Общая формула для расчета массы вещества (навески) при приготовлении раствора:

$$m = T \cdot V$$

где: - m — масса (навеска) вещества, г; - T — титр раствора (г/мл); - V — объем раствора (мл).

Для задач с нормальностью и молярной массой также используется:

$$m = N \cdot V \cdot M_e$$

где: - N — нормальность раствора; - M_e — эквивалентная масса вещества (грамм на эквивалент); - V — объем раствора (л).

1. Найти навеску NaNO для приготовления 3 литров раствора с $T = 0.024321 \ / : ***$

Переведем объем в миллилитры:

$$V = 3 = 3000$$
.

Используем формулу:

$$m = T \cdot V$$
.

Подставим значения:

$$m = 0.024321 \cdot 3000 = 72.963$$
.

Ответ: 72.96 г NaNO.

2. Найти навеску КМnO для 1.5 л раствора с T=0.001616 /:** Переведем объем в миллилитры:

$$V = 1.5 = 1500$$
.

Вычислим массу:

$$m = T \cdot V$$
.

Подставим значения:

$$m = 0.001616 \cdot 1500 = 2.424.$$

Oтвет: 2.42 г KMnO.

3. Найти навеску КМnO для 3 л 0.02 н раствора:** Для расчета массы через нормальность используем:

$$m = N \cdot V \cdot M_e$$
.

- N=0.02 (нормальность раствора); - V=3; - Эквивалентная масса КМпО (M_e) для окислительно-восстановительных реакций в кислой среде составляет 31.6 /.

Подставим значения:

$$m = 0.02 \cdot 3 \cdot 31.6.$$

Вычислим:

$$m = 1.896$$
.

Oтвет: 1.90 г KMnO.

4. Найти навеску (NH)CO-2HO для 500 мл 0.1 н раствора:** Формула:

$$m = N \cdot V \cdot M_e$$
.

- N=0.1; - V=500=0.5; - Эквивалентная масса кристаллогидрата оксалата аммония (M_e) равна 71 / (учитывая кристаллогидрат и количество эквивалентов).

Подставим:

$$m = 0.1 \cdot 0.5 \cdot 71.$$

Вычислим:

$$m = 3.55$$
.

Ответ: 3.55 г (NH)СО-2НО.

5. Найти навеску КМпО для 2.5 л раствора с $T_{MnO/Fe} = 0.005585$ /:** Переведем объем в миллилитры:

$$V = 2.5 = 2500$$
.

Формула:

$$m = T \cdot V$$
.

Подставим значения:

$$m = 0.005585 \cdot 2500.$$

Вычислим:

$$m = 13.9625$$
.

Ответ: 13.96 г КМпО.

Итоговые ответы:

- 1. **72.96 г NaNO.**
- 2. **2.42 г KMnO.**
- 3. **1.90 г KMnO.**
- 4. **3.55 г (NH)CO·2HO.**
- 5. **13.96 г KMnO.**

Для решения задач на вычисление **pH** растворов с известной массовой долей вещества необходимо выполнить следующие шаги:

- 1. **Перевести массовую долю вещества в моль на литр** (молярную концентрацию).
- 2. Для **щелочей** (NaOH, KOH) определить концентрацию и
онов OH^- . Затем рассчитать pOH и pH:

$$pOH = -\log[OH^{-}], \quad pH = 14 - pOH.$$

3. Для **
кислот** (HCl, HNO) рассчитать концентрацию ионов H^+ напрямую:

$$pH = -\log[H^+].$$

Дано: - Молярная масса NaOH = 40 г/моль - Молярная масса KOH = $56.1~\rm r/моль$ - Молярная масса HCl = $36.5~\rm r/моль$ - Молярная масса HNO = $63~\rm r/моль$ - Плотность раствора приблизительно $\rho\approx 1$ /.

**1. NaOH, массовая доля 0.2

1. Массовая доля: w=0.2%=0.002. Концентрация вещества в г/мл при плотности 1 г/мл:

$$C_{/} = w \cdot \rho = 0.002 /.$$

2. Молярная концентрация (моль/л):

$$C = \frac{C_{/}}{M_{NgOH}} = \frac{0.002}{40} = 0.00005 /.$$

3. Концентрация $[OH^-] = C = 0.00005$ /. pOH:

$$pOH = -\log[OH^{-}] = -\log(5 \cdot 10^{-5}) \approx 4.3.$$

4. *pH*:

$$pH = 14 - pOH = 14 - 4.3 = 9.7.$$

Ответ: рН 9.7.

**2. КОН, массовая доля 0.19

1. Массовая доля: w=0.19%=0.0019. Концентрация вещества в г/мл:

$$C_{/} = w \cdot \rho = 0.0019 /.$$

2. Молярная концентрация:

$$C = \frac{C_{/}}{M_{KOH}} = \frac{0.0019}{56.1} \approx 0.0000339 \, /.$$

3. Концентрация $[OH^-] = C = 0.0000339 /. pOH$:

$$pOH = -\log[OH^{-}] = -\log(3.39 \cdot 10^{-5}) \approx 4.47.$$

4. *pH*:

$$pH = 14 - pOH = 14 - 4.47 = 9.53.$$

- **Ответ: рН 9.5.**
- **3. HCl, массовая доля 0.36
- 1. Массовая доля: w=0.36%=0.0036. Концентрация вещества в г/мл:

$$C_{/} = w \cdot \rho = 0.0036 /.$$

2. Молярная концентрация:

$$C = \frac{C_/}{M_{HCl}} = \frac{0.0036}{36.5} \approx 0.0000986 \, /.$$

3. Концентрация $[H^+] = C = 0.0000986 /. pH$:

$$pH = -\log[H^+] = -\log(9.86 \cdot 10^{-5}) \approx 4.00.$$

- **Ответ: рН 4.0.**
- **4. HNO, массовая доля 0.32
- 1. Массовая доля: w=0.32%=0.0032. Концентрация вещества в г/мл:

$$C_{/} = w \cdot \rho = 0.0032 /.$$

2. Молярная концентрация:

$$C = \frac{C_{/}}{M_{HNO}} = \frac{0.0032}{63} \approx 0.0000508 /.$$

3. Концентрация $[H^+] = C = 0.0000508 /. pH$:

$$pH = -\log[H^+] = -\log(5.08 \cdot 10^{-5}) \approx 4.3.$$

- **Ответ: рН 4.3.**
- **Итоговые ответы:** 1. **NaOH:** рН 9.7
- 2. **KOH:** pH 9.5
- 3. **HCl:** pH 4.0
- 4. **HNO:** pH 4.3