Sample Questions on Numerical Differentiation

1. Forward and Backward Difference (First Order, O(h))

Conceptual Questions

Q1. The forward difference formula for the first derivative is:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

What is the order of error in this approximation?

- (1) O(h)
- (2) $O(h^2)$
- (3) $O(h^3)$
- **(4)** O(1/h)

Q2. The backward difference formula for the first derivative is:

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

Which of the following statements is true?

- (1) It uses values at x + h and x.
- (2) It has an error of O(h).
- (3) It uses values at x + h and x h.
- (4) It has an error of $O(h^2)$.

Q3. Forward and backward difference approximations are accurate for:

- (1) Large values of h.
- (2) Small values of h.
- (3) Any value of h.
- (4) They are not accurate at all.

Numerical Questions

- **Q4.** Using the forward difference formula, calculate f'(x) for $f(x) = \sin(x)$ at $x = \pi/6$ with h = 0.1.
 - **(1)** 0.4975
 - **(2)** 0.4992
 - **(3)** 0.5000
 - **(4)** 0.5015
- **Q5.** Using the backward difference formula, approximate the derivative of $f(x) = e^x$ at x = 0 with h = 0.1.
 - **(1)** 1.0513
 - **(2)** 1.0488
 - **(3)** 1.0500
 - **(4)** 1.0495

2. Forward, Backward, and Central Difference (First Order, $O(h^2)$)

Conceptual Questions

Q6. The forward difference formula with $O(h^2)$ error is:

$$f'(x) \approx \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h}$$

What is the key advantage of this formula over the O(h) formula?

- (1) It requires fewer evaluations of f(x).
- (2) It is more accurate for small values of h.
- (3) It works for non-continuous functions.
- (4) It has no truncation error.
- Q7. The central difference formula for f'(x) with $O(h^2)$ error is:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

This formula is:

- (1) Less accurate than forward or backward difference.
- (2) As accurate as forward difference for O(h).
- (3) More accurate than forward or backward difference for small h.
- (4) Only applicable for symmetric functions.

- **Q8.** Which of the following is true for the backward difference formula with $O(h^2)$ error?
 - (1) It uses three points: x 2h, x h, x.
 - (2) It uses two points: x h, x.
 - (3) It has lower accuracy than forward difference with O(h).
 - (4) It approximates f'(x) as (f(x) f(x h))/h.

Numerical Questions

- **Q9.** Use the central difference formula to approximate f'(x) for $f(x) = \ln(x)$ at x = 2 with h = 0.1:
 - **(1)** 0.5002
 - **(2)** 0.4999
 - **(3)** 0.5010
 - **(4)** 0.4985
- **Q10.** Calculate f'(x) using the forward difference formula with $O(h^2)$ error for $f(x) = x^2$ at x = 1 with h = 0.1:
 - **(1)** 1.0000
 - **(2)** 1.0020
 - **(3)** 0.9990
 - **(4)** 1.0015
- **Q11.** Approximate f'(x) using the backward difference formula with $O(h^2)$ error for $f(x) = e^x$ at x = 1 with h = 0.1:
 - **(1)** 2.7185
 - **(2)** 2.7189
 - **(3)** 2.7180
 - **(4)** 2.7191