Header styling inspired by CS 70: https://www.eecs70.org/

1 Linear Maps

1.1 Vector Space of Linear Maps

Problem: Suppose $b, c \in \mathbf{R}$. Define $T : \mathbf{R}^3 \to \mathbf{R}^2$ by

$$T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz)$$

Show that T is linear if and only if b = c = 0.

Solution: We first show that if b = c = 0, then T is linear. Recall the facts of linearity:

$$T(u+v) = Tu + Tv \quad T(\lambda v) = \lambda(Tv)$$

for all $v \in V$. If b = c = 0, then we can define T as:

$$T(x, y, z) = (2x - 4y + 3z, 6x)$$

Now suppose we have two vectors $u = (x_1, y_1, z_1), v = (x_2, y_2, z_2)$. Then:

$$Tu + Tv = (2x_1 - 4y_1 + 3z_1, 6x_1) + (2x_2 - 4y_2 + 3z_2, 6x_2) = (2(x_1 + x_2) - 4(y_1 + y_2) + 3(z_1 + z_2), 6(x_1 + x_2)) = T(u + v)$$

Now for homogeneity:

$$T(\lambda u) = T(\lambda x_1, \lambda y_1, \lambda z_1) = (2\lambda x_1 - 4\lambda y_1 + 3\lambda z_1, 6\lambda x_1) = \lambda(Tu)$$

Therefore, both conditions are satisfied, indeed T is linear. Now we show that if T is linear, then b=c=0 is necessary. Consider what we had earlier:

$$Tu + Tv = (2(x_1 + x_2) - 4(y_1 + y_2) + 3(z_1 + z_2) + 2b, 6(x_1 + x_2) + cx_1y_1z_1 + cx_2y_2z_2)$$

This is only equal to T(u+v) if 2b=0 and $c(x_1y_1z_1+x_2y_2z_2)=0$, since they are the only nonlinear terms. Thus, if T is linear, then b=c=0.

Problem: Suppose that $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_m is a list of vectors in V such that Tv_1, \dots, Tv_m is a linearly independent list in W. Prove that v_1, \dots, v_m is linearly independent.

Solution: We return to the definition of linear independence: a set of vectors $v_1, \dots v_m$ is linearly independent the solution to the equation:

$$a_1v_1 + \cdots + a_mv_m = 0$$

is that $a_1, \ldots, a_m = 0$. Since we know that the list Tv_1, \ldots, Tv_m is linearly independent in w, then the solution to the equation:

$$a_1Tv_1 + \dots + a_mTv_m = 0$$

is $a_1 = \cdots = a_m = 0$. Now, apply the rules of T being a linear map:

$$a_1Tv_1 + \cdots + a_mTv_m = T(a_1v_1) + \cdots + T(a_mv_m) = T(a_1v_1 + \cdots + a_mv_m) = 0$$

Now, we use the fact that since linear maps take 0 to 0, this implies that $a_1v_1+\cdots+a_mv_m=0$. Further, since the only values of a_i that satisfy this equation is $a_1=\cdots=a_m=0$, then this satisfies the condition that v_1,\ldots,v_m is linearly independent. \square

Problem: Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V=1 and $T\in\mathcal{L}(V)$, then there exists $\lambda\in\mathbf{F}$ such that $Tv=\lambda v$ for all $v\in V$.

Solution: Since V is one-dimensional, this implies that there is only one basis vector, v_1 . Therefore, for all vectors $v \in V$, then $v = \alpha v_1$ for some $\alpha \in \mathbf{F}$. Then, because $T \in \mathcal{L}(V)$, then T must map every vector $v \in V$ to another vector in V, which must be expressed as a scalar times v. Thus, $Tv = \lambda v$ is the only option for a linear map on this space. More precisely:

$$Tv = T(\lambda v_1) = \lambda Tv_1 = \alpha \lambda v_1 = \lambda(\alpha v_1) = \lambda v$$

as desired.

Problem: Give an example of a function $\varphi: \mathbf{R}^2 \to \mathbf{R}$ such that

$$\varphi(av) = a\varphi(v)$$

for all $a \in \mathbf{R}$ and all $v \in \mathbf{R}$ but φ is not linear.

Problem: Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$). Define $T: V \to W$ by

$$Tv = \begin{cases} Sv & \text{if } v \in U \\ 0 & \text{if } v \in V \text{ and } v \not\in U \end{cases}$$

Prove that T is not a linear map on V.

Solution: A linear map must satisfy $T(\lambda v) = \lambda(Tv)$ for all $v \in V$. However, consider some λ such that $v \in U$ but $\lambda v \notin U$. Then:

$$T(\lambda v) = 0$$
 $\lambda(Tv) = \lambda Sv \neq 0$

Hence, T is not linear on V. Alternatively, we could define $v \in V$ and $w \in V$ but $w \notin U$, then we have:

$$T(v+w) = 0$$

But:

$$Tv + Tw = Sv \neq 0$$

so this also violates linearity.

Problem: Suppose v_1, \ldots, v_m is a linearly dependent list of vectors in V. Suppose also that $W \neq \{0\}$. Prove that there exist $w_1, \ldots, w_m \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each $k = 1, \ldots, m$.

Solution: Since v_i is linearly dependent, then we can write $v_i = \sum_{j \neq i} a_j v_j$ for some set of a_j . Then, consider some nonzero $w \in W$, and set the w_k 's as follows:

$$w_k = \begin{cases} w & k = i \\ 0 & \text{else} \end{cases}$$

Then, suppose for all $j \neq i$, that $Tv_j = w_j = 0$. Then, let's write Tv_i :

$$Tv_i = T\left(\sum_{j \neq i} a_j v_j\right) = \sum_{j \neq i} a_j Tv_j \sum_{j \neq i} a_j w_j = w_i$$

But since all $w_i = 0$, this means that $w_i = 0$, but we set $w_i \neq 0$ purposefully, therefore there is no T that would stasify this. \square

1.2 Null Spaces and Ranges

Problem: Suppose $S, T \in \mathcal{L}(V)$ are such that range $S \subseteq \text{null } T$. Prove that $(ST)^2 = 0$.

Solution: Consider a vector $v \in V$. Then:

$$(ST)^{2}v = (STS)(Tv)$$
$$= ST(Sv')$$

Now, Sv' will exist within range S, and since we know that range $S \subseteq \text{null } T$, then this impleis that T(Sv') = 0. Finally, S(0) = 0, so hence $(ST)^2v = 0$, so $(ST)^2 = 0$.

Problem: Suppose v_1, \ldots, v_m is a list of vectors in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by

$$T(z_1, \dots, z_m) = z_1 v_1 + \dots + z_m v_m$$

a) What property of T corresponds to v_1, \ldots, v_m spanning V?

Solution: If T is surjective, then v_1, \ldots, v_m spans V. This is because if the range of T is V, then the set of vectors T applies a linear combination to must span V.

b) What property of T corresponds to the list v_1, \ldots, v_m being linearly independent?

Solution: The set v_1, \ldots, v_m is linearly independent if and only if T is injective, since linear independence means that there is only one way to express every vector (i.e. the solution to $T(z_1, \ldots, z_m) = 0$ is $z_1 = \cdots = z_m = 0$).

Problem: Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \dots, v_n is linearly independent in V. Prove that Tv_1, \dots, Tv_n is linearly independent in W.

Solution: The proof of this is very similar to the one we did earlier. If v_1, \ldots, v_n is linearly dependent, then this means that

$$a_1v_1 + \dots + a_nv_n = 0$$

is solved by setting $a_i = 0$. Then, now let's consider the list Tv_1, \ldots, Tv_n :

$$a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) = 0$$

where the last equality we obtain from the fact that linear maps map 0 to 0. This implies that the only solution to this equation is $a_i = 0$, hence the list Tv_1, \ldots, Tv_n is linearly independent.

Problem: Suppose that V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that

$$U \cap \text{null } T = \{0\} \text{ and } \text{range } T = \{Tu : u \in U\}.$$

Solution: We can define $U = \{0\} \cup (V \setminus \text{null } T)$. This way, $\text{null } T \cap U = \{0\}$ by definition, and range $T = \{Tv : v \in V\}$, but since U defines the same set of vectors (since we only get rid of the null space), then range $T = \{Tu : u \in U\}$, as desired. \square

Problem: Suppose T is a linear map from \mathbf{F}^4 to \mathbf{F}^2 such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbf{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$$

Prove that *T* is surjective.

Solution: We know that $T \in \mathcal{L}(\mathbf{F}^4, F^2)$. Because the null space can be determined by two variables only (x_1, x_3) , so dim null T = 2. This implies that since dim V = 4, then dim range T = 2, and since this equals the dimension that T maps to \mathbf{F}^2 , then this implies that T is indeed surjective by (3.19).

Problem: Suppose V and W are both finite-dimensional. Prove that there exists an injective map from V to W if and only if $\dim V \leq \dim W$.

Solution: Recall the definition of injectivity: a linear map $T \in \mathcal{L}(V, W)$ is injective if and only if Tu = Tv implies that u = v, or equivalently that null $T = \{0\}$.

We prove the forward case: if $\dim V \leq \dim W$, we show that there exists an injective map from V to W. Let v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_m be the basis vectors of V and W respectively, and $n \leq m$. Then, define a map $Tv_i = w_i$ for all $i = 1, \ldots, n$. Then, $\dim \operatorname{range} T = \dim V$, implying that $\dim \operatorname{null} T = 0$ from FTLM, as desired.

Now we prove the reverse: we want to show that if there exists an injective map from V to W, then $\dim V \leq \dim W$. This is trivial by contradiction: if $\dim V > \dim W$, then by (3.22) this is impossible, so we're done.

Problem: Suppose V and W are finite-dimensional and U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null T = U if and only if $\dim U \ge \dim V - \dim W$.

Solution: We prove the forward case: there exists a T such that null T = U if $\dim U \ge \dim V - \dim W$. Let $\{u_i\}$ be a basis of U, and $\{w_i\}$ be a basis of W. Then, define a linear map T as follows:

$$Tv_i = \begin{cases} \vec{0} & v_i \in \{u_i\} \\ w_i & v_i \notin \{u_i\} \end{cases}$$

One can check very easily that this is linear, with null T=U. Here, $\dim \operatorname{null} T=\dim U$ and $\dim \operatorname{range} T=\dim W-\dim U$, since the basis vectors that map to a nonzero vector in W are those that do not form a basis of U. Therefore, $\dim V=\dim U+(\dim W-\dim U)=\dim W\leq \dim U+\dim W$, so the inequality is satisfied.

Now we prove the reverse case: if such a T exists, then $\dim U \geq \dim V - \dim W$. From the fundamental theorem of linear maps, we know that $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$. Now suppose we have a T such that $\operatorname{null} T = U$. Then, we have $\dim V = \dim U + \dim \operatorname{range} T$, and since $\dim \operatorname{range} T \leq \dim W$, then $\dim V \leq \dim U + \dim W$, which is the inequality we wanted to satisfy. \square

Problem: Suppose W is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity operator on V.

Solution: We show the forward case: T is injective if there exists an $S \in \mathcal{L}(W,V)$ such that ST is the identity. Suppose T is not injective, so there exists two vectors $u \neq v$ such that Tu = Tv. Then, acting S on the left of both sides gives: STu = STv and since ST is the identity, then we're left with u = v, which is a contradiction.

Now we show the reverse case: if T is injective, there exists an $S \in \mathcal{L}(W,V)$ such that ST is the identity. Since T is injective, then we know that for any two vectors $v_1, v_2 \in V$, if $Tv_1 = Tv_2$ then $v_1 = v_2$. Now, let $\{w_1, w_2, \ldots, w_m\}$ be a basis for W and $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. Then, let $S \in \mathcal{L}(W,V)$ be defined as:

$$Sw_i = \begin{cases} v_i & i \in \{1, 2, \dots, n\} \\ 0 & \text{else} \end{cases}$$

S is clearly linear, and take any vector $v = \sum_i \alpha_i v_i$. Then:

$$STv = S\left(\sum_{i} \alpha_{i} w_{i}\right) = \sum_{i} \alpha_{i} v_{i} = v$$

so therefore ST is indeed the identity.

As an aside, we also should prove that T transforms in a way such that $Tv_i = w_i$, or in other words T transforms each basis vector in V to a basis vector in W. This needs to be true since FTLM says that $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$, and since $\dim \operatorname{null} T = 0$, then $\dim \operatorname{range} T = \dim V$.

Problem: Suppose $\phi \in \mathcal{L}(V, \mathbf{F})$ and $\phi \neq 0$. Suppose $u \in V$ is not in null ϕ . Prove that

$$V = \text{null } \phi \oplus \{au : a \in \mathbf{F}\}\$$

1.3 Matrices

Problem: Suppose $T \in \mathcal{L}(V, W)$. Show that with respect of each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.

Problem: Suppose v_1, \ldots, v_n is a basis of B and w_1, \ldots, w_m is a basis of W.

- a) Show that if $S,T\in\mathcal{L}(V,W)$ then $\mathcal{M}(S+T)=\mathcal{M}(S)+\mathcal{M}(T)$
- b) Show that if $\lambda \in \mathbf{F}$ and $T \in \mathcal{L}(V, W)$, then $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.