ДОМАШНЕЕ ЗАДАНИЕ

- 2.1. (задача 1.12) Из 28 костей домино случайным образом выбирают одну. Опишите пространство Ω элементарных исходов. Перечислите элементарные исходы, их которых состоят события
 - а) $A = \{$ выбранная кость является дублем $\}$,
 - б) $B = \{ \text{сумма очков на выбранной кости равна 6} \},$
 - в) $C = \{$ произведение числа очков на выбранной кости нечетно $\}$,
 - Γ) $B \setminus A$,
 - д) AB,
 - e) AC,
 - ж) $AB \setminus C$,
 - (A+B)C.
- 2.2. (задача 1.13) Производят обследование случайным образом выбранной семьи, в которой четверо детей. Пол каждого ребенка записывают в порядке старшинства (от старших детей к младшим). Определите
 - а) общее число элементарных исходов;
 - б) число элементарных исходов, отвечающих семье, в которой первый ребенок девочка;
 - в) число элементарных исходов, отвечающих семье, в которой есть дети обоих полов.
- 2.3. (задача 1.15) Случайный эксперимент заключается в трехкратном подбрасывании монеты. Результаты подбрасывания последовательно записывают в строку. Опишите пространство Ω всех элементарных исходов и выпишите исходы, составляющие каждое из событий:
 - а) $A = \{\text{герб выпал ровно один раз}\};$
 - б) $B = \{$ решетка не выпала ни разу $\}$;
 - в) $C = \{$ число выпадений герба больше числа выпадений решетки $\};$
 - Γ) $D = \{ \text{герб выпал не менее двух раз подряд} \}.$
- 2.4. (задача 1.17) Известно, что событие B является следствием события A. Упростите выражения:
 - a) AB;
 - 6) A + B;
 - B) ABC;
 - Γ) A+B+C.
- 2.5. (задача 1.19) Два игрока играют в шахматы. Пусть $A = \{$ выиграл первый игрок $\}$, $B = \{$ выиграл второй игрок $\}$. Что означают события
 - a) AB;

- б) $\overline{B} \setminus \overline{A}$;
- B) $\overline{A} \setminus \overline{B}$?
- 2.6. (задача 1.20) На рис. 2.1 приведена структурная схема некоторой технической системы. Пусть A=
 - = {система вышла из строя}, $A_i = \{i$ -й элемент вышел из строя}, $i = \overline{1;6}$. Выразите события A и \overline{A} через события A_i и \overline{A}_i .

- 2.7. (задача 2.15) У человека имеется N ключей, из которых только один подходит к двери. Он последовательно испытывает ключи, выбирая их случайным образом. Какова вероятность того, что этот процесс закончится на k-м испытании ($k \leq N$).
- 2.8. (задача 2.16) Из 10-ти первых букв русского алфавита наудачу выбирают 4 буквы без возращения. Какова верятность, что составленное в порядке их появления слово будет оканчиваться на "a"?
- 2.9. (задача 2.19) Набирая номер телефона, абонент забыл две последние цифры, но помнил, что они нечетные и различные. Какова вероятность того, что он с первого раза правильно наберет нужный номер?
- 2.10. (задача 2.20) Среди 25 экзаменационных билетов 5 "хороших". Три студента по очереди берут по одному билету. Найдите вероятности следующих событий:
 - а) $A = \{$ третий студент выащил "хороший" билет $\}$;
 - б) $B = \{$ каждому из трех студентов достался "хороший" билет $\}$.
- 2.11. (задача 2.21) Из урны, в которой 5 белых и 4 черных шара, случайным образом последовательно извлекают все шары. Найдите вероятность того, что при втором извлечении будет вынут белый шар.
- 2.12. (задача 2.22) Кодовая комбинация содержит 5 различных цифр от 1 до 5. Какова вероятность того, что случайно выбранная комбинация имеет вид (1, 2, 3, 4, 5)?
- 2.13. (задача 2.23) Из урны, содержащей 10 шаров, пронумерованных числами от 1 до 10, наудачу последовательно извлекают все шары. Найти вероятность того, что номера шаров в порядке их извлечения образуют строго возрастающую последовательность.
- 2.14. (задача 2.28) Найдите вероятность того, что дни рождения 12-ти случайно выбранных человек придутся на различные месяцы года.
- 2.15. (задача 2.27) В группе обучаются $n \leq 365$ студентов. Какова вероятность того, что дни

рождения хотя бы двух человек из этой группы совпадают?

- 2.16. (задача 2.32) В партии из 50 изделий 4 нестандартных. Из партии наугад выбирают 10 изделий. Найти вероятность того, что среди них хотя бы одно нестандартное.
- 2.17. (задача 2.35) Из колоды в 52 карты случайным образом извлекают 4 карты. Найдите вероятность того, что среди них ровно 2 трефовой масти.