Neural Field Classifiers via Target Encoding and Classification Loss

Anonymous authors

Efficient Learning Lab@POSTECH
Junwon Seo

Recap: LEARNING LABEL ENCODINGS FOR DEEP REGRESSION

Example

- The age of 52 would be 110100 using binary conversion as the encoder. (Training phase)
- 110100 would be converted to real-value prediction using a decoding function (decimal convert)
 (Inference phase)

Neural Field

- Neural field methods emerge as promising methods for parameterizing a field
 - that has a target value for each point in space and time
- Try to predict some coordinate-based continuous target values
 - RGB for Neural Radiance Field

NeRF Basics

$$\hat{\pmb{C}}(\pmb{r}) = \int_{t_n}^{t_f} T(t) \sigma(t) \pmb{c}(t) dt$$
 where
$$T(t) = \exp(-\int_{t_n}^t \sigma(s) ds)$$

$$L(\Theta) = \frac{1}{\|\mathcal{R}\|} \sum_{\boldsymbol{r} \in \mathcal{R}} \|\hat{\boldsymbol{C}}(\boldsymbol{r}) - \boldsymbol{C}(\boldsymbol{r})\|_2^2$$

- NeRF **regresses** from a single 5D representation (x, y, z, θ , ϕ) to (σ , c)
 - 3D coordinates x = (x, y, z) / viewing directions $d = (\theta, \phi)$
 - Volume density σ and view-dependent color c = (r, g, b)

Motivation

Are **regression formulations** really better than **classification formulations** for neural field methods?

Motivation

- People naturally formulate neural fields as regression models
 - Because the targets are continuous values

- The authors claimed that there exist overlooked pitfalls
 - Each data point has its own ground-truth label in classical supervised learning methods
 - NeRF output N points' predictions per pixel.
 - Supervision signals for NeRF are obviously very weak and insufficient

Methodology – Target Encoding and Decoding

- Naïve target encoding rule is one-hot encoding
 - Directly use y as the class label (i.e. 256-class classification)
 - The number of logits increases to 768 from (computational cost ↑)
 - Ignore the relevant information carried by the classes
 - Suppose ground-truth label of a sample is 0
 - A model predicts 1 and another model predicts 255
 - Their loss will be equally high

Methodology – Target Encoding and Decoding

- Fortunately, the authors discover that the classical binary-number system can work well
 - For example, y = BinaryEncod(203) = [1, 1, 0, 0, 1, 0, 1, 1]

Methodology – Classification Loss

- Classification Loss
 - 2^{j-1} assigns a higher weight to the class with a higher place value.

$$l_{\text{b}}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{255} \sum_{j=1}^{8} 2^{j-1} \operatorname{BCE}(\hat{\boldsymbol{y}}^{(j)}, \boldsymbol{y}^{(j)})$$

Methodology – Classification Loss

- Alternative choice is...
 - Decode the predict probability \hat{y} back into a continuous value

$$l_{\rm c}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = \mathrm{BCE}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = \mathrm{BCE}\left(\frac{1}{255} \, \mathrm{BinaryDecod}(\hat{\boldsymbol{y}}), \boldsymbol{C}\right)$$

Methodology – Classification Loss

• Predicted probability \hat{C} (or \hat{y}) of NFC does not strictly lie in (0, 1)

$$l_{c}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = BCE(min(\hat{\boldsymbol{C}}, 1 - \epsilon), \boldsymbol{C})$$

$$L_{\rm NFC}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = \|\hat{\boldsymbol{C}} - \boldsymbol{C}\|_2^2 + \lambda \operatorname{BCE}(\min(\hat{\boldsymbol{C}}, 1 - \epsilon), \boldsymbol{C})$$

Experiments Settings

- Neural Field backbones
 - DVGO, vanilla NeRF, D-NeRF, NeuS
- Dataset
 - Static: Replica Dataset, Tanks and Temples Advanced
 - Dynamic: Lego and Hook
 - Challenging: Tanks and Temples Advanced
- Hyperparameters
 - Keep all hyperparameters same for them

• Static Scene

• Static Scene

Table 1: Quantitative results of DVGO on Replica Dataset.

Scene	Mode	PSNR(↑)	SSIM(↑)	$LPIPS(\downarrow)$
Scene 1	Regression Classification	13.03 34.63	0.508 0.934	0.726 0.0582
Scene 2	Regression Classification	14.81 33.82	0.654 0.942	0.640 0.0660
Scene 3	Regression Classification	15.66 34.04	0.661 0.965	0.634 0.0451
Scene 4	Regression Classification	18.17 36.52	0.696 0.977	0.546 0.0311
Scene 5	Regression Classification	15.17 35.93	0.640 0.974	0.504 0.0576
Scene 6	Regression Classification	21.33 29.75	0.854 0.941	0.254 0.0994
Scene 7	Regression Classification	22.54 34.77	0.865 0.966	0.231 0.0432
Scene 8	Regression Classification	15.89 33.40	0.724 0.952	0.519 0.0775
Mean	Regression Classification	17.08 34.11	0.700 0.956	0.507 0.0598

Table 2: Quantitative results of DVGO, (vanilla) NeRF, NeuS on T&T Dataset. The mean PSNR, SSIM, LPIPS are computed over four scenes of T&T.

Model	Mode	PSNR(↑)	SSIM(↑)	LPIPS(↓)
DVGO	Regression	22.41	0.776	0.236
	Classification	23.18	0.810	0.178
NeRF	Regression	22.16	0.679	0.382
	Classification	22.68	0.716	0.315
NeuS	Regression	19.97	0.620	0.413
	Classification	21.67	0.679	0.317

- Dynamic Scene
 - requires the capability of neural fields to model time domain.

Table 3: Quantitative results of D-NeRF on dynamic scenes, LEGO and Hook.

Scene	Mode	PSNR(↑)	SSIM(↑)	LPIPS(↓)
Lego	Regression Classification	21.64 23.11	0.839 0.886	0.165 0.121
Hook	Regression Classification	29.25 29.45	0.965 0.967	0.118 0.0392

- Challenging Scenes
 - Sparse: Fewer data for an object
 - Corrupted: Digital images often contain Gaussian noise

Table 4: Quantitative results of neural rendering with sparse training images.

Data Size	Mode	PSNR(↑)	SSIM(↑)	$LPIPS(\downarrow)$
20%	Regression	14.87	0.530	0.580
	Classification	19.38	0.629	0.395
40%	Regression	18.76	0.637	0.426
	Classification	21.73	0.711	0.340
60%	Regression	21.02	0.682	0.394
	Classification	22.27	0.728	0.329
80%	Regression	21.72	0.698	0.386
	Classification	22.46	0.734	0.322

- Challenging Scenes
 - Sparse: Fewer data for an object
 - Corrupted: Digital images often contain Gaussian noise

Table 5: Quantitative results of neural rendering with corrupted training images.

Noise Scale	Mode	PSNR(↑)	SSIM(↑)	LPIPS(↓)
0.2	Regression Classification	21.97 22.33	0.694 0.719	0.406 0.353
0.4	Regression Classification	21.33 22.08	0.663 0.692	0.45 1 0.391
0.6	Regression Classification	19.67 21.45	0.615 0.662	0.512 0.429

Ablation Study

$$L_{\rm NFC}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = \|\hat{\boldsymbol{C}} - \boldsymbol{C}\|_2^2 + \lambda \operatorname{BCE}(\min(\hat{\boldsymbol{C}}, 1 - \epsilon), \boldsymbol{C})$$

Figure 6: The curves of PSNR, SSIM, and LPIPS with respect to the hyperparameter λ . NFC is robust to a wide range of λ . Model: DVGO. Dataset: Replica Scene 3.

- Robustness to the hyperparameter
 - The quantitative results shows that a wide value range of λ can enhance the performance.

Limitation

- Target Encoding
 - In channel-wise classification loss
 - Is distance(relevant information) of binary-number system maintained?

$$l_{c}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = \text{BCE}(\hat{\boldsymbol{C}}, \boldsymbol{C}) = \text{BCE}\left(\frac{1}{255} \operatorname{BinaryDecod}(\hat{\boldsymbol{y}}), \boldsymbol{C}\right)$$

- Ignore the properties of the Neural Field.
 - Continuous!

Q & A