	St	atist	ica	D	૯ક	critt	va										irva a str													e c	oit	nci	ડ ૦	de	ļ
	C 1	- L		١,	_			\ /		7											_	_						_				_			
	21	aTi sTi	ca	In	Tere	enz:	ale	: Vo	6.	Tre	la	des	cni2	ione	de	ei D	ATI,	&; (ere	canc 14 +	o di	Trai	re	col	nclu: 1	Siak	i, (orh	nu la	are	i ρο	tes	٤١	e . }.	
																	à d bpol				•	ien	mel	ie d	9 .	gei	ner	スルモ	Z a⊁	•	1	ri	SUT	od i	
V	ARIAB	ILI	Aц	eat	ORI																						eri	nen	ه ا	caso	ıale	4	h b	14 kg q	Ę
							ro	rea	ie,	vie	ne	450	119	Pe	r v	node	llar	5 Fi	enol	men	' 18	rcer	li c	o cas	qali										
	'ARIA						Y	Qy	ali;	tati	ve	→	Et:	che	etta																				
٧	'ARIA	BILI	A	Lêf	TO	RIE		(Qu	tacī anti	or) tat <i>i</i>	ve)	Van	neri	ica																				
								`(hai	neri	င)	•																							
D	ESCR	12101	E	CAH	IPIC	»νε																													
1)	DIS	TRIB	ひそって	on€	Û	NITA	RIA	->	Ele	nc	o 9.	: †	utte	. le	0	55e	rvas	Zia	//																
					X	1 ,	Χ ₂	·	-	,	, X,	n_	Am	pie	72	a C	ami	pi <i>o</i> n	ne																
2)	Dis	TRIE	30 2	10				_					req					SSO		TA				IVA			MU		ΓA						
									X∡ !		m.	11						M						<u>7</u>		•	= {								
)	; (m		m	ri						μi						n zi		;									
											m,	к						mĸ			ŧ) _K =		<u>าห</u> ท		F _K :	.F	<-1	+ f	K					

trequenza Assoluta: Nymero di tutte le unita statistiche che assumono un certo valore o modalità in relazione ad un carattere. Sono tutti quei dati che assumono quel determinato valore o modalità Freq assolute Esempio: 25 occhi marroni 14 // verdi a32urri FREQUENZA RELATIVA: Kapporto tra la FREQUENZA ASSOLUTA e la numerosità della popolazione o del TREQ. RELATIVA = FREQUENZA Campione statistico. La somma di tytle le freq. relative deve essere = 1 $css: \sum_{i=1}^{K} m_{i} = m \sum_{i=1}^{K} f_{i} = \sum_{i=1}^{K} \frac{m_{i}}{m} = \frac{1}{m} \sum_{i=1}^{K} m_{i} = \frac{1}{m} \cdot m = 1$ DENSITA DI FREQUENZA = FREQ FREQUENZA CUMULATA -> SY R CYMSYM () -plot() diagramma a linee Se utilizzo freq assoluta no densità assoluta - barplot () diagramma a barre # istogramma se utilizzo fheq. relativa ho densita Relativa Es. distribuzione classi Co=60 C1=100 C2=120 C3=140 CK=C4=150 100 120 40 150 60 PK-14 Densità di Frequenza freq. Relativa freq. assoluta (C_0,C_1) R1= P1/C1-C0 P1= m1 MI R2 = P2/C2-C1 m2 $[C_1,C_2)$ [CK-1,CK] R = F / CK - CK-1 mK

MEDIANA: É un valore m tale che almeno la metà delle osservazioni è minore o uguale a m & maggiore & uguale a m 1 2 3 5 7 93977 La Mediana La Facción la media = 6 mediana Oss: La mediana può essere un valore che c al campione. · É un indicatore ROBUSTO -> non cambia se variano gli estremi Mediana apartire dalla funzione di ripartizione della distribuzione in classi di una V.A continua i = classe in cui s: trova la mediana $\frac{1}{2} = \left(\overline{m} - C_{\perp} \right) \cdot h_2 + F_1$ 0,6 F₂ == (m - C;*1) Pi*+Fix1 Co C1 Cu C2 C3 C4 $\frac{1}{2} - F_{i*1} + C_{i*1} = \overline{m}$ QUANTILI ~ "Generalizzazioni della mediana xp valore tale per cai p·m osservazioni = xp (1 - P) m osservazioni = xp Intuit: vamente x 325 valore tale che il 25% delle osservazioni sono < x0,25 MEDIA CAMPIONARIA Es: Tempi di attese ad un servizio $\bar{x} = \frac{1}{m} \sum_{k=1}^{m} x_k \Rightarrow \bar{x} = \frac{1}{10} \times i = \frac{1}$ 1 3 8 11 8 8 5 6 6 8

Vogliamo descrivere le distanze tipica dei valori del campione da
$$\bar{x}$$

$$\frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x}) = \frac{1}{m}\sum_{k=1}^{m}x_{k} - \frac{1}{m}\sum_{k=1}^{m}\bar{x} = \bar{x} - \frac{1}{m}\bar{m}\bar{x} = 0$$

$$\frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = \frac{1}{m}\sum_{k=1}^{m}x_{k} - \frac{1}{m}\sum_{k=1}^{m}\bar{x} = \bar{x} - \frac{1}{m}\bar{m}\bar{x} = 0$$

$$\frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = \frac{1}{m}\sum_{k=1}^{m}(x_{k}^{2}-2x_{k}\bar{x}+\bar{x}^{2}) = 0$$

$$\frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = \frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = \frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = 0$$

$$\frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = \frac{1}{m}\sum_{k=1}^{m}(x_{k}-\bar{x})^{2} = \frac{1}{m}\sum_{k=1}^{m$$

Deviazione Standard	(sarto quadratico medio)	
	$i - \bar{k} \left(\sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_i - \bar{k} \right)^2 \right) = \frac{1}{m} \sum_{i=1}^{m} \left x_i - \bar{k} \right ^2 \ge \left(\frac{1}{m} \sum_{i=1}^{m} \left x_i - \bar{k} \right ^2 \right)$	$\left \frac{1}{2}\sum_{i=1}^{\infty}\left \frac{x_{i}-\overline{x}}{x_{i}}\right ^{2}=\left(x_{i}-\overline{x}\right)^{2}$
Sm= JSm mi=1	m Li	
Coefficente di Variazi	ione	$S_m \geq \frac{1}{m} \sum_{i=1}^{m} x_i - \bar{x} $
É un indice di di sper	sione, permette di confrontare misure di	fenomeni riferité a unità di misura differe
in quanto si rrutta	Deviatione standard	
$CV(x) = \sigma_x Cv$	= O Deviazione standard M -> Media Aritmetica	
1) Non dipende da unita		
x = secondi u = a	$x = \sigma_{A} = a \sigma_{X} = \sigma_{X}$	
y= minut;	$\frac{\nabla S}{ S } = \frac{ a \nabla_{x}}{ a } = \frac{\sigma_{x}}{ x }$	
	ILI ALGATORIE (Cerchiamo di descrivere le	connessioni/relazioni Fra i Ferromeni aleatorie)
"m" osservazioni di co	oppie di variabili alsatorie	Esempia: V. addita & : accortiena di vesidenza
$(\bar{x}_{\ell}, \bar{y}_{\ell})$	29 81 85 32 9K 3	A 7 7 2 4 4 4 4 4 4 4 P C C C C C C C C C C C C
	X1 M41 M42-M4,3M1,K M1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	X1 M2,1 M2,2-M2,5M2,K M 2	$\frac{\text{BASSO}}{42} = \frac{24}{3} = \frac{3}{26} = \frac{6}{5} = \frac{6}{3} = \frac{6}$
$(\times_{m} \circ_{m})$		D R SEL M
	Xi Mi, 1 Mi, 2-Mi, 3 Mi, K Mi	$ \frac{\rho}{r_{1}} = \sum_{i=1}^{r} \frac{\rho_{i,5}}{m} $
m delità :	×ε με	Qual è la proporzione di persone del
delle X	m., 1 m. 2 - m., x preguenze assolute	munitieur A sa sacciona che la consena
Free	juenze L. Marsingli	
Congiu assol		Frequenze Condizionale
43810	m_{ij} , $= \angle m_{ij} $ (delle k)	$\int_{x=i}^{x} y=5 = \frac{m_i, 5}{m_i + 1}$
	×2	P1 mis
	m, 5= 2 mi, 5 (delle g)	$\frac{1}{ \nabla^2 z ^{x=i}} = \frac{miz}{miz}$
	i=¥ (

Vogliamo misurare il grado di dipondenza lineare di due variabili alealorie

$$\begin{array}{llll}
2\pi G_{000}^{C}(x,y) & G_{00}^{C}(x,y) & G_{00}^{C}$$

OSS: Se dae variabili aleaforie somo indipendenti
$$\Rightarrow$$
 Cov $(x, y) = 0$

Recressione Lineare

 $y = a \times b + b + 2i$

Trovare $a \in b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable della $a = b$ in modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable para identification of the modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable para identification of the modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable para identification of the modo tale che sia minimo
$$\sum_{i=1}^{n} (g_{i} - a - bx_{i})^{2} = 0$$
Omoschedasticità la variable para identification of the modo tale che variable para identification of the variable para identification of the modo tale che variable para iden