- What is the gradient computed with respect to?
 - Weights m at hidden nodes and k at output nodes

$$-\mathbf{w}_j \ (j=1\ldots m)$$

$$-\mathbf{w}_l \ (l=1\ldots k)$$

•
$$\mathbf{w}_j \leftarrow \mathbf{w}_j - \eta \frac{\partial J}{\partial \mathbf{w}_j} = \mathbf{w}_j - \eta \sum_{i=1}^N \frac{\partial J_i}{\partial \mathbf{w}_i}$$

•
$$\mathbf{w}_l \leftarrow \mathbf{w}_l - \eta \frac{\partial J}{\partial \mathbf{w}_l} = \mathbf{w}_l - \eta \sum_{i=1}^N \frac{\partial J}{\partial \mathbf{w}_l}$$

$$\nabla J_i = \begin{bmatrix} \frac{\partial J_i}{\partial \mathbf{w}_1} \\ \frac{\partial J_i}{\partial \mathbf{w}_2} \\ \vdots \\ \frac{\partial J_i}{\partial \mathbf{w}_{m+k}} \end{bmatrix}$$

$$\frac{\partial J_i}{\partial \mathbf{w}_r} = \begin{bmatrix} \frac{\partial J_i}{\partial w_{r1}} \\ \frac{\partial J_i}{\partial w_{r2}} \\ \vdots \end{bmatrix}$$

- Need to compute $\frac{\partial J_i}{\partial w_{rq}}$
- Update rule for the q^{th} entry in the r^{th} weight vector:

$$w_{rq} \leftarrow w_{rq} - \eta \frac{\partial J}{\partial w_{rq}} = w_{rq} - \eta \sum_{i=1}^{N} \frac{\partial J_i}{\partial w_{rq}}$$

4.1 Derivation of the Backpropagation Rules

Assume that we only one training example, i.e., $i = 1, J = J_i$. Dropping the subscript i from here onwards.

- Consider any weight w_{rq}
- Let u_{rq} be the q^{th} element of the input vector coming in to the r^{th} unit.

Observation 1

Weight w_{rq} is connected to J through $net_r = \sum_i w_{rq} u_{rq}$.

$$\frac{\partial J}{\partial w_{rq}} = \frac{\partial J}{\partial net_r} \frac{\partial net_r}{\partial w_{rq}} = \frac{\partial J}{\partial net_r} u_{rq}$$

Observation 2

 net_l for an **output node** is connected to J only through the output value of the node (or o_l)

$$\frac{\partial J}{\partial net_l} = \frac{\partial J}{\partial o_l} \frac{\partial o_l}{\partial net_l}$$

The first term above can be computed as:

$$\frac{\partial J}{\partial o_l} = \frac{\partial}{\partial o_l} \frac{1}{2} \sum_{l=1}^k (y_l - o_l)^2$$

The entries in the summation in the right hand side will be non zero only for l. This results in:

$$\frac{\partial J}{\partial o_l} = \frac{\partial}{\partial o_l} \frac{1}{2} (y_l - o_l)^2$$
$$= -(y_l - o_l)$$

Moreover, the second term in the chain rule above can be computed as:

$$\frac{\partial o_l}{\partial net_l} = \frac{\partial \sigma(net_l)}{\partial net_l}$$
$$= o_l(1 - o_l)$$

The last result arises from the fact o_l is a sigmoid function. Using the above results, one can compute the following.

$$\frac{\partial J}{\partial net_l} = -(y_l - o_l)o_l(1 - o_l)$$

Let

$$\delta_l = (y_l - o_l)o_l(1 - o_l)$$

Therefore,

$$\frac{\partial J}{\partial net_l} = -\delta_l$$