

SCHOOL OF SCIENCE AND TECHNOLOGY DEPARTMENT OF DATA SCIENCE AND ANALYTICS SUMMER 2024 – MID-SEMESTER EXAM

COURSE CODE: STA 4020A UNIT NAME: DESIGN AND ANALYSIS OF EXPERIMENTS

DATE: 24TH JUNE 2024 **TOTAL MARKS**: 40 MARKS

INSTRUCTIONS:

For this exercise:

- 1. ANSWER ALL QUESTIONS
- 2. Do all your working in the Rmarkdown (.rmd).
- 3. Submissions should be in either a `.ipynb` or `.rmd` file
- 4. NO SUBMISSIONS SHOULD BE DONE VIA EMAIL

QUESTION 1: [20 MARKS]

Given the field layout and yields in bushels per acre from an experiment on dusting wheat with sulfur to control stem rust, analyze the data using advanced statistical methods. Following a Latin square design, the treatments applied are:

A = Dusted before rains B = Dusted after rains

C = Dusted once each week D = Drifting once each week

E = Control or check

The yields for each treatment are as follows:

B (4.9)	D (6.4)	E (3.3)	A (9.5)	C (11.8)
C (9.3)	A (4.0)	B (6.2)	E (5.1)	D (5.4)
D (7.6)	C (15.4)	A (6.5)	B (6.0)	E (4.6)
E (6.3)	B (7.6)	C (13.2)	D (8.6)	A (4.9)
A (9.3)	E (6.3)	D (11.8)	C (15.9)	B (7.6)

- 1. Evaluate the effects of the different treatments on the wheat yield, considering the potential random effects due to environmental variation.
- If statistically necessary, determine which specific treatments significantly differ from each other in terms of yield. Include a visual output to compare the treatments.
- 3. Interpret the results in the context of agricultural practices for controlling stem rust, considering both statistical significance and practical implications.

QUESTION 2: [20 MARKS]

In a digestion trial carried out with 6 shorthorn steers, each animal received one of 6 rations in 6 successive periods following a Latin square design. The coefficients of digestibility of nitrogen for each steer and period are as follows:

Steer	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6
1	61.1 (B)	69.3 (D)	67.6 (C)	61.9 (F)	58.8 (A)	65.2 (E)
2	56.9 (A)	59.1 (F)	64.0 (D)	61.0 (C)	65.7 (E)	56.6 (B)
3	66.5 (C)	62.2 (A)	61.1 (B)	66.2 (E)	62.0 (F)	62.2 (D)
4	66.7 (E)	67.4 (B)	65.1 (F)	65.1 (D)	69.6 (C)	52.7 (A)
5	67.8 (D)	64.7 (C)	63.6 (E)	53.2 (A)	61.7 (B)	62.0 (F)
6	71.4 (F)	67.5 (E)	55.8 (A)	63.2 (B)	68.0 (D)	62.9 (C)

The rations consist of: - A: Hay alone - B: Various mixtures of hay and barley (Rations B, C, D, E, F)

- 1. Assess the effects of different rations on the digestibility of nitrogen. Include an analysis of variance (ANOVA) to test the significance of the ration effects, period effects, and steer effects.
- 2. Where necessary, identify which specific rations differ significantly from each other in terms of digestibility. Include a visual output to compare the treatments.
- 3. Discuss the implications of your findings for nutritional strategies in cattle farming, highlighting any potential benefits or drawbacks of specific rations based on the digestibility results.