TEMA 6 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Resolver los problemas de valores iniciales siguientes:

1.
$$xyy' = Lx$$
 $y(1) = 0$

Solución: $y = \pm Lx$

2.
$$xe^y y' = 2(e^y + 1)$$
 $y(1) = 0$

Solución: $2x^2 = e^y + 1$

3.
$$\sqrt{x} + y'\sqrt{y} = 0$$
 $y(1) = 4$

Solución: $x^{3/2} + y^{3/2} = 9$

4.
$$y(x+1) + x(y+1)y' = 0$$
 $y(-1) = 1$

Solución: $xye^{x+y} + 1 = 0$

5.
$$xy' = 2x + 3y$$
 $y(1) = 0$

Solución: $y = x^3 - x$

6.
$$y'+2xy = 4x$$
 $y(0) = 4$

Solución: $y = 2e^{-2x^2} + 2$

7.
$$y'-y = 2xe^{x+x^2}$$
 $y(0) = 1$

Solución: $y = e^{x+x^2}$

8.
$$y'cos^2(x) + y = 1$$
 $y(0) = 5$

Solución: $y = 4e^{-tgx} + 1$

9.
$$x^3y' + 2x^2y = Lx$$
 $y(1) = 0$

Solución: $y = (Lx)^2/(2x^2)$

10. Construir una tabla de valores para aproximar la solución del problema de valor inicial $y' = e^{xy}$, y(0) = 1 usando n = 10 pasos de tamaño h = 0.1.

Solución: $y(1) \cong 5.958$

11. Resolver el problema de valor inicial y'=y, y(0)=3 y evaluar la función solución en x=1. Utilizar la regla de Euler para calcular ese valor usando dos aproximaciones, con pasos de tamaño h=0.1 y h=0.2.

Solución: a)
$$y(1) = 3e \approx 8.1548$$
 b) $h = 0.1$, $y(1) \approx 7.7812$ c) $h = 0.2$, $y(1) \approx 7.4650$

12. Hallar las trayectorias ortogonales a la familia de curvas $(x^2 + 1) y = C$.

Solución:
$$x^2 C = e^{2y^2 - x^2}$$

13. Hallar las trayectorias ortogonales a la familia de curvas $x + y = C_1 e^{-y}$.

Solución:
$$y = Ce^x - x - 2$$

14. Hallar la trayectorias ortogonales a la familia de curvas $y = Cx^n$, $n \in N$. Representar gráficamente algunas curvas de ambas familias en los casos particulares n = 1 y n = 2.

Solución:
$$\frac{x^2}{n} + y^2 = C$$

15. Hallar el valor de $n \in N$ para que la familia de curvas $x^n + y^n = C_1$ sea ortogonal a la familia $x = y(1 - C_2 x)$.

Solución:
$$n = 3$$

16. Un virus informático se propaga con una rapidez proporcional al número de ordenadores ya infectados. Si pasado un día, el número de ordenadores con el virus es 3/2 de los inicialmente infectados, determinar el tiempo necesario para que el número de ordenadores infectados se triplique.

17. La semivida de la nicotina en la sangre del cuerpo humano es de 2 horas. Si una persona tiene inicialmente 2 mg de nicotina en la sangre y esa cantidad decrece proporcionalmente a la cantidad presente en cada instante, hallar una ecuación para la cantidad de nicotina en función del tiempo. ¿Qué cantidad le quedará pasada 1 hora?

Solución:
$$\sqrt{2} mg$$

18. Se supone que una gota de lluvia esférica se evapora con una rapidez proporcional a su superficie. Si el radio original es de 3 mm, y después de una hora se redujo a 2 mm, encontrar una expresión para el radio de la gota en cualquier instante. ¿Después de cuántas horas más desaparecerá por completo?

Solución: 2horas