Nom	: 4	Cognoms:		
Nom	1 (Lognoms:		

1) Omple la següent taula amb els valors corresponents després d'executar la instrucció: addwf 0x20, 1

	abans	després
0x20	16	
W	21	

2) Et sembla una bona idea implementar una rutina recursiva en un PIC18? Justifica la resposta.

3) Si cada instrucció 'one-word' necessita del cicle de fetch i del cicle d'execució, justifica perquè s'afirma que la CPU executa (amb excepcions) una instrucció nova a cada cicle.

4) En una arquitectura PIC18, quina relació hi ha entre la memòria RAM i els registres.

5) Defineix els conceptes, i explica les diferències entre una memòria estàtica i una memòria dinàmica.

6) Amb quin valor es carrega el registre PC quan es produeix un reset del micro?

7) Si executem la instrucció *clrf 0x30*, *a*. Quin registre s'esborrarà si a=1 ?

i si a=0 ?

8) Justifica si és certa l'afirmació següent: "Quan executem la instrucció *addwf 0x20*, W (essent W=0), el resultat de la suma es guarda al registre W , que es troba a l'adreça 0 de memòria".

9) Les instruccions single-word es codifiquen en una paraula de 16 bits. Si una instrucció com el *addwf 0x20*, *d*, *a* codifica en 6 bits la instrucció, en 1 el destí i en 1 el access, com podem arribar, amb els 8 bits restants, a adreçar qualsevol registre de dades del PIC?

10) Per quin motiu una instrucció de salt condicional com un *BZ addr* (branch if zero) a vegades s'executa en un cicle i a vegades en dos

OLDE.	Olever	ADDWF	ADD W to f			
CLRF	Clear f	Syntax:	ADDWF f {,d {,a}}			
Syntax:	CLRF f {,a}	Operands:	0 ≤ f ≤ 255			
Operands:	$0 \le f \le 255$ a $\in [0,1]$	d ∈ [0,1] a ∈ [0,1]				
Operation:	$000h \rightarrow f$,	Operation:	$(W) + (f) \rightarrow dest$			
	$1 \rightarrow Z$	Status Affected:	N, OV, C, DC, Z			
Status Affected:	Z	Encoding:	0010 01da ffff ffff			
Encoding:	0110 101a ffff ffff	Description:	Add W to register 'f'. If 'd' is '0', the			
Description:	Clears the contents of the specified register. If 'a' is '0', the Access Bank is selected.	•	result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).			