Esperienza 3

Matteo Romano, Vittorio Strano

09/12/2021

Indice

1	Obi	ettivo	dell'esperienza	1
2	Str	umenti	e materiali	2
3	One	da qua	dra	2
	3.1	Dati e	d errori	2
	3.2	Analis	i dati	3
4	One	da sinu	soidale	4
	4.1	Funzio	one di trasferimento ai capi di C	5
		4.1.1	Dati ed errori	5
		4.1.2	Analisi dati	5
	4.2	Funzio	one di trasferimento ai capi di R	10
		4.2.1	Dati ed errori	10
		4.2.2	Analisi dati	10
5	Cor	nclusio	ni	15

1 Obiettivo dell'esperienza

Lo scopo dell'esperienza è quello di calcolare il valore della resistenza e della capacità di un circuito RC. Per farlo si analizza la differenza di potenziale ai capi di R (Figura 1a) e/o ai capi di C (Figura 1b) quando si sottopone il circuito ad una tensione variabile.

Figura 1: Schema circuito

2 Strumenti e materiali

- Generatore di tensione AC
- Multimetro digitale (utilizzato come ohmetro)
- Oscilloscopio
- Cavi
- Breadboard
- Resistore
- Condensatore

3 Onda quadra

La prima parte dell'esperimento consiste nell'applicare ai capi del circuito una tensione variabile secondo un'onda quadra di ampiezza V_0 . La frequenza dell'onda è stata scelta in modo da permettere al condensatore di completare il regime transitorio, passando da una tensione $V_0/2$ fino ad una tensione $V_0/2$. La curva osservata nell'oscilloscopio rappresenta la tensione V_C ai capi del condensatore in funzione del tempo t e segue l'Equazione 3.1.

$$V_C = V_0 \cdot e^{-t/RC} - V_0/2 \tag{3.1}$$

Per prendere le misure il sistema di riferimento è stato traslato in modo da porre come zero delle ordinate il valore $-V_0/2$ e ottenere l'Equazione 3.2.

$$V = V_0 \cdot e^{-t/RC} \tag{3.2}$$

Noto il valore di $R=(1.874\pm0.004)~\mathrm{k}\Omega$ (misurato con il multimetro) si vuole ottenere il valore di C.

3.1 Dati ed errori

Sull'oscilloscopio è stato fissato il primo cursore in corrispondenza dell'asintoto della curva a $-V_0/2$; questo sarà lo zero delle ordinate.

Il secondo cursore è stato fatto variare in modo da ottenere la differenza di potenziale al variare del tempo. Le misure ottenute sono riportate, insieme ai loro errori già arrotondati, nella Tabella 1.

Tabella 1: Misure dell'onda quadra

V(V)	$\delta V (V)$	$t (\mu s)$	$\delta t \; (\mu s)$
7.00	0.10	0.0	0.3
6.52	0.10	0.9	0.3
6.00	0.10	2.0	0.3
5.52	0.10	3.1	0.3
5.00	0.10	4.5	0.3
4.52	0.10	5.9	0.3
4.00	0.10	7.5	0.3
3.52	0.10	9.2	0.3
3.00	0.10	11.4	0.5
2.52	0.10	13.8	0.5
2.00	0.10	17.0	0.5
1.52	0.10	20.8	1.0
1.00	0.10	26.0	1.0
0.52	0.10	35	3

3.2 Analisi dati

$$V = V_0 \cdot e^{-t/RC} \implies \ln(V) = \ln(V_0 \cdot e^{-t/RC}) = \ln(V_0) - \frac{t}{RC}$$

Riportando le misure in un grafico semi-logaritmico (come in Figura 2), ci si aspetta di ottenere una funzione lineare.

La retta di massima pendenza passa per i punti (-0.2, 7) e (35, 0.6), mentre la retta di minima pendenza passa per i punti (0.2, 7) e (34, 0.5).

$$m_{max} = \frac{\ln(7/0.6)}{-0.2 - 35} = -0.06979$$
 $m_{min} = \frac{\ln(7/0.5)}{0.2 - 34} = -0.07808$

$$m_{best} = \frac{m_{max} + m_{min}}{2} = -0.0739 \approx -0.074$$

$$\delta m = \frac{m_{max} - m_{min}}{2} = 0.0041 \approx 0.004$$

$$m = -0.074 \pm 0.004 \tag{3.3}$$

Figura 2: Grafico semi-logaritmico delle misure dell'onda quadra

Essendo $m = -\frac{1}{RC}$ e conoscendo il valore di $R = (1.874 \pm 0.004) \text{ k}\Omega$, calcoliamo C.

$$\varepsilon_R = \frac{0.004}{1.874} = 0.0021 \approx 0.002$$

$$\varepsilon_m = \frac{0.004}{0.074} = 0.054 \approx 0.05$$

$$\varepsilon_C = \sqrt{\varepsilon_R^2 + \varepsilon_m^2} = 0.050$$

$$C = -\frac{1}{mR} = 7.21 \pm 0.36 \approx (7.2 \pm 0.4) \text{ nF}$$
 (3.4)

4 Onda sinusoidale

La seconda parte dell'esperimento consiste nel sottoporre il circuito a un regime di tensione sinusoidale, variando la frequenza in entrata; abbiamo poi misurato la tensione in entrata e uscita del circuito ai capi di C e ai capi di R, così come il suo tempo di risposta. Con questi dati abbiamo determinato il modulo della funzione di trasferimento |A|, la sua fase φ e la frequenza di taglio f_0 .

Per indicare il componente in esame, nei nomi delle variabili è stato inserito a pedice C per le misure del condensatore ed R per quelle del resistore.

4.1 Funzione di trasferimento ai capi di C

4.1.1 Dati ed errori

Nella Tabella 2 sono riportati i risultati delle misurazioni effettuate con i relativi errori

Tabella 2: Misure dell'onda sinusoidale ai capi di ${\cal C}$

$V_{in}(V)$	$\delta V_{in} (V)$	$\mid V_{out} (V) \mid$	$\delta V_{out} (V)$	f(kHz)	$t (\mu s)$	$\delta t \; (\mu s)$
6.96	0.10	6.92	0.10	0.5155	13.7	0.3
7.04	0.10	6.92	0.10	1.024	13.5	0.3
7.04	0.10	6.86	0.10	2.495	13.2	0.3
7.04	0.10	6.75	0.10	3.525	12.8	0.5
7.04	0.10	6.64	0.10	4.010	12.7	0.3
7.04	0.10	6.00	0.10	7.042	11.9	0.3
6.00	0.10	3.34	0.10	15.55	9.2	0.3
5.72	0.10	2.44	0.05	25.46	6.76	0.10
5.60	0.10	1.76	0.05	36.37	5.3	0.3
5.44	0.10	0.628	0.010	104.7	2.22	0.05
5.44	0.10	0.424	0.010	156.0	1.52	0.10
5.36	0.10	0.258	0.005	254.1	0.95	0.05
5.28	0.10	0.181	0.002	356.6	0.65	0.03
5.24	0.10	0.172	0.005	376.5	0.636	0.010
5.02	0.10	0.138	0.002	459.1	0.52	0.03

4.1.2 Analisi dati

Con i dati raccolti si calcola il modulo della funzione di trasferimento $|A_C|$ al variare della frequenza utilizzando l'Equazione 4.1

$$|A_C| = \frac{V_{out}}{V_{in}}$$

$$\varepsilon_{|A_C|} = \frac{\delta V_{out}}{V_{out}} + \frac{\delta V_{in}}{V_{in}}$$
(4.1)

Riportando le misure della Tabella 3 in un grafico logaritmico $|A_C|(f)$ si ottiene la Figura 3.

Tabella 3: Valori di $|A_C|$

$ A_C $	$d A_C $	f(kHz)
0.99	0.03	0.5155
0.98	0.03	1.024
0.97	0.03	2.495
0.96	0.03	3.525
0.94	0.03	4.010
0.85	0.03	7.042
0.56	0.03	15.55
0.427	0.016	25.46
0.314	0.015	36.37
0.115	0.004	104.7
0.078	0.003	156.0
0.0481	0.0018	254.1
0.0343	0.0010	356.6
0.0328	0.0016	376.5
0.0275	0.0009	459.1

Figura 3: Grafico logaritmico di $|A_C|(f)$

Si osserva che il modulo della funzione di trasferimento, in scala logaritmica, assume un andamento lineare a frequenze elevate; è possibile quindi tracciare una retta di pendenza -1 passante per i punti situati all'estrema destra del grafico. Questa retta interseca l'asintoto orizzontale $|A_C|=1$ alla frequenza di taglio f_C .

Abbiamo riportato uno zoom sull'intersezione delle rette in Figura 5.

Figura 4: Grafico della stima della frequenza di taglio

Figura 5: Zoom intersezione rette

$$f_{C min} = 12.0 \ kHz$$

$$f_{C max} = 12.5 \ kHz$$

$$f_{C\ best} = rac{f_{C\ max} + f_{C\ min}}{2} = 12.25 \approx 12.3\ kHz$$

$$\delta f_{C} = rac{f_{C\ max} - f_{C\ min}}{2} = 0.25 \approx 0.3\ kHz$$

Quindi il valore di $f_C = (12.3 \pm 0.3) \; kHz.$

Con i dati della Tabella 2, calcoliamo la fase $\varphi_C(f)$ con l'Equazione 4.2; i risultati ottenuti sono nella Tabella 4.

$$\varphi_C = 2\pi \cdot tf$$

$$\delta\varphi_C = \frac{\delta t}{t} \cdot \varphi_C \tag{4.2}$$

Tabella 4: Valori di φ_C

$\varphi_C (rad)$	$d\varphi_C (rad)$	f(kHz)
-0.0444	0.0008	0.5155
-0.0869	0.0016	1.024
-0.207	0.004	2.495
-0.284	0.011	3.525
-0.320	0.006	4.010
-0.527	0.011	7.042
-0.90	0.02	15.55
-1.081	0.016	25.46
-1.21	0.06	36.37
-1.46	0.03	104.7
-1.49	0.10	156.0
-1.52	0.08	254.1
-1.46	0.06	356.6
-1.50	0.02	376.5
-1.50	0.07	459.1

Figura 6: Grafico di $\varphi_C(f)$

Successivamente sono state tracciate due rette passanti per i punti più vicini ad f_C dove ci si aspetta un andamento lineare (Figura 7).

Figura 7: Rette intorno a f_C

L'intersezione delle rette di massima e minima intercetta con $\varphi_C = -\pi/4$ è compatibile con il valore di f_C calcolato precedentemente.

4.2 Funzione di trasferimento ai capi di R

4.2.1 Dati ed errori

Nella Tabella 5 sono riportati i risultati delle misurazioni effettuate con i relativi errori

Tabella 5: Misure dell'onda sinusoidale ai capi di R

$V_{in}(V)$	$\delta V_{in} (V)$	$\mid V_{out} (V) \mid$	$\delta V_{out} (V)$	f(kHz)	$t (\mu s)$	$\delta t \; (\mu s)$
7.00	0.10	0.294	0.005	0.5149	464	10
7.00	0.10	0.576	0.010	1.025	230	5
7.04	0.10	0.780	0.010	1.388	166	3
7.04	0.10	1.38	0.02	2.498	86.8	1.0
7.04	0.10	2.18	0.05	4.016	48.8	1.0
7.00	0.10	3.46	0.05	7.077	23.2	0.5
6.96	0.10	5.32	0.10	15.12	7.28	0.10
6.88	0.10	6.04	0.10	25.28	2.94	0.05
6.84	0.10	6.56	0.10	52.06	0.716	0.010
6.80	0.10	6.72	0.10	103.7	0.180	0.003
6.80	0.10	6.80	0.10	203.7	0.0448	0.0010
6.80	0.10	6.80	0.10	403.1	0.0106	0.0005

4.2.2 Analisi dati

Con i dati raccolti si calcola il modulo della funzione di trasferimento $|A_R|$ al variare della frequenza utilizzando l'Equazione 4.3

$$|A_R| = \frac{V_{out}}{V_{in}}$$

$$\varepsilon_{|A_R|} = \frac{\delta V_{out}}{V_{out}} + \frac{\delta V_{in}}{V_{in}}$$
(4.3)

Riportando le misure della Tabella 6 in un grafico logaritmico $|A_R|(f)$ si ottiene la Figura 8

Tabella 6: Valori di $|A_R|$

$ A_R $	$d A_R $	$\int f(kHz)$
0.0420	0.0013	0.5149
0.082	0.003	1.025
0.111	0.003	1.388
0.196	0.006	2.498
0.310	0.012	4.016
0.494	0.014	7.077
0.76	0.03	15.12
0.88	0.03	25.28
0.96	0.03	52.06
0.99	0.03	103.7
1.00	0.03	203.7
1.00	0.03	403.1

Figura 8: Grafico logaritmico di $|A_R|(f)$

Nella funzione $|A_R|$ si avrà un andamento lineare a basse frequenze; tracciamo in questo caso una retta di pendenza 1 passante per i punti situati all'estrema sinistra del grafico. Questa retta interseca l'asintoto orizzontale $|A_R| = 1$ alla frequenza di taglio f_R .

Figura 9: Grafico della stima della frequenza di taglio

Abbiamo riportato uno zoom sull'intersezione delle rette in Figura 10.

Figura 10: Zoom intersezione rette

$$f_{R min} = 12.2 kHz$$

$$f_{R max} = 12.8 kHz$$

$$f_{R best} = \frac{f_{R max} + f_{R min}}{2} = 12.5 \text{ kHz}$$

$$\delta f_{R} = \frac{f_{R max} - f_{R min}}{2} = 0.3 \text{ kHz}$$

Quindi il valore di $f_R = (12.5 \pm 0.3) \; kHz.$

Con i dati della Tabella 5, calcoliamo la fase $\varphi_R(f)$ con l'Equazione 4.4; i risultati ottenuti sono nella Tabella 7.

$$\varphi_R = 2\pi \cdot tf$$

$$\delta \varphi_R = \frac{\delta t}{t} \cdot \varphi_R \tag{4.4}$$

Tabella 7: Valori di φ_R

$\varphi_R \ (rad)$	$d\varphi_R \ (rad)$	$\int f(kHz)$
0.0696	0.0015	0.5149
0.0901	0.0020	1.025
0.1230	0.0019	1.388
0.209	0.002	2.498
0.339	0.007	4.016
0.539	0.012	7.077
0.879	0.012	15.12
1.104	0.019	25.28
1.337	0.019	52.06
1.45	0.02	103.7
1.51	0.03	203.7
1.54	0.07	403.1

Figura 11: Grafico di $\varphi_R(f)$

Successivamente sono state tracciate due rette passanti per i punti più vicini ad f_R dove ci si aspetta un andamento lineare (Figura 12).

Figura 12: Rette intorno a f_R

L'intersezione delle rette di massima e minima intercetta con $\varphi_R = \pi/4$ è compatibile con il valore di f_R calcolato precedentemente.

5 Conclusioni

I valori di f_C ed f_R ricavati:

$$f_C = (12.3 \pm 0.3) kHz$$

 $f_R = (12.5 \pm 0.3) kHz$

Figura 13: Compatibilità di f_C ed f_R

risultano compatibili, come è possibile vedere nella Figura 13. Possiamo dare un valore finale di $f_0=(12.4\pm0.2)~kHz.$

Con questo valore appena ottenuto, calcoliamo $\omega_0 = 2\pi f_0 = 77.91 \pm 1.26 \approx (77.9 \pm 1.3) \ rad/ms$.

Il tempo caratteristico del circuito si può calcolare sia a partire da ω_0

$$\tau_1 = \frac{1}{\omega_0} = 12.84 \pm 0.21 \approx (12.8 \pm 0.2) \ \mu s$$

sia dalle misure di R e C trovate nella sezione 3.

$$R = (1.874 \pm 0.004) \text{ k}\Omega$$

 $C = (7.2 \pm 0.4) \text{ nF}$

$$\tau_2 = RC = 13.51 \pm 0.73 \approx (13.5 \pm 0.7) \ \mu s$$

Figura 14: Compatibilità di τ_1 e τ_2

Si verifica che i due $\tau_{1,2}$ sono compatibili, con un valore finale di $\tau=(12.90\pm0.10)\mu s.$