ANONYMOUS AUTHOR(S)

A COMBINATORS

 Filter. The filter combinator $M \mid_{\sigma} M' \triangleq (S_{\text{filter}} \times S_M \times S_{M'}, \rightarrow_{\text{filter}}, (\sigma, \sigma_M^0, \sigma_{M_f}^0))$ takes in a module $M \in \text{Module}(E_1)$ and a filter $M' \in \text{Module}(\text{FilterEvents}(E_1, E_2))$ and then produces a module with events drawn from E_2 . The states of the filter combinator are given by $S_{\text{filter}} \triangleq \{P, F\} \cup \{P(e) \mid e \in E_1\} \cup \{F(e) \mid e \in E_1\}$ and the transitions are depicted in Fig. 1. The events of the filter module are drawn from the set

```
\mathsf{FilterEvents}(E_1, E_2) \triangleq \{\mathsf{Receive}(e_1) \mid e_1 \in E_1\} \cup \{\mathsf{Emit}(e_2) \mid e_2 \in E_2\} \cup \{\mathsf{Return}(e_1) \mid e_1 \in \mathsf{option}(E_1)\}
```

where $Receive(e_1)$ is for accepting an incoming event, $Emit(e_2)$ is for emitting an outgoing event, and $Return(e_1)$ is for returning control to the inner module. In the last case, the event e_1 is optional to allow us to force the inner module to emit the event e_1 next (*i.e.*, all visible transition of the inner module except ones emitting event e_1 are blocked).

Linking. The linking operator $M_1 \oplus_X M_2$ is defined on modules $M_1, M_1 \in \text{Module}(E_{?!})$ where $E_{?!}$ is (an event type that is isomorphic to) $E \times \{?,!\}$. The parameter $X = (S, \leadsto, s^0)$ determines how the events are linked. It consists of a set of linking-interal states S, an initial state $s^0 \in S$, and a relation $\leadsto \subseteq (D \times S \times E) \times ((D \times S \times E) \cup \{\frac{1}{2}\})$ describing how events should be translated. Formally, linking can be defined as $M_1 \oplus_X M_2 \triangleq M_1 \times M_2 \Vdash \text{link}_X$.¹ The module link_X is defined as link_X $\triangleq (S_{\text{link}} \times S_X, \to_{\text{link}}, (\text{Wait}, s_X^0))$ where $S_{\text{link}} \triangleq (\{\text{Wait}, \text{Ub}\} \cup \{\text{Emit}(e, \sigma) \mid e \in E_{?!}, \sigma \in S_{\text{link}}\} \cup \{\text{Return}(e) \mid e \in \text{option}(E_{?!})\})$ and \to_{link} is defined in Fig. 2.

(Kripke) wrappers. The combinator $\lceil M \rceil_X$ translates a modules with events E_1 to a module with events E_2 . This combinator is parametrized by $X = (S, R, \neg, \neg, s^0, F^0)$ where S is a set of states and s^0 is an initial state. These states were omitted in the main paper for simplicity. They don't give additional expressive power but make writing the $\lceil \cdot \rceil_{r \rightleftharpoons a}$ wrapper more pleasant. \neg and \neg are relations that describe how the wrapper transforms the ingoing and outcoming events. Concretely, \neg describes how to translate an event $e_2 \in E_2$ to an event $e_1 \in E_1$ and \neg describes the translation from $e_1' \in E_1$ to $e_2' \in E_2$.

As mentioned in the paper, these relations are separation logic relations. As such, they are of type $E_1 \times S \times E_2 \times S \to UPred(R)$. The second component of X is a resource algebra R [Jung et al. 2018] that determines a separation logic of uniform predicates over the resource algebra UPred(R). F^0 denotes the initial set of resources owned by the wrapper. We define $\lceil M \rceil_X \triangleq M \mid_{\mathbb{F}} \llbracket \text{state}(s^0, F^0) \rrbracket_s$ where the filter module is given by the following Spec program:²

```
 \begin{split} & \text{state}(s_2, F_2) \triangleq_{\text{coind}} \\ & \exists e_2; \text{vis}(\text{Emit}(e_2)); \forall e_1, s_1, F_1; \text{assume}(\text{sat}(F_1 * F_2 * (e_1, s_1) \leftarrow (e_2, s_2))); \text{vis}(\text{Return}(e_1)); \\ & \exists e_1'; \text{vis}(\text{Receive}(e_1')); \exists e_2', s_2', F_2'; \text{assert}(\text{sat}(F_1 * F_2' * (e_1', s_1) \rightarrow (e_2', s_2'))); \text{vis}(\text{Emit}(e_2')); \\ & \text{state}(s_2', F_2') \end{aligned}
```

 $^{^{1}}$ The Coq development defines linking via more low-level combinators that we omit from the presentation here. Also the Coq development allows undefined behavior via a Boolean on the right side of \leadsto instead of a separate $\frac{1}{2}$ result.

FILTER-STEP-PROG-RECV $\frac{\sigma_{1} \overset{e}{\to} \Sigma}{(\mathsf{P}(e), \sigma_{1}, \sigma_{2}) \overset{\tau}{\to}_{\mathsf{filter}} \left\{ (\mathsf{P}, \sigma'_{1}, \sigma_{2}) \ \middle| \ \sigma'_{1} \in \Sigma \right\}} \qquad \frac{\sigma_{1} \overset{e}{\to} \Sigma}{(\mathsf{P}, \sigma_{1}, \sigma_{2}) \overset{\tau}{\to}_{\mathsf{filter}} \left\{ (\mathsf{F}(e), \sigma'_{1}, \sigma_{2}) \ \middle| \ \sigma'_{1} \in \Sigma \right\}}$ FILTER-STEP-FILTER-EMIT $\frac{\sigma_2 \xrightarrow{\mathsf{Return}(e)} \Sigma}{(\mathsf{F}, \sigma_1, \sigma_2) \xrightarrow{\tau_{\mathsf{filter}}} \left\{ (\mathsf{if} \ e = \mathsf{Some}(e') \ \mathsf{then} \ \mathsf{P}(e') \ \mathsf{else} \ \mathsf{P}, \sigma_1, \sigma_2') \ \middle| \ \sigma_2' \in \Sigma \right\}}$ Fig. 1. Definition of $\rightarrow_{\text{filter}}$. $to(d, e) = \begin{cases} Return(left(e?, L)) & \text{if } d = L \\ Return(right(e?, R)) & \text{else if } d = R \\ Emit(e!, Return(None)) & \text{else if } d = E \end{cases}$ LINK-STEP-WAIT-L LINK-STEP-WAIT-L-UB $\frac{(\mathsf{L},s,e) \rightsquigarrow (d,s',e')}{(\mathsf{Wait},s) \xrightarrow{\mathsf{Receive}(\mathsf{left}(e!,d))}_{\mathsf{link}} \{(\mathsf{to}(d,e'),s')\}} \xrightarrow{(\mathsf{L},s,e) \rightsquigarrow \frac{\mathsf{L}}{\mathsf{L}}}_{\mathsf{link}} \frac{(\mathsf{L},s,e) \rightsquigarrow \frac{\mathsf{L}}{\mathsf{L}}}{(\mathsf{Wait},s) \xrightarrow{\mathsf{Receive}(\mathsf{left}(e!,d))}_{\mathsf{link}} \{(\mathsf{Ub},s)\}}$ $\frac{(\mathsf{R}, s, e) \rightsquigarrow (d, s', e')}{(\mathsf{Wait}, s) \xrightarrow{\mathsf{Receive}(\mathsf{right}(e!, d))}_{\mathsf{link}} \{(\mathsf{to}(d, e'), s')\}} \xrightarrow{\mathsf{LINK-STEP-WAIT-R-UB}}_{\mathsf{Wait}, s) \xrightarrow{\mathsf{Receive}(\mathsf{right}(e!, d))}_{\mathsf{link}} \{(\mathsf{Ub}, s)\}}$ LINK-STEP-WAIT-R $\frac{(\mathsf{E}, s, e) \rightsquigarrow (d, s', e')}{(\mathsf{Wait}, s) \xrightarrow{\mathsf{Receive}(\mathsf{env}(d))}_{\mathsf{link}} \{(\mathsf{Emit}(e'?, \mathsf{to}(d, e')), s')\}} \xrightarrow{\mathsf{LINK-STEP-WAIT-N-UB}}_{\mathsf{Wait}, s) \xrightarrow{\mathsf{Receive}(\mathsf{env}(d))}_{\mathsf{link}} \{(\mathsf{Ub}, s)\}}$ $\frac{\mathsf{LINK-STEP-EMIT}}{(\mathsf{Emit}(e, \sigma), s) \xrightarrow{\mathsf{Emit}(e)}_{\mathsf{link}} \{(\sigma, s)\}} \xrightarrow{\mathsf{LINK-STEP-RETURN}}_{\mathsf{Return}(e), s) \xrightarrow{\mathsf{Return}(e)}_{\mathsf{link}} \{(\mathsf{Wait}, s)\}} \xrightarrow{\mathsf{LINK-STEP-UB}}_{\mathsf{link}} \emptyset$ Fig. 2. Definition of \rightarrow_{link} .

²The Coq development defines an equivalent module directly using a step relation, but we give the definition here using Spec for readability.

```
Instr \ni c \triangleq syscall; c \mid upd(x, r. v); c \mid ldr(x_1, x_2, v. v'); c \mid str(x_1, x_2, v. v'); c \mid jump
```

Fig. 3. Micro-Instructions of Asm

Intuitively, state(s_2 , F_2) works as follows: Given an initial state s_2 and a proposition describing resource ownership of the translation F_2 , state synchronizes with the environment on an event e_2 . Then it angelically chooses an event e_1 for the inner module, a new state s_1 , ownership of the environment F_1 , and a proof that the ownership of the translation together with the ownership of the environment and the precondition $(e_1, s_1) \leftarrow (e_2, s_2)$ is satisfiable. Then state sends e_1 to the inner module M. Next, it receives an event e_1' from M and (demonically) chooses an event e_2' to emit to the environment, a new state s_2' , new ownership of the translation F_2' , and a proof that the ownership of the translation together with the ownership of the environment and the postcondition $(e_1', s_1) \rightharpoonup (e_2', s_2')$ is satisfiable. After emitting e_2' , the process repeats with state s_2' and F_2' .

B MICRO-INSTRUCTIONS OF Asm

Inspired by Sammler et al. [2022], instructions c in Asm are sequences of *micro instructions* (i.e., simple instructions that, when composed together, form an actual instruction), depicted in Fig. 3. The instruction syscall; c does a system call and then executes c. The instruction upd(x, r, v); c updates the register c according to the map c is applied to the current register file c and then executes c. The instruction upd(x, r, v); c takes the value stored in c applies the transformation c is c to it to obtain an address, loads from the memory at that address, stores the result in c applies the transformation c in c and then executes c. The instruction jump reads the c register and then jumps to the address stored there.

The reason for the micro instruction representation is that we can represent a large instruction set by chaining few primitives. For example, the instructions used in print are derived as follows:

```
\label{eq:syscall} \begin{split} \text{ret} \triangleq \mathsf{upd}(pc, r. \ r(x30)); \mathsf{jump} \qquad & \mathsf{syscall} \triangleq \mathsf{syscall}; \mathsf{next} \qquad & \mathsf{mov} \ x, \ v \triangleq \mathsf{upd}(x, r. \ v); \mathsf{next} \\ \\ & \mathsf{sle} \ x_1, \ x_2, \ x_3 \triangleq \mathsf{upd}(x_1, r. \ \mathsf{if} \ r(x_2) \leq r(x_3) \ \mathsf{then} \ 1 \ \mathsf{else} \ 0); \mathsf{next} \end{split}
```

where we abbreviate next $\triangleq \text{upd}(pc, r. r(pc) + 1)$; jump.

C SEMANTIC LINKING FOR Asm

The full definition of the semantic linking relation \leadsto for Asm can be found in Fig. 4. Compared to the excerpt shown in the paper, it contains two additional cases, ASM-LINK-SYSCALL and ASM-LINK-SYSCALL return. The rule ASM-LINK-SYSCALL makes sure system calls are passed on to the environment (and never come from the environment). When a system call is triggered, we store the current turn d in the private state of the linking operator. This way, we can make sure that when we return from a system call (ASM-LINK-SYSCALL-RETURN), the execution continues with the module that triggered the system call.

D Rec

 The language Rec is a simple, high-level language with arithmetic operations, let bindings, memory operations, conditionals, and (potentially recursive) function calls (depicted in Fig. 5). The libraries R of Rec are lists of function declarations. Each function declaration contains the name of the function f, the argument names \overline{x} , local variables \overline{y} which are allocated in the memory, and a

1:4 Anon.

Fig. 5. Grammer of Rec.

Runtime Expr \ni E $\triangleq \cdots$ | alloc_frame (x, n) E | free_frame (ℓ, n) E | Ret(b, E) | Wait(b) | ub

function body e. The set of function names |R| of a library R is defined as the names of the functions in the list R.

Module semantics. The semantics of an Rec library R is the module $[R]_r$. The states of the module are of the from $\sigma = (E, m, R)$ where E is the current *runtime expression* (explained below). We write (\rightarrow_r) for the transition system (shown in Fig. 6) and the initial state is (Wait(false), \emptyset , R).

To define the transition relation \rightarrow_{Γ} , we extend the static expressions \mathbf{e} to runtime expressions \mathbf{E} , which have operations for allocating and deallocating stack frames as well as two distinguished expressions $\text{Ret}(b, \mathbf{E})$ and Wait(b). These expressions are used to control when the module emits call and return events: Initially, the module is waiting and willing to accept any incoming call to the functions of the library (see REC-START), wrapped in the $\text{Ret}(b, \cdot)$ expression to ensure an event is emitted after the function finishes executing (see REC-RET-RETURN). A call to functions of the library (see REC-CALL-INTERNAL), will trigger the allocation of the local variables and, subsequently, the execution of the function body. A call to an external function (see REC-CALL-EXTERNAL) will emit a Call!(f, $\overline{\mathbf{v}}$, m) and proceed to the waiting state. The flag for the waiting becomes true, because the module is now willing to accept a return to the function call that was just issued (see REC-RET-INCOMING). The language Rec is an evaluation-context based language, meaning reductions can happen inside of an arbirary evalution context (see REC-EVAL-CTX). The definition of the evaluation contexts \mathbf{K} can be found in the Coq development [Anonymous 2022].

Linking. Syntactically, linking of two Rec libraries (*i.e.*, $R_1 \cup_r R_2$) denotes merging the function definitions in R_1 and R_2 . In case of overlapping function names, the function declaration of the left library is chosen. (This choice is arbitrary.) If we semantically link two Rec modules (*i.e.*, $M_1 \stackrel{d_1}{\oplus} \stackrel{d_2}{\uparrow} M_2$), then we have to synchronize based on the function call and return events. To define the linking $M_1 \stackrel{d_1}{\oplus} \stackrel{d_2}{\uparrow} M_2$, we use the combinator $M_1 \oplus_r M_2$. In the case of Rec, we pick the relation

197

198

200

202

204

206

220

222

224225226

227

232 233

234

235

236237238

239240241242

243

244 245

```
(v_1 \oplus v_2, m, R) \xrightarrow{\tau} \{(v, m, R) \mid \text{eval}_{\Phi}(v_1, v_2, v)\}
                                                          (!v_1, m, R) \xrightarrow{\tau} \{(v_2, m, R) \mid \exists \ell. v_1 = \ell \land m(\ell) = v_2\}
                              (v_1 \leftarrow v_2, m, R) \xrightarrow{\tau} \{(v_2, m[\ell \mapsto v_2], R) \mid \exists \ell. v_1 = \ell \land \text{heap alive}(m, \ell)\}
                   (if v then e_1 else e_2, m, R) \stackrel{\tau}{\rightarrow}_{\Gamma} {(e, m, R) | \exists b. \ v = b \land \text{if } b \text{ then } e = e_1 \text{ else } e = e_2}
          REC-LET REC-UB REC-VAR (let x := v ine, m, R) \xrightarrow{\tau}_{\Gamma} \{(e[v/x], m, R)\} (ub, m, R) \xrightarrow{\tau}_{\Gamma} \emptyset (x, m, R) \xrightarrow{\tau}_{\Gamma} \emptyset
                     REC-ALLOC
                                                                                       heap alloc list(\overline{n}, \overline{\ell}, m_1, m_2)
                     (\text{alloc } \overline{(y, n)} \text{ e, m}_1, R) \xrightarrow{\tau}_{\Gamma} \left\{ (\text{free\_frame } \overline{(\ell, n)} \text{ (e}[\overline{\ell}/\overline{y}]), m_2, R) \middle| \forall m \in \overline{n}. m > 0 \right\}
                           (\text{free\_frame } \overline{(\ell,n)} \text{ v}, \text{m}_1, \text{R}) \xrightarrow{\tau}_{\Gamma} \left. \left\{ (\text{v}, \text{m}_2, \text{R}) \, \middle| \, \text{heap\_free\_list}(\overline{(\ell,n)}, \text{m}_1, \text{m}_2) \right\} \right.
                                                        REC-START
                                                         \frac{f \in \mathbb{R}}{(\text{Wait}(b), m, \mathbb{R})} \xrightarrow{\text{Call}?(f, \overline{v}, m')}_{r} \{(\text{Ret}(b, f(\overline{v})), m', \mathbb{R})\}
                                                   REC-CALL-INTERNAL
                                                   \frac{(\mathsf{fn}\,\mathsf{f}(\overline{x})\triangleq\overline{\mathsf{local}\,y[n]};\,\mathsf{e})\in\mathsf{R}}{(\mathsf{f}(\overline{\mathsf{v}}),\mathsf{m},\mathsf{R})\stackrel{\tau}{\to}_{\Gamma}\left\{(\mathsf{alloc}\,\overline{(y,n)}\;(\mathsf{e}[\overline{\mathsf{v}}/\overline{x}]),\mathsf{m},\mathsf{R})\,\middle|\,|\overline{x}|=|\overline{\mathsf{v}}|\right\}}
REC-CALL-EXTERNAL
\frac{f \notin R}{(f(\overline{v}), m, R) \xrightarrow{Call!(f,\overline{v},m)}_{r} \{(Wait(true), m, R)\}} \xrightarrow{REC-RET-INCOMING} (Wait(true), m, R) \xrightarrow{Return?(v,m')}_{r} \{(v, m', R)\}
                                                              REC-RET-RETURN
                                                              (Ret(b, v), m, R) \xrightarrow{Return!(v,m)} \{(Wait(b), m, R)\}
                                                         REC-EVAL-CTX
                                                                                                  (E, m, R) \xrightarrow{e}_{r} \Sigma
                                                          (\underline{\mathsf{K}},\underline{\mathsf{m}},\mathsf{K}) \to_{\mathsf{r}} \Sigma
(\mathsf{K}[\mathsf{E}],\mathsf{m},\mathsf{R}) \xrightarrow{e}_{\mathsf{r}} \{(\mathsf{K}[\mathsf{E}'],\mathsf{m}',\mathsf{R}') \mid (\mathsf{E}',\mathsf{m}',\mathsf{R}') \in \Sigma\}
```

Fig. 6. Operational semantics of Rec.

R depicted in Fig. 7. The most interesting difference to Asm is that linking in Rec has to build up and then wind down a call-stack, which is maintained as the internal state of (\leadsto) .

Anon.

```
1:6
                                             REC-LINK-CALL
246
                                              (d' = \mathsf{L} \land \mathsf{f} \in \mathsf{d}_1) \lor (d' = \mathsf{R} \land \mathsf{f} \in \mathsf{d}_2) \lor (d' = \mathsf{E} \land \mathsf{f} \notin \mathsf{d}_1 \cup \mathsf{d}_2)
247
                                                                         (d, \overline{d_s}, Call(f, \overline{v}, m)) \rightsquigarrow_{d_1, d_2} (d', d :: \overline{d_s}, Call(f, \overline{v}, m))
249
                                                                     REC-LINK-RET
                                                                      \frac{d \neq d'}{(d, d' :: \overline{d_s}, \text{Return}(v, m)) \rightsquigarrow_{d_1, d_2} (d', \overline{d_s}, \text{Return}(v, m))}
251
253
                                                                   Fig. 7. Definition of semantic linking relation \rightsquigarrow_{d_1,d_2} for Rec.
255
257
                                 (\mathbf{e}_1, \mathbf{s}_1) \rightarrow (\mathbf{e}_2, \mathbf{s}_2) \triangleq \exists \mathbf{r} \ \mathbf{m} \ \overline{\mathbf{v}}. \ \mathbf{e}_2 = \mathbf{Jump!}(\mathbf{r}, \mathbf{m}) * \mathsf{inv}(\mathbf{r}(\mathbf{sp}), \mathbf{m}, \mathsf{mem}(\mathbf{e}_1)) *
                                                                                   (\exists f \ \overline{v} \ m. \ e_1 = Call!(f, \overline{v}, m) * f \notin d * r(x30) \in d * a_f = r(pc) *
                                                                                        s_2 = \mathbf{r} :: s_1 * \bigvee_{\mathbf{v}, \mathbf{v} \in \overline{\mathbf{v}}, \mathsf{take}(|\overline{\mathbf{v}}|, \mathbf{r}(\mathbf{x0}...\mathbf{x8}))} \mathbf{v} \leftrightarrow \mathbf{v}
261
                                                                                    \forall \exists v \ m \ r'. \ e_1 = Return!(v, m) * r' :: s_2 = s_1 * r(pc) = r'(x30) *
263
                                                                                         r(x19...x29, sp) = r'(x19...x29, sp) * \lor \leftrightarrow r(x0))
                                 (\mathbf{e}_1, \mathbf{s}_1) \leftarrow (\mathbf{e}_2, \mathbf{s}_2) \triangleq \exists \mathbf{r} \ \mathbf{m} \ \mathbf{v}. \ \mathbf{e}_2 = \mathbf{Jump}?(\mathbf{r}, \mathbf{m}) * \mathsf{inv}(\mathbf{r}(\mathbf{sp}), \mathbf{m}, \mathsf{mem}(\mathbf{e}_1)) *
267
                                                                                  (\exists f \ \overline{v} \ m. \ e_1 = Call?(f, \overline{v}, m) * f \in d * r(x30) \notin d * a_f = r(pc) *
```

Fig. 8. Definition of (\leftarrow) and (\rightharpoonup) for $[\cdot]_{r \rightleftharpoons a}$.

 $s_1 = \mathbf{r} :: s_2 * \mathbf{v} \leftrightarrow \mathbf{v}$ $v,v \in \overline{v}, take(|\overline{v}|, r(x0...x8))$

 $\forall \exists v \ m \ r'. e_1 = Return?(v, m) * r' :: s_1 = s_2 * r(pc) = r'(x30) *$

 $r(x19...x29, sp) = r'(x19...x29, sp) * \lor \leftrightarrow r(x0)$

[·]_{r⇒a} WRAPPER

271

273

275

277 278 279

281

282

283

284

285

286

287

289

290

291

292

293 294 Before we can give the definition of the wrapper $\lceil \cdot \rceil_{r=a}$, we first need to describe its full form: $\lceil M \rceil_{r \rightleftharpoons a}^{a_{-},d,d,m}$. In particular, the wrapper is parametrized by a mapping a_{-} from Rec function names to Asm addresses, by the instruction address of the Asm code d, by the function names of the Rec code d, and by a (fragment of) the initial memory m, which can be used for global variables.

Next, we define a resource algebra $R_{\Gamma \rightleftharpoons a}$ that gives rise to a separation logic with the following predicates:

- p \leftrightarrow v states that the Rec block id p is mapped to Asm address v. We lift this relation to locations by $\ell \leftrightarrow \mathbf{v}_2 \triangleq \exists \mathbf{v}_1$. ℓ -blockid $\leftrightarrow \mathbf{v}_1 * \mathbf{v}_2 = \mathbf{v}_2 + \ell$ offset. and to values (i.e., $\mathbf{v} \leftrightarrow \mathbf{v}$) by relating Rec integers with the same integer in Asm and Boolean values with 0 and 1.
- $\mathbf{v}_1 \mapsto_a \mathbf{v}_2$ asserts ownership of the address \mathbf{v}_1 in Asm memory m and asserts that it contains the value $\mathbf{v_2}$.
- $p \mapsto_{\Gamma} V$ where V is a map from offsets to values asserts that the block with id p contains exactly V.

• inv(v, m, m) asserts that m and m are in an invariant such that all the aforementioned assertions (i.e., $p \leftrightarrow v$, $v_1 \mapsto_a v_2$, and $p \mapsto_r V$) have the meaning described above and v points to a valid stack.

This separation logic is used to define the relations (\leftarrow) and (\rightharpoonup) (depicted in Fig. 8) that are used in the definition of $\lceil \cdot \rceil_{r \rightleftharpoons a}$. Note that these definitions build on the definition of the Kripke wrapper in Appendix A as they maintain the state s for tracking the call stack in addition to the separation logic predicates. We define:

F COROUTINE LINKING

Formally, $M_1 \oplus_{\text{coro}} M_2$ is defined using the generic linking operator $M_1 \oplus_X M_2$. In particular, we define $M_1 \stackrel{d_1}{\oplus} \bigoplus_{\text{coro}}^{d_2,f} M_2 \triangleq M_1 \oplus_{X_{\text{coro}}} M_2$ where

$$X_{coro} \triangleq ((D \times option(FnName)), \leadsto_{coro}^{d_1,d_2}, (E, Some(f)))$$

Note that this linking operator is parametrized by a function name f of the initial function on the right side the linking (stream in the example). The effect of linking is described by \leadsto_{coro} shown in Fig. 9. There are many transitions, but most of them are straight-forward The rule $coro_{LINK-YIELD}$ encodes the core idea of \bigoplus_{coro} : If either the left side or the right side performs a call to yield, control switches to the other side, and the event is transformed to a Return?(v, m) event. There is one special case to consider: When M_1 calls yield the first time, there is no yield in M_2 from which to return. Instead this first call to yield becomes the invocation of a designated start function f in M_2 (stream in the example), as stated by $coro_{-LINK-L-YIELD-INIT}$. $coro_{-LINK-INIT}$ handles the initial call from the environment to M_1 . If the environment tries to call a function in M_1 , the behavior is undefined ($coro_{-LINK-INIT-UB}$). $coro_{-LINK-L-RETURN}$ handles the return from M_1 to the environment. M_2 should never return and thus $coro_{-LINK-R-RETURN}$ states that doing so would lead to undefined behavior. Finally, $coro_{-LINK-CALL}$ and $coro_{-LINK-E-RETURN}$ allow both M_1 and M_2 to call external function (like print). However, M_1 and M_2 cannot directly call a function in the other module (without going through yield) ($coro_{-LINK-CALL-UB}$) and the environment may not call them back recursively ($coro_{-LINK-CALL-UB}$).

REFERENCES

Anonymous. 2022. DimSum: A Decentralized Approach to Multi-language Semantics and Verification (Coq development). Submitted as supplementary material (packaged with the appendix).

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. 2022. Islaris: verification of machine code against authoritative ISA semantics. In *PLDI*. ACM, 825–840. https://doi.org/10.1145/3519939.3523434 1:8 Anon.

344

345

346 347

348

349 350 351

353

355

356357358

359 360 361

363

365

367

369

370

371

373

374375376

377

378 379 380

```
CORO-LINK-YIELD
                                                          (d = \mathsf{L} \wedge d' = \mathsf{R}) \vee (d = \mathsf{R} \wedge d' = \mathsf{L})
                       (d, (d, None), Call(yield, [v], m)) \rightsquigarrow_{coro}^{d_1, d_2} (d', (d', None), Return(v, m))
                                                     CORO-LINK-YIELD-UB
                                                     \frac{d = \mathsf{L} \lor d = \mathsf{R} \qquad |\overline{\mathsf{v}}| \neq 1}{(d, (d, \mathsf{None}), \mathsf{Call}(\mathsf{yield}, \overline{\mathsf{v}}, \mathsf{m})) \rightsquigarrow_{\mathsf{coro}}^{d_1, d_2} \notin}
                    CORO-LINK-L-YIELD-INIT
                    (L, (L, Some(f)), Call(yield, [v], m)) \rightsquigarrow_{coro}^{d_1, d_2} (R, (R, None), Call(f, [v], m))
                                                  CORO-LINK-L-YIELD-INIT
                                                  \frac{|V| \neq 1}{(L, (L, Some(f)), Call(yield, \overline{V}, m)) \rightsquigarrow_{coro}^{d_1, d_2} \neq}
 \frac{f \in |\mathsf{M}_1|}{(\mathsf{E}, (\mathsf{E}, \mathsf{f}^0), \mathsf{Call}(\mathsf{f}, \overline{\mathsf{v}}, \mathsf{m})) \rightsquigarrow_{\mathsf{coro}} (\mathsf{L}, \mathsf{Call}(\mathsf{f}, \overline{\mathsf{v}}, \mathsf{m}), (\mathsf{L}, \mathsf{f}^0)) } \qquad \frac{\mathsf{coro-link-init-ub}}{(\mathsf{E}, (\mathsf{E}, \mathsf{f}^0), \mathsf{Call}(\mathsf{f}, \overline{\mathsf{v}}, \mathsf{m})) \rightsquigarrow_{\mathsf{coro}} \xi} 
 CORO-LINK-L-RETURN
                                                                                                                                  CORO-LINK-R-RETURN
 (L, (L, f^0), Return(v, m)) \rightsquigarrow_{coro} (E, (E, f^0), Return(v, m)) (R, R, Return(v, m)) \rightsquigarrow_{coro} (E, (E, f^0), Return(v, m))
                                       CORO-LINK-CALL
                                        f ≠ yield
                                                                (d = L \land f \notin |M_2|) \lor (d = R \land f \notin |M_1|)
                                        (L, (d, f^0), Call(f, \overline{v}, m)) \rightsquigarrow_{coro} (E, (d, f^0), Call(f, \overline{v}, m))
                                       CORO-LINK-CALL-UB
                                                              (d = L \land f \in |M_2|) \lor (d = R \land f \in |M_1|)
                                        f \neq yield
                                                              (L, (d, f^0), Call(f, \overline{v}, m)) \rightsquigarrow_{core} 4
                                      CORO-LINK-E-RETURN
                                      \frac{(s = L \land d = L) \lor (s = R \land d = R)}{(E, (d, f^0), e) \rightsquigarrow_{coro} (d, (d, f^0), e)}
                                       CORO-LINK-E-CALL-UB
                                       \frac{(s = L \land d = L) \lor (s = R \land d = R)}{(E, (d, f^0), e) \rightsquigarrow_{COYD} f}
```

Fig. 9. Definition of linking relation $\rightsquigarrow_{coro}^{d_1,d_2}$.