Planning in Partially Observable Markov Decision Process

Shvechikov Pavel

National Research University Higher School of Economics, Yandex School of Data Analysis

May 11, 2017

Overview

- POMDP framework
 - POMDP model

- 2 Approximate planning
 - Exact planning value iteration
 - Online vs offline planning
 - Online planning: POMCP

POMDP place in a model world

Markov Models		Do we have control over the state transitions?	
		NO	YES
Are the states completely observable?	YES	Markov Chain	MDP Markov Decision Process
	NO	HMM Hidden Markov Model	POMDP Partially Observable Markov Decision Process

POMDP model relations

POMDP model

Definition

Partially Observed Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \stackrel{\mathbf{\Omega}}{\Omega}, \stackrel{\mathbf{\mathcal{O}}}{\mathcal{O}} \rangle$

- Ω finite set of observations
- **3** $\mathcal{O}: \mathcal{S} \times \mathcal{A} \mapsto \triangle(\Omega)$ observation function, which gives, for each state and action, a probability distribution over Ω , i.e. $p(o \mid s_{t+1}, a_t) \quad \forall o \in \Omega$

Reasoning about state uncertainty

Belief state

Distribution over state space, i.e $\sum_{s \in \mathcal{S}} b(s) = 1$, $0 \le b(s) \le 1$

$$A = \{left, right\}, p(\overline{A} \mid do(A)) = 0.1$$

Belief updating (Bayes filter)

Good news: belief updating is rather straighforward (Bayes Rule)

$$b'(s') = p(s' \mid o', a, b) = \frac{p(o' \mid s', a) \cdot p(s' \mid a, b)}{\sum_{o} p(o' \mid s', a) \cdot p(s' \mid a, b)}$$

$$\propto p(o' \mid s', a) \cdot p(s' \mid a, b)$$

$$\propto p(o' \mid s', a) \sum_{s} p(s' \mid a, b, s) \cdot p(s \mid a, b)$$

$$\propto p(o' \mid s', a) \sum_{s} p(s' \mid a, s) \cdot b(s)$$

Bad news: belief updating can be computed exactly only for

- discrete low-demensional state-spaces
- 2 linear-Gaussian dynamics (leading to Kalman filter), i.e.

$$\bullet \ s' \sim \mathcal{N}\big(s' \,|\, \Bar{T}_s s + T_a \Bar{a}, \ \Sigma_s\big), \ o' \sim \mathcal{N}\big(o' \,|\, O_s s', \Sigma_o\big)$$

•
$$R(s,a) = s^{\top}R_s s + a^{\top}R_a a$$

Discrete Bayes filter: particle filter

Basic idea: represent $b(\cdot)$ as set of particles $b^i \in \mathcal{S}, i = 1,..,K$

Particle filter with rejection

- **1 Givens**: $b = \{b_t^i \mid i = 1, .., K\}, a, o$
- **2** Set: $b' = \{\emptyset\}$
- Repeat K times
 - Sample random state s from b
 - Repeat $(s', o') \sim G(s, a)$ until o' = o
- Return: b'

Depletion of a particle set is solved with reinvigoration:

- addition of random particles
- perturbation of some particles to nearby states

Outline

POMDP frameworlPOMDP model

- 2 Approximate planning
 - Exact planning value iteration
 - Online vs offline planning
 - Online planning: POMCP

POMDP planning

We know:

- System dynamics, i.e. $p(s_{t+1} | s_t, a)$
- Observation function, i.e. $p(o | s_{t+1}, a)$
- Reward function, i.e $\mathcal{R}(s_t, a)$

We want:

• $\max_{\pi} V_{\pi}(b_0) = \sum_{s} b_0(s) V_{\pi}(s) = \sum_{s} b_0(s) \cdot \mathbb{E}\left[\sum_{t} \gamma^t R_t \mid \pi\right]$

POMDP planning

We know:

- System dynamics, i.e. $p(s_{t+1} | s_t, a)$
- Observation function, i.e. $p(o | s_{t+1}, a)$
- Reward function, i.e $\mathcal{R}(s_t, a)$

We want:

• $\max_{\pi} V_{\pi}(b_0) = \sum_{s} b_0(s) V_{\pi}(s) = \sum_{s} b_0(s) \cdot \mathbb{E}\left[\sum_{t} \gamma^t R_t \mid \pi\right]$

Number of policies to consider is

$$|\mathcal{A}|^{\sum_{t=0}^{T-1}|\mathcal{O}|^t} = |\mathcal{A}|^{\frac{|\mathcal{O}|^T - 1}{|\mathcal{O}| - 1}}$$

$$|A| = 2$$
, $|O| = 2$, $T = 10$ yields 2^{1023} policies

1 step to go

Intro in exact planning in POMDP

$$V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} p(s' \mid s, \pi(s)) \sum_{o} p(o \mid s', \pi(s)) V_{o'(\pi)}(s')$$

$$V_{\pi}(b) = \sum_{s} V_{\pi}(s) b(s) = [V_{\pi}(s_1)..V_{\pi}(s_n)] \cdot [b(s_1)..b(s_n)]^{\top} = \boldsymbol{\alpha}_{\pi} \cdot \boldsymbol{b}^{\top}$$

POMDP exact planning: value iteration

To sum up, we know

- how to compute V(b)
- 2 that POMDP is an MDP over belief states
- value iteration algorithm for MDP

POMDP value iteration update

$$V_{t+1}(b) = \max_{a} \left[\sum_{s} b(s)R(s,a) + \gamma \sum_{b'} p(b' \mid a,b)V_{t}(b') \right]$$
$$p(b' \mid a,b) = \sum_{o'} p(b' \mid a,b,o') \sum_{s'} p(o' \mid s',a) \sum_{s} p(s' \mid s,a)b(s)$$

POMDP exact planning: value iteration

To sum up, we know

- how to compute V(b)
- 2 that POMDP is an MDP over belief states
- 3 value iteration algorithm for MDP

POMDP value iteration update

$$V_{t+1}(b) = \max_{a} \left[\sum_{s} b(s)R(s,a) + \gamma \sum_{b'} p(b' \mid a,b)V_{t}(b') \right]$$
$$p(b' \mid a,b) = \sum_{o'} p(b' \mid a,b,o') \sum_{s'} p(o' \mid s',a) \sum_{s} p(s' \mid s,a)b(s)$$

PSPACE-complete in the worst case

Online vs offline planning

Planning under partial observability consists of:

- exact planning
- offline approximate planning
- online approximate planning

Factor	Online	Offline
Plans for	current belief	all possible beliefs
Most computation	during execution	prior to execution
$ \mathcal{S} , \mathcal{A} $ size	billions and more	thousands
Execution speed	slow	fast
Recent SOTA	DESPOT, POMCP	PLEASE, SARSOP

Partially Observable Monte-Carlo Planning (POMCP)

POMCP (Silver et al., 2010) ingredients:

- Monte-Carlo tree search (MCTS)
- Upper Confidence Bound policy (UCB1)
- Particle filter

Key features:

- **1** Requires only generative model $(s', o, r) \sim G(s, a)$
- MC for both belief updates and planning
- Algorithm is anytime
- Partially observed planning at scale

MCTS + UCB1 = UCT (Upper Confidence Tree)

UCB1 for multi-armed bandit policy maximizes $\overline{X}_j + \sqrt{\frac{\log n}{n_j}}$

UCB1 applied to nodes in a tree gives UCT policy:

- If \exists untried a in s, expand s
- else greedy w.r.t. $Q^+(s,a) = Q(s,a) + c\sqrt{\frac{\log N(s)}{N(s,a)}}$

UCT + Particle filter = PO-UCT

Nodes in a tree are histories: i.e. $h = a_1 o_1 a_2 o_2 \dots a_n o_n$

POMCP

Algorithm 1 Partially Observable Monte-Carlo Planning

```
procedure Search(h)
   repeat
       if h = empty then
           s \sim T
       else
           s \sim B(h)
       end if
       SIMULATE(s, h, 0)
   until Timeout()
   return argmax V(hb)
end procedure
procedure Rollout(s, h, depth)
   if \gamma^{depth} < \epsilon then
       return 0
   end if
   a \sim \pi_{rollout}(h,\cdot)
   (s', o, r) \sim \mathcal{G}(s, a)
   return r + \gamma.ROLLOUT(s', hao, depth+1)
end procedure
```

```
procedure Simulate(s, h, depth)
     if \gamma^{depth} < \epsilon then
          return 0
    end if
    if h \notin T then
          for all a \in \mathcal{A} do
              T(ha) \leftarrow (N_{init}(ha), V_{init}(ha), \emptyset)
          end for
          return Rollout(s, h, depth)
    end if
    a \leftarrow \underset{\cdot}{\operatorname{argmax}} V(hb) + c\sqrt{\frac{\log N(h)}{N(hh)}}
     (s', o, r) \sim \mathcal{G}(s, a)
     R \leftarrow r + \gamma.SIMULATE(s', hao, depth + 1)
    B(h) \leftarrow B(h) \cup \{s\}
     N(h) \leftarrow N(h) + 1
    N(ha) \leftarrow N(ha) + 1
     V(ha) \leftarrow V(ha) + \frac{R - V(ha)}{N(ha)}
     return R
end procedure
```

Thank you!

References I

Silver, David et al. (2010). "Monte-Carlo planning in large POMDPs". In: *Advances in neural information processing systems*, pp. 2164–2172.