

Ch.8 Introduction to PLD/FPGA

- Introduction to PLD Families
- Two kinds of the Basic FPGA Architecture
- The Programmable sources of FPGA
- CPLD or FPGA?
- Design of ASIC and FPGA Flow
- Design examples

1. Introduction to Programmable Logic Device Families

Acronyms

SPLD = Simple Prog. Logic Device

PAL = Prog. Array of Logic

CPLD = Complex PLD

FPGA = Field Prog. Gate Array

Common Resources

Configurable Logic Blocks (CLB)

- Memory Look-Up Table
- AND-OR planes
 - Simple gates

Input / Output Blocks (IOB)

Bidirectional, làtchés, inverters, pullup/pulldowns

Interconnect or Routing

Local, internal feedback, and global

ASIC Types

- Full-Custom ASICs
- Semi-Custom ASICs
 - Standard-Cell ASICs
 - Gate-Array ASICs
- Programmable ASICs
 - Field Programmable Gate Array (FPGA)
 - Complex Programmable Logic Devices (CPLD)

The world famous FPGA Corp.

The Stratix GX Device Family

- Second-Generation Transceiver Product
 - -3.125 Gbps
 - Signal Integrity
 - Flexible Feature-Rich High-Speed Solution
- Complete Set of Efficient Hard IP Functions
 - Significantly Reduces
 Resource Consumption

Lattice

Figure 1. Stratix GX Development Board

Nios embeded system development

Stratix -Application

Achitecture

Technology Selection

- Time-to-Market
- Performance
- Cost
- Risk
- Technology Migration

Time-to-Market

FPGA has shorter time-to-market than ASIC

- Faster prototype no manufacturing lead time
- Fast turn-around for design changes and bug fixes
- Able to stage drops for incremental feature set to give SW an earlier start in system integration
- Facilitate SW and HW co-design
- Off-the-shelf product responds better to the fluctuation of market demand

Performance

- FPGA has comparable embedded RAM and processor performance
- FPGA vendors offer custom-made IP and high-speed cells to help achieving the performance
- FPGA uses state-of-art 65nm process technology
- Programmability makes FPGA inherently slower than ASIC
- ASIC has lower power product

Cost

Cost calculation

Product Cost =

Fixed Part Cost + Variable Cost Per Part * Sales Volume

FPGA has lower fixed cost than ASIC

No NRE. Lower EDA tool cost. Lower design cost

- FPGA has higher variable part cost than ASIC
- FPGA shorter time-to-market helps capturing market opportunity. Delay to market could mean diminishing sales
- FPGA is more cost effective for medium and low volume products than ASIC

Risk

- FPGA has lower risk than ASIC
- ASIC has high silicon re-spin cost therefore much higher risk in committing to prototype
 - Evolving standards
 - Lack of in-system testing for interoperability
 - Months' long turn cycle for bug fixes
- ASIC has higher risk in getting return back on investment due to
 - Higher development cost
 - Longer development cycle
 - Not as adaptive to market change

Technology Migration

- Both FPGA and ASIC offer future technology roadmap
- Technology migration to ASIC means smaller process geometry
- FPGA technology migration is non-linear
- Build-in feature in Altera FPGA P&R tool to ensure correct migration
- Altera offers hardcopy for further cost reduction & performance boost from FPGA

ASIC Design v. FPGA:Primary Building Elements

	ASIC	FPGA
Logic Cells	Library of Standard Cells	Adaptive Logic Module with Programmability
Memory	Generated through Memory Compiler	Memory Blocks
I/O	I/O Cell Library	Programmable IOs & Dedicated Special IO Circuitry
Routing	Detailed	Segmented, Distributed & Dedicated
Dedicated Resources	None; but can Embed any Custom Blocks	PLL DSP

Memory

ASIC

- Generate memory using Memory Compiler
- Instantiate the memory modules

FPGA

- Support synchronous modes only
- Altera TriMatrix Memory consists of memory block sizes of 512, 4k and 512k bits per block
- Memory blocks are organized in columns, up to 9Mbits
- Memory depth and width ratio are configurable
 - 32x16 to 512x1 for M512 block
 - 128x32 to 4kx1 for M4k block
 - 4kx128 to 64kx8 for M-RAM block

ASIC

Instantiate the IO pads provided in IO cell library

FPGA

- IO structured in banks, up to 1,508 usable IOs
- Support wide variety of I/O standards
 - Default standard is LVTTL
- Has programmable driving strength
- Dedicated circuitry for high speed IO support
- No need for pad instantiation. IO pads are defined in synthesis constraint file

Routing

- ASIC allows detailed routing among cells
- FPGA uses a combination of programmable and dedicated routing lines
- FPGA high-speed interconnects
 - Register chain for fast shift function
 - Carry chain for high speed arithmetic operation
- FPGA general interconnects

Routing of FPGA

Programmable Interconnect

Configurable Logic Blocks (LE)

Performance Comparison

- Combinatorial logic implemented in ASIC is typically faster than FPGA
 - ASIC's fine-grain architecture allows more detailed routing and more predictable performance
 - FPGA's performance is more routing dependent
 - FPGA programmable routing structure limits levels of logic as apposed to ASIC detailed routing
- Critical paths that include IO, Memory & DSP have equivalent performance
 - FPGA dedicated resources make the implementation of these functions equivalent to ASIC

2. Two kinds of FPGA Architecture

 How do FPGA's work programmble logic circuits?

- Look Up Table
- Multiplexer

1 Look Up Tables

- Combinatorial Logic is stored in 16x1 SRAM Look Up Tables (LUTs) in a CLB
- · Example:

- Capacity is limited by number of inputs, not complexity
- Choose to use each function generator as 4 input logic (LUT) or as high speed sync.dual port RAM

Configuration Bits

- There are Two Types of Configuration Bits
 - ✓ SRAM Cell (Majority of Bits)

Register (Allows Powered-up Reconfiguration)

2 The another kind of FPGA Architecture

Example:

A Mux with select s and input a,b

$$f = sa + \bar{s}b$$

- when b=0,
- output f = sa
- The function is logic and
- when a=1,
- Output f = s + b
- The function is logic or

3. The Programmable Sources of FPGA

Configurable Logic Blocks (LE)

The sources of FPGA

- Configurable Logic locks (CLB) or Logic Element (LE)
- 2 Programmable I/O
- ③ Programmable interconnect
- 4 Hard Core in Chip
- (5) **IP**

The one of the Basic FPGA Architecture (Look Up Tables)

Configurable Logic Blocks (LE)

1 Logic Elements

- Smallest Units of Logic
- Used for Combinatorial/Registered Logic

LE Datasheet Image

LE Features

- 4-input Look-Up Table (LUT)
- Configurable Register
- 2 Operation Modes
- Dynamic Add/Subtract Control
- Carry-Select Chain Logic
- Performance-Enhancing Features
 - LUT & Register Chain
- Area-Enhancing Features
 - Register Packing & Feedback

LE inputs/Outputs

inputs

- -4 Data
- 2 LE Carry-ins & 1 Lab Carry-in
- 1 Dynamic Addition/Subtraction Control
- Register Controls

Outputs

- 2 LE Carry-Outs
- 2 Row/Column/DirectLink Outputs
- 1 Local Output
- 1 LUT Chain & 1 Register Chain

Altera Cyclone LE (Logic Element)

LUT & Register

LUT Chain

- Output of LUT Connects Directly to LUT Below
- Available Only In Normal Mode
- Ex. Wide Fan-In Functions

Register Chain

- Output of Register Connects
 Directly to Register Below (Shift Register)
- LUT Can Be Used for Unrelated Function
- Ex. LE Shift Register
- Both Chains End at LAB Boundary

2 I/O Element Structure

③ FPGA Routing

- 1) Fast Direct Interconnect CLB to CLB
- 2) General Purpose Interconnect Uses switch matrix
- 3) Long Lines
 - Segmented across chip
 - Global clocks, lowest skew
 - 2 Tri-states per CLB for busses
- Other routing types in CPLDs

What's Really In FPGA

Programmable Interconnect Points, PIPs (White)

Switch Matrix

Routed Wires (Blue)

Direct Interconnect (Green)

> LE (Red)

Long Lines (Purple)

4 Hard Core in Chip

- ROM
- RAM
- CPU
- DSP
- PLL
- CLOCK
- •

ROM

Read-only Memory

> Data Embedded in Configuration File

Loaded at Configuration Time

- Inputs Are Registered
- Data Cannot BeAltered

ROM

True Dual-port RAM

- True Dual-port RAM
 - Port A & Port B
 - All inputs Must Be Registered
 - Mixed Width Capability
- Clocking Options
 - Input/Output ClockMode
 - Independent ClockMode

Single-port RAM

- Single-port RAM
 - Read & WriteAddresses Arethe Same Port
 - All inputs Are Registered
- Clocking Options
 - Single Clock
 - Input/OutputClock Mode

Single-port RAM

5 IP CORE

• Hard IP: 硬IP

• Soft IP: 软IP

• Firm IP: 固IP

IP Design Flow

4. CPLD or FPGA?

Complex Programmable Logic Device

Architecture

PAL/22V10-like More Combinational

Density

Low-to-medium 0.5-10K logic gates

Performance

Predictable timing Up to 250 MHz today

Interconnect

"Crossbar Switch"

Field-Programmable Gate Array

Gate array-like More Registers + RAM

Medium-to-high 1K to 20M system gates

Application dependent Up to 400MHz today

Incremental

CPLD

Macrocell

FPGA

CPLD or FPGA?

CPLD

- Non-volatile
- JTAG Testing
- Wide fan-in
- Fast counters, state machines
- Combinatorial Logic
- Small student projects, lower level courses
- Control Logic

FPGA SRAM reconfiguration **Excellent for computer** architecture, DSP, registered designs **ASIC** like design flow **Great for first year to** graduate work More common in schools PROM required for non-volatile operation 51

5. Design of ASIC and FPGA Flow

- ASIC and FPGA have compatible yet moderately different design flow
- Both ASIC and FPGA use RTL based modular design methodologies
- FPGA design flow can be considered as a simplified version of full ASIC design flow
 - No DFT required, Deep Sub-Micron (DSM) verification completed by vendor, no waiting for prototype
- FPGA allows for reduced design cycles, faster bug-fixes and feature additions at no extra cost
- For high performance designs, FPGA code may require optimization

System Specification

Algorithm Mapping

ASIC Design Flow

Prototype

- ASIC tools are generally scripts driven
- Clock tree synthesis and signal integrity need to be performed during Place & Route
- ✓ Post-layout Static
 Timing Analysis (STA)
 and Equivalency
 Checking are musts
 for sign-off to foundry

Digital IC Design Flow

FPGA Design Flow

- FPGA tools are generally GUI-driven but do have scripting capability
- Once design passes simulation and STA, it can be immediately downloaded to FPGA for in-system verification
- Bug fixes and ECO are matter of minutes/hours

ASIC Implementation

- RTL Design
 - Optimized for ASIC technology and area
- Synthesis
 - Synopsys Design Compiler, primarily driven by scripts
 - DFT logic insertion including BIST, scan and JTAG
- Place and Route
 - Generally done in Foundry, requires Foundry interface
 - Cadence, AVANT!

FPGA Implementation

- RTL Design
 - Targeted at FPGA IO, memory, DSP and PLL
 - Optimized to FPGA architecture for performance
- Synthesis
 - SynplifyPro, Quartus, ISE,....
 - FPGA Compiler II, Push-button flow with scripting capabilities using Tcl
- Place and route
 - Completely done internally
 - FPGA P&R tool Altera Quartus ,ISE
 - Push-button flow with scripting capabilities using Tcl

ASIC Verification

- RTL functional simulation
- Post-synthesis Static Timing Analysis
- Post-synthesis Equivalency Checking
- Post-Place & Route Static Timing Analysis
- Post-Place & Route Equivalency Checking
- Post-Place & Route Gate Level Simulation
- DSM verification
- In-system verification

FPGA Verification

- More simplified over ASIC verification because there is no expensive tape out and bug fixes
- Use same ASIC discipline for RTL development and functional verification. Ad hoc approach must be avoided
- Key verification points
 - RTL functional simulation
 - Post-Place & Route STA
 - In-system Verification
 - In-system verification may start as soon as basic set of functionality has been verified in simulation

61

Design for Test (DFT)

- FPGA design does not need to perform DFT
- FPGA device is 100% tested by vendor
- FPGA already contains JTAG
- FPGA saves time on test logic insertion and therefore provides more time for system testing

FPGA In-System Debugging Tool

- FPGA offers powerful, easy-to-use in-system debugging tools
- Altera Place & Route tool supports two integrated debugging tools
 - SignalProbe Route internal nodes to unused I/O pins.
 External logic analyzer can be used to monitor these pins
 - SignalTap II Embed logic analyzer, capture the data of internal nodes and transfer the data real time, via a download cable, to Quartus II software to be viewed in a waveform
 - Up to 1024 data channels. Up to 128K sample per channel
 - Circular or Segmented data acquisition methods
 - Up to 10 trigger level per channel

Engineering ChangeOrder (ECO)

- ECO to prototype can be done in minutes for FPGA rather than months for ASIC
- Chip Editor
 - Altera integrated tool for performing ECO
 - Make minor modifications to LE, IO, PLL and routing
 - Good for quick turn-around for
 - Correcting design flaw
 - Doing ECO
 - Tweaking timing
- Need to make the permanent change to the source and recompile

Equivalency Checking

- Used to guarantee other "views" of the design match the golden RTL description
- Verplex Conformal LEC, Synopsys Formality
- Within Altera FPGA design flow, formal verification can be performed between the SynplifyPro synthesized netlist and the Quartus II post-fit netlist

Firmware Development

- Firmware development starts much earlier in the development cycle for FPGA than for ASIC
- Firmware development can start even earlier if prototypes can begin with basic feature set and increment the feature content in the follow-on drops

ASIC vs. FPGA Design Flow

FPGA Design Flow

FPGA Design Flow Advantages

- No need for DFT logic insertion
- No need for post-synthesis STA
- Place & Route always in house
- No need for clock tree insertion and signal integrity check during Place & Route
- Earlier prototyping and volume production
- Earlier firmware development
- Faster turn-around for bug fixes and feature additions

Design Flow

Design Entry in schematic, VHDL, and/or Verilog.
Vendors include Synopsys, Aldec (Xilinx Foundation), Mentor, Cadence, Viewlogic, and others.

XILIN)

(2)

<u>Implementation</u> includes Placement & Routing and bitstream generation using EDA Technology. Also, analyze timing, view layout, and more.

M1 Technology

<u>Download</u> directly to the Xilinx hardware device(s) with unlimited reconfigurations*!!

*XC9500 has 20,000 write/erase cycles

In-System Programmability (ISP)

- ISP Support in EPC2 and Enhanced Configuration Devices
 - Through Jam Standard Test & Programming Language (STAPL)
 - Compliant with IEEE Std. 1532
 Draft 2.0 Specification
 - Industry-Standard 4-Pin JTAG
 Interface
 - Supports JTAG Boundary Scar
- Increases Design Flexibility
 - Update Design In-System
- Streamlines Manufacturing
 - Reduce Costs

6. Design examples

Ex1. USB2.0 Interface Chip

USB2.0 Interface Chip

USB2.0 Interface Chip(FPGA)

USB2.0 Interface Chip(ASIC)

Ex2. Digital Down Converter(DDC)

Simple PCI platform

Clear Structure Diagram

Integrated Verification Platform

Fine Experiment Waveform

Die, Chip & Test Board of DDC

