Background Contact Rates & Age Mixing Mobility Patterns Complete Mixing

#### Quasi-Spatial Mixing Patterns for Covid-19

Jesse Knight

Research Group in Mathematical Modelling and Program Science

2021 June 29

#### Modelling Research Question

- ► Research Question: impact of hotspot vs non-hotspot covID-19 vaccine prioritization in Ontario
- **▶** Transmission Model:
  - ▶ 513 FSA (first 3 postal code)  $\rightarrow$  **10 deciles** by cases
  - ▶ **12 age** groups: [0-11, 12-15, 16-39, 40-44, 45-49, ..., 80+]
  - **2 contact types**: home, travel<sup>1</sup>
  - covid-19 stuff ...

<sup>&</sup>lt;sup>1</sup>travel = work + school + transport + leisure + other

### 513 FSA by Cumulative Covid-19 Cases Deciles



<sup>2</sup>Brown 2021

#### Covid-19 Cases by Decile (t)



#### Objective

Develop a **mixing matrix** (number of contacts formed, and with whom) stratified by:

self decile, g

ightharpoonup other decile, g'

contact type, *y* 

► self age, *a* 

ightharpoonup other age, a'

calendar month, *t* 

Dimensions:  $10 \times 12 \times 10 \times 12 \times 2 \times t$ 

Two versions:

- ► *X*: total number of contacts in the model
- $\blacktriangleright$   $\chi$ : contacts formed per person,  $\chi = X/P$

#### Methods Overview

- 1. Contact Rates & Age Mixing
- 2. Mobility Patterns
- 3. Complete Mixing

#### POLYMOD Contact Matrices, for Canada (Prem 2017)



#### Age Mixing: Three Challenges

- 1. Рогумор study did not include Canada ightarrow Prem 2017
- 2. Each decile: unique age distribution
- 3. Age stratification not aligned

#### Age Mixing 1: Canada-Specific

Prem et al. (2017): project POLYMOD contact matrices onto 152 countries, using:

- ightharpoonup age pyramid ightharpoonup all types
- ▶ labour force participation → work
- ightharpoonup school participation & teacher-student ratio ightarrow school
- lacktriangle household age structure & socio-demographic factors ightarrow home

#### Age Mixing 2: Decile Age Distributions



#### Age Mixing 2: Polymod $\epsilon$ Approximation



#### Age Mixing 2: Polymod Original



#### Age Mixing 2: Polymod $\epsilon$ Approx — Original



## Age Mixing 3: Re-stratified Age by Interpolation



#### Contact Rates: Forced Scaling by Decile



### Mobility Data

- ► ~2 % devices in each FSA
- ► For each device:
  - ► Define **Home** FSA
  - Count Visits to other FSA per day (2h+)
- ► Average # devices per FSA per day:
  - ightharpoonup at Home,  $H_g$
  - ▶ Visited other FSA,  $V_{gg'}$
- ► Repeat by calendar month, *t*

## Mobility Data: Unbiased Sample?



## Mobility Data: Unbiased Sample?



#### Mobility Data: Unbiased Sample?



#### Mobility Data: Assumptions

**Problem 1:** Visits  $(V_{gg'})$  per device  $(H_g)$  does not reflect mobility reduction

**Solution 1:** Use denominator  $(H_{g'})$  from REF period  $(t_0: Jan-Feb\ 2020)$ 

Problem 2: Unobserved devices (98%) less mobile

**Solution 2:** Assume  $\phi = 0.9$  as mobile

**Define:** 
$$B_{gg't} = V_{gg't}/H_{gt_0} \left[ 1 + \phi \left( P_g - H_{gt_0} \right) \right]$$

## Mobility Matrix, $B_{gg'}$ (REF)



# Mobility Matrix, $B_{gg'}(t)$



## Mixing Pools Model:



## Mixing Pools Model: home contacts



#### Mixing Pools Model: others visiting my decile



#### Mixing Pools Model: others visiting same decile as me



#### Mixing Pools Model: others visiting same decile as me



#### Mixing Pools: Math

Total type y contacts made available by age group a in decile g:  $Q_{gay} = P_{ga} \times C_{gay}$ 

#### **Home Contacts:**

- ▶ 100%  $Q_{gay}$  with same decile
- $ightharpoonup X_{gg'}$  mixing by decile g: identity matrix
- $ightharpoonup X_{aa'}$  mixing by age a: from ε-роцумор "home"

#### Mixing Pools: Math

#### **Other Contacts:**

- ►  $B_{gg'}$  % of  $Q_{gay}$  formed in (not with) g'
- ► Within *g*\* travel pool:
  - ▶ Total contacts available (denominator):  $T_{g^*} = \sum_g B_{gg^*} Q_{gay}$
  - ►  $X_{gg'}^{g^*}$  mixing by decile g: proportionate
  - $X_{aa'}^{g^*}$  mixing by age a: from ε-polymod "travel"
- $\blacktriangleright$  Total mixing across all travel pools:  $\sum_{g^*} X_{gag'a'y}^{g^*}$
- Assume remaining contacts  $(1 \sum_{g'} B_{gg'})$  formed with local travel pool

#### Decile Mixing: No Contact Scaling



## Decile Mixing: With Contact Scaling



#### Age Mixing

