MATHEMATICS E-156, FALL 2014 Mathematical Foundations of Statistical Software

Date: 13 Feb 2014 Name: Robert Shear **Proof of the Week #3:**

Theorem: The sum of n independent Bernoulli random variables, each with parameter p, is a binomial random variable $Y \sim \text{Binom}(n, p)$, and

$$E[Y] = np, Var[Y] = np(1-p)$$

.

Proof: It is convenient to demonstrate the second part of the theorem first. A Bernoulli random variable with parameter $p, X \sim \text{Bern}(p)$, is given by $X: S \to \{0,1\}$ and P(X=1) = p. Therefore,

$$E[X] = (1 - p) \cdot 0 + p \cdot 1 = p.$$

Expectation is linear, so we may write

$$E[Y] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np.$$

The variance of X may be expressed as the expectation of the squares minus the square of the expectation:

$$Var[X] = E[X^{2}] - E[X]^{2}$$

$$= (1 - p) \cdot 0^{2} + p \cdot 1^{2} - p^{2}$$

$$= p - p^{2}$$

$$= p (1 - p).$$

By hypothesis, the X_i are independent and so the sum of the variances is the variance of the sums. Thus,

$$Var[Y] = \sum_{i=1}^{n} Var[X_i]$$
$$= \sum_{i=1}^{n} p (1 - p)$$
$$= np (1 - p).$$

To say that $Y \sim \text{Binom}(n, p)$ is to say that the probability density function of $Y = \sum_{i=1}^{n} X_i$ is given by

$$P(Y = y) = \binom{n}{y} p^y (1 - p)^{n-y}.$$

If Y=y then exactly y of the X's have the value 1. The probability of this occurring is p^y . There remain n-y instances of X which must take the value 0. The probability of this occurring is $(1-p)^{n-y}$. The term $p^y(1-p)^{n-y}$ can occur exactly $\binom{n}{y}$ ways, so $P(Y=y)=\binom{n}{y}p^y(1-p)^{n-y}$.

Note that by the binomial theorem,

$$\sum_{y=0}^{n} \binom{n}{y} p^y (1-p)^{n-y} = (p+1-p)^n = 1$$

confirming that Binom(n, p) is indeed a pdf.