

基于全局指导的点云 定向法向求解

张童;王诗瑶;曹俊杰;刘秀平/大连理工大学

Introduction

点云是计算机视觉领域使用的主要数 据结构, 被广泛应用于无人驾驶, 扫描部 件检测等任务。法线作为点云的一种局部 几何属性,有着重要的作用,法向估计是 三维形状分析问题中的一个基本任务。目 前、基于深度学习的法向估计方法大多为 无定向估计的方法,通过对查询点的局部 邻域使用编码-解码的网络模型,对该点的 法向量进行回归预测。然而,基于局部邻 域编码得到的特征不具备全局信息,无法 准确定向。针对目前点云定向法向检测的 困难,本文在前人的基础上进行了改进, 通过多个分支的回归,结合全局与局部的 特征计算定向法向量,在多个数据集上取 得了数值上的提升。

Method

首先,与大部分使用体素网络的方 法相同,通过K近邻与体素化,将原有 的点云分为两部分分支。对每一个点与 该点的K近邻的点使用3层带有BN层的 MLP网络得到了基于局部邻域的特征信 息。对体素化的分支,使用传统的3D U-Net网络得到了每一个小区域基于全 局信息的特征。然后将每一个区域获得 的全局特征一致的返还给该区域下的所 有的点。点云中的每一个点都通过这样 的方式获得了各自的局部特征与全局特 征。

然后,将点云的局部特征部分通过 三层的MLP网络获得了一个用于确定角 度的无定向法向量回归。于此同时,将 每个点的局部特征与全局特征进行连接, 这样获得了总体的融合后的特征,之后 对这个特征也使用三层MLP网络进行回 归。融合特征在回归后,将得到用于定 向的辅助定向向量。法向定向的问题被 分解为辅助向量与真值方向的角度差问 题与无定向法向求解的问题这两个子问 题。

最后,通过对比辅助向量与无定向 法向的角度差来对得到的无定向法向量 进行后处理的操作,得到定向的法向量。

Results

在常用的ModelNet40、Shrec、PCPNet 数据集上进行了实验,并且与目前最新的 定向文章即本文的baseline进行了对比。

在定量方面,在使用定向损失函数作 为辅助向量的损失函数时,在ModelNet40 与Shrec数据集上在RMSE、PGP5与PGP10上 都获得了比基线网络更好的成果。在 PCPNet上, 与原网络的效果保持一致。 时,在PCPNet数据的实验中也与近年的 SDF方法进行了对比, 无论是在对数据源 的要求, 还是在数值结果上, 本文的方法 都要更具有优势。

在可视化的定性实验中,本文的方法 在孔洞更多的CAD零件上相比基线的方法 有着更加明显的优势。如下右侧为我们提 出的网络结果,左侧为基线的结果。

Discussion

本文提出的方法较好的提高了最终 数据的精度,对孔洞与边缘的定向问题 都能较原有的方法得到提升。

然而,本文的主要网络中,因为体 素模块的存在,在对点个数较多的数据 集会存在显存不足的问题,需要先下采 样再进行训练,这使得部分数据集的提 升并不明显。

Conclusion

本文通过了对近些年基于深度学习 的方法的法向定向问题的研究,从预测+ 修正的角度出发,在前人的网络结构上 做出了改进。使得整个模型基于局部出 发的无定向法向会比全局出发的定向法 向在角度上与真值的法向偏差更小的这 个角度出发,最后给出了无定向法向+辅 助定向法向修正的思路。并且尝试了多 种的损失函数作为辅助在不同的数据集 上进行了实验,最终实验表明,本文提 出的网络能够更好的应对常见的具有孔 洞与较锋利边的点云数据。

References and Acknowledgement

[8] HASHIMOTO T, SAITO M. Normal estimation for accurate 3d mesh reconstruction with point cloud model incorporating spatial structure. [C]// CVPR Workshops. 2019: 54 - 63.

特别感谢ModelNet40, Shrec, PCPNet数据集提供的点云模型,以及Hashimoto先 生在部分代码上给予的帮助

ZWSOFT中望软件

