

Capítulo 4: Conceitos de Roteamento

Protocolos de roteamento

Cisco Networking Academy® Mind Wide Open™

Capítulo 4

- 4.0 Conceitos de Roteamento
- 4.1 Configuração inicial de um roteador
- 4.2 Decisões de roteamento
- 4.3 Operação de roteamento
- 4.4 Resumo

Capítulo 4: Objetivos

- Configure um roteador para rotear entre várias redes diretamente conectadas
- Descrever as principais funções e recursos de um roteador.
- Explique como os roteadores usam as informações em pacotes de dados para tomar decisões de encaminhamento em uma rede de uma empresa de pequeno a médio porte.
- Explique o processo de encapsulamento e desencapsulamento usado por roteadores para comutar pacotes entre interfaces
- Compare as formas em que um roteador cria uma tabela de roteamento ao operar em uma rede corporativa de pequeno a médio porte.
- Explique entradas da tabela de roteamento para redes conectadas diretamente.
- Explique como um roteador cria uma tabela de roteamento para redes diretamente conectadas.

Capítulo 4: Objetivos (continuação)

- Explique como um roteador cria uma tabela de roteamento usando rotas estáticas.
- Explique como um roteador cria uma tabela de roteamento usando um protocolo de roteamento dinâmico.

Características de uma rede

Características da rede

Por que rotear?

 O Roteador é responsável pelo roteamento de tráfego entre redes.

Pacotes de rota de roteadores

A interface de linha de comando (CLI) do Cisco IOS pode ser usada para visualizar a tabela de roteamento.

Roteadores são computadores

- Os roteadores são computadores especializados que contêm os seguintes componentes necessários para operar:
 - Unidade central de processamento (CPU)
 - Sistema operacional (OS) Os roteadores usam IOS Cisco
 - Memória e armazenamento (RAM, ROM, NVRAM, flash, disco rígido)
- Os roteadores utilizam os seguintes tipos de memória:

Memória	Volátil/não volátil	Armazenamentos
RAM	Volátil	 IOS em execução Arquivo de configuração em execução Roteamento IP e tabelas ARP Buffer de pacote
ROM	Não volátil	Instruções de inicializaçãoSoftware de diagnóstico básicoIOS limitado
NVRAM	Não volátil	 Arquivo de configuração de inicialização
Flash	Não volátil	IOSOutros arquivos de sistema

Roteadores são computadores

 Os roteadores usam portas e placas de interface de rede interconexão com outras redes

Painel traseiro de um roteador

Redes de interconexão de roteadores

Os roteadores podem conectar várias redes.

 Os roteadores têm várias interfaces, cada uma em uma rede IP diferente.

Os roteadores escolhem os melhores caminhos

- Determinar o melhor caminho para enviar pacotes
 - Usa sua tabela de roteamento para determinar o caminho
- Enviar pacotes a seu destino
 - Encaminha o pacote para a interface indicada na tabela de roteamento.
 - Encapsula o pacote e o encaminha para o destino.
- Os roteadores usam rotas estáticas e os protocolos de roteamento dinâmico para aprender sobre redes remotas e criar suas tabelas de roteamento.

Os roteadores escolhem os melhores caminhos

Como o roteador funciona

R1# show ip route

Codes:

C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

- C 192.168.1.0/24 is directly connected, FastEthernet0/0
- C 192.168.2.0/24 is directly connected, Serial0/0/0
- S 192.168.3.0/24 [1/0] via 192.168.2.2

Os roteadores usam a tabela de roteamento como um mapa para descobrir o melhor caminho para uma determinada rede.

Métodos de encaminhamento de pacotes

- Switching de processos Um mecanismo antigo de encaminhamento de pacotes ainda disponível para roteadores da Cisco.
- Switching rápido Um mecanismo comum de encaminhamento de pacotes que usa um cache de switching rápida para armazenar informações do próximo salto.
- Cisco Express Forwarding (CEF) O mecanismo mais recente, mais rápido e preferido de encaminhamento de pacotes IOS Cisco. As entradas da tabela não são acionadas por pacote, como o switching rápido, mas por alterações.

Cisco Express Forwarding

Plano de controle

Conectar-se a uma rede

Gateways padrão

Para permitir que dispositivos de acesso à rede sejam configurados com as seguintes informações do endereço IP

- Endereço IP Identifica um host exclusivo em uma rede local.
- Máscara de Sub-rede -Identifica a sub-rede da rede do host.
- Gateway padrão Identifica para o roteador
 para o qual um pacote
 será encaminhado
 quando o destino não está
 na mesma sub-rede da
 rede local.

Endereço MAC destino	Endereço MAC origem	Endereço IP origem	Endereço IP destino	Dados
11-11-11-11-11	AA-AA-AA-AA-AA	192.168.1.110	172.16.1.99	

Documentar Endereçamento de rede

A documentação de rede deve ter pelo menos o seguinte em uma tabela de diagrama de topologia e endereçamento:

- Nomes de dispositivo
- Interfaces
- Endereço IP e máscara de sub-rede
- Gateways padrão

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway padrão
R1	Fa0/0	192.168.1.1	255.255.255.0	N/D
	S0/0/0	192.168.2.1	255.255.255.0	N/D
R2	Fa0/0	192.168.3.1	255.255.255.0	N/D
	S0/0/0	192.168.2.2	255.255.255.0	N/D
PC1	N/D	192.168.1.10	255.255.255.0	192.168.1.1
PC2	N/D	192.168.3.10	255.255.255.0	192.168.3.1

Ativar o IP em um host

- Endereço IP atribuído estaticamente— O endereço IP, a máscara de sub-rede e o gateway padrão são atribuídos manualmente ao host. O Endereço IP do servidor DNS também pode ser atribuído.
 - Usado para identificar recursos de rede específicos como servidores e impressoras de rede
 - Pode ser usado em redes muito pequenas com poucos hosts.
- Endereço IP dinamicamente atribuído As informações de endereço IP são atribuídas dinamicamente por um servidor usando Dynamic Host Configuration Protocol (DHCP)
 - A maioria dos hosts adquire as informações de endereço IP com o DHCP
 - Os serviços DHCP podem ser fornecidos pelos roteadores Cisco

LEDs de dispositivo

LEDs CISCO 1941

#	Porta	LED	Cor	Descrição	Ê
1	1 GE0/0 e S GE0/1 (Velocio		1 piscada + pausa	A porta está operando a 10 Mb/s	
)	2 piscadas + pausa	A porta está operando a 100 Mb/s.	
			3 piscadas + pausa	A porta está operando a 1000 Mb/s.	=
		L (Link)	Verde	Link ativo	
			Desligada	Link inativo	
2	Console	EN	Verde	Porta ativa	
			Desligada	Porta inativa	
3	USB	EN	Verde	Porta ativa	
			Desligada	Porta inativa	v

Acesso ao console

O acesso do console requer:

Cabo do console – RJ-45 a DB-9

Software de emulação de terminal – Tera Term, PuTTY,

HyperTerminal

Ativar o IP em um switch

- Os dispositivos de infraestrutura de rede exigem que os endereços IP habilitem o gerenciamento remoto.
- Em um switch, o endereço IP de gerenciamento é atribuído em uma interface virtual

Configurar a interface de gerenciamento do switch

Configurações básicas em um Roteador

Definir configurações básicas do roteador

Tarefas básicas que devem primeiro ser configuradas em um roteador e um switch Cisco:

- Nomear o dispositivo Distingue-o de outros roteadores
- Protege EXEC privilegiado user EXEC e acesso Telnet e criptografa senhas para seu mais alto nível

```
R1 (config) #enable secret class
R1 (config) #
R1 (config) #line console 0
R1 (config-line) #password cisco
R1 (config-line) #login
R1 (config-line) #exit
R1 (config) #
R1 (config) #line vty 0 4
R1 (config-line) #password cisco
R1 (config-line) #password cisco
R1 (config-line) #login
R1 (config-line) #exit
R1 (config) #
R1 (config) #
R1 (config) #service password-encryption
R1 (config) #
```

 Configurar um banner – Fornece notificação legal de acesso não autorizado.

Configurações básicas em um roteador

Configurar interfaces do roteador

Para estar disponível, uma interface de roteador deve ser:

- Configurada com um endereço e máscara de subrede .
- Ativada Por padrão, as interfaces LAN e WAN não são ativadas. Deve ser ativada com o comando no shutdown.
- Outros parâmetros A extremidade de cabo serial chamada DCE deve ser configurada com o comando clock rate.
- A descrição opcional pode ser incluída.

Configurar a interface Gi0/0 PC1 .10 192.168.10.0/24 G0/0 .2 209.165.200.224/30 G0/0 .2 .225 S0/0/0 G0/1 192.168.11.0/24 R1 (config) # interface gigabitethernet 0/0 R1 (config-if) # description Link to LAN 1 R1 (config-if) # ip address 192.168.10.1 255.255.255.0 R1 (config-if) # no shutdown R1 (config-if) # exit R1 (config) # *Jan 30 22:04:47.551: %LINK-3-UPDOWN: Interface

GigabitEthernet0/0, changed state to down

GigabitEthernet0/0, changed state to up

*Jan 30 22:04:50.899: %LINK-3-UPDOWN: Interface

Interface GigabitEthernet0/0, changed state to up

R1 (config) #

R1 (config) #

*Jan 30 22:04:51.899: %LINEPROTO-5-UPDOWN: Line protocol on

Configurações básicas em um roteador

Configurar uma interface do roteador IPv6

- Configure a interface com endereço IPv6 e a máscara de sub-rede. Use o comando de configuração de interface ipv6 address ipv6addresslipv6-length [link-local | eui-64].
- Ative Usando o comando no shutdown.

As interfaces IPv6 podem suportar mais de um endereço:

- Configure um unicast global especificado
 ipv6-address /ipv6-length
- Configure um endereço global IPv6 com um identificador de interface (ID) na ordem baixa de 64 bits - ipv6address lipv6-length eui-64
- Configure um endereço local de link ipv6-address lipv6-length link-local

Configurar a interface R1 Gi0/0 2001:0DB8:ACAD:1::/64 2001:0DB8:ACAD:3::/64 G0/1 2001:0DB8:ACAD:2::/64 R1(config)#interface gigabitethernet 0/0 R1(config-if) #description Link to LAN 1 R1(config-if) #ipv6 address 2001:db8:acad:1::1/64 R1(config-if) #no shutdown R1(config-if)#exit R1(config)# *Feb 3 21:38:37.279: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down *Feb 3 21:38:40.967: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up *Feb 3 21:38:41.967: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up R1(config)#

Configurações básicas em um roteador

Configurar uma interface de loopback

- A interface de loopback é uma interface lógica interna ao roteador.
- Ela não está atribuída a uma porta física, ela é considerada uma interface de software que é automaticamente um estado UP.
- Útil para teste e importante no processo de roteamento OSPF.

Configurar a interface Loopback0

Verificar a conectividade de redes conectadas diretamente Verificar as configurações de interface

Comandos show para verificar a operação e a configuração da interface.

- show ip interfaces brief
- show ip route
- show running-config

Comandos show para obter informações mais detalhadas sobre interface.

- show interfaces
- show ip interfaces

Verificar a conectividade de redes conectadas diretamente Verificar as configurações de interface

- show ipv6 interface brief exibe uma sumarização para cada uma das interfaces.
- show ipv6 interface
 gigabitethernet 0/0 exibe o
 status da interface e todos os
 endereços IPv6 dessa
 interface.
- show route ipv6 verifica se as redes IPv6 e endereços específicos de interface IPv6 foram instalados na tabela de roteamento IPv6.
- show interface
- show ipv6 routers

Verificar a conectividade de redes conectadas diretamente Saída do comando Filter Show

- Use o comando terminal length number para especificar o número de linhas a serem exibidas. Um valor de 0 (zero) impede o Roteador de pausar entre as telas de saída.
- Para filtrar a saída específica dos comandos, use caractere (|) depois do comando show. Os parâmetros que podem ser usados depois do pipe incluem:

section, include, exclude, begin

Verificar a conectividade de redes conectadas diretamente Recurso de histórico de comandos

- Recuperar comandos Ctrl+P ou seta para cima
- Para voltar aos comandos mais recentes Ctrl+N ou seta para baixo
- O histórico de comandos está ativado e captura os 10 últimos comandos no buffer – show history exibe o conteúdo
- Use terminal history size para aumentar ou diminuir o tamanho do buffer.

Switching de pacotes entre redes

Funções de switching do roteador

Pacotes de encapsulamento e desencapsulamento

PC1 envia um pacote a PC2

Quadro de enlace de dados de camada 2

Dados de camada 3 do pacote

Dest. MAC 00- 10	Orig. MAC 0A-10	Tipo 0x800	IP origem 192.168.1.10	Dest. IP 192.168.4.10	Campos de IP	Dados	Trailer
---------------------	--------------------	------------	---------------------------	--------------------------	-----------------	-------	---------

Cache ARP de PC1 para R1			
Endereço IP	Endereço MAC		
192.168.1.1	00-10		

Encaminhar para o próximo salto

R1 encaminha o pacote a PC2

Switching de pacotes entre redes

Roteamento de pacotes

R2 encaminha o pacote para R3

Switching de pacotes entre redes Alcançar o destino

R3 encaminha o pacote a PC2

Determinação do caminho

Decisões de roteamento

Processo de decisão de encaminhamento de pacotes

Determinação do caminho

Melhor caminho

- O melhor caminho é selecionado por um protocolo de roteamento com base no valor ou métrica utilizada para determinar a distância para chegar a uma rede.
- Uma métrica é o valor usado para medir a distância até uma rede especificada.
- O melhor caminho para uma rede é o caminho com a menor métrica.
- Os protocolos de roteamento dinâmico usam suas próprias regras e métricas para criar e atualizar tabelas de roteamento, por exemplo:
 - Routing Information Protocol (RIP) Contagem de saltos
 - Open Shortest Path First (OSPF) Custo com base na largura de banda cumulativa da origem para o destino
 - Enhanced Interior Gateway Routing Protocol (EIGRP) Largura de banda, atraso, carga, confiabilidade

Determinação do caminho

Balanceamento de carga

 Quando um Roteador tem dois ou mais caminhos para um destino com métricas de custo igual, o Roteador encaminha os pacotes usando ambos os caminhos da mesma forma.

Determinação do caminho da rota

Distância administrativa

- Se vários caminhos para um destino forem configuradas em um roteador, o caminho instalado na tabela de roteamento será aquele com a melhor distância administrativa (AD).
- A distância administrativa é a "confiabilidade"
- Quanto menor o AD, mais confiável a rota.

Distâncias Administrativas Padrão

Origem da Rota	Distância Administrativa
Conectada	0
Estática	1
Rota de resumo EIGRP	5
BGP Externo	20
EIGRP Interno	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP Externo	170
BGP Interno	200

Determinação do caminho da rota

Distância administrativa

- Se vários caminhos para um destino forem configuradas em um roteador, o caminho instalado na tabela de roteamento será aquele com a melhor (menor) distância administrativa (AD).
- A distância administrativa identifica a "confiabilidade" da origem da rota.
- Quanto menor o AD, mais confiável a rota.

Distâncias Administrativas Padrão

Origem da Rota	Distância Administrativa
Conectada	0
Estática	1
Rota de resumo EIGRP	5
BGP Externo	20
EIGRP Interno	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP Externo	170
BGP Interno	200

A tabela de roteamento

- A tabela de roteamento é um arquivo armazenado na RAM que contém informações sobre
 - Rotas diretamente conectadas
 - Rotas remotas
 - Associações de rede ou próximo salto

Fontes da tabela de roteamento

- O comando show ip route é usado para exibir o conteúdo da tabela de roteamento
- Interfaces locais de link Adicionadas à tabela de roteamento quando uma interface é configurada. (exibidas no IOS 15 ou posterior)
- Interfaces conectadas diretamente Adicionadas à tabela de roteamento quando uma interface é configurada e está ativa.
- Rotas estáticas Adicionadas quando uma rota é configurada manualmente e a interface de saída está ativa.
- Protocolo de roteamento dinâmico Adicionado quando EIGRP ou OSPF estão implementados e as redes são identificadas.

Fontes da tabela de roteamento

Tabela de roteamento de R1


```
R1# show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia -

IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

D 10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
```

Entradas de roteamento de rede remota

Interpretando as entradas da tabela de roteamento.

Identificadores de entrada da rede remota

Rotas diretamente conectadas

Interfaces diretamente conectadas

- Um roteador recém-implantado, sem nenhuma interface configurada, possui uma tabela de roteamento vazia.
- Uma interface diretamente conectada configurada cria duas entradas da tabela de roteamento: Link Local (L) e Diretamente conectada (C)

Identificadores de entrada da rede diretamente conectada

Rotas diretamente conectadas

Interfaces diretamente conectadas

- Um roteador recém-implantado, sem nenhuma interface configurada, possui uma tabela de roteamento vazia.
- Uma interface diretamente conectada configurada cria duas entradas da tabela de roteamento: Link Local (L) e Diretamente conectada (C)

Rotas diretamente conectadas

Exemplo de IPv6 diretamente conectado

 O comando route show ipv6 mostra as redes ipv6 e rotas instaladas na tabela de roteamento

Mostrar a tabela de roteamento IPv6

Rotas aprendidas estaticamente

Rotas estáticas

- Configuradas manualmente
- Defina um caminho explícito entre dois dispositivos de rede.
- Deverão ser manualmente atualizadas se a topologia mudar.
- Os benefícios incluem segurança e controle aprimorados dos recursos.
- Rota estática para uma rede específica.
 ip routenetworkmask {next-hop-ip | exit-intf}
- Rota estática padrão usada quando a tabela de roteamento não contém um caminho para uma rede destino.
 - ip route 0.0.0.0 0.0.0.0 {*exit-intf* | *next-hop-ip*

Rotas aprendidas estaticamente

Exemplo de rotas estáticas

Inserindo e verificando uma rota padrão estática

Rotas aprendidas estaticamente

Exemplo de rotas IPv6

Inserindo e verificando uma rota estática padrão IPv6


```
R1#show ipv6 route
IPv6 Routing Table - default - 8 entries
Codes: C - Connected, L - Local, S - Static,
       U - Per-user Static route
       B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
       12 - ISIS L2, IA - ISIS interarea, IS - ISIS summary,
       D - EIGRP
       EX - EIGRP external, ND - ND Default, NDp - ND Prefix,
       DCE - Destination
       NDr - Redirect, O - OSPF Intra, OI - OSPF Inter,
       OE1 - OSPF ext 1
       OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1,
       ON2 - OSPF NSSA ext 2
S ::/0 [1/0]
    via Serial0/0/0, directly connected
   2001;DB8;ACAD:1::/64 [0/0]
     via GigabitEthernet0/0, directly connected
```

Roteamento dinâmico

- Usado pelos roteadores para compartilhar informações sobre o alcance e o status das redes remotas.
- Executa tabelas de descoberta de rede e roteamento de manutenção.

Protocolos de roteamento IPv4

- Os roteadores Cisco ISR podem suportar uma variedade de protocolos de roteamento dinâmico IPv4, incluindo:
- EIGRP Enhanced Interior Gateway Routing Protocol
- OSPF Open Shortest Path First
- IS-IS Intermediate System-to-Intermediate System
- RIP Routing Information Protocol

Protocolos de roteamento IPv4

Verificar rotas dinâmicas


```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.226 to network 0.0.0.0
D*EX 0.0.0.0/0 [170/2297856] via 209.165.200.226, 00:07:29, Serial0/0/0
      10.0.0.0/24 is subnetted, 2 subnets
         10.1.1.0 [90/2172416] via 209.165.200.226, 00:07:29, Serial0/0/0
         10.1.2.0 [90/2172416] via 209.165.200.226, 00:07:29, Serial0/0/0
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.10.0/24 is directly connected, GigabitEthernet0/0
         192.168.10.1/32 is directly connected, GigabitEthernet0/0
      192.168.11.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.11.0/24 is directly connected, GigabitEthernet0/1
C
         192.168.11.1/32 is directly connected, GigabitEthernet0/1
      209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
         209.165.200.224/30 is directly connected, Serial0/0/0
C
         209.165.200.225/32 is directly connected, Serial0/0/0
R1#
```

Protocolos de roteamento IPv6

- Os roteadores Cisco ISR podem suportar uma variedade de protocolos de roteamento dinâmico IPv6, incluindo:
- RIPng (RIP nova geração)
- OSPF v3
- EIGRP para IPv6
- MP-BGP4 (Multicast Protocol-Border Gateway Protocol)

Protocolos de roteamento IPv6

Verificar rotas dinâmicas

Cisco | Networking Academy® | Mind Wide Open™