Série 5

Exercice 1. Le plan est muni d'un repère orthonormé. Dans chacun des cas ci-dessous, déterminer la position relative des droites d et g:

a.
$$d: x + y = 1, g: \begin{cases} x = -1 + t \\ y = 2 - t \end{cases}, t \in \mathbb{R}.$$

b.
$$d: \begin{cases} x = 2 + 3t \\ y = -1 - 2t \end{cases}$$
, $t \in \mathbb{R}$, g passe par $A(4,5)$ et $B(6,8)$.

c.
$$d: 3x - 4y + 3 = 0$$
, $g: \begin{cases} x = 1 + 4t \\ y = 4 + 3t \end{cases}$, $t \in \mathbb{R}$.

d.
$$d$$
 passe par $A(1,2)$ et a pour pente $3, g: \begin{cases} x=-1+t \\ y=2t \end{cases}, t \in \mathbb{R}.$

Solution:

a. Etudions l'intersection de d et g. Pour cela, injectons les équations paramétriques de g dans l'équation cartésienne de d. On trouve :

$$(-1+t)+(2-t)=1$$
, c'est-à-dire $1=1$.

Comme cette relation est vérifiée pour tout réel t, cela signifie que tous les points de g sont sur d, ou, autrement dit, que d et g sont confondues.

Autre façon de résoudre : la droite g passe par le point A(-1,2) et possède pour vecteur directeur $\vec{v} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Or, le point A est aussi sur d, car -1+2=1, et le vecteur \vec{v} est directeur de d, car 1-1=0. On en déduit bien que d et g sont confondues.

- b. Le vecteur $\vec{v}\begin{pmatrix} 3\\ -2 \end{pmatrix}$ est directeur de d. Cette droite a donc pour pente $-\frac{2}{3}$. De plus, le vecteur $\overrightarrow{AB}\begin{pmatrix} 2\\ 3 \end{pmatrix}$ est directeur de g, qui a donc pour pente $\frac{3}{2}$. On en conclut que les droites d et g sont perpendiculaires, car $-\frac{2}{3} \cdot \frac{3}{2} = -1$ (et le repère est orthonormé).
- c. Etudions l'intersection de d et g. Pour cela, on injecte les équations paramétriques de g dans l'équation cartésienne de d. On trouve :

$$3(1+4t) - 4(4+3t) + 3 = 0$$
, c'est-à-dire $-10 = 0$.

Cette relation n'étant satisfaite pour aucune valeur de t, on voit que les droites d et g ne partagent aucun point en commun : elles sont donc parallèles.

d. La droite d possède une équation cartésienne de la forme :

$$y = 3x + \alpha$$

pour un certain réel α , car elle a pour pente 3. Exprimons maintenant qu'elle passe par A(1,2). On trouve :

$$2 = 3 + \alpha$$
, c'est-à-dire $\alpha = -1$.

La droite d possède donc pour équation cartésienne :

Etudions alors l'intersection de d et g. Le(s) point(s) dans cette intersection correspond(ent) au(x) paramètre(s) t tels que :

$$2t = 3(-1+t) - 1$$
, c'est-à-dire $t = 4$.

On voit donc que les droites d et g sont sécantes : elles s'intersectent en un unique point, celui de coordonnées (3,8).

Exercice 2. Dans le plan muni d'un repère orthonormé, on donne les points A(-3,-1) et B(5,9), ainsi que la droite d d'équation 2x - y + 12 = 0.

- a. Déterminer des équations paramétriques de la médiatrice m du segment AB.
- b. Chercher un point M de la droite d qui soit équidistant des points A et B.

Solution:

a. Le vecteur \overrightarrow{AB} a pour composante $(\frac{8}{10})$, si bien que la droite (AB) a pour pente $\frac{10}{8} = \frac{5}{4}$. Comme le repère est orthonormé, toute droite perpendiculaire à (AB) a pour pente $-\frac{4}{5}$ et est donc dirigée par le vecteur $\overrightarrow{v}(\frac{5}{-4})$. Appelons alors O l'origine du repère utilisé. L'équation vectorielle de d vue depuis le point O est alors de la forme :

$$\overrightarrow{OM} = \overrightarrow{OI} + t\overrightarrow{v}, \quad \lambda \in \mathbb{R},$$

où I est le milieu du segment AB. Or I a pour coordonnées $(\frac{-3+5}{2},\frac{-1+9}{2})=(1,4)$. On trouve alors les équations paramétriques suivantes pour la médiatrice :

$$m:$$

$$\begin{cases} x = 1 + 5t \\ y = 4 - 4t \end{cases}, t \in \mathbb{R}.$$

b. Au point M recherché il doit correspondre une valeur du paramètre t dans les équations trouvées en a., car M est à même distance de A et B, et donc se trouve sur la médiatrice m. Il existe donc un réel t tel que M a pour coordonnées (1+5t,4-4t). Par ailleurs, M est aussi sur la droite d, si bien que ses coordonnées satisfont l'équation de d. On a donc :

$$2(1+5t) - (4-4t) + 12 = 0$$
, autrement dit, $t = -\frac{5}{7}$.

Le point M recherché a donc pour coordonnées $\left(-\frac{18}{7}, \frac{48}{7}\right)$.

Exercice 3. On se donne trois points A, B, C dans le plan muni d'un repère orthonormé.

- a. Les coordonnées de A, B, C sont : A(-3, -2), B(4, -5), C(5, 7). Le triangle ABC est-il isocèle?
- b. Même question en supposant maintenant que A(0,6), B(-5,3), C(3,3).
- c. Sachant que les coordonnées de A, B et C sont A (7,1), B (5,5), C (5,-3), calculer les coordonnées

Solution:

a. Calculons les longueurs des côtés du triangle ABC. Pour cela, on commence par calculer les composantes des vecteurs :

$$\overrightarrow{AB} \left(\begin{smallmatrix} 7 \\ -3 \end{smallmatrix} \right), \overrightarrow{AC} \left(\begin{smallmatrix} 8 \\ 9 \end{smallmatrix} \right), \overrightarrow{BC} \left(\begin{smallmatrix} 1 \\ 12 \end{smallmatrix} \right).$$

Comme le repère est orthonormé, on a alors :

$$\|\overrightarrow{AB}\| = \sqrt{7^2 + (-3)^2} = \sqrt{58} \text{ et, de même } \|\overrightarrow{BC}\| = \sqrt{145}, \quad \|\overrightarrow{AC}\| = \sqrt{145}.$$

Comme $\|\overrightarrow{BC}\| = \|\overrightarrow{AC}\|$, on en conclut que ABC est isocèle, de base AB.

b. En raisonnant de la même façon qu'à la question précédente, on trouve :

$$\|\overrightarrow{AB}\| = \sqrt{34}, \quad \|\overrightarrow{AC}\| = \sqrt{18} \quad \|\overrightarrow{BC}\| = 8.$$

Les trois côtés de ABC sont tous de longueurs différentes, il n'est donc pas isocèle.

c. Le centre du cercle circonscrit au triangle ABC est situé à égale distance des trois sommets. Il se trouve donc à l'intersection de deux quelconques des médiatrices de ce triangle. Cherchons d'abord une équation cartésienne de la médiatrice du segment AB. D'après les données, on voit que le vecteur \overrightarrow{AB} a pour composantes $\binom{-2}{4}$ et est donc colinéaire au vecteur de composantes $\binom{1}{-2}$. Par conséquent la droite (AB) a pour pente -2, si bien que la médiatrice du segment AB, qui lui est perpendiculaire, a pour pente $-\frac{1}{-2} = \frac{1}{2}$. Elle possède donc une équation cartésienne de la forme :

$$y = \frac{1}{2}x + \alpha.$$

Pour trouver α , on exprime que cette médiatrice passe par le milieu du segment AB, qui a pour coordonnées $(\frac{7+5}{2}, \frac{1+5}{2}) = (6,3)$. Par conséquent, on a :

$$3 = \frac{1}{2} \cdot 6 + \alpha$$
 si bien que $\alpha = 0$.

La médiatrice du segment AB a donc pour équation cartésienne :

$$y = \frac{1}{2}x.$$

En raisonnant de la même manière, on trouve une équation cartésienne de la médiatrice du segment BC:

$$y = -3x + 7.$$

On trouve alors que le centre du cercle circonscrit a pour coordonnées (2,1).

Exercice 4. On considère trois points A, B, C dans le plan, ainsi qu'un nombre réel positif α .

- a. Localiser vectoriellement depuis le point A, en fonction des données, un point D tel que le segment AD soit parallèle à BC et qu'il ait pour longueur α .
- b. Application numérique : A(-2,-1), B(6,3), C(3,4) (dans un repère orthonormé du plan) et $\alpha=10$.

Solution:

a. Sur une figure d'étude, on voit qu'il existe deux solutions pour le point D cherché :

Tout d'abord, comme les segments AD et BC doivent être parallèles, on voit que les vecteurs \overrightarrow{AD} et \overrightarrow{BC} doivent être colinéaires. Par conséquent, il doit exister un réel t tel que :

$$\overrightarrow{AD} = t\overrightarrow{BC}.$$

Il vient alors:

$$\alpha = \|\overrightarrow{AD}\| = |t| \|\overrightarrow{BC}\| \text{ et donc } t = \pm \frac{\alpha}{\|\overrightarrow{BC}\|}.$$

On obtient finalement :

$$\overrightarrow{AD} = \pm \frac{\alpha}{\|\overrightarrow{BC}\|} \overrightarrow{BC}.$$

b. Calculons tout d'abord les composantes du vecteur \overrightarrow{BC} . On trouve :

$$\overrightarrow{BC} \left(\begin{smallmatrix} -3 \\ 1 \end{smallmatrix} \right)$$
.

Comme le repère utilisé est orthonormé, on obtient :

$$\|\overrightarrow{BC}\| = \sqrt{(-3)^2 + 1^2} = \sqrt{10}.$$

Appelons (x, y) les coordonnées de D dans le repère utilisé. La relation trouvée au point a. nous donne alors :

$$\begin{pmatrix} x+2\\y+1 \end{pmatrix} = \pm \frac{10}{\sqrt{10}} \begin{pmatrix} -3\\1 \end{pmatrix},$$

d'où l'on tire facilement les deux solutions possibles pour D:

$$D(-2-3\sqrt{10},-1+\sqrt{10})$$
 ou $D(-2+3\sqrt{10},-1-\sqrt{10})$.

Exercice 5. On considère trois points A, B et C dans le plan. On note δ la distance de C à la droite (AB). Soit α un réel strictement positif.

- a. Localiser vectoriellement depuis le point A, en fonction des données, le point D tel que ABCD soit un trapèze de base CD, et d'aire fixée α .
- b. Application numérique : A(2,4), B(-2,2), C(-3,-3) (dans un repère orthonormé du plan), $\delta=\frac{9}{5}$, et $\alpha=\frac{27\sqrt{5}}{5}$.

Solution:

a. Figure d'étude :

On cherche la position de D (sur la droite parallèle à (AB), passant par C) de façon à ce que l'aire du trapèze ABCD soit égale à α . En utilisant a formule donnant l'aire d'un tel trapèze, on obtient :

Aire =
$$\frac{1}{2}(\|\overrightarrow{CD}\| + \|\overrightarrow{BA}\|) \cdot \delta$$
.

On sait donc que le côté CD doit être de longueur $\|\overrightarrow{CD}\| = \frac{2\alpha}{\delta} - \|\overrightarrow{BA}\|$. On détermine alors le vecteur \overrightarrow{AD} , à l'aide de l'unique vecteur unitaire de la droite (CD) ayant même sens que \overrightarrow{BA} , à savoir $\overrightarrow{u} = \frac{\overrightarrow{BA}}{\|\overrightarrow{BA}\|}$. On obtient :

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AC} + \|\overrightarrow{CD}\| \overrightarrow{u} = \overrightarrow{AC} + (\frac{2\alpha}{\delta} - \|\overrightarrow{BA}\|) \overrightarrow{u}.$$

b. En insérant les valeurs données, on obtient $\overrightarrow{AD} \left(\begin{smallmatrix} 3 \\ -3 \end{smallmatrix} \right)$, ce qui donne $D \left(5, 1 \right)$. Remarque : À partir de A, B et C, on peut calculer la distance δ (voir plus loin dans le cours), donc elle n'aurait en principe pas besoin d'être donnée dans l'énoncé du problème. **Exercice 6.** Dans le plan muni d'un repère orthonormé, on considère un triangle ABC, isocèle de base BC, dont on connaît :

- une équation cartésienne de la hauteur issue de A: 3x + y 26 = 0,
- les coordonnées du sommet B(-4, -2),
- l'aire S = 120 unités d'aire.

Calculer les coordonnées des deux sommets A et C. Retenir pour A la solution d'ordonnée positive.

Solution: Figure d'étude :

On note h la hauteur issue de A dans le triangle ABC, et H le pied de cette hauteur. La droite h a pour pente -3, si bien que la droite (BC), qui lui est perpendiculaire, a pour pente $\frac{1}{3}$. En imposant que cette droite passe par B, on trouve qu'elle a pour équation cartésienne :

$$y = \frac{1}{3}x - \frac{2}{3}$$
 ou encore $-x + 3y + 2 = 0$.

Le point H se trouve à l'intersection des droites h et (BC). Ses coordonnées sont donc solutions du système :

$$\begin{cases} 3x + y - 26 = 0 \\ -x + 3y + 2 = 0 \end{cases}$$

La résolution de ce système montre que H a pour coordonnées (8,2). La relation vectorielle :

$$\overrightarrow{BC} = 2\overrightarrow{BH}$$

permet maintenant de prouver que les coordonnées de C sont (20,6). On peut maintenant calculer :

$$\overrightarrow{BC}({24 \atop 8})$$
, donc $\|\overrightarrow{BC}\| = \sqrt{24^2 + 8^2} = 8\sqrt{3^2 + 1^2} = 8\sqrt{10}$.

L'aire du triangle ABC vaut alors :

$$\frac{1}{2}\cdot\|\overrightarrow{BC}\|\cdot\|\overrightarrow{AH}\|=120,$$
ce qui donne $\|\overrightarrow{AH}\|=3\sqrt{10}$

On trouve alors A en cherchant un point situé sur h, obtenu en reportant la distance $3\sqrt{10}$ depuis H. Pour ce faire, on utilise un vecteur directeur unitaire pour h, par exemple le vecteur \vec{v} de composantes :

$$\frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -3 \end{pmatrix} .$$

Il y a donc deux possibilités pour la position de A:

$$\overrightarrow{OA} = \overrightarrow{OH} \pm 3\sqrt{10}\,\overrightarrow{v},$$

où on note O l'origine du repère utilisé. En utilisant les coordonnées de H calculées plus haut, cela donne $\overrightarrow{OA}\left(\begin{smallmatrix}11\\-7\end{smallmatrix}\right)$ ou $\overrightarrow{OA}\left(\begin{smallmatrix}5\\11\end{smallmatrix}\right)$. Comme on ne garde que la solution dont l'ordonnée est positive, le point cherché est $A\left(5,11\right)$.

Exercice 7. Dans un plan, on considère un point A ainsi que deux vecteurs non colinéaires \vec{u} et \vec{v} . On note d (resp. g) la droite passant par A et dirigée par \vec{u} (resp. \vec{v}).

- a. Déterminer des équations vectorielles des bissectrices de l'angle formé par les deux droites d et g, vues depuis le point A.
- b. Déterminer des équations cartésiennes de ces bissectrices dans le repère (A, \vec{u}, \vec{v}) .
- c. On fixe un repère orthonormé du plan tel que A(8,-7), $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$. Calculer des équations cartésiennes de ces bissectrices dans le repère utilisé.

Solution:

a. Figure d'étude :

On a vu au cours que les bissectrices recherchées sont dirigées par :

$$\vec{a} = \frac{1}{\|\vec{u}\|}\vec{u} + \frac{1}{\|\vec{v}\|}\vec{v} \text{ et } \vec{b} = \frac{1}{\|\vec{u}\|}\vec{u} - \frac{1}{\|\vec{v}\|}\vec{v}.$$

On obtient alors les équations vectorielles suivantes (vues depuis le point A):

$$\overrightarrow{AM} = t\overrightarrow{a}, t \in \mathbb{R}$$
 d'une part, et $\overrightarrow{AM} = t\overrightarrow{b}, t \in \mathbb{R}$ d'autre part.

b. Dans le repère (A, \vec{u}, \vec{v}) , on obtient donc pour la première bissectrice les équations paramétriques suivantes :

$$\begin{cases} x = \frac{1}{\|\vec{u}\|} t \\ y = \frac{1}{\|\vec{v}\|} t \end{cases}, t \in \mathbb{R}.$$

En éliminant le paramètre t, on trouve donc l'équation cartésienne suivante :

$$\|\vec{u}\|x = \|\vec{v}\|y.$$

En travaillant de même avec l'autre bissectrice, on trouve l'équation cartésienne :

$$\|\vec{u}\|x = -\|\vec{v}\|y.$$

c. Pour les valeurs données dans l'énoncé, on trouve, comme le repère est orthonormé :

$$\|\vec{u}\| = \sqrt{(-1)^2 + 3^2} = \sqrt{10} \text{ et } \|\vec{v}\| = \sqrt{(-3)^2 + 1^2} = \sqrt{10}.$$

On voit alors aisément que les bissectrices recherchées sont respectivment dirigées par le vecteur de composantes $\binom{-1}{1}$ et celui de composantes $\binom{1}{1}$. Les parties variables des équations cartésiennes correspondantes peuvent donc être prises égales à -x+y et x+y. En imposant maintenant la condition que ces droites passent par A, on trouve :

$$-x + y + 15 = 0$$
 et $x + y - 1 = 0$.

Exercice 8. Dans le plan, on considère un triangle ABC (non aplati). On note d la bissectrice intérieure de l'angle \widehat{BAC} et g la parallèle à (AB) passant par C.

- a. Donner des équations vectorielles des droites d et g vues depuis le point A. Ces droites sont-elles parallèles?
- b. On note I le point d'intersection de d et g. Exprimer le vecteur \overrightarrow{AI} en fonction des données.
- c. Déterminer une équation vectorielle de la droite (BI) en fonction des données. Cette droite intersecte-t-elle la droite (AC)? Si oui, donner la valeur du paramètre correspondant au point d'intersection.

Solution: Figure d'étude :

a. Commençons par écrire une équation vectorielle de d vue depuis le point A. On sait d'après le cours que la bissectrice intérieure de \widehat{BAC} est dirigée par le vecteur $\frac{1}{\|\overrightarrow{AB}\|}\overrightarrow{AB} + \frac{1}{\|\overrightarrow{AC}\|}\overrightarrow{AC}$. Comme cette bissectrice passe par A, elle a pour équation vectorielle :

$$d: \overrightarrow{AM} = t(\frac{1}{\|\overrightarrow{AB}\|}\overrightarrow{AB} + \frac{1}{\|\overrightarrow{AC}\|}\overrightarrow{AC}), t \in \mathbb{R}.$$

Par ailleurs, la droite g passe par C et est dirigée par le vecteur \overrightarrow{AB} . Vue depuis le point A, elle admet donc pour équation vectorielle :

$$g: \overrightarrow{AM} = \overrightarrow{AC} + t\overrightarrow{AB}, t \in \mathbb{R}.$$

En comparant les vecteurs directeurs de ces deux droites on se rend compte qu'ils ne sont pas colinéaires. Par conséquent, d et g ne sont pas parallèles.

b. Le point I correspond à la position du point courant de d pour une certaine valeur t du paramètre, et à la position du point courant de q pour une certaine valeur s du paramètre. On a donc :

$$\overrightarrow{AI} = t(\frac{1}{\|\overrightarrow{AB}\|}\overrightarrow{AB} + \frac{1}{\|\overrightarrow{AC}\|}\overrightarrow{AC}) = \overrightarrow{AC} + s\overrightarrow{AB}.$$

Le triangle ABC n'étant pas aplati, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, ce qui permet d'écrire :

$$\begin{cases} \frac{t}{\|\overrightarrow{AB}\|} = s \\ \frac{t}{\|\overrightarrow{AC}\|} = 1 \end{cases} \text{ d'où } t = \|\overrightarrow{AC}\| \text{ et } s = \frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|}.$$

En injectant ces valeurs plus haut, on trouve:

$$\overrightarrow{AI} = \frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} \overrightarrow{AB} + \overrightarrow{AC}.$$

c. La droite (BI) passe par B et est dirigée par le vecteur :

$$\overrightarrow{BI} = \overrightarrow{AI} - \overrightarrow{AB} = (\frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} - 1)\overrightarrow{AB} + \overrightarrow{AC}.$$

Vue depuis A, elle admet donc comme équation vectorielle :

$$(BI): \overrightarrow{AM} = \overrightarrow{AB} + t((\frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} - 1)\overrightarrow{AB} + \overrightarrow{AC}), \ t \in \mathbb{R}.$$

La droite (AC) possède, vue depuis A, l'équation vectorielle suivante :

$$(AC): \overrightarrow{AM} = t\overrightarrow{AC}, t \in \mathbb{R}.$$

Pour décider si les droites (BI) et (AC) s'intersectent, on cherche à savoir s'il existe des réels s et t tels que :

$$\overrightarrow{AB} + t((\frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} - 1)\overrightarrow{AB} + \overrightarrow{AC}) = s\overrightarrow{AC},$$

ce qui, en raisonnant comme ci-dessus, conduit au système :

$$\begin{cases} 1 + t(\frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} - 1) = 0 \\ t = s \end{cases}$$

On distingue alors deux cas. Tout d'abord, si $\|\overrightarrow{AB}\| = \|\overrightarrow{AC}\|$. Dans ce cas, la première équation devient 1=0, qui est impossible à satisfaire. Dans ce cas les deux droites considérées sont parallèles et ne s'intersectent donc pas (c'est le cas où le triangle ABC est isocèle en A). Si maintenant on suppose que $\|\overrightarrow{AB}\| \neq \|\overrightarrow{AC}\|$, alors il y a une unique solution au système ci-dessus :

$$t = s = \frac{1}{1 - \frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|}}.$$

$$\overrightarrow{AB}$$

$$\overrightarrow{AC}$$

$$g$$

$$\overrightarrow{AC}$$

$$J$$

(BI)