C20-C-CM-102

## 7017

## **BOARD DIPLOMA EXAMINATION, (C-20)**

## SEPTEMBER/OCTOBER—2021

### **DAE - FIRST YEAR EXAMINATION**

ENGINEERING MATHEMATICS - I

Time: 3 hours [ Total Marks: 80

### PART—A

 $3 \times 10 = 30$ 

**Instructions:** (1) Answer **all** questions.

- (2) Each question carries three marks.
- **1.** Find the domain and range of f if  $f: A \to B$  defined by  $f = \{(-3, 1), (-1, 1), (1, 0), (3, 0)\}$
- **2.** Resolve  $\frac{x+1}{x^2+5x+6}$  into partial fractions.
- 3. If  $A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$  and  $B = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$ , find AB.
- **4.** Show that  $\frac{\cos 37^{\circ} + \sin 37^{\circ}}{\cos 37^{\circ} \sin 37^{\circ}} = \cot 8^{\circ}$
- **5.** Prove that  $\frac{\sin 2A}{1-\cos 2A} = \cot A$

- **6.** Find the multiplicative inverse of the complex number 4 3i.
- 7. Find the equation of the line passing through the points (1, -2), (-2, 3).
- **8.** Evaluate  $\lim_{x\to 0} \frac{\sin 9x}{\sin 6x}$
- **9.** Differentiate  $\frac{1+e^x}{1-e^x}$
- **10.** If  $x = a \cos \theta$  and  $y = a \sin \theta$ , then find  $\frac{dy}{dx}$ .

# PART—B

8×5=40

**Instructions:** (1) Answer **all** questions.

- (2) Each question carries **eight** marks.
- 11. (a) Show that  $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$

OR

(b) Solve the following equations by Cramer's Rule.

$$x + 2y + 3z = 6$$
,  $2x + 4y + z = 7$  and  $3x + 2y + 3z = 8$ 

**12.** (a) Show that  $\sin^2 A + \sin^2 (60 + A) + \sin^2 (60 - A) = \frac{3}{2}$ 

OR

(b) If  $\tan^{-1}(x) + \tan^{-1}(y) + \tan^{-1}(z) = \frac{\pi}{2}$ , then show that xy + yz + zx = 1.

**13.** (a) Solve:  $\sin x + \cos x = \sqrt{2}$ 

### OR

- (b) In any  $\triangle ABC$ , if acos  $A = b\cos B$ , prove that  $\triangle ABC$  is either isosceles or right angled.
- **14.** (a) Find the equation of the parabola whose focus is the point (3, -4) and directrix is the line x y + 5 = 0.

### OR

- (b) Find the centre, vertices, lengths of axes, length of latus-rectum, eccentricity, foci and the equations of the latus-recta and directrices of the ellipse  $4x^2 + 9y^2 = 36$ .
- **15.** (a) If  $x^y = e^{x-y}$ , then prove that  $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$  using logarithmic differentiation.

#### OR

(b) If  $y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + \cdots + \infty}}}$ , then find  $\frac{dy}{dx}$ .

#### PART—C

 $10 \times 1 = 10$ 

**Instructions:** (1) Answer the following question.

- (2) Its carries **ten** marks.
- **16.** Find the length of the tangent, normal, subtangent and subnormal to the curve  $y = x^3 3x + 2$  at (0, 2).

