Formale Grundlagen der Informatik 3

Temporale Logik LTL, Büchi-Automaten, Model Checking LTL

Prof. Stefan Katzenbeisser

Security Engineering Group Technische Universität Darmstadt

skatzenbeisser@acm.org http://www.seceng.informatik.tu-darmstadt.de

Wiederholung: Model Checking

E. Clarke, A. Emerson, J. Sifakis

```
byte n = 0;
active proctype P() {
  n = 1;
}
active proctype Q() {
  n = 2;
}
Programm/"Modell"
```

"P und Q sind nie gleichzeitig` in einem kritischen Abschnitt" Eigenschaft/Spezifikation

Model Checker

Wiederholung: Temporäre Quantoren

Pfadquantoren: betreffen Pfade ab einem bestimmten Zustand

- A ... "für jeden Pfad gilt" (ALL)
- E ... "es gibt einen Pfad auf dem gilt" (EXISTS)

Zustandsquantoren: betreffen einen bestimmten Pfad

- X ... "im nächsten Zustand gilt" (NEXT)
- F ... "in der Zukunft gilt irgendwann" (FUTURE)
- G ... "in der Zukunft gilt immer" (GLOBAL)
- U ... "es gilt eine Eigenschaft bis eine andere gilt" (UNTIL)

Wiederholung: Pfadquantoren

E: "es gibt einen Pfad auf dem gilt" (EXISTS)

A: "für jeden Pfad gilt" (ALL)

Wiederholung: Zustandsquantoren

Temporale Logik CTL vs. LTL

CTL basiert auf Computation Trees ...
 ... und macht Aussagen über einen gesamten
 Baum

- LTL = "Linear Time Logic"
 ... macht nur Aussagen über alle Pfade, die in einem Zustand starten
- lacktriangle Struktur der Formel: $\mathbf{A}arphi$ wobei arphi **keine** Pfadquantoren mehr enthält

Temporale Logik LTL Syntax

Syntax:

Die Menge der LTL-Formeln ist die Menge aller Formeln der Form $\mathbf{A}\varphi\;$ wobei φ eine Pfadformel ist. Die Menge der Pfadformeln ist die kleinste Menge für die gilt:

- Atomare Eigenschaften $p \in P$ sowie die Konstanten \top, \bot sind Pfadformeln.
- lacktriangle Sind arphi und ψ Pfadformeln, dann sind auch

$$\neg \varphi, \varphi \lor \psi, \varphi \land \psi, \varphi \rightarrow \psi, \mathbf{X}\varphi, \mathbf{F}\varphi, \mathbf{G}\varphi, \varphi \mathbf{U}\psi$$

Pfadformeln.

Beispiele: $\mathbf{A}r\mathbf{U}q$ Keine LTL-Formeln: $\mathbf{EG}r$

 $\mathbf{A}(\mathbf{GF}p \to \mathbf{F}q)$ $\mathbf{AGAF}p$

 $\mathbf{A}(\mathbf{FG}p)$

Hinweis: Manche Autoren schreiben statt **G** das Symbol □ und statt **F** ⋄

Temporale Logik LTL Semantik der Pfadformel (1)

- Ausgangspunkt: Kripke-Struktur $\mathcal{M} = (S, I, R, L)$
- Pfadformeln werden über (unendlichen) Pfaden $\pi = s_0 s_1 s_2 s_3 \dots$ ausgewertet.
- Wir schreiben: $\pi \models \varphi$ wenn φ über dem Pfad π erfüllt ist.

Semantik, Teil 1:

	π		\top , 7	$\pi \not\models$	\perp	für	alle	Pfade	π
--	-------	--	------------	-------------------	---------	-----	------	-------	-------

•
$$\pi \models p$$
 falls $p \in L(s_0)$

•
$$\pi \models \neg \varphi$$
 falls $\pi \not\models \varphi$

$$\blacksquare \quad \pi \models \varphi \wedge \psi \quad \text{falls} \quad \pi \models \varphi \quad \text{und} \quad \pi \models \psi$$

$$\blacksquare \quad \pi \models \varphi \lor \psi \quad \text{falls} \quad \pi \models \varphi \quad \text{oder} \, \pi \models \psi$$

•
$$\pi \models \varphi \rightarrow \psi$$
 falls $\pi \not\models \varphi$ oder $\pi \models \psi$

(Konstanten)

(Atomare Aussagen)

(Negation)

(Konjunktion)

(Disjunktion)

(Implikation)

Temporale Logik LTL Semantik der Pfadformel (2)

• Wiederholung: für einen Pfad $\pi = s_0 s_1 s_2 s_3 \dots$ schreiben wir π^i für den Pfad $s_i s_{i+1} s_{i+2} \dots$

Semantik, Teil 2:

- $\pi \models \mathbf{G}\varphi$ falls für alle Indices $k \geq 0$ gilt $\pi^k \models \varphi$
- $\pi \models \mathbf{F}\varphi$ falls es einen Index $k \ge 0$ gibt mit $\pi^k \models \varphi$
- $\pi \models \mathbf{X} \varphi$ falls $\pi^1 \models \varphi$
- $\pi \models \varphi \mathbf{U} \psi$ falls es einen Index $k \geq 0$ gibt mit $\pi^k \models \psi$ und für alle Indices $0 \leq j < k$ gilt $\pi^j \models \varphi$

Temporale Logik LTL Semantik

Eine LTL-Formel $\mathbf{A}\varphi$ ist im Zustand s_0 einer Kripke-Struktur $\mathcal{M}=(S,I,R,L)$ erfüllt wenn für alle Pfade $\pi=s_0s_1s_2s_3\ldots$ die in s_0 starten gilt: $\pi\models\varphi$ Wir scheiben dann $\mathcal{M},s_0\models\mathbf{A}\varphi$

Analog zu CTL definieren wir die Gültigkeit und Erfüllbarkeit:

Eine LTL-Formel $\mathbf{A}\varphi$ ist gültig wenn für alle Kripke-Strukturen $\mathcal{M}=(S,I,R,L)$ und alle Zustände $s\in I$ gilt $\mathcal{M},s\models\mathbf{A}\varphi$

Eine LTL-Formel $\mathbf{A}\varphi$ ist erfüllbar, wenn es eine Kripke-Struktur $\mathcal{M}=(S,I,R,L)$ und einen Zustand $s\in I$ gibt mit $\mathcal{M},s\models\mathbf{A}\varphi$

Temporale Logik LTL Beispiele

Sind die folgenden Ausdrücke

- erfüllbar?
- gültig?

$$\mathbf{A}r\mathbf{U}q$$
 $\mathbf{A}(\mathbf{GF}p \to \mathbf{F}q)$
 $\mathbf{A}(\mathbf{FG}p)$
 $\mathbf{A}(\mathbf{GF}p)$
 $\mathbf{A}(\mathbf{G}p \to \mathbf{F}p)$

Temporale Logik LTL Safety-Eigenschaften

- Formeln der Struktur $\mathbf{A}(\mathbf{G}\varphi)$ nennt man "Safety-Eigenschaften"
- Modellierung von Eigenschaften wie "Ein schlechtes Ereignis X tritt niemals ein"
- Beispiel: Sei mutex eine Variable, die gültig ist falls zwei Prozesse nicht gleichzeitig auf eine Ressource zugreifen.

 $\mathbf{A}(\mathbf{G}mutex)$

Temporale Logik LTL Liveness-Eigenschaften

- Formeln der Struktur $\mathbf{A}(\mathbf{F}\varphi)$ nennt man "Liveness-Eigenschaften"
- Modellierung von Eigenschaften wie "Ein gutes Ereignis X tritt irgendwann einmal ein"
- Beispiel: Sei service eine Variable, die gültig ist falls ein bestimmtes Service angeboten wird.

 $\mathbf{A}(\mathbf{F}service)$

Temporale Logik LTL Kombination von Liveness und Safety

Liveness kann genutzt werden um Aussagen wie "X ist unendlich oft erfüllt"

oder

"X erreicht immer wieder einen Zustand.." zu modellieren

 $\mathbf{A}(\mathbf{GF}\varphi)$

CTL, LTL und CTL* Ausdrucksstärke (1)

CTL, LTL und CTL* Ausdrucksstärke (2)

■ Es gibt keine CTL-Formel äquivalent zur LTL-Formel $\mathbf{A}(\mathbf{FG}p)$

• Es gibt keine LTL-Formel äquivalent zur CTL-Formel $\mathbf{AG}(\mathbf{EF}p)$

■ Die Formel $\mathbf{A}(\mathbf{FG}p) \vee \mathbf{AG}(\mathbf{EF}p)$ ist in CTL*, aber weder in LTL noch in CTL ausdrückbar

CTL, LTL und CTL* Ausdrucksstärke (3)

Es gibt keine LTL-Formel äquivalent zur CTL-Formel

Beweisskizze: Nehmen wir das Gegenteil an, also es existiert eine LTL-Formel φ äquivalent zu $\mathbf{AG}(\mathbf{EF}p)$. Betrachte zwei Kripke-Strukturen

T1:

T2:

Es gilt $T1, q_0 \models \mathbf{AG}(\mathbf{EF}p)$ und damit nach Annahme $T1, q_0 \models \varphi$. Alle Pfade in T2 sind auch Pfade in T1. Gilt eine LTL-Formel daher in T1, so gilt sie auch in T2. Daher impliziert $T1, q_0 \models \varphi$ auch $T2, q_0 \models \varphi$. Allerdings gilt: $T2, q_0 \not\models \mathbf{AG}(\mathbf{EF}\varphi)$. Dies ist ein Widerspruch!

Büchi-Automaten

- Endliche Automaten beschreiben Sprachen endlicher Wörter (die Menge der Wörter ist in der Regel unendlich)
- Endliche Automaten korrespondieren zu regulären Ausdrücken

- Büchi-Automaten akzeptieren unendlich lange Wörter
- Büchi-Automaten korrespondieren zu omega-regulären Ausdrücken
- Gleiche Struktur wie endliche Automaten, andere Akzeptanzbedingung

Wörter, Wiederholung

Wiederholung:

- ullet Σ^* bezeichnet die Menge aller endlichen Wörter über endlicher Menge Σ
- Formal:

$$\Sigma^* = \{\varepsilon\} \cup \bigcup_{i=1}^{\infty} \{a_1 a_2 a_3 \dots a_i | a_k \in \Sigma, 1 \le k \le i\}$$

• Jede Teilmenge $L\subseteq \Sigma^*$ bezeichnet man als "Sprache"

Reguläre Ausdrücke

- lacktriangle Die leere Menge und jedes Symbol $a\in\Sigma$ ist ein regulärer Ausdruck
- Sind x und y reguläre Ausdrücke, so sind es auch $xy, x|y, x^*$

Beispiele: $ab^*c, (a|bc^*), a^*ba^*, (a|b|c)^*$

Unendliche Wörter

- Σ^{ω} bezeichnet die Menge aller **unendlichen** Wörter über endlicher Menge Σ
- Formal: $\Sigma^{\omega} = \{a_1 a_2 a_3 a_4 \dots | a_i \in \Sigma, i \geq 1\}$

Wichtig:

- Σ^* ist in der Regel **unendlich** groß, enthält Wörter **endlicher** Länge
- Σ^{ω} ist **unendlich** groß, enthält **nur unendlich** lange Wörter

Omega-reguläre Sprachen:

- Sind x und y (wobei y das leere Wort **nicht** enthält) **reguläre** Ausdrücke, so ist xy^ω ein omega-regulärer Ausdruck
- Sind x und y omega-reguläre Ausdrücke, so ist es auch x | y

Beispiele:

$$a^{\omega}, (ab)^{\omega}, (a|b)^{\omega}, (a^*ba)^{\omega}, a^*ba^{\omega}$$

Büchi-Automaten (1)

Ein Büchi-Automat $\mathcal{M}=(M,R,q,E,\Sigma)$ über einem endlichen Alphabet Σ besteht aus einer endlichen MengeM an Zuständen, einer Relation $R\subseteq M\times \Sigma\times M$, einem Startzustand $q\in M$ und einer Menge an Endzuständen $E\subset M$.

Wichtig: Ein Büchi-Automat unterscheidet sich von einem endlichen Automaten nur in der Art und Weise wie er Wörter akzeptiert.

Ein unendliches Wort $w=w_0w_1\ldots\in \Sigma^\omega$ korrespondiert zu einem Ablauf eines Büchi-Automaten $\mathcal{M}=(M,R,q,E,\Sigma)$ wenn es eine Sequenz von Zuständen $m_0,m_1,m_2,\ldots\in M$ gibt mit $m_0=q$ und $(m_{k-1},w_{k-1},m_k)\in R$ für alle $k\geq 1$. Der Automat akzeptiert dieses Wort falls mindestens ein Zustand $m\in E$ unendlich oft im Ablauf $m_0m_1m_2\ldots$ vorkommt.

Büchi-Automaten (2)

Ein unendliches Wort $w=w_0w_1\ldots\in\Sigma^\omega$ korrespondiert zu einem Ablauf eines Büchi-Automaten $\mathcal{M}=(M,R,q,E,\Sigma)$ wenn es eine Sequenz von Zuständen $m_0,m_1,m_2,\ldots\in M$ gibt mit $m_0=q$ und $(m_{k-1},w_{k-1},m_k)\in R$ für alle $k\geq 1$. Der Automat akzeptiert dieses Wort falls mindestens ein Zustand $m\in E$ unendlich oft im Ablauf $m_0m_1m_2\ldots$ vorkommt.

- Bezeichnet $\inf(m_0m_1m_2\ldots)$ die Menge aller Zustände $m\in M$, die in einem Ablauf $m_0m_1m_2\ldots$ unendlich oft vorkommen.
- Ein Büchi-Automat akzeptiert ein Wort $w=w_0w_1\ldots\in\Sigma^\omega$ wenn es einen zugehörigen gültigen Ablauf $m_0m_1m_2\ldots$ gibt mit $\inf(m_0m_1m_2\ldots)\cap E\neq\emptyset$
- Jeder Büchi-Automat korrespondiert zu einer omega-Sprache $\mathcal{L}^\omega(\mathcal{M})$ aller akzeptierten Wörter
- Eine omega-Sprache für die ein Büchi-Automat existiert ist eine omegareguläre Sprache

Büchi-Automaten Beispiele

Büchi-Automaten Entscheidbarkeit

Es ist entscheidbar ob die Sprache $\mathcal{L}^{\omega}(\mathcal{M})$ eines Büchi-Automaten $\mathcal{M}=(M,R,q,E,\Sigma)$ die leere Menge ist.

Idee:

- Betrachte Automaten als Graphen (Zustände: M, Kanten: R)
- Starke Zusammenhangskomponenten eines Graphen: jeder Knoten ist durch einen Pfad von jedem anderen erreichbar.
- Liegt ein Endzustand in einer starken Zusammenhangskomponente und ist dieser vom Startzustand erreichbar, so ist der Schnitt sicher nicht-leer!
- Komplexität: linear (Tarjan-Algorithmus)

Büchi-Automaten Abschlusseigenschaften

Die Menge der omega-regulären Sprachen ist unter Vereinigung, Schnitt und Komplement abgeschlossen, d.h.

- sind die Sprachen $\mathcal{L}_1, \mathcal{L}_2$ omega-regulär, so sind es auch die Sprachen $\mathcal{L}_1 \cup \mathcal{L}_2$ und $\mathcal{L}_1 \cap \mathcal{L}_2$;
- ist die Sprache \mathcal{L}_1 omega-regulär, so ist es auch $\Sigma^{\omega} \setminus \mathcal{L}_1$.

Idee für Schnitt: "Produktautomatenkonstruktion"

Büchi-Automaten Schnitt zweier Automaten

Idee für Schnitt: Produktautomatenkonstruktion

- "Parallelausführung" beider Automaten
- Beachten dass abwechselnd beide Automaten Endzustände besuchen
- Gegeben: $\mathcal{M}_1 = (M_1, R_1, q_1, E_1, \Sigma)$ und $\mathcal{M}_2 = (M_2, R_2, q_2, E_2, \Sigma)$
- Definiere einen neuen Büchi-Automaten mit Zuständen $M_1 imes M_2 imes \{1,2\}$
- Relation: $(m_1, m_2, 1) \to (m'_1, m'_2, 1)$ falls $m_1 \to m'_1, m_2 \to m'_2, m_1 \not\in E_1$ $(m_1, m_2, 1) \to (m'_1, m'_2, 2)$ falls $m_1 \to m'_1, m_2 \to m'_2, m_1 \in E_1$ $(m_1, m_2, 2) \to (m'_1, m'_2, 2)$ falls $m_1 \to m'_1, m_2 \to m'_2, m_2 \not\in E_2$ $(m_1, m_2, 2) \to (m'_1, m'_2, 1)$ falls $m_1 \to m'_1, m_2 \to m'_2, m_2 \in E_2$

Hierbei steht \rightarrow für eine Kante mit einem (gleichen) Eingabesymbol

- Startzustand: $(q_1, q_2, 1)$
- Endzustände: $M_1 \times E_2 \times \{2\}$
- lacksquare Der neue Automat akzeptiert die Sprache $\mathcal{L}^\omega(M_1) \cup \mathcal{L}^\omega(M_2)$

LTL Model Checking Prinzipielle Idee: Testen ob $\mathcal{M} \models \varphi$

Modellierung der "gültigen" Abläufe (1)

Idee: Transformation der Kripke-Struktur in einen Büchi-Automaten

- → modelliere "Abläufe" von Labels
- Übernahme von Kanten und Knoten
- Füge neuen Startzustand hinzu
- Annotiere Kanten mit Labels des Zielknoten
- Lösche die Labels an den Knoten
- Alle Knoten sind Endzustände
- fertig!

Modellierung der "gültigen" Abläufe (2) Beispiel

Modellierung der "nicht erlaubten" Abläufe

Idee: Transformation der LTL-Formel in einen Büchi-Automaten

LTL ... repräsentiert eine Menge an unendlichen Pfaden, auf denen Formel erfüllt ist Büchi-Automat ... akzeptiert eine Menge an unendlichen Pfaden

Spezifikation φ Übersetzen der Negation in Büchi-Aut.

Zu jeder LTL-Formel existiert ein Büchi-Automat, der alle Pfade akzeptiert auf denen die Formel gültig ist.

Modellierung der "nicht erlaubten" Abläufe

- LTL-Formeln sind üblicherweise "kurz"
- Büchi-Automaten können exponentiell größer sein

Mehrere Schritte:

- Transformation in "Negations-Normalform"
- Transformation in einen generalisierten Büchi-Automat
- Konstruktion eines Büchi-Automaten

Transformation LTL – Büchi Automaten (1)

1. Schritt: Negationsnormalform

- Alle Negationen sollen direkt vor atomaren Aussagen stehen
- Dies ist mit Umformungsregeln möglich:

$$\neg \neg \varphi = \varphi
\neg (\varphi_1 \lor \varphi_2) = \neg \varphi_1 \land \neg \varphi_2 \quad \text{"Regeln nach De Morgan"}
\neg (\varphi_1 \land \varphi_2) = \neg \varphi_1 \lor \neg \varphi_2
\neg \mathbf{G}\varphi = \mathbf{F} \neg \varphi
\neg \mathbf{F}\varphi = \mathbf{G} \neg \varphi
\neg \mathbf{X}\varphi = \mathbf{X} \neg \varphi$$

• Neuer Operator **R** (Releases): $\varphi_1 \mathbf{R} \varphi_2$ ist erfüllt, falls φ_2 erst dann nicht mehr gilt, sobald einmal φ_1 gegolten hat (was **nicht** eintreten muss).

■ Damit gilt:
$$\neg(\varphi_1 \mathbf{U} \varphi_2) = (\neg \varphi_1) \mathbf{R} (\neg \varphi_2)$$
 $\mathbf{F} \varphi = \top \mathbf{U} \varphi$ $\neg(\varphi_1 \mathbf{R} \varphi_2) = (\neg \varphi_1) \mathbf{U} (\neg \varphi_2)$ $\mathbf{G} \varphi = \bot \mathbf{R} \varphi$

Transformation LTL – Büchi Automaten (2)

2. Schritt: Transformation in Graphen

- Formel enthält nun nur atomare Aussagen (ggf. negiert), Konjunktion,
 Disjunktion und Operatoren X, U und R
- Idee: rekursiver Algorithmus der Formel schrittweise expandiert und Koten eines Graphen erzeugt
- Struktur jedes Knoten:

Incoming:

Old:

New:

mü**şşe**xt:

"Incoming": Vorgänger des Knoten im Automaten "Old": bereits bearbeitete Formeln "New": Formeln die noch bearbeitet werden

"Next": Formeln für den nächsten Knoten

 π^i π^i

Intuitiv: Knoten beschrieibt Suffix eines Pfades; erfüllt alle Formeln in "Old" und "New", erfüllt alle Formeln in "Next"

Transformation LTL – Büchi Automaten (3)

2. Schritt: Transformation in Graphen

Start des Algorithmus:

Incoming: init

Old:

New: φ

Next:

Algorithmus startet auf einem Knoten, der die gesamte Formel enthält; Vorgänger ist artifizieller Startzustand

Schrittweise Verfeinerung:

- Ist in einem Knoten das Feld "New" nicht leer, so wird der Knoten verfeinert oder ersetzt; die daraus erhaltenen neuen Knoten werden wiederum durch den gleichen Algorithmus verfeinert.
- Dadurch schrittweiser Aufbau des Automaten

Transformation LTL – Büchi Automaten (4)

TECHNISCHE UNIVERSITÄT DARMSTADT

2. Schritt: Transformation in Graphen

Verfeinerungsregeln:

Old:

New: p

Next:

Old: p

New:

Next:

atomare Aussagen, ggf. negiert

Old:

New: $\varphi_1 \wedge \varphi_2$

Next:

Old: $\varphi_1 \wedge \varphi_2$

New: φ_1, φ_2

Next:

Alle hier "leeren" Felder werden kopiert!

Transformation LTL – Büchi Automaten (5)

2. Schritt: Transformation in Graphen

Verfeinerungsregeln:

Old:

New: $\varphi_1 \vee \varphi_2$

Next:

Old: $\varphi_1 \vee \varphi_2$

New: φ_1

Next:

Old: $\varphi_1 \vee \varphi_2$

New: φ_2

Next:

Old:

New: $\mathbf{X}arphi$

Next:

Old: $\mathbf{X} \varphi$

New:

Next: φ

Alle hier "leeren" Felder werden kopiert!

Transformation LTL – Büchi Automaten (6)

2. Schritt: Transformation in Graphen

Alle hier "leeren" Felder werden kopiert! Verfeinerungsregeln:

Idee: $\varphi_1 \mathbf{U} \varphi_2 = \varphi_2 \vee (\varphi_1 \wedge \mathbf{X} (\varphi_1 \mathbf{U} \varphi_2))$

Old:

New: $\varphi_1 \mathbf{U} \varphi_2$

Next:

Old: $\varphi_1 \mathbf{U} \varphi_2$

New: φ_2

Next:

Old: $\varphi_1 \mathbf{U} \varphi_2$

New: φ_1

Next: $arphi_1 \mathbf{U} arphi_2$

Idee:
$$\varphi_1 \mathbf{R} \varphi_2 = ((\varphi_1 \wedge \varphi_2) \vee (\varphi_2 \wedge \mathbf{X}(\varphi_1 \mathbf{R} \varphi_2)))$$

Old:

New: $\varphi_1\mathbf{R}\varphi_2$

Next:

Old: $arphi_1\mathbf{R}arphi_2$

New: φ_1, φ_2

Next:

Old: $arphi_1\mathbf{R}arphi_2$

New: φ_2

Next: $arphi_1 \mathbf{R} arphi_2$

Transformation LTL – Büchi Automaten (7) 2. Schritt: Transformation in Graphen

Transformationsalgorithmus, informelle Beschreibung

- Starte mit einer leeren Menge an "fertigen" Knoten
- Falls der aktuell betrachtete Knoten ein leeres "New"-Feld besitzt:
 - Prüfe, ob bereits ein "fertiger" Knoten existiert der die gleichen "Old" und "Next"-Felder hat; in diesem Fall wird der aktuelle Knoten gelöscht und dessen Vorgänger dem "Incoming"-Feld des existierenden Knotens hinzugefügt
 - Falls kein solcher Knoten existiert wird der aktuelle Knoten als "fertig" markiert und ein neuer Knoten als Nachfolger erstellt, der im "New"-Feld die Formel des aktuellen "Next"-Feldes enthält ("Old" und "Next" des neuen Knotens sind leer). Dieser Knoten wird rekursiv mit dem gleichen Algorithmus bearbeitet

-

Transformation LTL – Büchi Automaten (8) 2. Schritt: Transformation in Graphen

Transformationsalgorithmus, informelle Beschreibung, Fortsetzung

- **...**
- Sonst wird eine Formel im "New"-Feld ausgewählt
 - Ist diese Formel bereits im "Old"-Feld enthalten, so wird sie gelöscht und der Algorithmus auf den gleichen Knoten nochmals angewendet.
 - Ist die Formel nicht enthalten, so erfolgt eine Verfeinerung nach den vorhin beschriebenen Regeln
 - Wird ein Knoten neu angelegt, so werden zuerst alle Felder "Incoming", "Old", "New" und "Next" in den neuen Knoten kopiert und dann ggf. durch den Algorithmus angepasst.
 - Knoten mit Widersprüchen im "Old" oder "New"-Feld werden gelöscht.

Transformation LTL – Büchi Automaten (9) 3. Schritt: Transformation in Automaten

- Alphabet des Automaten:
 alle atomaren Eigenschaften
- Zustände des Automaten: alle durch den Algorithmus erzeugten "fertigen" Knoten sowie der artifizieller Startzustand
- Zustandsübergänge:
 alle Übergänge die in den "Incoming"-Feldern generiert wurden;
 zusammen mit allen atomaren Eigenschaften die die (ggf. negierten)
 atomaren Eigenschaften im "Old"-Feld des Zielknotens erfüllen
- Anfangszustand: artifizieller Anfangszustand

Transformation LTL – Büchi Automaten (10) 3. Schritt: Transformation in Automaten

Die Konstruktion liefert einen generalisierten Büchi-Automaten, bei dem es mehrere Akzeptanzmengen gibt; dieser akzeptiert ein unendliches Wort, falls darin für **jede** Akzeptanzmenge mindestens ein akzeptierender Zustand unendlich oft vorkommt.

- Akzeptanzmengen:
 - Für jede Teilformel der Form $\varphi_1 \mathbf{U} \varphi_2$ wird eine Akzeptanzmenge erstellt.
 - Menge enthält alle Knoten, in denen φ_2 in "Old" oder $\varphi_1 \mathbf{U} \varphi_2$ nicht in "Old" vorkommt.
 - lacktriangle Dies garantiert dass irgendwann $arphi_2$ gelten muss sobald $arphi_1 \mathbf{U} arphi_2$ gilt.

Generalisierte Büchi-Automaten können in Büchi-Automaten transformiert werden.

LTL Model Checking Abschluss

Bildung des Durchschnitts der beiden Automaten

Test ob Sprache des Automaten nicht leer ist

- Konstruktion des Schnittautomaten ...
- ... und den Test auf die leere Menge wurden bereits besprochen!
- Komplexität?
- Gegenbeispiel: Konstruktion des Schnittautomaten, suche einen Zyklus durch einen akzeptierenden Zustand.

