Επίλυση Αναδοομικών Σχέσεων

Δημήτρης Φωτάκης

Σχολή Ηλεπτοολόγων Μηχανιπών και Μηχανιπών Υπολογιστών Εθνιπό Μετσόβιο Πολυτεχνείο Email: fotakis@cs.ntua.gr

1 Αναπαράσταση Ακολουθιών

Γνωρίζουμε ήδη τρεις διαφορετικούς τρόπους αναπαράστασης μιας ακολουθίας: την απαρίθμηση όλων των όρων $(\pi.\chi.\ 1,2,4,8,\ldots,2^n,\ldots)$, τον γενικό όρο ή "κλειστό τύπο", που καθορίζει το a_n σαν συνάρτηση του n $(\pi.\chi.\ a_n=2^n)$, και τη Γεννήτρια Συνάρτηση $(\text{συνήθη}\ \text{ή}\ \text{εκθετική},\ \pi.\chi.\ A(x)=\frac{1}{1-2x})$.

Μια ακολουθία αναπαρίσταται ακόμη με την αναδρομική σχέση που εκφράζει τον n-οστό όρο a_n σαν συνάρτηση των προηγούμενων όρων a_{n-1}, a_{n-2}, \ldots Η αναδρομική σχέση (ή αναδρομική εξίσωση ή εξίσωση διαφορών) πρέπει να συνοδεύεται από τις τιμές για ένα κατάλληλο σύνολο όρων της ακολουθίας. Οι τιμές αυτές ονομάζονται συνοριακές ή αρχικές συνθήκες.

Το πιο γνωστό παράδειγμα ακολουθίας που ορίζεται αναδρομικά είναι η ακολουθία Fibonacci, η οποία ορίζεται από την αναδρομική σχέση $a_n=a_{n-1}+a_{n-2}$ με αρχικές συνθήκες $a_0=1$ και $a_1=1$. Η ακολουθία που δίνει το άθροισμα των πρώτων $a_0=1$ αναδρομική σχέση $a_n=a_{n-1}+n$ με αρχική συνθήκη $a_0=0$. Η ακολουθία με γενικό όρο $a_0=1$ 0 ορίζεται από την αναδρομική σχέση $a_0=1$ 1. Η ακολουθία που αντιστοιχεί στο $a_0=1$ 1 ορίζεται από την αναδρομική σχέση $a_0=1$ 2 αρχική συνθήκη $a_0=1$ 3. Η ακολουθία που αντιστοιχεί στο $a_0=1$ 4 ορίζεται από την αναδρομική σχέση $a_0=1$ 5.

Το πλεονέκτημα των αναδρομικών σχέσεων είναι ότι συχνά προκύπτουν εύκολα και φυσιολογικά από την περιγραφή ενός προβλήματος (π.χ. κατά την ανάλυση αναδρομικών αλγόριθμων). Συχνά θέλουμε να "λύσουμε" αυτές τις αναδρομικές σχέσεις και να υπολογίσουμε τον γενικό όρο της ακολουθίας. Στη συνέχεια, θα εστιάσουμε στην επίλυση γραμμικών αναδρομικών σχέσεων με σταθερούς συντελεστές.

Ασκηση 1. Θεωρούμε *n* ευθείες στο επίπεδο ώστε κάθε ευθεία να τέμνει όλες τις υπόλοιπες σε ένα ακριβώς σημείο και καμία τριάδα ευθειών να μην διέρχεται από το ίδιο σημείο. Πόσες περιοχές ορίζουν στο επίπεδο αυτές οι ευθείες;

Λύση. Έστω a_n ο αφιθμός των πεφιοχών που οφίζουν n τέτοιες ευθείες στο επίπεδο. Θα διατυπώσουμε την αναδρομική σχέση που πεφιγράφει το a_n . Προφανώς είναι $a_0=1$ (αν δεν υπάρχει καμία ευθεία, το επίπεδο είναι αδιαίρετο), $a_1=2$ (μία ευθεία χωρίζει το επίπεδο σε δύο περιοχές), και $a_2=4$ (δύο ευθείες χωρίζουν το επίπεδο σε 4 περιοχές).

Έστω ότι έχουμε n-1 ευθείες που χωρίζουν το επίπεδο σε a_{n-1} περιοχές. Η n-οστή ευθεία έχει n-1 σημεία τομής με τις υπόλοιπες ευθείες. Τα σημεία αυτά χωρίζουν την n-οστή ευθεία σε

Αυτές είναι οι αρχικές συνθήκες που χρησιμοποιεί το βιβλίο του Liu. Στη σχετική βιβλιογραφία, συνήθως χρησιμοποιούνται οι $a_0=0$ και $a_1=1$ σαν αρχικές συνθήκες. Η Γεννήτρια Συνάρτηση της ακολουθίας Fibonacci για αυτές τις αρχικές συνθήκες είναι $A(x)=\frac{x}{1-x-x^2}$ και ο γενικός όρος της ακολουθίας είναι $a_n=\frac{\sqrt{5}}{5}(\frac{1+\sqrt{5}}{2})^n-\frac{\sqrt{5}}{5}(\frac{1-\sqrt{5}}{2})^n$.

n μέφη. Κάθε μέφος διαιφεί μια από τις υπάρχουσες a_{n-1} πεφιοχές στα δύο (με άλλα λόγια, κάθε μέφος προσθέτει μια νέα πεφιοχή στις ήδη υπάρχουσες). Επομένως, $a_n=a_{n-1}+n$ με αρχική συνθήκη $a_0=1$. Αν λύσουμε αυτή την αναδρομική σχέση, προκύπτει ότι $a_n=\frac{n^2+n+2}{2}$.

2 Γραμμικές Αναδρομικές Σχέσεις με Σταθερούς Συντελεστές

Μια αναδρομική σχέση της μορφής

$$C_0 a_n + C_1 a_{n-1} + \ldots + C_k a_{n-k} = f(n)$$
(1)

όπου τα C_0, C_1, \ldots, C_k είναι σταθερές, ονομάζεται γραμμική αναδρομική σχέση με σταθερούς συντελεστές και οδηγό συνάρτηση την f(n). Όταν τα C_0 και C_k είναι διαφορετικά από το 0, η τάξη της αναδρομικής σχέσης είναι k. Αν f(n) = 0, η σχέση χαρακτηρίζεται ομογενής.

Π.χ., η σχέση $a_n+a_{n-1}=2^n$ είναι μια αναδρομική σχέση πρώτης τάξης με οδηγό συνάρτηση 2^n . Η σχέση $a_n-2a_{n-3}=0$ είναι μια ομογενής αναδρομική σχέση τρίτης τάξης. Η σχέση $a_n+2a_{n-5}-a_{n-10}=n^3$ είναι μια αναδρομική σχέση δέκατης τάξης με οδηγό συνάρτηση n^3 .

Η ακολουθία που αντιστοιχεί σε μια γραμμική αναδρομική σχέση τάξης k (η λεγόμενη και "λύση" της σχέσης) προσδιορίζεται μοναδικά αν είναι γνωστές οι τιμές k διαδοχικών όρων της ακολουθίας (επαρκείς αρχικές συνθήκες). Οι όροι αυτοί συνηθίζεται (αλλά δεν είναι απαραίτητο) να είναι οι αρχικοί όροι της ακολουθίας. Αν οι αρχικές συνθήκες είναι επαρκείς, μπορούμε να υπολογίσουμε τόσο τους επόμενους όσο και τους προηγούμενους όρους εφαρμόζοντας την αναδρομική σχέση. Για παράδειγμα, η ακολουθία που αντιστοιχεί στην αναδρομική σχέση $a_n = a_{n-1} + a_{n-2}$ με αρχικές συνθήκες $a_0 = 1$ και $a_1 = 1$ είναι η ακολουθία Fibonacci.

Αν οι αρχικές συνθήκες είναι λιγότερες ή περισσότερες από k, ή αφορούν μη-συνεχόμενους όρους, ενδέχεται να υπάρχουν πολλές λύσεις ή να μην υπάρχει λύση. Για παράδειγμα, θεωρούμε τη σχέση $a_n=a_{n-1}+a_{n-2}$. Αν έχουμε μόνο το $a_0=1$ σαν αρχική συνθήκη, υπάρχουν άπειρες λύσεις, π.χ. $1,1,2,3,5,8,\ldots$, ή $1,2,3,5,8,\ldots$, ή $1,3,4,7,11,18,\ldots$, κλπ. Αν έχουμε τα $a_0=1$, $a_1=1$, και $a_3=10$, δεν υπάρχει καμία λύση.

Στο εξής θα υποθέτουμε ότι η γραμμική σχέση συνοδεύεται από τις τιμές k διαδοχικών όρων. Σε αυτή την περίπτωση, αποδεικνύεται ότι η αναδρομική σχέση έχει μοναδική λύση.

2.1 Ομογενείς και Ειδικές Λύσεις

Η λύση a_n μιας γραμμικής αναδρομικής σχέσης είναι το άθροισμα της ομογενούς λύσης $a_n^{(h)}$ και της ειδικής λύση $a_n^{(p)}$. Η ομογενής λύση $a_n^{(h)}$ ικανοποιεί την αντίστοιχη ομογενή αναδρομική σχέση

$$C_0 a_n + C_1 a_{n-1} + \ldots + C_k a_{n-k} = 0$$
(2)

Η ειδική λύση $a_n^{(p)}$ ικανοποιεί την αρχική αναδρομική σχέση (1) με οδηγό συνάρτηση f(n). Προφανώς το άθροισμά τους $a_n=a_n^{(h)}+a_n^{(p)}$ ικανοποιεί την (1). Η ειδική λύση ικανοποιεί την (1) αλλά δεν ικανοποιεί κατ' ανάγκη και τις αρχικές συνθήκες. Το άθροισμα της ειδικής και της ομογενούς λύσης ικανοποιεί τόσο την (1) όσο και τις αρχικές συνθήκες.

2.2 Υπολογισμός Ομογενούς Λύσης

Θεωρούμε τη λεγόμενη χαρακτηριστική εξίσωση της αναδρομικής σχέσης (1)

$$C_0 x^k + C_1 x^{k-1} + C_2 x^{k-2} + \dots + C_{k-1} x + C_k = 0$$
(3)

Η χαρακτηριστική εξίσωση είναι ισοδύναμη με την εξίσωση

$$C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \ldots + C_{k-1} x^{n-k+1} + C_k x^{n-k} = 0$$
(4)

που προκύπτει αν θέσουμε όπου a_n το x^n στην ομογενή αναδρομική σχέση (2).

Στο εξής υποθέτουμε ότι η χαρακτηριστική εξίσωση έχει μόνο πραγματικές ρίζες (δεν θα ασχοληθούμε με την περίπτωση των μιγαδικών ριζών).

Αρχικά θεωρούμε ότι η χαρακτηριστική εξίσωση έχει k διαφορετικές ρίζες x_1, x_2, \ldots, x_k με πολλαπλότητα 1. Σε αυτή την περίπτωση, η ομογενής λύση έχει τη μορφή:

$$a_n^{(h)} = A_1 x_1^n + A_2 x_2^n + \ldots + A_k x_k^n$$

όπου τα A_i είναι σταθερές που υπολογίζονται από τις αρχικές συνθήκες.

Αφού κάθε x_i αποτελεί وίζα της χαρακτηριστικής εξίσωσης, η ομογενής σχέση (2) επαληθεύεται αν θέσουμε όπου a_n το $A_ix_i^n$, για κάθε $i=1,\ldots,k$. Επομένως, και το άθροισμα των $A_ix_i^n$ ικανοποιεί την ομογενή σχέση (2). Πρέπει ακόμη να προσδιοριστούν οι σταθερές A_i ώστε να επαληθεύονται οι αρχικές συνθήκες.

Η διαδικασία αυτής της ενότητας οδηγεί στη συνολική λύση όταν η αρχική αναδρομική σχέση είναι ομογενής (π.χ. ακολουθία Fibonacci, βλ. αντίστοιχο παράδειγμα στο βιβλίο του Liu).

Παράδειγμα 1. Έστω η ομογενής αναδρομική σχέση $a_n=4a_{n-2}$. Η χαρακτηριστική της εξίσωση είναι $x^2-4=0\Leftrightarrow (x-2)(x+2)=0$ και έχει δύο απλές ρίζες, τις 2 και -2. Η λύση έχει λοιπόν τη μορφή $a_n=A_1\,2^n+A_2(-2)^n$.

Για αρχικές συνθήκες $a_0=2$ και $a_1=0$, είναι $A_1=A_2=1$ και η ακολουθία είναι $a_n=2^n+(-2)^n$. Αν $a_0=1$ και $a_1=2$, είναι $A_1=1$ και $A_2=0$ και η ακολουθία είναι $a_n=2^n$.

Επίσης παρατηρείστε ότι αν $a_0 = 1$ και $a_2 = 4$, έχουμε άπειρες λύσεις της μορφής $a_n = A_1 2^n + (1 - A_1)(-2)^n$, ενώ αν $a_0 = 1$ και $a_2 = 3$, δεν έχουμε καμία λύση.

Άσκηση 2. Να λυθεί η αναδρομική σχέση $a_n - a_{n-1} = 0$ με αρχική συνθήκη $a_0 = 1$.

Λύση. Η χαρακτηριστική εξίσωση είναι x-1=0 και έχει μια απλή ρίζα, το 1. Η λύση έχει λοιπόν τη μορφή $a_n=A_11^n=A_1$. Για να επαληθεύονται οι αρχικές συνθήκες, πρέπει $A_1=1$. Επομένως, η λύση είναι $a_n=1$ (το οποίο είναι άλλωστε προφανές αφού κάθε όρος της ακολουθίας πρέπει να είναι ίδιος με τον προηγούμενο σύμφωνα με την αναδρομική σχέση). \Box

Άσκηση 3. Να λυθεί η αναδρομική σχέση $a_n - 6a_{n-1} + 8a_{n-2} = 0$ με αρχικές συνθήκες $a_0 = 2$ και $a_1 = -1$.

Λύση. Η χαρακτηριστική εξίσωση είναι $x^2-6x+8=0 \Leftrightarrow (x-4)(x-2)=0$ και έχει δύο απλές ρίζες 2 και 4. Η λύση έχει λοιπόν τη μορφή $a_n=A_1\,2^n+A_2\,4^n$. Για να επαληθεύονται οι

αρχικές συνθήκες, πρέπει $A_1 + A_2 = 2$ και $2A_1 + 4A_2 = -1$. Αυτό το σύστημα έχει μοναδική λύση $A_1 = 9/2$ και $A_2 = -5/2$. Επομένως, η λύση είναι $a_n = (9/2) 2^n - (5/2) 4^n$.

Αν η χαρακτηριστική εξίσωση έχει ρίζα x_1 πολλαπλότητας m, το τμήμα της ομογενούς λύσης που αντιστοιχεί στην x_1 είναι

$$a_n^{(h,1)} = (A_1 n^{m-1} + A_2 n^{m-2} + \ldots + A_{m-1} n + A_m) x_1^n$$

όπου τα A_i είναι σταθεφές που υπολογίζονται από τις αρχικές συνθήκες. Για κάθε $i=1,\ldots,m$, η ομογενής σχέση (2) επαληθεύεται αν θέσουμε όπου a_n το $A_i n^{m-i} x_1^n$. Αυτό συμβαίνει γιατί κάθε ρίζα πολλαπλότητας m αποτελεί ρίζα της ίδιας της χαρακτηριστικής εξίσωσης και της πρώτης, δεύτερης, ..., (m-1)-οστής παραγώγου της. Επομένως, η ομογενής σχέση (2) επαληθεύεται αν θέσουμε όπου a_n το $a_n^{(h,1)}$, δηλαδή το άθροισμα των ποσοτήτων $A_i n^{m-i} x_1^n$ για $i=1,\ldots,m$.

Παράδειγμα 2. Έστω η ομογενής αναδρομική σχέση

$$a_n - 11a_{n-1} + 34a_{n-2} + 28a_{n-3} - 344a_{n-4} + 640a_{n-5} - 384a_{n-6} = 0$$

Θέλουμε να βρούμε τη μορφή της λύσης (για ευχολία αγνοούμε τις αρχιχές συνθήχες). Η χαραχτηριστιχή εξίσωση είναι

$$x^{6} - 11x^{5} + 34x^{4} + 28x^{3} - 344x^{2} + 640x - 384 = 0 \Leftrightarrow (x - 2)^{3}(x - 4)^{2}(x + 3) = 0$$

Η χαρακτηριστική εξίσωση έχει τριπλή ρίζα το 2, διπλή ρίζα το 4, και απλή ρίζα το -3, Επομένως, η μορφή της λύσης είναι

$$a_n = (A_1 n^2 + A_2 n + A_3) 2^n + (A_4 n + A_5) 4^n + A_6 (-3)^n$$

όπου τα A_1, \ldots, A_6 προσδιορίζονται από τις εκάστοτε αρχικές συνθήκες.

Ασκηση 4. Να λυθεί η αναδρομική σχέση $a_n + a_{n-1} - a_{n-2} - a_{n-3} = 0$ με αρχικές συνθήκες $a_0 = 2$, $a_1 = -1$, και $a_2 = 3$.

Αύση. Η χαρακτηριστική εξίσωση είναι $x^3+x^2-x-1=0\Leftrightarrow (x-1)(x+1)^2=0$ και έχει μια απλή ρίζα, το 1, και μια διπλή ρίζα, το -1. Με βάση τα παραπάνω, η μορφή της λύσης είναι

$$a_n = (A_1 n + A_2)(-1)^n + A_3 1^n = (A_1 n + A_2)(-1)^n + A_3$$

Χοησιμοποιώντας τις αρχικές συνθήκες, καταλήγουμε ότι τα A_1,A_2,A_3 πρέπει να επαληθεύουν τις $A_2+A_3=2$, $A_1+A_2-A_3=1$, και $2A_1+A_2+A_3=3$. Οι λύσεις αυτού του συστήματος είναι $A_1=1/2$, $A_2=5/4$ και $A_3=3/4$. Η λύση είναι $a_n=(1/2)(-1)^nn+(5/4)(-1)^n+3/4$.

2.3 Υπολογισμός Ειδικής Λύσης

Δεν υπάρχει γενική μέθοδος για τον υπολογισμό της ειδικής λύσης. Υπάρχει όμως μια μέθοδος που δουλεύει όταν η οδηγός συνάρτηση είναι το γινόμενο ενός πολυώνυμου του n με μια εκθετική συνάρτηση του n. Συγκεκριμένα, θεωρούμε κάποια οδηγό συνάρτηση της μορφής:

$$f(n) = (c_t n^t + c_{t-1} n^{t-1} + \ldots + c_1 n + c_0) \beta^n$$

Τα t, c_i , και β είναι σταθεφές. Ειδικότεφα, το t είναι φυσικός αφιθμός και το $c_t \neq 0$. Το t μποφεί να είναι 0 οπότε το πολυώνυμο εκφυλίζεται στη σταθεφά c_0 . Επίσης το β μποφεί να είναι 1 οπότε η οδηγός συνάφτηση είναι απλώς ένα πολυώνυμο του n.

Διακρίνουμε δύο περιπτώσεις ανάλογα με το αν το β είναι ή δεν είναι ρίζα της χαρακτηριστικής εξίσωσης. Αν το β δεν είναι ρίζα της χαρακτηριστικής εξίσωσης², η ειδική λύση έχει τη μορφή

$$a_n^{(p)} = (P_1 n^t + P_2 n^{t-1} + \dots + P_t n + P_{t+1}) \beta^n$$

Τα P_i είναι σταθερές που προσδιορίζονται ώστε η ειδική λύση να ικανοποιεί την αναδρομική σχέση (1).

Παράδειγμα 3. Θέλουμε να υπολογίσουμε την ειδική λύση για την αναδρομική σχέση $a_n-6a_{n-1}+8a_{n-2}=3n^2-14n+12$. Είναι $\beta=1$, το οποίο δεν αποτελεί ρίζα της χαρακτηριστικής εξίσωσης (η χαρακτηριστική εξίσωση έχει δύο απλές ρίζες, τις 2 και 4). Επομένως, η ειδική λύση θα έχει τη μορφή $a_n^{(p)}=P_1n^2+P_2n+P_3$. Αν στην αναδρομική σχέση θέσουμε όπου a_n την ειδική λύση, το αριστερό μέλος γίνεται:

$$P_1n^2 + P_2n + P_3 - 6[P_1(n-1)^2 + P_2(n-1) + P_3] + 8[P_1(n-2)^2 + P_2(n-2) + P_3]$$

Κάνοντας τις πράξεις και εξισώνοντας με το δεξιό μέλος έχουμε:

$$3P_1n^2 + [-20P_1 + 3P_2]n + [26P_1 - 10P_2 + 3P_3] = 3n^2 - 14n + 12$$

Εξισώνοντας τους συντελεστές των διαφορετικών δυνάμεων του n στα δύο σκέλη, βρίσκουμε $P_1=1,\,P_2=2,\,$ και $P_3=2.$ Η ειδική λύση της αναδρομικής σχέσης είναι $a_n^{(p)}=n^2+2n+2.$

Παράδειγμα 4. Θέλουμε να υπολογίσουμε την ειδική λύση για την αναδρομική σχέση $a_n-4a_{n-1}+4a_{n-2}=2\cdot 3^n$. Είναι $\beta=3$, το οποίο δεν αποτελεί ρίζα της χαρακτηριστικής εξίσωσης (η χαρακτηριστική εξίσωση έχει μια διπλή ρίζα το 2). Επίσης, ο πολυωνυμικός παράγοντας της οδηγού συνάρτησης είναι μηδενικού βαθμού και έχει εκφυλιστεί στη σταθερά 2. Επομένως, η ειδική λύση θα έχει τη μορφή $a_n^{(p)}=P\,3^n$. Αν στην αναδρομική σχέση θέσουμε όπου a_n την ειδική λύση και κάνουμε τις πράξεις, το αριστερό μέλος γίνεται:

$$P3^{n} - 4P3^{n-1} + 4P3^{n-2} = 3^{n}(P/9)$$

Για να επαληθεύεται η αναδρομική σχέση από την ειδική λύση πρέπει $P/9=2\Rightarrow P=18$. Επομένως, η ειδική λύση της αναδρομικής σχέσης είναι $a_n^{(p)}=18\cdot 3^n$.

Παράδειγμα 5. Θέλουμε να υπολογίσουμε την ειδική λύση για την αναδρομική σχέση $a_n-4a_{n-1}+3a_{n-2}=(n+1)\,2^n$. Είναι $\beta=2$, το οποίο δεν αποτελεί ρίζα της χαρακτηριστικής εξίσωσης (η χαρακτηριστική εξίσωση έχει δύο απλές ρίζες, τις 1 και 3). Ο πολυωνυμικός παράγοντας της οδηγού συνάρτησης είναι n+1, δηλαδή πρώτου βαθμού. Επομένως, η ειδική λύση θα έχει τη μορφή $a_n^{(p)}=(P_1n+P_2)\,2^n$. Αν στην αναδρομική σχέση θέσουμε όπου a_n την ειδική λύση και κάνουμε τις πράξεις, το αριστερό μέλος γίνεται:

$$[P_1n + P_2] 2^n - 4[P_1(n-1) + P_2] 2^{n-1} + 3[P_1(n-2) + P_2] 2^{n-2} = \left[\frac{-P_1}{4}n + \left(\frac{P_1}{2} - \frac{P_2}{4}\right)\right] 2^n$$

 $[\]overline{\ ^2}$ Αν η οδηγός συνάρτηση είναι ένα πολυώνυμο του n, ελέγχουμε αν το 1 είναι ρίζα της χαρακτηριστικής εξίσωσης.

Εξισώνοντας τους συντελεστές των $n\,2^n$ και 2^n στα δύο μέλη, προκύπτουν τα $P_1=-4$ και $P_2=-12$. Επομένως, η ειδική λύση της αναδρομικής σχέσης είναι $a_n^{(p)}=-(4n+12)\,2^n$.

Αν το β είναι φίζα της χαρακτηριστικής εξίσωσης με πολλαπλότητα m, η ειδική λύση έχει τη μορφή

$$a_n^{(p)} = n^m (P_1 n^t + P_2 n^{t-1} + \dots + P_t n + P_{t+1}) \beta^n$$

Όπως και προηγουμένως, τα P_i είναι σταθερές που προσδιορίζονται ώστε η ειδική λύση να ικανοποιεί την αναδρομική σχέση (1).

Παράδειγμα 6. Θέλουμε να υπολογίσουμε την ειδική λύση για την αναδρομική σχέση $a_n=a_{n-1}+n$ που προκύπτει στην Άσκηση 1. Είναι $\beta=1$, το οποίο αποτελεί ρίζα της χαρακτηριστικής εξίσωσης x-1=0. Αφού ο πολυωνυμικός παράγοντας της οδηγού συνάρτησης έχει βαθμό 1, η ειδική λύση θα έχει τη μορφή $a_n^{(p)}=n(P_1n+P_2)\,1^n=P_1n^2+P_2n$. Αν στην αναδρομική σχέση θέσουμε όπου a_n την ειδική λύση και κάνουμε τις πράξεις, το αριστερό μέλος γίνεται:

$$P_1 n^2 + P_2 n - [P_1 (n-1)^2 + P_2 (n-1)] = 2P_1 n + P_2 - P_1$$

Εξισώνοντας τους συντελεστές των διαφορετικών δυνάμεων του n στα δύο σκέλη, βρίσκουμε $P_1=P_2=1/2$, Δηλαδή, η ειδική λύση της αναδρομικής σχέσης είναι $a_n^{(p)}=\frac{n^2+n}{2}$.

Παράδειγμα 7. Θέλουμε να υπολογίσουμε την ειδική λύση για την αναδορμική σχέση $a_n-4a_{n-1}+4a_{n-2}=(n+1)\,2^n$. Είναι $\beta=2$, το οποίο αποτελεί διπλή ρίζα της χαρακτηριστικής εξίσωσης. Ο πολυωνυμικός παράγοντας της οδηγού συνάρτησης είναι n+1, δηλαδή πρώτου βαθμού. Επομένως, η ειδική λύση θα έχει τη μορφή $a_n^{(p)}=n^2(P_1n+P_2)\,2^n$. Αν στην αναδρομική σχέση θέσουμε όπου a_n την ειδική λύση, το αριστερό μέλος γίνεται:

$$n^{2} [P_{1}n + P_{2}] 2^{n} - 4(n-1)^{2} [P_{1}(n-1) + P_{2}] 2^{n-1} + 4(n-2)^{2} [P_{1}(n-2) + P_{2}] 2^{n-2}$$

Κάνοντας τις πράξεις και απλοποιώντας, βρίσκουμε ότι το αριστερό μέλος είναι ίσο με $[6P_1n+2P_2-6P_1]\,2^n$. Εξισώνοντας τους συντελεστές των $n\,2^n$ και 2^n στα δύο μέλη, προκύπτουν τα $P_1=1/6$ και $P_2=1$. Η ειδική λύση της αναδρομικής σχέσης είναι $a_n^{(p)}=[(1/6)n^3+n^2]\,2^n$. \square

2.4 Υπολογισμός Συνολικής Λύσης

Για να υπολογίσουμε τη συνολική λύση μιας αναδρομικής σχέσης, υπολογίζουμε πρώτα την ειδική λύση (τόσο τη μορφή της όσο και τις σταθερές P_i). Στη συνέχεια υπολογίσουμε την μορφή της ομογενούς λύσης χωρίς να προσδιορίσουμε τις σταθερές A_i . Αντικαθιστώντας το άθροισμα της ειδικής λύσης και της μορφής της ομογενούς λύσης στις αρχικές συνθήκες, προκύπτει ένα σύστημα εξισώσεων από όπου προσδιορίζουμε τις σταθερές A_i . Έτσι έχουμε μια λύση που ικανοποιεί την αναδρομική σχέση (εξ' αιτίας της ειδικής λύσης) και τις αρχικές συνθήκες (εξ' αιτίας της ομογενούς σχέσης και του τρόπου προσδιορισμού των A_i).

 $^{^3}$ Παρατηρούμε ότι αν το β είναι ρίζα της χαρακτηριστικής εξίσωσης και δοκιμάσουμε σαν ειδική λύση το $a_n^{(p)}=(P_1n^t+\ldots+P_{t+1})\beta^n$, προκύπτει ένα αδύνατο σύστημα εξισώσεων για τον προσδιορισμό των P_i . Επίσης παρατηρούμε ότι ο παράγοντας n^m εξασφαλίζει ότι αυτή η ειδική λύση $a_n^{(p)}=n^m(P_1n^t+\ldots+P_tn+P_{t+1})\beta^n$ διαφέρει από το τμήμα της ομογενούς λύσης που αντιστοιχεί στη ρίζα β της χαρακτηριστικής εξίσωσης.

Παράδειγμα 8. Θέλουμε να λύσουμε τη σχέση $a_n=a_{n-1}+n$ με αρχική συνθήκη $a_0=1$ που προκύπτει στην Άσκηση 1. Έχουμε ήδη υπολογίσει ότι η ειδική λύση είναι $a_n^{(p)}=\frac{n^2+n}{2}$ και ότι η μορφή της ομογενούς λύσης είναι $a_n^{(h)}=A_1$. Από την αρχική συνθήκη, έχουμε ότι

$$a_0 = a_0^{(p)} + a_0^{(h)} = 0 + A_1 = 1$$

Επομένως, η συνολική λύση είναι $a_n = \frac{n^2+n}{2} + 1$.

Παράδειγμα 9. Θέλουμε να λύσουμε τη σχέση $a_n-6a_{n-1}+8a_{n-2}=3n^2-14n+12$ με αρχικές συνθήκες $a_0=1$ και $a_1=4$. Έχουμε ήδη υπολογίσει ότι η ειδική λύση είναι $a_n^{(p)}=n^2+2n+2$ και ότι η μορφή της ομογενούς λύσης είναι $a_n^{(h)}=A_1\,2^n+A_2\,4^n$. Αντικαθιστώντας στις αρχικές συνθήκες, προκύπτει ότι τα A_1 και A_2 πρέπει να επαληθεύουν τις εξισώσεις $A_1+A_2=-1$ (από την αρχική συνθήκη $a_0=1$) και $2A_1+4A_2=-1$ (από την αρχική συνθήκη $a_1=4$). Επομένως, $A_1=-3/2$ και $A_2=1/2$. Η συνολική λύση είναι $a_n=(1/2)4^n-(3/2)2^n+n^2+2n+2$.

Παφάδειγμα 10. Θέλουμε να λύσουμε τη σχέση $a_n-4a_{n-1}+4a_{n-2}=2\cdot 3^n$ με αρχικές συνθήκες $a_0=1$ και $a_1=32$. Έχουμε ήδη υπολογίσει ότι η ειδική λύση είναι $a_n^{(p)}=18\cdot 3^n$. Η χαρακτηριστική εξίσωση έχει το 2 σαν διπλή ρίζα. Επομένως, η μορφή της ομογενούς λύσης είναι $a_n^{(h)}=(A_1n+A_2)2^n$. Αντικαθιστώντας στις αρχικές συνθήκες, προκύπτει ότι τα A_1 και A_2 πρέπει να επαληθεύουν τις εξισώσεις $A_2=-17$ (από την αρχική συνθήκη $a_0=1$) και $2A_1+2A_2=-22$ (από την αρχική συνθήκη $a_1=32$). Επομένως, $a_1=6$ και $a_2=-17$. Η συνολική λύση είναι $a_n=6\cdot 2^nn-17\cdot 2^n+18\cdot 3^n$.

Αξίζει να σημειωθεί ότι ούτε η ειδική λύση ούτε η μορφή της ομογενούς λύσης εξαρτώνται από τις αρχικές συνθήκες. Μόνο οι σταθερές A_i εξαρτώνται από τις αρχικές συνθήκες και υπολογίζονται ώστε η συνολική λύση να ικανοποιεί τις αρχικές συνθήκες.

Παράδειγμα 11. Θέλουμε να λύσουμε τη σχέση $a_n-4a_{n-1}+3a_{n-2}=(n+1)2^n$ με αρχικές συνθήκες $a_0=0$ και $a_1=2$. Έχουμε ήδη υπολογίσει ότι η ειδική λύση είναι $a_n^{(p)}=-(4n+12)\,2^n$. Η χαρακτηριστική εξίσωση έχει δύο απλές ρίζες, τις 1 και 3. Επομένως, η μορφή της ομογενούς λύσης είναι $a_n^{(h)}=A_1+A_23^n$. Αντικαθιστώντας στις αρχικές συνθήκες, προκύπτει ότι τα A_1 και A_2 πρέπει να επαληθεύουν τις εξισώσεις $A_1+A_2=12$ (από την αρχική συνθήκη $a_0=0$) και $A_1+3A_2=34$ (από την αρχική συνθήκη $a_1=2$). Επομένως, $A_1=1$ και $A_2=11$. Η συνολική λύση είναι $a_n=11\cdot 3^n-(4n+12)\, 2^n+1$.

Παφάδειγμα 12. Θέλουμε να λύσουμε τη σχέση $a_n-4a_{n-1}+4a_{n-2}=(n+1)2^n$ με αρχικές συνθήκες $a_0=0$ και $a_1=2$. Έχουμε ήδη υπολογίσει ότι η ειδική λύση είναι $a_n^{(p)}=[(1/6)n^3+n^2]2^n$. Η χαρακτηριστική εξίσωση έχει το 2 σαν διπλή ρίζα. Επομένως, η μορφή της ομογενούς λύσης είναι $a_n^{(h)}=(A_1n+A_2)2^n$. Αντικαθιστώντας στις αρχικές συνθήκες, προκύπτει ότι τα A_1 και A_2 πρέπει να επαληθεύουν τις εξισώσεις $A_2=0$ (από την αρχική συνθήκη $a_0=0$) και $A_1=-1/6$ (από την αρχική συνθήκη $a_1=2$). Επομένως, η συνολική λύση είναι $a_n=(1/6)2^nn$ $[n^2+6n-1]$.

2.5 Λύση Αναδρομικών Σχέσεων με Γεννήτριες Συναρτήσεις

Μία άλλη μέθοδος επίλυσης γραμμικών αναδρομικών σχέσεων με σταθερούς συντελεστές είναι να υπολογίσουμε τη $\Gamma\Sigma$ της ακολουθίας και να υπολογίσουμε το γενικό όρο της ακολουθίας από τη $\Gamma\Sigma$.

Από την αναδορμική σχέση είναι συνήθως εύκολο να υπολογίσουμε τη μορφή της συνήθους ΓΣ της ακολουθίας. Στη συνέχεια, χρησιμοποιώντας τις αρχικές συνθήκες, παίρνουμε τη ΓΣ της ακολουθίας. Τέλος, κάνουμε τις απαραίτητες αλγεβρικές πράξεις και αναπτύσσουμε τη ΓΣ υπολογίζοντας το γενικό όρο της ακολουθίας. Η ακριβής τεχνική περιγράφεται στο βιβλίο του Liu. Εδώ θα δώσουμε μερικά απλά παραδείγματα εφαρμογής της.

Παράδειγμα 13. Έστω η αναδρομική σχέση $a_n = a_{n-1} + n$ με αρχική συνθήκη $a_0 = 1$ που προέκυψε στην Άσκηση 1. Θα επιδείξουμε τη μέθοδο επίλυσης με Γεννήτριες Συναρτήσεις χρησιμοποιώντας αυτή την αναδρομική σχέση ως παράδειγμα.

Για κάθε $n \ge 1$ (η σχέση δεν ορίζεται για $n \le 0$), πολλαπλασιάζουμε τη αναδρομική σχέση με x^n και αθροίζω τις αντίστοιχες ισότητες. Έτσι έχουμε:

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_{n-1} x^n + \sum_{n=1}^{\infty} n x^n$$

Το πρώτο μέλος είναι ίσο με τη $\Gamma\Sigma A(x)$ της a_n εξαιρουμένου του a_0 . Δηλαδή,

$$\sum_{n=1}^{\infty} a_n x^n = A(x) - a_0$$

Στο δεύτερο μέλος, το πρώτο άθροισμα (που μοιάζει αρκετά με την A(x)) είναι ίσο με

$$\sum_{n=1}^{\infty} a_{n-1} x^n = x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} = x \sum_{n=0}^{\infty} a_n x^n = x A(x)$$

Το δεύτερο άθροισμα αποτελεί τη $\Gamma\Sigma$ της ακολουθίας των φυσικών αριθμών (δηλαδή της ακολουθίας $0,1,2,\ldots,n,\ldots$), η οποία γνωρίζουμε ότι είναι $\frac{x}{(1-x)^2}$:

$$\sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}$$

Ξεκινώντας λοιπόν από την αναδρομική σχέση για την ακολουθία, καταλήξαμε στην παρακάτω απλή αλγεβρική εξίσωση που περιγράφει την Γεννήτρια Συνάρτηση της ακολουθίας:

$$A(x) - a_0 = xA(x) + \frac{x}{(1-x)^2}$$

Αντικαθιστώντας όπου $a_0=1$ και λύνοντας ως προς A(x), βρίσκουμε ότι η $\Gamma\Sigma$ της ακολουθίας a_n είναι

$$A(x) = \frac{x + (1 - 2x + x^2)}{(1 - x)^3} = \frac{1 - x + x^2}{(1 - x)^3} = \frac{1}{1 - x} + \frac{-1}{(1 - x)^2} + \frac{1}{(1 - x)^3}$$

Η τελευταία ισότητα προχύπτει με ανάλυση σε απλά κλάσματα. Η $\frac{1}{1-x}$ είναι η $\Gamma\Sigma$ της ακολουθίας 1^n , η $\frac{-1}{(1-x)^2}$ είναι η $\Gamma\Sigma$ της ακολουθίας -(n+1), και η $\frac{1}{(1-x)^2}$ είναι η $\Gamma\Sigma$ της ακολουθίας $\frac{(n+1)(n+2)}{2}$. Εφαρμόζοντας τη γραμμική ιδιότητα των $\Gamma\Sigma$, έχουμε ότι

$$a_n = 1 - (n+1) + \frac{n^2 + 3n + 2}{2} = \frac{n^2 + n + 2}{2}$$

όπως έχουμε ήδη υπολογίσει.

Άσκηση 5. Σε πόσους τετραδικούς αριθμούς 4 με n ψηφία το ψηφίο 0 εμφανίζεται άρτιο αριθμό φορών;

Λύση. Υπάρχουν συνολικά 4^{n-1} τετραδικοί αριθμοί με n-1 ψηφία. Έστω a_{n-1} το πλήθος των τετραδικών αριθμών με n-1 ψηφία στους οποίους το 0 εμφανίζεται άρτιο αριθμό φορών, και έστω a_n το πλήθος των αριθμών με n ψηφία στους οποίους το 0 εμφανίζεται άρτιο αριθμό φορών. Θα υπολογίσω την αναδρομική σχέση που συνδέει το a_n με το a_{n-1} .

Κάθε τετραδικός αριθμός με n ψηφία προκύπτει με την προσθήκη ενός από τα ψηφία 0, 1, 2, ή 3 σε έναν τετραδικό αριθμό με n-1 ψηφία. Για κάθε αριθμό με n-1 ψηφία στον οποίο το 0 εμφανίζεται άρτιο αριθμό φορών (υπάρχουν a_{n-1} τέτοιοι αριθμοί), έχω τρεις διαφορετικούς αριθμούς με n ψηφία στους οποίους το 0 εμφανίζεται τον ίδιο (άρτιο) αριθμό φορών. Οι τελευταίοι προκύπτουν από τον αρχικό με την προσθήκη των ψηφίων 1, 2, και 3. Για κάθε αριθμό με n-1 ψηφία στον οποίο το 0 εμφανίζεται περιττό αριθμό φορών (υπάρχουν $4^{n-1}-a_{n-1}$ τέτοιοι αριθμοί), έχω έναν αριθμό με n ψηφία στον οποίο το 0 εμφανίζεται μια φορά παραπάνω (δηλαδή, άρτιο αριθμό φορών). Ο τελευταίος προκύπτει από τον αρχικό με την προσθήκη του ψηφίου 0.

Κάθε τετραδικός αριθμός με *n* ψηφία στον οποίο το 0 εμφανίζεται άρτιο αριθμό φορών προκύπτει με αυτό τον τρόπο. Συνεπώς, η ζητούμενη αναδρομική σχέση είναι:

$$a_n = 4^{n-1} + 2a_{n-1} \tag{5}$$

Για τις αρχικές συνθήκες, παρατηρούμε ότι $a_1=3$ και δεχόμαστε ότι $a_0=1$.

Για κάθε $n \ge 1$, πολλαπλασιάζουμε τη σχέση (5) με x^n και αθφοίζουμε τις αντίστοιχες ισότητες. Έτσι έχουμε:

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} 4^{n-1} x^n + 2 \sum_{n=1}^{\infty} a_{n-1} x^n$$

Το πρώτο μέλος είναι ίσο με τη $\Gamma\Sigma$ A(x) της ακολουθίας a_n εξαιρουμένου του a_0 . Δηλαδή,

$$\sum_{n=1}^{\infty} a_n x^n = A(x) - a_0$$

Επίσης,

$$\sum_{n=1}^{\infty} 4^{n-1} x^n = x \sum_{n=1}^{\infty} 4^{n-1} x^{n-1} = \frac{x}{1 - 4x}$$

και

$$2\sum_{n=1}^{\infty} a_{n-1}x^n = 2x\sum_{n=1}^{\infty} a_{n-1}x^{n-1} = 2xA(x)$$

Δηλαδή, καταλήγουμε στην παρακάτω εξίσωση για τη $\Gamma\Sigma$ A(x):

$$A(x) - a_0 = \frac{x}{1 - 4x} + 2xA(x)$$

Λύνοντας ως προς A(x) και χρησιμοποιώντας το γεγονός ότι $a_0=1$, καταλήγουμε στο συμπέρασμα ότι η $\Gamma\Sigma$ της ακολουθίας a_n είναι

$$A(x) = \frac{1}{1 - 2x} \left(\frac{x}{1 - 4x} + 1 \right) = \frac{1}{2} \left(\frac{1}{1 - 4x} + \frac{1}{1 - 2x} \right)$$

 $^{^4}$ Οι τετραδικοί αριθμοί αποτελούνται από τα ψηφία 0, 1, 2, και 3.

Η δεύτερη ισότητα προχύπτει με ανάλυση σε απλά χλάσματα. Η $\frac{1}{1-4x}$ είναι η $\Gamma\Sigma$ της αχολουθίας 4^n και η $\frac{1}{1-2x}$ είναι η $\Gamma\Sigma$ της αχολουθίας 2^n . Συνεπώς, το πλήθος των τετραδιχών αριθμών με n ψηφία στους οποίους το 0 εμφανίζεται άρτιο αριθμό φορών είναι

$$a_n = \frac{4^n + 2^n}{2}$$

3 Επίλυση μη Γοαμμικών Αναδοομικών Σχέσεων

Σε αυτή την ενότητα, θα παρουσιάσουμε τρεις βασικές μεθόδους για την εκτίμηση της ασυμπτωτικής συμπεριφοράς μη γραμμικών αναδρομικών σχέσεων που προκύπτουν κατά την ανάλυση αναδρομικών αλγορίθμων. Συγκεκριμένα, θα παρουσιάσουμε τη μέθοδο της επανάληψης, τη μέθοδο της αντικατάστασης, και το Θεώρημα του Κυρίαρχου Όρου (Master Theorem). Για όλες τις αναδρομικές σχέσεις αυτής της ενότητας, θεωρούμε ότι $T(1) = \Theta(1)$ όπου δεν αναφέρεται αρχική συνθήκη.

3.1 Μέθοδος της Επανάληψης

Η βασική ιδέα της μεθόδου της επανάληψης είναι να αναπτύξουμε την αναδορμική σχέση σε άθροισμα και να υπολογίσουμε τον κλειστό τύπο του. Για παράδειγμα, ας θεωρήσουμε την παρακάτω αναδορμική σχέση:

$$T(n) = \begin{cases} 2T(n/2) + n & \text{an } n = 2^k \text{ για μάποιο } k \ge 2\\ 2 & \text{an } n = 2 \end{cases}$$
 (6)

Η υπόθεση ότι το n πρέπει να είναι δύναμη 2 γίνεται για να αποφύγουμε την περίπτωση που το n/2 δεν είναι απέραιος.

Αναπτύσσοντας την αναδρομική σχέση έχουμε:

$$T(n) = n + 2 T(n/2)$$

$$= n + 2 n/2 + 2^{2} T(n/4)$$

$$= n + 2 n/2 + 2^{2} n/2^{2} + 2^{4} T(n/2^{3})$$

$$\vdots$$

$$= n + 2 n/2 + 2^{2} n/2^{2} + \dots + 2^{i-1} n/2^{i-1} + 2^{i} T(n/2^{i})$$

$$= n i + 2^{i} T(n/2^{i})$$

Για $i = \log n - 1$, η ανάπτυξη της αναδρομής σταματάει αφού $n/2^{\log n - 1} = 2$ (οπότε εφαρμόζεται η αρχική συνθήκη). Επομένως, $T(n) = n \log n$.

Η ιδέα της μεθόδου της επανάληψης είναι απλή, αλλά η εφαφμογή της συχνά οδηγεί σε πολύπλοπους αλγεβριπούς υπολογισμούς. Δύο είναι οι σημαντιπότερες παράμετροι πατά την εφαρμογή της μεθόδου: ο αριθμός των επαναλήψεων για την πλήρη ανάπτυξη της αναδρομής (δηλ. μέχρι το σημείο που εφαρμόζεται η αρχιπή συνθήπη), παι ο υπολογισμός του αθροίσματος των όρων που προπύπτουν από πάθε επίπεδο ανάπτυξης της αναδρομής. Η εφαρμογή της μεθόδου της επανάληψης όταν η αναδρομική σχέση ορίζεται με πάνω ή πάτω απέραια μέρη μπορεί να οδηγήσει

Σχήμα 1. Το δέντρο της αναδρομής για την σχέση $T(n) = 2T(n/2) + n^2$.

σε πολύπλοκες αλγεβοικές εκφράσεις. Για την εκτίμηση της ασυμπτωτικής συμπεριφοράς μιας αναδρομικής σχέσης, μπορούμε να υποθέσουμε ότι το κλάσμα δίνει πάντα ακέραιο αποτέλεσμα (π.χ. στην σχέση (6) υποθέσαμε ότι το n είναι δύναμη του 2).

Μία απλή και χρήσιμη μέθοδος για την αναπαράσταση της ανάπτυξης μιας αναδρομικής σχέσης είναι το δέντρο της αναδρομής (recursion tree). Το δέντρο της αναδρομής επιτρέπει την καλύτερη οργάνωση των αλγεβρικών υπολογισμών κατά την ανάπτυξη της αναδρομικής σχέσης. Έστω η αναδρομική σχέση $T(n) = 2T(n/2) + n^2$. Το δέντρο της αναδρομής για αυτή την σχέση φαίνεται στο Σχήμα 1. Παρατηρούμε ότι η συνεισφορά των όρων στο επίπεδο i του δέντρου (η ρίζα θεωρείται ότι βρίσκεται στο επίπεδο 0) είναι $n^2/2^i$. Αφού σε κάθε επίπεδο το n υποδιπλασιάζεται, το ύψος του δέντρου είναι $\log n$ (δηλαδή το δέντρο έχει $\log n + 1$ επίπεδα). Έχουμε λοιπόν ότι :

$$T(n) = \sum_{i=0}^{\log n} n^2 / 2^i = n^2 \sum_{i=0}^{\log n} 2^{-i} < 2n^2 = \Theta(n^2),$$

όπου χρησιμοποιήσαμε ότι το άθροισμα των k+1 πρώτων όρων της γεωμετρικής προόδου με πρώτο όρο 1 και λόγο 1/2 είναι $2-2^{-k}$.

Ασκηση 6. Να υπολογίσετε μια ακριβή ασυμπτωτική εκτίμηση για τη λύση της αναδρομικής σχέσης T(n) = 4T(n/2) + n με αρχική συνθήκη T(1) = 1.

Λύση. Το δέντρο της αναδρομής έχει $\log n + 1$ επίπεδα επειδή το n υποδιπλασιάζεται σε κάθε επίπεδο. Για κάθε i, $i = 0, \ldots, \log n + 1$, η συνεισφορά του επιπέδου i είναι 2^i n. Επομένως,

$$T(n) = \sum_{i=0}^{\log n} 2^i \, n = n \sum_{i=0}^{\log n} 2^i = n(2n-1) = \Theta(n^2)$$

όπου χρησιμοποιήσαμε ότι το άθροισμα των k+1 πρώτων όρων της γεωμετρικής προόδου με πρώτο όρο 1 και λόγο 2 είναι $2^{k+1}-1$.

Άσκηση 7. Να λύσετε την παρακάτω αναδρομική σχέση χρησιμοποιώντας τη μέθοδο της επανάληψης:

$$T(n) = \begin{cases} 2T(n/2) + 1 \text{ an } n = 2^k \text{ για κάποιο } k \ge 1\\ 1 & \text{an } n = 1 \end{cases}$$
 (7)

Λύση. Αναπτύσσοντας την αναδρομική σχέση σε i επίπεδα, παίρνουμε $T(n)=i+T(n/2^i)$. Θέτοντας $i=\log n$, η ανάπτυξη της αναδρομής τερματίζεται αφού $n/2^{\log n}=1$. Επομένως, $T(n)=\log n+1$.

3.2 Μέθοδος της Αντικατάστασης

Η βασική ιδέα της μεθόδου της αντικατάστασης είναι να μαντέψουμε τη μορφή της λύσης και να χρησιμοποιήσουμε μαθηματική επαγωγή για να αποδείξουμε ότι η λύση είναι σωστή. Η μέθοδος είναι απλή και ισχυρή, αλλά μπορεί να εφαρμοστεί μόνο όταν μπορούμε να μαντέψουμε τη μορφή της λύσης.

Για παράδειγμα, ας θεωρήσουμε την αναδρομική σχέση $T(n)=2\,T(n/2)+\Theta(n)$ με αρχική συνθήκη $T(1)=\Theta(1)$. Στην προηγούμενη ενότητα αποδείξαμε με τη μέθοδο της επανάληψης ότι η σχέση (6), που είναι απλούστερη αλλά παρόμοια, έχει λύση $\Theta(n\log n)$. Θα χρησιμοποιήσουμε τη μέθοδο της αντικατάστασης για να αποδείξουμε ότι $T(n)=\Theta(n\log n)$.

Μποφούμε να αγνοήσουμε τις μικρές τιμές του n επειδή θέλουμε να αποδείξουμε μια ασυμπτωτική εκτίμηση για το T(n). Έστω $c_1, c_2 \in \mathbb{R}_+^*$ οι σταθερές που "κρύβονται" στον προσθετικό όρο $\Theta(n)$ της αναδρομικής σχέσης⁵. Επαγωγικά υποθέτουμε ότι

$$c_1(n/2)\log(n/2) \le T(n/2) \le c_2(n/2)\log(n/2)$$

Πρέπει αποδείξουμε ότι

$$c_1 n \log n \le T(n) \le c_2 n \log n$$

Πράγματι, χρησιμοποιώντας την αναδρομική σχέση, παίρνουμε:

$$T(n) \ge 2 c_1 (n/2) \log(n/2) + c_1 n = c_1 n (\log n - 1) + c_1 n = c_1 n \log n$$

και

$$T(n) \le 2c_2(n/2)\log(n/2) + c_2 n = c_2 n(\log n - 1) + c_2 n = c_2 n\log n$$

όπως απαιτείται. Αποδείξαμε λοιπόν ότι $T(n) = \Theta(n \log n)$.

Αλλαγή Μεταβλητών. Σε κάποιες περιπτώσεις, μια αναδρομική σχέση μπορεί να απλοποιηθεί σημαντικά με αλλαγή μεταβλητών. Για παράδειγμα, ας θεωρήσουμε την σχέση $T(n) = 2T(\sqrt{n}) + \log n$ με αρχική συνθήκη $T(1) = \Theta(1)$. Θέτοντας $m = \log n$, παίρνουμε την σχέση $T(2^m) = 2T(2^{m/2}) + m$. Μπορούμε να μετονομάσουμε το $T(2^m)$ σε S(m) και να οδηγηθούμε στην σχέση S(m) = 2S(m/2) + m με αρχική συνθήκη $S(1) = \Theta(1)$. Έχουμε ήδη αποδείξει ότι η λύση αυτής της σχέσης είναι $S(m) = \Theta(m \log m)$. Πραγματοποιώντας την αντίστροφη αντικατάσταση, παίρνουμε $T(n) = \Theta(\log n \log \log n)$.

 $^{^5}$ Τυπικά, θεωρούμε ότι η αναδρομική σχέση είναι $T(n)=2\,T(n/2)+f(n)$, όπου $f(n)=\Theta(n)$. Από τον ορισμό του ασυμπτωτικού συμβολισμού Θ , υπάρχουν σταθερές $n_0\in\mathbb{N}$, $c_1,c_2\in\mathbb{R}^*_+$ τέτοιες ώστε $\forall n\geq n_0$, c_1 $n\leq f(n)\leq c_2$ n.

Άσμηση 8. Να λύσετε τις παρακάτω αναδρομικές σχέσεις θεωρώντας σαν αρχική συνθήκη T(1)=1.

- 1. T(n) = T(n-1) + 3.
- 2. T(n) = T(n-1) + 2n.
- 3. T(n) = 2T(n/2) + n.
- 4. T(n) = T(n/3) + 1.
- 5. T(n) = T(n/2) + n.
- 6. T(n) = 2T(n-1) + 1.

Λύση.

- 1. T(n) = 3(n-1) + 1.
- 2. T(n) = 2n(n-1) + 1.
- 3. $T(n) = n \log n$.
- 4. $T(n) = \log_3 n$.
- 5. T(n) = 2n 1.
- 6. $T(n) = 2^n 1$.

3.3 Το Θεώρημα του Κυρίαρχου Όρου

Όταν μπορεί να εφαρμοστεί, το Θεώρημα του Κυρίαρχου Όρου (Master Theorem) δίνει τη μορφή της λύσης για αναδρομικές σχέσεις της μορφής T(n) = a T(n/b) + f(n), όπου a και b είναι σταθερές και f(n) είναι μία θετική συνάρτηση.

Το Θεώρημα του Κυρίαρχου Όρου διακρίνει τις ακόλουθες τρεις περιπτώσεις:

- 1. Αν $f(n) = O(n^{\log_b a \epsilon})$ για κάποια σταθερά $\epsilon > 0$, τότε $T(n) = \Theta(n^{\log_b a})$.
- 2. Av $f(n) = \Theta(n^{\log_b a})$, τότε $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. Αν $f(n) = \Omega(n^{\log_b a + \epsilon})$ για κάποια σταθερά $\epsilon > 0$, και υπάρχει σταθερά $n_0 \in \mathbb{N}$ τέτοια ώστε για κάθε $n \geq n_0$, a f(n/b) < f(n), τότε $T(n) = \Theta(f(n))$.

Κατά της εφαρμογή του Θεωρήματος του Κυρίαρχου Όρου, η (ασυμπτωτικά) μεγαλύτερη από τις συναρτήσεις f(n) και $n^{\log_b a}$ (δηλ. ο κυρίαρχος όρος) καθορίζει τη λύση της σχέσης. Στην πρώτη περίπτωση, η f(n) πρέπει να είναι πολυωνυμικά μικρότερη (δηλ. να υπολείπεται κατά έναν παράγοντα n^ϵ) από την $n^{\log_b a}$. Στη δεύτερη περίπτωση, οι συναρτήσεις f(n) και $n^{\log_b a}$ πρέπει να έχουν την ίδια τάξη μεγέθους. Στην τρίτη περίπτωση, η f(n) πρέπει να είναι πολυωνυμικά μεγαλύτερη από την $n^{\log_b a}$ και να ικανοποιεί τη συνθήκη a f(n/b) < f(n) για μεγάλες τιμές του n. Υπάρχει ακόμη το ενδεχόμενο η f(n) να μην εντάσσεται σε κάποια από τις παραπάνω περιπτώσεις και το θεώρημα να μην μπορεί να εφαρμοστεί.

Σαν πρώτο παράδειγμα, θεωρούμε την σχέση T(n) = 9T(n/3) + n. Είναι a = 9, b = 3, και $n^{\log_b a} = n^{\log_3 9} = n^2$. Αφού f(n) = n, εφαρμόζουμε την πρώτη περίπτωση του θεωρήματος και παίρνουμε $T(n) = \Theta(n^2)$.

Σαν δεύτερο παράδειγμα, θεωρούμε την σχέση T(n)=T(2n/3)+1. Είναι $a=1,\ b=3/2$, και $n^{\log_b a}=n^{\log_{3/2} 1}=n^0=1=f(n)$. Επομένως εφαρμόζουμε τη δεύτερη περίπτωση του θεωρήματος και παίρνουμε $T(n)=\Theta(\log n)$.

Για την αναδρομική σχέση $T(n) = 3T(n/4) + n\log n$ είναι a = 3, b = 4, και $n^{\log_b a} = n^{\log_4 3} \approx n^{0.793}$. Αφού $f(n) = n\log n$ και 3f(n/4) < f(n) εφαρμόζουμε την τρίτη περίπτωση του θεωρήματος και παίρνουμε $T(n) = \Theta(n\log n)$.

Σαν ένα τελευταίο παφάδειγμα, θεωφούμε την σχέση T(n)=2 $T(n/2)+n\log n$. Παφατηφούμε ότι δεν μποφούμε να εφαφμόσουμε το θεώφημα γιατί η συνάφτηση $n^{\log_b a}=n^{\log_2 2}=n$ δεν είναι πολυωνυμικά μικφότεφη από τη συνάφτηση $f(n)=n\log n$. Χφησιμοποιώντας το δέντφο της αναδφομής, μποφούμε να αποδείξουμε ότι $T(n)=\Theta(n\log^2 n)$. Οι λεπτομέφειες αφήνονται ως άσκηση.

Άσκηση 9. Να υπολογίσετε ακριβείς ασυμπτωτικές εκτιμήσεις για τις αναδρομικές σχέσεις:

- 1. $T(n) = 6T(n/5) + n \log^6 n$.
- 2. T(n) = 5T(n/6) + n.
- 3. $T(n) = 3T(n/9) + \sqrt{n}$.
- 4. $T(n) = T(n-1) + n^2$.
- 5. T(n) = T(n/5) + T(7n/10) + 3n.
- 6. T(n) = T(5n/9) + T(4n/9) + n.

Λύση.

- 1. $T(n) = \Theta(n^{\log_5 6})$.
- 2. $T(n) = \Theta(n)$.
- 3. $T(n) = \Theta(\sqrt{n} \log n)$.
- 4. $T(n) = \Theta(n^3)$.
- 5. $T(n) = \Theta(n)$.
- 6. $T(n) = \Theta(n \log n)$.