Understanding "Subsumes" and "Dominates" in Asymptotic Notation

Definitions

- **Big-O Notation** (O): A function f(n) is O(g(n)) if there exist constants c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.
- Soft-O (\widetilde{O}): Ignores logarithmic factors. Formally, $\widetilde{O}(g(n)) = O(g(n) \cdot \log^k n)$ for some k.

Key Terms

1. "Subsumes": O(X) subsumes O(Y) if Y = O(X). This means X grows at least as fast as Y, so O(Y) is a subset of O(X).

Example: $O(n^2)$ subsumes O(n) because $n = O(n^2)$.

2. "Dominates": O(X) dominates O(Y) if X grows faster than Y, so X determines the asymptotic behavior when both terms are present.

Example: In $O(n^3 + n^2)$, n^3 dominates n^2 .

Application to the Triangle Counting Problem

The theorem states that the space complexity is $\widetilde{O}\left(\frac{m\kappa}{T}\right)$. This bound:

• Subsumes $\widetilde{O}\left(\frac{m^{3/2}}{T}\right)$:

Since
$$\kappa \leq \sqrt{2m}$$
, $\frac{m\kappa}{T} \leq \frac{m\sqrt{2m}}{T}$
= $O\left(\frac{m^{3/2}}{T}\right)$.

Thus, $\widetilde{O}\left(\frac{m\kappa}{T}\right)$ includes $\widetilde{O}\left(\frac{m^{3/2}}{T}\right)$ as a special case.

• Dominates $\widetilde{O}\left(\frac{m}{\sqrt{T}}\right)$ when $T=\Omega(\kappa^2)$:

If
$$T \geq c\kappa^2$$
 (for some $c > 0$), then $\frac{m\kappa}{T} \leq \frac{m\kappa}{c\kappa^2}$

$$= \frac{m}{c\kappa}$$

$$\leq \frac{m}{c\sqrt{T}} \quad (\text{since } \kappa \leq \sqrt{T} \text{ when } T \geq \kappa^2)$$

$$= O\left(\frac{m}{\sqrt{T}}\right).$$

Here, $\frac{m\kappa}{T}$ becomes the smaller (dominant) term.

Concrete Example: Wheel Graph

For a wheel graph with n vertices:

- $m = T = \Theta(n)$,
- $\kappa = O(1)$ (planar graph).

The space complexity becomes:

$$\widetilde{O}\left(\frac{m\kappa}{T}\right) = \widetilde{O}(1),$$

which is exponentially better than existing bounds like $\Omega(\sqrt{n})$.

Why This Matters for Real-World Graphs

Real-world graphs often have:

- High triangle counts $(T = \Omega(\kappa^2))$,
- Bounded degeneracy ($\kappa = O(1)$ for social/media networks).

The new bound $\widetilde{O}\left(\frac{m\kappa}{T}\right)$ adapts to these properties, providing significantly better space efficiency than previous results.

Our algorithm uses

$$\widetilde{O}\left(\frac{m \kappa}{T}\right)$$

words of space (that's the upper bound).

No algorithm can do better than

$$\Omega\!\!\left(\min\!\!\left(rac{m^{3/2}}{T},\;rac{m}{\sqrt{T}}
ight)
ight)$$

words (that's the lower bound).

Then, by checking the two regimes

- 1. When $rac{m^{3/2}}{T} \leq rac{m}{\sqrt{T}}$, we show $rac{m\,\kappa}{T} \leq O(m^{3/2}/T)$.
- 2. When $\frac{m}{\sqrt{T}}<\frac{m^{3/2}}{T}$, we show (for $T=\Omega(\kappa^2)$) $\frac{m\,\kappa}{T}\leq O(m/\sqrt{T})$.

This proves

$$\widetilde{O}\!\!\left(rac{m\,\kappa}{T}
ight) \ = \ \widetilde{\Theta}\!\!\left(\min\!\left(rac{m^{3/2}}{T},\,rac{m}{\sqrt{T}}
ight)
ight)\!.$$

In other words, the algorithm's space usage is tight up to poly-logarithmic factors—it is both

- ullet at most $\widetilde{O}(m\kappa/T)$, and
- at least $\Omega(\min(m^{3/2}/T,\ m/\sqrt{T}))$

and we've shown those two quantities coincide (up to logs). So yes: the algorithm runs in $\widetilde{\Theta}(m\,\kappa/T)$ space, matching the information-theoretic lower bound.