숭실대학교

인공신경망

多간발표

Scratch-Based CIFAR-100 Classifier

넘파이팅!

프로젝트 목표 및 개요

프로젝트 목표

■ 딥러닝 프레임워크 없이 파이썬 numpy만 사용하여 인공신경망 직접 구현

프로젝트 개요

- CIFAR-100 데이터셋 기반 fine-class(100개) 및 coarse-class(20개)에 대한 분류기 제작
- CIFAR-100 : 32×32 크기의 RGB 컬러 이미지 60,000장 (각 클래스 600개)
 - □ Train: 50,000개, Test: 10,000개
 - □ Superclass : 20개, Class : 100개

우리 프로젝트의 구성

- 100개 fine class 분류 → 20개 superclass 매핑
- 모델 구조 탐색 (CNN, MLP, ViT 등) → 실험 후 최종 모델 선정
- coarse-class 분류 성능 향상 및 계층적 해석 목표

Softmax

(100,)

넘파이팅!

모델 비교 실험 설계

ViT Baseline-CNN DFFR-CNN MLP (3x32x32) (3x32x32) Input (3x32x32) Input (3x32x32) Input Conv2D (3 - 16) (16x32x32) ReLU Conv2D (3 → 16) (16x32x32) Patch Embedding (64x64x64) ReLU (2048,) Flatten MultiHeadAttention MaxPool2D (16x16x16) (layerNorm) Residual block Conv2D (3 → 16) (16x32x32) (64x64x64) MLP FullyConnected 1 $(2048 \rightarrow 512)$ (16x16x16) Conv2D (16 → 32) (32x16x16) Conv2D (3 - 16) (16x32x32) ReLU CLS Output (64x64)FullyConnected 2 $(512 \rightarrow 100)$ MaxPool2D (32x8x8) Fusion block Conv2D (3 → 16) (3 - 16)Flatten (2048.)FullyConnected (64→100) (16x16x32) (100,) Softmax Add & ReLU FullyConnected 1 (2048→512) (100,) Softmax ReLU Flatten (2048,) FullyConnected 2 $(512 \rightarrow 100)$ (2048→512)

FullyConnected 2 (512→100)

(100,)

Softmax

넘파이팅!

모델 실험 결과 비교(Accuracy)

Train Accuracy(%)

Test Accuracy(%)

- * Baseline-CNN과 DFFR-CNN은 epoch 실행 시간이 오래 걸린 관계로 epoch3 까지만 실험
- * 모든 수치는 소수점 둘째 자리까지 반올림하여 표기함

모델 실험 결과 비교(Loss)

- * Baseline-CNN과 DFFR-CNN은 epoch 실행 시간이 오래 걸린 관계로 epoch3 까지만 실험
- * 모든 수치는 소수점 둘째 자리까지 반올림하여 표기함

후속 실험 모델 구조 선정

FE + MLP

넘파이팅!

ResNet-20 MLP

FE + DR + MLP

최종 모델 선정

Train Accuracy

Validation Accuracy

Train Loss

최종 모델 선정

넘파이팅!

Train / Validation Accuracy

Mapping 기법 비교

매핑 기법	개요	특징/장점	활용 방식
Argmax 기반 단순 매핑	fine-class 예측 결과를 coarse로 단순 매핑	-	후처리
Confidence 기반 weighted softmax	softmax의 entropy로 신뢰도 계산 → coarse 클래스별 가중 합산	샘플별 불확실성 반영, 정교한 coarse 예측 가능	후처리
Soft label 기반 coarse 매핑	각 superclass에 해당하는 soft label 벡터 구성 → fine-class 예측과 선형결합하여 coarse 확률 추정	fine 모델 그대로 사용, 손실 계산에도 활용 가능	후처리
Validation 기반 fine weight 매핑	validation set의 fine-class 정확도 → coarse 예측 시 신뢰도 가중치로 반영	실제 성능 기반 coarse 변환, 데이터 기반	후처리

위의 기법들은 모두 fine → coarse class 매핑을 위한 후처리 전략이며, coarse 정확도 향상 및 계층적 해석에 활용됨

숭실대학교

Mapping 기법 비교

▶ 모델구조 : 교수님 demo_project의 MLP를 그대로 사용

→ test data에서 fine class 에 대한 정확도 : 11.51%

Coarse Accuracy 비교		
Argmax 기반	20.26%	
Entropy-weighted	21.59%	
Soft-label 평균 기반	21.59%	
Validation-weight 기반	17.80%	

▶ 모델구조 : ResNet-20

→ test data에서 fine class 에 대한 정확도 : 1.53%

Coarse Accuracy 비교		
Argmax 기반	6.42%	
Entropy-weighted	6.42%	
Soft-label 평균 기반	6.42%	
Validation-weight 기반	6.42%	

test data에 대한 fine class 예측 결과를 coarse 클래스로 매핑

i. ResNet-20 기반 최종 모델 성능 향상

■ 하이퍼파라미터 튜닝

Learning rate: 0.01, 0.001, 0.0005 범위 내 조정

□ Batch size: 32, 64 비교

Optimizer: SGD vs Adam

□ 성능 기준: validation accuracy 중심으로 최적 조합 선별 예정

ii. Mapping 기법 추가 실험 및 적용

- 지금까지 진행한 매핑 기법 결과에 대한 정량적 분석 및 비교
 - □ coarse 정확도 향상을 위한 앙상블 기법 적용 시도

iii. 최종 통합 테스트

- 선정된 최종 모델 + 매핑 기법 조합 적용
- Test set 기준 최종 성능 평가 및 분석

■ 데이터 증강

- □ 적용 기법 : random crop, horizontal flip, cutout, color jitter
- □ 각 증강 기법은 epoch 1~10에서 테스트 예정
- □ validation accuracy 향상 효과 및 training time trade-off 분석

■ 과적합 완화를 위한 추가 실험

□ 향후 실험을 통해 과적합 현상 분석 및 개선

숭실대학교

인공신경망

감사합니다.

20221257 이서아

20221593 김화정

20222875 임수빈