MENU ANALYSIS CONTACT MACHINE LEARNIN

0

FAKE ACCOUNT DETECTION

A study using machine learning algorithm

CONTENTS

- 1. Problem
- 2. Implementation and dataset
- 3. Package used to developing models
- 4. Solution to Problem
- 5. Real world prediction System
- 6. Individual Report

TEAM MEMBERS

S5 CSE - A

- Adil Muhammed Ashraf P. K AM.EN.U4CSE19003
- Praveena K AM.EN.U4CSE19043
- Sayooj B Kumar AM.EN.U4SCE19050
- Taniya Rajesh AM.EN.U4CSE19057

PROBLEM

0

INTRODUCTION

There has been a rise of fake engagements which spread false information which affects users. Detection of these kinds of malicious account is significant, so as to avoid loss of sensitive information, unnecessary trolls and political stir-ups, fraudulent purposes.

PACKAGES USED

MENU **ANALYSIS** CONTACT

- Numpy: python library for working with arrays.
- Pandas: python library for dataframe manipulation.
- Matplotlib: library for creating interesting visualization.
- Seaborn: library built on top of matplotlib, high-level interface with attractive designs. Used for heatmap.
- Sklearn: library used for predictive data analysis.

DATA COLLECTION

Request: Python library which send automated http requests

LIVE PREDICTION

Flask: Flask is a micro web framework written in Python.

SOLUTION TO PROBLEM

0

COLLECTION OF DATA

Collect necessary data needed for models

ACCURACY

Testing accuracy of the models

MODELS

Train different models and predict using them

LIVE PREDICTION

After analyzing, created a live web application which predicts accounts

•

COLLECTION OF

DATA

0

DATA COLLECTION

For the dataset, extracted accounts from Instagram using web scraper, which has details on whether the account has profile picture, number of followers and following, if private account enabled, professional account or not, number of posts shared, likes, tags and comments.

Data Collector

0

0

DATA FORMATTING

- Converted true to 1 and false to 0
- Null values to 0
- String to length of strings

0

KNN

K-nearest neighbour is a supervised ML algorithm. The algorithm can be used to solve both classification and regression problem statements. The number of nearest neighbours to a new unknown variable that has to be predicted or classified is denoted by the symbol 'K'.

0

*LOGISTIC REGRESSION

Logistic Regression is commonly used for classification problems. It is a predictive analysis algorithm and based on the concept of probability. The hypothesis of logistic regression tends it to limit the cost function between 0 and 1.

0

SVM

Support Vector Machine is a supervised algorithm that can be used for both classification and regression. Support Vectors are simply the coordinates of individual observation. The SVM classifier is a frontier that best segregates the two classes (hyper-plane/ line).

80-85%

WORKING

TRAIN MODEL

Used previously collected data to train model

USER INPUT

Accepts input from user and fit into model and finally predict them

0

OUTPUT

Predict is account is fake or not and then predict the output

This Application is developed using flask framework where application accept input from user and collect data then predicts automatically

LIVE PREDICTION

Access the Hosted Application Source Code

INDIVIDUAL

DATASET FEATURES

- is_verified
- has_anonymous_profile_picture
- biography_len
- external url
- followers
- following
- has_clips
- media_count_of_data_collected

- highlight_count
- is_professional_account
- is_private
- media_count
- total_tags
- total likes
- total_comments
- name_length
- average likes

SAYOOJ

DATASET FEATURES

- is_verified
- has_anonymous_profile_picture
- biography_len
- followers
- following
- has_clips
- highlight_count

- is_professional_account
- is_private
- media_count
- total_tags
- total likes
- total_comments
- is_fake

TANIYA

DATASET FEATURES

- full_name
- is_verified
- has_anonymous_profile_picture
- biography_len
- external_url
- followers
- following
- has_clips
- media_count_of_data_collected

- highlight count
- is_professional_account
- is_private
- media_count
- total_tags
- total likes
- total comments
- name_length

DATASET FEATURES

- len_username
- Len_fullname
- Is_verified
- has_anonymous_profile_picture
- biography_len
- followers

- following
- is_professional_account
- is_private
- media count
- is_fake

PRAVEENA

0

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

