MAT 473: Intermediate Real Analysis II

Trey Manuszak Arizona State University

May 1, 2020

Problem 49. Prove Theorem 22.5 parts (iii) and (iv): Let $f, g : \mathbb{R} \to \overline{\mathbb{R}}$ be integrable functions.

(iii) Suppose that $f \leq g$. Prove that $\int f \leq \int g$.

Proof. Let $f, g : \mathbb{R} \to \overline{\mathbb{R}}$ be integrable functions and $f \leq g$. Then, by linearity,

$$0 \le \int (g - f) = \int g - \int f,$$

which implies $\int f \leq \int g$.

(iv) Prove that $\left| \int f \right| \leq \int |f|$.

Proof. Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be integrable Since |f| is measurable and bounded and $-|f| \le f \le |f|$, by linearity and monotonicty, we get

$$-\int |f| \le \int f \le \int |f|.$$

It follows that $\left| \int f \right| \le \int |f|$.

Problem 50. Compute the value of the limit

$$\lim_{n\to\infty} \int_0^\infty \left(1+\frac{x}{n}\right)^{-n} \cos\frac{x}{n} dx.$$

Justify every step of your argument. (Hint: use the monotone convergence theorem, and the theorem on equality of the Reimann and Lebesgue integrals when both apply, to show that e^{-x} is integrable on $[0, \infty)$. Then use the dominated convergence theorem.)

Proof. Let $f_n = (1 + \frac{x}{n})^{-n} \cos \frac{x}{n}$. Then, f_n is pointwise convergent to $\frac{1}{e^x}$. Since e^{-x} is integrable, then by the dominated convergence theorem, we have

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \cos \frac{x}{n} dx = \int_0^\infty \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{-n} \cos \frac{x}{n} dx$$
$$= \int_0^\infty e^{-x} dx$$
$$= -e^{-x} + C.$$

(Couldn't figure out how to use monotone convergence theorem to show e^{-x} was integrable.)