

Experiment No. 1
Analyze the Boston Housing dataset and apply appropriate
Regression Technique
Date of Performance:
Date of Submission:

Aim: Analyze the Boston Housing dataset and apply appropriate Regression Technique.

Objective: Ablility to perform various feature engineering tasks, apply linear regression on the given dataset and minimise the error.

Theory:

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on — the kind of relationship between dependent and independent variables they are considering, and the number of independent variables getting used.

Linear regression performs the task to predict a dependent variable value (y) based on a given independent variable (x). So, this regression technique finds out a linear relationship between x (input) and y(output). Hence, the name is Linear Regression.

In the figure above, X (input) is the work experience and Y (output) is the salary of a person. The regression line is the best fit line for our model.

Dataset:

The Boston Housing Dataset

The Boston Housing Dataset is a derived from information collected by the U.S. Census Service concerning housing in the area of Boston MA. The following describes the dataset columns:

CRIM - per capita crime rate by town

ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS - proportion of non-retail business acres per town.

CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX - nitric oxides concentration (parts per 10 million)

RM - average number of rooms per dwelling

AGE - proportion of owner-occupied units built prior to 1940

DIS - weighted distances to five Boston employment centres

RAD - index of accessibility to radial highways

TAX - full-value property-tax rate per \$10,000

PTRATIO - pupil-teacher ratio by town

B - 1000(Bk - 0.63)² where Bk is the proportion of blacks by town

LSTAT - % lower status of the population

MEDV - Median value of owner-occupied homes in \$1000's

Code:

import numpy as np import pandas as pd import os print(os.listdir("../input")) from pandas import read_csv column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',

'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']

data=read_csv('../input/housing.csv',header=None,delimiter=r"\s+",names=column_names)

print(data.head(5))

```
['housing.csv']

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296.0
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242.0
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242.0
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222.0
4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222.0

PTRATIO B LSTAT MEDV
0 15.3 396.90 4.98 24.0
1 17.8 396.90 9.14 21.6
2 17.8 392.83 4.03 34.7
3 18.7 394.63 2.94 33.4
4 18.7 396.90 5.33 36.2
```

import seaborn as sns import matplotlib.pyplot as plt from scipy import stats fig, axs = plt.subplots(ncols=7, nrows=2, figsize=(20, 10)) index = 0


```
axs = axs.flatten() for
k,v in data.items():
    sns.boxplot(y=k, data=data, ax=axs[index]) index
+= 1
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=5.0)
```


for k, v in data.items():
$$q1 = v.quantile(0.25) q3 = v.quantile(0.75) irq = q3 - q1 v_col = v[(v <= q1 - 1.5 * irq) | (v >= q3 + 1.5 * irq)] perc = np.shape(v_col)[0]$$


```
* 100.0 / np.shape(data)[0] print("Column %s outliers
= %.2f%%" % (k, perc))

data = data[~(data['MEDV'] >= 50.0)] print(np.shape(data))

fig, axs = plt.subplots(ncols=7, nrows=2, figsize=(20,
10)) index = 0 axs = axs.flatten() for k,v in data.items():
    sns.distplot(v, ax=axs[index]) index
+= 1

plt.tight layout(pad=0.4, w pad=0.5, h pad=5.0)
```


plt.figure(figsize=(20, 10)) sns.heatmap(data.corr().abs(), annot=True)

Engineering

Vidyavardhini's College of Engineering & Technology Department of Computer

		15												
CRIM -	1	02	041	0.064	042	022	0.35	038	0.63	058	029	038	046	045
ZN -	0.2	1	053	0.054	051	031	056	167	031	83	038	018	142	04
INDUS -	041	0.53	1	0.036	07	041			06	IR.	039	036	0.64	
CHAS -	0.064	0.054	0.036	1	0.086	0.045	0071	0.078	0,033	0.068	012	0042	0.0065	0.075
NOX -	042	051	W	0.086	i	032	173	637	061	167	019	038	161	052
RM -	022	0.31	041	0.045	032	10	0.27	0.25	02	0.28	0.29	012	0.61	
AGE -	035	056	0.64	0071	173	0.27	1	134	0.45	05	027	0.28	064	0.49
DIS-	038	067		0.078	en:	0.25	974	1	0.49	053	025	03	054	037
RAD -	063	031	0.6	0.033	061	02	£45	0.49	#	091	046	0.45	051	048
TAX -	058	83		0.068	0.67	0.28	05	053	0.91	1	045	0.45	057	057
PTRATIO -	029	038	0.39	012	019	0.29	027	0.25	046	045	1	017	036	052
В-	038	018	036	0.042	038	012	0.28	03	045	045	017	1	036	036
LSTAT -	0.46	0.42	0.64	0.0065		061	0.64	054	051	0.57	036	036	1	(#:
MEDV -	0.45	0.4		0.075	052		0.49	037	0.48	0.57	052	036	076	ĭ
· c	CRIM	ŹN	NOUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV


```
from
                                                  min max scaler
         sklearn
                     import
                                preprocessing
preprocessing.MinMaxScaler() column sels = ['LSTAT', 'INDUS', 'NOX',
'PTRATIO', 'RM', 'TAX', 'DIS',
'AGE'] x = data.loc[:,column sels] y = data['MEDV']
x=pd.DataFrame(data=min max scaler.fit transform(x),
columns=column sels) fig, axs = plt.subplots(ncols=4,
nrows=2, figsize=(20, 10)) index = 0 axs = axs.flatten()
for i, k in enumerate(column sels):
  sns.regplot(y=y, x=x[k], ax=axs[i])
plt.tight layout(pad=0.4, w pad=0.5, h pad=5.0)
y = np.log1p(y) for col in x.columns:
  if np.abs(x[col].skew()) > 0.3:
     x[col] = np.log1p(x[col])
from sklearn import datasets, linear model from
sklearn.model selection import cross val score
from sklearn.model selection import KFold import
numpy as np 1 regression =
linear model.LinearRegression() kf =
KFold(n splits=10) min max scaler =
preprocessing.MinMaxScaler()
```



```
x_scaled = min_max_scaler.fit_transform(x)
scores=cross_val_score(l_regression,x_scaled,y,cv=kf,scoring='neg_mean_squa
red_error')
print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
MSE: -0.04 (+/- 0.04)
```

Conclusion:

Features have been chosen to develop the model:

- 1. CRIM Per capita crime rate by town
- 2. CHAS Charles River dummy variable (1 if tract bounds river; else 0)
 - 3. NOX Nitric oxides concentration (parts per 10 million)
 - 4. RM Average number of rooms per dwelling
 - 5. DIS weighted distances to five Boston employment centres
 - 6. RAD Index of accessibility to radial highways
 - 7. TAX Full-value property-tax rate per \$10,000
 - 8. PTRATIO Pupil-teacher ratio by town
 - 9. LSTAT Lower status of the population

Mean Squared Error calculated:

- ➤ Calculated Mean Squared Error: 0.04 (+/- 0.04)
- ➤ The Mean Squared Error measures how close a regression line is to a set of data points.

Engineering

Lesser the Mean Squared Error refers to Smaller is the error and Better the estimator.