### Representação ponto flutuante

Formato

s exp frac

- s é o bit de sinal

- s = 0 positivo s=1 negativo
- − exp é usado para obter E
- frac é usado para obter M
- Valor representado

$$(-1)^s M 2^E$$

- Significando M é um valor fracionário no intervalo [1.0,2.0), para números normalizados e [0 e 1) para números denormalizados
- Exponente **E** fornece o peso em potência de dois

#### Valores denormalizados

- Condição
- exp = 000...0

- Valor
  - Valor do Expoente E = -Bias + 1
  - Valor do Significando  $M = 0.xxx...x_2$ 
    - xxx...x: bits de frac
- Casos
  - $\exp = 000...0, frac = 000...0$ 
    - Representa valor 0
    - Nota-se que existem valores distintos +0 e -0
  - $-\exp = 000...0, frac \neq 000...0$ 
    - Numeros muito próximos de 0.0
    - Perde precisão à medida que vai diminuindo
    - "underflow gradual"

### Valores numéricos Normalizados

- Condição  $\exp \neq 000...0 \ e \exp \neq 111...1$
- Expoente codificado como valor polarizado (biased)
  - E = exp bias
    - exp: valor não sinalizado
    - bias : valor da polarização
      - Precisão Simples: 127 (exp: 1...254, E: -126...127)
      - Precisão dupla: 1023 (exp: 1...2046, E: -1022...1023)
      - -Em geral:  $bias = 2^{e-1} 1$ , onde e e' o numero de bits do expoente
- Significando codificado com bit 1 mais significativo (leading bit) implicito

$$M = 1.xxx...x_2$$

- xxx...x: bits da frac
- Minimo quando 000...0 (*M* = 1.0)
- Maximo quando 111...1 ( $M = 2.0 \varepsilon$ )
- O bit extra (leading bit 1) e' obtido "implicitamente"

# Valores especiais

- Condição exp = 111...1
- Casos
  - $-\exp = 111...1, frac = 000...0$ 
    - Representa valor ∞ (infinito)
    - Operação que transborda (overflow)
    - Ambos positivo e negativo
    - P. ex.,  $1.0/0.0 = -1.0/-0.0 = +\infty$ ,  $1.0/-0.0 = -\infty$
  - $-\exp = 111...1, frac \neq 000...0$ 
    - Not-a-Number (NaN)
    - Nenhum valor numérico pode ser determinado
    - P. ex., sqrt(-1),  $\infty \infty$

# Resumo da codificação de números reais em ponto flutuante



### Representação ilustrativa de 8 bits

- Representação ponto flutuante de 8 bits
  - O bit de sinal e' o bit mais significativo.
  - Os seguintes quatro bits são expoente, com bias de 7.
  - Os últimos três bits bits são frac
- · Semelhante a forma geral no formato IEEE
  - normalizado, denormalizado
  - Representação de 0, NaN, infinito

| 7 | 6 | 3   | 3 2 0 |  |  |
|---|---|-----|-------|--|--|
| s |   | exp | frac  |  |  |
|   |   |     | _     |  |  |
| 7 | 6 | 3   | 2 0   |  |  |
| 1 |   | 4   | 3     |  |  |

### Valores Relativos ao Expoente



### Intervalo

|                                         | s        | exp                  | frac | E              | Valor                                                          |
|-----------------------------------------|----------|----------------------|------|----------------|----------------------------------------------------------------|
| números                                 | 0        | 0000<br>0000<br>0000 | 001  | -6<br>-6<br>-6 | 0<br>1/8*1/64 = 1/512 ← Mais perto de zero<br>2/8*1/64 = 2/512 |
| denormalizados                          | <b>3</b> |                      |      |                |                                                                |
|                                         | 0        | 0000                 | 110  |                | 6/8*1/64 = 6/512                                               |
|                                         | 0        | 0000                 | 111  | -6             | 7/8*1/64 = 7/512 ← maior denorm                                |
|                                         | 0        | 0001                 | 000  | -6             | 8/8*1/64 = 8/512 ← menor norm                                  |
|                                         | 0        | 0001                 | 001  | -6             | 9/8*1/64 = 9/512                                               |
|                                         |          |                      |      |                |                                                                |
|                                         | 0        | 0110                 | 110  | -1             | 14/8*1/2 = 14/16                                               |
| ,                                       | 0        | 0110                 | 111  | -1             | 15/8*1/2 = 15/16 - perto de 1 abaixo                           |
| números                                 | 0        | 0111                 | 000  | 0              | 8/8*1 = 1                                                      |
| Normalizados                            | 0        | 0111                 | 001  | 0              | 9/8*1 = 9/8 ← perto de 1 acima                                 |
|                                         | 0        | 0111                 | 010  | 0              | 10/8*1 = 10/8                                                  |
|                                         |          |                      |      |                |                                                                |
|                                         | 0        | 1110                 | 110  | 7              | 14/8*128 = 224                                                 |
|                                         | 0        | 1110                 | 111  | 7              | 15/8*128 = 240 ← maior norm                                    |
| *************************************** | 0        | 1111                 | 000  | n/a            | inf                                                            |

# Distribuição de valores

- Formato de 6-bits tipo IEEE
  - -e = 3 bits de expoente
  - -f = 2 bits de Mantissa
  - -bias e'3
- Notar como a distribuição fica mais densa perto de zero.



### Distribuição de Valores perto de zero

- Formato de 6-bits, tipo IEEE
  - -e = 3 bits de expoente
  - -f = 2 bits de fração
  - Bias igual a 3



# Operações aritméticas

- Em números inteiros

## Soma:

Conforme visto, através de CLA.



# Multiplicação: como na prática

Número de dígitos: multiplicando + multiplicador.

32 bits x 32 bits = 64 bits.

# Algoritmo

- •Como na prática
- •Simplesmente coloque um cópia do multiplicando (1 x multiplicando) no lugar apropriado, se o digito do multiplicando for igual a 1, ou
- •Coloque 0 (0 x multiplicando) no lugar apropriado, se o digito do multiplicando for igual a 0;
- •Veremos a seguir 3 versões do algoritmo de multiplicação para 32 bits (32 x 32 bits)

# Algoritmo: 1ª Versão



# Algoritmo: 1ª Versão



#### Hardware para multiplicação - Versão 1

|   | Passo            | Multiplicador | Multiplicando | Produto   |
|---|------------------|---------------|---------------|-----------|
| 0 | Valores iniciais | 0011          | 0000 0010     | 0000 0000 |
| 1 |                  |               |               |           |
| 1 |                  |               |               |           |
| 1 |                  |               |               |           |
| 2 |                  |               |               |           |
| 2 |                  |               |               |           |
| 2 |                  |               |               |           |
| 3 |                  |               |               |           |
| 3 |                  |               |               |           |
| 3 |                  |               |               |           |
| 4 |                  |               |               |           |
| 4 |                  |               |               |           |
| 4 |                  |               |               |           |

#### Hardware para multiplicação - Versão 1

|   | Passo                | Multiplicador | Multiplicando | Produto   |
|---|----------------------|---------------|---------------|-----------|
| 0 | Valores iniciais     | 0011          | 0000 0010     | 0000 0000 |
| 1 | 1 => Prod=Prod+Mcand | 0011          | 0000 0010     | 0000 0010 |
| 1 | Desloca Mcando esq   | 0011          | 0000 0100     | 0000 0010 |
| 1 | Desloca Mcador dir   | 0001          | 0000 0100     | 0000 0010 |
| 2 |                      |               |               |           |
| 2 |                      |               |               |           |
| 2 |                      |               |               |           |
| 3 |                      |               |               |           |
| 3 |                      |               |               |           |
| 3 |                      |               |               |           |
| 4 |                      |               |               |           |
| 4 |                      |               |               |           |
| 4 |                      |               |               |           |

#### Hardware para multiplicação - Versão 1

|   | Passo                | Multiplicador | Multiplicando | Produto   |
|---|----------------------|---------------|---------------|-----------|
| 0 | Valores iniciais     | 0011          | 0000 0010     | 0000 0000 |
| 1 | 1 => Prod=Prod+Mcand | 0011          | 0000 0010     | 0000 0010 |
| 1 | Desloca Mcando esq   | 0011          | 0000 0100     | 0000 0010 |
| 1 | Desloca Mcador dir   | 0001          | 0000 0100     | 0000 0010 |
| 2 | 1 => Prod=Prod+Mcand | 0001          | 0000 0100     | 0000 0110 |
| 2 | Desloca Mcando esq   | 0001          | 0000 1000     | 0000 0110 |
| 2 | Desloca Mcador dir   | 0000          | 0000 1000     | 0000 0110 |
| 3 | 0 => Não Faz Nada    | 0000          | 0000 1000     | 0000 0110 |
| 3 | Desloca Mcando esq   | 0000          | 0001 0000     | 0000 0110 |
| 3 | Desloca Mcador dir   | 0000          | 0001 0000     | 0000 0110 |
| 4 | 0 => Não Faz Nada    | 0000          | 0001 0000     | 0000 0110 |
| 4 | Desloca Mcando esq   | 0000          | 0010 0000     | 0000 0110 |
| 4 | Desloca Mcador dir   | 0000          | 0010 0000     | 0000 0110 |

#### Hardware para multiplicação - Versão 1



# Desvantagens

- •UAL de 64 bits.
- •2 registradores de 64 bits
- •Próxima versão:
  - -Metade dos bits do multiplicando da primeira versão são sempre zero, de modo que somente metade deles poderia conter informações úteis. A segunda versão utiliza-se desta informação para melhorar a performance da multiplicação.

# Algoritmo: 2ª Versão



## Hardware: 2ª Versão



#### Hardware para multiplicação - Versão 2



#### Hardware para multiplicação - Versão 2

|   | Passo            | Multiplicador | Multiplicando | Produto   |
|---|------------------|---------------|---------------|-----------|
| 0 | Valores iniciais | 0011          | 0010          | 0000 0000 |
| 1 |                  |               |               |           |
| 1 |                  |               |               |           |
| 1 |                  |               |               |           |
| 2 |                  |               |               |           |
| 2 |                  |               |               |           |
| 2 |                  |               |               |           |
| 3 |                  |               |               |           |
| 3 |                  |               |               |           |
| 3 |                  |               |               |           |
| 4 |                  |               |               |           |
| 4 |                  |               |               |           |
| 4 |                  |               |               |           |

#### Hardware para multiplicação - Versão 2

|   | Passo                | Multiplicador | Multiplicando | Produto   |
|---|----------------------|---------------|---------------|-----------|
| 0 | Valores iniciais     | 0011          | 0010          | 0000 0000 |
| 1 | 1 => Prod=Prod+Mcand | 0011          | 0010          | 0010 0000 |
| 1 | Desloca Produto dir  | 0011          | 0010          | 0001 0000 |
| 1 | Desloca Mcador dir   | 0001          | 0010          | 0001 0000 |
| 2 |                      |               |               |           |
| 2 |                      |               |               |           |
| 2 |                      |               |               |           |
| 3 |                      |               |               |           |
| 3 |                      |               |               |           |
| 3 |                      |               |               |           |
| 4 |                      |               |               |           |
| 4 |                      |               |               |           |
| 4 |                      |               |               |           |

#### Hardware para multiplicação – Versão 2

|   | Passo                | Multiplicador | Multiplicando | Produto   |
|---|----------------------|---------------|---------------|-----------|
| 0 | Valores iniciais     | 001 <b>1</b>  | 0010          | 0000 0000 |
| 1 | 1 => Prod=Prod+Mcand | 0011          | 0010          | 0010 0000 |
| 1 | Desloca Produto dir  | 0011          | 0010          | 0001 0000 |
| 1 | Desloca Mcador dir   | 000 <b>1</b>  | 0010          | 0001 0000 |
| 2 | 1 => Prod=Prod+Mcand | 0001          | 0010          | 0011 0000 |
| 2 | Desloca Produto dir  | 0001          | 0010          | 0001 1000 |
| 2 | Desloca Mcador dir   | 0000          | 0010          | 0001 1000 |
| 3 | 0 => Não Faz Nada    | 0000          | 0010          | 0001 1000 |
| 3 | Desloca Produto dir  | 0000          | 0010          | 0000 1100 |
| 3 | Desloca Mcador dir   | 0000          | 0010          | 0000 1100 |
| 4 | 0 => Não Faz Nada    | 0000          | 0010          | 0000 1100 |
| 4 | Desloca Produto dir  | 0000          | 0010          | 0000 0110 |
| 4 | Desloca Mcador dir   | 0000          | 0010          | 0000 0110 |

# Versão Final do Algoritmo de Multiplicação

•O registrador reservado ao produto desperdiça tanto espaço quanto o do multiplicador: à medida que o desperdício de espaço do produto se reduzia, a mesma coisa acontecia com o multiplicador.

# Algoritmo: 3ª Versão



### Hardware: 3ª Versão



#### Hardware para multiplicação - Versão 3



|   | Passo            | Multiplicando | Produto   |
|---|------------------|---------------|-----------|
| 0 | Valores iniciais | 0010          | 0000 0011 |
| 1 |                  |               |           |
| 1 |                  |               |           |
| 2 |                  |               |           |
| 2 |                  |               |           |
| 3 |                  |               |           |
| 3 |                  |               |           |
| 4 |                  |               |           |
| 4 |                  |               |           |

#### Hardware para multiplicação - Versão 3

|   | Passo                | Multiplicando | Produto           |
|---|----------------------|---------------|-------------------|
| 0 | Valores iniciais     | 0010          | 0000 001 <b>1</b> |
| 1 | 1 => Prod=Prod+Mcand | 0010          | 0010 0011         |
| 1 | Desloca Produto dir  | 0010          | 0001 000 <b>1</b> |
| 2 |                      |               |                   |
| 2 |                      |               |                   |
| 3 |                      |               |                   |
| 3 |                      |               |                   |
| 4 |                      |               |                   |
| 4 |                      |               |                   |

# Algoritmo de Booth

Pesquisar

#### Hardware para multiplicação - Versão 3

|   | Passo                | Multiplicando | Produto           |
|---|----------------------|---------------|-------------------|
| 0 | Valores iniciais     | 0010          | 0000 001 <b>1</b> |
| 1 | 1 => Prod=Prod+Mcand | 0010          | 0010 0011         |
| 1 | Desloca Produto dir  | 0010          | 0001 000 <b>1</b> |
| 2 | 1 => Prod=Prod+Mcand | 0010          | 0011 0001         |
| 2 | Desloca Produto dir  | 0010          | 0001 1000         |
| 3 | 0 => Não Faz Nada    | 0010          | 0001 1000         |
| 3 | Desloca Produto dir  | 0010          | 0000 1100         |
| 4 | 0 => Não Faz Nada    | 0010          | 0000 1100         |
| 4 | Desloca Produto dir  | 0010          | 0000 0110         |

# Multiplicação Paralela

a5 a4 a3 a2 a1 a0 = A x b5 b4 b3 b2 b1 b0 = E

 $a5b0 \ a4b0 \ a3b0 \ a2b0 \ a1b0 \ a0b0 = W1$ 

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1 = W2

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2 = W3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3 = W4

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4 = W5

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5 = W6

P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 = AxB=P

### Multiplicação em FP

#### **Operandos**

 $(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$ 

#### Resultado exato

 $(-1)^{s} M 2^{E}$ 

Sinal s: s1 xor s2

Significando M: M1 \* M2

Expoente *E*: *E1* + *E2* 

#### Representação final

se  $M \ge 2$ , deslocar à direita M, incrementar E

se *E* fora do intervalo, overflow

Arredonda M para caber em frac

### Solução

$$E=4 => Bias = 7$$

1) Passar para norma IEEE 754

$$0.375_{(10)} = 0.011_{(2)} => 1.1 \times 2^{-2} => 00101100$$
  
 $104_{(10)} = 1101000_{(2)} => 1.101 \times 2^{6} => 01101101$ 

- 2) Sinal =
- 3) M =
- 4) E =
- 5) M>=2 ?
- 6) Arredonda M Resultado Final =>

### Multiplicação em FP

#### **Operandos**

 $(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$ 

#### Resultado exato

 $(-1)^s M 2^E$ 

Sinal s: s1 xor s2

Significando M: M1 \* M2

Expoente *E*: *E1* + *E2* 

### Resolver:

-0,375 \* 104

Usar IEEE754

E= 4 bits e M= 3 bits

#### Representação final

se  $M \ge 2$ , deslocar à direita M, incrementar E

se *E* fora do intervalo, overflow

Arredonda M para caber em frac

### Solução

$$E=4 => Bias = 7$$

1) Passar para norma IEEE 754

$$0.375_{(10)} = 0.011_{(2)} => 1.1 \times 2^{-2} => 00101100$$
  
 $104_{(10)} = 1101000_{(2)} => 1.101 \times 2^{6} => 01101101$ 

- 2) Sinal = XOR(0,0) = 0 (positivo)
- 3) M = 1.100 \* 1.1101 = 10.011100
- 4) E = -2 + 6 = 4
- 5) M>=2 desloca para direita e incrementa Expoente M=1.00111 e E= 4+1 = 5
- 6) Arredonda M para tamanho correto : M=1.001 Resultado Final => 01100001

### Adição FP

Operandos

(-1)s1 M1 2E1

 $(-1)^{s2} M2 2^{E2}$ 

E1-E2  $(-1)^{s1} M1$ 

(-1)<sup>s</sup> M

(-1)<sup>s2</sup> M2

Assumir *E1* > *E2* 

Resultado exato  $(-1)^s M 2^E$ 

Sinal **s**, significando **M**:

Resultado de alinhamento e adição

Expoente *E*:

E1

Representação final

Se  $M \ge 2$ , deslocar à direita M, incrementa E

Se M < 1, deslocar à esquerda M de k posições, decrementar E de

Overflow se *E* fora do intervalo arredonda M para número correto de bits Exemplo da soma na base 10

$$1.234 \times 10^5 + 4.32 \times 10^{-1}$$

$$E1 = 5 e E2 = -1$$
 ->  $E1 - E2 = 5 - (-1) = 6$ 

123400.432