CSCI 338: Assignment 5 (7 points)

River Kelly

Tuesday, April 13

We are given 5 matrices $M_1,...,M_5$, their dimensions (i.e., rows by columns) are as follows: M_1 is 15×20 , M_2 is 20×30 , M_3 is 30×10 , M_4 is 10×50 , and M_5 is 50×8 .

(1.1) Run the dynamic programming algorithm for matrix chain multiplication that we covered in class to produce the table m[-,-].

	1	2	3	4	5
1	0	9000	9000	165000	13600
2	-	0	6000	16000	11200
3	-	-	0	15000	6400
4	_	-	-	0	4000
5	-	-	-	-	0

(1.2) What is the optimal solution value? Where do you find it?

The optimal solution value is found at at m [1, 5], and is 13600.

We are given a context-free grammar G as follows:

$$G\!\!:S\to AS|SB$$

$$A \to AD|DA|a$$

$$B \to BB|BD|b$$

$$D \to DD|d$$
.

We are also given a string w = bdbdd.

(2.1) Run the dynamic programming algorithm for A_{CFG} that we covered in class to produce the table table[-,-].

	1	2		4	5
1	В	В	B Ø	В	В
2	-	D	Ø	Ø	Ø
3	-	-	В	В	В
4	-	-	-	D	D
5	-	-	-	-	D

(2.2) How do we know whether G generates w from the table?

The following rule determines whether or not G generates w:

$$w \in L(G) \iff S \in table[1,5]$$

Since $S \notin table [1, 5]$, we know that G does not generate w.

Show that $ALL_{DFA} \in P$.

Proof. First, recall that ALL_{DFA} accepts Σ^* if, and only if, all reachable states from the start state are accepting. We will construct a Turning machine to decide for ALL_{DFA} .

S = "On input $\langle D \rangle$, where D is some DFA:

- 1. Preform Breadth First Search on D starting at the start state.
- 2. If at any point a non-accepting state is visited, reject.
- 3. If only accepting states are found, accept."

Breadth First Search runs in polynomial time, therefor we have created a decider that runs in $O(n^k)$ time. Sine S decides ALL_{DFA} as S visits all possible states, and runs in polynomial time, by definition, $ALL_{DFA} \in P$.

$$\therefore ALL_{DFA} \in P.$$

Show that Independent Set \in NP.

Proof. We will create a non-deterministic Turning Machine that decides in polynomial time to decide an Independent Set.

S = "On input $\langle G, k \rangle$ where G is a graph (G = (V, E)), and k is an integer such

- 1. Non-deterministically choose a subset c of k vertices from G
- 2. Test whether G contains any of the $\binom{k}{2}$ edges connecting nodes in c 3. If test is true, the an edge $u, v \in c$ in G and reject, Otherwise accept."

S runs in $O(\binom{k}{2})=O(n^2)$ time. So we have found a non-deterministic decider that runs in polynomial time. So Independent Set $\in NP$ by Theorem 7.20