Devoir surveillé n°04

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- · Les calculatrices sont autorisées.

Problème 1

1 On note $a_n = \frac{n^{n-1}}{n!}$ le coefficient de x^n dans la série entière. D'après la formule de Stirling,

$$a_n \sim \frac{1}{\sqrt{2\pi}} \frac{e^n}{n^{\frac{3}{2}}}$$

Donc $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = e$ et le rayon de convergence de la série entière vaut e^{-1} d'après la règle de d'Alembert.

REMARQUE. On peut se passer de la formule de Stirling dans cette question. En effet,

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{a_{n+1}}{a_n} = \frac{(n+1)^n n!}{(n+1)!} n^{n-1} = \left(\frac{n+1}{n}\right) = \left(1 + \frac{1}{n}\right)^{n-1} = \left(1 + \frac{1}{n}\right)^{n-1} = \exp\left((n-1)\ln\left(1 + \frac{1}{n}\right)\right)$$

Or
$$(n-1)\ln\left(1+\frac{1}{n}\right) \sim n \cdot \frac{1}{n} = 1$$
 donc

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = e$$

et le rayon de convergence de la série entière vaut e^{-1} d'après la règle de d'Alembert.

2 Toujours d'après la formule de Stirling,

$$\frac{n^{n-1}e^{-n}}{n!} \sim \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{n^{\frac{3}{2}}}$$

Par comparaison à une série de Riemman convergente, $\sum \frac{n^{n-1}e^{-n}}{n!}$ converge.

3 Pour tout $x \in [-e^{-1}, e^{-1}]$

$$|a_n x^n| = \left| \frac{n^{n-1}}{n!} x^n \right| \le \frac{n^{n-1} e^{-n}}{n!}$$

D'après la question précédente, la série définissant f converge normalement sur $[-e^{-1}, e^{-1}]$.

Pour tout $n \in \mathbb{N}^*$, $f_n : x \mapsto a_n x^n$ est continue sur $[-e^{-1}, e^{-1}]$. La série $\sum f_n$ converge normalement et donc uniformément sur $[-e^{-1}, e^{-1}]$ d'après la question précédente. Ainsi $f = \sum_{n=1}^{+\infty} f_n$ est continue sur $[-e^{-1}, e^{-1}]$.

 $\boxed{\mathbf{5}}$ Par concavité du logarithme, $\ln(1+x) \leq x$ pour tout $x \in]-1, +\infty[$. Notamment, pour tout $n \in \mathbb{N}^*$,

$$\ln\left(1+\frac{1}{n}\right) \le \frac{1}{n}$$

puis

$$n \ln \left(1 + \frac{1}{n}\right) \le 1$$

et enfin, par croissance de l'exponentielle,

$$\left(1 + \frac{1}{n}\right)^n \le e$$

Comme f est la somme d'une série entière de rayon de convergence e^{-1} , elle est de classe \mathcal{C}^{∞} sur son intervalle ouvert de convergence, c'est-à-dire $]-e^{-1}$, $e^{-1}[$.

On obtient la dérivée de f en dérivant terme à terme :

$$\forall x \in]-e^{-1}, e^{-1}[, \ f'(x) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{(n-1)!} x^{n-1} = \sum_{n=0}^{+\infty} \frac{(n+1)^n}{n!} x^n$$

7 Il est clair que $f'(x) \ge 0$ pour tout $x \in [0, e^{-1}[$. Soit $x \in]-e^{-1}, 0[$. Comme x est négatif,

$$f'(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{(n+1)^n |x|^n}{n!}$$

On vérifie alors le critère spécial des séries altermées. Posons $u_n = \frac{(n+1)^n|x|^n}{n!}$. Comme $\sum (-1)^n u_n$ converge, on a nécessairement $\lim_{n \to +\infty} u_n = 0$. De plus, en utilisant la question 5

$$\forall n \in \mathbb{N}^*, \ \frac{u_n}{u_{n-1}} = \left(1 + \frac{1}{n}\right)^n |x| \le e|x| \le 1$$

Comme (u_n) est positive, on peut affirmer qu'elle est décroissante. La série $\sum (-1)^n u_n$ vérifie donc le critère spécial des séries alternées. La somme $f'(x) = \sum_{n=0}^{+\infty} (-1)^n u_n$ est donc du signe de son premier terme u_0 . Ainsi $f'(x) \ge 0$. La fonction f est donc croissante sur $]-e^{-1},e^{-1}[$.

8 Remarquons que

$$f\left(-\frac{1}{e}\right) = \sum_{n=1}^{+\infty} (-1)^n \frac{n^{n-1}e^{-n}}{n!}$$

Posons $u_n = \frac{n^{n-1}e^{-n}}{n!}$ pour $n \in \mathbb{N}^*$. On vérifie à nouveau que la série $\sum (-1)^n u_n$ vérifie le critère spécial des séries alternées. Pour tout $n \in \mathbb{N}^*$,

$$\frac{u_{n+1}}{u_n} = \left(1 + \frac{1}{n}\right)^{n-1} \cdot \frac{1}{e} \le \left(1 + \frac{1}{n}\right)^n \cdot \frac{1}{e} \le 1$$

Donc la suite (u_n) est décroissante. Elle est également de limite nulle puisque $\sum (-1)^n u_n$ converge. Alors, d'après le théorème sur les séries alternées

$$\left| f\left(-\frac{1}{e} \right) - \sum_{k=1}^{n} (-1)^k u_k \right| = \left| \sum_{k=n+1}^{+\infty} (-1)^k u_k \right| \le |u_{n+1}| = u_{n+1}$$

On cherche donc *n* tel que $u_{n+1} \le 10^{-2}$. On propose un programme Python à cet effet.

```
from math import factorial, exp

def approx(\epsilon):
    u = exp(-1)
    s = 0
    n = 1
    while u > \epsilon:
        s += (-1)**n * u
        u *= (1+1/n)**(n-1) * exp(-1)
        n += 1
    return s
```

```
>>> approx(10**-2)
-0.28352486503145236
```

|9| φ est de classe \mathcal{C}^{∞} sur \mathbb{R} comme composée d'une fonction polynôme et de l'exponentielle. On raisonne par récurrence

On a bien $\varphi(x) = P_0(e^x)(1 - e^x)^m$ pour tout $x \in \mathbb{R}$ avec $P_0 = 1$. Soit $i \in [0, m-1]$. Supposons qu'il existe un polynôme P_i tel que $\varphi^{(i)}(x) = P_i(e^x)(1 - e^x)^{m-i}$ pour tout $x \in \mathbb{R}$. Alors, pour tout $x \in \mathbb{R}$,

$$\varphi^{(i+1)}(x) = P_i'(e^x)e^x(1-e^x)^{m-i} - (m-i)P_i(e^x)e^x(1-e^x)^{m-i-1} = P_{i+1}(e^x)(1-e^x)^{m-i-1}$$

avec $P_{i+1} = X(1-X)P_i' - (m-i)XP_i$. Par récurrence, il existe bien pour tout $i \in [0, m]$ un polynôme P_i tel que $\varphi^{(i)}(x) = P_i(e^x)(1-e^x)^{m-i}$ pour tout $x \in \mathbb{R}$.

10 Soit un entier $m \ge 2$. D'après la formule du binôme,

$$\forall x \in \mathbb{R}, \ \varphi(x) = \sum_{n=0}^{m} {m \choose n} (-1)^n e^{nx}$$

En dérivant m-1 fois, on obtient

$$\forall x \in \mathbb{R}, \ \varphi^{(m-1)}(x) = \sum_{n=0}^{m} {m \choose n} (-1)^n n^{m-1} e^{nx}$$

puis en évaluant en 0

$$\varphi^{(m-1)}(0) = \sum_{n=0}^{m} {m \choose n} (-1)^n n^{m-1}$$

Mais, d'après la question précédente,

$$\varphi^{(m-1)}(0) = P_{m-1}(1)(1-1)^{m-1} = 0$$

car $m-1 \ge 1$. On en déduit le résultat demandé.

11 La fonction g est dérivable sur \mathbb{R} et $g'(y) = (1 - y)e^{-y}$ pour tout $y \in \mathbb{R}$. On en déduit le tableau de variation suivant.

у	-∞	1	+∞
g'(y)	+	0	_
g(y)	-∞	e ⁻¹	0

puis le graphe suivant

12 La fonction g est strictement croissante et continue sur [-1,0]. Puisque

$$g(-1) = -e < -e^{-1} < 0 = g(0)$$

il existe un unique réel $\alpha \in]-1,0[$ tel que $g(\alpha)=-\frac{1}{e}$. De plus, par croissance de g sur $[\alpha,1]$,

$$\forall y \in [\alpha, 1], \ g(\alpha) = -\frac{1}{e} \le g(y) \le g(1) = \frac{1}{e}$$

13 On a vu précédemment que f était définie et même continue sur $[-e^{-1}, e^{-1}]$. Soit $y \in [\alpha, 1]$. D'après la question précédente, $g(y) = ye^{-y} \in [-e^{-1}, e^{-1}]$ donc f est bien définie en ye^{-y} . De plus,

$$f(ye^{-y}) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n e^{-ny}$$

Mais en utilisant le développement en série entière de l'exponentielle,

$$f(ye^{-y}) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n \sum_{m=0}^{+\infty} \frac{(-ny)^m}{m!}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n \sum_{m=n}^{+\infty} \frac{(-1)^{m-n} n^{m-n} y^{m-n}}{(m-n)!}$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} \frac{n^{n-1}}{n!} y^n \cdot \frac{(-1)^{m-n} n^{m-n} y^{m-n}}{(m-n)!}$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m$$

14 Soit $y \in [\alpha, -\alpha]$. D'après le théorème de Fubini positif,

$$\begin{split} \sum_{(n,m)\in(\mathbb{N}^*)^2} |z_{n,m}| &= \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} |z_{n,m}| \\ &= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} \frac{n^{m-1}}{n!(m-n)!} |y|^m \\ &= \sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty} \frac{n^{m+n-1}}{n!m!} |y|^{m+n} \\ &= \sum_{n=1}^{+\infty} \frac{n^{n-1}|y|^n}{n!} \sum_{m=0}^{+\infty} \frac{(n|y|)^m}{m!} \\ &= \sum_{n=1}^{+\infty} \frac{n^{n-1}|y|^n}{n!} e^{n|y|} \\ &= \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} (|y|e^{|y|})^n \end{split}$$

Or $y \in [\alpha, -\alpha]$, $-|y| \in [\alpha, 0]$ et donc $g(-|y|) \in [-e^{-1}, e^{-1}]$ i.e. $-|y|e^{|y|} \in [-e^{-1}, e^{-1}]$ et donc également $|y|e^{|y|} \in [-e^{-1}, e^{-1}]$. On a vu que la série définissant f convergeait sur $[-e^{-1}, e^{-1}]$ donc

$$\sum_{(n,m)\in(\mathbb{N}^*)^2}|z_{n,m}|=\sum_{n=1}^{+\infty}\frac{n^{n-1}}{n!}(|y|e^{|y|})^n<+\infty$$

Ceci prouve que la famille $(z_{n,m})_{(n,m)\in(\mathbb{N}^*)^2}$ est bien sommable.

Soit $y \in [\alpha, -\alpha]$. On peut maintenant appliquer le théorème de Fubini. D'une part, en reprenant les calculs de la

question précédente

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} z_{n,m} = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} z_{n,m}$$

$$= \sum_{n=1}^{+\infty} \sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m$$

$$= \sum_{n=1}^{+\infty} \sum_{m=0}^{+\infty} (-1)^m \frac{n^{m+n-1}}{n!m!} y^{m+n}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}y^n}{n!} \sum_{m=0}^{+\infty} \frac{(-ny)^m}{m!}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}y^n}{n!} e^{-ny}$$

$$= \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} (ye^{-y})^n$$

$$= f(g(y))$$

D'autre part,

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} z_{n,m} = \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} z_{n,m}$$

$$= \sum_{m=1}^{+\infty} \sum_{n=1}^{m} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m$$

$$= \sum_{m=1}^{+\infty} \frac{(-1)^m y^m}{m!} \sum_{n=1}^{m} (-1)^n \binom{m}{n} n^{m-1}$$

D'après la question 10, tous les termes d'indices $m \ge 2$ de cette somme sont nuls. Ainsi

$$\sum_{(n,m)\in(\mathbb{N}^*)^2}z_{n,m}=y$$

Finalement, f(g(y)) = y.

La question précédente montre que f est la bijection réciproque de la bijection de $[\alpha, 1]$ sur $[-e^{-1}, e^{-1}]$ induite par g. On en déduit le graphe suivant.

La fonction g est dérivable en α et $g'(\alpha) = (1 - \alpha)e^{-\alpha} \neq 0$ donc f est dérivable en $g(\alpha) = -\frac{1}{e}$. Par contre, g est dérivable en 1 mais g'(1) = 0 donc f n'est pas dérivable en $g(1) = \frac{1}{e}$. On peut préciser que le graphe de f admet une tangente verticale au point d'abscisse $\frac{1}{e}$.

Solution 1

1. La famille $\left(\frac{1}{n^2}\right)_{n\in\mathbb{N}^*}$ est sommable car elle est à termes positifs et $\sum \frac{1}{n^2}$ converge. Ainsi la famille $\left(\frac{1}{p^2q^2}\right)_{(p,q)\in\mathbb{A}}$ est sommable en tant que produit des deux familles sommables $\left(\frac{1}{p^2}\right)_{p\in\mathbb{N}^*}$ et $\left(\frac{1}{q^2}\right)_{q\in\mathbb{N}^*}$. De plus

$$\sum_{(p,q)\in A} \frac{1}{p^2 q^2} = \left(\sum_{n=1}^{+\infty} \frac{1}{n^2}\right)^2 = \frac{\pi^4}{36}$$

2. On remarque que pour tout $(p,q) \in A$, $\frac{1}{p^2+q^2} \ge \frac{1}{(p+q)^2} \ge 0$. On peut alors partitionner $A = \bigsqcup_{n\ge 2} I_n$ avec $I_n = \{(p,q) \in A, \ p+q=n\}$. De plus, pour tout $n\ge 2$,

$$\sum_{(p,q)\in I_n} \frac{1}{(p+q)^2} = \frac{n-1}{n^2}$$

Comme la série $\sum_{n\geq 2} \frac{n-1}{n^2}$ diverge, la famille $\left(\frac{1}{(p+q)^2}\right)_{(p,q)\in A}$ n'est pas sommable d'après le théorème de sommation par paquets. La famille $\left(\frac{1}{p^2+q^2}\right)_{(p,q)\in A}$ n'est donc pas sommable non plus.

Solution 2

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n a_k \mathbf{B}_k &= \sum_{k=n_0}^n (\mathbf{A}_k - \mathbf{A}_{k-1}) \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0}^n \mathbf{A}_{k-1} \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0-1}^{n-1} \mathbf{A}_k \mathbf{B}_{k+1} \\ &= \mathbf{A}_n \mathbf{B}_n + \sum_{k=n_0}^{n-1} \mathbf{A}_k (\mathbf{B}_k - \mathbf{B}_{k+1}) \\ &= \mathbf{A}_n \mathbf{B}_n - \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k \end{split}$$

- 2. a. La série $\sum b_n$, autrement dit la série $\sum B_{n+1} B_n$, est une série télescopique. Elle est donc de même nature que la suite (B_n) , c'est-à-dire convergente.
 - **b.** Tout d'abord, (A_n) est bornée donc $A_nB_n = \mathcal{O}(B_n)$. Puisque (B_n) converge vers 0, il en est de même de la suite (A_nB_n) .

Ensuite, la suite (B_n) étant décroissante, la série $\sum b_n$ est une série à termes de signe constant. Or $A_n b_n = \mathcal{O}(b_n)$ et la série $\sum b_n$ converge donc la série $\sum A_n b_n$ converge. On en déduit que la suite de ses sommes partielles converge. La suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge donc.

D'après la question 1, la suite de terme général $\sum_{k=n_0}^n a_k \mathbf{B}_k$ converge donc en tant que somme de deux suites convergentes. Puisque $\sum_{k=n_0}^n a_k \mathbf{B}_k$ est la somme de partielle de rang n de la série $\sum a_n \mathbf{B}_n$, la série $\sum a_n \mathbf{B}_n$ converge également

c. Posons $a_n = (-1)^n$ pour $n \ge n_0$. Alors A_n vaut 0, -1 ou 1 suivant la parité de n ou n_0 . En particulier, la suite (A_n) est bornée et on peut donc appliquer le résultat de la question précédente. La série $\sum (-1)^n B_n$ converge donc.

3. a. Il s'agit de la somme des termes d'une suite géométrique.

$$\sum_{k=1}^{n} e^{ki\theta} = e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1} = e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}}$$

b. Cas $\alpha \leq 0$. La suite de terme général $\frac{e^{ni\theta}}{n^{\alpha}}$ ne tend pas vers 0. En effet, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = n^{-\alpha} \geq 1$ pour tout $n \in \mathbb{N}^*$.

Cas $\alpha > 1$. La série $\sum \frac{e^{ni\theta}}{n^{\alpha}}$ converge absolument. En effet, pour tout $n \in \mathbb{N}^*$, $\left| \frac{e^{ni\theta}}{n^{\alpha}} \right| = \frac{1}{n^{\alpha}}$ et la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$.

Cas $0 < \alpha \le 1$. On utilise les résultats précédents avec $n_0 = 1$, $a_n = e^{in\theta}$ et $B_n = \frac{1}{n}$. D'après la question 3.a, pour tout $n \in \mathbb{N}^*$,

$$|A_n| = \left| e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}} \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

La suite (A_n) est donc bornée. La suite (B_n) est clairement décroissante de limite nulle. La question 2.b permet alors d'affirmer que la série $\sum a_n B_n$ i.e. la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$, converge. Cette série ne converge pas absolument puisque $\left|\frac{e^{in\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et que la série $\sum \frac{1}{n^{\alpha}}$ ne converge pas $(\alpha \le 1)$.

4. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^n a_k \mathbf{B}_k = \mathbf{A}_n \mathbf{B}_n - \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n\to +\infty} A_n B_n = 0$. Puisque (A_n) est bornée, $A_n b_n = \mathcal{O}(|b_n|)$. Or la série $\sum |b_n|$ converge car $\sum_{n\geq n_0} b_n$ est absolument convergente. De plus, la série $\sum |b_n|$ est à termes positifs donc la série $\sum A_n b_n$ converge (absolument). Ainsi la suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k \text{ converge.}$

Il s'ensuit que la suite de terme général $\sum_{k=n_0}^{n} a_k B_k$ converge également i.e. que la série $\sum_{n\geq n_0} a_n B_n$ converge.