

Enrico Ribiani 4AUB

# Esperienza laboratoriale raddrizzatori

esperienza n°5

## Indice

• Multimetro

| 1  | Scopo: Verificare il corretto funzionamento di diversi circuiti raddrizzatori.  1.1 Materiale |             |
|----|-----------------------------------------------------------------------------------------------|-------------|
| 2  | Cenni teorici2.1 Raddrizzatore2.2 Ponte di Graetz                                             | 2<br>2<br>2 |
| 3  | Procedimento                                                                                  | 3           |
| 4  | Conclusioni                                                                                   | 3           |
| 1. | <ul><li>1 Materiale</li><li>Condensatore 1μF</li></ul>                                        |             |
| 1. |                                                                                               |             |
|    | • Condensatore $100nF$                                                                        |             |
|    |                                                                                               |             |
|    | • Resistore da $1k\Omega$                                                                     |             |
|    | • Resistore da $82k\Omega$                                                                    |             |
|    | • Diodo 1N4007                                                                                |             |
|    | • cavi per il collegamento                                                                    |             |
| 1. | 2 Strumenti                                                                                   |             |
|    | Generatore di funzione                                                                        |             |
|    |                                                                                               |             |

#### 1.2.1 Schemi



Figura 1: Raddrizzatore



Figura 2: Raddrizzatore di picco



Figura 3: Ponte di Graetz



Figura 4: Ponte di Graetz con condensatore

## 2. Cenni teorici

#### 2.1 Raddrizzatore

Il circuito raddrizzatore con un diodo andrà a tagliare la parte negativa della sinusoide, se si aggiunge un condensatore la parte decrescente della sinusoide positiva andrà a decrescere secondo una retta pendente  $\tau$ .

Andando ad aumentare R o C la retta sarà meno pendente

#### 2.2 Ponte di Graetz

Il ponte di graetz serve a convertire la semionda negativa in una positiva diminiuta di due volte  $V_s$ , aggiungendo un condensatore si otterrà lo stesso effetto del raddrizzatore.

## 3. Procedimento

Procediamo a montare il circuito, si regola il generatore di fuonzione a 5Vp con 100Hz, dopodichè si va a mettere i puntali dell'oscilloscopio seguendo lo schema. Si procede osservando l'effetto del circuito sulla tensione in ingresso.

Per i circuiti limitatori di picco si procede a misurare il ripple.

## 4. Conclusioni



Figura 5: Raddrizzatore

I cenni teorici sono stati verificati



Figura 6: Raddrizzatore di picco con 1μF

I cenni teorici sono stati verificati



Figura 7: Raddrizzatore di picco con 100nF

I cenni teorici sono stati verificati, il ripple è di 2,8V



Figura 8: Ponte di Graetz

I cenni teorici sono stati verificati, il ripple è di 480mV



Figura 9: Ponte di Graetz con condensatori

I cenni teorici sono stati verificati, l'onda di uscita risulta come una specie di onda a dente di sega