曲线积分与曲面积分

积分学	定积分	二重积分	三重积分	曲线积分	曲面积分
积分域	区间域	平面域	空间域	曲线域	曲面域

第十章

第一节

第一型曲线积分

- 一、第一型曲线积分的概念与性质
- 二、第一型曲线积分的计算法

一、第一型曲线积分的概念与性质

1. 引例1: 曲线形构件的质量 假设曲线形细长构件在空间所占 弧段为ÂB, 其线密度为 $\rho(x,y,z)$, 为计算此构件的质量, 采用

"大化小,常代变,近似和,求极限"

可得
$$M = \lim_{\lambda \to 0} \sum_{k=1}^{n} \rho(\xi_k, \eta_k, \zeta_k) \Delta s_k$$

引例2: 曲顶柱面的侧面积

假设曲顶柱面的准线为弧段为 \widehat{AB} , (ξ_k, η_k, ζ_k)

顶为u = f(x, y, z),

为计算此柱面的面积,采用

"大化小,常代变,近似和,求极限"

可得
$$M = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta s_k$$

2. 定义

设 Γ 是空间中一条有限长的光滑曲线, f(x,y,z)是定义在 Γ 上的一个有界函数, 若通过对 Γ 的任意分割 和对局部的任意取点, 下列"乘积和式极限" (ξ_k,η_k,ζ_k)

$$\lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta s_k \stackrel{\text{idft}}{=} \int_{\Gamma} f(x, y, z) \, \mathrm{d}s$$

都存在,则称此极限为函数 f(x,y,z)在曲线 Γ 上对弧长的曲线积分,或第一型曲线积分. f(x,y,z)称为被积函数, Γ 称为积分弧段.

曲线形构件的质量
$$M = \int_{\Gamma} \rho(x, y, z) ds$$

如果 L 是 xoy 面上的曲线弧,则定义对弧长的曲线积分为

$$\int_{L} f(x, y) ds = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta s_{k}$$

如果 L 是闭曲线,则记为 $\int_{L} f(x,y) ds$.

思考:

- (1) 若在 $L \perp f(x, y)$ ≡1, 问 $\int_L ds$ 表示什么?
- (2) 定积分是否可看作对弧长曲线积分的特例? 否! 对弧长的曲线积分要求 $ds \ge 0$,但定积分中 dx 可能为负.

3. 性质

(1)
$$\int_{\Gamma} [f(x, y, z) \pm g(x, y, z)] ds$$
$$= \int_{\Gamma} f(x, y, z) ds \pm \int_{\Gamma} g(x, y, z) ds$$

(2)
$$\int_{\Gamma} k f(x, y, z) ds = k \int_{\Gamma} f(x, y, z) ds$$
 (k 为常数)

(3)
$$\int_{\Gamma} f(x, y, z) ds = \int_{\Gamma_1} f(x, y, z) ds + \int_{\Gamma_2} f(x, y, z) ds$$
$$(\Gamma \oplus \Gamma_1, \Gamma_2 \text{ 组成})$$

(4)
$$\int_{\Gamma} ds = l$$
 (l为曲线弧 Γ 的长度)

(5)对称性类似重积分,例如 $\int_{\Gamma} f(x,y) ds$,若 Γ 关于y 轴对称,f关于x为奇函数,则偶倍奇零。

二、第一型曲线积分的计算法

定理:设f(x,y)是定义在光滑曲线弧

$$L: x = \varphi(t), y = \psi(t) \ (\alpha \le t \le \beta)$$

上的连续函数,则曲线积分 $\int_L f(x,y) ds$ 存在,且

$$\int_{L} f(x,y) ds = \int_{\alpha}^{\beta} f[\varphi(t), \psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt$$

证:根据定义

$$\int_{L} f(x, y) ds = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta s_{k}$$

设各分点对应参数为
$$t_k$$
 $(k = 0,1,\cdots,n)$,
点 (ξ_k,η_k) 对应参数为 $\tau_k \in [t_{k-1},t_k]$,

$$\Delta s_k = \int_{t_{k-1}}^{t_k} \sqrt{\varphi'^2(t) + \psi'^2(t)} \, \mathrm{d}t$$

$$= \sqrt{\varphi'^2(\tau_k') + \psi'^2(\tau_k')} \, \Delta t_k, \quad \tau_k' \in [t_{k-1},t_k]$$
则 $\int_L f(x,y) \, \mathrm{d}s$

$$= \lim_{\lambda \to 0} \sum_{k=1}^n f[\varphi(\tau_k), \psi(\tau_k)] \sqrt{\varphi'^2(\tau_k') + \psi'^2(\tau_k')} \, \Delta t_k$$

$$\downarrow \hat{z} \hat{z} \sqrt{\varphi'^2(t) + \psi'^2(t)} \hat{z} \hat{z} \hat{z}$$

$$= \lim_{\lambda \to 0} \sum_{k=1}^n f[\varphi(\tau_k), \psi(\tau_k)] \sqrt{\varphi'^2(\tau_k) + \psi'^2(\tau_k)} \, \Delta t_k$$

因此

$$\int_{L} f(x, y) ds$$

$$= \int_{\alpha}^{\beta} f[\varphi(t), \psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt$$

说明:

(1) :: $\Delta s_k > 0$, :. $\Delta t_k > 0$, 因此积分限必须满足 $\alpha < \beta$!

(2) 注意到

$$ds = \sqrt{(dx)^2 + (dy)^2}$$
$$= \sqrt{\varphi'^2(t) + \psi'^2(t)} dt$$

因此上述计算公式相当于"换元法".

如果曲线 L 的方程为 $y = \psi(x)$ ($a \le x \le b$),则有

$$\int_{L} f(x,y) ds = \int_{a}^{b} f(x,\psi(x)) \sqrt{1 + {\psi'}^{2}(x)} dx$$

如果方程为极坐标形式: $L: r = r(\theta)$ ($\alpha \le \theta \le \beta$),则

$$\int_L f(x,y) \mathrm{d}s$$

$$= \int_{\alpha}^{\beta} f(r(\theta) \cos \theta, r(\theta) \sin \theta) \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$$

推广:设空间曲线弧的参数方程为

$$\Gamma$$
: $x = \phi(t)$, $y = \psi(t)$, $z = \omega(t)$ ($\alpha \le t \le \beta$)

则 $\int_{\Gamma} f(x, y, z) ds$

$$= \int_{\alpha}^{\beta} f(\varphi(t), \psi(t), \omega(t)) \sqrt{\varphi'^{2}(t) + \psi'^{2}(t) + \omega'^{2}(t)} dt$$

例1. 计算 $\int_L x ds$, 其中 L 是抛物线 $y = x^2$ 上点 O(0,0) 与点 B(1,1) 之间的一段弧.

解: ::
$$L: y = x^2 \ (0 \le x \le 1)$$

$$\therefore \int_{L} x ds = \int_{0}^{1} x \cdot \sqrt{1 + (2x)^{2}} dx$$

$$= \int_{0}^{1} x \sqrt{1 + 4x^{2}} dx$$

$$= \left[\frac{1}{12} (1 + 4x^{2})^{\frac{3}{2}} \right]_{0}^{1}$$

$$= \frac{1}{12} (5\sqrt{5} - 1)$$

$$y = x^{2/3}$$

$$y = x^{2/3}$$

$$0$$

$$1 x$$

例2. 计算 $\int_L (x+y) ds$,其中 L 是以 O(0,0),A(1,0),B(0,1) 为顶点的三角形的边界.

解:因L由OA,AB,BO三条线段连接而成,故

$$\int_{L} (x+y) \, ds = \int_{OA} (x+y) \, ds$$

$$+ \int_{AB} (x+y) \, ds + \int_{BO} (x+y) \, ds$$

$$\int_{OA} (x+y) \, ds = \int_{0}^{1} (x+0) \sqrt{1+0^{2}} \, dx = \frac{1}{2}$$

$$\int_{AB} (x+y) \, ds = \int_{0}^{1} [x+(1-x)] \sqrt{1+(-1)^{2}} \, dx = \sqrt{2}$$

$$\int_{BO} (x+y) \, ds = \int_{0}^{1} (0+y) \sqrt{1+0^{2}} \, dy = \frac{1}{2}$$

$$\int_{L} (x+y) \, ds = \sqrt{2} + \frac{1}{2} + \frac{1}{2} = \sqrt{2} + 1$$

例2. 计算半径为 R ,中心角为 α 的圆弧 L 对于它的对 称轴的转动惯量I(设线密度 $\mu = 1$).

解:建立坐标系如图,则

建立坐标系如图,则
$$I = \int_{L} y^{2} ds$$

$$L : \begin{cases} x = R \cos \theta \\ y = R \sin \theta \end{cases} (-\alpha \le \theta \le \alpha)$$

$$= \int_{-\alpha}^{\alpha} R^{2} \sin^{2} \theta \sqrt{(-R \sin \theta)^{2} + (R \cos \theta)^{2}} d\theta$$

$$= R^{3} \int_{-\alpha}^{\alpha} \sin^{2} \theta d\theta = 2R^{3} \left[\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right]_{0}^{\alpha}$$

$$= R^{3} (\alpha - \sin \alpha \cos \alpha)$$

例3. 计算
$$I = \int_L |x| ds$$
, 其中 L 为双纽线

$$(x^2 + y^2)^2 = a^2(x^2 - y^2)$$
 $(a > 0)$

解: 在极坐标系下 $L:r^2=a^2\cos 2\theta$,

它在第一象限部分为

$$L_1: r = a\sqrt{\cos 2\theta} \quad (0 \le \theta \le \frac{\pi}{4})$$

利用对称性,得

$$I = 4\int_{L_1} x \, \mathrm{d}s = 4\int_0^{\pi/4} r \cos\theta \sqrt{r^2(\theta) + r'^2(\theta)} \, \mathrm{d}\theta$$
$$= 4\int_0^{\pi/4} a^2 \cos\theta \, \mathrm{d}\theta = 2\sqrt{2} \, a^2$$

 \mathcal{X}

例4. 计算曲线积分 $\int_{\Gamma} (x^2 + y^2 + z^2) ds$, 其中Γ为螺旋 线 $x = a\cos t$, $y = a\sin t$, z = kt ($0 \le t \le 2\pi$)的一段弧. 解: $\int_{\Gamma} (x^2 + y^2 + z^2) ds$ $= \int_0^{2\pi} [(a\cos t)^2 + (a\sin t)^2 + (kt)^2]$ $\sqrt{(-a\sin t)^2 + (a\cos t)^2 + k^2} \, \mathrm{d} t$ $= \sqrt{a^2 + k^2} \int_0^{2\pi} [a^2 + k^2 t^2] dt$ $= \sqrt{a^2 + k^2} \left[a^2 t + \frac{k^2}{3} t^3 \right]_0^{2\pi}$ $=\frac{2\pi}{3}\sqrt{a^2+k^2}\left(3a^2+4\pi^2k^2\right)$

例5. 计算 $\int_{\Gamma} x^2 ds$, 其中 Γ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 x + y + z = 0 所截的圆周.

解: 由对称性可知
$$\oint_{\Gamma} x^2 \, ds = \oint_{\Gamma} y^2 \, ds = \oint_{\Gamma} z^2 \, ds$$

$$\therefore \oint_{\Gamma} x^2 \, ds = \frac{1}{3} \oint_{\Gamma} (x^2 + y^2 + z^2) \, ds$$

$$= \frac{1}{3} \oint_{\Gamma} a^2 \, ds = \frac{1}{3} a^2 \cdot 2\pi \, a$$

$$= \frac{2}{3} \pi \, a^3$$

思考: 例5中
$$\Gamma$$
 改为 $\begin{cases} (x-1)^2 + (y+1)^2 + z^2 = a^2 \\ x + y + z = 0 \end{cases}$,如何 计算 $\int_{\Gamma} x^2 ds$?

例6. 计算
$$I = \int_{\Gamma} (x^2 + y^2 + z^2) ds$$
, 其中Γ为球面 $x^2 + y^2$

$$+z^2 = \frac{9}{2}$$
与平面 $x + z = 1$ 的交线.

解: Γ:
$$\begin{cases} \frac{1}{2}(x-\frac{1}{2})^2 + \frac{1}{4}y^2 = 1, & \text{化为参数方程} \\ x+z=1 \end{cases}$$

$$\Gamma: \begin{cases} x = \sqrt{2}\cos\theta + \frac{1}{2} \\ y = 2\sin\theta \\ z = \frac{1}{2} - \sqrt{2}\cos\theta \end{cases} \quad (0 \le \theta \le 2\pi)$$

则

$$ds = \sqrt{(-\sqrt{2}\sin\theta)^2 + (2\cos\theta)^2 + (\sqrt{2}\sin\theta)^2} d\theta = 2d\theta$$

$$I = \frac{9}{2} \int_0^{2\pi} 2 \, \mathrm{d}\theta = 18\pi$$

例7. 求椭圆柱面 $\frac{x^2}{5} + \frac{y^2}{9} = 1$ 位于 xOy 面上方及平面 z = y 下方那部分柱面的侧面积 S.

解: 这是曲顶柱面的侧面积问题.

$$L: x = \sqrt{5}\cos t, y = 3\sin t \ (0 \le t \le \pi)$$

$$\int_{L} z \, ds = \int_{L} y \, ds$$

$$= \int_{0}^{\pi} 3 \sin t \sqrt{5 \sin^{2} t + 9 \cos^{2} t} \, dt$$

$$= -3 \int_{0}^{\pi} \sqrt{5 + 4 \cos^{2} t} \, d\cos t$$

$$= 9 + \frac{15}{4} \ln 5$$

思考与练习

1. 已知椭圆
$$L: \frac{x^2}{4} + \frac{y^2}{3} = 1$$
周长为 a ,求
$$\oint_L (2xy + 3x^2 + 4y^2) ds$$

提示: 利用对称性 $\int_L 2xy \, ds = 0$

原式 =
$$12 \oint_L (\frac{x^2}{4} + \frac{y^2}{3}) ds = 12 \oint_L ds = 12a$$

分析:
$$\oint_{L} 2xy \, ds = \int_{L_{\pm}} 2xy \, ds + \int_{L_{\mp}} 2xy \, ds$$

$$= \int_{2}^{2} 2x \sqrt{\cdots} \sqrt{1 + y'^{2}} \, dx + \int_{2}^{2} 2x (-\sqrt{\cdots}) \sqrt{1 + y'^{2}} \, dx$$

- 2. 设均匀螺旋形弹簧L的方程为 $x = a\cos t$, $y = a\sin t$, z = kt ($0 \le t \le 2\pi$),
 - (1) 求它关于z 轴的转动惯量 I_z ;
 - (2) 求它的质心.

解: 设其密度为 ρ (常数).

(1)
$$I_z = \int_L (x^2 + y^2) \rho \, ds = \int_0^{2\pi} a^2 \rho \sqrt{a^2 + k^2} \, dt$$

= $2\pi a^2 \rho \sqrt{a^2 + k^2}$

(2)
$$L$$
的质量 $m = \int_{L} \rho \, ds = 2\pi \rho \sqrt{a^2 + k^2}$

$$\overline{m} \quad \int_{L} x \rho \, \mathrm{d}s = a \rho \sqrt{a^2 + k^2} \int_{0}^{2\pi} \cos t \, \mathrm{d}t = 0$$

$$\int_{L} y\rho \,ds = a \rho \sqrt{a^2 + k^2} \int_{0}^{2\pi} \sin t \,dt = 0$$

$$\int_{L} z\rho \,ds = k \rho \sqrt{a^2 + k^2} \int_{0}^{2\pi} t \,dt = 2\pi^2 k \rho \sqrt{a^2 + k^2}$$
故重心坐标为 $(0, 0, k\pi)$

3. 设 C 是由极坐标系下曲线 r = a, $\theta = 0$ 及 $\theta = \frac{\pi}{4}$ 所围区域的边界, 求

$$I = \int_C e^{\sqrt{x^2 + y^2}} \, \mathrm{d} s$$

提示: 分段积分

$$y = x \quad y = a$$

$$o \quad y = 0 \quad a \quad x$$

$$I = \int_0^a e^x \, dx + \int_0^{\frac{\pi}{4}} e^a a \, d\theta + \int_0^{\frac{a}{\sqrt{2}}} e^{x\sqrt{2}} \sqrt{2} \, dx$$
$$= (\frac{\pi}{4}a + 2)e^a - 2$$

4. L为球面 $x^2 + y^2 + z^2 = R^2$ 在第一卦限与三个坐标 面的交线, 求其形心.

解:如图所示,交线长度为

图所示,交线长度为
$$l = 3\int_{L_1} ds = 3 \cdot \frac{2\pi R}{4} = \frac{3\pi R}{2}$$
 水性,形心坐标为
$$\frac{L_2}{x}$$

由对称性,形心坐标为

$$\overline{z} = \overline{y} = \overline{x} = \frac{1}{l} \int_{L_1 + L_2 + L_3} x \, ds$$

$$= \frac{1}{l} \left[\int_{L_1} x \, ds + \int_{L_2} x \, ds + \int_{L_3} x \, ds \right] = \frac{2}{l} \int_{L_1} x \, ds$$

$$= \frac{2}{l} \int_{0}^{\frac{\pi}{2}} R \cos \theta \cdot R \, d\theta = \frac{4R}{3\pi}$$