静态工作点的稳定

主讲教师: 徐瑞东

静态工作点的稳定

主要内容:

温度对静态工作点的影响,分压式偏置电路稳点Q点的原理、 参数选择及稳定Q点的过程。

重点难点:

分压式偏置电路稳定Q点的原理。

静态工作点的稳定

合理设置静态工作点是保证放大电路正常工作的先决条件。但是放大 电路的静态工作点常因外界条件的变化而发生变动。

前述的固定偏置放大电路,简单、容易调整,但在温度变化、晶体管老化、电源电压波动等外部因素的影响下,将引起静态工作点的变动,严重时将使放大电路不能正常工作,其中影响最大的是温度的变化。

1. 温度变化对静态工作点的影响

在固定偏置放大电路中,当温度升高时, U_{RE} \downarrow 、 β \uparrow 、 I_{CRO} \uparrow 。

$$I_{C} = \overline{\beta} I_{B} + I_{CEO}$$

$$= \overline{\beta} \frac{U_{CC} - U_{BE}}{R_{B}} + (1 + \overline{\beta}) I_{CBO}$$

上式表明,当 U_{CC} 和 R_{B} 一定时, I_{C} 与 U_{BE} 、 β 以及 I_{CEO} 有关,而 这三个参数随温度而变化。

温度升高时, I_{C} 将增加,使Q点沿负载线上移。

结论:

当温度升高时, Ic将增加, 使Q点沿负载线上移,容易使 晶体管T进入饱和区造成饱 和失真, 甚至引起过热烧坏 晶体管。

固定偏置电路的工作点

Q点是不稳定的,为此需要改进偏置电路。当温度升高使 $I_{\mathbb{C}}$ 增 加时,能够自动减少 $I_{\rm R}$,从而抑制 Q 点的变化,保持 Q 点基本稳定。

2. 分压式偏置电路

稳定Q点的原理

若满足:
$$I_2 >> I_B$$

$$I_1 \approx I_2 \approx \frac{U_{CC}}{R_{B1} + R_{B2}}$$

$$V_{\rm B} = I_{2}R_{\rm B2}$$

$$V_{\rm B} \approx \frac{R_{\rm B2}}{R_{\rm B1} + R_{\rm B2}} U_{\rm CC}$$

基极电位基本恒定,不随温度变化。

2. 分压式偏置电路

稳定Q点的原理

$$I_{\rm C} \approx I_{\rm E} = \frac{V_{\rm B} - U_{\rm BE}}{R_{\rm E}}$$

若满足: $V_{R} >> U_{RE}$

$$I_{\rm C} pprox I_{\rm E} = rac{V_{\rm B} - U_{\rm BE}}{R_{\rm E}}$$

$$pprox rac{V_{\mathrm{B}}}{R_{\mathrm{F}}}$$

集电极电流基本恒定,不随温度变化。

参数的选择

在估算时一般选取:

 $I_2 = (5 \sim 10) I_R$, $V_R = (5 \sim 10) U_{BE}$, $R_{\rm R1}$ 、 $R_{\rm R2}$ 的阻值一般为几十千欧。

从Q点稳定的角度来看似乎 I_2 、 $V_{\rm R}$ 越大越好。但 I_2 越大, $R_{\rm R1}$ 、 $R_{\rm R2}$ 必须取得较小,将增加损耗, 降低输入电阻。而 $V_{\rm R}$ 过高必使 $V_{\rm E}$ 也增高,在 U_{CC} 一定时,势必使 U_{CE} 减小,从而减小放大电路输出 电压的动态范围。

Q 点稳定的过程

 $R_{\rm E}$: 温度补偿电阻

对直流: R_E 越大, 稳定Q

点效果越好;

对交流: R_E 越大, 交流损失地大, 为避免交流损失加旁路电容 C_E 。

$$T \uparrow \longrightarrow I_{\mathrm{C}} \uparrow \longrightarrow V_{\mathrm{E}} \uparrow \stackrel{V_{\mathrm{B}} \, \square \mathbb{Z}}{\longrightarrow} U_{\mathrm{BE}} \downarrow \longrightarrow I_{\mathrm{C}} \downarrow \longleftarrow I_{\mathrm{R}} \downarrow \longleftarrow$$

小 结

- 1. 温度对静态工作点的影响
- 2. 分压式偏置电路

稳定Q点的原理

参数的选择

Q点稳定的过程