A Two-Stage Parsing Method for Text-Level Discourse Analysis

Yizhong Wang, Sujian Li, Houfeng Wang Peking University

ACL, August 2, 2017

Background: Text-Level Discourse Analysis

- Task: Identifying the discourse structure of text.
- Rhetorical Structure Theory [Mann and Thompson, 1988]

Background: Text-Level Discourse Analysis

Goal: parse a text into a tree with nuclearity and relation labels

Background: Transition-Based Method

[Daniel Marcu. 1999; Kenji Sagae. 2009]

Initial state:

Stack Queue $e_1,\,e_2,\,e_3,\,...$

Shift action:

Reduce action:

Background: Transition-Based Method

[Daniel Marcu. 1999; Kenji Sagae. 2009]

- The unified framework:
- 42 reduce actions are designed with 3 different nuclearity types (e.g. NS) and 18 relation labels (e.g. cause) .
- Reduce action combined with nuclearity and relation:

Background: Transition-Based Method

[Daniel Marcu. 1999; Kenji Sagae. 2009]

- The unified framework:
- 42 reduce actions are designed with 3 different nuclearity types (e.g. NS) and 18 relation labels (e.g. cause) .
- Reduce action combined with nuclearity and relation:

Shift
Reduce-SN-Cause
Reduce-NS-Summary
Reduce-NN-Contrast
Reduce-NS-Temporal

Classifier

Motivation: Naked Tree for Reducing Sparsity

Distribution of the 42 actions in Previous Transition-based Parsing Systems

Number of the 4 actions that we need to build a **naked tree** (without relation)

Motivation: Level-Specific Relation Labelling

 Discourse relations distribute differently at different linguistic levels:

Top-5 Frequent Inner-Sentential Relations		Top-5 Frequent Inter-Sentential Relations		Top-5 Frequent Inter-Paragraph Relations	
Elaboration	32.70 %	Elaboration	44.4 %	Elaboration	43.10%
Attribution	23.00 %	Joint	12.7 %	Joint	13.80%
Same-Unit	10.90 %	Explanation	9.2 %	Explanation	7.60%
Joint	6.60 %	Contrast	7.6 %	Contrast	6.40%
Enablement	4.30 %	Evaluation	5.3 %	Evaluation	5.90%

Motivation: Level-Specific Relation Labelling

 Some discourse relations tend to occur at specific linguistic levels:

Method: Two-Stage Parsing Algorithm

Stage 1:

Transition-based parsing system with only 4 actions is adopted to construct the naked tree (without labels).

Stage 2:

Three dedicated classifiers are trained for labelling relations at three linguistic levels:

- a) intra-sentential
- b) inter-sentential
- c) inter-paragraph

Method: Two-Stage Parsing Algorithm

Stage 1:

Transition-based parsing system with only 4 actions is adopted to construct the naked tree (without labels).

Naked tree structure could help with relation classification.

Stage 2:

Three dedicated classifiers are trained for labelling relations at three linguistic levels:

- a) intra-sentential
- b) inter-sentential
- c) inter-paragraph

Method: Features and Classifiers

- We use manually-extracted features, including:
 - a) Parsing status, position features (only for stage 1)
 - b) N-gram features, dependency features, structural

features, nucleus features

c) Tree features (only for stage 2):

 Four SVM classifiers are trained for the four classification tasks (one action classifier and three relation classifier).

Experiments: Performance Comparison

 We evaluate our method on RST Discourse Treebank, and report the (micro-averaged) F-score:

	Model	Span	Nuclearity	Relation
	Joty et al. (2013)	82.7	68.4	55.7
	Feng and Hirst (2014)	85.7	71.0	58.2
Transition -Based Systems	Li et al. (2014)	84.0	70.8	58.6
	Li et al. (2016)	85.8	71.1	58.9
	Ji and Eisenstein (2014)	82.1	71.1	61.6
	Heilman and Sagae (2015)	83.5	69.3	57.4
	Ours	86.0	72.4	59.7
	Human	88.7	77.7	65.8

Experiments: Incremental Analysis of Our Method

Conclusions

Summary:

- A pipelined two-stage discourse parsing method;
- Three-level relation classification with tree features;
- State-of-the-art performance.

• Future work:

- Update the features and classifiers with latest models;
- Incorporate data from other sources.

Thank you!

Contact: yizhong@pku.edu.cn

Code is available:

https://github.com/EastonWang/StageDP