2 Unit Bridging Course - Day 4

The derivative of a function

Emi Tanaka

A derivative is concerned with how one quantity changes with respect to another quantity, in other words a rate of change.

The derivative of the function y = f(x) with respect to x will show us how y changes as the value x changes. It gives us the slope, or gradient of the function.

The derivative of y = f(x) with respect to x is represented by the following notations:

$$f'(x)$$
, $\frac{d}{dx}(f(x))$, $\frac{df}{dx}$ or $\frac{dy}{dx}$

The process of finding the derivative is called differentiation

A derivative is concerned with how one quantity changes with respect to another quantity, in other words a rate of change.

The derivative of the function y = f(x) with respect to x will show us how y changes as the value x changes. It gives us the slope, or gradient of the function.

The derivative of y = f(x) with respect to x is represented by the following notations:

$$f'(x)$$
, $\frac{d}{dx}(f(x))$, $\frac{df}{dx}$ or $\frac{dy}{dx}$

The process of finding the derivative is called differentiation.

A derivative is concerned with how one quantity changes with respect to another quantity, in other words a rate of change.

The derivative of the function y = f(x) with respect to x will show us how y changes as the value x changes. It gives us the slope, or gradient of the function.

The derivative of y = f(x) with respect to x is represented by the following notations:

$$f'(x)$$
, $\frac{d}{dx}(f(x))$, $\frac{df}{dx}$ or $\frac{dy}{dx}$.

The process of finding the derivative is called differentiation.

A derivative is concerned with how one quantity changes with respect to another quantity, in other words a rate of change.

The derivative of the function y = f(x) with respect to x will show us how y changes as the value x changes. It gives us the slope, or gradient of the function.

The derivative of y = f(x) with respect to x is represented by the following notations:

$$f'(x)$$
, $\frac{d}{dx}(f(x))$, $\frac{df}{dx}$ or $\frac{dy}{dx}$.

The process of finding the derivative is called *differentiation*.

Differentiating a linear function is to simply find the gradient or slope of that function. You learnt about gradients of linear functions in Day 2.

- 1. Differentiate f(x) = 3x 2. Since f(x) is a linear function with gradient 3, f'(x) = 3.
- 2. Differentiate f(x) = 9. Since f(x) is a constant (horizontal line), f'(x) = 0
- 3. Differentiate y = 4 5x. The slope of y is -5, so $\frac{dy}{dx} = -5$

Differentiating a linear function is to simply find the gradient or slope of that function. You learnt about gradients of linear functions in Day 2.

- 1. Differentiate f(x) = 3x 2. Since f(x) is a linear function with gradient 3, f'(x) = 3.
- 2. Differentiate f(x) = 9. Since f(x) is a constant (horizontal line), f'(x) = 0
- 3. Differentiate y = 4 5x. The slope of y is -5, so $\frac{dy}{dx} = -5$

Differentiating a linear function is to simply find the gradient or slope of that function. You learnt about gradients of linear functions in Day 2.

- 1. Differentiate f(x) = 3x 2. Since f(x) is a linear function with gradient 3, f'(x) = 3.
- 2. Differentiate f(x) = 9. Since f(x) is a constant (horizontal line), f'(x) = 0.
- 3. Differentiate y = 4 5x. The slope of y is -5, so $\frac{dy}{dx} = -5$

Differentiating a linear function is to simply find the gradient or slope of that function. You learnt about gradients of linear functions in Day 2.

- 1. Differentiate f(x) = 3x 2. Since f(x) is a linear function with gradient 3, f'(x) = 3.
- 2. Differentiate f(x) = 9. Since f(x) is a constant (horizontal line), f'(x) = 0.
- 3. Differentiate y = 4 5x. The slope of y is -5, so $\frac{dy}{dx} = -5$.

The graph of a quadratic functions such as $y = x^2$ is a parabola. This means that the gradient is changing as x changes and we cannot calculate the derivative with methods used previously.

So instead we must find the gradient of a tangent to the curve at a certain point.

The graph of a quadratic functions such as $y = x^2$ is a parabola. This means that the gradient is changing as x changes and we cannot calculate the derivative with methods used previously.

So instead we must find the gradient of a tangent to the curve at a certain point.

The graph of a quadratic functions such as $y = x^2$ is a parabola. This means that the gradient is changing as x changes and we cannot calculate the derivative with methods used previously.

So instead we must find the gradient of a tangent to the curve at a certain point.

To find the gradient of the tangent to the curve $y = x^2$ we first take an arbitrary point (x, y) that is on the curve.

Then take another point on the curve with the x-coordinate x + h, where h is a small number. Its corresponding y-coordinate is $(x + h)^2$.

To find the gradient of the tangent to the curve $y = x^2$ we first take an arbitrary point (x, y) that is on the curve.

Then take another point on the curve with the x-coordinate x + h, where h is a small number. Its corresponding y-coordinate is $(x + h)^2$.

Draw a line through the 2 points.

The gradient of this line is

change in y change in
$$x = \frac{(x+h)^2 - x^2}{(x+h) - x} = \frac{2xh + h^2}{h} = 2x + h.$$

Draw a line through the 2 points.

The gradient of this line is:

change in
$$\frac{y}{x} = \frac{(x+h)^2 - x^2}{(x+h) - x} = \frac{2xh + h^2}{h} = 2x + h.$$

So, the gradient of the line through the 2 points = 2x + h. To find the gradient of the tangent we need another step.

Notice that as the value of h becomes smaller the line through the 2 points becomes closer to the tangent at (x, y).

So, the gradient of the line through the 2 points = 2x + h. To find the gradient of the tangent we need another step.

Notice that as the value of h becomes smaller the line through the 2 points becomes closer to the tangent at (x, y).

As the value of h approaches 0, the gradient of the line through the two points approaches the gradient of the tangent to the curve, i.e. 2x + h approaches 2x.

Hence the gradient of the tangent to $y = x^2$ at point (x, y) is 2x or $\frac{dy}{dx} = 2x$.

This method is called the *Differentiation By First Principles*. In general, the derivative of a function f at x is given by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if it exists

As the value of h approaches 0, the gradient of the line through the two points approaches the gradient of the tangent to the curve, i.e. 2x + h approaches 2x.

Hence the gradient of the tangent to $y = x^2$ at point (x, y) is 2x or $\frac{dy}{dx} = 2x$.

This method is called the *Differentiation By First Principles*. In general, the derivative of a function f at x is given by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if it exists

As the value of h approaches 0, the gradient of the line through the two points approaches the gradient of the tangent to the curve, i.e. 2x + h approaches 2x.

Hence the gradient of the tangent to $y = x^2$ at point (x, y) is 2x or $\frac{dy}{dx} = 2x$.

This method is called the *Differentiation By First Principles*. In

general, the derivative of a function f at x is given by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if it exists.

As the value of h approaches 0, the gradient of the line through the two points approaches the gradient of the tangent to the curve, i.e. 2x + h approaches 2x.

Hence the gradient of the tangent to $y = x^2$ at point (x, y) is 2x or $\frac{dy}{dx} = 2x$.

This method is called the *Differentiation By First Principles*. In general, the derivative of a function f at x is given by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if it exists.

So, putting it all together, if $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x.$$

▶
$$\frac{d}{dx}$$
(constant) = 0, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$.

$$\Rightarrow \frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x)),$$
 where k is a constant.

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x)).$$

►
$$\frac{d}{dx}$$
(constant) = 0, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$.

$$ightharpoonup \frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$
, where k is a constant.

▶
$$\frac{d}{dx}$$
(constant) = 0, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$.

$$\rightarrow \frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$
, where k is a constant.

$$\qquad \qquad \frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

▶
$$\frac{d}{dx}$$
(constant) = 0, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$.

$$ightharpoonup \frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$
, where k is a constant.

▶
$$\frac{d}{dx}$$
(constant) = 0, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$.

$$ightharpoonup \frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$
, where k is a constant.

▶
$$\frac{d}{dx}$$
(constant) = 0, $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(x^2) = 2x$.

$$ightharpoonup \frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$
, where k is a constant.

Differentiate $y = 5x^2 + 3x - 4$.

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 + 3x - 4) = \frac{d}{dx}(5x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(4).$$

$$\frac{d}{dx}(5x^2) = 5\frac{d}{dx}(x^2) = 5 \times 2x = 10x$$

$$\frac{d}{dx}(3x) = 3\frac{d}{dx}(x) = 3 \times 1 = 3,$$

Hence
$$\frac{dy}{dx} = 10x + 3$$

Differentiate $y = 5x^2 + 3x - 4$.

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 + 3x - 4) = \frac{d}{dx}(5x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(4).$$

Now

$$\frac{d}{dx}(5x^2) = 5\frac{d}{dx}(x^2) = 5 \times 2x = 10x,$$

$$\frac{d}{dx}(3x) = 3\frac{d}{dx}(x) = 3 \times 1 = 3,$$

$$\frac{d}{dx}(4) = 0.$$

Hence $\frac{dy}{dx} = 10x + 3$

Differentiate $y = 5x^2 + 3x - 4$.

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 + 3x - 4) = \frac{d}{dx}(5x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(4).$$

$$\frac{d}{dx}(5x^2) = 5\frac{d}{dx}(x^2) = 5 \times 2x = 10x,$$

$$\frac{d}{dx}(3x) = 3\frac{d}{dx}(x) = 3 \times 1 = 3,$$

$$\frac{d}{dx}(4) = 0.$$

Hence
$$\frac{dy}{dx} = 10x + 3$$

Differentiate $y = 5x^2 + 3x - 4$.

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 + 3x - 4) = \frac{d}{dx}(5x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(4).$$

$$\frac{d}{dx}(5x^2) = 5\frac{d}{dx}(x^2) = 5 \times 2x = 10x,$$

$$\frac{d}{dx}(3x) = 3\frac{d}{dx}(x) = 3 \times 1 = 3,$$

$$\frac{d}{dx}(4) = 0.$$

Hence
$$\frac{dy}{dx} = 10x + 3$$

Differentiate $y = 5x^2 + 3x - 4$.

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 + 3x - 4) = \frac{d}{dx}(5x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(4).$$

$$\frac{d}{dx}(5x^2) = 5\frac{d}{dx}(x^2) = 5 \times 2x = 10x,$$

$$\frac{d}{dx}(3x) = 3\frac{d}{dx}(x) = 3 \times 1 = 3,$$

$$\frac{d}{dx}(4) = 0.$$

Hence
$$\frac{dy}{dx} = 10x + 3$$

Differentiate $y = 5x^2 + 3x - 4$.

$$\frac{dy}{dx} = \frac{d}{dx}(5x^2 + 3x - 4) = \frac{d}{dx}(5x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(4).$$

$$\frac{d}{dx}(5x^2) = 5\frac{d}{dx}(x^2) = 5 \times 2x = 10x,$$

$$\frac{d}{dx}(3x) = 3\frac{d}{dx}(x) = 3 \times 1 = 3,$$

$$\frac{d}{dx}(4) = 0.$$

Hence
$$\frac{dy}{dx} = 10x + 3$$
.

Differentiate $f(x) = 2 - 4x - x^2$.

$$f'(x) = \frac{d}{dx}(2) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2).$$

Now

$$\frac{d}{dx}(2) = 0,$$

$$\frac{d}{dx}(4x) = 4$$

$$\frac{d}{dx}(x^2) = 2x.$$

Hence f'(x) = -4 - 2x

Differentiate $f(x) = 2 - 4x - x^2$.

$$f'(x) = \frac{d}{dx}(2) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2).$$

Now

$$\frac{d}{dx}(2)=0,$$

$$\frac{d}{dx}(4x) = 4$$

$$\frac{d}{dx}(x^2) = 2x.$$

Hence f'(x) = -4 - 2x

Differentiate $f(x) = 2 - 4x - x^2$.

$$f'(x) = \frac{d}{dx}(2) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2).$$

$$\frac{d}{dx}(2)=0,$$

$$\frac{d}{dx}(2) = 0,$$

$$\frac{d}{dx}(4x) = 4$$

$$\frac{d}{dx}(x^2) = 2x.$$

Differentiate $f(x) = 2 - 4x - x^2$.

$$f'(x) = \frac{d}{dx}(2) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2).$$

Now

$$\frac{d}{dx}(2)=0,$$

$$\frac{d}{dx}(4x) = 4$$

$$\frac{d}{dx}(x^2) = 2x.$$

Hence f'(x) = -4 - 2x

Differentiate $f(x) = 2 - 4x - x^2$.

$$f'(x) = \frac{d}{dx}(2) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2).$$

Now

$$\frac{d}{dx}(2) = 0,$$

$$\frac{d}{dx}(4x) = 4$$

$$\frac{d}{dx}(x^2) = 2x.$$

Hence f'(x) = -4 - 2x.

Differentiate $f(x) = 2 - 4x - x^2$.

$$f'(x) = \frac{d}{dx}(2) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2).$$

Now

$$\frac{d}{dx}(2) = 0,$$
$$\frac{d}{dx}(4x) = 4$$

$$\frac{d}{dx}(x^2) = 2x.$$

Hence f'(x) = -4 - 2x.

Practice Questions

Practice Questions

Differentiate the following:

1.
$$f(x) = 2x - 5$$

2.
$$y = 9 - 2x$$

3.
$$f(x) = 3x^2 + 4x - 5$$

4.
$$f(x) = x^2 - 4x - 6$$

5.
$$y = x^2 - 5x$$

6.
$$m = 2n^2 - 2n + 1$$

7.
$$y = 7$$

8.
$$q = p - 6p^2$$

9.
$$f(a) = 4a^2 + 5a - 9$$

10.
$$f(x) = 6x - 4x^2$$
.

Answers to practice questions:

1.
$$f'(x) = 2$$

2.
$$\frac{dy}{dx} = -2$$

3.
$$f'(x) = 6x + 4$$

4.
$$f'(x) = 2x - 4$$

5.
$$\frac{dy}{dx} = 2x - 5$$

6.
$$\frac{dm}{dn} = 4n - 2$$

7.
$$\frac{dy}{dx} = 0$$

8.
$$\frac{dq}{dp} = 1 - 12p$$

9.
$$f'(a) = 8a + 5$$

10.
$$f'(x) = 6 - 8x$$
.