Taller 1 - Introducción a Mathematica

Mecánica Clásica 1

Introducción:

Lenguaje de Wolfram

Wolfram es un lenguaje comúnmente utilizado para la programación científica. Es un lenguaje interpretado (al igual que Python), el cual tiene un paradigma de programación simbólica.

Interfaz

Wolfram Mathematica es a Wolfram, lo que Jupyter Notebook es a Python. Tiene la capacidad de realizar artículos, presentaciones y, obviamente, scripts (*.wls, *.nb) y módulos de rutinas (*.wl).

Mathematica como Calculadora:

Primero que nada, ¿Cómo ejecutamos el código? Existen dos formas de hacerlo:

- Ir al menu superior "Evaluation" -> "Evaluate Cells".
- Con la combinación de teclas Shift + Enter.

```
(* Suma, resta, producto, división, exponenciación y división ∗)
     6 + 4
     3 – 9
     5 * 7
      7
      3
      \sqrt{8}
Out[ • ]= 10
Out[•]= -6
Out[ • ]= 35
Out[ • ]= 46 656
Out[\circ]= 2 \sqrt{2}
     Para poner las fracciones, exponentes y radicales chulos utilizamos las siguientes combinaciones de
     teclas:
          - Ctrl + /
          - Ctrl + 6
          - Ctrl + 2
     (* Declaración de Variables *)
In[•]:= a = 1
     H1 = 1334
Out[\circ]= 1
\textit{Out[} \circ \textit{]} = 1334
In[•]:= (* quitar el valor de una variable *)
```

Funciones (Rutinas)

a =.

A diferencia de en otros lenguajes, en Wolfram se utilizan los corchetes '[]' en vez de '()'; además, toda rutina en Wolfram inicia con una letra mayuscula. Por ejemplo:

$$N \left[\frac{7}{3} \right] (* o *) \\ \sqrt{8} \ \, || \ \, N \\ Out[*] = 2.33333 \\ Out[*] = 2.82843 \\ (* \ \, Matriz \ \, identidad \ \, mostrada \ \, bonito \ \, *) \\ IdentityMatrix[6] \ \, || \ \, MatrixForm \\ Out[*] \ \, || MatrixForm \\$$

Out[•]= **0**

Out[o]= π

$$\begin{tabular}{l} $$ In[$^{\circ}$] := $(* Solución de Ecuaciónes y sistemas de ecuaciones (Algebraicas y diferenciales) *) \\ Solve[$x^5 + x^4 + 5 x^3 + x^2 + 2 x + 1 == 0, x] $// N$ \\ Solve[$\{2 a + b - 3 c == 7, 5 a - 4 b + c == 19, a - b - 4 c == 4\}, \{a, b, c\}]$ \\ (* Sistema de ecuaciones *) \\ DSolve[$x''[t] + $\omega^2 * x[t] == 0, x[t], t]$ \\ Out[$^{\circ}$] := $\{\{x \to -0.415611\}, \{x \to -0.453826 - 2.07654 i\}, \{x \to -0.453826 + 2.07654 i\}, \{x \to 0.161631 - 0.711644 i\}\}$ \\ Out[$^{\circ}$] := $\{\{a \to \frac{104}{29}, b \to -\frac{8}{29}, c \to -\frac{1}{29}\}\}$ \\ Out[$^{\circ}$] := $\{\{x[t] \to c_1 Cos[t $\omega] + c_2 Sin[t $\omega]\}\}$ \\ \end{tabular}$$

Gráficas

 $In[\cdot]:= Plot[Sin[x], \{x, -2*\pi, 2*\pi\}, PlotLabel \rightarrow Sin[x]]$

$$ln[-]:= PLeg[n_, x_] := Simplify \left[\frac{1}{2^n * Factorial[n]} * D[(x^2 - 1)^n, \{x, n\}] \right]$$

 $ln[\cdot] := p = PLeg[#, x] & /@Range[0, 5]$

Out[*]=
$$\left\{1, x, \frac{1}{2}(-1+3x^2), \frac{1}{2}x(-3+5x^2), \frac{1}{8}(3-30x^2+35x^4), \frac{1}{8}x(15-70x^2+63x^4)\right\}$$

$lo(a) := Plot[p, \{x, -1, 1\}, PlotLegends \rightarrow "Expressions"]$

