Öffentliche Lösungsvorschläge zum 10. Tutorium – Logik

WiSe 2022/23

Stand: 30. Januar 2023

Aufgabe 1

Sei $\sigma = \{0\}$ eine Signatur, wobei 0 ein Konstantensymbol ist. Geben Sie zu folgenden Formeln in FO $[\sigma]$ den Quantorenrang an.

(i)
$$\varphi_1 := \forall x \forall y (\exists z \ z = x \lor \exists z \forall w \ 0 = w)$$

(ii)
$$\varphi_2 := \exists a \exists b \exists a \, (\forall c \, 0 = a \land \forall x \forall y \, (y \neq b \rightarrow b = 0))$$

Lösung zu Aufgabe 1

(i)
$$qr(\varphi_1) = 4$$

(ii)
$$qr(\varphi_2) = 5$$

Aufgabe 2

Sei $\sigma = \{E\}$ eine Signatur, wobei E ein 2-stelliges Relationssymbol ist.

- (i) Sei $k \in \mathbb{N}$ mit $k \geq 3$. Geben Sie eine Formel φ_k an, sodass $\operatorname{Mod}(\varphi_k)$ die Menge der endlichen Kreise der Länge k ist.
- (ii) Zeigen Sie: Die Klasse der endlichen Kreise ist in der Klasse der endlichen, zusammenhängenden Graphen $FO[\sigma]$ -definierbar.
- (iii) Zeigen Sie: Die Klasse der 2-färbbaren Graphen ist $FO[\sigma]$ -axiomatisierbar.

Hinweis: Ein Graph ist 2-färbbar genau dann, wenn er keinen (endlichen) Kreis ungerade Länge enthält.

Lösung zu Aufgabe 2

(i)

$$\psi_{1} = \forall x \neg E(x, x) \land \forall x \forall y (E(x, y) \rightarrow E(y, x))$$

$$\psi_{2} = \forall x \forall y_{1} \forall y_{2} \forall y_{3} (\bigwedge_{i=1}^{3} E(x, y_{i}) \rightarrow \bigvee_{1 \leq i < j \leq 3} y_{i} = y_{j})$$

$$\psi_{3,k} = \exists x_{1} \exists x_{2} \dots \exists x_{k} (\bigwedge_{1 \leq i < j \leq k} x_{i} \neq x_{j} \land \bigwedge_{i=1}^{k-1} E(x_{i}, x_{i+1}) \land E(x_{k}, x_{1}))$$

$$\psi_{4,k} = \exists x_{1} \exists x_{2} \dots \exists x_{k} \forall z \bigvee_{i=1}^{k} z = x_{i}$$

$$\varphi_{k} = \psi_{1} \land \psi_{2} \land \psi_{3,k} \land \psi_{4,k}$$

Die Formel ψ_1 verlangt, dass die Interpretation von E irreflexiv und symmetrisch ist. Mit ψ_2 fordern wir, dass jeder Knoten x Grad höchstens 2 hat. Die Formel $\psi_{4,k}$ stellt sicher, dass ein

Modell höchstens k Elemente haben muss. Schließlich wird mit $\psi_{3,k}$ sichergestellt, dass die Kanten im Modell einen Kreis bilden und das Modell mindestens k Elemente enthält. Wegen $\psi_{2,k}$ können keine weitere Kanten vorhanden sein, deswegen ist jedes Modell von φ_k ein zusammenhängender Graph mit k Knoten, sodass jeder Knoten Grad 2 hat. Dies entspricht einem Kreis der Länge k.

- (ii) Wir definieren die Formel $\varphi := \psi_2 \wedge \forall x \exists y_1 \exists y_2 (E(x,y_1) \wedge E(x,y_2) \wedge y_1 \neq y_2)$, wobei ψ_2 die Formel von Teilaufgabe (i) ist.
 - Die Formel φ verlangt, dass jeder Knoten Grad genau 2 hat. Ist \mathcal{A} eine σ -Struktur, die einem endlichen, zusammenhängenden Graphen entspricht und es gilt $\mathcal{A} \models \varphi$, dann ist \mathcal{A} ein Kreis.
- (iii) Wir definieren die Menge $\Phi = \{\psi_1\} \cup \{\neg \psi_{3,2k+1} \mid k \in \mathbb{N}^+\}$. Sei \mathcal{A} ein σ -Struktur. Es gilt $\mathcal{A} \models \psi_1$ genau dann, wenn \mathcal{A} ein ungerichteter Graph ist. Des Weiteren gilt $\mathcal{A} \models \neg \psi_{3,2k+1}$ genau dann, wenn \mathcal{A} keinen Kreis der Länge 2k+1 enthält. Somit gilt $\mathcal{A} \models \Phi$ genau dann, wenn \mathcal{A} ein Graph ohne Kreise ungerade Länge ist, also ist \mathcal{A} 2-färbbar.

Aufgabe 3

Während die Zwerge sich um Steine streiten, macht Falsum sich tief unten im unendlichen Tunnel bereit, den SAT-Berg zu erobern. Als erstes versucht er die endlichen Dinge zu zähmen, denn es gibt schließlich nur endlich viele Logikzwerge zu bekämpfen. Bald wird Falsums Einfluss direkt oben im SAT-Berg zu spüren sein und dann kann er endlich alle Formeln zu falsch auswerten lassen!

Sei $\sigma = \{R\}$ eine Signatur, wobei R ein 1-stelliges Relationssymbol ist. Seien \mathcal{A}, \mathcal{B} zwei σ -Strukturen.

(i) Zeigen Sie: \mathcal{A} und \mathcal{B} sind elementar äquivalent genau dann, wenn sie m-äquivalent für alle $m \in \mathbb{N}$ sind.

Seien \mathcal{C} und \mathcal{D} zwei endliche σ -Strukturen.

- (ii) Geben Sie eine Formel $\varphi_{\mathcal{C}} \in \mathrm{FO}[\sigma]$ an, sodass $\mathrm{Mod}(\varphi_{\mathcal{C}}) = \{\mathcal{E} \mid \mathcal{E} \text{ ist eine } \sigma\text{-Struktur und } \mathcal{E} \cong \mathcal{C}\}.$
- (iii) Zeigen Sie: Wenn \mathcal{C} und \mathcal{D} elementar äquivalent sind, dann gilt $\mathcal{C} \cong \mathcal{D}$.

Anmerkung: Die Umkehrrichtung gilt ebenfalls. Dies lässt sich wahlweise mit struktureller Induktion oder mit Ehrenfeucht-Fraïssé-Spielen beweisen.

Lösung zu Aufgabe 3

(i) Wenn \mathcal{A} und \mathcal{B} elementar äquivalent sind, dann gilt für alle Formeln $\varphi \in FO[\sigma]$, dass φ von beiden oder keiner der beiden Strukturen erfüllt wird. Dies gilt insbesondere für Formeln mit $qr(\varphi) \leq m$, also sind \mathcal{A} und \mathcal{B} m-äquivalent.

Wenn \mathcal{A} und \mathcal{B} nicht elementar äquivalent sind, dann gibt es ein φ , die genau von einer der beiden Strukturen erfüllt wird. Da $qr(\varphi) \in \mathbb{N}$ gilt für $m = qr(\varphi)$, dass \mathcal{A} und \mathcal{B} nicht m-äquivalent sind.

(ii) Sei $C = \{c_1, c_2, \dots, c_k\}$ das Universum von C. Wir definieren

$$\psi_{\mathcal{C}}(x_1, x_2, \dots, x_k) := \forall y (\bigwedge_{1 \le i < j \le k} x_i \ne x_j \land \bigvee_{i=1}^k y = x_i \land \bigwedge_{c_i \in R^c} R(x_i) \land \bigwedge_{c_i \in C \setminus R^c} \neg R(x_i))$$
$$\varphi_{\mathcal{C}} := \exists x_1 \exists x_2 \dots \exists x_k \psi_{\mathcal{C}}(x_1, x_2, \dots x_k).$$

Sei nun \mathcal{E} eine σ -Struktur mit $\mathcal{E} \models \varphi_{\mathcal{C}}$. Es gibt also eine Belegung β mit $(\mathcal{E}, \beta) \models \psi_{\mathcal{C}}$. Wir konstruieren einen Isomorphismus $\pi : \mathcal{E} \to_{\text{hom}} \mathcal{C}$ durch $\pi(e) = c_i$ falls $\beta(x_i) = e$. Da die Variablen $x_1, x_2, \ldots x_k$ mit verschiedenen Elemente belegt werden müssen, und \mathcal{E} genau k Elemente haben muss, ist π bijektiv. Wegen der letzten zwei großen Konjunktionen in $\psi_{\mathcal{C}}$ gilt $e \in R^{\mathcal{E}}$ genau dann, wenn $\pi(e) \in R^{\mathcal{C}}$ gilt. Also ist π ein Isomorphismus.

- Analog, gibt es einen Isomorphismus $\pi : \mathcal{E} \to_{\text{hom}} \mathcal{C}$, dann gilt für die Belegung $\beta(x_i) = \pi^{-1}(c_i)$, dass $(\mathcal{E}, \beta) \models \psi_{\mathcal{C}}$ und somit $\mathcal{E} \models \varphi_{\mathcal{C}}$.
- (iii) Wenn \mathcal{C} und \mathcal{D} elementar äquivalent sind, dann für alle Formeln $\psi \in FO[\sigma]$ gilt, dass sie von beiden oder von keinen der beiden Strukturen erfüllt wird. Laut Teilaufgabe (ii) gilt $\mathcal{C} \models \varphi_{\mathcal{C}}$, und somit auch $\mathcal{D} \models \varphi_{\mathcal{C}}$. Also gilt $\mathcal{C} \cong \mathcal{D}$.