TU Wien, Winter 2019

104.272 Discrete Mathematics, Group 1 (Professor Gittenberger) 8. Exercise, Due 4 December, 2019

71. Prove the following assertions:

(a) Every finite lattice has a 0-element and a 1-element.

Proof. We proceed by induction on the cardinality of the lattice.

Base

The only element in a singleton set $\{x\}$ lattice is both the 0-element and the 1-element

Induction Hypothesis

Assume that every finite lattice with k elements has a 0-element and a 1-element.

Inductive step

Let x_1, \ldots, x_{k+1} be the elements of the lattice. Notice that x_1, \ldots, x_k form a lattice with k elements. By applying the IH, then there is a 0-element and an 1-element for x_1, \ldots, x_k . Let w_0 be the 0-element, and w_1 the 1-element. Notice that since x_1, \ldots, x_{k+1} form a lattice, then $w_1 \vee x_{k+1}$ is a 1-element of the whole lattice. Symmetrically $w_0 \wedge x_{k+1}$ is the 0-element of the whole lattice.

(b) In every lattice L we have $(x \wedge y) \vee y = y$ for all $x, y \in L$.

Proof. Notice that from definition $x \wedge y \leq y$, and $(x \wedge y) \vee y \geq y$. Also notice from the definitions of \wedge and \vee , that they preserve the partial order on the lattice. Therefore $(x \wedge y) \vee y \leq y \vee y = y$. This implies that $(x \wedge y) \vee y \leq y \leq (x \wedge y) \vee y$. Since the lattice is also a poset, from antisymmetry we have that $y = (x \wedge y) \vee y$

(c) There exists a lattice such that the following implication is not true:

$$x \le z \Rightarrow \forall y : x \lor (y \land z) = (x \lor y) \land z$$

Proof. Consider the lattice L given by the following Hasse diagram:

Notice that $y \wedge z = 0$, $x \vee y = 1$, $x \vee (y \wedge z) = x$, $(x \vee y) \wedge z = z$. In this lattice $x \neq z$. Therefore the equation does not hold.

72. Let (P, \leq) be a finite poset. A subset $C \subseteq P$ is called a *chain* if (C, \leq) is a linearly ordered set. A subset $A \subseteq P$ is called an *antichain* if no two elements of A are comparable with respect to \leq . A *chain cover* of P is a partition $P = C_1 \cup C_2 \cup \ldots \cup C_k$ in which all the C_i are chains. Dilworth's Theorem asserts that the size of any largest antichain is equal to the number of chains in a smallest chain cover.

Use Dilworth's Theorem to prove that every poset with at least rs + 1 elements has either a chain with r + 1 elements or an antichain with s + 1 elements.

Proof. Assume by elimination of the disjunction that there is no antichain with s+1 elements in the lattice L, therefore if C^* is an antichain, then it has at most s elements. Notice that the smallest chain cover for L has at most s elements. Let C_1, \ldots, C_s be the smallest chain cover for L. Applying the pigeonhole principle yields that there exists an i such that $|C_i| \geq r+1$. Let C be any r+1 element subset of C_i . Notice that C is a chain of L with r+1 elements.

73. Two numbers x and y are called relatively prime if their greatest common divisor is 1. Let p, q, r be three distinct prime numbers and m = pqr. How many of the numbers $1, 2, \ldots, m$ are relatively prime to m.

Proof. Notice that the numbers that relatively prime to m = pqr are $[m] = \{1, \ldots, m\} \setminus (P \cup Q \cup R)$, where P, Q and R are the multiples of p, q and r respectively.

We can compute this by using the inclusion-exclusion principle for 3 sets (Exercise 70).

Therefore $|[m] \setminus (P \cup Q \cup R)| = m - |P| - |Q| - |R| + |P \cap Q| + |P \cap R| + |Q \cap R| - |P \cap Q \cap R|$.

Notice that there are $m/p = q \cdot r$ multiples of p. Therefore $|P| = q \cdot r$. Likewise $|Q| = p \cdot r$, $|R| = p \cdot q$.

Also notice that $P\cap Q$ are the numbers that are multiples of both P and Q. Since p and q are primes (and therefore relatively primes to each other), then the common multiples of p and q correspond to the multiples of pq. This implies that $|P\cap Q|=\frac{m}{p\cdot q}=r$. By analogy $|P\cap R|=q$ and $|Q\cap R|=p$.

Notice that since p,q,r are all primes (and therefore pairwise relatively prime), then the common multiples of p,q,r consist of the multiples of pqr=m. There is only m in $P\cap Q\cap R$.

By substituting the inclusion exclusion formula we get that

$$|[m] \setminus (P \cup Q \cup R)| = m - qr - pr - pq + r + q + p - 1$$

$$= pqr - qr - pr - pq + r + q + p - 1$$

$$= q(r(p-1) + 1) - p(r - q + 1) + r - 1$$

74. Let a, b, c, d be integers. Prove:

(a) If a|b and a|c, then for all integers x, y we have a a|(xb+yc).

Proof. Since a|b, then $a \cdot z_1 = b$. Likewise $a \cdot z_2 = c$ for some $z_1, z_2 \in \mathbb{Z}$. Notice that $a(x \cdot z_1 + y \cdot z_2) = x \cdot b + y \cdot c$. This is the definition of a|(xb+yc).

(b) If gcd(a, b) = 1 and c|a and d|b, then gcd(c, d) = 1.

Proof. Let gcd(c,d) := m. Then m|c and m|d. From the transitivity of |c|, we have that m|a and m|b. Since gcd(a,b) = 1, this implies that m|1. Since the gcd is always a positive number, then m = gcd(c,d) = 1 (since the only divisors of 1 are 1 and -1).

(c) If a|c and b|c and gcd(a,b) = 1, then ab|c.

Proof. Notice the equality $\gcd(a,b) \cdot \operatorname{lcm}(a,b) = p \cdot q$. For this simply consider $a = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$. Notice that $\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_k^{\min(a_k,b_k)}$.

Respectively lcm(a,b) = $p_1^{\max(a_1,b_1)}p_2^{\max(a_2,b_2)}\dots p_k^{\max(a_k,b_k)}$

Notice that min(p,q) + max(p,q) = p + q for any $p,q \in \mathbb{Z}$. Therefore $gcd(a,b) \cdot lcm(a,b) = a \cdot b$.

Since gcd(a, b) = 1, then $lcm(a, b) = a \cdot b$. Notice that c is a common multiple for a and b. Therefore $a \cdot b = gcd(a, b)|c$

75. Prove that if x and y are odd integers, then $2|(x^2+y^2)$ but $4 \not ((x^2+y^2))$.

Proof. Notice that x^2 is odd and y^2 is odd, therefore $x^2 + y^2$ is even (divisible by 2).

Notice that $x \equiv_{\text{mod } 4} 1$ or $x \equiv_{\text{4}} -1$ since x is odd. The same applies for y.

This implies that $x^2, y^2 \equiv 1$. Therefore $x^2 + y^2 \equiv 2$. This shows that $4 / x^2 + y^2$

76. Prov that for every integer n, the number $n^2 - n$ is even and $n^3 - n$ is a multiple of 6.

Proof. Notice that for all $x \in \mathbb{Z}_2$ $x^2 = x$. This implies that $n^2 \equiv n$. Therefore $n^2 - n \equiv 0$. This implies that $n^2 - n$ is even.

Notice that in \mathbb{Z}_6 $0^3=0$; $1^3=1$; $2^3=2$; $3^3=3$; $4^3=4$; $5^3=5$. Therefore for all $x\in\mathbb{Z}_6$, $x^3=x$. This implies that $n^3\underset{\text{mod }6}{\equiv}n$. This implies that $6|n^3-n$.

77. Consider two integers a and b such that gcd(a,4) = 2 and gcd(b,4) = 2. Prove that in this case gcd(a+b,4) = 4.

Proof. Notice that since gcd(a,4) = 2, then $4 \not| a$. Since 2|a, then $a \equiv 0$ 2. The same argument can be repeated for b.

Therefore $a+b \equiv 0$. Therefore $\gcd(a+b,4)=4$.

78. Prove that any two positive integers a, b satisfy gcd(a, b).

Proof. Consider $a = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$. Notice that $\gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \dots p_k^{\min(a_k, b_k)}$.

Respectively $lcm(a, b) = p_1^{max(a_1, b_1)} p_2^{max(a_2, b_2)} \dots p_k^{max(a_k, b_k)}$

Notice that min(p,q) + max(p,q) = p+q for any $p,q \in \mathbb{Z}$. Therefore $\gcd(a,b) \cdot \ker(a,b) = a \cdot b$.

79. Use the Euclidean algorithm to find two integers a and b such that 420a + 546b = 42

Proof.

$$546 = 420 \cdot 1 + 126$$

$$420 = 126 \cdot 3 + 42$$

Therefore $42 = 420 - 3 \cdot 126$, and $126 = 546 - 1 \cdot 420$

$$42 = 420 - 3 \cdot (546 - 1 \cdot 420)$$

$$= 4 \cdot 420 - 3 \cdot 546$$

80. Prove that there exist infinitely many prime numbers p which are solutions of the equation $p \equiv 3 \mod 4$

Hint: Assume that there are only finitely many such primes, say p_1, \ldots, p_n , and consider the number $4p_1p_2 \ldots p_n - 1$.

Proof. Let $z:=4p_1p_2\dots p_n-1$. Notice that $4p_1p_2\dots p_n \equiv 0$. Therefore $4p_1p_2\dots p_n-1 \equiv 3$. Notice that since $4p_1\dots p_n-(4p_1\dots p_n-1)=1$, then $\gcd(z,p_i)=1$.

Therefore z is a product of powers of primes $q_1 \dots q_m$ such that $\{p_1, \dots, p_n\} \cap \{q_1, \dots q_m\} = \emptyset$. Notice that since $p_1 \dots p_n$ are the only primes that are equivalent to 3 modulo 4, then for $i \in \{1, \dots, m\}$ $q_i \not\equiv 3$. Also since $z \equiv 3$, then $i \in \{1, \dots, m\}$, $q_i \not\equiv 2$, 4. Therefore for all $i \in \{1, \dots, m\}$, $q_i \equiv 1$. Since z is a multiple of only q_i factors, then $z \equiv 3$.