Act-2001 Introduction à l'actuariat 2

Notions supplémentaires

Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

A2019: Série no1

Faculté des sciences et de génie École d'actuariat

Table des matières I

- 1 Introduction
- 2 Espérances tronquées
- 3 Prime stop-loss
- Fonction quantile
- 5 Théorème de la fonction quantile
- 6 Théorème de la fonction quantile Représentation
- Théorème de la fonction quantile et espérance
- 8 Transformée de Laplace-Stieltjes
- 9 Logiciel R
- 10 Références

Introduction

Introduction

Objectifs:

- définir l'espérance tronquée ;
- définir la fonction stop-loss ;
- définir la Transformée de Laplace-Stieltjes ;
- définir et appliquer les propriétés de la fonction quantile ;
- démontrer et appliquer le Théorème de la fonction quantile ;

Source principale: [Cossette and Marceau, 2019]

Espérances tronquées

Espérances tronquées

Définition 1

Soit une v.a. X avec $E[X] < \infty$. Les espérances tronquées sont définies par

$$E[X \times 1_{\{X > d\}}] = \int_d^\infty x dF_X(x),$$

et

$$E[X \times 1_{\{X \le d\}}] = \int_{-\infty}^{d} x dF_X(x),$$

 $où d \in \mathbb{R}$.

Relation:

$$E[X \times 1_{\{X > d\}}] + E[X \times 1_{\{X \le d\}}] = E[X \times (1_{\{X > d\}} + 1_{\{X \le d\}})] = E[X].$$

Espérance tronquées

Lorsque X est une v.a. continue, les expressions de $E[X \times 1_{\{X>d\}}]$ et $E[X \times 1_{\{X\leq d\}}]$ deviennent

$$E[X \times 1_{\{X > d\}}] = \int_d^\infty x f_X(x) dx,$$

et

$$E[X \times 1_{\{X \le d\}}] = \int_{-\infty}^{d} x f_X(x) dx,$$

où $d \in \mathbb{R}$.

Espérance tronquées

Exemple 1

Soit $X \sim Exp(\beta)$ dont la fonction de densité est $f_X(x) = \beta e^{-\beta x}$, $x \in \mathbb{R}^+$.

[En classe]

Espérance tronquées

Exemple 2

Soit la v.a. continue positive $X \sim Ga(\alpha,\beta)$ où

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x},$$

pour $x \in \mathbb{R}^+$.

De plus,

$$F_X(x) = H(x; \alpha, \beta)$$

et

$$\overline{F}(x) = \overline{H}(x; \alpha, \beta),$$

pour $x \in \mathbb{R}^+$. [En classe]

La prime *stop-loss*, appélée aussi fonction *stop-loss*, est fréquemment utilisée en actuariat

Définition 2

Soit une v.a. X avec $E[X] < \infty$.

La fonction stop-loss $\pi_X(d)$ correspond à

$$\pi_X(d) = E\left[\max\left(X - d; 0\right)\right],\tag{1}$$

où $d \in \mathbb{R}$.

Relation : Soit une v.a. positive X avec $E[X] < \infty$.

$$\pi_X(0) = E[X].$$

Prime stop-loss et espérance tronquée : Comme

$$\max(X - d; 0) = X \times 1_{\{X > d\}} - d \times 1_{\{X > d\}},$$

on déduit

$$\pi_X(d) = E[X \times 1_{\{X > d\}}] - d \times \overline{F}_X(d),$$

où $d \in \mathbb{R}$.

Si la v.a. X obéit à une loi continue, (1) devient

$$\pi_X(d) = \int_d^\infty (x - d) f_X(x) dx.$$
 (2)

De plus, si la v.a. X est continue positive, l'expression en (2) pour la fonction stop-loss devient

$$\pi_X(d) = \int_d^\infty \overline{F}_X(x) \, \mathrm{d}x. \tag{3}$$

Preuve de (3): [En classe]

Exemple 3

Soit la v.a. $X \sim Exp(\beta)$.

[En classe]

Exemple 4

Soit la v.a. $X \sim Ga(\alpha,\beta)$.

[En classe]

Si la v.a. X = Kh $(h \in \mathbb{R}^+)$ où K obéit à une loi discrète dont le support est \mathbb{N} et si $d = hk_0$ avec $k_0 \in \mathbb{N}$, on a

$$\pi_X(d) = \sum_{k=0}^{\infty} \max(kh - k_0h; 0) f_X(kh) = h \sum_{k=k_0+1}^{\infty} \overline{F}_X(kh).$$

Les définitions de plusieurs mesures de risque reposent en grande partie sur la fonction quantile.

On débute avec la définition de base de la fonction quantile.

Définition 3

Soit la v.a. X avec fonction de répartition F_X . On définit la fonction inverse F_X^{-1} de F_X par

$$F_X^{-1}(u) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge u \right\},\,$$

pour $u \in (0,1)$.

La fonction quantile de X correspond à la fonction inverse F_X^{-1} .

Si la v.a. X est continue, alors F_X^{-1} correspond à la seule valeur x_u telle que $F_X(x_u) = u$.

Pour certaines lois continues, il est possible d'obtenir une expression fermée pour la fonction quantile.

Autrement, on a recours à des méthodes d'optimisation numérique pour évaluer la valeur $F_X^{-1}(u)$ pour une valeur fixée $u\in (0,1)$.

Exemple 5

Soit la v.a. $X \sim Exp(\beta)$ dont la fonction de répartition est $F_X(x) = 1 - e^{-\beta x}$, $x \ge 0$.

[En classe]

Exemple 6

Soit X une v.a. discrète.

[En classe]

L

Théorème 1

Théorème de la fonction quantile

Soit une v.a. X avec fonction de répartition F_X et fonction quantile F_X^{-1} .

Soit une v.a. $U \sim U(0,1)$.

Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X , i.e., $F_X^{-1}(U) \sim X$.

Interprétation : [En classe]

Preuve: [En classe]

On fait la preuve en deux étapes.

Étape no1 - v.a. continues

[En classe]

Étape no2 - cas général

[En classe]

Théorème de la fonction quantile - Représentation

Théorème de la fonction quantile - Représentation

Soit une v.a. X avec une fonction de répartition F et une fonction quantile F^{-1} .

Soit une v.a. $U \sim Unif(0,1)$.

Selon ce théorème, on peut représenter la v.a. X comme suit :

$$X = F^{-1}(U). (4)$$

La représentation en (4) est fort utile (p.ex. : simulation MC).

La proposition suivante découle du Théorème de la fonction quantile.

Proposition 1

Soit une v.a. X avec une fonction de répartition F_X , fonction quantile F_X^{-1} et dont l'espérance existe.

Soit une v.a. $U \sim Unif(0,1)$.

Alors, on a

$$\int_0^1 F_X^{-1}(u) \, \mathrm{d}u = E\left[F_X^{-1}(U)\right] = E\left[X\right]. \tag{5}$$

Preuve: en classe.

On établit une relation entre la fonction quantile et la fonction *stop-loss*.

Proposition 2

Soit une v.a. X avec une fonction de répartition F_X , fonction quantile F_X^{-1} et dont l'espérance existe.

Soit une v.a. $U \sim Unif(0,1)$.

Alors, on a

$$\int_{\kappa}^{1} F_{X}^{-1}(u) du = \pi_{X} \left(F_{X}^{-1}(\kappa) \right) + F_{X}^{-1}(\kappa) \left(1 - \kappa \right), \tag{6}$$

pour $\kappa \in (0,1)$.

Preuve: en classe.

On établit une relation entre la fonction quantile et l'espérance tronquée.

Proposition 3

Soit une v.a. X avec une fonction de répartition F_X , une fonction quantile F_X^{-1} et dont l'espérance existe.

Alors, on a

$$\int_{\kappa}^{1} F_{X}^{-1}(u) du = E\left[X \times 1_{\left\{X > F_{X}^{-1}(\kappa)\right\}}\right] + F_{X}^{-1}(\kappa) \left(F_{X}\left(F_{X}^{-1}(\kappa)\right) - \kappa\right)$$

$$(7)$$

$$\int_{0}^{\kappa} F_{X}^{-1}(u) du = E\left[X \times 1_{\left\{X \leq F_{X}^{-1}(\kappa)\right\}}\right] + F_{X}^{-1}(\kappa) \left(\kappa - F_{X}\left(F_{X}^{-1}(\kappa)\right)\right),$$
(8)

pour $\kappa \in (0,1)$.

Les deuxièmes termes en (7) et (8) permettent de tenir compte des sauts éventuels dans la distribution de X. Si la v.a. X est continue, on a le résultat suivant.

Corollary 4

Lorsque la v.a. X est continue, $F_X\left(F_X^{-1}\left(\kappa\right)\right) = \kappa$ et (7) et (8) deviennent

$$\int_{\kappa}^{1} F_X^{-1}(u) \, \mathrm{d}u = E\left[X \times 1_{\{X > F_X^{-1}(\kappa)\}}\right] \tag{9}$$

$$\int_0^{\kappa} F_X^{-1}(u) \, \mathrm{d}u = E\left[X \times 1_{\{X \le F_X^{-1}(\kappa)\}}\right], \tag{10}$$

pour $\kappa \in (0,1)$.

Preuve: en classe.

Soit une v.a. positive X. La transformée de Laplace-Stielltjes (TLS) d'une v.a. X est définie par

$$\mathcal{L}_{X}\left(t\right) = E\left[e^{-tX}\right], \text{ pour } t > 0,$$

en supposant que l'espérance existe.

Puisque la v.a. X est positive et puisque t>0, la TLS existe pour toutes les distributions dicrètes, continues ou mixtes à support de valeurs positives.

En effet, comme $e^{-tX} \le 1$, pour tout t > 0, alors

$$\mathcal{L}_X(t) = E\left[e^{-tX}\right] \le 1$$
, pour $t > 0$.

Si X est une v.a. discrète avec support fini ou dénombrable, l'expression de la TLS de X est

$$\mathcal{L}_X(t) = E\left[e^{-tX}\right] = \sum_{i=1}^m e^{-tx_i} f_X(x_i)$$

ou

$$\mathcal{L}_X(t) = E\left[e^{-tX}\right] = \sum_{i=1}^{\infty} e^{-tx_i} f_X(x_i), \text{ pour } t > 0.$$

Dans le cas d'une v.a. continue X, on a

$$\mathcal{L}_{X}\left(t\right) = E\left[e^{-tX}\right] = \int_{0}^{\infty} e^{-tx} f_{X}\left(x\right) dx, \text{ pour } t > 0,$$

si l'intégrale existe pour des valeurs de $t \neq 0$.

Exemples: En classe.

Logiciel R

Logiciel R

Lois continues paramétriques et logiciel R :

- Loi uniforme : dunif(), punif(), qunif(), runif();
- Loi exponentielle : dexp(), pexp(), qexp(), rexp();
- Loi gamma : dgamma(), pgamma(), qgamma(), rgamma();
- Loi lognormale : dlnorm(), plnorm(), qlnorm(), rlorm().

Lois discrètes paramétriques et logiciel R :

- Loi Poisson : dpois(), ppois(), qpois(), rpois();
- Loi binomiale négative : dnbinom(), pnbinom(), qnbinom(), rnbinom().

Références

Références |

Cossette, H. and Marceau, E. (2019).

Mathématiques actuarielles du risque : modèles, mesures de risque et méthodes quantitatives.

Document de référence.

