Caio Lins Ulliane Martins

FGV - EMAp

2020

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

Introdução

► Como humanos reconhecem faces?

Introdução

- ► Como humanos reconhecem faces?
- ▶ Reconhecimento por Eigenfaces (PCA).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

▶ Dados utilizados: "AT&T Database of Faces" [1]. 40 indivíduos, 10 imagens de cada.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 り९@

- ▶ Dados utilizados: "AT&T Database of Faces" [1]. 40 indivíduos, 10 imagens de cada.
- ➤ Conjunto de treino: 9 das 10 fotos de 39 indivíduos, totalizando 351 imagens 112 × 92 em escala de cinza.

Equivalente a $\{\Gamma_i \in \mathbb{R}^{10304} ; 1 \leq i \leq 351\}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

▶ Equivalente a $\{\Gamma_i \in \mathbb{R}^{10304} ; 1 \leq i \leq 351\}$

$$\begin{bmatrix} 0.336 & \cdots & 0.947 \\ \vdots & \ddots & \vdots \\ 0.214 & \cdots & 0.445 \end{bmatrix}_{112 \times 92} \longrightarrow \begin{bmatrix} 0.336 \\ \vdots \\ 0.947 \\ \vdots \\ 0.214 \\ \vdots \\ 0.445 \end{bmatrix}_{10204 \times 1}$$

C. Lins, J. Martins Eigenfaces EMAp 2020 $-4\ /\ 20$

► Cálculo da face média:

$$\Psi = \frac{1}{351} \sum_{i=1}^{351} \Gamma_i.$$

► Cálculo da face média:

$$\Psi = \frac{1}{351} \sum_{i=1}^{351} \Gamma_i.$$

► Centralização dos dados:

$$\Phi_i = \Gamma_i - \Psi.$$

► Agora define-se a matriz de dados:

$$A = \begin{bmatrix} \Phi_1 & \cdots & \Phi_{351} \end{bmatrix}.$$

► Agora define-se a matriz de dados:

$$A = \begin{bmatrix} \Phi_1 & \cdots & \Phi_{351} \end{bmatrix}.$$

Componentes principais por SVD: Matrizes $U_{10304\times351}, V_{351\times351}$ ortogonais e $\Sigma_{351\times351}$ diagonal tais que

$$A = U\Sigma V^T.$$

► Agora define-se a matriz de dados:

$$A = \begin{bmatrix} \Phi_1 & \cdots & \Phi_{351} \end{bmatrix}.$$

Componentes principais por SVD: Matrizes $U_{10304\times351}, V_{351\times351}$ ortogonais e $\Sigma_{351\times351}$ diagonal tais que

$$A = U\Sigma V^T.$$

▶ Colunas de $U \leftrightarrow$ autovetores de $\frac{1}{n-1}AA^T$ (matriz de covariância). Elas são as *Eigenfaces*.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 り९@

C. Lins, J. Martins Eigenfaces EMAp 2020 - 6 / 20

► Eigenfaces:

Figura: Eigenfaces com maiores valores singulares (em cima) e menores valores singulares (embaixo).

C. Lins, J. Martins Eigenfaces EMAp 2020 7 / 20

▶ Decaimento dos valores singulares:

Figura: Percebe-se uma rápida queda nos valores singulares, para próximo de 0. Utilizamos, então, as 33 primeiras eigenfaces.

Projeta-se os vetores Φ_i no subespaço $E \subset \mathbb{R}^{10304}$ gerado pelas eigenfaces q_1, \ldots, q_{33} (face space).

- Projeta-se os vetores Φ_i no subespaço $E \subset \mathbb{R}^{10304}$ gerado pelas eigenfaces q_1, \ldots, q_{33} (face space).
- ▶ Para cada Φ_i , obtém-se um vetor de coeficientes Ω_i tal que

$$\operatorname{proj}_{E} \Phi_{i} = \begin{bmatrix} q_{1} & \cdots & q_{33} \end{bmatrix} \Omega_{i}.$$

EMAp 2020

- Projeta-se os vetores Φ_i no subespaço $E \subset \mathbb{R}^{10304}$ gerado pelas eigenfaces q_1, \ldots, q_{33} (face space).
- ightharpoonup Para cada Φ_i , obtém-se um vetor de coeficientes Ω_i tal que

$$\operatorname{proj}_{E} \Phi_{i} = \begin{bmatrix} q_{1} & \cdots & q_{33} \end{bmatrix} \Omega_{i}.$$

Para a imagem desconhecida Γ , obtém-se, de maneira análoga, os vetores Φ e Ω .

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 り९@

C. Lins, J. Martins Eigenfaces EMAp 2020 9 / 20

Figura: Representação da projeção de algumas imagens no face space[2].

C. Lins, J. Martins Eigenfaces EMAp 2020 10 / 20

▶ Caso o erro de projeção $\|\Phi - \operatorname{proj}_E \Phi\|$ seja maior que um limite θ_{δ} , a imagem não é uma face.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

C. Lins, J. Martins Eigenfaces EMAp 2020 $11\ /\ 20$

ightharpoonup Os vetores Ω_i são agrupados por indivíduo (9 vetores para cada um).

《口》《圖》《意》《意》

- \triangleright Os vetores Ω_i são agrupados por indivíduo (9 vetores para cada um).
- ▶ Em cada grupo, é calculada a média dos valores $\|\Omega \Omega_i\|$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 釣魚@

C. Lins, J. Martins Eigenfaces EMAp 2020 12 / 20

- \triangleright Os vetores Ω_i são agrupados por indivíduo (9 vetores para cada um).
- ► Em cada grupo, é calculada a média dos valores $\|\Omega \Omega_i\|$.
- ➤ A foto tem mais chances de pertencer ao indivíduo que tiver menor média associada.

4□ → 4回 → 4 重 → 4 重 → 9 Q ○

C. Lins, J. Martins Eigenfaces EMAp 2020 12 / 20

► Calcula-se o erro $\|\Omega - \Omega_i\|$ para todas as imagens do conjunto de treino.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

C. Lins, J. Martins Eigenfaces EMAp 2020 13 / 20

- ► Calcula-se o erro $\|\Omega \Omega_i\|$ para todas as imagens do conjunto de treino.
- ▶ Identifica-se qual imagem apresenta o menor erro.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

C. Lins, J. Martins Eigenfaces EMAp 2020 13 / 20

- ► Calcula-se o erro $\|\Omega \Omega_i\|$ para todas as imagens do conjunto de treino.
- ▶ Identifica-se qual imagem apresenta o menor erro.
- ➤ A foto desconhecida tem mais chances de pertencer ao indivíduo presente nessa imagem.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めぬぐ

Nos dois Algoritmos, se o mínimo obtido é maior que um limite θ_{ε} , a imagem pertence a uma pessoa desconhecida. Esse limite é diferente para cada algoritmo.

イロト イ御 トイミト イミト

C. Lins, J. Martins Eigenfaces EMAp 2020 14 / 20

- Nos dois Algoritmos, se o mínimo obtido é maior que um limite θ_{ε} , a imagem pertence a uma pessoa desconhecida. Esse limite é diferente para cada algoritmo.
- \triangleright Escolha de θ_{δ} e θ_{ε} .

イロト イ部ト イミト イミト

Resultados obtidos

A técnica foi testada com três tipos de imagem:

- ightharpoonup Tipo A (351 imagens): Imagem estava no conjunto de treino.
- ➤ Tipo B (39 imagens): Imagem não estava no conjunto de treino, mas a pessoa nela sim.
- ightharpoonup Tipo C (10 imagens): Pessoa da imagem não estava no conjunto de treino.

C. Lins, J. Martins Eigenfaces EMAp 2020 15 / 20

Resultados obtidos: Algoritmo 1

Tipo Imagem	Não é face	Face desconhecida
A	0.00 %	25.36~%
В	0.00 %	38.46 %
С	0.00 %	100.00 %

Tipo Imagem	Reconheceu certo	Reconheceu errado
A	73.79~%	0.85 %
В	61.54 %	0.00 %
С	-	0.00 %

Resultados obtidos: Algoritmo 2

Tipo Imagem	Não é face	Face desconhecida
A	0.00 %	0.00 %
В	0.00 %	17.95 %
С	0.00 %	100.00 %

Tipo Imagem	Reconheceu certo	Reconheceu errado
A	100.00 %	0.00 %
В	82.05 %	0.00 %
C	-	0.00 %

Expectativa: Algoritmo 1 melhor para fotos do tipo B e Algoritmo 2, para fotos do tipo A.

《口》《圖》《意》《意》

C. Lins, J. Martins Eigenfaces EMAp 2020 $18 \ / \ 20$

- Expectativa: Algoritmo 1 melhor para fotos do tipo B e Algoritmo 2, para fotos do tipo A.
- ► Superioridade do Algoritmo 2.

イロト イ御 トイミト イミト

- ightharpoonup Expectativa: Algoritmo 1 melhor para fotos do tipo B e Algoritmo 2, para fotos do tipo A.
- ► Superioridade do Algoritmo 2.
- Principais fatores que afetam capacidade de reconhecimento:
 - ► Tamanho do rosto na foto
 - Posição do rosto na imagem
 - Inclinação do rosto
 - Iluminação

4□ → 4回 → 4 重 → 4 重 → 9 Q ○

Figura: Quatro imagens do indivíduo 1.

Referências

AT&T Face Laboratories Cambridge.

The database of faces, 2002.

Dados obtidos de, https:

//www.kaggle.com/kasikrit/att-database-of-faces.

M. A. Turk and A. P. Pentland.

Face recognition using eigenfaces.

Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 586–591, 1991.

イロト イ部ト イヨト イヨト