Code No: 131AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, December - 2017 MATHEMATICS-II

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(25 Marks)

- 1.a) Find the Laplace transform of $\cosh^3 2t$. [2]
 - b) Find the Laplace transform of $e^{-3t}(2\cos 5t 3\sin 5t)$. [3]
 - c) Evaluate the improper integral $\int \sqrt{x}e^{-x^2}dx$ using Gamma function. [2]
 - d) Evaluate the improper integral $\int_{0}^{1} \frac{dx}{\sqrt{-\ln x}}$ using Beta and Gamma functions. [3]
 - e) Find the area bounded by the curves $x^2 = y^3$, x = y using double integration. [2]
 - f) Change the order of the integration $\int_{y=0}^{1} \int_{x=0}^{y+4} \frac{2y+1}{x+1} dx dy$ and evaluate the integral. [3]
 - g) Find $\nabla \phi$, when $\phi = 3x^2y y^3z^2$ at the point (1, -2, -1).
 - h) Find the directional derivative of the function $f(x, y, z) = 2xy + z^2$ at the point (1, -1, 3) in the direction of the vector i + 2j + 2k.
 - i) If $R = t\overline{i} t^2\overline{j} + (t-1)\overline{k}$ and $S = 2t^2\overline{i} + 6t\overline{k}$, evaluate $\int_{0}^{2} R. S dt$. [2]
 - j) Evaluate the line integral $\oint_C (3x^2 8y^2) dx + (4y 6xy) dy$, where *C* is the boundary of the region $y = \sqrt{x}$, y = x.

PART-B

(50 Marks)

- 2.a) Find the Laplace transform of $\sin \sqrt{t}$. Hence find $L\left(\frac{\cos \sqrt{t}}{\sqrt{t}}\right)$.
- b) Prove that $\int_{t=0}^{\infty} \int_{u=0}^{t} e^{-t} \left(\frac{\sin u}{u} \right) du dt = \frac{\pi}{4}.$ [5+5]

- 3.a) Find the inverse Laplace transform of $\ln\left(\frac{s+1}{s-1}\right)$.
 - b) Find the inverse Laplace transform of $\frac{1}{s^3(s^2+a^2)}$ using the convolution theorem.

$$[5+5]$$

- 4.a) Prove that $\int_{0}^{a} \frac{dx}{(a^{n} x^{n})^{1/n}} = \frac{\pi}{n} \cos ec \left(\frac{\pi}{n}\right).$
 - b) Evaluate $\int_{0}^{\pi} x \sin^{7} x \cos^{4} x dx$ using Beta and Gamma functions. [5+5]

OR

5. Prove that
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - \frac{1}{2} \sin^2 \theta}} = \frac{\left[\Gamma(1/4)\right]^2}{4\sqrt{\pi}}.$$
 [10]

- 6.a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2-z^2}}$, by changing to spherical polar coordinates.
- b) Evaluate the integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z)dzdydx$. [5+5]

OR

- 7. Find by triple integration, the volume of the paraboloid of revolution $x^2 + y^2 = 4z$ cut off by the plane z = 4. [10]
- 8. Prove the following vector identities.

a)
$$\nabla(\phi_1\phi_2) = \phi_1\nabla(\phi_2) + \phi_2\nabla(\phi_1)$$
 b) $\nabla\left(\frac{\phi_1}{\phi_2}\right) = \frac{\phi_2\nabla\phi_1 - \phi_1\nabla\phi_2}{\phi_2^2}, \phi_2 \neq 0.$ [5+5]

Ω R

- 9. If R = xi + yj + zk, show that: a) $\nabla r = \frac{R}{r}$ b) $\nabla \left(\frac{1}{r}\right) = -\frac{R}{r^3}$ c) $\nabla r^n = nr^{n-2}R$ d) $\nabla (a.R) = a$, where a is a constant vector and r = |R|.
- 10. State the Stokes' theorem. Verify it for the vector field $F = (2x y)i yz^2j y^2zk$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy plane.

OR

11. State the Green's theorem in a plane. Verify it for $\oint_C e^{-x}(\sin y dx + \cos y dy)$ where c is the rectangle with the vertices (0,0), $(\pi,0)$, $\left(\pi,\frac{\pi}{2}\right)$ and $\left(0,\frac{\pi}{2}\right)$. [10]