Concours Blanc 3

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 4 pages et est constitué de 5 exercices. Bon courage!

Exercice 1 -

Partie I.

On considère les matrices

$$\Delta = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad N = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad Q = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix},$$

et on pose $A = \Delta + N$.

- 1. Calculer N^2 puis en déduire N^k où k désigne un entier naturel supérieur ou égal à 2.
- 2. (a) Calculer PQ et QP.
 - (b) Vérifier que $Q\Delta P = D$ avec $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - (c) Exprimer Δ en fonction de P, D et Q.
 - (d) Montrer par récurrence que $\forall n \in \mathbb{N}, \quad \Delta^n = PD^nQ$.
 - (e) Exprimer Δ^n sous forme d'un tableau de nombres.
- 3. (a) Vérifier que $\Delta N = N\Delta$.
 - (b) En utilisant la formule du binôme de Newton pour les matrices, exprimer A^n en fonction de Δ , N et n.
 - (c) En déduire l'expression de A^n sous la forme d'un tableau de nombres.

Partie II.

Dans cette partie, nous allons étudier les trois suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par :

$$x_0 = 1$$
, $y_0 = 1$, $z_0 = 1$ et $\forall n \in \mathbb{N}$,
$$\begin{cases} x_{n+1} = 3x_n + y_n - z_n \\ y_{n+1} = -2x_n + 2z_n \\ z_{n+1} = z_n \end{cases}$$

- 1. (a) En utilisant la définition de la suite $(z_n)_{n\in\mathbb{N}}$, déterminer directement la valeur de z_n .
 - (b) Écrire alors x_{n+1} et y_{n+1} en fonction de x_n et de y_n .

- 2. On introduit alors la suite $(r_n)_{n\in\mathbb{N}}$ définie par $r_n=x_n+y_n$ pour tout entier naturel n.
 - (a) Établir que la suite $(r_n)_{n\in\mathbb{N}}$ est arithmétique et préciser sa raison.
 - (b) En déduire l'expression de $x_n + y_n$ en fonction de n.
- 3. On introduit la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=2x_n+y_n$ pour tout entier naturel n.
 - (a) Prouver que la suite $(s_n)_{n \in \mathbb{N}}$ est géométrique et préciser sa raison.
 - (b) En déduire l'expression de $2x_n + y_n$ en fonction de n.
- 4. En utilisant les questions **2.** et **3.**, déterminer x_n et y_n en fonction de n.

Partie III.

On souhaite faire le lien entre les deux parties précédentes. Pour cela, on pose $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

En remarquant que pour tout entier naturel n, $X_{n+1} = AX_n$ et en utilisant les résultats de la partie \mathbf{I} , retrouver les expressions en fonction de n de x_n , y_n et z_n .

Exercice 2 – On considère les matrices :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}.$$

- 1. On cherche à déterminer une matrice $Q = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ telle que $PQ = QP = I_2$.
 - (a) Montrer que déterminer la matrice Q telle que $PQ = I_2$ revient à résoudre les systèmes

$$S_1: \left\{ \begin{array}{ccccc} a & + & b & = & 1 \\ a & - & 2b & = & 0 \end{array} \right. \quad \text{et} \quad S_2: \left\{ \begin{array}{ccccc} c & + & d & = & 0 \\ c & - & 2d & = & 1 \end{array} \right.$$

- (b) Résoudre les systèmes S_1 et S_2 .
- (c) Vérifier que la matrice Q trouvée vérifie $PQ = QP = I_2$.
- 2. On admet que pour tout entier naturel n, on a : $A^n = PD^nQ$.
 - (a) Calculer D^n pour tout entier naturel n.
 - (b) En déduire que pour tout entier $n \in \mathbb{N}$, on a

$$A^{n} = \frac{1}{3} \begin{pmatrix} 2 + \left(-\frac{1}{2}\right)^{n} & 1 - \left(-\frac{1}{2}\right)^{n} \\ 2 + \left(-\frac{1}{2}\right)^{n-1} & 1 - \left(-\frac{1}{2}\right)^{n-1} \end{pmatrix}.$$

Une mouche se déplace aléatoirement dans un appartement constitué de 3 pièces contiguës A, B et C. À l'instant initial 0, la mouche se trouve dans la pièce B. On suppose que les déplacements qui suivent se font selon le protocole suivant :

- si à un instant n donné, la mouche est dans la pièce A ou dans la pièce C, alors elle revient dans la pièce B à l'instant n + 1,
- si à un instant n donné, la mouche est dans la pièce B, alors elle y reste à l'instant n+1 avec la probabilité $\frac{1}{2}$, sinon elle va de façon équiprobable dans la pièce A ou dans la pièce C.

Pour tout entier naturel n, on définit l'évènement A_n : "la mouche est dans la pièce A à l'instant n". On définit de même les évènements B_n et C_n . Enfin on note a_n , b_n et c_n les probabilités respectives de ces évènements.

3. Montrer en utilisant la formule des probabilités totales que pour tout entier naturel n:

$$a_{n+1} = \frac{1}{4}b_n$$
, $b_{n+1} = a_n + \frac{1}{2}b_n + c_n$ et $c_{n+1} = \frac{1}{4}b_n$.

4. Montrer que pour tout entier naturel n, on a $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$

On considère, pour tout $n \in \mathbb{N}$, la matrice colonne $U_n = \begin{pmatrix} b_{n+1} \\ b_n \end{pmatrix}$.

- 5. (a) Justifier que $U_0 = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$. Montrer que $U_{n+1} = AU_n$ pour tout entier naturel n.
 - (b) Montrer par récurrence que pour tout entier naturel n, on a $U_n = A^n U_0$.
 - (c) Déduire de la question $\mathbf{2}$, que pour tout entier naturel n, on a

$$b_n = \frac{1}{3} \left(2 + \left(-\frac{1}{2} \right)^n \right).$$

(d) En déduire, pour tout $n \in \mathbb{N}$, des expressions de a_n et c_n en fonction de n.

Exercice 3 – Les deux parties sont indépendantes.

Partie I.

- 1. Soit le polynôme $P(x) = 3x^3 7x^2 7x + 3$.
 - (a) Montrer que le polynôme P(x) peut se factoriser sous la forme P(x) = (x+1)Q(x) où Q(x) est un polynôme de degré 2 que l'on déterminera.
 - (b) Déterminer alors les solutions de l'équation $3x^3 7x^2 7x + 3 = 0$.
- 2. On considère la fraction rationnelle $f(x) = \frac{3x^3 7x^2 7x + 3}{3x^2 12x + 12}$.
 - (a) Déterminer l'ensemble de définition de f.
 - (b) Résoudre l'inéquation $f(x) \ge 0$.

Partie II.

On considère les fonctions f et g définies sur \mathbb{R} par

$$f(x) = x^3 + 6x^2 - 5x - 5$$
 et $g(x) = 2x^2 + 2x + 5$.

On note C_f la courbe représentative de f et C_g la courbe représentative de g.

- 1. Donner l'ensemble de définition des fonctions f et g ainsi que leurs limites en $+\infty$ et en $-\infty$.
- 2. Montrer que le point A de coordonnées (2,17) est un point de C_f et de C_g .
- 3. En déduire qu'il existe un polynôme R(x) de degré 2 tel que f(x) g(x) = (x-2)R(x).
- 4. Étudier alors le signe de f(x) g(x) et en déduire les positions relatives des courbes \mathcal{C}_f et \mathcal{C}_g .

Exercice 4 – Soit la fonction $f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) = \frac{2x}{x^2 + 1}$.

1. Comparer f(-x) avec f(x). Comment se traduit graphiquement ce résultat pour la courbe représentative de la fonction f?

- 2. Montrer que la dérivée f'(x) est du même signe que $(1-x^2)$.
- 3. Étudier le signe de f'(x) selon les valeurs de x. Vérifier le résultat en le confrontant aux valeurs de f'(-2), f'(0) et f'(2).
- 4. Dresser le tableau de variation de f. On n'oubliera pas de le compléter par les limites de f en $+\infty$ et en $-\infty$, après avoir calculé celles-ci de façon claire.
- 5. Montrer que la dérivée seconde de f vaut $f''(x) = \frac{4(x^3 3x)}{(x^2 + 1)^3}$.
- 6. Dresser un tableau de signe permettant de déterminer le signe de $\varphi(x) = x\left(x + \sqrt{3}\right)\left(x \sqrt{3}\right)$.
- 7. Déduire des questions **5.** et **6.** un tableau indiquant dans quel domaine la fonction f est convexe et dans quel domaine elle est concave. Déterminer les trois points d'inflexion de la courbe représentative de f.
- 8. Tracer soigneusement la courbe représentative de la fonction f dans un repère orthonormé, d'unité 2cm, en tenant compte des questions 1., 4. et 7. On utilisera la valeur approchée $\sqrt{3} \approx 1.73$ (soit 3.46cm).
- 9. Calculer la dérivée de $F(x) = \ln(x^2 + 1)$. En déduire, en unités d'aire puis en centimètres carrés, l'aire du domaine délimité par la courbe de f, l'axe (Ox) des abscisses et les deux droites d'équations x = 0 et $x = \sqrt{3}$.

Exercice 5 – Une entreprise fabrique des appareils électriques en grande quantité.

Partie I - Probabilités conditionnelles

On admet que 5% des appareils présentent un défaut. On contrôle les appareils d'un lot. Ce contrôle refuse 90% des appareils avec défaut et accepte 80% des appareils sans défaut. On prélève au hasard dans le lot.

On considère les évènements suivants

- *D* : "l'appareil a un défaut",
- *A* : "l'appareil est accepté à l'issue du contrôle".
- 1. Donner la valeur des probabilités et probabilités conditionnelles suivantes

$$P(D), P(\overline{D}), P_D(\overline{A}), P_D(A) \text{ et } P_{\overline{D}}(A).$$

2. Calculer à 0.001 près les probabilités suivantes :

$$P(A \cap D)$$
 et $P(A \cap \overline{D})$.

- 3. Déduire de ce qui précède la probabilité P(A) à 0.001 près.
- 4. Calculer à 0.001 près la probabilité qu'un appareil soit défectueux sachant qu'il a été accepté par le contrôle.

Partie II - Loi binomiale

On prélève au hasard 10 appareils électriques d'une livraison pour vérification. La livraison étant suffisamment importante pour que l'on puisse assimiler ce prélèvement à un tirage avec remise des appareils. On rappelle que 5% des appareils présentent un défaut.

On considère la variable aléatoire X qui, à tout prélèvement de 10 appareils, associe le nombre d'appareils **sans défaut** de ce prélèvement.

- 1. Justifier que X suit une loi binomiale dont on déterminera les paramètres. Préciser $X(\Omega)$ et pour tout $k \in X(\Omega)$, donner la valeur de P(X = k).
- 2. Donner la probabilité que dans un tel prélèvement, tous les appareils soient sans défaut.
- 3. Donner la probabilité que dans un tel prélèvement, au moins un appareil ait un défaut.