Chapitre 2 – Caractérisation inertielle des solides

l'Ingénieur

Sciences

Activation 1

Activation 1

X. Pessoles

Savoirs et compétences :

- *Mod2.C13 : centre d'inertie*
- Mod2.C14 : opérateur d'inertie
- Mod2.C15 : matrice d'inertie

Triaxe

On donne le plan d'un triaxe constitué des 3 axes A_1 , A_2 , A_3 et du moyeu central noté M. On note T l'ensemble.

On note:

• \overrightarrow{z} l'axe perpendiculaire au plan de la feuille. On se place ci-dessus dans le plan de symétrie $(O, \overrightarrow{x}, \overrightarrow{y})$;

1

• \mathcal{R}_i le repère $(O_i; \overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z_i})$ et \mathcal{B}_i la base associée.

TOUS LES CALCULS SE FERONT DE MANIÈRE LITTEREALE!

- $D_1 = 18 \,\mathrm{mm} \,\mathrm{et} \, H_1 = 25 \,\mathrm{mm}.$
- $D = 46 \,\mathrm{mm}$, $D' = 30 \,\mathrm{mm}$ et $H = 48 \,\mathrm{mm}$.

• $\alpha_1 = (\overrightarrow{x}, \overrightarrow{x_1}) = 90^\circ$, $\alpha_2 = (\overrightarrow{x}, \overrightarrow{x_2}) = -150^\circ$ et $\alpha_3 = (\overrightarrow{x}, \overrightarrow{x_3}) = -30^\circ$. On donne ci-dessous le paramétrage d'un axe A_i .

Question 1 Déterminer (sans calcul) la position du centre de gravité du triaxe.

Correction

Le plan $(O, \overrightarrow{x}, \overrightarrow{y})$ est plan de symétrie du triaxe; donc $\overrightarrow{OG} \cdot \overrightarrow{z} = 0$

Le plan $(O, \overrightarrow{y}, \overrightarrow{z})$ est plan de symétrie du triaxe; donc $\overrightarrow{OG} \cdot \overrightarrow{x} = 0$

Reste la coordonnée selon \overrightarrow{y} .

Les plans $(O, \overrightarrow{z}, \overrightarrow{x_2})$ et $(O, \overrightarrow{z}, \overrightarrow{x_3})$ étant plans de symétrie, on a $\overrightarrow{OG} \cdot \overrightarrow{y_2} = 0$ et $\overrightarrow{OG} \cdot \overrightarrow{y_3} = 0$. Or $\overrightarrow{OG} = y_g \overrightarrow{y} = 0$ $y_g \cos \alpha_2 \overrightarrow{y_2} - y_g \sin \alpha_2 \overrightarrow{x_2}$. Il en résulte que $y_g \cos \alpha_2 = 0$ et donc nécessairement $y_g = 0$ car $\alpha_2 \neq 0$.

Question 2 Déterminer analytiquement la position du centre de gravité G_i du solide A_1 dans le repère \mathcal{R}_i .

Correction On pourrait répondre directement en disant que le solide à 3 plans de symétrie orthogonaux entre eux. En utilisant la définition on a :

- $M_1 = \mu H_1 \pi \frac{D_1^2}{4}$;
- en coordonnées cylindriques, $\overrightarrow{O_iP_i} = x\overrightarrow{x_i} + \rho\cos\theta\overrightarrow{y_i} + \rho\sin\theta\overrightarrow{z_i}$ et $dV = \rho d\rho d\theta dx$ avec $x \in [0, H_1], \theta \in$
- $m_i x_{G_i} = \mu \iiint x_P dV = \mu \iiint x_P d\rho d\theta dx = \mu \frac{H_1^2}{2} 2\pi \frac{D_1^2}{8};$ $m_i y_{G_i} = \mu \iiint y_P dV = \mu \iiint \rho \cos\theta \rho d\rho d\theta dx = 0;$ $m_i z_{G_i} = \mu \iiint z_P dV = \mu \iiint \rho \sin\theta \rho d\rho d\theta dx = 0.$ Au final, $\mu H_1 \pi \frac{D_1^2}{4} x_{G_1} = \mu \frac{H_1^2}{2} 2\pi \frac{D_1^2}{8} \iff x_{G_1} = \frac{H_1}{2}.$

Question 3 Déterminer (sans calcul) la **forme** de la matrice d'inertie du triaxe.

Correction Le plan $(O, \overrightarrow{x}, \overrightarrow{y})$ est plan de symétrie du triaxe; donc $E = \iiint xz dm = 0$ et $D = \iiint yz dm = 0$. Le plan $(O, \overrightarrow{y}, \overrightarrow{z})$ est plan de symétrie du triaxe; donc $E = \iiint xz dm = 0$ et $F = \iiint xy dm = 0$.

La matrice est donc diagonale et de la forme $\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}$.

Question 4 Déterminer analytiquement la matrice d'inertie du solide A_i en G_i dans \mathcal{R}_i . On la note $I_{G_i}(A_i) = \begin{pmatrix} A_i & -F_i & -E_i \\ -F_i & B_i & -D_i \\ -E_i & -D_i & C_i \end{pmatrix}_{\mathcal{R}_i}$ où les constantes seront à déterminer littéralement.

 $\begin{aligned} & \text{Correction Le solide \'etant axisym\'etrique, on a} : D_i = E_i = F_i = 0 \text{ et } C_i = B_i. \text{ D'où } I_{G_i}(A_1) = \begin{pmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & B_i \end{pmatrix}_{\mathscr{R}_1}. \\ & \text{Calculons } A_i = \iiint \left(y^2 + z^2 \right) \mathrm{d} m = \mu \iiint \left(\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta \right) \rho \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x \\ & = \mu \iiint \rho^3 \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} z = \mu \left[\frac{\rho^4}{4} \right]_0^{D_1/2} 2\pi H_1 = \mu \frac{D_1^4}{16 \cdot 4} 2\pi H_1 = M_1 \frac{D_1^2}{8}. \\ & \text{Calculons } B_i = \iiint \left(x^2 + z^2 \right) \mathrm{d} m = \mu \iiint \left(x^2 + \rho^2 \sin^2 \theta \right) \rho \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x \\ & B_x = \mu \iiint x^2 \rho \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x + \mu \iiint \rho^2 \sin^2 \theta \rho \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x = \mu \iiint x^2 \rho \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x = \mu \frac{H_1^3}{4 \cdot 3} \frac{D_1^2}{8} 2\pi = M \frac{H_1^2}{12} \\ & B_z = \mu \iiint \rho^2 \sin^2 \theta \rho \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x = \mu \iiint \rho^3 \frac{1 - \cos 2x}{2} \theta \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x = \mu \iiint \frac{\rho^3}{2} \theta \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} x = \mu \frac{D_1^4}{2 \cdot 16 \cdot 4} 2\pi H_1 = M \frac{D_1^2}{16}. \\ & \text{Au final, } A_i = M_1 \frac{D_1^2}{8} \text{ et } B_i = M \left(\frac{H_1^2}{12} + \frac{D_1^2}{16} \right). \end{aligned}$

Question 5 Déterminer $I_{G_i}(A_i)$ dans la base $\mathscr{B}(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ puis $I_O(A_i)$ dans la base \mathscr{B} .

 $\begin{aligned} & \text{Correction On a } \overrightarrow{x_i} = \cos \alpha \overrightarrow{x} + \sin \alpha \overrightarrow{y}, \overrightarrow{y_i} = \cos \alpha \overrightarrow{y} - \sin \alpha \overrightarrow{x}. \text{ En conséquences, on a : } P_{10} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ & \text{On a donc } I_{G_i}(A_1)_{\mathscr{R}} = P_{10}^{-1}I_{G_i}(A_1)_{\mathscr{R}_1}P_{10}. \\ & I_{G_i}(A_1)_{\mathscr{R}} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & B_1 \end{pmatrix}_{\mathscr{R}_1} \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_1 \cos \alpha & -A_1 \sin \alpha & 0 \\ B_1 \sin \alpha & B_1 \cos \alpha & 0 \\ 0 & 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & A_1 \sin^2 \alpha + B_1 \cos^2 \alpha & 0 \\ 0 & 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & A_1 \sin^2 \alpha + B_1 \cos^2 \alpha & 0 \\ 0 & 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha \sin \alpha & 0 \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha \cos \alpha + B_1 \cos \alpha & \sin \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \sin \alpha & -A_1 \sin \alpha & -A_1 \sin \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1 \cos^2 \alpha & -A_1 \sin^2 \alpha & -A_1 \sin^2 \alpha \\ 0 & B_1 \end{pmatrix} \\ & = \begin{pmatrix} A_1 \cos^2 \alpha + B_1$

Au final,
$$I_O(A_i)_{\mathscr{R}} = \begin{cases} A_1 \cos^2 \alpha + B_1 \sin^2 \alpha + M_1 \left(\frac{H+D}{2} \sin \alpha\right)^2 & (B_1-A_1)\sin \alpha \cos \alpha + M_1 \left(\frac{H+D}{2}\right)^2 \cos \alpha \sin \alpha & 0 \\ (B_1-A_1)\sin \alpha \cos \alpha + M_1 \left(\frac{H+D}{2}\right)^2 \cos \alpha \sin \alpha & A_1 \sin^2 \alpha + B_1 \cos^2 \alpha + M_1 \left(\frac{H+D}{2} \cos \alpha\right)^2 & 0 \\ 0 & 0 & B_1 + M_1 \left(\frac{H+D}{2}\right)^2 \end{cases}$$
On note $I_O(A_i)_{\mathscr{R}} = \begin{pmatrix} f(\alpha) & fg(\alpha) & 0 \\ fg(\alpha) & g(\alpha) & 0 \\ 0 & 0 & h(\alpha) \end{pmatrix}_{\mathscr{R}}$.

Question 6 Déterminer $I_O(B)$ dans la base \mathcal{B} .

Question 7 Proposer une méthode pour déterminer le tenseur d'inertie du triaxe en O dans la base B.

Question 8 Déterminer le tenseur d'inertie du triaxe en O dans la base B.

Correction

Question 9 Déterminer $I_O(M)$ la matrice d'inertie du moyeu M.

Correction

Question 10 Déterminer $I_O(T)$ la matrice d'inertie du triaxe T.

Correction