CO2: Identify major research challenges and technical gaps existing between theory and practice in crypto currency domain.

CO3: It provides conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.

CO4: Apply hyperledger Fabric and Etherum platform to implement the Block chain Application.

REFERENCES

- 1. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks by Bashir, Imran,2017.
- 2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016.
- 3. Joseph Bonneau et al, SoK: Research perspectives and challenges for Bitcoin and cryptocurrency, IEEE Symposium on security and Privacy, 2015.

Course Code: 713-	Course Title: Block chain	L: T: 2P	Credits:1
18	Technology lab		

- 1. To Develop Naive Block chain construction.
- 2. Design Memory Hard algorithm and its Implementation
- 3. Design Toy application using Blockchain
- 5. Program to Solve a Mining puzzles using Block chain
- 6. The ability to formulate mathematical models and problem-solving skills through programming techniques for addressing real-time problems using appropriate data structures and algorithms.
- 7. The ability to provide design, build, and deploy a distributed application and provide solutions using block chain applications to enhance business measures by sharing information safely and effectively.
- 8. The ability to create crypto currencies and give a strong technical understanding of Block chain technologies with an in-depth understanding of applications, open research challenges, and future directions.

Course Code:	Course Title: Parallel Computing	3L: 0T: 0P	Credits: 3
BTCS714-18			

Detailed Contents:

Introduction: Paradigms of parallel computing: Synchronous - vector/array, SIMD, Systolic; Asynchronous - MIMD, reduction paradigm.

Hardware taxonomy: Flynn's classifications, Handler's classifications. Software taxonomy: Kung's taxonomy, SPMD.

Abstract parallel computational models: Combinational circuits, Sorting network, PRAM models, Interconnection RAMs. Parallelism approaches - data parallelism, control parallelism

Performance Metrices: Laws governing performance measurements. Metrices - speedups, efficiency, utilization, communication overheads, single/multiple program performances, bench marks.

Parallel Processors: Taxonomy and topology - shared memory mutliprocessors, distributed memory networks. Processor organization - Static and dynamic interconnections. Embeddings and simulations.

Parallel Programming: Shared memory programming, distributed memory programming, object oriented programming, data parallel programming, functional and dataflow programming.

Scheduling and Parallelization: Scheduling parallel programs. Loop scheduling. Parallelization of sequential programs. Parallel programming support environments.

Books and References:

- 1. M. J. Quinn. Parallel Computing: Theory and Practice, McGraw Hill, New York, 1994.
- 2. T. G. Lewis and H. El-Rewini. Introduction to Parallel Computing, Prentice Hall, New Jersey, 1992.
- 3. T. G. Lewis. Parallel Programming: A Machine-Independent Approach, IEEE Computer Society Press, Los Alamitos, 1994.

Research articles.

Course Code:	Course Title: Parallel Computing lab	L: T: 2P	Credits: 1
BTCS715-18			

The details may be designed by course instructor as per the theory.

BTCS 716-18	Adhoc and Wireless Sensor	L:03, T:0, P: 0	Credits: 3
	Networks		

Detailed Contents:

UNIT 1:

{07hrs}(CO1)

ADHOC AND SENSORS NETWORKS – INTRODUCTION AND ROUTING PROTOCOLS:

Wireless Sensor Networks (WSNs): concepts and architectures - Applications of Ad Hoc and Sensor Networks - Design Challenges in Ad hoc and Sensor Networks. Wireless Networks, Issues in Ad hoc wireless networks, Routing Protocol for Ad Hoc Wireless Networks, Classifications of Routing Protocols, Table Driven Routing Protocols - Destination Sequenced Distance Vector (DSDV), On-Demand Routing protocols - Ad hoc On-Demand Distance Vector Routing (AODV).

UNIT2:

{09hrs}(CO2)

WSN NETWORKING CONCEPT AND MAC PROTOCOLS: