

JYOTHY INSTITUTE OF TECHNOLOGY

TATAGUNI, BENGALURU AFFILIATED TO VTU, BELAGAVI

Department of Computer Science and Engineering

Accredited by NBA, New Delhi

I INTERNAL ASSESSMENT, November 2020

Course Code: 17CS72 Program & Semester: CSE-VII Course: Advanced Computer Architecture Date: 02-11-2020 Time: 02:00-03:15 (75 minutes)
uestions.12M Quiz and 3 questions 06M each Max. Marks: 50

Answer the following an

Q.No	Answer the following questions.12M Quiz and 3 questions 06M e Question	Marks	Course Outcomes
L	1. Pipelining technology came into existence during generation.		
	a) Second		
	b) Third		
	c) Fourth		
	d) Fifth		
	2. Which among these is not a parallel computer?		
	a) SISD		
	b) SIMD		
	c) MISD		
	d) MIMD		
	3. Which among these development layers is machine independent?		
	a) Addressing space		
	b) Communication model		
	c) Programming environment		
	d) None of the above		
	4 compiler is used in explicit parallelism.	6 * 1 M	CO1
	a) parallelizing		
	b) Dependency preserving		
	c) Concurrency preserving		
	d) None of the above		
	5. A benchmark program contains 450000 arithmetic instructions,		
	320000 data transfer instructions and 230000 control transfer		
	instructions. Each arithmetic instruction take 1 clock cycle to execute		
	whereas each data transfer and control transfer instruction takes 2		
	clock cycles to execute on a 400MHz processors process. The	1	
	effective CPI is		
	a) 1.35 cycles / instruction		
	b) 1.55 cycles / instruction		
	c) 1.45 cycles / instruction		
	d) None of the above		
	6 is not a PRAM variant.		
	a) EREW		
	b) ERCW		
	c) CRAW		
	d) CRCW	1	

	7	7. Statement S2 is on statement S1 if S2 follows S1 in program		
		order and if the output of S2 overlaps the input to S1.		
		a) Flow Dependence		
		b) Output Dependence		
		c) Overlap Dependenced) Anti-Dependence		
		d) Anti-Dependence		
	8	3. According to Amdahl's law, when N numbers of processors are used,		
		speedup is calculated by		
		a) $1/((N/S)+P)$		
		b) 1/(P+N/S)		
		c) 1/((P/N)+S)		
		d) $1/((N/P)+S)$		
	ç	o is not a dynamic connection network.		
		a) Hypercubes		
		b) Omega		
		c) Baseline		
		d) Crossbar		
	1	0. In refers to the situation where two or more		CO2
		instructions demand use of the same functional unit at the same time.		002
		a) Instruction conflict		
		b) Function conflict		
		c) Resource conflict		
		d) IP conflict		
	1	1. A superscalar processor of degree m can issue instructions per cycle.		
		a) 2m		
		b) m ²		
		c) m		
		d) m/2		
	1	2. Copies of same information item at successive memory levels be		
		consistent is a property of memory hierarchy.		
		a) Temporal Locality		
		b) Spatial Locality		
		c) Coherence		
		d) Inclusion		
2	a I	Explain the elements of modern computers with relevant diagram.		
		OR		
2	b v	With a neat diagram, explain the operational model of SIMD.	6 M	CO1
		The a near diagram, explain the operational model of Shile.		
3	a I	Explain the Bernstein's condition for parallelism. Detect the parallelism in		
	t	he following code using Bernstein's condition:		
	I	P1:C=D*E		
		22: M = G + C		
		23: A = B + C		
		P4: C = L + M P5: F = G / E.	6 M	CO1
		OR		
1				l

	For the program given below, write the dataflow graph and show the						
3 b	parallel execution on a shared memory 4 processor system.						
	input d, e, f c _o = 0 for i from 1 to 8 do begin a _i := d _i + e _i b _i := a _i * f _i c _i := b _i + c _{i-1} end output a, b, c						
4 a	Differentiate between micro-programmed control and hardwired control architectures.	6 M	CO2				
4 b	OR Describe the typical VLIW processor and its pipeline operations.		CO2				
	Course outcomes						
Students will be able to:							
CO 1:	CO 1: Acquire Knowledge on Parallel Computer Models, Network Properties and Scalable						

Performance
CO 2: Illustrate Concepts of Computer (Processors, Memory Hierarchy, Bus, Cache, Shared Memory, Pipelining)

Faculty Email id: - madhu.br@jyothyit.ac.in