

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC156169 Page: 1 of 90

FCC Radio Test Report FCC ID: 2ALUT-C80037

Original Grant

Report No. : TB-FCC156169

Applicant : IZZO Golf, Inc.

Equipment Under Test (EUT)

EUT Name : SMART GLASSES

Model No. : C80037

Series Model No. : A44050, A44056

Brand Name : Callaway, IZZO SWAMI

Receipt Date : 2017-06-20

Test Date : 2017-06-21 to 2017-06-29

Issue Date : 2017-06-30

Standards : FCC Part 15: 2016, Subpart C(15.247)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

the report.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

TB-RF-074-1.0

Tel: +86 75526509301 Fax: +86 75526509195

Page: 2 of 90

Contents

CON	VIENIS	
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	∠
	1.2 General Description of EUT (Equipment Under Test)	∠
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	17
	5.1 Test Standard and Limit	17
	5.2 Test Setup	
	5.3 Test Procedure	19
	5.4 EUT Operating Condition	19
	5.5 Test Data5.	19
6.	RESTRICTED BANDS REQUIREMENT	40
	6.1 Test Standard and Limit	4(
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	NUMBER OF HOPPING CHANNEL	60
	7.1 Test Standard and Limit	60
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	60
8.	AVERAGE TIME OF OCCUPANCY	63
	8.1 Test Standard and Limit	
	8.2 Test Setup	

Report No.: TB-FCC156169
Page: 3 of 90

Page:

	8.3 Test Procedure	
	8.4 EUT Operating Condition	63
	8.5 Test Data	64
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	70
	9.1 Test Standard and Limit	70
	9.2 Test Setup	70
	9.3 Test Procedure	70
	9.4 EUT Operating Condition	70
	9.5 Test Data	71
10.	PEAK OUTPUT POWER TEST	83
	10.1 Test Standard and Limit	83
	10.2 Test Setup	83
	10.3 Test Procedure	
	10.4 EUT Operating Condition	83
	10.5 Test Data	
11.	ANTENNA REQUIREMENT	90
	11.1 Standard Requirement	90
	11.2 Antenna Connected Construction	90
	11.3 Result	90

Page: 4 of 90

1. General Information about EUT

1.1 Client Information

Applicant: IZZO Golf, Inc.

Address : 1635 Commons Parkway, Macedon, NY 14502, USA

Manufacturer : Shenzhen GELETE Technology Co. Ltd

Address : 9/F, 7 Building, The 2nd Industrial Zone, Longhua New District,

Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	SMART GLASSES	SMART GLASSES			
Models No.		C80037, A44050, A44056				
Model Difference			the same PCB layout interior structure and difference is shape of the lens.			
	1	Operation Frequency:	Bluetooth 4.1: 2402~2480 MHz			
		Number of Channel:	Bluetooth: 79 Channels see Note 2			
Product	•	Max Peak Output Power:	Bluetooth: 3.950dBm(GFSK)			
Description		Antenna Gain:	2dBi PCB Antenna			
		Modulation Type:	GFSK 1Mbps(1 Mbps) π /4-DQPSK(2 Mbps) 8-DPSK(3 Mbps)			
Power Supply		DC Voltage Supply from U				
Dower Poting		DC Supply by the Li-ion Ba				
Fower Rating	Power Rating : DC 5.0 V from the USB Cable. DC 3.7V by 250mAh Li-ion Battery.					
Connecting I/O Port(S)	•	Please refer to the User's Manual				

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

	Bluetooth Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
00	2402	27	2429	54	2456			
01	2403	28	2430	55	2457			
02	2404	29	2431	56	2458			
03	2405	30	2432	57	2459			
04	2406	31	2433	58	2460			

Page: 5 of 90

05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		All Designation of the second
26	2428	53	2455		

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

TX Mode

Page: 6 of 90

1.4 Description of Support Units

Equipment Information							
Name	Manufacturer	Used "√"					
AC/DC Adapter A16-502000 AOHAI √							
AC/DC Adapter Ir	put:AC100-240V 50/60	OHz 0.5A Output:5V/	2A	000			
		Cable Information					
Number Shielded Type Ferrite Core Length Note							
Cable 1	NO	NO	0.45M	WW.			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	Normal Work + TX Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 1	TX GFSK Mode			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78			
Mode 4	TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)			
Mode 6	Hopping Mode(π /4-DQPSK)			
Mode 7	Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3Mbps)

Page: 7 of 90

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	THE PARTY OF THE P	BlueTest 3.exe	
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π/4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 90

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 90

2. Test Summary

	F	CC Part 15 Subpart C(15.247)/ RSS	247 Issue 2		
Standard S	ection	Took House	lu dama ant	Damanta	
FCC	IC	Test Item	Judgment	Remark	
15.203		Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW GFSK:842.2370kHz π/4-DQPSK: 1172.8kHz 8-DPSK:1156.5KHz	

TB-RF-074-1.0

Page: 10 of 90

3. Test Equipment

AC Main C	onducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
Radiation Description	Spurious Emiss Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	10C800370/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	C8003717537	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	C8003743207	Mar.25, 2017	Mar. 24, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.24, 2017	Mar. 23, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	onducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESPI	100321	Jul. 22, 2016	Jul. 21, 2017

Page: 11 of 90

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Everyoney	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC156169
Page: 12 of 90

Page: 12 of 90

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

Page: 13 of 90

EUT:	SMART GLASS	ES	Model Nam	ne :	C8003	37			
Temperature:	25℃		Relative H	umidity:	55%	AND:			
Test Voltage:	AC 120V/60 Hz	Jan San San San San San San San San San S			1.19				
Terminal:	Line	Line							
Test Mode:	USB Charging N	USB Charging Mode							
Remark: Only worse case is reported									
0.0 0.150	0.5	(MHz)	1	Y WWW.	QP: AVG:	peak AVG 30.000			
No. Mk. Fr	Reading req. Level	Correct Factor	Measure- ment	Limit	Over				
М	lHz dBuV	dB	dBuV	dBuV	dB	Detector			
1 0.5	180 11.10	9.60	20.70	56.00	-35.30	QP			
2 0.5	180 0.57	9.60	10.17	46.00	-35.83	AVG			
3 0.40	620 11.56	9.60	21.16	56.66	-35.50	QP			
4 0.40	620 -0.13	9.60	9.47	46.66	-37.19	AVG			
5 0.43	380 12.10	9.60	21.70	57.10	-35.40	QP			
6 0.43	380 -2.26	9.60	7.34	47.10	-39.76	AVG			
7 0.1	500 30.71	9.58	40.29	65.99	-25.70	QP			
8 0.1	500 13.67	9.58	23.25	55.99	-32.74	AVG			
9 0.5	740 11.82	9.60	21.42	56.00	-34.58	QP			
10 0.5	740 0.42	9.60	10.02	46.00	-35.98	AVG			
11 0.49	900 16.74	9.60	26.34	56.17	-29.83	QP			
12 * 0.49	900 13.57	9.60	23.17	46.17	-23.00	AVG			
Emission Levels	= Read Level+ Co	orrect Factor	•						

Page: 14 of 90

EUT:	SMART GLASSE	S	Model Nam	e :	C8003	7
Temperature:	25 ℃	2 BA	Relative Hu	midity:	55%	1
Test Voltage:	AC 120V/60 Hz	13	1717	130		MAG
Terminal:	Neutral				11.90	
Test Mode:	USB Charging M	ode		1 16		
Remark:	Only worse case	is reported		31	~ N	
40 [*] × * * * * * * * * * * * * * * * * * *	0.5	(MHz)	\\\\\\\\\\\\\	Andrew programme	QP: AVG:	peak AVG
No. Mk. Fre	Reading q. Level	Correct Factor	Measure- ment	Limit	Over	
MH	z dBuV	dB	dBuV	dBuV	dB	Detector
1 0.150	00 31.02	9.64	40.66	65.99	-25.33	QP
2 0.150	00 13.89	9.64	23.53	55.99	-32.46	AVG
3 0.170	00 28.12	9.64	37.76	64.96	-27.20	QP
4 0.170	00 11.54	9.64	21.18	54.96	-33.78	AVG
5 0.470	00 17.80	9.58	27.38	56.51	-29.13	QP
6 * 0.470	00 15.70	9.58	25.28	46.51	-21.23	AVG
7 0.486	60 11.03	9.58	20.61	56.24	-35.63	QP
8 0.486	3.69	9.58	13.27	46.24	-32.97	AVG
9 0.694	40 8.53	9.59	18.12	56.00	-37.88	QP
10 0.694	40 -3.49	9.59	6.10	46.00	-39.90	AVG
11 0.194	40 26.29	9.65	35.94	63.86	-27.92	QP
12 0.194	40 9.99	9.65	19.64	53.86	-34.22	AVG
Emission Level=	Read Level+ Cori	rect Factor	•			

Page: 15 of 90

EUT:	SMART GLAS	SES	Model Nam	ne :	C80037	7		
Temperature:	25℃	100	Relative Hu	umidity:	55%	MILL		
Test Voltage:	AC 240V/60 H	Z	W S		CAST			
Terminal:	Line			N W				
Test Mode:	USB Charging	Mode		3	- T	Millian .		
Remark: Only worse case is reported								
40 XX XX XX XX XX XX XX XX XX X		(MHz)	5	W////	QP: AVG:			
No. Mk. Fr	Reading	g Correct Factor	Measure- ment	Limit	Over			
	lHz dBuV	dB	dBuV	dBuV	dB	Detector		
1 * 0.10	660 25.31	9.58	34.89	65.15	-30.26	QP		
2 0.10	660 7.43	9.58	17.01	55.15	-38.14	AVG		
3 0.1	780 19.80	9.58	29.38	64.57	-35.19	QP		
4 0.1	780 3.44	9.58	13.02	54.57	-41.55	AVG		
5 0.22	220 20.13	9.58	29.71	62.74	-33.03	QP		
6 0.22	220 5.16	9.58	14.74	52.74	-38.00	AVG		
7 0.2	580 20.00	9.59	29.59	61.49	-31.90	QP		
8 0.2	580 6.78	9.59	16.37	51.49	-35.12	AVG		
9 0.3	260 16.05	9.59	25.64	59.55	-33.91	QP		
10 0.33	260 3.12	9.59	12.71	49.55	-36.84	AVG		
11 0.4	820 12.72	9.60	22.32	56.30	-33.98	QP		
12 0.4	820 2.98	9.60	12.58	46.30	-33.72	AVG		
Emission Level	= Read Level+ (Correct Factor						

Page: 16 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25°C	Relative Humidity:	55%
Test Voltage:	AC 240V/60 Hz	CALL DE	THE PARTY OF THE P
Terminal:	Neutral	OW YOU	6.63
Test Mode:	USB Charging Mode		
Remark:	Only worse case is reported	ed	O PIU
80.0 dBuV			
0.0	0.5 (MHz)	5	QP:
	Reading Correct	1.1	
No. Mk. Fre	•		Over
МН	łz dBuV dB	dBuV dBuV	dB Detector
1 0.16	20 24.46 9.64	34.10 65.36	-31.26 QP
2 0.16	20 6.85 9.64	16.49 55.36	-38.87 AVG
3 0.17	80 23.95 9.65	33.60 64.57	-30.97 QP
4 0.17	80 6.72 9.65	16.37 54.57	-38.20 AVG
5 0.19	00 17.36 9.65	27.01 64.03	-37.02 QP
6 0.19	00 1.73 9.65	11.38 54.03	-42.65 AVG
7 0.23	40 18.44 9.62	28.06 62.30	-34.24 QP
8 0.23	40 4.91 9.62	14.53 52.30	-37.77 AVG
9 0.48	20 17.80 9.58	27.38 56.30	-28.92 QP
10 * 0.48	20 16.15 9.58	25.73 46.30	-20.57 AVG
11 0.39	80 11.40 9.58	20.98 57.89	-36.91 QP
12 0.39	80 -0.34 9.58	9.24 47.89	-38.65 AVG
Emission Level=	Read Level+ Correct Factor	or	

Page: 17 of 90

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 18 of 90

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 19 of 90

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 20 of 90

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

EUT:	SMART GL	ASSES	Model N	Name :	C80037	
Temperature:	25 ℃	الالالا	Relative	Humidity:	55%	
Test Voltage:	DC 3.7V			(MIN)		2
Ant. Pol.	Horizontal	3 13m	ATT	1	CITI!	13
Test Mode:	TX GFSK N	Mode 2402MHz	MAN	1	62.	
Remark:	Only worse	case is reporte	d	4000		101
80.0 dBuV/m						
				(RF)FCC 15	iC 3M Radiation	
					Margin -6	u6
			5 ×	, "X		
30		3		hu		
1		<u> </u>	• IIII		house war was drill	ha warner
2 Mhy 2	ul as	My Thym	Maryolipp	""		
THE WALL WALL	wanter the the territory	MHAMMUM	Address 1 a			
20						
	60 70 80	(MHz)	300	D 400 50	0 600 700	1000.00
	Read	ing Correct	Measure-			
No. Mk. Fred			ment	Limit	Over	
MHz	z dBu	V dB/m	dBuV/m	dBuV/m	dB	Detecto
1 31.954	46 30.9	99 -14.98	16.01	40.00	-23.99	QP
01.00						
	19 29.2	26 -21.49	7.77	40.00	-32.23	QP
2 43.81			7.77 23.86	40.00 43.50	-32.23 -19.64	QP QP
2 43.81 ² 3 139.85	08 45.4	-21.55				
2 43.81 3 139.85 4 186.44	508 45.4 109 36.2	-21.55 22 -20.21	23.86	43.50	-19.64	QP
2 43.81 3 139.85 4 186.44	508 45.4 109 36.2 583 50.8	-21.55 22 -20.21 33 -16.45	23.86 16.01	43.50 43.50	-19.64 -27.49	QP QP

Report No.: TB-FCC156169
Page: 21 of 90

Page:

EUT:	SMART GLAS	SES	Model Na	ame :	C80037	
Temperature:	25℃	W.	Relative H	lumidity:	55%	MA
Test Voltage:	DC 3.7V		W LE	-01	19.0	
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX GFSK Mod	le 2402MHz		9	· CA	M. See
Remark:	Only worse cas	se is reported	The same		1	
80.0 dBuV/m						
				(RF)FCC 15	C 3M Radiation Margin -6	
				5 X	6	
30 1	2 X X	3		A Alleran	X	anda anda an
my min	W. Www.	w w 14		Mary Jan	~ horacayaqueland	k (venden)
WAYNAMA. M	hymnymin' YPY	astronomic stransfer	Napa Markillian	"'		
20						
30.000 40 50	60 70 80	(MHz)	300	400 50	0 600 700	1000.00
	Readi	na Correct	Measure-			
No. Mk.	Readi Freq. Leve	_	Measure- ment	Limit	Over	
No. Mk.	_	el Factor		Limit dBuV/m	Over dB	Detecto
	Freq. Leve	el Factor / dB/m	ment			
1 46	Freq. Leve	el Factor / dB/m 2 -22.41	ment dBuV/m	dBuV/m	dB	
1 46 2 * 71	Freq. Leve MHz dBu\ 5.0164 44.4	Factor / dB/m 2 -22.41 9 -23.22	ment dBuV/m 22.01	dBuV/m 40.00	dB -17.99	QP
1 46 2 * 71 3 129	Freq. Leve MHz dBu\ 5.0164 44.4 .8320 50.5	Factor / dB/m 2 -22.41 9 -23.22 0 -21.77	ment dBuV/m 22.01 27.37	dBuV/m 40.00 40.00	dB -17.99 -12.63	QP QP QP
1 46 2 * 71 3 129 4 292	Freq. Level MHz dBu\ 6.0164 44.4 .8320 50.5 9.0146 43.4	Factor dB/m 2 -22.41 9 -23.22 0 -21.77 4 -16.45	ment dBuV/m 22.01 27.37 21.63	dBuV/m 40.00 40.00 43.50	dB -17.99 -12.63 -21.87	QP QP QP
1 46 2 * 71 3 129 4 292 5 383	Freq. Level MHz dBu\ 6.0164 44.4 .8320 50.5 9.0146 43.4 2.0583 47.5	Factor dB/m 2 -22.41 9 -23.22 0 -21.77 4 -16.45 5 -12.80	ment dBuV/m 22.01 27.37 21.63 31.09	dBuV/m 40.00 40.00 43.50 46.00	dB -17.99 -12.63 -21.87 -14.91	QP

Page: 22 of 90

Above 1GHz(Only worse case is reported)

EUT:	SMART GLASSES	Model Name :	C80037			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2402MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.016	36.78	13.44	50.22	74.00	-23.78	peak
2	*	4804.790	23.07	13.44	36.51	54.00	-17.49	AVG

Page: 23 of 90

EUT:	SMART GLASSES	Model Name :	C80037			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2402MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.572	37.43	13.44	50.87	74.00	-23.13	peak
2	*	4804.894	23.03	13.44	36.47	54.00	-17.53	AVG

Page: 24 of 90

EUT:	SMART GLASSES	Model Name :	C80037					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:	TX GFSK Mode 2441MHz		THE PARTY OF THE P					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.526	23.67	13.90	37.57	54.00	-16.43	AVG
2		4881.624	37.93	13.90	51.83	74.00	-22.17	peak

Page: 25 of 90

EUT:	SMART GLASSES	Model Name :	C80037					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical							
Test Mode:	TX GFSK Mode 2441MHz		THE PERSON NAMED IN					
Remark:	No report for the emission who prescribed limit.	ich more than 10 dB b	elow the					

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.210	23.67	13.90	37.57	54.00	-16.43	AVG
2		4882.686	38.01	13.90	51.91	74.00	-22.09	peak

Page: 26 of 90

EUT:	SMART GLASSES	Model Name :	C80037						
Temperature:	25℃	Relative Humidity:	55%						
Test Voltage:	DC 3.7V	DC 3.7V							
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX GFSK Mode 2480MHz		LINE TO SERVICE						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.								

No	. Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.422	23.67	14.36	38.03	54.00	-15.97	AVG
2		4960.560	37.74	14.36	52.10	74.00	-21.90	peak

Page: 27 of 90

EUT:	SMART GLASSES	Model Name :	C80037					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical							
Test Mode:	TX GFSK Mode 2480MHz		- TILL					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
100 0 10 111								

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.158	23.64	14.36	38.00	54.00	-16.00	AVG
2		4960.566	38.13	14.36	52.49	74.00	-21.51	peak

Page: 28 of 90

EUT:	SMART GLASSES	Model Name :	C80037					
Temperature:	25°C Relative Humidity: 55%							
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:	TX π /4-DQPSK Mode 2402	MHz	LITTLE OF					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.288	37.55	13.44	50.99	74.00	-23.01	peak
2	*	4804.684	23.02	13.44	36.46	54.00	-17.54	AVG

Page: 29 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 240	2MHz	THE PARTY OF THE P				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.966	37.01	13.44	50.45	74.00	-23.55	peak
2	*	4805.000	23.03	13.44	36.47	54.00	-17.53	AVG

Page: 30 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	V C	(3)
Ant. Pol.	Horizontal		
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	- TILLIE
Remark:	No report for the emission w prescribed limit.	hich more than 10 dB	below the

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.316	23.66	13.90	37.56	54.00	-16.44	AVG
2		4882.240	37.36	13.90	51.26	74.00	-22.74	peak

Page: 31 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	V C	130				
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	LITTLE OF				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100.0 40.4/							

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.632	23.65	13.90	37.55	54.00	-16.45	AVG
2		4881.806	37.37	13.90	51.27	74.00	-22.73	peak

Page: 32 of 90

EUT:	SMART GLASSES	Model Name:	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		10				
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	AMILE .				
Remark:							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.088	37.36	13.90	51.26	74.00	-22.74	peak
2	*	4882.158	23.66	13.90	37.56	54.00	-16.44	AVG

Page: 33 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		33				
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	THE PERSON NAMED IN				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.650	37.51	13.90	51.41	74.00	-22.59	peak
2	*	4882.368	23.66	13.90	37.56	54.00	-16.44	AVG

Page: 34 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	V C	130				
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402MH		LINE TO				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
400.0 10.111							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.560	43.91	13.44	57.35	74.00	-16.65	peak
2	*	4803.000	29.30	13.44	42.74	54.00	-11.26	AVG

Page: 35 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	A MI					
Test Mode:	TX 8-DPSK Mode 2402M	lHz	THE PARTY OF THE P				
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						
100.0 40.374							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.708	43.93	13.44	57.37	74.00	-16.63	peak
2	*	4803.000	29.35	13.44	42.79	54.00	-11.21	AVG

Page: 36 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	130						
Ant. Pol.	Ant. Pol. Horizontal						
Test Mode: TX 8-DPSK Mode 2441MHz							
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						
400 0 10 111							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.044	43.30	13.90	57.20	74.00	-16.80	peak
2	*	4881.842	29.31	13.90	43.21	54.00	-10.79	AVG

Page: 37 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2441MH		LILL ST				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100.0 40.47							

No	. Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.702	43.10	13.90	57.00	74.00	-17.00	peak
2	*	4882.476	29.32	13.90	43.22	54.00	-10.78	AVG

Page: 38 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2480MHz	CU1372	LINE TO				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100 0 dB:\//m	•						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.524	44.05	14.36	58.41	74.00	-15.59	peak
2	*	4959.424	29.52	14.36	43.88	54.00	-10.12	AVG

Page: 39 of 90

EUT:	SMART GLASSES	Model Name :	C80037				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		13.0				
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2480MHz		LILL STREET				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100.0 dp.4//							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.798	43.71	14.36	58.07	74.00	-15.93	peak
2	*	4959.948	29.55	14.36	43.91	54.00	-10.09	AVG

Page: 40 of 90

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dE	BuV/m)(at 3m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC156169
Page: 41 of 90

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Page: 42 of 90

(1) Radiation Test

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		COULTY IN
Test Mode:	TX GFSK Mode 2402MHz		
Remark:	Only worse case is reported	The same of the sa	1

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	41.39	0.77	42.16	74.00	-31.84	peak
2		2390.000	29.79	0.77	30.56	54.00	-23.44	AVG
3	*	2402.100	79.43	0.82	80.25	Fundamental F	Frequency	AVG
4	X	2402.200	89.97	0.82	90.79	Fundamental F	Frequency	peak

Page: 43 of 90

EUT:	SMART GLASSES	Model Name :	C80037			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	$\Omega m = N \Omega$	333			
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2402MHz	MILLER	A NOW			
Remark:	Only worse case is reported	ed				
100.0 dBuV/m						
			3			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2402.100	66.20	0.82	67.02	Fundamental	Frequency	AVG
2		2390.000	29.83	0.77	30.60	54.00	-23.40	AVG
3	Х	2402.200	78.36	0.82	79.18	Fundamental	Frequency	peak
4		2390.000	40.40	0.77	41.17	74.00	-32.83	peak

Page: 44 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	mm -	333
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2480 MHz	CHILD IN	A Alberta
Remark:	Only worse case is reported		3

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	89.39	1.15	90.54	Fundamenta	I Frequency	peak
2	*	2480.000	79.15	1.15	80.30	Fundamenta	l Frequency	AVG
3		2483.500	53.41	1.17	54.58	74.00	-19.42	peak
4		2483.500	40.14	1.17	41.31	54.00	-12.69	AVG

Page: 45 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2480 MHz		- CILLIA
Remark:	Only worse case is reported		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	77.86	1.15	79.01	Fundamenta	al Frequency	AVG
2		2483.500	39.22	1.17	40.39	54.00	-13.61	AVG
3	Χ	2480.200	88.04	1.15	89.19	Fundamenta	I Frequency	peak
4		2483.500	52.69	1.17	53.86	74.00	-20.14	peak

3

4

Х

Report No.: TB-FCC156169

Page: 46 of 90

EUT	Γ:		SMAF	RT GLASS	SES	Model Na	me :	C80037					
Tem	peratu	re:	25 ℃			Relative H	umidity:	55%					
Test	Voltaç	ge:	DC 3.	.7V	-	W. I	TILL	133					
Ant.	Pol.		Horizo	ontal	JAN TO		1 6						
Test	Mode	:	TX π /	4-DQPSk	Mode 2402	e 2402MHz							
Rem	nark:		Only v	worse case is reported									
100.0	dBuV/m												
								4					
								×					
							(RF) FCC F	PART 15C (REAK)					
-													
-							(RF) FCC	PART 15C (AVG)					
50													
							1 X						
							2						
0.0													
	12.000 23	22.00 2	332.00	2342.00 2	352.00 2362.00	2372.00 23	82.00 2392.	00 2412.00 MHz					
				Reading	Correct	Measure-							
No	o. Mk.	Fre	q.	Level	Factor	ment	Limit	Over					
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB Detector					
1		2390.0	000	40.22	0.77	40.99	74.00	-33.01 peak					
2		2390.0	000	29.98	0.77	30.75	54.00	-23.25 AVG					

76.22

88.44

Emission Level= Read Level+ Correct Factor

75.40

87.62

0.82

0.82

2402.100

2402.200

AVG

peak

Fundamental Frequency

Fundamental Frequency

Page: 47 of 90

EUT	1		SMAI	RT GLASS	ES	Model N	lame :	C80037	
Tem	perat	ure:	25 ℃			Relative	Humidity:	55%	
Test	Volta	ge:	DC 3	.7V			Pin	132	
Ant.	Pol.		Vertic	al	MAG		I TO		CATT.
Test	Mode) :	TXπ	/4-DQPSK	Mode 2402N	1Hz		a W	No.
Rem	ark:		Only	worse case	is reported		(ATT)	3	_ (
100.0	dBuV/r	n							
								3	
							(RF) FCC PA	ART 15C (PEAK)
								X	
							(RF) FCC F	PART 15¢ PAVG)
50							_		
							4 ×	$-$ / $+$ \	
			<u> </u>				2 X	_/	
0.0									
	2.000 23	322.00 2	332.00	2342.00 235	2.00 2362.00	2372.00 23	82.00 2392.0	0 2	412.00 MHz
NI-	N.Ali-	Г		Reading		Measure-	Limit	Over	
No	. Mk			Level	Factor	ment			
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1	*	2402.1	100	66.20	0.82	67.02	Fundamental	Frequency	AVG
2		2390.0	000	29.83	0.77	30.60	54.00	-23.40	AVG
3	Χ	2402.2	200	78.36	0.82	79.18	Fundamental	Frequency	peak
4		2390.0	000	40.40	0.77	41.17	74.00	-32.83	peak
-									

Page: 48 of 90

EUT:	SMART GLASSES	Model Name :	C80037						
Temperature:	25℃	25℃ Relative Humidity:							
Test Voltage:	DC 3.7V								
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX π /4-DQPSK Mode 2480	MHz	A Million						
Remark:	Only worse case is reported								
100 0 dB ₁ N/m									

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	90.77	1.15	91.92	Fundamenta	l Frequency	peak
2	*	2480.000	79.81	1.15	80.96	Fundamenta	l Frequency	AVG
3		2483.500	58.91	1.17	60.08	74.00	-13.92	peak
4		2483.500	41.73	1.17	42.90	54.00	-11.10	AVG

Page: 49 of 90

ann'i		Relative Humidity:	55%					
		Relative Humidity:						
DC 3.7V								
Vertical								
DQPSK Mod	le 2480	MHz	3 11					
Only worse case is reported								
	-DQPSK Mod	-DQPSK Mode 2480	-DQPSK Mode 2480MHz					

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	76.18	1.15	77.33	Fundamenta	I Frequency	AVG
2	X	2480.200	87.43	1.15	88.58	Fundamenta	I Frequency	peak
3		2483.500	56.36	1.17	57.53	74.00	-16.47	peak
4		2483.500	39.01	1.17	40.18	54.00	-13.82	AVG

Page: 50 of 90

EU	T:		SM	ART (GLAS:	SES	(3.1)	Mod	del N	ame	:	C800	37		
Ten	nperat	ure:	25°0	2				Rela	tive I	re Humidity: 55%					
Tes	t Volta	age:	DC 3.7V												
Ant	. Pol.		Hor	izonta	al	- N	W.								
Tes	t Mod	e:	TX	8-DP	SK Mo	ode 240)2MHz	0	W						
Rei	nark:		Onl	y wor	se cas	se is re	ported	/ //		6	M.			10	
100.	0 dBuV	/m												_	
													4		
													×		
										(RF) FCC F	PART 15C (3 REAK)		
											(DE) 500	PART 15C		4	
50	1										(HF) FCC	PART 15L	Ayaj	_	
											1 X				
											2				
	_										_ ×				
														\dashv	
														4	
0.0															
2	312.000	2322.00	2332.00	2342	2.00 2	2352.00	2362.00	2372	.00	2382.00	2392.	00	2412.00) MHz	
NI	o. Mk	. Fre	va		ading		rect ctor	Mea			mit	Ove	r		
IN	J. IVIN				evel				ent						
		MH			BuV	dB			ıV/m		BuV/m	dB		tector	
1		2390.	000	40).37	0.7	77	41	.14	7	4.00	-32.	86 p	eak	
2		2390.	000	29).84	0.7	77	30	.61	5	4.00	-23.	39 A	VG	
3	*	2402.	100	75	5.32	0.0	32	76	.14	Func	lamenta	l Frequer	ncy A	VG	
4	Х	2402.	300	87	7.48	0.0	32	88	.30	Fund	lamenta	l Frequer	ncy P	eak	

Page: 51 of 90

UT	UT: emperature:		SMART	GLASSI	ES	N	lodel N	ame :	C800	37		
em	perature	:	25 ℃	600	33	F	elative l	Humidity:	55%	PRI	ŀ	
est	Voltage		DC 3.7V									
nt.	Pol.		Vertical									
est	Mode:		TX 8-DI	TX 8-DPSK Mode 2402MHz								
Rem	ark:		Only wo	rse case	is reporte	d		CITI'S	9		ı	
100.0	dBuV/m	·										
								(RF) FCC PA	RT 15C (PE	AK)		
									1 X			
50								(RF) FCC P	RF) FCC PART 150 (AVG)			
30								4				
								2		\uparrow		
								×		-		
0.0												
	2.000 2322.0	00 23	32.00 23	42.00 235	2.00 2362.0	10 23	72.00 23	82.00 2392.00)	2412.00	МН	
			Re	eading	Correct	Me	easure-					
No.	. Mk.	Fred		_evel	Factor	r	nent	Limit	Over			
		MHz		dBuV	dB/m		BuV/m	dBuV/m	dB	Dete	ote	

		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2402.100	66.20	0.82	67.02	Fundamental	Frequency	AVG
2		2390.000	29.83	0.77	30.60	54.00	-23.40	AVG
3	Χ	2402.200	78.36	0.82	79.18	Fundamental	Frequency	peak
4		2390.000	40.40	0.77	41.17	74.00	-32.83	peak

Page: 52 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	nn e	
Ant. Pol.	Horizontal		
Test Mode:	TX 8-DPSK Mode 2480MHz	CHILL STORY	I ROLL
Remark:	Only worse case is reported	(il min	

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	79.68	1.15	80.83	Fundamental	Frequency	AVG
2		2483.500	41.49	1.17	42.66	54.00	-11.34	AVG
3	Χ	2479.900	90.80	1.15	91.95	Fundamental	l Frequency	peak
4		2483.500	58.01	1.17	59.18	74.00	-14.82	peak

Page: 53 of 90

EUT:	SMART GLASSES	Model Name :	C80037		
Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical	Vertical			
Test Mode:	TX 8-DPSK Mode 2480MHz				
Remark:	Only worse case is reported				

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	76.25	1.15	77.40	Fundamental	Frequency	AVG
2		2483.500	38.91	1.17	40.08	54.00	-13.92	AVG
3	X	2480.100	87.30	1.15	88.45	Fundamental	Frequency	peak
4		2483.500	56.27	1.17	57.44	74.00	-16.56	peak

Page: 54 of 90

(2) Conducted Test

Page: 55 of 90

Page: 56 of 90

Report No.: TB-FCC156169 Page: 57 of 90

1 of 2

EUT: SMART GLASSES Model Name: C80037

Temperature: 25°C Relative Humidity: 55%

Test Voltage: DC 3.7V

Test Mode:

π/4-DQPSK Hopping Mode

Page: 58 of 90

Report No.: TB-FCC156169 Page: 59 of 90

EUT: SMART GLASSES Model Name: C80037

Temperature: 25℃ Relative Humidity: 55%

Test Voltage: DC 3.7V

Test Mode: 8-DPSK Hopping Mode

Remark: Only worse case is reported

Page: 60 of 90

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Page: 61 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	nm P	30

Test Mode: Hopping Mode

Frequency Range	Test Mode	Quantity of Hopping Channel	Limit
	GFSK	79	
2402MHz~2480MHz	π /4-DQPSK	79	>15
	8-DPSK	79	

GFSK Mode

π /4-DQPSK Mode

Page: 62 of 90

Page: 63 of 90

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)/ RSS 247 Issue 2	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2,3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

Page: 64 of 90

8.5 Test Data

EUT:		SM	ART GLASSE	S	Model Name :	C800	37
Temper	ature:	25°	25°C Relative Humidity:			:y: 55%	
Test Vo	Itage:	DC	DC 3.7V				
Test Mo	de:	Hop	Hopping Mode (GFSK)				
Test	Chan	nel	Pulse	Total of Dwe	II Period Time	Limit	
							Docult
Mode	(MH	z)	Time (ms)	(ms)	(s)	(ms)	Result
Mode 1DH1	(MH: 244	•	Time (ms) 0.45	(ms) 144.00	(s) 31.60	(ms) 400	PASS
	•	1	, ,	. ,		, ,	

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

GFSK Hopping Mode 1DH1

Page: 65 of 90

GFSK Hopping Mode 1DH5

Page: 66 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		111

Test Mode: Hopping Mode (π /4-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.47	150.40	31.60	400	PASS
2DH3	2441	1.73	276.80	31.60	400	PASS
2DH5	2441	2.96	315.73	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

π /4-DQPSK Hopping Mode 2DH1

Page: 67 of 90

π /4-DQPSK Hopping Mode 2DH5

Page: 68 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	67(11)	MALL

Test Mode: Hopping Mode (8-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
3DH1	2441	0.46	147.20	31.60	400	PASS
3DH3	2441	1.71	273.60	31.60	400	PASS
3DH5	2441	2.96	315.73	31.60	400	PASS

3DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

3DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

3DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

8-DQPSK Hopping Mode 3DH1

Page: 69 of 90

8-DQPSK Hopping Mode 3DH5

Page: 70 of 90

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

Page: 71 of 90

9.5 Test Data

EUT:	SMA	ART GLASSES	Model Name :	C80037
Temperature:	25℃		Relative Humidity:	55%
Test Voltage: DC 3.7V				
Test Mode: TX Mode (GF		Mode (GFSK)	CHILLIAN TO THE	2 11
				20dB
Channel freque (MHz)	ncy	99% OBW (kHz)	20dB Bandwidth (kHz)	Bandwidth *2/3 (kHz)
•	ncy			
(MHz)	ncy	(kHz)	(kHz)	

GFSK TX Mode

Page: 72 of 90

2480

Report No.: TB-FCC156169

815.33

Page: 73 of 90

EUT:	SMART GLASSES		Model Name :	C80037
Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 3.	7V	50	133
Test Mode:	TX Mo	ode (π/4-DQPSK)		
Channel frequency (MHz)				
-	ncy	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
-	ncy			Bandwidth *2/3

π/4-DQPSK TX Mode

1223

1165.3

Transmit Freq Error

x dB Bandwidth

9.697 kHz

1.223 MHz

Report No.: TB-FCC156169

Page: 74 of 90

Scale Type

Page: 75 of 90

EUT:	SMART GLASSES		Model Name :	C80037	
Temperature:	25℃		Relative Humidity:	55%	
Test Voltage:	DC	3.7V			
Test Mode:	TX	Mode (8-DPSK)	(A)	THE PERSON NAMED IN	
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)	
2402		1147.8	1210	806.67	
2441		1156.5	1216	810.67	
2480		1143.6	1215	810.00	
8 DDSK TY Modo					

8-DPSK TX Mode

Page: 76 of 90

Page: 77 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
			700m3 / / / / A 100 / 200

Test Mode: Hopping Mode (GFSK)

Channel frequency	Separation Read Value	Separation Limit			
(MHz)	(kHz)	(kHz)			
2402	1005	881.311			
2441	1005	895.204			
2480	1005	868.739			

GFSK Hopping Mode

Page: 78 of 90

GFSK Hopping Mode

2441 MHz

GFSK Hopping Mode

Page: 79 of 90

EUT:	SMART GLASSES	Model Name :	C80037
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (π /4-DQPSK)

Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit (kHz)
2402	1005	800.00
2441	1005	815.33
2480	1005	815.33

π /4-DQPSK Hopping Mode

Page: 80 of 90

2441 MHz

π /4-DQPSK Hopping Mode

Page: 81 of 90

Change frague av					anation Limit		
Test Mode:	Hopping N	Mode (8-DPSK)			THE PARTY OF THE P		
Test Voltage:	DC 3.7V	DC 3.7V					
Temperature:	25℃	O Line	Relative I	Humidity:	55%		
EUT:	SMART G	SLASSES	Model N	ame :	C80037		

Channel frequency	Separation Read Value	Separation Limit
(MHz)	(kHz)	(kHz)
2402	1005	806.67
2441	1005	810.67
2480	1005	810.00

8-DPSK Hopping Mode

Page: 82 of 90

8-DPSK Hopping Mode 2441 MHz ** Agilent 17:45:58 Jun 25, 2017 | Mkr1 \(\triangle \) 1.0050 MHz

8-DPSK Hopping Mode

Page: 83 of 90

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
	Other <125 mW(21dBm)	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 84 of 90

10.5 Test Data

T:	SMAR	T GLASSES	GLASSES Model Name :		C80037
perature:	25℃	~ D	Relative I	Humidity:	55%
t Voltage:	DC 3.7	V		331	a VI
t Mode:	TX Mo	de (GFSK)		TITLE	13
annel frequ	uency (MHz) Test Re	sult (dBm)	L	imit (dBm
240)2	2	.279		
244	1	3	.616		30
248	30	3	.950		
		GFSK	TX Mode	- "	
		240	2 MHz		
* Agiler	nt 15:15:10 J	lun 25, 2017			and Conrob
			Mkr1 2.402	22025 GHz	eak Search
Ref 10 d Peak	Bm At	ten 20 dB	1 2	2.279 dBm	Meas Tools
Log 10					
dB/ Offst					Next Peak
1					Lave Div Divise
1 dB	Marker			N	lext Pk Right
1 dB	2.4022025				
1 dB					Next Pk Right
1 dB	2.4022025				Next Pk Left
dB	2.4022025				
1 dB	2.4022025				Next Pk Left Min Search
1 dB	2.4022025				Next Pk Left
1 dB	2.4022025				Next Pk Left Min Search

Page: 85 of 90

GFSK TX Mode 2441 MHz

GFSK TX Mode

Page: 86 of 90

EUT:	SMART G	SLASSES	Model Name :	C80037		
Temperature:	25℃		Relative Humidity:	55%		
Test Voltage:	DC 3.7V	V				
Test Mode:	TX Mode	e (π/4-DQPSK)				
Channel frequen	cy (MHz)	Test Result (dBm) L		imit (dBm)		
2402		0.81	4			
2441		2.649 21				
2480	2.822					
		π /4-DQPSK	TX Mode			

Page: 87 of 90

π /4-DQPSK TX Mode

2441 MHz

π/4-DQPSK TX Mode

Page: 88 of 90

EUT:	SMART G	SLASSES	Model N	ame :	C80037	
Temperature:	25℃		Relative Humidity:		55%	
Test Voltage:	DC 3.7V			000		
Test Mode:	TX Mode	e (8-DPSK)				
Channel frequen	cy (MHz)	Test Result (dBm) Lin		nit (dBm)		
2402		1.2	275			
2441		2.918			21	
2480		3.155				
		0 DDCK	TV Mode			

8-DPSK TX Mode

Page: 89 of 90

8-DPSK TX Mode 2441 MHz

8-DPSK TX Mode

Page: 90 of 90

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 2dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
The same	⊠Permanent attached antenna	
a Time	Unique connector antenna	ā
	☐Professional installation antenna	

----END OF REPORT----