MATH 2XX3 - Advanced Calculus II

Sang Woo Park

March 7, 2017

Contents

1	Introduction 2		
	1.1	Vector norm	
	1.2	Subset	
2	Functions 5		
	2.1	Limits and continuity	
	2.2	Differentiability	
	2.3	Chain rule	
3	Paths and Curves		
	3.1	Directional derivatve	
	3.2	Parameterized curve	
	3.3	Geometry of curves in \mathbb{R}^3	
	3.4	Dynamics	
4	Implicit functions 27		
	4.1	The Implicit Function Theorem I	
	4.2	The Implicit Function Theorem II	
	4.3	Inverse Function Theorem	
5	Taylor's Theorem 35		
	5.1	Taylor's Theorem in one dimension	
	5.2	Taylor's Theorem in higher dimensions	
	5.3	Local minima/maxima	
6	Calculus of Variations 44		
	6.1	Introduction	

1 Introduction

In this course, we are going to study calculus using the concepts from linear algebra.

1.1 Vector norm

Definition 1.1. Euclidean norm of $\vec{x} = (x_1, x_2, \dots, x_n)$ is given as

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{\sum_{j=1}^{n} x_j^2}$$

Theorem 1.1 (Properties of a norm).

- 1. $\|\vec{x}\| \ge 0$ and $\|\vec{x}\| = 0$ iff $\vec{x} = \vec{0} = (0, 0, \dots, 0)$.
- 2. For all scalars $a \in \mathbb{R}$, $||a\vec{x}|| = |a| \cdot ||\vec{x}||$.
- 3. (Triangle inequality) $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

We say that this is a property of a norm because there are other norms, which measure distance in \mathbb{R}^n in different ways!

Example 1.1.1 (A non-pythagorian norm - *The Taxi Cab Norm*). Consider the following vector $\vec{p} = (p_1, p_2) \in \mathbb{R}^2$. The euclidean norm gives the length of the diagonal line. On the other hand,

$$\|\vec{p}\|_1 = |p_1| + |p_2|$$

gives us the total distance in a rectangular grid system.

For $\vec{p} = (p_1, p_2, \dots, p_n) \in \mathbb{R}^n$, $\|\vec{p}\|_1 = \sum_{j=1}^n |p_j|$. Note that the Taxi Cab norm is a valid norm because it satisfies all properties of a norm above. So it also gives us a valid alternative way to measure distance in \mathbb{R}^n , dist $(\vec{p}, \vec{q}) = \|\vec{p} - \vec{q}\|$. This way of measuring distance gives \mathbb{R}^n a different geometry.

Definition 1.2. Neighborhood of a point \vec{p} , or disks centered at \vec{p} is defined as

$$D_r(\vec{p}) = \left\{ \vec{x} \in \mathbb{R}^n \middle| ||\vec{x} - \vec{p}|| < r \right\}$$

Remark. The neighborhood around \vec{a} of radius r may be written using any of the following notations:

$$D_r(\vec{a}) = B_r(\vec{a}) = B(\vec{a}, r)$$

Definition 1.3. Sphere is defined as

$$S_r(\vec{p}) = \{ \vec{x} \in \mathbb{R}^n | ||\vec{x} - \vec{p}|| = r \}$$

What neighboorhood and sphere look like depends on which norm you choose. First, let's start with the familiar euclidean norm. Then, the sphere is given by

$$\|\vec{x} - \vec{p}\| = r$$

$$\iff \sqrt{\sum_{j=1}^{n} (x_j - p_j)^2} = r$$

Then, we have

$$\sum_{j=1}^{n} (x_j - p_j)^2 = r^2$$

If n = 3, we have $(x_1 - p_1)^2 + (x_2 - p_2)^2 + (x_3 - p_3)^2 = r^2$, usual sphere in \mathbb{R}^3 with center $\vec{p} = (p_1, p_2, p_3)$

If n = 2, we have $(x_1 - p_1)^2 + (x_2 - p_2)^2 = r^2$, usual circle in \mathbb{R}^n with center $\vec{p} = (p_1, p_2)$.

If we replace Euclidean norm by the Taxi Cab norm (for simplicity, take $\vec{p}=\vec{0}$), we have

$$S_r^{\text{taxi}}(\vec{0}) = \left\{ \vec{x} \in \mathbb{R}^n \middle| ||\vec{x} - \vec{0}||_1 = r \right\}$$

In other words, we have

$$\vec{x} \in S_r^{\text{taxi}}(\vec{0}) \iff \sum_{j=1}^n |x_j| = r$$

Looking at it in \mathbb{R}^2 , we have $\vec{x} = (x_1, x_2)$. Then, $r = |x_1| + |x_2|$. This, in fact, is a diamond.

Remark. Note that $|x_1| + |x_2| = r$ is a *circle* in \mathbb{R}^2 under the Taxi Cab norm. Then, we have

$$\pi = \frac{\text{circumference}}{\text{diameter}} = \frac{8r}{2r} = 4$$

1.2 Subset

Let's introduce some properties of subsets in \mathbb{R}^n . $A \subset \mathbb{R}^n$ means A is a collection of points \vec{x} , drawn from \mathbb{R}^n .

Definition 1.4. Let $A \subset \mathbb{R}^n$, and $\vec{p} \in A$. We say \vec{p} is an interior point of A if there exists a neighbourhood of \vec{p} , i.e. an open disk disk, which is entirely contained in A:

$$D_r(\vec{p}) \subset A$$
.

Example 1.2.1.

$$A = \left\{ \vec{x} \in \mathbb{R}^n | \vec{x} \neq \vec{0} \right\}$$

Take any $\vec{p} \in A$, so $\vec{p} \neq \vec{0}$. Then, let $r = ||\vec{p} - \vec{0}|| > 0$, and $D_r(\vec{p}) \subset A$, since $\vec{0} \notin D_r(\vec{p})$. (Notice: any smaller disk, $D_s(\vec{p}) \subset D_r(\vec{p}) \subset A$, where 0 < s < r works to show that \vec{p} is an interior point).

So every $\vec{p} \in A$ is an interior point to A.

Definition 1.5. If every $\vec{p} \in A$ is an interior point, we cal A an open set.

Example 1.2.2. $A = \left\{ \vec{x} \in \mathbb{R}^n | \vec{x} \neq \vec{0} \right\}$ is an open set.

Example 1.2.3. $A = D_R(\vec{0})$ is an open set.

Proof. If $\vec{p} = \vec{0}$, $D_r(\vec{0}) \subseteq A = D_R(\vec{0})$ provided $r \leq R$. So $\vec{p} = \vec{0}$ is interior to A. Consider any other $\vec{p} \in A$. It's evident that $D_r(\vec{p}) \subset A = D_R(\vec{0})$ provided that $0 \leq r \leq R - ||\vec{p}||$. Therefore, $A = D_R(\vec{0})$ is an open set.

Example 1.2.4. Suppose we use Taxi Cab disks instead of Euclidean disk. It does not change which points are interior to A since the diamond is inscribed in a circle. In other words,

$$D_r^{\mathrm{taxi}}(\vec{p}) \subset D_r^{\mathrm{Euclid}}(\vec{p})$$

Definition 1.6. The complement of set A is

$$A^c = \{\vec{x} | \vec{x} \notin A\}$$

Definition 1.7. \vec{b} is a boundary point of A if for every r > 0, $D_r(\vec{b})$ contains both points in A and points not in A:

$$D_r(\vec{b}) \cap A \neq \emptyset$$
 and $D_r(\vec{b}) \cap A^c \neq \emptyset$

In the example 1.2.3, the set of all boundary points of $A = D_R(\vec{0})$

$$\left\{ \vec{b} \left| \| \vec{b} \| = R \right. \right\}$$

is a sphere of radius R.

Definition 1.8. A set A is closed if A^c is open.

Theorem 1.2. A is clossed if and only if A contains all its boundary points.

Example 1.2.5. Consider the following set:

$$A = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 \ge 0, x_2 > 0\}$$

If $\vec{p_1} = (p_1, p_2)$, where $p_1 > 0, p_2 > 0$, then $\vec{p_1}$ is an interior point. Take $r = \min\{p_1, p_2\}$. Then, $D_r(\vec{p}) \subset A$. On the other hand, any \vec{p} that lies on either axes (including $\vec{0}$) is a boundary point. Since there are boundary points in A, A can't be open.

2 Functions

2.1 Limits and continuity

In this section, we will be considering vector values functions such that

$$F: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$$
.

We can rewrite this using a matrix notation:

$$F(x_1, x_2, \dots, x_n) = \begin{bmatrix} F_1(x_1, x_2, \dots, x_n) \\ F_2(x_1, x_2, \dots, x_n) \\ \vdots \\ F_k(x_1, x_2, \dots, x_n) \end{bmatrix}$$

Example 2.1.1. For a $(k \times n)$ matrix M,

$$F(\vec{x}) = M\vec{x}$$

First, we wish to study limits. What does $\lim_{\vec{x}\to\vec{a}} F(\vec{x}) = \vec{L}$ mean? Note that it's not enough to treat the variables $x_1, x_2, \dots x_n$ separately.

Example 2.1.2. Consider the following function:

$$F(x,y) = \frac{xy}{x^2 + 4y^2},$$

where $(x, y) \neq (0, 0)$. First, we can attempt to find its limit by considering them separately.

$$\lim_{x \to 0} \left(\lim_{y \to 0} F(x, y) \right) = \lim_{x \to 0} \left(\frac{0}{x^2} \right) = \lim_{x \to 0} = 0$$

Similarly, we have

$$\lim_{y \to 0} \left(\lim_{x \to 0} F(x, y) \right) = 0$$

However, if $(x, y) \to (0, 0)$ along a straight line path with y = mx, where m is constant, we have

$$F(x, mx) = \frac{mx^2}{x^2 + 4m^2x^2} = \frac{m}{1 + 4m^2}$$

In this case, we have

$$\lim_{\substack{(x,y)\to(0,0)\\\text{along }y=mx}}F(x,y)=\frac{m}{1+4m^2}$$

Therefore, the values of F(x,y) don't approach any particular value as $(x,y) \rightarrow (0,0)$.

Example 2.1.3 (Worse). Consider the following function:

$$F(x,y) = \frac{y^2}{x^4 + y^2}.$$

If we approach (0,0) along y=mx, limit equals 1. However, if we approach along a parabola, $y=mx^2$, limit equals $m^2/(1+m^2)$. We get different limits alond different parabolas.

We showed that computing

$$\lim_{\vec{x}\to\vec{a}}=\vec{b}$$

is tricky because $\vec{x} \to \vec{a}$ has to be more precise. It can't depend on the path or direction on which \vec{x} approaches \vec{a} , but only on *proximity*. In other words, we want $||F(\vec{x}) - \vec{b}||$ to go to zero as $||\vec{x} - \vec{a}||$ goes to zero.

Definition 2.1. We say $\lim_{\vec{x}\to\vec{a}} F(\vec{x}) = \vec{b}$ if for any given $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $0 < \|\vec{x} - \vec{a}\| < \delta$, we have $\|F(x) - \vec{b}\| < \varepsilon$. Therefore,

$$\lim_{\vec{x} \to \vec{a}} F(x) = \vec{b} \iff \lim_{\vec{x} \to \vec{a}} \|F(\vec{x}) - \vec{b}\| = 0$$

Remark. Geometrically, for any given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$F(\vec{x}) \in D_{\varepsilon}(\vec{b}),$$

where $\vec{x} \in D_{\delta}(\vec{a})$.

Before doing examples, here's a useful observations. Take $\vec{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$. Then, we have

$$\|\vec{v}\| = \sqrt{\sum_{j=1}^{n} v_j^2} \ge \sqrt{v_i^2} = |v_i|$$

for each coordinate i = 1, 2, ..., n.

Example 2.1.4. Show

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2+y^2} = 0$$

Proof. Note that $F: \mathbb{R} \setminus \{\vec{0}\} \to \mathbb{R}, b = 0, \vec{a} = (0,0)$. Call

$$R = \|\vec{x} - \vec{a}\| = \|\vec{x}\| = \sqrt{x^2 + y^2}$$

Since $F(\vec{x}) \in \mathbb{R}$, we have

$$\begin{aligned} \|F(\vec{x}) - \vec{b}\| &= |F(\vec{x}) - b| \\ &= \left| \frac{2x^2y}{x^2 + y^2} - 0 \right| \\ &= \frac{2|x|^2|y|}{x^2 + y^2} \\ &\leq \frac{2 \cdot R^2 \cdot R}{R^2} \\ &= 2R \\ &= 2\|\vec{x} - \vec{a}\| \end{aligned}$$

By letting $\|\vec{x} - \vec{a}\| = \|\vec{x}\| < \varepsilon/2$, we get $\|F(\vec{x}) = \vec{b}\| < \varepsilon$. Therefore, definition is satisfied with $\delta \le \varepsilon/2$

Example 2.1.5. Consider the following function, $F : \mathbb{R}^3 \setminus \{\vec{0}\} \to \mathbb{R}$:

$$\frac{3z^2 + 2x^2 + 4y^2 + 6z^2}{x^2 + 2y^2 + 3z^2}.$$

Determine whether

$$\lim_{(x,y,z)\to(0,0,0)} F(x,y,z) = 2.$$

Proof. We have

$$\begin{split} \|F(x,y,z) - \vec{b}\| &= |F(x,y,z) - 2| \\ &= \left| \frac{3z^3 + 2x^2 + 4y^2 + 6z^2}{x^2 + 2y^2 + 3z^2} - 2 \right| \\ &= \frac{3|z|^3}{x^2 + 2y^2 + 3z^2} \\ &\leq \frac{3R^3}{x^2 + y^2 + z^3} \\ &= \frac{3R^3}{R^2} \\ &= 3R \end{split}$$

Then,

$$||F(x,y,z) - \vec{b}|| < 3R < \varepsilon$$

provided that

$$R = \|\vec{x} - \vec{0}\| < \delta = \frac{\varepsilon}{3}$$

Definition 2.2. Consider a function $F : \mathbb{R}^n \to \mathbb{R}^k$ with domain $A \subseteq \mathbb{R}^n$. For $\vec{a} \in A$, we say F is continuous at \vec{a} in the domain of F iff

$$F(a) = \lim_{\vec{x} \to \vec{a}} F(\vec{a})$$

Example 2.1.6. Going back the example 2.1.5, if we redefine F as follows,

$$F = \begin{cases} \frac{3z^2 + 2x^2 + 4y^2 + 6z^2}{x^2 + 2y^2 + 3z^2} & (x, y, z) \neq (0, 0, 0) \\ 2 & (x, y, z) = (0, 0, 0) \end{cases}$$

then F is continuous at (0,0,0) (and in fact at all $\vec{x} \in \mathbb{R}$).

If F is continuous at every $\vec{a} \in A$, $(\forall \vec{x} \in A)$, we say F is continuous on the set A. Continuity is always preserved by the usual algebraic operations: sum. product, quotient, and composition of continuous functions is continuous 1 .

2.2 Differentiability

Definition 2.3. For a function $f : \mathbb{R} \to \mathbb{R}$, its derivative is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

If it exists, we say f is differentiable at x.

Theorem 2.1. If f is differentiable at x, f(x) is also continuous at x.

Note that differentiable functions, f(x), are well approximated by their tangent lines (also known as linearization). We wish to extend this idea to $F: \mathbb{R}^n \to \mathbb{R}^m$.

First, we try dealing with the independent variables, x_1, x_2, \ldots, x_n , one at a time by using partial derivatives. We start by introducing the standard basis in \mathbb{R}^n :

$$\vec{e}_1 = (1, 0, 0, \dots, 0)$$

 $\vec{e}_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $\vec{e}_n = (0, 0, 0, \dots, 1)$

(In \mathbb{R}^3 , $\vec{e}_1 = \vec{i}$, $\vec{e}_2 = \vec{j}$, $\vec{e}_3 = \vec{k}$).

For any $\vec{x} \in \mathbb{R}^n$, and $h \in \mathbb{R}$, $(\vec{x} + h\vec{e_j})$ moves from \vec{x} parallel to the x_j axis by distance h. In other words,

$$\vec{x} + h\vec{e}_i = (x_1, x_2, \dots, x_i + h, x_{i+1}, \dots, x_n).$$

¹Provided we remain in the domain of continuity of both functions and denominators aren't zero

Definition 2.4. Partial derivatives of f(x) is defined as

$$\frac{\partial f}{\partial x_j}(\vec{x}) = \lim_{h \to 0} \frac{f(\vec{x} + h\vec{e}_j) - f(\vec{x})}{h},$$

for all j = 1, 2, ..., n.

Partial derivatives calculate the derivatives of f, treating of \vec{x}_j as the only variable, and all others treated as constants. For a vector valued function $F : \mathbb{R}^n \to \mathbb{R}^m$:

$$F(\vec{x}) = \begin{bmatrix} F_1(\vec{x}) \\ F_2(\vec{x}) \\ \vdots \\ F_m(\vec{x}) \end{bmatrix},$$

we treat each component $F_i(\vec{x}): \mathbb{R}^n \to \mathbb{R}$ separately as a real valued function. Each has n partial derivatives, and so $F: \mathbb{R}^n \to \mathbb{R}^m$ has $(m \times n)$ partial derivatives, which form an $(m \times n)$ matrix:

$$\left(\frac{\partial F_i}{\partial x_j}\right)_{\substack{i=1,2,\ldots,m\\j=1,2,\ldots,n}}.$$

We call this the derivative matrix or Jacobian matrix, $DF(\vec{x})$.

Example 2.2.1. Consider a function $F: \mathbb{R}^2 \to \mathbb{R}^3$:

$$F(\vec{x}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^4 \end{bmatrix}.$$

Jacobian of the function is given by

$$DF(\vec{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} \\ \frac{\partial F_2}{\partial F_2} & \frac{\partial F_2}{\partial F_3} \\ \frac{\partial F_3}{\partial x_1} & \frac{\partial F_3}{\partial x_2} \end{bmatrix}$$
$$= \begin{bmatrix} 2x_1 & 0 \\ x_2 & x_1 \\ 0 & 4x_2^3 \end{bmatrix}$$

Do we get the same properties for $DF(\vec{x})$ as we did for single-value calculus?

Example 2.2.2. Consider the following function:

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Do the partial derivatives exist at (0,0)?

By definition,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h \cdot 0}{(h^2 + 0^2)^2} - 0}{h}$$

$$= \lim_{h \to 0} \frac{0}{h} = 0$$

Similarly, $\frac{\partial f}{\partial y}(0,0) = 0$ (symmetry of x, y). Therefore,

$$Df(0,0) = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Although partial derivatives exist, f is not cotinuous at (0,0)! (For example, $f(x, mx) \to \pm \infty$ as $x \to 0^{\pm}$ for $m \neq 0$).

To get reasonable information from $Df(\vec{x})$, we need to say more. First, let's go back to $f: \mathbb{R} \to \mathbb{R}$. Note

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\iff \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} - f'(x) \right) = 0$$

$$\iff \lim_{h \to 0} \left(\frac{f(x+h) - [f(x) + hf'(x)]}{h} \right) = 0$$

Numerator is the difference between f(x+h) and its linear approximation, L (i.e. the tangent line). So f is differentiable at x if its linear approximation gives an estimate of the values f(x+h) within an error which is small compared to $\Delta x = h$. More precisely, the linearization of f(x) at x = a (or the tangent line) is given by

$$L_a(x) = f(a) + f'(a)(x - a)$$

We wish to extend this idea to higher dimensions. For $F: \mathbb{R}^n \to \mathbb{R}^m$, $F(\vec{x})$ has $(m \times n)$ partial derivates (see definition 2.4). Then, the linearization of F at \vec{a} is

$$L_{\vec{a}}(\vec{x}) = \underbrace{F(\vec{a})}_{m \times 1} + \underbrace{DF(\vec{a})}_{m \times n} \underbrace{(\vec{x} - \vec{a})}_{n \times 1}.$$

So, $L: \mathbb{R}^n \to \mathbb{R}^m$, just like F. The derivative matrix $DF(\vec{a})$ is a linear transformation of $\mathbb{R}^n \to \mathbb{R}^m$.

Notice that when n=2 and m=1, For $F:\mathbb{R}^2\to\mathbb{R}$, we have

$$DF(\vec{a}) = \begin{bmatrix} \frac{\partial F}{\partial x_1}(\vec{a}) & \frac{\partial F}{\partial x_2}(\vec{a}) \end{bmatrix},$$

a (1×2) row vector and

$$\vec{x} - \vec{a} = \begin{bmatrix} x_1 - a_1 \\ x_2 - a_2 \end{bmatrix},$$

so we have

$$L_{\vec{a}}(\vec{x}) = F(\vec{a}) + \frac{\partial F}{\partial x_1}(x_1 - a_1) + \frac{\partial F}{\partial x_2}(x_2 - a_2),$$

a familiar equation of the tangent plane to $z = F(x_1, x_2)$.

Finally, we can introduce the idea of differentiable:

Definition 2.5 (Differentiability). We say $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable if

$$\lim_{\vec{x} \to \vec{a}} \frac{\|F(\vec{x}) - F(\vec{a}) - DF(\vec{a})(\vec{x} - \vec{a})\|}{\|\vec{x} - \vec{a}\|} = 0.$$

Equivalently,

$$\lim_{\vec{h} \rightarrow \vec{0}} \frac{\|F(\vec{x} + \vec{h}) - F(\vec{x}) - DF(\vec{x})\vec{h}\|}{\|\vec{h}\|} = 0$$

In summary, F is differentiable if $||F(\vec{x}) - L_{\vec{a}}(\vec{x})||$ is small compared to $||\vec{x} - \vec{a}||$. Or, $F(\vec{x})$ is approximated by $L_{\vec{a}}(\vec{x})$ with and error which is much smaller than $||\vec{x} - \vec{a}||$. Note that we write $o(||\vec{x} - \vec{a}||)$ "little-oh" for quantity which is small compred to $||\vec{x} - \vec{a}||$. Using this notation, differentiability can be written as

$$||F(\vec{x}) - F(\vec{a} - Df(\vec{a})(\vec{x} - \vec{a}))|| = o(||\vec{x} - \vec{a}||).$$

Example 2.2.3. Is the following function differentiable at $\vec{a} = \vec{0}$?

$$F(x_1, x_2) = \begin{cases} \frac{x_2^2 \sin x_1}{\sqrt{x_1^2 + x_2^2}}, & \vec{x} \neq \vec{0} \\ 0, & \vec{x} = \vec{0} \end{cases}$$

First, we have

$$\frac{\partial F}{\partial x_1}(\vec{0}) = \lim_{h \to 0} \frac{F(\vec{0} + h\vec{e}_1) - F(\vec{0})}{h}$$
$$= \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

Similarly, we have

$$\frac{\partial F}{\partial x_2}(\vec{0}) = 0$$

So we have

$$DF(\vec{0}) = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \frac{\partial F}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

For differentiability, we have to look at:

$$\begin{vmatrix} \frac{x_2^2 \sin x_1}{\sqrt{x_1^2 + x_2^2}} - 0 - \begin{bmatrix} 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{vmatrix}$$

$$= \frac{x_2^2 |\sin x_1|}{\sqrt{x_1^2 + x_2^2}}$$

Then,

$$\begin{split} \frac{|F(\vec{x}) - L_{\vec{0}}(\vec{x})|}{\vec{x} - \vec{0}} &= \frac{x_2^2 |\sin x_1|}{\left(\sqrt{x_1^2 + x_2^2}\right)^2} = \frac{x_2^2 |\sin x_1|}{x_1^2 + x_2^2} \\ &\leq \frac{R^2 \cdot R}{R^2} = R = \|\vec{x} - \vec{0}\| \end{split}$$

By squeeze theorem, we have

$$\lim_{\vec{x} \to \vec{0}} \frac{|F(\vec{x}) - L_{\vec{0}}(\vec{x})|}{\|\vec{x} - \vec{0}\|} = 0$$

Therefore, F is differentiable at $\vec{x} = \vec{0}$

Example 2.2.4. Verify that F is differentiable at $\vec{a} = \vec{0}$.

$$F(\vec{x}) = \begin{bmatrix} 1 + x_1 + x_2^2 \\ 2x_2 - x_1^2 \end{bmatrix}$$

First, note that

$$F(\vec{a}) = F(\vec{0}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

We also need to compute the Jacobian at $\vec{0}$:

$$DF(\vec{0}) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Then, we get the following linearization of the function:

$$L_{\vec{0}}(\vec{x}) = F(\vec{0}) + DF(\vec{x})(\vec{x} - \vec{0})$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + x_1 \\ 2x_2 \end{bmatrix}$$

Then, look at

$$\frac{\|F(\vec{x}) - L_{\vec{0}}(\vec{x})\|}{\|\vec{x} - \vec{0}\|} = \frac{\left\| \begin{bmatrix} x_2^2 \\ -x_1^2 \end{bmatrix} \right\|}{\|\vec{x}\|} = \frac{\sqrt{x_2^4 + x_1^4}}{\sqrt{x_1^2 + x_2^2}} \le \frac{R^4 + 4}{R} = \sqrt{2}R = \sqrt{2}\|\vec{x} - \vec{0}\|$$

As $\vec{x} \to \vec{0}$, $||\vec{x} - \vec{0}|| = R \to 0$, so by the squeeze theorem, the desired limit goes to 0. Therefore, F is differentiable at $\vec{0}$.

Theorem 2.2. Suppose $F: \mathbb{R}^n \to \mathbb{R}^m$, and $\vec{a} \in \mathbb{R}^n$. If there exists a disk $D_r(\vec{a})$ in which all the partial derivatives $\partial(F_i(\vec{x}))/\partial x_j$ exist and are continuous, then F is differentiable at $\vec{x} = \vec{a}$.

Definition 2.6. A function which satisfies Theorem 2.2 is called continuously differentiable, of C^1 .

So far as our example, we calculate the partial for $\vec{x} \neq \vec{0}$:

$$\begin{split} \frac{\partial F}{\partial x_1} &= x_2^2 \left(\cos x_1 \left(x_1^2 + x_2^2 \right)^{-\frac{1}{2}} + \left(-\frac{1}{2} \left(x_1^2 + x_2^2 \right)^{-\frac{3}{2}} 2x_1 \right) \sin x_1 \right) \\ &= \frac{x_2^2}{(x_1^2 + x_2^2)^{3/2}} \left[\cos x_1 \left(x_1^2 + x_2^2 \right) - x_1 \sin x_1 \right] \end{split}$$

which is continuous as long as $\vec{x} \neq \vec{0}$. We do the same for $\frac{\partial F}{\partial x_2}$ and conclude that F is C^1 at all $\vec{x} \neq \vec{0}$. We summarize these ideas in the figure below:

2.3 Chain rule

Definition 2.7. Suppose $A \subseteq \mathbb{R}^n$ is open, and we have a function

$$F:A\subseteq\mathbb{R}^n\to\mathbb{R}^m.$$

Similarly, supposed $B \subseteq \mathbb{R}^m$ is open, and we have a function

$$G: B \subseteq \mathbb{R}^m \to \mathbb{R}^p$$
.

Assume $\vec{a} \in A$ and $F(\vec{a}) = \vec{b} = B$. The composition

$$H(\vec{x}) = G \circ F(\vec{x}) = G(F(\vec{x}))$$

is a function $\mathbb{R}^n \to \mathbb{R}^p$.

Example 2.3.1. Consider the following linear functions:

$$\begin{cases} F(\vec{x}) = M\vec{x} & M \text{ an } (m \times n) \text{ matrix} \\ G(\vec{y}) = N\vec{y} & N \text{ an } (p \times m) \text{ matrix} \end{cases}$$

Then,

$$H(\vec{x}) = G(F(\vec{x})) = NM\vec{x}$$

is also a linear and represented by the product NM.

Theorem 2.3. Assume $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{x} = \vec{a}$ and $G: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $\vec{b} = F(\vec{a})$. Then, $H = G \circ F$ is differentiable at $\vec{x} = \vec{a}$ and

$$DH(\vec{a}) = \underbrace{DG(\vec{b})}_{DG(F(\vec{a}))} DF(\vec{a})$$

Note that all of the various forms of Chain Rule done in first year calculus can be derived directly from this general formula.

Example 2.3.2. Consider the following functions, $F: \mathbb{R}^3 \to \mathbb{R}^2$ and $G: \mathbb{R}^2 \to \mathbb{R}^2$:

$$F(\vec{x}) = \begin{bmatrix} x_1^2 + x_2 x_3 \\ x_1^2 + x_2^3 \end{bmatrix}, G(\vec{y}) = \begin{bmatrix} -y_2^3 \\ y_1 + y_2 \end{bmatrix}$$

Let $H = G \circ F(\vec{x})$. Find $DH(\vec{a})$ where a = (1, -1, 0). First, we have

$$DF(\vec{x}) = \begin{bmatrix} 2x_1 & x_3 & x_2 \\ 2x_1 & 0 & 2x_3 \end{bmatrix}, DF(1, -1, 0) = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 0 & 0 \end{bmatrix}$$

Similarly, we have

$$DG(\vec{y}) = \begin{bmatrix} 0 & -3y_2 \\ 1 & 1 \end{bmatrix}, DG(1,1) = \begin{bmatrix} 0 & -3 \\ 1 & 1 \end{bmatrix}$$

By Chain Rule, we get

$$DH(1,-1,0) = DG(1,1)DF(1,-1,0)$$

$$= \begin{bmatrix} 0 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ 2 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -6 & 0 & 0 \\ 4 & 0 & -1 \end{bmatrix}$$

3 Paths and Curves

3.1 Directional derivatve

Definition 3.1. A path is $\vec{C} : \mathbb{R} \to \mathbb{R}^n$ is a vector-valued function of a scalar independent variable, usually, t:

$$\vec{c}(t) = \begin{bmatrix} c_1(t) \\ c_2(t) \\ \vdots \\ c_n(t) \end{bmatrix}$$

 $\vec{c}(t)$ can be thought of as a moving vector. It takes out a curve in \mathbb{R}^n as t increases. Basically, path is a way of describing a curve using functions. Note that this is not the only way to describe a curve.

Example 3.1.1. A unit circle in \mathbb{R}^2 described as a path is

$$\vec{c}(t) = (\cos t, \sin t),$$

where $t \in [0, 2\pi)$. But we could also describe the unit circle non-parametrically as

$$x^2 + y^2 = 1$$

Note that the same curve can be described by diffrent paths. Going back to unit circle, we can also write

$$\vec{b}(t) = \left(\sin(t^2), \cos(t^2)\right).$$

Using different paths can change (1) time dyanmics and (2) direction of the curve. This curve has a non-constant speed and reversed orientation.

If \vec{c} is differentiable, $D\vec{c}(t)$ is an $(n \times 1)$ matrix. Since each component $\vec{c}_j(t)$ is a real-valued function of only one variable, the *partial-derivative* is the usual derivative:

$$\frac{\partial c_j}{\partial t} = \frac{dc_j}{dt} = c_j'(t) = \lim_{h \to 0} \frac{c_j(t+h) - c_j(t)}{h}$$

So $D\vec{c}(t) = \vec{c}'(t)$ is written as a column vector:

$$D\vec{c}(t) = \begin{bmatrix} c'_1(t) \\ c'_2(t) \\ \vdots \\ c'_3(t) \end{bmatrix}$$
$$= \lim_{h \to 0} \frac{\vec{c}(t+h) - \vec{c}(t)}{h}$$

which is a vector which is tangent to the curve traced out at $\vec{x} = \vec{x}(t)$. Physically, $\vec{c}'(t)$ is the velocity vector for motion along the path.

Example 3.1.2 (Lines). Given two points, $\vec{p_1}, \vec{p_2} \in \mathbb{R}^n$, there is a unique line connecting them. One path which represents this line is

$$\vec{c}(t) = \vec{p}_1 + t\vec{v},$$

where $\vec{v} = \vec{p_2} - \vec{p_1}$. Velocity is then given by $\vec{c}'(t) = \vec{v}$, a constant.

Definition 3.2. $f: \mathbb{R}^n \to \mathbb{R}$ is a scalar-valued function.

If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, $Df(\vec{x})$ is a $(1 \times n)$ matrix:

$$Df(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

We use paths $\vec{c}(t)$ to explore f(x) by looking at

$$h(t) = f \circ \vec{c}(t) = f(\vec{c}(t)).$$

where $h: \mathbb{R} \to \mathbb{R}$, By chain rule,

$$Dh(t) = h'(t) = \underbrace{Df(\vec{c}(t))}_{1 \times n} \underbrace{D\vec{c}(t)}_{n \times 1}$$

$$= Df(\vec{c}(t)) \vec{c}'(t)$$

$$= \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} \begin{bmatrix} c'_1 \\ c'_2 \\ \vdots \\ c'_n \end{bmatrix}$$

We can think of this as a dot product of $\vec{c}'(t)$ with a vector $Df^T = \nabla f$, the gradient vector:

$$h'(t) = \nabla f(\vec{c}(t)) \cdot \vec{c}'(t)$$

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\vec{a} \in \mathbb{R}^n$, and we have a path $\vec{c}: \mathbb{R}^n \to \mathbb{R}$ with $\vec{c}(0) = \vec{a}$. Let $\vec{v} = \vec{c}'(0)$. Then, h'(0) measures rate of change of f along the path as we cross through \vec{a} :

$$h'(0) = \nabla f(\vec{c}(0)) \cdot \vec{c}'(0)$$
$$= \nabla f(\vec{c}(0)) \cdot \vec{v}$$

Note that we get the same value for h'(0) for any path $\vec{c}(t)$ going through \vec{a} with velocity $\vec{c}'(t) = \vec{v}$. In other words, h'(0) says something about f at \vec{a} , and not the path $\vec{c}(t)$.

Definition 3.3 (Directional derivative). The directional derivative of f at \vec{a} in direction \vec{v} is given by

$$D_{\vec{v}}f(\vec{a}) = Df(\vec{a})\vec{v} = \nabla f(\vec{a}) \cdot \vec{v}.$$

Now, we can make some observations. Using the Chain Rule, directional derivatives can be rewritten as

$$D_{\vec{v}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t}.$$

Note the similarity to partial derivatives, where $\vec{v} = \vec{e}_j$.

Second, notice that $D_{2\vec{v}}f(\vec{a}) = \nabla f(\vec{a}) \cdot (2\vec{v}) = 2D_{\vec{v}}f(\vec{a})$. To get the information on how fast f is changing at \vec{a} , we need to restrict to unit vectors $||\vec{v}|| = 1$.

Directional derivatives also gives a geometrical interpretation of the gradient vector, $\nabla f(\vec{a})$. We use the Cauchy-Schwartz Inequality² to do so. By applying the Cauchy-Schwartz inequality, we get:

$$D_{\vec{v}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{v} \le ||\nabla f(\vec{a})|| ||\vec{v}|| = ||f(\vec{a})||.$$

Therefore, we can conclude that the length of $\|\nabla f(\vec{a})\|$ is the largest of $D_{\vec{v}}f(\vec{a})$ among all choices of unit directions \vec{v} . In other words, the direction \vec{v} in which $f(\vec{x})$ increases most rapidly is the direction of $\nabla f(\vec{a})$, i.e.

$$\vec{v} = \frac{\nabla f(\vec{a})}{\|\nabla f(\vec{a})\|},$$

provided that $\nabla f(\vec{a}) \neq \vec{0}$.

Similarly, $-\nabla f(\vec{a})$ points in the direction of largest of $f(\vec{x})$, i.e.

$$\vec{v} = -\frac{\nabla f(\vec{a})}{\|\nabla f(\vec{a})\|},$$

gives the most negative directional derivative.

3.2 Parameterized curve

A path, $\vec{c}(t)$, is {continuous, differentiable, and C^1 } provided that each component $c_j(t)$, $j=1,2,\ldots,n$ are. Note that $\{\vec{c}(t):t\in[a,b]\}$ traces out a curve in \mathbb{R}^n , with initial endpoint, \vec{a} , and final endpoint, \vec{b} . Therefore, the path $\vec{c}(t)$ parameterizes the curve drawn out.

Recall that for any function $F: \mathbb{R}^k \to \mathbb{R}^n$, differentiability means that tangent (i.e. linearization) makes a good approximation. For a differentiable path, $\vec{c}'(t)$ is a tangent vector to the curve drawn out when $\vec{c}'(t) \neq 0$. We call $\vec{v}(t) = \vec{c}'(t)$ the velocity vector $(v = ||\vec{v}|| = ||\vec{c}'(t)||$ is the speed).

Finally, we can define the unit tangent vector:

Definition 3.4. Unit tangent vector is defined as

$$\vec{T}(t) = \frac{\vec{\mathbf{v}}}{\|\vec{\mathbf{v}}(t)\|} = \frac{\vec{c}'(t)}{\|\vec{c}'(t)\|}$$

²For any vectors $\vec{u} \cdot \vec{v} \leq ||\vec{y}|| ||\vec{v}||$, and equality holds if and only if $\vec{u} = t\vec{v}$ for a scalar t.

Example 3.2.1. Consider a path, $\vec{c}: \mathbb{R} \to \mathbb{R}^2$:

$$\vec{c}(t) = (\cos^3 t, \sin^3 t), t \in [-\pi, \pi].$$

This is a C^1 path³ whose velocity vector is given by

$$\vec{c}'(t) = \left(-3\cos^2 t \sin t, 3\sin^2 t \cos t\right).$$

To find the unit tangent, we have to find its speed first:

$$v = \| (-3\cos^2 t \sin t, 3\sin^2 t \cos t) \|$$

= $3|\sin t \cos t| \| (-\cos t, \sin t) \|$
= $3|\sin t \cos t|$

Then, its unit tangent is given by

$$\vec{T}(t) = \frac{\vec{v}(t)}{\|\vec{v}(t)\|} = \left(-|\cos t| \frac{\sin t}{|\sin t|}, |\sin t| \frac{\cos t}{|\cos t|}\right)$$

Note that its tangent is undefined when $\sin t = 0$ or $\cos t = 0$, i.e. at multiples of $\frac{\pi}{2}$. Worse, $\frac{\sin t}{|\sin t|}$, $\frac{\cos t}{|\cos t|}$ flip discontinuously as t crosses a multiple of $\pi/2$ from -1 to +1, or vice versa. Although the path is C^1 , the curve is not smooth! When $\vec{\mathbf{v}}(t) = \vec{c}'(t) = 0$, it allows the curve to have cusps.

Note that it is possible to have a nice tangent direction even when $\vec{c}'(t) = 0$:

Example 3.2.2. Consider a parameterized straight line:

$$\vec{c} = \vec{a} + \vec{w}t^3$$

Its velocity vector, $\vec{c}'(t) = 3\vec{w}t^2$, is equal to $\vec{0}$ when t = 0. However, it still has a tangent direction which is parallel to \vec{w} .

Definition 3.5. We say a parameterized curve is smooth⁴ (or regular) if its path is C^1 , i.e. if it can be parameterized by a path $\vec{c}(t)$, and $\|\vec{c}'(t) \neq 0\|$ for any

If $\vec{c}(t)$ is twice-differentiable, $\vec{c}''(t) = \vec{a}(t)$ gives us the acceleration vector.

Theorem 3.1.

1. If $f: \mathbb{R} \to \mathbb{R}$, $\vec{c}: \mathbb{R} \to \mathbb{R}^n$, both differentiable,

$$\frac{d}{dt} \left(f(t)\vec{c}(t) \right) = f(t)\vec{c}'(t) + f'(t)\vec{c}(t)$$

$$= \sum_{j=1}^{n} \frac{d}{dt} \left(f(t)\vec{c}_{j}(t) \right) \vec{e}_{j}$$

$$= \sum_{j=1}^{n} \frac{d}{dt} \left(f'(t)\vec{c}_{j}(t) + f(t)\vec{c}_{j}'(t) \right) \vec{e}_{j}$$

³In fact, it is C^{∞} , differentiable to all orders!

⁴For a smooth curve, the unit tangent $\vec{T}(t)$ is continuous.

2. If $\vec{c}, \vec{d} : \mathbb{R} \to \mathbb{R}^n$ are differentiable,

$$\frac{d}{dt} \left(\vec{c}(t) \cdot \vec{d}(t) \right) = \vec{c}'(t) \cdot \vec{d}(t) + \vec{c}(t) \cdot \vec{d}'(t)$$

3. If $\vec{c}, \vec{d} : \mathbb{R} \to \mathbb{R}^3$ are differentiable,

$$\frac{d}{dt} \left(\vec{c}(t) \times \vec{d}(t) \right) = \vec{c}(t) \times \vec{d}'(t) + \vec{c}'(t) \vec{d}(t),$$

where $\vec{c} \times \vec{d} = \sum_{i,j,k=1}^{3} = c_i d_j \vec{e}_k \varepsilon_{ijk}$. ε_{ijk} is defined in the footnotes⁵.

Example 3.2.3. Suppose \vec{c} is a twice differentiable path and $\vec{a}(t) = k\vec{c}(t)$ for some constant $k \neq 0$. Show that $\vec{c}(t)$ describes a motion in a fixed plane.

Define a vector

$$\vec{n} = \vec{c}(t) \times \vec{v}(t) = \vec{c}(t) \times \vec{c}'(t)$$

Notice $\vec{n} \perp \vec{c}(t)$ and $\vec{v}(t)$, i.e. \vec{n} is normal to the plane.

$$\frac{d\vec{n}}{dt} = \frac{d}{dt} \left(\vec{c}(t) \times \vec{c}'(t) \right) = \vec{c}(t) \times \underbrace{\vec{c}''(t)}_{\vec{a}(t)} + \underbrace{\vec{c}'(t) \times \vec{c}'(t)}_{\vec{0}} \\
= \vec{c}(t) \times k\vec{c}(t) \\
= \vec{0}$$

Therefore, \vec{n} is constant in time!

So $\vec{c}(t)$ and $\vec{v}(t)$ are, for all t, perpendicular to the constant vector \vec{n} . Then,

$$P = \{ \vec{w} \mid \vec{w} \cdot \vec{n} = 0 \}$$

is the plane through $\vec{0}$. So $\vec{c}(t) \in P$ for all t.

Definition 3.6 (Arclength). The arclength (or distance travelled along the parameterized curve) for $a \le t \le b$ is

$$\int_{a}^{b} \underbrace{\|\vec{c}'(t)\|}_{speed} dt$$

For a variable time interval, the arclength function

$$s(t) = \int_a^t \|\vec{c}'(u)\| du$$

is a distance travelled from time a to time t.

Example 3.2.4. Consider the following path:

$$\vec{c}(t) = (3\cos t, 3\sin t, 4t), t \in [0, 4\pi].$$

Its velocity vector is given by

$$\vec{\mathbf{v}}(t) = (-3\sin t, 3\cos t, 4).$$

It follows that its speed is exactly equal to 5. Then, we can compute the arclength:

$$s(t) = \int_0^t v(t)dt = \int_0^t 5du = 5t$$

Therefore, total arclength is $s(4\pi) = 20\pi$.

Definition 3.7. When the path $\vec{c}(t)$ traces out the curve with speed $\|\vec{v}(t)\| = 1$ for all t, we say that the curve is arclength parameterized.

If a curve is arclength parameterized, arclength function becomes

$$s(t) = t$$

Then, we can use s instead of t as a parameterization in the path.

Example 3.2.5. In example 3.2.4, helix is not arclength parameterized but we can re-parameterize it so that it is. To do so, we need to solve for $t = \varphi(s)$ to invert the function, s(t).

Going back the example, we had s(t) = 5t. It follows that $t = \frac{1}{5}s$. Then,

$$\vec{c}(s) = \vec{c}(\varphi(s)) = \vec{c}\left(\frac{s}{5}\right) = \left(3\cos\left(\frac{s}{5}\right), 3\sin\left(\frac{s}{5}\right), \frac{4s}{5}\right)$$

is an arclength parameterization of the original helix, i.e. $\|\vec{c}'(s)\| = 1$, $\forall s$.

3.3 Geometry of curves in \mathbb{R}^3

Path,

$$\vec{c}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = (x, y, z)(t),$$

traces out a curve, for $t \in [a, b]$, in space, and its velocity vector and speed are given by $\vec{c}'(t)$ and $\|\vec{c}'(t)\|$, respectively. This is a smooth parameterization if $\vec{c} \in C^1$ and $\|\vec{c}'(t)\| \neq 0$ for any $t \in [a, b]$.

We introduced the arclength function,

$$s(t) = \int_a^t \|\vec{c}'(u)\| du,$$

the total distance along the curve up to time t.

We also introduced the idea of arclength parameterization, where s(t) = t. Then, since

$$\frac{ds}{dt} = \|\vec{c}'(t)\|,$$

arclength parameterization is a path that travels along the curve with unit speed, ds/dt = 1, throughout. Therefore, any path with $\|\vec{c}'(t)\| \neq 0$ can be parameterized by arclength by inverting s = s(t) such that $t = \varphi(s)$. Note that we can always do this for a smooth path (ds/dt > 0 so s(t) is monotonically increasing). In practice, however, you may not be able to find an explicit formula for the arclength parameterization!

Example 3.3.1. Consider the following path:

$$\vec{c}(t) = (t, \frac{1}{2}t^2)$$
:

Since $y = x^2/2$, it's a parabola. Then, we observe that

$$\vec{c}'(t) = (1, t), \|\vec{c}'(t)\| = \sqrt{1 + t^2} \ge 1 > 0.$$

So the path is smooth. Then, we have

$$s(t) = \int_0^t \|\vec{c}'(u)\| du = \int_0^t \sqrt{1 + u^2} du = \frac{1}{2} \left(\ln \left| \sqrt{1 + t^2} + t \right| + t\sqrt{1 + t^2} \right).$$

Clearly, there's no way we can solve for t as a function of s. The way out of this trouble is to treat all \vec{c} as if they were parameterized by arclength and use Chain rule with $ds/dt = \|\vec{c}'(t)\|$ to compensate.

Recall that unit tangent vector to $\vec{c}(t)$ is

$$\vec{T}(t) = \frac{\vec{c}'(t)}{\|\vec{c}'(t)\|}.$$

We wish to understand how direction of the curve changes over time:

Definition 3.8. The curvature of a curve is defined as rate of change of unit tangent:

$$\kappa = \left\| \frac{d\vec{T}}{ds} \right\|.$$

By chain rule,

$$\frac{d\vec{T}}{dt} = \frac{d\vec{T}}{ds} \cdot \frac{ds}{dt}$$

So, in the original time parameter, t,

$$\kappa(t) = \left\| \frac{1}{\frac{ds}{dt}} \frac{d\vec{T}}{dt} \right\| = \frac{\|\vec{T}'(t)\|}{\|\vec{c}'(t)\|}$$

Example 3.3.2. Consider a circle of radius R > 0 in xy-plane:

$$\vec{c}(t) = (R\sin t, R\cos t).$$

Now, we can easily find its velocity vector and speed:

$$\vec{c}'(t) = (R\cos t, -R\sin t)$$
$$\|\vec{c}'(t)\| = R$$

Notice that this travels with constant speed but is not arclength parameterized. We can also find its unit tangent:

$$\vec{T}(t) = \frac{\vec{c}'(t)}{\|\vec{c}'(t)\|} = \frac{\vec{c}'(t)}{R} = (\cos t, -\sin t)$$

Then,

$$\vec{N}(t) = \vec{T}'(t) = (-\sin t, -\cos t)$$

Again, notice that $\vec{N}(t)$ is perpendicular to $\vec{T}(t)$.

Finally, we have

$$\kappa(t) = \frac{\|\vec{T}'(t)\|}{\|\vec{c}'(t)\|} = \frac{1}{R}.$$

Therefore, circle with large radius has less curvature.

Example 3.3.3. Consider the following helix:

$$\vec{c}(t) = (3\cos t, 3\sin t, 4t).$$

Following the same approach as shown in the previous example, we get

$$\begin{split} \vec{c}'(t) &= (-3\sin t, 3\cos t, 4) \\ \|\vec{c}'(t)\| &= 5 \\ \vec{T}(t) &= \left(-\frac{3}{5}\sin t, \frac{3}{5}\cos t, \frac{4}{5}\right) \\ \vec{T}'(t) &= \left(-\frac{3}{5}\cos t, -\frac{3}{5}\sin t, 0\right) \end{split}$$

Then,

$$\kappa(t) = \frac{\|\vec{T}^{\,\prime}(t)\|}{\|\vec{c}^{\,\prime}(t)\|} = \frac{3/5}{5} = \frac{3}{25}$$

This curve also has a constant curvature.

Definition 3.9 (Principal normal vector).

$$\vec{N} = \frac{\vec{T}'(s)}{\|\vec{T}'(s)\|} = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|}$$

Since $\|\vec{T}(s)\| = 1$ for all $s, \vec{T}(s) \cdot \vec{T}(s) = \|\vec{T}(s)\|^2 = 1$. By implicit differentiation, we have

$$\frac{d}{ds}(1) = \frac{d}{ds}(\vec{T}(s) \cdot \vec{T}(s))$$
$$0 = \vec{T}'(s) \cdot \vec{T}(s) + \vec{T}(s) \cdot \vec{T}'(s)$$
$$= 2\vec{T}'(s) \cdot \vec{T}(s)$$

Therefore, $\vec{T}'(s) \perp \vec{T}(s)$ for all s. So as long as $\vec{T}'(s) \neq 0$, i.e. $\kappa \neq 0$, we have $\vec{N}(s) \perp \vec{T}(s)$. In fact, $\vec{T}'(s) = \|\vec{T}'(s)\|\vec{N} = \kappa\vec{N}$, so the tangent turns in the direction of \vec{N} . For motion in a line, where $\kappa(s) = 0$ for all s, \vec{N} cannot be defined!

 \vec{T}, \vec{N} determines a plane in \mathbb{R}^3 , the osculating plane. The normal vector to the osculating plane is given by

$$\vec{B} = \vec{T} \times \vec{N}$$
.

Definition 3.10 (Binormal vector). $\vec{B} = \vec{T} \times \vec{N}$

We observe that $\vec{B} \perp \vec{T}$, $\vec{B} \perp \vec{N}$, and

$$\|\vec{B}\| = \|\vec{T}\| \|\vec{N}\| |\sin \theta| = 1 \cdot 1 \cdot \sin(\pi/2) = 1$$

Therefore, $\{\vec{T}(s), \vec{N}(s), \vec{B}(s)\}$ is a moving *orthonormal basis* for \mathbb{R}^3 at each point along the curve. This plane is also referred to as *moving frame* or *frenet frame*. Now, we introduce the following consequences:

(1). If curvature $\kappa(s) = 0$ for all s, then the curve is a straight line.

To see this, $\vec{T}'(s) = \kappa \vec{N}(s) = 0$ for all s. Therefore, $\vec{T}(s) = \vec{u}$ is a constant vector and

$$\vec{r}(s) = \vec{u}s + \vec{p}$$

a line thorugh $\vec{p} = \vec{r}(0)$ with direction vector \vec{u} .

- (2). When $\kappa = 0$, \vec{N} and \vec{B} cannot be defined.
- (3). If $\vec{B}(s)$ is a constant vector, then $\vec{c}(t)$ ($\vec{r}(t)$) move in a fixed plane, with normal vector \vec{B} .

Now, suppose $\vec{B}(s)$ isn't constant. First, $||\vec{B}(s)|| = 1$ for all s. Then,

$$1 = \|\vec{B}(s)\|^2 = \vec{B}(s) \cdot \vec{B}(s)$$

holds for all s. So we can apply implicit differentiation:

$$0 = \frac{d}{dS}(1) = \frac{d}{dS} \left(\vec{B} \cdot \vec{B} \right) = 2\vec{B}' \cdot \vec{B}.$$

Then, it follows that $\vec{B}' \perp \vec{B}$, for every s.

Next, since $\vec{B}(s) \perp \vec{T}(s)$ for all s, we have $\vec{B} \cdot \vec{T} = 0$ for all s. Then,

$$\frac{d}{ds}\left(\vec{B}\cdot\vec{T}\right) = \vec{B}'(s)\cdot\vec{T}(s) + \vec{B}(s)\cdot\vec{T}'(s) = 0.$$

Since $\vec{T}' = \kappa \vec{N}$ and $\vec{B} \cdot \vec{N} = 0$, it follows that

$$\vec{B}'(s) \cdot \vec{T}(s) = 0 \iff \vec{B}'(s) \perp \vec{T}(s)$$

Since $\{\vec{T}, \vec{N}, \vec{B}\}$ form a orthonormal basis for \mathbb{R}^3 , we must have $\vec{B}'(s)$ parallel to \vec{N} . Therefore,

$$\vec{B}'(s) = -\tau(s)\vec{N}(s)$$

for a function $\tau(s)$ called the *torsion*. Since $\tau = \|d\vec{B}/ds\|$, it measures how fast the normal \vec{B} to the osculating plane is twisting.

Definition 3.11 (Torsion).

$$\tau = \left\| \frac{d\vec{B}}{ds} \right\| = \frac{\|\vec{B}'(t)\|}{\|\vec{c}'(t)\|}$$

Putting all the information together we get Frenet formulas:

Theorem 3.2 (Frenet formula).

$$\begin{cases} \frac{d\vec{T}}{ds} = \kappa \vec{N} \\ \frac{d\vec{B}}{ds} = -\tau \vec{N} \\ \frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B} \end{cases}$$

Example 3.3.4. Consider the following helix:

$$\vec{c}(t) = (3\cos t, 3\sin t, 4t)$$

Then, we have

$$\begin{split} & \|\vec{c}'(t)\| = 5, \\ & \vec{T}(t) = \left(-\frac{3}{5}\sin t, \frac{3}{5}\cos t, \frac{4}{5}\right), \\ & \vec{T}'(t) = \left(-\frac{3}{5}\cos t, -\frac{3}{5}\sin t, 0\right), \\ & \kappa = \frac{3}{25}, \\ & \vec{N}(t) = (-\cos t, -\sin t, 0), \\ & \vec{B}(t) = \vec{T} \times \vec{N} = \left(\frac{4}{5}\sin t, -\frac{4}{5}\cos t, \frac{3}{5}\right), \\ & \vec{B}' = \left(\frac{4}{5}\cos t, \frac{4}{5}\sin t, 0\right), \\ & \tau = \frac{4}{25}. \end{split}$$

3.4 Dynamics

How do these quantities relate to dynamical quantities? Given, $\vec{c}(t)$, a position vector along the curve, $\vec{c}'(t) = \vec{v}(t) = \vec{T}(t) \cdot ds/dt$ is its velocity vector and $\|\vec{c}'(t)\| = ds/dt$ is its speed.

Definition 3.12 (Acceleration). $\vec{a}(t) = \vec{v}'(t) = \vec{c}''(t)$

First, observe that

$$\vec{\mathbf{v}}(t) = \vec{c}'(t) = \frac{ds}{dt} \cdot \vec{T}(t)$$

Then,

$$\begin{split} \vec{a}(t) &= \frac{d}{dt} \left(\frac{ds}{dt} \cdot \vec{T}(t) \right) = \frac{d^2s}{dt^2} \cdot \vec{T}(t) + \frac{ds}{dt} \cdot \vec{T}'(t) \\ &= \frac{d^2s}{dt^2} \cdot \vec{T} + \frac{ds}{dt} \cdot \left(\frac{d\vec{T}}{ds} \cdot \frac{ds}{dt} \right) \end{split}$$

So we have

$$\vec{a}(t) = \underbrace{\frac{d^2s}{dt^2} \cdot \vec{T}}_{\text{Linear acceleration}} + \underbrace{\kappa \left(\frac{ds}{dt}\right)^2 \vec{N}}_{\text{Steering-term}}$$

By looking at the steering term, we see that acceleration to turn on a curve is proportional to the curvature and $(speed)^2$.

Example 3.4.1. Consider the following path

$$\vec{c}(t) = (e^t \cos t, e^t \sin t, e^t)$$

that drwas a spiral in xy direction and monotonically increases along z coordinate.

First, observe that

$$\vec{\mathbf{v}}(t) = \vec{c}'(t) = (-e^t \sin + e^t \cos t, e^t \cos t + e^t \sin t, e^t)$$
$$\frac{ds}{dt} = ||\vec{c}'(t)|| = \sqrt{3}e^t$$

Then, we have

$$\vec{T}(t) = \frac{\vec{c}'(t)}{\|\vec{c}'(t)\|} = \frac{1}{\sqrt{3}}(-\sin t + \cos t, \cos t + \sin t, 1),$$
$$\vec{T}'(t) = \frac{\vec{c}'(t)}{\|\vec{c}'(t)\|} = \frac{1}{\sqrt{3}}(-\cos t - \sin t, -\sin t + \cos t, 0).$$

Since $\|\vec{T}'(t)\| = \sqrt{2/3}$, we can easily find the principal normal vector:

$$\vec{N}(t) = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|} = \frac{1}{\sqrt{2}}(-\cos t - \sin t, -\sin t + \cos t, 0)$$

Then,

$$\kappa = \frac{\|\vec{T}'(t)\|}{\|\vec{c}'(t)\|} = \frac{\sqrt{2}}{3}e^{-t}.$$

Furthermore,

$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = \dots = \frac{1}{\sqrt{6}} (\cos t - \sin t, -\sin t - \cos t, 2)$$
$$\vec{B}'(t) = \frac{1}{\sqrt{6}} (-\sin t - \cos t, -\cos t + \sin t, 0)$$

Therefore, torsion of the curve is given by

$$\tau(t) = \frac{\|\vec{B}'(t)\|}{\|\vec{c}'(t)\|} = \frac{1}{3}e^{-t}$$

We can then verily formula for \vec{a} in terms of \vec{T}, \vec{N}, κ , (and verify that it agrees with $\vec{a} = \vec{v}'(t)$ calculated directly).

Now, we present an alternative equation for curvature using dynamical quantities:

Theorem 3.3.

$$\kappa(t) = \frac{\|\vec{c}'(t) \times \vec{c}''(t)\|}{\|\vec{c}'(t)\|^3} = \frac{\|\vec{v}(t) \times \vec{a}(t)\|}{\|\vec{v}(t)\|^3}$$

Proof. To verify it, we use the decomposition of \vec{a} :

$$\vec{\mathbf{v}} \times \vec{a} = \vec{\mathbf{v}} \times \left(\frac{d^2 s}{dt^2} \cdot \vec{T} + \kappa \left(\frac{ds}{dt} \right)^2 \vec{N} \right)$$

$$= \frac{d^2 s}{dt^2} \left(\vec{\mathbf{v}} \times \vec{T} \right) + \kappa \left(\frac{ds}{dt} \right)^2 \left(\vec{\mathbf{v}} \times \vec{N} \right)$$

$$= \kappa \left(\frac{ds}{dt} \right)^3 \left(\vec{T} \times \vec{N} \right)$$

$$= \kappa \left(\frac{ds}{dt} \right)^3 \vec{B}$$

Then, $\kappa(ds/dt)^3 \|\vec{B}\| = \|\vec{\mathbf{v}} \times \vec{a}\|$. Since \vec{B} is a unit vector, the desired result has been achieved.

4 Implicit functions

4.1 The Implicit Function Theorem I

Often, we have an *implicit* relationship between variables,

$$F(x_1, x_2, \dots, x_n) = 0,$$

rather than an explicit function relation, such as

$$x_n = f(x_1, x_2, \dots, x_{n-1}).$$

Example 4.1.1. Look at a familiar example in \mathbb{R}^2 ,

$$x^2 + y^2 = 1.$$

This fails vertical line test $(y \neq f(x))$ as well as horizontal line test $(x \neq g(y))$; globally, this relation does not define a function. Locally, we can write this as a function, i.e. by restricting attention to small pieces of the curve.

First, define

$$F(x,y) = x^2 + y^2 - 1$$

If $y_0 > 0$, $x_0^2 + y_0^2 = 1$, i.e. $F(x_0, y_0) = 0$, and we look at a window (or *neighborhood*) around (x_0, y_0) , which lies entirely in the upper half plane, we can solve for y = f(x),

$$y = \underbrace{\sqrt{1 - x^2}}_{f(x)}$$

We could calculate y' = f'(x) from the explicit formula but we can also get it via *implicit differentiation*:

$$\frac{d}{dx}\left(F(x,f(x))\right) = \frac{\partial F}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial F}{\partial y} \cdot f'(x)$$
$$= 2x + 2yf'(x).$$

so f'(x) = -x/y.

For a general F(x,y) = 0, we can solve for f'(x) where its coefficient

$$\frac{\partial F}{\partial y}(x_0, y_0) \neq 0,$$

where y is the variable we want to solve for. This gives the limitation on which we can solve for y = f(x) locally! For the circle example,

$$\frac{\partial F}{\partial y} = 2y.$$

When y = 0, the vertical line test fails in every neighborhood of $(x_0, y_0) = (\pm 1, 0)$.

In general, suppose we have a C^1 function,

$$F: \mathbb{R}^{n+1} \to \mathbb{R},$$

and consider all functions of $F(\vec{x}, y) = 0$. In order that $y = g(\vec{x})$, i.e. we can solve for y as a differentiable function of \vec{x} , we do the same implicit differentiation, with the chain rule,

$$\frac{\partial}{\partial x_i} \left(F\left(x_1, x_2, \dots, x_n, f(\vec{x}) \right) \right) = \frac{\partial F}{\partial x_i} + \frac{\partial F}{\partial y} \frac{\partial f}{\partial x_i}$$

for each i = 1, 2, ..., n. We can then solve for each

$$\frac{\partial f}{\partial x_i} = \frac{-\frac{\partial F}{\partial x_i}}{\frac{\partial F}{\partial y}},$$

provided $\partial F/\partial y \neq 0$. This is a sufficient condition to solve for $y = f(\vec{x})$.

Theorem 4.1 (Implicit Function Theorem I). Assume $F: \mathbb{R}^{n+1} \to \mathbb{R}$ is C^1 in a neighborhood of (\vec{x}_0, y_0) with $F(\vec{x}_0, y_0) = 0$. If $\frac{\partial F}{\partial y}(\vec{x}_0, y_0) \neq 0$, then there exists neighborhood U of \vec{x}_0 and V of y_0 and a C^1 function

$$f: U \subset \mathbb{R}^n \to V \subset \mathbb{R},$$

for which $F(\vec{x}, f(\vec{x})) = 0$ for all $\vec{x} \in U$. In addition,

$$Df(\vec{x}) = \frac{-1}{\frac{\partial F}{\partial y}(\vec{x}, y)} D_{\vec{x}} F(\vec{x}, y),$$

where

$$D_{\vec{x}}F(\vec{x},y) = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \frac{\partial F}{\partial x_2} & \cdots & \frac{\partial F}{\partial x_n} \end{bmatrix}.$$

Example 4.1.2. Consider the following function:

$$xy + y^2z + z^3 = 1.$$

For which parts on this surface ca we write z = f(x, y), i.e.

$$F: \mathbb{R}^3 \to \mathbb{R}, F(x, y, z) = xy + y^2z + z^3 - 1$$

is C^1 ?

We want to solve for z, so we look at

$$\frac{\partial F}{\partial z} = y^2 + 3z^2$$

We observe that $\partial F/\partial z=0$ iff y=0 and z=0. However, y=0 and z=0 is not defined on this surface. At all points on this surface, $\partial F/\partial z\neq 0$. So at

every (x_0, y_0, z_0) with $F(x_0, y_0, z_0) = 0$, we can solve for z = f(x, y) locally near $(x_0, y_0)!$

We can then use the implicit differentiation formula in the theorem to calculate Df(x,y):

$$D_{(x,y)}F = \begin{bmatrix} y & (x+2yz) \end{bmatrix},$$

so we get

$$Df(x,y) = \frac{-D_{(x,y)}F}{\partial F/\partial z} = \left[-\frac{y}{y^2 + 3z^2} - \frac{x + 2yz}{y^2 3z^2} \right]$$

or

$$\nabla f(x,y) = \left(-\frac{y}{y^2+3z^2}, -\frac{x+2yz}{y^23z^2}\right).$$

Example 4.1.3. Consider the following equation:

$$x^4 + xz^2 + z^4 = 1.$$

Show that we can solve for z=g(x) near $(x_1,z_1)=(-1,1)$ but not near $(x_2,z_2)=(1,0)$.

Proof. First, let

$$F(x,z) = x^4 + xz^2 + z^4 - 1.$$

Clearly, $F: \mathbb{R}^2 \to \mathbb{R}$ is C^1 for all $(x, z) \in \mathbb{R}^2$. Observe that

$$\frac{\partial F}{\partial z} = 2xz + 4z^3,$$

and so $\partial F(-1,1)/\partial z \neq 0$.

By the Implicit Function Theorem, we can solve for z = g(x) locally near $(x_1, z_1) = (-1, 1)$. In addition, we can get an explicit formula for its derivative:

$$Dg(x) = g'(x) = -\frac{\partial F(x,z)/\partial x}{\partial F/\partial z} = -\frac{4x^3 + z^2}{2xz + 4z^3}$$

Finally, since $\partial F(1,0)/\partial z=0$, the Implicit Function Theorem does not apply near (1,0).

Example 4.1.4. Consider the following equation:

$$x - z^3 = 0$$

Clearly, $F(x,z) = x - z^3$ is C^1 for all $(x,z) \in \mathbb{R}^2$. Note that

$$\frac{\partial F}{\partial z} = -3z^2.$$

Clearly, $\partial F/\partial z=0$ at (x,z)=(0,0). However, we can write $z=x^{1/3}$ globally. So $z=g(x)=x^{1/3}$ exists but isn't differentiable at $(x_0,z_0)=(0,0)$.

Example 4.1.5. Suppose we have a system of equations with more unknowns:

$$\begin{cases} u^2 - v^2 - x^3 = 0\\ 2uv - y^5 = 0 \end{cases}$$

Can we solve for (u, v) as functions of (x, y)?

First, consider a C^1 function, $F: \mathbb{R}^4 \to \mathbb{R}^2$, that is defined as follows:

$$\begin{cases} F_1(x, y, u, v) = u^2 - v^2 - x^2 = 0 \\ F_2(x, y, u, v) = 2uv - y^5 = 0 \end{cases}$$

Following what we did before, we can assume (u, v) = g(x, y) and see when we can calculate Dg. Note that

$$0 = \frac{\partial}{\partial x} F_1(x, y, u(x, y), v(x, y)) = \frac{\partial F_1}{\partial x} + \frac{\partial F_1}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F_1}{\partial v} \frac{\partial v}{\partial x}$$
$$0 = \frac{\partial}{\partial x} F_2(x, y, u(x, y), v(x, y)) = \frac{\partial F_2}{\partial x} + \frac{\partial F_2}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F_2}{\partial v} \frac{\partial v}{\partial x}$$

Then, we can solve for $\partial u/\partial x$ and $\partial v/\partial x$. Rearranging,

$$\begin{bmatrix} \frac{\partial F_1}{\partial u} & \frac{\partial F_1}{\partial v} \\ \frac{\partial F_2}{\partial u} & \frac{\partial F_2}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -\frac{\partial F_1}{\partial x} \\ -\frac{\partial F_2}{\partial x} \end{bmatrix}$$

This can be solved if $D_{(u,v)}F$ is invertible, i.e. $\det\left[D_{(u,v)}F\right]\neq0.$

Similarly, we can also solve for $\partial u/\partial y$ and $\partial v/\partial y$. As a result, we get a different linear system to solve but with the same matrix $[D_{(u,v)}F]$. The second version of the Implicit Function Theorem says that this is the correct condition to solve for g(x) in this setting.

4.2 The Implicit Function Theorem II

Implicit differentiation allows us to look at an underdetermined system of (non-linear) equations. Given a following function,

$$F_1(x_1, ..., x_n, u_1, ... u_m) = 0$$

$$F_2(x_1, ..., x_n, u_1, ... u_m) = 0$$

$$\vdots$$

$$F_m(x_1, ..., x_n, u_1, ... u_m) = 0$$

we want to solve for $\vec{u} = (u_1, \dots, u_m) \in \mathbb{R}^m$ as a function, $\vec{u} = g(\vec{x})$, of $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$. Via implicit differentiation, for the case of n = m = 2, we arrived at an appropriate condition where this is possible.

Theorem 4.2 (Implicit Function Theorem II - General Form). Let

$$F: \mathbb{R}^{n+m} \to \mathbb{R}^m$$

be a C^1 function in a neighborhood of $(\vec{x}_0, \vec{u}_0) \in \mathbb{R}^{n+m}$, with $F(\vec{x}_0, \vec{u}_0) = \vec{0}$. If, in addition, $D_{\vec{u}}F(\vec{x}_0, \vec{u}_0)$ is invertible, then there exists neighborhoods \mathcal{V} of \vec{x}_0 and \mathcal{U} of \vec{u}_0 , for which solutions of $F(\vec{x}, \vec{u}) = \vec{0}$ lie on a C^1 graph, $\vec{u} = g(\vec{x})$,

$$q: \mathcal{V} \subset \mathbb{R}^n \to \mathcal{U} \in \mathbb{R}^m$$

Example 4.2.1. Consider the following set of equations:

$$\begin{cases} 2xu^2 + yv^4 = 2\\ xy(u^2 - v^2) = 0 \end{cases}$$

Can we solve for (u, v) = g(x, y) near $(x_0, y_0, y_0, v_0) = (1, 1, -1, -1)$?

Let

$$F = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}, \vec{x} = (x, y), \vec{u} = (u, v),$$

where F is defined as

$$F_1(\vec{x}, \vec{u}) = 2xu^2 + yv^4 - 2 = 0$$

$$F_2(\vec{x}, \vec{u}) = xy(u^2 - v^2 = 0)$$

Then, we get the following Jacobian

$$D_{\vec{u}}F = \frac{\partial(F_1, F_2)}{\partial(u, v)}$$

$$= \begin{bmatrix} \frac{\partial F_1}{\partial u} & \frac{\partial F_1}{\partial v} \\ \frac{\partial F_2}{\partial u} & \frac{\partial F_2}{\partial v} \end{bmatrix}$$

$$= \begin{bmatrix} 4xu & 4yv^3 \\ 2uxy & -2vxy \end{bmatrix}$$

Substituting the given values, we have

$$D_{\vec{u}}F(1,1,-1,-1) = \begin{bmatrix} -4 & -4 \\ -2 & 2 \end{bmatrix}$$

Since det $D_{\vec{u}}F = -16 \neq 0$, the Implicit Function Theorem does apply, and we can solve for $\vec{u} = (u, v) = g(\vec{x}) = g(x, y)$ near $(x_0, y_0, u_0, v_0) = (1, 1, -1, -1)$.

Remark. In general, we can't get an explicit formula for g, but we can get a formula for Dg(x,y), /ie its partial derivatives, using implicit differentiation.

Example 4.2.2. Consider the following set of equations:

$$\begin{cases} x = u^2 - v^2 \\ y = 2uv \end{cases}$$

Note that this example fits the form of the Implicit Function Theorem, but it's a special case. We want to invert this relationtion, i.e. given, $\vec{x} = f(\vec{u})$, we want to solve for $\vec{u} = g(\vec{x})$.

To get a nice theorem for this special case, we can use the framework of the Implicit Function Theorem:

$$F_1(\vec{x}, \vec{u}) = f_1(\vec{u}) - x = 0 F_2(\vec{x}, \vec{u}) = f_2(\vec{u}) - x = 0$$

Since

$$D_{\vec{u}}F(\vec{x},\vec{u}) = Df(\vec{u}),$$

we can do this locally near a point (\vec{x}_0, \vec{u}_0) provided that

$$\det\left(Df(\vec{u})\right) \neq 0$$

Note that if we had a linear system, $\vec{x} = M\vec{u}$, we can solve $\vec{u} = M^{-1}\vec{x}$ provided $\vec{M} \neq 0$. This is why we call this derivative matrix, $Df(\vec{x})$ the linearization of $f(\vec{u})$.

4.3 Inverse Function Theorem

In general, suppose we have a C^1 function, $f: \mathbb{R}^n \to \mathbb{R}^n$, where $\vec{x} = f(\vec{u})$. How do we solve for $\vec{u} = g(\vec{x})$?

First, let's In single-variable calculus, a function $f : \mathbb{R} \to \mathbb{R}$ is one-to-one on an interval [a,b] if and only if f is strictly monotone on [a,b]. For these functions, f has an inverse $g = f^{-1}$,

$$g(f(x)) = x, \quad \forall x \in [a, b]$$

If f is differentiable on [a, b], and f'(x) > 0 on [a, b] (or f'(x) < 0 on [a, b]), then the inverse g(x) is also differentiable, and

$$g'(f(x)) = \frac{1}{f'(x)}, \quad \forall x \in [a, b]$$

If, for example, f'(x) > 0 for all $x \in \mathbb{R}$, then it's globally invertible, i.e. g(f(x)) = x for all $x \in \mathbb{R}$. How do we apply this for $f : \mathbb{R}^n \to \mathbb{R}^n$ with $n \geq 2$?

Theorem 4.3 (Inverse Function Theorem). Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$ which is C^1 in a neighborhood of \vec{u}_0 , with $f(\vec{u}_0) = \vec{x}_0$. If $\det(Df(\vec{u}_0)) \neq 0$, then there exist neighborhoods \mathcal{U} of \vec{u}_0 and \mathcal{V} of \vec{x}_0 and a C^1 function $g: \mathcal{V} \to \mathcal{U}$, with

$$\vec{x} = f(\vec{u}) \iff \vec{u} = g(\vec{x}),$$
with $\vec{u} \in \mathcal{U}$ with $\vec{x} \in \mathcal{V}$

i.e. near \vec{x}_0 and \vec{u}_0 , g is the inverse of f.

Example 4.3.1. Apply the Inverse Function Theorem to the function that was defined in the previous example:

$$\begin{cases} x = u^2 - v^2 \\ y = 2uv \end{cases}$$

Observe that

$$\det(Df(u,v)) = \det\begin{bmatrix} 2u & -2v \\ 2v & 2u \end{bmatrix} = 4u^2 + 4v^2 \neq 0$$

as long as $(u_0, v_0) \neq (0, 0)$. So we can invert the variables and solve for (u, v) = g(x, y), locally near any $(u_0, v_0) \neq (0, 0)$.

Notice that

$$f_1(-u, -v) = x = f_1(u, v)$$

 $f_2(-u, -v) = y = f_2(u, v)$

So in any neighborhood of (0,0) there are 2 values of (u,v) corresponding to each (x,y). So f is not invertible near (u,v)=(0,0).

Example 4.3.2. Consider the following equations:

$$\begin{cases} x = e^y \cos v \\ y = e^u \sin v \end{cases}$$

For which (u, v, x, y) can we solve for u, v as functions of x, y?

Call

$$f(u,v) = \begin{bmatrix} e^u \cos v \\ e^u \sin v \end{bmatrix}.$$

Then, we have

$$Df(u,v) \begin{bmatrix} e^u \cos v & -e^u \sin v \\ e^u \sin v & e^u \cos v \end{bmatrix}$$

Then, we can compute $\det(Df(u,v))$, (or $\det\left(\frac{\partial(x,y)}{\partial(u,v)}\right)$):

$$\det(Df(u,v)) = e^{2u}.$$

Clearly, $\det(Df(u,v)) > 0$ for all u,v. By the Inverse Function Theorem, we can invert and solve for (u,v) = g(x,y), near any (u_0,v_0) .

We can invert locally near any point; can we find a global inverse, i.e. a g for which (u,v)=g(x,y) for every $(u,v)\in\mathbb{R}^2$? If so, then f would have to be a one-to-one function. However,

$$f(u, v + 2\pi k) = f(u, v)$$

for all $k \in \mathbb{Z}$. Therefore, f can't be globally inverted.

Example 4.3.3. Consider the following equations:

$$\begin{cases} x = f_1(u, v) = u^3 - 3uv^2 \\ y = f_2(u, v) = -v^3 + 3u^2v \end{cases}$$

Since they're polynomials, $f: \mathbb{R}^2 \to \mathbb{R}^2$ is C^1 . Then, we have

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{bmatrix} 3u^2 - 3v^2 & -6uv \\ 6uv & -3v^2 + 3u^2 \end{bmatrix}$$
$$\det\left(\frac{\partial(x,y)}{\partial(u,v)}\right) = (3u^2 - 3v^2) + (6uv)^2$$

Clearly, det $(\partial(x,y)/\partial(u,v)) = 0$ iff u = v = 0. So, Inverse Function Theorem holds for all $(u_0, v_0) \neq (0, 0)$, and we can solve for (x, y) = g(u, v) around any $(u_0, v_0) \neq (0, 0)$.

5 Taylor's Theorem

5.1 Taylor's Theorem in one dimension

Consider a one-dimensional function:

$$q: \mathbb{R} \to \mathbb{R}$$
,

which is C^{k+1} , i.e. it is (k+1) times continuously differentiable; i.e., each derivative,

$$\frac{d^j g}{dx^j}(x)$$
, $j = 1, 2, \dots, k+1$, (of order up to and including the $(k+1)^{\text{st}}$),

exists and is a continuous function (in some interval). Then, we can approximate g(x) locally near x = a by a polynomial of degree k, Tayloer's polynomial, $P_k(x)$:

$$P_k(x) = g(a) + g'(a)(x - a) + \frac{1}{2!}g''(a)(x - a)^2 + \dots + \frac{1}{k!}\frac{d^k g}{dx^k}(a)(x - a)^k$$

There are chosen to match g(x) up to the k^{th} derivative at x = 0,

$$\frac{d^{j}P_{k}}{dx^{j}}(a) = \frac{d^{j}g}{dx^{j}}(a), \ j = 0, 1, 2, \dots, k.$$

For example, $P_1(x) = g(a) + g'(a)(x - a)$ is the tangent line. Since we know that q is differentiable,

$$\lim_{x \to a} \frac{|g(x) - P_1(x)|}{|x - a|} = 0 \text{ or } g(x) = P_1(x) + o(|x - a|)$$

Theorem 5.1 (Taylor's Theorem). Assume $g : \mathbb{R} \to \mathbb{R}$ is C^{k+1} in a neighborhood \mathcal{N} around x = a. Then, for each $x \in \mathcal{N}$, there is a c between a and x for which

$$g(x) = P_k(x) + \underbrace{\frac{1}{(k+1)!} \frac{d^{k+1}g}{dx^{k+1}} (c)(x-a)^{k+1}}_{Remainder\ term\ R_k(a,x)}$$

Since we assume q is continuous, we have

$$\lim_{x \to a} \frac{R_k(a, x)}{|x - a|^k} = 0,$$

i.e. $R_k(a,x) = o(|x-a|^k)$. So $R_k(a,x)$ is small compared with each of the terms in $P_k(x)$.

Remark. Locally, g(x) is well approximated by its Tayloer polynomials, but only near x=a.

Example 5.1.1. Notice that

$$g(x) = \cos x = \underbrace{1 - \frac{1}{2}x^2 + 0x^3}_{P_3(x)} + o(x^4)$$

This tells us that $\cos x$ is quadratic near a=0. However, this clearly doesn't work for x that is not near a=0.

5.2 Taylor's Theorem in higher dimensions

Can we apply Taylor's Theorem for $f: \mathbb{R}^n \to \mathbb{R}$, i.e., approximate a smooth function locally near $\vec{x} = \vec{a}$ via polynomial? We can do so by restricting our attention to each line, $\vec{x} = \vec{a} + t\vec{u}$, through \vec{a} in direction \vec{u} .

Assume $f \in C^3$ near $\vec{x}_0 \in \mathbb{R}^n$. Let's sample $f(\vec{x})$ along a line running through x_0 . Take a unit vector \vec{u} , $||\vec{u}|| = 1$, and the line,

$$\vec{l}(t) = \vec{x}_0 + t\vec{u},$$

that goes through \vec{x}_0 at t=0 in the direction of \vec{u} . Then, we get

$$q(t) = f(\vec{l}(t)) = f(\vec{x}_0 + t\vec{u}),$$

so $g: \mathbb{R} \to \mathbb{R}$.

By chain rule, if f is C^3 near \vec{x}_0 , then g is C^3 near t = 0. So we use Taylors Theorem in g:

$$g(0) = f(\vec{x}_0),$$

$$g'(t) = Df(\vec{x}_0 + t\vec{u}) \cdot \vec{l}'(t) = Df(\vec{x}_0 + t\vec{u})\vec{u}.$$

So $g'(0) = Df(\vec{x}_0)\vec{u} = \nabla f(\vec{x}_0) \cdot \vec{u}$. Using coordinates,

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\vec{x}_0 + t\vec{u}) u_i$$

so

$$g''(t) = \sum_{i=1}^{n} \underbrace{\frac{d}{dt} \left(\frac{\partial f}{\partial x_i} (\vec{x}_0 + t\vec{u}) \right)}_{D \frac{\partial f}{\partial x_i} \cdot \vec{u}} u_i = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (\vec{x}_0 + t\vec{u}) u_j u_i$$

Therefore,

$$g''(0) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (\vec{x}_{0}) u_{j} u_{i}$$

Now, call

$$H(\vec{x}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} (\vec{x}_0) \right]_{i,j=1,\dots,n},$$

the Hessian matrix of f at \vec{x}_0 . For f, a C^2 function, $f_{x_ix_j} = f_{x_jx_i}$, so $H(\vec{x}_0)$ is a symmetric matrix.

So $g''(0) = \vec{u} \cdot H(\vec{x}_0)\vec{u}$. Using Taylor's Theorem, for g, we get:

Theorem 5.2 (Second order Taylor's approximation). Assume $f: \mathbb{R}^n \to \mathbb{R}$ and is C^3 in a neighborhood of \vec{x}_0 . Then,

$$\underbrace{f(\vec{x})}_{g(\vec{x}_0+t\vec{u})} = \underbrace{f(\vec{x}_0)}_{g(0)} + \underbrace{Df(\vec{x}_0)(\vec{x}-\vec{x}_0)}_{g'(0)(t-0)} + \frac{1}{2!} \underbrace{(\vec{x}-\vec{x}_0) \cdot H(\vec{x}_0)(\vec{x}-\vec{x}_0)}_{g''(0)(t-0)^2} + R_2(\vec{x}_0,\vec{x}),$$

where

$$H(\vec{x}_0) = D^2 f(\vec{x}_0) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right]_{i,j=1,2,\dots,n}$$

is the hessian and

$$\lim_{\vec{x} \to \vec{x}_0} \frac{R_2(\vec{x}_0, \vec{x})}{\|\vec{x} - \vec{x}_0\|^2} = 0,$$

i.e. $R_2(\vec{x}_0\vec{x}) = o(\|\vec{x} - \vec{x}_0\|^2)$. Alternatively, the second order Taylor's approximation can be written as

$$f(\vec{a} + \vec{h}) = f(\vec{a}) + Df(\vec{a})\vec{h} + \frac{1}{2}\vec{h} \cdot D^2f(\vec{a})\vec{h} + R_2(\vec{a}, \vec{h}),$$

with

$$\lim_{\vec{h} \to \vec{0}} = \frac{R_2(\vec{a}, \vec{h})}{\|\vec{h}\|^2} = 0.$$

Example 5.2.1. Find the second order Taylor polynomial of the following functions:

$$f(x,y) = \cos\left(xy^2\right)$$

near $\vec{a} = (\pi, 1)$.

First, we compute the derivatives:

$$\begin{split} f(\vec{a}) &= f(\pi,1) = \cos(\pi) = 1, \\ \frac{\partial f}{\partial x} &= -y^2 \sin\left(xy^2\right), \\ \frac{\partial f}{\partial y} &= -2xy \sin\left(xy^2\right), \\ \frac{\partial^2 f}{\partial x^2} &= -y^2 \cos\left(xy^2\right) y^2, \\ \frac{\partial^2 f}{\partial x \partial y} &= -2y \sin\left(xy^2\right) - 2xy^3 \cos\left(xy^2\right), \\ \frac{\partial^2 f}{\partial y^2} &= -2x \sin\left(xy^2\right) - 2xy \cos\left(xy^2\right). \end{split}$$

Then, at $\vec{a} = (\pi, 1)$, we find that

$$Df(\vec{a}) = \begin{bmatrix} 0 & 0 \end{bmatrix}$$
$$D^2 f(\vec{a}) = \begin{bmatrix} 1 & 2\pi \\ 2\pi & 4\pi^2 \end{bmatrix}$$

So, we have

$$f(\vec{a} + \vec{h}) = -1 + \frac{1}{2}\vec{h} \cdot \begin{bmatrix} 1 & 2\pi \\ 2\pi & 4\pi^2 \end{bmatrix} \vec{h} + R_2$$

$$f(\pi + h_1, 1 + h_2) = -1 + \frac{1}{2} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \cdot \begin{bmatrix} h_1 + 2\pi h_2 \\ 2\pi h_1 + 4\pi^2 h_2 \end{bmatrix}$$

$$= -1 + \frac{1}{2} \left(h_1^2 + 4\pi h_1 h_2 + 4\pi^2 h_2^2 \right) + o(\|\vec{h}^2\|)$$

In terms of a point \vec{x} (near \vec{a}), we can write $\vec{x} = \vec{a} + \vec{h}$, so $\vec{h} = \vec{x} - \vec{a}$, and then

$$\cos(xy^2) = -1 + \frac{1}{2}\left((x - a_1)^2 + 4\pi(x - a_1)(y - a_2) + 4\pi^2(y - a_2)^2\right) + R_2.$$

Advantage to the $f(\vec{a} + \vec{h})$ form is that it makes it easier to guess the behaviour of $f(\vec{x})$ near $\vec{x} = \vec{a}$.

5.3 Local minima/maxima

Definition 5.1. We say \vec{a} is a local minimum for f if there exists an open disk $D_r(\vec{a})$ for which

$$f(\vec{a}) \le f(\vec{x})$$

for all $\vec{x} \in D_r(\vec{a})$. \vec{a} is a strict local minimum if

$$f(\vec{a}) < f(\vec{x})$$

for all $\vec{x} \neq \vec{a}, \vec{x} \in D_r(\vec{a})$.

Definition 5.2. We say \vec{a} is a local maximum for f if $\exists r > 0$ with $f(\vec{a}) \ge f(\vec{x})$, $\forall \vec{x} \in D_r(\vec{a})$. \vec{a} is a strict local max if $f(\vec{a}) > f(\vec{x})$, $\forall \vec{x} \in D_r(\vec{a}) \setminus \{\vec{a}\}$.

Note that if f is differentiable, we have a necessary condition for local maxima and minima.

Theorem 5.3. If f has a local maxima or minima at \vec{a} and is differentiable at \vec{a} , then $Df(\vec{a}) = \vec{0}$.

Proof. Again, we start by restricting to line through \vec{a} :

$$g(t) = f(\vec{a} + t\vec{u}),$$

where \vec{u} is a unit vector. If f has a local minima at \vec{a} , then

$$g(0) = f(\vec{a}) \le f(\vec{a} + t\vec{u}) = g(t),$$

for all t with |t| < r. So g(t) has a local minima at t = 0. By a calculus theorem, g'(0) = 0. But,

$$0 = g'(0) = Df(\vec{a})\vec{u},$$

for all \vec{u} . Then, by taking $\vec{u} = \vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$, we get

$$\frac{\partial f}{\partial x_i}(\vec{a}) = 0,$$

for each $j = 1, 2, 3, \dots, n$. Therfore, $Df(\vec{a}) = 0$.

Definition 5.3. An \vec{a} for which $Df(\vec{a}) = 0$ is called a critical point.

Example 5.3.1. In the previous example, $\vec{a} = (\pi, 1)$ was a critical point.

Now, we want to combine Taylor's Theorem and linear algebra to classify critical points as local minima, maxima, or others⁶. Taylor's theorem states that for $\vec{x} = \vec{a} + \vec{h}$, if $||\vec{h}||$ is small,

$$f(\vec{x}) = f(\vec{a} + \vec{h}) = f(\vec{a}) + \underbrace{Df(\vec{h})}_{0} + \underbrace{\frac{1}{2}\vec{h} \cdot D^{2}f(\vec{a})\vec{h}}_{\text{quadratic form}} + \underbrace{R_{2}(\vec{a}, \vec{h})}_{o(||\vec{h}||^{2})}$$

So we expect the behaviour of $f(\vec{x})$ near \vec{a} to be determined by the quadratic term

Notice that the Hessian matrix, $M=D^2f(\vec{a})$, is a symmetric matrix. This allows us to apply the following theorem:

Theorem 5.4 (Spectral Theorem). Assume M is a symmetric $(n \times n)$ matrix. Then,

- All eigenvalues of M are real, $\lambda_i \in \mathbb{R} \ \forall i = 1, 2, \dots, n$.
- There is an orthonormal basis composed of eigenvalues of M,

$$\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}, M\vec{u}_i = \lambda_i \vec{u}_i, \|\vec{u}_i\| = 1, \vec{u}_i \cdot \vec{u}_i = 0 \text{ for } i \neq j$$

• In the basis of eigenvalues, M is a diagonal matrix. In other words, if we let U be the matrix whose columns are the \vec{u}_i ; then

$$MU = U\Lambda$$
.

where $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

$$\begin{cases} ax + by = s \\ cx + dy = t \end{cases},$$

solution of the system is given by

$$x = \frac{\det \begin{pmatrix} s & b \\ t & d \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}, y = \frac{\det \begin{pmatrix} a & s \\ c & t \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$

⁶ Cramer's Rule. Given a system of linear equations that is represented by 2×2 matrices,

Remark. Note that since the eigenvalues are real, they can be ordered, smallest to largest:

$$\lambda_1 < \lambda_2 < \dots < \lambda_n$$
.

However, they may not be necessarily distinct.

Written in the orthonormal basis of eigenvalues, the quadratic form, $\vec{h} \cdot M\vec{h}$, has an easy expression. Firt, we write

$$\vec{h} = \sum_{i=1}^{n} c_i \vec{u}_i, c_i \in \mathbb{R}, \forall i = 1, 2, \dots, n$$

Notice that

$$\|\vec{h}\| = \sqrt{\sum_{i=1}^n c_i^2}$$

Then, we have:

$$\vec{h} \cdot M\vec{h} = \vec{h} \cdot \sum_{i=1}^{n} c_i M \vec{u}_i$$

$$= \vec{h} \cdot \sum_{i=1}^{n} \lambda_i c_i \vec{u}_i$$

$$= \sum_{i=1}^{n} \lambda_i c_i (\underbrace{\vec{h} \cdot \vec{u}_i}_{c_i})$$

$$= \sum_{i=1}^{n} \lambda_i c_i^2$$

Theorem 5.5. Suppose M is a symmetric matrix with eigenvalues

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
.

Then,

$$\lambda_1 \|\vec{h}\|^2 \le \vec{h} \cdot M\vec{h} \le \lambda_n \|\vec{h}\|^2$$

Proof. First, we have

$$\vec{h} \cdot M\vec{h} = \sum_{i=1}^{n} \lambda_i c_i^2$$

$$\leq \sum_{i=1}^{n} \lambda_n c_i^2$$

$$= \lambda_n \sum_{i=1}^{n} c_i^2 = \lambda_n ||\vec{h}||^2,$$

which proves the right hand inequality. For the let hand one,

$$\vec{h} \cdot M\vec{h} \ge \sum_{i=1}^n \lambda_1 c_i^2 = \lambda_1 ||\vec{h}||^2.$$

This proves both sides of the inequality.

Now we apply this idea to the Hessian via Taylor's Theorem to get the following theorem:

Theorem 5.6 (Second derivative test). Suppose f is C^3 in a neighborhood of a critical point \vec{a} . Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of $D^2f(\vec{a})$. Then,

- 1. If all eigenvalues are positive, then \vec{a} is a strict local minima of f.
- 2. If all eigenvalues are negative, then \vec{a} is a strict local maxima of f.
- 3. If $D^2 f(\vec{a})$ has at least one positive and at least one negative eigenvalue, then \vec{a} is a saddle point. In other words, $\exists r_0 > 0$ for which in $D_r(\vec{a}), 0 < r < r_0$, there are points with $f(\vec{x}) > f(\vec{a})$ and points with $f(\vec{x}) < f(\vec{a})$.

Proof. Let's verify (1). By Taylor's Theorem, with $\vec{x} = \vec{a} + \vec{h}$, we have

$$f(\vec{x}) = f(\vec{a} + \vec{h}) = f(\vec{a}) + \frac{1}{2}\vec{h} \cdot D^2 f(\vec{a})\vec{h} + R_2(\vec{a}, \vec{h})$$

Notice that

$$\frac{1}{2}\vec{h} \cdot D^2 f(\vec{a})\vec{h} \ge \frac{1}{2}\lambda_1 ||\vec{h}||^2,$$

where λ_1 is the smallest eigenvalue.

Now, we look at the rectangular term: $R_2(\vec{a}, \vec{h}) = o(\|\vec{h}\|^2)$. By taking $\epsilon = \lambda_1/4 > 0$, there exists $\delta > 0$ for which

$$\frac{|R_1|}{\|\vec{h}\|^2} < \epsilon = \frac{1}{4}\lambda_1,$$

if $0 < \|\vec{h}\| < \delta$, i.e. if $\vec{h} \in D_{\delta}(\vec{0})$, then $|R_2| < \frac{1}{4}\lambda_1 \|\vec{h}\|^2$. This implies that $R_2 > -\frac{1}{4}\lambda_1 \|\vec{h}\|^2$.

Combining these two results with Taylor expansion, if $\vec{x} \in D_{\delta}(\vec{a})$, $\vec{h} \in D_{\delta}(\vec{0})$, we get

$$f(\vec{x}) \ge f(\vec{a}) + \frac{1}{2}\lambda_1 ||\vec{h}||^2 - \frac{1}{4}\lambda_1 ||\vec{h}||^2$$
$$\ge f(\vec{a}) + \frac{1}{4}\lambda_1 ||\vec{h}||^2$$
$$> f(\vec{a})$$

if $\vec{h} \neq 0, \vec{h} \in D_{\delta}(\vec{0})$, i.e. $\vec{x} \in D_{\delta}(\vec{a})$.

Remark. When $D^2f(\vec{a})$ has zero as an eigenvalue, things can get complicated. For example, if $\lambda_i \geq 0$ for all i, you could still have a local minima. In this case, the behaviour would be determined by higher order terms in Taylor Series. We call this Degenerate critical point.

Example 5.3.2. Consider

$$f(x, y, z) = x^3 - 3xy + y^3 + \cos z$$

Find all critical points and classify them using the Hessian.

First, observe that

$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 - 3y\\ \frac{\partial f}{\partial y} = -3x + 3y^2\\ \frac{\partial f}{\partial z} = -\sin z \end{cases}$$

Critical points are defined as $\nabla f(\vec{a}) = \vec{0}$ so we get the following critical points

$$(0,0,n\pi),(1,1,n\pi),$$

where $n \in \mathbb{Z}$.

Then, we want to compute the Hessian at each point.

$$D^2 f(\vec{a}) = \begin{bmatrix} 6x & -3 & 0 \\ -3 & 6y & 0 \\ 0 & 0 & -\cos z \end{bmatrix}$$

Notice that at $(0,0,n\pi)$, we get

$$D^{2}f(0,0,2k\pi) = \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$D^{2}f(0,0,(2k+1)\pi) = \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

When n is even, we find that its eigenvalues are

$$\lambda = -3, -1, 3$$

so we get a saddle at $(0,0,2k\pi), k \in \mathbb{Z}$. Similarly, when n is odd, we find that its eigenvalues are

$$\lambda = -3, 1, 3$$

which is also a saddle. Thus, we get a saddle at $(0,0,n\pi)$ for all $n \in \mathbb{Z}$. At $(1,1,n\pi)$, we get

$$D^{2}f(1,1,n\pi) = \begin{bmatrix} 6 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & (-1)^{n+1} \end{bmatrix}$$

By observation, we find that $\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is an eigenvector with $\lambda = (-1)^{n+1}$.

Then, the two eigenvalues are eigenvalues of $\begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix}$. Since its trace is 12

and determinant is 27, its characteristic equation is given by

$$\lambda^2 - 12\lambda + 27 = 0.$$

So we find that two other eigenvalues are $\lambda = 3, 9$. Therefore, $(1, 1, (2k+1)\pi)$ is a local minima, and $(1, 1, 2k\pi)$ are saddles.

Example 5.3.3. Consider

$$f(x,y) = x^2 + y^4$$

We find that

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 4y^3 \end{bmatrix}$$

so we get only one critical point, (x, y) = (0, 0). Ntice that

$$D^2 f(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 12y^2 \end{bmatrix}$$
 so $D^2 f(0,0) \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

So we get $\lambda = 2,0$. Since the quadractic doesn't dominate the remainder, we call this a *degenerate* case.

Still, f(0,0) < f(x,y) for all $(x,y) \neq (0,0)$ so its a minima even if the Hessian test doesn't tell us so.

Example 5.3.4. Consider

$$g(x,y) = x^2 - y^4$$

This has the same second order Taylor expansion as the previous example but has a different ramainder, $R_2 = -y^4$. This is a degenerate saddle.

Notice that for the converse, eigenvalues don't have to be strictly larger or smaller than 0. In other words, if \vec{a} is a local minima, then \vec{a} is a critical point and all the eigenvalues of $D^2 f(\vec{a})$ must be greater than equal to 0 (not necessarily strictly greater than 0).

6 Calculus of Variations

6.1 Introduction

In this section, we look at extremal problems, i.e. maxima, minima, and saddle points, where the unknown is a function (of one or several variables) which should optimize some real-valued expression.

Example 6.1.1. Set $[a,b] \subset \mathbb{R}$ and choose values $c,d \in \mathbb{R}$. Consider all C^2 functions, u(x), joining $P_1 = (a,c)$ and $P_2 = (b,d)$, i.e. u(a) = c and u(b) = d. Among all C^2 curves, u(x), connecting P_1 to P_2 , find the one with shortest arclength.

Let $\vec{c}(t) = (t, u(t))$. Then, we have

$$\|\vec{c}'(t)\| = \sqrt{1 + u'(t)^2}.$$

This allows us to compute the arclength:

$$I(u) = \in_a^b \sqrt{1 + u'(x)^2} dx.$$

Now, call $\mathcal{A} = \{u : [a,b] \to \mathbb{R} | u \in C^2, u(a) = c, u(b) = d\}$. Then, $I : \mathcal{A} \to \mathbb{R}$ is a function of functions, or functional. We want to minimize I(u) over all $u \in \mathcal{A}$.

Example 6.1.2. For the same class \mathcal{A} of functions, take $u \in \mathcal{A}$ and rotate around the x axis, creating a surface of revolution. Which y = u(x) generate the surface of least area?

This time, we let

$$I(u) = 2\pi \int_a^b u(x)Sqrt1 + u'(x)^2 dx.$$

A function which is a local minima of this I(u) is called a minimal surface

Example 6.1.3. Find y = u(x) for which one object sliding along the curvature from point P_1 to P_2 in the shortest time (with gravity).

For this problem, it is convenient to chose $P_1 = (0,0)$. Then, we want to minimize

$$I(u) = \int_0^b \frac{\sqrt{1 + u'(x)^2}}{\sqrt{2g(u(x))}} dx$$

So the idea is to think of u as vectors and use analogy to $f(\vec{a})$. Recall that a local maxima or minima of a function $g(t) = f(\vec{a} + t\vec{v})$ should have a critical point at t = 0:

$$0 = g'(0) = Df(\vec{x})\vec{v},$$

for all directions \vec{v} . We can apply the same idea for I(u). We assume u is a local minima or maxima for I(u), and let g(t) = I(u+tv), where v is a function which creates variation of u.

Problem is that we minimize (or maximize) under the assumption that u connects P_1 to P_2 , i.e. $(i+tv) \in a$ is required and end points cannot change. So we insist that $u \in C^1$ and v(a) = v(b) = 0.

Now, call \mathcal{A}_0 the set of all v(x) (notice that \mathcal{A}_0 is a vector space). Then, if g(t) = I(u + tv), we get

$$g'(0) = \frac{d}{dt}(I(u+tv))|_{t=0} = 0.$$

This equation is called the $first\ variation$.

For example 6.1.1, we had $I(u) = \int_a^b \sqrt{1 + u'(x)^2} dx$. Then, we have

$$g'(0) = \frac{d}{dt} (I(u+tv)) \Big|_{t=0}$$

$$= \frac{d}{dt} \left(\int_{a}^{b} \sqrt{1 + (u'+tv')^{2}} dx \right) \Big|_{t=0}$$

$$= \int_{a}^{b} \frac{d}{dt} \sqrt{1 + (u'+tv')^{2}} dx \Big|_{t=0}$$

$$= \int_{a}^{b} \frac{1}{2} \left(1 + (u'+tv')^{2} \right)^{-1/2} \cdot 2(u'+tv') \cdot v' dx \Big|_{t=0}$$

$$= \int_{a}^{b} \frac{u'(x)v'(x)}{\sqrt{1 + u'(x)^{2}}} dx = 0,$$

for all $v \in A_0$. So we can call DI(u)v = 0 its critical point equation.