Università della Svizzera italiana

Facoltà di scienze informatiche

Edge Computing in the IoT

Embedded Systems Design

Alberto Ferrante (alberto.ferrante@usi.ch)

TA: Luca Butera

Embedded Systems Design Process

- At each step, we analyze the design to determine how we can meet the specification of the previous step
- We verify the design to ensure that it still meets all system goals, such as cost and speed
- Separating out requirements analysis and specification is necessary
 - There is a large gap between what customers can describe and what the architects need to design the system
- Design is normally top-down, but we reevaluate it bottom-up

Requirements

- Goal of this phase is to define the purpose(s) of the system and its main characteristics
- Actions of human users or other machines as they interact with the system
- A set of use cases that describe typical usage scenarios often helps in clarifying what the system needs to do

- Functional requirements:
 - What does the system do?
 - User interface(s)

Requirements

- Non functional requirements:
 - Performance: "speed" of the system
 - Cost: The target cost or purchase price for the system. Two major components:
 - manufacturing cost: components and assembly
 - nonrecurring engineering (NRE) costs: personnel and other costs for designing the system
 - Physical characteristics: The physical aspects of the final system can vary greatly depending upon the application
 - Size
 - Weight
 - Water/durst resistant
 - ...
 - Power and energy
 - Battery life
 - Power constraints
 - ...
 - Security
 - Reliability

Requirements - Example

Name	GPS moving map
Purpose	Consumer-grade moving map for driving use
Inputs	Power button, two control buttons
Outputs	Back-lit LCD display 400 × 600
Functions	Uses five-receiver GPS system; three user-
	selectable resolutions; always displays current latitude and longitude
Performance	Updates screen within 0.25 s upon movement
Manufacturing cost	\$40
Power	100 mW
Physical size and weight	No more than $2'' \times 6''$, 12 ounces

Specification

- Goal of this phase is to translate requirements into more precise and specific form that will be followed by designers in the later stages
- The specification should be understandable enough so that someone can verify that it meets system requirements and overall expectations of the customer
- It should be unambiguous enough that designers know what they need to build
 - If the behavior of some features in a particular situation is unclear from the specification, the designer may implement the wrong functionality
 - If global characteristics of the specification are wrong or incomplete, the overall system architecture derived from the specification may be inadequate to meet the needs of implementation
- Specification languages, instead of natural language, may be used to provide more precise specification
 - e.g., UML

Architecture Design

- The architecture is a plan for the overall structure of the system
 - Will be used later to design the components that make up the architecture
 - It starts defining how requirements are implemented
- The creation of the architecture is the first phase of what many designers think of as design

Architecture Design

- General block diagram that describes the different parts of the system
 - Refined into one block diagram for hardware and one for software
- In case of multiple networked elements, we apply the same principle to the network architecture first and then to the architecture of each network element

Architecture Design

- Starting out with a system architecture and refining that to hardware and software architectures is one good way to ensure that we meet all specifications
 - We can concentrate on the functional elements in the system block diagram and then consider the nonfunctional constraints when creating the hardware and software architectures
 - We must somehow be able to estimate the properties of the components of the block diagrams
 - Some blocks are clearly hardware, some others clearly software
 - There are also modules for which the decision on whether to use hardware or software is made according to the requirements
 - Mixed HW/SW solutions are possible
- If the interfaces among different modules are specified in detail, the design of each module can proceed mostly in an independent way

Architecture Design - Example

Designing Hardware and Software Components

- The component design effort builds the components in conformance to the architecture and specification
- The components will in general include
 - Hardware: FPGAs, boards, sensors, actuators, ...
 - Software modules
- Some hardware and software components will be ready-made, some others will need to be designed and built
- Each component needs to be
 - Specified in detail
 - Designed
 - Implemented
 - Tested

System Integration

- In this phase, we put all the blocks, implemented independently, together
- This phase usually consists of a lot more than just plugging everything together
 - Bugs are typically found during system integration
 - By building up the system in phases and running properly chosen tests, we can often find bugs more easily
 - If we debug only a few modules at a time, we are more likely to uncover the simple bugs and be able to easily recognize them
 - Simulation co-simulation
 - Use of artificial test vectors

Simulation

- Simulation of
 - The whole system
 - Building blocks
- Simulation can be used in different design phases
 - To verify correctness of requirements and specification
 - During the development of building blocks (e.g., algorithm development and tuning)
 - To test building blocks
 - To test the integration of building blocks before full integration takes place

Simulation

- We often rely on logged or artificially generated data
 - Input to a block provided by a simulated component that
 - Uses logged data, instead of live ones
 - Generates a fake output in accordance to specification
- Mix of real and fake blocks
 - Interfaces are the real ones
 - Hardware blocks may be simulated in software
 - E.g., a certain signal processing function is performed by a PC instead of a dedicated hardware unit

Example: Matlab Embedded Coder

Requirements and Specification Example

- Design a system that controls air conditioning in a house
- The system not only considers temperature settings by users, but also presence in the rooms, and learns habits of users as well
- Your turn:
 - Read the Requirements
 - Start drafting the high-level specification and the System Architecture

