In Fig. 1 is shown an RLC circuit with a DC voltage source.

Figure 1 Electric circuit consisting of a DC voltage source, a resistor, an inductance and a capacitance.

The following data is given for the circuit: $R = 20 \Omega$, L = 4 H and C = 2.5 mF.

The DC voltage source is ramped up from 0 V to 12 V in 0.5 seconds.

Initially there is no current in the inducance and no voltage drop across the capacitance. Simulate the system for a period of 3 seconds.

The voltage source is replaced with an AC voltage source. The voltage amplitude of the AC voltage source is $\sqrt{2} \cdot V = 12V$ or RMS value of V = 8.485V and the frequency may have three different values: $\omega = \begin{bmatrix} 5 & 10 & 15 \end{bmatrix} \frac{rad}{s}$.

In the time domain this corresponds to a supply voltage of $V_s = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t)$ Initially there is no current in the inducance and no voltage drop across the capacitance.

Simulate the system for a period of 5 seconds for all three different frequencies.

An electric circuit is shown in Fig. 2 and consists of a voltage supply, two resistors, and a capacitor. The two resistances have the same resistance $R_1 = R_2 = 200 \,\Omega$. The capacitance of the capacitor is $C = 60 \,\mu\text{F}$. The supply voltage is ramped up to a constant value of $U_S = 12 \,\text{V}$, according to Fig. 3.

At time $t=0\ s$ the voltage drop across the capacitor is $U_C=24\ V$.

Make a simulation model of the electric circuit in Matlab and plot the two currents i_1 and i_2 from t=0s to t=0.5s. Also, plot the voltage drop across the capacitor.

Figure 2 Electric cicuit.

Figure 3 Variation of voltage supply vs. time.

MAS416 – Problems 5th Lecture

An electric circuit is shown in Fig. 3 and consists of an AC voltage source, a diode, a resistor, and a capacitor.

The resistance is $R_1 = 1500 \,\Omega$. The capacitance is $C_1 = 60 \,\mu\text{F}$. The RMS value of the voltage source is $V_1 = 120 \,\text{V}$ and the frequency is $f_1 = 50 \,\text{Hz}$.

The diode minimum resistance can be set to $R_{D1} = 1 \Omega$

At time t = 0 s the voltage drop across the capacitor is $U_C = 0 V$.

Make a simulation model of the electric circuit in Matlab and plot the capacitor voltage, U_C , and the supply voltage, U_{S1} , from t = 0s to t = 0.1s.

$$U_{s1} = \sqrt{2} \cdot V_1 \cdot \sin(2 \cdot \pi \cdot f_1 \cdot t)$$

Figure 4: Electric circuit

Solution as the capacitor voltage drop, U_C , and the supply voltage, U_{s1} in Volt vs. time in seconds.

An electrical system is shown in Figure 5. It consists of two voltage supplies U_{S1} and U_{S2} , five resistances $R_{1...5}$, two capacitors $C_{1...2}$, and a single inductance L_1 .

Figure 5 Electrical system.

The following data is given: $R_1 = 5000 \,\Omega$, $R_2 = 2000 \,\Omega$, $R_3 = R_5 = 1200 \,\Omega$, $R_4 = 8000 \,\Omega$, $C_1 = C_2 = 380 \,\mu$ F, and $L_1 = 50 \,H$.

The first voltage supply is a function of time as shown in Figure 6:

Figure 6 The voltage supply, U_{S1}, as a function of time.

The second voltage supply is constant at $U_{S2} = 120 V$.

At time t = 0 s the voltage drops across the capacitances are $U_{C1} = U_{C2} = 60$ V and the current through the inductance is $i_2 = 0$ A.

Make a simulation model of the electrical system and simulate from t = 0 s to t = 6 s. Plot the currents $i_{1..5}$ as a function of time.

A DC motor is described by the following data: $J_m = J_{\it eff} = 2.5 \cdot 10^{-4} \ kg \cdot m^2$, $V_a = 12 \ V$, $R_a = 0.4 \ \Omega$, $L_a = 0.03 \ H$, and $K_m = 0.1 \frac{N \cdot m}{A}$.

The load on the rotor is a friction torque given as: $M_L = M_{fr} \cdot tanh \left(\frac{\omega_m}{\omega_{fr}}\right)$, where $M_{fr} = 0.2 \ N \cdot m$

and $\omega_{fr} = 20 \frac{rad}{s}$.

Initially the rotor has no rotation and is at rest. Also, initially, there is no current in the armature inductance.

Simulate the system for a period of 2 seconds.

A three-phase short circuited induction AC motor is described by the following data: $J_m = J_{\it eff} = 0.005~kg \cdot m^2~,~V_p = 220~V~,~p = 2,~f_s = 50~Hz,~R_s = 2~\Omega~,~R_r = 2.5~\Omega~,~L_s = 0.025~H~,~{\rm and}~L_r = 0.015~H~.$

The load on the rotor is a friction torque given as: $M_L = M_{fr} \cdot tanh\left(\frac{\omega_m}{\omega_{fr}}\right)$, where $M_{fr} = 3 \ N \cdot m$ and $\omega_{fr} = 20 \frac{rad}{s}$.

Initially the rotor has no rotation and is at rest. Simulate the system for a period of 1 seconds.

