MATH-H204 - Calcul des probabilités et statistiques Yves DE SMET Résumé du cours

Rodrigue Van Brande 19 juillet 2015 TABLE DES MATIÈRES

Table des matières

1	La		1 1	3					
	1.1		± ±	3					
	1.2		ique descriptive en 2D	3					
		1.2.1	Covariance	3					
		1.2.2	Le coefficient de corrélation	4					
		1.2.3	Les droites de régression	5					
2	La théorie des probabilités 7								
	2.1	Proba	bilités	7					
		2.1.1	Axiomes de la théorie des probabilités	7					
		2.1.2	Probabilité conditionnelle et indépendance	7					
		2.1.3	Formule de Bayes	7					
	2.2	Variab	oles aléatoires	7					
		2.2.1	Distribution d'une fonction monotone d'une variable aléatoire	7					
		2.2.2	Distribution de la somme de deux variables aléatoires	8					
		2.2.3	Distribution du produit de deux variables aléatoires	9					
	2.3	Variab	oles aléatoires particulières	0					
		2.3.1	Variable binomiale $\mathcal{B}(n,p)$	0					
		2.3.2	Variable de Poisson \mathcal{P}_{λ}	0					
		2.3.3		0					
		2.3.4	Variable Normale $\mathcal{N}(\mu, \sigma)$	0					
		2.3.5		0					
		2.3.6		0					
		2.3.7		0					
	2.4	Théore		0					
		2.4.1	Inégalité de Bienaymé-Tchebycheff	0					
		2.4.2		0					
		2.4.3	<u> </u>	1					
		2.4.4		1					
3	L'iı	nférenc	e statistique 1	2					
4	Λ	tres aid	los 1	3					
4	4.1		u du formulaire						
	4.1		é et répartition	_					
			±	4					

1 La statistique descriptive

1.1 Statistique descriptive en 1D

1.2 Statistique descriptive en 2D

1.2.1 Covariance

La covariance $|m_{11}| \leq s_1 s_2$

La covariance est le moment d'ordre (1,1):

$$m_{11} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (x_i - \bar{x})(y_j - \bar{y})$$

$$\alpha = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \underbrace{((x_i - \bar{x})(y_j - \bar{y}))^2}_{\text{2 car toujours } \geq 0}$$

$$= \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (u^2 (x_i - \bar{x})^2 + 2a(x_i - \bar{x})(y_j - \bar{y}) + (y_j - \bar{y})^2)$$

$$= u^2 s_1^2 + 2u \ m_{11} + s_2^2$$

Équation du second degré, on calcule son Δ :

$$\Delta \le 0$$

$$m_{11}^2 - s_1^2 s_2^2 \le 0$$

$$m_{11}^2 \le s_1^2 s_2^2$$

$$|m_{11}| \le s_1 s_2$$

La covariance maximale $|m_{11}| = s_1 s_2$

La valeur absolue de la covariance est maximale et vaut $|m_{11}| = s_1 s_2$. Si les points observés se trouvent sur une droite ax + bx + c = 0, on a $ax_i + by_i + c = 0$. On multiplie par $\frac{n_{ij}}{n}$ et on somme sur ij.

$$0 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{n_{ij}}{n} (ax_i + by_j + c)$$

$$= a \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} x_i + b \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} y_j + c \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$= a\bar{x} + b\bar{y} + c$$

On soustrait $ax_i + by_j + c = 0$ par $a\bar{x} + b\bar{y} + c = 0$.

$$= a(x_i - \bar{x}) + b(y_i + \bar{y})$$

On utilise $u_0 = \frac{a}{b}$

$$= u_0 b(x_i - \bar{x}) + \frac{a}{u_0} (y_j - \bar{y})$$

$$= u_0 b(x_i - \bar{x}) + \frac{u_0 b}{u_0} (y_j - \bar{y})$$

$$= u_0 (x_i - \bar{x}) + (y_j - \bar{y})$$

L'équation a la même forme que α , du coup...

$$0 = \Delta$$

$$= m_{11}^2 - s_1^2 s_2^2$$

$$m_{11}^2 = s_1^2 s_2^2$$

$$|m_{11}| = s_1 s_2$$

1.2.2 Le coefficient de corrélation

$$r = \frac{m_{11}}{s_1 s_2}$$

1.2.3 Les droites de régression

La droite de régression de y en x est la droite qui minimise la somme des carrés des écarts (parallèles à l'axe y) des points observés à cette droite.

$$g(a,b) = \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (y_j - a \ x_i - b)^2$$

Dérivée par rapport à a.

$$0 = g(a,b)|_{a}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ 2(y_{j} - a \ x_{i} - b)(-x_{i})$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -2n_{ij} \ x_{i}(y_{j} - a \ x_{i} - b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}(-y_{j} + a \ x_{i} + b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -n_{ij} \ x_{i} \ y_{j} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ a \ x_{i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ b \ x_{i}$$

$$= -1 \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} + a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}^{2} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{i} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} n_{i} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

Dérivée par rapport à b.

$$0 = g(a,b)|_{b}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ 2(y_{j} - a \ x_{i} - b)(-1)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -2n_{ij}(y_{j} - a \ x_{i} - b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}(-y_{j} + a \ x_{i} + b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -n_{ij} \ y_{j} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ a \ x_{i} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ b$$

$$= -1 \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ y_{j} + a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ y_{j} = a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$n \ \bar{y} = a \ n \ \bar{x} + b \ n$$

$$n \ \bar{y} = a \ n \ \bar{x} + b \ n$$

On a obtenu ces deux réponses

$$\begin{cases} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_i \ y_j = a \sum_{i=1}^{p} n_{i.} \ x_i^2 + b \sum_{i=1}^{p} n_{i.} \ x_i & (1) \\ n \ \bar{y} = a \ n \ \bar{x} + b \ n & (2) \end{cases}$$

$$\bar{x}(2): n \ \bar{y} \ \bar{n} = a \ n \ \bar{x}^2 + b \ n \ \bar{n}$$

(1) $-\bar{x}(2):$

2 La théorie des probabilités

2.1 Probabilités

2.1.1 Axiomes de la théorie des probabilités

$$\begin{cases} P(A) \ge 0 \\ P(E) = 1 \\ A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B) \end{cases}$$

2.1.2 Probabilité conditionnelle et indépendance

Probabilité conditionnelle de A sous la condition B ("sachant B") :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Si A est indépendant de B:

$$P(A|B) = P(A)$$

alors

$$P(A \cap B) = P(A)P(B)$$

2.1.3 Formule de Bayes

$$B = (A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_m \cap B)$$

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_m \cap B)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_m)P(A_m)$$

$$P(A_k|B) = \frac{A_k \cap B}{P(B)} = \frac{P(B|A_k)P(A_k)}{\sum_{j=1}^m P(B|A_j)P(A_j)}$$

2.2 Variables aléatoires

2.2.1 Distribution d'une fonction monotone d'une variable aléatoire

2.2.2 Distribution de la somme de deux variables aléatoires

$$Z = V + W$$

Cas discret

$$F_Z(x) = \sum_{i} \sum_{j} p_{ij}$$
$$= \sum_{i} \sum_{j} P(V \le v_i, W \le w_i)$$

Cas continu

$$\begin{split} F_Z(x) &= P(Z \leq x) \\ F_{V+W}(x) &= P(V \leq x, W \leq x) \\ &= \iint\limits_{\xi + \eta \leq x} f_{(V,W)}(\xi, \eta) \ \delta \xi \ \delta \eta \end{split}$$

On remplace par
$$\left\{ \begin{array}{ll} \xi &= u \\ \eta &= v - u \end{array} \right. \\ \left. \int J &= \left(\begin{array}{cc} \frac{\delta \xi}{\delta u} & \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} & \frac{\delta \eta}{\delta v} \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right) = 1.1 - 0.(-1) = 1 \\ &= \iint\limits_{v \leq x} f_{(V,W)}(u,v-u) \, |1| \, \, \delta u \, \, \delta v \\ &= \int\limits_{-\infty}^{x} \delta v \int\limits_{-\infty}^{+\infty} f_{(V,W)}(u,v-u) \, \, \delta u \end{array} \right.$$

$$f_Z(x) = \frac{\delta F_Z(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{(V,W)}(u, x - u) \, \delta u$$

ou si indépendant

$$f_Z(x) = \frac{\delta F_z(x)}{\delta x} = \int_{-\infty}^{+\infty} f_V(u) \cdot f_W(x - u) \delta u$$

2.2.3 Distribution du produit de deux variables aléatoires

$$Z = VW$$

Cas continu

$$\begin{split} F_Z(x) &= P(Z \leq x) \\ F_{V.W}(x) &= P(V \leq x, W \leq x) \\ &= \iint\limits_{\xi, \eta \leq x} f_{(V,W)}(\xi, \eta) \ \delta \xi \ \delta \eta \end{split}$$

On remplace par
$$\begin{cases} \xi = u \\ \eta = \frac{v}{u} \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta \xi}{\delta u} & \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} & \frac{\delta \eta}{\delta v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{-1}{u^2} & \frac{1}{u} \end{pmatrix} = 1 \cdot \frac{1}{u} - 0 \cdot \frac{-1}{u^2} = \frac{1}{u}$$

$$= \iint_{v \le x} f_{(V,W)}(u, v - u) \, \delta u \, \delta v$$

$$= \int_{-\infty}^{x} \delta v \int_{-\infty}^{+\infty} f_{(V,W)}(u, v - u) \, \delta u$$

$$\delta F_{\sigma}(x) = \int_{-\infty}^{+\infty} f_{\sigma}(x, w) \, dx$$

$$f_Z(x) = \frac{\delta F_z(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{(V,W)}\left(u, \frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \, \delta u$$

ou si indépendant

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{V}(u) \cdot f_{W}\left(\frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \delta u$$

2.3 Variables aléatoires particulières

- 2.3.1 Variable binomiale $\mathcal{B}(n,p)$
- 2.3.2 Variable de Poisson \mathcal{P}_{λ}
- 2.3.3 Variable exponentielle négative
- 2.3.4 Variable Normale $\mathcal{N}(\mu, \sigma)$
- 2.3.5 Variable Khi²
- 2.3.6 Variable Student t_n
- 2.3.7 Variable Snedecor $\mathcal{F}_{(m,n)}$

2.4 Théorèmes fondamentaux

2.4.1 Inégalité de Bienaymé-Tchebycheff

La proportion d'individus s'écartant de la moyenne d'une distribution de plus k fois l'écart-type (σ) ne dépasse jamais $\frac{1}{k^2}$:

$$\boxed{\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)}$$

Démonstration

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \underbrace{\int_{-\infty}^{\mu - k\sigma} (x - \mu)^{2} f(x) dx + \int_{\mu - k\sigma}^{\mu + k\sigma} (x - \mu)^{2} f(x) dx + \int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x)$$

$$\boxed{\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)}$$

2.4.2 Théorème de Bernouilli ou loi des grands nombres

Lors de n répétitions d'une expérience aléatoire, la fréquence relative $\frac{F}{n}$ d'un évènement tend vers sa probabilité p d'exister lorsque $n \to \infty$

$$\boxed{\frac{p(1-p)}{n\epsilon^2} \ge P\left(\left|\frac{F}{n} - p\right| \ge \epsilon\right) \stackrel{n \to \infty}{\to} 0}$$

Démonstration

On part avec le théorème de Bienaymé-Tchebycheff

$$\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)$$

Et on considère une binomiale V=B(n,p)

$$\begin{split} \frac{1}{k^2} & \geq P\left(|B(n,p) - np| \geq k\sqrt{np(1-p)}\right) \\ & \geq P\left(\frac{|B(n,p) - np|}{n} \geq \frac{k\sqrt{np(1-p)}}{n}\right) \\ & \geq P\left(\left|\frac{B(n,p)}{n} - p\right| \geq k\sqrt{\frac{np(1-p)}{n^2}}\right) \\ & \geq P\left(\left|\frac{B(n,p)}{n} - p\right| \geq k\sqrt{\frac{p(1-p)}{n^2}}\right) \end{split}$$

On pose $k\sqrt{\frac{p(1-p)}{n}}=\epsilon$ et B(n,p)=F

$$\boxed{\frac{p(1-p)}{n\epsilon^2} \ge P\left(\left|\frac{F}{n} - p\right| \ge \epsilon\right) \stackrel{n \to \infty}{\to} 0}$$

2.4.3 Théorème Central-Limite

Ce théorème stipule que si V est une somme de n variables aléatoires (quelconques) indépendantes

$$V = X_1$$
 , X_2 , X_3 , ... , X_n

alors sa variable réduite $\frac{V-\mu}{\sigma}$ tend vers une gausienne N(0,1) lorsque $n\to\infty$.

$$\boxed{\frac{V - E(V)}{D(V)} = \frac{V - \mu}{\sigma} \stackrel{n \to \infty}{\to} N(0, 1)}$$

Démonstration

???

2.4.4 Théorème de De Moivre

C'est un cas particulier du théorème Central-Limite puisqu'une binomiale est bien une somme de variables quelconques de mêmes distributions (à savoir, des variables indicatrices). La variable binomiale est asymptotiquement normale lorsque $\to \infty$.

$$\frac{B(n,p) - np}{\sqrt{np(1-p)}} \stackrel{n \to \infty}{\to} N(0,1)$$

Démonstration

On part donc avec le théorème de Central-Limite :

$$\frac{V-E(V)}{D(V)} = \frac{V-\mu}{\sigma} \stackrel{n \to \infty}{\to} N(0,1)$$

Et on considère une binomiale V = B(n, p).

$$\boxed{\frac{B(n,p)-np}{\sqrt{np(1-p)}} \stackrel{n\to\infty}{\to} N(0,1)}$$

3 L'inférence statistique

4 Autres aides

4.1 Tableau du formulaire

	μ	σ^2	$\psi(t)$
$\mathcal{B}(n,p)$	np	np(1-p)	$(pe^t + q)^n$
\mathcal{P}_{λ}	λ	λ	$e^{\lambda(e^t-1)}$
Exp_{λ}	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
Indicatrice (p)	p	p(1 - p)	$1 + p(e^t - 1)$
Uniforme $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{t} \frac{e^{tb} - e^{ta}}{b - a}$
$\mathcal{N}(\mu, \sigma)$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$
$\chi^2_{(n)}$	n	2n	$(1-2t)^{-n/2}$
t_n	0 n > 1	$\frac{n}{n-2}$ $n > 2$	aucun
$\mathcal{F}_{(m,n)}$	$\frac{n}{n-2}$ $n>2$	$\frac{2n^2(n+m-2)}{m(n-2^2(m-4))} \qquad n > 2$	aucun

Tableau dans le formulaire disponible à l'examen écrit (en rouge à connaître)

4.2 Densité et répartition

	Fonction de densité $f(x)$	Fonction de répartition $F(x)$
$\mathcal{B}(n,p)$	P[B(n,p)=k]	$\sum_{k=0}^{x} P[B(n,p) = k]$
\mathcal{P}_{λ}	$P[\mathcal{P}_{\lambda} = k] = \frac{\lambda^k}{k!} e^{-\lambda}$	$\sum_{k=0}^{x} P[\mathcal{P}_{\lambda} = k]$ $1 - e^{-\lambda x} x \ge 0$
$\operatorname{Exp}_{\lambda}$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$
$\boxed{ \text{Indicatrice}(p) }$	$V_A \Rightarrow \begin{cases} P(V_A = 1) = p \\ P(V_A = 0) = 1 - p \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$
$\boxed{ \text{Uniforme}[a,b]}$	$\begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & sinon \end{cases}$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$
$\mathcal{N}(\mu, \sigma)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(u-\mu)^2}{2\sigma^2}} du$
$\chi^2_{(n)}$	$\frac{\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\begin{cases} \frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} & x > 0\\ 0 & x \le 0 \end{cases}}$	$\frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} du$
t_n	Densité indépendante de σ	
$\mathcal{F}_{(m,n)}$	Densité indépendante de σ	

4.3 Distributions

