

7.2 - Normalization

IT 2306 - Database Systems

Level I - Semester 2

The Process of Normalization

- Formal technique for analyzing a relation based on its primary key and functional dependencies between its attributes.
- Often executed as a series of steps.
- Each step corresponds to a specific normal form, which has known properties.
- As normalization proceeds, relations become progressively more restricted (stronger) in format and also less vulnerable to update anomalies.

Relationship between the normal forms

Purchase Order - Attribute Analysis

ATTRIBUTE	TYPE	LENGTH	DESCRIPTION
PO-NO	Z	3	Unique purchase order (PO) number. Many parts can be ordered in one PO
PO-DATE	D	8	DDMMYYYY date when PO written
EMP-CODE	С	2	Unique code of employee who wrote the PO
SUPP-NO	Z	3	Unique number assigned to supplier
SUPP-NAME	С	20	Supplier name
PART-NO	Z	2	Unique number assigned to each part
PART-DESC	С	10	Part description
PART-QTY	Ν	2	Quantity of parts ordered in given PO

Key:PO-NO

Purchase Order Relation in 0NF

РО-	PO-DATE	EMP-	SUP	SUPP-	PART	PART-	PART
NO		CODE	P-NO	NAME	-NO	DESC	-QTY
111	01012001	M2	222	AC Stores	P1	Nut	10
					P2	Bolt	5
					P3	Nail	3
					P5	Screw	6
112	01012001	S3	105	I Hardware	P2	Bolt	2
					P5	Screw	1
113	02012001	S1	111	BC Trading	P1	Nut	3
					P3	Nail	4
114	02012001	M2	150	DO Service	P6	Plug	5
115	03012001	S1	222	AC Stores	P7	Pin	8
116	04012001	S1	100	LM Centre	P8	Fuse	2

First Normal Form - 1NF

- A relation is in First Normal Form (1NF) if all its attributes are atomic.
- If there are no repeating groups and if each attribute is a primitive, then relation is in 1NF.

Example: integer, real number, character string, but not lists or sets.

non-decomposable data items single-values

Purchase Order Relation in 0NF

PO (PO-NO, PO-DATE, EMP-CODE, SUPP-NO, SUPP-NAME, PARTS-ORDERED{PART-NO, PART-DESC, PART-QTY})

- Within a single purchase order we could find several part numbers, part descriptions and part quantities.
- Hence, parts ordered can be decomposed.

Purchase Order Relation in 0NF

PO-	PO-DATE	EMP-	SUP	SUPP-	PART	PART-	PART
NO		CODE	P-NO	NAME	-NO	DESC	-QTY
111	01012001	M2	222	AC Stores	P1	Nut	10
					P2	Bolt	5
				(P3	Nail	3
					P5	Screw	6
112	01012001	S3	105	I Hardware	P2	Bolt	2
					P5	Screw	1
113	02012001	S1	111	BC Trading	P1	Nut	3
					P3	Nail	4
114	02012001	M2	150	DO Service	P6	Plug	5
115	03012001	S1	222	AC Stores	P7	Pin	8
116	04012001	S1	100	LM Centre	P8	Fuse	2

1NF - Actions Required

- 1. Examine for repeat groups of data.
- 2. Remove repeat groups from relation.
- 3. Create new relation(s) to include repeated data.
- 4. Include key of the ONF to the new relation(s).
- 5. Determine key of the new relation(s).

Purchase Order Relations in 1NF

PO

PO-	PO-	EMP-	SUP	SUPP-
NO	DATE	CODE	P-NO	NAME
111	01012001	M2	222	AC Stores
112	01012001	S 3	105	I Hardware
113	02012001	S 1	111	BC Trading
114	02012001	M2	150	DO Service
115	03012001	S 1	222	AC Stores
116	04012001	S 1	100	LM Centre

PO-PART

PO-	PART	PART-	PART
NO	-NO	DESC	-QTY
111	P1	Nut	10
111	P2	Bolt	5
111	P3	Nail	3
111	P5	Screw	6
112	P2	Bolt	2
112	P5	Screw	1
113	P1	Nut	3
113	Р3	Nail	4
114	P6	Plug	5
115	P7	Pin	8
116	P8	Fuse	2

Problems - 1NF

1. Insert Problem

Do not know available parts until an order is placed (e.g. P4 is bush)

2. Delete Problem

Loose information of part P7 if we cancel purchase order
 115 (Ex : Delete PO-PART for Part No P7)

3. Update Problem

 To change description of Part P3 we need to change every tuple in PO-PART containing Part No P3

Second Normal Form - 2NF

- 2NF is based on the concept of full functional dependency.
- A functional dependency X → Y is a full functional dependency if removal of any attribute A from X means that the dependency does not hold any more.
- A functional dependency X → Y is a partial dependency if some attribute A € X can be removed from X and the dependency still holds.

Second Normal Form - 2NF

{Empid, Pnumber} → Hours is a full dependency (neither Empid → Hours nor Pnumber → Hours holds).

- However, the dependency
 - {Empid, Pnumber} → Ename is partial as Empid → Ename holds.
- A relation is in 2NF, if it is in 1NF and every non-key attribute is dependent on the whole key
 - Example: Is not dependent on part of the key only.

PO-PART Relation (Parts Ordered) in 1NF

PO-PART(PO-NO, PART-NO, PART-DESC, PART-QTY)

 Part Description is depended only on Part No, which is part of the key of PO-PART.

Parts Ordered Relation in 1NF

PO-	PART	PART-	PART
NO	-NO	DESC	-QTY
111	P1	Nut	10
111	P2	Bolt	5
111	P3	Nail	3
111	P5	Screw	6
112	P2	Bolt	2
112	P5	Screw	1
113	P1	Nut	3
113	P3	Nail	4
114	P6	Plug	5
115	P7	Pin	8
116	P8	Fuse	2

Second Normal Form - 2NF

- Deals with the relationship between non-key and key fields.
- It is relevant when the key is composite.

Example: Consists of several fields.

2NF - Actions Required

- If entity has a concatenated key
 - 1. Check each attribute against the whole key.
 - 2. Remove attribute and partial key to new relation.
 - 3. Optimize relations.

Parts Ordered Relations in 2NF

PO-PART

PO-	PART	PART
NO	-NO	-QTY
111	P1	10
111	P2	5
111	P3	3
111	P5	6
112	P2	2
112	P5	1
113	P1	3
113	P3	4
114	P6	5
115	P7	8
116	P8	2

PART

PART	PART-
-NO	DESC
P1	Nut
P2	Bolt
P3	Nail
P5	Screw
P6	Plug
P7	Pin
P8	Fuse

Purchase Order Relations in 2NF

PART	PART- NO	PART- DESC
	P1	Nut
	P2	Bolt
	P3	Nail
	P5	Screw
	P6	Plug
	P7	Pin
	P8	Fuse

PO-	PO-	EMP-	SUP	SUPP-
NO	DATE	CODE	P-NO	NAME
111	01012001	M2	222	AC Stores
112	01012001	S 3	105	I Hardware
113	02012001	S 1	111	BC Trading
114	02012001	M2	150	DO Service
115	03012001	S 1	222	AC Stores
116	04012001	S 1	100	LM Centre

PO

PO-PART

PO-	PART-	PART
NO	NO	-QTY
111	P1	10
111	P2	5
111	P3	3
111	P5	6
112	P2	2
112	P5	1
113	P1	3
113	P3	4
114	P6	5
115	P7	8
116	P8	2

Second Normal Form - 2NF

Emp_Proj

Empid Pnumber Hours	Ename	Pname	Plocation
---------------------	-------	-------	-----------

Problems - 2NF

1. Insert Problem

 Cannot know available suppliers until an order is placed (e.g. 200 is hardware stores)

2. Delete Problem

 Loose information of supplier 100 if we cancel purchase order 116 (i.e. Delete PO for Supplier No 100)

3. Update Problem

 To change name of Supplier 222 we need to change every tuple in PO containing Supplier No 222

Third Normal Form - 3NF

 A relation is in 3NF if it is in 2NF and each non-key attribute is only dependent on the whole key, and not dependent on any non-key attribute.

Example: No transitive dependencies

PO(PO-NO, PO-DATE, EMP-CODE, SUPP- NO, SUPP-NAME)

 Supplier name is a non-key field depended on another non-key field (i.e. the supplier no) in addition to be depended on the key purchase order no.

Third Normal Form - 3NF

- Deals with the relationship between non-key fields.
- A non-key field cannot be a fact about another non-key field.

3NF - Actions Required

- Check each non-key attribute for dependency against other non-key fields.
- Remove attribute depended on another non-key attribute from relation.
- Create a new relation comprising the attribute and non-key attribute which it depends on.
- Determine key of the new relation.

PO and SUPPLIER Relations in 3NF

PO

PO-	PO-DATE	EMP-	SUPP-
NO		CODE	NO
111	01012001	M2	222
112	01012001	S3	105
113	02012001	S1	111
114	02012001	M2	150
115	03012001	S1	222
116	04012001	S1	100

SUPPLIER

SUPP-	SUPP-
NO	NAME
100	LM Centre
105	I Hardware
111	BC Trading
150	DO Service
222	AC Stores

Purchase Order Relations in 3NF

SUPPLIER

SUP	SUPP-
P-NO	NAME
222	AC Stores
105	I Hardware
111	BC Trading
150	DO Service
222	AC Stores
100	LM Centre

PO

PO-	PO-	ЕМР-	SUP
NO	DATE	CODE	P-NO
111	01012001	M2	222
112	01012001	S 3	105
113	02012001	S 1	111
114	02012001	M2	150
115	03012001	S 1	222
116	04012001	S 1	100

PART

PAR T-NO	PART- DESC
P1	Nut
P2	Bolt
P3	Nail
P5	Screw
P6	Plug
P7	Pin
P8	Fuse

PO-PART

PO- NO	PAR T-NO	PART -QTY
111	P1	10
111	P2	5
111	P3	3
111	P5	6
112	P2	2
112	P5	1
113	P1	3
113	P3	4
114	P6	5
115	P7	8
116	P8	2

Further Normalization

- BCNF or Boyce—Codd Normal form
- 4th Normal form
- 5th Normal form
- In a normal situations, normalization up-to 3NF is quite sufficient.
- Certain relations may even be de-normalized on account of efficiency.
- The Normalizations which are discussed next are not practically enforced most of the time.
- But a relation in 3NF does not guarantee that all anomalies have been removed, hence the additional normalizations.

Boyce Codd Normal Form

Consider the below relation

Student Course Instructor

It also has the following dependencies
 {student,course} → Instructor
 Instructor → course

Boyce Codd Normal Form

- This relation has more than one candidate key. (student,course) or (student,instructor)
- We have arbitrarily chosen the previous. Choosing the latter would also be fine. The above relation is in 3NF, but not in BCNF.
- · But this has anomalies.
 - If we need to add an instructor 'silva' for 'database', we have to wait till an appropriate student is present.
 - Deleting a record may also delete other data, specially if an instructor is in one students record (deleting the student will also erase the instructors data).

Solution

- We divide the relation into 2.
- The attribute that is a determinant but not a key (instructor)
 must be placed in a separate relation and becomes its key.

<u>Instructor</u>	Course
Instructor	Student

Definition of Third and Boyce-Codd Normal Form

3NF

- A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional dependency X → A holds in R, either
 - X is a super key of R or
 - A is a prime attribute of R

BCNF

 A relation schema R is in BCNF if whenever a nontrivial functional dependency X → A holds in R, then X is super key of R.