PAPER

Compactness of Finite Union of Regular Patterns and Regular **Patterns without Adjacent Variables**

Naoto TAKETA[†], Nonmember, Tomoyuki UCHIDA[†], Takayoshi SHOUDAI^{††}, Satoshi MATSUMOTO^{†††}, Yusuke SUZUKI[†], and Tetsuhiro MIYAHARA[†], Members

A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language L(p) of a regular pattern p is the set of all constant strings obtained by replacing all variable symbols in the regular pattern p with constant strings. \mathcal{RP}^k denotes the class of all sets consisting at most k ($k \ge 2$) regular patterns. For sets of regular patterns P and Q which are in the class \mathcal{RP}^k , we write $P \subseteq Q$ if for any regular pattern $p \in P$ there exits a regular pattern $q \in Q$ that is a generalization of p. In 1998 Sato et al.[4] showed that the finite set $S_2(P)$ of symbol strings is a characteristic set of $L(P) = \bigcup_{p \in P} L(p)$, where $S_2(P)$ is obtained from $P \in \mathcal{RP}^k$ by substituting variables with symbol strings of at most length 2. Sato et al.[4] also showed that \mathcal{RP}^k has compactness with respect to containment, if the number of constant symbols is greater than or equal to 2k - 1. In this paper, we check the results of Sato et al.[4] and correct the error of the proof of their theorem. Further, we consider the set \mathcal{RP}_{NAV} of all non-adjacent regular patterns, which are regular patterns without adjacent variables, and show that the set $S_2(P)$ obtained from a set P in the class $\mathcal{R}\mathcal{P}^k_{NAV}$ of at most k $(k \geq 1)$ non-adjacent regular patterns is a characteristic set of L(P). Further we show that \mathcal{RP}_{NAV}^k has compactness with respect to containment if the number of constant symbols is greater than or equal to k+2. Thus we show that we can design an efficient learning algorithm of a finite union of pattern languages of non-adjacent regular patterns with the number of constant symbols which is smaller than the case of regular patterns.

key words: Regular Pattern Language, Compactness

1. Introduction

A pattern is a string consisting of constant symbols and variable symbols [1]. For example, we consider constant symbols a, b, c and variable symbols x, y, then axbxcyis a pattern. \mathcal{P} denotes the set of all patterns. a pattern $p \in \mathcal{P}$, the pattern language generated by p, denoted by L(p), or simply called a pattern language, is the set of all strings obtained by replacing all variable symbols with constant symbol strings, where the same variable symbol is replaced by the same constant string. For example the pattern language L(axbxcy) generated by the above pattern axbxcy denotes {aubucw | u and w are constant strings that are not ε }. There are many researches dealing with pattern languages [2]–[4], [6]– [8].

A pattern where each variable symbol appears at most

Manuscript received January 1, 2015.

†††Faculty of Science, Tokai University

DOI: 10.1587/trans.E0.??.1

once is called a regular pattern. For example, a pattern axbxcy is not a regular pattern, but a pattern axbzcy with variable symbols x, y, z is a regular pattern. \mathcal{RP} denotes the set of all regular patterns. If a pattern $p \in \mathcal{P}$ is obtained from a pattern $a \in \mathcal{P}$ by replacing variable symbols in a with patterns, we say that q is a generalization of p and denote this by $p \leq q$. For example, a pattern q = axz is a generalization of a pattern p = axbxcy, because p is obtained from q by replacing the variable z in q with a pattern bxcy. So we write $p \leq q$. For patterns $p, q \in \mathcal{P}$, it is obvious that $p \leq q$ implies $L(p) \subseteq L(q)$. But, the converse, that is, the statement that $L(p) \subseteq L(q)$ implies $p \leq q$ does not always hold. With respect to this statement, Mukouchi[9] showed that if the number of constant symbols is greater than or equal to 3, for any regular pattern $p, q \in \mathcal{RP}, L(p) \subseteq L(q)$ implies $p \leq q$.

We denote by \mathcal{RP}^+ the class of all non-empty finite sets of regular patterns and by \mathcal{RP}^k the class of at most k ($k \ge 2$) regular patterns. For a set of regular patterns $P \in \mathcal{RP}^k$ we define $L(P) = \bigcup_{p \in P} L(p)$ and consider the class \mathcal{RPL}^k of regular pattern languages of \mathcal{RP}^k , where $\mathcal{RPL}^k = \{L(P) \mid$ $P \in \mathcal{RP}^k$ Let $P, Q \in \mathcal{RP}^k$ and $Q = \{q_1, \dots, q_k\}$. We denote by $P \sqsubseteq Q$ that for any regular pattern $p \in P$ there exists a regular pattern q_i such that $p \leq q_i$ holds. From definition, it is obvious that $P \sqsubseteq Q$ implies $L(P) \subseteq L(Q)$. Then Sato et al.[4] shows that if $k \ge 3$ and the number of constant symbols is 2k-1 then the finite set $S_2(P)$ of constant symbols obtained from $P \in \mathcal{RP}^k$ by substituting variable symbols with constant strings of at most 2 length is a characteristic set of L(P), that is, for any regular pattern language $L' \in \mathcal{RPL}^k$, $S_2(P) \subseteq L'$ implies $L(P) \subseteq L'$. Thus they shows that the following three statements: (i) $S_2(P) \subseteq L(Q)$, (ii) $P \subseteq Q$ and (iii) $L(P) \subseteq L(Q)$ are equivalent. But the Lemma14 [4], which is used in this results, contains an error. In this paper we correct this lemma and give a correct proof showing the equivalence of the three statements shown in [4]. Sato et al.[4] shows that \mathcal{RP}^k has compactness with respect to containment if the number of constant symbols is greater than or equal to 2k-1. On the contrary to this result, we show that the set $S_2(P)$ obtained from a set P in the class \mathcal{RP}_{NAV}^k of at most k $(k \ge 1)$ regular patterns having non-adjacent variables is a characteristic set of L(P). Further, we show that if the number of constant symbols is greater than or equal to k + 2 then \mathcal{RP}_{NAV}^{k} has compactness with respect to containment. In Table 1 we

Manuscript revised January 1, 2015.

[†]Graduate School of Information Sciences, Hiroshima City University

^{††}Department of Computer Science and Engineering, Fukuoka Institute of Technology

summarize the all results in this paper.

 Table 1
 The conditions of the number of constant symbols with respect to the compactness of inclusion

k	2	≥ 3
\mathcal{RP}^k	≥ 4	$\geq 2k-1$
\mathcal{RP}^k_{NAV}	≥ k + 2	

関連研究を含めて以下を膨らませる必要がある。

The results of this paper suggest efficient learning algorithms for the sets of regular patterns representing finite unions of languages and the sets of regular patterns having non-adjacent variables.

This paper is organized as follows. In Sect.2 as preparations, we give definitions of pattern languages, regular pattern languages and compactness, and then introduce the results of Sato et al.[4]. In Sect.3, we show that $S_2(P)$ is a characteristic set of L(P) in \mathcal{RPL}^k and \mathcal{RP}^k has compactness with respect to containment. In Sect.4, we propose regular patterns having non-adjacent variables, show that $S_2(P)$ obtained from a set P in \mathcal{RP}^k_{NAV} is a characteristic set of L(P), and \mathcal{RP}^k_{NAV} has compactness with respect to containment.

2. Preliminaries

2.1 Basic definitions and notations

Let Σ be a non-empty finite set of constant symbols. Let X be an infinite set of variable symbols such that $\Sigma \cap X = \emptyset$ holds. Then, a *string* on $\Sigma \cup X$ is a sequence of symbols in $\Sigma \cup X$. Particularly, the string having no symbol is called the *empty string* and is denoted by ε . We denote by $(\Sigma \cup X)^*$ the set of all strings on $\Sigma \cup X$ and by $(\Sigma \cup X)^+$ the set of all strings on $\Sigma \cup X$ except ε , i.e., $(\Sigma \cup X)^+ = (\Sigma \cup X)^* \setminus \{\varepsilon\}$.

A pattern on $\Sigma \cup X$ is a string in $(\Sigma \cup X)^*$. Note that the empty string ε is a pattern on $\Sigma \cup X$. A pattern p is said to be regular if each variable symbol appears at most once in p. The length of p, denote by |p|, is the number of symbols in p. Note that $|\varepsilon| = 0$ holds. The set of all patterns and regular patterns on $\Sigma \cup X$ are denoted by $\mathcal P$ and $\mathcal R\mathcal P$, respectively. For a set S, we denote by $\sharp S$ the number of elements in S. Let p,q be strings. If p and q are equal as strings, we denote it by p=q. We denote by $p\cdot q$ the string obtained from p and q by concatenating q after p. Note that for a string p and the empty string ε , $p\cdot \varepsilon = \varepsilon \cdot p = p$.

A substitution θ is a mapping from $(\Sigma \cup X)^*$ to $(\Sigma \cup X)^*$ such that (1) θ is a homomorphism with respect to string concatenation, i.e., $\theta(p \cdot q) = \theta(p) \cdot \theta(q)$ holds for patterns p and q, (2) $\theta(\varepsilon) = \varepsilon$ holds, (3) for each constant symbol $a \in \Sigma$, $\theta(a) = a$ holds, and (4) for each variable symbol $x \in X$, $|\theta(x)| \ge 1$ holds. Let x_1, \ldots, x_n are variable symbols and p_1, \ldots, p_n non-empty patterns. The notation $\{x_1 := p_1, \ldots, x_n := p_n\}$ denotes a substitution that replaces each variable symbol x_i with a non-empty pattern p_i for $i \in \{1, \ldots, n\}$. For a pattern p and a substitution $\theta = \{x_1 := p_1, \ldots, x_n := p_n\}$, we denote by $p\theta$ a new pattern obtained

from p by replacing variable symbols x_1, \ldots, x_n in p with patterns p_1, \ldots, p_n according to θ , respectively.

For a pattern p and q, the pattern q is a *generalization* of p, or p is an *instance* of q, denoted by $p \leq q$, if there exists a substitution θ such that $p = q\theta$ holds. If $p \leq q$ and $p \geq q$ hold, we denote it by $p \equiv q$. The notation $p \equiv q$ means that p and q are equal as strings except for variable symbols. For a pattern p, the *pattern language* of p, denoted by L(p), is the set $\{w \in \Sigma^* \mid w \leq p\}$. For patterns p and q, it is clear that L(p) = L(q) if $p \equiv q$, and $L(p) \subseteq L(q)$ if $p \leq q$. Note that $L(\varepsilon) = \{\varepsilon\}$. In particular, if p is a regular pattern, we say that L(p) is a *regular pattern language*. The set of all pattern languages and regular patterns languages are denoted by \mathcal{PL} and \mathcal{RPL} , respectively.

Lemma 1 (Mukouchi(Theorem 6.1, [9])): Let p and q be regular patterns. Then $p \leq q$ if and only if $L(p) \subseteq L(q)$.

Next, we consider unions of pattern languages. The class of all non-empty finite subsets of \mathcal{P} is denoted by \mathcal{P}^+ , i.e., $\mathcal{P}^+ = \{P \subseteq \mathcal{P} \mid 0 < \sharp P < \infty\}$. For a positive integer k i.e., k > 0, the class of non-empty sets consisting of at most k patterns, i.e., $\mathcal{P}^k = \{P \subseteq \mathcal{P} \mid 0 < \sharp P \leq k\}$. For a set P of patterns, the pattern language of P, denoted by L(P), is the set $\bigcup_{p \in P} L(p)$. We denote by \mathcal{PL}^k the class of unions of at most k pattern languages, i.e., $\mathcal{PL}^k = \{L(P) \mid P \in \mathcal{P}^k\}$. In a similar way, we also define \mathcal{RP}^+ , \mathcal{RP}^k and \mathcal{RPL}^k . For P, Q in \mathcal{P}^+ , the notation $P \sqsubseteq Q$ means that for any $p \in P$ there is a pattern $q \in Q$ such that $p \preceq q$ holds. It is clear that $P \sqsubseteq Q$ implies $L(P) \subseteq L(Q)$. However, the converse is not valid in general.

2.2 Characteristic sets

Definition 1: Let C be a class of languages, L a language in C and S a non-empty finite subset of L. We say that S is a *characteristic* set of L within C if for any $L' \in C$, $S \subseteq L'$ implies $L \subseteq L'$.

Let n be a positive integer and p a regular pattern. We denote by $S_n(p)$ the set of all strings in Σ^* obtained by replacing all variable symbols in p with strings in Σ^+ of length at most n. Moreover, for a positive integer n and a set $P \in \mathcal{RP}^+$, let $S_n(P) = \bigcup_{p \in P} S_n(p)$. It is clear that $S_n(P) \subseteq S_{n+1}(P) \subseteq L(P)$ for any positive integer n.

Theorem 1 (Sato et al.(Theorem 8, [4])): Let k be a positive integer and $P \in \mathcal{RP}^k$. Then, there exists a positive integer n such that $S_n(P)$ is a characteristic set of L(P) within \mathcal{RPL}^k .

Theorem 2 (Sato et al.(Lemma 9, [4])): Let p, q, p_1 , p_2 , q_1 , q_2 , q_3 be regular patterns in \mathcal{RP} and x a variable symbol such that $p = p_1 x p_2$ and $q = q_1 q_2 q_3$ hold. Then $p \leq q$ if the following three conditions (i), (ii) and (iii) are holds:

- (i) $p_1 \leq q_1 q_2$, (ii) $p_2 \leq q_2 q_3$,
- (iii) q_2 contains at least one variable symbol.

Lemma 2 (Sato et al.(Lemma 10, [4])): Suppose $\sharp \Sigma \geq 3$.

Let p_1 , p_2 , q be regular patterns in \mathcal{RP} and x a variable symbol. Let a, b and c be mutually distinct constant symbols in Σ . If $p_1ap_2 \leq q$, $p_1bp_2 \leq q$ and $p_1cp_2 \leq q$, then $p_1xp_2 \leq q$ holds.

Lemma 3 (Sato et al.(Lemma 13, [4])): Suppose $\sharp \Sigma \geq 3$. Let p_1, p_2, q_1, q_2 be regular patterns in \mathcal{RP} and x a variable symbol. Let a, b be constant symbols in Σ with $a \neq b$ and w a string on Σ^* . Let $p = p_1 AwxwBp_2$ and $q = q_1 AwBq_2$ be regular patterns that satisfy the following three conditions:

- (i) $p_1 A w \leq q_1$,
- (ii) $wBp_2 \leq q_2$,
- (iii) $(A, B) \in \{(a, b), (b, a)\}.$

Then, we have that $p\{x := a\} \leq q$ and $p\{x := b\} \leq q$ hold but $p \not \leq q$.

From Lemma 2, the following Theorem holds.

Theorem 3 (Sato et al.(Theorem 10, [4])): Let k be a positive integer. Suppose $\sharp \Sigma \geq 2k + 1$. For $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^k$, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_1(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

The following example 1 shows that Theorem 3 does not hold if $\sharp \Sigma \leq 2k$ holds.

Example 1: Let k be a positive integer and $\Sigma = \{a_1, \ldots, a_k, b_1, \ldots, b_k\}$. Let w_1, \ldots, w_k be regular patterns in \mathcal{RP} such that $w_k = \varepsilon$ and for $i = 1, 2, \ldots, k - 1$, $w_i = w_{i+1}b_{i+1}a_{i+1}w_{i+1}$ hold. Let p, q_1, \ldots, q_k be regular patterns in \mathcal{RP} such that $p = x_1a_1w_1xw_1b_1x_2$ and for $i = 1, 2, \ldots, k, q_i = x_1a_iw_ib_ix_2$ hold. Q a set $\{q_1, \ldots, q_k\}$ in \mathcal{RP}^k .

$$\begin{aligned} p\{x \coloneqq a_i\} &= (x_1 a_1 w_1) a_i (w_1 b_1 x_2) \\ &= (x_1 a_1 w_1) a_i (w_i b_i w^{(i)}) b_1 x_2 \\ &= (x_1 a_1 w_1) (a_i w_i b_i) (w^{(i)} b_1 x_2) \\ &= q_i \{x_1 \coloneqq x_1 a_1 w_1, x_2 \coloneqq w^{(i)} b_1 x_2\} \\ &\preceq q_i, \\ p\{x \coloneqq b_i\} &= (x_1 a_1 w_1) b_i (w_1 b_1 x_2) \\ &= x_1 a_1 (w'^{(i)} a_i w_i) b_i (w_1 b_1 x_2) \\ &= (x_1 a_1 w'^{(i)}) a_i w_i b_i (w_1 b_1 x_2) \\ &= q_i \{x_1 \coloneqq x_1 a_1 w'^{(i)}, x_2 \coloneqq w_1 b_1 x_2\} \\ &\preceq a_i. \end{aligned}$$

Hence, $S_1(p) \subseteq L(Q)$ holds. However, from $p \npreceq q_i$, $L(p) \nsubseteq L(q_i)$ holds for i = 1, 2, ..., k.

From Theorem 3, we have the following corollary.

Corollary 1 (Sato et al.(Corollary 12, [4])): Suppose $\sharp \Sigma \geq$ 3. For two regular patterns p and q, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_1(p) \subseteq L(q)$$
, (ii) $p \leq q$, (iii) $L(p) \subseteq L(q)$.

2.3 Basic word equations

Proposition 1: Let w be a string in Σ^* and a, b constant symbols in Σ . If

$$wa = bw \tag{1}$$

holds, then a = b holds.

Proof. Since it is trivial, we omit the proof.

Proposition 2: Let w be a string in Σ^* and a, b, c, d constant symbols in Σ . If

$$wda = bcw (2)$$

holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

Proof. We will prove this proposition by induction on the length of w, i.e., |w|.

- |w| = 0, 1, 2, 3: it is straightforward to observe that $(b, c) \in \{(a, d), (d, a)\}$ holds.
- $|w| \ge 4$: We assume that for any string u with $0 \le |u| < n$, if uda = bcu holds, $(b, c) \in \{(a, d), (d, a)\}$ holds. Since the string w has a prefix bc and a suffix da, there exists a string u with |u| = |w| 4 < |w| such that w = bcuda holds. Since wda = bcw, we have bcudada = bcbcuda, and then uda = bcu. Thus, from the assumption, we get $(b, c) \in \{(a, d), (d, a)\}$.

From the above, we conclude that if wda = bcw holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

The conclusion from Proposition 2 shows that $(a, d) \in \{(b, c), (c, b)\}$. Therefore, if the equation daw = wbd holds, we arrive at the same conclusion.

Proposition 3: Let w, w' be strings of constant symbols in Σ and a, b, c, d constant symbols in Σ . If

$$wdaw' = w'bcw (3)$$

holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

Proof. We will prove this proposition by an induction on |w| + |w'|. Without loss of generality, we assume that $|w| \ge |w'|$ because, if |w| > |w'|, we arrive at the same conclusion that $(a,d) \in \{(b,c),(c,b)\}$ holds.

• $|w| \ge 0$ and |w'| = 0: Eq. (3) reduces to wda = bcw. By Proposition 2, $(b, c) \in \{(a, d), (d, a)\}$ holds.

We assume that for constant strings u and u' with |u| + |u'| < |w| + |w'|, if udau' = u'bcu holds, then $(b,c) \in \{(a,d),(d,a)\}$ holds. We divide the relations between |w| and |w'| into the following four cases:

• $0 < |w'| \le |w| \le |w'| + 1$: When either |w| = |w'| or |w| = |w'| + 1, Eq. (3) is illustrated in Figs. 1 and 2, respectively. If |w| = |w'|, (b, c) = (d, a) holds. If |w| = |w'| + 1, a = c and w = w'b = dw' hold. From Proposition 1, we deduce that b = d. Therefore,

Fig. 1 Case |w| = |w'| in Proposition 3

Fig. 2 Case |w| = |w'| + 1 in Proposition 3

Fig. 3 Case $|w'| + 2 \le |w| \le 2|w'| - 1$ in Proposition 3

 $(b, c) \in \{(a, d), (d, a)\}$ holds.

- $|w'| + 2 \le |w| \le 2|w'| 1$: In Eq. 3, since |wdaw'| =|w'bcw| = |w| + |w'| + 2, a suffix of w overlaps with a prefix of w, as illustrated in Fig. 3. That is, there exists a constant string u of length 2|w| - (|w| + |w'| +2) = |w| - |w'| - 2 such that u is both a prefix and a suffix of w. Since uda has a length of |w| - |w'|, it is also a prefix of w. Similarly, bcu is a suffix of w. Because $|w| - (|uda| + |bcu|) = 2|w| - |w'| \ge 1$, there exist a constant string u' of length 2|w'| - |w| such that w = udavbcu holds. Since w' is a suffix of w and |u'bcu| = (2|w'| - |w|) + 2 + (|w| - |w'| - 2) = |w'|,we have w' = u'bcu. Similarly, w' = udau'. Thus, we derive the equation u'bcu = udau'. Since |u| = $|w|-|w'|-2 \le |w|-3 < |w| \text{ and } |u'|=2|w'|-|w|<|w|,$ i.e., |u| + |u'| < |w| + |w'|, the induction hypothesis on |u| + |u'| implies that $(b, c) \in \{(a, d), (d, a)\}$ holds.
- $2|w'| \le |w| \le 2|w'| + 3$: When |w| = 2|w'|, it is straightforward to observe that w = w'w'. Therefore, w'da = bcw' holds, as illustrated in Fig. 4. From Proposition 2, $(b,c) \in \{(a,d),(d,a)\}$ holds. When |w| = 2|w'| + i (i = 1,2,3), Eq. (3) is depicted in Figs. 5, 6, and 7, respectively. When |w| = 2|w'| + 2, it is clear that (b,c) = (d,a). When |w| = 2|w'| + 1 and |w| = 2|w'| + 3, Proposition 1 implies that (b,c) = (a,d) holds.
- $2|w'| + 4 \le |w|$: Since the strings w'bc and adw' are a prefix and a suffix of w, respectively, and |w'bc| + |adw'| = 2|w'| + 4, there exists a string u with $|u| \ge 0$ such that w = w'bcudaw' holds. From Eq. (3), w'bcudaw'daw' = w'bcw'bcudaw', i.e., udaw' = w'bcu holds, as illustrated in Fig. 8. Let u' = w'. Since |u| + |u'| = |w| (2|w'| + 4) + |w'| < |w| + |w'|, the induction hypothesis on |u| + |u'| implies that $(b, c) \in \{(a, d), (d, a)\}$ holds.

From the above, we conclude that if wdaw' = w'bcw, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

Fig. 4 Case |w| = 2|w'| in Proposition 3

Fig. 5 Case |w| = 2|w'| + 1 in Proposition 3

Fig. 6 Case |w| = 2|w'| + 2 in Proposition 3

Fig. 7 Case |w| = 2|w'| + 3 in Proposition 3

Fig. 8 Case $2|w'| + 4 \le |w|$ in Proposition 3

3. Compactness for Sets of Regular Patterns

3.1 Compactness

In this section, we define the compactness of sets of regular patterns, formally. Then, if $\sharp \Sigma \geq 2k-1$ holds, we show that \mathcal{RP}^k has compactness with respect to the containment.

Definition 2: Let C be a subset of \mathcal{RP}^+ . For any regular pattern $p \in \mathcal{RP}$ and any set $Q \in C$, the set C said to have *compactness with respect to containment* if there exists a regular pattern $q \in Q$ such that $L(p) \subseteq L(q)$ holds if $L(p) \subseteq L(Q)$ holds.

Let $D \subset \mathcal{RP}$ with $\sharp D=2$ or 3, and let p,q be regular patterns in \mathcal{RP} . In the following subsections (Subsecs. 3.2–3.5), we provide the conditions on D under which the implication holds: if $p\{x:=r\} \preceq q$ for all $r \in D$, then $p\{x:=xy\} \preceq q$. It is obvious if the variable symbol x does not appear in p. Therefore, in the following lemmas and

propositions, let $p = p_1 x p_2$, where $p_i \in \mathcal{RP}$ (i = 1, 2) and x is a variable symbol.

First of all, we consider the correspondence from $r \in D$ to some string in q when $p\{x := r\} \leq q$ holds. The symbols in D correspond to either a variable or a constant symbol in q. If D has a constant string ab of length 2 for $b, c \in \Sigma$, there are three possible strings in q that correspond to ab in $p\{x := bc\}$ as follows: For $y' \in X$,

(a)
$$ab$$
, (b) ay_1 , (c) y_1b .

If there exists (b) ay_1 in q that corresponds to bc, i.e., there exist q_1 and $q_2 \in \mathcal{RP}$ such that

- (1) $p_1 a b p_2 \leq q_1 a y_1 q_2$,
- (2) $p_1 \leq q_1$, and
- (3) either $p_2 \leq q_2$ or $p_2 \leq y_1'q_2$ for $y_1' \in X$.

Let $D' = (D \setminus \{ab\}) \cup \{ay\}$. It is straightforward to see that $p\{x := ay\} = p_1 ay p_2 \le q_1 ay_1 q_2$ holds. Thus, $p\{x := r\} \le q$ for all $r \in D'$ holds. Let $D'' = (D \setminus \{ab\}) \cup \{yb\}$. By a similar discussion, if there exists $(c) y_1 b$ in q that corresponds to ab, $p\{x := r\} \le q$ for all $r \in D''$ holds. Therefore, in this paper, we make the following definition on D:

Definition 3: Let $p, q \in \mathcal{RP}$. Let $D \subset \mathcal{RP}$ such that for all $r \in D$, |r| = 2 and $p\{x := r\} \leq q$ holds. Then, if for any $ab \in D$ $(a, b \in \Sigma)$, $p\{x := ay\} \nleq q$ and $p\{x := yb\} \nleq q$ hold for any $g \in X$ that does not appear in g, the set g is said to be *maximally generalized on* g g.

3.2
$$D = \{ay, by\}$$
 and $D = \{ya, yb\}$

Lemma 4 (Sato et al.[4]): Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and let p, q be regular patterns on Σ . Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol that does not appear in p and q:

- (i) $D = \{ay, by\} (a \neq b),$
- (ii) $D = \{ya, yb\} (a \neq b)$.

Then, if $p\{x := r\} \le q$ holds for all $r \in D$, then $p\{x := xy\} \le q$ holds.

Proof. We assume that $p\{x := xy\} \not\preceq q$ in order to derive a contradiction. In the case of (ii), by reversing the strings p and q, we can prove that the assumption $p\{x := xy\} \preceq q$ leads to a contradiction, as in the case of (i). Therefore, in the following, we consider only the case of (i): $D = \{ay, by\}$ $(a \neq b)$.

Since $p\{x := xy\} \not\preceq q$, $p_1ayp_2 \preceq q$ and $p_1byp_2 \preceq q$, there exist regular patterns q_1, q_2 on Σ such that $q = q_1ay_1wby_2q_2$ or $q = q_1by_1way_2q_2$ for some variable symbols y_1, y_2 ($y_1 \neq y_2$) and a constant string w ($|w| \geq 0$) from Theorem 2. When $q = q_1ay_1wby_2q_2$ holds, the following four conditions hold: For $y_1', y_2' \in X$,

(1)
$$p_1 \leq q_1$$
, (1') $p_2 \leq wby_2q_2$ or $p_2 \leq y_1'wby_2q_2$,

(2)
$$p_1 \le q_1 a y_1 w$$
, (2') $p_2 \le q_2$ or

Fig. 9 Let $\Sigma = \{a, b, c, d, e, f, g\}$ and $p, q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. These figures (1) and (2) express two cases $D = \{ay, by\}$ and $D = \{ya, yb\}$, respectively. In these cases, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$ holds.

$$p_2 \leq y_2' q_2$$
.

From (2), there exist regular patterns p_1', p_1'' such that $p_1 = p_1'p_1'', p_1' \le q_1a$ and $p_1'' \le y_1w$ hold. Therefore, since $p = p_1xp_2 = p_1'p_1''xp_2$, if $p_2 \le wby_2q_2$ of (1') holds, $p \le q_1ap_1''xwby_2q_2 \equiv q\{y_1 := p_1''x\}$ holds. If $p_2 \le y_1'wby_2q_2$ of (1') holds, $p \le q_1ap_1''xy_1'wby_2q_2 = q\{y_1 := p_1''xy_1'\}$ holds. Thus, $p\{x := xy\} \le q\{y_1 := p_1''xyy_1'\}$ holds. Hence, $p \le q$ holds. This contradicts the assumption. Therefore, we conclude that if $p\{x := r\} \le q$ for all $r \in \{ay, by\}$ $(a \ne b)$, then $p\{x := xy\} \le q$ holds.

Let p,q be regular patterns in \mathcal{RP} . In this paper, the statement like Lemma 4 is illustrated by a bipartite graph (Σ, Σ, E) where $E = \{(a,b) \in \Sigma \times \Sigma \mid p\{x := ab\} \leq q\}$. For example, the conditions (i) and (ii) in Lemma 4 are illustrated in (1) and (2) in Fig. 9, respectively.

3.3
$$D = \{ya, bc, dy\}$$

Lemma 5: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, q regular patterns on $\Sigma \cup X$. Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q:

$$D = \{ya, bc, dy\} (b \notin \{a, d\} \text{ and } c \notin \{a, d\}).$$

Then, if $p\{x := r\} \le q$ for all $r \in D$ and D is maximally generalized on (p,q), then $p\{x := xy\} \le q$.

Proof. We assume that $p\{x := xy\} \not\preceq q$ in order to derive a contradiction. Since D is maximally generalized on (p,q), the regular pattern q can be expressed in one of the following forms: Let y_1, y_2 be distinct variable symbols in X and q_1, q_2, w, w' be either the empty string or a regular pattern on $\Sigma \cup X$.

- (5-1) $q = q_1 AwBw'Cq_2$, where $\{A, B, C\} = \{y_1a, bc, dy_2\}$,
- (5-2) $q = q_1 AwBq_2$, where $\{A, B\} = \{dy_1 a, bc\}$,
- (5-3) $q = q_1 AwBq_2$, where $\{A, B\} = \{y_1 ay_2, bc\} (a = d)$.

(5-1) Case of $q = q_1AwBw'Cq_2$, where $\{A, B, C\} = \{y_1a, bc, dy_2\}$: At first, we prove the following three claims: Claim 1. $B \notin \{y_1a, dy_2\}$.

Proof of Claim 1. Suppose that $(A, B, C) = (dy_2, y_1a, bc)$. The following conditions must be satisfied: For $y'_1, y'_2 \in X$,

(1)
$$p_1 \leq q_1$$
, (1') $p_2 \leq wy_1aw'bcq_2$ or $p_2 \leq y_2'wy_1aw'bcq_2$,

(2)
$$p_1 \leq q_1 dy_2 w$$
 or $p_1 \leq q_1 dy_2 w y_1'$, (2') $p_2 \leq w' b c q_2$,

(3)
$$p_1 \leq q_1 dy_2 w y_1 a w'$$
, (3') $p_2 \leq q_2$.

When $p_2 \preceq wy_1aw'bcq_2$ in (1') holds, let $q_1' = q_1dy_2$, $q_2' = wy_1aw'$, $q_3' = bcq_2$. Since $p_1 \preceq q_1dy_2wy_1aw'$ holds from (3), both $p_1 \preceq q_1'q_2'$ and $p_2 \preceq q_2'q_3'$ hold, and q_2' contains a variable symbol. When $p_2 \preceq y_2'wy_1aw'bcq_2$ in (1') holds, let $q_1' = q_1d$, $q_2' = y_2wy_1aw'$, $q_3' = bcq_2$. Since $p_1 \preceq q_1dy_2wy_1aw'$ holds from (3), both $p_1 \preceq q_1'q_2'$ and $p_2 \preceq q_2'q_3'$ hold, and q_2' contains a variable symbol. In both cases, by Theorem 2, $p \preceq q$ holds. This contradicts the assumption that $p\{x := xy\} \npreceq q$.

Similarly, we can show that any case where $(A, B, C) = (y_1a, dy_2, bc)$, (bc, y_1a, dy_2) , or (bc, dy_2, y_1a) also contradicts the assumption. Therefore, we have $B \notin \{y_1a, dy_2\}$. (End of Proof of Claim)

Claim 2.
$$(A, B, C) = (y_1a, bc, dy_2)$$
.

Proof of Claim 2. From *Claim* 1, we have B = bc. Suppose that $(A, B, C) = (dy_2, bc, y_1a)$, i.e., $q = q_1dy_2wbcw'y_1aq_2$ holds. Then, the following conditions must be satisfied: For $y'_1, y'_2 \in X$,

(1)
$$p_1 \leq q_1$$
,
 $(1')$ $p_2 \leq wbcw'y_1aq_2$ or
 $p_2 \leq y_2'wbcw'y_1aq_2$,

(2)
$$p_1 \leq q_1 dy_2 w$$
, (2') $p_2 \leq w' y_1 a q_2$,

(3)
$$p_1 \leq q_1 dy_2 wbcw'$$
 or (3') $p_2 \leq q_2$.
 $p_1 \leq q_1 dy_2 wbcw'y'_1$,

From $p_1 \leq q_1 dy_2 w$ in (2), p_1 is expressed as $p_1' p_1''$ for some p_1' and p_1'' , where $p_1' \leq q_1 d$ and $p_1'' \leq y_2 w$. When $p_2 \leq wbcw'y_1aq_2$ in (1'), we have $p = p_1 xp_2 = p_1' p_1'' xp_2 \leq q_1 dp_1'' xwbcw'y_1aq_2 = q\{y_2 := p_1'' x\}$. Thus, $p\{x := xy\} \leq q\{y_2 := p_1'' xy\}$ holds. This contradicts the assumption that $p\{x := xy\} \nleq q$. When $p_2 \leq y_2'wbcw'y_1aq_2$ in (1'), we similarly have $p = p_1 xp_2 = p_1' p_1'' xp_2 \leq q_1 dp_1'' xy_2'wbcw'y_1aq_2 = q\{y_2 := p_1'' xy_2'\}$. Thus, $p\{x := xy\} \leq q\{y_2 := p_1'' xyy_2'\}$ holds. This also contradicts the assumption. Therefore, we conclude that $(A, B, C) = (y_1a, bc, dy_2)$. (End of Proof of Claim)

From *Claim* 2, The regular pattern q is expressed as $q_1y_1awbcw'dy_2q_2$, where $b \notin \{a,d\}$ and $c \notin \{a,d\}$. If $p\{x := xy\} \not\preceq q$ holds, the following conditions must be satisfied: For $y'_1, y'_2 \in X$,

(1)
$$p_1 \leq q_1$$
 or $p_1 \leq q_1 y_1'$, (1') $p_2 \leq wbcw'dy_2q_2$,

(2)
$$p_1 \leq q_1 y_1 a w$$
, (2') $p_2 \leq w' d y_2 q_2$,

Fig. 10 Case (5-1) in Lemma 5: Relation of strings w, w', and w''

(3)
$$p_1 \leq q_1 y_1 awbcw'$$
, (3') $p_2 \leq q_2$ or $p_2 \leq y'_2 q_2$.

Claim 3. w and w' contain no variable symbols.

Proof of Claim 3. Let $q_1' = q_1y_1a$, $q_2' = wbcw'$, and $q_3' = dy_2q_2$. From (1') and (3), $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$. If q_2' contains a variable symbol, then by Theorem 2, $p \leq q$ holds. This contradicts the assumption. Therefore, w and w' contain no variable symbols. (*End of Proof of Claim*)

From *Claim* 3, w and w' are strings consisting of symbols in Σ . From (1') and (2'), wbcw'd and w'd are prefixes of p_2 , and from (2) and (3), awbcw' and aw are suffixes of p_1 . It implies a contradiction in the following inductive way:

- |w| = |w'|: Directly, b = d and a = c hold.
- |w| = |w'| + 1: Also, a = b holds.
- |w| = |w'| + 2: Since awbcw' and aw are suffixes of p₁, and |w| ≥ 2, a is a suffix of w. From (1') and (2'), we have w = w'da. Furthermore, since awbcw' and aw are suffixes of p₁, it follows that w = bcw'. Thus, w'da = bcw' holds. From Proposition 2, (b, c) ∈ {(a, d), (d, a)} holds. Therefore, these cases contradict the conditions b ∉ {a, d} and c ∉ {a, d}.
- $|w| \ge |w'| + 3$: From (2) and (3), there exists a string w'' of length |w| |w'| 2 such that w = w''bcw' holds. Moreover, from (2) and (3), since |aw| < |wbcw'| and aw = aw''bcw', it follows that aw'' is a suffix of w. On the other hand, from (1') and (2'), w'd is a prefix of w. Since |w'd| + |aw''| = |w'| + |w''| + 2 = |w|, it follows that w = w'daw'' (Fig. 10). Therefore, w'daw'' = w''bcw' holds. From Proposition 3, $(b,c) \in \{(a,d),(d,a)\}$ holds. This contradicts the conditions $b \notin \{a,d\}$ and $c \notin \{a,d\}$.

From the above, we conclude that all cases of (5-1) contradict the assertion that $p\{x := xy\} \not \leq q$ and the conditions $b \notin \{a, d\}$ and $c \notin \{a, d\}$.

(5-2) Case of $q = q_1 AwBq_2$, where $\{A, B\} = \{dy_1 a, bc\}$: We suppose that $(A, B) = (dy_1 a, bc)$, i.e., $q = q_1 dy_1 awbcq_2$ holds. Then, the following conditions must be satisfied for $y'_1 \in X$:

(1)
$$p_1 \preceq q_1$$
, (1') $p_2 \preceq awbcq_2$ or $p_2 \preceq y_1'awbcq_2$, (2) $p_1 \preceq q_1d$ or $p_2 \preceq wbcq_2$, $p_1 \preceq q_1dy_1'$, (3) $p_1 \preceq q_1dy_1aw$, (3') $p_2 \preceq q_2$.

From $p_1 \leq q_1 dy_1 aw$ in (3), p_1 can be expressed as

 $p_1'p_1''$ for some p_1' and p_1'' , where $p_1' \leq q_1d$ and $p_1'' \leq y_1aw$. When $p_2 \leq awbcq_2$ in (1'), we have

$$p = p'_1 p''_1 x p_2 \le q_1 dp''_1 x a w b c q_2 = q \{ y_1 := p''_1 x \}.$$

Thus, $p\{x := xy\} \le q\{y_1 := p_1''xy\}$ holds. This contradicts the assumption. When $p_2 \le y_1'awbcq_2$ in (1'), we similarly have

$$p = p_1' p_1'' x p_2 \le q_1 dp_1'' x y_1' w b c q_2 = q \{ y_1 := p_1'' x y_1' \}.$$

Thus, $p\{x := xy\} \le q\{y_1 := p_1''xyy_1'\}$ holds. This contradicts the assumption that $p\{x := xy\} \not \le q$. Similarly, we can show that the case $(A, B) = (bc, dy_1a)$ also contradicts the assumption.

(5-3) Case of $q = q_1AwBq_2$, where $\{A, B\} = \{y_1ay_2, bc\}$ (a = d): Suppose that $(A, B) = (y_1ay_2, bc)$, i.e., $q = q_1y_1ay_2wbcq_2$ holds. Then, the following conditions must be satisfied: For $y_1', y_2' \in X$,

(1)
$$p_1 \leq q_1$$
 or $p_2 \leq y_2 w b c q_2$, $p_1 \leq q_1 y'_1$,

(2)
$$p_1 \preceq q_1 dy_1$$
, (2') $p_2 \preceq wbcq_2$ or $p_2 \preceq y_2'wbcq_2$,

(3)
$$p_1 \leq q_1 y_1 a y_2 w$$
, (3') $p_2 \leq q_2$.

Let $q_1' = q_1y_1a$, $q_2' = y_2w$, $q_3' = bcq_2$. From (3) and (1'), we have $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$, respectively. Since q_2' contains a variable symbol, Theorem 2 implies that $p \leq q$ holds. This contradicts the assumption. Similarly, we can show that the case $(A, B) = (bc, y_1ay_2)$ also contradicts the assumption.

From the above, we conclude that if $p\{x := r\} \leq q$ for all $r = \{ya, bc, dy\}$ ($b \notin \{a, d\}$ and $c \notin \{a, d\}$), then $p\{x := xy\} \leq q$ holds.

The condition in Lemma 5 is illustrated in four cases (3)–(6) in Fig. 11.

Lemma 6: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and let p, q be regular patterns on $\Sigma \cup X$. Let D be one of the following sets of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q.

$$D = \{ya, bc, dy\} (b = a, b \neq d, \text{ and } c \notin \{a, d\}),$$

Then, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p,q), then $p\{x := xy\} \leq q$.

We note that if b=d, then, because $p\{x:=dy\} \le q$, $p\{x:=bc\} \le q$ is always satisfied. In this sense, D essentially consists of only two elements. To avoid this, we assume $b \ne d$

Proof. We assume that $p\{x := xy\} \not\preceq q$ in order to derive a contradiction. The proof is almost the same as the proof of Lemma 5. Since $p\{x := r\} \preceq q$ for all $r \in D$ and D is maximally generalized on (p,q), there are three strings of length 2 corresponding to ya, bc, dy in q The symbols appearing in D correspond to either a variable or a constant

symbol in q. Let y_1 and y_2 be variable symbols appearing in q. The strings y_a and dy must correspond to the strings y_1a and dy_2 in q, respectively. For the same reasons stated at the beginning of Lemma 5, the string bc corresponds to the string bc in q as well. Let A, B, C be regular patterns on $\Sigma \cup X$, where $\{A, B, C\} = \{y_1a, ac, dy_3\}$. Since $p\{x := xy\} \not\preceq q$, q can be expressed in one of the following four forms: Let y_1, y_2 be distinct variable symbols in X, and q_1, q_2, w, w' either the empty string or a regular pattern on $\Sigma \cup X$. From the conditions b = a and $b \ne d$, it follows that $a \ne d$.

- (6-1) $q = q_1 AwBw'Cq_2$, where $\{A, B, C\} = \{y_1 a, ac, dy_2\}$,
- (6-2) $q = q_1 AwBq_2$, where $\{A, B\} = \{y_1 ac, dy_2\}$,
- (6-3) $q = q_1 A q_2$, where $A = dy_1 ac$.

In cases (6-1) and (6-2), similar to Lemma 5, it is shown that $q = q_1y_1awacw'dy_2q_2$ and $q = q_1y_1acwdy_2q_2$, respectively, where w and w' contain no variable symbols.

(6-1) Case of $q = q_1 AwBw'Cq_2$, where $\{A, B, C\} = \{y_1a, ac, dy_2\}$: The following conditions must be satisfied:

- (1) $p_1 \leq q_1$, (1') $p_2 \leq wacw' dy_2 q_2$,
- (2) $p_1 \leq q_1 y_1 aw$, (2') $p_2 \leq w' dy_2 q_2$,
- (3) $p_1 \leq q_1 y_1 a w a c w'$, (3') $p_2 \leq q_2$.

From (1') and (2'), wacw'd and w'd are prefixes of p_2 , and from (2) and (3), awacw' and aw are suffixes of p_1 . It implies a contradiction in the following inductive way:

- |w| = |w'|: c = a holds.
- |w| = |w'| + 1: w = w'd = cw' holds. Thus, from Proposition 1, c = d holds.
- |w| = |w'| + 2: w = w' da = acw' holds. From Proposition 2, $c \in \{a, d\}$ holds.
- $|w| \ge |w'| + 3$: From (2) and (3), there exists a string w'' of length |w| |w'| 2 such that w = w''acw' holds. Moreover, from (2) and (3), since |aw| < |wacw'| and aw = aw''acw', it follows that aw'' is a suffix of w. On the other hand, from (1') and (2'), w'd is a prefix of w. Since |w'd| + |aw''| = |w'| + |w''| + 2 = |w|, we have w = w'daw''. Therefore, w'daw'' = w''acw' holds (Fig. 13). From Proposition 3, we have $c \in \{a, d\}$.
- |w'| = |w| + 1: From (1') and (2'), c = d holds.
- |w'| = |w| + 2: From (1') and (2'), d is a prefix of w'. Thus, from (2) and (3), w' = wac = daw holds. From Proposition 2, $c \in \{a, d\}$ holds.
- $|w'| \ge |w| + 3$: From (1') and (2'), there exists a string w'' of length |w| |w'| 2 such that w' = wacw'' holds. Moreover, from (1') and (2'), since |w'd| < |wacw'| and w'd = wacw''d, w'd is a prefix of w'. On the other hand, from (1') and (2'), aw'w is a suffix of w'. Since |w''d| + |aw| = |w'| + |w| + 2 = |w'|, we have w' = w''daw. Therefore, w'''daw = wacw'' holds. From Proposition 3, we have $c \in \{a, d\}$.

All the cases contradict the condition $c \notin \{a, d\}$. Therefore, if $b = a, b \neq d$, and $c \notin \{a, d\}$ are satisfied, case (6-1) is

Fig. 11 Let $\Sigma = \{a, b, c, d, e, f, g\}$ and $p, q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. The figure (3) expresses case $D = \{ya, bc, dy\}$ in Lemma 5. The figures (4), (5), and (6) express three cases $D = \{ya, bc, ay\}$, $D = \{ya, bb, dy\}$, and $D = \{ya, bb, ay\}$, respectively. In these cases, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p, q), then $p\{x := xy\} \leq q$ holds.

Fig. 12 Substitutions for p and each correspondence to q.

Fig. 13 Case (6-1) in Lemma 6: Relation of strings w, w', and w''

impossible.

(6-2) Case of $q = q_1AwBq_2$, where $\{A, B\} = \{y_1ac, dy_2\}$: For $q = q_1y_1acwdy_2q_2$, the following conditions must be satisfied:

- (1) $p_1 \leq q_1$,
- (1') $p_2 \leq cwdy_3q_2$,
- (2) $p_1 \leq q_1 y_1$,
- (2') $p_2 \leq w dy_3 q_2$,
- (3) $p_1 \leq q_1 y_1 a c w d y_3$,
- (3') $p_2 \leq q_2$.

- If |w| = 0, from (1') and (2'), the prefix of p₂ is cd and d. Thus, we have c = d.
- If |w| = 1, from (1') and (2'), the prefix of p_2 is cwd and wd. Thus, we have w = c = d.
- If $|w| \ge 2$, then from (1') and (2'), cwd and wd are prefixes of p_2 . Thus, we have cw = wd. From Proposition 2, c = d holds.

All of these cases do not meet b = a, $b \ne d$, and $c \notin \{a, d\}$. Therefore, if b = a, $b \ne d$, and $c \notin \{a, d\}$ are satisfied, case (6-2) is also impossible.

(6-3) Case of $q = q_1Aq_2$, where $A = dy_1ac$: For $q = q_1dy_1acq_2$, the following conditions must be satisfied for $y'_1, y''_1 \in X$:

(1) $p_1 \leq q_1 d$ or $p_1 \leq q_1 dy'_1$, (2) $p_1 \leq q_1 dy_1$, (3) $p_1 \leq q_1$, (3) $p_2 \leq q_2$, (3) $p_2 \leq q_2$, (3) $p_2 \leq acq_2$ or $p_2 \leq y''_1 acq_2$.

For $p_1 \leq q_1d$ in (1) and $p_2 \leq acq_2$ in (3'), $p = p_1xp_2 \leq q_1dxacq_2 \leq q\{y_1 := x\}$ holds. From this, we have $p\{x := xy\} \leq q\{y_1 := x\}$. This contradicts the assumption that $p\{x := xy\} \nleq q$. Similarly, we can show that the other cases of (1) and (3') also contradict the assumption.

From the above, we conclude that if $p\{x := r\} \leq q$ for

П

Fig. 14 Let $\Sigma = \{a, b, c, d, e, f, g\}$ and $p, q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. The figures (7) and (8) express two cases $D = \{ya, ac, dy\}$ and $D = \{ya, bd, dy\}$ in Lemmas 6 and 7, respectively. In these cases, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p, q), then $p\{x := xy\} \leq q$ holds.

all $r \in \{ya, bc, dy\}$ $(b = a, b \neq d, \text{ and } c \notin \{a, d\})$, then $p\{x := xy\} \leq q$ holds.

The conditions in Lemmas 6 and 7 are illustrated in (7) and (8) in Fig. 14, respectively.

Lemma 7: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and let p, q be regular patterns on $\Sigma \cup X$. Let D be one of the following sets of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q.

$$D = \{ya, bc, dy\} \ (b \notin \{a, d\}, \ c \neq a, \ \text{and} \ c = d).$$

Then, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p, q), then $p\{x := xy\} \leq q$.

Proof. The proof follows by reversing p and q and subsequently applying Lemma 6.

When the conditions of Lemmas 5, 6, and 7 are not satisfied, counterexamples can be constructed as follows:

Proposition 4: Let Σ be an alphabet with $\sharp \Sigma \geq 3$. For a variable symbol y, let $D = \{ya, bc, dy\}$ (b = a and c = d). There exist regular patterns p and q on $\Sigma \cup X$ such that $p\{x := r\} \leq q$ for any $r \in D$, but $p\{x := xy\} \nleq q$.

Proof. We provide an example to demonstrate this proposition. Let a, b, c, d, e be constant symbols in Σ , and let x, y, y_1, y_2 be variable symbols in X. Define the regular patterns p and q as follows:

p = eabcbcadabcbcadabcbcadade, $q = y_1 abcbcadabcbcadabcbcadady_2$ (b = a and c = d).

Obviously $p\{x := xy\} \not\preceq q$ holds. For these p and q, the condition for Proposition 4 holds as follows (see also Fig. 12):

$$p \{x := ya\}$$

= $(eabcbcadabcbcaday)abcadadabcbcadade$
= $q\{y_1 := eabcbcadabcbcaday, y_2 := e\}$
 $\leq q,$
 $p \{x := bc\}$

```
= (eabcbcad)abcbcadabcbcadad(abcbcadade)
= q\{y_1 := eabcbcad, y_2 := abcbcadade\}
\leq q,
p \{x := dy\}
= eabcbcadabcbcadad(ybcadadabcbcadade)
= q\{y_1 := e, y_2 := ybcadadabcbcadade\}
\leq q.
```

3.4
$$D = \{a_1b_1, a_2b_2, a_3y\}$$
 and $D = \{a_1b_1, a_2b_2, yb_3\}$

Lemma 8: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, q regular patterns on $\Sigma \cup X$. Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q:

$$D = \{a_1b_1, a_2b_2, a_3y\},$$
where $a_i \neq a_j$ and $b_i \neq b_j$ $(i \neq j, 1 \leq i, j \leq 3)$.

Then, if $p\{x := r\} \le q$ holds for all $r \in D$ and D is maximally generalized on (p,q), then $p\{x := xy\} \le q$ holds.

Proof. We assume that $p\{x := xy\} \not \le q$ holds. Since D is maximally generalized on (p,q), from the same argument as in the proof of Lemma 6, it is sufficient to consider the following five cases (8-1)–(8-5) of q: For $y_1 \in X$,

- $(8-1) q = q_1 a_1 b_1 w a_2 b_2 w' a_3 y_1 q_2,$
- (8-2) $q = q_1 a_1 b_1 b_2 y_1 q_2$ ($a_2 = b_1$ and $a_3 = b_2$),
- (8-3) $q = q_1 a_1 b_1 b_2 w a_3 y_1 q_2 (b_1 = a_2),$
- $(8-4) q = q_1 a_3 y_1 w a_1 b_1 b_2 q_2 (b_1 = a_2),$
- $(8-5) q = q_1 a_1 b_1 y_1 w a_2 b_2 q_2 (b_1 = a_3),$

where no variable symbol appears in both w and w'. (8-1) Case of $q = q_1a_1b_1wa_2b_2w'a_3y_1q_2$: The follow

(8-1) Case of $q = q_1a_1b_1wa_2b_2w'a_3y_1q_2$: The following conditions must be satisfied: For $y'_1 \in X$,

- (1) $p_1 \leq q_1$, (1') $p_2 \leq w a_2 b_2 w' a_3 y_1 q_2$,
- (2) $p_1 \leq q_1 a_1 b_1 w$, (2') $p_2 \leq w' a_3 y_1 q_2$,
- (3) $p_1 \leq q_1 a_1 b_1 w a_2 b_2 w'$, (3') $p_2 \leq q_2$ or $p_2 \leq y'_1 q_2$.
- |w| + 1 = |w'|: From (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are suffixes of p_1 . Since there exists a constant symbol w_1 such that $w' = w_1w$ and $b_2w_1w = a_1b_1w$ hold, then $b_2 = a_1$. Moreover, $wa_2b_2w'a_3$ and $w'a_3$ are prefixes of p_2 from (1') and (2'). Since there exists a constant symbol w_2 such that $w' = ww_2$ and $wa_2b_2 = ww_2a_3$ hold, then $b_2 = a_3$. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.
- |w| + 1 < |w'|: From (2) and (3), a₁b₁wa₂b₂w' and a₁b₁w are suffixes of p₁. Hence, a₁b₁ is suffixes of w_r. Moreover, wa₂b₂w'a₃ and w'a₃ are prefixes of p₂ from (1') and (2'). Hence, there exist constant symbols w₁ and w₂ such that w' = w₁w, w' = ww₂ and |a₂b₂w₁| = |w₂a₃|+1 hold. Thus, since the second-to-last symbol of w₁ is a₃, a₁ = a₃ holds. This contradicts the assumption of a₁ ≠ a₃.

- |w| = |w'| + 1: From (1') and (2'), $wa_2b_2w'a_3$ and $w'a_3$ are prefixes of p_2 . Since there exists a constant symbol w_1 such that $w = w'w_1$ and $w'w_1 = w'a_3$ hold, then $w_1 = a_3$ holds. Moreover, since $a_1b_1wa_2b_2w'$ and a_1b_1w are suffixes of p_1 from (2) and (3), there exists a constant symbol w_2 such that $w = w_2w'$ and $|w_1a_2b_2w'| = |a_1b_1w_2w'|$ hold. Hence, $w_1 = a_1$ holds. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.
- |w| > |w'| + 1: Since $wa_2b_2w'a_3$ and $w'a_3$ are prefixes of p_2 from (1') and (2'), there exists a constant string w_1 such that $w = w'w_1$ and the first symbol of w_1 is a_3 . Moreover, since there exists a constant string w_2 such that $w = w_2 w'$ and $|w_1 a_2 b_2| = |a_1 b_1 w_2|$ hold, $a_1 b_1$ is a prefix of w_1 . Thus, $a_3 = a_1$ holds. This contradicts the assumption of $a_1 \neq a_3$.
- (8-2) Case of $q = q_1 a_1 b_1 b_2 y_1 q_2$ ($a_2 = b_1$ and $a_3 = b_2$): The following conditions must be satisfied: For $y'_1 \in X$,
 - (1) $p_1 \leq q_1$,
- (1') $p_2 \leq b_2 y_1 q_2$,
- (2) $p_1 \leq q_1 a_1$,
- (2') $p_2 \leq y_1 q_2$,
- (3) $p_1 \leq q_1 a_1 b_1$,
- (3') $p_2 \leq q_2 \text{ or } p_2 \leq y_1' q_2$.

From (2) and (3), a_1b_1 and a_1 are suffixes of p_1 . Hence, $b_1 = a_1$ holds. Thus, from the assumption of $b_1 = a_2$, $a_1 = a_2$ holds. This contradicts the assumption of $a_1 \neq a_2$. (8-3) Case of $q = q_1a_1b_1b_2wa_3y_1q_2$ ($b_1 = a_2$): The following conditions must be satisfied: For $y'_1 \in X$,

- (1) $p_1 \leq q_1$,
- $(1') p_2 \leq b_2 w a_3 y_1 q_2$
- (2) $p_1 \leq q_1 a_1$,
- (2') $p_2 \leq w a_3 y_1 q_2$,
- (3) $p_1 \leq q_1 a_1 b_1 b_2 w$, (3') $p_2 \leq q_2$ or $p_2 \leq y_1' q_2$.
- |w| = 0: From (2) and (3), a_1 and $a_1b_1b_2$ are suffixes of p_1 . Hence, $a_1 = b_2$ holds. Moreover, since b_2a_3 and a_3 is prefixes of p_2 , $b_2 = a_3$ holds. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.
- $|w| \ge 1$: Since a_1 and $a_1b_1b_2w$ are suffixes of p_1 from (2) and (3), the last symbol of w is a_1 . Moreover, since b_2wa_3 and wa_3 are prefixes of p_2 from (1') and (2'), the last symbol of w is a_3 . Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.
- (8-4) Case of $q = q_1 a_3 y_1 w a_1 b_1 b_2 q_2$ ($b_1 = a_2$): The following conditions must be satisfied: For $y'_1 \in X$,
 - (1) $p_1 \leq q_1$,
- (1') $p_2 \leq w a_1 b_1 b_2 q_2$ or $p_2 \preceq y_1' w a_1 b_1 b_2 q_2,$
- (2) $p_1 \leq q_1 a_3 y_1 w$,
- (2') $p_2 \leq b_2 q_2$,
- (3) $p_1 \leq q_1 a_3 y_1 w a_1$,
- (3') $p_2 \leq q_2$.

From (3), there exist regular patterns p'_1 and p''_1 such that $p_1 = p_1' p_1'', p_1' \le q_1 a_3$, and $p_1'' \le y_1 w a_1$ hold. Hence, if $p_2 \leq wa_1b_1b_2q_2$ of (1') holds, since $p = p_1xp_2 =$ $p_1'p_1''xp_2 \leq q_1a_3p_1''xwa_1b_1b_2q_2 = q\{y_1 := p_1''x\}, \text{ then}$

 $p \leq q$ holds. Thus, this contradicts the assumption. Similarly, $p_2 \leq y_1' w a_1 b_1 b_2 q_2$ of (1') leads to a contradiction.

(8-5) Case of $q = q_1 a_1 b_1 y_1 w a_2 b_2 q_2$ ($b_1 = a_3$): The following conditions must be satisfied: For $y'_1 \in X$,

- (1) $p_1 \leq q_1$,
- (1') $p_2 \leq y_1 w a_2 b_2 q_2$,
- (2) $p_1 \leq q_1 a_1$,
- (2') $p_2 \leq wa_2b_2q_2$ or
 - $p_2 \leq y_1' w a_2 b_2 q_2$
- (3) $p_1 \leq q_1 a_1 b_1 y_1 w$, (3') $p_2 \leq q_2$.

Let $q_1' = q_1 a_1 b_1$, $q_2' = y_1 w$, $q_3' = a_2 b_2 q_2$. From (3), $p_1 \leq q_1' q_2'$ holds, and from (1'), $p_2 \leq q_2' q_3'$ holds. Since q_2' contains a variable symbol $y_1, p \leq q$ holds from Theorem 2. This contradicts the assumption.

Lemma 9: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, qregular patterns on $\Sigma \cup X$. Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q:

$$D = \{a_1b_1, a_2b_2, yb_3\},$$

where $a_i \neq a_j$ and $b_i \neq b_j$ $(i \neq j, 1 \leq i, j \leq 3)$.

Then, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p, q), then $p\{x := xy\} \leq q$.

Proof. The proof follows by reversing p and q and subsequently applying Lemma 8.

3.5
$$D = \{a_1b_1, a_2b_2, a_3b_3\}$$

In Lemma 14 (ii) of [4], they stated that, when $\sharp \Sigma \geq 3$, for regular patterns p, q, if $p\{x := r\} \leq q$ for any $r \in D$, then $p\{x := xy\} \leq q \text{ holds, where } D = \{a_1b_1, a_2b_2, a_3b_3\}$ $(a_i \neq a_j \text{ and } b_i \neq b_j \text{ for each } i, j \ (i \neq j, 1 \leq i, j \leq 3)).$ Unfortunately, there exist the following counterexamples of Lemma 14 (ii) of [4].

Example 2: Assume that $a_1 = b_2$ and $a_3 = b_1$ hold.

- (1) Let $p = ca_1x'a_3c$ and $q = xa_1a_3y$. It is clear that $\{x := xy\} \not\preceq q$ holds. However, we can see that $p\{x' := xy\}$ $a_1b_1\} \leq q, p\{x' := a_2b_2\} \leq q \text{ and } p\{x' := a_3b_3\} \leq q$ hold, since $p\{x' := a_1b_1\} = ca_1a_1b_1a_3c = q\{x :=$ $ca_1, y := a_3c$, $p\{x' := a_2b_2\} = ca_1a_2b_2a_3c = q\{x := a_2b_2\}$ $ca_1a_2, y := c$ and $p\{x' := a_3b_3\} = ca_1a_3b_3a_3c =$ $q\{x := c, y := b_3 a_3 c\}$ hold.
- (2) Let $p = cb_2a_1b_1b_2x'a_1b_1b_2a_3c$ and q = $xb_2a_1b_1b_2a_3y$. It is clear that $p\{x := xy\} \not \leq q$ holds. However, we have $p\{x' := a_1b_1\} \leq q, p\{x' := a_2b_2\} \leq$ q, and $p\{x' := a_3b_3\} \leq q$, since $p\{x' := a_1b_1\} = q$ $cb_2a_1b_1b_2a_1b_1a_1b_1b_2a_3c = q\{x := cb_2a_1b_1, y :=$ b_2a_3c , $p\{x' := a_2b_2\} = cb_2a_1b_1b_2a_2b_2a_1b_1b_2a_3c =$ $q\{x := cb_2a_1b_1b_2a_2, y := c\}, \text{ and } p\{x' :=$ a_3b_3 = $cb_2a_1b_1b_2a_3b_3a_1b_1b_2a_3c$ = $q\{x := c, y := c, y$ $b_3a_1b_1b_2a_3c$ } hold.

The conditions in Lemmas 8, 9, and 10 are illustrated

Fig. 15 Let $\Sigma = \{a,b,c,d,e,f,g\}$ and $p,q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. The figures (9), (10,) and (11) express cases $D = \{a_1b_1,a_2b_2,a_3y\}$, $D = \{a_1b_1,a_2b_2,yb_3\}$, and $D = \{a_1b_1,a_2b_2,a_3b_3\}$ in Lemmas 8, 9, and 10, respectively, where $a_i \neq a_j$ and $b_i \neq b_j$ for each i,j ($i \neq j,1 \leq i,j \leq 3$). In these cases, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p,q), then $p\{x := xy\} \leq q$ holds.

in the cases (9), (10), and (11) in Fig. 15.

Lemma 10: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, q regular patterns on $\Sigma \cup X$. Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q:

$$D = \{a_1b_1, a_2b_2, a_3b_3\},$$

where $a_i \neq a_j$ and $b_i \neq b_j$ $(i \neq j, 1 \leq i, j \leq 3)$.

Then, if $p\{x := r\} \leq q$ for all $r \in D$ and D is maximally generalized on (p, q), then $p\{x := xy\} \leq q$.

Proof. We assume that $p\{x := xy\} \not\preceq q$ holds. Since D is maximally generalized on (p,q), it is sufficient to consider the following four cases (10-1)-(10-4) of q for some regular patterns q_1, q_2 and some constant strings w, w' ($|w| \ge 0$ and $|w'| \ge 0$):

- $(10-1) \quad q = q_1 a_1 b_1 w a_2 b_2 w' a_3 b_3 q_2,$
- (10-2) $q = q_1 a_1 b_1 a_3 b_3 q_2$ ($b_1 = a_2$ and $a_3 = b_2$),
- (10-3) $q = q_1 a_1 b_1 b_2 w a_3 b_3 q_2 (b_1 = a_2),$
- $(10-4) q = q_1 a_1 b_1 w a_2 b_2 b_3 q_2 (b_2 = a_3).$

(10-1) Case of $q = q_1a_1b_1wa_2b_2w'a_3b_3q_2$: The following conditions must be satisfied:

- $(1) p_1 \leq q_1, \qquad (1') p_2 \leq w a_2 b_2 w' a_3 b_3 q_2,$
- (2) $p_1 \leq q_1 a_1 b_1 w$, (2') $p_2 \leq w' a_3 b_3 q_2$,
- (3) $p_1 \leq q_1 a_1 b_1 w a_2 b_2 w'$, (3') $p_2 \leq q_2$.
- |w| = |w'|: From (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are suffixes of p_1 . Then, $a_1b_1w = a_2b_2w'$. Hence, $a_1b_1 = a_2b_2$. This contracts the assumption of $a_1 \neq a_2$ and $b_1 \neq b_2$. |w| + 1 = |w'|: The strings $wa_2b_2w'a_3b_3$ and $w'a_3b_3$ are prefixes of p_2 . If there exists a constant symbol w_1 such that $w'a_3b_3 = ww_1a_3b_3$, then b_2 and a_3 are the same symbol from $wa_2b_2 = ww_1a_3$. from (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are suffixes of p_1 . Then, there exists a constant symbol w_2 such that $w' = w_2w$, then b_2 and a_1 are the same symbol from $b_2w_2w = a_1b_1w$. Hence, from $b_2 = a_3$, a_3 and a_1

are same symbol. This contradicts the assumption of $a_3 \neq a_1$.

- |w|+1 < |w'|: From (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are suffixes of p_1 . If there exists a constant string w_1 ($|w_1| \ge 2$) such that $w' = w_1w$, then a_1b_1 is a suffix of w_1 . From conditions (1') and (2'), $wa_2b_2w'a_3b_3$ and $w'a_3b_3$ are prefixes of p_2 . If there exist constant strings w_1 and w_2 such that $w' = w_1w = ww_2$ holds, then a_2b_2 and a_3b_3 are suffixes of w_1 from $|w_1| = |w_2|$ and $|ww_2a_3b_3| = |wa_2b_2w_1|$. Hence, $a_1b_1 = a_3b_3$. This contradicts the assumption of $a_1 \ne a_3$ and $b_1 \ne b_3$.
- |w| > |w'|: We can prove the contradiction in a similar way as $|w| \le |w'|$.

(10-2) Case of $q = q_1a_1b_1a_3b_3q_2$ ($b_1 = a_2$ and $a_3 = b_2$): The following conditions must be satisfied:

- (1) $p_1 \leq q_1$,
- (1') $p_2 \leq a_3 b_3 q_2$,
- (2) $p_1 \leq q_1 a_1$,
- (2') $p_2 \leq b_3 q_2$,
- (3) $p_1 \leq q_1 a_1 b_1$,
- (3') $p_2 \leq q_2$.

From (2) and (3), since a_1b_1 and a_1 are suffixes of p_1 , $b_1 = a_1$ holds. From the assumption of $b_1 = a_2$, the equation $a_1 = a_2$ holds. This contradicts the assumption of $a_1 \neq a_2$. (10-3) Case of $q = q_1a_1b_1b_2wa_3b_3q_2$ ($b_1 = a_2$): The fol-

- lowing conditions must be satisfied:
 - $(1') p_2 \leq b_2 w a_3 b_3 q_2,$
 - (1) $p_1 \leq q_1$, (2) $p_1 \leq q_1 a_1$,
- (2') $p_2 \leq w a_3 b_3 q_2$,
- (3) $p_1 \leq q_1 a_1 b_1 b_2 w$,
- (3') $p_2 \leq q_2$.
- |w| = 0: From (2) and (3), a_1 and $a_1b_1b_2$ are suffixes of p_1 . Moreover, from (1') and (2'), $b_2a_3b_3$ and a_3b_3 are prefixes of p_2 . Since $b_2 = a_1$ and $b_2a_3 = a_3b_3$, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.
- $|w| \ge 1$: From (2) and (3), a_1 and $a_1b_1b_2w$ are suffixes of p_1 . Hence, the last symbol of w is a_1 . Moreover, $b_2wa_3b_3$ and wa_3b_3 are prefixes of p_2 from (1') and (2'). Hence, the last symbol of w is a_3 . Therefore,

 $a_1 = a_3$ holds. This contradicts the assumption of

(10-4) Case of $q = q_1a_1b_1wa_2b_2b_3q_2$ ($b_2 = a_3$): The following conditions must be satisfied:

$$(1) p_1 \leq q_1, \qquad (1') p_2 \leq w a_2 b_2 b_3 q_2,$$

(2)
$$p_1 \leq q_1$$
, (1) $p_2 \leq wa_2 b_3$, (2) $p_1 \leq q_1 a_1 b_1 w$, (2') $p_2 \leq b_3 q_2$,

(3)
$$p_1 \leq q_1 a_1 b_1 w a_2$$
, (3') $p_2 \leq q_2$.

- |w| = 0: From (2) and (3), a_1b_1 and $a_1b_1a_2$ are suffixes of p_1 . And from (1') and (2'), $a_2b_2b_3$ and b_3 are prefixes of p_2 . Since $b_1 = a_2$ and $a_2 = b_3$, then $b_1 = b_3$ holds. This contradicts the assumption of $b_1 \neq b_3$.
- $|w| \ge 1$: Since a_1b_1w and $a_1b_1wa_2$ are suffixes of p_1 from (2) and (3), the first symbol of w is b_1 . Moreover, since $wa_2b_2b_3$ and b_3 are prefixes of p_2 from (1') and (2'), the first symbol of w is b_3 . Therefore, $b_1 = b_3$ holds. This contradicts the assumption of $b_1 \neq b_3$.

3.6 Characteristic sets for finite union of regular patterns

Lemma 11: Let k be an integer with $k \ge 1$. Let Σ be an alphabet with $\sharp \Sigma = k + 2$. Let $p \in \mathcal{RP}$ in which a variable symbol x appears, and let $Q \in \mathcal{RP}^k$. If for any string $w \in \Sigma^*$ with |w| = 2, there exists a regular pattern $q_w \in Q$ such that $p\{x := w\} \leq q_w$ holds, then there exists a regular pattern $q \in Q$ such that $p\{x := xy\} \leq q$ holds, where y is a variable symbol that does not appear in q.

Proof. Without loss of generality, we suppose that $\sharp Q = k$ holds. Otherwise, for some regular pattern q already in Q, we can add a new regular pattern q' equivalent to q, i.e., $q' \equiv q$, to Q repeatedly until $\sharp Q = k$ is satisfied. For any $q \in O$, we define the sets $A(q), B(q) \subseteq \Sigma$ as follows:

$$A(q) = \{ a \in \Sigma \mid p\{x := ay\} \le q, \ y \in X \},$$

$$B(q) = \{ b \in \Sigma \mid p\{x := yb\} \le q, \ y \in X \}.$$

If there exists $q \in Q$ such that $|A(q)| \ge 2$ or $|B(q)| \ge 2$, from Lemma 4, $p\{x := xy\} \leq q$ holds. Below, we suppose that $|A(q)| \le 1$ and $|B(q)| \le 1$. Let \bot be a constant symbol that is not a member in Σ . We define the functions $\sigma_A: Q \to \Sigma \cup \{\bot\}$ and $\sigma_B: Q \to \Sigma \cup \{\bot\}$ as follows:

$$\sigma_A(q) = \begin{cases} a & \text{if } A(q) = \{a\}, \\ \bot & \text{if } A(q) = \emptyset. \end{cases}$$

$$\sigma_B(q) = \begin{cases} b & \text{if } B(q) = \{b\}, \\ \bot & \text{if } B(q) = \emptyset. \end{cases}$$

The inverse functions of σ_A and σ_B are denoted by σ_A^{-1} and $\sigma_B^{-1},$ respectively. That is, for $a,b\in\Sigma\cup\{\bot\},$ let $\sigma_A^{-\widehat{1}}(a)=$ $\{q \in Q \mid \sigma_A(q) = a\} \text{ and } \sigma_B^{-1}(b) = \{q \in Q \mid \sigma_B(q) = b\}.$ We give an example in Fig. 16.

A and B denotes the following subsets of Σ :

$$A = \bigcup_{q \in Q \backslash \sigma_A^{-1}(\bot)} A(q), \quad B = \bigcup_{q \in Q \backslash \sigma_B^{-1}(\bot)} B(q).$$

Then, let $A' = \Sigma \setminus A$ and $B' = \Sigma \setminus B$. For any $a, b \in \Sigma$, we use the following notations:

$$\ell_A = \sum_{a \in A} (\sharp \sigma_A^{-1}(a) - 1), \quad \ell_B = \sum_{b \in B} (\sharp \sigma_B^{-1}(b) - 1).$$

These ℓ_A and ℓ_B represent the numbers of excess duplicate symbols in A and B. We easily see the following claim: Claim 1.

(i)
$$\sharp A + \sharp A' = \sharp B + \sharp B' = k + 2$$
,

(i)
$$\sharp A + \sharp A' = \sharp B + \sharp B' = k + 2$$
,
(ii) $\sharp A + \ell_A + \sharp \sigma_A^{-1}(\bot) = \sharp B + \ell_B + \sharp \sigma_B^{-1}(\bot) = k$.

Since $\sharp \Sigma = k + 2$ and $\sharp Q = k$, $\sharp A' \ge 2$ and $\sharp B' \ge 2$ hold. We partition Q into the following subsets:

$$\begin{split} &Q^{(\perp,\perp)} = \sigma_A^{-1}(\perp) \cap \sigma_B^{-1}(\perp), \\ &Q^{(\perp,\cdot)} = \sigma_A^{-1}(\perp) \cap (Q \setminus \sigma_B^{-1}(\perp)), \\ &Q^{(\cdot,\perp)} = (Q \setminus \sigma_A^{-1}(\perp)) \cap \sigma_B^{-1}(\perp), \\ &Q^{(\cdot,\cdot)} = (Q \setminus \sigma_A^{-1}(\perp)) \cap (Q \setminus \sigma_B^{-1}(\perp)). \end{split}$$

From the condition of this lemma, for any string $w \in \Sigma^*$ with |w| = 2, there exists a regular pattern $q_w \in Q$ such that $p\{x := w\} \leq q_w$ holds. In particular, for $w = a'b' \in A' \cdot B'$, we must have $q_w \in Q$ that satisfies that $p\{x := w\} \leq q_w$ (Fig. 17). It is easy to see that if $w \in (A \cdot B) \cup (A' \cdot B) \cup (A \cdot B')$, there exists a regular pattern $q_w \in Q^{(\perp,\cdot)} \cup Q^{(\cdot,\perp)} \cup Q^{(\cdot,\cdot)}$ such that $p\{x := w\} \leq q_w$ holds. We have the following two claims:

Claim 2. If there exist $q \in Q^{(\perp,\perp)}$ and distinct 5 strings $w_i \in A' \cdot B'$ $(1 \le i \le 5)$ such that $p\{x := w_i\} \le q$ holds $(1 \le i \le 5)$, then $p\{x := xy\} \le q$ holds.

Proof of Claim 2. Let $W = \{a_1b_1, \ldots, a_5b_5\} \subset A' \cdot B'$. Because, for any i $(1 \le i \le 5)$, $|W \cap \{a_i c \mid c \in \Sigma\}| \le 2$ and $|W \cap \{cb_i \mid c \in \Sigma\}| \le 2$, it can be proven that there are 3 strings $a_{i_1}b_{i_1}, a_{i_2}b_{i_2}, a_{i_3}b_{i_3} \in W$ such that $a_{i_j} \neq a_{i_{j'}}$ and $b_{i_j} \neq b_{i_{j'}}$ for any $i_j, i_{j'}$ $(i_j \neq i_{j'}, 1 \leq j, j' \leq 3)$. Therefore, from Lemma 10, this claim holds. (End of Proof of Claim)

Claim 3. If there exist $q \in Q^{(\perp,\cdot)} \cup Q^{(\cdot,\perp)}$ and distinct 3 strings $w_i \in A' \cdot B'$ $(1 \le i \le 3)$ such that $p\{x := w_i\} \le q$ holds $(1 \le i \le 3)$, then $p\{x := xy\} \le q$ holds.

Proof of Claim 3. Let $W = \{a_1b_1, a_2b_2, a_3b_3\} \subset A' \cdot B'$. Because, for any i $(1 \le i \le 3)$, $|W \cap \{a_i c \mid c \in \Sigma\}| \le 2$ and $|W \cap \{cb_i \mid c \in \Sigma\}| \le 2$, it can be proven that there are 2 strings $a_{i_1}b_{i_1}$, $a_{i_2}b_{i_2} \in W$ such that $a_{i_1} \neq a_{i_2}$ and $b_{i_1} \neq b_{i_2}$. Therefore, from Lemmas 8 and 9, this claim holds. (End of *Proof of Claim*)

If there exist a regular pattern $q \in Q^{(\perp,\perp)} \cup Q^{(\perp,\cdot)} \cup Q^{(\cdot,\perp)}$ and enough strings $w \in A' \cdot B'$ such that either of the conditions of Claims 2 and 3 is satisfied, this lemma holds. Then, we assume that it is not the case.

Assumption 1. There is no regular pattern $q \in Q^{(\perp,\perp)}$ and 5 strings $w \in A' \cdot B'$ such that the condition of *Claim* 2 is

Fig. 16 Let $\Sigma = \{a, b, c, d, e, f, g\}$, $Q = \{q_1, q_2, q_3, q_4, q_5\}$. We set $A(q_1) = \{a\}$ and $B(q_1) = \{a\}$, and then $\sigma_A(q_1) = a$ and $\sigma_B(q_1) = a$, and so on. For each regular pattern q_i $(i = 1, \ldots, 5)$, we represent a string $w \in \Sigma \cdot \Sigma$ satisfying that $p\{x := w\} \preceq q_i$ by the edge between the left (first) and right (second) symbols of w. For example, the leftmost figure shows that $p\{x := ay\} \preceq q_1$ and $p\{x := ya\} \preceq q_1$ for a variable symbol y. We note that these figures may contain more edges than those illustrated. From these figures, we get $\ell_A = 1$, $\ell_B = 0$, and $Q^{(\perp,\perp)} = \{q_5\}$, $Q^{(\perp,\cdot)} = \{q_4\}$, $Q^{(\cdot,\perp)} = \{q_3\}$, $Q^{(\cdot,\cdot)} = \{q_1,q_2\}$.

Fig. 17 In the left figure, we aggregate all of the edges appearing in Fig. 16. For all $w = a'b' \in A' \cdot B'$, there must be a regular pattern q_i $(1 \le i \le 5)$ that satisfies that $p\{x := w\} \le q_i$.

satisfied and there is no regular pattern $q \in Q^{(\perp,\cdot)} \cup Q^{(\cdot,\perp)}$ and 3 strings $w \in A' \cdot B'$ such that the condition of *Claim* 3 is satisfied.

Let $\mathcal{L}_1 = \sharp \{w \in A' \cdot B' \mid \exists q \in Q^{(\perp,\perp)} \cup Q^{(\perp,\cdot)} \cup Q^{(\perp,\perp)} \cup Q^{(\perp,\perp)} \text{ s.t. } p\{x := w\} \preceq q\}$. Under Assumption 1, each $q \in Q^{(\perp,\perp)}$ has at most 4 strings $w \in A' \cdot B'$ such that the condition of $Claim\ 2$ is satisfied, and each $q \in Q^{(\perp,\perp)} \cup Q^{(\cdot,\perp)}$ has at most 2 strings $w \in A' \cdot B'$ such that the condition of $Claim\ 3$ is satisfied. Then, by $Claim\ 1$,

$$\mathcal{L}_{1} \leq 4\sharp Q^{(\perp,\perp)} + 2\sharp Q^{(\perp,\cdot)} + 2\sharp Q^{(\cdot,\perp)}$$

$$= 2(\sharp Q^{(\perp,\perp)} + \sharp Q^{(\perp,\cdot)}) + 2(\sharp Q^{(\perp,\perp)} + \sharp Q^{(\cdot,\perp)})$$

$$= 2\sharp \sigma_{A}^{-1}(\perp) + 2\sharp \sigma_{B}^{-1}(\perp)$$

$$= 2(k - \sharp A - \ell_{A}) + 2(k - \sharp B - \ell_{B})$$

$$= 2(\sharp A' - \ell_{A} - 2) + 2(\sharp B' - \ell_{B} - 2)$$

$$= 2(\sharp A' + \sharp B') - 2(\ell_{A} + \ell_{B}) - 8.$$

Next, we partition $Q^{(\cdot,\cdot)}$ into the following two subsets:

$$\begin{split} &Q_1^{(\cdot,\cdot)} = \{q \in Q^{(\cdot,\cdot)} \mid \sigma_A(q) \in B \text{ or } \sigma_B(q) \in A\}, \\ &Q_2^{(\cdot,\cdot)} = \{q \in Q^{(\cdot,\cdot)} \mid \sigma_A(q) \in B' \text{ and } \sigma_B(q) \in A'\}. \end{split}$$

We show the next two claims on $Q_1^{(\cdot,\cdot)}$ and $Q_2^{(\cdot,\cdot)}$:

Claim 4. If there exist $q \in Q_1^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that $p\{x := a'b'\} \leq q$ holds, then $p\{x := xy\} \leq q$ holds.

Proof of Claim 4. Suppose that both $\sigma_A(q) \in B$ and $\sigma_B(q) \in A$ hold. Then, since $a' \notin \{\sigma_A(q), \sigma_B(q)\} \subseteq A \cap B$ and $b' \notin \{\sigma_A(q), \sigma_B(q)\} \subseteq A \cap B$, from Lemma 5, $p\{x := xy\} \le q$ holds. Suppose that $\sigma_A(q) \in B$ and $\sigma_B(q) \in A'$. If $a' = \sigma_B(q)$, since $a' \in B$, $a' \ne b'$ holds. Since $\sigma_A(q) \in B$, $b' \ne \sigma_A(q)$ holds. That is, $a' = \sigma_B(q)$, $a' \ne \sigma_A(q)$, and $b' \notin \{\sigma_A(q), \sigma_B(q)\}$ hold. Therefore, from Lemmas 6 and 7, $p\{x := xy\} \le q$ holds. If $a' \ne \sigma_B(q)$, since $b' \ne \sigma_A(q)$, from Lemma 5, $p\{x := xy\} \le q$ holds. Similarly, the case that $\sigma_A(q) \in B'$ and $\sigma_B(q) \in A$ is proven. (*End of Proof of Claim*)

Claim 5. If there exist $q \in Q_2^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that $(a' \neq \sigma_B(q) \text{ or } b' \neq \sigma_A(q))$ and $p\{x := a'b'\} \leq q$ hold, then $p\{x := xy\} \leq q$ holds.

Proof of Claim 5. When a' = b', since $\sigma_A(q) \neq \sigma_B(q)$, from Lemma 5, this claim holds. Similarly, when $a' \neq b'$, from Lemmas 5, 6, and 7, this holds. (*End of Proof of Claim*) We give an example in Fig. 18 and Fig. 19.

If there exist a regular pattern $q \in Q_2^{(\cdot,\cdot)}$ and a string $w \in A' \cdot B'$ such that the condition of *Claim* 5 is satisfied, this lemma holds. Then, we also assume that it is not the case.

Assumption 2. There is no $q \in Q_2^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that the condition of *Claim* 5 is satisfied.

Let $\mathcal{L}_2 = \sharp \{a'b' \in A' \cdot B' \mid \exists q \in Q_2^{(\cdot,\cdot)} \text{ s.t. } p\{x := a'b'\} \leq q\}$. For any $a'b' \in A' \cdot B'$ and $q \in Q_2^{(\cdot,\cdot)}$, if $a' = \sigma_B(q)$ and $b' = \sigma_A(q)$ hold (it is the condition of Proposition 4), by considering the duplicate numbers ℓ_A and ℓ_B , we have the following inequality:

$$\mathcal{L}_2 \le \min\{\sharp A' + \ell_B, \sharp B' + \ell_A\}.$$

We show the last claim:

Fig. 18 Let $\Sigma = \{a, b, c, d, e, f, g\}$, $Q = \{q_6, q_7, q_8, q_9, q_{10}\}$. From these figures, we get $\ell_A = 1$, $\ell_B = 1$, $Q^{(\bot, \bot)} = Q^{(\bot, \bot)} = Q^{(\bot, \bot)} = \emptyset$, and $Q^{(\cdot, \cdot)} = Q$.

Fig. 19 In the left figure, we aggregate all of the edges appearing in Fig. 18. From Fig. 18 and this right figure, we get $Q_1^{(\cdot,\cdot)}=\{q_6,q_7,q_8,q_9\}$ and $Q_2^{(\cdot,\cdot)}=\{q_{10}\}$. From Proposition 4, even if the string $dg\in A'\cdot B'$ satisfies $p\{x:=gd\} \leq q_{10}$, it does not imply that $p\{x:=xy\} \leq q_{10}$.

Claim 6. $\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2 \geq 2$.

Proof of Claim 6. First we prove the inequality when $\sharp A \le k-1$ and $\sharp B \le k-1$, i.e., $\sharp A' \ge 3$ and $\sharp B' \ge 3$ hold. Since $\mathcal{L}_2 \le \frac{1}{2}(\sharp A' + \sharp B' + \ell_A + \ell_B)$,

$$\begin{split} & \#A' \times \#B' - \mathcal{L}_1 - \mathcal{L}_2 \\ & \ge \#A' \times \#B' - (2(\#A' + \#B') - 2(\ell_A + \ell_B) - 8) \\ & - \frac{1}{2}(\#A' + \#B' + \ell_A + \ell_B) \\ & = \#A' \times \#B' - \frac{5}{2}(\#A' + \#B') + \frac{3}{2}(\ell_A + \ell_B) + 8 \\ & = (\#A' - \frac{5}{2})(\#B' - \frac{5}{2}) + \frac{3}{2}(\ell_A + \ell_B) + \frac{7}{4} \ge 2. \end{split}$$

When $\sharp A=k$ and $\sharp B\leq k$, i.e., $\sharp A'=2$ and $\sharp B'\geq 2$ hold, since $\ell_A=0$, $\mathcal{L}_1\leq 2\sharp B'-2\ell_B-4$ holds. Moreover, $\mathcal{L}_2\leq \min\{\sharp B',\ell_B+2\}$ holds. From *Claim* 1, $\ell_B+2=k-\sharp\sigma_B^{-1}(\bot)-\sharp B=\sharp B'-\sharp\sigma_B^{-1}(\bot)$ holds. Therefore, $\mathcal{L}_2\leq \ell_B+2$ holds. Thus,

$$\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2$$

 $\geq 2\sharp B' - (2\sharp B' - 2\ell_B - 4) - (\ell_B + 2)$
 $= \ell_B + 2 \geq 2.$

Similarly, the case when $\sharp A \leq k$ and $\sharp B = k$ is proven. (*End*

of Proof of Claim)

Under Assumptions 1 and 2, from Claim 6, there exist at least two $w \in A' \cdot B'$ and a regular pattern $q \in Q_1^{(\cdot,\cdot)}$ such that the condition of Claim 4 is satisfied. Therefore, for such a regular pattern q, $p\{x := xy\} \leq q$ holds.

Lemma 12 (Sato et al.[4]): Let Σ be a finite alphabet with $\sharp \Sigma \geq 3$ and p,q regular patterns. If there exists a constant symbol $a \in \Sigma$ such that $p\{x := a\} \leq q$ and $p\{x := xy\} \leq q$, then $p \leq q$ holds, where g is a variable symbol that does not appear in g.

From the Lemma 11 and Lemma 12, we have the following theorem.

Theorem 4: Let $k \ge 3$, $\sharp \Sigma \ge 2k - 1$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^k$. Then, the following (i),(ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. it is clear that (ii) implies (iii) and (iii) implies (i). From Theorem 3, if $\sharp \Sigma \geq 2k+1$, then (i) implies (ii). Let $\sharp Q = k, \ p \in P, \ \sharp \Sigma = 2k-1 \ \text{or} \ 2k$. Then, we show that (i) implies (ii). It suffices to show that $S_2(p) \subseteq L(Q)$ implies $P \subseteq Q$ for any regular pattern $p \in \mathcal{RP}$. The proof is done by mathematical induction on n, where n is the number of variable symbols appears in p.

In case n = 0, $S_2(p) = \{p\}$. By (i), we have $\{p\} = L(Q)$. Thus, $p \le q$ for some $q \in Q$.

For $n \ge 0$, we assume that it is valid for any regular pattern p with n variable symbols. Let p be a regular pattern such that n+1 variable symbols appear in p and $S_2(p) \subseteq L(Q)$.

We assume that $p \not\sqsubseteq Q$, that is, $p \not\preceq q_i$ for any $i \in \{1, \ldots, k\}$. Let $Q = \{q_1, \ldots, q_k\}$ and p_1, p_2 regular patterns, x a variable symbol with $p = p_1 x p_2$. For $a, b \in \Sigma$, let $p_a = p\{x := a\}$ and $p_{ab} = p\{x := ab\}$. Both p_a and p_{ab} have n variable symbols, respectively. Thus, $S_2(p_a) \subseteq L(Q)$ and $S_2(p_{ab}) \subseteq L(P)$ hold. By the induction hypothesis, there exist $i, i' \in \{1, \ldots, k\}$ such that $p_a \preceq q_i$ and $p_{ab} \preceq q_{i'}$. Let $D_i = \{a \in \Sigma \mid p\{x := a\} \preceq q_i\}$ $(i = 1, \ldots, k)$. We assume that $\sharp D_i \geq 3$ for some $i \in \{1, \ldots, k\}$. By Lemma 2, we have $p \preceq q_i$. This contradicts the assumption. Thus,

we have $\sharp D_i \leq 2$ for any $i \in \{1,\ldots,k\}$. If $\sharp \Sigma = 2k-1$, then $\sharp D_i = 2$ or $\sharp D_i = 1$ for any $i \in \{1,\ldots,k\}$. Moreover, If $\sharp \Sigma = 2k$, then $\sharp D_i = 2$ for any $i \in \{1,\ldots,k\}$. Since $k \geq 3$, $2k+1 \geq k+2$ holds. By Lemma 11,there exists $i \in \{1,\ldots,k\}$ such that $p\{x := xy\} \leq q_i$. Therefore, by Lemma 12, we have $p \leq q_i$. This contradicts the assumption. Thus, (i) implies (ii).

From Theorem 4, the following corollary holds.

Corollary 2: Let $k \ge 3$, $\sharp \Sigma \ge 2k - 1$ and $P \in \mathcal{RP}^+$. Then, $S_2(P)$ is a characteristic set for L(P) within \mathcal{RPL}^k .

Lemma 13 (Sato et al.[4]): Let $k \ge 3$ and $\sharp \Sigma \le 2k - 2$. Then, \mathcal{RP}^k does not have compactness with respect to containment.

Proof. Let $\Sigma = \{a_1, \dots, a_{k-1}, b_1, \dots, b_{k-1}\}$ and p, q_i regular patterns, $w_i \in \Sigma^*$ $(i = 1, \dots, k-1)$ defined in a similar way to Example 1. Let $q_k = x_1 a_1 w_1 x y w_1 b_1 x_2$. Since $p\{x := a_i\} = x_1 a_1 w_1 a_i w_1 b_1 x_2 \preceq q_i$ and $p\{x := b_i\} = x_1 a_1 w_1 b_i w_1 b_1 x_2 \preceq q_i$ for any $i \in \{1, \dots, k-1\}$, we have $S_1(p) \subseteq \bigcup_{i=1}^{k-1} L(q_i)$. For any $w \in \{s \in \Sigma^+ \mid |s| \ge 2\}$, $p\{x := w\} = x_1 a_1 w_1 w w_1 b_1 x_2 \preceq q_k$. Thus, we have $L(p) \subseteq L(Q)$. By Theorem 1, since $p \not\preceq q_i$, $L(p) \not\subseteq L(q_i)$ for any $i \in \{1, \dots, k\}$. Therefore, \mathcal{RP}^k does not have compactness with respect to containment.

From Theorem 4and Lemma 13, we have the following thorem

Theorem 5: Let $k \ge 3$ and $\sharp \Sigma \ge 2k - 1$. Then, \mathcal{RP}^k has compactness with respect to containment.

In case k = 2, we have the following theorem.

Theorem 6: Let $\sharp \Sigma \geq 4$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^2$. The following (i), (ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. It is clear that (ii) implies (iii), and (iii) implies (i). Thus, we show that (i) implies (ii). It suffices to show that $S_2(p) \subseteq L(O)$ implies $P \subseteq O$ for any regular pattern $p \in O$ \mathcal{RP} . Let $Q = \{q_1, q_2\}$. The proof is done by mathematical induction on n, where n is the number of variable symbols appearing in p. In case n = 0, $p \in \Sigma^+$. Since $S_2(p) =$ $\{p\} \subseteq L(Q)$, we have $p \leq q$ for some $q \in Q$. For $n \geq 0$, we assume that it is valid for any regular pattern p with n variable symbols. Let p be a regular pattern such that n+1 variable symbols appear in p, and $S_2(p) \subseteq L(Q)$. We assume that $p \not \leq q_i$ (i = 1, 2). Let p_1, p_2 be regular patterns and x a variable symbol with $p = p_1 x p_2$. For $a, b \in \Sigma$, let $p_a = p\{x := a\}$ and $p_{ab} = p\{x := ab\}$. Note that p_a and p_{ab} have n variable symbols. Thus, by the assumption, $S_2(p_a) \subseteq L(Q)$ and $S_2(p_{ab}) \subseteq L(Q)$ implies $p_a \leq q_i$ and $p_{ab} \leq q_{i'}$ for some $i, i' \in \{1, 2\}$. Let $D_i = \{a \in \Sigma \mid$ $p\{x := a\} \leq q_i\}$ (i = 1, 2). By Lemma 2, if $\sharp D_i \geq 3$ for some $i \in \{1, 2\}$, then $p \leq q_i$. This contradicts that $p \nleq q_i$ (i = 1, 2). Thus, we have $\sharp D_i \leq 2$ for any $i \in \{1, 2\}$. Since $\sharp \Sigma \geq 4$, We consider that $\sharp D_1 = 2$ and $\sharp D_2 = 2$. From Lemma 11, $p\{x := xy\} \leq q_i$ for some $i \in \{1, 2\}$. From Lemma 12, we have $p \leq q_i$ for some $i \in \{1, 2\}$. This contradicts that $p \not\leq q_i$ (i = 1, 2). Therefore, (i) implies (ii). \square

The next example gives a set of regular patterns $P \in \mathcal{RP}^+$ and a set of regular patterns $Q \in \mathcal{RP}^2$ that, in case $\sharp \Sigma = 3$, the three conditions (i),(ii) and (iii) in Theorem 6 are not equivalent

Example 3: Let $\Sigma = \{a,b,c\}$, p, q_1 , q_2 regular patterns and x,x',x'' variable symbols such that p=x'axbx'', $q_1=x'abx''$ and $q_2=x'cx''$. Let $w\in\Sigma^+$. If w contains c, then $p\{x:=w\} \preceq q_2$. On the other hand, if w does not contain c, then $p\{x:=w\} \preceq q_1$. Thus, $L(p)\subseteq L(q_1)\cup L(q_2)$. However, $p\not\preceq q_1$ and $p\not\preceq q_2$.

From Theorem 6, we have that following two corollaries.

Corollary 3: Let $\sharp \Sigma \geq 4$ and $P \in \mathcal{RP}^+$. Then, $S_2(P)$ is a characteristic set for L(P) within \mathcal{RPL}^2 .

Corollary 4: Let $\sharp \Sigma \geq 4$. Then, \mathcal{RP}^2 has compactness with respect to containment.

4. Regular Pattern without Adjacent Variable Symbols

A regular pattern p is said to be a non-adjacent variable regular pattern (NAV regular pattern) if p does not contain consecutive variable symbols. For example, the regular pattern p = axybc is not a NAV regular pattern because xy is appeared in p. Let \mathcal{RP}_{NAV} be the set of all NAV regular patterns. Let \mathcal{RP}_{NAV}^+ be the set of all finite subsets S of \mathcal{RP}_{NAV} such that S is not the empty set, i.e., $\mathcal{RP}_{NAV}^+ = \{S \subseteq \mathcal{RP}_{NAV} \mid \sharp S \leq 1\},\$ and \mathcal{RP}^k_{NAV} the set of all subsets P of \mathcal{RP}^+_{NAV} such that Pconsists of at most k ($k \ge 1$) NAV regular patterns, i.e., $\mathcal{RP}_{NAV}^k = \{ P \in \mathcal{RP}_{NAV}^+ \mid \sharp P \leq k \}.$ We can define the compactness with respect to containment for \mathcal{RP}^k_{NAV} in a similar way as Def.2. For any NAV regular pattern $p \in \mathcal{RP}_{NAV}$ and any set $Q \in \mathcal{RP}_{NAV}^k$ with k $(k \ge 1)$, the set \mathcal{RP}_{NAV}^k said to have compactness with respect to containment if there exists a NAV regular pattern $q \in Q$ such that $L(p) \subseteq L(q)$ holds if $L(p) \subseteq L(Q)$ holds. Then, we have the following Theorem

Theorem 7: For an integer k ($k \ge 2$), let $\sharp \Sigma \ge k + 2$, $P \in \mathcal{RP}^+_{NAV}$, $Q \in \mathcal{RP}^k_{NAV}$. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. From the definitions of \mathcal{RP}_{NAV}^+ and \mathcal{RP}_{NAV}^k , it is clear that (ii) implies (iii) and (iii) implies (i). Hence, we will show that (i) implies (ii) by mathematical induction on the number n of variable symbols that appear in a NAV regular pattern $p \in P$ as follows: If n = 0, then we have $S_2(\{p\}) = \{p\}$. Hence, $p \in L(Q)$. Therefore, there exists $q \in Q$ such that $p \preceq q$ holds.

If $n \ge 0$, we assume that the proposition holds for any regular *NAV* regular pattern containing $n \ge 0$ variable

p = x'cadadaadacbadadaadaadaadacbadadaadabx'', $q_1 = x'$ cadadaadacbadadadaadacx'',

- $q_2 = x'badadaadacx''$,
- $q_3 = x'aadadx''$

Fig. 20 NAV regular patterns p, q_1 , q_2 , and q_3

symbols. Let p be a NAV regular pattern containing n+1 variable symbols such that $S_2(\{p\}) \subseteq L(Q)$ holds and p contains a variable symbol x. There exist two NAV regular patterns p_1, p_2 such that $p = p_1 x p_2$ holds. By the induction hypothesis, for any constant string $w \in \Sigma^*$ with |w| = 2, $\{p\{x := w\}\} \leq Q$ holds because $p\{x := w\}$ contains n variable symbols. Hence, there exists a NAV regular pattern $q_w \in Q$ such that $p\{x := w\} \leq q_w$ holds. From Lemma 11, there exists a regular pattern $q \in Q$ such that $p\{x := xy\} \leq q$ holds, where y is a variable symbol that does not appear in q. This contradicts the condition $Q \in \mathcal{RP}^k_{NAV}$. Thus, we have that (i) implies (ii).

Corollary 5: Let $k \ge 2$, $\sharp \Sigma \ge k+2$ and $P \in \mathcal{RP}^+_{NAV}$. Then, $S_2(P)$ is a characteristic set of \mathcal{RPL}^k_{NAV} .

Lemma 14: Let $k \ge 2$ and $\sharp \Sigma \le k + 1$. Then, \mathcal{RP}_{NAV}^k does not have compactness with respect to containment.

Proof. Let Σ be the set of k+1 constant symbols a_1,\ldots,a_{k+1} , i.e., $\Sigma=\{a_1,\ldots,a_{k+1}\}$. We assume that for $i=1,2,\ldots,k,\ p\{x:=a_iy\} \preceq q_i \text{ and } p\{x:=ya_{i+1}\} \preceq q_i \ (i=1,2,\ldots,k) \ \text{hold.}$ If $p\{x:=a_{k+1}a_1\} \preceq q_1 \ \text{holds, } S_2(p)\backslash S_1(p) \subseteq \bigcup_{i=1}^k L(q_i) \ \text{holds.}$ This show that $L(p)\subseteq L(Q)$ holds. However, for $i=1,2,\ldots,k$, since $p\not\preceq q_i$ holds, we have that $L(p)\not\subseteq L(q_i)$ holds. Hence, \mathcal{RP}^k_{NAV} does not have compactness with respect to containment.

Next, in Example 4, we give an example for Lemma 14.

Example 4: Let Σ be the set of four constant symbols a, b, c, d, i.e., $\Sigma = \{a, b, c, d\}$ and x, x', x'' three distinct variable symbols. Let p, q_1, q_2, q_3 be the *NAV* regular patterns given in Fig. 20. Then, we have $L(p) \subseteq L(q_1) \cup L(q_2) \cup L(q_3)$. This show that for $P = \{p\}, Q = \{q_1, q_2, q_3\}$, (iii) of Theorem 7 holds. However, since $p \not \leq q_1, p \not \leq q_2$ and $p \not \leq q_3$ hold, we have $P \not \sqsubseteq Q$, that is, (ii) of Theorem 7 does not hold.

From Theorem 7 and Lemma 14, we have the following theorem.

Theorem 8: Let $k \ge 2$ and $\sharp \Sigma \ge k + 2$. Then, the set \mathcal{RPL}_{NAV}^k has compactness with respect to containment.

5. Conclusion

In this paper, for an integer k ($k \ge 2$), we have shown the conditions on the number of constant symbols in Σ , summarized in Table 2, required for the classes \mathcal{RP}^k of all the set of k regular pattern languages and \mathcal{RP}^k_{NAV} of all the set of k NAV regular patterns to have compactness with respect

Table 2 The conditions on the number $\sharp \Sigma$ of constant symbols in Σ required for compactness with respect to containment.

Class	k = 2	$k \ge 3$
\mathcal{RP}^k	$\sharp \Sigma \geq 4$	$\sharp \Sigma \geq 2k-1$
\mathcal{RP}^k_{NAV}	$\sharp \Sigma \geq k+2$	

to containment. これらにより、Arimura ら [?] が示した \mathcal{RP}^k に対する学習アルゴリズムを非隣接変数正規パターン言語の有限和に関する効率的な学習アルゴリズムが設計できることを示した.

今後の課題として、1. 正規言語の有限和における強コンパクト性 2. RP_{NAV}^{k} に対する特徴集合を活用し、非隣接変数正規パターン言語の有限和を正例から極限同定する多項式時間帰納推論アルゴリズム 3. および一つの正例と多項式回の所属性質問を用いて同定する質問学習アルゴリズムの高速化が考えられる. 4. また、正規パターン言語の有限和に対する特徴集合の概念を線形項木パターン言語 [10] の有限和や正則 FGS 言語 [11] に拡張することが考えられる.

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Numbers JP20K04973, JP21K12021, JP22K12172, 24K15074, and 24K15090. 堀井君ありがとう。

References

- [1] Angluin, D., Finding Patterns Common to a Set of Strings, Journal of Computer and System Sciences, 21(1):46–62, 1980.
- [2] Angluin, D., Inductive Inference of Formal Languages from Positive Data, Information and Control, 45(2):117–135, 1980.
- [3] Wright, K., Identification of Unions of Languages Drawn from an Identifiable Class, in Proc. COLT 1989, pp.328-333, 1989.
- [4] Sato, D., Mukouchi, Y., and Zheng, D., Characteristic Sets for Unions of Regular Pattern Languages and Compactness, in Proc. ALT '98, Springer LNAI 1501, pp.220-233, 1998.
- [5] Mukouchi, Y., Containment Problems for Pattern Languages, IEICE Transactions on Information and Systems, E75-D(4):420-425, 1992.
- [6] Shinohara,T. and Arimura,H., Inductive inference of unbounded unions of pattern languages from positive data, Theoretical Computer Science, 241(1-2): 135–161, 2000.
- [7] Day, J.D., Reidenbach, D., and Schmid, M.L., Closure Properties of Pattern Languages, Journal of Computer and System Sciences 84:11-31, 2017.
- [8] Matsumoto,S., Uchida,T., Shoudai,T., Suzuki,Y., and Miyahara,T., An Efficient Learning Algorithm for Regular Pattern Languages Using One Positive Example and a Linear Number of Membership Queries, IEICE Transactions on Information and Systems, E103-D(3):526-539, 2020.
- [9] Mukouchi, Y., Characterization of Pattern Languages, in Proc. ALT '91, Ohmusha, pp.93-104, 1991.
- [10] Suzuki, Y., Shoudai, T., Uchida, T., and Miyahara, T., Ordered Term Tree Languages Which are Polynomial Time Inductively Inferable from Positive Data, Theoretical Computer Science, 350(1):63-90, 2006.
- [11] Uchida, T., Shoudai, T., and Miyano, S., Parallel Algorithms for Refutation Tree Problem on Formal Graph Systems, IEICE Trans. Inf. & Syst., E78-D(2):99-112, 1995.