UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE CURSO DE ENGENHARIA MECATRÔNICA ATIVIDADE EXTRACURRICULAR REFERENTE À EQUIPE DE COMPETIÇÃO TERRA COMPETITION

HEBERT ALAN KUBIS

FUNCIONAMENTO DO BMS

HEBERT ALAN KUBIS

FUNCIONAMENTO DO BMS

Atividade apresentada como estudo sobre a competição ROBOSUB que a equipe Terra Competition participará em 2024, do Centro Tecnológico de Joinville, da Universidade Federal de Santa Catarina.

1. BMS	3
2. CARACTERÍSTICAS DO BMS	
2.1. CONTROLE DE CARGA	3
2.2. BALANCEAMENTO DAS CÉLULAS	3
2.3. CONTROLE DE DESCARGA	3
2.4. ESTADO DE CARGA DA BATERIA (SOC)	
2.6. MONITORAMENTO DE TEMPERATURA DA BATERIA	5
2.7. MONITORAMENTO EM TEMPO REAL VIA SOFTWARE	5
3. Circuito de ligação da BMS	5
REFERÊNCIAS	6

1. BMS

O BMS (Battery Management System) pode ser considerado o cérebro do pack de baterias, pois é função deste componente gerenciar e monitorar a performance das baterias. Este componente atua controlando a carga que é fornecida às baterias, fazendo no processo o balanceamento dos conjuntos que formam o pack, e também controla a descarga das células de baterias de lítio.

2. CARACTERÍSTICAS DO BMS

2.1. CONTROLE DE CARGA

O BMS utiliza de ciclos de carga para que as células sejam carregadas e garante que os limites de cada célula de bateria sejam respeitados durante o processo, desligando a alimentação assim que identificar o carregamento completo do pack.

2.2. BALANCEAMENTO DAS CÉLULAS

Quando a bateria está sendo utilizada, carregada ou em repouso, o BMS constantemente rebalancea as cargas das células para que a vida útil de cada uma seja prolongada. O balanceamento é importante para um bom aproveitamento da capacidade total da bateria e para evitar o desgaste desigual das células.

Existe o balanceamento passivo e ativo. O passivo utiliza resistores para gastar a energia de uma célula que está com mais carga que outras, transformando a energia elétrica em calor, o que acaba desperdiçando energia. E existe o balanceamento ativo, que manda a carga de uma célula com mais carga para uma que esteja com menos carga, o que evita o desperdício da carga da bateria.

É preferível fazer o balanceamento quando as células não estão sendo carregadas e nem quando estão sendo usadas.

2.3. CONTROLE DE DESCARGA

Assim como o BMS faz o controle do carregamento das baterias, ele também é responsável por descarregá-las de forma correta e protegendo-as de qualquer evento anormal ao funcionamento. Além disso, o BMS também evita que as células sejam descarregadas além

da chamada de tensão de corte, que é a tensão mínima que uma célula de bateria pode ser descarregada com segurança, sem causar danos ou afetar a sua vida útil.

2.4. ESTADO DE CARGA DA BATERIA (SOC)

O monitoramento do indicador do estado de carga da bateria (SOC - "State of change") permite que o BMS controle o processo de carga e descarga da bateria, assim como permite indicar ao usuário como está a carga do pack de baterias. Essa estimativa da carga do pack é feita através da medição da tensão e da contagem de coulomb, sendo que pela ultima é possível saber o quanto a bateria descarregou ou carregou pela seguinte fórmula:

$$SOC = SOC(t_{\circ}) + \frac{1}{C} \int_{t_{\circ}}^{t_{\circ} + c} I_{b} dt$$
 (1)

Onde C é a capacidade nominal da bateria (Ah), t_{\circ} é o inicio do periodo da carga ou descarga, τ é o tempo que foi feita a medição, I_b é a corrente de carga/descarga da bateria (A) e $SOC(t_{\circ})$ é o estado inicial da bateria antes da medição, que é feito através do método da medição de tensão da seguinte maneira:

$$SOC = \frac{Cd}{Ct} \tag{2}$$

Onde Cd é a carga disponível na hora da medição e Ct é a carga total quando carregada. Para baterias de lítio a carga se mantém quase constante ao longo do tempo, sendo a medição de tensão mais precisa próxima da descarga completa e próxima da carga completa.

Os métodos para estimativa não são perfeitos, mas a combinação dos dois oferece uma boa aproximação do estado da bateria e assim um melhor controle da carga e descarga para o BMS.

2.5. ESTADO DE VIDA ÚTIL DA BATERIA (SOH)

Para monitorar o estado de vida útil da bateria o BMS utiliza de métodos de impedância ou condutância permitindo assim saber a condição da bateria e qual o desempenho que ela entrega se comparada a uma célula nova.

2.6. MONITORAMENTO DE TEMPERATURA DA BATERIA

Outra função encarregada ao BMS é a aferição da temperatura do pack, fazendo com que, se em algum momento as células estiverem em temperaturas que ofereçam riscos, o pack seja desligado para evitar explosões. Não é todo BMS que possui saída para sensor de temperatura.

2.7. MONITORAMENTO EM TEMPO REAL VIA SOFTWARE

O BMS permite que seus parâmetros sejam alterados e seus dados sejam analisados via software, por cabo ou via bluetooth, o que é muito utilizado em veículos elétricos para o bom funcionamento do mesmo. Não é toda BMS que possui portas para conexão com computador.

3. Circuito de ligação da BMS

Existem diversos modelos de BMS sendo estes de 2s, 3s, 4s, além de outros, sendo que a cada s é uma célula de bateria a mais para ser adicionada. Outra diferença entre os BMS é a corrente de saída que ele fornece, tendo também de diversos modelos, de 10A, 15A, 20A, 40A, 60A e outros. Para que seja montado um bom pack de bateria, os conjuntos de células devem ter a mesma capacidade por célula para que estejam balanceadas.

A fonte a ser utilizada para carregar a bateria varia de acordo com a BMS, sendo que os modelos de 3s necessitam de 12.6 - 13V, às 4s necessitam de 14.8 - 16.8V e as 5s necessitam de 19 - 21V.

Figura 1 - Esquema elétrico BMS 5s

REFERÊNCIAS

Estimando o estado de carga (SOC) de baterias de Li - ion. **Sistemas e tecnologia aplicada**, 2022. Disponível em:

https://www.sta-eletronica.com.br/artigos/baterias-recarregaveis/baterias-de-litio/estimando-o-estado-de-carga-soc-das-baterias-de-li-ion. Acesso em: 09 de setembro de 2023.

Sistema de gerenciamento de baterias (BMS). **Sistemas e tecnologia aplicada**, 2022. Disponível em:

https://www.sta-eletronica.com.br/artigos/baterias-em-geral/informacoes-basicas/sistema-de-gerenciamento-de-bateria-bms. Acesso em: 08 de setembro de 2023.

Tensão de corte: uma falsa sensação de segurança. **Sistemas e tecnologia aplicada**, 2022. Disponível em:

https://www.sta-eletronica.com.br/artigos/baterias-em-geral/informacoes-basicas/sistema-de-g erenciamento-de-bateria-bms. Acesso em: 09 de setembro de 2022.