How Do Higher-Order Interactions Persist in Real-World Hypergraphs? - Supplementary Document

A OBSERVATIONS

A.1 Global Analysis: Persistence vs. Frequency

The distributions of the persistence of HOIs in all 13 datasets are shown in Fig. 1. While the distributions from most datasets clearly obey power-laws, there exist anomalies that deviate from the fitted lines in the distributions from the Eu and Classes datasets. The anomalies from the Eu dataset indicate the surprising abundance of highly persistent HOIs.

A.2 Local Analysis (1): Group Features vs. Group Persistence

<u>Observations</u>. The mutual information (MI) and Pearson correlation coefficients (CC) between each structural group feature and the persistence in each dataset are shown in Table 1. Most features are positively correlated with persistence, and on average, the CC is strongest for #, (i.e., the number of hyperedges containing each HOI S), followed by \mathcal{H} (i.e., the entropy in the sizes of hyperedges containing each HOI S), and then Σ / \cap . Notably, Σ /# (i.e., the average size of the hyperedges containing each HOI S) is the only feature that is negatively correlated with persistence. We show in Fig. 2 the distributions of # and Σ /# of HOIs with each level of persistence in all 13 datasets.

Observation 1 (Group Features vs. Group Persistence). In real-world hypergraphs, the persistence of each HOIS is positively correlated with (a) the number of hyperedges containing S and (b) the entropy in the sizes of hyperedges containing S.

A.3 Local Analysis (2): Node Features vs. Group Persistence

<u>Observations.</u> The mutual information (MI) and Pearson correlation coefficients (CC) between each structural node feature, which is averaged over the nodes involved in each HOI, and the persistence in each dataset are shown in Table 1. On average, the MI is largest for \bar{w} (i.e., the average weighted degree of neighbors), \bar{d} (i.e., the average degree of neighbors), and r (i.e., PageRank). Notably, \bar{w} and \bar{d} are negatively correlated with persistence. In addition to r, w (i.e., weighted degree), and o (i.e., the number of occurrences) are positively correlated with persistence. The distributions of averaged w and \bar{w} of HOIs with each level of persistence in all 13 datasets are shown in Fig. 3.

Observation 2 (Node Features vs. Group Persistence). In real-world hypergraphs, the persistence of each HOI is negatively correlated with the average (weighted) degree of neighbors of each node involved in the HOI.

A.4 Local Analysis (3): Node Features vs. Node Persistence

<u>Observations.</u> We report in Table 1 the mutual information (MI) and Pearson correlation coefficients (CC) between each structural node feature and the k-node persistence in each dataset. Overall, the MIs are larger than those obtained in the previous subsections. On average, the MI is largest for r (i.e., PageRank), followed by \bar{w} (i.e., the average weighted degree of neighbors), and then \bar{d} (i.e., the average degree of neighbors). The correlation is strongest for o (i.e., the number of occurrences) and w (weighted node degree), which are positively correlated with k-node persistence. Among the features, only \bar{w} , \bar{d} , and l (i.e., the local clustering coefficient) are negatively correlated with k-node persistence. The distributions of w and \bar{w} of nodes with each level of k-node persistence in all 13 datasets are shown in Fig. 4.

Observation 3 (Node Features vs. Node Persistence). In real-world hypergraphs, the weighted degree and number of occurrences of each node are positively correlated with the persistence of HOIs that the node is involved in.

B LINEAR REGRESSION ANALYSIS

In Table 2, we report the average coefficient, standard error, and *p*-value of each structural feature obtained by linear regression analysis of each dataset. The results are summarized in Table 3.

Figure 1: Power-Laws in the Persistence of HOIs. Note that there exist some anomalies in the Eu (Email) and Classes (NDC) datasets.

Table 1: Features vs. Persistence. Mutual information (MI) and correlation coefficients (CC) in all 13 datasets. DBLP

		Gr	oup F	eature	es vs.	Grou	ıp Per	sisten	ice	N	lode I	eatur	es vs.	Grou	p Per	sisten	ce	N	lode 1	Featu	res vs	s. Nod	e Per	sisten	ce
	Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \cup}$	Λ	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w	o	c	r	ā	w	l	d	w	o	c	r	ā	w	l
	2	0.12	0.03	0.02	0.01	0.04	0.04	0.04	0.11	0.01	0.01	0.02	0.00	0.07	0.04	0.06	0.05	0.07	0.08	0.11	0.04	0.21	0.10	0.13	0.12
MI	3	0.07	0.01	0.01	0.00	0.01	0.02	0.01	0.07	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.05	0.06	0.07	0.03	0.12	0.07	0.09	0.09
IVII	4	0.04	0.00	0.00	0.01	0.01	0.01	0.01	0.05	0.00	0.00	0.00	0.00	0.01	0.01	$\underline{0.01}$	0.01	0.02	0.03	0.03	0.02	0.04	0.03	0.04	$\underline{0.04}$
	Avg.	0.08	0.02	0.01	0.00	0.02	0.02	0.02	0.08	0.00	0.00	0.01	0.00	0.03	0.02	0.03	0.03	0.05	0.06	0.07	0.03	0.12	0.07	0.09	0.09
	2	0.53	-0.03	-0.04	0.12	0.26	0.34	-0.09	0.38	0.11	0.16	0.19	0.02	0.00	0.02	-0.06	-0.16	0.15	0.25	0.33	0.07	0.00	0.06	-0.02	-0.09
СС	3	0.39	-0.02	-0.02	0.00	0.20	0.25	-0.06	0.25	0.05	0.10	0.10	-0.02	0.00	0.00	-0.05	-0.10	0.06	0.14	0.15	0.02	-0.01	0.03	-0.02	-0.09
	4	0.28	0.00	0.01	0.03	0.11	0.17	-0.02	0.21	0.02	0.07	0.04	0.00	0.00	0.01	-0.03	<u>-0.04</u>	0.03	0.08	0.07	0.01	0.00	0.02	-0.01	-0.05
	Avg.	0.40	-0.01	-0.02	0.05	0.19	0.26	-0.06	0.28	0.06	0.11	0.11	0.00	0.00	0.01	-0.05	-0.10	0.08	0.16	0.19	0.03	0.00	0.04	-0.02	-0.07

Geology

		Gı	oup F	eature	es vs.	Grou	p Per	sisten	ce	N	ode F	eatur	es vs.	Group	p Pers	sisten	ce	N	lode F	eatur	es vs.	Node	e Pers	isten	ce
	Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	$\frac{\Sigma}{\#}$	\mathcal{H}	d	w	o	c	r	\bar{d}	\bar{w}	l	d	w	o	c	r	$ar{d}$	\bar{w}	l
	2	0.13	0.03	0.02	0.01	0.03	0.03	0.03	0.13	0.01	0.01	0.02	0.01	0.06	0.05	0.05	0.05	0.06	0.07	0.11	0.04	0.16	0.09	0.11	0.12
MI	3	0.08	0.01	0.01	0.00	0.01	0.02	0.01	0.11	0.00	0.00	0.01	0.00	0.02	0.02	0.02	0.02	0.05	0.06	0.08	0.03	0.09	0.07	0.08	0.11
IVII	4	0.06	0.00	0.00	0.00	0.01	0.01	0.01	0.09	0.00	0.00	0.00	0.00	0.01	0.01	$\underline{0.01}$	0.01	0.02	0.03	0.03	0.02	0.03	0.03	$\underline{0.03}$	0.04
	Avg.	0.09	0.01	0.01	0.00	0.02	0.02	0.02	0.11	0.00	0.01	0.01	0.00	0.03	0.02	0.03	0.03	0.05	0.05	0.07	0.03	0.10	0.06	0.08	0.09
	2	0.50	-0.09	-0.10	0.17	0.12	0.24	-0.04	0.44	0.19	0.21	0.24	0.10	-0.01	0.09	0.03	-0.19	0.21	0.27	0.34	0.13	0.00	0.13	0.06	-0.08
CC	3	0.37	-0.05	-0.06	0.04	0.10	0.17	-0.05	0.33	0.11	0.15	0.15	0.02	-0.01	0.05	0.00	-0.13	0.12	0.17	0.19	0.07	0.00	0.08	0.03	-0.12
CC	4	0.26	-0.03	-0.04	0.01	0.08	0.13	-0.04	0.27	0.08	0.12	$\underline{0.11}$	0.00	-0.01	0.03	0.00	-0.09	0.06	0.11	0.10	0.04	0.00	0.05	0.02	-0.06
	Avg.	0.38	-0.06	-0.06	0.07	0.10	0.18	-0.04	0.35	0.13	0.16	0.17	0.04	-0.01	0.06	0.01	-0.14	0.13	0.19	0.21	0.08	0.00	0.09	0.04	-0.09

History

		Gr	oup F	eature	es vs.	Grou	p Per	sisten	ice	N	ode F	eatur	es vs.	Group	p Per	sisten	ice	N	ode I	eatur	es vs.	Node	Persi	stenc	e
	Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	\mathcal{H}	d	w	0	c	r	ā	w	l	d	w	o	c	r	\bar{d}	w	l
	2	0.07	0.01	0.01	0.00	0.01	0.01	0.01	0.07	0.00	0.00	0.01	0.00	0.02	0.01	0.02	0.02	0.02	0.02	0.06	0.01	0.04	0.03	0.03	0.04
MI	3	0.05	0.00	0.01	0.00	0.01	0.01	0.00	0.07	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.03	0.01	0.02	0.02	0.02	0.03
IVII	4	0.03	0.00	0.00	0.00	0.00	0.01	0.00	0.06	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	$\underline{0.02}$	0.02	0.01	0.01	0.01	0.01	0.01
	Avg.	0.05	0.01	0.01	0.00	0.01	0.01	0.01	0.07	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.04	0.01	0.03	0.02	0.02	0.03
	2	0.12	-0.05	-0.05	0.02	0.07	0.07	-0.02	0.22	0.08	0.13	0.10	-0.01	0.01	0.02	0.00	-0.08	-0.01	0.05	0.08	-0.02	-0.01	0.01	0.00	-0.06
CC	3	0.14	-0.01	-0.02	0.04	0.04	0.07	0.01	0.21	0.08	0.12	0.07	0.02	-0.01	0.04	0.02	-0.05	0.02	0.08	0.08	0.01	0.00	0.03	0.02	-0.01
CC	4	0.10	0.02	0.01	0.03	0.02	0.04	0.01	0.17	0.05	0.06	0.03	0.02	-0.02	0.03	0.01	-0.01	0.01	0.07	0.06	0.01	0.00	0.03	0.03	0.00
	Avg.	0.12	-0.01	-0.02	0.03	0.04	0.06	0.00	0.20	0.07	0.10	0.07	0.01	0.00	0.03	0.01	-0.05	0.01	0.06	0.07	0.00	0.00	0.02	0.02	-0.02

High

		Gr	oup F	eatur	es vs	. Gro	up Pe	rsistei	nce	l 1	lode 1	Featu	res vs.	Group	Pers	istenc	e	N	Node I	eatur	es vs.	Node	Pers	istenc	e
	Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \cup}$	Λ	<u>#</u>	<u>Σ</u>	<u>Σ</u> #	Н	d	w	o	c	r	đ	w	ı	d	w	О	с	r	ā	w	l
														0.03											
MI	3	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.14	0.16	0.15	0.11	0.16	0.16	0.16	0.16
	Avg.	0.01	0.02	0.02	0.00	0.01	0.02	0.02	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.28	0.38	0.38	0.20	0.41	0.40	0.41	0.38
	2	0.08	0.06	0.06	0.05	0.08	0.08	-0.01	0.05	0.07	0.09	0.10	0.07	0.00	0.07	-0.01	0.05	0.03	-0.01	-0.01	0.03	0.02	0.06	0.07	0.02
CC	3	0.06	0.02	0.02	0.01	0.05	0.05	-0.02	0.02	-0.03	0.03	0.03	-0.01	-0.04	-0.01	-0.04	0.04	0.02	0.24	$\underline{0.24}$	0.04	-0.03	0.08	-0.09	0.11
	Avg.	0.07	0.04	0.04	0.03	0.06	0.06	-0.02	0.04	0.02	0.06	0.07	0.03	-0.02	0.03	-0.02	0.05	0.02	0.11	0.11	0.04	0.00	0.07	-0.01	0.06

Primary

		Gr	oup F	eature	es vs.	Grou	ıp Pei	rsister	ıce	1	Node I	eatur	es vs.	Group) Persi	stence	9	N	lode I	Featu	res vs	. Nod	e Pers	sistenc	e
	Size of HOIs	#	#	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	\mathcal{H}	d	w	o	с	r	ā	w	l	d	w	0	c	r	ā	w	l
	2	0.09	0.15	0.18	0.04	0.10	0.11	0.10	0.12	0.03	0.07	0.06	0.04	0.20	0.20	0.20	0.20	0.76	0.93	0.93	0.58	0.99	0.98	0.99	0.95
MI	3	0.03	$\underline{0.04}$	0.04	0.01	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.01	0.05	0.05	0.05	$\underline{0.05}$	0.62	0.77	0.76	0.38	0.83	0.82	0.83	0.82
	Avg.	0.06	0.09	0.11	0.02	0.04	0.07	0.04	0.08	0.02	0.05	0.05	0.03	0.13	0.12	0.13	0.12	0.69	0.85	0.85	0.48	0.91	0.90	0.91	0.88
	2	0.34	0.40	0.39	0.28	0.34	0.34	0.01	0.21	-0.11	-0.02	-0.01	-0.13	-0.14	-0.17	-0.16	0.18	0.31	0.44	0.43	0.31	0.17	0.27	-0.11	0.13
CC	3	0.14	0.13	0.13	0.04	0.12	0.12	-0.03	0.04	0.03	0.06	0.06	0.05	0.00	0.03	-0.02	0.00	0.05	$\underline{0.08}$	0.07	-0.01	0.06	0.00	-0.13	0.01
	Avg.	0.24	0.26	0.26	0.16	0.23	0.23	-0.01	0.12	-0.04	0.02	0.02	-0.04	-0.07	-0.07	-0.09	0.09	0.18	0.26	0.25	0.15	0.11	0.13	-0.12	0.07

Enron

		Gı	oup	Featu	res vs	. Gro	up Pe	rsister	ice	N	lode F	eatur	es vs. (Group	Pers	istenc	e	N	lode I	Featur	es vs.	Node	e Pers	istence	e
	Size of HOIs	#	#	$\frac{\Sigma}{\Sigma \cup}$	Λ	<u>#</u>	<u>Σ</u>	<u>Σ</u> #	Н	d	w	o	c	r	ā	w	l	d	w	О	c	r	ā	w	l
	2	0.15	0.31	0.38	0.09	0.23	0.28	0.26	0.25	0.10	0.29	0.23	0.08	0.40	0.39	0.40	0.38	0.65	0.81	0.75	0.58	0.92	0.88	0.92	0.74
MI	3	0.10	0.14	0.18	0.10	0.16	0.20	0.16	0.15	0.06	0.12	0.09	0.09	0.20	0.20	0.20	0.20	0.64	0.79	0.75	0.55	0.86	0.84	0.86	0.79
IVII	4	0.08	0.07	0.09	0.11	0.13	0.15	0.13	0.11	0.04	0.06	0.04	0.11	0.10	0.10	0.10	0.10	0.55	0.70	0.69	0.46	0.73	0.72	0.74	0.70
	Avg.	0.11	0.17	0.22	0.10	0.17	0.21	0.18	0.17	0.07	0.16	0.12	0.09	0.23	0.23	0.24	0.23	0.61	0.76	0.73	0.53	0.84	0.81	0.84	0.74
	2	0.36	0.32	0.24	-0.07	0.29	0.30	-0.33	0.39	-0.20	-0.06	0.00	-0.28	0.21	-0.33	-0.34	0.01	-0.12	0.24	0.34	-0.12	0.19	-0.25	-0.26	0.01
CC	3	0.34	0.24	0.20	-0.14	0.37	0.32	-0.35	0.38	-0.19	0.00	0.04	-0.28	0.24	-0.27	-0.31	0.07	-0.21	0.33	0.37	-0.18	0.19	-0.20	-0.28	0.12
CC	4	0.21	0.26	0.23	-0.20	0.28	0.21	-0.33	0.34	-0.23	-0.05	-0.05	-0.31	0.34	-0.31	-0.30	0.16	-0.22	0.11	0.13	-0.21	0.16	-0.23	-0.19	0.12
	Avg.	0.30	0.27	0.22	-0.14	0.31	0.28	-0.34	0.37	-0.21	-0.04	0.00	-0.29	0.27	-0.30	-0.32	0.08	-0.18	0.22	0.28	-0.17	0.18	-0.23	-0.24	0.08

Eu

		Gr	oup F	eatur	es vs	. Gro	up Pe	rsister	ice	N	lode l	Featur	es vs.	Grou	p Pers	istence		N	ode I	eatui	res vs	. Nod	e Pers	istenc	ce
	Size of HOIs	#	<u>#</u>	$\frac{\Sigma}{\Sigma \cup}$	Λ	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w	o	c	r	ā	w	l	d	w	О	c	r	ā	w	l
	2	0.18	0.19	0.29	0.05	0.15	0.21	0.18	0.23	0.02	0.12	0.07	0.02	0.31	0.31	0.31	0.31	0.68	0.83	0.78	0.53	0.89	0.88	0.89	0.85
MI	3	0.20	0.11	0.20	0.07	0.18	0.24	0.17	0.23	0.01	0.05	0.02	0.05	0.23	0.23	0.23	0.23	0.67	0.82	0.78	0.51	0.86	0.86	0.86	0.85
IVII	4	0.22	0.08	0.15	0.08	0.22	0.27	0.19	$\underline{0.24}$	0.01	0.02	0.01	0.07	<u>0.18</u>	0.18	0.18	0.18	0.61	0.74	0.70	0.44	0.77	0.77	0.77	0.76
	Avg.	0.20	0.13	0.21	0.07	0.18	0.24	0.18	<u>0.23</u>	0.02	0.06	0.03	0.05	0.24	0.24	0.24	0.24	0.65	0.80	0.75	0.49	<u>0.84</u>	0.83	0.84	0.82
	2	0.58	0.43	0.49	0.34	0.18	0.49	0.04	0.59	-0.02	0.19	0.07	0.02	-0.01	-0.15	-0.32	0.09	0.32	0.52	0.33	0.45	0.30	-0.10	-0.38	0.18
CC	3	0.66	0.49	0.58	0.15	0.49	0.64	-0.02	0.46	-0.16	0.16	-0.06	-0.14	-0.15	-0.20	-0.32	0.14	0.11	0.40	0.11	0.24	0.09	-0.15	-0.31	0.05
CC	4	0.68	0.55	0.61	0.07	0.58	0.66	-0.07	0.41	-0.18	0.16	-0.09	-0.19	-0.18	<u>-0.21</u>	-0.32	0.14	0.05	0.36	0.06	0.16	0.02	-0.11	<u>-0.27</u>	0.09
	Avg.	0.64	0.49	0.56	0.19	0.42	0.59	-0.02	0.49	-0.12	0.17	-0.02	-0.11	-0.11	-0.18	-0.32	0.12	0.16	0.43	0.16	0.28	0.14	-0.12	-0.32	0.11

Classes

		Gr	oup l	Featu	res vs	. Gro	up Pe	rsiste	nce	N	lode I	eatur	es vs.	Group	Pers	istenc	e	N	lode	Featu	res vs	. Nod	e Pers	istenc	e
	Size of HOIs	#	#	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w	o	c	r	\bar{d}	w	l	d	w	o	c	r	\bar{d}	w	l
	2	0.31	0.36	0.41	0.21	0.38	0.43	0.34	0.31	0.25	0.41	0.35	0.24	0.45	0.41	0.46	0.32	0.31	0.51	0.46	0.26	0.62	0.47	0.55	0.26
MI	3	0.32	0.35	0.38	0.27	0.40	0.42	0.38	0.34	0.26	0.38	0.32	0.31	0.37	0.36	0.41	0.28	0.38	0.59	0.52	0.30	0.70	0.60	0.66	0.39
IVII	4	0.32	0.31	0.33	0.33	0.40	0.43	$\underline{0.41}$	0.33	0.23	0.31	0.25	0.36	0.30	0.30	0.33	0.24	0.43	0.62	0.56	0.36	0.69	0.63	0.66	0.47
	Avg.	0.32	0.34	0.37	0.27	0.39	0.43	0.37	0.32	0.25	0.37	0.31	0.30	0.37	0.36	0.40	0.28	0.37	0.57	0.51	0.31	0.67	0.56	0.62	0.37
	2	0.08	0.15	0.19	-0.08	0.23	0.12	-0.15	0.12	-0.19	-0.17	-0.15	-0.10	-0.18	-0.27	-0.20	-0.03	0.00	0.05	0.26	-0.04	-0.13	-0.16	-0.13	-0.06
CC	3	0.07	0.18	0.26	-0.24	0.13	0.09	-0.31	0.06	-0.36	-0.22	-0.17	-0.27	-0.09	-0.44	-0.29	0.10	-0.04	0.03	0.21	-0.11	-0.16	-0.23	-0.15	-0.29
	4	0.17	0.28	0.36	-0.40	0.19	0.19	-0.49	0.13	-0.47	-0.18	-0.15	-0.45	-0.01	-0.58	-0.37	0.17	0.06	0.05	$\underline{0.21}$	-0.07	-0.14	-0.19	-0.14	-0.41
	Avg.	0.10	0.20	0.27	-0.24	0.18	0.13	-0.32	0.10	-0.34	-0.19	-0.15	-0.28	-0.09	-0.43	-0.29	0.08	0.01	0.05	0.23	-0.07	-0.14	-0.20	-0.14	-0.25

Substances

		Gr	oup F	eatur	es vs	. Gro	up Pe	rsisteı	nce	l N	lode I	eatur	es vs.	Group	Persi	istenc	e	N	lode I	eatur	es vs	. Node	Pers	istenc	e
	Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w	o	с	r	\bar{d}	w	l	d	w	o	c	r	\bar{d}	w	l
	2	0.08	0.13	0.20	0.09	0.15	0.19	0.15	0.13	0.08	0.14	0.09	0.10	0.26	0.25	0.25	0.24	0.35	0.42	0.36	0.31	0.53	0.46	0.51	0.40
MI	3	0.08	0.08	0.11	0.07	0.10	0.13	0.09	0.10	0.06	0.08	0.05	0.09	0.13	0.13	0.13	0.12	0.30	0.37	0.31	0.28	0.45	0.41	0.44	0.34
IVII	4	0.08	0.06	0.07	0.05	0.09	0.10	0.07	0.08	0.06	0.05	0.04	0.08	0.08	0.08	0.08	0.07	0.24	0.28	0.27	0.23	0.34	0.31	0.33	0.23
	Avg.	0.08	0.09	<u>0.13</u>	0.07	0.11	0.14	0.10	0.10	0.06	0.09	0.06	0.09	0.16	0.15	0.15	0.15	0.30	0.36	0.31	0.27	0.44	0.40	0.43	0.32
	2	0.08	0.05	0.03	-0.16	0.26	0.18	-0.32	0.01	-0.12	-0.17	-0.11	-0.26	-0.03	-0.24	-0.19	-0.25	-0.03	-0.01	0.25	-0.13	-0.05	-0.07	-0.07	-0.15
CC	3	0.17	0.24	0.23	-0.05	0.21	0.20	-0.22	0.11	-0.21	-0.15	-0.14	-0.24	-0.05	-0.28	-0.19	0.07	-0.11	-0.01	0.22	-0.16	-0.09	-0.17	-0.10	-0.10
CC	4	0.21	$\underline{0.29}$	0.30	0.01	0.21	0.22	-0.15	0.16	-0.26	-0.17	-0.17	-0.25	-0.06	-0.30	-0.18	0.23	-0.13	0.02	0.28	-0.15	-0.11	-0.18	-0.09	-0.01
	Avg.	0.15	0.19	0.19	-0.06	0.23	0.20	-0.23	0.10	-0.20	-0.16	-0.14	-0.25	-0.05	-0.27	-0.19	0.02	-0.09	0.00	0.25	-0.15	-0.09	-0.14	-0.09	-0.09

Math.sx (Tags)

		Gre	oup F	eatur	es vs	. Grou	up Pe	rsister	nce	1	Node	Featu	ires vs	. Grou	ıp Per	sisten	ce	1	Node 1	Featu	res vs	. Nod	e Pers	sisteno	e
	Size of HOIs	#	#	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	$\frac{\Sigma}{\#}$	\mathcal{H}	d	w	o	с	r	$ar{d}$	w	l	d	w	o	c	r	\bar{d}	w	l
	2	0.15	0.08	0.12	0.05	0.08	0.09	0.07	0.14	0.01	0.06	0.04	0.01	0.20	0.20	0.20	0.20	0.50	0.56	0.48	0.46	0.93	0.90	0.93	0.61
MI	3	0.12	0.04	0.07	0.03	0.05	0.06	0.05	0.11	0.01	0.03	0.02	0.00	0.11	0.11	0.11	0.11	0.51	0.58	0.51	0.47	0.93	0.90	0.92	0.64
IVII	4	0.10	0.03	0.05	0.03	0.04	0.06	0.04	0.08	0.01	0.04	0.03	0.00	0.06	0.06	0.06	0.06	0.51	0.58	0.53	0.45	0.81	0.79	$\underline{0.81}$	0.65
	Avg.	0.12	0.05	0.08	0.04	0.06	0.07	0.05	0.11	0.01	0.04	0.03	0.00	0.12	0.12	0.12	0.12	0.51	0.58	0.50	0.46	0.89	0.86	0.89	0.63
	2	0.57	0.06	0.06	0.42	0.36	0.51	-0.11	0.52	0.08	0.07	0.08	-0.06	0.34	-0.26	-0.23	-0.18	0.32	0.33	0.31	0.34	0.20	0.13	0.03	-0.05
CC	3	0.51	0.03	0.03	0.21	0.26	0.34	-0.07	0.40	0.06	0.08	0.09	-0.02	0.16	-0.15	-0.17	-0.10	0.14	0.19	0.17	0.18	0.05	0.10	0.01	0.00
CC	4	0.36	0.02	0.02	0.12	0.22	0.25	-0.04	0.29	0.06	0.10	<u>0.11</u>	0.01	0.10	-0.10	-0.14	-0.08	0.12	0.20	$\underline{0.18}$	0.13	0.07	0.02	-0.04	-0.02
	Avg.	0.48	0.04	0.03	0.25	0.28	0.37	-0.08	0.40	0.07	0.09	0.09	-0.02	0.20	-0.17	-0.18	-0.12	0.19	0.24	0.22	0.21	0.11	0.08	0.00	-0.03

Ubuntu (Tags)

		Gr	oup F	eature	es vs.	Grou	p Per	sisten	ice	N	lode I	Featur	es vs	. Groı	ıp Per	sisten	ce	N	lode	Featu	res v	s. Nod	le Per	sisten	ce
	Size of HOIs	#	<u>#</u>	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	\mathcal{H}	d	w	o	с	r	\bar{d}	w	l	d	w	o	с	r	\bar{d}	w	l
	2	0.17	0.07	0.09	0.08	0.09	0.10	0.08	0.17	0.03	0.05	0.05	0.01	0.15	0.15	0.15	0.15	0.43	0.47	0.41	0.38	0.83	0.80	0.82	0.59
MI	3	0.16	0.03	0.05	0.06	0.06	0.07	0.05	0.14	0.01	0.03	0.02	0.01	0.07	0.07	0.07	0.07	0.46	0.50	0.45	0.41	0.74	0.72	0.73	0.62
IVII	4	0.18	0.02	0.03	0.05	0.05	0.08	0.04	<u>0.11</u>	0.01	0.02	0.02	0.01	0.04	$\underline{0.04}$	0.04	0.04	0.42	0.45	0.42	0.35	$\underline{0.51}$	0.50	0.51	0.52
	Avg.	0.17	0.04	0.06	0.07	0.07	0.08	0.06	<u>0.14</u>	0.02	0.04	0.03	0.01	0.09	0.09	0.09	0.09	0.44	0.47	0.43	0.38	0.69	0.67	0.69	0.58
	2	0.52	-0.03	-0.03	0.55	0.27	0.52	-0.04	0.56	0.35	0.36	0.36	0.19	0.32	-0.24	-0.21	-0.26	0.35	0.31	0.31	0.42	0.05	-0.05	-0.07	-0.11
CC	3	0.57	-0.02	-0.02	0.44	0.18	0.32	-0.01	0.42	0.21	0.25	0.25	0.15	0.19	-0.15	-0.17	-0.16	0.20	0.19	0.19	0.26	0.07	-0.02	-0.06	-0.12
cc	4	0.58	0.00	0.00	0.26	0.20	0.28	0.00	0.29	0.11	0.16	0.15	0.12	0.09	-0.09	-0.13	-0.11	0.14	0.15	0.14	0.15	0.12	0.00	-0.02	-0.08
	Avg.	0.56	-0.02	-0.02	0.42	0.22	0.37	-0.02	0.42	0.23	0.25	0.25	0.15	0.20	-0.16	-0.17	-0.18	0.23	0.22	0.21	0.28	0.08	-0.02	-0.05	-0.10

Math.sx (Threads)

		Gr	oup F	eature	es vs.	Grouj	Per:	sisten	ice	N	ode F	eatui	es vs	. Gro	up Per	sisten	ice	1	Node	Featu	res vs	s. Nod	le Pers	sistenc	e
	Size of HOIs	#	# U	$\tfrac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	\mathcal{H}	d	w	o	c	r	$ar{d}$	w	l	d	w	o	c	r	ā	w	l
	2	0.11	0.02	0.02	0.02	0.02	0.03	0.02	0.11	0.01	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.15	0.16	0.19	0.13	0.09	0.10	0.10	0.21
MI	3	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.04	0.02	0.01	0.01	0.01	0.03
IVII	4	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Avg.	0.08	0.01	0.01	0.01	0.01	0.01	0.01	0.09	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.06	0.06	0.08	0.05	0.03	0.04	0.04	0.08
	2	0.46	-0.04	-0.04	0.33	0.00	0.08	0.04	0.35	0.23	0.22	0.21	0.19	0.25	-0.12	-0.12	-0.12	0.25	0.25	0.25	0.26	0.22	-0.01	-0.02	-0.03
СС	3	0.24	-0.01	-0.01	0.02	-0.01	0.00	0.00	0.19	0.08	0.09	0.08	0.04	0.10	-0.06	-0.06	-0.04	0.07	0.08	0.07	0.05	0.09	-0.01	-0.01	-0.03
CC	4	0.18	0.00	0.00	0.00	0.00	0.00	0.00	$\underline{0.17}$	0.01	0.01	$\underline{0.01}$	0.00	0.01	0.00	-0.01	0.00	0.01	0.01	$\underline{0.01}$	0.01	0.01	0.00	0.00	0.00
	Avg.	0.29	-0.02	-0.02	0.11	0.00	0.03	0.01	0.24	0.11	0.11	0.10	0.08	0.12	-0.06	-0.06	-0.06	0.11	0.11	0.11	0.11	0.10	-0.01	-0.01	-0.02

Ubuntu (Threads)

		Gı	roup I	eatur	es vs.	Grou	p Pers	isten	ce	N	ode F	eatur	es vs	. Gro	up Pei	rsister	ıce	Node Features vs. Node Persistence									
	Size of HOIs	#	<u>#</u>	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w	0	с	r	$ar{d}$	w	l	d	w	o	с	r	\bar{d}	w	l		
	2	0.11	0.01	0.01	0.01	0.01	0.02	0.01	0.11	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.06	0.07	0.09	0.05	0.02	0.03	0.03	0.08		
MI	3	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.01		
IVII	4	0.12	0.00	0.00	0.00	0.00	0.00	0.00	$\underline{0.11}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$\underline{0.00}$	0.00	0.00	0.00	0.00	0.00	0.00		
	Avg.	0.12	0.00	0.00	0.00	0.01	0.01	0.01	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.03	0.03	0.02	0.01	0.01	0.01	0.03		
	2	0.43	-0.04	-0.04	0.25	-0.01	0.05	0.04	0.29	0.15	0.16	0.14	0.15	0.14	-0.02	-0.02	-0.05	0.13	0.13	0.13	0.13	0.03	0.02	0.02	0.00		
СС	3	0.40	-0.01	-0.01	0.09	-0.02	-0.01	0.03	0.35	0.09	0.10	0.09	0.06	0.08	-0.01	-0.01	-0.05	0.11	0.12	0.12	0.08	0.09	0.01	0.01	-0.03		
cc	4	0.25	0.00	-0.01	0.02	-0.01	0.00	0.00	0.25	0.06	0.07	0.06	0.03	0.05	-0.01	-0.01	-0.02	0.18	0.21	0.19	0.07	0.13	-0.01	-0.01	-0.03		
	Avg.	0.36	-0.02	-0.02	0.12	-0.01	0.01	0.02	0.30	0.10	0.11	0.10	0.08	0.09	-0.01	-0.02	-0.04	0.14	0.15	0.14	0.09	0.08	0.01	0.01	-0.02		

Figure 2: Group Features vs. Group Persistence. The distribution of # (i.e., the number of hyperedges containing each HOI) and Σ /# (i.e., the average size of the hyperedges containing each HOI) of HOIs with each level of persistence in two datasets.

Figure 3: Node Features vs. Group Persistence. The distribution of averaged w (i.e., weighted degree) and \bar{w} (i.e., the average weighted degree of neighbors) of HOIs with each level of persistence in two datasets.

Figure 4: Node Features vs. Node Persistence. The distribution of w (i.e., weighted degree) and \bar{w} (i.e., the average weighted degree of neighbors) of nodes with each level of k-node persistence in two datasets.

Table 2: The average coefficient, standard error, and p-value of each structural feature obtained by linear regression analysis of each dataset.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
		#	#	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d		w	0	с	r	ā	w	l
2	Coef. Std. Err. p-value	0.25 0.00 <u>0</u>	0.09 0.01 1.2e-10	-0.13 0.01 3.2e-18	0.01 0.00 4.7e-37	0.31 0.00 <u>0</u>	0.00	-0.01 0.00 .2e-05	0.17 0.00 <u>0</u>	0.00 0.00 <u>0</u>		0.00 0.00 <u>0</u>	0.01 0.00 <u>0</u>	0.00 0.00 0.57	-3.62 3.39 0.30	-0.01 0.00 <u>0</u>	0.00 0.00 4.0e-96	-0.06 0.00 2.4e-67
3	Coef. Std. Err. p-value	0.17 0.00 <u>0</u>	0.01 0.00 0.01	0.01 0.00 1.8e-04	0.00 0.00 3.7e-42		-0.15 0.00 <u>0</u> <u>1</u>	0.00 0.00 .0e-07	-0.03 0.00 9.8e-88	0.00 0.00 0.23)	0.00 0.00 9.2e-25	0.00 0.00 <u>7.2e-21</u>	0.00 0.00 0.45	-40.00 11.26 6.3e-04	0.00 0.00 1.9e-6 4	0.00 0.00 4.3e-32	-0.06 0.00 0
4	Coef. Std. Err. p-value	0.09 0.00 <u>0</u>	0.00 0.00 0.61	0.00 0.00 0.02	0.01 0.00 <u>0</u>		-0.08 0.00 <u>0</u>	-0.01 0.00 <u>0</u>	-0.04 0.00 <u>0</u>	0.00 0.00 1.6e- 2)	0.00 0.00 <u>0</u>	0.00 0.00 <u>0</u>	0.00 0.00 7.4e-19	26.99 4.03 6.2e-11	0.00 0.00 0.26	0.00 0.00 8.3e-05	0.02 0.00 <u>0</u>
								C	Geolog	y								
Size of HOIs		#	#	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d		w	0	c	r	\bar{d}	\bar{w}	l
2	Coeff. Std. Err. p-value	0.34 0.00 0		-0.06 0.01 5 1.1e-1	0.00 0.00 1 2.1e-0	0.46 0.00 6 0		-0.01 0.00 1.6e-5	0.00	0.01 0.00 0		0.00 0.00 0	0.01 0.00 0	0.01 0.00 4.1e-4 6	-1.15 0.71 0.11	0.00 0.00 0.73	0.00 0.00 6.0e-08	-0.01 0.00 0.12
3	Coeff. Std. Err. p-value	0.28 0.00 <u>0</u>		0.01 0.00 0.04	-0.01 0.00 <u>0</u>	0.63 0.00 <u>0</u>		0.01 0.00 <u>0</u>	0.08 0.00 <u>0</u>	0.00 0.00 2.6e-8)	0.00 0.00 4.1e-08	0.00 0.00 3.0e-11	0.00 0.00 1.3e-1 4	-0.10 0.19 0.62	0.00 0.00 4.1e-10	0.00 0.00 4.8e-54	-0.02 0.00 1.7e-69
4	Coeff. Std. Err. p-value	0.19 0.00 <u>0</u>	0.00 0.00 0.07	0.01 0.00 2.0e-1	-0.01 0.00 1 <u>0</u>	0.64 0.00 <u>0</u>		0.01 0.00 <u>0</u>	0.07 0.00 <u>0</u>	0.00 0.00 <u>0</u>		0.00 0.00 <u>0</u>	0.00 0.00 <u>0</u>	0.00 0.00 <u>0</u>	0.09 0.05 0.04	0.00 0.00 5.4e-58	0.00 0.00 <u>0</u>	-0.02 0.00 <u>0</u>
								I	listor	y								
Size of HOIs		#	<u>#</u>	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	$\frac{\Sigma}{\cap}$	<u>∑</u>	Н	f d		w	0	c	r	\bar{d}	w	1
2		0.02 0.00 0	0.01 0.00 0.20	0.03 0.01 2.4e-08	0.01 0.00 0	0.00 0.00 0.22	-0.01 0.00 1.7e -2		0.0	0.0	00	0.00 0.00 0.03	0.00 0.00 7.3e-15	0.00 0.00 2.0e-13	6.07 1.39 0.01	0.00 0.00 3.7e-5 7	0.00 0.00 1.3e-57	-0.03 0.00 8.2e-27
3	Coeff. Std. Err. p-value		0.02 0.00 4.3e-36	-0.01 0.00 7.2e-04	0.01 0.00 0	0.05 0.00 7.0e-67	-0.02 0.00 7 5.1e -4	0.0	0.0	0.0	00	0.00 0.00 1.7e-06	0.00 0.00 9.6e-21	0.00 0.00 1.5e-57	-3.75 0.61 7.0e-08	0.00 0.00 8 0	0.00 0.00 0	0.01 0.00 0.00
4		0.09 0.00 <u>0</u>	0.02 0.00 <u>0</u>	-0.01 0.00 3.4e-21	0.00 0.00 1.2e-06	0.31 0.00 <u>0</u>	-0.10 0.00 <u>0</u>		0.0	0.0	0	0.00 0.00 1.8e-04	0.00 0.00 2.5e-49	0.00 0.00 6.5e-15	-8.51 0.31 <u>0</u>	0.00 0.00 <u>0</u>	0.00 0.00 <u>0</u>	0.01 0.00 0.26
-									High	· ·								
Size of HOI	[s		#	# \(\frac{\chi}{\chi}\)	E n		<u>#</u>	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w		o	с	r å	Ī w	l
2	Coe Std. I p-val	Err.	0.00		00 0.0 96 0.0 30 0.3	1 0.	01 0	.00 0	.01 (0.02	0.00 0.00 0.42	0.0	0 0	0.00	0.00 3	.71 0.0 .06 0.0 .51 0.0	0.00	
3	Coe Std. I p-val	Err.	0.00		67 -0.0 46 0.0 61 0.6	1 0.	01 0	.00 0	.01 (0.01	0.00 0.00 0.69	0.0	0 0	0.00	0.00 2	1.76 0.0 3.41 0.0 3.46 0.4	0.00	0.02

n			
ν	rit	ทจ	rv

	Primary Size																	
Size of HOIs		#	<u>#</u>	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	<u>Σ</u>	<u>Σ</u> #	Н		d	w	o	с	r	$ar{d}$	w	l
2	Coeff. Std. Err p-value		12.80 9.64 0.29	9.38	0.18 0.03 1e-06	0.48 0.10 1.8e-05	-0.22 0.05 5.4e-05	-0.04 0.05 0.40	0.37 0.09 1.9e- 0)	0.04 0.00 .2e-15	0.00 0.00 0.09	0.00	0.01	-111.39 16.15 1.5e-1	0.01	0.00	1.90 0.16 <u>1.1e-28</u>
3	Coeff. Std. Err p-value		-35.04 17.24 0.32	11.83	0.07 0.03 0.13	0.61 0.12 3.1e-05	-0.20 0.04 9.0e-05	-0.04 0.03 0.15	-0.02 0.05 0.41	5	0.00 0.00 0.12	0.00 0.00 0.34	0.00	0.00	-21.58 6.18 0.01	0.00 0.00 0.40	0.00	-0.02 0.06 0.71
								Enre	on									
Size of HOIs	$ HOIS $ # $\ddot{\Box}$ $\Sigma \dot{\Box}$ \Box $\ddot{\Box}$ $$															\bar{w}	1	
2	Coeff. Std. Err. p-value	0.02 0.01 0.04	1.47	1.13 0.	03 0	.07 0	.02 -0. .03 0.0 .32 0.2	03	1.58 0.20 3e-12	0.04 0.02 0.01	0.0		0.00	0.06	40.24 6.39 3.8e-0	0.03	0.00 0.00 0.40	2.82 0.52 5.0e-06
3	Coeff. Std. Err. p-value	0.04 0.01 2.0e-05	0.99	0.52 0.	01 0	0.05 0	.05 0.0 .01 0.0 .11 0.3	01	0.95 0.07 8e-40	0.00 0.00 0.52	0.0 0.0 3.1e		0.01 0.00 .7e-09	-0.07 0.02 1.6e-0	21.52 1.93 4 4.3e-2	0.01	0.00 0.00 0.02	0.86 0.19 1.1e-05
4	Coeff. Std. Err. p-value	0.03 0.00 4.3e-16	0.96	1.30 -0 0.35 0. 6e-04 2.3	00 0	.03 0	.05 0.0 .01 0.0 e-16 2.0 e	01	0.75 0.03 <u>0</u>	-0.01 0.00 7 .2e-0	0.0 0.0 1.2e	00	0.00 0.00 .3e-07	-0.03 0.01 5.1e-0	17.28 0.73 8 0	0.00	0.00 0.00 0 5.2e-08	0.23 0.08 3 0.01
								Eu	ı									
Size of HOIs		#	<u>#</u> ∪	$\frac{\Sigma}{\Sigma \cup}$	\cap	<u>#</u>	$\frac{\Sigma}{\cap}$	2	$\frac{\Sigma}{\#}$ I	Н	d	w	o	c	r	$ar{d}$	\bar{w}	l
2	Coeff. Std. Err. p-value	0.03 0.00 1.8e-2 :	-0.89 0.58 2 0.24	0.39	0.09 0.00 9.4e -0	0.01		0.	.11 1. 01 0. e-75 (05	-0.06 0.00 6e-46		0.00	0.03 0.01 1.4e-06	1586.84 104.74 9.4e-51	0.00 0.00 0.44	0.00 0.00 4.7e-19	0.63 0.15 2.7e-05
3	Coeff. Std. Err. p-value	0.06 0.00 3.1e-7	-8.02 0.46 1.4e -5	0.24	0.05 0.00 1.0e -	0.02	0.00			02	-0.03 0.00 5e-73		0.00 0.00 0	0.02 0.00 1.1e-05	830.95 40.26 5.5e-91	0.00 0.00 0.02	0.00 0.00 0	0.35 0.07 1.1e-05
4	Coeff. Std. Err. p-value	0.15 0.00 0	-13.1 0.38 0		0.00 0.00 0.0 1	0.02		0.	.02 0.: 00 0.: e- 09 (-0.02 0.00 0		0.00 0.00 0	0.01 0.00 1.2e-14	570.27 17.81 0	0.00 0.00 6.5e-10	0.00 0.00 0	0.15 0.04 9.4e-05
	<u>'</u>							Clas	ses	<u> </u>								
Size of HOIs		#	# U	$\frac{\Sigma}{\Sigma \cup}$	Λ	# ∩	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н		d	w	(0	с	r	ā w	1
2	Coeff. Std. Err. p-value	0.00 0.01 0.67	-3.39 0.81 1.5e-0 4	4.46 0.86 5.9e-07	-0.25 0.08 0.00	0.39 0.05 1.7e-09	-0.04 0.02 0.22	-0.01 0.06 0.63	2.79 0.29 1.3e- 0	().18).02 Be-16	0.00 0.00 5.6e-1	0.	00 0	.07 4	.18 0	0.13 0.00 .02 0.00 e-08 0.71	0.35
3	Coeff. Std. Err. p-value	-0.05 0.01 1.3e-10	-1.25 0.31 9.2e-04	-0.51 0.33 0.25	0.04 0.04 0.39	0.03 0.04 0.49	0.07 0.01 1.1e-10	-0.18 0.03 2.5e-0 8	0.92 0.13 4.2e- 1	().15).01 5 e-68	0.00 0.00 1.3e-5	0.	00 0	.04 3	.19 0	0.28 0.00 .01 0.00 <u>0</u> 0.50	0.22

1.03

0.14

<u>4.3e-12</u>

Coeff.

Std. Err.

p-value

0.00

<u>o</u>

4

-3.86

0.13

<u>o</u>

0.21

0.02

4.8e-25 1.0e-57

-0.43

0.02

0.16

0.01

<u>0</u>

-0.33

0.02

<u>0</u>

-0.12

0.06

0.16

0.15

0.00

<u>o</u>

0.00

<u>0</u>

0.01

0.00

0

0.02

2.3e-22 1.5e-29

-30.78

2.57

-0.39

0.01

0

0.00

0.00

0.19

7.88

0.11

<u>0</u>

Substances

Size $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$																		
Size of HOIs		#	<u>#</u>	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	Н	d	w	o	(с	r	ā	w	1
2	Coeff. Std. Err. p-value	0.04 0.01 2.1e-06	-0.13 0.28 0.50	0.58 0.30 0.21	-0.05 0.01 4.3e-13	0.51 0.06 5.4e-10	-0.07 0.02 0.07	0.02 0.01 0.19	0.83 0.08 2.6e-1 8	0.06 0.00 8 0		0.00	0.	.08 01 e- 22 :	-37.92 4.93 3.2e-04	0.01 0.00 0.30	0.00 0.00 0.00	1.24 0.12 5.1e-17
3	Coeff. Std. Err. p-value	0.05 0.00 6.2e-76	-0.36 0.07 1.2e-0 5	0.25 0.07 5 0.01	-0.03 0.00 <u>0</u>	0.72 0.03 <u>0</u>	-0.11 0.01 1.6e-55	0.01 0.00 2.5e-08	0.61 0.02 8 0	0.04			0.	.05 00 <u>0</u>	-131.63 3.56 <u>0</u>	-0.02 0.00 9.6e-9 3	0.00 0.00 0.00	2.13 0.04 <u>0</u>
4	Coeff. Std. Err. p-value	0.05 0.00 <u>0</u>	-0.26 0.02 1.1e-2 9	-0.01 0.02 9 0.62	-0.02 0.00 <u>0</u>	0.92 0.02 <u>0</u>	-0.10 0.00 <u>0</u>	0.01 0.00 4.0e-38	0.36 0.01 8 <u>0</u>	0.02 0.00 <u>0</u>	0.00		0.	.03 00 <u>0</u>	-126.63 1.48 <u>0</u>	-0.02 0.00 <u>0</u>	0.00 0.00 4.9e-18	1.91 0.01 <u>0</u>
								Math.s	x (Tags	a)								
Size of HOIs		#	#	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	<u>Σ</u>	<u>Σ</u> #	Н	d	1	v	o	с	r	ā	w	1
2	Coeff. Std. Err. p-value	0.08 0.01 8.4e-21	1.01		0.29 0.01 <u>0</u> <u>1</u>	-0.67 0.07 .2e-15	0.76 0.03 <u>0</u>	-0.37 0.01 <u>0</u>	0.52 0.03 1.1e-59	0.00 0.00 5.6e -	0.	00 0	.00 .00 .41 <u>3</u>	0.01 0.00 .8e-07	188.79 5.32 7 <u>0</u>	0.00 0.00 9.6e -	0.00	0.07
3	Coeff. Std. Err. p-value	0.48 0.01 <u>0</u>	2.25 3.17 0.36	2.36	0.11 0.01 1e-38 <u>3</u>	0.99 0.04 . 9e-83 5	-0.35 0.02	-0.07 0.01 1.7e-14	0.41 0.01 <u>0</u>	0.00 0.00 1.2e -	0.	00 0	.00 .00 e-15 <u>1</u>	0.00 0.00 .1e-06	47.36 2.64 3.9e-6	0.0		0.05
4	Coeff. Std. Err. p-value	0.08 0.01 2.5e-10	13.93		0.42 0.01 <u>0</u> <u>2</u>	1.33 0.06 .1e-83 8	-0.25 0.01 5.5e-37	-0.16 0.01 6.4e-67	0.52 0.02 <u>0</u>	0.00 0.00 4.6e -	0.	00 0	.00 .00 e-06 9	0.00 0.00 .4e-05	15.14 2.98 3.6e-0	0.0		0.05
								Ubunt	u (Tags)								
Size of HOIs		#	#	$\frac{\Sigma}{\Sigma \cup}$		#	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	н	d	w	0	с		r	ā	w	l
2	Coeff. Std. Err. p-value	-0.07 0.00 <u>0</u>	-2.03 0.37 2.5e-0	0.3	5 0.0	0.05				0.00 0.00 <u>0</u>	0.00 0.00 3.3e-3 8	0.00 0.00 7.8e-1	0.0 0.0 0 5.4e	00	11.16 1.92 7.3e-07	0.00 0.00 6.4e-72	0.00 0.00 <u>4.5e-13</u>	-0.40 0.04 2.1e-21
3	Coeff. Std. Err. p-value	0.07 0.00 1.6e-60	-0.34 0.68 0.62	0.50 0.50 0.39	6 0.0	0.04		0.00	0.01	0.00 0.00 2e-66	0.00 0.00 1.0e-4	0.00 0.00 3.4e-0	0.0 0.0 7 1.3e	00	-17.16 1.87 2.4e-16	0.00 0.00 0.16	0.00 0.00 5.9e-42	-0.16 0.03 9.4e-09
4	Coeff. Std. Err. p-value	0.38 0.01 0	-0.16 2.06 0.72	-0.2 1.53 0.63	6 0.1 3 0.0	7 -0.23 1 0.06	0.10	0.01	0.02	0.00 0.00 2 e-22	0.00 0.00 3.4e-3	0.00 0.00 4 3.2e-1	0.0 0.0 0 0.1	00	-7.39 2.43 0.00	0.00 0.00 1.3e-05	0.00 0.00 1.1e-27	-0.21 0.03 3.0e-11
	1-	<u> </u>					M	ath.sx	(Threa	ds)					-			
Size of HOIs		#	#	$\frac{\Sigma}{\Sigma \cup}$	Λ	#	<u>Σ</u>	<u>Σ</u> #	·	Н	d	w	o	с	r	ā	w	l
2	Coeff. Std. Err p-value	. 0.00	-0.29 0.03 .7e-27	0.42 0.03 1.4e-5 7	0.04 0.00 <u>0</u>	0.06 0.01 3.7e -1	-0.0 0.00 4 3.8e -	0.0	0.		0.00	0.00 0.00 3e-39	0.00 0.00 <u>0</u>	0.00 0.00 <u>0</u>		0.00 0.00 <u>0</u>	0.00 0.00 3.9e-59	-0.06 0.00 1.0e-64
3	Coeff. Std. Err p-value	0.30	-0.02 0.01 0.01	0.03 0.01	-0.02 0.00 1.5e-0	0.67 0.01	-0.3 0.01	4 0.0 1 0.0)2 -0	00	0.00	0.00 0.00 7e-38	0.00	0.00	2.38	0.00	0.00 0.00 9.6e-13	0.00 0.00 0.00
4	Coeff. Std. Err p-value	0.00	0.00 0.00 0.76	0.00 0.00 0.65	-0.04 0.00 0.33	0.78 0.01 0.32	-0.2 0.00	0.0	0.	00		0.00 0.00 8e-04	0.00 0.00 0.29	0.00 0.00 0.68	0.01	0.00 0.00 0.20	0.00 0.00 0.07	0.00 0.00 0.71

Ubuntu (Threads)

Size of HOIs		#	# U	$\frac{\Sigma}{\Sigma \cup}$	Ω	<u>#</u>	$\frac{\Sigma}{\cap}$	<u>\Sigma</u>	Н	d	w	o	с	r	\bar{d}	\bar{w}	l
	Coeff.	0.09	-0.02	0.04	0.05	0.03	-0.03	-0.06	-0.05	0.00	0.00	0.00	0.00	1.72	0.00	0.00	-0.01
2	Std. Err.	0.00	0.02	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.45	0.00	0.00	0.00
	p-value	4.4e-09	0.16	0.01	1.2e-17	1.2e-14	4.1e-20	2.1e-25	0.19	0.00	2.6e-15	1.4e-16	2.1e-25	0.07	0.04	0.06	6.4e-05
	Coeff.	0.12	0.00	0.01	0.01	0.18	-0.09	-0.01	0.07	0.00	0.00	0.00	0.00	-0.98	0.00	0.00	0.00
3	Std. Err.	0.01	0.01	0.01	0.00	0.03	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.34	0.00	0.00	0.00
	p-value	5.7e-06	0.68	0.51	7.1e-17	0.03	0.03	5.5e-16	1.7e-04	0.29	2.2e-21	1.5e-33	0.07	0.02	0.31	0.34	0.03
	Coeff.	0.00	0.00	0.00	0.02	-0.15	0.05	-0.02	0.06	0.00	0.00	0.00	0.00	-0.23	0.00	0.00	0.00
4	Std. Err.	0.01	0.00	0.00	0.00	0.04	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.19	0.00	0.00	0.00
	p-value	0.33	0.89	0.90	0.31	0.33	0.33	0.32	0.32	0.32	0.06	0.08	0.64	0.30	0.04	0.05	0.59

Table 3: Statistical significance of structural features. We report the number of datasets where each feature is significant with a given p-value in linear regression analysis.

								Persi	isten	ce of	HOI	s						k-Node Persistence of Nodes								
Size of HOIs	p-value	#	#	$\frac{\Sigma}{\Sigma \cup}$	\cap	#	$\frac{\Sigma}{\cap}$	<u>Σ</u> #	\mathcal{H}	d	w	О	с	r	\bar{d}	\bar{w}	l	d	w	О	с	r	\bar{d}	\bar{w}	l	
	≤ 0.05	10	6	9	11	10	9	9	11	12	10	11	11	9	8	7	12	8	7	9	8	7	10	9	9	
2	≤ 0.01	9	6	7	11	10	9	9	10	11	9	11	11	9	7	7	11	8	7	9	8	5	10	7	8	
2	≤ 0.001	9	5	7	10	10	9	8	10	10	9	10	8	8	7	6	10	7	6	7	8	4	6	5	7	
	≤ 0.0001	9	4	7	10	10	9	8	9	10	9	10	8	7	7	6	10	7	6	6	8	4	4	4	6	
3	≤ 0.05	11	7	7	9	10	11	10	11	7	10	11	8	11	9	9	10	9	9	6	7	8	6	5	10	
	≤ 0.01	11	6	5	9	9	10	10	11	7	10	11	8	10	7	8	9	8	9	5	7	4	5	3	10	
	≤ 0.001	11	4	4	9	9	10	10	10	7	10	11	8	9	6	7	7	7	8	5	7	2	3	2	8	
	≤ 0.0001	11	3	2	9	9	10	10	9	7	10	11	7	8	6	7	7	5	8	5	7	2	3	2	6	
	≤ 0.05	9	5	6	9	8	9	9	8	10	9	9	8	9	9	9	8	8	10	7	8	6	4	3	8	
4	≤ 0.01	9	5	5	8	8	9	9	7	10	9	9	8	8	8	8	6	8	8	7	5	3	2	3	6	
4	≤ 0.001	9	4	5	8	8	9	9	7	9	9	9	8	7	8	8	6	7	8	5	4	3	2	2	6	
	$ \le 0.0001$	9	4	4	8	8	8	9	7	9	7	9	8	7	8	8	6	7	8	5	4	1	2	2	5	
Avg	9.8	4.9	5.7	9.3	9.1	9.3	9.2	9.2	9.1	9.3	10.2	8.4	8.5	7.5	7.5	8.5	7.4	7.8	6.3	6.8	4.1	4.8	3.9	7.4		