Introduction to Class and Object

Class

- Class is derived datatype, it combines members of different datatypes into one.
- Defines new datatype (primitive ones are not enough).
 - For Example : Car, College, Bus etc...
- This new datatype can be used to create objects.
- A class is a template for an object.

Example:

```
class Car{
    String company;
    String model;
    double price;
    double milage;
    ........
}
```

Car Class

Class: Car

Properties (Describe)

Company

Model

Color

Mfg. Year

Price

Fuel Type

Mileage

Gear Type

Power Steering

Anti-Lock braking system

Methods (Functions)

Start

Drive

Park

On_break

On_lock

On_turn

Object

- An object is an instance of a class.
- An object has a state and behavior.

Example: A dog has

states - color, name, breed as well as

behaviors – barking, eating.

• The **state** of an object is stored in **fields** (variables), while **methods** (functions) display the object's **behavior**.

What is an Object?

Philosophy of Object Oriented

- Our real world is nothing but classification of objects
 - E.g. Human, Vehicle, Library, River, Watch, Fan, etc.
- Real world is organization of different objects which have their own characteristics, behavior
 - Characteristic of Human: Gender, Age, Height, Weight, Complexion, etc.
 - Behavior of Human: Walk, Eat, Work, React, etc.
 - Characteristic of Library: Books, Members, etc.
 - Behavior of Library: New Member, Issue Book, Return Book etc.
- The OO philosophy suggests that the things manipulated by the program should correspond to things in the real world.
 - Classification is called a Class in OOP
 - Real world entity is called an Object in OOP
 - Characteristic is called Property in OOP
 - Behavior is called Method in OOP

What is an Object?

What is an Object?

What is an Object? (Cont...)

Gujarat Technological University Ahmedabad

SUBJECT CODE	SUBJECT NAME		GRADE	INT. GRADE	ABSENT	E				LOC		v
180601	Design Of Hydraulic Structures		BC	N	N	N	-	N		N		N
180602	Dock Harbour & Airport Engineering		BB	N	N	N	-	N	-	N		N
180603	Professional Practice & Valuation		BB	N	N	N		N		N	-	N
180604	Structural Design-II		BC	N	N	N	•	N		N	1-	N
180605	Project -II		AA	N	N	N	-	N	-	N	-	N
180607	Repairs & Rehabilitation Of St	BB	N	N	N	-	N	-	N	-	N	
Current Sem Backlog: 0 Total Backlog: 0			SPI: 8.20	CI	PI: 7.58 CGPA: 7.9					.98	8	
Ва	acklog: Sem-1: 0 Sem-2: 0 S	Sem-3: 0 Sem-4: 0 Sem-	5: 0 Sem-6: 0	Sem-7:	0 Sem-8:	0						
please	lline Re-Check/Re-Assessment: send recheck query to respected of Pharm - diploma@gtu.edu.in] [MB	epartment (BE,BPharm,PDDC	,HM - be@gtu.ed	u.in) (Diplo	ma,	App						_

Congratulation!! You have passed this exam

Result

Bank Account

Logical objects...

What is an Object?

- An Object is a key to understand Object Oriented Technology.
- An entity that has state and behavior is known as an object. e.g., Mobile, Car, Door, Laptop etc
- Each and every object posses

Object is an Instance of Class

Objects of Class Bird

Classes and Objects

Classes and Objects

Class is a blueprint of an Class describes the object

Object is instance of class

What is Class?

Class can be defined in multiple ways

- A class is the building block.
- A class is a blueprint for an object.
- A class is a user-defined data type.
- A class is a collection of objects of the similar kinu.
- A class is a user-defined data type which combines data and methods.
- A class describes both the data and behaviors of objects.
- Class contains data members (also known as field or property or data) and member functions (also known as method or action or behavior)
- Classes are similar to structures in C.
- Class name can be given as per the Identifier Naming Conventions.

Houses built according to the blueprint

What is Object?

- Definition: An Object is an instance of a Class.
- An Object is a variable of a specific Class
- An Object is a data structure that encapsulates data and functions in a single construct.
- Object is a basic run-time entity
- Objects are analogous to the real-weentities.

Points to Remember

- When a class is defined, only the specification or blueprint for the object is defined; no memory or storage is allocated.
- When an object of a class is declared, the memory is allocated as per the data members of a class
- We can access the data members and member functions of a class by using a . (dot) operator.
- Generally Class contains
 - Data Members
 - Member Functions
 - Constructor (Special Member Function)

Class and Objects

Class and Objects

Class and Objects

Creating Object & Accessing members

- new keyword creates new object
- Syntax:

```
ClassName objName = new ClassName();
Example :
SmartPhone iPhone = new SmartPhone();
```

- Object variables and methods can be accessed using the dot (.)
 operator
- Example: iPhone.storage = 8000;

Declaring an Object

- When we create a class, we are creating a new data type.
- Object of that data type will have all the attributes and abilities that are designed in the class

MyProg.java 1. class Square{ 2. double height; 3. double width; 4. } 5. class MyProg{ 6. public static void main(String[] args) { 7. Square s1; new Square(); 8. } 9. }

- ▶ The new operator dynamically allocates (that is, allocates at run time) memory for an object and returns a reference to it.
- ▶ This reference is, more or less, the address in memory of the object allocated by new.
- ▶ This reference is then stored in the variable. Thus, in Java, all class objects must be dynamically allocated.

Declaring an Object

MyProg.java

```
1. class Square{
2.    double height;
3.    double width;
4. }
5. class MyProg{
6.    public static void main(String[] args) {
7.         Square s1; //declare reference to object
8.         s1= new Square();//allocate a Square object
9.    }
10.}
```

An object reference is similar to a memory pointer.

Allocates

• **new** operator dynamically allocates memory for an object width

- The class name followed by parentheses specifies the constructor for the class.
- It is important to understand that **new** allocates memory for an object during run time.

Assigning Object Reference

Rectangle r1=new Rectangle(); Rectangle r2=r1;

Here, **r1** and **r2** will both refer to the *same* object. The assignment of **r1** to **r2** did not allocate any memory or copy any part of the original object. It simply makes **r2** refer to the same object as does **r1**.

Here, **r1** has been set to **null**, but **r2** still points to the original object.

WAP using class Person to display name and age

```
1. class MyProgram {
2. public static void main(String[] args)
    Person p1= new Person();
3.
  Person p2= new Person();
4.
5. p1.name="modi";
6. p1.age=71;
7. p2.name="bachchan";
8.
   p2.age=80;
9.
  System.out.println("p1.name="+p1.name);
10.
  System.out.println("p2.name="+p2.name);
11. System.out.println("p1.age="+p1.age);
12. System.out.println("p2.age="+p2.age);
13. }//main()
14.}//class myProgram
```

```
15.class Person
16.{
17. String name;
18. int age;
19.}//class person
```

```
p1.name=modi
p2.name=bachchan
p1.age=71
p2.age=80
```

WAP using class Person to display name and age with method

```
1. class MyProgram {
2. public static void
        main(String[] args){
    Person p1=new Person();
3.
    Person p2=new Person();
4.
    p1.name="modi";
5.
                                 20. }
6. p1.age=71;
7. p2.name="bachchan";
8. p2.age=80;
    p1.displayName();
9.
                                 23. }
10. p2.displayName();
11. p1.displayAge();
12. p2.displayAge();
13. } //main()
14.} //class myProgram
```

```
15.class Person{
16. String name;
17. int age;
18.public void displayName(){
19. System.out.println("name="+name);
20. }
21.public void displayAge(){
22. System.out.println("age="+age);
23. }
24.}//class person
```

Output

name=modi
name=bachchan
age=71
age=80

WAP using class Rectangle and calculate area using method

```
1. import java.util.*;
2. class MyProgram {
3. public static void main(String[]
  args){
    Rectangle r1=new Rectangle();
5.
    Scanner sc=new Scanner(System.in);
6. System.out.print("enter height:");
7. r1.height=sc.nextFloat();
8.
   System.out.print("enter width:");
9. r1.width=sc.nextFloat();
10. r1.calArea();
11. } //main()
12.}//class myProgram
```

```
13.class Rectangle{
14.float height;
15.float width;
16.public void calArea()
   {
17.System.out.println(
   "Area="+height*width);
18. } //calArea()
19.} //class
```

Output

enter height:30.55 enter width:20.44 Area=624.442

WAP using class Rectangle and calculate area with Return value

```
1. import java.util.*;
2. class MyProgram {
3. public static void main(String[]
  args){
4. float area;
5. Rectangle r1=new Rectangle();
Scanner sc=new Scanner(System.in);
7.
    System.out.print("enter height:");
8. r1.height=sc.nextFloat();
9.
    System.out.print("enter width:");
10. r1.width=sc.nextFloat();
11. area=r1.calArea();
12. System.out.println("Area="+area);
13. }//main()
14.}//class myProgram
```

```
15.class Rectangle{
16.float height;
17.float width;
18.public float calArea()
   {
19. return height*width;
20. }//calArea()
21.}//class
```

```
enter height:30.55
enter width:20.44
Area=624.442
```

WAP using class Cube and calculate area using method with parameter

```
11.class Cube{
1. import java.util.*;
2. class MyProgramCube {
                                  13.float width;
3. public static void main
                                  14.float depth;
              (String[] args){
5. float area;
6. Cube c1= new Cube();
                                  17. width=w;
7. area=c1.calArea(10,10,10);
                                         depth=d;
                                  18.
8. System.out.println("area="+a
                                  19.
  rea);
9. }//main()
                                  21.}//class
10.}//class myProgram
Outpu
```

area=1000.0

```
12.float height;
15.float calArea(float h, float
                     w, float d)
16.{ height=h;
     return height*width*depth;
20. }//calArea()
```

WAP using class Cube and calculate area of two objects

```
1. import java.util.*;
                                     12.class Cube{
2. class MyProgramCube {
                                     13.float height;
3. public static void main
                                    14.float width;
               (String[] args){
                                    15.float depth;
5. float area;
                                     16.float calArea(float h, float
6. Cube c1= new Cube(); //Obj1
                                                         w, float d)
7. Cube c2= new Cube(); //Obj2
                                     17.{ height=h;
8. System.out.println("c1 area="
                                     18.
                                           width=w;
                                           depth=d;
                                    19.
  +c1.calArea(10,10,10));
                                          return height*width*depth;
9. System.out.println("c2 area="
                                     21. } //calArea()
                                     22.} //class
  +c2.calArea(20,20,20));
10. } //main()
                                                     c1 area=1000.0
11.} //class
                                                     c2 area=8000.0
```

```
class Box {
       double length;
                                                               lengthyth 10
       double breadth;
       double height;
                                               myBox1
                                                               breardthdth20
class BoxDemo {
                                                               heighth 130
       public static void main(String args[]) {
               Box myBox1 = \underline{\text{new Box}()};
               Box myBox2 = new Box();
               double vol;
                                                                lehenthth 3
               myBox1.length = 10;
                                               myBox2
               myBox1.breadth = 20;
                                                               breezthtta 6
               myBox1.height = 30;
                                                                heighth# 9
              myBox2.length = 3;
              myBox2.breadth = 6;
               myBox2.height = 9;
               vol = myBox1.length * myBox1.breadth * myBox1.height;
               System.out.println("Volume is " + vol);
               vol = myBox2.length * myBox2.breadth * myBox2.height;
               System.out.println("Volume is " + vol);
       }
```