Supplementary document of paper:

Neural network-based optimization of progressive image transmission over aerial-terrestrial MIMO links

Analysis of computational complexity of algorithm given by Steps 1-4 in Ref. [24] (Pages 2556-2557 of [24])

The number of packets: L

The number of candidate spectral efficiencies: $N_{\rm se}$

The number of progressive images to be transmitted: $N_{\mathrm{img}}^{\mathrm{tx}}$

The parameter used for the algorithm in Ref. [24]: N_{α}

1. Computation of Step 3 of Ref. [24] (Page 2557 of Ref. [24])

Table I. Computation of $p_i = 1 - e^{-(2^{U_j}-1)/{\rm SNR}}$

	Operation	The number of operations
1	Division	1
2	Multiplication	0
3	Addition	2
4	Exponentiation	2
5	Conditional	0

Table II. Computation of $f^p(x) = 2^{-\alpha x}$

	Operation	The number of operations
1	Division	0
2	Multiplication	1
3	Addition	0
4	Exponentiation	1
5	Conditional	0

Table III. Computation of $b_i = \max_{pkt_size} \times U_j/U_{N_{se}}$

	Operation	The number of operations
1	Division	1
2	Multiplication	1
3	Addition	0
4	Exponentiation	0
5	Conditional	0

Table IV. Computation of $(p_i + f^p(b_i)(1 - p_i) \times \text{constant})$ of ith packet

	Operation or equation	The number of operations
	Operation or equation	or equations
1	Division	0
2	Multiplication	2
3	Addition	2
4	Exponentiation	0
5	Conditional	0
6	p_i (i.e., Table I)	2
7	$f^p(x) = 2^{-\alpha x}$ (i.e., Table II)	1
8	b_i (i.e., Table III)	1

Table V. Computation of $u_1^*(\alpha), u_2^*(\alpha), \dots, u_L^*(\alpha) = \operatorname*{argmin}_{u_i \in U} D_{1,2,\dots,L}^P(u_1,u_2,\dots u_L;\alpha)$

	Operation or equation	The number of operations
	Operation or equation	or equations
1	Division	0
2	Multiplication	0
3	Addition	0
4	Exponentiation	0
5	Conditional	$N_{\alpha}L (N_{\rm se}-1)$
6	$p_i + f^p(b_i)(1 - p_i) \times \text{constant}$ of <i>i</i> th packet (i.e., Table IV)	$N_{\alpha}L N_{\rm se}$

Table VI. Total number of operations for Step 3 of Ref. [24] based on Tables I-V given above.

	Operation	The number of operations
1	Division	$3L N_{\rm se} N_{\alpha}$
2	Multiplication	$4L N_{\rm se} N_{\alpha}$
3	Addition	$6L N_{\rm se} N_{\alpha}$
4	Exponentiation	$5L N_{\rm se} N_{\alpha}$
5	Conditional	$L(N_{\rm se}-1)N_{\alpha}$

The detailed steps for Table VI are as follows.

- i) From Row 6 of Table V, Rows 6-8 of Table IV, and Row 1 of Tables I-III, it follows that the number of divisions is given by $N_{\alpha}L N_{\rm se}(1 \times 2 + 0 \times 1 + 1 \times 1) = 3N_{\alpha}L N_{\rm se}$.
- ii) From Row 6 of Table V, Rows 2, 6-8 of Table IV, and Row 2 of Tables I-III, the number of multiplications is given by $N_{\alpha}L$ $N_{\rm se}(2+0\times2+1\times1+1\times1)=4N_{\alpha}L$ $N_{\rm se}$.
- iii) From Row 6 of Table V, Rows 3, 6-8 of Table IV, and Row 3 of Tables I-III, we have the number of additions given by $N_{\alpha}L N_{\rm se}(2+2\times 2+0\times 1+0\times 1)=6N_{\alpha}L N_{\rm se}$.
- iv) From Row 6 of Table V, Rows 6-8 of Table IV, and Row 4 of Tables I-III, it follows that the number of exponentiations is given by $N_{\alpha}L\ N_{\rm se}(2\times 2+1\times 1+0\times 1)=5N_{\alpha}L\ N_{\rm se}$.
- v) From Rows 5-6 of Table V, the number of conditionals is given by $N_{\alpha}L$ ($N_{\rm se}-1$).

2. Computation of Step 1 of Ref. [24] (Page 2556 of Ref. [24])

Table VII. Computation of $p(u_i) = 1 - e^{-(2^{u_i}-1)/SNR}$

	Operation	The number of operations
1	Division	1
2	Multiplication	0
3	Addition	2
4	Exponentiation	2
5	Conditional	0

Table VIII. Computation of $b(u_i) = \max_{p} kt_size \times u_i/U_{N_{se}}$

	Operation	The number of operations
1	Division	1
2	Multiplication	1
3	Addition	0
4	Exponentiation	0
5	Conditional	0

Table IX. Computation of $f(0)p(u_1) + \sum_{n=1}^{L-1} f(\sum_{i=1}^n b(u_i)) p(u_{n+1}) \prod_{i=1}^n (1 - p(u_i))$

(See Appendix A for the derivation of Table IX).

	Operation or equation	The number of operations
	Operation of equation	or equations
1	Division	0
2	Multiplication	$\frac{(L+1)L}{2}$
3	Addition	(L-1)L
4	Exponentiation	0
5	Conditional	0
6	$p(u_i)$ (i.e., Table VII)	$\frac{(L+1)L}{2}$
7	$b(u_i)$ (i.e., Table VIII)	$\frac{(L-1)L}{2}$

Table X. computation of $f\left(\sum_{i=1}^L b(u_i)\right) \prod_{i=1}^L \left(1-p(u_i)\right)$

	Operation or equation	The number of operations
	Operation of equation	or equations
1	Division	0
2	Multiplication	L
3	Addition	2L - 1
4	Exponentiation	0
5	Conditional	0
6	$p(u_i)$ (i.e., Table VII)	L
7	$b(u_i)$ (i.e., Table VIII)	L

Table XI. Computation of $D_{1,2,\dots,L}(u_1,u_2,\dots,u_L)$

	Operation or equation	The number of
	Operation or equation	operations or equations
1	Division	0
2	Multiplication	0
3	Addition	1
4	Exponentiation	0
5	Conditional	0
6	$f(0)p(u_1) + \sum_{n=1}^{L-1} f(\sum_{i=1}^n b(u_i))p(u_{n+1}) \prod_{i=1}^n (1 - p(u_i))$ (i.e., Table IX)	1
7	$f(\sum_{i=1}^{L} b(u_i)) \prod_{i=1}^{L} (1 - p(u_i))$ (Table X)	1

Table XII. Computation of $\alpha^* = \operatorname*{argmin}_{\alpha} D_{1,2,\dots,L}(u_1,u_2,\dots,u_L)$

	Operation or equation	The number of operations
	operation of equation	or equation
1	Division	0
2	Multiplication	0
3	Addition	0
4	Exponentiation	0
5	Conditional	$N_{\rm img}^{\rm tx}(N_{\alpha}-1)$
6	$D_{1,2,\dots,L}(u_1,u_2,\dots,u_L)$ (i.e., Table XI)	$N_{ m img}^{ m tx}N_{lpha}$

Table XIII. Total number of operations for Step 1 of Ref. [24] based on Tables VI-XII given above

	Operation	The number of operations	
1	Division	$L(L+2)N_{\alpha}N_{\rm img}^{\rm tx}$	
2	Multiplication	$L(L+2)N_{\alpha}N_{\rm img}^{\rm tx}$	
3	Addition	$2L(L+2)N_{\alpha}N_{\rm img}^{\rm tx}$	
4	Exponentiation	$L(L+3)N_{\alpha}N_{\rm img}^{\rm tx}$	
5	Conditional	$(N_{\alpha}-1)N_{\rm img}^{\rm tx}$	

The detailed steps for Table XIII are as follows.

i) From Row 6 of Table XII, Rows 6-7 of Table XI, Rows 6-7 of Table X, Rows 6-7 of Table IX and Row 1 of Table VII-VIII, it follows that the number of divisions is given by

$$\begin{split} N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} \left(1 \times \frac{(L+1)L}{2} + 1 \times \frac{(L-1)L}{2} + 1 \times L + 1 \times L \right) \\ &= N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} L \left(\frac{(L+1)}{2} + \frac{(L-1)}{2} + 2 \right) \\ &= N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} L (L+2). \end{split}$$

ii) From Row 6 of Table XII, Rows 6-7 of Table XI, Rows 2, 6-7 of Table X, Rows 2, 6-7 of Table IX and Row 2 of Table VII-VIII, the number of multiplications is given by

$$\begin{split} N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} \left(\frac{(L+1)L}{2} + 0 \times \frac{(L+1)L}{2} + 1 \times \frac{(L-1)L}{2} + L + 0 \times L + 1 \times L \right) \\ &= N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} \left(\frac{(L+1)L}{2} + \frac{(L-1)L}{2} + 2 \times L \right) \\ &= N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} L(L+2). \end{split}$$

iii) Based on Row 6 of Table XII, Rows 3, 6-7 of Table XI, Rows 3, 6-7 of Table X, Rows 3, 6-7 of Table IX and Row 3 of Table VII-VIII, we have the number of additions given by

$$\begin{split} N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} \left(1 + (L-1)L + 2 \times \frac{(L+1)L}{2} + 0 \times \frac{(L-1)L}{2} + 2 \times L - 1 + 2 \times L + 0 \times L \right) \\ &= N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} (2 \times L \times L + 4 \times L) \\ &= 2 N_{\mathrm{img}}^{\mathrm{tx}} N_{\alpha} L (L+2). \end{split}$$

iv) From Row 6 of Table XII, Rows 6-7 of Table XI, Rows 6-7 of Table IX and Row 4 of Table VII-VIII, the number of exponentiations is given by

$$N_{\text{img}}^{\text{tx}} N_{\alpha} \left(2 \times \frac{(L+1)L}{2} + 0 \times \frac{(L-1)L}{2} + 2 \times L + 0 \times L \right)$$

 $=N_{\rm img}^{\rm tx}N_{\alpha}L(L+3).$

v) From Row 5 of Table XII, the number of conditionals is given by $N_{\rm img}^{\rm tx}(N_{\alpha}-1)$.

Finally, from Tables VI and XIII, total number of operations for Steps 1-3 of Ref. [24] is given by Table XIV given below, which is the same as the 3rd column of Table I of our paper.

Table XIV. Total number of operations for Steps 1-3 of Ref. [24] based on Tables VI and XIII

	Operation	The number of operations
1	Division	$L(L+2)N_{\alpha}N_{\rm img}^{\rm tx} + 3L N_{\rm se}N_{\alpha}$
2	Multiplication	$L(L+2)N_{\alpha}N_{\rm img}^{\rm tx} + 4L N_{\rm se}N_{\alpha}$
3	Addition	$2L(L+2)N_{\alpha}N_{\rm img}^{\rm tx} + 6L N_{\rm se}N_{\alpha}$
4	Exponentiation	$L(L+3)N_{\alpha}N_{\rm img}^{\rm tx} + 5L N_{\rm se}N_{\alpha}$
5	Conditional	$(N_{\alpha}-1)N_{\rm img}^{\rm tx} + L(N_{\rm se}-1)N_{\alpha}$

Appendix A

The derivation of Table IX:

Computation of $f(0)p(u_1) + \sum_{n=1}^{L-1} f(\sum_{i=1}^n b(u_i)) p(u_{n+1}) \prod_{i=1}^n (1 - p(u_i))$

Table XV. The number of operations or equations required for the above equation

Operation or	The first	The second term	Total
equation	term	The second term	IOtal
Division	0	0	0
Multiplication	1	$\sum_{n=1}^{L-1} (n-1+2) = \sum_{n=1}^{L-1} (n+1)$ $= \frac{(2+L)(L-1)}{2}$	$1 + \frac{(2+L)(L-1)}{2} = \frac{(L+1)L}{2}$
Addition	0	$\sum_{n=1}^{L-1} (n-1+n) + (L-2)$ $= \sum_{n=1}^{L-1} (2n-1) + (L-2)$ $= 2 \times \frac{(L-1)L}{2} - (L-1) + (L-2)$ $= (L-1)L - 1$	(L-1)L - 1 + 1 = (L-1)L
Exponentiation	0	0	0
Conditional	0	0	0
$p(u_i)$ (i.e., Table VII)	1	$\sum_{n=1}^{L-1} (n+1) = \frac{(2+L)(L-1)}{2}$	$1 + \frac{(2+L)(L-1)}{2} = \frac{(L+1)L}{2}$
$b(u_i)$ (i.e., Table VIII)	0	$\sum_{n=1}^{L-1} n = \frac{(L-1)L}{2}$	$\frac{(L-1)L}{2}$