

OSPF: основы

OSPF

Networking For everyone

- Стандартный открытый протокол
- Находит соседей обменом hello-пакетами
- Обменивается с установленными соседями LSA (Link State Announcement), в которых передает:
 - С какими маршрутизаторами установлено соседство
 - Как устроена топология
 - Какие ІР-сети анонсируются

	LSA	Установленные соседи	R2
LSDB	R2	R1, R3	R1 R3
	R3	R2, R4	
R1	R4	R1, R3	R4

Версии протокола OSPF

• OSPFv2:

- Работает только поверх IPv4
- Обменивается только маршрутами IPv4
- RFC 2328
 - Устаревшие RFC для OSPFv2: 1131, 1247, 1583, 2178
 - 50+ дополнительных RFC для различных костыльных механизмов
- Multicast 224.0.0.5 (Hello) и 224.0.0.6 (DR), вложение IP 89

OSPFv3:

- Работает только поверх IPv6
- Обменивается маршрутами как IPv4, так и IPv6
- RFC 5340
- Multicast ff02::5 (Hello) и ff02::6 (DR), вложение IP 89

Отслеживание состояний каналов

- Каждый маршрутизатор строит топологию сети
 - Обнаруживает непосредственно подключенных соседей
 - Отсылает им и получает от них информацию о связях маршрутизаторов
 - Строит карту связей и просчитывает кратчайшие маршруты до каждого узла
 - Пользуется полученными маршрутами для нахождения шлюза для каждой анонсированной в топологии сети

Особенности протоколов Link State

- Преимущества:
 - Эффективно используют полосу пропускания
 - Быстро реагируют на изменения в сети
 - Гарантируют защиту от петли

• Недостатки

- Вычислительно существенно более сложны по сравнению с ДВ-протоколами
- Плохо масштабируются в сетях с произвольной топологией
- Рассчитаны на работу с топологией, а не с маршрутной информацией IP
 - Обросли немыслимым количеством костылей

Hello

- Hello-пакеты отсылаются по таймеру на всех интерфейсах OSPFor every
 - Используется local multicast (224.0.0.5)
 - В каждом пакете указывается информация о конфигурации маршрутизатора
 - С непротиворечиво настроенными соседями устанавливается соседство
 - Должны совпасть таймеры Hello Interval и Dead Interval
 - Должны совпасть номер региона и флаг stub
 - Пакеты должны пройти процедуру аутентификации

Алгоритм SPF

- Networking For everyone
- - Метрика стоимость пути до удаленной сети
 - Стоимость пути = сумма стоимостей интерфейсов, составляющих путь
 - Меньше стоимость пути более вероятно прохождение трафика по нему

	LSA	Соседи	Сети
LSDB	R2	R1 (10), R3 (20)	
	R3	R2 (20), R4 (10)	10.0.0.0/24 (15)
X	R4	R1 (5), R3 (10)	

Сеть	Маршрут	Стоимость
10.0.0.0/24	R3-R2-R1	45
10.0.0.0/24	R3-R4-R1	30

Router ID

- Networking For everyone
- Каждый маршрутизатор выпускает LSA, которые подписываются ero уникальным идентификатором
 - ID обязан быть уникальным в пределах всей топологии
 - И не меняться в течение всего срока работы OSPF
- Идентификатор 32-битное число
 - Часто записывается в форме IP-адреса
- Возможные способы назначения
 - Вручную
 - Взять самый маленький ІР-адрес на устройстве
 - Взять какой-нибудь еще IP-адрес на устройстве
 - Например, маршрутизаторы Cisco предпочитают брать самый большой IP-адрес с виртуальных loopback-интерфейсов

Состояние соседства

Networking For everyone

- Hello protocol
 - INIT: принимаются Hello без указания «нас» как соседа
 - 2WAY: принимаются Hello с указанием «нас» как соседа
- Database Exchange
 - EXSTART: согласование стартовых Sequence Number, выбор Master
 - EXCHANGE: обмен пакетами Database Description
 - LOADING: обмен пакетами Link State Request и Link State Update
 - FULL: синхронизированные LSDB
- Также существуют состояния ATTEMPT и DOWN
- Детально процесс разбирается далее в курсе

Синхронизация таблиц топологии

• Состояние 2WAY и FULL стабильные, остальные - переходные

Регионы в OSPF

- Networking • Маршрутизаторы описывают в выпускаемых LSA топологию сети everyone
 - При изменениях в топологии все маршрутизаторы пересчитывают ее
 - Если топология большая и сложная, пересчет занимает много ресурсов
- OSPF позволяет разбить автономную систему на регионы (area)
 - Внутри региона топология считается «по-честному»
 - За пределы региона адресная информация передается в ДВ-стиле
- Классификация маршрутизаторов
 - Internal Router
 - Area Border Router
 - Backbone Router
 - AS Boundary Router

Иерархическая топология

- OSPF гарантирует защиту от петель
 - Внутри региона нативно: кратчайшие пути петель содержать не могут
 - Между регионами используется топология "звезда"
- Центральный регион имеет особую роль (0.0.0.0, backbone, transit)

Networking For everyone