# COMP 448/548: Medical Image Analysis

## **Texture analysis**

Çiğdem Gündüz Demir cgunduz@ku.edu.tr

## Handcrafted feature extraction for medical images

- Intensity features
  - Quantify color/grayscale distribution of pixels
  - First-order statistical texture
- Texture features
  - Similar structures repeated over and over again (repeated patterns)
  - Statistical approach is to quantify spatial arrangement of pixel intensities
- Morphological features to quantify the shape/size of a segmented object
- Structural features to quantify spatial distribution of objects/primitives



#### First-order statistical features

- Extracted based on histogram analysis
  - Mean
  - Standard deviation
  - Skewness
  - Kurtosis
  - Entropy
  - Min, max, quartiles
- More useful if you first identify regions of interest





3

#### **Texture**

- Statistical approaches
  - Co-occurrence matrices
  - Run length matrices
  - Local binary patterns
  - Laws kernels
  - Gabor filters
  - ...







Three images with the same intensity histogram, but different textures







Texture depends on the scale at which it is viewed

## Gray-level co-occurrence matrix

- Second-order statistical features
- A gray-level co-occurrence matrix P is an NxN array, where N is the number of gray levels in the image
- P(i, j) gives how many times gray-levels i and j co-occur at a given distance d = (di, dj)

| 0     | 1 | 2 | 1 | 1 |
|-------|---|---|---|---|
| 2     | 1 | 0 | 1 | 1 |
| 0     | 0 | 2 | 1 | 2 |
| 1     | 1 | 1 | 1 | 2 |
| Image |   |   |   |   |









5

## Gray-level co-occurrence matrix

- Common to use normalized co-occurrence matrix  $N(i,j) = \frac{P(i,j)}{\sum \sum P(u,v)}$
- Sometimes useful to group gray-levels into bins
  - E.g., Four bins: [0, 63], [64, 127], [128, 191], [192, 255]
- Sometimes useful to accumulate co-occurrence matrices calculated for different distances
  - For example, for a rotation invariant image, it is common to calculate P(i, j) at d1 = (di, dj), d2 = (-di, dj), d3 = (di, -dj), and d4 = (-di, -dj) and take their summation
- Statistical features are computed from the co-occurrence matrix to represent the texture more compactly (Haralick features)

#### Haralick features

Angular second moment 
$$= \sum \sum N(i,j)^2$$

Maximum probability = 
$$\max N(i, j)$$

Inverse difference moment 
$$= \sum \sum \frac{N(i,j)}{1 + (i-j)*(i-j)}$$

Contrast = 
$$\sum \sum (i-j)^2 N(i,j)$$

Entropy = 
$$-\sum\sum N(i,j) \log N(i,j)$$

Correlation = 
$$\frac{\sum \sum i j N(i,j) - \mu_i \mu_j}{\sigma_i \sigma_j}$$

 $\mu_i$ ,  $\mu_j$  are the means and  $\sigma_i$ ,  $\sigma_j$  are the standard deviations of

$$N_i = \sum_i N(i, j)$$
 and  $N_j = \sum_i N(i, j)$ , respectively.

Haralick et al., "Textural features for image classification," IEEE Transactions on Systems, Man, and Cybernetics, 1973.

7

## Image classification using Haralick features

- Calculate a co-occurrence matrix on an entire image
- Calculate the Haralick features (or a subset of them) of this matrix
- Classify the image based on these features
- Grid-based approach
  - Divide an image into grids
  - Calculate a co-occurrence matrix on each grid
  - Calculate the Haralick features of each calculated matrix
  - Average the feature values
  - Classify the image based on these average features



## Image segmentation using Haralick features

- Use the sliding window approach and obtain maps of these features
- Use these maps in a segmentation algorithm (e.g., use clustering)

















9

## Run-length matrix

- <u>Run</u>: Consecutive, collinear pixels with the same value in a specified direction
- Each matrix entry R(i,l) keeps the number of runs with a value of i and a length of l



| 1      | 3 | 0 | 0 |
|--------|---|---|---|
| 1<br>0 | 1 | 0 | 1 |
| 1      | 0 | 2 | 0 |

Run-length matrix for  $\theta = 0^{\circ}$ 

#### Run-length matrix features

Short run emphasis = 
$$\frac{1}{n_r} \sum_{i} \sum_{l} R(i,l) / l^2$$

Long run emphasis = 
$$\frac{1}{n_r} \sum_{i} \sum_{l} R(i,l) \cdot l^2$$

Gray level nonuniformity 
$$= \frac{1}{n_r} \sum_{i} \left( \sum_{l} R(i, l) \right)^2$$

Run length nonuniformity = 
$$\frac{1}{n_r} \sum_{l} \left( \sum_{i} R(i, l) \right)^2$$

Run percentage = 
$$\frac{n_r}{n_p}$$

 $n_r$  and  $n_p$  are the total numbers of runs and pixels, respectively

Galloway, "Texture analysis using gray level run lengths," Computer Graphics and Image Processing, 1975.

11

## Local binary patterns

- For each pixel p
  - Compare its value with the value of its 8-adjacent pixels
  - Create a binary string b<sub>1</sub> b<sub>2</sub> b<sub>3</sub> b<sub>4</sub> b<sub>5</sub> b<sub>6</sub> b<sub>7</sub> b<sub>8</sub>
  - b<sub>i</sub> = 0 if the pixel value of neighbor n<sub>i</sub> is less than the value of p
  - b<sub>i</sub> = 1 otherwise
- Represent an image with the histogram of the numbers represented by the binary strings of all image pixels



1 1 0 0 1 1 1 1 Binary string

Ojala et al., "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE PAMI, 2002.

## Texture definition by filters

- Convolve an image with a set of filters and use filter responses to define texture features
  - Laws kernels
  - Gabor filters
  - Edge filters
  - ...

13

#### Laws' kernels

- Creates two-dimensional filters derived from the following vectors
  - To calculate a center-weighted average: L5 (level) = [ 1 4 6 4 1 ]
  - To detect edges: E5 (edge) =  $[-1 -2 \ 0 \ 2 \ 1]$
  - To detect spots: S5 (spot) =  $[-1 \ 0 \ 2 \ 0 \ -1]$
  - To detect ripples: R5 (ripple) = [ 1 -4 6 -4 1 ]
  - Example: E5L5 is computed as the product of E5 and L5

$$\begin{bmatrix} -1 \\ -2 \\ 0 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -4 & -6 & -4 & -1 \\ -2 & -8 & -12 & -8 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 8 & 12 & 8 & 2 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

#### Laws' kernels

- Image classification
  - For each kernel, accumulate responses over pixels
    - Mean, standard deviation, maximum, entropy, etc.
  - Possible to use a grid-based approach (see Slide 8)
- Image segmentation
  - Use response maps in a segmentation algorithm
    - Clustering (see Slide 9), region growing, etc.



15

#### Gabor filters

- Closely related to the function of primary visual cortex cells in primates
- Achieve simultaneous localization in both spatial and frequency domains

g(x,y) = s(x,y) w(x,y)

s(x,y): complex sinusoid (carrier)

w(x,y): 2D Gaussian-shaped function (**envelope**)

#### Gabor filters

$$g(x,y) = \exp\left(i\left(\frac{2\pi x'}{\lambda} + \psi\right)\right) \exp\left(-\left(\frac{x'^2}{2\sigma_x^2} + \frac{y'^2}{2\sigma_y^2}\right)\right)$$

$$g(x,y) = \cos\left(\frac{2\pi x'}{\lambda} + \psi\right) \exp\left(-\left(\frac{x'^2}{2\sigma_x^2} + \frac{y'^2}{2\sigma_y^2}\right)\right) + \frac{1}{2\sigma_x^2}$$

#### Real part

$$i \sin\left(\frac{2\pi x'}{\lambda} + \psi\right) \exp\left(-\left(\frac{x'^2}{2\sigma_x^2} + \frac{y'^2}{2\sigma_y^2}\right)\right)$$

#### **Imaginary part**

where  $x' = x \cos \theta + y \sin \theta$  and  $y' = -x \sin \theta + y \cos \theta$ 

x and y — spatial coordinates x' and y' — rotated spatial coordinates Θ — orientation of the Gabor function

 $\sigma_x$  and  $\sigma_y$  — standard deviations of the Gaussian envelope

 $\lambda$  — wavelength of the sinusoid

Ψ — phase offset of the sinusoid



You can use the filter responses for image classification or image segmentation (see Slides 8, 9, and 15)

17

## Example: Structural approach for tissue segmentation

- Represent an image with a graph of cytological tissue components
  - Approximate their locations with circles
  - Construct a Delaunay triangulation on the circles
  - Color each triangle edge according to the circle (component) type of its end-nodes





Tosun and Gunduz-Demir, "Graph run-length matrices for histopathological image segmentation," IEEE T Medical Imaging, 2011.

#### Example: Structural approach for tissue segmentation

- Define texture descriptors on this color graph
  - Gray-level run: Consecutive, collinear pixels with the same gray-level value in a specified direction
  - Graph-run: Path containing triangle edges of the same color
  - For each circle, locate a window and extract paths from this circle to every other circle within this window using breadth first traversal



| 4        | 4 | 2 | - |
|----------|---|---|---|
| type\run | 1 | 2 | 3 |
| red      | 0 | 0 | 0 |
| pink     | 0 | 0 | 0 |
| black    | 0 | 2 | 0 |
| blue     | 2 | 0 | 0 |
| green    | 0 | 2 | 0 |
| orange   | 0 | 0 | 0 |

| For pixels               | For objects               |
|--------------------------|---------------------------|
| Short run emphasis       | Short path emphasis       |
| Long run emphasis        | Long path emphasis        |
| Gray-level nonuniformity | Edge type nonuniformity   |
| Run length nonuniformity | Path length nonuniformity |

Tosun and Gunduz-Demir, "Graph run-length matrices for histopathological image segmentation," IEEE T Medical Imaging, 2011.

19

## Example: Structural approach for tissue segmentation

- Design a seed-controlled region growing algorithm on this graph
  - Seed initialization
    - ➤ Disconnect adjacent circles if the distance between their texture descriptors is greater than a distance threshold
    - Find connected components of the circles and eliminate those smaller than a size threshold
  - Region growing
    - > Iteratively grow the seeds on the remaining circles with respect to the texture descriptors











Tosun and Gunduz-Demir, "Graph run-length matrices for histopathological image segmentation," IEEE T Medical Imaging, 2011.

