COMPUTER ORGANIZATION AND ARCHITECTURE (COA)

EET 2211
4TH SEMESTER – CSE & CSIT
CHAPTER 5, LECTURE 20

CHAPTER 5 INTERNAL MEMORY

INTERNAL MEMORY

TOPICS TO BE COVERED

- > Semiconductor Main Memory
- > Error Correction

LEARNING OBJECTIVES

After studying this chapter you should be able to:

- > Present an overview on the principle types of semiconductor main memory.
- > Understand the operation of a basic code that can detect and correct single-bit errors in 8-bit words.

INTRODUCTION

✓In earlier computers the most common form of random-access storage for computer main memory employed an array of doughnut-shaped ferromagnetic loops known as CORES.

✓ In this chapter we will be studying semiconductor main memory subsystems including ROM, DRAM and SRAM memories.

✓ Also error control techniques used to enhance memory reliability.

SEMICONDUCTOR MAIN MEMORY

ORGANIZATION

- ✓ The basic element of a semiconductor memory is the memory cell.
- ✓ All semiconductor memory cells share certain properties:
- i. They exhibit two stable states which can be used to represent binary 1 and 0.
- ii. They are capable of being written into to set the state.
- iii. They are capable of being read to sense the state.

- ✓ The cell has 3 functional terminals capable of carrying an electrical signal.
- ✓ The selected terminal selects a memory cell for read or write operation.
- ✓ The control terminal indicates read or write.

Fig. 1: Memory cell operation [Source: Computer Organization and Architecture by William Stallings]

RAM

- ✓ The most common is RAM (Random access memory).
- ✓ It reads data from memory and to write new data into the memory easily and rapidly.
- ✓ Both reading and writing is accomplished through the use of electrical signals.
- ✓ It is volatile in nature.
- ✓ It must be provided with constant power supply.
- ✓ RAM acts as a temporary data storage.
- ✓ Two forms are DRAM and SRAM.

DRAM and **SRAM**

- ✓ DRAM is made with cells that store data as charge on capacitors.
- ✓ The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0.
- ✓ As capacitors have a natural tendency to discharge, it requires periodic charge refreshing to maintain data storage.
- ✓ SRAM is a digital device that uses the same logic elements used in processor.
- ✓ In SRAM binary values are stored using traditional flip-flop logic-gate configurations.
- ✓ A SRAM will hold its data as long as power is supplied to it.

DRAM and **SRAM**

SEMICONDUCTOR MEMORY TYPES

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	
Programmable ROM (PROM)			Electrically	Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip-level		
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

ERROR CORRECTION

A semiconductor memory is subject to errors. They can be categorized into:

- (i) Hard Failure
- (ii) Soft errors
- ✓ A hard failure is a permanent physical defect so that the memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1.
- ✓ A soft error is a random, non-destructive event that alters the contents of one or more memory cells without damaging the memory.

Hard Failure

- Permanent physical defect.
- Memory cells affected cannot reliably store data.
- Caused due to harsh environmental abuse, manufacturing defects and wear etc.

• <u>Soft errors</u>

- Random and non-destructive events.
- It alters the content of one or more memory cells without damaging the memory.
- Caused due to power supply or alpha particles.

Error-Correcting Code Function

- ✓ When data are to be written into memory, a calculation (f) is performed on the data to produce a code.
- ✓ If an M-bit word of data is to be stored and the code is of length K bits, then the actual size of the stored word is M+K bits.
- ✓ When the previously stored word is read out, the code is used to detect and possibly correct errors.

Error-correcting code function

- Prior to storing data a code is generated from the bits in the word.
- Code is stored along with the word in memory.
- Code used to identify and correct errors.
- When the word is fetched a new code is generated and compared to the stored code.
 - ➤ No errors detected.
 - ➤ An error is detected and it is possible to correct the error.
 - ➤ An error is detected, but it is not possible to correct it.

Hamming Error correcting code

- ➤It is the simplest of all error correction codes.
- The figure uses Venn diagrams to illustrate the use of this code on 4-bit words (M=4).
- ➤ With 3 intersecting circles there are seven compartments.
- We assign the 4 data bits to the inner compartments. (a)

- The remaining compartments are filled with parity bits.
- Each parity bit is chosen so that the total number of 1s in the circle is even. (b)
- ➤ Because circle A contains 3 data 1s, the parity bit in the circle is set to 1.
- Now if error changes one of the data bits (c), it is easily found.
- ➤ By checking the parity bits, discrepancies are found in circle A and circle C but not in circle B. Only one of the seven compartments is in A and C but not B. (d)
- The error can therefore be corrected by changing that bit.

- The comparison logic receives as input two K-bit values.
- A bit-by-bit comparison is done by taking the exclusive-OR of the two inputs.
- The result is called the syndrome word.
- Thus, each bit of the syndrome is 0 or 1 according to if there is or is not a match in that bit position for the two inputs.
- The syndrome word is therefore K bits wide and has a range between 0 and (2^k-1).
- Now because an error could occur on any of the M data bits or K check bits, we must have

$$2^{k}-1 \ge M+K$$

Data bits and check bits

• Data bits and check bits

Data Bits	Check Bits	
8	4	
16	5	
32	6	
64	7	
128	8	
256	9	

M=8,K=3,K=4
$2^k-1 \ge M+K$
2^{3} -1< 8+3
2^{4} -1>8+4

THANK YOU