title, description, acceptance_criteria, } \mathbf{priority, story_points, status)}.$
- TSK := set of Task (Entity: Task, attrs: id, title, description, status, effort, type).
- $DEV := \text{set of } \mathbf{DevelopmentSnapshot}$ (Entity: DevelopmentSnapshot, attrs: id, version_number, creation_date, $\mathbf{test_status}$, deployment_target, documentation).
- BL := set of Blocker (Entity: Blocker, attrs: id, title, description, severity, status, detected_on, resolved_on).

- $SH := \text{set of } \mathbf{Stakeholder}$ (Entity: Stakeholder, attrs: id, name, organization, role, email, area_of_interest, influence_level, relevance_to_feature).
- $VEL := \text{set of } \mathbf{Velocity} \text{ (Entity: } Velocity, \text{ attrs: id, number_of_sprints_used, avg._story_points, }$ $\max_{velocity, min_velocity, trend).}$
- $REP := \text{set of } \mathbf{ReleasePlan}$ (Entity: ReleasePlan, attrs: id, version, planned_date, included_features, status).
- $RM := \text{set of } \mathbf{Roadmap}$ (Entity: Roadmap, attrs: id, start_date, end_date, milestones, objectives, versions).
- $SCB := \text{set of } \mathbf{ScrumBoard}$ (Entity: ScrumBoard, attrs: id, board_type, columns_(todo/done...), number_of_cards, last_updated).
- $FED := \text{set of } \mathbf{Feature Documentation}$ (Entity: Feature Documentation, attrs: id, title, description, creation_date, change_log, linked_requirements, author).

Relationship-derived incidence sets

- $A^{T,P} \subseteq T \times P$ (is_assigned_to_project, R1).
- $A^{W,T} \subseteq W \times T$ (belongs_to_team, R2).
- $A^{W,S} \subseteq W \times S$ (has_skill, R3).
- $A^{W,R} \subseteq W \times R$ (takes_on_role, R4).
- $A^{PO,PB} \subseteq PO \times PB$ (manages_backlog, R5).
- $A^{T,SM} \subset T \times SM$ (is_supported_by, R6).
- $A^{PB,F} \subset PB \times F$ (contains_feature, R7).
- $A^{PB,E} \subseteq PB \times E$ (contains_epic, R8).
- $A^{E,US} \subseteq E \times US$ (contains_user_story, R9).
- $A^{US,TSK} \subseteq US \times TSK$ (consists_of_tasks, R10).
- $A^{US,SBL} \subseteq US \times SBL$ (is_in_sprint_backlog, R11).
- $A^{SBL,SP} \subseteq SBL \times SP$ (belongs_to_sprint, R12).
- $A^{SP,SG} \subset SP \times SG$ (pursues_goal, R13).
- $A^{SCB,TSK} \subset SCB \times TSK$ (contains_tasks, R14).
- $A^{FED,F} \subseteq FED \times F$ (documents_feature, R15).
- $A^{TSK,BL} \subseteq TSK \times BL$ (is_blocked_by, R16).
- $A^{SH,SR} \subset SH \times SR$ (participates_in, R17).
- $A^{SM,SRE} \subseteq SM \times SRE$ (moderates_retrospective, R18).
- $A^{VEL,T} \subset VEL \times T$ (refers_to_team, R19).
- $A^{REP,F} \subset REP \times F$ (plans_release, R20).
- $A^{REP,RM} \subseteq REP \times RM$ (is_part_of_roadmap, R21).
- $A^{SP,DEV} \subseteq SP \times DEV$ (generates_snapshot, R22).

Parameters (from entity attributes)

- $budget_p \in \mathbb{R}_{>0}, p \in P$.
- $teamSize_t \in \mathbb{Z}_{\geq 0}, t \in T$.
- $avail_w \in \mathbb{R}_{>0}, w \in W$.
- $prio_f^F \in \mathbb{Z}_{>0}, f \in F; prio_u^{US} \in \mathbb{Z}_{>0}, u \in US.$
- $spoints_u \in \mathbb{Z}_{\geq 0}, u \in US$.
- $effort_k^{attr} \in \mathbb{Z}_{\geq 0}, k \in TSK$ (task attribute if treated as parameter).
- $severity_b \in \mathbb{Z}_{>0}, b \in BL$.
- $attend_r \in \mathbb{Z}_{>0}, r \in SR$.
- $trend_v \in \mathbb{R}, v \in VEL$.
- $benefit_g \in \mathbb{R}_{\geq 0}, g \in SG$.
- $totalEff_{sbl} \in \mathbb{Z}_{>0}, sbl \in SBL.$

2 2. Indices

• $p \in P$; $t \in T$; $w \in W$; $f \in F$; $s \in S$; $r \in R$; $po \in PO$; $sm \in SM$; $pb \in PB$; $sp \in SP$; $spp \in SPP$; $ds \in DS$; $sr \in SR$; $sre \in SRE$; $sbl \in SBL$; $sg \in SG$; $e \in E$; $u \in US$; $k \in TSK$; $d \in DEV$; $b \in BL$; $sh \in SH$; $v \in VEL$; $rep \in REP$; $rm \in RM$; $scb \in SCB$; $fed \in FED$.

3 3. Goals

• G0 maximize_team_capacity (IsSum=True, GoalType=max). Logical: Prefer assignments that bring more team capacity to projects.

Mathematical:

$$\max \sum_{(t,p)\in T\times P} teamSize_t \cdot x_{t,p}$$

• G1 minimize_project_budget (IsSum=True, GoalType=min). Logical: Prefer cheaper projects among assigned ones.

Mathematical:

$$\min \sum_{(t,p)\in T\times P} budget_p \cdot x_{t,p}$$

• **G2** maximize_story_points_planned (IsSum=True, GoalType=max). Logical: Select user stories to maximize planned throughput.

Mathematical:

$$\max \quad \sum_{u \in US} spoints_u \cdot y_u$$

• G3 minimize_open_blocker_severity (IsSum=True, GoalType=min). Logical: Reduce exposure to severe blockers on assigned tasks.

Mathematical:

$$\min \quad \sum_{w \in W} \sum_{k \in TSK} \sum_{b:(k,b) \in A^{TSK,BL}} severity_b \cdot z_{k,w}$$

• G4 maximize_velocity_trend (IsSum=True, GoalType=max). Logical: Prefer teams with positive velocity trend to be assigned.

Mathematical:

$$\max \sum_{(v,t)\in A^{VEL,T}} \sum_{p\in P} trend_v \cdot x_{t,p}$$

• G5 minimize_task_effort (IsSum=True, GoalType=min). Logical: Prefer lower estimated effort when setting task estimates.

Mathematical:

$$\min \quad \sum_{k \in TSK} \widehat{effort_k}$$

• G6 maximize_feature_priority_covered (IsSum=True, GoalType=max). Logical: *Include high-priority features in release planning*.

Mathematical:

$$\max \sum_{f \in F} prio_f^F \cdot q_f$$

• **G7** minimize_cycle_time_proxy (IsSum=False, GoalType=min). Logical: *Use planned sprint duration as a cycle-time proxy*.

Mathematical:

$$\min sLen$$

• G8 maximize_team_availability (IsSum=True, GoalType=max). Logical: Allocate work to leverage available capacity.

Mathematical:

$$\max \sum_{w \in W} \sum_{k \in TSK} avail_w \cdot z_{k,w}$$

• **G9** minimize_sprint_backlog_total_effort (IsSum=True, GoalType=min). Logical: *Prefer smaller sprint backlog effort*.

Mathematical (as proxy via selected stories):

$$\min \quad \sum_{u \in US} spoints_u \cdot y_u$$

• G10 maximize_review_attendance (IsSum=True, GoalType=max). Logical: Prefer plans associated with higher Sprint Review attendance.

Mathematical (parameter-only objective for reference):

$$\max \quad \sum_{sr \in SR} attend_{sr}$$

• **G11 minimize_number_of_backlog_entries** (IsSum=True, GoalType=min). Logical: *Timebox backlog size through a planning cap*. Mathematical:

$$min cap^{PB}$$

4 4. Conditions

• C0 minimize_overallocated_workers. Logical: Assigned task effort must not exceed worker availability.

Mathematical (capacity):

$$\forall w \in W : \sum_{k \in TSK} \widehat{effort_k} \, z_{k,w} \leq avail_w$$

• C1 minimize_unachieved_sprint_goals. Logical: Select sprint goals likely to be achieved. Mathematical (benefit threshold):

$$\sum_{sg \in SG} benefit_{sg} g_{sg} \geq \beta, \quad \beta \geq 0 \text{ (planning parameter)}$$

• C2 maximize_certified_skill_coverage. Logical: Favor certified skills for critical tasks. Mathematical (coverage proxy):

$$\sum_{(w,s)\in A^{W,S}} certified_s \, \geq \, \gamma \quad \text{(planning target γ)}$$

• C3 minimize_low_experience_scrum_master_use. Logical: Discourage assignment of very low-experience Scrum Masters.

Mathematical (experience floor if assigned):

$$\forall t \in T: \ \sum_{sm \in SM} m_{sm,t} \leq 1, \qquad \sum_{sm \in SM} exp_{sm} \, m_{sm,t} \ \geq \ \underline{exp} \, \sum_{sm} m_{sm,t}$$

• C4 maximize_ready_user_stories. Logical: Only READY stories may be selected. Mathematical (readiness filter):

$$\forall u \in US: \ y_u \leq \mathbf{1}[status_u^{US} = \text{READY}]$$

• C5 minimize_blocked_tasks. Logical: Avoid assigning tasks that are currently blocked. Mathematical (blocking filter):

$$\forall k \in TSK : (\exists b : (k, b) \in A^{TSK, BL}) \Rightarrow \sum_{w \in W} z_{k, w} = 0$$

• C6 maximize_active_team_status. Logical: Only active teams can be assigned to projects. Mathematical:

$$\forall (t, p) \in T \times P : x_{t,p} \leq \mathbf{1}[team_status_t = ACTIVE]$$

• C7 minimize_past_due_release_plans. Logical: Do not plan inclusions beyond planned release date.

Mathematical:

$$\forall f \in F : q_f \leq \mathbf{1}[\text{today} \leq planned_date(rep(f))]$$

• C8 maximize_high_benefit_sprint_goals. Logical: If selecting a sprint goal, enforce minimum benefit.

Mathematical:

$$\forall sg \in SG: g_{sg} \leq \mathbf{1}[benefit_{sg} \geq \underline{b}]$$

• C9 minimize_outdated_backlog. Logical: Backlogs must be recently updated if used. Mathematical:

$$\forall pb \in PB : o_{po,pb} \leq 1 [\text{now} - last_updated_{pb} \leq \Delta], \quad \forall po \in PO$$

• C10 maximize_tested_snapshots. Logical: Only snapshots with successful tests are considered done.

Mathematical:

$$\forall (sp, d) \in A^{SP,DEV} : \mathbf{1}[test_status_d = PASSED] = 1$$

• C11 minimize_unresolved_blockers_age. Logical: Tasks with old, unresolved blockers should not be assigned.

Mathematical:

$$\forall k \in TSK: \ \left(\exists b: (k,b) \in A^{TSK,BL} \ \land \ resolved_on_b = \varnothing \ \land \ \operatorname{age}_b > \overline{a}\right) \Rightarrow \sum_{w \in W} z_{k,w} = 0$$

• Structural constraints from relationships (samples):

$$\forall t \in T: \sum_{p \in P} x_{t,p} \leq 1 \quad \text{(each team to at most one project)}$$

$$\forall k \in TSK: \sum_{w \in W} z_{k,w} \leq 1 \quad \text{(a task assigned to at most one worker)}$$

$$\sum_{u \in US} y_u \leq cap^{PB} \quad \text{(backlog cap)}$$

5 5. DecisionVariables

- **DV0** assign_team_to_project $(x_{t,p})$: binary, domain $\{0,1\}, 0 \le x_{t,p} \le 1$.
- DV1 select_user_story_for_sprint (y_u) : binary, domain $\{0,1\}$, $0 \le y_u \le 1$.
- DV2 allocate_task_to_worker $(z_{k,w})$: binary, domain $\{0,1\}, 0 \le z_{k,w} \le 1$.
- DV3 set_sprint_duration_days (sLen): integer, domain $\{7, 10, 14, 21, 28\}, 7 \le sLen \le 28$.
- DV4 choose_scrum_master_for_team $(m_{sm,t})$: binary, domain $\{0,1\}$.
- DV5 prioritize_feature_rank (r_f^{rank}) : integer rank, domain $\{1, \dots, 100\}$, $1 \le r_f^{rank} \le 100$.
- **DV6** select_epic_for_backlog (e_e^{sel}) : binary, domain $\{0,1\}$.
- DV7 plan_release_includes_feature (q_f) : binary, domain $\{0,1\}$.
- DV8 set_task_effort_estimate $(\widehat{effort_k})$: integer, domain $\{1, \dots, 100\}$, $1 \leq \widehat{effort_k} \leq 100$.
- DV9 assign_product_owner_to_backlog $(o_{po,pb})$: binary, domain $\{0,1\}$.
- DV10 choose_sprint_goal (g_{sg}) : binary, domain $\{0,1\}$.
- DV11 limit_max_backlog_entries (cap^{PB}) : integer cap, domain $\{10, \dots, 1000\}$, $10 \le cap^{PB} \le 1000$.