

OUR TEAM

Assist. Prof. Dr. Ayşe Nurdan SARAN

CONTENT

1

PROBLEM

What brought us here?

2

ANALYSIS

What we learned and designed as a result of our researches?

3

DIFFERENCE

What is our difference?

4

TECHNOLOGIES

What were the technologies and diagrams used?

5

CONCLUSION

To sum up

6

PROTOTYPE

Prototype of the SER web-site

INTRODUCTION

CALL CENTER

VIRTUAL ASSISTANT

CUSTOMER SERVICES

PROBLEM

What brought us here?

ANALYSIS

What we learned and designed as a result of our researches?

Speech is the most important and effective main way of human interaction.

There is a transfer of emotion in every person's speech.

Analyzing speech signals.

SYSTEM PURPOSE

Machines'
understanding of
human emotions

SYSTEM PURPOSE

The aim of this system is to analyze the emotional state of these people as a result of taking the texts that people have spoken or written.

SIMILAR PROJECTS

Papers	Dataset	Emotions	Technique	Accuracy(%)
An Urdu Speech Corpus For Emotion Recognition (2022) [2]	Urdu Emotional Speech Dataset	Angry, Happy, Sad, Neutral	k-NN (with disgust) k-NN (without disgust)	72.5 82.5
Clustering-Based Speech Emotion Recognition (2020) [3]	IEMOCAP	Angry, Happy, Sad, Fear, Surprise, Neutral	CNN + LSTM	72.25
	EMO-DB			85.57
	RAVDEES			77.02
Speech Emotion Recognition with Deep Learning (2020) [4]	RML Dataset	Angry, Disgust, Fear, Happy, Sad, Surprise	Basic AE with SVM	72.83
			Stacked AE with SVM	74.07
Speech emotion recognition with deep convolutional neural networks (2020) [5]	IEMOCAP	DB Fear, Happy, Sad, Surprise	CNN	64.30
	EMO-DB		LSTM	71.61
	RAVDEES			86.1

When the projects done in the past are examined, it has been observed that Angry, Disgusted, Fear, Happy, Sad and Surprised emotions intensified.

DIFFERENCE

What is our difference?

Emotion analysis from text and audio files.

CONTRIBUTIONS

We work from both audio and text files.

After the audio file is processed, it is converted into text and the mood appears on the screen.

ADVANTAGES

2- FEWER ERRORS

3-NO REQUIREMENT OTHER THAN PC

FLOWCHART

The speech features can be divided into 4 main categories:

- Continuous Speech Features
- Voice Quality Features
- Spectral-Based Speech Features
- Nonlinear TEO-Based Features

Continuous Speech Features:

- Pitch-Related Features
- Formants Features
 - Energy-Related Features
 - Timing Features

Voice Quality Features:

- Voice Level
- Voice Pitch
- Phrase, Phoneme, Word and Feature Boundaries
- Temporal Structures

Spectral-Based Speech Features:

- Linear Predictor Coefficient (LPC)
- Mel Frequency Cepstral Coefficient (MFCC)
- Log Frequency Power Coefficient (LFPC)

Nonlinear TEO-Based Features

- TEO Decomposed FM Variation
 - Normalized TEO Autocorrelation Envelope Area
 - Critical Bandbased TEO Autocorrelation Envelope Area

TECHNOLOGIES

What were the technologies and diagrams used?

FUTURE WORKS

PROTOTYPEPrototype of the SER web-site

HOME PAGE

LOGIN PAGE

PROTOTYPEPrototype of the SER web-site

UPLOAD SPEECH FILE PAGE

UPLOAD TEXT PAGE

PROTOTYPE

Prototype of the SER web-site

RESULT PAGE

FAQ PAGE

A Log in

CONCLUSION

To sum up

