Rough Sets Granular Computing)

Basic Concepts of Rough Sets

- Information/Decision Systems (Tables)
- Indiscernibility
- Set Approximation
- Reducts and Core
- Dependency of Attributes

Information Systems/Tables

	Age	LEMS
x 1	16-30	50
x2	16-30	0
x 3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
х6	16-30	26-49
x7	46-60	26-49

- \square IS is a pair (U, A)
- U is a non-empty finite set of objects.
- A is a non-empty finite set of attributes such that $a: U \to V_a$ for every $a \in A$.
- V_a is called the value set of a.

Decision Systems/Tables

	Age	LEMS	Walk
x1	16-30	50	yes
x2	16-30	0	no
x 3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
хб	16-30	26-49	yes
x7	46-60	26-49	no

- □ DS: $T = (U, A \cup \{d\})$
- attribute (instead of one we can consider more decision attributes).
- The elements of *A* are called the *condition* attributes.

Indiscernibility

The equivalence relation

A binary relation $R \subseteq X \times X$ which is reflexive (xRx for any object x), symmetric (if xRy then yRx), and transitive (if xRy and yRz then xRz).

The equivalence class $[x]_R$ of an element $x \in X$ consists of all objects $y \in X$ such that xRy.

Indiscernibility (2)

Let IS = (U, A) be an information system, then with any $B \subseteq A$ there is an associated equivalence relation:

$$IND_{IS}(B) = \{(x, x') \in U^2 \mid \forall a \in B, a(x) = a(x')\}$$

where $IND_{IS}(B)$ is called the *B-indiscernibility* relation.

- If $(x, x') \in IND_{IS}(B)$, then objects x and x' are indiscernible from each other by attributes from B.
- The equivalence classes of the *B-indiscernibility* relation are denoted by $[x]_B$.

An Example of Indiscernibility

	Age	LEMS	Walk
4	16.20	7 0	
x1	16-30	50	yes
x2	16-30	0	no
x 3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
хб	16-30	26-49	yes
x7	46-60	26-49	no

- The non-empty subsets of the condition attributes are {Age}, {LEMS}, and {Age, LEMS}.
- $IND(\{Age\}) = \{\{x1, x2, x6\}, \{x3, x4\}, \{x5, x7\}\}\$
- $IND(\{LEMS\}) = \{\{x1\}, \{x2\}, \{x3,x4\}, \{x5,x6,x7\}\}$
- $IND(\{Age, LEMS\}) = \{\{x1\}, \{x2\}, \{x3,x4\}, \{x5,x7\}, \{x6\}\}.$

Set Approximation

Let T = (U, A) and let $B \subseteq A$ and $X \subseteq U$. We can approximate X using only the information contained in B by constructing the B-lower and B-upper approximations of X, denoted BX and BX respectively, where

$$\underline{B}X = \{x \mid [x]_B \subseteq X\},\$$

$$BX = \{x \mid [x]_B \cap X \neq \emptyset\}.$$

An Example of Set Approximation

	Age	LEMS	Walk
x1	16-30	50	yes
x2	16-30	0	no
x 3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
х6	16-30	26-49	yes
x7	46-60	26-49	no

 $\Box \text{ Let } W = \{x \mid Walk(x) = yes\}.$

$$\underline{AW} = \{x1, x6\},\ \overline{AW} = \{x1, x3, x4, x6\},\ BN_A(W) = \{x3, x4\},\ U - \overline{AW} = \{x2, x5, x7\}.$$

The decision class, *Walk*, is rough since the boundary region is not empty.

An Example of Set Approximation (2)

Lower & Upper Approximations

Lower & Upper Approximations (2)

Upper Approximation:

$$\overline{R}X = \bigcup \{Y \in U / R : Y \cap X \neq \emptyset \}$$

Lower Approximation:

$$\underline{R}X = \bigcup \{Y \in U / R : Y \subseteq X\}$$

Lower & Upper Approximations (3)

$oldsymbol{U}$	Headache	Temp.	Flu
U1	Yes	Normal	No
<i>U2</i>	Yes	High	Yes
<i>U3</i>	Yes	Very-high	Yes
<i>U4</i>	No	Normal	No
<i>U5</i>	No	High	No
<i>U6</i>	No	Very-high	Yes
<i>U7</i>	No	High	Yes
<i>U8</i>	No	Very-high	No

The indiscernibility classes defined by $R = \{Headache, Temp.\}$ are $\{u1\}, \{u2\}, \{u3\}, \{u4\}, \{u5, u7\}, \{u6, u8\}.$

$$XI = \{u \mid Flu(u) = yes\}$$

= $\{u2, u3, u6, u7\}$
 $\underline{R}XI = \{u2, u3\}$
 $\overline{R}XI = \{u2, u3, u6, u7, u8, u5\}$

```
X2 = \{u \mid Flu(u) = no\}
= \{u1, u4, u5, u8\}
\underline{R}X2 = \{u1, u4\}
\overline{R}X2 = \{u1, u4, u5, u8, u7, u6\}
```

Lower & Upper Approximations (4)

```
R = \{Headache, Temp.\}

U/R = \{\{u1\}, \{u2\}, \{u3\}, \{u4\}, \{u5, u7\}, \{u6, u8\}\}\}

XI = \{u \mid Flu(u) = yes\} = \{u2, u3, u6, u7\}

X2 = \{u \mid Flu(u) = no\} = \{u1, u4, u5, u8\}
```

```
\underline{RX1} = \{u2, u3\}
\overline{RX1} = \{u2, u3, u6, u7, u8, u5\}
```

```
\underline{RX2} = \{u1, u4\}
\overline{RX2} = \{u1, u4, u5, u8, u7, u6\}
```


Issues in the Decision Table

- The same or indiscernible objects may be represented several times.
- Some of the attributes may be superfluous (redundant).

That is, their removal cannot worsen the classification.

Reducts

- Keep only those attributes that preserve the indiscernibility relation and, consequently, set approximation.
- There are usually several such subsets of attributes and those which are minimal are called *reducts*.

Reduct & Core

- The set of attributes $R \subseteq C$ is called a *reduct* of C, if T' = (U, R, D) is independent and $POS_R(D) = POS_C(D)$.
- The set of all the condition attributes indispensable in *T* is denoted by *CORE*(*C*).

$$CORE(C) = \bigcap RED(C)$$

where RED(C) is the set of all *reducts* of C.

An Example of Reducts & Core

$Reduct1 = \{Muscle-pain, Temp.\}$

$oldsymbol{U}$	Headache	Muscle pain	Тетр.	Flu
U1	Yes	Yes	Normal	No
<i>U</i> 2	Yes	Yes	High	Yes
U3	Yes	Yes	Very-high	Yes
<i>U4</i>	No	Yes	Normal	No
<i>U</i> 5	No	No	High	No
<i>U6</i>	No	Yes	Very-high	Yes

 $CORE = \{ Headache, Temp \} \cap$

 ${MusclePain, Temp} = {Temp}$

$oldsymbol{U}$	Muscle pain	Temp.	Flu
<i>U1,U4</i>	Yes	Normal	No
<i>U2</i>	Yes	High	Yes
<i>U3,U6</i>	Yes	Very-high	Yes
<i>U</i> 5	No	High	No

$Reduct2 = \{Headache, Temp.\}$

$oldsymbol{U}$	Headache	Temp.	Flu
U1	Yes	Norlmal	No
U2	Yes	High	Yes
U3	Yes	Very-high	Yes
<i>U4</i>	No	Normal	No
<i>U</i> 5	No	High	No
U6	No	Very-high	Yes

Discernibility Matrix (used to find reducts)

Let T = (U, C, D) be a decision table, with $U = \{u_1, u_2, ..., u_n\}.$

By a discernibility matrix of T, denoted M(T), we will mean $n \times n$ matrix defined as:

$$m_{ij} = \begin{cases} \{c \in C: c(u_i) \neq c(u_j)\} & \text{if } \exists d \in D[d(u_i) \neq d(u_j)] \\ \lambda & \text{if } \forall d \in D[d(u_i) = d(u_j)] \end{cases}$$

for i, j = 1, 2, ..., n such that u_i or u_j belongs to the C-positive region of D.

 m_{ij} is the set of all the condition attributes that classify objects ui and uj into different classes.

Discernibility Function

 \square For any $u_i \in U$,

$$f_T(u_i) = \bigwedge_j \{ \vee m_{ij} : j \neq i, j \in \{1, 2, ..., n\} \}$$

- where (1) $\vee m_{ij}$ is the disjunction of all variables a such that $a \in m_{ij}$, if $m_{ij} \neq \phi$.

 - (2) $\vee m_{ij} = \bot(false)$, if $m_{ij} = \phi$. (3) $\vee m_{ij} = t(true)$, if $m_{ij} = \lambda$.

Each logical product in the minimal disjunctive normal form (DNF) defines a reduct of instance u_i .

Example of Discernibility Matrix

No	a	b	С	d
u1	a0	<i>b1</i>	c1	y
u2	a1	b1	c0	n
u3	<i>a0</i>	<i>b</i> 2	c1	n
u4	a1	<i>b1</i>	c1	у

$$C = \{a, b, c\}$$

$$D = \{d\}$$

$$(a \lor c) \land b \land c \land (a \lor b)$$

$$= b \land c$$

$$\text{Reduct} = \{b, c\}$$

In order to discern equivalence classes of the decision attribute *d*, to preserve conditions described by the discernibility matrix for this table

	u1	u2	u3	
u2	a,c			
u3	b	λ		
u4	λ	c	a,b	

Example of Discernibility Matrix (2)

	а	b	C	d	Ε
u 1	1	0	2	1	1
u2	1	0	2	0	1
u 3	1	2	0	0	2
u 4	1	2	2	1	0
u 5	2	1	0	0	2
u6	2	1	1	0	2
u 7	2	1	2	1	1

$$Core = \{b\}$$

$$Reduct1 = \{b,c\}$$

$$Reduct2 = \{b,d\}$$

	u1	u2	u3	u4	u5	u6
u2	2					
u3	b,c,d	b,c				
u4	b	b,d	c,d			
u5	a,b,c,c	da,b,c	λ	a,b,c,d		
u6	a,b,c,c	da,b,c	λ	a,b,c,d	λ	
u7	λ	2 :	a,b,c,	d a,b	c,d	c,d

$$F(a,b,c,d)=(b+c+d)b(a+b+c+d)(b+c)(b+d)(a+b+c)(c+d)(a+b)=b(c+d)=bc+bd$$
 Reducts: $\{b,c\}, \{b,d\}$

The Goal of Attribute Selection

Finding an optimal subset of attributes in a database according to some criterion, so that a classifier with the highest possible accuracy can be induced by learning algorithm using information about data available only from the subset of attributes.

Attribute Evaluation Criteria

- Selecting the attributes that cause the number
 of consistent instances to increase faster
 - To obtain the subset of attributes as small as possible
- Selecting an attribute that has smaller number of different values
 - To guarantee that the number of instances covered by rules is as large as possible.

An Example of Attribute Selection

U	a	b	C	d	e
u 1	1	0	2	1	1
<i>u2</i>	1	0	2	0	1
<i>u3</i>	1	2	0	0	2
<i>u4</i>	1	2	2	1	0
u 5	2	1	0	0	2
u6	2	1	1	0	2
<i>u7</i>	2	1	2	1	1

Condition Attributes:

$$a: Va = \{1, 2\}$$

$$b: Vb = \{0, 1, 2\}$$

$$c: Vc = \{0, 1, 2\}$$

$$d: Vd = \{0, 1\}$$

Decision Attribute:

$$e: Ve = \{0, 1, 2\}$$

Searching for CORE

Removing attribute a

U	b	C	d	e
<i>u</i> 1	0	2	1	1
<i>u2</i>	0	2	0	1
<i>u3</i>	2	0	0	2
<i>u4</i>	2	2	1	0
u 5	1	0	0	2
u 6	1	1	0	2
u 7	1	2	1	1

Removing attribute a does not cause inconsistency.

Hence, a is not used as CORE.

Searching for CORE(2)

Removing attribute b

U	a	C	d	e	
u 1	1	2	1	1	
<i>u2</i>	1	2	0	1	
<i>u3</i>	1	0	0	2	
u 4	1	2	1	0	
u 5	2	0	0	2	
u 6	2	1	0	2	
<i>u7</i>	2	2	1	1	

Removing attribute *b* cause inconsistency.

$$u_1: a_1c_2d_1 \to e_1$$
$$u_4: a_1c_2d_1 \to e_0$$

Hence, b is used as CORE.

Searching for CORE (3)

Removing attribute *c*

$oldsymbol{U}$	a	b	d	e	
u 1	1	0	1	1	
<i>u2</i>	1	0	0	1	
<i>u3</i>	1	2	0	2	
u 4	1	2	1	0	
u 5	2	1	0	2	
u6	2	1	0	2	
<i>u7</i>	2	1	1	1	

Removing attribute *c* does not cause inconsistency.

Hence, c is not used as CORE.

Searching for *CORE* (4)

Removing attribute d

U	a	Ь	C	e
u 1	1	0	2	1
<i>u2</i>	1	0	2	1
<i>u3</i>	1	2	0	2
<i>u4</i>	1	2	2	0
u 5	2	1	0	2
u 6	2	1	1	2
<i>u7</i>	2	1	2	1

Removing attribute *d* does not cause inconsistency.

Hence, d is not used as CORE.

Searching for *CORE* (5)

Attribute *b* is the unique indispensable attribute.

$$CORE(C) = \{b\}$$

Initial subset $R = \{b\}$

$$R = \{b\}$$

$$T$$

$$U \mid a \mid b \mid c \mid d \mid e$$

$$u1 \mid 1 \mid 0 \mid 2 \mid 1 \mid 1$$

$$u2 \mid 1 \mid 0 \mid 2 \mid 0 \mid 1$$

$$u3 \mid 1 \mid 2 \mid 0 \mid 0 \mid 2$$

$$u4 \mid 1 \mid 2 \mid 2 \mid 1 \mid 0$$

$$u5 \mid 2 \mid 1 \mid 0 \mid 0 \mid 2$$

$$u6 \mid 2 \mid 1 \mid 1 \mid 0 \mid 2$$

$$u7 \mid 2 \mid 1 \mid 2 \mid 1 \mid 1$$

$:: b_0 \rightarrow e_1$

The instances containing b0 will not be considered.

Attribute Evaluation Criteria

- Selecting the attributes that cause the number
 of consistent instances to increase faster
 - To obtain the subset of attributes as small as possible
- Selecting the attribute that has smaller number of different values
 - To guarantee that the number of instances covered by a rule is as large as possible.

Selecting Attribute from $\{a,c,d\}$

1. Selecting
$$\{a\}$$

 $R = \{a,b\}$

U'	a	b	e
<i>u3</i>	1	2	2
<i>u4</i>	1	2	0
u 5	2	1	2
u 6	2	1	2
u 7	2	1	1

$$a1b2 \rightarrow e2$$

$$a1b2 \rightarrow e0$$

$$a2b1 \rightarrow e2$$

$$a2b1 \rightarrow e1$$

$$\bigcup_{X \in U/\{e\}} POS_{\{a,b\}}(X) = \phi$$

Selecting Attribute from $\{a,c,d\}$ (2)

2. Selecting
$$\{c\}$$

 $R = \{b,c\}$

U'	Ь	C	e
<i>u3</i>	2	0	2
<i>u4</i>	2	2	0
u 5	1	0	2
u 6	1	1	2
u 7	1	2	1

$$b_{2}c_{0} \rightarrow e_{2}$$

$$b_{2}c_{2} \rightarrow e_{0}$$

$$b_{1}c_{0} \rightarrow e_{2}$$

$$b_{1}c_{1} \rightarrow e_{2}$$

$$b_{1}c_{1} \rightarrow e_{2}$$

$$\bigcup_{X \in U/\{e\}} POS_{\{b,c\}}(X) = \{u3, u4, u5, u6, u7\};$$

Selecting Attribute from $\{a,c,d\}$ (3)

II//ol

U'	b	d	e	0/(e)
u 3	2	0	2	$\longrightarrow b_2 d_0 \longrightarrow e_2 $ u3,u5,u
u 4	2	1	0	$b_2d_1 \rightarrow e_0$
u5	1	0	2	
u6	1	0	2	$b_1 d_0 \rightarrow e_2 \qquad u7$
<i>u7</i>	1	1	1	$b_1d_1 \rightarrow e_1$

$$\bigcup_{X \in U/\{e\}} POS_{\{b,d\}}(X) = \{u3, u4, u5, u6, u7\};$$

Selecting Attribute from $\{a,c,d\}$ (4)

3. Selecting
$$\{d\}$$

 $R = \{b,d\}$

$$POS_{\{b,d\}}(\{u3,u5,u6\})/\{b,d\} = \{\{u3\},\{u5,u6\}\}\}$$

 $\max_size(POS_{\{b,d\}}(\{u3,u5,u6\})/\{b,d\}) = 2$

Result: Subset of attributes $= \{b, d\}$