PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 6 (Feb 28 – Mar 7)

- 1 (5+10+10) Find Galois groups for the following polynomials f over \mathbb{Q} :
 - 1) $(t^2-3)(t^2+1)$
 - 2) $t^4 t^2 + 1$
 - 3) $t^4 2$
- **2** (10+10) 1) Find $Gal_{\mathbb{F}_3(t^2)}(\mathbb{F}_3(t))$.
 - 2) Find $Gal_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t))$.
- 3 (10+5) (a) Let K-M-L be a field extension and L:K is a normal extension. Prove that L:M is also a normal extension
 - (b) Give an example of three fields K, M, L such that [L:K]=4 and [M:K]=[L:M]=2 (hence K-M and M-L are normal extensions) but L:K is not a normal extension.
- **4** (10) Let L: K be a splitting field extension for a non–constant polynomial $f \in K[t]$. Prove that $|Gal_L(K)|$ divides $(\deg f)!$.
- **5** (15+20) a) Let $f = t^3 + t + 1 \in \mathbb{F}_2[t]$. Prove that $\operatorname{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .
 - b) Let $f = t^3 + t^2 + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 Find Galois groups for the following polynomials f over \mathbb{Q} :
 - 1) $(t^2-3)(t^2+1)$
 - 2) $t^4 t^2 + 1$
 - 3) $t^4 2$

Solution. 1) The splitting field is $\mathbb{Q}(\sqrt{3}, i)$ hence $\operatorname{Gal}_{\mathbb{Q}}(f) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ (see lectures).

- 2) The roots of f are $e^{\pm \pi i/6}$, $e^{\pm 7\pi i/6}$, so the splitting field is $\mathbb{Q}(\sqrt{3},i)$ and thus we have $\mathrm{Gal}_{\mathbb{Q}}(f) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ again.
- 3) The splitting field is $\mathbb{Q}(2^{1/4}, i)$ and the degree $[\mathbb{Q}(2^{1/4}, i) : \mathbb{Q}] = 8$. Thus $Gal_{\mathbb{Q}}(f) \cong D_4$ (see lectures).
- **2** 1) Find $Gal_{\mathbb{F}_3(t^2)}(\mathbb{F}_3(t))$.
 - 2) Find $Gal_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t))$.

Solution. 1) We have the following extension L: K, where $K = \mathbb{F}_3(t^2)$ and $L = \mathbb{F}_3(t)$. One has $f(x) := x^2 - t^2 \in K[t]$ and f(t) = 0. Thus t is algebraic over K. Clearly, f(x) is irreducible over K and hence [L:K] = 2. All roots of f are t and -t, where $t \neq -t$. Thus $\operatorname{Gal}_{\mathbb{F}_3(t^2)}(\mathbb{F}_3(t)) \cong \mathbb{Z}_2$.

- 2) We have the following extension L: K, where $K = \mathbb{F}_2(t^2)$ and $L = \mathbb{F}_2(t)$. One has $f(x) := x^2 t^2 \in K[t]$ and f(t) = 0. Thus t is algebraic over K. Clearly, f(x) is irreducible over K and hence [L:K] = 2. But $x^2 t^2 = (x t)^2$ and therefore $\operatorname{Gal}_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t)) \cong \{Id\}$.
- 3 (a) Let K M L be a field extension and L : K is a normal extension. Prove that L : M is also a normal extension.
 - (b) Give an example of three fields K, M, L such that [L:K] = 4 and [M:K] = [L:M] = 2 (hence K-M and M-L are normal extensions) but L:K is not a normal extension.

Solution. (a) Take any irreducible $f \in M[t] \setminus M$ and let $\alpha \in L$ be a root of f. We know that $\mu_{\alpha}^{M} | \mu_{\alpha}^{K}$ and that $f = c\mu_{\alpha}^{M}$, where $c \in M$. By assumption L : K is normal and therefore μ_{α}^{K} splits over L. It follows that μ_{α}^{M} splits over L and thus L : M is a normal extension.

- (b) Take $f = t^4 2$, say, and put $M = \mathbb{Q}(\sqrt{2})$, $L = \mathbb{Q}(2^{1/4})$. Then [M:K] = [L:M] = 2 but L:K is not a normal extension as L contains $\pm i2^{1/4}$.
- **4** Let L: K be a splitting field extension for a non-constant polynomial $f \in K[t]$. Prove that $|Gal_L(K)|$ divides $(\deg f)!$.

Solution. We know that any $\tau \in \operatorname{Gal}_L(K)$ acts as a permutation on the distinct roots of f. Thus by the Lagrange theorem $|\operatorname{Gal}_L(K)|$ divides n!, where n is the number of distinct roots of f. Clearly, n! divides $(\deg f)!$.

- **5** a) Let $f = t^3 + t + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .
 - b) Let $f = t^3 + t^2 + 1 \in \mathbb{F}_2[t]$. Prove that $\operatorname{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .

Solution. a) Clearly, f is irreducible over \mathbb{F}_2 and if $f(\alpha) = 0$, then

$$f(t) = (t + \alpha)(t^2 + \alpha t + 1 + \alpha^2) = (t + \alpha)(t + \alpha^2)(t + \alpha + \alpha^2).$$

Thus the splitting field $L = \mathbb{F}_2(\alpha)$, therefore $[L : \mathbb{F}_2] = 3$ and hence $\operatorname{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .

b) Clearly, f is irreducible over \mathbb{F}_2 and if $f(\alpha) = 0$, then

$$f(t) = (t + \alpha)(t^2 + (1 + \alpha)t + \alpha + \alpha^2).$$

One can check that α^2 is another root of f and hence $\mathrm{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 as above.

Another solution: $(t+1)^3 + (t+1) + 1 = t^3 + t + 1$ and we can use 5.a.

It was a misprint in 5.b (S_3 instead of \mathbb{Z}_3), so try either to get $\operatorname{Gal}_{\mathbb{F}_2}(f) \cong \mathbb{Z}_3$ or to disprove that $\operatorname{Gal}_{\mathbb{F}_2}(f) \cong S_3$. Both solutions deserve a full credit.