

UNIVERSIDADE DE AVEIRO
DEPARTAMENTO DE FÍSICA
3810-193 AVEIRO

Mecânica e Campo Eletromagnético Ano letivo 2015/2016

Capítulo 3. Campos elétrico e magnético

4º serie

Um fio dobrado em semi-círculo, de raio R, roda com frequência ω num campo

magnético uniforme, tal como ilustra a figura. Determine as amplitudes e as frequências da f.e.m. e da corrente induzida, quando a resistência interna do voltímetro é de $10^6\,\Omega$ e resistência do restante circuito é desprezável.

Solução:
$$\varepsilon = \frac{\pi R^2}{2} \omega B$$
 (V); $I_0 = \frac{\varepsilon}{10^6}$ (A); $f = \frac{\omega}{2\pi}$ (Hz)

- Um campo magnético B uniforme varia em grandeza a uma taxa constante (dB/dt). Um fio de cobre de massa m e de raio r, é dobrado de maneira a formar um círculo de raio R $(r \ll R)$. Mostre que a corrente induzida no anel não depende do tamanho do fio ou do anel formado pelo fio, e é dada por $I = \frac{m}{4\pi\rho\delta} \left(\frac{dB}{dt}\right)$, onde ρ é a resistividade e δ é a massa volúmica do cobre.
- Uma barra de massa m desliza sem atrito em dois carris compridos, verticais e distanciados de I, unidos numa extremidade. O fio move-se em virtude da força gravítica a que se acrescenta a força magnética, devida a um campo perpendicular ao plano da figura.

- a) Determine a velocidade final do fio, v_f ., supondo que a resistência do circuito é R = constante.
- b) Se m = 0.1 Kg; $R = 1 \Omega$; I = 0.1 m e B = 10 T, determine v_f e a corrente induzida no circuito.
- c) Que transformação de energia ocorre? Mostre que a energia se conserva neste processo.

a)
$$v_f = \frac{mgR}{I^2R^2}$$
 (m/s)

a)
$$v_f = \frac{mgR}{I^2R^2}$$
 (m/s) b) $v_f = 0.98$ (m/s); $I = 0.98$ (A)

4. Um amperímetro "clip-on" é um dispositivo usado frequentemente para medir correntes alternadas elevadas em cabos, sem necessidade de "abrir" o circuito pelo qual a corrente flui.

É constituído por uma bobina toroidal de N espiras (R >> d) que tem uma ranhura onde se insere o cabo. Às extremidades da bobina liga-se um voltímetro. Explique como funciona o aparelho. Deduza a expressão da tensão em função de I, ω , e dos parâmetros geométricos do toro.

Solução:
$$v(t) = \frac{\mu_0}{8} N I \omega \frac{d^2}{R} sen(\omega t)$$
 (m/s)

- 5. Uma bobina com N espiras é colocada ao redor de um solenóide muito comprido, de secção reta S, com n espiras por unidade de comprimento. Mostre que a indutância mútua é $M = \mu_0 \, n \, N \, S$.
- **6.** No centro de uma bobina circular estreita de raio a com N_1 espiras, existe uma bobina muito pequena de área **S**, com N_2 espiras. Os eixos das duas bobinas formam um ângulo θ . Mostre que a indutância mútua é $M = \mu_0 \ N_1 \ N_2 \ \frac{S.\cos\theta}{2 \ a}$ (H) .

7. Determine o coeficiente de auto-indução dum solenóide toroidal de *N* espiras supondo que o raio *r* das bobinas é muito pequeno comparado com o raio *R* do toróide.

Solução:
$$L = \mu_0 \frac{N^2 r^2}{2 R}$$
 (H)

8. Considere um cabo coaxial constituído por um condutor interno de raio R_1 , e um condutor externo suposto muito fino de raio R_2 . Mostre que a auto-indução por metro é

$$L = \frac{\mu_0}{2\pi} \left(\frac{1}{4} + \log \left(\frac{R_2}{R_1} \right) \right) \text{ (H) }. \label{eq:loss_loss}$$

9. Calcule a auto-indução L por metro da linha de transmissão formada por dois fios paralelos, representados na figura. Considere $d >> r_1$, mas r_1 não pequeno.

Solução:
$$L = \frac{\mu_0}{2\pi} \left(\frac{1}{2} + 2 \cdot \log \left(\frac{d}{r_1} \right) \right)$$
 (H)

10. Na figura está representado um solenóide padrão de N espiras, de raio r e de comprimento L. Encostado à uma das suas extremidades encontra-se um anel de mesmo raio, percorrido por uma corrente alternada de amplitude I e frequência angular ω : $I(t)=I_0.\cos(\omega t)$. Exprima a tensão nas extremidades do solenóide. Indique explicitamente as aproximações que fizer.

Solução:
$$\varepsilon = +\frac{\mu_0 N \pi r^2}{2l} \omega I_0 sen(\omega t)$$
 (V)

12. Determine, fazendo uso das equações de Maxwell, os campos elétrico e magnético no

espaço entre as placas distanciadas de *d* dum condensador circular de raio *R*, quando uma tensão sinusoidal está aplicada. Despreze os efeitos de borda.

$$\textbf{Solução:} \quad \stackrel{\rightarrow}{E} = \frac{V_o}{d} \cos(\omega t) \; \hat{k} \; \; (\text{V/m}) \; ; \quad \stackrel{\rightarrow}{B} (r) = -\frac{\varepsilon_0 \; \mu_0 \; r \; \omega V_0}{2 \; d} \; sen \left(\omega t\right) \hat{u} \; \; (\text{T})$$

13. Um atenuador ou divisor de tensão que tem um fator de divisão independente da frequência de tensão, é na prática muito útil. Um esquema para o realizar é o seguinte.

Prove que V_2/V_0 é independente da frequência quando $R_1C_1 = R_2C_2$

14. No circuito da figura, a que frequências de tensão alternada será dissipada igual potência nos ramos **1** e **2** ?

Solução: $\omega = 1.7 \times 10^6 \text{ rad/s}$ ou f = 272.4 KHz; $Z_1 = 21.75 \Omega$; $Z_2 = 15.35 \Omega$