Beginning of Class

- Download Anaconda(full distro) now so wifi works later
- Assignment 4 updated to include ffmpeg instructions

Project Pitches

History of Foldable

Anaconda Installation

In Class Exercise

GROUP assignment 5

- Using the results from Tuesday's assignment (or at least the same methods), please find the answer to as many of these questions as possible, for your team's animal / subsystem / motion(gait).
 What is the animal / subsytem / motion(gait) pair you are
 - studying?
 - List the biomechanics references you have already found
 - List other bio-inspired robots based on the same platform
 - List the typical body mass, for as many different body parts as possible
 - Find other values
 - speed of the animal while walking / running
 - if running, does the animal leave the ground?
 - typical stride length
 - maximum height off the ground in a stride

GROUP Assignment 5

What is the total energy used to complete a single locomotion cycle? What is the power required? How did you calculate this?
How much respiration energy / power is used? If you can't find it, are there references for a similar animal you could scale? Can you find a reference that tells you how to scale respiration energy across different size animals?
Find the ground reaction forces involved with completing a typical locomotion cycle. A figure from literature (with the appropriate references) of the animal during a locomotion cycle typical of the one you are studying will suffice. Make sure you include the units
Supply a figure from literature of the animal's skeleton, exoskeleton, shell, rigid structure. How many moving parts are there in the biological system?

GROUP Assignment 5

Draw the simplest representation of the system you can. How many rigid bodies are there? How many can be approximated as massless(1/10 of the total mass or less)? Where are the springs? Where is the (main) motor?
Draw free body diagrams for those bodies.
Based on mass a knowledge of the duration and magnitude of the ground/world reaction forces involved in a single stride, what forces/torques would be required at the motor to add enough energy to the system at the ground? What power?
Look online for a motor and battery which can supply that power. Motor efficiencies may be as high as 95%, but let's assume you find a cheap motor near 50-60% efficiency. How much does it weigh? What are the mechanical watts/kg for motor/battery vs animal? Which one is more efficient? What about after you factor in your structure weight?
Discuss whether/how you will need to scale your robot up or down, or how you can mitigate the differences.

After Class

Complete Survey

Groups

- Create your group on Blackboard
- Will help with grading submissions
- You may switch, but unless you find new partners you will be consolidated.
- •*Limited to 2.

