山东科技大学 2008—2009 学年第一学期

《线性代数》考试试卷 (A卷)

班级				好	生名_				学号_		
题号	_	=	111	四	五	六	七	八	总得分	评卷人	审核人
得分											
一、填空	题(每题	4分,	共 2	20分))					
1、已知向	可量组	$\Delta \alpha_1 =$	(1, 2	2, –	1, 1)	α_{1}^{T}	$_{2} = (2$, 0,	t , $0)^T$	$\alpha_3 = (0, -4)$	4, 5, $-2)^T$ 的
秩为2,「	U t = 1				0						
2、4为1	n阶方	阵,	且 A	= 2,	则	$AA^* =$	·		o		
3、设三阶矩阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,如果 $ A =36$, $\lambda_1=2,\lambda_3=3$,则 $\lambda_3=$ 。											
4. 写出四级行列式中含有因子 $a_{11}a_{23}$ 的项。											
5. 已知二	二次型	$f(x_1)$	x_1 , x_2	$, x_3$	$= x_1^2$	+4x	$\frac{1}{2} + 2x$	$x_3^2 + 2$	$2tx_1x_2 + 2$	x_1x_3 是正定二	次型,则 t 的取
值范围_				0							
二、选择	题(每题	4分,	共2	20分))					
1. 设向	量组 <i>I</i>	$\alpha_1 = \alpha_1$	$=(a_1,$	a_{2}, a_{3}	$)^{T}, \alpha$	$_{2} = (b$	(b_1, b_2, b_3)	$(b_3)^T$,	$\alpha_3 = (c_1, \ldots, c_n)$	$(c_2,c_3)^T;$	
$II: \beta_1 = 0$	(a_1, a_2)	$,a_3,a$	$(a_4)^T$	$\beta_2 = 0$	(b_1, b_2)	$,b_{3},b_{4}$	$(a,b)^T$	$B_3 = (a_3)^2$	c_1, c_2, c_3, c_4	$(\mathcal{C}_4)^T$,则()。
A. (I)	线性	相关,	,则(II)线	性相	关	В.	(I) 约	线性无关	,则(<i>II</i>)线性	无关
C. (<i>II</i>)线性	无关	,则	(I)线	性无	关	D.	(I) 约	线性无关	的充要条件是	(II) 线性无关
2. 设4	是三阶	介方阵	Ē, P	是三	阶可证	逆矩阵	车, 则	J ()。		

A. 秩(PA)<秩(A) B. 秩(PA)> 秩(A) C. 秩(PA) = 秩(A) D. 秩(PA) = 3

3. 设A是数域P上n阶可逆矩阵,则A的不同特征值的个数()。

- A. 小于等于n B. 大于等于n C. 等于n D. 不等于n

- 4. 设A是n阶可逆矩阵,则()。

- A. A = E相似 B. A = E合同 C. A = E等价 D. A = E相等
- 5. 设n 元齐次线性方程组Ax=0 中R(A)=r,则Ax=0 有非零解的充要条件是(
 - A. r = n
- B. r < n
- C. $r \ge n$
- D. r > n
- Ξ 、(8分) 计算n阶行列式 $\begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ \vdots & \vdots & & & \vdots \\ a & a & a & \cdots & x \end{vmatrix}$ 的值。
- 四、(8分)解矩阵方程 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix} X = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}.$
- 五、 $(12\, eta)$ 问 λ 取何值时,非齐次线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$, $r_1 + r_2 + \lambda r_3 = \lambda^2$
 - (1) 有唯一解; (2) 无解;
- (3) 无穷多个解并求通解。

六、 $(8 \, \text{分})$ 证明: 若 a_1 , a_2 , a_3 线性相关, 而 a_2 , a_3 , a_4 线性无关.

则(1) a_1 可由 a_2 , a_3 线性表示; (2) a_4 不能由 a_1 , a_2 , a_3 线性表示。

七、(12分) 设矩阵
$$A = \begin{bmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix}$$
, 试求(1)矩阵 A 的秩; (2)矩阵 A 的

列向量组的一个最大无关组: 并把不属于最大无关组的列向量用最大无关组线性表示。 八、(12 分) 已知实二次型 $f = -2x_1x_2 + 2x_1x_3 + 2x_2x_3$,

- (1) 写出 f 的矩阵; (2) 求一个正交变换 x = py 把 f 化为标准形;
- (3) 写出 f 的正惯性指数。

山东科技大学 2008—2009 学年第一学期

《线性代数》考试试卷(A卷答案)

-. 1. 3 2.
$$2^n$$
 3. 6 4. $-a_{11}a_{23}a_{32}a_{44} = a_{11}a_{23}a_{34}a_{42}$ 5. $-\sqrt{2} < t < \sqrt{2}$

_, B C A C B

四、解:由 $|A|=-3\neq 0$,A可逆,故可用方程边左乘 A^{-1}

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & -\frac{1}{3} & \frac{2}{3} \\ 1 & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}, \quad \dots \dots 4 \ \ \cancel{f} \ , \quad X = A^{-1} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ -\frac{10}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{5}{3} & \frac{1}{3} & \frac{4}{3} \end{bmatrix} \dots \dots \times \cancel{f} \ \ \cancel{f} \ \$$

五、解:
$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2)\begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2(\lambda + 2)$$

当 $|A| \neq 0$ 时,即当 $\lambda \neq 1$, $\lambda \neq -2$ 时,R(A) = 3,方程组有唯一解。 ·········3 分

取
$$\xi_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\xi_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $\eta = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, 则通解 $X = C_1 \xi_1 + C_2 \xi_2 + \eta$ ············ 分 分

当
$$\lambda = -2$$
时, $B = \begin{bmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & 4 \\ 0 & -3 & 3 & -6 \\ 0 & 3 & -3 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & 4 \\ 0 & -3 & 3 & -6 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

可见 R(A) = 2, R(B) = 3, $R(A) \neq R(B)$, 于是方程组无解。12 分

六、证明: 1) $:: a_2, a_3, a_4$ 线性无关, $:: a_2, a_3$ 线性无关,

且 a_1 , a_2 , a_3 线性相关,故 a_1 可由 a_2 , a_3 线性表示。 ···········4 分

2) 反证,设 a_4 可由 a_1 , a_2 , a_3 线性表示, a_4 = l_1 a_1 + l_2 a_2 + l_3 a_3 ,

由 1) 可设 $a_1 = k_1 a_2 + k_2 a_3$, 代入上式 $a_4 = (l_1 k_1 + l_2) a_2 + (l_1 k_2 + l_3) a_3$,

这与 a_2 , a_3 , a_4 线性无关矛盾,所以 a_4 不能由 a_1 , a_2 , a_3 线性表示。 ……8 分七、解: (1) 对A实行初等行变换化为行阶梯形矩阵

(2) 由 R(A) = 3 知列向量组的最大无关组含 3 个向量,而三个非零行的非零首元在 1, 2, 4 三列,故 a_1 , a_2 , a_4 为列向量组的一个最大无关组。 ……8 分对 A 实行初等行变换化为行最简形矩阵

$$A \sim \begin{bmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{iff } a_3 = -a_1 - a_2, \quad a_5 = 4a_1 + 3a_2 - 3a_4 \cdots 12 \text{ fr}$$

2)
$$| |A - \lambda E | = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = \begin{vmatrix} 1-\lambda & -1+\lambda & 0 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda - 1)^2(\lambda + 2)$$

对应
$$\lambda_1 = -2$$
 解方程 $(A + 2E)X = 0$ 得基础解系 $\xi_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$,

对应
$$\lambda_2 = \lambda_3 = 1$$
解方程 $(A - E)X = 0$ 得基础解系 $\xi_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

将
$$\xi_2$$
 , ξ_3 正交化, $\eta_2 = \xi_2$, $\eta_3 = \xi_3 - \frac{\left[\eta_2, \xi_3\right]}{\left\|\eta_2\right\|^2} \eta_2 = \frac{1}{2} \begin{bmatrix} 1\\1\\2 \end{bmatrix}$, 将 η_2 , η_3 单位化,

得
$$P_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
, $P_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\2 \end{bmatrix}$ 故 $P = \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$,

所求正交变换 x = py,标准形 $f = -2y_1^2 + y_2^2 + y_3^2$

.....10 分

3) 2

……12分

山东科技大学 2008—2009 学年第一学期

《线性代数》考试试卷 (B卷)

班级				妙	生名_				学号_		
题号	_	<u> </u>	三	四	五	六	七	八	总得分	评卷人	审核人
得分											
一、填空	题(每题	4分,	共2	20分))					
1. 己知 a	$a_{1i}a_{32}a_{32}$	$a_{4k}a_{24}$	是四阵	价行列	可式中	的一	·项,上	且带负	5号,则 <i>i</i>	=, ,	k =
2. 设在	为n阶	作矩阵	E, E	为n	介单位	立矩阵	手,若	<i>A</i> 有	特征值 ⁄⁄	A,	- E 必将有特征
值			o								
3. 设在	为3%	介方阵	Ĕ,且	A =	1,贝	IJ 2 <i>A</i> -	-1 + 3	4* =		o	
4. A^2 –	$B^2 =$	(A + A)	B)(A -	- B) 🕆	勺 充分	分必身	要条件	‡是 _		o	
5. 已知	$a_1 =$	(a, 1)	l, 1) ⁷	, a	₂ = (1	, <i>a</i> ,	-1)	T , a	$u_3 = (1, -$	-1, a) ^T 线性:	相关,则 <i>a</i> 为
— \4+\			1 /	# 6	no A	\					
二、选择 1. 设 <i>A</i> ;							角。				
								D. A	A^T 与 A 是	可交换矩阵	
2. 设 <i>A</i> 、		·	•								
	、 と _ら 佚 (<i>A</i>))+秩(B)	$\leq n$	
C. 7	佚(<i>A</i>)	+秩	$(B) \geq$	n			D. 5	秩(A))+秩(B)	= 0	
3. 设45	是三阶	介矩阵	Ē,	P 是 三	三阶初]等矩	阵,	则()。		
A. 🗦	佚 (<i>P</i> A	1) < 科	₹(A)			В.	秩(<i>I</i>	PA) >	秩(A)		

D. 秩(*PA*) = 3 第1页共2页

C. 秩(PA)=秩(A)

- 4. 设A是n阶矩阵,如果|A|=0,则A的特征值()。
 - A. 全是零
- B. 全不是零 C. 至少有一个是零 D. 可以是任意数
- 5. 如果n元非齐次线性方程组Ax = b的系数矩阵A的秩小于n,则(
 - A. 方程组有无穷多解
- B. 方程组有唯一解

C. 方程组无解

D. 不能断定解的情况

$$\Xi$$
、(8分) 求解矩阵方程 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ $X = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ 。

五、(12 分) 设有线性方程组
$$\begin{cases} (1+\lambda)x_1+x_2+x_3=0\\ x_1+(1+\lambda)x_2+x_3=3 \ \text{问} \ \lambda \ \text{取何值时},\\ x_1+x_2+(1+\lambda)x_3=\lambda \end{cases}$$

方程组(1)有唯一解;(2)无解;(3)有无限多个解,并在无限多解时求通解。

六、(12分) 设有向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

试求(1)该向量组的秩:

- (2) 该向量组的一个最大无关组:
- (3) 用(2) 中选定的最大无关组表示其余向量。

七、(12分) 设有二次型 $f = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$

(1) 写出 f 的矩阵; (2) 求一个正交变换 x = py 把 f 化为标准形。

八、 $(8 \, \text{分})$ 证明: 若 a_1 , a_2 , a_3 线性相关, 而 a_2 , a_3 , a_4 线性无关,

则(1) a_1 可由 a_2 , a_3 线性表示; (2) a_4 不能由 a_1 , a_2 , a_3 线性表示。

山东科技大学 2008—2009 学年第一学期

《线性代数》考试试卷(B卷答案)

$$-$$
, 1. $i = 3$, $k = 1$

2.
$$\lambda^2 + \lambda + 1$$

一、1.
$$i=3$$
, $k=1$ 2. $\lambda^2 + \lambda + 1$ 3. 125 4. $AB = BA$ 5. -1 或 2

$$\equiv$$
 D

三、解:由 $|A|=-3\neq 0$,A可逆,故可用方程两边左乘 A^{-1}

$$= [a + (n-1)](a-1)^{n-1}$$

$$\Xi \cdot |A| = \begin{vmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = (3+\lambda)\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = (3+\lambda)\begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{vmatrix} = (3+\lambda)\lambda^{2}$$

因此,当 λ ≠0且 λ ≠-3时,方程组有唯一解。

当
$$\lambda = 0$$
时, $B = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 知 $R(A) = 1$, $R(B) = 2$

故方程组无解。

当
$$\lambda = -3$$
时, $B = \begin{bmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 3 \\ 1 & 1 & -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ ……9分

知 R(A) = R(B) = 2,故方程组有无限多个解,

且通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix} (c \in R)$$
 ······12 分

六、解: 令
$$A=(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5) = \begin{pmatrix} 1 & 2 & 3 & 0 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 1 & 3 & 4 & 0 & 1 \end{pmatrix}$$
 ,利用初等行变换

故(1)该向量组的秩为3

......8 分

(2) 该向量组的一个最大无关组为
$$\alpha_1$$
, α_2 , α_3 ··········10 分

(3)
$$\alpha_4 = \alpha_1 + \alpha_2 - \alpha_3$$
 $\alpha_5 = \frac{1}{2} \alpha_1 - \frac{1}{2} \alpha_2 + \frac{1}{2} \alpha_3$ 12 \(\frac{1}{2}\)

七、解: (1) 二次型
$$f$$
 的矩阵为
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
2 分

(2) 求 *A* 的特征值:

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 2 & 2 \\ 2 & 1 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} \frac{r_1 + r_2 + r_3}{2} \begin{vmatrix} 5 - \lambda & 5 - \lambda & 5 - \lambda \\ 2 & 1 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} = (5 - \lambda)(\lambda + 1)^2$$

A的特征值为 5, -1, -1

•••• 5 分

求 3 个标准正交的特征向量:

对于
$$\lambda_1 = 5$$
,解得特征向量 $\xi_1 = (1, 1, 1)^T$,标准化得 $P_1 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T \cdots 6$ 分

对于
$$\lambda_2 = \lambda_3 = -1$$
,解得特征向量 $\xi_2 = \begin{pmatrix} -1, & 1, & 0 \end{pmatrix}^T$, $\xi_3 = \begin{pmatrix} -1, & 0, & 1 \end{pmatrix}^T$

正交化后再单位化有
$$P_2 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T$$
, $P_3 = \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^T$ …9 分

求正交变换矩阵

做正交变换
$$x = PY$$
,则 $f = X^T A X = Y^T \begin{pmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} Y = 5y_1^2 - y_2^2 - y_3^2$ ·······12 分

八、证明: 1) $:: a_2, a_3$ 线性无关,且 a_1, a_2, a_3 线性相关,

故 a_1 可由 a_2 , a_3 线性表示。

-----4分

2) 反证,设 a_4 可由 a_1 , a_2 , a_3 线性表示, a_4 = l_1 a_1 + l_2 a_2 + l_3 a_3 ,由 1) 可设 a_1 = k_1 a_2 + k_2 a_3 ,代入上式 a_4 = $(l_1 k_1$ + l_2) a_2 + $(l_1 k_2$ + l_3) a_3 ,这与 a_2 , a_3 , a_4 线性无关矛盾,所以 a_4 不能由 a_1 , a_2 , a_3 线性表示。

山东科技大学 2010—2011 学年第一学期

《线性代数》考试试卷(B卷)

<u> </u>	班级	姓名	学号
----------	----	----	----

题号	_	1 1	111	四	五	六	七	八	总得分	评卷人	审核人
得分											

- **一、填空题**(每题 4 分, 共 16 分)
- 1. 已知 $a_{1i}a_{32}a_{4k}a_{24}$ 是四阶行列式中的一项,且带负号,则 $i = ______, k = _______$ 。

$$2.$$
设 $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$, 则 $A^T B = \underline{\hspace{1cm}}$ 。

- 3. 设A为 3 阶方阵,且|A|=1,则 $|2A^{-1}+3A^*|$ = _____。
- 4. 已知 $a_1 = (a, 1, 1)^T$, $a_2 = (1, a, -1)^T$, $a_3 = (1, -1, a)^T$ 线性相关,则 a 为

二、选择题(每题4分,共16分)

- 1. 设A是正交矩阵,则运算()正确。
 - A. |A|=1 B. |A|=-1 C. A是对称矩阵 D. A^T 与 A是可交换矩阵

2. 设
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$
, B , C 都是方阵,且 BAC 有意义,则()

- A. B, C都是二阶方阵 B. B, C分别是二、三阶方阵
- C. B, C都是三阶方阵 D. B, C分别是三、二阶方阵
- 3. 设A是三阶矩阵, P是三阶初等矩阵,则()。
 - A. 秩 (*PA*) < 秩 (*A*)
- B. 秩 (PA) > 秩 (A)
- C. $\mathcal{H}(PA) = \mathcal{H}(A)$
- D. (PA) = 3

- 4. 如果n元非齐次线性方程组Ax = b的系数矩阵A的秩小于n,则()。
 - A. 方程组有无穷多解
- B. 方程组有唯一解

C. 方程组无解

D. 不能断定解的情况

$$\Xi$$
、(10分) 求解矩阵方程 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ $X = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ 。

四、
$$(12 分)$$
 计算 n 阶行列式 $\begin{vmatrix} a & 1 & 1 & \cdots & 1 \\ 1 & a & 1 & \cdots & 1 \\ 1 & 1 & a & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & a \end{vmatrix}$ 的值。

五、(12 分) 设有线性方程组
$$\begin{cases} (1+\lambda)x_1+x_2+x_3=0\\ x_1+(1+\lambda)x_2+x_3=3 \ \text{问} \ \lambda \ \text{取何値时},\\ x_1+x_2+(1+\lambda)x_3=\lambda \end{cases}$$

方程组(1)有唯一解;(2)无解;(3)有无限多个解,并在无限多解时求通解。

六、(12分) 设有向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

试求(1)该向量组的秩:

- (2) 该向量组的一个最大无关组;
- (3) 用(2) 中选定的最大无关组表示其余向量。

则(1) a_1 可由 a_2 , a_3 线性表示; (2) a_4 不能由 a_1 , a_2 , a_3 线性表示。

八、(12 分) 设 $A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$ 求特征值及对应的特征向量.

2010-2011B卷 《线性代数》考试试券(B 卷答案)

一、1.
$$i=3$$
, $k=1$ 2. 2. $\begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix}$ 3. 125 4. -1 或 2

$$2. \ 2. \ \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix}$$

 \equiv D B C D

三、解:由 $|A|=-3\neq 0$,A可逆,故可用方程两边左乘 A^{-1}

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & -\frac{1}{3} & \frac{2}{3} \\ 1 & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \cdots \cdot \cdot \cdot 4 \ \ \overrightarrow{D}, \quad X = A^{-1} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ -\frac{10}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{5}{3} & \frac{1}{3} & \frac{4}{3} \end{bmatrix} \cdots \cdot \cdot \cdot \cdot 10 \ \ \overrightarrow{D}$$

四、原式=
$$\begin{vmatrix} a+(n-1) & a+(n-1) & \cdots & \cdots & a+(n-1) \\ 1 & a & \cdots & \cdots & 1 \\ 1 & 1 & \cdots & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & \cdots & \cdots & a \end{vmatrix}$$

$$= [a + (n-1)] \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & a & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & a \end{bmatrix}$$

$$= [a + (n-1)](a-1)^{n-1}$$

$$\Xi \cdot |A| = \begin{vmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = (3+\lambda)\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = (3+\lambda)\begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{vmatrix} = (3+\lambda)\lambda^{2}$$

因此,当 $\lambda \neq 0$ 且 $\lambda \neq -3$ 时,方程组有唯一解。

当
$$\lambda = 0$$
时, $B = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 知 $R(A) = 1$, $R(B) = 2$

故方程组无解。

当
$$\lambda = -3$$
时, $B = \begin{bmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 3 \\ 1 & 1 & -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ ……9分

知 R(A) = R(B) = 2,故方程组有无限多个解,

且通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix} (c \in R)$$
 ······12 分

六、解: 令
$$A=(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5)=\begin{pmatrix} 1 & 2 & 3 & 0 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 1 & 3 & 4 & 0 & 1 \end{pmatrix}$$
 ,利用初等行变换

故(1)该向量组的秩为3

-----8分

(2) 该向量组的一个最大无关组为 α_1 , α_2 , α_3 ········10 α_3

(3)
$$\alpha_4 = \alpha_1 + \alpha_2 - \alpha_3$$
 $\alpha_5 = \frac{1}{2} \alpha_1 - \frac{1}{2} \alpha_2 + \frac{1}{2} \alpha_3$ 12 β

七、证明: 1) $: a_2$, a_3 , a_4 线性无关, $: a_2$, a_3 线性无关,

且 a_1 , a_2 , a_3 线性相关,故 a_1 可由 a_2 , a_3 线性表示。 ···········4 分

2) 反证,设 a_4 可由 a_1 , a_2 , a_3 线性表示, a_4 = l_1 a_1 + l_2 a_2 + l_3 a_3 ,

由 1) 可设 $a_1 = k_1 a_2 + k_2 a_3$, 代入上式 $a_4 = (l_1 k_1 + l_2) a_2 + (l_1 k_2 + l_3) a_3$,

这与 a_2 , a_3 , a_4 线性无关矛盾,所以 a_4 不能由 a_1 , a_2 , a_3 线性表示。 \cdots 10分

八、解: 由
$$|A - \lambda E| = \begin{vmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(2 - \lambda)$$

求得 A 的特征值为 $\lambda_1 = 2$, $\lambda_2 = 4$

-----4分

对应
$$\lambda_1 = 2$$
解方程 $(A - 2E)X = 0$ 得基础解系 $\xi_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, ·········7 分

对应
$$\lambda_2 = 4$$
 解方程 $(A - 4E)X = 0$ 得基础解系 $\xi_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, ……10分

山东科技大学 2011—2012 学年第一学期

《线性代数》考试试卷(A卷)

班级	姓名	学号	

题号	 =	111	四	五	六	七	八	总得分	评卷人	审核人
得分										

- **一、填空题**(每题 4 分, 共 16 分)
- 1. 写出四级行列式中含有因子 $a_{11}a_{23}$ 的项______。

2.设
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$, 则 $A^T B = \underline{\hspace{1cm}}$ 。

- 3. 设三阶矩阵 A 有三个特征值 $\lambda_1, \lambda_2, \lambda_3$,如果 |A| = 6 , $\lambda_1 = -1, \lambda_3 = 3$,则 $\lambda_3 = _____$ 。
- 4. 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + 2tx_1x_2 + 2x_1x_3$ 是正定二次型,则 t 的取值范围_____。
- 二、选择题 (每题 4 分, 共 16 分)
- 1. 设 $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \end{bmatrix}$, B, C都是方阵,且BAC有意义,则()
 - A. B, C都是二阶方阵
- B. B, C分别是二、四阶方阵
- C. B, C都是四阶方阵
- D. B, C分别是四、二阶方阵
- 2. 设A是n阶方阵,P是n阶可逆矩阵,则()。
- A. 秩(PA) <秩(A) B. 秩(PA) >秩(A) C. 秩(PA) =秩(A) D. 秩(PA) = n
- 3. 设向量组 $I: \alpha_1 = (a_1, a_2, a_3)^T, \alpha_2 = (b_1, b_2, b_3)^T, \alpha_3 = (c_1, c_2, c_3)^T;$

$$II: \beta_1 = (a_1, a_2, a_3, a_4)^T, \beta_2 = (b_1, b_2, b_3, b_4)^T, \beta_3 = (c_1, c_2, c_3, c_4)^T, \text{ }$$

A. (I) 线性相关,则(II) 线性相关 B. (I) 线性无关,则(II) 线性无关

- C. (II) 线性无关,则(I) 线性无关 D. (I) 线性无关的充要条件是(II) 线性无关
- 4. 设n 元齐次线性方程组Ax=0 中R(A)=r,则Ax=0 有非零解的充要条件是

A.
$$r = n$$

B.
$$r < r$$

C.
$$r \ge r$$

C.
$$r \ge n$$
 D. $r > n$

$$\Xi$$
、(12分) 计算 n 阶行列式
$$\begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ \vdots & \vdots & & & \vdots \\ a & a & a & \cdots & x \end{vmatrix}$$
的值。

四、(10分)解矩阵方程
$$X\begin{bmatrix}1&0&0\\0&1&2\\3&2&1\end{bmatrix}=\begin{bmatrix}2&-1&1\\0&1&2\\1&-2&3\end{bmatrix}$$
。

五、(12 分) 问
$$\lambda$$
 取何值时,非齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$$
 $x_1 + x_2 + \lambda x_3 = \lambda^2$

- (1) 有唯一解; (2) 无解;
- (3) 无穷多个解并求通解。

六、 $(10 \, \text{分})$ 证明: 若 a_1 , a_2 , a_3 线性相关, 而 a_3 , a_4 线性无关.

则(1) a_1 可由 a_2 , a_3 线性表示; (2) a_4 不能由 a_1 , a_2 , a_3 线性表示。

七、(12 分) 设矩阵
$$A = \begin{bmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix}$$
, 试求(1)矩阵 A 的秩;(2)矩

阵 A 的列向量组的一个最大无关组;并把不属于最大无关组的列向量用最大无 关组线性表示。

八、(12 分)设
$$A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
求一个正交阵 P ,使 $P^{-1}AP = \Lambda$ 为对角阵。

山东科技大学 2011—2012 学年第一学期

《工程数学(线性代数)》考试试卷(B卷)

班级		 姓	F24		 学号_	

题号	_	1 1	111	凹	五	长	41	八	总得分	评卷人	审核人
得分											

一、填空题(每题 4 分, 共 16 分)

1. 已知 $a_{1i}a_{32}a_{4k}a_{24}$ 是四阶行列式中的一项,且带负号,则 $i = ______, k = _______$ 。

$$2.$$
设 $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$,则 $A^T B = \underline{\hspace{1cm}}$ 。

- 3. 设A为 3 阶方阵,且|A|=1,则 $|2A^{-1}+3A^*|$ = _____。
- 4. 已知 $a_1 = (a, 1, 1)^T$, $a_2 = (1, a, -1)^T$, $a_3 = (1, -1, a)^T$ 线性相关,则 a 为

二、选择题(每题 4 分, 共 16 分)

- 1. 设A是正交矩阵,则运算()正确。
 - A. |A|=1 B. |A|=-1 C. A是对称矩阵 D. A^T 与 A是可交换矩阵
- 2. 设 $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_2 \end{bmatrix}$, B, C都是方阵,且BAC有意义,则()

 - A. B, C都是二阶方阵 B. B, C分别是二、三阶方阵

 - C. B, C都是三阶方阵 D. B, C分别是三、二阶方阵
- 3. 设A是三阶矩阵, P是三阶可逆矩阵,则()。
 - A. 秩 (PA) < 秩 (A)
- B. 秩 (PA) > 秩 (A)
- C. $\mathcal{H}(PA) = \mathcal{H}(A)$
- D. (PA) = 3

- 4. 如果n元非齐次线性方程组Ax = b的系数矩阵A的秩小于n,则()。
 - A. 方程组有无穷多解
- B. 方程组有唯一解

C. 方程组无解

D. 不能断定解的情况

$$\Xi$$
、(10分) 求解矩阵方程 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ $X = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ 。

四、
$$(12 分)$$
 计算 n 阶行列式 $\begin{vmatrix} a & 1 & 1 & \cdots & 1 \\ 1 & a & 1 & \cdots & 1 \\ 1 & 1 & a & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & a \end{vmatrix}$ 的值。

五、(12 分) 设有线性方程组
$$\begin{cases} (1+\lambda)x_1+x_2+x_3=0\\ x_1+(1+\lambda)x_2+x_3=3 \ \text{问} \ \lambda \ \text{取何值时},\\ x_1+x_2+(1+\lambda)x_3=\lambda \end{cases}$$

方程组(1)有唯一解;(2)无解;(3)有无限多个解,并在无限多解时求通解。

六、(12分) 设有向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

试求(1)该向量组的秩;

- (2) 该向量组的一个最大无关组;
- (3) 用(2) 中选定的最大无关组表示其余向量。

七、(10分)证明: 若 a_1 , a_2 , a_3 线性相关, 而 a_2 , a_3 , a_4 线性无关,

则(1) a_1 可由 a_2 , a_3 线性表示; (2) a_4 不能由 a_1 , a_2 , a_3 线性表示。

八、(12 分)设 $A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$ 求特征值及对应的特征向量.

山东科技大学 2012—2013 学年第一学期

《线性代数》考试试卷 (A卷)

适用班级 2012 计算机科学技术 1.2.3 班 姓名_____ 学号____

题号	_	1 1	111	四	五	六	七	八	总得分	评卷人	审核人
得分											

一、填空题(每题 4 分, 共 20 分)

- 1. 若 3 阶行列式|A| = 2,则 $|2A^*| = _____.$
- 2. 已知向量 $\vec{x} = (5, -1, 2)^T$, $\vec{y} = (1, -1, -1)^T$, 则 $[\vec{x}, \vec{y}] =$
- 3. 设n阶方阵A,B,若存在可逆阵P,使 $A=P^{-1}BP$,则A,B具有 关系
- 4. 已知 $f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 6x_2x_3$,则其标准型为_____.
- 5. 设三阶矩阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$, 如果 |A|=12 , $\lambda_1=-1,\lambda_3=3$,则 $\lambda_2=$ ______.

二、选择题(每题4分,共20分)

- 1. 设A是正交矩阵,则运算()正确.
 - A. |A|=1 B. |A|=-1 C. A是对称矩阵 D. A^T 与A是可交换矩阵
- 2. 设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 则 $A^* = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 - A. $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ B. $\begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$ C. $\begin{pmatrix} d & b \\ c & a \end{pmatrix}$ D. $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
- 3. 3. 下列向量集合是向量空间的是()
 - A. $S = {\vec{x} \mid A\vec{x} = \vec{0}}$
- B. $S = \{\vec{x} \mid A\vec{x} = \vec{b}\}\$
- C. $V = {\vec{x} = (1, x_2, \dots, x_n)^T | x_2, \dots, x_n \in R}$
- D. $V = {\vec{x} = (x_1, x_2, \dots, x_n)^T \mid x_1, \dots, x_n \in R \not \equiv \mathbb{Z}x_1 + \dots + x_n = 1}$

- 4. 如果n元非齐次线性方程组Ax = b的系数矩阵A的秩小于n,则().

 - A. 方程组有无穷多解 B. 方程组有唯一解
 - C. 方程组无解
- D. 不能断定解的情况
- 5. 设 \boldsymbol{a}_1 , \boldsymbol{a}_2 , \boldsymbol{a}_3 \boldsymbol{a}_4 线性无关,则下列向量组线性相关的是()。
 - A. \boldsymbol{a}_1 , \boldsymbol{a}_2 , \boldsymbol{a}_3 :

B. $\boldsymbol{\alpha}_{2}$, $\boldsymbol{\alpha}_{3}$, $\boldsymbol{\alpha}_{4}$:

C. $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$ $\alpha_4 + \alpha_1$; D. α_2 , α_3

三、计算题(共 22 分)

1. (10 分) 求解矩阵方程
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 4 \\ 2 & -1 & 0 \end{bmatrix} X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

$$\begin{bmatrix} x & 2 & 2 & \cdots & 2 \\ 2 & x & 2 & \cdots & 2 \\ 2 & 2 & x & \cdots & 2 \\ 2 & 2 & x & \cdots & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & 2 & \cdots & x \end{bmatrix}$$
的值.

四、解答题(共38分)

1. (12 分)设有线性方程组
$$\begin{cases} (2-\lambda)x_1 + 2x_2 - 2x_3 = 1 \\ 2x_1 + (5-\lambda)x_2 - 4x_3 = 2 \end{cases}, \ \ \text{问} \ \lambda \ \text{取何值时}, \\ -2x_1 - 4x_2 + (5-\lambda)x_3 = -\lambda - 1$$

方程组(1)有唯一解;(2)无解;(3)有无限多个解,并在无限多解时求通解.

2.
$$(14\, eta)$$
 设矩阵 $A = \begin{bmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix}$, 试求 (1) 矩阵 A 的秩;

(2) 矩阵 A 的列向量组的一个最大无关组; 并把不属于最大无关组的列向量用最大无关组线性 表示.

3. (12 分) 设
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix}$$
, 求矩阵 A 的特征值及对应的特征向量.

山东科技大学 2012—2013 学年第一学期

《线性代数》试卷A卷参考答案及评分标准

一、填空题(每题 4 分, 共 20 分)

- 1. 32

- 2. 4 3. 相似 4. $f(x_1, x_2, x_3) = 2z_1^2 2z_2^2 + 6z_3^2$ 5. -4

二、选择题 (每题 4 分, 共 20 分)

- 1. D 2. B 3. A 4. D 5. C

三、计算题(共22分)

1. 解: 因为

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 1 \\ 1 & 1 & 4 & 0 & 1 \\ 2 & -1 & 0 & -1 & 0 \end{bmatrix} \sim$$

$$\begin{bmatrix} 1 & 1 & 4 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 1 & 0 \end{bmatrix} \sim$$

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 1 \\ 1 & 1 & 4 & 0 & 1 \\ 2 & -1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 4 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 2 & -1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 4 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 2 & -3 & -8 & -1 & -2 \end{bmatrix} \sim$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & -1 & -\frac{1}{2} \end{bmatrix} \dots 8 \ \%$$

四、解答题(共38分)

1.
$$|A| = \begin{vmatrix} 2-\lambda & 2 & -2 \\ 2 & 5-\lambda & -4 \\ -2 & -4 & 5-\lambda \end{vmatrix} = (1-\lambda) \begin{vmatrix} 2-\lambda & 2 & -4 \\ 2 & 5-\lambda & \lambda-9 \\ 0 & 1 & 0 \end{vmatrix} = -(1-\lambda)^2 (\lambda-10)$$

因此,当 λ ≠1且 λ ≠10时,方程组有唯一解.

当
$$\lambda = 1$$
时, $B = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 2 & 4 & -4 & 2 \\ -2 & -4 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 知 $R(A) = R(B) = 2$,故方程

组有无限多个解. ……6分

当
$$\lambda = 10$$
时, $B = \begin{bmatrix} -8 & 2 & -2 & 1 \\ 2 & -5 & -4 & 2 \\ -2 & -4 & -5 & -11 \end{bmatrix} \sim \begin{bmatrix} 2 & -5 & -4 & 2 \\ 0 & 1 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$

2. 解: (1) 对 A 实行初等行变换化为行阶梯形矩阵

(2) 由R(A) = 3 知列向量组的最大无关组含 3 个向量,而三个非零行的非零首元

在 1, 2, 4 三列,故 a_1 , a_2 , a_4 为列向量组的一个最大无关组。 ········8 分

对A实行初等行变换化为行最简形矩阵

$$A \sim \begin{bmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{id} \ a_3 = -a_1 - a_2 \ , \quad a_5 = 4a_1 + 3a_2 - 3a_4 \cdots 14 \ \text{figure}$$

3. 解: 由
$$|A - \lambda E|$$
 = $\begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & -2 - \lambda & 4 \\ 2 & 4 & -2 - \lambda \end{vmatrix}$ = $-(7 + \lambda)(2 - \lambda)^2$ 得

对应
$$\lambda_1 = \lambda_2 = 2$$
 解方程 $(A - 2E)X = 0$ 得基础解系 $\xi_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$, $\xi_2 = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$ ……7 分

所以 $c_1\xi_1+c_2\xi_2$ 是对应于 $\lambda_1=\lambda_2=2$ 的全部特征向量.

对应
$$\lambda_2=-7$$
 解方程 $(A+7E)X=0$ 得基础解系 $\xi_3=\begin{bmatrix}1\\2\\-2\end{bmatrix}$, ……10 分

山东科技大学 2012—2013 学年第一学期

《线性代数》考试试卷(B卷)

适用班级 2012 计算机科学技术 1.2.3 班	姓名	学号
· · · · · · · · · · · · · · · · · · ·	·	·

题号	_	=	Ξ	四	五	六	七	八	总得分	评卷人	审核人
得分											

	1+ DT	/ H H H H	11 /4	
— 、	填罕設	(毎題4/	分,共	:20 分)

- 1. 若 3 阶行列式|A| = 3,则 $|2A^*| = _____.$
- 2. 已知 $a_1 = (1,0,2)^T$ $a_2 = (-4,2,t)^T$ 正交,则 t 的值为_____.
- 3. 设三阶矩阵 A 有三个特征值 λ_1 , λ_2 , λ_3 , 如果 |A|=8 , $\lambda_1=2$, $\lambda_3=1$,则 $\lambda_2=$ _____.
- 4. 设有二次型 $f = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$, 写出 f 的矩阵______.
- 5. 已知 4 阶行列式 |A|=8 的第二行元素分别为-1, 0, 2, 4, 第 2 行元素的余子式依次为
- 2, 10, y, 4, 则 y =

二、选择题(每题 4 分, 共 20 分)

- 1. 若 A, B为同阶方阵,且满足 AB=0,则有 ()
 - A. A=0或B=0

B.
$$|A| = 0$$
或 $|B| = 0$

- C. $(A+B)^2 = A^2 + B^2$ D. A = B均可逆
- 2. 设 \boldsymbol{a}_1 , \boldsymbol{a}_2 , \boldsymbol{a}_3 \boldsymbol{a}_4 线性无关,则下列向量组线性相关的是()。
 - A. \boldsymbol{a}_1 , \boldsymbol{a}_2 , \boldsymbol{a}_3 ;

C. $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4$ $\boldsymbol{\alpha}_4 + \boldsymbol{\alpha}_1$; D. $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$

- 3. 设 α_1 , α_2 是 n 元线性方程组 Ax=0 的两个不同的解向量,秩 A=n-1,k 为任意常数,则 方程组 Ax=0 的通解为 ().

- A. $k \boldsymbol{\alpha}_1$; B. $k \boldsymbol{\alpha}_2$; C. $k(\boldsymbol{\alpha}_1 \boldsymbol{\alpha}_2)$; D. $k(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2)$

第1页/共2页

- 4.设A是n阶可逆矩阵,则()

- $A \subseteq E$ 等价 B. $A \subseteq E$ 合同 C. $A \subseteq E$ 相似 D. $A \subseteq E$ 相等
- 5. 设向量组 $\{\alpha_1 \quad \alpha_2 \quad \dots \quad \alpha_m\}$ 线性相关,且一组数 k_i 使 $k_1\alpha_1 + \dots + k_m\alpha_m = 0$,则()
- A. $k_1 = k_2 = ... = k_m = 0$ B. $k_1, k_2, ..., k_m$ 不全为零
- C. $k_1, k_2, ..., k_m$ 全不为零 D. 情形A, B, C均可能出现

三、计算题(共22分)

2. (10 分)解矩阵方程
$$X$$
 $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$.

四、解答题(共38分)

1. (12分)设有向量组
$$\alpha_1=\begin{pmatrix}2\\0\\2\end{pmatrix}$$
, $\alpha_2=\begin{pmatrix}3\\1\\1\end{pmatrix}$, $\alpha_3=\begin{pmatrix}2\\1\\0\end{pmatrix}$, $\alpha_4=\begin{pmatrix}4\\2\\0\end{pmatrix}$

试求(1)该向量组的秩;(2)该向量组的一个最大无关组;

(3) 用(2) 中选定的最大无关组表示其余向量.

2. (12 分)设有线性方程组
$$\begin{cases} (2-\lambda)x_1+2x_2-2x_3=1\\ 2x_1+(5-\lambda)x_2-4x_3=2\\ -2x_1-4x_2+(5-\lambda)x_3=-\lambda-1 \end{cases} , \ \ \text{问} \ \lambda \ \text{取何值时},$$

方程组(1)有唯一解;(2)无解;(3)有无限多个解,并在无限多解时求通解.

3. (14 分)设
$$A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 求一个正交阵 P ,使 $P^{-1}AP = \Lambda$ 为对角阵.

山东科技大学 2012—2013 学年第一学期

《线性代数》试卷B卷参考答案及评分标准

一、填空题(每题 4 分, 共 20 分)

1. 72 **2.** 2 **3.** 4 **4.**
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 5. 5

二、选择题(每题4分,共20分)

三、计算题(共22分)

2. 解:由 $|A| = 5 \neq 0$,A可逆,故可用方程边右乘 A^{-1}

$$A^{-1} = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix}, \quad \cdots \quad 4 \not \Rightarrow, \quad X = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix} A^{-1} = \begin{bmatrix} \frac{2}{5} & -3 & 4 \\ 0 & -3 & 5 \\ \frac{1}{5} & -8 & 11 \end{bmatrix} \cdots \quad 10 \not \Rightarrow$$

四、解答题(共38分)

1. 解: 令
$$A=(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4)=\begin{pmatrix} 2 & 3 & 2 & 4 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 0 & 0 \end{pmatrix}$$
 ,利用初等行变换

故(1)该向量组的秩为2

(2) 该向量组的一个最大无关组为 α_1 , α_2

(3)
$$\alpha_3 = -\frac{1}{2} \alpha_1 + \alpha_2 \alpha_4 = -\alpha_1 + 2\alpha_2$$
12 $\%$

$$2.\text{M}: |A| = \begin{vmatrix} 2-\lambda & 2 & -2 \\ 2 & 5-\lambda & -4 \\ -2 & -4 & 5-\lambda \end{vmatrix} = (1-\lambda) \begin{vmatrix} 2-\lambda & 2 & -4 \\ 2 & 5-\lambda & \lambda-9 \\ 0 & 1 & 0 \end{vmatrix} = -(1-\lambda)^2 (\lambda - 10)$$

因此,当 $\lambda \neq 1$ 且 $\lambda \neq 10$ 时,方程组有唯一解.

当
$$\lambda = 1$$
时, $B = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 2 & 4 & -4 & 2 \\ -2 & -4 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 知 $R(A) = R(B) = 2$,故方程

组有无限多个解. ……6分

当
$$\lambda = 10$$
时, $B = \begin{bmatrix} -8 & 2 & -2 & 1 \\ 2 & -5 & -4 & 2 \\ -2 & -4 & -5 & -11 \end{bmatrix} \sim \begin{bmatrix} 2 & -5 & -4 & 2 \\ 0 & 1 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$

知 R(A) = 2, R(B) = 3 故方程组无解.

3.
$$\Re: \ \ \text{id} \ |A - \lambda E| = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -1 + \lambda & 0 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda - 1)^2 (\lambda + 2)$$

求得 A 的特征值为 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$

对应
$$\lambda_1=-2$$
 解方程 $(A+2E)X=0$ 得基础解系 $\xi_1=\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$,

对应
$$\lambda_2 = \lambda_3 = 1$$
 解方程 $(A - E)X = 0$ 得基础解系 $\xi_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

将
$$\xi_2$$
 , ξ_3 正交化, $\eta_2 = \xi_2$, $\eta_3 = \xi_3 - \frac{\left[\eta_2, \xi_3\right]}{\left\|\eta_2\right\|^2} \eta_2 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, 将 η_2 , η_3 单位化,

得
$$P_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
, $P_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\2 \end{bmatrix}$ 故 $P = \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$ 14 分

山东科技大学 2015—2016 学年第一学期

《线性代数》考试试卷 (A卷)

适用班级	金融	学、会	会计学	2、国	际贸易	易 201	4级现	王级	姓名	学·	<u>コ</u>
题号	_		三	四	五.	六	七	八	总得分	评卷人	审核人
得分											
一、填空	三题 (每题 4	4分,	共 20	分)						
1. A^2 –	$B^2 =$	(A+B)	B)(A-	B)的	充分』	必要条	件是		o		
2. 设4	为n阶	矩阵	, <i>E</i> サ	习n阶	单位知	巨阵,	若 A ?	有特征	正値2,则2	$A^2 + 2A + E$	必将有特征
值			o								
3. 设在	为3阶	个方阵	, 且	A = 3	,则	2 <i>A</i> =_			o		
		-	•		•	_		_	-		。 关,则 <i>t</i> 为
二、选择	と題(_° 每题 ́	4分,	共 20	分)						
1. 若 A	$=A_{m\times n}$	且 <i>R</i> (A) = n	·,则	方程组	组 Ax	= 0 的	基础角	解系中的向	量个数是(()
A. r		В.	m-1	<i>r</i>	С.	. n-	- r	D.	n		
2. 设A	是正交	で矩阵	,则	运算	()	正确	j .				
A.	a = 1	В	A	= -1	С.	<i>A</i> 是	对称统	矩阵	D. $A^T =$	5 A 是可交持	换矩阵
3. 设A	是 5 隊	个矩阵	, P	是 5	阶可证	逆矩阵	三,则	()		
A. 科	$\xi(PA)$	<秩((A)			B. 利	失(<i>PA</i>)) > 秩	(A)		
C. 科	otin (PA)	=秩((A)			D.	秩(P.	4) = 3			
4. 设 <i>A</i> ·	是'n阶	海阵	, 如身	₽ <i>a</i> =	: O • J	川4的	为特征	值 ()		

- A. 全是零 B. 全不是零 C. 至少有一个是零 D. 可以是任意数
- 5. 如果n元非齐次线性方程组 Ax = b的系数矩阵 A的秩小干n,则()
 - A. 方程组有无穷多解
- B. 方程组有唯一解

C. 方程组无解

D. 不能断定解的情况

三、(10 分) 设
$$P^{-1}AP = \Lambda$$
,其中 $P = \begin{pmatrix} -1 & -4 \\ 1 & 1 \end{pmatrix}$, $\Lambda = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$,求 A^{11} 。

五、(12 分) 非齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda & \text{问} \lambda \text{ 取何值时,方程组} \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

(1) 有唯一解;(2) 无解;(3) 无穷多个解并求通解。

六、
$$(12分)$$
 设有向量组 $A: \alpha_1 = \begin{pmatrix} 1\\4\\2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -2\\1\\5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1\\2\\4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -2\\1\\-1 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 2\\3\\0 \end{pmatrix}$,

- 试求(1) 该向量组A的秩; (2) 该向量组A的一个最大无关组;
 - (3) 求 4 中其余向量用所求出的最大无关组线性表示。

七、
$$(10 \, \text{分})$$
 设 $A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, 求 A 的特征值及对应的特征向量。

八、 $(8 \, \text{分})$ 设 $A \, \text{、} B \, \text{为} n$ 阶矩阵,且 $A \, \text{为对称阵}$,证明: $B^T A B \, \text{也是对称阵}$ 。

山东科技大学 2015—2016 学年第一学期

《线性代数》考试试卷参考答案及评分标准(A卷)

一、 (每题 4 分, 共 20 分)

1.
$$AB = BA$$
 2. $\lambda^2 + 2\lambda + 1$ 3. 24 4. $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ 5. $-1 \not\equiv 2$

二、(每题 4 分, 共 20 分)

C D C C D

$$|P| = 3$$
 $P^* = \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}$ $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 4 \\ -1 & -1 \end{pmatrix}$ 6 \not

$$= [a + (n-1)] \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & a & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & a \end{bmatrix} \cdots \cdots 6 \ \%, = [a + (n-1)](a-1)^{n-1} \cdots 8 \ \%$$

五、(12 分)解:
$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2)\begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2(\lambda + 2)$$

当 $|A| \neq 0$ 时,即当 $\lambda \neq 1$, $\lambda \neq -2$ 时,R(A) = 3,方程组有唯一解。 ……3 分

当
$$\lambda=1$$
时,增广矩阵 $B=\begin{bmatrix}1&1&1&1\\1&1&1&1\\1&1&1&1\end{bmatrix}\sim\begin{bmatrix}1&1&1&1\\0&0&0&0\\0&0&0&0\end{bmatrix}$ 可见 $R(A)=R(B)=1<3$,方程有无穷

1

多解…6分

取
$$\xi_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\xi_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\eta = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, 则通解 $X = C_1 \xi_1 + C_2 \xi_2 + \eta$ 9 分

当
$$\lambda = -2$$
时, $B = \begin{bmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & 4 \\ 0 & -3 & 3 & -6 \\ 0 & 3 & -3 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & 4 \\ 0 & -3 & 3 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

六、(12 分) 解:令
$$A=(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5) = \begin{pmatrix} 1 & -2 & -1 & -2 & 2 \\ 4 & 1 & 2 & 1 & 3 \\ 2 & 5 & 4 & -1 & 0 \end{pmatrix}$$
 ,利用初等行变换

得
$$A \sim \begin{pmatrix} 1 & -2 & -1 & -2 & 2 \\ 0 & 9 & 6 & 9 & -5 \\ 0 & 0 & 0 & -6 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{3} & 0 & \frac{8}{9} \\ 0 & 1 & \frac{2}{3} & 0 & -\frac{7}{18} \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{pmatrix}$$
6分

故(1)该向量组的秩为3

-----8分

(2) 该向量组的一个最大无关组为
$$\alpha_1$$
, α_2 , α_4 ··········10 分

(3)
$$\alpha_3 = \frac{1}{3}\alpha_1 + \frac{2}{3}\alpha_2$$
, $\alpha_5 = \frac{8}{9}\alpha_1 - \frac{7}{18}\alpha_2 - \frac{1}{6}\alpha_4$ 12 $\dot{\beta}$

七、(10分)解:

$$\boxplus |A - \lambda E| = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -1 + \lambda & 0 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda - 1)^2 (\lambda + 2)$$

对应
$$\lambda_1=-2$$
 ,解方程 $(A+2E)X=0$ 得基础解系 $\xi_1=\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$,

因为A为对称阵,有 $A^T = A$,故 $(B^T A B)^T = B^T A B$,即 $B^T A B$ 是对称阵 ········8 分

山东科技大学 2015—2016 学年第一学期

《线性代数》考试试券(B券)

适用班级金融学、	会计学、	国际贸易 2014 级班级	姓名	学号
----------	------	---------------	----	----

题号	_	 =	四	五.	六	七	八	总得分	评卷人	审核人
得分										

— ,	埴空题	(每题4分,	共20分)
١.	块工屹	()	77 40 71 7

- 1. 设A为n阶方阵,则 $AA^* =$.
- 2. 设三阶矩阵 A 有三个特征值 λ_1 , λ_2 , λ_3 ,如果 |A|=6 , $\lambda_1=-1$, $\lambda_2=3$,则 $\lambda_3=$ ______
- 3. 设A为 3 阶方阵,且|A|=2,则|3A|=_____。
- 4. 设有二次型 $f = -2x_1^2 6x_2^2 4x_3^2 + 2x_1x_2 + 2x_1x_3$,写出 f 的矩阵______。
- 5. 已知向量 $\vec{x} = (3, -1, 2)^T$, $\vec{y} = (1, -1, -1)^T$,则 $[\vec{x}, \vec{y}] =$ ______.
- 二、选择题 (每题 4 分, 共 20 分)
- 1. 设 $A \times B$ 均为n阶方阵,且|A+AB|=0,则(
- (A) |A| = 0 (B) |B + E| = 0 (C) |A| = 0 $\exists |B + E| = 0$ (D) |A| = 0 $\exists |B + E| = 0$
- 2. 以下关于矩阵秩的结论不正确的是(
- (A) 秩(A) = 秩 (A^{T})
- (B) 秩(A,B)=秩(A)+秩(B)
- (C) 秩 $(A+B) \le$ 秩(A) +秩(B) (D) 秩 $(AB) \le$ 秩(A)
- 3. 齐次线性方程组 AX = O 有非零解的充要条件是(
- (A) A中必有一列向量是其余列向量的线性组合
- (B) A中任意列向量是其余列向量的线性组合
- (C) A的任意两个列向量线性相关
- (D) A 的任意两个列向量线性无关

- 4. 设A是n阶矩阵,如果|A|=0,则A的特征值()
- (A) 全是零 (B) 全不是零 (C) 至少有一个是零 (D) 可以是任意数
- 5. 设 \vec{x} 、 \vec{y} 为n维列向量,则以下结论正确的是()

(A)
$$\|\lambda \vec{x}\| = \lambda \|\vec{x}\|$$
 (B) $\|\vec{x}\| = \sqrt{[\vec{x}, \vec{x}]}$

(C)
$$\|\vec{x} + \vec{y}\| = \|\vec{x}\| + \|\vec{y}\|$$
 (D) $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}^T}$

三、(8分) 设矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$, 已知 $AX = B \stackrel{?}{\times} X$.

四、
$$(10\, \mathcal{G})$$
 设 $D_n = \begin{vmatrix} x_1 - m & x_2 & \cdots & x_n \\ x_1 & x_2 - m & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n - m \end{vmatrix}$, 求 D_n

五、(12 分) 问
$$\lambda$$
 取何值时,非齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$

1) 有唯一解; 2) 无解; 3) 有无穷多个解并求通解.

六、
$$(10分)$$
 设矩阵 $A = \begin{bmatrix} 2 & -4 & 3 & 5 \\ 1 & -2 & 1 & 3 \\ 1 & -2 & 4 & 0 \end{bmatrix}$,求矩阵 A 的列向量组的一个最大无关组,

并把其余列向量用最大无关组线性表示.

七、
$$(12 \, \text{分})$$
 设 $A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix}$,求 A 的特征值及对应的特征向量.

八、(8分) 设 A,B 都是正交阵,证明 AB 也是正交阵.

山东科技大学 2015—2016 学年第一学期

《线性代数》考试试卷参考答案及评分标准(B 卷)

(每题 4 分, 共 20 分)

1.
$$|A|E$$
 2. -2 3. 54 4. $A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -6 & 0 \\ 1 & 0 & -4 \end{pmatrix}$ 5. 2

二、(每题 4 分, 共 20 分)

三、(8分)解:由
$$|A| = -3 \neq 0$$
, A 可逆

四、(10分)解:原式

$$= (x_1 + x_2 + \dots + x_n - m) \begin{vmatrix} 1 & x_2 & \dots & x_n \\ 1 & x_2 - m & \dots & x_n \\ \dots & \dots & \dots & \dots \\ 1 & x_2 & \dots & x_n - m \end{vmatrix}$$

$$= (x_1 + x_2 + \dots + x_n - m) \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & -m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -m \end{vmatrix}$$

$$= (x_1 + x_2 + \dots + x_n - m) \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & -m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -m \end{vmatrix} . \dots 8 \, \mathcal{H}$$

$$=(-m)^{n-1}(x_1+x_2+\cdots+x_n-m)\cdots 10 \,$$

五、(12 分)解:
$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2) \cdots 2$$
 分

当 $|A| \neq 0$ 时,即当 $\lambda \neq 1$, $\lambda \neq -2$ 时,R(A) = 3,方程组有唯一解 ···········3 分

当
$$\lambda = 1$$
时,增广矩阵 $B = \begin{bmatrix} 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

当
$$\lambda = -2$$
时, $B = \begin{bmatrix} -2 & 1 & 1 & -5 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & -2 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & -2 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & -9 \end{bmatrix}$

可见 R(A) = 2, R(B) = 3, $R(A) \neq R(B)$, 于是方程组无解 ……………………12 分

六、(10 分) 解:
$$A = \begin{bmatrix} 2 & -4 & 3 & 5 \\ 1 & -2 & 1 & 3 \\ 1 & -2 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & -5 & 5 \\ 0 & 0 & -3 & 3 \\ 1 & -2 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & 0 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 ……6 分

由上可知 a_1 , a_3 是A的列向量组的一个最大无关组·······8分

(或
$$A = \begin{bmatrix} 2 & -4 & 3 & 5 \\ 1 & -2 & 1 & 3 \\ 1 & -2 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
此时 $a_2 = -2a_1, a_4 = 4a_1 - a_3$)

七、(12分)解:
$$|A - \lambda E| = \begin{vmatrix} 5 - \lambda & -1 & 3 \\ -1 & 5 - \lambda & -3 \\ 3 & -3 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & 4 - \lambda & 0 \\ -1 & 5 - \lambda & -3 \\ 2 & 2 - \lambda & -\lambda \end{vmatrix}$$

$$= (4 - \lambda) \begin{vmatrix} 1 & 1 & 0 \\ -1 & 5 - \lambda & -3 \\ 2 & 2 - \lambda & -\lambda \end{vmatrix} = (4 - \lambda) \begin{vmatrix} 1 & 1 & 0 \\ 0 & 6 - \lambda & -3 \\ 0 & -\lambda & -\lambda \end{vmatrix} = -\lambda (4 - \lambda) \begin{vmatrix} 6 - \lambda & -3 \\ 1 & 1 \end{vmatrix}$$

当
$$\lambda_1 = 0$$
时, $A - \lambda E = A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix} \sim \begin{bmatrix} 4 & 4 & 0 \\ -1 & 5 & -3 \\ 2 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdots 4$ 分

当
$$\lambda_2 = 4$$
时, $A - \lambda E = A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 3 & -3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & -10 \end{bmatrix}$ ……7分

当
$$\lambda_3 = 9$$
 时, $A - \lambda E = A = \begin{bmatrix} -4 & -1 & 3 \\ -1 & -4 & -3 \\ 3 & -3 & -6 \end{bmatrix} \sim \begin{bmatrix} 0 & 15 & 15 \\ 1 & 4 & 3 \\ 0 & -15 & -15 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdots 10$ 分

八、(8分) 证明: 因为 A, B 都是正交阵,则 $A^T A = AA^T = E, B^T B = BB^T = E$ ······3 分

$$(AB)^{T}(AB) = B^{T}A^{T}AB = B^{T}B = E$$
 6 \(\frac{1}{2}\)

AB 也是正交阵 ------8 分

山东科技大学 2017—2018 学年第一学期

《线性代数》考试试卷 (A卷)

适用班级金融学、	会计学、	国际贸易 2016 级班级	姓名	学号	
----------	------	---------------	----	----	--

题号	_	 111	四	五	六	七	八	总得分	评卷人	审核人
得分										

一、填空题(每题 4 分, 共 20 分)

1. 已知
$$\begin{vmatrix} k & 3 & 4 \\ -1 & k & 0 \\ 0 & k & 1 \end{vmatrix} = 0$$
,则 $k =$ ______.

2. 设
$$A$$
为 3 阶方阵,且 $A = 5$,则 $3A^{-1} - A^* = ______$.

3. 若线性方程组
$$Ax = b$$
 的增广矩阵 $B \to \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & \lambda & 12 \end{pmatrix}$,则当常数 $\lambda =$ ____时,此

线性方程组有无穷多解.

4. 若二次型
$$f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$$
是正定的,则 t 的取值范围是__.

5. 已知
$$a_1 = (1, 1, 0)^T$$
, $a_2 = (1, 3, -1)^T$, $a_3 = (5, 3, t)^T$ 线性相关,则 t 为_____.

二、选择题(每题4分,共20分)

1. 设n阶矩阵A, B和C, 则下列说法正确的是——。

A.
$$AB = AC$$
,则 $B = C$ B. $AB = 0$,则 $\left|A\right| = 0$ 或 $\left|B\right| = 0$

C.
$$(AB)^T = A^T B^T$$
 D. $(A+B)(A-B) = A^2 - B^2$

2. 若方阵
$$A^2 = A$$
, A 不是单位方阵,则()

A.
$$|A| = 0$$
 B. $|A| \neq 0$ C. $A = O$ D. $A \neq O$

3. 设 3 阶方阵
$$A$$
, $A-E$, $E+2A$ 均不可逆, 则 $|A+E|=($

4. 若线性方程组
$$Ax = b$$
 的增广矩阵 $B \to \begin{pmatrix} 2 & 0 & 2 & 3 \\ 0 & \lambda & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$,则此线性方程组()

- A. 可能有无穷多解 B. 一定有无穷多解 C. 可能无解 D. 一定无解
- 5. 若 A 为正交矩阵,则下列说法错误的是()

A.
$$|A|=1$$
或-1 B. $A^T=A^{-1}$ C. A 是对称矩阵 D. $A^T与A$ 是可交换矩阵

三、(10分) 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}$, 且 $AXB = C$, 求 X .

五、(12 分) 问え取何值时,非齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$

1) 有唯一解; 2) 无解; 3) 有无穷多个解并求通解.

六、
$$(12分)$$
 设有向量组 $A: \alpha_1 = \begin{pmatrix} 2 & 1 & 4 & 3 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} -1 & 1 & -6 & 6 \end{pmatrix}^T$,

$$\alpha_3 = (-1 \ -2 \ 2 \ 9)^T$$
, $\alpha_4 = (1 \ 1 \ -2 \ 7)^T$, $\alpha_5 = (2 \ 4 \ 4 \ 9)^T$, 试求 (1) 该向量

组 A 的秩;(2)该向量组 A 的一个最大无关组;(3)求 A 中其余向量用所求出的最大无关组线性表示.

七、
$$(10 \, \text{分})$$
 设矩阵 $A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$,求 A 的特征值及对应的特征向量,并判断矩阵

A能否对角化.

八、(8分)已知四元非齐次线性方程组,其增广矩阵的秩与系数矩阵的秩都等于3,

且向量 $\beta_1 = \begin{pmatrix} 1 & 2 & 1 & 0 \end{pmatrix}^T$ 与 $\beta_2 = \begin{pmatrix} 1 & 1 & 1 & -1 \end{pmatrix}^T$ 都是它的解向量,求它的全部解.

山东科技大学 2017—2018 学年第一学期

《线性代数》考试试卷参考答案及评分标准(A 卷)

(每题 4 分, 共 20 分)

2.
$$-\frac{8}{5}$$

1. 1 或 3 2.
$$-\frac{8}{5}$$
 3. 6 4. $-\sqrt{2} < t < \sqrt{2}$ 5. $-\sqrt{2} < t < \sqrt{2}$

5.
$$-\sqrt{2} < t < \sqrt{2}$$

二、(每题 4 分, 共 20 分)

故
$$X = A^{-1}CB^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 6 & -4 \\ -3 & -6 & 5 \\ 2 & 2 & -2 \end{bmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 10 & -4 \\ -10 & 4 \end{pmatrix}$$
 ·····10 分

$$= [a + (n-1)] \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & a & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & a \end{bmatrix} \cdots \cdots 6 \ \ \cancel{\beta} \ , = [a + (n-1)](a-1)^{n-1} \cdots \cdots 8 \ \ \cancel{\beta}$$

五、(12 分)解:
$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2)\begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2(\lambda + 2) \cdots 2$$
分

当 $|A| \neq 0$ 时,即当 $\lambda \neq 1$, $\lambda \neq -2$ 时,R(A) = 3,方程组有唯一解 ············3 分

当
$$\lambda = 1$$
时,增广矩阵 $B = \begin{bmatrix} 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

1

当
$$\lambda = -2$$
 时, $B = \begin{bmatrix} -2 & 1 & 1 & -5 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & -2 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & -2 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & -9 \end{bmatrix}$

可见 R(A) = 2, R(B) = 3, $R(A) \neq R(B)$, 于是方程组无解 …………12 分

六、(12 分) 解:令
$$A=(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5) = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & 9 & 7 & 9 \end{pmatrix}$$
 ,利用初等行变

换得
$$A \sim \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
6 分

故(1)该向量组的秩为3

-----8分

(2) 该向量组的一个最大无关组为 α_1 , α_2 , α_4 ··········1

七、(10分)解:

$$\pm |A - \lambda E| = \begin{vmatrix} -1 - \lambda & 1 & 0 \\ -4 & 3 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (\lambda - 1)^{2} (\lambda - 2) = 0$$

求得 A 的特征值为 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 1$

-----3 分

对应
$$\lambda_1 = 2$$
,解方程 $(A - 2E)x = 0$ 得基础解系 $\xi_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

所以 $c_1\xi_1$ 是对应 $\lambda_1=2$ 的全部特征向量 ························6 分

对应 $\lambda_2 = \lambda_3 = 1$ 解方程 (A - E)x = 0 得基础解系 $\xi_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

所以 $c_2\xi_2$ 是对应 $\lambda_2 = \lambda_3 = 1$ 的全部特征向量

对应二重根 $\lambda_2=\lambda_3=1$,对应基础解系向量个数为 1 小于重数,故矩阵不能对角化···10 分

八、(8分) 解: R(A) = R(B) = 3 < 4

故对应齐次线性方程组基础解系的秩 $R_s=4-3=1$ ············4 分

故基础解系为 $\xi = \beta_1 - \beta_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ 原方程通解为 $x = c\xi + \beta_1 = c \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$

山东科技大学 2017—2018 学年第一学期 《线性代数》考试试卷 (B卷)

适用班级金融学、	会计学、	国际贸易 2016 级班级	11/17 /2/	学号
----------	------	---------------	-----------	----

题号	_	1	111	四	五.	六	七	八	总得分	评卷人	审核人
得分											

- **一、填空题**(每题 4 分, 共 20 分)
- 2. 设三阶矩阵 A 的特征值为-1,3,-3,则 $\left|A^{3}-2A^{2}\right|=$ ______
- 3. 若二次型 $f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 是正定的,则t的取值范围是__
- 4. 已知 $\alpha_1 = \begin{pmatrix} 1, & 1, & 0 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 1, & 3, & -1 \end{pmatrix}^T$, $\alpha_3 = \begin{pmatrix} 5, & 3, & t \end{pmatrix}^T$ 线性相关,则 t 为_

- **二、选择题**(每题 4 分, 共 20 分)
- 1. 若 A 为 n 阶可逆矩阵, A^* 是 A 的伴随矩阵,则()

A.
$$|A^*| = |A|^{n-1}$$

B.
$$|A^*| = |A|$$

A.
$$|A^*| = |A|^{n-1}$$
 B. $|A^*| = |A|$ C. $|A^*| = |A|^n$ D. $|A^*| = |A^{-1}|$

2. 设n阶矩阵A, B和C, 则下列说法正确的是——。

$$A \quad AR = AC \quad |||||R = C$$

A.
$$AB = AC$$
,则 $B = C$ B. $AB = 0$,则 $\left|A\right| = 0$ 或 $\left|B\right| = 0$

$$C. (AB)^T = A^T B^T$$

C.
$$(AB)^T = A^T B^T$$
 D. $(A + B) (A - B) = A^2 - B^2$

- 3. 若 A 为 n 阶矩阵,且秩 R(A)=n-1, α_1,α_2 是 Ax=0 的两个不同的解向量,则 Ax=0的通解为()
- A. $K\alpha_1$ B. $K\alpha_2$ C. $K(\alpha_1 + \alpha_2)$ D. $K(\alpha_1 \alpha_2)$

4. 若矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & \lambda + 1 \end{pmatrix}$$
的秩为 2,则 $\lambda = ($)

- B. 2 C. 1

- 5. 若 A 为正交矩阵,则下列说法错误的是()
- A. |A|=1或-1 B. $A^T=A^{-1}$ C. A是对称矩阵 D. $A^T与A$ 是可交换矩阵

$$\Xi$$
、(8分) 设 $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 2 \\ 1 & -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$, 且 $AX = B$, 求 X .

五、(10分) 求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:

$$\begin{cases} x_1 + x_2 + x_3 + 2x_4 = 3\\ 2x_1 - x_2 + 3x_3 + 8x_4 = 8\\ -3x_1 + 2x_2 - x_3 - 9x_4 = -5\\ x_2 - 2x_2 - 3x_4 = -4 \end{cases}$$

六、
$$(12\, \mathcal{G})$$
 设向量组 $\alpha_1=\begin{pmatrix}1\\1\\k\end{pmatrix}$, $\alpha_2=\begin{pmatrix}-1\\k\\1\end{pmatrix}$, $\alpha_3=\begin{pmatrix}-k\\1\\-1\end{pmatrix}$, $\alpha_4=\begin{pmatrix}1\\4\\5\end{pmatrix}$, 问:

- 1) 参数 k 为何值时, α_1 、 α_2 、 α_3 为向量组的一个极大无关组?
- 2) 参数 k 为何值时, α_1 、 α_2 为向量组的一个极大无关组?并在此时,求出 α_3 、 α_4 由 极大无关组表出的线性表达式。

七、(12 分) 求一正交变换 x = py,把二次型 $f = -2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 化为标准形.

八、(10 分)设 n 阶方阵 A 满足 $A^2 - 3A - 2E = 0$,证明 A 可逆,并求 A^{-1} .

山东科技大学 2017—2018 学年第一学期

《线性代数》考试试卷参考答案及评分标准(B 卷)

- **一、填空题** (每题 4 分, 共 20 分)
- 2. 1215 3. $-\sqrt{2} < t < \sqrt{2}$ 4. 1 5. 4

二、选择题 (每题 4 分, 共 20 分)

ABDCC

$$\rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 1 & 1 \\ 0 & -2 & 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 1 & 1 \\ 0 & 0 & 3 & 2 & 3 \end{pmatrix}$$

四、(8分)解:原式=
$$\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 5 & -1 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -1 \\ 1 & 5 & 6 \\ 0 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -1 \\ 0 & 0 & 7 \\ 0 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 7 \\ 3 & 3 \end{vmatrix} = -21 \dots 8 分,$$

五、(10 分)解:
$$(A \ b) = \begin{pmatrix} 1 & 1 & 1 & 2 & 3 \\ 2 & -1 & 3 & 8 & 8 \\ -3 & 2 & -1 & -9 & -5 \\ 0 & 1 & -2 & -3 & -4 \end{pmatrix} \stackrel{r}{\cup} \begin{pmatrix} 1 & 1 & 1 & 2 & 3 \\ 0 & 1 & -2 & -3 & -4 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \dots 2$$
 \Rightarrow

取
$$x_4$$
 为自由未知量,令 $x_4=c$,则通解为:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = c \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} \qquad c \in R \quad \cdots \qquad 8 \ \%$$

对应齐次线性方程组的基础解系为:
$$\begin{pmatrix} -2\\1\\-1\\1 \end{pmatrix}$$
 10 1

六、(12分)解:
$$(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4) = \begin{pmatrix} 1 & -1 & -k & 1 \\ 1 & k & 1 & 4 \\ k & 1 & -1 & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & -k & 1 \\ 0 & k+1 & 1+k & 3 \\ 0 & 1+k & k^2-1 & 5-k \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -k & 1 \\ 0 & k+1 & 1+k & 3 \\ 0 & 0 & (k-2)(k-1) & 2-k \end{pmatrix} \cdots \cdots 6 \ \cancel{/}$$

- (1) $k \neq 1, k \neq 2$ 时, α_1 , α_2 , α_3 为向量组的一个最大线性无关组;……8 分
- (2) k=2时, α_1 , α_2 为向量组的一个最大线性无关组,········10 分

$$\alpha_3 = -\alpha_1 + \alpha_2$$
, $\alpha_4 = 2\alpha_1 + \alpha_2$ 12 $\dot{\mathfrak{D}}$

2)
$$\mathbb{H}$$
: $\mathbb{H} |A - \lambda E| = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -1 + \lambda & 0 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda - 1)^2 (\lambda + 2)$

对应 $\lambda_1 = -2$ 解方程(A + 2E)X = 0

对应
$$\lambda_2 = \lambda_3 = 1$$
 解方程 $(A - E)X = 0$ 得基础解系 $\xi_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 将 ξ_2 , ξ_3 正交化,

$$\eta_2 = \xi_2, \quad \eta_3 = \xi_3 - \frac{[\eta_2, \xi_3]}{\|\eta_2\|^2} \eta_2 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

八、(10分) 证明: 由
$$A^2 - 3A - 2E = 0$$
, 得 $A(A-3E) = 2E$,

$$A \cdot \frac{1}{2} (A - 3E) = E$$
,所以 A 可逆, ················8 分

且
$$A^{-1} = \frac{1}{2}(A - 3E)$$
。 … 10 分