Universidad Nacional Autónoma de México Facultad de Ingeniería

Inteligencia Artificial

PRÁCTICA 2. REGLAS DE ASOCIACIÓN

Casasola García Oscar 316123747

oscar.casasola.g7@gmail.com Grupo 03

Profesor: Dr. Guillermo Gilberto Molero Castillo Semestre 2022-1

Contenido 1 Características 1 Preparación del entorno de ejecución 1 1) Importar las bibliotecas necesarias 1 2) Importar los datos 1 Procesamiento de los datos 2 Aplicación del algoritmo 4 Configuración 1 4 Conclusiones Configuración 1 5 Configuración 2 6 Conclusiones Configuración 2 7 Link de Google Colab 7

Objetivo

✓ Analizar las transacciones y obtener reglas significativas (patrones) de los productos vendidos en un comercio minorista en Francia. Los datos son transacciones de un comercio de un periodo de una semana (7 días).

Características

- ⇒ Ítems (20 productos)
- ⇒ 7500 transacciones

Preparación del entorno de ejecución

1) Importar las bibliotecas necesarias

!pip install apyori # pip es un administrador de paquetes de Python. Se instala el paquete Apyori

import pandas as pd # Para la manipulación y análisis de los datos import numpy as np # Para crear vectores y matrices n dimensionales import matplotlib.pyplot as plt # Para la generación de gráficas a partir de los datos from apyori import apriori

2) Importar los datos

Fuente de datos: store_data.csv

from google.colab import files files.upload()

DatosTransacciones = pd.read_csv('store_data.csv')
DatosTransacciones #Visualizamos los datos cargados

	shrimp	almonds	avocado	vegetables mix	green grapes	whole weat flour	yams	cottage cheese	energy drink	tomato juice	low fat yogurt	green tea	honey	salad	mineral water	salmon	antioxydant juice
0	burgers	meatballs	eggs	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	chutney	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	turkey	avocado	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	mineral water	milk	energy bar	whole wheat rice	green tea	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	low fat yogurt	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7495	butter	light mayo	fresh bread	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7496	burgers	frozen vegetables	eggs	french fries	magazines	green tea	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7497	chicken	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7498	escalope	green tea	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Observaciones:

- 1) Se observa que el encabezado es la primera transacción.
- 2) NaN indica que ese producto no fue comprado en esa transacción.

DatosTransacciones = pd.read_csv('store_data.csv', header=None) #Los primeros datos nos lo toma como datos y no como un encabezado

DatosTransacciones.head(5)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
0	shrimp	almonds	avocado	vegetables mix	green grapes	whole weat flour	yams	cottage cheese	energy drink	tomato juice	low fat yogurt	green tea	honey	salad	mineral water	salmon	antioxydant juice	frozen smoothie	spinac
1	burgers chutney	meatballs	eggs	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
2	chutney	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
3	turkey	avocado	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
4	mineral water	milk	energy bar	whole wheat rice	green tea	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

Procesamiento de los datos

Exploración de los ítems para contabilizarlos y mostrar la frecuencia

Antes de ejecutar el algoritmo es recomendable observar la distribución de la frecuencia de los elementos.

#Se incluyen todas las transacciones en una sola lista

Transacciones = DatosTransacciones.values.reshape(-1).tolist() #-1 significa 'dimensión desconocida'

#Se crea una matriz (dataframe) usando la lista y se incluye una columna 'Frecuencia'

Lista = pd.DataFrame(Transacciones)

Lista['Frecuencia'] = 1

#Se agrupa los elementos

Lista = Lista.groupby(by=[0], as_index=False).count().sort_values(by=['Frecuencia'], ascending=True) #Conteo

Lista['Porcentaje'] = (Lista['Frecuencia'] / Lista['Frecuencia'].sum()) #Porcentaje

Lista = Lista.rename(columns={0 : 'Item'})

#Se muestra la lista de los elementos que menos aparecen a los que más aparecen.

Lista

	Item	Frecuencia	Porcentaje
0	asparagus	1	0.000034
112	water spray	3	0.000102
77	napkins	5	0.000170
34	cream	7	0.000238
11	bramble	14	0.000477
25	chocolate	1230	0.041889
43	french fries	1282	0.043660
100	spaghetti	1306	0.044478
37	eggs	1348	0.045908
72	mineral water	1788	0.060893
120 rc	ows × 3 columns	;	

Preparación

La función Apriori de Python requiere que el conjunto de datos tenga la forma de una lista de listas, donde cada transacción es una lista interna dentro de una gran lista.

Los datos actuales están en un dataframe de Pandas, por lo que, se requiere convertir en una lista.

```
#Se crea una lista de listas a partir del dataframe y se remueven los 'NaN'
#level=0 especifica desde el primer índice
TransaccionesLista = DatosTransacciones.stack().groupby(level=0).apply(list).tolist()
TransaccionesLista
```

```
[['shrimp',
  'almonds',
  'avocado',
  'vegetables mix',
  'green grapes',
  'whole weat flour',
  'yams',
  'cottage cheese',
  'energy drink',
  'tomato juice',
  'low fat yogurt',
  'green tea',
  'honey',
  'salad',
  'mineral water',
  'salmon',
  'antioxydant juice',
  'frozen smoothie',
  'spinach',
  'olive oil'],
['burgers', 'meatballs', 'eggs'],
  'chutney'],
  turkey', 'avocado'],
  'mineral water' 'milk' 'energy har' 'whole wheat rice' 'green tea'l
```

Aplicación del algoritmo

Configuración 1

Obtener reglas para aquellos artículos que se compran al menos 5 veces al día, entonces, $5 \times 7 = 35$ veces en una semana, entonces:

- i) El soporte mínimo se calcula de 35/7500 = 0.0045 (0.45%).
- ii) La confianza mínima para las reglas de 20%
- iii) La elevación de 3.

Observación: Estos valores se eligen arbitrariamente, por lo que, se recomienda probar valores y analizar la diferencia en las reglas.

```
ReglasC1 = apriori(TransaccionesLista,
min_support=0.0045,
min_confidence=0.2,
min_lift=3)
```

Se convierte las reglas encontradas por la clase apriori en una lista, puesto que es más fácil ver los resultados.

```
ResultadosC1 = list(ReglasC1)
print(len(ResultadosC1)) #Total de reglas encontradas: 24

[RelationRecord(items=frozenset({'chicken', 'light cream'}), support=0.004532728969470737, ordered_statistics=[OrderedStatistic(items_base=frozenset({'RelationRecord(items=frozenset({'mushroom cream sauce', 'escalope'}), support=0.005732568990801226, ordered_statistics=[OrderedStatistic(items_base=frozenset(ditems=frozenset({'escalope', 'pasta'}), support=0.005865884548726837, ordered_statistics=[OrderedStatistic(items_base=frozenset(ditems=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems_base=frozenset(ditems
```

RelationRecord(items=frozenset(('mushroom cream sauce', 'escalope')), support=0.005732568990881226, ordered_statistics=[OrderedStatistic(items_base=frozenset(('mushroom cream sauce', 'escalope')), support=0.0057325689703192, ordered_statistics=[OrderedStatistic(items_base=frozenset(('mushroom cream sauce')), support=0.005332622317024397, ordered_statistics=[OrderedStatistic(items_base=frozenset(altionRecord(items=frozenset(('ground beef', 'tomato sauce')), support=0.005332622317024397, ordered_statistics=[OrderedStatistic(items_base=frozenset(altionRecord(items=frozenset(('shrimp'), 'pasta')), support=0.0059332622317024397, ordered_statistics=[OrderedStatistic(items_base=frozenset(altionRecord(items=frozenset(('shrimp'), 'pasta')), support=0.0059332622317024397, ordered_statistics=[OrderedStatistic(items_base=frozenset(altionRecord(items=frozenset(('spaghetti', 'ground beef', 'cooking oil')), support=0.005332622317024397, ordered_statistics=[OrderedStatistic(items_RelationRecord(items=frozenset(('spaghetti', 'frozen vegetables', 'milk', 'olive oil')), support=0.004799360085321957, ordered_statistics=[OrderedStatistic(items_lationRecord(items=frozenset(('frozen vegetables', 'milk', 'olive oil')), support=0.004799360085321957, ordered_statistics=[OrderedStatistic(items_lationRecord(items=frozenset(('frozen vegetables', 'milk', 'olive oil')), support=0.004799360085321957, ordered_statistics=[OrderedStatistic(items_lationRecord(items=frozenset(('spaghetti', 'frozen vegetables', 'nilk', 'olive oil')), support=0.005739568990801226, ordered_statistics=[OrderedStatistic(items_lationRecord(items=frozenset(('spaghetti', 'frozen vegetables', 'nilk', 'olive oil')), support=0.005739568990801226, ordered_statistics=[OrderedStatistic(items_lationRecord(items=frozenset(('spaghetti', 'ground beef', 'milk', 'olive oil')), support=0.005739568990801226, ordered_statistics=[OrderedStatistic(items_lationRecord(items=frozenset(('mineral water', 'ground beef', 'milk', 'olive oil')), support=0.005332622317024397, ordered_statistics=[Or

Son 24 reglas. A manera de ejemplo se imprime la primera regla:

```
print(ResultadosC1[0])
```

RelationRecord(items=frozenset({'chicken', 'light cream'}), support=0.004532728969470737, ordered_statistics=[OrderedStatistic(items_base=frozenset({'light cream'}), items_add=frozenset({'chicken'}), confidence=0.29059829059829057, lift=4.84395061728395)])

Presentando los datos:

```
for item in ResultadosC1:

#El primer índice de la lista

Emparejar = item[0]

items = [x for x in Emparejar]

print("Regla: " + str(item[0]))

#El segundo índice de la lista

print("Soporte: ", item[1]*100, "%")

#El tercer índice de la lista

print("Confianza: ", item[2][0][2]*100, "%")

print("Lift: " + str(item[2][0][3]))

print("=========="")
```

Número	Regla	Soporte	Confianza	Lift
de regla				
1	('chicken', 'light cream')	0.4532728969470737 %	29.059829059829056 %	4.84395061728395
2	('escalope', 'mushroom cream sauce')	0.5732568990801226 %	30.069930069930066 %	3.790832696715049
3	('pasta', 'escalope')	0.5865884548726836 %	37.28813559322034 %	4.700811850163794
4	('herb & pepper', 'ground beef')	1.5997866951073192 %	32.345013477088955 %	3.2919938411349285
5	('tomato sauce', 'ground beef')	0.5332622317024397 %	37.73584905660377 %	3.840659481324083
6	('whole wheat pasta', 'olive oil')	0.7998933475536596 %	27.14932126696833 %	4.122410097642296
7	('pasta', 'shrimp')	0.5065991201173177 %	32.20338983050847 %	4.506672147735896
8	('frozen vegetables', 'shrimp', 'chocolate')	0.5332622317024397 %	23.255813953488374 %	3.2545123221103784
9	('ground beef', 'spaghetti', 'cooking oil')	0.4799360085321957 %	57.14285714285714%	3.2819951870487856
10	('spaghetti', 'frozen vegetables', 'ground beef')	0.8665511265164645 %	31.100478468899524 %	3.165328208890303
11	('milk', 'frozen vegetables', 'olive oil')	0.4799360085321957 %	20.338983050847457 %	3.088314005352364
12	('mineral water', 'shrimp', 'frozen vegetables')	0.7199040127982935 %	30.508474576271183 %	3.200616332819722
13	('olive oil', 'spaghetti', 'frozen vegetables')	0.5732568990801226 %	20.574162679425836 %	3.1240241752707125
14	('spaghetti', 'shrimp', 'frozen vegetables')	0.5999200106652446 %	21.531100478468897 %	3.0131489680782684
15	('spaghetti', 'frozen vegetables', 'tomatoes')	0.6665777896280496 %	23.923444976076556 %	3.4980460188216425
16	('spaghetti', 'grated cheese', 'ground beef')	0.5332622317024397 %	32.25806451612903 %	3.283144395325426
17	('herb & pepper', 'mineral water', 'ground beef')	0.6665777896280496 %	39.06250000000001 %	3.975682666214383
18	('herb & pepper', 'spaghetti', 'ground beef')	0.6399146780429277 %	39.344262295081975 %	4.004359721511667
19	('milk', 'olive oil', 'ground beef')	0.4932675643247567 %	22.4242424242426 %	3.40494417862839
20	('spaghetti', 'shrimp', 'ground beef')	0.5999200106652446 %	52.32558139534884 %	3.005315360233627
21	('milk', 'spaghetti', 'olive oil')	0.7199040127982935 %	20.30075187969925 %	3.0825089038385434
22	('mineral water', 'soup', 'olive oil')	0.5199306759098787 %	22.543352601156073 %	3.4230301186492245
23	('pancakes', 'spaghetti', 'olive oil')	0.5065991201173177 %	20.105820105820104 %	3.0529100529100526
24	('milk', 'spaghetti', 'mineral water', 'frozen vegetables')	0.4532728969470737 %	28.813559322033893 %	3.0228043143297376

Conclusiones Configuración 1

✓ Primera regla

La primera regla contiene dos elementos **chicken** y **light cream** que exclusivamente se compran juntos.

- Esto tiene sentido, ya que las personas que compran crema ligera tienen cuidado con lo que comen, por lo que, es probable que compren pollo, en lugar de carne roja.
- El soporte es de 0.45%, la confianza de 29.05%, la elevación de 4.84, esto es, 4.84 veces más probabilidades de que compren crema ligera.

√ Segunda regla

Para la segunda regla se tienen dos elementos: **escalope** y **mushroom cream sauce** que exclusivamente se compran juntos.

- Esto tiene sentido, ya que las personas que compran escalope (que es un corte de carne) suelen acompañar su platillo con salsa de champiñones, por lo que, es probable que compren estos dos productos por ser complementarios.
- El soporte es de 0.57%, la confianza de 30.06%, la elevación de 3.79, esto es, 3.79 veces más probabilidades de que compren salsa de champiñones si es que compraron escalope.

✓ Tercera regla

Para la tercera regla se tienen dos elementos: pasta y escalope que exclusivamente se compran juntos.

- Esto tiene sentido, ya que las personas que compran pasta, lo hacen por ser un acompañante de su platillo principal el cual en este caso sería el escalope, por lo que, es probable que compren estos dos productos por ser complementarios.
- El soporte es de 0.58%, la confianza de 37.288%, la elevación de 4.7, esto es, 4.7 veces más probabilidades de que compren escalope si es que compraron pasta.

De esta manera y siguiendo el mismo patrón, se pueden sacar conclusiones para cada una de las 24 reglas mostradas en esta configuración.

Configuración 2

Obtener reglas para aquellos artículos que se compran al menos 30 veces al día, entonces, $30 \times 7 = 210 \text{ veces}$ en una semana, entonces:

- i) El soporte mínimo se calcula de 210/7500 = 0.028 (2.8%).
- ii) La confianza mínima para las reglas de 25%.
- iii) La elevación mayor a 1.

Observación: Estos valores se eligen arbitrariamente, por lo que, se recomienda probar valores y analizar la diferencia en las reglas.

Se convierte las reglas encontradas por la clase apriori en una lista, puesto que es más fácil ver los resultados.

```
ResultadosC2 = list(ReglasC2)

print(len(ResultadosC2)) #Total de reglas encontradas(10)

ResultadosC2

[RelationRecord(items=frozenset({'burgers', 'eggs'}), support=0.02879616051193174, ordered_statistics=[OrderedStatistic(items_base=frozenset({'burgers' RelationRecord(items=frozenset({'mineral water', 'chocolate'}), support=0.05265964538061592, ordered_statistics=[OrderedStatistic(items_base=frozenset RelationRecord(items=frozenset({'mineral water', 'eggs'}), support=0.05092654312758299, ordered_statistics=[OrderedStatistic(items_base=frozenset({'eq RelationRecord(items=frozenset({'mineral water', 'frozen vegetables'}), support=0.03572856952406346, ordered_statistics=[OrderedStatistic(items_base=frozen RelationRecord(items=frozenset({'ground beef', 'mineral water'})), support=0.040927876283162246, ordered_statistics=[OrderedStatistic(items_base=frozenset({ RelationRecord(items=frozenset({'mineral water', 'milk'}), support=0.04799360085321957, ordered_statistics=[OrderedStatistic(items_base=frozenset({ RelationRecord(items=frozenset({ 'spaghetti', 'milk'}), support=0.03546193840821224, ordered_statistics=[OrderedStatistic(items_base=frozenset({ 'mineral water', 'pancakes'}), support=0.03372883615517931, ordered_statistics=[OrderedStatistic(items_base=frozenset(RelationRecord(items=frozenset({ 'mineral water', 'pancakes'})), support=0.03372883615517931, ordered_statistics=[OrderedStatistic(items_base=frozenset(RelationRecord(items=frozenset({ 'mineral water', 'pancakes'})), support=0.05972536995067324, ordered_statistics=[OrderedStatistic(items_base=frozenset(RelationRecord(items=frozenset({ 'mineral water', 'pancakes'})), support=0.05972536995067324, ordered_statistics=[OrderedStatistic(items_base=frozenset(RelationRecord(items=frozenset({ 'mineral water', 'pancakes'})), support=0.05972536995067324, ordered_statistics=[OrderedStatistic(items_base=frozenset(RelationRecord(items=frozenset({ 'mineral water', 'spaghetti'})), support=0.05972536995067324, ordered_statistics=[OrderedStatistic(items_base=frozenset(Rel
```

pd.DataFrame(ResultadosC2)

	items	support	ordered_statistics
0	(burgers, eggs)	0.028796	[((burgers), (eggs), 0.33027522935779813, 1.83
1	(mineral water, chocolate)	0.052660	[((chocolate), (mineral water), 0.321399511798
2	(mineral water, eggs)	0.050927	[((eggs), (mineral water), 0.28338278931750743
3	(mineral water, frozen vegetables)	0.035729	[((frozen vegetables), (mineral water), 0.3748
4	(ground beef, mineral water)	0.040928	[((ground beef), (mineral water), 0.4165535956
5	(ground beef, spaghetti)	0.039195	[((ground beef), (spaghetti), 0.39891451831750
6	(mineral water, milk)	0.047994	[((milk), (mineral water), 0.3703703703703704,
7	(spaghetti, milk)	0.035462	[((milk), (spaghetti), 0.27366255144032925, 1
8	(mineral water, pancakes)	0.033729	[((pancakes), (mineral water), 0.3548387096774
9	(mineral water, spaghetti)	0.059725	[((mineral water), (spaghetti), 0.250559284116

Son 8 reglas. A manera de ejemplo se imprime la primera regla:

```
print(ResultadosC2[0])
```

Primera regla:

```
RelationRecord(items=frozenset({'burgers', 'eggs'}), support=0.02879616051193174, ordered_statistics=[OrderedStatistic(items_base=frozenset({'burgers'}), items_add=frozenset({'eggs'}), confidence=0.33027522935779813, lift=1.8378297443715457)])
```

Presentando los datos:

```
for item in ResultadosC2:

#El primer índice de la lista

Emparejar = item[0]

items = [x for x in Emparejar]

print("Regla: " + str(item[0]))

#El segundo índice de la lista

print("Soporte: ", item[1]*100, "%")

#El tercer índice de la lista

print("Confianza: ", item[2][0][2]*100, "%")

print("Lift: " + str(item[2][0][3]))

print("=======================")
```

Número de regla	Regla	Soporte	Confianza	Lift
1	('burgers', 'eggs')	2.879616051193174 %	33.027522935779814 %	1.8378297443715457
2	('mineral water', 'chocolate')	5.265964538061592 %	32.13995117982099 %	1.3483320682317521
3	('mineral water', 'eggs')	5.092654312758299 %	28.338278931750743 %	1.188844688294532
4	('mineral water', 'frozen vegetables')	3.572856952406346 %	37.48251748251749 %	1.57246288387228
5	('ground beef', 'mineral water')	4.092787628316224 %	41.65535956580732 %	1.7475215442008991
6	('ground beef', 'spaghetti')	3.9194774030129316 %	39.89145183175034 %	2.291162176033379
7	('mineral water', 'milk')	4.799360085321957 %	37.03703703703704 %	1.5537741320739085
8	('spaghetti', 'milk')	3.546193840821224 %	27.366255144032927 %	1.5717785592296398
9	('mineral water', 'pancakes')	3.372883615517931 %	35.483870967741936 %	1.4886158620191963
10	('mineral water', 'spaghetti')	5.972536995067324 %	25.05592841163311 %	1.4390851379453289

Conclusiones Configuración 2

✓ Primera regla

La primera regla contiene dos elementos: hamburguesas y huevos que comúnmente se compran juntos.

- Tiene sentido, ya que algunas personas que compran hamburguesas consumen también huevos, como comida de preparación rápida.
- El soporte es de 0.028 (2.8%), la confianza de 0.33 (33%), la elevación de 1.83, esto es, hay casi 2 veces más probabilidades de que cuando se compren hamburguesas, se compren también huevos.

√ Segunda regla

Para la segunda regla se tienen dos elementos: agua mineral y chocolate, que comúnmente se compran juntos.

- Tiene sentido, ya que algunas personas que compran agua mineral consumen también chocolate, a manera de un snack rápido y barato.
- El soporte es de 0.0526 (5.26%), la confianza de 0.321 (32.1%), la elevación de 1.34, esto es, hay 1.34 veces más probabilidades de que cuando se compre agua mineral, se compren también chocolates.

✓ Tercera regla

Para la tercera regla se tienen dos elementos: agua mineral y huevos, que comúnmente se compran juntos.

- Tiene sentido, ya que algunas personas que compran agua mineral consumen también huevos, a manera de una comida saludable o como parte de su compra de la despensa.
- El soporte es de 0.0509 (5.09%), la confianza de 0.2833 (28.33%), la elevación de 1.18, esto es, hay 1.18 veces más probabilidades de que cuando se compre agua mineral, se compren también huevos.

De esta manera y siguiendo el mismo patrón, se pueden sacar conclusiones para cada una de las 10 reglas mostradas en esta configuración.

Link de Google Colab

OCG-Práctica2-RAsociación.ipynb - Colaboratory (google.com)