```
import pandas as pd
import numpy as np
```

 $\label{local_data} {\tt dataset=pd.read_csv('/content/drive/MyDrive/Personal/Studies/MSC\ Data\ Science\ Material/SEM2/ML/Practical/data_set/Fish.csv')}$

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

dataset

	Species	Weight	Length1	Length2	Length3	Height	Width	7
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	
154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936	
155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690	
156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558	
157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672	
158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792	

159 rows × 7 columns

```
print("The different species are: ", list(dataset['Species'].unique()))
```

The different species are: ['Bream', 'Roach', 'Whitefish', 'Parkki', 'Perch', 'Pike', 'Smelt']

print("The data for the species Bream and Perch are: ")
dataframe=pd.DataFrame(dataset[dataset['Species'].isin(['Bream','Perch'])])
dataframe.index=range(len(dataframe))
dataframe

The data for the species Bream and Perch are:

	Species	Weight	Length1	Length2	Length3	Height	Width	7
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	,
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	
86	Perch	1100.0	39.0	42.0	44.6	12.8002	6.8684	
87	Perch	1000.0	39.8	43.0	45.2	11.9328	7.2772	
88	Perch	1100.0	40.1	43.0	45.5	12.5125	7.4165	
89	Perch	1000.0	40.2	43.5	46.0	12.6040	8.1420	
90	Perch	1000.0	41.1	44.0	46.6	12.4888	7.5958	

91 rows × 7 columns

dataframe

```
Species Weight Length1 Length2 Length3 Height Width
      0
            Bream
                    242.0
                               23.2
                                                 30.0 11.5200 4.0200
      1
            Bream
                    290.0
                              24.0
                                       26.3
                                                 31.2 12.4800 4.3056
      2
                    340.0
                                                 31.1 12.3778 4.6961
                              23.9
                                       26.5
            Bream
      3
            Bream
                    363.0
                              26.3
                                       29.0
                                                 33.5 12.7300 4.4555
                    430.0
      4
            Bream
                              26.5
                                       29 0
                                                34 0 12 4440 5 1340
      ...
      86
            Perch 1100.0
                              39.0
                                       42.0
                                                44.6 12.8002 6.8684
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
           Perch 1000 0
                              41 1
                                       44 0
                                                46.6 12.4888 7.5958
scaler=StandardScaler()
\verb|dataframe.iloc[:,1:] = scaler.fit\_transform(dataframe.iloc[:,1:])|
xtrain,xtest,ytrain,ytest=train_test_split(dataframe.iloc[:,1:].values,dataframe['Species'].values, test_size=0.15)
ytest
     array(['Perch', 'Bream', 'Perch', 'Perch', 'Bream', 'Perch', 'Perch', 'Bream', 'Perch', 'Bream', 'Bream'],
           dtype=object)
xtrain
 □ array([[-1.08637985, -1.15504774, -1.13614705, -1.17119417, -1.13963241,
              -0.90212373],
                           1.42882797, 1.41730767, 1.5187712, 1.58779326,
            [ 1.49019614,
              0.91694411],
                           0.13689012, 0.10227849, 0.36432773, 0.81126219,
            [ 0.08479106,
              -0.03269948],
            [-1.21130474, -1.31823989, -1.31488888, -1.36173339, -1.26648251,
             -1.32657289],
            [-0.69598955, -0.2846896, -0.30627427, -0.45387007, -0.77608995,
              0.29731564],
            [ 0.7874936 , 0.58566853, 0.65127125, 0.89111261, 1.29895726,
              0.70340721],
            [\ 0.6625687\ ,\ 0.53127115\ ,\ 0.52359852\ ,\ 0.7005734\ ,\ 1.21519825\ ,
              0.24389574],
            0.70941554,
                          0.59926788, 0.65127125, 0.84627986, 1.27163957,
              0.3910094],
            [ 0.3971033 , 0.25928423, 0.26825305, 0.47640962, 1.08818813,
              0.38495257],
            [-1.10199546, -1.01905428, -1.00847432, -1.05911228, -1.04419194,
              -1.07709881],
            [ 0.08479106, -0.09429876, -0.02539425, 0.17378851, 0.80049513,
              0.18204878],
            1.08419023,
                           1.30643386, 1.28963494, 1.07044364, 0.10452267,
              1.09158269],
            [-0.41490853, 0.27288358, 0.26825305, 0.48761781, 0.73955039,
              0.04361657],
            [-0.86151503, \ -0.54307717, \ -0.54885247, \ -0.66682567, \ -0.94109338,
              -0.51751505],
            [-1.0239174 , -0.92385886, -0.9191034 , -0.98065496, -1.08003641,
              -0.92736052],
            [ 1.5682742 , 1.3472319 , 1.41730767, 1.45152207, 1.81911352,
              1.17052337],
            [-0.47737098, 0.0416947, 0.01290757, -0.15124897, -0.7000119,
             -0.15908533],
            [-1.00830179, -0.95105755, -0.94463795, -1.00307134, -0.8882868,
             -0.93139841],
            \hbox{$[-0.91460811, -0.6110739 , -0.62545611, -0.72286661, -0.96886827,}
             -0.89135603],
            [-0.57106465, -0.47508044, -0.45948155, -0.19608173, 0.41198956,
             -0.47269451],
            [ 0.006713
                           0.12329077, 0.14058031, 0.36432773, 0.8195375,
              0.06474817],
            [-0.88962313, -0.66547129, -0.6765252, -0.75649118, -0.90168275,
             -0.56677726],
            [ 0.55325942,
                           1.22483778, 1.1619622, 0.94715356, 0.10488843,
              0.66962356],
            [-1.07076423, \ -1.1142497 \ , \ -1.09784523, \ -1.13756961, \ -0.98155556,
             -0.9919667 ],
            [-0.41490853, -0.48867979, -0.433947 , -0.20728991, 0.38862665,
              0.2098954],
            [-0.72097452, -0.58387521, -0.57438701, -0.33057999, 0.19253364,
              -0.6648979 ],
            [-0.07136506, 0.01449601, 0.01290757, 0.24103765, 0.76058158,
```

-0.1104961],

```
[-1.05514862, -1.01905428, -1.00847432, -1.05911228, -1.09791292,
                         -0.99802353],
                      [ 0.08479106, 0.21848619, 0.20441668, 0.38674411, 0.70441458,
                         -0.43070049],
xtest
         array([[-1.0239174 , -0.74706736, -0.75312884, -0.8349485 , -0.98361296,
                         -0.79612921],
                      [ 1.39650247, 1.0208476 , 1.09812583, 1.24977466, 1.68229647,
                          0.87373872],
                      [-1.16445791, -1.53582942, -1.51916526, -1.54106441, -1.24709723,
                         -1.13490788],
                      [-0.64914271, -0.2846896 , -0.30627427, -0.45387007, -0.82894226,
                         -0.45290887],
                      [-0.13382751, -0.1350968 , -0.11476516, 0.11774757, 0.40375997,
                          0.08480301],
                      [ 0.67818432, 0.96645021, 0.90661673, 0.71178159, -0.02424767,
                         0.91431948],
                      [-1.45834373, -2.71897251, -2.74482353, -2.70671607, -1.95813443,
                         -2.42272446],
                      [-0.07136506, -0.09429876, -0.02539425, 0.19620489, 0.66857012,
                         -0.05423488],
                      [ 1.9586645 , 1.71441423, 1.67265314, 1.40668931, 0.41941906,
                          1.62088231],
                       [ 1.08419023, 1.23843713, 1.1619622 , 0.93594537, 0.40085675,
                          1.57707124],
                      [ 0.75313925, 0.70806264, 0.77894399, 0.95836175, 1.33484745,
                          0.56766693],
                      [ 1.64635226, 1.72801358, 1.73648951, 1.46273026, 0.44033595,
                          2.10913008],
                      [ 1.41211808, 1.18403975, 1.22579857, 1.38427293, 1.8462712 ,
                      1.17213853],
[ 0.70941554, 0.39527769, 0.39592578, 0.62211608, 0.97388817,
                          0.12753731]])
vtrain
         array(['Perch', 'Bream', 'Bream', 'Perch', 'Perch', 'Bream', 'Bream',
                        Bream', 'Bream', 'Perch', 'Bream', 'Perch', 'Bream',
                                                                                                                           'Perch'.
                       'Perch',
                                       'Bream', 'Perch', 'Perch', 'Perch', 'Bream', 'Perch', 'Perch', 'Bream', 'Bream', 'Bream',
                                                                                                                           'Bream'
                                                                                                                           'Perch',
                        'Perch',
                                       'Bream', 'Perch', 'Perch', 'Bream',
                                                                                                                           'Perch'
                       'Bream',
                                       'Perch', 'Bream', 'Perch', 'Perch', 'Bream',
                       'Bream',
                                                                                                                            'Bream'
                      'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Bream', 'Perch', 'Bream', 'Perch', 'Pe
                                                                                                                           'Bream',
                                                                                                                           'Perch'.
                      'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Bream', 'Bream', 'Bream', 'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Perch', 'Perch'],
                     dtype=object)
from sklearn.naive_bayes import GaussianNB
NB model=GaussianNB()
NB model.fit(xtrain,ytrain)
           ▼ GaussianNB
          GaussianNB()
print("Training R2 score: ",NB_model.score(xtrain,ytrain))
         Training R2 score: 0.8311688311688312
ypred=NB_model.predict(xtest)
print("Predictions \n", ypred)
         Predictions
           ['Perch' 'Bream' 'Perch' 'Perch' 'Bream' 'Perch' 'Bream' 'Perch'
            'Bream' 'Bream' 'Perch' 'Bream' 'Bream']
print("True Values \n", ytest)
          True Values
                            'Bream' 'Perch' 'Perch' 'Bream' 'Perch' 'Perch' 'Bream' 'Perch'
           ['Perch'
             'Perch' 'Bream' 'Perch' 'Bream' 'Bream']
conf_mat=confusion_matrix(ytest, ypred)
print("Confusion Matrix \n", conf_mat)
print(classification report(ytest,ypred))
print("Accuracy: ",(conf_mat[0][0]+conf_mat[1][1])/len(ytest))
```

Confusion Matrix [[6 0] [2 6]] precision recall f1-score support 1.00 Bream 0.75 0.86 6 Perch 1.00 0.75 0.86 8 accuracy 0.86 14 0.88 macro avg 0.88 0.86 14

0.86

0.86

14

Accuracy: 0.8571428571428571

0.89

probs=NB_model.predict_proba(xtest)

probs=probs[:,1]

weighted avg

Colab paid products - Cancel contracts here

•