



# PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10023369 A

(43) Date of publication of application: 23 . 01 . 98

(51) Int. CI

H04N 5/92 H04N 5/91 H04N 7/24

(21) Application number: 08168754

(22) Date of filing: 28 . 06 . 96

(71) Applicant:

**SONY CORP** 

(72) Inventor:

ITO TOKUICHI **KOJIMA YUICHI** 

# (54) PICTURE PROCESSING SYSTEM

# (57) Abstract:

PROBLEM TO BE SOLVED: To provide a rational picture processing system in which the implementation of the picture processing can be ensured, and picture deterioration can be reduced to the minimum in a simple constitution.

SOLUTION: Plural picture data encoded by an arbitrary inter-frame encoding system are inputted to first picture recording and reproducing devices 11.i, converted into encoded data in a prescribed inter-frame encoding system to be handled by a second picture recording and reproducing device 14 by corresponding encoding system converting devices 12, appropriately selected by a switch device 13, and the necessary parts are recorded in the second picture recording and reproducing device 14. An edit processing is operated to the picture data recorded in the second picture recording and reproducing device 14 by a picture editing device 15. The inputted picture data are decoded and encoded by the above mentioned prescribed system by the encoding system converting devices 12,, and at that time, information at the time of original encoding such as inverse quantization precision is used for new encoding so that the conversion of the encoding system

without any picture quality deterioration can be attained.

COPYRIGHT: (C)1998,JPO



# (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平10-23369

(43)公開日 平成10年(1998) 1月23日

| (51) Int.Cl. <sup>6</sup> |                      | 識別記号                | 庁内整理番号 | FΙ       |                                         | 技術表示箇所     |             |              |
|---------------------------|----------------------|---------------------|--------|----------|-----------------------------------------|------------|-------------|--------------|
| H 0 4 N                   | 5/92<br>5/91<br>7/24 |                     |        | H04N     | 5/92<br>5/91<br>7/13                    |            | H<br>N<br>Z |              |
|                           |                      |                     |        | 審査請求     | 未請求                                     | 請求項の数 6    | OL          | (全 9 頁)      |
| (21)出願番号                  | }                    | <b>特願平8</b> -168754 |        | (71) 出願人 |                                         | 85<br>朱式会社 |             |              |
| (22)出願日                   |                      | 平成8年(1996)6月28日     |        |          |                                         | 品川区北品川6    | 丁目7種        | <b>\$35号</b> |
|                           |                      |                     |        | (72)発明者  | 伊藤 徳一<br>東京都品川区北品川6丁目7番35号 ソニ<br>一株式会社内 |            |             |              |
|                           |                      |                     |        | (72)発明者  |                                         | 品川区北品川6-   | 丁目7番        | お5号 ソニ       |
|                           |                      |                     |        | (74)代理人  | 弁理士                                     | 佐藤 隆久      |             |              |
|                           |                      |                     |        |          |                                         |            |             |              |

### (54) 【発明の名称】 画像処理システム

## (57)【要約】

【課題】符号化方式の異なる複数の画像処理装置を接続すると、画像が劣化し、装置規模が大型化し、応答性能の差などにより編集処理が適切にできない。

【解決手段】任意のフレーム間符号化方式により符号化された複数の画像データは、第1の画像記録再生装置11.に各々入力され、対応する符号化方式変換装置12元で第2の画像記録再生装置14で取り扱う所定のフレーム内符号化方式の符号化データに変換され、スイッチング装置13で適宜選択されて必要部分が第2の画像記録再生装置14に記録される。この第2の画像記録再生装置14に記録されている画像データに対して画像編集装置15で編集処理を行う。符号化方式変換装置12元では、入力された画像データを復号化し前記所定の方式により符号化するが、その際に逆量子化精度などの元の符号化時の情報を、新たな符号化時に用いることにより、画質の劣化のない符号化方式の変換を行う。



#### 【特許請求の範囲】

【請求項1】画像間符号化方式により符号化された入力 された画像間符号化連続画像データを、所定の画像内符 号化方式により符号化された画像内連続画像データに変 換する符号化方式変換装置と、

前記変換された画像内符号化連続画像データを記録し、要求に応じて再生する処理画像記録再生装置と、

前記再生される画像内符号化連続画像データの各画像に 対して所定の処理を行う画像処理装置とを有する画像処 理システム。

【請求項2】前記符号化方式変換装置は、

入力された画像間符号化連続画像データを復号化する復 号化手段と、

前記復号化時に得られる当該画像間符号化方式に係わる 符号化参照データに基づいて、前記所定の画像内符号化 方式で用いる符号化参照データを生成する符号化調整手 段と

前記復号化された連続画像データを、前記生成された符号化参照データを用いて前記所定の画像内符号化方式により符号化する符号化手段とを有する請求項1記載の画像処理システム。

【請求項3】前記入力された画像間符号化連続画像データを記録し、要求に応じて再生する素材画像記録再生装置をさらに有し、

前記符号化方式変換装置は、前記再生される画像間符号 化連続画像データを前記画像内連続画像データに変換す る請求項2記載の画像処理システム。

【請求項4】各々が所定の画像間符号化方式に対応し、 該画像間符号化方式により符号化された画像間符号化連 続画像データを、前記所定の画像内符号化方式により符 号化された画像内連続画像データに変換する複数の前記 符号化方式変換装置と、

前記複数の符号化方式変換装置の中の任意の符号化方式 変換装置を適宜選択し、該選択された符号化方式変換装 置で変換される前記画像内符号化連続画像データを前記 処理画像記録再生装置に出力する選択装置と、

前記出力された画像内符号化連続画像データを記録し、要求に応じて再生する前記処理画像記録再生装置と、

前記再生される画像内符号化連続画像データの各画像に 対して所定の処理を行う画像処理装置とを有する請求項 40 2記載の画像処理システム。

【請求項5】前記複数の符号化方式変換装置に対応して 設けられ、入力された画像間符号化連続画像データを記 録し、要求に応じて再生する複数の素材画像記録再生装 置をさらに有し、

前記複数の符号化方式変換装置各々は、対応する前記素 材画像記録再生装置において再生される画像間符号化連 続画像データを前記画像内連続画像データに変換する請 求項4記載の画像処理システム。

【請求項6】前記画像処理装置は、前記連続画像データ 50 用いようとすると、数フレームまとめて符号化されてい

2

の各画像を処理単位として、ほぼ実時間で画像の編集を 行う画像編集装置である請求項5記載の画像処理システ ム

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、デジタル画像データの高能率符号化と復号化を行う複数の装置を用いて構成する、たとえば画像記録再生編集システムなどの画像処理システムに関し、複数の高能率符号化方式に基づく画像記録再生装置と、応答性能が要求されるたとえば編集処理を行う画像処理装置とを適切に連係させて、より簡単な構成で高品質の画像処理を行うことができるようにした画像処理システムに関する。

#### [0002]

【従来の技術】従来、たとえば放送局において使用されるニュース編集業務においては、編集作業の高速化が重要な課題である。そのために編集システムに対しては使用者の操作に対する高い応答性能が要求される。この応答性能を実現するために、画像データを記憶し要求に応じて再生する画像記録再生装置に、ランダムアクセス性能が高いハードディスクやメモリを使用する傾向が高まっている。しかし、ハードディスクやメモリなどの媒体は、テープと比較して高価であることから、画像データを何らかの高能率符号化復号化手段を適用して圧縮して記録することが多い。

【0003】そのような編集システムで用いる高能率符 号化方式としては、JPEG方式 (Joint Photographic Image coding Experts Group による静止画帯域圧縮符 **号化方式)などの規格に沿ったフィールド単位の符号** 化、またはそれより符号化性能が勝るフレーム単位の符 号化が、高い応答性能および編集精度を確保するため に、また画像編集装置の合理的な構成を行う面でも好適 である。一方それ自体で高度な編集処理を行うことを前 提としない画像収集装置や、大量の画像を保存するため の画像蓄積装置、あるいは伝送において所要帯域の制約 が厳しいデジタル画像伝送装置で適用される高能率符号 化方式としては、MPEG方式(Moving Picture coding Experts Groupによる高品質動画符号化方式) などの規 格に沿って画像の時間方向の冗長性を排除したフレーム 間符号化方式を適用することが好適と言える。このよう に、たとえば放送局などの内部においても、用途に応じ て様々な符号化方式が採用されている。

#### [0004]

【発明が解決しようとする課題】ところで、そのような 複数の符号化方式がシステム内部に混在した場合には、 以下に列挙するような問題が生じる。まず第1に、たと えば伝送路を介してシステムに供給される圧縮画像デー 夕の多くは、圧縮効率が高いフレーム間符号化方式が適 用されているが、その圧縮画像データをそのまま編集で 用いようとすると、数フレームまとめて符号化されてい

3

るために1フレーム精度で高速の応答性能や変速再生性 能を得ることが極めて困難である。無理にそれらの性能 を向上させようとすれば、複数フレーム分のベースバン ド画像をメモリに格納した後にそれを精密に制御する必 要が生じ、装置内部のメモリ量が増大し、そのメモリの 入出力を制御するためのソフトウエアの負担も増大する という問題がある。

【0005】また、第2の問題としては、システム内に多くの符号化方式が混在することがシステム内に多くの種類の符号化装置と復号化装置が含まれることにつながり、装置ごとに応答性能が異なることになりやすく、編集装置側で応答性能の差異を吸収するために個別の対応が必要であったり、また編集結果をオンエアしようとした場合にオンエア制御のソフトウエアが各装置の応答性能を把握して個別のタイミングで装置制御を行う必要が生じたりする点が挙げられる。この問題は新しい符号化技術を適用した記録再生装置をシステムに追加しようとした場合に、編集装置やオンエア制御用ソフトウエアに変更が必要となるという不利益にもつながることとなる

【0006】そのような第1および第2の問題点を解消 するために、多くの場合、フレーム間符号化を用いる画 像記録再生装置の出力画像データを一度復号化してベー スバンド画像データにし、それをフレーム内符号化方式 を用いる画像記録再生装置に一端入力して符号化し、編 集時にはその記録された画像データを復号化してベース バンド再生画像を得て編集を行うという方法が用いられ ている。しかしながら、このようなシステムにおいて も、画像記録再生装置間のインタフェースがベースバン ドの信号のみによってなされることから、最初の画像記 録再生装置で行われる復号化処理と、次の画像記録再生 装置における符号化処理の連携をとることが困難であ り、画質の劣化が生じるという問題が生じる。また、そ のようなある符号化方式から別の符号化方式に画像を変 換する符号化方式変換装置を用いて任意の符号化方式に 対応しようとすると、必要となる方式変換装置の数は記 録再生装置の種類数から2種類を選択する組合せの数と なるため、画像記録再生装置の種類が増加に伴って、必 要な方式変換装置の種類も急激に増加し、システムの規 模が非常に大きくなるという問題が生じる。

【0007】したがって、本発明の目的は、主にフレーム間符号化方式が適用される伝送装置や大容量の蓄積装置複数種類と、応答性能やフレーム単位での処理が要求される編集装置などの画像処理装置とを適切に結合して、簡単な構成で、その画像処理の実現性を確保し、画像劣化を最小限に抑えることのできる、合理的な画像処理システムを提供することにある。

#### [0008]

【課題を解決するための手段】したがって、本発明の画 像処理システムは、画像間の相関を用いて符号化する所 50 定の画像間符号化方式により符号化され入力された画像 間符号化連続画像データを、画像内で符号化する所定の 画像内符号化方式により符号化された画像内連続画像デ ータに変換する符号化方式変換装置と 前配符号化され

一夕に変換する符号化方式変換装置と、前記符号化された画像内符号化連続画像データを記録し、要求に応じて再生する処理画像記録再生装置と、前記再生される画像内符号化連続画像データの各画像に対して、ほぼ実時間で所定の処理を行う画像処理装置とを有する。前記画像

とは、フレーム単位の画像、あるいは、フィールド単位 の画像などの、前記連続画像を構成する1枚ごとの画像 を言う。また、前記所定の処理とは、画像の編集処理 や、特殊効果処理などの処理である。

【0009】好適には、前記符号化方式変換装置は、入力された画像間符号化連続画像データを復号化する復号化手段と、前記復号化時に得られた前記画像間符号化連続画像データの符号化参照データに基づいて、前記所定の画像内符号化方式で参照可能な符号化参照データを生成する符号化調整手段と、前記復号化された画像データを、前記生成された符号化参照データを参照して、前記所定の画像内符号化連続画像データに符号化する符号化手段とを有する。前記復号化時に得られる符号化参照データとは、たとえば逆量子化係数などのデータである。

【0010】特定的には、本発明の画像処理システムは、前記入力された画像間符号化連続画像データを記録し、要求に応じて再生する素材画像記録再生装置をさらに有し、前記符号化方式変換装置は、前記再生される画像間符号化連続画像データを前記画像内連続画像データに変換する。

【0011】また好適には、本発明の画像処理システムは、前記符号化方式変換装置を複数有し、その複数の符号化方式変換装置の中の任意の符号化方式変換装置を適宜選択し、該選択された符号化方式変換装置より出力される前記画像内符号化連続画像データを前記処理画像記録再生装置に出力する選択装置をさらに有する。さらに好適には、前記複数の符号化方式変換装置に対応して、複数の前記素材画像記録再生装置を有する。

#### [0012]

#### 【発明の実施の形態】

## 第1の実施の形態

40 本発明の第1の実施の形態である画像記録再生編集システムについて、図1〜図4を参照して説明する。図1は、第1の実施の形態の画像記録再生編集システム10aの構成を示すブロック図である。画像記録再生編集システム10aは、第1の画像記録再生装置11、符号化方式変換装置12、第2の画像記録再生装置14および画像編集装置15を有する。

【0013】まず、各部の構成・機能について説明する。第1の画像記録再生装置11は、入力されたベースバンド画像データS11を、フレーム間の相関を用いる所定のフレーム間符号化方式により高能率符号化して記

5

録する。

【0014】第1の画像記録再生装置11の構成について、図2を参照して説明する。第1の画像記録再生装置11は、符号化回路51、ハードディスクインターフェイス回路53、ハードディスク装置54および制御回路57を有する。第1の画像記録再生装置11には、ベースバンド画像データS11が入力される。入力されたベースバンド画像データS11は、符号化回路51で符号化されて圧縮画像データS52が生成され、ハードディスクインタフェース回路53に出力される。

【0015】ハードディスクインタフェース回路53は、制御回路57が発する制御信号S58に従って、命令とデータを多重した形式のインタフェースS54を介して、圧縮画像データS52をハードディスク装置54に記録する。再生時には、ハードディスクインタフェース回路53は、制御回路57が発する制御信号S58に従って、命令とデータを多重した形式のインタフェースS54を介して、圧縮画像データをハードディスク装置54から再生し、出力データS12として出力する。

【0016】符号化方式変換装置12は、第1の画像記 20 録再生装置11を再生して得られるフレーム間符号化された圧縮画像データS12を、後述する第2の画像記録 再生装置で使用する符号化方式で符号化した場合に得られる圧縮画像データの形式に変換する。

【0017】符号化方式変換装置12の構成について、図3を参照して説明する。符号化方式変換装置12は、フレーム間復号化回路41、メモリ回路42、フレーム内符号化回路43および制御回路44を有する。符号化方式変換装置12には、第1の画像記録再生装置11においてフレーム間符号化された圧縮画像データS12が入力される。フレーム間復号化回路41は、その入力された圧縮画像データS12を復号化してベースバンド画像データS41を生成し、メモリ回路42に出力する。また、その復号化時に用いた逆量子化精度情報などの情報S43を制御回路44に出力する。

【0018】メモリ回路42は、蓄積されたベースバンド画像データを制御回路44からの制御信号S44に従って一定所要時間遅延させたベースバンド画像データS42をフレーム内符号化回路43に出力する。フレーム内符号化回路43は、制御回路44が画質劣化を抑えることを目的として発する制御信号S45に従ってフレーム内符号化を行い、得られた圧縮画像データS13を出力する。ここでメモリ回路42を用いて実現されるベースバンド画像データの最小遅延量は、たとえば復号化時に用いた逆粒子化精度情報などの情報S43を制御回路44が処理してフレーム内符号化回路43に対する制御信号S45を生成し出力するまでに要する時間と等しいものとする。

【0019】このように、符号化方式変換装置12においては、フレーム間符号化方式を適用して得られる圧縮 50

画像データを復号化し、ベースバンド画像とした後に再 度フレーム内符号化方式を適用しているので、所望の圧 縮画像データが得られる。そしてこの時、復号化処理で 適用されるたとえば画像の逆量子化精度などの符号化参 照情報を符号化処理で活用しているので、復号化と符号 化が整合し、画質劣化を抑えることができる。

【0020】第2の画像記録再生装置14は、第2の画像記録再生装置14より入力された画像データを記録する。

【0021】第2の画像記録再生装置14の構成について、図4を参照してより詳細に説明する。第2の画像記録再生装置14は、ハードディスクインターフェイス回路53、ハードディスク装置54、復号化回路55および制御回路57を有する。第2の画像記録再生装置14においては、符号化方式変換装置12より圧縮画像データS13が入力される。入力された圧縮画像データS13は、ハードディスクインタフェース回路53に入力される。

【0022】ハードディスクインタフェース回路53は、制御回路57が発する制御信号S58に従って、命令とデータを多重した形式のインタフェースS54を介して、圧縮画像データS13をハードディスク装置54に記録する。再生時には、ハードディスクインタフェース回路53は、制御回路57が発する制御信号S58に従って、命令とデータを多重した形式のインタフェースS54を介して、圧縮画像データをハードディスク装置54から再生し、再生された圧縮画像データS55を復号化回路55に出力する。復号化回路55は圧縮画像データS14を生成し、出力する。

【0023】画像編集装置15は、第2の画像記録再生 装置14を再生して得られる画像データを編集して、た とえば放送用などの編集済の画像データを作成する。

【0024】次に、画像記録再生編集システム10aの動作を説明する。画像記録再生編集システム10aにおいては、まず第1の画像記録再生装置11にシステム外部から供給される画像信号S11が入力され、フレーム間符号化方式を用いて高率で圧縮されて記録される。この記録に関する制御については、必ずしも画像編集装置11が行う必要はなく、本発明においてその方法を規定するものではない。第1の画像記録再生装置11からは、編集で使用される可能性がある圧縮画像データS12が画像編集装置15が発する制御信号S16に基づいて再生され、符号化方式変換装置12で、第2の画像記録再生装置14において用いられるフレーム内符号化方式を行って得られる圧縮画像データと同等の形態の圧縮画像データS13に変換される。

【0025】変換された圧縮画像データS13は、第2の画像記録再生装置14に画像編集装置11が発する制御信号S16に基づいて記録される。第2の画像記録再

6



生装置14に記録された圧縮画像データは、画像編集装 置15が発する制御信号S16に基づいて再生されて、 ベースバンド画像S14として画像編集装置15に入力 され、画像編集装置15内で加工された後、編集済画像 S15としてシステム外部に出力される。

【0026】このように、本実施の形態の画像記録再生 編集システム10aにおいては、伝送や記録のためにフ レーム間符号化方式により高能率符号化された画像デー タを、応答性能が要求されフレームごとの画像が要求さ れる画像編集システムなどに適切に適用することができ る。そして特に、本実施の形態においては、メモリを具 えかつ復号化と符号化を連携させて制御する符号化方式 変換装置12を採用したことにより、ベースバンド画像 のみでインタフェースする構成に較べて画質劣化を抑え ることができる。

#### 【0027】第2の実施の形態

本発明の第2の実施の形態を図5を参照して説明する。 第2の実施の形態の画像記録再生編集システム10b は、第1の実施の形態の画像記録再生編集システム10 aから第1の画像記録再生装置11を削除した形態とな る。この形態は、画像記録再生編集システム10bに供 給される画像が、たとえば伝送系から入力された画像デ ータであり、フレーム間符号化をされた圧縮画像データ S12である場合に適用されるものである。符号化方式 変換装置13などの各部の動作は第1の実施の形態の画 像記録再生編集システム10aと同等である。入力され る画像データの符号化の状態によっては、このような簡 単な構成の画像記録再生編集システム10bによっても 本発明は実施可能である。

#### 【0028】第3の実施の形態

本発明の第3の実施の形態を図6~図8を参照して説明 する。第3の実施の形態の画像記録再生編集システム1 0 c は、図6にその構成を示すように、第1の実施の形 態の画像記録再生編集システム10aにおける、第1の 画像記録再生装置11および符号化方式変換装置12の 組を複数具えるとともに、それらの出力を適宜選択して 第2の画像記録再生装置14に入力するスイッチング装 置をさらに設けたものである。

【0029】したがって、画像記録再生編集システム1 0 c は、n 個の第1の画像記録再生装置11-1~1 1<sub>n</sub>、そのn個の第1の画像記録再生装置11<sub>n</sub>~11 "に対応したn個の符号化方式変換装置12-1~1 2-x、n個の符号化方式変換装置12-1~12-の出力 を選択するスイッチング装置13、第2の画像記録再生 装置14および画像編集装置15を有する。スイッチン グ装置13以外の各部の構成・動作は、前述した第1の 実施の形態と同じである。スイッチング装置13は、画 像編集装置15より入力される制御信号S16に基づい て、 n 個の符号化方式変換装置 1 2 -1~12 - のいずれ か1つの出力を選択し、第2の画像記録再生装置14に 50 入力する。

【0030】第3の実施の形態の画像記録再生編集シス テム10cにおいては、それぞれ任意の符号化方式によ り符号化された画像データが複数系統から入力され、各 系統の符号化方式変換装置 $12_i$  ( $i=1\sim n$ ) によ り、第2の画像記録再生装置14で用いるのと同じ所定 のフレーム内符号化方式に変換され、スイッチング装置 13により任意の系統が適宜選択されて第2の画像記録 再生装置14に順次記録される。なお、本実施の形態に おいては、第1の画像記録再生装置11および符号化方 式変換装置12の組は、素材画像の入力手段ごとに設け ている。したがって、各系統のフレーム間符号化方式 は、各々異なる場合もあれば、同じものもあり、全く任 意である。しかし、素材画像の符号化方式ごとに第1の 画像記録再生装置11と符号化方式変換装置12の組を 設けるような構成にしてもよい。

【0031】このような構成の画像記録再生編集システ ム10cは、複数の素材画像を組み合わせて1つの番組 を制作するなどの編集を行う場合に好適な構成である。 その画像記録再生編集システム10cを用いて編集を行 う場合の、処理の流れを図7を参照して説明する。編集 処理は、素材画像の探索、素材画像の準備、そして編集 という3段階のステップを経て実行される。まず、編集 処理で使用される可能性のある素材画像は、適宜伝送さ れ、あるいは記録媒体より再生されて、各々第1の画像 記録再生装置11よに入力されて記録される。この時点 では各素材画像は、通常フレーム間符号化方式により高 能率符号化されて、効率的に第1の画像記録再生装置1 1 。に記録される。但し、各素材画像の符号化方式は、 入力時点で既に適用されていた方式、あるいは、第1の 画像記録再生装置11において適用された方式など、任

【0032】そのような状態で編集処理を行うには、ま ず画像編集装置15が各符号化方式変換装置12に対し て編集で用いる画像の探索を行う。この画像の探索は、 n個の第1の画像記録再生装置11-4 (i=1~n)の 内、実質的に有効な素材画像が記録されている全ての第 1の画像記録再生装置11-1に対して順に行う。

意の方式である。

40

【0033】画像の探索・把握が終了したら、編集に必 要な画像の第1の画像記録再生装置11から第2の画像 記録再生装置14への転送を行う。画像編集装置15 は、必要な画像が記録されている第1の画像記録再生装 置11寸を順次選択し、その出力が第2の画像記録再生 装置14に入力されるようにスイッチング装置13を制 御する。そして、その第1の画像記録再生装置11っに 対して、画像名と必要な領域を指定し転送する画像を指 示する。そして、画像編集装置15から符号化方式変換 装置12に対して再生命令を出力することにより、第1 の画像記録再生装置11に記録されていた画像の必要部 分が再生され、符号化方式変換装置12gで第2の画像

10

記録再生装置14で用いる所定のフレーム内符号化方式 に変換されて、スイッチング装置13を介して第2の画 像記録再生装置14に記録される。この処理を、必要な 画像が記録されている第1の画像記録再生装置11-1に 対して順次行う。

【0034】素材画像の転送が終了したら、今度は画像編集装置15が第2の画像記録再生装置14に対して、適宜編集に必要な画像を指定し、その再生を指示する。第2の画像記録再生装置14は、再生が指示されたら、記録されている当該画像を読出し、復号化してベースバ 10ンド画像データを生成し、画像編集装置15に出力する。画像編集装置15は、その入力されたベースバンド画像データを用いて、適宜編集を行い、生成した画像データを出力する。

【0035】このように、画像記録再生編集システム10cにおいては、種々の符号化方式により符号化された複数の素材画像データを、統一的にハンドリングし、さらに復号化部と符号化部の不整合による画質の劣化を生じさせることなく、編集処理に用いており、効率的で高品質な編集処理を行うことができる。

【0036】また、複数の種類が異なる符号化方式を適用したn台の画像記録再生装置を、相互に接続するためには、通常であれば図8(A)に示すように、。C2台の符号化方式変換装置が必要であるが、図8(B)に示すような本実施の形態のような構成にすることにより、n-1台でよく、装置規模が大幅に簡略化される。また、このような構成をとり、全ての符号化方式を所定のフレーム内符号化方式に変換することにより、それらの任意のフレーム間符号化方式に対応した種々の素材・機器・伝送路などを、高い応答性能が求められる機器に効率的に接続することができ、それら種々の画像記録再生装置を組み合せて合理的にシステムを構築できる。

#### 【0037】変形例

本発明は、前述した第1~第3の実施の形態に限られるものではなく、任意好適な改変が可能である。たとえば、本実施の形態の画像記録再生編集システムには、任意の符号化方式を適用することができ、本発明は符号化方式により限定されるものではない。入力される各画像データのフレーム間符号化方式、および、第2の画像記録再生装置14で扱う所定のフレーム内符号化方式は、任意の方式でよい。また、本実施の形態は、画像データの編集を行う画像編集システムに本発明を適用した場合について説明したが、編集処理に限られるものではなく、任意の画像処理を行う画像処理システムに適用したが、に意の画像が一夕に特殊効果を施すような特殊効果システムなどに適用することもできる。【0038】また、前述した各実施の形態で用いた第1

14は、図2および図4に示したような構成に限られる ものではなく、任意の構成にしてよい。たとえば、図9 に示すような、より汎用的な画像記録再生装置を第1の 画像記録再生装置11および第2の画像記録再生装置1 4として適用するようにしてもよい。

【0039】図9は、入力画像データの符号化の状態、および、要求される出力画像データの符号化の状態などにより広範に適用可能で、第1の画像記録再生装置11としても第2の画像記録再生装置14としても適用可能な画像記録再生装置50の構成を示すプロック図である。画像記録再生装置50は、符号化回路51、第1のスイッチ52、ハードディスクインターフェイス回路53、ハードディスク装置54、復号化回路55、第2のスイッチ56および制御回路57を有する。

【0040】この画像記録再生装置50には、ベースバンド画像データまたは圧縮画像データが入力される。入力がベースバンド画像データの場合は、符号化回路51で符号化されて圧縮画像データS52が生成されてスイッチ55の一端に供給される。入力が圧縮画像データの場合には、その入力データS51がそのままスイッチ55の一端に入力される。第1のスイッチ52は、制御回路57が発する切り替え信号S57に従って、入力を切り替え、出力の圧縮画像データS53をハードディスクインタフェース回路53に入力する。ハードディスクインタフェース回路53に入力する。ハードディスクインタフェース回路53に、制御回路57が発する制御信号S58に従って、命令とデータを多重した形式のインタフェースS54を介して、圧縮画像データをハードディスク装置54に記録する。

【0041】圧縮画像データの再生時には、ハードディスクインタフェース回路53は、制御回路57が発する制御信号S58に従って、命令とデータを多重した形式のインタフェースS54を介して、圧縮画像データをハードディスク装置54から再生し、圧縮画像データS55を出力段の第2のスイッチ56の一端および復号化回路55に出力する。復号化回路55は圧縮画像データS55からベースバンド画像データS56を復号化して第2のスイッチ56の一端に出力する。第2のスイッチ56は、制御回路57が発する切り替え信号S59に従って、入力を切り替え、出力圧縮画像データまたはベースバンド画像データを選択して、出力する。

【0042】このような構成によれば、ベースバンド画像データが入力されても圧縮画像データが入力されても対処可能であるし、ベースバンド画像データの出力を要求されても適応可能である。本実施の形態においては、第1の画像記録再生装置11および第2の画像記録再生装置14のいずれの画像記録再生装置としても用いることができ、したがって、そのような統一した構成の画像記録再生装置を用いることにより、より柔軟なシステムを構築できる。

【0043】その他、本実施の形態においては、フレームを単位としてフレーム内符号化、フレーム間符号化を 50 行うようにしたが、フィールドを単位として処理しても



よく、画像の信号形態に応じて任意の画像を単位として 処理を行ってよい。

#### [0044]

【発明の効果】本発明によれば、編集装置のような高い 応答性能が求められる機器に接続するためのフィールド 内またはフレーム内符号化方式を適用した画像記録再生 装置と、大量の画像データを蓄積するために高い圧縮率 が得られるフレーム間符号化方式を適用した画像記録再 生装置を組み合わせて、通常より簡単な構成で、編集などの処理が適切に行え、画像劣化を最小限に抑えることのできる合理的な画像処理システムを提供できる。

# 【図面の簡単な説明】

【図1】本発明の第1の実施の形態の画像記録再生編集 システムの構成を示すプロック図である。

【図2】図1に示した画像記録再生編集システムの第1 の画像記録再生装置の構成を示すブロック図である。

【図3】図1に示した画像記録再生編集システムの符号 化方式変換装置の構成を示すプロック図である。

【図4】図1に示した画像記録再生編集システムの第2 の画像記録再生装置の構成を示すブロック図である。

【図5】本発明の第2の実施の形態の画像記録再生編集 システムの構成を示すプロック図である。 \*【図6】本発明の第3の実施の形態の画像記録再生編集 システムの構成を示すプロック図である。

12

【図7】図6に示した画像記録再生編集システムにおける画像編集処理の流れを示す図である。

【図8】複数の画像記録再生装置により1つの画像処理システムを構築する場合のシステム構成を模式的に示す図であり、(A)は従来の通常の方法により構築したシステムの構成を示す図、(B)は本発明の構成によるシステムの構成を示す図である。

10 【図9】図2および図4に示した画像記録再生装置の変 形例を示す図である。

#### 【符号の説明】

10…画像記録再生編集システム、11…第1の画像記録再生装置、12…符号化方式変換装置、13…スイッチング装置、14…第2の画像記録再生装置、15…画像編集装置、40…フレーム間復号化回路、42…メモリ回路、43…フレーム内符号化回路、44…制御回路、50…画像記録再生装置、51…符号化回路、52…第1のスイッチ、53…ハードディスクインターフェイス回路、54…ハードディスク装置、55…復号化回路、56…第2のスイッチ、57…制御回路

【図1】 【図2】





【図3】











【図7】



# 【図9】

