User Manual: Enhanced Bug Report Classifier

This manual provides detailed instructions for using the enhanced bug report classifier for deep learning frameworks.

Table of Contents

- 1. Installation
- 2. Data Preparation
- 3. Running the Classifier
- 4. Understanding the Results
- 5. Visualizing the Results
- 6. Advanced Usage
- 7. Troubleshooting

Installation

Prerequisites

- Python 3.8 or higher
- pip (Python package installer)

Setup Steps

1. Clone the repository:

```
git clone <repository-url>
cd Tool-Building-Project-Task-1/final\ assignment
```

2. Install the required dependencies:

```
pip install -r requirements.txt
```

Data Preparation

The classifier expects data in CSV format with the following columns: - Title: The title of the bug report - Body: The main description of the bug - Comments: Any additional comments on the bug - class: Binary label (1 for performance-related bug, 0 for non-performance bug)

Default Dataset Locations

Place your datasets in the datasets directory with the appropriate names:

```
datasets/
  tensorflow.csv
  pytorch.csv
  keras.csv
  incubator-mxnet.csv
```

caffe.csv

Custom Datasets

If you're using custom datasets, you can place them in any directory and modify the file path in main.py under the load_data function.

Running the Classifier

Basic Usage

To run the full evaluation pipeline:

```
cd src
python main.py
```

This will: 1. Load all datasets 2. Load baseline results from Lab 1 3. Train and evaluate the enhanced classifier 4. Generate result files and visualizations

Run Visualization Only

If you already have result files and only want to generate visualizations:

```
cd src
python visualization.py
```

Understanding the Results

Output Files

The classifier generates the following output files in the src/results directory:

- 1. Text Results File: evaluation_results_[timestamp].txt
 - Contains detailed metrics for both baseline and enhanced classifiers
 - Includes improvement percentages
 - Shows aggregate results across all frameworks
- 2. JSON Results File: evaluation_results_[timestamp].json
 - Machine-readable version of the results
 - Contains all metrics and raw data
- 3. Visualization Files:
 - f1_comparison.png: Bar chart of F1 scores
 - performance_change.png: Percentage improvements
 - precision_recall_comparison.png: Precision vs. recall plots
 - summary metrics.png: Overall metric comparison

Interpreting Metrics

• **Precision**: Proportion of correctly identified performance-related bugs among all predicted performance bugs

- Recall: Proportion of correctly identified performance-related bugs among all actual performance bugs
- F1 Score: Harmonic mean of precision and recall

Higher values indicate better performance. A successful classifier should have a good balance between precision and recall.

Visualizing the Results

The visualization script generates four key plots:

1. F1 Score Comparison

This bar chart shows the F1 scores for both baseline and enhanced classifiers across all frameworks.

F1 Score Comparison

2. Performance Change

This bar chart displays the percentage improvement (or decline) in F1 score for the enhanced classifier compared to the baseline.

Performance Change

3. Precision-Recall Comparison

This multi-panel plot shows the precision and recall values for both classifiers, with arrows indicating the direction of change.

Precision-Recall Comparison

4. Summary Metrics

This bar chart displays the average precision, recall, and F1 scores across all frameworks.

Summary Metrics

Advanced Usage

Modifying the Classifier

The enhanced classifier is defined in ensemble_classifier.py. You can modify its parameters:

```
# Adjust TF-IDF parameters
self.tfidf = TfidfVectorizer(
    max_features=10000, # Increase for more features
    stop_words='english',
```

```
ngram_range=(1, 3), # Adjust for different n-gram sizes
   min_df=2,
   max df=0.95
)
# Modify Random Forest parameters
self.random_forest = RandomForestClassifier(
    n_estimators=200, # Number of trees
   max depth=15,
                       # Maximum depth of trees
    class_weight='balanced',
                     # Use all available cores
   n_{jobs=-1}
)
# Adjust meta-classifier parameters
self.meta_classifier = LogisticRegression(
    class weight='balanced',
                    # Increase for better convergence
   max_iter=1000
)
Customizing Evaluation
You can adjust the evaluation process in main.py:
# Modify the number of evaluation iterations
results = evaluate_classifier(classifier, X, y, n_iterations=20)
# Add/modify performance patterns
self.performance_patterns = {
    'memory': r'\b(memory|ram|gpu|cuda|leak|oom|allocation|heap|stack|buffer)\b',
    # Add new patterns here...
}
```

Troubleshooting

Common Issues

- 1. Missing Datasets:
 - Error: FileNotFoundError: Dataset for [framework] not found
 - Solution: Ensure datasets are in the correct location or modify the file paths in load_data()
- 2. Memory Errors:
 - Error: MemoryError during TF-IDF transformation
 - Solution: Reduce max_features parameter in the TfidfVectorizer
- 3. Missing Baseline Results:
 - Warning: No baseline results found for [framework], using default values

• Solution: Ensure baseline result files are in the baseline_results directory

4. Visualization Errors:

- Error: Issues with matplotlib
- Solution: Ensure you have a proper display environment or use the non-interactive backend with plt.switch_backend('agg')

Getting Help

For additional assistance, please create an issue on the GitHub repository.