Point-based Value Iteration for Neuro-Symbolic POMDPs

Rui Yana , Gabriel Santosa , Gethin Normanb , David Parkera , Marta Kwiatkowskaa

Submitted to:

 Sir Muhammad Ata Ur Rehman

Group Members:

- Munim Siddiqui (20K-1730)
- Murtaza Salman(20K-0398)
- Ali Qureshi (20K-0149)

Table of contents

101 Introduction 05 PWC Representations

Neuro-Symbolic POMDPs

O7

Heuristic Search Value Iteration

Value Iteration

Os

Lower and Upper Bound Representations

Table of contents

Point-Based Updates

Implementation and Experimental Evaluation*

NS-HSVI Algorithm

Performance Analysis

Two Belief
Representations

14 Conclusions

01 Introduction

- Al Techniques Integration: Explores merging symbolic Al with neural perception for decision-making under uncertainty.
- NS-POMDPs Framework: Introduces neuro-symbolic partially observable Markov decision processes to handle continuous environments.
- Optimization Objective: Aims to optimize rewards in complex, continuous-state spaces, highlighting scalability challenges.
- Algorithmic Innovations: Presents two novel value iteration algorithms tailored for NS-POMDPs that exploit neural network insights.
- **Real-world Application:** Demonstrates effectiveness through case studies on dynamic car parking and aircraft collision avoidance.

02 Background

- POMDPs and Challenges: Outlines traditional partially observable Markov decision processes (POMDPs) and their limitations in handling continuous-state environments.
- **Neuro-Symbolic Systems:** Discusses the integration of neural networks with symbolic decision-making systems, emphasizing their potential in complex control tasks.
- **Continuous-State Spaces:** Highlights the challenges of solving POMDPs with continuous states, where traditional discrete methods fail.
- Point-based Methods: Explains existing point-based value iteration techniques for finite-state models and their extension challenges to continuous domains.
- **Scalability Issues:** Addresses scalability and efficiency issues when applying traditional methods to continuous-state POMDPs .

Neuro-Symbolic Partially Observable Markov Decision Processes (NS-POMDPs)

- Framework Introduction: NS-POMDPs combine neural network perception and symbolic decision-making for continuous environments.
- Components: Composed of symbolic decision processes and neural perception, tailored for dynamic, uncertain settings.
- Decision Making: Decisions in NS-POMDPs rely on symbolic representations with neural network-driven observation functions.
- State and Observation Handling: Handles continuous states and discrete actions, with neural networks synthesizing environmental observations.

Neuro-Symbolic Partially Observable Markov Decision Processes (NS-POMDPs)

04 Value Iteration

- Adaptation for NS-POMDPs: The value iteration algorithm is adapted to handle the complexities of NS-POMDPs, which incorporate both continuous state spaces and neural network-based perceptions.
- Algorithm Extensions: Two specific algorithms are introduced a classical value iteration algorithm and a point-based heuristic search value iteration (NS-HSVI), both tailored to the NS-POMDP framework.
- **Function Representation:** These algorithms utilize a novel piecewise linear and convex representation (P-PWLC) for functions over continuous state beliefs, enhancing computational efficiency.

04 Value Iteration

- Convergence Properties: The algorithms are designed to ensure the convergence and continuity of value functions, maintaining the mathematical integrity required for robust decision-making in NS-POMDPs.
- **Finite Representability:** By exploiting the structure of the continuous-state model and neural perception mechanisms, the algorithms ensure finite representability, crucial for practical implementation .
- **Practical Applicability:** Demonstrated through prototype implementations and case studies, showing that these value iteration methods are not only theoretically sound but also practically viable .

D5 PWC Representations

- **Function Definition:** PWC functions are used to represent various elements within NS-POMDPs, such as perception functions and reward structures, to handle the complexity of continuous spaces effectively.
- State Space Partitioning: PWC representations enable the partitioning of the state space into observationally equivalent regions, simplifying the belief state updates and calculations involved in NS-POMDPs.
- Efficient Computation: By utilizing PWC functions, the algorithms can operate directly
 on a finite set of distinct regions instead of the entire continuous state space, significantly
 reducing computational complexity.

05 PWC Representations

- **Support for Neural Networks:** These representations are compatible with the outputs of neural networks used for perception, allowing seamless integration of data-driven perception into the symbolic decision-making framework of NS-POMDPs.
- Mathematical Properties: The PWC approach maintains crucial mathematical properties such as linearity and convexity, which are necessary for the effective application of Bellman updates and value iteration methods within NS-POMDPs.
- Practical Implementation: PWC representations facilitate the practical implementation
 of NS-POMDPs by enabling a structured and manageable approach to handling
 continuous variables and complex decision processes.

Theorem 1 (P-PWLC closure and convergence). If $V \in \mathbb{F}(S_B)$ and P-PWLC, then so is [TV]. If $V^0 \in \mathbb{F}(S_B)$ and P-PWLC, then the sequence $(V^t)_{t=0}^{\infty}$, such that $V^{t+1} = [TV^t]$ are P-PWLC and converges to V^* .

Theorem 2 (Convexity and continuity). For any $s_A \in S_A$, the value function $V^*(s_A, \cdot) : \mathbb{P}(S_E) \to \mathbb{R}$ is convex and for any $b_E, b'_E \in \mathbb{P}(S_E)$:

$$|V^*(s_A, b_E) - V^*(s_A, b'_E)| \le K(b_E, b'_E)$$
 (8)

where $K(b_E, b_E') = (U - L) \int_{s_E \in S_E^{b_E > b_E'}} (b_E(s_E) - b_E'(s_E)) ds_E$ and $S_E^{b_E > b_E'} = \{s_E \in S_E^{s_A} \mid b_E(s_E) - b_E'(s_E) > 0\}.$

Heuristic Search Value Iteration

It is a technique commonly used in decision-making processes, where you have uncertainty about the environment. Traditional value iteration works well for problems with a finite number of states but struggles with continuous-state problems like NS-POMDPs because it relies on discretization or approximation

08

Lower and Upper Bound Representations

- The lower bound function V_{Γ}^{LB} is represented as a piecewise linear and convex (P-PWLC) function using a finite set of piecewise constant (PWC) alpha (α) functions.
- Each alpha function corresponds to a specific partition of the state space, ensuring that the lower bound is finitely representable and captures the structure of the NS-POMDP accurately.

2. Upper Bound Function:

- ullet The upper bound V^{UB}_Υ is represented differently. Instead of using alpha functions, it's represented by a finite set of belief-value points.
- Each belief-value point consists of a belief state (describing the agent's uncertainty) and an associated upper bound value.
- Since the value function V^* is convex (as per Theorem 2), a convex combination of these belief-value points provides an upper bound on V^* in finite-state POMDPs. However, this doesn't directly apply to NS-POMDPs due to the continuous belief space.
- Therefore, the upper bound function in NS-POMDPs is defined as the lower envelope of the lower convex hull of the belief-value points. This is a way to ensure that the upper bound covers the belief space effectively.

09

Point-Based Updates

Algorithm 1 Point-based $Update(s_A, b_E)$ of $(V_{LB}^{\Gamma}, V_{UB}^{\Upsilon})$

```
    ā ← the maximum action in computing [TV<sup>Γ</sup><sub>LB</sub>](s<sub>A</sub>, b<sub>E</sub>)
```

2:
$$\bar{S}_A \leftarrow \{s'_A \in S_A \mid P(s'_A \mid (s_A, b_E), \bar{a}) > 0\}$$

3:
$$\alpha^{s'_A} \leftarrow \operatorname{argmax}_{\alpha \in \Gamma} \int_{s_E \in S_E} bval((s_A, s_E), \bar{a}, s'_A, \alpha)b_E(s_E) ds_E$$
 for all $s'_A \in \bar{S}_A$

5: if
$$s_A^{\phi} = s_A$$
 and $\int_{(s_A, s_E) \in \phi} b_E(s_E) ds_E > 0$ then

6: Compute
$$\alpha^*(\hat{s}_A, \hat{s}_E)$$
 by (12) for $(\hat{s}_A, \hat{s}_E) \in \phi$ \triangleright ISPP backup

7: else
$$\alpha^*(\hat{s}_A, \hat{s}_E) \leftarrow L$$
 for $(\hat{s}_A, \hat{s}_E) \in \phi$

8:
$$\Gamma \leftarrow \Gamma \cup \{\alpha^*\}$$

9:
$$p^* \leftarrow [TV_{UB}^{\Upsilon}](s_A, b_E)$$

10:
$$\Upsilon \leftarrow \Upsilon \cup \{((s_A, b_E), p^*)\}$$

NS-HSVI For NS-POMDPs

Algorithm 3 NS-HSVI for NS-POMDPs

```
1: Initialize V_{LB}^{\Gamma} and V_{UB}^{\Upsilon}

2: while V_{UB}^{\Upsilon}((s_A^{init}, b_E^{init}) - V_{LB}^{\Gamma}(s_A^{init}, b_E^{init}) > \varepsilon do Explore((s_A^{init}, b_E^{init}), \varepsilon, 0)

3: function Explore((s_A, b_E), \varepsilon, t)

4: if V_{UB}^{\Upsilon}(s_A, b_E) - V_{LB}^{\Gamma}(s_A, b_E) \leq \varepsilon \beta^{-t} then return

5: for a \in \Delta_A(s_A), s_A' \in S_A do

6: p^{a,s_A'} \leftarrow P(s_A' \mid (s_A, b_E), a)V_{UB}^{\Upsilon}(s_A', b_E^{s_A, a, s_A'})

7: \hat{a} \leftarrow \operatorname{argmax}_{a \in \Delta_A(s_A)} \langle R_a, (s_A, b_E) \rangle + \beta \sum_{s_A' \in S_A} p^{a,s_A'}

8: Update(s_A, b_E)

9: \hat{s}_A \leftarrow \operatorname{argmax}_{s_A' \in S_A} excess_{t+1}(s_A', b_E^{s_A, \hat{a}, s_A'})

10: Explore((\hat{s}_A, b_E^{s_A, \hat{a}, \hat{s}_A}), \varepsilon, t + 1)

11: Update(s_A, b_E)
```

Two Belief
Representation

Particle-Based Beliefs

Definition: A particle-based belief is represented by a set of weighted particles, each representing a possible state of the environment with a certain probability (weight).

Region-Based Beliefs

Definition: A region-based belief divides the environment into regions and represents each region with a uniform distribution over its area.

Implementation and Experimental Evaluation

Car Parking Case Study

Figure 3: Car parking with obstacles.

Implementation and Experimental Evaluation

VCAS Case Study

Figure 7: Paths and values for car parking (8×8, $\beta = 0.8$, partially reconstructed).

Figure 8: Perception FCP for car parking (8×8) , and a slice of the perception FCP for the COC advisory of the VCAS (h scaled 10:1).

Figure 10: Solution times for different discount factors (for particle-based beliefs).

Model	Belief type	Total regions	Lower	Upper	Strat.	Following	Avg.
	#initial	$(\alpha$ -functions)	bound	bound	time (s)	ratio	trust
Car parking (no obstacles, 4×4)	PB, 3	80,494	2389.3309	2389.3333	19.3	88%	3.6
	PB, 5	42,224	2047.9989	2048.0000	14.0	100%	3.9
	RB, 1	36,467	2047.9992	2048.0000	50.0	100%	3.9
Car parking (w/ obstacle, 4×4)	PB, 3	99,513	2218.6653	2218.6666	24.5	78%	3.3
	PB, 5	47,719	2047.9990	2048.0000	14.2	100%	3.9
	RB, 1	35,751	2047.9988	2048.0000	39.4	100%	3.9
Car parking (w/ obstacles, 8×8)	PB, 3	1,410,799	343.5969	343.5974	338.9	85%	4.3
	PB, 5	547,753	343.5970	343.5974	158.4	97%	4.4
	RB, 1	550,685	343.5964	343.5974	473.8	80%	4.3
VCAS (3 actions)	PB, 4	154,009	-1.2281	0.0	75.3	-	-
	PB, 5	278,447	-1.2398	0.0	127.5	-	-
	PB, 6	868,257	-0.2498	0.0	400.8	-	-
	RB, 1	22,919	-0.0715	0.0	65.5	-	-
VCAS (15 actions)	PB, 4	32,387	-0.6718	0.0	18.7	33%	1.3
	PB, 5	30,003	-0.9874	0.0	21.7	0%	1.0
	PB, 6	19,218	-1.0789	0.0	13.0	33%	1.3
	RB, 1	21,102	-0.6133	0.0	49.9	0%	1.0

Table 4: Further statistics for a set of NS-POMDP solution instances.

Figure 11: Comparison between particle-based and region-based values.

Figure 12: Comparison between particle-based and SARSOP values.

Performance Comparison

- The NS-HSVI algorithm was compared against the finite-state POMDP solver SARSOP.
- SARSOP was faster due to its discrete model, while NS-HSVI handled continuous spaces and required expensive operations on polyhedra.
- NS-HSVI showed superior or equal lower bounds for particle-based beliefs compared to SARSOP within a small disturbance range.
- The comparison highlights NS-HSVI's efficiency in updating regions and adapting to disturbances in beliefs.

02 Conclusion

- 1. **NS-POMDPs Introduction:** NS-POMDPs are a new way to use AI models that blend neural networks with traditional techniques for decision-making in environments where data is incomplete or uncertain.
- 2. Optimal Policy Synthesis: The NS-HSVI algorithm was used to find the best strategies for parking a car and avoiding collisions in aircraft using these Al models.
- **3. Future Work:** The team plans to make the method faster, handle more complex situations, and enable multiple agents to work together.

Thankyou! Any Questions?