Lecture 10: Exploration

CS234: RL Emma Brunskill Spring 2017

With thanks to Christoph Dann some slides on PAC vs regret vs PAC-uniform

Today

- Review: Importance of exploration in RL
- Performance criteria
- Optimism under uncertainty
 - Review of UCRL2
 - Rmax
- Scaling up (generalization + exploration)

Montezuma's Revenge

			0		2		_	
		3	4	5	6	7		_
	8	9	10	11	12	13	14	
*	16	17	18	19	20	21	22	23

Figure 7: Layout of levels in MONTEZUMA'S REVENGE, with rooms numbered from 0 to 23. The agent begins in room 1 and completes the level upon reaching room 15 (depicted).

No bonus	
With bonus	

5 MILLION TRAINING FRAMES

5 MILLION TRAINING FRAMES

10 MILLION TRAINING FRAMES

5 MILLION TRAINING FRAMES

No bonus With bonus

10 MILLION TRAINING FRAMES

20 MILLION TRAINING FRAMES

Systematic Exploration Important

Intelligent Tutoring

[e.g.Mandel, Liu, Brunskill, Popovic '14]

Adaptive Treatment

[Guez et al '08]

- In Montezuma's revenge, data = computation
- In many applications, data = people
 - Data = interactions with a student / patient / customer ...
- Need sample efficient RL = need careful exploration

Performance of RL Algorithms

- Convergence
- Asymptotically optimal
- Probably approximately correct
- Minimize / sublinear regret

Last Lecture: UCRL2

Near-optimal Regret Bounds for Reinforcement Learning

- 1. Given past experience data D, for each (s,a) pair
 - Construct a confidence set over possible transition model
 - Construct a confidence interval over possible reward
- 2. Compute policy and value by being optimistic with respect to these sets
- 3. Execute resulting policy for a particular number of steps

UCLR2

Strong regret bounds

$$\Delta(M, \mathfrak{A}, s, T) := T \rho^*(M) - R(M, \mathfrak{A}, s, T)$$

$$\Delta(M, \text{UCRL2}, s, T) \leq 34 \cdot DS \sqrt{AT \log \left(\frac{T}{\delta}\right)}$$

D = diameter

A = number of actions

T = number of time steps algorithm acts for

M = MDP

s = a particular state

S = size of state space

delta = high probability?

UCRL2: Optimistic Under Uncertainty

- 1. Given past experience data D, for each (s,a) pair
 - Construct a confidence set over possible transition model
 - Construct a confidence interval over possible reward
- 2. Compute policy and value by being optimistic with respect to these sets
- 3. Execute resulting policy for a particular number of steps

Optimism under Uncertainty

- Consider the set D of (s,a,r,s') tuples observed so far
 - Could be zero set (no experience yet)
- Assume real world is a particular MDP M1
 - M1 generated observed data D
- If knew M1, just compute optimal policy for M1
 - and will achieve high reward
- But many MDPs could have generated D
- Given this uncertainty (over true world models) act optimistically

Optimism under Uncertainty

- Why is this powerful?
 - Either
 - Hypothesized optimism is empirically valid (world really is as wonderful as dream it is)
 - → Gather high reward
 - or, World isn't that good (lower rewards than expected)
 - → Learned something. Reduced uncertainty over how

the world works.

Optimism under Uncertainty

- Used in many algorithms that are PAC or regret
- Last lecture: UCRL2
 - Continuous representation of uncertainty
 - Confidence sets over model parameters
 - Regret bounds
- Today: R-max (Brafman and Tenneholtz)
 - Discrete representation of uncertainty
 - Probably Approximately Correct bounds

R-max (Brafman & Tennenholtz)

http://www.jmlr.org/papers/v3/brafman02a.html

- Discrete set of states and actions
- Want to maximize discounted sum of rewards

R-max is Model-based RL

Use data to construct transition and reward models & compute policy (e.g. using value iteration)

Rmax leverages optimism under uncertainty!

R-max Algorithm: Initialize: Set all (s,a) to be "Unknown"

Known/ Unknown

	S1	S2	S3	S4	
A	U	U	U	U	
-	U	U	U	U	
*	U	U	U	U	
4	U	U	U	U	

R-max Algorithm: Initialize: Set all (s,a) to be "Unknown"

Known/ Unknown

	S1	S2	S3	S4	
A	U	U	U	U	
-	U	U	U	U	
\ \	U	U	U	U	
4	U	U	U	U	

In the "known" MDP, any unknown (s,a) pair has its dynamics set as a self loop & reward = Rmax

R-max Algorithm: Creates a "Known" MDP

Reward

Known/ Unknown

	S1	S2	S3	S4	
A	U	U	U	U	
-	U	U	U	U	
*	U	U	U	U	
4	U	U	U	U	

	S1	S2	S3	S4	
	R_{max}	R_{max}	R_{max}	R_{max}	
-	R_{max}	R_{max}	R _{max}	R _{max}	
\	R _{max}	R _{max}	R _{max}	R _{max}	
◆	R_{max}	R_{max}	R_{max}	R_{max}	

Transition Counts

	S1	S2	S3	S4	
A	0	0	0	0	
*	0	0	0	0	
*	0	0	0	0	
*	0	0	0	0	

In the "known" MDP, any unknown (s,a) pair has its dynamics set as a self loop & reward = Rmax

R-max Algorithm

Plan in known MDP

R-max: Planning

- Compute optimal policy $\boldsymbol{\pi}_{\text{known}}$ for "known" MDP

Exercise: What Will Initial Value of Q(s,a) be for each (s,a) Pair in the Known MDP? What is the Policy?

Reward

Known/ Unknown

	S1	S2	S3	S4	
A	U	U	U	U	
*	U	U	U	U	
*	U	U	U	U	
+	U	U	U	U	

	S1	S2	S3	S4	
A	R_{max}	R_{max}	R_{max}	R_{max}	
→	R_{max}	R_{max}	R _{max}	R _{max}	
\	R _{max}	R _{max}	R _{max}	R _{max}	
4	R_{max}	R _{max}	R_{max}	R _{max}	

Transition Counts

	S1	S2	S3	S4	
	0	0	0	0	
\	0	0	0	0	
*	0	0	0	0	
4	0	0	0	0	

In the "known" MDP, any unknown (s,a) pair has its dynamics set as a self loop & reward = Rmax

R-max Algorithm

Plan in known MDP

- Given optimal policy $\boldsymbol{\pi}_{\mathsf{known}}$ for "known" MDP
- Take best action for current state $\pi_{known}(s)$, transition to new state s' and get reward r

R-max Algorithm

Update Known MDP Given Recent (s,a,r,s')

Reward

Known/ Unknown

	S2	S2	S3	S4	
	U	U	U	U	
\	U	U	U	U	
*	U	U	U	U	
+	U	U	U	U	

	S2	S2	S3	S4	
	R_{max}	R_{max}	R_{max}	R_{max}	
-	R_{max}	R_{max}	R_{max}	R_{max}	
\ \	R_{max}	R_{max}	R _{max}	R_{max}	
4	R _{max}	R _{max}	R _{max}	R _{max}	

Transition Counts

	S2	S2	S3	S4	
A	0	0	0	0	
→	0	0	1	0	
V	0	0	0	0	
4	0	0	0	0	

Increment counts for state-action tuple

Update Known MDP

Reward

Known/ Unknown

	S2	S2	S3	S4	
A	U	U	U	U	
→	U	U	K	U	
V	U	U	U	U	
4	U	U	U	U	

	S2	S2	S3	S4	
A	R _{max}	R_{max}	R_{max}	R_{max}	
-	R _{max}	R_{max}	R	R_{max}	
▼	R _{max}	R_{max}	R _{max}	R_{max}	
4	R_{max}	R_{max}	R_{max}	R_{max}	

Transition Counts

	S2	S2	S3	S4	
A	3	3	4	3	
→	2	4	5	0	
V	4	0	4	4	
+	2	2	4	1	

If counts for (s,a) > N, (s,a) becomes known: use observed data to estimate transition & reward model for (s,a) when planning

Estimate Models for Known (s,a) Pairs

- Use maximum likelihood estimates
- Transition model estimation
 P(s'|s,a) = counts(s,a → s') / counts(s,a)
- Reward model estimation
 R(s,a) = ∑ observed rewards (s,a) / counts(s,a)

where counts(s,a) = # of times observed (s,a)

When Does Policy Change When a (s,a) Pair Becomes Known?

Reward

Known/ Unknown

	S2	S2	S3	S4	
A	U	U	U	U	
-	U	U	K	U	
\	U	U	U	U	
—	U	U	U	U	

	S2	S2	S3	S4	
A	R_{max}	R_{max}	R_{max}	R_{max}	
→	R _{max}	R_{max}	R	R _{max}	
\ \	R _{max}	R _{max}	R _{max}	R _{max}	
4	R_{max}	R _{max}	R _{max}	R _{max}	

Transition Counts

	S2	S2	S3	S4	
	3	3	4	3	
\	2	4	5	0	
*	4	0	4	4	
4	2	2	4	1	

If counts for (s,a) > N, (s,a) becomes known: use observed data to estimate transition & reward model for (s,a) when planning

R-max Algorithm

R-max and Optimism Under Uncertainty

- UCRL2 used a continuous measure of uncertainty
 - Confidence intervals over model parameters
- R-max uses a hard threshold: binary uncertainty
 - Either have enough information to rely on empirical estimates
 - Or don't (and if don't, be optimistic)

```
0: Inputs: S, A, \gamma, m, \varepsilon_1, and U(\cdot, \cdot)
                                                                                       R-max (Brafman and
 1: for all (s,a) do
                                                                                              Tennenholtz).
       Q(s,a) \leftarrow R_{\max} / (1-\gamma)
      r(s,a) \leftarrow 0
                                                                               Slight modification of R-max
    n(s,a) \leftarrow 0
                                                                               (Algorithm 1) pseudo code in
      for all s' \in S do
       n(s,a,s') \leftarrow 0
                                                                                 Reinforcement Learning in
       end for
                                                                                  Finite MDPs: PAC Analysis
 8: end for
 9: for t = 1, 2, 3, \cdots do
                                                                                   (Strehl, Li, Llttman 2009)
       Let s denote the state at time t.
10:
       Choose action a := \operatorname{argmax}_{a' \in A} Q(s, a').
11:
       Let r be the immediate reward and s' the next state after executing action a from state s.
12:
       if n(s,a) < m then
13:
          n(s,a) \leftarrow n(s,a) + 1
14:
          r(s,a) \leftarrow r(s,a) + r // Record immediate reward
15:
          n(s, a, s') \leftarrow n(s, a, s') + 1 // Record immediate next-state
16:
          if n(s,a) = m then
17:
             for i = 1, 2, 3, \dots, \left\lceil \frac{\ln(1/(\varepsilon_1(1-\gamma)))}{1-\gamma} \right\rceil do
18:
                for all (s, a) do
19:
                   if n(s, a) \ge m then
20:
                      Q(\overline{s}, \overline{a}) \leftarrow \hat{R}(\overline{s}, \overline{a}) + \gamma \sum_{s'} \hat{T}(s'|\overline{s}, \overline{a}) \max_{a'} Q(s', a').
21:
                   end if
22:
                end for
23:
             end for
24:
          end if
25:
       end if
26:
                                                                                                                                  33
27: end for
```

Reminder: Probably Approximately Correct RL

Definition 2 An algorithm \mathcal{A} is said to be an **efficient PAC-MDP** (Probably Approximately Correct in Markov Decision Processes) algorithm if, for any $\varepsilon > 0$ and $0 < \delta < 1$, the per-timestep computational complexity, space complexity, and the sample complexity of \mathcal{A} are less than some polynomial in the relevant quantities $(S,A,1/\varepsilon,1/\delta,1/(1-\gamma))$, with probability at least $1-\delta$. It is simply **PAC-MDP** if we relax the definition to have no computational complexity requirement.

R-max is a Probably Approximately Correct RL Algorithm

On all but the following number of steps, chooses action whose value is at least epsilon-close to V* with probability at least 1-delta

$$\tilde{O}(S^2A/(\epsilon^3(1-\gamma)^6))$$
 ignore log factors

Sufficient Condition for PAC Model-based RL

(see Strehl, Li, LIttman 2009, http://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf)

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

(see Strehl, Li, LIttman 2009, http://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf)

Theorem 10 Let $\mathcal{A}(\varepsilon,\delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and t

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

- Greedy learning algorithm here means that maintains Q estimates and for a particular state s chooses action a = argmax Q(s,a)
- Note: not saying yet how construct these Q!

(see Strehl, Li, LIttman 2009, http://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf)

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

 For example, K_t = known set of (s,a) pairs in R-max algorithm at time step t

(see Strehl, Li, LIttman 2009, http://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf)

Theorem 10 Let $\mathcal{A}(\varepsilon,\delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1-\delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the number of times the escape event from K_t , A_K , can occur is bounded by $\zeta(\varepsilon,\delta)$ (learning complexity). Then, when $\mathcal{A}(\varepsilon,\delta)$ is executed on any MDP M, it will follow a 4ε -optimal policy from its current state on all but

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

- Choose to update estimate of Q values
 - Limiting number of updates of Q is slightly strange*
- or see escape event A_K = visit (s,a) pair not in K_t

Known State-Action MDP: Slightly Different than Rmax

- Assume there is some real MDP M (real world MDP)
- Given as input a ~Q(s,a) function for all (s,a)
 - For R-max algorithm $^{\sim}Q(s,a) = R_{max} / (1-\gamma)$

Known State-Action MDP: Slightly Different than Rmax

- Assume there is some real MDP M (real world MDP)
- Given as input a ~Q(s,a) function for all (s,a)
 - For R-max algorithm $^{\sim}Q(s,a) = R_{max} / (1-\gamma)$
- Define M_{K+} as follows
- Same action space as M, State space is same + s0
- s0 has 0 reward and all actions return it to itself (self looping)

Known State-Action MDP: Slightly Different than Rmax

- Assume there is some real MDP M (real world MDP)
- Given as input a ~Q(s,a) function for all (s,a)
 - For R-max algorithm $^{\sim}Q(s,a) = R_{max} / (1-\gamma)$
- Define M_{K+} as follows
- Same action space as M, State space is same + s0
- s0 has 0 reward and all actions return it to itself (self looping)
- For (s,a) pairs in K₊
 - Set transition and reward models to be same as real MDP M
 - Not the empirical estimate of the models!

Known State-Action MDP: Slightly Different than Rmax

- Assume there is some real MDP M (real world MDP)
- Given as input a ~Q(s,a) function for all (s,a)
 - For R-max algorithm $^{\sim}Q(s,a) = R_{max} / (1-\gamma)$
- Define M_{κ_t} as follows
- Same action space as M, State space is same + s0
- s0 has 0 reward and all actions return it to itself (self looping)
- For (s,a) pairs in K₊
 - Set transition and reward models to be same as real MDP M
 - Not the empirical estimate of the models!
- For (s,a) pairs not in K₊
 - Set $R(s,a) = ^Q(s,a)$ and p(s0|s,a) = 1 (e.g. transition to s0)

Greedy Policy wrt however construct Q₊

(see Strehl, Li, Littman 2009, http://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf)

Theorem 10 Let $\mathcal{A}(\varepsilon,\delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1-\delta$, the following conditions hold for all states s, actions a, and timesteps b: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the number of times the escape event from K_t , A_K , can occur is bounded by $\zeta(\varepsilon,\delta)$ (learning complexity). Then, when $A(\varepsilon,\delta)$ is executed on any MDP M, it will follow a 4ε -optimal policy from its current state on all but

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

Q, Values Always Upper Bounded

Theorem 10 Let $\mathcal{A}(\varepsilon,\delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and t

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

• Estimated value never exceeds upper bound Vmax = $R_{max} / (1-\gamma)$

Probably (1- δ) Approximately (ε)

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

- Specify how close want resulting policy to be to optimal
- Specify with what probability want bound on # of mistakes to hold

Assume that: Algorithm is Optimistic

Theorem 10 Let $\mathcal{A}(\varepsilon,\delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1-\delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the number of times the escape event from K_t , A_K , can occur is bounded by $\zeta(\varepsilon,\delta)$ (learning complexity). Then, when $\mathcal{A}(\varepsilon,\delta)$ is executed on any MDP M, it will follow a 4ε -optimal policy from its current state on all but

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

- Algorithm's V₊ and Q₊ are always at least epsilon-optimistic wrt optimal V*
- Will values computed in R-max algorithm satisfy this?

Assume that: Algorithm is "Accurate"

Theorem 10 Let $\mathcal{A}(\varepsilon, \delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1-\delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the

- What would this mean for R-max?
- In R-max V_t is computed using following MDP M1
 - for (s,a) pairs in K₁: Use empirical estimate of transition and rewards
 - Else set to self loop with reward Rmax (means Q(s,a)= R_{max} / (1- γ))

Assume that: Algorithm is "Accurate"

Theorem 10 Let $A(\varepsilon, \delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1 - \delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_K}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the

- What would this mean for R-max?
- In R-max V₊ is computed using following MDP M1
 - for (s,a) pairs in K₊: Use empirical estimate of transition and rewards
 - Else set to self loop with reward Rmax (means Q(s,a)= R_{max} / (1- γ))
- Recall M_{κ_t} is defined as
 - For (s,a) pairs in K₁: Use true MDP transition and reward model
 - Else set to get value of Q(s,a) = R_{max} / (1- γ)
- This requires that both MDPs have near same computed value for pi for M1

Bounded Learning Complexity

Theorem 10 Let $A(\varepsilon, \delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1 - \delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the number of times the escape event from K_t , A_K , can occur is bounded by $\zeta(\varepsilon, \delta)$ (learning complexity).

- Most important: number of times a (s,a) pair can become known is bounded
- Somewhat intuitive: finite number of (s,a) pairs

(see Strehl, Li, LIttman 2009, http://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf)

Theorem 10 Let $\mathcal{A}(\varepsilon,\delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \operatorname{argmax}_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and t

$$O\left(\frac{V_{\max}\zeta(\varepsilon,\delta)}{\varepsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

If time: do proof on the board. Else see lecture notes for today's class

Optimism under Uncertainty

- Used in many algorithms that are PAC or regret
- Last lecture: UCRL2
 - Continuous representation of uncertainty
 - Confidence sets over model parameters
 - Regret bounds
- Today: R-max (Brafman and Tenneholtz)
 - Discrete representation of uncertainty
 - PAC bounds

Regret vs PAC vs ...?

- What choice of performance should we care about?
- For simplicity, consider episodic setting
- Return is the sum of rewards in an episode

Regret Bounds

Regret Bounds
$$R(T) = T\rho^* - \sum_{k=1}^{\infty} \rho(\pi_k)$$

Guarantees bound expected regret $\mathbb{E}[R(T)]$

Expected Regret Limitations

- Algorithm only works in expectation
- No information on severity of mistakes

Few severely bad episodes (Chronic severe pain)

All episodes good but not great (everyone has a headache)

(ε,δ) - Probably Approximately Correct

(ε,δ) - Probably Approximately Correct

(ε,δ) - Probably Approximately Correct

$$\mathbb{P}(N_{\epsilon} \leq F(S, A, H, \epsilon, \delta)) \geq 1 - \delta$$

PAC Limitations

- Bound only on number of E-suboptimal episodes, no guarantee of how bad they are
- Algorithm may not converge to optimal policy
- ε has to be determined a-priori

Uniform-PAC

(Dann, Lattimore, Brunskill, arxiv, 2017)

$$\mathbb{P}(\forall \varepsilon : N_{\varepsilon} \leq F(S, A, H, \varepsilon, \delta)) \geq 1 - \delta$$

bound on mistakes for any accuracy-level ε jointly

- Removes limitations listed including
- Algorithm converges to optimal policy
- No need to specify ε has to be determined a-priori

Uniform-PAC

(Dann, Lattimore, Brunskill, arxiv, 2017)

A δ -Uniform PAC-bound implies with prob. > 1 - δ :

- Convergence to π^*
- (ε,δ) PAC ∀ ε
- Regret bound R(T)

Uniform-PAC

(Dann, Lattimore, Brunskill, arxiv, 2017)

A δ -Uniform PAC-bound implies with prob. > 1 - δ :

- Convergence to π^*
- (ε,δ) PAC ∀ ε
- Regret bound R(T)

Summary

- Exploration is important
- Optimism under uncertainty can
 - Yield formal bounds on algorithm's performance
 - Have practical benefits
- Regret and PAC have some limitations, PAC-uniform is a new theoretical framework to get us closer to what we want in practice
- Still a large gap between bounds and practical performance

What You Should Understand

- Define 4 performance criteria and give examples where might prefer one over another
- Be able to implement at least 2 approaches to exploration