Corps finis: algorithme de factorisation de Berlekamp

Soit q une puissance d'un nombre premier, et $P \in \mathbb{F}_q[X]$ un polynôme de degré $n \geq 2$, sans facteur carré. On note $P = P_1 \dots P_r$ la décomposition en facteurs irréductibles de P (qui n'est pas connue), et pour tout $i \in [1, r]$, on note d_i le degré de P_i .

Dans la suite, on note E le quotient $\mathbb{F}_q[X]/(P)$.

- 1. Justifier que E est une \mathbb{F}_q -algèbre de dimension n, et en donner une base \mathcal{B} .
- 2. Montrer que l'application $\Phi_q: a \mapsto a^q a$ est un endomorphisme de E. Comment peut-on obtenir sa matrice dans la base \mathcal{B} ?

Écrire un programme qui prend en entrée le polynôme P et renvoie la matrice de Φ_q .

3. Démontrer l'existence d'un isomorphisme de \mathbb{F}_q -algèbre

$$\psi: E \simeq \mathbb{F}_{q^{d_1}} \times \cdots \times \mathbb{F}_{q^{d_r}}$$

et déterminer l'expression de $\psi \circ \Phi_q \circ \psi^{-1}$.

- 4. Montrer que $\psi(\ker \Phi_q) = \mathbb{F}_q \times \cdots \times \mathbb{F}_q$, et en déduire que dim $\ker(\Phi_q) = r$.
- 5. Écrire un programme qui renvoie le nombre de facteurs irréductibles de P et le tester. Quelle est sa complexité?
- 6. Comment peut-on adapter ce programme en test d'irréducibilité? La complexité du test obtenu est-elle meilleure que celle de l'algorithme de Ben-Or?

Dans la suite, on suppose r > 1, c'est-à-dire que P n'est pas irréductible, et on va expliquer comment le factoriser.

- 7. Expliquer comment construire effectivement une base de $\ker \Phi_q$, et avec quelle complexité. En pratique, on pourra utiliser la commande kernel ou right_kernel.
- 8. Soit $Q \in \mathbb{F}_q[X]$ avec $\deg(Q) < n$, et \overline{Q} sa classe dans E. Montrer que :

$$\deg Q = 0 \iff \exists a \in \mathbb{F}_q, \ \psi(\overline{Q}) = (a, a, \dots, a)$$

- 9. En déduire que si $\overline{Q} \in \ker(\Phi_q) \setminus \operatorname{Vect}(\overline{1})$, alors il existe $a_1, \ldots, a_r \in \mathbb{F}_q$ non tous égaux tels que $\psi(\overline{Q}) = (a_1, \ldots, a_r)$.
- 10. On garde les notations de la question précédente. Soit $i \in [1, r]$; il existe alors $j \in [1, r]$ tel que $a_i \neq a_j$. Montrer que $P_i \mid Q a_i$ et que $P_j \nmid Q a_i$ et en déduire que le pgcd de $Q a_i$ et de P donne une factorisation non triviale de P.
- 11. L'algorithme de Berlekamp consiste à prendre un élément \overline{Q} non trivial dans $\ker \Phi_q$, puis à calculer, pour tout $a \in \mathbb{F}_q$, le pgcd de Q-a avec P jusqu'à obtenir une factorisation non triviale. On relance ensuite l'algorithme sur les deux facteurs trouvés.

Implémenter cet algorithme et donner une estimation de sa complexité. Quel est son inconvénient principal?