Examensarbete

Mathematical models of everything you ever wanted to have a model of, or some other very long title that is hard to say in one breath.

Claes Arvidson, Emelie Karlsson LiTH - MAT - EX - - 04 / 04 - - SE

Mathematical models of everything you ever wanted to have a model of, or some other very long title that is hard to say in one breath.

Very Applied Mathematics, Linköpings Universitet

Claes Arvidson, Emelie Karlsson

LiTH - MAT - EX - - 04 / 04 - - SE

Examensarbete: 30 hp

Level: \mathbf{A}

Supervisor: T. Larsson,

Very Applied Mathematics, Linköpings Universitet

Examiner: E. Rönnberg,

Very Applied Mathematics, Linköpings Universitet

Linköping: June 2016

Abstract

Here is where you can write your abstract. It may be very long, or it may be very short, the reason you have an abstract is for people not to be forced to read lots of crap.

But still, they will have to read your abstract. After all, the abstract is what everyone reads. . .

Keywords: Keyword One, Chemostat, Another Key-Word, Key, Clé, Mot de cle, Nyckelhål, XBOX, Dagens viktigaste nyckelord, and Keywords.

URL for electronic version:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77777

Acknowledgements

I would like to thank my supervisor, I would like to thank my supervisor, I would like to thank my supervisor...

I also have to thank, I would like to thank my supervisor, I would like to thank my supervisor, I would like to thank my supervisor...

My opponent NN also deserves my thanks, I would like to thank my supervisor, I would like to thank my supervisor. I would like to thank my supervisor. . . .

Nomenclature

Most of the reoccurring abbreviations and symbols are described here.

Symbols

- Y_0 The amount of the variable Y inserted into a system.
- \hat{Y} The unit-dimension of the variable Y, for example $\hat{t} = 1s$.
- \bar{Y}_i A steady state (number i) value of Y.
- K_i Constants used in kinetic expressions, for example K_I .
- **A** The system matrix.

Abbreviations

MMI

CPI	Competitive Product Inhibition (or Inhibited)
CSI	Competitive Substrate Inhibition (or Inhibited)
CSTR	Continuous Stirred Tank (bio)Reactor

Michaelis-Menten Inhibition (or Inhibited)

Contents

1	\mathbf{Intr}	Introduction		
2	The	ideal CSTR: the chemostat	3	
	2.1	Some simple models of biological growth	3	
		2.1.1 Exponential growth	3	
		2.1.2 The logistic equation	3	
	2.2	The chemostat	3	
\mathbf{A}	The	Linearized stability	7	
	A.1	The Linearization	7	

xii Contents

Chapter 1

Introduction

- 1.1 Background
- 1.2 Problem description

Chapter 2

The ideal CSTR: the chemostat

In this chapter we study exponential growth, the logistic. . . .

2.1 Some simple models of biological growth

2.1.1 Exponential growth

If $\mu = \text{constant} > 0$, we get $X(t) = X_0 e^{\mu t}$.

2.1.2 The logistic equation

Let us assume that $\frac{dX}{dt} = \mu \cdot X,$ with $\mu = \mu(S) = k \cdot S$. . .

$$\begin{cases} \frac{dX}{dt} = kSX & (a) \\ \frac{dS}{dt} = -\alpha kSX & (b) \end{cases}$$

$$\frac{dX}{dt} = r(1 - \frac{X}{B})X \tag{2.1}$$

An explicit solution to (2.1) is: $X(t) = \frac{X_0B}{X_0 + (B - X_0)e^{-rt}}$, if $0 < X_0 < B$. It can be found by separating variables in equation (2.1)

2.2 The chemostat

A chemostat is made of two main parts; a nutrient reservoir, and a growth-chamber, reactor, in which the bacteria reproduces.

$$\begin{cases}
\frac{dX}{dt} = \mu(S)X - X\frac{F}{V} \\
\frac{dS}{dt} = -\alpha\mu(S)X - S\frac{F}{V} + S_0\frac{F}{V} \\
\text{new}
\end{cases} (2.2)$$

$$\mathbf{A} = \left(\begin{array}{cc} 0 & \sigma \alpha_1 \\ -\frac{1}{\alpha_1} & -\sigma - 1 \end{array} \right)$$

The invariant line: conclusions

$$\mathbf{A} = \begin{pmatrix} \alpha_1 \frac{S}{1+S} \frac{1}{(1+\frac{X}{X_C})^2} - 1 & \alpha_1 \frac{1}{(1+S)^2} \frac{X}{1+\frac{X}{X_C}} \\ -\frac{S}{1+S} \frac{1}{(1+\frac{X}{X_C})^2} & -\frac{1}{(1+S)^2} \frac{X}{1+\frac{X}{X_C}} - 1 \end{pmatrix}.$$

Model	Monods Chemostat	CSI-CSTR
μ	$\frac{S}{1+S}$	$\frac{S}{1+S+\frac{S^2}{K_I}}$
$\frac{dX}{dt}$	$\alpha_1 \frac{S}{1+S} X - X$	$\alpha_1 \frac{S}{1 + S + \frac{S^2}{K_I}} X - X$
$\frac{dS}{dt}$	$-\frac{S}{1+S}X - S + \alpha_2$	$-\frac{S}{1+S+\frac{S^2}{K_I}}X - S + \alpha_2$
XNC	$S = \frac{1}{\alpha_1 - 1}$	$S = \frac{K_I(\alpha_1 - 1)}{2} \pm \sqrt{\left(\frac{K_I(\alpha_1 - 1)}{2}\right)^2 - K_I}$
SNC	$X = \frac{(\alpha_2 - S)(1+S)}{S}$	$X = \frac{(\alpha_2 - S)(1 + S + \frac{S^2}{K_I})}{S}$
limit	_	$K_I o \infty$

The other three models, the chemostat, the MMI-CSTR and the CPI-CSTR are quite similar in comparison to the CSI-CSTR.

Monods chemostat does not "feel" this inhibition and does not care. . .

Here is an example of how to cite books in your bibliography. This text will be displayed at the end of chapter two. This is some kind of bibliography, according to [1], we have... And according to [1, 2] we have something else.

Bibliography

- [1] Lennart Råde, Bertil Westergren, (2001), Mathematics Handbook for Science and Engineering, Studentlitteratur, Lund.
- [2] Torkel Glad, Lennart Ljung, (1989), $Reglerteknik\ grundläggande\ teori,$ Studentlitteratur, Lund.

6 Bibliography

Appendix A

The Linearized stability

A.1 The Linearization

F(x), a one-variable function of x can be Taylor-expanded around a fix X. We get $F(X+x)=F(X)+F'(X)x+O(x^2)$. For small perturbations of x around X we get the linearization: $F(X+x)\approx F(X)+F'(X)x$, containing only the constant and the linear terms.

For functions of two variables F(X + x, S + s) and G(X + x, S + s):

```
 \left\{ \begin{array}{l} F(X+x,S+s) = F(X,S) + F_X'(X,S)x + F_S'(X,S)s + O((x+s)^2) \\ G(X+x,S+s) = G(X,S) + G_X'(X,S)x + G_S'(X,S)s + O((x+s)^2) \end{array} \right.
```

```
function chemostat_inhibited(alpha1, alpha2, xp0, sp0, xc)
%chemostat_inhibited Displays a phaseportrait, nullclines
    and an Euler-path of an inhibited Chemostat.
    chemostat_inhibited(alfa1, alfa2, np0, cp0, nc) will run if
    alpha1 > 1/xc, thus there is a reproduction.
    alpha2 > 1/(xc*alpha1-1), thus there is sufficient stock-nutrition. xp0 > 0 , you can not have a nonpositive population.
    sp0 > 0 , you can not have a nonpositive concentration.
    The blue arrows represent the vectorfield.
    The black lines are two of the three nullclines.
    The black dotted line is the invariant line (no solution crosses it). The red line is an Eulerpath, starting in + and ending in \ast.
    chemostat_inhibited(5, 3, 0.2, 0.3, 6)
    by Per Erik Strandberg, 2003-2004.
% Start-condition:
if ((alpha1>1) & (alpha2>0) & (sp0>0) & (xp0>0) & xc>0),
    if (alpha2<1/(alpha1-1)),
         disp(' ')
disp(' (HINT: Only the trivial steady state, alpha2 is too small...)')
         disp (' (HINT: Two steady states, alpha2 is quite large...)')
```

```
% The illegal indata case:
%-----
else
    disp(' chemostat_inhibited.m by Per Erik Strandberg, 2003-2004.')
    disp(' Did not Finish OK. (You used illegal indata.)')
    disp(' ')
    disp(' For syntax help type: help chemostat_inhibited .')
    disp(' ')
end
```

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a period of 25 years from the date of publication barring exceptional circumstances. The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional on the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/

© 2016, Claes Arvidson, Emelie Karlsson