EAIiIB	Piotr Morawie	cki, Tymoteusz Paszun	Rok II	Grupa 3a	Zespół 6	
Temat: Fale podłużne w ciałach stałych			Numer ćwiczenia: 29			
Data wykonania: 8.11.2017r.	Data oddania: 15.11.2017r.	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:	

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla różnych materiałów na bazie pomiarów prędkości rozchodzenia się fal dźwiękowych (podłóżnych) w prętach.

2 Wstęp teoretyczny

$$\lambda_i = \frac{2l}{i}$$

$$v_i = \lambda_i f$$

$$E = \rho v^2$$

3 Wykonanie ćwiczenia

- Pomiary wymiarów próbek badanych materiałów.
- Pomiary masy próbek badanych materiałów.
- Pomiary częstotliwości dźwieku wydawanego przez pręty po uderzeniu.

4 Wyniki pomiarów

4.1 Wymiary oraz masa próbek

4.2 Pręt miedziany

Zmierzona długość pręta: $l=1802\,\mathrm{mm}.$

Tablica 1: Pomiary częstotliwości dla pręta miedzianego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$	Moduł Younga [GPa]
f_0	1029,45	4,81	3604,00	3710,14	127,73
f_1	2060,90	$2,\!35$	1802,00	3713,74	127,98
f_2	$3092,\!65$	$3,\!53$	$1201,\!33$	3715,30	128,09
f_3	$4123,\!45$	$3,\!53$	901,00	$3715,\!23$	128,08
f_4	5155,80	$3,\!53$	720,80	3716,30	128,15

- 4.3 Pręt stalowy
- 4.4 Pręt z mosiądzu
- 4.5 Pręt aluminiowy
- 5 Wykresy
- 6 Opracowanie wyników
- 6.1 Analiza błędów
- 6.2 Niepewności pomiarów
- 6.3 Ocena zgodności uzyskanych wyników
- 7 Wnioski