"Can a Virtual Reality (VR) and Computer Vision (CV) approach effectively measure facade complexity, align with user perceptions, and inform user preferences for future construction trends?"

Computational Image Complexity Analysis (CICA)

3D Modeling and **Facade variations Setup**

Façade complexity score and data visualization

VR integration and **Environment Setup**

VR Simulation Tools

VR SYSTEM FOR FACADE ANALYSIS

- **Building interior** and exterior inspection
- Façade variation selection. complexity score CICA registration
- **Complexity Data** visualization

Conditions:

 1 Building, 3 facade patterns, 10 variations

- 2) Survey analysis
- Participant Background Perception and parameters of complexity

Experiment Design

CONCLUSION:

Results reveal an average standard deviation of 9% between the system's complexity measurements and participants' perceptions, indicating a preference for moderate complexity. In the VR experiment, participants chose facade variations with an average complexity score of 4.05 (on a scale of 1 to 10) according to the CICA system. These findings align with the CICA analysis of architectural styles, affirming the trend towards contemporary architecture embracing complexity.