Do-It-Yourself Semantic Audio

Jörn Loviscach

Fachhochschule Bielefeld, Germany (Bielefeld University of Applied Sciences)

The Funnel Principle

Feature Extraction

Dimension Reduction

Machine Learning

Visualization
User Interfaces

Some Applications: Music Information Retrieval (1)

Find music similar to music that the listener likes

Some Applications: Music Information Retrieval (2)

Find music that fits to walking/jogging

G

Extract the chorus of a song

Find the most prominent repeated part

Segment radio archives: news, music, ads, etc.

Cluster temporal evolution and classify those clusters

Some Applications: Forensics

Detect gunshots in surveillance recordings

Some Applications: Language Learning

Identify the accent of a speaker

Recognize phonemes and classify their timbre

Some Applications: Music Making

Control digital musical instruments acoustically

Objective of this Tutorial

Get going

- for free
- without C++ programming

Basic methods of

- Feature Extraction
- Machine Learning

Agenda

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

Agenda

Longer Questions

scape

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Questions 50 kara Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

The Software Landscape: Scope

The Software Landscape: Offline vs. Real Time

- Offline processing
 Currently the typical mode
- Real-time processing

Applications:

- Score following & chord recognition for live music
- Live control of digital musical instruments

The Software Landscape: Packaging

Many shapes and forms ...

	Feature Extraction	Machine Learing	User Interface	Offline	Real-time	C/C++/Java	MATLAB®	Pure Data, Max/MSP	Stand-alone	Web Service	Active Development	Web Address
MARSYAS	~	~	\Diamond	~	~	~	\Diamond	\Diamond	✓	\Diamond	~	http://marsyas.info/
CLAM	~	\Diamond	\Diamond	~	~	~	\Diamond	\Diamond	\Diamond	\Diamond	~	http://clam-project.org/
openSMILE	•	~	\Diamond	~	~	~	\Diamond	\Diamond	~	\Diamond	~	http://opensmile.sourceforge.net/
LibXtract	•	\Diamond	\Diamond	~	\Diamond	~	\Diamond	~	~	\Diamond	~	http://sourceforge.net/projects/libxtract/
Aubio	•	\Diamond	\Diamond	~	\Diamond	~	\Diamond	\Diamond	\Diamond	\Diamond	~	http://aubio.org/
jAudio (part of jMIR)	•	\Diamond	~	~	\Diamond	~	\Diamond	\Diamond	✓	\Diamond	\Diamond	http://sourceforge.net/projects/jaudio/
Music-to-Knowledge (M2K)	•	~	\Diamond	~	\Diamond	~	~	\Diamond	✓	\Diamond	\Diamond	http://www.music-ir.org/evaluation/m2k/
Maate	•	\Diamond	\Diamond	~	\Diamond	~	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	http://lwn.net/2002/0321/a/maate.php3
MPEG-7 Audio Encoder	•	\Diamond	\Diamond	~	\Diamond	~	\Diamond	\Diamond	✓	\Diamond	\Diamond	http://mpeg7audioenc.sourceforge.net/
MIRtoolbox	~	~	\Diamond	>	\Diamond	\Diamond	~	\Diamond	\Diamond	\Diamond	>	https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/mirtoolbox
MA Toolbox	~	~	0	>	0	0	~	0	\Diamond	\Diamond	0	http://www.ofai.at/~elias.pampalk/ma/
Computer Audition Toolbox (CATbox)	~	~	0	>	0	0	~	0	\Diamond	\Diamond	0	http://cosmal.ucsd.edu/cal/projects/CATbox/catbox.htm
MPEG-7 XM	~	\Diamond	\Diamond	>	\Diamond	\Diamond	~	\Diamond	\Diamond	\Diamond	0	http://mpeg7.doc.gold.ac.uk/mirror/index.html
PsySound3	~	~	\Diamond	~	0	0	~	\Diamond	0	\Diamond	0	http://psysound.wikidot.com/
IPEM Toolbox	~	~	\Diamond	>	\Diamond	\Diamond	~	\Diamond	\Diamond	\Diamond	0	http://www.ipem.ugent.be/?q=node/27
Soundspotter	~	~	\Diamond	>	>	\Diamond	\Diamond	~	\Diamond	\Diamond	>	http://soundspotter.org/
timbreID	~	~	\Diamond	>	~	0	\Diamond	~	\Diamond	\Diamond	~	http://williambrent.conflations.com/pages/research.html
MuBu	~	~	~	>	~	\Diamond	\Diamond	~	\Diamond	\Diamond	>	http://imtr.ircam.fr/imtr/MuBu
Chuck	~	\Diamond	\Diamond	>	~	\Diamond	\Diamond	\Diamond	~	\Diamond	>	http://chuck.cs.princeton.edu/
Sonic Visualiser	~	\Diamond	~	>	\Diamond	\Diamond	\Diamond	\Diamond	~	\Diamond	>	http://www.sonicvisualiser.org/
Sonic Annotator	•	\Diamond	•	~	\Diamond	\Diamond	\Diamond	\Diamond	~	\Diamond	>	http://www.omras2.org/SonicAnnotator
Praat	•	\Diamond	~	~	\Diamond	\Diamond	\Diamond	\Diamond	~	\Diamond	>	http://www.fon.hum.uva.nl/praat/
EchoNest	~	~	\Diamond	>	\Diamond	0	\Diamond	\Diamond	\Diamond	~	>	http://developer.echonest.com/
MPEG-7 Audio Analyzer	~	\Diamond	\Diamond	~	\Diamond	0	\Diamond	\Diamond	\Diamond	~	\Diamond	http://mpeg7lld.nue.tu-berlin.de/

Agenda

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

Sonic Visualiser

Feature Extraction

Dimension Reduction

Machine Learning

Visualization

User Interfaces

Sonic Visualiser

- Manual and automated markup
- Many feature extractors available;
 install in C:\Program Files (x86)\Vamp Plugins
- Great for experiments with feature extraction
- Things to see and try:
 - Details about current position of mouse pointer
 - Draw musical notes
 - Align timelines of two versions of a recording (plug-in)

Male/Female Segmentation

- Add new pane; add spectrogram
- Window: 32,768 samples; vert. axis logarithmic
- Add new time instants layer
- Add markers
- Plot type: segmentation
- Name markers (cross tool or edit layer data)
- Edit markers if needed
- Export annotation layer

Agenda

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Questions so far? Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

jAudio and Excel

Dimension Reduction

Machine Learning

Visualization **User Interfaces**

jAudio: the Program

- Feature extractor
- Graphical user interface and command line
- Java-based
- Multi-threaded
- Batch processing (add multiple files at once!)
- Export e.g. as ACE (XML-based);
 nice for Excel

jAudio: Catches

- Install as admin
- Override standard heap size:
 No double-click to start, rather
 java -Xmx1024M -jar jAudio.jar
 in the directory of the jar. (Batch file!)
- No ä or é in audio file names:
 XML output broken
- XML and ARFF: cleartext. Huge files!
 Export as few values as possible.

Sorting Files by Loudness

- Set paths for output files
- Do not export standard deviation (Alter Aggregators, click Save!)
- For each file, extract overall mean of root mean square
- Import into Microsoft Excel
- Sort and plot

Sorting Sounds by Brightness

- These are different ways of measuring brightness:
 - Number or rate of zero crossings
 - Spectral centroid
 - Spectral rolloff point
- jAudio: for each file, extract overall mean
- Import into Microsoft Excel
- Sort and/or plot (x = item number)

Zero Crossings

- Number or rate of sign changes
- Related to frequency and noise content
- Independent of volume
- Issue: sensitive to noise and harmonics

- Mean frequency (center of mass)
 of the power spectrum (linear or log freq.)
- Independent of volume (if \sqrt{Power})

Spectral Rolloff Point

- Determine the frequency that divides the audio power 85:15 (for instance)
- Independent of volume (if \sqrt{Power})
- Fluctuating with empty spectral regions

Sorting Music by Tempo

- Demos with Sonic Visualiser:
 - Note onsets
 - Beat and bar tracker
- jAudio: for each file, extract mean of strongest beat
- Import into Microsoft Excel
- Sort and/or plot (x = item number)

Strongest Beat

- Compute envelope
- Compute autocorrelation
- Return inverse of time lag of maximum autocorrelation (except 0)

Strongest Beat

- Issue with ambiguity:
 jAudio picks the maximum histogram bin
- Could improve that in Excel by extracting the full histogram

Agenda

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

jAudio and WEKA

Feature Extraction

Dimension Reduction

Machine Learning

Visualization **User Interfaces**

WEKA: the Program

Huge collection of machine learning algorithms

Clustering: unsupervised machine learning

Classification: supervised machine learning

WEKA: the Program

- Great for experiments
- ARFF: Plaintext file format for input data, one of the two formats written by jAudio
- Java-based
- In RunWeka.ini: maxheap=512m

Clustering Sounds by Similarity

- Demo: vowel sounds
- jAudio: extract MFCC averages
- Export as ARFF (change file extension!)
- Import into WEKA Explorer: Preprocess
- Retain only the means of MFCCs 1...12
- Cluster:
 - Store clusters for visualization
 - Visualize cluster assignments

MFCCs: Mel-Frequency Cepstral Coefficients (1)

Rough idea of what the ear sends to the brain for one single moment of time

 Step 1: Short-time spectrum in perceived frequencies

MFCCs: Mel-Frequency Cepstral Coefficients (2)

- Step 2: Compute approximate perceived loudness: log of power
- Intermediate result: spectrum as perceived

MFCCs: Mel-Frequency Cepstral Coefficients (3)

- Step 3: Describe the overall shape of this spectrum
- Do this through a mixture of cosine shapes
- MFCCs = the amounts of the different cosines

MFCCs: Mel-Frequency Cepstral Coefficients (4)

- Demo with Sonic Visualizer
- MFCC 0 ist just the audio level: Discard it to be independent of level
- Fine structure of spectrum is ignored
- What MFCCs are not designed to do:
 - Tell different fundamental frequencies apart
 - Distinguish harmonic/inharmonic/noise

Clustering: k-Means

- Input: data points, number of clusters (guess)
- Pick random centers for clusters

- Assign each data point to the nearest center
- New center = centroidof all points assigned
- Output: classification and centers

Clustering: Expectation Maximization (EM)

- Input: data points, number of clusters (guess)
- Pick random centers/sizes for clusters

- Iterate:
 - Assign each data point to the most probable center
 - New center/size according to points assigned

• Output: classification, centers, sizes

Clustering: Caveats

• Metric structure ≈ perception?

- Are all data dimensions of the right scale?
 - Weka: Visualize All
 - Weka: Standardize, Math Expression, ...
- Vital when combining different features

Music Classification

- jAudio: extract MFCC averages
- Add to ARFF file:
 - @ATTRIBUTE class {classical, jazz, pop, rock}
 - Class of each file
- Import into WEKA Explorer
- Classify
- Visualize classifier errors

Classification: k Nearest Neighbors (kNN)

- Input:
 - Classified exemplars
 - The number k
 - The item x to be classified
- Find the k exemplars nearest to x
- Vote by majority among them

Classification: Zoo of Methods

Neural Networks

Support-Vector Machines

• and dozens more

- The software landscape
- Basic feature extraction:
 - Sonic Visualizer
 - jAudio and Excel
- Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

ichine learning:

MIRtoolbox in MATLAB®

MIRtoolbox: the software

- All in one well-designed package, great for experimentation:
 - Low-level features
 - Dimension reduction
 - Machine Learning
- Requires MATLAB®, which is costly
- Slower than Java or C++,
 even though intermediate results are reused

Music Classification: Improvements (1)

No average of MFCCs; better statistical model

- Ignoring time order:
 - k-Means
 - Gaussian Mixture Model (GMM)
- With time oder:
 - Hidden Markov Model (HMM)

Music Classification: Improvements (2)

Feature Extraction

Dimension Reduction

Machine Learning

Visualization
User Interfaces

Not mean of MFCCs, but statistical model

- Ignoring time order:
 - k-Means
 - Gaussian Mixture Model (GMM)
- With time oder:
 - Hidden Markov Model (HMM)

Music Classification: Improvements (4)

Not mean of MFCCs, but statistical model

- Ignoring time order:
 - k-Means
 - Gaussian Mixture Model (GMM)
- With time oder:
 - Hidden Markov Model (HMM)

Music Classification: Improvements (5)

Not mean of MFCCs, but statistical model

- Ignoring time order:
 - k-Means
 - Gaussian Mixture Model (GMM)
- With time oder:
 - Hidden Markov Model (HMM)

MIRtoolbox in Action

- Classify audio files by music genre
- Training set, test set:
 add prefixes to the files, e.g., p, r, j, c
- Extract features, condense by GMM, classify by Bayes

- The software landscape
- Basic feature extraction:
 - Sonic Visualiser
 - jAudio and Excel
- Feature extraction and machine learning:
 - jAudio and WEKA
 - MIRtoolbox in MATLAB®
- Real-time applications:
 - timbreID in Pure Data

Questions

timbreID in PureData

Dimension Reduction

Machine Learning

Visualization
User Interfaces

timbreID in Action

- Low-level features
- k-NN classification
- Clustering of training exemplars

• Generate/control MIDI data, audio signals, ...

Outlook

Outlook: Semantic Audio via the Internet

- EchoNest: Web Service for Music Information Retrieval
- Collect data from the users
- Keep waveforms
 (large, expensive, sensitive)
 away from the end user
- Mashups of Web Services?
- Real time, too??

Thank you!

www.j3L7h.de

