Lecture #6

Factorial designs continued

Start thinking about the final lab project

- Individual presentation (everyone proposes an idea)
- Group work (form groups, complete experiment for one idea)
- Group presentation (present your findings)

2x2 Design

- All final projects must employ a 2x2 design
- You will reproduce an effect from the literature (IVI), then attempt to manipulate the effect (IV2)
- Important to have a reason why IV2 would influence the IV1 effect

Individual Presentations

- 5 minutes each
- Explain the effect (IVI) you are measuring
- Describe the manipulation (IV2) you will use to manipulate the IV1 effect (explain why)
- Show predicted results

Does practice with switching reduce or eliminate the task-switching cost?

Matthew Crump

Switching between tasks is known to slow performance

Hypothesis: People are slower on switch trials because they have less practice with switching between tasks.

Logic: The switch-cost should be reduced or eliminated when people have more practice at switching between tasks

Design

Practice Phase

Post

Repeat Task Practice

measure switch-costs

AAAABBBB

ABABABAB

Switching Task Practice

measure switch-costs

ABABABAB

ABABABAB

Predicted Results

Lecture #6

Factorial designs continued

What is a factorial design?

Any experiment with more than one IV

 Fully factorial designs ensure that each level from each IV is crossed with each level from every other IV

What's in store

		Factor I	
		level l	level 2
Factor	level I	823	847
2	Level 2	810	897

What's in store

What's in store

Reminder: IVs, Factors, & levels

- IV = independent variable or factor
- Factor and IV are interchangeable terms

 Levels = the number of different manipulations for each factor (or IV)

One factor 2 levels

Independent Variable I (Factor)			
Level I	Level 2		
DV	DV		

Indepe	Independent Variable I (Factor)			
Level I	Level 2	Level 3		
DV	DV	DV		

One factor 3 levels

Formally describing Factorial designs

- The numbering system defines
 - The number of independent variables
 - The number of levels for each variable

How many IVs? How many levels?

2x4x2

3x6x4x2

2x3x2x2x4

Presentation Rate

2 sec/word 4 sec/word **Imagery** Type of training Rote

Conditions

 Conditions = the number of combinations of the different levels of each independent variable

- Calculate the possible number of combinations by multiplication
 - 2x2 = 4
 - 2x3 = 6
 - 2x2x2 = 4x2 = 8
 - 2x6x3 = 12x3 = 36

Main effects & Interactions

Main Effect:

 The influence of a single independent variable, collapsed across all other independent variables

Interaction

 When the influence of one independent variable depends on the level of another independent variable

2x2 Walk through

- Identify and compute main effects for each
 IV from a table of means
- Identify and compute the interaction from a table of means
- Describe the pattern of each effect in a sentence

Example means from a 2x2 design

Main Effect for IVI

Question: On average is there a difference between the levels of IV 1?

Main Effect for IVI

The average effect of IV I, collapsed over IV 2

Describing the pattern of IVI Main effect

The main effect for IVI was significant. The mean for level I (7.5) was 15 points lower than the mean for level 2 (22.5).

Main Effect for IV2

Question: On average is there a difference between the levels of IV 2?

Main Effect for IV2

The average effect of IV 2, collapsed over IV I

Describing the pattern of IV2 Main effect

The main effect for IV2 was significant. The mean for level I (10) was 10 points lower than the mean for level 2 (20).

IVI x IV2 Interaction

Question: Does the effect of one IV depend on the levels of the other IV?

IVI x IV2 Interaction

Compare the effect of IVI for each level of IV2

			IV1			IV I Effects (Difference	
			1	2			Interaction
IV2		A	5	15	15-5	10	20-10 =10
	IV2	В	10	30	30-10	20	20-10 -10

Describing the pattern of the IVIxIV2 Interaction

The IVI x IV2 interaction was significant.

The difference between level I (5) and 2 (15) of IVI in level A of IV2 was I0 points smaller than the difference between level I (10) and 2 (30) of IVI in level B of IV2.

NOTE: in a 2x2 design there is only one interaction... But, it can be computed two different ways

IVI x IV2 Interaction

Compare the effect of IVI for each level of IV2

Examples from Lab

- I) Task-switching
- 2) Stroop

Are task-switching costs smaller for women than men?

Task Sequence		
Repeat Switch		
Mean RT	Mean RT	

Gender		
Women	Men	
Mean RT	Mean RT	

Crossing means that each level of one IV, is experienced for each level of the other IV

Paper 2 example Crossing two IVs

Women		
Repeat	Switch	
Mean RT	Mean RT	

E.g., Both Women and Men experience repeat and switch trials

Paper 2 example 2x2 table

IV 1:Task IV 2: Gender			Ger	ıder
			Women	Men
Task		Repeat	700	700
	Sequence	Switch	750	800

		Gender	
		Women	Men
C	Repeat	700	700
Seq	Switch	750	800

means: 725 750

Main effect Gender = 25

		Gender	
		Women	Men
Seq	Repeat	700	700
	Switch	750	800

means:

700

775

Main effect Task-sequence = 75

		Gender	
		Women	Men
Seq	Repeat	700	700
	Switch	750	800

Interaction?

		Gender	
		Women	Men
Seq	Repeat	700	700
	Switch	750	800

What kind of question is the interaction asking?

Is the switch cost smaller for women than men?

		Gender	
		Women	Men
Seq	Repeat	700	700
	Switch	750	800

One more time...

2x2 design for Stroop

		Congruency	
		Congruent	Incongruent
Suggestion to view words	Suggestion		
as nonsense symbols	No Suggestion		

Main effects

- Main Effect:
 - The influence of a single independent variable, collapsed across all other independent variables

Main effects

Main Effect:

- The influence of a single independent variable, collapsed across all other independent variables
- The number of main effects in a design corresponds to the number of IVs in the design

Overall predictions for Stroop

		Congruency	
		Congruent	Incongruent
Suggestion to view words as nonsense symbols	Suggestion	310	310
	No Suggestion	350	380

Note: these are fake data

	Congr		gru	ruency		
		C	ongruent	t I	ncongruer	۱t
Suggestion to view	Suggestion		310		310	
words as nonsense symbols	No Suggestion		350		380	
			330	·	345	

Main effect of Task

		Congruency		
		Congruent	Incongruent	
Suggestion to view	Suggestion	310	310	310
words as nonsense symbols	No Suggestion	350	380	365

Bar Graph format

Main effect of Suggestion

Main effect of Suggestion compares the average of all Suggestion conditions (congruent & incongruent) against the average of all No-Suggestion conditions (congruent & incongruent)

Line Graph Format

Main effect of Suggestion

Main effect of Suggestion compares the average of all Suggestion conditions (congruent & incongruent) against the average of all No-Suggestion conditions (congruent & incongruent)

Main effects & Interactions

Main Effect:

 The influence of a single independent variable, collapsed across all other independent variables

Interaction

 When the influence of one independent variable depends on the level of another (or several other) independent variable(s) Remember: Main effects refer to differences between row means, or column means

Suggestion

to view

words as

nonsense

symbols

Suggestion

No

Suggestion

Congruency		
Congruent	Incongruent	
310	310	
350	380	

310

365

330 345

Remember: Main effects refer to differences between row means, or column means

Suggestion

to view

words as

nonsense

symbols

Suggestion

No

Suggestion

Congruency		
Congruent	Incongruent	
310	310	
350	380	

365

310

330

345

Interaction?

Interactions occur when the difference between levels of one factor, depends on the level of another factor

Suggestion

to view

words as

nonsense

symbols

or, el of	Congruency		
	Congruent	Incongruent	
Suggestion	310	310	
No Suggestion	350	380	

Interactions occur when the difference between levels of one factor, depends on the level of another factor

one factor, on the level of er factor		Congruency	
		Congruent	Incongruent
Suggestion to view words as nonsense symbols	Suggestion	310 ←	→ 310
	No Suggestion	350 ←	→ 380

Interactions occur when the difference between levels of one factor, depends on the level of another factor

Suggestion

to view

words as

nonsense

symbols

or, el of	Congruency		
	Congruent	Incongruent	
Suggestion	310 ←	→ 310	
No Suggestion	350 ←	→ 380	

Difference between incongruent & congruent

310-310 = 0

380-350 = 30

The difference between congruent and incongruent is larger for no-suggestion than suggestion

The difference between congruent and incongruent is larger for no-suggestion than suggestion

Main effects & Interactions

Main Effect:

 The influence of a single independent variable, collapsed across all other independent variables

Interaction

 When the influence of one independent variable depends on the level of another independent variable

Main effects & Interactions

- In a simple 2x2, there are 8 possibilities
 - main effect for factor I only
 - main effect for factor 2 only
 - main effects for both factors, No interaction
 - main effect for factor I, and an interaction
 - main effect for factor 2, and an interaction
 - main effects for both factors, and an interaction
 - Only an interaction, no main effects
 - No main effects, and No interaction