VERSUCH 701

Reichweite von Alpha-Strahlung

Lars Kolk Julia Sobolewski lars.kolk@tu-dortmund.de julia.sobolewski@tu-dortmund.de

Durchführung: 12.06.2018 Abgabe: 19.06.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	Theorie								
	1.1	Brechung und Dispersion								
	1.2	Die Dispersionsgleichung	3							
	1.3	Brechung am Prisma	4							
	1.4	Das Auflösungsvermögen eines Prismenspektralapparates	4							

1 Theorie

1.1 Brechung und Dispersion

Ändert eine Lichtwelle am Grenzübergang zwischen zwei Medien ihre Richtung, wird dies als Brechung bezeichnet. Die Lichtwelle ändert ihre Richtung, da sie mit den Elektronen in der Materie in Wechselwirkung tritt und dadurch ihre Ausbreitungsgeschwindigkeit geändert wird. Die Brechung wird über den Brechungsindex n beschrieben, welcher definiert ist als:

$$n := \frac{v_1}{v_2}.\tag{1}$$

 v_1 und v_2 sind dabei die Geschwindigkeiten vor und nach der Brechung. Trifft die Lichtwelle also unter einem Winkel α auf die Grenzfläche, breitet sie sich darauf unter einem Winkel β aus. Die Winkel werden dabei zum Lot der Grenzfläche gemessen.

Mithilfe des Huygensschen Prinzips, welches besagt, dass jeder Punkt einer Welle als Ursprung einer Elementarwelle gesehen werden kann, deren Einhüllende die neue Wellenfront ergibt, kann mit (1) folgende Beziehung zwischen dem Brechungsindex und den Winkeln hergeleitet werden:

$$\frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2} = n. \tag{2}$$

Dieser Zusammenhang wird als Snelliussches Brechungsgesetz bezeichnet.

Unter genauerer Betrachtung stellt sich heraus, dass der Brechungsindex von der Wellenlänge des Lichts abhängt. Dies wird als Dispersion bezeichnet und der Brechungsindex kann demnach geschrieben werden als:

$$n = n(\lambda)$$
.

 $n(\lambda)$ wird Dispersionskurve genannt.

1.2 Die Dispersionsgleichung

Der Zusammenhang zwischen dem Brechungsindex und der Wellenlänge wird durch die Dispersionsgleichung beschrieben. Um diese herzuleiten, werden die elektrisch geladenen Bestandteile der Materie betrachtet, welche durch die elektromagnetische Lichtwelle zu erzwungenen Schwingungen angeregt werden. Dieses Modell ist nicht für Wellenlängen unterhalb des sichtbaren Spektrums gültig, da hier Quantenmechanische Effekte auftreten. Zudem muss die Wellenlänge hinreichend weit entfernt von der Resonanzwellenlänge betrachtet werden, welche aufgrund der erzwungenen Schwingungen auftritt, da hier ein Großteil des Lichtes absorbiert wird. Diese Bedingungen sind für Gläser im sichtbaren Spektralbereich erfüllt.

Unter Betrachtung der schwingenden Teilchen als elektrischen Dipol bestimmt sich der Brechungsindex nach längerer Rechnung unter Berücksichtigung der Maxwellschen Relation $\epsilon = n^2$ und den obigen Annahmen zu:

$$n^2(\lambda) = 1 + \sum_h \frac{N_h q_h^2}{4\pi^2 c^2 \epsilon_0 m_h} \frac{\lambda^2 \lambda_h^2}{\lambda^2 - \lambda_h^2}.$$
 (3)

Dabei beschreiben N_h die Anzahl pro Volumeneinheit, q_h die Ladung, m_h die Masse und λ_h die Resonanzwellenlänge der Teilchenart h.

Wird Gleichung (3) mit nur einer Resonanzfrequenz λ_1 betrachtet, so lässt sie sich für $\lambda >> \lambda_1$ schreiben als:

$$n^{2}(\lambda) = 1 + \frac{N_{1}q_{1}^{2}\lambda_{1}^{2}}{4\pi^{2}c^{2}\epsilon_{0}m_{1}} \left(1 + \left(\frac{\lambda_{1}}{\lambda}\right)^{2} + \left(\frac{\lambda_{1}}{\lambda}\right)^{4} + \dots\right)$$

$$= A_{0} + \frac{A_{2}}{\lambda^{2}} + \frac{A_{4}}{\lambda^{4}} + \dots$$
(4)

und für $\lambda << \lambda_1$ als:

$$\begin{split} n^2(\lambda) &= 1 - \frac{N_1 q_1^2}{4\pi^2 c^2 \epsilon_0 m_1} \left(\lambda^2 + \frac{\lambda^4}{\lambda_1^2} + \frac{\lambda^6}{\lambda_1^4} + \dots \right) \\ &= 1 - A_2' \lambda^2 - A_4' \lambda^4 - \dots \end{split} \tag{5}$$

Da bei beiden Gleichungen der Brechungsindex mit zunehmender Wellenlänge abnimmt, liegt normale Dispersion vor. Der umgekehrte Fall, wenn der Brechungsindex mit zunehmender Wellenlänge zunimmt, heißt anormale Dispersion. Sie tritt in der Nähe der Absorptionsstellen λ_i für $\lambda << \lambda_i$ auf.

1.3 Brechung am Prisma

Verläuft ein Lichtstrahl durch ein Glasprisma, so wird er zwei mal gebrochen, solange er nicht senkrecht auf das Prisma trifft (vergleiche Abbildung 1). Wird der symmetrische Strahlengang betrachtet, das heißt $\alpha = \alpha'$ und $\beta = \beta'$, ergeben sich für α und β :

$$\alpha = \frac{\eta + \phi}{2},$$
$$\beta = \frac{\phi}{2}.$$

Mit dem Snelliusschen Brechungsgesetz (2) ergibt sich somit für den Brechungsindex:

$$n = \frac{\sin\frac{\eta + \phi}{2}}{\sin\frac{\phi}{2}} \tag{6}$$

1.4 Das Auflösungsvermögen eines Prismenspektralapparates

Unter der Auflösung A eines Prismenspektralapparates versteht man das Verhältnis von der gemittelten Wellenlänge λ zweier Spektrallinien zu dem minimalen Wellenlängenunterschied $\Delta\lambda$ dieser, sodass sie noch vom Gerät getrennt werden können:

$$A := \frac{\lambda}{\Lambda \lambda}$$
.

Das Auflösungsvermögen eines idealen Prismenspektralapparates ist durch Beugungserscheinungen am Prisma festgelegt, die aufgrund dessen endlicher Größe auftreten. Werden zwei verschiedene Wellenlängen λ und $\lambda + \Delta \lambda$ mit dem Prismenspektralapparat vermessen, so werden diese wie in Abbildung 2 zu sehen wegen der Wellenlängenabhängigkeit des Brechungsindexes (3) unterschiedlich gebrochen, sodass zwei Beugungsfiguren entstehen. Bei kleinem Wellenlängenunterschied $\Delta\lambda$ sind die Hauptmaxima nur leicht gegeneinander verschoben. Es soll genau dann noch eine Trennung der Linien von dem Gerät möglich sein, wenn das Maximum der einen Linie mit dem ersten Minimum der anderen übereinstimmt. Nach einiger Rechnung ergibt sich bei symmetrischem Strahlengang unter Ausnutzung von Formel (6) für das Auflösungsvermögen:

$$A = b \frac{dn}{d\lambda} \tag{7}$$

Dabei stellt b die Basisbreite des Prismas dar (vergleiche Abbildung 2).

JUS2 -	Scanverf	hren in	der U	trachall	techni	ben (-				
	422						Nume	rieung			
Breite:			01.	0		land	ers als i	n Anlei	tung)		
Tiefe:			0								
ttohe: 1		oben	1.5 9		St/H						
1. 0,6 cu	(Hand)		/ ps 3.		46,34	•					
2.			14		40,63						
3.0,40		23	194		35, 23						
4. 0,3			29,73		29,84						
5. 0, 2cm			5.55		23,70						
6. 0, 2 cu			28		18,09						
7, 11			13		12,17						
8. # 0			49			12,22					
9, 00	2004	33	33	-	6,35						
14052.	A = 4 =	2,54	Diasto	e	P	اد دارسوه	ser Hor	2: 05	111		
400	1 = 34	1,49 µs	Sychol	e			.,0				
		7	73			my.					
					1	CO-C					
		11									
		weite vo	n ox -	Strahlu	2						
	3 000			02 1	- 1	200	250	2-	20-	1 400	
P/mba	5	50		00 1	.50	200	200	300	350	160	
Counts	92'5	567 58.81	47 57 5	32 57-5	165 5	6.132	56 827	56.95	5 53.72	4 54.801	
									3 33.12	1 54.00	
Channe	1 1127	108	8 40	45 10	22	970	934	932	857	358	
450	5€	55	0 6	00 6	50	700	320	800	850	900	950
	1.00										
53-2	82 47-3	13 43 70	8 39 3	368 35 7	7SA 3	7 637					
819	747	699	66		25	614					
023	747	1 633	1 66	6	-	DAY					
0= 1,	Sau										
plubar	0	50	Los	120	20	0	250	300	350	400 45	07
											_
Counts	173.412	109.025	177. 61	4 14.5	48 108.	798 40	9.419	106.614	108.744	103.038 102.	803
				56				964 (20)			_
Channel	1431	1084	1086	100	102	2 1 40	200	CO	353	329 893	3
			600	650	1 70	2	250	200	60	900 (0	070
	220		(Dec)	000	70	O	750	800	850	900	
	200	220									
				101°25h	39-4	709 40	402	5-22V	35 245	93. 222 91.4	206
	266 205.50r	703.4 2 2A	108.763	101.25%	39-5	709 98	. 402 9	5-224	35.74 S	93. 222 94.4	206
				101, 25%	39.5	+	. 402 9	5-224 683	3 5. 745	93. 222 91.2	-
-	702.50V	403: 3 54	108.763		+	+				642	-
d= 20	266 87-4	403: 3 54	108.763		76)	+			666	642	-
	205-266 87-1	103°4504	697.301	786	76)	7	28	6 \$3	666	645	-
	205-266 87-1	403: 3 54	697.301	786	76)	7	28	6 \$3	666	645	-
52/44/42	205-266 87-1 8-04 8-04 8-04	333 352 40 29	108.769 807	₹86 84 53 5 8 4	19 37 8	2 61/57	40 38 5	C \$3	513857	47 22 221	-
52/44/42 52/44/42	266 871 8 can 53 63 46	333 352 40 28	807 807 144144/3	286 84 53 5 8 4	19 27 8 80 60 S	2 61/57	40 38 5	683 50/28/45/	51/46/32	53 169 54) 53 169 54)	-
52/44/42 52/44/42 52/45/43	205-266 87-1 8 com 53 63 48 44 37 47	233 40 23 16 57	807 44 44 8 44 44 8	286 84 53 5 8 4	19 27 8 80 60 S	2 61/57	40 38 5	683 50/28/45/	51/46/32	53 169 54) 53 169 54)	-
52/44/42 52/44/42 52/45/43	205-266 87-1 8 com 53 63 48 44 37 47	333 352 40 28	807 44 44 8 44 44 8	286 84 53 5 8 4	19 27 8 80 60 S	2 61/57	40 38 5	683 50/28/45/	51/46/32	53 169 54) 53 169 54)	-

 ${\bf Abbildung\ 1:\ Skizze\ des\ symmetrischen\ Strahlenganges\ durch\ das\ Glasprisma\ [{\bf V402}].}$

Abbildung 2: Skizze für die Brechung zweier Wellenlängen λ und $\lambda + \Delta\lambda$ beim idealen Prismenspektralapparat [V402].