行列の階数

ここで、主成分の個数rに名前をつけておこう。

ref: 行列と行列式の基

礎 p28~29

行階段行列において、主成分とは、零行でない行の中で一番左にある 0 でない成分のことを指す。

つまり、行階段行列の主成分の個数 r は、零行でない行の数と一致する。

零行でない行の個数は、既約行階段行列まで変形しなくても、行階段行列 の時点で読み取れることに注意しよう。

変形の結果として得られる行階段行列は 1 通りとは限らないし、変形の途中の掃き出しの手順も 1 通りとは限らないが、

階数 rank A は A のみによって定まる値である

ことが後に証明できる。

階数のとりうる値の範囲

A が $m \times n$ 型ならば、行は m 個なので、rank A は 0 以上 m 以下の整数である。

また、階数は行階段行列に変形したときの主成分の個数でもあり、行基本 行列の主成分は各列に高々 1 つなので、主成分の個数は列の個数 n を超え ることはない。 したがって、次の重要な評価が成り立つ。

** 行列の階数の範囲 $m \times n$ 型の行列 A の階数に対して、次の不等式が成り立つ。

 $0 \leq \operatorname{rank}(A) \leq \min(m,n)$