⑩ 公開特許公報(A) 昭61-291007

@Int Cl.4

識別記号

庁内整理番号

砂公開 昭和61年(1986)12月20日

B 01 D 13/01

8014 - 4D

審査請求 未請求 発明の数 1 (全5頁)

母発明の名称 中空糸型分離膜素子

②特 願 昭60-131204

20出 願 昭60(1985)6月17日

⑩発 明 者 松 永

数彦

大津市堅田2丁目1番C-203号

70発 明 者 関 野

政 昭

大津市日吉台4の16の2

⑪出 願 人 東洋紡績株式会社

大阪市北区堂島浜2丁目2番8号

明 細 書

- 1. 発明の名称
 - 中空糸型分雕膜素子
- 2. 特許請求の範囲

中空糸型分離膜束を内蔵し、中空糸の外面側から液体を加圧して膜分離を行なは精密濾過用の中空糸分離膜子である、その中空糸端の側側中空糸着固定し中空糸束の少なくとものの場がある。とものであり、から変中空糸型の保護したものであり、しかも該中空糸型分離膜子の後接着部を貫通する穴またはノズルを少なに変を接着部を貫通する穴またはノズルを型分離膜子の該接着部を貫通する穴またはノズルを型分離膜子の

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、懸濁物質を中空糸型分離膜を使用し

1

(従来の技術)

中空糸型膜分離装置を使用して被処理水中の金属酸化物、懸濁物質等を除去しようとする場合中空糸型分離膜を長期間使用するためにも、また金属酸化物、懸濁物質等の除去効率を良い状態に保持するためにも中空糸型分離膜を洗浄する操作が重要である。

従来、水中の懸濁物質、金属酸化物を除去する一般的な方法としては圧力ブレコート型フィルター、圧搾型フィルター等が使用されてきた。しかしこれらの技術には濾過装置の密閉性および排出される残渣量が多い等の問題点が有つた。

また最近では多量の廃棄物を2次的に発生させないという目的で限外濾過装置により懸潤物質等を除去する方法が行なわれている。しかし、現状の限外濾過装置により水中の懸濁物質等を胰分離

処理する場合には、限外繼過膜が目詰まりし易く、また目詰まりした時の再生効率が悪いという問題点があつた。

(発明が解決しようとする問題点)

前記の懸器物質等の除去を中空糸型分離膜によ方でなった。との一例として、空系型を発型を発生を置いていた場合でも、従来の中空糸型膜を関するとは、中空糸束を空気によりの難膜装置の形状では、中空糸束を空気により、中空糸を折つてよようなとにより中空糸を折ってしまった。

そこで本発明者らは鋭意検討した結果、中空糸分離膜を再生させる場合に、中空糸を折つてしまうようなトラブルを起こすことなく、空気等の流体を効率良く中空糸型膜分離装置に供給すると同時に中空糸膜表面に付着した、懸櫚物質等を効率よく系外にるようにした中空糸型膜分離装置の主要構成要素である中空糸型膜分離素子を見い出す

3

中空系束 1 1 0 两端部が接着別で接着固定され中空糸束 1 1 0 两端が開口している。 そして中空糸束 1 1 0 最外周を開口率が 5 %以上の網状又は多孔体状の保護体 1 2 で保護されており、中空糸束1 1 0 一端の接着部 1 4 に接着部 1 4 を貫通するノズル 1 5 を有している。又第2図の分離素子においては孔 1 6 を形成したパルプ 1 5 が導入されている。

又第3図は第1図及び第2図の分離膜素子2を外筒3内に収納した状態を示すものである。 濾過器 本体1は管板4、中空糸型分離膜素子固定金具5、0-リング6、被処理液入口7、透過水入口8、エアー吹込みノズル9、エアー抜きノズル10、排水口17より構成され、分離膜素子2は管板4に0-リング6を介して取りつけられる。

次にかかる濾過器1の使用方法についてのべる。被処理液を入口7より供給し中空糸の外面側から加圧して中空糸の内面側に透過水を得る操作、つまり限外濾過又は精密濾過を行なつた後膜面に付着した懸蠲物質を除去する。この時被処理

に至つた。

(問題を解決するための手段)

即ち、本発明は中空糸型分離膜束を内蔵し中空糸の外面側から液体を加圧して膜分離を行ない中空糸の内面側に透過水を得る限外離過用または精密離過用の中空糸型分離膜素子であって、その中空糸車の開口させたものであり、かつ窓中空光体で保護したものであり、しかも窓中空糸型分離膜素子を提供するものである。

本発明のかかる中空糸型分離膜素子を図面にて説明する。

第1図及び第2図は本発明素子の一例を示すものである。 又第3図は該分離膜素子を外筒内に収納した濾過器本体を示すものである。

第1図において本発明の中空糸型分離膜素子は

4

本発明で言う中空糸型分離膜束は、セルローズエステル(セルロースジアセテート、セルローズドリアセテート、硝酸セルローズ等)、ポリアミド、ポリスルホン、ポリアクリルニトリル、ポリイミド、ポリエステル、ポリビニルアルコール、メタクリル酸エステル、ポリブロピレン、ポリオレフイン等で作られた、内径50μm乃至1000 μm、膜厚10μm乃至500μmの中空糸型分離膜を100本以上の束にしたものを言う。

また保護体とは、ポリエチレン、ポリプロピレ

ン等のポリオレフイン、ポリエステル等の合成樹脂またはガラス繊維ポリエステル繊維等の繊維をポリエステルカーティングとた強化プラスチックまたはセラミック人体形状をしたもので、開口率が5%以上であり平均開口径が10µ以上のものである。開口率が5%未満にであり出す時に多れ体自身が目詰まりを起こしてしまい結果は良くなかつた。

又接着部の穴に挿入するノズルはポリエチレンスポリプロピレン等のポリオレフィオリステル等の合成樹脂またはガラス繊維ポリエステル繊維等の繊維をポリエステルまたはエポキシはでコーティンクス等の金属でできた丸棒、角棒の棒状または丸パイプ状の時には、パイプの側面に1個または2個以上の穴をあけた形状のものでも良いを授着部にはノズルを挿入することは必ずしも必要

中空糸型分離膜素子に関しては、中空糸型分離膜素子の中空糸束の中心部に中空糸束と平行に位置し、かつ該素子の両端の接着部をしばるのに十分な長さの合成樹脂製等の芯管を取り付けることにより、中空糸乗が受ける力を芯管で吸収することができ、中空糸膜が折れたり中空糸膜に傷をできる。ただこの場合エア吹込みによるバブル作用を阻害するものであつてはならない。

また、中空糸束の最外径が40㎜を越え、かつ

中空糸束の全長が50㎝を越えるような、大きな

なく単なる穴を利用することもできる。

(発明の効果)

本発明は、中空糸型分離膜の表面に付着した懸潤物質等を除去するに際し、中空糸を折つてしまうようなトラブルを起こすことなく、空気等の流体を効率良く中空糸型膜分離装置に供給すると同時に中空糸膜表面に付着した懸潤物質等を効率良く系外に除去できるようにしたものである。

本発明は前記の理由から、下水再利用等懸濁物

7

質を多く含む水を膜分離処理するとき、また原子力発電の冷却水中に発生する腐食生成物および放射性廃棄物等を除去する目的で膜分離処理を行なうとき、更には火力発電のボイラー水中に含まれる金属酸化物等を除去する目的で膜分離処理を行なうとき等に非常に有効な発明である。また、本発明は食品工業における膜分離処理にも有効である。

(実施例)

以下本発明の実施例を記載するが、本発明は、 かかる実施例によつて何等限定をうけるものではない。

実施例 1.

セルロースアセテートからなり、内径300 μm外径450μmの中空糸を3000本東ねた中空糸束の外周をポリエチレンからできた開口率が60%の網状の保護体で包み、中空糸束および保護体の両端部をウレタン接着剤で接着した。この時一端の接着部に内径8mm外径12mmのアクリルパイプを中空部を空洞にさせるようにして詰め 8

込んで第1図の様な分離膜素子を作製した。なお中空糸束の長さは45㎝であった。この中空糸型分離膜素子を第3図に示す外筒の中に収納して、濾過器を運転した。濾過対象液として酸化第二鉄を約10ppm含む液を用いて、濾過および逆洗を行なう運転をした。のべ運転日数50日、延延を行なう運転をした。のべ運転日数50日、延延が洗回数50回になったが濾過操作上全く問題糸の透過性作及び損傷も無く、洗浄による膜の透過性能回復率も100%に近かった。

実 施 例 2.

セルロースアセテートからなり、内径 2 7 5 μ m、外径 4 3 0 μ mの中空糸を1 0 0 0 0 本東ねた中空糸束の外周をポリエチレンからできた開口率が7 0 %の網状の保護体で包み、中空糸束おおよび保護体の両端部をエポキシ接着剤で接着した。この時中空糸束の中心部に外径1 2 mのアクリル樹脂のバイブを途中で接着接続するようにした棒を分離膜素子の両端の接着部にまたがるようにし

16…パイプにあけた穴

1 4 … 接着部

東洋紡績株式会社

て接着固定させアクリル樹脂のパイプ部の側面に直径2mの穴を12個あけた。この分離膜素のの全長は80mであり、外径は60mであつた。この中空糸型分離膜素子の概略形状は大略第2回の様なものであった。この中空糸型分離膜素子を吹かす逆洗操作を繰り返し行なったが、運転後の分解検査では中空糸には折れ、損傷等が全く無かった。4. 図面の簡単な説明

第3図に本発明に適用される濾過装置の断面図の一例を示す。第1図及び第2図には本発明に係る中空糸型分離膜素子の一例を示す。

1 … 遊過器本体

2 … 中空糸型分離膜素子

3 --- 外 筒

4 … 管 状

5 … 中空糸型分離膜素子固定全具

7 ---被処理被入口

6 … 0 リング 8 … 透過水出口

9 … エアー吹込みノズル

10---ェアー抜きノズル

11…中空糸束

12 --- 保護体

12

1 1

11:中空糸束 12:保護 体 13,14: 梓眷部 15: / 八几

烁

ন্ত্য

11:中空糸束 12:保護体 3:14: 茜耆茚 15:/次元

1 3 … 接着部

15…ノズル

17…排水口

特許出願人

%

図

第 3 図

2:中空糸型分離膜素子

7:被処理液入口

8:透過水出口

9:エアー吹き込みノブル