sql

github https://github.com/jbgod/--jambolt apache+php+postgresql连接, kali linux 连接 postgresql,包含一些没有过滤的简单pg sql注入

SQL语法

1.语句的分类

sql语句分为DQL, DML, DDL

DQL:数据查询语句,SELECT

DML: Data Manipulation Language,数据操纵语言,插入,更新,删除数据,INSERT UPDATE

DELETE

DDL: Data Definition Language,数据定义语言,用于创建,删除,以及修改表,索引等数据库对象

语言。

2.语法结构

多条sql命令由分号;分隔。每条sql语句由一些列记号组成,记号包括关键字,标识符,双引号包围的标识符,常量,单引号包围的文本常量和特殊的字符组成。sql语言可以有注释

DDL语句

DDL语句是创建,修改和删除表的语句。

1.建表语句

```
CREATE TABLE table_name (
column_name1 data_type,
column_name2 data_type,
.....
);
```

建表时,可以在列定义后添加'primary key'将列设置为主键

2.删除表语句

```
DROP TABLE table_name;
```

DML语句

1.插入语句

```
INSERT INTO table_name VALUES(data1, data2, data3, ....);
```

2.更新语句

3.删除语句

DELETE FROM column_name WHERE column_name = data ;

查询语句

1.单表查询语句

select column_name1,column_name2,column_name3 from table_name; select 后可以跟列名,也可以跟上无关的表达式。

2.过滤条件查询

where子句来指定某一条记录

3.排序

order by子句,在where子句之后,order by column_name 按照某列的值来排序

4.分组查询

GROUP BY,需要使用聚合函数 count sum等

5.表join

多表关联查询

其他sql语句

1.INSERT INTO ... SELECT语句

把数据从一张表插到另一张表

2.UNION语句

联合查询

3.TRUNCATE TABLE语句

清空表的内容。

什么是数据库?

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库。

每个数据库都有一个或多个不同的 API 用于创建, 访问, 管理, 搜索和复制所保存的数据。

我们也可以将数据存储在文件中,但是在文件中读写数据速度相对较慢。

所以,现在我们使用关系型数据库管理系统(RDBMS)来存储和管理的大数据量。所谓的关系型数据库,是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。

ORDBMS(对象关系数据库系统)是面向对象技术与传统的关系数据库相结合的产物,查询处理是ORDBMS的重要组成部分,它的性能优劣将直接影响到DBMS的性能。

ORDBMS在原来关系数据库的基础上,增加了一些新的特性。

RDBMS 是关系数据库管理系统,是建立实体之间的联系,最后得到的是关系表。

OODBMS 面向对象数据库管理系统,将所有实体都看着对象,并将这些对象类进行封装,对象之间的通信通过消息 OODBMS 对象关系数据库在实质上还是关系数据库。

ORDBMS 术语

在我们开始学习 PostgreSQL 数据库前,让我们先了解下 ORDBMS 的一些术语:

- 数据库: 数据库是一些关联表的集合。
- 数据表: 表是数据的矩阵。在一个数据库中的表看起来像一个简单的电子表格。
- 列: 一列(数据元素) 包含了相同的数据, 例如邮政编码的数据。
- 行:一行(=元组,或记录)是一组相关的数据,例如一条用户订阅的数据。
- 冗余:存储两倍数据,冗余降低了性能,但提高了数据的安全性。
- 主键:主键是唯一的。一个数据表中只能包含一个主键。你可以使用主键来查询数据。
- 外键:外键用于关联两个表。
- 复合键:复合键(组合键)将多个列作为一个索引键,一般用于复合索引。
- **索引**:使用索引可快速访问数据库表中的特定信息。索引是对数据库表中一列或多列的值进行排序的一种结构。类似于书籍的目录。
- **参照完整性**: 参照的完整性要求关系中不允许引用不存在的实体。与实体完整性是关系模型必须满足的完整性约束条件,目的是保证数据的一致性。

PostgreSQL 特征

- 函数:通过函数,可以在数据库服务器端执行指令程序。
- 索引:用户可以自定义索引方法,或使用内置的 B 树,哈希表与 GiST 索引。
- 触发器:触发器是由SQL语句查询所触发的事件。如:一个INSERT语句可能触发一个检查数据完整性的触发器。触发器通常由INSERT或UPDATE语句触发。多版本并发控制:PostgreSQL使用多版本并发控制(MVCC,Multiversion concurrency control)系统进行并发控制,该系统向每个用户提供了一个数据库的"快照",用户在事务内所作的每个修改,对于其他的用户都不可见,直到该事务成功提交。
- 规则:规则(RULE)允许一个查询能被重写,通常用来实现对视图(VIEW)的操作,如插入 (INSERT)、更新(UPDATE)、删除(DELETE)。
- **数据类型**:包括文本、任意精度的数值数组、JSON 数据、枚举类型、XML 数据等。
- 全文检索:通过 Tsearch2 或 OpenFTS, 8.3版本中内嵌 Tsearch2。
- NoSQL: JSON, JSONB, XML, HStore 原生支持, 至 NoSQL 数据库的外部数据包装器。
- **数据仓库**:能平滑迁移至同属 PostgreSQL 生态的 GreenPlum, DeepGreen, HAWK 等,使用 FDW 进行 ETL。

centos下PostgreSQL搭建

centos7添加prm

yum install https://download.postgresql.org/pub/repos/yum/10/redhat/rhel-7x86_64/pgdg-centos10-10-2.noarch.rpm

安装postgresql的客户端,服务端

[root@softbank220010146128 jambolt]# yum install postgresql10

[root@softbank220010146128 jambolt]# yum install postgresql10-server

启动数据并初始化:

service postgresql-10 initdb chkconfig postgresql-10 on service postgresql-10 start

Ubuntu 安装 PostgreSQL

Ubuntu 可以使用 apt-get 安装 PostgreSQL:

sudo apt-get update
sudo apt-get install postgresql postgresql-client

安装完毕后,系统会创建一个数据库超级用户 postgres,密码为空。

切换用户postgres,打开psql

PostgreSQL数据类型

网络地址类型

PostgreSQL 提供用于存储 IPv4、IPv6、MAC 地址的数据类型。

用这些数据类型存储网络地址比用纯文本类型好, 因为这些类型提供输入错误检查和特殊的操作和功能。

名字	存储空间	描述
cidr	7 或 19 字节	IPv4 或 IPv6 网络
inet	7 或 19 字节	IPv4 或 IPv6 主机和网络
macaddr	6字节	MAC 地址

在对 inet 或 cidr 数据类型进行排序的时候, IPv4 地址总是排在 IPv6 地址前面,包括那些封装或者是映射在 IPv6 地址里的 IPv4 地址 ,比如 ::10.2.3.4 或 ::ffff:10.4.3.2。

XML 类型

xml 数据类型可以用于存储XML数据。 将 XML 数据存到 text 类型中的优势在于它能够为结构良好性来检查输入值,并且还支持函数对其进行类型安全性检查。 要使用这个数据类型,编译时必须使用 configure --with-libxml。

xml 可以存储由XML标准定义的格式良好的"文档",以及由 XML 标准中的 **XMLDecl? content** 定义的"内容"片段,大致上,这意味着内容片段可以有多个顶级元素或字符节点。 xmlvalue IS DOCUMENT 表达式可以用来判断一个特定的 xml 值是一个完整的文件还是内容片段。

创建XML值

使用函数 xmlparse: 来从字符数据产生 xml 类型的值:

```
XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...
</chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')
```

数组类型

PostgreSQL 允许将字段定义成变长的多维数组。

数组类型可以是任何基本类型或用户定义类型,枚举类型或复合类型。

声明数组

创建表的时候,我们可以声明数组,方式如下:

```
CREATE TABLE sal_emp (
   name         text,
   pay_by_quarter integer[],
   schedule    text[][]
);
```

pay_by_quarter 为一位整型数组、schedule 为二维文本类型数组。

我们也可以使用 "ARRAY" 关键字,如下所示:

```
CREATE TABLE sal_emp (
  name text,
  pay_by_quarter integer ARRAY[4],
  schedule text[][]
);
```

插入值

插入值使用花括号 {},元素在 {}使用逗号隔开:

```
INSERT INTO sal_emp
    VALUES ('Bill',
        '{10000, 10000, 10000}',
        '{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
    VALUES ('Carol',
        '{20000, 25000, 25000, 25000}',
        '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');
```

访问数组

现在我们可以在这个表上运行一些查询。

首先,我们演示如何访问数组的一个元素。这个查询检索在第二季度薪水变化的雇员名:

```
SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

name
-----
Carol
(1 row)
```

数组的下标数字是写在方括弧内的。

修改数组

我们可以对数组的值进行修改:

```
UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
WHERE name = 'Carol';
```

或者使用 ARRAY 构造器语法:

```
UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = 'Carol';
```

数组中检索

要搜索一个数组中的数值,你必须检查该数组的每一个值。

比如:

另外,你可以用下面的语句找出数组中所有元素值都等于 10000 的行:

```
SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);
```

或者,可以使用 generate_subscripts 函数。例如:

psql命令行操作

1.\|

查看所有数据库

2.\c

\c database_name 连接数据库

3.\d

- 1 \d 查看所有表
- 2 \d + table_name 查看指定表的数据结构
- 3 \d + table_name _pkey 显示治党的索引信息

4.\d+命令

\dt 只显示匹配表

\di 只显示索引

\ds 只显示序列

\dv 只显示视图

\df 显示函数

数据类型

表 5-1 PostgreSQL 支持的数据类型分类

分类名称	说 明	与其他数据库的对比
布尔类型	PostgreSQL 支持 SQL 标准的 boolean 数据 类型	与 MySQL 的 BOOL、BOOLEAN 类型相同,使用一字节存储空间
数值类型	整数类型有2字节的 smallint、4字节的 int、8字节的 bigint, 十进制精确类型有 numeric, 浮点类型有 real 和 double precision。还有8字节的货币 (money)类型	无 MySQL 的 unsigned 整数类型,也无 MySQL 1 字节长的 tinyint 整数类型和 3 字节长的 mediumint 整数类型
字符类型	有 varchar(n)、char(n)、text 三种类型	PostgreSQL 中的 varchar(n) 最大可以存储 1GB, 而 MySQL 中的 varchar(n) 最大只能是64KB。PostgreSQL 中的 text 类型相当于 MysQL 中的 LONGTEXT 类型
二进制数据 类型	只有一种 bytea	对应 MySQL 的 BLOB 和 LONGBLOB 类型
位串类型	位串就是一串 1 和 0 的字符串,有 bit(n)、 bit varying(n) 两种	其他数据库没有此类型

日期和时间 类型	有 date、time、timestamp,而 time 和 timestamp 又分是否包括时区的两种类型	在 PostgreSQL 中,可以精确到秒以下,如毫秒。而 MySQL 的时间类型最多只能精确到秒,其日期时间的范围也与 MySQL 差异较大	
枚举类型	枚举类型是一种包含一系列有序静态值集 合的数据类型,等于某些编程语言中的 enum 类型。	PostgreSQL 使 用 枚 举 类 型 前 需 要 先 使 用 CREATE TYPE 创建这个类型; MySQL 也有枚举 类型 (ENUM)	
几何类型	包括了点 (point)、直线 (line)、线段 (lseg)、路径 (path)、多边形 (polygon)、圆 (cycle) 等类型	PostgreSQL 特有的类型, 其他数据库一般没有此类型, 可以认为是一种数据库内置的自定义类型	
网络地址类型	有 cidr、inet、macaddr 三种类型	PostgreSQL 特有类型,其他数据库一般没有此类型,可以认为是一种数据库内置的自定义类型	
数组类型	可以存储一个数组	PostgreSQL 特有类型,其他数据库一般没有此 类型	
复合类型	可以把已有的简单类型组合成用户自定义 的类型,就如 C 语言中的结构体一样	对应其他数据库的自定义类型	
xml 类型	可以存储 XML 数据的类型 N/A		
json 类型	可以存储 json 类型的数据	N/A	
range 类型	范围类型,可以存储范围数据	其他数据库无此类型	
对象标识符 类型	PostgreSQL 内部标识对象的类型,如 oid 类型、regproc 类型、regclass 类型等	N/A	
伪类型	伪类型不能作为字段的数据类型,但是它可以用于声明一个函数的参数或者结果类型。有 any、anyarray、anyelement、cstring、internal、language_handler、record 、trigger、void、opaque	N/A	
其他类型	一些不好分类的类型都放到这里,如 UUID类型、pg_lsn类型	N/A	

类型的输入与转换

简单的数据类型

```
postgres=# select int '1'+int '3';
?column?
-----
(1 row)
postgres=# select bit '10101111';
 bit
10101111
(1 row)
postgres=# select date '10101111';
  date
-----
1010-11-11
(1 row)
postgres=# select cidr '1.1.1.1';
  cidr
-----
1.1.1.1/32
(1 row)
postgres=# select 'xff'::bit(16);
     bit
1111111100000000
(1 row)
```

1.布尔型数据

boolean 有 true false 不带引号的 TRUE FALSE

布尔型的操作符

AND与OR或NOT非

2.数值类型

数值型

N . . MEATIN

类型名称	存储空间	描 述	范 围
smallint	2 字节	小范围整数。Oracle 中没有此类型,使用 number 代替	-215 ∼ 215-1
int 或 integer	4字节	常用的整数。Oracle 中 integer 等效于 number(38), 与此类型的意义不同	-231 ∼ 231-1
bigint	8 字节	大范围的整数。Oracle中没有此类型,使用 number代替	-263 ~ 263−1
numeric 或 decimal	变长	用户声明的精度,精确。注意 Oracle 中叫 NUMBER,与 PostgreSQL 中的名称不一样	无限制
real	4 字节	变精度, 不精确	6 位十进制数字精度
double precision	8 字节	变精度, 不精确	15 位十进制数字精度
serial	4字节	自增整数	$1 \sim 2^{31}-1$
bigserial	8 字节	大范围的自增整数	$1 \sim 2^{63}-1$

序列类型 sequence

字符型

ルママーナロ中大王/3か

类型名称	描述	
character varying(n) varchar(n)	变长,最大1GB。存储空间为: 4+实际的字符串长度。 与 MySQL 中的 varchar(n) 或 text(n),以及 Oracle 中的 varchar2(n)类似,但是在 MySQL 中 varchar 最多64KB长,在 Oracle 中 varchar2 最多4000字节,而 PostgreSQL 可以达到1GB	
character(n), char(n)	定长,不足补空白,最大 1GB。存储空间为: 4+n	
text	变长,无长度限制。与 MySQL 中的 LONGTEXT 类似	

枚举类型

有序的静态值集合的数据类型

XML类型

xml函数处理xml数据