

SÍLABO HIDROLOGÍA

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VIII SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09059608030

II. CRÉDITOS : 03

III. REQUISITOS : 09026907050 Mecánica de Fluidos II

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte del área curricular de Tecnología. Es de carácter teórico – práctico. A través de sus objetivos y contenidos proporciona los fundamentos teóricos – prácticos.

Utilizando el software: Hec-Hms, e Hidroesta, se elabora el estudio hidrológico de una cuenca hidrográfica, para su aplicación en el diseño de las estructuras en futuros proyectos.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Hidrometeorología. II. Aguas subterráneas. III. Hidrología superficial.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Del Río, J. (2010). Tratamiento de Datos espaciales en Hidrología.
- Fernández, P. y Fattorelli, S. (2011). Diseño Hidrológico. Edición 2011.
- · Mejía M, J. (2012). Hidrología Aplicada. UNALM.
- Monsalve S., G. (2011). Hidrología en la Ingeniería. Editorial: Escuela Colombiana de Ingeniería. Octava reimpresión, 2011.
- · Olalla F., V. (2013). Hidrología Computacional y Modelos Digitales del Terreno.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: HIDROMETEOROLOGÍA

OBJETIVOS DE APRENDIZAJE:

- Aprender los conceptos básicos de la hidrología.
- Conocer de la importancia del ciclo hidrólogo y los eventos hidrometeorológicos.
- Aplicar el análisis de consistencia para la información hidrometeorológica.

PRIMERA SEMANA

Primera sesión:

Introducción, definición, objetivos, división e importancia de la hidrología.

Segunda sesión:

Ciclo hidrológico, distribución del agua en la tierra, balance hídrico de la tierra.

SEGUNDA SEMANA

Primera sesión:

Hidrometeorología y climatología. Presentación de Trabajo 1.

Segunda sesión:

La cuenca hidrográfica.

TERCERA SEMANA

Primera sesión:

Precipitación, análisis de consistencia de la información faltante.

Segunda sesión:

Precipitación media sobre una cuenca.

CUARTA SEMANA

Primera sesión:

Estimación y extensión de datos faltantes de la información.

Segunda sesión:

Práctica dirigida.

QUINTA SEMANA

Primera sesión:

Análisis de Frecuencia de Datos de Precipitación.

Segunda sesión:

Primera práctica calificada.

SEXTA SEMANA

Primera sesión:

Primera Práctica Calificada.

Segunda sesión:

Evaporación y Evapotranspiración

SÉPTIMA SEMANA

Primera sesión:

Infiltración

Segunda sesión:

Segunda práctica calificada.

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión:

Practica dirigida.

Segunda sesión:

Escorrentía Subsuperficial.

UNIDAD II: AGUAS SUBTERRÁNEAS

OBJETIVOS DE APRENDIZAJE:

- Conocer la importancia del ciclo hidrológico en las aguas subterráneas.
- Conocer la importancia del manejo adecuado de las aguas subterráneas.

DÉCIMA SEMANA

Primera sesión:

Hidrogeología.

Segunda sesión:

Caracterización de acuíferos, problemática de la explotación del agua subterránea.

UNIDAD III: HIDROLOGÍA SUPERFICIAL

OBJETIVOS DE APRENDIZAJE

- Analizar la información hidrológica e hidrometeorológica histórica existente en una cuenca, para poder conocer algún fenómeno a presentarse.
- Elaborar un balance hídrico de una cuenca hidrográfica.

UNDÉCIMA SEMANA

Primera sesión:

Hidrometría.

Segunda sesión:

Práctica dirigida de laboratorio: utilización del Software Hec – Hms.

DUODÉCIMA SEMANA

Primera sesión:

Análisis y componentes de un hidrograma.

Segunda sesión:

Tercera práctica calificada.

DECIMOTERCERA SEMANA

Primera sesión:

Análisis de crecientes.

Segunda sesión:

Control de las crecientes e inundaciones, métodos de combate contra crecientes.

DECIMOCUARTA SEMANA

Primera sesión:

Práctica dirigida de laboratorio: utilización del Software Hidroesta.

Segunda sesión:

Regulación de descargas y balance hídrico.

DECIMOQUINTA SEMANA

Primera sesión:

Cuarta práctica calificada.

Segunda sesión:

Exposiciones y presentación del trabajo final del curso.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso..

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Método expositivo – interactivo. Disertación docente, exposición del estudiante.

Método de discusión guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de demostración – ejecución. El docente ejecuta para demostrar cómo y con qué se hace y el estudiante ejecuta para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, ecran, proyector de multimedia y una impresora.

Materiales: Separata del curso, aplicación de programas HEC-HMS. HidroEsta, aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4

PF = Promedio Final

PE= Promedio de evaluaciones.

EP= Examen parcial

EF= Examen Final

PE= ((P1+P2+P3+P4-MN)/3 + W1)/2

P1,..., P4 = Prácticas Calificadas. MN = Menor nota de prácticas

W1 = Trabajo1

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave

R = relacionado Recuadro vacío = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería		
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.	K	
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas, restricciones económicas, ambientales, sociales, políticas, éticas de salubridad y seguridad.		
(d)	Trabajar adecuadamente en un equipo multidisciplinario.		
(e)	Identificar, formular y resolver problemas de ingeniería	K	
(f)	Comprensión de lo que es la responsabilidad ética y profesional.		
(g)	Comunicarse con su entorno, en forma efectiva.	R	
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.		
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.		
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil.		
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines.		

XIII. HORAS, SESIONES, DURACIÓN

a). Horas de clases

Teoría	Práctica	Laboratorio
2	2	0

b). Sesiones por semana: Dos sesiones.

c). Duración: 4 horas académicas de 45 minutos.

XIV. JEFE DE CURSO:

Ing. Gonzalo Fano Miranda

XV. FECHA:

La Molina, marzo de 2017.