Campo de indução magnética

Campo de indução Magnética

O campo de indução magnética é um campo vetorial:

$$\vec{B}(x,y,z) = B_{\chi}(x,y,z)\hat{x} + B_{y}(x,y,z)\hat{y} + B_{z}(x,y,z)\hat{z}$$

Linhas de campo

- A tangente da linha de campo num ponto dá a direção do campo nesse ponto.
- A densidade de linhas de campo numa região do espaço dá informação sobre a intensidade do campo nessa região.

Campo de indução magnética criado por correntes

Lei de Biot-Savart

$$\overrightarrow{dB} = \frac{\mu_0 \, i \, \overrightarrow{dl} \wedge \hat{r}}{4 \, \pi \, r^2}$$

$$\vec{B} = \int \frac{\mu_0 \, i \, \vec{ol} \wedge \hat{r}}{4 \, \pi \, r^2}$$

Permeabilidade magnética do vazio: $\mu_0 = 4\pi \times 10^{-7} \, H \, m^{-1}$

Figure 1. Field at point P is perpendicular to the plane of paper pointing into it

Campo de indução magnética criado por correntes

Bobine circular plana

$$\vec{B}_{\text{eixo espira}} = \frac{\mu_0 i a^2}{2(a^2 + L^2)^{3/2}} \hat{z}$$

$$\vec{B}_{\text{eixo bobine}} = \frac{\mu_0 \, \text{Nia}^2}{2 \left(a^2 + L^2\right)^{3/2}} \, \hat{z}$$

$$\vec{B}_{\text{centro bobine}} = \frac{\mu_0 \, N \, i}{2 \, a} \, \hat{z}$$

Questões

- 1. Dois fios condutores retilíneos, percorridos por uma corrente elétrica i=2 A, são colocados lado a lado, estando os seus centros distanciados de 2 cm. O diâmetro dos próprios fios é desprezável quando comparado com a sua separação.
- a) Se a corrente fluir no mesmo sentido em ambos os fios, qual o vetor campo de indução magnética no ponto intermédio entre eles?
- b) Se a corrente fluir em sentidos contrários, qual o vetor campo de indução magnética no ponto intermédio entre eles?

- a) Calcule o campo de indução magnética criado pela corrente i1 na posição do ponto P1 (10 cm sobre o eixo dos ZZ).
- b) Calcule o campo de indução magnética criado pela corrente i2 na posição do ponto P1 (10 cm sobre o eixo dos ZZ).
- c) Calcule o campo de indução magnética criado pelas correntes i1 e i2 na posição do ponto P2, situado na posição 10 cm sobre o eixo dos YY.

Questões

- 3. Considere duas bobines planas concêntricas e complanares, respecivamente, de raios r1 e r2, e número de espiras N1 e N2, percorridas pelas correntes I1 e I2 em sentidos contrários. Que relação deve existir entre as correntes para que o campo magnético seja nulo no centro das espiras?
- **4.** Considere os três fios muito compridos e co-planares percorridos pelas correntes com as intensidades e sentidos representados na figura. A distância entre fios adjacentes é d= 5 cm. Determine o campo de indução magnética sobre um ponto do fio central.

Campo magnético na matéria

As partículas elementares, em particular os eletrões, têm momento magnético intrínseco de spin, devido ao seu movimento circular.

- Num campo magnético externo:
 - Os momentos magnéticos tendem a alinhar com o campo magnético, reforçando-o.
 - Por outro lado, são induzidas correntes que produzem campo magnético oposto ao campo magnético aplicado.
 - Os materiais caracterizam-se como Diamagnéticos, Paramagnéticos ou Ferromagnéticos, dependendo da forma como se comportam na presença de um campo magnético externo.

Campo magnético na matéria

 \vec{H} = Campo magnético aplicado (externo)

 \vec{B} = Campo de indução magnética

No vazio: $\vec{B} = \mu_0 \vec{H}$

Na matéria: $\vec{B} = \mu \vec{H}$

M = Campo de magnetização

$$\overrightarrow{M} = \chi_m \overrightarrow{H}$$

 $\chi_{\rm m} = Susceptibilidade magnética$

$$\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right) = \mu_0 \left(1 + \chi_m \right) \vec{H} = \mu \vec{H}$$

Campo magnético na matéria

Some Diamagnetic Minerals				
Mineral	Susc., <u>SI*</u>			
quartz	-6.3E-6			
calcite	-4.8E-6			
halite	-6.5E-6			
galena	-4.3E-6			
sphalerite	-3.3E-6			

Some Paramagnetic Minerals					
Mineral	Susc., SI*				
fayalite	1.3E-3				
pyroxene	9.2E-4				
amphiboles	1.6-9.4E-4				
biotite	6.7-9.8E-4				
garnet	0.4-2.0E-3				

Important Ferromagnetic Minerals						
Mineral	Formula	Type	Susc., <u>SI*</u>	Curie T		
magnetite	Fe_3O_4	ferri	3.8-10.0	580°C		
hematite	Fe_2O_3	antiferro	6.9E-3	680°C		
ilmenite	FeTiO ₃	ferri	1.7	50-300°C		
pyrrhotite	FeS	ferri	1.6	320°C		
maghaemi te	Fe ₂ O ₃	ferri	variable	545-675°C		

Campo magnético na matéria

Types of Magnetic Behavior (in order of decrease strength): everything related to magnetics is due to electron spin....

type spin alignment all spins align parallel to one another: spontaneous magnetization- $M=a+b$		spin in simplified plot	examples
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Fe, Co, Ni, Gd, Dy, SmCo ₅ , Sm ₂ Co ₁₇ , Nd ₂ Fe ₁₄ B
ferrimagnetic	most spins parallel to one another, some spins antiparallel: spontaneous magnetization- $M = a - b > 0$	† † † † † † † † † † † †	magnetite (Fe ₃ O ₄), yttrium iron garnet (YIG), GdCo ₅
antiferromagnetic	periodic parallel-antiparallel spin distribution: M = a - b = θ	\$ \dagger \dag	chromium, FeMn, NiO
paramagnetic	spins tend to align parallel to an external magnetic field: M = 0 @ $H = 0$, $M > 0$ @ $H > 0$	H=0 H	oxygen, sodium, aluminum, calcium, uranium
diamagnetic	spins tend to align antiparallel to an external magnetic field M= 0 @ H=0, M<0 @ H>0	H=0 H → O O O O O O O O O O O O O O O O O O	superconductors, nitrogen, copper, silver, gold, water, organic compounds