0

0

0

0

0

Start coding or ge_nerate with Al. import kagglehub # Download selected version path = kagglehub.dataset_download("oddrationale/mnist-in-csv/versions/1") print("Path to dataset files:", path) Downloading from https://www.kaggle.com/api/v1/datasets/download/oddrationale/mnist-in-csv?dataset version_number=1... | 15.2M/15.2M [00:00<00:00, 121MB/s]Extracting files... Path to dataset files: /root/.cache/kagglehub/datasets/oddrationale/mnist-in-csv/versions/1 import pandas as pd import OS # Path to the downloaded dataset (from your output) path = "/root/.cache/kagglehub/datasets/oddrationale/mnist-in-csv/versions/1" # List files in the directory print("Files in the dataset directory:") print(os.listdir(path)) # The MNIST dataset typically comes in two CSV files: # mnist_train.csv and mnist_test.csv # Load and view the training data train_path = os.path.join(path, "mnist_train.csv") if os.path.exists(train_path): train_data = pd.read_csv(train_path) print("\nTraining data preview:") print(train_data.head()) else: print(f"\nTraining file not found at: {train_path}") # Load and view the test data test_path = os.path.join(path, "mnist_test.csv") if os.path.exists(test_path): test_data = pd.read_csv(test_path) print("\nTest data preview:") print(test_data.head()) else: print(f"\nTest file not found at: {test_path}") Files in the dataset directory: ['mnist_test.csv', 'mnist_train.csv'] Training data preview: 5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ... 0.608 0.609 0.610 \ 0 0 0 0 0 ... 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 2 1 0 0 0 0 0 0 0 0 3 9 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0.611 0.612 0.613 0.614 0.615 0.616 0.617 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 [5 rows x 785 columns] Test data preview: 7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ... 0.658 0.659 0.660 \ 0 ... 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 1 1 0 0 0 ... 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0 ... 0 0 0 4 1 0 0 0.661 0.662 0.663 0.664 0.665 0.666 0.667

0

0

14/05/2025, 09:58

[5 rows x 785 columns]

!pip install kagglehub import

kagglehub

Download directly in Colab

 $path = kagglehub. dataset_download ("oddrationale/mnist-in-csv/versions/1") \ print ("Dataset Interpretation of the print of the prin$

downloaded to:", path)

Now you can work with the files import

pandas as pd

train_df = pd.read_csv(path + "/mnist_train.csv") test_df =

pd.read_csv(path + "/mnist_test.csv")

train_df.head()

Requirement already satisfied: kagglehub in /usr/local/lib/python3.11/dist-packages (0.3.12)

Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from kagglehub) (24.2) Requirement already satisfied:

pyyaml in /usr/local/lib/python3.11/dist-packages (from kagglehub) (6.0.2)

Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from kagglehub) (2.32.3)

Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from kagglehub) (4.67.1)

Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (3.4. Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (3.10)

Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (2.4.0)

Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (2025.4.26) Dataset downloaded to: /kaggle/input/mnist-in-csv

	5	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.	8	0.608	0.609	0.610	0.611	0.612	0.613	0.614	0.615	0.616	0.617
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	4	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3	9	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
4	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

5 rows × 785 columns

Install and import necessary libraries

!pip install kagglehub import

kagglehub

import pandas as pd

 $import\, matplot lib.pyplot\, as\, plt\, import$

seaborn as sns

 $from \, sklearn.model_selection \, import \, train_test_split \, from \,$

 $sklearn.preprocessing\ import\ StandardScaler$

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout from

tensorflow.keras.utils import to_categorical

Load dataset from KaggleHub

path = kagglehub.dataset_download("oddrationale/mnist-in-csv/versions/1") print("Dataset downloaded to:", path)

Read data

train_df = pd.read_csv(path + "/mnist_train.csv") test_df =
pd.read_csv(path + "/mnist_test.csv")

1. Data Cleaning

print("Checking for missing values:")

print(train_df.isnull().sum())

2. Exploratory Data Analysis

print("Label distribution:")

 $sns.countplot(x=train_df['5'])$

plt.title('Distribution of Digits') plt.show()

Visualize sample digits for i in

range(5):

digit = train_df.iloc[i, 1:].values.reshape(28, 28)

plt.imshow(digit, cmap='gray')

 $plt.title(f"5:\{train_df.iloc[i,0]\}")\ plt.show()$

3. Feature Engineering

X = train_df.drop('5', axis=1) y =

14/05/2025, 09:58 train_df['5']

Normalize features

X = X / 255.0

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)

One-hot encode labels y_train = to_categorical(y_train, num_classes=10) y_val = to_categorical(y_val, num_classes=10)

4. Model Engineering
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,))) model.add(Dropout(0.3))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary()

Train model model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=10, batch_size=128)

5. Reporting (Model Accuracy)
loss, accuracy = model.evaluate(X_val, y_val)
print(f"Validation Accuracy: {accuracy:.4f}")

Requirement already satisfied: kagglehub in /usr/local/lib/python3.11/dist-packages (0.3.12)

Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from kagglehub) (24.2) Requirement already satisfied:

pyyaml in /usr/local/lib/python3.11/dist-packages (from kagglehub) (6.0.2)

Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from kagglehub) (2.32.3)

Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from kagglehub) (4.67.1)

Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (3.4. Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (3.10)

Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (2.4.0)

Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (2025.4.26) Dataset downloaded to: /kaggle/input/mnist-in-csv

Checking for missing values:

0 0 0.1 0 0 0.2 0.3 0 0 0.613 0.614 0 0.615 0 0.616 0 0 0.617

Length: 785, dtype: int64

Label distribution:

/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` ar super().__init__ (activity_regularizer=activity_regularizer; **kwargs)

Model: "sequential_2"

l Layer (type)	l Output Shape	I	Param #
dense_6 (Dense)	(None, 512)	1	401,920
dropout_4 (Dropout)	(None, 512)		0
dense 7 (Dense)	(None, 256)		131,328