ECE - 5984 : Homework 1

Instructor: Thinh T. Doan, TA: Amit Dutta

Due Date: 09/16/2021

Problem 1

Consider a finite discrete-time Markov chain (DTMC) $\{s_n\}$ taking values in $\{1,2\}$ with transition probability matrix

$$P = \left[\begin{array}{cc} 0.3 & 0.7 \\ 0.6 & 0.4 \end{array} \right],$$

where $P_{ij} = \mathbb{P}(s_{n+1} = j \mid s_n = i)$. Let $\{Y_n\}$ be a different random process defined as

$$Y_n = \begin{cases} s_n, & \text{with probability } 0.7\\ s_n - 1 & \text{with probability } 0.3 \end{cases}$$

Questions:

1. Find the stationary distribution of P, i.e., find π such that $\pi P = \pi$. (5 points)

$$0.3\pi_1 + 0.6\pi_2 = \pi_1 \qquad \therefore \quad 0.6\pi_2 = 0.7\pi_1 \\ 0.7\pi_1 + 0.4\pi_2 = \pi_2$$

• 0.6
$$\Pi_2 = 0.7 (1-\Pi_2) = \Pi_2 = \frac{7}{13}, \quad \Pi_1 = \frac{6}{13}$$

$$\therefore \quad \overrightarrow{\Pi} = \left[\frac{6}{13}, \frac{7}{13} \right]$$

2. Find $\lim_{n\to\infty} P(s_n=1\,|\,Y_n=1)$. [Hint: Use Bayes rule formula]. (5 points)

By Bages rate:
$$P(s_n=1|Y_n=1)=\frac{P(Y_n=1|S_n=1)P(S_n=1)}{P(Y_n=1)}$$

•
$$P(S_n=1) = TT_1 = 6/13$$

• $P(S_n=2) = TT_2 = 7/13$ (from stationary distribution)

$$\rho(\gamma_{n}=1) = \rho(s_{n}=2) \cdot \rho(\gamma_{n}=s_{n}-1) + \rho(s_{n}=1) \cdot \rho(\gamma=s_{n})$$

$$= \frac{7}{13} \times 0.7 + \frac{6}{13} \times 0.3$$

$$= \frac{63}{130}$$

:.
$$p(S_n=1 | Y_n=1) = \frac{6.7 \times (\frac{6}{13})}{(63/130)} = \frac{2}{3}$$

Problem 2

We have the following facts

- 1. Let S be a bounded set of real numbers, i.e., $\exists D < \infty$ such that $|x| \leq D$ for all $x \in S$. Then there exists $\bar{D} < \infty$ such that
 - $x \le \bar{D}$ for all $x \in S$
 - Given any ε > 0 there exists y ∈ S s.t. y ≥ D̄ − ε

In other words, \bar{D} is the least upper bound or supremum of S. Similar, there exists greatest lower bound or infimum of S.

Consider an infinite sequence of real numbers {x_n}_{n=1}[∞]. Then there is a monotone subsequence of {x_n}_{n=1}[∞], i.e., there exists {x_{n1}, x_{n2},...}, n₁ ≤ n₂ ≤ ..., that is either non-decreasing or non-increasing.

Questions:

- Let {x_n}[∞]_{n=1} be a non-decreasing upper bounded sequence of real numbers. Show that lim_{n→∞} x_n exists and finite. (10 points)
- · for some E>O, there is a corresponding N: XN>O-E
- · V n >N, x n > D E (as S is non decreasing)
- · S is bounded, : Xn & D

$$D - \varepsilon < x_{\Lambda} \leqslant D$$

$$- \varepsilon < x_{\Lambda} - D \leqslant O$$

$$|x_{\Lambda} - O| \leq \varepsilon$$

 $\lim_{n\to\infty} 2c_n = 0.$ (by limit definition)

Note that the same method can be applied for a non increasing seg to show that it has a finite limit.

- 2. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence, i.e., $\exists M < \infty$ such that $|x_n| \leq M$. Show that $\{x_n\}_{n=1}^{\infty}$ has a convergent subsequent. (10 points)
- . Let the nth term in a sequence be defined as dominant if it is greater then any term following it.
- · : there can be either oo, or finite dominant terms (2 cases)
- · Infinite case:
 - · Form a subsequence consisting only of dominant terms { DCR , DCRH DCm}
 - . Xx > Xx+1 (by the definition of dominant term)
 - . .. this subsequence is a decreasing monotone.

· Finite case:

- Select ni S.t. ni is begond the last dominant term in the sequence.
- · as no is not dominant, there exists some man, st och acon,
- . set n2 = M
- · No still not dominant, repeat for No, Na
- . { xn, xn2, xn3} is monotonic non decreasing.
- · all bounded sequence, have a monotonic subsequence
 - · QI showed that all bounded monotonic sequences converge.
 - · all bounded sequences have a monotonic subsequence which converges.
 - 3. A sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ is Cauchy if given any $\epsilon > 0$ there exists N_{ϵ} (N depends on ϵ) s.t. $|x_n x_m| < \epsilon$ for all $n, m > N_{\epsilon}$. Show that every Cauchy sequence is bounded. (5 points)
 - . let E>O (set E=1 arbitarily)
 - $\exists N_{\epsilon}$ s.t. $\forall n, m > N_{\epsilon}$, $|x_{n-x_{\epsilon}m}| < 1$ (cauchy definition)
 - · Let m = N+1
 - . Then Vn > N :
 - $|x_n| = |x_n x_m + x_m| \leqslant |x_m x_n| + |x_m| < |+|x_m| = |+|x_{N+1}| \quad \left(\begin{array}{c} \text{friengle} \\ \text{inequality} \end{array}\right)$
 - . | scal < 1 + | scatt | 4 m > N
 - · Let M = max { | x 1 , | x2 | | x 1 | 1 + x 1 | }
 - : if n>N, |xn| < | + |xn+1 | & M
 - $\{ n \leq N, |x_n| \leq \max \{|x_1|, |x_2|, ..., |x_n|\} \leq M$
 - $\therefore |x_n| \leq M \quad \forall n \qquad \left(\leq x_n \right) \text{ bounded by } M$

4. Show that if a Cauchy sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ has a convergent sub sequence, then the sequence $\{x_n\}_{n=1}^{\infty}$ must converge. (10 points)

· Let
$$\{x_{n_k}\}$$
 = the convergent subsequence of $\{x_n\}$.

· Let E>0

.] K s.f.
$$\forall k > K$$
, $|x_{n_k} - c| < \frac{\varepsilon}{2}$ (bounded convergent subseq)

.] N s.t.
$$\forall m, n > N$$
, $| x_n - x_m | \le \frac{\varepsilon}{2}$ (cauchy definition)

- · Pick L > K s.t. nr > N
- : 4, > N,

$$|x_n-c|=|(x_n-x_{n_L})+(x_{n_L}-c)| \leq |x_n-x_{n_L}|+|x_{n_L}-c| \leq \varepsilon$$

- 5. Show that every Cauchy sequence of real numbers is convergent. (5 points)
- · Problem 2, Q3: all cauchy sequences are bounded. (of R numbers)
- · Problem 2, Q2: all bounded sequences have a convergent subsequence
- . Problem 2, Q4: all cauchy sequences with convergent subsequences converge flumselves.

. Note that Problem 2, Q1 assumes $\{x\}$ a sequence of real numbers, which is used in the proof of Problem 2, Q2. .. The above has only been proved for Sequences of real numbers.

Problem 3

Recall the definition of an MDP from the second lecture. Let $S = \{s_1, \ldots, s_n\}$ be an MC with transition probability P. X is called a controlled MC if P can be controlled, i.e., $P = [P_{ij}(a)]$ where a is a control action. At time k, the state is $s_k \in \mathcal{X}$, we take an action $a_k = \mu_k(s_k)$, and it incurs a (bounded) cost $r(s_k, a_k)$, where w.l.o.g we assume $c \geq 0$. Here μ_k is a mapping from state to action. The goal is to choose $\{a_k\}$ to maximize

$$V_{\pi}(i) = \lim_{N \to \infty} \mathbb{E}\left[\sum_{k=0}^{N} \gamma^k r(s_k, a_k) \mid s_0 = i\right],$$

where $\gamma \in (0,1)$ is called the discount factor and $\pi = [\mu_0, \mu_1, \ldots]$ is the policy. When μ_k does not depend on time k, i.e., $\mu_k = \mu$, we call the policy is stationary and with some abuse of notation denote it as μ .

Policy evaluation Let consider a subproblem, where we want to estimate the vector value function V_{μ} for a given stationary policy μ . We know from class that V_{μ} satisfies the so-called Bellman equation

$$V_{\mu}(i) = \mathbb{E}[r(i, \mu(i))] + \gamma \sum_{j} P_{ij}(\mu(i))V_{\mu}(j),$$

or in vector form

$$V_{\mu} = \mathbb{E}[r] + \gamma \mathbf{P}_{\mu} V_{\mu},$$

where $r = [r(i, \mu(i))]$ is a vector. In class, we have a theorem to show the existence and uniqueness of the solution of this Bellman equation. We mentioned that there are two ways to do it: using algebra or the classic fixed point theorem.

Questions of the algebra proof:

Consider matrix norm induced by the vector norm defined in class, i.e.,

$$\|\mathbf{P}\|_p = \max_{\|y\|_p = 1} \|\mathbf{P}y\|_p.$$

Let λ_i be the eigenvalues of P. Show that (10 points)

$$\max_{i} |\lambda_i| \le ||\mathbf{P}||_p, \quad \forall p \ge 1.$$

Hint: Using the definition of the eigenvalues of a matrix.

· Let x be an eigen values of P, and let x ≠0 be a corresponding eigenvector.

. :.
$$PX = X$$
 (when $X = \left[x \mid \mid x \right]$)

- · => 1×1 ||×1|_p = || × × ||_p = || P× ||_p < || P||_p || × ||_p.
- · => |x| ||x||p \leq ||P||p ||x||p
- · => (>1 < ||P||p (a) ||x||p >0)
- . taking the maximum eightalee x:

note: (P>1, as for O < p < 1 the resulting function does not define a norm, as the triangle inequality is violated)

 Let T be a continuous mapping from S → S where S is a closed set. Suppose that T satisfies a contraction property, i.e., ∃ γ ∈ (0,1) such that

$$||T(x) - T(y)|| \le \gamma ||x - y||,$$

- · can be any norm. Show that
- (a) There exists a unique x^* s.t. $T(x^*) = x^*$ (10 points)
- (b) The fixed point iteration starting with x₀ (10 points)

$$x_{k+1} = T(x_k),$$

converges to x^* , i.e., $\lim_{k\to\infty} x_k = x^*$.

<u>Hint</u>: In both questions a and b, first show that x_k is a Cauchy sequence. And then use results in Problem 2 and the fact that T is continuous.

· Showing that xk is Cauchy:

· define
$$\{x_R\} := x_{RH} = T(x_R)$$
 (generating a sequence based on T)

(1) •
$$d(x_{RH}, x_R) = d(T(x_R), T(x_{R-1})) \leq \gamma d(x_R, x_{R-1})$$
 (by contraction definition)

(2)
$$\therefore d(x_{RH}, x_R) \leq \delta^n d(x_L, x_0), \forall_R > 1$$
 (by induction)

• for
$$m > k > 1$$
:

(3) $d(x_m - x_k) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{k+1}, x_k)$

(4) $(x_m - x_k) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{k+1}, x_k)$

(4) $(x_m - x_k) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{k+1}, x_k)$

(5) $(x_m - x_k) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{k+1}, x_k)$

(6) $(x_m - x_k) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{k+1}, x_k)$

$$= \lambda_{k} \left(1 + \lambda_{5} + \lambda_{2} \dots \lambda_{m-k-1} \right)$$

$$= \lambda_{k} \left(\lambda_{m-k-1} + \lambda_{m-s-5} \dots + 1 \right)$$

(4)
$$\frac{\text{Simplifying via geometric Sequence:}}{1-\gamma} \le \frac{\gamma^R}{1-\gamma}$$
 (as finite, and $1+x^2+x^3...=\frac{1}{1-\gamma}$

$$= \gamma^R \left(1+\gamma^2+\gamma^3.....\gamma^{n-R-1}\right) \le \frac{\gamma^R}{1-\gamma}$$
 (as finite, and $1+x^2+x^3....=\frac{1}{1-\gamma}$

(5)
$$d(x_m-x_R) \leqslant \frac{\gamma^R}{1-\gamma} d(\alpha_1,\alpha_0) \qquad \text{(from equation (3) and (4))}$$

$$d(x_m-x_k) \rightarrow 0 \text{ as } m,k \rightarrow \infty$$

- a) Problem 2, Queston 5 states that all cauchy Sequences of real numbers converge, to a limit of xx*
 - : {xk} converges to a point x*

Showing xx is a fixed point

$$\frac{\text{Showing } x \text{ is } x + \text{lim}}{x^{+} = \lim_{k \to \infty} x \text{ is}} = \lim_{k \to \infty} T(x_{k-1}) = T(\lim_{k \to \infty} (x_{k-1})) = T(x^{+})$$

. (note that the limit can be moved inside T, as it is continuous)

Uniqueness of xe*

- . Let x'' be a fixed point of the cauchy segmence $\{x_k\}$
- . if y is another fixed point,

$$= |x'' - y''| = |T(x'') - T(y')| \leq |x'' - y''|$$

- . as Y ∈ (0,1), |x-y| = 0 -> x = y
- . .. DC is the unique fixed point
- b) . The fixed point iteration $(x_{R+1} = T(x_R))$ is used inductively to generate terms in the Sequence $\{x_R\}$, which was proved to be cauchy above.
 - · Cauchy sequences of real numbers converge (as per Problem 2, Question 5)
 - · : cauchy seg { 20 kg converges to x*

Showing fixed point iteration -> x +

· for the iteration: xx = T(xx-1)

$$\lim_{k\to\infty} (x_k) = \lim_{k\to\infty} (T(x_{k-1}))$$

$$= T(\lim_{k\to\infty} (x_{k-1}))$$

$$= T(x^*)$$

$$= x^*$$

(as T is continuous, can bring in the limit)

(by cauchy seq convering to x*)

noted above

(limits of both sides of iteration)

$$\vdots \quad \lim_{k\to\infty} (x_k) = x_k$$

Shows that the iteration will eventually converge to a fixed point (x+)

2. Next let T be the right-hand side of the Bellman equation, i.e. for all i

$$(TV_{\mu})(i) = \mathbb{E}[r(i, \mu(i))] + \gamma \sum_{j \in S} P_{ij}(\mu(i))V_{\mu}(j).$$

 (a) Given any V, V' such that V(i) ≤ V'(i) for all i. Show that the following Monotonicity property holds (5 points)

$$(TV)(i) \le (TV')(i).$$

$$(TV)(i) - (TV')(i) = \mathbb{E}\left(r(i, M(i)) + \chi \underset{j \in S}{\leq} P_{ij}(M(i))V(j)\right)$$

$$- \left(\mathbb{E}\left(r(i, M(i)) + \chi \underset{j \in S}{\leq} P_{ij}(M(i))V'(j)\right)\right)$$

$$= \chi \underset{j \in S}{\leq} P_{ij}(M(i))V(j) - \chi \underset{j \in S}{\leq} P_{ij}(M(i))V'(j)$$

$$\leq \chi \underset{j \in S}{\leq} P_{ij}(M(i))V(j) - \chi \underset{j \in S}{\leq} P_{ij}(M(i))V(j)$$

$$= O$$

$$=) (TV)(i) - (TV')(i) \leq O$$

$$=) (TV)(i) \leq (TV')(i)$$

(b) Let q be a scalar. Show that (5 points)

$$(T(V+q))(i) = (TV)(i) + \gamma q.$$

$$T(U+q)(i) = \mathbb{E} r(i,u(i)) + \chi \lesssim P_{ij}(u(i)) (U+q)$$

$$j \in S$$

$$T(U+q)(i) = Er(e, M(i)) + 3 \le P_{ij}(M(e)) + 3 \le P_{ij}(M(e)) q$$

$$= Er(i, M(i)) + 3 \le P_{ij}(M(e)) q$$

$$= T(U)(i) + 3 \le P_{ij}(M(e)) q$$

$$= T(U)(i) + 3 q \qquad (as \sum_{jes} P_{ij}(M(e)) = 1)$$

(c) Using the two properties above show that T is contractive under maximum-norm, i.e., for all V, V' (10 points)

$$||TV - TV'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

<u>Hint</u>: Note that here the contraction only holds for the maximum norm. Then the first step is to consider $d = \max_i |V(i) - V'(i)|$. Recall that we consider finite-time MC, i.e., the set of states i is finite. Thus, d is well-defined.

$$T_{m}V_{m}\left(s_{i}\right) = \mathbb{E}\left(r\left(i, M\left(\epsilon\right)\right) + \chi \underset{j \in S}{\sum} P_{i,j}\left(M\left(\epsilon\right)\right) V_{n}\left(j\right)\right)$$

$$\text{Let } c = \max_{S \in S} \left|V_{n}\left(s\right) - U_{2}\left(s\right)\right|$$

$$T_{m}V_{n}\left(s\right) - T_{m}U_{2}\left(s\right) = \overline{r}\left(s\right) + \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) V_{n}\left(s'\right) - \left[\overline{r}\left(s\right) + \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) V_{2}\left(s'\right)\right]$$

$$= \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

$$\leqslant \chi \underset{s' \in S}{\sum} P_{s,s'}\left(M\left(s\right)\right) \left[V_{n}\left(s'\right) - V_{2}\left(s'\right)\right]$$

=)
$$\|T_{M}U_{1}(s)-T_{M}U_{2}(s)\|_{\infty} \leq \|Y\|U_{1}(s)-V_{2}(s)\|_{\infty}$$