BBDD y modelado

Bases de Datos

- Una base de datos es como un gran almacén para guardar información de manera organizada.
- En una base de datos (SQL), la información se organiza en tablas, como en una hoja de cálculo.

Si pensamos en una biblioteca, su base de datos podría tener dos tablas, una de libros y otra de autores, donde guardaríamos la información correspondiente a cada entidad. En la tabla libros:

Cada "fila" es un libro y cada "columna" es un detalle (título, autor, editorial, año publicación, etc.)

Beneficios:

- Organiza datos de manera eficiente.
- Facilita la búsqueda y gestión de información.

Sistema gestor de base de datos SGBD (DBMS)

Un Sistema Gestor de Bases de Datos (SGBD) es un software especializado que permite crear, gestionar y manipular bases de datos de manera eficiente. Actúa como un administrador que organiza y facilita el acceso a la información almacenada. Algunos de los más usados son:

- MySQL
- Microsoft SQL Server
- Oracle
- PostgreSQL

Modelo Entidad Relación

Un Modelo Entidad-Relación (ER) es una representación gráfica y conceptual de la estructura de una base de datos. Este modelo utiliza entidades (objetos o conceptos) y sus relaciones para describir la información y cómo se relaciona dentro de un sistema.

Se compone de:

- Entidades: Representan objetos o conceptos del mundo real, como "Cliente" o "Producto".
- Atributos: Características o propiedades de las entidades, como "Nombre" o "Edad".
- Relaciones: Conexiones entre entidades que muestran cómo se relacionan entre sí. Por ejemplo, un "Cliente" realiza "Compras".

Ejemplo: un sistema de gestión de una biblioteca. Tendríamos entidades como "Libro" y "Autor". Los atributos del libro podrían ser "Título", "ISBN", etc. La relación podría ser "Escrito por", conectando "Libro" y "Autor".

- Proporciona una visión clara y comprensible de la estructura de la base de datos.
- Facilita la comunicación entre diseñadores y usuarios finales.
- Sirve como base para la creación de esquemas de bases de datos relacionales.

Modelo Entidad Relación

Modelo Entidad Relación

Conceptos esenciales:

- Entidad
- **Atributo**
- Relación
- Clave primaria (PK)
- Clave foránea (FK)
- Cardinalidad --> 1:1, 1:N, N:M
- Normalización: Proceso de organizar datos para reducir redundancias y mejorar la integridad. Por ejemplo, dividir una entidad grande en entidades más pequeñas y relacionarlas.
- Integridad Referencial: Es asegurar que las relaciones entre los datos encajen perfectamente, como las piezas de un rompecabezas

Formas normales

Primera forma normal (1FN)

- Cada registro debe ser único y se puede identificar con su clave primaria.
- El valor de una campo es indivisible (atómico).

user_id	name	country	province	town	street	number
1	Alex López	España	Madrid	Getafe	Dulcinea	2
2	Celia Pérez	España	Alicante	Elche	Goya	5
3	Juan Martín	España	Sevilla	Utrera	Gran Vía	4
4	Laura García	España	Toledo	Yuncos	Mozart	45

user_id	name	surname	country	province	town	street	number
1	Alex	López	España	Madrid	Getafe	Dulcinea	2
2	Celia	Pérez	España	Alicante	Elche	Goya	5
3	Juan	Martín	España	Sevilla	Utrera	Gran Vía	4
4	Laura	García	España	Toledo	Yuncos	Mozart	45

Formas normales

Segunda forma normal (2FN)

- Estar 1FN
- No tiene dependencia parcial. Es decir, todos los atributos no claves son totalmente dependientes de la clave primaria

user_id	name	surname	country	province	town	street	number	reservation_date
1	Alex	López	España	Madrid	Getafe	Dulcinea	2	2023-05-19
2	Celia	Pérez	España	Alicante	Elche	Goya	5	2022-08-15
3	Juan	Martín	España	Sevilla	Utrera	Gran Vía	4	2021-12-06
4	Laura	García	España	Toledo	Yuncos	Mozart	45	2023-10-12

user_id	name	surname	country	province	town	street	number
1	Alex	López	España	Madrid	Getafe	Dulcinea	2
2	Celia	Pérez	España	Alicante	Elche	Goya	5
3	Juan	Martín	España	Sevilla	Utrera	Gran Vía	4
4	Laura	García	España	Toledo	Yuncos	Mozart	45

reservation_id	reservation_date	user_id
1001	2023-05-19	1
1002	2022-08-15	2
1003	2021-12-06	3
1004	2023-10-12	4

Formas normales

Tercera forma normal (3FN)

- Estar 2FN
- No tiene dependencia parcial transitiva, es decir, los atributos no tienen dependencia entre sí.

user_id	name	surname	country	province	town	street	number
1	Alex	López	España	Madrid	Getafe	Dulcinea	2
2	Celia	Pérez	España	Alicante	Elche	Goya	5
3	Juan	Martín	España	Sevilla	Utrera	Gran Vía	4
4	Laura	García	España	Toledo	Yuncos	Mozart	45

user_id		name	street_id	number
	1	Alex López	2001	2
	2	Celia Pérez	2002	5
	3	Juan Martín	2003	4
	4	Laura García	2004	45

country_id		name
	1	España
	2	Francia

province_id	name	country_id
1	Madrid	1
2	Alicante	1
3	Sevilla	1
4	Toledo	1

town_id	name	province_id
10	1 Getafe	1
10	2 Elche	2
10	3 Utrera	3
10-	4 Yuncos	4

street_id	name	town_id
2001	Dulcinea	101
2002	Goya	102
2003	Gran Vía	103
2004	Mozart	104

Integridad Referencial

En el contexto de libros y autores, la integridad referencial garantiza que no se pueda hacer referencia a un autor inexistente en la tabla de libros. Si intentamos eliminar un autor con libros asociados, la integridad referencial evita la eliminación o nos obliga a manejarla de manera consistente, como eliminando también los registros de libros asociados.

En resumen, la integridad referencial asegura relaciones coherentes entre las tablas, preservando la validez de los datos y evitando la pérdida de conexiones lógicas entre la información.

Madrid Barcelona Bogotá

Datos de contacto