IF2211 STRATEGI ALGORITMA

LAPORAN TUGAS KECIL 3

Penyelesaian Persoalan 15-Puzzle dengan Algoritma Branch and Bound

Oleh:

Tri Sulton Adila

13520033

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG 2022

A. Cara Kerja Algoritma Branch and Bound

Apabila suatu puzzle merupakan puzzle yang solveable berdasarkan teorema 1, algoritma berikut dapat dilanjutkan untuk memecahkan persoalan 15-Puzzle

```
Theorem 1 The goal state is reachable from the initial state iff \sum_{i=1}^{16} l_i + x is even.
```

- 1. Masukkan puzzle yang ingin diselesaikan ke dalam priority queue (cost terkecil diprioritaskan)
- 2. Ambil puzzle dari queue, lalu, masukkan puzzle tersebut ke dalam sebuah list "telah dikunjungi"
- 3. Apabila puzzle yang diambil dari queue merupakan solusi, hentikan pencarian
- 4. Jika tidak, bangkitkan semua kemungkinan puzzle baru berdasarkan arah gerak slot kosong
- 5. Hitung cost puzzle baru berdasarkan banyaknya langkah dari root node ke puzzle ditambah dengan banyaknya nomor selain slot kosong yang tidak berada di tempatnya berdasarkan solusi
- 6. Periksa setiap puzzle baru apakah telah berada di dalam list "telah dikunjungi" atau tidak
- 7. Apabila tidak, masukkan puzzle baru ke dalam queue
- 8. Apabila iya, tidak perlu memasukkannya ke dalam queue
- 9. Ulangi mulai dari langkah 2 sampai solusi ditemukan atau isi dari queue habis (berdasarkan asumsi awal bahwa puzzle pasti solveable, isi queue sebenarnya tidak akan pernah habis)

B. Source Code Program

1. main.py

```
from ReadFileConfiguration import ReadFileConfiguration
from Puzzle import Puzzle
from BranchBound import BranchBound
from RandomPuzzle import RandomPuzzle
import time
print("Welcome to the 15-Puzzle Solver Program by: Tri Sulton
Adila (13520033)")
print("Please enter the method to generate puzzle:")
print("1. Random")
print("2. Manual from file")
generate_puzzle = int(input("Your choice: _"))
if generate_puzzle == 1:
    puzzles = RandomPuzzle().puzzles
elif generate_puzzle == 2:
    print("1. Run all the file in the tests folder")
    print("2. Run a specific file")
    choose_file = int(input("Your choice: "))
    if choose_file == 1:
        puzzles = ReadFileConfiguration().puzzles
```

```
elif choose_file == 2:
      file name = input("Please enter the file name: ")
      puzzles = ReadFileConfiguration(file_name).puzzles
for puzzle in puzzles:
   branch bound = BranchBound()
   print("====="==="")
   print("Your puzzle:")
   puzzle = Puzzle(None, puzzle, branch_bound.cost(puzzle), 0)
   puzzle.printPuzzle()
   print("======="")
   print("Puzzle Parity:")
   puzzle.printSolveable()
   if not puzzle.is solveable():
      print("Puzzle cannot be solved\n")
   else:
      print("Puzzle can be solved")
      print("Start solving...")
      start_time = time.time()
      branch bound.solve(puzzle)
      print("--- %s seconds ---" % (time.time() - start_time))
      print("Arised Node:", branch bound.count node, "\n")
```

2. Puzzle.py

```
class Puzzle:
    def __init__(self, parent, matriks, cost, depth):
        self.parent = parent
        self.matriks = matriks
        self.cost = cost
        self.depth = depth
        self.parity()

def is_solveable(self):
    """
    This method checks whether the puzzle is solvable or not
    :return: boolean
    """
    if (self.sum_of_kurang + self.X) % 2 == 0:
        return True
    return False

def parity(self):
    """
```

```
This method calculates the parity of the puzzle
        self.linear_puzzle = [number for row in self.matriks for
number in row]
        idx empty = self.linear puzzle.index('x')
        self.linear puzzle[idx empty] = '16'
        self.kurang = []
        for i in range(16):
            count = 0
            for j in range(i + 1, 16):
               if int(self.linear_puzzle[i]) >
int(self.linear puzzle[j]):
                    count += 1
            self.kurang.append(count)
        x row = self.get x row()
        x_col = self.get_x_col()
        x_{spot} = x_{row} + x_{col}
        self.sum of kurang = 0
        for i in range(16):
            self.sum_of_kurang += int(self.kurang[i])
        if x_spot % 2 == 0:
        else:
            self.X = 1
    def get_x_row(self) -> int:
        This method returns the x position of the empty space
        :return: list of int
        for(row, col) in enumerate(self.matriks):
            if 'x' in col:
                return row
        This method returns the x position of the empty space
        :return: list of int
        row = self.get_x_row()
        for(col, number) in enumerate(self.matriks[row]):
            if number == 'x':
                return col
    def printSolveable(self):
        for i in range(16):
            if len(str(i + 1)) == 1:
```

```
print("0" + str(i + 1), ":",
self.kurang[self.linear puzzle.index(str(i + 1))])
            else:
               print(i + 1, ":",
self.kurang[self.linear puzzle.index(str(i + 1))])
        print("-----
        print("sum of kurang:", self.sum_of_kurang)
        print("X:", self.X)
        print("sum of kurang + X:", self.sum_of_kurang + self.X)
        This method prints the puzzle
        :return: None
        for i in range(4):
            print("+----" * 4 + "+")
            for j in range(4):
               number = self.matriks[i][j]
               if number == 'x':
                   else:
                   if len(number) == 1:
                       print(" | 0{}
".format(self.matriks[i][j]), end="")
                   else:
                       print("| {}
".format(self.matriks[i][j]), end="")
               if(j == 3):
                   print("|")
        print("+----" * 4 + "+")
   def printPath(self):
        This method prints the path of the puzzle
        :return: None
        if self.parent is None:
           self.printPuzzle()
            return
        self.parent.printPath()
        self.printPuzzle()
```

3. BranchBound.py

```
from PriorityQueue import PriorityQueue
from Puzzle import Puzzle
import copy
class BranchBound:
        self.queue = PriorityQueue()
        self.goalPuzzle = [['1', '2', '3', '4'],
                            ['5', '6', '7', '8'],
['9', '10', '11', '12'],
                            ['13', '14', '15', 'x']]
        self.visited = []
    def cost(self, matriks) -> int:
        calculate cost of matriks
        cost =0
        for i in range(4):
            for j in range(4):
                 tile = matriks[i][j]
                if tile != 'x' and tile !=
self.goalPuzzle[i][j]:
                     cost += 1
        return cost
    def create_children(self, puzzle) -> list:
        This method creates children of the puzzle
        children = []
        row = [ 1, 0, -1, 0 ]
        col = [ 0, -1, 0, 1 ]
        for i in range(4):
            x row = puzzle.get x row()
            x_col = puzzle.get_x_col()
            new row = x row + row[i]
            new_col = x_col + col[i]
            if 0 <= new_row <= 3 and 0 <= new_col <= 3:
                 child_matriks = copy.deepcopy(puzzle.matriks)
                 child_matriks[x_row][x_col],
child_matriks[new_row][new_col] =
child_matriks[new_row][new_col], child_matriks[x_row][x_col]
                 if child_matriks not in self.visited:
                     child = Puzzle(puzzle, child_matriks,
self.cost(child_matriks) + puzzle.depth, puzzle.depth + 1)
                    children.append(child)
```

```
return children
   def solve(self, puzzleParent):
       This method solves the puzzle
       self.puzzleParent = puzzleParent
       self.queue.push(puzzleParent)
       self.count node = 1
       while (not self.queue.is_empty()):
           puzzle = self.queue.pop()
           self.visited.append(puzzle.matriks)
           if puzzle.matriks == self.goalPuzzle:
              print("\n=========\nS
olution found")
              puzzle.printPath()
              print("========="")
              return
           else:
              children = self.create_children(puzzle)
              for child in children:
                      self.queue.push(child)
                      self.count node += 1
```

4. PriorityQueue.py

```
from Puzzle import Puzzle

class PriorityQueue:
    def __init__(self):
        self.buffer = []

    def push(self, item):
        self.buffer.append(item)
        self.buffer.sort(key=lambda x: x.cost) # sort by cost in

ascending order

def pop(self) -> Puzzle:
    item = self.buffer[0]
    self.buffer.remove(item)
    return item

def is_empty(self) -> bool:
    return len(self.buffer) == 0

def printQueue(self):
    for item in self.buffer:
        print(item.cost)
```

5. ReadFileConfiguration.py

```
import os
class ReadFileConfiguration:
    def __init__(self, file_name=None):
        self.file_name = file_name
        self.directory_name = "../tests"
        self.puzzles = self.get puzzles()
    def get_all_files_in_directory(self):
        This method returns a list of all files in a directory
        :param directory: string
        :return: file_name: list of string
        with os.scandir(self.directory_name) as files:
            return [file.name for file in files if
file.is file()]
    def get_spesific_file(self, file_name):
        0.00
        This method returns a spesific puzzle file
        :param file name: string
        :return: puzzle: list of list of char
        return self.read puzzle(file name)
    def read puzzle(self, file name):
        This method reads a file and returns the puzzle
        :param file name: string
        :return: puzzle: list of list of char
        puzzle = []
        with open(self.directory_name + "/" + file_name, 'r') as
            data = f.read()
            for line in data.splitlines():
                row = [number for number in line.split()]
                puzzle.append(row)
        return puzzle
    def get_puzzles(self):
        This method returns a list of all puzzle files
        :return: list of puzzle
```

6. RandomPuzzle.py

```
import random

class RandomPuzzle:
    number = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10',
'11', '12', '13', '14', '15', 'x']
    def __init__(self):
        self.puzzle = []
        self.puzzles = []
        random.shuffle(self.number)
        for i in range(4):
            row = []
            for j in range(4):
                row.append(self.number[i*4 + j])
            self.puzzle.append(row)
        self.puzzles.append(self.puzzle)
```

C. Screenshoot Hasil Uji

- 1. Reachable
 - matriks1.txt


```
Please enter the file name: matriks1.txt
_____
Your puzzle:
+---+
 01 | 07 | 02 | 04
       10
 05 | 11 | 03 | 14
 09 | 13 | 15 | 12
_____
Puzzle Parity:
01:0
02:0
03:0
04:1
05:1
06:2
07:5
08:2
09:0
10:4
11:2
12:0
13:1
14:3
15:1
16:10
sum of kurang: 32
X: 0
sum of kurang + X: 32
```

```
_____
Puzzle can be solved
Start solving...
_____
Solution found
+---+
 01 | 07 | 02 | 04
       10
 06
 05 | 11 | 03 | 14
 09 | 13 | 15 |
 01 | 07 | 02
 06 | 10 |
           08
 05 | 11 | 03 | 14
 09 | 13 |
        15
 01 | 07 | 02 | 04
 06
    10 | 03 |
            08
 05 | 11
            14
 09 | 13 | 15 | 12
```

```
01 | 07 | 02 | 04 |
06 | 10 | 03 | 08 |
05 | 11 | 14
09 | 13 | 15 | 12
01 | 07 | 02 | 04 |
06 | 10 | 03 | 08
05 | 11 | 14 | 12 |
09 | 13 | 15 |
01 | 07 | 02 | 04 |
06 | 10 | 03 | 08 |
05 | 11 | 14 | 12
09 | 13 |
             15
01 | 07 | 02 | 04
06 | 10 | 03 | 08 |
05 | 11 |
             12
09 | 13 | 14 | 15
```

```
01 | 07 | 02 |
              04
 06 | 10 | 03 |
              08
 05
         11
              12
 09
     13
          14
              15
 01 07
          02
              04
 06
          03
              08
05
     10
          11
              12
     13
 09
          14
              15
          02
 01
              04
06 | 07 | 03 |
              08
     10 | 11 |
 05
              12
 09 | 13 | 14 |
              15
 01 | 02 |
              04
06 | 07 | 03 |
              08
 05
     10
          11
              12
     13
              15
 09
          14
```

```
01 | 02 | 03 | 04
06
    07
             08
05
    10 | 11 |
             12
    13
09
       14 | 15
01
    02
        03 | 04
06
       07 08
05
    10 | 11 | 12
    13 | 14 | 15
09
01
    02 | 03 | 04
    06 | 07 | 08 |
05
    10 | 11 |
             12
09
    13 | 14 |
             15
        03
01
    02
             04
05
    06 | 07 |
             08
    10 | 11 | 12
    13 | 14 | 15
09
```

```
01 | 02 | 03 | 04
 05
    06 | 07 | 08
 09
    10
       | 11 | 12
    13
       | 14 | 15 |
 01 02 03 04
 05 | 06 | 07 | 08
 09
    10 | 11 | 12
 13
       14 | 15
 ----+----+
 01 02 03 04
 05 | 06 | 07 | 08
 09
    10 | 11
            12
 13 | 14 |
           15
 01
    02
        03
            04
 05
    06 | 07 | 08 |
 09 | 10 | 11 | 12
 13 | 14
       15
-----
```

--- 0.46562623977661133 seconds ---Arised Node: 2644

matriks2.txt

matriks

1 2 3 4 5 6 x 8 9 10 7 11 13 14 15 12

masukan

Welcome to the 15-Puzzle Solver Program by: Tri Sulton Adila (13520033)

Please enter the method to generate puzzle:

- 1. Random
- 2. Manual from file

Your choice: 2

- 1. Run all the file in the tests folder
- 2. Run a specific file

Your choice: 2

Please enter the file name: matriks2.txt

keluaran

```
_____
Your puzzle:
+---+
01 | 02 | 03 | 04 |
| 05 | 06 | | 08 |
09 | 10 | 07 | 11
| 13 | 14 | 15 | 12 |
_____
Puzzle Parity:
01:0
02:0
03:0
04:0
05:0
06:0
07:0
08:1
09:1
10 : 1
11:0
12:0
13:1
14:1
15:1
16:9
sum of kurang: 15
X: 1
sum of kurang + X: 16
_____
```

```
Puzzle can be solved
Start solving...
_____
Solution found
 01 | 02 | 03 |
 05
     06
              08
     10 07
 09
             11
 13 | 14 | 15 | 12
 01
     02 | 03 |
             04
 05 | 06 | 07 |
              08
 09
     10
              11
 13
     14
         15
 01
     02
         03
              04
 05
     06
         07
              08
     10
 09
         11
 13
     14
         15 | 12
```

matriks3.txt

matriks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x masukan Welcome to the 15-Puzzle Solver Program by: Tri Sulton Adila (13520033) Please enter the method to generate puzzle: 1. Random 2. Manual from file Your choice: 2 1. Run all the file in the tests folder 2. Run a specific file Your choice: 2 Please enter the file name: matriks3.txt keluaran

```
_____
Your puzzle:
01 | 02 | 03 | 04 |
05 | 06 | 07 | 08 |
09 | 10 | 11 | 12 |
| 13 | 14 | 15 |
+---+
_____
Puzzle Parity:
01:0
02:0
03:0
05:0
06:0
07:0
08:0
09:0
10:0
11:0
12:0
13 : 0
14:0
15:0
16:0
```

```
sum of kurang: 0
X: 0
sum of kurang + X: 0
_____
Puzzle can be solved
Start solving...
_____
Solution found
    02 | 03
    06
        07
    10
       11
 13 | 14
       15
_____
--- 0.003001689910888672 seconds ---
Arised Node: 1
```

2. Not Reachable

• matriks4.txt

```
matriks

13 10 11 6
5 7 4 8
1 12 14 9
3 15 2 x

masukan
```

```
Welcome to the 15-Puzzle Solver Program by: Tri Sulton Adila (13520033)
Please enter the method to generate puzzle:
1. Random
2. Manual from file
Your choice: 2
1. Run all the file in the tests folder
2. Run a specific file
Your choice: 2
Please enter the file name: matriks4.txt
```

keluaran

```
_____
Your puzzle:
    10
       11
           06
    07
       04
           08
       14
    12
 03
    15
       02
_____
Puzzle Parity:
01:0
02:0
03:1
04:3
05:4
06:5
07:4
08:3
09:2
10:9
11:9
12:3
13:12
14:3
15:1
16:0
```

• matriks5.txt


```
_____
Your puzzle:
+---+
02 | 01 | 03 | 04
| 05 | 06 | 07 | 08
 09 | 10 | 11 | 12
| 13 | 14 | 15 |
_____
Puzzle Parity:
01:0
02:1
03:0
04:0
05:0
06:0
07:0
08:0
09:0
10:0
11:0
12:0
13:0
14:0
15:0
16:0
sum of kurang: 1
X: 0
sum of kurang + X: 1
_____
Puzzle cannot be solved
```

D. Alamat Github

 $\underline{https://github.com/3sulton/Tucil3_13520033}$

E. Tabel

Poin	Ya	Tidak
Program berhasil dikompilasi		
2. Program berhasil running	√	
3. Program dapat menerima input dan menuliskan output		
4. Luaran sudah benar untuk semua data uji	√	
5. Bonus dibuat		$\sqrt{}$