CSCI 2110 Data Structures and Algorithms Extra Practice on O Notation

1. Arrange the following in increasing orders of complexity

$$n, n^2, n^3, 2^n, \sqrt{n}, \underline{nlogn^n}$$

$$\sqrt{n} < n < n^2 < n^2 \log n < n^3 < 2^n$$

- 2. An algorithm with complexity $O(n^2)$ takes 5 ms to process 50 data items.
 - a) Estimate how long it will take to process 5000 data items.

Steps Time
$$50 \times 50$$
 500×5000
 500×5000

Answer: $50,000 \text{ ms}$
 $50,000 \text{ ms}$

b) Estimate how much data can be processed in 500 ms.

Time #SPEPS
$$50 \times 500$$
 $0 \times 500 \times 500$ $0 \times 500 \times 500$

3. Derive the big O complexity of each of the following code segments:

$$2^{2} = \frac{50 \times 30 \times 30}{5}$$

$$= 250000$$

$$\therefore 20 = \sqrt{250000}$$

$$= 500$$

Code Segment 1:

for (int
$$i = 1$$
; $i \le n$; $i++$) \longrightarrow n iterahous for (int $j = 1$; $j \le n$; $j++$) \longrightarrow n iterahous $sum++$; $O(n^2)$

Code Segment 2:

for (int
$$i = 1$$
; $i <= n$; $i++$)

for (int $j = 1$; $j <=n^2$; $j++$)

sum++;

 n^2 iterahan

 n^3 iterahan

 n^3 iterahan

 n^3 iterahan