SAGARMATHA ENGINEERING COLLEGE

(TU Affiliated)

Sanepa, Lalitpur

LAB NO: 1

A LAB REPORT ON

DATA TRANSFER, ARITHMETIC & LOGICAL GROUP INSTRUCTIONS IN 8085 MICROPROCESSOR

Submitted By	Submitted To
Name:	
Faculty/Year:	Department of Electronics and Computer Engineering
•	Signature:
Roll No.:	Date:
Date:	

Sanepa, Lalitpur

MICROPROCESSOR LAB-01

TITLE

USE OF DATA TRANSFER, ARITHMETIC & LOGICAL GROUP INSTRUCTIONS IN 8085 MICROPROCESSOR.

Objective

- ✓ To be familiar with assembly simulator interface
- ✓ To be familiar with basic 8085 instructions

Hardware/Software Required

- Computer with internet
- Sim8085 online simulator

Related Theory

Data Transfer Group Instructions: This instruction group copies data from a source location to destination location without modifying the contents of the source.

Arithmetic Group Instructions: This instruction group performs arithmetic operations such as addition, subtraction, increment and decrement.

Logical Group Instructions: The instruction group performs logical operations like AND, OR, NOT (complement), and bitwise shift.

MICROPROCESSOR LAB-01 Software Interface ☐ sim8085.com V 🗸 Stepwise Execution Registers 2 Memory View Execute All 0 1 2 3 4 5 6 7 8 9 A/PSW 0x 00 02 1 ;<Program title> Code Editor Enter your ASM code here. Note, if you are using the below boilerplate code write your code after the start label, otherwise DE 0x 00 00 3 jmp start HL 0x 00 00 5 ;data it will not execute. 8 start: nop 0x 00 00 11 hlt Flags 2

Procedure

- 1) Make sure that your computer is connected to the internet and then browse www.sim8085.com
- 2) Write your assembly code at code editor section as shown in figure above.
- 3) After writing your code, click assemble button to assemble and click "Stepwise Execution" button to execute line by line or click "Execute All" button to execute all code at a time.
- 4) Verify your results by inspecting "Memory View", "Register View" and Flags sections.
- 5) Note that you can manually insert values on memory or registers by double or triple clicking.

MICROPROCESSOR LAB-01

Code and Observations

Data Transfer Group

MVI D, 7AH MOV A, D STA 9000H	LDA 9000H MOV B, A HLT	LXI H, 9000H MVI M, 33H HLT	LXI B, 90A0H LDAX B HLT
D = A = [9000] =	A = B = Assume [9000] = A6	H = L = [9000] =	A = B = C = Assume [90A0] = 9A
LXI H, 1234H SHLD 9000H HLT	LXI SP, 9008 LXI B, 1234H PUSH B	LXI SP, 9005 POP D HLT	1. Write a p location 90 manually)
H = L = [9000] = [9001] =	HLT B = C = [9007] = [9006] =	D = E = Assume [9005] = 11 [9006] = 66	2. WAP to obit number on port address

1.	Write a program to exchange the content of		
	location 9010H and 9020H. (Load values		
	manually)		

LHLD 9000H

L =

D = E =

[9000] = 77

[9001] = 44

Assume

XCHG HLT

H =

MVI A, 50H LXI B, 9000H

STAX B HLT

B =

C =

[9000] =

2. WAP to display lower byte of a sixteenbit number having memory location 9000 on port address 80H and higher byte on port address 81H.

Arithmetic Group Instructions

Please fill up the updated register, memory location, flags, or IO port using the convention showed in the example after executing the following code line by line.

Example		
MVI A, 45H	<i>A</i> ← <i>45H</i>	
MVI B, 7AH	$B \leftarrow 7AH$	
ACI 22H	$A \leftarrow 45H + 22H + 0$	
ADD B	$A \leftarrow 67H + 7AH$, $(S=1, P=1, AC=1)$	
STA 9000H	[9000H] ← E1H	

LXI D, 2277H
LXI H, 3388H
DAD D
INX H
SHLD 9000H
HLT

MVI A, F3H
ADI 28H
STA 9050H
MVI A, 00H
ADC A
STA 9051H
HLT

Q. There are three 16-bit data at location 9000H, 9002H and 9004H. WAP to add all the values and store the 24 bit result at 9007.

MICROPROCESSOR LAB-01

Code and Observations

Logical Group Instructions

MVI A, 18H
MVI D, 24H
ANI 0FH
ORA D
CMA
HLT

MVI A, 35H
MVI D, 7EH
ANA D
XRI 55H
ORI 83H
RRC
HLT

Q1. Compare the content of memory location [9000H] = 41H with [9001H] = 40H and [9002H] = 41H. Observe and note the content of flag.

Q2. Set D_2 bit and reset D_5 bit of data at memory location [9000H] = 63H. And store the result at location [9005H] = ?.

Rough

Result

All the given instructions are executed, and all the results are verified.