# Wie ein LATEX Dokument mit METAPOST Graphik entsteht

Carl Wenninger

LIT 2009

# 1 Unser Beispiel: Inkreis im Dreieck

Satz: Die Winkelhalbierenden  $w_{\alpha}$ ,  $w_{\beta}$  und  $w_{\gamma}$  eines Dreiecks ABC schneiden sich stets in **einem** Punkt I, dem Inkreismittelpunkt.



## 2 Der Build-Prozess

# 2.1 Der METAPOST-Compiler mpost

Der Aufruf von mpost fig.mp entsteht die Datei fig.1. Sie sollte eigentlich besser fig.1.eps heissen, denn es handelt sich um eine encapusalted postscript Datei. Die  $\gg 1 \ll$  im Dateinamen rührt daher, dass in unserer Datei eine Figur 1 erklärt wird. Es können auch mehrere Figuren mit unterschiedlichen Nummern in einer Quelldatei enthalten sein. Dann ergeben sich beim Compilieren eben entsprechend mehrere fig.? Dateien.

### 2.2 Trickreich: mpost ruft latex auf

Unsere Grafik enthält explizite Aufrufe, die LATEX-Code verwenden:

```
label(btex $w_\alpha$ etex, 1.2[a,i]);
```

Hier ruft mpost selbsttätig latex auf und läßt eben die LATEX-Sequenz \$\w\_\alpha\$ in ein kleines dvi-file verwandeln. Wir merken davon in der Regel gar nichts!

#### 2.3 latex blatt.tex

Beim erzeugen von blatt.dvi wird lediglich der von der Graphik benötigte Platz freigelassen und ein entsprechender Verweis auf fig.1 im dvi-file hinterlegt. Mit anderen Worten: Die dvi-Datei enthält nicht unsere Grafik, sondern lediglich einen Verweis auf die eps-Datei.

#### 2.4 dvips

Erst dvips baut das endgültige Dokument blatt.ps einschließlich unserer Graphik auf. Diese kann nun ausgedruckt werden.

# 3 mpost ins Makefile integrieren

In unserem Makefile brauchen wir nur die Abhängigkeit des dvi-files von fig.1 sowie eine Produktionsregel für fig.1 zu integrieren:

Viel Freude mit LATEX und METAPOST!