

Clustering Algorithm

구름 도시공학과 일반대학원

한양대학교

- 1. 클러스터링 알고리즘
- 2. 클러스터링 활용 이미지 분석

Clustering (군집분석)

$$X(x_1, x_2, \dots, x_n) \to y$$

$$X(x_1, x_2, \dots, x_n)$$

K-means 알고리즘

K-means 알고리즘

```
Input:

D= {t1, t2, .... Tn } // Set of elements

K // Number of desired clusters

Output:

K // Set of clusters

K-Means algorithm:

Assign initial values for m1, m2,.... mk

repeat

assign each item ti to the clusters which has the closest mean;
calculate new mean for each cluster;
until convergence criteria is met;
```

송파구 소형 공동주택

K-means 알고리즘 결과

DBSCAN(Density-based spatial clustering of applications with noise)

DBSCAN 결과

- 1. 클러스터링 알고리즘
- 2. 클러스터링 활용 이미지 분석

K-means 알고리즘을 이용한 색깔 검출

이미지의 각 픽셀은 RGB 3가지 색깔 공간의 특정 위치 좌표를 의미, 이를 이용하여 Clustering을 수행

11

Centroind 좌표의 색깔을 표시

DBScan으로 각 블록을 재 구분

CNN 학습 결과와 Kmeans 활용

Flatten Layer 분석

25차원으로 데이터 축소 효과 유사한 벡터를 군집화 하면 이미지 차이 확인 가능

클러스터 1 클러스터 2 클러스터 3 클러스터 4

- 1. 클러스터링 알고리즘
- 2. 클러스터링 활용 이미지 분석

Transformers (신경망 언어모델 라이브러리) 강좌

https://wikidocs.net/book/8056

딥 러닝을 이용한 자연어 처리 입문

https://wikidocs.net/book/2155

LSTM Seq2Seq 모델

인코더와 디코더 형태

첫째, 하나의 고정된 크기의 벡터에 모든 정보를 압축하려고 하니까 정보 손실이 발생합니다. 둘째, RNN의 고질적인 문제인 기울기 소실(vanishing gradient) 문제가 존재합니다.

어텐션 함수(Attention Function)

Dense

닷-프로덕트 어텐션(Dot-Product Attention)

출처: 딥 러닝을 이용한 자연어 처리 입문

어텐션(Attention)

인코더와 셀프 어텐션

