Вопросы для самоконтроля

- 1 Дать определение кольца. Привести примеры колец.
- 2 Что называется областью целостности?
- 3 Какое кольцо называется кольцом с единицей?
- 4 Что называется наибольшим общим делителем элементов кольца?
- 5 Что называется наименьшим общим кратным элементов кольца?
- 6 Дать определение операции деления с остатком в кольце.
- 7 Сформулировать расширенный алгоритм Евклида.
- 8 Как найти мультипликативный обратный элемент кольца вычетов?
- 9 Сформулировать алгоритм нахождения наибольшего общего делителя элементов кольца.
 - 10 Дать определение символа Лежандра. Как найти символ Лежандра?
 - 11 Как решить квадратичное сравнение по простому модулю?
- 2.4 Лабораторная работа 3. Поля. Конечные поля. Многочлены над простыми конечными полями. Арифметические операции в кольце многочленов над простым конечным полем

Цель работы: Повторить и реализовать основные алгоритмы теории полей, необходимые для решения задач алгебраической геометрии в криптографии.

Порядок выполнения лабораторной работы:

- 1. Повторить теоретические сведения, указанные в пункте 2.1.
- 2. Ознакомиться с примерами решения задач.
- 3. Выполнить и оформить задания лабораторной работы.
- 4. Подготовиться к защите работы.

Примеры решения задач

Задача 1. Найти корни многочлена $f(x) = x^7 + x^6 + x^5 + x^4 + x^2 + 1 \in F_2[x]$.

Решение.

Многочлен рассматривается над полем GF(2). Корнями многочлена могут быть только элементы поля GF(2), тот есть 0 и 1.

Найдем значения многочлена при x = 0 и x = 1.

 $f(0) = 1 \neq 0 \implies x = 0$ не является корнем многочлена.

 $f(1) = 0 \pmod{2} \Rightarrow x = 1$ является корнем многочлена.

Задача 2. Найдем корни многочлена $f(x) = x^3 + 2x^2 + 1 \in F_3[x]$. Является ли многочлен неприводимым?

Решение.

Многочлен рассматривается над полем GF(3). Корнями многочлена могут быть только элементы поля GF(3), то есть 0, 1 и 2.

Найдем значения многочлена при x = 0 и x = 1.

 $f(0) = 1 \neq 0 \implies x = 0$ не является корнем многочлена.

 $f(1) = 1 \pmod{3} \neq 0 \Longrightarrow x = 1$ не является корнем многочлена.

$$f(2) = 2^3 + 2 \cdot 2^2 + 1 = 2 \pmod{3} \neq 0 \Rightarrow x = 2$$
 не является корнем многочлена.

Таким образом, у многочлена корней нет.

Так как данный многочлен является многочленом степени 3 и не имеет корней, то он является неприводимым.

Задача 3. Используя схему Горнера, найти корни многочлена $f(x) = x^8 + x^7 + 4x^6 + 4x^5 + 3x^3 + 4x^2 + 3x + 2 \in F_5[x]$ и определить их кратность.

Решение.

Воспользуемся схемой Горнера, вычисления по которой представлены в таблице 3.

Таблица 3 – Схема Горнера для многочлена задачи 3

	1	1	4	4	0	3	4	3	2
0	1	1	4	4	0	3	4	3	2≠0
1	1	2	1	0	0	3	2	0	2≠0
2	1	3	0	4	3	4	2	2	1≠0
3	1	4	1	2	1	1	2	4	4
4	1	0	4	0	0	3	1	2	0

Итак, корнем многочлена является $x_0 = 4$. Определим кратность корня. Многочлен f(x) = (x-4)g(x), где $g(x) = x^7 + 4x^5 + 3x^2 + x + 2$. Корнями многочлена g(x) не могут быть элементы 0, 1, 2, 3. Выясним, является ли $x_0 = 4$ корнем g(x) (таблица 4).

Таблица 4 — Схема Горнера для многочлена $g(x) = x^7 + 4x^5 + 3x^2 + x + 2$

	1	0	4	0	0	3	1	2
4	1	4	0	0	0	3	3	4≠0

Итак, $x_0 = 4$ корнем g(x) не является. Тогда корень $x_0 = 4$ многочлена f(x) имеет кратность 1.

Задача 4. Исследовать многочлен $f(x) = x^4 + x^2 + 1 \in F_2[x]$ на приводимость. Если многочлен приводимый, то разложить его на множители.

Решение.

Многочлен $f(x) = x^4 + x^2 + 1$ рассматривается над полем GF(2). Корнями многочлена могут быть только элементы поля GF(2), то есть 0 и 1.

Найдем значения многочлена при x = 0 и x = 1.

$$f(0) = 1 \neq 0 \implies x = 0$$
 не является корнем многочлена.

 $f(1) = 1 \neq 0 \Longrightarrow x = 1$ не является корнем многочлена.

У многочлена нет корней. Таким образом, многочлен не может быть разложен на линейные множители.

Выясним, можно ли многочлен разложить на квадратичные множители.

Предположим, что
$$f(x) = x^4 + x^2 + 1 = (x^2 + ax + b)(x^2 + cx + d)$$
.

Тогда
$$x^4 + x^2 + 1 = x^4 + (a+c)x^3 + (ac+b+d)x^2 + (ad+bc)x + bd$$
.

Приравнивая коэффициенты при одинаковых степенях равных многочленов, получим систему над полем GF(2)

$$\begin{cases} a+c=0, \\ ac+b+d=1, \\ ad+bc=0, \\ bd=1. \end{cases}$$

$$(1.2)$$

Из последнего уравнения системы (1.2) получаем, что b=d=1. Тогда первые три уравнения системы (1.2) примут следующий вид:

$$\begin{cases} a+c=0, \\ ac=1, \\ a+c=0. \end{cases}$$
 (1.3)

Из системы (1.3) получаем, что a = c = 1.

Таким образом, многочлен $f(x) = x^4 + x^2 + 1$ является приводимым и $f(x) = x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 + x + 1)$.

Задача 5. Разделить многочлен $f(x) = 6x^5 + 2x^3 + 2x^2 + 3$ на многочлен $g(x) = 4x^3 + 2x^2 + 1$ над полем GF(7).

Решение.

$$6x^{5} + 0x^{4} + 2x^{3} + 2x^{2} + 0x + 3 \underbrace{|4x^{3} + 2x^{2} + 1|}_{5x^{5} + 3x^{4} + 5x^{2}} 5x^{2} + x$$

$$\underbrace{4x^{4} + 2x^{3} + 4x^{2} + 0x + 3}_{4x^{4} + 2x^{3} + x}$$

$$\underbrace{4x^{4} + 2x^{3} + x}_{4x^{2} + 6x + 3}$$

Итак, частным от деления многочлена f(x) на многочлен g(x) является многочлен $h(x) = 5x^2 + x$, а остатком – многочлен $r(x) = 4x^2 + 6x + 3$.

Задача 6. Найти $HO\mathcal{D}(f(x),g(x))$ и его линейное представление, если $f(x)=x^5+x^2+1,\ g(x)=x^4+x+1$ – многочлены над полем GF(2).

Решение.

Воспользуемся расширенным алгоритмом Евклида для многочленов. Вычисления оформим в таблице 5.

Таблица 5 — Поиск $HOД(x^5 + x^2 + 1, x^4 + x + 1)$ и его линейного представления

i	a_i	x_i	y_i	q_i
0	$x^5 + x^2 + 1$	1	0	_
1	$x^4 + x + 1$	0	1	х
2	<i>x</i> + 1	1	- <i>x</i>	$x^3 + x^2 + x$
3	1	$x^3 + x^2 + x$	$x^4 + x^3 + x^2 + 1$	<i>x</i> + 1
4	0			

Итак,

$$HO\mathcal{I}(x^5 + x^2 + 1, x^4 + x + 1) = 1 =$$

= $(x^5 + x^2 + 1)(x^3 + x^2 + x) + (x^4 + x + 1)(x^4 + x^3 + x^2 + 1)$.

Задача 7. Пусть $f(x) = 2x^2 + 1$, $g(x) = x^4 + x + 2$ – многочлены из кольца $F_3[x]$. Найти $f(x)^{-1} (\operatorname{mod} g(x))$.

Решение.

5

0

Для нахождения $f(x)^{-1} (\text{mod } g(x))$ воспользуемся расширенным алгоритмом Евклида для многочленов, вычисления по которому представлены в таблице 6.

i	a_i	x_i	y_i	q_i
0	$x^4 + x + 2$	1	0	_
1	$2x^2 + 1$	0	1	$2x^2 + 2$
2	x	1	$x^2 + 1$	2x
4	1	x	$x^3 + x + 1$	х

Таблица 6 – Поиск $HOД(2x^2+1, x^4+x+2)$ и его линейного представления

Так как $HOД(2x^2+1,x^4+x+2)=1=(2x^2+1)(x^3+x+1)+(x^4+x+2)\cdot x$, то $f(x)^{-1}(\text{mod }g(x))=x^3+x+1$.

Задания лабораторной работы

Для заданий лабораторной работы N — номер варианта, который указывается преподавателем, остальные значения находятся по следующим правилам:

$$a_i = i + N \pmod{2}, \ i = \overline{0,8}, \ b_j = j + N \pmod{7}, \ j = \overline{0,6},$$
 $c_k = k + N \pmod{3}, \ k = \overline{0,4}, \ d_l = l + N \pmod{5}, \ l = \overline{0,3},$ $r_m = m + N \pmod{11}, \ m = \overline{0,7}, \ s_t = t + N \pmod{11}, \ t = \overline{0,3}.$

1. Найти корни многочленов:

a)
$$f(x) = x^9 + a_8 x^8 + a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 \in F_2[x];$$

$$6) \ f(x) = b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 \in F_7[x].$$

2. Исследовать многочлены на приводимость. Приводимые многочлены разложить на множители.

a)
$$f(x) = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0 \in F_3[x];$$

- 6) $f(x) = x^4 + d_3 x^3 + d_2 x^2 + d_1 x + d_0 \in F_5[x]$.
- 3. Найти $HO\mathcal{D}(f(x),g(x))$ и его линейное представление, если $f(x)=r_7x^7+r_6x^6+r_5x^5+r_4x^4+r_3x^3+r_2x^2+r_1x+r_0$ и $g(x)=s_3x^3+s_2x^2+s_1x+s_0$ многочлены над полем GF(11).
- 4. Пусть $f(x) = s_2 x^2 + s_1 x + s_0$, $g(x) = x^8 + x^4 + x^3 + 6x + 2$ многочлены над полем GF(13). Найти $f(x)^{-1} (\operatorname{mod} g(x))$.
- 5. Реализовать арифметические операции над многочленами над простыми конечными полями, алгоритмы генерации неприводимых многочленов над простыми конечными полями.

Вопросы для самоконтроля

- 1 Дать определения поля. Привести примеры.
- 2 Что называется подполем?
- 3 Какое поле называется простым? Привести примеры простых полей.
- 4 Что называется порядком поля?
- 5 Какое поле называется конечным? Чему равен порядок конечного поля?
- 6 Чему равен порядок мультипликативной группы конечного поля?
- 7 Какое конечное поле является простейшим?
- 8 Какие поля составляют класс всех простых конечных полей?
- 9 Какие поля называются изоморфными?
- 10 Что называется многочленом над полем? Что называется степенью многочлена? Какой многочлен называется нормированным?
- 11 Каким образом определяются операции сложения и умножения многочленов?
- 12 Каким образом в кольце многочленов определяется операция деления с остатком?
 - 13 Как найти наибольший общий делитель двух многочленов?

2.5 Лабораторная работа 4. Построение полей Галуа

Цель работы: Реализовать построение полей Галуа.

Порядок выполнения лабораторной работы:

- 1. Повторить теоретические сведения, указанные в пункте 2.1.
- 2. Ознакомиться с примерами решения задач.
- 3. Выполнить и оформить задания лабораторной работы.
- 4. Подготовиться к защите работы.

Примеры решения задач

Задача 1. Построить конечное поле GF(3) и его расширение $GF(3^2)$. Найти примитивный элемент поля $GF(3^2)$. Записать различные представления элементов поля $GF(3^2)$ (многочлен, вектор, степень).

Решение.

Пусть элементами множества GF(3) являются 0, 1 и 2. Определим операции над элементами в GF(3). Свойства конечного поля в GF(3) будут выполняться, если в качестве операций сложения и умножения использовать операции по модулю 3.

В таблицах 6 и 7 заданы операции сложения и умножения элементов поля GF(3).

Таблица 6 — Таблица сложения элементов поля GF(3)

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Таблица 7 — Таблица умножения элементов поля GF(3)

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Построим поле $GF(3^2)$ как факторкольцо $F_3[x]/(f(x))$, где f(x) неприводимый многочлен над полем GF(3).

Находим неприводимый многочлен второй степени над GF(3). Например, $f(x) = x^2 + x + 2$. Множество $F_3[x]/(f(x))$ состоит из 9 элементов, которые являются классами вычетов. Обозначим классы вычетов следующим образом: 0, 1, 2, α , $\alpha+1$, $\alpha+2$, 2α , $2\alpha+1$, $2\alpha+2$ (причем α является корнем многочлена $f(x) = x^2 + x + 2$).

В таблицах 8 и 9 заданы операции сложения и умножения элементов поля $GF(3^2)$.

Таблица умножения в $GF(3^2)$ определяется из соотношения $\alpha^2 = 2\alpha + 1$.

Различные представления элементов поля $GF(3^2)$ (многочлен, вектор, степень) представлены в таблице 10.

Таблица 8 — Таблица сложения элементов поля $GF(3^2)$

+	0	1	2	α	α+1	$\alpha + 2$	2α	$2\alpha+1$	$2\alpha + 2$
0	0	1	2	α	α+1	$\alpha + 2$	2α	$2\alpha+1$	$2\alpha + 2$
1	1	2	0	$\alpha+1$	$\alpha + 2$	α	$2\alpha+1$	$2\alpha + 2$	2α
2	2	0	1	α + 2	α	$\alpha+1$	$2\alpha + 2$	2α	$2\alpha+1$
α	α	$\alpha+1$	α + 2	2α	$2\alpha+1$	$2\alpha + 2$	0	1	2
$\alpha+1$	$\alpha+1$	α + 2	α	$2\alpha+1$	$2\alpha + 2$	2α	1	2	0
$\alpha + 2$	α + 2	α	$\alpha+1$	$2\alpha + 2$	2α	$2\alpha+1$	2	0	1
2α	2α	$2\alpha+1$	$2\alpha + 2$	0	1	2	α	α+1	α + 2
$2\alpha+1$	$2\alpha+1$	$2\alpha + 2$	2α	1	2	0	α+1	$\alpha + 2$	α
$2\alpha+2$	$2\alpha + 2$	2α	$2\alpha+1$	2	0	1	$\alpha + 2$	α	α+1

Таблица 9 — Таблица умножения элементов поля $GF(3^2)$

×	0	1	2	α	α+1	$\alpha + 2$	2α	$2\alpha+1$	$2\alpha + 2$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	α	α+1	$\alpha + 2$	2α	$2\alpha+1$	$2\alpha + 2$
2	0	2	1	2α	$2\alpha + 2$	$2\alpha+1$	α	$\alpha + 2$	$\alpha+1$
α	0	α	2α	$2\alpha+1$	1	α+1	$\alpha + 2$	$2\alpha + 2$	2
$\alpha+1$	0	α+1	$2\alpha + 2$	1	$\alpha + 2$	2α	2	α	$2\alpha+1$
$\alpha + 2$	0	$\alpha + 2$	$2\alpha+1$	α+1	2α	2	$2\alpha + 2$	1	α
2α	0	2α	α	$\alpha + 2$	2	$2\alpha + 2$	$2\alpha+1$	α+1	1
$2\alpha+1$	0	$2\alpha+1$	$\alpha + 2$	$2\alpha + 2$	α	1	$\alpha+1$	2	2α
$2\alpha + 2$	0	$2\alpha+2$	α+1	2	$2\alpha+1$	α	1	2α	α + 2

Таблица 10 – Различные представления элементов поля $GF(3^2)$

Многочлен	Степень а	Вектор (a_0, a_1)
1	α^0	(1, 0)
α	α^1	(0, 1)
$2\alpha+1$	α^2	(1, 2)
$2\alpha + 2$	α^3	(2, 2)
2	$lpha^{\scriptscriptstyle 4}$	(2, 0)
2α	α^{5}	(0, 2)
$\alpha + 2$	$lpha^{\scriptscriptstyle 6}$	(2, 1)
α+1	α^7	(1, 1)

Задания лабораторной работы

Для заданий лабораторной работы N — номер варианта, который указывается преподавателем.

1. Построить конечное поле GF(p) и его расширение $GF(p^m)$. Найти примитивный элемент поля $GF(p^m)$. Записать различные представления элементов поля $GF(p^m)$ (многочлен, вектор, степень), если известно, что

$$p = \begin{cases} 5, N \equiv 0 \pmod{5}, \\ 3, N \equiv 1 \pmod{5}, \\ 2, N \equiv 2 \pmod{5}, \\ 13, N \equiv 3 \pmod{5}, \\ 11, N \equiv 4 \pmod{5}, \end{cases} \begin{cases} 3, N \equiv 0 \pmod{5}, \\ 4, N \equiv 1 \pmod{5}, \\ 7, N \equiv 2 \pmod{5}, \\ 2, N \equiv 3 \pmod{5}, \\ 2, N \equiv 4 \pmod{5}. \end{cases}$$

2. Написать программу, реализующую построение конечных полей.

Вопросы для самоконтроля

- 1 Перечислить свойства мультипликативной группы конечного поля.
- 2 Какой элемент циклической группы называется примитивным элементом конечного поля?
 - 3 Перечислить свойства характеристики поля, конечного поля?
 - 4 Дать определение простого расширения поля.
 - 5 Какой многочлен называется неприводимым над полем?
 - 6 Что называется простым алгебраическим расширением поля степени *n*?
- 7 Дать определение конечного расширения поля. Что называется базисом поля? Что называется степенью конечного расширения поля?
 - 8 Какое поле называется полем разложения многочлена?
 - 9 Какой многочлен называется минимальным многочленом элемента поля?
 - 10 Какой многочлен называется примитивным?