Datafiles (.dzn)

- I modelli MiniZinc sono solitamente parametrici, cioè descrivono un'intera classe di problemi invece che una singola istanza
- I parametri sono simili alle variabili (costanti) nella maggior parte dei linguaggi di programmazione
- Se avviamo la risoluzione di un modello senza indicare i valori dei parametri questi ci verranno richiesti tramite popup

Enter parameters

○ Cancel

Datafiles (.dzn)

• Se il modello contiene un numero elevato di parametri può essere scomodo inserirli ogni volta manualmente. MiniZinc ci permette però di inserire i valori dei parametri in appositi file chiamati datafiles con estensione .dzn

```
N = 15;
Capacity = 35:
Demand = [19, 30, 16, 23, 11, 31, 15, 28, 8, 8, 7, 14, 6, 19, 11];
Distance = [| 0, 14, 21, 33, 22, 23, 12, 22, 32, 32, 21, 28, 30, 29, 31, 30
          14, 0, 12, 19, 12, 24, 12, 19, 21, 27, 7, 19, 16, 21, 33, 17
          21, 12, 0, 15, 22, 16, 11, 9, 12, 15, 11, 29, 19, 9, 24, 23
          33, 19, 15, 0, 21, 31, 25, 23, 8, 24, 12, 25, 9, 17, 37, 16
          22, 12, 22, 21, 0, 36, 24, 30, 26, 37, 12, 7, 13, 30, 44, 9
          23, 24, 16, 31, 36, 0, 13, 8, 25, 13, 26, 43, 35, 16, 8, 39
          12, 12, 11, 25, 24, 13, 0, 10, 23, 20, 16, 31, 26, 17, 21, 28
          22, 19, 9, 23, 30, 8, 10, 0, 18, 10, 19, 37, 28, 9, 15, 32
          32, 21, 12, 8, 26, 25, 23, 18, 0, 17, 15, 32, 17, 10, 31, 23
          32, 27, 15, 24, 37, 13, 20, 10, 17, 0, 25, 44, 31, 7, 16, 37
          21, 7, 11, 12, 12, 26, 16, 19, 15, 25, 0, 19, 10, 18, 34, 13
          28, 19, 29, 25, 7, 43, 31, 37, 32, 44, 19, 0, 16, 37, 51, 10
          30, 16, 19, 9, 13, 35, 26, 28, 17, 31, 10, 16, 0, 24, 43, 6
          29, 21, 9, 17, 30, 16, 17, 9, 10, 7, 18, 37, 24, 0, 21, 30
          31, 33, 24, 37, 44, 8, 21, 15, 31, 16, 34, 51, 43, 21, 0, 47
          30, 17, 23, 16, 9, 39, 28, 32, 23, 37, 13, 10, 6, 30, 47, 0
1];
                               P-n16-k8.dzn
```


Datafiles (.dzn)

In qualità di proprietari di un fast food con vendite in calo, sapete che i vostri clienti sono alla ricerca di novità nel menu. Le vostre ricerche di mercato indicano che vogliono un panino ricco di tutto, purché risponda a determinati requisiti di salute. Il denaro non è un problema per loro. L'elenco degli ingredienti nella tabella seguente mostra cosa è possibile includere nel panino.

Ingrediente	Sodio (mg)	Grassi (g)	Calorie	Costo (€)
Carne di manzo	50	17	220	0.25
Pane	330	9	260	0.15
Formaggio	310	6	70	0.10
Cipolla	1	2	10	0.09
Cetriolo	260	0	5	0.03
Lattuga	3	0	4	0.04
Ketchup	160	0	20	0.02
Pomodoro	3	0	9	0.04

Ogni ingrediente può essere incluso da 1 a 8 volte nel panino. È necessario utilizzare quantità intere degli ingredienti (ad esempio, niente mezze porzioni di formaggio). Il panino finale deve contenere:

- meno di 3000 mg di sodio,
- meno di 150 grammi di grassi,
- e meno di 3000 calorie.

Per mantenere determinati standard di qualità del gusto, però devono anche essere rispettate almeno 2 delle seguenti 3 regole:

- la quantità di pomodoro è il doppio di quella del ketchup
- la quantità di pomodoro è uguale a quella dei cetrioli
- la quantità di cipolla è maggiore di quella di pomodoro

Qual è l'hamburger più costoso che potete preparare che soddisfa i requisiti ?

In un laboratorio artigiano vengono fabbricati prodotti su misura per i clienti perciò ognuno richiede una sequenza di lavorazioni diversa.

Per ogni prodotto si conosce l'ordine in cui devono essere svolte le lavorazioni e la durata di ciascuna lavorazione.

Ogni lavorazione viene svolta tramite uno specifico macchinario e lo occupa interamente. Ogni macchinario può quindi lavorare un solo prodotto per volta.

Si pianifichi l'ordine di esecuzione delle lavorazioni in modo che sia **minimizzato il tempo totale richiesto** per terminare la fabbricazione di tutti i prodotti.

Esercizio 5 - dati

```
Numero di macchine = 6;

Numero di lavori = 6;

Tempo massimo totale = 100;

Risorse richieste da ogni lavoro = 1;
```

Esercizio 5 - dati

Tempo di lavorazione

Esercizio 5 - dati

Ordine di lavorazione

Ordine in cui devono essere eseguite le lavorazioni

1

.

1 7

5

6

2, 0, 1, 3, 5, 4, 1, 2, 4, 5, 0, 3, 2, 3, 5, 0, 1, 4, 1, 0, 2, 3, 4, 5, 2, 1, 4, 5, 0, 3, 1, 3, 5, 0, 4, 2,

La prima lavorazione del lavoro 1 viene eseguita sulla macchina 2

Esercizio 5 - esempio

Tempo di lavorazione

Ordine di lavorazione

30,	60,	2,	5,	1,	0,	2,	3,
75 ,	25,	3,	10,	0,	2,	1,	3,
15,	10,	5,	30,	1,	2,	0,	3,
1,	1,	1,	90	2,	1,	3,	0

Schedule

1:	101131	3696	131133	134139
2:	2196	99124	9699	124134
3:	621	2333	16	94124
4:	137138	133134	138139	494

Tempo minimo per completare: 139

Un robot deve verniciare le carrozzerie delle automobili. Le carrozzerie arrivano in una sequenza; per ogni carrozzeria viene indicato il colore di cui deve essere verniciata. Ad esempio, una sequenza potrebbe essere: *rosso, giallo, rosso, verde, giallo*.

All'interno della sequenza, è possibile fare dei piccoli spostamenti, fino ad un valore costante MaxD: se un'auto arriva in posizione n, allora la si può spostare nelle posizioni da n-MaxD a n+MaxD.

Se dopo aver verniciato una carrozzeria, il robot deve cambiare colore, allora deve effettuare una costosa operazione di pulizia degli ugelli.

Si trovi la sequenza ottima che soddisfa tutti i vincoli e che minimizza il numero di cambi di colore.

Esercizio 6 (esempio)

Nell'esempio riportato nel testo, con MaxD=1 si può tenere la prima auto in posizione 1, la seconda spostata in posizione 3, la terza viene spostata in posizione 2 (in questo modo le due rosse sono vicine), la verde va in ultima posizione mentre la quinta auto viene anticipata alla posizione 4 (in questo modo le due gialle sono vicine). Il costo di questa soluzione è quindi 2 (un cambio di colore dal rosso al giallo ed uno dal giallo al verde).

Soluzione Esercizio 4

```
costo: 343 centesimi
sodio : 2890 mg
grassi: 148 g
calorie: 2221
porzioni: [6, 2, 2, 8, 3, 8, 3, 6]
Carne: 6 (150 centesimi)
Pane: 2 (30 centesimi)
Formaggio: 2 (20 centesimi)
Cipolla: 8 (72 centesimi)
Cetriolo: 3 ( 9 centesimi)
Lattuga: 8 (32 centesimi)
Ketchup: 3 (6 centesimi)
Pomodoro: 6 (24 centesimi)
```

Soluzione Esercizio 5

Schedule

1:2223	69	915	2330	3740	3137
2:1422	2227	3141	4151	111	2731
3:2328	2832	4654	1120	2223	3845
4:611	16	1520	2023	2331	4554
5:2837	1821	4146	5155	1114	3738
6:1114	1518	2231	111	1822	1415

Earliest end time: 55

Soluzione Esercizio 6

Sequenza migliore trovata, cambi colore = 3