03 - DBSCAN

- We studied two clustering methods; K-Means which is a centroid-based algorithm, and Agglomerative Clustering which is a hierarchical system.
- There's one more approach to clustering known as DBSCAN which is a density-based approach.
- DBSCAN refers to Density-based spatial clustering of applications with noise
- DBSCAN works fairly well with large data and is able to handle noise and outliers very efficiently.
- First things first, here are some key ideas that build the DBSCAN.

Density and Dense Region

- DBSCAN uses a concept of density, which can be defined as;
 - \circ at a certain point P, density at point P is the number of points within a hypersphere centered at P with a radius of epsilon
- Now, consider any region around the point P within eps radius, if there are more data points than minpts, we call the region a **Dense** region.
- For example, let's say we have eps=1 and minpts=10. Consider two points P_1 and P_2 , both with a radius of eps
 - Suppose there are 20 points around point P_1 , and only 6 points around point P_2 , within the radius of eps, then we say the region around point P_1 is dense and the region around point P_2 as non-dense.

Min Points(minpts) and Epsilon(eps)

- minpts are the minimum number of points that we need in a hypersphere around point P with the radius of eps for considering the region as a **Dense** region.
- *minpts* acts like a certain threshold and *eps* are the radius of the hypersphere

Core Point

- If a point P has points $\geq minpts$ within the radius of eps, then P is a core point.
- ullet This also implies that point P has a dense region around it

Border Point

- A point P can be defined as a border point if:
 - 1. *P* is not a core point
 - 2. Point P lies in the neighborhood of point Q such that point Q is a core-point

Neighborhood

• A point P is said to be in the neighborhood of point Q if distance between point P and Q is less than eps value; i.e. $dist(P,Q) \le eps$

Noise Point

- It is a point that is neither a core point nor a border point.
- Suppose around core point P, a border point Q, and a point R which is in a non-dense region, the point R is said to be a noise point

- One thing to understand is that, when using DBSCAN, we fix two things:
 - 1. Min Points
 - 2. Epsilon.
- By fixing these hyperparameters, we get core points, border points, and noise points as well

Density Edges and Density Connected Points

- If points P and Q are two core points and the distance between point P and Q is less than or equal to eps value, then an edge between point P and Q is known as a **density edge**.
- Points P and Q can be said as density-connected points;
 - if both points are core points
 - \circ if there exist other density edges connecting the points P and Q

• Imagine we have two core points, point P, and Q, and there are other core points connecting point P with point Q; say $P_1, P_2, \dots P_n$, where the distance between each point $P_1, P_2, \dots P_n$ is less than eps

Then point P and point Q are said to be density connected points.

DBSCAN Algorithm

Step-1:

- For each point x_i that belongs to the dataset D, label it as either core point, border point, or noise point.
- Time complexity of this step would be O(n*logN)

Step-2:

- Remove all the noise points from the dataset
- Time complexity of this step would be O(n)
- This is basically a noise removal step

Step-3:

- ullet For each core point P that is not yet assigned to any clustered:
 - \circ create a new cluster with point P
 - \circ Add all points that are density connected to point P, to the P's cluster
- To understand this with an example, Consider a core point P and there are three core points P_1P_2 and P_3 which are density connected.
- ullet Then, we group all the three points in the cluster of point P
- Time complexity of this step would be O(n*logN)

Step-4:

- For each border point, we assign it to the nearest core points' cluster.
 - \circ For example, if we're having a cluster having core points P_1, P_2, \dots, P_9 , and a border point P_{10} which is near the cluster.
 - \circ We merge border point P_{10} , into the cluster of core points $P_{\mathsf{10}}P_{\mathsf{2}}....P_{\mathsf{9}}$
- Time complexity of this step would be O(n)*logN
- DBSCAN Animation Links:
 - DBSCAN Animation
 - DBSCAN Animation Statquest

Adjusting Min Points

- So there are some rules of thumb that people have made over the past years, which typically works well. They are:
 - o value of minpts should be greater than or equal to d+1; where d is dimensionality of the data
 - o lot of libraries use the value of minptS approximately equal to 2*d
- The points mentioned above are typically rules of thumb and these are used because they tend to work fairly good in most of the cases
- Given an epsilon value, if the dataset is noisy, we pick larger minpts

Adjusting Epsilon

- Let's assume we've fixed the value of *minpts* = 4.
- Step 1:
 - \circ for every point x_i in dataset, we compute a distance d_i
 - o di refers to the distance from xi to xi's 4th nearest neighbor (because we've set minpts = 4)
- Step 2:
 - \circ Sort the values of di's and plot them. You'll notice that the distance will increase graudally and then suddenly, at a certain point, the value of distance will get boosted
 - \circ So, the index at which the value of di distance got boosted will be used as the value of eps

 \circ The indices having higher values of di's will be outliers

Advantages of DBSCAN

- It's resistant to noise
- Can handle clusters of different shapes and sizes.
- It doesn't require one to specify the number of clusters a priori.
- It requires only two parameters: MinPts and Epsilon.
- It is designed for use with databases as it's created by the database community.

Limitations of DBSCAN

• Even a small change in the hyperparameters, we can get a completely different type of clusters. So, it's quite sensitive to the choice of hyperparameters.

Cannot handle varying densities and data with higher dimensions.

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)