- 1. Sean $X = \{1, 2, 3, 4, 5\}$ e $Y = \{a, b, c\}$. Entonces el cardinal de $\mathcal{P}(X) \times \mathcal{P}(Y)$ es
 - (a) 256 (b) 225 (c) 125 (d) 243
- 2. Dados los conjuntos $A = \{1, 2, 3, 4, 5, 6\}, B = \{3, 5, 6, 7, 8\}, C = \{4, 6, 8, 9\} \text{ y } D = \{1, 2, 6, 7, 9\}, el cardinal del conjunto <math>((A \setminus B) \times C) \cup ((B \cap D) \times (C \cup A))$ es
 - (a) 23 (b) 0 (c) 28 (d) 31
- 3. Dada la aplicación $f: \mathbb{N} \to \mathbb{Q}$ definida por $f(n) = \frac{n}{2n+1}$, $\forall n \in \mathbb{N}$, entonces:
 - a) f es sobreyectiva y no es inyectiva.
 - b) f es inyectiva y no es sobreyectiva.
 - c) f es biyectiva.
 - d) f no es inyectiva ni sobreyectiva.
- 4. Para un número entero z denotamos por |z| el valor absoluto de z, es decir,

$$|z| = \begin{cases} z & \text{si } z \ge 0 \\ -z & \text{si } z < 0 \end{cases}$$

Consideramos la siguiente relación de equivalencia R definida sobre el conjunto $X = \{0, 1, 2, 3, \dots, 98, 99, 100\}$:

$$a R b \Leftrightarrow |a-8| = |b-8|$$
.

Entonces el cardinal del conjunto cociente X/R es igual a

- (a) 13 (b) 56 (c) 93 (d) 85
- 5. Sea la permutación

Entonces:

- a) El orden de σ es 4.
- b) σ es impar.
- c) σ es un ciclo.
- d) σ es el cuadrado de una trasposición.

6. Sea la permutación $\alpha = (6,7,8,1,2)(3,1,4,9,5,7,6)$. Entonces α^{2006} es igual a

(a) α^{4391} (b) α^{3072} (c) α^{5301} (d) α^{2867}

- 7. Dados dos subgrupos H_1 y H_2 de un grupo G, ¿cuál de las siguientes afirmaciones es siempre falsa?
 - a) $H_1 \times H_2$ es un subgrupo de $G \times G$.
 - b) $H_1 \cup H_2$ es un subgrupo de G.
 - c) $H_1 \cap H_2$ es un subgrupo de G.
 - d) $H_1 \setminus H_2$ es un subgrupo de G.
- 8. Sean $B = \{v_1, v_2\}$ y $B' = \{v'_1, v'_2\}$ dos bases de un espacio vectorial V sobre \mathbb{R} tales que $v'_1 = v_1 + v_2$ y $v'_2 = v_1 v_2$. Si las coordenadas de un vector $w \in V$ respecto de la base B son (3,5), entonces las coordenadas de w respecto de la base B' son

(a)
$$(4,-1)$$
 (b) $(1,1)$ (c) $(1,-1)$ (d) $(2,0)$

9. Dados los subespacios vectoriales de \mathbb{R}^4 ,

$$U = \langle (1, 1, 2, 2), (3, 3, 4, 4) \rangle$$
 y $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0, t = 0\},\$

la dimensión de $U \cap W$ es igual a

- (a) 0 (b) 1 (c) 2 (d) 3
- 10. Sea el conjunto $V = \{A \in \mathcal{M}_3(\mathbb{R}) \mid A^t = -A\}$. Entonces respecto de las operaciones usuales:
 - a) V es un \mathbb{R} -espacio vectorial de dimensión 6.
 - b) V no tiene estructura de espacio vectorial ya que la matriz nula de $\mathcal{M}_3(\mathbb{R})$ no pertenece a V.
 - c) V es un \mathbb{R} -espacio vectorial de dimensión 3.
 - d) V es un \mathbb{R} -espacio vectorial de dimensión 0.
- 11. En \mathbb{R}^3 se consideran los subespacios vectoriales

$$U = \{(x, y, z) \mid x = 0\}$$
 y $W = \{(x, y, z) \mid y = 0\}.$

Entonces el subespacio vectorial U + W es:

a)
$$\left\{ (x,y,z) \mid \begin{array}{c} x=0 \\ y=0 \end{array} \right\}$$

- b) \mathbb{R}^3
- c) $\{(x,y,z) \mid x+y=0\}$
- d) $\{(x, y, z) \mid z = 0\}$
- 12. Sea $f: (\mathbb{Z}_5)^4 \to (\mathbb{Z}_5)^3$ una aplicación lineal verificando que

$$\{(1,1,1),(2,3,2),(0,0,4)\}\subseteq \text{Im}(f).$$

Entonces:

- a) f es inyectiva y no sobreyectiva.
- b) f es sobrevectiva y no invectiva.
- c) f es biyectiva.
- d) f no es inyectiva ni sobreyectiva.
- 13. Sea $f: (\mathbb{Z}_7)^2 \to (\mathbb{Z}_7)^2$ una aplicación lineal tal que f(1,2) = (0,6) y f(1,4) = (4,1). Entonces f(5,3) es igual a:
 - (a) (4,6) (b) (3,0) (c) (1,1) (d) (0,2)
- 14. Sea $f:\mathbb{Q}^3\to\mathbb{Q}^4$ la aplicación definida por

$$f(x, y, z) = (x - y + 2z, 2x + y + z, -x + 2y + z, x + 2y + 2z).$$

Unas ecuaciones implícitas para el subespacio Im(f) son:

- a) x + 3y + 3z 4t = 0.
- $b) \begin{cases} 5x y + 3z = 0 \\ x y + t = 0 \end{cases}$
- c) 17x 13y + 3z + 12t = 0.
- $d) \quad \begin{cases} x y z = 0 \\ x t = 0 \end{cases}$
- 15. Sea f $: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación definida por f(x, y, z) = (x + y + z, 0, 0). Una base del núcleo de f es:

(a)
$$\{(0,0,0)\}$$
 (b) $\{(1,-1,0),(0,1,-1)\}$ (c) $\{(1,1,1),(1,0,0)\}$ (d) $\{(1,1,-2)\}$

16. Dado el sistema de ecuaciones

$$\begin{cases} x + 3y + z = 0 \\ 2x + z = 0 \\ x + 4y + 2z = 1 \end{cases}$$

con coeficientes en \mathbb{Z}_5 , ¿cuál de las siguientes afirmaciones es cierta?

- a) El sistema es compatible determinado.
- b) El sistema es incompatible.
- c) El sistema es compatible indeterminado.
- d) Ninguna de las anteriores es cierta.
- 17. ¿Cuántas soluciones tiene el siguiente sistema de ecuaciones con coeficientes en \mathbb{Z}_5 ?

$$\begin{cases} x + y + z = 1 \\ x + +2z = 0 \\ 3x + y = 1 \end{cases}$$

- (a) 15 (b) 0 (c) 10 (d) 5
- 18. Dada la matriz

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 0 & 3 \\ 1 & 4 & 4 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Z}_5),$$

¿para cuál de las siguientes matrices $P \in \mathcal{M}_3(\mathbb{Z}_5)$ se verifica que $P^{-1} \cdot A \cdot P$ es una matriz diagonal?

(a)
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 2 & 3 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 4 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 4 & 2 \\ 2 & 1 & 2 \\ 1 & 3 & 4 \end{pmatrix}$

19. ¿Cuál es el valor del determinante de la matriz

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 1 \\
1 & 3 & 5 & 3 & 3 \\
2 & 2 & 1 & 2 & 3 \\
1 & 0 & 6 & 5 & 2 \\
1 & 1 & 1 & 0 & 5
\end{pmatrix}$$

cuyos coeficientes están en \mathbb{Z}_7 ?.

- 20. Se considera el conjunto $G=\{A\in\mathcal{M}_2(\mathbb{R})\mid det(A)=1\}$ junto con el producto usual de matrices. Entonces:
 - a) G es un grupo no conmutativo.
 - b) G no es un grupo.
 - c) G es un grupo conmutativo.
 - d) G es un anillo considerando además la suma usual de matrices.

(5) 7 de Febrero de 2006