I. Exemples et résultats généraux

1. Un premier exemple

- (a) l'équation différentielle en question est : $(\mathcal{E}_{f_1}): y'-y=-e^x$, dont la solution s'écrit $y=y_H+y_0$ où y_H solution générale de l'équation homogène : $(\mathcal{E}\mathcal{H}): y'-y=0$ et y_0 solution particulière de (\mathcal{E}_{f_1}) . On a $y_H(x)=\lambda e^x$ et à l'aide de la méthode de la variation de la constante, on pose $y_0(x)=\lambda(x)e^x$, on injecte cette solution dans l'équation et on trouve $\lambda'(x)=-1$, d'où $y_0(x)=-xe^x$. Donc $y(x)=(-x+\lambda)e^x$. Cette équation ne possède aucune solution bornée au voisinage de $+\infty$.
- (b) i. De même on a : l'équation différentielle en question est : $(\mathcal{E}_{f_{\alpha}}): y'-y=-e^{\alpha x}$, dont la solution s'écrit $y=y_H+y_0$ où y_H solution générale de l'équation homogène : $(\mathcal{E}\mathcal{H}): y'-y=0$ et y_0 solution particulière de $(\mathcal{E}_{f_{\alpha}})$. On a $y_H(x)=\lambda e^x$ et à l'aide de la méthode de la variation de la constante, on pose $y_0(x)=\lambda(x)e^x$, on injecte cette solution dans l'équation et on trouve $\lambda'(x)e^x=-e^{\alpha x}$, d'où $y_0(x)=-\frac{1}{\alpha-1}e^{\alpha x}$. Donc $y(x)=-\frac{1}{\alpha-1}e^{\alpha x}+\lambda e^x$.
 - ii. Donc une condition nécessaire et suffisante sur α pour que cette équation admet des solutions bornées au voisinage de $+\infty$ est que $\alpha<0$, en prenant $\lambda=0$ mais cette solution n'est pas bornée sur $\mathbb R$.

2. Résultats généraux

- (a) L'ensemble des solutions de l'équation différentielle (\mathcal{E}_f) est un espace affine de dimension 1.
- (b) Soit y une solution de l'équation différentielle (\mathcal{E}_f) , donc $(y(x)e^{-x})'=(y'(x)-y(x))e^{-x}=-f(x)e^{-x}$, d'où $y(x)e^{-x}=\lambda-\int_0^x e^{-t}f(t)\ dt$ et donc $y=y_\lambda:x\longmapsto e^x\Big(\lambda-\int_0^x e^{-t}f(t)\ dt\Big),\quad\lambda\in\mathbb{R}.$
- (c) Si on suppose que la solution y_{λ} est bornée au voisinage de $+\infty$, alors $\lambda \int_0^x e^{-t} f(t) \ dt = y_{\lambda}(x)e^{-x} \underset{x \to +\infty}{\longrightarrow} 0$ et donc l'intégrale $\int_0^{+\infty} e^{-t} f(t) \ dt$ est convergente et vaut λ .
- (d) L'équation différentielle (\mathcal{E}_f) peut avoir au maximum une solution bornée au voisinage de $+\infty$, en prenant $\lambda=\int_0^{+\infty}e^{-t}f(t)\;dt$, à condition que l'intégrale $\int_0^{+\infty}e^{-t}f(t)\;dt$ soit convergente.
- (e) i. Pour tout réel x, on a : $Y_f(x) = e^x \Big(\lambda_f \int_0^x e^{-t} f(t) \ dt \Big) = e^x \Big(\int_x^0 e^{-t} f(t) \ dt + \int_0^{+\infty} e^{-t} f(t) \ dt \Big) = e^x \int_x^{+\infty} e^{-t} f(t) \ dt.$
 - ii. La solution Y_f n'est pas nécessairement bornée au voisinage de $+\infty$ si on prend par exemple $f(t)=e^{\frac{t}{2}}$, dans ce cas $Y_f(x)=2e^{\frac{x}{2}} \underset{x \to +\infty}{\to} +\infty$

- (f) i. Si f est bornée par une constante M, alors $|\int_x^{+\infty} e^{-t} f(t)| dt| \leq \int_x^{+\infty} e^{-t} |f(t)| dt \leq M \int_x^{+\infty} e^{-t} dt = M e^{-x}$, donc l'intégrale $\int_x^{+\infty} e^{-t} f(t)| dt$ est bien définie donc $Y_f(x) = e^x \int_x^{+\infty} e^{-t} f(t)| dt$ est bien définie et bornée aussi par M, comme l'équation admet au maximum une solution bornée alors c'est l'unique solution bornée, sur \mathbb{R} , de l'équation différentielle (\mathcal{E}_f) .
 - ii. Si f tend vers 0 en $+\infty$, alors $\forall \varepsilon > 0$ $\exists A > 0$ tel que $\forall x \in \mathbb{R} : x > A \Rightarrow |f(x)| < \varepsilon$. Ainsi $\forall x > A$ on a : $|f(t)| < \varepsilon$. $\forall t \geq x$ donc $|Y_f(x)| = |e^x \int_x^{+\infty} e^{-t} f(t) \ dt| \leq e^x \int_x^{+\infty} e^{-t} |f(t)| \ dt \leq \varepsilon e^x \int_x^{+\infty} e^{-t} dt = \varepsilon$, d'où Y_f possède aussi une limite nulle en $+\infty$.
 - iii. Si maintenant f tend vers 0 en $-\infty$, alors $\forall \varepsilon > 0 \quad \exists A < 0$ tel que $\forall x \in \mathbb{R} : x < A \Rightarrow |f(x)| < \varepsilon$. Ainsi $\forall x < A$ on a : $|f(t)| < \varepsilon$. $\forall x \leq t \leq A$, donc $|Y_f(x)| = |e^x \int_x^{+\infty} e^{-t} f(t) \, dt| \leq e^x \int_x^{+\infty} e^{-t} |f(t)| \, dt = e^x \int_x^A e^{-t} |f(t)| \, dt + e^x \int_A^{+\infty} e^{-t} |f(t)| \, dt$, or $e^x \int_A^{+\infty} e^{-t} |f(t)| \, dt \to 0$ quand $x \to -\infty$, car $\int_A^{+\infty} e^{-t} |f(t)| \, dt$ est une constante qui ne dépond pas x et $e^x \int_x^A e^{-t} |f(t)| \, dt \leq e^x \int_x^A e^{-t} \varepsilon dt = \varepsilon e^x (e^{-x} e^{-A}) = \varepsilon (1 e^{x-A}) \leq \varepsilon$, et donc Y_f possède une limite nulle en $-\infty$.

3. Un autre exemple

- (a) $\sum_{n\geq 0} |u_{n,p}(x)| = \frac{1}{(2p+1)!} \sum_{n\geq 0} \frac{((2p+2)x)^n}{n!} = \frac{e^{(2p+2)x}}{(2p+1)!}$ finie $\sum_{p\geq 0} \sum_{n\geq 0} |u_{n,p}(x)| = \sum_{p\geq 0} \frac{e^{(2p+2)x}}{(2p+1)!} = e^x \sum_{p\geq 0} \frac{(e^x)^{2p+1}}{(2p+1)!} = e^x sh(x)$ aussi finie et donc, pour tout réel x, la suite double $(u_{n,p}(x))_{(n,p)\in\mathbb{N}^2}$ est sommable.
- (b) Le rayon de convergence de la série entière $\sum_{n\geq 0} a_n \frac{x^n}{n!}$, est alors infinie et sa somme est $\sum_{p\geq 0} \sum_{n\geq 0} u_{n,p}(x) = \sum_{p\geq 0} \sum_{n\geq 0} (-1)^p \frac{(2p+2)^n}{(2p+1)!} \frac{x^n}{n!} = \sum_{p\geq 0} \frac{(-1)^p}{(2p+1)!} \sum_{n\geq 0} \frac{((2p+2)x)^n}{n!} = \sum_{p\geq 0} \frac{(-1)^p}{(2p+1)!} e^{(2p+2)x} = e^x \sum_{p\geq 0} \frac{(-1)^p (e^x)^{2p+1}}{(2p+1)!} = e^x \sin(e^x).$
- (c) l'intégrale $\int_0^A e^{-t}u(t)\ dt=\int_0^A \sin(e^t)dt=\int_1^{B=e^A} \frac{\sin(x)}{x}dx$ est alors une intégrale classique convergente car de même nature que la série alternée $\sum \frac{(-1)^k}{k}$. On a effectué le changement de variable $x=e^t$.
- (d) Pour tout réel x, on a : $\int_x^{+\infty} e^{-t} u(t) \ dt = \int_{e^x}^{+\infty} \frac{\sin \theta}{\theta} \ d\theta$ en effectuant le changement de variable $\theta = e^t$.
- (e) $Y_u(x) = e^x \int_x^{+\infty} e^{-t} u(t) \, dt$ est déja bornée en $+\infty$ car $\int_0^A e^{-t} u(t) \, dt$ converge, il reste donc à l'étudier en $-\infty$. faisons une intégration par partie dans l'intégrale $|\int_{e^x}^{+\infty} \frac{\sin \theta}{\theta} \, d\theta| = |\int_{e^x}^{+\infty} \frac{\cos \theta}{\theta^2} \, d\theta| = |\int_{e^x}^{+\infty} \frac{\cos \theta}{\theta^2} \, d\theta| = |\int_{e^x}^{+\infty} \frac{\cos \theta}{\theta^2} \, d\theta| \le \frac{1}{e^x} + \int_{e^x}^{+\infty} \frac{1}{\theta^2} \, d\theta = \frac{2}{e^x}$, d'où $|Y_u(x)| = |e^x \int_x^{+\infty} e^{-t} u(t) \, dt| = |e^x \int_{e^x}^{+\infty} \frac{\sin \theta}{\theta} \, d\theta| \le 2$ donc la solution Y_u de l'équation différentielle (\mathcal{E}_u) est bornée sur \mathbb{R} .

II. CAS D'UNE FONCTION INTÉGRABLE

A- Cas où f est intégrable sur $\mathbb R$

1. La fonction G est continue, car primitive, bornée et tend vers 0 en $-\infty$ car f intégrable sur \mathbb{R} .

- 2. f est intégrable sur \mathbb{R} , donc sa limite en $+\infty$ ne peut qu'être finie et donc f ne peut qu'être bornée par une constante M, d'où $\forall A \geq x$, on a : $\int_x^A e^{-t} |f(t)dt| \leq Me^{-x}$. Donc, pour tout réel x, la fonction $t \longmapsto e^{-t} f(t)$ est intégrable sur $[x, +\infty[$.
- 3. Et dans ce cas : $\forall x \in \mathbb{R}$, $|Y_f(x)| = |e^x \int_x^{+\infty} e^{-t} f(t)| dt | \leq e^x \int_x^{+\infty} e^{-t} |f(t)| dt \leq e^x \int_x^{+\infty} e^{-x} |f(t)| dt = \int_x^{+\infty} |f(t)| dt$, donc Y_f est bornée sur \mathbb{R} par $\int_{-\infty}^{+\infty} |f(t)| dt$ et tend vers 0 en $+\infty$ car $\int_x^{+\infty} |f(t)| dt$ tend vers 0 en $+\infty$.
- 4. D'autre part $\forall x \in \mathbb{R}$, $Y_f(x) = e^x \int_x^{+\infty} e^{-t} f(t) \ dt = e^x \int_x^{+\infty} e^{-t} G'(t) \ dt = e^x \left[e^{-t} G(t) \right]_x^{t \to +\infty} + e^x \int_x^{+\infty} e^{-t} G(t) \ dt = -G(x) + Y_G(x)$ car $\lim_{t \to +\infty} e^{-t} G(t) = 0$, puisque G est bornée et donc Y_f tend vers 0 en $-\infty$ car G et Y_G tendent vers 0 en $-\infty$.
- 5. On a f intégrable $\mathbb{R} \Rightarrow |f|$ intégrable \mathbb{R} , donc de façon pareille on montre que la solution $Y_{|f|}$ de l'équation différentielle $(\mathcal{E}_{|f|})$ est bornée et tend vers 0 en $\pm \infty$.
- 6. On a : $Y_{|f|}(t) = Y'_{|f|}(t) + |f(t)|$, or $Y'_{|f|}$ intégrable car Y_f tend vers 0 en $\pm \infty$ et |f| intégrable donc $Y_{|f|}$ intégrable sur $\mathbb R$ et par suite Y_f est aussi intégrable sur $\mathbb R$ puisque $|Y_f| \le Y_{|f|}$.
- 7. Effectuons une intégration par parties, donc : $\int_{-\infty}^{+\infty} Y_f(x) \ dx = \int_{-\infty}^{+\infty} e^x \int_x^{+\infty} e^{-t} f(t) \ dt = \left[e^x \int_x^{+\infty} e^{-t} f(t) \ dt \right]_{x \to -\infty}^{+\infty} + \int_{-\infty}^{+\infty} e^x e^{-x} f(x) dx = \int_{-\infty}^{+\infty} f(x) \ dx, \\ \operatorname{car} \lim_{x \to -\infty} e^x \int_x^{+\infty} e^{-t} f(t) \ dt = 0, \\ \operatorname{puisque la la fonction} t \longmapsto e^{-t} f(t) \text{ est intégrable et } |e^x \int_x^{+\infty} e^{-t} f(t) \ dt | \leq \int_x^{+\infty} |f(t)| \ dt \to 0 \\ \operatorname{quand} x \to +\infty$
- 8. $\forall (f,g) \in E^2, \quad \forall \lambda \in \mathbb{R}$, on a : $\Phi(f+\lambda g)(x) = Y_{f+\lambda g}(x) = \int_x^{+\infty} e^{-t} (f(t)+\lambda g(t)) \ dt = \int_x^{+\infty} e^{-t} f(t) \ dt + \lambda \int_x^{+\infty} e^{-t} f(t) \ dt = Y_f(x) + \lambda Y_g(x) = \Phi(f)(x) + \lambda \Phi(g)(x)$, d'où $\Phi(f+\lambda g) = \Phi(f) + \lambda \Phi(g)$ et par suite Φ est linéaire, de plus d'aprés les questions précédentes si g est une fonction réelle continue et intégrable sur \mathbb{R} , alors $Y_g = \Phi(g)$ l'est aussi, donc $\Phi: g \longmapsto Y_g$ est un endomorphisme de E, d'autre part : $N_1(Y_g) = \int_{-\infty}^{+\infty} |Y_g(t)| \ dt \leq \int_{-\infty}^{+\infty} Y_{|g(t)|} \ dt = \int_{-\infty}^{+\infty} |g(t)| \ dt = N_1(g)$, d'où Φ est continue avec $\|\Phi\| = \sup_{g \neq 0} \frac{N_1(\Phi(g))}{N_1(g)} \leq 1$, de plus, pour $g \geq 0$ on a : $Y_g \geq 0$, d'où $N_1(Y_g) = \int_{-\infty}^{+\infty} Y_g(t) \ dt = \int_{-\infty}^{+\infty} g(t) \ dt$, d'où $\|\Phi\| \geq 1$ et donc $\|\Phi\| = 1$.

B- Cas où l'intégrale de f sur $\mathbb R$ converge

- 1. La fonction F est continue sur \mathbb{R} , car c'est une primitive, et en plus admet une limite nulle en $+\infty$ par construction de F et une limite finie en $-\infty$ car l'intégrale converge, donc bornée et tend vers 0 en $+\infty$.
- 2. Même raisonnement que celui de la question II.A.4) En déduire que la solution Y_f de l'équation différentielle (\mathcal{E}_f) est bornée et tend vers 0 en $+\infty$.
- 3. Ainsi on a : $Y_f = F Y_F$, or F bornée et tend vers 0 en $-\infty$, donc Y_F aussi et donc Y_f vérifie la même chose.
- 4. Même raisonnement que celui de la question II.A.7).

III. CAS D'UNE FONCTION PÉRIODIQUE

- 1. f est 2π -périodique continue, donc bornée sur \mathbb{R} , d'où Y_f aussi, or l'équation différentielle (\mathcal{E}_f) possède au maximum une solution bornée qui est donc la fonction Y_f .
- 2. On effectue le changement de variable $u=t-2\pi$ donc $y_F(x+2\pi)=e^{x+2\pi}\int_{x+2\pi}^{+\infty}e^{-t}f(t)\ dt=e^{x+2\pi}\int_x^{+\infty}e^{-t-2\pi}f(t-2\pi)\ dt=e^x\int_x^{+\infty}e^{-t}f(t)\ dt=Y_f(x)$, donc Y_f est 2π -périodique et de classe \mathcal{C}^1 , comme produit de deux fonction de classe \mathcal{C}^1 .

3. Les coefficients de FOURIER complexes de \mathcal{Y}_f sont donnés par la formule :

$$\forall k \in \mathbb{Z} : c_k(Y_f) = \frac{1}{2\pi} \int_0^{2\pi} Y_f(x) e^{-ikx} \, dx = \frac{1}{2\pi} \int_0^{2\pi} e^{(1-ik)x} \left(\int_x^{+\infty} e^{-t} f(t) \, dt \right) \, dx = \frac{1}{2\pi} \left(\left[\frac{e^{(1-ik)t}}{1-ik} \int_x^{+\infty} e^{-t} f(t) \, dt \right]_0^{2\pi} + \int_0^{2\pi} \frac{e^{(1-ik)x}}{1-ik} e^{-x} f(x) \, dt \right) = \frac{1}{2\pi (1-ik)} \left(e^{2\pi} \int_{2\pi}^{+\infty} e^{-t} f(t) \, dt - \int_0^{+\infty} e^{-t} f(t) \, dt \right) + \frac{c_k(f)}{1-ik} = \frac{c_k(f)}{1-ik} \text{ car } e^{2\pi} \int_{2\pi}^{+\infty} e^{-t} f(t) \, dt = \int_0^{+\infty} e^{-t} f(t) \, dt \text{ en effectuant le changement de variable } u = t - 2\pi \text{ et utilisant le fait que } f \text{ est } 2\pi\text{-p\'eriodique. D'où } \forall k \in \mathbb{Z} : c_k(Y_f) = \frac{c_k(f)}{1-ik}.$$

- 4. (a) Pour tout $n \in \mathbb{N}$, on a : $c_k(f_n) = \frac{c_k(f_1)}{(1-ik)^{n-1}}$.
 - (b) Parceque Y_f de calsse C^1 bornée.
 - (c) $\sum_{k\in\mathbb{N}}\left(|c_{-k}(f_1)|+|c_k(f_1)|\right)=M\sum_{k\in\mathbb{N}}\left(\frac{|c_{-k}(f_1)|+|c_k(f_1)|}{M}\right)$ est finie car c'est la série de FOURRIER de f_1 en x_0 où $M=|f_1(x_0)|=\max_{x\in\mathbb{R}}|f_1(x)|$.
 - (d) D'aprés le théorème de DIRICHLET, on a : $n \in \mathbb{N}^*$, $\forall x \in \mathbb{R}$, $|f_n(x) c_0(f_n)| = |\sum_{k \in \mathbb{Z}^*} c_k(f_n)e^{ikx}| \leq \sum_{k \in \mathbb{Z}^*} |c_k(f_n)| = \sum_{k \in \mathbb{N}^*} |c_{-k}(f_n)| + |c_k(f_n)| = \sum_{k \in \mathbb{N}^*} \frac{|c_{-k}(f_n)|}{|1 + ik|^{n-1}} + \frac{|c_{-k}(f_n)|}{|1 ik|^{n-1}} \leq \left(\frac{1}{\sqrt{2}}\right)^{n-1} \sum_{k=1}^{+\infty} \left(|c_{-k}(f_1)| + |c_k(f_1)|\right) \operatorname{car} |1 + ik| = \sqrt{1 + k^2} \geq 2 \operatorname{et} |1 ik| = \sqrt{1 + k^2} \geq 2.$ de plus $c_0(f_n) = c_0(f)$ d'où le résultat.
 - (e) Le mode de convergence de la suite $(f_n)_{n\in\mathbb{N}}$ est le même que celui de la suite géometrique $\left(\frac{1}{\sqrt{2}}\right)^{n-1}$

FIN DE L'ÉPREUVE