

Tarea 1: Aproximaciones

Estadística Matemática

Mauricio Vazquez Moran Aitana Acosta

Giancarlo De La Rosa

22 de Febrero de 2024

I) Calcule n!, su correspondiente **Aproximación de Stirling** $S(n) = n! \approx \sqrt{2\pi n} n^n e^{-n}$, la diferencia entre ambas (D(n) = n! - S(n)) y, por último, la diferencia relativa $(DR(n) = \frac{D(n)}{n!})$ para n = 1, 2, ..., 12.

Tabla 1: Error de aproximación D(n) de la aproximación de *Stirling S(n)* al factorial.

n	n!	S(n)	D(n)	D(n)/n!
1	1	0.92214	0.07768	0.07786
2	2	1.91900	0.081	0.04050
3	6	5.83621	0.16379	0.02730
4	24	23.50618	0.49382	0.02058
5	120	118.01917	1.98083	0.01651
6	720	710.07818	9.92182	0.01378
7	5,040	4,980.39583	59.60417	0.01183
8	40,320	39,902.39545	417.60455	0.01036
9	362,880	359,536.87284	3,343.12716	0.00921
10	3,628,800	3,598,695.61874	30,104.38126	0.00830
11	39,916,800	39,615,625.05058	301,174.94942	0.00755
12	479,001,600	475,687,486.47278	3,314,113.52722	0.00692

II) Ejecute el código anterior. Note que el objeto *out* es de clase "histogram". Investigue que componentes la lista *out*. [Nota: En este inciso no debe reportar nada pero si realizar lo indicado.]

Con base en la simulación anterior determine $\mathcal{PN} = \mathbb{P}(3 < X \le 4)$ y compárelo con $\mathcal{P} = \mathbb{P}(3 < X \le 4)$, la probabilidad teórica calculada con base en la distribución de X, $Gamma(\alpha = 2, \beta = 1)$. La diferencia entre ellas es el error de estimación, $\varepsilon = \mathcal{PN} - \mathcal{P} = 0.1079 - 1.1076 = -0.0003$

III) Calcule los errores de aproximación de la distribución normal teórica (\$\phi\$) a la distribución del promedio de las distintas leyes de probabilidad de tabla 2 para tamaños de muestra n=30, 100, 500, indicados en la tabla 3.

Tabla 2: Tabla de funciones de densidad para distintas leyes de probabilidad.

$$\begin{split} \text{Binomial:} & \quad f(k;n,p) = \binom{n}{k} p^k (1-p)^{n-k} \mathbbm{1}_{\{0,1,\dots,n\}}(k) \\ \text{Poisson:} & \quad f(n;\lambda) = e^{-\lambda} \frac{\lambda^n}{n!} \mathbbm{1}_{\{0,1,2,\dots\}}(n) \end{split}$$

Poisson:
$$f(n;\lambda) = e^{-\lambda} \frac{\lambda^n}{n!} \mathbb{1}_{\{0,1,2,\dots\}}(n)$$

Normal:
$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \mathbb{1}_{\mathbb{R}}(x)$$

Gamma:
$$f(y; \alpha, \beta) = \frac{1}{\beta \alpha \Gamma(\alpha)} y^{\alpha-1} e^{-y/\beta} \mathbb{1}_{\mathbb{R}^+}(y)$$

Normal:
$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \mathbb{1}_{\mathbb{R}}(x)$$
Gamma:
$$f(y;\alpha,\beta) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)} y^{\alpha-1} e^{-y/\beta} \mathbb{1}_{\mathbb{R}^+}(y)$$
Beta:
$$f(u;\theta_1,\theta_2) = \frac{\Gamma(\theta_1)\Gamma(\theta_2)}{\Gamma(\theta_1+\theta_2)} u^{\theta_1-1} (1-u)^{\theta_2-1} \mathbb{1}_{(0,1)}(u)$$

Tabla 2: Error de aproximación de la distribución normal a la del promedio de muestras tama \tilde{n} para distintas distribuciones.

				,
distribución	parámetros	n = 30	n = 100	n = 500
Binomial	p = 0.5	e = 0.1128	e = 0.0901	e = 0.0567
Bin(25,p)	p = 0.7	e = 0.1365	e = 0.109	e = 0.0370
	p = 0.9	e = 0.1580	e = 0.1224	e = 0.0864
Poisson	$\lambda = 1$	e = 0.9684	e = 0.8352	e = 0.7776
$Po(\lambda)$	$\lambda = 4$	e = 0.191	e = 0.7264	e = 0.7643
	$\lambda = 8$	e = 0.0888	e = 0.66	e = 0.0618
Normal		0 = 1==	0 = 6=	0 = 111
$N(\mu, \sigma^2)$	$\mu=2, \sigma^2=4$	e = 0.7472	e = 0.7672	e = 0.7614
Gamma	$(\alpha=1,\beta=3)$	e = 0.2201	e = 0.1108	e = 0.0605
$Gamma(\alpha, \beta)$	$(\alpha=3,\beta=1)$	e = 0.1140	e = 0.0889	e =0.0464
	$(\alpha = 5, \beta = 5)$	e = 0.1260	e = 0.0645	e = 0.0471
Beta	$(\theta_1 = 1, \theta_2 = 1)$	e = 0.0157	e =0.0199	e = 0.0144
$Beta(\theta_1, \theta_2)$	$(\theta_1 = 1/2, \theta_2 = 2)$	e = 0.0649	e = 0.0344	e =0.0168
	$(\theta_1 = 3, \theta_2 = 1/3)$	e = 0.1013	e = 0.0682	e = 0.1085
	$(\theta_1 = 1/2, \theta_2 = 1/2)$	e = 0.0434	e = 0.0513	e = 0.044