9.13

Posons
$$f(x) = e^{-x^2}$$
.

La fonction
$$f$$
 est paire, car $f(-x) = e^{-(-x)^2} = e^{-x^2} = f(x)$.

Puisque l'axe des ordonnées est un axe de symétrie du graphe de la fonction f, les coordonnées des sommets du rectangle s'écrivent : A(-x;0), B(x;0), C(x;e^{-x^2}) et D(-x;e^{-x^2}) .

$$A(-x;0)$$
, $B(x;0)$, $C(x;e^{-x^2})$ et $D(-x;e^{-x^2})$

L'aire du rectangle ABCD s'exprime au moyen de cette fonction :

$$\mathcal{A}(x) = 2 x e^{-x^2} \quad \text{où } x \in [0; +\infty[$$

Étudions la croissance de la fonction \mathcal{A} , afin d'en déterminer le maximum.

$$\mathcal{A}'(x) = (2 x e^{-x^2})'$$

$$= (2 x)' e^{-x^2} + 2 x (e^{-x^2})'$$

$$= 2 e^{-x^2} + 2 x e^{-x^2} (-x^2)'$$

$$= 2 e^{-x^2} + 2 x e^{-x^2} (-2 x)$$

$$= 2 e^{-x^2} - 4 x^2 e^{-x^2}$$

$$= 2 e^{-x^2} (1 - 2 x^2)$$

$$= 2 e^{-x^2} (1 + \sqrt{2} x) (1 - \sqrt{2} x)$$

	$-\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$		
$2 e^{-x^2}$	+	+	+
$1+\sqrt{2}x$	- () +	+
$1-\sqrt{2}x$	+	+ () –
\mathcal{A}'	- () + () –
${\cal A}$	\searrow m	in 7 m	ax 📐

L'aire du rectangle ABCD est ainsi maximale si $x = \frac{\sqrt{2}}{2}$.

On calcule
$$f(\frac{\sqrt{2}}{2}) = e^{-(\frac{\sqrt{2}}{2})^2} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} = \frac{\sqrt{e}}{e}$$

D'où
$$A(-\frac{\sqrt{2}}{2};0)$$
 $B(\frac{\sqrt{2}}{2};0)$ $C(\frac{\sqrt{2}}{2};\frac{\sqrt{e}}{e})$ $D(-\frac{\sqrt{2}}{2};\frac{\sqrt{e}}{e})$