

R2-S2: ROBOTIC REMOTE-SENSING SCOUT

Dan Brogan

dbrogan@usc.edu

M.S. Astronautical Engineering (Expected Dec. 2021)

ASTE 527: Space Concept Architectures

CONTEXT: THE U.S. LEADS COMMERCIAL HUMAN SPACEFLIGHT TO

THE MOON

- ❖ NASA Artemis program establishes international partners for peaceful lunar exploration (2020) [1]
- Commercial U.S. companies make major strides in crewed missions
 - ❖ Virgin Galactic flight with Richard Branson (July 2021) [2]
 - Blue Origin first crewed flight with Jeff Bezos (July 2021) [3]
 - SpaceX Inspiration 4 first civilian orbital flight (Sept. 2021) [4]
- * NASA Artemis selects SpaceX for Human Landing System (2021) [5]

Signatures from Artemis Accords [1]

R2-S2: Robotic Remote-Sensing Scout

CONTEXT: ROBOTS FOR SUPPORTING CREWED MISSIONS

- Commercial Lunar Payload Services (CLPS) (Precursor to crewed lunar missions) [6]
 - Surface measurements
 - Demonstrating navigational technology
- Special Purpose Dexterous Manipulator (DEXTRE) (On-orbit) [7]
 - Servicing and Repair
 - ❖ Hardware replacement
 - Carries tools during crewed EVA's
- Canadarm (On-orbit) [8]
 - Berthing
 - Hardware assembly
 - Astronaut positioning
- Multi-Mission Extra Vehicular Robot (MMEVR) (On-orbit) [9]
 - Servicing and Repair
 - Hardware assembly
 - Can mount to Astronaut for augmented dexterity

PROBLEM: THE NEED FOR A ROBOT TO ASSIST CREWED LUNAR OPERATIONS

Space Policy Document 1 (2018):

- "Lead an innovative and sustainable program of exploration with commercial and international partners...
- ...the United States will lead the return of humans to the Moon for long-term exploration and utilization" [10]

Moon Village Association (2020):

"Space actors are encouraged to share information to facilitate international cooperation among governmental agencies, private entities, and the general public in the expansion of lunar activities." [11]

NEEDS:

- Dramatically reduce the risk associated with returning humans to the Moon
- Support the US in leading an innovative & sustainable program of exploration with commercial & international partners

GOALS:

Provide the capability for <u>remote sensing</u> as well as <u>in-situ mission assistance</u> to commercially & internationally supported crewed Lunar EVA missions

OBJECTIVES:

- Ability to collect environmental data to help determine safety of planned EVA missions
- Ability to explore ahead of crewed missions to determine locations of scientific interest
- Ability to <u>perform exterior inspection</u> of habitats and launch vehicles
- Film EVA operations and livestream to Earth
- Perform specific tasks when commanded by the crew
- Carry emergency oxygen for the crew
- Provide <u>high data-rate communications</u> architecture
- Provide the above capabilities without endangering the crew
- Share all collected sensory data with commercial & international partners

RATIONALE: HOW R2-S2 FULFILLS THE NGO

What is R2-S2?:

- Lunar reconnaissance rover with two primary modes:
 - Teleoperated by Lunar crew prior to EVA ops
 - Autonomously assists alongside the crew during EVA opsi

High-Level Problems from NGO:

- Dramatically reduce the risk associated with returning humans to the Moon
- Support the US in leading an innovative & sustainable program of exploration with commercial & international partners

How R2-S2 Addresses These Problems:

- R2-S2 Provides critical information for assessing the safety of Lunar EVA missions
- Alleviates crew workload during EVA missions and provides emergency capabilities
- R2-S2 will be a commercial & international effort led by NASA, and all data collected will be shared with commercial & international partners

ASSUMPTIONS

 There is already an established Lunar Habitat

- R2-S2 is brought to the Moon via the Starship HLS
- R2-S2 will not return to Earth

TELEOPERATED MODE: HIGH-LEVEL CONOPS

COMMUNICATION ARCHITECTURE

Moon Base <-> R2-S2:

Radio (Nominal Control)

Moon Base <-> Earth:

- Laser (Nominal Monitor) [12]
- Radio (Contingency Monitor)

Earth <-> R2-S2:

Radio (Contingency Control)

OPERATIONS

- 1. EVA crew commander designated as Teleoperator (Teleop)
- 2. Teleop navigates R2 through terrain to perform desired task
- 3. R2 autonomously returns to habitat while EVA crew monitors its return and takes manual control if necessary

TELEOPERATED MODE: LUNAR CONTROL STATION

Display Interfaces:

- Virtual Reality (VR) headsets for entire EVA crew
 - VR enhances mental preparedness of crew through sensory immersion
- External Monitor (Optional)

Control Interfaces:

- Game Controller
- Mouse and Keyboard (Optional)

TELEOPERATED APPLICATIONS

MISSION RECONNAISSANCE

- 1. A crewed EVA mission is planned
- 2. R2-S2 is teleoperated to gather data to determine safety of planned EVA mission

REMOTE EXPLORATION

- 1. Information is needed to plan the next crewed EVA mission
- 2. R2-S2 is teleoperated to gather information to help inform planning of crewed EVA mission

INSPECTION

- 1. Habitat exterior, surface vehicle, or launch vehicle needs inspection
- 2. R2-S2 is teleoperated to desired structure and performs visual inspection
 - 3D imagery, IR, microscopy

AUTONOMOUS CREW-ASSIST MODE: HIGH-LEVEL CONOPS

COMMUNICATION ARCHITECTURE

EVA Crew <-> R2-S2:

Radio (Control thru voice-command)

Moon Base <-> R2-S2:

Radio (Nominal Monitor)

Moon Base <-> Earth:

- Laser (Nominal Monitor) [12]
- Radio (Contingency Monitor)

Earth <-> R2-S2:

Radio (Contingency Control)

OPERATIONS

- 1. R2-S2 follows EVA crew while monitoring crew and environment
- 2. R2-S2 performs specific tasks alongside crew when voice-commanded

AUTONOMOUS CREW-ASSIST MODE APPLICATIONS

- 1. Livestreams video of EVA operations to Earth
- 2. Performs specific tasks when commanded:
 - 1. Sample collection
 - 2. Telescoping
 - 3. Microscopy
 - 4. In-Situ measurements
- 3. Carries tools
- 4. Provides emergency supplies
 - 1. Oxygen
 - 2. Suit repair materials

R2-S2 OVERVIEW: POLAR & EQUATORIAL EDITION

- Wider wheels (Softer terrain) [13]
- Solar panels facing tangent to lunar surface
- Thicker battery back insulation

- Narrower wheels
- Solar panels facing normal to lunar surface
- Thinner battery back insulation

Same incident solar area (same charging time)

R2-S2 OVERVIEW: CAPABILITIES (PART 1/2)

1. Radio Antenna

- Nominal use: R2-S2<->Base
- Capable 10dB SNR to Earth if base comms are lost

2. Radiation Sensor [14]

- Detects protons, energetic ions, neutrons, & gamma rays
- Flown on Curiosity

3. 360° LiDAR [15]

- +10°, -30° vertical FOV
- +/- 2cm accuracy
- 100m range

4. 360° HD Camera [16]

• 6x digital zoom

5. Stereo Telescoping Cameras [17]

- HD 3D imaging from afar
- Flown on Curiosity & Perseverance

6. Infrared Spectrometer [18]

- Temperature data
- Detection of volatiles
- Planned for VIPER

7. Microscope Camera [19]

- Minerology
- Flown on Curiosity

R2-S2 OVERVIEW: CAPABILITIES (PART 2/2)

8. Dual DC Motors [20]

Total 0.25 hp

9. Subsurface Radar [21]

- 15-30cm vertical resolution
- 10m penetration depth
- Flown on Perseverance

10. Battery Pack

- 8-hour battery life assuming all systems are being used
- Aerogel insulation (2x thickness FOS)
 - Polar: 3/8"
 - Equatorial: 1/4"

11. Spare Oxygen Tanks

Total 16 hours spare O2

12. Neutron Spectrometer [18]

- Detects volatiles & surface composition
- Planned for VIPER

13. Sample Collection Drill [18]

- 1m long
- Planned for VIPER

14. Wheels

- 40cm diameter aluminum rims
- Titanium spokes
- Rocker-Bogie configuration

MERITS, LIMITATIONS, & FUTURE STUDIES

MERITS:

- Provides critical information to inform risk assessment of EVA missions
- Mentally prepares EVA crew through VR immersion
- Assists during crewed EVA excursions
- Shares data with commercial & international partners to further awareness of Lunar environment

LIMITATIONS:

- Terrain traversing abilities of a rover does not match that of a human in an EVA suit
- If R2-S2 becomes stuck, a crewed EVA mission will need to be planned to rescue it

FUTURE STUDIES:

- Robotic arm for more teleoperation capabilities
- Infrastructure for storing R2-S2 between missions
- Optimized drill placement

REFERENCES

- [1] "Artemis Accords: Principles for Cooperation in the Civil Exploration and Use of the Moon, Mars, Comets, and Asteroids for Peaceful Purposes". NASA. June 2021.
- [2] Chang, Kenneth. "Highlights from Richard Branson's Virgin Galactic Flight." The New York Times, 15 Sept. 2021, https://www.nytimes.com/live/2021/07/11/science/virgin-galactic-launch richard-branson.
- [3] Wall, Mike. "Jeff Bezos Launches into Space on Blue Origin's 1st Astronaut Flight." Space.com, 20 July 2021, https://www.space.com/jeff-bezos-blue-origin-first-astronaut-launch.
- [4] Stein, Vicky. "Inspiration4: The FIRST All-Civilian Spaceflight on SpaceX Dragon." Space.com, 23 Sept. 2021, https://www.space.com/inspiration4-spacex.html.
- [5] Lueders, Kathryn. "Appendix H: Human Landing System, Option A Next Space Technologies for Explorations Partnerships-2." NASA. April 16, 2021.
- [6] Potter, Sean. "NASA Awards Contract to Deliver Science, Tech to Moon." NASA, 8 Apr. 2020, https://www.nasa.gov/press-release/nasa-awards-contract-to-deliver-science-tech-to-moon-ahead-of-human-missions.
- [7] Coleshill, Elliott, et al. "Dextre: Improving maintenance operations on the international space station." Acta Astronautica 64.9-10 (2009): 869-874.
- [8] Hiltz, Michael, et al. "Canadarm: 20 years of mission success through adaptation." (2001).
- [9] Netti, Vittorio. "Design of an autonomous and teleoperated modular robotic free-flyer for EVA operations." ASCEND 2020. 2020. 4257.
- [10] "Presidential Memorandum on Reinvigorating America's Human Space Exploration Program". The White House. Dec. 11, 2018.
- [11] "Best Practices for Sustainable Lunar Activities." Moon Village Association. October 19, 2020.
- [12] Boroson, Don M., and Bryan S. Robinson. "The Lunar Laser Communication Demonstration: NASA's First Step Toward Very High Data Rate Support of Science and Exploration Missions." Space Science Reviews, vol. 185, no. 1, Springer Netherlands, 2014, pp. 115–28, doi:10.1007/s11214-014-0122-y.
- [13] Moskowitz, Clara. "Shadows of the Moon Hide 'Fluffy' Dirt & Water Ice." Space.com, 19 Jan. 2012, https://www.space.com/14284-moon-permanently-shadowed-regions-water-ice.html.
- [14] "Radiation Assessment Detector (RAD)." NASA. 22 Apr. 2020. Web. 21 Sept. 2021.
- [15] "Velodyne's HDL-32E SURROUND Lidar Sensor." Velodyne Lidar. 15 Sept. 2021. Web. 21 Sept. 2021.
- [16] "Quantum 360 Rover Camera." Defender. Web. 21 Sept. 2021.
- [17] "Mast-Mounted Camera System (MASTCAM-Z)." NASA, https://mars.nasa.gov/mars2020/spacecraft/instruments/mastcam-z/.
- [18] Fong, Terry. "Volatiles Investigating Polar Exploration Rover (VIPER)." West Virginia University Robotics Seminar.
- [19] "Mahli." NASA, 22 Apr. 2020, https://mars.nasa.gov/msl/spacecraft/instruments/mahli/.
- [20] "Right-Angle Shaft DC Gearmotor." *McMaster-Carr*. Web. 21 Sept. 2021.
- [21] "Radar Imager for Mars' Subsurface Exploration (RIMFAX)." NASA. Retrieved September 21, 2021, from https://mars.nasa.gov/mars2020/spacecraft/instruments/rimfax/.

BACKUP SLIDES

R2-S2 TERRAIN HAZARD DETECTION SYSTEM

1. LiDAR Generates 3D cartography data of Lunar landscape

2. Topology algorithm determines locations inaccessible to R2-S2

3. Terrain hazards are overlayed onto Teleoperator's VR display (shown in red)

ANTENNA SIZING & POWER BUDGET

Link Budget for R2-S2 Direct-to-Earth Communications				
<u>Parameter</u>	<u>Linear Value</u>	<u>dB Value</u>		
R2-S2 Antenna (Transmitting)				
Diameter (m)	0.221257	-		
Efficiency	0.7	-		
Frequency (Hz)	9.00E+09	-		
Data Rate (bps)	4.50E+08	86.532		
Gain (W)	304.819	24.840		
Transmitted Power (W)	90	19.542		
Space, Atmospheric, and Line Loss				
Range (m)	3.76E+08	-		
Space Loss	-	-223.043		
Atmospheric Loss	-	2.000		
Line Loss	0.8	-0.969		
DSN Antenna (Receiving)				
Diameter (m)	34	-		
Efficiency	0.7	-		
Frequency (Hz)	9.00E+09	-		
Gain (W)	7188	68.572		
Attenuation Loss	-	3.000		
Temperature Noise (K)	200	23.010		
Signal to Noise Ratio				
Desired Eb/No	-	10		
*Green Highlighted Cells are backed-out of Eb/No equation				
*Some of these values are estimates to get a rough idea of transmitting antenna				

^{*}Some of these values are estimates to get a rough idea of transmitting antenna diameter

R2-S2 Power Budget					
Item	Quantity	Power(W)	Source		
Motors	2	0.25	<u>Link</u>		
Antenna	1	300	Calculations		
360 Degree Camera	1	120	<u>Link</u>		
LiDAR	1	12	<u>Link</u>		
Radiation Sensor	1	4.2	<u>Link</u>		
Subsurface Radar	1	9.5	<u>Link</u>		
Regolith Drill	1	358	<u>Link</u>		
Neutron Spectrometer	1	1.6	<u>Link</u>		
Infrared Camera	1	29.56	<u>Link</u>		
MastCam-Z	1	17.4	<u>Link</u>		
Microscope	1	17.4	Estimate		
Total		869.91			

RADIO VS. LASER COMMUNICATION

Feature	Radio	Lunar Laser Communication Demonstration (LLCD) [12]
Sensitivity to Atmospheric and Physical Obstruction	Less sensitive (Longer Λ)	More sensitive (Shorter Λ)
Sensitivity to long-distance communication	More Sensitive (Greater diffraction)	Less Sensitive (Less diffraction)
Beamwidth	Easier to point (Wider beamwidth)	Stricter pointing requirements; however, it has been demonstrated that vibration control systems increase pointing accuracy (Narrower beam width)
Data Rate/Mass Ratio	Smaller	Larger (Higher frequency means higher data rate, shorter λ means smaller apertures and less mass)
Power Requirements	Larger	Smaller
Ground Infrastructure	Complete coverage (Deep Space Network)	Complete coverage

Green = Pros Red = Cons

RATIONALE FOR COMMS ARCHITECTURE SELECTION

R2-S2 Rover

- Nominal comms: Radio
 - Less strict pointing requirements
 - R2-S2 will be moving around a lot
 - Less sensitive to physical obstruction
 - R2-S2 may need to explore caves and tunnels

Moon Base

- Nominal comms: Laser
 - Stricter pointing requirements
 - Easy to point at Earth from stationary base
 - Higher data rate
 - Better for HD livestreaming
- Contingency comms: Radio

Earth

- Nominal comms: Laser
 - Stricter pointing requirements
 - Easy to point at the Moon from stationary facility
 - Higher data rate
 - Better for HD livestreaming
- Contingency comms: Radio

BATTERY PACK DESIGN: APPROXIMATE HEAT TRANSFER MODELS

EQUATORIAL DAYTIME OPERATIONS:

EQUATORIAL NIGHTTIME & POLAR OPERATIONS:

BATTERY PACK DESIGN: INSULATION SIZING (EQUATORIAL DAYTIME)

# Batteries & Projected Battery Area					
Parameter	Value	Unit	Description		
Р	870	W	Power required by rover		
t_EVA	8	Hrs	EVA time		
b_cap	111	Amp-Hrs	Battery capacity		
V	12	V	Voltage		
A1	0.0516	m^2	Area of one battery		
N	5.2252	Batteries	Number of batteries needed		
N_ceiling	6	Batteries	N rounded up to integer value		
			Projected area of entire battery		
Α	0.3093	m^2	pack		

$$\# \ Batteries = \frac{Power(W)*time(hrs)}{Voltage(V)*Battery\ Capacity(Amp-hrs)}$$

	Heat Capacity				
Molecule	Mi (g/mol)	mi (kg)	ci (J/kgK)		
Li	7	1.1624E-26	3582		
Fe	55.84	9.27267E-26	450		
Р	30.974	5.14347E-26	770		
04	64	1.06277E-25	920		
LiFePO4	157.814	2.62062E-25	842.333		

$$c_b = \frac{\sum m_i c_i}{\sum m_i}$$

Daytime Energy Balance					
Parameter	Value	Unit	Description	Source	
Fs	1368	W/m^2	Solar Radiation	-	
Α	0.3093	m^2	A_rad = A_cond in this case	Calculation	
Tg	390	K	Temperature of the ground	<u>Link</u>	
Tb,max	333.15	K	Max temperature of the battery	<u>Link</u>	
k_ins	0.035	W/mK	Thermal conductivity of insulation	Link	
eps_ins	0.9	-	Emissivity of insulation	<u>Link</u>	
		W/m^2K^			
Sigma	5.67E-08	4	Stefan-Boltzmann Constant	-	
c_b	842.333	J/K	Specific heat capacity of LiFePO4	Calculation	
t_EVA	28800	S	EVA time	-	
m_b	79.8	kg	Mass of battery pack	<u>Link</u>	
L_ins	0.00040094	m	Thickness of insulation	Calculation	
	0.0159	in			

$$L_{ins} = \frac{\left(T_g - T_{b,max}\right)k_{ins}A}{\varepsilon_{ins}\sigma T_g^4 + \frac{c_b m_b T_{b,max}}{t_{EVA}} - F_s A}$$

BATTERY PACK DESIGN: INSULATION SIZING (EQUATORIAL NIGHTTIME)

# Batteries & Projected Battery Area					
Parameter	Value	Unit	Description		
P	870	W	Power required by rover		
t_EVA	8	Hrs	EVA time		
b_cap	111	Amp-Hrs	Battery capacity		
V	12	V	Voltage		
A1	0.0516	m^2	Area of one battery		
N	5.2252	Batteries	Number of batteries needed		
N_ceiling	6	Batteries	N rounded up to integer value		
			Projected area of entire battery		
Α	0.3093	m^2	pack		

$$\# \ Batteries = \frac{Power(W)*time(hrs)}{Voltage(V)*Battery\ Capacity(Amp-hrs)}$$

	Heat Capacity					
Molecule	Mi (g/mol)	mi (kg)	ci (J/kgK)			
Li	7	1.1624E-26	3582			
Fe	55.84	9.27267E-26	450			
Р	30.974	5.14347E-26	770			
04	64	1.06277E-25	920			
LiFePO4	157.814	2.62062E-25	842.333			

$$c_b = \frac{\sum m_i c_i}{\sum m_i}$$

Nighttime Energy Balance				
Parameter	Value	Unit	Description	Source
Fs	1368	W/m^2	Solar Radiation	-
Α	0.3093	m^2	A_rad = A_cond in this case	Calculation
Tg	95	K	Temperature of the ground	<u>Link</u>
Tb,min	253.15	K	Min temperature of the battery	<u>Link</u>
k_ins	0.035	W/mK	Thermal conductivity of insulation	Link
eps_ins	0.9	-	Emissivity of insulation	<u>Link</u>
Sigma	5.67E-08	W/m^2K^4	Stefan-Boltzmann Constant	-
c_b	842.333	J/K	Specific heat capacity of LiFePO4	Calculation
t_EVA	28800	S	EVA time	-
m_b	79.8	kg	Mass of battery pack	<u>Link</u>
L_ins	0.00291823	m	Thickness of insulation	Calculation
	0.1159	in		

$$L_{ins} = \frac{(T_{b,min} - T_g)k_{ins}A}{\frac{c_bT_{b,min}}{t_{EVA}} - \varepsilon_{ins}\sigma T_g^4}$$

BATTERY PACK DESIGN: EQUATORIAL CHARGE TIME

Solar Power Charge Time (Equatorial)				
Parameter	Value	Description	Source	
A (m^2)	0.724	Solar Panel Area	CAD Model	
Fs (W/m^2)	1370	Solar constant on the Moon	-	
fp	0.95	Packing factor	Estimate	
е	0.2	Efficiency	Estimate	
d	0.05	Various other losses	Estimate	
g (°C^-1)	0.001	Thermal losses	Estimate	
Tref (°C)	28	Reference Temperature	-	
To (°C)	116.85	Max Lunar Surface Temperature	<u>Link</u>	
P (W)	163.13	Power produced	Calculation	
Cap (A-hrs)	666	Battery pack capacity	Calculation	
V (V)	12	Battery Voltage	<u>Link</u>	
t (hrs)	48.992	Charge time	Calculation	
*Charge time represents when the Sun is directly overhead				

 P_{BOL} = F_S A f_P $ε_{BOL}$ (1.0– $δ_{loss}$) [1.0– $γ_T$ (t_0 – t_{REF})]

BATTERY PACK DESIGN: INSULATION SIZING (POLAR)

# Batteries & Projected Battery Area				
Parameter	Value	Unit	Description	
Р	870	W	Power required by rover	
t_EVA	8	Hrs	EVA time	
b_cap	111	Amp-Hrs	Battery capacity	
V	12	V	Voltage	
A1	0.0516	m^2	Area of one battery	
N	5.2252	Batteries	Number of batteries needed	
N_ceiling	6	Batteries	N rounded up to integer value	
			Projected area of entire battery	
А	0.3093	m^2	pack	

$$\# \ Batteries = \frac{Power(W)*time(hrs)}{Voltage(V)*Battery\ Capacity(Amp-hrs)}$$

	Heat Capacity					
Molecule	Mi (g/mol)	mi (kg)	ci (J/kgK)			
Li	7	1.1624E-26	3582			
Fe	55.84	9.27267E-26	450			
Р	30.974	5.14347E-26	770			
04	64	1.06277E-25	920			
LiFePO4	157.814	2.62062E-25	842.333			

$$c_b = \frac{\sum m_i c_i}{\sum m_i}$$

			71 200 1	1	
South Pole Energy Balance					
Parameter	Value	Unit	Description	Source	
Fs	1368	W/m^2	Solar Radiation	-	
Α	0.3093	m^2	A_rad = A_cond in this case	Calculation	
Tg	25.15	K	Temperature of the ground	<u>Link</u>	
Tb,min	253.15	K	Min temperature of the battery	<u>Link</u>	
k_ins	0.035	W/mK	Thermal conductivity of insulation	Link	
eps_ins	0.9	1	Emissivity of insulation	<u>Link</u>	
Sigma	5.67E-08	W/m^2K^4	Stefan-Boltzmann Constant	-	
c_b	842.333	J/K	Specific heat capacity of LiFePO4	Calculation	
t_EVA	28800	S	EVA time	-	
m_b	79.8	kg	Mass of battery pack	<u>Link</u>	
L_ins	0.00417767	m	Thickness of insulation	Calculation	
	0.1659	in			

$$L_{ins} = \frac{(T_{b,min} - T_g)k_{ins}A}{\frac{c_b T_{b,min}}{t_{EVA}} - \varepsilon_{ins}\sigma T_g^4}$$

BATTERY PACK DESIGN: POLAR CHARGE TIME

Solar Power Charge Time (Polar)					
Parameter	Value	Description	Source		
A (m^2)	0.746	Solar Panel Area	CAD Model		
Fs (W/m^2)	1370	Solar constant on the Moon	-		
fp	0.95	Packing factor	Estimate		
е	0.2	Efficiency	Estimate		
d	0.05	Various other losses	Estimate		
g (°C^-1)	0.001	Thermal losses	Estimate		
Tref (°C)	28	Reference Temperature	-		
To (°C)	116.85	Max Lunar Surface Temperature	<u>Link</u>		
P (W)	168.08	Power produced	Calculation		
Cap (A-hrs)	666	Battery pack capacity	Calculation		
V (V)	12	Battery Voltage	<u>Link</u>		
t (hrs)	47.548	Charge time	Calculation		
*Charge time represents when the Sun is directly on the lunar horizon					

 P_{BOL} = F_S A f_P $ε_{BOL}$ (1.0– $δ_{loss}$) [1.0– $γ_T$ (t_0 – t_{REF})]