Market Sentiment Feature Technical Documentation

1. Feature Overview

The **Institutional Sentiment** feature analyzes price trends across two timeframes to determine bullish/bearish market sentiment for NEPSE stocks. It combines:

- **Higher timeframe (1W)**: Identifies long-term trend
- **Lower timeframe (1D)**: Captures short-term momentum
- EMA filters (5, 10, 20 periods): Confirms trend strength

2. Sentiment Calculation Logic

A. Conditions for Bullish Sentiment

Timeframe	Condition
1W (Higher)	Current price > 5EMA > 10EMA > 20EMA
1D (Lower)	Current price > 5EMA > 10EMA > 20EMA

B. Conditions for Bearish Sentiment

Timeframe	Condition
1W (Higher)	Current price < 5EMA < 10EMA < 20EMA
1D (Lower)	Current price < 5EMA < 10EMA < 20EMA

C. Sentiment Score Formula

```
Bullish Score = (Higher TF Confirmation * 0.6) + (Lower TF Confirmation * 0.4)
```

- Where confirmation = 1 if all EMAs align, else 0
- Final score converted to percentage (e.g., 72% = Strong Bullish)

3. Data Requirements

Input Data (Per Symbol)

Field	Description	Example
symbol	Stock/Forex pair	NIC, AAPL
price_1w	Weekly close price	1200.50
ema5_1w	5-period weekly EMA	1180.20
ema10_1w	10-period weekly EMA	1150.75
ema20_1w	20-period weekly EMA	1100.30
price_1d	Daily close price	1215.25
ema5_1d	5-period daily EMA	1205.10
ema10_1d	10-period daily EMA	1190.40
ema20_1d	20-period daily EMA	1175.80

4. Technical Implementation

A. Backend (Python)

```
python
def calculate_sentiment(symbol_data):
    # Higher TF (1W) Check
    htf bullish = (symbol data['price 1w'] > symbol data['ema5 1w'] >
```

```
symbol data['ema10 1w'] > symbol data['ema20 1w'])
htf bearish = (symbol data['price 1w'] < symbol data['ema5 1w'] <</pre>
               symbol data['ema10 1w'] < symbol data['ema20 1w'])</pre>
# Lower TF (1D) Check
ltf bullish = (symbol data['price 1d'] > symbol data['ema5 1d'] >
               symbol data['ema10 1d'] > symbol data['ema20 1d'])
ltf bearish = (symbol data['price 1d'] < symbol data['ema5 1d'] <</pre>
               symbol data['ema10 1d'] < symbol data['ema20 1d'])</pre>
# Score Calculation
score = 0
if htf bullish and ltf bullish:
    score = 0.6 * 1 + 0.4 * 1 # Max bullish
elif htf bullish or ltf bullish:
    score = 0.6 * htf bullish + 0.4 * ltf bullish
return {
    'symbol': symbol data['symbol'],
    'score': int(score * 100),
    'trend': 'Bullish' if score >= 50 else 'Bearish'
```

B. Database Schema

```
sql
```

```
CREATE TABLE sentiment_data (
    symbol VARCHAR(10) PRIMARY KEY,
    price_1w DECIMAL(10,2),
    ema5_1w DECIMAL(10,2),
    ema10_1w DECIMAL(10,2),
    ema20_1w DECIMAL(10,2),
    price_1d DECIMAL(10,2),
    ema5_1d DECIMAL(10,2),
    ema10_1d DECIMAL(10,2),
    ema10_1d DECIMAL(10,2),
    last_updated TIMESTAMP
);
```

5. Frontend Display

UI Components

1. Search Bar

o Typeahead symbol search

2. Sentiment Table

- o Columns: Symbol, Intraday (1D), Daily (1W)
- o Color coding:
 - Green (≥70% Bullish)
 - Red (≤30% Bullish)
 - Yellow (Neutral)

3. Refresh Button

Manual data reload

Example Response

```
json
{
    "AAPL": {"intraday": 72, "daily": 28},
    "NIC": {"intraday": 85, "daily": 15}
}
```

6. Workflow Diagram

7. Testing Scenarios

Test Case	Expected Result
Price > All EMAs (Both TFs)	100% Bullish
Price < All EMAs (Both TFs)	0% Bullish
Mixed Alignment	30-70% Score
Missing Data	"N/A" Display

Next Steps:

- 1. Implement EMA calculation microservice
- 2. Build real-time data pipeline
- 3. Optimize for 100+ symbols