X a topological space F a sheef of abelian groups on X wy H"(X, F).

SES-LES

Given O -> K -> M -> N -> O exact sq g Sheaves on X.

We get

$$O \rightarrow H'(K) \rightarrow H'(M) \rightarrow H'(N)$$

 $S \rightarrow H'(K) \rightarrow H'(M) \rightarrow H'(N)$

Construction of the boundary homomorphism $H(N) \rightarrow H(k)$ Given $n \in H^0(X,N)$, \exists open cover $\exists Ui \exists$ and $m \in M(Ui)$ such that $m \in M(Ui)$

Consider

 $Kij = mi - mj \in K(Uij)$ Then Kij defines a l-cocycle g K. The boundary hom. is given by $m \mapsto (Kij)$

- · Connections with de Rham / Singular cohomology
- · Vanishing theorems
- . Back to divisors and line bundles.

Def: A sheaf G is called ac clic '- $H^{l}(X,G) = 0 \quad \forall i \geq 1$ Acyclic resolutions: Suppose F is a shey & O-)F-) Go-)G,-)G2-)... is an exact seg. of sheaves where G; are acyclic. Then $H'(F) = H' \Gamma H'(G_0) \rightarrow H'(G_1) \rightarrow \cdots \rightarrow - \overline{J}$ O>F>90> Imdo >O \Rightarrow $H^{\circ}(F) = \text{Ker} \left(H^{\circ}(G_{0}) \rightarrow H^{\circ}(F_{1})\right)$ but F, C G, 80 H° (F,) C H° (G). Hence $H^{\circ}(F) = \ker \left(H^{\circ}(G_{0}) \rightarrow H^{\circ}(G_{1})\right)$ Also 07 F, -> G, -> G, -> We have the LES: 0-1 H(F) -1 H(40) -1 H(F) H(F) -> H(Go) -> H'(Fi) H2(F) -> ->> So $H(F) = \text{Oker} (H^{\circ}(G_{\circ}) \rightarrow H^{\circ}(F_{\circ}))$ $= \frac{\text{Ker} \left(H^{0}(G_{1}) \rightarrow H^{0}(G_{2}) \right)}{\text{Im} \left(H^{0}(G_{0}) \rightarrow H^{0}(G_{1}) \right)}$

Also from LES: $H^{i}(F) = H^{i-1}(F_{i}) \quad \forall \quad i \geq 2$ Note: 0> Fo -> Go -> G, -> ---07F, -1 G, -> G, -> ---So we get $H^n(F) = H^n(H^0(q_0) \rightarrow H^1(q_1) \rightarrow \cdots)$ by induction on n. de Rham Cohomology X a real manifold of dim n. $C_{\times}^{\infty} =$ Shey of C^{∞} functions on X $C^{\infty}(\Omega_{X}) = \text{Sheaf of } C^{\infty} \text{ 1- forms on } X$ $\sum f_i(x_i,...,x_n) dx_i$ CO(NDx) = Shey of CO2-forms on X I fij dxindxj $C^{\infty}(\Lambda^{n}\Omega_{X}) = \text{Sheaf of } C^{\infty} \cap \text{forms.}$

We have a map $d: C^{\infty}(\Lambda^{i}\Omega_{x}) \to C^{\infty}(\Lambda^{i}\Omega_{x})$ $f dx_{a_{i}} \wedge Adx_{a_{i}} \mapsto \sum_{\substack{j=1 \ j \neq k}} dx_{b} \wedge dx_{a_{i}} \wedge Adx_{a_{i}} \wedge Adx_{a_{i}}$

$$0 \to \mathbb{R} \to C_{\mathsf{x}}^{\infty} \to C_{\mathsf{x}}^{\infty}(\Omega_{\mathsf{x}}) \overset{d}{\to} C_{\mathsf{x}}^{\infty}(\Lambda^{2}\Omega_{\mathsf{x}}) \to \cdots$$

This is an exact sequence of sheaves on X

Claim: $C_{\times}^{\infty}(\Lambda^{i}\Omega_{\times})$ are all anydic.

$$\Rightarrow$$
 $H_{cuch}^{i}(X, IR) = H^{i} \circ b$

$$H^{0}(C_{\times}^{\infty}) \rightarrow H^{0}(C_{\times}^{\infty}(\Omega_{\times})) \rightarrow \cdots$$

Har (X, IR)

Thus, for manifolds, Cech = de Rham.

 $\frac{\text{Pf of Claim}}{\text{Claim}}$: Let's prove it for $F = C_{X}^{\infty}$.

Given Zuiz and fij & F (Uij), dfj=0. Want to show its a boundary.

Let {lif: X -> IR be a partition of unity subordinate to {Vi}.

Let $9j = \sum_{K} 3j \cdot f_{jk}$ \in Then $9j - 9i = \sum_{K} \lambda_{k} (f_{jk} - f_{ik})$ $= f_{ij}$

Same proof:—

Let F be a sheef of C_X -modules.

Then F is acyclic if C_X or $C_X^\infty(V)$.

Also turns out, for any ab op R, X contractible $H^{i}(X, R) = H^{i}_{sing}(X, R)$

Pf idea: Construct $C^{i} = Sheaf of singular R-character are solution$

 $\bigcirc \rightarrow R \rightarrow C \stackrel{?}{\rightarrow} C \stackrel{1}{\rightarrow} C \stackrel{2}{\rightarrow} \cdots \rightarrow$

Show C'are acyclic. Then $H^{i}(X,R) = H^{i}_{sing}(X,R).$

Cor: $H_{\text{sing}}^{i}(X,IR) = H_{dR}^{i}(X,IR)$ for X a manifold

Which open cover should I take ?

F a sheef on X, $U=\frac{2}{U}i^{3}$ an open cover such that $F|_{U_{I}}$ is an acyclic sheef on U_{I} \forall I. Then $H^{i}(X,F)=H^{i}_{U}(X,F)$.

Pf: Prelim - i: VCX & G a sheaf on V. We get a sheaf i_*G "extension by 0" on X: $i_*(G)(U) = G(U \cap V)$.

"Sheafity Cech coh"

Given 3Viz. Consider $G_{0} = TT i_{*}(F|U_{i})$ $G_{1} = TT i_{*}(F|U_{ij}).$ Ai.e. $G_i(v) = C^i(v, Flv, 3Uinv3)$ Claim: This is an exact seg. of sheaves. If: Given $\sigma \in G_i$ around p Want Fan-, a: Have Fan, aix. Set Tarrai = Janrai, j. Then $(\partial \widetilde{\sigma})_{a_1,\dots,a_{i+1}} = \sum_{i=1}^{\infty} \widetilde{a_{i+1}}_{a_i,a_{i+1}} (-1)^k$ = 2 oangain, (-1)K = Oan-,a;+1. By construction 9; are acyclic. so claim follows.

Vanishing Theorems: - X a complex manifold.

Recall, given a v.b. $V \rightarrow X$, we have a Sheaf $\mathcal{O}_X(V) = Sheaf g hol-sections g V.$ $H^i(X, \mathcal{O}_X(V)) = : H^i(X,V).$

1) dim vanishing.

$$H^{i}(X, V) = 0$$
 for $i > dim_{\alpha} V$

- (2) <u>Finite dim</u>: X compact.

 =) Hⁱ(X,V) is a fin dim C- v-space.
- Serre/Kodaira Vanishing

 X projective $(X \subset IP^N)$ $L = O(1) |_{X}$

Serre: Hi(X, V&L")=0 + i>0 bs sufficiently large n.

Kodaira: $H^{9}(X, \Lambda \Omega \otimes L) = 0$ if $p+9 > dim_{X}$ in particular

$$\mathcal{H}^{i}(X, K_{\times} \otimes L) = 0 \quad \forall i > 0.$$