PRAKTIKUM 14 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

1. Tujuan:

Mempelajari metode penyelesaian regresi linier, eksponensial dan polinomial.

2. Dasar Teori:

Regresi adalah sebuah teknik untuk memperoleh persamaan kurva pendekatan dari titik-titik data

2.1. Regresi Linier

Regresi linier digunakan menentukan fungsi linier (garis lurus) yang paling sesuai dengan kumpulan titik data (x_n,y_n) yang diketahui.

Gambar 11.1. Sebaran data dengan kurva linier

Dalam regresi linier ini yang dicari adalah nilai m dan c dari fungsi linier y=mx+c, dengan:

$$m = \frac{N\sum_{n=1}^{N} x_{n} y_{n} - \left(\sum_{n=1}^{N} x_{n}\right) \left(\sum_{n=1}^{N} y_{n}\right)}{N\sum_{n=1}^{N} \sum_{n=1}^{N} \sum_{n=1}^{N} \left(\sum_{n=1}^{N} x_{n}\right)^{2}}$$

$$c = \frac{\sum_{n=1}^{N} y_{n}}{N} - m\frac{\sum_{n=1}^{N} y_{n}}{N} = \bar{y} - m\bar{x}$$

2.1.1. Algoritma Regresi Linier

- (1) Tentukan N titik data yang diketahui dalam (x_i, y_i) untuk i=1,2,3,...,N
- (2) Hitung nilai m dan c dengan menggunakan formulasi dari regresi linier di atas
- (3) Tampilkan fungsi linier
- (4) Hitung fungsi linier tersebut dalam range x dan step dx tertentu
- (5) Tampilkan hasil tabel (x_n, y_n) dari hasil fungsi linier tersebut.

2.1.2. Prosedur Percobaan

- (1) Tuliskan program dari regresi linier sesuai dengan flowchart yang sudah dibuat pada tugas pendahuluan.
- (2) Jalankan program dan isikan data-data sebagai berikut:

Jumlah produk	Keuntungan
5	10000
10	15000
15	16000
20	18000
25	18000
40	20000
45	22000
50	24000
55	25000
60	28000

- (3) Tampilkan fungsi linier dari hasil regresi linier:
- (4) Tampilkan table dari fungsi hasil regresi linier pada x yang sama dengan data
- (5) Tampilkan grafik fungsi linier yang dihasilkan.

2.1.3. Tugas Pendahuluan

- (1) Judul: Regresi Linier
- (2) Dasar Teori
- (3) Algoritma
- (4) Flowchart

2.1.4. Laporan Akhir

(1) Judul: Regresi Linier

(2) Listing program

(3) Tuliskan tabel data di atas

(4) Tuliskan fungsi linier hasil regresi linier

(5) Gambarkan data dan garis hasil regresi

(6) Analisa

Jumlah produk	Keuntungan	Hasil Regresi	Error
5	10000		
10	15000		
15	16000		
20	18000		
25	18000		
40	20000		
45	22000		
50	24000		
55	25000		
60	28000		

⁽⁷⁾ Hitung rata-rata error

2.2. Regresi Eksponensial

Regresi eksponensial digunakan menentukan fungsi eksponensial yang paling sesuai dengan kumpulan titik data (x_n,y_n) yang diketahui. Regresi eksponensial ini merupakan pengembangan dari regresi linier dengan memanfaatkan fungsi logaritma.

Perhatikan:

$$y = e^{ax+b}$$

dengan melogaritmakan persamaan di atas akan diperoleh:

$$\ln y = \ln \left(e^{ax+b} \right)$$

$$\ln y = ax + b$$

atau dapat dituliskan bahwa:

$$z = ax + b$$
 dimana $z = \ln y$

Dengan demikian dapat digunakan regresi linier dalam menentukan fungsi eksponensial yang paling sesuai dengan data.

2.2.1. Algoritma Regresi Eksponensial

- (1) Tentukan N titik data yang diketahui dalam (x_i, y_i) untuk i=1,2,3,...,N
- (2) Ubah nilai y menjadi z dengan $z = \ln y$
- (3) Hitung nilai a dan b dengan menggunakan formulasi dari regresi linier di atas
- (4) Tampilkan fungsi eksponensial $y = e^{-ax+b}$
- (5) Hitung fungsi eksponensial tersebut dalam range x dan step dx tertentu
- (6) Tampilkan hasil tabel (x_n, y_n) dari hasil fungsi eksponensial tersebut.

2.2.2. Prosedur Percobaan

- (1) Tuliskan program dari regresi eksponensial sesuai dengan flowchart yang sudah dibuat pada tugas pendahuluan.
- (2) Jalankan program dan isikan data-data sebagai berikut:

Jumlah produk	Keuntungan
5	10000
10	15000
15	18000
20	20000
25	25000
40	30000
45	40000
50	50000
55	70000
60	80000

- (3) Tampilkan fungsi eksponensial dari hasil regresi eksponensial.
- (4) Tampilkan table dari fungsi hasil regresi eksponensial pada x yang sama dengan data
- (5) Tampilkan grafik fungsi eksponensial yang dihasilkan.

2.2.3. Tugas Pendahuluan

(1) Judul: Regresi Eksponensial

- (2) Dasar Teori
- (3) Algoritma
- (4) Flowchart

2.2.4. Laporan Akhir

- (1) Judul: Regresi Eksponensial
- (2) Listing program
- (3) Tuliskan tabel data di atas
- (4) Tuliskan fungsi eksponensial hasil regresi eksponensial
- (5) Gambarkan data dan garis hasil regresi
- (6) Analisa

Jumlah	Keuntungan	z = ln(y)	z hasil	Hasil	Error
produk			regresi	Regresi	
5	10000				
10	15000				
15	18000				
20	20000				
25	25000				
40	30000				
45	40000				
50	50000				
55	70000				
60	80000				

(7) Hitung rata-rata error

2.3. Regresi Polinomial

Regresi polinomial digunakan menentukan fungsi polynomial yang paling sesuai dengan kumpulan titik data (x_n,y_n) yang diketahui.

Fungsi pendekatan:

$$y = a_0 + a_1 x + a_1 x^2 + \dots + a_n x^n$$

Regresi polinomial tingkat n dikembangkan dari model matrik normal sebagai berikut:

$$\begin{bmatrix} \sum_{i=1}^{n} x_{i}^{n} & \sum_{i=1}^{n} x_{i}^{n+1} & \sum_{i=1}^{n} x_{i}^{n+2} & \dots & \sum_{i=1}^{n} x_{i}^{2n} \\ \sum_{i=1}^{n} x_{i}^{n-1} & \sum_{i=1}^{n} x_{i}^{n} & \sum_{i=1}^{n} x_{i}^{n+1} & \dots & \sum_{i=1}^{n} x_{i}^{2n-1} \\ \sum_{i=1}^{n} x_{i}^{n-2} & \sum_{i=1}^{n} x_{i}^{n-1} & \sum_{i=1}^{n} x_{i}^{n} & \dots & \sum_{i=1}^{n} x_{i}^{2n-2} \\ \dots & \dots & \dots & \dots & \dots \\ n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} x_{i}^{n} y_{i} \\ a_{n-1} \\ a_{n-2} \\ \dots \\ a_{0} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} x_{i}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i}^{n-1} y_{i} \\ \dots \\ a_{0} \end{bmatrix}$$

Hasil dari model matrik normal di atas adalah nilai-nilai $a_0, a_1, a_2, ..., a_n$.

2.3.1. Algoritma Regresi Polinomial

- (1) Tentukan N titik data yang diketahui dalam (x_i, y_i) untuk i=1,2,3,...,N
- (2) Hitung nilai-nilai yang berhubungan dengan jumlahan data untuk mengisi matrik normal
- (3) Hitung nilai koefisien-koefisien a_0 , a_1 , a_2 , ..., a_n dengan menggunakan eliminasi gauss/jordan
- (4) Tampilkan fungsi polinomial $y = a_0 + a_1x + a_1x^2 + ... + a_nx^n$
- (5) Hitung fungsi polinomial tersebut dalam range x dan step dx tertentu
- (6) Tampilkan hasil tabel (x_n, y_n) dari hasil fungsi polinomial tersebut.

2.3.2. Prosedur Percobaan

- (1) Tuliskan program dari regresi polinomial sesuai dengan flowchart yang sudah dibuat pada tugas pendahuluan.
- (2) Jalankan program dan isikan data-data sebagai berikut:

Jumlah produk	Keuntungan
5	10000
10	15000

15	18000
20	20000
25	25000
40	30000
45	40000
50	50000
55	70000
60	80000

- (3) Tampilkan fungsi polinomial dari hasil regresi eksponensial.
- (4) Tampilkan table dari fungsi hasil regresi polinomial pada x yang sama dengan data
- (5) Tampilkan grafik fungsi polinomial yang dihasilkan.

2.3.3. Tugas Pendahuluan

- (5) Judul: Regresi Polinomial
- (6) Dasar Teori
- (7) Algoritma
- (8) Flowchart

2.3.4. Laporan Akhir

- (1) Judul: Regresi Eksponensial
- (2) Listing program
- (3) Tuliskan tabel data di atas

- (4) Tuliskan fungsi eksponensial hasil regresi eksponensial
- (5) Gambarkan data dan garis hasil regresi
- (6) Analisa

Jumlah	Keuntungan	Hasil	Error
produk		Regresi	
5	10000		
10	15000		
15	18000		
20	20000		
25	25000		
40	30000		
45	40000		
50	50000		
55	70000		
60	80000		

(7) Hitung rata-rata error :