Paper Title*

*Note: Sub-titles are not captured in Xplore and should not be used

Anderson A. de Borba

Dept. Engenharia Elétrica e Computação UPM - Universidade Presbiteriana Mackenzie **IBMEC**

> São Paulo, Brazil anderson.borba@ibmec.edu.br

Maurício Marengoni

Dept. Engenharia Elétrica e Computação UPM - Universidade Presbiteriana Mackenzie São Paulo, Brazil

mauricio.marengoni@mackenzie.br

Alejandro C. Frery

Laboratório de Computação Científica e Análise Numérica UFAL - Universidade Federal de Alagoas) Maceió, Brazil acfrery@gmail.com

Abstract-This document is a model and instructions for LATEX. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title

Index Terms—component, formatting, style, styling, insert

I. Introduction

II. MODELAGEM ESTATÍSTICA PARA DADOS POLSAR

Os sistemas SAR totalmente polarimétricos transmitem pulsos de micro-ondas polarizados ortogonalmente e medem componentes ortogonais do sinal recebido. Para cada pixel, a medida resulta em uma matriz de coeficientes de espalhamento. Esses coeficientes são números complexos que descrevem no sistema SAR a transformação do campo eletromagnético transmitido para o campo eletromagnético recebido.

A transformação pode ser representada como

$$\begin{bmatrix} E_h^r \\ E_v^r \end{bmatrix} = \frac{e^{\hat{i}kr}}{r} \begin{bmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{bmatrix} \begin{bmatrix} E_h^t \\ E_v^t \end{bmatrix}, \tag{1}$$

onde k denota o número de onda, \hat{i} é um número complexo e ré a distância entre o radar e o alvo. O campo eletromagnético com componentes E_i^j , o índice subscrito denota polarização horizontal (h) ou vertical (v), enquanto o índice sobrescrito indica a onda recebida (r) ou transmitida (t). Definindo $S_{i,j}$ como os coeficientes de espalhamento complexo, tal que o índice i e j são associados com o recebimento com a transmissão das ondas, por exemplo, o coeficiente de espalhamento S_{hv} está associado a onda transmitida na direção vertical (v)e recebida na direção horizontal (h).

Sendo conhecido cada um dos coeficientes, a matriz de espalhamento complexa S é definida por

$$\mathbf{S} = \begin{bmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{bmatrix}, \tag{2}$$

Bolsista Capes.

se o meio de propagação das ondas é recíproco, isto é, de uma maneira geral as propriedades de transmissão e recebimento de uma antena são idênticos, então usaremos o teorema da reciprocidade [?] para definir a matriz de espalhamento como sendo hermitiana, ou seja, a igualdade dos termos complexos $S_{hv} = S_{vh}$. De acordo com o teorema da reciprocidade a matriz de espalhamento pode ser representada pelo vetor

$$\mathbf{S} = \begin{bmatrix} S_{hh} \\ S_{vh} \\ S_{vv} \end{bmatrix} . \tag{3}$$

Sabemos que cada componente do vetor S é complexo, com intuito de fixar notação reescrevemos,

$$S_{hh} = R_{hh} + iI_{hh}$$

$$S_{vh} = R_{hv} + iI_{hv}$$

$$S_{vv} = R_{vv} + iI_{vv}$$

$$(4)$$

Poderíamos considerar um vetor de dimensão 6 onde cada entrada está distribuída como $N(0, \sigma)$.

$$\mathbf{S} = \begin{bmatrix} R_{hh} \\ I_{hh} \\ R_{hv} \\ I_{hh} \\ R_{vv} \\ I_{vv} \end{bmatrix} . \tag{5}$$

Por hipótese teremso a distribuição gaussiana circular complexa multivariada com média zero pode ser definida de acordo com [?], assim, sendo $S_{ij} = R_{ij} + iI_{ij}$ é exigido que R_{ij} e y_{ij} com j = h, v tenham distribuições conjuntas gaussianas e satisfaçam as seguintes condições

- obs: entender e reescrever melhor essas hipóteses,
- (2) $E[R_{ij}] = E[I_{ij}] = 0,$ $E[R_{j}^{2}] = E[I_{j}^{2}],$ $E[R_{j}I_{j}] = 0,$

 - $E[R_iR_i] = E[I_iI_i],$

- $E[I_j R_i] = -E[R_j R_i],$

onde, $E[\cdot]$ é o valor esperado.

De acordo com [?] e [?] esta distribuição pode modelar adequadamente o comportamento estatístico de S. A hipotêse de ser gaussiana e circular foi comprovada para dados SAR polarimétricos no artigo [?].

A matriz de covariância associada a S definida por

$$\mathbf{C_S} = E[\mathbf{SS}^H] = \begin{bmatrix} E[S_{hh}\overline{S_{hh}}] & E[S_{hh}\overline{S_{hv}}] \\ E[S_{hv}\overline{S_{hh}}] & E[S_{vv}\overline{S_{vv}}] \end{bmatrix}$$
(6)

talque, - denota o conjugado complexo. A matriz de covariância é hermitiana positiva definida e contém todas as informações necessárias para caracterizar o retroespalhamento, podemos consultar mais informações em [?].

Nas imagens PolSAR serão consideradas três componentes para o vetor $\mathbf{S} = [S_{hh}, S_{vh}, S_{vv}]^T$ e a multiplicação de $\mathbf{s} = [S_{hh}, S_{vh}, S_{vv}]$ pelo seu conjugado transposto $\mathbf{S} = [S_{hh}, S_{vh}, S_{vv}]^H$, isto é, a hermitiana do vetor,

$$\mathbf{s}\mathbf{s}^{H} = \begin{bmatrix} S_{hh} \\ S_{vh} \\ S_{vv} \end{bmatrix} \begin{bmatrix} S_{hh} & S_{vh} & S_{vv} \end{bmatrix}^{H} = [S_{ij}]_{i,j=h,v} \quad (7)$$

De acordo com [?] a distribuição gaussiana complexa multivariada pode modelar adequadamente o comportamento estatístico de S. Isto é chamado de *single-look complex PolSAR data representation* e podemos definir o vetor de espalhamento por $\mathbf{S} = [S_{hh}, S_{hv}, S_{vv}]^H$.

Dados polarimétricos são usualmente sujeitados a um processo de várias visadas com o intuito de melhorar a razão entre o sinal e o seu ruído. Para esse fim, matrizes positivas definidas hermitianas estimadas são obtidas computando a média de L visadas independentes de uma mesma cena. Resultando na matriz de covariância amostral estimada \mathbb{Z} conforme [?], [?]

$$\mathbf{Z} = \frac{1}{L} \sum_{l=1}^{L} \mathbf{s}_l \mathbf{s}_l^H, \tag{8}$$

onde \mathbf{s}_l com $l=1,\ldots,L$ é uma amostra de L vetores complexos distribuídos como \mathbf{S} , assim a matriz de covariância amostral associada a \mathbf{S}_l , com $l=1,\ldots,L$ denotam o espalhamento para cada visada L

Sendo i = j

$$\mathbf{S}_{ii}\overline{\mathbf{S}}_{ii} = (R_{ii} + iI_{ii})\overline{(R_{ii} + iI_{jj})}$$

$$\mathbf{S}_{ii}\overline{\mathbf{S}}_{ii} = (R_{ii} + iI_{ii})(R_{ii} - iI_{ii})$$

$$\mathbf{S}_{ii}\overline{\mathbf{S}}_{ii} = R_{ii}^2 + I_{ii}^2$$
(9)

e considerando $i \neq j$

$$\mathbf{S}_{ii}\overline{\mathbf{S}}_{ij} = (R_{ii} + iI_{ii})\overline{(R_{ij} + iI_{ij})}$$

$$\mathbf{S}_{ii}\overline{\mathbf{S}}_{ij} = (R_{ii} + iy_{ii})(I_{ij} - iI_{ij})$$

$$\mathbf{S}_{ii}\overline{\mathbf{S}}_{ij} = (R_{ii}R_{ij} + I_{ii}I_{ij}) + i(R_{ij}I_{ii} - R_{ii}I_{ij})$$

$$(10)$$

Definindo,

$$RC_{ij} = R_{ii}R_{ij} + I_{ii}I_{ij} (11)$$

e

$$IC_{ij} = R_{ij}I_{ii} - R_{ij}I_{ii} \tag{12}$$

Sendo a variável randômica gaussiana complexa $\mathbf{C_{i,j}} = RC_{ij} + iIC_{ij}$, ou ainda, $\mathbf{C_{i,j}} = (R_{ii}R_{ij} + I_{ii}I_{ij}) + i(R_{ij}I_{ii} - R_{ij}I_{ii})$. Podemos escrever uma variável randômica gaussiana complexa 4-variada $(R_{ii}, R_{ij}, Iii, I_{ij})$.

De acordo com ([?])

$$\mathbf{C} = \begin{bmatrix} E(X_i X_j) & E(X_i Y_j) \\ E(Y_i X_j) & E(Y_i Y_j) \end{bmatrix}.$$
 (13)

Tal que

$$\mathbf{C} = \begin{cases} \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \sigma_j^2 & \text{se} \quad i = j, \\ \frac{1}{2} \begin{bmatrix} \alpha_{ij} & -\beta_{ij} \\ \beta_{ij} & \alpha_{ij} \end{bmatrix} \sigma_j \sigma_k & \text{se} \quad i \neq j. \end{cases}$$
(14)

III. FUNÇÕES DE DENSIDADE

Sendo $(R_{ii}, R_{ij}) \sim N2(0, C_{ij})$ podemos observar na tabela anterior que

$$C_{ij} = \begin{bmatrix} \sigma_{ii}^2 & \rho_{ii,ij}\sigma_{ii}\sigma_{ij} \\ \rho_{ii,ij}\sigma_{ii}\sigma_{ij} & \sigma_{ij}^2 \end{bmatrix},$$
(15)

A pdf para esta distribuição normal é:

$$f_{Z_{R_{ii}R_{ij}}}(z) = \frac{1}{\pi\sigma_{ii}\sigma_{ij}\sqrt{1-\rho_{ii,ij}^2}} \exp\left(\frac{\rho_{ii,ij}z}{\sigma_{ii}\sigma_{ij}(1-\rho_{ii,ij})^2}\right) K_0\left(\frac{|z|}{(\sigma_{ii}\sigma_{ij}(1-\rho_{ii,ij})^2}\right).$$
(16)

Definindo o funcional $\Theta(z; \sigma_p, \sigma_q, \gamma)$

$$\Theta(z; \sigma_p, \sigma_q, \gamma) = \frac{1}{\pi \sigma_p \sigma_q \sqrt{1 - \gamma^2}} \exp\left(\frac{\gamma z}{\sigma_p \sigma_q (1 - \gamma)^2}\right) K_0\left(\frac{|z|}{(\sigma_p \sigma_q (1 - \gamma)^2}\right).$$
(17)

Sendo $(I_{ii}, I_{ij}) \sim N2(0, C_{ij})$ podemos observar na tabela anterior que

$$C_{ij} = \begin{bmatrix} \sigma_{ii}^2 & \rho_{ii,ij}\sigma_{ii}\sigma_{ij} \\ \rho_{ii,ij}\sigma_{ii}\sigma_{ij} & \sigma_{ij}^2 \end{bmatrix}, \tag{18}$$

obs: mesma distribuição!!!!!!

IV. DISTRIBUIÇÃO CONJUNTA

Sendo $(R_{ii}, R_{ij}, I_{ii}, I_{ij}) \sim N2(0, C_{ii,ij})$ podemos observar na tabela anterior que

$$C_{ii,ij} = \begin{bmatrix} \sigma_{ii}^2 & \rho_{ii,ij}\sigma_{ii}\sigma_{ij} & 0 & \eta_{ii,ij}\sigma_{ii}\sigma_{ij} \\ \rho_{ii,ij}\sigma_{ii}\sigma_{ij} & \sigma_{ij}^2 & -\eta_{ii,ij}\sigma_{ii}\sigma_{ij} & 0 \\ 0 & -\eta_{ii,ij}\sigma_{ii}\sigma_{ij} & \sigma_{ii}^2 & \rho_{ii,ij}\sigma_{ii}\sigma_{ij} \\ \eta_{ii,ij}\sigma_{ii}\sigma_{ij} & 0 & \rho_{ii,ij}\sigma_{ii}\sigma_{ij} & \sigma_{ij}^2 \\ \end{bmatrix},$$
(19)

Realizar a transformação

$$\begin{bmatrix} Z = R_{ii}R_{ij} + I_{ii}I_{ij} \\ U_1 = R_{ii} \\ U_2 = R_{ij} \\ U_3 = I_{ii} \end{bmatrix},$$
(20)

OBS: Ler o Método do jacobiano para descobrir a distribuição!!!!

TABLE I Tabela

	R_{hh}	I_{hh}	R_{hv}	I_{hv}	R_{vv}	I_{vv}
R_{hh}	σ_{hh}^2	0	$ ho_{hh,hv}\sigma_{hh}\sigma_{hv}$	$\eta_{hh,hv}\sigma_{hh}\sigma_{hv}$	$\rho_{hh,vv}\sigma_{hh}\sigma_{vv}$ $\eta_{hh,vv}\sigma_{hh}\sigma_{vv}$	$\eta_{hh,vv}\sigma_{hh}\sigma_{vv}$
I_{hh}	0	σ_{hh}^2	$-\eta_{hh,hv}\sigma_{hh}\sigma_{hv}$	$ ho_{hh,hv}\sigma_{hh}\sigma_{hv}$	$-\eta_{hh,vv}\sigma_{hh}\sigma_{vv}$ $\rho_{hh,vv}\sigma_{hh}\sigma_{vv}$	$ ho_{hh,vv}\sigma_{hh}\sigma_{vv}$
R_{hv}	$ ho_{hh,hv}\sigma_{hh}\sigma_{hv}$	$-\eta_{hh,hv}\sigma_{hh}\sigma_{hv}$	σ_{hv}^2	0	$ ho_{hv,vv}\sigma_{hv}\sigma_{vv}$	$\eta_{hv,vv}\sigma_{hv}\sigma_{vv}$
I_{hv}	$\eta_{hh,hv}\sigma_{hh}\sigma_{hv}$	$ ho_{hh,hv}\sigma_{hh}\sigma_{hv}$	0	σ_{hv}^2	$-\eta_{hv,vv}\sigma_{hv}\sigma_{vv}$	$ ho_{hv,vv}\sigma_{hv}\sigma_{vv}$
R_{vv}	$ ho_{hh,vv}\sigma_{hh}\sigma_{vv}$	$-\eta_{hh,vv}\sigma_{hh}\sigma_{vv}$	$ ho_{hv,vv}\sigma_{hv}\sigma_{vv}$	$-\eta_{hv,vv}\sigma_{hv}\sigma_{vv}$	σ_{vv}^2	0
I_{vv}	$\eta_{hh,vv}\sigma_{hh}\sigma_{hv}$	$ ho_{hh,vv}\sigma_{hh}\sigma_{vv}$	$\eta_{hv,vv}\sigma_{hv}\sigma_{vv}$	$ ho_{hv,vv}\sigma_{hv}\sigma_{vv}$	0	σ_{nn}^2