AAG – BI-SPOL-2

Regulární jazyky: Deterministické a nedeterministické konečné automaty. Determinizace konečného automatu. Minimalizace deterministického konečného automatu. Operace s konečnými automaty. Regulární gramatiky, regulární výrazy, regulární rovnice.

1 Regulární jazyky

Věta 1 (Kleeneova věta). Libovolný jazyk je regulární, právě když je přijímaný konečným automatem

1.1 Deterministické automaty

Definice 2. Deterministický konečný automat je pětice $M = (Q, \Sigma, \delta, q_0, F)$, kde

- Q konečná množina stavů
- Σ konečná abeceda
- δ zobrazeni $Q \times \Sigma \rightarrow Q$
- q₀ počáteční stav
- $F \subseteq Q$ $mno\check{z}ina\ koncov\acute{y}ch\ stav\mathring{u}$
- Konfigurace konečného automatu M (viz výše) je
 - dvojice $(q, w) \in Q \times \Sigma^*$.
 - počáteční (q_0, w)
 - koncová (q, ε) , kde $q \in F$
- **Přechod** \vdash_M je relace nad $Q \times \Sigma^*$, taková, že $(q, w) \vdash_M (p, w')$ právě tehdy, když w = aw' a $\delta(q, a) = p$ pro nějaké $a \in \Sigma, w \in \Sigma$.
- Jazyk je přijímaný DKA automatem M, jestliže existuje přechod z q_0 do $q \in F$.
- DKA nazveme **úplně úrčený**, když je zobrazení $\delta(q,a)$ definováno pro všechny dvojice stavů a vstupních symbolů.

1.2 Nedeterministické automaty

Definice 3. Nedeterministický konečný automat je pětice $M = (Q, \Sigma, \delta, q_0, F)$, kde

• δ - zobrazení $Q \times \Sigma$ do množiny všech podmnožin Q.

Stav $q \in Q$ je dosažitelný, pokud $\exists w \in \Sigma^* : (q_0, w) \vdash^* (q, \varepsilon)$. Jinak je stav nedosažitelný.

Stav $q \in Q$ je **užitečný**, pokud $\exists w \in \Sigma^*, \exists p \in F : (q, w) \vdash^* (p, \varepsilon)$. Jinak je stav zbytečný.

2 Determinizace konečného automatu

Pro každý NKA platí, že k němu existuje ekvivaletní DKA.

Jako příklad uvedeme NKA:

Determinizaci začneme odstraněním počátečních stavů a jejich nahrazení jedním počátečním stavem.

3 Minimalizace deterministického konečného automatu

TODO

4 Operace s konečnými automaty

- Sjednocení $L(M) = L(M1) \cup L(M2)$
- Průnik $L(M) = L(M1) \cap L(M2)$
- Doplněk Úplně určený DKA, $F' = Q \setminus F$
- Součin ke koncovému stavu M_1 přidáme počáteční stav M_2 ; $q_{0,M}=q_{0,M_1}, F_M=F_2$
- Iterace vytvoříme q_0 , který bude zároveň koncový a ze všech původních koncových stavů povede ε přechod do počátečního stavu q_0 .

5 Regulární gramatiky

Gramatika $G=(N,\Sigma,P,S)$ je **regulární**, jestliže každé pravidlo má tvar $A\to aB$ nebo $A\to a$, kde $A,B\in N,a\in \Sigma$, nebo tvar $S\to \varepsilon$ v případě, že S se nevyskytuje na pravé straně žádného pravidla.

6 Regulární výrazy

Definice 4. Regulární výraz V nad abecedou Σ je definován následujícím způsobem:

- 1. $\emptyset, \varepsilon, a$ jsou regulární výrazy pro všechna $a \in \Sigma$.
- 2. Jsou-li x, y regulární výrazy nad Σ , pak:
- (x + y) (sjednocení, alternativa),
- (x.y) (zřetězení) a
- $(x)^*$ (iterace)

jsou regulární výrazy nad Σ .

7 Regulární rovnice

Definice 5. Standardní soustava **regulárních rovnic** má tvar: $X_i = \alpha_{i0} + \alpha_{i1}X_1 + \alpha_{i2}X_2 + \cdots + \alpha_{in}X_n, 1 \leq i \leq n$, $kde\ X_1, X_2, \ldots, X_n$ jsou neznámé a α_{ij} jsou regulární výrazy nad abecedou Σ , která neobsahuje X_1, X_2, \ldots, X_n .