LINEAR REGRESSION IV

11.11.2020

RECAP

- * receptive fields
 - * what kind of stuff in the world does a neuron (or voxel, or whatever) respond to?
 - * we can estimate receptive fields by measuring responses in different conditions, and then fitting a model using regression

RECAP

* we need to find weights that minimize
squared error

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2$$

- * one method is gradient descent
- * another is the analytic solution (np.linalg.lstsq)

RECAP

- * how do we measure *how good* a regression model is?
- * R² aka the coefficient of determination or variance explained
- * $R^2 = 1 (RSS / TSS)$
 - * RSS is "residual sum of squares" (=squared
 error)
 - * TSS is "total sum of squares" (error with beta=0)

EVALUATING REGRESSION MODELS

- * suppose that we are given a matrix of variables (aka regressors) **X**, and a vector of outputs **Y**
- * we fit a linear model Y_hat = X . beta
- * then we evaluate it by computing \mathbf{R}^2 using \mathbf{X} and \mathbf{Y}
- * what are the possible values of R²?

IN-SET VS. OUT-OF-SET EVALUATION

- * evaluating a regression model using the same data that we used to train/estimate/fit it is called in-set evaluation
- * in-set evaluation is biased *upward*, and the amount of bias depends on the number of regressors in the model

IN-SET VS. OUT-OF-SET EVALUATION

- * for example: suppose we have N data points and N regressors that are pure noise—they have no relationship to the output whatsoever
- * in-set variance explained is **EXACTLY 1.0**
- * THE MODEL IS PERFECT

IN-SET VS. OUT-OF-SET EVALUATION

- * instead, what if you split up your X and Y into "training" and "test" sets?
- * you could fit your regression model using (X_trn, Y_trn), and then test how well it works on (X test, Y test)!
- * is R² biased in this case? What possible values can it take?

- * so ordinary least squares regression has a problem:
- * if two regressors are very similar (i.e. correlated), then there are many weight combinations that would give ~the same answer!
- * which of these combinations is "best"
 ends up being totally determined by noise
 (example)

- * this is bad: if your weights are essentially random, they are ~impossible to interpret, and model performance can suffer, so:
- * (1) let's figure out when this is happening, and
- * (2) let's stop it from happening

* how do we know when regression is unstable?

* it's related to the shape of the error function!

- * the dimensions of the error ellipse, k_1 and k_2 , are related to the **singular values** returned by np.linalg.lstsq!
- * if the singular values (ordered from largest to smallest) are s₁, s₂, etc.,
- * then $k_1 \propto s_1^{-1}$, $k_2 \propto s_2^{-1}$, etc.

- * so it's easy to detect when a regression
 is unstable: look for tiny singular
 values! (example)
- * (or at least, tiny relative to the largest singular value)

- * but what do you do if the regression is unstable?
- * how could you possibly solve this problem?

END