

MÁSTER UNIVERSITARIO EN MATEMÁTICAS TRABAJO DE FIN DE MÁSTER

Polinomios Ortogonales

Fundamentos y aplicación a Procesos de Nacimiento y Muerte

Autor: Juan Antonio Villegas Recio

Tutora: Lidia Fernández Rodríguez

Departamento de Matemática Aplicada

Cotutora: Antonia María Delgado Amaro

Departamento de Matemática Aplicada

Curso 2022–2023 Granada, a 28 de febrero de 2023

_
•
AGRADECIMIENTOS
AGBADECIMIENTOS

Ya veremos a quién hay que agradecerle qué.

Yo, D. Juan Antonio Villegas Recio, autor de este TFM,

Declaro explícitamente que el trabajo aquí presentado como Trabajo de Fin de Máster de mis estudios en el Máster Interuniversitario en Matemáticas, correspondiente al curso académico 2022–2023, es original. Es decir, no se han utilizado para el desarrollo del trabajo fuentes sin haberlas citado debidamente.

Granada, a 28 de febrero de 2023.

Juan Antonio Villegas Recio

	D = 0.777
	RESUMEN

El resumen

Palabras clave

Las, palabras, clave.

_
Λ DCTD Λ CT
A BSTR ACT

The abstract

Keywords

The, abstract.

_ÍNDICE GENERAL

Li	sta de Abreviaturas	13
Li	sta de Imágenes	15
In	troducción	17
O	bjetivos	19
1.	Introducción a los Polinomios Ortogonales	21
	1.1. Introducción	21
	1.2. Ortogonalidad y función peso	22
	1.3. Funcional de momentos	23
	1.4. Estandarizaciones de las SPO	27
	1.5. Existencia de SPO	28
	1.6. La relación de recurrencia a tres términos	30
2.	Polinomios Ortogonales Clásicos	35
C	onclusiones	37
Bi	bliografía	37
$\mathbf{A}_{]}$	péndices	41
A	Apéndice 1	41

LISTA DE ABREVIATURAS

■ PO: Polinomios Ortogonales

•
LISTA DE IMAGENES

-	
	INTRODUCCIÓN

La introducción

ODIETIVOS

Los objetivos

CAPÍTULO 1

INTRODUCCIÓN A LOS POLINOMIOS ORTOGONALES.

1.1. Introducción

La Ortogonalidad es una propiedad que a menudo se ha relacionado con la geometría, siendo común pensar en la analogía con la perpendicularidad. Por ejemplo, es claro que en el plano vectorial \mathbb{R}^2 se tiene que los vectores (1,0) y (0,1) son ortogonales, y es que estos forman un ángulo recto, y por ello también se dice que son perpendiculares. Sin embargo, este hecho no es más que una consecuencia de la ortogonalidad, y es que en el espacio vectorial \mathbb{R}^d , y en particular en \mathbb{R}^2 , dos vectores se dicen ortogonales si, al dotar a \mathbb{R}^d de un producto escalar $\langle \cdot, \cdot \rangle : \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}$, el resultado de operar estos dos vectores es 0.

El producto escalar mayormente utilizado en \mathbb{R}^d es el usual, el cual, si $u=(u_1,\ldots,u_d)$ y $v=(v_1,\ldots,v_d)$ se define como

$$\langle \cdot, \cdot \rangle : \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}$$

$$(u, v) \longmapsto \langle u, v \rangle = u \cdot v^t = \sum_{i=1}^d u_i \cdot v_i.$$

Y dos vectores $u, v \in \mathbb{R}^d$ se dicen ortogonales siempre que $\langle u, v \rangle = 0$.

Sin embargo, en realidad la ortogonalidad va mucho más allá de \mathbb{R}^d y del producto escalar usual. Se puede utilizar cualquier espacio vectorial siempre que esté dotado de un producto escalar. En particular, dado $\Omega \subseteq \mathbb{R}$ pensemos en el espacio de Lebesgue $L^1(\Omega)$, el cual está dotado del producto vectorial

$$\langle \cdot, \cdot \rangle : L^1 \times L^1 \longrightarrow \mathbb{R}$$

$$(f, g) \longmapsto \langle f, g \rangle = \int_{\Omega} f(x) \cdot g(x) dx.$$

Por ejemplo, si tomamos $\Omega = [0, \pi]$, tenemos que las funciones $\cos(n\theta), \cos(m\theta)$ $(n, m \in \mathbb{N}_0)$ son ortogonales siempre que $n \neq m$, pues

$$\int_0^{\pi} \cos(n\theta) \cos(m\theta) d\theta = 0 \quad (n \neq m). \tag{1.1}$$

Si hacemos el cambio de variable $x = \cos(\theta)$, tenemos que $dx = -\sin(\theta)d\theta = \sin(-\theta)d\theta$, por lo que aplicando que $\sin^2(-\theta) + \cos^2(-\theta) = 1$ y que $\cos(-\theta) = \cos(\theta)$, tenemos que la ecuación (1.1) se expresa como

$$\int_{-1}^{1} T_n(x) T_m(x) (1 - x^2)^{-\frac{1}{2}} dx = 0 \quad (n \neq m).$$
 (1.2)

donde hemos denotado $T_n(x) = \cos(n\theta) = \cos(n \arccos(\theta)) \cos(-1 \le x \le 1)$.

Y tenemos que $T_0 = 1, T_1 = \cos(\theta) = x$, y aplicando identidades trigonométricas se puede deducir que $T_2 = 2x^2 - 1, T_3 = 4x^3 - 3x$, etc.

Por lo tanto, si definimos en $\mathbb{P}[x]$ el producto escalar

$$\langle \cdot, \cdot \rangle : \mathbb{P}[x] \times \mathbb{P}[x] \longrightarrow \mathbb{R}$$

$$(p,q) \longmapsto \langle p,q \rangle = \int_{-1}^{1} p(x)q(x)\rho(x)dx,$$

con $\rho(x) = (1-x^2)^{-\frac{1}{2}}$, tenemos que las funciones (polinomios) T_n , $n \in \mathbb{N}_0$ son ortogonales entre sí en el espacio $(\mathbb{P}[x], \langle \cdot, \cdot \rangle)$ siempre que $n \neq m$.

De acuerdo a este ejemplo, decimos que los polinomios T_n son ortogonales, o que la sucesión $\{T_n\}$ es una Sucesión de Polinomios Ortogonales con respecto a la función peso $\rho(x) = (1-x^2)^{-\frac{1}{2}}$ en el intervalo (-1,1). Los polinomios T_n recién presentados son los Polinomios de Tchebichef de tipo I, y conforman nuestra primera familia de polinomios ortogonales conocida.

1.2. Ortogonalidad y función peso

En la sección 1.1 pudimos ampliar el concepto generalmente conocido de ortogonalidad, restringido a espacios como \mathbb{R}^d , a otros tipos de espacios. Además, introdujimos la primera familia de polinomios ortogonales: los polinomios de Tchebichef de tipo I. En esta sección daremos definiciones más formales y genéricas sobre la ortogonalidad.

Sea μ una función no decreciente y no constante definida en un intervalo (a,b) tal que si $a = -\infty$ entonces $\lim_{x\to-\infty} \mu(x) > -\infty$ y si $b = \infty$ entonces $\lim_{x\to\infty} \mu(x) < \infty$. Se define el espacio de funciones $L^p_{\mu}[a,b]$ como el conjunto de funciones tales que

REVIEW Cambiada la notación $d\alpha(x)$ por $d\mu$, pero ahora μ puede confundirse con los momentos $\{\mu_n\}$??

$$\int_{a}^{b} |f(x)|^{p} d\mu(x) < +\infty$$

En $L^2_{\mu}[a,b]$, se define un producto escalar:

$$\langle \cdot, \cdot \rangle : L^{2}_{\mu}[a, b] \times L^{2}_{\mu}[a, b] \longrightarrow \mathbb{R}$$

$$(f, g) \longmapsto \langle f, g \rangle = \int_{a}^{b} f(x)g(x)d\mu(x). \tag{1.3}$$

A partir del espacio $L^2_{\mu}[a,b]$ podemos dar una definición de ortogonalidad.

Definición 1.1 (Ortogonalidad). Fijada una función μ no decreciente y no constante definida en un intervalo (a,b) tal que si $a=-\infty$ entonces $\lim_{x\to-\infty}\mu(x)>-\infty$ y si $b=\infty$ entonces $\lim_{x\to\infty}\mu(x)<\infty$ y dadas $f,g\in L^2_{\mu}[a,b]$, se dice que las funciones \mathbf{f} y \mathbf{g} son ortogonales o que \mathbf{f} es ortogonal a \mathbf{g} respecto a la distribución $d\mu$ si

$$\langle f, g \rangle = 0. \tag{1.4}$$

No obstante, en la mayoría de los casos y por simplicidad en lugar de utilizar una función μ y su medida inducida, si μ es absolutamente continua podemos reescribir (1.3) como una integral de Lebesgue

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)\rho(x)dx,$$
 (1.5)

siendo ρ una función medible no negativa tal que $0<\int_a^b \rho(x)dx<\infty$ denominada **función peso**.

Definición 1.2 (Sucesión de Polinomios Ortogonales respecto a una función peso). Dada una función peso ρ , si existe una sucesión de polinomios $\{P_n\}$ con P_n de grado n tal que

$$\langle P_n, P_m \rangle = \int_a^b P_n(x) P_m(x) \rho(x) dx = 0 \quad (n \neq m)$$

entonces decimos que $\{P_n\}$ es una Sucesión de Polinomios Ortogonales (SPO) respecto a la función peso $\rho(x)$ en el intervalo (a,b).

1.3. Funcional de momentos

Tenemos ya por tanto una definición rigurosa de lo que es la ortogonalidad de funciones de $L^2_{\mu}[a,b]$. Podemos reescribir esta propiedad mediante el uso de funcionales lineales aprovechando la linealidad de la integral. Se define el funcional \mathcal{L} como

$$\mathcal{L}: L^{2}_{\mu}[a, b] \longrightarrow \mathbb{C}$$

$$f \longmapsto \mathcal{L}[f] = \int_{a}^{b} f(x) d\mu(x). \tag{1.6}$$

Por tanto, vemos que la propiedad de ortogonalidad (1.4) es equivalente a $\mathcal{L}[f \cdot g] = 0$.

Observación 1.1. El funcional \mathcal{L} es lineal, pues por la linealidad del operador integral se tiene que

$$\mathcal{L}[af + bg] = a\mathcal{L}[f] + b\mathcal{L}[g], \tag{1.7}$$

para cualesquiera $a, b \in \mathbb{C}$ y $f, g \in L^2_{\mu}[a, b]$.

Ejemplo 1. $\{T_n\}$, la sucesión de polinomios de Tchebichef de tipo I, es una Sucesión de Polinomios Ortogonales respecto de la función peso $\rho(x) = (1 - x^2)^{-\frac{1}{2}}$ en el intervalo (-1,1). También podemos establecer la ortogonalidad de los respectivos $\{T_n\}$ no mediante un producto escalar sino a través del funcional

$$\mathcal{L}[f] := \int_{-1}^{1} f(x)(1 - x^2)^{-\frac{1}{2}} dx$$

Por lo que podemos definir ortogonalidad indistintamente mediante un producto escalar $\langle \cdot, \cdot \rangle$ o mediante un funcional integral \mathcal{L} .

A partir de este momento consideraremos el espacio vectorial de los polinomios \mathbb{P} . Denotaremos como \mathbb{P}_n al subespacio de \mathbb{P} formado por los polinomios de grado menor o igual que n.

Definición 1.3 (Momentos de un funcional). Dado un funcional \mathcal{L} , definimos los **momentos** del funcional, y los denotamos con μ_n , como

$$\mu_k = \mathcal{L}[x^k], \quad k \in \mathbb{N}_0. \tag{1.8}$$

Gracias a los momentos de un funcional y considerando que cualquier polinomio de grado n puede escribirse como $p(x) = \sum_{k=0}^{n} c_k x^k$ podemos entonces combinar (1.7) y (1.8) para escribir la acción de un funcional \mathcal{L} sobre p(x) como

$$\mathcal{L}[p] = \mathcal{L}\left[\sum_{k=0}^{n} c_k x^k\right] = \sum_{k=0}^{n} c_k \mu_k$$

Por lo que, de esta forma, únicamente conociendo la sucesión de momentos $\{\mu_n\}$ podríamos conocer el resultado de aplicar \mathcal{L} a cualquier polinomio. Por tanto, es posible dar una nueva definición de ortogonalidad respecto a funcionales lineales que en este caso estén definidos no mediante una integral como en el caso de (1.6), sino a partir de una sucesión de momentos $\{\mu_n\}$.

Definición 1.4 (Funcional de momentos). Dada una sucesión de números complejos $\{\mu_n\}$, diremos que \mathcal{L} es un **funcional de momentos** determinado por la sucesión $\{\mu_n\}$, donde μ_n se denomina **momento de orden n**, si \mathcal{L} es lineal en \mathbb{P} y $\mathcal{L}[x^n] = \mu_n$, $n \in \mathbb{N}_0$

Daremos ahora una nueva definición de SPO, en este caso con respecto a un funcional lineal y no respecto a una función peso como hicimos en la definición 1.2.

Definición 1.5 (Sucesión de Polinomios Ortogonales respecto a un funcional lineal). Dado un funcional lineal \mathcal{L} definido como en (1.6), una sucesión de polinomios $\{P_n\}$ es una Sucesión de Polinomios Ortogonales (SPO) respecto al funcional \mathcal{L} si:

- 1. P_n es de grado n.
- 2. $\mathcal{L}[P_n P_m] = 0$ si $n \neq m, n, m \in \mathbb{N}_0$.
- 3. $\mathcal{L}[P_n^2] \neq 0 \quad \forall n \in \mathbb{N}_0.$

La sucesión $\{P_n\}$ se llamará **ortonormal** si $\mathcal{L}[P_n^2] = 1 \quad \forall n \in \mathbb{N}_0$.

La sucesión $\{P_n\}$ se llamará Sucesión de Polinomios Ortogonales Mónicos (SPOM) si P_n es mónico para cada n, es decir, si $P_n(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$.

En general, las condiciones (2) y (3) se suelen abreviar como

$$\mathcal{L}[P_n P_m] = K_n \delta_{mn}, \quad K_n \neq 0,$$

donde δ_{mn} denota la función delta de Kronecker.

En el caso de que $d\mu(x) = \rho(x)dx$, es decir, en el caso de trabajar con funciones peso, la condición (3) se satisface de manera automática.

Ejemplo 2. Extraído de [Chihara, 2011, Capítulo 1, sección 1] Consideramos

$$P_n(x) = \sum_{k=0}^{n} {x \choose k} \frac{(-a)^{n-k}}{(n-k)!}.$$

 $\{P_n\}$ son los llamados *Polinomios de Charlier*. Como

$$\binom{x}{n} = \frac{1}{n!}x(x-1)\cdots(x-n+1)$$

tenemos que $P_n(x)$ es un polinomio de grado n. En [Chihara, 2011] pueden encontrarse los cálculos rigurosos mediante los cuales, si definimos

$$\mathcal{L}[x^n] = \sum_{k=0}^{\infty} k^n \frac{a^k}{k!}, \quad n \in \mathbb{N}_0.$$

y extendemos \mathcal{L} a \mathbb{P} por linealidad, tenemos que

$$\mathcal{L}[P_m(x)P_n(x)] = \frac{e^a a^n}{n!} \delta_{mn}, \quad m, n \in \mathbb{N}_0.$$

Al estar definido el funcional mediante sumatorias y no mediante integrales podría parecer que, aunque $\{P_n\}$ satisfaga la definición 1.5 mediante un funcional de momentos, no satisface la ortogonalidad respecto a (1.6). Sin embargo, si denotamos como ϕ a una función escalonada que es constante en cada intervalo $(-\infty,0)$ y (k,k+1) con $k \in \mathbb{N}_0$ y tiene saltos de magnitud $\frac{a^k}{k!}$ en cada k, entonces utilizando la integral de Riemann-Stieltjes los polinomios $\{P_n\}$ verifican

$$\int_{-\infty}^{\infty} P_m(x) P_n(x) d\phi(x) = \frac{e^a a^n}{n!} \delta_{mn}, \quad m, n \in \mathbb{N}_0.$$
 (1.9)

Evidentemente ϕ no es una función absolutamente continua, por lo que no se puede escribir (1.9) en términos de (1.5).

Observación 1.2. No cualquier sucesión $\{\mu_n\}$ da lugar a una SPO. Por ejemplo, si $\mu_0 = \mu_1 = \mu_2 = 1$, tendríamos que

$$P_0(x) = a \neq 0,$$
 $P_1(x) = bx + c, \quad b \neq 0.$

Por la propiedad (2) de la definición 1.5

$$\mathcal{L}[P_0(x)P_1(x)] = a(b\mu_1 + c\mu_0) = a(b+c),$$

luego b = -c, y en este caso

$$\mathcal{L}[P_1(x)^2] = b^2(\mu_2 - 2\mu_1 + \mu_0) = 0,$$

lo cual contradice la propiedad (3).

Gracias a la observación 1.2 sabemos que no es válida cualquier sucesión de momentos para encontrar una SPO, por lo que necesitamos además probar y dar condiciones para la existencia de la susodicha SPO.

Previamente, introduciremos un resultado para la caracterización de SPO respecto a un funcional \mathcal{L} .

Teorema 1.1. Sea \mathcal{L} un funcional de momentos $y \{P_n\}$ una sucesión de polinomios. Las siguientes afirmaciones son equivalentes.

- 1. $\{P_n\}$ es una SPO respecto al funcional \mathcal{L} .
- 2. $\mathcal{L}[\pi(x)P_n(x)] = 0$ para cualquier polinomio $\pi(x)$ de grado m < n y $\mathcal{L}[\pi(x)P_n(x)] \neq 0$ si $\pi(x)$ tiene grado n.
- 3. $\mathcal{L}[x^m P_n(x)] = K_n \delta_{nm}, \ con \ K_n \neq 0, \quad m = 0, 1, \dots, n$

Demostración. Probaremos $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

 $(1) \Rightarrow (2)$

Supongamos que $\{P_n\}$ es una SPO respecto al funcional \mathcal{L} . Como P_k tiene grado k, entonces $\{P_0, \ldots, P_m\}$ forma una base de \mathbb{P}_m . Por lo que si $\pi(x)$ es un polinomio de grado m, existen constantes c_1, \ldots, c_m , con $c_m \neq 0$ tales que $\pi(x) = \sum_{i=0}^m c_k P_k(x)$. Como \mathcal{L} es lineal,

$$\mathcal{L}[\pi(x)P_n(x)] = \sum_{k=0}^{m} c_k \mathcal{L}[P_k(x)P_n(x)] = \begin{cases} 0 & \text{si } m < n \\ c_n \mathcal{L}[P_n^2(x)] & \text{si } m = n \end{cases}$$

- (2) \Rightarrow (3) es trivial, basta con utilizar $\pi(x) = x^m$ y aplicar (2).
- (3) \Rightarrow (1) también es trivial, pudiendo reconstruir $P_m(x)$ por linealidad.

En la prueba de este último teorema, hemos hecho uso de que mediante una SPO podemos obtener bases de \mathbb{P}_n . Sacaremos provecho de este hecho en el siguiente resultado.

Teorema 1.2. Sea $\{P_n\}$ una SPO respecto a un funcional lineal \mathcal{L} . Entonces, cualquier polinomio $\pi(x)$ de grado n es posible expresarlo en la base $\{P_0, \ldots, P_n\}$ de forma que

$$\pi(x) = \sum_{k=0}^{n} c_k P_k(x), \qquad con \ c_k = \frac{\mathcal{L}[\pi(x) P_k(x)]}{\mathcal{L}[P_k^2(x)]}.$$

Demostración. Ya es claro que si $\pi(x)$ es un polinomio de grado n, entonces $\pi(x) = \sum_{k=0}^{n} c_k P_k(x)$. Por tanto, multiplicando ambos miembros de la igualdad por $P_m(x)$ y aplicando el funcional \mathcal{L} se obtiene

$$\mathcal{L}[\pi(x)P_m(x)] = \sum_{k=0}^n c_k \mathcal{L}[P_k(x)P_m(x)] = c_m \mathcal{L}[P_m^2(x)],$$

donde hemos aplicado la ortogonalidad. De esta igualdad se deduce claramente la expresión de c_k .

Este resultado nos proporciona una consecuencia muy importante: la unicidad salvo constante multiplicativa de las SPO respecto a un funcional.

Corolario 1.3. Sea $\{P_n\}$ una SPO respecto a un funcional lineal \mathcal{L} . Entonces cada P_n está univocamente determinado salvo constante multiplicativa no nula. Esto es, si $\{Q_n\}$ es otra SPO respecto a \mathcal{L} , entonces existen constantes $c_n \neq 0$ tales que

$$Q_n(x) = c_n P_n(x), \quad n \in \mathbb{N}_0.$$

Demostración. Utilizaremos el teorema 1.2 con $\pi(x) = Q_n(x)$, de modo que

$$Q_n(x) = \sum_{k=0}^n \frac{\mathcal{L}[Q_n(x)P_k(x)]}{\mathcal{L}[P_k^2(x)]} P_k(x)$$

Por el teorema 1.1, $\mathcal{L}[Q_n(x)P_k(x)] = 0$ siempre que k < n y $\mathcal{L}[Q_n(x)P_k(x)] = r_n \neq 0$ si k = n, por lo que, tomando $c_n = \frac{r_n}{\mathcal{L}[P_n^2(x)]}$, se tiene $Q_n(x) = c_n P_n(x)$, como queríamos probar.

1.4. Estandarizaciones de las SPO

El corolario 1.3 nos afirma que si tenemos una SPO $\{P_n\}$ respecto a un funcional \mathcal{L} , entonces $\{c_nP_n\}$ también es una SPO para cualquier sucesión $\{c_n\}$ de constantes no nulas. Existen varias formas de estandarizar una SPO de forma que esta esté unívocamente determinada a partir de un funcional. En esta sección presentaremos algunas de las más comunes.

Una primera posibilidad es exigir que todos los polinomios que conforman la SPO sean mónicos. De esta forma, podemos afirmar que si tenemos una SPO $\{P_n\}$ para un funcional \mathcal{L} , entonces existe una única sucesión de polinomios ortogonales mónicos (SPOM) respecto a \mathcal{L} . De hecho, si denotamos como a_n al coeficiente líder de P_n , entonces los polinomios

$$\hat{P}_n = a_n^{-1} P_n$$

forman una SPOM respecto a \mathcal{L} .

Otra forma de estandarizar una SPO $\{P_n\}$ respecto a un funcional \mathcal{L} es tomando los polinomios

$$p_n = (-1)^{\operatorname{sgn}(a_n)} \left(\mathcal{L}[P_n^2] \right)^{-1/2} P_n,$$

donde $\operatorname{sgn}(a_n)$ denota el signo de a_n , el coeficiente líder de P_n . Con esta operación conseguimos que $\mathcal{L}[p_n^2] = 1$, $\forall n \in \mathbb{N}_0$, es decir, la sucesión $\{p_n\}$ es una SPO ortonormal. Por tanto, dada una SPO $\{P_n\}$ para un funcional \mathcal{L} , entonces existe una única SPO ortonormal $\{p_n\}$ respecto a \mathcal{L} .

Por último, es común exigirle a cada polinomio P_n de la sucesión que verifique P(1) = 1. Por lo que, sin más que definir

$$\tilde{P}_n(x) = (P(1))^{-1} P_n(x),$$

cada funcional \mathcal{L} admite una única SPO $\{\tilde{P}_n(x)\}$ tales que $\tilde{P}_n(1) = 1 \ \forall n \in \mathbb{N}_0$.

TODO Preguntar a Lidia por bibliografía sobre esto o que me diga qué ventajas tiene esta estandarización. También si tiene algún nombre concreto (que me suena que sí).

1.5. Existencia de SPO

Recordemos que con anterioridad hemos comentado en la observación 1.2 que no cualquier sucesión de números complejos $\{\mu_n\}$ da lugar a una SPO. Es necesario por tanto exigir alguna condición sobre dicha sucesión si realmente queremos asegurar la existencia la correspondiente SPO.

Para ello, introducimos el siguiente concepto.

Definición 1.6 (REVIEW ¿esto no tiene algún nombre técnico?). Definimos el determinante

$$\Delta_{n} = \det(\mu_{i+j})_{i,j=0}^{n} = \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n} & \mu_{n+1} & \cdots & \mu_{2n} \end{vmatrix}.$$
 (1.10)

Este determinante está directamente relacionado con la existencia de una SPO.

Teorema 1.4. Sea $\{\mu_n\}$ una sucesión de números complejos y sea \mathcal{L} un funcional de momentos cuya sucesión de momentos es $\{\mu_n\}$. \mathcal{L} admite una sucesión de polinomios ortogonales si, y solo si $\Delta_n \neq 0 \quad \forall n \in \mathbb{N}_0$.

Demostración. Comprobamos la doble implicación.

 \Longrightarrow Supongamos que los polinomios $P_n(x) = \sum_{k=0}^n c_{nk} x^k$ conforman una SPO para \mathcal{L} . Fijemos ahora $n \in \mathbb{N}_0$ arbitario. Por el teorema 1.1 (caracterización de una SPO), obsérvese que la condición de ortogonalidad

$$\mathcal{L}[x^{m}P_{n}(x)] = \sum_{k=0}^{n} c_{nk}\mu_{k+m} = K_{n}\delta_{nm}, \quad K_{n} \neq 0, m \leq n$$
 (1.11)

equivale al sistema

$$\begin{pmatrix} \mu_0 & \mu_1 & \cdots & \mu_n \\ \mu_1 & \mu_2 & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_n & \mu_{n+1} & \cdots & \mu_{2n} \end{pmatrix} \begin{pmatrix} c_{n0} \\ c_{n1} \\ \vdots \\ c_{nn} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ K_n \end{pmatrix}. \tag{1.12}$$

Por tanto, si esta sucesión existe, necesariamente este sistema debe tener solución única determinada por K_n . Para ello ha de verificarse que $\Delta_n \neq 0$, $\forall n \in \mathbb{N}_0$.

Recíprocamente, supongamos ahora que $\Delta_n \neq 0$, $\forall n \in \mathbb{N}_0$. En ese caso el sistema (1.12) tiene solución única para cualquier $K_n \neq 0$, por lo que podemos crear polinomios $P_n(x)$ que cumplan (1.11) para cualquier $n \in \mathbb{N}_0$. Por otro lado, aplicando la regla de Cramer, tenemos que

$$c_{nn} = \frac{K_n \Delta_{n-1}}{\Delta_n} \neq 0, \quad n \ge 1, \tag{1.13}$$

expresión que también es válida para n=0 sin más que tomar $\Delta_{-1}=1$. Por tanto, el polinomio $P_n(x)$ tiene coeficiente líder no nulo, es decir, es de grado n, por lo que $\{P_n(x)\}$ es una SPO para \mathcal{L} .

Con esta notación, podemos ponerle nombre a aquellos funcionales para los cuales existe una SPO.

Definición 1.7 (Funcional cuasi-definido). Un funcional \mathcal{L} es **cuasi-definido** si, y solo si admite una sucesión de polinomios ortogonales. Equivalentemente, si $\Delta_n > 0$, $\forall n \in \mathbb{N}_0$.

Un concepto muy relacionado con el de funcional cuasi-definido es el de definido positivo, que introducimos a continuación.

Definición 1.8 (Funcional definido positivo). Un funcional de momentos \mathcal{L} se dice que es **definido positivo** si $\mathcal{L}[\pi] > 0$ para cualquier polinomio π no nulo y no negativo en todo el eje real.

Presentamos ahora un sencillo lema que nos ayudará a encontrar una definición alternativa utilizada con bastante frecuencia.

Lema 1.1. Sea $\pi(x)$ un polinomio no negativo en todo el eje real. Entonces existen polinomios p(x) y q(x) tales que

$$\pi(x) = p^{2}(x) + q^{2}(x).$$

Demostración. Si $\pi(x) \geq 0 \quad \forall x \in \mathbb{R}$, entonces $\pi(x)$ es un polinomio cuyos ceros reales tienen multiplicidad par y cuyos ceros complejos son pares conjugados. Por lo que podemos escribir

$$\pi(x) = r^{2}(x) \prod_{k=1}^{m} (x - a_{k} - b_{k}i)(x - a_{k} + b_{k}i),$$

donde r(x) es un polinomio real y $a_k, b_k \in \mathbb{R}$. Si ahora denotamos

$$\prod_{k=1}^{m} (x - a_k - b_k i) = A(x) + iB(x),$$

siendo A(x) y B(x) polinomios reales, podemos expresar $\pi(x)$ como

$$\pi(x) = r^{2}(x)(A^{2}(x) + B^{2}(x)) = \underbrace{(r(x)A(x))^{2}}_{p^{2}(x)} + \underbrace{(r(x)B(x))^{2}}_{q^{2}(x)}.$$

Una consecuencia directa de este lema es una definición alternativa y equivalente de funcional definido positivo.

Corolario 1.5. Un funcional de momentos \mathcal{L} es definido positivo si, y solo si $\mathcal{L}[\pi^2(x)] > 0$ para cualquier polinomio $\pi(x)$.

Finalmente, introducimos la relación entre el concepto de funcional definido positivo y los determinantes (1.10).

Teorema 1.6. Un funcional \mathcal{L} es definido positivo si, y solo si sus momentos $\{\mu_n\}$ son todos reales y $\Delta_n > 0 \ \forall n \in \mathbb{N}_0$

Demostración. La prueba de este resultado puede encontrarse en [Chihara, 2011, Teorema 3.4].

Obsérvese que gracias a este teorema podemos entonces afirmar que los funcionales definidos positivos son, en particular, funcionales cuasi-definidos. Esto es, admiten una SPO.

1.6. La relación de recurrencia a tres términos

Las SPO respecto a un funcional siempre cumplen una ecuación que es la denominada 'relación de recurrencia a tres términos', en adelante también referida como 'RRTT'.

Teorema 1.7 (Relación de Recurrencia a Tres Términos). Sea $\{P_n\}$ una SPO respecto a un funcional lineal \mathcal{L} . Entonces, $\{P_n\}$ satisface la relación de recurrencia

$$xP_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x) \quad \forall n \in \mathbb{N}_0.$$
 (1.14)

Normalmente se impone que $P_{-1} = 0, P_0 = 1$, por lo que una SPO queda determinada unívocamente a partir de las sucesiones $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$.

Además, si la SPO es mónica, verifican la ecuación equivalente

$$P_{n+1}(x) = (x - \beta_n)P_n - \gamma_n P_{n-1} \quad \forall n \in \mathbb{N}_0.$$

$$(1.15)$$

Demostración. Como $xP_n(x)$ es un polinomio de grado n+1, este puede ser expresado como

$$xP_n(x) = \sum_{k=0}^{n+1} a_{k,n} P_k(x),$$
 $con \ a_{k,n} = \frac{\mathcal{L}[xP_n(x)P_k(x)]}{\mathcal{L}[P_k^2(x)]}.$

Pero $\mathcal{L}[xP_n(x)P_k(x)] = 0$ para $k = 0, \dots, n-2$, por lo que necesariamente debe cumplirse

$$xP_n(x) = \underbrace{a_{n-1,n}}_{\gamma_n} P_{n-1}(x) + \underbrace{a_{n,n}}_{\beta_n} P_n(x) + \underbrace{a_{n+1,n}}_{\alpha_n} P_{n+1}(x),$$

de donde se deduce (1.14). Si además $P_n(x)$ es mónico, $xP_n(x)$ también lo es, por lo que $a_{n+1,n} = 1$, luego se tiene que

$$xP_n(x) = P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}$$

que es equivalente a (1.15).

De esta demostración podemos deducir además la expresión de las constantes α_n, β_n y γ_n :

$$\alpha_n = \frac{\mathcal{L}[xP_nP_{n+1}]}{\mathcal{L}[P_{n+1}^2]}, \qquad \beta_n = \frac{\mathcal{L}[xP_n^2]}{\mathcal{L}[P_n^2]}, \qquad \gamma_n = \frac{\mathcal{L}[xP_nP_{n-1}]}{\mathcal{L}[P_{n-1}^2]}.$$
 (1.16)

REVIEW γ_n se calcula para $n \ge 1$ no? Porque si se calcula para n = 0 queda un 0 en el denominador.

Sin embargo, este cálculo puede complicarse bastante, por lo que presentaremos un algoritmo alternativo. Para ello, desarrollaremos los polinomios como

$$P_n(x) = a_n x^n + b_n x^{n-1} + c_n x^{n-2} + \cdots$$

Si sustituimos esta expresión en la RRTT (1.14) e igualamos los coeficientes de los monomios x^{n+1} , x^n y x^{n-1} llegamos a las expresiones

$$\alpha_n = \frac{a_n}{a_{n+1}}, \qquad \beta_n = \frac{b_n}{a_n} - \frac{b_{n+1}}{a_{n+1}}, \qquad \gamma_n = \frac{1}{a_{n-1}} \left(c_n - \alpha_n c_{n+1} - \beta_n b_n \right).$$
 (1.17)

REVIEW Pero como calculo β_n si no conozco b_{n+1} ?

Ejemplo 3. Vamos a trabajar un ejemplo práctico. En el archivo software/Hermite.ipynb se ha implementado, utilizando software matemático, el cálculo de una SPO mediante la RR3T. También se ha realizado una estimación de los tiempos de ejecución para distintos valores de n. En este ejemplo únicamente se recogen los resultados arrojados por el software, pero en dicho archivo se puede consultar e incluso modificar el código fuente.

En particular, se ha trabajado con los polinomios de Hermite, (TODO Incluir referencia cuando hable de los polinomios de Hermite) que son aquellos que conforman la SPO con respecto a la función peso $\rho(x) = e^{-x^2}$ en todo \mathbb{R} . Por tanto, tenemos el funcional

$$\mathcal{L}[f] = \int_{-\infty}^{+\infty} f(x)e^{-x^2}dx.$$

Calculemos la SPOM correspondiente al funcional \mathcal{L} . Si tomamos $P_{-1} = 0, P_0 = 1$, podemos calcular a partir de (1.16) las constantes β_n, γ_n para $n \leq 1$ y mediante (1.15) obtenemos los polinomios P_n para $n \geq 1$, véase la tabla 1.1.

	D (m)	Tierrana de cálcula (a)
\underline{n}	$P_n(x)$	Tiempo de cálculo (s)
0	1	1.1897×10^{-5}
1	x	0.0133
2	$x^2 - \frac{1}{2}$	0.0449
3	$x^3 - \frac{3}{2}x$	0.1073
4	$x^4 - 3x^2 + \frac{3}{4}$	0.2161
5	$x^5 - 5x^3 + \frac{15}{4}x$	0.4162
6	$x^6 - \frac{15}{2}x^4 + \frac{45}{4}x^2 - \frac{15}{8}$	0.6752
7	$x^7 - \frac{21}{2}x^5 + \frac{105}{4}x^3 - \frac{105}{8}x$	1.2009
8	$x^8 - 14 * x^6 + \frac{105}{2}x^4 - \frac{105}{2}x^2 + \frac{105}{16}$	2.0665
9	$x^9 - 18x^7 + \frac{189}{2}x^5 - \frac{315}{2}x^3 + \frac{945}{16}x$	3.5725
10	$x^{10} - \frac{45}{2}x^8 + \frac{315}{2}x^6 - \frac{1575}{4}x^4 + \frac{4725}{16}x^2 - \frac{945}{32}$	5.5059
	·	

Tabla 1.1: 10 primeros polinomios de Hermite mónicos

Sin embargo, comprobamos que este método es lento, pues los tiempos de cálculo¹ se incrementan considerablemente con n. De hecho, para n = 15, que es un valor aún bajo y cercano a 10, el tiempo de ejecución ya es de 58.9024 segundos, casi un minuto.

 $^{^{1}}$ Estos tiempos han sido obtenidos mediante la media de los tiempos de ejecución de 10 ejecuciones independientes.

Por otro lado, existe un resultado recíproco al teorema 1.7. Este resultado es el conocido como teorema de Favard.

Teorema 1.8 (Favard). Sean $\{\beta_n\}$ y $\{\gamma_n\}$ dos sucesiones de números reales y sea $\{P_n\}$ una sucesión de polinomios mónicos definida mediante la relación (1.15):

$$P_{n+1}(x) = (x - \beta_n)P_n - \gamma_n P_{n-1} \quad \forall n \in \mathbb{N}_0.$$

con $P_{-1} = 0$ y $P_0 = 1$. Entonces existe un único funcional de momentos \mathcal{L} tal que

$$\mathcal{L}[1] = \gamma_0,$$
 $\mathcal{L}[P_n P_m] = \delta_{n,m} K_n, \quad K_n \neq 0.$

Este funcional es cuasi-definido y $\{P_n\}$ es su correspondiente SPOM si, y solo si $\gamma_n \neq 0$ $\forall n \in \mathbb{N}_0$. Además, \mathcal{L} es definido positivo si y solo si $\gamma_n > 0 \ \forall n \in \mathbb{N}_0$.

Demostración. Definamos el funcional \mathcal{L} por inducción en \mathbb{P} . Sea

$$\mathcal{L}[1] = \mathcal{L}[P_0] = \mu_0 := \gamma_0,$$

$$\mathcal{L}[P_n] = \mathcal{L}[1 \cdot P_n] = \mathcal{L}[P_0 P_n] := 0 \quad \forall n = 1, 2, \dots$$

Así, aplicando (1.15) podemos calcular los momentos del funcional. Si tomamos n=0 en (1.15) obtenemos

$$P_1(x) = x - \beta_0,$$

luego, como $\mathcal{L}[P_1] = 0$:

$$0 = \mathcal{L}[P_1] = \mathcal{L}[x - \beta_0]$$
$$= \mu_1 - \beta_0 \mathcal{L}[1]$$
$$= \mu_1 - \beta_0 \gamma_0,$$

de donde $\mu_1 = \beta_0 \gamma_0$. Si n = 1 en (1.15) obtenemos

$$P_2(x) = (x - \beta_1)P_1 - \gamma_1,$$

por tanto,

$$0 = \mathcal{L}[P_2] = \mathcal{L}[(x - \beta_1)P_1 - \gamma_1]$$

= $\mathcal{L}[(x - \beta_1)(x - \beta_0) - \gamma_1]$
= $\mu_2 - (\beta_0 + \beta_1)\mu_1 + (\beta_1\beta_0 - \gamma_1)\gamma_0$,

de donde $\mu_2 = (\beta_0 + \beta_1)\mu_1 - (\beta_1\beta_0 - \gamma_1)\gamma_0$. Continuando este proceso se pueden obtener todos los momentos μ_n , y una vez se tienen todos los momentos podemos extender el funcional por linealidad.

Utilizando (1.14) sucesivamente obtenemos que

$$x^k P_n = \sum_{i=n-k}^{n+k} d_{n,i} P_i(x),$$

y aplicando que $\mathcal{L}[P_n] = 0$ se deduce que $\mathcal{L}[x^k P_n] = 0$ para todo $k = 1, \dots, n-1$. Comprobemos qué ocurre cuando k = n. De nuevo, por (1.14):

$$\mathcal{L}[x^n P_n] = \mathcal{L}[x^{n-1}(P_{n+1} + \beta_n P_n + \gamma_n P_{n-1})] = \mathcal{L}[\gamma_n x^{n-1} P_{n-1}] = \gamma_n \mathcal{L}[x^{n-1} P_{n-1}].$$

Aplicando este razonamiento sucesivamente llegamos a que

$$\mathcal{L}[x^n P_n] = \gamma_n \gamma_{n-1} \cdots \gamma_0 \quad \forall n \in \mathbb{N}_0.$$
 (1.18)

Por tanto, el funcional es cuasi-definido y $\{P_n\}$ es su SPOM si, y solo si $\gamma_n \neq 0 \ \forall n \in \mathbb{N}_0$. Finalmente, pensemos que $\{P_0, xP_1, x^2P_2, \dots, x^nP_n\}$ forman una base del espacio de polinomios de grado par menor o igual que 2n. Por lo que, volviendo a aplicar (1.18), para cualquier polinomio π tendríamos que $\mathcal{L}[\pi^2] > 0$, esto es, \mathcal{L} es definido positivo, si y solo si $\gamma_n > 0 \ \forall n \in \mathbb{N}_0$.

REVIEW Este último párrafo es de mi cosecha

Observación 1.3. Nótese que el teorema de Favard está descrito partiendo de una sucesión de polinomios ortogonales m'onicos. Sin embargo, una vez es calculado el funcional, se puede utilizar cualquier otra estandarización.

TODO Pedirle a Lidia que me recuerde cómo

CAPÍTULO 2	
<u> </u>	
	POLINOMIOS ORTOGONALES CLÁSICOS

Holi

CONCLUS	TO3TD0
CONCLUS	$\mathbf{I}(\cdot) \times \mathbf{E}(\mathbf{S})$

Las conclusiones

- [Alvarez Nodarse, 2003] Alvarez Nodarse, R. (2003). Polinomios hipergeométricos y q-polinomios (Monografias del Seminario matematico).
- [Chihara, 2011] Chihara, T. (2011). An Introduction to Orthogonal Polynomials. Dover Publications.
- [Dunkl and Xu, 2014] Dunkl, C. and Xu, Y. (2014). Orthogonal Polynomials of Several Variables: 155. Cambridge University Press, 2nd revised ed. edition.
- [Kulkarni, 2012] Kulkarni, V. (2012). Introduction to Modeling and Analysis of Stochastic Systems. Springer Publishing, New York, Estados Unidos.
- [Schoutens, 2000] Schoutens, W. (2000). Stochastic Processes and Orthogonal Polynomials. Springer Publishing, New York, Estados Unidos.

APÉNDICE A		
		I A PÉNDICE 1

Un apéndice