Name:

BECA / Dr. Huson / Geometry 03 Parallels and transversals

3.7 Isosceles triangle base theorem

1. The measures in degrees of the three angles of a triangle are x, $\frac{1}{2}x$, and $\frac{3}{2}x$. Find the measures of the triangle's angles.

2. Given $\triangle RSU$. If $m \angle UST = x$ and $m \angle R = x - 80$, and $m \angle U = x - 50$.

3. Given isosceles $\triangle LMN$ with $\overline{LM} \cong \overline{NM}$. If $m\angle L = 2x + 20$ and $m\angle N = 3x + 5$, find $m\angle M$.

- 4. Do Not Solve. Circle the appropriate equation, cite a justification:
 - "definition of bisector"
 - "linear pairs sum to 180°"
 - "vertical \angle s are \cong "
 - "alternate interior \angle s are \cong "

- "corresponding \angle s of \parallel lines are \cong "
- "same-side interior ∠s are supplementary"
- "⊥ rays with complementary ∠s adding to 90°"

(a) \overrightarrow{RPU} with ray \overrightarrow{PS} .

 $\angle RPS \cong \angle SPU \quad m \angle RPS + m \angle SPU = 180^{\circ}$

(b) Given $m \angle R = m \angle U = 65$, and $m \angle UST = 130$. Find $m \angle RSU$.

 $\angle UST \cong \angle RSU$ $m \angle UST + m \angle RSU = 180$

(c) Given $m \angle 1 = 4x + 6$, $m \angle 2 = 6x - 32$. Find $m \angle 1$.

 $\angle 1 \cong \angle 2$ $m \angle 1 + m \angle 2 = 180$

- (d) Given two parallel lines and a transversal, as shown.

 $\angle 4 \cong \angle 5$ $m \angle 3 + m \angle 6 = 180$

(e) Given $\overrightarrow{BA} \perp \overrightarrow{BC}$, $m \angle ABD = 2x - 5$, and $m \angle DBC = x - 10$.

 $\angle ABD \cong \angle DBC$ $m\angle ABD + m\angle DBC = 90$

