Language Modeling and Lexical Modeling for ASR

ABSTRACT

- domain-prompts : 도메인에 특화된 임베딩을 토큰 임베딩과 함께 사용해 transformer-based LM의 성능을 높인다.
- 메모리 효율적 : LM 파라미터 개수의 약 0.02%만 이용해 훈련됨
- domain 연관 문장 1000개로 domain prompt embedding 학습 뒤, ASR scoring 시 7-13% WER 감소
- fully fine-tuned 모델에 비해 유사하거나 더 나은 성능을 보임

METHOLOGY

• GPT3에서 번역할 문장 앞에 프롬프트 붙이는 방식(ex.이 문장 좀 번역해줘)과 유사하게 도메인 임베딩을 함께 input으로 활용

SETUP

- LM : gpt2, gpt2-medium / AM : 12000시간으로 훈련
- GPU: Tesla V100 8장 (mint 등과 동일)
- low-data setting (1k), large-data setting (50k) 구분해서 각각 훈련

RESULT

			# additional	Low data setting (1k sentences)		Large data setting (50k sentences)					
	domain adaptation methods	base model	domain-specific	WER Relative WER 社会等		WER Relative % ↑					
			params	airlines	fastfood	healthcare	insurance	airlines	fastfood	healthcare	insurance
	no rescoring	-	0	-	-	-	-	-	-	-	-
4	no adaptation	gpt2-medium	0	3.6	3.4	3.4	4.8	4.9	3.4	0.8	8.2
16	domain-prompts ($k = 200$, vocab init)	gpt2	0.16M	6.1	9.3	7.3	5.9	8.5	9.2	4.0	10.3
17	domain-prompts ($k = 50$, vocab init)	gpt2-medium	0.05M	8.1	13.1	7.7	8.1	11.0	11.1	5.7	12.4
18	full-fine-tuning	gpt2	117M	6.6	9.8	6.8	6.4	8.5	12.9	4.8	12.3
19	full-fine-tuning	gpt2-medium	345M	7.1	11.2	7.2	7.0	8.5	16.2	7.2	12.4

- WERR 기준, large-data setting에서의 두 도메인을 제외하고는 모두 가장 큰 WER 감소폭을 보임
- 즉 새로운(=데이터가 충분하지 않은) 도메인에서는 domain prompts를 활용하는 것이 좋은 성능을 보임

- 감상
 - LM을 도메인별로 파인튜닝하는 방법에 비해 효율적인 것 같다.
 - WER 대신 WERR을 기재한 이유가 있을지 궁금하다.

ABSTRACT

- BERT를 활용한 독자적인 LM (BLM) 생성
- 세 가지 데이터셋 기준으로 성능 향상을 보임
- AM을 통과한 n-best hypothesis를 re-ranking하는 태스크에도 좋은 성능을 보임

FRAMEWORK

- 목표: 주어진 시퀀스를 보고 가장 유력한 다음 단어를 예측하는 LM
- cross-layer BLM (xBLM), BERT-based cache models (cBLM, gcBLM), 여러 LM들을 혼합하는 방법론 (dynamic adaptation) 제공

Cross-layer BLM (xBLM)

- 목표: 주어진 시퀀스를 보고 가장 유력한 다음 단어를 예측하는 LM
- 기존 BERT-based LM은 문장에 대한 정보들이 transformer layer별로 다르게 분포되어 있음 (보통 마지막 layer 사용)
- Cross-layer BLM : 모든 층을 이용, 증류된 정보를 LM에 plug-in

$P_{xBLM}(w_i|W_{< i}) = \operatorname{softmax}\left(\operatorname{FFN}(\tilde{h}_{xBLM})\right),$ $\tilde{h}_{xBLM} = \sum_{k=1}^K \alpha^k h_{[CLS]}^k,$ weighted sum of all [CLS] representations

BERT-based Cache models

• 기존 cache model: '비교적 최근 사용된 단어는 또 나올 가능성이 높다'는 점을 반영한 확률 모델

- beach | I,went,to,the $P_{cBLM}(w_i|W_{< i}) = \operatorname{softmax}\left(\operatorname{FFN}(\tilde{h}_{cBLM}^{w_i})\right),$ $\tilde{h}_{cBLM}^{w_i} = \sum_{t=2}^{i-1} \alpha^{W_{< t}} h_{[CLS]}^{K,W_{< t}},$ weighted sum of {CLS(I), CLS(I,went), CLS(I,went,to), CLS(I,went,to,the)}
- cBLM : 단어 단계에서 확률을 계산하지 않고, BERT가 pre-trained 모델임을 활용해 미리 embedding matrix를 생성한 뒤 가중치를 계산
- gcBLM : cache를 문장 내에서가 아닌, text data 전체를 기준으로도 계산. 다만 매우 큰 저장공간이 필요하다.

Neural-based Dynamic Adaptation

• 여러 LM들을 self-attention, feed-forward NN 활용해 혼합하는 방법

$$\begin{split} &\left[\alpha_{NNLM};\alpha_{LSTMLM};\alpha_{xBLM};\alpha_{cBLM};\alpha_{gcBLM}\right] = \\ &\operatorname{softmax}\left(\operatorname{FFN}\left(\operatorname{selfatt}(\left[\tilde{h}_{NNLM}^{w_i};\tilde{h}_{LSTMLM}^{w_i};\tilde{h}_{xBLM}^{w_i};\tilde{h}_{cBLM}^{w_i};\tilde{h}_{gcBLM}^{w_i}\right])\right)\right). \end{split}$$

EXPERIMENT

- 단어별 log perplexity 및 re-ranking 위한 WER 계산
- Penn Treebank, Wikitext2, Tedium Release2로 테스트
- (for re-ranking task) ASR: kaldi tdnn-lstm 레시피로 훈련, 100-best hypothesis 추려냄

RESULT

- NN + LSTM + xBLM + cBLM + gcBLM 혼합 모델이 좋은 성능을 보임
 - BERT-Large-CAS, GPT-2 등 거대 LM에 비해 perplexity는 조금 높지만, parameter-efficient하다는 점을 강조 (190M vs 395M, 1542M)
 - n-best re-ranking task : 기존 모델 (trigram, NN, LSTM 기반 LM)에 비해 가장 낮은 WER 기록

Table 1: The perplexity and word error rates with respect to different models, settings and datasets.

		Perplexity						Word Error Rate	
		Penn Treebank		Wikitext 2		Tedlium Release 2		Tedlium Release 2	
_	Model	Dev.	Test	Dev.	Test	Dev.	Test	Dev.	Test
_	Trigram	229.86	220.93	274.15	253.32	213.32	195.11	8.12	8.23
190M	Trigram + LSTMLM	100.18	98.23	130.63	127.51	134.81	137.28	7.66	7.72
	Trigram + LSTMLM + xBLM + cBLM + gcBLM	53.46	52.81	52.03	51.58	56.00	56.61	6.49	6.69
	NNLM	182.86	174.64	207.30	210.66	169.12	175.08	8.02	8.12
	NNLM · LSTMLM	82.36	79.61	107.15	105.28	110.26	113.01	7.31	7.45
	NNLM • LSTMLM • xBLM	48.97	48.64	33.99	33.51	55.16	55.45	6.46	6.61
	NNLM · LSTMLM · xBLM · cBLM · gcBLM	47.56	46.87	31.41	31.01	53.05	53.77	6.38	6.51
_	NNLM • BLM	56.84	56.46	54.76	53.84	63.53	64.04	6.75	6.95
	$NNLM \circ xBLM$	53.11	52.78	37.86	37.03	57.00	57.57	6.58	6.77
	NNLM · cBLM	65.99	65.64	68.89	68.01	79.49	81.83	7.10	7.22
	NNLM • gcBLM	66.31	65.16	72.74	71.89	81.51	83.91	7.10	7.22
	BERT-Large-CAS [49] GPT-2 [21]	36.14	31.34 35.76	37.79	34.11 18.34				

○ 감상

- 음성인식 모델에서 LM의 역할 및 BERT의 활용 방안에 대해 잘 정리된 논문이었다.
- BERT-based LM을 기존 LM과 함께 사용했을 때 perplexity, WER 모두 눈에 띄게 감소한 것이 인상적이었다.
- 제안된 cache model, 특히 저장공간을 많이 요구하는 gcBLM 등을 사용하지 않아도 성능에 큰 차이는 없는 것 같아 "NNLM。LSTMLM。xBLM" 혼합 모델을 사용하면 실용적일 것 같다.

3. Sentence-Select: Large-Scale Language Model Data Selection for Rare-Word Speech Recognition

ABSTRACT

• LM 차원에서 rare-word recognition 성능을 저해하는 원인 3가지를 정의하고 해결책 제시

perplexity-based contrastive data selection

• sentence-select 없이 훈련된 LM에 비해 WER이 상대적으로 (최대 24%) 감소함 (on rare-word sentences)

3. Sentence-Select: Large-Scale Language Model Data Selection for Rare-Word Speech Recognition

METHOD

Figure 1: Overall data selection pipeline.

• Downsampling : 'soft-log function' 이용해 데이터 내 rare words - frequent words 비율 조절 $f_1=f_0$

fo : original frequency fc : downsampled frequency (parameter) $f_1 = f_c \log(1+f_0/f_c)$

- Rare-word filtering : 전체 데이터에서 threshold(15)보다 빈도수가 적은 unigram을 포함한 문장들만 걸러냄
- Contrastive data filtering : 앞서 필터링된 문장들 속 unigram은 도메인에 맞지 않을 확률이 높아, perplexity score > threshold인 경우 training data에서 제외 $\mathcal{L}_{target}(x) \mathcal{L}_{background}(x)$

- SETTING
 - AM: E2E (streaming RNNT) / LM: Conformer LM
- Base model
 - E2E만
 - LM(raw text) + E2E
 - LM(중복제거) + E2E
- Test data의 두 가지 도메인
 - voice search (VS)
 - TAIL : 어렵거나 자주 쓰이지 않는 단어들로 구성된 문장 모음

RESULT

- A. downsampling
 - log perplexity / WER 큰차이 x
 - 데이터 사이즈 감소 (4.1x)
- B. rare-word filtering
 - TAIL에서는 WER 줄어들지만 VS에서 더 높아짐
- C. rare-word filtering + contrastive data filtering
 - VS, TAIL 두 분야에서 모두 WER 소폭 감소

	Corpus	Log Perplexity		V	VER
	size (B)	VS	TAIL	VS	TAIL
B0: No LM				5.6	32.81
B1: Raw	213.7	2.94	3.01	5.4	27.81
B2: Fully deduplicated	7.2	2.92	3.00	5.4	28.03
E1: SimplePower-2.08	61.6	2.93	2.93	5.4	27.31
E2: SimplePower-2.32	31.9	2.93	2.92	5.4	27.32
E3: SimplePower-2.84	18.4	2.90	2.90	5.4	27.39
E4: SoftLog-0	129.3	2.94	2.93	5.5	27.51
E5: SoftLog-0.5	108.0	2.92	2.92	5.5	27.40
E6: SoftLog-1	86.7	2.92	2.90	5.4	27.33
E7: SoftLog-2	51.9	2.91	2.89	5.4	27.25
E8: SoftLog-3	29.7	2.89	2.89	5.5	27.36

	Mixing ratio	Corpus	WER		
	(D, A, R, C)	size (B)	VS	TAIL	
B3: Downsampled	50, 50, 0, 0	52.19	5.5	27.48	
E9: Rare	0, 50, 50, 0	3.19	5.7	25.87	
E10: Contrastive	0, 50, 0, 50	0.72	5.3	29.52	

E17: Mix-40/20/40	0, 40, 20, 40	3.91	5.4	27.03
E18: Mix-40/40/20	0, 40, 40, 20	3.91	5.4	26.77

○ 감상

- 여러가지 방법으로 성능에 큰 영향 없이 데이터 규모를 압축할 수 있다는 점을 배웠다.
- 반대로, 성능에 큰 차이가 없으므로 데이터가 너무 방대해 압축해야 하는 경우가 아니라면 의미가 크지 않을 것 같다.