

of the polysaccharide in an anhydrous aprotic solvent using a suitable carboxy activating agent; (b) reacting the carboxy activated polysaccharide with a polyamine selected from the group having the formula $R_1-NH-A-NH-R_2$ wherein R_1 and R_2 , which may be the same or different, are hydrogen, C₁-C₆ alkyl, phenyl or benzyl groups; A is a C₂-C₁₀ alkylene chain which may be substituted by hydroxy, carboxy, halogen, alkoxy, or amino groups; a polyoxy-alkylene chain of the formula $[(CH_2)_n-O-(CH_2)_n]_m$ wherein n is 2 or 3 and m is an integer from 2 to 10; a C₅-C₇ cycloalkyl group or an aryl or heteroaryl group; and (c) recovering the resultant cross-linked polysaccharide. *A*

B
CONT'D

A 13. (New) A process according to Claim 12 in which the carboxy-containing polysaccharide is a hyaluronic acid salified with a lipophilic cation; the solvent is selected from tetrahydrofuran, dimethylformamide or dimethyl sulfoxide; the carboxy activating agent is chloromethylpyridinium iodide and the polyamine is one in which A of the formula $R_1-NH-A-NH-R_2$ is a C₂-C₆ linear alkylene chain. *A*

A 14. (New) A process according to Claim 13 in which the polyamine, diluted in a like solvent as used in the activation step, is added to the solution of activated polysaccharide to effect the cross-linking reaction in 1-12 hours. *A*

A 15. (New) A process according to Claim 13 in which the recovered cross-linked polysaccharide is sulphated by reaction with a pyridine-sulfur trioxide complex. *A*