IN THE CLAIMS

Please amend the claims as follows:

- 1. (Currently Amended) A method of encoding an audio signal (x), wherein said method comprising the step of generating a code signal (b1) is generated from the audio signal (x) according to a predefined coding method (201), and wherein the method further comprises the steps of:
- [[-]] transforming (207) the audio signal (x) into a set of transformation parameters (b2) defining at least a part of the spectro-temporal information in said audio signal (x), said transformation parameters (b2) enabling generation of a noise signal having spectro-temporal characteristics substantially similar to said audio signal, and
- [[-]] representing said audio signal $\frac{(x)}{(b)}$ by said code signal $\frac{(b)}{(b)}$ and said transformation parameters $\frac{(b)}{(b)}$.
- 2. (Currently Amended) A The method according to as claimed in claim 1, wherein the transformation parameters (b2) include at least one prediction coefficient (*1, ..., *K) and/or energy level and/or amplitude level and/or gain and/or power level of the audio signal (x).
- 3. (Currently Amended) A The method according to claim 1, wherein the transformation parameters (b2) comprise psycho-

acoustic data such as a masking curve and/or an excitation pattern and/or a loudness of the audio signal -(x).

- 4. (Currently Amended) A The method according to as claimed in claim 1, wherein the code signal $\frac{\text{(b1)}}{\text{comprises}}$ comprises amplitude and frequency parameters defining at least one sinusoidal component of said audio signal $\frac{\text{(x)}}{\text{(x)}}$.
- 5. (Currently Amended) A The method according to as claimed in claim 1, wherein the transformation parameters $\frac{(b2)}{a}$ are representative of an estimate of an amplitude of sinusoidal components of said audio signal $\frac{(x)}{a}$.
- 6. (Currently Amended) A method of decoding an audio signal from transformation parameters (b2) and a code signal (b1) generated according to a predefined coding method (201), the method comprising the steps of:
- [[-]] decoding said code signal $\frac{(b1)}{(b1)}$ into a first audio signal $\frac{(x1')}{(x1')}$ using a decoding method $\frac{(203)}{(203)}$ corresponding to said predefined coding method $\frac{(203)}{(203)}$.
- [[-]] generating. from said transformation parameters $\frac{(b2)}{2}$ a noise signal $\frac{(r2)}{2}$ having spectro-temporal characteristics substantially similar to said audio signal:
- [[-]] generating a second audio signal (x2) by removing from the noise signal (x2) spectro-temporal parts of the audio

signal that are already contained in the first audio signal $\frac{(*2.1)}{(*2.1)}$ and

- [[-]] generating the audio signal $\frac{(x')}{(x')}$ by adding $\frac{(211)}{(x2')}$ the first audio signal $\frac{(x2')}{(x2')}$.
- 7. (Currently Amended) A The method according to as claimed in claim 6, wherein said step of generating the second audio signal (x2) comprises:
- [[-]] deriving a frequency response by comparing a spectrum of the first audio signal (x1) with a spectrum of the noise signal (x2), and
- [[-]] filtering the noise signal $\frac{(x2^{-})}{(x2^{-})}$ in accordance with said frequency response.
- 8. (Currently Amended) A The method according to as claimed in claim 6, wherein said step of generating the second audio signal (x2') comprises:
- [[-]] generating a first residual signal $\frac{(x_1^2)}{(x_1^2)}$ by spectrally flattening the first audio signal $\frac{(x_1^2)}{(x_1^2)}$ in dependence on spectral data in the transformation parameters $\frac{(b_1^2)}{(b_1^2)}$.
- [[-]] generating a second residual signal $\frac{(x^2)}{(x^2)}$ by temporally shaping a noise sequence in dependence on temporal data in the transformation parameters $\frac{(b^2)}{(b^2)}$;
- [[-]] deriving a frequency response by comparing a spectrum of the first residual signal $\frac{(r1)}{(r1)}$ with a spectrum of the second residual signal $\frac{(r2)}{(r2)}$; and

- [[-]] filtering the noise signal $\frac{(r2^{-1})}{(r2^{-1})}$ in accordance with said frequency response.
- 9. (Currently Amended) A The method according to as claimed in claim 6, wherein said step of generating the second audio signal (x2') comprises:
- [[-]] generating a first residual signal $\frac{(r1)}{(r1)}$ by spectrally flattening the first audio signal $\frac{(x1)}{(x1)}$ in dependence on spectral data in the transformation parameters $\frac{(b2)}{r}$.
- [[-]] generating a second residual signal $\frac{(x^2)}{(x^2)}$ by temporally shaping a noise sequence in dependence on temporal data in the transformation parameters $\frac{(b^2)}{(b^2)}$.
- [[-]] adding the first residual signal $\frac{(x^2)}{(x^2)}$ and the second residual signal $\frac{(x^2)}{(x^2)}$ into a sum signal $\frac{(x^2)}{(x^2)}$
- [[-]] deriving a frequency response for spectrally flattening the sum signal $\frac{(sk)_{f}}{s}$
- [[-]] updating the second residual signal $\frac{(x^2)}{(x^2)}$ by filtering the second residual signal $\frac{(x^2)}{(x^2)}$ in accordance with said frequency response.
- [[-]] repeating said steps of adding, deriving and updating until a spectrum of the sum signal $\frac{(sk)}{s}$ is substantially flat, and
- [[-]] filtering the noise signal $\frac{\langle r2^{\prime}\rangle}{\langle r2^{\prime}\rangle}$ in accordance with all of the derived frequency responses.

- 10. (Currently Amended) A device $\frac{(102)}{(102)}$ for encoding an audio signal $\frac{(x)}{(x)}$, the device comprising a first encoder $\frac{(701)}{(701)}$ for generating a code signal (b1) according to a predefined coding method, wherein the device further comprises:
- [[-]] a second encoder (703) for transforming the audio signal (x) into a set of transformation parameters (52) defining at least a part of the spectro-temporal information in said audio signal (x), said transformation parameters (52) enabling generation of a noise signal having spectro-temporal characteristics substantially similar to said audio signal (x), and
- [[-]] processing means $\frac{(705)}{(51)}$ for representing said audio signal $\frac{(*)}{(52)}$ by said code signal $\frac{(51)}{(52)}$ and said transformation parameters $\frac{(52)}{(52)}$.
- 11. (Currently Amended) A device $\frac{(107)}{(107)}$ for decoding an audio signal from transformation parameters $\frac{(b2)}{(b2)}$ and a code signal $\frac{(b1)}{(201)}$ generated according to a predefined coding method $\frac{(201)}{(201)}$, the device comprising:
- [[-]] a first decoder $\frac{(203)}{(203)}$ for decoding said code signal $\frac{(b1)}{(b1)}$ into a first audio signal $\frac{(x1)}{(201)}$ using a decoding method corresponding to said predefined coding method $\frac{(201)}{(201)}$.
- [[-]] a second decoder $\frac{(209)}{(209)}$ for generating, from said transformation parameters $\frac{(b2)}{2}$ a noise signal $\frac{(x2)}{(x2)}$ having spectro-temporal characteristics substantially similar to said audio signal.

- [[-]] first processing means (305,307) for generating a second audio signal (x2) by removing from the noise signal (r2) spectro-temporal parts of the audio signal that are already contained in the first audio signal (x1), and
- [[-]] adding means $\frac{(211)}{(x^2)}$ for generating the audio signal $\frac{(x^2)}{(x^2)}$ and the second audio signal $\frac{(x^2)}{(x^2)}$.
- 12. (Cancelled).
- 13. A computer-readable medium comprising a data record indicative of an encoded audio signal according to claim 11.