Lecture 27

niceguy

November 21, 2023

1 Extended Integral

Consider the function $f: A \to \mathbb{R}$ not necessarily bounded, with $A \subseteq \mathbb{R}^n$ being open. In single variable calculus, you can say for $f(x) \geq 0$,

$$\int_0^1 f(x)dx = \sup_{\epsilon > 0} \int_{\epsilon}^1 f(x)dx$$
$$= \lim_{n \to \infty} \int_{\frac{1}{n}}^1 f(x)dx$$

However, we don't want to enforce a particular sequence such as $\frac{1}{n}$. Consider a general $A \subseteq \mathbb{R}^n$ which is open, and f(x) is continuous on A. Then we can define $f(x) = f_+(x) - f_-(x)$ where

$$f_{+}(x) = \begin{cases} f(x) & f(x) \ge 0\\ 0 & f(x) < 0 \end{cases}$$

$$f_{-}(x) = \begin{cases} 0 & f(x) > 0 \\ -f(x) & f(x) \le 0 \end{cases}$$

It is easy to show that f_+, f_- are continuous functions over A. Also $|f|(x) = f_+(x) + f_-(x)$. We then say f(x) is extended-integrable over A iff

$$\sup_{D\in\mathcal{D}}\int_{D}f_{+}(x)+\int_{D}f_{-}(x)<\infty$$

Where \mathcal{D} is the set of compact and rectifiable subsets of A. Define the extended integral $\operatorname{Ext} \int$ by

$$\operatorname{Ext} \int_{A} f(x) = \operatorname{Ext} \int_{A} f_{+} - \operatorname{Ext} \int_{A} f_{-}$$

Remark. If A is bounded and rectifiable, v(A) is well defined. Then $\forall \epsilon > 0 \exists D \in \mathcal{D}$ such that $v(D) > v(A) - \epsilon$.

Proof. Start with $\chi_A(x)$ defined over $Q \supseteq A$. χ_A is integrable, so $\forall \epsilon > 0 \exists$ a partition P of Q such that

$$\sum_{R \in P} m_R(\chi_A) v(R) > v(A) - \epsilon$$

 m_R is either 0 or 1. Taking only the terms where it is 1, one can see that

$$\sum_{R \subset A} v(R) > v(A) - \epsilon$$

since $m_R = 1 \Leftrightarrow R \subseteq A$. Then define $D = \bigcup_{R \in P, R \subseteq A} R$.

Lemma 1.1. If $A \subseteq \mathbb{R}^n$ is open, there exists a sequence $D_n \subseteq A$ such that $D_n \subseteq IntD_{n+1}$ and $\bigcup_{n=1}^{\infty} D_n = A$.

Proof. Define

$$C_n = \{x \in A | d(x, A^c \ge \frac{1}{n})\}$$

Note that C_n is the preimage of $y \geq \frac{1}{n}$, a closed set, under a continuous distance function. Hence C_n is closed. It is also obvious that it is contained in the interior of C_{n+1} . Its union is a subset of A. But any point in A admits an ε ball contained in A, so its distance from A^c is strictly positive, and is contained in some C_n . So A is also a subset of the union. Then both are equal, i.e.

$$\bigcup_{n=1}^{\infty} C_n = A$$

Construct $D'_n s$ out of the $C'_n s$ to preserve all properties, but also get that D_n is rectifiable (this implies D_n is bounded, and hence closed). More explicitly, construct

$$C_n \subseteq D_n \subseteq \operatorname{Int} C_{n+1}$$

 $\forall x \in C_n \exists Q(x, \varepsilon) \subseteq \text{Int}C_{n+1}$. The union of such $Q \ \forall x \in C_n$ is a superset of C_n . Define it to be D_n .