Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатики и систем управления»
КАФЕДРА	ИУ5

Дисциплина «Технологии мультимедиа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Разведочный анализ данных Исследование и визуализация данных»

Студент	Группы ИУ5-62Б	Гришин Илья
Преподаватель		Гапанюк Ю.Е.

Цель лабораторной работы: изучение различных методов визуализация данных.

Краткое описание. Построение основных графиков, входящих в этап разведочного анализа данных.

Рекомендуемые инструментальные средства можно посмотреть здесь.

Задание:

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из <u>Scikit-learn.</u>
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Средства и способы визуализации данных можно посмотреть здесь.

Разведочный анализ данных. Исследование и визуализация данных

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных о пациентах с диабетом - https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

Данный набор данных состоит из одного файла. Предоставленные данные являются физиологическими данными и данными анализа крови пациентов. Для каждого пациента с диабетом были получены десять исходных переменных, возраст, пол, индекс массы тела, среднее артериальное давление и шесть измерений сыворотки крови, а также интересующий ответ, количественный показатель прогрессирования заболевания через год после исходного уровня. Данный файл содержит следующие колонки:

- AGE возраст пациента
- SEX пол пациента
- ВМІ индекс массы тела
- ВР среднее артериальное давление
- S1 Т-клетки (тип лейкоцитов)
- \$2 липопротеины низкой плотности
- \$3 липопротеины высокой плотности
- \$4 тиреотропный гормон
- **\$5** ламотриджин
- \$6 уровень сахара в крови
- Y количественный показатель прогрессирования заболевания

Загрузка данных

Загрузим файлы датасета в помощью библиотеки Pandas.

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
data = pd.read_csv("lab1.csv", sep=";")
```

2) Основные характеристики датасета

```
In [2]:
```

```
# Первые 10 строк датасета data.head(10)
```

Out[2]:

	AGE	SEX	ВМІ	BP	S1	S2	S3	S4	S5	S 6	Y
0	59	Female	32.1	101.0	157	93.2	38.0	4.00	4.8598	87	151
1	48	Male	21.6	87.0	183	103.2	70.0	3.00	3.8918	69	75
2	72	Female	30.5	93.0	156	93.6	41.0	4.00	4.6728	85	141
3	24	Male	25.3	84.0	198	131.4	40.0	5.00	4.8903	89	206

```
4 AGE
                  10 7.0 1 92 12 5.4 52.3 4.50 4.29 55 86 135
         METE
5
    23
         Male 22.6
                   89.0 139
                            64.8 61.0 2.00 4.1897 68
                                                   97
    36 Female 22.0
                   90.0 160
                            99.6 50.0 3.00 3.9512 82 138
7
    66 Female 26.2 114.0 255 185.0 56.0 4.55 4.2485 92
                                                   63
                   83.0 179 119.4 42.0 4.00 4.4773 94 110
8
    60 Female 32.1
9
    29
         Male 30.0 85.0 180
                           93.4 43.0 4.00 5.3845 88 310
In [3]:
# Размер датасета (строки, колонки)
data.shape
Out[3]:
(442, 11)
In [4]:
total count = data.shape[0]
print('Bcero ctpok: {}'.format(total count))
Всего строк: 442
In [5]:
# Список колонок
data.columns
Out[5]:
Index(['AGE', 'SEX', 'BMI', 'BP', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'Y'], dtype='object
')
In [6]:
# Список колонок с типами данных
data.dtypes
Out[6]:
AGE
         int64
SEX
        object
BMI
       float64
       float64
ΒP
         int64
S1
S2
       float64
S3
       float64
S4
       float64
S5
       float64
S6
         int64
Υ
          int64
dtype: object
In [7]:
# Проверим наличие пустых значений
# Цикл по колонкам датасета
for col in data.columns:
    # Количество пустых значений - все значения заполнены
    temp null count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp null count))
AGE - 0
SEX - 0
BMI - 0
BP - 0
S1 - 0
S2 - 0
S3 - 0
```

```
S4 - 0
S5 - 0
S6 - 0
Y - 0
```

In [8]:

```
# Датасет
data
```

Out[8]:

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S4	S 5	S6	Y
0	59	Female	32.1	101.00	157	93.2	38.0	4.00	4.8598	87	151
1	48	Male	21.6	87.00	183	103.2	70.0	3.00	3.8918	69	75
2	72	Female	30.5	93.00	156	93.6	41.0	4.00	4.6728	85	141
3	24	Male	25.3	84.00	198	131.4	40.0	5.00	4.8903	89	206
4	50	Male	23.0	101.00	192	125.4	52.0	4.00	4.2905	80	135
437	60	Female	28.2	112.00	185	113.8	42.0	4.00	4.9836	93	178
438	47	Female	24.9	75.00	225	166.0	42.0	5.00	4.4427	102	104
439	60	Female	24.9	99.67	162	106.6	43.0	3.77	4.1271	95	132
440	36	Male	30.0	95.00	201	125.2	42.0	4.79	5.1299	85	220
441	36	Male	19.6	71.00	250	133.2	97.0	3.00	4.5951	92	57

442 rows × 11 columns

In [9]:

Основные статистические характеристки набора данных data.describe()

Out[9]:

	AGE	ВМІ	ВР	S1	S2	S 3	S4	S 5	S6	
count	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.0000
mean	48.518100	26.375792	94.647014	189.140271	115.439140	49.788462	4.070249	4.641411	91.260181	152.1334
std	13.109028	4.418122	13.831283	34.608052	30.413081	12.934202	1.290450	0.522391	11.496335	77.0930
min	19.000000	18.000000	62.000000	97.000000	41.600000	22.000000	2.000000	3.258100	58.000000	25.0000
25%	38.250000	23.200000	84.000000	164.250000	96.050000	40.250000	3.000000	4.276700	83.250000	87.0000
50%	50.000000	25.700000	93.000000	186.000000	113.000000	48.000000	4.000000	4.620050	91.000000	140.5000
75%	59.000000	29.275000	105.000000	209.750000	134.500000	57.750000	5.000000	4.997200	98.000000	211.5000
max	79.000000	42.200000	133.000000	301.000000	242.400000	99.000000	9.090000	6.107000	124.000000	346.0000
4										→

In [10]:

```
# Определим уникальные значения для пола data['SEX'].unique()
```

Out[10]:

array(['Female', 'Male'], dtype=object)

3) Визуальное исследование датасета

Диаграмма рассеяния

Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости.

In [11]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='AGE', y='S6', data=data)
```

Out[11]:

<AxesSubplot:xlabel='AGE', ylabel='S6'>

In [12]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='AGE', y='S6', data=data, hue='Y')
```

Out[12]:

<AxesSubplot:xlabel='AGE', ylabel='S6'>

Гистограмма

Позволяет оценить плотность вероятности распределения данных.

In [13]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['AGE'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[13]:

<AxesSubplot:xlabel='AGE', ylabel='Density'>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

In [14]:

```
sns.jointplot(x='S3', y='Y', data=data)
```

Out[14]:

<seaborn.axisgrid.JointGrid at 0x1692460d880>

In [15]:

```
sns.jointplot(x='S3', y='Y', data=data, kind="kde")
```

Out[15]:

<seaborn.axisgrid.JointGrid at 0x16924b28fd0>

"Парные диаграммы"

Комбинация гистограмм и диаграмм рассеивания для всего набора данных.

Выводится матрица графиков. На пересечении строки и столбца, которые соответстуют двум показателям, строится диаграмма рассеивания. В главной диагонали матрицы строятся гистограммы распределения соответствующих показателей.

In [16]:

sns.pairplot(data)

Out[16]:

<seaborn.axisgrid.PairGrid at 0x16924c70340>

20 40 60 80 20 30 40 60 60 100 120 100 260 300 100 200 25 50 75 100 2 4 6 8 4 5 6 60 60 100 120 100 260 300 AGE BMI BP S1 S2 S3 S4 S5 S6 S7

Violin plot

Отображает одномерное распределение вероятности, по краям отображаются распределения плотности.

In [17]:

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['AGE'])
sns.distplot(data['Y'], ax=ax[1])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning:
 `distplot` is a deprecated function and will be removed in a future version. Please adapt
 your code to use either `displot` (a figure-level function with similar flexibility) or `
 histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[17]:

<AxesSubplot:xlabel='Y', ylabel='Density'>

4) Информация о корреляции признаков

Построим матрицу корреляции с помощью разных методов

```
In [18]:
```

```
data.corr()
```

Out[18]:

	AGE	ВМІ	ВР	S1	S2	S3	S4	S5	S6	Y
AGE	1.000000	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841	0.270774	0.301731	0.187889
ВМІ	0.185085	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807	0.446157	0.388680	0.586450
BP	0.335428	0.395411	1.000000	0.242464	0.185548	-0.178762	0.257650	0.393480	0.390430	0.441482
S1	0.260061	0.249777	0.242464	1.000000	0.896663	0.051519	0.542207	0.515503	0.325717	0.212022
S2	0.219243	0.261170	0.185548	0.896663	1.000000	-0.196455	0.659817	0.318357	0.290600	0.174054
S3	-0.075181	-0.366811	-0.178762	0.051519	-0.196455	1.000000	-0.738493	-0.398577	-0.273697	-0.394789
S4	0.203841	0.413807	0.257650	0.542207	0.659817	-0.738493	1.000000	0.617859	0.417212	0.430453
S 5	0.270774	0.446157	0.393480	0.515503	0.318357	-0.398577	0.617859	1.000000	0.464669	0.565883
S6	0.301731	0.388680	0.390430	0.325717	0.290600	-0.273697	0.417212	0.464669	1.000000	0.382483
Υ	0.187889	0.586450	0.441482	0.212022	0.174054	-0.394789	0.430453	0.565883	0.382483	1.000000

In [19]:

data.corr(method='pearson')

Out[19]:

	AGE	ВМІ	ВР	S1	S2	S 3	S4	S 5	S6	Y
AGE	1.000000	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841	0.270774	0.301731	0.187889
ВМІ	0.185085	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807	0.446157	0.388680	0.586450
ВР	0.335428	0.395411	1.000000	0.242464	0.185548	-0.178762	0.257650	0.393480	0.390430	0.441482
S1	0.260061	0.249777	0.242464	1.000000	0.896663	0.051519	0.542207	0.515503	0.325717	0.212022
S2	0.219243	0.261170	0.185548	0.896663	1.000000	-0.196455	0.659817	0.318357	0.290600	0.174054
S3	-0.075181	-0.366811	-0.178762	0.051519	-0.196455	1.000000	-0.738493	-0.398577	-0.273697	-0.394789
S4	0.203841	0.413807	0.257650	0.542207	0.659817	-0.738493	1.000000	0.617859	0.417212	0.430453
S5	0.270774	0.446157	0.393480	0.515503	0.318357	-0.398577	0.617859	1.000000	0.464669	0.565883
S6	0.301731	0.388680	0.390430	0.325717	0.290600	-0.273697	0.417212	0.464669	1.000000	0.382483
Y	0.187889	0.586450	0.441482	0.212022	0.174054	-0.394789	0.430453	0.565883	0.382483	1.000000

In [20]:

data.corr(method='kendall')

Out[20]:

	AGE	ВМІ	ВР	S1	S2	S3	S4	S 5	S6	Y
AGE	1.000000	0.136535	0.242111	0.182220	0.153612	-0.073846	0.160898	0.180544	0.201784	0.130709
ВМІ	0.136535	1.000000	0.281770	0.194171	0.198583	-0.249831	0.335625	0.344720	0.266373	0.391195
BP	0.242111	0.281770	1.000000	0.188067	0.140253	-0.131014	0.205948	0.268863	0.264566	0.289352
S1	0.182220	0.194171	0.188067	1.000000	0.717229	0.010695	0.393367	0.356268	0.227139	0.154016
S2	0.153612	0.198583	0.140253	0.717229	1.000000	-0.133332	0.503579	0.242250	0.194082	0.129665
S 3	-0.073846	-0.249831	-0.131014	0.010695	-0.133332	1.000000	-0.638633	-0.311775	-0.200545	-0.278884
S4	0.160898	0.335625	0.205948	0.393367	0.503579	-0.638633	1.000000	0.485410	0.307397	0.324734
S 5	0.180544	0.344720	0.268863	0.356268	0.242250	-0.311775	0.485410	1.000000	0.316235	0.408988
S 6	0.201784	0.266373	0.264566	0.227139	0.194082	-0.200545	0.307397	0.316235	1.000000	0.239051
Y	0.130709	0.391195	0.289352	0.154016	0.129665	-0.278884	0.324734	0.408988	0.239051	1.000000

In [21]:

fig, ax = plt.subplots(figsize=(15,15))

sns.heatmap(data.corr(), annot=True, fmt='.4f')

Out[21]:

<AxesSubplot:>

In [85]:

```
# Вывод значений в ячейках

fig, ax = plt.subplots(figsize=(15,15))

mask = np.zeros_like(data.corr(), dtype=bool)

mask[np.tril_indices_from(mask)] = True

sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.4f')
```

Out[85]:

<AxesSubplot:>

AGE -	0.1851	0.3354	0.2601	0.2192	-0.0752	0.2038	0.2708	0.3017	0.1879	

Выводы о коррелирующих признаках

На основе нашей корреляционной матрице, визуализированной с помощью тепловой карты, определим признаки которые коррелируют с нашим целевым признаком.

Отрицательный коэффициент корреляции показывает, что две переменные могут быть связаны таким образом, что при возрастании значений одной из них значения другой убывают.

- Наиболее коррелируемым признаком является индекс массы тела ВМІ (0,5865)
- Вторым по коэффициенту корреляции является ламотриджин \$5 (0,5659)
- Целевой признак хорошо коррелирует со следующими признаками: среднее артериальное давление **BP** (0,4415), липопротеины высокой плотности **S3** (-0,3948), тиреотропный гормон **S4** (0,4305), уровень сахара в крови **S6** (0,3825)
- Из модели можно иключить следующие слабокоррерилиющие признаки: липопротеины низкой плотности S2 (0,1741), возраст пациента AGE (0,1879), Т-клетки (тип лейкоцитов) S1 (0,2120)
- Признак Т-клетки (тип лейкоцитов) **\$1** сильно коррелирует с признаком липопротеины низкой плотности **\$1** (0,8967), поэтому в модели можно оставить лишь один из них
- Также, признак липопротеины высокой плотности **S3** сильно коррелирует с признаком тиреотропный гормон **S4** (-0,7385), поэтому в модели можно оставить лишь один из них