数理逻辑基础 作业 9

练习 20. 3. 证明 K 中以下公式都不是有效式.

 $3^{\circ} \ \forall x_1(\neg R_1^1(x_1) \to \neg R_1^1(c_1))$

 $4^{\circ} \ \forall x_1 R_1^2(x_1, x_1) \to \exists x_2 \forall x_1 R_1^2(x_1, x_2)$

解: 3° 取 $M = \mathbb{N}$, $\overline{c_1} = 0$, $\overline{R_1^1}$ 为 "= 0", 则 $|\neg R_1^1(c_1)|_M = 0$, 对于任一项解释 $\varphi \in \Phi_M$, 存在 φ 的 x_1 变通 $\varphi' : \varphi'(x_1) \neq 0$ 使得 $|\neg R_1^1(x_1) \to \neg R_1^1(c_1)|(\varphi') = 0$, 所以

$$|\forall x_1(\neg R_1^1(x_1) \to \neg R_1^1(c_1))|_M = 0$$

所以公式不是有效式.

 4° 取 $M = \mathbb{N}$, $\overline{R_1^2}$ 为 "=", 则 $|R_1^2(x_1, x_1)|_M = 1 \Rightarrow |\forall x_1 R_1^2(x_1, x_1)|_M = 1$, 对任一项解释 $\varphi \in \Phi_M$ 的任一 x_2 变通 φ' , 都存在 φ' 的 x_1 变通 $\varphi'' : \varphi''(x_1) \neq \varphi''(x_2)$ 使得 $|R_1^2(x_1, x_2)|(\varphi'') = 0$, 有 $|\forall x_1 R_1^2(x_1, x_2)|(\varphi') = 0$, 所以 $|\exists x_2 \forall x_1 R_1^2(x_1, x_2)|_M = 0$, 因此

$$|\forall x_1 R_1^2(x_1, x_1) \to \exists x_2 \forall x_1 R_1^2(x_1, x_2)|_M = 0$$

所以公式不是有效式.

练习 20. 4. 在 K 中增加新的个体常元 b_1, b_2, \cdots , 其他不变, 得到新的扩大的谓词演算 K^+ . 设 M 是 K^+ 的解释域 (也同时可看成是 K 的解释域). 已知 φ^+ 和 φ 分别是 K^+ 和 K 的项解释, 且满足 $\varphi^+(x_i) = \varphi(x_i), i = 1, 2, \cdots$. 求证:

- (i) 对 K 中的任何项 t, $\varphi^+(t) = \varphi(t)$
- (ii) 对 K 中的任何公式 p, $|p|(\varphi^+) = |p|(\varphi)$

解: (i) 对 t 在项集 T 中的层次数 k 进行归纳:

- 1° 当 k=0 时, $t=c_i$ 或 $t=x_i$, 因为 $\varphi^+(c_i)=\overline{c_i}=\varphi(c_i)$, $\varphi^+(x_i)=\varphi(x_i)$, 所以 $\varphi^+(t)=\varphi(t)$.
- 2° 当 k>0 时,设 $t=f_i^n(t_1,\cdots,t_n)$,其中 t_1,\cdots,t_n 是较低层次的项. 由归纳假设,有

$$\varphi^+(t_1) = \varphi(t_1), \cdots, \varphi^+(t_n) = \varphi(t_n)$$

因此

$$\varphi^{+}(t) = \varphi^{+}(f_i^n(t_1, \dots, t_n)) = \overline{f_i^n}(\varphi^{+}(t_1), \dots, \varphi^{+}(t_n))$$
$$= \overline{f_i^n}(\varphi(t_1), \dots, \varphi(t_n)) = \varphi(f_i^n(t_1, \dots, t_n)) = \varphi(t)$$

由项集 T 的分层性及 1° 和 2° 归纳可知题中命题成立.

(ii) 对 p 在公式集 K(Y) 中的层次数 k 进行归纳:

1° 当
$$k = 0$$
 时, 设 $p = R_i^n(t_1, \dots, t_n)$, 由 (i) 可知

$$\varphi^+(t_1) = \varphi(t_1), \cdots, \varphi^+(t_n) = \varphi(t_n)$$

则有

$$|\varphi^+|(p)=1 \Leftrightarrow (\varphi^+(t_1),\cdots,\varphi^+(t_n)) \in R_i^n \Leftrightarrow (\varphi(t_1),\cdots,\varphi(t_n)) \in R_i^n \Leftrightarrow |p|(\varphi)=1$$

数理逻辑基础 作业 9 傅申 PB20000051

 2° 当 k > 0 时, 有如下三种可能的情况, 其中 q, r 为较低层次的公式.

- (1) $p = q \rightarrow r$. $\not = |p|(\varphi^+) = |q|(\varphi^+) \rightarrow |r|(\varphi^+) = |q|(\varphi) \rightarrow |r|(\varphi) = |p|(\varphi)$
- (2) $p = \neg q$. $\not = |p|(\varphi^+) = \neg |q|(\varphi^+) = \neg |q|(\varphi) = |p|(\varphi)$
- (3) $p = \forall x_i q$. 若 φ' 是 φ 的任一 x_i 变通, 且 $\varphi^{+'}$ 是 K^+ 的和 φ' 有相同变元指派的项解释, 则 $\varphi^{+'}$ 是 φ^+ 的 x_i 变通. 反之, 若 $\varphi^{+'}$ 是 φ^+ 的任一 x_i 变通, 且 φ' 是 K 的和 $\varphi^{+'}$ 有相同变元指派的项解释, 则 φ' 是 φ 的 x_i 变通. 于是有

$$|p|(\varphi^+)=1 \Leftrightarrow$$
 对任一 φ^+ 的 x_i 变通 $\varphi^{+'}, |q|(\varphi^{+'})=1$ \Leftrightarrow 对任一 φ 的 x_i 变通 $\varphi', |q|(\varphi')=1 \Leftrightarrow |x_iq|(\varphi)=1, |p|(\varphi)=1$

由公式集 K(Y) 的分层性及 1° 和 2° 归纳可知题中命题成立.

练习 21. 2. $\vdash \exists x_2 R_1^2(x_1, x_2) \rightarrow \exists x_2 R_1^2(x_2, x_2)$ 是否成立?

解: 不成立. 假设命题成立, 则有 $\models \exists x_2 R_1^2(x_1, x_2) \rightarrow \exists x_2 R_1^2(x_2, x_2)$.

取 $M = \mathbb{N}$, $\overline{R_1^2}$ 为 " \neq ", 则 $|R_1^2(x_2, x_2)|_M = 0 \Rightarrow |\exists x_2 R_1^2(x_2, x_2)|_M = 0$. 而对任一项解释 $\varphi \in \Phi_M$, 总存在 φ 的 x_2 变通 $\varphi': \varphi'(x_2) \neq \varphi'(x_1)$ 使得 $|R_1^2(x_1, x_2)|(\varphi') = 1$, 所以 $|\exists x_2 R_1^2(x_1, x_2)|_M = 1$. 于是得到 $|\exists x_2 R_1^2(x_1, x_2) \rightarrow \exists x_2 R_1^2(x_2, x_2)|_M = 0$

与假设矛盾, 所以命题不成立.