(A)气体的体积

(C)气体分子的平均动量

(A) 气体的膨胀系数不同

6. 同种气体的摩尔定压热容大于摩尔定体热容,这是由于

	マ 色 エ	- JI, -L-22	4 17 /10	兴左军	この発掘	· // +	.e	ı	- 	1, 71,
7	齐鲁工业大学 17/18 学年第			3 <u>2 字</u> 期《 <u>天字》</u> (A 卷)						
•	题号	_	=	Ξ	四	五.	六	七	总分	
	得分									
	得分		一、选	上择题(每	题 3 分,	共30分)				
	阅卷人]	,		$a = -Av^2t$		的 A 为大	于零的常	数,
	当 $t=0$	村, 初速	为v _o ,则	速度 v 与	i时间t的	函数关系	是	,	[]
A	(A) $v =$	$At^2 + v_0$	(B) v =	$= -\frac{1}{2}At^2 -$	$+v_0$ (C)	$\frac{1}{v} = \frac{At^2}{2}$	$+\frac{1}{v_0}$	$(D) \frac{1}{v} = -$	$\frac{At^2}{2} + \frac{1}{v_0}$	
2	2. 机枪每	分钟可射	出质量为	120g的于	产弹900颗	页,子弹身	出的速	率为800n	n·s ⁻¹ ,贝	則射击
	时的平	均反冲力	大小为	、米					[]
	(A) 240	N	(B) 16	N	(C)	0. 267 N		(D) 14400	N	
3	3. 汽车后	窗玻璃可	近似视为	与水平方	了向倾角 e	的光滑斜	斗面,有	一立方体	积木用平	2行于
	斜面的给	细线连接	并置于玻	璃上,汽	车启动时	向前做加	速运动,	当积木	刚脱离余	中面时
	加速度	大小为			<		>		[1
E	(A) gsir	θ	(B) g	$\cos \theta$	(C)	$g \tan \theta$	()	(D) $g \cot \theta$	9	
4	. 体积相同	司的两容	器内分别	盛有两种	小不同的 对	双原子理想	思气体,	若二者压	强相同,	则两
	气体							VIII	[.]
	(A) 内能	一定相同	1		(B) p	内能不等,	温度可	能不同		
	(C)内能	不等,质	5量可能	不同	(D) b	内能不等,	分子数	可能不同	j .	
5	. 根据气体	本动理论	,单原子	理想气体	的温度』	E比于			Γ .	1

(B) 气体分子的平均转动能量

(D) 气体分子的平均平动动能

(B)气体膨胀对外做功

(C)	分子引	力增大

(D)分子温度变化不同

7. 真空中一半径,	R的球面均匀带电 Q ,	在球心 0 处有带电	已量为q的点电荷,	设无穷远	述为
电势零点,则	在球面内距球心r处	P 点的电势为		[]
$({\rm A})\frac{q}{4\pi\varepsilon_0 r}$	(B) $\frac{q+Q}{4\pi\varepsilon_0}$	(C) $\frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} + \frac{Q}{R}\right)$	$(p) \frac{1}{4\pi\varepsilon_0} (p)$	$\frac{Q+q}{R}$	•)
8. 一平行板电容器	器,其极板面积为 S ,	两板间距离为d,	中间放置一厚度为	yt与极板	评行
的铜板, 设两	极板上所带电量分别	为+ Q 和- Q ,则电	容器的电容为	[]
(A) $\frac{\varepsilon_0 S}{d}$	(B) $\frac{\varepsilon_0 S}{d-t}$	(C) $\frac{\varepsilon_0 S}{d} + \frac{\varepsilon_0 S}{t}$	(D) $\frac{\varepsilon_0 S}{t}$		
9. 如右图所示,	无限长的直导线在 A	点弯成半径为R的	圆环,则当通以电		$\binom{\circ}{R}$
流1时,圆心	0 处的磁感应强度大	小等于	[]		A I
(A) $\frac{\mu_0 I}{2\pi R}$	(B) $\frac{\mu_0 I}{4R} (1 + \frac{1}{\pi})$	(C) 0	(D) $\frac{\mu_0 I}{2R}$ (1	$-\frac{1}{\pi}$)	
10. 自感为 0.5H	的线圈中,通有 $i=4$	sin πt A 的电流,当	t=7/4s 时,线圈中	自感电动	力势大
小为		*		[]
(A) $\sqrt{2}\pi/2V$	(B) $\sqrt{2}/2V$	(c) $\sqrt{2}V$	(D) $\sqrt{2}\pi V$		
得分	二、填空题(每空	2分,共20分)			
阅卷人	1. 设机床转轮边线	象上一点的角坐标变	\mathfrak{C} 化规律为 $\theta = 4 + 3t$	$+2t^3$ (SI	门,则
t=2s 时的角	速度 $\omega = $ rad·	s^{-1} , $t=4s$ 时的角力	加速度α=	$rad \cdot s^{-2}$.	
2. 在容积为 1/的	容器内,同时盛有质	量为从和从的两种	单原子分子的理想	气体, 设	 足混合
气体处于平衡	状态时它们的内能相	等,且均为 E, 则混合	合气体压强 p=		<u> </u>
两种分子的平	均速率之比 $\overline{v_1}/\overline{v_2} =$	•		X ·	
3. 工作于500K7	高温热源和 400K 低温	且热源之间的卡诺热	机的效率为;	若效率抗	是高为
$\eta = 40\%$,高	温热源的温度不变,	则低温热源的温度	需降至K。		
4. 带电量为4×1	0-12C的两个等量异号	号点电荷相距2cm,	A点距离两点电荷	均为2cn	n,取
无穷远处为零	序电势参考点,则A点	的电场强度大小为	N·C ⁻¹ ,电	势为	V 。
5. 质量为6kg的	物体放在光滑桌面上	, t = 0时刻静止于	原点,物体在力 F	=3+4x	(SI)的
作用下运动了	3m,则该力所做的	功为J,此	上时物体的速率为_	r	$\mathbf{m} \cdot \mathbf{s}^{-1}$.

得分	
阅卷人	And Andrews and An

三、计算题(本题10分)

设一小球的运动学方程为: $\bar{r} = 2t\bar{t} + (2 - t^2)\bar{t}$ (SI), 试求:

(1) 小球的加速度表达式; (2) 小球的轨迹方程。

得分	
阅卷人	

四、计算题(本题10分)

质量为 m_A 的物体 A 静止在光滑水平桌面上,通过一轻绳与质量为 m_B 的物体 B 连接如图所示,轻绳跨过半径为 R、质量为 m_C 的

定滑轮 C。设滑轮与轴承间的摩擦力忽略不计,且滑轮与绳索间无滑动。求两物体的加速度及绳对物体 A、物体 B 的拉力。

 $\left[\widetilde{n}_{ij}
ight]$ B

得分 阅卷人

五、计算题(本题10分)

质量为0.02kg的氦气,温度由290K升高至300K,若在升温过

程中(1)体积保持不变; (2)压强保持不变。试分别求出以上两种过程气体内能的增量、吸收的热量、以及外界对气体所作的功。($R=8.31J\cdot mol^{-1}\cdot k^{-1}$)

得分 阅卷人

六、计算题(本题10分)

真空中一半径为 R=3cm 的均匀带电球体, 其电荷体密度为

ho=1.77×10⁻⁸C·m⁻³。试求: (1) 球体外距球心 r_e = 6cm 处的电场强度的大小 E_e ; (2) 球内距球心 r_e = 0.3cm 处的电场强度的大小 E_i 。(ε_0 = 8.85×10⁻¹²F·m⁻¹)

得分 阅卷人

七、计算题 (本题 10 分)

如图所示有一长直导线,在与其相距 d 米处置有一矩形线圈,线圈长

L米、宽a米。(1)若长直导线中通有恒定电流I,试求线圈中的磁通量;(2)若导线通有交变电流 $I=5\sin(100\pi t)$ A,试求线圈的感生电动势。