BPF

Содержание

Вве	дение	1
1.1	Требования к ядру	1
1.2		2
1.3		2
1.4		2
bpft	trace	2
2.1	Однострочные сценарии bpftrace	2
2.2		4
2.3		4
2.4		4
2.5	-	5
2.6		6
2.7		7
Тип	ны зондов в bpftrace	8
3.1	tracepoint	8
3.2		9
3.3		9
3.4		9
		.0
3.6	profile и interval	
	1.1 1.2 1.3 1.4 bpf (2.1 2.2 2.3 2.4 2.5 2.6 2.7 Tur 3.1 3.2 3.3 3.4 3.5	1.1 Требования к ядру 1.2 Схема ВСС 1.3 Установка в Ubuntu 1.4 Схема bpftrace 2.1 Однострочные сценарии bpftrace 2.2 Пример программы на bpftrace 2.3 Развернутые циклы 2.4 Встроенные переменные 2.5 Карты 2.6 Наиболее важные функции bpftrace 2.7 Наиболее важные функции-карты в bpftrace 3.1 tracepoint 3.2 usdt 3.3 kprobe и kretprobe 3.4 uprobe и uretprobe 3.5 software и hardware 1

1 Введение

1.1 Требования к ядру

Рекомендуется использовать ядро Linux 4.9 (релиз в декабре 2016 года) или более новое. Некоторые параметры конфигурации ядра должны быть включены. Вот эти параметры:

```
CONFIG_BPF=y
CONFIG_BPF_SYSCALL=y
CONFIG_BPF_JIT=y
CONFIG_HAVE_EBPF_JIT=y
CONFIG_BPF_EVENTS=y
```

1.2 Схема ВСС

https://github.com/iovisor/bcc

1.3 Установка в Ubuntu

sudo apt-get update
sudo apt-get install bpftrace

https://github.com/bpftrace/bpftrace

1.4 Cxema bpftrace

2 bpftrace

2.1 Однострочные сценарии bpftrace

Показывает, кто и что выполняет: bpftrace -e 'tracepoint:syscalls:sys_enter_execve

```
{ printf("%s -> %s\n", comm, str(args->filename)); }'
Показывает новые процессы с аргументами:
bpftrace -e 'tracepoint:syscalls:sys_enter_execve
   { join(args->argv); }'
Показывает, какие файлы открывает каждый процесс вызовом openat():
bpftrace -e 'tracepoint:syscalls:sys_enter_openat
   { printf("%s %s \n", comm, str(args->filename)); }'
Подсчитывает число системных вызовов, выполненных каждой програм-
мой:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter
   { @[comm] = count(); }'
Подсчитывает число системных вызовов по их именам:
bpftrace -e 'tracepoint:syscalls:sys_enter_*
  { @[probe] = count(); }'
Подсчитывает число системных вызовов, выполненных каждым процес-
bpftrace -e 'tracepoint:raw_syscalls:sys_enter
   { @[pid, comm] = count(); }'
Показывает общее число байтов, прочитанных каждым процессом:
bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret/
  { @[comm] = sum(args->ret); }'
Показывает распределение размеров блоков, прочитанных каждым про-
цессом:
bpftrace -e 'tracepoint:syscalls:sys_exit_read
  { @[comm] = hist(args->ret); }'
Показывает объемы дискового ввода/вывода для каждого процесса:
bpftrace -e 'tracepoint:block:block_rq_issue { printf("%d %s %d\n",
  pid, comm, args->bytes); }'
Подсчитывает число страниц, загруженных каждым процессом:
bpftrace -e 'software:major-faults:1 { @[comm] = count(); }'
```

Подсчитывает число отказов страниц для каждого процесса:

```
bpftrace -e 'software:faults:1 { @[comm] = count(); }'
Профилирует стек в пространстве пользователя для PID 189 с частотой 49 Гц:
bpftrace -e 'profile:hz:49 /pid == 189/ { @[ustack] = count(); }'
```

2.2 Пример программы на bpftrace

Программа измеряет время, затраченное на выполнение функции ядра vfs read():

```
#!/usr/local/bin/bpftrace

kprobe:vfs_read
{
    @start[tid] = nsecs;
}

kretprobe:vfs_read
/@start[tid]/
{
    $duration_us = (nsecs - @start[tid]) / 1000;
    @us = hist($duration_us);
    delete(@start[tid]);
}
```

2.3 Развернутые циклы

```
unroll (count) { statements }
```

Аргумент count — это целочисленный литерал (константа) с максимально возможным значением 20.

2.4 Встроенные переменные

Встроенные переменные предопределены в bpftrace и обычно доступны только для чтения.

Наиболее важные встроенные переменные в bpftrace:

Переменная	Тип	Описание			
pid	int	Идентификатор процесса (tgid в ядре)			
tid	int	Идентификатор потока (pid в ядре)			
uid	int	Идентификатор пользователя			
username	string	Имя пользователя			
nsecs	int	Отметка времени в наносекундах			
elapsed	int	Время в наносекундах, прошедшее с нача-			
		ла инициализации bpftrace			
cpu	int	Идентификатор процессора			
comm	string	Имя процесса			
kstack string		Трассировка стека в пространстве ядра			
ustack	string	Трассировка стека в пространстве пользо-			
		вателя			
arg0,, argN	int	Аргументы зондов некоторых типов			
args	struct	Аргументы зондов некоторых типов			
retval	int	Возвращаемые значения для зондов неко-			
		торых типов			
func	string	Имя трассируемой функции			
probe string		Полное имя текущего зонда			
curtask	int	task_struct в ядре как 64-битное целое без			
		знака (допускается приведение типа)			
cgroup int Иден		Идентификатор cgroup			
\$1,, \$N	int char*	Позиционные параметры программы bpftrace			

2.5 Карты

```
Формат определения:
    @name
    @name[key]
    @name[key1, key2[, ...]]
Примеры:
    @start = nsecs;
    @last[tid] = nsecs;
    @bytes = hist(retval);
    @who[pid, comm] = count();
```

2.6 Наиболее важные функции bpftrace

Функция	Описание	
<pre>printf(char *fmt [,])</pre>	Форматированный вывод	
time(char *fmt)	Форматированный вывод времени	
join(char *arr[])	Выводит массив строк, объединяя их через про-	
	бел	
str(char *s [, int len])	Возвращает строку, на которую ссылается ука-	
	затель s, с необязательным ограничителем дли-	
	ны len	
kstack(int limit)	Возвращает трассировку стека ядра с глубиной	
	до limit	
ustack(int limit)	Возвращает трассировку стека в пространстве	
	пользователя с глубиной до limit	
ksym(void *p)	Определяет символ по адресу в пространстве	
	ядра и возвращает строку с ним	
usym(void *p)	Определяет символ по адресу в пространстве	
	пользователя и возвращает строку с ним	
kaddr(char *name)	Определяет адрес символа в пространстве ядра	
uaddr(char *name)	Определяет адрес символа в пространстве поль-	
	зователя	
reg(char *name)	Возвращает значение, хранящееся в указанном	
	регистре	
<pre>ntop([int af,] int addr)</pre>	Возвращает строковое представление ІР-адреса	
system(char *fmt [,])	Выполняет команду в командной оболочке	
cat(char *filename)	Выводит содержимое указанного файла	
exit()	Завершает выполнение bpftrace	

2.7 Наиболее важные функции-карты в bpftrace

Функция	Описание		
count()	Подсчитывает число вхождений		
sum(int n)	Подсчитывает сумму значений		
avg(int n)	Вычисляет среднее значение		
min(int n)	Запоминает минимальное значение		
max(int n)	Запоминает максимальное значение		
stats(int n)	Возвращает общее количество, среднее и сумму		
hist(int n)	Выводит гистограмму значений с шагом, рав-		
	ным степени двойки		
lhist(int n, int min,	Выводит линейную гистограмму значений		
int max, int step)	рыводит линеиную гистограмму значении		
delete(@m[key])	Удаляет пару ключ — значение из карты		
print(@m [, top [, div]])	Выводит содержимое карты с необязательны-		
	ми ограничением на вывод определенного числа		
	наибольших значений и делителем		
clear(@m)	Удаляет все пары ключ — значение из карты		
zero(@m)	Сбрасывает все значения в карте в ноль		

Вывод частоты вхождений в течение каждого интервала:

```
# bpftrace -e 'tracepoint:block:block_rq_i* {@[probe] = count();}
    interval:s:1 { print(@); clear(@); }'
```

```
Подсчет общего числа байтов, прочитанных системным вызовом read(2): # bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret>0/ { @bytes = sum(args->ret); }'
```

 Γ истограммы размеров блоков, успешно прочитанных системным вызовом read(2):

```
# bpftrace -e 'tracepoint:syscalls:sys_exit_read {@ret = hist(args->ret);}'
```

3 Типы зондов в bpftrace

Тип (Псевдоним)		Описание		
tracepoint t		Инструментируют статические точки трассировки в ядре		
usdt	U	Инструментируют статические точки трассировки в простран-		
		стве пользователя		
kprobe	k	Инструментируют динамические точки вызовов функций ядра		
kretprobe	kr	Инструментируют динамические точки возврата из функций		
		ядра		
uprobe	u	Инструментируют динамические точки вызовов функций в про-		
		странстве пользователя		
uretprobe	ur	Инструментируют динамические точки возврата из функций в		
		пространстве пользователя		
software	S	Программные события в пространстве ядра		
hardware	h	Инструментируют аппаратные счетчики		
profile	р	Производят выборку по времени для всех процессоров		
interval	i	Производят выборку в течение интервала (для одного процес-		
		copa)		
BEGIN		Запуск bpftrace		
END		Завершение bpftrace		

3.1 tracepoint

```
Зонды типа tracepoint инструментируют статические точки трассировки в ядре. Формат определения: tracepoint:tracepoint_name
```

```
Страница справочного руководства:
    ssize_t read(int fd, void *buf, size_t count);
В точке трассировки sys_enter_read эти аргументы должны быть доступны как args-> fd, args-> buf и args->count.

# bpftrace -lv tracepoint:syscalls:sys_enter_read
tracepoint:syscalls:sys_enter_read
int __syscall_nr;
unsigned int fd;
char * buf;
size_t count;
```

3.2 usdt

Зонды этого типа инструментируют статические точки трассировки в пространстве пользователя. Формат определения:

```
usdt:binary_path:probe_name
usdt:library_path:probe_name
usdt:binary_path:probe_namespace:probe_name
usdt:library_path:probe_namespace:probe_name
```

Получить список зондов, доступных в файле, можно с помощью параметра -1, например:

```
# bpftrace -l 'usdt:/usr/local/cpython/python'
usdt:/usr/local/cpython/python:line
usdt:/usr/local/cpython/python:function__entry
usdt:/usr/local/cpython/python:function__return
usdt:/usr/local/cpython/python:import__find__load__start
usdt:/usr/local/cpython/python:import__find__load__done
usdt:/usr/local/cpython/python:gc__start
usdt:/sur/local/cpython/python:gc__done
Можно получить и список зондов USDT в выполняющемся процессе, в
этом случае вместо имени файла следует использовать параметр -р PID.
```

3.3 kprobe и kretprobe

Зонды этого типа используются для динамической инструментации ядра. Формат определения:

```
kprobe:function_name
kretprobe:function_name
```

Зонды kprobe имеют аргументы arg0, arg1, ..., argN — входные аргументы функции, как целые 64-битные целые без знака. Если какой-то из них является указателем на структуру языка С, его можно привести к типу этой структуры.

Единственный аргумент kretprobe - встроенная переменная retval - содержит возвращаемое значение функции. retval всегда имеет тип uint64.

3.4 uprobe и uretprobe

Зонды этого типа используются для динамической инструментации кода в пространстве пользователя. Формат определения:

```
uprobe:binary_path:function_name
```

uprobe:library_path:function_name
uretprobe:binary_path:function_name
uretprobe:library_path:function_name

3.5 software и hardware

Зонды этого типа инструментируют предопределенные программные (software) и аппаратные (hardware) события. Формат определения:

software:event_name:count

software:event_name:

hardware:event_name:count

 $\verb|hardware:event_name:|$

Программные события:

Имя события Значение счетчи			Описание
cpu-clock	cpu	10^{6}	Фактическое время процессора
task-clock		10^{6}	Время использования процессора задачей
			(увеличивается, только когда задача вы-
			полняется на процессоре)
page-faults	faults	100	Отказы страниц
context-switches	cs	1000	Переключение контекста
cpu-migrations		1	Миграция потоков процессора
minor-faults		100	Незначительные отказы страниц: устране-
			ны за счет памяти
major-faults		1	Значительные отказы страниц: устранены
			за счет ввода/вывода из хранилища
alignment-faults		1	Ошибки выравнивания
emulation-faults		1	Ошибки эмуляции
dummy		1	Искусственное событие для тестирования
bpf-output		1	Канал вывода ВРГ

Аппаратные события:

Имя события / Значение счетчика			Описание
cpu-cycles	cycles	10^{6}	Такты процессора
instructions		10^{6}	Инструкции процессора
cache-references		10^{6}	Обращения к кэшу процессора последнего
			уровня
cache-misses		10^{6}	Промахи кэша процессора последнего
			уровня
branch-instructions	branches	10^{5}	Инструкции ветвления
bus-cycles		10^{5}	Такты шины
frontend-stalls		10^{6}	Пропуски циклов внешнего интерфейса
			процессора (например, на время выборки
			инструкций)
backend-stalls		10^{6}	Пропуски внутренних циклов процессора
			(например, на время загрузки/сохранения
			данных)
ref-cycles		10^{6}	Циклы обращения к процессору (не мас-
			штабируется в турборежиме)

3.6 profile и interval

Зонды этого типа инструментируют события, имеющие отношение к времени. Формат определения:

profile:hz:rate
profile:s:rate
profile:us:rate
profile:us:rate
interval:s:rate
interval:ms:rate

Зонды profile срабатывают для всех процессоров, interval только для одного процессора. Во втором поле можно указать:

• hz: герцы (событий в секунду);

• s: секунды;

• ms: миллисекунды;

• us: микросекунды.