REVISÃO CÁLCULO I

Matheus Pimenta

Universidade Estadual de Londrina Londrina

Fev. 2022

Matheus Pimenta

Matheus Pimenta e-mail: matheus.pimenta@outlook.com ou omatheuspimenta@outlook.com

Matheus Pimenta e-mail: matheus.pimenta@outlook.com ou omatheuspimenta@outlook.com Informações sobre a disciplina

Matheus Pimenta e-mail: matheus.pimenta@outlook.com ou omatheuspimenta@outlook.com Informações sobre a disciplina Dúvidas gerais

- $\mathbb N$ O conjunto $\mathbb N$ dos números naturais é caracterizado pelos axiomas de Peano.
 - **1** Todo número natural n tem um sucessor s(n), que ainda é um número natural, números diferentes têm sucessores diferentes.

- $\mathbb N$ O conjunto $\mathbb N$ dos números naturais é caracterizado pelos axiomas de Peano.
 - **1** Todo número natural n tem um sucessor s(n), que ainda é um número natural, números diferentes têm sucessores diferentes.
 - 2 Existe um único número natural 1 que não é sucessor de nenhum outro.

- $\mathbb N$ O conjunto $\mathbb N$ dos números naturais é caracterizado pelos axiomas de Peano.
 - ① Todo número natural n tem um sucessor s(n), que ainda é um número natural, números diferentes têm sucessores diferentes.
 - 2 Existe um único número natural 1 que não é sucessor de nenhum outro.
 - Se um conjunto de números naturais contém o 1 e contém também o sucessor de cada um de seus elementos, então esse conjunto contém todos os números naturais.

- $\mathbb N$ O conjunto $\mathbb N$ dos números naturais é caracterizado pelos axiomas de Peano.
 - ① Todo número natural n tem um sucessor s(n), que ainda é um número natural, números diferentes têm sucessores diferentes.
 - 2 Existe um único número natural 1 que não é sucessor de nenhum outro.
 - Se um conjunto de números naturais contém o 1 e contém também o sucessor de cada um de seus elementos, então esse conjunto contém todos os números naturais.

• Z:

ullet Z: dos números inteiros é definido por:

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$$

.

ullet Z: dos números inteiros é definido por:

$$\mathbb{Z}=\{0,\pm 1,\pm 2,\pm 3,\dots\}$$

.

Q

• Z: dos números inteiros é definido por:

$$\mathbb{Z}=\{0,\pm 1,\pm 2,\pm 3,\dots\}$$

• Q: dos números racionais é formado pelas razões de inteiros:

$$\mathbb{Q}=\left\{rac{p}{q}; p,q\in\mathbb{Z}\; \mathrm{e}\; q
eq 0
ight\}$$

■ R:

• \mathbb{R} : dos números reais pode ser definido como o conjunto de todas as possíveis expansões decimais. Assim, um número real $a, d_1 d_2 d_3 \dots$ pode ser representado por uma "soma infinita" de números racionais:

$$a + \frac{d_1}{10} + \frac{d_2}{10^2} + \dots$$

• Equações de 1º Grau:

• Equações de 1º Grau: são expressões do tipo ax + b = 0, com $a \neq 0$, onde $a \in b$ são coeficientes da equação e x é a incógnita.

- Equações de 1º Grau: são expressões do tipo ax + b = 0, com $a \neq 0$, onde a e b são coeficientes da equação e x é a incógnita.
- Equações de 2º Grau:

- Equações de 1º Grau: são expressões do tipo ax + b = 0, com $a \neq 0$, onde a e b são coeficientes da equação e x é a incógnita.
- Equações de 2° Grau: são expressões do tipo $ax^2 + bx + c = 0$, com $a \neq 0$, onde $a, b \in c$ são coeficientes e x é a incógnita. Nem sempre possui raízes reais, mas possui uma ou duas raízes em \mathbb{C} .

Divisão de Polinômios

Seja
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$
 e $g(x) = x - a$.
Se $f(a) = 0$, então existe $q(x) = q_0 x^{n-1} + q_1 x^{n-2} + \dots + q_{n-2} x + q_{n-1}$ tal que $q(x).g(x) = f(x)$.

7 / 57

Sejam D e Y conjuntos não-degenerados. Uma função $f:D\to Y$ é uma regra que associa, a cada elemento $x\in D$, um único elemento $f(x)\in Y$.

Sejam D e Y conjuntos não-degenerados. Uma função $f:D\to Y$ é uma regra que associa, a cada elemento $x\in D$, um único elemento $f(x)\in Y$. Função:

Sejam D e Y conjuntos não-degenerados. Uma função $f:D\to Y$ é uma regra que associa, a cada elemento $x\in D$, um único elemento $f(x)\in Y$. Função: É uma relação em que todos os elementos x do conjunto A, se relacionam uma **única** vez com os elementos y do conjunto B, ou seja, $f:A\to B$, ou ainda, $(f):\mathbb{R}\to\mathbb{R}$, ou simplesmente $(f):X\to Y=f(x)$, na prática escrevemos y=f(x).

Sejam D e Y conjuntos não-degenerados. Uma função $f:D\to Y$ é uma regra que associa, a cada elemento $x\in D$, um único elemento $f(x)\in Y$. Função: É uma relação em que todos os elementos x do conjunto A, se relacionam uma **única** vez com os elementos y do conjunto B, ou seja, $f:A\to B$, ou ainda, $(f):\mathbb{R}\to\mathbb{R}$, ou simplesmente $(f):X\to Y=f(x)$, na prática escrevemos y=f(x).

O conjunto D é denominado domínio da função. O conjunto Y é denominado contra-domínio. A imagem da função f é o conjunto formado por todos os pontos $y \in Y$ tais que existe um $x_0 \in D$ com $f(x_0) = y$. Note que $Im(f) \subset Y$, mas não necessariamente a imagem possui todos os elementos do contra-domínio.

Funções Monótonas

Uma função $f:D\to\mathbb{R}$, com $D\subset\mathbb{R}$, chama-se:

- não-decrescente, se $x < y \Rightarrow f(x) \le f(y)$;
- não-crescente, se $x < y \Rightarrow f(x) \ge f(y)$;
- crescente, se $x < y \Rightarrow f(x) < f(y)$;
- decrescente, se $x < y \Rightarrow f(x) > f(y)$.

Composição de Funções

Sejam A, B e C conjuntos e sejam as funções $f:A\to B$ e $g:B\to C$. A função $g\circ f:A\to C$ é definida por:

$$(g \circ f)(x) = g(f(x))$$

Note que $g \circ f$ costuma ser diferente de $f \circ g$.

• Função Polinomial:

• Função Polinomial:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

• Função Polinomial:

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

Função Racional:

Função Polinomial:

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

Função Racional:

$$f(x) = \frac{p(x)}{q(x)},$$

onde p e q são funções polinomiais. O domínio de f é $\{x \in \mathbb{R}; q(x) \neq 0\}$

Função Polinomial:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Função Racional:

$$f(x) = \frac{p(x)}{q(x)},$$

onde p e q são funções polinomiais. O domínio de f é $\{x \in \mathbb{R}; q(x) \neq 0\}$

Funções Trigonométricas:

Função Polinomial:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Função Racional:

$$f(x) = \frac{p(x)}{q(x)},$$

onde p e q são funções polinomiais. O domínio de f é $\{x \in \mathbb{R}; q(x) \neq 0\}$

• Funções Trigonométricas: $sin(\alpha) = \frac{b}{a} e cos(\alpha) = \frac{c}{a}$

Função Exponencial:

• Função Exponencial: A função exponencial de base a é dada por $f(x) = a^x$. Se $x = \frac{p}{q}$ é um número racional, então:

$$a^{\frac{p}{q}} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$$

Consideramos sempre a > 0 e $a \neq 1$.

• Função Logarítmica:

• Função Exponencial: A função exponencial de base a é dada por $f(x) = a^x$. Se $x = \frac{p}{q}$ é um número racional, então:

$$a^{\frac{p}{q}} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$$

Consideramos sempre a > 0 e $a \neq 1$.

 Função Logarítmica: A função logarítmica de base a é a inversa da função exponencial de base a, ou seja:

$$\log_a x = y \Leftrightarrow a^y = x$$

Seu domínio é $(0,\infty)$ e sua imagem é $(-\infty,\infty)$ Algumas bases recebem notação especial:

$$\log_2 x = \log(x)$$

$$\log_e x = \ln(x)$$

Limites

Definition (Limites)

Seja f(x) definida em um intervalo em torno de a. Dizemos que o limite de f(x), quando x tende a a, é o número L, se, para todo $\varepsilon>0$, existir $\delta>0$ tal que $|x-a|<\delta$, $x\neq a$, implica em $|f(x)-L|<\varepsilon$. Simbolicamente:

$$\lim_{x\to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0; |x-a| < \delta \Rightarrow |f(x)-L| < \varepsilon$$

Limites

Definition (Limites)

Seja f(x) definida em um intervalo em torno de a. Dizemos que o limite de f(x), quando x tende a a, é o número L, se, para todo $\varepsilon>0$, existir $\delta>0$ tal que $|x-a|<\delta$, $x\neq a$, implica em $|f(x)-L|<\varepsilon$. Simbolicamente:

$$\lim_{x\to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0; |x-a| < \delta \Rightarrow |f(x)-L| < \varepsilon$$

Theorem (Unicidade do Limite)

Se
$$\lim_{x \to a} f(x) = L_1$$
 e $\lim_{x \to a} f(x) = L_2$, então $L_1 = L_2$

Theorem (Unicidade do Limite)

Se
$$\lim_{x \to a} f(x) = L_1$$
 e $\lim_{x \to a} f(x) = L_2$, então $L_1 = L_2$

Theorem (Conservação de Sinal)

Se $\lim_{x\to a} = L \neq 0$ então existe um intervalo aberto I contendo a tal que, para todo $x \in I \cap D(f) - \{a\}$ tem-se que f(x) possui o mesmo sinal de L.

Se L, M, a e k são números reais e $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$ são válidas:

- $\lim_{x \to a} (f(x) + g(x)) = L + M$
- $\lim_{x \to a} (f(x) g(x)) = L M$
- $\lim_{x \to \infty} (f(x).g(x)) = L.M$
- $\lim_{x \to a} (k.f(x)) = k.L$
- $\lim_{x \to a} (f(x))^k = L^k, \text{ se } k \in \mathbb{Z}$
- $lack \lim_{x \to a} \sqrt[k]{f(x)} = \sqrt[k]{L}$, se $k \in \mathbb{Z}$ e se $L \ge 0$ quando k é par.

Theorem

Se $f(x) \le g(x)$ para todos os valores de x em certo intervalo aberto contendo a, exceto possivelmente no próprio x = a, e os limites de f e g existem com $x \to a$, então:

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

Theorem

Se $f(x) \le g(x)$ para todos os valores de x em certo intervalo aberto contendo a, exceto possivelmente no próprio x = a, e os limites de f e g existem com $x \to a$, então:

$$\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$$

Theorem (Teorema do Confronto (ou Sanduíche))

Se $g(x) \le f(x) \le h(x)$ para qualquer x em um intervalo aberto contendo a, exceto possivelmente em x = a e $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$ então:

$$\lim_{x \to a} f(x) = L$$

Limites Laterais

Theorem

Uma função f(x) terá um limite quando x se aproximar de a, sendo f(x) definida na vizinhança de a, se e somente se, tiver um limite lateral à direita e um à esquerda, e os dois limites laterais forem iguais:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

Limites Infinitos

Definition

Dizemos que f(x) tende ao infinito (a menos infinito) quando x tende a a e escrevemos $\lim_{x\to a} f(x) = \infty$ ($\lim_{x\to a} f(x) = -\infty$) se para cada número real positivo (negativo) B existe um $\delta > 0$ tal que:

$$0<|x-a|<\delta\Rightarrow f(x)>B$$

$$0 < |x - a| < \delta \Rightarrow f(x) < B$$

Limites no Infinito

Definition

Dizemos que f(x) possui limite L quando x tende ao infinito (menos infinito) e escrevemos $\lim_{x\to +\infty} f(x) = L$ ($\lim_{x\to -\infty} f(x) = L$) se para cada $\varepsilon>0$, existe um número M tal que:

$$x > M \Rightarrow |f(x) - L| < \varepsilon$$

$$x < M \Rightarrow |f(x) - L| < \varepsilon$$

Continuidade de Funções

Uma função é contínua num ponto interior c de seu domínio quando $\lim_{x\to c} f(x) = f(c)$

Continuidade de Funções

Uma função é contínua num ponto interior c de seu domínio quando $\lim_{x\to c} f(x) = f(c)$ Assim, f será contínua em c se satisfazer:

- f(c) existe $(c \in D(f))$;
 - $\lim_{x \to c} f(x) \text{ existe, ou seja, } \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x);$
 - $\lim_{x\to c} f(x) = f(c)$

Definition

Seja f uma função definida em um intervalo aberto I e x_0 um elemento de I.

A derivada de f no ponto x_0 é o limite, se existir:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

Fazendo $x - x_0 = h$ tem-se:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (2)

Notação: $f'(x_0)$ ou $\frac{\partial f}{\partial x}\Big|_{x=x_0}$

Definition

Seja f uma função definida em um intervalo aberto I e x_0 um elemento de I.

A derivada de f no ponto x_0 é o limite, se existir:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

Fazendo $x - x_0 = h$ tem-se:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (2)

Notação: $f'(x_0)$ ou $\frac{\partial f}{\partial x}\Big|_{x=x_0}$

A derivada nos dá a taxa de variação da função f no ponto x_0 . Ou ainda, o coeficiente angular da reta tangente ao gráfico de f no ponto $x=x_0$.

A derivada nos dá a taxa de variação da função f no ponto x_0 . Ou ainda, o coeficiente angular da reta tangente ao gráfico de f no ponto $x = x_0$.

Se f é uma função derivável em um intervalo, podemos definir a função derivada f' que associa a cada $x_0 \in I$ o valor $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

1 Função Constante: se f(x) = c, então f'(x) = 0

- **1** Função Constante: se f(x) = c, então f'(x) = 0
- **2 Regra da Identidade:** se f(x) = x, então $\frac{\partial [x]}{\partial x} = 1$

- **1 Função Constante:** se f(x) = c, então f'(x) = 0
- **Q** Regra da Identidade: se f(x) = x, então $\frac{\partial [x]}{\partial x} = 1$
- **3 Regra da Potência:** se $f(x) = x^n$, então $\frac{\partial [x^n]}{\partial x} = nx^{n-1}$

- **1** Função Constante: se f(x) = c, então f'(x) = 0
- **② Regra da Identidade:** se f(x) = x, então $\frac{\partial [x]}{\partial x} = 1$
- **3 Regra da Potência:** se $f(x) = x^n$, então $\frac{\partial [x^n]}{\partial x} = nx^{n-1}$
- **Multiplicação por Constante:** se w é uma função derivável de x e c é uma constante, então $\frac{\partial [cw]}{\partial x} = c \frac{\partial [w]}{\partial x}$

- **1** Função Constante: se f(x) = c, então f'(x) = 0
- **Q** Regra da Identidade: se f(x) = x, então $\frac{\partial [x]}{\partial x} = 1$
- **3 Regra da Potência:** se $f(x) = x^n$, então $\frac{\partial [x^n]}{\partial x} = nx^{n-1}$
- **Multiplicação por Constante:** se w é uma função derivável de x e c é uma constante, então $\frac{\partial [cw]}{\partial x} = c \frac{\partial [w]}{\partial x}$
- Segra da Soma e da Diferença:

$$\frac{\partial [f(x) \pm g(x)]}{\partial x} = \frac{\partial [f(x)]}{\partial x} \pm \frac{\partial [g(x)]}{\partial x}$$

- **1** Função Constante: se f(x) = c, então f'(x) = 0
- **Q** Regra da Identidade: se f(x) = x, então $\frac{\partial [x]}{\partial x} = 1$
- **3 Regra da Potência:** se $f(x) = x^n$, então $\frac{\partial [x^n]}{\partial x} = nx^{n-1}$
- **Multiplicação por Constante:** se w é uma função derivável de x e c é uma constante, então $\frac{\partial [cw]}{\partial x} = c \frac{\partial [w]}{\partial x}$
- **Solution Regra da Soma e da Diferença:** $\partial [f(x) + \sigma(x)] \quad \partial [f(x)] \quad \partial [\sigma(x)]$

$$\frac{\partial [f(x) \pm g(x)]}{\partial x} = \frac{\partial [f(x)]}{\partial x} \pm \frac{\partial [g(x)]}{\partial x}$$

1 Derivada da Exponencial: $\frac{\partial [e^x]}{\partial x} = e^x$

Regra do Produto: $\frac{\partial [f(x).g(x)]}{\partial x} = f'(x)g(x) + g'(x)f(x),$ generalizando o caso, segue $\frac{\partial [u.v]}{\partial x} = u'.v + u.v'$

- **Regra do Produto:** $\frac{\partial [f(x).g(x)]}{\partial x} = f'(x)g(x) + g'(x)f(x),$ generalizando o caso, segue $\frac{\partial [u.v]}{\partial x} = u'.v + u.v'$
- **8 Regra do Quociente:** $\frac{\partial \left[\frac{f(x)}{g(x)}\right]}{\partial x} = \frac{f'(x).g(x) f(x).g'(x)}{[g(x)]^2}, \text{ generalizando o}$ caso, segue que a derivada é dada por $\frac{\partial \left[\frac{u}{v}\right]}{\partial x} = \frac{u'.v u.v'}{[v]^2}$

Derivadas - Regra da Cadeia

A Derivada de funções compostas é obtida através da Regra da Cadeia.

Theorem (Regra da Cadeia)

Seja f(x) e g(x) tal que $(g \circ f)(x)$ esteja bem definida. Sendo f(x) derivável em x e g(x) derivável em f(x), a derivada de $(g \circ f)(x)$ é:

$$(g \circ f(x))' = (g(f(x)))' = g'(f(x)).f'(x)$$
(3)

Na notação de Leibniz, utilizando u = f(x) e g(f(x)) = g(u) temos:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial y} \tag{4}$$

Derivada da Função Exponencial:

• Derivada da Função Exponencial: Seja $a \in \mathbb{R}$ tal que $0 < a \neq 1$ e $f(x) = a^x$, então a derivada é:

$$y'=a^{x}.\ln(a)$$

• Derivada da Função Exponencial: Seja $a \in \mathbb{R}$ tal que $0 < a \neq 1$ e $f(x) = a^x$, então a derivada é:

$$y'=a^{x}.\ln(a)$$

Caso particular a = e, logo

$$y = e^x \Rightarrow y' = e^x \cdot \ln(e) \Rightarrow y' = e^x$$

• Derivada da Função Exponencial: Seja $a \in \mathbb{R}$ tal que $0 < a \neq 1$ e $f(x) = a^x$, então a derivada é:

$$y'=a^{x}.\ln(a)$$

Caso particular a = e, logo

$$y = e^x \Rightarrow y' = e^x$$
. $ln(e) \Rightarrow y' = e^x$

Generalizando:

$$y = a^u \Rightarrow y' = a^u \cdot \ln(a) \cdot u'$$

 $y = e^u \Rightarrow y' = e^u \cdot u'$

Derivada da Função Logarítmica:

• Derivada da Função Logarítmica: Seja $a \in \mathbb{R}$, tal que $0 < a \neq 1$ e $u(x) = \log_a x$ sendo que $f^{-1}(x) = u(x)$ e, $f(x) = a^x$, assim a derivada de u(x) é:

$$u'(x) = \frac{1}{f'[f^{-1}(x)]}$$

• Derivada da Função Logarítmica: Seja $a \in \mathbb{R}$, tal que $0 < a \neq 1$ e $u(x) = \log_a x$ sendo que $f^{-1}(x) = u(x)$ e, $f(x) = a^x$, assim a derivada de u(x) é:

$$u'(x) = \frac{1}{f'[f^{-1}(x)]}$$

Assim,

$$u'(x) = \frac{\log_a e}{x}$$

$$u' = \frac{1}{x.\ln(a)}$$

No caso particular que a = e segue:

$$u'=\frac{1}{x}$$

Generalizando:

$$y = \log_a u \Rightarrow y' = \frac{u'}{u \cdot \ln(a)}$$
 ou $y' = \frac{\log_a e}{x}$
$$y = \ln u \Rightarrow y' = \frac{u'}{u}$$

Derivadas - Funções Trigonométricas

Algumas Relações Trigonométricas

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$$

$$\csc(x) = \frac{1}{\sin(x)}$$

$$\sec(x) = \frac{1}{\cos(x)}$$

Uma Relação Fundamental

$$\sin^2(x) + \cos^2(x) = 1$$

Derivadas - Funções Trigonométricas

Relações Secundárias

$$tan^{2}(x) + 1 = sec^{2}(x)$$
$$1 + cot^{2}(x) = cossec^{2}(x)$$

Soma do Seno

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

As funções sin(x) e cos(x) são contínuas e tem derivadas para todo x. As derivadas são:

$$\frac{\partial[\sin(x)]}{\partial x} = \cos(x)$$

$$\frac{\partial[\cos(x)]}{\partial x} = -\sin(x)$$

Derivadas - Função arco seno

Os símbolos $\sin^{-1}(x)$ e $\arcsin(x)$ significam "um ângulo cujo seno é um dado número x"

$$y = \sin(x) \Leftrightarrow y^{-1} = \arcsin(x)$$

 $y = \cos(x) \Leftrightarrow y^{-1} = \arccos(x)$
 $y = \tan(x) \Leftrightarrow y^{-1} = \arctan(x)$

Derivadas:

$$(\arcsin[u(x)])' = \frac{1}{\sqrt{1 - u^2}} u'$$

$$(\arccos[u(x)])' = -\frac{1}{\sqrt{1 - u^2}} u'$$

$$(\arctan[u(x)])' = \frac{1}{1 + u^2} u'$$

Derivadas - Funções Hiiperbólicas

São combinações.

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

Derivadas:

$$(\sinh(x))' = \cosh(x)$$

$$(\cosh(x))' = \sinh(x)$$

Derivadas de Ordem Superior

Se y = f(x) é uma função derivável, então f'(x) também é uma função.

Se
$$f'$$
 for derivável teremos $(f')'=f''$ a segunda derivada de f .
Notação: $f''(x)$ ou $\frac{\partial^2 f(x)}{\partial x^2}$, generalizando, $f^n(x)$ ou $\frac{\partial^n f(x)}{\partial x^n}$

Uma função f tem um valor mínimo local (máximo local) em um ponto interior c de seu domínio se $f(x) \ge f(c)$ ($f(x) \le f(c)$) para qualquer x em uma vizinhança de c.

Uma função f tem um valor mínimo local (máximo local) em um ponto interior c de seu domínio se $f(x) \ge f(c)$ ($f(x) \le f(c)$) para qualquer x em uma vizinhança de c.

Se f possui um valor máximo ou mínimo local em um ponto c interior de seu domínio e se f é derivável em c, então f'(c) = 0. O contrário não se aplica.

Uma função f tem um valor mínimo local (máximo local) em um ponto interior c de seu domínio se $f(x) \ge f(c)$ ($f(x) \le f(c)$) para qualquer x em uma vizinhança de c.

Se f possui um valor máximo ou mínimo local em um ponto c interior de seu domínio e se f é derivável em c, então f'(c)=0. O contrário não se aplica.

Um ponto interior do domínio de f tal que f' é zero ou indefinida é chamado *ponto crítico* de f.

Teste da Primeira Derivada:

Teste da Primeira Derivada: Uma função f(x) é crescente nos intervalos em que f'(x) > 0 e é decrescente nos intervalos em que f'(x) < 0.

Teste da Primeira Derivada: Uma função f(x) é crescente nos intervalos em que f'(x) > 0 e é decrescente nos intervalos em que f'(x) < 0. **Teste da Segunda Derivada:** O sinal da segunda derivada é usado para decidir se um ponto crítico é ponto de máximo ou de mínimo.

Theorem (de Rolle)

Se f é uma função contínua em [a,b], derivável em (a,b) e f(a)=f(b), então existe ao menos um ponto $x_0 \in (a,b)$ tal que $f'(x_0)=0$.

Theorem (de Rolle)

Se f é uma função contínua em [a,b], derivável em (a,b) e f(a)=f(b), então existe ao menos um ponto $x_0 \in (a,b)$ tal que $f'(x_0)=0$.

Theorem (do Valor Médio)

Se f é uma função contínua em [a,b] e derivável em (a,b) então existe ao menos um ponto $x_0 \in (a,b)$ tal que $f'(x_0) = \frac{f(b)-f(a)}{b-a}$

Regra de L'Hôpital

Sejam f e g funções contínuas e deriváveis em um intervalo aberto I contendo a e suponha que $g'(x) \neq 0$ em I, se $x \neq a$ e f(a) = g(a) = 0. Então:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

desde que o limite do lado direito da igualdade exista.

Regra de L'Hôpital

Sejam f e g funções contínuas e deriváveis em um intervalo aberto I contendo a e suponha que $g'(x) \neq 0$ em I, se $x \neq a$ e f(a) = g(a) = 0. Então:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

desde que o limite do lado direito da igualdade exista.

ATENÇÃO: A Regra de L'Hôpital só pode ser aplicada a limites que resultam em formas indeterminadas.

Taxas Relacionadas

São problemas onde as quantidades variáveis estão relacionadas entre sí. Considere a função composta h(x) = f(g(x)).

Pela Regra da Cadeia,
$$h'(x) = f'(g(x)).g'(x)$$
 ou $\frac{\partial h}{\partial x} = \frac{\partial f}{\partial g}.\frac{\partial g}{\partial x}$

Integrais definidas

Definition (Integral Definida)

Se f é uma função definida em $a \le x \le b$, dividimos o intervalo [a,b] em n subintervalos de comprimentos iguais $\Delta x = \frac{(b-a)}{n}$.

Sejam $a = x_0, x_1, x_2, \dots, x_n = b$ os extremos desses subintervalos de forma x_i^* está no i - esimo subintervalo $[x_{i-1}, x_i]$.

Então a **Integral Definida** em [a, b] é:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x$$

Integrais definidas

Definition (Integral Definida)

Se f é uma função definida em $a \le x \le b$, dividimos o intervalo [a,b] em n subintervalos de comprimentos iguais $\Delta x = \frac{(b-a)}{n}$.

Sejam $a = x_0, x_1, x_2, \dots, x_n = b$ os extremos desses subintervalos de forma x_i^* está no i - esimo subintervalo $[x_{i-1}, x_i]$.

Então a Integral Definida em [a, b] é:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x$$

As funções monótonas ou contínuas por partes (incluindo contínuas) são integráveis.

Integrais - Propriedades

Ao definirmos $\int_a^b f(x)dx$, consideramos a < b.

Se b < a, Δx mudará de $\frac{b-a}{n}$ para $\frac{a-b}{n}$. Portanto

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Se a=b então $\Delta x=0$, logo

$$\int_a^b f(x)dx = 0$$

Integrais - Propriedades

Outras propriedades:

Integrais - Propriedades Comparativas

Vamos supor que a < b. Então:

- Se $f(x) \ge 0$ para $a \le x \le b$, então $\int_a^b f(x) dx > 0$
- ② Se $f(x) \ge g(x)$ para $a \le x \le b$, então $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

Integrais - Diferenciais

Seja y = f(x) uma função derivável. A diferencial dx é uma variável independente. A diferencial dy é:

$$dy = f'(x)dx$$

Assim,
$$dy/dx = f'(x) = \frac{dy}{dx}$$

Teorema Fundamental do Cálculo

Lemma

Se duas funções f(x) e g(x) possuem a mesma derivada f'(x) = g'(x), então elas diferem por uma constante, ou seja, existe $c \in \mathbb{R}$ tal que f(x) = g(x) + c

Teorema Fundamental do Cálculo

Lemma

Se duas funções f(x) e g(x) possuem a mesma derivada f'(x) = g'(x), então elas diferem por uma constante, ou seja, existe $c \in \mathbb{R}$ tal que f(x) = g(x) + c

O Teorema Fundamental do Cálculo nos dará uma relação entre derivadas e integrais.

Seja $f:[a,b]\to\mathbb{R}$ contínua e $g:[a,b]\to\mathbb{R}$ definida por $g(x)=\int_a^x f(t)dt$

Teorema Fundamental do Cálculo

Theorem (Fundamental do Cálculo)

Seja f contínua em [a, b], então:

- **1** A função $g:[a,b] \to \mathbb{R}$ definida por $g(x) = \int_a^x f(t)dt$ ($a \le x \le b$) é contínua em [a,b] e derivável em (a,b) e g'(x) = F(x)

$$\int_{a}^{x} f(t)dt = F(x) - F(a)$$

onde F é qualquer função tal que F' = f (F é primitiva de f)

Integrais Indefinidas

O conjunto de todas as primitivas da função é denominado integral indefinida de f em relação a x e é denotado por

$$\int f(x)dx$$

Integrais Indefinidas

O conjunto de todas as primitivas da função é denominado integral indefinida de f em relação a x e é denotado por

$$\int f(x)dx$$

Este será representado por uma função (uma primitiva de f) mais uma constante arbitrária, considerando que duas primitivas quaisquer de f diferem por uma constante.

Integrais - Regra da Substituição

Seja u = g(x). Pela regra da cadeia, se F é uma primitiva de f, então

$$\frac{\partial [F(g(x))]}{\partial x} = f(g(x))g'(x)$$

е

$$\int f(u)du = F(u) + c$$

Logo

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Observe que g'(x)dx = du, o que pode ser obtido com:

$$u = g(x)$$

$$\frac{\partial u}{\partial x} = g'(x)$$

$$\partial x g'(x) = \partial u$$

Integrais - Cálculo de Áreas

Se $f(x) \ge g(x)$ em [a, b], a área da região entre as curvas y = f(x) e y = g(x) de a até b é a integral de (f - g) desde a até b:

$$A = \int_a^b [f(x) - g(x)] dx$$

O logaritmo natural de um número positivo x é

$$\ln(x) = \int_1^x \frac{1}{t} dt$$

O número e é o número no domínio do logaritmo natural cuja imagem é 1, ou seja,

$$\ln(e) = \int_1^e \frac{1}{t} dt = 1$$

O logaritmo natural de um número positivo x é

$$\ln(x) = \int_1^x \frac{1}{t} dt$$

O número e é o número no domínio do logaritmo natural cuja imagem é 1, ou seja,

$$\ln(e) = \int_1^e \frac{1}{t} dt = 1$$

Pelo Teorema Fundamental do Cálculo, temos

$$\frac{\partial [\ln(x)]}{\partial x} = \frac{\partial \left[\int_{1}^{x} \frac{1}{t} dt \right]}{\partial x} = \frac{1}{x}$$

Como a derivada é sempre positiva, o logaritmo natural é uma função crescente. Logo, é injetora e tem uma inversa.

Como a derivada é sempre positiva, o logaritmo natural é uma função crescente. Logo, é injetora e tem uma inversa.

Ainda, $\frac{\partial [\ln(b\bar{x})]}{\partial x} = \frac{1}{b\bar{x}}b = \frac{1}{x}$ onde b é constante qualquer não nula.

Como a derivada é sempre positiva, o logaritmo natural é uma função crescente. Logo, é injetora e tem uma inversa.

Ainda, $\frac{\partial [\ln(bx)]}{\partial x} = \frac{1}{bx}b = \frac{1}{x}$ onde b é constante qualquer não nula. Em particular, $\frac{\partial [\ln(-x)]}{\partial x} = \frac{1}{x}$ Portanto, para qualquer $x \in \mathbb{R}, x \neq 0$

Em particular,
$$\frac{\partial [\ln(-x)]}{\partial x} = \frac{1}{x}$$

$$\frac{\partial [\ln |x|]}{\partial x} = \frac{1}{x}$$

е

$$\int \frac{1}{u} du = \ln|u| + c$$

Separando frações;

- Separando frações;
- Reduzindo uma Fração Imprópria;

- Separando frações;
- Reduzindo uma Fração Imprópria;
- Completando o quadrado;

- Separando frações;
- Reduzindo uma Fração Imprópria;
- Completando o quadrado;
- Utilizando Identidades Trigonométricas;

- Separando frações;
- Reduzindo uma Fração Imprópria;
- Completando o quadrado;
- Utilizando Identidades Trigonométricas;
- Multiplicando por uma forma de 1;

- Separando frações;
- Reduzindo uma Fração Imprópria;
- Completando o quadrado;
- Utilizando Identidades Trigonométricas;
- Multiplicando por uma forma de 1;
- Através de Frações Parciais;

Integrais - Integração por Partes

Sejam u e v funções deriváveis de x. A regra do produto diz que:

$$(uv)' = u'v + uv'$$

$$\frac{\partial [uv]}{\partial x} = \frac{\partial u}{\partial x}v + \frac{\partial v}{\partial x}u$$

$$\partial [uv] = \partial uv + \partial vu$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Integrais - Integração por Partes

Sejam u e v funções deriváveis de x. A regra do produto diz que:

$$(uv)' = u'v + uv'$$

$$\frac{\partial [uv]}{\partial x} = \frac{\partial u}{\partial x}v + \frac{\partial v}{\partial x}u$$

$$\partial [uv] = \partial uv + \partial vu$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Assim, obtemos a fórmula da integração por partes:

$$\int u dv = uv - \int v du$$

Vamos atribuir um valor para a área abaixo da curva $y = e^{-\frac{x}{2}}$, x > 0.

Vamos atribuir um valor para a área abaixo da curva $y=e^{-\frac{x}{2}}, x>0$. Primeiro, calculamos a área para x variando de 0 até b, e depois calculamos o seu limite quando $b\to\infty$.

$$A(b) = \int_0^b e^{-\frac{x}{2}} dx$$

= $[-2e^{-\frac{x}{2}}]|_0^b$
= $-2(e^{-\frac{b}{2}} - 1)$

53 / 57

Daí,

$$\lim_{b \to \infty} A(b) = \lim_{b \to \infty} (-2(e^{-\frac{b}{2}} - 1))$$

$$= (-2(0 - 1))$$

$$= 2$$

Daí,

$$\lim_{b \to \infty} A(b) = \lim_{b \to \infty} (-2(e^{-\frac{b}{2}} - 1))$$

$$= (-2(0 - 1))$$

$$= 2$$

Podemos escrever:

$$\int_0^\infty e^{-\frac{x}{2}} dx = \lim_{b \to \infty} \int_0^b e^{-\frac{x}{2}} dx$$

Generalizando,

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

Se o limite existe (finito), dizemos que a integral *converge*, caso contrário, dizemos que ela *diverge*.

Integrais Impróprias - Testes de Convergência

•

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \Rightarrow \begin{cases} \text{converge, se } p > 1 \\ \text{diverge, se } p \le 1 \end{cases}$$

•

$$\int_{1}^{\infty} a^{x} dx \Rightarrow \begin{cases} \text{converge, se } a < 1 \\ \text{diverge, se } a \ge 1 \end{cases}$$

Integrais Impróprias - Testes de Convergência

 $\int_{1}^{\infty} \frac{1}{x^{p}} dx \Rightarrow \begin{cases} \text{converge, se } p > 1 \\ \text{diverge, se } p \leq 1 \end{cases}$

$$\int_{1}^{\infty} a^{x} dx \Rightarrow \begin{cases} \text{converge, se } a < 1 \\ \text{diverge, se } a \ge 1 \end{cases}$$

Teste da Comparação: sejam f e g contínuas em $[a, \infty)$, com $0 \le f(x) \le g(x)$ para qualquer $x \ge a$. Então:

•

•

Integrais Impróprias - Testes de Convergência

Teste da Comparação no Limite: se f e g são funções positivas contínuas em $[a, \infty)$ e se

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \ 0 < L < \infty$$

então $\int_a^\infty f(x)dx$ e $\int_a^\infty g(x)dx$ são ambas convergentes ou ambas divergentes.