action of the four modules constitutes the radio broadcast monitoring system. Below is the flow-

gure 2 An illustration of the flow of the algorithm from a frame of audio to its result after detection.

Broadcasted signal is divided into time frames, each frame contains 16,384 samples

The pattern (vector) of each frame is computed with the PG Module

	pattern for frame 1	pattern for frame 2	pattern for frame 3	pattern for frame 4	pattern for frame 5	pattern for frame 6	pattern for frame 7	pattern for frame 8	pattern for frame 9	pattern for frame 10	pattern for frame 11	pattern for frame 12	pattern for frame 13	
time = 0			,									tim		

Each pattern is sent to the DBS Module.

The DBS Module returns either NOMATCH, or, the matched song # and the matched frame * in the song

The double-headed arrow represents how the SDI functions.

The module reads every 10 frames of song #, then exercise the collateral filtering technique - to detect if a song is presence:

If there is no majority winner, no song is detected, issue song# =0.

If there is a majority winner, issue song# = winner song#.

unection of the four modules constitutes the radio broadcast monitoring system. Below is the flow-

Figure 2 An illustration of the flow of the algorithm from a frame of audio to its result after detection.

Broadcasted signal is divided into time frames, each frame contains 16,384 samples

The pattern (vector) of each frame is computed with the PG Module

	pattern for frame 1	pattern for frame 2	pattern for frame 3	pattern for frame 4	pattern for frame 5	pattern for frame 6	pattern for frame 7	pattern for frame 8	pattern for frame 9	pattern for frame 10	pattern for frame	pattern for frame 12	pattern for frame 13	
time = 0									!	tin				

Each pattern is sent to the DBS Module.

The DBS Module returns either NOMATCH, or, the matched song # and the matched frame * in the song

The double-headed arrow represents how the SDI functions.

The module reads every 10 frames of song #, then exercise the collateral filtering technique - to detect if a song is presence:

If there is no majority winner, no song is detected, issue song# =0.

If there is a majority winner, issue song# = winner song#.

Figure 3 The flowchart of the PG Module.

The flowchart of this module is a simple flowchart, as follows:

igure 4 Original band setting leads to pattern mismatches between the original and its speedup variant.

igure 5 Modified band setting yields very good pattern matching given the speedup rate is known.

Figure 6 The new band setting leads to good robustness of $\pm -2\%$ speedup variations.

Figure 7 The schematic of the DBS operation flow.

The flowchart illustrates the flow in DBS Module is given below:

No

Figure 8 The flowchart of the RS Algorithm.