Trabajo Práctico 1 - Lógica Proposicional.

- 1. Dadas las siguientes afirmaciones, ¿son verdaderas? ¿siempre? ¿nunca? ¿a veces?
 - Si un número es múltiplo de 4, ¿también es múltiplo de 2?
 - Si un número es múltiplo de 2 o de 3, ¿seguro es múltiplo de 6? ¿y de 8?
 - Si un número es múltiplo de 10, ¿seguro es múltiplo de 5? ¿y de 2?
- 2. Sean p, q y r las siguientes proposiciones:
 - \bullet p: n es un número par.
 - q: m es un número impar.
 - r: n+m es par.
 - (a) Traducir las siguientes proposiciones compuestas al lenguaje coloquial.
 - (b) Analizar el valor de verdad de las proposiciones compuestas. Justificar la respuesta.
 - $p \Rightarrow r$.
 - $(\neg q \land p) \Leftrightarrow r$.
 - \bullet $r \Rightarrow p$.
 - $r \vee \neg p$.
 - $(p \land q) \Leftrightarrow r$.
- 3. Dadas las proposiciones
 - (a) Si un cuadrilátero tiene un par de lados paralelos seguro es un paralelogramo.
 - (b) Si un paralelogramo tiene un ángulo recto seguro es un rectángulo.
 - (c) Dados tres segmentos cualesquiera. Si la longitud de cada uno es menor que la suma de las longitudes de los otros dos, es posible construir un triángulo con dichos segmentos.
 - (d) Dados tres segmentos cualesquiera. Es posible construir un triángulo con dichos segmentos si la longitud del segmento mayor es menor que la suma de las longitudes de los otros dos.
 - Explorar el valor de verdad de cada una.
 - Dar argumentos para validar las proposiciones.
 - Escribir la recíproca de cada una de ellas y explorar su validez.
 - Analizar condiciones necesarias v suficientes.
- 4. Escribir la recíproca, la contraria y la contrarrecíproca de cada una de las siguientes implicaciones:
 - (a) Si 4 es par, entonces $1 \ge 0$.
 - (b) $2+3=5 \text{ si } 1+1 \leq 3.$
 - (c) Si 4 es impar, entonces 1 es mayor que 0.
 - (d) Si 1+1 es menor que 3, entonces 2=4.
- 5. Suponiendo que $p \Rightarrow q$ es falso, indicar los valores de verdad para:
 - (a) $p \wedge q$.
 - (b) $p \vee q$.
 - (c) $q \Rightarrow p$.
- 6. Determinar si las siguientes proposiciones son tautologías, contradicciones o contingencias.

- (a) $p \vee \neg p$.
- (b) $p \Rightarrow (p \lor q).*p \lor \neg p$.
- (c) $p \Rightarrow (p \lor q).*$
- (d) $(p \lor q) \Rightarrow p.*$
- (e) $(p \land \neg q) \Rightarrow r$.
- (f) $(p \Rightarrow q) \land [(p \lor \neg q) \Rightarrow (p \land q)].$
- (g) $p \wedge q \Rightarrow p.*$
- (h) $p \Rightarrow (p \land q).*$
- (i) $(p \Rightarrow q) \Leftrightarrow (q \Rightarrow p)$.*
- (j) $[(p \lor q) \land r] \Rightarrow (p \land q)$.
- *Los resultados obtenidos en los ítems (b), (c), (f), (g) y (h) son importantes, pues serán de gran utilidad en otras ocasiones.
- 7. Simplificar las siguientes proposiciones justificando cada paso.
 - (a) $(p \land q) \lor (p \land \neg q)$.
 - (b) $(p \wedge r) \vee [p \wedge (\neg q \wedge r)].$
 - (c) $p \vee [\neg p \wedge (p \vee q)] \vee (q \wedge r)$.
- 8. Indicar, siempre que sea posible, para qué valores de verdad de p y q la proposición compuesta:
 - (a) $(p \Rightarrow q) \land (\neg q \Rightarrow p)$ resulta verdadera.
 - (b) $(p \land q) \lor (p \land \neg q)$ resulta falso.
 - (c) $(p \wedge r) \vee [p \wedge (\neg q \wedge r)]$ resulta falso.
 - (d) $p \vee [\neg p \wedge (p \vee q)] \vee (q \wedge r)$ resulta verdadero.
- 9. Analizar si la información que se da, en cada ítem, es suficiente para determinar el valor de verdad de las proposiciones compuestas dadas a continuación, sin construir la tabla. Si la información es suficiente, determinar el valor de verdad y justificar la respuesta. Si la información no es suficiente, construir la tabla de verdad para los casos que correspondan.
 - (a) $(p \land q) \Rightarrow \neg q$ siendo el valor de verdad de s, falso.
 - (b) $p \land (q \lor r) \Rightarrow \neg s$ siendo el valor de verdad de $(s \land q)$ verdadero.
 - (c) $(p \Rightarrow q) \Rightarrow r$ siendo el valor de verdad de r, verdadero.
 - (d) $(p \vee \neg q) \Leftrightarrow (\neg q \wedge p)$ siendo el valor de verdad $(\neg p \Leftrightarrow q)$, verdadero.
- 10. En cada item mostrar ejemplos de proposiciones p, q y r de modo que
 - (a) $p \wedge (q \vee r)$ sea verdadera.
 - (b) $p \wedge (q \vee r)$ sea falsa.
 - (c) $p \lor (q \land r)$ sea verdadera.
 - (d) $p \vee (q \wedge r)$ sea falsa.
 - (e) $p \vee (q \wedge r)$ sea verdadera.
 - (f) $p \vee (q \wedge r)$ sea falsa.
 - (g) $(p \lor q) \Rightarrow (p \veebar r)$ sea verdadera.
 - (h) $(p \lor q) \Rightarrow (p \veebar r)$ sea falsa.
 - (i) $\neg p \Rightarrow \neg q$ sea verdadera.
 - (j) $\neg p \Rightarrow \neg q$ sea falsa.
 - (k) $p \Leftrightarrow (\neg q \lor r)$ sea verdadera.
 - (1) $p \Leftrightarrow (\neg q \lor r)$ sea falsa.