Introduction to Financial Engineering

## Assignment - 2

Group 5

Aman Vashishth (B20MT005)

### **Asset Chosen**

 Stocks chosen for the purpose of this assignment are :- HCLTech , TCS , INFOSYS , SBI , HDFC bank , ICICI bank , Hindustan unilever , Bajaj
 Finance , Adani Enterprises , Larsen & Toubro .

 Data was collected for the three months starting from 3/7/2023 to 29/9/2023. Therefore Data consists of 63 entries of closing price for each day

| Date      | Price    | Change % | Price  | Change % |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|----------|
| 7/3/2023  | 2,385.50 | NaN      | 7,333.00 | NaN      | 1,719.80 | NaN      | 1,333.70 | NaN      | 585.45 | NaN      |
| 7/4/2023  | 2,387.70 | 0.09%    | 7,860.45 | 7.19%    | 1,728.20 | 0.49%    | 1,345.15 | 0.86%    | 589.25 | 0.65%    |
| 7/5/2023  | 2,399.15 | 0.48%    | 7,838.75 | -0.28%   | 1,673.30 | -3.18%   | 1,347.30 | 0.16%    | 590.6  | 0.23%    |
| 7/6/2023  | 2,402.90 | 0.16%    | 7,766.25 | -0.92%   | 1,675.00 | 0.10%    | 1,343.90 | -0.25%   | 592.5  | 0.32%    |
| 7/7/2023  | 2,379.60 | -0.97%   | 7,622.35 | -1.85%   | 1,660.40 | -0.87%   | 1,330.20 | -1.02%   | 593.6  | 0.19%    |
| 7/10/2023 | 2,410.25 | 1.29%    | 7,533.25 | -1.17%   | 1,656.45 | -0.24%   | 1,329.15 | -0.08%   | 592.6  | -0.17%   |
| 7/11/2023 | 2,422.90 | 0.52%    | 7,444.00 | -1.18%   | 1,648.40 | -0.49%   | 1,348.60 | 1.46%    | 588.55 | -0.68%   |
| 7/12/2023 | 2,387.90 | -1.44%   | 7,431.95 | -0.16%   | 1,632.95 | -0.94%   | 1,333.30 | -1.13%   | 589.25 | 0.12%    |
| 7/13/2023 | 2,362.05 | -1.08%   | 7,474.60 | 0.57%    | 1,641.10 | 0.50%    | 1,365.10 | 2.39%    | 585.65 | -0.61%   |
| 7/14/2023 | 2,376.10 | 0.59%    | 7,482.35 | 0.10%    | 1,644.50 | 0.21%    | 1,425.95 | 4.46%    | 584.4  | -0.21%   |
| 7/17/2023 | 2,408.55 | 1.37%    | 7,510.95 | 0.38%    | 1,678.90 | 2.09%    | 1,422.95 | -0.21%   | 601.1  | 2.86%    |
| 7/18/2023 | 2,416.90 | 0.35%    | 7,420.00 | -1.21%   | 1,677.50 | -0.08%   | 1,475.20 | 3.67%    | 592.35 | -1.46%   |
| 7/19/2023 | 2,423.75 | 0.28%    | 7,584.70 | 2.22%    | 1,685.10 | 0.45%    | 1,474.95 | -0.02%   | 601.45 | 1.54%    |
| 7/20/2023 | 2,419.75 | -0.17%   | 7,596.60 | 0.16%    | 1,688.75 | 0.22%    | 1,449.50 | -1.73%   | 610.05 | 1.43%    |
| 7/21/2023 | 2,416.30 | -0.14%   | 7,581.75 | -0.20%   | 1,675.75 | -0.77%   | 1,331.60 | -8.13%   | 615.1  | 0.83%    |
| 7/24/2023 | 2,418.20 | 0.08%    | 7,581.60 | 0.00%    | 1,678.40 | 0.16%    | 1,336.60 | 0.38%    | 617.65 | 0.41%    |
| 7/25/2023 | 2,466.65 | 2.00%    | 7,606.45 | 0.33%    | 1,696.60 | 1.08%    | 1,334.60 | -0.15%   | 609.6  | -1.30%   |
| 7/26/2023 | 2,470.75 | 0.17%    | 7,433.15 | -2.28%   | 1,690.70 | -0.35%   | 1,348.85 | 1.07%    | 615.15 | 0.91%    |
| 7/27/2023 | 2,428.40 | -1.71%   | 7,284.10 | -2.01%   | 1,673.15 | -1.04%   | 1,353.15 | 0.32%    | 616.55 | 0.23%    |
| 7/28/2023 | 2,463.20 | 1.43%    | 7,381.60 | 1.34%    | 1,643.50 | -1.77%   | 1,340.50 | -0.93%   | 616.05 | -0.08%   |

### Methodology

Return for each day is calculated using:

Closing price (Previous\_day) - Closing price (Previous\_day)/ Closing price (Previous\_day)

For example :- 7/4/2023 2,387.70

7/3/2023 2,385.50

Return % = 0.09 %

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} \times 100\%$$

Where:

- $R_t$  = Daily return for day t
- $P_t$  = Price on day t
- $P_{t-1}$  = Price on the previous day

### Methodology

Expected Return is calculated:

$$ar{R} = rac{\sum R_i}{N}$$

#### Where:

- $\bar{R}$  = Mean return
- $R_i$  = Individual return
- N = Number of returns

| 1100        | Asset_1  | Asset_2  | Asset_3  | Asset_4  | Asset_5  | Asset_6  | Asset_7  | Asset_8  | Asset_9  | Asset_10 |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Mean_Return | 0.000345 | 0.001121 | -0.00187 | 0.001311 | 0.000418 | 0.000794 | 0.001287 | 0.003445 | 0.000198 | -0.00143 |

### Methodology

Portfolio Variance is calculated:

$$\sigma_p^2 = \sum_{i=1}^N \sum_{j=1}^N w_i imes w_j imes \sigma_{ij}$$

#### Where:

- $\sigma_p^2$  = Portfolio variance
- $w_i$  = Weight of asset i in the portfolio
- $w_j$  = Weight of asset j in the portfolio
- $\sigma_{ij}$  = Covariance between assets i and j
- N = Number of assets in the portfolio

### **Covariance Matrix**

|           | Return_1  | Return_2  | Return_3  | Return_4  | Return_5  | Return_6 | Return_7  | Return_8  | Return_9  | Return_10 |
|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|
| Return_1  | 0.000293  | 0.000007  | 0.000022  | 0.000002  | 0.000003  | 0.000029 | -0.000020 | -0.000019 | -0.000027 | 0.000014  |
| Return_2  | 0.000007  | 0.000215  | 0.000030  | -0.000003 | 0.000023  | 0.000006 | 0.000021  | -0.000012 | 0.000036  | 0.000014  |
| Return_3  | 0.000022  | 0.000030  | 0.000102  | 0.000028  | 0.000019  | 0.000040 | 0.000027  | 0.000026  | 0.000020  | -0.000008 |
| Return_4  | 0.000002  | -0.000003 | 0.000028  | 0.000247  | -0.000046 | 0.000115 | 0.000123  | -0.000021 | 0.000010  | 0.000066  |
| Return_5  | 0.000003  | 0.000023  | 0.000019  | -0.000046 | 0.000124  | 0.000005 | -0.000008 | 0.000031  | 0.000029  | -0.000002 |
| Return_6  | 0.000029  | 0.000006  | 0.000040  | 0.000115  | 0.000005  | 0.000171 | 0.000099  | 0.000014  | 0.000010  | 0.000031  |
| Return_7  | -0.000020 | 0.000021  | 0.000027  | 0.000123  | -0.000008 | 0.000099 | 0.000134  | 0.000011  | 0.000025  | 0.000022  |
| Return_8  | -0.000019 | -0.000012 | 0.000026  | -0.000021 | 0.000031  | 0.000014 | 0.000011  | 0.000149  | 0.000021  | -0.000009 |
| Return_9  | -0.000027 | 0.000036  | 0.000020  | 0.000010  | 0.000029  | 0.000010 | 0.000025  | 0.000021  | 0.000073  | 0.000015  |
| Return_10 | 0.000014  | 0.000014  | -0.000008 | 0.000066  | -0.000002 | 0.000031 | 0.000022  | -0.000009 | 0.000015  | 0.000085  |

### Markowitz's mean-variance optimization

It is a optimization problem where we have to minimize the risk subjected/constraint given that sum of the weights = 1

Markowitz's mean-variance optimization problem can be formulated as follows:

minimize 
$$w^T \Sigma w$$
  
subject to  $w^T \mu = \text{target return}$   
 $\sum_{i=1}^n w_i = 1$ 

### Results

Optimal weights for the problem when subjected to constraints  $OW^T = 1$ 

```
Optimal Weights:
```

```
[0.09521674 0.0439849 0.11505803 0.01426402 0.11790629 0.
```

0.07855369 0.11885617 0.17216998 0.243990191

### **Results :- Markowitz Curve**



# Results: - Weights corresponding to two different risks

```
For target_risk_1 = 0.000100

Weights = [0.09184713 0.03194988 0.12213474 0.01578118 0.1268991 0.
0.07301513 0.12982633 0.16630377 0.24224274]

For target_risk_2 = 0.000200

Weights = [9.17032927e-02 3.86595115e-02 1.25232403e-01 8.86625894e-18
1.16555372e-01 1.66182934e-12 9.64174223e-02 1.23048160e-01
1.59342009e-01 2.49041830e-01]
```