MATH 676 Project – Bilinear Form

Logan Harbour

February 20, 2019

Begin with the spatial domain $\mathcal{D} \in \mathbb{R}^2$ in which $\delta \mathcal{D}$ is on the boundary of \mathcal{D} . The set of propagation directions \mathcal{S} is the unit disk.

The linear Boltzmann equation for one-group transport is

$$\mathbf{\Omega} \cdot \nabla \Psi(\mathbf{\Omega}, \mathbf{x}) + \sigma_t(\mathbf{x}) \Psi(\mathbf{\Omega}, \mathbf{x}) - \sigma_s(\mathbf{x}) \Phi(\mathbf{x}) = q(\mathbf{x}), \qquad \forall (\mathbf{\Omega}, \mathbf{x}) \in \mathcal{S} \times \mathcal{D},$$
(1a)

$$\Phi(\mathbf{\Omega}, \mathbf{x}) = \Phi^{\text{inc}}(\mathbf{\Omega}, \mathbf{x}), \qquad \forall (\mathbf{\Omega}, \mathbf{x}) \in \mathcal{S} \times \delta \mathcal{D}, \ \mathbf{\Omega} \cdot \mathbf{n}(x) < 0,$$
(1b)

where Φ is the scalar flux, defined by

$$\Phi = \frac{1}{2\pi} \int_{\mathcal{S}} \Phi(\mathbf{\Omega}, \mathbf{x}) \ d\Omega.$$

Introduce the S_N discretization by