Ragionamento Bayesiano Esercizi

Classificatore Naïve Bayes: richiami (credits: P. Velardi-uniroma1)

- Si applica quando le ipotesi in H sono rappresentabili mediante una congiunzione di valori di attributi e la classificazione è scelta da un insieme finito Y. Le istanze x in X sono descritte da m-uple di valori (x₁, x₂, ..., x_m) associati agli m attributi di x,
- si basa sull'assunzione semplificativa che I valori degli attributi siano condizionalmente indipendenti, assegnato un valore della funzione obiettivo.

Classificatore Naïve Bayes: richiami (2)

Dato un nuovo esempio da classificare, si calcola:

$$c_{NB} = \arg \max_{c \in Y} P(c_{j} | x_{1}, x_{2}, ..., x_{m}) =$$

$$= \arg \max_{c \in Y} \frac{P(x_{1}, x_{2}, ..., x_{m} | c) \cdot P(c)}{P(x_{1}, x_{2}, ..., x_{m})} =$$

$$= \arg \max_{c \in Y} P(c) \prod_{i} P(x_{j} | c)$$

Naïve Bayes: Esempio

- C = {allergia, raffreddore, in_salute} (valori c(x))
- att₁ = starnuti (sì, no); att₂ = tosse (sì, no); att₃ = febbre (sì, no)
 (attributi booleani)
- x = (1, 1, 0) ovvero $(att_1, att_2, \neg att_3)$ come lo classifico?

Dall'insieme D stimo le prob. a priori e condizionate es:

Prob	in salute	raffred dore	allergia
$P(c_i)$	0.9	0.05	0.05
P(a ₁ c _i)	0.027	1.0	1.0
$P(a_2 c_i)$	0.027	0.5	0.5
$P(a_3 c_i)$	0.027	0.5	0.5

Esempio (continua)

- 40 esempi, 36 classificati "in salute", 2 "raffreddore", 2 "allergia"
- Per stimare, ad esempio, P(a₁=1|in-salute), contare sui 36 esempi nei quali c(x)= "in-salute" quanti hanno att₁=1

se 1 su 36, P(att₁=1|in-salute)=1/36=0,027

Analogamente avrò, ad es.:

- P(att₁=1|raffreddore)=2/2=1
- P(att₁=1|allergia)=2/2=1
- ecc.

Esempio (continua)

- Devo calcolare il massimo al variare di c di: $P(c_j) \prod P(a_i \mid c_j)$
- Quindi ad esempio per c=raffreddore

$$P(raffreddore)[P(att_1 = sì \mid raffr)P(att_2 = si \mid raffr)P(att_3 = no \mid raffr)] = 0.05 \times [1 \times 0.5 \times 0.5] = 0.0125$$

Analogamente, troverò:

$$P(in-salute)[P(att_1 = sì | sal)P(att_2 = sì | sal)P(att_3 = no | sal)] = 0.9 \times [0.027 \times 0.027 \times 0.027] = 0.000017$$
 $P(allergia)[P(att_1 = sì | all)P(att_2 = sì | all)P(att_3 = no | all)] = 0.05 \times [1 \times 0.5 \times 0.5] = 0.0125$

Problemi con Naive Bayes

- Se D è piccolo, le stime sono inaffidabili (nell'esempio precedente alcune stime sono = 1!!!).
- Un valore raro a_k può non capitare mai in D e dunque:
 - $\forall c_j: P(a_k \mid c_j) = 0.$
- Analogamente, se ho un solo esempio di una classe c_j ,
 - $\forall a_k$: $P(a_k | c_j) = 1$ o $P(a_k | c_j) = 0$.
- Se a_k capita in un test set T, il risultato è che
 - $\forall c_i$: $P(T \mid c_i) = 0$ and $\forall c_i$: $P(c_i \mid T) = 0$

perché a_k non è mai apparso nel training set. Meglio adottare lo smoothing!!!

Smoothing: richiami

- Le probabilità P(x_j|c) vengono stimate osservando le frequenze nei dati di addestramento D
- Se D include n_i esempi classificati c_i, e n_{ij} di questi n_i esempi contengono il valore x_j per l'attributo j, allora:

$$P(x_j \mid c_i) = \frac{n_{ij}}{n_i}$$

Smoothing: richiami (2)

- Per tener conto di eventi rari, si operano degli aggiustamenti sulle probabilità detti smoothing
- Laplace smoothing con una M-stima assume che ogni evento x_j abbia una probabilità a priori p, che si assume essere stata osservata in un campione virtuale di dimensione M > del campione reale

Smoothing: richiami (3)

$$P(x_j \mid c_i) = \frac{n_{ij} + Mp}{n_i + M}$$

Nell'esempio precedente, si avrebbe:

$$P(x_1 = 0 \mid raff) = \frac{0 + M \times 0.5}{2 + M}$$

Smoothing: richiami (4)

 M è una costante che determina il peso dello smoothing

 In assenza di altre informazioni, si assume p=1/k dove k è il numero di valori dell'attributo j in esame.

Moneta bilanciata (credits: G. Manco)

Lancio della moneta

- Spazio: $\Omega = \{ \text{Head, Tail} \}$
- Scenario: la moneta è bilanciata o sbilanciata al 60% in favore di Head
 - h₁ = bilanciata: P(Head) = 0.5 (più precisamente: P(Head | h₁))
 - $h_2 = 60\%$ bias: P(Head) = 0.6 (più precisamente: P(Head | h_2))
- Obiettivo: decidere tra l'ipotesi di default (null) e l'alternativa.

Distribuzione a-priori

- $P(h_1) = 0.75$, $P(h_2) = 0.25$
- Riflette le credenze iniziali su H
- L'apprendimento è <u>revisione delle credenze</u>

Moneta bilanciata (continua)

- Evidenze
 - d ≡ singolo lancio, viene Head
 - D: Cosa crediamo adesso?
 - R: Calcoliamo P(d) = P(d|h₁)-P(h₁) +P(d|h₂)-P(h₂)
- Inferenza Bayesiana: Calcolo di P(d=HEAD) = $P(d|h_1) \cdot P(h_1) + P(d|h_2) \cdot P(h_2) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525$
- Questa è la probabilità dell'osservazione d=Head

Moneta bilanciata (continua)

- Apprendimento bayesiano
 - In base al teorema di Bayes
 - $P(h_1|d) = P(d|h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714$
 - $P(h_2|d) = P(d|h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286$
 - Le credenze sono state spostate verso h₁
 - MAP: crediamo ancora che la moneta sia bilanciata
 - Approccio ML (assumiamo priors identici)
 - Le credenze sono revisionate a partire da 0.5
 - C'è più sbilanciamento a favore di h₁

Moneta bilanciata (continua)

- Ulteriore evidenza: Sequenza D di 100 lanci con 70 heads e 30 tails
 - $P(D) = (0.5)^{70} \cdot (0.5)^{30} \cdot 0.75 + (0.6)^{70} \cdot (0.4)^{30} \cdot 0.25$
 - Ora $P(h_1|D) \ll P(h_2|D)$