Química

Formulario

Contents

Conversion		
Pes)	
Lor	gitud	
Gas	es	
Ter	modinámica	
Propiedades	s intensivas 2	
Estequiome	tría 2	
	dades de cantidad	
	opo	
	nposición porcentual	
	mulas químicas	
D	_	
Reacciones	2	
Ker	dimiento	
Soluciones	2	
Mo	laridad (M)	
	a idad (n)	
	cción molar (X)	
	centaje en masa $(m_{\%})$	
	centaje en volumen $(V_{\%})$	
	res por millón (ppm)	
Tui	2 poi minor (ppm)	
Gases	2	
	de los gases ideales	
Ecu	ación de estado	
Der	ısidad de un gas	
Vol	umen molar de un gas (CNTP)	
Ley	de Dalton	
Termodinár	nica 3	
	pajo y energía	
	alpía	
	or	
	culos de un sistema	
	nbio de fases	
Pro	piedades coligativas	
Equilibrio químico 3		

Conversiones

Peso	Gases
1 lb = 453,6 g	1 atm = 760 mmHg
1 kg = 2,2 lb	1 atm = 101,3 kPa
1 oz = 28,35 g	1 atm = 14,696 psi
	1 torr = 1 mmHg
Longitud	1 torr = 133,32 Pa
1 mi = 1,61 km	1 bar = 10^5 Pa
1 m = 3.28 ft	Termodinámica
1 m = 39, 4"	1 cal = 4,18 J
1" = 2,54 cm	1 atmL = 101,3 J

Propiedades intensivas

m = dv

$$(s), (l) \quad g/cm^3$$

 $(g) \quad g/m^3$

$$^{\circ}$$
C = $(F - 32)\frac{5}{9}$

$$F = \frac{9}{5}$$
°C + 32

$$K = {}^{\circ}C + 273,15$$

Estequiometría

Unidades de cantidad

 $1uma = \frac{g}{mol}$

El peso atómico se mide en uma's.

 $1g = 6,022 \cdot 10^{23} uma$

 $N_A/L = 6,022 \cdot 10^{23}$ partículas

Isótopo

$$\bar{m} = m_1 A b_1 + \dots + m_n A b_n$$

Composición porcentual

 $Mr = \Sigma Ar$

$$%X = \frac{nAr}{Mr}100\%$$

Fórmulas químicas

FM = nFE

m = nMr

Reacciones

Rendimiento

$$%r = \frac{\text{real}}{\text{teórico}} 100\%$$

Soluciones

$$C_1V_1 = C_2V_2$$

$$m_{\text{solución}} = m_{soluto} + m_{solvente}$$

$$V_{\text{solución}} = V_{soluto} + V_{solvente}$$

Molaridad (M)

$$M = \frac{n_{soluto}}{\langle 1 \rangle dm^3_{solución}}$$

Molalidad (η)

$$\eta = \frac{n_{soluto}}{\langle 1 \rangle kg_{solvente}}$$

Fracción molar (X)

$$X_A = \frac{n_A}{\langle 1 \rangle n_{\text{solución}}}$$

$$X_B = \frac{n_B}{\langle 1 \rangle n_{\text{solución}}}$$

$$X_A + X_B = 1$$

Porcentaje en masa $(m_{\%})$

$$m_{\%} = \frac{g_{soluto}}{\langle 100 \rangle g_{solución}} \cdot 100\%$$

Porcentaje en volumen $(V_{\%})$

$$V_{\%} = \frac{V_{soluto}}{V_{solución}} \cdot 100\%$$

Partes por millón (ppm)

$$m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 10^6$$

Gases

$$R = 8,314 \frac{J[Pa \cdot m^3]}{K \cdot mol} R = 0,0821 \frac{atm \cdot L}{K \cdot mol}$$

Condiciones normales (CNTP): 1 atm, 0°C

Condiciones estándar (TPE): 1 atm, 25°C (temperatura ambiente)

Ley de los gases ideales

$$PV = nRT$$

Ecuación de estado

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

Charles Avogadro

Densidad de un gas

$$\rho = \frac{MrP}{RT}$$

Volumen molar de un gas (CNTP)

 $1mol = 22,7dm^3$

Ley de Dalton

$$P_A = X_A P_T$$
$$P_A = \frac{n_A RT}{V}$$

Termodinámica

Trabajo y energía

$$W = -P\Delta V \Leftrightarrow W = -\Delta nRT$$

$$\Delta U = Q + W$$
recibe +

Entalpía

Entalpía estándar de reacción

$$\Delta H_{\mathrm{rxn}}^{\circ} = \left[c \Delta H_{f}^{\circ}(C) + d \Delta H_{f}^{\circ}(D) \right] - \left[a \Delta H_{f}^{\circ}(A) + b \Delta H_{f}^{\circ}(B) \right]$$

Entalpía de una solución

$$\Delta H_{\text{soln}} = U + \Delta H_{\text{hidratación}}$$

$$\Delta H_{\text{soln}} = 0 \Leftrightarrow \text{solución ideal}$$

Calor

$$-Q_1 = Q_2$$

$$Q = mc\Delta T$$

$$C = mc$$

$$c_{H_2O}=4,184\frac{J}{\text{g°C}}$$

Cálculos de un sistema

$$Q_{sis} = \Sigma Q_{\text{Componentes}}$$

Componentes

 $Q_{sis} = 0 \Leftrightarrow$ ningún calor entra o sale

$$Q_{H_2O} = mc\Delta T$$

$$Q_{\rm aparato} = C_{\rm aparato} \Delta T$$

Reacción a P constante

$$Q_{\rm rxn} = \Delta H$$

Reacción a V constante

$$Q_{\text{rxn}} = \Delta U$$

Cambio de fases

$$\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap}$$

Propiedades coligativas

° puro

1 solvente

2 soluto

Factor de Van't Hoff (i) = $\frac{\text{\# partículas productos}}{\text{\# partículas reactivos}}$

Para no electrolitos es igual a uno.

Disminución de presión de vapor

$$P_1 = X_1 P_1^{\circ}$$

$$\Delta P = X_2 P_1^{\circ}$$

$$\Delta P = P_1^{\circ} - P_1$$

Elevación del punto de ebullición

$$\Delta T_b = i k_{b_1} \eta$$

$$\Delta T_b = T_{b_2} - T_{b_1}^{\circ}$$

$$T_b > T_b^{\circ} \rightarrow \Delta T_b > 0$$

Disminución del punto de ebullición

$$\Delta T_f = i k_{f_1} \eta$$

$$\Delta T_f = T_{f_2}^{\circ} - T_{f_1}$$

$$T_f^\circ > T_f \to \Delta T_f > 0$$

Presión osmótica

$$\pi = iMRT$$

Equilibrio químico

$$K_c = \frac{[C]^c [D^d]}{[A]^a [B]^b}$$

$$K_P = \frac{P_C^c P_D^d}{P_A^a P_B^b}$$

$$K_P = K_c (RT)^{\Delta n}$$

$$K_c = K_c' K_c''$$

$$n(\operatorname{rxn}) = K_c^n$$

$$rxn se invierte = \frac{1}{K_c}$$

 $Q_c < K_c$ se favorece los productos

 $Q_c > K_c$ se favorece los reactivos

 $Q_c = K_c$ rxn está en equilibrio