NUMERICAL ANALYSIS QUALIFYING EXAM Fall, 2004

(do at least 3 problems from problems 1-4, and do at least 3 problems from problems 5-8, you may do as many as you can)

(1) Show that in the bisection method solving an equation f(x) = 0 where $f \in C([a, b])$ and f(a) * f(b) < 0, if one wants an accuracy of ϵ in the result, that is the iteration is stopped when $|a_n - b_n| < \epsilon$, then the number of steps necessary to achieve this is no more than

$$1 + \frac{\ln(\frac{b-a}{\epsilon})}{\ln 2}$$

where the interval [a, b] is the one on which the bisection method applies with $a_0 = a$, and $b_0 = b$.

(2) Let α be a root of multiplicity m for the equation f = 0, where f is sufficiently smooth near α . Show that if the "multiply-relaxed" Newton method

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

converges to α , it does so at least quadratically.

- (3) Suppose that k and n are positive integers with k < n and that f is a real valued function continuous on the interval [-1,2]. For each integer $m \ge n$, S_m is a piecewise polynomial approximation to f on [0,1] defined as follows: First, set up a mesh $\{x_j\}_{j\in \mathbf{Z}} \cap [-1,2]$ where $x_j = jh$ with h = 1/m. Then on each subinterval $[x_j, x_{j+1}] \cap [0,1]$ define $S_m(x) = p_j(x)$ where $p_j(x)$ is the polynomial of degree at most n that interpolates f at the n+1 consecutive points $x_{j-k}, \ldots, x_{j-k+n}$. Show that S_m converges to f uniformly on [0,1] as $m \to \infty$. (**Hint:** Use the Lagrange interpolation formula and change the variable x to s by $x = x_{j-k} + sh$.)
- (4) Let q_k , k = 0, 1, ..., n be a set of orthogonal polynomials on (-1, 1) with weight function w(x) = 1 |x|, where q_k has degree k and leading term x^k .
 - (a). Find q_0 , q_1 and q_2 .
 - (b). Find the Gaussian quadrature formula for

$$\int_{-1}^{1} (1 - |x|) f(x) dx$$

using the roots of q_2 and verify its degree of precision.

(c). Show that the Gaussian quadrature rule

$$\int_{-1}^{1} (1 - |x|) f(x) dx \approx G_n(f) k = \sum_{k=1}^{n} A_k f(x_k)$$

has all positive coefficients A_k .

- (5) Two matrices $A, B \in \mathbb{C}^{n \times n}$ are unitary equivalent if $A = QBQ^*$ for some unitary matrix $Q \in \mathbb{C}^{n \times n}$. Is it true or false that A and B are unitary equivalent if and only if they have the same singular values? Prove or show a counterexample.
- (6) Assume that the linear system

$$r_{11}x + r_{12}y = b_1 r_{22}y = b_2$$

where r_{ij} and b_i are floating point numbers is solved by back substitution using floating point arithmetic with the machine accuracy ϵ . Show that the back substitution algorithm is backward stable in the sense that the computed solution \tilde{x} and \tilde{y} satisfy

$$\begin{split} \tilde{r}_{11}\tilde{x} + \tilde{r}_{12}\tilde{y} &= b_1 \\ \tilde{r}_{22}\tilde{y} &= b_2 \end{split}$$

for some \tilde{r}_{11} , \tilde{r}_{12} , and \tilde{r}_{22} that satisfy

$$|\tilde{r}_{ij} - r_{ij}|/|r_{ij}| \le 2\epsilon + O(\epsilon^2).$$

- (7) Assume that A is a symmetric $n \times n$ matrix. Let μ and \mathbf{x} be an approximate eigenvalue and an approximate eigenvector respectively with $\|x\|_2 = 1$. Let \mathbf{r} be the residual in the sense that $\mathbf{r} = A\mathbf{x} \mu\mathbf{x}$. Show that there exists an eigenvalue λ of A such that $|\mu \lambda| \leq \|\mathbf{r}\|_2$.
- (8) Show that the Jacobi iteration converges for 2 by 2 symmetric positive definite systems.