

Group 1

→ Periodic Table of the Elements

28

Helium	$\mathop{Ne}_{\atop{\text{neon}}\atop{20.18}}$	$\mathop{\mathrm{Ar}}_{\mathop{\mathrm{argon}}}^{18}$	36 KT krypton 83.798	54 Xe xenon 131.29	$\mathop{Rn}\limits_{{}^{radon}_{(222)}}$	$\mathop{Og}_{\text{oganesson}}$
17	9 Huorine	T Cl chlorine 35.4515	35 Br bromine 79.904	53 Indine	$\mathop{\mathrm{At}}_{_{_{_{_{_{_{_{2}}}}}}}}$	$\prod_{\text{tennessine}\atop (294)}$
16	8 Ooxygen 15.9995	16 Sulfur 32.0675	Se selenium 78.971	$\prod_{\substack{\text{tellurium}\\127.6}}^{52}$	Po polonium (209)	$\sum_{\text{livermorium} \atop (293)}$
15	N nitrogen 14.007	15 P	AS arsenic 74.922	SD antimony	Bi bismuth 208.98	MC moscovium (290)
14	6 carbon 12.0105	Si silicon 28.085	32 Ge germanium 72.63	$\displaystyle \mathop{{ Sn}}_{ ext{tin}}^{ 50}$	$\Pr_{\substack{\text{lead}\\207.2}}$	$F_{\rm flerovium}$
13	5 B boron 10.8135	All aluminium 26.982	31 Ga gallium 69.723	49 Indium	$\prod_{\substack{\text{thallium}\\204.385}}^{81}$	$\mathop{Nh}_{\text{nihonium}}$
'		12	30 Zn zinc 65.38	$\overset{48}{\text{Cd}}$	$\mathop{Hg}\limits_{{}^{mercury}}^{80}$	$\mathop{Cn}_{{\scriptscriptstyle{copernicium}}\atop{\scriptscriptstyle{(285)}}}$
		F	29 Cu copper 63.546	$\mathop{\mathrm{Ag}}_{\mathop{silver}}^{47}$	$\mathop{Au}_{{}_{\text{gold}}}^{^{79}}$	$\underset{\text{roentgenium}}{Rg}$
		01	$\overset{28}{\overset{\text{nickel}}{\overset{\text{nickel}}{\overset{58.693}{{{{{{{}{}{$	$\underset{\text{palladium}}{Pd}$	$\Pr_{\substack{\text{platinum}\\\text{195.08}}}^{78}$	DS DS n darmstadtium (281)
		6	27 C0 cobalt 58.933	Rh	$\prod_{{ m iridium}}^{77}$	
		∞	26 Fe iron 55.845	$\mathop{Ru}\limits_{{}^{ruthenium}_{101.07}}$	OS osmium 190.23	HS hassium (269)
	Z: atomic number Sy: symbol element: element name saw: standard atomic weight†	7	Mn manganese 54.938	$\prod_{\substack{\text{technetium} \\ (97)}}^{43}$	$\mathop{Re}_{{}^{rhenium}}$	Bh bohrium (270)
	Z: atomic number Sy: symbol element: element name saw: standard atomic w	v	$\overset{24}{\text{Cr}}$	MO molybdenum 95.95	W tungsten 183.84	Sg seaborgium (269)
	Sy element	ъ	23 V vanadium 50.942	ND niobium	$\overset{73}{\Gamma a}$ tantalum	Db dubnium (268)
		4	22 T1 titanium 47.867	$\sum_{{ m zirconium} \over 91.224}^{40}$	$H_{ m hafhium}^{72}$	$\underset{\text{rutherfordium}}{Rf}$
		ĸ	SC scandium 44.956	39 Y yttrium 88.906	*	**
2	$\mathop{Be}_{\text{beryllium}}^{4}$	$\mathop{Mg}_{\text{magnesium}}^{12}$	$\overset{\scriptscriptstyle{20}}{\mathrm{Ca}}_{\scriptscriptstyle{a}}$	$\sum_{\substack{\text{Strontium} 87.62}}^{38}$	$\mathop{Ba}\limits_{\substack{barium\\barium\\137.33}}$	$\mathop{Ra}\limits_{{}^{radium}^{(226)}}$
H hydrogen 1.008	$\sum_{\substack{i \text{lithium} 6.9675}}^{3}$	$\overset{\scriptscriptstyle11}{\overset{sodium}{\overset{sodium}{\overset{22.99}{\overset{22.99}{\overset{9}}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}}}{\overset{9}}}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}{\overset{9}}{\overset{9}{\overset{9}}{\overset{9}}}}}{\overset{9}}{\overset{9}}{\overset{9}}{\overset{9}{\overset{9}{\overset{9}}}}}{\overset{9}}}{\overset{9}}{\overset{9}}{\overset{9}}}}}}}}}$	19 K potas m 39.098	Rb rubidium	CS caesium 132.91	$\frac{87}{ extsf{Fr}}$ francium
1	2	2	4	-2	9	

$\sum_{\substack{\text{lutetium}\\174.97}}$	$\frac{103}{\mathbf{L}\mathbf{r}}$ lawrencium (266)
YD ytterbium 173.05	No nobelium (259)
$\overset{69}{Tm}_{\overset{\text{thulium}}{168.93}}$	Md mendelevium (258)
68 Er erbium 167.26	$\mathop{Fm}_{\text{fermium}\atop (257)}$
67 HO holmium 164.93	P99 Einsteinium (252)
66 Dy dysprosium 162.5	$\mathop{Cf}_{\text{californium}}$
$\prod_{\substack{terbium\\terbium\\158.93}}$	$\underset{\text{berkelium}}{\textbf{Bk}}$
64 Gd gadolinium 157.25	Gm curium (247)
$\stackrel{63}{\mathrm{Eu}}_{\scriptstyle{\mathrm{europium}}}$	Am
62 Sm samarium 150.36	$\Pr_{\text{plutonium}\atop{(244)}}$
Pm promethium (145)	$\sum_{\substack{\text{neptunium}\\(237)}}^{93}$
$\overset{60}{N}{\overset{\text{meodymium}}{\overset{\text{neodymium}}{144.24}}}$	92 U uranium 238.03
$\sum_{\text{praseodymium}\atop{140.91}}$	Pa Protactinium 231.04
58 Ce cerium 140.12	90 Th thorium 232.04
$\mathop{La}\limits_{\text{lanthanum}\atop 138.91}$	89 AC actinium (227)
*	*

†Standard atomic weights (average terrestrial atomic weight) taken from the Commission on Isotopic Abundances and Atomic Weights (http://www.ciaaw.org/abridged-atomic-weights.htm). If CIAAW indicates a range for the standard atomic weight of the arithmetic mean of the boundaries of the range. Elements with atomic weight in parentheses (e.g., Francium (223)) have no known stable isotopes and it is therefore impossible to propose a standard atomic weight. For these elements, the mass of a representative isotope is provided. Inspired by Van Griffmis BJRZ Periodic Table. Brigkode is released under the MIT open source license. Final product (this Table) is released under creative commons attribution/share-alike copyright terms. ©000 2022. Paul N. Danese

Abbreviations:

- atm: atmosphere
- g, mg: gram, milligram
- K: Kelvin
- L, mL: liter, milliliter
- M: Molar / molarity
- mmHg: millimeters of mercury
- mol: mole

Concentration equations:

- $\%(m/m) = \frac{mass\ of\ solute}{mass\ of\ solution} \times 100$
- $\%(v/v) = \frac{\text{volume of solute}}{\text{volume of solution}} \times 100$
- $\%(m/v) = \frac{mass \ of \ solute \ in \ grams}{volume \ of \ solution \ in \ mL} \times 100$
- Molarity = $\frac{\text{number of moles of solute}}{\text{number of Liters of solution}}$

Moles, conversion, pH, and other stuff:

- 1 mole = 6.0221×10^{23} things
- Kelvin = $^{\circ}$ C + 273.15
- ${}^{\circ}F = 1.8 \times {}^{\circ}C + 32$
- $^{\circ}C = \frac{(^{\circ}F 32)}{1.8}$
- $pH = -1 \times log[H_3O^+]$
- $1000 \, \text{mL} = 1 \, \text{L}$
- $1000\,g = 1\,kg$
- $1 \, \text{mL} = 1 \, \text{cm}^3$
- 1000 cal = 1 kcal
- density = $\frac{\text{mass}}{\text{volume}}$

Gas equations:

- Boyle's Law: $P_1V_1 = P_2V_2$
- Charles's Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
- Gay-Lussac's Law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$
- Combined gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
- Avogadro's Law: $\frac{V_1}{n_1} = \frac{V_2}{n_2}$
- Universal gas constant: $R = \frac{0.0821 Latm}{mol K}$
- Ideal gas Law: PV = nRT

Mole Conversions:

- number of grams \Rightarrow number of moles: take number of grams \div molar mass
- number of moles \Rightarrow number of grams: take number of moles \times molar mass
- number of moles \Rightarrow number of atoms (or molecules): take number of moles \times 6.0221 \times 10²³
- number of atoms (or molecules) \Rightarrow number of moles: take number of atoms (or molecules) \div (6.0221 \times 10²³)

Organic:

- 1. meth
- 2. eth
- 3. prop
- 4. but
- 5. pent

- 6. hex
- 7. hept
- 8. oct
- 9. non
- 10. dec