1-2 gyakorlat

Lebegőpontos számábrázolás, a hibaszámítás elemei

- 1. Az M=M(3,-2,2) gépi számok halmazában írjuk fel M elemeit, adjuk meg az |M|, ε_0 , M_{∞} , ε_1 értékeket.
- **2.** Az M = M(5, -6, 6) gépi számok halmazában
 - (a) adjuk meg az 1 és 8 gépi számot,
 - (b) adjuk meg a 0,12-nek megfeleltetett gépi számot.
 - (c) Végezzük el az (1+8) + fl(0,12) gépi összeadást.
 - (d) Adjuk meg a gépi számábrázolásból származó abszolút hibakorlátot fl(0,12)-re és az eredményre!
- **3.** Az M = M(5, -3, 3) gépi számok halmazában
 - (a) adjuk meg a $\sqrt{2}$ és $\sqrt{3}$ -nak megfeleltetett gépi számokat.
 - (b) Végezzük el az $\sqrt{2} + \sqrt{3}$ gépi összeadást.
 - (c) Adjuk meg a gépi számábrázolásból származó abszolút és relatív hibakorlátot az eredményre!
- 4. Az M = M(6, -10, 10) gépi számok halmazában adott

$$x_1 = [100000 \mid 0], \quad x_2 = [1111111 \mid -1].$$

Végezzük el az $x_1 \ominus x_2$ gépi kivonást és vizsgáljuk meg a fellépő relatív hibakorlátot!

5. Műveletek hibája

- (a) Adjuk meg a $\sqrt{3}\approx 1,73$ (2 tizedesjegyre kerekítve) közelítés abszolút és relatív hibakorlátját.
- (b) Adjuk meg a $\sqrt{3}\cdot\sqrt{3}\approx 1,73\cdot 1,73$ közelítés abszolút és relatív hibakorlátját.
- (c) Adjuk meg az $\pi \approx 3,14$ közelítés abszolút és relatív hibakorlátját.
- (d) Adjuk meg az $\frac{1}{\pi} \approx \frac{1}{3,14}$ közelítés abszolút és relatív hibakorlátját.
- 6. Adjunk algoritmust az

$$x^2 - 2px - q = 0,$$
 $(p, q > 0)$

egyenlet megoldására!

Mi a helyzet, ha p >> q? (A másodfokú egyenlet megoldóképletében egymáshoz közeli számokat kell kivonnunk, ezért válasszunk más algoritmust a gyökök és együtthatók közötti összefüggés alapján.) Példa:

$$x^2 - \sqrt{2}(10^5 - 10^{-5})x - 2 = 0$$

7. Függvényérték hibája. Az $f(x) = \frac{x}{1-x^2}$ függvény értékét közelítjük az 2 helyen, ahol $x \approx 2$ és $\Delta_x = 0, 1$. Határozzuk meg a $\Delta_{f(x)}$ abszolút hibakorlátot!