ALVEOLI analysis

Lina Kramer

1.03.2025

Contents

1.	Data overview	1
2.	Descriptives	1
	2.1. Table 1	1
	2.2. Missingness	3
	2.3. 28-day survival	4
	2.5. IL-6 over time	6
3.]	Models	6
	3.1. Linear-mixed model for IL-6 over time	6
	3.2. Cox proportional hazards models	11
	3.3. Joint models	14
4.	Results	21
	4.1. Indirect, direct, and total effects	21
	4.2. Association parameter	23
	4.4. Conclusions	23
5.	Model checks	23
	5.1. Longitudinal submodel	24
	5.2 Survival submodel 28-day endpoint	27
	5.3 Survival submodel 28-day endpoint hyper	27
	5.4 Survival submodel 28-day endpoint hypo	27

1. Data overview

- Exposure: high PEEP vs. low PEEP.
- Survival outcome: 28-day and 90-day survival.
- Mediator: IL-6 on days 0 and 3.

2. Descriptives

```
alveoli_wide <- alveoli_long %>%
  unite("biomarker_day", biomarker, day, sep = "_") %>%
  pivot_wider(names_from = biomarker_day, values_from = conc_log10)
alveoli_wide <- merge(alveoli_wide, alveoli_surv[, c("record.id", "death_d28", "time_mort28", "death_d90")
tableone::CreateTableOne(alveoli_wide, strata = c("randomized_group"), vars = c("death_d28", "death_d90")</pre>
```

2.1. Table 1

```
##
                                    Stratified by randomized_group
##
                                     higher PEEP
                                                     lower PEEP
##
                                        267
                                                        263
     death_d28 = 1 (%)
                                          62 (23.2)
                                                         56 (21.3)
##
##
     death_d90 = 1 (\%)
                                          83 (31.1)
                                                         69 (26.2)
     IL6 0 (mean (SD))
                                       2.47 (0.78)
                                                       2.46 (0.73)
##
     IL6 3 (mean (SD))
                                       1.98 (0.58)
                                                       2.01 (0.58)
##
##
     sex = male (%)
                                        150 (56.2)
                                                        141 (53.6)
##
     age (mean (SD))
                                       54.00 (17.09)
                                                      48.52 (17.08)
##
     bmi (mean (SD))
                                      27.56 (6.57)
                                                      27.12 (7.00)
##
     pfratio (mean (SD))
                                     123.16 (57.69) 132.18 (57.40)
                                      96.48 (33.23) 91.85 (30.45)
##
     apache (mean (SD))
                                                         67 (25.5)
##
     class = hyper-inflammatory (%)
                                         72 (27.0)
tableone::CreateTableOne(alveoli_wide, strata = c("randomized_group", "class"), vars = c("death_d28", "
##
                                     Stratified by randomized_group:class
##
                                     higher PEEP:hypo-inflammatory
##
                                        195
     n
##
                                          35 (17.9)
     death_d28 = 1 (\%)
     death_d90 = 1 (\%)
                                          51 (26.2)
##
                                       2.17 (0.56)
##
     IL6_0 (mean (SD))
##
     IL6_3 (mean (SD))
                                       1.89 (0.54)
##
     sex = male (%)
                                        110 (56.4)
     age (mean (SD))
##
                                      55.96 (16.88)
     bmi (mean (SD))
                                      27.87 (6.63)
##
     pfratio (mean (SD))
##
                                     128.67 (58.44)
##
     apache (mean (SD))
                                      87.82 (28.80)
##
     class = hyper-inflammatory (%)
                                           0 (0.0)
##
                                    Stratified by randomized_group:class
##
                                     lower PEEP:hypo-inflammatory
##
                                        196
##
     death_d28 = 1 (\%)
                                          27 (13.8)
##
     death_d90 = 1 (\%)
                                          36 (18.4)
##
     IL6_0 (mean (SD))
                                       2.22 (0.56)
##
     IL6_3 (mean (SD))
                                       1.88 (0.53)
##
     sex = male (%)
                                        103 (52.6)
     age (mean (SD))
                                       48.57 (17.27)
##
     bmi (mean (SD))
##
                                      26.92 (6.44)
     pfratio (mean (SD))
##
                                     135.93 (58.28)
     apache (mean (SD))
##
                                       84.13 (27.43)
     class = hyper-inflammatory (%)
##
                                          0 (0.0)
##
                                    Stratified by randomized_group:class
##
                                     higher PEEP:hyper-inflammatory
##
                                          72
##
     death_d28 = 1 (\%)
                                          27 (37.5)
##
     death d90 = 1 (\%)
                                          32 (44.4)
##
     IL6_0 (mean (SD))
                                       3.25 (0.76)
##
     IL6_3 (mean (SD))
                                       2.25 (0.63)
##
     sex = male (%)
                                          40 (55.6)
##
     age (mean (SD))
                                      48.67 (16.63)
                                      26.72 (6.38)
##
     bmi (mean (SD))
##
     pfratio (mean (SD))
                                     108.24 (53.15)
##
                                     120.49 (33.06)
     apache (mean (SD))
     class = hyper-inflammatory (%)
                                         72 (100.0)
```

```
##
                                    Stratified by randomized_group:class
##
                                     lower PEEP:hyper-inflammatory
##
                                          67
                                          29 (43.3)
     death_d28 = 1 (%)
##
##
     death_d90 = 1 (\%)
                                          33 (49.3)
     IL6 0 (mean (SD))
                                       3.21 (0.68)
##
     IL6 3 (mean (SD))
                                       2.38(0.57)
##
     sex = male (%)
                                          38 (56.7)
##
##
     age (mean (SD))
                                       48.36 (16.63)
     bmi (mean (SD))
##
                                       27.69 (8.47)
##
     pfratio (mean (SD))
                                     121.20 (53.68)
##
     apache (mean (SD))
                                      114.56 (27.55)
##
     class = hyper-inflammatory (%)
                                         67 (100.0)
```

2.2. Missingness Of 550 patients, 18 have no IL-6 biomarker measures. One subject is excluded because their survival status is unknown. They are not included in any of the analyses.

For the 530 subjects who do have IL-6 measures, this is the pattern of missingness:

```
missing_alveoli <- mice::md.pattern(alveoli_wide, rotate.names = TRUE, plot = TRUE)</pre>
```



```
# set the reference group
alveoli_surv$randomized_group <- alveoli_surv$randomized_group %>% relevel(ref = "lower PEEP")
alveoli_long$randomized_group <- alveoli_long$randomized_group %>% relevel(ref = "lower PEEP")
alveoli_surv$class <- alveoli_surv$class %>% relevel(ref = "hypo-inflammatory")
alveoli_long$class <- alveoli_long$class %>% relevel(ref = "hypo-inflammatory")
class(alveoli_surv$death_d28) <- "integer"

## 28 days</pre>
```

```
# hypo-inflammatory
alveoli_surv %>% filter(class =="hypo-inflammatory") %>%
   survfit2(Surv(time_mort28, death_d28) ~ randomized_group, data = .) %>%
   ggsurvfit()+
      scale_ggsurvfit(x_scales= list(breaks = c(0, 7, 14, 21, 28)))+
   ggtitle("Hypo-inflammatory")
```


2.3. 28-day survival

```
# hyper-inflammatory
alveoli_surv %>% filter(class == "hyper-inflammatory") %>%
   survfit2(Surv(time_mort28, death_d28) ~ randomized_group, data = .) %>%
   ggsurvfit()+
      scale_ggsurvfit(x_scales= list(breaks = c(0, 7, 14, 21, 28)))+
   ggtitle("Hyper-inflammatory")
```


2.4. 90-day survival

```
class(alveoli_surv$death_d90) <- "integer"

# hypo-inflammatory
alveoli_surv %>% filter(class =="hypo-inflammatory") %>%
   survfit2(Surv(time_mort90, death_d90) ~ randomized_group, data = .) %>%
   ggsurvfit()+
     scale_ggsurvfit(x_scales= list(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90)))+
   ggtitle("Hypo-inflammatory")
```



```
# hyper-inflammatory
alveoli_surv %>% filter(class == "hyper-inflammatory") %>%
  survfit2(Surv(time_mort90, death_d90) ~ randomized_group, data = .) %>%
  ggsurvfit()+
    scale_ggsurvfit(x_scales= list(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90)))+
  ggtitle("Hyper-inflammatory")
```


2.5. IL-6 over time

3. Models

3.1. Linear-mixed model for IL-6 over time

3.1.1. All patients

```
## Linear mixed-effects model fit by REML
##
    Data: alveoli_long
                          logLik
##
          AIC
                   BIC
##
     1883.108 1917.356 -934.5538
##
## Random effects:
## Formula: ~day | record.id
## Structure: General positive-definite, Log-Cholesky parametrization
##
               StdDev
                         Corr
## (Intercept) 0.7107626 (Intr)
              0.1825355 -0.675
## Residual
              0.2564550
## Fixed effects: conc_log10 ~ day:randomized_group + day
                                        Value Std.Error DF
                                                               t-value p-value
## (Intercept)
                                    2.4667062 0.03304277 529 74.65191 0.0000
## day
                                   -0.1508400 0.01251259 456 -12.05506 0.0000
## day:randomized_grouphigher PEEP -0.0119792 0.01522059 456 -0.78704 0.4317
## Correlation:
##
                                   (Intr) day
## day
                                   -0.511
## day:randomized_grouphigher PEEP -0.002 -0.606
##
## Standardized Within-Group Residuals:
                                   Med
##
           Min
                        Q1
                                                QЗ
                                                           Max
## -1.30326145 -0.28079832 -0.02322622 0.25577348 1.57670118
##
## Number of Observations: 988
## Number of Groups: 530
## Approximate 95% confidence intervals
##
   Fixed effects:
##
                                         lower
                                                      est.
                                                                 upper
## (Intercept)
                                    2.40179509 2.46670625 2.53161741
## day
                                   -0.17542952 -0.15084003 -0.12625054
## day:randomized_grouphigher PEEP -0.04189035 -0.01197916 0.01793203
library(sjPlot)
library(sjmisc)
theme_set(theme_sjplot())
plot_model(lmefit.alveoli, type = "int", terms = c("randomized_group", "day"))
```


3.1.2. Hypo-inflammatory patients

```
## Linear mixed-effects model fit by REML
##
    Data: .
##
          AIC
                   BIC
                          logLik
     1131.426 1163.586 -558.7128
##
##
## Random effects:
  Formula: ~day | record.id
##
   {\tt Structure: General\ positive-definite,\ Log-Cholesky\ parametrization}
##
               StdDev
                         Corr
## (Intercept) 0.5172499 (Intr)
               0.1540253 -0.498
## day
## Residual
               0.2097088
##
## Fixed effects: conc_log10 ~ day:randomized_group + day
##
                                        Value Std.Error DF t-value p-value
                                    2.1968395 0.02836454 390 77.45022 0.0000
## (Intercept)
                                   -0.1075249 0.01271585 341 -8.45597 0.0000
## day:randomized_grouphigher PEEP 0.0017632 0.01664227 341 0.10594 0.9157
   Correlation:
##
                                   (Intr) day
```

```
-0.389
## day:randomized_grouphigher PEEP -0.006 -0.646
## Standardized Within-Group Residuals:
## -1.19315542 -0.26178045 0.01125969 0.27418628 1.46436550
## Number of Observations: 734
## Number of Groups: 391
intervals(lmefit.alveoli_hypo, which = "fixed")
## Approximate 95% confidence intervals
##
   Fixed effects:
##
##
                                         lower
                                                       est.
                                                                  upper
## (Intercept)
                                    2.14107299 2.196839528 2.25260606
                                   -0.13253631 -0.107524928 -0.08251354
## day:randomized_grouphigher PEEP -0.03097127  0.001763153  0.03449758
plot_model(lmefit.alveoli_hypo, type = "int", terms = c("randomized_group", "day"))
```



```
# hyper-inflammatory patients
lmefit.alveoli_hyper <- alveoli_long %>%
filter(class == "hyper-inflammatory") %>%
lme(conc_log10~ day:randomized_group + day,
    random = ~ day | record.id,
    data = .,
    control = lmeControl(opt = "optim"),
    na.action = na.omit)
summary(lmefit.alveoli_hyper)
```

3.1.3. Hyper-inflammatory patients

```
## Linear mixed-effects model fit by REML
    Data: .
##
##
          AIC
                   BIC
                          logLik
     518.8256 543.5038 -252.4128
##
##
## Random effects:
  Formula: ~day | record.id
   Structure: General positive-definite, Log-Cholesky parametrization
##
               StdDev
                         Corr
## (Intercept) 0.6680528 (Intr)
              0.2152460 -0.665
              0.2652335
## Residual
## Fixed effects: conc_log10 ~ day:randomized_group + day
                                       Value Std.Error DF t-value p-value
## (Intercept)
                                    3.235636 0.06194301 138 52.23569 0.0000
                                   -0.280463 0.02838150 113 -9.88191 0.0000
## day
## day:randomized_grouphigher PEEP -0.045580 0.03403876 113 -1.33905 0.1832
  Correlation:
##
                                   (Intr) day
## day
                                   -0.516
## day:randomized_grouphigher PEEP 0.008 -0.616
##
## Standardized Within-Group Residuals:
                                   Med
##
           Min
                        Q1
                                                QЗ
                                                           Max
## -1.11224518 -0.29897171 -0.02083922 0.25643201 1.35874479
##
## Number of Observations: 254
## Number of Groups: 139
intervals(lmefit.alveoli_hyper, which = "fixed")
## Approximate 95% confidence intervals
##
   Fixed effects:
##
                                        lower
                                                     est.
                                                                upper
## (Intercept)
                                    3.1131559 3.23563600 3.35811613
                                   -0.3366923 -0.28046341 -0.22423454
## day
## day:randomized_grouphigher PEEP -0.1130165 -0.04557954 0.02185738
plot_model(lmefit.alveoli_hyper, type = "int", terms = c("randomized_group", "day"))
```


3.2. Cox proportional hazards models For 28-day and 90-day survival.

```
# Fit cox proportional hazard model
coxfit.alveoli_28 <- coxph(Surv(time_mort28, death_d28) ~ randomized_group, data = alveoli_surv, x = TR
summary(coxfit.alveoli_28)</pre>
```

3.2.1. 28-day survival: All patients

```
## Call:
## coxph(formula = Surv(time_mort28, death_d28) ~ randomized_group,
       data = alveoli_surv, x = TRUE)
##
##
##
     n= 530, number of events= 118
##
                                  coef exp(coef) se(coef)
##
## randomized_grouphigher PEEP 0.09433
                                        1.09892 0.18436 0.512
##
##
                               exp(coef) exp(-coef) lower .95 upper .95
## randomized_grouphigher PEEP
                                                                 1.577
                                   1.099
                                               0.91
                                                       0.7657
## Concordance= 0.511 (se = 0.023)
## Likelihood ratio test= 0.26 on 1 df,
                                           p = 0.6
```

```
## Wald test
                        = 0.26 on 1 df,
                                           p = 0.6
## Score (logrank) test = 0.26 on 1 df,
                                          p = 0.6
confint(coxfit.alveoli_28) %>% exp() %>% round(3)
                               2.5 % 97.5 %
## randomized_grouphigher PEEP 0.766 1.577
# hypo-inflammatory
alveoli_surv_hypo <- alveoli_surv %>%
  filter(class == "hypo-inflammatory")
coxfit.alveoli_hypo_28 <- coxph(Surv(time_mort28, death_d28)~ randomized_group, data = alveoli_surv_hyp
summary(coxfit.alveoli_hypo_28)
3.2.2. 28-day survival: hypo-inflammatory patients
## coxph(formula = Surv(time_mort28, death_d28) ~ randomized_group,
      data = alveoli_surv_hypo, x = TRUE)
##
##
    n= 391, number of events= 62
##
##
##
                                 coef exp(coef) se(coef)
                                                             z Pr(>|z|)
## randomized_grouphigher PEEP 0.2899
                                         1.3362 0.2561 1.132
                                                                  0.258
##
##
                               exp(coef) exp(-coef) lower .95 upper .95
## randomized_grouphigher PEEP
                                   1.336
                                             0.7484
                                                       0.8088
## Concordance= 0.537 (se = 0.032)
## Likelihood ratio test= 1.29 on 1 df,
                                          p = 0.3
                       = 1.28 on 1 df,
                                          p=0.3
## Score (logrank) test = 1.29 on 1 df,
                                          p = 0.3
# hyper-inflammatory
alveoli_surv_hyper <- alveoli_surv %>%
  filter(class == "hyper-inflammatory")
coxfit.alveoli_hyper_28 <- coxph(Surv(time_mort28, death_d28)~ randomized_group, data = alveoli_surv_h
summary(coxfit.alveoli_hyper_28)
3.2.3. 28-day survival: hyper-inflammatory patients
## Call:
## coxph(formula = Surv(time_mort28, death_d28) ~ randomized_group,
##
       data = alveoli_surv_hyper, x = TRUE)
##
##
    n= 139, number of events= 56
##
                                  coef exp(coef) se(coef)
##
                                                               z Pr(>|z|)
## randomized_grouphigher PEEP -0.1929
                                          0.8246 0.2675 -0.721
##
```

```
exp(coef) exp(-coef) lower .95 upper .95
                                 0.8246
                                            1.213
                                                     0.4881
## randomized_grouphigher PEEP
                                                                1.393
## Concordance= 0.525 (se = 0.034)
## Likelihood ratio test= 0.52 on 1 df,
                                         p = 0.5
## Wald test = 0.52 on 1 df, p=0.5
## Score (logrank) test = 0.52 on 1 df, p=0.5
# Fit cox proportional hazard model
coxfit.alveoli_90 <- coxph(Surv(time_mort90, death_d90) ~ randomized_group, data = alveoli_surv, x = TR
summary(coxfit.alveoli 90)
3.2.4. 90-day survival: All patients
## Call:
## coxph(formula = Surv(time_mort90, death_d90) ~ randomized_group,
      data = alveoli_surv, x = TRUE)
##
##
##
    n= 530, number of events= 152
##
##
                                coef exp(coef) se(coef)
                                                           z Pr(>|z|)
## randomized_grouphigher PEEP 0.1849
                                       1.2031 0.1629 1.135
                                                                0.256
##
##
                              exp(coef) exp(-coef) lower .95 upper .95
                                  1.203
                                            0.8312
## randomized_grouphigher PEEP
                                                      0.8743
                                                               1.656
## Concordance= 0.521 (se = 0.02)
## Likelihood ratio test= 1.29 on 1 df,
                                          p = 0.3
## Wald test = 1.29 on 1 df, p=0.3
## Score (logrank) test = 1.29 on 1 df,
                                         p = 0.3
confint(coxfit.alveoli_90) %>% exp() %>% round(3)
                              2.5 % 97.5 %
## randomized_grouphigher PEEP 0.874 1.656
# hypo-inflammatory
coxfit.alveoli_hypo_90 <- coxph(Surv(time_mort90, death_d90)~ randomized_group, data = alveoli_surv_hyp
summary(coxfit.alveoli_hypo_90)
3.2.5. 90-day survival: hypo-inflammatory
## coxph(formula = Surv(time_mort90, death_d90) ~ randomized_group,
      data = alveoli_surv_hypo, x = TRUE)
##
##
    n= 391, number of events= 87
##
##
                                coef exp(coef) se(coef)
                                                           z Pr(>|z|)
## randomized_grouphigher PEEP 0.3928
                                       1.4811 0.2177 1.804 0.0712 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
##
##
                           exp(coef) exp(-coef) lower .95 upper .95
## randomized_grouphigher PEEP
                              1.481
                                     0.6752 0.9667 2.269
##
## Concordance= 0.548 (se = 0.027)
## Likelihood ratio test= 3.31 on 1 df, p=0.07
## Wald test = 3.26 on 1 df, p=0.07
## Score (logrank) test = 3.3 on 1 df,
                                    p=0.07
# hyper-inflammatory
coxfit.alveoli_hyper_90<- coxph(Surv(time_mort90, death_d90)~ randomized_group, data = alveoli_surv_hy
summary(coxfit.alveoli_hyper_90)
3.2.6. 90-day survival: hyper-inflammatory
## coxph(formula = Surv(time_mort90, death_d90) ~ randomized_group,
      data = alveoli_surv_hyper, x = TRUE)
##
##
   n= 139, number of events= 65
##
##
                             coef exp(coef) se(coef) z Pr(>|z|)
```

exp(coef) exp(-coef) lower .95 upper .95

0.5227 1.383

1.176

p = 0.5

p = 0.5

p = 0.5

3.3. Joint models Using 28- and 90-day survival as endpoints.

Fit joint models for:

Wald test

randomized_grouphigher PEEP

Concordance= 0.523 (se = 0.032)
Likelihood ratio test= 0.43 on 1 df,

Score (logrank) test = 0.43 on 1 df,

##

##

##

• Survival to day 28 of 1) All patients, 2)hypo-, & 3) hyper-inflammatory.

= 0.43 on 1 df,

0.8502

• Survival to day 90: 4) All patients, 5) hypo-, & 6) hyper-inflammatory.

```
time_var = "day", n_iter = 200000L,
                             n_burnin = 5000L, n_chains = 2L,
                             n thin = 7L, cores= 2)
saveRDS(jointfit.alveoli_28, "jointfit_alveoli_28.rds")
# hypo-inflammatory patients ------
## fit joint model
jointfit.alveoli_hypo_28<- JMbayes2::jm(coxfit.alveoli_hypo_28,</pre>
                                 lmefit.alveoli_hypo,
                                 time_var = "day", n_iter = 200000L,
                             n_burnin = 5000L, n_chains = 2L,
                             n_thin = 7L, cores= 2)
saveRDS(jointfit.alveoli_hypo_28, "jointfit_alveoli_hypo_28.rds")
# hyper-inflammatory patients ------
## fit joint model
jointfit.alveoli_hyper_28<- JMbayes2::jm(coxfit.alveoli_hyper_28,</pre>
                                  lmefit.alveoli_hyper,
                                  time_var = "day", n_iter = 200000L,
                             n_burnin = 5000L, n_chains = 2L,
                             n_{thin} = 7L, cores = 2
saveRDS(jointfit.alveoli_hyper_28, "jointfit_alveoli_hyper_28.rds")
## fit joint model
jointfit.alveoli_90<- JMbayes2::jm(coxfit.alveoli_90,</pre>
                             lmefit.alveoli,
                             time_var = "day", n_iter = 200000L,
                             n_burnin = 5000L, n_chains = 2L,
                             n_{thin} = 7L, cores = 2
saveRDS(jointfit.alveoli_90, "jointfit_alveoli_90.rds")
# hypo-inflammatory patients ------
## fit joint model
jointfit.alveoli_hypo_90<- JMbayes2::jm(coxfit.alveoli_hypo_90,
                                 lmefit.alveoli_hypo,
                                 time_var = "day", n_iter = 200000L,
                             n_burnin = 5000L, n_chains = 2L,
                             n_thin = 7L, cores= 2)
saveRDS(jointfit.alveoli_hypo_90, "jointfit_alveoli_hypo_90.rds")
```

```
# hyper-inflammatory patients -
## fit joint model
jointfit.alveoli_hyper_90<- JMbayes2::jm(coxfit.alveoli_hyper_90,</pre>
                                          lmefit.alveoli hyper,
                                          time_var = "day",n_iter = 200000L,
                                    n_burnin = 5000L, n_chains = 2L,
                                    n_{thin} = 7L, cores = 2
saveRDS(jointfit.alveoli_hyper_90, "jointfit_alveoli_hyper_90.rds")
jointfit.alveoli 28 <- readRDS("jointfit alveoli 28.rds")</pre>
jointfit.alveoli_hypo_28 <- readRDS("jointfit_alveoli_hypo_28.rds")</pre>
jointfit.alveoli_hyper_28 <- readRDS("jointfit_alveoli_hyper_28.rds")</pre>
jointfit.alveoli_hypo_90 <- readRDS("jointfit_alveoli_hypo_90.rds")</pre>
jointfit.alveoli_hyper_90 <- readRDS("jointfit_alveoli_hyper_90.rds")</pre>
jointfit.alveoli_90 <- readRDS("jointfit_alveoli_90.rds")</pre>
3.3.1. 28-day endpoint: All patients
##
## Call:
## JMbayes2::jm(Surv_object = coxfit.alveoli_28, Mixed_objects = lmefit.alveoli,
       time_var = "day", n_iter = 200000L, n_burnin = 5000L, n_chains = 2L,
##
##
       n_{thin} = 7L, cores = 2)
##
## Data Descriptives:
## Number of Groups: 530
                                 Number of events: 118 (22.3%)
## Number of Observations:
##
     conc_log10: 988
##
##
                    DIC
                             WAIC
                                       LPML
               3124.969 3189.944 -1618.418
## marginal
## conditional 2451.933 2221.305 -1651.252
## Random-effects covariance matrix:
##
          StdDev
                   Corr
## (Intr) 0.5734 (Intr)
## dav
          0.0604 -0.5645
##
## Survival Outcome:
                                  Mean StDev
                                                 2.5% 97.5%
                                                                       Rhat
## randomized_grouphigher PEEP 0.1468 0.3111 -0.4667 0.7559 0.6354 1.0002
                                1.7339 0.3228 1.1053 2.3672 0.0000 1.0036
## value(conc_log10)
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
                  Mean StDev
                                 2.5%
                                        97.5%
                                                   Ρ
## (Intercept) 2.4647 0.0313 2.4030 2.5264 0.000 1.0000
               -0.1521 0.0113 -0.1739 -0.1297 0.000 1.0001
## day
## d: P
               -0.0029 0.0119 -0.0264 0.0203 0.808 1.0001
               0.4298 0.0163 0.3979 0.4621 0.000 1.0000
## sigma
##
```

MCMC summary:

```
## chains: 2
## iterations per chain: 200000
## burn-in per chain: 5000
## thinning: 7
## time: 24.3 min
3.3.2. 28-day endpoint: hypo-inflammatory
##
## Call:
## JMbayes2::jm(Surv_object = coxfit.alveoli_hypo_28, Mixed_objects = lmefit.alveoli_hypo,
##
       time_var = "day", n_iter = 200000L, n_burnin = 5000L, n_chains = 2L,
       n_{thin} = 7L, cores = 2
##
##
## Data Descriptives:
## Number of Groups: 391
                                Number of events: 62 (15.9%)
## Number of Observations:
     conc_log10: 734
##
##
##
                    DIC
                            WAIC
                                      LPML
## marginal
               1811.318 1937.812 -1517.725
## conditional 1348.974 1252.971 -1025.937
## Random-effects covariance matrix:
##
          StdDev
##
                   Corr
## (Intr) 0.4380 (Intr)
          0.0816 -0.3897
## day
##
## Survival Outcome:
                                 Mean StDev
                                                2.5% 97.5%
                                                                  Ρ
## randomized_grouphigher PEEP 0.2929 0.3708 -0.4245 1.0254 0.4333 1.0000
## value(conc_log10)
                               0.7645 0.5173 0.0440 1.9425 0.0289 1.0051
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
                  Mean StDev
                                 2.5%
                                        97.5%
## (Intercept) 2.1964 0.0284 2.1409 2.2522 0.0000 1.0001
               -0.1067 0.0123 -0.1309 -0.0825 0.0000 1.0003
               0.0016 0.0157 -0.0296 0.0323 0.9165 1.0000
## d:_P
                0.3470 0.0375 0.2438 0.3983 0.0000 1.0047
## sigma
##
## MCMC summary:
## chains: 2
## iterations per chain: 200000
## burn-in per chain: 5000
## thinning: 7
## time: 19 min
3.3.3. 28-day endpoint: hyper-inflammatory
##
## Call:
## JMbayes2::jm(Surv_object = coxfit.alveoli_hyper_28, Mixed_objects = lmefit.alveoli_hyper,
       time_var = "day", n_iter = 200000L, n_burnin = 5000L, n_chains = 2L,
       n_{thin} = 7L, cores = 2)
##
```

```
##
## Data Descriptives:
## Number of Groups: 139
                                Number of events: 56 (40.3%)
## Number of Observations:
##
     conc_log10: 254
##
                              WAIC
                                         LPML
                     DIC
## marginal
               1128.7818 1417.7325 -2913.5840
## conditional 995.0243 977.3617 -631.6249
## Random-effects covariance matrix:
##
          StdDev
##
                   Corr
## (Intr) 0.5865 (Intr)
         0.1716 -0.5493
## day
##
## Survival Outcome:
                                  Mean StDev
                                                 2.5% 97.5%
## randomized_grouphigher PEEP -0.0910 0.3734 -0.8103 0.6459 0.8071 1.0001
## value(conc log10)
                                0.4705 0.2968 0.0771 1.2019 0.0096 1.0046
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
##
                  Mean StDev
                                 2.5%
                                       97.5%
                                                   Р
                                                       Rhat
## (Intercept) 3.2352 0.0599 3.1182 3.3534 0.0000 1.0000
              -0.2794 0.0286 -0.3357 -0.2238 0.0000 1.0001
## day
## d: P
               -0.0412 0.0352 -0.1113 0.0275 0.2416 1.0000
               0.3629 0.0990 0.1394 0.5151 0.0000 1.0054
## sigma
## MCMC summary:
## chains: 2
## iterations per chain: 200000
## burn-in per chain: 5000
## thinning: 7
## time: 10.7 min
3.3.4. 90-day endpoint: All patients
##
## Call:
## JMbayes2::jm(Surv_object = coxfit.alveoli_90, Mixed_objects = lmefit.alveoli,
       time_var = "day", n_iter = 200000L, n_burnin = 5000L, n_chains = 2L,
##
##
       n_{thin} = 7L, cores = 2)
##
## Data Descriptives:
## Number of Groups: 530
                                Number of events: 152 (28.7%)
## Number of Observations:
     conc_log10: 988
##
##
##
                    DIC
                               WAIC
                                           LPML
## marginal
               4593.322 90276195.11 -1184234.97
## conditional 3105.255
                            3073.19
                                       -2642.37
## Random-effects covariance matrix:
##
```

```
StdDev
                   Corr
## (Intr) 0.7051 (Intr)
          0.1800 -0.6575
##
## Survival Outcome:
##
                                 Mean StDev
                                                2.5% 97.5%
                                                                     Rhat
## randomized grouphigher PEEP 0.1943 0.2126 -0.2193 0.6063 0.3700 1.0000
                               0.0705 0.0522 0.0143 0.1845 0.0117 1.0217
## value(conc_log10)
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
                  Mean StDev
                                 2.5%
                                       97.5%
                                                   Ρ
## (Intercept) 2.4658 0.0329 2.4014 2.5310 0.0000 1.0000
## day
              -0.1509 0.0126 -0.1758 -0.1264 0.0000 1.0001
              -0.0109 0.0154 -0.0410 0.0194 0.4781 1.0000
## d:_P
               0.2481 0.0823 0.0938 0.3973 0.0000 1.0049
## sigma
##
## MCMC summary:
## chains: 2
## iterations per chain: 200000
## burn-in per chain: 5000
## thinning: 7
## time: 23.9 min
3.3.5. 90-day endpoint: hypo-inflammatory
##
## Call:
## JMbayes2::jm(Surv_object = coxfit.alveoli_hypo_90, Mixed_objects = lmefit.alveoli_hypo,
      time_var = "day", n_iter = 200000L, n_burnin = 5000L, n_chains = 2L,
##
      n_{thin} = 7L, cores = 2
##
## Data Descriptives:
## Number of Groups: 391
                                Number of events: 87 (22.3%)
## Number of Observations:
##
     conc_log10: 734
##
##
                    DIC
                                WAIC
                                            LPML
## marginal
               2387.844
                            33126.26
                                       -10497.92
## conditional 1872.224 403705365.83 -8882617.67
## Random-effects covariance matrix:
##
          StdDev
##
                   Corr
## (Intr) 0.4657 (Intr)
         0.1100 -0.4319
## day
## Survival Outcome:
                                 Mean StDev
                                                2.5% 97.5%
## randomized_grouphigher PEEP 0.3617 0.3095 -0.2407 0.9620 0.2444 1.0009
                               0.2571 0.1673 0.0475 0.6693 0.0032 1.0153
## value(conc_log10)
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
                  Mean StDev
                                 2.5%
                                        97.5%
## (Intercept) 2.1966 0.0285 2.1408 2.2526 0.0000 1.0000
```

```
-0.1084 0.0125 -0.1330 -0.0841 0.0000 1.0004
## d: P
               0.0043 0.0159 -0.0275 0.0354 0.7826 1.0008
               0.3048 0.0627 0.1387 0.3822 0.0000 1.0768
## sigma
##
## MCMC summary:
## chains: 2
## iterations per chain: 200000
## burn-in per chain: 5000
## thinning: 7
## time: 18.3 min
3.3.6. 90-day endpoint: hyper-inflammatory
## Call:
## JMbayes2::jm(Surv_object = coxfit.alveoli_hyper_90, Mixed_objects = lmefit.alveoli_hyper,
      time var = "day", n iter = 200000L, n burnin = 5000L, n chains = 2L,
##
      n_{thin} = 7L, cores = 2)
##
## Data Descriptives:
## Number of Groups: 139
                                Number of events: 65 (46.8%)
## Number of Observations:
##
     conc_log10: 254
##
##
                    DIC
                            WAIC
                                      LPML
              1217.064 1346.907 -2587.851
## marginal
## conditional 1164.614 1127.975 -1613.140
## Random-effects covariance matrix:
##
##
         StdDev
                  Corr
## (Intr) 0.5944 (Intr)
## day
         0.1767 -0.5591
##
## Survival Outcome:
##
                                  Mean StDev
                                                 2.5% 97.5%
                                                                      Rhat
## randomized_grouphigher PEEP -0.1348 0.3503 -0.8166 0.5420 0.7051 1.0002
## value(conc_log10)
                                0.2064 0.1251 0.0188 0.4812 0.0254 1.0179
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
                  Mean StDev
                                 2.5%
                                       97.5%
                                                   Ρ
                                                       Rhat
## (Intercept) 3.2345 0.0602 3.1169 3.3531 0.0000 1.0003
## day
              -0.2816 0.0287 -0.3384 -0.2258 0.0000 1.0006
              -0.0400 0.0349 -0.1089 0.0285 0.2493 1.0002
## d:_P
                0.3596 0.0821 0.1688 0.4950 0.0000 1.0051
## sigma
##
## MCMC summary:
## chains: 2
## iterations per chain: 200000
## burn-in per chain: 5000
## thinning: 7
## time: 10.9 min
```

4. Results

4.1. Indirect, direct, and total effects Of randomized_grouphigher PEEP through IL6 on mortality for:

- 1. All patients; 28-day endpoint.
- 2. Hypo-inflammatory patients; 28-day endpoint.
- 3. Hyper-inflammatory patients; 28-day endpoint.
- 4. All patients; 90-day endpoint.
- 5. Hypo-inflammatory patients; 90-day endpoint.
- 6. Hyper-inflammatory patients; 90-day endpoint.

```
# 1
res28 <- get_effects(jointfit.alveoli_28, coxfit.alveoli_28,
                     "randomized grouphigher PEEP") %>%
  cbind(endpoint ="28-day endpoint",
        class = "All")
res28
##
             effect
                                    CI_lower
                                                CI_upper
                                                                endpoint class
                             est
## 1
                     0.146798345 -0.46666182 0.75588531 28-day endpoint
             direct
                                                                           All
## 2
           indirect -0.005016787 -0.04391935 0.03604401 28-day endpoint
                                                                           All
## 3 total (Cox-PH) 0.094329634 -0.26700166 0.45566093 28-day endpoint
                                                                           All
         total (JM) 0.141781558 -0.44823468 0.72979435 28-day endpoint
                                                                            All
# 2
res28_o <- get_effects(jointfit.alveoli_hypo_28, coxfit.alveoli_hypo_28,
                     "randomized_grouphigher PEEP") %>%
  cbind(endpoint ="28-day endpoint",
        class = "Hypo-inflammatory")
res28 o
##
             effect
                                   CI lower
                                               CI upper
                                                               endpoint
                            est
             direct 0.292887873 -0.42452063 1.02536339 28-day endpoint
## 1
           indirect 0.001209979 -0.02781138 0.03055047 28-day endpoint
## 3 total (Cox-PH) 0.289855366 -0.21218466 0.79189539 28-day endpoint
         total (JM) 0.294097852 -0.41440646 1.01685770 28-day endpoint
##
                 class
## 1 Hypo-inflammatory
## 2 Hypo-inflammatory
## 3 Hypo-inflammatory
## 4 Hypo-inflammatory
res28_y <- get_effects(jointfit.alveoli_hyper_28, coxfit.alveoli_hyper_28,
                     "randomized_grouphigher PEEP") %>%
  cbind(endpoint ="28-day endpoint",
        class = "Hyper-inflammatory")
res28 y
##
             effect
                            est
                                   CI_lower
                                               CI_upper
                                                               endpoint
## 1
             direct -0.09104104 -0.81029965 0.64585082 28-day endpoint
## 2
           indirect -0.01939739 -0.07013073 0.01384712 28-day endpoint
## 3 total (Cox-PH) -0.19285017 -0.71715984 0.33145949 28-day endpoint
```

```
total (JM) -0.11043842 -0.82158921 0.61508841 28-day endpoint
##
                  class
## 1 Hyper-inflammatory
## 2 Hyper-inflammatory
## 3 Hyper-inflammatory
## 4 Hyper-inflammatory
# 4
res90 <- get_effects(jointfit.alveoli_90, coxfit.alveoli_90,
                     "randomized grouphigher PEEP") %>%
  cbind(endpoint ="90-day endpoint",
        class = "All")
res90
##
             effect
                                    CI_lower
                              est
                                                CI_upper
                                                                 endpoint class
## 1
             direct 0.1942755572 -0.2192538 0.606266019 90-day endpoint
                                                                            A11
           indirect -0.0007667985 -0.0035573 0.001573161 90-day endpoint
                                                                            All
## 3 total (Cox-PH) 0.1849312578 -0.1343866 0.504249119 90-day endpoint
                                                                            All
## 4
         total (JM) 0.1935087587 -0.2197161 0.605538379 90-day endpoint
                                                                            All
# 5
res90 o <- get effects(jointfit.alveoli hypo 90, coxfit.alveoli hypo 90,
                     "randomized grouphigher PEEP") %>%
  cbind(endpoint ="90-day endpoint",
        class = "Hypo-inflammatory")
res90_o
##
             effect
                                    CI_lower CI_upper
                                                               endpoint
                            est
             direct 0.361746789 -0.240727781 0.9620428 90-day endpoint
## 1
           indirect 0.001097181 -0.007022626 0.0130480 90-day endpoint
## 3 total (Cox-PH) 0.392771859 -0.033913099 0.8194568 90-day endpoint
## 4
         total (JM) 0.362843971 -0.237009082 0.9619057 90-day endpoint
##
                 class
## 1 Hypo-inflammatory
## 2 Hypo-inflammatory
## 3 Hypo-inflammatory
## 4 Hypo-inflammatory
# 6
res90_y <- get_effects(jointfit.alveoli_hyper_90, coxfit.alveoli_hyper_90,
                     "randomized_grouphigher PEEP") %>%
  cbind(endpoint ="90-day endpoint",
        class = "Hyper-inflammatory")
res90_y
             effect
                             est
                                    CI lower
                                                CI upper
                                                                 endpoint
## 1
             direct -0.134820756 -0.81662693 0.541989202 90-day endpoint
           indirect -0.008259036 -0.03036041 0.006737194 90-day endpoint
## 3 total (Cox-PH) -0.162310698 -0.64873907 0.324117675 90-day endpoint
        total (JM) -0.143079792 -0.82069800 0.531492313 90-day endpoint
##
                  class
## 1 Hyper-inflammatory
## 2 Hyper-inflammatory
## 3 Hyper-inflammatory
## 4 Hyper-inflammatory
```

```
# save together

res <- rbind(res28, res28_o, res28_y, res90, res90_o, res90_y)

saveRDS(res, "alveoli_res.rds")

res %>%
    ggplot(aes(y = effect))+
    theme_grey()+
    geom_point(aes(x=exp(est)), shape=15, size=2) +
    geom_linerange(aes(xmin=exp(CI_lower), xmax=exp(CI_upper))) +
    geom_vline(xintercept = 1, linetype="dashed") +
    labs(x="Hazard Ratio", y= "")+
    scale_x_continuous(trans = "log2")+
    facet_grid(class~endpoint)
```


4.2. Association parameter Hazard ratio estimate and 95% CI for the association parameter α for a one unit increase (at any time point) of IL-6 and the hazard of death.

4.4. Conclusions

- From line and the joint models, we can conclude that there is no effect of higher PEEP over time on IL-6.
- From joint model we conclude 1) that there is no direct effect of higher PEEP on survival when controlling for IL-6, and 2) there is an association between IL-6 and survival.

5. Model checks

```
# get fitted values
fitted_values<- fitted(lmefit.alveoli)
alveoli_long <- alveoli_long %>% drop_na(conc_log10)
```

```
# plot observed vs fitted values
ggplot(data = alveoli_long, aes(x = fitted_values, y = conc_log10)) +
  geom_point() +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") + # Line of perfect fit
  labs(x = "Fitted Values", y = "Observed Values") +
  ggtitle("Fitted vs Observed Values") +
  theme_minimal()
```


5.1. Longitudinal submodel

```
# get residuals
residuals_values <- resid(lmefit.alveoli)

# plot residuals vs time
ggplot(alveoli_long, aes(x = day, y = residuals_values)) +
    geom_jitter(width = 0.3, alpha = 0.5) +
    labs(x = "Day", y = "Residuals") +
    ggtitle("Residuals by day") +
    theme_minimal()</pre>
```



```
# get random effects
random_effects <- ranef(lmefit.alveoli)

#plot random effects
ggplot(random_effects, aes(x = c(1:nrow(alveoli_surv)), y = `(Intercept)`)) +
    geom_point() +
    geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
    labs(x = "Subjects", y = "Random Intercept") +
    ggtitle("Random Effects (Intercepts by Subject)") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```



```
#plot random effects
ggplot(random_effects, aes(x = c(1:nrow(alveoli_surv)), y = `day`)) +
```

```
geom_point() +
geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
labs(x = "Subjects", y = "Random slope deviations") +
ggtitle("Random Effects (Slope for day)") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
```

Random Effects (Slope for day)


```
# qq plot for residuals
qqnorm(resid(lmefit.alveoli))

qqline(resid(lmefit.alveoli), col = "red")
```

Normal Q-Q Plot


```
test.ph <- cox.zph(coxfit.alveoli_28)
survminer::ggcoxzph(test.ph)</pre>
```


5.2 Survival submodel 28-day endpoint

```
test.ph <- cox.zph(coxfit.alveoli_hyper_28)
survminer::ggcoxzph(test.ph)</pre>
```


5.3 Survival submodel 28-day endpoint hyper

```
test.ph <- cox.zph(coxfit.alveoli_hypo_28)
survminer::ggcoxzph(test.ph)</pre>
```


5.4 Survival submodel 28-day endpoint hypo