التعبيرات النظامية/الاعتيادية

REGULAR EXPRESSIONS

LEXEME PATTERNS

نمط المفردات

- المفردات التي يجزءها محلل المفردات إلى بطاقات tokens تتبع قواعد rules تصف فئات/أنواع المفردات الموجودة بالبرنامج المصدري.
 - هذه القواعد تسمى أنماط المفردات
 - النمط: هو وصف للشكل الذي تأخذه المفردات في بطاقة ما a token وهو بنية مركبة complex تتوافق عليها مفردات عديدة
 - بطاقة الكلمات المحجوزة تتبع نمطاً <keyword>

 ﴿ سلسلة من الحروف
 - بطاقة المعرفات/المتغيرات تتبع نمطاً <identifier> حسلسلة من الحروف والأرقام

EXAMPLES OF TOKENS

أمثلة للبطاقات

```
int Index;
Index = 2 * count +17;
```

Lexemes	Tokens
int	type
Index	identifier
=	equal_sign
2	int_constant
*	multi_op
Count	identifier
+	plus_op
17	int_constant
·,	semicolon

Identifiers are the names of the variables

المعرفات هي أسماء المتغيرات

مواصفات نمط المفردات

- نحتاج لصياغة قادرة على التعبير عن أنماط البطاقات
- التعبيرات النظامية Regular Expressions تستخدم لوصف نمط صياغة المفردات
- مفردات أي لغة يعبر عنها من خلال الحروف الهجائية لتلك اللغة عبر عنها من خلال الحروف الهجائية لتلك اللغة العربية, حروفها الهجائية التي تشكل جميع كلماتها هي أ ي
 - a z, A Z هي alphabet بالنغة الإنجليزية, حرفها الهجائية

GREEK ALPHABET

ALPHABET

الحروف الهجائية للغة

- تعتمد التعبيرات النظامية Regular Expressions على مبادئ مادة التراكيب المنفصلة Discrete Structures
 - يعبر عن الحروف الهجائية للغة بالرمز الإغريقي سيقما ٢
- حيث Σ عبارة عن فئة محدودة finite تحتوي على جميع الرموز (حروف وأرقام) وأيضاً العلامات (الفواصل, النقاط, وغيرها) التي يمكن أن تشكل جملة في لغة ما
 - $\Sigma = \{a-z, A-Z\}$ Illias الإنجليزية:

مفردات فئة هجائية

a, b, c, d فئة الحروف a, b, c, d

• Σ ={a,b,c,d}

- المفردات الممكنة من الهجائية ∑ هي:
 - a •
 - aa
 - aaa •
 - aabbccdd
 - d
 - abab •
 - cccccccccccccccc •
- وهكذا, أي تركيبة من الحروف الأربعة a, b, c, d

FORMAL LANGUAGES

اللغات الرسمية/التشكيلية

- الهجائية ∑: سيقما هي فئة محدودة finite تحتوي على كل مدخلات inputs الهجائية لا الهجائية داينة العلامات symbols
- نهاية الهجائية Σ : سيقما ستار هي فئة كل المفردات الممكنة في سيقما Σ , ويشمل ذلك المفردة الخالية (إبسيلون) empty string ε
- سيقما ستار Σ^* سيقما ستار formal language L مي فئة جزئية من
- فهي فئة المفردات ذات المعنى في اللغة, كجزء من جميع المفرات الممكنة سيقما ستار *Σ

عمليات اللغات الرسمية (التشكيلية)

الاتحاد بين لغتين L و Union M و فئة المفردات التي تنتمي على الأقل لأحد اللغتين L أو M , "على الأقل" تعني أن بعض المفردات قد تنتمي لكلا اللغتين ـ اللغتين ـ

$$L \cup M = \{s | s \in L \text{ or } s \in M\}$$

- مثال:
- $H = \{abb, baa, aba, bab\}, K = \{doo, ree, mee, baa\}$
 - $H \cup K = \{abb, baa, aba, bab, doo, ree, mee\}$

عمليات اللغات التشكيلية (الرسمية)

التقاطع بين لغتين L و L التقاطع بين لغتين L و L النعتين L كلا اللغتين.

$$L \cap M = \{s | s \in L \ and \ s \in M\}$$

- مثال:
- $L = \{a, aa, aaa, aaaa\}, M = \{bd, bbdd, bdbd\}$
 - $L \cap M = \{ \mathcal{E} \}$ إبسيلون: وهي فئة خالية

عمليات اللغات التشكيلية (الرسمية)

• مثال

- $L = \{a, aa\}, M = \{bd, bbdd\}$
 - $LM = \{abd, abbdd, aabd, aabbdd\}$

عمليات اللغات التشكيلية (الرسمية)

نهایة کلیین للغة L (Kleene closure) مسماة عن شخص اسمه کلیین: فئة

كل المفردات الناجمة عن لصق 0 مفردة أو أكثر من مفردات لغة ما L

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

عندما L^0 , L^0 تعني لصق صفر من مفردات اللغة Lو هو يساوي فئة خالية $\{\varepsilon\}$, وهي تعني لاشئ.

 $L = \{at, bat, cat\}$:

$$L^* = \left\{ \begin{matrix} \varepsilon, at, atat, bat, cat, atbat, atcat, batat, \\ batcat, catat, catbat, \\ atbatcat, batatcat, catatbat, \dots \end{matrix} \right\}$$

أي فئة كل احتمالات لصق لمفردات اللغة بمافيها الفئة الخالية

LANGUAGE OPERATIONS

عمليات اللغات التشكيلية (الرسمية)

نهاية إجابية للغة L (Positive closure): فئة كل المفردات الناجمة عن i لصق مفردة واحدة أو أكثر من مفردات لغة ما $_{\perp}$, أي لا يوجد فئة خالية

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

$$L = \{at,bat,cat\}$$
 :
$$L^+ = \left\{ \begin{array}{c} at,atat,bat,cat,atbat,atcat,batat,batcat,\\ catat,catbat,\\ atbatcat,batatcat,catatbat, \dots \end{array} \right\}$$

أي فئة كل احتمالات لصق لمفر دات اللغة ولكن بدون الفئة الخالية 12 usain, University of Tripoli

عمليات اللغات التشكيلية (الرسمية)

- مثلاً:
- L هي فئة الحروف الإنجليزية الصغيرة والكبيرة

$$L = \{A, B, \dots, Z, a, b, \dots z\}$$

و D هي فئة الأرقام

$$D = \{0, 1, \dots 9\}$$

فإن $L(L \cup D)^*$ تعبر عن فئة كل المفردات من حروف وأرقام وتبدأ بحرف

~

ويعتبر هذا تعبيراً عن نمط من أنماط صياغة

√ أعطمثال:

REGULAR EXPRESSIONS

التعبيرات النظامية

- التعبيرات النظامية هي صياغة مختصرة لوصف نص المفردات
- المعرفات في لغات البرمجة عبارة عن حرف متبوع بصفر أو أكثر من الحروف أو الأرقام
- Identifier→letter(letter|digit)*
- المتغير ← حرف (حرف ارقم)*
- العمود | يعبر عن الاتحاد, أو
- الأقواس () تستخدم لتجميع التعبيرات الجزئية
- النجمة * : تعني حدوث صفر أو أكثر من مابين الأقواس,

REGULAR EXPRESSIONS

التعبيرات النظامية

- التعبيرات النظامية يتم بناؤها بالتكرار recursively من خلال تعبيرات نظامية صغيرة, وذلك باتباع قواعد معينة rules وهي:
- 1. إبسيلون ε تعبير نظامي يشير/تنتمي denotes إلى اللغة $L(\varepsilon)$ وتساوي ε }, وهي فئة خالية لاتحتوي على نص
- 2. إذا كانت α رمز/علامة في الهجائية Σ , فإن α تكون تعبيراً نظامياً يشير إلى الفئة α وهي تحتوي على النص α
 - L(a) حرف من حروف سيقما, فإن وجدت لوحدها فهي تعبير نظامي للغة التي تساوي $\{a\}$ كلغة من مفردة واحدة بطول رمز واحد

REGULAR EXPRESSIONS

التعبيرات النظامية

• تقليدياً, تكتب التعبيرات بالخط العريض, مثل a, وتكتب الرموز بالخط المائل

a لغة التعبير النظامي

$$L(a) = \{a\}$$
 .a العادي, مثل

- بما أن التعبيرات الكبيرة تتألف من تعبيرات نظامية صغيرة, فهذه 4 تعبيرات جزئية أساسية:
 - $L(r) \cup L(s)$ هو تعبير "أو" ويشير إلى اتحاد اللغتين (r)|(s) هو 1.
 - L(r)L(s) هو تعبير يشير إلى لصق اللغتين (r)(s) .2
 - $(L(r))^*$ هو تعبير يشير إلى $(r)^*$.3
 - L(r) هو تعبير عن اللغة (r) .4

REGULAR EXPRESSIONS PRECEDENCE

أسبقيات التعبيرات النظامية

- التعبيرات النظامية تحتوي أقواس يمكن الاستغناء عنها بشرط اتباع أسبقيات مشغلاتها
 - المشغل * له الأسبقية الأعلى
 - للصق concatenation الأسبقية الثانية
 - المشغل أو له الأسبقة الأخيرة
 - طبعاً قراءة التعبيرات من اليسار إلى اليمين
 - $a|b^*c$ بالتعبير $(a)|((b)^*(c))$ بالتعبير

كلا التعبيرين يشير إلى فئة المفردات وهي: a أو b أو عددٌ من b أو بلا b ثم تلحقها بـ c

{a, c, bc, bbc, bbbc, bbbbc, bbbbbc, bbbbbc, ...} =

أمثلة التعبيرات النظامية

- (a|b)(a|b)ما هي لغة التعبير
- b و a او b يلتصق مع a $\{aa,ab,ba,bb\}$ •
- (a|b)(a|b) مل يمكنك كتابة تعبير آخر يعطي نفس اللغة الناتجة من التعبير
 - aa|ab|ba|bb
 - a^* ما هي لغة التعبير •
 - a کل احتمالات $\{ oldsymbol{arepsilon}, a, aa, aaa, aaaa, aaaa, ... \}$
 - $(a|b)^*$ ما هي لغة التعبير
 - b او احتمالات $\{oldsymbol{arepsilon},a,b,\dots\}$ و کل احتمالات $\{oldsymbol{arepsilon},a,b,\dots\}$
 - $a|a^*b$ ما هي لغة التعبير •
 - b عدد من a المفردة a مع (a,b,ab,aab,aaab, ... } •

خواص التعبيرات النظامية

مثل رياضي	وصف	قانون المسلَّمة Axiom
3+6 =3+6	تبدیلیة commutative	r s=s r
4+(3+6) = (ترابطية associative ترابطية	r (s t)=(r s) t
	اللصق ترابطية	(rs)t = r(st)
4 (3+6) = (4	اللصق توزيعي على (4x3+4x6	r(s t) = rs rt $(s t)r = sr tr$
3+0 = 3 0+3 = 3	identity محايد للصق $arepsilon$	$egin{aligned} arepsilon r &= r \ r &= r \end{aligned}$
	علاقة ع مع *	$r^* = (r \varepsilon)^*$
	* تكرارها كحدوثها مرة واحدة idempotent	$oldsymbol{r}^{**}=oldsymbol{r}^*$

REGULAR DEFINITIONS

تعريفات نظامية

• يمكن كتابة صيغة لتعريفات نظامية على النحو التالي:

- $d_1 \rightarrow r_1$
- $d_2 \rightarrow r_2$
- •
- $d_n
 ightarrow r_n$ عبارة عن اسم لتعریف definition عبارة عن اسم d_i علی تعبیر نظامی r_i
 - فئة هجائيات هذه التعريفات تتكون من جميع الرموز التي تعبر عنها التعريفات $\Sigma \cup \{d_1,d_2,...,d_n\}$ التعريفات التعريفات

REGULAR DEFINITIONS

أمثلة لتعريفات نظامية

```
letter \rightarrow (a|b|c|...|z|A|B|C|...|Z)
       digit \rightarrow (0|1|2|3|4|5|6|7|8|9)
         id \rightarrow letter(letter|digit) *
         integer \rightarrow (+|-|\varepsilon)digit^+
         decimal \rightarrow integer.digit
real \rightarrow (integer|decimal)E(+|-)digit
```

REGULAR DEFINITIONS

اختصارات للتعريفات نظامية

$$letter \rightarrow (a|b|c|...|z|A|B|C|...|Z)$$

$$letter \rightarrow [a-zA-Z]$$
 یمکن أن تختصر:

$$digit \rightarrow (0|1|2|3|4|5|6|7|8|9)$$

$$digit
ightarrow \lceil 0-9
ceil$$
یمکن أن تختصر:

REGULAR DEFINITIONS

أمثلة لتعريفات نظامية

$$if \rightarrow if$$

 $then \rightarrow then$

 $else \rightarrow else$

$$relop \rightarrow <|>|=|<=|>=|<>$$

while → while

 $int \rightarrow int$

موضوعنا التالي:

تمارين عن التعبيرات النظامية