```
In [2]: import numpy as np
    import pandas as pd
    import seaborn as sb
    import matplotlib.pyplot as plt
    import sklearn
    from pandas import Series, DataFrame
    from pylab import rcParams
    from sklearn import preprocessing
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import classification_report
```

```
In [4]: titanic.head()
```

Out[4]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25(
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.05(

```
In [5]: import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
# show plots in the notebook
%matplotlib inline

pd.crosstab(titanic.Sex, titanic.Survived.astype(bool)).plot(kind='bar')
plt.xlabel('Sex')
plt.ylabel('Survived')
```

Out[5]: <matplotlib.text.Text at 0x111a0cc88>


```
In [6]: titanic.Age.hist()
   plt.xlabel('Age')
   plt.ylabel('Survived')
```

Out[6]: <matplotlib.text.Text at 0x1109bf5c0>

In [7]: titanic.Pclass.hist()
 plt.xlabel('Pclass')
 plt.ylabel('Survived')

Out[7]: <matplotlib.text.Text at 0x114d77dd8>


```
In [8]: titanic.Parch.hist()
    plt.xlabel('Parch')
    plt.ylabel('Survived')
```

Out[8]: <matplotlib.text.Text at 0x114e33ac8>

In [9]: titanic.Fare.hist()
 plt.xlabel('Fare')
 plt.ylabel('Survived')

Out[9]: <matplotlib.text.Text at 0x114f5ff60>


```
In [10]: pd.crosstab(titanic.SibSp, titanic.Survived.astype(bool)).plot(kind='ba
r')
    plt.xlabel('SibSp')
    plt.ylabel('Survived')
    plt.show()
```


In [11]: titanic_data = pd.get_dummies(data= titanic, columns=['Sex'])
 titanic_data.head()

Out[11]:

	PassengerId	Survived	Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	22.0	1	0	A/5 21171	7.2500	Nai
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	1	0	PC 17599	71.2833	C8!
2	3	1	3	Heikkinen, Miss. Laina	26.0	0	0	STON/O2. 3101282	7.9250	Nai
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	35.0	0	0	373450	8.0500	Nai

- In [13]: DT = DecisionTreeClassifier()
- In [15]: titanic_data.fillna('0', inplace=True)
- In [21]: DT.fit(X, Y)
- In [22]: scoring = "accuracy", # Scoring metric
 Y_pred = DT.predict(X)
- In [23]: Y_pred[:5]
- In [19]: from sklearn.metrics import accuracy_score

```
In [27]:
        accuracy score(Y, Y pred)
In [24]: X train, X test, Y train, Y test = train test split(X, Y, test size=0.3
         ,random state =30)
In [26]: DT.fit(X train, Y train)
In [ ]: pred DT train = DT.predict(X train)
         pred DT test = DT.predict(X test)
In [ ]: pred_DT_test[:5]
In [ ]: | print(accuracy_score(Y_train, pred_DT_train))
         print(accuracy score(Y test, pred DT test))
In [ ]: | LR = LogisticRegression()
         LR.fit(X train, Y train)
In [ ]: pred LR train = LR.predict(X train)
         pred_LR_test = LR.predict(X test)
In [ ]: print(accuracy score(Y train, pred LR train))
         print(accuracy score(Y test, pred LR test))
In [ ]: from sklearn.metrics import confusion matrix
         print(confusion matrix(Y test, pred DT test))
         print('***********************************)
         print(confusion matrix(Y test, pred LR test))
In [ ]: | print("Report with Decision Tree")
         print(classification report(Y test, pred DT test))
         print("**********")
         print("Report with Logistic Regrssion")
         print(classification report(Y test, pred LR test))
In [ ]: pd.crosstab(Y test, pred DT test)
In [ ]: from sklearn.cross validation import cross val score
```

In []:	<pre>scores = cross_val_score(estimator= DT, # Model to test</pre>
In []:	
In []:	
In []:	
In []:	