Primality Testing With Algorithm Implementations in Python

Jackson Howe - Supervisor: Kumar

Western University

October 13, 2023

Outline

- Introduction
 - A History of Primality Testing
 - Why Primes are Useful
 - Naive Tests
- Permat's Test
 - Fermat's Test and Proof
 - Fermat Witnesses, Liars, and Carmichael Numbers
- Miller-Rabin Test
 - Miller-Rabin Algorithm
- 4 AKS Test

A History of Primality Testing Before Computers

- **3rd century BCE** Sieve of Eratosthenes: returns all numbers less than n that are prime
- 1228 Fibonacci gives algorithm to determine if n is prime by dividing it by numbers up to \sqrt{n}
- 1548 1626 Perfect Numbers: if $2^n 1$ is prime, then n is prime and $(2^n 1)(2^n 1)$ is perfect.

Why Primes are Useful

- Primes are used in everyday life, but the main use of primes is in cryptography
- Cryptograpic protocols are used in web server requests, ecommerce, secure communication and data exchange, and generally enforcing privacy

Why Primes are Useful

- Alice wants to send a message, m to Bob
- Bob will generate two keys, a public key and a private key

RSA

Key Generation

- N = pq, where p, q are "large" primes
- $\phi(N) = \{a \in \mathbb{N} : 1 \le a \le N, (a, N) = 1\}$
- Choose e such that (e, $\phi(N)$) = 1
- public key: [N, e], private key: $d \equiv e^{-1} \pmod{\phi(N)}$
- m := unencoded message, c := cipher text

Encryption

•
$$c = m^e \pmod{N}$$

Decryption

- $\bullet \ \mathsf{m} \equiv c^d \ (\mathsf{mod} \ \mathsf{N})$
- $c^d \equiv m^{ed} \equiv m \pmod{N}$

Finding Primes

• *Prime Number Theorem*: For numbers $n \in \mathbb{N}$ with the "same" number of digits, it will take approximately log(n) tries to find a prime

Naive Tests

• We search for a deterministic polynomial time with respect to the input length, so a test with complexity of the form $log^t n$, where $t \in \mathbb{N}$

Primality Testing Strategy

For some $n \in \mathbb{N}$, $\forall \ 2 \leq m \leq \sqrt{n}$, test if $m \mid n$

Complexity

Complexity is $O(2^{log_2(\sqrt{n})})$ + memory issues

Fermat's Test

Theorem (Fermat's Little Theorem)

Let p be a prime number and let $a \in \mathbb{Z}$ be coprime. Then

$$a^{p-1} \equiv 1 \pmod{p}$$

Fermat's Test

for some $n \in \mathbb{N}$,

if
$$n \nmid a$$
 and $a^{n-1} \equiv 1 \pmod{n}$

then n is prime

Fermat Witnesses and Liars

Definition

If $a \in \mathbb{N}$ is such that (a, n) = 1 and $a^{n-1} \not\equiv 1 \pmod{n}$, a is called a *Fermat witness* for n and n is definitely composite

Definition

if $a \in \mathbb{N}$ is such that (a, n) = 1 and $a^{n-1} \equiv 1 \pmod{n}$, but n is composite, a is called a *Fermat liar* for n

Carmichael Numbers

- Consider the number 561
- ullet 2⁵⁶⁰ \equiv 1 (mod 561), 5⁵⁶⁰ \equiv 1 (mod 561), ..., 379⁵⁶⁰ \equiv 1 (mod 561)
- But $561 = 3 \cdot 11 \cdot 17$

Definition

if some number $c\in\mathbb{N}$ satisfies $a^{c-1}\equiv 1\ (\text{mod c})$ for $2\leq a\leq c-1$ such that (a,c)=1, but c is composite, then c is called a *Carmichael Number*

Validity

There are infinitely many Carmichael Numbers!

Fermat's Algorithm and Probability

```
Data: n \in \mathbb{N}

Result: n in PRIMES

Choose a random 2 \le a \le n-1

if (n, a) == 1 then

if a^{n-1} \not\equiv 1 \pmod{n} then return false;

else return true;

end
```

Primality Testing Strategy

For $n \in \mathbb{N}$, such that n is not a Carmichael number one Fermat test has a probability of being correct of at least 1/2.

Non-trivial Square Roots

Definition

a **non-trivial square root modulo n** is some number a not equal to 1 or n - 1 such that $a^2 \equiv 1 \pmod{n}$

Example

For example,

$$4^2 \equiv 1 \pmod{15},$$

so 4 is a non-trivial square root modulo 15

Non-trivial Square Roots

Theorem

For $n \in \mathbb{N}$, if n is prime, then the $x^2 \equiv 1 \pmod{n}$ has no nontrivial solutions (only 1 and -1)

Theorem

For $n \in \mathbb{N}$ such that n = pq, where p and q are distinct odd primes, then $x^2 \equiv 1 \pmod{n}$ has non-trivial solutions

Remark

This congruence is "stronger" than Fermat's test, as there is somewhat of a converse

Miller-Rabin Test

Recall

Fermat's Theorem:

$$a^{p-1} \equiv 1 \pmod{p}$$
 if $p \nmid a$

or

$$a^{p-1} - 1 \equiv 0 \pmod{p}$$
 if $p \nmid a$

Difference of Squares

As long as p-1 is even, we can continue to factor this equation as a difference of squares, we get:

$$(a^{(p-1)/2^k}-1)(...)(a^{(p-1)/2}+1)\equiv 0\pmod{p}$$

Miller-Rabin Test

```
Data: n \in \mathbb{N}

Result: n in PRIMES

if n > 2 and n is even then

\mid return false

end

s \leftarrow 0

t \leftarrow n - 1

while t is even do

\mid s \leftarrow s + 1

\mid t \leftarrow t // 2
```

end

Miller-Rabin Test Continued and Probability

```
Randomly select some x \in 1,2,...,n-1 if x^{n-1} \not\equiv 1 then | return \ false end for i in 1,2,...,s do | \mathbf{if} \ x^{2^it} \equiv 1 \pmod n \ and \ x^{2^{i-1}t} \not\equiv \pm 1 \pmod n then | return \ false end end | return \ true
```

Primality Testing Strategy

The probability this test is correct is 3/4 always

Time Complexity

The time complexity is $log^3 n$

AKS Test

- In 2002 Agrawal, Kayal, and Saxena developed a deterministic polynomial-time primality test, meaning the probability of correctness is 1
- The basis of the test is the fact that for $X \in P[x]$, $a \in \mathbb{Z}$, $n \in \mathbb{N}$, n is prime if and only if

$$(X+a)^n \equiv X^n + a \pmod{n}$$

• The time complexity for this algorithm is approx. $O(log^{15/2}n)$, meaning that for the time being, the Miller-Rabin test is still superior for most practical applications

References

- An Introduction to Mathematical Cryptography Hoffstein, Pipher, Silverman
- An Introduction to the Theory of Numbers Niven, Zuckerman, Montgomery
- Elementary Number Theory: Primes Congruences, and Secrets Stein
- PRIMES is in P Agrawal, Kayal, Saxena
- The Miller-Rabin Randomized Primality Test Kleinberg, Cornell University