$0.38 \in I$; on peut considérer exacte l'affirmation du groupe de citoyens au seuil de 95 %. 32 1. I = [0; 0,089].

L'intervalle de fluctuation de la proportion au seuil de

 $I = \left[0.4 - 1.96 \sqrt{\frac{0.4 \times 0.6}{500}} ; 0.4 + 1.96 \sqrt{\frac{0.4 \times 0.6}{500}} \right]$

2. Dans l'échantillon, on a $f_e = \frac{190}{500}$; $f_e = 0.38$.

95 % est:

I = [0,35;0,45].

sinon on rejette H_0 .

32 1.
$$I = [0; 0,089]$$
. **2.** On prélève un échantillon et on calcule la proportion f_e dans cet échantillon ; si $f_e \in I$ on accepte H_0 ,

3. $f_e = \frac{5}{64}$; $f_e \approx 0.08$. $f_e \in I$ donc on accepte H_0 . **1. a)** Sous l'hypothèse H_0 , p = 0.8 et

$$\sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.8 \times 0.2}{200}}$$

 $\sigma \approx 0,0282$ donc 0,03 est une valeur approchée de σ .

b)
$$P(F \ge h) = 0.95$$
 équivaut à $P(F \le h) = 0.05$, avec la

calculatrice on obtient h = 0.75. 2. La zone d'acceptation du test est l'intervalle

I = [0,75;1].Règle de décision On prélève un échantillon de 200 flacons, on déter-

mine la proportion de flacons conformes de l'échan-

tillon : p_e . Si $p_e > 0.75$ on accepte H_0 au risque de 5 % sinon on rejette H_0 .

3. Dans cet échantillon, $p_e = \frac{156}{200} = 0.78$.

 $0.78 \ge 0.75$, on accepte l'hypothèse « p = 0.8 ».

35 1.
$$h \approx 0.582$$
.

2. La zone d'acceptation est l'intervalle [0 ; 0,582].

Si la fréquence de l'échantillon est inférieure à 0,582, on accepte H_0 , sinon, on rejette H_0 . **3.** Pour l'échantillon, on a $f_e = 0.64$.

0,64 > 0,582 donc on rejette H_0 . Au risque de 5 % on peut considérer que le magicien n'est pas un imposteur.

1. On note d le diamètre des billes. L'hypothèse nulle H_0 est : d = 25, l'hypothèse alternative H_1 est $d \neq 25$.

2. a) Sous l'hypothèse H_0 , la variable aléatoire \overline{X} suit