

The Most Common Type of Data Visualizations & Examples (refered to datalabs)

- ✓ 2D Area
 - ✓ Cartogram
 - ✓ Choropleth
 - ✓ Dot Distribution Map
- ✓ Temporal
 - ✓ Line chart
 - ✓ Polar Area Diagram
 - ✓ Time Series
- ✓ Multi-dimensional
 - ✓ Pie Chart
 - ✓ Histogram
 - ✓ Scatter Plot
 - ✓ Parallel Coordinates

The Most Common Type of Data Visualizations & Examples (refered to datalabs)

- ✓ Hierarchical
 - ✓ Dendrogram
 - ✓ Ring Chart
 - ✓ Tree Diagram

- ✓ Network
 - ✓ Alluvial Diagram (sankey)
 - ✓ Node-link Diagram
 - ✓ Matrix

http://www.datalabsagency.com/data-visualization-news/15-most-common-types-of-data-visualisation/

The Most Common Type of Data Visualizations & Examples (refered to datalabs)

http://www.datalabsagency.com/data-visualization-news/15-most-common-types-of-data-visualisation/

Reference book

What:Data

Why:Task

How:Encoding

Tamara MunznerDepartment of Computer Science
University of British Columbia

Domain situation

Who are the target users?

Abstraction

What is shown? Data abstraction

Why is the user looking at it? Task abstraction

Idiom

How is it shown?

Visual encoding idiom: **how** to **draw**Interaction idiom: **how** to manipulate

Algorithm

Efficient computation

Outline

TYPES

- Data types
- Dataset types
- Attribute types
- Marks and Channels
- Actions

VISUAL ENCODING DESIGNS

- Bar chart
- Dot and line charts
- Stream graph
- Pie chart
- Scatter plot
- Parallel coordinates
- Heat map
- Choropleth map

Data types

What:Data

- Attributes
 - A property measured, observed, and logged
 - columns, features, variables, key (independent attribute)
 - E.g.) salary, price, number of sales, temperature
- Items
 - An individual and discrete entity
 - rows, instances, observations, examples
 - E.g.) People, stocks, coffee shops, cities
- Link
 - A relationship between items
- Position
 - Spatial data or latitude-longitude pair
 - Location in a region

Three major dataset types

Tables

Networks and trees

- Geometry
 - Spatial data

Attribute types

Categorical

Ordered

- Ordering types
 - Ordinal

Quantitative

- Ordering direction
 - Sequential

• Diverging

• Cyclic

MARKS AND CHANNELS How:Encoding

Marks: geometric primitives

Points

Lines

Areas

Channels: control the mark's appearances

Images from 'Visualization Analysis and Design', Tamara Munzner, 2014

Channels and Marks: example

(d)
Vertical position
Horizontal position
Color hue, area (size)

Color hue

Horizontal position

Channels: example

Relationship between infant survival and average income

Multiple marks and channels for grouping

Grouping the elements based on ...

Proximity, color hue

Marks and Channels: Exercise

	2010 July	2020 Nov
Internet Explorer	53	1
Safari	4	19
Firefox	31	4
Chrome	10	64

Browser usage in % in 2010 and 2020 (StatCounter)

Selecting a proper color: ColorBrewer 2.0

Selecting a proper color: ColorBrewer 2.0

ACTIONS Why:Task

Action

Consume

- Discover (explore)
- Present (explain)
- Enjoy (social)

Produce

Tan D, Smith G, Lee B, Robertson G. AdaptiviTree: adaptive tree visualization for tournament-style brackets. IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1113-20. doi: 10.1109/TVCG.2007.70537. PMID: 17968054

Action

Consume

Discover (explore)

Present (explain)

Enjoy (social)

Produce

Annotate

Record

Derive

	Action	Target	
• Consume	Discover (explore)	• Trends (patterns)	
	 Present (explain) 	• Outliers	
	Enjoy (social)	• Footures	
• Produce	• Annotate	• Features (structure)	
	• Record	• Attributes	
	• Derive	Network, topology	

Spatial data

	Action	Target	UNIVERSITY OF SKÖVDE
• Consume	• Discover (explore)	• Trends	Distribution
	 Present (explain) 	• Outliers • One .	Extremes
	 Enjoy (social) 	FeaturesAttributes	
• Produce	 Annotate 	• Many	Relationship ● — ●
	• Record	Network, topology	Correlation
	• Derive	Spatial data	Similarity

		Action	Target	OF SKÖVDE
•	Consume	• Discover (explore)	• Trends	
		• Present (explain)	• Outliers	
•	Produce	• Enjoy (social)	FeaturesAttributesOne	
	rroduce	 Annotate 	ManyNetworkTopology	
		• Record		
		• Derive	• Paths	<u> </u>
			Spatial data	7

Action: Query

UNIVERSITY OF SKÖVDE

Identify

Compare

Summarize

Compare decrease vs. increase

TARGET

- Trends
- Outliers
- Feature or structure
- Distribution or range
- Dependency, correlation, similarity
- Topology, paths of network data
- Entire shape of spatial data

SUMMARY

MARKS

- points
- lines
- areas

CHANNELS

- position
- length
- tilt
- area
- depth
- color luminance (brightness or darkness of color), saturation (intensity of color)
- curve
- 3D
- color hue, shape (categorical)

SUMMARY

ACTION

consume - discover (explore)

- present (explain)

- enjoy

produce - annotate

- record

- derive

query - identify

- compare

- summarize

TARGET

- trends
- outliers
- featuer or structure
- distribution or range
- dependency, correlation, similarity
- topology, paths of network data
- entire shape of spatial data

Reminder: Three major dataset types

Tables

Networks and trees

Geometry, Spatial

Reminder: Marks and channels

MARKS

- points
- lines
- areas

VISUAL ENCODING DESIGNS

BAR CHART
DOT AND LINE CHARTS
STREAM GRAPH
PIE CHART
SCATTERPLOT
PARALLEL COORDINATES
HEATMAP

Networks and trees

Spatial — CHOROPLETH MAP

Bar Chart

Search and compare Why:Task

Images from 'Visualization Analysis and Design', Tamara Munzner, 2014, pg. 150

Dot and Line Charts

Compare, show trends Why:Task

- Ordered Key value What:Data
- Mark: point and line

How:Encoding

- Channel: position
- Shows the changes over time by connecting each point in the series
- +) easy to read
- *) use for continuous data
- *) show a limited number of datapoints
- *) show unit, legend or label

Images from 'Visualization Analysis and Design', Tamara Munzner, 2014, pg. 155

Dot and Line Charts

Misleading implication, line charts are not for categorical data

Images from 'Visualization Analysis and Design', Tamara Munzner, 2014, pg. 157

Stream graph

How media are setting the 2020 agenda

A topic analysis of news articles published by 28 outlets since March 2019 mentioning Joe Biden, Bernie Sanders, Elizabeth Warren, Kamala Harris, Pete Buttigieg, Beto O'Rourke, Cory Booker, Kirsten Gillibrand, Amy Klobuchar, or Tulsi Gabbard

n = 5,850

https://www.storybench.org/how-news-media-are-setting-the-2020-election-agenda-chasing-daily-controversies-often-burying-policy/

Stream graph

Trends, compare, derive

- Ordered key (time) categorical key (topic)- value (counts)
- Mark: layers across time (or area)
- Channel: height (of layers)
- Shows the changes over time using color for different categories
- Each stream for proportional change over time

*) show a limited number of datapoints

*) show legend or label

Pie Chart

Proportion (part-whole relationship)

- Key value
- Mark: area
- Channel: angle (& color for easier legibility)
- -) avoid if slices are similar size
- -) limit to lesser than 8 slices
- *) use whitespace between slices
- *) angle on area is less accurate than length on lines

(a) Pie chart

(b) Bar chart

(c) Polar area chart

REMINDER: Marks and channels

MARKS

- points
- lines
- areas

Scatterplot

Find trends, outliers, distribution, correlation, locate clusters

- Value value
- Mark: point
- Channel: vertical and horizontal positions
- *) stronger correlation fall along a perfect diagonal line

Bubble plot

Life expectancy of women vs life expectancy of men, 1950 to 2020

In countries that lie above the grey line the life expectancy of women is higher than for men.

Source: UN Population Division (2019 Revision)

Note: Shown is the period life expectancy at birth measured in years.

CC BY

1950

Parallel coordinates

Find trends and clusters, outliers, extremes, relationship, correlation

- Categorical keys many values
- Mark: lines crossing through the axes (e.g., each line is a student)
- Channel: vertical position for multiple values and horizontal position for separate axes
- -) learning time
- -) how to order the axes
- +) scalable
- *) normalized values
- *) better with interaction, highlight the lines with brushing to focus on selected series

_	_		
	\rightarrow	n	
	α	U	

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Parallel Coordinates

Scatterplot Matrix vs. Parallel coordinates

Parallel coordinates

Heat map

Find clusters (patterns), outliers, summarize

- Two keys value
- Mark: area in 2D matrix alignment
- Channel: color
- +) scalable
- *) normalized values or same scale

Choropleth map

Find patterns, outliers, summarize

- Geographic data. A value for each region.
- Mark: given geometry for area
- Channel: color
- *) Consider how to construct the color map, which region boundaries to use
- *) Can compare different regions e.g.) continent, country, state, territory, zip code

Deaths per 100,000 residents as of 2 January 2021

Summary

TYPES

- Data types
- Dataset types
- Attribute types
- Marks and Channels
- Actions

What:Data

How:Encoding

Why:Task

VISUAL ENCODING DESIGNS

- Bar chart
- Dot and line charts
- Stream graph
- Pie chart
- Scatter plot
- Parallel coordinates
- Heat map
- Choropleth map

