5.1 Feature Engineering

Dr. Sultan Alfarhood

Feature Engineering

- The problem of transforming raw data into a dataset is called feature engineering.
- **Informative features**: those would allow the learning algorithm to build a model that does a good job of predicting labels of the data used for training.
 - Highly informative features are also called features with high **predictive power**.

Feature Selection vs Feature Extraction

Feature Selection

 Selecting subset of extracted features. This subset is relevant and contributes to minimizing the error rate of a trained model.

Feature Extraction

 Combining existing features to produce a more useful one.

Label Encoding

- Encode attributes and target labels with value between 0 and NumberOfClasses-1
 - Using ordered numbers as values is likely to confuse the learning algorithm
- Label Encoding can be helpful when the ordering of values of some categorical variable matters

	quality	
•••	bad	<i>/</i>
	bad	<i>/</i>
•••	good	
•••	excellent	

	quality	
•••	0	
•••	0	
•••	1	
	2	/

One-Hot Encoding

Transforming categorical feature into several binary ones:

id	color
1	red
2	blue
3	green
4	blue

One Hot Encoding

id	color_red color_blue		color_green	
1	1	0	Θ	
2	0	1	Θ	
3	0	0	1	
4	0	1	Θ	

CSC462: MACHINE LEARNING (FALL 2024)

5

- Binning is the conversion of continuous values into categorical ones.
- Prevent overfitting.

Sex	Age	
male		22
female		38
female		26
female		35
male		35
male		80
male		54
male		2
female		27
female		14
female		4
female		58

CSC462: MACHINE LEARNING (FALL 2024)

2

Binning

- There are two common ways to get all attributes to have the same scale:
 - Normalization
 - Standardization

No Scaling Problem

Person_name	Salary	Years_of_experience	Expected_Position_Level
Ahmed	100000	10	2
Khaled	78000	7	4
Mohammed	32000	5	8
Ali	55000	6	7
Yousef	92000	8	3
Saleh	120000	15	1
Ayman	65750	7	5

The attributes *Salary* and *Years_of_experience* are on different scale and hence attribute *Salary* can take high priority over attribute *Years_of_experience* in the model.

Feature Scaling

• Normalization (or min-max normalization) scale all values in a fixed range between **0** and **1**.

$$\bar{x}^{(j)} = \frac{x^{(j)} - min^{(j)}}{max^{(j)} - min^{(j)}}$$

$ar{\chi}^{(j)}$	$x^{(j)}$	$-min^{(j)}$	
χΟ	$-\frac{1}{max^{(i)}}$	$\overline{(j)} - min^{(j)}$	

• $max^{(j)}$: Maximum value of the feature j

	cost	
•••	55000	
•••	70000	
•••	65000	
•••	43000	

	cost	
	0.4444	
	1	•••
•••	0.8148	•••
•••	0	•••

• Standardization (or z-score normalization) is the procedure during which the feature values are rescaled so that they have the properties of a standard normal distribution with $\mu = 0$ and $\sigma = 1$.

$$\hat{x}^{(j)} = \frac{x^{(j)} - \mu^{(j)}}{\sigma^{(j)}}$$

•••	cost	
•••	55000	
•••	70000	/
•••	65000	
	43000	

•••	cost	•••
 /	-0.314	•••
	1.137	
	0.653	
	-1.476	

 $\mu^{(j)}$: Mean value of the feature j

 $\sigma^{(j)}$: Standard deviation from the mean value of the feature j

• Standardization is much less affected by outliers.

Dealing with Missing Features

 Missing data are values that are not recorded in the dataset, represented by NaN.

- Different ways of dealing with missing features:
 - 1. Removing the examples with missing data from the dataset.
 - 2. Using a learning algorithm that can deal with missing feature values.
 - 3. Using a data imputation technique.

	Missingvalues									
PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ficket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15	7	s
2	1	1	female	38	1	0	PC 17599	71.2033	C85	С
3	1	3	female	26	0	0	STON/02. 3101282	7.925	-	s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05	4	s
6	0	3	male	-	0	0	330877	8.4583		Q

- Data Imputation Techniques are ways to deal with missing features by filling them with values such as:
 - Mean/Median Values
 - Most Frequent or Zero/Constant Values
 - Predicted value using a regression model

	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0	3.0	6.0	7.0
1	9	NaN	9.0	0	7.0		1	9.0	11.0	9.0	0.0	7.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0	6.0	9.0	7.0

CSC462: MACHINE LEARNING (FALL 2024)

14

• https://colab.research.google.com/drive/1YwvH-HLpmm4RDBrqOVX UHQ66UskHwgS?usp=sharing