Nous étudions les transformations affines usuelles de l'espace : translations, homothéties, réflexions... à l'aide des vecteurs et matrices. Nous décrivons les formules de changement de base et introduisons les coordonnées homogènes.

# 1. Transformations affines

# 1.1. Translations

Une *translation* de vecteur (a, b, c) est la fonction de  $\mathbb{R}^3$  dans  $\mathbb{R}^3$  définie par

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ z+c \end{pmatrix}$$

Si on note  $T = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$  alors, l'image Y d'un point  $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$  est :

$$Y = X + T$$
.



# 1.2. Homothéties

Une *homothétie* centrée à l'origine et de rapport k est l'application  $\mathbb{R}^3 \to \mathbb{R}^3$ ,  $X \mapsto Y$  définie par

$$Y = kX$$

Autrement dit x' = kx, y' = ky, z' = kz. Nous préférons écrire les transformations en termes de vecteurs et matrices :

$$Y = AX \qquad \text{avec} \qquad A = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix}.$$



Si on souhaite une homothétie de rapport k centrée en un point quelconque  $X_0 = \begin{pmatrix} x_0 \\ y_0 \\ y_0 \end{pmatrix}$ , alors on applique la formule :

$$Y = A(X - X_0) + X_0.$$

Pour déformer l'espace avec des rapports différents selon chaque axe (ce n'est plus une homothétie), on utiliserait la matrice :

$$A = \begin{pmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & k_z \end{pmatrix}.$$



# 1.3. Rotations

Les rotations seront étudiées en détail dans le chapitre « Rotations de l'espace ». Par exemple la rotation d'axe (Ox) et d'angle  $\theta$  est la transformation Y = AX avec

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}.$$



Une rotation d'angle  $\pi$  (180°) s'appelle un *retournement*. Le retournement d'axe (Ox) a pour matrice :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$



Voici les matrices de rotations autour de l'axe (Oy) et de l'axe (Oz):

$$R_y = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \qquad \qquad R_z = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

# 1.4. Projections

Les projections seront étudiées en détail dans le chapitre « Perspective ».

Par exemple la *projection orthogonale* sur le plan (Oxy) est la transformation Y = AX avec

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$



# 1.5. Réflexions

La *réflexion orthogonale* par rapport au plan (Oxy) est la transformation Y = AX avec

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$



Plus généralement si A est la matrice d'une projection sur un sous-espace, alors B = 2A - I est la matrice de la réflexion par rapport à ce même sous-espace.

# 1.6. Matrice quelconque

De façon générale une transformation vectorielle est l'application  $F:\mathbb{R}^3 \to \mathbb{R}^3, X \mapsto Y$  où :

$$Y = AX$$
 avec  $A \in M_3(\mathbb{R})$ .

On appelle aussi la fonction *F* une application linéaire.



Une *transformation affine* est une transformation vectorielle, suivie d'une translation :

$$Y = AX + T$$
 avec  $A \in M_3(\mathbb{R}), T \in M_{3,1}(\mathbb{R})$ .

Une transformation vectorielle envoie toujours l'origine sur l'origine, à la différence d'une transformation affine.



Soit  $F : \mathbb{R}^3 \to \mathbb{R}^3$  une transformation affine ou vectorielle. Notons A la matrice de cette transformation. Le déterminant  $\det(A)$  de cette matrice est important dans l'étude de la transformation F.

# Proposition 1.

La transformation F est bijective si et seulement si  $det(A) \neq 0$ .

### Proposition 2.

Si E est un ensemble dont le volume est  $\mathcal V$  alors F(E) est un ensemble dont le volume est  $|\det(A)| \times \mathcal V$ .

Rappelons que si  $A \in M_3(\mathbb{R})$  est une matrice  $3 \times 3$ :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

alors le déterminant se calcule selon la formule :

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}.$$

Les matrices permettent d'effectuer facilement la composition des transformations vectorielles. Si F a pour matrice A et G a pour matrice B, alors la transformation  $F \circ G$  (l'action de G suivie de celle de F) a pour matrice le produit AB. C'est-à-dire :  $F \circ G : X \mapsto Y = (AB)X$ . On rappelle que l'ordre a une importance, les matrices AB et BA sont en général distinctes, autrement dit, appliquer F puis G n'est pas la même chose qu'appliquer G puis F.

# 2. Changement de repère

# 2.1. Changement de coordonnées

Soit  $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$  une base de  $\mathbb{R}^3$ . Considérons un vecteur  $\overrightarrow{v}$  de  $\mathbb{R}^3$  et notons X les coordonnées de  $\overrightarrow{v}$  dans la base  $\mathcal{B}$ , c'est-à-dire :

$$\overrightarrow{v} = x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}$$
 et  $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ .

Fixons maintenant une seconde base  $\mathcal{B}' = (\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3})$  de  $\mathbb{R}^3$ . Le même vecteur  $\overrightarrow{v}$  n'a pas les mêmes coordonnées dans cette nouvelle base. Notons X' les coordonnées de  $\overrightarrow{v}$  dans cette base  $\mathcal{B}'$ , c'est-à-dire :

$$\overrightarrow{v} = x'\overrightarrow{f_1} + y'\overrightarrow{f_2} + z'\overrightarrow{f_3}$$
 et  $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ .



Quel est le lien entre X et X'?

La *matrice de passage* P de la base  $\mathcal{B}$  vers la base  $\mathcal{B}'$  est la matrice carrée de taille  $3 \times 3$  dont la j-ème colonne est formée des coordonnées du j-ème vecteur de la base  $\mathcal{B}'$ , par rapport à la base  $\mathcal{B}$ . On résume en :

La matrice de passage P contient – en colonnes – les coordonnées des vecteurs de la nouvelle base  $\mathcal{B}'$  exprimés dans l'ancienne base  $\mathcal{B}$ .

Voici le lien entre les coordonnées dans l'ancienne et la nouvelle base :

# Proposition 3.

$$X = PX'$$

Notez bien l'ordre! La formule permet de calculer les coordonnées dans la base de départ à partir de celle de la base d'arrivée. Mais en général on veut l'opération inverse. Pour cela on utilise simplement la relation  $X' = P^{-1}X$  qui donne les coordonnées dans la nouvelle base à partir des coordonnées dans l'ancienne base.

# Exemple.

Considérons  $\mathbb{R}^3$  muni de sa base canonique  $\mathcal{B}$ , mais aussi d'une autre base  $\mathcal{B}'$  avec :

$$\mathcal{B} = \left( \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) \quad \text{et} \quad \mathcal{B}' = \left( \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right).$$

Quelle est la matrice de passage de  $\mathcal{B}$  vers  $\mathcal{B}'$ ?

Comme la base de départ est la base canonique alors dans ce cas la matrice de passage est simplement la matrice dont les colonnes sont les vecteurs de la base  $\mathcal{B}'$ , ainsi :

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$

Nous aurons besoin de calculer son inverse. Après calculs :

$$P^{-1} = \frac{1}{5} \begin{pmatrix} 4 & 1 & -2 \\ -3 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

Considérons un vecteur dont les coordonnées dans la base  $\mathcal B$  sont :

$$X = \begin{pmatrix} 5 \\ 6 \\ 8 \end{pmatrix}$$

Quelles sont les coordonnées X' de ce même vecteur dans la base  $\mathcal{B}'$ ? Comme X = PX' alors  $X' = P^{-1}X$ , ainsi :

$$X' = P^{-1}X = \frac{1}{5} \begin{pmatrix} 4 & 1 & -2 \\ -3 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}.$$

# 2.2. Changement de base pour les matrices

Soit  $F: \mathbb{R}^3 \to \mathbb{R}^3$  une application linéaire (c'est-à-dire une transformation vectorielle). Notons A la matrice de F dans la base  $\mathcal{B}$ . Ainsi si  $f(\overrightarrow{v}) = \overrightarrow{w}$  et que  $\overrightarrow{v}$  a pour coordonnées X et  $\overrightarrow{w}$  a pour coordonnées Y (toujours dans la même base  $\mathcal{B}$ ) alors

$$Y = AX$$

Très souvent, la base choisie est la base canonique et alors on définit une application linéaire par sa matrice. Mais la relation est en général plus subtile :

(une matrice + le choix d'une base) ←→ une application linéaire

Donc dans une autre base  $\mathcal{B}'$ , la matrice de F est différente : notons B cette matrice. Comment exprimer B en fonction de A?

La formule de changement de base pour une application linéaire est :

Proposition 4.

$$B = P^{-1}AP$$

Comme auparavant, la matrice P est la matrice de passage de la base  $\mathcal{B}$  à la base  $\mathcal{B}'$ .

# Exemple.

Reprenons les deux bases de  $\mathbb{R}^3$  de l'exemple du paragraphe 2.1 :

$$\mathcal{B} = \left( \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) \qquad \text{et} \qquad \mathcal{B}' = \left( \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right).$$

Considérons la rotation F d'axe (Oz) et d'angle  $\frac{\pi}{2}$ . Sa matrice dans la base  $\mathcal{B}$  est

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Autrement dit, dans la base  $\mathcal{B}$  un vecteur de coordonnées X s'envoie sur le vecteur de coordonnées Y = AX. Quelle est la matrice B de cette même rotation, mais dans la base  $\mathcal{B}'$ ? On cherche la matrice B telle que dans la base  $\mathcal{B}'$  cette fois un vecteur de coordonnées X' s'envoie sur les coordonnées Y' = BX'. La formule de changement de base pour les matrices est  $B = P^{-1}AP$ , donc :

$$B = P^{-1}AP = \frac{1}{5} \begin{pmatrix} 4 & 1 & -2 \\ -3 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & -10 & -13 \\ 6 & 5 & 6 \\ -2 & 0 & 3 \end{pmatrix}.$$

Par exemple, pour un vecteur ayant pour coordonnées  $X' = \begin{pmatrix} 5 \\ 0 \\ 10 \end{pmatrix}$  dans la base  $\mathcal{B}'$ , alors son image par la rotation F aura pour coordonnées  $Y' = BX' = \begin{pmatrix} -29 \\ 18 \\ 4 \end{pmatrix}$  (toujours dans la base  $\mathcal{B}'$ ).

# 2.3. Changement de base orthonormée

On rappelle qu'une base  $\mathcal{B}$  est *orthonormale* si chaque vecteur est unitaire et si deux vecteurs distincts sont orthogonaux.

Une matrice A est *orthogonale* si  $A^TA = I$ , autrement dit si  $A^{-1} = A^T$ . De façon équivalente, une matrice A est orthogonale si ses vecteurs colonnes forment une base orthonormale. On note O(3) l'ensemble des matrices orthogonales de taille  $3 \times 3$ .

# Proposition 5.

Si  $\mathcal{B}$  et  $\mathcal{B}'$  sont deux bases orthonormales alors la matrice de passage P de  $\mathcal{B}$  à  $\mathcal{B}'$  est une matrice orthogonale.



Il faut aussi prendre garde qu'une transformation vectorielle ne préserve en général pas l'orthogonalité (même si c'est vrai pour les homothéties, les rotations, les symétries orthogonales).



### Proposition 6.

Soit A la matrice d'une application linéaire F. Si A est une matrice orthogonale alors F préserve le produit scalaire, c'est-à-dire  $F(\overrightarrow{u}) \cdot F(\overrightarrow{v}) = \overrightarrow{u} \cdot \overrightarrow{v}$ . En particulier F préserve les angles et les longueurs; ainsi F préserve l'orthogonalité et envoie une base orthonormale sur une base orthonormale.

Conséquence : si dans une base orthonormée F a pour matrice la matrice orthogonale A, alors dans une autre base orthonormée F a pour matrice B qui est aussi orthogonale (c'est  $B = P^{-1}AP$  avec A et P orthogonales).

#### Exercice.

On considère la matrice

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

1. Vérifier que  $A^{-1} = A^T$ , en déduire que A est une matrice orthogonale.

- 2. Montrer que les vecteurs de coordonnées  $X_1 = \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}$  et  $X_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$  sont orthogonaux.
- 3. Calculer les coordonnées  $Y_1 = AX_1$  de l'image de  $X_1$  par A. Idem pour  $Y_2 = AX_2$ . Vérifier que  $Y_1$  et  $Y_2$  sont encore des vecteurs orthogonaux.

# 3. Coordonnées homogènes

#### 3.1. Motivation

Il y a plusieurs inconvénients à la description des transformations vues lors des sections précédentes : la plupart des transformations étudiées jusqu'ici étaient des transformations vectorielles (où l'origine s'envoie sur l'origine) et les translations sont effectuées à part afin d'obtenir une transformation affine. D'autre part les ordinateurs savent multiplier très rapidement des matrices (pour composer les applications linéaires), mais les translations requièrent un traitement à part (une addition). Pourrait-on unifier la situation? Un autre problème est de manipuler des objets à l'infini. Par exemple, pour un éclairage, il faut différencier un éclairage issu d'un point, d'un éclairage « à l'infini » comme le Soleil. Encore une fois : comment unifier cette situation?

Ces deux problèmes sont réglés par les coordonnées homogènes. Il s'agit d'ajouter une coordonnée supplémentaire, ainsi un point de l'espace est codé avec 4 nombres réels et une transformation qui inclut une translation est codée à l'aide d'une matrice 4 × 4. Les points à l'infini sont les points dont la dernière coordonnée est nulle.

Pour mieux comprendre et pouvoir faire des dessins on commence par expliquer les coordonnées homogènes du plan.

# 3.2. Coordonnées homogènes du plan

### **Définition**

On note (x : y : w) les *coordonnées homogènes* du plan où x, y, w sont des réels (pas tous les trois nuls en même temps). Ces coordonnées sont définies à un facteur près, c'est-à-dire que :

$$(x:y:w) = (\lambda x: \lambda y: \lambda w)$$
 pour tout  $\lambda \in \mathbb{R}^*$ 

Par exemple (2:-1:1) = (4:-2:2) = (-6:3:-3) et (2:3:0) = (4:6:0). Attention, le point « (0:0:0) » n'existe pas.

On appelle *plan projectif*, noté  $\mathbb{R}P^2$ , l'ensemble de ces triplets (x:y:w).

- Si  $(x, y) \in \mathbb{R}^2$  est un point du plan alors on lui associe les coordonnées homogènes (x : y : 1).
- Réciproquement à (x : y : w) avec  $w \ne 0$ , on lui associe le point (x/w, y/w). Noter que si  $w \ne 0$  on a (x : y : w) = (x/w : y/w : 1).
- Si (ν<sub>x</sub>, ν<sub>y</sub>) est un vecteur du plan, on lui associe les coordonnées homogènes (ν<sub>x</sub>: ν<sub>y</sub>: 0), aussi appelé
  « point à l'infini ». Réciproquement à (ν<sub>x</sub>: ν<sub>y</sub>: 0), on associe le vecteur (ou la direction) (ν<sub>x</sub>, ν<sub>y</sub>).

Pour décrire le plan projectif d'un point de vue géométrique, on part de l'espace  $\mathbb{R}^3$  et on identifie les points qui sont situés sur une même droite passant par l'origine (car  $(x : y : w) = (\lambda x : \lambda y : \lambda w)$ ).

L'identification (x : y : 1) avec le point (x, y) correspond à intersecter une droite vectorielle de l'espace avec le plan d'équation (w = 1).



### Points à l'infini

On peut se représenter le plan projectif ainsi : une partie affine correspondant aux points de coordonnées homogènes (x:y:1) et un ensemble de points à l'infini de coordonnées homogènes  $(v_x:v_y:0)$ . Un point à l'infini  $(v_x:v_y:0)$  correspond à une direction  $\overrightarrow{v}=(v_x,v_y)$ .



Voyons maintenant comment uniformiser la position d'un éclairage. La source d'un éclairage est définie par un point  $S \in \mathbb{R}P^2$  de coordonnées homogènes  $(x_S : y_S : w_S)$  avec  $w_S = 0$  ou bien  $w_S = 1$ .

- Lumière ponctuelle.  $S = (x_S : y_S : 1)$ . Dans ce cas la source lumineuse est en position  $(x_S, y_S)$ . Si P(x, y) est un point du plan, alors un vecteur dirigé vers la source lumineuse est  $\overrightarrow{PS}$ .
- Lumière directionnelle.  $S=(x_S:y_S:0)$ . Dans ce cas la source lumineuse est « à l'infini » et est caractérisée par la direction opposée à  $\vec{v}=(x_S,y_S)$ . Pour n'importe quel point P du plan,  $\vec{v}$  est un vecteur dirigé vers la source lumineuse.



#### **Transformation**

Soit  $F: \mathbb{R}^2 \to \mathbb{R}^2$  une transformation affine du plan :

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix},$$

où a, b, c, d, e, f sont des réels quelconques.

En d'autres termes, l'image d'un point (x, y) du plan est le point F(x, y) = (x', y') avec

$$\begin{cases} x' = ax + by + e \\ y' = cx + dy + f \end{cases}.$$

Si on note:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad T = \begin{pmatrix} e \\ f \end{pmatrix} \qquad X = \begin{pmatrix} x \\ y \end{pmatrix}$$

alors F(X) = AX + T.

# Problème de la composition

Composer deux transformations vectorielles est simple : si F a pour matrice A et G a pour matrice B alors  $F \circ G$  a pour matrice AB. La composition correspond simplement au produit de matrices.

Faisons maintenant le calcul avec des transformations affines  $F: X \mapsto AX + T$  et  $G: X \mapsto BX + S$ :

$$F \circ G(X) = F(G(X)) = F(BX + S) = A(BX + S) + T = ABX + (AS + T).$$

La formule n'est donc pas simple et se compliquerait encore si ajoutait des compositions. Calculons l'action de la transformation  $F: X \mapsto AX + T$  en coordonnées homogènes.

$$A \quad X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 on associe  $X_h = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ .

Et à la transformation affine (de matrice A et translation T) on associe la matrice :

$$A_h = \begin{pmatrix} a & b & e \\ c & d & f \\ 0 & 0 & 1 \end{pmatrix}$$

Vérifions que  $F(X_h) = A_h X_h$  (en identifiant un point  $P_h = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$  avec (x:y:1) et (x,y)):

$$A_h X_h = \begin{pmatrix} a & b & e \\ c & d & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} ax + by + e \\ cx + dy + f \\ 1 \end{pmatrix} = F(X_h).$$

Ainsi en coordonnées homogènes, une transformation affine du plan correspond à la multiplication par une matrice  $3 \times 3$ .

Si  $G: X \mapsto BX + S$  est une autre transformation affine et que l'on note  $B_h$  la matrice  $3 \times 3$  associée, alors

$$F \circ G(X_h) = F(G(X)) = F(B_h X_h) = A_h(B_h X_h) = (A_h B_h) X_h.$$

Ainsi, en coordonnées homogènes, la matrice associée à  $F \circ G$  est naturellement le produit  $A_h B_h$ .

# 3.3. Coordonnées homogènes de l'espace

Ajoutons une dimension supplémentaire afin de définir les coordonnées homogènes dans l'espace.

### Coordonnées homogènes

On note (x : y : z : w) les *coordonnées homogènes* de l'espace, où x, y, z et w sont des réels, pas tous les quatre nuls en même temps. Ces coordonnées sont définies à un facteur multiplicatif près, c'est-à-dire que :

$$(x:y:z:w) = (\lambda x:\lambda y:\lambda z:\lambda w)$$
 pour tout  $\lambda \in \mathbb{R}^*$ 

L'ensemble de ces éléments (x:y:z:w), à équivalence près, s'appelle l'*espace projectif*, noté  $\mathbb{R}P^3$ .

Les coordonnées classiques correspondent aux coordonnées homogènes lorsque w = 1. Plus précisément :

- Si  $X = (x, y, z) \in \mathbb{R}^3$  est un point de l'espace alors on lui associe les coordonnées homogènes  $X_h = (x : y : z : 1)$ .
- Réciproquement à (x:y:z:w) avec  $w \neq 0$ , on lui associe le point (x/w,y/w,z/w). Noter que si  $w \neq 0$  on a (x:y:z:w) = (x/w:y/w:z/w:1).
- Si (ν<sub>x</sub>, ν<sub>y</sub>, ν<sub>z</sub>) est un vecteur, on lui associe les coordonnées homogènes (ν<sub>x</sub> : ν<sub>y</sub> : ν<sub>z</sub> : 0), aussi appelé « un point à l'infini ». Réciproquement à (ν<sub>x</sub> : ν<sub>y</sub> : ν<sub>z</sub> : 0), on associe le vecteur (ou la direction) (ν<sub>x</sub>, ν<sub>y</sub>, ν<sub>z</sub>).

### Exemple.

- 1. Le point  $\bar{A} \in \mathbb{R}P^3$  de coordonnées homogènes (-3:0:2:1) a aussi pour coordonnées homogènes (-6:0:4:2). Le point  $A \in \mathbb{R}^3$  correspondant est (-3,0,2).
- 2. Le point  $\bar{B} \in \mathbb{R}P^3$  de coordonnées (2:3:-2:1) est associé à  $B \in \mathbb{R}^3$  de coordonnées (2,3,-2).
- 3. Lorsque les coordonnées homogènes sont normalisées avec w = 1 on peut soustraire deux points pour obtenir un vecteur :

$$\bar{B} - \bar{A} = (2:3:-2:1) - (-3:0:2:1) = (5:3:-4:0)$$

qui est un point à l'infini et correspond bien aux coordonnées homogènes du vecteur  $\overrightarrow{AB}$ .

Il est difficile de visualiser l'espace projectif. Un premier point de vue est de partir de l'espace  $\mathbb{R}^4$  (à quatre dimensions) et d'identifier les points qui sont situés sur une même droite vectorielle. Une autre vision est de considérer que  $\mathbb{R}P^3$  correspond à l'ensemble des points de  $\mathbb{R}^3$  auxquels on rajoute des points à l'infini (qui sont en fait en bijection avec le plan projectif  $\mathbb{R}P^2$ ).

### Transformations homogènes

Soit  $F: \mathbb{R}^3 \to \mathbb{R}^3$  une transformation affine de l'espace définie par :

$$F(X) = AX + T$$

où  $A \in M_3(\mathbb{R})$  est une matrice  $3 \times 3$  et  $T \in M_{3,1}(\mathbb{R})$  est un vecteur colonne de taille 3 correspondant à la translation.

On note:

$$A_h = \left(\frac{A \mid T}{0 \mid 1}\right) \in M_4(\mathbb{R})$$

Autrement dit, si

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \text{et} \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} \qquad \text{alors} \qquad A_h = \begin{pmatrix} a_{11} & a_{12} & a_{13} & t_1 \\ a_{21} & a_{22} & a_{23} & t_2 \\ \underline{a_{31}} & a_{32} & a_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Vérifions que  $F(X_h) = A_h X_h$ :

$$A_h X_h = \begin{pmatrix} a_{11} & a_{12} & a_{13} & t_1 \\ a_{21} & a_{22} & a_{23} & t_2 \\ a_{31} & a_{32} & a_{33} & t_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} x + a_{12} y + a_{13} z + t_1 \\ a_{21} x + a_{22} y + a_{23} z + t_2 \\ a_{31} x + a_{32} y + a_{33} z + t_3 \\ 1 \end{pmatrix} = F(X_h).$$

Ainsi, en coordonnées homogènes, une transformation affine de l'espace correspond à la multiplication par une matrice  $4 \times 4$ .

# Exemple.

Soit  $A_h$  la matrice homogène d'une transformation F(X) = AX + T définie par :

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & 2 \\ -2 & 1 & 1 & 3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}.$$

1. Calculons l'image d'un point de coordonnées X = (4, -2, 3) par la transformation F.

Ses coordonnées homogènes sont  $X_h = (4:-2:3:1)$ . Alors :

$$Y_h = A_h X_h = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & 2 \\ -2 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ -4 \\ 1 \end{pmatrix}.$$

Donc l'image de X est le point de coordonnées Y = (2, 8, 4).

2. Si pour le même point X on avait choisi les coordonnées homogènes  $X_h' = (8:-4:6:2)$  alors on aurait obtenu

$$Y_h = A_h X_h' = \begin{pmatrix} 4\\16\\-8\\2 \end{pmatrix}$$

Mais (4:16:-8:2)=(2:8:-4:1) et on retrouve les mêmes coordonnées  $Y=(2,8,-4)\in\mathbb{R}^3$ .

3. Soit un point à l'infini de coordonnées homogènes  $X_h = (v_x : v_y : v_z : 0)$ . Son image

$$Y_h = A_h X_h = \begin{pmatrix} v_x - v_z \\ 2v_x + v_y \\ -2v_x + v_y + v_z \end{pmatrix}$$

est aussi un point à l'infini. C'est un phénomène général : un point à l'infini est envoyé sur un point à l'infini. Noter qu'en effectuant le calcul, on s'aperçoit que l'image d'un point à l'infini n'est pas affectée par la translation associée à T mais uniquement par la transformation vectorielle associée à A.

### Composition

La composition de transformations affines correspond à la multiplication des matrices homogènes associées.

13

### Proposition 7.

Si F(X) = AX + T et G(X) = BX + S définissent deux transformations affines et que  $A_h$  et  $B_h$  sont leurs matrices homogènes associées, alors la matrice homogène associée à  $F \circ G$  (la transformation G suivie de la transformation F) est  $A_hB_h$ .

# Proposition 8.

Si F(X) = AX + T est une transformation bijective, c'est-à-dire la matrice A est inversible, alors la matrice homogène associée à  $F^{-1}$  est :

$$\left(\frac{A^{-1} \mid -A^{-1}T}{0 \mid 1}\right).$$

# Exemple.

Soit F une rotation d'axe (Oz) et d'angle  $\frac{\pi}{2}$  suivie de la translation de vecteur (1,2,1). Soit G la symétrie orthogonale par rapport au plan (Oyz) suivie d'une translation de vecteur (1,1,0).

1. Matrices de F et G.

$$A_h = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad B_h = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. Expressions de  $F \circ G$  et  $G \circ F$ .

Par la proposition 7 ces matrices sont respectivement :

$$A_h B_h = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 3 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad B_h A_h = \begin{pmatrix} 0 & -1 & 0 & 2 \\ -1 & 0 & 0 & -1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. Expressions de  $F^{-1}$  et  $G^{-1}$ .

Notons  $\tilde{A}_h$  la matrice associée à  $F^{-1}$  et  $\tilde{B}_h$  la matrice associée à  $G^{-1}$ . Par la proposition 8 :

$$\tilde{A}_h = \begin{pmatrix} 0 & 1 & 0 & -2 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad \tilde{B}_h = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$