11.2 Sensitivity Transfer Function

The closed-loop should have an error $e(t) \le 0.1$ for reference commands $r(t) = 2\sin(\omega t)$ with $\omega \le 10 \, \text{rad/sec}$. This means that $|S(j\omega)| \le A$ for $\omega \le B \, \text{rad/sec}$. What is the value of A and B?

Solution:

$$(A, B) = (0.05, 10).$$

Steps:

We have $e(t) = 2|S(j\omega)|\sin(\omega t + \angle S(j\omega))$.

Since $e(t) \le 0.1$ for $\omega \le 10$ rad/ sec, we must have:

$$|S(j\omega)| \le \frac{0.1}{2} = 0.05$$

for $\omega \leq 10 \, \text{rad/sec}$.

GPT Answer:

The values are A=0.05 and $B=10\,\mathrm{rad/sec.}$

Confidence Level: 90%

Correct

Claude Answer:

To determine the values of A and B, let's break this down step by step.

1) The error requirement is:

$$e(t) \leq 0.1 \text{ for } r(t) = 2\sin(\omega t) \text{ with } \omega \leq 10 \, \text{rad/sec}$$

2) In the frequency domain, this can be interpreted as:

$$|E(j\omega)| \le 0.1$$
 for $|R(j\omega)| = 2$ with $\omega \le 10$ rad/ sec

3) The sensitivity function $S(j\omega)$ is defined as:

$$S(j\omega) = \frac{E(j\omega)}{R(j\omega)}$$

4) Therefore, the requirement can be expressed as:

$$|S(j\omega)|=\left|\frac{E(j\omega)}{R(j\omega)}\right|\leq \frac{0.1}{2}=0.05 \ \text{for} \ \omega \leq 10 \, \text{rad/sec}$$

5) Comparing this with the given condition:

$$|S(j\omega)| \le A \text{ for } \omega \le B \operatorname{rad/sec}$$

We can conclude that:

$$A=0.05$$
 and $B=10\,\mathrm{rad/sec}$

Therefore, the value of A is 0.05 and the value of B is 10 rad/ sec. Confidence level: 95%

Correct