BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 11

10 Well Formed Formulas

10.1 What is allowable formula ϕ ?

- Formulas are string over the alphabet $\{p,q,r..\} \cup \{p_1,p_2,...\} \cup \{\neg,\wedge,\vee,\rightarrow,(,)\}.$
- But not all strings are admissible. e.g $(\neg)() \land pqr \rightarrow$.

Definition: The well formed formulas of propositional logic are those which we obtain by using the construction rules below and only those by applying them finitely many times.

- 1. atom: Every propositional atom p, q, r, ... or $p_1, p_2, p_3, ...$ is a well formed formula.
- 2. \neg : If ϕ is a well formed formula then so is $\neg \phi$.
- 3. \wedge : If ϕ and ψ are well formed formulas so is $\phi \wedge \psi$.
- 4. \vee : If ϕ and ψ are well formed formulas so is $\phi \vee \psi$.
- 5. \rightarrow : If ϕ and ψ are well formed formulas so is $\phi \rightarrow \psi$.

10.2 How do we show that a formula is well formed?

Construct in a top down manner, a parse tree where its leaves are atoms. e.g.

$$(((\neg p) \lor q) \to (p \land (q \lor (\neg r))))$$

• Parse trees of well formed formulas are either an atom as root or the root contains \neg , \wedge , \vee or \rightarrow .

- In case of \neg , there is only one sub-tree coming out of the root. In case of \lor, \land, \rightarrow these are forms.
- A Sub-formula of a formula corresponds to a sub-tree of the parse tree.
 - You can obtain the formula back by using In-order traversal of the parse tree.
 - In-order traversal can be obtained by recursively printing left subtree, printing root, printing right sub-tree.
 - Pre-order traversal can be obtained by recursively printing root, printing left sub-tree, printing right sub-tree.
 - Post-order traversal can be obtained by recursively printing left subtree, printing right sub-tree, printing root.