LETS GROW MORE - Virtual Internship 2023

Name: KRUSHNA DEVENDRA HELGE

Data Science Intern

Task 2 - Stock Market Prediction And Forecasting Using Stacked LSTM

Importing Libraries

In [1]:

```
import pandas as pd
import numpy as np
import math
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import LSTM
matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
```

Import Data

In [2]:

```
1 df = pd.read_csv('NSE-TATAGLOBAL.csv')
2 df.head()
```

Out[2]:

	Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
0	2018-09-28	234.05	235.95	230.20	233.50	233.75	3069914	7162.35
1	2018-09-27	234.55	236.80	231.10	233.80	233.25	5082859	11859.95
2	2018-09-26	240.00	240.00	232.50	235.00	234.25	2240909	5248.60
3	2018-09-25	233.30	236.75	232.00	236.25	236.10	2349368	5503.90
4	2018-09-24	233.55	239.20	230.75	234.00	233.30	3423509	7999.55

Data Exploration

```
In [3]:
```

```
1 df.shape
```

Out[3]:

(2035, 8)

In [4]:

```
1 # check basic info of data
2 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2035 entries, 0 to 2034
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Date	2035 non-null	object
1	0pen	2035 non-null	float64
2	High	2035 non-null	float64
3	Low	2035 non-null	float64
4	Last	2035 non-null	float64
5	Close	2035 non-null	float64
6	Total Trade Quantity	2035 non-null	int64
7	Turnover (Lacs)	2035 non-null	float64

dtypes: float64(6), int64(1), object(1)

memory usage: 127.3+ KB

In [5]:

1 # get statistical summaries of dataset
2 df.describe()

Out[5]:

	Open	High	Low	Last	Close	Total Trade Quantity	Tı
count	2035.000000	2035.000000	2035.000000	2035.000000	2035.00000	2.035000e+03	2035
mean	149.713735	151.992826	147.293931	149.474251	149.45027	2.335681e+06	3899
std	48.664509	49.413109	47.931958	48.732570	48.71204	2.091778e+06	4570
min	81.100000	82.800000	80.000000	81.000000	80.95000	3.961000e+04	37
25%	120.025000	122.100000	118.300000	120.075000	120.05000	1.146444e+06	1427
50%	141.500000	143.400000	139.600000	141.100000	141.25000	1.783456e+06	2512
75%	157.175000	159.400000	155.150000	156.925000	156.90000	2.813594e+06	4539
max	327.700000	328.750000	321.650000	325.950000	325.75000	2.919102e+07	55755
4							•

In [6]:

```
1 df_close = df.reset_index()['Close']
2 df_close
```

Out[6]:

```
233.75
1
        233.25
        234.25
2
3
        236.10
        233.30
         . . .
2030
        118.65
2031
        117.60
        120.65
2032
        120.90
2033
2034
        121.55
Name: Close, Length: 2035, dtype: float64
```

In [7]:

```
1 # check is there any null values present of not
2 df.isnull().sum()
```

Out[7]:

Date	0
0pen	0
High	0
Low	0
Last	0
Close	0
Total Trade Quantity	0
Turnover (Lacs)	0

Here we can see no null values present in dataset

Exploratory Data Analysis (EDA)

Data visualization

In [8]:

Let us plot the Close value graph using pyplot

· Let us plot the Close value graph using pyplot

In [9]:

```
plt.figure(figsize=(15,6))
plt.plot(df_close, c= "b")
plt.ylabel("Close value")
plt.title('Close value graph')
plt.show()
```


· Let us plot the High value graph using pyplot

In [10]:

```
plt.figure(figsize=(15,6))

df_high=df.reset_index()['High']

plt.plot(df_high, c="g")

plt.ylabel("High value")

plt.title('High value graph')

plt.show()
```


 Since LSTM are sensitive to the scale of the data, so we apply MinMax Scaler to transform our values between 0 and 1

```
In [11]:
```

Train Test Split

• In time-series data the one data is dependent on other data. The training size should be 75% of the total length of the data frame, the test size should be the difference between the length of the dataset and the training size.

In [13]:

```
training_size = int(len(df_high) * 0.75)
test_size = len(df_high) - training_size
train_data, test_data = df_high[0:training_size,:], df_high[training_size:len(df_high)]
```

In [14]:

```
print('Training Data :',train_data.size)
print('Training Data :',test_data.size)
```

Training Data : 1526
Training Data : 509

Data Preprocessing

In [15]:

```
def create_dataset(dataset, time_step = 1):
    dataX, dataY = [], []
    for i in range(len(dataset) - time_step - 1):
        a = dataset[i:(i+time_step), 0]
        dataX.append(a)
        dataY.append(dataset[i+time_step, 0])
    return np.array(dataX), np.array(dataY)
```

In [16]:

```
time_step = 100
x_train, y_train = create_dataset(train_data, time_step)
x_test, y_test = create_dataset(test_data, time_step)
```

LSTM

• Reshape the input to be [samples, time steps, features] which is the requirement of LSTM

In [17]:

```
1 x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1)
2 x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1)
```

In [18]:

```
print("X Training Data :",x_train.shape)
print("X testing Data :",x_test.shape)
print("Y Training Data :",y_train.shape)
print("Y Tresting Data :",y_test.shape)
```

```
X Training Data : (1425, 100, 1)
X testing Data : (408, 100, 1)
Y Training Data : (1425,)
Y Tresting Data : (408,)
```

Import required modules for the stacked LSTM.

In [19]:

```
import math
from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import LSTM
```

In [20]:

```
1 #checking my tensorflow version
2 tf.__version__
```

Out[20]:

'2.11.0'

Creating model

In [21]:

```
#Create the LSTM Model
model = Sequential()
model.add(LSTM(50, return_sequences = True, input_shape = (100,1)))
model.add(LSTM(50, return_sequences = True))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss = 'mean_squared_error', optimizer = 'adam')
```

In [22]:

```
1 model.summary()
```

Model: "sequential"

Output Shape	Param #
(None, 100, 50)	10400
(None, 100, 50)	20200
(None, 50)	20200
(None, 1)	51
	(None, 100, 50) (None, 100, 50) (None, 50)

Total params: 50,851 Trainable params: 50,851 Non-trainable params: 0

In [23]:

```
model.fit(x_train, y_train, validation_data = (x_test, y_test), epochs = 10, batch_s
Epoch 1/10
23/23 [============= ] - 14s 275ms/step - loss: 0.0303 - v
al loss: 0.0071
Epoch 2/10
l_loss: 0.0011
Epoch 3/10
l loss: 0.0018
Epoch 4/10
1 loss: 0.0013
Epoch 5/10
23/23 [=============== ] - 5s 221ms/step - loss: 0.0015 - va
l loss: 0.0013
Epoch 6/10
l_loss: 0.0010
Epoch 7/10
l loss: 0.0011
Epoch 8/10
l_loss: 0.0015
Epoch 9/10
l loss: 9.5912e-04
Epoch 10/10
23/23 [============ ] - 5s 224ms/step - loss: 0.0011 - va
l_loss: 9.2192e-04
Out[23]:
<tensorflow.python.keras.callbacks.History at 0x220437eeb50>
```

In [32]:

```
#Lets predict and check performance metrics
train_predict = model.predict(x_train)
test_predict = model.predict(x_test)
```

In [33]:

```
#Transform back to original form
train_predict = scaler.inverse_transform(train_predict)
test_predict = scaler.inverse_transform(test_predict)
```

Calculating RMSE

```
In [34]:

1  #Calculate RMSE performance metrics
2  math.sqrt(mean_squared_error(y_train, train_predict))

Out[34]:

164.14558794369935

In [35]:

1  #Test Data RMSE
2  math.sqrt(mean_squared_error(y_test, test_predict))

Out[35]:
```

Plotting the graph according to train and test data

In [36]:

110.79035236747968

```
#Plotting

#Shift train prediction for plotting
look_back = 100
trainPredictPlot = np.empty_like(df_high)
trainPredictPlot[:,:] = np.nan
trainPredictPlot[look_back:len(train_predict) + look_back, :] = train_predict

#Shift test prediction for plotting
testPredictPlot = np.empty_like(df_high)
testPredictPlot[:,:] = np.nan
testPredictPlot[len(train_predict) + (look_back * 2)+1:len(df_high) - 1, :] = test_p
```

In [37]:

```
#Plot baseline and predictions
plt.figure(figsize=(10,6))

plt.plot(scaler.inverse_transform(df_high))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

print("Green indicates the Predicted Data")
print("Blue indicates the Complete Data")
print("Orange indicates the Train Data")
```


Green indicates the Predicted Data Blue indicates the Complete Data Orange indicates the Train Data

In [38]:

```
#Predict the next 28 days Stock Price
print("Length of Test Data : ",len(test_data))
print("Shape of x Test Data : ",x_test.shape)
```

```
Length of Test Data : 509
Shape of x Test Data : (408, 100, 1)
```

In [39]:

```
1 x_input=test_data[409:].reshape(1,-1)
2 x_input.shape
```

Out[39]:

(1, 100)

Predicting values for next 30 days

```
In [40]:
```

```
1 temp_input = list(x_input)
2 temp_input = temp_input[0].tolist()
```

In [41]:

```
lst output=[]
 2
   n steps=100
 3
   i=0
   while(i<30):</pre>
 4
 5
 6
        if(len(temp_input)>100):
 7
            x_input=np.array(temp_input[1:])
 8
            print("{} day input {}".format(i,x_input))
 9
            x_input=x_input.reshape(1,-1)
            x_input = x_input.reshape((1, n_steps, 1))
10
11
            yhat = model.predict(x_input, verbose=0)
12
            print("{} day output {}".format(i,yhat))
13
14
            temp_input.extend(yhat[0].tolist())
15
            temp_input=temp_input[1:]
16
17
            lst_output.extend(yhat.tolist())
18
            i=i+1
19
        else:
20
            x_input = x_input.reshape((1, n_steps,1))
21
            yhat = model.predict(x_input, verbose=0)
22
            print(yhat[0])
23
            temp_input.extend(yhat[0].tolist())
24
            print(len(temp_input))
25
            lst_output.extend(yhat.tolist())
26
            i=i+1
27
28
    print(lst_output)
```

```
[0.15512641]
101
1 day input [0.13254727 0.13397032 0.13356373 0.13498679 0.14108559 0.1
3498679
0.12644847 0.12685505 0.12482212 0.14515145 0.1467778
                                                    0.15003049
0.15368977 0.17198618 0.16548079 0.17625534 0.17564546 0.19129904
0.20817239 0.20309006 0.18479366 0.17930474 0.1896727
                                                    0.17483228
0.17849156 0.17645863 0.18540354 0.18377719 0.19190892 0.18987599
0.19028258 0.19394186 0.20004066 0.19638138 0.19495832 0.20349665
0.19597479 0.21162838 0.22036999 0.20979874 0.21528766 0.21589754
0.21610083 0.22748526 0.19150234 0.1833706 0.17340923 0.16751372
0.16548079 0.1742224 0.1713763 0.17300264 0.17157959 0.17767839
0.18459036 0.18702988 0.18987599 0.19109575 0.18581012 0.17015654
0.16751372 0.16974995 0.16609067 0.15531612 0.15003049 0.15064037
0.14860744 0.14596463 0.15043708 0.14413499 0.12441553 0.12827811
0.11547062 0.12034966 0.13478349 0.13498679 0.12868469 0.13295385
0.12807481 0.12624517 0.13051433 0.13905265 0.14718439 0.15104696
0.14515145 0.14311852 0.15816223 0.15328319 0.14921732 0.15531612
```

```
In [42]:
```

```
1 day_new = np.arange(1,101)
2 day_pred = np.arange(101,131)
```

In [43]:

```
print(day_new.shape)
print(day_pred.shape)
```

(100,) (30,)

In [44]:

```
ds3 = df_high.tolist()
ds3.extend(lst_output)
len(df_high)
```

Out[44]:

2035

· Graph of actual values in last 100 days

In [45]:

```
plt.figure(figsize=(13,6))

plt.plot(day_new, scaler.inverse_transform(df_high[1935:]))

plt.plot(day_pred, scaler.inverse_transform(lst_output))

plt.xlabel('Days')

plt.ylabel('values')

plt.show()
```


· Graph of predicted values for last 65 days

In [46]:

```
plt.figure(figsize=(13,6))

ds3=df_high.tolist()
ds3.extend(lst_output)
plt.plot(ds3[2000:])
plt.xlabel("Days")
plt.ylabel("Predicted Value")
plt.show()
```


In [47]:

```
plt.figure(figsize=(13,6))

ds3=scaler.inverse_transform(ds3).tolist()
plt.plot(ds3)

plt.show()
```


Model Created Successfully!

Thank You!

In []:			
1				