Amino acids

BIOS 1006

18 June 2025

Objectives

- Describe the properties of amino acids, in general
- Learn the names, abbreviations, adjectives, functional groups (structures) and properties of all 20 common α -amino acids
- Identify the polar, hydrophobic, polar, acidic or basic features in amino acid structures, and predict how two amino acid R-groups can interact
- Rationalize the position of each amino acid R-group on the hydropathy scale
- Describe the spectroscopic properties of amino acids
- Know the pKa values of the R-groups (do not need to memorize), the average amino group and the average carboxylic acid group
- Determine the net charge of an amino acid or peptide at a specific pH
- Calculate the pI values of amino acids and small peptides
- Draw the chemical structures of amino acid functional groups at different pHs
- Extract pKa values from titration data
- Describe the importance of a protein's pI in biological function
- Describe the roles of amino acids in biological systems
- Identify the amino acid from which amino acid derivatives are derived

Definitions

Amino acids and peptides

Roles of amino acids

- Determine the structure of proteins
- Provide basis for protein function
- Signaling molecules
- Precursors for other biomolecules
- Intermediates in metabolic processes

Amino acid properties

- Zwitterionic (both positive and negative charges) and amphoteric (both an acid and a base) at pH 7
- Contains amino, hydrogen, carboxyl, and R-group (variant)
- Average molecular weight: 110 kDa
- α amino acids have 2 different stereoisomers (different arrangements) that are enantiomers (mirror images)
- Classified as D or L (in biological systems, L isomer is most common)
- Amino on the left = L, amino on the right = D
- Stereochemistry makes a big difference!

The amino acids

Functional groups found in amino acids

- Alcohols
- Thiols
- Thioethers
- Carboxylic acids
- Amides
- Basic groups

Classifications

Aromatic compounds are flat rings

Aliphatic are hydrocarbons that are not aromatic or planar, sp³ hybridized (straight, branched, cyclic).

Polar tyrosine, serine, threonine, cysteine, asparagine, glutamine, histidine.

Acidic and negative aspartate, glutamate

Basic and positive arginine, lysine, histidine

Glycine, G, Gly

Neither hydrophilic nor hydrophobic, R group is H (doesn't have α carbon), not chiral

Alanine, A, Ala

Hydrophobic, aliphatic. Methyl R group.

Valine, V, Val

Hydrophobic, aliphatic. Isopropyl R group.

Leucine, L, Leu

Hydrophobic, aliphatic. Isobutyl R group.

Isoleucine, I, Ile

Hydrophobic, aliphatic. 2-methylbutyl R group.

Proline, P, Pro

Hydrophobic, aliphatic. Cyclic structure, R group is attached to the amino group and the α carbon.

Methionine, M, Met

Hydrophobic, aliphatic. Contains sulfur, thioether R group (sulfur instead of oxygen).

Phenylalanine, F, Phe

Aromatic. Phenyl R group. (alanine with a phenyl group)

Tyrosine, Y, Tyr

Aromatic. Phenolic R group (hydroxyl group on the phenyl ring).

Tryptophan, W, Trp

Aromatic, two rings. Indole R group (nitrogen in the ring).

Histidine, H, His

Basic at neutrality. Imidazole R group (two nitrogens in the ring).

Lysine, K, Lys

Basic at neutrality. Amino R group.

Arginine, R, Arg

Basic at neutrality. Guanidinium R group (three nitrogens).

Aspartate, D, Asp

Acidic at neutrality. Carboxylate R group (carboxylic acid group \rightarrow aspartic acid).

Glutamate, E, Glu

Acidic at neutrality. Carboxylate R group (carboxylic acid group \rightarrow glutamic acid).

Asparagine, N, Asn

Polar, uncharged. Amide R group.

Glutamine, Q, Gln

Polar, uncharged. Amide R group.

Serine, S, Ser

Polar, uncharged. Hydroxyl R group.

Threonine, T, Thr

Polar, uncharged. Hydroxyl R group (similar to serine, but with an additional methyl group).

Cysteine, C, Cys

Polar, uncharged. Thiol R group.

AMINO ACID					AMINO ACID			
Nonpolar, aliphatic R groups	Glycine COO H ₃ N - C - H CH ₂ CH CH ₃ CH ₃	COO^{-} H_{3}^{+} $C - H$ CH_{3} Alanine COO^{-} H_{3}^{+} $C - H$ CH_{2} CH_{2}	COO ⁻ H ₃ N - C - H CH CH ₃ CH ₃ Valine COO ⁻ H ₃ N - C - H H - C - CH ₃ CH ₂	Positively charged R groups	I CH ₂ I CH ₂ I CH ₂ I +NH ₃	COO^{-} $H_3N - C - H$ CH_2 I CH_2 I CH_2 I CH_2 I NH I $C = NH_2$ I NH_2 Arginine	CH ₂	
	Leucine COO- I H C H ₂ N CH ₂ I I H ₂ C — CH ₂ Proline	I S I CH ₃ Methionine	CH ₃	Negatively charged R groups	H ₃ N — C	00⁻ −H H ₃ H ₂	COO ⁻ + I N - C - H I CH ₂ I CH ₂ I	
Polar, uncharged R groups	$ \begin{matrix} I \\ CH_2 \\ I \\ SH \end{matrix} $ $ Cysteine $ $ \begin{matrix} COO^- \\ I \\ H_3N - C - H \\ I \\ H - C - OH \\ I \\ CH_3 \end{matrix} $	COO- H_3N-C-H CH ₂ OH Serine COO- H_3N-C-H CH ₂ CH ₂ C C Asparagine	$COO^ H_3N - C - H$ CH_2 CH_2 CH_2 C	Nonpolar, aromatic R groups Negativ	COO- H ₃ N - C - H CH ₂		COOTH ₃ N-C-H	

Spectroscopic properties

- No amino acids absorb the visible wavelengths
- Some residues absorb UV light (W,Y) and are uesd for protein structure determination
- All amino acids absorb at infrared wavelengths
- W also exhibits fluorescence

Acid base properties

pH = 1, protonated: both, net charge = +1

 $\mathrm{pH}=7,\,\mathrm{protonated}$: a mino group, net charge = 0 $\mathrm{pH}=13,\,\mathrm{protonated}\colon$ neither, net charge = -1