5

Eigenvalues and Eigenvectors

5.4

EIGENVECTORS AND LINEAR TRANSFORMATIONS

• Given any x in V, the coordinate vector $[x]_{\beta}$ is in \mathbb{R}^n and the coordinate vector of its image, $[T(x)]_{\mathcal{O}}$ is in \mathbb{R}^m , as shown in Fig. 1 below.

FIGURE 1 A linear transformation from V to W.

The connection between $[x]_{\beta}$ and $[T(x)]_{C}$ is easy to find. Let $\{b_1, \ldots, b_2\}$ be the basis β for V. If $x = r_1b_1 + \ldots + r_nb_n$, then,

And

$$T(x) = T(r_1b_1 + \dots + r_nb_n) = r_1T(b_1) + \dots + r_nT(b_n)$$
(1)

because T is linear.

Now, since the coordinate mapping from W to \mathbb{R}^m is linear, equation (1) leads to

$$[T(x)]_C = r_1[T(b_1)]_C + \dots + r_n[T(b_n)]_C$$
 (2)

• Since C-coordinate vectors are in \mathbb{R}^m , the vector equation (2) can be written as a matrix equation, namely,

$$[T(x)]_{\mathcal{C}} = M[x]_{\beta} \tag{3}$$

where

$$M = [[T(b_1)]_C [T(b_2)]_C \dots [T(b_n)]_C]$$
 (4)

• The matrix M is a matrix representation of T, called the matrix for T relative to the bases β and C. See Fig. 2 below:

FIGURE 2

■ Example 1 Suppose $\beta = \{b_1, b_2\}$ is a basis for V and $C = \{c_1, c_2, c_3\}$ is a basis for W. Let $T: V \rightarrow W$ be a linear transformation with the property that

$$T(b_1) = 3c_1 - 2c_2 + 5c_3$$
 and $T(b_2) = 4c_1 + 7c_2 - c_3$

• Find the matrix M for T relative to β and C.

Solution The C-coordinate vectors of the images of b₁
 and b₂ are

$$[T(b_1)]_{\mathcal{C}} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} \text{ and } [T(b_2)]_{\mathcal{C}} = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

Hence

$$M = \begin{bmatrix} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{bmatrix}$$

• If β and C are bases for the same space V and if T is the identity transformation T(x) = x for x in V, then matrix M in (4) is just a change-of-coordinates matrix.

LINEAR TRANSFORMATIONS FROM V INTO V

- In the common case where W is the same V and the basis C is the same as β , then the matrix M in (4) is called the **matrix for** T **relative to** β , or simply the β **-matrix for** T, and is denoted by $[T]_{\beta}$.
- See Fig. 3 below

FIGURE 3

LINEAR TRANSFORMATIONS ON Rn

■ Theorem 8: Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix. If β is the basis for \mathbb{R}^n formed from the columns of P, then D is the β -matrix for the transformation $x \mapsto Ax$.

• **Proof** Denote the columns of P by b_1, \ldots, b_n , so that $\beta = \{b_1, \ldots, b_n\}$ and $P = [b_1, \ldots, b_n]$. In this case, P is the change-of-coordinates matrix P_{β} discussed in Section 4.4, where

$$P[x]_{\beta} = x$$
 and $[x]_{\beta} = P^{-1}x$

LINEAR TRANSFORMATIONS ON Rn

• If T(x) = Ax for x in \mathbb{R}^n , then

$$[T]_{\beta} = [[T(b_1)]_{\beta} \dots [T(b_n)]_{\beta}] \quad \text{Definition of } [T]_{\beta}$$

$$= [[Ab_1]_{\beta} \dots [Ab_n]_{\beta}] \quad \text{Since } T(x) = Ax$$

$$= [P^{-1}Ab_1 \dots P^{-1}Ab_n] \quad \text{Change of coordinates}$$

$$= P^{-1}A[b_1 \dots b_n] \quad \text{Matrix multiplication}$$

$$= P^{-1}AP$$

• Since $A = PDP^{-1}$, we have $[T]_{\beta} = P^{-1}AP = D$.

LINEAR TRANSFORMATIONS ON Rn

- Example 3 Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax, where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a basis β for \mathbb{R}^2 with the property that the β -matrix for T is a diagonal matrix.
- **Solution** From Example 2 in Section 5.3 we know that $A = PDP^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$

• The columns of P, call them b_1 and b_2 , are eigenvectors of A. By Theorem 8, D is the β -matrix for T when $\beta = \{b_1, b_2\}$. The mappings $x \mapsto Ax$ and $u \mapsto Du$ describe the same linear transformation, relative to different bases.