

Tidy Forecasting in R

Rob J Hyndman ISF 2018

- 1 Why change?
- 2 Example: Australian eating-out expenditure
- 3 Example: Australian prison population
- 4 Example: Half-hourly electricity demand
- 5 Equivalent methods
- 6 More information

forecast package

Pre 2003	Private functions used for consulting projects	
July/August 2003	ets and thetaf added	
August 2006	v1.0 available on CRAN	
May 2007	auto.arima added	
May 2010	arfima added	
Feb/March 2011	tslm, stlf, naive, snaive added	
August 2011	v3.0. Box Cox transformations added	
December 2011	tbats added	
April 2012	Package moved to github	
November 2012	v4.0. nnetar added	
June 2013	Major speed-up of ets	
February 2016	v7.0. Added ggplot2 graphics	
February 2017	v8.0. Added checkresiduals, tsCV and %>%	
April 2018	v8.3. Added mstl	
June 2018	pprox 100,000 package downloads per month	

fable package

A replacement for the forecast package.

Why change?

- Integrating with tidyverse packages
- Designed for forecasting many related time series
- Consistency of interface using formulas
- Distribution forecasting rather than point + interval
- Flexible transformations
- Sub-daily data and multiple seasonal data handled more easily
- Simpler interface for forecast reconciliation

- 1 Why change?
- 2 Example: Australian eating-out expenditure
- 3 Example: Australian prison population
- 4 Example: Half-hourly electricity demand
- 5 Equivalent methods
- 6 More information

fpp2::auscafe

```
Feb
                      Mar
##
          Jan
                            Apr
                                 May Jun
                                              Jul
                                                    Aug
                          0.342 0.342 0.329 0.339 0.332 0.342
##
  1982
  1983 0.369 0.348 0.366 0.351 0.360 0.347 0.364 0.376 0.378
  1984 0.389 0.377 0.398 0.383 0.414 0.382 0.393 0.409 0.395
  1985 0.426 0.392 0.416 0.420 0.446 0.407 0.449 0.466 0.455
  1986 0.504 0.453 0.480 0.497 0.531 0.485 0.526 0.538 0.537
  1987 0.572 0.525 0.544 0.558 0.565 0.542 0.599 0.584 0.593
  1988 0.605 0.586 0.625 0.612 0.630 0.635 0.659 0.656 0.660
  1989 0.733 0.661 0.713 0.694 0.710 0.722 0.741 0.746 0.767
  1990 0.858 0.764 0.840 0.805 0.809 0.799 0.815 0.828 0.812
  1991 0.862 0.771 0.813 0.797 0.821 0.801 0.829 0.854 0.882
  1992 0.938 0.862 0.936 0.932 0.929 0.869 0.891 0.875 0.914
  1993 0.918 0.838 0.870 0.862 0.852 0.828 0.882 0.867 0.905
  1994 0.985 0.902 1.015 0.939 0.941 0.935 1.013 1.018 1.041
  1995 1.076 0.982 1.099 1.068 1.083 1.045 1.094 1.110 1.126
  1996 1.213 1.128 1.180 1.169 1.146 1.109 1.138 1.146 1.105
  1997 1.180 1.060 1.148 1.141 1.170 1.113 1.165 1.173 1.154
  1998 1.186 1.050 1.141 1.107 1.144 1.088 1.162 1.145 1.149
  1999 1.244 1.124 1.245 1.236 1.271 1.208 1.219 1.234 1.261
  2000 1.297 1.207 1.325 1.252 1.282 1.275 1.318 1.329 1.432
```

```
library(tsibble)
cafe <- as_tsibble(fpp2::auscafe)
cafe</pre>
```

```
## # A tsibble: 426 x 2 [1MONTH]
##
         index value
##
         <mth> <dbl>
## 1 1982 Apr 0.342
##
    2 1982 May 0.342
## 3 1982 Jun 0.329
##
    4 1982 Jul 0.338
##
    5 1982 Aug 0.332
##
    6 1982 Sep 0.342
##
  7 1982 Oct 0.358
## 8 1982 Nov 0.375
##
  9 1982 Dec 0.433
  10 1983 Jan 0.369
  # ... with 416 more rows
```

```
library(fable)
cafe %>% ETS(value)
```

cafe %>% ETS(value) %>% summary()

```
ETS(M,A,M)
##
## Call:
    ETS(data = ., formula = value)
##
##
##
     Smoothing parameters:
       alpha = 0.6263
##
##
       beta = 0.0065
       gamma = 0.0755
##
##
     Initial states:
##
##
     l = 0.3477
##
       b = 0.0038
##
       s = 0.996 \ 0.936 \ 1.01 \ 1.15 \ 1.01 \ 1.01
##
               0.983 0.991 0.992 0.951 0.997 0.971
##
     sigma:
             0.0249
##
##
##
    AIC AICC BIC
## -319 -318 -250
```

cafe %>% ETS(value) %>% forecast()

```
cafe %>% ETS(value) %>% forecast() %>%
  summary()
```

```
# A tsibble: 24 x 4 [1MONTH]
##
        index
               mean
                             80%
                                          95%
##
        <mth> <dbl> <hilo>
                                         <hilo>
##
   1 2017 Oct 3.83 [3.71, 3.96]80 [3.65, 4.02]95
              3.81 [3.67, 3.96]80
                                   [3.59, 4.03]95
##
    2 2017 Nov
    3 2017 Dec 4.22 [4.04, 4.40]80 [3.94, 4.49]95
##
##
    4 2018 Jan
              3.83 [3.64, 4.01]80 [3.55, 4.10]95
##
    5 2018 Feb
               3.51 [3.33, 3.70]80
                                   [3.24, 3.79]95
                                   [3.54, 4.20]95
##
    6 2018 Mar
               3.87 [3.65, 4.09]80
##
   7 2018
          Apr
              3.78 [3.56, 4.01]80 [3.44, 4.13]95
              3.81 [3.57, 4.05]80 [3.44, 4.18]95
##
    8 2018
          May
##
    9 2018 Jun 3.68 [3.43, 3.92]80
                                   [3.30, 4.05]95
##
   10 2018 Jul
               3.88 [3.60, 4.15]80 [3.46, 4.29]95
  # ... with 14 more rows
```

```
cafe %>% ETS(value) %>% forecast() %>%
summary(level=90)
```

```
## # A tsibble: 24 x 3 [1MONTH]
##
        index
                             90%
              mean
##
        <mth> <dbl> <hilo>
## 1 2017 Oct 3.83 [3.68, 3.99]90
   2 2017 Nov 3.81 [3.63, 4.00]90
##
##
   3 2017 Dec 4.22 [3.99, 4.45]90
##
   4 2018 Jan 3.83 [3.59, 4.06]90
##
   5 2018 Feb 3.51 [3.28, 3.75]90
##
   6 2018 Mar 3.87 [3.59, 4.15]90
##
  7 2018 Apr 3.78 [3.49, 4.07]90
   8 2018 May 3.81 [3.50, 4.12]90
##
##
   9 2018 Jun 3.68 [3.36, 3.99]90
##
  10 2018 Jul 3.88 [3.53, 4.22]90
  # ... with 14 more rows
```

cafe %>% ETS(value) %>% forecast() %>% autoplot()


```
cafe %>% ARIMA(log(value)) %>%
  forecast() %>% summary()
```

```
## # A tsibble: 24 x 4 [1MONTH]
   index mean 80%
##
                                       95%
##
  <mth> <dbl> <hilo> <hilo>
## 1 2017 Oct 3.81 [3.70, 3.93]80 [3.64, 3.99]95
##
   2 2017 Nov 3.79 [3.65, 3.93]80 [3.58, 4.00]95
##
   3 2017 Dec 4.17 [3.99, 4.34]80 [3.91, 4.43]95
##
   4 2018 Jan 3.73 [3.55, 3.90]80 [3.46, 4.00]95
##
  5 2018 Feb 3.40 [3.22, 3.57]80 [3.14, 3.67]95
   6 2018 Mar 3.77 [3.56, 3.99]80 [3.46, 4.10]95
##
##
   7 2018 Apr 3.70 [3.48, 3.93]80 [3.37, 4.05]95
##
   8 2018 May 3.76 [3.52, 4.00]80 [3.40, 4.13]95
##
  9 2018 Jun 3.66 [3.41, 3.90]80 [3.29, 4.04]95
## 10 2018 Jul 3.88 [3.61, 4.15]80 [3.48, 4.31]95
## # ... with 14 more rows
```

- 1 Why change?
- 2 Example: Australian eating-out expenditure
- 3 Example: Australian prison population
- 4 Example: Half-hourly electricity demand
- 5 Equivalent methods
- 6 More information

fpp2::prisonLF

```
## # A tibble: 1,5<u>36 x 5</u>
##
     state gender legal t
                                    count
##
     <fct> <fct> <fct> <date>
                                    <dbl>
##
   1 ACT Female Remanded 2005-03-01
##
   2 ACT Female Remanded 2005-06-01
   3 ACT Female Remanded 2005-09-01
##
##
   4 ACT Female Remanded 2005-12-01
##
   5 ACT
           Female Remanded 2006-03-01
           Female Remanded 2006-06-01
##
   6 ACT
                                       6
##
   7 ACT
           Female Remanded 2006-09-01
##
   8 ACT
           Female Remanded 2006-12-01
   9 ACT
           Female Remanded 2007-03-01
##
           Female Remanded 2007-06-01
## 10 ACT
## # ... with 1,526 more rows
```

```
prison <- fpp2::prisonLF %>%
  mutate(qtr=yearquarter(t)) %>%
  select(-t) %>%
  as_tsibble(index=qtr, key=id(state,gender,legal))
prison
```

```
## # A tsibble: 1,536 x 5 [1QUARTER]
## # Key: state, gender, legal [32]
##
  state gender legal count qtr
##
  <fct> <fct> <fct> <fct> <dbl> <qtr>
## 1 ACT Female Remanded 2 2005 Q1
##
  2 ACT Female Remanded 4 2005 Q2
## 3 ACT Female Remanded 1 2005 Q3
  4 ACT Female Remanded 4 2005 04
##
  5 ACT Female Remanded 4 2006 01
##
   6 ACT Female Remanded
                            6 2006 02
##
##
   7 ACT
          Female Remanded
                            9 2006 Q3
```

prison %>% ETS(count)

```
# A mable: 32 models [1QUARTER]
  # Key: state, gender, legal [32]
##
   state gender legal
                           data
                                              model
##
   <fct> <fct> <fct> <fct> <list>
                                              <model>
   1 ACT Female Remanded <tsibble [48 x 2]> ETS(M,A,N)
##
##
   2 ACT Female Sentenced <tsibble [48 x 2]> ETS(A,A,N)
##
   3 ACT
           Male Remanded <tsibble [48 x 2]> ETS(M,N,N)
##
   4 ACT
           Male Sentenced <tsibble [48 x 2]> ETS(A,N,N)
   5 NSW
           Female Remanded <tsibble [48 x 2]> ETS(M,N,M)
##
   6 NSW
           Female Sentenced <tsibble [48 x 2]> ETS(M,N,M)
##
           Male Remanded <tsibble [48 x 2] > ETS(M,A,A)
##
   7 NSW
   8 NSW
           Male Sentenced <tsibble [48 x 2]> ETS(M,A,A)
##
           Female Remanded <tsibble [48 x 2]> ETS(M,N,N)
##
   9 NT
  10 NT
           Female Sentenced <tsibble [48 x 2]> ETS(M,A,A)
  # ... with 22 more rows
```

prison %>% ETS(count) %>% forecast()

```
## # A fable: 32 forecasts [1QUARTER]
## # Key: state, gender, legal [32]
##
  state gender legal data model forecast
##
  1 ACT Female Remanded <tsibble [48~ ETS(M,A,N) ~N [h=8]
##
##
   2 ACT Female Sentenced <tsibble [48~ ETS(A,A,N) ~N [h=8]
##
   3 ACT
          Male Remanded <tsibble [48~ ETS(M,N,N) ~N [h=8]
   4 ACT
##
          Male Sentenced <tsibble [48~ ETS(A,N,N) ~N [h=8]
   5 NSW
          Female Remanded <tsibble [48~ ETS(M,N,M) ~N [h=8]
##
   6 NSW
          Female Sentenced <tsibble [48~ ETS(M,N,M) ~N [h=8]
##
##
  7 NSW
          Male Remanded <tsibble [48~ ETS(M,A,A) ~N [h=8]
   8 NSW
          Male Sentenced <tsibble [48~ ETS(M,A,A) ~N [h=8]
##
   9 NT Female Remanded <tsibble [48~ ETS(M,N,N) ~N [h=8]
##
## 10 NT Female Sentenced <tsibble [48~ ETS(M,A,A) ~N [h=8]
  # ... with 22 more rows
```

Aggregation and reconciliation not yet implemented.

- 1 Why change?
- 2 Example: Australian eating-out expenditure
- 3 Example: Australian prison population
- 4 Example: Half-hourly electricity demand
- 5 Equivalent methods
- 6 More information

Example: Half-hourly electricity demand

elecdemand

```
## # A tsibble: 17,520 x 4 [30MINUTE]
      index
                          Demand Temperature WorkDay
##
      <dttm>
                           <dbl>
                                        <dbl>
                                                <dbl>
##
##
    1 2014-01-01 00:00:00
                           3.91
                                         18.2
                                                    0
##
    2 2014-01-01 00:30:00
                           3.67
                                         17.9
                                                    0
##
    3 2014-01-01 01:00:00
                           3.50
                                         17.6
                                                    0
##
    4 2014-01-01 01:30:00
                           3.34
                                         16.8
                                                    0
                            3.20
##
    5 2014-01-01 02:00:00
                                         16.3
                                                    0
##
    6 2014-01-01 02:30:00
                            3.10
                                         16.6
                                                    0
##
    7 2014-01-01 03:00:00
                            3.04
                                         16.6
                                                    0
##
    8 2014-01-01 03:30:00
                            3.01
                                         16.7
                                                    0
##
    9 2014-01-01 04:00:00
                           3.02
                                         16.2
                                                    0
##
  10 2014-01-01 04:30:00
                            3.03
                                         16.6
                                                    0
## # ... with 17,510 more rows
```

Example: Half-hourly electricity demand

```
fit2 <- ARIMA(elecdemand,</pre>
 Demand ~ Temperature + I(Temperature^2) + WorkDay)
summary(fit2)
## Series: Demand
## Regression with ARIMA(1,1,0)(2,0,2)[2] errors
##
## Coefficients:
##
    ar1 sar1 sar2 sma1 sma2 Temperature
## 0.853 -0.181 0.523 -0.066 -0.792 -0.009
## s.e. 0.005 0.015 0.012 0.012 0.011 0.002
##
       I(Temperature^2) WorkDay
                      0 0.016
##
                       0.006
## s.e.
##
## sigma^2 estimated as 0.00846: log likelihood=16949
  AIC=-33881 AICc=-33881 BIC=-33811
##
##
  Training set error measures:
##
                    ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6.51e-06 0.092 0.0634 0.00633 1.39 0.292 0.103
```

forecast(fit2, newdata=elecdemandfuture) %>% autoplot()

- 1 Why change?
- 2 Example: Australian eating-out expenditure
- 3 Example: Australian prison population
- 4 Example: Half-hourly electricity demand
- 5 Equivalent methods
- 6 More information

Equivalent methods: forecast \longrightarrow **fable**

```
\mathtt{auto.arima} \longrightarrow \mathsf{ARIMA}
                 \longrightarrow ETS
ets
tslm/lm \longrightarrow LM
thats
            \longrightarrow TBATS
nnetar \longrightarrow NNAR
stlm
                 \longrightarrow STL %>%
                        modelcomponents(
                           ETS(seasadj),SNAIVE(season))
```

- All functions have a formula interface with automatic modelling if no formula provided.
- All functions produce mable class objects.
- Some of these functions not yet implemented

Equivalent methods: forecast \longrightarrow **fable**

```
naive \longrightarrow NAIVE \%>\% forecast
snaive \longrightarrow SNAIVE %>% forecast
thetaf \longrightarrow THETA %>% forecast
stlf \longrightarrow STL %>%
              modelcomponents(
                ETS(seasadj),SNAIVE(season)) %>%
               forecast
         → HW %>% forecast
hw
holt \longrightarrow HOLT %>% forecast
ses \longrightarrow SES %>% forecast
splinef → SPLINE %>% forecast
croston → CROSTON %>% forecast
```

forecast produces fable class objects.

- 1 Why change?
- 2 Example: Australian eating-out expenditure
- 3 Example: Australian prison population
- 4 Example: Half-hourly electricity demand
- 5 Equivalent methods
- 6 More information

More information

devtools::install_github("tidyverts/tsibble")
devtools::install_github("tidyverts/fable")

Di Cook

Earo Wang

Mitchell O'Hara-Wild

Follow our progress

- tidyverts.org
- robjhyndman.com/hyndsight