Development of Recommender Systems with a Focus on Improving User Satisfaction

Entwicklung von Empfehlungssystemen mit dem Schwerpunkt auf der Verbesserung der Benutzerzufriedenheit

Ozan Pekmezci

Lehrstuhl für Datenverarbeitung

June 13, 2019

Table of contents

Introduction

Review of Literature and Research

Implementation

Evaluation

Conclusion

What are Recommender Systems?

Recommender Systems(RS)

Software tools and techniques that provide suggestions for items that are most likely to interest a particular user

- History goes back to mid 1990's
- Became mainstream with e-commerce
- Problem: Users overloaded with information
- Solution: RS as a way to filter information for users

Problem

Aim of developers and researchers:

- Increase interaction
- Increase coverage
- Increase user satisfaction

Evaluation metrics and properties used:

Accuracy

Problem

User satisfaction may also depend on other properties such as privacy, data security, diversity, serendipity, labeling and presentation.

Motivation

Find answers to these questions:

- Does high accuracy guarantee high user satisfaction?
- Does diversity affect user satisfaction positively?
- Would a feedback loop enhance user satisfaction?

Use-case

Individual and group recommendation of talents to roles or projects.

Types of Recommender Systems

Two main categories:

- Personalized
- Non-personalized

Among personalized approaches are:

- Content-based filtering
- Collaborative filtering
- Knowledge-based filtering
- Hybrid methods

Solution

Only used content-based filtering in this thesis.

Overview of Content-Based Recommender Systems

Figure: High level architecture of a content-based recommender

Advantages and Drawbacks of Content-Based Filtering

Advantages:

- User Independence
- Transparency
- New Item

Drawbacks:

- Limited Content Analysis
- Over-specialization
- New User

Recommender System Evaluation Properties

- Accuracy
- Coverage
- Confidence
- Trust
- Novelty
- Serendipity
- Diversity
- Utility
- Risk
- Robustness
- Privacy
- Adaptivity
- Scalability

Accuracy and Diversity

Accuracy:

$$RMSE(f) = \sqrt{\frac{1}{|\mathcal{R}_{test}|}} \sum_{r_{iu}} (f(u, i) - r_{ui})^2$$
 (1)

Diversity:

ILD =
$$\frac{1}{|R|(|R|-1)} \sum_{i \in R} \sum_{j \in R} d(i,j)$$
. (2)

Others

We also used other methods such as aggregate diversity, shannon entropy and gini index.

Datasets

Freelancer.com Dataset:

- 30.606 unique roles
- 32.922 unique talents
- 463.536 bids
- 941 unique skills

Motius Dataset:

- 375 unique roles
- 795 unique talents
- 1768 unique skills

Combination

We combine datasets, remove skills less than 5 and we have 923 total skills.

Unsupervised Individual Recommender

Recomendation by Similarity

$$\cos(x,y) = \frac{(x \bullet y)}{\|x\| \|y\|} \tag{3}$$

- Recomendation by Popularity
- Hybrid Recommendation

Supervised Individual Recommender with Feedback Learning

Group Recommenders

Group Recommendation using Clustering

Figure: Examples of some centers of clusters that are projected on a 2D space

- Unsupervised Group Recommender
- Supervised Group Recommender

Unsupervised and Supervised Group Recommender

- Baseline Recommender
- Diverse Recommender

$$g(R,\lambda) = (1-\lambda)\frac{1}{|R|}\sum_{i\in R} f_{rel}(i) + \lambda div(R). \tag{4}$$

Diversity Enhancement Algorithm

Find the best talent for every role of the project with the equation.

Dashboard Main

Figure: Main screen of the dashboard

Dashboard Projects

a	
a.i. & software e	ngineer
aerodynamics e	ngineer
ai dev	
alexa engin	eer
algorithm d	lev
android & nfc de	wolonor

Figure: A snippet from the list of all projects that start with the letter a

Dashboard Individual

Figure: A screenshot from the list of all recommendations from neural networks for the project a.i. & software engineer

Dashboard Individual Hybrid

a.i. & software engineer

Hybrid \$

^

Person 3

0.05046448895805761

Figure: A screenshot from the list of all recommendations from neural networks for the project *a.i.* & software engineer

Dashboard Group

Figure: A screenshot from the list of all recommendations from diverse cosine similarity for the group 9

Evaluation Methods

- Offline evaluation: evaluation using algorithms
- Online evaluation: letting users interact with system and analyzing results
- User studies: asking users questions without giving them information about your aim etc.

Offline Accuracy of Individual Recommenders

Table: Offline evaluation results for different recommenders are shown.

Туре	Name	Top 1	Top 5
Unsupervised	Motius	0.07	0.21
Unsupervised	Similarity	0.28	0.36
Unsupervised	Popularity	0.07	0.45
Unsupervised	Similarity&Popularity	0.12	0.29
Supervised	Supervised Neural Network		0.56
Supervised	Neural Network & Similarity	0.1	0.49

User Study Result of Individual Recommenders

Table: Offline evaluation results for different recommenders are shown.

Туре	Name	First Item Value	Satisfaction
Unsupervised	Similarity	4.375	3.8125
Supervised	Neural Network	2.5625	2.8125
Supervised	Hybrid	4.5	4.0625

Accuracy of Unsupervised Group Recommender

Figure: Effect of diversity constant on unsupervised group recommender to the accuracy

Accuracy of Unsupervised Group Recommender

Figure: Effect of diversity constant on unsupervised group recommender to the diversity

User Study about Unsupervised Group Recommender

Figure: Effect of diversity constant on unsupervised group recommender to the average user opinion

Accuracy of Supervised Group Recommender

Figure: Effect of diversity constant on supervised group recommender to the accuracy

Accuracy of Supervised Group Recommender

Figure: Effect of diversity constant on supervised group recommender to the diversity

User Study about Supervised Group Recommender

Figure: Effect of diversity constant on supervised group recommender to the average user opinion

Online Evaluation and User Study about Feedback Learning

Table: A table that shows the user opinions before and after re-training.

First Item Value	Overall List Value	Diversity
3.125	3	2.375
3.75	3.6875	2.5625

Conclusion

Initial questions:

- Does high accuracy guarantee high user satisfaction?
- Does diversity affect user satisfaction positively?
- Would a feedback loop enhance user satisfaction?

Answers:

- No, we proved otherwise.
- Yes from our experiments. However, more experiments with more subjects are needed.
- Yes, if there are enough feedback.

Artificial Neural Networks

Figure: High level architecture of a feedforward neural network

$$f(\mathbf{x}; \mathbf{w}, b) = \sigma(\mathbf{x}^{\top} \mathbf{w} + b)$$
 (5)

Embeddings

Embeddings layers are used to reduce dimensionality.

Others Evaluation Methods

ILD =
$$\frac{1}{|R|(|R|-1)} \sum_{i \in R} \sum_{j \in R} d(i,j)$$
. (6)

Unexp =
$$\frac{1}{|R|} \sum_{i \in R} \sum_{j \in \mathcal{J}_u} d(i, j), \qquad (7)$$

where

$$\mathcal{J}_{u} \stackrel{\text{def}}{=} \{ i \in \mathcal{J} | r(u, i) \neq \emptyset \}. \tag{8}$$

Freelancer.com Dataset(1)

Online Printing Store Freelancer > Jobs > eCommerce > Online Printing Store We need website like [url removed, login to view] and looking for only team (not individuals) for this project. This includes Logo design Website design + development Website should compatible with latest SEO standards. No upfront payments until project is 100% completed. Max budget is \$500 Skills: eCommerce, HTML, Shopping Carts, Website Design

Figure: An example project from the Freelancer.com Website

Freelancer.com Dataset(2)

Figure: The winner and other bidders to the same project

Freelancer.com Dataset(3)

My Top Skills PHP Website Design 13 HTML 13 Graphic Design Javascript 3 Mobile App Development 2 WordPress 2 CSS 2 Script Install Web Scraping

Figure: The list of tops skills by a talent on Freelancer.com web page

Model of Sparse Input

Supervised Individual Recommender

Using Sparse Input

Figure: The talent skill matrix from freelancer.com

Using Embeddings

Figure: Training data that contains padded embedding skill vectors

Extra Profile Information

	experience_level	star_rating	number_of_reviews	hourly_rate
bidder_url				
Talent 1	5	4.8	385	12
Talent 2	17	4.9	162	25
Talent 3	17	5.0	5	15
Talent 4	6	4.9	116	30
Talent 5	6	0.0	0	2
Talent 6	6	0.0	0	3
Talent 7	6	5.0	24	40
Talent 8	6	5.0	2	5
Talent 9	6	5.0	16	20
Talent 10	3	5.0	67	20

Figure: The talent extra information matrix from Freelancer.com

