Text Clustering

Data preparation and pre-processing

Data Transformation

Text Clustering

Model Evaluation

Error Analysis

Data Preparation & Pre-Processing

Chaldea From the Earliest Times to the Rise of Assyria

A Popular History of Astronomy During the Nineteenth Century Fourth Edition Agnes M. Clerke

A Book About Lawyers
John Cordy Jeaffreson

Darwinism (1889)

An exposition of the theory of natural selection, with some of its applications

Alfred Russel Wallace

Data Pre-Processing

Data Pre-Processing

Partition Every book to 200 Partitions

Every Partition have 150 words

Data Transformation

Bag Of Words(BOW)

TF-IDF

LDA

Word2Vec

Bag of Words(BOW) Transformation

A bag of words is a representation of text that describes the occurrence of words within a document.

	aron	abandon	abandoned	abandoning	abandonment	abated	abb	abbe	abbey	abbott	 zodiacal	zonal	zone	zool	zoologique	zoologist	zoology	zur	zwischen	zygomatic
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

995	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
996	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
997	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
998	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
999	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
1000 ro	ws × 16	5048 colum	ins																	

TF-IDF

Term frequency (TF) vectors show how important words are to documents. They are computed by using:

 $tf(term, document) = \frac{number\ of\ times\ the\ term\ occurs\ in\ the\ document}{total\ number\ of\ terms\ in\ the\ document}$

	aaron	abandon	abandoned	abandoning	abandonment	abated	abb	abbe	abbey	abbott	 zodiacal	zonal	zone	zool	zoologique	zoologist	zoology	zur	zwischen	zygomatic
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
						-				***	 			-				-		***
995	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
996	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
997	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
999	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
000 ro	ws × 16	6048 colum	ins																	

LDA is used to classify text in a document to a particular topic. It builds a topic per document model and words per topic model, modeled as Dirichlet distributions. Each document is modeled as a multinomial distribution of topics and each topic is modeled as a multinomial distribution of words.

	1	2	3	4	5	res
)	40.195923	0.179589	86.287994	17.819510	6.548666	3
I	6.840732	0.179266	0.174638	9.724366	134.112686	5
2	42.947739	86.382599	3.532179	5.912141	12.257037	2
3	13.155953	1.853795	0.175965	131.157608	4.688347	4
4	11.478949	5.613846	0.174887	15.622274	118.141701	5

```
(array([[ 40.195923 , 0.17958926, 86.287994 , 17.81951 ,
         6.548666 ],
      [ 6.840732 , 0.1792659 ,
                                  0.17463806, 9.724366 ,
       134.11269 ],
                              , 3.5321789 , 5.9121413 ,
      [ 42.94774
                  , 86.3826
        12.257037 ],
      [ 35.19193 , 115.3203
                                              0.20968111,
                               , 0.17444904,
         0.13532138],
      [ 20.348946 , 113.14746 , 7.5316253 , 0.20784229,
         9.795807 ],
      [ 0.37172854, 0.17994398, 4.8293304, 26.066813 ,
       119.58385 ]], dtype=float32), None)
```


LDA as a Topic Modeling

LDA as a Topic Modeling

LDA is an example of topic model and is used to classify text in a document to a particular topic. It builds a topic per document model and words per topic model, modeled as Dirichlet distributions.


```
[ 6.39032647e-02 -1.00076301e-02 -2.47444082e-02 2.49532200e-02
 -1.64452597e-01 -4.05765250e-02 2.44001463e-01
 2.46330827e-01 1.70743361e-01 -2.93254405e-02
                                                1.92961097e-02
 1.25935256e-01 1.31534727e-03 1.90286748e-02
 -9.74692628e-02 1.18261680e-01 6.58749230e-03
                                 3.83944809e-02 -5.04423641e-02
 3.08375317e-03
                 7.08437189e-02
 -4.23085783e-03 -7.40122944e-02
                                 1.63575495e-03
 -2.21240018e-02 -2.99621429e-02
                                 1.15621099e-02 -1.41864195e-01
 2.80737784e-02 -5.88704869e-02
 7.35347271e-02 -6.23905435e-02 -9.10108723e-03
 -1.37935922e-01 2.97885109e-02 -7.19079301e-02
 -5.13751842e-02 -5.43224849e-02 -9.41491723e-02 -1.49340108e-01
 -3.66348475e-02 1.78339824e-01 -6.72631431e-03
 9.75831002e-02
                 1.75848529e-01
 -1.99374110e-01 -1.83159238e-04
 7.73861483e-02 -2.10308209e-01 -6.40131012e-02
 2.77508423e-02 -1.01526216e-01 -1.68809928e-02 2.53384203e-01
 -1.07851893e-01 -8.49062856e-03 -2.08907742e-02 -2.18841985e-01
 6.51334375e-02 -4.35428321e-02 9.99771878e-02
 -8.23654160e-02 -3.00993957e-02 2.81349123e-01
 1.28292799e-01 -1.07078373e-01
                                 1.92346856e-01
 1.78771645e-01 -4.08566408e-02 -1.65989958e-02
 -1.60516784e-01 -9.39027220e-02
                                1.24719597e-01 -6.23902828e-02
 1.01312868e-01 1.01647533e-01 -1.16523758e-01 1.58404782e-02
 2.49551699e-01 -2.11534634e-01 -7.85620362e-02 -2.11563744e-02
 1.24335773e-01 1.13423526e-01 8.49671811e-02 -2.49626804e-02
 2.84476101e-01 -2.10208058e-01 -1.88032840e-03 9.00942460e-02
 8.39605778e-02 2.24193856e-01 -4.03151363e-02 -1.30077943e-01
 4.24622511e-03
                -2.51844257e-01 -3.11834086e-02 -3.11199576e-02
                                 1.44839182e-01 -1.97042711e-02
                 2.36877650e-01
 -1.57025203e-01 -1.11813262e-01 -5.71856424e-02 -1.29472002e-01
 2.70347148e-01 1.84511244e-01 6.89389929e-02 -1.04417324e-01
 1.01622865e-01 2.80982628e-02 1.89747680e-02 -2.16896329e-02
 1.43130109e-01 -9.49415490e-02 -2.38705799e-01 9.39103402e-03
 -3.66527140e-02 -1.06075712e-01 -7.29509890e-02 1.47223040e-01
 5.28361695e-03 -1.24949686e-01 1.47070944e-01 -1.62038818e-01
 -1.51137924e-02
                 1.67974338e-01 -1.37995034e-01 -1.45792872e-01
 6.50867296e-04 1.07391723e-01]
```


Text Clustering Algorithms

K-Means Clustering

Expectation Maximization

Hierarchical Clustering

K-Means Clustering

K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering problems in machine learning or data science. In this topic, we will learn what is K-means clustering algorithm, how the algorithm works, along with the Python implementation of k-means clustering.

Hierarchical Clustering

Hierarchical clustering, also known as hierarchical cluster analysis, is an algorithm that groups similar objects into groups called clusters. The endpoint is a set of clusters, where each cluster is distinct from each other cluster, and the objects within each cluster are broadly similar to each

other.

Model Evaluation

Model Evaluation using Kappa

Model Evaluation using consistency with V-Score

Model Evaluation using Coherence

Model Evaluation using Silhouette Score

Model Evaluation using Kappa

Cohen's kappa: a statistic that measures inter-annotator agreement.

K	appa's Score with K-Me	ans clustering algorithn	n								
K-means with BOW	K-means with TF-IDF	K-means with LDA	K-means with								
			Word2Vec								
0.92125	0.96375	0.98625	0.73375								
Kappa Score of LDA	as Topic Modeling	0.2	7795								
Kappa's Score with Expectation Maximization(EM) algorithm clustering algorithm											
EM with BOW	EM with TF-IDF	EM with LDA	EM with Word2Vec								
0.92750	0.96250	0.98625	0.70125								
Ka	ppa's Score with Hierar	chal clustering algorith	m								
Hierarchal clustering	Hierarchal clustering	Hierarchal clustering	Hierarchal clustering								
with BOW	with TF-IDF	with LDA	with Word2Vec								
0.91000	0.96125	0.98625	0.72875								

Model Evaluation using consistency with V-Score

V-measure cluster labeling given a ground truth.

V-Score with K-Means clustering algorithm										
K-means with BOW	K-means with TF-IDF	K-means with LDA	K-means with							
			Word2Vec							
0.84667087642090	0.92272558192760	0.96041867936215	0.60410870337612							
49	63	67	3							
V-Score with Ex	ectation <u>Maximizati</u>	on(EM) algorithm du	clustering algorithm							
EM with BOW	EM with TF-IDF	EM with LDA	EM with Word2Vec							
0.85236487417651	0.92124908692837	0.96041867936215	0.61686102073448							
33	59	67	51							
	V-Score with Hierarch	al clustering algorithm								
Hierarchal clustering	Hierarchal clustering	Hierarchal clustering	Hierarchal clustering							
with BOW	with TF-IDF	with LDA	with Word2Vec							
0.84601454866905	0.91978072721278	0.96041867936215	0.62704087646871							
73	81	67	4							

Model Evaluation using Coherence

coherence is used to measure how well the topics are extracted.

Coherence score With LDA using c_v: 0.4363

Higher value is better.

Coherence score With LDA using u_mass: -8.0567

Lower value is better.

t that describes the occurrence of words within a document.

Model Evaluation using Silhouette Score

Silhouette score is used to evaluate the quality of clusters created using clustering algorithms such as K-Means in terms of how well samples are clustered with other samples that are similar to each other. The Silhouette score is calculated for each sample of different clusters. Silhouette Coefficient or silhouette score is a metric used to calculate the goodness of a clustering technique. Its value ranges from -1 to 1.

Error Analysis

The Model Misclassified 64 rows

The Most common collocations with their repeat count in all records that were labelled uncorrectly according to the human label

[(('cost', 'almost'), 6), (('anyone', 'anywhere'), 6), (('english', 'character'), 6), (('character', 'set'), 6), (('almost', 'restriction'), 6), (('distributed', 'proofreading'), 3), (('copy', 'give'), 3), (('anywhere', 'cost'), 3), (('imp', 'tersbourg'), 1), (('louise', 'valliere'), 1), (('license', 'included'), 1), (('language', 'english'), 1), (('encoding', 'iso'), 1), (('give', 'away'), 1), (('de', 'sci'), 1), (('clearly', 'reader'), 1), (('extent', 'independently'), 1), (('date', 'january'), 1), (('excess', 'defect'), 1), (('heart', 'mind'), 1)]

The most common words that threw the machine off

	PartitionsList	Label_of_Book	index	clustersOutput	
177	vol rosenberger calculated though lived lynn o	е	4	0	
3	may aware project gutenberg ha involved writin	d	3	0	
189	dim perception already arrived perhaps observa	a	0	4	
71	body much exception part agree large marked in	С	2	4	
81	considerable number spread varying distance si	С	2	4	
			•••		
174	beneficial le beneficial le size body would be	С	2	4	1
25	wa thus recognised domain far reaching specula	е	4	1	
50	trans vol footnote ibid vol cvii footnote bull	е	4	0	
175	dissipation extinction footnote footnote allge	е	4	0	
115	undoubtedly wa accads clear authentic insight	a	0	2	
64 rov	vs × 4 columns				

The most common words that threw the machine off

