COMPLEMENTOS DE CÁLCULO: 521234

Guía de Ejercicios No 7

1. Determine las partes real e imaginaria de las siguientes expresiones:

$$i) \quad \frac{z+2}{z-1}$$

i)
$$\frac{z+2}{z-1}$$
 ii) $\frac{1}{i} + \frac{3}{1+i}$ iii) $\frac{1}{3z+2}$ iv) z^3 v) $\left(\frac{1+i}{1-i}\right)^5$

iii)
$$\frac{1}{3z+2}$$

iv)
$$z^3$$

$$v) \quad \left(\frac{1+i}{1-i}\right)^5$$

2. Encuentre los $z \in \mathbb{C}$ que verifican:

$$i) \quad z^8 = 1$$

$$ii$$
) $\bar{z} = z^2$

$$iii$$
) $\cos z = 1/2$

i)
$$z^8 = 1$$
 ii) $\bar{z} = z^2$ iii) $\cos z = 1/2$ iv) $\sin z = \frac{3}{4} + \frac{i}{4}$

3. Pruebe la identidad: $\overline{z}^2 = \overline{z^2}$ y calcule $\overline{\left(\frac{(3+7i)^2}{8+6i}\right)}$.

4. Pruebe que para todo $z_1, z_2 \in \mathbb{C}$: $|1 \pm z_1 \bar{z}_2|^2 \pm |z_1 - z_2|^2 = (1 \pm |z_1|^2)(1 \pm |z_2|)^2$. Además, establezca la desigualdad: $|z_1| - |z_2| \le |z_1 - z_2|$

5. Encuentre todos los posibles valores de:

$$i)$$
 $log(1)$

$$ii)$$
 $log(i)$

$$iii)$$
 $log(-i)$

$$i)$$
 $log(1)$ $ii)$ $log(i)$ $iii)$ $log(-i)$ $iv)$ $log(1+i)$

6. Calcule las siguientes potencias:

$$i$$
) $(-i)^i$

$$(1+i)^{1+i}$$

7. Pruebe que, para todo $z \in \mathbb{C}$,

$$i) \operatorname{sen}(-z) = -\operatorname{sen}(z)$$

$$i) \operatorname{sen}(-z) = -\operatorname{sen}(z)$$
 $ii) \operatorname{sen}(\frac{\pi}{2} - z) = \cos(z)$ $iii) \operatorname{sen}(z + 2\pi) = \operatorname{sen}(z)$

$$iii)$$
 sen $(z + 2\pi) =$ sen $(z$

8. Use la fórmula de De Moivre para encontrar la suma $S_n(x) = \operatorname{sen} x + \operatorname{sen} 2x + \cdots + \operatorname{sen} nx$. Alternativamente puede utilizar: $2 \operatorname{sen}(kt) \cos(t/2) = \operatorname{sen}(k+1/2)t - \operatorname{sen}(k-1/2)t$ y sumar telescópicamente.

9. Analice si son conexos y/o convexos los siguientes conjuntos:

$$D_1 = \{ z \in \mathbb{C} : 1 \le |z| \le 2 \}$$

$$D_2 = \{ z \in \mathbb{C} : |z| \le 1 \land |Re(z)| \ge 1 \}$$

$$D_3 = \{ z \in \mathbb{C} : |z| < 5 \land |Im(z)| \ge 1 \}.$$

Represente gráficamente estos conjuntos.

10. Determine el sector geométrico del plano complejo que determinan las siguientes relaciones $(a, b \in \mathbb{C}, a \neq b).$

$$D_1 = \{ z \in \mathbb{C}, \ |z - a| = |z - b| \} \quad D_2 = \{ z \in \mathbb{C}, \ 0 < arg(\frac{z + i}{z - i}) < \frac{\pi}{4} \}$$

$$D_3 = \{ z \in \mathbb{C}, \ 0 \le Re(iz) < 1 \} \quad D_4 = \{ z \in \mathbb{C}, \ \left| \frac{z + 1}{z - 1} \right| < 1 \}$$

11. Analice la continuidad en z = 0 de las funciones:

$$f(z) = \frac{Re(z)}{1+|z|}$$
 $ii)$ $g(z) = \frac{Re(z)}{z}$

12. Analice si las siguentes funciones son analíticas. En caso afirmativo, calcule sus derivadas:

$$i) \quad f(z) = z^3 + i$$

$$ii) \quad f(z) = (z+i)^3$$

i)
$$f(z) = z^3 + i$$
 ii) $f(z) = (z+i)^3$ iii) $f(z) = \left(\frac{1}{z-1}\right)^{10}$ iv) $f(z) = 3z^2 + 7z + 4$ v) $f(z) = (3z^2 + 10iz)^4$ vi) $f(z) = \frac{2z-4}{z-i}$

$$iv)$$
 $f(z) = 3z^2 + 7z + 4$

$$f(z) = (3z^2 + 10iz)^4$$

$$vi) \quad f(z) = \frac{2z - 4}{z - i}$$

13. Encuentre la mayor región posible en donde las siguientes funciones verifican las condiciones de Cauchy-Riemann:

$$i)$$
 $f(z) = e^z$

$$ii)$$
 $f(z) = z^3$

ii)
$$f(z) = z^3$$
 iii) $f(z) = |z|^{-2}(1+i)Im(z)^2$

14. Analice en qué conjuntos son armónicas las siguentes funciones:

$$i) \ u(x,y) = \frac{x-1}{x^2+y^2-2x+1} \quad ii) \quad u(x,y) = \frac{y}{(x-1)^2+y^2} \quad iii) \quad u(x,y) = Im(z+\frac{1}{z})$$

15. Verifique que cualesquiera sean $z, w \in \mathbb{C}$:

i)
$$\cos(z+w) = \cos z \cos w - \sin z \sin w$$
 ii) $\sin(z+w) = \sin z \cos w + \cos z \sin w$

Concepción, 11 de Octubre de 2005. HMM/CPW/FPV/fpv.