Fonctions à deux variables

William Hergès ¹

29 novembre 2024

Table des matières

1	Fonctions, graphes et courbes de niveau	2
2	Dérivée partielle	2
3	Fxtrémum	Δ

Fonctions, graphes et courbes de niveau

Dans ce chapitre, nous n'allons traiter que les fonctions à deux variables.

Une fonction f de $D\subset\mathbb{R}^2$ dans $E\subset\mathbb{R}$ est définie telle que :

$$(x,y) \longmapsto f(x,y)$$

On appelle ce type de fonction une fonction à deux variables.

Définition 2

Le graphe de f une fonction à deux variables l'ensemble des points

$$\Gamma_f = \{((x,y),z) | (x,y) \in D, z = f(x,y)\}$$

On peut avoir que f ne dépend qu'une des deux variables, x par exemple. On a alors que son graphe ne dépend pas de y, i.e.

$$\forall (y, y') \in I \subset \mathbb{R}, f(x, y) = f(x, y')$$

Définition 3 On définit
$$C_t$$
 tel que :
$$C_t=\{(x,y)\in\mathbb{R}^2|f(x,y)=t\}$$
 C_t est une courbe de niveau.

Dérivée partielle

Définition 4 Soit f une fonction de $D_1 imes D_2$ dans I. On note f_{y_0} la fonction de D_1 dans I tel que : $\forall s \in D_1, \quad f_{y_0} = f(s,y_0)$

$$\forall s \in D_1, \quad f_{y_0} = f(s, y_0)$$

La dérivée partielle de f par rapport à x (resp. y) est la dérivée de f_{y_0} (resp. f_{x_0}). On la note : ∂f

$$\frac{\partial f}{\partial x} = f'_{y_0}$$

Théorème 5.1 On a :
$$\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) = \frac{\partial^2 f}{\partial y \partial x}$$
 Ce qui est la même chose! Ainsi :
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

$$\frac{\partial^2 f}{\partial x \partial u} = \frac{\partial^2 f}{\partial u \partial x}$$

Plan tangent

L'équation du plan tangent par f est (x_0, y_0) :

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x - x_0) + \frac{\partial f}{\partial y}(y - y_0)$$

Définition 6 On pose ∇f le gradient de $f:D_1\times D_2\to I$ (où $D_1\times D_2\subset \mathbb{R}^2$ et $I\subset \mathbb{R}$) tel que : $\forall (x,y)\in D_1\times D_2,\quad \nabla f(x,y)=\begin{pmatrix} \frac{\partial f}{\partial x}(x,y)\\ \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$

$$\forall (x,y) \in D_1 \times D_2, \quad \nabla f(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$$

Notations de Monge

On note

$$p = \frac{\partial f}{\partial x} \quad ; \quad q = \frac{\partial f}{\partial y}$$

On note

$$r = \frac{\partial^2 f}{\partial^2 x}$$
 ; $s = \frac{\partial^2 f}{\partial x \partial y}$; $t = \frac{\partial^2 f}{\partial^2 y}$

Extrémum

Théorème 6.1

f possède un extremum en $\left(x_{0},y_{0}\right)$ implique que :

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

Soient f une fonction à deux variables et (x_0,y_0) est un point critique.

$$D = rt - s^2$$

- avec r,t,s les notations de Monge. Si D>0, alors (x_0,y_0) est un extrémum. Il s'agit d'un maximum si r<0 ou d'un minimum si r>0.
 - Si D<0, alors (x_0,y_0) n'est pas un extrémum. Si D=0, alors tout est possible.

Proposition 6.3

 $\begin{array}{l} \text{Soit } f:D\to I \text{ de classe } \mathcal{C}^1.\\ \text{Soit } c\in I \text{ et } f^{-1}(c) \text{ un ensemble de niveau de } f.\\ \text{Soit } X:I\to D \text{ telle que } X(t)\in f^{-1}(c) \text{ pour tout } t\in I. \end{array}$

$$X'(t)\nabla f(X(t)) = 0$$

 \square Démonstration. AQT