#### Information frictions

NBER Heterogeneous-Agent Macro Workshop

**Ludwig Straub** 

Spring 2023

#### Today

So far: have assumed full information & rational expectations ("FIRE")

**Today:** Deviations from FIRE ("information frictions") ...

- incomplete information (e.g. noisy information, sticky information)
- deviations from rational expectations (e.g. extrapolation, cognitive discounting, level k thinking)

#### Today

So far: have assumed full information & rational expectations ("FIRE")

**Today:** Deviations from FIRE ("information frictions") ...

- incomplete information (e.g. noisy information, sticky information)
- deviations from rational expectations (e.g. extrapolation, cognitive discounting, level k thinking)

Leading contender to explain key puzzles in macro & finance, e.g.

- Why does {inflation, investment, consumption} respond so sluggishly to aggregate shocks? (but not to idiosyncratic shocks?)
- Why do asset prices overreact to shocks?

#### Problem

- Slight problem: deviations from FIRE typically very hard to simulate on top of simple RA model
  - e.g. [Mankiw and Reis, 2007], [Maćkowiak and Wiederholt, 2015]

#### Problem

- Slight problem: deviations from FIRE typically very hard to simulate on top of simple RA model
  - e.g. [Mankiw and Reis, 2007], [Maćkowiak and Wiederholt, 2015]

Goal for today: Coherent framework to model and simulate deviations from FIRE

... not just RA, but also **HA**!

Material mostly a version of the approach that we have developed for [Auclert et al., 2020]. Nice recent work using this approach: [Bardoczy et al., 2023]

#### Roadmap

- 1 Introductory example
- Information frictions in the sequence space
- 3 Examples
- Takeaway

# Introductory example

#### Monetary policy revisited

• Imagine we have the IKC equation for monetary policy

$$d\mathbf{Y} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} d\mathbf{Y} \tag{1}$$

where  $\mathbf{M}^r \equiv \frac{\partial \mathcal{C}}{\partial r}$  and  $\mathbf{M} \equiv \frac{\partial \mathcal{C}}{\partial Y}$  are Jacobians of a general household side

• HA, RA, TA, ZL, ...

### Monetary policy revisited

• Imagine we have the IKC equation for monetary policy

$$d\mathbf{Y} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} d\mathbf{Y} \tag{1}$$

where  $\mathbf{M}^r \equiv \frac{\partial \mathcal{C}}{\partial r}$  and  $\mathbf{M} \equiv \frac{\partial \mathcal{C}}{\partial Y}$  are Jacobians of a general household side

- HA, RA, TA, ZL, ...
- Imagine that households are completely myopic about the economy
  - only start responding to  $dr_t$  in period t
  - only start responding to  $dY_t$  in period t

#### Monetary policy revisited

• Imagine we have the IKC equation for monetary policy

$$d\mathbf{Y} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} d\mathbf{Y} \tag{1}$$

where  $\mathbf{M}^r \equiv \frac{\partial \mathcal{C}}{\partial r}$  and  $\mathbf{M} \equiv \frac{\partial \mathcal{C}}{\partial Y}$  are Jacobians of a general household side

- HA, RA, TA, ZL, ...
- Imagine that households are completely myopic about the economy
  - only start responding to  $dr_t$  in period t
  - only start responding to  $dY_t$  in period t
- What is dY then? Can we change (1) to reflect this?

• Start with the "FIRE" iMPCs (M<sup>r</sup> similar)

$$\mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Each column s is the response of C to news shock: "output rises at date s"

• Start with the "FIRE" iMPCs (M" similar)

$$\mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Each column s is the response of C to news shock: "output rises at date s"
- A date s news shock in our "behavioral" model has no effect until date s!

• Start with the "FIRE" iMPCs (M" similar)

$$\mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Each column s is the response of C to news shock: "output rises at date s"
- A date s news shock in our "behavioral" model has no effect until date s!
- What happens afterwards?

• Start with the "FIRE" iMPCs (M<sup>r</sup> similar)

$$\mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \rightsquigarrow \mathbf{M} = \begin{pmatrix} M_{00} & 0 & 0 & 0 & \cdots \\ M_{10} & M_{00} & 0 & 0 & \cdots \\ M_{20} & M_{10} & M_{00} & 0 & \cdots \\ M_{30} & M_{20} & M_{10} & M_{00} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Each column s is the response of C to news shock: "output rises at date s"
- A date s news shock in our "behavioral" model has no effect until date s!
- What happens afterwards? Response to an unanticipated shock!
- We call this "Jacobian manipulation" [NB: what NPV do columns of M have?]

#### **Expectations matrix**

- Another way to look at this: how do agents build expectations about a date-s shock?
- We can define a matrix **E** that, in each column *s*, has the **expectations** about a date-s shock of 1. What would that look like in FIRE & behavioral model?

#### **Expectations matrix**

- Another way to look at this: how do agents build expectations about a date-s shock?
- We can define a matrix **E** that, in each column s, has the **expectations** about a date-s shock of 1. What would that look like in FIRE & behavioral model?

$$\mathbf{E} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

#### **Expectations matrix**

- Another way to look at this: how do agents build expectations about a date-s shock?
- We can define a matrix **E** that, in each column *s*, has the **expectations** about a date-s shock of 1. What would that look like in FIRE & behavioral model?

$$\mathbf{E} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \longrightarrow \mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

•  $E_{t,s}dY_s$  is then expected value of  $dY_s$  at date t

# Solving behavioral IKC

• How can we solve for the GE response of  $d\mathbf{Y}$  then?

#### Solving behavioral IKC

How can we solve for the GE response of dY then? Just use M and M'!

$$d\mathbf{Y} = \mathbf{M}^{r} d\mathbf{r} + \mathbf{M} d\mathbf{Y}$$

 That's the main idea: By manipulating Jacobians with zero new computational burden, we can solve our myopic economy!

#### Solving behavioral IKC

How can we solve for the GE response of dY then? Just use M and M'!

$$d\mathbf{Y} = \mathbf{M}^{r} d\mathbf{r} + \mathbf{M} d\mathbf{Y}$$

 That's the main idea: By manipulating Jacobians with zero new computational burden, we can solve our myopic economy!



# Solving behavioral IKC for fiscal policy

- Another application: Imagine we want to solve for fiscal multipliers but agents expect neither future taxes nor future income.
- What's the right IKC?

# Solving behavioral IKC for fiscal policy

- Another application: Imagine we want to solve for fiscal multipliers but agents expect neither future taxes nor future income.
- What's the right IKC?

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

# Solving behavioral IKC for fiscal policy

- Another application: Imagine we want to solve for fiscal multipliers but agents expect neither future taxes nor future income.
- What's the right IKC?

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

• Next: Generalize this idea to much more general models of belief formation!

## Some general assumptions we'll make

#### We will make a few implicit assumptions:

- Agents are only "behavioral" about changes in aggregate variables
  - steady state unaffected
  - not "behavioral" w.r.t. idiosyncratic income process
- Deviations from FIRE are orthogonal to idiosyncratic state
  - can relax this, but too much for today (see e.g. [Guerreiro, 2022])

Information frictions in the

sequence space

- There are two conceptually distinct types of deviations from FIRE
  - attention: this is new terminology. Not sure who else thinks about it this way

- There are two conceptually distinct types of deviations from FIRE
  - attention: this is new terminology. Not sure who else thinks about it this way
- Separable deviations: A unit news shock at date s does not move beliefs about the shock in other periods
  - example: what we had before!

- There are two conceptually distinct types of deviations from FIRE
  - attention: this is new terminology. Not sure who else thinks about it this way
- Separable deviations: A unit news shock at date s does not move beliefs about the shock in other periods
  - example: what we had before!
- Non-separable deviations: A unit news shock at date s does move beliefs about the shock in other periods
  - example: extrapolation. I observe high output at date s = o and that makes me believe output will be high at dates s > o as well

- There are two conceptually distinct types of deviations from FIRE
  - attention: this is new terminology. Not sure who else thinks about it this way
- Separable deviations: A unit news shock at date s does not move beliefs about the shock in other periods
  - example: what we had before!
- Non-separable deviations: A unit news shock at date s does move beliefs about the shock in other periods
  - example: extrapolation. I observe high output at date s = o and that makes me believe output will be high at dates s > o as well
- Next: Only focus on separable deviations. Non-separable is different.

#### General expectations matrix

- Consider a general  $\mathbf{E} = (E_{t,s})$  matrix ...
  - entry  $E_{t,s}$  captures **average** date-t expectation of unit shock at date-s
  - ullet separability, linearity  $\Rightarrow E_{t,s}dY_s$  is date-t expectation of a shock  $dY_s$  at date s

#### General expectations matrix

- Consider a general  $\mathbf{E} = (E_{t,s})$  matrix ...
  - entry E<sub>t,s</sub> captures average date-t expectation of unit shock at date-s
  - separability, linearity  $\Rightarrow E_{t,s}dY_s$  is date-t expectation of a shock  $dY_s$  at date s
- Will make one of these two assumptions:
  - agents have correct expectations about the value of the shock by the time it hits,  $E_{t,s}=1$  for all  $t\geq s$
  - or: Jacobian M is such that knowledge of past shocks does not alter behavior

#### General expectations matrix

- Consider a general  $\mathbf{E} = (E_{t,s})$  matrix ...
  - entry  $E_{t,s}$  captures **average** date-t expectation of unit shock at date-s
  - separability, linearity  $\Rightarrow E_{t,s}dY_s$  is date-t expectation of a shock  $dY_s$  at date s
- Will make one of these two assumptions:
  - agents have correct expectations about the value of the shock by the time it hits,  $E_{t,s}=$  1 for all  $t\geq s$
  - or: Jacobian M is such that knowledge of past shocks does not alter behavior
- Typical example:

$$\mathbf{E} = \begin{pmatrix} 1 & * & * & * & \cdots \\ 1 & 1 & * & * & \cdots \\ 1 & 1 & 1 & * & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \text{FIRE benchmark: } \mathbf{E} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• How can we use **E** and a FIRE Jacobian **M** to come up with **M**?

- How can we use E and a FIRE Jacobian M to come up with M?
- Consider unit news shock that will hit at date s. What is the response?

- How can we use E and a FIRE Jacobian M to come up with M?
- Consider unit news shock that will hit at date s. What is the response?
- At date  $\tau$ , expectation shifts by  $E_{\tau,s} E_{\tau-1,s}$ .

- How can we use E and a FIRE Jacobian M to come up with M?
- Consider unit news shock that will hit at date s. What is the response?
- At date  $\tau$ , expectation shifts by  $E_{\tau,s} E_{\tau-1,s}$ .
- Key: **This is a news shock** with horizon  $s \tau \Rightarrow$  like column  $s \tau$  of **M**!

#### General Jacobian manipulation

- How can we use E and a FIRE Jacobian M to come up with M?
- Consider unit news shock that will hit at date s. What is the response?
- At date  $\tau$ , expectation shifts by  $E_{\tau,s} E_{\tau-1,s}$ .
- Key: **This is a news shock** with horizon  $s \tau \Rightarrow$  like column  $s \tau$  of **M**!
- Therefore: Column s of M is given by

$$M_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} \underbrace{\left(E_{\tau,s} - E_{\tau-1,s}\right) \cdot M_{t-\tau,s-\tau}}_{ ext{date-t effect of date-} au ext{ expectation revision of date-} shock}$$

(Here convention is  $E_{-1,s} = 0$ )

#### Intuition

$$\mathbf{E} = \begin{pmatrix} 1 & 0.3 & 0.2 & 0.1 & \cdots \\ 1 & 1 & 0.5 & 0.3 & \cdots \\ 1 & 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

#### Intuition

$$\mathbf{E} = \begin{pmatrix} 1 & 0.3 & 0.2 & 0.1 & \cdots \\ 1 & 1 & 0.5 & 0.3 & \cdots \\ 1 & 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$= \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

#### Intuition

$$\mathbf{E} = \begin{pmatrix} 1 & 0.3 & 0.2 & 0.1 & \cdots \\ 1 & 1 & 0.5 & 0.3 & \cdots \\ 1 & 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Contribution:

$$M_{t,2} = \ldots + (0.5 - 0.2) \cdot M_{t-1,1} + \ldots$$

#### Two special cases

$$M_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} \left( E_{\tau,s} - E_{\tau-1,s} \right) \cdot M_{t-\tau,s-\tau}$$

• FIRE  $E_{t,s} = 1 \Rightarrow \text{only } \tau = \text{o term survives since } E_{-1,s} = \text{o} \Rightarrow M_{t,s} = M_{t,s}$ 

### Two special cases

$$\mathbf{M_{t,s}} = \sum_{ au=0}^{\min\{t,s\}} \left( E_{ au,s} - E_{ au-1,s} 
ight) \cdot \mathbf{M}_{t- au,s- au}$$

- FIRE  $E_{t,s} = 1 \Rightarrow \text{only } \tau = \text{o term survives since } E_{-1,s} = \text{o} \Rightarrow M_{t,s} = M_{t,s}$
- No-foresight example from above:  $E_{t,s} = 0$  for all t < s. This implies only  $\tau = s$  term can ever be positive
  - $\rightarrow M_{t,s} = o \text{ whenever } t < s$
  - $\rightarrow M_{t,s} = M_{t-s,o}$  whenever  $t \geq s$

Exactly our matrix from before!

#### Two special cases

$$M_{\mathsf{t},\mathsf{s}} = \sum_{ au=\mathsf{o}}^{\mathsf{min}\{\mathsf{t},\mathsf{s}\}} \left( \mathsf{E}_{ au,\mathsf{s}} - \mathsf{E}_{ au-\mathsf{1},\mathsf{s}} \right) \cdot \mathsf{M}_{\mathsf{t}- au,\mathsf{s}- au}$$

- FIRE  $E_{t,s} = 1 \Rightarrow \text{only } \tau = \text{o term survives since } E_{-1,s} = \text{o} \Rightarrow M_{t,s} = M_{t,s}$
- No-foresight example from above:  $E_{t,s} = 0$  for all t < s. This implies only  $\tau = s$  term can ever be positive
  - $\rightarrow M_{t,s} = 0$  whenever t < s
  - $\rightarrow M_{t,s} = M_{t-s,o}$  whenever  $t \geq s$

Exactly our matrix from before!

• Side remark: We can write  $M_{t,s}$  also in terms of the fake news matrix:

$$M_{\mathsf{t,s}} = \sum_{ au=0}^{\min\{t,s\}} E_{ au,s} \cdot \mathcal{F}_{t- au,s- au}$$

#### Examples

- Next, we'll walk through examples from the literature
- For each, there is an E and an M

# Examples

# (1) Sticky information

- [Mankiw and Reis, 2002] proposed an information-based microfoundation of nominal rigidities
- Consider a mass 1 of price setters, who, ideally, would like to set their price equal to some markup over marginal cost

$$\log P_{it} = \log \mu + \log MC_t$$
 where  $MC_t$  is stochastic

- ullet Idea: Only random fraction 1 heta of price setters receive latest information in any given period
- ullet This is called "sticky information" model. In limit case where  $\theta={
  m O}$ , this boils down to flexible prices

$$\log P_t = \log \mu + \log MC_t$$

# (1) Nesting sticky information

- More generally, we'd like to know the Jacobian of  $\log P_t$  to  $\log MC_t$
- ullet With FIRE, it's the identity:  $oldsymbol{M} = oldsymbol{I}$

# (1) Nesting sticky information

- More generally, we'd like to know the Jacobian of  $\log P_t$  to  $\log MC_t$
- With FIRE, it's the identity: M = I
- Expectations matrix and behavioral M are

$$\mathbf{E} = \begin{pmatrix} 1 - \theta & 1 - \theta & 1 - \theta & \cdots \\ 1 - \theta^2 & 1 - \theta^2 & 1 - \theta^2 & \cdots \\ 1 - \theta^3 & 1 - \theta^3 & 1 - \theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

# (1) Nesting sticky information

- More generally, we'd like to know the Jacobian of  $\log P_t$  to  $\log MC_t$
- With FIRE, it's the identity: **M** = **I**
- Expectations matrix and behavioral M are

$$\mathbf{E} = \begin{pmatrix} 1 - \theta & 1 - \theta & 1 - \theta & \cdots \\ 1 - \theta^2 & 1 - \theta^2 & 1 - \theta^2 & \cdots \\ 1 - \theta^3 & 1 - \theta^3 & 1 - \theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \rightsquigarrow \mathbf{M} = \begin{pmatrix} 1 - \theta & 0 & 0 & \cdots \\ 0 & 1 - \theta^2 & 0 & \cdots \\ 0 & 0 & 1 - \theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• This allows to solve  $d \log P_t$  for **arbitrary** shocks to marginal cost  $d \log MC_t$ !

- This approach only works if information about past shocks does not influence behavior
  - not true for HA models!
- Simple workaround due to [Carroll et al., 2020]: Assume everyone learns when unit shock materializes.

- This approach only works if information about past shocks does not influence behavior
  - not true for HA models!
- Simple workaround due to [Carroll et al., 2020]: Assume everyone learns when unit shock materializes. Can then use this for HA models:

$$\mathbf{E} = \left( \begin{array}{cccc} 1 & 1 - \theta & 1 - \theta & \cdots \\ 1 & 1 & 1 - \theta^2 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right)$$

- This approach only works if information about past shocks does not influence behavior
  - not true for HA models!
- Simple workaround due to [Carroll et al., 2020]: Assume everyone learns when unit shock materializes. Can then use this for HA models:

$$\mathbf{E} = \left( \begin{array}{cccc} 1 & 1 - \theta & 1 - \theta & \cdots \\ 1 & 1 & 1 - \theta^2 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right) \rightsquigarrow \mathbf{M} = \left( \begin{array}{cccc} M_{00} & (1 - \theta)M_{01} & (1 - \theta)M_{02} & \cdots \\ M_{10} & (1 - \theta)M_{11} + \theta M_{00} & (1 - \theta)M_{12} + \theta (1 - \theta)M_{01} & \cdots \\ M_{20} & (1 - \theta)M_{21} + \theta M_{10} & \vdots & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right)$$

 See [Auclert et al., 2020] for details + application of this idea to general equilibrium



- Intermediate  $\theta$  generates strong hump shape
- ullet Part of the reason is endogenous: when  $d{f Y}$  is smaller initially  $\Rightarrow d{f C}$  falls too

- These models assume there is lots of heterogeneity in learning: Some learn it all immediately, others much later. What if instead all agents learn equally quickly?
- To motivate this, let's think of  $dY_s$  stemming from an  $MA(\infty)$  process

$$\widetilde{dY}_t = \sum_{s=0}^{\infty} dY_s \epsilon_{t-s} \qquad \epsilon_t \sim \mathcal{N}(0, \tau_{\epsilon}^{-1})$$

- These models assume there is lots of heterogeneity in learning: Some learn it all immediately, others much later. What if instead all agents learn equally quickly?
- To motivate this, let's think of  $dY_s$  stemming from an  $MA(\infty)$  process

$$\widetilde{dY}_t = \sum_{s=0}^{\infty} dY_s \epsilon_{t-s} \qquad \epsilon_t \sim \mathcal{N}(0, \tau_{\epsilon}^{-1})$$

• This means: when shock  $\epsilon_t$  hits (e.g.  $\epsilon_t = 1$ ), the IRF of  $\widetilde{dY}_t$  is  $(dY_s)$ 

- These models assume there is lots of heterogeneity in learning: Some learn it all immediately, others much later. What if instead all agents learn equally quickly?
- ullet To motivate this, let's think of  $dY_s$  stemming from an  $MA(\infty)$  process

$$\widetilde{dY}_t = \sum_{s=0}^{\infty} dY_s \epsilon_{t-s} \qquad \epsilon_t \sim \mathcal{N}(0, \tau_{\epsilon}^{-1})$$

- This means: when shock  $\epsilon_t$  hits (e.g.  $\epsilon_t = 1$ ), the IRF of  $\widetilde{dY}_t$  is  $(dY_s)$
- Two ways of modeling dispersed information:
  - 1. about an **exogenous** process: agents get signals about  $\epsilon_t$
  - 2. about an **endogenous** process: agents get signals about  $\widetilde{\textit{dY}}_t$

- These models assume there is lots of heterogeneity in learning: Some learn it all immediately, others much later. What if instead all agents learn equally quickly?
- ullet To motivate this, let's think of  $dY_s$  stemming from an  $MA(\infty)$  process

$$\widetilde{dY}_t = \sum_{s=0}^{\infty} dY_s \epsilon_{t-s} \qquad \epsilon_t \sim \mathcal{N}(0, \tau_{\epsilon}^{-1})$$

- This means: when shock  $\epsilon_t$  hits (e.g.  $\epsilon_t =$  1), the IRF of  $\widetilde{dY}_t$  is  $(dY_s)$
- Two ways of modeling dispersed information:
  - 1. about an **exogenous** process: agents get signals about  $\epsilon_t$
  - 2. about an **endogenous** process: agents get signals about  $\widetilde{dY}_t$
- 2 is harder! (Why?) Do 1 for now.

# (3) Dispersed information about innovation

• Assume each agent *i* receives signals about current + past innovation

$$\mathsf{s}_{\mathsf{jt}}^{(\mathsf{i})} = \epsilon_{\mathsf{t}-\mathsf{j}} + \nu_{\mathsf{jt}}^{(\mathsf{i})}$$

where  $\nu_{jt}^{(i)} \sim \mathcal{N}\left(\mathbf{0}, au_j^{-1}\right)$  iid. Allows for arbitrary precisions  $au_j$ .

- Imagine we hit this economy with a one time shock  $\epsilon_{0}=1$  at date 0.
- How does agents' average expectations evolve? Bayesian updating:

$$\overline{\mathbb{E}}_{\mathsf{t}}\epsilon_{\mathsf{O}} = \frac{\sum_{j=\mathsf{O}}^{\mathsf{t}}\tau_{j}}{\tau_{\epsilon} + \sum_{j=\mathsf{O}}^{\mathsf{t}}\tau_{j}} \equiv \mathsf{1} - \theta_{\mathsf{t}}$$

 See appendix of [Auclert et al., 2020] for this model. See appendix of [Angeletos and Huo, 2021] for a related one.

### (3) Dispersed information cont'd

• Given  $\theta_t$  this almost looks like sticky information / expectations!

$$\mathbf{E} = \begin{pmatrix} 1 & 1 - \theta_0 & 1 - \theta_0 & 1 - \theta_0 & \cdots \\ 1 & 1 & 1 - \theta_1 & 1 - \theta_1 & \cdots \\ 1 & 1 & 1 & 1 - \theta_2 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- In fact, for a given sequence of  $\tau_j$ , can replicate sticky information / expectations
  - intuition: only average expectation matters to first order
  - Heterogeneity of who has what information does not matter!

# (3) Dispersed info plot

• Plot similar to sticky expectations, but a bit less hump-shaped



# (4) Cognitive discounting

- [Gabaix, 2020] introduces cognitive discounting
- Main idea: agents respond to a shock that hits in h periods as if shock size was dampened by  $\theta^h$
- This is equivalent to assuming agents expect shock size  $\theta^h$  of unit shock. Hence:

$$\mathbf{E} = \begin{pmatrix} 1 & \theta & \theta^2 & \theta^3 & \cdots \\ 1 & 1 & \theta & \theta^2 & \cdots \\ 1 & 1 & 1 & \theta & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Conceptually different from dispersed info / sticky info: Dampening relative to diagonal, not relative to first period!

# (4) Cognitive discounting - plots

• Doesn't generate humps, but dampens forward guidance very strongly



# (5) Level *k* thinking

- [Farhi and Werning, 2019] is the first paper combining HA + deviations from FIRE.
- They use **level** *k* **thinking:** (explained in context of our introductory economy)
  - k = 1: all agents believe output is at steady state
  - k = 2: all agents believe all other agents are have level k = 1
  - k = 3: al agents believe all other agents have level k = 2, ... etc

### (5) Level *k* thinking

• Level k = 1 is easily handled. In fact, that was our intro example:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M}^{(1)} = \begin{pmatrix} M_{00} & 0 & 0 & 0 & \cdots \\ M_{10} & M_{00} & 0 & 0 & \cdots \\ M_{20} & M_{10} & M_{00} & 0 & \cdots \\ M_{30} & M_{20} & M_{10} & M_{00} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where (1) indicates k = 1. IKC is then simply:

$$d\mathbf{Y}^{(1)} = \mathbf{M}^r d\mathbf{r} + \mathbf{M}^{(1)} \cdot d\mathbf{Y}^{(1)}$$

### (5) Level *k* thinking plots

• What about k > 1? Solve recursively:

$$d\mathbf{Y}^{(k+1)} = \underbrace{\mathbf{M}^r d\mathbf{r} + \mathbf{M} d\mathbf{Y}^{(k)}}_{\text{other agents are expected to behave according to level } k}$$

$$+ \qquad \qquad \mathbf{M^{(1)}} \cdot \left( d\mathbf{Y}^{(k+1)} - d\mathbf{Y}^{(k)} \right)$$

...but everyone is unaware that economy may deviate from level  ${\it k}$ 



Takeaway

#### Conclusion

- Information rigidities can be nested quite nicely in the sequence space
- This not just gives us a straightforward way of simulating them for RA models, but allows us to apply it to HA models equally well!

#### References i

Angeletos, G.-M. and Huo, Z. (2021).

**Myopia and Anchoring.** 

American Economic Review, 111(4):1166-1200.

Auclert, A., Rognlie, M., and Straub, L. (2020).
Micro Jumps, Macro Humps: Monetary Policy and Business Cycles in an Estimated HANK Model.

Working Paper 26647, National Bureau of Economic Research,.

Bardoczy, B., Bianchi-Vimercati, R., and Guerreiro, J. (2023).
Unemployment insurance in macroeconomic stabilization with bounded rationality.

#### References ii

Carroll, C. D., Crawley, E., Slacalek, J., Tokuoka, K., and White, M. N. (2020). Sticky Expectations and Consumption Dynamics.

American Economic Journal: Macroeconomics, 12(3):40-76.

Farhi, E. and Werning, I. (2019).

Monetary Policy, Bounded Rationality, and Incomplete Markets.

American Economic Review, 109(11):3887-3928.

Gabaix, X. (2020).

A Behavioral New Keynesian Model.

American Economic Review, 110(8):2271-2327.

Guerreiro, J. (2022).

Belief disagreement and business cycles.

#### References iii

Maćkowiak, B. and Wiederholt, M. (2015).
Business Cycle Dynamics under Rational Inattention.

Review of Economic Studies, 82(4):1502-1532.

Mankiw, N. G. and Reis, R. (2002).

Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve.

Quarterly Journal of Economics, 117(4):1295–1328.

Mankiw, N. G. and Reis, R. (2007).

Sticky Information in General Equilibrium.

Journal of the European Economic Association, 5(2-3):603–613.