## Section 4.6 – Testing the Significance of the Least-Squares Regression Model

## Requirement 1 for Inference on the Least-Squares Regression Model

For any particular value of the explanatory variable x, the mean of the corresponding responses in the population depends linearly on x. That is,

$$\mu_{y|x} = \beta_1 x + \beta_0$$

for some numbers  $\beta_0$  and  $\beta_1$ , where  $\mu_{y|x}$  represents the population mean response when the value of the explanatory variable is x.

The response variables are normally distributed with mean  $\mu_{y|x} = \beta_1 x + \beta_0$  and standard deviation  $\sigma$ .

When doing inference on the least-squares regression model, we require (1) for any explanatory variable, x, the mean of the response variable, y, depends on the value of x through a linear equation, and (2) the response variable, y, is normally distributed with a constant standard deviation,  $\sigma$ . The mean increases/decreases at a constant rate depending on the slope, while the standard deviation remains constant.

A large value of  $\sigma$ , the population standard deviation, indicates that the data are widely dispersed about the regression line, and a small value of  $\sigma$  indicates that the data lie fairly close to the regression line



The least-squares regression model is given by  $y_i = \beta_1 x_i + \beta_0 + \varepsilon_i$  where

 $y_i$  is the value of the response variable for the  $i^{th}$  individual

 $\beta_0$  and  $\beta_1$  are the parameters to be estimated based on sample data

 $\beta_1 x_i$  is the value of the explanatory variable for the  $i^{\text{th}}$  individual

 $\mathcal{E}_{i}$  is a random error term with mean 0 an variance, the error terms are independent.

i = 1, ..., n, where n is the sample size (number of ordered pairs in the data set)

The standard error of the estimate,  $s_{e}$  , is found using the formula

$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}} = \sqrt{\frac{\sum residuals^2}{n - 2}}$$

## Example

Compute the standard error of the estimate for the drilling data which is presented

| Depth at Which Drilling Begins, x (in ft) | Time to Drill 5 Feet, y (in min) |  |
|-------------------------------------------|----------------------------------|--|
| 35                                        | 5.88                             |  |
| 50                                        | 5.99                             |  |
| 75                                        | 6.74                             |  |
| 95                                        | 6.1                              |  |
| 120                                       | 7.47                             |  |
| 130                                       | 6.93                             |  |
| 145                                       | 6.42                             |  |
| 155                                       | 7.97                             |  |
| 160                                       | 7.92                             |  |
| 175                                       | 7.62                             |  |
| 185                                       | 6.89                             |  |
| 190                                       | 7.9                              |  |

## **Solution**

**Step 1:** The least squares regression line to be  $\hat{y} = 0.116x + 5.5273$ 

Step 2, 3: The predicted values as well as the residuals for the 12 observations

| Depth, | Time, | $\hat{\mathcal{Y}}$ | $y - \hat{y}$ | $(y-\hat{y})^2$ |
|--------|-------|---------------------|---------------|-----------------|
| X      | У     |                     |               |                 |
| 35     | 5.88  | 5.9333              | -0.0533       | 0.0028          |
| 50     | 5.99  | 6.1073              | -0.1173       | 0.0138          |
| 75     | 6.74  | 6.3973              | 0.3427        | 0.1174          |
| 95     | 6.1   | 6.6293              | -0.5293       | 0.2802          |
| 120    | 7.47  | 6.9193              | 0.5507        | 0.3033          |
| 130    | 6.93  | 7.0353              | -0.1053       | 0.0111          |
| 145    | 6.42  | 7.2093              | -0.7893       | 0.6230          |
| 155    | 7.97  | 7.3253              | 0.6447        | 0.4156          |
| 160    | 7.92  | 7.3833              | 0.5367        | 0.2880          |
| 175    | 7.62  | 7.5573              | 0.0627        | 0.0039          |
| 185    | 6.89  | 7.6733              | -0.7833       | 0.6136          |
| 190    | 7.9   | 7.7313              | 0.1687        | 0.0285          |

 $\sum$  residuals<sup>2</sup> = 2.7012

Step 4: We find the sum of the squared residuals by summing the last column of the table:

Step 5: The standard error of the estimate is then given by

$$s_e = \sqrt{\frac{\sum residuals^2}{n-2}} = \sqrt{\frac{2.7012}{10}} = 0.5197$$