

CMOS VLSI Design MOS Transistor and Logic

Introduction

- Integrated circuits: many transistors on one chip.
- Very Large Scale Integration (VLSI): very many >10K gates in a chip
- Complementary Metal Oxide Semiconductor (CMOS)
 - Fast, cheap, low power transistors
- Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- Rest of the course: How to build a good CMOS chip

Silicon Lattice

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

nMOS Transistor

- Four terminals: gate, source, drain, body
- Source and drain: n type
 - n+ mean it is heavily doped
- Body: p type
- Gate is used to control the transistor

nMOS Operation (V_G=0V)

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage $(V_G=0V)$:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation (V_G=VDD)

- When the gate is at a high voltage (V_G=V_{DD}):
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- GND = 0 V
- In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

Summary: Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

CMOS Inverter

CMOS Inverter

CMOS Inverter

Α	Υ
0	1
1	0

Α	В		Υ
0	0		
0	1		
1	0		
1	1		

Α	В	Υ	
0	0	1	
0	1		
1	0		
1	1		

Α	В	Υ	
0	0	1	
0	1	1	
1	0		
1	1		

Α		В	Y	
0		0	1	
0		1	1	
1		0	1	
1		1		

В	Υ
0	1
1	1
0	1
1	0
	0 1 0

CMOS NOR Gate

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

CMOS Logic Gate Design

Review CMOS Inverter

Α	Υ
0	1
1	0

Complementary CMOS

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Construction of PDN

NMOS devices in series implement a NAND function

NMOS devices in parallel implement a NOR function

$$A - \begin{vmatrix} A + B \end{vmatrix}$$

Series and Parallel (1)

- Series: both must be ON to be conductive
- Parallel: either can be ON to be conductive

Series and Parallel (2)

- Series: both must be ON to be conductive
- Parallel: either can be ON to be conductive

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

4-input CMOS NOR gate

- Activity:
 - Sketch a 4-input CMOS NOR gate

4-input CMOS NOR gate

- Activity:
 - Sketch a 4-input CMOS NOR gate

Compound Gates

- Compound gates can do any inverting function
- Ex: AND-OR-INVERT, AOI22 $Y = \overline{A \cdot B + C \cdot D}$

Example: O3AI

$$Y = \overline{(A+B+C)\cdot D}$$

Example: O3AI

$$\bullet \qquad Y = \overline{(A+B+C)\cdot D}$$

Signal Strength

- Strength of signal: How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest
 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus nMOS are best for pulldown network, pMOS are best for pull-up

Weak "1"

Review: Threshold Drops

Pass Transistors

- Input is from the source
- Transistors can be used as switches

$$g = 0$$

$$s - - d$$

$$s \longrightarrow d$$

$$g = 0$$

 $s \rightarrow 0$

$$g = 1$$
 $s \rightarrow \phi \rightarrow d$

Input
$$g = 1$$
 Output $0 \rightarrow \infty$ strong 0

Input
$$g = 0$$
 Output $0 \longrightarrow -$ degraded 0

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both strong 0 and 1

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

Input Output

$$g = 1$$
, $gb = 0$
 $0 \rightarrow \sim strong 0$

nMOS pass strong 0

$$g = 1$$
, $gb = 0$
 $1 \rightarrow \sim strong 1$

1 \rightarrow strong 1 pMOS pass strong 1

Symbol of Transmission Gates

Tristate buffer

Tristate buffer produces Z when not enabled

EN	А	Υ
0	0	
0	1	
1	0	
1	1	

Tristate buffer

Tristate buffer produces Z when not enabled

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Tristate Inverter

- Tristate inverter that produces restored output
 - Restored output: output is strongly driven and noise in the input is not passed to output
 - Violates conduction complement rule because we want a Z output

Multiplexers

• 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Multiplexers

• 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Gate-Level Mux Design

How many transistors are needed?

$$Y = SD_1 + \overline{S}D_0$$

Gate-Level Mux Design

How many transistors are needed?

$$Y = SD_1 + \overline{S}D_0$$

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

Only 4 transistors

Inverting Mux

- Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- When CLK = 1, latch is transparent
 - D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch

D Latch Design

- Multiplexer chooses D or old Q
- See the D operation in the next slide

D Latch Operation

D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop

D Flip-flop Design

 Built from master and slave D latches

D Flip-flop Operation

Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates and flip-flops out of switches

 Now you know everything necessary to start designing schematics and layout for a simple chip!

Backup slides