LVC 2 - Glossary of Notations

 W_i = Residual belonging to the i^{th} record

 σ_{i}^{2} = Variance of W_{i} (the residual belonging to i^{th} record)

 $X_{i} = A$ vector for i^{th} record

 θ = Approximated weight vector

 θ^* = Actual weight vector

 \approx = Approximately equal to

 X_{t} = Sample time series

 $Y_t =$ The forecasted t^{th} term

 X_{i-1} = Time series with lag equal to 1

 $U_{_t}$ = Error term in the forecasting model

 $X_{aug} = A$ set of possible vectors in X and its linear combination

 θ^T = Transpose of the vector/matrix θ

 $\phi(X) = A$ transformed version of the feature vector X

 R^2 = R-squared, i.e., fraction of variation in target variable that has been explained by the features

 α = Regularization hyperparameter

 $|\theta|$ = Absolute value of θ

E = Expected value

 $E_i = \text{Error for } i^{th} \text{ fold in cross validation}$

P = Probability distribution

g(x) = A function of the inputs i.e. x to estimate the weights θ

 $X_i = i^{th}$ vector from the input feature vectors

 $\overline{X}_{i}^{m} = i^{th}$ random record of the m^{th} sample taken from the original data set

 $\widehat{\Theta}^i$ = Actual value of the estimate $\widehat{\Theta}$ from the i^{th} sample in the bootstrap

 $\widehat{\Theta}_{ano}$ = Average value of the estimate

 $var(\widehat{\Theta})$ = Variance of the estimate in the bootstrapping

 $se(\widehat{\Theta})$ = Standard error of the estimate