×

Logistic Regression

5 questions

1.

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.2. This means (check all that apply):

- Our estimate for $P(y=1|x;\theta)$ is 0.8.
- lacksquare Our estimate for P(y=0|x; heta) is 0.8.
- Our estimate for $P(y=1|x;\theta)$ is 0.2.
- lacksquare Our estimate for P(y=0|x; heta) is 0.2.

2.

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$.

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.
- At the optimal value of θ (e.g., found by fminunc), we will have $J(\theta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) would increase $J(\theta)$ because we are now summing over more terms.
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^m \big(h_\theta(x^{(i)}) - y^{(i)}\big) x_j^{(i)}.$ Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

$$\qquad \qquad \theta_j := \theta_j - \alpha \, \tfrac{1}{m} \sum_{i=1}^m \left(\tfrac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x_j^{(i)}$$
 (simultaneously update for all j).

- $egin{aligned} eta_j := heta_j lpha \, rac{1}{m} \sum_{i=1}^m \, (h_ heta(x^{(i)}) y^{(i)}) x_j^{(i)} \ & ext{(simultaneously update for all } j). \end{aligned}$
- $egin{aligned} egin{aligned} heta_j := heta_j lpha \, rac{1}{m} \sum_{i=1}^m \, (h_ heta(x^{(i)}) y^{(i)}) x^{(i)} \ & ext{(simultaneously update for all } j). \end{aligned}$
- $oldsymbol{\Box} \quad heta := heta lpha \, rac{1}{m} \sum_{i=1}^m \Big(heta^T x y^{(i)} \Big) x^{(i)} \, .$

4.

Which of the following statements are true? Check all that apply.

- The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.

5.

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=0, \theta_2=-1$. Which of the following figures represents the decision boundary found by your classifier?

O Figure:

O Figure:

O Figure:

O Figure:

Submit Quiz

