BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI AUGSD

SECOND SEMESTER 2020-2021

COURSE HANDOUT (PART-II)

Date: 10/02/2021

In addition to Part-I (General Handout for all courses appended to the Timetable) this portion gives further specific details regarding the course.

Course No. : CS F222

Course Title : Discrete Structures for Computer Science

Instructor In Charge : Dr. Jagat Sesh Challa (jagatsesh@pilani.bits-pilani.ac.in)

2. SCOPE & OBJECTIVE:

To develop logical and mathematical concepts necessary to appreciate computational systems. And study of concepts, techniques, and skills necessary to comprehend the structure of problems encountered in design and analysis of algorithms. To provide mathematical foundations for courses in computer science that rely upon the comprehension of formal abstract concepts. To study recursion and to write recursive definitions for certain sequences and collections of objects. Graphs, directed graphs, planar graphs & their relevance to circuit design & map colouring problems. Trees and their applications. Basic algebraic structures and their applications.

3. TEXT BOOK:

Mott, Kandel, & Baker: Discrete Mathematics for Computer Scientists & Mathematicians, PHI, 2e, 2002.

4. REFERENCE BOOKS:

R1. K H Rosen: Discrete Mathematics & its Applications, TMH, 7e, 2011.
R2. Douglas West: Introduction to Graph Theory, Pearson, 2e, 2001.
R3. J. A. Bondy and U. S. R. Murty: GRAPH THEORY WITH APPLICATIONS

5. COURSE PLAN:

Module	Lecture Session	Reference	Learning Outcomes	
Module 0:	LO	Lecture Slides	Course Introduction and Motivation,	
Course	Course Introduction		Importance of studying Discrete structures	
Introduction	and Importance of		in computer science	
and	Discrete Structures			
Background				
Module 1:	L1-L2	Lecture Slides	To learn various methods of writing formal	
Proof	Brief study of	R1: Ch. 1.6	proofs such as direct proof, contrapositive,	
Methods	various Proof		proof by contradiction, and proof by cases	
	Methods			

Module2:	L3	Lecture Slides	To understand what algorithms are and
Algorithms	Introduction to	R1: Ch. 3.1-3.3	how their performance is measured in
and	Algorithms and	1121 0111 012 010	terms of time complexity analysis
Complexity	complexity analysis		terms of time complexity unarysis
Module 3:	L4-L8	Lecture Slides	Mathematical Induction, Using
Induction	Mathematical	R1: Ch. 4.1-4.4	mathematical induction to prove
and	Induction, Strong	N1. CII. 4.1 4.4	theorems or statements, Strong induction
Recursion	Induction, Well		and well ordering principles, Recursive or
Recuision	Ordering Principle,		Inductive definitions of functions, sets,
	Recursive		and structures, Structural induction,
	Definitions,		proofs using structural induction, Problem
	Structural Induction,		solving using Recursion, Recursive
	Recursive Functions.		Algorithms, Recursion vs Iteration
Module 4:	L9-L11	Lecture Slides	To learn about recurrence relations and
		R1: Ch. 6.1-6.4	
Recurrence	Formulating and	K1: Cn. 6.1-6.4	how to formulate them, methods to solve
Relations	Solving Recurrence		particular types of recurrence relations,
and	Relations, Divide &		deriving theorems about divide and
Generating	Conquer Algorithms		conquer algorithms using recurrence
Functions	with recurrence		relations, learn about generating functions
	relations,		and their applications to real world
20.11.5	generating functions	Land or Clinia	examples
Module 5:	L12-L13	Lecture Slides	To understand countability of finite and
Countability	Countability of Sets,	R1: Ch. 5.2	infinite sets, finding whether a set is
of Sets &	diagonalization and		countable or not, proving uncountability
Pigeon-hole	pigeon-hole		of a set using diagonalization, pigeon-hole
principle	principle	Land or Clinia	principle and its applications
Module 6:	L14-18	Lecture Slides	Mathematical definitions of relations, n-
Relations	Properties of	R1: Ch. 7.1-7.6	ary relations, Properties: reflexive,
	relations,		symmetric, transitive, antisymmetric, and
	representing		asymmetric, Operations on Relations,
	relations,		Matrices, Diagraphs, Reflexive, Symmetric,
	closure of relations,		and Transitive closures, Warshall's
	Equivalence Classes,		Algorithm, Equivalence Relations and
	Partial Ordering,		Classes, Partial Ordering Relations, lattices,
Module 7:	Lattices	Lastina Clidas	Hasse Diagram
	L19-30	Lecture Slides	Basic Concepts, Special Graphs,
Graph	Introduction to	R1: Ch. 8.1-8.8	Elementary Theorems on Graphs, Graph
Theory	Graph Theory,		Representation: Adjacency & Incidence
	Graph Isomorphism		Matrices Problem modeling, Path and
	and Connectivity,		Cycles, Isomorphism in Graphs, Connected
	Euler and		graphs, connected components, cut-
	Hamiltonian Graphs		vertices, and cut-edges, Applications,
	Planar Graphs and		Definitions, Conditions (necessary and
	Graph Coloring,		sufficient) for existence of Euler path and
	Matching, Graph		Hamiltonian cycles Planar Graphs, Euler
	Algorithms		formula for planer graphs,
			characterization of planar graphs, Graph
			Coloring: Vertex and Edge coloring,
			Chromatic graphs chromatic number.
			Basic bounds on chromatic number. Five
			color theorem, Applications of Graph

			planarity, Applications of graph coloring, Matching and Covering in Bi-partite graph, Perfect Matching, Maximal Matching and Augmented Paths, Applications, Graph Traversal: BFS, DFS, Spanning Tree: Prim, Kruskal, Shortest Path: Dijkstra, Bellman Ford	
Module 8:	L31-L33	Lecture Slides	Introduction to trees and its real-world	
Trees	Intro to Trees, Tree	R1: Ch. 9.1-9.5	applications, tree traversal algorithms,	
	Traversals, Spanning		spanning trees, minimum spanning trees,	
	Trees		MST algorithms and their applications	
Module 9:	L34-L38	Lecture Slides	To give an introduction to number theory,	
Number	Intro to number	R1: Ch. 3.3-3.8	modular arithmetic and their applications	
Theory &	theory, modular		to various domains of computer science	
Modular	arithmetic,		including cryptography	
Arithmetic	cryptography basics			
Module 10:	L39-L42	Lecture Slides	The structure of algebra, Types of	
Algebraic	Introduction to	R1: Ch. 11.1-	algebraic systems: Semi-group, monoid,	
Structures	Algebraic Structures	11.5	group, generator of a group, Rings, Fields,	
			& Vector Spaces	

6. EVALUATION SCHEME:

Component Duration Weightage (%) Date & Time

Component	Duration	Marks and Weightage	Date & Time
Mid Sem (Closed Book)	90 mins	60M (30%)	6-Mar-21 – 2 PM
Quiz 1 (Closed Book)	45 mins	30M (15%)	24-Mar-2021 – 8 AM
Quiz 2 (Closed Book)	45 mins	30M (15%)	14-Apr-2021 – 8 AM
Comprehensive (Partly Open Book)	120 mins	80M (40%)	15-May-2021 FN

^{*}The mode of conduction and the syllabus for each evaluative component will be announced well before the date of the examination.

7. CHAMBER CONSULTATION HOUR:

Prior appointment by email.

8. MAKE-UP POLICY:

Mid Sem Test: Make-up shall be granted on genuine basis.

Quizzes: No make-up for quizzes.

Compre: Make up for compre exam will be given as per institute rules.

Prior permission from I/C is a must for makeup of any evaluation component.

9. NOTICES:

All the announcements will be made by sending broadcast or personal mails. Announcements will also be made on Nalanda.