

DEPARTAMENTO DE PRODUÇÃO DE SISTEMAS Mestrado em Engenharia de Sistemas Otimização da Cadeia de Abastecimento

Trabalho Prático

O Armazém de Paletes

Célia Figueiredo a67637 Ana Margarida Rolim pg38332 Ana Sofia Ferreira pg38356 Samuel Costa pg38352 Márcia Costa a67672

Docente: José António Vasconcelos Oliveira

Conteúdo

1	ntrodução	3
2	Contextualização do problema	4
	2.1 Armazém de paletes	4
	2.2 Dimensões da base da palete - estrado de madeira	(
	2.3 Dados numéricos do problema real	•
3	Fase I - Problema de Afetação	;
	3.1 Layout e decisões	;
	3.1.1 Configuração do armazém para 6 Paletes	

Lista de Figuras

2.1	Dimensões de uma palete	4
2.2	Dimensões de um alinhamento com 15 RACKS com 9 níveis cada	5
2.3	Dimensões de uma RACK com 9 níveis/Alvéolos	5
2.4	Dimensão de um nível/alvéolo	5
2.5	Detalhe das três posições num nível/alvéolo	5
2.6	Vista superior de um conjunto de 3 corredores com 6 alinhamentos de RACKs	5
2.7	Dimensões Palete Industrial	6
2.8	Dimensões Palete Europeia	6
2.9	Informação sobre as paletes a armazenar	7
3.1	Configuração do armazém com 6 racks colocadas junto ao solo	8

1. Introdução

Os armazéns são espaços físicos onde se depositam matérias-primas, produtos semiacabados ou acabados à espera de serem transferidos ao seguinte ciclo da cadeia de abasteciemnto. É neste espaço que existe a recepção da mercadoria (matéria-prima, produtos semiacabados ou acabados) e também é da sua responsabilidade a sua arrumação, conservação, realização da função picking e expedição. Relativamente à noção de gestão de armazém, esta está diretamente relacionada com o processo de transferência de produtos para os clientes finais, e tem em conta aspetos como a mão-de-obra, o espaço, as condições do armazém e fundamentalmente um local onde se maximiza o espaço de armazenagem.

2. Contextualização do problema

2.1 Armazém de paletes

Foi considerado um armazém dedicado ao armazenamento de paletes. Uma palete é caracterizada por um conjunto de características: largura *X*, profundidade *Y*, altura *Z* e utilização anual *W*. A 2.1 ilustra a forma típica de uma palete a considerar neste projeto.

Figura 2.1: Dimensões de uma palete

A palete (o seu conteúdo) é colocada numa posição de um nível (ou alvéolo) de uma RACK que tem uma dada largura L, profundidade Y (simples - idêntica à das paletes), e uma altura A (configurável na Fase II e na Fase III).

Restrições:

- 3X<=L (no caso de palete industrial)
- 4X<=L (no caso de europalete)
- Z<=A

Ao longo deste projeto, considerou-se que o armazém tem diferentes configurações, resultando em diferentes problemas de otimização, mas sempre com capacidade suficiente para armazenar a totalidade de paletes existentes em cada situação. Serão estudadas diferentes dimensões para o número de paletes: 6, 60, 500 e 3000 paletes.

A Unidade de Medida (UM) a considerar no projeto é o "metro linear" que se mede em função da medida *X* das paletes que é necessário armazenar, e da medida *A* (altura) dos níveis das RACKS.

Alinhamento_1	RACK_1	RACK_2	RACK_3	RACK_4	RACK_5	RACK_6	RACK_7	RACK_8	RACK_9	RACK_10	RACK_11	RACK_12	RACK_13	RACK_14	RACK_15	85
25																
18																
15																
12																
9																
6																
4																
2																
1																
PORTA	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61

Figura 2.2: Dimensões de um alinhamento com 15 RACKS com 9 níveis cada

Figura 2.3: Dimensões de uma RACK com 9 níveis/Alvéolos

Figura 2.4: Dimensão de um nível/alvéolo

Figura 2.5: Detalhe das três posições num nível/alvéolo

Alinhamento_1	RACK_1	RACK_2	RACK_3	RACK_4	RACK_5	RACK_6	RACK_7	RACK_8	RACK_9	RACK_10	RACK_11	RACK_12	RACK_13	RACK_14	RACK_15
PORTA	1					CORREDO	R 1								
Alinhamento_2	RACK_30	RACK_29	RACK_28	RACK_27	RACK_26	RACK_25	RACK_24	RACK_23	RACK_22	RACK_21	RACK_20	RACK_19	RACK_18	RACK_17	RACK_16
Alinhamento_3	RACK_31	RACK_32	RACK_33	RACK_34	RACK_35	RACK_36	RACK_37	RACK_38	RACK_39	RACK_40	RACK_41	RACK_42	RACK_43	RACK_44	RACK_45
	4					CORREDOR 2									
Alinhamento_4	RACK_60	RACK_59	RACK_58	RACK_57	RACK_56	RACK_55	RACK_54	RACK_53	RACK_52	RACK_51	RACK_50	RACK_49	RACK_48	RACK_47	RACK_46
Alinhamento_5	RACK_61	RACK_62	RACK_63	RACK_64	RACK_65	RACK_66	RACK_67	RACK_68	RACK_69	RACK_70	RACK_71	RACK_72	RACK_73	RACK_74	RACK_75
	8				CORREDOR 3										
Alinhamento_6	RACK_90	RACK_89	RACK_88	RACK_87	RACK_86	RACK_85	RACK_84	RACK_83	RACK_82	RACK_81	RACK_80	RACK_79	RACK_78	RACK_77	RACK_76

Figura 2.6: Vista superior de um conjunto de 3 corredores com 6 alinhamentos de RACKs

2.2 Dimensões da base da palete - estrado de madeira

Em termos de estrado/base de madeira para constituição de uma palete com os produtos do cliente há várias medidas disponíveis. Neste projeto iremos considerar dois tipos de palete que diferem essencialmente na medida X (largura da palete): palete industrial (ou americana) e palete europeia (ou europalete). As medidas a considerar neste projeto são as seguintes:

Figura 2.7: Dimensões Palete Industrial

Figura 2.8: Dimensões Palete Europeia

As imagens e a informação foram recolhidas do site: http://www.rotom.pt/

2.3 Dados numéricos do problema real

Na Imagem seguinte consta informação sobre a quantidade de paletes que é necessário "arrumar" no armazém, pelo que deverão ser criados as posições e as devidas alturas dos níveis necessários e correspondentes RACKs.

Tipo	Altura	Qt	Tipo	Altura	Qt
1	14	54	1	14	2
2	20	76	2	20	4
3	22	2	3	30	4
4	23	2	4	40	3
5	27	6	5	42	2
6	28	6	6	60	8
7	30	11	7	90	24
8	40	51			47
9	42	1			
10	60	174			
11	64	1			
12	64,2	1			
13	80	16	422	Palete 1200x1000	
14	90	17	47	Palete 1200x800	
15	96	2	469	Total	
16	100	2			
		422			

Tipo	Altura	Qt	Tipo	Altura	Qt
1	14	54	1	14	2
2	20	76	2	20	4
3	22	2	3	30	4
4	23	2	4	40	3
5	27	6	5	42	2
6	28	6	6	60	8
7	30	11	7	90	24
8	40	51			47
9	42	1			
10	60	174			
11	64	1			
12	64,2	1			
13	80	16		422 Palete 1200x1000	
14	90	17		47 Palete 1000x800	
15	96	2		469 Total	
16	100	2			
		422			

Figura 2.9: Informação sobre as paletes a armazenar

3. Fase I - Problema de Afetação

3.1 Layout e decisões

De acordo com o problema exposto no enunciado do projeto, é proposto o armazenamento de quatrocentas e cinquenta e duas paletes. Destas, quatrocentas e três são paletes industriais e as restantes europaletes.

Numa fase inicial, pressupõe-se que cada palete é colocada num nível.

O objetivo cinge-se em minimizar a distância percorrida pelos operadores dentro do armazém, tendo em consideração a taxa de utilização de cada palete e o fluxo quebrado.

Tendo em conta os requisitos explícitos acima, o armazém é composto por duas partes, separadas por um corredor e localizadas à mesma distância da porta. Estas são constituídas por cinquenta e seis e cinquenta e sete racks, respetivamente, ambas com quatro andares.

3.1.1 Configuração do armazém para 6 Paletes

Para a primeira configuração do armazém, são consideradas, para armazenamento, apenas seis paletes, sendo que cada uma é colocada num nível. Assume-se para esta configuração que a altura das paletes é desprezável e que todas as paletes são colocadas no mesmo andar.

Figura 3.1: Configuração do armazém com 6 racks colocadas junto ao solo

Implementação de um modelo AMPL

São assim definidos quatro parâmetros. O primeiro para o número de paletes, o segundo para o número de níveis, o terceiro (PALETES) para a matriz que caracteriza a palete quanto à referência, à largura, à altura e à taxa de utilização e o último, (NIVEIS), que define cada alvéolo de acordo com a distância, a largura e a altura.

A variável de decisão define o lugar em que cada palete é colocada no armazém.

A função objetivo minimiza a distância percorrida pelos funcionários dentro do armazém, tendo em consideração a taxa de utilização de cada palete e assumindo que as seis paletes são colocadas horizontalmente.