Цифровая обработка изображений

Лекция 5

Локальная обработка изображений. Конволюция.

Окрестность пикселя

Операция в окружении

- Операции работают на большей окрестности, чем для точечных операций
- Области определяются, чаще всего,
 прямоугольником вокруг центрального пиксела
- •Зависит от размера прямоугольника и формы фильтра.

Простые операции

- •Некоторые простые операции в окрестности включают:
 - »Мин: Установите значение пикселя до минимума в окрестности
 - »Макс: Установите значение пикселя до максимума в окрестности
 - »Медиана: медианное значение набора чисел является серединой значение в этом наборе (например, из множества [1, 7, 15, 18, 24] 15 медиану). Иногда средний работает лучше, чем в среднем

Соседство и связность

- N₄(p): 4-соседа
- N_D(p): 4-соседа по диагонали
- $N_8(p) = N_4(p) \cup N_D(p)$: 8-соседей

- Соседство:
- р: набор уровней яркости, если уровень серого пиксела в р, то он будет использоваться для установления определения соседства.
 - » 4-связности
 - » 8-связности
 - » м-связности

Путь, Связность, Область

Путь:

» Путь из p = (s,t) to q = (x,y) является множеством связанных точек

$$P(p,q) = \{(s,t), ..., (x_i, y_i), ..., (x, y)\}$$
» If $(s, t) = (x, y), P$
является замкнутым путем.

• p и q являются связанными в S если $P(p,q) \subset S$. Множество $\{q; P(p,q) \subset S\}$ является связанной компонентой $p \in S$.

- S является <u>связанным</u> множеством если имеет хотя бы один смежный пиксель в компонентах. S также называется областью.
- Граница области R = {p; p ∈ R, существуют q ∉ R, q ∈ N(p)}
- If R is entire image, its boundary is the first and last rows and columns of pixels.

Метрики и расстояния

Нормированные расстояния

Задаются p, q, r, в функции D(p,q), которая является функцией расстояния

a)
$$D(p,q) \ge 0$$
 and $D(p,q) = 0$ iff $p = q$

b)
$$D(p,q) = D(q,p)$$

c)
$$D(p,r) \le D(p,q) + D(q,r)$$

Евклидово расстояние

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

• Городская метрика

$$D_4(p,q) = |x-s| + |y-t|$$

• Шахматная метрика

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

Конволюция

Коэффициенты Входная строка фильтр Выходная сторка Соответствие фильтра

Нормализация отклика фильтра

Коэффициенты фильтра

A B C

Максимальное значение изображения ... 255 255 255

Максимальный =
$$A \cdot 255 + B \cdot 255 + C \cdot 255 \Leftrightarrow$$
 отклик фильтра = $255 \cdot (A + B + C)$

Если максимальный отклик фильтра= 255 (один байт) тогда

Отклик с нормализацией = отклик / (A+B+C)

Формулы конволюции

$$g(x) = h * f(x) = \sum_{i=-n}^{n} h(i) f(x-i)$$

g(x): выход, h: фильтр, * действие конволюции,

f(x): вход, n = |_ ширина фильтра / 2 _|

|__|: округляет в меньшую сторону, например : |_ 1.7_| = 1

На пример: фильтр (h):

$$c = 3 => n=1$$

):
$$\begin{bmatrix} 1 & 2 & 1 \\ & & 1 \\ & & & 1 \end{bmatrix}$$

h(-1)=1 h(0)=2 h(1)=1

Формулы конволюции

$$g(x) = h * f(x) = \sum_{i=-n}^{n} h(i) f(x-i)$$

 х является пикселем интереса, т. е. положением в сигнале / изображение и центром фильтра

$$n = 1 \implies i \in \{-1,0,1\} \in \left\{ \begin{array}{l} i = -1 \implies f(x-(-1)) = f(x+1) = 2 \\ i = 0 \implies f(x-0) = f(x) = 1 \\ i = 1 \implies f(x-1) = 1 \end{array} \right.$$

Формулы конволюции

f(x)

$$i = -1$$
: $h(-1) \cdot f(x+1) = 1 \cdot 2 = 2$

$$i = 0$$
: $h(0) \cdot f(x) = 2 \cdot 1 = 2$

$$i = 1$$
: $h(1) \cdot f(x-1) = 1 \cdot 1 = 1$

$$g(x) = 2 + 2 + 1 = 5$$

Normalise : g(x) = 5/4

Корреляция

Корреляция (1D)

Коэффициенты фильтра

Корреляция vs Конфолюция

корреляция

1 2 1
$$g(x) = h \circ f(x) = \sum_{i=-n}^{n} h(i) f(x+i)$$
1 1 2 2 1 1 2 2 1 1

конволюция

1 2 1
$$g(x) = h * f(x) = \sum_{i=-n}^{n} h(i) f(x-i)$$
1 1 2 2 1 1 2 2 1 1

В обработке изображений используется корреляция но (почти) всегда называют его сверкой, т.е. конволюцией!!! Примечание: Когда фильтр симметричен: корреляция = конволюции!

Convolution/correlation on images Normalisation

- The filter is now 2D
- Kernel (mask), kernel coefficients
- Size: **3x3**, 5x5, 7x7,

1	1	1
1	1	1
1	1	1

I	n	1)	U	t
		Л		~	_

1	2	0	1	3	
2	1	4	2	2	
1	0	1	0	1	
1	2	1	0	2	
2	5	3	1	2	

$\frac{12}{9}$		

Convolution/correlation on images

Input

1	2	0	1	3	
2	1	4	2	2	
1	0	1	0	1	
1	2	1	0	2	
2	5	3	1	2	

<u>12</u> 9	<u>11</u> 9 →		

конволюция/корреляция изображений

Input

 1
 2
 0
 1
 3

 2
 1
 4
 2
 2

 1
 0
 1
 0
 1

 1
 2
 1
 0
 2

 2
 5
 3
 1
 2

 2
 5
 3
 1
 2

<u>12</u> 9	<u>11</u> 9	+ 14 9	

конволюция/корреляция изображений

Input

1	2	0	1	3	
2	1	4	2	2	
1	0	1	0	1	
1	2	1	0	2	
2	5	3	1	2	

$\frac{12}{9}$	<u>11</u> 9	$\frac{14}{9}$	
$\frac{13}{9}$	$\frac{11}{9}$	13 9	
$\frac{16}{9}$	<u>12</u> 9	$\frac{11}{9}$	

Формулы 2D конволюция/корреляция

конволюция

$$g(x, y) = h * f(x, y) = \sum_{j=-n}^{n} \sum_{i=-m}^{m} h(i, j) f(x-i, y-j)$$

корреляция

$$g(x, y) = h \circ f(x, y) = \sum_{j=-n}^{n} \sum_{i=-m}^{m} h(i, j) f(x+i, y+j)$$

1	1	1
1	1	1
1	1	1

2	3	2
-1	0	-1
2	3	2

Применение корреляции

- Много, определется программистом
 и некоторыми стандартными
 операциями
 - » обнаружение объекта
 - » Размытие изображения
 - » удаление шума
 - » Морфология (позже)
 - » Обнаружение края (позже)

Простая детекция объектов

- Поиск конкретного объекта на изображении
- 1D пример: объект дается (известный) в виде изображения, например,
- Задача: Найти этот объект на изображении:

Input	20	25	30	60	30	20	40	60	10	2
Output		300 0	435 0	540 0	420 0	430 0	480 0	510 0	246 0	

Для изображений это называется corelation или шаблон соответствия!

• Фильтр называется шаблоном или маской

 Чем ярче значение на выходе, тем лучше распознование

- Два важных приложения:
 - » Поиск конкретного объекта
 - Какой тип объекта?

Input image

- Объект на изображении?

шаблоны:

• Поиск с поворотом

- вращение
 - » Концентрические круги

Сглаживание изображений

- И известны как: Сглаживание, усредняющий фильтр, фильтр нижних частот
- Самый простой фильтр:
- Пространственное фильтр нижних частот

$$\frac{1}{3}$$
 1 1 1

- Другая маска:
- Фильтр Гаусса:

4				
$\frac{1}{4}$	1	2	1	
		•		

1 9	1	1	1
	1	1	1
	1	1	1

$\frac{1}{16}$	1	2	1
	2	4	2
	1	2	1

Обработка изображений

Конволюция и фильтры

Для чего используется?

- Многие операции определяются при програмировании:
 - » Сглаживание
 - » Удаление шума
 - » Поиск объектов
 - » Морфология
 - » Определение края

Простые операции. Пример

Процесс пространственной

повторяется для каждого пикселя в исходном изображении для генерации фильтрованное изображение

Пространственная фильтрация: форма уравнения

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

Фильтрация может быть дано в форме уравнения, как показано выше Обозначения основаны на изображении, показанном слева

Обработка соседства

• В отличие от точки (пикселя) обработку

Input Output

Сглаживающая фильтрация

- Один из самых простых операций пространственной фильтрации мы можем выполнить это операция сглаживания
 - »Просто в среднем все пиксели в окрестности вокруг центрального значения
 - »Особенно полезен при удалении шума
 - »Также полезно для уточнения деталей

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Простые сглаживающие фильтры

Сглаживающая пространственная фильтрация

повторяется для каждого пикселя в исходном изображении для создания сглаженного изображения

output

26	\(\left(\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}
0/4/00/00/4/0/	\(\sist\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

input

Пример сглаживания изображений

- Изображение в левом верхнем углу является оригинальным с размером 500
 * 500 пикселей
- •Последующие изображения показать изображение после Фильтрации с усреднением фильтра с возрастающим размером
- •3, 5, 9, 15 и 35
- •Обратите внимание, как меняются детали

Краевые эффекты

По краям изображения нам не хватает пикселей для формирования окрестности

$$x^{l} = f(x^{l-1} * k^{l} + b^{l}),$$

где x^l — выход слоя l;

f() — функция активации;

 b^l — коэффициент сдвига слоя l;

* – операция свертки входа x с ядром k.

С учетом краевых эффектов размер исходных матриц уменьшается

$$x_j^l = f\left(\sum_i x_i^{l-1} * k_j^l + b_j^l\right),\,$$

где x_j^l – карта признаков j (выход слоя l);

f() – функция активации;

 b^l — коэффициент сдвига слоя l для карты признаков j;

 k_j^l – ядро свертки j карты, слоя l;

* – операция свертки входа x с ядром k.

Применеие сглаживания

- Размывание удаляет особенности или другие детали
- Степень размытия = размер

Show: camera, mean, convolution

Применеие

- Предварительная обработка: повысить объекты
- размытость + бинаризация

abc

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Применение

• Удаление шума

Проблемы на границе

- Почему вывод изображения меньше исходного?
- Нам не хватает информации
- Чем больше ядро, тем больше проблема
- Какое это имеет значение?
 Да, если мы собираемся после объединить изображения

1	2	0	1	3	
2	1	4	2	2	
1	0	1	0	1	
1	2	1	0	2	
2	5	3	1	2	

Input

Output

$\frac{12}{9}$	$\frac{11}{9}$	$\frac{14}{9}$		
$\frac{13}{9}$	$\frac{11}{9}$	$\frac{13}{9}$		
<u>16</u> 9	<u>12</u> 9	<u>11</u> 9		
				Į
	$\frac{13}{9}$	$\frac{13}{9}$ $\frac{11}{9}$	$\frac{13}{9}$ $\frac{11}{9}$ $\frac{13}{9}$	$\frac{13}{9}$ $\frac{11}{9}$ $\frac{13}{9}$

Проблемы на границе

• Решения

Input

- » Добавить значение: 0, 255, соседний (вход / выход)
 - Изменение гистограммы, совсем другое значение, новую модель, и т.д.
- » Обрезать ядро: 3x3 => например 2x3:
 - Последовательность действий, а не четко определены

1	1	1				
1	1	1	→	1	1	1
1	1	1		1	1	1

1	2	0	1	3	
2	1	4	2	2	
1	0	1	0	1	
1	2	1	0	2	
2	5	3	1	2	

Output

$\frac{12}{9}$	$\frac{11}{9}$	$\frac{14}{9}$	
$\frac{13}{9}$	$\frac{11}{9}$	$\frac{13}{9}$	
$\frac{16}{9}$	$\frac{12}{9}$	$\frac{11}{9}$	
			Ę

Проблемы на границе

Реншение в расширении границ

ored) 3 2 3 Input 3 0 2 5 3 2

Циркулярная индексация

			1 2		раже flecte		nirro
2	1	1	2	0	1	3	
		2	1	4	2	2	
Input		1	0	1	0	1	
1111	Jul	1	2	1	0	2	
		2	5	3	1	2	

Корреляция & Конволюция

- Фильтрацию называют корреляцией с фильтром, сама назывется корреляцией ядра
- Свертывание является подобная операция, с помощью только одного тонкое различие

•Для симметричных фильтров это не имеет никакого значения

Нейронные Сети

Подвыборочный слой CNN

В процессе сканирования ядром подвыборочного слоя (фильтром) карты предыдущего слоя, сканирующее ядро не пересекается в отличие от сверточного слоя. Обычно, каждая карта имеет ядро размером 2х2, что позволяет уменьшить предыдущие карты сверточного слоя в 2 раза. Вся карта признаков разделяется на ячейки 2х2 элемента, из которых выбираются максимальные по значению.

58

Подвыборочный слой CNN

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

$$x^{l} = f(a^{l} * subsample(x^{l-1}) + b^{l}),$$

где x^l — выход слоя l; f() — функция активации; a^l,b^l — коэффициенты сдвига слоя l; subsample() — операция выборки локальных максимальных значений.

Нейронные Сети CNN

 0
 0
 0
 0
 0
 30

 0
 0
 0
 0
 50
 50
 50

 0
 0
 0
 20
 50
 0
 0

 0
 0
 0
 50
 50
 0
 0

 0
 0
 0
 50
 50
 0
 0

 0
 0
 0
 50
 50
 0
 0

 0
 0
 0
 50
 50
 0
 0

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0
	0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 30 0 0 0 30 0 0 0 0 30 0 0 0 0 30 0 0 0 0 30 0	0 0 0 0 30 0 0 0 0 30 0 0

Visualization of the receptive field

Pixel representation of the receptive

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30)=6600 (A large number!)

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

0 0 0 0 0 30 0

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

Multiplication and Summation = 0

30	3,	22	1	0
0_2	02	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17 .0
10.0	17.0	19.0
9.0	6.0	14.0

Нейронные Сети

Обобщающие процессы свертки имеет свою оборотную сторону – возможность подделки изображений под удовлетворение особенностей распознающих фильтров. На изображениях ниже человек в обоих случаях узнает фотографии панды. А сверточные нейросети можно запутать, добавив шум, подстроенный под фильтры распознавания других образов.

Заключение

- •В этой лекции мы рассмотрели идеи пространственной фильтрации и, в частности:
 - »Район операции
 - »Процесс фильтрации
 - »сглаживающих фильтров
 - »Решение проблем по краям изображения при использовании фильтрации
 - »Корреляцию и Конволюцию