IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Shinji NISHIWAKI, et al.

GAU:

2123

SERIAL NO: 09/696,961

EXAMINER:

FILED:

October 27, 2000

RECEIVED

FOR:

STRUCTURAL DESIGN METHOD AND RECORDING MEDIUM

MAY 2 9 2001

REQUEST FOR PRIORITY

Technology Center 2100

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

- □ Full benefit of the filing date of U.S. Application Serial Number [US App No], filed [US App Dt], is claimed pursuant to the provisions of 35 U.S.C. §120.
- □ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY	APPLICATION NUMBER	MONTH/DAY/YEAR
JAPAN	11-310338	October 29, 1999
JAPAN	2000-321622	October 20, 2000

Certified copies of the corresponding Convention Application(s)

- are submitted herewith
- will be submitted prior to payment of the Final Fee
- were filed in prior application Serial No. filed
- □ were submitted to the International Bureau in PCT Application Number.
 Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
 - (B) Application Serial No.(s)
 - are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Marvin J. Spivak

Registration No.

24,913

Joseph A. Scafetta, Jr. Registration No. 26,803

22850

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

本 国 特 許 庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1999年10月29日

出願番号

Application Number:

平成11年特許願第310338号

株式会社豊田中央研究所

RECEIVED

MAY 2 9 2001

Technology Center 2100

2001年 1月12日

特許庁長官 Commissioner, Patent Office

川耕

【書類名】 特許願

【整理番号】 TC1-0412

【提出日】 平成11年10月29日

【あて先】 特許庁長官殿

【国際特許分類】 G06F 17/00

【発明の名称】 構造物の設計方法及び記録媒体

【請求項の数】 6

【発明者】

【住所又は居所】 愛知県愛知郡長久手町大字長湫字横道41番地の1 株

式会社豊田中央研究所内

【氏名】 西脇 眞二

【発明者】

【住所又は居所】 愛知県愛知郡長久手町大字長湫字横道41番地の1 株

式会社豊田中央研究所内

【氏名】 西垣 英一

【発明者】

【住所又は居所】 愛知県愛知郡長久手町大字長湫字横道41番地の1 株

式会社豊田中央研究所内

【氏名】 菊池 昇

【発明者】

【住所又は居所】 愛知県愛知郡長久手町大字長湫字横道41番地の1 株

式会社豊田中央研究所内

【氏名】 鶴見 康昭

【特許出願人】

【識別番号】 000003609

【氏名又は名称】 株式会社豊田中央研究所

【代理人】

【識別番号】 100075258

【弁理士】

特平11-310338

【氏名又は名称】 吉田 研二

【電話番号】

0422-21-2340

【選任した代理人】

【識別番号】

100081503

【弁理士】

【氏名又は名称】 金山 敏彦

【電話番号】

0422-21-2340

【選任した代理人】

【識別番号】

100096976

【弁理士】

【氏名又は名称】 石田 純

【電話番号】

0422-21-2340

【手数料の表示】

【予納台帳番号】

001753

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 構造物の設計方法及び記録媒体

【特許請求の範囲】

【請求項1】 構造物の設計領域を複数の節点で分割し、隣接節点及び非隣接節点同士を梁要素で結合した設計モデルを設定し、前記設計モデルを最適化することを特徴とする構造物の設計方法。

【請求項2】 請求項1記載の方法において、

前記設計モデルに境界条件を与え、前記梁要素の剛性を修正することで前記最 適化を行うことを特徴とする構造物の設計方法。

【請求項3】 請求項2記載の方法において、

前記境界条件は前記構造物に付加される外力、固定条件及び体積条件を含み、 前記最適化は前記梁要素の実質的消失を含むことを特徴とする構造物の設計方 法。

【請求項4】 構造物のモデルを設計するプログラムを記録したコンピュータ読み取り可能な媒体であって、前記プログラムはコンピュータに対して、少なくとも、

構造物の設計領域を複数の節点で分割させ、

隣接節点及び非隣接節点同士を梁要素で結合させた設計モデルを作成させ、 前記設計モデルを最適化させる

ことを特徴とする記録媒体。

【請求項5】 請求項4記載の記録媒体において、

前記プログラムは、入力された境界条件に基づいて前記梁要素の剛性を修正させることで前記最適化を実行させる

ことを特徴とする記録媒体。

【請求項6】 請求項5記載の記録媒体において、

前記境界条件は前記構造物に付加される外力、固定条件及び体積制約を含み、 前記最適化は前記梁要素の実質的消失を含む

ことを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は構造物の設計方法、特に初期設計段階で形(モデル)を生成する方法に関する。

[0002]

【従来の技術】

従来より、各種構造物の設計方法が提案されている。例えば、特開平3-22 4063号公報には、解析計算部とモデリング部との間にインターフェースを設 け、解析結果から構造物の設計パラメータの変更と再モデリングを自動的に行い 、反復計算の後に設計仕様を満たす最適モデルを出力する最適設計システムが開 示されている。

[0003]

【発明が解決しようとする課題】

この従来技術では、反復計算の後に設計仕様を満たすように修正していくものの、基準となる最初の形を生成する技術に関しては何ら言及していない。通常、個別の設計作業は設計者個人のノウハウや設計者の設計ノートに依存しているのが現状であり、最初の形(解析の場合はモデル)を生成するための具体的ツールは未だ存在していない。最初の形が生成された後は、上述した従来技術やAISI/CARSと呼ばれる自動車の構造部材の設計援用プログラムなどを用いて設計することが可能である。

[0004]

なお、解析については、詳細なメッシュモデルを扱うFEM解析が主流化しているが、最初のモデルの完成度によりその後の収束性や計算時間が決定され、最初のモデルが不合理なものであれば計算時間が長くなるのみならず、設計変更の数が増え、そのたびにモデルの再作成時間を含めた計算時間が累積的に増大してしまう問題がある。

[0005]

本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、初期設計段階で合理的な形を簡易かつ迅速に生成することができる構造物の設

計方法を提供することにある。

[0006]

【課題を解決するための手段】

上記目的を達成するために、本発明は、構造物の設計領域を複数の節点で分割 し、隣接節点及び非隣接節点同士を梁要素で結合した設計モデルを設定し、前記 設計モデルを最適化することを特徴とする。

[0007]

また、前記設計モデルに境界条件を与え、前記梁要素の剛性を修正することで 前記最適化を行うことを特徴とする。ここで、前記境界条件は前記構造物に付加 される外力、固定条件及び体積条件を含み、前記最適化は前記梁要素の実質的消 失を含むことが好適である。さらに、前記設計モデルの前記節点にパネルによる 剛性寄与分を付加することで前記最適化を行うことが好適である。

[0008]

本発明においては構造物の設計領域を複数の節点で分割する。そして、各節点同士を梁要素で結合する。設計領域を複数の節点で分割し、隣接節点同士をトラスで結合したグランドストラクチャモデルと称されるモデルは公知であるが(例えば、Optimization of Structural Topology Shape and Material: Martin Philip Bendsoe, Springer(1995)参照)、本発明においてはこのグランドストラクチャーのように隣接節点同士を接続するだけでなく、さらに非隣接節点同士をも結合し、また結合の方法もトラスではなく梁要素で結合する。非隣接節点同士をも結合することでより多岐にわたる形を生成することができる。また、本発明ではトラスではなく梁要素を用いて結合することができる。また、本発明ではトラスではなく梁要素を用いて結合することができる。隣接節点に関しては、全ての隣接節点同士を結合することが必要であるが、非隣接節点に関しては、必ずしも全ての非隣接節点に対して梁要素で結合する必要はない。但し、結合する非隣接節点が増大するほど、より精緻なモデルを生成することができる。

[0009]

節点と梁要素から構成される設計モデルを最適化する方法としては、例えば設計モデルに所定の境界条件を与え、梁要素の剛性を修正することで、最大剛性を

得ることができる形を生成することができる。境界条件としては、外力と固定条件を付加し、一定の体積制約の下で変位が最小となるような最適化を行うことが考えられる。最適化は、梁要素の剛性の変更により行うが、剛性最大化に実質的に寄与しない梁要素に関しては実質的に消失させることで、所定の体積条件を満足することができる。実質的に消失とは、梁要素をデータ上直接消去する場合の他、データとしては存在しているが、梁要素の存在に影響するパラメータ(例えば断面積など)をゼロとして間接的に存在を消去する場合も含まれる。データ自体を消去する場合には計算に寄与するデータ数が変動するため計算が複雑となるが、実質的に消去することで計算の複雑化を抑制することができる。

[0010]

また、自動車ボディや住宅構造などの構造物を設計する際には、骨格構造に加えてパネルによる剛性寄与分が存在するため、節点と梁要素から成る設計モデルの節点にパネルによる剛性寄与分を付加することで、パネルなしの場合と同一アルゴリズムで最適化を行うことができる。

[0011]

また、本発明は、構造物のモデルを設計するプログラムを記録したコンピュータ読み取り可能な媒体を提供する。前記プログラムはコンピュータに対して、少なくとも、構造物の設計領域を複数の節点で分割させ、隣接節点及び非隣接節点同士を梁要素で結合させた設計モデルを作成させ、前記設計モデルを最適化させることを特徴とする。

[0012]

前記プログラムは、入力された境界条件に基づいて前記梁要素の剛性を修正させることで前記最適化を実行させることが好適であり、前記境界条件は前記構造物に付加される外力、固定条件及び体積制約を含み、前記最適化は前記梁要素の実質的消失を含むことが好適である。

[0013]

【発明の実施の形態】

以下、図面に基づき本発明の実施形態について説明する。なお、本実施形態の 設計方法は、具体的にはパーソナルコンピュータやワークステーションなどのコ ンピュータに処理プログラムをインストールし、コンピュータ上で実行することができる。本実施形態の設計モデルは節点と梁要素から構成されているため、大容量のメモリは不要であり、例えばパーソナルコンピュータ上で表計算ソフトウェアをフロントエンドとして用いることも可能である。なお、処理プログラムはCD-ROMやDVD、ハードディスク、半導体メモリなど、電磁気的、光学的、あるいは化学的に情報を保持できる任意の媒体に記録することができる。処理プログラムのインストールは、例えばCD-ROMに処理プログラムを記録し、CD-ROMからコンピュータのハードディスクに処理プログラムを供給することで行うことができる。もちろん、当初からコンピュータのハードディスクあるいはROMに処理プログラムを記録させ、構造物モデル設計専用のコンピュータとして用いることも可能である。

[0014]

図1には、本実施形態における設計モデルが模式的に示されている。設計対象や解析対象(以下、「設計」には解析も含むものとする)の設計領域を多数の節点10で分割し、隣接節点同士を梁要素12で結合する。また、隣接節点同士だけでなく、非隣接節点同士も梁要素12で結合する。図1においては、全ての隣接節点同士を梁要素12で結合するとともに、全ての非隣接節点も梁要素12で結合している。全ての非隣接節点を梁要素12で結合することは必須ではないが、最適の初期設計形状を生成するためには梁要素12の数は多ければ多いほどよく(本実施形態では、最初から何らかの形が与えられているのではなく、形が与えられていない状態から最適の初期形状を生成していくため、梁要素が多いほど多様な形状を生成することができる)、したがって全ての非隣接節点同士を梁要素12で結合するのが好適である。

[0015]

このような設計モデルを設定し、次にこの設計モデルに対して境界条件を与え、最適化してゆく。

[0016]

図2には、図1の設計モデルをモデルを用いて構造物の剛性を最大化する場合の処理フローチャートが示されている。まず、初期値を入力する(S101)。

この初期値の入力は、具体的には図1に示されたように設計領域を複数の節点1 0で分割するとともに節点10同士を梁要素12で結合し、境界条件を入力する ことを意味する。境界条件としては、外力の印加や体積制約などがあり、本実施 形態においては一例として図1において図中左側を拘束し、右側の中心部14に 負荷を印加する場合について説明する。

[0017]

初期値を入力した後、次に剛性マトリクスKを作成する(S102)。設計モデルを複数の節点10と梁要素12で構成した場合、節点間の関係は力をベクトルf、変位ベクトルをu、剛性マトリクスをKとして一般にf=Kuという形に表すことができる。この力と変位の関係を規定する式におけるKが剛性マトリクスであり、具体的には、

【数1】

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \begin{bmatrix} EA \\ l \\ 0 & \frac{12EI_{\pi}}{l^3} \\ \hline 0 & 0 & \frac{12EI_{\pi}}{l^3} \\ \hline 0 & 0 & 0 & \frac{GJ}{l} \\ \hline 0 & 0 & -\frac{6EI_{\pi}}{l^2} & 0 & \frac{4EI_{\pi}}{l} \\ \hline 0 & 0 & -\frac{6EI_{\pi}}{l^2} & 0 & 0 & 0 & \frac{EA}{l} \\ \hline -\frac{EA}{l} & 0 & 0 & 0 & 0 & 0 & \frac{EA}{l} \\ \hline 0 & -\frac{12EI_{\pi}}{l^3} & 0 & 0 & 0 & -\frac{6EI_{\pi}}{l^2} & 0 & \frac{12EI_{\pi}}{l^3} \\ \hline 0 & 0 & -\frac{12EI_{\pi}}{l^3} & 0 & \frac{6EI_{\pi}}{l^2} & 0 & 0 & 0 & \frac{GJ}{l} \\ \hline 0 & 0 & -\frac{6EI_{\pi}}{l^2} & 0 & \frac{2EI_{\pi}}{l} & 0 & 0 & 0 & \frac{6EI_{\pi}}{l^2} & 0 & \frac{4EI_{\pi}}{l} \\ \hline 0 & \frac{6EI_{\pi}}{l^2} & 0 & 0 & 0 & \frac{2EI_{\pi}}{l} & 0 & 0 & 0 & \frac{4EI_{\pi}}{l^2} \\ \hline \end{array}$$

で表現される。但し、Aは梁要素の断面積、Eは弾性係数、Gは横弾性係数、1 は梁要素の長さ、Iyy、Izzは断面二次モーメントである。マトリクスにおいて、「Symmetric」とは対称行列であることを意味している。上式により、梁要素はトラスと異なることが明確に理解できる。梁要素は6軸の剛性を 持つのに対して、トラスは1軸の剛性を持つのみなので、トラスの利用の際には モデル化に多くの制約が生じてしまうことになる。本実施形態では、トラスでは なく梁要素を用いて結合することで、より自由度の高い、所定の制約条件を満足 する最適の形を生成することができる。

[0018]

剛性マトリクスKを作成した後、設計変数に関するKの感度を算出する(S103)。設計変数とは、具体的には梁要素12の正規化された断面積ρであり、断面積Aとの間には、

【数2】

$$A = \rho A_{\text{max}}$$

の関係がある。ここで、Amaxは最大値であり、 ρ は0か1の値を有する。正規化された断面積 ρ を用いるのは、計算を容易とするためである。設計変数 ρ に関する剛性マトリクス Kの感度を求めるには、Kに関する ρ の微分値を求めればよい。梁要素 1 2 の断面を半径 1 1 の中実円と仮定すると、

【数3】

$$I_{yy} = I_{x} = \frac{\pi}{64} d^4 = \frac{\rho^2 A_{\text{max}}^2}{4\pi}$$

【数4】

$$J = \frac{\pi}{32} d^4 = \frac{\rho^2 A_{\text{max}}^2}{2\pi}$$

の関係があるから、

【数5】

$$\frac{\partial A}{\partial \rho} = A_{\text{max}}$$

【数6】

$$\frac{\partial I_{yy}}{\partial \rho} = \frac{\partial I_{zz}}{\partial \rho} = \frac{\rho A_{\text{max}}^2}{2\pi}$$

【数7】

$$\frac{\partial J}{\partial \rho} = \frac{\rho A_{\text{max}}^2}{\pi}$$

となる。これらの式を用いることで、剛性マトリクス K の設計変数 ρ に関する感度を算出することができる。

[0019]

剛性マトリクスKの感度を算出した後、釣り合い方程式 f = Kuをuについて解く(S104)。具体的には、外力 f に剛性マトリクスKの逆行列 K - 1 を乗じることで u を解くことができる。 u を算出した後、次に平均コンプラインスと体積制約、及びこれらの感度を算出する(S105)。平均コンプラインスとは、具体的には目標関数であり、最適化を行うための目標となる関数である。剛性最大化問題においては、通常 f・u が目標関数に決定され、f・u を最小化することにより最大剛性が得られることが知られている。 f は境界条件として与えられた外力であり、 u は S104にて算出されているから、これらの値を用いて f・u を算出することができる。また、体積制約については、境界条件で与えることができ、例えば設計領域の初期体積を100%とした場合、20%の体積制約(100%を20%に減少させる)を与えることができる。体積制約は、重量制約とすることもできる(100kgを20kgに抑える)。平均コンプラインスの感度に関しては、

【数8】

$$\mathbf{f} \cdot \mathbf{u} = \mathbf{u}^{\mathsf{T}} \mathbf{K} \mathbf{u}$$

の関係にあるから、f・uの感度、すなわちf・uに関しての設計変数ρの微分値は

【数9】

$$\frac{\partial \mathbf{f} \cdot \mathbf{u}}{\partial \boldsymbol{\rho}} = \mathbf{u}^{\mathsf{T}} \frac{\partial \mathbf{K}}{\partial \boldsymbol{\rho}} \mathbf{u}$$

となる。ここで、Tは転置を意味し、剛性マトリクスKの感度についてはS10 3の処理で既に算出されているから、この感度を用いることでf・uの感度を算 出することができる。体積制約の感度についても、体積についての設計変数 ρ の 微分を算出することで求めることができる。

[0020]

平均コンプラインスと体積制約及びこれらの感度を算出した後、これらの値を用いて最適化手法により設計変数 ρ を更新して最適化する(S106)。最適化手法には、公知の方法を用いることができ、例えばSLP(逐次線形計画法)を用いることができる。最適化アルゴリズムは、目標関数である f・u を最小化する問題を解くことであり、平均コンプラインス f・u の ρ に対する感度及び体積感度を考慮しつつ f・u を最小とする ρ を算出するアルゴリズムである。具体的には、感度が高い梁要素 1 2 に対しては、その断面積を増大させ、感度が低い梁要素 1 2 に関しては断面積を減少させ、もしくは断面積を 0 として実質的にその梁要素 1 2 を消失させる。感度の低い梁要素 1 2 を実質的に消失させることで体積が減少し、体積制約を満たすことができる。以上の最適化を行った後、収束したか否か(最小解が得られたか)を判定し(S107)、収束しない場合には S102~S106の処理を繰り返す、すなわち梁要素 1 2 の断面積を変更して f・u の値を検証し、最小解が得られない場合には再び梁要素 1 2 の断面積を変更して最適化を行う。

[0021]

図3には、図1に示された構造に対して以上述べた処理を行うことで最適化した場合の形が示されている。感度の高い梁要素12のみが剛性最適化された形、すなわちここでは断面積が拡大された形で残り、感度の低い梁要素12は実質的に消失し、所定の境界条件下(拘束条件、外力、体積制約)において最も剛性の高い形が得られている。梁要素12の断面積の大小は図において線の太さで表現されており、線が太い梁要素12ほど断面積が大きいことを示している。このような形を初期設計形状として用い、後は必要に応じてFEMにより詳細な解析を行うことができる。FEMにより解析を行う場合でも、図3に示された初期形状は力学的に合理的な形状であるため、収束も早く計算時間も短時間で済むことになる。

[0022]

図4には、本実施形態の設計方法を自動車ボディに適用した場合の例が示されている。図4は、自動車ボディの設計領域を複数の節点10と梁要素12で構成した設計モデルである。

[0023]

また、図5には、図4の設計モデルに対して境界条件のうち固定条件として右側を拘束し、外力として左側に負荷を与えた場合の例が示されている。 (A) は上面視において図中左上から負荷を与えた場合であり、 (B) は上面視において左下から荷重を与えた場合である。これらの荷重が別々に付加された場合 (いわゆるマルチローディング) に変位が最小となるような最適の剛性を得る。

[0024]

図6には、図4の設計モデルに対して図5のような境界条件を与え、図2に示された処理フローチャートに従って最適化を行った結果が示されている。図3と同様に、剛性に関して感度の低い梁要素12は実質的に消失し、感度の高い梁要素12のみが残り、合理的な初期形状が得られている。

[0025]

なお、本発明の設計方法は自動車ボディや建造物の骨格構造のような全体構造 に限定されず、例えばボディ骨格の接合部のような部分構造にも適用することが できる。

[0026]

図7には、本発明の設計方法を適用することができる部分構造の一例が示されており、自動車ボディにおける接合部20の初期形状を生成することができる。

[0027]

図8には、接合部20の設計モデルが示されており、図1や図4と同様に多数の節点及びこれら節点同士を結合する梁要素で構成されている。

[0028]

図9には、図2に示された処理フローチャートに従って所定の境界条件下で図8の設計モデルを最適化した結果が示されている。感度の低い、不要な梁要素が実質的に消失し、各梁要素の剛性(すなわち断面積)を最適化した形状が得られている。図9に示された形状を初期形状とし、FEMなどを用いてさらに詳細解

析を行うことも可能である。

[0029]

以上、本発明の実施形態について説明したが、例えば自動車ボディの場合には 設計範囲外にパネルが存在し、このパネルが設計領域の形状に剛性を付与するた め、自動車ボディの設計においては、このパネルによる剛性寄与分を考慮して形 を最適化するのも好適である。パネルによる剛性寄与分は設計領域における節点 の属性として付与し、剛性が付与された節点と梁要素を用いて最適化を行うこと で、パネルを考慮した剛性最適化形状を得ることができる。

[0030]

また、本実施形態においては最適化の例として剛性最大化について説明したが、この他に固有振動数の最適化(振動周波数が最も高くなるような形状)や柔軟性の最適化にも同様に適用することができる。設計変数に対する梁要素の感度を算出し、この感度を考慮しつつ設計変数を変更して最適化を図ればよい。

[0031]

【発明の効果】

以上説明したように、本発明によれば合理的な初期設計形状を自動作成することができ、効率的な開発が可能となる。

【図面の簡単な説明】

- 【図1】 実施形態の設計モデルの構成図である。
- 【図2】 実施形態の処理フローチャートである。
- 【図3】 図1の設計モデルを最適化した場合の結果を示す説明図である。
- 【図4】 自動車ボディの設計モデル図である。
- 【図5】 図4の自動車モデルに対し付加される荷重説明図である。
- 【図6】 図4の自動車ボディを最適化したモデル説明図である。
- 【図7】 設計対象となる接合部の説明図である。
- 【図8】 図7に示された接合部の設計モデル図である。
- 【図9】 図8の設計モデルを最適化したモデル図である。

【符号の説明】

10 節点、12 梁要素。

【図2】

【図3】

【図4】

【図7】

【図8】

【書類名】

要約書

【要約】

【課題】 初期設計段階で形を生成することのできる設計方法を提供する。

【解決手段】 設計対象の設計領域を複数の節点10で分割し、隣接する節点同士及び非隣接節点同士を梁要素12で結合する。節点10及び梁要素12から構成される設計モデルに対して最適化を行い、初期設計形状を得る。剛性最大化の場合、剛性マトリクスの感度を算出し、感度の高い梁要素については断面積を増大させ、感度の低い梁要素に関しては断面積を減少あるいは0として実質的に消失させる。複数の梁要素を用いて設計モデルを構成することで、境界条件に合致した合理的な形状を得ることができる。

【選択図】

図 1

出願人履歴情報

識別番号

[000003609]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住 所

愛知県愛知郡長久手町大字長湫字横道41番地の1

氏 名

株式会社豊田中央研究所