

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

T.C. GEBZE TEKNİK ÜNİVERSİTESİ

Bilgisayar Mühendisliği Bölümü

Arka Plan ve Manken Görüntüsü Olan Görsellerden Elbise Resminin İzole Edilmesi

Değer MANDAL

Danışman Doç. Dr. Mehmet GÖKTÜRK

> Haziran, 2021 Gebze, KOCAELİ

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

T.C. GEBZE TEKNİK ÜNİVERSİTESİ

Bilgisayar Mühendisliği Bölümü

Arka Plan ve Manken Görüntüsü Olan Görsellerden Elbise Resminin İzole Edilmesi

Değer MANDAL

Danışman Doç. Dr. Mehmet GÖKTÜRK

> Haziran, 2021 Gebze, KOCAELİ

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Bu çalışma/200.. tarihinde aşağıdaki jüri tarafından Bilgisayar Mühendisliği Bölümü'nde Lisans Bitirme Projesi olarak kabul edilmiştir.

Bitirme Projesi Jürisi

Danışman Adı	Doç. Dr. Mehmet GÖKTÜRK	
Üniversite	Gebze Teknik Üniversitesi	
Fakülte	Mühendislik Fakültesi	

Jüri Adı	Prof. Dr. İbrahim SOĞUKPINAR	
Üniversite	Gebze Teknik Üniversitesi	
Fakülte	Mühendislik Fakültesi	

Jüri Adı	Doç. Dr. Erchan Aptoula	
Üniversite	Gebze Teknik Üniversitesi	
Fakülte	Mühendislik Fakültesi	

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

ÖNSÖZ

Bu kılavuzun ilk <u>taslaklarının hazırlanmasında emeği geçenlere, kılavuzun son halini almasında yol gösterici olan</u> Sayın Doç. Dr. Mehmet GÖKTÜRK hocama ve bu çalışmayı destekleyen Gebze Teknik Üniversitesi'ne içten teşekkürlerimi sunarım.

Ayrıca eğitimim süresince bana her konuda tam destek veren aileme ve bana hayatlarıyla örnek olan tüm hocalarıma saygı ve sevgilerimi sunarım.

Haziran, 2021

Değer MANDAL

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

İÇİNDEKİLER

ÖNSÖZ	4 -
İÇİNDEKİLER	5
ŞEKİL LİSTESİ	6
ÖZET	8
SUMMARY	8
1. GİRİŞ	9
1.1. PROJE TANIMI	
1.2. PROJENİN NEDEN VE AMAÇLARI	
2. ARA RAPOR İÇERİĞİ	11
2.1. PROJE GEREKSİNİMLERİ	11
2.2. MALZEME VE YÖNTEM	11
2.2.1. VERİ SETİNİN ELDE EDİLMESİ	11
2.2.2. Görsellerin Etiketlenmesi ve Maskeleme	13
2.2.3. U-NET Modeli	16
2.2.4. Model Eğitimi	
2.2.5. Maskeden Renklendirilmiş Görüntünün Elde Edilmesi	
2.3. BAŞARI KRİTERLERİ	23
3. PROJE GÖRSEL SONUÇLAR	24
4. TARTIŞMA VE SONUÇ	27
4.1. EĞİTİM SONUCU	27
4.2. PROJENÍN SONUCU	27
KAYNAKI.AR	28

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

ŞEKİL LİSTESİ

	miş Hali10
Şekil 2 Modanisa Veri Seti Csv Dosyas	ı İçeriği12
	n Kod İçeriği12
Şekil 4 LabelMe Örnek Etiketleme	13
Şekil 5 Deeplabs İçin Örnek Görseller -	114
Şekil 6 Deeplabs İçin Örnek Görsel Vis	ualization - 214
Şekil 7 Deeplabs İçin Örnek Görsel Rer	nkli Maskeleme – 315
Şekil 8 LabelMe_io.py Değişikliği	
Şekil 9 Deeplabs İçin Örnek Görsel Siy	ah Beyaz Maskeleme – 416
Şekil 10 Fully Convolutional Yapı	17
Şekil 11 U-NET Modeli	17
Şekil 12 Backbone Listesi	18
Şekil 13 İlk Eğitim Sonuç Grafiği	18
Şekil 14 İlk Eğitim Sonuç Görselleri	19
Şekil 15 İkinci Eğitim Sonuç Grafikleri	19
Şekil 16 İkinci Eğitim Sonuç Görselleri	- 120
	- 220
Şekil 18 Elbise Çeşitliliği	21
Şekil 19 Son Eğitim Sonuç Grafikleri	22
Şekil 20 Son Eğitim Sonuç Görselleri	22
Şekil 21 Renklendirilmiş Görüntü Goog	gle Colab Kodu23
Şekil 22 Test Sonuçları - 1	24
Şekil 23 Test Sonuçları - 2	24
Şekil 24 Test Sonuçları - 3	
Şekil 25 Streamlit Giriş Ekranı	
Şekil 26 Streamlit Hakkında Ekranı	20
Şekil 27 Streamlit Örnek Ekran	20
Sekil 28 Streamlit Örnek Görsel Sonucl	arı2

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

KISALTMA LİSTESİ

CNN: CONVOLUTIONAL NEURAL NETWORK (KONVOLÜSYONEL SİNİR AĞI)

Do	oküman No:	KL-0003
Y	ayın Tarihi:	31.05.2018
D	eğ.No:	0
D	eğ.Tarihi:	-

ÖZET

Bu proje ile birlikte, katalog çekimi görsellerinden arka planı izole ederek, kendi alışveriş sitelerine koymak isteyen website sahipleri yararlanabilecektir. Bu sayede katalog çekim fotoğraflarını rahatlıkla sitelerinde kullanabileceklerdir. Ayrıca bu izole edilmiş görüntüleri kullanarak istedikleri şekilde değişiklik yapabileceklerdir. Projenin amacı, elbisenin detaylarına da dikkat ederek en iyi şekilde görselin arka planını izole etmek ve izole edilmiş elbisenin çıktısını kullanıcıya sunmaktır.

İlk eğitimde maskelenmiş 108, ikinci eğitimde 380 son eğitim denemesinde ise 813 tane maskelenmiş görüntüyle eğitim yapılmıştır. Elde edilen en yüksek accurancy sonucu yüzde 61'dir. İnceptionV3, Vgg16, Resnet34, Resnet50 gibi backbonelar ile eğitimler çeşitlendirilmiştir. En iyi sonuç Resnet34 modelinde elde edilmiştir.

SUMMARY

With this project, website owners who want to isolate the background from the catalog shooting images and put them on their own shopping sites will be able to benefit. In this way, they will be able to easily use catalog shooting photos on their sites. They will also be able to make changes as they wish using these isolated images. The aim of the project is to isolate the background of the image in the best way by paying attention to the details of the dress and to present the output of the isolated dress to the user.

Training was conducted with 108 masked images in the first training, 380 in the second training, and 813 masked images in the last training trial. The highest accurancy result obtained is 61 percent. Trainings are diversified with backbones such as InceptionV3, Vgg16, Resnet34, Resnet50. The best results were obtained in the Resnet34 model.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

1. GİRİŞ

Katalog çekimleri bir kez yapıldığında bu resimlerin pazarlanması için bir çok ülke ve websitelerinde sergilenmesi gerekmektedir. Her website için resim üzerinde farklı değişiklikler yapılma ihtiyacı doğmaktadır. Ama elbise görüntüsü manken üzerinde olduğu için değişiklik yapabilme konusunda kısıtlamalar oluşmaktadır. Bu geliştirilen proje bu sorunu çözebilme aşamasında kullanılabilecek bir proje olmaktadır. Bu proje ile birlikte sadece elbise görüntüsü elde edilebilecektir. Bu da görsel üzerinde kolaylıkla değişiklik yapılabilmesine olanak sağlayacaktır. U-NET modeli kullanılarak girdi olarak verilen elbise görselinin maske görüntüsü elde edilmiştir. Daha sonra bu maske görüntüsü kullanarak istenilen çıktı elde edilmiştir.

1.1. PROJE TANIMI

Bu çalışmada derin öğrenme teknikleri kullanılarak bir elektronik ticaret giyim mağazası portföyündeki, manken görsellerinden sadece elbise görüntüsü elde edilmiştir. Özellikle farklı websiteler elbise görüntüsü üzerinde değişiklik yapabilmek istediğinde rahatlıkla yapabileceklerdir. Bu çalışmadaki U-NET modeli ile arka plan ve manken görüntüsü olan görsellerden elbise resminin izole edilmesi hedef alınmış ve yapılan çalışmada başarılı sonuçlara yakın sonuçlar elde edilmiştir. Projeyi betimleyen şekil Şekil 1'de betimlenmiştir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Şekil 1 Projenin Genel Olarak Betimlenmiş Hali

1.2. PROJENİN NEDEN ve AMAÇLARI

Farklı ülke ve e-ticaret sitelerinde katalog görsellerini değişiklik yapılabilir halde rahatlıkla kullanabilmek için bu proje geliştirilmiştir. Şu an proje sorgu olarak verilen elbise görselini almakta ve Modanisa'nın veri setiyle eğitilmiş olan U-NET modeli kullanılarak uygun maske oluşturmaktadır. Bu maskeyi de görüntü işleme teknikleriyle uygun arka planı izole edilmiş görüntü haline getirmektedir. İleriki aşamalarda herhangi bir e-ticaret sitesine entegre edilebilecek şekilde ilerlemek amaçlanmıştır.

Bu proje sayesinde:

- Katalog çekim görüntüleri rahatlıkla başka website ve ülke bazındaki sitelerde kullanılabilecektir.
- Elbise resimlerinin ayrıca çekimi yapılmak zorunda kalınmayacaktır. Katalog çekimindeki görseller kullanılabilecektir.
- Ülke bazında düşünüldüğünde, istenildiği gibi manken görüntüsü photoshop ile değiştirilebilecektir. Arka planda da ekleme yapılabilecektir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

2. ARA RAPOR İÇERİĞİ

"Labelme" toolu kullanılarak görseller etiketlenmiştir. Bu etiketli veriler ve "Deeplabs" modeli kullanılarak görsellerin maskeleri oluşturulmuştur. Maskeler ve "Modanisa" görselleri kullanılarak U-NET modeli eğitilmiştir. Eğitim sırasında hazır segmentasyon modeli kullanılmıştır. Birçok model denenmiştir decoder olarak, encoder kısmı için "Imagenet" kullanılmıştır. Decoder olarak ise en iyi sonuç "Resnet34" modeli ile elde edilmiştir. En son aşamada ise görüntü işleme teknikleri kullanılmıştır.

2.1. PROJE GEREKSINIMLERI

Proje Google Colab üzerinde hazırlandığı için herhangi bir donanıma ihtiyaç duyulmamıştır. Bu projede başarılması gerekenler:

- Modanisa veri setinden görsellerin indirilmesi ve uygun görsellerin veri seti olarak belirlenmesi
- Görsellerin etiketlenmesi
- Etiketli görsellerden sementik segmentasyon ile maske oluşturulması
- Maske ve görsellerin U-NET modelinde eğitilmesi
- Elde edilen maskenin görüntü işleme teknikleriyle istenilen renkli hale getirilmesi
- Sonuçların kullanıcıya daha iyi aktarılabilmesi için web arayüz tasarlanması
- Girdi olarak verilen katalog çekim görselinin, arka planı beyaz sadece elbise görüntüsü içeren bir çıktı görsel olarak sunulması

Bunların sağlanması için gerekli ihtiyaçlar:

- Modanisa veri seti
- Google Colab
- Python'ın Tensorflow, Keras gibi derin öğrenme kütüphaneleri
- Görüntü işleme için OpenCV ve Pillow kütüphaneleri

2.2. MALZEME VE YÖNTEM

2.2.1 Veri Setinin Elde Edilmesi

Modanisa

Modanisa database'ı bana csv dosyası olarak iletilmiştir. Bu csv dosyası 1,5 milyon tane veri içermekteydi. Bunların 10 bin tanesi elbise görseline aitti.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Csv Dosya İçeriği:	product_images.csv
--------------------	--------------------

productid,category,url	
1291981, Sandalet, https://fns.modanisa.com/	r/pro2/2019/10/07/ayakland-100562-pudra-suet-7-cm-topuklu-bayan-sandalet-ayakkabi-pudra-ayakland-1291981-1.JPG
1493957, Pantolon, https://fns.modanisa.com/	/r/pro2/2020/02/27/kareli-pantolon-kirmizi-koton-1493957-1493957-1.jpg
54784,Kap / Pardesü,https://fns.modanisa.c	com/r/pro2/2013/11/08/zimba-suslemeli-kapsonlu-kap13107136saxscl-54784.jpg
632965,Kap / Pardesü,https://fns.modanisa	.com/r/pro2/2018/11/09/kurk-detayli-kapcamelarmine-632965-1.jpg
358078,Tesettür Elbise,https://fns.modanisa	a.com/r/pro2/2017/10/26/kadife-elbisemorginezza-358078-358078-1.jpg
851008,Tesettür Elbise,https://fns.modanisa	a.com/r/pro2/2019/02/19/elbise-siyah-lc-waikiki-851008-1.jpg
679604,Tesettür Elbise,https://fns.modanisa	a.com/r/pro2/2018/11/23/elbise-siyah-lc-waikiki-679604-1.jpg
828624,Çorap,https://fns.modanisa.com/r/¡	oro2/2019/02/13/3lu-kisa-corap-seti-mavi-defacto-828624-1.jpg
1641013, Pantolon, https://fns.modanisa.com/	/r/pro2/2020/05/09/rahat-kesim-kapri-pantolon-turuncu-defacto-1641013-1.jpg

Şekil 2 Modanisa Veri Seti Csv Dosyası İçeriği

Elbise görsel urllerinin elde edilmesi için küçük bir python kodu yazılmıştır:

Şekil 3 Csv Dosyası İçin Yazılan Python Kod İçeriği

Görsellerin indirilmesi için Chrome Uzantısı olan, Tab Save Chrome uzantısı kullanılmıştır.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

2.2.2 Görsellerin Etiketlenmesi ve Maskeleme

LabelMe

Görselleri etiketlemek için LabelMe tool'u kullanılmıştır. Tool etiketlenecek görseli noktalar şeklinde üzerinden geçerek etiketleme yapmaktadır. Bunun sonucunda .json uzantılı dosya oluşturmaktadır. Etiketleme işlemi gerçekten uğraştırıcı ve zaman alan bir işlemdir. İlk sunum için 108, ikinci sunum için 380 ve en son sunum için 813 tane görsel etiketlenmiştir.

Sekil 4 LabelMe Örnek Etiketleme

Anlamsal Segmentasyon - Deeplabs Custom Training

LabelMe sonucu elde edilen json dosyalarını kullanarak bu görsellerin maskelerini elde etmem gerekmekteydi. Bunun için semantik(anlamsal) segmentasyon yaptım ve bu işlem için Deeplabs modelini kullandım.

DeepLabs, Anlamsal Segmentasyon için güzel bir çözümdür. Kod, TensorFlow'da mevcuttur. Anlamsal bölümleme, bir görüntüyü piksel düzeyinde anlamak ve ardından bir görüntüdeki her piksele bir etiket atamaktır, böylece aynı etikete sahip pikseller belirli özellikleri paylaşır. Örnek Görseller:

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 5 Deeplabs İçin Örnek Görseller - 1

Şekil 6 Deeplabs İçin Örnek Görsel Visualization - 2

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 7 Deeplabs İçin Örnek Görsel Renkli Maskeleme – 3

Benim elde etmek istediğim maskeler siyah beyaz olmalıydı bu yüzden LabelMe toolunun _io.py dosyasında değişiklik yaptım.

Şekil 8 LabelMe _io.py Değişikliği

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

8ya908-armine-elbise-gul-kurus u-armine-1584096-1.png	9y9735-armine-elbise-taba-arm ine-1584905-1.png	9028-bisiklet-yaka-jile-elbiseacik -camel-camel-dilvin-1684844-1.	9077-kemer-detayli-deri-elbises iyah-siyah-dilvin-1802308-1.pn	9937-gomlek-yakali-elbiselaci rtdilvinlacivert-1190297-1.
u-armine-1584096-1.png	ine-1584905-1.png	-camei-camei-diivin-1684844-1.	iyan-siyan-qiivin-1802308-1.pn g	rtdiivinlacivert-1190297-1.
-315908-1.png	-364146-1.png	-400277-1.png	-414015-1.png	-432476-1.png

Şekil 9 Deeplabs İçin Örnek Görsel Siyah Beyaz Maskeleme – 4

2.2.3 U-NET Modeli

U-NET

Geleneksel modellerde, katmanlar genellikle bir sonrakine bağlanır. Daha fazla maxpooling katmanı girişi geçerken, daha fazla özellik kaybolur. U-NET bu sorunu akıllıca çözmektedir. Encoder katmanından decoder katmanlarına doğrudan çıktılar ekler, böylece decoder katmanı daha fazla ayrıntı kullanabilir. U-NET, merdiven benzeri bir yapı oluşturmak için encoder katmanı özellik haritalarını her aşamada decoder katmanından örneklenmiş özellik haritalarına birleştirir. U-NET mimarisi, decoder katmanının her aşamada encoder katmanında toplandığında kaybolan ilgili özellikleri geri öğrenmesine olanak tanır.

U-NET encoder ve decoder olmak üzerine iki kısımdan oluşmaktadır. Bu yapı Fully Convolutional yapı oluşturmaktadır. Bunun anlamı encoder kısmında daralan daha sonra ise decoder kısmında genişleyen bir yapı oluşturmaktadır. Aşağıdaki görsel Fully Convolutional yapıyı temsil etmektedir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 10 Fully Convolutional Yapı

Encoder - Decoder

Bu yapı aşağıda görselleştirilmiştir. Contraction, encoder kısmını temsil etmektedir. Expansion ise decoder kısmı temsil etmektedir. İkisinin oluşturduğu yapı U-NET modelinin yapısıdır.

Şekil 11 U-NET Modeli

Projede encoder kısmı için "Imagenet" decoder kısım için ise birçok model denenmiştir. En iyi sonuç "Resnet34" modelinde elde edilmiştir. Aşağıdaki görsel backbone listesidir. Backbone decoder kısmında kullanılabilecek modeller olarak düşünülebilir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Backbones

Туре	Names
VGG	'vgg16' 'vgg19'
ResNet	'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152'
SE-ResNet	'seresnet18' 'seresnet34' 'seresnet50' 'seresnet101' 'seresnet152'
ResNeXt	'resnext50' 'resnext101'
SE- ResNeXt	'seresnext50' 'seresnext101'
SENet154	'senet154'
DenseNet	'densenet121' 'densenet169' 'densenet201'
Inception	'inceptionv3' 'inceptionresnetv2'
MobileNet	'mobilenet' 'mobilenetv2'
EfficientNet	'efficientnetb0' 'efficientnetb1' 'efficientnetb2' 'efficientnetb3' 'efficientnetb4' 'efficientnetb6' efficientnetb6'

Şekil 12 Backbone Listesi

2.2.4 Model Eğitimi

108 Görsel İle Olan Model Eğitimi

Elde edilen sonuçlar hiç iyi değildir. Veri setinin çok küçük olmasından dolayı grafikler zikzaklarla doludur.

Elde edilen sonuçlar:

Şekil 13 İlk Eğitim Sonuç Grafiği

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 14 İlk Eğitim Sonuç Görselleri

380 Görsel İle Olan Model Eğitimi

Bu aşamada eğitim doğruluğunu arttırabilmek için birçok parametre ile test edilmiştir.

Bu parametreler şu şekildedir:

Görsel piksel: 128, 256

Model: Resnet34, Resnet50, Vgg16, InceptionV3

Batch Size: 64, 32, 16, 8

Epoch Sayısı: 100, 85, 65, 50

En iyi sonuç 256 piksel, Resnet34, 32 ve 50 epoch sonucunda elde edilmiştir.

Şekil 15 İkinci Eğitim Sonuç Grafikleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 16 İkinci Eğitim Sonuç Görselleri - 1

Şekil 17 İkinci Eğitim Sonuç Görselleri - 2

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Accurancy değeri sadece 0.60 değerinde kaldı. Bunun asıl nedeni üzerinde çalıştığım şeyin elbise görseli olmasıdır. Elbise görselleri çok çeşitli olmaktadır ve etiketlemesi çok zordur. Accurancy değerinin az olmasının nedenleri:

- Veri setimin az olması
- Elimde yeterli verinin olmaması
- Veri setimin çok çeşitli olması

Şekil 18 Elbise Çeşitliliği

813 Görsel İle Olan Model Eğitimi

Bu aşamada da birçok parametre denemiştir. En iyi sonuç elde edilen parametreler: 256 piksel, Resnet34, 64 ve 85 epoch sonucunda elde edilmiştir. Accurancy oranı %61'dir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Şekil 19 Son Eğitim Sonuç Grafikleri

Şekil 20 Son Eğitim Sonuç Görselleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

2.2.5 Maskeden Renklendirilmiş Görüntünün Elde Edilmesi

Maske görüntüsü ve asıl manken görüntüsünü reshape ederek kaydetmem gerekti. prediction_image olarak isimlendirilen değişken maske görüntüsüdür. Original olarak isimlendirilen değişken ise asıl manken görüntüsüdür. Daha sonra, elbise görüntüsü asıl rengine arkaplan ise beyaz olacak şekilde değiştirilmiştir.

```
prediction image = prediction.reshape(224,224)
    #prediction = model(image)
    pred = np.dstack([prediction_image, prediction_image, prediction_image])
    pred = (pred * 255).astype(np.uint8)
    cv2.imwrite('/gdrive/My Drive/Segmentation/pred99.png', pred)
[ ] from PIL import Image
    original = Image.open('/gdrive/My Drive/Segmentation/test3.jpg')
    original = original.resize((224,224), Image.ANTIALIAS)
    original.save('/gdrive/My Drive/Segmentation/original99.png')
    import cv2
    mask = cv2.imread('/gdrive/My Drive/Segmentation/pred99.png')
    dress = cv2.imread('/gdrive/My Drive/Segmentation/original99.png')
    , mask = cv2.threshold(mask, thresh=180, maxval=255, type=cv2.THRESH BINARY)
    # copy where we'll assign the new values
    background = np.copy(dress)
    # boolean indexing and assignment based on mask
    background[(mask==0).all(-1)] = [255,255,255]
    fig, ax = plt.subplots(1,2,figsize=(12,6))
    ax[0].imshow(cv2.cvtColor(dress, cv2.COLOR BGR2RGB))
    ax[1].imshow(cv2.cvtColor(background, cv2.COLOR_BGR2RGB))
```

Şekil 21 Renklendirilmiş Görüntü Google Colab Kodu

2.3. BAŞARI KRİTERLERİ

- Minimum başarı oranının %60 olması
- Tek bir görsel için maksimum 30 saniye içinde çıktı görsel elde edilmesi
- 300 görsel ve üzeri model eğitimi

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

3. PROJE GÖRSEL SONUÇLAR

Projemi test ettiğimde aldığım sonuçlar aşağıdaki gibidir:

Şekil 23 Test Sonuçları - 2

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Elde edilen sonuçlar iyi değildir bunun nedeni aldığım accurancy değerinin düşük olmasıdır. Accurancy değerinin düşük olmasının nedeni de veri seti yani elbise görsellerinin çeşitliliği ve etiketlenme işlemidir.

Streamlit App Test Sonuçları

Şekil 25 Streamlit Giriş Ekranı

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Arka Plan ve Manken Görüntüsü Olan Görsellerden Elbise Resminin İzole Edilmesi

Katalog çekimleri bir kez yapıldığında bu resimlerin pazarlanması için bir çok ülke ve websitelerinde sergilenmesi gerekmektedir. Her website için resim üzerinde farklı değişiklikler yapılma ihtiyacı doğmaktadır. Ama elbise görüntüsü manken üzerinde olduğu için değişiklik yapabilme konusunda kısıtlamalar oluşmaktadır. Bu geliştirilen proje bu sorunu çözebilme aşamasında kullanılabilecek bir proje olmaktadır. Bu proje ile birlikte sadece elbise görüntüsü elde edilebilecektir. Bu da görsel üzerinde kolaylıkla değişiklik yapılabilmesine olanak sağlayacaktır. U-NET modeli kullanılarak girdi olarak verilen elbise görselinin maske görüntüsü elde edilmiştir. Daha sonra bu maske görüntüsü kullanarak istenilen çıktı elde edilmiştir.

Şekil 26 Streamlit Hakkında Ekranı

Şekil 27 Streamlit Örnek Ekran

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 28 Streamlit Örnek Görsel Sonuçları

4. TARTIŞMA VE SONUÇ

4.1. EĞİTİM SONUCU

85 epoch olana kadar geçen süre yaklaşık olarak 20 dakika olarak görülmüştür. Alınan Accuracy değeri %61'i geçememektedir. Elbise görsel sayısı iki katına (380 görselden 813 görsele) çıkarılmasına rağmen sadece %2 oranında bir artış gözlenmiştir.

4.2 PROJENÍN SONUCU

Çalışma sonucunda elde edilen yaklaşım ile website sahipleri bazı photoshop işlemleri ve projeyi kullanarak rahatlıkla elbise görsellerini websitelerinde kullanabilecektir. Halihazırdaki photoshop işlemleri daha kolay ve kullanışlı hale gelecektir. Bu proje bu işlemleri kolaylaştıracaktır. Daha sonraki aşamalar için başlangıç proje niteliğindedir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

KAYNAKLAR

[1] Xuebin Qin, Zichen Zhang, Chenyang Huang, "U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection", University of Alberta, Canada, 5 Aug 2020.

 $\label{lem:com/2020/08/how-to-dataset-annotations} [2] https://manishsinghrajput96.blogspot.com/2020/08/how-to-dataset-annotations for \%20\%20 instance.html$

[3]https://medium.com/free-code-camp/how-to-use-deeplab-in-tensorflow-for-object-segmentation-using-deep-learning-a5777290ab6b

[4]https://github.com/qubvel/segmentation_models

[5]Evan Shelhamer, Jonathan Long, and Trevor Darrell, Member, IEEE. "Fully Convolutional Networks for Semantic Segmentation." arXiv:1605.06211v1 [cs.CV] 20 May 2016.

[6]Pongsate Tangseng, Zhipeng Wu, and Kota Yamaguchi. "Looking at Outfit to Parse Clothing." arXiv:1703.01386v1 [cs.CV] 4 Mar 2017.