Outils Mathématiques 4

Continuité et différentiabilité

résumé

1 Continuité

Soient $V_1 = (x_1, y_1) \in \mathbb{R}^2$ et $V_2 = (x_2, y_2) \in \mathbb{R}^2$. On va toujours utiliser la norme $||V_1|| = \sqrt{x_1^2 + y_1^2}$, la distance associée a cette norme est donnée par $d(V_1, V_2) = ||V_1 - V_2|| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Définition 1.1 Soit D un sous ensemble de \mathbb{R}^2 . Soient $f: D \to \mathbb{R}$ une fonction, $(x_0, y_0) \in \mathbb{R}^2$ et $L \in \mathbb{R}$. On dit que L est la limite de f(x, y) lorsque (x, y) tend vers (x_0, y_0) ,

$$\boxed{ si \ pour \ tout \ \epsilon > 0, \ il \ \underbrace{existe} \ \delta > tel \ que \ si \ 0 < \|(x,y) - (x_0,y_0)\| < \delta, \ alors \ |f(x,y) - L| < \epsilon \} }$$

On utilise la notation $\lim_{\substack{(x,y)\to(x_0,y_0\\(x,y)\neq(x_0,y_0)}}$

 $\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\neq(x_0,y_0)}} f(x,y) = L$

Remarque 1.2 Pour ne pas alourdir les notations, on omettra d'écrire les conditions du type $(x, y) \neq (x_0, y_0)$ (seront sous-entendues).

Définition 1.3 On dit qu'une fonction $f: D \to \mathbb{R}$ est continue en un point $(x_0, y_0) \in D$ si :

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

Définition 1.4 Soit f une fonction de deux variables qui n'est pas (à priori) définie en un point (x_0, y_0) . S'il existe un $L \in \mathbb{R}$ tel que $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$, on dit alors que f admet un prolongement par continuité en (x_0, y_0) .

Proposition 1.5 Dans ce cas, la fonction définie par :

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & si \quad (x,y) \neq (x_0,y_0); \\ L & si \quad (x,y) = (x_0,y_0). \end{cases}$$
 est le prolongement par continuité de f en (x_0,y_0) .

Dans la pratique

1. <u>Utilisation des coordonnées polaires</u>: Pour montrer que $f : \mathbb{R}^2 \to \mathbb{R}$ est continue en (x_0, y_0) , on utilise la méthode des coordonnées polaires:

On pose
$$x = \rho \cos \theta + x_0$$
, $y = \rho \sin \theta + y_0$, $\rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ et $\theta \in [0, 2\pi]$. On a que $(x, y) \to (x_0, y_0) \Leftrightarrow \rho \to 0$.

Si il existe
$$F \colon \mathbb{R}^+ \to \mathbb{R}$$
 telle que
$$\begin{cases} |f(\rho\cos\theta + x_0, \rho\sin\theta + y_0) - \ell| \le F(\rho), & \forall \ \rho > 0 \\ \lim_{\rho \to 0^+} F(\rho) = 0. \end{cases}$$

alors
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell$$

2. Méthode des chemins:

- (a) Pour montrer que la fonction f n'a pas de limite en (x_0, y_0) , il suffit de trouver deux chemins différents vers (x_0, y_0) , qui donnent deux limites différentes.
- (b) Pour montrer que la fonction f n'est pas continue en (x_0, y_0) il suffit de trouver un chemin vers (x_0, y_0) qui donne une limite différente de $f(x_0, y_0)$.

1.1 Somme, produit, quotient

On a les propriétés usuelles de fonctions continues comme:

Proposition 1.6 Soient f et g deux fonctions continues en $P_0 = (x_0, y_0)$ et $h : \mathbb{R} \to \mathbb{R}$ une fonction continue en $f(P_0)$. alors,

- 1. f + g, $f \cdot g$ et $h \circ f$ sont continues en P_0 .
- 2. si de plus $g(P_0) \neq 0$, alors $\frac{f}{g}$ est continue en P_0 .

1.2 Généralisation

1. Continuité d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$

On généralise ce qui a été fait pour des fonctions de deux variables à des fonctions $f: \mathbb{R}^n \to \mathbb{R}$, $n \geq 2$; on utilise la norme euclidienne, si $X = (x_1, \dots, x_n)$ et $Y = (y_1, \dots, y_n)$ alors

$$||(x_1,\ldots,x_n)||=\sqrt{x_1^2+\ldots+x_n^2},$$
 et la distance associée $d(X,Y)=||X-Y||.$

On a f continue en un point $P_0 \in \mathbb{R}^n$ si $\lim_{(x_1,\ldots,x_n)\to P_0} f(x_1,\ldots,x_n) = f(P_0)$

2. Continuité d'une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$

Définition 1.7 Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est continue si et seulement si chaque composante $f_j: \mathbb{R}^n \to \mathbb{R}, j \in \{1, ..., m\}$ est continue.

Exemple 1.8 Pour n=2 et m=3: La fonction $f(x,y)=(xy,(x^2+y^2)e^{xy},x\sin(x+y^3))$ est continue en tout point (x_0,y_0) de \mathbb{R}^2 car ses composantes, $f_1(x,y)=xy$, $f_2(x,y)=(x^2+y^2)e^{xy}$ et $f_3(x,y)=x\sin(x+y^3)$ sont des fonctions continues en (x_0,y_0) .

2 Différentiabilité

2.1 Dérivées partielles et directionnelles

Définition 2.1 On dit que la dérivée partielle par rapport à x d'une fonction f existe en (x_0, y_0) si la limite $\lim_{\substack{\Delta x \to 0 \\ \Delta x \neq 0}} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$ existe. On note alors, par $f'_x(x_0, y_0)$ ou $\frac{\partial f}{\partial x}(x_0, y_0)$ cette limite.

De $m\hat{e}me$, la dérivée partielle de par rapport à y de f(x,y) en (x_0,y_0) , notée $f'_y(x_0,y_0)$ ou $\frac{\partial f}{\partial y}(x_0,y_0)$ est la limite (si elle existe) $\lim_{\substack{\Delta y \to 0 \\ \Delta y \neq 0}} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}$.

Définition 2.2

• Le gradient d'une fonction f en un point (x_0, y_0) est le vecteur défini par

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) = \left(f'_x(x_0, y_0), f'_y(x_0, y_0)\right)$$

• la différentielle d'une fonction f en un point (x_0, y_0) est définie par

$$df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)dx + \frac{\partial f}{\partial y}(x_0, y_0)dy = f'_x(x_0, y_0)dx + f'_y(x_0, y_0)dy.$$

Définition 2.3 Soit f une fonction et v=(a,b) un vecteur de norme 1 ($||v||=\sqrt{a^2+b^2}=1$). La **dérivée directionnelle** de f au point $P_0=(x_0,y_0)$ et dans la direction du vecteur v notée $f'_v(P_0)$ est définie par $f'_v(P_0)=\lim_{\substack{t\to 0\\t\neq 0}}\frac{f(P_0+tv)-f(P_0)}{t}=\lim_{\substack{t\to 0\\t\neq 0}}\frac{f(x_0+ta,y_0+tb)-f(x_0,y_0)}{t}$ (si cette limite existe).

Remarque 2.4
$$f'_x(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) = f'_{(1,0)}(x_0, y_0), \ et \ f'_y(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = f'_{(0,1)}(x_0, y_0).$$

2.2 Différentiabilité

Définition 2.5 Soit f une fonction de deux variables dont les dérivées partielles existent en (x_0, y_0) . On dit que f est différentiable en (x_0, y_0) si

$$\epsilon(\Delta x, \Delta y) = \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) - \nabla f(x_0, y_0) \cdot (\Delta x, \Delta y)}{||(\Delta x, \Delta y)||}$$

tend vers 0 lorsque $(\Delta x, \Delta y)$ tend vers (0,0).

Remarque 2.6 "·" désigne le produit scalaire: $\nabla f(x_0, y_0) \cdot (\Delta x, \Delta y) = \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y$.

Remarque 2.7 1. Si z = f(x,y) et $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ alors, f est différentiable en (x_0, y_0) si et seulement si $\Delta z = df(x_0, y_0) + ||(\Delta x, \Delta y)|| \cdot \epsilon(\Delta x, \Delta y)$ avec $\lim_{(\Delta x, \Delta y) \to (0,0)} \epsilon(\Delta x, \Delta y) = 0$.

Donc, si Δx et Δy sont "très petits", la différentielle $df(x_0, y_0)$ peut servir d'approximation de la variation $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$.

- 2. Pour montrer que f n'est pas différentiable en (x_0, y_0) il suffit de trouver un chemin vers (0,0) le long duquel la limite de $\epsilon(\Delta x, \Delta y)$ est différente de 0.
- 3. Pour montrer que f est différentiable en (x_0, y_0) , on peut utiliser la méthode des coordonnées polaires, en posant $\Delta x = \rho \cos \theta$ et $\Delta y = \rho \sin \theta$.

Théorème 2.8.

- 1) Si f différentiable en (x_0, y_0) alors, elle est continue en (x_0, y_0) .
- 2) Si f est différentiable en (x_0, y_0) , alors la dérivée directionnelle de f en (x_0, y_0) existe dans toute direction v = (a, b) de norme 1 et se calcule par la formule: $f'_v(x_0, y_0) = \nabla f(x_0, y_0) \cdot v = \frac{\partial f}{\partial x}(x_0, y_0)a + \frac{\partial f}{\partial y}(x_0, y_0)b.$
- 3) Si f une fonction de classe C^1 dans un voisinage de (x_0, y_0) (i.e. les dérivées partielles sont continues), alors f est différentiable en (x_0, y_0) .

2.3 Somme, produit, quotient

Proposition 2.9 Soient f et g deux fonctions différentiables en $P_0 = (x_0, y_0)$. Alors

- 1. f+g est différentiable en P_0 , $\nabla(f+g)(P_0) = \nabla f(P_0) + \nabla g(P_0)$ et $d(f+g)(P_0) = df(P_0) + dg(P_0)$.
- 2. $f \cdot g$ est différentiable en P_0 , $\nabla(f \cdot g)(P_0) = \nabla f(P_0) \cdot g(P_0) + f(P_0) \cdot \nabla g(P_0)$ et $d(f \cdot g)(P_0) = g(P_0) \cdot df(P_0) + f(P_0) \cdot dg(P_0)$.
- 3. si de plus $g(P_0) \neq 0$, alors $\frac{f}{g}$ est différentiable en P_0 et

$$\nabla(\frac{f}{g})(P_0) = \frac{\nabla f(P_0) \cdot g(P_0) - f(P_0) \cdot \nabla g(P_0)}{(g(P_0))^2} \ et \ d(\frac{f}{g})(P_0) = \frac{g(P_0) \cdot df(P_0) - f(P_0) \cdot dg(P_0)}{(g(P_0))^2}.$$

Remarque 2.10 Les résultats précédents se généralisent aux fonctions $f: \mathbb{R}^n \to \mathbb{R}, n > 2$.

Généralisation Ce qui est fait dans cette partie s'adapte facilement à des fonctions de plusieurs variables $(n \ge 2)$.

Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est différentiable si et seulement si chaque composante $f_j: \mathbb{R}^n \to \mathbb{R}$, $j \in \{1, ..., m\}$ est différentiable.

Exemple 2.11 La fonction $f(x,y) = (xy \ln(x^2+1), (x^2+y^2)\cos(x+y^3), x(2x+y^3)^3)$ est différentiable en tout point (x_0, y_0) de \mathbb{R}^2 car ses composantes, $f_1(x,y) = xy \ln(x^2+1)$ et $f_2(x,y) = (x^2+y^2)\cos(x+y^3)$ et $f_3(x,y) = x(2x+y^3)^3$ sont des fonctions différentiables en (x_0, y_0) .

2.4 Accroissements

Soit f une fonction de deux variables différentiable en (x_0, y_0) .

- La valeur maximale (respectivement minimale) de la dérivée directionnelle $f'_v(P_0)$ est $\|\nabla f(x_0, y_0)\|$ (respectivement $-\|\nabla f(x_0, y_0)\|$).
- C'est dans la direction $\nabla f(x_0, y_0)$ (respectivement $-\nabla f(x_0, y_0)$) que le taux d'accroissement de f est maximal (respectivement minimal)

2.5 Différentiabilité des fonctions composées.

Soient f, g et h des fonctions telles que z = f(u, v), u = g(x, y) et v = h(x, y).

Si en tout point (x, y) où g et h sont définies, le couple (u, v) = (g(x, y), h(x, y)) appartient au domaine de définition de f, alors z = f(g(x, y), h(x, y)) définit une fonction composée de x et y.

La règle suivante donne les dérivées partielles premières de la fonction composées en fonction des dérivées partielles premières de f, g et h.

Soit
$$z = f(u, v)$$
, $u = g(x, y)$ et $v = h(x, y)$ des fonctions différentiables alors
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial h}{\partial x}$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial g}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial h}{\partial y}$$

la règle de dérivation des fonctions composées se généralise à des fonctions d'un nombre quelconque de variable (≥ 2) par exemple:

Soit z = f(r, s, t, u), r = g(x, y, z), s = h(x, y, z), t = k(x, y, z) et u = l(x, y, z) des fonctions différentiables alors

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial s} \frac{\partial h}{\partial x} + \frac{\partial f}{\partial t} \frac{\partial k}{\partial x} + \frac{\partial f}{\partial u} \frac{\partial l}{\partial x}$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial r} \frac{\partial g}{\partial y} + \frac{\partial f}{\partial s} \frac{\partial h}{\partial y} + \frac{\partial f}{\partial t} \frac{\partial k}{\partial y} + \frac{\partial f}{\partial u} \frac{\partial l}{\partial y}$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial r} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial s} \frac{\partial h}{\partial z} + \frac{\partial f}{\partial t} \frac{\partial k}{\partial z} + \frac{\partial f}{\partial u} \frac{\partial l}{\partial z}$$

2.6 Différentiablilité d'une application $f: \mathbb{R}^n \to \mathbb{R}^m$.

On commence par généraliser le gradient:

Définition 2.12 Soit $u_1 = f_1(x_1, \ldots, x_n), u_2 = f_2(x_1, \ldots, x_n), \ldots$, et $u_m = f_n(x_1, \ldots, x_n)$, une application de \mathbb{R}^n dans \mathbb{R}^m . La matrice Jacobienne de f en $((x_1, \ldots, x_n), notée J_f(x_1, \ldots, x_n), est définie par$

$$J_f(x_1, \dots, x_n) = \frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_n)} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

où le coefficient (i,j) de la matrice est la dérivée partielle $\frac{\partial f_i}{\partial x_j}$.

Remarque 2.13 Les lignes de La matrice Jacobienne de $f : \mathbb{R}^n \to \mathbb{R}^m$ sont formées les gradients des composantes f_i de f.

Exemple 2.14 Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^3 définie par $f(x,y) = (x^2+y^2, x^2-y^2, xy)$. Déterminner la matrice jacobienne de f au point (2,-1).

En utilisant la définition pour n=2 et m=3, $f_1(x,y)=x^2+y^2$, $f_2(x,y)=x^2-y^2$ et $f_3(x,y)=xy$ on obtient

$$J_f(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_m}{\partial y} \end{pmatrix} = \begin{pmatrix} 2x & 2y \\ 2x & -2y \\ y & x \end{pmatrix}$$

En particulier au point (2,-1) on a

$$J_f(2, -1) = \begin{pmatrix} 4 & -2\\ 4 & 2\\ -1 & 2 \end{pmatrix}$$

Définition 2.15 Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est différentiable au point P_0 si chaque composante $f_i: \mathbb{R}^n \to \mathbb{R}$ est différentiable au point P_0 pour $i \in \{1, \ldots, n\}$.

2.7 Le théorème de composition

On voudrait généraliser le résultat suivant: Soient $f(y): \mathbb{R} \to \mathbb{R}$ et $g(x): \mathbb{R} \to \mathbb{R}$ deux fonctions différentiables, alors $f \circ g$ est différentiable et $(f \circ g)'(x) = f'(g(x)) \cdot g(x)$.

Ce résultat reste valable si on remplace "dérivée" par "matrice Jacobienne":

Théorème 2.16 (Théorème de composition) .

Soient $g: \mathbb{R}^k \to \mathbb{R}^n$ différentiable en P_0 et $f: \mathbb{R}^n \to \mathbb{R}^m$ différentiable en $g(P_0)$, alors $f \circ g: \mathbb{R}^k \to \mathbb{R}^n$ est différentiable en P_0 et

$$J_{f \circ g}(P_0) = J_f(g(P_0)) \cdot J_g(P_0).$$

La jacobienne d'une composée de deux fonctions est le produit des matrices jacobiennes.

Remarque 2.17 En d'autre termes si $y_1 = f_1(x_1, \ldots, x_n), y_2 = f_2(x_1, \ldots, x_n), \ldots,$ et $y_m = f_n(x_1, \ldots, x_n),$ sont m fonctions de n variables, et $x_1 = g_1(t_1, \ldots, t_k), x_2 = g_2(t_1, \ldots, t_k), \ldots,$ et $x_n = g_n(t_1, \ldots, t_k),$ sont n fonctions de k variables toutes différentiables, alors en considérant les y_i comme des fonctions des t_j par

$$y_i = f_i(g_1(t_1, \dots, t_k), \dots, g_n(t_1, \dots, t_k))$$

on obtient

$$\frac{\partial y_i}{\partial t_j} = \frac{\partial y_i}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial y_i}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial y_i}{\partial x_n} \frac{\partial x_n}{\partial t_j} = \frac{\partial f_i}{\partial x_1} \frac{\partial g_1}{\partial t_j} + \frac{\partial f_i}{\partial x_2} \frac{\partial g_2}{\partial t_j} + \dots + \frac{\partial f_i}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}{\partial t_j} + \dots + \frac{\partial g_n}{\partial x_n} \frac{\partial g_n}{\partial t_j} \frac{\partial g_n}$$

Quelques cas particuliers.

- 1. Cas k = n = m = 1: On obtient $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.
- 2. Cas k = 2, m = 2, n = 3: On a deux fonctions

$$f: \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x, y, z) & \mapsto & (f_1(x, y, z), f_2(x, y, z)) \end{array}$$

et

$$g: \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R}^3 \\ (u,v) & \mapsto & (g_1(u,v),g_2(u,v)),g_3(u,v))) \end{array}.$$

La formule du théorème de composition et la définition de la matrice Jacobienne donnent:

$$J_{f \circ g}(u, v) = \begin{pmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial v} \\ \frac{\partial g_3}{\partial u} & \frac{\partial g_3}{\partial v} \end{pmatrix}$$

ce qui donne en effectuant le produit de matrices:

$$\frac{\partial (f_1 \circ g)}{\partial u}(P_0) = \frac{\partial f_1}{\partial x}(g(P_0)) \cdot \frac{\partial g_1}{\partial u}(P_0) + \frac{\partial f_1}{\partial y}(g(P_0)) \cdot \frac{\partial g_2}{\partial u}(P_0) + \frac{\partial f_1}{\partial z}(g(P_0)) \cdot \frac{\partial g_3}{\partial u}(P_0);$$

$$\begin{array}{lcl} \frac{\partial (f_2 \circ g)}{\partial u}(P_0) & = & \frac{\partial f_2}{\partial x}(g(P_0)) \cdot \frac{\partial g_1}{\partial u}(P_0) + \frac{\partial f_2}{\partial y}(g(P_0)) \cdot \frac{\partial g_2}{\partial u}(P_0) + \\ & & + \frac{\partial f_2}{\partial z}(g(P_0)) \cdot \frac{\partial g_3}{\partial u}(P_0) \end{array}$$

Exemple 2.18 Soit $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable. On utilise les coordonnées polaires $x = r \cos \theta$ et $y = r \sin \theta$. On obtient

$$\frac{\partial}{\partial r} f(r\cos\theta, r\sin\theta) = \frac{\partial f}{\partial x} (r\cos\theta, r\sin\theta) \cdot \cos\theta + \frac{\partial f}{\partial y} (r\cos\theta, r\sin\theta) \cdot \sin\theta;$$

$$\frac{\partial}{\partial \theta} f(r\cos\theta, r\sin\theta) = \frac{\partial f}{\partial x} (r\cos\theta, r\sin\theta) \cdot (-r\sin\theta) + \frac{\partial f}{\partial y} (r\cos\theta, r\sin\theta) \cdot (r\cos\theta).$$

Que donnent ces formules pour f(x,y) = xy?

2.8 Dérivées partielles d'ordre supérieur

Soit f une fonction dont les dérivées partielles existent en tout point $(x,y) \in D$. Alors, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont encore des fonction de deux variables. On peut calculer les dérivées partielles premières

 $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (x_0, y_0)$ et $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) (x_0, y_0)$ de la fonction $\frac{\partial f}{\partial x}$ par rapport à x et y en un point (x_0, y_0) (si elles existent). On procède de la même manière avec les dérivées partielles de $\frac{\partial f}{\partial y}$.

On utilise la notation suivante pour les quatre dérivées partielles d'ordre 2 de f en (x_0, y_0) :

$$f''_{xx}(x_0, y_0) = \frac{\partial^2 f}{\partial x^2}(x_0, y_0) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right)(x_0, y_0), \qquad f''_{xy}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(x_0, y_0),$$

$$f''_{yx}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)(x_0, y_0), \qquad f''_{yy}(x_0, y_0) = \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right)(x_0, y_0).$$

Définition 2.19 On dit qu'une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est de classe C^2 en (x_0, y_0) si toutes les dérivées partielles d'ordre inférieur ou égal à 2 existent et sont continues en (x_0, y_0) .

Théorème 2.20 (de Schwarz) Si $f: \mathbb{R}^2 \to \mathbb{R}$ est de classe C^2 en (x_0, y_0) alors on a

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0).$$

Remarque 2.21 Si $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \neq \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$ le théorème précédent permet de conclure que f n'est pas de classe C^2 en (x_0, y_0)

On va généraliser le Lemme de Schwarz. Pour ceci on introduit d'abord les dérivées partielles d'ordre k, pour $k \geq 2$ en dérivant (si la dérivée existe) les dérivées partielles d'ordre k-1 par rapport à x et y (définition par récurrence).

Définition 2.22 Soit $k \in \mathbb{N}$. On dit qu'une fonction $f : \mathbb{R}^2 \to \mathbb{R}$ est de classe C^k en $P_0 \in \mathbb{R}^2$ si toutes les dérivées partielles d'ordre inférieur ou égal à k existent et sont continues en P_0 .

Le théorème de Schwarz se généralise pour une fonction de classe C^k :

le calcul d'une dérivée d'ordre k ne dépend pas de l'ordre dans laquelle on prend les dérivées partielles successives . Par exemple pour une fonction de classe C^4 on a:

$$\frac{\partial^4 f}{\partial x \partial v^2 \partial x}(P_0) = \frac{\partial^4 f}{\partial v \partial x^2 \partial v}(P_0) = \frac{\partial^4 f}{\partial x^2 \partial v^2}(P_0) = \frac{\partial^4 f}{\partial v^2 \partial x^2}(P_0) = \frac{\partial^4 f}{\partial v \partial x \partial v \partial x}(P_0) = \frac{\partial^4 f}{\partial x}(P_0) = \frac{\partial^4$$

Le théorème de Schwarz se généralise aussi pour les fonctions $f:\mathbb{R}^n\to\mathbb{R},\ n\geq 3$ qui sont de classe C^k , $k \ge 2$. Par exemple une fonction f(x,y,z) est de classe C^2 si ses trois dérivées partielles premières: $\frac{\partial f}{\partial u}(P_0), u \in \{x, y, z\}$ et ses 9 dérivées partielles secondes: $\frac{\partial^2 f}{\partial u \partial v}(P_0), u, v \in \{x, y, z\}$ sont continues. Dans ce cas on a:

 $\frac{\partial^2 f}{\partial u \partial v}(P_0) = \frac{\partial^2 f}{\partial v \partial u}(P_0), \qquad u, v \in \{x, y, z\}.$

2.9 Plan tangent

Rappel: Soit v = (a, b, c) un vecteur non nul (i.e. $(a, b, c) \neq (0, 0, 0)$) et (x_0, y_0, z_0) un point de l'espace \mathbb{R}^3 . L'équation du plan (affine) qui passe par le point (x_0, y_0, z_0) et qui admet (a, b, c) comme vecteur normal est $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$.

Définition 2.23 Soit S une surface de \mathbb{R}^2 et $P_0 = (x_0, y_0, z_0)$ un point de S. Le plan tangent en P_0 à la surface S est l'ensemble des droites tangentes aux courbes (réqulières) tracées sur S et qui passent par P_0 .

Théorème 2.24 Soient F(x,y,z) une fonction différentiable, S la surface définie par $S = \{(x,y,z) \in A\}$ $\mathbb{R}^3 \mid F(x, y, z) = 0 \}$ et $P_0 = (x_0, y_0, z_0)$ un point de S.

Si $\nabla F(P_0) = (F_x'(P_0), F_y'(P_0), F_z'(P_0)) \neq (0,0,0)$, alors une équation du plan tangent à S en $P_0 = (x_0, y_0, z_0)$ est donnée par $\left[\frac{\partial F}{\partial x}(P_0)(x - x_0) + \frac{\partial F}{\partial y}(P_0)(y - y_0) + \frac{\partial F}{\partial z}(P_0)(z - z_0) = 0.\right]$ Donc, c'est le plan de \mathbb{R}^3 qui passe par le point (x_0, y_0, z_0) et qui admet $\nabla F(P_0)$ comme vecteur normal.

En particulier, si S est le graphe d'une fonction f(x,y), en posant F(x,y,z)=z-f(x,y), on a $S = \{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = 0\}, \text{ d'où}:$

Corollaire 2.25 Soit f(x,y) une fonction qui est différentiable en (x_0,y_0) . Le plan tangent au graphe $S = \{(x,y,z) \in \mathbb{R}^3 \mid z = f(x,y)\}$ de f en $P_0 = (x_0,y_0,f(x_0,y_0),$ est défini par l'équation:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

C'est le plan qui admet $(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1)$ comme vecteur normal et qui passe par le point P_0 .