Problem 44. (Comparison Test)

Assume (a_k) and (b_k) are sequences satisfying $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$.

- (i) If $\sum_{k=1}^{\infty} b_k$ converges then $\sum_{k=1}^{\infty} a_k$ converges.
- (ii) If $\sum_{k=1}^{\infty} a_k$ diverges then $\sum_{k=1}^{\infty} b_k$ diverges.

Proof. \Box

Problem 45. (Alternating Series Test)

Suppose (a_n) is a nonnegative sequence which satisfies

- (i) (a_n) is decreasing, and
- (ii) $\lim_{n\to\infty} a_n = 0$.

Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

 \square

Problem 46. For each of the subsets of \mathbb{R} below, decide whether it is open, closed, or neither. If a set is not open, find a point in the set for which there is no ϵ -neighborhood contained in the set. If a set is not closed, find a limit point that is not contained in the set.

- (a) Q
- (b) N
- (c) $\{x \in \mathbb{R} : x \neq 0\}$
- (d) $\{1 + 1/4 + 1/9 + \dots + 1/n^2 : n \in \mathbb{N}\}$
- (e) $\{1+1/2+1/3+\cdots+1/n : n \in \mathbb{N}\}$

Problem 47. Let $A \subset \mathbb{R}$ be nonempty and bounded above, and let $s = \sup A$. Then

- (i) $s \in \overline{A}$, but
- (ii) if A is open then $s \notin A$.

Proof.

Problem 48. Decide whether the following statements are true or false. Provide proofs for those that are true, and counterexamples for those that are false.

(a) Every nonempty open set contains a rational number.

- (b) The Cantor set is closed.
- (c) If $A \subseteq \mathbb{R}$ is an open set which contains every rational $(\mathbb{Q} \subset A)$ then $A = \mathbb{R}$.

Problem 49. (*De Morgan's Laws for arbitrary unions and intersections*)

Let X *be a set, which we call the universe set. For any* $A \subset X$ *we write*

$$A^c = \{ x \in X : x \notin A \}$$

for the complement set. Also let Λ be any set, which will be used as a set of indices. Consider

$$\mathcal{E} = \{ E_{\lambda} \subset X : \lambda \in \Lambda \},\,$$

a collection of sets. The following equalities hold:

(i)
$$\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}$$

(ii)
$$\left(\bigcap_{\lambda\in\Lambda}E_{\lambda}\right)^{c}=\bigcup_{\lambda\in\Lambda}E_{\lambda}^{c}$$

Proof.

Problem 50. *If* $A \subset \mathbb{R}$ *is both open and closed then either* $A = \emptyset$ *or* $A = \mathbb{R}$.

Proof. \Box