초보자를 위한 코딩하기 - Al의 핵심 구글 텐서플로우

2020년 9월1일 한국과학기술정보연구원 슈퍼컴퓨팅응용센터 이홍석

목차

- 인공지능에 대하여 알아보자
 - ✓ 인공지능의 역사
 - ✓ 어떻게 AI 알고리즘을 만드는가?
- 학습 모델로 인공지능 신경망의 이해
- 구글의 텐서플로우 실습해보기

이홍석

참고사이트: https://github.com/hongsukyi/tensorflow-for-beginners

ANN의 역사 (14): 알파고 (2016)

알파고(AlphaGo)는 3개 버전

- ① 알파고-지도학습(바둑기보)
- ② 알파고-리 (이세돌 9단)
- ③ 알파고-제로 (강화학습)

자료: Mastering the game of Go without human knowledge, David Silver, et al. Nature(2017)

신경망의 역사 1950년 대부터

Fig. credit to Efstratios Gavves, Intro. to DL

인공신경망 (ANN) 모델

기억 (메모리)

두 살 때 기억은 무엇인가?

(뇌)기억 한 것은 대부분 잊어버림

반복하는 것은 매우 지루하다!

공부 잘하는 비결은 반복 학습

컴퓨터는 반복을 잘한다

좌뇌와 우뇌의 차이는 왜 생길까?

강화학습은 보상!

상도 있고, 벌도 있고

상을 받기 위해서는, 우리의 뇌는 빨리 빨리 지식을 배워감

02. 데이터와 학습

인터넷 기반의 Colab에서 프로그래밍 하기

지도학습

지도학습: 입력, 출력, 라벨, 예측

MNIST 데이터

MNIST 데이터 구조

MNIST~ Modified National Institute of Standards and Technology

https://en.wikipedia.org/wiki/MNIST_database

기계학습/인공지능을 위한 데이터 나누기

- 학습은 70% (10%는 검증을 포함)
- 테스트는 20%

패션 NMINST 데이터(3)

```
for row in range(n_rows):
    for col in range(n_cols):
        index = n_cols * row + col
        plt.subplot(n_rows, n_cols, index + 1)
        plt.imshow(X_train[index], cmap="binary", interpolation="nearest")
        plt.axis('off')
        plt.title(class_names[y_train[index]], fontsize=12)
```


학습 방법에 따른 분류

- Supervised Learning (지도학습)
 - ✓ Input 과 labels을 이용한 학습
 - ✓ 분류(classification), 회귀(regression)
- Unsupervised Learning (비지도학습)
 - ✓ Input만을 이용한 학습
 - ✓ 군집화(clustering), 압축(compression)
- Reinforcement Learning (강화학습)
 - ✓ Label 대신 reward가 주어짐
 - ✓ Action selection, policy learning

데이터 속의 패턴 예측: 간단한 순환신경망(RNN)

날씨에 따라 패턴이 벗어난다

어제 먹었던 음식

원래 RNN 패턴

날씨에 따른 순환신경망(RNN)

03. 인공신경망 모델은 어떻게 작동하는가?

데이터, 학습과정, 결과 예측하기

인공신경망 (Artificial Neural Network) 학습

backpropagation of the error over the network using derivative function

linear models

인공신경망의 기본 모델: 선형회귀

가정:

$$H(x) = Wx + b$$

비용 (손실)

$$cost(w, b) = \sum_{i=0}^{M-1} (f(h(x^{i})) - y^{i})^{2}$$

기울기 구하기

$$w_{\text{updated}} \approx w - \alpha \cdot \frac{\partial \text{cost}}{\partial w}$$

비용은 예측과 실제값과의 차이 비용은 최소화하는 가중치를 구하는 문제 : 신경망으로 근사치 구함.

비용함수의 모양은 2차 함수.

$$cost(w,b) = \sum_{i=0}^{M-1} (f(h(x^i)) - y_{\underline{\ }}^i)^2 \qquad \frac{\partial cost}{\partial w} = \frac{\partial cost}{\partial y} \cdot \frac{\partial y}{\partial f} \cdot \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial w}$$

 $w_{\text{updated}} \approx w - \alpha \cdot \frac{\partial \text{cost}}{\partial w}$ α in the learning rate.

모델을 설정하기

$$Y_{\text{predicted}} = X * w + b$$

$$loss = (Y - Y_{predicted})^2$$

인공 신경망 반복 계산으로 학습하기.

비용함수=RMSE = 평균 제곱근 오차

04. 구글 텐서플로우에서 첫 프로그램 해보기

인터넷 기반의 Colab에서 프로그래밍 하기

Deep Learning Framework

구글 텐서플로우 페이스북 파이토치 앤비디아 까페

Open Source Deep Learning framework GitHub Stars

http://community.wolfram.com/groups/-/m/t/1345642

Colab 실습

• Google Tensorflow 검색하기

텐서플로우 실습

TensorFlow는 머신러닝을 위한 엔드 투 엔드 오픈소스 플랫폼입니다.

TensorFlow를 사용하면 초보자와 전문가 모두 머신러닝 모델을 쉽게 만들 수 있습니다. 시작하려면 아래의 섹션을 참조하세요.

가이드 보기

가이드 보기

가이드에서는 완벽한 엔드 투 엔드 예제와 함께 TensorFlow 를 사용하는 방법을 보여줍니 다. 가이드는 TensorFlow의 개념 과 구성요소에 관해 설명합니 다.

초보자용 텐서플로우 코드

초보자용

사용자에게 친숙한 Sequential API로 시작하는 것이 가장 좋습니다. 구성요소를 연결하여 모델을 만들 수 있습니다. 아래의 'Hello World' 예제를 실행한 다음 <u>가이드</u>를 방문하여 자세한 내용을 알아보세요.

ML에 관해 배워보려면 <u>교육 페이지</u>를 확인하세요. 엄선된 커리 큘럼으로 기본적인 ML 분야의 역량을 키워보세요.

전문가용

Subclassing API는 고급 연구를 위한 define-by-run 인터페이스를 제공합니다. 모델에 대한 클래스를 만든 다음 명령형으로 순 방향 패스를 작성합니다. 맞춤형 레이어, 활성화 및 학습 루프를 쉽게 만들 수 있습니다. 아래의 'Hello World' 예제를 실행한 다음 가이드를 방문하여 자세한 내용을 알아보세요.

```
O
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_{train}, x_{test} = x_{train} / 255.0, x_{test} / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
             loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
  지금 코드 실행
                Google의 대화형 메모장에서 사용해보기
```

```
class MyModel(tf.keras.Model):
 def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')
  def call(self, x):
   x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)
model = MyModel()
with tf.GradientTape() as tape:
 logits = model(images)
 loss_value = loss(logits, labels)
grads = tape.gradient(loss_value, model.trainable_variable
optimizer.apply_gradients(zip(grads, model.trainable_varia
  지금 코드 실행
                Google의 대화형 메모장에서 사용해보기
```

코랩을 이용한 첫 실행

Thank You!

www.ust.ac.kr

04. 텐서플로우 구조 (v1.0)

인터넷 기반의 Colab에서 프로그래밍 하기

Programming Model

Your first TensorFlow Program

import tensorflow as tf Add 1 x = tf.constant(3)y = tf.constant(4) b = tf.constant(2) Mul Add Const_1 C Const C Const_2 C c = tf.square(x)d = tf.multiply(c,y) Const Oe = tf.add(y,b)f = tf.add(d,e)with tf.Session() as sess: # add this line to use TensorBoard. writer = tf.summary.FileWriter('./log2', sess.graph) print(sess.run(f)) writer.close() # 42

Run Tensorboard

```
Go to terminal, run:
# $ python lab01.py

$ tensorboard --logdir="./log2" --port 6006
Then open your browser and go to: http://localhost:6006/
```

```
tensorboard --logdir=./log2 --port=6006

Starting TensorBoard b'41' on port 6006

(You can navigate to http://192.168.56.1:6006)
```


Tensorboard

