Лабораторная работа 14

Модели обработки заказов

Оразгелдиев Язгелди

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	25

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	8
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором с	
	измененными интервалами заказов и времени оформления клиентов .	10
3.4	Отчёт по модели оформления заказов в интернет-магазине с	
	измененными интервалами заказов и времени оформления клиентов .	11
3.5	Построение гистограммы распределения заявок в очереди	13
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	14
3.7	Гистограмма распределения заявок в очереди	16
3.8	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	17
3.9	Отчёт	17
3.10	Модель обслуживания двух типов заказов с условием, что число заказов	
	с дополнительным пакетом услуг составляет 30% от общего числа заказов	19
3.11	Отчёт по модели оформления заказов двух типов заказов	20
3.12	Модель оформления заказов несколькими операторами	22
3.13	Отчет по модели оформления заказов несколькими операторами	22

Список таблиц

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) — ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем operator_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром operator — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE — 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается — оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

```
; operator
GENERATE 15,4
QUEUE operator
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

• модельное время в начале моделирования: **START TIME**=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: **BLOCKS**=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: **FACILITIES**=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, **ENTRY COUNT** – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве **FACILITY** (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля **OWNER**=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля **ENTRIES**=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);

• AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов

```
; operator
GENERATE 3.14,1.7
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

Результаты работы модели:

- модельное время в начале моделирования: **START TIME**=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: **BLOCKS**=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: **FACILITIES**=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152: Затем идёт информация об одноканальном устройстве **FACILITY** (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля **OWNER**=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля **ENTRIES**=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы **QTABLE** имеет следующий формат: **Name QTABLE A,B,C,D** Здесь **Name** — метка, определяющая имя таблицы. Далее должны быть заданы операнды: **A** задается элемент данных, чьё частотное распределение будет

заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: **BLOCKS**=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

количество транзактов, вошедших в блок с начала процедуры моделирования
 ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве **FACILITY** (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов

(значение поля **OWNER**=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля **ENTRIES**=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму

Рис. 3.7: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие

```
; order
GEMERATE 15,4
QUEUG operator_q
SEIZE operator_
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GEMERATE 30,8
QUEUG operator_q
SEIZE operator
DEPART operator_q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GEMERATE 480
TERMINATE 1
START |
```

Рис. 3.8: Модель обслуживания двух типов заказов от клиентов в интернет-магазине

```
GPSS World Simulation Report - 3.1.1

Cy960ra, Max 10, 2025 22:09:00

START TIME END TIME BLOCKS FACILITIES STORAGES
0.000 480.000 17 1 0

NAME VALUE
OPERATOR 10001.000
OPERATOR_0 10000.000

LABEL LOC BLOCK TYPE ENERY COUNT CURRENT COUNT RETRY
1 GENERATE 32 4 0 0
2 QUEUE 32 4 0 0
3 SELIE 28 0 0 0
4 DEPART 28 0 0 0
5 ADVANCE 28 1 0 0
6 RELEASE 27 0 0 0
7 TERMINATE 27 0 0 0
7 TERMINATE 27 0 0 0
8 GENERATE 15 0 0 0
9 QUEUE 15 3 0 0
9 QUEUE 15 3 0 0
10 SELIE 12 0 0 0
11 DEPART 12 0 0 0
11 DEPART 12 0 0 0
12 ADVANCE 12 0 0 0
13 ADVANCE 12 0 0 0
14 RELEASE 12 0 0 0
15 TERMINATE 12 0 0 0
16 GENERATE 15 0 0 0
17 TERMINATE 10 0 0 0
18 SELIE 12 0 0 0
19 SELIE 12 0 0 0
10 SELIE 12 0 0 0
11 DEPART 12 0 0 0
12 ADVANCE 12 0 0 0
14 RELEASE 12 0 0 0
15 TERMINATE 11 0 0 0
16 GENERATE 1 1 0 0 0
17 TERMINATE 1 1 0 0 0
18 TERMINATE 1 1 0 0 0
19 TERMINATE 1 1 0 0 0
10 TERMINATE 1 1 0 0 0
17 TERMINATE 1 1 0 0 0
18 GENERATE 1 1 0 0 0
19 TERMINATE 1 1 0 0 0
10 TERMINATE 1 1 0 0 0
17 TERMINATE 1 1 0 0 0
18 GENERATE 1 1 0 0 0
19 GENERATE 1 1 0 0 0
10 TERMINATE 1 1 0 0 0
10 TERMINATE 1 1 0 0 0 0
11 TERMINATE 1 1 0 0 0
```

Рис. 3.9: Отчёт

Результаты работы модели:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: **FACILITIES**=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве **FACILITY** (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля **OWNER**=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- **CONT**=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES (0) = 2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=3,355 заявок от клиентов в среднем были в очереди;

- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок **order**, а разделим типы заявок с помощью переходов оператором **TRANSFER**. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор **TRANSFER**, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку **noextra RELEASE** operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку **extra ADVANCE** 5,2) и только после этого является обработанным

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,d2,d1
d1 ADVANCE 5,2
d2 RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.10: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования

Рис. 3.11: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: **BLOCKS**=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: **FACILITIES**=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

 количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве **FACILITY** (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов

(значение поля **OWNER**=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля **ENTRIES**=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки **operator STORAGE 4** указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор **operator,1**, сегмент моделирования времени остается без изменений

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator_q
ENTER operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.12: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет

Рис. 3.13: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;

- количество блоков, использованных в текущей модели, к моменту завершения моделирования: **BLOCKS**=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: **FACILITIES**=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве **STORAGE** (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило

1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0. В конце отчёта идёт информация о будущих событиях.

4 Выводы

Я реализовал модель оформления заказов клиентов одним оператором, модель обслуживания двух типов заказов от клиентов в интернет-магазине и модель оформления заказов несколькими операторами.