Anomaly Detection using Hierarchical Hidden Markov Models

Suratna Budalakoti University of California Santa Cruz

Motivation

 Humans behavior often forms a hierarchy, where a number of smaller subtasks are performed with the aim of achieving a larger task.

 The Hierarchical Hidden Markov Model is a good model for this kind of behavior.

- The Hierarchical HMM is an extension of the HMM that is designed to model domains with hierarchical structure[MP2001].
- Special case of stochastic context free grammars (bounded depth of recursion).
- Common Application Areas: Natural language, speech, visual action recognition.

Anomaly Detection

- The term most commonly refers to anomaly detection with relation to computer systems.
 - Build a profile of normal usage (learning).
 - Deviations from the normal are flagged (inference).
- Common approaches:
 - Nearest Neighbor based approaches.
 - Hidden Hierarchical Models (HMMs).

Learning in HHMMs

- Data is Dense
 - Events are not are or hidden in a lot of noise.
 - e.g.: Modeling a soccer match.
 - Hill-climbing approach to learn the structure.
- Data is Sparse
 - Events are few and far-between.
 - Need a mining step to discover the events.

Learning Step for anomaly detection

Bottom-up Approach:

- Find frequently occurring sequences in the data using a frequent sequence mining algorithm.
- 2. Cluster these sequences into groups of similar sequences. Train an HMM over each group.
- Replace all members of the same group with an abstract symbol, to create a new set of sequences.
- 4. Go to Step 1.

Frequent Sequence Mining

- The Apriori algorithm
 - Start with candidate frequent sequences of length 2.
 - Generate candidate sequences of length k from frequence sequences of length k-1.
- Example:
 - IsFreq(ABCD) & IsFreq(BCDE)
 - => Test for ABCDE

- Clustering sequences is always problematic.
 - Metric space where edit distance is embedded is not known.
 - Existing methods do not scale well.
- Possible approaches
 - Hierarchical clustering
 - The CLARA clustering algorithm
 - Sampling based approach.
 - Does not scale well as the number of clusters required increases.

Outline of clustering algorithm

- Select k arbitrary sequences as cluster centroids.
- Assign each sequence to the centroid it is closest to, using edit distance as a similarity measure.
- Calculate the consensus/centroid sequence for each cluster.
- Assign each sequence to the centroid it is closest to.
- If one or more sequences change clusters, go to step 3.
- Stop.

Inference in Hierarchical Hidden Markov Models

 Murphy and Paskin recently showed how to convert an HHMM into a Dynamic Bayesian Network (DBN).

 DBN: A DBN is a Bayesian Network built over a dynamic system.

-

DBNs (continued)

- Defined by a pair (B₁,B_{tran}).
 - \blacksquare B₁: Defines prior Z₁.
 - B_{tran}: Two-slice temporal Bayesian Network which defines

$$P(Z_t | Z_{t-1}) = \Pi P(Z_t^i | Pa(Z_t^i))$$

An HHMM unrolled into a DBN (for three stages)

Inference

- Inference can now be performed as in a standard Bayesian Network.
 - Form a clique tree for the network.
 - Apply a forward-backward message passing algorithm.

Data Description

- Data collected from Unix logs of users at Purdue University.
 - 10 users (User 0 to User 9).
 - Approximately 2000 sequences per user.
 - Average length of sequences is around 80 commands.

Testing

- Both a Hidden Markov Model and a Hierarchical Hidden Markov Model was trained on the data, for User 0 and User 1.
- Aim was to compare accuracy for masquerade detection.
- A likelihood threshold was arbitrarily chosen for classification in each case.

Results

	User 0	User 1		User 0	User 1
User 0	66.2%	34.6%	User 0	71.2%	36.4%
User 1	31.4%	73.6%	User 1	33.2%	74.85

Thank you