Mathematic Course

This document is a synthesis of the Mathematics course given by my teacher Jean-François Mallordy in MP* preparatory class in Blaise Pascal high school, Clermont-Ferrand in 2022-2023. It remains a complement to the Math Spé course and shall never be a replacement to it. Please study your course!

Paris 2024

Redaction by Émile Sauvat emile.sauvat@ens.psl.eu

Table des matières - Deuxième année

1	Suit	es et séries	4
	1.1	Norme	4
		1.1.1 Généralités	4
		1.1.2 Normes euclidiennes	5
		1.1.3 Exemple de normes	5
	1.2	Suites	5
	1.3	Normes équivalentes	7
		1.3.1 Définition	7
		1.3.2 Cas de espaces de dimension finie	7
	1.4	Notations o , \mathcal{O} , \sim	8
	1.5	Séries dans un K espace vectoriel de dimension finie	8
	1.6	Complément sur les séries numériques	9
		1.6.1 Règle de <i>Dalembert</i>	9
		1.6.2 Séries alternées	10
		1.6.3 Sommation des relations de comparaisons	10
	1.7	Produit de séries	10
	1.8	Dualité série-suite	11
_		ikaa ah aankin iki	12
2		ites et continuité	12
	2.1	Ouverts et fermés	
			12 12
		2.1.2 Ouverts	12
3	Déri	ivation et intégration	13
4	Suit	es de fonctions	14
5	Intá	grales généralisées	15
J	IIIC	grates generatisees	13
6	Inté	grales paramétrées	16
7	Séri	es entières	17
8	Alge	èbre	18
_			
9	Réd	uction des endomorphismes	19

TABLE DES MATIÈRES - DEUXIÈME ANNÉE		
10 Espaces préhilbertiens réels	20	
11 Espaces probabilisés	21	
12 Variables aléatoires discrètes	22	
13 Équations différentielles linéaires	23	
14 Calcul différentiel	24	

Suites et séries

1.1 Norme

1.1.1 Généralités

Definition 1.1.1. Une *norme* sur E est une application $N: E \to \mathbb{R}$ vérifiant :

- $\forall x \in E, \ N(x) = o_R \Leftrightarrow x = o_E$
- $-- \forall x, y \in E, \ N(x+y) \leq N(x) + N(y)$

Definition 1.1.2. Une *distance* sur X est une application $d: X^2 \to \mathbb{R}$ vérifiant :

- $\forall x, y \in E, d(x, y) = d(y, x)$

Lemme 1.1.1. Soit (E, N) un espace vectoriel normé,

Alors
$$\forall N \ge 0$$
 (i.e. $\forall x \in E, N(x) \ge 0$)

Lemme 1.1.2. Soit (E, N) un espace vectoriel normé. Si $\forall (x, y) \in E^2$, d(x, y) = N(x - y) alors d est une distance sur E.

Definition 1.1.3. Soient $a \in E$, $r \in R$ on définit

- $-- B(a, r) = \{x \in E \mid d(x, a) < r\}$
- $-- B_f(a, r) = \{x \in E \mid d(x, a) \le r\}$

Les boules ouverte et fermée de centre a et de rayon r.

Definition 1.1.4. Soit E un K espace vectoriel quelconque

- -> Une partie $C \subset E$ est dite convexe si $\forall (a, b) \in C^2$, $[a, b] \subset C$
- -> Pour $(a,b) \in E^2$ on définit le segment :

$$[a, b] = \{(1-t)a + tb \mid t \in [0, 1]\}$$

Lemme 1.1.3. Dans E un EVN quelconque toutes les boules sont convexes.

1.2. SUITES 5

1.1.2 Normes euclidiennes

Ici E est un R espace vectoriel muni d'un produit scalaire¹

$$oldsymbol{\phi}: \left(egin{array}{ccc} E^2 & \longrightarrow & {
m R} \ x,y & \longmapsto & \langle x,y
angle \end{array}
ight)$$

On a alors par théorème², $x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E. On note alors

$$\|x\|_2 = N_2(x) = \sqrt{\langle x, x \rangle}$$

NB : L'inégalité triangulaire pour ||.||, est dite inégalité de Minkovsky

Lemme 1.1.4. Si $E = \mathbb{C}^n$, $z = (z_1, \dots, z_n)$, $N(z) = \sqrt{\sum_{k=1}^n |z_k|^2}$ est une

Lemme 1.1.5. L'espace $(C^{\circ}([a,b],C)), N)$ est un EVN avec

$$N(f) = \sqrt{\int_a^b |f(x)|^2 dx}$$

1.1.3 Exemple de normes

Norme N_{∞} :

- The N_∞ :

 Dans $E=\mathbf{K}^n$ soit $x=(x_1,\ldots,x_n),\ N_\infty(x)=\max_{i\in \llbracket 1,n\rrbracket}|x_i|$ Dans $E=\mathcal{C}^\circ([a,b],\mathbf{K})$ soit $f\in E,\ N_\infty(f)=\sup_{x\in [a,b]}|f(x)|$

Norme N_1 :

- Dans $E=\mathbf{K}^n$ soit $x=(x_1,\ldots,x_n),\ N_1(x)=\sum_{i=1}^n|x_i|$ Dans $E=\mathcal{C}^{\mathrm{o}}([a,b],\mathbf{K})$ soit $f\in E,\ N_1(f)=\int_a^b|f(x)|\,\mathrm{d}x$

Norme N_2 :

- Dans ${\sf E}={\sf K}^n$ soit $x=(x_1,\ldots,x_n),\; {\sf N}_2(x)=\sqrt{\sum_{i=1}^n {x_i}^2}$
- Dans $E = C^0([a, b], K)$ soit $f \in E$, $N_2(f) = \sqrt{\int_a^b (f(x))^2 dx}$

1.2 Suites

Definition 1.2.1. Soit $u=(u_n)_{n\in \mathbb{N}}\in E^{\mathbb{N}}$ et $\ell\in E$. On dit que u converge *vers* ℓ dans (E,d) et on note $u_n \xrightarrow[n \to +\infty]{} \ell$ si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \geq n_0, d(u_n, \ell) < \varepsilon$$

^{1.} Un produit scalaire est une forme bilinéaire symétrique définie positive

^{2.} Voir cours de sup.

Lemme : Unicité de la limite. Soit (u_n) une suite de E telle que

$$u_n \xrightarrow{n} \ell_1 \in E \text{ et } u_n \xrightarrow{n} \ell_2 \in E$$

Alors $\ell_1 = \ell_2$

Démonstration. Supposons $\ell_1 \neq \ell_2$.

Soit $\varepsilon = \frac{1}{2}d(\ell_1, \ell_2) > 0$ On a alors $d(u_n, \ell_1) < \varepsilon$ et $d(u_n, \ell_2) < \varepsilon$ à partir d'un certain rang $n_0 \in \mathbb{N} -$ impossible

Lemme 1.2.1. Soit $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$, $\ell\in E$ Alors $u_n\underset{n}{\to}\ell \Leftrightarrow \|u_n-\ell\|\underset{n}{\to} o$

Lemme 1.2.2. Soient u_n , $v_n \in E^N$ et $\lambda \in K$ si on a $u_n \xrightarrow[n]{} \alpha$ et $v_n \xrightarrow[n]{} \beta$ alors $\lambda u_n + v_n \xrightarrow[n]{} \lambda \alpha + \beta$

Lemme : Inégalité triangulaire renversée. Soit $x, y \in E$ alors

$$|N(x) - N(y)| \le N(x - y)$$

 $\textit{D\'{e}monstration. } \textit{N}(x) \leq \textit{N}(x-y) + \textit{N}(y) \Rightarrow \underbrace{\textit{N}(x) - \textit{N}(y)}_{t \in \mathtt{R}} \leq \textit{N}(x-y)$

Puis on conclut avec la symétrie de la norme.

Lemme 1.2.3. Soit $u_n \in E^{\mathbb{N}}$, $\alpha \in K$ on a $u_n \underset{n}{\to} \alpha \Rightarrow ||u_n|| \underset{n}{\to} ||\alpha||$

Attention! La réciproque est fausse!

Definition 1.2.2. Une suite $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ est bornée si $\forall n$, $||u_n|| \leq M$ pour un certain $M\in\mathbb{R}$.

Lemme 1.2.4. Toute suite convergente est bornée.

Lemme 1.2.5. Si $\lambda_n \underset{n}{\rightarrow} \mu \in K$ et $u_n \underset{n}{\rightarrow} v \in E$ alors $\lambda_n u_n \underset{n}{\rightarrow} \mu v$

Definition 1.2.3. Soit $u \in E^{\mathbf{N}}$ on appelle <u>suite extraite</u> (ou sous-suite) de u toute suite $(u_{\varphi(n)})_{n \in \mathbf{N}}$ où $\varphi : \mathbf{N} \to \mathbf{N}$ est une extractrice (injection croissante)

Note. en fait $\left(v_n\right)_{n\geq 0}=\left(u_{\varphi(n)}\right)_{n\geq 0}\ \Leftrightarrow\ v=u\circ arphi$

Definition 1.2.4. $\ell \in E$ est une valeur d'adhérence de u s'il existe une suite extraite de u qui converge vers ℓ . On notera \mathcal{V}_u l'ensemble des valeurs d'adhérence de u.

Lemme 1.2.6. Soit $u \in E^{\mathbb{N}}$ si u converge vers $\ell \in K$ alors toute suite extraite de u converge vers ℓ

Démonstration. Soit $\varphi: \mathbf{N} \to \mathbf{N}$ une extractrice et $(v_n)_{n \geq 0} = (u_{\varphi(n)})_{n \geq 0}$ Soit $\varepsilon > 0$ et $n_0 \in \mathbf{N}: \forall n \geq n_0, \ d(u_n, \ell) < \varepsilon$ donc $\varphi(n) \geq n_0$ et ainsi $d\left(u_{\varphi(n)}, \ell\right) < \varepsilon$ et $v_n \underset{n}{\to} \ell$

Corollaire. Toute suite admettant au moins 2 valeurs d'adhérence est divergente

1.3 Normes équivalentes

1.3.1 Définition

Definition 1.3.1. Soit E un K espace vectoriel, N et N' deux normes sur E. N et N' sont dites équivalentes ($N \sim N'$) si $\exists \alpha, \beta \in R$ tels que $\alpha N \leq N' \leq \beta N$

On peut aussi l'écrire $N' \leq \beta N$ et $N \leq \frac{1}{\alpha} N'$

Lemme 1.3.1. Soit N, N' des normes équivalentes sur E, $u \in E^N$, $\ell \in E$ alors

- $u_n \mathop{\to}\limits_n \ell$ dans $(E,N) \Leftrightarrow u_n \mathop{\to}\limits_n \ell$ dans (E,N')
- u est bornée dans $(E,N)\Leftrightarrow u$ est bornée dans (E,N')

Lemme 1.3.2. Sur K^n , N_1 , N_2 et N_∞ sont équivalentes et plus précisément

$$N_{\infty} \leq N_1 \leq \sqrt{n} N_2 \leq n N_{\infty}$$

1.3.2 Cas de espaces de dimension finie

Rappel. Un espace vectoriel E est de dimension finie s'il existe une famille d'éléments de E libre et génératrice, c'est alors une base de E.

Théorème 1.3.3. Sur un **K**-ev de dimension finie, toutes les normes sont équivalentes.

Note. Sera démontré ultérieurement.

Corollaire. Dans un K espace vectoriel de dimension finie, la notion de convergence ne dépend pas de la norme.

Attention! C'est faux en dimension quelconque!

Lemme 1.3.4. Soit E de dimension finie, $e=(e_1,\ldots,e_p)$ une base de E, $(x_n)_{n\geq 0}\in E^{\mathbf{N}}$ et $\alpha\in E$. On écrit $\left\{\begin{array}{l} x_n=x_{1,n}e_1+\cdots+x_{p,n}e_p\\ \alpha=\alpha_1e_1+\cdots+\alpha_pe_p\end{array}\right.$ On a alors $x_n\underset{n}{\to}\alpha\ \Leftrightarrow\ \forall k\in \llbracket \mathbf{1},p\rrbracket,\ x_{k,n}\underset{n}{\to}\alpha_k$

Théorème 1.3.5. Soient $p,q,r \in \mathbb{N}^*$ et deux suites de matrices $(A_n) \in \mathcal{M}_{p,q}(\mathbb{R})$, $(B_n) \in \mathcal{M}_{q,r}(\mathbb{R})$ telles que $A_n \xrightarrow{n} A$ dans $\mathcal{M}_{p,q}(\mathbb{R})$ et $B_n \xrightarrow{n} B$ dans $\mathcal{M}_{q,r}(\mathbb{R})$. Alors $A_n B_n \xrightarrow{n} AB$

$$\begin{array}{l} \textit{D\'{e}monstration.} \; \textit{Soit} \; (i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,r \rrbracket \\ (A_nB_n)_{i,j} = \sum_{k=1}^q \underbrace{(A_n)_{i,k}}_{\rightarrow a_{i,k}} \underbrace{(B_n)_{k,j}}_{\rightarrow b_{k,j}} \xrightarrow{n} \sum_{k=1}^q a_{i,k} b_{k,j} = (AB)_{i,j} \\ \textit{ainsi} \; A_nB_n \underset{n}{\rightarrow} AB \end{array} \qquad \Box$$

1.4 Notations o, \mathcal{O} , \sim

Soient
$$\left(u_{n}\right)_{_{n\geq n_{0}}}$$
 , $\left(v_{n}\right)_{_{n\geq n_{0}}}\in \mathtt{C}^{\mathsf{N}}$

Definition 1.4.1. On dit que u_n est négligeable devant v_n quand $n \to +\infty$ noté $u_n = o(v_n)$ s'il existe $n_0 \in \mathbb{N}$ et $(\delta_n)_{n \geq n_0}$ tel que

$$egin{aligned} &igoplus &
ota n \geq n_0, \ u_n = \delta_n v_n \ igoplus &
ota n \to \infty \ n \to \infty \end{aligned}$$
 o

Definition 1.4.2. On dit que u_n est dominée par v_n quand $n \to +\infty$ noté $u_n = \mathcal{O}(v_n)$ s'il existe $n_0 \in \mathbb{N}$ et $(B_n)_{n \geq n_0}$ tel que

- $\forall n \geq n_0, \ u_n = B_n v_n$
- $(B_n)_{n>n_0}$ est bornée.

Definition 1.4.3. On dit que u_n est équivalent à v_n quand $n \to +\infty$ noté $u_n \sim v_n$ si $u_n - v_n = o(v_n)$

Note. $u_n \sim v_n \;\Leftrightarrow\; u_n = v_n + \circ (v_n)$

1.5 Séries dans un K espace vectoriel de dimension finie

- On note par abus "dim $E<\infty$
- Le cas scalaire est traité en première année

Soit $u \in E^{\mathbb{N}}$; pour $n \in \mathbb{N}$ on pose $U_n = \sum_{k=1}^n u_k$.

Sommes partielles La suite (U_n) est dite suite des *sommes partielles* associée à u.

Definition 1.5.1. On dit que la *série de terme général* u_n converge si (U_n) converge.

Dans ce cas on pose $\sum_{n=0}^{\infty}u_n=\lim_{n o +\infty}U_n\in E$

Lemme 1.5.1. $(\sum u_n \ \textit{converge}\) \ \Rightarrow \ (u_n o \mathsf{o})$

Attention! La réciproque est fausse! (ex : (H_n))

Definition 1.5.2. Lorsque $u_n \xrightarrow[n]{} o$, la série $\sum u_n$ est dite *grossièrement divergente*, noté " $\sum u_n$ DVG". On a alors logiquement ($\sum u_n$ DVG $\Rightarrow \sum u_n$ DV)

Théorème : Reste d'une série convergente. On suppose $\sum u_n$ converge et on note $S = \sum_{n=0}^{\infty} u_n$ la "limite de la somme". Pour $n \in \mathbb{N}$ on pose $R_n = \sum_{k=n+1}^{+\infty} u_k$ le "reste d'ordre n". $\forall n \in \mathbb{N}$, $S = U_n + R_n$ et $R_n \to 0$

Démonstration. Soit $n \in \mathbb{N}$ pour $m \geq n+1$, $\sum_{k=n+1}^m u_k = U_m - U_n \xrightarrow{m} S - U_n$ donc R_n existe avec $R_n = S - U_n$ d'où $S = U_n + R_n$ puis $R_n = S - U_n \to S - S = 0$

Lemme 1.5.2. Soit (u_n) , $(v_n) \in E^N$ et $\lambda \in K$. On suppose que $\sum u_n$ et $\sum v_n$ convergent alors

Definition 1.5.3. Soit $(u_n) \in E^{\mathbb{N}}$ on dit que $\sum u_n$ converge absolument si $\sum ||u_n||$ converge.

Note. Vu dim $E < \infty$, ceci ne dépend pas du choix de la norme

Théorème 1.5.3. Dans un K espace vectoriel de <u>dimension finie</u>, toute série absolument convergente est convergente " $CVA \Rightarrow CV$ "

Attention! Faux dans un EVN quelconque!

Lemme 1.5.4. Soit (E, N) un K espace vectoriel normé de dimension finie On supposons que $\sum u_n$ CVA. Alors $\left\|\sum_{n=0}^{\infty} u_n\right\| \leq \sum_{n=0}^{\infty} \|u_n\|$

1.6 Complément sur les séries numériques

Rappel. Soit $z \in \mathbb{C}$ alors $\sum z^n \ \mathsf{CV} \Rightarrow |z| < 1$

- Lorsque |z|< 1 on a $\sum_{n=0}^{\infty}z^n=rac{1}{1-z}$
- On définie $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

1.6.1 Règle de *Dalembert*

Théorème : Règle de *Dalembert*. Soit $(u_n) \in (\mathbb{C}^*)^N$ On suppose l'existence de $\ell \in \mathbb{R} \cup \{+\infty\}$ tel que $|u_{u+1}/u_n| \to \ell$

Alors: 1)
$$\ell < 1 \Rightarrow \sum u_n \ CVA$$

2) $\ell > 1 \Rightarrow \sum u_n \ DVG$

Démonstration.

1) On suppose $\ell < 1$ et on note $r_n = \left| \frac{u_{u+1}}{u_n} \right|$. On pose $\theta \in [\ell,1]$ et $\varepsilon = \theta - \ell$ On a alors

 $\exists n_0 \in \mathbf{N}: orall n_0, |r_n-\ell| < arepsilon$ soit en particulier $r_n < \ell + arepsilon = heta$ Ainsi $orall n_0, |u_{n+1}| < heta |u_n|$

$$\forall n \geq n_0, \ |u_{n+1}| < \theta |u_n| \\ \text{et } |u_n| \leq \theta^{n-n_0} |u_{n_0}| \ (\text{REC}) \ \text{ On a alors } \forall n \geq n_0, \ |u_n| \leq \underbrace{\theta^{-n_0} |u_{n_0}|}_{\text{cte}} \theta^n \ \text{or } \sum \theta^n$$

converge car $\theta \in]0,1[$

donc par théorème de comparaison $\sum |u_n|$ converge.

2) On suppose $\ell > 1$ et on fixe $\theta \in \mathbf{R}$ tel que $1 < \theta < \ell$, on a alors $\exists n_0 \in \mathbf{N} : \forall n \geq n_0, \ r_n > \theta \ (\ldots)$ on obtient $|u_n| \to +\infty$ donc $u_n \xrightarrow[n]{} \mathbf{0}$ o donc $\sum u_n$ DVG

1.6.2 Séries alternées

Definition 1.6.1. La série réelle $\sum u_n$ est dite <u>alternée</u> si $\forall n \in \mathbb{N}$, $u_n=(-1)^n\,|u_n|$ ou $\forall n\in \mathbb{N},\ u_n=(-1)^{n+1}\,|u_n|$

Théorème : Critère spécial des série alternées. Soit (u_n) une suite telle

- $--\sum u_n$ est alternée
- $oldsymbol{--} u_n o \mathsf{o}$
- $-\left(|u_n|\right)_{n>0}$ décroit

alors $\sum u_n$ converge $\$ et on a de plus, $\forall n \in \mathbf{N}$

- $-|R_n| \leq |u_{n+1}|$
- -- R_n et u_{n+1} ont le même signe
- S est compris entre U_n et U_{n+1}

1.6.3 Sommation des relations de comparaisons

Théorème 1.6.1. Soit (u_n) , $(v_n) \in \mathbb{R}^N$ et $v_n \geq 0$, $\forall n \geq n_0$. On suppose que $\sum u_n$ et $\sum v_n$ converge. Soit les restes $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $R'_n = \sum_{k=n+1}^{+\infty} v_k$ alors

$$egin{array}{lll} oxed{---} u_n = o_{n
ightarrow + \infty}(v_n) & \Rightarrow & R_n = o_{n
ightarrow + \infty}(R_n') \ oxed{---} u_n = \mathcal{O}_{n
ightarrow + \infty}(v_n) & \Rightarrow & R_n = \mathcal{O}_{n
ightarrow + \infty}(R_n') \ oxed{---} u_n & {\scriptstyle \sim \atop n
ightarrow + \infty}} v_n & \Rightarrow & R_n & {\scriptstyle \sim \atop n
ightarrow + \infty}} R_n' \end{array}$$

Théorème 1.6.2. Soit (u_n) , $(v_n) \in \mathbb{R}^N$ et $v_n \geq 0$, $\forall n \geq n_0$ On suppose que $\sum u_n$ et $\sum v_n$ diverge. Soit les sommes partielles $U_n = \sum_{k=0}^n u_n$ et $V_n = \sum_{k=0}^n v_n$ alors

$$egin{array}{lll} \overline{} & u_n = \circ_{n o +\infty}(v_n) \; \Rightarrow \; U_n = \circ_{n o +\infty}(V_n) \ \overline{} & u_n = \mathcal{O}_{n o +\infty}(v_n) \; \Rightarrow \; U_n = \mathcal{O}_{n o +\infty}(V_n) \end{array}$$

$$-u_n { \stackrel{\sim}{\underset{n \to +\infty}{\rightarrow}}} v_n \Rightarrow U_n { \stackrel{\sim}{\underset{n \to +\infty}{\rightarrow}}} V_n$$

Théorème de *Cesàro*. Soit
$$(u_n) \in \mathbb{R}^N$$
— Si $u_n \to \lambda$ avec $\lambda \in \mathbb{R}$, alors $\frac{1}{n} \sum_{n=0}^{n} \sum_{n=0}^{n} \frac{1}{n}$

Si
$$u_n \to \lambda$$
 avec $\lambda \in \mathbb{R}$, alors $\frac{1}{n+1} \sum_{k=0}^n u_k \to \lambda$
— Si $u_n \to +\infty$ alors $\frac{1}{n+1} \sum_{k=0}^n u_k \to +\infty$

Démonstration. 1) Supposons $u_n o \lambda$ alors $u_n - \lambda = \mathrm{o}(\mathtt{1}),$ on pose ensuite $v_n =$ ı alors $\sum v_n$ diverge et d'après le théorème de sommation en cas divergent $\sum_{k=0}^n u_k - \lambda = \mathsf{o}(\sum_{k=0}^n \mathsf{1}) \;\; \Rightarrow \;\; \frac{\mathsf{1}}{n+\mathsf{1}}(\sum_{k=0}^n u_k) - \lambda \to \mathsf{0}$

2) Supposons $u_n \to +\infty$ et posons $a_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ Soit $A \in \mathbb{R}$ et A' = A+1 Soit $n_0 \in \mathbb{N}$: $\forall n \geq n_0$, $u_n > A'$, puis pour $n \geq n_0$: $a_n = \frac{1}{n+1} (\sum_{k=0}^{n_0-1} u_k + \sum_{k=0}^n u_k)$ donc $a_n > \frac{C}{n+1} + A' \frac{n+1-n_0}{n+1} = A' + \frac{C-n_0A'}{n+1}$

$$a_n = \frac{1}{n+1} (\sum_{k=0}^{n_0-1} u_k + \sum_{k=0}^n u_k) \text{ donc } a_n > \frac{C}{n+1} + \overline{A'} \frac{n+1-n_0}{n+1} = A' + \frac{C-n_0A'}{n+1}$$

Soit
$$n_1 \geq n_0$$
 tel que $\forall n \geq n_1$, $\left| \frac{\mathcal{C} - A' n_0}{n+1} \right| < 1$ alors $\forall n \geq n_1$, $a_n > A$ d'où $a_n \to +\infty$

Produit de séries 1.7

Definition 1.7.1. Soient $\sum u_n$ et $\sum v_n$ des séries quelconques (convergentes ou non) de nombres complexes.

On pose $\forall n \in \mathbb{N}$: $w_n = \sum_{i+j=n} u_i v_j = \sum_{k=0}^n u_k v_{n-k}$ (somme finie!) La série $\sum w_n$ est appelée *produit de Cauchy* de $\sum u_n$ et $\sum v_n$.

Attention!

Lorsque $\sum u_n$ et $\sum v_n$ convergent on a pas forcément

$$\left(\sum u_n
ight) imes \left(\sum v_n
ight)=\sum w_n$$

Théorème 1.7.1. Si $\sum u_n$ et $\sum v_n$ convergent absolument alors : 1) $\sum w_n$ CVA 2) $(\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n$

Signalé:

Théorème de Mertens. Si $\sum u_n$ CVA et $\sum v_n$ converge alors $\sum w_n$ converge et $(\sum_{n=0}^\infty u_n) \times (\sum_{n=0}^\infty u_n) = \sum_{n=0}^\infty w_n$

1.8 Dualité série-suite

Toute suite peut-être envisagée comme une série

Ici (E, N) est un EVN de dimension finie.

On définit les suites (a_n) et (b_n) par $\forall n \in \mathbb{N}^*$, $b_0 = a_0$ et $b_n = a_n - a_{n-1}$. On a alors pour $n \in \mathbb{N}$,

$$\sum_{k=0}^n b_k = b_{ exttt{O}} + \sum_{k=1}^n (a_k - a_{k-1}) = a_{ exttt{O}} + a_n - a_{ exttt{O}} = a_n ext{ soit } a_n = \sum_{k=0}^n b_k$$

On sait ensuite que (a_n) converge si et seulement si $\sum b_k$ converge donc

$$(a_n)$$
 converge $\Leftrightarrow \sum a_n - a_{n-1}$ converge

Limites et continuité

Cadre : (E, N) est un EVN quelconque et $A \subset E$

2.1 Ouverts et fermés

2.1.1 Intérieurs

Soit $A \subset E$ et $\alpha \in E$

Definition 2.1.1. Soit un point $\alpha \in A$ on dit que α est un point intérieur à A si $B(\alpha, r) \subset A$ pour un certain réel r > 0.

Definition 2.1.2. On appelle intérieur de A l'ensemble des points intérieurs de A

$$\mathring{A} = \{x \in E \mid x \text{ est intérieur à } A\}$$

Lemme 2.1.1. Soit $A \subset E$ alors $\mathring{A} \subset E$

Lemme 2.1.2. Le passage à l'intérieur est une opération croissante pour l'inclusion. (i.e. $A \subset B \Rightarrow \mathring{A} \subset \mathring{B}$)

2.1.2 Ouverts

Definition 2.1.3. Dans (E, N) on appelle *ouvert* (ou *partie ouverte*) **toute** réunion de boules ouvertes.

Théorème : Caractérisation des ouverts. Soit $U \subset E$ alors

Dérivation et intégration

Chapitre 4 Suites de fonctions

Chapitre 5 Intégrales généralisées

Chapitre 6 Intégrales paramétrées

Chapitre 7 Séries entières

Algèbre

Réduction des endomorphismes

Chapitre 10 Espaces préhilbertiens réels

Chapitre 11 Espaces probabilisés

Variables aléatoires discrètes

Équations différentielles linéaires

Chapitre 14 Calcul différentiel