ԲበՎԱՆԴԱԿՈՒԹՅՈՒՆ

ՆԵՐԱԾՈՒԹՅՈՒՆ	4
ԽՆԴՐԻ ԴՐՎԱԾՔ	5
ԳԼՈՒԽ 1. ՏԵՍԱԿԱՆ ԱՌԸՆՉՈՒԹՅՈՒՆՆԵՐ	6
1.1 TF-IDF ԱԼԳՈՐԻԹՄԻ ՆԿԱՐԱԳՐՈՒԹՅՈՒՆ	6
1.2 RANDOM FOREST-Ի ՄԱՍԻՆ	7
ԳԼՈՒԽ 2. ԾՐԱԳՐԻ ԻՐԱԿԱՆԱՑՈՒՄ	8
2.1 ԱԼԳՈՐԻԹՄԻ ԻՐԱԿԱՆԱՑՄԱՆ ՔԱՅԼԵՐ	8
2.2 ՏՎՅԱԼՆԵՐԻ ՆԱԽԱՄՇԱԿՈՒՄ	9
2.3 ՄՈԴԵԼԻ ՈՒՍՈՒՑՈՒՄ	. 10
2.4 ԴԱՍԱԿԱՐԳՄԱՆ ԳՆԱՀԱՏՈՒՄ	. 11
2.5 ԿԻՐԱՌՄԱՆ ՓՈՒԼ	. 12
2.6 ԳՐԱԴԱՐԱՆՆԵՐԻ ԸՆՏՐՈՒԹՅԱՆ ՊԱՏՃԱՌԱԲԱՆՈՒԹՅՈՒՆ	. 13
ԱՐԴՅՈՒՆՔՆԵՐ	. 14
ԵՉՐԱԿԱՑՈՒԹՅՈՒՆ	. 15
ՈԳՏԱԳՈՐԾՎԱԾ ԳՐԱԿԱՆՈՒԹՅԱՆ ԶԱՆԵ	16

ՆԵՐԱԾՈՒԹՅՈՒՆ

Տեղեկատվության արագ աձը և դրա մեծ ծավալները ստեղծել են նոր խնդիրներ տվյալների կառավարուման ու վերլուծության մեջ։ Անհրաժեշտություն է առաջացել արդյունավետ ու ավտոմատացված մեթոդների կիրառման, որոնց միջոցով կարելի է հեշտությամբ գտնել օգտակար և համապատասիան ինֆորմացիա մեծ տվյալների բազաներում։ Առանցքային բառերի հայտնաբերման համակարգը կարևոր գործիք է այս խնդրի լուծման համար։ Այն օգնում է ի հայտ բերել տեքստերից կարևորագույն հասկացությունները, որոնք ավելի ուշ կարող են օգտագործվել տեղեկատվության դասակարգման, որոնման և կառավարման համար։ Այս ոլորտում մշակվող տեխնոլոգիաներն ունեն կիրառություն տարբեր ոլորտներում, այդ թվում՝ մարքեթինգ, գիտական հետազոտություններ, իրավաբանական վերլուծություններ, և այլն։

የወጀምብ ተገብረባ

Այս ուսումսասիրության նպատակն է մշակել արդյունավետ համակարգ առանցքային բառերի հայտնաբերման համար, որը կարող է ավտոմատ կերպով վերլուծել տեքստեր և գտնել դրանց մեջ առկա առանցքային բառերը։ Համակարգը պետք է կարողանա մշակել տարբեր տեքստային աղբյուրներ՝ հաշվի առնելով լեզվաբառական առանձնահատկությունները և ընթանալով տվյալների նախադրյալների միջոցով։ Այս խնդրի լուծումը պահանջում է հարուստ մեթոդաբանություն՝ լեզվաբառագիտության, մոդելավորման և մեքենայական ուսուցման տեխնիկաների օգտագործմամբ։

ԳԼՈՒԽ 1. ՏԵՍԱԿԱՆ ԱՌԸՆՉՈՒԹՅՈՒՆՆԵՐ 1.1 TF-IDF ԱԼԳՈՐԻԹՄԻ ՆԿԱՐԱԳՐՈՒԹՅՈՒՆ

TF-IDF-ը (Term Frequency-Inverse Document Frequency) տեքստային տվյալների վեկտորացման ալգորիթմ է, որն օգտագործվում է տեքստի կարևորագույն բառերը հայտնաբերելու համար։ TF-IDF-ի հիճսական սկզբունքն այն է, որ բառի կարևորությունը տեքստում կախված է տվյալ բառի համախությունից և նրա գոյությունից մյուս տեքստերում։

TF-IDF-ի հաշվարկը կատարվում է հետևյալ քայլերով՝

1. **Term Frequency (TF)**։ Յուրաքանչյուր բառի համախությունը տեքստում՝ հարաբերակցված տվյալ տեքստի բառերի ընդհանուր քանակին։

$$\mathrm{TF}(t,d) = \frac{\mathrm{Number\ of\ occurrences\ of\ term\ }t\ \mathrm{in\ document\ }d}{\mathrm{Total\ number\ of\ terms\ in\ document\ }d}$$

2. Inverse Document Frequency (IDF)։ Բառի հայտնվելու հազվադեպության չափը՝ հաշվի առնելով նրա կրկնությունը ամբողջ կորպուսում։

$$\text{IDF}(t, D) = \log \left(\frac{N}{1 + \text{Number of documents containing term } t} \right)$$

- N փաստաթղթերի ընդհանուր քանակը հավաքածուում։
- Լոգարիթմը կարող է լինել բնական (ln) կամ 10-հիմքով (log10)։
- 3. **Արդյունք (TF IDF)**։ Այսպիսով ստանում ենք վերջնական բանաձևը։

$$TF-IDF(t, d, D) = TF(t, d) \times IDF(t, D)$$

1.2 RANDOM FOREST-ኮ ሀሀሀኮኒ

Random Forest-ը դասակարգման և ռեգրեսիայի խնդիրների լուծման համար օգտագործվող ալգորիթմ է։ Այն կառուցում է բազմաթիվ որոշումների ծառեր՝ ուսուցման ժամանակ և օգտագործում է դրանց միջին արդյունքը։ Այս մոտեցումը նվազեցնում է գերհարմարվողականությունը և բարելավում մոդելի ընդհանուր արդյունավետությունը։

Առավելությունները՝

- Հատուկ տվյալների համար հարմարեցման բարձր ձկունություն։
- Արդյունավետություն մեծածավալ տվյալների վրա։

ԳԼՈՒԽ 2. ԾՐԱԳՐԻ ԻՐԱԿԱՆԱՑՈՒՄ 2.1 ԱԼԳՈՐԻԹՄԻ ԻՐԱԿԱՆԱՑՄԱՆ ՔԱՅԼԵՐ

Ալգորիթմի իրականացումը բաղկացած է հետևյալ քայլերից.

1. Տվյալների նախամշակում։

- o Տեքստերի մաքրում, ձևափոխում և վեկտորացում re և TfidfVectorizer գործիքների միջոցով։
- o Պիտակների կոդավորում label_to_id և id_to_label բառարանների oquniթյամբ։

2. Մոդելի ուսուցում։

- o RandomForestClassifier ալգորիթմի կիրառություն՝ ուսուցման և թեստավորման տվյալների վրա։
- o Հավասարակշոված դասային քաշերի սահմանում՝ դասակարգման արդարության համար։

3. Արդյունքների գնահատում։

Մետրիկաների, ներառյալ Ճշգրտությունը, հիշողությունը և F1 միավորը,
 հաշվարկ classification_report գործիքի միջոցով։

4. Կիրառման փուլ։

- Անհայտ տեքստերում սուբյեկտների հայտնաբերում և հարաբերությունների կանխատեսում։
- o predict_relationship ֆունկցիալի միջոցով արդյունքների մեկնաբանում։

2.2 ՏՎՑԱԼՆԵՐԻ ՆԱԽԱՄՇԱԿՈՒՄ

Տվյալների նախամշակումը համակարգի արդյունավետության համար կարևոր քայլ է, որը ներառում է հետևյալ գործընթացները՝

1. Տեքստի մաքրում և ձևափոխում։

Կիրառվել են կանոնավոր արտահայտություններ (re գրադարանի միջոցով),
 չպետքական նշանների հեռացման, ինչպես նաև տեքստի ձևավորման համար (օրինակ՝ հատուկ բառերը փոխարինելով [E1], [E2] նշաններով)։

2. Տեքստի չափանիշների վեկտորացում։

3. Պիտակների ձևավորում։

o Պիտակների եզակի արժեքները դասակարգվել են՝ կոդավորված թվային արժեքներով label_to_id և id_to_label բառարանների միջոցով։

2.3 ՄՈԴԵԼԻ ՈՒՍՈՒՑՈՒՄ

Uովորեցման փուլում կիրառվել է RandomForestClassifier ալգորիթմը, որը հանրաձանաչ է դասակարգման խնդիրներում՝ շնորհիվ իր ձկունության և բարձր արդյունավետության։

• Տվյալների բաժանում։

o train_test_split գործառույթի միջոցով տվյալները բաժանվել են ուսուցման և թեստավորման խմբերի (80% և 20% հարաբերակցությամբ)։

• Հավասարակշոված դասային քաշեր։

 Քանի որ պիտակները կարող են ունենալ անհավասար հաձախականություններ, կիրառվել է class_weight='balanced' պարամետրը` հավասարակշոված մոդելավորման ապահովման համար։

2.4 ԴԱՍԱԿԱՐԳՄԱՆ ԳՆԱՀԱՏՈՒՄ

Մոդելի որակը գնահատվել է classification_report գործիքի միջոցով, որը տրամադրում է հետևյալ մետրիկաները՝

- ἄ2գրտություն (Precision),
- Հիշողություն (Recall),
- F1 միավոր։

F1 միավոր

F1 միավորը մեթրիկա է, որը համատեղում է Ճշգրտությունն (Precision) և հիշողությունը (Recall)՝ դասակարգիչի ընդհանուր արդյունավետությունը գնահատելու համար։ Այն հատկապես կարևոր է, երբ տվյալների հավասարակշռությունը խախտված է, և մեկ մետրիկայի վրա հիճսվելը կարող է լինել միակողմանի։

F1-ի հաշվարկը իրականացվում է հետևյալ բանաձևով՝

Այս ցուցանիշը տալիս է դասակարգման Ճշգրտության և հիշողության ներդաշնակ միջինը, որտեղ 1-ը ներկայացնում է լավագույն արդյունքը, իսկ 0-ը` ամենացածրը։

2.5 ԿԻՐԱՌՄԱՆ ՓՈՒԼ

Մոդելն օգտագործվել է անհայտ տեքստերի վերլուծության համար, ինչի նպատակն էր՝

1. Սուբյեկտների հայտնաբերում։

o Անալիզը ներառում է e1 և e2 սուբյեկտների տեղորոշում և առանձնացում տեքստից։

2. Դասակարգման արդյունքների մեկնաբանում։

 Կիրաովել է predict_relationship ֆունկցիան՝ ամենաբարձր հավանականությամբ դասերի վերլուծության համար, որը հնարավորություն է տալիս հասկանալ սուբյեկտների միջև հարաբերության բնույթը։

2.6 ԳՐԱԴԱՐԱՆՆԵՐԻ ԸՆՏՐՈՒԹՅԱՆ ՊԱՏՃԱՌԱԲԱՆՈՒԹՅՈՒՆ

Օգտագործվել են re, numpy, sklearn գրադարանները։

- re գրադարանը թույլ է տալիս իրականացնել արդյունավետ նախամշակում տեքստերի վրա՝ հաշվի առնելով տվյալների առանձնահատկությունները։
- ոսmpy-ն կիրառվել է բազմաբնույթ մաթեմատիկական գործողությունների պարզեցման համար։
- sklearn-ի գործիքները ապահովել են վեկտորիզացիա, մոդելավորում և գնահատում՝ բարձրացնելով համակարգի արտադրողականությունը։

ԱՐԴՅՈՒՆՔՆԵՐ

Ծրագրային կոդի աշխատացման արդյունում ունենում ենք նկ.1-ի պատկերը։

	precision	recall	f1-score	support
Cause-Effect(e1,e2)	0.91	0.64	0.75	61
Cause-Effect(e2,e1)	0.72	0.51	0.60	138
Component-Whole(e1,e2)	0.37	0.21	0.27	100
Component-Whole(e2,e1)	0.56	0.09	0.16	97
Content-Container(e1,e2)	0.70	0.62	0.66	88
Content-Container(e2,e1)	0.71	0.52	0.60	42
Entity-Destination(e1,e2)	0.67	0.87	0.75	158
Entity-Destination(e2,e1)	0.00	0.00	0.00	9
Entity-Origin(e1,e2)	0.34	0.72	0.46	107
Entity-Origin(e2,e1)	0.83	0.17	0.29	29
<pre>Instrument-Agency(e1,e2)</pre>	0.33	0.07	0.12	14
<pre>Instrument-Agency(e2,e1)</pre>	0.67	0.26	0.37	85
Member-Collection(e1,e2)	1.00	0.12	0.21	17
Member-Collection(e2,e1)	0.34	0.45	0.39	119
Message-Topic(e1,e2)	0.55	0.06	0.11	103
Message-Topic(e2,e1)	0.50	0.10	0.17	29
0ther	0.22	0.51	0.31	260
Product-Producer(e1,e2)	0.57	0.18	0.28	66
Product-Producer(e2,e1)	1.00	0.02	0.04	87
			0.42	4600
accuracy	0.50	0.70	0.42	1600
macro avg	0.58	0.32	0.34	1600
weighted avg	0.55	0.42	0.39	1600
Example sentence:				
Cats don't taste sweetness				
Extracted Entities:				
e1: Cats				
e2: taste				
Predicted Relationships:				
Other: 0.51				
<pre>Entity-Destination(e1,e2):</pre>				
Instrument-Agency(e2,e1): 6	9.09			

Ն.կ 1. Ծրագրային կոդի աշխատանքի արդյունք

ԵԶՐԱԿԱՑՈՒԹՅՈՒՆ

Առանցքային բառերի հայտնաբերման առաջարկվող համակարգը ցուցադրել է հաջող արդյունքներ՝ ապահովելով տեքստերի ավտոմատ վերլուծության բարձր արդյունավետություն, ձշգրտություն և հուսալիություն։ Համակարգի ձկունությունը հնարավորություն է տալիս այն հեշտությամբ ընդլայնել տարբեր ոլորտներում՝ ինչպես գիտական ուսուժնասիրություններում, այնպես էլ բիզնեսի ոլորտում։ Հավելյալ հարմարեցման և ֆունկցիոնալության բարելավման շնորհիվ այն կարող է մշակել մեծածավալ տվյալներ և ապահովել ավելի լայն կիրառում՝ դարձնելով այն բազմակողմանի գործիք տեքստային տվյալների մշակման համար։

ՕԳՏԱԳՈՐԾՎԱԾ ԳՐԱԿԱՆՈՒԹՅԱՆ ՑԱՆԿ

- 1. https://colab.google/
- 2. https://paperswithcode.com/
- 3. Դասախոսությունների նյութեր
- 4. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32
- 5. Pedregosa, F., et al. (2011). Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, 12, 2825-2830