

MECL

INTEGRATED CIRCUITS
MC300/MC350 SERIES

MECL

MC300 SERIES

INDEX

Functions and Characteristics

Logic Description

General Information

Circuit Description

Definitions

Packages

Worst-Case Transfer Characteristics

Maximum Ratings

Noise Margins

DEVICE SPECIFICATIONS

MC301	5-Input Gate
MC302	R-S Flip-Flop
MC303	Half-Adder
MC304	Bias Driver
MC305	Gate Expander
MC306	3-Input Gate
MC307	3-Input Gate
MC308	AC-Coupled J-K Flip-Flop
MC309	Dual 2-Input Gate
MC310	Dual 2-Input Gate
MC311	Dual 2-Input Gate
MC312A	Dual 3-Input Gate
MC313F	Quad 2-Input Gate
MC314	AC-Coupled J-K Flip-Flop
MC315	Line Driver
MC316	Lamp Driver
MC317	MECL to Saturated Logic Translator
MC318	Saturated Logic to MECL Translator

FUNCTIONS AND CHARACTERISTICS

$V_{CC} = 0$, $V_{EE} = -5.2$ V, $T_A = 25^\circ\text{C}$

Function	Type ①	DC Output Loading Factor Each Output	Propagation Delay t_{pd} ns typ	Total Power Dissipation mW typ/pkg	Case
----------	--------	--------------------------------------	-----------------------------------	------------------------------------	------

GATES

5-Input OR/NOR Gate	MC301	25	7.5	37	602B,606
3-Input OR/NOR Gate	MC306		7.5	37	
3-Input OR/NOR Gate	MC307		7.5	15	
Dual 2-Input NOR Gate	MC309		7.0	54	
Dual 2-Input NOR Gate	MC310		7.0	54	
Dual 2-Input NOR Gate	MC311		7.0	41	
Dual 3-Input NOR Gate (With Internal Bias)	MC312A		7.5	70	
Quad 2-Input NOR Gate	MC313F		7.0	125	607

FLIP-FLOPS

R-S Flip-Flop	MC302	25	11	42	602B,606
AC-Coupled J-K Flip-Flop	MC308		8.5	87	
AC-Coupled J-K Flip-Flop	MC314		12	118	

HALF-ADDER

Half-Adder	MC303	25	7.5	63	602B,606
------------	-------	----	-----	----	----------

GATE EXPANDER

5-Input Gate Expander	MC305	—	4.5	—	602B,606
-----------------------	-------	---	-----	---	----------

DRIVERS

Bias Driver	MC304	25	—	18	602B,606
Line Driver	MC315	—	14	180 ②	
Lamp Driver	MC316	—	—	135	

TRANSLATORS

Level Translator — MECL to Saturated Logic	MC317	7 (DTL)	27.5	63	602B,606
Level Translator — Saturated Logic to MECL	MC318	25 (MECL)	17	105	602B,606

① G suffix denotes Metal Can, F suffix denotes Flat Package. (i.e., MC301G = Metal Can, MC301F = Flat Package.)

② With 93-ohm load (each side)

LOGIC DESCRIPTION

MECL MC300 series

POSITIVE LOGIC: V_u is a logical "1", V_L is a logical "0"
NEGATIVE LOGIC: V_u is a logical "0", V_L is a logical "1"

The logic diagrams shown describe the circuits of the MC300 line and permit quick selection of those circuits required for the implementation of this particular logic system. Pertinent information such as logic equations, typical time delay, typical power dissipation, and truth tables is provided to show line compatibility. Package pin numbers and fan-in and fan-out for each device are specified on each logic diagram. The numbers at the

ends of the terminals are package pin numbers. The numbers in parentheses indicate ac loading factors at each terminal.

MECL circuits require a bias voltage which, for best results, should be obtained from a regulated, temperature-compensated, bias supply. A bias driver, type MC304, is included in the MECL line to provide this function when the bias driver is not contained in the logic element. Specifications for the bias driver are included in this section of the Data Book.

<p>MC302 - R-S FLIP-FLOP</p> <p>DC Set-Reset flip-flop with expandable input and buffered outputs.</p> <p>MC301 - 5-INPUT GATE</p> <p>$5 = \overline{6 + 7 + 8 + 9 + 10}$ $4 = 6 + 7 + 8 + 9 + 10$</p> <p>$t_{dl} = 7.5 \text{ ns}$ $P_D = 37 \text{ mW}$</p> <p>Provides the positive logic "NOR" function and its complement simultaneously.</p>	<p>MC308 - AC-COUPLED J-K FLIP-FLOP</p> <p>CLOCKED J-K OPERATION</p> <table border="1"> <thead> <tr> <th>\bar{T}_s</th> <th>\bar{K}_s</th> <th>\bar{C}_o</th> <th>$Q^{(t+1)}$</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>1</td> <td>\bar{Q}^*</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> <td>\bar{Q}^*</td> </tr> </tbody> </table> <p>(I) $9 \bar{K}$ —————— (I) $7 \bar{J}$ —————— (3) \bar{C}_o —————— (1) $10 \bar{J}$ —————— (1) \bar{K} —————— (1) $8 \bar{Q}$ —————— (1) $5 \bar{Q}$ ——————</p> <p>The \bar{T}_s and \bar{K}_s inputs refer to logic levels while the \bar{C}_o input refers to dynamic logic swings. The \bar{J}_s and \bar{K}_s inputs would be changed to a logical "1" only while the \bar{C}_o input is in a logic "1" state. (\bar{C}_o maximum "1" level = $V_{cc} - 0.6$ volts)</p> <p>R-S OPERATION</p> <table border="1"> <thead> <tr> <th>R</th> <th>S</th> <th>$Q^{(t+1)}$</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>0</td> <td>\bar{Q}^*</td> </tr> <tr> <td>1</td> <td>1</td> <td>N.D.</td> </tr> </tbody> </table> <p>(I) $6 S$ —————— (I) $1 R$ —————— (1) $8 \bar{Q}$ —————— (1) $5 \bar{Q}$ ——————</p> <p>$t_{dl} = 7.5 \text{ ns}$ $P_D = 87 \text{ mW}$</p> <p>AC-Coupled J-K flip-flop with dc Set and Reset inputs and buffered outputs for counter and shift register applications up to 15 MHz.</p>	\bar{T}_s	\bar{K}_s	\bar{C}_o	$Q^{(t+1)}$	0	0	1	\bar{Q}^*	0	1	1	1	1	0	1	0	1	1	1	\bar{Q}^*	R	S	$Q^{(t+1)}$	0	1	1	1	0	0	0	0	\bar{Q}^*	1	1	N.D.	<p>MC314 - AC-COUPLED J-K FLIP-FLOP</p> <p>CLOCKED J-K OPERATION</p> <table border="1"> <thead> <tr> <th>J</th> <th>K</th> <th>\bar{C}</th> <th>$Q^{(t+1)}$</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>1</td> <td>\bar{Q}^*</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> <td>\bar{Q}^*</td> </tr> </tbody> </table> <p>(I) $9 \bar{K}$ —————— (I) $7 \bar{J}$ —————— (3) \bar{C}_o —————— (1) $10 \bar{J}$ —————— (1) \bar{K} —————— (1) $8 \bar{Q}$ —————— (1) $5 \bar{Q}$ ——————</p> <p>The \bar{J} and \bar{K} inputs refer to logic levels while the \bar{C}_o input refers to dynamic logic swings. The J and K inputs should be changed to a logical "1" only while the \bar{C}_o input is in a logic "1" state. (\bar{C}_o maximum "1" level = $V_{cc} - 0.6$ volts)</p> <p>R-S OPERATION</p> <table border="1"> <thead> <tr> <th>R</th> <th>S</th> <th>$Q^{(t+1)}$</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>0</td> <td>\bar{Q}^*</td> </tr> <tr> <td>1</td> <td>1</td> <td>N.D.</td> </tr> </tbody> </table> <p>(I) $6 S$ —————— (I) $1 R$ —————— (1) $8 \bar{Q}$ —————— (1) $5 \bar{Q}$ ——————</p> <p>$t_{dl} = 12 \text{ ns}$ $P_D = 118 \text{ mW}$</p> <p>High-speed ac-coupled J-K flip-flop with dc Set and Reset inputs for counter and shift register applications up to 30 MHz.</p>	J	K	\bar{C}	$Q^{(t+1)}$	0	0	1	\bar{Q}^*	0	1	1	1	1	0	1	0	1	1	1	\bar{Q}^*	R	S	$Q^{(t+1)}$	0	1	1	1	0	0	0	0	\bar{Q}^*	1	1	N.D.
\bar{T}_s	\bar{K}_s	\bar{C}_o	$Q^{(t+1)}$																																																																					
0	0	1	\bar{Q}^*																																																																					
0	1	1	1																																																																					
1	0	1	0																																																																					
1	1	1	\bar{Q}^*																																																																					
R	S	$Q^{(t+1)}$																																																																						
0	1	1																																																																						
1	0	0																																																																						
0	0	\bar{Q}^*																																																																						
1	1	N.D.																																																																						
J	K	\bar{C}	$Q^{(t+1)}$																																																																					
0	0	1	\bar{Q}^*																																																																					
0	1	1	1																																																																					
1	0	1	0																																																																					
1	1	1	\bar{Q}^*																																																																					
R	S	$Q^{(t+1)}$																																																																						
0	1	1																																																																						
1	0	0																																																																						
0	0	\bar{Q}^*																																																																						
1	1	N.D.																																																																						
<p>MC306 - 3-INPUT GATE</p> <p>$5 = \overline{6 + 7 + 8}$ $4 = 6 + 7 + 8$</p> <p>$t_{dl} = 6.0 \text{ ns}$ $P_D = 37 \text{ mW}$</p> <p>Provides the positive logic "NOR" function and its complement simultaneously.</p>	<p>MC307 - 3-INPUT GATE</p> <p>$5 = \overline{6 + 7 + 8}$ $4 = 6 + 7 + 8$</p> <p>$t_{dl} = 6.0 \text{ ns}$ $*\text{No pull-down resistors}$ $P_D = 15 \text{ mW}$</p> <p>Provides the positive logic "NOR" function and its complement simultaneously. Same as MC306, with pull-down resistors omitted, permitting a reduction of power dissipation (see schematic diagram on the data sheet).</p>	<p>MC309 - DUAL 2-INPUT GATE</p> <p>$6 = \overline{7 + 8}$ $5 = \overline{7 + 8}$</p> <p>$t_{dl} = 6.5 \text{ ns}$ $P_D = 27 \text{ mW/gate}$</p> <p>Provides the positive logic "NOR" function.</p>																																																																						

<p>MC310 — DUAL 2-INPUT GATE</p> <p>(I) 7 (15) (I) 8 (15) (I) 9 ** (I) 10 (15)</p> <p>**Optional pull-down resistor. If resistor is desired, connect pin 4 to pin 5.</p> <p>$t_{dl} = 6.5 \text{ ns}$ $P_d = 27 \text{ mW/gate}$</p> <p>Provides the positive logic "NOR" function. Same as MC309 with one output pull-down resistor optional (see schematic diagram on the data sheet).</p>	<p>MC311 — DUAL 2-INPUT GATE</p> <p>(I) 7 (15) (I) 8 (15) (I) 9 ** (I) 10 (15)</p> <p>**Optional pull-down resistor. If resistor is desired, connect pin 4 to pin 5 or pin 6.</p> <p>$t_{dl} = 6.5 \text{ ns}$ $P_d = 21 \text{ mW/gate}$</p> <p>Provides the positive logic "NOR" function. Same as MC309 with one output pull-down resistor omitted and the second optional (see schematic diagram on the data sheet).</p>	
<p>MC312A — DUAL 3-INPUT GATE</p> <p>(I) 6 (15) (I) 7 (15) (I) 8 (15) (I) 9 (15) (I) 10 (15) (I) 1 (15)</p> <p>$t_{dl} = 6.5 \text{ ns}$ $P_d = 35 \text{ mW/gate}$</p> <p>Provides the positive logic "NOR" function, and features an internal bias driver. This gate without the bias driver is available as the MC312.</p>	<p>MC313F — QUAD 2-INPUT GATE</p> <p>(I) 6 (15) (I) 7 (15) (I) 9 (15) (I) 10 (15) (I) 11 (15) (I) 12 (15) (I) 14 (15) (I) 1 (15)</p> <p>$t_{dl} = 6.5 \text{ ns}$ $P_d = 31 \text{ mW/gate}$</p> <p>Provides the positive logic "NOR" function, and features an internal bias driver.</p>	<p>MC315 — LINE DRIVER</p> <p>(I) 6 (93 Ω LINE) (I) 7 (93 Ω LINE) (I) 8 (93 Ω LINE) 9, 10</p> <p>$t_{dl} = 14 \text{ ns}$ $P_d = 180 \text{ mW}$ (with 93 Ω load)</p> <p>Drives lines of 93 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.</p>
<p>MC303 — HALF-ADDER</p> <p>(I) 10 A (2) 8 \bar{A} (2) 9 B (2) 7 \bar{B}</p> <p>(15) 6 "CARRY" = $AB = 10 \cdot 9$ (15) 5 "NOR" = $\bar{A}\bar{B} = 8 \cdot 7$ (15) 4 "SUM" = $\bar{A}\bar{B} + \bar{B}A = (10 \cdot \bar{7}) + (\bar{8} \cdot 9)$ (15) 2 "NOT SUM" = $B\bar{A} = 7 \cdot \bar{9}$</p> <p>$t_{dl} = 7 \text{ ns}$ $P_d = 63 \text{ mW}$</p> <p>Provides the "SUM", "CARRY", and "NOR" functions simultaneously. If complement inputs are not used, an undefined state can occur.</p>	<p>MC316 — LAMP DRIVER</p> <p>(I) 4 (100 mA) (I) 5 (100 mA) (I) 6 (100 mA) (I) 7 (100 mA) (I) 8 (100 mA)</p> <p>$t_{dl} = 135 \text{ mW}$</p> <p>Capable of driving 6-volt lamps. Positive "NOR" function is obtained by applying V_{dd} to pin 4, 5, or 6, with pins 7 and 8 used as inputs. Positive "OR" is obtained by applying V_{dd} to pin 7 or 8, with pins 4, 5, and 6 used as inputs.</p>	<p>MC317 — LEVEL TRANSLATOR</p> <p>(MECL 2) 4 (DTL 7) (MECL 2) 5 (DTL 7) (MECL 2) 6 (DTL 7) (MECL 2) 7 (DTL 7) (MECL 2) 8 (DTL 7)</p> <p>$t_{dl} = 30 \text{ ns}$ $P_d = 63 \text{ mW}$</p> <p>Intended for converting non-saturated MECL signal levels to saturated logic levels. Positive "NOR" function is obtained by applying V_{dd} to pin 7 or 8, with pins 4, 5, and 6 used as inputs. Positive "OR" is obtained by applying V_{dd} to pin 4, 5, or 6, with pins 7 and 8 used as inputs.</p>
<p>MC318 — LEVEL TRANSLATOR</p> <p>(DTL 8) 5 (DTL 8) 6 (DTL 8) 9 (DTL 8) 10</p> <p>(MECL 15) 4 = 5 + 6 (MECL 15) 1 = 9 + 10</p> <p>$t_{dl} = 17 \text{ ns}$ $P_d = 105 \text{ mW}$</p> <p>Intended for converting saturated logic levels to non-saturated MECL signal levels. By applying DTL input logic levels as defined by logical "0" at 0.4 V and logical "1" at 5.0 V, corresponding MECL outputs are obtained as defined by logical "0" at -1.55 V and logical "1" at -0.75 V.</p>	<p>MC305 — 5-INPUT EXPANDER</p> <p>(I) 6 (I) 7 (I) 8 (I) 9 (I) 10</p> <p>$t_{dl} = 5 \text{ ns}$</p> <p>For use with the MC302, MC306, MC307, and MC315. Each expander unit increases the fan-in of the basic gate by five. For highest performance, a maximum of three expander units per gate is recommended.</p>	<p>Note: Any unused input should be connected to V_{ee}.</p>

CIRCUIT DESCRIPTION

The MECL line of monolithic integrated logic circuits was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical MECL circuit comprises a differential-amplifier input, with emitter-follower output to restore dc levels. High fan-out operation is possible because of the high input impedance of the differential amplifier and the low output impedance of the emitter followers. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the function and its complement.

POWER-SUPPLY CONNECTIONS

Any one of the power supply nodes, V_{BB} , V_{CC} , or V_{EE} may be used as ground; however, the manufacturer has found it most convenient to ground the V_{CC} node. In such a case: $V_{CC} = 0$, $V_{BB} = -1.15$ V, $V_{EE} = -5.2$ V, as shown in the schematic diagram above.

SYSTEM LOGIC SPECIFICATIONS

The output logic swing of 0.8 V then varies from a low state of $V_L = -1.55$ V to a high state of $V_H = -0.75$ V with respect to ground.

Positive logic is used when reference is made to logical "0's" or "1's". Then

$$\begin{aligned} "0" &= -1.55 \text{ V} \\ "1" &= -0.75 \text{ V} \end{aligned} \quad \text{typical}$$

Dynamic logic refers to a change of logic states. Dynamic "0" is a negative going voltage excursion and a dynamic "1" is a positive going voltage excursion.

CIRCUIT OPERATION

A bias of -1.15 volts is applied to the "bias input" of the differential amplifier and the logic signals are applied to the "signal input". If a logical "0" is applied, the current through R_E is supplied by the fixed-biased transistor. A drop of 800 mV occurs across R_{C2} . The OR output then is -1.55 V, or one V_{BE} -drop below 800 mV. Since no current flows in the "signal input" transistor, the NOR output is a V_{BE} -drop below ground, or -0.75 volts. When a logical "1" level is applied to the "signal input", the current through R_{C2} is switched to the "signal input" transistor and a drop of 800 mV occurs across R_{C1} . The OR output then goes to -0.75 volts and the NOR output goes to -1.55 volts.

Note: Any unused input should be connected to V_{EE} .

BIAS VOLTAGE SOURCE

The bias voltage applied to the bias input is obtained from a regulated, temperature-compensated bias driver, type MC304. The temperature characteristics of the bias driver compensate for any variations in circuit operating point over the temperature range or supply voltage changes, to insure that the threshold point is always in the center of the transition region. The bias driver can be used to drive up to 25 logic elements and should be employed for all elements except those with built-in bias networks.

BASIC MECL GATE CIRCUIT

GENERAL INFORMATION (continued)

DEFINITIONS

e_{in}	AC signal applied to the input	t_r	Time required for the output pulse to go more positive from its 10% point to its 90% point
e_{out}	AC signal at the output	V_1	"NOR" output voltage — logical "1" level output voltage when a logical "0" level (V_L) is applied to the input
I_C	Amount of current drawn from the positive power supply by the test unit	V_2	"OR" output voltage — logical "0" level output voltage when a logical "0" level (V_L) is applied to the input
I_{CEX}	Total collector leakage current exhibited by the gate expander when all inputs are at the negative supply potential	V_3	Saturation breakpoint voltage which corresponds to the "NOR" output characteristic where the rate of change in the output voltage to the rate of change in input voltage is zero
I_E	Amount of current drawn from the test unit by the negative power supply	V_4	"NOR" output voltage — logical "0" level output voltage when a logical "1" level ($V_{1\ max}$) is applied to the input
I_{in}	Current drawn by the input of the test unit when a logical "1" (V_H) is applied to the input	V_5	"OR" output voltage — logical "1" level output voltage when a logical "1" ($V_{1\ max}$) level is applied to the input
I_L	Current drawn from a node when that node is at ground potential	V_6	Output latch voltage — input voltage to a flip-flop which causes the output voltage to change from a logical "1" level to a logical "0" level and corresponds to the point where the rate of change in the output voltage to the rate of the input voltage approaches infinity
t_{d1}	Time required for the output pulse to reach the 50% point of its leading edge when referenced to the 50% point of the input pulse leading edge	V_H	Logical "1" input voltage
t_{d2}	Time required for the output pulse to reach the 50% point of its trailing edge when referenced to the 50% point of the input pulse trailing edge	V_L	Logical "0" input voltage
t_{df}	Time required for a flip-flop output to reach the 50% point of its negative going edge when referenced to the 50% point of the input pulse leading edge	V_{OH}	High-level output voltage when the saturated logic circuit output is in an "off" condition
t_{dr}	Time required for a flip-flop output to reach the 50% point of its positive going edge when referenced to the 50% point of the input pulse leading edge	V_{OL}	Low-level output voltage when the saturated logic output circuit is in an "on" condition
t_f	Time required for the output pulse to go more negative from its 90% point to its 10% point	ΔV_1	Change in the "1" level output voltage as the load is varied from no load to full load
		ΔV_5	

PACKAGES

All MECL integrated circuits are available in both the TO-91, 10-lead flat package and the 10-lead metal package. To order the flat package, add suffix "F" to basic type number; to order metal package, add suffix "G".

Exception: Type MC313F is available only in the TO-86 14-lead flat package.

GENERAL INFORMATION (continued)

WORST-CASE TRANSFER CHARACTERISTICS

The following graphs show minimum and maximum limits of major parameters associated with the transfer characteristics of the MECL line. Min-Max limits, given at three different temperatures can be interpreted for design purposes as 10% to 90% spreads at all points on the curve except for guaranteed points in the Electrical Characteristics tables.

DEFINITIONS

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Ratings above which device life may be impaired:			
Power Supply Voltage ($V_{CC} = 0 \text{ Vdc}$)	V_{EE}	-10	Vdc
Base Input Voltage ($V_{CC} = 0 \text{ Vdc}$)	V_{in}	0 Vdc to V_{EE}	Vdc
Output Source Current	I_O	20	mAdc
Storage Temperature Range	T_{stg}	-65 to +150	°C
Recommended maximum ratings above which performance may be degraded:			
Operating Temperature Range	T_A	-55 to +125	°C
AC Fan-In (Expandable Gates)	m	18	—
AC Fan-Out* (Gates and Flip-Flops)	n	15	—

*Although a minimum dc fan-out of 25 is guaranteed in each electrical specification, it is recommended that the maximum ac fan-out of 15 be used for high-speed operation.

NOISE MARGINS (90 PERCENTILE)

The following graphs show worst-case Noise Margins as a function of temperature and fan-out. Top graph illustrates the advantage gained through use of MC304 bias driver, as compared with non-compensated fixed bias source, bottom.

Note: Any unused input should be connected to V_{EE} .

USING MC304

USING FIXED V_{BB} of -1.15 V

5-INPUT GATE

MC301

A 5-input gate that provides the positive logic "OR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

TYPICAL INPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

SWITCHING CHARACTERISTICS (10% to 90% distribution)

"NOR" OUTPUT

— 55°C and +25°C
- - - +125°C

MC301 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc $\pm 1\%$										Unit							
	@ Test Temperature					Test Limits												
	-55°C		+25°C		+125°C		Min	Max	Min	Max								
Power Supply Drain Current	—	—	—	2,6,7,8,9,10	1	—	—	3	I _E (2)	—	8.85	—	8.85	—	8.15	mAdc		
Input Current	6	—	—	2,7,8,9,10	1	—	—	3	I _{in} (6)	—	—	—	100	—	—	μAdc		
	7	—	—	2,6,8,9,10	1	—	—	3	I _{in} (7)	—	—	—	—	—	—	—		
	8	—	—	2,6,7,9,10	1	—	—	3	I _{in} (8)	—	—	—	—	—	—	—		
	9	—	—	2,6,7,8,10	1	—	—	3	I _{in} (9)	—	—	—	—	—	—	—		
	10	—	—	2,6,7,8,9	1	—	—	3	I _{in} (10)	—	—	—	—	—	—	—		
"NOR" Logical "1" Output Voltage	—	—	6	2,7,8,9,10	1	—	—	3	V ₁ (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc		
	—	—	7	2,6,8,9,10	1	—	—	3	V ₁ (5)	—	—	—	—	—	—	—		
	—	—	8	2,6,7,9,10	1	—	—	3	V ₁ (5)	—	—	—	—	—	—	—		
	—	—	9	2,6,7,8,10	1	—	—	3	V ₁ (5)	—	—	—	—	—	—	—		
	—	—	10	2,6,7,8,9	1	—	—	3	V ₁ (5)	—	—	—	—	—	—	—		
"NOR" Logical "0" Output Voltage	—	6	—	2,7,8,9,10	1	—	—	3	V ₄ (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc		
	—	7	—	2,6,8,9,10	1	—	—	3	V ₄ (5)	—	—	—	—	—	—	—		
	—	8	—	2,6,7,9,10	1	—	—	3	V ₄ (5)	—	—	—	—	—	—	—		
	—	9	—	2,6,7,8,10	1	—	—	3	V ₄ (5)	—	—	—	—	—	—	—		
	—	10	—	2,6,7,8,9	1	—	—	3	V ₄ (5)	—	—	—	—	—	—	—		
"OR" Logical "1" Output Voltage	—	6	—	2,7,8,9,10	1	—	—	3	V ₂ (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc		
	—	7	—	2,6,8,9,10	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
	—	8	—	2,6,7,9,10	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
	—	9	—	2,6,7,8,10	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
	—	10	—	2,6,7,8,9	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
"OR" Logical "0" Output Voltage	—	—	6	2,7,8,9,10	1	—	—	3	V ₂ (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc		
	—	—	7	2,6,8,9,10	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
	—	—	8	2,6,7,9,10	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
	—	—	9	2,6,7,8,10	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
	—	—	10	2,6,7,8,9	1	—	—	3	V ₂ (4)	—	—	—	—	—	—	—		
"NOR" Output Voltage Change (No load to full load)	—	—	6	2,7,8,9,10	1	—	5③	3	ΔV ₁ (5)	—	-0.055	—	-0.055	—	-0.060	Volts		
"OR" Output Voltage Change (No load to full load)	—	6	—	2,7,8,9,10	1	—	4③	3	ΔV ₂ (4)	—	-0.055	—	-0.055	—	-0.060	Volts		
"NOR" Saturation Breakpoint Voltage	—	—	—	—	2,7,8,9,10	1	6①	—	V ₁ (5)	—	-0.40	—	-0.55	—	-0.68	Vdc		
	—	—	—	—	2,6,8,9,10	1	7①	—	V ₁ (5)	—	—	—	—	—	—	—		
	—	—	—	—	2,6,7,9,10	1	8①	—	V ₁ (5)	—	—	—	—	—	—	—		
	—	—	—	—	2,6,7,8,10	1	9①	—	V ₁ (5)	—	—	—	—	—	—	—		
	—	—	—	—	2,6,7,8,9	1	10①	—	V ₁ (5)	—	—	—	—	—	—	—		
Switching Times	Pulse In	Pulse Out										Typ	Max	Typ	Max	Typ	Max	ns
Propagation Delay Time	6	4	—	2,7,8,9,10	1	—	—	3	t ₁₂ (4)	8.0	12.0	8.5	12.5	10.0	15.5			
	6	5	—	2,7,8,9,10	1	—	—	3	t ₁₂ (5)	6.5	10.0	6.5	11.0	7.5	14.0			
	6	4	—	2,7,8,9,10	1	—	—	3	t ₁₂ (4)	5.5	9.0	6.0	10.0	8.0	12.0			
	6	5	—	2,7,8,9,10	1	—	—	3	t ₁₂ (5)	7.5	11.0	8.0	12.5	10.0	15.5			
Rise Time	6	4	—	2,7,8,9,10	1	—	—	3	t _r (4)	6.5	9.0	7.0	10.0	10.5	15.5			
	6	5	—	2,7,8,9,10	1	—	—	3	t _r (5)	8.5	14.0	9.0	14.5	11.0	17.5			
Fall Time	6	4	—	2,7,8,9,10	1	—	—	3	t _f (4)	7.0	11.5	7.5	13.0	10.0	16.0			
	6	5	—	2,7,8,9,10	1	—	—	3	t _f (5)	7.0	12.0	7.5	12.5	10.0	15.5			

Pins not listed are left open

① Input voltage is adjusted to obtain dV "NOR" / dV_{in} = "0".

② Current test conditions: no load = 0; full load = -2.5mAdc ±5%.

"OR" OUTPUT

— -55°C and +25°C
— +125°C

R-S FLIP-FLOP

MECL MC300 series

MC302

DC Set-Reset flip-flop with an expandable input and buffered outputs.

TRANSFER CHARACTERISTICS

SWITCHING TIME WAVEFORMS

MC302 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc ± 1%								Unit	
	@ Test Temperature {		-55°C		+25°C		+125°C			
	-55°C	+25°C	+125°C	-5.20	-5.20	-5.20	-5.20	-5.20		
Power Supply Drain Current	—	—	—	2,6,7,9,10	—	—	3	I _S (6)	— 10.35 — 10.35 — 9.52 mAdc	
Input Current	6	—	—	2,7,9,10	—	—	3	I _{IN} (6)	— — — 100 — —	
	7	—	—	2,6,9,10	—	—	3	I _{IN} (7)	— — — — — —	
	9	—	—	2,6,7,10	—	—	3	I _{IN} (9)	— — — — — —	
	10	—	—	2,6,7,9	—	—	3	I _{IN} (10)	— — — — — —	
"Q" Logical "1" Output Voltage	—	—	6③	2,7,9,10	—	—	3	V ₁ (5)	-0.825 -0.945 -0.690 -0.795 -0.525 -0.655 Vdc	
	—	—	7③	2,6,9,10	—	—	3	V ₁ (5)	-0.825 -0.945 -0.690 -0.795 -0.525 -0.655 Vdc	
"Q" Logical "0" Output Voltage	—	—	9③	2,6,7,10	—	—	3	V ₂ (5)	-1.560 -1.850 -1.465 -1.750 -1.340 -1.675 Vdc	
	—	—	10③	2,6,7,9	—	—	3	V ₂ (5)	-1.560 -1.850 -1.465 -1.750 -1.340 -1.675 Vdc	
"Q̄" Logical "1" Output Voltage	—	—	9③	2,6,7,10	—	—	3	V ₁ (4)	-0.825 -0.945 -0.690 -0.795 -0.525 -0.655 Vdc	
	—	—	10③	2,6,7,9	—	—	3	V ₁ (4)	-0.825 -0.945 -0.690 -0.795 -0.525 -0.655 Vdc	
"Q̄" Logical "0" Output Voltage	—	—	6③	2,7,9,10	—	—	3	V ₂ (4)	-1.560 -1.850 -1.465 -1.750 -1.340 -1.675 Vdc	
	—	—	7③	2,6,9,10	—	—	3	V ₂ (4)	-1.560 -1.850 -1.465 -1.750 -1.340 -1.675 Vdc	
"Q" Output Voltage Change	—	6	—	2,7,9,10	—	5③	3	ΔV ₁ (5)	— -0.055 — -0.055 — -0.060 Volts	
"Q̄" Output Voltage Change	—	10	—	2,6,7,9	—	4③	3	ΔV ₁ (4)	— -0.055 — -0.055 — -0.060 Volts	
"Q" Saturation Breakpoint Voltage	—	—	—	2,7,9	6,10①	—	3	V ₃ (5)	— -0.50 — -0.65 — -0.75 Vdc	
"Q̄" Saturation Breakpoint Voltage	—	—	—	2,7,9	6,10①	—	3	V ₃ (4)	— -0.50 — -0.65 — -0.75 Vdc	
"Q" or "Q̄" Latch Voltage	—	—	—	2,7,9	6,10①	—	3	V ₄ (6,10)	-1.16 -1.34 -1.09 -1.21 -0.93 -1.07 Vdc	
Switching Times	Pulse In	Pulse Out						Typ Max Typ Max Typ Max		
Propagation Delay Time	6,10	4,5	—	2,7,9	—	—	3	t _D (4,5)	9.0 14.0 10.5 16.0 22.0 29.0 ns	
	6,10	4,5	—	2,7,9	—	—	3	t _D (4,5)	8.5 14.0 11.5 19.5 16.0 24.0 ns	
Rise Time	6,10	4,5	—	2,7,9	—	—	3	t _R (4,5)	9.0 15.0 11.5 19.0 23.0 31.0 ns	
Fall Time	6,10	4,5	—	2,7,9	—	—	3	t _F (4,5)	7.0 13.0 12.5 19.5 18.0 29.0 ns	

Pins not listed are left open. ① Input voltage is adjusted to obtain dV "Q̄" / dV_{in} = 0; dV "Q" / dV_{in} = 0. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.
③ Apply momentary V_{1max} to set output, then V₁ for measurement. ④ Input voltage is adjusted to obtain dV₁ / dV_{in} ≈ ∞.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— -55°C and +25°C
— +125°C

HALF-ADDER

MECL MC300 series

MC303

Half-adder that provides the "SUM", "CARRY", and "NOR" functions simultaneously.

MC303 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} = 1%										Unit						
	Test Conditions V _{dc} = 1%					Test Limits											
	V _H Pin No	V _I _{max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	dV _{in} Pin No	I _l Pin No	Ground Pin No	Symbol Pin No in ()	Min	Max	Min	Max	Min	Max		
Power Supply Drain Current	—	—	—	2.7,8,9,10	1	—	—	3	I _l (2)	—	15.3	—	15.3	—	14.1	mAdc	
Input Current	7	—	—	2.8,9,10	1	—	—	3	I _{in} (7)	—	—	—	100	—	—	AAdc	
	8	—	—	2.8,9,10	1	—	—	3	I _{in} (8)	—	—	—	—	—	—		
	9	—	—	2.7,8,9,10	1	—	—	3	I _{in} (9)	—	—	—	—	—	—		
	10	—	—	2.7,8,9	1	—	—	3	I _{in} (10)	—	—	—	—	—	—		
"NOR" Logical "1" Output Voltage	—	—	9	2.7,8,10	1	—	—	3	V _l (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"NOR" Logical "0" Output Voltage	—	—	10	2.7,8,9	1	—	—	3	V _l (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"CARRY" Logical "1" Output Voltage	—	—	9	2.7,8,10	1	—	—	3	V _l (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc	
"CARRY" Logical "0" Output Voltage	—	—	10	2.7,8,9	1	—	—	3	V _l (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc	
"CARRY" Logical "1" Output Voltage	—	—	7	2.8,9,10	1	—	—	3	V _l (6)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"CARRY" Logical "0" Output Voltage	—	—	8	2.7,9,10	1	—	—	3	V _l (6)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"SUM" Logical "1" Output Voltage	—	—	7,9	2.8,10	1	—	—	3	V _s (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"SUM" Logical "0" Output Voltage	—	—	8,10	2.7,9	1	—	—	3	V _s (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"SUM" Logical "1" Output Voltage	—	—	7	10	2.8,9	1	—	3	V _s (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc	
"SUM" Logical "0" Output Voltage	—	—	8	10	2.7,9	1	—	3	V _s (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc	
"SUM" Logical "1" Output Voltage	—	—	9	8	2.7,10	1	—	3	V _s (4)	—	—	—	—	—	—	Vdc	
"SUM" Logical "0" Output Voltage	—	—	10	7	2.8,9	1	—	3	V _s (4)	—	—	—	—	—	—	Vdc	
"NOR" Output Voltage Change (No load to full load)	—	—	10	—	2.7,8,9	1	—	5①	3	ΔV _l (5)	—	-0.055	—	-0.055	—	-0.060	Volts
"CARRY" Output Voltage Change (No load to full load)	—	—	—	7	2.8,9,10	1	—	6①	3	ΔV _l (6)	—	-0.055	—	-0.055	—	-0.060	Volts
"SUM" Output Voltage Change (No load to full load)	—	—	7,10	—	2.8,9	1	—	4①	3	ΔV _s (4)	—	-0.055	—	-0.055	—	-0.060	Volts
"NOR" Saturation Breakpoint Voltage	—	—	—	2.7,8,9	1	10①	—	3	V _s (5)	—	-0.40	—	-0.55	—	-0.65	Vdc	
"CARRY" Saturation Breakpoint Voltage	—	—	—	2.8,9,10	1	7①	—	3	V _s (6)	—	-0.40	—	-0.55	—	-0.65	Vdc	
Switching Times											Typ	Max	Typ	Max	Typ	Max	ns
Propagation Delay Time	—	—	—	2.7,8,9	1	Pulse In	Pulse Out	3	t _p (5)	6.0	10.0	6.0	11.0	7.5	13.0		
	—	—	—	2.8,9,10	1	7	5	3	t _p (6)	6.0	10.0	6.0	11.0	7.5	13.0		
	—	—	—	2.8,9	1	10	6	3	t _p (4)	8.0	12.0	8.0	12.0	10.5	17.0		
	—	—	—	2.7,8,9	1	10	5	3	t _p (5)	7.5	10.5	7.5	11.0	10.0	15.0		
	—	—	—	2.8,9,10	1	7	6	3	t _p (6)	7.5	10.5	7.5	11.0	10.0	15.0		
	—	—	—	2.8,9	1	10	4	3	t _p (4)	5.5	8.0	5.5	8.5	7.5	12.0		
Rise Time	—	—	—	2.7,8,9	1	10	5	3	t _r (5)	6.0	11.5	6.5	12.0	7.5	14.0		
	—	—	—	2.8,9,10	1	7	6	3	t _r (6)	6.0	11.5	6.5	12.0	7.5	14.0		
	—	—	—	2.8,9	1	10	4	3	t _r (4)	6.0	10.0	6.5	11.0	10.0	16.0		
Fall Time	—	—	—	2.7,8,9	1	10	5	3	t _f (5)	7.5	12.0	8.0	13.5	10.5	16.5		
	—	—	—	2.8,9,10	1	7	6	3	t _f (6)	7.5	12.0	8.0	13.5	10.5	16.5		
	—	—	—	2.8,9	1	10	4	3	t _f (4)	8.0	12.5	8.5	13.5	11.0	18.0		

Pins not listed are left open. ① Input voltage is adjusted to obtain dV_l/"NOR"/dV_{in} = 0 or dV_l/"CARRY"/dV_{in} = 0.

② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

MC304

Bias driver that compensates for changes in circuit parameters with temperature.

ELECTRICAL CHARACTERISTICS

@ Test Temperature { -55°C +25°C +125°C }	Test Conditions Vdc ± 1%		Symbol Pin No in ()	Test Limits						Unit	
	V _{EE}	I _L		-55°C		+25°C		+125°C			
	Pin No	Pin No		Min	Max	Min	Max	Min	Max		
	Power Supply Drain Current	2	—	3	I _s (2)	—	4.4	—	4.4	—	mAdc
Output Voltage	2	1①	3	V _m	—	-1.19	-1.32	-1.09	-1.22	-0.95	-1.08
											Vdc

Pins not listed are left open.

① Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

CIRCUIT DESCRIPTION**Circuit Operation:**

The divider network R_1 , R_2 , D_1 , D_2 compensates for temperature variations of the base-emitter voltages of Q_1 , and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of -55 to $+125^\circ\text{C}$. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.

Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if V_{CC} is grounded in the logic system, then —

$$V_{CC} = 0; \quad V_{EE} = -5.2 \text{ V}; \\ V_{BB} = -1.15 \text{ nominal output voltage at } 25^\circ\text{C}$$

GATE EXPANDER

MECL MC300 series

MC305

A 5-input expander for use with the MC302, MC306, MC307, and MC315. Each expander unit increases the fan-in of the basic gate by five.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions										Unit	
	Vdc $\pm 1\%$					mAdc						
	-2.0	-5.2	+2.0	+0.7	0.3	-1.33	-2.0	-5.2	+2.0	+0.7	-1.33	
Base Leakage Current	V _{EE} Pin No	V _{BB} Pin No	V _{CC} Pin No	V _{CB} Pin No	V _{BE} Pin No	I _E Pin No	Ground Pin No	Symbol Pin No	Test Limits			
Collector Leakage Current	4	6	—	—	—	—	5	I _{ce} (6)	Min	—	0.5	μAdc
	4	7	—	—	—	—	5	I _{ce} (7)	Max	—	—	↓
	4	8	—	—	—	—	5	I _{ce} (8)	Min	—	—	↓
	4	9	—	—	—	—	5	I _{ce} (9)	Max	—	—	↓
	4	10	—	—	—	—	5	I _{ce} (10)	Min	—	—	↓
Input Voltage	—	—	5	—	6,7,8,9,10	—	4	I _{ce} (5)	Min	—	1.0	μAdc
	—	—	—	5	—	4	6	V _{ee} (4)	Max	—	—	↓
	—	—	—	5	—	4	7	V _{ee} (4)	Min	-0.810	-0.880	↓
	—	—	—	5	—	4	8	V _{ee} (4)	Max	-0.680	-0.730	↓
	—	—	—	5	—	4	9	V _{ee} (4)	Min	-0.490	-0.540	↓
	—	—	5	—	4	10	V _{ee} (4)	Max	—	—	100.0	↓
Switching Times	Pulse In	Pulse Out	—	—	—	—	—	—	Typ	Max	Typ	ns
Propagation Delay Time	8	①	—	—	—	—	—	t _{pd}	5.0	8.0	5.0	↓
	8	①	—	—	—	—	—	t _{pd}	4.0	8.0	4.0	↓
Rise Time	8	①	—	—	—	—	—	t _r	8.0	10.5	8.5	↓
Fall Time	8	①	—	—	—	—	—	t _f	3.0	8.5	3.5	↓
									Max	Typ	Max	
									8.5	5.5	9.5	
									8.0	8.0	4.5	10.0
									11.5	6.5	13.0	
									8.5	4.5	9.5	

Pins not listed are left open. ① See Switching Time Test Circuit.

SWITCHING TIME TEST CIRCUIT

3-INPUT GATES

MECL MC300 series

MC306 • MC307

Expandable 3-input gates that provide the positive logic "NOR" function and its complement simultaneously. MC307 omits output pull-down resistors, permitting reduction of power dissipation.

*Resistors R_O are omitted in MC307 circuits to permit reduction of Power Dissipation in systems where logic operations are performed at circuit outputs.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

Fan-in obtained with MC305
input expanders; all but driven
input connected to -5.2 V.

MC306, MC307 (continued)

SWITCHING CHARACTERISTICS (10% to 90% distribution)

MC306, MC307 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc ± 1%								Symbol Pin No in ()	Test Limits						Unit		
	-55°C				+25°C					+125°C								
	V _H Pin No	V _{I_max} Pin No	V _L Pin No	V _{EE} Pin No	V _{SS} Pin No	dV _{IN} Pin No	I _L Pin No	Ground Pin No		Min	Max	Min	Max	Min	Max			
Power Supply MC306	—	—	—	2,6,7,8	1	—	—	3	I ₈ (2)	—	8.85	—	8.85	—	8.15	mAdc		
Drain Current MC307	—	—	—	2,6,7,8	1	—	—	3	I ₈ (2)	—	3.6	—	3.6	—	3.3	mAdc		
Input Current	6	—	—	2,7,8	1	—	—	3	I ₈ (6)	—	—	—	100	—	—	μAdc		
	7	—	—	2,6,8	1	—	—	3	I ₈ (7)	—	—	—	—	—	—	—		
	8	—	—	2,6,7	1	—	—	3	I ₈ (8)	—	—	—	—	—	—	—		
"NOR" Logical "1" Output Voltage	—	—	6	2,7,8	1	—	—	3	V _I (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc		
	—	—	7	2,6,8	1	—	—	3	V _I (5)	—	—	—	—	—	—	—		
	—	—	8	2,6,7	1	—	—	3	V _I (5)	—	—	—	—	—	—	—		
"NOR" Logical "0" Output Voltage	—	6	—	2,7,8	1	—	—	3	V _O (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc		
	7	—	—	2,6,8	1	—	—	3	V _O (5)	—	—	—	—	—	—	—		
	8	—	—	2,6,7	1	—	—	3	V _O (5)	—	—	—	—	—	—	—		
"OR" Logical "1" Output Voltage	—	6	—	2,7,8	1	—	—	3	V _O (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc		
	7	—	—	2,6,8	1	—	—	3	V _O (4)	—	—	—	—	—	—	—		
	8	—	—	2,6,7	1	—	—	3	V _O (4)	—	—	—	—	—	—	—		
"OR" Logical "0" Output Voltage	—	—	6	2,7,8	1	—	—	3	V _O (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc		
	—	—	7	2,6,8	1	—	—	3	V _O (4)	—	—	—	—	—	—	—		
	—	—	8	2,6,7	1	—	—	3	V _O (4)	—	—	—	—	—	—	—		
"NOR" Output Voltage Change (No load to full load)	—	—	6	2,7,8	1	—	5①	3	ΔV _I (5)	—	-0.055	—	-0.055	—	-0.060	Volts		
"OR" Output Voltage Change (No load to full load)	—	6	—	2,7,8	1	—	4①	3	ΔV _O (4)	—	-0.055	—	-0.055	—	-0.060	Volts		
"NOR" Saturation Breakpoint Voltage	—	—	—	2,7,8	1	6①	—	3	V _I (5)	—	-0.40	—	-0.55	—	-0.68	Vdc		
	—	—	—	2,6,8	1	7①	—	3	V _I (5)	—	—	—	—	—	—	—		
	—	—	—	2,6,7	1	8①	—	3	V _I (5)	—	—	—	—	—	—	—		
Switching Times	Pulse In	Pulse Out								Typ	Max	Typ	Max	Typ	Max			
Propagation Delay Time	6	4	—	2,7,8	1	—	—	3	t _{PD} (4)	7.0	11.0	7.0	11.5	9.5	14.5	ns		
	6	5	—	2,7,8	1	—	—	3	t _{PD} (5)	5.5	10.0	5.5	10.5	7.0	12.5	—		
Rise Time	6	4	—	2,7,8	1	—	—	3	t _R (4)	5.5	10.0	5.5	11.0	7.0	12.5	—		
	6	5	—	2,7,8	1	—	—	3	t _R (5)	7.0	10.5	7.0	11.0	9.5	14.5	—		
Fall Time	6	4	—	2,7,8	1	—	—	3	t _F (4)	6.0	8.5	6.0	10.0	8.0	13.0	—		
	6	5	—	2,7,8	1	—	—	3	t _F (5)	7.5	11.5	7.5	12.5	9.5	15.0	—		

Pins not listed are left open.

① Input voltage is adjusted to obtain dV "NOR" / dV_{IN} = 0.

② Current test conditions: no load = 0; full load = -2.5mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

AC-COUPLED J-K FLIP-FLOP

MECL MC300 series

MC308

AC-coupled J-K flip-flop with dc Set and Reset inputs and buffered outputs for counter and shift register applications up to 15 MHz.

TRANSFER CHARACTERISTICS

FIGURE 1 -SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 – SENSITIVITY (NO TOGGLE)

FIGURE 3 – SENSITIVITY (NO TOGGLE)

FIGURE 4 – SENSITIVITY (TOGGLE)

MC308 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _d c ± 1%								Unit						
	-55°C				+25°C										
	V _H Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()	Test Limits							
Power Supply Drain Current	—	7,10	—	1,2,6,8,9	—	—	I _E (2)	Min: — Max: 22.0	— Max: 21.0	— Min: 19.5	mADC				
Input Current	7	—	—	1,2,6,8,9,10	—	—	I _{IN} (7)	—	—	—	μADC				
	8	—	—	1,2,6,7,9,10	—	—	I _{IN} (8)	—	—	—					
	9	—	—	1,2,6,7,8,10	—	—	I _{IN} (9)	—	—	—					
	10	—	—	1,2,6,7,8,9	—	—	I _{IN} (10)	—	—	—					
"Q" Logical "1" Output Voltage	—	—	6①	1,2,7,8,9,10	—	—	V _O (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"Q" Logical "0" Output Voltage	—	—	1②	2,6,7,8,9,10	—	—	V _O (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc	
"Q" Logical "1" Output Voltage	—	—	1③	2,6,7,8,9,10	—	—	V _O (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
"Q" Logical "0" Output Voltage	—	—	6③	1,2,7,8,9,10	—	—	V _O (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc	
"Q" Output Voltage Change	—	6	—	1,2,7,8,9,10	—	5③	3	ΔV _O (5)	—	-0.055	—	-0.055	—	-0.060	Volts
"Q" Output Voltage Change	—	1	—	2,6,7,8,9,10	—	4③	3	ΔV _O (4)	—	-0.055	—	-0.055	—	-0.060	Volts
"Q" Saturation Breakpoint Voltage	—	—	—	1,2,7,8,9,10	6①	—	V _S (5)	—	-0.50	—	-0.65	—	-0.75	Vdc	
"Q" Saturation Breakpoint Voltage	—	—	—	2,6,7,8,9,10	1①	—	V _S (4)	—	-0.50	—	-0.65	—	-0.75	Vdc	
"Q" or "Q" Latch Voltage	—	—	—	2,7,8,9,10	1,6①	—	V _L (1,6)	-1.16	-1.34	-1.09	-1.21	-0.93	-1.07	Vdc	
	Pulse In	Pulse Out					freq	—	—	15	—	—	—	MHz	
Toggle Frequency (See Figures 1 and 2)	7,10	5		1,2,6,9	—	—	3								
Sensitivity (No Toggle)	7,10	4		1,2,6,8,9	—	—	3							See Figure 3	
Sensitivity (Toggle)	7,10	4.5		1,2,6,7,10	—	—	3							See Figure 3	
				1,2,6,8,9	—	—	3							See Figure 4	
Switching Times Propagation Delay	7,10	4.5		1,2,6,8,9	—	—	3	t _{DP} (4,5)	7.0	11.5	7.0	12.5	9.5	18.5	ns
	7,10	4.5		1,2,6,8,9	—	—	3	t _{DP} (4,5)	8.5	14.0	8.5	14.5	10.0	16.5	
Rise Time	7,10	4.5		1,2,6,8,9	—	—	3	t _R (4,5)	6.5	13.0	6.5	13.0	10.0	18.5	
Fall Time	7,10	4.5		1,2,6,8,9	—	—	3	t _F (4,5)	7.5	14.5	8.5	15.5	11.5	20.0	

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{out}/dV_{in} = 0$. ② Current test conditions: no load = 0 to full load = -2.5 mA DC ± 5%. ③ Apply momentary V_{IL} to set output, then V_O for measurement. ④ Input voltage is adjusted to obtain $dV_{out}/dV_{in} = \infty$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— -55°C and +25°C
- - +125°C

DUAL 2-INPUT GATES

MECL MC300 series

MC309 • MC310 • MC311

Dual 2-input gates that provide the positive logic "NOR" function. MC309 has two output pull-down resistors; MC310 has one of the output pull-down resistors optional; MC311 omits one output pull-down resistor and has the second optional.

TYPICAL INPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

MC309, MC310, MC311 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} ± 1%								Symbol Pin No in ()	Test Limits						Unit	
	@ Test Temperature {		-55°C		+25°C		+125°C			Min	Max	Min	Max	Min	Max		
	V _H Pin No	V _{i, max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No									
Power Supply MC309, MC310 MC311	—	—	—	2,7,8,9,10	1	—	—	3	I _S (2) I _S (2)	—	13.0	—	13.0	—	12.0	mAdc	
Drain Current MC311	—	—	—	2,7,8,9,10	1	—	—	3	I _S (7) I _S (8) I _S (9) I _S (10)	—	10.1	—	10.1	—	9.3	mAdc	
Input Current	7	—	—	2,8,9,10	1	—	—	3	I _{in} (7) I _{in} (8) I _{in} (9) I _{in} (10)	—	—	—	—	100	—		
	8	—	—	2,7,9,10	1	—	—	3		—	—	—	—	—	—	μAdc	
	9	—	—	2,7,8,10	1	—	—	3		—	—	—	—	—	—	—	
	10	—	—	2,7,8,9	1	—	—	3		—	—	—	—	—	—	—	
"NOR" Logical "1" Output Voltage	—	—	7	2,8,9,10	1	—	—	3	V _O (6) V _O (6) V _O (5) V _O (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	V _{dc}	
	—	—	8	2,7,9,10	1	—	—	3		—	—	—	—	—	—	—	
	—	—	9	2,7,8,10	1	—	—	3		—	—	—	—	—	—	—	
	—	—	10	2,7,8,9	1	—	—	3		—	—	—	—	—	—	—	
"NOR" Logical "0" Output Voltage	—	7	—	2,8,9,10	1	—	—	3	V _O (6) V _O (6) V _O (5) V _O (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	V _{dc}	
	—	8	—	2,7,9,10	1	—	—	3		—	—	—	—	—	—	—	
	—	9	—	2,7,8,10	1	—	—	3		—	—	—	—	—	—	—	
	—	10	—	2,7,8,9	1	—	—	3		—	—	—	—	—	—	—	
"NOR" Output Voltage Change (No load to full load)	—	—	—	2,7,8,9,10	1	—	6①	3	ΔV _O (6) ΔV _O (5)	—	-0.055	—	-0.055	—	-0.060	V _{dc}	
"NOR" Saturation Breakpoint Voltage	—	—	—	2,8,9,10	1	7①	—	3	V _O (6) V _O (6) V _O (5) V _O (5)	—	-0.40	—	-0.55	—	-0.68	V _{dc}	
	—	—	—	2,7,9,10	1	8①	—	3		—	—	—	—	—	—	—	
	—	—	—	2,7,8,10	1	9①	—	3		—	—	—	—	—	—	—	
	—	—	—	2,7,8,9	1	10①	—	3		—	—	—	—	—	—	—	
Switching Times	Pulse In	Pulse Out								Typ	Max	Typ	Max	Typ	Max		
Propagation Delay Time	7	6	—	2,8,9,10	1	—	—	3	t _{pd} (6) t _{pd} (5)	5.5	10.0	6.0	11.0	7.0	12.0	ns	
	10	5	—	2,7,8,9	1	—	—	3		5.5	10.0	6.0	11.0	7.0	12.0		
Rise Time	7	6	—	2,8,9,10	1	—	—	3	t _r (6) t _r (5)	6.5	13.0	7.0	13.5	9.5	15.0		
	10	5	—	2,7,8,9	1	—	—	3		6.5	13.0	7.0	13.5	9.5	15.0		
Fall Time	7	6	—	2,8,9,10	1	—	—	3	t _f (6) t _f (5)	6.0	12.0	6.0	12.0	7.0	13.5		
	10	5	—	2,7,8,9	1	—	—	3		6.0	12.0	6.0	12.0	7.0	13.5		

Pins not listed are left open. For MC310, connect pin 4 to pin 5 for all tests. ① Input voltage is adjusted to obtain dV_O / dV_{in} = 0.

② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

DUAL 3-INPUT GATE

MECL MC300 series

MC312A

Dual 3-input gate that provides the positive logic "NOR" function, and features an internal bias driver. This gate is available without bias driver as MC312.

TYPICAL INPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

MC312A (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc $\pm 1\%$							Symbol Pin No in ()	Test Limits						Unit		
	@ Test Temperature	-55°C			+25°C				-55°C			+25°C					
		Min	Max	Min	Max	Min	Max		Min	Max	Min	Max	Min	Max			
Power Supply Drain Current	—	—	—	1,2,6,7,8,9,10	—	—	3	t _e (2)	—	17.7	—	17.0	—	16.4	mADC		
Input Current	1	—	—	2,6,7,8,9,10	—	—	3	I _{in} (1)	—	—	—	100	—	—	μADC		
	6	—	—	1,2,7,8,9,10	—	—	3	I _{in} (6)	—	—	—	—	—	—			
	7	—	—	1,2,6,8,9,10	—	—	3	I _{in} (7)	—	—	—	—	—	—			
	8	—	—	1,2,6,7,9,10	—	—	3	I _{in} (8)	—	—	—	—	—	—			
	9	—	—	1,2,6,7,8,10	—	—	3	I _{in} (9)	—	—	—	—	—	—			
	10	—	—	1,2,6,7,8,9	—	—	3	I _{in} (10)	—	—	—	—	—	—			
"NOR" Logical "1" Output Voltage	—	—	6	1,2,7,8,9,10	—	—	3	V _t (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc		
	—	—	7	1,2,6,8,9,10	—	—	3	V _t (5)	—	—	—	—	—	—			
	—	—	8	1,2,6,7,9,10	—	—	3	V _t (5)	—	—	—	—	—	—			
	—	—	1	2,6,7,8,9,10	—	—	3	V _t (4)	—	—	—	—	—	—			
	—	—	9	1,2,6,7,8,10	—	—	3	V _t (4)	—	—	—	—	—	—			
	—	—	10	1,2,6,7,8,9	—	—	3	V _t (4)	—	—	—	—	—	—			
"NOR" Logical "0" Output Voltage	—	6	—	1,2,7,8,9,10	—	—	3	V _t (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc		
	—	7	—	1,2,6,8,9,10	—	—	3	V _t (5)	—	—	—	—	—	—			
	—	8	—	1,2,6,7,9,10	—	—	3	V _t (5)	—	—	—	—	—	—			
	—	1	—	2,6,7,8,9,10	—	—	3	V _t (4)	—	—	—	—	—	—			
	—	9	—	1,2,6,7,8,10	—	—	3	V _t (4)	—	—	—	—	—	—			
	—	10	—	1,2,6,7,8,9	—	—	3	V _t (4)	—	—	—	—	—	—			
"NOR" Output Voltage Change	—	—	6	1,2,7,8,9,10	—	5①	3	ΔV_t (5)	—	-0.055	—	-0.055	—	-0.050	Volts		
	—	—	1	2,6,7,8,9,10	—	4①	3	ΔV_t (4)	—	-0.055	—	-0.055	—	-0.060	Volts		
"NOR" Saturation Breakpoint Voltage	—	—	—	1,2,7,8,9,10	6①	—	3	V _t (5)	—	-0.40	—	-0.55	—	0.68	Vdc		
	—	—	—	1,2,6,8,9,10	7①	—	3	V _t (5)	—	—	—	—	—	—			
	—	—	—	1,2,6,7,9,10	8①	—	3	V _t (5)	—	—	—	—	—	—			
	—	—	—	2,6,7,8,9,10	1①	—	3	V _t (4)	—	—	—	—	—	—			
	—	—	—	1,2,6,7,8,10	9①	—	3	V _t (4)	—	—	—	—	—	—			
	—	—	—	1,2,6,7,8,9	10①	—	3	V _t (4)	—	—	—	—	—	—			
Switching Times	Pulse In	Pulse Out							Typ	Max	Typ	Max	Typ	Max	ns		
Propagation Delay Time	6	5	—	1,2,7,8,9,10	—	—	3	t _{d1} (5)	6.5	10.5	6.5	10.5	7.5	11.5			
	1	4	—	2,6,7,8,9,10	—	—	3	t _{d1} (4)	6.5	10.5	6.5	10.5	7.5	11.5			
	6	5	—	1,2,7,8,9,10	—	—	3	t _{d1} (5)	8.5	11.5	8.5	11.5	10.0	15.0			
	1	4	—	2,6,7,8,9,10	—	—	3	t _{d1} (4)	8.5	11.5	8.5	11.5	10.0	15.0			
Rise Time	6	5	—	1,2,7,8,9,10	—	—	3	t _r (5)	9.0	12.5	9.5	12.5	11.5	15.5			
	1	4	—	2,6,7,8,9,10	—	—	3	t _r (4)	9.0	12.5	9.5	12.5	11.5	15.5			
Fall Time	6	5	—	1,2,7,8,9,10	—	—	3	t _f (5)	8.5	14.0	9.0	14.0	11.5	17.0			
	1	4	—	2,6,7,8,9,10	—	—	3	t _f (4)	8.5	14.0	9.0	14.0	11.5	17.0			

Pins not listed are left open.

① Input voltage is adjusted to obtain dv "NOR"/dV_{in} = 0. ② Current test conditions: no load = 0; full load = -2.5 mADC ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

QUAD 2-INPUT GATE

MECL MC300 series

MC313F

Quad 2-input gate that provides the positive logic "NOR" function, and features an internal bias driver.

TYPICAL INPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

MC313F (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc ± 1%						Symbol Pin No in ()	Test Limits						Unit	
	@ Test Temperature			-55°C				-55°C		+25°C		+125°C			
	V _H Pin No	V _{1max} Pin No	V _L Pin No	V _{EE} Pin No	dV _H Pin No	I _L Pin No	Ground Pin No	Min	Max	Min	Max	Min	Max		
Power Supply Drain Current	—	—	—	1,3,6,7,9,10,11,12,14	—	—	4	t _E (3)	—	31.0	—	30.0	—	29.0	
Input Current	1	—	—	3,6,7,9,10,11,12,14	—	—	4	I _{IN} (1)	—	—	—	100	—	—	
	6	—	—	1,3,6,9,10,11,12,14	—	—	4	I _{IN} (6)	—	—	—	—	—	—	
	7	—	—	1,3,6,9,10,11,12,14	—	—	4	I _{IN} (7)	—	—	—	—	—	—	
	9	—	—	1,3,6,9,10,11,12,14	—	—	4	I _{IN} (9)	—	—	—	—	—	—	
	10	—	—	1,3,6,7,9,10,11,12,14	—	—	4	I _{IN} (10)	—	—	—	—	—	—	
	11	—	—	1,3,6,7,9,10,11,12,14	—	—	4	I _{IN} (11)	—	—	—	—	—	—	
	12	—	—	1,3,6,7,9,10,11,12,14	—	—	4	I _{IN} (12)	—	—	—	—	—	—	
	14	—	—	1,3,6,7,9,10,11,12	—	—	4	I _{IN} (14)	—	—	—	—	—	—	
“NOR” Logical “1” Output Voltage	—	—	1	3,6,7,9,10,11,12,14	—	—	4	V _O (2)	-0.825	-0.945	0.690	-0.795	-0.525	-0.655	
	—	—	6	3,6,7,9,10,11,12,14	—	—	4	V _O (5)	—	—	—	—	—	—	
	—	—	7	1,3,6,9,10,11,12,14	—	—	4	V _O (8)	—	—	—	—	—	—	
	—	—	9	1,3,6,7,9,10,11,12,14	—	—	4	V _O (10)	—	—	—	—	—	—	
	—	—	10	1,3,6,7,9,11,12,14	—	—	4	V _O (12)	—	—	—	—	—	—	
	—	—	11	1,3,6,7,9,10,12,14	—	—	4	V _O (13)	—	—	—	—	—	—	
	—	—	12	1,3,6,7,9,10,11,14	—	—	4	V _O (13)	—	—	—	—	—	—	
	—	—	13	1,3,6,7,9,10,11,12	—	—	4	V _O (2)	—	—	—	—	—	—	
“NOR” Logical “0” Output Voltage	—	1	—	3,6,7,9,10,11,12,14	—	—	4	V _O (2)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	
	—	6	—	1,3,7,9,10,11,12,14	—	—	4	V _O (5)	—	—	—	—	—	—	
	—	7	—	1,3,6,9,10,11,12,14	—	—	4	V _O (8)	—	—	—	—	—	—	
	—	9	—	1,3,6,7,10,11,12,14	—	—	4	V _O (10)	—	—	—	—	—	—	
	—	10	—	1,3,6,7,9,11,12,14	—	—	4	V _O (12)	—	—	—	—	—	—	
	—	11	—	1,3,6,7,9,10,12,14	—	—	4	V _O (13)	—	—	—	—	—	—	
	—	12	—	1,3,6,7,9,10,11,14	—	—	4	V _O (2)	—	—	—	—	—	—	
	—	14	—	1,3,6,7,9,10,11,12	—	—	4	V _O (2)	—	—	—	—	—	—	
“NOR” Output Voltage Change (No load to full load)	—	—	—	1,3,6,7,9,10,11,12,14	—	2①	—	ΔV _O (2)	—	-0.055	—	-0.055	—	-0.060	
	—	—	—	1,3,6,7,9,10,11,12,14	—	5②	—	ΔV _O (5)	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,12,14	—	8③	—	ΔV _O (8)	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,12,14	—	13④	—	ΔV _O (13)	—	—	—	—	—	—	
“NOR” Saturation Breakpoint Voltage	—	—	—	1,3,6,7,9,10,11,12,14	1①	—	4	V _S (2)	—	-0.40	—	-0.55	—	-0.68	
	—	—	—	1,3,6,7,9,10,11,12,14	7②	—	4	V _S (5)	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,12,14	10③	—	4	V _S (8)	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,12,14	12④	—	4	V _S (13)	—	—	—	—	—	—	
Switching Time Propagation Delay Time	Pulse In	Pulse Out	—	3,6,7,9,10,11,12,14	—	—	4	t _{PD} (2)	6.5	11.0	6.5	11.0	8.0	14.5	
	1	2	—	1,3,7,9,10,11,12,14	—	—	4	t _{PD} (5)	—	—	—	—	—	ns	
	6	5	—	1,3,6,7,10,11,12,14	—	—	4	t _{PD} (8)	—	—	—	—	—	—	
	9	8	—	1,3,6,7,10,11,12,14	—	—	4	t _{PD} (13)	—	—	—	—	—	—	
	11	13	—	1,3,6,7,9,10,12,14	—	—	4	t _{PD} (2)	8.5	13.5	8.5	13.5	10.0	16.0	
Rise Time	1	2	—	3,6,7,9,10,11,12,14	—	—	4	t _R (5)	—	—	—	—	—	—	
	6	5	—	1,3,7,9,10,11,12,14	—	—	4	t _R (8)	—	—	—	—	—	—	
	9	8	—	1,3,6,7,10,11,12,14	—	—	4	t _R (13)	—	—	—	—	—	—	
	11	13	—	1,3,6,7,9,10,12,14	—	—	4	t _R (2)	8.5	12.5	9.0	12.5	11.0	15.5	
Fall Time	1	2	—	3,6,7,9,10,11,12,14	—	—	4	t _F (5)	—	—	—	—	—	—	
	6	5	—	1,3,7,9,10,11,12,14	—	—	4	t _F (8)	—	—	—	—	—	—	
	9	8	—	1,3,6,7,10,11,12,14	—	—	4	t _F (13)	—	—	—	—	—	—	
	11	13	—	1,3,6,7,9,10,12,14	—	—	4	t _F (2)	9.0	14.0	9.5	14.0	11.5	17.0	

Pins not listed are left open. ① Input voltage is adjusted to obtain dV “NOR” / dV_{in} = 0. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— -55°C and +25°C
- - +125°C

AC-COUPLED J-K FLIP-FLOP

MECL MC300 series

MC314

High-speed ac-coupled J-K flip-flop with dc Set and Reset input for counter and shift register applications up to 30 MHz operation.

TRANSFER CHARACTERISTICS

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 - INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 - SENSITIVITY (NO TOGGLE)

FIGURE 4 - SENSITIVITY (TOGGLE)

MC314 (continued)

ELECTRICAL CHARACTERISTICS

@ Test Temperature { -55°C +25°C +125°C	Test Conditions Vdc ± 1%						Symbol Pin No in ()	Test Limits						Unit				
	V _H Pin No	V _{I max} Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No		-55°C		+25°C		+125°C						
	—	-0.945	-1.450	-5.20	—	—		Min	Max	Min	Max	Min	Max					
Power Supply Drain Current	—	7,10	—	1,2,6,8,9	—	—	3	I _E (2)	—	28.5	—	28.5	—	27.5 mAdc				
Input Current	7	—	—	1,2,6,8,9,10	—	—	3	I _{in} (7)	—	—	—	100	—	— μAdc				
8	—	—	—	1,2,6,7,9,10	—	—	3	I _{in} (8)	—	—	—	—	—	—				
9	—	—	—	1,2,6,7,8,10	—	—	3	I _{in} (9)	—	—	—	—	—	—				
10	—	—	—	1,2,6,7,8,9	—	—	3	I _{in} (10)	—	—	—	—	—	—				
"Q" Logical "1" Output Voltage	—	—	6①	1,2,7,8,9,10	—	—	3	V ₁ (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655 Vdc				
"Q" Logical "0" Output Voltage	—	—	1②	2,6,7,8,9,10	—	—	3	V ₂ (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675 Vdc				
"Q̄" Logical "1" Output Voltage	—	—	1③	2,6,7,8,9,10	—	—	3	V ₁ (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655 Vdc				
"Q̄" Logical "0" Output Voltage	—	—	6③	1,2,7,8,9,10	—	—	3	V ₂ (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675 Vdc				
"Q" Output Voltage Change	—	6	—	1,2,7,8,9,10	—	5③	3	ΔV ₁ (5)	—	-0.055	—	-0.055	—	-0.060 Volts				
"Q̄" Output Voltage Change	—	1	—	2,6,7,8,9,10	—	4③	3	ΔV ₂ (4)	—	-0.055	—	-0.055	—	-0.060 Volts				
"Q" Saturation Breakpoint Voltage	—	—	—	1,2,7,8,9,10	6①	—	3	V _S (5)	—	-0.50	—	-0.65	—	-0.75 Vdc				
"Q̄" Saturation Breakpoint Voltage	—	—	—	2,6,7,8,9,10	1①	—	3	V _S (4)	—	-0.50	—	-0.65	—	-0.75 Vdc				
"Q" or "Q̄" Latch Voltage	—	—	—	2,7,8,9,10	1,6①	—	3	V _L (1,6)	-1.16	-1.34	-1.09	-1.21	-0.93	-1.07 Vdc				
Toggle Frequency (See Figures 1 and 2)	Pulse In	Pulse Out	—	1,2,6,9	—	—	3	f _{rog}	—	—	30	—	—	MHz				
	7,10	5																
Sensitivity (No Toggle)	7,10	4	—	1,2,6,8,9	—	—	3		See Figure 3			See Figure 3						
Sensitivity (Toggle)	8,9	5	—	1,2,6,7,10	—	—	3		See Figure 3			See Figure 4						
Switching Times Propagation Delay Time	7,10	4,5	—	1,2,6,8,9	—	—	3		See Figure 4			Typ Max Typ Max Typ Max						
Rise Time	7,10	4,5	—	1,2,6,8,9	—	—	3	t _{tr} (4,5)	11.0	16.0	12.0	16.0	14.0	24.0 ns				
Fall Time	7,10	4,5	—	1,2,6,8,9	—	—	3	t _{tf} (4,5)	12.0	16.0	13.0	16.0	15.0	24.0 ns				
									11.5	16.0	12.5	16.0	15.0	26.0 ns				

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{in}/dV_o = 0$. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.
 ③ Apply momentary $V_{in} = 0$ to set output, then V_{in} for measurement. ④ Input voltage is adjusted to obtain $dV_{in}/dV_o = \infty$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— -55°C and +25°C
 - - +125°C

LINE DRIVER

MECL MC300 series

MC315

Line driver for driving lines of 93 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions					Symbol Pin No in ()	Ground Pin No	I _g (1) Pin No	Test Limits						Unit				
	V _{dc} ± 1%								-55°C		+25°C		+125°C						
	V _H Pin No	V _{i max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No				Min	Max	Min	Max	Min	Max					
Power Supply Drain Current	—	—	—	2.6,7.8	1	4,5	3	—	—	45	—	45	—	45	mAdc				
Input Current	6	—	—	2.7,8	1	—	3	I _{in} (6)	—	45	—	100	—	—	μAdc				
	7	—	—	2.6,8	1	—	3	I _{in} (7)	—	—	—	—	—	—					
	8	—	—	2.6,7	1	—	3	I _{in} (8)	—	—	—	—	—	—					
"NOR" Logical "1" Output Voltage	—	—	6	2.7,8	1	4,5	3	V ₁ (6)	-0.805	-0.945	-0.670	-0.795	-0.505	-0.655	Vdc				
	—	—	7	2.6,8	1	4,5	3	V ₁ (7)	—	—	—	—	—	—					
	—	—	8	2.6,7	1	4,5	3	V ₁ (8)	—	—	—	—	—	—					
"NOR" Logical "0" Output Voltage	—	6	—	2.7,8	1	4,5	3	V ₀ (6)	-1.540	-1.850	-1.450	-1.750	-1.320	-1.675	Vdc				
	—	7	—	2.6,8	1	4,5	3	V ₀ (7)	—	—	—	—	—	—					
	—	8	—	2.6,7	1	4,5	3	V ₀ (8)	—	—	—	—	—	—					
"OR" Logical "1" Output Voltage	—	6	—	2.7,8	1	4,5	3	V ₁ (6)	-0.805	-0.945	-0.670	-0.795	-0.505	-0.655	Vdc				
	—	7	—	2.6,8	1	4,5	3	V ₁ (7)	—	—	—	—	—	—					
	—	8	—	2.6,7	1	4,5	3	V ₁ (8)	—	—	—	—	—	—					
"OR" Logical "0" Output Voltage	—	—	6	2.7,8	1	4,5	3	V ₀ (6)	-1.540	-1.850	-1.450	-1.750	-1.320	-1.675	Vdc				
	—	—	7	2.6,8	1	4,5	3	V ₀ (7)	—	—	—	—	—	—					
	—	—	8	2.6,7	1	4,5	3	V ₀ (8)	—	—	—	—	—	—					
Switching Times	Pulse In	Pulse Out							Typ	Max	Typ	Max	Typ	Max					
Propagation Delay Time	6	5	—	2.7,8	1	—	3	t _{d1} (5)	10.0	20.0	10.0	20.0	15.0	30.0					
	6	4	—	2.7,8	1	—	3	t _{d1} (4)	12.0	25.0	12.0	25.0	17.0	34.0					
	6	5	—	2.7,8	1	—	3	t _{d2} (5)	12.0	25.0	12.0	25.0	13.0	30.0					
Rise Time	6	4	—	2.7,8	1	—	3	t _{d2} (4)	10.0	20.0	10.0	20.0	11.0	25.0					
Fall Time	6	5	—	2.7,8	1	—	3	t _f (5)	13.0	25.0	13.0	25.0	16.0	31.0					
	6	4	—	2.7,8	1	—	3	t _f (4)	10.0	20.0	10.0	20.0	14.5	26.0					
	6	5	—	2.7,8	1	—	3	t _f (5)	15.0	35.0	15.0	35.0	20.0	40.0					
	6	4	—	2.7,8	1	—	3	t _f (4)	15.0	35.0	15.0	35.0	20.0	40.0					

Pins not listed are left open. (1)Output is loaded with a 93-ohm resistor.

LAMP DRIVER

MECL MC300 series

MC316

Lamp driver that provides "OR" or "NOR" logic depending on the bias arrangement used and is capable of driving 6V lamps.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions							Symbol Pin No in ()	Test Limits						Unit		
	Vdc $\pm 1\%$						mAdc		-55°C			+25°C					
	V _H Pin No	V _I _{max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	V _{CC} Pin No			Min	Max	Min	Max	Min	Max			
Power Supply Drain Current	—	4,5,6	—	2,7	8	10	—	3	I _C (10)	—	21.0	—	21.0	—	20.5		
	—	4,5,6	—	2,7	8	10	—	3	I _E (2)	—	8.0	—	8.0	—	7.7		
Input Current	4	—	—	2,5,6,7	8	10	—	3	I _{IN} (4)	—	—	—	200	—	—		
	5	—	—	2,4,6,7	8	10	—	3	I _{IN} (5)	—	—	—	—	—	—		
	6	—	—	2,4,5,7	8	10	—	3	I _{IN} (6)	—	—	—	—	—	—		
	7	—	—	2,4,5,6	8	10	—	3	I _{IN} (7)	—	—	—	—	—	—		
	8	—	—	2,4,5,7	6	10	—	3	I _{IN} (8)	—	—	—	—	—	—		
Output Voltage, Low	—	—	6	2,4,5,7	8	10	9	3	V _{OL} (9)	—	0.9	—	1.0	—	0.8		
	—	—	6	2,4,5,8	7	10	9	3	V _{OL} (9)	—	0.9	—	1.0	—	0.8		
Output Voltage, High	—	4	—	2,5,6,7	8	10,9 ⁽¹⁾	—	3	V _{OH} (4)	—	—	—	5.8	—	5.8		
	—	5	—	2,4,6,7	8	10,9 ⁽¹⁾	—	3	V _{OH} (5)	—	—	—	—	—	—		
	—	6	—	2,4,5,7	8	10,9 ⁽¹⁾	—	3	V _{OH} (6)	—	—	—	—	—	—		
	—	6	—	2,4,5,8	7	10,9 ⁽¹⁾	—	3	V _{OH} (6)	—	—	—	—	—	—		

Pins not listed are left open. ⁽¹⁾ Pin 9 is connected to Vcc through a 10 k-ohm resistor.

⁽¹⁾ I_C specified for ambient temperature conditions. I_C = 100 mAdc at T_C = +125°C is acceptable, requiring a heat sink.

MECL-TO-SATURATED LOGIC TRANSLATOR

MECL MC300 series

MC317

Level translator intended for converting non-saturated MECL signal levels to saturated logic levels; provides "OR" or "NOR" logic depending on the bias arrangement used.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions								Symbol Pin No in ()	Ground Pin No	Test Limits		Unit				
	Vdc ± 1%				mAdc						—	—					
	—	V _H Pin No	V _{I max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	V _{CC} Pin No	I _L Pin No			Min	Max					
@ Test Temperature {	-55°C	—	-0.945	-1.450	-5.20	-1.25	+6.0	10	I _C (10)	—	7.0	—	7.0	—	6.8	mAdc	
Temperature {	+25°C	—	-0.690	-0.795	-1.350	-5.20	-1.15	+6.0	I _C (2)	—	7.0	—	7.0	—	6.8	mAdc	
+125°C	—	—	-0.655	-1.300	-5.20	-1.00	+6.0	10									
Power Supply Drain Current	—	6	—	2,4,5,7	8	10	—	—	3	I _C (10)	—	7.0	—	7.0	—	6.8	mAdc
—	—	—	—	2,4,5,6,7	8	10	—	—	3	I _C (2)	—	7.0	—	7.0	—	6.8	mAdc
Input Current	4	—	—	2,5,6,7	8	10	—	—	3	I _{in} (4)	—	—	—	—	—	—	μAdc
5	—	—	—	2,4,6,7	8	10	—	—	3	I _{in} (5)	—	—	—	—	—	—	—
6	—	—	—	2,4,5,7	8	10	—	—	3	I _{in} (6)	—	—	—	—	—	—	—
7	—	—	—	2,4,5,6,8	6	10	—	—	3	I _{in} (7)	—	—	—	—	—	—	—
8	—	—	—	2,4,5,7	6	10	—	—	3	I _{in} (8)	—	—	—	—	—	—	—
Output Voltage, High	—	—	—	2,4,5,6,7	8	10	—	—	3	V _{OH} (9)	—	—	5.8	—	—	—	Vdc
—	—	—	—	2,4,5,6,8	7	10	—	—	3	V _{OH} (9)	—	—	5.8	—	—	—	Vdc
Output Voltage, Low	—	4	—	2,5,6,7	8	10	9	3	V _{OL} (9)	—	0.45	—	0.45	—	0.50	—	Vdc
—	5	—	—	2,4,6,7	8	10	9	3	V _{OL} (9)	—	—	—	—	—	—	—	Vdc
—	6	—	—	2,4,5,7	8	10	9	3	V _{OL} (9)	—	—	—	—	—	—	—	Vdc
—	6	—	—	2,4,5,8	7	10	9	3	V _{OL} (9)	—	—	—	—	—	—	—	Vdc
Switching Times	Pulse In	Pulse Out	—	—	—	—	—	—	Typ	Max	Typ	Max	Typ	Max	ns	—	
Turn-On Time	6	9	—	2,4,5,7	8	10	—	3	t _{on}	27.5	40.0	27.5	35.0	29.5	35.0	—	
8	9	—	—	2,4,5,7	6	10	—	3	t _{on}	27.5	40.0	27.5	35.0	29.5	35.0	—	
Turn-Off Time	6	9	—	2,4,5,7	8	10	—	3	t _{off}	25.0	40.0	26.0	35.0	27.0	40.0	—	
8	9	—	—	2,4,5,7	6	10	—	3	t _{off}	25.0	40.0	26.0	35.0	27.0	40.0	—	

SATURATED LOGIC-TO-MECL
DUAL TRANSLATOR

MECL MC300 series

MC318

Level translator intended for converting saturated logic levels to non-saturated MECL signal levels.

SWITCHING CHARACTERISTICS AND WAVEFORMS

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions				Symbol Pin No in ()	Test Limits						Unit	
	Vdc $\pm 1\%$					-55°C		$+25^{\circ}\text{C}$		$+125^{\circ}\text{C}$			
	$+0.45$	$+5.0$	-5.20	$+6.0$		—	4.0	—	4.0	—	3.9	mAdc	
@ Test Temperature { -55°C	$+0.45$	$+5.0$	-5.20	$+6.0$	$I_c (7)$	—	24.0	—	24.0	—	23.3	mAdc	
$+25^{\circ}\text{C}$	$+0.45$	$+5.0$	-5.20	$+6.0$	$I_c (2)$	—	—	—	—	—	—	mAdc	
$+125^{\circ}\text{C}$	$+0.45$	$+5.0$	-5.20	$+6.0$									
Power Supply Drain Current	—	—	2	7	3	—	—	—	—	—	—		
	—	—	2	7	3	—	—	—	—	—	—		
Input Load Current	—	—	2	7	3.5	—	—	—	—	8.0	—		
	—	—	2	7	3.6	—	—	—	—	—	—		
	—	—	2	7	3.9	—	—	—	—	—	—		
	—	—	2	7	3.10	—	—	—	—	—	—		
Input Reverse Current	—	—	2	5.7	3.6	—	—	—	—	0.5	—	μAdc	
	—	—	2	6.7	3.5	—	—	—	—	—	—		
	—	—	2	7.9	3.10	—	—	—	—	—	—		
	—	—	2	7.10	3.9	—	—	—	—	—	—		
"OR" Logical "1" Output Voltage	—	5	2	7	V ₁ (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc	
	—	6	2	7	V ₂ (4)	—	—	—	—	—	—		
	—	9	2	7	V ₃ (1)	—	—	—	—	—	—		
	—	10	2	7	V ₄ (1)	—	—	—	—	—	—		
"OR" Logical "0" Output Voltage	5	—	2	7	V ₂ (4)	-1.560	-1.950	-1.465	-1.750	-1.340	-1.675	Vdc	
6	—	2	7	3	V ₁ (4)	—	—	—	—	—	—		
9	—	2	7	3	V ₂ (1)	—	—	—	—	—	—		
10	—	2	7	3	V ₃ (1)	—	—	—	—	—	—		
Bias Voltage Output Current	—	—	2	7	V _{BB} (8)	-1.19	-1.32	-1.09	-1.22	-0.95	-1.08	Vdc	
						—	—	—	—	—	—		
Switching Times	Pulse In	Pulse Out											
Propagation Delay Time	5	4	2	7	3	$t_{pd} (4)$	16.5	27.0	15.0	23.0	19.0	28.0	
	9	1	2	7	3	$t_{pd} (1)$	16.5	27.0	15.0	23.0	19.0	28.0	
	5	4	2	7	3	$t_{pd} (4)$	13.0	20.0	15.5	23.0	20.0	31.0	
	9	1	2	7	3	$t_{pd} (1)$	13.0	20.0	15.5	23.0	20.0	31.0	
Rise Time	5	4	2	7	3	$t_r (4)$	8.0	15.0	7.0	13.0	9.5	16.0	
	9	1	2	7	3	$t_r (1)$	8.0	15.0	7.0	13.0	9.5	16.0	
Fall Time	5	4	2	7	3	$t_f (4)$	8.0	14.0	7.5	13.0	10.0	17.0	
	9	1	2	7	3	$t_f (1)$	8.0	14.0	7.5	13.0	10.0	17.0	

Pins not listed are left open.

MECL

MC350 SERIES

INDEX

Functions and Characteristics

Logic Description

General Information

Circuit Description

Definitions

Packages

Worst-Case Transfer Characteristics

Maximum Ratings

Noise Margins

DEVICE SPECIFICATIONS

MC351	5-Input Gate
MC352A	R-S Flip-Flop
MC353	Half-Adder
MC354	Bias Driver
MC355	Gate Expander
MC356	3-Input Gate
MC357	3-Input Gate
MC358A	AC-Coupled J-K Flip-Flop
MC359	Dual 2-Input Gate
MC360	Dual 2-Input Gate
MC361	Dual 2-Input Gate
MC362A	Dual 3-Input Gate
MC363F	Quad 2-Input Gate
MC364	AC-Coupled J-K Flip-Flop
MC365	Line Driver
MC366	Lamp Driver
MC367	MECL to Saturated Logic Translator
MC368	Saturated Logic to MECL Translator
MC369F	Dual 4-Input Clock Driver/High-Speed Gate
MC369G	Dual 2-Input Clock Driver/High-Speed Gate

FUNCTIONS AND CHARACTERISTICS

$V_{CC} = 0$, $V_{EE} = -5.2$ V, $T_A = 25^\circ\text{C}$

Function	Type ①	DC Output Loading Factor Each Output	Propagation Delay t_{pd} ns typ	Total Power Dissipation mW typ/pkg	Case
GATES					
5-Input OR/NOR Gate	MC351	25	7.5	37	602B,606
3-Input OR/NOR Gate	MC356		7.5	37	
3-Input OR/NOR Gate	MC357		7.5	15	
Dual 2-Input NOR Gate	MC359		7.0	54	
Dual 2-Input NOR Gate	MC360		7.0	54	
Dual 2-Input NOR Gate	MC361		7.0	41	
Dual 3-Input NOR Gate (With Internal Bias)	MC362A		7.5	70	
Quad 2-Input NOR Gate	MC363F		7.0	125	607
Dual 4-Input High-Speed Gate	MC369F	100	3.0	250	607
Dual 2-Input High-Speed Gate	MC369G	100	3.0	250	602B
FLIP-FLOPS					
R-S Flip-Flop	MC352A	25	11	42	602B,606
AC-Coupled J-K Flip-Flop	MC358A		8.5	87	
AC-Coupled J-K Flip-Flop	MC364		12	118	
HALF-ADDER					
Half-Adder	MC353	25	7.5	63	602B,606
GATE EXPANDER					
5-Input Gate Expander	MC355	—	4.5	—	602B,606
DRIVERS					
Bias Driver	MC354	25	—	18	602B,606
Line Driver	MC365	—	14	270 ②	
Lamp Driver	MC366	—	—	135	
Dual 4-Input Clock Driver	MC369F	100	3.0	250	607
Dual 2-Input Clock Driver	MC369G	100	3.0	250	602B
TRANSLATORS					
Level Translator — MECL to Saturated Logic	MC367	7 (DTL)	27.5	63	602B,606
Level Translator — Saturated Logic to MECL	MC368	25 (MECL)	17	105	602B,606

① G suffix denotes Metal Can, F suffix denotes Flat Package. (i.e., MC351G = Metal Can, MC351F = Flat Package.)

② With 50-ohm load (each side)

LOGIC DESCRIPTION

MECL MC350 series

POSITIVE LOGIC: V_H is a logical "1", V_L is a logical "0"
NEGATIVE LOGIC: V_H is a logical "0", V_L is a logical "1"

The logic diagrams shown describe the circuits of the MC350 line and permit quick selection of those circuits required for the implementation of this particular logic system. Pertinent information such as logic equations, typical time delay, typical power dissipation, and truth tables is provided to show line compatibility. Package pin numbers and fan-in and fan-out for each device are specified on each logic diagram. The numbers at the

ends of the terminals are package pin numbers. The numbers in parentheses indicate ac loading factors at each terminal.

MECL circuits require a bias voltage which, for best results, should be obtained from a regulated, temperature-compensated, bias supply. A bias driver, type MC354, is included in the MECL line to provide this function when the bias driver is not contained in the logic element. Specifications for the bias driver are included in this section of the Data Book.

<p>MC352A - R-S FLIP-FLOP</p> <table border="1"> <thead> <tr> <th colspan="2"></th> <th colspan="2">Q⁺¹</th> </tr> <tr> <th>R</th> <th>S</th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>N.D.</td> </tr> </tbody> </table> <p>$t_{dr} = 10.5 \text{ ns}$ $P_d = 42 \text{ mW}$</p> <p>DC Set-Reset flip-flop with expandable input and buffered outputs. This flip-flop is available without buffered outputs as MC352.</p>			Q ⁺¹		R	S	0	1	0	0	0	0	1	0	0	1	0	1	1	1	1	0	1	0	1	1	0	N.D.	<p>MC358A - AC-COUPLED J-K FLIP-FLOP</p> <p>CLOCKED J-K OPERATION</p> <table border="1"> <thead> <tr> <th colspan="2"></th> <th colspan="2">Q⁺¹</th> </tr> <tr> <th>J</th> <th>K</th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>N.D.</td> </tr> </tbody> </table> <p>$t_{dr} = 10.5 \text{ ns}$ $P_d = 42 \text{ mW}$</p> <p>The J_s and K_s inputs refer to logic levels while the C_0 input refers to dynamic logic swings. The J_s and K_s inputs would be changed to a logical "1" only while the C_0 input is in a logic "1" state. C_0 maximum "1" level = $V_{cc} - 0.6$ volts)</p>			Q ⁺¹		J	K	0	1	0	0	0	0	0	1	1	1	1	0	1	0	1	1	0	N.D.	<p>MC364 - AC-COUPLED J-K FLIP-FLOP</p> <p>CLOCKED J-K OPERATION</p> <table border="1"> <thead> <tr> <th colspan="2"></th> <th colspan="2">Q⁺¹</th> </tr> <th>J</th> <th>K</th> <th>0</th> <th>1</th> </thead></table>			Q ⁺¹		J	K	0	1
		Q ⁺¹																																																												
R	S	0	1																																																											
0	0	0	0																																																											
1	0	0	1																																																											
0	1	1	1																																																											
1	0	1	0																																																											
1	1	0	N.D.																																																											
		Q ⁺¹																																																												
J	K	0	1																																																											
0	0	0	0																																																											
0	1	1	1																																																											
1	0	1	0																																																											
1	1	0	N.D.																																																											
		Q ⁺¹																																																												
0	0	0	0																																																											
0	1	1	1																																																											
1	0	1	0																																																											
1	1	0	N.D.																																																											

$t_{dr} = 10.5 \text{ ns}$
 $P_d = 42 \text{ mW}$

The J and K inputs refer to logic levels while the C_0 input refers to dynamic logic swings. The J and K inputs should be changed to a logical "1" only while the C_0 input is in a logic "1" state. C_0 maximum "1" level = $V_{cc} - 0.6$ volts)

| **MC351 - 5-INPUT GATE** | | | Q | | |---|---|---|------| | R | S | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | | 1 | 1 | 0 | N.D. | $t_{dr} = 7.5 \text{ ns}$ $P_d = 37 \text{ mW}$ Provides the positive logic "NOR" function and its complement simultaneously. | **R-S OPERATION** | | | Q | | |---|---|---|------| | R | S | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | | 1 | 1 | 0 | N.D. | $t_{dr} = 7.5 \text{ ns}$ $P_d = 87 \text{ mW}$ AC-Coupled J-K flip-flop with dc Set and Reset inputs and buffered outputs for counter and shift register applications up to 15 MHz. | **R-S OPERATION** | | | Q | | |---|---|---|------| | R | S | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | | 1 | 1 | 0 | N.D. | $t_{dr} = 12 \text{ ns}$ $P_d = 118 \text{ mW}$ High-speed ac-coupled J-K flip-flop with dc Set and Reset inputs for counter and shift register applications up to 30 MHz operation. |
| **MC356 - 3-INPUT GATE** | | | Q | | |---|---|---|------| | R | S | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | | 1 | 1 | 0 | N.D. | $t_{dr} = 7.0 \text{ ns}$ $P_d = 37 \text{ mW}$ Provides the positive logic "NOR" function and its complement simultaneously. | **MC357 - 3-INPUT GATE** | | | Q | | |---|---|---|------| | R | S | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | | 1 | 1 | 0 | N.D. | $t_{dr} = 7.0 \text{ ns}$ $P_d = 15 \text{ mW}$ *No pull-down resistors Provides the positive logic "NOR" function and its complement simultaneously. Same as MC356, with pull-down resistors omitted, permitting a reduction of power dissipation (see schematic diagram on the data sheet). | **MC359 - DUAL 2-INPUT GATE** | | | Q1 | | Q2 | | |---|---|----|------|----|---| | R | S | 0 | 1 | 0 | 1 | | 0 | 1 | 1 | 0 | 1 | 0 | | 1 | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 1 | 0 | 1 | | 1 | 1 | 0 | N.D. | 1 | 0 | $t_{dr} = 6.5 \text{ ns}$ $P_d = 27 \text{ mW/gate}$ Provides the positive logic "NOR" function. |

LOGIC DESCRIPTION (continued)

MC360 — DUAL 2-INPUT GATE	MC361 — DUAL 2-INPUT GATE	MC362A — DUAL 3-INPUT GATE
 Provides the positive logic "NOR" function. Same as MC359 with one output pull-down resistor optional (see schematic diagram on the data sheet). MC36F — QUAD 2-INPUT GATE Provides the positive logic "NOR" function, and features an internal bias driver. MC369G — HIGH-SPEED CLOCK DRIVER OR DUAL 2-INPUT GATE Provides the positive logic "NOR" function and its complement simultaneously. MC367 — LEVEL TRANSLATOR Intended for converting non-saturated MECL signal levels to saturated logic levels. Positive "NOR" function is obtained by applying V_{DD} to pin 7 or 8, with pins 4, 5, and 6 used as inputs. Positive "OR" is obtained by applying V_{DD} to pin 4, 5, or 6, with pins 7 and 8 used as inputs.	 Provides the positive logic "NOR" function. Same as MC359 with one output pull-down resistor omitted and the second optional (see schematic diagram on the data sheet). MC365 — LINE DRIVER Drives lines of 50 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously. MC353 — HALF-ADDER Provides the "SUM", "CARRY", and "NOR" functions simultaneously. If complement inputs are not used, an undefined state can occur. MC368 — LEVEL TRANSLATOR Intended for converting saturated logic levels to non-saturated MECL signal levels. By applying DTL input logic levels as defined by logical "0" at 0.4 V and logical "1" at 5.0 V, corresponding MECL outputs are obtained as defined by logical "0" at -1.55 V and logical "1" at -0.75 V. MC355 — 5-INPUT EXPANDER For use with the MC352A, MC356, MC357, and MC365. Each expander unit increases the fan-in of the basic gate by five. For highest performance, a maximum of three expanders per gate is recommended.	 Provides the positive logic "NOR" function, and features an internal bias driver. This gate without the bias driver is available as the MC362. MC369F — HIGH-SPEED CLOCK DRIVER OR DUAL 4-INPUT GATE Provides the positive logic "NOR" function and its complement simultaneously. MC366 — LAMP DRIVER Capable of driving 6-volt lamps. Positive "NOR" function is obtained by applying V_{DD} to pin 4, 5, or 6, with pins 7 and 8 used as inputs. Positive "OR" is obtained by applying V_{DD} to pin 7 or 8, with pins 4, 5, and 6 used as inputs. MC356 — DUAL 4-INPUT GATE Provides the positive logic "NOR" function and its complement simultaneously. MC362 — DUAL 3-INPUT GATE Provides the positive logic "NOR" function and its complement simultaneously.
$t_{dl} = 6.5 \text{ ns}$ $P_D = 27 \text{ mW/gate}$	$t_{dl} = 6.5 \text{ ns}$ $P_D = 21 \text{ mW/gate}$	$t_{dl} = 7.5 \text{ ns}$ $P_D = 35 \text{ mW/gate}$
$t_{dl} = 6.5 \text{ ns}$ $P_D = 31 \text{ mW/gate}$	$t_{dl} = 14 \text{ ns}$ $P_D = 270 \text{ mW (with } 50 \Omega \text{ load)}$	$t_{dl} = 3 \text{ ns}$ $P_D = 125 \text{ mW/gate}$
$t_{dl} = 3 \text{ ns}$ $P_D = 125 \text{ mW/gate}$	$t_{dl} = 7 \text{ ns}$ $P_D = 63 \text{ mW}$	$P_D = 135 \text{ mW}$
$t_{dl} = 30 \text{ ns}$ $P_D = 63 \text{ mW}$	$t_{dl} = 17 \text{ ns}$ $P_D = 105 \text{ mW}$	$t_{dl} = 5 \text{ ns}$

GENERAL INFORMATION

MECL MC350 series

CIRCUIT DESCRIPTION

The MECL line of monolithic integrated logic circuits was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical MECL circuit comprises a differential-amplifier input, with emitter-follower output to restore dc levels. High fan-out operation is possible because of the high input impedance of the differential amplifier and the low output impedance of the emitter followers. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the function and its complement.

POWER-SUPPLY CONNECTIONS

Any one of the power supply nodes, V_{BB} , V_{CC} , or V_{EE} may be used as ground; however, the manufacturer has found it most convenient to ground the V_{CC} node. In such a case: $V_{CC} = 0$, $V_{BB} = -1.15$ V, $V_{EE} = -5.2$ V, as shown in the schematic diagram above.

SYSTEM LOGIC SPECIFICATIONS

The output logic swing of 0.8 V then varies from a low state of $V_L = -1.55$ V to a high state of $V_H = -0.75$ V with respect to ground.

Positive logic is used when reference is made to logical "0's" or "1's". Then

$$\left. \begin{array}{l} "0" = -1.55 \text{ V} \\ "1" = -0.75 \text{ V} \end{array} \right\} \text{ typical}$$

Dynamic logic refers to a change of logic states. Dynamic "0" is a negative going voltage excursion and a dynamic "1" is a positive going voltage excursion.

CIRCUIT OPERATION

A fixed bias of -1.15 volts is applied to the "bias input" of the differential amplifier and the logic signals are applied to the "signal input". If a logical "0" is applied, the current through R_E is supplied by the fixed-biased transistor. A drop of 800 mV occurs across R_{C2} . The OR output then is -1.55 V, or one V_{BE} -drop below 800 mV. Since no current flows in the "signal input" transistor, the NOR output is a V_{BE} -drop below ground, or -0.75 volts. When a logical "1" level is applied to the "signal input", the current through R_{C2} is switched to the "signal input" transistor and a drop of 800 mV occurs across R_{C1} . The OR output then goes to -0.75 volts and the NOR output goes to -1.55 volts.

Note: Any unused input should be connected to V_{EE}.

BIAS VOLTAGE SOURCE

The bias voltage applied to the bias input is obtained from a regulated, temperature-compensated bias driver, type MC354. The temperature characteristics of the bias driver compensate for any variations in circuit operating point over the temperature range or supply voltage changes, to insure that the threshold point is always in the center of the transition region. The bias driver can be used to drive up to 25 logic elements and should be employed for all elements except those with built-in bias networks.

BASIC MECL GATE CIRCUIT

GENERAL INFORMATION (continued)

DEFINITIONS

e_{in}	AC signal applied to the input	t_r	Time required for the output pulse to go more positive from its 10% point to its 90% point
e_{out}	AC signal at the output	V_1	"NOR" output voltage — logical "1" level output voltage when a logical "0" level (V_L) is applied to the input
I_C	Amount of current drawn from the positive power supply by the test unit	V_2	"OR" output voltage — logical "0" level output voltage when a logical "0" level (V_L) is applied to the input
I_{CEX}	Total collector leakage current exhibited by the gate expander when all inputs are at the negative supply potential	V_3	Saturation breakpoint voltage which corresponds to the "NOR" output characteristic where the rate of change in the output voltage to the rate of change in input voltage is zero
I_E	Amount of current drawn from the test unit by the negative power supply	V_4	"NOR" output voltage — logical "0" level output voltage when a logical "1" level ($V_{1\max}$) is applied to the input
I_{in}	Current drawn by the input of the test unit when a logical "1" (V_H) is applied to the input	V_5	"OR" output voltage — logical "1" level output voltage when a logical "1" ($V_{1\max}$) is applied to the input
I_L	Current drawn from a node when that node is at ground potential	V_6	Output latch voltage — input voltage to a flip-flop which causes the output voltage to change from a logical "1" level to a logical "0" level and corresponds to the point where the rate of change in the output voltage to the rate of the input voltage approaches infinity
t_{d1}	Time required for the output pulse to reach the 50% point of its leading edge when referenced to the 50% point of the input pulse leading edge	V_H	Logical "1" input voltage
t_{d2}	Time required for the output pulse to reach the 50% point of its trailing edge when referenced to the 50% point of the input pulse trailing edge	V_L	Logical "0" input voltage
t_{df}	Time required for a flip-flop output to reach the 50% point of its negative going edge when referenced to the 50% point of the input pulse leading edge	V_{OH}	High-level output voltage when the saturated logic circuit output is in an "off" condition
t_{dr}	Time required for a flip-flop output to reach the 50% point of its positive going edge when referenced to the 50% point of the input pulse leading edge	V_{OL}	Low-level output voltage when the saturated logic output circuit is in an "on" condition
t_f	Time required for the output pulse to go more negative from its 90% point to its 10% point	ΔV_1	Change in the "1" level output voltage as the load is varied from no load to full load
		ΔV_5	

PACKAGES

All MECL integrated circuits are available in both the TO-91, 10-lead flat package and the 10-lead metal package. To order the flat package, add suffix "F" to basic type number; to order metal package, add suffix "G".

Exceptions: Types MC363F and MC369F are available only in the TO-86, 14-lead flat package; type MC369G is available only in the metal package.

GENERAL INFORMATION (continued)

WORST-CASE TRANSFER CHARACTERISTICS

The following graphs show minimum and maximum limits of major parameters associated with the transfer characteristics of the MECL line. Min-Max limits, given at three different temperatures can be interpreted for design purposes as 10% to 90% spreads at all points on the curve except for guaranteed points in the Electrical Characteristics tables.

DEFINITIONS

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Ratings above which device life may be impaired:			
Power Supply Voltage ($V_{CC} = 0$)	V_{EE}	-10	Vdc
Base Input Voltage ($V_{CC} = 0$)	V_{in}	0 Vdc to V_{EE}	Vdc
Output Source Current	I_o	20	mAdc
Storage Temperature Range	T_{stg}	-65 to +150	°C

Recommended maximum ratings above which performance may be degraded:

Operating Temperature Range	T_A	0 to $+75$	°C
AC Fan-In (Expandable Gates)	m	18	—
AC Fan-Out* (Gates and Flip-Flops)	n	15	—

*Although a minimum dc fan-out of 25 is guaranteed in each electrical specification, it is recommended that the maximum ac fan-out of 15 be used for high-speed operation.

NOISE MARGINS (90 PERCENTILE)

The following graphs show worst-case Noise Margins as a function of temperature and fan-out. Top graph illustrates the advantage gained through use of MC354 bias driver, as compared with non-compensated fixed bias source, bottom.

Note: Any unused input should be connected to V_{EE} .

5-INPUT GATE

MC351

A 5-input gate that provides the positive logic "OR" function and its complement simultaneously.

PROPAGATION DELAY

RISE AND FALL TIME

TYPICAL INPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

SWITCHING CHARACTERISTICS (10% to 90% distribution)

"NOR" OUTPUT

— 0°C and +25°C

- - - +75°C

MC351 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc ± 1%								Unit				
	@ Test Temperature { 0°C +25°C +75°C		0°C +25°C +75°C		0°C +25°C +75°C		0°C +25°C +75°C						
	V _H Pin No	V _{I max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()				
Power Supply Drain Current	—	—	—	2,6,7,8,9,10	1	—	—	3	I _E (2)	mAdc			
Input Current	6 7 8 9 10	— — — — —	— 2,6,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	2,6,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	1 1 1 1 1	— — — — —	— 3 3 3 3	I _{in} (6) I _{in} (7) I _{in} (8) I _{in} (9) I _{in} (10)	— — — — —	μAdc			
"NOR" Logical "1" Output Voltage	— — — — —	— 6 8 9 10	— 2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	1 1 1 1 1	— — — — —	— 3 3 3 3	V ₁ (5) V ₁ (5) V ₁ (5) V ₁ (5) V ₁ (5)	— — — — —	Vdc			
"NOR" Logical "0" Output Voltage	— — — — —	6 7 8 9 10	— 2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	1 1 1 1 1	— — — — —	— 3 3 3 3	V ₀ (5) V ₀ (5) V ₀ (5) V ₀ (5) V ₀ (5)	— — — — —	Vdc			
"OR" Logical "1" Output Voltage	— — — — —	6 7 8 9 10	— 2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	1 1 1 1 1	— — — — —	— 3 3 3 3	V ₂ (4) V ₂ (4) V ₂ (4) V ₂ (4) V ₂ (4)	— — — — —	Vdc			
"OR" Logical "0" Output Voltage	— — — — —	6 7 8 9 10	— 2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	1 1 1 1 1	— — — — —	— 3 3 3 3	V ₃ (4) V ₃ (4) V ₃ (4) V ₃ (4) V ₃ (4)	— — — — —	Vdc			
"NOR" Output Voltage Change (No load to full load)	— —	6	— 2,7,8,9,10	2,7,8,9,10	1	— 5①	3	ΔV ₁ (5)	— —	—0.055 —0.055			
"OR" Output Voltage Change (No load to full load)	— —	6	— 2,7,8,9,10	2,7,8,9,10	1	— 4①	3	ΔV ₂ (4)	— —	—0.055 —0.055			
"NOR" Saturation Breakpoint Voltage	— — — — —	— 6 7 8 9 10	— 2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	2,7,8,9,10 2,6,8,9,10 2,6,7,9,10 2,6,7,8,10 2,6,7,8,9	1 1 1 1 1	6① 8① 9① 10①	— — — — —	V ₂ (5) V ₂ (5) V ₂ (5) V ₂ (5) V ₂ (5)	— — — — —	—0.55 —0.55 —0.63			
Switching Times	Pulse In	Pulse Out							Typ Max Typ Max Typ Max	ns			
Propagation Delay Time	6 6 6 6 6	4 5 4 5 4	— 2,7,8,9,10 — 2,7,8,9,10 — 2,7,8,9,10 — 2,7,8,9,10 — 2,7,8,9,10	2,7,8,9,10 2,7,8,9,10 1 1 1 1 1 1	1 1 — 1 — — — — —	— — 3 3 3 3 3 3	t _{d1} (4) t _{d1} (5) t _{d2} (4) t _{d2} (5) t _r (4) t _r (5) t _f (4) t _f (5)	9.0 7.0 6.5 8.5 8.0 9.5 9.5 9.0	12.5 11.0 11.0 12.5 12.0 14.5 14.5 15.0	9.0 7.0 6.5 8.5 8.0 10.0 9.5 10.0	12.5 11.0 11.0 12.5 11.0 14.5 14.5 15.0	9.5 7.5 7.5 10.0 12.0 10.0 15.5 11.0	16.0 13.0 13.0 16.0 15.5 17.0 17.0 17.5
Rise Time	6 6 6	4 5 4	— 2,7,8,9,10 — 2,7,8,9,10	2,7,8,9,10 2,7,8,9,10 1	— 1 — —	— 3 3 3	t _r (4) t _r (5) t _r (5)	9.5 9.5 9.0	12.0 14.5 15.0	8.0 10.0 10.0	12.0 10.0 15.0	9.5 10.5 11.0	15.5 16.0 17.0
Fall Time	6 6	4 5	— 2,7,8,9,10	2,7,8,9,10	1	— —	t _f (4)	9.5 9.0	15.0 15.0	10.0 9.5	15.0 15.0	11.0 10.5	17.5

Pins not listed are left open

① Input voltage is adjusted to obtain dV / dV_{in} = "0".

② Current test conditions: no load = 0; full load = -2.5mAdc ± 5%.

"OR" OUTPUT

— 0°C and +25°C
- - - +75°C

R-S FLIP-FLOP

MC352A

DC Set-Reset flip-flop with an expandable input and buffered outputs. This flip-flop is available without buffered outputs as MC352.

SWITCHING TIME TEST CIRCUIT

Stray capacitance introduced by the test jig:
 $C_s = (n + 12) \text{ pF}$ where $n = \text{number of fan-outs}$.

TRANSFER CHARACTERISTICS

*FOR "Q" TESTS REVERSE "S" AND "R" CONNECTIONS

SWITCHING TIME WAVEFORMS

MC352A (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} ± 1%								Unit	
	@ Test Temperature { 0°C +25°C +75°C				Test Limits					
	V _H Pin No	V _{I max} Pin No	V _L ① Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()		
	—	-0.850	-1.350	-5.20	—	—	3	I _L (6)		
Power Supply Drain Current	—	—	—	2,6,7,9,10	—	—	3	I _L (6)	— 10.35 — 10.35 — 9.52 mAdc	
Input Current	6	—	—	2,7,9,10	—	—	3	I _I (6)	— — — 100 — — —	
	7	—	—	2,6,9,10	—	—	3	I _I (7)	— — — — — — —	
	9	—	—	2,6,7,10	—	—	3	I _I (9)	— — — — — — —	
	10	—	—	2,6,7,9	—	—	3	I _I (10)	— — — — — — —	
“Q” Logical “1” Output Voltage	—	—	6	2,7,9,10	—	—	3	V _O (5)	-0.715 -0.850 -0.670 -0.795 -0.590 -0.725 Vdc	
	—	—	7	2,6,9,10	—	—	3	V _O (5)	-0.715 -0.850 -0.670 -0.795 -0.590 -0.725 Vdc	
“Q” Logical “0” Output Voltage	—	—	9	2,6,7,10	—	—	3	V _O (5)	-1.510 -1.880 -1.465 -1.750 -1.395 -1.730 Vdc	
	—	—	10	2,6,7,9	—	—	3	V _O (5)	-1.510 -1.880 -1.465 -1.750 -1.395 -1.730 Vdc	
“Q” Logical “1” Output Voltage	—	—	9	2,6,7,10	—	—	3	V _O (4)	-0.715 -0.850 -0.670 -0.795 -0.590 -0.725 Vdc	
	—	—	10	2,6,7,9	—	—	3	V _O (4)	-0.715 -0.850 -0.670 -0.795 -0.590 -0.725 Vdc	
“Q” Logical “0” Output Voltage	—	—	6	2,7,9,10	—	—	3	V _O (4)	-1.510 -1.880 -1.465 -1.750 -1.395 -1.730 Vdc	
	—	—	7	2,6,9,10	—	—	3	V _O (4)	-1.510 -1.880 -1.465 -1.750 -1.395 -1.730 Vdc	
“Q” Output Voltage Change	—	6	—	2,7,9,10	—	5①	3	ΔV _O (5)	— -0.065 — -0.065 — -0.075 Volts	
“Q” Output Voltage Change	—	10	—	2,6,7,9	—	4①	3	ΔV _O (4)	— -0.065 — -0.065 — -0.075 Volts	
“Q” Saturation Breakpoint Voltage	—	—	—	2,7,9	6,10①	—	3	V _S (5)	— -0.61 — -0.65 — -0.73 Vdc	
“Q” Saturation Breakpoint Voltage	—	—	—	2,7,9	6,10①	—	3	V _S (4)	— -0.61 — -0.65 — -0.73 Vdc	
“Q” or “Q” Latch Voltage	—	—	—	2,7,9	6,10①	—	3	V _L (6,10)	-1.1 -1.25 -1.09 -1.21 -1.02 -1.14 Vdc	
Switching Times	Pulse In	Pulse Out						Typ Max Typ Max Typ Max		
Propagation Delay Time	6,10	4,5	—	2,7,9	—	—	3	t _{pd} (4,5)	10.0 18.0 10.5 16.0 13.5 22.0 ns	
	6,10	4,5	—	2,7,9	—	—	3	t _{pd} (4,5)	11.0 19.5 11.5 19.5 14.0 22.0	
Rise Time	6,10	4,5	—	2,7,9	—	—	3	t _r (4,5)	11.0 19.0 11.5 19.0 13.5 26.0	
Fall Time	6,10	4,5	—	2,7,9	—	—	3	t _f (4,5)	12.0 19.5 12.5 19.5 14.0 26.0	

Pins not listed are left open. ① Input voltage is adjusted to obtain dV “0”/dV_{in} = 0; dV “1”/dV_{in} = 0. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.
 ③ Apply momentary V_I = 0 to set output, then V_L for measurement. ④ Input voltage is adjusted to obtain dV_I/dV_{in} = -∞.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— 0°C and +25°C
 - - - +75°C

HALF-ADDER

MECL MC350 series

MC353

Half-adder that provides the "SUM", "CARRY", and "NOR" functions simultaneously.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— 0°C and +25°C
- - - +75°C

MC353 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} = 1%															
	0°C				+25°C				+75°C							
	V _H Pin No	V _{i max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	dV _{In} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	—	—	—	2,7,8,9,10	1	—	—	3	I _s (2)	—	15.9	—	15.3	—	14.1	mAdc
Input Current	7	—	—	2,7,8,10	1	—	—	3	I _{in} (7)	—	—	—	100	—	—	μAdc
	8	—	—	2,7,9,10	1	—	—	3	I _{in} (8)	—	—	—	—	—	—	—
	9	—	—	2,7,8,10	1	—	—	3	I _{in} (9)	—	—	—	—	—	—	—
	10	—	—	2,7,8,9	1	—	—	3	I _{in} (10)	—	—	—	—	—	—	—
"NOR" Logical "1" Output Voltage	—	—	9	2,7,8,10	1	—	—	3	V _o (5) V _o (6)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
"NOR" Logical "0" Output Voltage	—	9	—	2,7,8,10	1	—	—	3	V _o (5) V _o (6)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
"CARRY" Logical "1" Output Voltage	—	10	—	2,7,8,9	1	—	—	3	V _o (6)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
"CARRY" Logical "0" Output Voltage	—	—	7	2,8,9,10	1	—	—	3	V _o (6)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
"SUM" Logical "1" Output Voltage	—	—	8	2,7,8,10	1	—	—	3	V _o (6)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
"SUM" Logical "0" Output Voltage	—	7	10	2,8,9	1	—	—	3	V _o (4) V _o (6)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
"SUM" Logical "1" Output Voltage	—	8	10	2,7,9	1	—	—	3	V _o (4) V _o (6)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
"SUM" Logical "0" Output Voltage	—	9	8	2,7,10	1	—	—	3	V _o (4) V _o (6)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
"NOR" Output Voltage Change (No load to full load)	—	10	—	2,7,8,9	1	—	5①	3	ΔV _i (5)	—	0.055	—	0.055	—	0.065	Volts
"CARRY" Output Voltage Change (No load to full load)	—	—	7	2,8,9,10	1	—	6①	3	ΔV _i (6)	—	0.055	—	0.055	—	0.065	Volts
"SUM" Output Voltage Change (No load to full load)	—	7,10	—	2,8,9	1	—	4①	3	ΔV _i (4)	—	0.055	—	0.055	—	0.065	Volts
"NOR" Saturation Breakpoint Voltage	—	—	—	2,7,8,9	1	10①	—	3	V _s (5)	—	0.510	—	0.550	—	0.630	Vdc
"CARRY" Saturation Breakpoint Voltage	—	—	—	2,8,9,10	1	7①	—	3	V _s (6)	—	0.510	—	0.550	—	0.630	Vdc
Switching Times Propagation Delay Time	—	—	—	2,7,8,9	1	Pulse In	Pulse Out	3	t _{d1} (5) t _{d1} (6) t _{d1} (4)	6.5	11.0	6.5	11.0	7.0	13.0	ns
	—	7	—	2,8,9,10	1	10	5	3	t _{d1} (5) t _{d1} (6) t _{d1} (4)	6.5	11.0	6.5	11.0	7.0	13.0	ns
	—	—	—	2,7,8,9	1	10	4	3	t _{d1} (5) t _{d1} (6) t _{d1} (4)	8.5	11.5	8.5	11.5	10.0	15.0	ns
	—	7	—	2,8,9,10	1	10	6	3	t _{d1} (5) t _{d1} (6) t _{d1} (4)	8.5	13.5	8.5	13.5	10.0	16.0	ns
Rise Time	—	—	—	2,7,8,9	1	10	5	3	t _r (5) t _r (6) t _r (4)	9.0	12.5	9.0	12.5	11.0	15.5	ns
	—	7	—	2,8,9,10	1	10	6	3	t _r (5) t _r (6) t _r (4)	9.0	12.5	9.0	12.5	11.0	15.5	ns
Fall Time	—	—	—	2,7,8,9	1	10	5	3	t _f (5) t _f (6) t _f (4)	7.0	11.5	7.0	11.5	9.0	13.0	ns
	—	7	—	2,8,9,10	1	10	4	3	t _f (5) t _f (6) t _f (4)	9.0	14.0	9.5	14.0	11.5	17.0	ns

Pins not listed are left open.

① Input voltage is adjusted to obtain dV"NOR"/dV_{In} = 0 or dV"CARRY"/dV_{In} = 0.

② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

MC354

Bias driver that compensates for changes in circuit parameters with temperature.

ELECTRICAL CHARACTERISTICS

Characteristic	V _{EE} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()	Test Limits						Unit	
					0°C		+25°C		+75°C			
					Min	Max	Min	Max	Min	Max		
					-	-	-	-	-	-	mADC	
Power Supply Drain Current	2	—	3	I _L (2)	—	4.6	—	4.4	—	4.0	mADC	
Output Voltage	2	1①	3	V _{BB}	-1.14	-1.27	-1.09	-1.22	-1.04	-1.18	Vdc	

Pins not listed are left open.

① Current test conditions: no load = 0; full load = -2.5 mADC ±5%.

CIRCUIT DESCRIPTION**Circuit Operation:**

The divider network R_1 , R_2 , D_1 , D_2 compensates for temperature variations of the base-emitter voltages of Q_1 , and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of 0 to +75°C. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.

Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if V_{CC} is grounded in the logic system, then —

$$V_{CC} = 0; \quad V_{EE} = -5.2 \text{ V}; \\ V_{BB} = -1.15 \text{ nominal output voltage at } 25^\circ\text{C}$$

GATE EXPANDER

MECL MC350 series

MC355

A 5-input expander for use with the MC352A, MC356, MC357, and MC365. Each expander unit increases the fan-in of the basic gate by five.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions						Ground Pin No	Symbol	Test Limits						Unit			
	Vdc $\pm 1\%$			mAdc					0°C		+25°C		+75°C					
	-2.0	-5.2	+2.0	+0.7	0.3	-1.33			Min	Max	Min	Max	Min	Max				
	-2.0	-5.2	+2.0	+0.7	0.3	-1.33			Min	Max	Min	Max	Min	Max				
Base Leakage Current	4	6	—	—	—	—	5	I _{BE} (6)	—	0.5	—	0.5	—	2.0	μAdc			
	4	7	—	—	—	—	5	I _{BE} (7)	—	—	—	—	—	—	—			
	4	8	—	—	—	—	5	I _{BE} (8)	—	—	—	—	—	—	—			
	4	9	—	—	—	—	5	I _{BE} (9)	—	—	—	—	—	—	—			
	4	10	—	—	—	—	5	I _{BE} (10)	—	—	—	—	—	—	—			
Collector Leakage Current	—	—	5	—	6,7,8,9,10	—	4	I _{CE} (5)	—	1.0	—	1.0	—	15.0	μAdc			
Input Voltage	—	—	—	5	—	—	6	V _{in} (6)	0.730	0.760	0.680	0.730	0.580	0.630	Vdc			
	—	—	—	5	—	—	7	V _{in} (7)	—	—	—	—	—	—	—			
	—	—	—	5	—	—	8	V _{in} (8)	—	—	—	—	—	—	—			
	—	—	—	5	—	—	9	V _{in} (9)	—	—	—	—	—	—	—			
	—	—	—	5	—	—	10	V _{in} (10)	—	—	—	—	—	—	—			
Switching Times	Pulse In	Pulse Out	—	—	—	—	—	—	Typ	Max	Typ	Max	Typ	Max	ns			
Propagation Delay Time	8	①	—	—	—	—	—	t _{pd}	4.5	9.5	4.5	9.5	5.5	13.0	—			
Rise Time	8	①	—	—	—	—	—	t _r	4.0	9.0	4.0	9.0	4.5	12.0	—			
Fall Time	8	①	—	—	—	—	—	t _f	8.5	13.0	8.5	13.0	9.0	15.0	—			

Pins not listed are left open. ① See Switching Time Test Circuit.

SWITCHING TIME TEST CIRCUIT

MC356 • MC357

Expandable 3-input gates that provide the positive logic "NOR" function and its complement simultaneously. MC357 omits output pull-down resistors, permitting reduction of power dissipation.

*Resistors R_O are omitted in MC357 circuits to permit reduction of Power Dissipation in systems where logic operations are performed at circuit outputs.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

Fan-in obtained with MC355
input expanders; all but driven
input connected to -5.2 V.

MC356, MC357 (continued)

SWITCHING CHARACTERISTICS (10% to 90% distribution)

MC356, MC357 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dd} $\pm 1\%$								Symbol Pin No in ()	Test Limits						Unit		
	@ Test Temperature				0°C		+25°C			+75°C		Min		Max				
	V _H Pin No	V _{I_max} Pin No	V _L Pin No	V _{SE} Pin No	V _{SS} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No		Min	Max	Min	Max	Min	Max			
Power Supply MC356 MC357	—	—	—	2.67.8	1	—	—	3	I _E (2)	—	9.25	—	8.85	—	8.15	mAdc		
Drain Current MC357	—	—	—	2.67.8	1	—	—	3	I _E (2)	—	3.6	—	3.6	—	3.3	mAdc		
Input Current	6	—	—	2.7.8	1	—	—	3	I _{IN} (6)	—	—	—	100	—	—	μ Adc		
	7	—	—	2.6.8	1	—	—	3	I _{IN} (7)	—	—	—	—	—	—	\downarrow		
	8	—	—	2.6.7	1	—	—	3	I _{IN} (8)	—	—	—	—	—	—	\downarrow		
"NOR" Logical "1" Output Voltage	—	—	6	2.7.8	1	—	—	3	V _O (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc		
	—	—	7	2.6.8	1	—	—	3	V _O (5)	—	—	—	—	—	—	\downarrow		
	—	—	8	2.6.7	1	—	—	3	V _O (5)	—	—	—	—	—	—	\downarrow		
"NOR" Logical "0" Output Voltage	—	6	—	2.7.8	1	—	—	3	V _O (5)	-1.510	-1.680	-1.465	-1.750	-1.395	-1.730	Vdc		
	—	7	—	2.6.8	1	—	—	3	V _O (5)	—	—	—	—	—	—	\downarrow		
	—	8	—	2.6.7	1	—	—	3	V _O (5)	—	—	—	—	—	—	\downarrow		
"OR" Logical "1" Output Voltage	—	6	—	2.7.8	1	—	—	3	V _O (4)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc		
	—	7	—	2.6.8	1	—	—	3	V _O (4)	—	—	—	—	—	—	\downarrow		
	—	8	—	2.6.7	1	—	—	3	V _O (4)	—	—	—	—	—	—	\downarrow		
"OR" Logical "0" Output Voltage	—	6	—	2.7.8	1	—	—	3	V _O (4)	-1.510	-1.680	-1.465	-1.750	-1.395	-1.730	Vdc		
	—	7	—	2.6.8	1	—	—	3	V _O (4)	—	—	—	—	—	—	\downarrow		
	—	8	—	2.6.7	1	—	—	3	V _O (4)	—	—	—	—	—	—	\downarrow		
"NOR" Output Voltage Change (No load to full load)	—	—	6	2.7.8	1	—	5①	3	ΔV_O (5)	—	-0.055	—	-0.055	—	-0.065	Volts		
"OR" Output Voltage Change (No load to full load)	—	6	—	2.7.8	1	—	4①	3	ΔV_O (4)	—	-0.055	—	-0.055	—	-0.065	Volts		
"NOR" Saturation Breakpoint Voltage	—	—	—	2.7.8	1	6①	—	3	V _S (5)	—	-0.51	—	-0.55	—	-0.63	Vdc		
	—	—	—	2.6.8	1	7①	—	3	V _S (5)	—	—	—	—	—	—	\downarrow		
	—	—	—	2.6.7	1	8①	—	3	V _S (5)	—	—	—	—	—	—	\downarrow		
Switching Times	Pulse In	Pulse Out								Typ	Max	Typ	Max	Typ	Max			
Propagation Delay Time	6	4	—	2.7.8	1	—	—	3	t _{pd} (4)	8.5	11.5	8.5	11.5	10.0	15.0	ns		
	6	5	—	2.7.8	1	—	—	3	t _{pd} (5)	6.5	10.5	6.5	10.5	7.5	11.5			
	6	4	—	2.7.8	1	—	—	3	t _{pd} (4)	6.0	11.0	6.0	11.0	7.5	12.0			
	6	5	—	2.7.8	1	—	—	3	t _{pd} (5)	8.5	11.5	8.5	11.5	10.0	15.0			
Rise Time	6	4	—	2.7.8	1	—	—	3	t _r (4)	7.0	11.5	7.0	11.5	9.0	13.0			
	6	5	—	2.7.8	1	—	—	3	t _r (5)	9.0	12.5	9.5	12.5	11.5	15.5			
Fall Time	6	4	—	2.7.8	1	—	—	3	t _f (4)	9.0	14.0	9.5	14.0	12.0	17.0			
	6	5	—	2.7.8	1	—	—	3	t _f (5)	8.5	14.0	9.0	14.0	11.5	17.0			

Pins not listed are left open

① Input voltage is adjusted to obtain dV "NOR" / dV_{in} = 0.

② Current test conditions: no load = 0; fall load = -2.5mAdc $\pm 5\%$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

AC-COUPLED J-K FLIP-FLOP

MC358A

AC-coupled J-K flip-flop with dc Set and Reset inputs and buffered outputs for counter and shift register applications up to 15 MHz.

TRANSFER CHARACTERISTICS

FIGURE 1 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 — SENSITIVITY (NO TOGGLE)

FIGURE 4 — SENSITIVITY (TOGGLE)

MC358A (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} ± 1%							Symbol Pin No ()	Test Limits						Unit		
	@ Test Temperature {		0°C		+25°C		+75°C		0°C		+25°C		+75°C				
	V _H Pin No	V _{I max} Pin No	V _{I (0)} Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No		Min	Max	Min	Max	Min	Max			
Power Supply Drain Current	—	7,10	—	1,2,6,8,9	—	—	3	I _E (2)	—	22.0	—	21.0	—	19.6	mAdc		
Input Current	7	—	—	1,2,6,8,9,10	—	—	3	I _{in} (7)	—	—	—	100	—	—	μAdc		
9	—	—	—	1,2,6,7,9,10	—	—	3	I _{in} (8)	—	—	—	—	—	—	↓		
10	—	—	—	1,2,6,7,8,10	—	—	3	I _{in} (9)	—	—	—	—	—	—	↓		
“Q” Logical “1” Output Voltage	—	—	6	1,2,7,8,9,10	—	—	3	V ₁ (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc		
“Q” Logical “0” Output Voltage	—	—	1	2,6,7,8,9,10	—	—	3	V ₁ (5)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc		
“Q” Logical “1” Output Voltage	—	—	1	2,6,7,8,9,10	—	—	3	V ₁ (4)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc		
“Q” Logical “0” Output Voltage	—	—	6	1,2,7,8,9,10	—	—	3	V ₂ (4)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc		
“0” Output Voltage Change	—	6	—	1,2,7,8,9,10	—	5 (0)	3	ΔV ₁ (5)	—	-0.065	—	-0.065	—	-0.075	Volts		
“0” Output Voltage Change	—	1	—	2,6,7,8,9,10	—	4 (0)	3	ΔV ₁ (4)	—	-0.065	—	-0.065	—	-0.075	Volts		
“0” Saturation Breakpoint Voltage	—	—	—	1,2,7,8,9,10	6 (0)	—	3	V ₂ (5)	—	-0.61	—	-0.65	—	-0.73	Vdc		
“0” Saturation Breakpoint Voltage	—	—	—	2,6,7,8,9,10	1 (0)	—	3	V ₂ (4)	—	-0.61	—	-0.65	—	-0.73	Vdc		
“Q” or “Q” Latch Voltage	—	—	—	2,7,8,9,10	1,6 (0)	—	3	V ₄ (1,6)	-1.11	-1.25	-1.09	-1.21	-1.02	-1.14	Vdc		
Toggle Frequency (See Figures 1 and 2)	7,10	5		1,2,6,9	—	—	3	f _{freq}	—	—	15	—	—	—	MHz		
Sensitivity (No Toggle)	7,10	4		1,2,6,8,9	—	—	3										
8,9	5			1,2,6,7,10	—	—	3								See Figure 3		
Sensitivity (Toggle)	7,10	4,5		1,2,6,8,9	—	—	3								See Figure 3		
Switching Times															See Figure 4		
Propagation Delay	7,10	4,5		1,2,6,8,9	—	—	3	t _{pd} (4,5)	7.5	13.0	7.5	13.0	8.0	16.0	ns		
Rise Time	7,10	4,5		1,2,6,8,9	—	—	3	t _r (4,5)	10.0	14.5	10.0	15.0	11.0	20.0	ns		
Fall Time	7,10	4,5		1,2,6,8,9	—	—	3	t _f (4,5)	8.0	13.0	8.0	13.0	8.5	16.0	ns		

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{out} / dV_{in} = "0"$. ② Current test conditions: load = 0 to full load = -2.5 mAdc ± 5%.
 ③ Apply momentary V_i to set output, then V_{in} for measurement. ④ Input voltage is adjusted to obtain $dV_{out} / dV_{in} = \infty$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— 0°C and +25°C
- - - +75°C

DUAL 2-INPUT GATES

MECL MC350 series

MC359 • MC360 • MC361

Dual 2-input gates that provide the positive logic "NOR" function. MC359 has two output pull-down resistors; MC360 has one of the output pull-down resistors optional; MC361 omits one output pull-down resistor and has the second optional.

MC359, MC360, MC361 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} ± 1%								Symbol Pin No in ()	Test Limits						Unit		
	@ Test Temperature {		8°C		+25°C		+75°C			0°C		+25°C		+75°C				
	V _H Pin No	V _L Pin No	V _{I_{max}} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	dV _{in} Pin No	I _L Pin No		Min	Max	Min	Max	Min	Max			
Power Supply MC360, MC361	—	—	—	2,8,9,10	1	—	—	3	I _g (2)	—	13.55	—	13.0	—	12.0	mAdc		
Drain Current MC361	—	—	—	2,7,8,9,10	1	—	—	3	I _g (2)	—	10.5	—	10.1	—	9.2	mAdc		
Input Current	7	—	—	2,8,9,10	1	—	—	3	I _{in} (7)	—	—	—	100	—	—	μAdc		
	8	—	—	2,7,9,10	1	—	—	3	I _{in} (8)	—	—	—	—	—	—	↓		
	9	—	—	2,7,8,10	1	—	—	3	I _{in} (9)	—	—	—	—	—	—	↓		
	10	—	—	2,7,8,9	1	—	—	3	I _{in} (10)	—	—	—	—	—	—	↓		
"NOR" Logical "1" Output Voltage	—	—	7	2,8,9,10	1	—	—	3	V ₁ (6)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc		
	—	—	8	2,7,9,10	1	—	—	3	V ₁ (6)	—	—	—	—	—	—	↓		
	—	—	9	2,7,8,10	1	—	—	3	V ₁ (5)	—	—	—	—	—	—	↓		
	—	—	10	2,7,8,9	1	—	—	3	V ₁ (5)	—	—	—	—	—	—	↓		
"NOR" Logical "0" Output Voltage	—	7	—	2,8,9,10	1	—	—	3	V ₀ (6)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc		
	—	8	—	2,7,9,10	1	—	—	3	V ₀ (6)	—	—	—	—	—	—	↓		
	—	9	—	2,7,8,10	1	—	—	3	V ₀ (5)	—	—	—	—	—	—	↓		
	—	10	—	2,7,8,9	1	—	—	3	V ₀ (5)	—	—	—	—	—	—	↓		
"NOR" Output Voltage Change (No load to full load)	—	—	—	2,7,8,9,10	1	—	6①	3	ΔV ₁ (6)	—	-0.055	—	-0.055	—	-0.065	Vdc		
	—	—	—	2,7,8,9,10	1	—	5①	3	ΔV ₁ (5)	—	-0.055	—	-0.055	—	-0.065	Vdc		
"NOR" Saturation Breakpoint Voltage	—	—	—	2,8,9,10	1	7①	—	3	V ₂ (6)	—	-0.51	—	-0.55	—	-0.63	Vdc		
	—	—	—	2,7,9,10	1	8①	—	3	V ₂ (6)	—	—	—	—	—	—	↓		
	—	—	—	2,7,8,10	1	9①	—	3	V ₂ (5)	—	—	—	—	—	—	↓		
	—	—	—	2,7,8,9	1	10①	—	3	V ₂ (5)	—	—	—	—	—	—	↓		
Switching Times	Pulse In	Pulse Out								Typ	Max	Typ	Max	Typ	Max			
Propagation Delay Time	7	6	—	2,8,9,10	1	—	—	3	t _{pd} (6)	6.5	11.0	6.5	11.0	8.0	14.5	ns		
	10	5	—	2,7,8,9	1	—	—	3	t _{pd} (5)	6.5	11.0	6.5	11.0	8.0	14.5	↓		
	7	6	—	2,8,9,10	1	—	—	3	t _{pd} (6)	8.5	13.5	8.5	13.5	10.0	16.0			
	10	5	—	2,7,8,9	1	—	—	3	t _{pd} (5)	8.5	13.5	8.5	13.5	10.0	16.0	↓		
Rise Time	7	6	—	2,8,9,10	1	—	—	3	t _r (6)	8.5	12.5	9.0	12.5	11.0	15.5			
	10	5	—	2,7,8,9	1	—	—	3	t _r (5)	8.5	12.5	9.0	12.5	11.0	15.5	↓		
Fall Time	7	6	—	2,8,9,10	1	—	—	3	t _f (6)	9.0	14.0	9.5	14.0	11.5	17.0			
	10	5	—	2,7,8,9	1	—	—	3	t _f (5)	9.0	14.0	9.5	14.0	11.5	17.0	↓		

Pins not listed are left open. For MC360, connect pin 4 to pin 5 for all tests. ① Input voltage is adjusted to obtain dV "NOR" / dV_{in} = 0.

② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— 0°C and +25°C
- - - +75°C

DUAL 3-INPUT GATE

MECL MC350 series

MC362A

Dual 3-input gate that provides the positive logic "NOR" function, and features an internal bias driver. This gate is available without bias driver as MC362.

MC362A (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dc} ± 1%							Symbol Pin No in ()	Test Limits						Unit	
	0°C		+25°C		+75°C				Min	Max	Min	Max	Min	Max		
	V _H Pin No	V _{I max} Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No									
Power Supply Drain Current	—	—	—	1,2,6,7,8,9,10	—	—	3	I _G (2)	—	17.7	—	17.0	—	16.4	mADC	
Input Current	1 6 7 8 9 10	— — — — — —	— — — — — —	2,6,7,8,9,10 1,2,6,7,8,9,10 1,2,6,8,9,10 1,2,6,7,9,10 1,2,6,7,8,10 1,2,6,7,8,9	— — — — — —	— — — — — —	3 3 3 3 3 3	I _{in} (1) I _{in} (6) I _{in} (7) I _{in} (8) I _{in} (9) I _{in} (10)	— — — — — —	— — — — — —	— — — — — —	100 — — — — —	— — — — — —	— — — — — —	μADC	
"NOR" Logical "1" Output Voltage	— — — — — —	— — — — — —	6 7 8 1 9 10	1,2,7,8,9,10 1,2,6,8,9,10 1,2,6,7,9,10 2,6,7,8,9,10 1,2,6,7,8,10 1,2,6,7,8,9	— — — — — —	— — — — — —	3 3 3 3 3 3	V _O (5) V _O (5) V _O (5) V _O (4) V _O (4) V _O (4)	— — — — — —	0.850 — — — — —	— — — — — —	— — — — — —	— — — — — —	— — — — — —	VDC	
"NOR" Logical "0" Output Voltage	— — — — — —	— — — — — —	6 7 8 1 9 10	1,2,7,8,9,10 1,2,6,8,9,10 1,2,6,7,9,10 2,6,7,8,9,10 1,2,6,7,8,10 1,2,6,7,8,9	— — — — — —	— — — — — —	3 3 3 3 3 3	V _O (5) V _O (5) V _O (5) V _O (4) V _O (4) V _O (4)	— — — — — —	-1.510 — — — — —	-1.880 — — — — —	-1.465 — — — — —	-1.750 — — — — —	-1.395 — — — — —	-1.730 — — — — —	VDC
"NOR" Output Voltage Change	— —	— —	6 1	1,2,7,8,9,10 2,6,7,8,9,10	— —	5① 4①	3	ΔV _O (5) ΔV _O (4)	— —	-0.055 — —	— — —	-0.055 — —	— — —	-0.065 — —	Volts	
"NOR" Saturation Breakpoint Voltage	— — — — — —	— — — — — —	— — — — — —	1,2,7,8,9,10 1,2,6,8,9,10 1,2,6,7,9,10 2,6,7,8,9,10 1,2,6,7,8,10 1,2,6,7,8,9	6① 7① 8① 1① 9① 10①	— — — — — —	3 3 3 3 3 3	V _S (5) V _S (5) V _S (5) V _S (4) V _S (4) V _S (4)	— — — — — —	— — — — — —	-0.51 — — — — —	— — — — — —	-0.55 — — — — —	— — — — — —	-0.63 — — — — —	VDC
Switching Times	Pulse In	Pulse Out								Typ	Max	Typ	Max	Typ	Max	
Propagation Delay Time	6 1 6 1	5 4 5 4	— — — —	1,2,7,8,9,10 2,6,7,8,9,10 1,2,7,8,9,10 2,6,7,8,9,10	— — — —	— — — —	3 3 3 3	t _{PD} (5) t _{PD} (4) t _{PD} (5) t _{PD} (4)	6.5 6.5 8.5 8.5	10.5 10.5 11.5 11.5	6.5 6.5 8.5 8.5	10.5 10.5 11.5 11.5	7.5 7.5 10.0 10.0	11.5 11.5 15.0 15.0	ns	
Rise Time	6 1	5 4	— —	1,2,7,8,9,10 2,6,7,8,9,10	— —	— —	3 3	t _r (5) t _r (4)	9.0 9.0	12.5 12.5	9.5 9.5	12.5 12.5	11.5 11.5	15.5 15.5		
Fall Time	6 1	5 4	— —	1,2,7,8,9,10 2,6,7,8,9,10	— —	— —	3 3	t _f (5) t _f (4)	8.5 8.5	14.0 14.0	9.0 9.0	14.0 14.0	11.5 11.5	17.0 17.0		

Pins not listed are left open.

① Input voltage is adjusted to obtain dV "NOR"/dV_{in} = 0. ② Current test conditions: no load = 0; full load = -2.5 mADC ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

QUAD 2-INPUT GATE

MECL MC350 series

MC363F

Quad 2-input gate that provides the positive logic "NOR" function, and features an internal bias driver.

MC363F (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc ± 1%						Symbol Pin No in ()	Test Limits						Unit	
	0°C			+25°C				0°C			+25°C				
	V _H Pin No	V _{i_{max}} Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No	Min	Max	Min	Max	Min	Max		
Power Supply Drain Current	—	—	—	1,3,6,7,9,10,11,12,14	—	—	4	I _x (3)	—	31.0	—	30.0	—	29.0 mAdc	
Input Current	—	—	—	3,6,7,9,10,11,12,14	—	—	4	I _x (1)	—	—	—	100	—	— μAdc	
	6	—	—	1,3,6,7,9,10,11,12,14	—	—	4	I _x (6)	—	—	—	—	—	—	
	7	—	—	1,3,6,9,10,11,12,14	—	—	4	I _x (7)	—	—	—	—	—	—	
	9	—	—	1,3,6,7,10,11,12,14	—	—	4	I _x (9)	—	—	—	—	—	—	
	10	—	—	1,3,6,7,9,11,12,14	—	—	4	I _x (10)	—	—	—	—	—	—	
	11	—	—	1,3,6,7,9,10,12,14	—	—	4	I _x (11)	—	—	—	—	—	—	
	12	—	—	1,3,6,7,9,10,11,14	—	—	4	I _x (12)	—	—	—	—	—	—	
	14	—	—	1,3,6,7,9,10,11,12	—	—	4	I _x (14)	—	—	—	—	—	—	
"NOR" Logical "1" Output Voltage	—	—	1	3,6,7,9,10,11,12,14	—	—	4	V _t (2)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725 Vdc	
	—	—	6	1,3,7,9,10,11,12,14	—	—	4	V _t (5)	—	—	—	—	—	—	
	—	—	7	1,3,6,9,10,11,12,14	—	—	4	V _t (8)	—	—	—	—	—	—	
	—	—	9	1,3,6,7,10,11,12,14	—	—	4	V _t (8)	—	—	—	—	—	—	
	—	—	10	1,3,6,7,9,11,12,14	—	—	4	V _t (13)	—	—	—	—	—	—	
	—	—	11	1,3,6,7,9,10,12,14	—	—	4	V _t (13)	—	—	—	—	—	—	
	—	—	12	1,3,6,7,9,10,11,14	—	—	4	V _t (13)	—	—	—	—	—	—	
	—	—	14	1,3,6,7,9,10,11,12	—	—	4	V _t (2)	—	—	—	—	—	—	
"NOR" Logical "0" Output Voltage	—	—	1	3,6,7,9,10,11,12,14	—	—	4	V _t (2)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730 Vdc	
	—	—	6	1,3,7,9,10,11,12,14	—	—	4	V _t (5)	—	—	—	—	—	—	
	—	—	7	1,3,6,9,10,11,12,14	—	—	4	V _t (8)	—	—	—	—	—	—	
	—	—	9	1,3,6,7,10,11,12,14	—	—	4	V _t (8)	—	—	—	—	—	—	
	—	—	10	1,3,6,7,9,11,12,14	—	—	4	V _t (13)	—	—	—	—	—	—	
	—	—	11	1,3,6,7,9,10,12,14	—	—	4	V _t (13)	—	—	—	—	—	—	
	—	—	12	1,3,6,7,9,10,11,14	—	—	4	V _t (13)	—	—	—	—	—	—	
	—	—	14	1,3,6,7,9,10,11,12	—	—	4	V _t (2)	—	—	—	—	—	—	
"NOR" Output Voltage Change (No load to full load)	—	—	—	1,3,6,7,9,10,11,12,14	2(3)	4	ΔV _t (2)	—	-0.055	—	-0.055	—	-0.065	Volts	
	—	—	—	1,3,6,7,9,10,11,12,14	5(3)	4	ΔV _t (5)	—	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,12,14	8(3)	4	ΔV _t (8)	—	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,12,14	13(3)	4	ΔV _t (13)	—	—	—	—	—	—	—	
"NOR" Saturation Breakpoint Voltage	—	—	—	3,6,7,9,10,11,12,14	1(0)	4	V _t (2)	—	-0.51	—	-0.55	—	-0.63	Vdc	
	—	—	—	1,3,6,9,10,11,12,14	7(0)	4	V _t (5)	—	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,11,12,14	10(0)	4	V _t (8)	—	—	—	—	—	—	—	
	—	—	—	1,3,6,7,9,10,11,14	12(0)	4	V _t (13)	—	—	—	—	—	—	—	
Switching Time Propagation Delay Time	Pulse In	Pulse Out					Typ		Max		Typ		Max		
	1	2	—		3,6,7,9,10,11,12,14		t _{pd} (2)		6.5		11.0		6.5		
	6	5	—		1,3,7,9,10,11,12,14		t _{pd} (5)		—		11.0		8.0		
	9	8	—		1,3,6,7,10,11,12,14		t _{pd} (8)		—		14.5		ns		
	11	13	—		1,3,6,7,9,10,12,14		t _{pd} (13)		—		—		—		
Rise Time	1	2	—		3,6,7,9,10,11,12,14		t _r (2)		8.5		13.5		8.5		
	6	5	—		1,3,7,9,10,11,12,14		t _r (5)		—		13.5		10.0		
	9	8	—		1,3,6,7,10,11,12,14		t _r (8)		—		16.0		—		
	11	13	—		1,3,6,7,9,10,12,14		t _r (13)		—		—		—		
Fall Time	1	2	—		3,6,7,9,10,11,12,14		t _f (2)		8.5		12.5		9.0		
	6	5	—		1,3,7,9,10,11,12,14		t _f (5)		—		12.5		11.0		
	9	8	—		1,3,6,7,10,11,12,14		t _f (8)		—		14.0		9.5		
	11	13	—		1,3,6,7,9,10,12,14		t _f (13)		—		11.5		17.0		

Pins not listed are left open. ① Input voltage is adjusted to obtain dV_t / dV_{in} = 0. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— 0°C and +25°C
- - - +75°C

AC-COUPLED J-K FLIP-FLOP

MECL MC350 series

MC364

High-speed ac-coupled J-K flip-flop with dc Set and Reset input for counter and shift register applications up to 30 MHz operation.

TRANSFER CHARACTERISTICS

FIGURE 1 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 — SENSITIVITY (NO TOGGLE)

FIGURE 4 — SENSITIVITY (TOGGLE)

MC364 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{dd} ± 1%							Symbol Pin No in ()	Test Limits						Unit
	@ Test Temperature {			0°C		+25°C			Min	Max	Min	Max	Min	Max	
	—	—	—	—0.850	-1.350	-5.20	—		—	30.0	—	28.5	—	28.0	mAdc
Power Supply Drain Current	—	7,10	—	1,2,6,8,9	—	—	3	I _S (2)	—	—	—	—	—	—	μAdc
Input Current	7	—	—	1,2,6,8,9,10	—	—	3	I _{in} (7)	—	—	—	100	—	—	↓
8	—	—	—	1,2,6,7,9,10	—	—	3	I _{in} (8)	—	—	—	—	—	—	↓
9	—	—	—	1,2,6,7,8,10	—	—	3	I _{in} (9)	—	—	—	—	—	—	↓
10	—	—	—	1,2,6,7,8,9	—	—	3	I _{in} (10)	—	—	—	—	—	—	↓
"Q" Logical "1" Output Voltage	—	—	6①	1,2,7,8,9,10	—	—	3	V ₁ (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	V _{dd}
"Q" Logical "0" Output Voltage	—	—	1①	2,6,7,8,9,10	—	—	3	V ₁ (5)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	V _{dd}
"Q" Logical "1" Output Voltage	—	—	1①	2,6,7,8,9,10	—	—	3	V ₁ (4)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	V _{dd}
"Q" Logical "0" Output Voltage	—	—	6①	1,2,7,8,9,10	—	—	3	V ₂ (4)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	V _{dd}
"Q" Output Voltage Change	—	6	—	1,2,7,8,9,10	—	5①	3	ΔV ₁ (5)	—	-0.065	—	-0.065	—	-0.075	Volts
"Q" Output Voltage Change	—	1	—	2,6,7,8,9,10	—	4①	3	ΔV ₁ (4)	—	-0.065	—	-0.065	—	-0.075	Volts
"Q" Saturation Breakpoint Voltage	—	—	—	1,2,7,8,9,10	6①	—	3	V _S (5)	—	-0.61	—	-0.65	—	-0.73	V _{dd}
"Q" Saturation Breakpoint Voltage	—	—	—	2,6,7,8,9,10	1①	—	3	V _S (4)	—	-0.61	—	-0.65	—	-0.73	V _{dd}
"Q" or "Q" Latch Voltage	—	—	—	2,7,8,9,10	1,6①	—	3	V ₄ (1,6)	-1.11	-1.25	-1.09	-1.21	-1.02	-1.14	V _{dd}
Toggle Frequency (See Figures 1 and 2)	Pulse In	Pulse Out	—	1,2,6,9	—	—	3	f _{req}	—	—	30	—	—	—	MHz
Sensitivity (No Toggle)	7,10	5	—	1,2,6,9	—	—	3		—	—	—	—	—	—	
8,9	7,10	4	—	1,2,6,8,9	—	—	3		—	—	—	—	—	—	
Sensitivity (Toggle)	8,9	5	—	1,2,6,7,10	—	—	3		—	—	—	—	—	—	
7,10	4,5	—	—	1,2,6,8,9	—	—	3		—	—	—	—	—	—	
Switching Times									Typ	Max	Typ	Max	Typ	Max	ns
Propagation Delay Time	7,10	4,5	—	1,2,6,8,9	—	—	3	t _{pd} (4,5)	11.0	18.0	12.0	18.0	14.0	24.0	
7,10	4,5	—	1,2,6,8,9	—	—	3	t _{pd} (4,5)	12.0	18.0	13.0	18.0	15.0	24.0		
Rise Time	7,10	4,5	—	1,2,6,8,9	—	—	3	t _r (4,5)	11.5	20.0	12.5	21.0	15.0	26.0	
Fall Time	7,10	4,5	—	1,2,6,8,9	—	—	3	t _f (4,5)	11.5	18.0	12.5	21.0	15.0	26.0	

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{out}/dV_{in} = 0$. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5%.
 ③ Apply momentary V_{I,max} to set output, then V_{in} for measurement. ④ Input voltage is adjusted to obtain $dV_{out}/dV_{in} = \infty$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

— 0°C and +25°C
 - - - +75°C

LINE DRIVER

MECL MC350 series

MC365

Line driver for driving lines of 50 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions V _{de} ± 1%								Unit	
	@ Test Temperature { 0°C +25°C +75°C				0°C +25°C +75°C					
	V _H Pin No	V _I _{max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	V _{EE} Pin No	V _{BB} Pin No	Symbol Pin No in ()		
	—	—	—	2.6,7,8	1	4,5	3	I _e (2)		
Power Supply Drain Current	—	—	—	2.6,7,8	1	—	3	I _e (6)	—	
Input Current	6	—	—	2.7,8	1	—	3	I _e (7)	—	
	7	—	—	2.6,8	1	—	3	I _e (7)	—	
	8	—	—	2.6,7	1	—	3	I _e (8)	—	
"NOR" Logical "1" Output Voltage	—	—	6	2.7,8	1	4,5	3	V _i (6)	-0.695	
	—	—	7	2.6,8	1	4,5	3	V _i (7)	-0.850	
	—	—	8	2.6,7	1	4,5	3	V _i (8)	-0.795	
"NOR" Logical "0" Output Voltage	—	6	—	2.7,8	1	4,5	3	V _o (6)	-1.495	
	7	—	—	2.6,8	1	4,5	3	V _o (7)	-1.880	
	8	—	—	2.6,7	1	4,5	3	V _o (8)	-1.750	
"OR" Logical "1" Output Voltage	—	6	—	2.7,8	1	4,5	3	V _o (6)	-0.695	
	7	—	—	2.6,8	1	4,5	3	V _o (7)	-0.850	
	8	—	—	2.6,7	1	4,5	3	V _o (8)	-0.795	
"OR" Logical "0" Output Voltage	—	6	—	2.7,8	1	4,5	3	V _o (6)	-1.495	
	7	—	—	2.6,8	1	4,5	3	V _o (7)	-1.880	
	8	—	—	2.6,7	1	4,5	3	V _o (8)	-1.750	
Switching Times	Pulse In	Pulse Out						Typ Max Typ Max Typ Max		
Propagation Delay Time	6	5	—	2.7,8	1	—	3	t _d (5)	12.0	
	6	4	—	2.7,8	1	—	3	t _d (4)	16.0	
	6	5	—	2.7,8	1	—	3	t _d (5)	14.0	
	6	4	—	2.7,8	1	—	3	t _d (4)	10.0	
Rise Time	6	5	—	2.7,8	1	—	3	t _r (5)	16.5	
	6	4	—	2.7,8	1	—	3	t _r (4)	13.0	
Fall Time	6	5	—	2.7,8	1	—	3	t _f (5)	20.5	
	6	4	—	2.7,8	1	—	3	t _f (4)	20.0	

Pins not listed are left open. ① Output is loaded with a 50-ohm resistor.

LAMP DRIVER

MECL MC350 series

MC366

Lamp driver that provides "OR" or "NOR" logic depending on the bias arrangement used and is capable of driving 6 V lamps.

ELECTRICAL CHARACTERISTICS

@ Test Temperature 0°C +25°C +75°C	Test Conditions							Symbol Pin No in ()	Test Limits						Unit	
	Vdc ± 1%				mAdc	0°C			+25°C		+75°C					
	V _H Pin No	V _{I max} Pin No	V _L Pin No	V _{EE} Pin No		V _{BS} Pin No	V _{CC} Pin No	I _L Pin No	Ground Pin No	Min	Max	Min	Max	Min		
Power Supply Drain Current	—	4,5,6	—	2,7	8	10	—	3	I _C (10)	—	22.5	—	21.5	—	20.7 mAdc	
	—	4,5,6	—	2,7	8	10	—	3	I _S (2)	—	8.4	—	8.0	—	7.7 mAdc	
Input Current	4	—	—	2,5,6,7	8	10	—	3	I _{IN} (4)	—	—	—	200	—	— μAdc	
	5	—	—	2,4,6,7	8	10	—	3	I _{IN} (5)	—	—	—	—	—	—	
	6	—	—	2,4,5,7	8	10	—	3	I _{IN} (6)	—	—	—	—	—	—	
	7	—	—	2,4,5,6	8	10	—	3	I _{IN} (7)	—	—	—	—	—	—	
	8	—	—	2,4,5,7	6	10	—	3	I _{IN} (8)	—	—	—	—	—	—	
Output Voltage, Low	—	—	6	2,4,5,7	8	10	9	3	V _{OL} (9)	—	0.9	—	1.0	—	1.25 Vdc	
	—	—	6	2,4,5,8	7	10	9	3	V _{OL} (9)	—	0.9	—	1.0	—	1.25 Vdc	
Output Voltage, High	—	4	—	2,5,6,7	8	10,9①	—	3	V _{OH} (4)	—	—	—	5.8	—	5.8 Vdc	
	—	5	—	2,4,6,7	8	10,9①	—	3	V _{OH} (5)	—	—	—	—	—	—	
	—	6	—	2,4,5,7	8	10,9①	—	3	V _{OH} (6)	—	—	—	—	—	—	
	—	6	—	2,4,5,8	7	10,9①	—	3	V _{OH} (6)	—	—	—	—	—	—	

Pins not listed are left open. ①Pin 9 is connected to Vcc through a 10 k-ohm resistor.

MECL-TO-SATURATED TRANSLATOR

MECL MC350 series

MC367

Level translator intended for converting non-saturated MECL signal levels to saturated logic levels; provides "OR" or "NOR" logic depending on the bias arrangement used.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions										Unit					
	V _d c ± 1%					mAdc										
	V _H Pin No	V _I _{max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	V _{CC} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()							
Power Supply Drain Current	—	6	—	2,4,5,7	8	10	—	3	I _C (10)	—	7.3	—	7.0	—	6.8	mAdc
@ Test Temperature { 0°C +25°C +75°C	—	—	—	2,4,5,6,7	8	10	—	3	I _E (2)	—	7.3	—	7.0	—	6.8	mAdc
Input Current	4	—	—	2,5,6,7	8	10	—	3	I _{in} (4)	—	—	—	200	—	—	μAdc
5	—	—	—	2,4,6,7	8	10	—	3	I _{in} (5)	—	—	—	—	—	—	—
6	—	—	—	2,4,5,7	8	10	—	3	I _{in} (6)	—	—	—	—	—	—	—
7	—	—	—	2,4,5,8	6	10	—	3	I _{in} (7)	—	—	—	—	—	—	—
8	—	—	—	2,4,5,7	6	10	—	3	I _{in} (8)	—	—	—	—	—	—	—
Output Voltage, High	—	—	—	2,4,5,6,7	8	10	—	3	V _{OH} (9)	—	—	5.8	—	—	—	Vdc
—	—	—	—	2,4,5,6,8	7	10	—	3	V _{OH} (9)	—	—	5.8	—	—	—	Vdc
Output Voltage, Low	—	4	—	2,5,6,7	8	10	9	3	V _{OL} (9)	—	0.45	—	0.45	—	0.50	Vdc
—	5	—	—	2,4,6,7	8	10	9	3	V _{OL} (9)	—	—	—	—	—	—	—
—	6	—	—	2,4,5,7	8	10	9	3	V _{OL} (9)	—	—	—	—	—	—	—
—	6	—	—	2,4,5,8	7	10	9	3	V _{OL} (9)	—	—	—	—	—	—	—
Switching Times	Pulse In	Pulse Out	—	2,4,5,7	8	10	—	3	t _{on} (9)	Typ	Max	Typ	Max	Typ	Max	ns
Turn-On Time	6	9		2,4,5,7	6	10	—	3	t _{on} (9)	27.5	40.0	27.5	40.0	29.5	43.0	
—	8	9	—	2,4,5,7	6	10	—	3	t _{on} (9)	27.5	40.0	27.5	40.0	29.5	43.0	—
Turn-Off Time	6	9	—	2,4,5,7	8	10	—	3	t _{off} (9)	25.0	40.0	26.0	40.0	27.0	43.0	—
—	8	9	—	2,4,5,7	6	10	—	3	t _{off} (9)	25.0	40.0	26.0	40.0	27.0	43.0	—

SATURATED LOGIC-TO-MECL
TRANSLATOR

MECL MC350 series

MC368

Level translator intended for converting saturated logic levels to non-saturated MECL signal levels.

SWITCHING CHARACTERISTICS AND WAVEFORMS

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc $\pm 1\%$				Ground Pin No in ()	Symbol Pin No in ()	Test Limits						Unit			
	0°C		$+25^\circ\text{C}$				0°C		$+25^\circ\text{C}$		$+75^\circ\text{C}$					
	+0.45	+5.0	-5.20	+6.0			Min	Max	Min	Max	Min	Max				
	+0.45	+5.0	-5.20	+6.0			—	—	4.2	21.0	4.0	21.0	mAdc			
Power Supply Drain Current	—	—	2	7	3	I _c (7) I _c (2)	—	—	4.2	21.0	—	—	3.9 20.2			
Input Load Current	—	—	2	7	3.5	I _l (5)	—	—	—	—	8.5	—	mAdc			
	—	—	2	7	3.6	I _l (6)	—	—	—	—	—	—	—			
	—	—	2	7	3.9	I _l (9)	—	—	—	—	—	—	—			
	—	—	2	7	3.10	I _l (10)	—	—	—	—	—	—	—			
Input Reverse Current	—	—	2	5.7	3.6	I _r (5)	—	—	—	—	0.5	—	2.0			
	—	—	2	5.7	3.5	I _r (6)	—	—	—	—	—	—	—			
	—	—	2	7.5	3.10	I _r (9)	—	—	—	—	—	—	—			
	—	—	2	7.10	3.9	I _r (10)	—	—	—	—	—	—	—			
"OR" Logical "1" Output Voltage	—	5	2	7	3	V _s (4)	-0.715	-0.850	-0.670	-0.795	-0.570	-0.725	Vdc			
	—	6	2	7	3	V _s (4)	—	—	—	—	—	—	—			
	—	9	2	7	3	V _s (1)	—	—	—	—	—	—	—			
	—	10	2	7	3	V _s (1)	—	—	—	—	—	—	—			
"OR" Logical "0" Output Voltage	5	—	2	7	3	V _s (4)	-1.510	-1.880	-1.450	-1.750	-1.395	-1.730	Vdc			
6	—	2	7	3	V _s (4)	—	—	—	—	—	—	—				
9	—	2	7	3	V _s (1)	—	—	—	—	—	—	—				
10	—	2	7	3	V _s (1)	—	—	—	—	—	—	—				
Bias Voltage Output	—	—	2	7	3	V _{BB} (8)	-1.14	-1.27	-1.09	-1.22	-1.04	-1.18	Vdc			
Switching Times	Pulse In	Pulse Out					Typ	Max	Typ	Max	Typ	Max				
Propagation Delay Time	5	4	2	7	3	t _{pd} (4)	14.5	24.0	15.0	24.0	19.0	28.0	ns			
	9	1	2	7	3	t _{pd} (1)	14.5	24.0	15.0	24.0	19.0	28.0				
	5	4	2	7	3	t _{pd} (4)	15.5	23.0	15.5	23.0	19.0	28.0				
	9	1	2	7	3	t _{pd} (1)	15.5	23.0	15.5	23.0	19.0	28.0				
Rise Time	5	4	2	7	3	t _r (4)	6.5	13.0	7.0	13.0	8.0	14.0				
	9	1	2	7	3	t _r (1)	6.5	13.0	7.0	13.0	8.0	14.0				
Fall Time	5	4	2	7	3	t _f (4)	7.0	13.0	7.5	13.0	8.0	14.0				
	9	1	2	7	3	t _f (1)	7.0	13.0	7.5	13.0	8.0	14.0				

Pins not listed are left open.

DUAL 4-INPUT CLOCK DRIVER
AND HIGH-SPEED GATE

MECL MC350 series

MC369F

High-speed clock driver or dual 4-input gate that provides the positive logic "NOR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

MC369F (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc $\pm 1\%$												Unit	
	0°C			+25°C			+75°C			Test Limits				
	V _H Pin No	V _{I max} Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No	Symbol Pin No in ()	0°C Min	0°C Max	+25°C Min	+25°C Max	+75°C Min	+75°C Max
	—	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₂₎	—	—	60	—	—	mADC
@ Test Temperature { 0°C +25°C +75°C	—	—	—	—	—	—	—	—	—	—	200	—	—	μADC
Power Supply Drain Current	—	—	—	—	—	—	3	I ₍₅₎	—	—	—	—	—	—
Input Current	5	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₆₎	—	—	—	—	—	—
	6	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₇₎	—	—	—	—	—	—
	7	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₈₎	—	—	—	—	—	—
	8	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₁₁₎	—	—	—	—	—	—
	11	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₁₂₎	—	—	—	—	—	—
	12	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₁₃₎	—	—	—	—	—	—
	13	—	—	2.5,6,7,8,11,12,13,14	—	—	3	I ₍₁₄₎	—	—	—	—	—	—
"NOR" Logical "1" Output Voltage	—	—	5	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	0.700	—	—	Vdc
	—	—	6	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	0.900	—	—	Vdc
	—	—	7	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	0.650	—	—	Vdc
	—	—	8	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	0.825	—	—	Vdc
	—	—	11	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	—	—	—	—
	—	—	12	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	—	—	—	—
	—	—	13	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	—	—	—	—
	—	—	14	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	—	—	—	—
"NOR" Logical "0" Output Voltage	—	—	5	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	1.510	—	—	Vdc
	—	—	6	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	1.880	—	—	Vdc
	—	—	7	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	1.465	—	—	Vdc
	—	—	8	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₄₎	—	—	1.850	—	—	Vdc
	—	—	11	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	1.395	—	—	Vdc
	—	—	12	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	1.790	—	—	Vdc
	—	—	13	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	—	—	—	—
	—	—	14	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₎	—	—	—	—	—	—
"OR" Logical "1" Output Voltage	—	—	5	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	0.700	—	—	Vdc
	—	—	6	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	0.900	—	—	Vdc
	—	—	7	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	0.650	—	—	Vdc
	—	—	8	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	0.825	—	—	Vdc
	—	—	11	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₀₎	—	—	—	—	—	—
	—	—	12	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₀₎	—	—	—	—	—	—
	—	—	13	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₀₎	—	—	—	—	—	—
	—	—	14	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₀₎	—	—	—	—	—	—
"OR" Logical "0" Output Voltage	—	—	5	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	1.510	—	—	Vdc
	—	—	6	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	1.880	—	—	Vdc
	—	—	7	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	1.465	—	—	Vdc
	—	—	8	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₉₎	—	—	1.850	—	—	Vdc
	—	—	11	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₀₎	—	—	1.395	—	—	Vdc
	—	—	12	2.5,6,7,8,11,12,13,14	—	—	3	V ₍₁₀₎	—	—	1.790	—	—	Vdc
"NOR" Output Voltage Change	—	—	5	2.6,7,8,11,12,13,14	—	4②	3	ΔV ₍₄₎	—	—	—	—	—	—
	—	—	11	2.6,7,8,11,12,13,14	—	1②	3	ΔV ₍₁₎	—	—	—	—	—	—
"OR" Output Voltage Change	—	—	5	2.6,7,8,11,12,13,14	—	9②	3	ΔV ₍₉₎	—	—	—	—	—	—
	—	—	11	2.6,7,8,11,12,13,14	—	10②	3	ΔV ₍₁₀₎	—	—	—	—	—	—
"NOR" Saturation Breakpoint Voltage	—	—	—	2.6,6,8,11,12,13,14	5①	—	3	V ₍₅₎	—	—	—	—	—	—
	—	—	—	2.6,7,8,11,12,13,14	6①	—	3	V ₍₆₎	—	—	—	—	—	—
	—	—	—	2.5,6,8,11,12,13,14	7①	—	3	V ₍₇₎	—	—	—	—	—	—
	—	—	—	2.5,6,7,11,12,13,14	8①	—	3	V ₍₈₎	—	—	—	—	—	—
	—	—	—	2.5,6,7,8,12,13,14	11①	—	3	V ₍₁₁₎	—	—	—	—	—	—
	—	—	—	2.5,6,7,8,11,13,14	12①	—	3	V ₍₁₂₎	—	—	—	—	—	—
	—	—	—	2.5,6,7,8,11,12,14	13①	—	3	V ₍₁₃₎	—	—	—	—	—	—
	—	—	—	2.5,6,7,8,11,12,13	14①	—	3	V ₍₁₄₎	—	—	—	—	—	—
Switching Times														
Propagation Delay Time	Pulse In	Pulse Out												
Fan-Out = 1	5	4	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(4)}	3	5	3	5	4	6
	5	9	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(9)}	6	6	6	7	7	ns
	11	1	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(1)}	5	5	5	6	6	7
	11	10	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(10)}	6	6	6	7	7	7
Fan-Out = 10	5	4	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(4)}	3	6	3	6	7	7
	5	9	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(9)}	6	6	6	7	7	7
	11	1	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(1)}	5	5	5	6	6	11
	11	10	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(10)}	6	6	6	7	7	11
Rise Time, Fan-Out = 1	5	4	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(4)}	4	7	4	7	5	8
	5	9	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(9)}	5	10	5	10	6	11
	11	1	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(1)}	4	7	4	7	5	8
	11	10	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(10)}	4	7	4	7	5	8
Fan-Out = 10	5	4	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(4)}	4	9	4	9	5	10
	5	9	—	2.6,7,8,11,12,13,14	—	—	3	t _{r(9)}	6	11	6	11	7	12
	11	1	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(1)}	6	11	6	11	7	12
	11	10	—	2.5,6,7,8,12,13,14	—	—	3	t _{r(10)}	6	11	6	11	7	12

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV / dV_{in} = 0$. ② Current test conditions: no load = 0; full load = $-10 \text{ mADC} \pm 5\%$.

MC369G

High-speed clock driver or dual 2-input gate that provides the positive logic "NOR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

MC369G (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions Vdc ± 1%							Symbol Pin No in ()	Test Limits						Unit			
	0°C			+25°C			+75°C											
	V _H Pin No	V _I _{max} Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _l Pin No	Ground Pin No		Min	Max	Min	Max	Min	Max				
Power Supply Drain Current	—	—	—	2,5,6,9,10	—	—	3	I _l (2)	—	—	—	60	—	—	mAdc			
Input Current	5	—	—	2,6,9,10	—	—	3	I _{in} (5)	—	—	—	200	—	—	μAdc			
	6	—	—	2,5,9,10	—	—	3	I _{in} (6)	—	—	—	—	—	—	↓			
	9	—	—	2,5,6,10	—	—	3	I _{in} (9)	—	—	—	—	—	—	↓			
	10	—	—	2,5,6,9	—	—	3	I _{in} (10)	—	—	—	—	—	—	↓			
"NOR" Logical "1" Output Voltage	—	—	5	2,6,9,10	—	—	3	V _l (4)	-0.700	-0.900	-0.650	-0.825	-0.550	-0.770	Vdc			
	—	—	6	2,5,9,10	—	—	3	V _l (4)	—	—	—	—	—	—	↓			
	—	—	9	2,5,6,10	—	—	3	V _l (1)	—	—	—	—	—	—	↓			
	—	—	10	2,5,6,9	—	—	3	V _l (1)	—	—	—	—	—	—	↓			
"NOR" Logical "0" Output Voltage	—	5	—	2,6,9,10	—	—	3	V ₄ (4)	-1.510	-1.880	-1.465	-1.850	-1.395	-1.790	Vdc			
	—	6	—	2,5,9,10	—	—	3	V ₄ (4)	—	—	—	—	—	—	↓			
	—	9	—	2,5,6,10	—	—	3	V ₄ (1)	—	—	—	—	—	—	↓			
	—	10	—	2,5,6,9	—	—	3	V ₄ (1)	—	—	—	—	—	—	↓			
"OR" Logical "1" Output Voltage	—	5	—	2,6,9,10	—	—	3	V ₅ (7)	-0.700	-0.900	-0.650	-0.825	-0.550	-0.770	Vdc			
	—	6	—	2,5,9,10	—	—	3	V ₅ (7)	—	—	—	—	—	—	↓			
	—	9	—	2,5,6,10	—	—	3	V ₅ (8)	—	—	—	—	—	—	↓			
	—	10	—	2,5,6,9	—	—	3	V ₅ (8)	—	—	—	—	—	—	↓			
"OR" Logical "0" Output Voltage	—	5	—	2,6,9,10	—	—	3	V ₂ (7)	-1.510	-1.880	-1.465	-1.850	-1.395	-1.790	Vdc			
	—	6	—	2,5,9,10	—	—	3	V ₂ (7)	—	—	—	—	—	—	↓			
	—	9	—	2,5,6,10	—	—	3	V ₂ (8)	—	—	—	—	—	—	↓			
	—	10	—	2,5,6,9	—	—	3	V ₂ (8)	—	—	—	—	—	—	↓			
"NOR" Output Voltage Change	—	—	5	2,6,9,10	—	4①	3	ΔV _l (4)	—	-0.100	—	-0.100	—	-0.130	Volts			
	—	—	9	2,5,6,10	—	1①	3	ΔV _l (1)	—	-0.100	—	-0.100	—	-0.130	Volts			
"OR" Output Voltage Change	—	5	—	2,6,9,10	—	7②	3	ΔV _l (7)	—	-0.100	—	-0.100	—	-0.130	Volts			
	—	9	—	2,5,6,10	—	8②	3	ΔV _l (8)	—	-0.100	—	-0.100	—	-0.130	Volts			
"NOR" Saturation Breakpoint Voltage	—	—	—	2,6,9,10	5①	—	3	V ₃ (4)	—	-0.51	—	-0.55	—	-0.63	Vdc			
	—	—	—	2,5,9,10	6①	—	3	V ₃ (4)	—	—	—	—	—	—	↓			
	—	—	—	2,5,6,10	9①	—	3	V ₃ (1)	—	—	—	—	—	—	↓			
	—	—	—	2,5,6,9	10①	—	3	V ₃ (1)	—	—	—	—	—	—	↓			
Switching Times Propagation Delay Time	Pulse In	Pulse Out								Typ	Max	Typ	Max	Typ	Max	ns		
	Fan-Out = 1	5	4	—	2,6,9,10	—	—	3	t _{tr} (4)	3	5	3	5	4	6			
		5	7	—	2,6,9,10	—	—	3	t _{tr} (7)	—	6	5	6	7	7			
		9	1	—	2,5,6,10	—	—	3	t _{tr} (1)	—	5	5	5	6	6			
		9	8	—	2,5,6,10	—	—	3	t _{tr} (8)	—	6	6	6	7	7			
	Fan-Out = 10	5	4	—	2,6,9,10	—	—	3	t _{tr} (4)	3	6	3	6	4	7			
		5	7	—	2,6,9,10	—	—	3	t _{tr} (7)	5	10	5	10	6	11			
		9	1	—	2,5,6,10	—	—	3	t _{tr} (1)	4	7	4	7	5	8			
		9	8	—	2,5,6,10	—	—	3	t _{tr} (8)	5	10	5	10	6	11			
	Rise Time, Fan-Out = 1	5	4	—	2,6,9,10	—	—	3	t _{tr} (4)	5	10	5	10	6	11			
		5	7	—	2,6,9,10	—	—	3	t _{tr} (7)	4	7	4	7	5	8			
		9	1	—	2,5,6,10	—	—	3	t _{tr} (1)	5	10	5	10	6	11			
		9	8	—	2,5,6,10	—	—	3	t _{tr} (8)	4	7	4	7	5	8			
	Fan-Out = 10	5	4	—	2,6,9,10	—	—	3	t _{tr} (4)	5	10	5	10	6	11			
		5	7	—	2,6,9,10	—	—	3	t _{tr} (7)	4	7	4	7	5	8			
		9	1	—	2,5,6,10	—	—	3	t _{tr} (1)	5	10	5	10	6	11			
		9	8	—	2,5,6,10	—	—	3	t _{tr} (8)	4	7	4	7	5	8			
	Fall Time, Fan-Out = 1	5	4	—	2,6,9,10	—	—	3	t _{ftr} (4)	4	7	4	7	5	9			
		5	7	—	2,6,9,10	—	—	3	t _{ftr} (7)	6	11	6	11	7	12			
		9	1	—	2,5,6,10	—	—	3	t _{ftr} (1)	6	11	6	11	7	12			
		9	8	—	2,5,6,10	—	—	3	t _{ftr} (8)	—	—	—	—	—	—			
	Fan-Out = 10	5	4	—	2,6,9,10	—	—	3	t _{ftr} (4)	6	11	6	11	7	12			
		5	7	—	2,6,9,10	—	—	3	t _{ftr} (7)	6	11	6	11	7	12			
		9	1	—	2,5,6,10	—	—	3	t _{ftr} (1)	6	11	6	11	7	12			
		9	8	—	2,5,6,10	—	—	3	t _{ftr} (8)	—	—	—	—	—	—			

Pins not listed are left open. ① Input voltage is adjusted to obtain dV "NOR" / dV_{in} = 0. ② Current test conditions: no load = 0; full load = -10 mAdc ± 5%.