1. Here are the three graphs we'll use in solving these problems:

(a) We know $\log(1000) = \log(10^3) = 3$, so this is really about finding $\log(0.34)$. We use the "move the decimal point" trick to compute $\log(0.34)$:

$$\log(0.34) = \log(10^{-1} \times 3.4) = \log(10^{-1}) + \log(3.4) = -1 + \log(3.4).$$

The graph tells us that $\log(3.4) \approx 0.53$. Thus $\log(0.34) \approx -1 + 0.53 = -0.47$, and so $\log(1000) + \log(0.34) \approx 3 - 0.47 = \boxed{2.53}$.

(Mathematica tells me that $\log(1000) + \log(0.34) \approx 2.531478917...$)

- (b) The solution to $\log(y) = 1.87$ is y = antilog(1.87); that is, $y = 10^{1.87}$. By the rules of exponenents, we may write this as $y = 10^{1+0.87} = 10^1 \times 10^{0.87}$. Of course $10^1 = 10$, and we find $10^{0.87} \approx 7.4$ by reading the graph, above. Thus $10^{1.87} \approx 10 \times 7.4 = \boxed{74}$. (Mathematica tells me that $10^{1.87} \approx 74.131024...$)
- (c) We've drawn the secant line to $y = 10^x$ between the two points x = 0.2 and x = 0.7 on the third graph, above. The slope of this line is about

$$m = \frac{5.0 - 1.6}{0.7 - 0.2} = \frac{3.4}{0.5} \approx \boxed{6.8}.$$

The actual average rate of change, computed from the actual values $(x, y) = (0.2, 10^{0.2})$ and $(0.7, 10^{0.7})$, is

$$m = \frac{10^{0.7} - 10^{0.2}}{0.7 - 0.2} \approx 6.853958287623...,$$

so as usual we're pretty close.

2. We write down the answers without much commentary:

(a)
$$\frac{d}{dx}(2e^{7x} + 5x^3 - 7) = \boxed{14e^{7x} + 15x^2}$$

(b)
$$\frac{d^2}{dx^2}(3x^4 + 12\sqrt{x}) = \frac{d^2}{dx^2}(3x^4 + 12x^{1/2}) = \frac{d}{dx}(12x^3 + 6x^{-1/2}) = \boxed{36x^2 - 3x^{-3/2}}$$

(c)
$$f'(x) = 2cx - 16/x^2$$
, so $f'(2) = 2c(2) - 16/(2^2) = 4c - 4$

3. The tangent line is the line through (t, h(t)) = (5, h(5)) = (5, 40) with slope h'(5) = 2. Thus the line has equation

$$y-40=2(t-5)$$
 or, equivalently, $y=2t+30$.

- (a) When t=25 (that is, in 1975, 25 years after 1950), the height of the tree is $h(25)\approx 2(25)+30=80$ feet].
- (b) We start by asking: what is t when the height of the tree is 200 feet? That is, when is h(t) = 200? We have estimated the tree height as $h(t) \approx 2t + 30$, so this is 200 when 2t + 30 = 200. Solving, we get t = 85, which corresponds to the year 2035 (85 years after 1950).
- 4. Here is a picture of the graph of $y = 2x^3 3x^2 12x + 5$:

- (a) The slope of the graph is the derivative, $\frac{dy}{dx}$. Since $\frac{dy}{dx} = 6x^2 6x 12$, the slope of the graph at x = 1 is $6(1)^2 6(1) 12 = \boxed{-12}$.
- (b) The tangent line at x = 0 has slope -12 (since $y'(0) = 6(0)^2 6(0) 12 = -12$) and passes through the point $(x, y) = (0, 2(0)^3 3(0)^2 12(0) + 5) = (0, 5)$. Thus the equation of the tangent line is

$$y-5=-12(x-0)$$
 or, equivalently $y=-12x+5$.

- (c) Remember that a curve is concave up exactly where the second derivative $y'' = \frac{d^2y}{dx^2}$ is positive. Since y'' = 12x 6, this is positive (and so the graph is concave up) when x > 1/2.
- (d) The slope is $\frac{dy}{dx} = 6x^2 6x 12$, which is zero when $6x^2 6x 12 = 0$. We factor this as $6(x^2 x 2) = 6(x 2)(x + 1) = 0$, so the derivative is zero when x = -1 and x = 2.
- **5.** (a) The velocity of the rocket is h'(t) = -6t + 30 m/s.
 - (b) The initial speed that is, the speed at time t = 0 is h'(0) = 30 m/s.
 - (c) The acceleration of the rocket is $h''(t) = -6 \text{ m/s}^2$. This is a constant function, and in particular after 2 seconds the acceleration is $h''(2) = -6 \text{ m/s}^2$.
 - (d) The velocity is zero when -6t + 30 = 0 (where this formula is from part (a)). Solving, we get t = 5 seconds.
 - (e) This asks for the height of the rocket at the time we found in part (d). This is

$$h(5) = -3(5)^2 + 30(5) = -75 + 150 = \boxed{75 \text{ meters}}.$$