МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и инворматики Кафедра информационных систем управления

Отчет по лабораторной работе 9 "Решение матричных игр методом Брауна-Робинсон" Вариант 5

Выполнил: Карпович Артём Дмитриевич студент 3 курса 7 группы

> Преподаватель: Кваша Дарья Юрьевна

Решение матричных игр методом Брауна-Робинсон

Задача

Найти приближенной решение для игры с данной платежной матрицей: .-

$$\begin{bmatrix} -6 & 0 & 3 & -8 \\ 2 & 1 & 4 & -7 \\ -1 & 5 & -2 & 6 \end{bmatrix}$$

Решением матричной игры в чистых стратегиях называется пара чистых стратегий (i_0, j_0) первого и второго игроков, которые образуют седловую точку матрицы $A: a_{ij_0} \leq a_{i_0j_0} \leq a_{i_0j}, i=1,...,m, j=1,...,n$.

Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) , которая образует седловую точку функции $E_A(p, q)$, т. е.

$$E_A(p, q^0) \le E_A(p^0, q^0) \le E_A(p^0, q), p \in \Sigma_m, q \in \Sigma_n.$$

Седловая точка задачи 1 не найдена.

Результатом стало то, что седловой точки в этой задаче нет, тогда цена игры находится в пределах $-4 \le y \le -2$. Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии).

Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы.

Иногда на основании простого рассмотрения матрицы игры можно сказать, что некоторые чистые стратегии могут войти в оптимальную смешанную стратегию лишь с нулевой вероятностью.

Говорят, что i-я стратегия 1—го игрока доминирует его k—ю стратегию, если $a_{ij} \geq a_{kj}$ для всех $j \in N$ и хотя бы для одного j $a_{ij} > a_{kj}$. В этом случае говорят также, что i-я стратегия (или строка) — доминирующая, k-я -– доминируемая.

Говорят, что j-я стратегия 2-го игрока доминирует его l-ю стратегию, если для всех $j \in M$ $a_{ij} \leq a_{il}$ и хотя бы для одного i $a_{ij} < a_{il}$. В этом случае j-ю стратегию (столбец) называют доминирующей, l-ю – доминируемой.

Стратегия A_2 доминирует над стратегией A_1 (все элементы строки 2 больше или равны значениям 1-ой строки), следовательно, исключаем 1-ую строку матрицы. Вероятность $p_1 = 0$.

С позиции проигрышей игрока В стратегия B_1 доминирует над стратегией B_3 (все элементы столбца 1 меньше элементов столбца 3), следовательно, исключаем 3-й столбец матрицы. Вероятность $q_3 = 0$.

С позиции проигрышей игрока В стратегия B_4 доминирует над стратегией B_2 (все элементы столбца 4 меньше элементов столбца 2), следовательно, исключаем 2-й столбец матрицы. Вероятность $q_2 = 0$.

$$\begin{array}{c|c} 2 & -7 \\ \hline 4 & -2 \end{array}$$

Мы свели игру 3х4 к игре 2х2.

Так как игроки выбирают свои чистые стратегии случайным образом, то выигрыш игрока I будет случайной величиной. В этом случае игрок I должен выбрать свои смешанные стратегии так, чтобы получить максимальный средний выигрыш.

Аналогично, игрок II должен выбрать свои смешанные стратегии так, чтобы минимизировать математическое ожидание игрока I.

Пусть игра задана матрицей A размерности mxn. Каждое разыгрывание игры в чистых стратегиях будет далее называться партией. Метод Брауна-Робинсон — это итеративная процедура построения последовательности пар смешанных стратегий игроков, сходящейся к решению матричной игры.

В 1—ой партии оба игрока выбирают произвольную чистую стратегию. Пусть сыграно k партий, причем выбор стратегии в каждой партии запоминается. В (k+1)—ой партии каждый игрок выбирает ту чистую стратегию, которая максимизирует его ожидаемый выигрыш, если противник играет в соответствии с эмпирическим вероятностным распределением, сформировавшимся за k партий. Оценивается интервал для цены игры и, если он достаточно мал, процесс останавливается. Полученные при этом вероятностные распределения определяют смешанные стратегии игроков.

Пусть на первом этапе выбрана стратегия 1

Итерация 1. Минимальный элемент для нее равен -7 и находится под номером j=2. Следовательно, игрок II выбирает стратегию 2

Максимальный элемент равен -2 и находится под номером j=2. Следовательно, игрок I выбирает стратегию 2

Итерация 2. Минимальный элемент для нее равен -9 и находится под номером j=2. Следовательно, игрок II выбирает стратегию 2

Максимальный элемент равен -4 и находится под номером j=2. Следовательно, игрок I выбирает стратегию 2

Остальное решение сведем в таблицу.

k	i	B_1	B_2	j	A_1	A_2	$V_{ m min}$	$V_{ m max}$	$V_{\rm cp}$
1	1	2	-7	2	-7	-2	-7	-2	$-\frac{9}{2}$
2	2	-2	-9	2	-14	-4	$-\frac{9}{2}$	-2	$-\frac{13}{4}$
3	2	-6	-11	2	-21	-6	$-\frac{11}{3}$	-2	$-\frac{17}{6}$
4	2	-10	-13	2	-28	-8	$-\frac{13}{4}$	-2	$-\frac{21}{8}$
5	2	-14	-15	2	-35	-10	-3	-2	$-\frac{5}{2}$
6	2	-18	-17	1	-33	-14	-3	$-\frac{7}{3}$	$-\frac{7}{3}$
7	2	-22	-19	1	-31	-18	$-\frac{22}{7}$	$-\frac{18}{7}$	$-\frac{20}{7}$
8	2	-26	-21	1	-29	-22	$-\frac{13}{4}$	$-\frac{11}{4}$	-3
9	2	-30	-23	1	-27	-26	$-\frac{10}{3}$	$-\frac{26}{9}$	$-\frac{28}{9}$
10	2	-34	-25	1	-25	-30	$-\frac{17}{5}$	$-\frac{5}{2}$	$-\frac{59}{20}$

В таблице приведены первые 10 шагов методом Брауна-Робинсон.

В результате игрок A применял 1 раз стратегию A_1 , 9 раз - стратегию A_2 ;

Игрок B-5 раз стратегию B_1 , 5 раз – стратегию B_2 .

Поэтому оптимальные стратегии игроков, приближенно вычисленные по относительным частотам использования своих чистых стратегий, имеют вид:

$$A = (1/10, 9/10),$$

$$B = (5/10, 5/10) = (1/2, 1/2)$$

Цена игры –
$$W = -\frac{59}{20}$$
.