Lez. 3 – Ottimizzazione di circuiti combinatori multilivello

Laboratorio di Architettura degli Elaboratori

Stefano Centomo

19-29 Novembre 2021

Esercizio 2 – Sottrattore binario

Descrivere in formato blif il circuito digitale che esegue la sottrazione di 2 numeri binari su 2 bit rappresentati in complemento a 2 con risultato ancora su 2 bit in complemento a 2. Il circuito corrispondente avrà quindi 4 ingressi e 2 uscite. Si parta scrivendo la tabella di verità per poi scrivere il file .blif.

Eseguire l'ottimizzazione con SIS. Visualizzare l'espressione booleana corrispondente al circuito prima e dopo l'ottimizzazione e fornire il grado di ottimizzazione confrontando il numero di letterali del circuito prima e dopo l'esecuzione del comando full_simplify.

a_1	a_0	b_1	b_0	s_1	<i>s</i> ₀
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	-	-
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	-	-
0	1	1	1	-	-
1	0	0	0	1	0
1	0	0	1	-	-
1	0	1	0	0	0
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	0
1	1	1	0	0	1
1	1	1	1	0	0

Inversione

b_1	b_0	c_1	c_0
0	0	1	1
0	1	1	0
1	0	0	1
1	1	0	0

Somma_1

c_1	<i>c</i> ₀	d_1	d_0
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Inversione + Somma_1

b_1	b_0	c_1	<i>c</i> ₀	d_1	d_0
0	0	1	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	1	0	0	0	1

$b_{\{10\}}$		$d_{\{10\}}$
0	\rightarrow	0
1	\rightarrow	-1
-2	\rightarrow	-2
-1	\rightarrow	1

Somma

a_1	a_0	d_1	d_0	s_1	<i>s</i> ₀
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	1	0	0
1	1	1	0	0	1
1	1	1	1	1	0

				Diff		Sum	
a_1	a_0	b_1	b_0	<i>s</i> ₁	<i>s</i> ₀	<i>s</i> ₁	<i>S</i> ₀
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	-	-	1	0
0	0	1	1	0	1	0	1
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	0
0	1	1	0	-	-	1	1
0	1	1	1	_	-	1	0
1	0	0	0	1	0	1	0
1	0	0	1	_	-	0	1
1	0	1	0	0	0	0	0
1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	1	0	1	0
1	1	1	0	0	1	0	1
1	1	1	1	0	0	0	0

La minimizzazione multi-livello consente al progettista di bilanciare area e ritardo di un circuito con un maggior grado di libertà rispetto alla minimizzazione a 2 livelli.

Tuttavia, non esistono tecniche esatte efficienti che portino alla realizzazione di configurazioni ottime usando la minimizzazione multi-livello; pertanto si ricorre a tecniche euristiche che garantiscono buone soluzioni in tempi di calcolo ragionevoli.

Si consideri che il circuito viene rappresentato come un insieme di nodi interconnessi tra loro, e che ad ogni nodo corrisponde una funzione booleana a una sola uscita.

sweep eliminazione dei nodi con un'unica linea di ingresso e di nodi con valore costante

eliminate eliminazione di un nodo interno alla rete. Si consideri che il nodo N rappresenti la funzione y=(a+b)*c, l'eliminazione di N prevede la sostituzione della variabile y in tutti i nodi che la utilizzano con l'espressione booleana (a+b)*c

resub sostituzione di un nodo interno con un'insieme di nodi la cui funzionalità sia equivalente a quella del nodo sostituito.

L'operazione viene effettuata per diminuire la complessità di un nodo

extract estrazione di una sottoespressione comune a più nodi che viene rappresentata con un nuovo nodo

simplify riduzione della complessità di ogni singolo nodo con algoritmo di Quine-McCluskey

Sweep (sweep)

Elimina nodi con un'unica linea di ingresso (k) e nodi con valore costante (x, dopo aver eliminato k).

Nodi iniziali:

```
k = 1;

x = f*k;

f = !a*b*e + a*!c*d + c*d;

m = b*c + i + x;
```

Post sweep:

```
f = !a*b*e + a*!c*d + c*d

m = b*c + i + f;
```

Sweep (Cont.)

ESECUZIONE PASSO PASSO:

Nodi Iniziali:

```
k = 1;
x = f*k;
f = !a*b*e + a*!c*d + c*d;
m = b*c + i + x;
```

2 Eliminazione nodo k perchè costante:

```
x = f;

f = !a*b*e + a*!c*d + c*d;

m = b*c + i + x;
```

3 Eliminazione del nodo x perchè con una sola linea di ingresso:

```
f = !a*b*e + a*!c*d + c*d;

m = b*c + i + x;
```

Sostituzione di x con f, visto che x non esiste più:

```
f = !a*b*e + a*!c*d + c*d;

m = b*c + i + f;
```

Estrazione (fx)

Estrazione di sottoespressioni comuni a più nodi (b*c) e creazione di un nuovo nodo ([8]).

Nodi iniziali:

$$z = b*c*!g + a*g + a*e;$$

 $m = b*c + i + x;$

Post fx:

$$z = !g*[8] + a*g + a*e;$$

 $m = [8] + i + x;$
 $[8] = b*c;$

Eliminazione (eliminate)

Elimina un nodo (h) sostituendo la sua espressione in tutti gli altri nodi (i)

Nodi iniziali:

```
g = a*!c*d + a*b*c + d*e;
h = a*e + c*d + a*b;
i = !h + g;
```

Post eliminate:

```
g = a*!c*d + a*b*c + d*e;

i = !b*!d*!e + !b*!c*!e + !a*!d + !a*!c + g;
```

Eliminazione (eliminate) (Cont.)

ESECUZIONE PASSO PASSO:

Nodi Iniziali:

```
g = a*!c*d + a*b*c + d*e;
h = a*e + c*d + a*b;
i = !h + g;
```

Sostituzione in i di h:

$$i = !(a*e + c*d + a*b) + g;$$

Espansione not:

$$i = (!a+!e) * (!c+!d) * (!a+!b) + g;$$

Rifattorizzazione::

```
i = (!a*!c + !a*!d + !c*!e + !d*!e) * (!a+!b) + g;
```

Ottengo:

```
i = !a*!c + !a*!d + !a*!c*!e + !a*!d*!e + !a*!b*!c + !a*!b*!d + !b*!c*!e + !b*!d*!e + g;
```

Tengo solo i minimi:

```
i = !a*!c + !a*!d + !b*!c*!e + !b*!d*!e + g;
```

Eseguire la minimizzazione multilivello usando lo script script.rugged su tutti i circuiti realizzati durante la scorsa esercitazione.

Quale dei 4 dispositivi viene maggiormente ottimizzato?

Descrivere nel formato .blif il circuito rappresentato dalla funzione booleana (x, v, w, z) = f(a, b, c, d, e) descritta dai seguenti nodi:

$$f = \overline{a}be + cd + a\overline{c}d$$
 $I = ag + bc\overline{g} + ae$ $x = f$
 $g = de + abc + a\overline{c}d$ $m = f + i + bc$ $v = o$
 $h = ae + cd + ab$ $n = I + a\overline{i}$ $w = n$
 $i = g + \overline{h}$ $o = m + a + \overline{b}e$ $z = I$

Eseguire la minimizzazione multi-livello in due modi:

- usando lo script script.rugged
- usando una sequenza greedy in modo da migliorare ulteriormente il risultato ottenuto con lo script.rugged, distinguendo l'ottimizzazione per area o ritardo

script.rugged

```
sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp
```