Aggregations in Big Data Pipelines

After this video you will be able to...

- Compare and select the Aggregation operation that you require to solve your problem
- Explain how you can use Aggregations to compact your dataset and reduce volume (in many cases)

 Design complex operations in your pipeline using a series of Aggregations

What is Aggregation?

Lany operation on a data set that performs a specific transformation taking all relatedy tala elements into consideration * different colors -> variety

Symbol for any transformation

f con take the enape of different transformations

Aggregation \rightarrow f (all elements)

Transformation of that takes all thre elements of data as imput

Aggregation \rightarrow f (all elements)

GROUP BY

summation of individual

-> R: 3 tuples: (Flor color, count) >

OTHER TRANSFORMATIONS

MAX

MIN

STANDARD DEVIATION

Connecting Aggregations

* au always perform aggregation au a series of operations

BOOLEAN AGGREGATION

AND

10110100110101101101101101101011101010

0

OR

101101001101011011011011010111101010

1

SETS * dont allow dupercete values **STRINGS**

UNION

CONCATENATION

INTERSECTION

DIFFERENCE

Aggregations -> Organized & Compact Data

AGGREGATED OUTPUT

Variety & Volume

Actionable Insights

by choosing the cight appregation, you can generate compact and meaningful unsights that enable faster and effective decision vaking in business tim most cases aggregation results in smaller output grata sets