

THÈSE

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

délivré par l'Institut Supérieur de l'Aéronautique et de l'Espace

Spécialité : Intelligence Artificielle

Présentée et soutenue par Sylvain Bouveret

Le 16 novembre 2007

Allocation et partage équitables de ressources indivisibles : modélisation, complexité et algorithmique

JURY

M. Christian Bessière, président du jury

M. Ulle Endriss

M. Thibault Gajdos

M. Jean-Michel Lachiver, co-directeur de thèse

M. Jérôme Lang, co-directeur de thèse

M. Michel Lemaître, co-directeur de thèse

M. Patrice Perny, rapporteur,

M. Thomas Schiex

École doctorale : mathématiques, informatique et télécommunications de Toulouse

Unité de recherche équipe d'accueil SUPAERO-ONERA MOIS

(ONERA-DCSD, centre de Toulouse) - IRIT - CNES

Rapporteurs : M. Boi Faltings et M. Patrice Perny

Directeurs de thèse ... M. Jean-Michel Lachiver, M. Jérôme Lang et M. Michel Lemaître

Remerciements

e tiens à remercier toutes les personnes gui ont contribué, de près ou de loin, à la réalisation de ce travail de thèse. Ils ont le droit à ma reconnaissance et à un exemplaire gratuit de ce manuscrit s'ils le souhaitent. Je tiens toutefois à adresser guelgues remerciements particuliers aux personnes gui seront citées dans les deux pages suivantes, et qui m'ont très certainement apporté autant sur le plan technique que sur le plan humain.

En premier lieu, je tire un coup de chapeau à Jean-Michel Lachiver, Jérôme Lang et Michel Lemaître, qui m'ont encadré pendant ces trois années. Ils ont su m'apporter, par leur relative disponibilité, leurs différences, et leurs qualités techniques et humaines, tous les ingrédients nécessaires à la réalisation d'un travail de thèse dans des conditions excellentes. J'espère avoir encore moult occasions de les côtoper, que ce soit pour une discussion technique, à l'autre bout du monde, ou encore au détour d'un chemin ou d'une falaise.

Simon de Givry, Thomas Schiex et Gérard Verfaillie ont eu l'occasion de suivre mon travail de près à l'occasion en particulier de leur participation à mon comité de thèse, même si leur influence sur ce travail dépasse largement ce cadre restreint. Je les en remercie vivement! Merci particulièrement à Thomas Schiex d'avoir accepté de faire partie de mon jury.

Merci infiniment aux Professeurs Boi faltings et Patrice Perny, qui ont eu la lourde tâche probablement quelque peu fastibieuse l'être les rapporteurs du présent manuscrit. T'ai eu plaisir à discuter avec eux, à l'occasion de multiples rencontres, et leurs conseils m'ont été très utiles pour améliorer ce manuscrit ainsi que pour la suite de mon travail. T'aimerais remercier en outre Patrice Perny pour m'avoir accueilli dans son équipe au Laboratoire d'Informatique de Paris 6 pendant deux semaines.

Je remercie Christian Bessière, Ulle Enbriss et Thibault Gajbos, membres de mon éclectique jury de thèse, pour la qualité de leur analyse, la précision de leurs questions et la pertinence de leurs conseils lors de la soutenance. Merci à Christian Bessière l'avoir accepté de présider le jury. Merci à Thibault Gajbos d'avoir accepté de s'aventurer sur les terres inconnues de l'informatique en participant à mon jury de thèse. Je remercie enfin chalcureusement Ulle Endriss, pour avoir lu le manuscrit avec autant d'attention, pour toutes les discussions que nous avons pu avoir au cours de ma thèse, pour l'énergie qu'il déploie à organiser des événements fédérateurs dans la communauté, et pour m'avoir donné l'occasion de participer à de nombreuses reprises à des groupes de travail.

T'ai effectué ma thèse au sein de l'équipe Conduite et Décision du Département Commande des Systèmes et Dynamique du vol de l'Onera, où j'ai bénéficié de conditions de travail particulièrement agréables. T'aimerais donc remercier Patrick Fabiani et Jean-François Gabard de m'avoir accueilli dans cette équipe, ainsi que tous les membres de l'unité dont j'ai apprécié la compagnie. Merci à Christophe "Tof" Garion, de Supaéro, de m'avoir fait confiance et de m'avoir fait découvrir le monde merveilleux de Java et de l'enscignement. Merci aussi à tous les personnels (techniques, administratifs, gardes, etc.) qui nous facilitent la tâche au quotidien et contribuent à nous rendre le travail plus agréable.

D'un point de vue plus pragmatique, je remercie le Enes et l'Onera d'avoir financé cette thèse. Je remercie aussi l'ANR pour le financement des missions dont j'ai pu bénéficier à plusieurs reprises au cours de ma thèse, dans le cadre de ma participation au projet Ohac.

Outre les personnes que j'ai béjà citées bans les paragraphes précédents, j'ai eu la chance de faire de multiples connaissances burant ma thèse, au bétour de groupes de travail, de conférences ou de séminaires. Je pense tout d'abord à toutes les personnes qui gravitent autour du groupe MultiAgent Resource Allocation et du projet RNR Phac, et en particulier les gens du Lamsade dont Yann Chevalepre, Sylvia Estivie et Nicolas Maudet, du Cril, de l'ILL, et du Lipb. Je remercie à cette occasion particulièrement l'équipe Décision du Lipb, qui m'a accueilli chalcureusement pendant deux semaines, et notamment (outre Patrice Perny que j'ai béjà cité), Olivier Spanjaard, Paul Weng, et la joyeuse équipe des thésards, Lucie, Nicolas, et les autres. Merci aussi à Bruno Zanuttini pour toutes nos discussions communes, pour ses qualités humaines, et pour son invitation à l'Université de Cæn.

Merci à la meute des thésards toulousains, parmi lesquels :

- Des thésards du DESD et assimilés: Clément et ses sandales, Cédrie et son professeur émérite X. Jungus, l'autre Cédrie, Nico, Greg le millionnaire, Greg le prolétaire, Manu tentionnaire, Charles, Olivier, flo, Stéphane, Julien, Patrice, Sophie, Florent et les autres;
- D les piliers du DMA€ : Claire et sa polaire frottée, Bruno, inventeur du cadeau concept et de la loi de Frackowiak, Nico;
- D la forde de l'Irit : Élise, Kévin, Nico;
- D les jopeux drilles de l'Inra : Matthias, dont l'activité principale consiste à compiler le €;

Merci à Barth de m'avoir hébergé tant de fois lorsque j'étais en mission. Merci aux membres de la confrérie Saint-Luc, issus d'une longue lignée de maîtres brasseurs depuis 2007. Merci aux amis proches et moins proches, aux grimpeurs, aux nageurs, aux cinéphiles, aux eynophiles, aux amateurs de bovins, aux skieurs, aux randonneurs, aux chercheurs, aux étudiants, aux coureurs, aux piliers de comptoir, aux adeptes du jeu de mots, aux geeks, aux mélomanes, aux ours des montagnes,...

Merci à tous les professeurs qui m'ont donné l'envie d'apprendre, la curiosité intellectuelle, et le goût de la recherche.

Merci à ma mère de m'avoir soutenu et donné l'opportunité de faire des études.

Merci enfin à Marianne, pour tout le reste, tout ce qui compte réellement.

Je sédie cette thèse à Alice, née le 26 janvier 2006.

Table des matières

N	Notations 1				
In	trod	uction			5
Ι	Mo	odélisa	tion		13
1	Par	tage e	t décisio	on collective	15
	1.1	La res	ssource .		. 15
		1.1.1	La natu	re de la ressource	. 15
		1.1.2	Les con	traintes d'admissibilité	. 18
	1.2	La no	tion de p	références	. 20
		1.2.1	Modélis	ation des préférences	. 20
			1.2.1.1	Relations binaires	. 20
			1.2.1.2	Structure de préférence ordinale	. 22
			1.2.1.3	Extensions de la structure de préférence ordinale	. 23
		1.2.2	L'espace	e cible des préférences individuelles	. 26
	1.3	Agrég	ation des	préférences et partage équitable	. 27
		1.3.1	Principe	es normatifs de la justice distributive	. 27
			1.3.1.1	Le principe d'équité	. 27
			1.3.1.2	Le welfarisme cardinal	. 28
			1.3.1.3	L'absence d'envie	. 31
		1.3.2	Ordre d	le bien-être social et fonction d'utilité collective	. 32
		1.3.3	Proprié	tés des ordres de bien-être collectif et des partages optimaux	. 33
			1.3.3.1	Propriétés basiques	. 33
			1.3.3.2	Partage et équité	. 34
			1.3.3.3	Résumé de l'ensemble des propriétés	. 40
		1.3.4	Fonction	ns d'utilité collective classiques	. 41
			1.3.4.1	Fonction d'utilité collective utilitariste classique	. 41
			1.3.4.2	Fonction de Nash	. 43

			1.3.4.3 Somme des puissances	45
			1.3.4.4 Moyennes pondérées ordonnées (OWA)	45
			1.3.4.5 Normalisation des utilités	47
	1.4	Distrib	oution ou répétition dans le temps de la procédure d'allocation	48
		1.4.1	Partage centralisé ou distribué	48
		1.4.2	Répétition dans le temps du problème d'allocation	50
	1.5	Conclu	ısion	51
2	Dro	oits exc	ogènes	53
	2.1	Exemp	oles repères	55
		2.1.1	Avec des droits égaux	55
		2.1.2	Avec des droits inégaux	56
	2.2	Le pri	ncipe de duplication des agents	56
	2.3	Propri	étés des ordres sociaux et partages optimaux	59
		2.3.1	Extension des propriétés basiques classiques	59
		2.3.2	Équité en présence de droits exogènes inégaux	60
			2.3.2.1 Juste part et absence d'envie	61
			2.3.2.2 Équité fondée sur l'égalitarisme et droits inégaux	62
		2.3.3	Nouvelles propriétés relatives aux droits exogènes	68
		2.3.4	Application aux quatre ordres de bien-être social étendus	70
	2.4	Foncti	ons d'utilité collective de compromis et droits inégaux	70
		2.4.1	Fonctions somme des puissances	70
		2.4.2	Moyennes Pondérées Ordonnées Étendues	73
	2.5	Applie	eations	74
	2.6	Droits	inégaux ordinaux	76
		2.6.1	Méthode forte	76
		2.6.2	Méthode faible	77
	2.7	Conclu	usion sur les droits exogènes inégaux	78
Π	\mathbf{R}_{0}	eprése	ntation compacte et complexité	79
3	Ren	orésent	ation compacte	81
	3.1		· · · · · · · · · · · · · · · · · · ·	83
	J. <u>1</u>	3.1.1		83
		J.1.1		83
			-	84
			3.1.1.3 La représentation compacte	
		3.1.2	Réseaux de contraintes	

	3.1.3	Variable	es de décision binaires
		3.1.3.1	Représentation logique
		3.1.3.2	Application à l'espace des allocations
		3.1.3.3	Représentation binaire de variables n -aires
		3.1.3.4	Représentation logique et compilation de connaissances 88
3.2	Repré	sentation	compacte de préférences
	3.2.1	Cadre fo	ormel
		3.2.1.1	Langage de représentation compacte de préférences
		3.2.1.2	Application au partage : espace combinatoire d'objets 92
		3.2.1.3	La représentation compacte de préférences
	3.2.2	Modélis	ation à base de logique
		3.2.2.1	Préférences dichotomiques
		3.2.2.2	Préférences ordinales
		3.2.2.3	Préférences cardinales
	3.2.3	Préféren	aces ceteris paribus et CP-nets
		3.2.3.1	Préférences ceteris paribus
		3.2.3.2	CP-nets
		3.2.3.3	Application au problème de partage
	3.2.4	Préféren	nces additives généralisées
		3.2.4.1	Langages de lots k -additifs
		3.2.4.2	Indépendance additive généralisée, GAI-nets et CSP valués 105
	3.2.5	Langage	es d'enchères combinatoires
		3.2.5.1	Langages OR et XOR
		3.2.5.2	Combiner les langages OR et XOR
		3.2.5.3	Langages logiques pour les enchères combinatoires
	3.2.6	Conclus	ion sur les langages de représentation de préférences
3.3	Repré	sentation	compacte des problèmes de partage équitable
	3.3.1		efficacité et absence d'envie en présence de préférences dichotomiques : tation logique
		3.3.1.1	Absence d'envie
		3.3.1.2	Partages efficaces
		3.3.1.3	Partages efficaces et sans-envie
		3.3.1.4	Conclusion sur le problème avec préférences dichotomiques 120
	3.3.2	Un lang	age générique pour le problème de partage de biens indivisibles 121
		3.3.2.1	Contraintes
		3.3.2.2	Demandes pondérées et préférences individuelles
		3.3.2.3	Utilité collective
		3.3.2.4	Problème de partage de biens indivisibles générique

			3.3.2.5 Traduction des problèmes d'enchères combinatoires	. 125
	3.4	Concl	usion	. 126
4	Con	nplexi	té du problème de partage	129
	4.1	Existe	ence d'une allocation efficace et sans-envie	. 129
		4.1.1	Complexité du problème EEF avec préférences dichotomiques	. 129
			4.1.1.1 Le problème général	. 129
			4.1.1.2 Restrictions sur le langage	. 134
			4.1.1.3 Critères d'efficacité alternatifs	. 143
		4.1.2	Préférences non-dichotomiques	. 147
			4.1.2.1 Préférences logiques générales	. 147
			4.1.2.2 Préférences numériques sous forme logique	. 148
			4.1.2.3 Préférences numériques additives	. 151
		4.1.3	Conclusion	. 156
	4.2	Maxin	nisation de l'utilité collective	. 156
		4.2.1	Complexité du problème général	. 159
		4.2.2	Pas de contrainte	. 159
		4.2.3	Contraintes de préemption uniquement	. 160
		4.2.4	Contraintes de volume uniquement	. 164
		4.2.5	Contraintes d'exclusion uniquement	. 165
		4.2.6	Conclusion	. 166
II	T A	laanit	hmique	169
11	ı P	rigoriu	annique	109
5	Pré	ordre l	leximin et programmation par contraintes	171
	5.1	Expos	é du problème	. 171
		5.1.1	Retour sur le préordre leximin	. 171
	5.2	Le pro	oblème de satisfaction de contraintes à critère max-leximin	. 173
	5.3	Progra	ammation par contraintes et optimisation leximin	. 175
		5.3.1	La programmation par contraintes	. 175
			5.3.1.1 Les deux composantes d'un système de programmation par contraint	es 175
			5.3.1.2 Propagation de contraintes	. 177
			5.3.1.3 Contraintes globales	. 179
			5.3.1.4 Programmation par contraintes événementielle	. 179
	5.4	Algori	thmes de programmation par contraintes	. 180
		5.4.1	Le leximin comme une fonction d'utilité collective	. 182
		5.4.2	Une contrainte ad - hoc pour l'ordre leximin	. 183
		5.4.3	Algorithmes itératifs	. 185

		5.4.3.1 Brancher sur les sous-ensembles saturés	18
		5.4.3.2 Trier pour régner	18
		5.4.3.3 Un nouvel algorithme utilisant une méta-contrainte de cardinali	té . 189
		5.4.3.4 Transformations max-min	19
		$5.4.4 Aspects \ heuristiques $	19
	5.5	Conclusion : au-delà du leximin?	19
		5.5.1 Un leximin à seuil	19
		5.5.2 Les moyennes pondérées ordonnées	198
6	\mathbf{Exp}	érimentations	199
	6.1	Le problème Pléiades simplifié	200
		6.1.1 Description et modélisation du problème	200
		6.1.2 Génération des instances	20
		6.1.3 Résultats	20
	6.2	Enchères combinatoires équitables	20
		6.2.1 Description et modélisation du problème	20
		6.2.2 Génération des instances	20
		6.2.3 Résultats	20
	6.3	Problème de partage de biens indivisibles générique	21
		6.3.1 Description du modèle	21
		6.3.2 Génération des instances	21
		6.3.2.1 Instances de type générique	21
		6.3.2.2 Instances de type Pléiades	21
		6.3.2.3 Instances de type Spot	21
		6.3.3 Résultats	21
	6.4	Problème d'affectation de sujets de travaux expérimentaux	21
		6.4.1 Description de l'instance réelle	21
		6.4.2 Modélisation et résolution du problème	21
		6.4.2.1 Formulation mathématique du problème	21
		6.4.2.2 Problème de flot sous contraintes	21
	6.5	Conclusion	22
\mathbf{C}	onclu	sion	223
\mathbf{B}^{i}	ibliog	raphie	229
		es figures et tableaux	24;
וע		des figures	
		des tableaux	94

Li	ste d	es syn	nboles	246
\mathbf{A}	Clas	sses et	problèmes de complexité	249
	A.1	Classe	s de complexité	249
	A.2	Liste o	des problèmes introduits	252
В	Rep	résent	ation du préordre leximin par une fonction d'agrégation	255
	B.1	Taille	du domaine de la fonction d'agrégation	255
	B.2	Représ	sentation du préordre leximin	257
		B.2.1	Par une moyenne pondérée ordonnée	257
		B.2.2	Par une fonction somme des puissances	257
	B.3	Le cas	particulier de la fonction somme des puissances	258
		B.3.1	Le cas critique	258
		B.3.2	Calcul du q minimal	259
			B.3.2.1 Tableau de variation de f	259
			B.3.2.2 Une borne supérieure de q_{min}	260
			B.3.2.3 Une deuxième borne supérieure de q_{min}	261
\mathbf{C}	Cal	cul des	s indices d'inégalité généralisés	263
	C.1	Indice	s d'Atkinson généralisés	263
		C.1.1	q eq 0	263
		C.1.2	q=0	263
	C.2	Indice	de Gini généralisé	264
		C.2.1	Première formulation	264
		C.2.2	Deuxième formulation	264
		C.2.3	Troisième formulation	265
In	dex			266

Notations

Ensembles	
\mathbb{R} , \mathbb{Q} et \mathbb{N}	Ensemble des réels, des rationnels et des entiers naturels
$\overline{\mathbb{R}}, \overline{\mathbb{Q}}$ et $\overline{\mathbb{N}}$	$\mathbb{R} \cup \{-\infty, +\infty\}, \mathbb{Q} \cup \{-\infty, +\infty\} \text{ et } \mathbb{N} \cup \{+\infty\}$
\mathbb{R}^+ et \mathbb{Q}^+	Ensemble des réels positifs et des rationnels positifs
\mathbb{R}_{\star} , \mathbb{Q}_{\star} et \mathbb{N}_{\star}	$\mathbb{R}\setminus\{0\},\mathbb{Q}\setminus\{0\}$ et $\mathbb{N}\setminus\{0\}$
\mathbb{R}_{+}^{+} et \mathbb{Q}_{+}^{+}	$\mathbb{R}^+ \setminus \{0\} \text{ et } \mathbb{Q}^+ \setminus \{0\}$
Lettre calligraphique	Ensemble mathématique $(\mathscr{X}, \mathscr{Y}, \ldots)$
$\{\ldots\}$	Ensemble mathématique
×	Produit cartésien
\mathscr{X}^n	$\underbrace{\mathscr{X} \times \cdots \times \mathscr{X}}_{}$
	n fois
$\wp(\mathscr{X})$	Ensemble des parties de ${\mathscr X}$
\subset , \supset	Relation d'inclusion
\subseteq , \subsetneq	Inclusion au sens large, inclusion stricte
\in	Appartenance à un ensemble
[a,b]	Intervalle réel fermé entre a et b
$\llbracket n,m rbracket$	Intervalle entier entre n et m inclus
$ \mathscr{X} $	Cardinal de \mathscr{X}
Ø	Ensemble vide
${f Vecteurs}$	
\overrightarrow{x}	Vecteur
(\dots)	Vecteur
x_i	$i^{ m ème}$ composante du vecteur \overrightarrow{x}
$\frac{x_i}{\overrightarrow{x}}$ \uparrow	Vecteur des composantes de \overrightarrow{x} ordonnées dans l'ordre croissant
$\overrightarrow{x}_{i}^{\uparrow}$	$i^{ m eme}$ composante du vecteur $\overrightarrow{x}^{\uparrow}$
$\overrightarrow{x}^{\downarrow}$	Vecteur des composantes de \overrightarrow{x} ordonnées dans l'ordre décroissant
$\overrightarrow{x}_i^{\downarrow}$	$i^{ m eme}$ composante du vecteur $\overrightarrow{x}^{\downarrow}$
\overline{x}	moyenne des composantes du vecteur \overrightarrow{x}
Raisonnement mathématic	
∀, ∃	Quantificateurs universel et existentiel non logiques
\Leftarrow,\Rightarrow	Implication non logique
\Leftrightarrow	Équivalence non logique
Relations binaires	
\Re	Relation binaire quelconque
$x\Re y$	$\Re(x,y)$

```
(\preceq,\succeq),(\leq,\geq)
                                           Préordres (relations binaires réflexives et transitives)
                                           Préférence stricte : x \prec y \Leftrightarrow (x \leq y \text{ et } y \not\preceq x)
   \prec, \succ
                                           Indifférence : x \sim y \Leftrightarrow (x \leq y \text{ et } y \leq x)
  \sim
  \perp, \top
                                           Éléments minimum et maximum vis-à-vis d'un préordre
                                           Ensemble des éléments non dominés vis-à-vis de ≿
  \max_{\succ}
  [x]_{\sim}
                                           Classe d'équivalence de x vis-à-vis de la relation \sim
  \mathcal{E}/\sim
                                           Ensemble quotient de \mathscr E pour \sim
Logique et contraintes
                                           Variable binaire (booléenne) ou non binaire
  \mathbf{x}
                                           valeurs minimales et maximales du domaine de \mathbf{x}
  \mathbf{x}, \overline{\mathbf{x}}
                                           modifications du domaine de x (dans les algorithmes)
  \underline{\mathbf{x}} \leftarrow \alpha, \, \overline{\mathbf{x}} \leftarrow \alpha, \, \mathbf{x} \leftarrow \alpha
                                           Connecteurs logiques non, ou, et, implication, équivalence
  \neg, \lor, \land, \rightarrow, \leftrightarrow
  x ? y_1 : y_0
                                           opérateur logique if-then-else
  Mod(\varphi)
                                           Ensemble des modèles de \varphi
  v \vDash \varphi
                                           v \in Mod(\varphi)
   MaxCons(\Delta, \beta)
                                           ensemble de tous les sous-ensembles maximaux \beta-consistants de \Delta
  MaxCons(\Delta)
                                           MaxCons(\Delta, \top)
  \sim^{\forall}
                                           Symbole de conséquence sceptique
  Inst(\mathscr{X})
                                           Ensemble des instanciations (ou interprétations) sur {\mathscr X}
  (\mathbf{x_1}: v(\mathbf{x_1}), \dots, \mathbf{x_n}: v(\mathbf{x_n}))
                                           Instanciation (notation explicite)
  \langle v_x, v_y \rangle
                                           Concaténation de deux instanciations
  (\mathbf{x_1}: \mathcal{D}_{\mathbf{x_1}}, \dots, \mathbf{x_n}: \mathcal{D}_{\mathbf{x_n}})
                                           Fonction de domaine (notation explicite)
  \langle \mathcal{D}_1, \mathcal{D}_2 \rangle
                                           Unification de deux fonctions de domaine
                                           Projection d'une instanciation sur un ensemble
  v_{|\mathscr{S}}
Fonctions, limites
                                           Valeur absolue de x
  |x|
  sgn(x)
                                           Fonction signe: \forall x \in \mathbb{R}^*, \ sgn(x) = \frac{x}{|x|}
                                           Fonction logarithme népérien
  log
  Id
                                           Fonction identité
  f(x) \xrightarrow[x \to a]{x \to a} bx \to a^+, x \to a^-
                                           b est la limite de f(x) lorsque x tend vers a
                                           x tend vers a par valeurs positives, négatives
  f(x) = o_{x \to a}(q(x))
Complexité computationnelle
                                           Problème de décision quelconque.
  co-P
                                           Complémentaire du problème \mathcal{P}.
Probabilités
  X = (x_1, A_1; \dots; x_n, A_n)
                                           Variable aléatoire
  (x_1,p_1;\ldots;x_n,p_n)
                                           Loterie
                                           Fonction de probabilité
  E(X)
                                           Espérance de X
Divers
  \mathcal{G}^{\binom{m+n-1}{n}}
                                           Coefficient binômial
                                           Graphe
```