ALGEBRA LINEAR

Alfredo STEINBRUCH

Paulo WINTERLE

PEARSON

138 problemas resolvidos 381 problemas propostos

OUTROS LIVROS NA ÁREA:

BOULOS — Cálculo diferencial e integral (2 volumes + Pré-cálculo)

BOULOS — Geometria analítica — 3ª edição

FLEMMING — Cálculo A

GONÇALVES — Cálculo B

LIPSCHUTZ — Álgebra linear — 3ª edição

SIMMONS — Cálculo com geometria analítica — 2 volumes

SPIEGEL — Probabilidade e estatística

STEINBRUCH — Geometria analítica plana

STEINBRUCH — Introdução à álgebra linear

WINTERLE — Vetores e geometria analítica

Makron Books é um selo da

ISBN 978-00-745-0412-3

SUMÁRIO

Prefácio da 2ª edição

Capítulo 1	VETORES	
	Vetores	1
	Operações com vetores	3
	Vetores no IR ²	5
	Igualdade e operações	6
	Vetor definido por dois pontos	8
	Produto escalar	9
	Ângulo de dois vetores	10
	Paralelismo e ortogonalidade de dois vetores	12
	Vetores no IR ³	13
Capítulo 2	ESPAÇOS VETORIAIS	
	Introdução	15
	Espaços vetoriais	18
	Propriedades dos espaços vetoriais	24
	Subespaços vetoriais	25
	Combinação linear	39
	Espaços vetoriais finitamente gerados	53
	Dependência e independência linear	53
	Base e Dimensão	66
	Espaços vetoriais isomorfos	86
	Problemas	
Capítulo 3	ESPAÇOS VETORIAIS EUCLIDIANOS	
	Produto interno em espaços vetoriais	106

	Espaço vetorial euclidiano	111
	Módulo de um vetor	112
	Ângulo de dois vetores	116
	Vetores ortogonais	119
	Conjunto ortogonal de vetores	120
	Conjuntos ortogonais entre si	130
	Complemento ortogonal	132
	Problemas	
Capítulo 4	TRANSFORMAÇÕES LINEARES	
	Transformações lineares	151
	Núcleo de uma transformação linear	168
	Imagem	171
	Matriz de uma transformação linear	181
	Operações com transformações lineares	192
	Transformações lineares planas	195
	Transformações lineares no espaço	206
	Problemas	200
Capítulo 5	OPERADORES LINEARES	
•	Operadores lineares	230
	Operadores inversíveis	230
	Mudança de base	234
	Matrizes semelhantes	244
	Operador ortogonal	252
	Operador sime trico	261
	Problemas	
Capítulo 6	VETORES PRÓPRIOS E VALORES PRÓPRIOS	
	Vetor próprio e valor próprio de um operador linear	276
	Determinação dos valores próprios e dos vetores próprios	278
	Propriedades dos vetores próprios e valores próprios	286
	Diagonização de operadores	289
	Diagonização de matrizes simétricas	299
	Problemas	
Capítulo 7	FORMAS QUADRÁTICAS	
	Forma quadrática no plano	323
	Cônicas	328
	Notas complementares	347
	Forma quadrática no espaço tridimensional	353
	Quádricas	358
Apêndice A	MATRIZES/DETERMINANTES/SISTEMAS DE EQUAÇÕES LINEARES MATRIZES	
	Definição de matriz	369
	Matriz quadrada	371

Sumário	VII
Matriz zero	374
Igualdade de matrizes	374
Adição de matrizes	374
Produto de uma matriz por um escalar	375
Produto de uma matriz por outra	376
Matriz transposta	398
Matriz simétrica	400
Matriz anti-simétrica	401
Matriz ortogonal	402
Matriz triangular superior	403
Matriz triangular inferior	403
Potência de uma matriz	404
Fotencia de uma matriz	404
DETERMINANTES	
Classe de uma permutação	420
Termo principal	421
Termo secundário	421
Determinante de uma matriz	421
Ordem de um determinante	421
Representação de um determinante	421
Preliminares para o cálculo dos determinantes de 2ª e de 3ª ordem	422
Cálculo do determinante de 2ª ordem	423
Cálculo do determinante de 2ª ordem	426
Desenvolvimento de um determinante por uma linha ou por uma coluna	432
	433
Propriedades dos determinantes	446
Cálculo de um determinante de qualquer ordem	440
INVERSÃO DE MATRIZES	
Matriz inversa	466
Matriz singular	466
Matriz não-singular	467
Propriedades da matriz inversa	468
Operações elementares	470
Equivalência de matrizes	471
Inversão de uma matriz por meio de operações elementares	476
	470
SISTEMAS DE EQUAÇÕES LINEARES	
Equação linear	505
Sistemas de equações lineares	505
Solução de um sistema linear	505
Sistema compatível	506
Sistemas equivalentes	507
Operações elementares e sistemas equivalentes	508
Sistema linear homogêneo	510
Estudo e solução dos sistemas de equações lineares	510

Droble

CAPÍTULO

1.1 VETORES

Este capítulo tem por finalidade precípua revisar resumidamente a noção de vetor no \mathbb{R}^2 e no \mathbb{R}^3 e suas propriedades, as quais já devem ser do conhecimento do leitor¹.

Sabe-se que os vetores do plano ou do espaço são representados por segmentos orientados. Todos os segmentos orientados que têm a mesma direção, o mesmo sentido e o mesmo comprimento são representantes de um mesmo vetor. Por exemplo, no paralelogramo da Figura 1.1a, os segmentos orientados AB e CD determinam o mesmo vetor v, e escreve-se

$$v = \overrightarrow{AB} = \overrightarrow{CD}$$

Figura 1. 2

O assunto pode ser visto em detalhes no livro Geometria Analítica, dos autores desta Algebra Linear, Editora McGraw-Hill.

Quando escrevemos $v = \overrightarrow{AB}$, estamos afirmando que o vetor é determinado pelo segmento orientado AB de origem A e extremidade B. Porém, qualquer outro segmento de mesmo comprimento, mesma direção e mesmo sentido de AB representa também o mesmo vetor v. Assim sendo, cada ponto do espaço pode ser considerado como origem de um segmento orientado que é representante do vetor v.

O comprimento ou o módulo, a direção e o sentido de um vetor v é o módulo, a direção e o sentido de qualquer um de seus representantes. Indica-se o módulo de v por |v|.

Qualquer ponto do espaço é representante do vetor zero (ou vetor nulo), que é indicado por 0.

A cada vetor não-nulo v corresponde um vetor oposto -v, que tem o mesmo módulo, a mesma direção, porém sentido contrário ao de v (Figura 1.1b).

Figura 1.1b

Um vetor v é unitário se |v| = 1.

Dois vetores u e v são colineares se tiverem a mesma direção. Em outras palavras: u e v são colineares se tiverem representantes AB e CD pertencentes a uma mesma reta ou a retas paralelas (Figura 1.1c).

Figura 1.1c

Se os vetores não-nulos u, v e w (o número de vetores não importa) possuem representantes AB, CD e EF pertencentes a um mesmo plano π (Figura 1.1d), diz-se que eles são coplanares.

3

Figura 1.1d

1.2 OPERAÇÕES COM VETORES

1.2.1 Adição de Vetores

Sejam os vetores u e v representados pelos segmentos orientados AB e BC, respectivamente (Figura 1.2a).

Figura 1.2a

Os pontos A e C determinam o vetor soma $\overrightarrow{AC} = u + v$.

1.2.1.1 Propriedades da adição

- I) Associativa: (u + v) + w = u + (v + w).
- II) Comutativa: u + v = v + u.
- III) Existe um só vetor nulo 0 tal que, para todo vetor v, se tem:

$$v + 0 = 0 + v = v$$

IV) Qualquer que seja o vetor v, existe um só vetor -v (vetor oposto de v) tal que:

$$v + (-v) = -v + v = 0$$

Observações

1) A diferença de dois vetores u e v quaisquer é o vetor u + (-v). Sejam os vetores u e v representados pelos segmentos orientados AB e AC, respectivamente. Construído o paralelogramo ABCD (Figura 1.2b), verifica-se que a soma u + v é representada pelo segmento orientado AD (uma das diagonais) e que a diferença u - v é representada pelo segmento orientado CB (a outra diagonal).

Figura 1.2b

- 2) Quando os vetores u e v estão aplicados no mesmo ponto, verifica-se que:
- a) a soma u + v (ou v + u) tem origem no referido ponto;
- b) a diferença u v tem origem na extremidade de v (e, por conseguinte, a diferença v u tem origem na extremidade de u).

1.2.2 Multiplicação de um Número Real por um Vetor

Dado um vetor $v \neq 0$ e um número real $k \neq 0$, chama-se produto do número real k pelo vetor v o vetor p = kv, tal que:

- a) $m\'{o}dulo: |p| = |kv| = |k||v|;$
- b) direção: a mesma de v;
- c) sentido: o mesmo de v se k > 0; e contrário ao de v se k < 0.

A Figura 1.2.2 mostra o vetor v e os correspondentes 2v e -3v.

Observações:

- 1) Se k = 0 ou v = 0, o vetor $kv \in 0$ vetor 0;
- 2) Se k = -1, o vetor (-1)v é o oposto de v, isto é, (-1)v = -v.

Figura 1.2.2

1.2.2.1 Propriedades da Multiplicação por um Número Real

Se u e v são vetores quaisquer e a e b números reais, temos:

I)
$$a(bu) = (ab) u$$

II)
$$(a + b) u = au + bu$$

III)
$$a(u + v) = au + av$$

$$IV) 1u = u$$

1.3 VETORES NO IR2

O conjunto

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) / x, y \in \mathbb{R}\}$$

é interpretado geometricamente como sendo o plano cartesiano xOy.

Qualquer vetor AB considerado neste plano tem sempre um representante (segmento orientado OP) cuja origem é a origem do sistema (Figura 1.3a).

Em nosso estudo consideraremos geralmente vetores representados por segmentos orientados com origem na origem do sistema. Nessas condições, cada vetor do plano é determinado pelo ponto extremo do segmento. Assim, o ponto P(x, y) individualiza o vetor $v = \overrightarrow{OP}$ (Figura 1.3b) e escreve-se:

$$v = (x, y)$$

identificando-se as coordenadas de P com as componentes de v.

Figura 1,3a

Figura 1.3b

A origem do sistema O(0, 0) representa o vetor nulo. O vetor oposto de v = (x, y) é o vetor -v = (-x, -y).

1.4 IGUALDADE E OPERAÇÕES

1.4.1 Igualdade

Dois vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$ são iguais se, e somente se, $x_1 = x_2$ e $y_1 = y_2$, e escreve-se u = v.

Exemplos:

- 1) Os vetores u = (3, 5) e v = (3, 5) são iguais.
- 2) Se o vetor u = (x + 1, 4) é igual ao vetor v = (5, 2y 6), de acordo com a definição de igualdade de vetores, x + 1 = 5 e 2y 6 = 4 ou x = 4 e y = 5. Assim, se u = v, então x = 4 e y = 5.

1,4.2 Operações

Sejam os vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$ e $a \in \mathbb{R}$. Define-se:

- a) $u + v = (x_1 + x_2, y_1 + y_2)$
- b) $au = (ax_1, ay_1)$

Portanto, para somar dois vetores, somam-se suas componentes correspondentes e, para multiplicar um vetor por um número, multiplica-se cada componente do vetor por este número.

Por exemplo, se u = (4, 1) e v = (2, 6), a Figura 1.4.2a mostra que:

$$u + v = (4, 1) + (2, 6) = (4 + 2, 1 + 6) = (6, 7)$$

e a Figura 1.4.2b mostra que:

$$2u = 2(4, 1) = (2(4), 2(1)) = (8, 2)$$

Figura 1.4.2a

Figura 1.4.2b

1.5 VETOR DEFINIDO POR DOIS PONTOS

Ocorre, às vezes, o caso de um vetor ser representado por um segmento orientado que não parte da origem do sistema. Consideremos o vetor \overrightarrow{AB} de origem no ponto $A(x_1, y_1)$ e extremidade $B(x_2, y_2)$ (Figura 1.5).

Figura 1.5

De acordo com o que foi visto no item 1.2.1.1 - (Observação 2), o vetor \overrightarrow{AB} é a diferença entre os vetores \overrightarrow{OB} e \overrightarrow{OA} :

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

e, portanto:

$$\overrightarrow{AB} = (x_2, y_2) - (x_1, y_1)$$

ou:

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$$

isto é, as componentes do vetor AB são obtidas pela diferença entre as coordenadas da extremidade B e as da origem A.

Por exemplo, se A(-1, 3) e B(2, -2), o vetor \overrightarrow{AB} será:

$$\overrightarrow{AB} = B - A = (2, -2) - (-1, 3) = (3, -5)$$

1.6 PRODUTO ESCALAR

1.6.1 Definição

Chama-se produto escalar (ou produto interno usual) de dois vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$, e se representa por $u \cdot v$, ao número real:

$$u, v = x_1 x_2 + y_1 y_2$$

O produto escalar de u por v também é indicado por $\langle u, v \rangle$ e se lê "u escalar v". Por exemplo, se u = (2, 3) e v = (4, -1), tem-se:

$$u \cdot v = 2(4) + 3(-1) = 8 - 3 = 5$$

1.6.2 Módulo de um Vetor

Módulo de um vetor v = (x, y), representado por |v|, é o número real não-negativo:

$$|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

ou, em coordenadas:

$$|v| = \sqrt{(x,y) \cdot (x,y)}$$

ou, ainda:

$$|\mathbf{v}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

Por exemplo, se v = (3, -4), então:

$$|v| = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

A partir de cada vetor $v \neq 0$ é possível obter um vetor unitário u fazendo $u = \frac{v}{|v|}$.

Por exemplo, é unitário o vetor:

$$u = \frac{(3, -4)}{|(3, -4)|} = \frac{(3, -4)}{\sqrt{3^2 + (-4)^2}} = \frac{(3, -4)}{\sqrt{9 + 16}} = \frac{(3, -4)}{\sqrt{25}} = \frac{(3, -4)}{5} = (\frac{3}{5}, -\frac{4}{5})$$

Observação: Dado um vetor \overrightarrow{AB} com extremidades nos pontos $A(x_1, y_1)$ e $B(x_2, y_2)$, o módulo desse vetor será:

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Assinale-se que a distância entre os pontos A e B é calculada pela mesma fórmula.

1.6.3 Propriedades do Produto Escalar

Dados os vetores u, v e w quaisquer e k ∈ IR, tem-se:

- I) $u \cdot u \ge 0$ e $u \cdot u = 0$ se, e somente se, u = 0 = (0, 0)
- II) $u \cdot v = v \cdot u$ (comutativa)
- III) $u \cdot (v + w) = u \cdot v + u \cdot w$ (distributiva em relação à adição de vetores)
- IV) (mu) . v = m(u . v) = u . (mv)
- $V) u \cdot u = |u|^2$

Observações: Como consequência das propriedades do produto escalar, vem:

1)
$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + 2\mathbf{u} \cdot \mathbf{v} + |\mathbf{v}|^2$$

Com efeito:

$$|u+v|^2 = (u+v) \cdot (u+v) = u \cdot (u+v) + v \cdot (u+v)$$

 $|u+v|^2 = u \cdot u + u \cdot v + v \cdot u + v \cdot v$
 $|u+v|^2 = |u|^2 + 2u \cdot v + |v|^2$

2) De modo análogo, mostra-se que:

$$|u-v|^2 = |u|^2 - 2u \cdot v + |v|^2$$

1.7 ÂNGULO DE DOIS VETORES

O ângulo de dois vetores u = OA e v = OB, não-nulos (Figura 1.7a), é o ângulo θ formado pelas semi-retas OA e OB (Figura 1.7b) e tal que $0 \le \theta \le \pi$.

Figura 1.7a

Figura 1.7b

1,7.1 Cálculo do Ángulo de Dois Vetores

Sejam os vetores $u \neq 0$ e $v \neq 0$. O ângulo θ formado por u e v pode ser calculado pela fórmula:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Figura 1.7.1

Com efeito, aplicando a lei dos co-senos ao triângulo ABC da Figura 1.7.1, vem:

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|||\mathbf{v}||\cos\theta$$
 (1)

Mas, de acordo com o item 1.6.3 (Observação 2), pode-se escrever:

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 - 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||^2$$
 (2)

Comparando as igualdades (2) e (1):

$$||\mathbf{u}||^2 - 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|||\mathbf{v}||\cos\theta$$

logo:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

e:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \tag{1.7.1}$$

Uma vez calculado o $\cos\theta$, o ângulo θ é encontrado numa tabela de co-senos.

Por exemplo, se u = (-2, -2) e v = (0, -2), o ângulo θ pode ser calculado por intermédio da Fórmula (1.7.1):

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{(-2, -2) \cdot (0, -2)}{\sqrt{(-2)^2 + (-2)^2} \times \sqrt{0^2 + (-2)^2}}$$

$$\cos\theta = \frac{0+4}{\sqrt{4+4} \times \sqrt{0+4}} = \frac{4}{\sqrt{8} \times \sqrt{4}} = \frac{4}{2\sqrt{2} \times 2}$$

$$\cos\theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\theta = \arccos \frac{\sqrt{2}}{2}$$

$$\theta = 45^{\circ}$$

1.8 PARALELISMO E ORTOGONALIDADE DE DOIS VETORES

a) Se dois vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$ são paralelos (ou colineares), existe um número k tal que:

$$u = kv$$

ou:

$$(x_1, y_1) = k(x_2, y_2)$$

o que implica:

$$\frac{X_1}{X_2} = \frac{y_1}{y_2} = k$$

isto é, dois vetores u e v são paralelos quando suas componentes são proporcionais. Representase por u // v dois vetores u e v paralelos.

Por exemplo, os vetores u = (-2, 3) e v = (-4, 6) são paralelos, pois:

$$\frac{-2}{-4} = \frac{3}{6}$$

ou seja:

$$u = \frac{1}{2}v$$

b) Se dois vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$ são ortogonais, o ângulo θ por eles formado é de 90°, e, portanto, $\cos \theta = \cos 90^\circ = 0$, o que implica, pela Fórmula (1.7.1):

$$u \cdot v = 0$$

ou.

$$x_1 x_2 + y_1 y_2 = 0$$

isto é, dois vetores u e v são ortogonais quando o produto escalar deles é nulo. Representa-se por u I v dois vetores u e v ortogonais.

Por exemplo, os vetores u = (2, 3) e v = (-3, 2) são ortogonais, pois:

$$u \cdot v = 2(-3) + 3(2) = -6 + 6 = 0$$

1.9 VETORES NO IR3

O conjunto

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) / x, y, z \in \mathbb{R}\}$$

é interpretado geometricamente como sendo o espaço cartesiano tridimensional Oxyz.

Da mesma forma como fizemos para o plano, consideraremos geralmente vetores representados por segmentos orientados com a origem na origem do sistema. Nessas condições, cada vetor do espaço é determinado pelo ponto extremo do segmento. Assim, o ponto P(x, y, z) individualiza o vetor $v = \overrightarrow{OP}$ (Figura 1.9) e escreve-se:

$$\mathbf{v} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$

identificando-se as coordenadas de P com as componentes de v.

A origem do sistema O(0,0,0) representa o vetor nulo.

O vetor oposto de v = (x, y, z) é o vetor -v = (-x, -y, -z).

De forma análoga à que tivemos no plano, teremos no espaço:

- I) Dois vetores $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$ são iguais se, e somente se, $x_1 = x_2$, $y_1 = y_2$ e $z_1 = z_2$.
- II) Dados os vetores $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$ e $a \in \mathbb{R}$, define-se:

$$u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

 $au = (ax_1, ay_1, az_1)$

- III) Se $A(x_1, y_1, z_1)$ e $B(x_2, y_2, z_2)$ são dois pontos quaisquer no espaço, então: $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$
- IV) O produto escalar dos vetores $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$ é o número real: $u \cdot v = x_1 x_2 + y_1 y_2 + z_1 z_2$
- V) O módulo do vetor v = (x, y, z) é dado por:

$$|\mathbf{v}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2}$$

VI) se u e v são vetores não-nulos e θ é o ângulo formado por eles, então:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

- VII) Para $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$, tem-se:
 - a) u // v se, e somente se, $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$;
 - b) u i v se, e somente se, $x_1x_2 + y_1y_2 + z_1z_2 = 0$.

CAPÍTULO

ESPAÇOS VETORIAIS

2.1 INTRODUÇÃO

Sabe-se que o conjunto:

$$\mathbb{R}^2 = \{ (x, y) / x, y \in \mathbb{R} \}$$

é interpretado geometricamente como sendo o plano cartesiano. Um par (x, y) pode ser encarado como um ponto (Figura 2.1a) e, nesse caso, x e y são coordenadas, ou pode ser encarado como um vetor (Figura 2.1b) e, nesse caso, x e y são componentes (ou coordenadas).

Essa mesma idéia, em relação ao plano, estende-se para o espaço tridimensional que é a interpretação geométrica do conjunto \mathbb{R}^3 . Embora se perca a visão geométrica de espaços com dimensão acima de 3, é possível estender essa idéia a espaços como \mathbb{R}^4 , \mathbb{R}^5 , ..., \mathbb{R}^n . Assim,

Figura 2.1a

Figura 2.1b

quádruplas de números (x_1, x_2, x_3, x_4) podem ser vistas como pontos ou vetores no espaço \mathbb{R}^4 de quarta dimensão. A quíntupla (2, -1, 3, 5, 4) será interpretada como um ponto ou um vetor no espaço \mathbb{R}^5 de dimensão cinco. Então, o espaço de dimensão n (ou espaço n-dimensional) será constituído pelo conjunto de todas as n-uplas ordenadas e representado por \mathbb{R}^n , isto é:

$$\mathbb{R}^{n} = \{ (x_{1}, x_{2}, ..., x_{n}); x_{i} \in \mathbb{R} \}$$

A maneira de se trabalhar nesses espaços é idêntica àquela vista em \mathbb{R}^2 e em \mathbb{R}^3 . Por exemplo, se:

$$u = (x_1, x_2, ..., x_n)$$
 e $v = (y_1, y_2, ..., y_n)$

são vetores no IRⁿ e α um escalar, define-se:

a)
$$u = v$$
 se, e somente se, $x_1 = y_1, x_2 = y_2, ..., x_n = y_n$.

b)
$$u + v = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n).$$

c)
$$\alpha u = (\alpha x_1, \alpha x_2, ..., \alpha x_n).$$

d)
$$u \cdot v = x_1 y_1 + x_2 y_2 + ... + x_n y_n$$
.

e)
$$|u| = \sqrt{u \cdot u} = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$$
.

Desde já é bom observar que o vetor $u = (x_1, x_2, ..., x_n)$ aparecerá, às vezes, com a notação matricial (matriz-coluna $n \times 1$):

$$\mathbf{u} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

e é fácil ver que u + v e αu na notação matricial são os vetores:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

$$\alpha \mathbf{u} = \alpha \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \alpha \mathbf{x}_1 \\ \alpha \mathbf{x}_2 \\ \vdots \\ \alpha \mathbf{x}_n \end{bmatrix}$$

Vamos agora transmitir uma idéia nova. Para tanto, consideremos dois conjuntos: o \mathbb{R}^n e o conjunto das matrizes reais de ordem $m \times n$, representado por M(m,n). Como nesses conjuntos estão definidas as operações de adição e multiplicação por escalar, constata-se a existência de uma série de propriedades comuns a seguir enumeradas.

Se $u, v, w \in \mathbb{R}^n$, se $\alpha, \beta \in \mathbb{R}$ e se A, B, C $\in M(m, n)$, podemos verificar que:

a) Em relação à adição valem as propriedades:

i)
$$(u+v)+w=u+(v+w)$$
 e
 $(A+B)+C=A+(B+C)$ (associatividade da adição)

2)
$$u + v = v + u$$
 e
 $A + B = B + A$ (comutatividade da adição)

3) Existe um só elemento em IRⁿ e um só em M(m, n) indicado por 0 e tal que:

$$u + 0 = u$$
 e
 $A + 0 = A$ (existência do elemento neutro)

O elemento 0, nesse caso, será o vetor $0 = (0, 0, ..., 0) \in \mathbb{R}^n$, na primeira igualdade, e a matriz nula:

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix} \in \mathbf{M}(m, n)$$

na segunda igualdade.

4) Para cada vetor $u \in \mathbb{R}^n$ e para cada matriz $A \in M(m,n)$ existe um só vetor $-u \in \mathbb{R}^n$ e uma só matriz $-A \in M(m,n)$ tais que

$$\mathbf{u} + (-\mathbf{u}) = 0 \quad \mathbf{e}$$

$$\mathbf{A} + (-\mathbf{A}) = 0$$

(existência do elemento simétrico)

Por exemplo, se tivermos $u = (x_1, x_2, ..., x_n)$, então o vetor simétrico é $-u = (-x_1, -x_2, ..., -x_n)$, e, caso semelhante, para a matriz A e sua correspondente simétrica – A.

b) Em relação à multiplicação por escalar valem as propriedades:

1)
$$(\alpha \beta) u = \alpha (\beta u) e$$

 $(\alpha \beta) A = \alpha (\beta A)$

2)
$$(\alpha + \beta) u = \alpha u + \beta u e$$

 $(\alpha + \beta) A = \alpha A + \beta A$

3)
$$\alpha (u + v) = \alpha u + \alpha v + e$$

 $\alpha (A + B) = \alpha A + \alpha B$

4)
$$1u = u e$$

 $1A = A$

Conforme acabamos de ver, os conjuntos IRⁿ e M (m, n), munidos desse par de operações, apresentam uma "estrutura" comum em relação a essas operações. Esse fato não só vale para esses dois conjuntos com essas operações mas para muitos outros, razão porque vamos estudá-los simultaneamente. Esses conjuntos serão chamados espaços vetoriais.

2.2 ESPAÇOS VETORIAIS

Seja um conjunto V, não-vazio, sobre o qual estão definidas as operações adição e multiplicação por escalar, isto é:

$$\forall u, v \in V, u + v \in V$$

 $\forall \alpha \in \mathbb{R}, \ \forall u \in V, \ \alpha u \in V$

O conjunto V com essas duas operações é chamado espaço vetorial real (ou espaço vetorial sobre IR) se forem verificados os seguintes axiomas:

A) Em relação à adição:

$$A_1$$
) $(u+v)+w=u+(v+w)$, $\forall u, v, w \in V$

$$A_2$$
) $u+v=v+u$, $\forall u, v \in V$

$$A_3$$
) $\exists 0 \in V$, $\forall u \in V$, $u + 0 = u$

$$A_4$$
) $\forall u \in V, \exists (-u) \in V, u + (-u) = 0$

- M) Em relação à multiplicação por escalar:
 - M_1) $(\alpha\beta) u = \alpha(\beta u)$

$$M_2$$
) $(\alpha + \beta) u = \alpha u + \beta u$

$$M_3$$
) $\alpha(u+v) = \alpha u + \alpha v$

$$M_4$$
) $lu = u$

para $\forall u, v \in V \ e \ \forall \alpha, \beta \in \mathbb{R}$.

Observações

- 1) Os elementos do espaço vetorial V serão chamados vetores, independentemente de sua natureza. Pode parecer estranho, e à primeira vista não deixa de ser, o fato de se chamar de vetores os polinômios (quando V for constituído de polinômios), as matrizes (quando V for constituído por matrizes) os números (quando V for um conjunto numérico), e assim por diante. A justificativa está no fato de as operações de adição e multiplicação por escalar realizadas com esses elementos de natureza tão distinta se comportarem de forma idêntica, como se estivéssemos trabalhando com os próprios vetores do \mathbb{R}^2 ou do \mathbb{R}^3 . Assim, a familiaridade que temos com os vetores do \mathbb{R}^2 e do \mathbb{R}^3 terá continuidade nesses conjuntos, chamando seus elementos também de vetores.
- 2) Se na definição acima tivéssemos tomado para escalares o conjunto C dos números complexos, V seria um espaço vetorial complexo. Daqui por diante, salvo referência expressa em contrário, serão considerados somente espaços vetoriais reais. Assim, quando se disser que V é um espaço vetorial, deve ficar subentendido que V é um espaço vetorial sobre o conjunto IR, dos números reais.

Exemplos

1) O conjunto $V = \mathbb{R}^2 = \{(x, y)/x, y \in \mathbb{R}\}$ é um espaço vetorial com as operações de adição e multiplicação por um número real assim definidas:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $\alpha(x, y) = (\alpha x, \alpha y)$

Essas são as operações usuais de adição e multiplicação por escalar.

Para verificarmos os oito axiomas de espaço vetorial, consideremos $u = (x_1, y_1), v = (x_2, y_2)$ e $w = (x_3, y_3)$. Tem-se:

A₁)
$$(u + v) + w = ((x_1, y_1) + (x_2, y_2)) + (x_3, y_3)$$

 $(u + v) + w = ((x_1 + x_2, y_1 + y_2)) + (x_3, y_3)$
 $(u + v) + w = ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3)$
 $(u + v) + w = (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3))$
 $(u + v) + w = (x_1, y_1) + (x_2 + x_3, y_2 + y_3)$
 $(u + v) + w = (x_1, y_1) + ((x_2, y_2) + (x_3, y_3))$
 $(u + v) + w = u + (v + w)$

A₂)
$$u + v = (x_1, y_1) + (x_2, y_2)$$

 $u + v = (x_1 + x_2, y_1 + y_2)$
 $u + v = (x_2 + x_1, y_2 + y_1)$
 $u + v = (x_2, y_2) + (x_1, y_1)$
 $u + v = v + u$

A₃)
$$\exists 0 = (0,0) \in \mathbb{R}^2$$
, $\forall u \in \mathbb{R}^2$, $u + 0 = (x_1, y_1) + (0,0)$
 $u + 0 = (x_1 + 0, y_1 + 0)$
 $u + 0 = (x_1, y_1)$
 $u + 0 = u$

A₄)
$$\forall u = (x_1, y_1) \in \mathbb{R}^2$$
, $\exists (-u) = (-x_1, -y_1) \in \mathbb{R}^2$,
 $u + (-v) = (x_1, y_1) + (-x_1, -y_1)$
 $u + (-u) = (x_1 - x_1, y_1 - y_1)$
 $u + (-u) = (0, 0) = 0$

$$M_1) \quad (\alpha\beta) \ \mathbf{u} = (\alpha\beta) \ (\mathbf{x}_1, \mathbf{y}_1) = ((\alpha\beta) \ \mathbf{x}_1, (\alpha\beta) \ \mathbf{y}_1) = (\alpha(\beta \mathbf{x}_1), \alpha(\beta \mathbf{y}_1))$$

$$(\alpha\beta) \ \mathbf{u} = \alpha(\beta \mathbf{x}_1, \beta \mathbf{y}_1) = \alpha(\beta(\mathbf{x}_1, \mathbf{y}_1))$$

$$(\alpha\beta) \ \mathbf{u} = \alpha(\beta\mathbf{u})$$

$$M_{2}) \quad (\alpha + \beta) u = (\alpha + \beta) (x_{1}, y_{1}) = ((\alpha + \beta) x_{1}, (\alpha + \beta) y_{1}) = (\alpha x_{1} + \beta x_{1}, \alpha y_{1} + \beta y_{1})$$

$$(\alpha + \beta) u = (\alpha x_{1}, \alpha y_{1}) + (\beta x_{1}, \beta y_{1}) = \alpha (x_{1}, y_{1}) + \beta (x_{1}, y_{1})$$

$$(\alpha + \beta) u = \alpha u + \beta u$$

$$M_3) \quad \alpha(u+v) = \alpha((x_1, y_1) + (x_2, y_2)) = \alpha(x_1 + x_2, y_1 + y_2) = (\alpha(x_1 + x_2), \alpha(y_1 + y_2))$$

$$\alpha(u+v) = (\alpha x_1 + \alpha x_2, \alpha y_1 + \alpha y_2) = (\alpha x_1, \alpha y_1) + (\alpha x_2, \alpha y_2)$$

$$\alpha(u+v) = \alpha(x_1, y_1) + \alpha(x_2, y_2) = \alpha u + \alpha v$$

$$M_4$$
) $1u = 1(x_1, y_1) = (1x_1, 1y_1) = (x_1, y_1)$
 $1u = u$

- 2) Os conjuntos \mathbb{R}^3 , \mathbb{R}^4 , ..., \mathbb{R}^n são espaços vetoriais com as operações de adição e multiplicação por escalar usuais. Depois de verificados os oito axiomas de espaço vetorial para o \mathbb{R}^2 , os mesmos ficam também evidentes nos conjuntos acima citados.
- 3) O conjunto IR em relação às operações usuais de adição e multiplicação por escalar. Os vetores, nesse caso, são números reais, e sabe-se que a adição de números reais verifica as propriedades A_1 , A_2 , A_3 e A_4 da definição de espaço vetorial. Assim, também, o produto de reais é um número real, e a operação multiplicação satisfaz os axiomas M_1 , M_2 , M_3 e M_4 .
- 4) O conjunto M(m, n) das matrizes $m \times n$ com as operações adição e multiplicação por escalar usuais.

Em particular, o conjunto M(n, n) das matrizes quadradas, de ordem n, é um espaço vetorial relativamente às mesmas operações.

5) O conjunto

$$P_n = \{a_0 + a_1 x + a_2 x^2 + ... + a_n x^n; a_i \in \mathbb{R} \}$$

dos polinômios com coeficientes reais de grau ≤n, mais o polinômio nulo, em relação às operações usuais de adição de polinômios e multiplicação por escalar.

Em particular, o conjunto

$$P_2 = \{ a_0 + a_1 x + a_2 x^2; a_i \in \mathbb{R} \}$$

é um espaço vetorial relativamente às mesmas operações.

6) O conjunto

$$V = \{f : \mathbb{R} \longrightarrow \mathbb{R} \}$$

das funções reais definidas em toda reta. Se f, $g \in V$ e $\alpha \in \mathbb{R}$, define-se:

$$f + g : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto (f + g)(x) = f(x) + g(x)$$

e:

$$\alpha f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto (\alpha f)(x) = \alpha f(x)$$

7) O conjunto

$$V = \{(x, x^2)/x \in \mathbb{R}\}$$

com as operações definidas por:

$$(x_1, x_1^2)$$
 (+) $(x_2, x_2^2) = (x_1 + x_2, (x_1 + x_2)^2)$

$$\alpha \bigcirc (x, x^2) = (\alpha x, \alpha^2 x^2)$$

é um espaço vetorial sobre R.

Os símbolos (+) e (-) são utilizados para indicar que a adição e a multiplicação por escalar não são as usuais.

8) O conjunto

$$V = \{ (x, y)/x, y > 0 \}$$

é um espaço vetorial com as operações adição e multiplicação por escalar definidas assim:

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 \times x_2, y_1 \times y_2)$$

$$\alpha \bigcirc (x, y) = (x^{\alpha}, y^{\alpha})$$

O trabalho de testar os oito axiomas de espaço vetorial é um ótimo exercício para o leitor, o qual observará, por exemplo, que o elemento neutro da adição \bigoplus (axioma A_3) é o vetor (1,1) e que o elemento simétrico (axioma A_4) de cada vetor $(x,y) \in V$ é o vetor $(\frac{1}{x},\frac{1}{v}) \in V$.

9) Seja o conjunto:

$$\mathbb{R}^2 = \{ (a, b)/a, b \in \mathbb{R} \}$$

Vamos mostrar que o conjunto \mathbb{R}^2 não é um espaço vetorial em relação às operações assim definidas:

$$(a, b) + (c, d) = (a + c, b + d)$$

 $k(a, b) = (ka, b)$

Ora, como a adição aqui definida é a usual, verificam-se os axiomas A_1 , A_2 , A_3 e A_4 de espaço vetorial, conforme vimos no exemplo 1. Logo, devem falhar algum ou alguns dos axiomas relativos à multiplicação. Vamos testá-los.

Consideremos:

$$u = (x_1, y_1), v = (x_2, y_2)$$
 e $\alpha, \beta \in \mathbb{R}$

Temos, então;

$$\begin{aligned} M_1) & (\alpha \beta) \ u = (\alpha \beta) \ (x_1, y_1) = ((\alpha \beta) \ x_1, y_1) = (\alpha \ (\beta x_1), y_1) = \alpha \ (\beta x_1, y_1) \\ (\alpha \beta) \ u = \alpha \ (\beta \ (x_1, y_1)) = \alpha \ (\beta u) \end{aligned}$$

(Este axioma se verifica.)

M₂)
$$(\alpha + \beta) u = (\alpha + \beta) (x_1, y_1) = ((\alpha + \beta) x_1, y_1) = (\alpha x_1 + \beta x_1, y_1)$$

 $\alpha u + \beta u = \alpha (x_1, y_1) + \beta (x_1, y_1) = (\alpha x_1, y_1) + (\beta x_1, y_1) = (\alpha x_1 + \beta x_1, 2y_1)$

Como se vê:

$$(\alpha + \beta) \mathbf{u} \neq \alpha \mathbf{u} + \beta \mathbf{u}$$

e, portanto, não se verifica o axioma M_2 , o que comprova $n\tilde{ao}$ ser um espaço vetorial o conjunto de que trata esse exemplo.

2.3 PROPRIEDADES DOS ESPAÇOS VETORIAIS

Da definição de espaço vetorial V decorrem as seguintes propriedades:

- I) Existe um único vetor nulo em V (elemento neutro da adição).
- II) Cada vetor $u \in V$ admite apenas um simétrico $(-u) \in V$.
- III) Para quaisquer $u, v, w \in V$, se u + w = v + w, então u = v.
- IV) Qualquer que seja v∈ V, tem-se:

$$_{-}(-\mathbf{v})=\mathbf{v}$$

isto é, o oposto de -v é v.

V) Quaisquer que sejam $u, v \in V$, existe um e somente um $x \in V$ tal que:

$$u + x = v$$

Esse vetor x será representado por:

$$x = v - u$$

VI) Qualquer que seja v ∈ V, tem-se:

$$0\mathbf{v} = 0$$

Naturalmente, o primeiro zero é o número real zero, e o segundo é o vetor $0 \in V$.

VII) Qualquer que seja $\lambda \in \mathbb{R}$, tem-se:

$$\lambda 0 = 0$$

- VIII) $\lambda v = 0$ implies $\lambda = 0$ ou v = 0.
 - IX) Qualquer que seja $v \in V$, tem-se:

$$(-1) v = -v$$

X) Quaisquer que sejam $v \in V$ e $\lambda \in \mathbb{R}$, tem-se:

$$(-\lambda) v = \lambda (-v) = -(\lambda v)$$

2.4 SUBESPAÇOS VETORIAIS

Sejam V um espaço vetorial e S um subconjunto não-vazio de V. O subconjunto S é um subespaço vetorial de V se S é um espaço vetorial em relação à adição e à multiplicação por escalar definidas em V.

Para mostrar que um subconjunto S é um subespaço vetorial de V, deveríamos testar os oito axiomas de espaço vetorial relativos à adição e à multiplicação por escalar. No entanto, como S é parte de V, que já se sabe ser um espaço vetorial, não há necessidade da verificação de certos axiomas em S. Por exemplo, o axioma A_2 diz que u + v = v + u, $\forall u, v \in V$. Ora, se a comutatividade da adição é válida para todos os vetores de V, ela valerá, consequentemente, para todos os vetores de S. Existem outros axiomas de espaço vetorial merecedores de comentário idêntico. O teorema seguinte estabelece as condições para que um subconjunto S de um espaço vetorial V seja um subespaço vetorial de V.

2.4.1 Teorema

Um subconjunto S, não-vazio, de um espaço vetorial V é um subespaço vetorial de V se estiverem satisfeitas as condições:

I) Para quaisquer $u, v \in S$, tem-se:

$$u + v \in S$$

II) Para quaisquer $\alpha \in \mathbb{R}$, $u \in S$, tem-se:

$$\alpha u \in S$$

Vamos mostrar que sendo válidas essas duas condições em S, os oito axiomas de espaço vetorial também se verificam em S.

De fato:

Seja u um vetor qualquer de S. Pela condição II, $\alpha u \in S$ para todo $\alpha \in \mathbb{R}$. Fazendo $\alpha = 0$, vem $0u \in S$, ou seja, $0 \in S$ (axioma A_3). Fazendo $\alpha = -1$, segue $(-1)u = -u \in S$ (axioma A_4).

Os demais axiomas A_1 , A_2 , M_1 , M_2 , M_3 e M_4 de espaço vetorial são verificados em S pelo fato de ser S um subconjunto não-vazio de V.

Observação

Todo espaço vetorial V admite pelo menos dois subespaços: o conjunto {0}, chamado subespaço zero ou subespaço nulo, e o próprio espaço vetorial V. Esses dois são os subespaços triviais de V. Os demais subespaços são denominados subespaços próprios de V.

Por exemplo, os subespaços triviais de $V = \mathbb{R}^3$ são $\{(0,0,0)\}$ (verificar as condições I e II do teorema 2.4.1) e o próprio \mathbb{R}^3 . Os subespaços próprios do \mathbb{R}^3 são as retas e os planos que passam pela origem.

Para $V = \mathbb{R}^2$, os subespaços triviais são: $\{(0,0)\}$ e \mathbb{R}^2 , enquanto os subespaços próprios são as retas que passam pela origem.

Exemplos

1) Sejam $V = \mathbb{R}^2$ e $S = \{(x, y) \in \mathbb{R}^2 | y = 2x\}$ ou $S = \{(x, 2x); x \in \mathbb{R}\}$, isto é, S é o conjunto dos vetores do plano que têm a segunda componente igual ao dobro da primeira.

Evidentemente, $S \neq \phi$, pois $(0, 0) \in S$.

Verifiquemos as condições le II.

Para $u = (x_1, 2x_1) \in S$ e $v = (x_2, 2x_2) \in S$, tem-se:

- I) $u + v = (x_1 + x_2, 2x_1 + 2x_2) = (x_1 + x_2, 2(x_1 + x_2)) \in S$, pois a segunda componente de u + v é igual ao dobro da primeira.
- II) $\alpha u = \alpha(x_1, 2x_1) = (\alpha x_1, 2(\alpha x_1)) \in S$, pois a segunda componente de αu é igual ao dobro da primeira.

Portanto, S é um subespaço vetorial de \mathbb{R}^2 .

Esse subespaço S representa geometricamente uma reta que passa pela origem (Figura 2,4.1a).

Observemos que ao tomarmos dois vetores u e v da reta, o vetor soma u + v ainda é da reta. E se multiplicarmos um vetor u da reta por um número real α , o vetor αu ainda estará na reta.

Figura 2.4.1a

O mesmo não ocorre quando a reta não passa pela origem. Por exemplo, a reta:

$$S = \{ (x, 4 - 2x); x \in \mathbb{R} \}$$

não é um subespaço vetorial do \mathbb{R}^2 . Se escolhermos os vetores u=(1,2) e v=(2,0) de S, temos $u+v=(3,2)\not\in S$ (Figura 2.4.1b).

Figura 2.4.1b

Observemos ainda que $\alpha u \notin S$, para $\alpha \neq 1$.

Os exemplos destas duas últimas retas sugerem, para qualquer subconjunto S de um espaço vetorial V, que: sempre que $0 \notin S$, S $n \tilde{a}o$ é subespaço de V. Aliás, esse fato é sempre útil para detectar, muitas vezes de imediato, que um subconjunto S $n \tilde{a}o$ é subespaço vetorial. No entanto, n $\tilde{a}o$ nos enganemos pensando que, se $0 \in S$, S é subespaço, pois podemos ter $0 \in S$ sem que S seja subespaço. É o caso do subconjunto

$$S = \{(x; |x|); x \in \mathbb{R}\} \subset \mathbb{R}^2$$

Observemos que $(0,0) \in S$ e que, se tomarmos os vetores u = (3,3) e v = (-2,2) de S, teremos $u + v = (1,5) \notin S$ (Figura 2.4.1c).

Figura 2.4.1c

Observemos ainda que $\alpha u \notin S$, $\alpha < 0$.

Observação

Nos exemplos trabalharemos somente com conjuntos não-vazios, ficando dispensada a necessidade de mostrar que o conjunto é não-vazio.

2) Sejam
$$V = \mathbb{R}^3$$
 e

$$S = \{(x, y, z) / \in \mathbb{R}^3 / ax + by + cz = 0\}$$

Nesse caso:

$$u = (x_1, y_1, z_1) \in S$$
 implica $ax_1 + by_1 + cz_1 = 0$

$$v = (x_2, y_2, z_2) \in S$$
 implica $ax_2 + by_2 + cz_2 = 0$

I) Somando essas igualdades, resulta:

$$a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2) = 0$$

e essa igualdade mostra que:

$$u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in S$$

pois as coordenadas de u + v satisfazem a equação

$$ax + by + cz = 0$$

Por outro lado,

$$\alpha u = (\alpha x_1, \alpha y_1, \alpha z_1) \in S$$

pois, se:

$$ax_1 + by_1 + cz_1 = 0,$$

então:

$$\alpha(ax_1 + by_1 + cz_1) = \alpha 0$$

ou:

$$a(\alpha x_1) + b(\alpha y_1) + c(\alpha z_1) = 0$$

o que vem mostrar que as coordenadas de αu satisfazem a equação ax + by + cz = 0. Logo, S é um subespaço vetorial de \mathbb{R}^3 . Esse subespaço S representa um plano qualquer passando pela origem no \mathbb{R}^3 . 3) Sejam $V = IR^4$

e

$$S = \{(x, y, z, 0); x, y, z \in \mathbb{R}\}\$$

isto é, S é o conjunto dos vetores de R4 que têm a quarta componente nula.

Verifiquemos as condições I e II de subespaço.

Para $u = (x_1, y_1, z_1, 0) \in S$ e $v = (x_2, y_2, z_2, 0) \in S$, tem-se:

- I) $u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2, 0) \in S$, pois a quarta componente de u + v é nula.
- II) αu = (αx₁, αy₁, αz₁, 0) ∈ S, pois a quarta componente de αu é nula.
 Logo, S é um subespaço vetorial de ℝ⁴.
- 4) Sejam

$$V = M(2, 2) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{R} \right\}$$

e

$$S = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

isto é, S é o conjunto das matrizes quadradas, de ordem 2, cujos elementos da segunda linha são nulos.

Para quaisquer

$$\mathbf{u} = \begin{bmatrix} \mathbf{a_1} & \mathbf{b_1} \\ & & \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbf{S}, \quad \mathbf{v} = \begin{bmatrix} \mathbf{a_2} & \mathbf{b_2} \\ & & \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbf{S} \quad \mathbf{e} \quad \alpha \in \mathbf{IR}$$

tem-se;

I)
$$u + v \in S$$

II)
$$\alpha u \in S$$

Logo, S é um subespaço vetorial de M(2, 2).

Observação

É interessante observar que se tivéssemos considerado $V = \mathbb{R}^4$ e $S = \{(a,b,0,0); a,b \in \mathbb{R}\},$

o raciocínio seria idêntico ao que foi feito para as matrizes acima.

5) Sejam V = M(n, n), B uma matriz fixa de V e

$$S = \{ A \in M(n, n)/AB = 0 \}$$

isto é, S é o conjunto das matrizes que, multiplicadas à esquerda por B, têm como resultado a matriz nula.

Então:

$$A_1 \in S$$
 implies $A_1B = 0$

$$A_2 \in S$$
 implies $A_2B = 0$

I) Somando essas igualdades, vem:

$$\mathbf{A}_1 \mathbf{B} + \mathbf{A}_2 \mathbf{B} = \mathbf{0}$$

ou:

$$(\mathbf{A_1} + \mathbf{A_2}) \mathbf{B} = \mathbf{0}$$

e, portanto:

$$A_1 + A_2 \in S$$

II) Multiplicando por α real a primeira igualdade, vern:

$$\alpha(A, B) = \alpha 0$$

ou:

$$(\alpha A_1)B=0$$

e, portanto:

$$\alpha A_1 \in S$$
.

Logo, S é um subespaço vetorial de M(2, 2).

6) Sejam
$$V = M(3, 1)$$
 e

S o conjunto-solução de um sistema linear homogêneo a três variáveis.

Consideremos o sistema homogêneo

$$\begin{cases} 3x + 4y - 2z = 0 \\ 2x + y - z = 0 \\ x - y + 3z = 0 \end{cases}$$

Fazendo:

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & -1 \\ 1 & -1 & 3 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} \qquad \mathbf{e} \quad \mathbf{0} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

o sistema, em notação matricial, será dado por AX = 0, sendo X elemento do conjunto-solução S.

Se

$$\mathbf{u} = \mathbf{X}_1 = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \\ \mathbf{z}_1 \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{v} = \mathbf{X}_2 = \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \\ \mathbf{z}_2 \end{bmatrix}$$

são soluções do sistema, então:

$$AX_1 = 0 \quad e \quad AX_2 = 0$$

I) Somando essas igualdades, vem:

$$AX_1 + AX_2 = 0$$

ou:

$$\mathbf{A}(\mathbf{X_1} + \mathbf{X_2}) = \mathbf{0}$$

o que implica

$$X_1 + X_2 \in S$$

isto é, a soma de duas soluções é ainda uma solução do sistema.

II) Multiplicando por α real a primeira igualdade, vem:

$$\alpha(AX_1) = \alpha 0$$

ou:

$$A(\alpha X_1) = 0$$

o que implica

$$\alpha X_1 \in S$$

isto é, o produto de uma constante por uma solução é ainda uma solução.

Logo, o conjunto-solução S do sistema linear homogêneo é um subespaço vetorial de M(3, 1).

Observações

1) Esse conjunto-solução S pode também ser considerado subespaço de \mathbb{R}^3 , pois um vetor $(x, y, z) \in \mathbb{R}^3$ tem notação matricial:

y

Z

- 2) Esse subespaço S é também chamado espaço-solução do sistema AX = 0.
- 3) Se tivermos um sistema homogêneo de m equações lineares com n variáveis, o espaço-solução será um subespaço de \mathbb{R}^n .
- 4) Se um sistema linear é não-homogêneo, o seu conjunto-solução S não é um subespaço vetorial (verificação a cargo do leitor).
- 7) Sejam $V = \mathbb{R}^2$

e

$$S = \{(x, y); x > 0\}$$

isto é, S é o conjunto dos vetores de \mathbb{R}^2 cuja primeira componente é positiva.

Sendo

$$u = (x_1, y_1), x_1 > 0, \epsilon$$

$$v = (x_2, y_2), x_2 > 0$$

vetores quaisquer do S, temos:

- I) $u + v = (x_1 + x_2, y_1 + y_2) \in S$ pois $x_1 + x_2 > 0$, isto é, a soma de dois vetores com a primeira componente positiva é um vetor cuja primeira componente é também positiva.
- II) αu = (αx₁, αy₁) ∉ S quando α ≤ 0, isto é, nem sempre o produto de um vetor com a primeira componente positiva por um número real α resulta um vetor cuja primeira componente é positiva. Por exemplo, u = (3, -4) ∈ S e -2(3, -4) = (-6, 8) ∉ S. Logo, S não é subespaço de R².

Para chegar a essa conclusão poderíamos ter usado o fato de que (0,0) ∉ S (imediata).

2.4.2 Interseção de dois Subespaços Vetoriais

Sejam S_1 e S_2 dois subespaços vetoriais de V. A interseção S de S_1 e S_2 , que se representa por $S = S_1 \cap S_2$, é o conjunto de todos os vetores $v \in V$ tais que $v \in S_1$ e $v \in S_2$.

2.4.2.1 Teorema

A interseção S de dois subespaços vetoriais S_1 e S_2 de V é um subespaço vetorial de V. De fato:

I) se $u, v \in S_1$, então $u + v \in S_1$; se $u, v \in S_2$, então $u + v \in S_2$.

Logo:

$$u + v \in S_1 \cap S_2 = S$$
.

II) Para qualquer $\lambda \in \mathbb{R}$:

se $v \in S_1$, então $\lambda v \in S_1$;

se $v \in S_2$, então $\lambda v \in S_2$.

Logo:

$$\lambda v \in S_1 \cap S_2 = S$$

Exemplos:

1) Seja V o espaço vetorial das matrizes quadradas de ordem 2:

$$V = \left\{ \begin{bmatrix} a & b \\ & \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{R} \right\}$$

Sejam S₁ e S₂ subespaços vetoriais de V:

$$S_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

$$S_2 = \left\{ \begin{bmatrix} a & 0 \\ 0 \\ c & 0 \end{bmatrix}; a, c \in \mathbb{R} \right\}$$

A interseção $S = S_1 \cap S_2$ é um subespaço vetorial de V:

$$S = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}; a \in \mathbb{R} \right\}$$

Seja o espaço vetorial $\mathbb{R}^3 = \{(a, b, c); a, b, c \in \mathbb{R}\}$ e os subespaços vetoriais $S_1 = \{(a, b, 0); a, b \in \mathbb{R}\}$ e $S_2 = \{(0, 0, c); c \in \mathbb{R}\}$. A interseção $S_1 \cap S_2$ é o subespaço vetorial $S = \{(0, 0, 0)\} = \{0\}$.

2.4.3 Soma de dois Subespaços Vetoriais

Sejam S_1 e S_2 dois subespaços vetoriais de V. A soma S de S_1 e S_2 , que se representa por $S = S_1 + S_2$, é o conjunto de todos os vetores u + v de V tais que $u \in S_1$ e $v \in S_2$.

2.4.3.1 Teorema

A soma S de dois subespaços vetoriais S₁ e S₂ de V é um subespaço vetorial de V. De fato:

I) se
$$u_1, u_2 \in S_1$$
, então $u_1 + u_2 \in S_1$;
se $v_1, v_2 \in S_2$, então $v_1 + v_2 \in S_2$.

Por outro lado:

$$u_1 + v_1 \in S$$

$$u_2 + v_2 \in S$$

logo:

$$(u_1 + v_1) + (u_2 + v_2) = (u_1 + u_2) + (v_1 + v_2) \in S_1 + S_2 = S$$

II) Para qualquer $\lambda \in \mathbb{R}$:

se $u_1 \in S_1$, então $\lambda u_1 \in S_1$;

se $v_1 \in S_2$, então $\lambda v_1 \in S_2$.

Por outro lado:

$$u_1 + v_2 \in S$$

logo:

$$\lambda(u_1 + v_1) = \lambda u_1 + \lambda v_1 \in S_1 + S_2 = S$$

Exemplos

 A soma S dos subespaços vetoriais S₁ e S₂ referidos no exemplo 1 de 2.4.2.1 é um subespaço vetorial de V:

$$S = \left\{ \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}; a, b, c \in \mathbb{R} \right\}$$

Sejam os subespaços vetoriais $S_1 = \{(a, b, 0); a, b \in \mathbb{R}\}\ e\ S_2 = \{(0, 0, c); c \in \mathbb{R}\}\ do$ espaço vetorial $\mathbb{R}^3 = \{(a, b, c); a, b, c \in \mathbb{R}\}\$.

A soma $S_1 + S_2$ é o subespaço vetorial $S = \{(a, b, c); a, b, c \in \mathbb{R}\}$, que, no caso, é o próprio \mathbb{R}^3 .

2.4.4 Soma Direta de dois Subespaços Vetoriais

Sejam S_1 e S_2 dois subespaços vetoriais de V. Diz-se que V é a soma direta de S_1 e S_2 , e se representa por $V = S_1 \oplus S_2$, se $V = S_1 + S_2$ e $S_1 \cap S_2 = \{0\}$.

2.4.4.1 Teorema

Se V é a soma direta de S_1 e S_2 , todo vetor $v \in V$ se escreve, de modo único, na forma:

$$v = u + w$$

onde:

$$u\!\in S_1\quad e\quad w\!\in S_2$$

De fato, de $V = S_1 \oplus S_2$, vem, para qualquer $v \in V$:

$$v = u + w$$
, onde $u \in S_1$ e $v \in S_2$ (2.4.4.1-I)

Suponhamos que v pudesse exprimir-se também pela forma:

$$v = u' + w'$$
, onde $u' \in S_1$ e $w' \in S_2$ (2.4.4.1-II)

As igualdades 2.4.4.1-I e 2.4.4.1-II permitem escrever:

$$\mathbf{u} + \mathbf{w} = \mathbf{u}' + \mathbf{w}'$$

ou:

$$\mathbf{u} - \mathbf{u}' = \mathbf{w}' - \mathbf{w}$$

onde:

$$u - u' \in S_1 \quad e \quad w' - w \in S_2$$

Tendo em vista que $S_1 \cap S_2 = \{0\}$:

$$\mathbf{u} - \mathbf{u}' = \mathbf{w}' - \mathbf{w} = \mathbf{0}$$

isto é :

$$\mathbf{u} = \mathbf{u}' \quad \mathbf{e} \quad \mathbf{w} = \mathbf{w}'$$

Exemplo:

O espaço vetorial $\mathbb{R}^3 = \{(a, b, c); a, b, c \in \mathbb{R}\}\$ é a soma direta dos subespaços vetoriais:

$$S_1 = \{(a, b, 0); a, b \in \mathbb{R}\}\ e \ S_2 = \{(0, 0, c); c \in \mathbb{R}\}\$$

pois qualquer vetor $(a, b, c) \in \mathbb{R}^3$ pode ser escrito como soma de um vetor de S_1 e um vetor de S_2 de modo único:

$$(a, b, c) = (a, b, 0) + (0, 0, c)$$

e, portanto:

$$\mathbb{R}^3 = S_1 \oplus S_2$$

2.5 COMBINAÇÃO LINEAR

Sejam os vetores $v_1, v_2, ..., v_n$ do espaço vetorial V e os escalares $a_1, a_2, ..., a_n$. Qualquer vetor $v \in V$ da forma:

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

é uma combinação linear dos vetores v1, v2, ..., vn.

Exemplo

No espaço vetorial P_2 dos polinômios de grau ≤ 2 , o polinômio $v = 7x^2 + 11x - 26$ é uma combinação linear dos polinômios:

$$v_1 = 5x^2 - 3x + 2$$
 e $v_2 = -2x^2 + 5x - 8$

De fato:

$$v = 3v_1 + 4v_2$$

isto é :

$$7x^{2} + 11x - 26 = 3(5x^{2} - 3x + 2) + 4(-2x^{2} + 5x - 8)$$

$$7x^{2} + 11x - 26 = 15x^{2} - 9x + 6 - 8x^{2} + 20x - 32$$

$$7x^{2} + 11x - 26 = 7x^{2} + 11x - 26$$

2.5.1 Problemas Resolvidos

Para os problemas de 1 a 4, consideremos, no \mathbb{R}^3 , os seguintes vetores: $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$.

1) Escrever o vetor v = (-4, -18, 7) como combinação linear dos vetores v_1 e v_2 .

Solução

Pretende-se que:

$$v = a_1 v_1 + a_2 v_2$$

sendo a₁ e a₂ escalares a determinar. Então, devemos ter:

$$(-4, -18, 7) = a_1(1, -3, 2) + a_2(2, 4, -1)$$

ou:

$$(-4, -18, 7) = (a_1, -3a_1, 2a_1) + (2a_2, 4a_2, -a_2)$$

ou:

$$(-4, -18, 7) = (a_1 + 2a_2, -3a_1 + 4a_2, 2a_1 - a_2)$$

Pela condição de igualdade de dois vetores, resulta o sistema:

$$\begin{cases} a_1 + 2a_2 = -4 \\ -3a_1 + 4a_2 = -18 \\ 2a_1 - a_2 = 7 \end{cases}$$

cuja solução é $a_1 = 2$ e $a_2 = -3$.

Portanto,

$$v = 2v_1 - 3v_2$$

Observação

Esse sistema e outros deste Capítulo estão resolvidos no Apêndice.

2) Mostrar que o vetor v = (4, 3, -6) não é combinação linear dos vetores v_1 e v_2 .

Solução

Deve-se mostrar que não existem escalares a₁ e a₂ tais que:

$$v = a_1 v_1 + a_2 v_2$$

Com procedimento análogo ao do problema anterior, temos:

$$(4,3,-6) = a_1(1,-3,2) + a_2(2,4,-1)$$

de onde resulta o sistema:

$$\begin{cases} a_1 + 2a_2 = 4 \\ -3a_1 + 4a_2 = 3 \\ 2a_1 - a_2 = -6 \end{cases}$$

Observemos que esse sistema difere do anterior pelos termos independentes. Como é incompatível, o vetor v $n\bar{ao}$ pode ser escrito como combinação linear de v_1 e v_2 .

3) Determinar o valor de k para que o vetor u = (-1, k, -7) seja combinação linear de v_1 e v_2 .

Solução

Devemos ter:

$$\mathbf{u} = \mathbf{a}_1 \, \mathbf{v}_1 + \mathbf{a}_2 \, \mathbf{v}_2$$

ou:

$$(-1, k, -7) = a_1(1, -3, 2) + a_2(2, 4, -1)$$

de onde vem o sistema:

$$\begin{cases} a_1 + 2a_2 = -1 \\ -3a_1 + 4a_2 = k \\ 2a_1 - a_2 = -7 \end{cases}$$

do qual resulta, como solução do problema proposto, k = 13 ($a_1 = -3$ e $a_2 = 1$).

De fato:

$$(-1, 13, -7) = -3(1, -3, 2) + 1(2, 4, -1)$$

 $(-1, 13, -7) = (-3, 9, -6) + (2, 4, -1)$
 $(-1, 13, -7) = (-1, 13, -7).$

4) Determinar a condição para x, y e z de modo que (x, y, z) seja combinação linear dos vetores v₁ e v₂.

Solução

Devemos ter:

$$(x, y, z) = a_1(1, -3, 2) + a_2(2, 4, -1)$$

de onde vem o sistema:

$$\begin{cases} a_1 + 2a_2 = x \\ -3a_1 + 4a_2 = y \\ 2a_1 - a_2 = z \end{cases}$$

O vetor (x, y, z) somente será combinação linear de v_1 e v_2 se o sistema tiver solução, e isto somente ocorre se:

$$\mathbf{x} - \mathbf{y} - 2\mathbf{z} = 0$$

ou:

$$x = y + 2z$$

Assim, todos os vetores $(x, y, z) \in \mathbb{R}^3$, que são combinações lineares de v_1 e v_2 , têm a forma:

$$(y + 2z, y, z)$$

com $y, z \in \mathbb{R}$.

Podemos fazer a interpretação geométrica desse resultado. Observemos que os vetores v_1 e v_2 não são colineares. O vetor a_1v_1 tem a direção de v_1 , e o vetor a_2v_2 , a direção de v_2 . Logo, todos os vetores $(x, y, z) \in \mathbb{R}^3$ do tipo

$$(x, y, z) = a_1 v_1 + a_2 v_2$$

formam um plano π que passa pela origem conforme sugere a figura 2.5.1. Esse plano tem equação x - y + 2z = 0, que estabelece a condição solicitada entre os componentes x, y e z.

Mostrar que o vetor $v = (3, 4) \in \mathbb{R}^2$ pode ser escrito de infinitas maneiras como combinação linear dos vetores $v_1 = (1, 0)$, $v_2 = (0, 1)$ e $v_3 = (2, -1)$.

Solução

Tem-se:

$$(3, 4) = a(1, 0) + b(0, 1) + c(2, -1)$$

donde:

$$\begin{cases} a + 2c = 3 \\ b - c = 4 \end{cases}$$

ou:

$$\begin{cases} a = 3 - 2c \\ b = 4 + c \end{cases}$$

e, portanto, para cada valor de c obtém-se um valor para a e outro para b.

2.5.2 Subespaços Gerados

Seja V um espaço vetorial. Consideremos um subconjunto $A = \{v_1, v_2, ..., v_n\} \subset V$, $A \neq \phi$.

O conjunto S de todos os vetores de V que são combinações lineares dos vetores de A é um subespaço vetorial de V.

De fato, se:

$$u = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

е

$$v = b_1 v_1 + b_2 v_2 + ... + b_n v_n$$

são dois vetores quaisquer de S, pode-se escrever:

$$u + v = (a_1 + b_1) v_1 + (a_2 + b_2) v_2 + ... + (a_n + b_n) v_n$$

 $\alpha u = (\alpha a_1) v_1 + (\alpha a_2) v_2 + ... + (\alpha a_n) v_n$

Tendo em vista que $u+v\in S$ e que $\alpha u\in S$, por serem combinações lineares de $v_1,v_2,...,v_n$, conclui-se que S é um subespaço vetorial de V.

Simbolicamente, o subespaço S é:

$$S = \{ v \in V/v = a_1 v_1 + ... + a_n v_n, a_1, ..., a_n \in \mathbb{R} \}$$

Observações

1) O subespaço S diz-se gerado pelos vetores $v_1, v_2, ..., v_n$, ou gerado pelo conjunto A, e representa-se por:

$$S = [v_1, v_2, ..., v_n]$$
 ou $S = G(A)$

Os vetores $v_1, v_2, ..., v_n$ são chamados geradores do subespaço S, enquanto A é o conjunto gerador de S.

- 2) Para o caso particular de $A = \phi$, define-se: $[\phi] = \{0\}$.
- 3) $A \subseteq G(A)$, ou seja, $\{v_1, ..., v_n\} \subseteq [v_1, ..., v_n]$.
- 4) Todo conjunto $A \subseteq V$ gera um subespaço vetorial de V, podendo ocorrer G(A) = V. Nesse caso, A é um conjunto gerador de V.

Exemplos

Os vetores i = (1, 0) e j = (0, 1) geram o espaço vetorial \mathbb{R}^2 , pois qualquer $(x, y) \in \mathbb{R}^2$ é combinação linear de i e j:

$$(x, y) = xi + yj = x(1, 0) + y(0, 1) = (x, 0) + (0, y) = (x, y)$$

Então:

$$[i,j] = \mathbb{R}^2$$

2) Os vetores i = (1, 0, 0) e j = (0, 1, 0) do \mathbb{R}^3 geram o subespaço

$$S = \{(x, y, 0) \in \mathbb{R}^3 | x, y \in \mathbb{R}^3 \}$$

pois:

$$(x, y, 0) = x(1, 0, 0) + y(0, 1, 0)$$

Então:

[i,j] = S é um subespaço próprio do \mathbb{R}^3 e representa, geometricamente o plano xOy.

Os vetores $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$ geram o espaço vetorial \mathbb{R}^3 , pois qualquer $\mathbf{v} = (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}^3$ é combinação linear de e_1 , e_2 e e_3 :

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

ou:

$$v = xe_1 + ye_2 + ze_3$$

Então:

$$[e_1, e_2, e_3] = \mathbb{R}^3$$

Observação

Antes de resolvermos alguns problemas e fornecermos certas interpretações geométricas, atentemos para um fato importante.

Dados n vetores $v_1, ..., v_n$ de um espaço vetorial V, se $w \in V$ é tal que

$$\mathbf{w} = \mathbf{a}_1 \mathbf{v}_1 + \dots + \mathbf{a}_n \mathbf{v}_n$$

então:

$$[v_1, ..., v_n, w] = [v_1, ..., v_n]$$

pois todo vetor v que é combinação linear de $v_1,...,v_n,w$ é também combinação linear de $v_1,...,v_n$

Supondo que:

 $v \in [v_1, \, ..., \, v_n, \, w]$, então existem números reais $b_1, \, ..., \, b_n, \, b$

tais que

$$y = b_1 v_1 + ... + b_n v_n + bw$$

mas:

$$\mathbf{w} = \mathbf{a}_1 \mathbf{v}_1 + \dots + \mathbf{a}_n \mathbf{v}_n$$

logo:

$$v = b_1v_1 + ... + b_nv_n + b(a_1v_1 + ... + a_nv_n)$$

ou

$$v = (b_1 + a_1b)v_1 + ... + (b_n + a_nb)v_n$$

e, portanto, v é combinação linear de v₁, ..., v_n, isto é,

$$v \in [v_1, \ldots, v_n]$$

A recíproca, ou seja,

se
$$v \in [v_1, \ldots, v_n]$$
, então $v \in [v_1, \ldots, v_n, w]$

é trivial, pois

se
$$v = a_1 v_1 + ... + a_n v_n$$
, então $v = a_1 v_1 + ... + a_n v_n + 0 w$.

Assim, sendo S um subespaço gerado por um conjunto A, ao acrescentarmos vetores de S a esse conjunto A, os novos conjuntos continuarão gerando o mesmo subespaço S. Esse fato faz entender que um determinado subespaço S pode ser gerado por uma infinidade de vetores, porém existe um número mínimo de vetores para gerá-lo.

2.5.2.1 Problemas Resolvidos

6) Seja $V = \mathbb{R}^3$. Determinar o subespaço gerado pelo vetor $v_1 = (1, 2, 3)$.

Solução

Temos:

$$[v_1] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = a(1, 2, 3), a \in \mathbb{R}\}$$

Da igualdade:

$$(x, y, z) = a(1, 2, 3)$$

vem:

$$x = a$$

$$y = 2a$$

$$z = 3a$$

donde

$$y = 2x$$

$$z = 3x$$

Logo,

$$[v_1] = \{(x, y, z) \in \mathbb{R}^3 / y = 2x \mid e \mid z = 3x\}$$

ou

$$[v_1] = \{(x, 2x, 3x); x \in \mathbb{R}\}$$

O subespaço gerado por um vetor $v_1 \in \mathbb{R}^3$, $v_1 \neq 0$, é uma reta que passa pela origem (Figura 2.5.2a). Se a esse vetor acrescentarmos $v_2, v_3, ...$, todos colineares entre si, o subespaço gerado por 2, 3, ... vetores continuará sendo a mesma reta:

$$[v_1] = [v_1, v_2] = [v_1, v_2, v_3] = ...$$
 (Figura 2.5.2b)

Seja $V = \mathbb{R}^3$. Determinar o subespaço gerado pelo conjunto $A = \{v_1, v_2\}$, sendo 7) $v_1 = (1, -2, -1) e v_2 = (2, 1, 1).$

Solução

Temos:

$$[v_1, v_2] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = a_1(1, -2, -1) + a_2(2, 1, 1), a_1, a_2 \in \mathbb{R} \}$$

Da igualdade acima, vem:

$$\begin{cases} a_1 + 2a_2 = x \\ -2a_1 + a_2 = y \\ -a_1 + a_2 = z \end{cases}$$

O vetor $(x, y, z) \in [v_1, v_2]$ se, e somente se, o sistema tem solução, e isto somente ocorre quando x + 3y - 5z = 0 (exercício a cargo do leitor).

Logo:

$$[v_1, v_2] = \{(x, y, z) \in \mathbb{R}^3 / x + 3y - 5z = 0\}$$

O subespaço gerado pelos vetores $v_1, v_2 \in \mathbb{R}^3$, não-colineares, é um plano π que passa pela origem (Figura 2.5.2c). Se a esses dois vetores acrescentarmos v₃, v₄, ..., todos coplanares, o subespaço gerado por 3, 4, ... vetores continuará sendo o mesmo plano π :

$$[v_1, v_2] = [v_1, v_2, v_3] = [v_1, v_2, v_3, v_4] = ...$$
 (Figura 2.5.2d)

Figura 2.5.2c

Figura 2.5.2d

8) Seja $V = IR^3$. Determinar o subespaço gerado pelo conjunto $A = \{v_1, v_2, v_3\}$, sendo $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ e $v_3 = (1, 0, 0)$.

Solução

Para todo vetor $(x, y, z) \in [v_1, v_2, v_3]$, tem-se:

$$(x, y, z) = a_1(1, 1, 1) + a_2(1, 1, 0) + a_3(1, 0, 0)$$

Desta igualdade, vem:

$$\begin{cases} a_1 + a_2 + a_3 = x \\ a_1 + a_2 = y \\ a_1 = z \end{cases}$$

ou:

$$\begin{cases} a_1 = z \\ a_2 = y - z \\ a_3 = x - y \end{cases}$$

Portanto:

$$(x, y, z) = z(1, 1, 1) + (y - z)(1, 1, 0) + (x - y)(1, 0, 0)$$

e, por conseguinte, os vetores v_1, v_2 e v_3 geram o \mathbb{R}^3 , pois cada vetor do \mathbb{R}^3 é combinação linear dos vetores dados.

Logo:

$$[v_1, v_2, v_3] = \mathbb{R}^3$$

O subespaço gerado por três vetores $n\bar{a}o$ -coplanares é o próprio \mathbb{R}^3 (Figura 2.5.2e). Se a esses três vetores acrescentarmos $v_4, v_5, ...$ quaisquer, o subespaço gerado pelos 4, 5, ... vetores continuará sendo o próprio \mathbb{R}^3 :

$$[v_1, v_2, v_3] = [v_1, v_2, v_3, v_4] = ...$$

Figura 2.5.2e

9) Mostrar que o conjunto $A = \{ (3, 1), (5, 2) \}$ gera o \mathbb{R}^2 .

Solução

Vamos mostrar que todo vetor $(x,y) \in \mathbb{R}^2$ é combinação linear dos vetores do conjunto A, isto é, sempre existem os números reais a_1 e a_2 tais que:

$$(x, y) = a_1(3, 1) + a_2(5, 2)$$

Daí vem o sistema:

$$\begin{cases} 3a_1 + 5a_2 = x \\ a_1 + 2a_2 = y \end{cases}$$

que, resolvido em termos de x e y, fornece:

$$a_1 = 2x - 5y$$
 e $a_2 = 3y - x$

Portanto:

$$(x, y) = (2x - 5y)(3, 1) + (3y - x)(5, 2)$$

isto é:

$$G(A) = \mathbb{R}^2$$

10) Sejam V = M(2, 2) e o subconjunto

$$\mathbf{A} = \left\{ \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \right\}$$

Determinar o subespaço G(A).

Solução

Para todo vetor

$$v = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in G(A),$$

tem-se;

$$\begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$$

e daí o sistema:

$$\begin{cases}
-a + 3b = x \\
2a - b = y \\
-2a + b = z \\
3a + b = t
\end{cases}$$

que é compatível se:

$$z = -y$$
 e $x = -2y + t$

Logo:

$$G(A) = \left\{ \begin{bmatrix} -2y + t & y \\ -y & t \end{bmatrix}; y, t \in \mathbb{R} \right\}$$

2.6 ESPAÇOS VETORIAIS FINITAMENTE GERADOS

Um espaço vetorial V é finitamente gerado se existe um conjunto finito A, $A \subseteq V$, tal que V = G(A).

Com exceção do Exemplo 6 de 2.2, os demais exemplos de espaços vetoriais citados até aqui são finitamente gerados. Por exemplo, vimos que o \mathbb{R}^3 é gerado pelo conjunto finito de três vetores

$$A = \{ (1, 0, 0), (0, 1, 0), (0, 0, 1) \}$$

pois, para todo $(x, y, z) \in \mathbb{R}^3$, tem-se:

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

Em nosso estudo trataremos somente de espaços vetoriais finitamente gerados.

Um exemplo de espaço vetorial que não é finitamente gerado é o espaço P de todos os polinômios reais.

Na verdade, dado $A = \{p_1, ..., p_n\} \subset P$, onde p_i é um polinômio de grau i e p_n o de mais alto grau, qualquer combinação linear

$$a_1 p_1 + a_2 p_2 + ... + a_n p_n$$

tem grau \leq n. Assim, o subespaço $[p_1,...,p_n]$ contém somente polinômios de grau menor ou igual ao grau de p_n . Como P é formado por todos os polinômios, existem nele polinômios de grau maior que o de p_n . Logo, $G(A) \neq P$ para todo conjunto finito $A \subseteq P$.

2.7 DEPENDÊNCIA E INDEPENDÊNCIA LINEAR

No problema 8 de 2.5.2.1, chamamos a atenção para o fato de que o espaço vetorial \mathbb{R}^3 pode ser gerado por três vetores, ou também por quatro, ou por cinco etc. Assim, três vetores constituem o número mínimo necessário para gerar o \mathbb{R}^3 . No entanto, quatro, cinco ou mais vetores podem gerar o \mathbb{R}^3 . Porém, nesse caso, sobram vetores no conjunto gerador. Em nosso estudo temos grande interesse no conjunto gerador que seja o menor possível. Para a determinação do menor conjunto gerador de um espaço vetorial, precisamos ter a noção de dependência e independência linear.

2.7.1 Definição

Sejam V um espaço vetorial e

$$A = \{v_1, ..., v_n\} \subset V$$

Consideremos a equação

$$a_1 v_1 + ... + a_n v_n = 0$$
 (2.7)

Sabemos que essa equação admite pelo menos uma solução:

$$a_1 = 0, \quad a_2 = 0, ..., a_n = 0$$

chamada solução trivial.

O conjunto A diz-se linearmente independente (LI), ou os vetores v_1, \ldots, v_n são LI, caso a equação (2.7) admita apenas a solução trivial.

Se existirem soluções $a_i \neq 0$, diz-se que o conjunto A é linearmente dependente (LD), ou que os vetores $v_1, ..., v_n$ são LD.

Exemplos

No espaço vetorial $V = \mathbb{R}^3$, os vetores $v_1 = (2, -1, 3)$, $v_2 = (-1, 0, -2)$ e $v_3 = (2, -3, 1)$ formam um conjunto linearmente dependente, pois

$$3v_1 + 4v_2 - v_3 = 0$$

ou seja:

$$3(2,-1,3)+4(-1,0,-2)-(2,-3,1)=(0,0,0)$$

No espaço vetorial $V = \mathbb{R}^4$, os vetores $v_1 = (2, 2, 3, 4)$, $v_2 = (0, 5, -3, 1)$ e $v_3 = (0, 0, 4, -2)$ são linearmente independentes. De fato:

$$a(2, 2, 3, 4) + b(0, 5, -3, 1) + c(0, 0, 4, -2) = (0, 0, 0, 0)$$

 $(2a, 2a, 3a, 4a) + (0, 5b, -3b, b) + (0, 0, 4c, -2c) = (0, 0, 0, 0)$
 $(2a, 2a + 5b, 3a - 3b + 4c, 4a + b - 2c) = (0, 0, 0, 0)$

isto é :

$$\begin{cases} 2a & = 0 \\ 2a + 5b & = 0 \\ 3a - 3b + 4c = 0 \\ 4a + b - 2c = 0 \end{cases}$$

O sistema admite unicamente a solução:

$$a = 0$$
, $b = 0$ e $c = 0$

3) No espaço vetorial IR³, o conjunto $\{e_1, e_2, e_3\}$, tal que $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$, é LI.

De fato, a equação:

$$a_1e_1 + a_2e_2 + a_3e_3 = 0$$

ou:

$$a_1(1, 0, 0) + a_2(0, 1, 0) + a_3(0, 0, 1) = (0, 0, 0)$$

transforma-se em:

$$(a_1, a_2, a_3) = (0, 0, 0)$$

e, portanto

$$a_1 = a_2 = a_3 = 0$$

Logo, o conjunto:

$$\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

é LI.

De forma análoga mostra-se que os vetores

$$e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1)$$

formam um conjunto linearmente independente no IRⁿ

4) No espaço vetorial M(3, 1) das matrizes-colunas, de ordem 3×1 , os vetores:

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

são LI (verificação a cargo do leitor).

5) No \mathbb{R}^2 , os vetores $e_1 = (1, 0)$ e $e_2 = (0, 1)$ são LI. No entanto, os vetores e_1, e_2 e v = (a, b) são LD. De fato:

$$x(1, 0) + y(0, 1) + z(a, b) = (0, 0)$$

 $(x, 0) + (0, y) + (az, bz) = (0, 0)$
 $(x + az, y + bz) = (0, 0)$

isto é:

$$\begin{cases} x + az = 0 \\ y + bz = 0 \end{cases}$$

O sistema admite ao menos uma solução não-trivial. Por exemplo, fazendo | z = 1, | vem:

$$x = -a$$
 e $y = -b$

Logo:

$$-ae_1 - be_2 + v = 0$$

6) No espaço vetorial M(2, 2), ο conjunto

$$A = \left\{ \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 3 & -4 \\ 3 & 1 \end{bmatrix} \right\}$$

Examinemos a equação

$$a_{1} \mathbf{v}_{1} + a_{2} \mathbf{v}_{2} + a_{3} \mathbf{v}_{3} = 0$$

$$\begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix} + a_{2} \begin{bmatrix} 2 & -3 \\ 3 & 0 \end{bmatrix} + a_{3} \begin{bmatrix} 3 & -4 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$(1)$$

ou, de modo equivalente:

$$\begin{bmatrix} -a_1 + 2a_2 + 3a_3 & 2a_1 - 3a_2 - 4a_3 \\ -3a_1 + 3a_2 + 3a_3 & a_1 + a_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

e daí o sistema:

$$\begin{cases}
-a_1 + 2a_2 + 3a_3 = 0 \\
2a_1 - 3a_2 - 4a_3 = 0 \\
-3a_1 + 3a_2 + 3a_3 = 0 \\
a_1 + a_3 = 0
\end{cases}$$

cuja solução é $a_1 = -a_3$ e $a_2 = -2a_3$.

Como existem soluções $a_i \neq 0$ para a equação (1), o conjunto A é LD.

Observação

Vamos substituir a solução do sistema na equação (1):

$$-a_3v_1 - 2a_3v_2 + a_3v_3 = 0$$

ou.

$$a_3 v_1 + 2a_3 v_2 - a_3 v_3 = 0$$

para todo a₃ ∈ IR.

Dividindo ambos os membros dessa igualdade por $a_3 \neq 0$, resulta:

$$\mathbf{v_1} + 2\mathbf{v_2} - \mathbf{v_3} = 0$$

e daí, vem:

$$v_1 = -2v_2 + v_3$$

 $v_1 = -2v_2 + v_3$ (v_1 é combinação linear de v_2 e v_3)

ou:

$$v_2 = -\frac{1}{2}v_1 + \frac{1}{2}v_3$$
 (v_2 é combinação linear de v_1 e v_3)

ou, ainda:

$$v_3 = v_1 + 2v_2$$
 (v_3 é combinação linear de v_1 e v_2)

Como se observa, sendo A um conjunto LD, então um vetor de A é combinação linear dos outros. Esse fato e sua recíproca constituem o teorema seguinte.

2.7.2 Teorema

"Um conjunto $A = \{v_1, ..., v_j, ..., v_n\}$ é LD se, e somente se, pelo menos um desses vetores é combinação linear dos outros,"

A demonstração é constituída de duas partes:

Seja A linearmente dependente. Então, por definição, um dos coeficientes da igualdade:

$$a_1 v_1 + ... + a_j v_j + ... + a_n v_n = 0$$

deve ser diferente de zero. Supondo que $a_i \neq 0$, vem.

$$a_i | v_i | \equiv -a_1 v_1 + \ldots + a_{i+1} v_{i+1} + a_{i+1} v_{i+1} + \ldots + a_n v_n$$

ou.

$$v_i = -\frac{a_1}{a_i}v_1 - ... - \frac{a_{i-1}}{a_i}v_{i-1} - \frac{a_{i+1}}{a_i}v_{i+1} - ... - \frac{a_n}{a_i}v_n$$

e, portanto, v_i é uma combinação linear dos outros vetores.

2ª) Por outro lado, seja v_i uma combinação linear dos outros vetores:

$$v_i = b_1 v_1 + ... + b_{i-1} v_{i+1} + b_{i+1} v_{i+1} + ... + b_n v_n$$

ou, ainda:

$$b_1 v_1 + ... + b_{i-1} v_{i-1} - i v_i + b_{i+1} v_{i+1} + ... + b_n v_n = 0$$

e, portanto, a equação

$$b_1 v_1 + ... + (-1) v_1 + ... + b_n v_n = 0$$

se verifica para $b_i \neq 0$. No caso, $b_i = -1$.

Logo, A é LD.

Observações

1) Esse último teorema pode ser enunciado de forma equivalente:

"Um conjunto $A = \{v_1, ..., v_n\}$ é LI se, e somente se, nenhum desses vetores for combinação linear dos outros."

2) Para o caso particular de dois vetores, temos:

"Dois vetores v_1 e v_2 são LD se, e somente se, um vetor é múltiplo escalar do outro."

Por exemplo, os vetores

$$v_1 = (1, -2, 3)$$
 e $v_2 = (2, -4, 6)$

são LD, pois

$$\mathbf{v}_1 = \frac{1}{2} \mathbf{v}_2$$

ou:

$$\mathbf{v_2} = 2\mathbf{v_1}$$

enquanto:

$$v_1 = (1, -2, 3)$$
 e $v_2 = (2, 1, 5)$

são LI, pois

 $\mathbf{v_1} \neq \mathbf{k} \mathbf{v_2}$

para todo k∈ IR

3) Nos gráficos a seguir apresentamos uma interpretação geométrica da dependência linear de dois e três vetores no IR³.

(v₁ e v₂ estão representados na mesma reta que passa pela origem)

(v₁, v₂ e v₃ estão representados no mesmo plano que passa pela origem)

2.7,3 Problemas Resolvidos

11) Verificar se são LI ou LD os seguintes conjuntos:

a)
$$\left\{ \begin{bmatrix} 1 & 2 \\ -4 & -3 \end{bmatrix}, \begin{bmatrix} 3 & 6 \\ -12 & -9 \end{bmatrix} \right\} \subset M(2, 2)$$

- b) $\{(2,-1),(1,3)\}\subset \mathbb{R}^2$
- c) $\{(-1, -2, 0, 3), (2, -1, 0, 0), (1, 0, 0, 0)\} \subset \mathbb{R}^4$
- d) $\{1+2x-x^2, 2-x+3x^2, 3-4x+7x^2\} \subset P_2$

Solução

- a) Como o conjunto tem apenas dois vetores com um deles sendo múltiplo escalar do outro (o segundo vetor é o triplo do primeiro), o conjunto é LD, de acordo com a Observação 2 do Teorema 2.7.2.
 - b) Tendo em vista que um vetor não é múltiplo escalar do outro, o conjunto é LI.

 Mesmo que fôssemos examinar a igualdade:

$$a(2,-1)+b(1,3)=(0,0)$$

concluiríamos que o sistema

$$\begin{cases} 2a + b = 0 \\ -a + 3b = 0 \end{cases}$$

admite somente a solução trivial, o que vem confirmar ser o conjunto Ll.

c) Consideremos a equação:

$$a(-1, -2, 0, 3) + b(2, -1, 0, 0) + c(1, 0, 0, 0) = (0, 0, 0, 0)$$

Portanto:

$$\begin{cases}
-a + 2b + c = 0 \\
-2a - b = 0 \\
3a = 0
\end{cases}$$

Como o sistema admite apenas a solução trivial:

$$a = b = c = 0$$
.

o conjunto é Ll.

d) Seja a equação:

$$a(1 + 2x - x^{2}) + b(2 - x + 3x^{2}) + c(3 - 4x + 7x^{2}) = 0$$
 (1)

ou:

$$(a + 2b + 3c) + (2a - b - 4c)x + (-a + 3b + 7c)x^2 = 0 + 0x + 0x^2$$

Pelo princípio da identidade de polinômios, vem:

$$\begin{cases} a + 2b + 3c = 0 \\ 2a - b - 4c = 0 \\ -a + 3b + 7c = 0 \end{cases}$$

Como esse sistema admite outras soluções além da trivial, o conjunto é LD.

Observação

O leitor deve ter notado que a variável x nos polinômios desse problema não desempenha nenhum papel no cálculo. Com o objetivo de simplificar, a cada polinômio do tipo $a_0 + a_1x + a_2x^2$, associa-se a terna (a_0, a_1, a_2) .

Assim, a igualdade (1) desse problema poderia ter sido escrita assim:

$$a(1, 2, -1) + b(2, -1, 3) + c(3, -4, 7) = (0, 0, 0)$$

Simplificações análogas a essa podem ser feitas, por exemplo, associando:

1)
$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in P_3 \text{ com } (a_0, a_1, a_2, a_3) \in \mathbb{R}^4$$

2)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2) \text{ com } (a,b,c,d) \in {\rm I\!R}^a$$

3)
$$a + cx^2 \in P_2$$
 com $(a, 0, c) \in IR^3$

e assim por diante.

12) Provar que se u e v são LI, então u + v e u - v também o são.

Solução

Consideremos a igualdade

$$a(u + v) + b(u - v) = 0$$
 (2)

da qual resulta

$$(a + b) u + (a - b) v = 0$$
 (3)

Como u e v são Ll. nessa igualdade (3) deve-se ter:

$$\begin{cases} a + b = 0 \\ a - b = 0 \end{cases}$$

13) Determinar o valor de k para que o conjunto

$$\{(1,0,-1),(1,1,0),(k,1,-1)\}$$

seja Ll.

Solução

O conjunto será Ll se, e somente se, a equação

$$a(1, 0, -1) + b(1, 1, 0) + c(k, 1, -1) = (0, 0, 0)$$

admitir apenas a solução a = b = c = 0. Dessa equação, vem:

$$\begin{cases} a+b+kc=0\\ b+c=0\\ -a-c=0 \end{cases}$$

Para que esse sistema admita apenas a solução trivial, deve-se ter $k \neq 2$ (a cargo do leitor).

Logo, o conjunto será Ll se $k \neq 2$.

2.7.4 Propriedades da Dependência e da Independência Linear

Seja V um espaço vetorial.

I) Se
$$A = \{v\} \subset V$$
 e $v \neq 0$, então $A \notin Ll$.

De fato:

Como $v \neq 0$, a igualdade

$$av = 0$$

só se verifica se a = 0.

Observação

Considera-se, por definição, que o conjunto vazio ϕ é Ll.

II) Se um conjunto A C V contém o vetor nulo, então A é LD.

De fato:

Seja o conjunto | A = {
$$v_1$$
, ..., 0, ..., v_n } .

Então, a equação

$$0.v_1 + ... + a.0 + ... + 0.v_n = 0$$

se verifica para todo $a \neq 0$. Portanto, A é LD.

[II] Se uma parte de um conjunto A C V é LD, então A é também LD.

De fato:

Sejam
$$A = \{v_1, ..., v_r, ..., v_n\}$$
 e a parte

$$A_1 = \{v_1, ..., v_r\} \subset A, A_1 \in LD.$$

Como A_1 é LD, existem $a_i \neq 0$ que verificam a igualdade:

$$a_1 v_1 + ... + a_r v_r = 0$$

e esses mesmos $a_i \neq 0$ verificam também a igualdade

$$a_1v_1 + ... + a_rv_r + 0.v_{r+1} + ... + 0.v_n = 0$$

Logo,
$$A = \{v_1, ..., v_r, ..., v_n\} \in LD.$$

IV) Se um conjunto $A \subseteq V$ é LI, qualquer parte A_1 de A é também Ll.

De fato, se A₁ fosse LD, pela propriedade anterior o conjunto A seria também LD, o que contradiz a hipótese.

Observação

Se todos os subconjuntos próprios de um conjunto finito de vetores são LI, o fato não significa que o conjunto seja LI. De fato, se considerarmos no \mathbb{R}^2 os vetores $e_1=(1,0),$ $e_2=(0,1)$ e v=(4,5), verificaremos que cada um dos subconjuntos $\{e_1,e_2\}$, $\{e_1,v\}$, $\{e_2,v\}$, $\{e_1\}$, $\{e_2\}$ e $\{v\}$ é LI, enquanto o conjunto $\{e_1,e_2,v\}$ é LD.

V) Se A = { v_1, ..., v_n } \subset V é LI e B = { v_1, ..., v_n, w } \subset V é LD, então w é combinação linear de v_1, ..., v_n

De fato:

Como B é LD, existem escalares a_1, \ldots, a_n, b , nem todos nulos, tais que:

$$a_1 v_1 + ... + a_n v_n + bw = 0.$$

Ora, se b = 0, então algum dos ai não é zero na igualdade:

$$a_1 v_1 + ... + a_n v_n = 0$$

Porém esse fato contradiz a hipótese de que A é Ll. Consequentemente, tem-se $b \neq 0$, e, portanto:

$$hw = -a_1 v_1 + \dots + a_n v_n$$

o que implica

$$\mathbf{w} = -\frac{\mathbf{a}_1}{\mathbf{b}} \mathbf{v}_1 - \dots - \frac{\mathbf{a}_n}{\mathbf{b}} \mathbf{v}_n$$

isto é, w é combinação linear de $v_1, ..., v_n$

2.8 BASE E DIMENSÃO

2.8.1 Base de um Espaço Vetorial

Um conjunto $B = \{v_1, ..., v_n\} \subset V$ é uma base do espaço vetorial |V| se:

- 1) Bé LI;
- II) B gera V.

Exemplos.

1) $B = \{ (1, 1), (-1, 0) \}$ é base de \mathbb{R}^2

De fato:

1) Bé Ll, pois a(1, 1) + b(-1, 0) = (0, 0) implica.

$$\begin{cases} a - b = 0 \\ a = 0 \end{cases}$$

e daí:

$$a = b = 0$$

[[] B gera \mathbb{R}^2 , pois para todo $(x,y) \in \mathbb{R}^2$, tem-se.

$$(x, y) = y(1, 1) + (y - x)(-1, 0)$$

Realmente, a igualdade

$$(x, y) = a(1, 1) + b(-1, 0)$$

implica

$$\begin{cases} a - b = x \\ a = y \end{cases}$$

dond**e** :

$$a = y$$
 e $b = y - x$

Os vetores da base B estão representados na Figura 2.8.1. Em 2.7.2 já havíamos visto que dois vetores não-colineares são LI. Sendo eles do \mathbb{R}^2 , irão gerar o próprio \mathbb{R}^2 . Na verdade, quaisquer dois vetores não-colineares do \mathbb{R}^2 formam uma base desse espaço.

Figura 2,8,1

2) B = $\{(1,0), (0,1)\}$ é base de \mathbb{R}^2 , denominada base canônica.

De fato:

- I) B é Ll, pois a(1, 0) + b(0, 1) = (0, 0) implica a = b = 0;
- II) B gera \mathbb{R}^2 , pois todo vetor $(x, y) \in \mathbb{R}^2$ é tal que:

$$(x, y) = x(1, 0) + y(0, 1)$$

Consideremos os vetores $e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1).$ No exemplo 3 de 2.7.1 deixamos claro que o conjunto $B = \{e_1, e_2, ..., e_n\}$ é Li em \mathbb{R}^n . Tendo em vista que todo vetor $v = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ pode ser escrito como combinação linear de $e_1, e_2, ..., e_n$, isto é:

$$v = x_1 e_1 + x_2 e_2 + ... + x_n e_n$$

conclui-se que B gera o \mathbb{R}^n . Portanto, B é uma base de \mathbb{R}^n . Essa base é conhecida como base canônica do \mathbb{R}^n .

Consequentemente:

 $\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$ é a base canônica de \mathbb{R}^4 ;

 $\{(1,0,0),(0,1,0),(0,0,1)\}$ é a base canônica de \mathbb{R}^3 ;

 $\{(1,0),(0,1)\}$ é a base canônica de \mathbb{R}^2 ;

{ 1 } é a base canônica de IR.

4)
$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é a base canônica de M(2, 2).

De fato:

$$\mathbf{a} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \mathbf{b} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \mathbf{c} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \mathbf{d} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

ou:

$$\begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

e daí:

$$a = b = c = d = 0$$
.

Portanto, B é LI.

Por outro lado, B gera o espaço M(2, 2), pois qualquer

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2, 2)$$

pode ser escrito assim:

$$\begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} = \mathbf{a} \begin{bmatrix} \mathbf{i} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \mathbf{b} \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \mathbf{c} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} + \mathbf{d} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Logo, B é base de M(2, 2).

5) O conjunto $B = \{1, x, x^2, ..., x^n\}$ é uma base do espaço vetorial P_n .

De fato.

$$a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = 0$$

implica $a_0 = a_1 = a_2 = ... = a_n = 0$ pela condição de identidade de polinômios. Portanto, B é LI.

Por outro lado. B gera o espaço vetorial P_n , pois qualquer polinômio $p \in P_n$ pode ser escrito assim:

$$p = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

que é uma combinação linear de 1, x, x2, ... xn

Logo, B é uma base de P_n . Essa é a base canônica de P_n e tem n+1 vetores.

- 6) $B = \{(1, 2), (2, 4)\}$ não é base de \mathbb{R}^2 , pois B é LD (exercício a cargo do leitor).
- 7) $B = \{(1,0), (0,1), (3,4)\}$ não é base de \mathbb{R}^2 , pois B é LD (exercício a cargo do leitor).
- 8) B = $\{(2, -1)\}$ não é base de \mathbb{R}^2 . B é Ll, mas não gera todo \mathbb{R}^2 , isto é, $[(2, -1)] \neq \mathbb{R}^2$ Esse conjunto gera uma reta que passa pela origem.
- 9) $B = \{(1, 2, 1), (-1, -3, 0)\}$ não é base de \mathbb{R}^3 . B é Ll, mas não gera todo \mathbb{R}^3 .

Observação

"Todo conjunto LI de um espaço vetorial V é base do subespaço por ele gerado."

Por exemplo, o conjunto $B = \{(1,2,1), (-1,-3,0)\} \subset IR^3$ é LI e gera o subespaço

$$S = \{(x, y, z) \in \mathbb{R}^3/3x - y - z = 0\}$$

Então, B é base de S, pois B é LI e gera S.

2.8.2 Teorema

Se $B = \{v_1, v_2, ..., v_n\}$ for uma base de um espaço vetorial V, então todo conjunto com mais de n vetores será linearmente dependente.

De fato:

Seja $B' = \{w_1, w_2, ..., w_m\}$ um conjunto qualquer de m vetores de V, com m > n. Pretende-se mostrar que $B' \in LD$. Para tanto, basta mostrar que existem escalares $x_1, x_2, ..., x_n$ não todos nulos tais que

$$x_1 w_1 + x_2 w_2 + ... + x_m w_m = 0 ag{1}$$

Como B é uma base de V, cada vetor w_i pertencente a B' é uma combinação linear dos vetores de B, isto é, existem números α_i , β_i , ..., δ_i tais que:

$$w_1 = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$$

 $w_2 = \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$

(2)

$$\mathbf{w_m} = \delta_1 \mathbf{v_1} + \delta_2 \mathbf{v_2} + \dots + \delta_n \mathbf{v_n}$$

Substituindo as relações (2) em (1), obtemos:

$$x_1 (\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n) +$$

$$+ x_2 (\beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n) +$$

$$+ x_m (\delta_1 v_1 + \delta_2 v_2 + ... + \delta_n v_n) = 0$$

ou ordenando os termos convenientemente:

$$(\alpha_{1}x_{1} + \beta_{1}x_{2} + ... + \delta_{1}x_{m}) v_{1} +$$

$$+ (\alpha_{2}x_{1} + \beta_{2}x_{2} + ... + \delta_{2}x_{m}) v_{2} +$$

$$+ (\alpha_{n}x_{1} + \beta_{n}x_{2} + ... + \delta_{n}x_{m}) v_{n} = 0$$

Tendo em vista que $v_1, v_2, ..., v_n$ são LJ, os coeficientes dessa combinação linear são nulos:

$$\begin{cases} \alpha_1 x_1 + \beta_1 x_2 + ... + \delta_1 x_m = 0 \\ \alpha_2 x_1 + \beta_2 x_2 + ... + \delta_2 x_m = 0 \end{cases}$$

$$\alpha_n x_1 + \beta_n x_2 + ... + \delta_n x_m = 0$$

Esse sistema linear homogêneo possui m variáveis $x_1, x_2, ..., x_m$ e n equações. Como m > n, existem soluções não-triviais, isto é, existe $x_i \neq 0$. Logo, $B' = \{w_1, w_2, ..., w_m\}$ é LD.

2.8.3 Corolário

Duas bases quaisquer de um espaço vetorial têm o mesmo número de vetores.

De fato:

Sejam $A = \{v_1, ..., v_n\}$ e $B = \{w_1, ..., w_m\}$ duas bases de um espaço vetorial V.

Como A é base e B é LI, pelo teorema anterior, $n \ge m$. Por outro lado, como B é base e A é LI, tem-se $n \le m$. Portanto, n = m.

Exemplos

- A base canônica do IR³ tem três vetores. Logo, qualquer outra base do IR³ terá também três vetores.
- 2) A base canônica de M(2,2) tem quatro vetores. Portanto, toda base de M(2,2) terá quatro vetores.

2.8.4 Dimensão de um Espaço Vetorial

Seja V um espaço vetorial.

Se V possui uma base com n vetores, então V tem dimensão n e anota-se dim V = n.

Se V não possui base, dim V = 0.

Se V tem uma base com infinitos vetores, então a dimensão de V é infinita e anota-se dim $V=\infty$.

Exemplos

- 1) $\dim \mathbb{R}^2 = 2$, pois toda base do \mathbb{R}^2 tem dois vetores.
- 2) $\dim \mathbb{R}^n = n.$
- 3) $\dim M(2, 2) = 4$.
- 4) $\dim M(m, n) = m \times n$.
- 5) $\dim P_n = n + 1$.
- 6) $\dim \{0\} = 0$.

Observações

1) Seja V um espaço vetorial tal que dim V = n.

Se S é um subespaço de V, então dim $S \le n$. No caso de dim S = n, tem-se S = V.

Para permitir uma interpretação geométrica, consideremos o espaço tridimensional \mathbb{R}^3 (dim $\mathbb{R}^3 = 3$).

A dimensão de qualquer subespaço S do \mathbb{R}^3 só poderá ser 0, 1, 2 ou 3. Portanto, temos os seguintes casos:

- I) dim S = 0, então $S = \{0\}$ é a origem.
- II) dim S = 1, então S é uma reta que passa pela origem.

- III) dim S = 2, então S é um plano que passa pela origem.
- IV) dim S = 3, então S é o próprio \mathbb{R}^3
- 2) Seja V um espaço vetorial de dimensão n. Então, qualquer subconjunto de V com mais de n vetores é LD.
- Sabemos que um conjunto B é base de um espaço vetorial V se B for LI e se B gera V. No entanto, se soubermos que dim V = n, para obtermos uma base de V basta que apenas uma das condições de base esteja satisfeita. A outra condição ocorre automaticamente. Assim:
 - I) Se dim V = n, qualquer subconjunto de V com n vetores LI è uma base de V.
 - II) Se dim V = n, qualquer subconjunto de V com n vetores geradores de V é uma base de V.

Exemplo

O conjunto $B = \{(2, 1), (-1, 3)\}\$ é uma base do \mathbb{R}^2 .

De fato, como dim $\mathbb{R}^2 = 2$ e os dois vetores dados são LI (pois nenhum vetor é múltiplo escalar do outro), eles formam uma base do \mathbb{R}^2 .

2.8.5 Teorema

Seja V um espaço vetorial de dimensão n.

Qualquer conjunto de vetores LI em V é parte de uma base, isto é, pode ser completado até formar uma base de V.

A demonstração está baseada no Teorema 2.7.2 e no conceito de dimensão.

Deixaremos de demonstrar o teorema e daremos apenas um exemplo a título de ilustração

Exemplo

Sejam os vetores $v_1 = (1, -1, 1, 2)$ e $v_2 = (-1, 1, -1, 0)$.

Completar o conjunto $\{v_1, v_2\}$ de modo a formar uma base do \mathbb{R}^4 .

Solução

Como dim \mathbb{R}^4 = 4, uma base terá quatro vetores LI. Portanto, faltam dois. Escolhemos um vetor $v_3 \in \mathbb{R}^4$ tal que v_3 $n\tilde{ao}$ seja uma combinação linear de v_1 e v_2 , isto é, $v_3 \neq a_1v_1 + a_2v_2$ para todo $a_1, a_2 \in \mathbb{R}$. Dentre os infinitos vetores existentes, um deles é o vetor $v_3 = (1, 1, 0, 0)$, e o conjunto $\{v_1, v_2, v_3\}$ é LI (se v_3 fosse combinação linear de v_1 e v_2 esse conjunto seria LD de acordo com o Teorema 2.7.2).

Para completar, escolhemos um vetor v_4 que $n\bar{a}o$ seja uma combinação linear de v_1 , v_2 e v_3 . Um deles é o vetor $v_4 = (1, 0, 0, 0)$, e o conjunto $\{v_1, v_2, v_3, v_4\}$ é LI, Logo,

$$\{(1,-1,1,2),(-1,1,-1,0),(1,1,0,0),(1,0,0,0)\}$$

é uma base de IR4.

2.8.6 Teorema

Seja $B = \{v_1, v_2, ..., v_n\}$ uma base de um espaço vetorial V. Então, todo vetor $v \in V$ se exprime de maneira única como combinação linear dos vetores de B.

De fato:

Tendo em vista que B é uma base de V, para $v \in V$ pode-se escrever:

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$
 (1)

Supondo que o vetor v pudesse ser expresso como outra combinação linear dos vetores da base, ter-se-ia:

$$v = b_1 v_1 + b_2 v_2 + \dots + b_n v_n$$
 (2)

Subtraindo, membro a membro, a igualdade (2) da igualdade (1), vem:

$$0 = (a_1 - b_1) v_1 + (a_2 - b_2) v_2 + ... + (a_n - b_n) v_n$$

Tendo em vista que os vetores da base são LI:

$$a_1 - b_1 = 0$$
, $a_2 - b_2 = 0$, ..., $a_n - b_n = 0$

isto é :

$$a_1 = b_1, a_2 = b_2, ..., a_n = b_n$$

Os números $a_1,a_2,...,a_n$ são, pois, univocamente determinados pelo vetor v e pela base $\{v_1,v_2,...,v_n\}$.

2.8.7 Componentes de um Vetor

Seja $B = \{v_1, v_2, ..., v_n\}$ uma base de V. Tomemos $v \in V$ sendo:

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

Os números $a_1, a_2, ..., a_n$ são chamados *componentes* ou *coordenadas* de v em relação à base B e se representa por:

$$v_B = (a_1, a_2, ..., a_n)$$

ou, com a notação matricial:

$$\mathbf{v}_{\mathbf{B}} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{bmatrix}$$

A n-upla $(a_1, a_2, ..., a_n)$ é chamada vetor-coordenada de v em relação à base B, e o vetor-coluna

é chamado matriz-coordenada de v em relação à base B.

Exemplo

No IR2, consideremos as bases

$$A = \{(1,0),(0,1)\}, B = \{(2,0),(1,3)\} \in C = \{(1,-3),(2,4)\}$$

Dado o vetor v = (8, 6), tem-se:

$$(8, 6) = 8(1,0) + 6(0, 1)$$

$$(8, 6) = 3(2, 0) + 2(1, 3)$$

$$(8, 6) = 2(1, -3) + 3(2, 4)$$

Com a notação acima, escrevemos:

$$v_A = (8, 6)$$
 $v_B = (3, 2)$ $v_C = (2, 3)$

O gráfico da página seguinte mostra a representação do vetor v = (8,6) em relação às bases A e B.

Observação

No decorrer do estudo de Álgebra Linear temos, às vezes, a necessidade de identificar rapidamente a dimensão de um espaço vetorial. E, uma vez conhecida a dimensão, obtém-se facilmente uma base desse espaço.

Uma forma prática para determinar a dimensão de um espaço vetorial é verificar o número de variáveis livres de seu vetor genérico. Esse número é a dimensão do espaço.

Exemplo

Determinar a dimensão e uma base do espaço vetorial

$$S = \{(x, y, z) \in \mathbb{R}^3 / 2x + y + z = 0\}$$

Solução

Isolando z (poderíamos também isolar x ou y) na equação de definição, tem-se.

$$z = -2x - y$$

onde x e y são as variáveis livres.

Qualquer vetor $(x, y, z) \in S$ tem a forma:

$$(x, y, -2x - y)$$

e, portanto, podemos escrever:

$$(x, y, z) = (x, y, -2x - y)$$

ou:

$$(x, y, z) = (x, 0, -2x) + (0, y, -y)$$

ou:

$$(x, y, z) = x(1, 0, -2) + y(0, 1, -1)$$
(1)

isto é, todo vetor de S é combinação linear dos vetores (1,0,-2) e (0,1,-1). Como esses dois vetores geradores de S são Ll, o conjunto $\{(1,0,-2),(0,1,-1)\}$ é uma base de S e, consequentemente, dim S = 2.

Por outro lado, tendo em vista que a cada variável livre corresponde um vetor da base na igualdade (1), conclui-se que o número de variáveis livres é a dimensão do espaço.

Na prática podemos adotar uma maior simplificação para determinar uma base de um espaço. Para esse mesmo espaço vetorial S, onde z = -2x - y, temos:

fazendo
$$x = 1$$
 e $y = 1$, vem $z = -2(1) - 1 = -3$ \therefore $v_1 = (1, 1, -3)$
fazendo $x = -1$ e $y = 2$, vem $z = -2(-1) - 2 = 0$ \therefore $v_2 = (-1, 2, 0)$

e o conjunto

$$\{(1,1,-3),(-1,2,0)\}$$

é outra base de S. Na verdade, esse espaço S tem infinitas bases, porém todas elas com dois vetores.

2.8.8 Problemas Resolvidos

14) Sejam os vetores $v_1 = (1, 2, 3), v_2 = (0, 1, 2)$ e $v_3 = (0, 0, 1)$. Mostrar que o conjunto $B = \{v_1, v_2, v_3\}$ é uma base do \mathbb{R}^3 .

Solução

Para provar que B é LI, deve-se mostrar que

$$a_1v_1 + a_2v_2 + a_3v_3 = 0$$

admite somente a solução $a_1 = a_2 = a_3 = 0$.

Com efeito.

$$a_1(1, 2, 3) + a_2(0, 1, 2) + a_3(0, 0, 1) = (0, 0, 0)$$

equivale ao sistema:

$$\begin{cases} a_1 & = 0 \\ 2a_1 + a_2 & = 0 \\ 3a_1 + 2a_2 + a_3 & = 0 \end{cases}$$

cuja única solução é a trivial:

$$a_1 = a_2 = a_3 = 0$$

Logo, B é Ll.

Para mostrar que B gera o \mathbb{R}^3 , deve-se mostrar que qualquer vetor $v = (x, y, z) \in \mathbb{R}^3$ pode ser expresso como uma combinação linear dos vetores de B:

$$v = a_1 v_1 + a_2 v_2 + a_3 v_3$$

Em termos de componentes, tem-se

$$(x, y, z) = a_1(1, 2, 3) + a_2(0, 1, 2) + a_3(0, 0, 1)$$

ou:

$$\begin{cases} a_1 &= x \\ 2a_1 + a_2 &= y \\ 3a_1 + 2a_2 + a_2 &= z \end{cases}$$

sistema esse que admite solução para quaisquer valores de x, y, z, ou seja, todo vetor v = (x, y, z) é combinação linear dos vetores de B. Resolvendo o sistema encontramos:

$$a_1 = x$$
, $a_2 = -2x + y$, $a_3 = x - 2y + z$

isto é:

$$(x, y, z) = x(1, 2, 3) + (-2x + y)(0, 1, 2) + (x - 2y + z)(0, 0, 1)$$

Satisfeitas as duas condições de base, mostramos que B é base do R3.

15) No problema anterior mostramos que:

$$B = \{(1, 2, 3), (0, 1, 2), (0, 0, 1)\}$$

é uma base do IR3.

- a) Determinar o vetor-coordenada e a matriz-coordenada de v = (5, 4, 2) em relação a B.
- b) Determinar o vetor $v \in \mathbb{R}^3$ cujo vetor-coordenada em relação a B é $v_B = (2, -3, 4)$.

Solução

a) Devernos encontrar escalares a_1, a_2, a_3 tais que:

$$(5, 4, 2) = a_1(1, 2, 3) + a_2(0, 1, 2) + a_3(0, 0, 1)$$

out:

$$\begin{cases} a_1 & = 5 \\ 2a_1 + a_2 & = 4 \\ 3a_1 + 2a_2 + a_3 & = 2 \end{cases}$$

Resolvendo o sistema, obtém-se

$$a_1 = 5$$
, $a_2 = -6$ e $a_3 = -1$

Portanto.

$$v_{B} = (5, -6, -1)$$
 e $v_{B} = \begin{bmatrix} 5 \\ -6 \\ -1 \end{bmatrix}$

Se tivéssemos aproveitado o resultado do problema anterior, onde:

$$(x, y, z) = x(1, 2, 3) + (-2x + y)(0, 1, 2) + (x - 2y + z)(0, 0, 1)$$

teríamos imediatamente:

$$(5, 4, 2) = 5(1, 2, 3) - 6(0, 1, 2) - 1(0, 0, 1)$$

pois, nesse caso:

$$x = 5$$
 $-2x + y = -2(5) + 4 = -6$
 $x - 2y + z = 5 - 2(4) + 2 = -1$

b) Por definição de vetor-coordenada $v_B = (2, -3, 4)$, obtém-se:

$$v = 2(1, 2, 3) - 3(0, 1, 2) + 4(0, 0, 1) = (2, 1, 4)$$

Observemos que em relação à base canônica

$$A = \{(1,0,0), (0,1,0), (0,0,1)\}$$

tem-se:

$$v = v_A$$

pois:

$$v = (2, 1, 4) = 2(1, 0, 0) + 1(0, 1, 0) + 4(0, 0, 1)$$

16) Consideremos os seguintes subespaços do IR4:

$$S_1 = \{ (a, b, c, d)/a + b + c = 0 \} e$$

$$S_2 = \{ (a, b, c, d)/a - 2b = 0 \ e \ c = 3d \}$$

Determinar:

- a) dim S₁ e uma base de S₁.
- b) dim S_2 e uma base de S_2 .

Solução

a) A condição:

$$a + b + c = 0$$

é equivalente a:

$$a = -b - c$$

Portanto, as variáveis livres são b, c e d. Logo, dim $S_1 = 3$, e qualquer subconjunto de S_1 com três vetores LI forma uma base de S_1 . Façamos

- (1) b = 1, c = 0, d = 0
- (2) b = 0, c = 1, d = 0
- (3) b = 0, c = 0, d = 1

para obter os vetores:

$$v_1 = (-1, 1, 0, 0), v_2 = (-1, 0, 1, 0), v_3 = (0, 0, 0, 1)$$

O conjunto $\{v_1, v_2, v_3\}$ é uma base de S_1 .

- b) Um vetor $(a, b, c, d) \in S_2$ se a = 2b e c = 3d. As variáveis livres são b e d. Logo. dim $S_2 = 2$, e qualquer subconjunto de S_2 com dois vetores LI forma uma base desse espaço. Façamos:
 - (1) b = 1, d = 0 e
 - (2) b = 0, d = 1

para obter os vetores

$$v_1 = (2, 1, 0, 0)$$
 e $v_2 = (0, 0, 3, 1)$

O conjunto $\{v_1, v_2\}$ é uma base de S_2 .

17) Seja S o subespaço de $P_2 = \{at^2 + bt + c/a, b, c \in \mathbb{R}\}$ gerado pelos vetores $v_1 = t^2 - 2t + 1$, $v_2 = t + 2$ e $v_3 = t^2 - 3t - 1$.

Determinar:

- a) Uma base de S e dim S.
- b) Uma base de P2 com a presença de v1 e v2.

Solução

a) Para facilitar a notação, observemos que os vetores v_1 , v_2 e v_3 em relação à base canônica $A = \{t^2, t, 1\}$ de P_2 são:

$$(v_1)_A = (1, -2, 1), (v_2)_A = (0, 1, 2) e (v_3)_A = (1, -3, -1)$$

Vejamos se esses vetores são LI ou LD. Para tanto, examinemos a igualdade

$$a_1v_1 + a_2v_2 + a_3v_3 = 0$$

ou:

$$a_1(1, -2, 1) + a_2(0, 1, 2) + a_3(1, -3, -1) = (0, 0, 0)$$

ou, ainda:

$$\begin{cases} a_1 + a_3 = 0 \\ -2a_1 + a_2 - 3a_3 = 0 \\ a_1 + 2a_2 - a_3 = 0 \end{cases}$$

sistema que admite soluções $a_i \neq 0$.

Logo, os vetores v_1, v_2 e v_3 são LD e, portanto, o conjunto $\{v_1, v_2, v_3\}$ não é base de S, isto é, dim $S \neq 3$.

Observando que o conjunto $\{v_1, v_2\}$ é LI (pois nenhum vetor é múltiplo escalar do outro), ele constitui uma base de S. Logo, dim S = 2.

b) Tendo em vista que dim $P_2 = 3$, precisamos acrescentar um vetor v ao conjunto $\{v_1, v_2\}$ de modo que $v \neq a_1 v_1 + a_2 v_2$. Um deles é o vetor $v = t^2$ ou $(v)_A = (1, 0, 0)$. (verificação a cargo do leitor).

Logo, o conjunto:

$$\{t^2-2t+1, t+2, t^2\}$$

é uma base de P2.

18) Determinar uma base e a dimensão do espaço-solução do sistema homogêneo

$$\begin{cases} x + 2y - 4z + 3t = 0 \\ x + 2y - 2z + 2t = 0 \\ 2x + 4y - 2z + 3t = 0 \end{cases}$$

Solução

O conjunto-solução do sistema é:

$$S = \{ (x, y, z, t)/t = 2z \ e \ x = -2y - 2z \}$$

que é um subespaço vetorial do IR4.

Tendo em vista serem duas as variáveis livres (y e z), conclui-se que dim S = 2. Logo, qualquer subconjunto de S com dois vetores LI forma uma base de S. Façamos

- (1) y = 1, z = 0
- (2) y = 0, z = 1

para obter os vetores

$$v_1 = (-2, 1, 0, 0)$$
 e $v_2 = (-2, 0, 1, 2)$

O conjunto {v₁, v₂} é uma base de S.

2.9 ESPAÇOS VETORIAIS ISOMORFOS

Consideremos o espaço vetorial

$$V = P_3 = \{ at^3 + bt^2 + ct + d/a, b, c, d \in \mathbb{R} \}$$

e seja $B = \{v_1, v_2, v_3, v_4\}$ uma base de P_3 . Fixada uma base, para cada vetor $v \in P_3$, existe uma só quádrupla $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$ tal que:

$$v = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4$$

Reciprocamente, dada uma quádrupla $(a_1,a_2,a_3,a_4) \in IR^4$, existe um só vetor em \dot{P}_3 da forma:

$$a_1 v_1 + ... + a_4 v_4$$

Assim sendo, a base $B = \{v_1, ..., v_4\}$ determina uma correspondência biunívoca entre os vetores de P_3 e as quádruplas $(a_1, ..., a_4)$ em \mathbb{R}^4 .

Observemos ainda que:

a) Se $v = a_1v_1 + ... + a_4v_4 \in P_3$ corresponde a $(a_1, ..., a_4) \in \mathbb{R}^4$ e $w = b_1v_1 + ... + b_4v_4 \in P_3$ corresponde a $(b_1, ..., b_4) \in \mathbb{R}^4$ então:

$$v + w = (a_1 + b_1) v_1 + ... + (a_4 + b_4) v_4 \in P_3$$

corresponde a

$$(a_1 + b_1, ..., a_4 + b_4) \in \mathbb{R}^4$$

b) Para $k \in \mathbb{R}$,

$$kv = (ka_1)v_1 + ... + (ka_4)v_4 \in P_3$$

corresponde a

$$(ka_1, ..., ka_4) \in \mathbb{R}^4.$$

Assim, quando os vetores de P_3 são representados como combinação linear dos vetores da base $B = \{v_1, v_2, v_3, v_4\}$, a adição de vetores e a multiplicação por escalar se "comportam" exatamente da mesma forma como se fossem quádruplas do \mathbb{R}^4 .

Em outras palavras diríamos que a correspondência biunívoca entre P₃ e IR⁴ preserva as operações de adição de vetores e multiplicação por escalar, isto é:

$$(\mathbf{v} + \mathbf{w})_{\mathbf{R}} = \mathbf{v}_{\mathbf{R}} + \mathbf{w}_{\mathbf{R}} - \mathbf{e} - (\mathbf{k}\mathbf{v})_{\mathbf{R}} = \mathbf{k}(\mathbf{v}_{\mathbf{R}})$$

e, nesse caso, dizemos que os espaços P₃ e IR⁴ são isomorfos.

Observemos ainda que o espaço vetorial M(2, 2) é também isomorfo ao \mathbb{R}^4 .

De forma análoga, prova-se que

 P_2 é isomorfo a \mathbb{R}^3

M(3,1) é isomorfo a \mathbb{R}^3

M(2,1) é isomorfo a \mathbb{R}^2

e assim por diante

De um modo geral, tem-se:

"Se V é um espaço vetorial sobre IR e dim V = n, então V e IRⁿ são isomorfos."

2.10 PROBLEMAS PROPOSTOS

Nos problemas 1 a 7 apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para aqueles que não são espaços vetoriais, citar os axiomas que não se verificam.

1)
$$\mathbb{R}^3$$
, $(x, y, z) + (x', y', z') = (x + x', y + y', z + z')$
 $k(x, y, z) = (0, 0, 0)$

2) $\{(x, 2x, 3x); x \in \mathbb{R}\}\$ com as operações usuais

3)
$$\mathbb{R}^2$$
, $(a, b) + (c, d) = (a, b) e $\alpha(a, b) = (\alpha a, \alpha b)$$

4)
$$\mathbb{R}^2$$
, $(x, y) + (x', y') = (x + x', y + y') e $\alpha(x, y) = (\alpha^2 x, \alpha^2 y)$$

5)
$$\mathbb{R}^2$$
, $(x, y) + (x', y') = (x + x', y + y') e $\alpha(x, y) = (\alpha x, 0)$$

6) A =
$$\{(x, y) \in \mathbb{R}^2/y = 5x\}$$
 com as operações usuais

7)
$$A = \left\{ \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \in M(2, 2)/a, b \in \mathbb{R} \right\} \text{ com as operações usuais}$$

Nos problemas 8 a 13 são apresentados subconjuntos de IR². Verificar quais deles são subespaços vetoriais do IR² relativamente às operações de adição e multiplicação por escalar usuais.

8)
$$S = \{(x, y)/y = -x\}$$

9)
$$S = \{(x, x^2); x \in \mathbb{R}\}$$

10)
$$S = \{ (x, y)/x + 3y = 0 \}$$

11)
$$S = \{(y, y); y \in \mathbb{R}\}$$

12)
$$S = \{(x, y)/y = x + 1\}$$

13)
$$S = \{(x, y)/x \ge 0\}$$

Nos problemas 14 a 25 são apresentados subconjuntos de IR³. Verificar quais são seus subespaços em relação às operações de adição e multiplicação por escalar usuais. Para os que são subespaços, mostrar que as duas condições estão satisfeitas. Caso contrário, citar um contra-exemplo.

14)
$$S = \{(x, y, z)/x = 4y \ e \ z = 0\}$$

15)
$$S = \{(x, y, z)/z = 2x - y\}$$

16)
$$S = \{ (x, y, z)/x = z^2 \}$$

17)
$$S = \{(x, y, z)/y = x + 2 e z = 0\}$$

18)
$$S = \{(x, x, x); x \in \mathbb{R}\}$$

19)
$$S = \{(x, x, 0)/x \in \mathbb{R}\}$$

20)
$$S = \{(x, y, z)/xy = 0\}$$

21)
$$S = \{ (x, y, z)/x = 0 \text{ e } y = |z| \}$$

22)
$$S = \{ (x, -3x, 4x); x \in \mathbb{R} \}$$

23)
$$S = \{ (x, y, z)/x \ge 0 \}$$

24)
$$S = \{ (x, y, z)/x + y + z = 0 \}$$

25)
$$S = \{ (4t, 2t, -t); t \in \mathbb{R} \}$$

26) Verificar se os subconjuntos abaixo são subespaços de M(2, 2):

a)
$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; c = a + b e d = 0 \right\}$$

b)
$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}; a, b, c \in \mathbb{R} \right\}$$
 (matrizes triangulares superiores)

c)
$$S = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix}; a, b, c \in \mathbb{R} \right\}$$
 (matrizes simétricas)

d)
$$S = \left\{ \begin{bmatrix} a & a+b \\ & & \\ a-b & b \end{bmatrix}; a,b \in \mathbb{R} \right\}$$

e)
$$S = \left\{ \begin{bmatrix} a & 1 \\ & \\ a & b \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

f)
$$S = \begin{cases} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
; ad - bc $\neq 0$ (conjunto de matrizes inversíveis)

- 27) Sejam os vetores u = (2, -3, 2) e v = (-1, 2, 4) em \mathbb{R}^3 .
 - a) Escrever o vetor w = (7, -11, 2) como combinação linear de u = v.
 - b) Para que valor de k o vetor (-8, 14, k) é combinação linear de u e v?
 - c) Determinar uma condição entre a, b e c para que o vetor (a, b, c) seja uma combinação linear de u e v.
- 28) Consideremos no espaço $P_2 = \{at^2 + bt + c/a, b, c \in \mathbb{R}\}$ os vetores $p_1 = t^2 2t + 1$, $p_2 = t + 2$ e $p_3 = 2t^2 t$.
 - a) Escrever o vetor $p = 5t^2 5t + 7$ como combinação linear de p_1 , p_2 e p_3 .
 - b) Escrever o vetor $p = 5t^2 5t + 7$ como combinação linear de p_1 e p_2 .
 - c) Determinar uma condição para a, b e c de modo que o vetor at² + bt + c seja combinação linear de p₂ e p₃.
 - d) É possível escrever p₁ como combinação linear de p₂ e p₃?
- 29) Seja o espaço vetorial M(2, 2) e os vetores

$$\mathbf{v_1} = \begin{bmatrix} 1 & 0 \\ & & \\ 1 & 1 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} -1 & 2 \\ & & \\ 0 & 1 \end{bmatrix} \mathbf{e} \quad \mathbf{v_3} = \begin{bmatrix} 0 & -1 \\ & & \\ 2 & & 1 \end{bmatrix}$$

Escrever o vetor

$$\mathbf{v} = \begin{bmatrix} 1 & 8 \\ 0 & 5 \end{bmatrix}$$

como combinação linear dos vetores v1, v2 e v3.

- 30) Escrever o vetor $0 \in \mathbb{R}^2$ como combinação linear dos vetores
 - a) $v_1 = (1, 3)$ e $v_2 = (2, 6)$
 - b) $v_1 = (1, 3)$ e $v_2 = (2, 5)$
- Sejam os vetores $v_1 = (-1, 2, 1)$, $v_2 = (1, 0, 2)$ e $v_3 = (-2, -1, 0)$. Expressar cada um dos vetores u = (-8, 4, 1), v = (0, 2, 3) e w = (0, 0, 0) como combinação linear de v_1 , v_2 e v_3 .
- 32) Expressar o vetor $u = (-1, 4, -4, 6) \in \mathbb{R}^4$ como combinação linear dos vetores $v_1 = (3, -3, 1, 0), v_2 = (0, 1, -1, 2)$ e $v_3 = (1, -1, 0, 0).$
- 33) Seja S o subespaço do IR4 definido por:

$$S = \{(x, y, z, t) \in \mathbb{R}^4 / x + 2y - z = 0 \ e \ t = 0\}$$

Pergunta-se:

- a) $(-1, 2, 3, 0) \in S$?
- b) $(3, 1, 4, 0) \in S$?
- c) $(-1, 1, 1, 1) \in S$?
- 34) Seja S o subespaço de M(2, 2):

$$S = \left\{ \begin{bmatrix} a - b & 2a \\ & & \\ a + b & -b \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

Pergunta-se:

$$\begin{bmatrix} 5 & 6 \\ 1 & 2 \end{bmatrix} \in S?$$

b) Qual deve ser o valor de k para que o vetor

pertença a S?

35) Determinar os subespaços do \mathbb{R}^3 gerados pelos seguintes conjuntos:

a)
$$A = \{(2, -1, 3)\}$$

b)
$$A = \{(-1, 3, 2), (2, -2, 1)\}$$

c)
$$A = \{(1, 0, 1), (0, 1, 1), (-1, 1, 0)\}$$

d)
$$A = \{(-1, 1, 0), (0, 1, -2), (-2, 3, 1)\}$$

e)
$$A = \{(1, 2, -1), (-1, 1, 0), (-3, 0, 1), (-2, -1, 1)\}$$

f)
$$A = \{(1, 2, -1), (-1, 1, 0), (0, 0, 2), (-2, 1, 0)\}$$

36) Seja o conjunto $A = \{v_1, v_2\}$, sendo $v_1 = (-1, 3, -1)$ e $v_2 = (1, -2, 4)$.

Determinar:

- a) O subespaço G(A).
- b) O valor de k para que o vetor v = (5, k, 11) pertença a G(A).
- 37) Sejam os vetores $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 0)$ e $v_3 = (1, 3, -1)$. Se $(3, -1, k) \in [v_1, v_2, v_3]$, qual o valor de k?

- 38) Determinar os subespaços de P₂ (espaço vetorial dos polinômios de grau ≤2) gerados pelos seguintes vetores:
 - a) $p_1 = 2x + 2$, $p_2 = -x^2 + x + 3$ e $p_3 = x^2 + 2x$
 - b) $p_1 = x^2$, $p_2 = x^2 + x$
 - c) $p_1 = 1$, $p_2 = x$, $p_3 = x^2$
- Determinar o subespaço G(A) para $A = \{(1, -2), (-2, 4)\}$. O que representa geometricacamente esse subespaço?
- 40) Mostrar que os vetores $v_1 = (2, 1)$ e $v_2 = (1, 1)$ geram o \mathbb{R}^2 .
- 41) Mostrar que os vetores $v_1 = (1, 1, 1)$, $v_2 = (0, 1, 1)$ e $v_3 = (0, 0, 1)$ geram o \mathbb{R}^3 .
- 42) Seja o espaço vetorial M(2, 2). Determinar seus subespaços gerados pelos vetores

a)
$$v_1 = \begin{bmatrix} -1 & 2 \\ & & \\ 1 & 0 \end{bmatrix}$$
 $e \ v_2 = \begin{bmatrix} 2 & 1 \\ & & \\ -1 & -1 \end{bmatrix}$

b)
$$v_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ e $v_3 = \begin{bmatrix} .0 & 1 \\ 1 & 0 \end{bmatrix}$

- Determinar o subespaço de P_3 (espaço dos polinômios de grau ≤ 3) gerado pelos vetores $p_1 = x^3 + 2x^2 x + 3$ e $p_2 = -2x^3 + x^2 + 3x + 2$.
- 44) Determinar o subespaço de \mathbb{R}^4 gerado pelos vetores u = (2, -1, 1, 4), v = (3, 3, -3, 6) e w = (0, 4, -4, 0).
- Verificar se o vetor v = (-1, -3, 2, 0) pertence ao subespaço do \mathbb{R}^4 gerado pelos vetores $v_1 = (2, -1, 3, 0)$, $v_2 = (1, 0, 1, 0)$ e $v_3 = (0, 1, -1, 0)$.
- 46) Classificar os seguintes subconjuntos do IR² em LI ou LD:
 - a) $\{(1,3)\}$

- b) $\{(1,3),(2,6)\}$
- c) $\{(2,-1),(3,5)\}$
- d) $\{(1,0),(-1,1),(3,5)\}$
- 47) Classificar os seguintes subconjuntos do IR³ em Ll ou LD:
 - a) $\{(2, -1, 3)\}$
 - b) $\{(1,-1,1),(-1,1,1)\}$
 - c) $\{(2,-1,0),(-1,3,0),(3,5,0)\}$
 - d) $\{(2,1,3),(0,0,0),(1,5,2)\}$
 - e) $\{(1, 2, -1), (2, 4, -2), (1, 3, 0)\}$
 - f) $\{(1,-1,-2), (2,1,1), (-1,0,3)\}$
 - g) $\{(1, 2, -1), (1, 0, 0), (0, 1, 2), (3, -1, 2)\}$
- 48) Quais dos seguintes ∞njuntos de vetores pertencentes ao P₂ são LD?
 - a) $2 + x x^2$, $-4 x + 4x^2$, $x + 2x^2$
 - b) $1 x + 2x^2$, $x x^2$, x^2
 - c) $1 + 3x + x^2$, $2 x x^2$, $1 + 2x 3x^2$, $-2 + x + 3x^2$
 - d) $x^2 x + 1$, $x^2 + 2x$
- 49) Quais dos seguintes conjuntos de vetores do IR4 são LD?
 - a) (2, 1, 0, 0), (1, 0, 2, 1), (-1, 2, 0, -1)
 - b) (0, 1, 0, -1), (1, 1, 1, 1), (-1, 2, 0, 1), (1, 2, 1, 0)
 - c) (1, -1, 0, 0), (0, 1, 0, 0), (0, 0, 1, -1), (1, 2, 1, -2)
 - d) (1, 1, 2, 4), (1, -1, -4, 2), (0, -1, -3, 1), (2, 1, 1, 5)

50) Sendo V o espaço vetorial das matrizes 2 × 3, verificar se {A, B, C} é LI ou LD, sendo

$$A = \begin{bmatrix} -1 & 2 & 1 \\ & & \\ 3 & -2 & 4 \end{bmatrix}, B = \begin{bmatrix} 0 & -1 & 2 \\ & & \\ -2 & 1 & 0 \end{bmatrix} e C = \begin{bmatrix} -1 & 0 & 5 \\ & & \\ -1 & 0 & 3 \end{bmatrix}$$

51) Determinar o valor de k para que seja Ll o conjunto

$$\{(-1,0,2),(1,1,1),(k,-2,0)\}$$

52) Determinar k para que

$$\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ k & 0 \end{bmatrix} \right\}$$

seja LD.

- 53) Mostrar que são LD os vetores $v_1, v_2 \in v_3$, com $v_1 \in v_2$ vetores arbitrários de um espaço vetorial $V \in v_3 = 2v_1 v_2$.
- 54) Mostrar que se u, v e w são Ll, então u + v, u + w e v + w são também Ll.
- Sendo $v_1 = (1, 2) \in \mathbb{R}^2$, determinar $v_2 \in \mathbb{R}^2$ tal que $\{v_1, v_2\}$ seja base de \mathbb{R}^2 .
- 56) Verificar quais dos seguintes conjuntos de vetores formam base do R²:
 - a) $\{(1,2,),(-1,3)\}$
- c) $\{(0,0),(2,3)\}$
- b) { (3, -6), (-4, 8) }
- d) $\{(3,-1),(2,3)\}$
- Para que valores de k o conjunto $\beta = \{(1, k), (k, 4)\}$ é base do \mathbb{R}^2 ?
- 58) O conjunto $\beta = \{(2, -1), (-3, 2)\}$ é uma base do \mathbb{R}^2 . Escrever o vetor genérico do \mathbb{R}^2 como combinação linear de β .

59) Quais dos seguintes conjuntos de vetores formam uma base do IR3?

- a) (1, 1, -1), (2, -1, 0), (3, 2, 0)
- b) (1,0,1), (0,-1,2), (-2,1,-4)
- c) (2, 1, -1), (-1, 0, 1), (0, 0, 1)
- (1, 2, 3), (4, 1, 2)
- e) (0, -1, 2), (2, 1, 3), (-1, 0, 1), (4, -1, -2)

60) Quais dos seguintes conjuntos de vetores formam base de P2?

- a) $2t^2 + t 4$, $t^2 3t + 1$
- b) $1, t, t^2$
- c) $2, 1 x, 1 + x^2$
- d) $1 + x + x^2$, $x + x^2$, x^2
- e) 1 + x, $x x^2$, $1 + 2x x^2$

61) Mostrar que o conjunto

$$\left\{ \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} -3 & -2 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} \right\}$$

é uma base de M(2, 2).

62) Mostrar que o conjunto

 $\{(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 3), (0, 0, 0, 5)\}$

é base do IR4.

63) O conjunto

$$A = \{t^3, 2t^2 - t + 3, t^3 - 3t^2 + 4t - 1\}$$

é base de P₃? Justificar.

- Mostrar que os vetores $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 3)$, $v_3 = (3, 0, 2)$ e $v_4 = (2, -1, 1)$ geram 64) o IR3 e encontrar uma base dentre os vetores v₁, v₂, v₃ e v₄.
- Mostrar que os polinômios $p_1 = 1 + 2x 3x^2$, $p_2 = 1 3x + 2x^2$ e $p_3 = 2 x + 5x^2$ formam 65) uma base do espaço dos polinômios de grau ≤ 2 e calcular o vetor-coordenada de $p = -2 - 9x - 13x^2$ na base $\beta = \{p_1, p_2, p_3\}$.
- 66) Determinar uma base do subespaço do IR4 gerado pelos vetores v₁ = (1, -1, 0, 0), $v_2 = (-2, 2, 2, 1), v_3 = (-1, 1, 2, 1)$ e $v_4 = (0, 0, 4, 2).$
- Seja $V = \mathbb{R}^3$ e o conjunto 67)

$$\mathbf{B} = \{(0, 1, 1), (1, 1, 0), (1, 2, 1)\} \subset \mathbb{R}^3$$

- a) Mostrar que B não é base do IR3.
- b) Determinar uma base do IR³ que possua dois elementos de B.
- 68) Determinar o vetor coordenada de v = (6, 2) em relação às seguintes bases:

$$\alpha = \{ (3,0), (0,2) \}$$

$$\gamma = \{(1,0),(0,1)\}$$

$$\beta = \{(1, 2), (2, 1)\}$$

$$\delta = \{ (0,1), (1,0) \}$$

- 69) No espaço vetorial \mathbb{R}^3 , consideremos a seguinte base: $B = \{(1, 0, 0), (0, 1, 0), (1, -1, 1)\}$. Determinar o vetor coordenada de $v \in \mathbb{R}^3$ em relação à base B se:

 - a) v = (2, -3, 4), b) v = (3, 5, 6), c) v = (1, -1, 1)
- Seja A = $\{3, 2x, -x^2\}$ uma base de P_2 . Determinar o vetor-coordenada de $v = 6 4x + 3x^2$ 70) em relação à base A.

- 71) Sejam os vetores $v_1 = (1, 0, -1)$, $v_2 = (1, 2, 1)$ e $v_3 = (0, -1, 0)$ do \mathbb{R}^3 .
 - a) Mostrar que $B = \{v_1, v_2, v_3\}$ é base do \mathbb{R}^3 .
 - b) Escrever $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$ como combinação linear dos vetores da base B.
- 72) Determinar a dimensão e uma base para cada um dos seguintes espaços vetoriais:
 - a) $\{(x, y, z) \in \mathbb{R}^3 / y = 3x \}$
 - b) $\{(x, y, z) \in \mathbb{R}^3 / y = 5x \ e \ z = 0\}$
 - c) $\{(x, y) \in \mathbb{R}^2 / x + y = 0\}$
 - d) $\{(x, y, z) \in \mathbb{R}^3 / x = 3y \ e \ z = -y\}$
 - e) $\{(x, y, z) \in \mathbb{R}^3/2x y + 3z = 0\}$
 - f) $\{(x, y, z) \in \mathbb{R}^3 / z = 0\}$
- 73) Determinar a dimensão e uma base para cada um dos seguintes subespaços vetoriais de M(2, 2):

a)
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = a + c e d = c \right\}$$

$$b) \left\{ \begin{bmatrix} a & b \\ & \\ c & d \end{bmatrix}; b = a + c \right\}$$

c)
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; c = a - 3b \ e \ d = 0 \right\}$$

d)
$$\left\{ \begin{array}{cc} \begin{bmatrix} a & b \\ & \\ c & d \end{bmatrix}; \quad a+d=b+c \end{array} \right\}$$

74) Seja o subespaço S de M(2, 2):

$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / c = a + b \quad e \quad d = a \right\}$$

- a) Qual a dimensão de S?
- b) O conjunto

$$\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \right\}$$

é uma base de S? Justificar.

75) Encontrar uma base e a dimensão do espaço-solução dos sistemas:

a)
$$\begin{cases} x + 2y - 2z - t = 0 \\ 2x + 4y + z + t = 0 \\ x + 2y + 3z + 2t = 0 \end{cases}$$

b)
$$\begin{cases} x + 2y - z + 3t = 0 \\ 2x - y + z - t = 0 \\ 4x + 3y - z + 5t = 0 \end{cases}$$

c)
$$\begin{cases} x - 2y - z = 0 \\ 2x + y + 3z = 0 \\ x + 3y + 4z = 0 \end{cases}$$

d)
$$\begin{cases} 2x + 2y - 3z = 0 \\ x - y - z = 0 \\ 3x + 2y + z = 0 \end{cases}$$

e)
$$\begin{cases} x + y - 2z + t = 0 \\ 2x + 2y - 4z + 2t = 0 \end{cases}$$

2.10.1 Respostas de Problemas Propostos

- 1. Não é espaço vetorial. Falha o axioma M4
- 2. O conjunto é um espaço vetorial
- 3. Não é espaço vetorial. Falham os axiomas A_2 , A_3 e A_4
- 4. Não é espaço vetorial. Falha o axioma M2
- 5. Não é espaço vetorial. Falha o axioma M4
- 6. O conjunto é um espaço vetorial
- 7. O conjunto é um espaço vetorial
- 8. S é subespaço
- 9. S não é subespaço
- 10. É
- 11. É
- 12. **N**ão é
- 13. Não é
- 14. É
- 15. É
- 16. Não é

- 17. Não é
- 18. É
- 19. É
- 20. Não é
- 21. Não é
- 22. É
- 23. Não é
- 24. É
- 25. É
- 26. São subespaços: a), b), c), d)
- 27. a) w = 3u v
 - b) k = 12
 - c) 16a + 10b c = 0
- 28. a) $p = 3p_1 + 2p_2 + p_3$
 - b) impossível
 - c) a + 2b c = 0
 - d) não é possível
- 29. $v = 4v_1 + 3v_2 2v_3$
- 30. a) $0 = -2v_1 + v_2$
 - b) $0 = 0v_1 + 0v_2$
- 31. $u = 3v_1 v_2 + 2v_3$
 - $\mathbf{v} = \mathbf{v_1} + \mathbf{v_2}$
 - $w = 0v_1 + 0v_2 + 0v_3$

32.
$$v = -v_1 + 3v_2 + 2v_3$$

- 33. a) sim
- b) não
- c) não

- 34. a) sim
- b) k = -2
- 35. a) $\{(x, y, z) \in \mathbb{R}^3 / x = -2y \ e \ z = -3y \}$
 - b) $\{(x, y, z) \in \mathbb{R}^3 / 7x + 5y 4z = 0\}$
 - c) $\{(x, y, z) \in \mathbb{R}^3 / x + y z = 0\}$
 - d) IR^3
 - e) $\{(x, y, z) \in \mathbb{R}^3 / x + y + 3z = 0\}$
 - f) \mathbb{R}^3
- 36. a) $G(A) = \{(x, y, z) \in IR^3/10x + 3y z = 0\}$
 - b) k = -13
- 37. k = 7
- 38. a) $\{ax^2 + bx + c/b = 2a + c\}$
 - b) $\{ax^2 + bx/a, b \in \mathbb{R}\}$
 - c) P₂
- 39. $\{(x, y) \in \mathbb{R}^2 / y = -2x \}$

Representa uma reta que passa pela origem.

- 40. (x, y) = (x y)(2, 1) + (-x + 2y)(1, 1)
- 41. $(x, y, z) = xv_1 + (y x)v_2 + (z y)v_3$
- 42. a) $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = -2a 5d e c = -a d \right\}$

b)
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a+b-c+d=0 \right\}$$

43.
$$\{ax^3 + bx^2 + cx + d/b = 5a + 3c \mid e \mid d = 11a + 8c\}$$

44.
$$\{(x, y, z, t)/2x - t = 0 \text{ e } y + z = 0\}$$

- 45. Pertence.
- 46. a) LI
- b) LD
- c) Ll
- d) LD

- 47. a) LI
- b) Li
- c) LD
- d) LD

- e) LD
- f) Li
- g) LD

- 48. a, c
- 49. b, d
- 50. LI
- 51. $k \neq -3$
- 52. k = 3
- 55. $v_2 \neq kv_1$, $\forall k \in \mathbb{R}$
- 56. a, d
- 57. $k \neq \pm 2$
- 58. (x, y) = (2x + 3y)(2, -1) + (x + 2y)(-3, 2)
- 59. a), c)
- 60. b), c), d)

- 63. Não. $G(A) \neq \mathbb{R}^3$.
- 64. Base: $\{v_1, v_2, v_3\}$
- 65. $p_{\beta} = (1, 5, -4)$
- 66. Uma base: $\{v_1, v_2\}$.
- 67. Uma base: { (0, 1, 1), (1, 1, 0), (0, 0, 1) }
- 68. $v_{\alpha} = (2, 1), \quad v_{\beta} = (-\frac{2}{3}, \frac{10}{3})$ $v_{\gamma} = (6, 2), \quad v_{\delta} = (2, 6)$
- 69. a) $v_{R} = (-2, 1, 4)$
 - b) $v_R = (-3, 11, 6)$
 - c) $v_{R} = (0, 0, 1)$
- 70. $\mathbf{v}_{\mathbf{A}} = (2, -2, -3)$
- 71. a) B é Ll e $V(x, y, z) \in \mathbb{R}^3$

$$(x, y, z) = \frac{x-z}{2} v_1 + \frac{x+z}{2} v_2 + (x-y+z) v_3$$

b)
$$e_1 = \frac{1}{2}v_1 + \frac{1}{2}v_2 + v_3$$

$$e_2 = -v_3$$

$$e_3 = -\frac{1}{2}v_1 + \frac{1}{2}v_2 + v_3$$

- 72. a) dim: 2
- d) dim: 1
- b) dim: 1
- e) dim: 2
- c) dim: 1
- f) dim: 2

As bases ficarão a cargo do leitor.

- 73. a) dim: 2
- c) dim: 2
- b) dim: 3
- **d)** dim: 3

As bases ficarão a cargo do leitor.

- 74. a) 2
 - b) Não, porque

$$\begin{bmatrix} 2 & 1 \\ & & \\ 3 & 4 \end{bmatrix} \notin S$$

75. a) dim: 2

uma base:
$$\{(1, 0, 3, -5), (0, 1, 6, -10)\}$$

b) dim: 2

uma base:
$$\{(0, -2, -1, 1), (1, -3, -5, 0)\}$$

c) dim: 1

d) dim: zero

não existe base

e) dim: 3

uma base:
$$\{(-1, 0, 0, 1), (-1, 1, 0, 0), (2, 0, 1, 0)\}$$

CAPITULO

ESPAÇOS VETORIAIS EUCLIDIANOS

3.1 PRODUTO INTERNO EM ESPAÇOS VETORIAIS

No Capítulo 1, foi definido o produto escalar ou produto interno usual de dois vetores no IR² e no IR³ e foram estabelecidas, por meio desse produto, algumas propriedades geométricas daqueles vetores. Agora pretende-se generalizar o conceito de produto interno e, a partir dessa generalização, definir as noções de comprimento, distância e ângulo em espaços vetoriais mais genéricos.

Chama-se produto interno no espaço vetorial V uma função de $V \times V$ em \mathbb{R} que a todo par de vetores $(u, v) \in V \times V$ associa um número real, indicado por $u \cdot v$ ou < u, v >. tal que os seguintes axiomas sejam verificados:

$$P_1$$
) u , $v = v$, u

$$P_2$$
) $u \cdot (v + w) = u \cdot v + u \cdot w$

 P_3) (αu) , $v = \alpha (u \cdot v)$ para todo real α

 P_4) $u \cdot u \ge 0$ e $u \cdot u = 0$ se, e somente se, u = 0

Observações

- a) O número real u . v é chamado produto interno dos vetores u e v.
- b) Dos quatro axiomas da definição acima decorrem as propriedades:

- 1) $0, u = u, 0 = 0, \forall u \in V$
- Π) (u+v).w=u.w+v.w
- III) $u \cdot (\alpha v) = \alpha(u \cdot v)$
- IV) $u \cdot (v_1 + v_2 + ... + v_n) = u \cdot v_1 + u \cdot v_2 + ... + u \cdot v_n$

Fica a cargo do leitor a demonstração dessas propriedades.

Exemplos

1) No espaço vetorial $V = \mathbb{R}^2$, a função que associa a cada par de vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$ o número real

$$u \cdot v = 3x_1x_2 + 4y_1y_2$$

é um produto interno.

De fato:

$$P_1$$
) u. $v = 3x_1x_2 + 4y_1y_2$
u. $v = 3x_2x_1 + 4y_2y_1$
u. $v = v$. u

 P_2) Se w = (x_3, y_3) , então:

$$u \cdot (v + w) = (x_1 y_1) \cdot (x_2 + x_3, y_2 + y_3)$$

 $u \cdot (v + w) = 3x_1(x_2 + x_3) + 4y_1(y_2 + y_3)$
 $u \cdot (v + w) = (3x_1x_2 + 4y_1y_2) + (3x_1x_3 + 4y_1y_3)$
 $u \cdot (v + w) = u \cdot v + u \cdot w$

$$P_3) (\alpha u) \cdot v = (\alpha x_1, \alpha y_1) \cdot (x_2, y_2)$$

$$(\alpha u) \cdot v = 3(\alpha x_1) x_2 + 4(\alpha y_1) y_2$$

$$(\alpha u) \cdot v = \alpha (3x_1 x_2 + 4y_1 y_2)$$

$$(\alpha u) \cdot v = \alpha (u \cdot v)$$

P₄) u . u =
$$3x_1x_1 + 4y_1y_1 = 3x_1^2 + 4y_1^2 \ge 0$$
 e
u . u = $3x_1^2 + 4y_1^2 = 0$ se, e somente se, $x_1 = y_1 = 0$,
isto é, se u = $(0, 0) = 0$.

Observação

O produto interno que acabamos de apresentar é diferente do produto interno usual no \mathbb{R}^2 . Este seria definido por:

$$u \cdot v = x_1 x_2 + y_1 y_2$$

donde se depreende ser possível a existência de mais de um produto interno num mesmo espaço vetorial.

2) Se $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$ são vetores quaisquer do \mathbb{R}^3 , o número real

$$u \cdot v = x_1 x_2 + y_1 y_2 + z_1 z_2$$

define o produto interno usual no IR3.

De forma análoga

$$u \cdot v = x_1 y_1 + x_2 y_2 + ... + x_n y_n$$

 $\infty m = (x_1, x_2, ..., x_n)$ e $v = (y_1, y_2, ..., y_n)$, define o produto interno usual no \mathbb{R}^n .

3) Sejam $V = P_2$, $p = a_2 x^2 + a_1 x + a_0$ e $q = b_2 x^2 + b_1 x + b_0$ vetores quaisquer de P_2 . A fórmula

$$p \cdot q = a_2b_2 + a_1b_1 + a_0b_0$$

define um produto interno em P2.

Por exemplo, se:

$$p = 3x^2 - 4x + 2$$
 e $q = 2x^2 + 3x - 1$,

então;

$$p \cdot q = 3(2) - 4(3) + 2(-1) = -8$$

Observemos que

$$p \cdot q = a_2b_2 + a_1b_1$$

não define, sobre V, um produto interno. Nesse caso, falha o axioma P_4 , pois existem polinômios $p \in V$ tais que p, p = 0, sem que p = 0. Por exemplo, $p = 0x^2 + 0x + 3$.

4) Seja V o espaço das funções reais contínuas no intervalo [a, b].

Se f e g pertencem a V,

$$f. g = \int_{a}^{b} f(x) g(x) dx$$

define sobre V um produto interno. (A verificação dos quatro axiomas fica a cargo do leitor.)

5) O número

$$u \cdot v = 2x_1x_2 + y_1^2y_2^2$$

sendo $u = (x_1, y_1)$ e $v = (x_2, y_2)$, não define no \mathbb{R}^2 um produto interno.

Nesse caso não se verificam os axiomas P2 e P3. Considerando o axioma P3, tem-se:

$$(\alpha u) \cdot v = (\alpha x_1, \alpha y_1) \cdot (x_2, y_2) = 2\alpha x_1 x_2 + \alpha^2 y_1^2 y_2^2$$

enquanto:

$$\alpha(u \cdot v) = \alpha(2x_1x_2 + y_1^2y_2^2) = 2\alpha x_1x_2 + \alpha y_1^2y_2^2$$

e, portanto:

$$(\alpha \mathbf{u})$$
, $\mathbf{v} \neq \alpha(\mathbf{u}, \mathbf{v})$

3.1.1 Problemas Resolvidos

- 1) Em relação ao produto interno usual do IR2, calcular u v sendo dados:
 - a) u = (-3, 4) e v = (5, -2)
 - b) $u = (6, -1) e v = (\frac{1}{2}, -4)$
 - c) u = (2, 3) e v = (0, 0)

Solução

a)
$$u \cdot v = -3(5) + 4(-2) = -15 - 8 = -23$$

b)
$$u \cdot v = 6(\frac{1}{2}) - 1(-4) = 3 + 4 = 7$$

c)
$$u \cdot v = 2(0) + 3(0) = 0 + 0 = 0$$

2) Para os mesmos vetores do exercício anterior, calcular u v em relação ao produto interno do exemplo 1:

$$u \cdot v = 3x_1 x_2 + 4y_1 y_2$$

Solução

a)
$$u \cdot v = 3(-3)(5) + 4(4)(-2) = -45 - 32 = -77$$

b) u . v = 3(6)
$$(\frac{1}{2})$$
 + 4(-1)(-4) = 9 + 16 = 25

c)
$$u \cdot v = 3(2)(0) + 4(3)(0) = 0 + 0 = 0$$

3) Consideremos o IR3 munido do produto interno usual.

Sendo $v_1 = (1, 2, -3)$, $v_2 = (3, -1, -1)$ e $v_3 = (2, -2, 0)$ de \mathbb{R}^3 , determinar o vetor u tal que u . $v_1 = 4$, u . $v_2 = 6$ e u . $v_3 = 2$.

Solução

Seja
$$u = (x, y, z)$$

Então:

$$(x, y, z) \cdot (1, 2, -3) = 4$$

$$(x, y, z) \cdot (3, -1, -1) = 6$$

$$(x, y, z) \cdot (2, -2, 0) = 2$$

Efetuando os produtos internos indicados, resulta o sistema:

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y - z = 6 \\ 2x - 2y = 2 \end{cases}$$

cuja solução é x = 3, y = 2 e z = 1.

Logo, o vetor procurado é u = (3, 2, 1).

4) Seja $V = \{f: [0, 1] \rightarrow \mathbb{R}; f \in \text{continua}\}$ o espaço vetorial munido do produto interno:

$$f \cdot g = \int_0^1 f(t) g(t) dt$$

Determinar $h_1 \cdot h_2$ e $h_1 \cdot h_1$, tais que $h_1 \cdot h_2 \in V$ e $h_1(t) = t$ e $h_2(t) = t^2$.

Solução

a)
$$h_1 \cdot h_2 = \int_0^1 h_1(t) h_2(t) dt = \int_0^1 t \cdot t^2 dt = \int_0^1 t^3 dt = \left[\frac{t^4}{4} \right]_0^1 = \frac{1}{4}$$

b)
$$h_1 \cdot h_1 = \int_0^1 h_1(t) h_1(t) dt = \int_0^1 t \cdot t dt = \int_0^1 t^2 dt = \left[\frac{t^3}{3} \right]_0^1 = \frac{1}{3}$$

3.2 ESPAÇO VETORIAL EUCLIDIANO

Um espaço vetorial real, de dimensão finita, no qual está definido um produto interno, é um espaço vetorial euclidiano. Neste capítulo serão considerados somente espaços vetoriais euclidianos.

3.3 MÓDULO DE UM VETOR

Dado um vetor v de um espaço vetorial euclidiano V, chama-se *módulo*, *norma* ou *comprimento* de v o número real não-negativo, indicado por |v|, definido por:

$$|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Observemos que se $u = (x_1, y_1, z_1)$ for um vetor do \mathbb{R}^3 com produto interno usual, tem-se:

$$|\mathbf{u}| = \sqrt{(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1) \cdot (\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)} = \sqrt{\mathbf{x}_1^2 + \mathbf{y}_1^2 + \mathbf{z}_1^2}$$
(3.3)

3.3.1 Distância entre dois vetores

Chama-se distância entre dois vetores (ou pontos) u e v o número real representado por d(u, v) e definido por:

$$d(\mathbf{u}, \mathbf{v}) = |\mathbf{u} - \mathbf{v}|$$

Sendo $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$ vetores do \mathbb{R}^3 com produto interno usual, tem-se:

$$d(u, v) = |u - v| = |(x_1 - x_2, y_1 - y_2, z_1 - z_2)|$$

ou:

$$d(u, v) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
(3.3.1)

Observações

- 1) Se |v| = 1, isto é, $v \cdot v = 1$, o vetor v é chamado vetor unitário. Diz-se, nesse caso, que v está normalizado.
 - 2) Todo vetor não-nulo v∈ V pode ser normalizado, fazendo:

$$u = \frac{v}{|v|}$$

Observemos que:

$$\frac{\mathbf{v}}{|\mathbf{v}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{v} \cdot \mathbf{v}}{|\mathbf{v}|^2} = \frac{|\mathbf{v}|^2}{|\mathbf{v}|^2} = 1$$

e, portanto, $\frac{v}{|v|}$ é unitário.

Exemplo

Consideremos o espaço $V = \mathbb{R}^3$ com o produto interno v_1 , $v_2 = 3x_1x_2 + 2y_1y_2 + z_1z_2$, sendo $v_1 = (x_1, y_1, z_1)$ e $v_2 = (x_2, y_2, z_2)$. Dado o vetor $v = (-2, 1, 2) \in \mathbb{R}^3$, em relação a esse produto interno tem-se:

$$|\mathbf{v}| = \sqrt{(-2, 1, 2) \cdot (-2, 1, 2)} = \sqrt{3(-2)^2 + 2(1)^2 + 2^2} = \sqrt{12 + 2 + 4} = \sqrt{18}$$

e normalizando v, resulta:

$$\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{(-2, 1, 2)}{\sqrt{18}} = (-\frac{2}{\sqrt{18}}, \frac{1}{\sqrt{18}}, \frac{2}{\sqrt{18}}).$$

Observemos que, relativamente ao produto interno usual, tem-se:

$$|v| = \sqrt{(-2, 1, 2) \cdot (-2, 1, 2)} = \sqrt{(-2)^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = 3$$

e:

$$\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{(-2, 1, 2)}{3} = (-\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$$

É importante observar que o módulo depende do produto interno utilizado. Se o produto interno muda, o módulo também se modifica.

Assim, fica claro que os dois vetores $\frac{\mathbf{v}}{|\mathbf{v}|}$ acima, obtidos a partir de \mathbf{v} , são unitários, cada um em relação ao respectivo produto interno.

3.3.2 Propriedades do Módulo de um Vetor

Seja V um espaço vetorial euclidiano.

I)
$$\{v \mid v \in V \in V \mid v = 0, \text{ se, e somente se, } v = 0.$$

Essa propriedade é uma consequência de P4.

II)
$$|\alpha v| = |\alpha| |v|$$
, $\forall v \in V$, $\forall \alpha \in \mathbb{R}$

De fato:

$$|\alpha v| = \sqrt{(\alpha v) \cdot (\alpha v)} = \sqrt{\alpha^2 (v \cdot v)} = |\alpha| \sqrt{v \cdot v} = |\alpha| |v|$$

III)
$$|u,v| \leq |u||v|$$
, $\forall u,v \in V$

Se u = 0 ou v = 0, vale a igualdade $|u| \cdot v = |u| |v| = 0$.

Se nem u nem v são nulos, para qualquer $\alpha \in \mathbb{R}$ vale a desigualdade:

$$(u + \alpha v) \cdot (u + \alpha v) \ge 0$$

pelo axioma P4.

Efetuando o produto interno, vem:

$$\mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot (\alpha \mathbf{v}) + (\alpha \mathbf{v} \cdot \mathbf{u}) + \alpha^2 (\mathbf{v} \cdot \mathbf{v}) \ge 0$$

ou

$$|\mathbf{v}|^2 \alpha^2 + 2(\mathbf{u} \cdot \mathbf{v})\alpha + |\mathbf{u}|^2 \ge 0$$

Obtivemos assim um trinômio do 2º grau em α (pois $\|v\|^2 \neq 0$), que deve ser positivo para qualquer valor de α . Como o coeficiente de α^2 é sempre positivo, o discriminante desse trinômio deve ser negativo ou nulo:

$$(2u \cdot v)^2 - 4 |v|^2 |u|^2 \le 0$$

$$4(u \cdot v)^2 - 4|u|^2|v|^2 \le 0$$

$$(u, v)^2 \le |u|^2 |v|^2$$

Considerando a raiz quadrada positiva de ambos os membros dessa desigualdade, vem.

Essa desigualdade é conhecida com o nome de Desigualdade de Schwarz ou Inequação de Cauchy-Schwarz.

[V]
$$|u+v| \le |u| + |v|$$
, $\forall u, v \in V$

De fato:

$$||u + v|| = \sqrt{(u + v) \cdot (u + v)}$$

$$||u + v|| = \sqrt{u \cdot u + 2(u \cdot v) + v \cdot v}$$

$$||u + v||^2 = ||u||^2 + 2(u \cdot v) + ||v||^2$$

mas:

$$|u|, |v| \le ||u|, |v|| \le ||u|| ||v||$$

logo:

$$||\mathbf{u} + \mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2||\mathbf{u}|||\mathbf{v} + ||\mathbf{v}||^2$$

ou:

$$||u+v||^2 \le (||u||+||v||)^2$$

ou, ainda:

$$| u + v | \leq | u | + | v$$

Figura 3.3.2

Essa desigualdade, denominada desigualdade triangular, vista no R² ou no R³ confirma a propriedade geométrica de que, num triângulo, a soma dos comprimentos de dois lados é maior que o comprimento do terceiro lado (Figura 3,3.2)

A igualdade somente ocorre quando os dois vetores u e v são colineares

3.4 ANGULO DE DOIS VETORES

Sejam u e v vetores não-nulos de um espaço vetorial euclidiano V.

A desigualdade de Schwarz

$$|\mathbf{u}.\mathbf{v}| \leq |\mathbf{u}| |\mathbf{v}|$$

pode ser escrita assim;

$$\frac{|\mathbf{u} \cdot \mathbf{v}|}{|\mathbf{u} \cdot \mathbf{v}|} \le 1$$

ou:

$$\left|\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}\right| \leq 1$$

o que implica:

$$-1 \leqslant \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| ||\mathbf{v}|} \leqslant 1$$

Por esse motivo, pode-se dizer que a fração

é igual ao co-seno de um ângulo θ , denominado ângulo dos vetores u e v:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| ||\mathbf{v}||}, \quad 0 \le \theta \le \pi$$

Observemos que essa fórmula coincide com a (1.7.1) para o cálculo do ângulo de dois vetores no IR² (ou com a fórmula VI do ítem 1.9 do IR³), considerando o produto interno usual.

3.4.1 Problemas Resolvidos

5) Consideremos o \mathbb{R}^3 com o produto interno usual. Determinar a componente c do vetor v = (6, -3, c) tal que |v| = 7.

Solução

$$|\mathbf{v}| = \sqrt{6^2 + (-3)^2 + c^2} = 7$$

 $36 + 9 + c^2 = 49$
 $c^2 = 4$
 $c = \pm 2$

6) Seja o produto interno usual no \mathbb{R}^3 e no \mathbb{R}^4 . Determinar o ângulo entre os seguintes pares de vetores:

a)
$$u = (2, 1, -5)$$
 e $v = (5, 0, 2)$

b)
$$u = (1, -1, 2, 3)$$
 e $v = (2, 0, 1, -2)$

Solução

a)
$$|u| = \sqrt{2^2 + 1^2 + (-5)^2} = \sqrt{30}$$

 $|v| = \sqrt{5^2 + 2^2} = \sqrt{29}$
 $|u| = 2(5) + 1(0) + 5(2) = 0$

Dai:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{0}{\sqrt{30} - \sqrt{29}} = 0 \quad \therefore \quad \theta = \frac{\pi}{2}$$

b)
$$|u| = \sqrt{1 + 1 + 4 + 9} = \sqrt{15}$$

 $|v| = \sqrt{4 + 1 + 4} = 3$
 $|u| = 1(2) - 1(0) + 2(1) + 3(-2) = -2$

Daí:

$$\cos \theta = \frac{-2}{\sqrt{15} \times 3} \quad \therefore \quad \theta = \arccos \left(-\frac{2}{3\sqrt{15}}\right)$$

7) Seja V um espaço vetorial euclidiano e u, $v \in V$. Determinar o co-seno do ângulo entre os vetores u e v, sabendo que |u| = 3, |v| = 7 e $|u| + v| = 4\sqrt{5}$.

Solução

$$|u+v| = \sqrt{(u+v) \cdot (u+v)}$$

ou:

$$|u + v|^2 = |u|^2 + 2u \cdot v + |v|^2$$

e:

$$(4\sqrt{5})^2 = 3^2 + 2u \cdot v + 7^2$$

$$80 = 9 + 2u \cdot v + 49$$

$$2u \cdot v = 80 - 58$$

$$2u \cdot v = 22$$

$$\mathbf{u} \cdot \mathbf{v} = 11$$

logo:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{11}{3 \times 7} = \frac{11}{21}$$

Consideremos, no \mathbb{R}^2 , o produto interno definido por $v_1 \cdot v_2 = 3x_1x_2 + y_1y_2$, sendo $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$. Em relação a esse produto interno, determinar um vetor v tal que:

$$|v| = 4$$
, $v \cdot u = 10$ $e \cdot u = (1, -2)$

Solução

Seja v = (x, y). Então:

$$|v| = \sqrt{3x^2 + v^2} = 4$$
 : $3x^2 + v^2 = 16$

e:

$$v \cdot u = 3x - 2y = 10$$

Resolvendo o sistema

$$\begin{cases} 3x^2 + y^2 = 16 \\ 3x - 2y = 10 \end{cases}$$

obteremos:

$$x = 2$$
 e $y = -2$ ou $x = \frac{6}{7}$ e $y = -\frac{26}{7}$

logo:

$$v = (2, -2)$$
 ou $v = (\frac{6}{7}, -\frac{26}{7})$

3.5 VETORES ORTOGONAIS

Seja V um espaço vetorial euclidiano.

Diz-se que dois vetores $u \in v$ de V são ortogonais, e se representa por $u \perp v$, se, e somente se, $u \cdot v = 0$.

Exemplo

Seja $V = IR^2$ um espaço vetorial euclidiano em relação ao produto interno $(x_1, y_1) \cdot (x_2, y_2) = x_1 x_2 + 2y_1 y_2$. Em relação a este produto interno, os vetores u = (-3, 2) e v = (4, 3) são ortogonais, pois:

$$u \cdot v = -3(4) + 2(2)(3) = 0$$

Observações

1) O vetor $0 \in V$ é ortogonal a qualquer $v \in V$:

$$0 \cdot \mathbf{v} = \mathbf{0}$$

De fato:

$$0 \cdot \mathbf{v} = (0\mathbf{v}) \cdot \mathbf{v} = 0(\mathbf{v} \cdot \mathbf{v}) = 0$$

- 2) Se u i v, então α u i v para todo $\alpha \in \mathbb{R}$
- 3) Se $u_1 \perp v \in u_2 \perp v$, então $(u_1 + u_2) \perp v$.

3.6 CONJUNTO ORTOGONAL DE VETORES

Seja V um espaço vetorial euclidiano.

Diz-se que um conjunto de vetores $\{v_1, v_2, ..., v_n\} \subseteq V$ é ortogonal se dois vetores quaisquer, distintos, são ortogonais, isto é, v_i , $v_j = 0$ para $i \neq j$.

Exemplo

No IR3, o conjunto

$$\{(1, 2, -3), (3, 0, 1), (1, -5, -3)\}$$

é ortogonal em relação ao produto interno usual, pois:

$$(1, 2, -3), (3, 0, 1) = 0$$

$$(1, 2, -3) \cdot (1, -5, -3) = 0^{\circ}$$

$$(3,0,1)$$
 $(1,-5,-3) = 0$

3.6.1 Teorema

Um conjunto ortogonal de vetores não-nulos $A = \{v_1, v_2, ..., v_n\}$ é linearmente independente (LI).

De fato:

Consideremos a igualdade

$$a_1 v_1 + a_2 v_2 + ... + a_n v_n = 0$$

e façamos o produto interno de ambos os membros da igualdade por v_i:

$$(a_1 v_1 + a_2 v_2 + ... + a_n v_n) \cdot v_i = 0 \cdot v_i$$

ou:

$$a_1(v_1, v_j) + ... + a_j(v_j, v_j) + ... + a_n(v_n, v_j) = 0$$

3.6.2 Base Ortogonal

Diz-se que uma base $\{v_1,...,v_n\}$ de V é $\mathit{ortogonal}$ se os seus vetores são dois a dois ortogonais.

Assim, levando em conta o teorema anterior, se dim V = n, qualquer conjunto de n vetores não-nulos e dois a dois ortogonais, constitui uma base ortogonal. Por exemplo, o conjunto apresentado no exemplo anterior

$$\{(1, 2, -3), (3, 0, 1), (1, -5, -3)\}$$

e uma base ortogonal do IR3.

3.6.2.1 Base Ortonormal

Uma base $B = \{v_1, v_2, ..., v_n\}$ de um espaço vetorial euclidiano V é ortonormal se B é ortogonal e todos os seus vetores são unitários, isto é:

$$v_i \cdot v_j = \begin{cases} 0 & \text{para } i \neq j \\ 1 & \text{para } i \neq j \end{cases}$$

Exemplos

Em relação ao produto interno usual, o conjunto:

- 1) $B = \{(1, 0), (0, 1)\}$ é uma base ortonormal do \mathbb{R}^2 (é a base canônica);
- 2) B = $\{(\frac{\sqrt{3}}{2}, \frac{1}{2}), (-\frac{1}{2}, \frac{\sqrt{3}}{2})\}$ é também base ortonormal do \mathbb{R}^2 (verificar!);
- 3) B = $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ é uma base ortonormal do \mathbb{R}^3 (é a base canônica);

4)
$$B = \{u_1, u_2, u_3\}$$
, sendo $u_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$.

$$u_2 = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$
 e $u_3 = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

é também base ortonormal do R3, pois:

$$u_1 : u_2 = u_1 : u_3 = u_2 : u_3 = 0$$

e:

$$u_1 : u_1 = u_2 : u_2 = u_3 : u_3 = 1$$

As bases ortonormais são particularmente importantes, como ainda veremos.

Observação

Já vimos que se v é um vetor não-nulo, o vetor $\frac{v}{|v|}$ é unitário. Diz-se, nesse caso, que v está normalizado. O processo que transforma v em $\frac{v}{|v|}$ chama-se normalização de v.

Assim, uma base ortonormal sempre pode ser obtida de uma base ortogonal normalizando cada vetor.

Por exemplo, a base $B = \{v_1, v_2, v_3\}$, sendo $v_1 = (1, 1, 1)$, $v_2 = (-2, 1, 1)$ e $v_3 = (0, -1, 1)$, é ortogonal em relação ao produto interno úsual. Normalizando cada vetor, obtemos:

$$u_1 = \frac{v_1}{|v_1|} = \frac{(1, 1, 1)}{\sqrt{1 + 1 + 1}} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$u_2 = \frac{v_2}{|v_2|} = \frac{(-2, 1, 1)}{\sqrt{4 + 1 + 1}} = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$

$$u_3 = \frac{v_3}{|v_3|} = \frac{(0, -1, 1)}{\sqrt{0 + 1 + 1}} = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

e $B' = \{u_1, u_2, u_3\}$ é uma base ortonormal do \mathbb{R}^3 .

3.6.3 Processo de Ortogonalização de Gram-Schmidt

Dado um espaço vetorial euclidiano V e uma base qualquer $B = \{v_1, v_2, ..., v_n\}$ desse espaço, é possível, a partir dessa base, determinar uma base ortogonal de V.

De fato, supondo que $v_1, v_2, ..., v_n$ não são ortogonais, considere-se

$$\mathbf{w}_1 = \mathbf{v}_1$$

e determine-se o valor de α de modo que o vetor $w_2 = v_2 - \alpha w_1$ seja ortogonal a w_1 :

$$(\mathbf{v_2} - \alpha \mathbf{w_1}) \cdot \mathbf{w_1} = 0$$

$$\mathbf{v_2}$$
 , $\mathbf{w_1} = \alpha(\mathbf{w_1} \cdot \mathbf{w_1}) = 0$

$$\alpha = \frac{\mathbf{v_2} \cdot \mathbf{w_1}}{\mathbf{w_1} \cdot \mathbf{w_1}}$$

isto é:

$$\mathbf{w}_2 = \mathbf{v}_2 - (\frac{\mathbf{v}_2 \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1}) \mathbf{w}_1$$

Assim, os vetores w₁ e w₂ são ortogonais

Considere-se o vetor:

$$w_3 = v_3 - a_2 w_2 - a_1 w_1$$

e determine-se os valores de a_2 e a_1 de maneira que o vetor w_3 seja ortogonal aos vetores w_1 e w_2 :

$$\begin{cases} (\mathbf{v}_3 - \mathbf{a}_2 \, \mathbf{w}_2 - \mathbf{a}_1 \, \mathbf{w}_1) \cdot \mathbf{w}_1 = 0 \\ (\mathbf{v}_3 - \mathbf{a}_2 \, \mathbf{w}_2 - \mathbf{a}_1 \, \mathbf{w}_1) \cdot \mathbf{w}_2 = 0 \end{cases}$$

$$\begin{cases} v_3 \cdot w_1 - a_2(w_2 \cdot w_1) - a_1(w_1 \cdot w_1) = 0 \\ v_3 \cdot w_2 - a_2(w_2 \cdot w_2) - a_1(w_1 \cdot w_2) = 0 \end{cases}$$

Tendo em vista que $w_1 \cdot w_2 = 0$, vem:

$$\begin{cases} v_3 \cdot w_1 - a_1(w_1 \cdot w_1) = 0 \\ v_3 \cdot w_2 - a_2(w_2 \cdot w_2) = 0 \end{cases}$$

e:

$$a_1 = \frac{v_3 \cdot w_1}{w_1 \cdot w_1}$$
; $a_2 = \frac{v_3 \cdot w_2}{w_2 \cdot w_2}$

isto é:

$$w_3 = v_3 - (\frac{v_3 \cdot w_2}{w_2 \cdot w_2}) w_2 - (\frac{v_3 \cdot w_1}{w_1 \cdot w_1}) w_1$$

Assim, os vetores w₁, w₂ e w₃ são ortogonais.

Pode-se concluir o teorema por indução, admitindo que, por esse processo, tenham sido obtidos (n-1) vetores $w_1, w_2, ..., w_{n-1}$ e considerar o vetor:

$$\mathbf{w}_{n} = \mathbf{v}_{n} - \mathbf{a}_{n-1} \mathbf{w}_{n-1} - \dots - \mathbf{a}_{2} \mathbf{w}_{2} - \mathbf{a}_{1} \mathbf{w}_{1}$$

sendo $a_1, a_2, ..., a_{n-1}$ tais que o referido vetor w_n seja ortogonal aos vetores $w_1, w_2, ..., w_{n-1}$.

Os valores de $a_1, a_2, ..., a_{n-1}$ que aparecem em w_n são:

$$a_1 = \frac{v_n \cdot w_1}{w_1 \cdot w_1} \;, \;\; a_2 = \frac{v_n \cdot w_2}{w_2 \cdot w_2} \;, \;\; a_3 = \frac{v_n \cdot w_3}{w_3 \cdot w_3} \;, \; ..., \; a_{n-1} = \frac{v_n \cdot w_{n-1}}{w_{n-1} \cdot w_{n-1}}$$

Assim, a partir de $B = \{v_1, v_2, ..., v_n\}$, obtivemos a base ortogonal $\{w_1, w_2, ..., w_n\}$.

O processo que permite a determinação de uma base ortogonal a partir de uma base qualquer chama-se processo de ortogonalização de Gram-Schmidt.

Para se obter uma base ortonormal, basta normalizar cada \mathbf{w}_i . Fazendo $\mathbf{u}_i = \frac{\mathbf{w}_i}{|\mathbf{w}_i|}$, obtemos a base

$$B' = \{u_1, u_2, ..., u_n\}$$

que é uma base ortonormal obtida a partir da base

$$B = \{ v_1, v_2, ..., v_n \}$$

Observação

Tendo em vista que:

$$a_1 = \frac{v_n \cdot w_1}{w_1 \cdot w_1} = v_n \cdot \frac{w_1}{w_1 \cdot w_1} = v_n \cdot \frac{w_1}{|w_1|^2} = v_n \cdot \frac{w_1}{|w_1|} \times \frac{1}{|w_1|} = (v_n \cdot u_1) \frac{1}{|w_1|}$$

$$a_2 = \frac{v_n \cdot w_2}{w_2 \cdot w_2} = v_n \cdot \frac{w_2}{w_2 \cdot w_2} = v_n \cdot \frac{w_2}{|w_2|^2} = v_n \cdot \frac{w_2}{|w_2|} \times \frac{1}{|w_2|} = (v_n \cdot u_2) \frac{1}{|w_2|}$$

$$a_3 = \frac{v_n \cdot w_3}{w_3 \cdot w_3} = \dots = (v_n \cdot u_3) \frac{1}{|w_3|}$$

$$a_{n-1} = \frac{v_n \cdot w_{n-1}}{w_{n-1} \cdot w_{n-1}} = \dots = (v_n \cdot u_{n-1}) \frac{1}{|w_{n-1}|}$$

os vetores w₁, w₂, ..., w_n podem ser expressos do seguinte modo:

$$I) w_1 = v_1$$

II)
$$\mathbf{w}_2 = \mathbf{v}_2 - \mathbf{a}_1 \mathbf{w}_1 = \mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{u}_1) \frac{\mathbf{w}_1}{|\mathbf{w}_1|}$$

 $\mathbf{w}_2 = \mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{u}_1) \mathbf{u}_1$

III)
$$\mathbf{w}_3 = \mathbf{v}_3 - \mathbf{a}_2 \mathbf{w}_2 - \mathbf{a}_1 \mathbf{w}_1$$

 $\mathbf{w}_3 = \mathbf{v}_3 - (\mathbf{v}_3 \cdot \mathbf{u}_2) \frac{\mathbf{w}_2}{|\mathbf{w}_2|} - (\mathbf{v}_3 \cdot \mathbf{u}_1) \frac{\mathbf{w}_1}{|\mathbf{w}_1|}$
 $\mathbf{w}_3 = \mathbf{v}_3 - (\mathbf{v}_3 \cdot \mathbf{u}_2) \mathbf{u}_2 - (\mathbf{v}_3 \cdot \mathbf{u}_1) \mathbf{u}_1$

$$\mathbf{w}_{n} = \mathbf{v}_{n} - (\mathbf{v}_{n} \cdot \mathbf{u}_{n-1}) \mathbf{u}_{n-1} - \dots - (\mathbf{v}_{n} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} - (\mathbf{v}_{n} \cdot \mathbf{u}_{1}) \mathbf{u}_{1}$$

Exemplo

Sejam $v_1 = (1, 1, 1,)$ $v_2 = (0, 1, 1)$ e $v_3 = (0, 0, 1)$ vetores do \mathbb{R}^3 . Esses vetores constituem uma base $B = \{v_1, v_2, v_3\}$ não-ortogonal em relação ao produto interno usual. Pretendemos obter, a partir de B, uma base $B' = \{u_1, u_2, u_3\}$ que seja ortonormal.

Solução

$$\mathbf{w}_1 = \mathbf{v}_1 = (1, 1, 1)$$

$$\begin{split} \mathbf{u}_1 &= \frac{\mathbf{w}_1}{|\mathbf{w}_1|} = \frac{(1,1,1)}{\sqrt{1^2+1^2+1^2}} = \frac{(1,1,1)}{\sqrt{3}} = (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}) \\ \mathbf{w}_2 &= \mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{u}_1) \, \mathbf{u}_1 \\ \mathbf{v}_2 \cdot \mathbf{u}_1 &= (0,1,1) \cdot (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}) = \frac{2}{\sqrt{3}} \\ \mathbf{w}_2 &= (0,1,1) - \frac{2}{\sqrt{3}} \left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right) \\ \mathbf{w}_2 &= (0,1,1) - (\frac{2}{3},\frac{2}{3},\frac{2}{3}) \\ \mathbf{w}_2 &= (-\frac{2}{3},\frac{1}{3},\frac{1}{3}) \\ \mathbf{w}_2 &= (-\frac{2}{3},\frac{1}{3},\frac{1}{3}) \\ \mathbf{w}_3 &= \frac{(-\frac{2}{3},\frac{1}{3},\frac{1}{3})}{\sqrt{\frac{4}{9}+\frac{1}{9}+\frac{1}{9}}} = \frac{(-\frac{2}{3},\frac{1}{3},\frac{1}{3})}{\frac{\sqrt{6}}{3}} = (-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}) \\ \mathbf{w}_3 &= \mathbf{v}_3 - (\mathbf{v}_3 \cdot \mathbf{u}_2) \, \mathbf{u}_2 - (\mathbf{v}_3 \cdot \mathbf{u}_1) \, \mathbf{u}_1 \\ \mathbf{v}_3 \cdot \mathbf{u}_2 &= (0,0,1) \cdot (-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}) = \frac{1}{\sqrt{6}} \\ \mathbf{v}_3 \cdot \mathbf{u}_1 &= (0,0,1) \cdot (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}) = \frac{1}{\sqrt{3}} \\ \mathbf{w}_3 &= (0,0,1) - \frac{1}{\sqrt{6}} \left(-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right) - \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right) \\ \mathbf{w}_3 &= (0,0,1) - (-\frac{2}{6},\frac{1}{6},\frac{1}{6}) - (\frac{1}{3},\frac{1}{3},\frac{1}{3}) \\ \mathbf{w}_3 &= (0,-\frac{1}{2},\frac{1}{2}) \\ \mathbf{u}_3 &= \frac{\mathbf{w}_3}{|\mathbf{w}_3|} = \frac{(0,-\frac{1}{2},\frac{1}{2})}{\sqrt{0+\frac{1}{2}+\frac{1}{2}}} = \frac{(0,-\frac{1}{2},\frac{1}{2})}{\sqrt{2}} = (0,-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) \end{aligned}$$

A base $B' = \{u_1, u_2, u_3\}$ é uma base ortonormal, pois:

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{u}_2 \cdot \mathbf{u}_3 = 0$$

e:

3.6.4 Componentes de um Vetor numa Base Ortogonal

Seja V um espaço vetorial euclidiano e $B = \{v_1, ..., v_n\}$ uma base ortogonal de V. Para um vetor $w \in V$, tem-se:

$$w = a_1 v_1 + ... + a_i v_i + ... + a_n v_n$$

Efetuando o produto interno de ambos os membros da igualdade por vi, vem:

$$\mathbf{w} \cdot \mathbf{v_i} = \mathbf{a_1}(\mathbf{v_1} \cdot \mathbf{v_i}) + ... + \mathbf{a_j}(\mathbf{v_j} \cdot \mathbf{v_j}) + ... + \mathbf{a_n}(\mathbf{v_n} \cdot \mathbf{v_i})$$

ou:

$$\mathbf{w} \cdot \mathbf{v_i} = \mathbf{a_i}(\mathbf{v_i} \cdot \mathbf{v_i})$$
 pois $\mathbf{v_j} \cdot \mathbf{v_i} = 0$ para $\mathbf{j} \neq \mathbf{i}$

logo:

$$\mathbf{a_i} = \frac{\mathbf{w} \cdot \mathbf{v_i}}{\mathbf{v_i} \cdot \mathbf{v_i}} \tag{3.6.4}$$

é a expressão da i-ésima coordenada de w em relação à base B.

Exemplo

Seja $V = \mathbb{R}^2$ com o produto interno usual e a base ortogonal

$$B = \{ (2, 1), (-1, 2) \}$$

Calculemos as coordenadas do vetor w = (4, 7) em relação a essa base B, na qual $v_1 = (2, 1)$ e $v_2 = (-1, 2)$. Pretende-se calcular a_1 e a_2 tais que:

$$\mathbf{w} = \mathbf{a}_1 \mathbf{v}_1 + \mathbf{a}_2 \mathbf{v}_2$$

Utilizando a fórmula (3.6.4), vem:

$$a_1 = \frac{\mathbf{w} \cdot \mathbf{v_1}}{\mathbf{v_1} \cdot \mathbf{v_1}} = \frac{(4, 7) \cdot (2, 1)}{(2, 1) \cdot (2, 1)} = \frac{8 + 7}{4 + 1} = \frac{15}{5} = 3$$

$$a_2 = \frac{w \cdot v_2}{v_2 \cdot v_2} = \frac{(4, 7) \cdot (-1, 2)}{(-1, 2) \cdot (-1, 2)} = \frac{-4 + 14}{1 + 4} = \frac{10}{5} = 2$$

logo:

$$\mathbf{w} = 3\mathbf{v}_1 + 2\mathbf{v}_2$$

ou:

$$w_{R} = (3, 2)$$

Como se viu, as coordenadas de w, na base canônica, são 4 e 7, enquanto na base B são 3 e 2.

Observação

No caso particular de $B = \{v_1, ..., v_n\}$ ser uma base *ortonormal* de V, os coeficientes a_i do vetor $w = a_1v_1 + ... + a_nv_n$, pela fórmula (3.6.4), são dados por:

$$\mathbf{a}_i = \mathbf{w} \cdot \mathbf{v}_i$$

pois v_i , $v_i = 1$.

Assim,

$$\mathbf{w} = (\mathbf{w}_1 \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{w}_1 \mathbf{v}_2) \mathbf{v}_2 + \dots + (\mathbf{w}_1 \mathbf{v}_n) \mathbf{v}_n$$

Exemplo

A base $B = \{(\frac{3}{5}, \frac{4}{5}), (-\frac{4}{5}, \frac{3}{5})\}$ é uma base ortornormal do \mathbb{R}^2 em relação ao produto interno usual. Dado v = (5, 2), para encontrar a_1 e a_2 tal que

$$(5, 2) = a_1 \left(\frac{3}{5}, \frac{4}{5}\right) + a_2 \left(-\frac{4}{5}, \frac{3}{5}\right)$$

basta fazer:

$$a_1 = (5, 2) \cdot (\frac{3}{5}, \frac{4}{5}) = 3 + \frac{8}{5} = \frac{23}{5}$$

$$a_2 = (5, 2) \cdot (-\frac{4}{5}, \frac{3}{5}) = -4 + \frac{6}{5} = -\frac{14}{5}$$

logo:

$$v_B = (\frac{23}{5}, -\frac{14}{5})$$

Observemos que se tivéssemos a base canônica:

$$B = \{(1,0),(0,1)\},\$$

$$a_1 = (5, 2) \cdot (1, 0) = 5$$

$$a_2 = (5, 2) \cdot (0, 1) = 2$$

e, portanto:

$$v_B = (5, 2)$$

isto é :

$$(5, 2) = 5(1, 0) + 2(0, 1)$$

3.7 CONJUNTOS ORTOGONAIS

Se S_1 e S_2 são subconjuntos não-vazios de um espaço vetorial euclidiano V, diz-se que S_1 é ortogonal a S_2 , e se representa por S_1 i S_2 , se qualquer vetor $v_1 \in S_1$ é ortogonal a qualquer vetor $v_2 \in S_2$.

Exemplo

Os conjuntos

$$S_1 = \{(0, 1, 2), (0, 2, 4)\}\ e\ S_2 = \{(1, -2, 1), (2, -2, 1), (4, 6, -3)\}$$

são ortogonais relativamente ao produto interno usual no \mathbb{R}^3 (verificar!).

3.7.1 Teorema

Seja V um espaço vetorial euclidiano e $B = \{v_1, ..., v_p\}$ uma base de um subespaço S de V, gerado por B.

Se um vetor $u \in V$ é ortogonal a todos os vetores da base B, então u é ortogonal a qualquer vetor do subespaço S gerado por B.

Diz-se, nesse caso, que u é ortogonal a S e se representa por u 1 S.

De fato:

Qualquer vetor v∈ S pode ser expresso por:

$$v = a_1 v_1 + a_2 v_2 + ... + a_p v_p$$

e .

$$u \cdot v = u \cdot (a_1 v_1 + a_2 v_2 + ... + a_p v_p)$$

$$u \cdot v = a_1(u \cdot v_1) + a_2(u \cdot v_2) + ... + a_p(u \cdot v_p)$$

Mas, por hipótese, $u \cdot v_i = 0$, i = 1, ..., p.

Portanto:

$$\mathbf{u} \cdot \mathbf{v} = 0$$

logo:

A recíproca desse teorema não é verdadeira

3.8 COMPLEMENTO ORTOGONAL

Seja V um espaço vetorial euclidiano e S um subespaço vetorial de V. Consideremos o subconjunto de V formado pelos vetores que são ortogonais a S:

$$S^{\perp} = \{ v \in V/v \mid S \}$$

Esse subconjunto S¹ de V é chamado complemento ortogonal de S.

Vamos considerar duas propriedades:

I) S¹ é subespaço de V

De fato:

a) Se $v_1, v_2 \in S^{\perp}$, para qualquer $u \in S$, tem-se:

$$v_1 \perp u = v_2 \perp u$$

isto é:

$$\mathbf{v_1}$$
, $\mathbf{u} = 0$ e $\mathbf{v_2}$, $\mathbf{u} = 0$

Então:

$$v_1 \cdot u + v_2 \cdot u = 0$$

$$(v_1 + v_2)$$
. $u = 0$ implies $(v_1 + v_2) \in S^{\perp}$

- b) Analogamente, se verifica que para qualquer $\,\alpha\!\in\!\ {\rm I\!R},\ \alpha v_1^{}\in \,S^\perp.$
- II) Se S é subespaço vetorial de V, então

$$V = S(+) S^{\perp}$$

isto é, V é a soma direta de S e S1.

De fato:

Se $S = \{0\}$, então $S^{\perp} = V$ e a demonstração é imediata.

Se $S \neq \{0\}$, para qualquer $v \in S \cap S^{\perp}$ tem-se:

$$\mathbf{v} \cdot \mathbf{v} = \mathbf{0}$$

isto é :

$$v = 0$$

o que mostra que

$$S \cap S^4 = \{0\}$$

Por outro lado, como S é um subespaço vetorial de V, S pode ser considerado um espaço vetorial euclidiano tal como V. Nessas condições, sejam $B = \{e_1, e_2, ..., e_p\}$ uma base ortonormal de S e v um vetor qualquer de V.

Tendo em vista que v . e₁, v . e₂, ..., v . e_p são números reais, o vetor

$$v_1 = (v, e_1) e_1 + (v, e_2) e_2 + ... + (v, e_p) e_p$$

pertence a S, e o vetor

$$v_2 = v - v_1$$

é ortogonal a S, isto é, pertence a S^1 , por ser ortogonal a todos os vetores da base $B = \{e_1, e_2, ..., e_p\}$:

$$v_2$$
 , $e_1 = (v - v_1)$, $e_1 = v$, $e_1 - v_1$, e_1

$$v_2 \cdot e_1 = v \cdot e_1 - [(v \cdot e_1) e_1 + (v \cdot e_2) e_2 + ... + (v \cdot e_p) e_p] \cdot e_1$$

$$v_2 \cdot e_1 = v \cdot e_1 + [(v \cdot e_1) e_1] \cdot e_1 + 0 + ... + 0$$

$$v_2 \cdot e_1 = v \cdot e_1 - v \cdot e_1$$

$$v_2 \cdot e_1 = 0$$

Do mesmo modo:

$$v_2 \cdot e_2 = 0, \ v_2 \cdot e_3 = 0, ..., \ v_2 \cdot e_p = 0$$

Assim, $v = v_1 + v_2$, com $v_1 \in S$ e $v_2 \in S^{\perp}$.

Logo:

$$V = S + S^{\perp}$$

Exemplos

1) Seja $V = \mathbb{R}^3$ com o produto interno usual e

$$S = \{ (0, 0, c)/c \in \mathbb{R} \}$$
 (eixo dos z)

Então:

$$S^{\perp} = \{ (a, b, 0)/a, b \mathbb{R} \} \text{ (plano xOz)}$$

2) Seja $V = \mathbb{R}^2$ com o produto interno usual e $S = \{(x, -x)/x \in \mathbb{R}\}$

Então:

$$S^{\perp} = \{(x, x)/x \in \mathbb{R}\}$$

uma vez que $(x, -x) \cdot (x, x) = x^2 - x^2 = 0$

3.9 PROBLEMAS RESOLVIDOS

9) Determinar o valor de m para que os vetores u = (2, m, -3) e v = (m - 1, 2, 4) sejam ortogonais em relação ao produto interno usual do \mathbb{R}^3 .

Solução

Os vetores são ortogonais se $u \cdot v = 0$. Então:

$$(2, m, -3) \cdot (m - 1, 2, 4) = 0$$

$$2(m-1)+m(2)-3(4)=0$$

$$2m - 2 + 2m - 12 = 0$$

$$4m = 14$$

$$m = \frac{7}{2}$$

10) Seja V = IR³ e o produto interno

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = 2x_1x_2 + 3y_1y_2 + z_1z_2$$

Determinar um vetor unitário simultaneamente ortogonal aos vetores u = (1, 2, 1) e v = (1, 1, 1).

Solução

Seja w = (x, y, z), tal que $w \perp u \in w \perp v$. Então:

$$\begin{cases} w \cdot u = 0 \\ w \cdot v = 0 \end{cases} \quad \text{ou} \quad \begin{cases} (x, y, z) \cdot (1, 2, 1) = 0 \\ (x, y, z) \cdot (1, 1, 1) = 0 \end{cases}$$

Com o produto interno dado, obtemos o sistema.

$$\begin{cases} 2x + 6y + z = 0 \\ 2x + 3y + z = 0 \end{cases}$$

que tem por solução:

$$y = 0$$
 e $z = -2x$

Logo, w = (x, 0, -2x) = x(1, 0, -2), para $x \in \mathbb{R}$.

Portanto, existem infinitos vetores ortogonais simultaneamente a u e v, porém todos múltiplos de (1, 0, -2). Para x = 1, obtém-se $w_1 = (1, 0, -2)$, que, normalizado, resulta:

$$\frac{\mathbf{w}_1}{|\mathbf{w}_1|} = \frac{(1,0,-2)}{\sqrt{2(1)^2 + 0^2 + (-2)^2}} = \frac{(1,0,-2)}{\sqrt{6}} = (\frac{1}{\sqrt{6}},0,-\frac{2}{\sqrt{6}})$$

11) Construir, a partir do vetor $v_1 = (1, -2, 1)$, uma base ortogonal do \mathbb{R}^3 relativamente ao produto interno usual e obter, a partir dela, uma base ortonormal.

Solução

Seja $B = \{v_1, v_2, v_3\}$ a base ortogonal a ser determinada.

Seja $v_2 = (x, y, z)$. Como $v_2 \perp v_3$, tem-se:

$$\mathbf{v_2} \cdot \mathbf{v_1} = \mathbf{0}$$

$$(x, y, z) \cdot (1, -2, 1) = 0$$

 $x - 2y + z = 0$
 $x = 2y - z$

Existem, portanto, infinitos vetores ortogonais a v₁ da forma

$$(2y - z, y, z), y, z \in \mathbb{R}$$

Fazendo y = 0 e z = 1, obtém-se um vetor particular:

$$v_2 = (-1, 0, 1)$$

Assim, o conjunto $\{v_1, v_2\}$ é ortogonal, pois $v_1, v_2 = 0$.

Para obtermos uma base ortogonal, necessitamos de mais um vetor.

Seja $v_3 = (a, b, c)$, tal que $v_3 \perp v_1$ e $v_3 \perp v_2$. Então:

$$\begin{cases} \mathbf{v_3} \cdot \mathbf{v_1} = 0 \\ \mathbf{v_3} \cdot \mathbf{v_2} = 0 \end{cases}$$

ou:

$$\begin{cases} (a, b, c) \cdot (1, -2, 1) = 0 \\ (a, b, c) \cdot (-1, 0, 1) = 0 \end{cases}$$

ou, ainda:

$$\begin{cases} a - 2b + c = 0 \\ -a + c = 0 \end{cases}$$

sistema de solução a = c e b = c.

Portanto, os vetores ortogonais a v₁ e v₂ são do tipo

$$(c, c, c), c \in \mathbb{R}$$

Fazendo c = 1, obtém-se um vetor particular:

$$v_3 = (1, 1, 1)$$

logo:

 $B = \{(1, -2, 1), (-1, 0, 1), (1, 1, 1)\}$ é uma base ortogonal do \mathbb{R}^3 com a presença do vetor $v_1 = (1, -2, 1)$.

Para se obter, a partir de B, uma base ortonormal, basta normalizar cada vetor de B. Assim:

$$u_1 = \frac{v_1}{|v_1|} = \frac{(1, -2, 1)}{\sqrt{1 + 4 + 1}} = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$

$$\mathbf{u_2} = \frac{\mathbf{v_2}}{|\mathbf{v_2}|} = \frac{(-1, 0, 1)}{\sqrt{1+1}} = (-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

$$u_3 = \frac{v_3}{|v_3|} = \frac{(1, 1, 1)}{\sqrt{1 + 1 + 1}} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

e:

 $B' = \{u_1, u_2, u_3\}$ é uma base ortonormal do \mathbb{R}^3 .

Esse problema, como é fácil observar, tem infinitas soluções.

12) O conjunto $B = \{(1, -1), (2, b)\}$ é uma base ortogonal do \mathbb{R}^2 em relação ao produto interno:

$$(x_1, y_1).(x_2, y_2) = 2x_1x_2 + y_1y_2$$

Calcular o valor de b e determinar, a partir de B, uma base ortonormal.

Solução

Sendo B ortogonal, tem-se:

$$(1, -1) \cdot (2, b) = 0$$

$$2(1)(2)-1(b)=0$$

$$b = 4$$

Portanto:

$$B = \{(1, -1), (2, 4)\}$$

é ortogonal.

Normalizando cada vetor de B segundo esse produto interno, vem:

$$\frac{(1,-1)}{\sqrt{2(1)^2+(-1)^2}} = \frac{(1,-1)}{\sqrt{3}} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$

$$\frac{(2,4)}{\sqrt{2(2)^2+4^2}} = \frac{(2,4)}{2\sqrt{6}} = (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$$

e:

$$B' = \{ (r\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}), (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}) \}$$

é uma base ortonormal do IR2 relativamente ao produto interno dado.

13) Em relação ao produto interno usual, determinar uma base ortonormal do seguinte subespaço vetorial do R³:

$$S = \{(x, y, z) \in \mathbb{R}^3 / x + y - z\} = 0$$

Solução

Basta considerar uma base de S e, posteriormente, aplicar nela o processo de Gram-Schmidt com a normalização de cada vetor.

Observemos que dim S = 2 e, portanto, uma base de S tem dois vetores. Isolando x na igualdade: x + y + z = 0.

vem:

$$x = -y + z$$

Se fizermos:

(1)
$$y = 0$$
 e $z = 1$

(2)
$$y = i e z = 0$$

obteremos os vetores $v_1 = (1, 0, 1)$ e $v_2 = (-1, 1, 0)$, sendo $B = \{v_1, v_2\}$ uma base de S, pois v_1 e v_2 são Ll. Procuremos uma base $B' = \{u_1, u_2\}$ que seja ortonormal.

a)
$$u_1 = \frac{v_1}{|v_1|} = \frac{(1,0,1)}{\sqrt{2}} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

b)
$$\mathbf{w}_2 = \mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{u}_1) \mathbf{u}_1 = (-1, 1, 0) - (-\frac{1}{\sqrt{2}}) (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

$$\mathbf{w}_2 = (-1, 1, 0)(-\frac{1}{2}, 0, -\frac{1}{2}) = (-\frac{1}{2}, 1, \frac{1}{2})$$

$$u_2 = \frac{w_2}{|w_2|} = \frac{(-\frac{1}{2}, 1, \frac{1}{2})}{\frac{\sqrt{6}}{2}} = (-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$

logo:

B' =
$$\{(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})\}$$
 é uma base ortonormal de S.

Observação — O processo de ortogonalização de Gram-Schmidt teria sido evitado caso tivéssemos escolhido uma base B já ortogonal.

14) Seja o produto interno usual no \mathbb{R}^4 e o subespaço, de dimensão 2,

$$S = [(1, 1, 0, -1), (1, -2, 1, 0)]$$

Determinar S^{\perp} e uma base ortonormal de S^{\perp} .

Solução

e:

Um vetor $v = (x, y, z, t) \in S^{\perp}$ se:

$$(x, y, z, t) \cdot (1, 1, 0, -1) = 0$$

$$(x, y, z, t) \cdot (1, -2, 1, 0) = 0$$

Daí vem o sistema:

$$\begin{cases} x + y - t = 0 \\ x - 2y + z = 0 \end{cases}$$

cuja solução é:

$$t = x + y$$
 e $z = -x + 2y$.

Logo:

$$S^{\perp} = \{ (x, y, -x + 2y, x + y)/x, y \in \mathbb{R} \}$$

Uma base de S1 é:

$$B = \{(1, 0, -1, 1), (0, 1, 2, 1)\}$$

na qual $v_1 = (1, 0, -1, 1)$ e $v_2 = (0, 1, 2, 1)$. Apliquemos o processo de Gram-Schmidt à base B para encontrar a base ortonormal $B' = \{u_1, u_2\}$:

a)
$$u_1 = \frac{v_1}{|v_1|} = \frac{(1, 0, -1, 1)}{\sqrt{3}} = (\frac{1}{\sqrt{3}}, 0, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

b)
$$\mathbf{w}_2 = \mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{u}_1) \mathbf{u}_1 = (0, 1, 2, 1) - (-\frac{1}{\sqrt{3}}) (\frac{1}{\sqrt{3}}, 0, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$w_2 = (0, 1, 2, 1) - (-\frac{1}{3}, 0, \frac{1}{3}, -\frac{1}{3}) = (\frac{1}{3}, 1, \frac{5}{3}, \frac{4}{3})$$

$$u_2 = \frac{w_2}{|w_2|} = \frac{(\frac{1}{3}, 1, \frac{5}{3}, \frac{4}{3})}{\frac{\sqrt{51}}{3}} = (\frac{1}{\sqrt{51}}, \frac{3}{\sqrt{51}}, \frac{5}{\sqrt{51}}, \frac{4}{\sqrt{51}})$$

Logo:

$$B' = \{u_1, u_2\}$$

é uma base ortonormal de S1.

3.10 PROBLEMAS PROPOSTOS

- 1) Sejam $u = (x_1, y_1)$ e $v = (x_2, y_2)$. Mostrar que cada operação a seguir define um produto interno no \mathbb{R}^2 :
 - a) $u \cdot v = x_1 x_2 + y_1 y_2$
 - b) $\mathbf{u} \cdot \mathbf{v} = 2\mathbf{x}_1 \mathbf{x}_2 + 5\mathbf{y}_1 \mathbf{y}_2$
 - c) $u \cdot v = x_1 x_2 + x_1 y_2 + x_2 y_1 + 2y_1 y_2$
- Calcular o produto interno dos vetores u = (1, 1) e v = (-3, 2) segundo cada produto do exercício anterior.
- 3) Sejam os vetores $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$ de $V = \mathbb{R}^2$.

Verificar quais das funções $f: V \times V \to \mathbb{R}$, definidas abaixo, são produtos internos em V:

- a) $f(v_1, v_2) = 2x_1x_2 + 3y_1y_2$
- b) $f(v_1, v_2) = x_1x_2 y_1y_2$
- c) $f(v_1, v_2) = x_1^2 x_2 + y_1 y_2^2$
- d) $f(v_1, v_2) = 4x_1x_2$
- e) $f(v_1, v_2) = x_1x_2 + y_1y_2 + 1$
- f) $f(v_1, v_2) = 3x_1x_2 x_1y_2 x_2y_1 + 3y_1y_2$
- g) $f(v_1, v_2) = 4x_1x_2 + x_1y_2 + x_2y_1 + y_1y_2$
- h) $f(v_1, v_2) = x_1y_2 + x_2y_1$

4) Sejam $V = \mathbb{R}^3$ e os vetores $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$.

Verificar quais das seguintes funções são produtos internos sobre o \mathbb{R}^3 . (Para aquelas que não são produtos internos, citar os axiomas que não se verificam.)

a)
$$u \cdot v = x_1 x_2 + 3y_1 y_2$$

b)
$$u \cdot v = 3x_1x_2 + 5y_1y_2 + 2z_1z_2$$

c)
$$\mathbf{u} \cdot \mathbf{v} = 2\mathbf{x}_1^2 \mathbf{y}_1^2 + 3\mathbf{x}_2^2 \mathbf{y}_2^2 + \mathbf{z}_1^2 \mathbf{z}_2$$

d)
$$u \cdot v = x_1 x_2 + y_1 y_2 - z_1 z_2$$

e)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{x}_1 \mathbf{x}_2 + \mathbf{y}_1 \mathbf{y}_2 + \mathbf{z}_1 \mathbf{z}_2 - \mathbf{x}_2 \mathbf{y}_1 - \mathbf{x}_1 \mathbf{y}_2$$

- Consideremos o seguinte produto interno em P_2 : $p \cdot q = a_2 b_2 + a_1 b_1 + a_0 b_0$, sendo $p = a_2 x^2 + a_1 x + a_0$ e $q = b_2 x^2 + b_1 x + b_0$. Dados os vetores $p_1 = x^2 2x + 3$, $p_2 = 3x 4$ e $p_3 = 1 x^2$, calcular:
 - a) $p_1 \cdot p_2$
 - b) $|p_1| \in |p_3|$
 - c) $| p_1 + p_2 |$
 - $d) \frac{\mathbf{p_2}}{|\mathbf{p_2}|}$
 - e) co-seno do ângulo entre p2 e p3
- 6) Se

$$\mathbf{u} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{b}_1 \\ & & \\ \mathbf{c}_1 & \mathbf{d}_1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{v} = \begin{bmatrix} \mathbf{a}_2 & \mathbf{b}_2 \\ & & \\ \mathbf{c}_2 & \mathbf{d}_2 \end{bmatrix}$$

são matrizes quaisquer de M(2, 2), a seguinte fórmula define um produto interno nesse espaço:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{a}_1 \mathbf{a}_2 + \mathbf{b}_1 \mathbf{b}_2 + \mathbf{c}_1 \mathbf{c}_2 + \mathbf{d}_1 \mathbf{d}_2$$

Dados os vetores

$$\mathbf{u} = \begin{bmatrix} 1 & 2 \\ & \\ -1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{v} = \begin{bmatrix} 0 & 2 \\ & \\ 1 & 1 \end{bmatrix}$$

determinar:

- $a) \mid u + v \mid$
- b) o ângulo entre u e v.
- 7) No espaço $V = P_2$ consideremos o produto interno f(t), $g(t) = \int_0^1 f(t) g(t) dt$. Calcular f(t), g(t) e |f(t)| para $f(t) = t^2 2t$ e g(t) = t + 3.
- 8) Verificar a desigualdade de Cauchy quando se tem:
 - a) u = (2, -1) e v = (-2, -4) e o produto interno do problema 1b.
 - b) $u = -x^2 + x 3$ e $v = 3x^2 x + 1$ e o produto interno do problema 5.
- 9) Seja a função

$$f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow M(1, 1)$$

$$((\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2)) \longmapsto [\mathbf{x}_1 \ \mathbf{y}_1] \begin{bmatrix} 1 & 1 \\ & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{bmatrix}$$

Mostrar que f é um produto interno em R² e calcular:

- a) A norma do vetor (1, 3);
- b) Um vetor unitário a partir de (1, 3);
- c) Um vetor ortogonal a (1, 3).

- 10) Provar que se u e v são vetores de um espaço vetorial euclidiano, então:
 - a) u 1 v implica $| u + v |^2 = | u |^2 + | v |^2$

(Interretar geometricamente esse fato no \mathbb{R}^2 e no \mathbb{R}^3 .)

- b) (u + v) + (u v) implica |u| = |v|
- 11) Consideremos, no R³, o produto interno usual. Para que valores de m os vetores u e v são ortogonais?
 - a) u = (3m, 2, -m) e v = (-4, 1, 5)
 - b) u = (0, m-1, 4) e v = (5, m-1, -1)
- 12) Consideremos, no \mathbb{R}^3 , o seguinte produto interno:

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = 2x_1x_2 + y_1y_2 + 4z_1z_2$$

Determinar, em relação a esse produto interno, um vetor unitário simultaneamente ortogonal aos vetores u = (1, -1, 2) e v = (2, 1, 0).

- 13) Seja $V = \mathbb{R}^3$ com o produto interno usual. Determinar um vetor $u \in \mathbb{R}^3$ ortogonal aos vetores $v_1 = (1, 1, 2)$, $v_2 = (5, 1, 3)$ e $v_3 = (2, -2, -3)$.
- Determinar os vetores (a, b, c) para que o conjunto $B = \{(1, -3, 2), (2, 2, 2), (a, b, c)\}$ seja uma base ortogonal do \mathbb{R}^3 em relação ao produto interno usual. Construir a partir de B uma base ortonormal.
- 15) Seja V = M(2, 2) munido do produto interno definido no problema 6. Determinar x de modo que

$$\begin{bmatrix} 1 & -2 \\ 5 & x \end{bmatrix} e \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$$

sejam ortogonais.

16) Seja P₁ o espaço vetorial dos polinômios de grau ≤ 1. Definimos o produto interno entre dois vetores p e q de P₁ como segue:

$$\mathbf{p} \cdot \mathbf{q} = 2a\mathbf{c} + a\mathbf{d} + b\mathbf{c} + 2b\mathbf{d}$$
, sendo
$$\begin{cases} \mathbf{p}(t) = at + b \\ \mathbf{q}(t) = ct + \mathbf{d} \end{cases}$$

- a) Calcular o ângulo entre t 1 e 3t.
- b) Encontrar um vetor r(t) ortogonal ao vetor t-1.
- 17) Sejam $V = \mathbb{R}^3$ munido do produto interno usual e $A = \{(1, -1, -2)\} \subset V$. Encontrar uma base ortogonal B de V tal que $A \subset B$.
- 18) Sendo $V = \mathbb{R}^4$ munido do produto interno usual, determinar um vetor não-nulo $v \in \mathbb{R}^4$ que seja ortogonal a $v_1 = (1, 1, 1, -1)$, $v_2 = (1, 2, 0, 1)$ e $v_3 = (-4, 1, 5, 2)$.
- 19) Consideremos o seguinte produto interno no \mathbb{R}^2 :

$$(x_1, y_1) \cdot (x_2, y_2) = x_1 x_2 + 2x_1 y_2 + 2x_2 y_1 + 5y_1 y_2$$

Mostrar que, relativamente a esse produto interno, o conjunto

 $A = \{(1, 0), (2, -1)\}$ é base ortonormal do \mathbb{R}^2 .

20) O conjunto $B = \{(2, -1), (k, 1)\}$ é uma base ortogonal do \mathbb{R}^2 em relação ao produto interno

$$(x_1, y_1) \cdot (x_2, y_2) = 2x_1x_2 + x_1y_2 + x_2y_1 + y_1y_2$$

Determinar o valor de k e obter, a partir de B, uma base ortonormal.

21) Consideremos as seguintes bases do \mathbb{R}^2 e do \mathbb{R}^3 :

a)
$$B = \{(3, 4), (1, 2)\}$$

b)
$$B = \{(1, 0, 0), (0, 1, 1), (0, 1, 2)\}$$

c)
$$B = \{(1, 0, 1), (1, 0, -1), (0, 3, 4)\}$$

Ortonormalizar essas bases pelo processo de Gram-Schmidt, segundo o produto interno usual de cada espaço.

- O conjunto $B = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}$ é uma base ortonormal do \mathbb{R}^2 com o produto interno usual. Determinar o vetor coordenada de v = (2, 4) em relação à base B. Utilizar o processo apresentado em 3.6.4.
- 23) Em relação ao produto interno usual, determinar uma base ortonormal dos seguintes subespaços vetoriais do \mathbb{R}^3 :

a)
$$S = \{(x, y, z) \in \mathbb{R}^3 / y - 2z = 0\}$$

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$$

- Determinar, em relação ao produto interno usual, uma base ortonormal para o subespaço do \mathbb{R}^4 gerado pelos vetores $v_1 = (1, 0, -1, 1)$, $v_2 = (0, 1, 0, 1)$ e $v_3 = (1, 1, -1, 2)$.
- Seja $S = \{(x, y, z, -2x + 4y + 5z)/x, y, z \in \mathbb{R}\}$ subespaço de \mathbb{R}^4 com o produto interno usual.

Seja
$$A = \{(1, 2, -1, 1), (2, -1, 2, 2)\} \subseteq S.$$

- a) Ortonormalizar o conjunto A.
- b) Completar o conjunto. A de modo a transformá-lo num a base ortogonal de. S.
- 26) Seja $V = \mathbb{R}^3$ munido do produto interno usual e $B = \{(1, 2, -3), (2, -4, 2)\}$. Determinar:
 - a) O subespaço S gerado por B.
 - b) O subespaço S-

27) Seja V = R³ munido do produto interno usual. Dados os subespaços:

$$S_1 = \{ (x, y, z) \in \mathbb{R}^3 / x - 2y + 3z = 0 \}$$
 e

$$S_2 = \{t(2, 1, -1)/t \in \mathbb{R}\}$$

determinar S_1^{\perp} e S_2^{\perp} .

28) Consideremos o subespaço $S = \{(x, y, z)/|x-z=0\} \subset \mathbb{R}^3$ com o produto interno:

$$(x, y, z) \cdot (x', y', z') = 2xx' + 3yy' + 4zz'$$

Determinar S1 e uma base de S1

3.10.1 Respostas de Problemas Propostos

- 2. a) -1
- b) 4 c) 0
- 3. a), f), g)

4. a) Não é produto interno. Falha o axioma P4.

- b) É produto interno.
- c) Não é produto interno. Falham os axiomas P2 e P3
- d) Não é produto interno. Falha o axioma P4.
- e) É produto interno.

b)
$$\sqrt{14}$$
 e $\sqrt{2}$

c)
$$\sqrt{3}$$

d)
$$\frac{3}{5}$$
 x $-\frac{4}{5}$

e)
$$\cos \theta = -\frac{2\sqrt{2}}{5}$$

- 6. **a)** $\sqrt{21}$
 - b) $\theta = \arccos \frac{4}{\sqrt{42}}$
- 7. $-\frac{29}{12}$ e $\sqrt{\frac{8}{15}}$
- 9 a) 5
 - b) $(\frac{1}{5}, \frac{3}{5})$
 - c) t(-7, 4)
- 11. a) $\frac{2}{17}$ b) 3 ou -1
- 12. $(\frac{2}{9}, -\frac{8}{9}, -\frac{1}{6})$
- 13. $u = a(1, 7, -4), a \in \mathbb{R}$
- 14. $t(-5, 1, 4), t \neq 0$

$$\{(\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}), (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (\frac{5}{\sqrt{42}}, \frac{1}{\sqrt{42}}, \frac{4}{\sqrt{42}})\}$$

- 15. x = 4
- 16. a) $\theta = \arccos \frac{1}{2}$.
 - b) t + l (é uma das soluções).
- 17 $\{(1,-1,-2),(1,1,0),(-1,1,-1)\}$ é uma delas.
- 18. Uma solução é (9, -8, 6, 7).
- $k = -\frac{1}{3}$

$$\{(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}), (-\frac{1}{\sqrt{5}}, \frac{3}{\sqrt{5}})\}$$

21. a)
$$\{(\frac{3}{5}, \frac{4}{5}), (-\frac{4}{5}, \frac{3}{5})\}$$

b)
$$\{(1, 0, 0), (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}$$

c)
$$\{(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}), (0, 1, 0)\}$$

22.
$$v_{\rm B} = (3\sqrt{2}, \sqrt{2})$$

23. a)
$$\{(1,0,0),(0,-\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}})\}$$

b)
$$\{(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})\}$$

24. Existem infinitas bases ortonormais.

Uma delas:

$$\{(\frac{1}{\sqrt{3}}, 0, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (-\frac{1}{\sqrt{15}}, \frac{3}{\sqrt{15}}, \frac{1}{\sqrt{15}}, \frac{2}{\sqrt{15}})\}$$

25. a)
$$\{(\frac{1}{\sqrt{7}}, \frac{2}{\sqrt{7}}, -\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}), (\frac{2}{\sqrt{13}}, -\frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}, \frac{2}{\sqrt{13}})\}$$

b) Uma delas:

$$\{(1, 2, -1, 1), (2, -1, 2, 2), (44, 4, 5, -47)\}$$

26. a)
$$S = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$$

b)
$$S^{\perp} = \{(x, y, z) \in IR^3 / x = y = z\}$$

27.
$$S_1^{\perp} = \{ (x, -2x, 3x)/x \in \mathbb{R} \}$$

$$S_2^{\perp} = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z = 0\}$$

28.
$$S^{\perp} = \{ (-2z, 0, z)/z \in \mathbb{R} \}$$

Uma base: $\{(-2, 0, 1)\}$.

CAPÍTULO

4

TRANSFORMAÇÕES LINEARES

4.1 TRANSFORMAÇÕES LINEARES

Neste capítulo estudaremos um tipo especial de função (ou aplicação), onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto a variável independente como a variável dependente são vetores, razão pela qual essas funções são chamadas vetoriais. Estamos particularmente interessados nas funções vetoriais lineares, que serão denominadas transformações lineares.

Para dizer que T é uma transformação do espaço vetorial V no espaço vetorial W, escreve-se $T: V \longrightarrow W$. Sendo T uma função, cada vetor $v \in V$ tem um só vetor imagem $w \in W$, que será indicado por w = T(v).

Vamos exemplificar, considerando $V = \mathbb{R}^2$ e $W = \mathbb{R}^3$.

Uma transformação $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ associa vetores $v = (x, y) \in \mathbb{R}^2$ com vetores $w = (x, y, z) \in \mathbb{R}^3$. Se a lei que define a transformação T for

$$T(x, y) = (3x, -2y, x - y)$$

o diagrama da página seguinte apresenta três vetores particulares v e suas correspondentes imagens w.

Deve ficar bem claro que, para calcular, por exemplo, T(2, 1), tem-se: x = 2 e y = 1, e daí:

$$T(2, 1) = (3 \times 2, -2 \times 1, 2 - 1) = (6, -2, 1)$$

4.1.1 Definição

Sejam V e W espaços vetoriais. Uma aplicação T: V → W é chamada transformação linear de V em W se:

1)
$$T(u + v) = T(u) + T(v)$$

II)
$$T(\alpha u) = \alpha T(u)$$

para $\forall u, v \in V e \forall \alpha \in \mathbb{R}$.

Observação

Uma transformação linear de V em V (é o caso de V = W) é chamada operador linear sobre V.

Exemplos

1) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x, y) = (3x, -2y, x - y) é linear.

De fato:

I) Sejam $u = (x_1, y_1)$ e $v = (x_2, y_2)$ vetores genéricos de \mathbb{R}^2 .

Então:

$$T(u+v) = T(x_1 + x_2, y_1 + y_2)$$

$$T(u+v) = (3(x_1 + x_2), -2(y_1 + y_2), (x_1 + x_2) - (y_1 + y_2))$$

$$T(u+v) = (3x_1 + 3x_2, -2y_1 - 2y_2, x_1 + x_2 - y_1 - y_2)$$

$$T(u+v) = (3x_1, -2y_1, x_1 - y_1) + (3x_2, -2y_2, x_2 - y_2)$$

$$T(u+v) = T(u) + T(v)$$

II) Para todo $\alpha \in \mathbb{R}$ e para qualquer $u = (x_1, y_1) \in \mathbb{R}^2$, tem-se:

$$T(\alpha u) = T(\alpha x_1, \alpha y_1)$$

$$T(\alpha u) = (3\alpha x_1, -2\alpha y_1, \alpha x_1 - \alpha y_1)$$

$$T(\alpha u) = \alpha(3x_1, -2y_1, x_1 - y_1)$$

$$T(\alpha u) = \alpha T(u)$$

2)
$$T: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 3x$ ou $T(x) = 3x$ é linear

De fato:

I) Sejam $u = x_1$ e $v = x_2$ vetores quaisquer de \mathbb{R} (os vetores, nesse caso, são números reais). Então:

$$T(u+v) = T(x_1 + x_2)$$

$$T(u + v) = 3(x_1 + x_2)$$

$$T(u + v) = 3x_1 + 3x_2$$

$$T(u+v) = T(u) + T(v)$$

II) Para $\forall \alpha \in \mathbb{R}$, $\forall u = x_1 \in \mathbb{R}$, tem-se:

$$T(\alpha u) = T(\alpha x_1)$$

$$T(\alpha u) = 3\alpha x_1$$

$$T(\alpha u) = \alpha(3x_1)$$

$$T(\alpha u) = \alpha T(u)$$

Observação

Essa transformação linear representa uma reta que passa pela origem (Figura 4.1.1a). É fácil ver que, se uma transformação representar uma reta que não passa pela origem, ela não é linear. Por exemplo:

T:
$$\mathbb{R} \longrightarrow \mathbb{R}$$
, $T(x) = 3x + 1$

não é linear.

De fato:

Se $u = x_1$ e $v = x_2$ são vetores quaisquer de \mathbb{R} , tem-se:

$$T(u+v) = T(x_1 + x_2)$$

$$T(u+v) = 3(x_1 + x_2) + 1$$

$$T(u+v) = 3x_1 + 3x_2 + 1 = (3x_1 + 1) + 3x_2$$

$$T(u+v) \neq T(u) + T(v) = (3x_1 + 1) + (3x_2 + 1)$$

Figura 4.1.1a

Seria bem mais fácil constatar neste exemplo que T não é linear, se conhecêssemos a propriedade:

"Em toda transformação linear T:V → W, a imagem do vetor 0 ∈ V é o vetor 0 ∈ W, isto é T(0) = 0."

Este fato decorre da condição (II) da definição, para $\alpha = 0$: 1:

$$T(0) = T(0, v) = 0 \cdot T(v) = 0$$

Nos exemplos 1) e 2), de transformações lineares, tivemos:

$$T(0,0) = (0,0,0) e T(0) = 0$$

Nesse último exemplo, de transformação não-linear, verifica-se que: $T(0) \neq 0$, pois T(0) = 1.

Assim, também não é linear a transformação

T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, T(x, y, z) = (3x + 2, 2y - z)

pois $T(0, 0, 0) = (2, 0) \neq (0, 0)$.

Insistindo: se T: V \longrightarrow W é linear, então T (0) = 0. No entanto, a recíproca dessa propriedade não é verdadeira, pois existe transformação com T (0) = 0 e T não é linear. É o caso da transformação

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x^2, 3y)$

De fato:

Se $u = (x_1, y_1)$ e $v = (x_2, y_2)$ são vetores quaisquer de \mathbb{R}^2 , tem-se:

$$T(u+v) = T(x_1 + x_2, y_1 + y_2) = ((x_1 + x_2)^2, 3(y_1 + y_2)) = (x_1^2 + 2x_1x_2 + x_2^2, 3y_1 + 3y_2)$$

enquanto:

$$T(u) + T(v) = (x_1^2, 3y_1) + (x_2^2, 3y_2) = (x_1^2 + x_2^2, 3y_1 + 3y_2)$$

isto é:

$$T(u + v) \neq T(u) + T(v)$$

A transformação identidade

I:
$$V \longrightarrow V$$
 $v \longmapsto v \text{ ou } I(v) = v \text{ \'e linear}$

De fato:

I)
$$I(u + v) = u + v = I(u) + I(v)$$

II)
$$I(\alpha u) = \alpha u = \alpha I(u)$$

4) A transformação nula (ou zero)

T:
$$V \longrightarrow W$$

 $V \longmapsto 0$ ou $T(V) = 0$ é linear

De fato:

I)
$$T(u + v) = 0 = 0 + 0 = T(u) + T(v)$$

II)
$$T(\alpha u) = 0 = \alpha \times 0 = \alpha Tu$$

5) A simetria em relação à origem O (Figura 4.1.1b) no IR³

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$v \longmapsto -v \text{ \'e linear}$$

De fato:

I)
$$T(u+v) = -(u+v) = -u-v = T(u) + T(v)$$

II)
$$T(\alpha u) = -\alpha u = \alpha(-u) = \alpha T(u)$$

Figura 4.1.1b

6) A projeção ortogonal do IR³ sobre o plano xy (Figura 4.1.1c)

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x, y, z) \longmapsto (x, y, 0)$$
 ou $T(x, y, z) = (x, y, 0)$

é linear (verificar!).

Figura 4.1.1c

7) A projeção no eixo dos x

T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x, 0, 0)$

é linear (verificar!).

8) Seja o espaço vetorial $V = P_n$ dos polinômios de grau $\leq n$. A aplicação derivada $D: P_n \longrightarrow P_n$, que leva $f \in P_n$ em sua derivada f', isto é, D(f) = f', é linear.

De fato:

Pelas regras da derivação, sabe-se que:

$$D(f+g) = D(f) + D(g)$$

e

$$D(\alpha f) = \alpha D(f)$$

Sejam os espaços vetoriais V = P_n e W = IR. A transformação T: P_n → IR definida por T(u) = ∫_a^b udt (a, b ∈ IR), que a cada polinômio u ∈ V associa sua integral definida T(u) ∈ IR, é linear.

De fato:

Por meio de teoremas do Cálculo, sabe-se que:

$$T(u + v) = \int_{a}^{b} (u + v) dt = \int_{a}^{b} u dt + \int_{a}^{b} v dt = T(u) + T(v)$$

e

$$T(\alpha u) = \int_a^b (\alpha u) dt = \alpha \int_a^b u dt = \alpha T(u)$$

10) Seja a matriz $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \\ 0 & 4 \end{bmatrix}$. Essa matriz determina a transformação:

$$T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 $V \longmapsto AV \text{ ou } T_A(V) = AV$

que é linear.

De fato:

$$T_A(u + v) = A(u + v) = Au + Av = T_A(u) + T_A(v)$$

e

$$T_A(\alpha u) = A(\alpha u) = \alpha(Au) = \alpha T_A(u)$$

Efetuando Av, onde $v = (x, y) \in \mathbb{R}^2$ é um vetor coluna de ordem 2×1 , resulta:

$$\begin{bmatrix} 1 & 2 \\ -2 & 3 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 2y \\ -2x + 3y \\ 4y \end{bmatrix}$$

e, portanto, TA é definida por:

$$T_A(x, y) = (x + 2y, -2x + 3y, 4y)$$

Observações

a) Uma matriz A (m × n) sempre determina uma transformação linear

$$T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

onde a imagem $T_A(v) = Av$ é o produto da matriz A pelo vetor $v \in \mathbb{R}^n$ considerado como uma matriz de ordem $n \times 1$. Uma transformação linear desse tipo chama-se multiplicação por A.

- b) Em 4.4 veremos o inverso, isto é, que uma transformação linear $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ sempre pode ser representada por uma matriz $m \times n$.
- c) Para que possamos dar uma interpretação geométrica do significado de uma transformação linear, consideremos uma transformação linear no plano. Seja o operador linear T: ℝ² → ℝ² definido por:

$$T(x, y) = (-3x + y, 2x + 3y)$$

e consideremos os vetores u = (-1, 1) e v = (0, 1). Portanto, T(u) = (4, 1) e T(v) = (1, 3).

A Figura 4.1.1d mostra que sendo u + v a diagonal do paralelogramo determinado por u + v, sua imagem T(u + v) representa a diagonal do paralelogramo determinado por T(u) e T(v), isto é, T(u + v) = T(u) + T(v).

Diz-se, nesse caso, que T preserva a adição de vetores.

Figura 4.1.1d

A Figura 4.1.1e mostra que, ao multiplicarmos o vetor u por 2, sua imagem T(u) fica também multiplicada por 2. E esse fato vale para qualquer α real, isto é, $T(\alpha v) = \alpha T(v)$. Diz-se, nesse caso, que T preserva a multiplicação por um escalar.

Figura 4.1.1e

4.1.2 Propriedade

Se T: V ----- W for uma transformação linear, então

$$T(a_1v_1 + a_2v_2) = a_1T(v_1) + a_2T(v_2)$$

para $Vv_1, v_2 \in V$ e $Va_1, a_2 \in \mathbb{R}$.

De forma análoga, tem-se:

$$T(a_1v_1 + a_2v_2 + ... + a_nv_n) = a_1T(v_1) + a_2T(v_2) + ... + a_nT(v_n)$$
(1)

para $Vv_i \in V$ e $Va_i \in \mathbb{R}$, i = 1, 2, ..., n, isto é, a imagem de uma combinação linear de vetores é uma combinação linear das imagens desses vetores, com os mesmos coeficientes.

Suponhamos agora que $\{v_1, v_2, ..., v_n\}$ seja uma base do domínio V e que se saiba quais são as imagens $T(v_1), T(v_2), ..., T(v_n)$ dos vetores desta base:

sempre é possível obter a imagem T(v) de qualquer $v \in V$, pois sendo v uma combinação linear dos vetores da base, isto é:

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

e, pela relação acima, vem:

$$T(v) = a_1 T(v_1) + a_2 T(v_2) + ... + a_n T(v_n)$$

Assim, uma transformação linear T: V --- W fica completamente definida quando se conhecem as imagens dos vetores de uma base de V.

O exemplo a seguir e os problemas resolvidos 8 e 9 são aplicações esclarecedoras desta propriedade.

Exemplo

Seja T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ uma transformação linear e B = $\{v_1, v_2, v_3\}$ uma base do \mathbb{R}^3 , sendo $v_1 = (0, 1, 0)$, $v_2 = (1, 0, 1)$ e $v_3 = (1, 1, 0)$. Determinar T (5, 3, -2), sabendo que T $(v_1) = (1, -2)$, T $(v_2) = (3, 1)$ e T $(v_2) = (0, 2)$.

Solução

Expressemos v = (5, 3, -2) como combinação linear dos vetores da base:

$$(5, 3, -2) = a_1(0, 1, 0) + a_2(1, 0, 1) + a_3(1, 1, 0)$$

ou:

$$\begin{cases} a_2 + a_3 = 5 \\ a_1 + a_3 = 3 \\ a_2 = -2 \end{cases}$$

sistema cuja solução é:

$$a_1 = -4$$
, $a_2 = -2$ e $a_3 = 7$

Então:

$$(5, 3, -2) = -4v_1 - 2v_2 + 7v_3$$

logo:

$$T(5, 3, -2) = -4T(v_1) - 2T(v_2) + 7T(v_3)$$

$$T(5, 3, -2) = -4(1, -2) - 2(3, 1) + 7(0, 2)$$

$$T(5, 3, -2) = (-10, 20)$$

4.1.3 Problemas Resolvidos

Nos exercícios 1 a 4 são dadas transformações. Verificar quais delas são lineares.

1) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T(x, y) = (x - y, 2x + y, 0)$

Solução

1) Para quaisquer vetores $u = (x_1, y_1)$ e $v = (x_2, y_2)$ de \mathbb{R}^2 , tem-se:

$$T(u + v) = T(x_1 + x_2, y_1 + y_2)$$

$$T(u+v) = ((x_1 + x_2) - (y_1 + y_2), 2(x_1 + x_2) + (y_1 + y_2), 0)$$

$$T(u+v) = (x_1 + x_2 - y_1 - y_2, 2x_1 + 2x_2 + y_1 + y_2, 0)$$

$$T(u+v) = (x_1 - y_1, 2x_1 + y_1, 0) + (x_2 - y_2, 2x_2 + y_2, 0)$$

$$T(u+v) = T(u) + T(v)$$

II)
$$T(\alpha u) = T(\alpha x_1, \alpha y_1)$$

$$T(\alpha u) = (\alpha x_1 - \alpha y_1, 2\alpha x_1 + \alpha y_1, 0)$$

$$T(\alpha u) = \alpha(x_1 - y_1, 2x_1 + y_1, 0)$$

$$T(\alpha u) = \alpha T(u)$$

Logo, T é linear.

2) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x, y) = (x + 2, y + 3)

Solução

Sabe-se que em toda transformação linear T: V \longrightarrow W deve-se ter T(0) = 0. Como T(0, 0) = (2, 3) \neq (0, 0), T não é uma transformação linear.

Essa aplicação T é um exemplo de translação no plano.

3)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}, T(x, y) = |x|$$

Solução

Sejam $u = (x_1, y_1)$ e $v = (x_2, y_2)$ vetores quaisquer de \mathbb{R}^2 .

$$T(u + v) = T(x_1 + x_2, y_1 + y_2) = |x_1 + x_2| e$$

$$T(u) + T(v) = |x_1| + |x_2|$$

Como, em geral, $|x_1 + x_2| \neq |x_1| + |x_2|$, conclui-se que T não é linear.

4) H: V \longrightarrow V, H(v) = λv , $\lambda \in \mathbb{R}$, λ fixado.

Solução

Se u, $v \in V$:

I)
$$H(u+v) = \lambda(u+v) = \lambda u + \lambda v = H(u) + H(v)$$

II)
$$H(\alpha u) = \lambda(\alpha u) = \alpha(\lambda u) = \alpha H(u)$$

Logo, H é um operador linear em V. Esse operador chama-se homotetia de V determinada pelo escalar λ .

Os exemplos 2, 3 e 5 do item 4.1.1 são casos particulares de homotetia em que $\lambda = 3$, $\lambda = 1$ e $\lambda = -1$, respectivamente.

Seja o espaço vetorial V = M(n, n) e B uma matriz fixa em V.

Seja a aplicação $T: V \longrightarrow V$ definida por T(A) = AB + BA, com $A \in V$. Mostrar que T é linear.

Solução

I) Para quaisquer $A_1, A_2 \in V$:

$$T(A_1 + A_2) = (A_1 + A_2) B + B(A_1 + A_2)$$

$$T(A_1 + A_2) = A_1B + A_2B + BA_1 + BA_2$$

$$T(A_1 + A_2) = (A_1 B + BA_1) + (A_2 B + BA_2)$$

$$T(A_1 + A_2) = T(A_1) + T(A_2)$$

II)
$$T(\alpha A_1) = (\alpha A_1)B + B(\alpha A_1) = \alpha(A_1B) + \alpha(BA_1)$$

$$T(\alpha A_1) = \alpha (A_1 B + BA_1)$$

$$T(\alpha A_1) = \alpha T(A_1)$$

6) Seja T: V → W linear. Mostrar que:

a)
$$T(-v) = -T(v)$$

b)
$$T(u - v) = T(u) - T(v)$$

Solução

a)
$$T(-v) = T((-1)v) = -1T(v) = -T(v)$$

b)
$$T(u - v) = T(u + (-1)v) = T(u) + (-1)T(v) = T(u) - T(v)$$

- 7) Consideremos o operador linear T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por T(x, y, z) = (x + 2y + 2z, x + 2y z, -x + y + 4z).
 - a) Determinar o vetor $u \in \mathbb{R}^3$ tal que T(u) = (-1, 8, -11).
 - b) Determinar o vetor $v \in \mathbb{R}^3$ tal que T(v) = v.

Solução

a) Sendo T(u) = (-1, 8, -11), ou seja:

$$(x + 2y + 2z, x + 2y - z, -x + y + 4z) = (-1, 8, -11),$$

vem:

$$\begin{cases} x + 2y + 2z = -1 \\ x + 2y - z = 8 \\ -x + y + 4z = -11 \end{cases}$$

sistema cuja solução é x = 1, y = 2 e z = -3.

Logo:
$$u = (1, 2, -3)$$

b) Seja v = (x, y, z). Então, T(v) = v ou T(x, y, z) = (x, y, z) ou, ainda:

$$(x + 2y + 2z, x + 2y - z, -x + y + 4z) = (x, y, z)$$

donde:

$$\begin{cases} x + 2y + 2z = x \\ x + 2y - z = y \\ -x + y + 4z = z \end{cases}$$

O sistema é indeterminado e sua solução é: x = 2z e y = -z.

Assim, existem infinitos vetores $v \in \mathbb{R}^3$ tais que

T(v) = v e todos da forma:

$$v = (2z, -z, z)$$

ou:

$$v = z(2, -1, 1), \forall z \in \mathbb{R}$$

Sabendo que T: ℝ² → ℝ³ é uma transformação linear e que

$$T(1,-1) = (3, 2, -2) e T(-1, 2) = (1, -1, 3),$$

determinar T(x, y).

Solução

Observando, inicialmente, que $\{(1,-1),(-1,2)\}$ é uma base de \mathbb{R}^2 , apliquemos a propriedade 4.1.2 expressando o vetor $(x,y) \in \mathbb{R}^2$ como combinação linear dos vetores dessa base:

$$(x, y) = a(1, -1) + b(-1, 2)$$

ou:

$$\begin{vmatrix} a - b = x \\ -a + 2b = y \end{vmatrix}$$

sistema do qual vem:

$$a = 2x + y$$
 e $b = x + y$

Portanto:

$$T(x, y) = aT(1, -1) + bT(-1, 2)$$

$$T(x, y) = (2x + y)(3, 2, -2) + (x + y)(1, -1, 3)$$

$$T(x, y) = (6x + 3y, 4x + 2y, -4x - 2y) + (x + y, -x - y, 3x + 3y)$$

$$T(x, y) = (7x + 4y, 3x + y, -x + y)$$

9) Um operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ é tal que:

$$T(1, 0) = (3, -2) e T(0, 1) = (1, 4)$$

Determinar T(x, y).

Solução

Observemos que $\{(1,0),(0,1)\}$ é a base canônica de \mathbb{R}^2

Um vetor $(x, y) \in \mathbb{R}^2$ é tal que:

$$(x, y) = x(1, 0) + y(0, 1)$$

e, portanto:

$$T(x, y) = xT(1, 0) + yT(0, 1)$$

$$T(x, y) = x(3, -2) + y(1, 4)$$

$$T(x, y) = (3x + y, -2x + 4y)$$

4.2 NÚCLEO DE UMA TRANSFORMAÇÃO LINEAR

Definição

Chama-se núcleo de uma transformação linear $T: V \longrightarrow W$ ao conjunto de todos os vetores $v \in V$ que são transformados em $0 \in W$. Indica-se esse conjunto por N(T) ou $\ker(T)$:

$$N(T) = \{ v \in V/T(v) = 0 \}$$

Observemos que $N(T) \subset V$ e $N(T) \neq \emptyset$, pois $0 \in N(T)$, tendo em vista que T(0) = 0.

Exemplos

1) O núcleo da transformação linear

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x + y, 2x - y)$

é o conjunto:

$$N(T) = \{ (x, y) \in \mathbb{R}^2 / T(x, y) = (0, 0) \}$$

o que implica:

$$(x + y, 2x - y) = (0, 0)$$

ou:

$$\begin{cases} x + y = 0 \\ -2x - y = 0 \end{cases}$$

sistema cuja solução é:

$$x = 0 e y = 0$$

logo:

$$N(T) = \{(0,0)\}$$

Seja T: ℝ³ → ℝ² a transformação linear dada por:

$$T(x, y, z) = (x - y + 4z, 3x + y + 8z)$$

Nesse caso, temos:

$$N(T) = \{(x, y, z) \in \mathbb{R}^3 / T(x, y, z) = (0, 0)\}$$

isto é, um vetor $(x, y, z) \in N(T)$ se, e somente se:

$$(x - y + 4z, 3x + y + 8z) = (0, 0)$$

ou:

$$\begin{cases} x - y + 4z = 0 \\ 3x + y + 8z = 0 \end{cases}$$

sistema homogêneo de solução x = -3z e y = z.

Logo:

$$N(T) = \{(-3z, z, z)/z \in \mathbb{R}\}$$

ou:

$$N(T) = \{ z(-3, 1, 1)/z \in \mathbb{R} \}$$

ou, ainda:

$$N(T) = [(-3, 1, 1)]$$

Observemos que esse conjunto representa uma reta no \mathbb{R}^3 que passa pela origem e tal que todos os seus pontos têm por imagem a origem do \mathbb{R}^2 (Figura 4.2).

Figura 4.2

4.2.1 Propriedades do Núcleo

O núcleo de uma transformação linear T: V → W é um subespaço vetorial de V.
 De fato:

Sejam v_1 e v_2 vetores pertencentes ao N(T) e α um número real qualquer. Então, $T(v_1) = 0$ e $T(v_2) = 0$. Assim:

[)
$$T(v_1 + v_2) = T(v_1) + T(v_2) = 0 + 0 = 0$$

isto é:

$$v_1+v_2\in\,N(T)$$

II)
$$T(\alpha v_1) = \alpha T(v_1) = \alpha 0 = 0$$

isto é:

$$\alpha v_1 \in N(T)$$

2) Uma transformação linear T: $V \longrightarrow W$ é injetora se, e somente se, $N(T) = \{0\}$.

Lembremos que uma aplicação $T: V \longrightarrow W$ é injetora se $\forall v_1, v_2 \in V$, $T(v_1) = T(v_2)$ implica $v_1 = v_2$ ou, de modo equivalente, se $\forall v_1, v_2 \in V$, $v_1 \neq v_2$ implica $T(v_1) \neq T(v_2)$.

A demonstração dessa propriedade tem duas partes:

a) Vamos mostrar que se T é injetora, então $N(T) = \{0\}$.

De fato:

Seja $v \in N(T)$, isto é, T(v) = 0. Por outro lado, sabe-se que T(0) = 0. Logo, T(v) = T(0). Como T é injetora por hipótese, v = 0. Portanto, o vetor zero é o único elemento do núcleo, isto é, $N(T) = \{0\}$.

b) Vamos mostrar que se $N(T) = \{0\}$, então T é injetora.

De fato:

Sejam $v_1, v_2 \in V$ tais que $T(v_1) = T(v_2)$. Então, $T(v_1) - T(v_2) = 0$ ou $T(v_1 - v_2) = 0$ e, portanto, $v_1 - v_2 \in N(T)$. Mas, por hipótese, o único elemento do núcleo é o vetor 0, e, portanto, $v_1 - v_2 = 0$, isto é, $v_1 = v_2$. Como $T(v_1) = T(v_2)$ implica $v_1 = v_2$, T é injetora.

4.3 IMAGEM

Definição

Chama-se imagem de uma transformação linear T: $V \longrightarrow W$ ao conjunto dos vetores $w \in W$ que são imagens de pelo menos um vetor $v \in V$. Indica-se esse conjunto por Im(T) ou T(V):

 $Im(T) = \{ w \in W/T(v) = w \text{ para algum } v \in V \}$

A Figura 4.3 esclarece a definição.

Observemos que $Im(T) \subset W$ e $Im(T) \neq \phi$, pois $0 = T(0) \in Im(T)$. Se Im(T) = W, T diz-se sobrejetora, isto é, para todo $w \in W$ existe pelo menos um $v \in V$ tal que T(v) = w.

Figura 4.3

Exemplos

1) Seja T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x, y, 0) a projeção ortogonal do \mathbb{R}^3 sobre o plano xy. A imagem de T é o próprio plano xy:

$$Im(T) = \{ (x, y, 0) \in \mathbb{R}^3 / x, y \in \mathbb{R} \}$$

Observemos que o núcleo de T é o eixo dos z:

$$N(T) = \{ (0, 0, z)/z \in \mathbb{R} \}$$

pois T(0, 0, z) = (0, 0, 0) para todo $z \in \mathbb{R}$.

- 2) A imagem da transformação linear identidade I: V → V definida por I(v) = v, Vv ∈ V, é todo espaço V. O núcleo, neste caso, é N(I) = {0}.
- 3) A imagem da transformação nula T: V → W definida por T(v) = 0, Vv ∈ V, é o conjunto Im(T) = { 0 }. O núcleo, nesse caso, é todo o espaço V.

4.3.1 Propriedade da Imagem

"A imagem de uma transformação T: V ---- W é um subespaço de W."

De fato:

Sejam w_1 e w_2 vetores pertencentes a Im(T) e α um número real qualquer. Devemos mostrar que $w_1 + w_2 \in Im(T)$ e $\alpha w_1 \in Im(T)$, isto é, devemos mostrar que existem vetores v e u pertencentes a V tais que $T(v) = w_1 + w_2$ e $T(u) = \alpha w_1$.

Como $w_1, w_2 \in Im(T)$, existem vetores $v_1, v_2 \in V$ tais que $T(v_1) = w_1$ e $T(v_2) = w_2$. Fazendo $v = v_1 + v_2$ e $u = \alpha v_1$, tem-se:

$$T(v) = T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2$$

e:

$$T(u) = T(\alpha v_1) = \alpha T(v_1) = \alpha w_1$$

e, portanto, Im(T) é um subespaço vetorial de W.

4.3.2. Teorema da Dimensão

"Seja V um espaço de dimensão finita e $T: V \longrightarrow W$ uma transformação linear. Então, dim N(T) + dim Im(T) = dim V."

Deixaremos de demonstrar o teorema e faremos algumas comprovações por meio dos exemplos e de problemas resolvidos logo a seguir.

No exemplo 1 de 4.3, o núcleo (eixo dos z) da projeção ortogonal T tem dimensão 1 e a imagem (plano xy) tem dimensão 2, enquanto o domínio \mathbb{R}^3 tem dimensão 3.

No exemplo 2 da transformação identidade, temos dim N(T) = 0. Consequentemente, dim Im(T) = dim V pois Im(T) = V.

No exemplo 3 da transformação nula, temos dim Im(T) = 0. Portanto, dim N(T) = dim V, pois N(T) = V.

4.3.3 Problemas Resolvidos

10) Determinar o núcleo e a imagem do operador linear

T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x + 2y - z, y + 2z, x + 3y + z)$

Solução

a)
$$N(T) = \{(x, y, z) \in \mathbb{R}^3 / T(x, y, z) = (0, 0, 0)\}$$

De:

$$(x + 2y - z, y + 2z, x + 3y + z) = (0, 0, 0)$$

vem o sistema:

$$\begin{cases} x + 2y - z = 0 \\ y + 2z = 0 \end{cases}$$

$$x + 3y + z = 0$$

cuja solução geral é (5z, -2z, z), z∈ IR.

Logo:

$$N(T) = \{ (5z, -2z, z)/z \in \mathbb{R} \} = \{ z(5, -2, 1)/z \in \mathbb{R} \} = [(5, -2, 1)]$$

$$(x + 2y - z, y + 2z, x + 3y + z) = (a, b, c)$$

e o sistema:

$$\begin{cases} x + 2y - z = a \\ y + 2z = b \\ x + 3y + z = c \end{cases}$$

somente terá solução se a + b - c = 0.

Logo:

$$Im(T) = \{ (a, b, c) \in \mathbb{R}^3 / a + b - c = 0 \}$$

Notemos que:

dim N(T) + dim Im(T) = 1 + 2 = 3, que é a dimensão do domínio \mathbb{R}^3 .

Observação

O vetor imagem T(x, y, z) pode ser expresso da seguinte forma:

$$(x + 2y - z, y + 2z, x + 3y + z) = (x, 0, x) + (2y, y, 3y) + (-z, 2z, z)$$

ou:

$$(x + 2y - z, y + 2z, x + 3y + z) = x(1, 0, 1) + y(2, 1, 3) + z(-1, 2, 1)$$

Logo, qualquer vetor do conjunto imagem é combinação linear dos vetores (1, 0, 1), (2, 1, 3) e (-1, 2, 1) e, portanto:

$$Im(T) = [(1, 0, 1), (2, 1, 3), (-1, 2, 1)]$$

Observando que:

$$T(1, 0, 0) = (1, 0, 1), T(0, 1, 0) = (2, 1, 3) e T(0, 0, 1) = (-1, 2, 1)$$

conclui-se que:

$$Im(T) = [T(1, 0, 0), T(0, 1, 0), T(0, 0, 1)]$$

isto é, a imagem dessa transformação é o subespaço gerado pelas imagens dos vetores da base canônica do domínio IR³.

Este fato vale de modo geral: "Se T: V \longrightarrow W é linear e $\{v_1,...,v_n\}$ gera V, então $\{T(v_1),...,T(v_n)\}$ gera a Im(T)".

De fato:

Seja $w \in Im(T)$. Então, T(v) = w para algum $v \in V$. Como $\{v_1, ..., v_n\}$ gera V, existem escalares $a_1, ..., a_n$ tais que:

$$v = a_1 v_1 + ... + a_n v_n$$

e:

$$w = T(v) = T(a_1v_1 + ... + a_nv_n) = a_1T(v_1) + ... + a_nT(v_n)$$

Portanto:

$$Im(T) = [T(v_1), ..., T(v_n)]$$
 (4.3.3)

- 11) Seja T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ a transformação linear tal que $T(e_1) = (1, 2)$, $T(e_2) = (0, 1)$ e $T(e_3) = (-1, 3)$, sendo $\{e_1, e_2, e_3\}$ a base canônica de \mathbb{R}^3 .
 - a) Determinar o N(T) e uma de suas bases. T é injetora?
 - b) Determinar a Im(T) e uma de suas bases. T é sobrejetora?

Solução

Lembremos que

$$(x, y, z) = xe_1 + ye_2 + ze_3$$

implica:

$$T(x, y, z) = xT(e_1) + yT(e_2) + zT(e_3)$$

e:

$$T(x, y, z) = x(1, 2) + y(0, 1) + z(-1, 3)$$

ou:

$$T(x, y, z) = (x - z, 2x + y + 3z)$$

fórmula que define T.

a)
$$N(T) = \{(x, y, z) \in \mathbb{R}^3 / (x - z, 2x + y + 3z) = (0, 0)\}$$

O sistema:

$$x - z = 0$$
$$2x + y + 3z = 0$$

admite a solução geral (z, -5z, z), z∈ R.

Logo:

$$N(T) = \{ (z, -5z, z)/z \in \mathbb{R} \}$$

A única variável livre é z. Portanto, dim N(T) = 1.

Fazendo z = 1, obtém-se (1, -5, 1) e $\{(1, -5, 1)\}$ é uma base do N(T). Ainda: T não é injetora, pois $N(T) \neq \{(0, 0, 0)\}$.

b) Pela igualdade (4.3.3) vem:

$$Im(T) = [T(1, 0, 0), T(0, 1, 0), T(0, 0, 1)]$$

ou:

$$Im(T) = [(1, 2), (0, 1), (-1, 3)]$$

Considerando o Teorema da Dimensão, vem:

$$\dim Im(T) = \dim \mathbb{R}^3 - \dim N(T) = 3 - 1 = 2.$$

Logo, $Im(T) = \mathbb{R}^2$ e qualquer base de \mathbb{R}^2 é base de Im(T). Uma delas é $\{(1, 2), (0, 1)\}$. Ainda: T é sobrejetora, pois $Im(T) = \mathbb{R}^2$ que é o contradomínio.

12) Verificar se o vetor (5, 3) pertence ao conjunto Im(T), sendo

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x - 2y, 2x + 3y)$

Solução

Devemos verificar se existe $(x, y) \in \mathbb{R}^2$ tal que:

$$T(x, y) = (x - 2y, 2x + 3y) = (5, 3)$$

isto é, precisamos verificar se o sistema:

$$\begin{cases} x - 2y = 5 \\ 2x + 3y = 3 \end{cases}$$

tem solução. Como a solução do sistema é x = 3 e y = 1, conclui-se que $(5, 3) \in Im(T)$.

13) Determinar uma transformação linear T: ℝ³ → ℝ⁴

tal que N(T) =
$$\{(x, y, z) \in \mathbb{R}^3 / z = x - y\}$$

Solução

O problema será resolvido com a utilização da propriedade 4.1.2. Fazendo, por exemplo, x = 1, y = 0 e x = 0, y = 1, o conjunto $\{(1,0,1), (0,1,-1)\}$ é uma base do núcleo e, com o acréscimo do vetor (0,0,1), o conjunto $\{(1,0,1), (0,1,-1), (0,0,1)\}$ forma uma base do \mathbb{R}^3 (verificar!). Como (1,0,1) e (0,1,-1) são vetores do núcleo, T(1,0,1) = (0,0,0,0) e T(0,1,-1) = (0,0,0,0).

Façamos arbitrariamente, T(0,0,1) = (1,0,-1,0). Pela propriedade 4.1.2, a transformação está definida, ou seja, T tem a condição requerida. Pretendemos calcular T(x, y, z). Comecemos escrevendo (x, y, z) na base considerada de \mathbb{R}^3 . Tendo em vista que

$$(x, y, z) = x(1, 0, 1) + y(0, 1, -1) + (-x + y + z)(0, 0, 1)$$

vem:

$$T(x, y, z) = xT(1, 0, 1) + y(0, 1, -1) + (-x + y + z) T(0, 0, 1)$$

$$T(x, y, z) = x(0, 0, 0, 0) + y(0, 0, 0, 0) + (-x + y + z)(1, 0, -1, 0)$$

$$T(x, y, z) = (-x + y + z, 0, x - y - z, 0)$$

Esse problema admite infinitas soluções.

Do Teorema da Dimensão (4.3.2):

$$\dim N(T) + \dim Im(T) = \dim V$$

seguem algumas conclusões importantes.

4.3.4. Corolários

Seja T: V ---- W uma transformação linear.

1) Se dim V = dim W, então T é injetora se, e somente se, é sobrejetora.

De fato:

⇒ T é sobrejetora

Reciprocamente:

Assim, numa transformação linear na qual dim V = dim W, se T é injetora (ou sobrejetora), então T é também bijetora (injetora e sobrejetora ao mesmo tempo).

2) Se dim V = dim W e T é injetora, então T transforma base em base, isto é, se $B = \{v_1, ..., v_n\}$ é base de V, então $T(B) = \{T(v_1), ..., T(v_n)\}$ é base de W.

De fato:

Como dim $V = \dim W = n$, basta mostrar que T(B) é LI. Para tanto, consideremos a igualdade:

$$a_1 T(v_1) + ... + a_n T(v_n) = 0$$

ou, pela linearidade de T:

$$T(a_1v_1 + ... + a_nv_n) = 0$$

Como T é injetora, vem:

$$a_1 v_1 + ... + a_n v_n = 0$$

Sendo B uma base, B é LI e, portanto:

$$a_1 = \dots = a_n = 0$$

Logo, T(B) é uma base de W.

4.3.5 Isomorfismo

Chama-se isomorfismo do espaço vetorial V no espaço vetorial W a uma transformação linear T: V — W, que é bijetora. Nesse caso, os espaços vetoriais V e W são ditos isomorfos. No Capítulo 2 fizemos referência a espaços vetoriais isomorfos e ressaltamos que todo espaço vetorial V de dimensão n é isomorfo a \mathbb{R}^n . Assim, dois espaços vetoriais de dimensão finita são isomorfos se tiverem a mesma dimensão.

Veremos mais adiante que a todo isomorfismo $T: V \longrightarrow W$ corresponde um isomorfismo inverso $T^{-1}: W \longrightarrow V$, que também é linear.

Exemplos

1) O operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (2x + y, 3x + 2y)$

é um isomorfismo no \mathbb{R}^2 . Como dim $V = \dim W = 2$, basta mostrar que T é injetora (Corolário 1 de 4.3.4), De fato: $N(T) = \{(0,0)\}$, o que implica T ser injetora.

2) A transformação linear

T:
$$P_2 \longrightarrow \mathbb{R}^3$$
, T(at² + bt + c) = (a, a + b, b - c)

é também um isomorfismo (verificar!).

3) O espaço vetorial \mathbb{R}^2 é isomorfo ao subespaço $W = \{(x, y, z) \in \mathbb{R}^3 | z = 0\}$ do \mathbb{R}^3 (W representa o plano xy de \mathbb{R}^3).

De fato, a aplicação linear $T: \mathbb{R}^2 \longrightarrow W$, tal que T(x, y) = (x, y, 0), é bijetora: a cada vetor (x, y) de \mathbb{R}^2 corresponde um só vetor (x, y, 0) de W e, reciprocamente. Logo, \mathbb{R}^2 e W são isomorfos.

4.4 MATRIZ DE UMA TRANSFORMAÇÃO LINEAR

Sejam $T: V \longrightarrow W$ uma transformação linear, A uma base de V e B uma base de W. Sem prejuízo da generalização, consideremos o caso em que dim V = 2 e dim W = 3.

Sejam $A = \{v_1, v_2\} \in B = \{w_1, w_2, w_3\}$ bases de $V \in W$, respectivamente.

Um vetor v∈ V pode ser expresso por:

$$v = x_1 v_1 + x_2 v_2$$
 ou $v_A = (x_1, x_2)$

e a imagem T(v) por:

$$T(v) = y_1 w_1 + y_2 w_2 + y_3 w_3 \tag{1}$$

ou:

$$T(v)_{B} = (y_1, y_2, y_3)$$

Por outro lado:

$$T(v) = T(x_1v_1 + x_2v_2) = x_1T(v_1) + x_2T(v_2)$$
(2)

Sendo T(v1) e T(v2) vetores de W, eles são combinações lineares dos vetores de B:

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + a_{31}w_3$$
(3)

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + a_{32}w_3$$
 (4)

Substituindo esses vetores em (2), vem:

$$T(v) = x_1(a_{11} w_1 + a_{21} w_2 + a_{31} w_3) + x_2(a_{12} w_1 + a_{22} w_2 + a_{32} w_3)$$

ou:

$$T(v) = (a_{11}x_1 + a_{12}x_2)w_1 + (a_{21}x_1 + a_{22}x_2)w_2 + (a_{31}x_1 + a_{32}x_2)w_3$$

Comparando essa igualdade com (1), conclui-se:

$$y_1 = a_{11} x_1 + a_{12} x_2$$

$$y_2 = a_{21} x_1 + a_{22} x_2$$

$$y_3 = a_{31} x_1 + a_{32} x_2$$

ou, na forma matricial:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ou, simbolicamente:

$$[T(v)]_B = [T]_B^A [v]_A$$

sendo a matriz [T] A denominada matriz de T em relação às bases A e B.

Observações

- 1) A matriz $[T]_B^A$ é de ordem 3×2 quando dim V = 2 e dim W = 3.
- 2) As colunas da matriz $[T]_B^A$ são as componentes das imagens dos vetores da base A em relação à base B, conforme se pode ver em (3) e (4):

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$T(v_1)_{R} T(v_2)_{R}$$

De um modo geral, para $T: V \longrightarrow W$ linear, se dim V = n e dim W = m, $A = \{v_1, v_2, ..., v_n\}$ e $B = \{w_1, w_2, ..., w_m\}$ são bases de V e W, respectivamente, teremos que $[T]_B^A$ é uma matriz

de ordem m x n, onde cada coluna é formada pelas componentes das imagens dos vetores de A em relação à base B:

$$[T]_{B}^{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$T(v_1)_{B} \qquad T(v_2)_{B} \qquad T(v_n)_{B}$$

3) Como se vê, a matriz [T] A depende das bases A e B consideradas, isto é, a cada dupla de bases corresponde uma particular matriz. Assim, uma transformação linear poderá ter uma infinidade de matrizes para representá-la. No entanto, fixadas as bases, a matriz é única.

4.4.1 Problemas Resolvidos

14) Seja T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(x, y, z) = (2x - y + z, 3x + y - 2z), linear.

Consideremos as bases $A = \{v_1, v_2, v_3\}$, com $v_1 = (1, 1, 1)$, $v_2 = (0, 1, 1)$, $v_3 = (0, 0, 1)$ e $B = \{w_1, w_2\}$, sendo $w_1 = (2, 1)$ e $w_2 = (5, 3)$.

- a) Determinar [T] A.
- b) Se v = (3, -4, 2) (coordenadas em relação à base canônica do IR³), calcular T (v)_B utilizando a matriz encontrada.

Solução

a) A matriz é de ordem 2 × 3:

$$[T]_{B}^{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ & & & \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$T(v_{1})_{B} T(v_{2})_{B} T(v_{3})_{B}$$

$$T(v_1) = T(1, 1, 1) = (2, 2) = a_{11}(2, 1) + a_{21}(5, 3)$$

$$\begin{cases} 2a_{11} + 5a_{21} = 2 \\ a_{11} + 3a_{21} = 2 \end{cases} \qquad \vdots \qquad \begin{cases} a_{11} = -4 \\ a_{21} = 2 \end{cases}$$

$$T(v_2) = T(0, 1, 1) = (0, -1) = a_{12}(2, 1) + a_{22}(5, 3)$$

$$\begin{cases} 2a_{12} + 5a_{22} = 0 \\ a_{12} + 3a_{22} = -1 \end{cases} \qquad \begin{cases} a_{12} = 5 \\ a_{22} = -2 \end{cases}$$

$$T(v_3) = T(0, 0, 1) = (1, -2) = a_{13}(2, 1) + a_{23}(5, 3)$$

$$\begin{cases} 2a_{13} + 5a_{23} = 1 \\ a_{13} + 3a_{23} = -2 \end{cases} \qquad \begin{cases} a_{13} = 13 \\ a_{23} = -5 \end{cases}$$

Logo:

$$[T]_{B}^{A} = \begin{bmatrix} -4 & 5 & 13 \\ & & \\ 2 & -2 & -5 \end{bmatrix}$$

b) Sabe-se que:

$$[T(v)]_B = [T]_B^A [v]_A$$

Como v está expresso com componentes na base canônica, isto é,

$$v = (3, -4, 2) = 3(1, 0, 0) - 4(0, 1, 0) + 2(0, 0, 1),$$

teremos que, primeiramente, expressá-lo na base A. Seja v_A = (a, b, c), isto é:

$$(3, -4, 2) = a(1, 1, 1) + b(0, 1, 1) + c(0, 0, 1)$$

ou:

$$\begin{cases} a = 3 \\ a+b = -4 \\ a+b+c = 2, \end{cases}$$

sistema cuja solução é a = 3, b = -7 e c = 6, ou seja, $v_A = (3, -7, 6)$.

Portanto:

$$[T(v)]_{B} = \begin{bmatrix} -4 & 5 & 13 \\ & & \\ 2 & -2 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -7 \\ 6 \end{bmatrix}$$

$$[T(v)]_{B} = \begin{bmatrix} 31 \\ -10 \end{bmatrix}$$

O vetor coordenada de T (v) na base canônica é:

$$T(v) = 31(2, 1) - 10(5, 3)$$

$$T(v) = (12, 1)$$

Naturalmente T(v) = (12, 1) também seria obtido por meio da lei que define a transformação T, considerando v = (3, -4, 2), como se pode ver nos problemas 15 e 16.

- Consideremos a mesma transformação linear do exercício anterior. Sejam as bases $A = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\} \text{ (a mesma) e B} = \{(1, 0), (0, 1)\} \text{ canônica.}$
 - a) Determinar [T] A.
 - b) Se v = (3, -4, 2), calcular $T(v)_B$ utilizando a matriz encontrada.

Solução

a)
$$T(1, 1, 1) = (2, 2) = 2(1, 0) + 2(0, 1)$$

 $T(0, 1, 1) = (0, -1) = 0(1, 0) - 1(0, 1)$
 $T(0, 0, 1) = (1, -2) = 1(1, 0) - 2(0, 1)$

Então:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} 2 & 0 & 1 \\ & & \\ 2 & -1 & -2 \end{bmatrix}$$

b) Como $v_A = (3, -7, 6)$, temos:

$$[T(v)]_{B} = \begin{bmatrix} 2 & 0 & 1 \\ & & \\ 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -7 \\ 6 \end{bmatrix}$$

e:

$$[T(v)]_{B} = \begin{bmatrix} 12\\ 1 \end{bmatrix}$$

16) Seja ainda a mesma transformação linear do exercício anterior. Sejam as bases canônicas do IR³ e IR²:

$$A = \{(1,0,0),(0,1,0),(0,0,1)\}\ e\ B = \{(1,0),(0,1)\}$$

- a) Determinar $[T]_B^A$.
- b) Se v = (3, -4, 2), calcular $T(v)_B$ utilizando a matriz encontrada.

Solução

a)
$$T(1,0,0) = (2,3) = 2(1,0) + 3(0,1)$$

$$T(0, 1, 0) = (-1, 1) = -1(1, 0) + 1(0, 1)$$

$$T(0,0,1) = (1,-2) = 1(1,0) - 2(0,1)$$

Então:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} 2 & -1 & 1 \\ & & \\ 3 & 1 & -2 \end{bmatrix}$$

b) Como v_A = (3, -4, 2), pois A é base canônica, temos:

$$[\mathbf{T}(\mathbf{v})]_{\mathbf{B}} = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$$

e:

$$[T(v)]_{B} = \begin{bmatrix} 12\\\\1 \end{bmatrix}$$

Observações

1) No caso de serem A e B bases canônicas, representa-se a matriz simplesmente por [T], que é chamada matriz canônica de T. Então, tem-se:

$$[T(v)] = [T] [v]$$

A matriz do problema 16 é a matriz canônica de T.

2) Observemos, pelo problema 16, que calcular T(v) pela matriz [T] é o mesmo que fazê-lo pela fórmula que define a T:

$$T(3, -4, 2) = (2(3) - 1(-4) + 1(2), 3(3) + 1(-4) - 2(2)) = (12, 1)$$

3) Ficou claro que, dada uma transformação linear T, a cada dupla de bases A e B corresponde uma matriz [T] A. Reciprocamente, dadas a matriz e uma dupla de bases A e B, podemos encontrar a lei que define T, o que será feito no problema 17.

Em se tratando da matriz canônica, essa poderá ser escrita diretamente, como mostram os exemplos:

1) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T(x, y) = (3x - 2y, 4x + y, x)$

$$[T] = \begin{bmatrix} 3 & -2 \\ 4 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$T(1,0) T(0,1)$$

2) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x, y) = (x, -y)

$$[T] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

3) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}$$
, $T(x, y, z) = 4x - y$

$$[T] = [4 -1 0]$$

Por outro lado, quando é dada uma matriz de uma transformação linear T sem que haja referência às bases, essa deve ser entendida como a matriz canônica da T. Por exemplo, a matriz:

$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & -2 & 0 \end{bmatrix}$$

define a transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $T(x, y, z) = (2x + 3y + 4z, x - 2y)$.

4) Já vimos que se V é um espaço vetorial, um operador linear sobre V é uma transformação linear $T: V \longrightarrow V$ (é o caso particular de V = W). Nesse caso, para a representação matricial é comum fazer A = B, e a matriz resultante é denominada matriz de T em relação à base A e indicada por $[T]_A^A$ ou $[T]_A$.

Por exemplo, seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear definido por T(x, y) = (2x - y, x + y). Determinemos a matriz de T em relação à base $A = \{(1, -2), (-1, 3)\}$.

Calculando as componentes das imagens dos vetores da base A em relação à própria base, vem:

$$T(1,-2) = (4,-1) = 11(1,-2) + 7(-1,3)$$

$$T(-1,3) = (-5,2) = -13(1,-2) - 8(-1,3)$$

(Exercício a cargo do leitor.)

Logo, a matriz de T relativa à base A é:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{A}} = \begin{bmatrix} 11 & -13 \\ & & \\ 7 & -8 \end{bmatrix}$$

Pelo significado da matriz, podemos escrever:

$$[T(v)]_A = [T]_A [v]_A$$

Observemos que a matriz canônica desse operador linear é:

$$T = \begin{bmatrix} 2 & -1 \\ & & \\ 1 & 1 \end{bmatrix}$$

No Capítulo 5 veremos que essas matrizes que representam o mesmo operador linear, porém em bases distintas, são chamadas matrizes semelhantes e terão especial importância.

Dadas as bases $A = \{(1, 1), (1, 0)\}$ do \mathbb{R}^2 e $B = \{(1, 2, 0), (1, 0, -1), (1, -1, 3)\}$ do \mathbb{R}^3 , determinar a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ cuja matriz é:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} 2 & 0 \\ 1 & -2 \\ -1 & 3 \end{bmatrix}$$

Solução

Sabe-se que o significado de cada coluna dessa matriz é:

$$[T(1,1)]_{B} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
 $e [T(1,0)]_{B} = \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}$

logo:

$$T(1, 1) = 2(1, 2, 0) + 1(1, 0, -1) - 1(1, -1, 3) = (2, 5, -4)$$

$$T(1,0) = 0(1,2,0) - 2(1,0,-1) + 3(1,-1,3) = (1,-3,11)$$

Assim, obtivemos as imagens dos vetores da base A do IR2.

Pela propriedade 4.1.2 esse fato é suficiente para a determinação da transformação T. Como buscamos T(x, y), precisamos primeiramente escrever (x, y) em relação à base A:

$$(x, y) = y(1, 1) + (x - y) (1, 0)$$

e, pela propriedade acima referida, segue:

$$T(x, y) = yT(1, 1) + (x - y) T(1, 0)$$

$$T(x, y) = y(2, 5, -4) + (x - y) (1, -3, 11)$$

$$T(x, y) = (x + y, -3x + 8y, 11x - 15y)$$

Observação

A matriz canônica T é:

$$[T] = \begin{bmatrix} 1 & 1 \\ -3 & 8 \\ 11 & -15 \end{bmatrix}$$

4.5 OPERAÇÕES COM TRANSFORMAÇÕES LINEARES

4.5.1 Adição

Sejam $T_1: V \longrightarrow W$ e $T_2: V \longrightarrow W$ transformações lineares. Chama-se soma das transformações lineares T_1 e T_2 à transformação linear

$$T_1 + T_2 : V \longrightarrow W$$

 $V \longmapsto (T_1 + T_2)(v) = T_1(v) + T_2(v), \forall v \in V$

Se A e B são bases de V e W, respectivamente, demonstra-se que:

$$[T_1 + T_2]_B^A = [T_1]_B^A + [T_2]_B^A$$

4.5.2 Multiplicação por Escalar

Sejam $T:V\longrightarrow W$ uma transformação linear e $\alpha\in {\rm I\!R}$. Chama-se produto de T pelo escalar α à transformação linear

$$\alpha T: V \longrightarrow W$$

$$V \longmapsto (\alpha T)(v) = \alpha T(v), \forall v \in V$$

Se A e B são bases de V e W, respectivamente, demonstra-se que:

$$[\alpha T]_{B}^{A} = \alpha [T]_{B}^{A}$$

4.5.3 Composição

Sejam $T_1:V\longrightarrow W$ e $T_2:W\longrightarrow U$ transformações lineares. Chama-se aplicação composta de T_1 com T_2 , e se representa por T_2 o T_1 , à transformação linear:

$$T_2 \circ T_1 : V \longrightarrow U$$

$$v \longmapsto (T_2 \circ T_1)(v) = T_2(T_1(v)), \forall v \in V$$

Se A, B e C são bases de V, W e U, respectivamente, demonstra-se que:

$$[T_2 \circ T_1]_C^A = [T_2]_C^B \times [T_1]_B^A$$

4.5.4 Problemas Resolvidos

- 18) Sejam $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ e $T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ transformações lineares definidas por $T_1(x,y) = (x+2y,2x-y,x)$ e $T_2(x,y) = (-x,y,x+y)$. Determinar:
 - a) $T_1 + T_2$
 - b) $3T_1 2T_2$
 - c) a matriz canônica de 3T₁ 2T₂ e mostrar que:

$$[3T_1 - 2T_2] = 3[T_1] - 2[T_2]$$

Solução

a)
$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y)$$

 $(T_1 + T_2)(x, y) = (x + 2y, 2x - y, x) + (-x, y, x + y)$

$$(T_1 + T_2)(x, y) = (2y, 2x, 2x + y)$$

b)
$$(3T_1 - 2T_2)(x, y) = (3T_1)(x, y) - (2T_2)(x, y)$$

 $(3T_1 - 2T_2)(x, y) = 3T_1(x, y) - 2T_2(x, y)$
 $(3T_1 - 2T_2)(x, y) = 3(x + 2y, 2x - y, x) - 2(-x, y, x + y)$

$$(3T_1 - 2T_2)(x, y) = (5x + 6y, 6x - 5y, x - 2y)$$

c)
$$[3T_1 - 2T_2] = \begin{bmatrix} 5 & 6 \\ 6 & -5 \\ 1 & -2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 0 \end{bmatrix} - 2 \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = 3 [T_1] - 2 [T_2]$$

- 19) Sejam S e T operadores lineares no \mathbb{R}^2 definidos por S(x, y) = (2x, y) e T(x, y) = (x, x y).

 Determinar:
 - a) SoT
 - b) ToS
 - c) SoS
 - d) To T

Solução

a)
$$(S \circ T)(x, y) = S(T(x, y)) = S(x, x - y) = (2x, x - y)$$

Observemos que:

$$[S \circ T] = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = [S][T]$$

b)
$$(T \circ S)(x, y) = T(S(x, y)) = T(2x, y) = (2x, 2x - y)$$

Observemos que:

e esse fato geralmente ocorre.

c)
$$(S \circ S)(x, y) = S(S(x, y)) = S(2x, y) = (4x, y)$$

d)
$$(T \circ T)(x, y) = T(T(x, y)) = T(x, x - y) = (x, y)$$

As transformações SoS e ToT são também representadas por S2 e T2.

4.6 TRANSFORMAÇÕES LINEARES PLANAS

Entende-se por transformações lineares planas as transformações de \mathbb{R}^2 em \mathbb{R}^2 . Veremos algumas de especial importância e suas correspondentes interpretações geométricas.

4.6.1 Reflexões

a) Reflexão em torno do eixo dos x

Essa transformação linear leva cada ponto (x, y) para sua imagem (x, -y), simétrica em relação ao eixo dos x.

Demonstra-se que as reflexões são transformações lineares.

Esta particular transformação é

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (x,-y)$$
 ou

$$T(x, y) = (x, -y)$$

sendo
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 sua matriz canônica, isto é:

$$\begin{bmatrix} x \\ -y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

b) Reflexão em torno do eixo dos y

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x, y) \longmapsto (-x, y)$$

ou:

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

c) Reflexão na origem

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (-x,-y)$$

ou:

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

d) Reflexão em torno da reta y = x

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x, y) \longmapsto (y, x)$

ou:

e) Reflexão em torno da reta y = -x

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x, y) \longmapsto (-y, -x)$

ou:

4.6.2 Dilatações e Contrações

a) Dilatação ou contração na direção do vetor

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \mapsto \alpha(x,y), \alpha \in \mathbb{R}$$

ou:

Observemos que:

se $|\alpha| > 1$, T dilata o vetor;

se $|\alpha| < 1$, T contrai o vetor;

se $\alpha = 1$, T é a identidade I;

se $\alpha < 0$, T troca o sentido do vetor.

A transformação $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $T(x, y) = \frac{1}{2}(x, y)$ é um exemplo de contração.

b) Dilatação ou contração na direção do eixo dos x

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (\alpha x, y), \alpha > 0$$

ou:

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} \alpha x \\ y \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Observemos que:

se $\alpha > 1$, T dilata o vetor;

se $0 < \alpha < 1$, T contrai o vetor.

Essa transformação é também chamada dilatação ou contração na direção 0x (ou horizontal) de um fator α .

A figura da página anterior sugere uma dilatação de fator $\alpha = 2$ e uma contração de fator $\alpha = 1/2$.

c) Dilatação ou contração na direção do eixo dos y

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

(x, y) \longmapsto (x, \alpha y), \alpha > 0 (Ver figura acima.)

Observação

Se, nesse caso, fizéssemos $\alpha = 0$, teríamos:

$$(x, y) \longmapsto (x, 0)$$

e T seria a projeção ortogonal do plano sobre o eixo dos x, conforme a figura.

Para $\alpha = 0$, no caso b), T seria a projeção ortogonal do plano sobre o eixo dos y.

4.6.3 Cisalhamentos

a) Cisalhamento na direção do eixo dos x

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (x + \alpha y, y)$$

ou:

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x + \alpha y \\ y \end{bmatrix} = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

O efeito do cisalhamento é transformar o retângulo OAPB no paralelogramo OAP'B', de mesma base e mesma altura. Observemos que, por esse cisalhamento, cada ponto (x, y) se desloca paralelamente ao eixo dos x até chegar em $(x + \alpha y, y)$, com exceção dos pontos do próprio eixo dos x, que permanecem em sua posição, pois para eles y = 0. Com isso está explicado por que o retângulo e o paralelogramo da figura têm a mesma base \overline{OA} .

Esse cisalhamento é também chamado cisalhamento horizontal de fator a.

b) Cisalhamento na direção do eixo dos y

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x, y) \longmapsto (x, y + \alpha x)$$

A matriz canônica desse cisalhamento é: α

Por exemplo, a matriz

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

representa um cisalhamento vertical de fator 2.

4.6.4 Rotação

A rotação do plano em torno da origem (Figura 4.6.4a), que faz cada ponto descrever um ângulo θ , determina uma transformação linear $T_{\theta} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ cuja matriz canônica é:

$$[T_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

Figura 4.6.4a

Figura 4.6.4b

As imagens dos vetores $e_1 = (1, 0)$ e $e_2 = (0, 1)$ (Figura 4.6.4b) são:

$$T(e_1) = (\cos \theta, \sin \theta)$$

$$T(e_2) = (-sen \theta, cos \theta)$$

isto é:

$$T(e_1) = (\cos \theta) e_1 + (\sin \theta) e_2$$

$$T(e_2) = (-sen \theta) e_1 + (cos \theta) e_2$$

Por conseguinte, a matriz da transformação T_{θ} é:

$$[T_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

Essa matriz chama-se matriz de rotação de um ângulo θ , $0 \le \theta \le 2\pi$, e é a matriz canônica da transformação linear $T_{\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $T_{\theta}(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$.

Se, por exemplo, desejarmos a imagem do vetor v = (4, 2) pela rotação de $\theta = \pi/2$, basta fazer:

$$[T (4, 2)] = \begin{bmatrix} \cos \pi/2 & -\sin \pi/2 \\ & & \\ \sin \pi/2 & \cos \pi/2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$[T(4,2)] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \text{ou} \quad [T(4,2)] = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

4.6.5 Problemas Resolvidos

20) Os pontos A (2, -1), B (6, 1) e C (x,y) são vértices de um triângulo equilátero. Determinar o vértice C, utilizando a matriz de rotação.

Solução

Pela figura vemos que se pode considerar o vetor \overrightarrow{AC} como imagem do vetor \overrightarrow{AB} pela rotação de 60° em torno de A (o triângulo sendo equilátero implica \overrightarrow{AB} e \overrightarrow{AC} terem comprimentos iguais):

$$[\overrightarrow{AC}] = [T_{60^{\circ}}] [\overrightarrow{AB}]$$

Mas:

$$\overrightarrow{AC} = C - A = (x - 2, y + 1)$$

$$\overrightarrow{AB} = B - A = (4, 2)$$

$$[T_{60^{\circ}}] = \begin{bmatrix} \cos 60^{\circ} & -\text{sen } 60^{\circ} \\ \\ \text{sen } 60^{\circ} & \cos 60^{\circ} \end{bmatrix}$$

logo:

$$\begin{bmatrix} x - 2 \\ y + 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -\frac{\sqrt{3}}{2} \text{ ou } -\sqrt{3/2} \\ \frac{\sqrt{3}}{2} \text{ ou } \sqrt{3/2} \\ \end{bmatrix} \begin{bmatrix} 4 \\ 1/2 \end{bmatrix}$$

ou:

$$\begin{bmatrix} x - 2 \\ y + 1 \end{bmatrix} = \begin{bmatrix} 2 - \sqrt{3} \\ 2\sqrt{3} + 1 \end{bmatrix}$$

Pela condição de igualdade de matrizes, resulta:

$$\begin{cases} x - 2 = 2 - \sqrt{3} \\ y + 1 = 2\sqrt{3} + 1 \end{cases} \text{ ou } \begin{cases} x = 4 - \sqrt{3} \\ y = 2\sqrt{3} \end{cases}$$

logo:

$$C(4-\sqrt{3}, 2\sqrt{3})$$

O problema tem outra solução que seria obtida fazendo $\theta = -60^{\circ}$ (a cargo do leitor).

21) Determinar a matriz da transformação linear de R² em R² que representa um cisalhamento por um fator 2 na direção horizontal seguida de uma reflexão em torno do eixo dos y.

Solução

O cisalhamento transforma o vetor (x, y) no vetor (x', y') dado por

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 (1)

A reflexão transforma o vetor (x', y') no vetor (x'', y'') dado por

$$\begin{bmatrix} \mathbf{x''} \\ \mathbf{y''} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} \tag{2}$$

Substituindo (1) em (2), temos:

$$\begin{bmatrix} \mathbf{x''} \\ \mathbf{y''} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

ou:

$$\begin{bmatrix} \mathbf{x''} \\ \mathbf{y''} \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

Portanto, a matriz

representa a transformação composta do cisalhamento com a reflexão.

Observemos que, de acordo com o que estudamos sobre transformação composta, a matriz resultante é obtida pelo produto das matrizes que representam as transformações, porém tomadas em ordem inversa. Esse fato continua válido no caso de termos mais de duas transformações.

O plano sofre uma rotação de um ângulo θ. A seguir experimenta uma dilatação de fator 4 na direção Ox e, posteriormente, uma reflexão em torno da reta y = x. Qual a matriz que representa a única transformação linear e que tem o mesmo efeito do conjunto das três transformações citadas?

Solução

Sabe-se que a matriz da rotação é:

$$\mathbf{A}_1 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

a da dilatação é:

$$\mathbf{A_2} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

e a da reflexão é:

$$\mathbf{A_3} = \begin{bmatrix} 0 & 1 \\ & & \\ 1 & 0 \end{bmatrix}$$

Portanto, a matriz que representa a composta das transformações dadas é:

$$\mathbf{A_3} \mathbf{A_2} \mathbf{A_1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \sin \theta & \cos \theta \\ 4\cos \theta & -4\sin \theta \end{bmatrix}$$

4.7 TRANSFORMAÇÕES LINEARES NO ESPAÇO

Entende-se por transformações lineares no espaço as transformações de \mathbb{R}^3 em \mathbb{R}^3 . Dentre as diversas transformações lineares em \mathbb{R}^3 , examinaremos as reflexões e as rotações.

4.7.1 Reflexões

a) Reflexões em relação aos planos coordenados

A reflexão em relação ao plano xOy é a transformação linear que leva cada ponto (x, y, z) na sua imagem (x, y, -z), simétrica em relação ao plano xOy. Assim, essa transformação é definida por:

$$T(x, y, z) = (x, y, -z)$$

e sua matriz canônica é:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

As reflexões em relação aos planos xOz e yOz têm matrizes canônicas:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

respectivamente.

b) Reflexões em relação aos eixos coordenados

A reflexão em torno do eixo dos x é o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x, -y, -z), cuja matriz canônica é:

De forma análoga, T(x, y, z) = (-x, y, -z) e T(x, y, z) = (-x, -y, z) definem as reflexões em relação aos eixos Oy e Oz, respectivamente.

c) Reflexão na origem

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x, y, z) \mapsto (-x, -y, -z)$$

4.7.2 Rotações

Dentre as rotações do espaço ressaltamos a rotação do espaço em torno do eixo dos z (Figura 4.7.2), que faz cada ponto descrever um ângulo θ . Esse operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ é definido por

 $T(x, y, z) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, z),$

e sua matriz canônica é:

$$[T] = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Para "conferir" se T representa a rotação de um ângulo θ em torno do eixo dos z, observemos o seguinte:

a) T gira de θ , em torno da origem O, os pontos do plano z = 0 (plano xOy), pois: $T(x, y, 0) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, 0)$

e:

b) T não altera os pontos do eixo dos z, pois:

$$T(0, 0, z) = (0, 0, z)$$

Observação

O ângulo θ corresponde ao ângulo central cujos lados interceptam, na circunferência de centro em O', um arco de medida θ . Esse ângulo θ não é o ângulo α formado pelos vetores $v \in T(v)$.

4.7.3 Problema Resolvido

Calcular o ângulo α formado pelos vetores $v \in T(v)$ quando o espaço gira em torno do eixo dos z de um ângulo θ , nos seguintes casos:

1)
$$\theta = 180^{\circ} \text{ e } \text{v} = (3, 0, 3)$$

2)
$$\theta = 90^{\circ} \text{ e } \text{ v} = (\frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2})$$

Solução

1)

$$[T] = \begin{bmatrix} \cos 180^{\circ} & -\sin 180^{\circ} & 0 \\ \sin 180^{\circ} & \cos 180^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[T(\mathbf{v})] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 3 \end{bmatrix}$$

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{T}(\mathbf{v})}{|\mathbf{v}| |\mathbf{T}(\mathbf{v})|} = \frac{(3,0,3) \cdot (-3,0,3)}{\sqrt{9+9} \sqrt{9+9}} = \frac{-9+0+9}{18} = 0$$

$$\alpha = 90^{\circ}$$

2)

$$[T] = \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} & 0 \\ \sin 90^{\circ} & \cos 90^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[T(v)] = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2\sqrt{2}} \\ \frac{\sqrt{2}}{4} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{4} \\ \frac{\sqrt{3}}{2\sqrt{2}} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$\cos \alpha = \frac{\text{v. T(v)}}{|\text{v}||\text{T(v)}|} = \frac{(\frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}) \cdot (\frac{\sqrt{2}}{4}, \frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{2})}{\sqrt{\frac{3}{8} + \frac{1}{8} + \frac{1}{2}} \sqrt{\frac{1}{8} + \frac{3}{8} + \frac{1}{2}}} = \frac{-\frac{\sqrt{3}}{8} + \frac{\sqrt{3}}{8} + \frac{1}{2}}{1 \times 1} = \frac{1}{2}$$

$$\alpha = 60^{\circ}$$

4.8 PROBLEMAS PROPOSTOS

- 1) Consideremos a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por T(x,y) = (3x 2y, x + 4y). Utilizar os vetores u = (1, 2) e v = (3, -1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).
- 2) Dada a transformação linear T:V → W, tal que T(u) = 3u e T(v) = u v, calcular em função de u e v:
 - a) T(u+v)
 - b) T (3v)
 - c) T (4u 5v)

- Dentre as transformações T: IR² IR² definidas pelas seguintes leis, verificar quais são 3) lineares:
 - a) T(x, y) = (x 3y, 2x + 5y)
 - b) T(x, y) = (y, x)
 - c) $T(x, y) = (x^2, y^2)$
 - d) T(x, y) = (x + 1, y)
 - e) T(x, y) = (y x, 0)
 - f) T(x, y) = (|x|, 2y)
 - g) T(x, y) = (sen x, y)
 - h) T(x, y) = (xy, x y)
 - i) T(x, y) = (3y, -2x)
- Seja $V = \mathbb{R}^2$. Fazer um gráfico de um vetor genérico v = (x, y) do domínio e de sua 4) imagem T(v) sob a transformação linear T: \mathbb{R}^2 → \mathbb{R}^2 dada por:
 - a) T(x, y) = (2x, 0)
- d) T(x, y) = (3x, -2y)
- b) T(x, y) = (2x, y)
- e) T(x, y) = -2(x, y)
- c) T(x, y) = (-2x, 2y) f) T(x, y) = (x, -y)
- 5) Dentre as seguintes funções, verificar quais são lineares:
 - a) T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$; T(x,y) = (x y, 3x, -2y)
 - b) T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$; T(x, y, z) = (x + y, x y, 0)
 - c) T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$, T(x,y) = $(x^2 + y^2, x)$

d) T:
$$\mathbb{R}$$
 $\longrightarrow \mathbb{R}^2$, $T(x) = (x, 2)$

e) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}$$
, $T(x, y, z) = -3x + 2y - z$

f)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (|x|, y)$

g) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $T(x, y) = x$

h) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $T(x, y) = xy$

i)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$$
, $T(x, y) = (y, x, y, x)$

j) T:
$$\mathbb{R}^2 \longrightarrow M(2,2)$$
, $T(x,y) = \begin{bmatrix} 2y & 3x \\ & \\ -y & x+2y \end{bmatrix}$

k) T: M(2,2)
$$\longrightarrow \mathbb{R}^2$$
, T $\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}$ = $(a - c, b + c)$

1)
$$T: M(2,2) \longrightarrow \mathbb{R}$$
, $T\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

m) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longrightarrow \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Seja a aplicação T: ℝ² → ℝ³

$$(x, y) \longrightarrow (x + ky, x + k, y)$$

Verificar em que caso(s) T é linear:

$$a) k = x$$

b)
$$k = 1$$

c)
$$k = 0$$

- a) Determinar a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que T(-1, 1) = (3, 2, 1) e 7) T(0,1) = (1,1,0).
 - b) Encontrar $v \in \mathbb{R}^2$ tal que T(v) = (-2, 1, -3).
- a) Determinar a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que T(1, -1, 0) = (1, 1)8) T(0, 1, 1) = (2, 2) e T(0, 0, 1) = (3, 3).
 - b) Achar T(1,0,0) e T(0,1,0).
- Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ uma transformação linear definida por T(1, 1, 1) = (1, 2), 9) T(1, 1, 0) = (2, 3) e T(1, 0, 0) = (3, 4).
 - a) Determinar T(x, y, z).
 - b) Determinar $v \in \mathbb{R}^3$ tal que T(v) = (-3, -2).
 - c) Determinar $v \in \mathbb{R}^3$ tal que T(v) = (0, 0).
- Seja T o operador linear no \mathbb{R}^3 tal que T(1,0,0) = (0,2,0), T(0,1,0) = (0,0,-2) e 10) T(0,0,1) = (-1,0,3). Determinar T(x,y,z) e o vetor $v \in \mathbb{R}^3$ tal que T(v) = (5,4,-9).
- Determinar a transformação linear $T: P_2 \longrightarrow P_2$ tal que T(1) = x, $T(x) = 1 x^2$ e 11) $T(x^2) = x + 2x^2$.
- 12) Seja o operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (2x + y, 4x + 2y)$.

Quais dos seguintes vetores pertencem a N(T)?

- a) (1, -2) b) (2, -3) c) (-3, 6)
- Para o mesmo operador linear do exercício anterior, verificar quais dos vetores pertencem a Im(T).

 - a) (2,4) b) $(-\frac{1}{2},-1)$ c) (-1,3)

Nos problemas 14 a 21 são apresentadas transformações lineares. Para cada uma delas:

- a) Determinar o núcleo, uma base para esse subespaço e sua dimensão. T é injetora? Justificar.
- b) Determinar a imagem, uma base para esse subespaço e sua dimensão. T é sobrejetora? Justificar.
- 14) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, T(x, y) = (3x y, -3x + y)
- 15) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x, y) = (x + y, x, 2y)
- 16) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, T(x, y) = (x 2y, x + y)
- 17) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(x, y, z) = (x + 2y z, 2x y + z)
- 18) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x y 2z, -x + 2y + z, x 3z)
- 19) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x 3y, x z, z x)
- 20) $T:P_1 \longrightarrow \mathbb{R}^3$, T(at + b) = (a, 2a, a b)
- 21) $T:M(2,2) \longrightarrow \mathbb{R}^2$, $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-b, a+b)$
- 22) Seja a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que T(-2, 3) = (-1, 0, 1) e T(1, -2) = (0, -1, 0).
 - a) Determinar T(x, y).
 - b) Determinar N(T) e Im(T).
 - c) T é injetora? E sobrejetora?
- 23) Seja T: $\mathbb{R}^4 \longrightarrow \mathbb{R}^3$ a transformação linear tal que $T(e_1) = (1, -2, 1), T(e_2) = (-1, 0, -1), T(e_3) = (0, -1, 2)$ e $T(e_4) = (1, -3, 1), \text{ sendo } \{e_1, e_2, e_3, e_4\}$ a base canônica do \mathbb{R}^4 .
 - a) Determinar o núcleo e a imagem de T.
 - b) Determinar bases para o núcleo e para a imagem.
 - c) Verificar o Teorema da Dimensão.

- 24) Encontrar um operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ cujo núcleo é gerado por (1, 2, -1) e (1, -1, 0).
- 25) Encontrar uma transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que N(T) = [(1, 0, -1)].
- 26) Encontrar uma transformação linear T: ℝ³ → ℝ⁴ cuja imagem é gerada por (1, 3, -1, 2) e (2, 0, 1, -1).
- Consideremos a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por T(x, y, z) = (2x + y z, x + 2y) e as bases $A = \{(1, 0, 0), (2, -1, 0), (0, 1, 1)\}$ do \mathbb{R}^3 e $B = \{(-1, 1), (0, 1)\}$ do \mathbb{R}^2 . Determinar a matriz $[T]_B^A$.
- Seja a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x, y) = (2x y, x + 3y, -2y) e as bases $A = \{(-1, 1,), (2, 1)\}$ e $B = \{(0, 0, 1), (0, 1, -1), (1, 1, 0)\}$. Determinar $[T]_B^A$. Qual a matriz $[T]_C^A$, onde C é a base canônica do \mathbb{R}^3 ?
- 29) Sabendo que a matriz de uma transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ nas bases $A = \{(-1,1),(1,0)\}$ do \mathbb{R}^2 e $B = \{(1,1,-1),(2,1,0),(3,0,1)\}$ e do \mathbb{R}^3 é:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} 3 & 1 \\ 2 & 5 \\ 1 & -1 \end{bmatrix}$$

encontrar a expressão de T(x, y) e a matriz [T].

a matriz canônica de uma transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$. Se T(v) = (2, 4, -2), calcular v.

31) Seja T: ℝ² → ℝ³ uma transformação linear com matriz

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}'}^{\mathbf{B}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

para $B = \{e_1, e_2\}$, base canônica do \mathbb{R}^2 , $e_1 B' = \{(1, 0, 1), (-2, 0, 1), (0, 1, 0)\}$, base do \mathbb{R}^3 . Qual a imagem do vetor (2, -3) pela T?

32) Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$[T]_{B_2}^{B_1} = \begin{bmatrix} 1 & 0 & -1 \\ & & \\ -1 & 1 & 1 \end{bmatrix}$$

sendo $B_1 = \{(0,1,1), (1,0,0), (1,0,1)\}$ e $B_2 = \{(-1,0), (0,-1)\}$ bases do \mathbb{R}^3 e do \mathbb{R}^2 , respectivamente.

- a) Encontrar a expressão de T(x, y, z).
- b) Determinar Im(T) e uma base para esse subespaço.
- c) Determinar N(T) e uma base para esse subespaço.
- d) T é injetora? T é sobrejetora? Justificar.
- 33) Consideremos o operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x, y) \longmapsto (x + 2y, x - y)$$

e as bases $A = \{(-1, 1), (1, 0)\}$, $B = \{(2, -1), (-1, 1)\}$ e C canônica.

Determinar $[T]_A$, $[T]_B$, $[T]_C$.

34) A matriz de $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ relativa à base $B = \{v_1, v_2\}$, sendo $v_1 = (1, 1)$ e $v_2 = (3, 2)$, é:

- a) Determinar $T(v_1)_B \in T(v_2)_B$.
- b) Determinar $T(v_1)$ e $T(v_2)$.
- c) Calcular T(x, y).

35) Mostrar que a matriz do operador linear identidade

$$I: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$v \mapsto v$$

em uma base qualquer, é a matriz identidade $n \times n$.

36) Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por:

$$[T] = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}$$

Determinar os vetores u, v e w tais que:

- a) T(u) = u.
- b) T(v) = 2v.
- c) T(w) = (4, 4).

37) Seja T o operador linear dado pela matriz:

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$

- a) Calcular N(T) e dim N(T).
- b) Calcular Im(T) e dim Im(T).
- 38) Seja o espaço vetorial V = M(2, 2) e a transformação linear

T:V
$$\longrightarrow \mathbb{R}^3$$
,

T $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b, c-d, 2a)$

- a) Mostrar que T é linear.
- b) Determinar $[T]_{R}^{A}$ sendo A e B as bases canônicas de M(2, 2) e IR^{3} , respectivamente.
- c) Calcular $v \in V$ tal que T(v) = (3, -2, 4).
- d) Determinar N(T).
- 39) Sejam $F: \mathbb{R}^2 \longrightarrow M(2,2)$ uma transformação linear e α e β as bases canônicas de \mathbb{R}^2 e M(2,2), respectivamente. Sabendo que

$$[\mathbf{F}]_{\beta}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & -2 \\ -1 & 2 \end{bmatrix},$$

determinar:

- a) F(1,0)
- b) F(0, 1)
- c) F(2, 3)
- d) F(x, y)
- e) (a, b) tal que:

$$F(a, b) = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$

40) Sejam as transformações lineares

$$T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T(x, y) = (x - y, 2x + y, -2x)$$

e

$$T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T_2(x, y) = (2x - y, x - 3y, y).$$

Determinar as seguintes transformações lineares de \mathbb{R}^2 em \mathbb{R}^3 :

- a) $T_1 T_2$.
- b) $3T_1 2T_2$.
- 41) Consideremos as transformações lineares S e T de \mathbb{R}^3 em \mathbb{R}^2 definidas por S(x, y, z) = (2x y, 3x 2y + z) e T(x, y, z) = (x + y z, y 2z).
 - a) Determinar o núcleo da transformação linear S+T.
 - b) Encontrar a matriz canônica de 3S 4T.

- 42) Sejam S e T operadores lineares de \mathbb{R}^2 definidos por S(x, y) = (x 2y, y) e T(x, y) = (2x, -y). Determinar:
 - a) S + T
- d) So T
- b) T S
- e) To S
- c) 2S + 4T
- f) SoS
- 43) Seja a transformação linear:

S:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^4$$
, $S(x, y, z) = (x + y, z, x - y, y + z)$

- a) Calcular (S o T)(x, y) se
 - $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$

$$(x, y) \longmapsto (2x + y, x - y, x - 3y)$$

- b) Determinar a matriz canônica de SoT e mostrar que ela é o produto da matriz canônica
 de S pela matriz canônica de T.
- 44) As transformações S: $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$ e T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ são tais que S(x, y) = (y, x y, 2x + 2y) e T(x, y, z) = (x, y).
 - a) Sendo B = $\{(1,0,-1),(1,1,1),(1,0,0)\}$ uma base do \mathbb{R}^3 , determinar a matriz $[S \circ T]_B$.
 - b) Determinar $[T \circ S]_{B'}$ e $[T \circ S]_{B''}$, sendo $B' = \{(1, 1), (0, -1)\}$ e B'' a base canônica.
- 45) Sendo S e T operadores lineares do \mathbb{R}^3 definidos por S(x, y, z) = (x, 2y, x y) e T(x, y, z) = (x z, y, z), determinar:
 - a) [So T].
 - b) [T o S].

- 46) Os pontos A(2, -1) e B(-1, 4) são vértices consecutivos de um quadrado. Calcular os outros dois vértices, utilizando a matriz-rotação.
- 47) Os pontos A(-1, -1), B(4, 1) e C(a, b) são vértices de um triângulo retângulo isósceles, reto em A. Determinar o vértice C fazendo uso da matriz-rotação.
- 48) Em um triângulo ABC, os ângulos B e C medem 75° cada. Sendo A(1,1) e B(-1,5), determinar o vértice C.
- 49) Determinar, em cada caso, a matriz da transformação linear de R² em IR² que representa a sequência de transformações dadas:
 - a) Reflexão em torno do eixo dos y, seguida de um cisalhamento de fator 5 na direção horizontal.
 - b) Rotação de 30° no sentido horário, seguida de uma duplicação dos módulos e inversão dos sentidos.
 - c) Rotação de 60°, seguida de uma reflexão em relação ao eixo dos y.
 - d) Rotação de um ângulo θ, seguida de uma reflexão na origem.
 - e) Reflexão em torno da reta y = -x, seguida de uma dilatação de fator 2 na direção Ox e, finalmente, um cisalhamento de fator 3 na direção vertical.
- 50) O vetor v = (3, 2) experimenta sequencialmente:
 - 1) Uma reflexão em torno da reta y = x;
 - 2) Um cisalhamento horizontal de fator 2;
 - Uma contração na direção Oy de fator ¹/₃;
 - 4) Uma rotação de 90° no sentido anti-horário.
 - a) Calcular o vetor resultante dessa sequência de operações.
 - b) Encontrar a expressão da transformação linear T: ℝ² → ℝ² que representa a composta das quatro operações.
 - c) Determinar a matriz canônica da composta das operações.

51) Determinar o ângulo α formado pelos vetores v e T(v) quando o espaço gira em torno do eixo dos z de um ângulo θ , nos seguintes casos:

a)
$$v = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$$
 e $\theta = 180^\circ$

b)
$$v = (\frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2}) e \theta = 180^{\circ}$$

c)
$$v = (\frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2}) e \theta = 60^{\circ}$$

4.8.1 Respostas de Problemas Propostos

- 2) a) 4u v
 - b) 3u 3v
 - c) 7u + 5v
- 3) São lineares: a), b), e), i)
- 4) a)

b)

c), d), e) e f) a cargo do leitor.

5) São lineares: a), b), e), g), i), j), k), m).

- 6) c) é linear
- 7) a) T(x, y) = (-2x + y, -x + y, -x)
 - b) v = (3, 4)
- 8) a) T(x, y, z) = (-y + 3z, -y + 3z)
 - b) T(1,0,0) = (0,0) e T(0,1,0) = (-1,-1)
- 9) a) T(x, y, z) = (3x y z, 4x y z)
 - b) v = (1, 6 z, z)
 - c) v = (0, -z, z)
- 10) T(x, y, z) = (-z, 2x, -2y + 3z)v = (2, -3, -5)
- 11) $T(a + bx + cx^2) = b + (a + c)x + (-b + 2c)x^2$
- 12) a), c)
- 13) a), b)
- 14) a) $N(T) = \{(x, 3x)/x \in \mathbb{R}\}$; dim N(T) = 1

T não é injetora, porque $N(T) \neq \{(0,0)\}$.

b) $Im(T) = \{ (-y, y)/y \in \mathbb{R} \}$; dim Im(T) = 1

T não é sobrejetora, porque $Im(T) \neq IR^2$.

.15) a) $N(T) = \{(0,0)\}$; dim N(T) = 0.

T é injetora, porque $N(T) = \{0\}$.

b)
$$Im(T) = \{(x, y, z) \in \mathbb{R}/2x - 2y - z = 0\}$$

 $dim\ Im(T) = 2$. T não é sobrejetora, porque $Im(T) \neq \mathbb{R}^3$.

16) a)
$$N(T) = \{(0,0)\}$$
; dim $N(T) = 0$
T é injetora.

b) $Im(T) = IR^2$; dim Im(T) = 2; T é sobrejetora.

17) a)
$$N(T) = \{(x, -3x, -5x)/x \in \mathbb{R}\}$$

b) $Im(T) = \mathbb{R}^2$

18) a)
$$N(T) = \{ (3z, z, z)/z \in \mathbb{R} \}$$

b) $Im(T) = \{ (x, y, z) \in \mathbb{R}^3/2x + y - z = 0 \}$

19) a)
$$N(T) = \{(3x, x, 3x)/x \in \mathbb{R}\}$$

b) $Im(T) = \{(x, y, z) \in \mathbb{R}^3/y = -z\}$

20) a)
$$N(T) = \{0\}$$

b) $Im(T) = \{(a, 2a, c)/a, c \in \mathbb{R}\}$

21) a)
$$N(T) = \begin{cases} \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix} / c, d \in \mathbb{R} \end{cases}$$

b) $Im(T) = \mathbb{R}^2$

22) a)
$$T(x, y) = (2x + y, 3x + 2y, -2x - y)$$

b) $N(T) = \{(0, 0)\}$
 $Im(T) = \{(x, y, -x)/x, y \in \mathbb{R}\}$

c) T é injetora, mas não sobrejetora.

23) a)
$$N(T) = \{(3y, y, 0, -2y)/y \in \mathbb{R}\}$$

 $Im(T) = \mathbb{R}^3$

b) e c) a cargo do leitor.

24) Um deles é
$$T(x, y, z) = (0, 0, x + y + 3z)$$
.

25) Uma delas é
$$T(x, y, z) = (x + z, y)$$
.

26) Uma delas é
$$T(x, y, z) = (x + 2y, 3x, -x + y, 2x - y)$$
.

$$\begin{bmatrix}
-2 & -3 & 0 \\
 & & \\
3 & 3 & 2
\end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 \\ 5 & 2 \\ -3 & 3 \end{bmatrix} \quad \begin{bmatrix} -3 & 3 \\ 2 & 5 \\ -2 & -2 \end{bmatrix}$$

29)
$$T(x, y) = (8x + 18y, 6x + 11y, -2x - 4y)$$

$$[T] = \begin{bmatrix} 8 & 18 \\ 6 & 11 \\ -2 & -4 \end{bmatrix}$$

30)
$$v = (2, 0)$$

32) a)
$$T(x, y, z) = (-2y + z, -x + y)$$

b)
$$Im(T) = IR^2$$
; (base a cargo do leitor)

c)
$$N(T) = \{(x, x, 2x)/x \in \mathbb{R}\}$$
; (base a cargo do leitor)

d) T não é injetora.

T é sobrejetora.

33)
$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{A}} = \begin{bmatrix} -2 & 1 \\ -1 & 2 \end{bmatrix}$$
, $\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 3 & -1 \\ 6 & -3 \end{bmatrix}$ e $\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{C}} = \begin{bmatrix} \mathbf{T} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$

34) a)
$$T(v_1)_B = (2, -1), T(v_2)_B = (1, -3)$$

b)
$$T(v_1) = (-1, 0), T(v_2) = (-8, -5)$$

c)
$$T(x, y) = (-6x + 5y, -5x + 5y)$$

b)
$$y(3,1)$$

37) a)
$$N(T) = \{z(2, -3, -4)/z \in \mathbb{R} \}$$
, dim $N(T) = 1$

b)
$$Im(T) = \{(x, y, z) \in \mathbb{R}^3 / x - y + z = 0\}$$
, dim $Im(T) = 2$

38) b)
$$[T]_{B}^{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 2 & 0 & 0 & 0 \end{bmatrix}$$

c)
$$v = \begin{bmatrix} 2 & 1 \\ d-2 & d \end{bmatrix}$$
; $d \in \mathbb{R}$

d)
$$N(T) = \left\{ \begin{bmatrix} 0 & 0 \\ d & d \end{bmatrix}; d \in \mathbb{R} \right\}$$

39) a)
$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 1 \\ -2 & 2 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 2 & 7 \\ 0 & 4 \end{bmatrix}$$

d)
$$\begin{bmatrix} x & 2x + y \\ 3x - 2y & -x + 2y \end{bmatrix}$$
 e) não existe (a, b).

40) a)
$$T_1(x, y) = (-x, x + 4y, -2x - y)$$

b) $T_2(x, y) = (-x - y, 4x + 9y, -6x - 2y)$

41) a)
$$\{(x,0,3x)/x \in \mathbb{R}$$

b)
$$\begin{bmatrix} 2 & -7 & 4 \\ 9 & -10 & 11 \end{bmatrix}$$

42) a)
$$(S + T)(x, y) = (3x - 2y, 0)$$

b)
$$(T - S)(x, y) = (x + 2y, -2y)$$

c)
$$(2S + 4T)(x, y) = (10x - 4y, -2y)$$

d)
$$(S \circ T)(x, y) = (2x + 2y, -y)$$

e)
$$(T \circ S)(x, y) = (2x - 4y, -y)$$

f)
$$(S \circ S)(x, y) = (x - 4y, y)$$

43) a)
$$(S \circ T)(x, y) = (3x, x - 3y, x + 2y, 2x - 4y)$$

b) a cargo do leitor

44) a)
$$\begin{bmatrix} -1 & -4 & -1 \\ 1 & 0 & 1 \\ 0 & 5 & 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix}$$
 e
$$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

45) a)
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & -1 & -1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

- 46) Duas soluções: (4, 7) e (7, 2) ou (-6, 1) e (-3, -4).
- 47) C(-3, 4) ou C(1, -6)
- 48) $C(-1-\sqrt{3}, 2\sqrt{3})$ ou $C(3-\sqrt{3}, 2+2\sqrt{3})$

49) a)
$$\begin{bmatrix} -1 & 5 \\ 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -\sqrt{3} & -1 \\ 1 & -\sqrt{3} \end{bmatrix}$$
 c)
$$\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 d)
$$\begin{bmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{bmatrix}$$
 e)
$$\begin{bmatrix} 0 & -2 \\ -1 & -6 \end{bmatrix}$$

- 50) a) (-1,8)
 - b) $T(x, y) = (-\frac{1}{3}x, 2x + y)$

c) [T] =
$$\begin{bmatrix} -\frac{1}{3} & 0 \\ 2 & 1 \end{bmatrix}$$

- 51) a) $\alpha = 90^{\circ}$
 - b) $\alpha = 90^{\circ}$
 - c) $\alpha \cong 41^{\circ}24'$

CAPÍTULO

OPERADORES LINEARES

5.1 OPERADORES LINEARES

No capítulo anterior dissemos que as transformações lineares T de um espaço vetorial V em si mesmo, isto é, T:V \rightarrow V, são chamadas operadores lineares sobre V.

As propriedades gerais das transformações lineares de V em W e das correspondentes matrizes retangulares são válidas para os operadores lineares. Estes e as correspondentes matrizes quadradas possuem, entretanto, propriedades particulares, que serão estudadas neste Capítulo.

Tendo em vista aplicações em questões de Geometria Analítica, serão estudados, de preferência, operadores lineares em \mathbb{R}^2 e em \mathbb{R}^3 .

5.2 OPERADORES INVERSIVEIS

Um operador $T:V \longrightarrow V$ associa a cada vetor $v \in V$ um vetor $T(v) \in V$. Se por meio de outro operador S for possível inverter essa correspondência, de tal modo que a cada vetor transformado T(v) se associe o vetor de partida v, diz-se que S é operador inverso de T, e se indica por T^{-1} .

Observação

Quando o operador linear T admite a inversa T^{-1} , diz-se que T é inversível, invertível, regular ou $n\bar{a}o$ -singular.

5.2.1 Propriedades dos Operadores Inversíveis

Seja T:V --- V um operador linear.

I) Se T é inversível e T-1 é a sua inversa, então:

$$T \circ T^{-1} = T^{-1} \circ T = I$$
 (identidade)

- II) T é inversível se, e somente se, $N(T) = \{0\}$ (Propriedade 2 de 4.2.1 e Corolário 1 de 4.3.4).
- III) Se T é inversível, T transforma base em base, isto é, se B é uma base de V, T(B) também é base de V.
- IV) Se T é inversível e B uma base de V, então $T^{-1}:V \longrightarrow V$ é linear e:

$$[T^{-1}]_B = ([T]_B)^{-1}$$

isto é, a matriz do operador linear inverso numa certa base B é a inversa da matriz do operador T nessa mesma base.

Na prática, a base B será normalmente considerada como canônica. Logo, de forma mais simples:

$$[T^{-1}] = [T]^{-1}$$

e, portanto:

$$[T][T^{-1}] = [T \circ T^{-1}] = [I]$$

Como consequência temos: T é inversível se, e somente se, det $[T] \neq 0$.

5.2.2 Problemas Resolvidos

1) Seja o operador linear em IR2 definido por

$$T(x, y) = (4x - 3y, -2x + 2y)$$

- a) Mostrar que T é inversível.
- b) Encontrar uma regra para T-1 como a que define T.

Solução

a) A matriz canônica de T é [T] =
$$\begin{bmatrix} 4 & -3 \\ -2 & 2 \end{bmatrix}$$

Como det $[T] = 2 \neq 0$, T é inversível.

b)
$$[T^{-1}] = [T]^{-1} = \begin{bmatrix} 4 & -3 \\ -2 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \frac{3}{2} \\ 1 & 2 \end{bmatrix}$$

logo:

$$[\mathbf{T}^{-1}(\mathbf{x},\mathbf{y})] = [\mathbf{T}^{-1}] \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} 1 & \frac{3}{2} \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x} + \frac{3}{2}\mathbf{y} \\ \mathbf{x} + 2\mathbf{y} \end{bmatrix}$$

ou:

$$T^{-1}(x, y) = (x + \frac{3}{2}y, x + 2y)$$

Observação

Devemos entender que se T leva um vetor (x, y) ao vetor (x', y'), isto é:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = [T] \begin{bmatrix} x \\ y \end{bmatrix}$$

o operador T^{-1} traz de volta o vetor (x', y') para a posição inicial (x, y), ou seja:

$$\begin{bmatrix} x \\ y \end{bmatrix} = [T]^{-1} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

É bom que o leitor faça o teste com um vetor de livre escolha, valendo-se de T e T^{-1} do exercício realizado.

2) Verificar se o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por T(1, 1, 1) = (1, 0, 0), T(-2, 1, 0) = (0, -1, 0) e T(-1, -3, -2) = (0, 1, -1) é inversível e, em caso afirmativo, determinar $T^{-1}(x, y, z)$.

Solução

Observemos inicialmente que $\{(1,1,1),(-2,1,0),(-1,-3,-2)\}$ é uma base de \mathbb{R}^3 e T está bem definido, pois são conhecidas as imagens dos vetores dessa base. Portanto, basta calcular T(x, y, z) e proceder como no exercício anterior. Pensamos, no entanto, ser mais fácil proceder da maneira como se segue.

Por definição de T^{-1} , temos $T^{-1}(1,0,0) = (1,1,1)$, $T^{-1}(0,-1,0) = (-2,1,0)$ e $T^{-1}(0,1,-1) = (-1,-3,-2)$. Observando que $\{(1,0,0),(0,-1,0),(0,1,-1)\}$ é também uma base de \mathbb{R}^3 (verificar!) e que as imagens desses vetores são conhecidas, o operador T^{-1} está definido. Ora, existindo a T^{-1} , T é inversível. Pretendemos calcular $T^{-1}(x,y,z)$.

Para tanto, expressemos (x, y, z) em relação a essa base:

$$(x, y, z) = x(1, 0, 0) + (-y - z)(0, -1, 0) + (-z)(0, 1, -1)$$

logo:

$$T^{-1}(x, y, z) = xT^{-1}(1, 0, 0) + (-y - z)T^{-1}(0, -1, 0) + (-z)T^{-1}(0, 1, -1)$$

$$T^{-1}(x, y, z) = x(1, 1, 1) + (-y - z)(-2, 1, 0) + (-z)(-1, -3, -2)$$

$$T^{-1}(x, y, z) = (x, x, x) + (2y + 2z, -y - z, 0) + (z, 3z, 2z)$$

$$T^{-1}(x, y, z) = (x + 2y + 3z, x - y + 2z, x + 2z)$$

5.3 MUDANÇA DE BASE

Sejam A e B bases de um espaço vetorial V. Pretende-se relacionar as coordenadas de um vetor v em relação à base A com as coordenadas do mesmo vetor v em relação à base B.

Para simplificar, consideremos o caso em que dim V = 3. O problema para os espaços de dimensão n é análogo. Sejam as bases $A = \{v_1, v_2, v_3\}$ e $B = \{w_1, w_2, w_3\}$.

Dado um vetor v ∈ V, este será combinação linear dos vetores das bases A e B:

$$v = x_1 v_1 + x_2 v_2 + x_3 v_3 \tag{1}$$

ou:

$$\mathbf{v}_{\mathbf{A}} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$$

e:

$$v = y_1 w_1 + y_2 w_2 + y_3 w_3 \tag{2}$$

ou:

$$v_{B} = (y_{1}, y_{2}, y_{3})$$

Por sua vez, os vetores da base A podem ser escritos em relação à base B, isto é:

$$v_1 = a_1 w_1 + a_{21} w_2 + a_{31} w_3$$

$$\mathbf{v}_2 = \mathbf{a}_{12}\mathbf{w}_1 + \mathbf{a}_{22}\mathbf{w}_2 + \mathbf{a}_{32}\mathbf{w}_3 \tag{3}$$

$$\mathbf{v_3} = \mathbf{a_{13}} \mathbf{w_1} + \mathbf{a_{23}} \mathbf{w_2} + \mathbf{a_{33}} \mathbf{w_3}$$

Substituindo (3) em (1), temos:

$$v = x_1(a_{11}w_1 + a_{21}w_2 + a_{31}w_3) + x_2(a_{12}w_1 + a_{22}w_2 + a_{32}w_3) + x_3(a_{13}w_1 + a_{23}w_2 + a_{33}w_3)$$

ou:

$$v = (a_{11}x_1 + a_{12}x_2 + a_{13}x_3)w_1 + (a_{21}x_1 + a_{22}x_2 + a_{23}x_3)w_2 + (a_{31}x_1 + a_{32}x_2 + a_{33}x_3)w_3$$
 (4)

Comparando (4) com (2), vem:

$$y_1 = a_{11} x_1 + a_{12} x_2 + a_{13} x_3$$

$$y_2 = a_{21} x_1 + a_{22} x_2 + a_{23} x_3$$

$$y_3 = a_{31} x_1 + a_{32} x_2 + a_{33} x_3$$

ou, na forma matricial:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

ou, mais simplesmente, pela equação:

$$[\mathbf{v}]_{\mathbf{B}} = [\mathbf{I}]_{\mathbf{B}}^{\mathbf{A}} [\mathbf{v}]_{\mathbf{A}} \tag{5.3}$$

sendo a matriz:

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix}$$

chamada matriz de mudança de base de A para B.

Notemos que o papel dessa matriz é transformar as componentes de um vetor v na base A em componentes do mesmo v na base B.

Observações

1) Comparando a matriz [I] A com (3), observamos que cada coluna, pela ordem, é formada pelas componentes dos vetores da base A em relação à base B, isto é:

$$\begin{bmatrix} v_1 \end{bmatrix}_B = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}, \quad \begin{bmatrix} v_2 \end{bmatrix}_B = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} \quad e \quad \begin{bmatrix} v_3 \end{bmatrix}_B = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$$

- 2) A matriz [I] A é também conhecida como matriz de transição de A para B.
- 3) A matriz [I] A é, na verdade, a matriz do operador linear identidade

considerado nas bases A e B. Esse fato fica bem evidente no problema resolvido número 3 do item 5.3.1.

4) A matriz [I] A, por transformar os vetores linearmente independentes da base A nos vetores linearmente independentes da base B, é inversível. Por conseguinte, da equação

$$[v]_{B} = [I]_{B}^{A} [v]_{A}$$
 (5)

pode-se obter:

$$[\mathbf{v}]_{\mathbf{A}} = ([\mathbf{I}]_{\mathbf{B}}^{\mathbf{A}})^{-1} [\mathbf{v}]_{\mathbf{B}}$$
 (6)

donde se conclui que

$$\left(\begin{bmatrix} I \end{bmatrix}_{B}^{A}\right)^{-1} = \begin{bmatrix} I \end{bmatrix}_{A}^{B}$$

isto é, a inversa da matriz-mudança de base de A para B é a matriz-mudança de base B para A.

5.3.1 Problema Resolvido

3) Sejam as bases $A = \{v_1, v_2\} \in B = \{w_1, w_2\} \text{ do } \mathbb{R}^2$, onde

$$v_1 = (2, -1), v_2 = (-1, 1) e w_1 = (1, 0), w_2 = (2, 1)$$

a) Determinar a matriz-mudança de base de A para B.

b) Utilizar a matriz [I] A para calcular [v] B, sabendo que

$$\begin{bmatrix} v \end{bmatrix}_A = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Solução:

a) Pretendemos calcular:

$$\begin{bmatrix} I \end{bmatrix}_{B}^{A} = \begin{bmatrix} a_{11} & a_{12} \\ & & \\ a_{21} & a_{22} \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$\begin{bmatrix} v_{1} \end{bmatrix}_{B} \qquad \begin{bmatrix} v_{2} \end{bmatrix}_{B}$$

Expressemos os vetores da base A em relação à base B:

$$v_1 = (2, -1) = a_{11}(1, 0) + a_{21}(2, 1)$$

ou:

$$\begin{cases} a_{11} + 2a_{21} = 2 \\ a_{21} = -1 \end{cases}$$

sistema cujas raízes são:

$$a_{11} = 4$$
 e $a_{21} = -1$, isto é, $\begin{bmatrix} v_1 \end{bmatrix}_B = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$
 $v_2 = (-1, 1) = a_{12}(1, 0) + a_{22}(2, 1)$

ou:

$$\begin{cases} a_{12} + 2a_{22} = -1 \\ a_{22} = 1 \end{cases}$$

sistema sujas raízes são:

$$a_{12} = -3$$
 e $a_{22} = 1$, isto é, $[v_2]_B = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

logo:

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} 4 & -3 \\ & \\ -1 & 1 \end{bmatrix}$$

b) Sabendo-se que:

$$\begin{bmatrix} v \end{bmatrix}_B = \begin{bmatrix} I \end{bmatrix}_B^A \begin{bmatrix} v \end{bmatrix}_A = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

obtemos:

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

$$[v]_{B} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

Caso o leitor queira conhecer o vetor v na base canônica, basta fazer:

$$v = 4(2, -1) + 3(-1, 1) = (5, -1)$$

ou:

$$v = 7(1,0) - 1(2,1) = (5,-1)$$

Observação

Se o problema consistisse apenas em calcular v_B a partir de v_A , sem utilizar a matriz $\begin{bmatrix} I \end{bmatrix}_B^A$, bastaria determinar o vetor v na base canônica, isto é, v = (5, -1) e, posteriormente, resolver a equação

$$(5,-1) = a_1(1,0) + a_2(2,1)$$

para encontrar $a_1 = 7$ e $a_2 = -1$.

A utilização da matriz-mudança de base ainda será vista em outros assuntos deste livro.

5.3.2 Outra forma de Determinação da Matriz-Mudança de Base

A matriz-mudança de base [I] A pode ser determinada de uma forma diferente.

Valendo-se das bases A e B do problema anterior e sendo $C = \{(1,0), (0,1)\}$ a base canônica, vem:

[I]
$$_{C}^{A} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \qquad \downarrow_{1} \qquad \qquad \downarrow_{2}$$

pois:

$$(2,-1) = 2(1,0) - 1(0,1)$$

$$(-1, 1) = -1(1, 0) + 1(0, 1)$$

e, de forma análoga:

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{C}}^{\mathbf{B}} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$\mathbf{w}_{1} \qquad \mathbf{w}_{2}$$

Assim, a matriz-mudança de base de uma base qualquer para a canônica é a matriz que se obtém daquela base dispondo seus vetores em colunas. Façamos $[I]_C^A = A$ e $[I]_C^B = B$.

Lembrando o que foi visto em 4.5.3 sobre composta de transformações lineares e levando em conta a Observação 4) de 5.3, podemos escrever:

$$[I]_{B}^{A} = [I \circ I]_{B}^{A} = [I]_{B}^{C} [I]_{C}^{A} = ([I]_{C}^{B})^{-1} [I]_{C}^{A} = B^{-1} A$$

Então, para as bases A e B dadas, temos:

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \mathbf{B}^{-1} \quad \mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix}$$

5.3.3 Aplicações da Matriz-Rotação

Vimos que a matriz-rotação do plano de um ângulo θ é:

$$\cos \theta$$
 -sen θ $\cos \theta$

Observemos que as imagens de (1,0) e de (0,1), pela rotação θ , são:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

e:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

respectivamente.

Portanto, a base $P = \{u_1, u_2\}$, sendo $u_1 = (\cos \theta, \sin \theta)$ e $u_2 = (-\sin \theta, \cos \theta)$, é obtida da base canônica $C = \{e_1, e_2\}$, sendo $e_1 = (1, 0)$ e $e_2 = (0, 1)$, pela rotação de um ângulo θ . Assim, como a base canônica C determina o sistema de coordenadas retangulares xOy, a base P determina também um sistema de coordenadas retangulares x'Oy' que provém do sistema xOy por meio da rotação de um ângulo θ . Consequentemente, cada ponto R ou cada vetor V do plano possui coordenadas V0, em relação ao sistema V0, em relação ao sistema V0, em relação ao sistema V0.

A matriz-rotação pode ser encarada como matriz-mudança de base de P para C, isto é:

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{C}}^{\mathbf{P}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

pois:

$$(\cos \theta, \sin \theta) = \cos \theta (1, 0) + \sin \theta (0, 1)$$

$$(-\operatorname{sen}\theta,\cos\theta) = -\operatorname{sen}\theta(1,0) + \cos\theta(0,1)$$

Por exemplo, para $\theta = 90^{\circ}$, tem-se a base:

$$P = \{(\cos 90^{\circ}, \sin 90^{\circ}), (-\sin 90^{\circ}, \cos 90^{\circ})\} = \{(0, 1), (-1, 0)\}$$

e, portanto:

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{C}}^{\mathbf{P}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Considerando $v_p = (4, 2)$, o vetor v na base canônica é:

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathbf{C}} = \begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{C}}^{\mathbf{P}} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathbf{P}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

As figuras mostram que o vetor v que tem componentes 4 e 2 na base:

$$P = \{(0,1),(-1,0)\}$$

tem componentes -2 e 4 na base:

$$C = \{(1,0),(0,1)\}$$

No caso de mudança de base de C para P, já vimos que:

$$[I]_{P}^{C} = ([I]_{C}^{P})^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}^{-1}$$

ou seja:

$$[I]_{\mathbf{p}}^{\mathbf{C}} = \begin{bmatrix} \cos \theta & \sin \theta \\ \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Por exemplo, para uma rotação de $\theta = 45^{\circ}$ no sistema xOy, o vetor v = (x, y) = (4, 2) na base canônica será $v_p = (x', y') = (3\sqrt{2}, -\sqrt{2})$ na base P.

De fato:

$$\begin{bmatrix} v \end{bmatrix}_{\mathbf{P}} = \begin{bmatrix} \cos 45^{\circ} & \sin 45^{\circ} \\ -\sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathbf{p}} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$[v]_{\mathbf{p}} = \begin{bmatrix} 3\sqrt{2} \\ -\sqrt{2} \end{bmatrix}$$

5.4 MATRIZES SEMELHANTES

Seja $T:V \longrightarrow V$ um operador linear. Se A e B são bases de V e $[T]_A$ e $[T]_B$ as matrizes que representam o operador T nas bases A e B, respectivamente, então:

$$[T]_{B} = ([I]_{A}^{B})^{-1} [T]_{A} [I]_{A}^{B}$$
 (5.4)

sendo [I] B a matriz-mudança de base B para A.

De fato:

Pelo conceito de matriz de uma transformação linear (4.4) podemos escrever:

$$[T(v)]_A = [T]_A [v]_A \tag{1}$$

e:

$$[T(v)]_{B} = [T]_{B} [v]_{B}$$
 (2)

Sendo [I] A a matriz-mudança de base de B para A, tem-se:

$$[v]_A = [I]_A^B [v]_B = [T(v)]_A = [I]_A^B [T(v)]_B$$

Substituindo $[v]_A$ e $[T(v)]_A$ em (1), resulta:

$$[I]_{A}^{B}[T(v)]_{B} = [T]_{A}[I]_{A}^{B}[v]_{B}$$

Como a matriz [I] B é inversível (Observação (4) de 5.3), vem:

$$[T(v)]_B = ([I]_A^B)^{-1} [T]_A [I]_A^B [v]_B$$

Comparando essa igualdade com a (2), conclui-se:

$$[T]_{B} = ([I]_{A}^{B})^{-1} [T]_{A} [I]_{A}^{B}$$

que é a relação apresentada (5.4).

Fazendo [I] B = M, a relação acima fica:

$$[T]_B = M^{-1} [T]_A M$$
 (5.4a)

não se podendo esquecer que M é a matriz-mudança de base de B (2ª base dada) para A (1ª base dada).

As matrizes [T] A e [T] B são chamadas semelhantes.

Por conseguinte, duas matrizes $[T]_A$ e $[T]_B$ são semelhantes quando definem em V um mesmo operador linear T. Mais precisamente, duas matrizes $[T]_A$ e $[T]_B$ são semelhantes se existe uma matriz inversível M tal que

$$[T]_B = M^{-1} [T]_A M$$

O esquema a seguir mostra que existem duas maneiras de se obter T(v)B a partir de vA:

5.4.1 Propriedade

As matrizes semelhantes [T] A e [T] B possuem o mesmo determinante.

De fato:

De

$$[T]_B = M^{-1} [T]_A M$$

vem:

$$M[T]_B = [T]_A M$$

e:

$$\det M \cdot \det [T]_B = \det [T]_A \cdot \det M$$

ou:

$$det[T]_B = det[T]_A$$

5.4.2 Problemas Resolvidos

4) Sejam T: ℝ² → ℝ² um operador linear e as bases

$$A = \{(3,4),(5,7)\}\ e\ B = \{(1,1),(-1,1)\}$$

e seja:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{A}} = \begin{bmatrix} -2 & 4 \\ 2 & -1 \end{bmatrix}$$

a matriz de T na base A. Calculemos [T] pela relação:

$$[T]_{B} = M^{-1} [T]_{A} M$$

na qual M é a matriz-mudança de base de B para A. Necessitamos da matriz M que será calculada pela relação apresentada em 5.3.2:

$$\mathbf{M} = [\mathbf{I}]_{\mathbf{A}}^{\mathbf{B}} = \mathbf{A}^{-1} \mathbf{B}$$

isto é:

$$\mathbf{M} = \begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -12 \\ -1 & 7 \end{bmatrix}$$

e:

$$\mathbf{M}^{-1} = \begin{bmatrix} \frac{7}{2} & 6\\ \frac{1}{2} & 1 \end{bmatrix}$$

logo:

$$[T]_{B} = \begin{bmatrix} \frac{7}{2} & 6 \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -12 \\ -1 & 7 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 5 & 8 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -12 \\ -1 & 7 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 2 & -4 \\ 1 & -5 \end{bmatrix}$$

Observação

Pode-se verificar, através do exemplo, que realmente as matrizes $[T]_A$ e $[T]_B$ são semelhantes, isto é, que na transformação linear definida em \mathbb{R}^2 por essas matrizes, em bases diferentes, um vetor $v \in \mathbb{R}^2$ tem a mesma imagem T(v).

Seja o vetor $v_A = (2, -1)$.

I) Cálculo de T(v) por meio de [T] :

$$[T(v)]_{A} = [T]_{A}[v]_{A}$$

$$\begin{bmatrix} \mathbf{T}(\mathbf{v}) \end{bmatrix}_{\mathbf{A}} = \begin{bmatrix} -2 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -8 \\ 5 \end{bmatrix}$$

II) Cálculo de v_B por meio de M⁻¹ partindo de v_A:

$$[v]_B = M^{-1} [v]_A$$

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} \frac{7}{2} & 6 \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

III) Cálculo de T(v)_B por meio de M⁻¹ partindo de T(v)_A:

$$[T(v)]_B = M^{-1}[T(v)]_A$$

$$[T(v)]_{B} = \begin{bmatrix} \frac{7}{2} & 6 \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} -8 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

IV) Cálculo de T(v)_R por meio de [T]_R:

$$[T(v)]_B = [T]_B [v]_B$$

$$\begin{bmatrix} \mathbf{T}(\mathbf{v}) \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 2 & -4 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Assim, o vetor v tem a mesma imagem T(v) por meio do operador linear T, definido em \mathbb{R}^2 pelas matrizes $[T]_A$ e $[T]_B$, em bases diferentes.

V) Por outro lado, as matrizes semelhantes têm o mesmo determinante:

$$\det [T]_{A} = \begin{vmatrix} -2 & 4 \\ 2 & -1 \end{vmatrix} = 2 - 8 = -6$$

$$\det [T]_{B} = \begin{vmatrix} 2 & -4 \\ 1 & -5 \end{vmatrix} = -10 + 4 = -6$$

5) Seja o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definido por:

$$T(x, y) = (2x + 9y, x + 2y)$$

Determinar [T], matriz canônica de T, e a seguir utilizar a relação:

$$[T]_{R} = M^{-1} [T] M$$

para transformá-la na matriz de T na base:

$$B = \{(3, 1), (-3, 1)\}$$

Solução

É imediato que:

$$[T] = \begin{bmatrix} 2 & 9 \\ 1 & 2 \end{bmatrix}$$

A matriz M de mudança de base de B para a canônica A é dada por:

$$M = A^{-1} B$$

ou:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}$$

mas:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

logo:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}$$

e:

$$\mathbf{M}^{-1} = \begin{bmatrix} \frac{1}{6} & \frac{1}{2} \\ -\frac{1}{6} & \frac{1}{2} \end{bmatrix}$$

Portanto:

$$[T]_{B} = \begin{bmatrix} \frac{1}{6} & \frac{1}{2} \\ -\frac{1}{6} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 9 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}$$

$$[T]_{B} = \begin{bmatrix} \frac{5}{6} & \frac{5}{2} \\ \frac{1}{6} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}$$

$$[T]_{B} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$$

Observação

A matriz diagonal

$$\begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$$

que representa T na base B, é mais simples, no sentido de "estrutura" que a matriz canônica de T:

Já no problema resolvido nº 4 esse fato não ocorreu. A simplificação da matriz do operador T está ligada à escolha adequada de uma base, pois é a matriz de mudança de base M que atua

sobre a matriz de um operador linear para transformá-la em outra matriz do mesmo operador. A escolha da base "certa", que torna a matriz do operador T o mais simples possível, é objeto de estudo no próximo Capítulo.

5.5 OPERADOR ORTOGONAL

Seja V um espaço vetorial euclidiano. Um operador linear $T: V \longrightarrow V$ é ortogonal se preserva o módulo de cada vetor, isto é, se para qualquer $v \in V$

$$|T(\mathbf{v})| = |\mathbf{v}|$$

Observações

- 1) Tendo em vista que o módulo de um vetor é calculado por meio de um produto interno $(|v| = \sqrt{v \cdot v})$, os operadores ortogonais são definidos nos espaços vetoriais euclidianos.
- 2) Nos operadores ortogonais, serão consideradas somente bases ortonormais em V e, particularmente, a base canônica.

Exemplos

1) No IR2, com o produto interno usual, o operador linear definido por:

$$T(x, y) = (\frac{4}{5}x + \frac{3}{5}y, \frac{3}{5}x - \frac{4}{5}y)$$

é ortogonal.

De fato:

$$|T(x,y)| = \sqrt{\frac{4}{5}x + \frac{3}{5}y^2 + (\frac{3}{5}x - \frac{4}{5}y)^2}$$

$$|T(x,y)| = \sqrt{\frac{16}{25}x^2 + \frac{24}{25}xy + \frac{9}{25}y^2 + \frac{9}{25}x^2 - \frac{24}{25}xy + \frac{16}{25}y^2} =$$

$$= \sqrt{\frac{25}{25}x^2 + \frac{25}{25}y^2}$$

ou:

$$|T(x,y)| = \sqrt{x^2 + y^2} = |(x,y)|, V(x,y) \in \mathbb{R}^2$$

2) Consideremos o R² com o produto interno usual. A rotação do plano de um ângulo θ dada por:

$$T(x, y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$$

é ortogonal. (A verificação fica a cargo do leitor.)

3) No R³, com o produto interno usual, o operador linear dado por:

$$T(x, y, z) = (-y, x, -z)$$

é ortogonal.

De fato:

$$|T(x, y, z)| = \sqrt{(-y)^2 + x^2 + (-z)^2} = \sqrt{x^2 + y^2 + z^2} = |(x, y, z)|$$

Observação

O produto interno de dois vetores $u = (a_1, ..., a_n)$ e $v = (b_1, ..., b_n)$, em relação a uma base ortonormal, é dado por:

$$u \cdot v = a_1 b_1 + ... + a_n b_n$$
 (verificação a cargo do leitor)

Se esses vetores forem expressos na forma matricial:

$$[\mathbf{u}] = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{bmatrix} \quad \mathbf{e} \quad [\mathbf{v}] = \begin{bmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \end{bmatrix}$$

conclui-se que:

$$[u . v] = [u]^t [v]$$

onde [u]t indica a matriz transposta de [u].

Observação

No Apêndice, a matriz transposta de A, por exemplo, é representada por A^T ; aqui, a transposta será representada por A^t , uma vez que T está sendo utilizado para representar um operador linear.

5.5.1 Propriedades

$$[T]^{-1} = [T]^{t}$$

De fato:

$$|v| = |T(v)|$$

ou:

$$\sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{T}(\mathbf{v}) \cdot \mathbf{T}(\mathbf{v})}$$

isto é:

$$v \cdot v = T(v) \cdot T(v)$$

ou:

$$[v . v] = [T(v) . T(v)]$$

ou ainda:

$$[v]^t [v] = [T(v)]^t [T(v)]$$

mas:

$$[T(v)]^t [T(v)] = ([T][v])^t [T][v] = [v]^t [T]^t [T][v]$$

logo:

$$[v]^{t}[v] = [v]^{t}[T]^{t}[T][v]$$

e, finalmente:

$$[T]^t [T] = I$$

ou:

$$[T]^t = [T]^{-1}$$

A matriz [T], tal que $[T]^t = [T]^{-1}$, é chamada matriz ortogonal. Portanto, uma matriz ortogonal define um operador ortogonal.

A matriz canônica do exemplo 1), item 5.5.

$$[T] = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{bmatrix}$$

é ortogonal, pois:

$$[T]^{t} = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{bmatrix} = [T]^{-1}$$

A matriz-rotação:

$$[T] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

do exemplo 2), item 5.5 é também ortogonal, pois:

$$[T]^{t} = \begin{bmatrix} \cos \theta & \sin \theta \\ \\ -\sin \theta & \cos \theta \end{bmatrix} = [T]^{-1}$$

O determinante de uma matriz ortogonal é +1 ou -1.

De fato:

Sendo [T] ortogonal, $[T]^t[T] = I$.

Logo:

$$\det([T]^t [T]) = \det 1$$

ou:

Como det [T] = det [T] t, vem:

$$(\det [T])^2 = 1$$

ou seja:

$$det[T] = +1$$
 ou $det[T] = -1$

Dessa propriedade conclui-se que todo operador linear ortogonal é inversível.

III) Todo operador linear ortogonal T:V \longrightarrow V preserva o produto interno de vetores, isto é, para quaisquer vetores u, $v \in V$, tem-se:

$$u \cdot v = T(u) \cdot T(v)$$

De fato:

$$[T(u) . T(v)] = [T(u)]^t [T(v)] = ([T][u])^t [T][v] = [u]^t [T]^t [T][v]$$

mas:

$$[T]^t[T] = I$$

logo:

$$[T(u) . T(v)] = [u]^t [v] = [u . v]$$

e:

$$u \cdot v = T(u) \cdot T(v)$$

Decorre dessa propriedade que todo operador ortogonal $T:V \longrightarrow V$ preserva o ângulo de dois vetores, isto é, o ângulo entre dois vetores u e v é igual ao ângulo entre T(u) e T(v).

Esse fato e a definição de operador ortogonal permitem concluir: T transforma bases ortonormais em bases ortonormais, isto é, se $\{v_1, ..., v_n\}$ é base ortonormal de V, então $\{T(v_1), ..., T(v_n)\}$ é também base ortonormal de V. Essa propriedade, como ainda veremos, é de grande importância na construção de novas bases ortonormais $\{u_1, u_2\}$ do \mathbb{R}^2 , a partir da base canônica $\{e_1, e_2\}$, e na criação de um novo sistema de coordenadas retangulares x'Oy', a partir do sistema xOy, conforme sugere a Figura 5.5.1a.

Figura 5.5.1a

Essa transformação, no plano, da base canônica para outra base ortonormal por meio de um operador ortogonal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ pode ser vista de duas maneiras:

a) A base $\{u_1, u_2\}$ provém da base canônica $\{e_1, e_2\}$ por uma rotação, conforme a Figura 5.5.1a, e, nesse caso, det [T] = +1.

Reciprocamente, se det [T] = +1 e T ortogonal, T é uma rotação.

b) A base {u₁, u₂} provém da base canônica {e₁, e₂} por uma rotação seguida de uma reflexão na origem de apenas um dos vetores (Figura 5.5.1b) ou vice-versa. Nesse caso, tem-se:

$$\det [T] = -1$$

Figura 5.5.1b

Assim, por exemplo, o operador ortogonal, representado pela matriz

$$\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

é uma rotação, pois

$$\begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix} = 1$$

O que dissemos para o \mathbb{R}^2 é válido para o \mathbb{R}^3 .

Por exemplo, o operador ortogonal no R3 representado pela matriz

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

é uma rotação, pois det A = 1 para qualquer valor de θ .

- IV) A composta de duas transformações ortogonais é uma transformação ortogonal ou, equivalentemente, o produto de duas matrizes ortogonais é uma matriz ortogonal.
 - V) As colunas (ou linhas) de uma matriz ortogonal são vetores ortonormais.

De fato:

Sejam $A = \{e_1, e_2, ..., e_n\}$ uma base ortonormal do espaço vetorial euclidiano V e $T: V \longrightarrow V$ um operador linear ortogonal representado nesta base pela matriz:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Tendo em vista que:

$$|e_1| = |e_2| = ... = |e_n| = 1 e$$

 $|e_i| = |e_j| = 0, i \neq j$

e que

$$T(e_1) = a_{11}e_1 + a_{21}e_2 + ... + a_{n1}e_n$$

$$T(e_2) = a_{12}e_1 + a_{22}e_2 + ... + a_{n2}e_n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(e_n) = a_{1n}e_1 + a_{2n}e_2 + ... + a_{nn}e_n$$

pode-se escrever:

$$|T(e_1)|^2 = T(e_1) \cdot T(e_1) = a_{11}^2 + a_{21}^2 + \dots + a_{n1}^2 = 1$$

 $|T(e_2)|^2 = T(e_2) \cdot T(e_2) = a_{12}^2 + a_{22}^2 + \dots + a_{n2}^2 = 1$
 $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$
 $|T(e_n)|^2 = T(e_n) \cdot T(e_n) = a_{1n}^2 + a_{2n}^2 + \dots + a_{nn}^2 = 1$

e:

$$T(e_i) \cdot T(e_j) = a_{1i}a_{1j} + a_{2i}a_{2j} + ... + a_{ni}a_{nj} = 0$$

Logo, as colunas

$$\begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ \vdots \\ a_{n1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ \vdots \\ a_{n2} \end{bmatrix}, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ \vdots \\ a_{nn} \end{bmatrix}$$

representam vetores ortonormais do espaço V e, consequentemente, formam uma base ortonormal desse espaço.

Exemplo:

Seja a matriz:

$$A = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

Os vetores-colunas de A são:

$$u_1 = (-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), \quad u_2 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}) \quad e \quad u_3 = (0, 1, 0)$$

e:

$$|u_1| = |u_2| = |u_3| = 1$$

e também:

$$u_1 \cdot u_2 = u_1 \cdot u_3 = u_2 \cdot u_3 = 0$$

logo, o conjunto:

$$\{u_1, u_2, u_3\}$$

é uma base ortonormal do R3.

Além disso, como det A = 1 (verificar!), a matriz A representa uma rotação do espaço.

5.6 OPERADOR SIMÉTRICO

Diz-se que um operador linear $T:V \longrightarrow V$ é simétrico se a matriz que o representa numa base ortonormal A é simétrica, isto é, se:

$$[T]_A^t = [T]_A$$

Observações

1) Demonstra-se que a matriz do operador simétrico é sempre simétrica, independente da base ortonormal do espaço. Em nosso estudo, trabalharemos somente com bases canônicas.

Então, T: V
$$\longrightarrow$$
 V é simétrica se $[T]^t = [T]$

2) O operador simétrico é também chamado operador auto-adjunto.

Exemplos

1) O operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (2x + 4y, 4x - y)$

é simétrico, pois a matriz canônica de T

$$[T] = \begin{bmatrix} 2 & 4 \\ 4 & -1 \end{bmatrix}$$

é simétrica, isto é, $[T]^t = [T]$.

2) No IR³ o operador T definido por:

$$T(x, y, z) = (x - y, -x + 3y - 2z, -2y)$$

é simétrico e sua matriz canônica é:

$$[T] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$

5.6:1 Propriedade

Seja V um espaço vetorial euclidiano. Se $T:V \longrightarrow V$ é um operador simétrico, então para quaisquer vetores $u, v \in V$, tem-se:

$$T(u) \cdot v = u \cdot T(v)$$

De fato:

$$[T(u) . v] = [T(u)]^{t} [v] = ([T] [u])^{t} [v] = [u]^{t} [T]^{t} [v] = [u]^{t} ([T] [v]) = [u . T(v)]$$

logo:

$$T(u) \cdot v = u \cdot T(v)$$

Exemplo

Seja o operador simétrico, no R2, definido por:

$$T(x, y) = (x + 3y, 3x - 4y)$$

Consideremos os vetores u = (2, 3) e v = (4, 2) e calculemos T(u) e T(v):

$$T(u) = T(2, 3) = (11, -6)$$

$$T(v) = T(4, 2) = (10, 4)$$

mas:

$$T(u) \cdot v = (11, -6) \cdot (4, 2) = 44 - 12 = 32$$

$$u \cdot T(v) = (2, 3) \cdot (10, 4) = 20 + 12 = 32$$

Como se vé:

$$T(u) \cdot v = u \cdot T(v)$$
.

5.7 PROBLEMAS PROPOSTOS

- 1) A seguir são dados operadores lineares T em \mathbb{R}^2 e em \mathbb{R}^3 . Verificar quais são inversíveis e, nos casos afirmativos, determinar uma fórmula para \mathbb{T}^{-1} .
 - a) T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$, T(x, y) = (3x 4y, -x + 2y)

b) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x - 2y, -2x + 3y)$

c) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x, y) = (2x - y, -4x + 2y)

d) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (5x + 2y, -4x - 2y)$

e) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x,y) = (x,-y)$

f) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, T(x, y, z) = (x - y + 2z, y - z, 2y - 3z)

g) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x + y - z, x + 2y, z)$

h) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x, x - z, x - y - z)$

i) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, T(x, y, z) = (x - y + 2z, y - z, -2x + y - 3z)

j) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x + z, x - z, y)$

2) Seja o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido pela matriz:

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

- a) Mostrar que T é um isomorfismo.
- b) Determinar a lei que define o operador T-1.
- c) Utilizar a matriz de T ou de T^{-1} para obter o vetor $v \in \mathbb{R}^3$ tal que T(v) = (2, -3, 0).
- 3) Mostrar que o operador linear, no IR³, definido pela matriz

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$

não é inversível. Determinar $v \in \mathbb{R}^3$ tal que T(v) = (6, 9, 15).

Verificar se o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por T(1,0,0) = (2,-1,0), T(0,-1,0) = (-1,-1,-1) e T(0,3,-1) = (0,1,1) é inversível e, em caso afirmativo, determinar $T^{-1}(x,y,z)$.

- 5) No plano uma rotação de $\frac{\pi}{3}$ radianos é seguida de uma reflexão em torno do eixo dos y.
 - a) Mostrar que a transformação é um isomorfismo.
 - b) Determinar a inversa da transformação definida.
- 6) Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear que transforma u em T(u) e v em T(v), conforme a figura.
 - a) Dar a lei do operador T.
 - b) Determinar a transformação linear que transforma T(u) em u e T(v) em v.

- 7) Utilizar a inversão de matrizes 2 × 2 para mostrar que:
 - a) A transformação linear inversa de uma reflexão em torno do eixo dos x é uma reflexão em torno desse eixo.
 - b) A transformação inversa de uma dilatação ao longo de um eixo é uma contração ao longo desse eixo.
 - c) A inversa de uma rotação do plano de um ângulo θ é a rotação do plano do ângulo $-\theta$.

- 8) Consideremos as seguintes bases do \mathbb{R}^2 : A = {(1, 1), (0, -1)} e B = {(2, -3), (-3, 5)}.
 - a) Determinar a matriz-mudança de base [I] A.
 - b) Utilizar a matriz obtida no item a) para calcular v_B , sendo $v_A = (2, 3)$.
 - c) Determinar a matriz-mudança de base de B para A.
- 9) Repetir o problema 8 para as bases $A = \{(3, -1), (1, -2)\}$ e $B = \{(3, 2), (2, 2)\}$, sendo $v_A = (4, 3)$.
- 10) Sejam $B = \{(1, 0), (0, 1)\}, B_1 = \{(1, 1), (-1, 0)\}, B_2 = \{(-1, 1), (2, -3)\}$ e $B_3 = \{(2, 1), (-5, -1)\},$ bases do \mathbb{R}^2
 - a) Determinar as matrizes-mudança de base:

$$[I]_{B}^{B_{1}}, [I]_{B_{1}}^{B}, [I]_{B}^{B_{2}}, [I]_{B_{2}}^{B} e [I]_{B_{2}}^{B_{3}}$$

- b) Determinar o vetor coordenada de v = (-3, 4) em relação às bases B, B₁, B₂ e B₃.
- 11) Sabendo que:

$$\begin{bmatrix} I \end{bmatrix}_{B}^{A} = \begin{bmatrix} -1 & 4 \\ & \\ 4 & -11 \end{bmatrix}$$
 e $B = \{(3,5), (1,2)\},$

determinar a base A.

12) Sabendo que:

$$\begin{bmatrix} I \end{bmatrix}_{B}^{A} = \begin{bmatrix} -7 & 6 \\ -11 & 8 \end{bmatrix}$$
 e $A = \{(1,3),(2,-4)\},$

determinar a base B.

- 13) A base B é obtida da base canônica A do \mathbb{R}^2 pela rotação de $\frac{\pi}{3}$ rad. Calcular:
 - a) [I] A B
 - b) [1] B
- 14) Consideremos as seguintes bases do R3:

$$A = \{(1,0,0),(0,1,0),(0,0,1)\}\ e\ B = \{(1,0,-1),(0,1,-1),(-1,1,1)\}$$

- a) Determinar a matriz [I] A.
- b) Utilizar a matriz obtida no item a) para calcular v_B , sendo $v_A = (1, 2, 3)$.
- c) Determinar a matriz $[I]_A^B$.
- 15) Se

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{B}}^{\mathbf{A}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

determinar [v] A, sabendo que:

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 3 \\ -2 \\ 0 \end{bmatrix}$$

- 16) Mostrar que para qualquer base A de um espaço vetorial, a matriz-mudança de base [I] A é a matriz identidade.
- 17) Em relação aos operadores dados, determinar primeiramente a matriz de T na base A e, a seguir, utilizar a relação entre matrizes semelhantes para calcular a matriz de T na base B.

a) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x,y) = (x + 2y, -x + y)
A = {(-1,1),(1,2)} e B = {(1,-3),(0,2)}

b) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (2x - 3y, x + y)$
 $A = \{(1,0), (0,1)\}$ e $B = \{(3,0), (-2,-1)\}$

c) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x,y) = $(7x - 4y, -4x + y)$
A é a base canônica e B = $\{(-2, 1), (1, 2)\}$

d) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x - 2y - 2z, y, 2y + 3z)$
A é canônica e B = $\{(0, 1, -1), (1, 0, 0), (-1, 0, 1)\}$

18) Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ um operador linear. Consideremos as bases A canônica e $B = \{(4, 1), (-11, -3)\}$. Sabendo que

$$[T]_{B} = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$

determinar [T] A, utilizando a relação entre matrizes semelhantes.

- 19) Seja o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, T(x, y) = (x + y, x y).
 - a) Determinar $[T]_{R}$, sendo $B = \{(1, 2), (0, -1)\}$.
 - b) Utilizar a matriz encontrada em a) para calcular $T(v)_{B}$, sabendo que v = (4, 2).
- 20) Encontrar três matrizes semelhantes à matriz:

$$\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

21) Quais dos seguintes operadores são ortogonais?

a) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y, \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y)$

b) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x, y) = (-y, -x)

c) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x + y, x - y)$

22) Dentre os seguintes operadores lineares, verificar quais são ortogonais:

a) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (z, x, -y)$

b) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x, y, z)$

c) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x, 0, 0)$

d) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x, y\cos\theta + z\sin\theta, -y\sin\theta + z\cos\theta)$

23) Verificar quais das seguintes matrizes são ortogonais e, dentre estas, determinar as que representam rotações:

a)
$$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$
 b)
$$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{3}{5} & \frac{4}{5} \end{bmatrix}$$
 c)
$$\begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

d)
$$\begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}$$
 e) $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix}$ f) $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$

g)
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 h) $\begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ i) $\begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$ $\begin{bmatrix} \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & 0 \end{bmatrix}$

24) Construir uma matriz ortogonal cuja primeira coluna seja:

a)
$$(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$$

b)
$$(\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})$$

- 25) Mostrar que se A e B são matrizes ortogonais, então AB também é ortogonal.
- 26) Mostrar, por meio da multiplicação de matrizes, que uma rotação de 30° seguida de uma rotação de 60° resulta em uma rotação de 90°.
- 27) Determinar a e b para que os seguintes operadores no IR³ sejam simétricos:

a) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (3x - 2y, ax + y - 3z, by + z)$

b) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x + 2z, ax + 4y + bz, 2x - 3y + z)$

5.7.1 Respostas de Problemas Propostos

1) a)
$$T^{-1}(x, y) = (x + 2y, \frac{1}{2}x + \frac{3}{2}y)$$

b)
$$T^{-1}(x, y) = (-3x - 2y, -2x - y)$$

c) T não é inversível.

d)
$$T^{-1}(x, y) = (x + y, -2x - \frac{5}{2}y)$$

e)
$$T^{-1}(x, y) = (x, -y)$$

f)
$$T^{-1}(x, y, z) = (x - y + z, 3y - z, 2y - z)$$

g)
$$T^{-1}(x, y, z) = (2x - y + 2z, -x + y - z, z)$$

h)
$$T^{-1}(x, y, z) = (x, y - z, x - y)$$

i) T não é inversível.

j)
$$T^{-1}(x, y, z) = (\frac{1}{2}x + \frac{1}{2}y, z, \frac{1}{2}x - \frac{1}{2}y)$$

2) b)
$$T^{-1}(x, y, z) = (x + z, 2x - y + z, -z)$$

c)
$$v = (2, 7, 0)$$

3)
$$v = (z, 3 - 2z, z), z \in \mathbb{R}$$

4)
$$T^{-1}(x, y, z) = (-y + z, -2x - 4y + 7z, x + 2y - 3z)$$

5) b)
$$T^{-1}(x, y) = (-\frac{1}{2}x + \frac{\sqrt{3}}{2}y, \frac{\sqrt{3}}{2}x + \frac{1}{2}y)$$

6) a)
$$T(x, y) = (2x - y, x + y)$$

b)
$$T^{-1}(x, y) = (\frac{x}{3} + \frac{y}{3}, -\frac{x}{3} + \frac{2y}{3})$$

8) a)
$$[I]_{B}^{A} = \begin{bmatrix} 8 & -3 \\ 5 & -2 \end{bmatrix}$$

b)
$$v_B = (7, 4)$$

$$[I]_{\mathbf{A}}^{\mathbf{B}} = \begin{bmatrix} 2 & -3 \\ 5 & -8 \end{bmatrix}$$

9) a)
$$\begin{bmatrix} 4 & 3 \\ -\frac{9}{2} & -4 \end{bmatrix}$$

b)
$$v_B = (25, -30)$$

c)
$$\begin{bmatrix} \frac{8}{5} & \frac{6}{5} \\ -\frac{9}{5} & -\frac{8}{5} \end{bmatrix}$$

[I]
$$_{\mathbf{B}}^{\mathbf{B}_{1}} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$
 [I] $_{\mathbf{B}_{1}}^{\mathbf{B}} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$

$$[I]_{B}^{B_{2}} = \begin{bmatrix} -1 & 2 \\ 1 & -3 \end{bmatrix} \qquad [I]_{B_{2}}^{B} = \begin{bmatrix} -3 & -2 \\ -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} I \end{bmatrix}_{B_2}^{B_3} = \begin{bmatrix} -8 & 17 \\ -3 & 6 \end{bmatrix}$$

b)
$$v_B = (-3, 4), \quad v_{B_1} = (4, 7), \quad v_{B_2} = (1, -1), \quad v_{B_3} = (\frac{23}{3}, \frac{11}{3})$$

11)
$$A = \{(1,3), (1,-2)\}$$

12)
$$B = \{(3, -2), (-2, 1)\}$$

13) a)
$$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

b)
$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

14) a)
$$\begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

b)
$$v_B = (7, -4, 6)$$

[T]_A =
$$\begin{bmatrix} 0 & -3 \\ 1 & 2 \end{bmatrix}$$
, $\begin{bmatrix} T \end{bmatrix}_B = \begin{bmatrix} -5 & 4 \\ \frac{19}{2} & 7 \end{bmatrix}$

(b)
$$[T]_{\mathbf{A}} = \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix}, \quad [T]_{\mathbf{B}} = \begin{bmatrix} 0 & \frac{5}{3} \\ -3 & 3 \end{bmatrix}$$

(T) =
$$\begin{bmatrix} 7 & -4 \\ -4 & 1 \end{bmatrix}, \quad [T]_B = \begin{bmatrix} 9 & 0 \\ 0 & -1 \end{bmatrix}$$

d)
$$[T] = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \quad [T]_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$[T]_{A} = \begin{bmatrix} 1 & -3 \\ -1 & 4 \end{bmatrix}$$

[T]_B =
$$\begin{bmatrix} 3 & -1 \\ 7 & -3 \end{bmatrix}$$

b)
$$T(v)_B = (6, 10)$$

- 21) São ortogonais a) e b)
- 22) São ortogonais a), b) e d)
- 23) São ortogonais: a), c), d), f), g), h), i)
 São rotações: a), d), f), h), i)

24) a)
$$\begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

b)
$$\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$

17) a)
$$a = -2$$
 e $b = -3$

b)
$$a = 0$$
 e $b = -3$

VETORES PRÓPRIOS E VALORES PRÓPRIOS

6.1 VETOR PROPRIO E VALOR PROPRIO DE UM OPERADOR LINEAR

Seja $T:V\longrightarrow V$ um operador linear. Um vetor $v\in V,\ v\neq 0,\ é$ vetor próprio de operador. T se existe $\lambda\in {\rm I\!R}$ tal que

 $T(v) = \lambda v$

O número real λ tal que $T(v) = \lambda v$ é denominado valor próprio de T associado ao vetor próprio v.

Observações

a) Como se vé pela definição, um vetor $v \neq 0$ é vetor próprio se a imagem T(v) for um múltiplo escalar de v. No \mathbb{R}^2 e no \mathbb{R}^3 diríamos que v e T(v) têm a mesma direção. Assim, dependendo do valor de λ , o operador T dilata v, contrai v, inverte o sentido de v ou o anula no caso de $\lambda = 0$.

Na Figura 6.1a, o vetor $v \in \mathbb{R}^2$ é um vetor próprio de um operador T que dilata v, porque $\lambda > 1$. A Figura 6.1b mostra um vetor v que $n\vec{ao}$ é vetor próprio de um operador T.

- b) Os vetores próprios são também denominados vetores característicos ou autovetores.
- c) Os valores próprios são também denominados valores característicos ou autovalores.

Figura 6.1a

Figura 6.1b

Exemplos

1) O vetor v = (5, 2) é vetor próprio do operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, T(x, y) = (4x + 5y, 2x + y)$$

associado ao valor próprio $\lambda = 6$, pois:

$$T(v) = T(5, 2) = (30, 12) = 6(5, 2) = 6v$$

Já o vetor v = (2, 1) não é vetor próprio deste operador T, pois:

$$T(2, 1) = (13, 5) \neq \lambda(2, 1)$$

para todo $\lambda \in \mathbb{R}$.

Na simetria definida no \mathbb{R}^3 por T(v) = -v, qualquer vetor $v \neq 0$ é vetor próprio associado ao valor próprio $\lambda = -1$.

Observação

Tendo em vista aplicações em questões de Geometria Analítica, serão estudados, neste Capítulo, somente vetores próprios e valores próprios de operadores lineares em \mathbb{R}^2 e em \mathbb{R}^3 .

6.2 DETERMINAÇÃO DOS VALORES PRÓPRIOS E DOS VETORES PRÓPRIOS

1) Determinação dos valores próprios

Seja o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, cuja matriz canônica é:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix}$$

isto \acute{e} , A = [T].

Se v e λ são, respectivamente, vetor próprio e o correspondente valor próprio do operador T, tem-se:

A. $v = \lambda v$ (v é matriz-coluna 3×1)

ou;

 $Av - \lambda v = 0$

Tendo em vista que v = Iv (I é a matriz-identidade), pode-se escrever:

 $Av - \lambda Iv = 0$

ou:

$$(\mathbf{A} - \lambda \mathbf{1})\mathbf{v} = \mathbf{0} \tag{6.2a}$$

Para que esse sistema homogêneo admita soluções não-nulas, isto é:

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} \neq \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

deve-se ter:

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = 0$$

ou:

$$\det \left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right) = 0$$

ou, ainda:

$$\det \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{bmatrix} = 0$$
(6.2b)

A equação $\det(A - \lambda I) = 0$ é denominada equação característica do operador T ou da matriz A, e suas raízes são os valores próprios do operador T ou da matriz A. O determinante $\det(A - \lambda I)$ é um polinômio em λ denominado polinômio característico.

Determinação dos vetores próprios.

A substituição de λ pelos seus valores no sistema homogêneo de equações lineares 6.2a permite determinar os vetores próprios associados.

6.2.1 Problemas Resolvidos

1) Determinar os valores próprios e os vetores próprios do operador linear

T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (3x + y + z, -x + 5y - z, x - y + 3z)$

Solução

I) A matriz canônica do operador T é:

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

A equação característica do operador T é:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ -1 & 5 - \lambda & -1 \\ 1 & -1 & 3 - \lambda \end{vmatrix} = 0$$

isto é, desenvolvendo o determinante pela 1ª linha e observando a alternância dos sinais que precedem os produtos, vem:

$$(3-\lambda) \begin{vmatrix} 5-\lambda & -1 \\ -1 & 3-\lambda \end{vmatrix} - (-1) \begin{vmatrix} -1 & -1 \\ 1 & 3-\lambda \end{vmatrix} + 1 \begin{vmatrix} -1 & 5-\lambda \\ 1 & -1 \end{vmatrix} = 0$$

$$(3 - \lambda)(15 - 8\lambda + \lambda^2 - 1) + 1(-3 + \lambda + 1) + 1(1 - 5 + \lambda) = 0$$

$$45 - 24\lambda + 3\lambda^2 - 3 - 15\lambda + 8\lambda^2 - \lambda^3 + \lambda - 3 + \lambda + 1 + 1 - 5 + \lambda = 0$$

$$-\lambda^3 + 11\lambda^2 - 36\lambda + 36 = 0$$

ou:

$$\lambda^3 - 11\lambda^2 + 36\lambda - 36 = 0$$

As soluções inteiras, caso existam, são divisoras do termo independente -36. Com as devidas substituições na equação acima, constata-se que $\lambda = 2$ é uma delas. Conseqüentemente. $\lambda - 2$ é um fator do polinômio característico $\lambda^3 - 11\lambda^2 + 36\lambda - 36$. Se dividirmos esse polinômio por $\lambda - 2$, a equação poderá ser apresentada como:

$$(\lambda - 2)(\lambda^2 - 9\lambda + 18) = 0$$

2, portanto, as demais raízes são soluções da equação:

$$\lambda^2 - 9\lambda + 18 = 0$$

Logo, os valores próprios do operador T são:

$$\lambda_1 = 2$$

$$\lambda_{\boldsymbol{2}}=3$$

$$\lambda_3 = 6$$

II) O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associados é:

$$(A - \lambda I) v = 0$$

Considerando

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

o sistema fica:

$$\begin{bmatrix} 3-\lambda & -1 & 1 \\ -1 & 5-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (6.2c)

i) Substituíndo λ por 2 no sistema (6.2c), obtém-se os vetores próprios associados a $\lambda_1 = 2$:

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases} 1x - 1y + 1z = 0 \\ -1x + 3y - 1z = 0 \\ 1x - 1y + 1z = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$z = -x$$

$$y = 0$$

Assim, os vetores do tipo $v_1 = (x, 0, -x)$ ou $v_1 = x(1, 0, -1), x \neq 0$, são vetores próprios associados a $\lambda_1 = 2$.

ii) Substituindo λ por 3 no sistema (6.2c) obtém-se os vetores próprios associados a $\lambda_2 = 3$:

$$\begin{bmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
-y + z = 0 \\
-x + 2y - z = 0
\end{cases}$$

$$x - y = 0$$

O sistema admite uma infinidade de soluções próprias:

$$y = x$$

$$z = x$$

Assim, os vetores do tipo $v_2 = (x, x, x)$ ou $v_2 = x(1, 1, 1)$, $x \ne 0$, são os vetores próprios associados a $\lambda_2 = 3$.

iii) Substituindo λ por 6 no sistema (6.2c), obtém-se os vetores próprios associados a $\lambda_3 = 6$:

$$\begin{bmatrix} -3 & -1 & 1 \\ -1 & -1 & -1 \\ 1 & -1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
-3x - y + z = 0 \\
-x - y - z = 0 \\
x - y - 3z = 0
\end{cases}$$

283

$$y = -2x$$

$$z = x$$

Assim, os vetores do tipo $v_3 = (x, -2x, x)$ ou $v_3 = x(1, -2, 1)$, $x \ne 0$, são os vetores próprios associados a $\lambda_3 = 6$.

2) Determinar os valores próprios e os vetores próprios da matriz

$$A = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$$

Solução

I) A equação característica de A é;

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 4 - \lambda & 5 \\ 2 & 1 - \lambda \end{vmatrix} = 0$$

isto é:

$$(4-\lambda)(1-\lambda)-10=0$$

ou:

$$4 - 4\lambda - \lambda + \lambda^2 - 10 = 0$$

$$\lambda^2 - 5\lambda - 6 = 0$$

As raízes dessa equação são:

$$\lambda_1 = 6$$

$$\lambda_2 = -1$$

que são os valores próprios da matriz A.

II) O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associados é:

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = 0$$

Considerando:

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

o sistema fica:

$$\begin{bmatrix} 4 - \lambda & 5 \\ 2 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (6.2d)

i) Substituindo λ por 6 no sistema (6.2d), obtém-se os vetores próprios associados ao valor próprio $\lambda_1 = 6$:

$$\begin{bmatrix} -2 & 5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases} -2x + 5y = 0 \\ 2x - 5y = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = \frac{2}{5}x$$

Assim, os vetores do tipo $v_1 = (x, \frac{2}{5}x)$ ou $v_1 = x(1, \frac{2}{5})$, $x_i \ne 0$, ou, ainda, $v_1 = x(5, 2)$ são vetores próprios associados ao valor próprio $\lambda_1 = 6$.

ii) Substituindo λ por -1 no sistema (6.2d), obtém-se os vetores próprios associados ao valor próprio $\lambda_2 = -1$:

$$\begin{bmatrix} 5 & 5 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases} 5x + 5y = 0 \\ 2x + 2y = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias;

$$y = -x$$

Assím, os vetores $v_2 = (x, -x) = x(1, -1), x \neq 0$, são os vetores próprios associados ao valor próprio $\lambda_2 = -1$.

3) Determinar os valores próprios e os vetores próprios da matriz

$$\mathbf{A} = \begin{bmatrix} -16 & 10 \\ & & \\ -16 & 8 \end{bmatrix}$$

I) A equação característica de A é:

$$\det (A - \lambda I) = \begin{vmatrix} -16 - \lambda & 10 \\ -16 & 8 - \lambda \end{vmatrix} = 0$$

isto é;

$$(-16 - \lambda)(8 - \lambda) + 160 = 0$$

ou:

$$-128 + 16\lambda - 8\lambda + \lambda^2 + 160 = 0$$

$$\lambda^2 + 8\lambda + 32 = 0$$

As raízes dessa equação são:

$$\lambda = \frac{-8 \pm \sqrt{8^2 - 4 \times 32}}{9}$$

$$\lambda = \frac{-8 \pm \sqrt{64 - 128}}{2}$$

$$\lambda = \frac{-8 \pm 8i}{2}$$

$$\lambda_1 = -4 + 4i$$

$$\lambda_2 = -4 - 4i$$

e, por conseguinte, a matriz A não possui valores próprios nem vetores próprios.

Observação

Se na definição de valor próprio de um operador linear T se admitisse λ qualquer, real ou complexo, poder-se-ia dizer que a matriz A possui valores próprios complexos e, em consequência, vetores próprios de componentes complexas. Neste texto consideraremos apenas valores próprios reais.

6.3 PROPRIEDADES DOS VETORES PRÓPRIOS E VALORES PRÓPRIOS

I) Se v é vetor próprio associado ao valor próprio λ de um operador linear T, α vetor αv , para qualquer real $\alpha \neq 0$, é também vetor próprio de T associado ao mesmo λ .

De fato:

$$T(v) = \lambda v$$

e :

$$T(\alpha v) = \alpha T(v) = \alpha (\lambda v)$$

ou:

$$T(\alpha v) = \lambda(\alpha v)$$

o que prova que o vetor αν é vetor próprio associado ao valor próprio λ.

Aliás, os problemas resolvidos 1 e 2 servem para ilustrar essa propriedade.

Observação

Tendo em vista que αν é vetor próprio associado ao valor próprio λ, fazendo

$$\alpha = \frac{1}{|\mathbf{v}|}$$

pode-se obter sempre um vetor próprio unitário associado ao valor próprio λ.

II) Se λ é um valor próprio de um operador linear $T:V \longrightarrow V$, o conjunto S_{λ} de todos os vetores $v \in V$, inclusive o vetor nulo, associados ao valor próprio λ , é um subespaço vetorial de V.

De fato, se $v_1, v_2 \in S_{\lambda}$:

$$T(v_1 + v_2) = T(v_1) + T(v_2) = \lambda v_1 + \lambda v_2 = \lambda (v_1 + v_2)$$

e, portanto, $v_1 + v_2 \in S_{\lambda}$.

Analogamente, se verifica que $\alpha v \in S_{\lambda}$ para todo $\alpha \in \mathbb{R}$.

O subespaço

$$S_{\lambda} = \{ v \in V/T(v) = \lambda v \}$$

é denominado subespaço associado ao valor próprio λ ou espaço característico de T correspondente a λ ou auto-espaço associado a λ .

Por exemplo, no problema resolvido nº 2 vimos que ao valor próprio $\lambda = 6$ correspondem os vetores próprios do tipo v = x(5, 2). Assim, o auto-espaço associado a $6 \in$:

$$S_6 = \{x(5,2)/x \in \mathbb{R}\} = [(5,2)]$$

que representa uma reta que passa pela origem.

III) Matrizes semelhantes têm o mesmo polinômio característico e, por isso, os mesmos valores próprios.

De fato:

Sejam $T:V\longrightarrow V$ um operador linear e A e B bases de V. Sabe-se que a relação entre matrizes semelhantes é $[T]_B=M^{-1}$ $[T]_A$ M, sendo M a matriz-mudança de base de B para A. Então:

$$\det ([T]_{B} - \lambda I) = \det (M^{-1} [T]_{A} M - \lambda I) = \det (M^{-1} [T]_{A} M - \lambda M^{-1} I M)$$

$$\det ([T]_{B} - \lambda I) = \det (M^{-1} ([T]_{A} - \lambda I) M) = \det M^{-1} \det ([T]_{A} - \lambda I) \det M$$

$$\det ([T]_{B} - \lambda I) = \det M^{-1} \det M \det ([T]_{A} - \lambda I) = \det (M^{-1} M) \det ([T]_{A} - \lambda I)$$

$$\det ([T]_{B} - \lambda I) = \det ([T]_{A} - \lambda I)$$

6.4 DIAGONALIZAÇÃO DE OPERADORES

Sabe-se que, dado um operador linear $T:V \longrightarrow V$, a cada base B de V corresponde uma matriz $[T]_B$ que representa T na base B. Nosso propósito é obter uma base do espaço de modo que a matriz de T nessa base seja a mais simples representante de T. Veremos que essa matriz é uma matriz diagonal.

6.4.1 Propriedade

Faremos a demonstração para o caso de λ_1 e λ_2 distintos. A prova para o caso de n valores próprios distintos é análoga.

Sejam $T(v_1) = \lambda_1 v_1$ e $T(v_2) = \lambda_2 v_2$, com $\lambda_1 \neq \lambda_2$.

Consideremos a igualdade:

$$\mathbf{a}_1 \mathbf{v}_1 + \mathbf{a}_2 \mathbf{v}_2 = 0 \tag{1}$$

Pela linearidade de T, tem-se:

$$a_1 T(v_1) + a_2 T(v_2) = 0$$

ou:

$$a_1 \lambda_1 v_1 + a_2 \lambda_2 v_2 = 0 \tag{2}$$

Multiplicando ambos os membros da igualdade de (1) por λ_1 , vem:

$$a_1 \lambda_1 v_1 + a_2 \lambda_1 v_2 = 0 \tag{3}$$

Subtraindo (3) de (2):

$$\mathbf{a_2}(\lambda_2 - \lambda_1) \mathbf{v_2} = 0$$

Mas:

$$\lambda_2 - \lambda_1 \neq 0 \quad e \quad v_2 \neq 0$$

logo:

$$a_2 = 0$$

Substituindo a_2 por seu valor em (1), tendo em vista que $v_1 \neq 0$, vem:

$$a_1 = 0$$

Logo, o conjunto $\{v_1, v_2\}$ é LI.

Corolário

Sempre que tivermos um operador $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ com $\lambda_1 \neq \lambda_2$, o conjunto $\{v_1, v_2\}$, formado pelos vetores próprios associados, será uma base do \mathbb{R}^2 . Este fato vale em geral, isto é, se $T: V \longrightarrow V$ é linear, dim V = n e T possui n valores próprios distintos, o conjunto $\{v_1, v_2, ..., v_n\}$, formado pelos correspondentes vetores próprios, é uma base de V.

Exemplo

Seja o operador linear

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (-3x - 5y, 2y)$

A matriz canônica de T é:

$$\mathbf{A} = \begin{bmatrix} -3 & -5 \\ 0 & 2 \end{bmatrix}$$

A equação característica de T é:

$$\det (A - \lambda I) = \begin{vmatrix} -3 - \lambda & -5 \\ 0 & 2 - \lambda \end{vmatrix} = 0$$

ou:

$$(-3 - \lambda)(2 - \lambda) = 0$$

$$\lambda^2 + \lambda - 6 = 0$$

e, portanto, $\lambda_1 = 2$ e $\lambda_2 = -3$ são os valores próprios de T. Como $\lambda_1 \neq \lambda_2$, os correspondentes vetores próprios formam uma base de \mathbb{R}^2 .

Calculando os vetores próprios por meio do sistema homogêneo

$$\begin{bmatrix} -3 - \lambda & -5 \\ 0 & 2 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

obteremos:

- para $\lambda_1 = 2$ os vetores $v_1 = x(1, -1)$;
- para $\lambda_2 = -3$ os vetores $v_2 = x(-1, 0)$.

Logo, o conjunto

$$\{(1,-1),(-1,0)\}$$

é uma base de IR2.

Por outro lado, sempre que tivermos uma base de um espaço formada por vetores próprios e conhecermos os valores próprios associados, poderemos determinar o respectivo operador nesse espaço. É o que faremos no próximo problema.

6.4.2 Problema Resolvido

Os valores próprios de um operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ são $\lambda_1 = 2$ e $\lambda_2 = -3$, sendo $v_1 = (1, -1)$ e $v_2 = (-1, 0)$ os respectivos vetores associados. Determinar T(x, y).

Solução

Expressemos, inicialmente, (x, y) em relação à base $\{(1, -1), (-1, 0)\}$:

$$(x,y) = a(1,-1) + b(-1,0)$$

ou;

$$\begin{cases} a - b = x \\ -a = y \end{cases}$$

donde:

$$a = -y$$
 e $b = -x - y$

Logo:

$$(x, y) = -y(1, -1) + (-x -y)(-1, 0)$$

Aplicando o operador T, vem:

$$T(x, y) = -yT(1, -1) + (-x -y)T(-1, 0)$$

mas:

$$T(1,-1) = 2(1,-1) = (2,-2)$$

$$T(-1,0) = -3(-1,0) = (3,0)$$

logo:

$$T(x, y) = -y(2, -2) + (-x-y)(3, 0)$$

ou;

$$T(x, y) = (-3x - 5y, 2y)$$

Observação

Chamando de P a base acima, isto é:

$$P = \{(1,-1),(-1,0)\}$$

e observando que:

$$T(1,-1) = 2(1,-1) = 2(1,-1) + 0(-1,0)$$

$$T(-1,0) = -3(-1,0) = 0(1,-1) - 3(-1,0)$$

concluímos que a matriz

$$[T]_{P} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$

representa o operador T na base dos vetores próprios e é uma matriz diagonal cujos elementos da diagonal principal são λ_1 e λ_2 .

6.4.3 Propriedade

Consideremos um operador linear T em \mathbb{R}^3 que admite valores próprios λ_1, λ_2 e λ_3 distintos, associados a v_1, v_2 e v_3 , respectivamente. O corolário da propriedade anterior nos assegura que o conjunto $P = \{v_1, v_2, v_3\}$ é uma base do \mathbb{R}^3 .

Tendo em vista que

$$T(v_1) = \lambda_1 v_1 = \lambda_1 v_1 + 0v_2 + 0v_3$$

$$T(v_2) = \lambda_2 v_2 = 0v_1 + \lambda_2 v_2 + 0v_3$$

$$T(v_3) = \lambda_3 v_3 = 0v_1 + 0v_2 + \lambda_3 v_3$$

o operador T é representado na base P dos vetores próprios pela matriz diagonal:

$$[T]_{P} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = D$$

constituída de valores próprios na diagonal principal.

Sendo A a matriz canônica do operador T, isto é, [T] = A, as matrizes A e D são semelhantes por representarem o mesmo operador T em bases diferentes. Logo, a relação entre matrizes semelhantes (5.4) permite escrever:

$$D = M^{-1}AM$$

sendo M a matriz-mudança de base P para a canônica $C = \{e_1, e_2, e_3\}$, onde $e_1 = (1, 0, 0)$. $e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$.

Como:

$$M = [I]_C^P = C^{-1}P = I^{-1}P = P$$

a relação anterior escreve-se:

$$D = P^{-1}AP \tag{6.4.3}$$

sendo P a matriz cujas colunas são os vetores próprios do operador T (estamos designando por P tanto a base dos vetores próprios quanto a matriz acima descrita; no contexto identifica-se quando é uma e quando é outra).

A relação (6.4.3) motiva a definição a seguir:

A matriz quadrada A é diagonalizável se existe uma matriz inversível P tal que P^{-1} AP seja diagonal.

Diz-se, nesse caso, que a matriz P diagonaliza A, ou que P é a matriz diagonalizadora.

A definição acima pode ser expressa de modo equivalente: Um operador linear $T: V \longrightarrow V$ é diagonalizável se existe uma base de V formada por vetores próprios de T.

6.4.4 Problemas Resolvidos

5) Determinar uma matriz P que diagonaliza:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

e calcular P-1AP.

Solução

No problema resolvido de número 1 já calculamos os valores próprios e os vetores próprios de A e encontramos $\lambda_1 = 2$ e $v_1 = (1, 0, -1)$, $\lambda_2 = 3$ e $v_2 = (1, 1, 1)$, $\lambda_3 = 6$ e $v_3 = (1, -2, 1)$.

Como os λ_i são distintos, o conjunto $P = \{v_1, v_2, v_3\}$ forma base do \mathbb{R}^3 e, portanto, a matriz

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

diagonaliza A.

Calculemos:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix}
\frac{1}{2} & 0 & -\frac{1}{2} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{6} & -\frac{1}{3} & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
2 & 3 & 6 \\
0 & 3 & -12 \\
-2 & 3 & 6
\end{bmatrix}$$

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} = \mathbf{D}$$

6) Seja T: IR² \longrightarrow IR² um operador linear dado por:

$$T(x, y) = (4x + 5y, 2x + y)$$

Encontrar uma base de IR² em relação à qual a matriz de T é diagonal.

Solução

A matriz canônica do operador T é:

$$\mathbf{A} = \begin{bmatrix} \mathbf{4} & 5 \\ 2 & 1 \end{bmatrix}$$

Pelo problema resolvido de número 2, os valores próprios são $\lambda_1 = 6$ e $\lambda_2 = -1$, e os respectivos vetores próprios são $v_1 = x(5, 2)$ e $v_2 = x(1, -1)$.

A base em relação à qual a matriz de T é diagonal é $P = \{(5, 2), (1, -1)\}$, base dos vetores próprios.

Por conseguinte, a matriz:

$$\mathbf{P} = \begin{bmatrix} 5 & \mathbf{I} \\ & \\ 2 & -1 \end{bmatrix}$$

é a matriz que diagonaliza A, isto é:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{2}{7} & -\frac{5}{7} \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix} = \mathbf{D}$$

Observação

Se na matriz P trocarmos a ordem dos vetores-coluna, isto é, tomarmos

$$\mathbf{P} = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$$

a matriz diagonal $D = P^{-1}AP$ será:

$$D = \begin{bmatrix} -1 & 0 \\ 0 & 6 \end{bmatrix}$$

7) Determinar uma matriz P que diagonaliza

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$$

Solução

I) A equação característica de A é:

$$det (A - \lambda I) = \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & -1 \\ 0 & 2 & 4 - \lambda \end{bmatrix} = 0$$

isto é, desenvolvendo o determinante pela 1ª linha e observando a alternância dos sinais que precedem os produtos, vem:

$$(2-\lambda) \begin{vmatrix} 1-\lambda & -1 \\ 2 & 4-\lambda \end{vmatrix} - 1 \begin{vmatrix} 0 & -1 \\ 0 & 4-\lambda \end{vmatrix} + 0 \begin{vmatrix} 0 & 1-\lambda \\ 0 & 2 \end{vmatrix} = 0$$

$$(2 - \lambda) [(1 - \lambda)(4 - \lambda) + 2] - 0 + 0 = 0$$

$$(2 - \lambda)(4 - 5\lambda + \lambda^2 + 2) = (2 - \lambda)(\lambda^2 - 5\lambda + 6) = (2 - \lambda)(2 - \lambda)(3 - \lambda) = 0$$

e daí:

$$\lambda_1 = 2$$
 e $\lambda_2 = 3$

(o número 2 é uma raiz dupla da equação).

II) Calculando os vetores próprios por meio do sistema homogêneo:

$$\begin{bmatrix} 2-\lambda & -1 & 0 \\ 0 & 1-\lambda & -1 \\ 0 & 2 & 4-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

obteremos:

- para $\lambda_1 = 2$ um só vetor próprio LI, $v_1 = (1, 0, 0)$;
- para $\lambda_2 = 3$ um só vetor próprio LI, $v_2 = (1, 1, -2)$.

III) Como só existem dois vetores LI de \mathbb{R}^3 , não existe uma base P constituída de vetores próprios. Logo, a matriz A não é diagonalizável.

Observação

O problema resolvido número 9 mostrará um exemplo de matriz A que também, como esta, só possui dois valores próprios, porém, em correspondência, existe uma base P de vetores próprios e, consequentemente, A é diagonalizável.

Passaremos a estudar um caso particular muito importante de diagonalização.

6.5 DIAGONALIZAÇÃO DE MATRIZES SIMÉTRICAS

6.5.1 Propriedades

I) A equação característica de uma matriz simétrica tem apenas raízes reais.

Faremos apenas a demonstração para o caso de uma matriz simétrica A de ordem 2. De fato: seja a matriz

$$\mathbf{A} = \begin{bmatrix} \mathbf{p} & \mathbf{r} \\ \mathbf{r} & \mathbf{q} \end{bmatrix}$$

A equação característica de A é:

$$\det (A - \lambda I) = \begin{vmatrix} p - \lambda & r \\ r & q - \lambda \end{vmatrix} = 0$$

isto é:

$$(p-\lambda)(q-\lambda)-r^2=0$$

ou:

$$pq - \lambda p - \lambda q + \lambda^2 - r^2 = 0$$

$$\lambda^{2} - (p+q)\lambda + (pq-r^{2}) = 0$$

O discriminante dessa equação do 29 grau em λ é:

$$(p+q)^2 - 4(pq-r^2) = p^2 + 2pq + q^2 - 4pq + 4r^2 = (p-q)^2 + 4r^2$$

Tendo em vista que esse discriminante é uma soma de quadrados (não-negativa), as raízes da equação característica são reais e, por conseguinte, a matriz. A possui dois valores próprios.

De fato:

Sejam λ_1 e λ_2 dois valores próprios do operador simétrico T e $\lambda_1 \neq \lambda_2$. Sejam aind: $T(v_1) = \lambda_1 v_1$ e $T(v_2) = \lambda_2 v_2$. Pretendemos mostrar que

$$v_1 \cdot v_2 = 0$$

Sendo T um operador simétrico, pela propriedade 5.6.1, vem:

$$T(v_1) \cdot v_2 = v_1 \cdot T(v_2)$$

ou:

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{v}_1 \cdot \lambda_2 \mathbf{v}_2$$

ou:

$$\lambda_1(v_1, v_2) - \lambda_2(v_1, v_2) = 0$$

ou, ainda:

$$(\lambda_1 - \lambda_2)(v_1, v_2) = 0$$

Mas.

 $\lambda_1 - \lambda_2 \neq 0$ implica $v_1 \cdot v_2 = 0$, ou seja:

 $\mathbf{v_1} \perp \mathbf{v_2}$

III) Em 6.4.3 vimos que uma matriz. A é diagonalizada pela matriz. P dos vetores próprios através de:

$$\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \tag{6.5.1}$$

No caso particular de A ser simétrica, pela propriedade anterior, P será base ortogonal. Tendo em vista futuras aplicações, é conveniente que P, além de ortogonal, seja ortonormal. o que se obtém normalizando cada vetor.

Assim, de acordo com a propriedade V de 5.5.1, os vetores próprios ortonormais de P formarão uma matriz ortogonal e, pela propriedade I de 5.5.1, tem-se $P^{-1} = P^{t}$. Portanto a relação (6.5.1) fica:

$$D = P^t AP$$

e, nesse caso, diz-se que P diagonaliza A ortogonalmente.

6.5.2 Problemas Resolvidos

8) Determinar uma matriz ortogonal P que diagonaliza a matriz simétrica:

$$\mathbf{A} = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$

Solução

I) A equação característica de A é:

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 7 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{vmatrix} = 0$$

isto é, desenvolvendo o determinante pela 1ª linha e observando a alternância dos sinais que precedem os produtos, vem:

$$\begin{vmatrix} 6 - \lambda & -2 \\ -2 & 5 - \lambda \end{vmatrix} - (-2) \begin{vmatrix} -2 & -2 \\ 0 & 5 - \lambda \end{vmatrix} + 0 \begin{vmatrix} -2 & 6 - \lambda \\ 0 & -2 \end{vmatrix} = 0$$

$$(7 - \lambda)[(6 - \lambda)(5 - \lambda) - 4] + 2[-2(5 - \lambda) + 0] + 0 = 0$$

$$(7 - \lambda)(6 - \lambda)(5 - \lambda) - 28 + 4\lambda - 4(5 - \lambda) = 0$$

$$(7 - \lambda)(6 - \lambda)(5 - \lambda) - 28 + 4\lambda - 20 + 4\lambda = 0$$

$$(7 - \lambda)(6 - \lambda)(5 - \lambda) - 48 + 8\lambda = 0$$

$$(7 - \lambda)(6 - \lambda)(5 - \lambda) - 8(6 - \lambda) = 0$$

$$(6 - \lambda) [(7 - \lambda)(5 + \lambda) - 8] = 0$$

$$(6 - \lambda)(35 - 12\lambda + \lambda^2 - 8) = 0$$

$$(6-\lambda)(\lambda^2-12\lambda+27)=0$$

$$(6 - \lambda)(\lambda - 3)(\lambda - 9) = 0$$

As raízes dessa equação são $\lambda_1 = 3$, $\lambda_2 = 6$ e $\lambda_3 = 9$ e, por conseguinte, são valores prios da matriz A.

II) O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associados é:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

Considerando

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

o sistema fica:

$$\begin{bmatrix} 7 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (6.5.2a)

i) Substituindo λ por 3 no sistema (6.5.2a), obtém-se os vetores próprios associados a $\lambda_1 = 3$:

$$\begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
4x - 2y + 0z = 0 \\
-2x + 3y - 2z = 0 \\
0x - 2y + 2z = 0
\end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = 2x$$
$$z = 2x$$

Assim, os vetores $v_1 = (x, 2x, 2x) = x(1, 2, 2)$ são os vetores próprios associados ao valor próprio $\lambda_1 = 3$. Fazendo:

$$x = \frac{1}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{1}{3}$$

obtém-se o vetor próprio unitário $u_1 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$ associado a $\lambda_1 = 3$.

ii) Substituindo λ por 6 no sistema (6.5,2a), obtém-se os vetores próprios associados a $\lambda_2 = 6$:

$$\begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

.sto **é**:

$$\begin{cases} 1x - 2y &= 0 \\ -2x & -2z = 0 \\ -2y - z = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = \frac{1}{2}x$$

$$z = -x$$

Assim, os vetores $v_2 = (x, \frac{1}{2}x, -x) = x(1, \frac{1}{2}, -1)$ são os vetores próprios associados ao valor próprio $\lambda_2 = 6$. Fazendo

$$x = \frac{1}{\sqrt{1 + \frac{1}{4} + 1}} = \frac{1}{\sqrt{\frac{9}{4}}} = \frac{2}{3}$$

obtém-se o vetor próprio unitário $u_2 = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ associado a $\lambda_2 = 6$.

iii) Substituindo λ por 9 no sistema (6.5.2a), obtém-se os vetores próprios associados a $\lambda_3=9$:

$$\begin{bmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
-2x - 2y = 0 \\
-2x - 3y - 2z = 0 \\
-2y - 4z = 0
\end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = -x$$

$$z = \frac{1}{2} x$$

Assim, os vetores $v_3 = (x, -x, \frac{1}{2}x) = x(1, -1, \frac{1}{2})$ são os vetores próprios associados ao valor próprio $\lambda_3 = 9$.

Fazendo

$$x = \frac{1}{\sqrt{1+1+\frac{1}{4}}} = \frac{1}{\sqrt{\frac{9}{4}}} = \frac{2}{3}$$

obtém-se o vetor próprio unitário $u_3 = (\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})$ associado a $\lambda_3 = 9$.

III) A matriz P, cujas colunas são as componentes dos vetores próprios unitários u_1, u_2 e u_3 associados aos valores próprios λ_1, λ_2 e λ_3 é ortogonal:

$$P = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$u_1 \qquad u_2 \qquad u_3$$

De fato:

$$u_{1} \cdot u_{1} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = \frac{1}{9} + \frac{4}{9} + \frac{4}{9} = 1$$

$$u_{2} \cdot u_{2} = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) = \frac{4}{9} + \frac{1}{9} + \frac{4}{9} = 1$$

$$u_{3} \cdot u_{3} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) = \frac{4}{9} + \frac{4}{9} + \frac{1}{9} = 1$$

$$u_{1} \cdot u_{2} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) = \frac{2}{9} + \frac{2}{9} - \frac{4}{9} = 0$$

$$u_{1} \cdot u_{3} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \cdot \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) = \frac{2}{9} - \frac{4}{9} + \frac{2}{9} = 0$$

$$u_{2} \cdot u_{3} = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \cdot \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) = \frac{4}{9} - \frac{2}{9} - \frac{2}{9} = 0$$

A matriz P é a matriz diagonalizadora. De fato:

$$D = P^{-1} AP = P^{t} AP$$

isto é:

$$D = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$D = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 \\ 2 & 2 & -6 \\ 2 & -4 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

9) Seja o operador linear simétrico $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido pela matriz:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{bmatrix}$$

Solução

I) A equação característica de A é:

$$\det (A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & -2 \\ 0 & -\lambda & 0 \\ -2 & 0 & 4 - \lambda \end{vmatrix} = 0$$

isto é, desenvolvendo o determinante pela 1ª linha e observando a alternância dos sinais que precedem os produtos, vem:

$$\begin{vmatrix} -\lambda & 0 \\ 0 & 4 - \lambda \end{vmatrix} - 0 \begin{vmatrix} 0 & 0 \\ -2 & 4 - \lambda \end{vmatrix} + (-2) \begin{vmatrix} 0 & -\lambda \\ -2 & 0 \end{vmatrix} = 0$$

$$(1 - \lambda)(-\lambda)(4 - \lambda) - 0 - 2(-2\lambda) = 0$$

$$(1 - \lambda)(-\lambda)(4 - \lambda) + 4\lambda = 0$$

ou:

$$-\lambda^3 + 5\lambda^2 = 0$$
 \therefore $\lambda^2(5 - \lambda) = 0$

As raízes dessa última equação são $\lambda_1 = 0$, $\lambda_2 = 0$ e $\lambda_3 = 5$ e, por conseguinte, são valores próprios do operador linear simétrico T.

II) O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associados é:

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = 0$$

Considerando

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

o sistema fica:

$$\begin{bmatrix} 1 - \lambda & 0 & -2 \\ 0 & -\lambda & 0 \\ -2 & 0 & 4 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(6.5.2b)$$

i) Substituindo λ por 0 no sistema (6.5.2b), obtém-se os vetores próprios associados a $\lambda_1 = 0$ e $\lambda_2 = 0$:

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases} x - 2z = 0 \\ -2x + 4z = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$z = \frac{1}{2}x$$
 e y qualquer

Assim, os vetores $v = (x, y, \frac{1}{2}x)$ são os vetores próprios associados a $\lambda_1 = 0$ e $\lambda_2 = 0$.

Fazendo x = 2 e y = 0, por exemplo, obtém-se um vetor $v_1 = (2, 0, 1)$; fazendo x = 0 e y = 1, por exemplo, obtém-se outro vetor $v_2 = (0, 1, 0)$. Os vetores próprios v_1 e v_2 , linearmente independentes, são associados ao mesmo valor próprio $\lambda = 0$.

Os vetores próprios unitários, associados a $\lambda_1 = 0$ e $\lambda_2 = 0$, são:

$$u_1 = \frac{1}{|v_1|} v_1 = (\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}})$$

$$u_2 = \frac{1}{|v_2|} v_2 = (0, 1, 0)$$

ii) Substituindo λ por 5 no sistema 6.5.2b, obtém-se os vetores próprios associados a $\lambda_3 = 5$:

$$\begin{bmatrix} -4 & 0 & -2 \\ 0 & -5 & 0 \\ -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
-4x & -2z = 0 \\
-5y & = 0 \\
-2x & -z = 0
\end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$z = -2x$$
$$y = 0$$

Assim, os vetores $v_3 = (x, 0, -2x) = x(1, 0, -2)$ são os vetores próprios associados a $\lambda_3 = 5$. Fazendo

$$x = \frac{1}{\sqrt{1+0+4}} = \frac{1}{\sqrt{5}}$$

obtém-se o vetor próprio unitário $u_3 = (\frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}})$ associado a $\lambda_3 = 5$.

III) A matriz P, cujas colunas são as componentes dos vetores próprios unitários u_1, u_2 e u_3 , associados aos valores próprios λ_1, λ_2 e λ_3 , é ortogonal:

$$\mathbf{P} = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \end{bmatrix}$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3$$

De fato:

$$\mathbf{u}_1$$
 , $\mathbf{u}_1 = \mathbf{u}_2$, $\mathbf{u}_2 = \mathbf{u}_3$, $\mathbf{u}_3 = 1$

$$u_1 \cdot u_2 = u_1 \cdot u_3 = u_2 \cdot u_3 = 0$$

IV) A matriz P é a matriz diagonalizadora.

De fato:

$$D = P^{-1} AP = P^{t} AP$$

$$D = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

$$D = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{5}{\sqrt{5}} \\ 0 & 0 & 0 \\ 0 & 0 & \frac{10}{\sqrt{5}} \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

10) Seja o operador linear simétrico T: R² → R² definido pela matriz

$$\mathbf{A} = \begin{bmatrix} 4 & 12 \\ 12 & -3 \end{bmatrix}$$

Determinar a matriz ortogonal P que diagonaliza A.

Solução

I) A equação característica de A é:

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 4 - \lambda & 12 \\ & & \\ 12 & -3 - \lambda \end{vmatrix} = 0$$

isto é:

$$(4 - \lambda)(-3 - \lambda) - 144 = 0$$

our

$$-12 - 4\lambda + 3\lambda + \lambda^2 - 144 = 0$$

$$\lambda^2 - \lambda - 156 = 0$$

As raízes dessa equação são:

$$\lambda_1 = -12$$

$$\lambda_2 = 13$$

e, por conseguinte, $\lambda_1 = -12$ e $\lambda_2 = 13$ são os valores próprios do operador linear T.

II) O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associados é:

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = 0.$$

Considerando

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

o sistema fica:

$$\begin{bmatrix} 4 - \lambda & 12 \\ 12 & -3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (6.5.2)

i) Substituindo λ por -12 no sistema (6.5.2c), obtém-se os vetores próprios associades a $\lambda_1 = -12$:

$$\begin{bmatrix} 16 & 12 \\ 12 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases} 16x + 12y = 0 \\ 12x + 9y = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = -\frac{4}{3}x$$

Assim, os vetores $v_1 = (x, -\frac{4}{3}x) = x(1, -\frac{4}{3})$ são os vetores próprios associados a $\lambda_1 = -12$ Fazendo:

$$x = \frac{1}{\sqrt{1 + \frac{16}{9}}} = \frac{1}{\sqrt{\frac{25}{9}}} = \frac{3}{5}$$

obtém-se o vetor próprio unitário $u_1 = (\frac{3}{5}, -\frac{4}{5})$ associado ao valor próprio $\lambda_1 = -12$.

ii) Substituindo λ por 13 no sistema (6.5.2c), obtém-se os vetores próprios associados a $\lambda_2 = 13$:

$$\begin{bmatrix} -9 & 12 \\ 12 & -16 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

313

isto é:

$$\begin{cases} .9x + 12y = 0 \\ 12x - 16y = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = \frac{3}{4}x$$

Assim, os vetores $v_2 = (x, \frac{3}{4}x) = x(1, \frac{3}{4})$ são os vetores próprios associados a $\lambda_2 = 13$, Fazendo:

$$x = \frac{1}{\sqrt{1 + \frac{9}{16}}} = \frac{1}{\sqrt{\frac{25}{16}}} = \frac{4}{5}$$

obtém-se o vetor próprio unitário $u_2 = (\frac{4}{5}, \frac{3}{5})$ associado ao valor próprio $\lambda_2 = 13$.

III) A matriz P, cujas colunas são as componentes dos vetores próprios unitários u_1 e u_2 associados aos valores próprios λ_1 e λ_2 , é ortogonal:

$$P = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

De fato:

$$u_1 \cdot u_1 = u_2 \cdot u_2 = 1$$

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$$

A matriz P é a matriz diagonalizadora.

De fato:

$$D = P^{-1}AP = P^{t}AP$$

$$D = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 4 & 12 \\ 12 & -3 \end{bmatrix} \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$D = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} -\frac{36}{5} & \frac{52}{5} \\ \frac{48}{5} & \frac{39}{5} \end{bmatrix}$$

$$D = \begin{bmatrix} -12 & 0 \\ 0 & 13 \end{bmatrix}$$

6.6 PROBLEMAS PROPOSTOS

1) Verificar, utilizando a definição, se os vetores dados são vetores próprios das correspondentes matrizes:

a)
$$\mathbf{v} = (-2, 1), \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

b)
$$v = (1, 1, 2), \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

e)
$$v = (-2, 1, 3), \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

2) Determinar os valores próprios e os vetores próprios das seguintes transformações lineares:

a)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x + 2y, -x + 4y)$

b) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x,y) = $(2x + 2y, x + 3y)$

c) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x,y) = (5x - y, x + 3y)

d)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x,y) = (y,-x)$

e) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x + y + z, 2y + z, 2y + 3z)$

f) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x, -2x - y, 2x + y + 2z)$

g) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x + y, y, z)$

3) Calcular os valores próprios e os correspondentes vetores próprios das seguintes matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}$$

e)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & -1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

f)
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

g)
$$A = \begin{bmatrix} 3 & 3 & -2 \\ 0 & -1 & 0 \\ 8 & 6 & -5 \end{bmatrix}$$

d)
$$\mathbf{A} = \begin{bmatrix} 3 & -1 & -3 \\ 0 & 2 & -3 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

- 4) Provar as seguintes proposições:
 - a) Se um operador linear $T: V \longrightarrow V$ admite $\lambda = 0$ como valor próprio, então T não ε inversível.
 - b) Uma matriz A e sua transposta A^t possuem os mesmos valores próprios.
 - c) Os valores próprios de uma matriz triangular (ou diagonal) são os elementos da diagonal principal.
- Os vetores $v_1 = (1, 1)$ e $v_2 = (2, -1)$ são vetores próprios de um operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, associados a $\lambda_1 = 5$ e $\lambda_2 = -1$, respectivamente. Determinar a imagem do vetor v = (4, 1) por esse operador.
- 6) a) Determinar o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ cujos valores próprios são $\lambda_1 = 1 \in \lambda_2 = 3$ associados aos vetores próprios $v_1 = (y, -y)$ e $v_2 = (0, y)$, respectivamente
 - b) Mesmo enunciado para $\lambda_1 = 3$, $\lambda_2 = -2$ e $v_1 = x(1, 2)$, $v_2 = x(-1, 0)$.
- 7) a) Quais são os valores próprios e os vetores próprios da matriz identidade?
 - b) Se $\lambda_1 = 4$ e $\lambda_2 = 2$ são valores próprios de um operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ associados aos vetores próprios u = (2, 1) e v = (-1, 3), respectivamente, determina: T(3u v)
 - c) Mostrar que se u e v são vetores próprios de uma transformação linear associados a λ , então $\alpha u \beta v$ é também vetor próprio associado ao mesmo λ .
- 8) Seja T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ uma transformação linear que dobra o comprimento do vetor u = (2, 1) e triplica o comprimento do vetor v = (1, 2), sem alterar as direções nem inverter os sentidos.
 - a) Calcular T(0, 3).
 - b) Determinar T(x, y).
 - c) Qual a matriz do operador T na base $\{(2,1),(1,2)\}$?
- 9) a) Determinar as matrizes das rotações em \mathbb{R}^2 que admitem valores e vetores próprios.
 - b) Determinar os valores e os vetores próprios das rotações referidas em a).

- 11) Verificar se a matriz A é diagonalizável. Caso seja, determinar uma matriz P que diagonaliza A e calcular $P^{-1}AP$.

a)
$$A = \begin{bmatrix} 2 & 4 \\ & & 1 \end{bmatrix}$$

b)
$$\mathbf{A} = \begin{bmatrix} 9 & 1 \\ 4 & 6 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 5 & -1 \\ & & \\ 1 & & 3 \end{bmatrix}$$

d)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

e)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & -1 \\ 0 & -4 & 3 \end{bmatrix}$$

f)
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & -4 \\ 0 & 0 & 3 \end{bmatrix}$$

g)
$$A = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

h)
$$A = \begin{bmatrix} 3 & 0 & -2 \\ -5 & 1 & 5 \\ 2 & 0 & -1 \end{bmatrix}$$

12) Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear definido por

$$T(x, y) = (7x - 4y, -4x + y)$$

- a) Determinar uma base do \mathbb{R}^2 em relação à qual a matriz do operador T é diagonal.
- b) Dar a matriz de T nessa base.

13) Para cada uma das seguintes matrizes simétricas A, encontrar uma matriz ortogonal P, para a qual P^tAP seja diagonal:

a)
$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

b)
$$\mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

e)
$$A = \begin{bmatrix} 7 & -2 & -2 \\ -2 & 1 & 4 \\ -2 & 4 & 1 \end{bmatrix}$$

c)
$$\mathbf{A} = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$

Determinar uma matriz P que diagonaliza A ortogonalmente e calcular P⁻¹AP. 14)

a)
$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

d)
$$A = \begin{bmatrix} 6 & 0 & 6 \\ 0 & -2 & 0 \\ 6 & 0 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$
 e)
$$A = \begin{bmatrix} 2 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 5 \end{bmatrix}$$

e)
$$A = \begin{bmatrix} 2 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 5 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

6.6.1Respostas de Problemas Propostos

- 1) a) sim b) sim c) não
- a) $\lambda_1 = 3$, $v_1 = (y, y)$; $\lambda_2 = 2$, $v_2 = (2y, y)$ 2)

b)
$$\lambda_1 = 1$$
, $v_1 = y(-2, 1)$; $\lambda_2 = 4$, $v_2 = x(1, 1)$

c)
$$\lambda_1 = \lambda_2 = 4$$
, $v = x(1, 1)$

d) Não existem.

e)
$$\lambda_1 = \lambda_2 = 1$$
, $v = (x, y, -y)$; $\lambda_3 = 4$, $v_3 = x(1, 1, 2)$

f)
$$\lambda_1 = 1$$
, $v_1 = z(3, -3, 1)$; $\lambda_2 = -1$, $v_2 = z(0, -3, 1)$; $\lambda_3 = 2$, $v_3 = z(0, 0, 1)$

g) $\lambda_1 = \lambda_2 = \lambda_3 = 1$, v = (x, 0, z), $x \in z$ nāo simultaneamente nulos.

3) a)
$$\lambda_1 = 2$$
, $v_1 = y(3, 1)$; $\lambda_2 = 4$, $v_2 = y(1, 1)$

b)
$$\lambda_1 = 1$$
, $v_1 = (-y, y)$; $\lambda_2 = 5$, $v_2 = (x, 3x)$

c)
$$\lambda_1 = 1$$
, $v_1 = (x, 0, -x)$; $\lambda_2 = 2$, $v_2 = (-2z, 2z, z)$; $\lambda_3 = 3$, $v_3 = (x, -2x, -x)$

d)
$$\lambda_1 = -1$$
, $v_1 = x(1, 1, 1)$; $\lambda_2 = 2$, $v_2 = x(1, 1, 0)$; $\lambda_3 = 3$, $v_3 = x(1, 0, 0)$

e)
$$\lambda_1 = 1$$
, $v_1 = (2z, 2z, z)$; λ_2 e λ_3 imaginários

f)
$$\lambda_1 = 2$$
, $v_1 = (x, y, -x - 2y)$; $\lambda_2 = 6$, $v_2 = (x, x, x)$

g)
$$\lambda_1 = \lambda_2 = \lambda_3 = -1$$
, $v = (x, y, 2x + \frac{3}{2}y)$

h)
$$\lambda_1 = 2$$
, $v_1 = x(1,0,1)$; $\lambda_2 = -1$, $v_2 = y(0,1,0)$; $\lambda_3 = -2$, $v_3 = x(1,0,-1)$

5) (8, 11)

6) a)
$$T(x, y) = (x, 2x + 3y)$$

b)
$$T(x, y) = (-2x + \frac{5}{2}y, 3y)$$

7) a) $\lambda = 1$, todos os vetores do espaço com exceção do vetor nulo.

8) a)
$$(2, 10)$$
; b) $T(x, y) = (\frac{5}{3}x + \frac{2}{3}y, -\frac{2}{3}x + \frac{10}{3}y)$; c) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

320

- b) $\lambda = 1$ e $\lambda = -1$, respectivamente; com exceção do vetor zero, todos os vetores do \mathbb{R}^2 são vetores próprios.
- 10) Todos os vetores do núcleo, com exceção do zero, são vetores próprios associados a $\lambda \approx 0$.

11) a)
$$P = \begin{bmatrix} 1 & 4 \\ & & \\ -1 & 3 \end{bmatrix}, P^{-1} AP = \begin{bmatrix} -2 & 0 \\ & & \\ 0 & 5 \end{bmatrix}$$

b)
$$\mathbf{P} = \begin{bmatrix} 1 & 1 \\ & \\ 1 & -4 \end{bmatrix}, \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} 10 & 0 \\ & \\ 0 & 5 \end{bmatrix}$$

c) Não diagonalizavel.

d)
$$P = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 1 & -2 \end{bmatrix}, P^{-1} AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

e) Não diagonalizável.

f)
$$P = \begin{bmatrix} -3 & 1 & -7 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}, P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

g)
$$\mathbf{P} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

h) Não diagonalizável.

12) a)
$$\{(-2,1),(1,2)\}$$

(13) a)
$$P = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$P = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

P =
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad e) \qquad P = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

P =
$$\begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

14) a)
$$\mathbf{P} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \quad \mathbf{P}^{t} \mathbf{A} \mathbf{P} = \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix}$$

b)
$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix} \cdot P^{t}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

c)
$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}, P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

d)
$$\mathbf{P} = \begin{bmatrix}
0 & \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\
1 & 0 & 0 \\
0 & \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}
\end{bmatrix}, \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix}
-2 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & -3
\end{bmatrix}$$

e)
$$\begin{bmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \end{bmatrix}, \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

CAPÍTULO

7

FORMAS QUADRÁTICAS

7.1 FORMA QUADRÁTICA NO PLANO

A matriz simétrica real:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ & & \\ \mathbf{c} & \mathbf{b} \end{bmatrix}$$

associa ao vetor $\, {\bf v}_{\hat{S}} = ({\bf x},{\bf y}) \in \, {\rm I\!R}^2 \, , {\rm referido} \, {\bf \hat{a}} \, {\rm base} \, {\rm canônica} \,$

$$S = \{e_1, e_2\}, e_1 = (1, 0) e e_2 = (0, 1), o polinômio$$

 $ax^2 + by^2 + 2cxy$

que é um polinômio homogêneo do 29 grau em x e y chamado forma quadrática no plano.

Na forma matricial esse polinômio é representado por

$$\mathbf{v}_{\mathbf{S}}^{\mathbf{t}}\mathbf{A}\mathbf{v}_{\mathbf{S}} = \begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

sendo a matriz simétrica. A a matriz da forma quadrática.

Assim, a cada vetor v_S corresponde um número real:

$$p = ax^2 + by^2 + 2cxy$$

Estamos designando tanto o par (x, y) quanto a matriz $\begin{bmatrix} x \\ y \end{bmatrix}$ simplesmente por v_S . É fácil identificar em que contexto cada um estará sendo usado.

Exemplo

A matriz simétrica real:

$$A = \begin{bmatrix} 4 & 12 \\ & & \\ 12 & -3 \end{bmatrix}$$

define no IR² a forma quadrática

$$p = 4x^2 - 3y^2 + 24xy$$

ou, na forma matricial

$$p = [x \ y] \begin{bmatrix} 4 & 12 \\ & & \\ 12 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Ao vetor $v_S = (1, 2)$, por exemplo, corresponde o número real

$$p = 4(1)^2 - 3(2)^2 + 24(1)(2) = 4 - 12 + 48 = 40$$

7.1.1 Redução da Forma Quadrática à Forma Canônica

A forma quadrática no plano v^t_sAv_s pode ser expressa por:

$$\lambda_1 x'^2 + \lambda_2 y'^2$$

onde λ_1 e λ_2 são os valores próprios da matriz A, e x' e y' as componentes do vetor v na base $P = \{u_1, u_2\}$, isto é, $v_p = (x', y')$, sendo u_1 e u_2 os vetores próprios unitários associados a λ_1 e λ_2 .

De fato:

Tendo em vista que a matriz P é a matriz-mudança de base de P para S, pois:

$$[I]_{S}^{P} = S^{-1}P = IP = P$$

e, portanto:

$$\mathbf{v}_{\mathbf{S}} = \mathbf{P}\mathbf{v}_{\mathbf{p}}$$

podemos escrever:

$$v_S^t A v_S = (P v_P)^t A (P v_P)$$

ou:

$$v_S^t A v_S = v_P^t (P^t AP) v_P$$

Como P diagonaliza A ortogonalmente (conforme 6.5 - propriedade III)

$$\mathbf{P}^{\mathbf{t}}\mathbf{A}\mathbf{P} = \mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

conclui-se que:

$$v_S^t A v_S = v_P^t D v_P$$

ou:

$$\begin{bmatrix} \mathbf{x} \ \mathbf{y} \end{bmatrix} \quad \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x}' \ \mathbf{y}' \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix}$$

ou, ainda:

$$ax^2 + by^2 + 2cxy = \lambda_1 x'^2 + \lambda_2 y'^2$$

A forma $\lambda_1 x'^2 + \lambda_2 y'^2$ é denominada forma canônica da forma quadrática no plano ou também forma quadrática diagonalizada.

Exemplo

1) A forma quadrática:

$$4x^2 - 3y^2 + 24xy$$

pode ser expressa por:

$$-12x'^2 + 13y'^2$$

De fato:

A forma quadrática

$$4x^2 - 3y^2 + 24xy$$

é definida pela matriz

$$A = \begin{bmatrix} 4 & 12 \\ 12 & -3 \end{bmatrix}$$

Mas os valores próprios da matriz A, conforme o problema resolvido número 10, Capítulo 6, são $\lambda_1 = -12$ e $\lambda_2 = 13$. Logo, a forma canônica da forma quadrática é:

$$-12x'^2 + 13y'^2$$

II) Por outro lado, os vetores próprios unitários associados a λ_1 e λ_2 são, respectivamente, $u_1 = (\frac{3}{5}, -\frac{4}{5})$ e $u_2 = (\frac{4}{5}, \frac{3}{5})$.

Logo:

$$P = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

Como $v_S = Pv_p$ equivale a $v_p = P^{-1}v_S$. Ou

$$v_p = P^t v_s$$

pois $P^t = P^{-1}$ pelo fato de P ser matriz oriegans, picemps calcular v_p a partir de v_S . Supondo que $v_S = (x, y) = (1, 2)$, vem.

$$v_{\mathbf{P}} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$v_{\mathbf{p}} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

isto
$$\vec{e}$$
, $\vec{v}_p = (x', y') = (-1, 2)$.

Assim.

$$4x^{2} - 3y^{2} + 24xy = -12x'^{2} + 13y'^{2}$$

$$4(1)^{2} - 3(2)^{2} + 24(1)(2) = -12(-1)^{2} + 13(2)^{2}$$

$$4 - 12 + 48 = -12 + 52$$

$$40 = 40$$

O que na verdade acabamos de fazer foi uma mudança de base ou uma mudança de referencial. O vetor \mathbf{v} , que na base canônica \mathbf{S} é $\mathbf{v}_{\mathbf{S}}=(1,2)$, na base \mathbf{P} dos vetores próprios unitários e $\mathbf{v}_{\mathbf{P}}=(-1,2)$. Como a base canônica individualiza o sistema cartesiano retangular $\mathbf{x}'\mathbf{O}\mathbf{y}'$ e a base \mathbf{P} o sistema retangular $\mathbf{x}'\mathbf{O}\mathbf{y}'$, podemos dizer que um ponto que tem coordenadas (1,2) em relação ao primeiro sistema tem coordenadas (-1,2) em relação ao segundo sistema. A figura da página seguinte mostra esse exemplo.

Essa mudança de referencial corresponde a uma rotação de um ângulo θ do sistema xOy esté o sistema x'Oy'. A matriz responsável por essa rotação é a matriz ortogonal P.

Se tivermos o cuidado de dispor os vetores próprios unitários da matriz P de modo que det P = 1, ela sempre representará uma rotação (ver 5.5.1-IIIa) e a transformação de coordenadas

$$\begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{P} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

que irá ocorrer no estudo das cônicas, a seguir, será sempre uma rotação.

7.2 CÕNICAS

Chama-se cônica a todo conjunto de pontos M do plano cujas coordenadas x e y, em relação à base canônica, satisfazem à equação do 29 grau:

$$ax^2 + by^2 + 2cxy + dx + ey + f = 0$$

onde a, b e c não são todos nulos.

Observação

As coordenadas x e y dos pontos M do plano são as componentes dos vetores $v \in \mathbb{R}^2$ que satisfazem a equação de uma cônica (Figura 7.2)

Figura 7.2

7.2.1 Equação Reduzida de uma Cônica

Nosso propósito é o reconhecimento e a análise da equação de uma cônica. Dividiremos esse trabalho em duas etapas, sendo a primeira constituída de três passos.

Seja a equação de uma cônica:

$$ax^2 + by^2 + 2cxy + dx + ey + f = 0$$
 (1)

1ª Etapa: Eliminação do termo em xy

10 Passo: Escreve-se a equação na forma matricial:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ c & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + f = 0$$
 (2)

(Os colchetes serão dispensados nas matrizes 1×1 : [f] e [0].)

ou;

$$v_S^t A v_S + N v_S + f = 0$$

onde:

$$v_S = \begin{bmatrix} x \\ y \end{bmatrix}$$
, $A = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$ $e = [d \ e]$

29 Passo: Calculam-se os valores próprios λ_1 e λ_2 e os vetores próprios unitários $u_1=(x_{11},x_{12})$ e

 $\mathbf{u_2} = (\mathbf{x_{21}}, \mathbf{x_{22}})$ da matriz simétrica A.

30 Passo: Substitui-se na equação (2) a forma quadrática

$$\mathbf{v}_{S}^{t} \mathbf{A} \mathbf{v}_{S} = [\mathbf{x} \ \mathbf{y}] \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

pela forma canônica:

$$\mathbf{v}_{\mathbf{p}}^{\mathsf{t}} \mathbf{D} \mathbf{v}_{\mathbf{p}} = [\mathbf{x}' \ \mathbf{y}'] \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix}$$

e:

$$v_S = \begin{bmatrix} x \\ y \end{bmatrix}$$

por:

$$Pv_{\mathbf{p}} = \begin{bmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

tendo o cuidado para que det P = 1, a fim de que essa transformação seja uma rotação.

Assim, a equação (2) se transforma em:

$$\begin{bmatrix} \mathbf{x}' \ \mathbf{y}' \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} + \begin{bmatrix} \mathbf{d} \ \mathbf{e} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{21} \\ \mathbf{x}_{12} & \mathbf{x}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} + \mathbf{f} = 0$$

ou:

$$\lambda_1 x'^2 + \lambda_2 y'^2 + px' + qy' + f = 0$$
 (3)

que é a equação da cônica dada em (1), porém referida ao sistema x'Oy', cujos eixos são determinados pela base $P = \{u_1, u_2\}$, conforme sugere a figura.

Observemos que enquanto a equação (1) apresenta o termo misto em xy, a equação (3) é lesprovida dele. Portanto, na passagem da equação (1) para (3) ocorreu uma simplificação.

2ª Etapa: Translação de Eixos

Conhecida a equação da cônica

$$\lambda_1 x'^2 + \lambda_2 y'^2 + px' + qy' + f = 0,$$
 (4)

para se obter a equação reduzida efetua-se uma nova mudança de coordenadas, que consiste na translação do último referencial x'Oy' para o novo, o qual chamaremos XO'Y. A análise das duas possibilidades é feita a seguir.

I) Supondo λ_1 e λ_2 diferentes de zero, pode-se escrever:

$$\lambda_1(x'^2 + \frac{p}{\lambda_1}x') + \lambda_2(y'^2 + \frac{q}{\lambda_2}y') + f = 0$$

ou:

$$\lambda_1(x'^2 + \frac{p}{\lambda_1}x' + \frac{p^2}{4\lambda_1^2}) + \lambda_2(y'^2 + \frac{q}{\lambda_2}y' + \frac{q^2}{4\lambda_2^2}) + t - \frac{p^2}{4\lambda_1} - \frac{q^2}{4\lambda_2} = 0$$

$$\lambda_1 (x' + \frac{p}{2\lambda_1})^2 + \lambda_2 (y' + \frac{q}{2\lambda_2})^2 + f - \frac{p^2}{4\lambda_1} - \frac{q^2}{4\lambda_2} = 0$$

Fazendo:

$$f - \frac{p^2}{4\lambda_1} - \frac{q^2}{4\lambda_2} = -F$$

e, por meio das fórmulas de translação:

$$X = x' + \frac{p}{2\lambda_1}$$

$$Y = y' + \frac{q}{2\lambda_2}$$

vem:

$$\lambda_1 \mathbf{X}^2 + \lambda_2 \mathbf{Y}^2 - \mathbf{F} = 0$$

e, finalmente:

$$\lambda_1 X^2 + \lambda_2 Y^2 = F \tag{5}$$

A equação (5) é a equação reduzida de uma cônica de centro e, como se vê, o primeiro membro é a forma canônica da forma quadrática no plano.

II) Se um dos valores próprios for igual a zero, $\lambda_1 = 0$, por exemplo, a equação (4) fica:

$$\lambda_2 y'^2 + px' + qy' + f = 0$$

ou:

$$\lambda_2(y'^2 + \frac{q}{\lambda_2}y') + px' + f = 0$$

$$\lambda_2 (y'^2 + \frac{q}{\lambda_2} y' + \frac{q^2}{4\lambda_2^2}) + px' + f - \frac{q^2}{4\lambda_2} = 0$$

$$\lambda_2 (y' + \frac{q}{2\lambda_2})^2 + p(x' + \frac{f}{p} - \frac{q^2}{4p\lambda_2}) = 0$$

Fazendo, por meio de uma translação:

$$X = x' + \frac{f}{p} - \frac{q^2}{4p\lambda_2}$$

$$Y = y' + \frac{q}{2\lambda_2}$$

vem:

$$\lambda_2 Y^2 + pX = 0 \tag{6}$$

A equação (6) é a equação reduzida de uma cônica sem centro.

] bservação

Se em lugar de λ_1 fosse $\lambda_2 = 0$, a equação reduzida da cônica sem centro seria:

$$\lambda_1 X^2 + qY = 0$$

7.2.2 Classificação das Cônicas

1) A equação de uma cônica de centro é:

$$\lambda_1 X^2 + \lambda_2 Y^2 = F$$

- Se λ_1 e λ_2 forem de mesmo sinal, a cônica será do gênero elipse.
- Se λ_1 e λ_2 forem de sinais contrários, a cônica será do gênero hipérbole.
- II) A equação de uma cônica sem centro é:

$$\lambda_2 Y^2 + pX = 0$$

ou:

$$\lambda_1 X^2 + qY = 0$$

Uma cônica representada por qualquer uma dessas equações é do gênero parábola.

7.3 PROBLEMAS RESOLVIDOS

1) Determinar a equação reduzida e o gênero da cônica representada pela equação

$$2x^{2} + 2y^{2} + 2xy + 7\sqrt{2}x + 5\sqrt{2}y + 10 = 0$$

Solução

De acordo com 7.2.1, dividiremos esse trabalho em duas etapas, sendo a primeira constituída de três passos.

1ª Etapa: Eliminação do termo em xy

19 Passo: Escrevemos a equação dada na forma matricial:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 7\sqrt{2} & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + 10 = 0$$
 (2)

20 Passo: Calculemos os valores próprios e os vetores próprios unitários da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 2 - \lambda & 1 \\ & & \\ 1 & 2 - \lambda \end{bmatrix} = 0$$

isto é:

$$(2 - \lambda)(2 - \lambda) - 1 = 0$$

$$4 - 4\lambda + \lambda^2 - 1 = 0$$

$$\lambda^2 - 4\lambda + 3 = 0$$

$$\lambda_1 = 3$$

$$\lambda_2 = 1$$

Resolvendo o sistema

$$\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

obteremos os vetores próprios de A.

Para $\lambda_1 = 3$, vem:

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

a daí:

$$v_1 = x(1, 1)$$

Para $\lambda_2 = 1$, vem:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

e daf:

$$v_2 = x(-1, 1)$$

Portanto, os correspondentes vetores próprios unitários são:

$$u_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \quad e \quad u_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

30 Passo: Substituímos em (2) a forma quadrática

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

pela forma canônica

$$\begin{bmatrix} \mathbf{x}' \ \mathbf{y}' \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix}$$

e o vetor

por

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix}$$

onde já tivemos o cuidado de dispor os vetores próprios unitários de tal modo que:

$$\det \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = +1$$

a fim de que essa transformação de coordenadas represente uma rotação.

Logo, a equação (2) fica:

$$\begin{bmatrix} \mathbf{x}' \ \mathbf{y}' \end{bmatrix} \begin{bmatrix} \mathbf{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} + \begin{bmatrix} 7\sqrt{2} & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} + \mathbf{10} = \mathbf{0}$$

ou:

$$3x'^{2} + y'^{2} + 12x' - 2y' + 10 = 0$$
(3)

que é a equação da cônica (1), porém referida ao sistema x'Oy', cujos eixos são suportes de v_1 e v_2 (ou u_1 e u_2), conforme a figura 7.3a.

Figura 7.3a

2ª Etapa: Translação de Eixos

Tomemos a equação (3) e façamos uma translação do sistema x'Oy'. Assim:

$$3x'^{2} + y'^{2} + 12x' - 2y' + 10 = 0$$

$$(3x'^{2} + 12x') + (y'^{2} - 2y') = -10$$

$$3(x'^{2} + 4x') + (y'^{2} - 2y') = -10$$

$$3(x'^{2} + 4x' + 4) + (y'^{2} - 2y' + 1) = -10 + 3(4) + 1$$

$$3(x' + 2)^{2} + (y' - 1)^{2} = 3$$

Utilizando as fórmulas de translação, façamos:

$$\mathbf{X} = \mathbf{x}' + 2$$

$$Y = y' - 1$$

e, portanto, a equação (4) fica:

$$3X^2 + Y^2 = 3$$

ou;

$$\frac{X^2}{1} + \frac{Y^2}{3} = 1$$

que é a equação reduzida da cônica dada em (1), porém referida ao sistema XO'Y, onde O'(-2,1).

Trata-se de uma elipse cujos semi-eixos medem $-1-e/\sqrt{3}$, estando o eixo maior sobre e eixo dos -Y, conforme mostra a figura 7.3b.

Observação

Tendo em vista que $e_1 = (1,0)$ e $u_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, o ângulo θ correspondente à rotação é dado por:

$$\cos \theta = \frac{e_1 \cdot u_1}{|e_1| |u_1|} = e_1 \cdot u_1 = 1 \left(\frac{1}{\sqrt{2}}\right) + 0 \left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Figura 7.3b

Por outro lado, para confirmar, $e_2 = (0, 1)$ e $u_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, logo:

$$\cos \theta = \frac{e_2}{|e_2|} \frac{u_2}{|u_2|} = e_2$$
, $u_2 = 0 \left(-\frac{1}{\sqrt{2}} \right) + 1 \left(\frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

isto é:

$$\theta = \arccos \frac{\sqrt{2}}{2} = 45^{\circ}$$

2) Determinar a equação reduzida e o gênero da cônica representada pela equação

$$11x^2 - 24xy + 4y^2 + 20x - 40y - 20 = 0$$
 (5)

Splução

13 Etapa: Eliminação do termo em xy

10 Passo: A equação dada na forma matricial é:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 11 & -12 \\ -12 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 20 - 40 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 20 = 0$$
 (6)

20 Passo: Os valores próprios e os vetores próprios unitários da matriz simétrica

$$\mathbf{A} = \begin{bmatrix} 11 & -12 \\ \\ -12 & 4 \end{bmatrix}$$

são:

$$\lambda_1 = 20, \quad u_1 = (\frac{4}{5}, -\frac{3}{5})$$

$$\lambda_2 = -5, \quad u_2 = (\frac{3}{5}, \frac{4}{5})$$

(A verificação fica a cargo do leitor.)

39 Passo: Com as devidas substituições, a equação (6) fica:

$$\begin{bmatrix} x' & y' \end{bmatrix} \begin{bmatrix} 20 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} 20 & -40 \end{bmatrix} \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} - 20 = 0$$

ou:

$$20x'^2 - 5y'^2 + 40x' - 20y' - 20 = 0$$

ou, ainda:

$$4x'^2 - y'^2 + 8x' - 4y' - 4 = 0$$

2ª Etapa: Translação de Eixos

$$(4x'^{2} + 8x') - (y'^{2} + 4y') = 4$$

$$4(x'^{2} + 2x') - (y'^{2} + 4y') = 4$$

$$4(x'^{2} + 2x' + 1) - (y'^{2} + 4y' + 4) = 4 + 4 - 4$$

$$4(x' + 1)^{2} - (y' + 2)^{2} = 4$$

Fazendo:

$$\mathbf{X} = \mathbf{x}' + \mathbf{1}$$

$$Y = y' + 2$$

a equação acima fica:

$$4X^2 - Y^2 = 4$$

ou:

$$\frac{X^2}{1} - \frac{Y^2}{4} = 1$$

que é a equação reduzida da cônica dada em (5), porém referida ao sistema XO'Y, sendo O'(-1,-2).

Trata-se de uma hipérbole cujo eixo real, de medida 2, está sobre o eixo dos X, conforme se vé na figura 7.3c.

Figura 7.3c.

3) Determinar a equação reduzida e o gênero da cônica representada pela equação:

$$x^2 + 2xy + y^2 - 8x + 4 = 0$$

Solução

18 Etapa: Eliminação do termo em xy

19 Passo: A equação dada na forma matricial é:

$$\begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} -8 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} + 4 = 0$$

29 Passo: Os valores próprios e os vetores próprios unitários da matriz simétrica:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ & & \\ 1 & 1 \end{bmatrix}$$

sāo:

$$\lambda_1 = 0, \quad u_1 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$

$$\lambda_2 = 2, \quad u_2 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

(Verificação a cargo do leitor.)

39 Passo: Com as devidas substituições, a equação (7) fica:

$$\begin{bmatrix} \mathbf{x}' \ \mathbf{y}' \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} + \begin{bmatrix} -8 \ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} + 4 = 0$$

ou:

$$2y'^2 - \frac{8}{\sqrt{2}}x' - \frac{8}{\sqrt{2}}y' + 4 = 0$$

ou, ainda:

$$y'^2 - \frac{4}{\sqrt{2}} x' - \frac{4}{\sqrt{2}} y' + 2 = 0$$

24 Etapa: Translação de Eixos

$$(y'^2 - \frac{4}{\sqrt{2}}y') = \frac{4}{\sqrt{2}}x' - 2$$

$$(y'^2 - \frac{4}{\sqrt{2}}y' + 2) = \frac{4}{\sqrt{2}}x' - 2 + 2$$

$$(y' - \sqrt{2})^2 = 2\sqrt{2} x'$$

Fazendo:

$$X = x'$$

$$Y = y' - \sqrt{2} .$$

a equação acima fica:

$$Y^2 = 2\sqrt{2} X$$

que é a equação reduzida da cônica dada em (7), potém referida ao sistema XO'Y, onde $O'(0, \sqrt{2})$.

Trata-se de uma parábola de parâmetro igual a $\sqrt{2}$, tendo para eixo o eixo dos X. conforme mostra a figura 7.3d.

4) Determinar a equação reduzida e o gênero da cônica representada pela equação

$$4x^2 - 3y^2 + 24xy - 156 = 0$$

Solução

Como essa equação não apresenta os termos de primeiro grau em x e y, a resolução é constituída somente da 1ª etapa.

19 Passo: A equação na forma matricial é:

$$\begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 12 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} - 156 = 0 \tag{8}$$

20 Passo: Os valores próprios e os vetores próprios unitários da matriz simétrica

$$\mathbf{A} = \begin{bmatrix} 4 & 12 \\ 12 & -3 \end{bmatrix}$$

são:

$$\lambda_1 = -12, \quad u_1 = (\frac{3}{5}, -\frac{4}{5})$$

$$\lambda_2 = 13, \quad u_2 = (\frac{4}{5}, \frac{3}{5})$$

(Verificação a cargo do leitor.)

O cálculo dos vetores próprios e de seus correspondentes vetores unitários é dispensável neste problema de se encontrar a equação reduzida, a não ser se desejarmos construir o gráfico, pois são esses vetores que determinam o novo referencial x'Oy'.

30 Passo: Com as devidas substituições, a equação (8) fica:

$$\begin{bmatrix} \mathbf{x'} \ \mathbf{y'} \end{bmatrix} \begin{bmatrix} -12 & 0 \\ 0 & 13 \end{bmatrix} \begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} - 156 = 0$$

ou:

$$-12x'^2 + 13y'^2 = 156$$

ou:

$$\frac{y'^2}{12} - \frac{x'^2}{13} = 1$$

que representa uma hipérbole com eixo real sobre o eixo dos y', conforme mostra a figura 1.3e.

Figura 7.3e

5) Determinar a equação reduzida e o gênero da cônica representada pela equação

$$x^2 - 6x + 8y - 7 = 0$$

Solução

346

Como essa equação não apresenta o termo em xy, a resolução é constituída somente da 2ª etapa.

$$x^2 - 6x = -8y + 7$$

$$x^2 - 6x + 9 = -8y + 7 + 9$$

$$(x-3)^2 = -8y + 16$$

$$(x-3)^2 = -8(y-2)$$

Fazendo

$$X = x - 3$$

$$Y = y - 2$$

a equação anterior fica

$$X^2 = -8Y$$

que representa uma parábola de vértice na origem do sistema XO'Y, com O'(3, 2), e voltada para baixo, conforme mostra a figura 7.3f.

7.4 NOTAS COMPLEMENTARES

7.4.1 Cônicas Degeneradas

Vimos que a equação do segundo grau nas variáveis x e y

$$ax^2 + by^2 + 2cxy + dx + ey + f = 0$$
 (7.4.1)

representa uma elipse ou uma hipérbole ou uma parábola.

No entanto, em casos particulares, essa equação pode também representar um par de retas, uma só reta, um ponto ou o conjunto vazio, que são as chamadas cônicas degeneradas.

A análise da equação (7.4.1) permite concluir os diversos casos:

a) Se λ_1 e λ_2 tiverem o mesmo sinal, a cônica será uma *elipse*, um *ponto* ou o conjunto vazio.

Exemplos

1) A equação

$$(x+2)^2 + (y-1)^2 = 0$$

ou:

$$x^2 + y^2 + 4x - 2y + 5 = 0$$

representa o ponto (-2, 1) (circunferência de raio igual a zero).

A equação

$$3x^2 + 2y^2 + 1 = 0$$

tepresenta o conjunto vazio. Essa equação não define nenhuma figura geométrica (o 19 membro e sempre $\neq 0$).

b) Se λ_1 e λ_2 tiverem sinais contrários, a cônica será uma hipérbole ou duas retas.

Exemplo

A equação

$$9x^2 - y^2 = 0$$

representa as retas y = -3x e y = 3x.

De fato, fatorando o primeiro membro, obtemos:

$$(3x + y)(3x - y) = 0$$

e concluímos que:

$$3x + y = 0$$
 ou $3x - y = 0$

ou seja:

$$y = -3x$$
 ou $y = 3x$

c) Se $\lambda_1 = 0$ ou $\lambda_2 = 0$, a cônica será uma parábola, duas retas paralelas, uma reta ou o conjunto vazio.

Exemplos

1) A equação

$$4x^2 = 9$$

$$(\lambda_1 = 4 \quad e \quad \lambda_2 = 0)$$

representa duas retas paralelas.

De fato, podemos escrever

$$x^2 = \frac{9}{4}$$

ou:

$$x = \pm \frac{3}{2}$$

isto é:

$$x = \frac{3}{2}$$
 e $x = -\frac{3}{2}$

que são duas retas paralelas.

2) A equação

$$y^2 = 0$$

$$(\lambda_1 = 0 \text{ e } \lambda_2 = 1)$$

representa uma reta, no caso, o eixo dos x, isto é, y = 0.

3) A equação

$$3x^2 = -5$$

$$(\lambda_1 = 3 \quad e \quad \lambda_2 = 0)$$

representa o conjunto vazio.

As cônicas (elipse, hipérbole e parábola) e suas degenerações (um par de retas, uma só reta e um ponto) constituem as possíveis interseções de uma superfície cônica com um plano.

7.5 PROBLEMAS PROPOSTOS

1) Identificar as seguintes cônicas:

a)
$$x^2 + y^2 = 1$$

h)
$$x^2 + y^2 = 0$$

p)
$$x^2 - 4 = -y^2$$

b)
$$x^2 - y^2 = 1$$

i)
$$x^2 + y^2 + 1 = 0$$

q)
$$y - 3x^2 = 0$$

c)
$$x^2 - y^2 = 0$$

j)
$$x^2 - 1 = 0$$

r)
$$3x^2 - 4y^2 = 1$$

d)
$$x^2 - y = 1$$

1)
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

s)
$$2x^2 + 3y^2 = 6$$

e)
$$x^2 - y = 0$$

$$m)\frac{x}{3} + \frac{y}{2} = 1$$

f)
$$x - y^2 = 0$$

n)
$$4y^2 - x^2 = 8$$

g)
$$x + y = 1$$

o)
$$5y^2 - 3x = 0$$

Mostrar que as seguintes equações representam duas retas no plano:

a)
$$4x^2 - y^2 = 0$$

b)
$$x^2 \sim 16y^2 = 0$$

c)
$$x^2 + 2xy + y^2 - 1 = 0$$

Nos problemas 3 a 15, determinar a equação reduzida referida ao sistema XO'S e o gênero da cônica representada pela equação dada a seguir. Esboçar o gráfico.

3)
$$17x^2 + 12xy + 8y^2 - 10x + 20y + 5 = 0$$

4)
$$7x^2 + y^2 - 8xy - 17\sqrt{5}x + 11\sqrt{5}y + 41 = 0$$

5)
$$4x^2 + y^2 + 4xy + 5\sqrt{5}x + 10\sqrt{5}y + 5 = 0$$

6)
$$x^2 + y^2 + xy + 5\sqrt{2}x + 4\sqrt{2}y + 1 = 0$$

7)
$$4x^2 + 6xy - 4y^2 + 20x - 20y - 19 = 0$$

8)
$$16x^2 - 24xy + 9y^2 - 15x - 20y + 50 = 0$$

9)
$$3x^2 - 2xy + 3y^2 - 2x - 10y - 1 = 0$$

10)
$$xy + 4\sqrt{2}x + 6\sqrt{2}y + 30 = 0$$

11)
$$x^2 + 2\sqrt{3}xy + 3y^2 - 4x = 0$$

12)
$$x^2 + y^2 + 2xy - 4\sqrt{2}x = 0$$

13)
$$16x^2 + 9y^2 - 96x + 72y + 144 = 0$$

14)
$$4x^2 - 5y^2 + 8x + 30y - 21 = 0$$

15)
$$x^2 - 6x + 8y + 1 = 0$$

Nos problemas 16 a 24, efetuar uma rotação nos eixos coordenados a fim de eliminar o termo em xy. Identificar a cônica e escrever sua equação no sistema x'Oy' obtido após a rotação. Esboçar o gráfico.

16)
$$3x^2 + 2xy + 3y^2 - 4 = 0$$

17)
$$2x^2 + y^2 + 2\sqrt{6}xy = 16$$

18)
$$2x^2 + 4xy + 2y^2 - 16 = 0$$

19)
$$7x^2 - 8xy + y^2 + 36 = 0$$

20)
$$xy = 2$$

21)
$$5x^2 + 4xy + 2y^2 - 12 = 0$$

22)
$$7x^2 + 13y^2 - 6\sqrt{3}xy - 16 = 0$$

23)
$$x^2 + y^2 + 4xy - 3 = 0$$

24)
$$3x^2 + 2xy + 3y^2 - 4 = 0$$

As equações dos problemas 25 a 35 representam cônicas degeneradas. Identificá-las e esboçar o gráfico, quando possível.

25)
$$x^2 - y^2 - 2x - 2y = 0$$

26)
$$x^2 + y^2 - 2x - 2y + 4 = 0$$

27)
$$x^2 + y^2 = 6x + 4y + 13 = 0$$

28)
$$2x^2 + 2\sqrt{2}xy + y^2 = 12$$

29)
$$x^2 + y^2 + 2xy - 8 = 0$$

30)
$$x^2 + y^2 + 2xy = 0$$

31)
$$x^2 + y^2 + 2xy + 5 = 0$$

32)
$$x^2 + y^2 + 4xy = 0$$

33)
$$3x^2 + 2xy + 3y^2 + 4 = 0$$

$$34) \quad 3x^2 + 2xy + 3y^2 = 0$$

35)
$$x^2 + y^2 + 2xy + 4 = 0$$

7.5.1 Respostas de Problemas Propostos

- 1. a) Circunferência.
 - b) Hipérbole.
 - c) Duas retas: y = x + e + y = -x.
 - d) Parábola.
 - e) Parábola.
 - f) Parábola,
 - g) Reta.
 - h) O ponto (0,0).
 - i) O conjunto vazio.
- 2) a) y = 2x e y = -2x
 - b) $y = \frac{1}{4}x$ e $y = -\frac{1}{4}x$
 - c) $y = \frac{\sqrt{2}}{2}$ e $y = -\frac{\sqrt{2}}{2}$
- 3) $\frac{X^2}{4} + \frac{Y^2}{1} = 1$, elipse
- 4) $\frac{X^2}{1} \frac{Y^2}{9} = 1$, hipérbole
- 5) $Y^2 = 3X$, parábola
- 6) $\frac{X^2}{9} + \frac{Y^2}{27} = 1$, elipse
- 7. $Y^2 X^2 = 1$, hipérbole
- 8. $X^2 = Y$, parábola
- 9) $\frac{X^2}{3} + \frac{Y^2}{6} = 1$, elipse
- 10) $\frac{X^2}{36} \frac{Y^2}{36} = 1$, hipérbole
- 11) $Y^2 = -\frac{\sqrt{3}}{2} X$, parábola

- j) Duas retas: x = 1 e x = -1.
- l) Elipse.
- m) Reta.
- n) Hipérbole.
- o) Parábola,
- p) Circunferencia.
- q) Parábola.
- r) Hipérbole.
- s) Elipse.
- 12) Y² = 4X, parábola
- 13) $\frac{X^2}{9} + \frac{Y^2}{16} = 1$, elipse
- 14) $\frac{Y^2}{4} \frac{X^2}{5} = 1$, hipérbole
- 15) $X^2 = -8Y$, parábola
- 16) $x'^2 + \frac{y'^2}{2} = 1$, elipse
- 17) $4x'^2 y'^2 = 16$, hipérbole
- 18) y' = 2 ou y' = -2, duas retas
- 19) $\frac{y'^2}{36} \frac{x'^2}{4} = 1$, hipérbole
- 20) $\frac{x'^2}{4} \frac{y'^2}{4} = 1$, hipérbole
- 21) $\frac{x'^2}{2} + \frac{y'^2}{6} = 1$, elipse
- 22) $x'^2 + 4y'^2 4 = 0$, elipse
- 23) $3x'^2 y'^2 = 3$, hipérbole

24)
$$x'^2 + \frac{y'^2}{2} = 1$$
, elipse

30) A reta y' = 0.

25) Duas retas:
$$y = \pm (x - 1) - 1$$
.

31) Vazio.

26) Nenhum ponto do plano.

32) Duas retas concorrentes: $y' = \sqrt{3}x'$ e $y' = -\sqrt{3}x'$.

27) O ponto (3, -2).

33) Vazio.

28) Duas retas paralelas: $x' = \pm 2$.

34) O ponto (0,0).

29) Par de retas paralelas: $y' = \pm 2$.

35) Vazio.

7.6 FORMA QUADRÁTICA NO ESPAÇO TRIDIMENSIONAL

A matriz simétrica real

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{d} & \mathbf{e} \\ \mathbf{d} & \mathbf{b} & \mathbf{f} \\ \mathbf{e} & \mathbf{f} & \mathbf{c} \end{bmatrix}$$

associa ao vetor $\mathbf{v}_S = (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}^3$, referido à base canônica $S = \{e_1, e_2, e_3\}$, $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$, o polinômio

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2exz + 2fyz$$

que é um polinômio homogêneo do 29 grau em x, y e z chamado forma quadrática do espaço ridimensional

Na forma matricial esse polinômio é representado por:

$$v_{S}^{t}Av_{S} = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Assim, a cada v_S corresponde um número real

$$p = ax^2 + by^2 + cz^2 + 2dxy + 2exz + 2fyz$$

Exemplo

A matriz simétrica real

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

define no IR3 a forma quadrática

$$p = 3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz$$

Ao vetor $v_S = (0, 1, 2)$, por exemplo, corresponde o número real

$$p = 3(0)^2 + 5(1)^2 + 3(2)^2 - 2(0)(1) + 2(0)(2) - 2(1)(2) = 0 + 5 + 12 - 0 + 0 - 4 = 13$$

7.6.1 Redução da Forma Quadrática à Forma Canônica

A forma quadrática no espaço v_S^t Av_S pode ser expressa por

$$\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2$$

onde λ_1, λ_2 e λ_3 são os valores próprios da matriz A, e x', y' e z' as componentes de vetor v na base $P = \{u_1, u_2, u_3\}$, isto é, $v_p = (x', y', z')$, sendo u_1, u_2 e u_3 os vetores próprios unitários associados a λ_1, λ_2 e λ_3 .

De fato:

Tendo em vista que a matriz P é a matriz-mudança de base de P para S, pois:

$$[1]_{S}^{P} = S^{-1}P = 1P = P$$

e, portanto:

$$\mathbf{v}_{\mathbf{S}} = \mathbf{P}\mathbf{v}_{\mathbf{P}}$$

podemos escrever:

$$v_S^t Av_S = (Pv_P)^t A (Pv_P)$$

ou:

$$\mathbf{v}_{\mathbf{S}}^{\mathbf{t}} \mathbf{A} \mathbf{v}_{\mathbf{S}} = \mathbf{v}_{\mathbf{P}}^{\mathbf{t}} (\mathbf{P}^{\mathbf{t}} \mathbf{A} \mathbf{P}) \mathbf{v}_{\mathbf{P}}$$

Como P diagonaliza A ortogonalmente:

$$\mathbf{P^t} \mathbf{A} \mathbf{P} = \mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

conclui-se que:

$$v_S^t A v_S = v_P^t D v_P$$

ou;

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' & y' & z' \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

ou, ainda:

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2exz + 2fyz = \lambda_{1}x'^{2} + \lambda_{2}y'^{2} + \lambda_{3}z'^{2}$$

A forma $\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2$ é denominada forma canônica da forma quadrática no espaço tridimensional.

Exemplo

1) A forma quadrática:

$$3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz$$

pode ser expressa por

$$2x'^2 + 3y'^2 + 6z'^2$$

De fato:

A forma quadrática:

$$3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz$$

é definida pela matriz

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

Mas, os valores próprios da matriz A, conforme o problema resolvido número 1. Capítulo 6, são $\lambda_1=2$, $\lambda_2=3$ e $\lambda_3=6$. Logo, a forma canônica da forma quadrática é

$$2x'^2 + 3y'^2 + 6z'^2$$

II) Por outro lado, os vetores próprios unitários associados a λ_1 , λ_2 e λ_3 são, respectivamente, $u_1=(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$, $u_2=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ e $u_3=(-\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})$.

Logo:

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

Como $v_S = Pv_p$ equivale a $v_p = P^{-1}v_S$, ou

$$\mathbf{v_p} = \mathbf{P^t}\mathbf{v_S}$$

pois $P^t = P^{-1}$ pelo fato de P ser matriz ortogonal, podemos calcular v_p a partir de v_S . Supondo que $v_S = (x, y, z) = (0, 1, 2)$, vem:

$$\mathbf{v_{p}} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\mathbf{v}_{\mathbf{P}} = \begin{bmatrix} -\frac{2}{\sqrt{2}} \\ \frac{3}{\sqrt{3}} \\ 0 \end{bmatrix}$$

isto
$$e'$$
, $v_{\mathbf{p}} = (x', y', z') = (-\frac{2}{\sqrt{2}}, \frac{3}{\sqrt{3}}, 0).$

Assim:

$$3x^{2} + 5y^{2} + 3z^{2} - 2xy + 2xz - 2yz = 2x^{2} + 3y^{2} + 6z^{2}$$

$$3(0)^{2} + 5(1)^{2} + 3(2)^{2} - 2(0)(1) + 2(0)(2) - 2(1)(2) = 2(-\frac{2}{\sqrt{2}})^{2} + 3(\frac{3}{\sqrt{3}})^{2} + 6(0)^{2}$$

$$0 + 5 + 12 - 0 + 0 - 4 = 2(\frac{4}{2}) + 3(\frac{9}{3}) + 0$$

$$13 = 13$$

As considerações que fizemos no plano sobre mudança de referencial pela rotação são válidas também para o espaço.

7.7 QUÁDRICAS

Chama-se quádrica ou superfície quádrica a todo conjunto de pontos M do espaço tridimensional cujas coordenadas x, y e z, em relação à base canônica, satisfazem a equação do 29 grau

$$ax^2 + by^2 + cz^2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q = 0$$

onde a, b, c, d, e e f não são todos nulos.

As coordenadas $x, y \in z$ dos pontos M do espaço são as componentes dos vetores $v \in \mathbb{R}^3$, que satisfazem à equação de uma quádrica (Figura 7.7).

Figura 7.7

7.7.1 Equação Reduzida de uma Quádrica

De forma análoga àquela adotada para as cônicas no plano, dividiremos o trabalho em duas etapas.

Seja a equação de uma quádrica:

$$ax^2 + by^2 + cz^2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q = 0$$
 (1)

1ª Etapa: Eliminação dos termos em xy. xz e yz

10 Passo: Escreve-se a equação na forma matricial:

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} m & n & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + q = 0$$
 (2)

ou:

$$\mathbf{v}_{\mathbf{S}}^{\mathbf{t}} \mathbf{A} \mathbf{v}_{\mathbf{S}} + \mathbf{N} \mathbf{v}_{\mathbf{S}} + \mathbf{q} = 0$$

onde:

$$\mathbf{v}_{\mathbf{S}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{d} & \mathbf{e} \\ \mathbf{d} & \mathbf{b} & \mathbf{f} \end{bmatrix} \quad \mathbf{e} \quad \mathbf{N} = [\mathbf{m} \quad \mathbf{n} \quad \mathbf{p}]$$

20 Passo: Calculam-se os valores próprios λ_1 , λ_2 e λ_3 e os vetores próprios unitários $u_1 = (x_{11}, x_{12}, x_{13})$, $u_2 = (x_{21}, x_{22}, x_{23})$ e $u_3 = (x_{31}, x_{32}, x_{33})$ da matriz simétrica A.

3º Passo: Substitui-se na equação (2) a forma quadrática

$$\mathbf{v}_{S}^{t} \mathbf{A} \mathbf{v}_{S} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{a} & \mathbf{d} & \mathbf{e} \\ \mathbf{d} & \mathbf{b} & \mathbf{f} \\ \mathbf{e} & \mathbf{f} & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

pela forma canônica

$$\mathbf{v_p^t} \ \mathbf{Dv_p} = \begin{bmatrix} \mathbf{x'} & \mathbf{y'} & \mathbf{z'} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \end{bmatrix}$$

e:

$$\mathbf{v}_{\mathbf{S}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

por:

$$\mathbf{Pv_p} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

tendo o cuidado para que det P = 1, a fim de que essa transformação seja uma rotação.

Assim, a equação (2) se transforma em:

$$\begin{bmatrix} x' & y' & z' \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} + \begin{bmatrix} m & n & p \end{bmatrix} \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} + q = 0$$

ou:

$$\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2 + rx' + sy' + tz' + q = 0$$

que é a equação da quádrica dada em (1), porém referida ao sistema x'y'z', cujos eixos sã. determinados pela base $P = \{u_1, u_2, u_3\}$.

Observemos que enquanto a equação (1) apresenta os termos mistos em xy, xz e yz. E equação (3) é desprovida deles. Portanto, na passagem da equação (1) para (3), ocorreu um: simplificação.

2ª Etapa: Translação de Eixos

Conhecida a equação da quádrica

$$\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2 + rx' + sy' + tz' + q = 0,$$
 (4)

para se obter a equação reduzida efetua-se uma nova mudança de coordenadas que consiste na translação do último referencial O x'y'z' para o novo, o qual chamaremos O'XYZ. A análise das possibilidades é feita a seguir.

I) Supondo λ_1 , λ_2 e λ_3 diferentes de zero, pode-se escrever:

$$\lambda_1(x'^2 + \frac{t}{\lambda_1}x') + \lambda_2(y'^2 + \frac{s}{\lambda_2}y') + \lambda_3(z'^2 + \frac{t}{\lambda_3}z') + q = 0$$

ou:

$$\begin{split} &\lambda_1 \big(x'^2 + \frac{r}{\lambda_1} x' + \frac{r^2}{4 \lambda_1^2} \big) + \lambda_2 \big(y'^2 + \frac{s}{\lambda_2} y' + \frac{s^2}{4 \lambda_2^2} \big) + \lambda_3 \big(z'^2 + \frac{t}{\lambda_3} z' + \frac{t^2}{4 \lambda_3^2} \big) + q - \frac{r^2}{4 \lambda_1} - \frac{s^2}{4 \lambda_2} - \frac{t^2}{4 \lambda_3} = 0 \\ &\lambda_1 \big(x' + \frac{r}{2 \lambda_1} \big)^2 + \lambda_2 \big(y' + \frac{s}{2 \lambda_2} \big)^2 + \lambda_3 \big(z' + \frac{t}{2 \lambda_3} \big)^2 + q - \frac{r^2}{4 \lambda_1} - \frac{s^2}{4 \lambda_2} - \frac{t^2}{4 \lambda_3} = 0 \end{split}$$

Fazendo:

$$q - \frac{r^2}{4\lambda_1} - \frac{s^2}{4\lambda_2} - \frac{t^2}{4\lambda_3} = -Q$$

e, por meio de uma translação:

$$X = x' + \frac{r}{2\lambda_1}$$

$$Y = y' + \frac{s}{2\lambda_2}$$

$$Z = z' + \frac{t}{2\lambda_3}$$

vem:

$$\lambda_1 X^2 + \lambda_2 Y^2 + \lambda_3 Z^2 - Q = 0$$

e, finalmente:

$$\lambda_1 X^2 + \lambda_2 Y^2 + \lambda_3 Z^2 = Q \tag{5}$$

A equação (5) é a equação reduzida de uma quádrica de centro, e, como se vé, o primeiro membro é a forma canônica da forma quadrática no espaço tridimensional.

II) Se um dos valores próprios for igual a zero, $\lambda_1=0$, por exemplo, a equação (4) fica

$$\lambda_2 y'^2 + \lambda_3 z'^2 + rx' + sy' + tz' + q = 0$$

ou:

$$\lambda_{2}(y'^{2} + \frac{s}{\lambda_{2}}y') + \lambda_{3}(z'^{2} + \frac{t}{\lambda_{3}}z') + rx' + q = 0$$

$$\lambda_{2}(y'^{2} + \frac{s}{\lambda_{2}}y' + \frac{s^{2}}{4\lambda_{2}^{2}}) + \lambda_{3}(z'^{2} + \frac{t}{\lambda_{3}}z' + \frac{t^{2}}{4\lambda_{3}^{2}}) + rx' + q - \frac{s^{2}}{4\lambda_{2}} - \frac{t^{2}}{4\lambda_{3}} = 0$$

$$\lambda_{2}(y' + \frac{s}{2\lambda_{2}})^{2} + \lambda_{3}(z' + \frac{t}{2\lambda_{2}})^{2} + r(x' + \frac{q}{r} - \frac{s^{2}}{4r\lambda_{2}} - \frac{t^{2}}{4r\lambda_{2}}) = 0$$

Fazendo, por meio de uma translação:

$$X = x' + \frac{q}{r} - \frac{s^2}{4r\lambda_2} - \frac{t^2}{4r\lambda_3}$$

$$Y = y' + \frac{s}{2\lambda_2}$$

$$Z = z' + \frac{t}{2\lambda_3}$$

vem;

$$\lambda_2 \mathbf{Y}^2 + \lambda_3 \mathbf{Z}^2 + r \mathbf{X} = 0$$

A equação (6) é a equação reduzida de uma quádrica sem centro.

Observação

Se em lugar de λ_1 fosse $\lambda_2 = 0$ ou $\lambda_3 = 0$, a equação reduzida de uma quádrica sem centro seria:

$$\lambda_1 X^2 + \lambda_3 Z^2 + sY = 0$$

ou:

$$\lambda_1 X^2 + \lambda_2 Y^2 + tZ = 0$$

7.7.2 Classificação das Quádricas

I) A equação de uma quádrica de centro é

$$\lambda_1 X^2 + \lambda_2 Y^2 + \lambda_3 Z^2 = Q$$

Dependendo dos valores de λ_1 , λ_2 , λ_3 e Q, a quádrica será do tipo elipsóide ou hiperbolóide.

II) A equação de uma quádrica sem centro é

$$\lambda_2 Y^2 + \lambda_3 Z^2 + rX = 0$$

ou:

$$\lambda_1 X^2 + \lambda_3 Z^2 + sY = 0$$

ou:

$$\lambda_1 X^2 + \lambda_2 Y^2 + tZ = 0$$

A quádrica representada por uma dessas equações é do tipo parabolóide.

7.8 PROBLEMAS RESOLVIDOS

1) Determinar a equação reduzida e o tipo da quádrica representada pela equação:

$$3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz + \sqrt{3}y - \frac{7}{12} = 0$$

Solução

1ª Etapa: Eliminação dos termos em xy, xz e yz

19 Passo: A equação dada na forma matricial, de acordo com 7.7.1, é

29 Passo: Os valores próprios e os vetores próprios unitários da matriz simétrica

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

são :

$$\lambda_1 = 2$$
, $u_1 = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$

$$\lambda_2 = 3$$
, $u_2 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$

$$\lambda_3 = 6$$
, $u_3 = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$

39 Passo: Com as devidas substituições, a equação (7) fica:

$$\begin{bmatrix} x' & y' & z' \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} + \begin{bmatrix} 0 & \sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} - \frac{7}{12} = 0$$

ou:

$$2x'^2 + 3y'^2 + 6z'^2 + y' - \sqrt{2}z' - \frac{7}{12} = 0$$

2ª Etapa: Translação de Eixos

$$2x'^{2} + 3(y'^{2} + \frac{y'}{3}) + 6(z'^{2} - \frac{\sqrt{2}}{6}z') = \frac{7}{12}$$

$$2x'^{2} + 3(y'^{2} + \frac{y'}{3} + \frac{1}{36}) + 6(z'^{2} - \frac{\sqrt{2}}{6}z' + \frac{1}{72}) = \frac{7}{12} + \frac{1}{12} + \frac{1}{12}$$

$$2x'^{2} + 3(y' + \frac{1}{6})^{2} + 6(z' - \frac{\sqrt{2}}{12})^{2} = \frac{3}{4}$$

Fazendo:

$$X = x'$$

$$Y = y' + \frac{1}{6}$$

$$Z = z' - \frac{\sqrt{2}}{12}$$

a equação acima fica:

$$2X^2 + 3Y^2 + 6Z^2 = \frac{3}{4}$$

ou:

$$\frac{X^2}{\frac{8}{3}} + \frac{Y^2}{4} + \frac{Z^2}{8} = 1$$

que é a equação reduzida da quádrica dada, porém referida ao sistema O'XYZ, sendo O' $(0, -\frac{1}{6}, \frac{\sqrt{2}}{12})$.

Trata-se de um elipsóide.

2) Identificar e esboçar a quádrica representada pelas seguintes equações:

a)
$$36x^2 + 16y^2 - 9z^2 - 144 = 0$$

b)
$$x^2 + z^2 - 4y = 0$$

Solução

a)
$$36x^2 + 16y^2 - 9z^2 = 144$$

Dividindo ambos os membros da equação por 144, vem:

$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$

que é a forma canônica de um hiperbolóide de uma folha ao longo do eixo dos z (Figura 7.8a).

O traço no plano xOy é a elipse

$$\frac{x^2}{4} + \frac{y^2}{9} = i$$
, $z = 0$

Os traços nos planos xOz e yOz são as hipérboles

$$\frac{x^2}{4} - \frac{z^2}{16} = 1$$
, $y = 0$ e $\frac{y^2}{9} - \frac{z^2}{16} = 1$, $x = 0$

respectivamente.

b) $x^2 + z^2 - 4y = 0$

Figura 7.8a

ou:

$$\frac{x^2}{1} + \frac{z^2}{1} = 4y$$

que é a forma canônica de um parabolóide elíptico ao longo do eixo dos y (Figura 7.8b).

O traço no plano xOz é a origem (0,0,0).

Os traços nos planos xOy e yOz são as parábolas

$$x^2 = 4y$$
, $z = 0$ e $z^2 = 4y$, $x = 0$

respectivamente.

Figura 7.8b

7.8.1 **Problemas Propostos**

Por uma conveniente translação de eixos, transformar cada uma das equações seguintes na forma reduzida e identificar a quádrica que ela representa.

1)
$$2x^2 + 4y^2 + z^2 - 8x + 24y - 2z + 41 = 0$$

2)
$$3x^2 + 2y^2 - 6z^2 - 18x + 4y + 29 = 0$$

3)
$$3x^2 + 4y^2 + 24x - 8y + 24z + 100 = 0$$

4)
$$2x^2 - y^2 - 2z^2 + 8x + 4 = 0$$

5)
$$5x^2 + 5y^2 + 5z^2 - 10x + 20z - 3 = 0$$

6)
$$9x^2 - 4y^2 - 16y - 36z - 16 = 0$$

7)
$$x^2 + y^2 - 2y = 0$$

8)
$$x^2 + 4y^2 - z^2 - 2x + 16y + 17 = 0$$

Nos problemas 9 a 12 efetuar uma rotação e uma translação de eixos para referir a quádrica ao sistema O'XYZ e identificá-la.

9)
$$3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz - 4x + 6y - 2z + 2 = 0$$

10)
$$y^2 - 4xz - 4x + 2y - 3 = 0$$

11)
$$2x^2 + 2y^2 + 5z^2 - 4xy - 2xz + 2yz - 10x - 6y - 2z - 7 = 0$$

12)
$$7x^2 + 6y^2 + 5z^2 + 4xy - 4yz - 18 = 0$$

7.8.2 Respostas dos Problemas Propostos

1)
$$\frac{{x'}^2}{2} + \frac{{y'}^2}{1} + \frac{{z'}^2}{4} = 1$$
, elipsoide.

2)
$$\frac{x'^2}{2} + \frac{y'^2}{3} - \frac{z'^2}{1} = 1$$
, hiperboloide de uma folha.

3)
$$\frac{x'^2}{4} + \frac{y'^2}{3} = -2z'$$
, parabolóide elíptico.

4)
$$\frac{x'^2}{2} - \frac{y'^2}{4} - \frac{z'^2}{2} = 1$$
, hiperboloide de duas folhas.

5)
$$5x'^2 + 5y'^2 + 5z'^2 = 28$$
, superfície esférica.

6)
$$\frac{x'^2}{4} - \frac{y'^2}{9} = z$$
, parabolóide hiperbólico.

7)
$$x'^2 + y'^2 = 1$$
, superfície cilíndrica circular.

8)
$$\frac{x'^2}{4} + \frac{y'^2}{1} - \frac{z'^2}{4} = 0$$
, superfície cônica.

9)
$$4X^2 + 6Y^2 + 12Z^2 = 1$$
, elipsóide.

10)
$$2X^2 - Y^2 - 2Z^2 = 2$$
, hiperbolóide de duas folhas.

11)
$$6X^2 + 3Y^2 - 8\sqrt{2}Z = 0$$
, parabolóide elíptico.

12)
$$\frac{X^2}{6} + \frac{Y^2}{3} + \frac{Z^2}{2} = 1$$
, elipsóide.