

Armazenamento e Processamento Distribuído

Capítulo 01 – Introdução aos Sistemas Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 01.02 - Bancos de dados em Nuvem

Nesta aula

Características de bancos de dados em nuvem e seus desafios na área de processamento distribuído e gestão dos dados.

Computação em nuvem

 Modelo computacional onde os recursos de software e hardware são disponibilizados por um fornecedor externo à empresa, chamado de nuvem.

"Computação como serviço"

 As necessidades de recursos computacionais, como hardware e software são atendidas como um serviço, sob demanda.

- Computação em nuvem Características
 - Elasticidade
 - Auto atendimento
 - Custos proporcionais ao uso, não mais à disponibilidade dos recursos.
 - Alta disponibilidade

- Computação em nuvem Tipos de serviços
 - laaS
 - Infraestrutura como serviço
 - PaaS
 - Plataforma como serviço
 - SaaS
 - Software como serviço
 - DBaaS
 - Banco de dados como serviço

Banco de Dados como Serviço

- Computação em nuvem, entre outros serviços, provê:
 - Bancos de dados como serviço (DBaaS)

- Definição:
 - Database as a Service (DBaaS) Abordagem baseada em Cloud Computing para o armazenamento e gerenciamento de dados estruturados.

Banco de Dados como Serviço

Bancos de dados como serviço (DBaaS)

 Crescimento do mercado de DBaaS (milhões de dólares)

Características

- Infraestrutura de servidores terceirizada
- Redução do tamanho das equipes
- Alocação de recursos sob demanda (Elasticidade)
- Automação de atividades de rotina
- Integração com outros recursos disponíveis em nuvem

Preocupações

- Modo de armazenamento
 - Sistemas de arquivos
 - Redundância dentro das políticas de conformidade
- Acesso aos dados pelo fornecedor
- Localização física dos dados
- Dados confidenciais

- Disponibilidade
- Monitoramento
- Desempenho
- Confidencialidade
- Gestão de usuários
- Segurança de rede

- Disponibilidade
 - Uma das vantagens da computação em nuvem
 - Servidores são espelhados e distribuídos fisicamente em vários lugares
 - Caso um servidor fique indisponível os outros recebem as requisições
 - Em algumas situações, uma nova máquina é disponibilizada automaticamente

Monitoramento

- Fornecedores de servidores em nuvem possuem ferramentas de monitoramento
- O monitoramento fornece as seguintes informações:
 - Consumo de CPU
 - Consumo de Memória
 - Tráfego de rede
 - Usuários conectados

Desempenho

- DBaaS permite que a carga seja balanceada por mais de um servidor
- DBaaS permite que recursos computacionais sejam alocados dinamicamente, sob demanda

- Confidencialidade
 - A gestão dos dados fica a cargo do fornecedor
 - Risco de acessos indevidos
 - Políticas de segurança adicionais se fazem necessárias
 - Risco de aplicações hospedadas na mesma nuvem terem acesso aos dados

Gestão de usuários

- Os usuários das aplicações e bancos de dados permanecem da mesma forma
- Os administradores de dados, do cliente, devem ter atenção especial aos acessos administrativos
- Políticas de auditoria devem ser consideradas com maior intensidade nesses ambientes

- Segurança de rede
 - O acesso ao banco de dados passa pela internet, portanto um risco adicional
 - A latência de rede é um requisito que devem ser avaliado na implantação do acesso aos serviços
 - Se todas as camadas de serviço estiverem na nuvem, o problema de latência é mitigado
 - Conexões SSL podem contribuir para melhor segurança

Conclusão

- O crescimento de bancos de dados em nuvem mudam o paradigma de gestão dos dados.
- ☑ Os bancos de dados como serviço possuem vantagens que podem trazer competitividade às empresas.
- ☑ Equipes menores e mais capacitadas são necessárias.
- ☑ É importante pensar em políticas específicas para esse cenário.

Próxima aula

☐ Gerenciadores de Clusters

Armazenamento e Processamento Distribuído

Capítulo 02 – Sistemas de Arquivos Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 02.01 - Sistemas de Arquivos Distribuídos

Nesta aula

☐ Sistemas de armazenamento de arquivos distribuídos

- O serviço de armazenamento de arquivos, em sistema distribuído, traz os seguintes benefícios:
 - Alta disponibilidade
 - Escalabilidade
 - Tolerância a falhas
 - Redundância

 Além de utilização de hardware e software com baixo custo.

Características

- Segurança
 - Permissão de acesso aos arquivos
 - Hierarquia de acesso
 - Identidade dos usuários

- Transmissão dos dados
 - Criptografia das informações

Características

Consistência

- Cache em clientes (menor sobrecarga no servidor)
- Validação as versões de arquivos no cliente

Travamento

- Acesso exclusivo nos arquivos por parte do cliente
- Clientes podem liberar e renovar o travamento dos arquivos

Replicação

- As cópias de um arquivo são atualizadas após as alterações

Tipos de Sistemas

DAS - Direct-attached storage

NAS - Network Attached Storage

SAN - Storage Area Network

Direct-attached storage

- DAS Armazenamento Diretamente conectado
 - Dispositivos de armazenamento conectados diretamente nos computadores.
 - Aumenta a capacidade de armazenamento local
 - Facilita o compartilhamento das informações
 - Gerenciamento de dados mais complexo

NAS - Network Attached Storage

- NAS Armazenamento conectado por rede
 - Modelo utilizado em maior quantidade atualmente
 - Utiliza protocolos próprios para acesso e comunicação
 - Existem softwares especializados nesse tipo de aplicação
 - Transparente para o cliente

SAN - Storage Area Network

- SAN Rede de Armazenamento
 - Rede composta por servidores e storages.
 - Rede isolada da rede local

- Rede com implementação das seguintes tecnologias:
 - Fibre Channel
 - Ethernet

Comparativo

Aplicação - NFS

Network File System

- Sistema de arquivos distribuído, que permite o acesso ao usuário remotamente
- Usuário manipula os arquivos como se fossem locais
- Possui comandos para criação, leitura e remoção dos arquivos
- Criado pela Sun, em 1985, primeiro sistema de arquivos comercializado como uma solução

Aplicação - NFS

- Clientes e servidores na mesma rede local
- Transparência de acesso
- Transparência de localização
- Independência de sistema operacional

Aplicação - NFS

Conclusão

- ☑ Os sistemas de arquivos distribuídos são poderosas ferramentas para gestão dos arquivos.
- ☑ Permitem aumento de capacidade computacional de forma transparente
- ☑ Permitem alta disponibilidade e desempenho
- Demanda cuidados maiores em questões de segurança
- Dependem do bom funcionamento das redes de computadores relacionadas

Próxima aula

☐ Sistema de arquivos Google File System (GFS)

Armazenamento e Processamento Distribuído

Capítulo 02 – Sistemas de Arquivos Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 02.03 – HDFS – Hadoop Distributed File System

Nesta aula

□ Sistemas de arquivos HDFS – Hadoop Distributed File System

Introdução

- O Hadoop Distributed File System (HDFS) é um sistema de arquivos distribuído.
- Sistema de arquivos utilizado pela API do Hadoop
- O HDFS foi projetado com os seguintes requisitos, incialmente:
 - Funcionar de maneira distribuída, em hardware de baixo custo
 - Ser tolerante a falhas
 - Possuir bom desempenho na transferência de dados
 - Considerar grandes volumes de dados

Características

- Falhas de Software
 - Em HDFS as falhas são tratadas como regra, não exceção.
 - Possui sistema de recuperação automática
- Streaming de dados
 - O HDFS foi projetado para processamentos em lotes
 - Taxas de transferência altas em transferências
- Grandes arquivos
 - A maioria dos arquivos possui gigabytes ou terabytes de dados.

Características

Modelo Simples

 Simplicidade na manipulação de arquivos, com poucas operações.

Transmissão de algoritmo, não de dados

 Ao invés de transferir dados para serem processados, a arquitetura permite que o código seja transmitido.

Portabilidade

Facilmente transportável entre plataformas heterogênas

Componentes

NameNode

- Servidor gerenciador do sistema de arquivos
- Define o controle de acesso
- Armazena os metadados do sistema de arquivos

DataNode

Conjuntos de blocos de dados, geralmente um por nó do cluster

Namespace

Nome do sistema de arquivos que é exposto aos clientes

Arquitetura

Replicação

 O NameNode periodicamente realiza a replicação dos dados.

 A replicação é operação importante para manter a tolerância a falhas.

Réplicas de dados é armazenada em racks distintos

Funcionalidades

- Permissões e autenticação
- Rack Awareness
- Modo de segurança
- Balanceador
- Atualização e rollback de dados
- Nós de checkpoint
- Nós de backup

Alguns comandos

O HDFS segue o padrão POSIX para seus comandos.

Semelhantes aos comandos do linux.

- Exemplos:
 - cd, ls, mkdir, rm, rmdir

Ecossistema Hadoop

Apache Hadoop Ecosystem

Ambari

Provisioning, Managing and Monitoring Hadoop Clusters

Hive

Columnar Stor Hbase

Flume

Zookeeper Coordination

YARN Map Reduce v2

Distributed Processing Framework

Hadoop Distributed File System

Aplicações que utilizam HDFS

- Facebook
- Adobe
- EBay
- Google
- IBM
- ImageShack
- Last.fm
- LinkedIn

Conclusão

- ☑ O HDFS é o sistema de arquivo distribuídos do hadoop framework.
 - ☑ O HDFS é altamente tolerante a falhas
 - ☑ É implementado para executar em clusters, com máquinas de baixo custo.
 - ☑ Segue o padrão do google file system
 - ☑ Realiza streaming dos dados com alto desempenho
 - ☑ Suporta grande parte das aplicações do ecossistema hadoop

Próxima aula

☐ Sistema de armazenamento em nuvem - Amazon S3.

Armazenamento e Processamento Distribuído

Capítulo 02 – Sistemas de Arquivos Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 02.04 – Amazon S3

Nesta aula

 Amazon S3 - Sistemas de armazenamento de arquivos na web

 O Amazon Simple Storage Service, conhecido como Amazon S3, é um armazenamento de objetos baseado em web service.

 O objetivo do projeto foi prover um serviço de armazenamento em nuvem.

 O Amazon S3 é um produto do portfolio de soluções em nuvem da Amazon

Características

- Serviço de armazenamentos de arquivos escalável
- Tem suporte a versionamento de arquivos
- Os objetos podem ser acessados via HTTP/HTTPS
- Os objetos podem ser acessados com protocolos de webservices, tais como REST e SOAP
- Executa replicação dos arquivos para manter durabilidade.
- Identifica dados corrompidos e faz o reparo dos erros

Aplicação

- Backup e recuperação
 - O S3 permite que o sistema de arquivos seja utilizado em políticas de backup
 - O sistema é escalável e utiliza o controle de versão da ferramenta
 - É possível configurar regras e ciclo de vida dos arquivos de backup, definindo políticas de retenção

Aplicação

Backup e recuperação

Aplicação

Análise de Big Data

 A infraestrutura do S3 possui integração com serviços de análise de dados. Ex: Hadoop

Armazenamento em nuvem híbrida

- Em locais onde existem sistemas de arquivos locais, a solução híbrida é uma possibilidade de aumento de espaço
- A classificação do nível de importância dos dados que definirá se permanecem na estrutura original ou se serão enviados à nuvem

Conceitos

Buckets

 É o objeto que realiza o agrupamento dos arquivos armazenados. Todos os arquivos estão inseridos em buckets

Objetos

São as estruturas responsáveis pelo armazenamento dos metadados

Conceitos

Chaves

- É o valor que identifica um objeto em um bucket.
- Cada objeto no Amazon S3 pode ser endereçado através da combinação do endpoint de serviço da web, do nome de bucket, da chave. Por exemplo, a URL do http://doc.s3.amazonaws.com/teste/AmazonS3.wsdl
- "doc" é o nome do bucket e "teste/AmazonS3.wsdl" é a chave.

Regiões

 Locais geográficos onde os buckets criados são armazenados. É possível o usuário definir esse locais

APIs do Amazon S3

Interface REST

- Interface de programação para acesso das aplicações
- Permite a utilização de requisições HTTP para criação, consulta e exclusão de objetos.

Interface SOAP

 Interface de programação que as aplicações podem realizar o acesso aos arquivos através de HTTPS, permitindo aplicações Java, .NET e outras se conectarem.

Estudo de Caso - Wordpress

- Em blogs e sites wordpress, à medida que o conteúdo se torna muito grande, uma solução possível é terceirizar a hospedagem de conteúdo
- O conceito de CDN (Content Delivery Network) pode ser implementado através da integração do site com o Amazon S3
- Através das urls do S3, os arquivos podem ser acessados pelos blogs
- O funcionamento do blog permanece o mesmo, de forma transparente

Estudo de Caso - Wordpress

Estudo de Caso - Wordpress

Justificativa

- Baixo custo de contratação do S3
- Redução do tamanho dos arquivos do site a serem transferidos
- Contas com limitação de transferência de dados não são suspensas
- Facilidade e simplicidade no uso da ferramenta
- Integração com outros webservices da Amazon
- Plugin nativo do wordpress na integração com o S3

Outros casos

- Netflix
 - O S3 é utilizado como "Data Lake" da Netflix

- Airbnb
 - Serviço de backup
- Thomsom Reuters
 - Utilização de análise de dados com Big Data e replicação

Conclusão

- ☑ O Amazon S3 é uma solução, em nuvem, disponibilizada como serviço de armazenamento de dados
- ☑ Possui recursos de integração com sites e com soluções da Amazon
- ☑ Fornece facilitadores na atividade de aumento de armazenamento
- ☑ Possui alta disponibilidade
- ☑ Pode ser utilizado como espaço de backup e armazém de dados para Big Data.

Próxima aula

☐ Google Cloud Storage

Armazenamento e Processamento Distribuído

Capítulo 02 – Sistemas de Arquivos Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 02.05 – Google Cloud Storage

Nesta aula

☐ Google Cloud Storage e serviços correlatos

Introdução

 Google Cloud Storage, GCS, é uma solução de armazenamento presente na solução de nuvem da google.

 O google cloud storage surgiu para ser um componente de armazenamento concorrente ao Amazon S3, das soluções Amazon Webservices.

 O GCS é uma solução oferecida como serviço, com as vantagens de aplicativos hospedados em nuvem

Visão Geral

 A plataforma de serviços em nuvem da google, o Google Cloud Platform, opera de forma redundante, em diversos datacenters, em várias regiões do mundo.

 O objetivo do produto é fornecer toda a solução de infraestrutura e plataforma de uma empresa como serviço.

 A solução permite o desenvolvimento e integração de novos softwares às soluções da Google

Google Cloud Platform - Serviços

COMPUTE	STORAGE AND DATABASES	NETWORKING	BIG DATA AND IoT	MACHINE LEARNING
 Compute Engine App Engine Container Engine Cloud Functions 	 Cloud Storage Cloud SQL Cloud Bigtable Cloud Spanner Cloud Datastore Persistent Disk Data Transfer 	 Virtual Private Cloud (VPC) Cloud Load Balancing Cloud CDN Cloud Interconnect Cloud DNS 	 BigQuery Cloud Dataflow Cloud Dataproc Cloud Datalab Cloud Dataprep Cloud Pub/Sub Genomics Google Data Studio Cloud IoT Core 	 Cloud Machine Learning Engine Cloud Jobs API Cloud Natural Language API Cloud Speech API Cloud Translation API Cloud Vision API Cloud Video Intelligence

Compute

Compute Engine

- Serviço de virtualização que disponibiliza máquinas virtuais configuráveis e escaláveis para diferentes tipos de usuários.
- Serviço e laaS cobrado por tempo de utilização.
- Integração com a solução Google Kubernetes para gerenciamento de aplicativos baseados em microsserviços

Compute

Compute

App Engine

- Motor de criação de aplicações web.
- Disponibiliza tecnologia de banco de dados NoSQL.
- Possui API de autenticação dos usuários da Google.
- A engine gerencia o trafego e escalona os recursos de acordo com o uso

Ferramentas

- Eclipse, IntelliJ, Maven, Git, Jenkins e PyCharm

Networking

Load Balance

- Componente de balanceamento de carga, que realiza o balanceamento das aplicações criadas no Google Engine.
- Escalonamento automático, de acordo com a demanda.

Interconnect

 Disponibiliza opções de interconexão entre a rede privada dos clientes com a infraestrutura em nuvem da google.

Networking

Interconnect

Big Data e IoT

Big Query

 Serviço de armazenamento de dados, Big Data, com suporte à linguagem SQL para análise dos dados

Data Flow

- Ferramenta de processamento de dados, tipo streaming
 - Possui algoritmos de detecção de comportamentos suspeitos
 - Possui análise de sensores, tecnologia loT

Big Data e IoT

Cloud Pub/Sub

- Serviço de comunicação entre as aplicações construídas pelo usuário no Google Cloud Engine.
- Comunicação em tempo real.
- Serviço de mensagens escalável, facilitando a integração entre aplicações e serviços até as ferramentas de análise.

Machine Learning

Prediction

- Serviço que permite a criação de soluções em aprendizado de máquina.
- Possui a biblioteca TensorFlow para reúso dos modelos matemáticos e produtividade no desenvolvimento.
- Através dos modelos de aprendizagem é possível construir soluções de análises preditivas.

Storage

- Solução de armazenamento da google com as seguintes características:
 - Regionalização / Multirregionalização
 - Definição de ciclos de vida de arquivos
 - Facilita a configuração de retenção das informações
 - Escalabilidade
 - Aumento de espaço sob demanda
 - Ferramentas de backup de máquina local para nuvem

Storage – Possível Solução

Conclusão

- ☑ As soluções de nuvem da Google entregam serviços para grande parte dos níveis corporativos
- ☑ Todas as soluções utilizam o google cloud storage para persistência de seus dados
- O google cloud storage pode ser utilizado como servidor de arquivos, mas também servidor de backup
- ☑ A escalabilidade e elasticidade permitem uso mais racional dos recursos

Próxima aula

■ Microsoft Azure

Armazenamento e Processamento Distribuído

Capítulo 02 – Sistemas de Arquivos Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 02.06 - Microsoft Azure

Nesta aula

☐ Serviços de nuvem – Microsoft Azure

Introdução

 O Microsoft Azure é uma plataforma destinada à execução de aplicativos e serviços, baseada em computação em nuvem.

 Tem maior destaque no fornecimento de máquinas virtuais, mas possui soluções para diversas áreas.

Introdução

Platform Services

Compute

Web and Mobile

Developer Services

Cloud Services

Service Fabric

Visual Studio

Remote App

Mobile Apps

Team Project

Application Insights

Integration

Storage Queues

Biztalk Services

Machine Learning

Hybrid Connections

Data Factory

Redis Cache

Media & CDN

Stream Analytics

Mobile Engagement

Document DB

Conteúdo

O Microsoft Azure possui um módulo de CDN

- Solução de fornecimento de conteúdo de alta largura de banda hospedada no Azure ou em qualquer outro local.
- CDN utiliza o armazenamento de objetos em cache, agilizando a recuperação desses arquivos.
- A CDN normalmente é usada para fornecimento de conteúdo estático.
- Exemplos
 - Imagens, CSS, documentos, arquivos, scripts do lado do cliente e páginas HTML.

CDN - Solução

CDN - Solução

	Tempo (ms) até o Primeiro Byte (Origem)	Tempo (ms) até o Primeiro (CDN)	% de aprimoramento de tempo de CDN
*São José, CA	47,5	46,5	2%
**Dulles, VA	109	40,5	169%
Buenos Aires, AR	210	151	39%
*Londres, Reino Unido	195	44	343%
Xangai, CN	242	206	17%
*Cingapura	214	74	189%
*Tóquio, JP	163	48	204%
Seul, Coreia do Sul	190	190	0%

Fonte: Microsoft

^{*} Tem um nó do CDN do Azure na mesma cidade.

^{**} Tem um nó do CDN do Azure em uma cidade vizinha.

- O Azure possui as seguintes formas de armazentamento das informações:
 - Arquivos
 - Discos
 - Objetos Blob
 - Filas
 - Tabelas

Arquivos

- Sistema de arquivos remoto, escalável, com ferramentas de gestão amigáveis
- Flexibilidade híbrida
 - Acesso aos arquivos via SMB
 - Acesso aos arquivos via REST
 - Acesso aos arquivos via sincronização local
- Multiplataforma
 - Independente de sistema operacional

Discos

- Disponibilização de discos, como laaS, com alta disponibilidade durabilidade.
- Os discos podem ser alocados sob demanda, com SSD.
- Discos projetados para ter baixa latência
- Escalabilidade vertical
- Proteção aos dados por criptografia

- Objetos Blob
 - Forma de armazenamento com foco em arquivos grandes.
 - Foco em dados não estruturados
 - Redundância de arquivos
 - Controle e sincronismo para as alterações
- Case Olimpíadas do Rio de Janeiro
 - Utilização nas transmissões ao vivo, via internet

Filas

- O armazenamento em fila é uma funcionalidade para troca de mensagens entre aplicações.
- Escalável para grandes cargas de trabalho
- APIs nativas para integração com linguagens de programação, como:
 - C#, Java, C++, PHP, etc
- Acessíveis via webservices com REST

Tabelas

- Sistema de persistência de dados, não tabulares e com escalabilidade.
- Estrutura de armazenamento flexível, não necessariamente tabular.
- Suporte a JSON
- Suporte a APIs:
 - .NET, Java, Android, C++, Node.js, PHP, Ruby e Python. A

- Outras soluções no Azure:
 - Bancos de dados
 - Inteligência Artificial
 - Inteligência das coisas
 - APIs para desenvolvimento
 - Aplicações Mobile

Arquitetura Azure

Conclusão

- ☑ Microsoft Azure é um conjunto de produtos e soluções em computação na nuvem.
- ☑ Os serviços disponíveis perpassam por infraestrutura, plataforma e softwares
- ☑ As VMs Azure são escaláveis
- As VMs Azure possuem integrações com diversas tecnologias

Próxima aula

☐ Introdução aos bancos de dados distribuídos

Armazenamento e Processamento Distribuído

Capítulo 03 – Bancos de Dados Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 03.01 – Introdução aos Bancos de Dados Distribuídos

Nesta aula

☐ Conceitos em bancos de dados distribuídos

 A distribuição dos dados, processamento e armazenamento oferece algumas vantagens e desafios.

 Existem diferentes arquiteturas de bancos de dados distribuídos e nessa aula iremos discutí-las.

 Os principais fornecedores de SGBDs de mercado possuem soluções distribuídas.

Motivação

 Uma empresa multinacional possui sua operação integrada por uma base de dados única.

Problemas:

- Cada filial terá uma cópia dos dados?
- Cada filial terá uma parte dos dados?
- Como armazenar os dados comuns entre filiais?
- Como minimizar o tráfego de dados entre as filiais?
- Como manter a integridade referencial entre as filiais?

- Porque, então, distribuir os dados?
 - Aumento da disponibilidade
 - Acesso distribuído mais próximo do local onde é consultado
 - Facilidade em aumentar a estrutura e volume de dados

- Quais situações utilizar?
 - Empresas distribuídas geograficamente
 - Redes de hóteis
 - Empresas aéreas
 - Cadeias de produção integradas

Conceitos

- Banco de Dados Distribuído
 - Vários bancos de dados locais, interligados através de uma rede.
 - Processamento prioritariamente local.

- Sistema Gerenciador de Bancos de Dados Distribuídos (SGBDD)
 - Sistema que gerencia um banco de dados distribuído
 - Mantém a visão centralizada e única para o usuário
 - Processamento distribuído.

BDD - Arquitetura

SGBDD - Arquitetura

Desafios

Controle de concorrência

 Como manter integridade dos dados, mesmo com acessos concorrentes?

Replicação

 Como manter cópia dos dados, em cada ponto do banco de dados distribuído, sincronizados?

Confiabilidade

- Como manter as informações disponíveis?
- Como garantir as propriedades ACID?

Controle de concorrência

- Controle de concorrência
 - Métodos para garantir que os dados são alterados na ordem cronológica correta.
 - Garantir que o banco de dados esteja consistente antes e depois de uma transação.
 - Garantir todas as propriedades de uma transação, para todas as transações do banco de dados.

Propriedades ACID - Relembrando...

Propriedades ACID

- Atomicidade
 - Transações são indivisíveis
- Consistência
 - As restrições de integridade são obedecidas
- Isolamento
 - Cada transação acontece sem interferência de outras transações. Como se fossem sequenciais.
- Durabilidade
 - Todas as operações de uma transação são gravadas, de forma permanente, sem perda de informações.

Protocolos de controle

 Os SGBDs distribuídos possuem protocolos para implementação do controle das transações.

• Exemplos:

- Two-phase-commit (2PC)
- Locks (Bloqueios)
- Two-phase-locks (2PL)

Two-phase-commit (2PC)

 Para que o SGBD não aguarde indefinidamente o commit dos dados, em razão de problemas de rede.

- O commit é dividido em dois momentos:
 - Fase 1: Preparação
 - A transação envia uma mensagem preliminar, para "avisar" que irá acontecer um commit.
 - Cada nó recebe a mensagem e responde se consegue consolidar essa alteração localmente.
 - Fase 2: Commit

Two-phase-commit (2PC)

- O commit é dividido em dois momentos:
 - Fase 2: Commit
 - Após a resposta de todos os nós do SGBD, o gerenciador de transações deve decidir se confirma as alterações.
 - Regras:
 - Se um nó solicita que a transação deve ser abortada, então a transação será abortada em todos os nós.
 - Se todos os nós confirmarem a confirmação da transação, então o commit acontece.

Locks

- Locks, ou Bloqueios, é um mecanismo mais comum em bancos de dados distribuídos.
 - A transação que vai modificar os dados, solicita o bloqueio desses dados ao nó gerenciador.
 - O nó gerenciador solicita aos demais nós, o bloqueio desses registros para outras transações.
 - O nó gerenciador controla os objetos bloqueados
 - Quando a transação recebe a confirmação do bloqueio, realiza as alterações.
 - O bloqueio é retirado quando o commit da transação acontece.

Conclusão

- ☑ Os bancos de dados distribuídos são soluções criadas no passado para manter bancos de dados globais.
- A partir dos conceitos principais, como separação dos dados e controle de transações, surgiram soluções comerciais.
- ☑ As soluções comerciais implementam parcialmente os conceitos de SGBDs distribuídos.
- O SGBD distribuído tem como vantagens o desempenho, disponibilidade e escalabilidade.

Próxima aula

□ Banco de dados Google Big Table.

Armazenamento e Processamento Distribuído

Capítulo 03 – Bancos de Dados Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 03.02 - SGBD - Google Bigtable

Nesta aula

□ Banco de dados da Google: Bigtable

Introdução

- O Google Bigtable é o banco de dados projetado pela Google, para suportar:
 - Aplicações com grande volumes de dados semi-estruturados.
 - Resolver problemas de escala nas aplicações da Google.
 - Não existia nenhum SGBD capaz de suportar o volume de dados e transações.
 - Otimizado com o sistema de armazenamento da Google, o que provê desempenho.

Características

- Grandes volumes de dados
- Milhões de máquinas
- Aplicações heterogêneas
- Milhões de usuários simuntâneos
- Dados semi-estruturados
- Otimização em armazenamento de baixo nível
 - Sem camada de aplicação (SGBD)
- Suporte a operações MapReduce

Características

- SGBD tolerante a falhas
- Modelo de dados orientado a colunas
- Escalabilidade
 - Milhares de servidores
 - Terabytes de dados em memória
 - Petabytes de dados em disco
 - Milhões de operações de leitura e escrita
- Ajustes dinâmicos
- Compactação de dados em disco

Componentes

Chubby

- Realiza o controle de concorrência
- Implementa política de Locks
- Mantém a permissão de acessos

Google File System

- Armazenamento dos dados fisicamente
- Balanceamento de carga em nível de disco

Project name	Table size (TB)	Compression ratio	# Cells (billions)	# Column Families	# Locality Groups	% in memory	Latency- sensitive?
Crawl	800	11%	1000	16	8	0%	No
Crawl	50	33%	200	2	2	0%	No
Google Analytics	20	29%	10	1	1	0%	Yes
Google Analytics	200	14%	80	1	1	0%	Yes
Google Base	2	31%	10	29	3	15%	Yes
Google Earth	0.5	64%	8	7	2	33%	Yes
Google Earth	70		9	8	3	0%	No
Orkut	9		0.9	8	5	1%	Yes
Personalized Search	4	47%	6	93	11	5%	Yes

Modelo de Dados

- Família de colunas
 - Mapa multi-dimensional ordenado.
- Indexado pela linha, coluna e timestamp.
- Cada valor no mapa é um array de bytes não interpretado.

Arquitetura

Desempenho

Desempenho

- Fatores que favorecem o desempenho
 - Balanceamento de carga
 - Algoritmo de rebalanceamento que reduz movimento de registros
 - Aumento dinâmico de tablet servers de acordo com a utilização
 - A maior parte das leituras é realizada e memória

- ☑ Bigtable é um SGBD que atendeu os objetivos de suportar as aplicações da google.
- ☑ Sua arquitetura distribuída, escalável e com integração com o Google File System provê desempenho às aplicações.
- O modelo de dados não-relacional flexibiliza as alterações nos dados, reduzindo número de bloqueios.
- ☑ Esse banco de dados foi base para a criação de outros no paradigma NoSQL, como exemplo o Apache Cassandra.

Próxima aula

☐ SGBD Distribuído - Oracle

Armazenamento e Processamento Distribuído

Capítulo 03 – Bancos de Dados Distribuídos Prof. Diego Bernardes de Lima Santos

Aula 03.04 – SGBD Distribuído SQL Server

Nesta aula

 Solução da Microsoft para Bancos de Dados distribuídos

Introdução

 A Microsoft desenvolveu o banco de dados SQL
 Server, com o nome Always On, para prover serviços de bancos de dados em alta disponibilidade.

 AlwaysOn é o nome dado ao mecanismo de alta disponibilidade, baseado em replicação de dados.

Características

Grupos de Disponibilidade

- Um grupo de disponibilidade suporta um ambiente replicado para um conjunto de bancos de dados, conhecidos como bancos de dados de disponibilidade.
- Cada grupo de disponibilidade possui um banco de dados primário e até 08 réplicas ou bancos secundários.
- O banco primário realiza as transações dos usuários, OLTP, normalmente e envia seus logs ao banco secundário.

Características

Modos de Disponibilidade

- Asynchronous-commit mode
 - Registra as transações sem confirmação.
- Synchronous-commit mode
 - Registra as transações após confirmação das instâncias secundárias.

Tipos de Failover

Failover manual planejado

 Um failover manual ocorre depois que um administrador de banco de dados emite um comando de failover e faz com que uma réplica secundária sincronizada faça a transição para a função primária.

Failover automático

 Um failover automático ocorre em resposta a uma falha que faz com que uma réplica secundária sincronizada faça a transição para a função primária.

Instâncias Secundárias Ativas

Execução de Backup

- Embora não seja comum, é possível realizar backups em réplicas secundárias.
- Eventualmente pode ser utilizado para não impactar a réplica primária.

Acesso somente leitura

- Existe o mecanismo de conexões dos usuários para acessos de leitura.
- Útil para realização de consultas, relatórios e cópias de dados.

Benefícios

- Apoio à política de disaster recovery.
- Alta disponibilidade
- Tempo de recuperação menor
 - Voltar Backup sempre é o pior caso
- Transparência em tarefas de manutenção
 - A intervenção em réplica não é percebida pelo nó principal
 - É possível modificar o nó principal para realizar manutenção.

Outro Desenho

Outro Desenho (2)

Alternativa em Alta Disponibilidade

DBaaS – SQL Server em Nuvem

Conclusão

- ☑ O SQL Server Aways On é uma solução de alta disponibilidade da Microsoft, que garante alta disponibilidade do banco de dados.
- ☑ Não é integralmente um cluster, pois o processo não é distribuído.
- ☑ Pode ser utilizada para melhorar o desempenho, utilizando bases secundárias como leitura.
- ☑ O sincronismo dos dados é realizado por logs, de forma automática.

Próxima aula

☐ Introdução ao Ecossistema Hadoop