Equations Différentielles I

STEP, MINES ParisTech

23 juillet 2021 (#0495d87)

Question 1 L	es solutions maximales de $\dot{x} = f(x)$ avec $f: \mathbb{R}^n \to \mathbb{R}^n$ continue
\square sont défin	our toute condition initiale $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. ties sur \mathbb{R} . définies sur \mathbb{R} , soit divergent en temps fini.
Question 2 L ² $\mathbb{R} \times \mathbb{R}$	'équation différentielle $\dot{x}=tx^2+t$ de condition initiale $(t_0,x_0)\in$
\square admet un	e unique solution. e unique solution maximale définie sur \mathbb{R} . e unique solution maximale définie sur un intervalle ouvert borné
	oit $f: \mathbb{R}^n \to \mathbb{R}^n$ continue. Dire que les solutions de $\dot{x} = f(x)$ nent par rapport à leur condition initiale sur leur intervalle de
\square vrai. \square vrai si f \square aucun des	est continûment différentiable par rapport à x . s deux.
Question 4 L parce que	e comportement d'un système chaotique est difficile à prédire
□ ses solutio □ il est imp	plusieurs solutions pour certaines conditions initiales. ons ne varient pas continûment par rapport à la condition initiale. cossible d'assurer une précision suffisante sur la condition ini- r obtenir une erreur raisonnable au delà d'un certain temps tique.
	en peut dire que le système $\dot{x}=-ax+bx^2$ avec $a,b>0,$ point d'équilibre instable.

□ admet un point d'équilibre globalement asymptotiquement stable.
Question 6
Le système
$\dot{x}_1 = x_1 - x_2$
$\dot{x}_2 = 4x_1 - 3x_2$
\square admet plusieurs points d'équilibre.
\Box admet 0 comme point d'équilibre localement asymptotiquement stable.
\square admet 0 comme point d'équilibre globalement asymptotiquement stable
\square a ses solutions de la forme $x(t) = (e^{-t}c_1, e^{-t}c_2)$, avec c_1, c_2 constantes.