(5)

As we am see, the problem is that Pe is "vering" 2 instances of c when it am use a maximum of 1. In order to quarantee a request, the first thing that Banker's Algorithm does is to check if request (C-A) i and this is the same as checking regitals in magne that Pe is allocating a instance of C and then it requests (0,0,1,0) for example. That request is going to be added to AP2 and then the question is: In this addition less or equal than CP1?

Obviously not, because in this addition we have 2 instances of C while the maximum to be used is only b. We can't continue because this condition is not true and this "process of request" is stopped.

Process A Q V Process ABCD ABCD ABCD ABCD O 21012

ABCDE

c p

s). There are no process with no recurses allocated. 2) $\Theta_A \leq V$

Ps | No. 15 | Special | U.S. 12 | Hespa Ps | U.S. 12 | Dobbe | Color |

_														
				/	4			Q = R						
		A	В	ر	0	F	F	A	Ð	C	٥	€	F	
	Po	1	1	0	1	1	1	0	1	2	2	0	1	✓
	Ρ,	1	0	٥	2	1	2	0	0	3	0	0	1	V
	P2	٥	2	0	1	1	0	1	3	2	3	2	5	
														г .

 R
 0
 2
 0
 1
 1
 0
 4
 3
 2
 3
 2
 5

 R3
 0
 0
 5
 0
 0
 0
 4
 0
 0
 0
 2
 4

 R4
 0
 2
 2
 0
 0
 4
 1
 3
 4
 0
 3
 3

a) In order to know of there is a deadlock use use Bounker's algorithm.

b) Qi < V

Chosen	V	Fineshed		
	14,4,042,4	- 19	so there is a Di	EADLOCK
P3	11,1002,19+ 10,005,0,00 = 12,1,5,0,2,4 f	\$173.5 \$15.65	As gate superior or	6
Po.	12,1,5,2,3,3++ 1,4,4,0,4,4,6=13,2,5,3,4,45	jn,a, aj		
		ı		

C) There is a deadlock produced by P2 and P4 because Q2 > V and Q4 > V.

d) In order to avoid the deadlock we add one to resources B and F so we have (3,3,5,3,4,5) so now $0.2 \le V$, and when we perform V + 0.2 = (3,5,5,4,5,5) and $0.4 \le V$, and when we perform V + 0.2 = (3,5,5,4,5,5) and $0.4 \le V$, and $0.4 \le V + 0.4 \le V$