Relacje porządkujące

- 1. Sprawdź, czy relacją r jest relacją porządku w zbiorze X. Jeśli tak wskaż elementy wyróżnione.
 - (a) $X = \mathbb{Z}$, x r y wttw, gdy $|x| \leq |y|$,
 - **(b)** $X = \mathbb{R}, x r y \text{ wttw, gdy } x^5 \geqslant y^5,$
 - (c) $X = \{\frac{1}{k} : k \in \mathbb{N} \setminus \{0\}\}, x \ r \ y \text{ wttw, gdy } x \leqslant y,$
 - (d) $X = \mathbb{R} \times \mathbb{R}$, (x_1, y_1) $r(x_2, y_2)$ wttw, gdy $x_1 \le x_2$,
 - (e) $X = \mathbb{N} \times \mathbb{N}$, (x_1, y_1) $r(x_2, y_2)$ wttw, gdy $x_1 < x_2$ lub $(x_1 = x_2 i y_1 \le y_2)$,
 - (f) $X = \mathbb{Z} \times \mathbb{Z}$, $(x_1, y_1) r (x_2, y_2)$ wttw, gdy $x_1 + y_1 \leqslant x_2 + y_2$.
- 2. Sprawdź, czy zbiór X jest (a) liniowo, (b) dobrze uporządkowany przez relację r, gdy:
 - (a) $X = \{1, 2, 3, \dots, 10\}$ oraz $r = \{(x, y) : x \le y\}$,
 - **(b)** $X = (1, 10) \text{ oraz } r = \{(x, y) : x \le y\},$
 - (c) $X = \{1, 2, 3, \dots, 10\}$ oraz $r = \{(x, y) : x | y\},\$
 - (d) $X = P(\{1, 2, 3, ..., 10\})$ oraz $r = \{(A, B) : A \subseteq B\}$.
- 3. Narysuj diagram Hassego zbioru częściowo uporządkowanego $(P(U),\subseteq)$, gdzie $U=\{1,10,11\}$. Wskaż elementy wyróżnione. Wyznacz supA i infA, gdzie $A=\{X:X\in P(\{1,10\})\}$. Czy w zbiorze $P(U)\setminus\{\emptyset,U\}$ (zbiór złożony z podzbiorów właściwych zbioru U) istnieje element najmniejszy i największy?
- 4. Niech (A, |) będzie zbiorem uporządkowanym. Wskaż elementy wyróżnione, gdy:
 - (a) $A = \{1, 2, 3, \dots, 10\},\$
 - **(b)** $A = \{2, 3, \dots, 100\},$
 - (c) $A = \{5^x : x \in \mathbb{N}\} \cup \{3, 4, 6, 9\},\$
 - (d) $A = \mathbb{N}^+$,
 - (e) $A = \mathbb{N} \setminus \{0, 1\},\$
 - (f) $A = \mathbb{Z} \setminus \{0\}.$
- Podaj, o ile to możliwe, przykład zbioru częściowo uporządkowanego w postaci diagramu Hassego, który ma:
 - (a) tylko jeden element maksymalny i nie ma elementu największego,
 - (b) ma tylko dwa elementy minimalne i nie ma elementu największego.
- 6. Niech Σ będzie pewnym alfabetem, gdzie $|\Sigma| > 0$. Dla $w_1, w_2 \in \Sigma^*$ niech $w_1 r w_2$ wttw, gdy długość $(w_1) \leq d$ ługość (w_2) . Czy r jest częściowym porządkiem w zbiorze Σ^* ? Odpowiedź uzasadnij.
- 7. Niech F będzie zbiorem wszystkich funkcji określonych na odcinku [0,1] o wartościach w \mathbb{R}^+ . Definiujemy relację r w zbiorze F taką, że f r g wttw, gdy dla każdego x należącego do dziedziny zachodzi $f(x) \leq g(x)$. Udowodnij, że r jest częściowym porządkiem w F. Wskaż elementy wyróżnione.
- 8. Niech p(n) będzie liczbą różnych dzielników pierwszych liczby naturalnej n. W zbiorze $\mathbb{N}\setminus\{0,1\}$ określamy relację r taką, że x r y wttw, gdy albo p(x) < p(y) albo p(x) = p(y) i $x \leq y$.
 - (a) Udowodnij, że zbiór $\mathbb{N}\setminus\{0,1\}$, r) jest liniowo uporządkowany. Wskaż elementy wyróżnione.
 - (b) Zbadaj, czy relacja r jest dobrym porzadkiem w zbiorze $\mathbb{N}\setminus\{0,1\}$.
- 9. Czy dla danego $X \neq \emptyset$ można określić relację r tak, by była ona relacją równoważności i jednocześnie zbiór (X, r) był cześciowo uporządkowany?
- 10. Czy każdy zbiór liniowo uporządkowany jest kratą?

11. Niech P(t), gdzie $t \in \mathbb{N}$ będzie następującym programem

```
P(t) = \{x := 1; A := \emptyset;
while \ x \leqslant t^2 \ do
if \ x \geqslant t \ then \ A := A \cup \{x\}; \ fi
x := x + 1;
od
return \ A\}.
```

Rozważmy zbiór $P = \{P(t) : t \in \mathbb{N}\}$ z relacją zawierania zbiorów \subseteq . Czy (P, \subseteq) jest częściowym porządkiem? Jeśli tak wyznacz elementy wyróżnione i sporządź diagram tego porządku.

12. Niech P(t), gdzie $t \in \mathbb{Z}$ będzie następującym programem

```
P(t) = \{k := 0; \ x := -3; \ A := \emptyset; if \ t = 0 \ OR \ t = 2 \ then \ k := 0 \ else if \ t = 1 \ OR \ t = 3 \ then \ k := -1 \ else if \ t = 4 \ OR \ t = 6 \ then \ k := -2 \ else \ k := -3 \ fi fi while \ x < 8 \ do if \ x < t + 2 \ AND \ x > k - 1 \ then \ A := A \cup \{x\}; \ x := x + 1 \ else \ x := x + 1 \ fi od return \ A\}.
```

Rozważmy zbiór $P = \{P(0), P(1), P(2), \dots, P(6)\}$ z relacją zawierania zbiorów \subseteq . Czy (A, \subseteq) jest częściowym porządkiem? Jeśli tak wyznacz elementy wyróżnione i sporządź diagram tego porządku.

- 13. Zbiór częściowo uporządkowany (X,r) nazywa się **drzewem** wtedy i tylko wtedy, gdy dla każdego x, zbiór $O_r(x) = \{y : (y,x) \in r\}$ jest dobrze uporządkowany przez relację r ograniczoną do elementów tego zbioru oraz zbiór (X,r) posiada element najmniejszy. Rozważmy zbiór Σ^* będący zbiorem wszystkich słów (łącznie ze słowem pustym) nad alfabetem $\Sigma = \{a,b\}$ oraz relację r określoną w zbiorze Σ^* taką, że $(w,w') \in r$ wtedy i tylko wtedy, gdy istnieje słowo w'' takie, że w' = ww''. Czy (Σ^*,r) jest drzewem?
- 14. Niech U będzie zbiorem wszystkich możliwych stanów gry "Kółko i krzyżyk". Powiemy, że stan gry S_i jest w relacji r ze stanem gry S_j wtedy i tylko wtedy, gdy planszę stanu S_j można otrzymać z planszy stanu S_i przez dodanie dowolnej (także zerowej) ilości symboli zarówno "kółko" jak i "krzyżyk". Sprawdź, czy relacja r jest relacją porządku w zbiorze U. Jeśli tak, to:
 - (a) ustal, czy relacja r jest relacją porządku liniowego,
 - (b) narysuj wybrany fragment diagramu Hassego relacji r,
 - (c) wyznacz elementy wyróżnione względem relacji r,
 - (d) podaj przykład 3-elementowego zbioru $A \subseteq U$ takiego, że A posiada kres górny i kres dolny w zbiorze U względem relacji r,
 - (e) podaj przykład 3-elementowego zbioru $B\subseteq U$ takiego, że B nie posiada kresu górnego w zbiorze U względem relacji r.
- 15. Niech uniwersum relacji r będzie zbiór \mathbb{N} . Powiemy, że liczba naturalna p jest w relacji r z liczbą naturalną q wtedy i tylko wtedy, gdy liczba p jest osiągalna na zmiennej i poprzez wykonanie algorytmu Alg dla argumentu q. Sprawdź, czy relacja r jest relacją porządku w zbiorze U, gdy:
 - (a) $Alg(n) = \{i := n; while \ i > 0 \ do \ if \ i \ mod \ 2 = 0 \ then \ i := i/2; else \ i := i-1; fi \ od\},$
 - **(b)** $Alg(n) = \{i := n; while i > 0 \text{ do } if \ random(\{0,1\}) = 0 \text{ then } i := i \text{ div } 2; \text{ else } i := 2i 1; fi \text{ od}\},$
 - (c) $Alg(n) = \{i := n; while i > 0 do if i mod 2 = 0 then i := i/2; else i := 2i 1; fi od\},$

- (d) $Alg(n) = \{i := n; while \ i > 0 \ do \ if \ i \ mod \ 2 = 0 \ then \ i := i/2; else \ i := 3i+1; fi \ od\}.$ Jeśli tak, to:
 - ustal, czy relacja r jest relacją porządku liniowego,
 - narysuj wybrany fragment diagramu Hassego relacji r,
 - \bullet wyznacz elementy wyróżnione względem relacji r,
 - podaj przykład k-elementowego zbioru $A \subseteq U$, gdzie $k \in \mathbb{N} \setminus \{0\}$, takiego, że A posiada kres górny i kres dolny w zbiorze U względem relacji r,
 - podaj przykład k-elementowego zbioru $B \subseteq U$, gdzie $k \in \mathbb{N} \setminus \{0,1\}$, takiego, że B nie posiada kresu górnego w zbiorze U względem relacji r.
- 16. Zbiór częściowo uporządkowany (X,r) nazywa się **drzewem rzędu** n, dla $n \in \mathbb{N}_+$, wtedy i tylko wtedy, gdy jest drzewem (zobacz zadanie 13) oraz dowolny element $x \in X$ posiada dokładnie n elementów będących jego bezpośrednimi następnikami w zbiorze X względem relacji r. Rozważmy zbiór U bedacy zbiorem wszystkich wykonań pewnego jednoargumentowego algorytmu rekurencyjnego Alg(n), dla $n \in \mathbb{N}$. Powiemy, że wykonanie algorytmu Alg(i) jest w relacji r z wykonaniem algorytmu Alg(j) wtedy i tylko wtedy, gdy wykonanie Alg(i) jest rekurencyjnie osiągalne z wykonania Alg(j). Podaj taki przykład algorytmu Alg, dla którego relacja r jest relacją porządku w zbiorze U taka, że:
 - (a) zbiór (U, r) jest drzewem rzędu 1,
 - (b) jeżeli rodzina $\{U_1, U_2\}$ jest podziałem zbioru U, to zbiory (U_1, r) , (U_2, r) są drzewami rzędu 1,
 - (c) jeżeli rodzina $\{U_1, U_2, \dots U_k\}$ jest podziałem zbioru U, to zbiór (U_i, r) jest drzewem rzędu 1, dla dowolnych $k \in \mathbb{N}_+$ i $1 \leq i \leq k$,
 - (d) zbiór (U, r) jest drzewem rzędu 2,
 - (e) zbiór (U, r) jest drzewem rzędu k, dla dowolnego $k \in \mathbb{N}_+$,
 - (f) jeżeli rodzina $\{U_1, U_2, \dots U_k\}$ jest podziałem zbioru U, to zbiór (U_i, r) jest drzewem rzędu i, dla dowolnych $k \in \mathbb{N}_+$ i $1 \leq i \leq k$.