CONFIDENTIAL B

MEDIATEK

Shading

Shading flow LSC table in Golden module **CCT** shading Sensor mode, CT calibration doShadingAlign() OTP gain table Every module **OTP** calibration in EEPROM In module house Full size, 5000k Unit LSC table TSF calibration CT, OTP gain doShadingTrfm() LSC table by TSF algo sensor mode Tsf output **CONFIDENTIAL B** MEDIATEK LSC table

Platform Shading OTP calibration

Doc & tool:

- Old:
- shading_calibration_flow0702.pptx
- slim_cal&correction_v1.4_Release_version.rar
- New:
- Intro._to_Shading_OTP_Tool-20171205.pdf
- OTP Tool RGB 051017.rar

Config

slim_param_capture.txt

:Filename, image size, bit-depth, bayer-order, x_grid_num, x_grid_num, image size offset, compensation level, ob.

lsv_param_capture.txt

:Image size(half), bit-depth, bayer-order

新旧tool算法相同,差异在于个别配置项,及新tool的Criteria 更加严格。

OTP calibration config

compensation level config

old

```
-1258667
                 //Pattern_distribution_coef_a
1845333
                 //Pattern_distribution_coef_b
-865333
                 //Pattern_distribution_coef_c
-71333
                 //Pattern_distribution_coef_d
                 //Pattern distribution coef e
1000000 //Pattern distribution coef f
         //OB Value
16
                          = 0.0, 0.0, 0.1000000
//Parameter 1.00
                          = -391111, 871111, -642222, 112222, 0, 1000000
//Parameter 0.95
//Parameter 0.95 = -568889, 782222, -497778, 84444, 0, 1000000
//Parameter 0.90
                          = -440889, 974222, -729778, 96444, 0, 1000000
                          = -974222, 1774222, -1096444, 146444, 0, 1000000
//Parameter 0.85
                          = -1507556, 2574222, -1463111, 196444, 0, 1000000
//Parameter 0.80
                          = -1329778, 2236444, -1127556, -29111, 0, 1000000
//Parameter 0.75
                          = -725333, 1045333, 498667, -121333, 0, 1000000
//Parameter 0.70
//Parameter 0.65
                   = -1258667, 1845333, -865333, -71333, 0, 1000000
//Parameter 0.60 = -1792000.2645333.-1232000.-21333.0.1000000
```

new

```
//correction_level
```

(20-4)/20 = 80%

Grid number

Data size =
$$68(head)+m*n*4 (channel)*2$$

15
//m_x_grid_num
//n y grid num

Shading verification

- Source image :Use Shading Correction image
- G mean: 140~180 (8 bit) (after OB subtraction)
- Calculation
 - G decay = 1- |(G)red-(G)green| / (G)green
 - RG color diff = (R/G)red/(R/G)green 1
 - BG color diff = (B/G)red/(B/G)green 1

red = red window

green = green window

- Criteria : (old)
 - RAW min (G decate) >65%
 - RAW max(color_diff) < 5%
- result.txt old

	pass	g To	tal time	3.634000		
	R_Ce	enter	110.000	0000 G_Cente	r 186.000000 B_Cente	r
	RG	0.025608	BG	-0.450704	Y Decay -23.376623	
	RG	0.488312	BG	-0.091429	Y_Decay -5.844156	
	RG	-0.464217	BG	-1.063830	Y_Decay -24.025974	
	RG	-0.255363	BG /	-0.730337	Y_Decay -3.896104	
	RG	0.308166	BG	-0.169492	Y_Decay -4.545455	
	RG	0.429752	BG	0.327273	Y_Decay -11.038961	
	RG	0.369470	BG	-0.534759	Y_Decay 0.649351	
	RG	0.429752	BG	-0.800000	Y_Decay -11.038961	
	RG	0.308166	BG	-0.169492	Y_Decay -4.545455	
	RG	0.878099	BG	-0.659091	Y_Decay -5.194805	
G	RG	0.246753	BG	-0.357143	Y_Decay -24.675325	
	RG	0.672622	BG	-0.011561	Y_Decay -6.493506	
	RG	0.246753	BG	-0.357143	Y_Decay -24.675325	

ROI Layout

/27

Criteria - new

Before Calibration	MONO Sensor	Bayer Sensor	RWB Sensor	Error Code
G mean of ☐: (8bit) (After OB subtraction)	140 ~ 180	140~180	140~180	LUM_TEST_FAIL
min (R/G) / max (R/G)	>95%	>70%	> 70%	PRECOR_TEST_FA
min (B/G) / max (B/G)	>95%	> 70%	> 70%	PRECOR_TEST_FA
max(G)/min(G)	< 4	<4	<4	OVERFLOW_HARD WARE_BITS
G mean of ☐: (8bit) (After OB subtraction)	140 ~ 180	140 ~ 180	140 ~ 180	LUM_TEST_FAIL
Min (G decay)	> 70%	> 70%	> 70%	FALLOFF_TEST_FAIL
Max (Color diff)	< 5%	< 5%	< (5% / color_gain)	COLOR_TEST_FAIL

Result.txt - new

							Y			
pass	Fail	after_ob.	raw Total t	ime 1	.546000 R	Center	101,000000	G_Center	177.000000	B_Ce
RG_Pre	0.583212	BG_Pre	0.374922	RG	-1.050717	BG	-9.355652	Y_Decay -17.9310	34	
RG Pre	0.603717	BG Pre	0.462221	RG	0.605061	BG	-1.789430	Y_Decay -8.96551	7	
RG Pre	0.571312	BG Pre	0.387676	RG	-1.050717	BG	-8.002752	Y_Decay -17.9310	34	
RG Pre	0.592868	BG Pre	0.460136	RG	-0.162016	BG	-1.164454	Y_Decay -6.89655	2	
RG Pre	0.599948	BG Pre	0.469524	RG	0.292258	BG	-1.759848	Y_Decay -6.89655	2	
RG Pre	0.594861	BG Pre	0.417669	RG	-0.655862	BG	-2.461891	Y_Decay -11.7241	38	
RG Pre	0.573002	BG Pre	0.505590	RG	-0.138282	BG	-0.006277	Y_Decay 0.689655		
RG Pre	0.599925	BG Pre	0.437445	RG	-0,655862	BG	-2.461891	Y_Decay -11.7241	38	
RG Pre	0.586156	BG Pre	0.456857	RG	0.292258	BG	-1.759848	Y_Decay -6.89655	2	
RG_Pre	0.588186	BG_Pre	0.470549	RG	0.292258	BG	-0.561798	Y_Decay -6.20689	7	
RG_Pre	0.565931	BG_Pre	0.377287	RG	-0.535189	BG	-4.593076	Y_Decay -17.2413	79	
RG_Pre	0.589233	BG_Pre	0.464244	RG	-0.012148	BG	-1.171848	Y_Decay -8.27586	2	
RG_Pre	0.576812	BG_Pre	0.403769	RG	0.141443	BG	-5.296950	Y_Decay -17.2413	79	
Center_	Lum 177.00	0000 RG_	Pre_RTO 0.9	37412	BG Pr	_RTO 0.7	741554 Max	<pre>x_Color_Diff 9.35</pre>	5652	Max_
RTO 1.0	00000	Color_Pre	0.700000	RG	5.000000	BG	5.000000	Y_Decay 70		

Before Calibration	After Calibration	Input Filename		Green RC	OI .	
pass	pass	after_ob.raw Total time	0.254 R_Center	36 G_Center	56 B_Center	32

	Red ROI #1~13								
RG_Pre	0.618974	BG_Pre	0.654684	RG	-0.20964	BG	-0.9434	Y_Decay	-5.35714

Color_Gain	Criteria for RG_Pr	Criteria for RG_Pre, BG_Pre Criteria for RG, BG				
RTO	1 Color_Pre	0.85 RG	5 BG	5 Y_Decay 70		

Golden OTP reg config in NVRAM

• Fill in register config value

```
SensorGoldenCalTable: {
  PixId:
                0,
                             // bayer order for golden table
  SlimLscType: 0,
  Width:
             0x90,
                             // block width
                                                         不要参考1 unit 13x9 3 goldenFmt.txt中的PixId
  Height:
             0x6B,
                            // block height
                                                         根据驱动设定来配置
  OffsetX:
             0,
                             // gain table X offset
                            // gain table Y offset
  OffsetY:
             0,
                            // table size in bytes (gird x * grid y * 2 * 4)
  TblSize:
             1800,
  IspLSCReg:
                                                [31...28]
                                                                [27...16]
                                                                                                [11...0]
                                                                                [15...12]
             0x00000000,
             0xd090d06B,
                                                Grid# X
                                                              Block Width
                                                                                               Block Height
                               IspLSCReg[1]
                                                                                 Grid# Y
             0x00000000,
              0x00900075,
             0x20202020},
                               IspLSCReg[3]
                                                            Last Block Width
                                                                                            Last Block Height
             ....},
                                IspLSCReg[4] = Ratio
```

Must

- PixId: 0:B 1:Gb 2:Gr 3:R (fill in first pixel channel of sensor Bayer older)
- Width: block width (sensor raw width/2/(gird_x -1))
- Height: block height (sensor raw height/2/(gird y-1))
- TblSize: gird x * gird y * 2 *4
- Grid# X : gird x 2
 Grid# Y: gird y 2
- ex: if shading OTP table is 15*15, sensor size: 4032*3016,
- Grid# X = 15 2 = 13 = 0xd; Grid# Y = 15 2 = 13 = 0xd;
- block width: 2016/(15-1) = 144 = 0x90, last block width = 2016 144*(15-2) = 144 = 0x90

Shading Issue Check List

- 1. 问题场景下用adb命令开关tsf,看是shading表现否有差异,确认是否tsf问题。
- 2. 用debug parse查看tsf、lsc参数是否生效。
- 3. 关闭smooth shading,固定ratio为32,看是否有影响。
- 4. 在问题场景盖diffuser拍pure data加入到tsf calibration data中。如果有平台shading otp补偿,calibration时也开启此功能。
- 5. 确认Sensor Driver中imgsensor_winsize_info是否正确。
- 6. 如果有平台端shading calibration,确定OTP Driver有无问题,data format,width height,unit gain table和golden gain table等是否正确,log中是否有shadingalign error。

Shading Issue Check List

- 1. 关闭tsf, lsc可以如下命令:
 - adb shell setprop debug.lsc_mgr.enable 0 //关闭lsc
 - adb shell setprop debug.lsc_mgr.manual_tsf 0 //关闭tsf
- 2. 检查tsf参数是否生效
 - 查看Debug parse的SHAD page,
 - SHAD_TAG_TSF_EN 1
 - SHAD_TAG_ALGO_VER开始的值和camera_tsf_para_xxx.h中的是否保持一致。
- 3. 关闭smooth shading确认效果是否有改善
 - isp_tuning_custom.cpp文件evaluate_Shading_Ratio函数直接 返回32或者 adb shell setprop debug.lsc_mgr.ratio 32

Shading Issue Check List

- 4. 在问题场景该diffuser拍raw加入到tsf training data中,用平台支持的最高版本工具生成tsf参数。
- 5. 如果有平台端shading otp,需要检查填写的data format,width,height等配置是否正确。注意:从6755开始已经将data format{B,Gb,Gr,R}的enum定义改成0,1,2,3(6755之前平台是0,2,4,8)。
- 6. 检查sensor drive中win size info设定是否正确,crop时中心对齐,resize时长宽等比例。
- 7. MT6755后,isp_lsc中仅保存capture的shading table,其他mode 的shading table会依据crop info来计算,所以要求crop info信息 需严格按照要求来。

Sensor crop information

• Describe how the sensor mode is cropped from full size.

Only save capture(max fov) shading table in nvram.

Other sensor mode shading table was generated via shading transformation function with sensor crop info which is provided by kernel drier.

Crop at center, resize width and height with the same ratio.

```
lsc mgr2.h
(mediatek\platform\mt6595\hardware\mtkcam\core\featureio\pipe\aaa\lsc mgr)
struct SensorCropInfo T
    // TBD
   MUINT32
                    // original full width
   MUINT32 h0;
                    // original full height
   MUINT32 x1;
                       crop 1 x offset from full 0
   MUINT32 v1;
                    // crop 1 y offset from full 0
                    // crop 1 width from full 0
   MUINT32 w1;
            h1;
                    // crop 1 height from full 0
   MUINT32
            wlr;
                      scaled width from crop 1, w1 * r
    MUINT32 h1r;
                    // scaled height from crop 1, h1 * r
   MUINT32
                    // crop 2 x offset from scaled crop 1
   MUINT32 y2;
                    // crop 2 y offset from scaled crop 1
   MUINT32 w2;
                    // crop 2 width from scaled crop 1
   MUINT32 h2;
                    // crop 2 height from scaled crop 1
            u4W;
                    // input size of LSC, w2*r2, r2 must be 1
    MUINT32
            u4H;
                    // input size of LSC, h2*r2, r2 must be 1
```

full w (w0)

full_h (h0) Crop1 (x1, y1, w1, h1)

Case 1 LSC参数设定不正确导致NE

```
参数错误
D lsc mgr2 rto thread: [tsfPostCmd] TSF(On), eCmd(E TSF CMD BATCH)
D lsc mgr2 rto thread: [tsfBatch +]
D AppTsf : [TsfFeatureCtrl] [Error] Lsc config incorrect!
E lsc mgr2 rto thread: [tsfBatch()] Err:921:, [tsfBatch] Error(0x80000005):
MTKTSF FEATURE SET TBL CHANGE
D AppTsf : [TsfReset] TsfReset
D lsc mgr2 rto thread: [tsfBatch -](0x80000005)
D lsc mgr2 rto: [updateLsc] User: BADDR(0x02600000), CTL1(0x000000000), CTL2(0x00000000),
         E isp mgr : [apply()] Err: 612:, apply Invalid parameter
D lsc mgr2 rto thread: [tsfPostCmd] SensorDev(2) TSF ON, eCmd(E TSF CMA RUN)
D lsc mgr2 rto thread: [tsfRun +] Rto(8) step(0)
D lsc mgr2 rto thread: [tsfSetProcInfo] ForceAwb(0), L(50), C(6500), F(83) DF(100), R(981),
G(512), B(685)
D lsc mgr2 rto thread: [tsfSetProcInfo] m prAwbStat(0xf75ff8b0), tmpBuf(0xf757c028), size(43200)
D AppTsf : [TsfFeatureCtrl] LV 50, CCT 6500, R 981, G 512, B 685, Fluo 83, Day Fluo 100, LscRA
32
                                          ISP NVRAM LSC T。特别注意6755开始此struct定义有变化。
```

Case 2 crop info不正确导致概率性NE

D AppTsf: [TsfInit][Error] full_width(4208), full_height(3120), resize_width(2100), resize_height(1557),

D AppTsf: [TsfExit] TsfExit

D AppTsf: [TsfReset] TsfReset

MEDIATER

CONFIDENTIAL B

D AppTsf: [TsfInit][Error] Cropped + offset is larger than full size!

crop_width(2100), crop_height(1560)

```
static SENSOR WINSIZE INFO STRUCT imgsensor winsize info[10] =
                               0, 4208, 3120, 2100, 1560, 0000, 0000, 2100, 1560,
        {{ 4208, 3120,
                                                                                              0, 2100, 1560}, // Preview
        { 4208, 3120,
                              0, 4208, 3120, 4208, 3120, 0000, 0000, 4208, 3120,
                                                                                       0,
                                                                                              0, 4208, 3120}, // capture
        { 4208, 3120,
                               0, 4208, 3120, 4208, 3120, 0000, 0000, 4208, 3120,
                                                                                              0, 4208, 3120}, // video
#if O
                               0, 4208, 3120, 4208, 3120, 0000, 0000, 4208, 3120,
        { 4208, 3120,
                                                                                       0,
                                                                                              0, 4208, 3120}, // capture2
#endif
                               0, 4208, 3120, 4208, 3120, 0000, 0000, 4208, 3120,
        //{ 4208, 3120, 0,
                                                                                              0, 4208, 3120}, // video
                       8, 0, 4192, 3120, 1048, 780, 0000, 0000, 1048, 780,
                                                                              0, 0, 1048, 780}, //hight speed video
        { 4208, 3120,
        //{ 4208, 2688, 0, 432, 4208, 2256, 1400, 752, 0000, 0000, 1400,
                                                                              752.
                                                                                              0, 1400, 752}, //hight speed video
                               0, 4200, 3120, 2100, 1560, 0000, 0000, 2100, 1560,
                                                                                              0, 2100, 1560}};// slim video
        { 4208, 3120,
                                                                                       0,
        //{ 4208, 2688, 0, 432, 4208, 2256, 1400, 752, 0000, 0000, 1400,
                                                                                              0, 1400, 752}};// slim video
                                                                              752.
                                                                                       0.
   , 4208x3120 resize后应该是1/2 or ¼, 但4208 / 2100 并不是exactly 2.这一组应该要改成:
                           0, 4208, 3120, 2104, 1560, 0000, 0000, 2100, 1560,
   { 4208, 3120,
                                                                                  0.
                                                                                         0, 2100, 1560}, // Preview
                                                       crop中心对齐,resize等比例
```

Case 3 Shading导致Pre Cap颜色表现不一致

 capture和preview的fov保持一致,如果不一致, preview切换到capture的时候tsf会reset,导致 preview和capture的shading表现不同。

拍tsf pure raw基本要求

- 1. 必须是pure raw,不能是process raw,而且ob设定要正确
- 2. 拍的raw data不能有flick。
- 3. raw图片四角亮度要保证基本相同,不能有明显的暗角。 |Max(Y_corner)-Min(Y_cornor)/Max(Y_corner)-1|<10%。
- 4. 个别模组lens停在不同的位置,shading效果表现有差异,需考虑拍raw 时是否要将镜头固定在近焦和远焦中间的位置。
- 5. 详细操作请参考 User Manual TSF.pdf:
 https://online.mediatek.com/Lists/SDE_Service/Attachments/20/User%20
 Manual%20-%20TSF.pdf
- 6. 生成TSF参数的链接: https://online.mediatek.com/_layouts/15/mol/sde/ext/sdehome.aspx

tsf debug sop

- 1. Trouble scene images
 - 提供 Engineer mode Pure raw + jpeg + sdblk
 - 在问题景 + diffuser
 - 此module在灯箱各色温下拍摄 (如此状况表现不好,请将此module加入tuning)
- 2. Custom tuning/calibration data
 - camera_tsf_data_xxx.h
 - camera_tsf_para_xxx.h
 - camera isp lsc xxx.h
 - camera_tuning_para_.cpp
- 3. Full tuning folders

放置Raw File的Folder, 档名请统一 "Sensor_Customer_OB_Appendix"

Ex: OV8825_Apple_OB17_1

- Tuning 时的完整影像
- Tuning commend
- TSF_golden_config.txt (TSF 2.0 only)

tsf debug sop

4. MTKLog

请先用adb command打开log后录制.

- adb shell setprop debug.tsfcore_exifdbg.enable 1
- adb shell setprop debug.tsfcore.enable 1
- 5. Dump AWB Stat

请先用adb command打开log后按下capture录制.

- adb shell setprop debug.lsc_mgr.log 2047

档案会分别存在以下path,由于档名是固定的,所以若要存多笔capture的awb stat,请先pull出来再拍下一次.

- Sdblk => /sdcard/tsfInput /sdcard/tsf
- awb stat => /sdcard/tsfAwbStat.bin

TSF Tuning相关FAQ

- [FAQ17412] [Camera Tuning] TSF On_line tools 使用说明
- FAQ09396 [camera Tuning]TSF(改善Color Shading问题)功能的调试和开启
- [FAQ11301]
 [Camera Tuning] TSF(改善Color Shading的问题)进阶客制化
- FAQ11138
 [Camera Tuning] 提供TSF PureRawData时注意事项
- FAQ11142
 [Camera Tuning] 如何确认TSF参数有无正确生效
- [FAQ11709] [camera Tuning] Golden Sample模组的挑选

Lsc debug command

 adb shell setprop debug.lsc_mgr.enable 0 //关闭lsc adb shell setprop debug.lsc_mgr.manual_tsf 0 //关闭tsf adb shell setprop debug.lsc_mgr.ratio 32 //关闭smooth shading ratio

//开启shading log
 adb shell setprop debug.tsfcore_exifdbg.enable 1
 adb shell setprop debug.tsfcore.enable 1
 adb shell setprop debug.lsc_mgr.log 2047
 adb shell setprop mkdir /sdcard/tsf

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.