The Periodic Table Of Finite Simple Groups

$0, C_1, \mathbb{Z}_1$ 1	Dynkin Diagrams of Simple Lie Algebras																
1		$A_n \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \qquad \bigcirc \qquad \qquad \qquad \qquad \qquad \qquad \qquad$													C ₂		
$A_1(4), A_1(5)$	$A_2(2)$		1 2	3	D	O_n	<u></u>	O	1	2 3	4	$^{2}A_{3}(4)$				$G_2(2)'$	
A_5	$A_1(7)$	B_n		3	<u>O</u>	2	3 4	Ο.	G_2			$B_2(3)$	$C_3(3)$	$D_4(2)$	$^{2}D_{4}(2^{2})$	${}^{2}A_{2}(9)$	<i>C</i> ₃
60	168							4				25 920	4 585 351 680	174 182 400	197 406 720	6 048	3
$A_1(9), B_2(2)'$	$^{2}G_{2}(3)'$	C_n	$ \begin{array}{c} $	3	E_6	.7,8 O	2	3 5	6	O 8							
A_6	$A_{1}(8)$											$B_{2}(4)$	$C_3(5)$	$D_4(3)$	$^{2}D_{4}(3^{2})$	$^{2}A_{2}(16)$	C_5
360	504											979 200	228 501 000 000 000	4 952 179 814 400	10 151 968 619 520	62 400	5
										Tits*							
A_7	$A_1(11)$	$E_6(2)$	$E_7(2)$	$E_8(2)$	$F_4(2)$	$G_2(3)$	$^{3}D_{4}(2^{3})$	$^{2}E_{6}(2^{2})$	$^{2}B_{2}(2^{3})$	$^2F_4(2)'$	$^{2}G_{2}(3^{3})$	$B_3(2)$	$C_4(3)$	$D_5(2)$	$^{2}D_{5}(2^{2})$	$^{2}A_{2}(25)$	<i>C</i> ₇
2 520	660	214 841 575 522 005 575 270 400	7 997 476 042 075 799 759 100 487 262 680 802 918 400	337 804 753 143 634 806 261 388 190 614 085 595 079 991 692 242 467 651 576 160 959 909 068 800 000	3 311 126 603 366 400	4 245 696	211 341 312	76 532 479 683 774 853 939 200	29 120	17 971 200	10 073 444 472	1 451 520	65 784 756 654 489 600	23 499 295 948 800	25 015 379 558 400	126 000	7
$A_3(2)$																	
A_8	$A_1(13)$	$E_6(3)$	$E_7(3)$	$E_8(3)$	$F_4(3)$	$G_2(4)$	$^{3}D_{4}(3^{3})$	$^{2}E_{6}(3^{2})$	$^{2}B_{2}(2^{5})$	$^{2}F_{4}(2^{3})$	$^{2}G_{2}(3^{5})$	$B_{2}(5)$	$C_3(7)$	$D_4(5)$	$^{2}D_{4}(4^{2})$	$^{2}A_{3}(9)$	C ₁₁
20 160	1 092	7 257 703 347 541 463 210 028 258 395 214 643 200	1 271 375 236 818 136 742 240 479 751 139 021 644 554 379 203 770 766 254 617 395 200	18 830 052 912 953 932 311 099 032 439 972 660 332 140 886 784 940 152 038 522 449 391 826 616 580 150 109 878 711 243 949 982 163 694 448 626 420 940 800 000	5 734 420 792 816 671 844 761 600	251 596 800	20 560 831 566 912	14 636 855 916 969 695 633 965 120 680 532 377 600	32 537 600	264 905 352 699 586 176 614 400	49 825 657 439 340 552	4 680 000	273 457 218 604 953 600	8 911 539 000 000 000 000	67 536 471 195 648 000	3 265 920	11
A_9	$A_1(17)$	$E_6(4)$	$E_7(4)$	$E_8(4)$	$F_4(4)$	$G_2(5)$	$^{3}D_{4}(4^{3})$	$^{2}E_{6}(4^{2})$	$^{2}B_{2}(2^{7})$	$^{2}F_{4}(2^{5})$	$^{2}G_{2}(3^{7})$	$B_{2}(7)$	$C_3(9)$	$D_5(3)$	$^{2}D_{4}(5^{2})$	$^{2}A_{2}(64)$	C ₁₃
181 440	2 448	85 528 710 781 342 640 103 833 619 055 142 765 466 746 880 000	111 131 458 114 940 385 379 597 233 477 884 941 280 664 199 527 155 056 307 251 745 263 504 588 800 000 000	191 797 292 142 671 717 754 639 757 897 512 906 421 357 507 604 216 557 533 558 287 598 236 977 154 127 870 984 484 770 345 340 348 298 409 697 395 609 822 849 492 217 656 441 474 908 160 000 000 000	19 009 825 523 840 945 451 297 669 120 000	5 859 000 000	67 802 350 642 790 400	85 696 576 147 617 709 485 896 772 387 584 983 695 360 000 000	34 093 383 680	1 318 633 155 799 591 447 702 161 609 782 722 560 000	239 189 910 264 352 349 332 632	138 297 600	54 025 731 402 499 584 000	1 289 512 799 941 305 139 200	17 880 203 250 000 000 000	5 515 776	13
	$PSL_{n+1}(q), L_{n+1}(q)$											$O_{2n+1}(q),\Omega_{2n+1}(q)$	$PSp_{2n}(q)$	$O_{2n}^+(q)$	$O_{2n}^-(q)$	$PSU_{n+1}(q)$	\mathbb{Z}_p
A_n	$A_n(q)$	$E_6(q)$	$E_7(q)$	$E_8(q)$	$F_4(q)$	$G_2(q)$	$^3D_4(q^3)$	$^2E_6(q^2)$	$^{2}B_{2}(2^{2n+1})$	$^{2}F_{4}(2^{2n+1})$	$^{2}G_{2}(3^{2n+1})$	$B_n(q)$	$C_n(q)$	$D_n(q)$	$^2D_n(q^2)$	$^2A_n(q^2)$	C_p
$\frac{n!}{2}$	$\frac{q^{n(n+1)/2}}{(n+1,q-1)}\prod_{i=1}^{n}(q^{i+1}-1)$	$q^{36}(q^{12}-1)(q^9-1)(q^8-1)$ $\frac{(q^6-1)(q^5-1)(q^2-1)}{(3,q-1)}$	$\frac{q^{63}}{(2,q-1)} \prod_{\substack{i=1\\i\neq 2,8}}^{9} (q^{2i}-1)$	$q^{120}(q^{30}-1)(q^{24}-1) (q^{20}-1)(q^{18}-1)(q^{14}-1) (q^{12}-1)(q^8-1)(q^2-1)$	$q^{24}(q^{12}-1)(q^8-1) (q^6-1)(q^2-1)$	$q^6(q^6-1)(q^2-1)$	$q^{12}(q^8 + q^4 + 1) (q^6 - 1)(q^2 - 1)$	$q^{36}(q^{12}-1)(q^9+1)(q^8-1)$ $\frac{(q^6-1)(q^5+1)(q^2-1)}{(3,q+1)}$	$q^2(q^2+1)(q-1)$	$q^{12}(q^6+1)(q^4-1) (q^3+1)(q-1)$	$q^3(q^3+1)(q-1)$	$\frac{q^{n^2}}{(2,q-1)} \prod_{i=1}^n (q^{2i}-1)$	$\frac{q^{n^2}}{(2,q-1)} \prod_{i=1}^n (q^{2i}-1)$	$\frac{q^{n(n-1)}(q^n-1)}{(4,q^n-1)}\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{q^{n(n-1)}(q^n+1)}{(4,q^n+1)}\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{q^{n(n+1)/2}}{(n+1,q+1)}\prod_{i=2}^{n+1}(q^i-(-1)^i)$	p
Altornati	n a Cuarra																

Alternating Groups
Classical Chevalley Groups
Chevalley Groups
Classical Steinberg Groups
Steinberg Groups
Suzuki Groups
Ree Groups and Tits Group*
Sporadic Groups
Cyclic Groups

^{*}The Tits group ${}^2F_4(2)'$ is not a group of Lie type, but is the (index 2) commutator subgroup of ${}^2F_4(2)$. It is usually given honorary Lie type status.

The groups starting on the second row are the classical groups. The sporadic suzuki group is unrelated to the families of Suzuki groups.

Alternates[†]

Symbol

Order[‡]

 M_{11}

 M_{12}

 M_{22}

 M_{23}

	+Finite simple groups are determined by their order	
d	with the following exceptions:	
	$B_n(q)$ and $C_n(q)$ for q odd, $n > 2$;	
	$A_8 \cong A_3(2)$ and $A_2(4)$ of order 20160.	

	7 920	95 040	443 520	10 200 960	244 823 040	175 560	604 800	50 232 960	077 562 880	44 352 000	898 128 000	4 030 387 200	145 926 144 000
Sz	7.	O'NS, O-S	•3	•2	·1	F_5, D	LyS	F_3 , E	M(22)	M(23)	$F_{3+}, M(24)'$	F_2	F_1, M_1

 J_2

HJ

J(1), J(11)

 M_{24}

HJM

 F_7 , HHM, HTH

He

Ru

McL

HS

86 775 571 046

 Fi'_{24} Fi_{23} O'N Co_3 Co_2 Co_1 Fi_{22} HNLy Th Suz4 157 776 806 51 765 179 1 255 205 709 190 808 017 424 794 512 875 273 030 90 745 943 4 089 470 473 4 154 781 481 226 426 886 459 904 961 710 757 460 815 505 920 495 766 656 000 887 872 000 661 721 292 800 448 345 497 600 42 305 421 312 000 543 360 000 912 000 000 004 000 000 64 561 751 654 400 293 004 800 191 177 580 544 000 000 005 754 368 000 000 000

[†]For sporadic groups and families, alternate names in the upper left are other names by which they may be known. For specific non-sporadic groups these are used to indicate isomorphims. All such isomorphisms appear on the table except the family $B_n(2^m) \cong C_n(2^m)$.