

三维点云处理第七次作业

ISS算法

- ●分为两步:
- ●第一步先找出那些"邻居位置变化较大"的点,作为候选点集
- ●第二步再对候选点集做NMS,作为最后的关键点集

参数:

- r_1 :用每个点 r_1 范围内的点来计算weighted covariance matrix,对应代码中的 $neighbors_salient_radius$
- r_2 :用于NMS,定义需要被抑制的范围,对应代码中的 non_max_radius
- γ₂₁,γ₃₂:用于判断每个点是否为关键点
- iss_count : 关键点数量的上限

找出邻居位置变化较大的点。作为候选点集

- 对于每个点 p_i :
 - 计算weighted covariance matrix
 - \circ 计算weighted covariance matrix的特征值: λ_i^1 , λ_i^2 , λ_i^3
 - \circ 根据条件 $rac{\lambda_i^2}{\lambda_i^1}<\gamma_{21}$ and $rac{\lambda_i^3}{\lambda_i^2}<\gamma_{32}$ 判断 p_i 是否为关键点,如果是,则将i收集到 <code>cand_idxs</code>里面

计算covariance matrix

- o 计算covariance matrix
 - 遍历点 p_i 的每个邻居 p_j :
 - 计算 p_j 对 p_i 的权重,即 w_j
 - 将 w_i 累加到 wsum
 - ullet 计算 $w_j(p_i-p_j)(p_i-p_j)^T$,累加到 ullet numerator。注意 $oldsymbol{p}_i$ 都是 $oldsymbol{column}$ octor
 - numerator 与 wsum 的商即为weighted covariance matrix

```
calculate covariance matrix
"""
numerator = np.zeros((3,3))
wsum = 0
for j in neighbors_salient_radius[i]:
    # TODO: calculate the weight of pj
    wj = 1
    # TODO: update numerator
    numerator += np.zeros((3,3))
    wsum += wj
cov = numerator / wsum
```

计算特征值

计算weighted covariance matrix的特征值: $\lambda_i^1, \lambda_i^2, \lambda_i^3$

```
"""
calculate its eigenvalues
"""
# TODO: use "cov" to calculate eigenvalues
eigenvalues, eigenvectors = 0, 0

# TODO: sort eigenvalues in decreasing order
lambda1, lambda2, lambda3 = 0, 0, 0
lambda3_dict[i] = lambda3
```

关键点判断

根据条件 $\frac{\lambda_i^2}{\lambda_i^1}<\gamma_{21}$ and $\frac{\lambda_i^3}{\lambda_i^2}<\gamma_{32}$ 判断 p_i 是否为关键点,如果是,则将i收集到 <code>cand_idxs</code>里面

```
# TODO: decide whether to keep pi
keep = True

if keep:
    cand_idxs.add(i)
```

对候选点集做NMS, 作为最后的关键点集

第二步对 cand_idxs 做NMS,找出关键点集 iss_idxs。

- 对于 cand_idxs 里的点,再做NMS
 - \circ 从 $cand_idxs$ 中选取 λ_3 最大者,令它为点 $cand_idx$,并将它放入关键点集 iss_idxs
 - \circ 查找 $\mathsf{cand_idx}$ 在 r_2 范围内的邻居,从 $\mathsf{cand_idxs}$ 中删除
 - 。 迭代进行上述两步,直到 cand_idxs 为空或关键点的数量 len(iss_idxs) 大于等于 iss_count

选取lambda3最大者。放入关键点集

从 $cand_idxs$ 中选取 λ_3 最大者,令它为点 $cand_idx$,并将它放入关键点集 iss_idxs

```
find the cand_idx with max lambda3
"""

# TODO: find the cand_idx with max lambda3, using lambda3_dict
cand_idx = 0
"""

add the point into key points set
"""
iss_idxs.append(cand_idx)
```

从候选点集删除关键点的邻居

查找 $\operatorname{cand_idx}$ 在 r_2 范围内的邻居,从 $\operatorname{cand_idxs}$ 中删除

```
"""
delete its neighbors from candidates set
"""
# TODO: delete its neighbors from candidates set, using neighbors_non_max
cand_idxs = cand_idxs
```

常见问题

- weight的计算:应为 p_j 在 r_1 邻域内邻居数量的倒数,与距离无关
- covariance matrix的计算:直接调用np.cov,未加权
- p^{best} : 应该从未拜访的点挑选 λ_3 最大者当作 p^{best} , 而非随机选取
- 关键点的判断:未使用课件上提到的γ21及γ32

在线问答

感谢各位聆听 Thanks for Listening

