Global Automotive Seating Company

RISEING

BDA03 Group 5

Background

- Major supplier of seating systems for automobiles across the world with 200+ seat manufacturing plants in 30+ countries.
- 25 million cars equipped annually.

Business Problem

- The automotive seating manufacturing company profits has been declining over time because of the steep increase in plants operating costs
- Lack of visibility in the production process such as machine downtime, products defect rate, etc. is leading to ineffective operational process in turn increasing costs.

Business Objectives

- Incorporate real time diagnostics of plant operational process to better manage available production lines and increase profit margin.
- Use data and analytics to track production process of various machines in real time to provide better visibility of the seat manufacturing process.

Analytics Objectives

Build an analytics dashboard to track plant's operational process i.e., downtime minutes, total machine utilization time, etc.

How Might We

How might we provide clarity of the company's overall plant's operational performance and cost to better manage production and increase the profits.

Observations

Machine Utilisation

- 1) Machine utilisation is generally increasing over the 5 days, reaching highest at 80.81% on 22 June 2018.
- 2) Average machine utilisation is at 79.38%.

Right First Time, Scrap Rate, Rework Rate

- 1) Average RightFirstTime for 5 days is at 97.65%.
- 2) Average scrap rate is at 0.33% and average rework rate is at 2.02%.
- 3) Line ID 3 and Team ID 2 had comparatively higher rework and scrap rate for all production dates.

Downtime and Sum of Production

- 1) A total of 170,265 pieces are produced in 5 days.
- 2) Total downtime across all dates is 497.75 minutes.
- 3) Highest daily production occurred on 21 June 2018 while lowest daily production occurred on 22 June 2018. Highest daily downtime happened on 19 June 2018.

Correlation

- 1) Moderate correlation of 0.66 noted between ProductionFBE and ScrapFBE.
- 2) Very strong correlation of 0.93 noted between ProductionFBE and ReworkFBE.

Recommendations

Recommendation #1

Highest machine utilisation coincide with lowest production pieces on 22 June. This is a cause for concern, as productive capacity of machines is not used to produce production pieces. This warrants further investigation.

Recommendation #2

Among all the failure to achieve Right First-time production, 85% of error is due to need for rework. Such machines producing error pieces requiring rework should be diagnosed and addressed.

Recommendation #3

Higher positive correlation between production-rework pair compared to production -scrap pair correspond to much higher rework rate than scrap rate observed over the 5 days.

Machine **Utilization**

<u> </u>	Average Machine Utilization by Day			
	0.00 79.38 100.00			

Average Machine Utilization over the period of time

TeamID	1	2	3	SubTotals
1	80.47	77.33	81.05	79.61
2	81.66	79.18	78.54	79.79
3	81.07	77.84	77.32	78.74
SubTotals	81.06	78.12	78.97	79.38

- Feature Engineering done to fill up missing ProductionFBETheoretical values (Annex1).
- Feature Engineering done using Python to observe patterns.

Right First Time, Scrap Rate & Rework Rate

Average Scrap Rate

0.33

Scrap Rate (%)

Average Rework Rate

2.02

Average of Rework Rate (%)

Right First Time = (ProductionFBE - ScrapFBE - ReworkFBE)/ ProductionFBE

Scrap Rate = Scrap/ProductionFBE

Rework Rate = Rework/ProductionFBE

Total Downtime & Production

170.27K

Sum of Production (pieces)

497.75
Total Downtime (mins)

Downtime = Sum of downtime Production pieces = Sum of items produced

Correlation Coefficient

(a) Total Production vs Scrap pieces produced(b) Total Production vs Rework pieces

0.66

Correlation Coefficient between Total Production and Scrap Pieces

0.93

Correlation Coefficient between Total Production and Rework Pieces

Annex: Feature
Engineering for missing
ProductionFBE
Theoretical using
Python

LineID= 1

Observation:

ProductionFBETheoretical is largely 377.3584906

TeamID = 2

TeamID= 3

LineID= 2

Observation:

ProductionFBETheoretical is largely 419.5804196

FroductionFBETheoretical 288.4615385 354.020979 393.3566434 419.5804196

20/6/18

Date

21/6/18

22/6/18

18/6/18

19/6/18

LineID= 3

Observation:

ProductionFBETheoretical is largely 411.8993135

