CSCI 470: Machine Learning

Case Study 2, Part 1 September 23, 2021

Case Study 2: Part 1

- Program a Python class that implements a type of (not Naive) Bayesian classifier
 - 2D Gaussian distribution on features
- Implement the class methods, like those of scikit-learn models
 - o fit()
 - o predict()
 - o fit predict()
- Build, train, and test your Bayesian classifier
- Evaluate your model
 - Confusion matrix
 - Accuracy
 - Precision, Recall, and F-score

Scikit-Learn model functions

Methods common to many of the scikit-learn model classes

- fit(X, y)
 - Trains a model using features, X and labels/targets, y
 - o labels/targets may be discrete-valued (classification) or continuous-values (regression)
 - Model parameters are stored as attributed of the class instantiation
- predict(X)
 - Using the trained model, make label/target predictions for the features, X, and return those predictions (e.g., y_hat)
 - X could be any set of features -- those used the train the model in fit(), those of a validation or test set, or something different altogether
- fit_predict(X, y)
 - Simply calls fit(X,y), to train the model, then calls predict(X) and return the output. Note that X is the features used in both, such that the returned predictions are those of the samples used to train the model.
 - Just a convenience function

Model training and testing: Review

THIS PROCESS IS THE MOST FUNDAMENTAL AND IMPORTANT CONCEPT IN MACHINE LEARNING

Training

Prediction

Training, and prediction on train set

Two separate calls to .fit() and .predict()

Training, and prediction on train set

Scoring

A metric is a function of two variables, which provides a measure, or score, of similarity of the values of those variables.

Evaluating (via the test set)

In <u>supervised learning</u>, we specify a **metric** that provides a measure of the similarity of two values, or two vectors of values. These values could come from anywhere, but when evaluating a SL model the values are (a) test set's labels, y_test, and (b) the predictions the trained model generates from the test set's features, y_test_hat.

Train, test, and evaluate

Train, test, and evaluate ... with assessment of overfitting

Model training and testing: Terminology

- **Samples** Individual samples of data. Some of which you will use to train your model, some of which you will use to test your model.
- A <u>trained</u> model ingests sample **features** and outputs sample **predictions**
- To train a <u>supervised learning</u> model we use the model's training algorithm, which ingests **features** and **labels**, and outputs (or stores) the trained model's **parameters**. The training algorithm attempts to minimize a **loss function**.
- Synonyms
 - Training == fitting == learning
 - Labels == Targets
 - Labels/targets may be discrete values (classes, in a classification problem)
 - Labels/targets may be continuous values (in a regression problem)
 - Parameters == weights == coefficients
 - Loss function == objective function
- Variable names (commonly used, but they can be anything)
 - X a matrix of features, usually with samples in rows, features in columns
 - y a vector of targets/labels