Antianginal agents & Ca²⁺ antagonists

Attila Megyeri 24.09.2020

Myocardial ischemia

- imbalance: supply < demand (O₂)
 - tissue hypoxia $\rightarrow \uparrow$ metabolites \rightarrow pain
 - angina pectoris (angere = to strangle, pectus = chest)
 - but also: "silent" ischemia
- types of angina
 - effort (classic, exercise induced)
 - variant (vasospastic, Prinzmetal localized vasospasm)
 - unstable (partially occlusive thrombus formation)

background: atherosclerosis / coronary artery disease

Myocardial ischemia

- possibilities for correction
 - ↓ demand
 - ↓ cardiac work
 - change metabolism (less O₂ per ATP)
 - − ↑ supply
 - coronary dilation

Demand

(determinants of myocardial oxygen consumption)

- heart rate
- contractility
- wall stress ← arterial pressure (systolic), peripheral venous tone (diastolic)
 - intraventricular pressure
 - ventricular radius (volume)
 - wall thickness

Supply

(determinants of coronary blood flow & myocardial oxygen supply)

- coronary vascular resistance (inverse correlation)
 - determinants of coronary resistance
 - metabolic products
 - autonomic activity
 - drugs
 - endothelial damage
 - damaged maybe cannot dilate (see also "coronary steal")
- perfusion pressure (aortic diastolic pressure)
- duration of diastole

Coronary steal

no steal control steal

- nitrates are useful in angina
 - but they act not only on the coronaries
- dipyridamole is not useful in angina
 - maybe used as a diagnostic stress test

Role of drug therapy in angina

- many patients are not candidates for
 - revascularization by PCI (percutaneous coronary intervention)
 - coronary artery bypass graft surgery (CABG)
- substantial fraction do not achieve complete revascularization after PCI or CABG
- then: drug therapy
 - conventional antianginal drugs
 - newer antianginal drugs (mostly for refractory angina)

Antianginal drug groups

- organic nitrates (e.g. nitroglycerin)
 - primarily for acute treatment but also for prophylaxis
- calcium channel blockers (e.g. nifedipine)
 - for prophylaxis
 - dihydropyridines and non-dihydropyridines
- β blockers
 - for prophylaxis
- newer drugs
 - ranolazine ic. Ca $\downarrow \rightarrow \downarrow$ contractility
 - trimetazidine more effective use of O₂
 - ivabradine \downarrow heart rate

primarily: \downarrow O₂ demand: \downarrow heart rate / myocardial contractility / ventricular wall stress additionally: \uparrow O₂ supply: coronary dilation (major in variant angina)

Organic nitrates

- nitroglycerin = glyceryl trinitrate (GTN)
 - prototype
 - volatile, adsorption to plastic spray
- amyl nitrite
 - volatile, inhaled, obsolete
- isosorbide dinitrate (ISDN)
 - slower absorption than nitroglycerin, similar metabolism
- isosorbide-5-mononitrate (ISMN)
 - good oral bioavailability, slow onset, no acute use
- pentaerythritol tetranitrate
 - long duration of action
- nicorandil
 - combined: NO release and K⁺ channel opening
- molsidomine
 - prodrug, not for acute therapy
 - spontaneous NO release / less tolerance ?
- nitroprusside
 - parenteral, hypertensive crisis (not angina), spontaneous NO release
 - venous AND arteriolar dilator, light sensitive, cianide poisoning, short duration

Nitroglycerin (glyceryl trinitrate)

Mechanism of action of nitrates

- NO release → guanylyl cyclase ↑ → cGMP ↑ → PKG ↑ →

 ↓ MLC phosphorylation → smooth muscle relaxation
 - enzymatic
 - GTN: mitochondrial aldehyde dehydrogenase (ALDH2) + others?
 - "direct" (non-enzymatic)
 - e.g. molsidomine
- preferentially venodilation (overdosing dangerous)
 - + epicardial coronaries + atherosclerotic stenosis + collateral vessels (no "coronary steal")
- other smooth muscles
 - bronchi, GI, genitourinary clinical value ?
- inhibition of thrombocyte aggregation (modest)

Pharmacokinetics of nitrates

- nitroglycerine (GTN)
 - for acute use:
 - sublingual tablet, spray
 - avoids first pass effect
 - quick onset (peak ~ 4 perc)
 - short duration ($t_{1/2} \sim 1-3 \text{ min}$)
 - high dose is not possible
 - for chronic use (longer duration)
 - larger oral doses
 - transdermal patches
 - buccal slow release
- isosorbide mononitrate
 - oral F=100%
 - slow onset \rightarrow no acute use

Therapeutic indications of nitrates

- any type of angina
 - effort main: $\sqrt{\text{venous return}}$ → $\sqrt{\text{intracardial vol.}}$ / $\sqrt{\text{vend-diastolic pressure}}$ → $\sqrt{\text{venous return}}$ → $\sqrt{\text{O}_2}$ demand
 - unstable ? coronary dil / \downarrow O₂ demand / \downarrow platelet aggregation
 - Prinzmetal's variant coronary relaxation
- in combination
 - β-blockers or Ca channel blockers
- for acute treatment and also for prophylaxis
- prolonged administration ?
 - tolerance ? / mortality ?

Nitrate tolerance, adverse effects, interactions

tolerance

- mechanism?
 - neurohumoral activation, SH depletion, free radicals, inactivation of mitochondrial aldehyde reductase / guanylyl cyclase ...
- to avoid/decrease: intermittent dosing
- adverse effects dose dependent!
 - throbbing headache / flushing of face
 - orthostatic hypotension
 - reflex tachycardia
 - methemoglobinemia
 - see nitrate → nitrite in nursing newborns
 - were used in cyanide poisoning
 - — ↑ intracranial pressure (in case of overdose) contraindication
- interactions
 - sildenafil (Viagra®)
 - antihypertensive drugs

Interaction of nitrates with PDE5 inhibitors

- risk factors for erectile dysfunction ≈ coronary artery disease
- PDE5 inhibitors: sildenafil (Viagra), tadalafil (Cialis), vardenafil (Levitra)
- profound cGMP ↑ → severely reduced BP

indications of PDE5 inhibitors: **erectile dysfunction**, **pulmonary hypertension**

Ca²⁺ channel blockers

- voltage activated Ca²⁺ channels
 - several types: L, T, N, P/Q, R
 - currently used drugs are L-type Ca²⁺ channel blockers (mostly)
 - **depolarization** \rightarrow opening \rightarrow EC Ca²⁺ entry \rightarrow contraction
 - although different in smooth muscle and heart

Ca²⁺ channel blockers

tissue selectivity

- vascular smooth muscle relaxation
 - primarily dihydropyridines: nifedipine, amlodipine ...
 - predominantly arterial \rightarrow blood pressure and TPR \downarrow
 - coronaries → variant angina
 - vascular bed selectivity: e.g. nimodipine cerebral arteries (evidence?)
- heart: negative inotrop, chronotrop, dromotrop
 - cardiac myocytes, SA, AV nodal cells
 - primarily: verapamil / diltiazem
- other tissues: no / less effect (relative)
 - skeletal muscle, bronchi, neural tissue / gastroint., genitourin.

drug	vasodilation	contractility ↓	automaticity \downarrow	conduction ↓
verapamil	4	4	5	5
diltiazem	3	2	5	4
nifedipine	5	1	1	0

relative effects: 0 = no effect, 5 = prominent effect

Mechanism of action / basis of selectivity

- all bind to $\alpha 1$ but at **different sites**
- reduced Ca²⁺ influx → relax. / neg. inotropy / ↓ SA / ↓ AV
- verapamil use dependent blockade / ↓ rate of recovery
 of the slow Ca²⁺ channel in SA and AV nodes → cardiac eff.

Mechanism of action

- smooth muscle relaxation
 - vascular
 - predominantly arterial → blood pressure and TPR ↓
 - coronaries → variant angina
 - different vascular selectivity: verapamil ↔ nifedipine
 - vascular bed selectivity: e.g. nimodipine
 - bronchiolar, GI, uterine
- cardiac muscle contractility \
- SA node pacemaker rate ↓
- AV nodal conduction rate \(\psi \)

verapamil (diltiazem)

Classification

chemical

- phenylalkilamine: verapamil
- benzothiazepine: diltiazem
- dihydropyridines (DHP): nifedipine, amlodipine ...

functional

- heart active (verapamil / diltiazem) no tachycardia
- vessel active (DHP) tachycardia (baroreflex)

drug	vasodilation	contractility ↓	automaticity \downarrow	conduction ↓
verapamil	4	4	5	5
diltiazem	3	2	5	4
nifedipine	5	1	1	0

relative effects: 0 = no effect, 5 = prominent effect

Chemical structures

Pharmacokinetics

Absorption

- good oral abs. + high first pass hepatic metabolism $\rightarrow \downarrow$ oral bioavail.
- iv.: verapamil, nifedipine, nimodipine, nicardipine
- bioavail. †: grapefruit juice, cirrhosis, saturation of metabol.
- fast absorption → quick onset → high C_{max}
 - deleterious: more pronounced baroreceptor reflex activation
 - except for e.g. amlodipine, lacidipine, sustained release nifedipine

Distribution

- high plasma protein binding
- Elimination
 - variable half-lives (1.3-64 h)
 - longer half life is more desirable
 - sustained-release forms (e.g. nifedipine)
 - extensive liver metabolism
 - inactive or weakly active metabolites
 - verapamil, diltiazem: CYP3A4 / P-gp blockade → drug interactions

Duration of action of DHPs

- short
 - nifedipine*, nimodipine, nicardipine
- intermediate
 - felodipine, nisoldipine, nitrendipine, isradipine
- long
 - amlodipine, lacidipine

^{*}but see sustained release formulations

Clinical use of Ca²⁺ channel blockers

- antihypertensive
- antianginal
- antiarrhythmic (verapamil, diltiazem)
- other
 - hypertrophic cardiomyopathy
 - migraine
 - Raynaud's phenomenon
 - preterm labor
 - post subarachnoid hemorrhage (nimodipine)

Ca²⁺ channel blockers in angina

- peripheral vasodilation
 - predominantly arterial
 - blood pressure and TPR $\downarrow \rightarrow \downarrow$ afterload $\rightarrow \downarrow$ wall stress (systolic) $\rightarrow \downarrow O_2$ demand
- coronary dilation
 - important primarily in variant angina
 - most effective prophylaxis in variant angina
- other heart effects (non-dihydropyridines)
 - $-\downarrow$ contractility $/\downarrow$ frequency

Other indications of Ca²⁺ channel blockers

- supraventricular tachyarrhythmias verapamil
 - paroxysmal supraventricular tachycardia (PSVT)
 - atrial fibrillation / flutter (except +WPW)
- hypertension
 - chronic: no short acting oral dihydropyridines
 - acute: i.v. clevidipine, nicardipine, verapamil / oral nifedipine

Other indications of Ca²⁺ channel blockers

- hypertrophic cardiomyopathy
 - verapamil improved LV outflow obstruction
- migraine
 - for prophylaxis only
- Raynaud's phenomenon
 - nifedipine, felodipine, diltiazem
- preterm labor
 - not primary
- post subarachnoid hemorrhage
 - nimodipine
 - prevent cerebral vasospasm

Adverse effects

- arteries
 - headache, flushing, dizziness
 - immediate release oral nifedipine
 - peripheral edema (ankle edema)
 - increased hydrostatic pressure
- other
 - gastroesophageal reflux
 - constipation verapamil
- heart
 - worsening of ischemia / angina
 - excessive hypotension / "coronary steal" / ↑ O₂ demand
 - bradycardia, transient asystole, exacerbation of heart failure
 - iv. verapamil + SA / AV disease or β-blocker use

Specific dihydropyridines

- nifedipine
 - prototype, short acting, acute use or sustained rel.
- amlodipine
 - delayed onset, long acting
- felodipine
 - intermediate duration, even greater vascular specificity
- lacidipine
 - lipophilic, slow onset, long duration, vascular selectivity, antioxidant activity
- nimodipine
 - cerebral vessel specific
- isradipine
 - typical peripheral vasodilation, negative chronotrop but little effect on AV conduction, no rise
 in heart rate
- clevidipine
 - newer, iv only, quick onset, short duration, artery specific
- nicardipine
 - oral and iv., coronary selective ?, good for cerebral vasospasms ?

β blockers in angina

- not vasodilators (with a few exceptions)
- useful effects in angina
 - $-\downarrow$ heart rate $/\downarrow$ contractility $/\downarrow$ blood pressure
 - \downarrow O_2 requirement
 - \uparrow diastolic perfusion time $\rightarrow \uparrow$ coronary perfusion
- clinical use
 - effort angina (silent!)
 - in stable angina clinical trials: β blockers > Ca blockers
 - after myocardial infarction
 - but do not use in vasospastic angina

β blockers

- undesirable effects in angina
 - ↑ end-diastolic volume / ↑ ejection time
 - might \uparrow O_2 requirement
 - to prevent: combination with nitrates

	Nitrates Alone	Beta Blockers or Calcium Channel Blockers	Combined Nitrates with Beta Blockers or Calcium Channel Blockers
Heart rate	Reflex ¹ increase	Decrease	Decrease
Arterial pressure	Decrease	Decrease	Decrease
End-diastolic volume	Decrease	Increase	None or decrease
Contractility	Reflex ¹ increase	Decrease	None
Ejection time	Decrease ¹	Increase	None

¹Baroreceptor reflex.

Note: Undesirable effects are shown in italics.

Adverse effects of \(\beta\)-receptor blockers

- bradycardia
- bronchoconstriction (in asthma)
- cardiac decompensation
 - see interaction with verapamil
- cold hands and feet
- sedation, vivid dreams, depression
- VLDL ↑, HDL/LDL ratio ↓
- hypoglycemia? IDDM
- worsening of peripheral vascular disease
- β-receptor up-regulation
 - gradual dose tapering

Ranolazine

- relatively new drug in angina (Ranexa®)
- reduces a late sodium current (I_{Na})
 - − Na-Ca exchanger Na entry \downarrow → ic. Ca \downarrow → contractility → \downarrow O₂ demand
- for chronic treatment in stable angina
 - primarily in those who are unresponsive to other
- antiarrhythmic properties
- potential PK drug interactions
 - liver metabolism (CYP3A4, CYP2D6) / P-gp
- may prolong QT interval

Trimetazidine

- a metabolic modulator
 - partially ↓ fatty acid oxidation pathway (pFOX inhibitor)
 - fatty acid oxidation requires more O₂ per ATP
 - inhibition seems to improve metabolic status
- approved in Europe (but not in US)
- no significant effects on heart rate
- Parkinson's disease risk 个 (EMA, 2012)
 - second line

Ivabradine

- a bradycardic
 - relatively selectively blocks I_f Na channel (funny current)
 - $-\downarrow$ heart rate
 - blocks hyperpolarization-activated Na ch in SA node
 - no other hemodynamic effects
- reduces the number of anginal attacks
 - not for acute treatment
- free of GI and bronchial effects

Drugs in unstable angina & acute coronary syndromes

- antiplatelet therapy
 - combination of aspirin and clopidogrel
- iv. heparin or sc. LMWH
- if PCI with stenting
 - glycoprotein IIb/IIIa inhibitors (abciximab, tirofiban, eptifibatide)
- nitroglycerin
- β-blockers
- lipid-lowering
- ACE-inhibitor