PARISHRAM 2026

Mathematics

DPP: 1

Relations and Functions

- **Q1** If A = {1, 2, 3} and R_1 = {(1, 2), (3, 2), (1, 3)}, R_2 = {(1, 3), (3, 6), (2, 1), (1, 2)} then:
 - (A) $\mathbf{R_1}$ is a relation and $\mathbf{R_2}$ is not a relation on A
 - (B) ${f R_1}$ and ${f R_2}$ both are relation on A
 - (C) ${f R_1}$ and ${f R_2}$ both are not relation on A
 - (D) None of these
- **Q2** Let R be a relation in the set N given by $R = \{(a, a, b, a)\}$
 - b): a = b 2, b > 6). Then
 - (A)(8,7) R
 - (B) (6, 8) R
 - (C)(3,8) R
 - (D) (2, 4) R
- **Q3** If $R = \{(x, y) : x, y \in W, 2x + y = 5\}$. Then
 - (A) $R = \{ (\frac{5}{2}, 0), (2, 1), (\frac{3}{2}, 2), (\frac{1}{2}, 4), (0, 5) \}$
 - (B) $R = \{ (\frac{5}{2}, 0), (2, 1), (\frac{3}{2}, 2), (\frac{1}{2}, 4) \}$
 - (C) $R = \{(0, 5), (1, 3), (2, 1)\}$
 - (D) $R = \{(1, 2), (3, 1), (5, 0)\}$
- Q4 The relation R defined on the set of natural numbers as {(a, b) : a differs from b by 3), is given by
 - (A) $\{(1, 4), (2, 5), (3, 6), \ldots\}$
 - (B) {(4, 1), (5, 2), (6, 3),....}
 - $(C) \{(1, 3), (2, 6), (3, 9), \ldots\}$
 - (D) None of the above
- **Q5** Let n(A) = m and n(B) = n. Then, the total number of non-empty relations that can be defined from A to B is
 - (A) mn
- (B) nm 1
- (C) mn 1
- (D) 2mn 1
- **Q6** Two finite sets A and B have m and n elements respectively. If the total number of relation from A to B is 64, then the possible values of m and n can be

- (A) 1 and 5
- (B) 2 and 4
- (C) 2 and 3
- (D) 1 and 4
- Q7 If a relation R is defined on the set Z of integers as follows (a, b) $\in R \Leftrightarrow a^2 + b^2 = 25$, then domain (R) is equal to
 - $(A) \{3, 4, 5\}$
 - (B) $\{0, 3, 4, 5\}$
 - (C) $\{0, \pm 3, \pm 4, \pm 5\}$
 - (D) None of these
- **Q8** Consider set $A = \{-1, 0, 1, 2, 3\}$ and $B = \{1, 2, 4, 4, 1, 2, 3\}$ 5, 0}. R = {(a, b) : b - a = 1, a \in A, b \in B}, then domain of relation R is
 - $(A) \{0, 1, 3\}$
 - $(B) \{-1, 0, 1, 3\}$
 - $(C) \{1, 2, 4, 0\}$
 - (D) $\{1, 2, 4, 5, 0\}$
- **Q9** Let R be a relation in N defined by $R = \{(1 + x, 1)\}$ + x^2): x < 5, $x \in \mathbb{N}$. Which of the following is false?
 - (A) $R = \{(2, 2), (3, 5), (4, 10), (5, 17), (6, 25)\}$
 - (B) Domain of $R = \{2, 3, 4, 5, 6\}$
 - (C) Range of $R = \{2, 5, 10, 17, 26\}$
 - (D) None of these
- **Q10** Let A be the set of first ten natural numbers and let R be a relation on A defined by $(x, y) \in$ $R \Leftrightarrow x + 2y = 10$, i.e., $R = \{(x, y) : x \in A, y \in A\}$ and x + 2y = 10}. Then the domain and range of R is
 - (A) {2, 4, 6, 8}, {4, 3, 2, 1} respectively
 - (B) {4, 3, 2, 1}, {2, 4, 6, 8} respectively
 - (C) {1, 2, 3, 4}, {1, 2, 3, 4} respectively
 - (D) None of these

Answer Key

Q1	Α	
Q2	В	
Q3	С	
Q4	В	
ΛE	ь	

Hints & Solutions

Note: scan the OR code to watch video solution

Q1 Text Solution:

 $A \times A =$ $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),$ (3,1),(3,2),(3,3)

 $\therefore \mathbf{R}_1 \subset \mathbf{A} \times \mathbf{A} \therefore \mathbf{R}_1$ is a relation on A.

As $(3, 6) \in R_2$ but $\mathbf{6} \notin \mathbf{A} : \mathbf{R_2} \not\subset \mathbf{A} \times \mathbf{A}$ $\cdot \cdot R_2$ is a relation on A.

Video Solution:

O2 Text Solution:

Given, $R = \{(a, b) : a = b - 2, b > 6\}$ Since, b > 6, so $(2, 4) \notin R$ Also, (3, 8) \notin R as 3 ≠ 8 – 2 and (8, 7) \notin R as 8 \neq 7 – 2 Now, for (6, 8), we have 8 > 6 and 6 = 8 - 2, which is true ∴(6,8) R

Video Solution:

Q3 Text Solution:

For x = 0, $2 \times 0 + y = 5 \Rightarrow y = 5 \in W$ For x = 1, $2 \times 1 + y = 5 \Rightarrow y = 3 \in W$ For x = 2, $2 \times 2 + y = 5 \Rightarrow y = 1 \in W$ For x = 3, $3 \times 2 + y = 5 \Rightarrow y = -1 \notin W$ We stop have as for x > 3, y is not a whole number

 \therefore R = {(0, 5), (1, 3), (2, 1)}

Video Solution:

Q4 Text Solution:

Given, $R = \{(a, b) : a - b = 3\} = \{(4,1), (5, 2), (6, 6)\}$ 3),...}

Video Solution:

Q5 Text Solution:

Given, n(A) = m and n(B) = n

... Total number of relations from A to B = 2^{mn} ...Total number of non-empty relations from A to $B = 2^{mn} - 1$

Video Solution:

Q6 Text Solution:

Clearly, $n(A \times B) = n(A) \times n(B) = mn$

∴ Total number of relation from A to B = 2^{mn}

Thus, we have $2^{mn} = 64 = 2^6$

 \Rightarrow mn = 6

Hence, possible value of m and n are 2 and 3, respectively.

Video Solution:

Q7 Text Solution:

We have, $(a, b) \in \mathbb{R} \Leftrightarrow a^2 + b^2 = 25$ \Rightarrow b = $\pm \sqrt{25 - a^2}$ Clearly, $\mathbf{a}=0\Rightarrow\mathbf{b}=\pm 5$ $a = \pm 3 \Rightarrow b = \pm 4$ $a = \pm 4 \Rightarrow b = \pm 3$ and $\mathbf{a}=\pm \mathbf{5}\Rightarrow \mathbf{b}=\mathbf{0}$ Hence, domain (R)= $\{0, \pm 3, \pm 4, \pm 5\}$.

Video Solution:

Q8 Text Solution:

For a = -1, $b - (-1) = 1 \Rightarrow b = 0$ $\in \mathbf{B}$ \therefore $(-1, 0) \in \mathbf{R}$ For $a = 0, b - 0 = 1 \Rightarrow b = 1 \in B$ $(0, 1) \in \mathbb{R}$ For a = 1, $b - 1 = 1 \Rightarrow b = 2 \in B$ \therefore (1, 2) \in R For a = 2, $b - 2 = 1 \Rightarrow b = 3 \notin B$ ∴ (2, 3)∉ R For a = 3, $b - 3 = 1 \Rightarrow b = 4 \in B$ \therefore (3, 4) \in R \therefore R ={(-1, 0), (0, 1), (1, 2), (3, 4)} \therefore Domain of R = $\{-1, 0, 1, 3\}$ **Video Solution:**

Q9 Text Solution:

For x = 1, 1 + x = 2 and $1 + x^2 = 2$ $\therefore (2, 2) \in \mathbf{R}$ For x = 2, 1 + x = 3 and $1 + x^2 = 5$ $\therefore (3, 5) \in \mathbf{R}$ For x = 3, 1 + x = 4 and $1 + x^2 = 10$ $\therefore (4, 10) \in \mathbf{R}$ For x = 4, 1 + x = 5 and $1 + x^2 = 17$ $\therefore (5, 17) \in \mathbf{R}$ For x = 5, 1 + x = 6 and $1 + x^2 = 26$ \therefore (6, 26) \in R $\therefore \mathbf{R}$ $=\{(2, 2), (3, 5), (4, 10), (5, 17), (6, 26)\}$ \Rightarrow Domain of R = $\{2, 3, 4, 5, 6\}$ Range of $R = \{2, 5, 10, 17, 26\}$

Video Solution:

Q10 Text Solution:

For x = 1, $1 + 2y = 10 \Rightarrow y = \frac{9}{2} \notin A$ $\therefore (1, \frac{9}{2}) \notin \mathbf{R}$ For x = 2, $2 + 2y = 10 \Rightarrow y = 4 \in A$ $\therefore (2, 4) \in \mathbb{R}$ For x = 3, $3 + 2y = 10 \Rightarrow y = \frac{7}{2} \notin A$ $\therefore (3, \frac{7}{2}) \notin \mathbf{R}$ For x = 4, $4 + 2y = 10 \Rightarrow y = 3 \in A$ $\therefore (4, 3) \in \mathbf{R}$ For x = 5, $5 + 2y = 10 \Rightarrow y = \frac{5}{2} \notin A$ $\therefore \left(5, \ \frac{5}{2}\right) \notin \mathbf{R}$ For x = 6, $6 + 2y = 10 \Rightarrow y = 2 \in A$ $\therefore (6, 2) \in \mathbf{R}$ For x = 7, $7 + 2y = 10 \Rightarrow y = \frac{3}{2} \notin A$ $\therefore (7, \frac{3}{2}) \notin \mathbf{R}$

For x = 8, $8 + 2y = 10 \Rightarrow y = 1 \in A$ $\therefore (8, 1) \in R$ For x = 9, $9 + 2y = 10 \Rightarrow y = \frac{1}{2} \notin A$ $\therefore (9, \frac{1}{2}) \notin R$ For x = 10, $10 + 2y = 10 \Rightarrow y = 0$ $\notin A \therefore (10, 0) \notin R$ $\therefore R = \{(2, 4), (4, 3), (6, 2), (8, 1)\}$ \Rightarrow Domain of R ={2, 4, 6, 8} Range of R ={4, 3, 2, 1} Video Solution:

Android App | iOS App | PW Website

