Human Action Recognition Under View Change

Under the Guidance of Dr. D.Shiloah Elizabeth

Prepared By
Group Name:msmgp
Murugappan N
Maaniccka Sentil Ma P
Mohamed Shamsudeen G

Project Abstract

- ▶ An automotive visual surveillance system is used to detect abnormal behavior patterns and recognize the normal ones.
- ▶ video of a person is captured via JMF (both front view and the top view) then it is given to the training module.
- ▶ Video is checked if it is a normal behavior splited image is taken, whenever the action is recognized blob images are saved, and the frame counts are taken .
- ▶ When anomaly is detected, alert system is generated.
- ▶The abnormal behavior is detected by keep tracking the videos and blob frames and checking each frame values.

Introduction to Training and Detection Phase

System Overview

Overview of various Frameworks of our system:

- A scene event-based behavior representation.
- Behavior profiling and pattern matching done to ensure security.
- Quicker Anomaly detection.
- Dynamic in nature and adaptable to the given environment.
- Two Phase work implementation namely Training and Detection Phase

Advantages:

- It is more robust and thus able to work effectively even with sparse and noisy data.
- It is superior in detecting anomaly from an unseen video.
- Each blob with an average PCH value greater than a threshold is defined as a scene event.
- No Database connectivity/usage which significantly reduces working time.

VIDEO BEHAVIOR PROFILING FOR ANOMALY DETECTION

DETECTION PHASE:

Project Snapshots: Introduction

Training View Window

Open Video File

Validations

To avoid run-time exceptions validations are preformed and only .avi file format is supported

Implementation of Behavior Training

Data Extracted from Training Phase

Completion of Front view Training

Completion of Top view Training

Work completed at End of Training Phase

VIDEO SEGMENTATION

- Video Segmentation involves spitting the input video from the surveillance camera into various sequence of frames with help of Java Media Framework.
- Video can be simply sliced into overlapping segments with a fixed time duration.

EVENT BASED BEHAVIOR REPRESENTATION

- Extraction of BLOB image from the independent spitted frame of the video an identify the foreground and background pixel of a frame and
- Background model stores the values of a particular pixel which corresponds to background colors.
- Pixel change history(PCH) is represented for a pixel.
- Similar foreground pixels are grouped to form a blob.
- ◆ A behavior pattern is represented as a sequence of various events.

Generation of Data Report

All the data extracted from the BLOB image can be saved to a txt file that can be used as a Data Report for further analysis in future.

Anomaly Detection System

Anomaly Detection – Front View

Green Light displayed for an already trained Front View video when the current video is compared with the stored video in system and corresponding Frame Number detected

Anomaly Detection – Top View

Green Light displayed for an already trained Top View video when the current video is compared with the stored video in system and corresponding Frame Number detected

Anomaly Detection

- ◆When a new video is detected for anomaly, a mismatch occurs during comparison as there is no previously stored behavior pattern and Red Displayed.
- ◆Immediately anomaly is informed to the admin who will do the next required action.

Training New Video

The untrained video with anomaly is now trained to our system so that next time when the system encounters this video Error signal is not generated

Anomaly Detection (Cont.)

Variation in Number of Frames to be Read before Anomaly Detected

Time duration (second)	Frames Per second (Fps)	Total Number of Frames	Mismatch permissible	Minimum frames read	
20	10	200	20%	40	
20	15	300	30%	90	
20	20	400	40%	160	
25	10	250	30%	75	
25	15	375	40%	150	
25	20	500	60%	300	
30	10	300	30%	90	
30	15	450	50%	225	
30	20	600	60%	360	

Variation in Number of Frames to be Read before Anomaly Detected

Permissible Pixel Mismatch in a Square

Variation in Number of Different and Same Pixels Found with respect to Level of Approximation

Number of different pixels (in 1000)

Updated Gantt Chart

Key	Info	Task Name	% Compl	Work (Hours)	Duration (Days)	Span (Days)	Resources	Start	Finish
1		Human Action Recognition Unde	0	382.8	128.0	43.3		13-Dec-2011	19-Apr-2012
2		Zeroth Review	0	23.0	21.3	2.9		13-Dec-2011	03-Jan-2012
3		- R0S4	0	10.0	1.1	1.3	Shamsudeen	13-Dec-2011	14-Dec-2011
4		- R0S5	0	7.0	0.3	0.9	Maaniccka	22-Dec-2011	22-Dec-2011
5		Literaure Survey	0	6.0	0.3	0.8	Murugappan	03-Jan-2012	03-Jan-2012
6		First Review	0	87.0	24.0	10.9		13-Jan-2012	06-Feb-2012
7		- Premilinary Design	0	16.0	4.0	2.0	Shamsudeen	13-Jan-2012	17-Jan-2012
8		Detailed Analysis	0	7.0	0.3	0.9	Maaniccka	18-Jan-2012	18-Jan-2012
9		Tools Installation	0	24.0	3.0	3.0	Shamsudeen	23-Jan-2012	26-Jan-2012
10		- Working with tool	0	40.0	7.0	5.0	Murugappan	30-Jan-2012	06-Feb-2012
11		- Second Review	0	144.0	27.0	18.0		09-Feb-2012	07-Mar-2012
12		Video Analyzer	0	16.0	3.0	2.0	Shamsudeen	09-Feb-2012	12-Feb-2012
13		Subject Extraction	0	56.0	9.0	7.0	Maaniccka	13-Feb-2012	22-Feb-2012
21		Blob Image Extraction	0	48.0	8.0	6.0	Murugappan	22-Feb-2012	01-Mar-2012
14		Pattern Matching	0	24.0	5.0	3.0	Murugappan	02-Mar-2012	07-Mar-2012
15		Third Review	0	80.8	31.4	9.6		09-Mar-2012	09-Apr-2012
16		- Anamoly Detection	0	48.0	10.0	6.0	Maaniccka	09-Mar-2012	19-Mar-2012
17		- Alert System	0	24.8	3.0	3.1	Shamsudeen	03-Apr-2012	06-Apr-2012
18		Final Demonstration	0	8.0	0.4	0.5	Maaniccka-50%	09-Apr-2012	09-Apr-2012
19		Documentation	0	48.0	8.0	2.0		11-Apr-2012	19-Apr-2012
20		Final Report	0	48.0	8.0	2.0	Maaniccka-33%	11-Apr-2012	19-Apr-2012

Gantt Chart (cont.)

REFERENCES

- ◆ [1] T. Moeslund, A. Hilton, and V. Kruger, "A Survey of Advances in Vision-Based Human Motion Capture and Analysis," Computer Vision and Image Understanding, vol. 103, nos. 2-3, pp. 90-126, Nov. 2006.
- ◆ [2] L. Wang, W. Hu, and T. Tan, "Recent Developments in Human Motion Analysis," Pattern Recognition, vol. 36, no. 3, pp. 585-601, Mar. 2003.
- ◆ [3] A. Bobick and J. Davis, "The Recognition of Human Movement Using Temporal Templates," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp. 257-267, Mar. 2001.
- [4] D. Weinland, R. Ronfard, and E. Boyer, "Free Viewpoint Action Recognition Using Motion History Volumes," Computer Vision and Image Understanding, vol. 103, nos. 2-3, pp. 249-257, Nov. 2006.
- ◆ [5] T. Syeda-Mahmood, M. Vasilescu, and S. Sethi, "Recognizing Action Events from Multiple Viewpoints," Proc. IEEE Workshop Detection and Recognition of Events in Video, pp. 64-72, 2001.