Axler: Linear Maps

James Pagán

March 2024

Contents

1	Vector Space of Linear Maps	2
	1.1 Definition	2
	1.2 Algebraic Operations on $\mathcal{L}(V, W)$	2
2	Null Spaces and Ranges	3
3	Matrices	4

1 Vector Space of Linear Maps

1.1 Definition

Let V and W be F-vector spaces. An F-module homomorphism is an **F-linear map** — a function $T: V \to W$ such that for all $u, v \in V$ and $\lambda \in F$,

$$T(u + v) = Tu + Tv$$

 $T(\lambda v) = \lambda Tv$.

By the properties of module homomorphisms, **T** maps **0** to **0**. Note that the indices of the following theorem depend on the Axiom of Choice:

Lemma 1 (Linear Map Lemma). *Suppose* (\mathbf{v}_{α}) *is a basis of* V *and* (\mathbf{w}_{α}) *is a basis of* W. *Then there exists a unique linear map* $T: V \to W$ *such that* $\mathbf{v}_{\alpha} \leadsto \mathbf{w}_{\alpha}$.

Proof. Define **T** as such a linear map: for all $\mathbf{u} \in V$, express $\mathbf{u} = \lambda_1 \mathbf{v}_{\alpha_1} + \cdots + \lambda_n \mathbf{v}_{\alpha_n}$, and define

$$\mathbf{Tu} \stackrel{\text{def}}{=} \lambda_1 \mathbf{w}_{\alpha_1} + \cdots + \lambda_n \mathbf{w}_{\alpha_n}.$$

T is well-defined, since representation via a basis is unique. A rather tedious argument demonstrates that it satisfies the additive and multiplicative conditions. Unicity follows from the fact that the valuation of every point is predetermined since (\mathbf{v}_{α}) and (\mathbf{w}_{α}) is a basis. In fact, T is an isomorphism!

1.2 Algebraic Operations on $\mathcal{L}(V, W)$

The notation $\mathcal{L}(V, W)$ denotes the set of all linear maps from V to W. Like with modules, we can define three operations on this set: if $T, S \in \mathcal{L}(V, W)$, then for all $v \in V$ and $\lambda \in F$:

- 1. **Addition**: T + S is the unique linear map such that (T + S)v = Tv + Sv.
- 2. **Scalar Multiplication**: λT is the unique linear map such that $(\lambda T)v = \lambda (Tv)$.

Equipped with these operations, $\mathcal{L}(V, W)$ is a vector space over F. There is a third operation: if $\mathbf{T} \in \mathcal{L}(V, W)$ and $\mathbf{S} \in \mathcal{L}(W, U)$, then for all $\mathbf{v} \in V$ and $\lambda \in F$:

1. **Multiplication**: **ST** is the unique linear map in $\mathcal{L}(V, U)$ such that (ST)v = S(Tv).

Hence multiplication is simply a composition of mappings.

2 Null Spaces and Ranges

The kernel and image of an F-module homomorphism $T \in \mathcal{L}(V, W)$ are given special names when F is a field: the null space and range. For all such T, we define:

- 1. Null Space: $\operatorname{null} T = \{v \in V \mid Tv = 0\}.$
- 2. **Range**: range $T = \{Tv \mid v \in V\}$.

As with modules, null **T** is a subspace of V and range **R** is a subspace of W. Furthermore, **T** is injective if and only if null $\mathbf{T} = \mathbf{0}$ and surjective if and only if range $\mathbf{T} = W$. A bijective linear map is called an **invertible linear map** or **isomorphism**.

Theorem 1 (Fundamental Theorem of Linear Maps). *Let* V *be finite-dimensional and suppose* $T \in \mathcal{L}(V, W)$. *Then* range T *is a finite-dimensional subspace, and*

$$\dim V = \dim \operatorname{null} \mathbf{T} + \dim \operatorname{range} \mathbf{T}$$
.

Proof. Let $\mathbf{u}_1, \dots, \mathbf{u}_m$ be a basis of null T; extend it to a basis of V, namely

$$\mathbf{u}_1, \ldots, \mathbf{u}_m, \mathbf{v}_1, \ldots, \mathbf{v}_n$$
.

The proof is finished if we prove that Tv_1, \ldots, Tv_n is a basis of range T.

1. **Spanning**: Select $\mathbf{w} \in V$ arbitrarily; there exist constants λ_i and μ_i such that

$$\mathbf{w} = \lambda_1 \mathbf{u}_1 + \cdots + \lambda_m \mathbf{u}_n + \mu_1 \mathbf{v}_1 + \cdots + \mu_n \mathbf{u}_n.$$

Applying **T** to this equation, we find $\mathbf{Tw} = \mu_1 \mathbf{Tv}_1 + \dots + \mu_n \mathbf{Tv}_n$. We conclude that range $\mathbf{T} = \text{span}(\mathbf{Tv}_1, \dots, \mathbf{Tv}_n)$.

2. **Independence**: Follows from the fact that $\mathbf{u}_1, \dots, \mathbf{u}_m, \mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of V.

This establishes the desired basis: hence range **T** is finite-dimensional, and dim $V = m + n = \dim null \mathbf{T} + \dim range \mathbf{T}$.

The cardinals dim null T and dim range T are called the **nullity** and **rank** of T respectively.

Proposition 1. *Let* V *and* W *be a finite-dimensional vector spaces.*

- 1. If dim $V < \dim W$, then no linear map $T \in \mathcal{L}(V, W)$ can be surjective.
- 2. If dim $V > \dim W$, then no linear map $T \in \mathcal{L}(V, W)$ can be injective.

Proof. For (1), we have that

$$\dim \operatorname{range} \mathbf{T} \leqslant \dim \operatorname{range} \mathbf{T} + \dim \operatorname{null} \mathbf{T} = \dim \mathbf{V} < \dim \mathbf{W}$$
,

so range $T \neq W$; hence T is not surjective. Similarly for (2), we have

$$\dim \operatorname{null} \mathbf{T} = \dim \mathbf{V} - \dim \operatorname{range} \mathbf{T} \geqslant \dim \mathbf{V} - \dim \mathbf{W} > 0$$
,

so null $T \neq 0$ and T is not injective.

I do not know whether this result generalizes to infinite-dimensional vector spaces. It requires delicate cardinal arithmetic. However, it does imply this: if V and W are finite dimensional, the existence of invertible $T \in \mathcal{L}(V,W)$ implies that $\dim V = \dim W$

3 Matrices