

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 415 787 A1

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: 90309557.8

⑮ Int. Cl. 5: A23L 1/182, A23B 9/02,
A23L 3/3508

⑯ Date of filing: 31.08.90

⑭ Priority: 01.09.89 GB 8919820

⑰ Applicant: MARS INCORPORATED
6885 Elm Street
McLean Virginia 22101-3883(US)

⑮ Date of publication of application:
06.03.91 Bulletin 91/10

⑯ Inventor: Howard, John George
Homeleigh, Downham Road
Watlington, King's Lynn, Norfolk(GB)
Inventor: Field, Eric Sydney
39 Field Road
Gaywood, King's Lynn, Norfolk(GB)
Inventor: Atherton, John
Westfield House, School Road
Middleton, King's Lynn, Norfolk(GB)
Inventor: Hawkins, Michael John
209 Wooton Road
King's Lynn, Norfolk(GB)

⑯ Designated Contracting States:
GR

⑰ Representative: Colgan, Stephen James et al
CARPMAELS & RANSFORD 43 Bloomsbury
Square
London WC1A 2RA(GB)

⑲ **Shelf-stable rice products and processes for their production.**

⑳ The present invention provides shelf-stable, acid-pasteurised rice which, on reheating, does not have any acid flavour notes but has premium quality. This is achieved by use of a polymeric food acceptable acid, such as alginic acid, as the acidulant. There is also disclosed a process for producing such rice.

EP 0 415 787 A1

SHELF-STABLE RICE PRODUCTS AND PROCESSES FOR THEIR PRODUCTION

The present invention relates to acid-pasteurised, shelf-stable, rice products and to processes for their production.

By shelf-stable is meant that the product can be stored at room temperature for long periods of time without being subject to spoilage by microbial action, without its organoleptic properties deteriorating and without it acquiring any undesirable flavour. Typically, food products are considered to be shelf-stable if they meet these requirements after at least nine months and preferably after at least twelve or fourteen months of storage at room temperature. The major reason that many food products are not shelf-stable is that the growth of spoilage microorganisms is not inhibited. Therefore, an essential requirement of a shelf-stable food product is that it should not be susceptible to the growth of spoilage microorganisms.

At present, rice is available to the public as raw rice, parboiled rice, frozen rice or canned rice. Both raw and parboiled rice have the advantage that they are generally shelf-stable. Raw and parboiled rice are shelf-stable because they have a low water content, generally in the region of about 12% by weight. This is too low to support microbial growth.

Raw rice is generally available as "white" rice, that is the kernel of the rice from which the bran layer and the husk have been removed. Raw rice is also available as "brown" rice, which is the same as "white" rice except its bran layer has been retained. Raw white rice is cooked by boiling it for about fifteen minutes in salted water. Cooking raw brown rice generally takes somewhat longer.

Raw rice is generally acceptable if it is cooked properly. However, it is very easy to over- or under-cook the rice so that an unacceptable product is produced. Moreover, cooked raw rice tends to be very sticky and this has an unacceptable appearance and mouthfeel. Further, raw rice, especially "white" raw rice, has little nutritive value, as most of the nutrients are present in the husk or the bran layer.

Parboiled rice was developed in order to overcome some of the disadvantages of raw rice. The most common method of producing parboiled rice is to soak paddy rice (i.e. rice having the husk and bran layer still present) and then to heat it, for instance by steaming. This causes gelatinisation of the starch in the kernel and also induces many of the nutrients in the husk and bran layer to diffuse into the kernel. A recent development in the production of par-boiled rice is disclosed in EP-A-0 352 939. In the process disclosed in this document, the rice is parboiled by the use of dry heat at a much lower moisture content than is possible using

conventional parboiling processes.

Parboiled rice has the advantages that: it is more nutritious than raw rice; on cooking, it does not become sticky; and it is much less susceptible to overcooking than raw rice. It is thus more acceptable both nutritionally and organoleptically and is easier to prepare in acceptable form. However, parboiled rice has the disadvantage that it takes at least twenty minutes, or even longer for brown parboiled rice, to cook. Thus, it cannot readily be used as a convenience food.

In order to overcome the problem of the long cooking times of raw and parboiled rice, frozen rice has been placed on the market. Frozen rice generally comprises raw or, more often, parboiled rice which has been cooked, drained and frozen. As long as it is kept frozen, it is stable for long periods. However, if as it is allowed to warm to room temperature, it will soon spoil. Frozen rice is prepared for eating merely by heating it to the required temperature, for instance in a microwave oven.

Frozen rice has the disadvantage that it requires freezing facilities at the point of production, at the point of sale and at the point of use. It also requires refrigerated transportation. This is very energy-intensive and thus makes the product relatively expensive.

There have been many proposals for the production of shelf-stable rice which can be used as a convenience food. One such proposal, which resulted in the production of a dry rice product, required the pre-cooking and then drying of the product under relatively harsh conditions. The product was shelf-stable in that it had a low water content. It could be prepared for eating by soaking in boiling water for a short time. However, it only had limited consumer acceptability because it tended to become sticky and did not have the mouthfeel associated with properly cooked raw or parboiled rice.

Another shelf-stable rice which can be used as a convenience food is canned rice. In producing canned rice, raw or, more often, parboiled rice is cooked, drained, and filled into cans. The cans are then sealed, generally under vacuum or inert gas atmosphere, and sterilized by heating to a temperature of about 122°C for about 38 minutes.

Canned rice can be prepared for eating merely by opening the can and reheating the rice, for instance in a microwave oven. Canned rice when cooked is acceptable to the consumer and has most of the properties of well cooked raw or parboiled rice. However, its texture is not as good since some of the grain structure is destroyed

during the sterilization stage, giving a rubbery texture. Moreover, the rice has a browner colour than freshly cooked rice.

Canned rice has a number of other disadvantages. Many consumers associate canned foods with inferior products. For instance, most consumers prefer frozen vegetables to canned vegetables. Canned rice is also relatively expensive. This is because rice is quite corrosive towards metals and therefore high quality cans need to be used to ensure that the cans are not corroded. Moreover, the production process is relatively expensive in that it requires careful control of the canning process and a heat sterilization step.

There have also been many proposals for the production of acid-pasteurized rice, although to the Applicant's knowledge none of these proposals has resulted in the production of a commercially available product.

Acid-pasteurisation is a well known process which has been used in connection with a variety of products for some long time. Acid-pasteurisation was developed in order to enable a product to be sterilized at a much lower temperature than is possible if heat sterilization is to be carried out at neutral pH. It is generally recognised that if the pH of a product is reduced to 4.5 or below, it is possible to sterilize a product without needing to heat it above the boiling point of water. This is advantageous because it means that heating can be carried out by steaming at atmospheric pressure or soaking in hot water. Thus, there is no requirement for pressurized systems to accomplish the heating.

It is believed that acid-pasteurisation is effective because the pH destroys or prevents from multiplying many of the microorganisms which could spoil the product. Any microorganisms which are resistant to the acid pH are destroyed or inactivated by the relatively mild heat sterilization.

It has been proposed that pasta products, such as noodles, could be made shelf-stable by treatment with acids. For instance, JP-A-6 307 770 describes the preparation of a noodle which contains an acid preservative. The preservative comprises a mixture of: a conventional food-acceptable organic acid; a salt of such an acid; and a water-soluble macromolecular polysaccharide or chitosan. The organic acid, used as such or as its salt, may be citric, tartaric, malic, fumaric, lactic, acetic or gluconic acid. The polysaccharide may be alginic acid or sodium alginate. It is reported that noodles treated with this preservative mixture were stable for up to ten days. However, ten days is not a commercially acceptable time, especially if the product has to be transported to and stored at its point of sale and then stored at its point of use. Thus, such a product would be unsuitable for use

in supermarkets.

It has also been proposed that pasta products could be made shelf-stable by carrying out acid-pasteurisation. For instance, US-A-2 434 388 refers to the preparation of shelf-stable macaroni by lightly pickling the macaroni with acetic acid and then pasteurising the product while contained in a can.

US-A-3 886 296 describes a process for producing acid-pasteurised canned spaghetti and other pasta products. The pasta product is blanched in an acid solution to reduce its pH. Thereafter the blanched product is immersed in an acidic liquid medium. The containers are sealed and subjected to a short-hold heat treatment to render the product sterile. Suitable acids for use in the process are acetic, citric, hydrochloric, lactic, malic, phosphoric and tartaric acids. The preferred acid is malic acid.

US-A-4 540 590 discloses a process for producing a rapid cooking pasta product. In the process, the pasta dough is formed from constituents which can include an acidulant.

The dough is formed into shaped products using a particular extrusion process. The shaped products are dried, packaged and heat sterilized at 20 to 95 °C. Malic and lactic acids are mentioned as useful acidulants.

US-A-4 552 772 and US-A-4 599 238 disclose the use of a combination of citric and/or lactic acid with table salt in one solution to enhance the 30 preservability of boiled noodle products. Such products can be commercially distributed at ambient temperature. The boiled noodles are treated with the acid solution, packaged and heat sterilized.

US-A-4 597 976 relates to the production of 35 pasta-based ready meals. The ready meals generally have three components, being the pasta, a meat component and a sauce. The pasta, the meat component and, if necessary, the sauce are acidified to a pH of less than 4.6 and are hot filled into containers. The sealed containers are then pasteurised. Acids such as citric, fumaric, lactic, malic, tartaric, sulphuric, hydrochloric and phosphoric acids can be used to acidify the components.

US-A-4 734 291 relates to the production of an 45 "al dente" pasta product having storage stability. The product is produced by cooking freshly extruded pasta with steam or boiling water. The cooked pasta is sealed in a container with sufficient 50 water to complete hydration of the pasta. The water contains sufficient acid to reduce the pH to less than 4.6. The sealed container is then sterilised. Fumaric acid is specifically referred to for use as the acidulant.

US-A-4 828 852 relates to a process for producing a precooked pasta product by boiling the raw pasta in acidified water to partially cook the pasta. The partially cooked pasta is soaked in

acidified water and then coated with an acidified cream. The coated product is packaged and heat processed to complete the cooking. Acids which can be used include acetic, malic, fumaric, tartaric, phosphoric, adipic, lactic and citric acids.

An early proposal for the acid-pasteurisation of rice is set forth in US-A-1 589 672. The disclosed process comprises blanching or boiling rice in acidulated water, immersing the blanched rice in saline and canning the rice under vacuum. The water is acidulated with phosphoric acid.

US-A-2 187 718 discloses a process for producing a canned rice product which comprises cooking the rice in an acid solution, canning the cooked product and sterilizing the canned product. The acid is supplied as a fruit juice which contains malic, citric, tartaric, lactic or acetic acid.

US-A-2 616 810 discloses a process for producing canned rice which comprises cooking the rice in a saline solution, draining, acidulating the rice, canning the rice and sterilizing the canned rice. Particularly mentioned acids are lactic and tartaric acids.

US-A-3 647 486 discloses a process in which raw rice is cooked in acidified water at a temperature above the gelatinisation point of starch but below the boiling point of water to achieve a water content of 58 to 65%. The cooked rice is then canned and the cans are sealed and sterilized. The cans are then cooled and the product is aged for a number of days before use. The acids which can be used include acetic, fumaric, malic, tartaric, ascorbic, isoascorbic, succinic, citric and adipic acids.

EP-A-0 322 996 discloses a process for producing a two pack ready meal based on rice. In the first pack is an acid-pasteurized starchy foodstuff, such as rice or pasta, having a pH of below 4.6. In the second pack is an alkalinating agent. Acids used to acidify the rice and pasta include hydrochloric, malic and citric acids. In use, the alkalinating agent is used to neutralise the acid flavour of the rice or pasta product.

It can thus be seen that there have been many proposals for the acid-pasteurisation of rice. It can be seen from the prior art cited above that, in all cases, the acidification has been carried out using recognised food acids. These are generally low molecular weight inorganic or, preferably, organic acids. Such recognised food acids are listed, for example, in the CRC Handbook of Food Additives, edited by Thomas E. Furia, 2nd Edition, Volume 1, 1977, pages 225-270.

The present Applicants have found that, although prior art acid-pasteurised rice products may be acceptable from the point of view of shelf-stability, they have serious drawbacks. The main one is that the acids used to enhance the shelf-

stability of the product also endow the product with an acid taste. This is not surprising as the whole point of adding the acid is to reduce the pH of the product. It would therefore seem to be inevitable that a shelf-stable acid-pasteurised rice product will have an acid taste. However, from the consumer's point of view, the acid taste is undesirable.

The acid flavour may be masked either by use of an alkalinating agent, as disclosed in EP-A-0 322 996, or by use of strong seasonings. However, the use of an alkalinating agent adds to the expense of the produce and also complicates the preparation of the product. The use of strong seasonings limits the range of products which can be produced.

A further drawback with acid-pasteurisation is that it may adversely affect the other organoleptic properties of the rice. A premium rice product, as prepared for eating, should have certain organoleptic qualities, which are generally classified in the areas of taste, smell, appearance and texture. Premium rice should have the characteristic taste of rice. Some treatments of rice can introduce non-rice flavours, such as metallic or chlorine-derived tastes. Others can remove flavour from rice so that it is bland.

Premium rice should have the characteristic smell of rice. This can be destroyed by some treatments or masked by non-rice odours introduced by other treatments. For instance, treatments with sulphur dioxide-containing agents can introduce the characteristic smell of sulphur dioxide.

Premium rice should in appearance be white or nearly white and should appear to have grains of approximately the same size. There should preferably be no broken grains or peck. Some treatments introduce yellow or brown colours or cause the rice grains to break up.

The texture of premium rice should be firm, but not hard, rubbery or soft, and should be non-sticky. The rice should have a moist, but not wet or dry, mouthfeel, should not be oily or slimy and should have grains which generally do not adhere to one another. If the rice grains do adhere to one another, the rice product will have an unacceptable sticky mouthfeel. Some treatments have adverse effects on the texture of rice and in particular prolonged treatments at elevated temperatures can lead to the production of soft, sticky and wet rice product.

It is therefore an object of the present invention to provide premium quality, shelf-stable rice.

It is a further object of the invention to provide a process for producing such premium quality, shelf-stable rice.

Therefore, according to the present invention, there is provided shelf-stable, acid-pasteurised rice wherein the acidifying agent is a polymeric food acceptable acid.

Preferably, the rice is contained in a microorganism-impermeable container.

The rice may be "pre-cooked", by which is meant that the rice can be prepared for consumption merely by heating it, for instance in a conventional oven or a microwave oven or by steaming it or immersing it in hot or boiling water, to the required temperature. The rice or pasta will not need any prolonged heat treatment in order to cook it. It can be prepared for eating by heating for a period between 30 seconds and three minutes. It can thus be seen that the rice of the present invention in this form can be used as a convenience food.

Alternatively, the rice may be "partially cooked" by which is meant that the rice cannot be prepared for eating merely by heating it to the required temperature. It will also need to be held at the required temperature for a period of time. Generally, this period of time will be relatively short, of the order of two or three minutes, so that the product can be used as a convenience food.

Preferably, the polymeric acid has a cellulosic or saccharide-derived backbone having pendant carboxyl groups. Particularly preferred polymeric acids are alginic acid, carageenin acid, pectic acid and carboxymethyl cellulose (CMC) acid. Presently, the most preferred polymeric acid is alginic acid.

The pH of the rice should be below 4.5, which is generally recognised as being the maximum pH which ensures that the pasteurized product remains stable. Preferably, the pH of the rice is below 4.2 and most preferably the pH is in the range 3.7 to 3.9. The pH of the rice is determined by macerating 50 g of rice in 150 ml of deionised water and measuring the pH of the supernatant.

The pH may be below 3.5. However, the lower the pH, the more acid must be used and the more likely it is that acid flavour notes will be introduced into the rice. As a practical matter, the skilled person, given the teaching in the present application, will be able to balance the pH level and amount of acid used to ensure that the rice is fully shelf-stable but does not have any acid flavour notes.

Preferably, the rice comprises from 0.01 to 1% by weight of the polymeric acid, where the polymeric acid is used alone. Advantageously, the polymeric acid content of the product is from 0.2 to 0.8% by weight.

It has been found, surprisingly, that the use of a polymeric food acceptable acid enables rice to be acid-pasteurised without introducing acid flavour notes into the product. Moreover, the rice of the present invention has organoleptic properties, such as taste, smell, appearance and texture, which make it a premium rice product. It is unexpected,

in view of the fact that previously proposed acid-pasteurisation procedures have all resulted in products having an acid taste and lower quality, that the rice of the present invention has this combination of no acid taste and premium organoleptic properties.

The rice of the present invention is also advantageous in that, unlike other commercially available rice products, it is easily prepared and stored and has a substantial shelf-life. It thus lends itself to distribution, display and sale in a wide range of commercial settings, for instance both in supermarkets and convenience stores. These advantages accrue without the necessity to sacrifice the organoleptic properties.

The rice of the present invention is also advantageous in that it eliminates the need for specialised delivery and storage means. Unlike frozen rice, the rice of the present invention can be stored at ambient temperatures for long periods without the product deteriorating in quality. The substantial economies resulting from obviating the need for refrigeration make the product appealing from a cost standpoint.

It is to be noted that polymeric food acceptable acids have never before been proposed as acidulants. The polymeric acids or, more usually, their sodium or calcium salts have found extensive use in the food industry, but not as acidulants.

Generally, the polymeric acids and their sodium or calcium salts are used as thickening agents or coatings in food products. CMC in particular is extensively used as a thickener. Alginates are used: as stabilizers in ice cream, water ices, sherbets and cheese; as gelling agents in water dessert gels and milk puddings; as suspending and thickening agents in fruit drinks and beverages; as foam stabilizers in beer; as emulsifiers in salad dressings and as film forming agents in coatings for meat and fish. Thus, the prior art provides no suggestion that such polymeric acids could be used as acidulants, let alone in acid-pasteurisation with the surprising results shown in the present application. In this respect, reference is made to the Chapter on Gums at pages 295 to 360 in the CRC Handbook of Food Additives cited above.

A further property of these polymeric acids is that they are generally only sparingly soluble in water. It is therefore surprising that they can in fact act as acidulants. It is unexpected that they can produce the required acidification without necessitating the use of large quantities of the acid.

The shelf-stable, acid-pasteurised rice of the present invention may be fully hydrated such that it can be prepared for consumption merely by reheating, for instance in an oven, such as a microwave oven. Alternatively, the rice may be slightly less than fully hydrated so that it may be prepared

for consumption by reheating in boiling water or by steaming. This reheating will also allow the rice to become fully hydrated and ready for serving

The water content of the final product if fully hydrated will generally be in the region of 60 to 70%, depending on the variety of rice used as the starting material. For rice which needs to be partially hydrated during cooking, the water content will be generally in the region of 50 to 55%. At these water contents, normal rice would be susceptible to microbial spoilage, whereas the rice of the present invention is not.

Preferably, the rice of the present invention is not accompanied by free liquid water. This may be achieved by draining the product after cooking and before pasteurisation or by carrying out the cooking and pasteurisation in an amount of water such that all the water is absorbed by the product during processing.

The rice of the present invention, advantageously in the absence of free water, may be contained in a microorganism-impermeable container so as to preserve its shelf-stability. Advantageously, the container is gas-impermeable to prevent the ingress of oxygen which can, in some circumstances, cause browning of the rice. Such containers include cans, jars, bottles, foil trays and pouches. The rice will generally be sealed in the container prior to pasteurisation.

Preferably, the rice of the present invention is contained in a pouch made of plastic material. The plastic material may be a single layer of material or may, preferably, be a laminated material comprising a reinforcing layer, such as a nylon or polyester layer, and a sealing layer, such as a polyethylene, and a barrier layer such as polyvinylidene chloride or ethylene-vinyl alcohol copolymer layer. Such plastic materials are well known in the art. The advantage of packaging the rice of the invention in plastics materials is that the product can be reheated in a microwave oven without the need to decant it before reheating.

The rice of the present invention is preferably packed under vacuum or an inert gas atmosphere in order to avoid any discolouration of the product by oxidation during pasteurisation. Packing under an inert gas atmosphere is preferred as this will tend to prevent any flavour changes during processing and storage of the product. The inert gas may be nitrogen.

If desired, the rice of the present invention may be coated with a small quantity of an edible oil, such as sunflower oil, ground nut oil, soya oil or a mixture thereof. The edible oil may be used to alter the mouthfeel of the product and to ensure that it does not stick together or clump during prolonged storage. Preferably, the edible oil comprises from 0.3 to 1% by weight of the product.

The rice of the present invention may, if desired, contain of one or more conventional acidulants in order to potentiate the action of the polymeric acid. The amount of conventional acidulant used should not be so great as to introduce acid flavour notes to the product. Even if a potentiating acidulant is used, it is still the polymeric acid which enables the product to be acid-pasteurised without the introduction of acid flavour notes.

The potentiating acidulants will be used to assist in controlling the pH of the rice of the present invention at the desired level but will not generally be present in sufficient quantity to bring the pH to the desired level themselves. In particular, it should be ensured that the amount of potentiating acidulant used is not so large as to impart acid flavour notes to the rice.

Suitable potentiating acidulants include inorganic acids, such as hydrochloric, sulphuric and phosphoric acids, and organic acids, such as malic, lactic, citric, tartaric, adipic, fumaric, acetic, ascorbic, isoascorbic and succinic acids.

If a potentiating acidulant is used, it will be possible to reduce the amount of polymeric food acceptable acid which is used. However, the amount used should not be such that the addition of the potentiating acidulant leads to the introduction of acid flavour notes into the product.

The rice according to the present invention may be derived from raw brown or white rice or from parboiled brown or white rice. The invention is applicable to short, medium or long grain rice. However, preferably, long grain rice is used. Any variety of rice may be used. It will be appreciated by those skilled in the art that different varieties of rice will require different treatment regimes. However, determining the appropriate regime will be a matter of routine experiment for the skilled person, given the teaching of the present application.

Preferably, the rice is long grain, parboiled rice produced by conventional "wet" processing or produced by the "dry" process described in EP-A-0 352 939.

According to a second aspect of the present invention, there is provided a process which comprises:

(a) treating rice with an aqueous solution adjusted to a pH of 4.5 or below by use of a polymeric, food acceptable acid; and
 (b) pasteurising the rice while it is maintained at said pH of 4.5 or below by use of a polymeric food acceptable acid whereby shelf-stable, acid-pasteurised rice is produced.

Preferably, the process includes a further step of:

(c) either before or after step (a) or after step (b), sealing the rice in a microorganism-imper-

meable container.

It must be borne in mind that some cooking of the rice will take place during the pasteurisation step (b). In order to obtain a desired degree of cooking, it will be necessary to control the other steps in the process in dependence on the conditions used in the pasteurisation step (b).

In a first alternative, the treatment step (a) is carried out for such a time and at such a temperature that the rice becomes at least partially cooked and becomes cooked to the desired degree in the acid-pasteurisation step (b).

In a second alternative, the pasteurising step (b) is carried out for such a time and at such a temperature that the rice becomes not only pasteurised but also cooked to the desired degree.

In a third alternative, the process includes a step (d) in which the rice is partially cooked. This partial cooking step (d) may be carried out before or after step (a). If the partial cooking step (d) is carried out after step (a), it must be ensured that, after the partial cooking step (d), the pH of the rice is retained below 4.5 by use of a polymeric food acceptable acid.

In a fourth alternative, the process includes the step (d) and the treatment step (a) is carried out under conditions which cause further partial cooking of the rice. This alternative is similar to the third alternative, except that the partial cooking step (d), the treatment step (a) and the pasteurising step (b) together will provide the necessary required degree of cooking of the rice.

If desired, the rice may be washed in between any of the process stages set forth above. It must be ensured that any such washes do not allow the pH of the rice to rise above 4.5. Thus, it is preferred that the rice be washed in an aqueous solution whose pH has been adjusted to 4.5 or less using a polymeric, food acceptable acid. preferably, the process conditions are adjusted such that the final rice product is not accompanied by any free liquid water. This may be achieved by using in the process only as much water as is required to hydrate the rice to the desired degree. Alternatively, the rice may be drained of all free water, preferably just prior to sealing in a container. In this alternative, it will be necessary to ensure that the rice is hydrated to the desired degree before it is drained.

It is preferred that sealing step (c) is carried out before the pasteurising step (b). Most preferably, the sealing step (c) is carried out immediately prior to the pasteurising step (c).

If the sealing step (c) is carried out after the pasteurising step (b), it will be necessary to carry out the pasteurising and sealing steps under aseptic conditions. This can be disadvantageous as it requires special arrangements to be made for the

aseptic steps. This can add to the cost of the process. However, if an aseptic area is already available, packaging and sealing after pasteurisation may enable bulk treatments to be carried out upstream of the pasteurisation step (b), thus allowing cost savings to be made.

Preferably, during the processing of the rice, an edible oil, such as one of the edible oils referred to above, is added so that the rice is coated with the edible oil. Preferably, the edible oil comprises from 0.3 to 1% by weight of the product.

The polymeric food-acceptable acid may be provided as such. Alternatively, it may be generated *in situ* by reaction between a salt or other derivative of the polymeric acid and an inorganic or organic acid. For instance, alginic acid may be generated by reacting sodium alginate with hydrochloric acid. This will be particularly advantageous in that the other product of the reaction will be sodium chloride (common salt) which is generally added to water in which rice is boiled.

Optionally, the polymeric food acceptable acid may be used with a potentiating acid as referred to above. The potentiating acid will be used to assist in controlling the pH of the aqueous solution but will not by itself provide the necessary acidity to reduce the pH to the desired level.

Preferred components and amounts of the components to be used in the process of the present invention are as set forth above in relation to the first aspect of the invention.

It will be appreciated by the skilled person that the conditions used in the process of the present invention will vary depending on the starting material. For instance, it takes longer to cook parboiled white rice than it does to cook raw white rice.

It is, however, essential to ensure that a proper pasteurisation step is carried out. The conditions by which this can be carried out are well known to those of skill in the art. It is generally accepted that the minimum requirements for a pasteurisation step are that the centre temperature of the food should be held at 93 °C for five minutes and that the food should have a pH of 4.5. It will be appreciated that if higher temperatures or lower pHs are used, the treatment time may be reduced. However, it is preferred that the rice has a pH of 3.7 to 3.9 and that a minimum centre temperature of 93 °C is held for at least 5 minutes.

Preferably, the pasteurisation step (b) and, if employed, the cooking step (d) is carried out at a temperature below 100 °C. If this is done, then it is not necessary to use pressurised heating systems. The pasteurisation system can in this case be carried out under atmospheric pressure using hot water or steam to heat the product.

If desired, the pasteurisation step (b) may be

carried out at a temperature above 100°C. However, this will require the use of a pressurised system to prevent water from being driven off from the rice and causing pressure to build up in the package.

If desired, the process may further include a step (e) of quenching the product after the pasteurisation step (b). The quenching may be accomplished using a solution containing a polymeric food-acceptable acid, optionally in combination with a conventional acidulant. Alternatively quenching may be achieved by spraying or immersing sealed packages in cold water.

Guidance as to suitable conditions to be used can be obtained from a study of the examples set forth below. Given the above disclosure and the examples, the skilled man will be able to determine appropriate conditions for processing any desired rice starting material.

The present invention is further described and illustrated below in the following examples. It will be appreciated that these examples are provided solely for the purposes of illustrating the invention and not for the purpose of limitation. It will further be appreciated that variations and modifications to the product and process may be made by the skilled person without departing from the spirit or scope of the invention as defined in the appended claims.

Example 1

Long grain parboiled white rice made according to the process disclosed in EP-A-0 352 939 was used as the starting material in this example. A stock solution containing 0.12% alginic acid (Protacid F120 supplied by Protan), 0.02% hydrochloric acid and 0.74% salt was made by adding 1.24 g/l of the alginic acid, 0.62 ml/l of 34% hydrochloric acid solution and 7.4 g/l of salt to water and making up to volume. The pH of the stock solution was 3.0.

Half of the stock solution was heated to 95°C with stirring to ensure that the alginic acid dispersed. 70g of the rice per litre of stock solution was added to the heated stock solution and the mixture was maintained at 95°C for 17 minutes. The rice was then drained from the solution and allowed to stand for 5 minutes. The partially cooked rice was then washed in the remaining stock solution for 1 minute and then drained. The pH of a macerate of the washed and drained rice was 3.8.

Sunflower oil was then added to the drained rice to a level of 1% by weight of the drained rice and was distributed thoroughly over the drained rice. Aliquots of the oil coated rice equivalent to 100g of dry rice were then placed in plastics

5 pouches. The pouches were made from a laminate of nylon, polyvinylidene chloride-coated nylon and polyethylene, which is heat sealable, strong and gas-impermeable. The pouches were flushed with nitrogen and sealed. The sealed pouches were then immersed in boiling water for 30 minutes in order to achieve a centre temperature of 95°C for 5 minutes. The pouches were removed from the boiling water and allowed to cool.

10 Some pouches were opened soon after cooling. The rice in the pouches was found to be free-flowing, of good colour and consisting of individual mainly unbroken grains.

15 The rice was reheated by immersion in boiling water for five minutes or by microwave heating in a 650 W microwave oven at full power for one minute. The reheated rice was tested by a panel of experienced tasters. It was shown to have the same mouthfeel and flavour as the starting rice which had been cooked in conventional manner. In particular, none of the tasters could detect any acid flavour notes in the rice of the present invention. The rice had a good texture, was not sticky and felt moist in the mouth. Thus, the product was of 20 premium quality.

25 Further pouches were kept at room temperature for up to 3 months. The rice in the pouches showed no signs of microbial spoilage or discolouration. On opening such packages and reheating as described above, no change in the properties of the reheated rice was detectable.

Example 2

35 Long grain parboiled white rice made by the conventional "wet" process and sold under the trade name "Uncle Ben's" was used as the starting material in this example.

40 A stock solution containing 0.1% alginic acid (Protacid F120) and having a pH of 3.9 was made up. Half of the stock solution was heated to 95°C with stirring to ensure that the alginic acid dispersed. Then 70g of the rice per litre of stock 45 solution was added and the mixture was retained at 95°C for 16 minutes. The rice was drained, allowed to stand for 5 minutes, washed for 1 minute in the other half of the stock solution, drained, coated with 1% sunflower oil and filled into pouches as described in Example 1. The pouches 50 were then retorted for 5 minutes at 110°C under an overpressure of 15 psi in order to effect pasteurisation.

55 The product was shown to be shelf-stable for at least 6 months. When reheated by boiling in water for 5 minutes or in a 650 W microwave oven for 1 minute, the product could not be distinguished from the same rice prepared by conven-

tional cooking and was thus of premium quality. In particular, no acid notes could be detected.

Example 3

Long grain raw white American rice was used as the starting material in this example. A stock solution containing 0.06% malic acid and 0.025% alginic acid was made up. The pH of this solution was 3.0.

400g of the rice was placed in 5kg of stock solution, boiled at ca. 100 °C for 15 minutes and drained. While the rice was still at a temperature of above 90 °C, it was transferred aseptically into pouches. The pouches were flushed with nitrogen and sealed.

After storage for 3 months at ambient temperature, the rice was reheated in a 650 W microwave oven for two minutes. The resulting rice was perfectly cooked and organoleptically acceptable with no detectable acid flavour notes and was thus of premium quality.

Example 4

This example illustrates the use of a combined acid treatment, cooking and pasteurisation process.

The parboiled rice referred to in Example 2 was used in this example. A stock solution containing 2.7 g/l of alginic acid, 10 g/l of salt, 20 g/l of sugar and 5 g/l of oil and emulsifier was made up.

54g of the rice and 100g of the stock solution were filled into a pouch which was flushed with nitrogen and sealed. The pouches were of the type described in Example 1. The sealed pouch was heated by steam at atmospheric pressure for minutes and then allowed to cool in cold water.

After storage for 3 months at ambient temperature, the rice was reheated in a 650 W microwave oven for two minutes. The resulting rice was perfectly cooked and organoleptically equivalent to fresh boiled rice. In particular, no acid flavour notes were detectable.

Example 5

Example 2 was repeated except that the stock solution was made up by adding 1 g/l of sodium alginate and 2.5 ml of 34% aqueous hydrochloric acid solution to water to form alginic acid in situ. There was no difference in the quality or shelf-stability of the final product.

Example 6

Example 1 was repeated, except that the stock solution contained 0.05% of pectic acid in place of the alginic acid. There was no difference in the quality or shelf-stability of the final product. The only noticeable difference was that the rice was slightly yellower due to the yellow colour of the pectic acid.

Example 7

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

rice was drained and placed in a glass jar. The jar was flushed with nitrogen and sealed. The sealed glass jar was retorted under 15 psi over pressure at 110 °C for five minutes to effect pasteurisation.

The product was shelf-stable and, on reheating, had good organoleptic properties. It had no acid flavour notes.

Example 10

Example 4 was repeated except that the stock solution contained 2.5 g/l of CMC acid, 10 g/l of salt, 20 g/l of sugar and 5 g/l rape seed oil. The product was shelf-stable and, on reheating, had good organoleptic properties. It had no acid flavour notes.

Example 11

Example 8 was repeated except that the stock solution contained 0.08% alginic acid and 0.02 citric acid and had a pH of 3.3 and that the cooked and acid-treated rice was placed in an aluminium foil tray which was sealed by crimping. The product was shelf-stable and had good organoleptic properties. It had no acid flavour notes.

Example 12

The parboiled rice referred to in Example 1 was used in this example. A stock solution containing 0.8 g/l alginic acid was adjusted to a pH of 3.5 using phosphoric acid.

400g of the rice was placed in 5kg of the stock solution and heated at 95 °C for 15 minutes. The rice was drained and washed for 2 minutes in a further 5kg of stock solution. The washed rice was drained and coated to a level of 1% by weight with sunflower oil. The cooked rice was filled into cans which were flushed with nitrogen and sealed. The sealed cans were heated in boiling water at atmospheric pressure for ten minutes.

The product was shelf-stable and had good organoleptic properties. No acid flavour notes were detectable.

Claims

1. Shelf-stable, acid-pasteurised rice wherein the acidifying agent is a polymeric food acceptable acid.
2. The rice of claim 1, wherein the polymeric acid has a cellulosic or saccharide-derived backbone having pendant carboxyl groups.

3. The rice of claim 2, wherein the polymeric acid is alginic acid, pectic acid, carageenic acid or carboxymethylcellulose acid.

4. The rice of claim 3, wherein the polymeric acid is alginic acid.

5. The rice of any one of claims 1 to 4, wherein the pH of the rice is below 4.5.

6. The rice of claim 5, wherein the pH of the rice is below 4.2.

10. 7. The rice of claim 6, wherein the pH of the rice is from 3.7 to 3.9.

8. The rice of any one of claims 1 to 7, which contains from 0.01 to 1% of the polymeric acid.

15. 9. The rice of claim 8, which contains from 0.2 to 0.8% of the polymeric acid.

10. 10. The rice of any one of claims 1 to 9, which is not accompanied by free liquid water.

11. The rice of any one of claims 1 to 10, which is contained in a microorganism-impermeable container.

20. 12. The rice of any one of claims 1 to 11, wherein the container is gas-impermeable.

13. The rice of claim 11 or claim 12, wherein the container is a can, a jar, a bottle, a foil tray or a pouch.

25. 14. The rice of claim 13, wherein the container is a plastic pouch.

15. The rice of claim 14, wherein the plastic comprises a laminate of a reinforcing layer and a sealing layer.

30. 16. The rice of any one of claims 11 to 15, wherein the rice or pasta is packaged in the container under vacuum.

17. The rice of any one of claims 11 to 16, wherein the rice is packaged in the container under an inert gas atmosphere.

35. 18. The rice of any one of claims 1 to 17, which is coated with a small quantity of an edible oil.

19. The rice of claim 18, wherein the edible oil is sunflower oil, ground nut oil, soya oil or a mixture thereof.

40. 20. The rice of claim 18 or claim 19, wherein the edible oil comprises from 0.3 to 1% by weight of the rice.

45. 21. The rice of any one of claims 1 to 20, further comprising a potentiating amount of a conventional acidulant.

22. The rice of claim 21, wherein the potentiating acidulant is hydrochloric, sulphuric, phosphoric, malic, lactic, citric, tartaric, adipic, fumaric, acetic, ascorbic, isoascorbic or succinic acid or a mixture thereof.

50. 23. The rice of any one of claims 1 to 22, wherein the rice is prepared from parboiled long grain rice.

55. 24. A process which comprises:

(a) treating rice with an aqueous solution adjusted to a pH of 4.5 or below by use of a polymeric food acceptable acid; and

(b) pasteurising the rice while it is maintained at said pH of 4.5 or below by use of a polymeric food acceptable acid, whereby shelf-stable, acid-pasteurised rice is produced.

25. The process of claim 24, wherein the treatment step (a) is carried out for such a time and at such a temperature as to partially cook the rice, cooking to the desired degree being completed during the pasteurisation step (b).

26. The process of claim 24, wherein the pasteurising step (b) is carried out for such a time and at such a temperature that the rice becomes not only pasteurised but also cooked to the desired degree.

27. The process of claim 24, which includes a step (d) in which the rice is partially cooked.

28. The process of claim 27, wherein the partial cooking step (d) is carried out after step (a), under conditions which retain the pH of the rice below 4.5 by use of a polymeric food acceptable acid.

29. The process of claim 27, wherein the partial cooking step (d) is carried out before step (a).

30. The process of claim 29, wherein the rice is partially cooked in both steps (a) and (d).

31. The process of any one of claims 23 to 30, wherein the rice or pasta is washed after any one of steps (a), (b) and (d).

32. The process of any one of claims 23 to 31, wherein the process conditions are such that the final rice product is unaccompanied by any free liquid water.

33. The process of claim 32, wherein there is used in the process only as much water as is required to hydrate the rice to the desired degree.

34. The process of claim 32, wherein the rice produced by the process is drained of all the water.

35. The process of any one of claims 24 to 34, wherein an edible oil is added to the rice such that the rice is coated with the edible oil.

36. The process of any one of claims 24 to 35, wherein the polymeric acid is generated *in situ* by reaction between a salt of the polymeric acid and an inorganic or organic acid.

37. The process of any one of claims 23 to 36, wherein there is used with the polymeric acid a potentiating amount of a conventional acidulant.

38. The process of any one of claims 24 to 37, wherein the pasteurisation step (b) is carried out such that the treatment is at least equivalent to maintaining a minimum centre temperature of 93 °C for five minutes while the pH of the rice is below 4.5.

39. The process of any one of claims 24 to 38, wherein the pasteurisation step (b) and, if employed, the cooking step (d) are each carried out at temperatures below 100 °C.

40. The process of any one of claims 24 to 39, including the further step of
(c) either before or after step (a) or after step (b),

sealing the rice in a microorganism impermeable container.

41. The process of claim 40, wherein the pasteurising step (b) is carried out immediately after the sealing step (c).

42. The process of any one of claims 24 to 40, including the further step of
(e) quenching the rice after the acid-pasteurisation step (b).

10

15

20

25

30

35

40

45

50

55

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL.5)
Y	PATENT ABSTRACTS OF JAPAN, vol. 12, no. 209 (C-504)[3056], 15th June 1988; & JP-A-63 007 770 (NIPPON KAYAKU CO., LTD) 27-06-1986 * The whole abstract * - - -	1-7, 10-30,35, 37,38,40, 41	A 23 L 1/182 A 23 B 9/02 A 23 L 3/3508
D,Y	FR-A-2 130 906 (BUITONI) * The whole document * - - -	1-7, 10-10,35, 37,38,40, 41	
A	US-A-4 504 504 (GAEHRING et al.) * Claims * - - -	1-4	
D,A	EP-A-0 322 996 (BORDEN INC.) - - -		
A	PATENT ABSTRACTS OF JAPAN, vol. 6, no. 63 (C-99)[941], 22nd April 1982; & JP-A-57 005 680 (KIBUN K.K.) 12-01-1982 * The whole abstract * - - -	1-9	
A	PATENT ABSTRACTS OF JAPAN, vol. 12, no. 472 (C-551)[3319], 9th December 1988; & JP-A-63 192 353 (OTSUKA SHOKUHIN KOGYO K.K.) 09-09-1988 * The whole abstract * - - -	1-9	TECHNICAL FIELDS SEARCHED (Int. CL.5) A 23 L A 23 B

The present search report has been drawn up for all claims

Place of search	Date of completion of search	Examiner
The Hague	12 November 90	LEPRETRE F.G.M.J.

CATEGORY OF CITED DOCUMENTS

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention

E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
&: member of the same patent family, corresponding document