# Oak at the Edge

Khanh Ton

2024-12-18

# Results

Table 1: Species codes

| Species code | Scientific name       | Common name                  |
|--------------|-----------------------|------------------------------|
| ABBA         | Abies balsamea        | Balsam fir                   |
| ACPE         | Acer pensylvanicum    | Striped maple                |
| ACRU         | Acer rubrum           | Red maple                    |
| ACSA         | Acer saccharum        | Sugar maple                  |
| BEAL         | Betula alleghaniensis | Yellow birch                 |
| BEPA         | Betula papyrifera     | Paper birch                  |
| BEP0         | Betula populifolia    | Gray birch                   |
| FAGR         | Fagus grandifolia     | American beech               |
| FRAM         | Fraxinus americana    | White ash                    |
| OSVI         | Ostrya virginiana     | American hophornbeam         |
| PIRU         | Picea rubens          | Red spruce                   |
| PIST         | Pinus strobus         | White pine                   |
| POGR         | Populus grandidentata | Bigtooth aspen               |
| POTR         | Populus tremuloides   | Quaking aspen                |
| PRPE         | Prunus pensylvanica   | Pin cherry                   |
| PRSE         | Prunus serotina       | Black cherry                 |
| RUS          | Rubus spp.            | Brambles genus, including    |
|              |                       | raspberries and blackberries |
| QURU         | Quercus rubra         | Northern red oak             |
|              |                       |                              |

| Species code | Scientific name  | Common name       |
|--------------|------------------|-------------------|
| TIAM         | Tilia americana  | American basswood |
| TSCA         | Tsuga canadensis | Eastern hemlock   |

#### Stand characterization

#### **Understory competition**

In burned stands, *Q. rubra* mainly competes with early successional seedlings e.g. *Rubus spp.*RUS, *A. rubrum* ACRU, *B. alleghaniensis* BEAL and stump sprouts e.g. *F. grandifolia* FAGR.



Figure 1: Stem density (per ha) of understory species in study stands

### **Overstory composition**

Burn stands have lower overstory basal areas than control stands. Pairs 5 and 6 stand out especially due to their clearcut treatment i.e. absence of mature trees of 20 cm and above in DBH. Their compositions are also the least diverse, consisting of *Prunus* (PRPE,PRSE), *Populus* (POGR,POTR), and *Betula spp.* (BEAL,BEPO,BEPA). The remaining stands have a significant presence of mature *Q*.

*rubra* as well as *Acer* and *Betula* spp. of mid-ranged DBH classes. Additionally, Pair 1's overstory composition includes a large basal area of high-DBH *Pinus strobus* PIST.



Figure 2: Basal area (per ha) of overstory species in study stands by DBH size classes

### Oak seedling density and measurements

#### 2023 oak seedling density

Seedling density increased threefold in burned stands (2359+/-211 per ha) relative to control stands (778+/-121 per ha, p<0.001).

Table 2: Summarized statistics of 2023 oak seedling density per ha

| Disturbance | min | max   | median | mean     | sd       | se      |
|-------------|-----|-------|--------|----------|----------|---------|
| В           | 0   | 17189 | 1146   | 2359.163 | 3045.723 | 211.183 |
| С           | 0   | 12096 | 0      | 777.793  | 1637.060 | 120.686 |



Figure 3: 2023 oak seedling density per ha of study stands

## 2023 diameter at root collar (DRC, mm)

DRC was greater for seedlings in burned stands (4.6+/-0.3 mm) versus control stands (3.3+/-0.3 mm, p<0.01).

Table 3: Summarized statistics of 2023 oak seedling measurements

| Disturbance | variable       | min  | max    | median | mean   | sd     | se    |
|-------------|----------------|------|--------|--------|--------|--------|-------|
| В           | Height_cm      | 5.00 | 182.00 | 13.750 | 24.314 | 25.944 | 2.349 |
| В           | DRC_mm         | 1.05 | 17.54  | 3.650  | 4.614  | 3.161  | 0.286 |
| В           | nlive_branches | 1.00 | 18.00  | 2.000  | 3.022  | 3.119  | 0.331 |
| В           | ndead_branches | 0.00 | 35.00  | 2.000  | 3.079  | 4.969  | 0.527 |
| С           | Height_cm      | 4.30 | 184.00 | 14.000 | 19.780 | 25.619 | 3.178 |
| С           | DRC_mm         | 1.12 | 17.37  | 2.875  | 3.348  | 2.297  | 0.287 |
| С           | nlive_branches | 1.00 | 4.00   | 1.000  | 1.327  | 0.585  | 0.081 |
| С           | ndead_branches | 0.00 | 7.00   | 1.000  | 1.385  | 1.402  | 0.194 |



Figure 4: 2023 seedling DRCs by study stands

## 2024 extension growth (cm)

Extension growth was greater for seedlings in burned stands (6.43+/-0.5 cm) versus control stand (2.6+/-0.4 cm, p<0.001).

Table 4: Summarized statistics of 2024 oak seedling measurements

| Disturbance | variable            | min  | max    | median | mean   | sd     | se    |
|-------------|---------------------|------|--------|--------|--------|--------|-------|
| В           | Height_cm           | 1.55 | 263.00 | 18.00  | 31.105 | 35.808 | 2.465 |
| В           | Extension_growth_cm | 0.00 | 38.00  | 3.50   | 6.432  | 7.306  | 0.503 |
| В           | DRC_mm              | 0.86 | 27.58  | 3.92   | 5.170  | 3.939  | 0.271 |
| В           | nleaves             | 2.00 | 100.00 | 8.00   | 15.864 | 20.540 | 1.414 |
| В           | nlive_branches      | 1.00 | 38.00  | 2.00   | 3.578  | 4.398  | 0.303 |
| В           | ndead_branches      | 0.00 | 37.00  | 2.00   | 3.858  | 5.983  | 0.412 |
| С           | Height_cm           | 6.00 | 225.00 | 15.00  | 21.414 | 29.999 | 2.773 |
| С           | Extension_growth_cm | 0.00 | 40.30  | 1.60   | 2.622  | 4.190  | 0.387 |
| С           | DRC_mm              | 1.44 | 22.55  | 2.85   | 3.530  | 2.937  | 0.272 |
| С           | nleaves             | 2.00 | 100.00 | 4.00   | 6.940  | 12.943 | 1.197 |
|             |                     |      |        |        |        |        |       |

| С | nlive_branches | 0.00 | 31.00 | 1.00 | 1.880 | 2.986 | 0.276 |
|---|----------------|------|-------|------|-------|-------|-------|
| С | ndead_branches | 0.00 | 25.00 | 2.00 | 2.410 | 3.265 | 0.302 |



Figure 5: 2024 seedling extension growths by study stands

### 2024 number of live branches

There were more live branches per seedling in the burned stands than the control stands, respectively 4+/-0 and 2+/-0 (p<0.001).



Figure 6: 2024 number of live branches per seedling by study stands and surveys



Figure 7: 2024 number of live branches per seedling by study stands and surveys

### 2024 number of leaves

Seedlings in burned stands sprouted more leaves (16+/-1) than in control stands (7+/-1, p<0.001).



Figure 8: 2024 number of leaves per seedling by study stands

## Leaf Area Index (LAI)

Burned stands have lower LAI values (averaging 3.2+/-0.2) than control stands (5.4+/-0.2, p<0.001).

Table 5: Summarized statistics of LAI values

| Disturbance | min | max   | median | mean  | sd    | se    |
|-------------|-----|-------|--------|-------|-------|-------|
| В           | 0   | 9.233 | 2.928  | 3.159 | 2.136 | 0.150 |
| С           | 0   | 9.825 | 5.915  | 5.400 | 2.347 | 0.176 |



Figure 9: LAI values by study stands

#### **Citations**

#### R packages

- [1] F. Aust. *citr: RStudio Add-in to Insert Markdown Citations*. R package version 0.3.2. 2019. https://github.com/crsh/citr.
- [2] C. Boettiger. *knitcitations: Citations for Knitr Markdown Files*. R package version 1.0.12. 2021. https://github.com/cboettig/knitcitations.
- [3] W. Chang, J. Cheng, J. Allaire, et al. *shiny: Web Application Framework for R*. R package version 1.9.1. 2024. https://CRAN.R-project.org/package=shiny.
- [4] G. Grolemund and H. Wickham. "Dates and Times Made Easy with lubridate". In: *Journal of Statistical Software* 40.3 (2011), pp. 1-25. https://www.jstatsoft.org/v40/i03/.
- [5] K. Müller and H. Wickham. *tibble: Simple Data Frames*. R package version 3.2.1. 2023. https://CRAN.R-project.org/package=tibble.
- [6] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria, 2022. https://www.R-project.org/.

- [7] V. Spinu, G. Grolemund, and H. Wickham. *lubridate: Make Dealing with Dates a Little Easier*. R package version 1.9.3. 2023. https://CRAN.R-project.org/package=lubridate.
- [8] H. Wickham. *forcats: Tools for Working with Categorical Variables (Factors)*. R package version 1.0.0. 2023. https://CRAN.R-project.org/package=forcats.
- [9] H. Wickham. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2016. ISBN: 978-3-319-24277-4. https://ggplot2.tidyverse.org.
- [10] H. Wickham. *stringr: Simple, Consistent Wrappers for Common String Operations*. R package version 1.5.1. 2023. https://CRAN.R-project.org/package=stringr.
- [11] H. Wickham. *tidyverse: Easily Install and Load the Tidyverse*. R package version 2.0.0. 2023. https://CRAN.R-project.org/package=tidyverse.
- [12] H. Wickham, M. Averick, J. Bryan, et al. "Welcome to the tidyverse". In: *Journal of Open Source Software* 4.43 (2019), p. 1686. DOI: 10.21105/joss.01686.
- [13] H. Wickham, W. Chang, L. Henry, et al. *ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics*. R package version 3.5.1. 2024. https://CRAN.R-project.org/package=ggplot2.
- [14] H. Wickham, R. François, L. Henry, et al. *dplyr: A Grammar of Data Manipulation*. R package version 1.1.4. 2023. https://CRAN.R-project.org/package=dplyr.
- [15] H. Wickham and L. Henry. *purrr: Functional Programming Tools*. R package version 1.0.2. 2023. https://CRAN.R-project.org/package=purrr.
- [16] H. Wickham, J. Hester, and J. Bryan. *readr: Read Rectangular Text Data*. R package version 2.1.5. 2024. https://CRAN.R-project.org/package=readr.
- [17] H. Wickham, D. Vaughan, and M. Girlich. *tidyr: Tidy Messy Data*. R package version 1.3.1. 2024. https://CRAN.R-project.org/package=tidyr.
- [18] Y. Xie. *Dynamic Documents with R and knitr*. 2nd. ISBN 978-1498716963. Boca Raton, Florida: Chapman and Hall/CRC, 2015. https://yihui.org/knitr/.
- [19] Y. Xie. "knitr: A Comprehensive Tool for Reproducible Research in R". In: *Implementing Reproducible Computational Research*. Ed. by V. Stodden, F. Leisch and R. D. Peng. ISBN 978-1466561595. Chapman and Hall/CRC, 2014.

[20] Y. Xie. *knitr: A General-Purpose Package for Dynamic Report Generation in R*. R package version 1.42. 2023. https://yihui.org/knitr/.

[21] Y. Xie. "TinyTeX: A lightweight, cross-platform, and easy-to-maintain LaTeX distribution based on TeX Live". In: *TUGboat* 40.1 (2019), pp. 30-32. https://tug.org/TUGboat/Contents/contents40-1.html.

[22] Y. Xie. tinytex: Helper Functions to Install and Maintain TeX Live, and Compile LaTeX Documents. R package version 0.53. 2024. https://github.com/rstudio/tinytex.