Bradley Green

Math 4610

September 9, 2021

Dr. Koebbe

TaskSheet 2

Task 1:

I am using the programming language python. The program prints to the console "You tit! I soiled my armor I was so scared!"

```
task1.py - /Users/Bradley/Desktop/Math 4610 /Tasksheet2/task1.py (3.8.1)

if __name__ == '__main__':
    print("You tit! I soilded my armor I was so scared!")

Python 3.8.1 Shell

Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019, 14:08:53)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>>
======== RESTART: /Users/Bradley/Desktop/Math 4610 /Tasksheet2/task1.py =======
You tit! I soilded my armor I was so scared!
>>>
```

Task 2:

Added links between my home page and the table of contents and my software manual on my github page.

Task 3:

Task 3:

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h}$$

$$|error| = |f(a) - \frac{f(a+h) - f(a-h)}{2h}$$

=
$$|f'(a) - \frac{1}{2h} (f(a+h) - f(a-h))|$$

$$f(a+h) = f(a) + f'(a)(a+h-a) + \frac{1}{2}f''(a)h^2 + \frac{1}{6}f'''(a)h^3 + \dots$$

$$f(a-h) = f(a) + f'(a)(a-h-a) + \frac{1}{2}f''(a)(-h)^2 + \frac{1}{6}f'''(a)(-h)^3 + \dots$$

$$|error| = |f'(a) - \frac{1}{2h}(f(a) + f(a)h + \frac{1}{2}f'(a)h^2 + \frac{1}{6}f''(a)h^3 + ...)|$$

$$= |f'(a) - \frac{1}{2h}(2f'(a)h + \frac{2}{6}f'''(a)h^3 + ...)|$$

$$= |f'(a) - (f'(a) + \frac{1}{6}f'''(a)h^2 + ...)|$$

$$= |-\frac{1}{6}f''(a)h^2 + ...|$$
The approximation is second order b/c of (h^2)

Task 4:

Tash 4:
$$f'(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

$$|error| = |f''(x)| - \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}|$$

$$f(x+h) = f(x) + f(x)(x+h-x) + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(x)h^3 + \frac{1}{24}f'(x)h^4 + \dots$$

$$|f(x-h) = f(x) + f'(x)(x-h-x) + \frac{1}{2}f''(x)[-h)^2 + \frac{1}{6}f'''(x)[-h)^3 + \frac{1}{24}f'(x)h^4 + \dots$$

$$|error| = |f''(x) - \frac{1}{h^2}(-2f(x) + f(x) + f(x)(x+h-x) + \frac{1}{2}f''(x)h^3 + \frac{1}{24}f'(x)h^4 + \dots)|$$

$$+ (f(x) + f'(x)(x-h-x) + \frac{1}{2}f''(x)[-h)^2 + \frac{1}{6}f''(x)(-h)^3 + \frac{1}{24}f'(x)h^4 + \dots)|$$

$$= |f''(x) - \frac{1}{h^2}(\frac{1}{2}f''(x)h^2 + \frac{1}{24}f''(x)h^4 + \dots)|$$

$$= |f''(x) - \frac{1}{h^2}(\frac{1}{2}f''(x)h^2 + \frac{1}{12}f''(x)h^4 + \dots)|$$

$$= |f''(x) - f^2(x) - \frac{1}{h^2}(x)h^2 + \frac{1}{12}f''(x)h^2 + \dots)|$$

$$= |f''(x) - f^2(x) - \frac{1}{h^2}(x)h^2 + \dots|$$
The approximation is second order b(c of (h²).

I used python code and got the following output.

Iter	h	Approx	Error
1	1	0.38260348236197916	0.03354335418516324
2	0.5	0.4075490368602161	0.00859779968692631
3	10e-1	0.41580016309240014	0.0003466734547422634
4	10e-2	0.416143368670574	3.4678765684081903e-06
5	10e-3	0.4161468019070469	3.4640095514237856e-08
6	10e-4	0.41614681700608	1.9541062379335727e-08
7	10e-5	0.4161471167662966	-2.802191542139454e-07
8	10e-6	0.41600056732704616	0.0001462692200962512
9	10e-7	0.4385380947269369	-0.022391258179794482
10	10e-8	1.1102230246251563	-0.694076188078014
11	10e-9	55.51115123125782	-55.09500439471068
12	10e-10	0.0	0.4161468365471424
13	10e-11	555111.5123125783	-555111.0961657417
14	10e-12	0.0	0.4161468365471424
15	10e-13	0.0	0.4161468365471424
16	10e-14	-1665334536937.7349	1665334536938.1511
17	10e-15	222044604925031.28	-222044604925030.88
18	10e-16	0.0	0.4161468365471424

Task 5:

Finite difference approximations are made to replace derivatives in differential equations with finite approximations. This simplifies the equations enough so a computer can compute them.

This is because computers cannot deal with limits as x tends to infinity. In higher ordered approximations an important property of the centered formula is that the error only contains odd derivative terms.

https://archive.siam.org/books/ot98/sample/OT98Chapter1.pdf
https://www.weatherclasses.com/uploads/1/3/1/3/131359169/lectfinitedifference.pdf