Support Vector Machines (SVMs) Part 3: Kernels

Yingming Li yingming@zju.edu.cn

Data Science & Engineering Research Center, ZJU

3rd April 2018

Kernels are generalizations of inner products

A kernel is a function of two data points such that

$$k(x, x') = \phi^{T}(x)\phi(x')$$

For some function $\phi(x)$

- It is therefore symmetric: k(x, x') = k(x', x)
- Can compute k(x, x') from an explicit $\phi(x)$
- Or prove that k(x, x') corresponds to some $\phi(x)$
 - Never need to actually compute $\phi(x)$

SVM as a kernel machine

- Cover's theorem: A complex classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in the low-dimensional input space
- SVM for pattern classification
 - Nonlinear mapping of the input space onto a high-dimensional feature space
 - Constructing the optimal hyperplane for the feature space

Kernel machine illustration

Kernelized SVM looks a lot like an RBF net

Kernel matrix

The matrix

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \vdots & & \\ \cdots & k(\mathbf{x}_i, \mathbf{x}_j) & \cdots \\ \vdots & & \vdots & \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

is called the kernel matrix, or the Gram matrix.

K is positive semidefinite

Mercer's theorem relates kernel functions and inner product spaces

• Suppose that for all finite sets of points $\{\mathbf{x}_p\}_{p=1}^N$ and real number $\{\mathbf{a}\}_{p=1}^\infty$

$$\sum_{i,j} a_j a_i k(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$

- Then K is called a positive semidefinite kernel
- And can be written as

$$k(\mathbf{x}, \mathbf{x}') = \phi^T(\mathbf{x})\phi(\mathbf{x}')$$

• For some vector-valued function $\phi(\mathbf{x})$

Kernels can be applied in many situations

- Kernel trick: when predictions are based on inner products of data points, replace with kernel function
- Some algorithms where this is possible
 - Linear / ridge regression
 - Principal components analysis
 - Canonical correlation analysis
 - Perceptron classifier

Some popular kernels

• Polynomial kernel, parameters c and p

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^p$$

- Finite-dimensional $\phi(\mathbf{x})$ can be explicitly computed
- Gaussian or RBF kernel, parameter σ

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma}||\mathbf{x} - \mathbf{x}'||^2\right)$$

- Infinite-dimensional $\phi(\mathbf{x})$
- Equivalent to RBF network, but more principled way of finding centers

Some popular kernels

• Hypebolic tangent kernel, parameters eta_1 and eta_2

$$k(\mathbf{x}, \mathbf{x}') = \tanh(\beta_1 \mathbf{x}^T \mathbf{x}' + \beta_2)$$

- Only positive semidefinite for some values of β_1 and β_2
- Inspired by neural networks, but more principled way of selecting number of hidden units
- String kernels or other structure kernels
 - Can prove that they are positive definite
 - Computed between non-numeric items
 - Avoid converting to fixed-length feature vectors

Example: polynomial kernel

- Polynomial kernel in 2D, c = 1, p = 2 $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^2 = (x_1 x_1' + x_2 x_2' + 1)^2 = x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' x_2 x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$
- If we define

$$\phi(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Then $k(\mathbf{x}, \mathbf{x}') = \phi^T(\mathbf{x})\phi(\mathbf{x}')$

Example: XOR problem again

- Consider (once again) the XOR problem
- The SVM can solve it using a polynomial kernel
 - $\bullet \quad \text{With } p=2 \text{ and } c=1$

TABLE 6.2 XOR Problem	
Input vector x	Desired response d
(-1, -1)	-1
(-1, +1)	+1
(+1,-1)	+1
(+1, +1)	-1

XOR: first compute the kernel matrix

- In general, $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
- For example,

$$K_{11} = k \begin{pmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \end{pmatrix} = (1+2)^2 = 9$$

 $K_{12} = k \begin{pmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \end{bmatrix} \end{pmatrix} = (1+0)^2 = 1$

So

$$K = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{bmatrix}$$

XOR: first compute the kernel matrix

- Or compute $\phi(x_i)$ and their inner products, e.g.,
 - $\phi(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]$, where 1 is added for b.
 - Since $\phi(\mathbf{x})$ includes 1, no need for separate b later

$$\phi(\mathbf{x}_1) = \phi\left(\begin{bmatrix} -1\\ -1 \end{bmatrix}\right) = [1, 1, \sqrt{2}, -\sqrt{2}, -\sqrt{2}, 1]^T$$

$$\phi(\mathbf{x}_2) = \phi\left(\begin{bmatrix} -1\\ +1 \end{bmatrix}\right) = [1, 1, -\sqrt{2}, -\sqrt{2}, \sqrt{2}, 1]^T$$

Then

$$K_{11} = \phi^T(\mathbf{x}_1)\phi(\mathbf{x}_1) = 1 + 1 + 2 + 2 + 2 + 1 = 9$$

 $K_{12} = \phi^T(\mathbf{x}_1)\phi(\mathbf{x}_1) = 1 + 1 - 2 + 2 - 2 + 1 = 1$

Results in same K matrix, but more computation

XOR: Combine class labels into K

- Define matrix $ilde{K}$ such that $ilde{K}_{ij} = K_{ij} d_i d_j$
- Recall $\mathbf{d} = [-1, +1, +1, -1]^T$

$$\tilde{K} = \begin{bmatrix} +9 & -1 & -1 & +1 \\ -1 & +9 & +1 & -1 \\ -1 & +1 & +9 & -1 \\ +1 & -1 & -1 & +9 \end{bmatrix}$$

XOR: Solve dual Lagrangian for a

Find fixed points of

$$\tilde{L}(\mathbf{a}) = \mathbf{1}^T \mathbf{a} - \frac{1}{2} \mathbf{a}^T \tilde{K} \mathbf{a}$$

Set matrix gradient to 0

$$\nabla \tilde{L} = \mathbf{1} - \tilde{K}\mathbf{a} = \mathbf{0}$$

$$\Rightarrow \mathbf{a} = \tilde{K}^{-1}\mathbf{1} = \left[\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right]^{T}$$

- Satisfies all conditions: $a_p \geqslant 0 \forall p$
- $\sum_{p} a_{p} d_{p} = 0$

- So this is the solution
- All points are support vectors

XOR: Compute w (including b) from a

$$\mathbf{w} = \sum_{p} a_{p} d_{p} \mathbf{x}_{p}$$

$$= -\frac{1}{8} \phi(\mathbf{x}_{1}) + \frac{1}{8} \phi(\mathbf{x}_{2}) + \frac{1}{8} \phi(\mathbf{x}_{3}) - \frac{1}{8} \phi(\mathbf{x}_{4})$$

$$= \frac{1}{8} \left(-\begin{bmatrix} 1\\1\\\sqrt{2}\\-\sqrt{2}\\-\sqrt{2}\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\-\sqrt{2}\\\sqrt{2}\\\sqrt{2}\\1 \end{bmatrix} - \begin{bmatrix} 1\\1\\\sqrt{2}\\\sqrt{2}\\\sqrt{2}\\1 \end{bmatrix} \right) = \begin{bmatrix} 0\\0\\-\frac{1}{\sqrt{2}}\\0\\0\\0 \end{bmatrix}$$

XOR: Examine prediction function

Prediction function

$$y(\mathbf{x}) = \mathbf{w}^{T} \phi(\mathbf{x})$$

$$= \left[0, 0, -\frac{1}{\sqrt{2}}0, 0, 0, \right]^{T} \left[x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2}, \sqrt{2}x_{1}, \sqrt{2}x_{2}, 1\right]$$

$$= -x_{1}x_{2}$$

Predictions are based on product of the dimensions

$$y(\mathbf{x}_1) = -(-1)(-1) = -1$$

$$y(\mathbf{x}_2) = -(-1)(+1) = +1$$

$$y(\mathbf{x}_3) = -(+1)(-1) = +1$$

$$y(\mathbf{x}_4) = -(+1)(+1) = -1$$

XOR: Decision boundaries

- Decision boundary at $y(\mathbf{x}) = -x_1x_2 = 0$
- Support vectors at $y(\mathbf{x}) = -x_1x_2 = 1$

Thank you!