

UNIVERSIDADE DO VALE DO RIO DOS SINOS

Matemática para Computação Prof. Rodrigo Orsini Braga

Álgebra de Conjuntos

O termo álgebra, desde a sua origem até hoje, refere-se a cálculos. Por exemplo, as operações aritméticas básicas (adição, multiplicação, etc.) sobre o conjunto dos números reais constituem uma álgebra. Vamos aqui considerar que uma Álgebra é constituída de operações sobre uma coleção de objetos. Neste contexto, Álgebra de Conjuntos corresponderia às operações definidas sobre todos os conjuntos.

Assim, como os números podem ser somados ou multiplicados e os valores lógicos podem ser combinados com \land ou \lor , há várias operações que podemos fazer sobre os conjuntos. Nesta aula, iremos abordar justamente quais são estas operações sobre os conjuntos.

Até aqui, o tratamento dado aos conjuntos e às definições relacionadas a conjuntos usou uma linguagem textual. Porém, na medida em que outros conceitos são desenvolvidos, como as operações sobre conjuntos, uma linguagem por meio de diagramas facilita o entendimento de definições e permite uma identificação e compreensão fácil e rápida destes conceitos.

Os *Diagramas de Venn* (John Venn (1834-1923), matemático inglês) são universalmente conhecidos e largamente utilizados na Teoria de Conjuntos. Os diagramas usam figuras geométricas planas para representar um conjunto. Tais figuras podem ser diversas. Em geral, o conjunto universo é representado por um retângulo e os demais conjuntos por círculos, elipses, etc. Os seguintes exemplos ilustram diversos Diagramas de Venn.

Exemplo 1: Vamos representar um dado conjunto A, um determindo elemento $b \in B$ e o conjunto $C = \{1, 2, 3\}$.

Exemplo 2: Vamos representar que $\{a,b\}\subseteq \{a,b,c\}$, $A\subseteq B$ e para um dado conjunto universo U, um conjunto $C\subseteq U$.

Observe que o conjunto $C \subseteq U$. é destacado para auxiliar visualmente o conjunto que se deseja representar. Tal destaque será importante na interpretação das operações sobre os conjuntos.

Operações com Conjuntos:

<u>Definição 1:</u> Chamamos de <u>união</u> de dois conjuntos A e B o conjunto denotado por $A \cup B$ e dado por

$$A \cup B = \{ x | x \in A \lor x \in B \}.$$

Relacionando com a Lógica, a união corresponde à noção de disjunção. Ou seja, $A \cup B$ considera todos os elementos que pertencem ao conjunto A ou ao conjunto B. Observe que o símbolo de união \cup lembra o símbolo de disjunção \vee .

Exemplo 3: No diagrama de Venn abaixo, sombreamos $A \cup B$, isto é, a área de A e a área de B.

Exemplo 4: Sejam $A = \{a, b, c, d\}$ e $B = \{f, b, d, g\}$. Assim, $A \cup B = \{a, b, c, d, f, g\}$.

Obs. 1: Deduz-se diretamente da definição da união de dois conjuntos que $A \cup B$ e $B \cup A$ são o mesmo conjunto, isto é,

$$A \cup B = B \cup A$$
.

Obs. 2: $A \in B$ são sempre subconjuntos de $A \cup B$, isto é,

$$A \subseteq (A \cup B)$$
 e $B \subseteq (A \cup B)$.

<u>Definição 2</u>: Chamamos de <u>intersecção</u> de dois conjuntos A e B o conjunto denotado por $A \cap B$ e dado por

$$A \cap B = \{ x | x \in A \land x \in B \}.$$

Relacionando com a Lógica, a intersecção corresponde à noção de conjunção. Ou seja, $A\cap B$ considera todos os elementos que pertencem *simultaneamente* aos dois conjuntos, ou seja, que pertencem ao conjunto A e ao conjunto B. Observe que o símbolo de intersecção \cap lembra o símbolo de conjunção \wedge .

Exemplo 5: No diagrama de Venn abaixo, sombreamos $A \cap B$, ou seja, a área que é comum tanto a A como a B.

Exemplo 6: Sejam $A = \{a, b, c, d\}$ e $B = \{f, b, d, g\}$. Assim, $A \cap B = \{b, d\}$.

Exemplo 7: Seja $V = \{2,4,6,...\}$, isto é, os números inteiros positivos múltiplos de 2; e seja $W = \{3,6,9,...\}$, isto é, os números inteiros positivos múltiplos de 3. Assim, $V \cap W = \{6,12,18,...\}$ (os mútiplos positivos de 6).

<u>Obs. 3</u>: Segue-se diretamente da definição de intersecção de dois conjuntos que $A \cap B = B \cap A$.

Obs. 4: Cada um dos conjuntos A e B contém $A \cap B$ como subconjunto, isto é, $(A \cap B) \subseteq A$ e $(A \cap B) \subseteq B$.

Se os conjuntos A e B não tem elementos em comum, isto é, se $A \cap B = \emptyset$, então A e B são ditos *conjuntos disjuntos*, *conjuntos independentes* ou *conjuntos mutuamente exclusivos*. Representamos conjuntos disjuntos por Diagramas de Venn, de tal maneira que as elipses não se intersectem.

Exemplo 8: Se $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ é o conjunto de dígitos numéricos, e $V = \{a, e, i, o, u\}$ o conjunto das vogais do alfabeto, então $D \cap V = \emptyset$.

<u>Definição 3</u>: Chamamos de <u>diferença</u> entre dois conjuntos A e B o conjunto A-B dado por $A-B=\{x | x \in A \land x \notin B\}$.

Exemplo 9: No Diagrama de Venn abaixo, destacamos A-B, isto é, a área do conjunto A que não é parte do conjunto B.

Obs. 5: A-B é subconjunto de A, ou seja, $(A-B)\subseteq A$.

Obs. 6: Note que, em geral, $A-B \neq B-A$.

Exemplo 10: Se
$$A = \{a, b, c, d\}$$
 e $B = \{f, b, d, g\}$, então $A - B = \{a, c\}$ e $B - A = \{f, g\}$.

Obs. 7: Os conjuntos A-B, $A\cap B$ e B-A são mutuamente disjuntos, ou seja, a intersecção de qualquer dois destes conjuntos é o conjunto vazio.

Um caso particular de diferença:

<u>Definição 4:</u> Sejam A e B conjuntos tais que $A \subseteq B$. Chamamos de <u>complementar</u> de A <u>em relação</u> a B o conjunto:

$$C_B A = B - A = \{x | x \in B \land x \notin A\}.$$

Além disso, o complementar de um conjunto A em relação ao conjunto universo é usualmente representado por A', ou seja:

$$A' = C_U A = U - A = \{x | x \notin A\}.$$

Exemplo 11: No Diagrama de Venn abaixo, destacamos o complemento de A, isto é, a área por fora de A. Lembre-se que representamos o conjunto universo pela área do retângulo.

Exemplo 12: Consideremos que o conjunto universo seja o alfabeto e seja $T = \{a, b, c\}$. Então $T' = \{d, e, f, ..., y, z\}$.

Nossa próxima observação mostra como a diferença de dois conjuntos pode ser definida em termos do complementar de um conjunto e da interseção de dois conjuntos.

Obs.8: A diferença de A e B é igual à intersecção de A e o complementar de B, isto é,

$$A-B=A\cap B'$$
.

A prova disto ocorre diretamente das definições:

$$A-B=\{x \mid x \in A \land x \notin B\} = \{x \mid x \in A \land x \in B'\} = A \cap B'.$$