

李谨杰 雷彤彤 杨曼鑫 赵谦

汇报人: 杨曼鑫

研究目标

作品计划性能

研究目标

温度保持

以1℃为单位设定温度,在 50~100℃内保持恒温,并且 误差不超过1℃。

远程控制

既可以按键设置,又可以用 **微信小程序**通过**蓝牙**显示并 控制恒温温度

容量合适

设计尺寸**300*200*150 (mm) 6L水**

5min从室温加热到100℃ 计算功率630W

安全可靠

以**220V**交流电为电源,具有 **漏电和失控保护**功能,具有 安全性

项目计划

引自开题报告

第一周至第三周

查询资料 完成开题报告 各队员列出工作计划

第四周到第五周

电路设计完成,并进行仿真

第六周至第八周

买齐元件,焊接 电路,完成单片 机程序的编写

第九周到第十周

实物制作完成

第十一周到第十四周

测试、改进、优化作品

进度介绍

我们做了什么

温度采集电路

AD转换方案

测温电路仿真结果

铂电阻实物图

显示电路

按键电路

按键与显示效果展示

按键电路

220V转12V、5V电路

仿真结果

驱动电路

驱动电路实物图

进度介绍-单片机部分

单片机 (STM32F103C8T6) 引脚配置

已实现温度显示与按键设置

DMA+IDLE串口空闲中断

己实现蓝牙配置

通过HC-05模块

单片机PID控制

编程完成, 还未加入实际电路模拟

进度介绍-单片机部分

单片机蓝牙设定效果展示

此处插入单片机蓝牙效果 动图

实物图

无需下载

获取方便 版本兼容性好 一个版本,所有机型 即扫即用 节约手机空间

为什么是小程序?

进度介绍-实物设计

水箱效果渲染图

后续计划

我们将要做什么

目前存在的不足

整体略慢于预期,但在可控范围内

