Home Assignment 2 Solutions

STAT 154/254: Modern Statistical Prediction & Machine Learning

Problem 1: Converting *-values to p-values

Let X be a random variable on \mathbb{R} with density p(x). Assume p(x) > 0 for all $x \in \mathbb{R}$. Define

$$F_1(s) = P(X \le s), \quad F_2(s) = P(X \ge s).$$

Show that

$$F_1(X) \sim \text{Unif}([0,1])$$
 and $F_2(X) \sim \text{Unif}([0,1])$.

(Please avoid the confusing notation $P(X \leq X)$.)

Solution. Since we have p(x) > 0 for all $x \in \mathbb{R}$, the function

$$F_1(s) = \int_{-\infty}^{s} p(x) \, dx$$

is strictly increasing, and hence possesses an inverse F_1^{-1} . Thus, for any $s \in [0,1]$ we have

$$\mathbb{P}(F_1(X) \le s) = \mathbb{P}(X \le F_1^{-1}(s)) = F_1(F_1^{-1}(s)) = s.$$

This shows that $F_1(X)$ has a Uniform[0,1] distribution. Similarly, since p(x) > 0 for all $x \in \mathbb{R}$, we have $F_2(s) = 1 - F_1(s)$ for all $s \in [0,1]$, hence by the above:

$$\mathbb{P}(F_2(X) \le s) = \mathbb{P}(F_1(X) \ge 1 - s) = 1 - \mathbb{P}(F_1(X) \le 1 - s) = 1 - (1 - s) = s.$$

This shows that $F_2(X)$ has a Uniform[0, 1] distribution as well.

Problem 2: Logistic regression log-likelihood

Let $(x_i, y_i)_{i=1}^n$ be iid samples with $x_i \in \mathbb{R}^d$ and label $y_i \in \{-1, 1\}$. Define

$$P_{\beta}(Y=1\mid X) = \frac{\exp(\langle X,\beta\rangle)}{1+\exp(\langle X,\beta\rangle)}, \quad P_{\beta}(Y=-1\mid X) = 1-P_{\beta}(Y=1\mid X).$$

Let the log-likelihood be

$$\ell_n(\beta) = \sum_{i=1}^n \log P_{\beta}(Y = y_i \mid X = x_i).$$

Write down and simplify $\log \ell_n(\beta)$. Compute its gradient $\nabla_{\beta}[\log \ell_n(\beta)]$ and its Hessian $\nabla_{\beta}^2[\log \ell_n(\beta)]$. **Solution.** By assumption we have

$$P_{\beta}(Y = +1 \mid X) = \frac{e^{X^{\top}\beta}}{1 + e^{X^{\top}\beta}} = \frac{1}{1 + e^{-X^{\top}\beta}}.$$

Therefore,

$$P_{\beta}(Y = -1 \mid X) = 1 - P_{\beta}(Y = +1 \mid X) = 1 - \frac{e^{X^{\top}\beta}}{1 + e^{X^{\top}\beta}} = \frac{1}{1 + e^{X^{\top}\beta}}.$$

To combine both expressions, we can write

$$P_{\beta}(Y \mid X) = \frac{1}{1 + e^{-YX^{\top}\beta}}.$$

Then, using the fact that $P_{\beta}(X) = P(X)$ does not depend on β , we find the log-likelihood

$$\log \mathcal{L}_n(\beta) = \sum_{i=1}^n \log \left(\frac{1}{1 + e^{-Y_i X_i^{\top} \beta}} \right) + \sum_{i=1}^n \log P(X_i).$$

Now we take the gradient with respect to β . The second term vanishes since it is a constant, and to the first term we can apply the chain rule, yielding:

$$\nabla_{\beta} \log \mathcal{L}_{n}(\beta) = \nabla_{\beta} \sum_{i=1}^{n} \left[-\log \left(1 + e^{-Y_{i} X_{i}^{\top} \beta} \right) \right] = \sum_{i=1}^{n} \frac{-\nabla_{\beta} e^{-Y_{i} X_{i}^{\top} \beta}}{1 + e^{-Y_{i} X_{i}^{\top} \beta}} = \sum_{i=1}^{n} \frac{Y_{i} X_{i} e^{-Y_{i} X_{i}^{\top} \beta}}{1 + e^{-Y_{i} X_{i}^{\top} \beta}} = \sum_{i=1}^{n} \frac{Y_{i} X_{i}}{1 + e^{-Y_{i} X_{i}^{\top} \beta}}.$$

To compute the Hessian, we again use the chain rule:

$$\nabla_{\beta}^{2} \log \mathcal{L}_{n}(\beta) = \sum_{i=1}^{n} \nabla_{\beta} \left(\frac{Y_{i} X_{i}}{1 + e^{Y_{i} X_{i}^{\top} \beta}} \right) = \sum_{i=1}^{n} Y_{i} X_{i} \frac{\nabla_{\beta} e^{Y_{i} X_{i}^{\top} \beta}}{\left(1 + e^{Y_{i} X_{i}^{\top} \beta}\right)^{2}} = \sum_{i=1}^{n} \frac{(Y_{i})^{2} X_{i} X_{i}^{\top} e^{Y_{i} X_{i}^{\top} \beta}}{\left(1 + e^{Y_{i} X_{i}^{\top} \beta}\right)^{2}}.$$

Notice that $(Y_i)^2 = 1$ whether $Y_i = 1$ or $Y_i = -1$. Also, we can write

$$\frac{e^{Y_i X_i^{\top} \beta}}{\left(1 + e^{Y_i X_i^{\top} \beta}\right)^2} = \frac{1}{1 + e^{Y_i X_i^{\top} \beta}} \cdot \frac{1}{1 + e^{-Y_i X_i^{\top} \beta}}.$$

Therefore,

$$\nabla_{\beta}^2 \log \mathcal{L}_n(\beta) = -\sum_{i=1}^n X_i X_i^{\top} \frac{1}{1 + e^{Y_i X_i^{\top} \beta}} \cdot \frac{1}{1 + e^{-Y_i X_i^{\top} \beta}}.$$

Problem 3: Projection Matrices I

Let $P_1, P_2 \in \mathbb{R}^{n \times n}$ be two projection matrices (i.e. $P_i^{\top} = P_i$ and $P_i^2 = P_i$) satisfying $P_1 P_2 = 0$. Let $\operatorname{rank}(P_i) = r_i$ with $r_1 + r_2 \leq n$. Define the diagonal matrices

$$D_1 = \operatorname{diag}(\underbrace{1, \dots, 1}_{r_1}, \underbrace{0, \dots, 0}_{n-r_1}), \quad D_2 = \operatorname{diag}(\underbrace{1, \dots, 1}_{r_2}, \underbrace{0, \dots, 0}_{n-r_2}).$$

Show that there exists an orthogonal $U \in \mathbb{R}^{n \times n}$ such that

$$P_1 = U D_1 U^{\top}, \quad P_2 = U D_2 U^{\top},$$

- i.e. P_1 and P_2 are simultaneously diagonalizable. One approach is:
 - i. Show there are orthogonal $V_1, V_2 \in \mathbb{R}^{n \times n}$ with $P_1 = V_1 D_1 V_1^{\top}$ and $P_2 = V_2 D_2 V_2^{\top}$.
 - ii. Let \tilde{U}_1 be the first r_1 columns of V_1 , and let \tilde{U}_2 be columns $r_1 + 1, \ldots, r_1 + r_2$ of V_2 . Show $P_1 = \tilde{U}_1 \tilde{U}_1^{\top}$ and $P_2 = \tilde{U}_2 \tilde{U}_2^{\top}$.
 - iii. Prove $\tilde{U}_1^{\top} \tilde{U}_2 = 0_{r_1 \times r_2}$ using $P_1 P_2 = 0$ and $\tilde{U}_i^{\top} \tilde{U}_i = I_{r_i}$.
 - iv. Extend $\{\tilde{U}_1, \tilde{U}_2\}$ to an orthonormal basis $U \in \mathbb{R}^{n \times n}$.
 - v. Conclude $P_1 = UD_1U^{\top}$ and $P_2 = UD_2U^{\top}$.

Solution.

i. Fix $i \in \{1, 2\}$, and let us diagonalize $P_i = W_i \Sigma_i W_i^{\top}$, where Σ_i is diagonal and W_i is orthogonal. Now observe that $P_i^2 = P_i$ is equivalent to $W_i \Sigma_i^2 W_i^{\top} = W_i \Sigma_i W_i^{\top}$, so, canceling the W_i matrix on either side, we get $\Sigma_i^2 = \Sigma_i$. This shows that every eigenvalue λ of P_i satisfies $\lambda^2 = \lambda$, hence λ must equal 0 or 1. In summary, all of the eigenvalues of P_i are either 0 or 1.

Now we prove the result. Since all of the eigenvalues of P_i are either 0 or 1, there exists a permutation matrix Π_i such that $\Sigma_i = \Pi_i D_i \Pi_i^{\top}$. Thus,

$$P_1 = W_1 \Sigma_1 W_1^{\top} = W_1 \Pi_1 D_1 \Pi_1^{\top} W_1^{\top} = (W_1 \Pi_1) D_1 (W_1 \Pi_1)^{\top}.$$

Note that $V_1 = W_1\Pi_1$ is itself an orthogonal matrix, so we have shown $P_1 = V_1D_1V_1^{\top}$, as desired. The same proof applies for i = 2, since we can get a permutation matrix Π_2 such that $\Sigma_2 = \Pi_2 D_2 \Pi_2^{\top}$.

ii. For $i \in \{1, 2\}$, write v_j^i for the jth column of V_i , and recall that we can write the diagonalization $P_i = V_i D_i V_i^{\top}$ as

$$P_i = \sum_{j=1}^{n} (D_i)_{jj} v_j^i (v_j^i)^{\top}.$$

Since each D_i has only 0 or 1 on its diagonal, we can simplify the sum. Indeed, we get

$$P_1 = \sum_{j=1}^{r_1} v_j^1 (v_j^1)^\top = \tilde{U}_1 \tilde{U}_1^\top \quad \text{and} \quad P_2 = \sum_{j=r_1+1}^{r_1+r_2} v_j^2 (v_j^2)^\top = \tilde{U}_2 \tilde{U}_2^\top$$

as claimed.

iii. By the above, we have $P_1P_2=0$ hence $\tilde{U}_1\tilde{U}_1^{\top}\tilde{U}_2\tilde{U}_2^{\top}=0$. Now multiply on the left by \tilde{U}_1^{\top} and on the right by \tilde{U}_2 to get

$$0 = \tilde{U}_1^\top \, 0 \, \tilde{U}_2 = \tilde{U}_1^\top \tilde{U}_1 \, \tilde{U}_1^\top \tilde{U}_2 \, \tilde{U}_2^\top \tilde{U}_2 = I \, \tilde{U}_1^\top \tilde{U}_2 = \tilde{U}_1^\top \tilde{U}_2.$$

iv. Notice that $\tilde{U}_1^{\top}\tilde{U}_2 = 0$ means that every column of \tilde{U}_1 is orthogonal to every column of \tilde{U}_2 . Thus, combining this with $\operatorname{rank}(\tilde{U}_i) = r_i$ for $i \in \{1, 2\}$, we find that the matrix $\tilde{U} := [\tilde{U}_1, \tilde{U}_2]$ satisfies $\operatorname{rank}(\tilde{U}) = r_1 + r_2$. Now we can let \tilde{U}_3 be any matrix whose columns are an orthonormal basis for the orthogonal complement of $\operatorname{col}(\tilde{U})$. It follows by construction that $\bar{U} := [\tilde{U}_1, \tilde{U}_2, \tilde{U}_3]$ is orthogonal.

v. This follows from the construction, since, for each $i \in \{1,2\}$, the columns of \bar{U} are exactly the columns of \tilde{U}_i at the indices for which \bar{D}_i is non-zero, in which case they are equal to the corresponding columns of V_i . More explicitly, if we write u_j for the jth column of \bar{U} , then we can just compute:

$$P_1 = \sum_{j=1}^{r_1} v_j^1 (v_j^1)^\top = \sum_{j=1}^{r_1} u_j u_j^\top = \sum_{j=1}^{n} (D_1)_{jj} u_j u_j^\top = \bar{U} D_1 \bar{U}^\top,$$

and

$$P_2 = \sum_{j=r_1+1}^{r_1+r_2} v_j^2(v_j^2)^\top = \sum_{j=r_1+1}^n u_j u_j^\top = \sum_{j=1}^n (D_2)_{jj} u_j u_j^\top = \bar{U} D_2 \bar{U}^\top.$$

Problem 4: Projection Matrices II

Let $X \in \mathbb{R}^{n \times d}$ with $n \geq d$ and rank(X) = d. Define

$$P = X(X^{\top}X)^{-1}X^{\top} \in \mathbb{R}^{n \times n}.$$

For any subset $T \subseteq \{1, 2, ..., d\}$ of size |T| = t, let X_T be the $n \times t$ submatrix of X with columns indexed by T, and set

$$P_T = X_T (X_T^{\top} X_T)^{-1} X_T^{\top}, \quad P_1 = I_n - P, \quad P_2 = P - P_T.$$

Show that:

- i. $P=P^{\top},\ P_T=P^{\top}_T,\ P^2=P,\ P^2_T=P_T,\ \text{so }P\ \text{and }P_T\ \text{are projections.}$ ii. $P_1=P_1^{\top},\ P_1^2=P_1,\ \text{so }P_1\ \text{is a projection of rank }n-d.$ iii. $PX=X,\ \text{hence }PX_T=X_T.$

- iv. $PP_T = P_TP = P_T$. v. $P_2 = P_2^{\top}, P_2^2 = P_2$, so P_2 is a projection of rank d t. vi. $P_1P_2 = 0$.

Solution.

i. We can easily check $P^2 = P$ by using matrix associativity and the definition of the inverse:

$$P^2 = X \, (X^\top X)^{-1} X^\top \, X \, (X^\top X)^{-1} X^\top = X \, (X^\top X)^{-1} \, (X^\top X) \, (X^\top X)^{-1} X^\top = X \, (X^\top X)^{-1} X^\top = P.$$

We can check $P^{\top} = P$ by using properties of the transpose:

$$P^{\top} = (X(X^{\top}X)^{-1}X^{\top})^{\top} = X^{\top}((X^{\top}X)^{-1})^{\top}X = X^{\top}((X^{\top}X)^{\top})^{-1}X = X^{\top}(X^{\top}X)^{-1}X = P.$$

The properties $P_T^2 = P_T$ and $P_T^{\top} = P_T$ are proved exactly the same.

ii. Using the properties in the previous part, we compute

$$P_1^\top = (I-P)^\top = I^\top - P^\top = I - P = P_1, \quad P_1^2 = (I-P)^2 = I - 2P + P^2 = I - 2P + P = I - P = P_1.$$

Since P is a projection matrix with rank(P) = d, it follows that P_1 is a projection matrix with $rank(P_1) = n - d.$

iii. We can simply check:

$$PX = X (X^{T}X)^{-1}X^{T}X = X (X^{T}X)^{-1}(X^{T}X) = X.$$

Since X_T is a matrix consisting of a subset of the columns of X, we see that PX = X implies $PX_T = X_T$.

iv. Using the previous part, we get

$$PP_T = PX_T (X_T^{\top} X_T)^{-1} X_T^{\top} = X_T (X_T^{\top} X_T)^{-1} X_T^{\top} = P_T.$$

So, using the fact that both P and P_T are symmetric, we get

$$P_T P = P_T^{\top} P^{\top} = (P P_T)^{\top} = P_T^{\top} = P_T.$$

v. Using the previous part, we get

$$P_2^2 = (P - P_T)^2 = P^2 - PP_T - P_TP + P_T^2 = P - P_T - P_T + P_T = P - P_T = P_2.$$

Since P is a projection matrix with rank(P) = d and P_T is a projection matrix with rank $(P_T) = d$ t, it follows that P_2 is a projection matrix with rank $(P_2) = d - t$.

vi. Putting all the pieces together, we get:

$$P_1P_2 = (I - P)(P - P_T) = P - P_T - P^2 + PP_T = P - P_T - P + P_T = 0.$$

Problem 5: F-statistic follows the F-distribution

Let $(x_i, y_i)_{i=1}^n \subset \mathbb{R}^d \times \mathbb{R}$. Write

$$X = \begin{pmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{pmatrix} \in \mathbb{R}^{n \times d}, \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n,$$

and assume $n \geq d$ and rank(X) = d. Let $S \subseteq \{1, \ldots, d\}$ and S^c its complement, with $|S^c| = d_0$. Denote by X_{S^c} the $n \times d_0$ submatrix of X with columns in S^c . Under the null hypothesis $y_i = \langle \beta_{S^c}, x_{i,S^c} \rangle + \varepsilon_i, \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, define

$$RSS_1 = \min_{\beta \in \mathbb{R}^d} \|y - X\beta\|_2^2, \quad RSS_0 = \min_{\beta \in \mathbb{R}^{d_0}} \|y - X_{S^c}\beta\|_2^2.$$

One shows that

$$RSS_0 - RSS_1 \sim \sigma^2 \chi^2(d - d_0), \quad RSS_1 \sim \sigma^2 \chi^2(n - d),$$

and that $RSS_0 - RSS_1$ is independent of RSS_1 . Hence the statistic

$$F = \frac{(RSS_0 - RSS_1)/(d - d_0)}{RSS_1/(n - d)}$$

follows an $F_{d-d_0, n-d}$ distribution.

Outline of proof:

- i. Show $RSS_1 = \varepsilon^{\top} (I_n X(X^{\top}X)^{-1}X^{\top}) \varepsilon$ and $RSS_0 = \varepsilon^{\top} (I_n X_{S^c}(X_{S^c}^{\top}X_{S^c})^{-1}X_{S^c}^{\top}) \varepsilon$, where $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^{\top}$.
- ii. Define projection matrices

$$P_1 = I_n - X(X^{\top}X)^{-1}X^{\top}, \quad P_2 = X(X^{\top}X)^{-1}X^{\top} - X_{S^c}(X_{S^c}^{\top}X_{S^c})^{-1}X_{S^c}^{\top},$$

so that $RSS_1 = \varepsilon^T P_1 \varepsilon$, $RSS_0 - RSS_1 = \varepsilon^T P_2 \varepsilon$. Use Q4 to show P_1 and P_2 are projections of ranks n - d and $d - d_0$, with $P_1 P_2 = 0$.

iii. By Q3, there is orthogonal U with $P_1 = UD_1U^{\top}$, $P_2 = UD_2U^{\top}$. Conclude $\varepsilon^{\top}P_1\varepsilon \sim \sigma^2\chi^2(n-d)$, $\varepsilon^{\top}P_2\varepsilon \sim \sigma^2\chi^2(d-d_0)$, and they are independent.

Solution.

i. By lecture, $\beta' = (X^{\top}X)^{-1}X^{\top}y$. So we can write

$$RSS_{1} = \min_{\beta \in \mathbb{R}^{d}} \|y - X\beta\|_{2}^{2}$$

$$= \|y - X(X^{T}X)^{-1}X^{T}y\|_{2}^{2}$$

$$= \|(I - X(X^{T}X)^{-1}X^{T})y\|_{2}^{2}$$

$$= \|(I - X(X^{T}X)^{-1}X^{T})\varepsilon\|_{2}^{2}$$

$$= \varepsilon^{T}(I - X(X^{T}X)^{-1}X^{T})\varepsilon.$$

The same steps (with $X \to X_{S^c}$) give RSS₀.

ii. Simply take

$$P = X (X^{\top} X)^{-1} X^{\top}, \quad T = S^c.$$

- iii. Using $P_i = U D_i U^{\top}$ from Q3 and $z = U^{\top} \varepsilon \sim N(0, \sigma^2 I)$: $\varepsilon^{\top} P_i \varepsilon = \varepsilon^{\top} U D_i U^{\top} \varepsilon = z^{\top} D_i z$. Hence (a) $\varepsilon^{\top} P_1 \varepsilon = z^{\top} D_1 z = \sum_{j=1}^{n-d} z_j^2$, so $\varepsilon^{\top} P_1 \varepsilon \sim \sigma^2 \chi^2 (n-d)$.
 - (b) Since the two chi-square sums involve disjoint subsets of the independent z_j , they are independent.