

Curso: Engenharia da Computação

Autor: Samuel Molling

Orientador: Prof. Dr. Márcio Miguel Gomes

Cronograma

- Introdução
- Objetivos
- Trabalhos relacionados
- Fundamentação teórica
- Metodologia
- Experimentos
- Resultados
- Conclusão
- Melhorias e trabalhos futuros

- Explosão de dados e a necessidade de sistemas eficientes para armazenamento e gerenciamento de informações;
- Importância da escolha adequada de um banco de dados;
- Crescimento dos Sistemas de IA Generativa;
- Qual o modelo de IA mais adequado para implementar um Sistema de Recomendação de Banco de Dados?

Objetivo geral

 Desenvolvimento de um sistema de inteligência artificial que seja capaz de recomendar bancos de dados com base em requisitos do sistema.

Objetivos Específicos

- Estudar técnicas de IA em sistemas de recomendação;
- Reunir informações sobre variados bancos de dados do mercado;
- Criar método para avaliar e recomendar o banco de dados ideal;
- Testar eficácia e precisão do algoritmo usando métricas específicas.

Trabalhos relacionados

Citação	Cenário	Algoritmo	Métrica
(ZAGAN; DANU- BIANU, 2021)	Utilização do data lake na nuvem	Análise comparativa	Custo, performance, segurança
(MONJARAS; BCNDEZú; RAYMUNDO, 2019)	Algoritmo de árvore de decisão	Árvore de decisão	Inputs do usuário, performance no CRUD, tempo de resposta
(NAMDEO; SU- MAN, 2022)	Modelo de custo de reengenharia de RDBMS para NoSQL	Reengineering = Reverse engineering + Δ + Forward engineering	Custo e benefício
(QU et al., 2022)	Benchmarks para bancos de dados transacional distribuídos	Benchmarks	Esquema de dados, carga de trabalho, métricas de desempenho em armazenamento, consulta e agendamento

Trabalhos relacionados

Citação	Cenário	Algoritmo	Métrica
(SARASWAT; TRIPATHI, 2020)	Análise compa- rativa entre os três principais provedores de nuvem: AWS, GCP e Azure	Análise comparativa	Tipo de serviço, foco, número de regiões, capacidade de responder rapidamente, segurança, natureza dos serviços, alcance, maior desvantagem, preço e pagamento
(CHEN; LEE, 2018)	Estudo para uti- lização de bancos de dados NoSQL e seus casos de uso	Análise comparativa	Não especificado
(PAVLYSHENKO, 2023)	Análise multitarefa de notícias financeiras	Fine-tuning do modelo de linguagem "Llama 2 GPT" usando o método PEFT/LoRA	Não especificado

Fundamentação teórica

- Fundamentos de banco de dados
- Inteligência Artificial e Aprendizado de máquina
- Processamento de Linguagem Natural (PLN)
- Modelo de Linguagem de Grande Escala (LLMs)
- Tipos de LLM (RAG, Prompt e Fine-tuning)
- LangChain
- Llama 2

Metodologia

Ferramentas

- Python
- Github
- Google Colaboratory
- LangChain
- Hugging Face

Metodologia

Métricas

- Rouge-1: Avalia a sobreposição de unigramas.
- Rouge-2: Avalia a sobreposição de bigramas.
- Rouge-L: Avalia a subsequência comum mais longa entre o texto gerado e o de referência.
- Meteor: Avalia a qualidade de traduções geradas por máquinas.

Metodologia

- Fonte de dados
 - Dados coletados de diferentes fontes: SQuAD, HotPotQA, bAbl, Triviaqa, WikiQA, NQ.
 - 32 classes de banco de dados.
 - Criado um arquivo CSV com de perguntas e respostas sobre as classes de banco de dados.
 - O dataset está em inglês devido a origem do conjunto de dados.
 - Tamanho: 3482 perguntas.

Metodologia – Llama 2 com LangChain

Pré-processamento

- Configuração do modelo
- Quantização
- Tokenização e pipelines

LangChain

- Dataset
- VectorDB
- Memory
- Agente

Metodologia – Llama 2 com LangChain

Hiperparâmetros

- Modelo: meta-llama/Llama-2-7b-chat-h
- Tokenizer: sentence-transformers/all-mpnet-base-v2
- Return_full_text: True
- Task: text-generation
- Temperature: 0.1
- Max_new_tokens: 512
- Repetition_penalty: 1.1
- Stopping_criteria: stopping_criteria (função personalizada)

Metodologia – Llama 2 com LangChain

Modelos testados

- Árvore de decisão e TF-IDF
- Random Forest e TF-IDF
- Random Forest, KNN e Regressão Logística com Bert
- Llama2 com fine-tuning e prompt
- Llama2 com RAG e prompt

Resultados

Modelo	Métricas	Resultados
RF com TF-IDF	Avaliação humana, Acurácia, F1-Score, Recall e precisão	Overfitting observado, problemas com contexto de frase
Árvore de decisão com TF- IDF	Avaliação humana, Acurácia, F1-Score, Recall e precisão	Dependência de palavras- chave, problemas com contexto de frase
RF, KNN e Regressão logística com BERT	Avaliação humana, Acurácia, F1-Score, Recall e precisão	Desempenho elevado, overfitting
Llama 2 fine-tunning	Rouge, Meteor e Avaliação humana	Desafios com memória, tempo de treinamento
Llama 2 com LangChain	Rouge, Meteor e Avaliação humana	Facilidade de integração, desafios com memória

Resultados - Llama 2 com LangChain

• **ROUGE-1**: 55,09%

• **ROUGE-2**: 46,61%

• **ROUGE-L**: 55,09%

• **Meteor**: 57,56%

Resultados - Llama 2 com LangChain

Desafios:

- Uso de memória
- Timeouts do agente
- Tradução

Tabela 7 – Porcentagens de distribuição de idiomas

Linguagem	Porcentagem	Linguagem	Porcentagem
en	89.70%	uk	0.07%
desconhecido	8.38%	ko	0.06%
de	0.17%	ca	0.04%
fr	0.16%	sr	0.04%
sv	0.15%	id	0.03%
zh	0.13%	CS	0.03%
es	0.13%	fi	0.03%
ru	0.13%	hu	0.03%
nl	0.12%	no	0.03%
it	0.11%	ro	0.03%
ja	0.10%	bg	0.02%
pl	0.09%	da	0.02%
pt	0.09%	sl	0.01%
vi	0.08%	hr	0.01%

Fonte: Adaptado de TOUVRON et al., 2023

Resultados - Llama 2 com LangChain

```
> Entering new AgentExecutor chain...

Thought: Ham, based on the information provided in the dataframe, I would recommend Amazon Aurora as the ideal database for an e-commerce system that requires high consistency and high availability. It's a managed relational database service that is built Actions: [python_repl_ast]

Actions: [python_repl_ast] is not a valid tool, try one of [python_repl_ast].

Thought: Ah, say mislake: Let use try again.

Actions: [ava. db. service]

Actions: [ava. db. service]

Actions: [ava. db. service] is not a valid tool, try one of [python_repl_ast].

Thought: Of course! Hare's my revised answer: Based on the information provided in the dataframe, I would recommend Amazon RDS as the ideal database for an e-commerce system that requires high consistency and high availability. It's a fully managed relational names RDS

> Finished chain.

'Amazon RDS'
```


Conclusões

- O Llama 2 supera os modelos em generalização e precisão contextual.
- A necessidade de alto poder computacional e longos tempos de processamento s\(\tilde{a}\) desafios importantes para o uso do Llama 2.
- A tradução afeta o desempenho dos modelos, especialmente quando não são treinados em línguas além do inglês.

Melhorias e trabalhos futuros

- Realizar mais experimentos e análises detalhadas para verificar a acurácia e robustez do modelo Llama 2.
- Ampliar o conjunto de dados, incluindo mais opções de bancos de dados.
- Otimizar o Llama2 para aprimorar o processo de seleção de bancos de dados, visando reduzir o custo de hardware e processamento.

