STATS 230: Computational Statistics Optimization

Babak Shahbaba

Department of Statistics, UCI

Overview

- In this lecture, we discuss convex optimization problems
- We start by some general concepts and definitions for constrained optimization
- Next, we will discuss some computational methods for solving such problems
- At the end, we will focus on the application of these methods in statistics
- For the most part, this lecture is based on the book on Convex Optimization by Boyd and Vandenberghe (2004)

Least squares regression models

Consider the least squares problem we discussed before:

minimize
$$RSS(\beta) = ||y - x\beta||^2$$

 For quadratic problems like this, we can solve the optimization problem by setting the gradient to zero

$$\nabla_{\beta} \text{RSS}(\beta) = -2x^{\top} (y - x\hat{\beta}) = 0$$
$$\hat{\beta} = (x^{\top}x)^{-1}x^{\top}y$$

assuming the Hessian is positive definite:

$$\nabla^2 \mathrm{RSS}(\beta) = 2x^\top x \succ 0$$

which is true iff x has independent columns

Regularized regression models

- Occasionally, we would like to solve the least squares problem while controlling the complexity of the resulting model by imposing constraints on the parameters
- One possible approach is to use Bridge regression models (Frank and Friedman, 1993)

minimize
$$\operatorname{RSS}(\beta) = \|y - x\beta\|^2$$

subject to $\sum_{j=1}^{p} |\beta_j|^{\gamma} \le s$

 \bullet Two important special cases are ridge regression (Hoerl and Kennard, 1970) $\gamma=2$ and Lasso (Tibshirani, 1996) $\gamma=1$

General optimization problems

In general, optimization problems have the following form:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $j = 1, ..., p$

• We are usually interested in *convex* optimization problems, where we minimize a convex objective function $f_0(x)$ over a convex set with convex inequality constraints $f_i(x)$ and affine equality constraints $h_j(x) = Ax - b$.

Affine sets

• Affine set, C: lines through any two distinct points in C remains in C,

$$\alpha x + \beta y \in C$$

if $x, y \in C$
 $\alpha, \beta \in \mathbb{R}$
 $\alpha + \beta = 1$

Affine functions

• A function $f(x): \mathbb{R}^n \to \mathbb{R}^m$ is an affine function if it is a sum of a linear function and a constant

$$f(x) = Ax + b$$

 $A \in \mathbb{R}^{m \times n}$
 $b \in \mathbb{R}^m$

Convex sets

• Convex set, C: line segments between two points in C remains in C,

$$\alpha x + \beta y \in C$$
if $x, y \in C$

$$0 \le \alpha, \beta \le 1$$

$$\alpha + \beta = 1$$

Non-convex Set

Convex Set

• If C is a convex set in \mathbb{R}^n and $f(x): \mathbb{R}^n \to \mathbb{R}^m$ is an affine function, then f(C), i.e., the image of C under f is also a convex set.

Convex functions

• A function $f(x): \mathbb{R}^n \to \mathbb{R}$ is convex if its domain is a convex set and

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$

 $\alpha \ge 0, \ \beta \ge 0, \ \alpha + \beta = 1$

- In general, for convex function $f(E[x]) \le E[f(x)]$ (Jensen's inequality)
- For example, all norms are convex functions

$$||x||_p = (\sum_i |x_i|^p)^{1/p}, \qquad p \ge 1$$

Convex functions

For convex functions,

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x), \quad \forall x, y \in D_f$$

• Also, the Hessian is positive semidefinite $\nabla^2 f(x) \succeq 0$, $\forall x \in D_f$

Terminology and notations

- Optimal value $p^* = \inf\{f_0(x)|f_i(x) \le 0, h_j(x) = 0\}$
- x is feasible if $x \in D = \bigcap_{i=0}^m f_i \cap \bigcap_{i=1}^p h_i$ and satisfies the constraints
- A feasible x^* is optimal if $f_0(x^*) = p^*$
- Assuming f_0 is convex and differentiable, x is optimal iff its feasible and $\nabla f_0(x)^{\top}(y-x) \geq 0$, for all feasible y
- For unconstrained problems, x is optimal iff $\nabla f_0(x) = 0$

Terminology and notations

• x is locally optimal if for a given R > 0, it is optimal for

minimize
$$f_0(z)$$

subject to $f_i(z) \le 0$ $i = 1, ..., m$
 $h_i(z) = 0$ $j = 1, ..., p$
 $\|z - x\| \le R$

 In convex optimization problems, any locally optimal point is also globally optimal.

Lagrangian

Consider the following optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $j = 1, ..., p$

- To take the constraints into account, we augment the objective function with a weighted sum of the constraints.
- Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ defined as follows:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x)$$

where λ and ν are dual variables or Lagrange multipliers.

This incorporates the constraints in the objective function

Ridge regression

Original problem:

minimize
$$RSS(\beta) = ||y - x\beta||^2$$

Subject to $||\beta||^2 \le s$

Lagrangian:

$$L = (y - x\beta)^{\top} (y - x\beta) + \lambda \beta^{\top} \beta$$

$$\nabla_{\beta} L = -2x^{\top} (y - x\hat{\beta}) + 2\lambda \hat{\beta} = 0$$

$$-x^{\top} y + x^{\top} x \hat{\beta} + \lambda \hat{\beta} = 0$$

$$-x^{\top} y + (x^{\top} x + \lambda I) \hat{\beta} = 0$$

$$(x^{\top} x + \lambda I) \hat{\beta} = x^{\top} y$$

$$\hat{\beta} = (x^{\top} x + \lambda I)^{-1} x^{\top} y$$

Lagrange dual function

We define the Lagrange dual function as follows:

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$$

- g is concave in λ and ν since it is a pointwise infimum of a family of affine functions in terms of (λ, ν)
- If $\lambda \succeq 0$ then for each feasible point \tilde{x}

$$\inf_{x\in D}L(x,\lambda,\nu)=g(\lambda,\nu)\leq L(\tilde{x},\lambda,\nu)\leq f_0(\tilde{x})$$

• Therefore, $g(\lambda, \nu) \leq p^*$ so $g(\lambda, \nu)$ is a lower bound for the optimal value

Lagrange dual function

• We define the Lagrange dual problem as follows:

maximize
$$g(\lambda, \nu)$$

Subject to $\lambda \succeq 0$

• Therefore, the above problem is also a convex optimization problem (i.e., minimizing -g)

- We denote the optimal value as d^* ; the corresponding solution (λ^*, ν^*) is called the dual optimal point
- In contrast, the original problem is called the primal problem, whose solution x* is called primal optimal

Weak vs. strong duality

- d* is the best lower bound for p*
- $d^* \le p^*$ is called weak duality
- ullet p^*-d^* is called the optimal duality gap
- Strong duality: $d^* = p^*$

Slater's condition

- Strong duality doesn't hold in general, but if the primal is convex, it usually holds under some conditions referred to as "constraint qualifications"
- A well known constraint qualification is Slater's condition which states that
 we have strong duality if besides convexity, there exists a point in the interior
 (more precisely, in the relative interior) of D for which we have strict
 feasibility

$$f_i(x) < 0$$
 $i = 1, \ldots, m,$ $Ax = b$

See Boyd and Vandenberghe (2004) for the formal proof.

Complementary slackness

- Consider primal optimal x^* and dual optimal (λ^*, ν^*) points
- If strong duality holds

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \inf_{x} [f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{j=1}^{p} \nu_{j}^{*} h_{j}(x)]$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{j=1}^{p} \nu_{j}^{*} h_{j}(x^{*})$$

$$\leq f_{0}(x^{*})$$

• Therefore, these are all equalities

Complementary slackness

- Conclusions:
 - \triangleright x^* minimizes $L(x, \lambda^*, \nu^*)$
 - $\sum_{i=1}^m \lambda_i^* f_i(x^*) = 0$

• The latter called complementary slackness, which indicates:

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0$$

 $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$

- In theory, we can find (λ^*, ν^*) from the dual problem (if it's easier to solve), then minimize $L(x, \lambda^*, \nu^*)$
- For many practical problems in statistics, however, we use cross-validation to choose (λ, ν)

Optimization through solving the dual problem

- When strong duality holds and a dual optimal exists, λ^*, ν^* , then any primal optimal is also a minimizer of $L(x, \lambda^*, \nu^*)$
- If the resulting solution is primal feasible then it is primal optimal
- We can use this fact to solve the optimization problem when the dual problem is easier to solve

 In information theory, the information content for a specific outcome x is defined as

$$h(X = x) = \log \frac{1}{P(X = x)}$$

• For a set of possible outcomes, x_1, \ldots, x_n , the entropy is defined as the expectation of information content:

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i$$

where
$$p_i = P(X = x_i)$$

 We choose an optimal probability model by maximizing entropy, or equivalently, minimizing negative entropy

Primal:

Minimize
$$\sum_{i=1}^{n} p_i \log p_i$$
Subject to
$$\sum_{i=1}^{n} p_i = 1$$

For simplicity, I omitted the inequality constraints $p_i \ge 0$

Lagrangian

$$L(p, \nu) = \sum p_i \log p_i + \nu (\sum p_i - 1)$$

ullet We minimize L(p,
u) by setting the gradient with respect to p to zero

$$\log \hat{p}_i + 1 + \nu = 0 \Rightarrow \hat{p}_i = \exp(-\nu - 1)$$

• Therefore, the dual function is

$$g(\nu) = (-\nu - 1) \sum \exp(-\nu - 1) + \nu([\sum \exp(-\nu - 1)] - 1)$$

= $-n \exp(-\nu - 1) - \nu$

• Dual:

Maximize
$$g(\nu) = -n \exp(-\nu - 1) - \nu$$

We find the dual optimal

$$n \exp(-\nu^* - 1) - 1 = 0$$

 $\nu^* = -1 - \log(1/n)$

• We now minimize $L(p, \nu^*)$

$$\log p_i^* + 1 + \nu^* = 0 \Rightarrow p_i^* = 1/n$$

- Therefore, the optimal probability model is the discrete uniform distribution
- Exercise: Show that maximizing the entropy while fixing the first k moments at m_1, \ldots, m_k results in a member of the exponential family of distributions

Karush-Kun-Tucker (KKT) optimality conditions

- Suppose the functions $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ are all differentiable; also x^* and (λ^*, ν^*) primal and dual optimal points with zero duality gap
- Since x^* minimizes $L(x, \lambda^*, \nu^*)$, the gradient vanishes at x^*

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^p \nu_j^* \nabla h_j(x^*) = 0$$

Additionally

$$f_i(x^*) \le 0$$
 $i = 1, ..., m$
 $h_i(x^*) = 0$ $j = 1, ..., p$
 $\lambda_i^* \ge 0$ $i = 1, ..., m$
 $\lambda_i^* f_i(x^*) = 0$ $i = 1, ..., m$

These are called Karush-Kun-Tucker (KKT) optimality conditions

Karush-Kun-Tucker (KKT) optimality conditions

- When the primal is convex, then KKT conditions are sufficient for the points to be primal and dual optimal with zero duality gap
- Therefore, for convex optimization problems with differentiable functions that satisfy Slater's condition, then KKT provides the necessary and sufficient conditions for optimality
- Many convex optimization problems can be expressed as methods for solving KKT conditions

Example

Consider the following equality constrained quadratic problem:

Minimize
$$(1/2)x^{\top}Px + q^{\top}x + r$$
; $P \succeq 0$
Subject to $Ax = b$

KKT conditions:

$$Px^* + q + A^{\top} \nu^* = 0$$
$$Ax^* = b$$

In the matrix form,

$$\left(\begin{array}{cc} P & A^{\top} \\ A & 0 \end{array}\right) \begin{pmatrix} x^* \\ \nu^* \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}$$

• To find x^* , ν^* , we can solve the above system of n+m equations

Descent methods

We now focus on numerical solutions for unconstrained optimization problems

Minimize
$$f(x)$$

with twice differentiable $f: \mathbb{R}^n \to \mathbb{R}$

- In theory, we could find the optimal value by solving $\nabla f(x^*) = 0$; in practice however, we need iterative methods to solve such problems
- To this end, we can use descent methods that produce a minimizing sequence $x^{(k)}$,

$$f(x^{(k+1)}) < f(x^{(k)}), \qquad k = 1, \dots$$

except when $x^{(k)}$ is optimal.

Descent methods

We set up the sequence as

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \qquad t^{(k)} > 0$$

- $\Delta x^{(k)}$ is called the "step" or "search direction"; $t^{(k)}$ is called the "step size".
- Using the first order Taylor approximation, we have

$$f(x + t\Delta x) \approx f(x) + t\nabla f(x)^{\top} \Delta x$$

To be a descent method, the search direction must satisfy

$$\nabla f(x^{(k)})^{\top} \Delta x^{(k)} < 0$$

Note that for convex functions,

$$f(x + t\Delta x) \ge f(x) + t\nabla f(x)^{\top} \Delta x$$

so the first order Taylor approximation underestimates the function

Backtracking

• To find the step size, suppose 0 < α < 0.5 and 0 < β < 1, then

$$f(x + t\Delta x) \approx f(x) + t\nabla f(x)^{\top} \Delta x < f(x) + \alpha t \nabla f(x)^{\top} \Delta x$$

We can then start with a relatively large step size and decrease it until it satisfies the above condition

Set
$$\alpha \in (0, 0.5), \beta \in (0, 1)$$
 and $t := 1$

While
$$f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\top} \Delta x$$
, Set $t := \beta t$

Gradient descent method

A reasonable choice for the search direction is the negative gradient

$$\Delta x = -\nabla f(x)$$

 Combine with the backtracking method, we repeat these steps until a stopping criterion is satisfied

Set
$$\Delta x = -\nabla f(x)$$

Set $\alpha \in (0, 0.5), \beta \in (0, 1)$ and $t := 1$
While $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\top} \Delta x$, Set $t := \beta t$
Set $x \leftarrow x + t\Delta x$

Steepest descent method

We can write the first-order Taylor approximation as follows

$$f(x + v) \approx f(x) + \nabla f(x)^{\top} v$$

where $\nabla f(x)^{\top}v$ is the directional derivative of f at x in the direction of v.

- Note that v is assumed to be a descent direction, $\nabla f(x)^{\top} v < 0$, and ||v|| = 1.
- Our objective is to find v such that the directional derivative is as negative as possible.
- This is called the normalized steepest descent direction,

$$\Delta x = \operatorname{argmin} \{ \nabla f(x)^\top v | \ ||v|| = 1 \}$$

Steepest descent method

- The choice of the metric of course makes a difference.
- In general, given the metric P (i.e., $||v||_P = (v^\top P v)^{1/2}$), we can find the [unnormalized] steepest descent direction
- As discussed before, we use the change of variable $z = P^{1/2}x$, whose Euclidian norm, ||z|| is the same as the quadratic norm $||v||_P$

$$x = P^{-1/2}z$$

$$\nabla_z f = P^{-1/2}\nabla_x f$$

• In the space of z with Euclidian norm, we set $\Delta z = -\nabla_z f$ as before

$$\Delta z = -P^{-1/2} \nabla_x f$$

For the original parameter, the corresponding step is

$$\Delta x = P^{-1/2}(-P^{-1/2}\nabla_x f) = -P^{-1}\nabla f(x)$$

Newton's method

- If we use the Euclidean metric, P = I, the steepest descent direction is simply the negative gradient, and the steepest descent method simply becomes the gradient descent method.
- However, if we use the Hessian metric, $P = \nabla^2 f(x)$, the steepest descent method becomes Newton's method, with the following Newton step:

$$\Delta x = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

Newton's method

 Newton's method can also be interpreted as the second-order Taylor approximation of f at x,

$$f(x + \Delta x) \approx f(x) + \nabla f(x)^{\top} \Delta x + \frac{1}{2} \Delta x^{\top} \nabla^{2} f(x) \Delta x$$

= $\tilde{f}(x)$

• We find the optimal Δx by minimizing $\tilde{f}(x)$ with respect to Δx ,

$$\Delta x = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

The Newton decrement

• Because $\nabla^2 f(x) \succ 0$

$$\nabla f(x)^{\top} \Delta x = -\nabla f(x)^{\top} [\nabla^2 f(x)]^{-1} \nabla f(x) < 0$$

The term

$$\lambda(x) = (\nabla f(x)^{\top} [\nabla^2 f(x)]^{-1} \nabla f(x))^{1/2}$$

is called the Newton decrement, which measures the proximity of x to x^*

ullet By plugging Δx in the second-order Taylor approximation,

$$f(x) - \min \tilde{f}(x) = f(x) - (f(x) - \frac{1}{2} \nabla f(x)^{\top} [\nabla^{2} f(x)]^{-1} \nabla f(x))$$
$$= \frac{1}{2} \lambda^{2}(x)$$

• Therefore, the Newton decrement can be used as an estimate of $f(x) - p^*$ and a stopping criterion.

Newton's algorithm

Specify the tolerance level arepsilon

Set
$$\Delta x = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

Calculate
$$\lambda^2 = \nabla f(x)^{\top} [\nabla^2 f(x)]^{-1} \nabla f(x)$$

If $\lambda^2/2 \leq \varepsilon$ then quit; Otherwise

Set
$$\alpha \in (0, 0.5), \beta \in (0, 1)$$
 and $t := 1$

While
$$f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\top} \Delta x$$
, Set $t := \beta t$

Set
$$x \leftarrow x + t\Delta x$$

Quasi-Newton method

- When finding the Hessian exactly is computationally expensive, we can approximate it with another positive definite matrix $M \succ 0$ which is easier to use
- Then,

$$\Delta x = -M^{-1}\nabla f(x)$$

- One possible approach is to use a rank 1 update
- At each iteration, we find $M^{(k+1)}$ based on its previous value $M^{(k)}$

$$\Delta x = x^{(k+1)} - x^{(k)}$$

$$y = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$$

$$v = y - M^{(k)} \Delta x$$

Quasi-Newton method

Then,

$$M^{(k+1)} = M^{(k)} + vv^{\top}/v^{\top}\Delta x$$

Note that in general for rank 1 updates we have (matrix inversion lemma)

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u}$$

- Therefore, we can find the inverse of $M^{(k+1)}$ directly from the previously computed inverse of $M^{(k)}$
- The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method uses a rank 2 update

$$M^{(k+1)} = M^{(k)} + \frac{yy^\top}{y^\top \Delta x} - \frac{M^{(k)} \Delta x (M^{(k)} \Delta x)^\top}{\Delta x^\top M^{(k)} \Delta x}$$

Coordinate descent method

• For high dimensional problems, it would be easier to perform optimization one parameter at a time (Tseng, 2001)

Start with
$$x^{(0)} \in D_f$$

At each iteration k, for $i = 1, \ldots n$

$$x_i^{(k)} = \operatorname{argmin}_{x_i} f(x_1^{(k+1)}, x_2^{(k+1)}, \dots, x_i, x_{i+1}^{(k)}, \dots, x_n^{(k)})$$

Quit if
$$\|x^{(k+1)} - x^{(k)}\| \le \varepsilon$$

• The convergence to the optimal value x^* is guaranteed for strictly convex and differentiable functions

Coordinate descent method

 Instead of "alternating optimization" approach discussed above, we could use a gradient descent in one direction at a time

$$f(x_1,...,x_n) = f_0(x_1,...,x_n) + \sum_{i=1}^n f_i(x_i)$$

where f_i is non-differentiable but convex, and f_0 is convex and differentiable

• This condition for example holds for Lasso models

$$\text{Minimize} \|y - x\beta\|^2 + \lambda \|\beta\|_1$$

Coordinate descent method

 When f is not differentiable, the convergence to the optimal solution is not guaranteed in general, but it works if the non-differentiable part of f is separable

$$x_i^{(k+1)} = x_i^{(k)} - t_{ki} \nabla_i f(x_1^{(k+1)}, \dots, x_i^{(k)}, \dots, x_n^{(k)})$$

 Also, instead of one coordinate at a time, we could update a block of coordinates; this is called "block coordinate descent"

 We can use a modified version of Newton's method for optimization problems with equality constraints:

minimize
$$f(x)$$

subject to $Ax = b$

- We assume the the initial point is feasible: $x^{(0)} \in D_f$, $Ax^{(0)} = b$.
- Our goal is to modify the Newton step, Δx , by taking the equality constraints into account so the subsequent points are also feasible.
- For this, we need to have $A\Delta x=0$ so at each step $A(x^{(k)}+\Delta x)=b$.

• To find Δx , we can replace the objective function with its second-order taylor approximation at a given point x and rewrite the optimization problem as follows:

minimize
$$f(x+v) = f(x) + \nabla f(x)^{\top} v + \frac{1}{2} v^{\top} \nabla^2 f(x) v$$

subject to $Av = 0$

- The modified Newton step, Δx , is the solution for this optimization problem.
- This is of course an equality constrained quadratic problem (discussed above), for which we can use the KKT conditions to rewrite the optimization problem as a system of linear equations

$$\begin{pmatrix} \nabla^2 f(x) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ \omega \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ 0 \end{pmatrix}$$

- Here we use ω to denote the optimal dual variable for the approximate quadratic problem.
- If the original objective function, f(x), is quadratic, then ω is the same as ν , the optimal dual variable for the original problem.
- After we find Δx , we follow the same Newton algorithm we discussed for the unconstrained problem.

 We now discuss Newton's method for convex optimization problems with inequality constraints:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$ $i = 1, ..., m$
 $Ax = b$

- We assume that Slater's constraint qualification holds: there exists $x \in D$ for which Ax = b and $f_i(x) < 0, i = 1, ..., m$.
- Therefore, the primal and dual optimal points satisfy the KKT conditions.

- For such problems, we can use Newton's methods based on interior-point algorithms.
- More specifically, we focus on a specific interior-point algorithm called the barrier method.
- In this approach, we bring the inequality constraints into the objective junction and rewrite the optimization problem as follows:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where the indicator function is defined as

$$I_{-}(u) = \begin{cases} 0 & u \le 0 \\ \infty & u > 0 \end{cases}$$

- This creates a barrier at 0 such that violating the inequality constraints adds an infinite cost to the objective function.
- The problem however is that the resulting objective function is not differentiable so we cannot use Newton's method.
- To solve this issue, we can use an approximate logarithmic barrier, which is smoother and differentiable, instead:

$$\hat{I}_{-}(u) = -\frac{1}{t}\log(-u)$$

where t>0 controls the accuracy of the approximation: higher t, better approximation.

• We can now rewrite our optimization problem as follows:

minimize
$$f_0(x) + \sum_{i=1}^m -\frac{1}{t} \log(-f_i(x))$$

subject to $Ax = b$

Or alternatively,

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

where
$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$$
.

 We can now use Newton's method for this optimization problem as discussed before.

- The solution we find is of course for an approximation of the original problem.
- We can use very large t values to improve the quality of approximation, but this would lead to computational problems when we approach the boundary of the feasible set.
- To address this issue, we can start with a small value for t and gradually increase it to improve the approximation accuracy.
- This way, we will find a sequence of solutions $x^*(t)$ for t > 0. This is called the *central path* for the original optimization problem.
- At each iteration k, we initialize Newton's method at $x^*(t_{k-1})$ to find the new *central point* $x^*(t_k)$, where $t_k > t_{k-1}$.

Optimization methods in statistics

- In the frequentist framework, we typically perform statistical inference by maximizing log-likelihood $\ell(\theta)$, or alternatively minimizing negative log-likelihood, which is also known as the energy function
- Additionally, we have
 - Score function: $s(\theta) = \nabla_{\theta} \ell(\theta)$
 - ▶ Observed Fisher information: $J(\theta) = -\nabla_{\theta}^2 \ell(\theta)$
 - Fisher information: $I(\theta) = E[-\nabla_{\theta}^2 \ell(\theta)]$
- The step in Newton's method is

$$\Delta \theta = [J(\theta)]^{-1} s(\theta)$$

That is, in iteration k,

 $\theta^{(k+1)} = \theta^{(k)} + [J(\theta^{(k)})]^{-1} s(\theta^{(k)})$

Fisher scoring algorithm

 If instead of the observed information, we use the Fisher information (i.e., expectation of the observed information), the resulting method is called the Fisher scoring algorithm

$$\Delta \theta = [I(\theta)]^{-1} s(\theta)$$

That is,

$$\theta^{(k+1)} = \theta^{(k)} + [I(\theta^{(k)})]^{-1}s(\theta^{(k)})$$

- In general, the Fisher scoring algorithm tends to be less sensitive to the initial guess. On the other hand, the Newton's method tends to converge faster
- For exponential family models with natural parameters and GLM with canonical links, the two methods are identical

Exponential family and GLM

 Recall that the single parameter exponential family has the following general form:

$$P(y|\mu) = \exp\{g(\mu)t(y) + c(\mu) + h(y)\}\$$

• For models with multiple parameters, we have

$$P(y|\mu) = \exp\{\sum_{k=1}^{K} g_k(\mu)t_k(y) + c(\mu) + h(y)\}$$

where g, t, c, and h are vectors.

• We can change the parameter using the transformation $\phi_k = g_k(\mu)$, and write the distribution in terms of natural parameter ϕ :

$$P(y|\mu) = \exp\{\sum_{k=1}^{K} \phi_k t_k(y) + c^*(\phi) + h(y)\}$$

Consider the following Poisson model:

$$\begin{array}{rcl} P(y_i|\mu) & = & e^{-\mu_i} \mu_i^{y_i}/y_i! \\ \\ & = & \exp\{\log(\mu_i)y_i - \mu_i - \log(y_i!)\} \end{array}$$
 where $\phi_i = g(\mu_i) = \log(\mu_i), \ t(y_i) = y_i, \ c(\mu_i) = -\mu_i, \ \text{and} \ h(y_i) = -\log(y_i!).$

We have

$$\phi_{i} = \log(\mu_{i}) \quad \Rightarrow \quad \mu_{i} = \exp(\phi_{i})$$

$$c^{*}(\phi_{i}) = \exp(\phi_{i})$$

$$E_{\phi_{i}}[t(y_{i})] = E(y_{i}) = -\frac{\partial c^{*}(\phi_{i})}{\partial \phi_{i}} = \exp(\phi_{i}) = \mu_{i}$$

$$var_{\phi_{i}}[t(y_{i})] = var(y_{i}) = -\frac{\partial^{2}c^{*}(\phi_{i})}{\partial \phi_{i}^{2}} = \exp(\phi_{i}) = \mu_{i}$$

• The score function with respect to ϕ_i can be obtained as follows:

$$s(\phi_i) = \frac{\partial \ell(\phi_i)}{\partial \phi_i}$$

$$= t(y_i) + \frac{\partial c^*(\phi_i)}{\partial \phi_i}$$

$$= y_i - \exp(\phi_i)$$

$$= y_i - \mu_i$$

• The total score function based on *n* observations is

$$s(\phi) = \sum_{i} y_i - \exp(\phi_i) = \sum_{i} y_i - \mu_i$$

• As the result, the likelihood equation is:

$$\sum_{i} y_i - \exp(\hat{\phi}_i) = \sum_{i} y_i - \hat{\mu}_i = 0$$

- For Poisson regression model, we are of course interested in regression parameters β .
- Therefore, we would like to write the score function in terms of β .
- To do this, we first need to specify the link function.
- Suppose we use the log link function

$$g(\mu_i) = \log(\mu_i) = x_i \beta$$

• Since we have $\phi_i = g(\mu_i)$, we can write the link function as follows:

$$\phi_i = \log(\mu_i) = x_i \beta$$

• The link function that transforms the mean to the natural parameter is referred to as the *canonical link*.

- Using the link function, we can now write the score function in terms of β .
- For the j^{th} element of β , we have

$$s(\beta_j) = \sum_{i} \frac{\partial \ell(\beta)}{\partial \beta_j}$$

$$= \sum_{i} \frac{\partial \ell(\phi)}{\partial \phi_i} \frac{\partial \phi_i}{\partial \beta_j}$$

$$= \sum_{i} [y_i - \exp(x_i \beta)] x_{ij}$$

• As the result, the likelihood equation in terms of β_i is

$$\sum_{i}[y_{i}-\exp(x_{i}\hat{\beta})]x_{ij}=0$$

• We can now easily obtain the Fisher information matrix in terms of β .

$$I(\beta_{j}\beta_{k}) = E[-\frac{\partial^{2}\ell(\beta)}{\partial\beta_{j}\partial\beta_{k}}]$$

$$= E[\sum_{i} x_{ij}x_{ik} \exp(x_{i}\beta)]$$

$$= \sum_{i} x_{ij}x_{ik} \exp(x_{i}\beta)$$

In a matrix format

$$I(\beta) = x^{\top} Wx$$

where W is a diagonal matrix whose i^{th} element is $\exp(x_i\beta)$.

GLM

In general, we can show that for the jth parameter

$$s(\beta_j) = \sum_i \frac{[y_i - \mu_i]x_{ij}}{var(y_i)} \frac{\partial \mu_i}{\partial \eta_i}$$

where $\partial \mu_i/\partial \eta_i$ depends on the link function we choose

 It is also easy to show that for a general link function, the Fisher information matrix is

$$I(\beta_{j}, \beta_{k}) = E\left(-\frac{\partial^{2}\ell(\beta)}{\partial \beta_{j}\partial \beta_{k}}\right)$$

$$= \sum_{i} \frac{x_{ij}x_{ik}}{var(y_{i})} \left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}$$

$$I(\beta) = x^{T}Wx$$

$$W_{ii} = \frac{\left(\frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2}}{var(y_{i})}$$

Iterative re-weighted least squares

- For GLM, Fisher scoring is related to the weighted least squares method (e.g., linear regression with non-constant variance for error terms)
- ullet We can write the Fisher scoring algorithm for updating eta as

$$I(\beta^{(k)})\beta^{(k+1)} = I(\beta^{(k)})\beta^{(k)} + s(\beta^{(k)})$$

• since $I(\beta) = x^{\top} W x$,

$$(x^{\top}W^{(k)}x)\beta^{(k+1)} = (x^{\top}W^{(k)}x)\beta^{(k)} + s(\beta^{(k)})$$

After few simple steps, we have

$$(x^{\top}W^{(k)}x)\beta^{(k+1)} = x^{\top}W^{(k)}z^{(k)}$$

where

$$z_i^{(k)} = \eta_i^{(k)} + (y_i - \mu_i^{(k)}) \frac{\partial \eta_i^{(k)}}{\partial \mu_i^{(k)}}$$

Iterative re-weighted least squares

• At each iteration, we can find the next estimate for β as follows:

$$\beta^{(k+1)} = (x^{\top} W^{(k)} x)^{-1} x^{\top} W^{(k)} z^{(k)}$$

• The above estimate is similar to the weighted least squares estimate. In this case, $W^{(k)}$ is a diagonal matrix whose i^{th} element is

$$W_{ii}^{(k)} = rac{\left(rac{\partial \mu_i^{(k)}}{\partial \eta_i^{(k)}}
ight)^2}{var(y_i)}$$

- Note that for GLM, the weights W and the response variable z change from one iteration to another based on the current estimate of β .
- ullet We iteratively estimate eta until the algorithm converges.