

§ 2.4 变换群、同构

[本节主要内容]

- 1) 群的同构定义;
- 2) 对称群、变换群、置换群定义;
- 3) 群的同构的Cayley定理;
- 4) 群的自同构。

定义1 设 (G_1, \circ) 与 $(G_2, *)$ 为群,若存在一一映射 φ : $G_1 \to G_2$ 使得对 $\forall a, b \in G_1$ 有 $\varphi(a \circ b) = \varphi(a) * \varphi(b)$ 则称 G_1 与 G_2 同构,记为 $G_1 \cong G_2$ 称 φ 为 G_1 到 G_2 上的一个同构。

例1 设 (G_1,\circ) 与 (G_2,\oplus) 为群,

$$G_1 = \{a, b, c, d\}$$
 $G_2 = \{0, 1, 2, 3\}$

$$G_2 = \{0,1,2,3\}$$

0	a	b	c	d
a	a	b	C	d
b	b	c	d	a
C	c	d	a	b
d	d	a	b	c

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$$\varphi: G_1 \to G_2 \quad \varphi(a) = 0, \ \varphi(b) = 1, \ \varphi(c) = 2, \ \varphi(d) = 3$$

注: 同构的两个群,除了在元素和代数运算的表示符号不同外,他们的性质完全一样,抽象地看是一样的。

同构的性质:

1) $G_1 \cong G_1$

- 2) 若 $G_1 \cong G_2$,则 $G_2 \cong G_1$
- 3) 若 $G_1 \cong G_2$, $G_2 \cong G_3$ 则 $G_1 \cong G_3$

4

定义2对称群:

设S为非空集合, $f:S\to S$ 的一一映射 记Sym (S) = { $f \mid f: S \rightarrow S$ } 则Sym(S)关于映射的合成运算构成 一个群,称为S上的对称群。 当S={ 1,2,3,...,n }时, 则Sym(S)=Sn为所有n次置换之集, 称为n次对称群。

定义3 变换群: Sym(S)的任一子群称为S上的一个变换群。

置換群: Sn的任一子群称 为置换群。 置换群是变换群的一种特例,是群论中非常重要的一类群,而且也是研究几何体的对称、晶体的结构等所不可缺少的工具。

群论最早就是从研究置换群开始的,为了 解决5次及5次以上方程的根式求解问题, 伽罗瓦将多项式的根的变换(置换)构成 集合,这个集合对于变换的乘法构成代数 系统, 伽罗瓦最开始称为群, 即现在的置 换群。他证明一个方程可用根式求解的充 要条件是它的伽罗瓦群是可解群。

定理1 群的Cayley同构定理:

任何一个群同构于某个变换群。

推论1 任一n阶有限群同构于n次对称 群Sn的一个n阶子群。即有限群同构于 某个置换群。 例一、4次单位根之集 U_4 对复数的乘法* 构成群 (U_4 ,*) $U_4 = \{1, -1, i, -i\}$

二、构造变换群:

$$L(U_4) = \left\{ f_a \middle| f_a : U_4 \to U_4 \;,\; \forall x \in U_4, \right.$$

$$\left. f_a(x) = a * x \;, \quad a \in U_4 \right. \right\}$$

即:

$$L(U_4) = \{ f_1, f_{-1}, f_i, f_{-i} \}$$

其中:
$$f_1 = \begin{pmatrix} 1 & -1 & i & -i \\ 1 & -1 & i & -i \end{pmatrix}$$

$$f_{-1} = \begin{pmatrix} 1 & -1 & i & -i \\ -1 & 1 & -i & i \end{pmatrix}$$

$$f_i = \begin{pmatrix} 1 & -1 & i & -i \\ i & -i & -1 & 1 \end{pmatrix}$$

$$f_{-i} = \begin{pmatrix} 1 & -1 & i & -i \\ -i & i & 1 & -1 \end{pmatrix}$$

相应乘法表:

$$(U_4, *)$$

*	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-	i	1	-1

$$(L(U_4),\circ)$$

0	f_1	f_{-1}	f_i	f_{-i}
f_1	f_1	f_{-1}	f_i	f_{-i}
f_{-1}	f_{-1}	f_1	f_{-i}	f_i
f_i		f_{-i}		
		\int_{i}		

建立双射: $\varphi:U_4\to L(U_4)$

$$\varphi(\mathbf{a}) = f_a$$
, $\forall a \in U_4$

定义4 设 (G, \circ) 为群, $\varphi: G \to G$ 上的一映射,且对 $\forall a, b \in G$

则称 φ 为 G 的一个自同构。

定理2 设(G,*)为群,则 G的所有自同构之集 A(G)对映射的合成运算构成一个群,称为G的自同构群。

定义5 内自同构: 群G的由其元素a确定的自同构 $\varphi(x) = a \times a^{-1}$, $\forall x \in G$ 称为G的内自同构。

外自同构: G的其他自同构称为 外自同构。

定理3 群G所有内自同构之集 是G的自同构群的一个 子群,称为内自同构群。