

# Semiconductor Integrated Fingerprint Module SFM-V1.7 Product Specification







160×160

指纹容量



按压次数









配套上位机调试



配套完整指令集

七彩呼吸灯



颜色/频率可调

误识率 (FAR)



< 0.0001%

## 1 Product Overview

SFM-V1.7 Integrated Semiconductor Fingerprint Module with Colorful Surrounding Light Strips, mainly consists of integrated fingerprint sensor and fingerprint algorithm. It realizes fingerprint enrollment, comparison and deletion functions. The module has a delicate and thin appearance, with ring-shaped cool breathing light, fast fingerprint recognition, high security, support 360 degrees any angle recognition, deep self-learning function, high performance, low power consumption. The module adopts standard UART communication. It can provide customers with efficient and flexible secondary development support. At the same time, the integrated chip also greatly reduces the volume of the fingerprint module. The simple structure of the product and the modularized design improve the stability and consistency of the product.

SFM-V1.7 Semiconductor Fingerprint Module Application **provides a** platform for **external control part** (**host computer**) ealize the function of a fingerprint processing module **through the serial port by** interacting and communicating according to SFM-V1.7 integrated program communication protocol. Convenient for secondary development. Widely used in fingerprint door locks, drawer locks, fingerprint capture devices, identification, authorization, embedded biotouch and other fields.

#### 2 Technical Parameters

#### 2.1 Performance Parameters

| pixels           | 160 x 160              |
|------------------|------------------------|
| resolution (of a | 508DPI                 |
| photo)           |                        |
| chip package     | Ø13.5mm*0.8mm          |
| Module           | Ø21mm*7.13mm           |
| Packaging        |                        |
| Comparison       | 1:1 < 5ms/fingerprints |
| speed            |                        |
| activation time  | <140ms                 |
| recording time   | <150ms                 |
| Truth Rejection  | <1%                    |
| Rate (FRR)       |                        |
| False Alarm Rate | <0.0001%               |
| (FAR)            |                        |
| storage capacity | 100 fingerprint data   |
| Number of        | 1,000,000              |
| presses          |                        |

#### 2.2 Electrical parameters

| sports event         | typical value | unit (of measure) |
|----------------------|---------------|-------------------|
| Touch supply voltage | 3.3±5%        | V                 |

| Fingerprint module supply    | 3.3±5%  | V  |
|------------------------------|---------|----|
| voltage                      |         |    |
| Operating Current (without   | <40     | mA |
| LED)                         |         |    |
| Peak Operating Current (3.3V | 40      | mA |
| supply 25°C)                 |         |    |
| Static power consumption     | < 5     | μΑ |
| operating temperature        | -20~+65 | °C |
| Storage temperature          | -40~+80 | °C |
| ESD Non-Contact Discharge    | ±15     | KV |
| ESD Contact Discharge        | ±8      | KV |

Description: Operating current: the current when the fingerprint module is in the image acquisition state, such as the enrollment process and the comparison process; Static power consumption: the current when the fingerprint supply voltage of the fingerprint module is 0 and the touch supply voltage is 3.3V; the touch supply voltage is out of the specified range and an abnormal situation may occur.

**3** Product Structure Dimension



### **4** Communication Interface Definition

Communication interface: Standard UART TTL level Baud Rate: Default 115200 bps, 1 Start Bit, 1 Stop Bit, 3.3V TTL Level Connector: XH-6-1.0: 6Pin Wire Harness

Vertical Strip Connector, 1.0mm Pitch

Pin Pin definition:



| Pin | 定义        | 说明                       |
|-----|-----------|--------------------------|
| 1   | V_TOUCH   | 3.3V 触摸供电(须一直供电)         |
| 2   | TOUCH_OUT | 唤醒 IRQ (ture:1, flase:0) |
| 3   | VCC       | 指纹模组 VCC, 额定电压 3.3V      |
| 4   | TX        | UART_TX(指纹模组->MCU)       |
| 5   | RX        | UART_RX (MCU->指纹模组)      |
| 6   | GND       | GND                      |

说明: 串口为3.3V的TTL电平,接电脑需要电平转换,V\_TOUCH 须一直供电TOUCH\_OUT为触控输出,触控芯片输出为高电平有效,电平值与V\_TOUCH 保持一致。当手指触摸在金属框表面时TOUCH\_OUT输出有效电平。

Schematic diagram of connection to the serial port (CH340E):





|   | Pin | 定义        | 说明                       |
|---|-----|-----------|--------------------------|
|   | 1   | V_TOUCH   | 3.3V 触摸供电(须一直供电)         |
| 3 | 2   | TOUCH_OUT | 唤醒 IRQ (ture:1, flase:0) |
| 3 | 3   | VCC       | 指纹模组 VCC, 额定电压 3.3V      |
| 3 | 4   | TX        | UART_TX(指纹模组->MCU)       |
|   | 5   | RX        | UART_RX (MCU->指纹模组)      |
|   | 6   | GND       | GND                      |

# Low Power Reference Design

In order to achieve the optimal low-power design, it is recommended to keep the VCC\_3V3 of the module in a power-off state, and control the voltage on or off by judging the signal of the TOUCH\_OUT pin. When TOUCH\_OUT is active, it will enable VCC\_3V3, and then the fingerprint module will enter the working state.

## Reliability Test Program

| org<br>ani | Toet itome | test condition | Basis of      | Number  | note |
|------------|------------|----------------|---------------|---------|------|
| ze         |            |                | determination | of      |      |
|            |            |                |               | samples |      |
| cla        |            |                |               | 1       |      |
| ssif       |            |                |               |         |      |
| ier        |            |                |               |         |      |
| for        |            |                |               |         |      |
| len        |            |                |               |         |      |
| gth        |            |                |               |         |      |
|            |            |                |               |         |      |
| or         |            |                |               |         |      |
| dist       |            |                |               |         |      |
| anc        |            |                |               |         |      |
| e          |            |                |               |         |      |
| (ya        |            |                |               |         |      |
| rd),       | 1          |                |               |         |      |
| ha         |            |                |               |         |      |
|            |            |                |               |         |      |
| ppe        |            |                |               |         |      |
| nin        |            |                |               |         |      |
| gs         |            |                |               |         |      |
| etc        |            |                |               |         |      |

|   |           | 1. Take 3 samples of each               | After testing, the                      |    |     |
|---|-----------|-----------------------------------------|-----------------------------------------|----|-----|
|   |           | of the test samples that                | •                                       |    |     |
|   |           | *                                       | standard is to be                       |    |     |
|   |           | have been tested for                    | greater than                            |    |     |
|   |           | resistance to cosmetics and             | 4B (shedding area                       |    |     |
|   |           | artificial sweat,                       | <5%)                                    |    |     |
| 1 | 100-gauge | respectively.                           | /                                       | 11 |     |
|   | test      | 2, with a baguette knife,               |                                         |    |     |
|   |           | respectively, in the sensor             |                                         |    |     |
|   |           | Coating Surface and metal               |                                         |    |     |
|   |           | ring surface scratches 10               |                                         |    |     |
|   |           | ×10 small grids of                      |                                         |    |     |
|   |           | 1mm×1mm 3. Clean the                    |                                         |    |     |
|   |           | specimen surface from                   |                                         |    |     |
|   |           | debris with a dust-free                 |                                         |    |     |
|   |           | cloth.                                  |                                         |    |     |
|   |           | 4, with 3M 610 # adhesive               |                                         |    |     |
|   |           | paper on the small grid,                |                                         |    |     |
|   |           | flattened and left to stand             |                                         |    |     |
|   |           | for 5S, and then quickly pull           |                                         |    |     |
|   |           | up the adhesive paper                   |                                         |    |     |
|   |           | 5. Repeat the test three times for      |                                         |    |     |
|   |           | the same test site.                     |                                         |    |     |
|   |           | A new adhesive sheet is                 |                                         |    |     |
|   |           | required for each test.                 |                                         |    |     |
|   |           | 1, pencil requirements:                 | 1. Normal function                      |    |     |
|   |           | choose Mitsubishi 3H pencil             | test after test                         |    |     |
|   |           | and 1000 # sandpaper, so                |                                         |    |     |
|   |           | that the pencil's tip and the           |                                         |    |     |
|   |           | sandpaper plane at a 90-                |                                         |    |     |
|   |           | degree right angle, the                 |                                         |    |     |
| 2 | Pencil    | pencil will be sharpened                |                                         | 4  |     |
|   | hardnes   | into a cylindrical tip.                 |                                         |    |     |
|   | s test    | 2, test method: the pencil is           |                                         |    |     |
|   |           | installed in the pencil                 |                                         |    |     |
|   |           | hardness testing machine,               |                                         |    |     |
|   |           | adjust the balance, add                 |                                         |    |     |
|   |           | weight 1KgF, with 45 $\pm$ 1 $^{\circ}$ |                                         |    |     |
|   |           | angle, in the sensor                    |                                         |    |     |
|   |           | fingerprint sensing surface of          |                                         |    |     |
|   |           | different positions, scratched          |                                         |    |     |
|   |           | out 3 5-10mm long lines, and            |                                         |    |     |
|   |           | then use an eraser to                   |                                         |    |     |
|   |           | remove the pencil                       |                                         |    |     |
|   |           | scratches.                              |                                         |    |     |
|   |           | Note: After each stroke, the            |                                         |    |     |
|   |           | pencil needs to be rotated 90           |                                         |    |     |
|   | l .       |                                         | i e e e e e e e e e e e e e e e e e e e | İ  | l . |

|   |                                     | degrees to avoid the pencil tip grinding. damaged areas, otherwise the test results are invalid.                                                               |                                                                                                                                                                       |   |  |
|---|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 3 | RCA<br>Frictio<br>n Test            | <ol> <li>Weight: 175g</li> <li>Friction times: 350 laps</li> <li>friction position: sensor fingerprint sensing</li> <li>The center area of the face</li> </ol> | 1. Normal function test after test 2, wear Coating can not have peeling, substrate leakage and other obvious appearance defects                                       | 4 |  |
|   |                                     |                                                                                                                                                                | 1. Appearance check:<br>no discoloration,<br>Deformation,<br>blisters, marks,                                                                                         |   |  |
| 4 | low<br>temperatu<br>re<br>operation | Modules are tested immediately after 2 hours at -20°C in working condition                                                                                     | Oxidization, coating peeling, and other anomalies that are different from those before the experiment; 2. Post-test functional test positive Regular;                 | 5 |  |
| 5 | high<br>temperatu<br>re work        | Modules are tested<br>immediately after 2 hours<br>at +65°C in working<br>condition                                                                            | 1, appearance check: no discoloration, deformation, blisters, marks, oxidation, coating off, and other abnormal phenomena different from those before the experiment; | 5 |  |

|   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. Post-test<br>functional test<br>positive<br>Regular;                                                                                                                                                                                    |   |  |
|---|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 6 | Waterpro<br>of test                    | 1. When the module is in working condition, drop water on the fingerprint collection surface and keep it for 2 hours, then dry it with a dry cotton cloth; 2 、 Stands for more than 10min                                                                                                                                                                                                                                                                                                            | Functionality and appearance test of the module is normal after the test                                                                                                                                                                   | 5 |  |
| 7 | resistant<br>to<br>artificial<br>sweat | 1、According to the "Artificial Sweat Configuration Guidelines" configure acidic artificial sweat solution, PH value =4.6 ± 0.1 2. Wrap the BTB connector with waterproof adhesive paper for protection. Wrap the test specimen tightly with a dust-free cloth soaked in artificial sweat solution, seal it with a sealing tape bag, and store it in a constant temperature and humidity box at 55±3°C, 90- 95%RH for 96H. 3、Wipe the solution on the surface of the product dry after taking it out. | 1. Normal function test after test 2, Coating shall not have decolorization, shedding, exposed substrate and other defects. 3. The surface of the metal parts shall not be oxidized, rusted, discolored, or plating flaking and other bad. | 5 |  |
| 8 | Boiled<br>Bagel<br>Test                | 1. Boil the sensor in 100°C water for 30 minutes. 2, the specimen can not touch the wall of the boiling water dissolver 3, dry with a dust-free cloth at room temperature recovery at least 0.5h, check the sensing area of the paint and the appearance of the metal ring surface, if there is no paint, then use a hundred                                                                                                                                                                         | After boiling, the paint in the sensing area and the plating on the exterior surface of the metal ring should not lose paint, and the BAG test should be 3B or more.                                                                       | 5 |  |

|   |                        | grid knife in the appearance of the metal ring surface scratch a hundred grid, and then use 3M610 adhesive paper pasted on the surface and flattened with a finger, let stand for 5 seconds, 90 ° angle to quickly pull up the adhesive paper vertically, testing 3 times.                                      |                                                                                                                                                                                                |   |  |
|---|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|   |                        | 1. Wrap the BTB connector with waterproof tape to protect it; 2. First wipe the surface of the product clean with a cotton cloth; 3. Place NIVEA Sunscreen (SPF 30) NIVEA Hand Cream is spread evenly over the surface of the sample. The samples were homogenized and 3 samples of each cosmetic were applied; | 1. Normal function test after test 2. After the test, the surface of the sample is allowed to be slightly discolored, whitened, and the diameter is not more than 0.5mm.  Pockets of numbness. |   |  |
| 9 | Resistant<br>Cosmetics | 4. Place the sample at $55 \pm 3^{\circ}\text{C}$ , Storage in a constant temperature and humidity chamber at 90-95%RH 48H                                                                                                                                                                                      | 3. The surface of the sample is not allowed to be blistered (which can be picked off with fingers) peeled off, cracked, or divided.  Away from the obvious anomalies                           | 6 |  |

| 10 | eraser         | 1. Weight: 500g 2. Apply 2 drops of artificial sweat to the area to be ground; 3, the use of special rubber, in the sensor metal ring appearance of the surface of the back and forth grinding 200 cycles (100 cycles of a drop of sweat) 4, 40-60 times per minute, stroke 10mm (rubber cannot be detached from the specimen)                                                                                                                                                                                                                                                         | <ol> <li>Normal function test after test</li> <li>wear-resistant at the plating can not have peeling, substrate leakage and other obvious appearance defects</li> </ol> | 4 |  |
|----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|    |                | Note: When the specimen area is small and the stroke cannot reach 10mm, the engineer will confirm the maximum stroke that can be achieved.  The test was carried out.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |   |  |
| 11 | ESD<br>Testing | Contacts in accordance with IEC 61000-4-2  ±8KV, 10 shots per polarity; Air  ±15KV, 10 shots per polarity. Requires power-up test. Test Methods: 1, Module requires power up, only need to connect VDD and GND is sufficient; 2, the module should be placed in the simulation of the whole machine chassis ESD fixture test (or directly in the whole machine chassis test) 3, contact discharge to metal contact discharge; with a metal ring module, contact with the metal ring discharge, without a metal ring module, contact with the ESD fixture or the case of the conductive | Module function<br>test is normal after<br>the test                                                                                                                     | 5 |  |

| _ |                                |  |
|---|--------------------------------|--|
|   | part of the discharge;         |  |
|   | 4, air discharge, the          |  |
|   | electrostatic gun placed       |  |
|   | above the module sensor        |  |
|   | area, press the discharge      |  |
|   | switch, the electrostatic gun  |  |
|   | discharge head slowly          |  |
|   | downward movement, when        |  |
|   | the electrostatic breakdown    |  |
|   | air (sparks) to complete a     |  |
|   | discharge;                     |  |
|   | 5, each discharge mode         |  |
|   | positive and negative each     |  |
|   | playing 10                     |  |
|   | times, discharging the battery |  |
|   | with each hit, between each    |  |
|   | Interval > 1s.                 |  |
|   |                                |  |
|   |                                |  |
|   |                                |  |
|   |                                |  |
|   |                                |  |
|   |                                |  |
|   |                                |  |
|   |                                |  |