

Discrete-Constrained Regression for Local Counting Models

Haipeng Xiong and Angela Yao National University of Singapore

QNRF

When will classification outperform regression in local counting models?

How to benefit regression from classification?

$_{\mathsf{\Gamma}}$ Discrete-constrained loss L_{dc} $\lnot_{\mathsf{\Gamma}}$ Global Count loss L_{ac}

Ground truth local counts are not accurate.

$$E(j,k) = C^{gt}(j,k) - C^{pre}(j,k)$$

$$True error GT error$$

$$E(j,k) = E^{true}(j,k) + \varepsilon(j,k)$$

Gradient is correct when outside the interval $[C^{gt}(j,k) - |\varepsilon(j,k)|, C^{gt}(j,k) + |\varepsilon(j,k)|]$

Such interval setting could be modelled via discretizing output range in classification. We adopt discretization like classification to tolerate the GT error.

Suppose
$$V_j < C^{gt} \le V_{j+1}$$
,

$$L_{dc} = \begin{cases} 0, & if \ V_j < C^{pre} \le V_{j+1} \\ |C^{pre} - C^{gt}|, & otherwise \end{cases}$$

simply using discrete regression loss L_{dc} would encounter discretization errors and make global counts imprecise

we can add global count loss L_{gc} to eliminate discretization errors

Overall loss $L = L_{dc} + L_{gc}$

Conclusion

- In counting, classification outperforms regression when the learning target is imprecise. Regression is vulnerable to GT error, while classification can tolerate it via discretization.
- Discrete constraints could be adopted to prevent regression models overfit the label noise.
- A novel discrete-constrained (DC) regression model is proposed in this paper. DC-regression is applicable to both counting and age estimation tasks.

Results

Ablation Study on Interval Partitions

•	Method	Interval Partition	SF	IΑ	SHB	
	Method	interval Fartition	MAE	MSE	MAE	MSE
	classification	linear	65.6	115.4	8.6	14.6
		log	64.3	112.3	8.7	17.2
		uep $\boxed{23}$	63.9	112.8	7.9	15.1
	DC-regression	linear	62.5	106.0	7.5	12.2
		log	61.6	96.7	7.1	11.1
		uep $\boxed{23}$	61.9	104.2	7.4	12.2
	DC-regression+ $L_{\rm gc}$	linear	60.3	95.5	6.6	11.0
		log	60.3	103.7	6.7	10.6
		uep $[23]$	61.3	97.5	6.7	10.2

Global count loss L_{qc} could eliminate the discretization error and make DCregression robust to the number of intervals.

Global count loss L_{gc} makes DC-regression robust to interval settings.

Comparison with SOTA on crowd counting datasets

SHA

SHB

	Backbone	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
CSRNet 5	VGG16	68.2	115.0	10.6	16.0	85.9	309.2	108.2	181.3
DRCN $\boxed{17}$	VGG16	64.0	98.4	8.5	14.4	82.3	328.0	112.2	176.3
BL [8]	VGG19	62.8	101.8	7.7	12.7	75.0	299.9	88.7	154.8
PaDNet [18]	VGG16	59.2	98.1	8.1	12.2			96.5	170.2
MNA [20]	VGG19	61.9	99.6	7.4	11.3	67.7	258.5	85.8	150.6
OT [22]	VGG19	59.7	95.7	7.4	11.8	68.4	283.3	85.6	148.3
UOT [9]	VGG19	58.1	95.9	6.5	10.2	60.5	252.7	83.3	142.3
Generalized Loss [21]	VGG19	61.3	95.4	7.3	11.7	59.9	259.5	84.3	147.5
regression (L_{reg})	VGG16	65.4	103.3	10.7	19.5	71.2	296.0	98.6	166.6
L_{BL}	VGG16	62.2	103.4	7.4	10.7	64.2	275.7	90.1	162.5
$L_{\mathrm{bias}}^{\lambda}$	VGG16	62.9	108.5	7.8	12.0	68.6	289.4	93.3	160.8
classification	VGG16	64.6	106.7	8.7	17.2	67.8	261.6	97.6	163.2
S-DCNet (cls) $[27]$	VGG16	58.3	95.0	6.7	10.7	65.2	272.8	104.4	176.1
DC-regression	VGG16	61.6	96.7	7.1	11.1	67.2	288.2	91.4	157.5
DC-regression+ $L_{\text{bias}}^{\lambda}$	VGG16	60.3	103.7	6.7	10.6	64.8	282.6	86.0	148.2
DC-regression+ L_{BL}	VGG16	60.7	101.0	7.1	11.0	61.6	263.2	87.1	152.1
S-DCNet (dcreg)*	VGG16	59.7	91.4	7.0	11.6	60.0	269.9	86.9	159.3
S-DCNet (dcreg) [†]	VGG16	59.8	100.0	6.8	11.5	62.1	268.9	84.8	142.3

Comparison with SOTA on age estimation datasets

Method	Mega				MegaA					
Method	MAE	RMSE	CA3	CA5	CA7	MAE	RMSE	CA3	CA5	CA7
Posterior 30										
Xia <i>et al.</i> [24]						2.80		62.50	82.37	
Yu et al. [19]			42.19	60.0	72.70			64.80	83.20	91.40
classification	5.57	7.15	39.72	57.10	71.45	2.91	4.14	68.19	84.82	93.03
regression	5.26	6.72	41.89	59.84	74.73	2.87	4.00	68.57	85.10	93.51
DC-regression	5.15	6.58	42.36	61.31	75.26	2.80	3.97	69.40	85.98	93.79

