

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Overview

Supervised Learning Algorithms

Unsupervised Learning Algorithms

Semi-supervised Learning Algorithms


```
#Setting up for Supervised learning # First clean: use mapping + buckets
```

```
# X = matrix of data – e.g 1000 rows
# Y = In sample responses
```

Typically we want to split in to training data and test data

 $X_{train} = X[0:500]$

 $Y_{train} = Y[0:500]$

 $X_{\text{test}} = X[501:1000]$

 $Y_{test} = Y[501:1000]$

Linear Regression Illustration


```
#Setting Linear Regression in sklearn
from sklearn import linear_model

model= linear_model.LinearRegression()
model.fit(X_train, Y_train)

Y_pred_train = model.predict(X_train)
Y_pred_test = model.predict(X_test)

# Compare Y_pred_test with Y_test for
error.
```


Logistic Regression Illustration

Logistic Regression Illustration

Support Vector Machine (SVM) Illustration

A typical support vector machine class boundary maximizes the margin separating two classes

Support Vector Machine (SVM) Illustration

Support Vector Machine (SVM) Illustration

KNN / K Means Illustration

K Means / KNN Illustration

Decision Tree Illustration

Decision Tree Illustration

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Neural Network Illustration

Scikit-Learn Algorithm

Ø

Ø

Algorithm	Accuracy	Training time	Linearity	Parameters	Notes
Two-class classification					
ogistic regression		•	•	5	
decision forest	•	0		6	
decision jungle	•	0		6	Low memory footprint
boosted decision tree	•	0		6	Large memory footprint
neural network	•			9	Additional customization is possible
averaged perceptron	0	0	•	4	
support vector machine		0	•	5	Good for large feature sets
locally deep support vector machine	0			8	Good for large feature sets
Bayes' point machine		0	•	3	
Anomaly detection					
support vector machine	0	0		2	Especially good for large feature sets
PCA-based anomaly detection		0	•	3	
K-means		0	•	4	A clustering algorithm

Algorithm	Accuracy	Training time	Linearity	Parame	eters Notes
Multi-class classification					
logistic regression		•	•	5	
decision forest	•	0		6	
decision jungle	•	0		6	Low memory footprint
neural network	•			9	Additional customization is possible
one-v-all	-	-	-	-	See properties of the two-class method selected
Regression		•	•	4	
Bayesian linear		0	•	2	
decision forest	•	0		6	
boosted decision tree	•	0		5	Large memory footprint
fast forest quantile	•	0		9	Distributions rather than point predictions
neural network	•			9	Additional customization is possible
Poisson			•	5	Technically log- linear. For predicting counts
ordinal				0	For predicting rank-ordering

Data ^X

Illustration Source:

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

End of Section

