DARK ENERGY

Lluís Galbany Cosmologia - Gravitació i astropartícules

- Introduction
- Equations
- Candidates

DE -> Modern & unknown

Universe expanding

- Observational evidence from supernovae for an accelerating universe and a cosmological constant (A.Riess et al.) 1998
- Measurements of omega and lambda from 42 high redshift supernovae. (S. Perlmutter et al.) 1999

DE ~ expansion

Beginnings

Einstein wants a static universe.

GR don't permit it (Matter attracts gravitionally)

He added a term (*cosmological constant*) to arrange a static UNI

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Hubble law -> expansion -> problem!

The standard cosmological model

- Cosmological principle: Universe is isotropic and homogeneous (on large scales)
- Metrics: equation which gives the distance between two points
 - SR -> Minkowsky metric

$$ds^2 = -c^2 dt^2 + dr^2 + r^2 d\Omega^2$$

GR -> Robertson-Walker metric

$$ds^{2} = -c^{2}dt^{2} + a(t)dr^{2} + S_{k}(r)^{2}d\Omega^{2}$$

t: cosmic time

r: comoving coordinates

Dynamics: relations between curvature & content (a(t), k, R_0 , ϵ (t) & P(t))

• Friedmann equation. Rel. between a(t), k, ε(t) & R₀

$$H(t)^{2} = \frac{\dot{a}(t)^{2}}{a(t)^{2}} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{kc^{2}}{R_{0}^{2} a(t)^{2}}$$

• Fluid equation. Rel. between a(t), ε(t) & P(t)

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$

• Acceleration equation. Rel. between a(t), ε(t) & P(t)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left(\varepsilon + 3P \right)$$

• Equation of state. Rel. between ε(t) & P(t)

$$P = \omega \varepsilon$$
 where w < 1

Dynamics: relations between curvature & content (a(t), k, R_0 , ϵ (t) & P(t))

• Friedmann equation. Rel. between a(t), k, ε(t) & R₀

$$H(t)^{2} = \frac{\dot{a}(t)^{2}}{a(t)^{2}} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{kc^{2}}{R_{0}^{2} a(t)^{2}}$$

• Fluid equation. Rel. between a(t), ε(t) & P(t)

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$

• Acceleration equation. Rel. between a(t), ε(t) & P(t)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left(\varepsilon + 3P \right)$$

• Equation of state. Rel. between ε(t) & P(t)

$$P = \omega \varepsilon$$
 where w < 1

DARK ENERGY W < -1/3

Equations with lambda

• Friedmann equation. Rel. between a(t), k, ε(t) & R₀

$$H(t)^{2} = \frac{\dot{a}(t)^{2}}{a(t)^{2}} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{kc^{2}}{R_{0}^{2} a(t)^{2}} + \frac{\Lambda}{3}$$

• Fluid equation. Rel. between a(t), ε(t) & P(t)

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$

• Acceleration equation. Rel. between a(t), ε(t) & P(t)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left(\varepsilon + 3P\right) + \frac{\Lambda}{3}$$

Einstein wanted to find H=0. In a flat Universe

$$\Lambda = -\frac{8\pi G}{c^2} \varepsilon$$

"New component"

Λ ~ fluid

$$P_{\Lambda} = -\varepsilon_{\Lambda} = -\frac{c^2}{8\pi G} \Lambda$$

- Λ has a negative effective pressure.
 As UNI expands, work is done on Λ fluid.
 - -> E_∧ remains constant

$$W = -\int PdV$$

-> Energy of the empty space (vacuum)

- Classical physics
 - ("Nothing can come from nothing." King Lear)

Quantum physics

$$\Delta E \Delta t \ge h$$

$$\varepsilon_{VAC} \sim \frac{E_P}{l_P^3} \approx 3 \times 10^{133} eV \times m^{-3} \sim 10^{124} \rho_{critical}$$

Theory and observations don't match

Observation of SNIa

Standarized standard candles

$$m - M \approx 43.17 - 5\log_{10}\left(\frac{H_0}{70km \times s^{-1}Mpc^{-1}}\right) + 5\log_{10}z + 1.086(1 - q_0)z$$

The best model is

• Universe only with Λ (or Λ -dominated)

Friedmann equation

$$\dot{a}^2 = \frac{8\pi G \varepsilon_{\Lambda}}{3c^2} a^2$$

Universe exponentially expanding Infinitely old, infinite horizon distance

 $a(t) = e^{H_0(t - t_0)}$

Inflation

DE is fundamental in inflation (Guth 1981)

Early period in the history of the Universe, when the expansion was accelerating outward

$$\ddot{a} > 0$$

inflation rad dominates mat. dominates ∧ dominates
Inflation?

DE is not...

What can be DE?

 Transient phenomenon, which will disappear in the future

Cosmological constant (ΛCDM model)

 Scalar field (quintessence). Λ is not constant, exhibits slow variation

Modified gravity (Gauss-Bonet: extradimensions)

