Unbiased Implicit Variational Inference

Michalis K. Titsias*

Francisco J. R. Ruiz^{†‡}

*Athens University of Economics and Business

[†]University of Cambridge *Columbia University

Summary

- **Goal:** Expand the flexibility of variational approximations through an expressive distribution
- We use an *implicit* variational distribution obtained in a hierarchical manner
- We develop UIVI, a method to obtain unbiased Monte Carlo estimates of the gradient of the ELBO
- The variational parameters are the parameters of a neural network
- Experiments: Bayesian multinomial logistic regression

Introduction

- Probabilistic model p(x, z) (data x, latent variables z)
- Variational inference (VI) approximates the posterior p(z|x) by maximizing the ELBO

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)}[\log p(x, z) - \log q_{\theta}(z)]$$

- Classical VI:
 - Fully factorized distribution $q_{\theta}(z)$ (mean-field VI)
 - Coordinate-wise ascent
 - Limited to a certain class of models
- Goal: Extend the flexibility of $q_{\theta}(z)$ using an *implicit* distribution
 - It is easy to sample from $q_{\theta}(z)$
 - It is not possible to evaluate $q_{\theta}(z)$
- Advantages:
 - Generic inference for any (differentiable) model
 - Expressive distribution (beyond mean-field)
- Method:
 - Stochastic optimization of the ELBO
 - Obtain estimates of the gradients $\nabla_{\theta} \mathcal{L}(\theta)$
- Technical challenge: The entropy term in the ELBO and its gradient are intractable
 - It is not possible to evaluate $q_{\theta}(z)$
- Our approach (UIVI):
 - Define the implicit distribution $q_{\theta}(z)$ through an infinite mixture
 - Rewrite the gradient of the ELBO as an expectation
 - Obtain unbiased estimates of the gradient
- Key ideas:
 - Implicit variational distribution
 - Use a semi-implicit distribution [Yin & Zhou, 2018] Rewrite the gradient as an expectation w.r.t. the reverse conditional
 - Use MCMC initialized at stationarity

Unbiased Implicit Variational Inference

Variational distribution

The distribution $q_{\theta}(z)$ is defined through an infinite mixture,

$$\varepsilon \sim q(\varepsilon), \quad z \sim q_{\theta}(z \mid \varepsilon),$$

or equivalently

$$q_{\theta}(z) = \int q_{\theta}(z \,|\, \varepsilon) q(\varepsilon) d\varepsilon$$

- The dependence of the conditional $q_{\theta}(z \mid \varepsilon)$ on ε is arbitrarily complex
- We use a deep neural network with parameters θ that takes ε as input

Assumptions on the conditional $q_{\theta}(z \mid \varepsilon)$

Reparameterizable distribution

$$u \sim q(u), \ z = h_{\theta}(u; \varepsilon) \iff z \sim q_{\theta}(z \mid \varepsilon)$$

It is possible to evaluate $\log q_{\theta}(z \mid \varepsilon)$ and its gradient w.r.t. z

Examples

- Gaussian conditional
 - The conditional $q_{\theta}(z | \varepsilon)$ is multivariate Gaussian
 - Its parameters are $\mu_{\theta}(\varepsilon)$ and $\Sigma_{\theta}(\varepsilon)$ (given by neural networks with parameters θ and input ε)
 - Reparameterizable

$$u \sim q(u) = \mathcal{N}(u \mid 0, I),$$

$$z = h_{\theta}(u; \varepsilon) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$$

The Gaussian log-density and its gradient are available,

$$\nabla_z \log q_{\theta}(z \mid \varepsilon) = -\Sigma_{\theta}(\varepsilon)^{-1} (z - \mu_{\theta}(\varepsilon))$$

- Reparameterizable exponential family distribution
 - The conditional $q_{\theta}(z | \varepsilon)$ is in the exponential family, $q_{\theta}(z \mid \varepsilon) \propto \exp\{t(z)^{\top} \eta_{\theta}(\varepsilon)\}.$
 - The log-density and its gradient are available,
 - $\nabla_z \log q_{\theta}(z \mid \varepsilon) = \nabla_z t(z)^{\top} \eta_{\theta}(\varepsilon)$

Unbiased Implicit VI

• The gradient of the ELBO is

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)q(u)} \left[g_{\theta}^{\text{mod}}(\varepsilon, u) + g_{\theta}^{\text{ent}}(\varepsilon, u) \right],$$
where

implicit

$$g_{\theta}^{\text{mod}}(\varepsilon, u) \triangleq \nabla_{z} \log p(x, z) \Big|_{z = h_{\theta}(u; \varepsilon)} \nabla_{\theta} h_{\theta}(u; \varepsilon)$$

$$g_{\theta}^{\text{ent}}(\varepsilon, u) \triangleq -\nabla_{z} \log q_{\theta}(z) \Big|_{z = h_{\theta}(u; \varepsilon)} \nabla_{\theta} h_{\theta}(u; \varepsilon)$$

- standard reparameterization The entropy component is harder because $q_{\theta}(z)$ is
- **Key idea:** Rewrite as an expectation

$$abla_z \log q_{ heta}(z) = \mathbb{E}_{q_{ heta}(arepsilon' \mid z)} \left[
abla_z \log q_{ heta}(z \mid arepsilon')
ight]$$

Monte Carlo gradient estimator:

$$g_{\theta}^{\text{ent}}(\varepsilon_{s}, u_{s}) \approx -\nabla_{z} \log q_{\theta}(z \mid \varepsilon_{s}') \nabla_{\theta} h_{\theta}(u_{s}; \varepsilon_{s})$$
$$\varepsilon_{s}' \sim q_{\theta}(\varepsilon \mid z_{s})$$

• $q_{\theta}(\varepsilon | z)$ is the reverse conditional

Sampling from the reverse conditional

- Each pair of samples (z_s, ε_s) comes from $q_{\theta}(z, \varepsilon)$
- Thus, ε_s is as a draw from $q_{\theta}(\varepsilon | z_s)$
- Key idea: To sample from the reverse conditional, initialize MCMC chain with ε_s
 - No burn-in period required (starts at stationarity)
 - Every subsequent sample is a sample from the reverse conditional
 - Discard a few samples to reduce correlation between ε and ε'

Full algorithm

Input: data x, semi-implicit variational family $q_{\theta}(z)$ **Output:** variational parameters θ Initialize θ randomly for iteration $t = 1, 2, \ldots, do$ # Sample from q: Sample $u_s \sim q(u)$ and $\varepsilon_s \sim q(\varepsilon)$ Set $z_s = h_\theta(u_s; \varepsilon_s)$ # Sample from reverse conditional: Sample $\varepsilon_s' \sim q_{\theta}(\varepsilon \mid z_s)$ (HMC initialized at ε_s) # Estimate the gradient: Compute $g_{\theta}^{\text{mod}}(\varepsilon_s, u_s)$ (Eq. 6) Compute $g_{\theta}^{\text{ent}}(\varepsilon_s, u_s)$ (Eq. 9, approximate using ε_s') Compute $\widehat{\nabla}_{\theta} \mathcal{L} = g_{\theta}^{\text{mod}}(\varepsilon_s, u_s) + g_{\theta}^{\text{ent}}(\varepsilon_s, u_s)$ # Take gradient step: Set $\theta \leftarrow \theta + \rho \cdot \widehat{\nabla}_{\theta} \mathcal{L}$

Proof for the Entropy Component

Toy experiments

- Synthetic target distributions
- $q(\varepsilon)$ is Gaussian
- The variational conditional is Gaussian,

Variational autoencoders

Fitting a VAE on two datasets

	average test log-likelihood	
method	MNIST	Fashion-MNIST
Explicit (standard VAE)	-98.29	-126.73
SIVI	-97.77	-121.53
UIVI [this paper]	-94.09	-110.72

Bayesian logistic regression

-0.35

Experiments

Bayesian logistic regression on two datasets

Goal: Prove that

end for

$$abla_z \log q_{ heta}(z) = \mathbb{E}_{q_{ heta}(arepsilon\,|z)}[\,
abla_z \log q_{ heta}(z\,|\,arepsilon)\,]$$

Start with log-derivative identity,

$$abla_z \log q_{ heta}(z) = \frac{1}{q_{ heta}(z)}
abla_z q_{ heta}(z)$$

Apply the definition of $q_{\theta}(z)$ through a mixture,

$$abla_z \log q_{ heta}(z) = rac{1}{q_{ heta}(z)} \int
abla_z q_{ heta}(z \,|\, arepsilon) q(arepsilon) darepsilon$$

Apply the log-derivative identity on $q_{\theta}(z | \varepsilon)$,

$$\nabla_z \log q_{\theta}(z) = \frac{1}{q_{\theta}(z)} \int q_{\theta}(z | \varepsilon) q(\varepsilon) \nabla_z \log q_{\theta}(z | \varepsilon) d\varepsilon.$$

Apply Bayes' theorem

Related Work

- Linear response estimates [Giordano+, 2017]
- Structured variational family [Saul & Jordan, 1996]
- Mixtures [Bishop+, 1998; Gershman+, 2012; Salimans & Knowles, 2013]
- Boosting VI [Guo+, 2016; Miller+, 2017; Locatello+, 2017]
- Copulas [Tran+, 2015; Han+, 2016] Hierarchical models [Ranganath+, 2016; Tran+, 2016; Maaløe+, 2016]
- Invertible transformations [Rezende+, 2014; Kucukelbir+, 2015]
- Normalizing flows [Rezende & Mohamed, 2015; Papamakarios+, 2017]
- Sampling mechanisms [Salimans+, 2015; Maddison+, 2017; Naesseth+, 2017, 2018; Le+, 2018; Grover+, 2018]
- Implicit distributions [Mohamed & Lakshminarayanan, 2016; Nowozin+, 2016; Huszár, 2017; Tran+, 2017; Yin & Zhou, 2018]