

MTD para Proteção de Redes SDN

Cristian Souza (IFRN)

Túlio Pascoal (Université du Luxembourg)
Emídio Neto (IFRN)
Francisco Sales (IFRN)
Felipe Dantas (IFRN)

- 1. Conceitos básicos;
- 2. Motivação e proposta;
- 3. Avaliação e resultados;
- 4. Conclusão e trabalhos futuros.

Conceitos básicos

Software-Defined Networking

Fonte: https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3990

- Etapa essencial para a execução de ataques mais sofisticados
- O atacante realiza um levantamento preciso da rede
 - o Hosts ativos, portas abertas, sistemas operacionais, serviços vulneráveis, etc.
- Ferramentas para varredura automática:
 - o nmap (https://nmap.org)
 - Angry IP Scanner (https://angryip.org)
 - Zmap (<u>https://zmap.io</u>)
- Portanto, é necessário fazer uso de ferramentas para minimizar a superfície de ataque

- Moving Target Defense
- Técnicas para prevenção de diferentes ataques
- Consiste em randomizar os atributos da rede ou sistema com o objetivo de diminuir a superfície de ataque
- Não é restrito ao domínio das redes de computadores
- IP randomization

Motivação e proposta

- MTD para proteção de SDN
- Utilizar a alta programabilidade de redes SDN para melhorar a segurança das mesmas
- Aplicar IP randomization para dificultar a execução de ataques de fingerprinting

- O algoritmo aloca IPs virtuais aos dispositivos
- Todo o tráfego gerado para os IPs reais é bloqueado
- A randomização ocorre em intervalos predefinidos (exemplo: 60s)
- Resiliência em redes de diferentes tamanhos
- Alta velocidade (0.038s no pior cenário considerado)

Avaliação e resultados

- Modelo de ameaça:
 - ◆ Um atacante faz o *scan* da rede com o Nmap (**fingerprinting**)
 - Para acelerar a análise, o mesmo utiliza os parâmetros máximos de paralelismo
 - ◆ Para uma comparação justa, o Nmap é configurado para realizar a varredura em faixas aleatórias

- Ambiente de testes:
 - ◆ Dell Inspiron 114-5457-A30
 - ◆ 2.40 GHz Intel Corei7-6500U
 - ♦ 8GB RAM
 - Ambiente virtualizado com Docker
 - Mininet e Ryu
 - Redes consideradas: 128, 256 e 512 hosts.

Resultados alcançados:

• Quantitativamente:

- O atacante foi capaz de reconhecer apenas 0.78% dos endereços válidos no primeiro cenário, 1.46% no segundo e 2.7% no terceiro.
- o O conhecimento do atacante é limitado e válido apenas durante um período de 60s

Conclusão e trabalhos futuros

- Foi apresentada uma proposta para proteção de SDN contra ataques de fingerprinting
- A ferramenta obteve sucesso em dificultar a coleta de informações por parte do atacante

- Trabalhos futuros:
 - o Formalização de uma métrica para a definição do parâmetro de randomização
 - Avaliar o impacto da ferramenta na Qualidade de Serviço (QoS)
 - o Avaliar a efetividade da ferramenta em cenários com múltiplos atacantes

Os autores agradecem ao CNPq e ao IFRN pelo fomento ao desenvolvimento do presente trabalho.

MTD para Proteção de Redes SDN

Cristian Souza (IFRN)

Túlio Pascoal (Université du Luxembourg)
Emídio Neto (IFRN)
Francisco Sales (IFRN)
Felipe Dantas (IFRN)