SOLUTIONS TO ALGEBRA2-H

BOWEN LIU

ABSTRACT. This note contain solutions to homework of Algebra 2-H (2024Spring), but we will omit proofs which are already shown in the text book or quite trivial.

Contents

Homework-1	2
Solutions to 4.1	
Solutions to 4.2	2
Solutions to 4.3	4
Homework-2	5
Solutions to 4.4	5
Solutions to 4.5	6
Homework-3	7
Solutions to 4.6	7
Homework-4	8
Solutions to 4.7	8
Solutions to 4.8	8
Homework-5	10
Solutions to 4.9	10
Solutions to bonus	11
Homework-6	12
Solutions to 4.9	12
Solutions to chapter 1 of Atiyah-MacDonald	12
erences	13
	Homework-1 Solutions to 4.1 Solutions to 4.2 Solutions to 4.3 Homework-2 Solutions to 4.4 Solutions to 4.5 Homework-3 Solutions to 4.6 Homework-4 Solutions to 4.7 Solutions to 4.8 Homework-5 Solutions to 4.9 Solutions to bonus Homework-6 Solutions to 4.9 Solutions to 4.9 Solutions to 4.9 Solutions to chapter 1 of Atiyah-MacDonald erences

1. Homework-1

1.1. Solutions to 4.1.

- 1. It suffices to note that $(u+1)^{-1} = (u^2 u + 1)/3$.
- 2. Note that $u^8 + 1 = 0$, and by Eisenstein criterion it's easy to show that $x^8 + 1$ is irreducible.
- 4. It suffices to note that $[F(u):F(u^2)] < 2$.
- 5. Omit.
- 6. Omit.
- 7. Pick any $0 \neq v \in K \setminus F$, then by the explicit construction of F(u), we may write

$$v = \frac{f(u)}{g(u)},$$

where $f,g \in F[x]$ with $g \neq 0$. In other words, one has f(u) - vg(u) = 0. On the other hand, $f(x) - vg(x) \not\equiv 0$, otherwise it leads to $v \in F$, since coefficients of f,g lie in F. This shows u satisfies a non-trivial polynomial with coefficients in K, and thus it's algebraic over K.

- 8. Omit.
- 9. If β is algebraic over F, then by exercise 7 one has $[F(\alpha):F(\beta)]<\infty$, and thus

$$[F(\alpha):F] = [F(\alpha):F(\beta)][F(\beta):F] < \infty,$$

a contradiction.

10 Since α is algebraic over $F(\beta)$, then there exists a non-trivial polynomial

$$P(x) = x^n + a_{n-1}(\beta)x^{n-1} + \dots + a_0(\beta) \in F(\beta)[x]$$

such that $P(\alpha) = 0$. On the other hand, it's clear that β is transcendent over F, otherwise

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\beta)][F(\beta) : F] < \infty,$$

a contradiction to α is transcendent over F. Thus by the explicit construction of $F(\beta)$, we may write

$$a_i(\beta) = \frac{f_i(\beta)}{g_i(\beta)},$$

where $f_i(x)$ and $g_i(x) \in F[x]$, while $g_i(x) \neq 0$. Now consider the polynomial

$$Q(x,y) = P(x) \prod_{i=1}^{n} g_i(y) \in F[x,y].$$

It's a polynomial satisfying $Q(\alpha, \beta) = 0$, which implies β is algebraic over $F(\alpha)$.

1.2. Solutions to 4.2.

2. It's clear $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2},\sqrt{3})$. On the other hand, note that

$$\sqrt{3} - \sqrt{2} = (\sqrt{2} + \sqrt{3})^{-1} \in \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

This shows $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and thus $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Remark 1.2.1. In fact, any finite seperable extension is a simple extension, that is, a field extension generated by one element. This is called primitive element theorem.

3. Suppose there exists $a \in E$ such that g(a) = 0. Since g is irreducible over F, so it's the minimal polynomial of a over F. Thus

$$[F(a):F] = \deg g = k.$$

On the other hand, [E:F] = [E:F(a)][F(a):F], a contradiction to $k \nmid [E:F]$.

5 Suppose K be a subring of E containing F. For any $0 \neq u \in K$, since E is algebraic over F, there exists a polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ such that f(u) = 0. Thus

$$u^{-1} = -\frac{1}{a_0}(u^{n-1} + a_{n-1}u^{n-2} + \dots + a_1) \in K.$$

6. Omit.

7. It's clear $\mathbb C$ is the algebraic closure of $\mathbb R$, since it's algebraic over $\mathbb R$, and it's algebraically closed.

- (a) An algebraically closed field must contain infinitely many elements, otherwise if an algebraically closed E is a finite field with |E| = q, then $x^q x + 1$ has no roots in E.
- (b) An example is $[\mathbb{C} : \mathbb{R}] = 2$.

8. Firstly we prove that if p_1, \ldots, p_n and p are distinct prime numbers, then $\sqrt{p} \notin \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$ by induction. For n = 1, if $\sqrt{p} \in \mathbb{Q}(\sqrt{p_1})$, then there exists $a, b \in \mathbb{Q}$ such that

$$\sqrt{p} = a + \sqrt{p_1},$$

and thus $a^2 + b^2 p_1 + 2ab\sqrt{p_1} = p$. Since $\sqrt{p_1} \notin \mathbb{Q}$, it leads to ab = 0. Both a = 0 and b = 0 will lead to contradictions. Now suppose the statement holds for n = k - 1 and consider the case n = k. By induction hypothsis, one has

$$\sqrt{p}, \sqrt{p_k} \not\in \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_{k-1}}).$$

If $\sqrt{p} \in \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_k})$, then

$$\sqrt{p} = c + d\sqrt{p_k},$$

where $c, d \in \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_{k-1}})$. By the same argument one has cd = 0, but $c \neq 0$, otherwise it contradicts to $\sqrt{p} \notin \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_{k-1}})$. This shows $\sqrt{p} = d\sqrt{p_k}$. Repeat above process for $d \in \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_{k-1}})$, one has

$$d = d_1 \sqrt{p_{k-1}},$$

and thus

$$\sqrt{p} = d_{n-1}\sqrt{p_1 \dots p_k},$$

where $d_{n-1} \in \mathbb{Q}$, a contradiction. This shows $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \dots, \sqrt{p}, \dots)/\mathbb{Q}$ is an algebraic extension of infinite degree. Since \overline{Q} is the algebraic closure of \mathbb{Q} , and E is algebraic over \mathbb{Q} , so \overline{Q} is also the algebraic closure of E.

9. Omit.

10. Omit.

1.3. Solutions to 4.3.

- 1. Omit.
- 2. It suffices to show that $\sin 18^{\circ}$ is constructable. Suppose $\theta = 18^{\circ}$. Then $\sin 2\theta = \sin(\pi/2 3\theta) = \cos 3\theta$, and thus

$$2\sin\theta\cos\theta = 4\cos^3\theta - 3\cos\theta.$$

A simple computation yields

$$\cos\theta(4\sin^2\theta + 2\sin\theta - 1) = 0.$$

As a result, one has $\sin \theta = (\sqrt{5} - 1)/4$, which is constructable.

2. Homework-2

2.1. **Solutions to 4.4.**

1. Let ξ_3 be the 3-th unit root. Then

$$f(x) = (x-1)(x+1)(x^4 + x^2 + 1)$$

= $(x-1)(x+1)(x-\xi_3)(x+\xi_3)(x-\xi_3^2)(x+\xi_3^2)$.

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\xi_3)$.

2. Let ξ_4 be the 4-th unit root. Then

$$f(x) = (x - \sqrt[4]{2}\xi_4)(x + \sqrt[4]{2})(x - \sqrt[4]{2} \times \sqrt{-1}\xi_4)(x + \sqrt[4]{2} \times \xi_4\sqrt{-1}).$$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt[4]{2}\xi_4, \sqrt{-1})$.

3. Let ξ_3 be the 3-th unit root. Then

$$f(x) = (x + \sqrt{2})(x - \sqrt{2})(x - \sqrt[3]{3})(x - \sqrt[3]{3}\xi_3)(x - \sqrt[3]{3}\xi_3^2).$$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \xi_3)$.

4. The splitting field of $x^3 - 2$ over \mathbb{R} is \mathbb{C} .

5. Suppose there is a field isomorphism $\varphi \colon \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{2})$ and $\varphi(\sqrt{2}) = a + b\sqrt{3}$. Then

$$2 = \varphi(\sqrt{2}^2) = \varphi(\sqrt{2})^2 = a^2 + 3b^2 + 2ab\sqrt{3}.$$

On the other hand, $\{1, \sqrt{3}\}$ gives a basis of $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} . This shows 2ab = 0 and $a^2 + 3b^2 = 0$, a contradiction to $a, b \in \mathbb{Q}$.

6. Suppose $E = F(\alpha)$. Then the minimal polynomial of α is of degree two, which can be written as $x^2 + ax + b$ with $a, b \in F$. On the other hand,

$$x^{2} + ax + b = (x - \alpha)(x - \alpha - a).$$

This shows E is exactly the splitting field of $x^2 + ax + b$ over F.

7. Note that

$$f(x) = (x - \sqrt{-3})(x + \sqrt{-3})(x - 1 - \sqrt{-3})(x - 1 + \sqrt{-3}).$$

This shows the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{-3})$. Suppose there is an automorphism σ such that $\sigma(\sqrt{-3}) = 1 + \sqrt{-3}$. Then

$$-3 = \sigma(\sqrt{-3}^2) = \sigma(\sqrt{-3})^2 = (1 + \sqrt{-3})^2 = -2 + 2\sqrt{-3},$$

a contradiction.

8. Note that f(x) is irreducible over $\mathbb{Z}_2[x]$, then $\mathbb{Z}_2[x]/(f(x))$ contains a root u of f(x). Furthermore, note that if f(u) = 0, then f(u+1) = 0, thus $\mathbb{Z}_2[x]/(f(x))$ contains all roots of f(x), that is it's splitting field of f.

9. The same argument shows $\mathbb{Z}_3[x]/(f(x))$ is splitting field of f.

10. It's clear that we must have f is irreducible over \mathbb{Q} and its splitting field is exactly $\mathbb{Q}[x]/(f(x))$, since $[\mathbb{Q}[x]/(f(x)):\mathbb{Q}]=3$. This is equivalent to the discriminant $\sqrt{\Delta}$ of f(x) in \mathbb{Q} .

11. In fact, we can prove a stronger result, that is $[E:F] \mid n!$. Let's prove by induction on degree of f(x). It's clear for the case $\deg f(x) = 1$. Now assume $\deg f(x) = n + 1$. Let's consider the following cases:

(a) If f is reducible, let p(x) be an irreducible factor of f(x) with degree k, and L the splitting field of p(x) over F. Then E is the splitting field of f/p over L. Note that degree of p(x) and f(x)/p(x) are $\leq n$, then by induction hypothesis one has

$$[E:F] = [E:L][L:F]|k! \times (n+1-k)!|(n+1)!$$

(b) Suppose f is irreducible, then consider $L = F[x]/(f) \cong F(\alpha)$, where α is a root of f. It's clear [L:F] = n+1. Now consider polynomial $f/(x-\alpha)$ over L, it's clear that E is the splitting field of it. The same argument yields the result.

2.2. Solutions to 4.5.

- 8. Omit.
- 9. Omit.
- 10. If F is a perfect field, then it's clear every finite extension E of F is seperable, since any element of E fits a irreducible polynomial, and every irreducible polynomial of F is seperable; Conversely, if $F \neq F^p$, then there exists $u \in F \setminus F^p$, then $x^p u$ is irreducible, but not seperable over F, a contradiction.

3. Homework-3

3.1. Solutions to 4.6.

1. If α is a root of $f(x) = x^p - x - c$, then

$$f(\alpha + k) = (\alpha + k)^p - (\alpha + k) - c$$
$$= \alpha^p + k^p - \alpha - k - c$$
$$= 0$$

for all $1 \le k \le p-1$. This shows $F(\alpha)$ is the splitting field of f(x).

- 2. Suppose [E:F]=2. Then E/F is the splitting field of some polynomial over F, and thus it's a normal extension.
- 3. $\mathbb{Q}(\sqrt{-2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{-1})/\mathbb{Q}$ are normal extensions, but $\mathbb{Q}(6\sqrt[3]{7})/\mathbb{Q}$ is not normal, since the minimal polynomial of $\sqrt[3]{7}$ over \mathbb{Q} is $x^3 7$, which has a root $\sqrt[3]{7}\xi_3$ not lying in $\mathbb{Q}(5\sqrt[3]{7})$.
- 8. Suppose F is a finite field with characteristic p and E/F is a finite extension. Then E is also a finite field with $|E| = p^m$, and thus E is the splitting field of $x^{p^m} x$ over \mathbb{F}_p . In particular, E/\mathbb{F}_p is a normal extension, so is E/F.
- 10. Suppose the minimal subfield of L which contains E'_1, \ldots, E'_n is K, and the normal closure of E/F is N. On one hand, it's clear that $K \subseteq N$, since $\sigma(N) \subseteq N$. On the other hand, for any $\alpha \in E$, suppose its minimal polynomial over F is f(x) and β is another root of f(x). Then $\alpha \mapsto \beta$ may extend to a automorphism of E which fixes F. As a consequence, one has $\beta \in K$, and thus $N \subseteq K$.

4. Homework-4

4.1. Solutions to 4.7.

1. Note that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and it's the splitting field of $(x^2 - 2)(x^2 - 3)$ over \mathbb{Q} , so $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension with the Klein four group K_4 as its Galois group. By the Galois correspondence, the subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ are $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{6})$ and itself.

2. The splitting field of $x^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(e^{\sqrt{-1}\pi/4})$, which is also the splitting field of $x^8 - 1$. Then the Galois group is isomorphic to the automorphism group of C_8 , which is the Klein four group K_4 .

- 3. $\mathbb{Z}/4\mathbb{Z}$.
- 4. $\mathbb{Z}/5\mathbb{Z}$.
- 5. Note that over \mathbb{Z}_3 one has the following decomposition

$$x^4 + 2 = (x^2 + 1)(x + 1)(x - 2),$$

which implies the splitting field of $x^4 + 2$ is the same as the one of $x^2 + 1$. In other words, the splitting field of $x^4 + 2$ over \mathbb{Z}_3 is $\mathbb{Z}_3(\sqrt{-1})$, and the Galois group is \mathbb{Z}_2 .

6. By the assumption on a we know that $f(x) = x^p - x - a$ is irreducible over F, and if α is a root of f(x), then $\{\alpha + k \mid k = 0, 1, \dots, p - 1\}$ are all roots of f(x). In particular, the Galois group is \mathbb{Z}_p .

7. Omit.

4.2. Solutions to 4.8.

1. Since the Frobenius map $x \mapsto x^p$ is injective, then it's also surjective by the finiteness.

2. Note that E = F[x]/(f(x)) is a finite field with $|E| = q^n$. In particular, every non-zero element is a root of $x^{q^n-1}-1$, and thus $f(x) \mid x^{q^n-1}-1$.

3. Suppose F is a infinite field such that F^{\times} is an infinite cyclic group. Let K be the prime subfield of F. Then $K^{\times} \subseteq F^{\times}$ is also an infinite cyclic subgroup. This shows $\operatorname{char} K = 0$ and thus $K = \mathbb{Q}$, but \mathbb{Q}^{\times} is not cyclic, a contradiction.

4. Omit.

5. If char F=2, then $F^2=F$, and thus $F\subseteq F^2+F^2$. If char F=p>2 and suppose $F=\{0,a,a^2,\ldots,a^{q-1}\}$, where $q=p^n$, then

$$F^2 = \{0, a^2, a^4, \dots, a^{q-1}\}.$$

In particular, $|F^2| = (q+1)/2$. For any $c \in F$, similarly one has $|c-F^2| = (q+1)/2$, and thus

$$c - F^2 \cap F^2 \neq \varnothing.$$

- 6. Omit.
- 8. Note that $\mathbb{Q}(\sqrt{2}) \not\cong \mathbb{Q}(\sqrt{3})$.
- 9. In exercise 2 we have already shown that every irreducible polynomial of degree p is a divisor of $x^{q^p} x$. On the other hand, $\mathbb{F}_{q^p} / \mathbb{F}_q$ is the splitting field of $x^{q^p} x$, and since p is prime, so there is no intermediate field. In

other words, every irreducible polynomial that divides $x^{q^p}-x$ must be of degree p or 1. Since there are q irreducible polynomial of degree 1, so the number of irreducible polynomial of degree p over \mathbb{F}_q is exactly $(q^p-q)/p$. 10. Omit.

5. Homework-5

5.1. Solutions to 4.9.

- 2. We divide into two parts:
- (a) It's clear E/K is Galois, with Galois group Gal(E/K), which is abelian, since any subgroup of abelian group is still abelian. So E/K is an abelian extension;
- (b) Note that K/F is Galois if and only if Gal(E/K) is a normal subgroup of Gal(E/F), and it's clear any subgroup of abelian group is normal, thus K/F is Galois. Furthermore it's Galois group is Gal(E/F)/Gal(E/K), which implies K/F is abelian extension, since any quotient group of abelian group is still abelian.
- 3. By the same argument as above.
- 4. It suffices to show if z is a n-th primitive root of unity, then -z is a 2n-th primitive root of unit, since cyclotomic polynomial is the product of these roots. Let $z = \cos(2k\pi/n) + \sqrt{-1}\sin(2k\pi/n)$ is n-th primitive root of unity, thus (k,n) = 1. Note that

$$-z = \cos(\frac{2k\pi}{n} + \pi) + \sqrt{-1}\sin(\frac{2k\pi}{n} + \pi)$$
$$= \cos\frac{2(2k+n)\pi}{2n} + \sqrt{-1}\sin\frac{2(2k+n)\pi}{2n}.$$

Since (k, n) = 1 and n > 1 is odd, we have (2k + n, 2n) = 1, and thus -z is a 2n-th primitive root.

5. Since

$$x^{p^n} - 1 = \prod_{m|n} \varphi_m(x) = \prod_{0 \le k \le n} \varphi_{p^k}(x),$$

we have

$$\varphi_{p^k}(x) = \frac{x^{p^k} - 1}{x^{p^{k-1}} - 1} = 1 + x^{p^{k-1}} + x^{2p^{k-1}} + \dots + x^{(p-1)p^{k-1}}.$$

- 6. It's isomorphic to $Aut(\mathbb{Z}_{12})$, which is the Klein four group.
- 7. Otherwise, suppose n = pm. Then $x^n 1 = (x^m 1)^p$, which implies the number of different roots of $x^n 1$ is at most m, a contradiction.
- 8. If $x^m a$ is reducible, then it's clear $(x^n)^m a$ is also reducible. This shows if $x^{mn} a$ is irreducible, then both $x^n a$ and $x^m a$ are irreducible. Conversely, suppose both $x^m a$ and $x^n a$ are irreducible, and α is a root of $x^{mn} a$. Then α^m is a root of $x^n a$. This shows $[F(\alpha^m) : F] = n$, and similarly we have $[F(\alpha^n) : F] = m$. Since (m, n) = 1, we have $[F(\alpha) : F] = mn$, and thus $x^{mn} a$ is irreducible.
- 9. If $a \in F^p$, it's clear that $x^p a$ is reducible. Conversely, suppose $a \notin F^p$ and f(x) is an irreducible factor of $x^p a$ with degree k, and the constant term of f(x) is c. Let α be a root of $x^p a$ in the splitting field. Then any root of $x^p a$ is of the form $\alpha \omega$, where ω is some primitive p-th root. By Vieta's theorem we have $c = \pm \omega^{\ell} \alpha^k$. Since (k, p) = 1, there exist s, t such

that sk + pt = 1, and thus

$$\alpha = \alpha^{sk} \alpha^{pt} = \pm (c\omega^{-\ell})^s a^t,$$

which implies $\alpha \omega^{s\ell} = \pm c^s a^t \in F$. Then we have $a = \alpha^p = (\alpha \omega^{s\ell})^p \in F^p$, a contradiction.

10. Omit.

5.2. Solutions to bonus.

- 1. Omit.
- 2. It follows from Sylow's theorem.
- 3. Omit.
- 4. Omit.

12 BOWEN LIU

10.

6. Homework-6

6.1.	Solutions	\mathbf{to}	4.9.				
1.							
2.							
3.							
4.							
5.							
6.2.	Solutions	\mathbf{to}	chapter	1 of A	tiyah-	MacI) Onald
1.							
2.							
4.							
5.							
6.							
7.							
8.							
9.							

References

Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, P.R. China,

 $Email\ address{:}\ {\tt liubw22@mails.tsinghua.edu.cn}$