LECTURE 6

Quality management

Content

- 1 Introduction to quality management process
- 2 Roles of standards in quality management
- Relationship between quality attributes and software metrics
 - 4 Using measurement in assessing software quality

What is quality management?

Managing the quality of the software process and products

Software quality management

- Concerned with ensuring that the required level of quality is achieved in a software product
- Involves defining appropriate quality standards and procedures and ensuring that these are followed
- Should aim to develop a 'quality culture' where quality is seen as everyone's responsibility

What is quality?

- Quality, simplistically, means that a product should meet its specification
- This is problematical for software systems
 - Tension between customer quality requirements (efficiency, reliability, etc.) and developer quality requirements (maintainability, reusability, etc.)
 - Some quality requirements are difficult to specify in an unambiguous way
 - Software specifications are usually incomplete and often inconsistent

Software quality attributes

Safety	Understandability	Portability
Security	Testability	Usability
Reliability	Adaptability	Reusability
Resilien ce	Modularity	Efficiency
Robustness	Complexity	Learnability

A high quality software product

- Satisfies clearly stated requirements
- Checks its inputs and that it reacts in predictable ways to illegal inputs
- Has been inspected thoroughly by others
- Has been tested exhaustively by others
- Is thoroughly documented
- Has a known defect rate

The quality compromise

- We cannot wait for specifications to improve before paying attention to quality management
- Must put procedures into place to improve quality in spite of imperfect specification
- Quality management is therefore not just concerned with reducing defects but also with other product qualities

Quality planning

Quality management activities

- Quality assurance
 - Establish organizational procedures and standards for quality
- Quality planning
 - Select applicable procedures and standards for a particular project and modify these as required
- Quality control
 - Ensure that procedures and standards are followed by the software development team
- Quality management should be separated from project management to ensure independence

Quality management and software development

Quality assurance and standards

- Standards are the key to effective quality management
- They may be international, national, organizational or project standards
- Product standards define characteristics that all components should exhibit e.g. a common programming style
- Process standards define how the software process should be enacted

Importance of standards

- Encapsulation of best practice- avoids repetition of past mistakes
- Framework for quality assurance process it involves checking standard compliance
- Provide continuity new staff can understand the organization by understand the standards applied

Product and process standards

Product standards	Process standards
Design review form	Design review conduct
Document naming standards	Submission of documents to CM
Procedure header format	Version release process
Ada programming style standard	Project plan approval process
Project plan format	Change control process
Change request form	Test recording process

ISO 9000 certification

- International set of standards for quality management
- Applicable to a range of organizations from manufacturing to service industries
- ISO 9001 applicable to organizations which design, develop and maintain products
- ISO 9001 is a generic model of the quality process that must be instantiated for each organization

ISO 9000 certification

- Quality standards and procedures should be documented in an organizational quality manual
- External body may certify that an organization's quality manual conforms to ISO 9000 standards
- Customers are, increasingly, demanding that suppliers are ISO 9000 certified

ISO 9000 and quality management

Problems with standards

- Not seen as relevant and up-to-date by software engineers
- Involve too much bureaucratic form filling
- Unsupported by software tools so tedious manual work is involved to maintain standards

Overcoming the problems

- Involve practitioners in development. Engineers should understand the rationale underlying a standard
- Review standards and their usage regularly. Standards can quickly become outdated and this reduces their credibility amongst practitioners
- Detailed standards should have associated tool support. Excessive clerical work is the most significant complaint against standards

Process and product quality

- The quality of a developed product is influenced by the quality of the production process
- Form (product) follows function (process)
- Particularly important in software development as some product quality attributes are hard to assess
- However, there is a very complex and poorly understood relationship between software processes and product quality

Process-based quality

- Straightforward link between process and product in manufactured goods
- More complex for software because:
 - The application of individual skills and experience is particularly important in software development
 - External factors such as the novelty of an application or the need for an accelerated development schedule may impair product quality
- Care must be taken not to impose inappropriate process standards

Process-based quality

Practical process quality

- Define process standards such as how reviews should be conducted, configuration management, etc.
- Monitor the development process to ensure that standards are being followed
- Report on the process to project management and software procurer

Quality planning

- A quality plan sets out the desired product qualities and how these are assessed and define the most significant quality attributes
- It should define the quality assessment process
- It should set out which organizational standards should be applied and, if necessary, define new standards

Quality plan structure

- Product introduction
- Product plans
- Process descriptions
- Quality goals
- Risks and risk management
- Quality plans should be short, succinct documents
 - If they are too long, no-one will read them

IEEE 730-1989 software quality assurance plans

Tables of contents

- 1. Purpose
- 2. Referenced documents
- 3. Management
 - 3.1 Organization
 - 3.2 Tasks
 - 3.3 Responsibilities
- 4. Documentation
 - 4.1 Purpose
 - 4.2 Minimum documentation requirements
 - 4.3 Other
- 5. Standards, practices, conventions and metrics
 - 5.1 Purpose
 - 5.2 Content

6. Reviews and audits

- 6.1 Purpose
- 6.2 Minimum requirements
 - 6.2.1 Software requirements review
 - 6.2.2 Preliminary design review
 - 6.2.3 Critical design review
 - 6.2.4 SVVP review
 - 6.2.5 Functional audit
 - 6.2.6 Physical audit
 - 6.2.7 In-process audits
 - 6.2.8 Managerial review
 - 6.2.9 SCMP review
 - 6.2.10 Post mortem review
- 6.3 Other

IEEE 730-1989 software quality assurance plans

- Tables of contents

- 7. Testing
- 8. Problem Reporting and Corrective Action
- 9. Tools, Techniques and Methodologies
- 10. Code Control
- 11. Media Control
- 12. Supplier Control
- 13. Records Collection, Maintenance and

Retention

- 14. Training
- 15. Risk Management

Quality control

- Checking the software development process to ensure that procedures and standards are being followed
- Two approaches to quality control
 - Quality reviews
 - Assessment via software metrics

Quality review

- The principal method of validating the quality of a process or of a product
- Group examines part or all of a process or system and its documentation to find potential problems
- There are different types of review with different objectives
 - Inspections for defect removal (product)
 - Reviews for progress assessment (product and process)
 - Quality reviews (product and standards)

Quality attributes and software metrics

- Software measurement is concerned with deriving a numeric value for an attribute of a software product or process
- Software metric is any type of measurement which relates to a software system, process or related documentation
- This allows for objective comparisons between techniques and processes
- There are few standards, no systematic use

Quality attributes and software metrics

Important software metric assumptions

- A software property can be measured
- A relationship exists between what we can measure and a quality attribute
- This relationship has been formalized and validated

The measurement process

- A software measurement process may be part of a quality control process
- Data collected during this process should be maintained as an organizational resource
- Once a measurement database has been established, comparisons across projects become possible

Product metrics

- A quality metric should be a predictor of product quality
- Classes of product metric:
 - Dynamic metrics which are collected by measurements made of a program in execution
 - Static metrics which are collected by measurements made of the system representations
 - Dynamic metrics help assess efficiency and reliability; static metrics help assess complexity, understandability and maintainability

Dynamic and static metrics

- Dynamic metrics are closely related to software quality attributes
 - Collected by a program in execution (response time, number of failures)
 - Help assess efficiency, effectiveness, availability and reliability
- Static metrics have an indirect relationship with quality attributes
 - Collected from system representation (lines of code)
 - Help assess complexity, understandability and maintainability

Software product metrics

Software metric	Description
Fan in/Fan-out	Fan-in is a measure of the number of functions that call some other function (say X). Fan-out is the number of functions which are called by function X. A high value for fan-in means that X is tightly coupled to the rest of the design and changes to X will have extensive knock-on effects. A high value for fan-out suggests that the overall complexity of X may be high because of the complexity of the control logic needed to coordinate the called components.
Length of code	This is a measure of the size of a program. Generally, the larger the
	size of the code of a program's components, the more complex and error-prone that component is likely to be.
Cyclomatic	This is a measure of the control complexity of a program. This
complexity	control complexity may be related to program understandability. The
	computation of cyclomatic complexity is covered in Chapter 20.
Length of	This is a measure of the average length of distinct identifiers in a
identifiers	program. The longer the identifiers, the more likely they are to be
	meaningful and hence the more understandable the program.
Depth of	This is a measure of the depth of nesting of if-statements in a
conditional nesting	program. Deeply nested if statements are hard to understand and are
	potentially error-prone.
Fog index	This is a measure of the average length of words and sentences in
	documents. The higher the value for the Fog index, the more difficult
	the document may be to understand.

Object-oriented metrics

Object- oriented metric	Description
Depth of inhe rit ance tree	This represents the number of discrete levels in the inheritance tree where sub-classes inheritat tributes and operations (methods) from super-classes. The deeper the inheritance tree, the more complex the designas, potentially, many different object classes have to be understood to understand the object classes at the leaves of the tree.
Method fan-	This is directly related to fan-in and fan-out as described above and means
in/fan-out	essentially the same thing. However, it may be appropriate to make a distinction between calls from other methods within the object and calls from external methods.
Weighted methods per class	This is the number of methods included in a class weighted by the complexity of each method. The refore, a simple method may have a complexity of 1 and a large and complex method a much higher value. The larger the value for this metric, the more complex the object class.
	Complex objects are more likely to be more difficult to understand. They may not be logically cohesive so cannot be reused effectively as superclasses in an inheritance tree.
Number of overriding operations	These are the number of operations in a super-class which are over-ridden in a sub-class. A high value for this metric indicates that the super-class used may not be an appropriate parent for the sub-class.

THANK YOU!