Weekly Meeting with Dr. Hannah

Presenter: Hasan Shaikh

Quantitative Imaging Research and

Artificial Intelligence Lab (QIRAIL)

1. Particle Swarm Optimization (PSO) Implementation and Results

- Particle Swarm Optimization was proposed by Kennedy and Eberhart in 1995.
- As mentioned in the original paper, sociobiologists believe a school of fish or a flock of birds that moves in a group "can profit from the experience of all other members".
- In other words, while a bird flying and searching randomly for food, for instance, all birds in the flock can share their discovery and help the entire flock get the best hunt.

1. Particle Swarm Optimization (PSO) Implementation and Results

Particle Swarm Optimization is a nature-inspired optimization algorithm based on the social behavior of bird flocking or fish schooling. In PSO, each solution (called a particle) navigates the search space to find the optimal solution by adjusting its position based on:

- Its own best position (personal best)
- The best position found by the swarm (global best)

PSO is particularly effective for high-dimensional optimization problems and is well-suited for feature selection in radiomics where the search space is large.

1. Particle Swarm Optimization (PSO) Implementation and Results

Model	Training ROC AUC	Training Accuracy	Test ROC AUC	Test Accuracy
Logistic Regression	0.74 (0.66-0.84)	71.57%	0.54 (0.30-0.78)	57.69%
Support Vector Machine	0.73 (0.63-0.83)	69.61%	0.55 (0.30-0.80)	57.69%
Naïve Bayes	0.72 (0.61-0.83)	72.55%	0.60 (0.38-0.81)	61.54%

Current Results Using PSO with Logistic Regression:

Train AUC: 0.9479

Train Accuracy: 0.8784

X Test AUC: 0.4286

X Test Accuracy: 0.4737

Planned Future Work – Classifiers vs Feature Selection Techniques

In the upcoming weeks, I plan to test the following classifiers:

- Logistic Regression
- **Naive Bayes**
- Linear Support Vector Machine (Linear SVM)
- Radial Basis Function Kernel SVM (RBF SVM)
- **Decision Tree**
- Random Forest
- Gradient Boosting (e.g., XGBoost, LightGBM)
- **Voting Classifier**
- Stacking Classifier
- Multi-Layer Perceptron Classifier (MLPClassifier)

These classifiers will be evaluated in combination with the following feature selection/optimization techniques:

- SelectKBest (Univariate statistical selection)
- Least Absolute Shrinkage and Selection Operator (LASSO)
- Particle Swarm Optimization (PSO)
- Whale Optimization Algorithm (WOA)
- Grey Wolf Optimizer (GWO)
- Genetic Algorithm (GA)
- Simulated Annealing (SA)

This results in a total of 70 unique combinations (10 classifiers × 7 feature selection techniques) that I plan to implement, test, and analyze to identify the most robust combination for our radiomics-based prediction task.