ALJABAR BOOLEAN (1)

Pokok Bahasan :

- 1. Postulat Boolean
- 2. Teorema Aljabar Boolean

Tujuan Instruksional Khusus:

- 1. Mahasiswa dapat menjelaskan dan mengerti Postulat dan Teorema Aljabar Boolean.
- 2.Mahasiswa dapat mengimplementasikan Aljabar Boolean untuk penyederhanaan rangkaian.
- 3. Mahasiswa dapat menuliskan persamaan Boolean untuk setiap gerbang logika dan rangkaian logika.

DASAR ALJABAR BOOLEAN

Dalam mengembangkan sistem Aljabar Boolean Perlu memulainya dengan asumsi – asumsi yakni <u>Postulat Boolean</u> dan <u>Teorema Aljabar Boolean</u>.

Postulat Boolean:

TEOREMA ALJABAR BOOLEAN

T1. COMMUTATIVE LAW:

$$a. A + B = B + A$$

$$b. A. B = B. A$$

T2. ASSOCIATIVE LAW:

$$a.(A + B) + C = A + (B + C)$$

$$b. (A.B). C = A.(B.C)$$

T3. DISTRIBUTIVE LAW:

$$a. A. (B + C) = A.B + A.C$$

$$b. A + (B. C) = (A+B). (A+C)$$

T4. IDENTITY LAW:

$$a. A + A = A$$

 $b. A . A = A$

T5. NEGATION LAW:

$$a.(A') = A'$$

 $b.(A'') = A$

T6. REDUNDANCE LAW:

a.
$$A + A$$
. $B = A$

$$b. A.(A + B) = A$$

T7.:

$$a. 0 + A = A$$

$$b. 1 . A = A$$

$$c. 1 + A = 1$$

$$d. 0 . A = 0$$

T8.:

$$a. A' + A = 1$$

$$b. A'. A = 0$$

T9.:

$$a. A + A'. B = A + B$$

$$b. A.(A' + B) = A.B$$

10. DE MORGAN'S THEOREM:

$$a. (\overline{A + B}) = \overline{A}. \overline{B}$$

$$b. (\overline{A \cdot B}) = \overline{A} + \overline{B}$$

PEMBUKTIAN TEOREMA T6(a)

TABEL KEBENARAN UNTUK $A + A \cdot B = A$

A	В	A . B	A + A.B
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

PEMBUKTIAN TEOREMA T9(a)

TABEL KEBENARAN UNTUK A + A'B = A+B

A	В	A' . B	A + A'B	A + B
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

Aplikasi soal Aljabar Boole

Dari Postulat dan Teorema Aljabar Boolean diatas tujuan utamanya adalah untuk penyederhanaan :

- Ekspresi Logika
- Persamaan Logika
- Persamaan Boolean (Fungsi Boolean) yang inti-intinya adalah untuk mendapatkan Rangkaian Logika(Logic Diagram) yang paling sederhana.

Contoh 1	Sederhanakan $A \cdot (A \cdot B + C)$		
Penyelesaian	A.(A.B+C)	= A.A.B+A.C	(T3a)
		$= A \cdot B + A \cdot C$	(T4b)
		$= A \cdot (B + C)$	(T3a)

Sederhanakan A'.B+A.B+A'.B'

Penyelesaian

$$A' \cdot B + A \cdot B + A' \cdot B' = (A' + A) \cdot B + A' \cdot B'$$
 (T3a)

$$= 1 . B + A' . B'$$
 (T8a)

$$= B + A' \cdot B' \tag{T7b}$$

$$= B + A'$$
 (T9a)

Contoh 3

Sederhanakan $A + A \cdot B' + A' \cdot B$

Penyelesaian

$$A + A \cdot B' + A' \cdot B = (A + A \cdot B') + A' \cdot B$$

$$= A + A' \cdot B \tag{T6a}$$

$$= A + B \tag{T9a}$$

Sederhanakan $A' \cdot B + A \cdot B + A' \cdot B'$

Penyelesaian

$$A' \cdot B + A \cdot B + A' \cdot B' = (A' + A) \cdot B + A' \cdot B'$$
 (T3a)

$$= 1 . B + A' . B'$$
 (T8a)

$$= B + A' \cdot B' \tag{T7b}$$

$$= B + A'$$
 (T9a)

Contoh 3

Sederhanakan $A + A \cdot B' + A' \cdot B$

Penyelesaian

$$A + A \cdot B' + A' \cdot B = (A + A \cdot B') + A' \cdot B$$

$$= A + A' \cdot B$$
 (T6a)

$$= A + B \tag{T9a}$$

Soal Latihan I:

Sederhanakan ekspresi logika dibawah dengan Aljabar Boolean :

1.
$$AB' + BC + C'A$$

- 2. A'(BC + AB + BA')
- 3. ABC + AB + A
- 4. (A' + AB)(A'B)
- 5. BC + AD + ABCD + ADC + A

Soal Latihan II:

BUATLAH TABEL KEBENARAN DARI PERSAMAAN LOGIKA DIBAWAH:

(a)
$$X \cdot Y + X' \cdot Y + X' \cdot Y' = X' + Y$$

(b)
$$A \cdot B \cdot C + A \cdot C + B \cdot C = A + B + C$$

(c)
$$(X' \cdot Y + Y' \cdot X) + X \cdot Y = (X \cdot Y')$$

(d)
$$A \cdot B \cdot D + A' \cdot B' \cdot D + A \cdot B' \cdot D' = A \cdot (B' \cdot D' + B \cdot D)$$