Math 302/401/600 Fall 2010 Homework #10

Due Nov. 22, Mon. in class

- \star Use the standard Euclidean metric for \mathbb{R} , and all x in the following are in \mathbb{R} .
- 1. Let $f_n(x) = \sin(nx)/(1+nx)$, and $A = [0, \infty)$.
 - (1.1) Show that (f_n) converges pointwise on A, and find the limiting function f_* ;
 - (1.2) Let a > 0. Show that (f_n) converges uniformly on $[a, \infty)$ to f_* ;
 - (1.3) Show that (f_n) does not converge uniformly on A to f_* .
- 2. Let $f_n(x) = x^n/(1+x^n)$, and $A = [0, \infty)$.
 - (2.1) Show that (f_n) converges pointwise on A, and find the limiting function f_* ;
 - (2.2) Let $a \in (0,1)$. Show that (f_n) converges uniformly on [0,a] to f_* ;
 - (2.3) Show that (f_n) does not converge uniformly on [0,1] to f_* .
- 3. Let $f_n : \mathbb{R} \to \mathbb{R}$ and $g_n : \mathbb{R} \to \mathbb{R}$ be two sequences of functions that converge uniformly on the set A to f_* and g_* , respectively. Show that $(f_n + g_n)$ converges uniformly on A to $f_* + g_*$.
- 4. Let $f_n(x) = x + 1/n, x \in \mathbb{R}$.
 - (4.1) Show that (f_n) converges pointwise on \mathbb{R} , and find the limiting function f_* ;
 - (4.2) Show that (f_n) converges uniformly on \mathbb{R} to f_* ;
 - (4.3) Show that (f_n^2) does not converge uniformly on \mathbb{R} to f_* .
 - \star This example shows that the product of uniformly convergent sequences of functions need not be convergent uniformly.
- 5. Let $f_n : \mathbb{R} \to \mathbb{R}$ be such that (f_n) converges pointwise on the set A to f_* . Suppose f_* is bounded on A but each f_n is not. Show that (f_n) does not converge uniformly on A to f_* . (Note: even if both f_* and each f_n are bounded on A, we still cannot conclude the uniform convergence. Think of a counterexample but do not turn in.)

The following extra problem is for Math 401/600 students only:

6. Let $f_n : \mathbb{R} \to \mathbb{R}$ and $g_n : \mathbb{R} \to \mathbb{R}$ be two sequences of bounded functions that converge uniformly on the set A to f_* and g_* , respectively. Show that $(f_n g_n)$ converges uniformly on A to $f_* g_*$.