Review on

[MiniONN, 2017], [Gazelle, 2018] and [MPCViT, 2022]

Xue Yufei, Southeast University 03/31/2023

Content

- 1. MiniONN
- ✓ Protocol for matrix-vector multiplication
- ✓ Protocol for linear/non-linear operation (Sigmoid)
- 2. GAZELLE
- ✓ FHE
- ✓ SIMDScMult/Conv
- 3. MPCViT
- ✓ Idea

MiniONN: Multiplication

Input:

 \mathcal{S} : $\mathbf{w} \in \mathbb{Z}_N^n$

 \mathcal{C} : $\mathbf{r} \in \mathbb{Z}_N^n$

Output:

S: a random number $u \in \mathbb{Z}_N$;

 $C: v \in \mathbb{Z}_N$, s.t., $u + v \pmod{N} = \mathbf{w} \cdot \mathbf{r}$.

Input:

- S: a vector $\mathbf{w} \in \mathbb{Z}_N^n$;
- C: a random vector $\mathbf{r} \in \mathbb{Z}_N^n$.

Output:

- S: a random number $u \in \mathbb{Z}_N$;
- $C: v \in \mathbb{Z}_N$, s.t., $u + v \pmod{N} = \mathbf{w} \cdot \mathbf{r}$.

Figure 1: Ideal functionality $\mathcal{F}_{\text{triplet}}$: generate a dot-product triplet.

$$u \rightarrow S$$

$$r, v \rightarrow C$$

Figure 3: Dot-product triplet generation.

MiniONN: Linear operation

Input: $S: \mathbf{W} \in \mathbb{Z}_N^{m \times l}, \ \mathbf{X}^{\mathcal{S}} \in \mathbb{Z}_N^{l \times n}, \ \mathbf{B} \in \mathbb{Z}_N^{m \times n}$ $\mathcal{C}: \mathbf{X}^{\mathcal{C}} \in \mathbb{Z}_N^{l \times n}$ Output: $S: \text{ A random matrix } \mathbf{Y}^{\mathcal{S}}$ $\mathcal{C}: \mathbf{Y}^{\mathcal{C}} \text{ s.t., } \mathbf{Y}^{\mathcal{C}} + \mathbf{Y}^{\mathcal{S}} = \mathbf{W} \cdot (\mathbf{X}^{\mathcal{C}} + \mathbf{X}^{\mathcal{S}}) + \mathbf{B}$

$$\mathcal{S}: \qquad \qquad \mathcal{C}:$$
 precomputation
$$\begin{aligned} & \text{for } i = 1 \text{ to } m \\ & \text{for } j = 1 \text{ to } n \end{aligned} \\ & \underbrace{(u_{i,j}, v_{i,j}) \leftarrow \mathcal{F}_{\text{triplet}}(\mathbf{w}_i, \mathbf{x}_j^{\mathcal{C}})}_{\text{end}} \\ & \overset{\text{end}}{\text{end}} \end{aligned}$$

预生成三元组, 节省开销

$$\longrightarrow$$
 $\mathbf{Y}^C + \mathbf{Y}^S = \mathbf{Y}$

Figure 4: Oblivious linear transformation.

output Y^{C}

output Y^S

MiniONN: Activation functions

ReLU: garbled circuit

Input:

- $\mathcal{S}: y^{\mathcal{S}} \in \mathbb{Z}_N$;
- $\mathcal{C}: y^{\mathcal{C}}, r \in \mathbb{Z}_N$.

Output:

- $S: x^S := compare(y,0) \cdot y r \pmod{N}$ where $y = y^S + y^C \pmod{N}$;
- $C: x^C := r$.

Figure 5: The ideal functionality \mathcal{F}_{ReLU} .

Sigmoid:

- 1. 多项式拟合 例: $x^3 + x^2 + x = x \times (x^2 + x + 1) \to x \times x \times (x + 1)$
- 2. 分段计算,会用到compare单元

MiniONN: Sigmoid

1. 使用分段线性拟合

2. 使用LUT计算非线性函数 (A^{-1})

MiniONN: Sigmoid

3. 复用计算单元

GAZELLE: FHE

加法同态: $\mathbf{En}(x+y) = \mathbf{En}(x) \oplus \mathbf{En}(y)$

乘法同态: $\mathbf{En}(x \times y) = \mathbf{En}(x) \otimes \mathbf{En}(y)$

 $\mathbf{FFT}(x+y) = \mathbf{FFT}(x) + \mathbf{FFT}(y)$

 $FFT(x \times y) = FFT(x) * FFT(y)$

线性系统的线性性质

- How did the authors think about it?
- Is there an optimization? (To note)

GAZELLE: Conv

Optimization for padding

Channel Packing:

Input c_i , output c_o , integer $c_n \rightarrow \text{Input } \frac{c_i}{c_n}$, output $\frac{c_o}{c_n}$

计算结果一样吗? (to note)

GAZELLE: Conv

MPCViT:

General idea:

Low-latency

NLP skills \rightarrow CV

MPCViT: Searching for MPC-friendly Vision Transformer with Heterogeneous Attention

 $\alpha A + (1 - \alpha)B$

Step:

1. find most time-consuming operation

2. get rid of e^x , replaced by ScaleAttn+RSAttn

Туре	Top-1 Acc. (%)	Latency (s)
Softmax Attention	92.69	6.82
ReLU Attention	fail	fail
ReLU6 Attention	90.50	3.02
Sparsemax Attention [24]	91.23	3.23
XNorm Attention [10]	91.24	13.25
Square Attention	91.27	0.72
2Quad Attention [23]	91.86	4.22
ScaleAttn [12]	91.52	0.66
ReLU Softmax Attention (RSAttn) [14]	92.31	5.32

MPCViT:

1. Differentiable NAS

$$\alpha \cdot \text{ReLUSoftmax}(\frac{QK^T}{\sqrt{d_k}})V + (1-\alpha) \cdot \frac{\text{ScaleAttn}(Q, K, V)}{\sqrt{d_k}}$$

取RSAttn的准确性, 取ScaleAttn的低时延, 更倾向ScaleAttn

2. How to effectively train?

Token-wise feature-based KD