Nirma University

Institute of Technology
Semester End Examination (RPR), December - 2018
B. Tech. in Computer Engineering, Semester-VI
CE601 Design and Analysis of Algorithms

Roll /		Supervisor's Initial				
Exam 1	No.	with Date				
Time:	3 Hours	Max Marks: 100				
Instruct	tions: 1. Attempt all questions of Section I and II s 2. Figures to right indicate full marks 3. Draw neat sketches wherever neces 4. Assume suitable data wherever requ	ssary.				
Q-1	Do as directed	ection I	[16]			
A	Write INSERTION-SORT algorithm. by specifying the cost incurred in e		200			
В	Can we improve the time complexity of multiplying large integers using Divide and Conquer? Prove your answer with suitable example of multiplying 981 X 1234. (Hint: Karatsuba Algorithm)					
Q-2	Do as directed		[18]			
A	Solve the following recurrence relation $T(n) = 4T(n/3) + n$		ethod :- [6]			
A	Prove the correctness of "MERGE"		[6]			
В	Given the two heaps H and H' find	1	1E1 D			
	head[H] ————————————————————————————————————					
	head[H']	26 23 8 14 42 11 17 31	29			

B Explain all the operations (along with time complexities of each of them), that are supported by a Binomial Heap.

Calculate the running time of the following function:int func(int n)

int i, j, k=0; for (i = n/2; i <= n; i++) for (j=2; j<=n; j = j*2) k = k + n/2; return k;

Q-3 Do as directed

[16]

[6]

A The following table indicates daily price (in Rs.) of stock in the ABC [8] company, after the close of trading over a period of 17 days.

Day	0	1	2	3	4	5	6	7	8
Price	100	113	110	85	105	102	86	63	81
Day	9	10	11	12	13	14	15	16	1

Identify and write the suitable algorithm and trace it to determine the following:-

After which day should a person buy the stock and after which day should a person sell the stock, in order to maximize the profit?

B What is the purpose of MAX-HEAPIFY algorithm? Write its algorithm and show the trace of MAX-HEAPIFY(A,3) on the given array A = {27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0}.

Q-4 Do as directed

Section I

[16]

[8]

Consider the graph G = (V, E) given below. Find the minimum spanning tree by Kruskal's Algorithm and Prim's Algorithm and compare the result.

B We have set of n jobs to execute, each of which takes unit time. At any time T = 1,2,... We can execute exactly one job. Job i earn us a profit Pi > 0 iff it is executed no late than time di (deadline). Develop a greedy algorithm to solve the above problem. Run your above algorithm for n = 4 and the following value

1	1	2	3	1
Pi	50	10	15	30
di	2	1	0	50

Q-5 Do as directed

[18]

Is Travelling Salesman Problem is NP-Complete? Justify your [6] answer.

OR

Explain the Algorithm for solving Knapsack (0/1) problem for the [6] following data using Branch and Bound. Maximum knapsack capacity W = 7

Items	Weight	Value
I_1	5	6
I_2	4	5
I ₃	3	4

B For the following two strings: A = COW and B = BROWN, find the [6] longest common string (LCS) using Dynamic programing approach.

OR

- B Strassen's Algorithm is an efficient algorithm to multiply two matrices. A simple method to multiply two matrices need 3 nested loops and is O(n3). Strassen's algorithm multiplies two matrices in O(n^{2.8974}) time, Prove it for the following example: $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ and
- C Making change problem can be solved by Greedy Algorithm as well [6] as Dynamic programing approach. True / false justify with suitable example.

Q-6 Do as directed

[16]

- The N Queen is the problem of placing N chess queens on an N×N [8] chessboard so that no two queens attack each other, Design an algorithm for solving N-Queen Problem using backtracking
- For the following chain matrix multiplications, find out the optimal B [8] parenthesization? (Use Dynamic Programing approach)

Matrix	Dimensions
A1	30 X 35
A2	35 X 15
A3	15 X 5
A4	5 X 10
A5	10 X 20
A6	20 X 25