1. Si
$$q > 1$$
; $\lim_{n \to +\infty} q^n = +\infty$

2. Si
$$-1 < q < 1$$
; $\lim_{n \to +\infty} q^n = 0$

Inégalité de Bernoulli : pour tout a > 0 et pour tout entier $n \neq 0$; $(1+a)^n \geq 1 + na$

Démonstration. 1. q>1 donc il existe a>0 tel que q=1+a, d'après l'inégalité de Bernoulli, $q^n=(1+a)^n\geqslant 1+na$

Or,
$$\lim_{n \to +\infty} 1 + na = +\infty$$

Donc par comparaison $\lim_{n\to+\infty} q^n = +\infty$

2.
$$-1 < q < 1 \Leftrightarrow |q| < 1 \text{ donc } \frac{1}{|q|} > 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{1}{|q|}\right)^n = +\infty.$$
 Par inverse, $\lim_{n \to +\infty} q^n = \lim_{n \to +\infty} |q|^n = 0$

CQFD

Soient (u_n) et (v_n) deux suites telles que $u_n \leqslant v_n$ à partir d'un rang n_0 . Si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$

Démonstration. $\lim_{n\to+\infty} u_n = +\infty$ donc pour tout A > 0, il existe un entier n_0 tel que pour tout $n > n_0$, on a $u_n > A$.

Donc pour tout $n > n_0; v_n \geqslant u_n > A$.

Autrement dit, $\lim_{n \to +\infty} v_n = +\infty$

CQFD