

ENGINEERING MECHANICS (E MECH-02)

QUESTION-2

GROUP MEMBERS:

22051611 - Sancharika Behera

22051612 - Satwick Sinha

22051618 - Shibangi Subhalakshmi Das

22051625 - Shresth Kumar

22051626 - Shresth Soni

Project Submitted to-Dr. Bharat Chandra Routra

(Professor & Dean, School of Mechanical Engineering, KIIT)

Given Problem Statement:

Q. Analyse the truss subjected to load shown with the specified magnitude of F as 1000 N and direction. Open a table in Excel for SI No, designation, Force F_{13} , F_{12} , F_{23} , θ in degrees, and θ in radian. Find the forces in various members of the truss by varying θ from 0° to 90° with a step increment of 5°. With the help of the chart draw the graph between θ : F_{13} , θ : F_{12} , and θ : F_{23} .

Angles α and β are assumed by us as the angles shown in the figure.

 F_{13} and F_{23} are assumed to be tensile and F_{12} is assumed to be compressive.

Solving the truss

FBD at joint 1:

Considering joint 1 at equilibrium:

 $F\sin\theta + F_{12}\cos\beta = F_{13}\cos\alpha$

 $F\cos\theta + F_{13}\sin\alpha = F_{12}\sin\beta$

Solving this we get the \rightarrow

 $F_{12} = F(\sin\alpha\sin\theta + \cos\alpha\cos\theta)/(\sin\beta\cos\alpha - \cos\beta\sin\alpha)$

 $F_{13} = F(\sin\beta\sin\theta + \cos\beta\cos\theta)/(\sin\beta\cos\alpha - \cos\beta\sin\alpha)$

FBD at joint 2:

Considering joint 2 at equilibrium:

$$F_{12}\cos\beta = R_2$$
 and $F_{23} = F_{12}\sin\beta$

We have got the expressions for F_{12} , F_{13} , and F_{23} . Now we vary θ from 0° to 90° with a step increment of 5° and check out changes in F_{12} , F_{13} , and F_{23} from the Python program that we have made.

Truss Analysis using Python

Interpreter Version - Python 3.10
Libraries Used - math, prettytable, matplotlib.pyplot.

Code -

```
import math
from prettytable import PrettyTable
import matplotlib.pyplot as plt
#finding angle alpha
a = round(math.atan(2 / 4), 5)
adeg = round(math.degrees(a), 5)
#finding angle beta
b = round(math.atan(5 / 4), 5)
bdeg = round(math.degrees(b), 5)
print("Angle α is: ",a," radians OR ",adeg," degrees")
print("Angle β is: ",b," radians OR ",bdeg," degrees")
#defining function for F12, F13 and F23 by change in \theta
def column(th1):
    # finding F12, F13 and F23 by the given formulas
    f = 1000
    th = round(math.radians(th1),3)
    f12 = round(f * ((math.sin(a) * math.sin(th) +
    math.cos(a) * math.cos(th)) / (math.sin(b) *
    math.cos(a) - math.cos(b) * math.sin(a))), 3)
```

```
f13 = round(f * ((math.sin(b) * math.sin(th) +
    math.cos(b) * math.cos(th)) / (math.sin(b) *
    math.cos(a) - math.cos(b) * math.sin(a))), 3)
    f23 = round(f12 * math.sin(b), 3)
    table.add row([th1,th,f12,f13,f23])
    y12.append(f12)
    y13.append(f13)
    y23.append(f23)
#running loop for variation in the value of \theta and
printing table
table = PrettyTable(["\theta (in deg)","\theta (in rad)","F12
(compressive)","F13 (tensile)","F23 (tensile)"])
x = []
y12 = []
y13 = []
y23 = []
for th1 in range(0, 95, 5):
    x.append(th1)
    column (th1)
print(table)
#graphing the graphs of \theta with F12, F13, and F23
print('''Enter 1 for all plots separately
Enter 2 for all plots separately in the same window
Enter 3 for all plots in the same graph''')
ch = int(input("Enter your choice: "))
if (ch == 1):
    plt.plot(x, y12, color = 'springgreen')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('F12 (in Newtons)')
    plt.title("Variation of F12 with \theta")
    plt.show()
```

```
plt.plot(x, y13, color = 'red')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('F13 (in Newtons)')
    plt.title("Variation of F13 with \theta")
    plt.show()
    plt.plot(x, y23, color = 'blue')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('F23 (in Newtons)')
    plt.title("Variation of F23 with \theta")
    plt.show()
elif (ch == 2):
    figure, axis = plt.subplots(1, 3)
    axis[0].plot(x, y12, color = 'springgreen')
    axis[0].set title("Variation of F12 with <math>\theta")
    axis[1].plot(x, y13, color = 'red')
    axis[1].set title("Variation of F13 with <math>\theta")
    axis[2].plot(x, y23, color = 'blue')
    axis[2].set title("Variation of F23 with \theta")
    plt.show()
elif (ch == 3):
    plt.plot(x, y12, color = 'springgreen')
    plt.plot(x, y13, color = 'red')
    plt.plot(x, y23, color = 'blue')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('Forces (in Newtons)')
    plt.legend(["F12","F13","F23"], loc="lower left")
    plt.show()
```

Output -

3				
Inala R ici			grees	
angre p 13.	0.89606 radi	ans OR 51.34046 de	grees	
 θ (in deg)	+ θ (in rad)	+ F12 (compressive)	+ F13 (tensile)	+ F23 (tensile)
0	+	+ 2134.362	+ 1490.696	+ 1666.663
5	0.087	2219.018	1646.969	1732.768
10	0.175	2287.569	1792.359	1786.298
15	0.262	2337.94	1922.466	1825.631
20	0.349	2370.626	2038.031	1851.155
25	0.436	2385.38	2138.179	1862.676
30	0.524	2381.948	2223.023	1859.996
35	0.611	2360.433	2289.993	1843.195
40	0.698	2321.064	2339.64	1812.453
45	0.785	2264.137	2371.59	1768.0
50	0.873	2189.136	2385.658	1709.434
55	0.96	2098.33	2381.416	1638.526
60	1.047	1991.652	2359.16	1555.225
65	1.134	1869.909	2319.06	1460.159
70	1.222	1732.381	2260.654	1352.767
75	1.309	1583.232	2185.712	1236.301
80	1.396	1422.107	2094.237	1110.483
85	1.484	1248.192	1985.598	974.678
90	1.571	1066.753	1863.084	832.997

Enter 1 for all plots seprately

Enter 2 for all plots seprately in same window

Enter 3 for all plots in same graph

Enter your choice: 3

Conclusion - The analysis of the particular given truss has been done successfully and the relation between the angle θ and the forces have been found.

Bibliography -

Making table in Python-

https://www.geeksforgeeks.org/how-to-make-a-table-in-python/

Plotting graph in Python-

https://www.tutorialspoint.com/how-to-plot-a-graph-in-python

Plotting multiple graphs-

https://www.geeksforgeeks.org/plot-multiple-plots-in-matplotlib/

Using colors in graphs-

https://matplotlib.org/stable/gallery/color/named colors.html

GitHub Link -

https://github.com/KumarShresth/Truss_Analysis_with_Python