Questim:

Let 0 = [-1,1] and f(x) = |x|. Find superjets and subjets of f at all $x \in 0$.

Solution:

• For
$$x = 0$$
, $J_0^{2,+} u(0) = \phi$

• For
$$x=-1$$
, $\int_0^{2+} u(+) = (\{+i\} \times [0,+\infty)) \cup ((-1,+\infty) \times \mathbb{R})$

- For x=-1, $J_0^{2,-}u(-1)=(\{-1\}\times(-10,0\})$ $U((-10,-1)\times\mathbb{R})$

- · For x ∈ (0,1), Jo+ u(x) = {1} x [0,+60), Jo- u(x) = {1} x (-00,0]

· For x ∈ (+,0), Jo x(x) = {+ 1 x [0,+10), Jo, u(x) = {-1 x (-10,0]

Conclusion:

- · For x=0, Jo+ x(0) = \$\phi\$ J2,- W(0) = ((-1.1) x R) U (Sig x (-10,0]) U (S-1 x (-10,0])
- For x=1, $\int_{0}^{2+} \chi(1) = (fif \times [0,+\omega)) \cup ((-\omega,1) \times \mathbb{R})$ To X(1) = ({1} x (-10,0]) U ((1,+10) x R)
- · For x=-1, J₀^{2,+} x(-1) = ({-1 x [0,+10)} U ((-1,+10) x R) $\int_{0}^{2,-} \chi(-1) = \left(\left\{ -\frac{1}{2} \right\} \times \left(-\infty, 0 \right] \right) U \left(\left(-\infty, -1 \right) \times \mathbb{R} \right)$
- For x 6 (0,1), J₀^{2,+} μ(x) = {i \ x [0,+\(\nu\))}, J₀^{2,-} μ(x) = {i \ x (-\(\nu\),0]}
- For x ∈ (-1,0), T₀^{2,+} x(x) = {+ | x [0,+ω), T₀^{2,-} x(x) = {+ | x (-ω,0]}