# UFSC-CTC-INE-PPGCC INE 410131 – Gerência de Dados para Big Data

Aula 5 – BD NoSQL: Teoremas / Projeto Lógico

# UFSC-CTC-INE-PPGCC INE 410131 – Gerência de Dados para Big Data

Aula 5 – Teoremas:

Teorema CAP
Propriedades BASE
Teorema PACELC

## Teorema CAP

- CAP = Consistency, Availability, Partition
   Tolerance
  - <u>Consistency</u>: operações R sobre um dado d<sub>i</sub> devem retornar o resultado da operação W mais recente realizada sobre d<sub>i</sub>
  - Availability: toda operação de R / W deve ser realizada com sucesso, ou seja, não retornar erro
  - Partition Tolerance: o sistema deve continuar operando mesmo na ocorrência de falhas que particionem a rede e causem perda ou atraso no envio de mensagens
- Teorema aplicado a sistemas distribuídos

## Teorema CAP

- Impossível garantir as 3 propriedades simultaneamente
  - <u>CA</u>: não é possível imaginar que P ocorra (em função de falhas na rede) se quero ter consistência e disponibilidade imediatas
  - CP: não é possível ter disponibilidade contínua (A) se tenho que gerenciar consistência e tolerância a partições na rede
  - AP: não é possível ter consistência imediata (C) se quero ter alta disponibilidade e lidar com problemas de particionamento da rede

#### **CAP Theorem**



## Propriedades BASE

- BASE = BAsically available + Soft state + Eventually consistent
  - <u>Basically Available</u>: o BD deve estar disponível para R/W a maior parte do tempo possível
  - Soft state: o BD não necessita estar consistente todo o tempo, incluindo as diversas réplicas de um mesmo dado
  - <u>Eventually consistent</u>: dados eventualmente inconsistentes estarão consistentes em algum momento futuro
- Propriedades adotadas pelos BDs NoSQL
  - Priorizam disponibilidade em detrimento da consistência

## BASE vs. ACID

 BASE é conflitante com o ACID dos BDRs distribuídos

- 1,09526.0003
  pl-Individence of Ph 1
  No University or 9

  ACID vs BASE
- ACID introduz um overhead no processamento de transações distribuídas para ser garantido
- Mas como os BDs NoSQL garantem a consistência global adotando o BASE?
  - Protocolos de controle de concorrência Multiversão
  - Protocolos de reconciliação de réplicas em 2 etapas
    - 1. Intercâmbio de versões de dados atualizados entre os nodos que possuem esses dados
    - 2. Consenso sobre qual versão será considerada o estado final do dado (última atualização, transação com maior prioridade, ...)
    - Protocolos de reconciliação são ativados quando o SGBD detecta (periodicamente) inconsistências nos dados atualizados ou quando um próximo R/W vai ser executado no dado

## Teorema PACELC

- Evolução do teorema CAP
  - Afirma que todo sistema distribuído deve ser capaz de gerenciar particionamento de rede (P) para funcionar corretamente
  - Desta forma, um SGBD nas nuvens em situação de particionamento da rede (P) deve escolher entre (A) e (C) ou, caso contrário (else – (E)), se ele estiver executando na ausência de particionamento na rede, ele deve escolher entre baixa latência (L) ou consistência (C)
- SGBDs com foco em baixa latência (L) priorizam a disponibilidade (AP)
  - Maioria dos BDs NoSQL
- SGBDs com foco em consistência (C) são CP
  - Tentam resolver o mais breve possível inconsistências (alguns BDs NoSQL) ou impedir inconsistências (BDs NewSQL)

## Teorema PACELC e SGBDs nas Nuvens

| DDBS           | P+A | P+C | E+L                | E+C |
|----------------|-----|-----|--------------------|-----|
| DynamoDB       | Yes |     | Yes <sup>[a]</sup> |     |
| Cassandra      | Yes |     | Yes <sup>[a]</sup> |     |
| Cosmos DB      | Yes |     | Yes                |     |
| Riak           | Yes |     | Yes <sup>[a]</sup> |     |
| VoltDB/H-Store |     | Yes |                    | Yes |
| Megastore      |     | Yes | 6                  | Yes |
| BigTable/HBase |     | Yes |                    | Yes |
| MongoDB        | Yes |     |                    | Yes |
| PNUTS          |     | Yes | Yes                |     |

# UFSC-CTC-INE-PPGCC INE 410131 – Gerência de Dados para Big Data

# Aula 5 – BDs NoSQL: Projeto Lógico

## Projeto Lógico de BDs NoSQL

- Tema de pesquisa atual
- Modelagem de BDs NoSQL é um tópico pouco explorado na academia e na indústria
  - nem todo BD NoSQL exige um esquema para os dados, porém...
    - a existência de um esquema requer decisões de projeto para evitar desempenho ruim no acesso à Big Data
- Conceito de Agregado (Sadalage & Fowler, 2012)
  - base para a modelagem lógica de BDs de documento, colunar e chave-valor
  - representação de dados relacionados de forma (preferencialmente) aninhada

## Modelo Lógico de Agregados

- Conceitos básicos
  - coleções, blocos e atributos
  - um esquema de BD possui uma ou mais coleções
  - uma coleção é composta por um bloco raiz (unidade de acesso)
- um bloco raiz é composto por um ID e um conjunto não-vazio de atributos e/ou blocos aninhados (mono ou multivalorados)
- tipos de relacionamento
  - Hierárquicos (blocos aninhados) (pode haver disjunção)
  - Referência (atributo)





## Mapeamento Conceitual-Lógico

- Três alternativas para a conversão de generalizações
  - GSP Ênfase na Superclasse
  - GSB Ênfase nas Subclasses
  - GHI Ênfase na Hierarquia
- Decisão por uma das alternativas deve considerar
  - tamanho da porção do esquema gerado
  - prioridades de acesso (workload)
  - restrições (totalidade e disjunção)



## Mapeamento Conceitual-Lógico

- Três alternativas para a conversão de relacionamentos
  - RBU Modelado por Bloco Único
  - RHI Modelado por Hierarquia
  - RRE Modelado por Referências
- Decisão por uma das alternativas deve considerar as cardinalidades do relacionamento e as prioridades de acesso
  - RBU : (1:1)
  - RHI : (1:N) e (1:1)
  - RRE : (M:N), (1:N) e (1:1)



## Processo de Projeto Lógico

- Conversão de Hierarquias
  - prioridade para a geração da menor porção de esquema
  - estratégia bottom-up de conversão para hierarquias de vários níveis
  - regra GSB não se aplica a generalizações parciais (p)
- Conversão de Relacionamentos
  - prioridade para a conversão de cadeias mais longas de relacionamentos com cardinalidade 1-1 ou 1-N
    - o promove um maior nível de aninhamento de dados

## Exemplo de Modelagem Conceitual



## Possível Modelagem Lógica NoSQL

ID CNPJ

endereço

Inome





| Instituição<br>ID_sigla<br>nome                        |
|--------------------------------------------------------|
| Centro  ID_código  nome  Departamento  ID_código  nome |
| Projetos                                               |

| Projetos                       |        |
|--------------------------------|--------|
| ID                             |        |
| descrição                      |        |
| REF-participação-Pessoa-Física | (0, n) |
|                                |        |

## Modelagem Física NoSQL – BD Chave-Valor

Coleção ⇒ Par Chave-Valor

- Regras de Mapeamento
  - ID da coleção ⇒ Chave
  - Conteúdo da coleção ⇒ Valor \*

<sup>\*</sup> conteúdos estruturados devem ser desaninhados e serializados

#### Exemplo Modelagem Física BD NoSQL Chave-Valor



#### **BD Chave-Valor**

Chave: 111.222.333-44

Valor: "nome: João da Silva; ...; salário: 3000; projetos:

4589,1298; instituição: UFSC"

## Modelagem Física NoSQL – BD Colunar

Coleção ⇒ Família de Colunas

- Regras de Mapeamento
  - ID da coleção ⇒ Chave da família de colunas
  - Atributo simples ⇒ Coluna
  - Atributo multivalorado ⇒ Coluna multivalorada ou coluna com conteúdo serializado
  - Atributo de referência ⇒ Chave da coleção referenciada
  - Bloco ⇒ Supercoluna

#### Exemplo Modelagem Física BD NoSQL Colunar



REF-vinculo-Instituição

#### Modelagem Física NoSQL – BD Documento

Coleção ⇒ Documento

- Regras de Mapeamento
  - ID da coleção ⇒ Chave do documento
  - Atributo simples ⇒ Atributo simples
  - Atributo multivalorado ⇒ Atributo do tipo Lista
  - Atributo de referência ⇒ Chave da coleção referenciada
  - Bloco ⇒ Atributo do tipo Objeto

#### Exemplo Modelagem Física BD NoSQL Documento



#### **BD Documento**



```
{ "_id": "111.222.333-44",
  "nome": "João da Silva", ...
  "Professor": {
  "salário": "3000",
  "projetos": ["4589", "1298"] },
  "instituição": "UFSC" }
```

## **BD NoSQL Grafo**

- Não segue uma abordagem orientada a agregados
  - Ênfase nos relacionamentos entre quaisquer tipos de dados e não em uma organização hierárquica deles
- Neste caso, basicamente entidades tornam-se nodos e relacionamentos tornam-se arestas
  - Decisão por arestas unidirecionais ou bidirecionais depende do workload
  - Pode-se fundir entidades fracamente relacionadas à entidades mais conectadas

#### Exemplo Modelagem Lógica BD NoSQL Grafo



## Atividade 4 – Projeto NoSQL

Proponha um projeto lógico NoSQL baseado em agregados e um projeto lógico para BD NoSQL grafo, para o domínio de um **Zoológico** mostrado abaixo.

