2017 ISL G4

KIM YONG JOON

25 August 2025

Problem (2017 ISL G4). Let ABC be a triangle and let ω be the A-excircle, tangent to BC, CA, and AB at D, E, F. The circumcircle of AEF intersects line BC at P and Q. Let M be the midpoint of AD. Prove that the circumcircle of MPQ is tangent to ω .

 \P Solution The solution to this problem is actually a lot simpler than you think. I would consider it very easy for a G4.

The main idea is to identify the tangency point, note that it actually lies on AD, and use power of a point to prove the concylcity and finish off with radixal axes/centers. In particular,

Claim —
$$X \in (MPQ)$$

Proof. By power of a point,
$$PD \cdot DQ = AD \cdot DY$$

 $\Rightarrow PD \cdot DQ = \frac{1}{2}AD \cdot 2DY \Rightarrow PD \cdot DQ = MD \cdot DX$

Note that it now suffices to prove that DFEX is harmonic, by the radical center theorem. This is evident as EF is the polar of A and $X \in AD$.