CMPE 493 INTRODUCTION TO INFORMATION RETRIEVAL

Introduction

Arzucan Özgür

Department of Computer Engineering, Boğaziçi University September 29, 2015

Course Staff

- ▶ Instructor: Arzucan Özgür
 - ▶ Office: ETA 18
 - Phone: 0212-359-7226
 - ▶ E-mail: arzucan.ozgur@boun.edu.tr

(Please include CMPE493 in your subject when sending e-mail.)

- ▶ Office hours: Monday 14:00-15:00, Tuesday 13:00-15:00, or by appointment.
- TAs:
- Şaziye Betül Özateş (sbetulbilgin@gmail.com)
- ▶ Alper Çetiner (alper.cetiner@boun.edu.tr)

Text book

 Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.

Available online (free) at the website of the book: http://nlp.stanford.edu/IR-book/information-retrieval-book.html

3

Reference book (Optional)

Daniel Jurafsky and James H. Martin, SPEECH and LANGUAGE PROCESSING: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Second Edition, 2008.

Available at the Bookstore.

Reference book (Optional)

 Christopher D. Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press, 1999. http://nlp.stanford.edu/fsnlp/

HINRICH SCHÜTZE

5

Course Web Site:

- We will use the Moodle Course Management System for lecture notes, announcements, homework/project submissions, and grading.
 - https://moodle.boun.edu.tr

You will automatically be subscribed to the system. You can login using your "boun" e-mail account's username and password.

Grading

Midterm Exam: 15%

Final Exam: 15%

▶ 3-4 Assignments: 30%

▶ Term Project: 35%

▶ Class Participation: 5%

7

Grading - Exams

- In-class midterm and final exams
- Consisting of problems covering the lecture material
- Closed book/notes
- Dates:
 - Midterm Exam: November 4, in the lecture hour (15:00-17:00)
- Final Exam: As scheduled by the registration office

Grading - Homework Assignments

- Involve some programming where you will implement and test some of the techniques that we cover in class.
- You can use any programming language of your choice such as Perl, Python, Java, etc.
- We should be able to run your program.
- You should provide a readme file, explaining how to run your program.

Term Project

One of the aspects of this course is preparing you for original research in IR.

- Identifying an interesting problem
- ▶ Gathering relevant literature and datasets
- Solving it using new algorithms
- ▶ Evaluating the results
- ▶ Ability to present your ideas and research
 - Writing up your results in a scientific paper format
 - ▶ Presenting a research talk to a scientific audience

Term Project

- The project teams can consist of one or two people. (Teams consisting of two people is recommended)
- ▶ Each team will choose a project topic by selecting a recent scientific paper from an IR/NLP conference or journal.
- The project will involve replicating the work done in the paper and proposing extensions/improvements to the existing work. The proposed extensions do not need to be implemented.

Some of the Relevant Scientific Conferences

- ▶ ACM SIGIR Conference on Research and Development in Information Retrieval
- Conference on Information and Knowledge Management (CIKM)
- ACM International Conference on Web Search and Web Data Mining (WSDM)
- ▶ Association for Computational Linguistics (ACL)
- North American Association for Computational Linguistics (NAACL)
- ▶ Empirical Methods in Natural Language Processing (EMNLP)
- International Conference on Computational Linguistics (COLING)
- ▶ You can select your papers from relevant journals as well, including Information Retrieval, Computational Linguistics, TACL, Natural Language Engineering, and Journal of the Association for Information Science and Technology (JASIST)

Term Project - Deliverables

- ▶ Paper selection and I-2 page description of the methodology planned to be used to replicate the work
 - Date: November 2
- ▶ Short project presentation in the end of the semester
 - ▶ Tentative Dates: December 15-16, December 22-23, lecture hours
- ▶ Submit a project report in the end of the semester.
 - ▶ Tentative Date: Final exam date

Information Retrieval

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections.

Basic assumptions of Information Retrieval

- ▶ Collection: Fixed set of documents
- ▶ Goal: Retrieve documents with information that is relevant to the user's information need and helps the user complete a task

How good are the retrieved docs?

- Precision: Fraction of retrieved docs that are relevant to user's information need
- Recall: Fraction of relevant docs in collection that are retrieved
- More precise definitions and measurements to follow in later lectures

17

Examples of search engines

▶ Conventional (library catalog).

Search by keyword, title, author, etc.

► Text-based (Google, Yahoo!, Bing, Yandex, Baidu; also email search, laptop search etc.)

Search by keywords. Limited search using queries in natural language.

- Multimedia (QBIC, WebSeek)
 Search by visual appearance (shapes, colors,...).
- Question answering systems (Ask, NSIR, Answerbus)
 Search in (restricted) natural language
- Other:

music retrieval

IR systems on the Web

- ▶ Search for Web pages: http://www.google.com
- Domain specific search (e.g., legal, biomedical): PubMed
- ▶ Search for images: http://www.picsearch.com
- ▶ Search for image content: http://wang14.ist.psu.edu/
- ▶ Search for answers to questions: http://www.ask.com
- Music retrieval: http://www.rotorbrain.com/foote/musicr/

What does it take to build a search engine?

- Decide what to index
- ▶ Collect it
- Index it (efficiently)
- ▶ Keep the index up to date
- ▶ Provide user-friendly query facilities

What else?

- Understand the structure of the web for efficient crawling
- ▶ Understand user information needs
- ▶ Preprocess unstructured textual data
- ▶ Cluster data
- ▶ Classify data
- ▶ Evaluate performance

Goals of the course

- Understand how search engines work
- Understand the limits of existing search technology
- Learn about the state of the art in IR research
- Learn to analyze textual data sets
- Learn to evaluate information retrieval systems
- Learn about standardized document collections
- Learn about text similarity measures
- Learn about semantic dimensionality reduction
- Learn about web crawling
- Learn to use existing software
- Understand the dynamics of the Web by building appropriate mathematical models
- Build working systems that assist users in finding useful information from large collections

Topics (tentative list)

- ▶ Boolean model; text pre-processing; inverted indexes
- Approximate string matching and tolerant retrieval
- Index construction and compression
- Vector space model; text-similarity metrics; term weighting; ranked retrieval
- Evaluating information retrieval systems
- Relevance feedback; query expansion
- Language models for information retrieval
- Text classification and clustering
- Latent semantic indexing
- Web search and crawling
- Link analysis (e.g. hubs and authorities, Google PageRank)

References

▶ Content adapted from Prof. Dragomir Radev and the IR book's web site.