

Devoir surveillé d'informatique 1

CI 1 : Architecture matérielle et logicielle CI 2: ALGORITHMIQUE ET PROGRAMMATION

Éléments de corrigé

1 Codage des nombres

Pour tout ce devoir, on dispose d'une machine dont le codage est limité à 8 bits.

1.1 Capacités de l'espace machine

Question 1

Combien d'entiers est-il possible de coder? Donner le plus petit et le plus grand nombre qu'il est possible de coder dans les systèmes décimal, binaire et hexadacimal.

Question 1 -

- Il est possible de coder $2^8 = 256$ entiers.
- Le plus petit est nombre est 0.
- Le plus grand est $(255)_{10} = (111111111)_2 = (FF)_{16}$

Question 2

Quel est le nombre maximum d'entiers relatifs qu'il est possible de coder? Donner le nombre minimal et le nombre maximal dans le système décimal.

Question 2 -

- Il est possible de coder $2^8 = 256$ entiers relatifs.
- Le plus petit est nombre est -128.
- Le plus grand est 127.

1.2 Conversions

Dans cette partie, les nombres sont tous des entiers relatifs codés en complément à 2.

Question 3

Convertir le nombre 83 dans le système binaire et dans le système hexadécimal.

Question 3

$$(83)_{10} = (0101\ 0011)_2 = (53)_{16}$$

Question 4

Peut-on réaliser la somme 83 + 200 ? Justifier.

Question 4 -

Il n'est pas possible de réaliser la somme 200 + 83 car 283 est en dehors des capacités du codage.

Question 5

Réaliser l'opération 24 - 83. Donner le résultat en binaire.

Question 5

- 1. On a 24 83 = -59.
- 2. Conversion de 59 en binaire : $(59)_{10} = (00111011)_2$.
- 3. Inversion des bits: $(11000100)_2$.
- 4. Ajout de 1 :(11000101)₂.
- 5. Au final, $(-59)_{10} = (11000101)_2$.

1.3 Algorithmique et programmation

1.3.1 Conversion d'un nombre décimal en binaire

Question 7

Quel est le type des variables dividende et resultat.

Question 7 -

- dividende est de type int (integer, entier).
- resultat est de type str (string, chaîne de caractère).

Question 8

Expliquer la ligne 7. Justifier ce choix.

Question 8

L'objectif de cette boucle est de déterminer le codage d'un nombre en base 2. Selon la méthode «naïve» il faut réaliser des divisions successives par 2 jusqu'à ce que le quotient de la division soit nul.

La boucle se poursuit donc tant que le quotient est nul.

Question 9

On cherche à analyser l'évolution des variables lors du parcours de la boucle while. Remplir les champs suivants.

Question 9 -

	Dividende	Diviseur	Résultat	Quotient
État des variables après la ligne 6	10	2	n n	-10
État des variables après la ligne 11 - Première itération de la boucle while	5	2	"0"	5
État des variables après la ligne 11 - Seconde itération de la boucle while	2	2	"10"	2
État des variables après la ligne 11 - Troisième itération de la boucle while	1	2	"010"	1
État des variables après la ligne 11 - Quatrième itération de la boucle while	0	2	"1010"	0

Question 10

Parmi les lignes 8, 9 et 10, réaliser des modifications qui permettent de mieux utiliser les opérations disponibles en Pyhon.

Question 10

- quotient = dividende // diviseur
- reste = dividende % diviseur

Question 11

Après exécution de la liste que contient la variable resultat ? Est-ce le résultat attendu ? Si ce n'est pas le résultat attendu, corriger l'algorithme en conséquence.

Question 11 -

La variable *resultat* contient la chaîne de caractère *1010* ce qui est bien le résultat attendu.

1.3.2 Programme mystère

On cherche à convertir le nombre $(-10)_{10}$ en base 2. Le système utilisé utilise un codage sur 8 bits. La conversion du nombre $(10)_{10}$ en binaire est $(1010)_2$.

Question 12

Quel est le but du programme précédent? Que contient res_cv après l'exécution du code?

Question 12

Le programme précédent permet, lorsque les nombre sont codés sur n bits, de compléter les 0 manquants. res _cv contient 0000 1010.

1.3.3 Inversion des bits

On cherche maintenant à inverser les bits d'une séquence.

Question 13

Que contient res_inv après l'exécution de la boucle?

Question 13

Après exécution de la boucle, res inv contient la séquence "1010".

Question 14

Si le résultat obtenu n'est pas le résultat attendu, comment modifier la séquence précédente?

Ouestion 14

Le but de la séquence étant précédente étant d'inverser la séquence de bits, l'objectif n'est pas atteint. Il faudrait permuter les lignes 5 et 7.

1.3.4 Additionner 1

Voici une séquence de programme permettant d'ajouter 1 à un nombre codé en binaire.

Question 15

Quelles sont les structures algorithmiques utilisées dans ce programme ? Expliquer l'existence des lignes 6, 9, 12 et 15.

Question 15

Corrigé

Les structures algorithmiques utilisées sont : la boucle pour et la structure conditionnelle si ... sinon. Les 4 combinaisons de si permettent de programme de façon naïve les règles de l'addition binaire :

- le résultat de 0 + 0 est 0;
- le résultat de 0 + 1 est 1;
- le résultat de 1 + 1 est 0 et on retient 1.