<u>Claims</u>

WE CLAIM:

1. A conjugate comprising (a) biological or

5 chemical molecules reacted with (b) a chemically-defined,
non-polymeric valency platform molecule of the formula:

$$G^{[1]} \left\{ T^{[1]} \right\}_{n[1]}$$
 Formula 1

or

$$G^{[2]} \left\{ L^{[2]} - J^{[2]} - Z^{[2]} (T^{[2]})_{p[2]} \right\}_{n[2]}$$
 Formula 2

20 wherein

10

each of G^[1] and G^[2], if present, is independently a linear, branched or multiply-branched chain comprising 1-2000 chain atoms selected from the group C, N, O, Si, P and S;

each of the $n^{[1]}$ moieties shown as $T^{[1]}$ and each of the $p^{[2]} \times n^{[2]}$ moieties shown as $T^{[2]}$ is independently chosen from the group NHR^{SUB} (amine), C(=0)NHNHR^{SUB} (hydrazide), NHNHR^{SUB} (hydrazine), C(=0)OH (carboxylic acid), C(=0)OR^{ESTER} (activated ester), C(=0)OC(=0)R^B (anhydride), C(=0)X (acid halide), S(=0)₂X (sulfonyl halide), C(=NRSUB)ORSUB (imidate ester), NCO (isocyanate), NCS (isothiocyanate), OC(=0)X (haloformate), C(=0)OC(=NRSUB)NHRSUB (carbodiimide adduct), C(=0)H

5

(aldehyde), $C(=0)R^B$ (ketone), SH (sulfhydryl or thiol), OH (alcohol), $C(=0)CH_2X$ (haloacetyl), $R^{ALX}X$ (alkyl halide), $S(=0)_2OR^{ALX}X$ (alkyl sulfonate), NR^1R^2 wherein R^1R^2 is -C(=0)CH=CHC(=0)- (maleimide), $C(=0)CR^B=CR^B_2$ (α,β -unsaturated carbonyl), $R^{ALX}-Hg-X$ (alkyl mercurial), and $S(=0)CR^B=CR^B_2$ (α,β -unsaturated sulfone); wherein

each X is independently a halogen of atomic number greater than 16 and less than 54 or other good leaving group;

each RALK is independently a linear, branched, or cyclic alkyl (1-20C) group;

each R^{SUB} is independently H, linear, branched, or cyclic alkyl (1-20C), aryl (6-20C), or alkaryl (7-30C); each R^{ESTER} is independently N-hydroxysuccinimidyl, p-nitrophenoxy, pentafluorophenoxy, or other activating group;

each R^B is independently a radical comprising 1-50 atoms selected from the group C, H, N, O, Si, P and S; each of the n^[2] moieties shown as L^[2], if present, is independently chosen from the group O, NR^{SUB} and S;

each of the $n^{[2]}$ moieties shown as $J^{[2]}$, if present, is independently chosen from the group C(=0) and C(=S);

25 $n^{[l]} = 1 \text{ to } 32;$ $n^{[2]} = 1 \text{ to } 32;$ $p^{[2]} = 1 \text{ to } 8;$

with the proviso that the product $n^{[2]} \times p^{[2]}$ be greater than 1 and less than 33;

each of the $n^{[2]}$ moieties shown as $Z^{[2]}$ is independently a radical comprising 1-200 atoms selected from the group C, H, N, O, Si, P and S, containing

30

attachment sites for at least p^[2] functional groups on alkyl, alkenyl, or aromatic carbon atoms.

- 2. A conjugate according to claim 1, wherein the biological molecules comprise polynucleotide duplexes of at least about 20 base pairs each bound to the valency platform molecule, the duplexes each having a significant binding activity for human systemic lupus erythematosus anti-dsDNA autoantibodies.
- 3. A conjugate according to claim 1, wherein the biological or chemical molecules are selected from the group consisting of carbohydrates, lipid,
 lipopolysaccharides, peptides, proteins, glycoproteins, single-stranded or double-stranded oligonucleotides, haptens, or chemical analogs thereof such as mimotopes, aptamers.
- 4. A conjugate according to claim 1, wherein the biological or chemical molecules are analogs of immunogens wherein (a) the analog binds specifically to B cells to which the immunogen binds specifically and (b) the conjugate lacks a T cell epitope.
 - 5. The conjugate of claim 1, wherein the valency platform molecule is derivatized by a reagent selected from the group consisting of DABA, BAHA, BAHA $_{ox}$, and AHAB.
- 30 6. The conjugate of claim 2, wherein a linker molecule couples the duplexes to the valency platform molecule.

-.131-

- 7. The conjugate of claim 6, wherein the linker molecule is selected from the group consisting of HAD and HAD.S.
- 8. The conjugate of claim 2, wherein the duplexes are substantially homogeneous in length.
- 9. The conjugate of claim 2, wherein the duplexes are substantially homogeneous in nucleotide composition.
 - 10. The conjugate of claim 2, wherein the duplexes are 20 to 50 bp in length.
- 11. The conjugate of claim 2, wherein the duplexes are bound to the valency platform molecule at or proximate one of their ends.
- 12. The conjugate of claim 2, wherein the conjugate is a tolerogen for human systemic lupus erythematosus.
 - 13. A conjugate according to claim 2, wherein the polynucleotide duplexes have a B-DNA type helical structure and a significant binding activity for human systemic lupus erythematosus anti-dsDNA autoantibodies.
 - 14. A pharmaceutical composition for treating lupus comprising the conjugate of claim 2 formulated with a pharmaceutically acceptable injectable vehicle.
- 15. A method for treating an individual for lupus comprising administering a therapeutically effective amount of the composition claim 14 to an individual in need of such treatment.

5

10

15

20

- 16. A method for making the conjugate of claim 2, comprising:
- (a) bonding a multiplicity of single-stranded polynucleotides of at least about 20 base pairs each on the valency platform molecule; and
- (b) annealing complementary single-stranded polynucleotides to the single-stranded polynucleotides conjugated to the valency platform molecule to form said duplexes.
- 17. A pharmaceutical composition for treating an antibody-mediated pathology comprising a therapeutically effective amount of the conjugate of claim 2, combined with a pharmaceutically acceptable carrier.
- 18. A method of inducing specific B cell anergy to an immunogen in an individual comprising administering to the individual an effective amount of the conjugate of claim 17.
- 19. A method of treating an individual for an antibody-mediated pathology in which undesired antibodies are produced in response to an immunogen comprising administering a therapeutically effective amount of the conjugate of claim 17 to the individual.
- 20. A method for making a conjugate according to claim 2, comprising
- (a) covalently bonding the analog of the immunogen lacking T cell epitopes to the chemically-defined valency platform molecule to form a conjugate; and
- (b) recovering the conjugate from the reaction 35 mixture.

21. A chemically-defined, non-polymeric valency platform molecule of the formula:

$$G^{[6]} \left\{ \quad O - C(=0) - N R^{SUB} - Q^{[6]} (T^{[6]})_{p[6]} \right\} \quad \text{Formula 6}$$

or

$$G^{[7]} \left\{ O - C(=0) - N \left[Q^{[7]} (T^{[7]})_{p[7]/2} \right]_{2} \right\}$$
 Formula 7

wherein

15

each of G^[6] and G^[7], if present, is independently a linear, branched or multiply-branched chain comprising 1-2000 chain atoms selected from the group C, N, O, Si, P and S;

each of the $n^{[6]} \times p^{[6]}$ moieties shown as $T^{[6]}$ and each of the $n^{(7)} \times p^{(7)}$ moieties shown as $T^{(7)}$ is independently 20 chosen from the group NHR^{SUB} (amine), C(=0)NHNHR^{SUB} (hydrazide), NHNHR^{SUB} (hydrazine), C(=0)OH (carboxylic acid), C(=0)OR^{ESTER} (activated ester), $C(=0)OC(=0)R^B$ (anhydride), C(=0)X(acid halide), $S(=0)_2X$ (sulfonyl halide), $C(=NR^{SUB})OR^{SUB}$ 25 (imidate ester), NCO (isocyanate), NCS (isothiocyanate), OC(=0)X (haloformate), $C(=0)OC(=NR^{SUB})NHR^{SUB}$ (carbodiimide adduct), C(=0)H (aldehyde), C(=0)RB (ketone), SH (sulfhydryl or thiol), OH (alcohol), C(=0) CH₂X (haloacetyl), RALKX (alkyl halide), S(=0)20RALKX (alkyl 30 sulfonate), $NR^{1}R^{2}$ wherein $R^{1}R^{2}$ is -C(=0)CH=CHC(=0)-(maleimide), $C(=0) CR^B = CR^B$, $(\alpha, \beta$ -unsaturated carbonyl),

5

 R^{ALK} -Hg-X (alkyl mercurial), and $S(=0) CR^B = CR^B_2$ (α, β -unsaturated sulfone); wherein

each X is independently a halogen of atomic number greater than 16 and less than 54 or other good leaving group;

each RAIK is independently a linear, branched, or cyclic alkyl (1-20C) group;

each R^{SUB} is independently H, linear, branched, or cyclic alkyl (1-20C), aryl (1-20C), or alkaryl (1-30C);

each R^{ESTER} is independently N-hydroxysuccinimidyl, p-nitrophenoxy, pentafluorophenoxy, or other activating group;

each R^B is independently a radical comprising 1-50 atoms selected from the group C, H, N, O, Si, P and S;

$$n^{[6]} = 1 \text{ to } 32;$$

 $p^{[6]} = 1 \text{ to 8};$

with the proviso that the product $n^{[6]} \times p^{[6]}$ be greater than 1 and less than 33;

$$n^{[7]} = 1$$
 to 32;

$$p^{[7]} = 2, 4, 6 \text{ or } 8;$$

with the proviso that the product $n^{[7]} \times p^{[7]}$ be greater than 1 and less than 33;

each of the n^[6] moieties shown as Q^[6] and each of the $2 \times n^{[7]}$ moieties shown as Q^[7] is independently a radical comprising 1-100 atoms selected from the group C, H, N, O, Si, P and S, containing attachment sites for at least p^[6] (for Q^[6]) or p^[7]/2 (for Q^[7], where p^[7]/2 is an integer) functional groups on alkyl, alkenyl, or aromatic carbon

o functional groups on alkyl, alkenyl, or aromatic carbon atoms.