

Parametric Equations

Introduction

Recall the following from high school and first-year calculus:

Equation Type	Example
Cartesian Equation	$y = x^2$
Function in Cartesian Form	$y = f(x) = x^2$
Parametric Equation	$\begin{cases} x = t \\ y = t^2 \end{cases}$

Table 1: Comparison of equation representations

Figure 1: Graph of a parabola: $y = x^2$

Parametric Equation Form

Parametric equations are of the form:

$$x = f(t), \quad y = g(t), \quad t \in \mathbb{R}$$

For example:

$$x = t, \quad y = t^2, \quad t \in \mathbb{R}$$

This yields points such as:

$$(1,1), (0,0), (-1,1)$$

Alternatively:

$$x = -t, \quad y = t^2, \quad t \in \mathbb{R}$$

This yields points such as:

$$(-1,1), \quad (0,0)$$

Drawing Parametric Equations

Methods to Sketch Parametric Equations

Two methods are commonly used to sketch parametric equations:

- Use a table of values for manual computation.
- Convert to a Cartesian equation (eliminate t) and sketch the graph, if possible.

Example

Example Problem

Sketch $x = t^2, y = t^3$ for $-\infty < t < \infty$.

t	$x = t^2$	$y = t^3$	(x,y)
2	4	8	(4, 8)
1	1	1	(1, 1)
0	0	0	(0, 0)
-1	1	-1	(1, -1)
-2	4	-8	(4, -8)

Table 2: Table of values for $x = t^2, y = t^3$

Figure 2: Sketch of $x = t^2, y = t^3$

Other Examples

Advanced Example

A Cartesian equation is given by:

$$x = t^2$$
,

$$y = t^3$$
.

From these, we derive:

$$x^3 = (t^2)^3 = t^6,$$

$$y^2 = (t^3)^2 = t^6.$$

Thus, we have:

$$x^3 = t^6 = y^2 \implies x^3 = y^2.$$

Rewriting $y^2 = x^3$, we solve for y:

$$y = \pm x^{\frac{3}{2}},$$

which gives the two solutions:

$$y = x^{\frac{3}{2}}$$
 and $y = -x^{\frac{3}{2}}$.