## 杭州电子科技大学学生考试卷 ( 期中 ) 卷

| 考试课程 | 普通物理I    | 考试日期     | 201   | 19年04月30日 |    |  | 成 绩 |      |
|------|----------|----------|-------|-----------|----|--|-----|------|
| 课程号  | A0715021 | 教师号      | 04144 | 任课教师姓名    |    |  | 赵金涛 |      |
| 考生姓名 |          | 学号 (8 位) |       |           | 年级 |  | 专业  | 光电信息 |

座位号(作业号):

## 考试注意事项:

- 1、填写座位号(作业号),1一学号最后两位数字或2一学号最后两位数字。
- 2、保持卷面整洁、不可任意涂改。
- 3、须将选择题答案填写在【 】里面。

## 一选择题(每题3分,共30分)

01. 一质点在一平面上作一般曲线运动,其瞬时速度为 $\bar{v}$ ,瞬时速率v,某一段时间内的平均速度为 $\bar{v}$ ,平均速率  $\overline{v}$ ,它们之间的关系必定为:

- (A)  $\begin{cases} |\overline{v}| = v \\ |\overline{\overline{v}}| = \overline{v} \end{cases}$  (B)  $\begin{cases} |\overline{v}| \neq v \\ |\overline{\overline{v}}| = \overline{v} \end{cases}$  (C)  $\begin{cases} |\overline{v}| \neq v \\ |\overline{\overline{v}}| \neq \overline{v} \end{cases}$  (D)  $\begin{cases} |\overline{v}| = v \\ |\overline{\overline{v}}| \neq \overline{v} \end{cases}$

02. 在地面静止的坐标系内,A 船以速率  $v_1$ 沿 x 轴正方向匀速行驶,B 船以速率  $v_2$  沿 y 轴正方向匀速行驶,现在 A船上建立与地面坐标系方向相同的坐标系,那么在A船中看B船的速度为

- (A)  $v_1\vec{i} + v_2\vec{j}$ ; (B)  $-v_1\vec{i} + v_2\vec{j}$ ; (C)  $-v_1\vec{i} v_2\vec{j}$ ;
- (D)  $v_1 \vec{i} v_2 \vec{j}$ .

03. 质量为m 的小球,以水平速度v与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小 球的动量变化为:

- (A) mv:
- (B) 0;
- (C) 2mv;
- (D) -2mv.

04. 如图  $\mathbb Q$  01220 所示,光滑球面固定不动,质量为m 的质点位于顶点A,由静止开始下滑到球面上B 点时,它 的加速度的大小为:

- (A)  $a = 2g(1 \cos \theta)$ ;
- (B)  $a = g \sin \theta$ ;
- (C) a = g;
- (D)  $a = \sqrt{4g^2(1-\cos\theta)^2 + g^2\sin^2\theta}$ .



05. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在绳端挂一质量为m的重物,飞轮的角加速度为 $\alpha$ 。如果 1 以拉力2mg代替重物拉绳时,飞轮的角加速度将:

- (A) 小于 $\alpha$ ;
- (B) 大于 $\alpha$ , 小于 $2\alpha$ ;
- (C) 大于  $2\alpha$ :
- (D) 等于  $2\alpha$ 。

06. 均匀细棒04可绕通过其一端的光滑转轴在纸面内转动,棒中静止开始从水平位置自由下落摆动到竖直位置 若棒的质量变为原来的两倍,长度不变,则棒下落相应所需要的时间为:

- (A) 不变;
- (B) 变短;
- (C) 变长;
- (D) 是否变,不确定。

07. 一个人站在有光滑固定转轴的转动平台上,双臂水平地举起两哑铃,在该人把此两哑铃水平收缩到胸前的过程

- (A) 机械能守恒, 角动量守恒;
  - (B) 机械能守恒, 角动量不守恒;

中,人、哑铃与转动平台组成的系统的:

- (C) 机械能不守恒,角动量守恒;
- (D) 机械能不守恒,角动量也不守恒。

08. 在一个带有正电荷的均匀带电球面外,放置一个电偶极子,其电矩 $\bar{p}$ 的方向如图 Q 02071 所示。当释放后, 该电偶极子的运动主要是:

- (A) 沿逆时针方向旋转,直至电矩 p 沿径向指向球面而停止;
- (B) 沿顺时针方向旋转, 直至电矩 $\bar{p}$ 沿径向朝外而停止;
- (C) 沿顺时针方向旋转至电矩 $\bar{p}$ 沿径向朝外,同时沿电力线方向远离球面移动;
- (D) 沿顺时针方向旋转至电矩 $\bar{p}$ 沿径向朝外,同时逆电力线方向向着球面移动。



09. 边长为a的正立方体中心有一电量为q的点电荷,则通过该立方体任一面的电场强度通量为:

- (A)  $\frac{q}{\varepsilon_0}$ ; (B)  $\frac{q}{2\varepsilon_0}$ ; (C)  $\frac{q}{4\varepsilon_0}$ ; (D)  $\frac{q}{6\varepsilon_0}$ .

10. 半径分别为 r, 和 r, 的两个金属球, 相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的

影响下,两球表面的电荷面密度之比 $\frac{\sigma_1}{\sigma_2}$ 为:

1

- (A)  $\frac{r_1}{r_2}$ ; (B)  $\frac{r_1^2}{r_2^2}$ ; (C)  $\frac{r_2^2}{r^2}$ ; (D)  $\frac{r_2}{r}$ .

## 二 填空题 (共 20 分)

### 11. (本题 3 分)

转动齿轮上的P点做半径为R的圆周运动,路程s随时间的变化规律为 $s=v_0t+\frac{1}{2}bt^2$ ,其中 $v_0$ 和b都是正的

常量,则t时刻齿尖P的速度大小:v =

; 加速度大小: *a* =

### 12. (本题 3 分)

有一人造地球卫星,质量为m,在地球表面上空 2 倍于地球半径 R 的高度沿圆轨道运行,用m、R、引力常数 G 和地球的质量 M 表示:

1) 卫星的动能  $E_{k} =$ 

; 2) 卫星的引力势能  $E_p =$ 

### 13. (本题 3 分)

长为l,质量为m的均匀棒,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动。开始时棒静止在水平 位置,当它自由下摆时,初角加速度 $\alpha_0$ =。当下摆到竖直位置时,角速度 $\omega$ =。。

### 14. (本题 3 分)

电荷  $q_1,q_2,q_3$  和  $q_4$  在真空中的分布如图 Q\_02232 所示,其中  $q_2$  是半径为 R 的均匀带电球体, S 为闭合曲面,则通过闭合曲面 S 的电通量:  $\oint_S \bar{E} \cdot d\bar{S} =$ 



### 15. (本题 2 分)

如图 Q\_02335 所示. 试验电荷 q , 在点电荷 +Q 产生的电场中,沿半径为 R 的  $\frac{3}{4}$  圆弧轨道由 a 点移到 d 点的过程中电场力作功 A= ;从 d 点移到无穷远处的过程中,电场力作功 A= 。

#### 16. (本题 2 分)

如图  $Q_02237$  所示,在静电场中有一立方形均匀导体,边长为a。已知立方导体中心O处的电势为 $\varphi_0$ ,则立方体顶点 A 的电势 $\varphi$  =





#### 17. (本题 4 分)

有一接地的金属球壳空腔,其内半径分别为 $R_1$ 和 $R_2$ ,在空腔内充满着均匀分布的电荷,其电荷体密度为 $\rho$ ,如图 Q 02336 所示。系统的静电能为W=

# 三 计算题 (共50分)

#### 18. (本题 10 分)

倾角为 $\theta$ 的三角形木块A放在粗糙地面上,A的质量为M,与地面间的摩擦系数为 $\mu$ 、A上放一质量为m的木块B,设A、B间是光滑的。如图 Q 01019 所示。求B下滑时, $\mu$ 至少为多大方能使A相对地面不动。

Q 01019



## 19. (本题 10 分)

如图  $XCH001_138$  所示,一个质量为m的物体悬挂于一条轻绳的一端,绳的另外一端绕在一轮轴的轮轴上,轮轴的半径为r,整个装置架在光滑的固定轴承之上。当物体从静止释放后,在时间t内下降一段距离S,求整个轮轴的转动惯量。



XCH001 138

# 20. (本题 10 分)

如图  $Q_01066_01$  所示,长为 l、质量为  $m_1$  的均匀细杆可绕端点 O 固定水平光滑轴转动。杆从水平位置以初角速度  $\omega_0$  释放,摆到竖直位置时和光滑水平桌面上的小球相碰。球的质量为  $m_2$ 。设碰撞是弹性碰撞,求碰后小球获得的速度。



## 21 (本题 10 分)

将一 "无限长" 带电细线弯成如图 Q\_020075 所示的形状,设电荷均匀分布,电荷线密度为  $\lambda$  ,四分之一圆弧 AB 半径为 R ,试求圆心 O 点的场强。



### 22. (本题 10 分)

电荷以相同的面密度  $\sigma$  分布在为  $r_1$  和  $r_2$  的两个同心球面上,设无限远处的电势为零,球心处的电势为  $arphi_0$ 。求:

- 1) 电荷面密度 $\sigma$ ;
- 2) 如果使球心处的电势为零,外球面上应放掉多少电荷?