4	เพาม	一,「	BPOUL LOG	
	K ₂	χ,	X to	. 4
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

10 to 2 12 0/3

Info(D)= I (8,4) =
$$-\frac{3}{12}log_2(\frac{8}{12}) - \frac{5}{12}log_2(\frac{5}{12}) = 0.9193$$

	/ গণ্ড	mo	
age	Pí	μι	I (P; , N;)
Z=30	2	2	1
3140	3	0	٥
740	3	2	0-9710

$$Inf_{0 \leq 30}(D) = I(2,2) = -\frac{9}{4}log_{2}(\frac{9}{4}) - \frac{9}{4}log_{2}(\frac{9}{4})^{2} + I$$

$$Inf_{0 \leq 31 \dots 40}(D) : I(3,0) : -\frac{3}{3}log_{2}(\frac{9}{3}) - \frac{9}{3}log_{3}(\frac{9}{3})^{2} + O$$

$$Inf_{0 \geq 40}(D) = I(3,9) : -\frac{3}{5}log_{3}(\frac{3}{5}) - \frac{9}{5}log_{2}(\frac{2}{5}) = 0.9710$$

$$Inf_{0 \neq 90}(D) = \frac{4}{12}I(2,9) + \frac{3}{12}I(3,0) + \frac{5}{12}I(3,8)$$

$$= \frac{4}{12}(1) + \frac{3}{12}(0) + \frac{5}{12}(0.9710)$$

$$= 0.7379$$

income	Pi	ηi	I (P; , n;)
high	2	2	1
Medium	4	1	0.7219
low	2	1	0.9183

$$Infonign(D) = I(2,2) = -\frac{2}{4}log_{2}(\frac{2}{4}) - \frac{2}{4}log_{2}(\frac{2}{4}) = 1$$

$$Infonedium(D) = I(4,1) = -\frac{4}{5}log_{2}(\frac{4}{5}) - \frac{1}{5}log_{2}(\frac{1}{5}) = 0.7219$$

$$Inflow(D) = I(2,1) = -\frac{2}{3}log_{2}(\frac{1}{3}) - \frac{1}{3}log_{2}(\frac{1}{3}) = 0.9183$$

$$Infoincome (D) = \frac{4}{12}I(2,2) + \frac{5}{12}I(2,1) + \frac{3}{12}I(2,1)$$

$$= \frac{4}{12}(1) + \frac{5}{12}(0.7219) + \frac{1}{12}(0.9183)$$

$$= 0.3637_{xx}$$
Gelin (income) = Info(D) - Infoincome (D)
$$= 0.9183 - 0.3637$$

$$= 0.3637_{xx}$$

student	Pi	ηí	I (P; , n;)
Yes	5	1	0.6500
No	3	3	1

$$I(s_{9}1) = -\frac{5}{6}log_{8}(\frac{5}{6}) - \frac{1}{6}log_{8}(\frac{1}{6}) \approx 0.6500$$

$$I(3_{1}3) = -\frac{3}{6}log_{8}(\frac{3}{6}) - \frac{3}{6}log_{8}(\frac{3}{6}) = 1$$

. λ,	Ϋ́) / ₂	X_u	. u
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

credit_rating	Pi	ηi	I (P; , n;)
Fair	6	1	0-5917
excellent	2	3	0.9710

$$I(6,1) = -\frac{6}{7} \log_{8}(\frac{1}{7}) - \frac{1}{7} \log_{8}(\frac{1}{7}) = 0.5917$$

$$I(2,3) = -\frac{1}{5} \log_{8}(\frac{1}{5}) - \frac{3}{5} \log_{8}(\frac{1}{5}) = 0.9710$$

Information (p) =
$$\frac{7}{12}$$
 I(6,1) + $\frac{5}{12}$ I(2,3)
= $\frac{7}{12}$ (0.5917) + $\frac{5}{12}$ (0.9710)
= 0.7497

bzon age Tubot u node

	income	student	credit_rating	buys_computer
	high	no	fair	no
0 44 / 26	high	no	excellent	no
g ye 430	low	yes	fair	yes
	medium	yes	excellent	yes

l	income	Pi	n:	エ(タシゥウィン	
l	high	0	2	σ	I(0,2) = -2 1092 (2)-2 1092 (1)=0
l	Medium	1	0	O	I(1,0) = -1-10ge(1) - 0 10gz(0)=0
L	low	1	0	0	I(1,0) = - 1 1092(1) - 2 1082(0):0

Info: income (D g \leq 30) =
$$\frac{2}{4}$$
 I(0, a) + $\frac{1}{4}$ I(1,0) + $\frac{1}{4}$ I(1,0) = $\frac{2}{4}$ (0) + $\frac{1}{4}$ (0) + $\frac{1}{4}$ (0) = O Go; income (D, \leq 30) = Info: (D, \leq 30) - Info: income (D, \leq 30) = 1-0=1

student	Pi	n:	I (P; , n;)
Ves	2	0	0
No	Ø	2	0

$$I(2,0) = -\frac{2}{2} \log_{1}(\frac{2}{2}) - \frac{0}{2} \log_{1}(\frac{0}{2}) = 0$$

$$I(0,2) = \frac{0}{2} \log_{2}(\frac{0}{2}) - \frac{2}{2} \log_{1}(\frac{1}{2}) = 0$$

Infostudent (D,
$$\leq 30$$
) = $\frac{2}{4}$ I(2,0) + $\frac{2}{4}$ I(0,2) = $\frac{2}{4}$ (0) + $\frac{2}{4}$ (0) = 0
Gein (student) = Info(D, ≤ 30) - Info_{student} (D, ≤ 30) = 1-0 = 1

credit_rating	Pi	ni	I (P; , n;)
fair	1	1	1
excellent	1	1	1

$$I(1,1) = -\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2})^2 1$$
Info (D, ≤ 36) = $\frac{2}{4} I(1,1) + \frac{1}{2} I(1,1) : \frac{2}{4} + \frac{2}{4} = 1$
Grain c credit-viting)= Info (D, ≤ 30) - Info (D, ≤ 30) = 1-1:0

Credit-viting

	income	student	credit_rating	buys_computer
(medium	no	fair	yes
	low	yes	fair	yes
29e>40}	low low	yes	excellent	no
	medium	yes	fair	yes
Ĺ	medium	no	excellent	no

Info (D, >40) = I(3, 2) =
$$\frac{3}{5}\log_2(\frac{3}{5}) - \frac{1}{5}\log_2(\frac{2}{5}) = 0.971$$

income	Pi	ηi	I (P; , n;)
h:9h	0	0	0
Medium	2	1	0.971
low	1	1	1

 $I(\Omega_{1}) = -\frac{1}{3} \log_{2} \left(\frac{1}{2}\right) - \frac{1}{3} \log_{2} \left(\frac{1}{5}\right) = 0.9183$ $I(1_{1}1) = -\frac{1}{2} \log_{2} \left(\frac{1}{2}\right) - \frac{1}{2} \log_{2} \left(\frac{1}{2}\right) = 1$

Info: n.com,
$$(D, 740) = \frac{2}{5}I(A,1) + \frac{2}{5}I(1,1) = \frac{3}{5}(0.971) + \frac{2}{5}(1) = 0.9326$$

Gaincincome) = Info(D, 740) - Info: n.com, (D, 740) = 0.971-0.9133 = 0.0527

student	Pi	ηi	I (P; , ni)
Ves	2	1	0 - 971
No	- (1	1

$$I(2,1) = -\frac{1}{3} \log_2(\frac{1}{4}) - \frac{1}{3} \log_2(\frac{1}{5}) \cdot 0.9183$$

$$I(1,1) = -\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{4}) = 1$$

Infostudant
$$(D_9>40)=\frac{3}{5}I(a,1)+\frac{2}{5}I(1,1)=\frac{3}{5}(0.971)+\frac{2}{5}(1)=0.9326$$

Gain c studant) = Info $(D_9>40)$ - Infostudant $D_9>40)=0.971-0.9183=0.0527$

I	credit_rating	72.	n i	I (P; , N;)
		<u> </u>	^	2 (17,119
	Fai r	3	O	0
	excellent	0	Ŋ	0

$$I(3_{1}0) = -\frac{2}{3} \log_{2}(\frac{4}{3}) - \frac{0}{3} \log_{2}(\frac{0}{3}) = 0$$

$$I(0,2) = -\frac{0}{9} \log_{2}(\frac{0}{2}) - \frac{2}{2} \log_{2}(\frac{1}{3}) = 0$$
Info (D, 740) = $\frac{2}{5}I(3_{1}0) + \frac{2}{5}I(0_{1}2) = \frac{3}{5}(0) + \frac{2}{5}(0) = 0$
Gencerally rising = 0.971 or credit rising = 0.971

