

Agenda

- 分析目標 & 資料介紹
- 資料分析
 - 資料前處理 & EDA
 - 模型建置
- 分析總結 & Recommendation

分析目標

幫助銀行解決客戶流失問題

銀行對於客戶離開他們的信用卡服務感不到安, 希望能幫助銀行準確預測流失的客戶,這樣他們就可以 主動去找客戶,為他們提供更好的服務。

What is the reason causes customer churn?

年齡: 26-73歳 信用卡額度: \$1438 - 34516 家庭人數: 0-4人 月平均消費金額: \$0 - 2517 Open to buy: 信用卡月平均餘額 性別: 男性、女性 **婚姻狀況:** 已婚、離婚、單身、未知 客戶 信用卡等級: Blue、Silver、Gold、Platinum 信用卡 資訊 資訊 收入類別: 由低至高分為六個等級 信用利用率: 0-1 教育水準: 分為六個等級 信用卡客戶 流失預測 總年度消費金額: \$510 - 18484 不活躍月數(一年內): 1-6(月) 週期 交易 總年度消費次數: 10 - 139 持卡時間: 13-56(月) 資訊 資訊 消費金額變化率(Q4/Q1): 0-3.397 持有其他產品數: 1-6 消費次數變化率(Q4/Q1): 0-3.714 聯繫客服次數: 0-6

Agenda

- 分析目標 & 資料介紹
- 資料分析
 - 資料前處理 & EDA
 - 模型建置
- 分析總結 & Recommendation

資料前處理,並拆成 Training 與 Testing data

資料說明與前處理

資料說明

資料含用戶特徵與在本行的信用卡消費資料

資料維度

樣本數N=10127、變數個數p=19

Response(Y): 客戶流失=1、客戶留存=0

資料轉換

- 在EDA過程中將年齡劃分為五個區間:(26,29]、[30,39]、[40,49]、[50,59]、[60,73]
- 信用卡使用率從0-1等分:

 $(0,0.2] \cdot (0.2,0.4] \cdot (0.4,0.6] \cdot (0.6,0.8] \cdot (0.8,1]$

資料切分

Dataset N=10127 \ p=19

7 Training N=7088 \ p=19

3 Testing N=3039 \ p=19

- EDA 100%使用Training進行
- 建模皆以10 fold CV調整參數

- Evaluate在Testing
- 在此資料上進行模型比較

「女性」與「中老年族群」有更高的流失率

客戶 資訊 信用卡客戶 流失預測 交易 資訊

性別對流失率的影響

• 相較於留下的客戶,流失的客戶更多是女性用戶

隨年齡增長對流失率的影響

相較於留下的客戶,流失的客戶更多中年及老年人

「低薪族群」與「學士後、博士生」有更高的流失率

薪資對於流失率的影響

• 相較於留下的客戶,流失的客戶多數是年薪小於\$40K的客群

教育程度對於流失率的影響

相較於留下的客戶,流失客戶的教育程度比較多是學士後 與博士學位

信用卡使用率「極高」與「極低」的用戶有更高的流失率

信用卡客戶 流失預測

信用卡使用率極高與極低的族群皆有較高的流失風險

- 信用卡使用率 = 月平均消費金額 / 信用額度
- 信用額度為銀行對客戶的信任程度
- 相較於留下的客戶,位在信用卡使用率的兩端用戶有較高的 流失率

全體用戶信用額度與月消費金額統計摘要

客戶人數	信用額度中位數	月平均消費金額中位數
7088	\$4534	\$1262

流失的低使用率用戶特徵

人數: 830

信用額度中位數: \$5134 月平均消費金額中位數: \$0

流失的高使用率用戶特徵

人數: 60

信用額度中位數: \$2474

月平均消費金額中位數: \$2177

- 低使用率的流失客戶為銀行更加信任的客戶,但客戶不買單產品,**故銀行可以考慮對信任客戶提出更具吸引力的方案**
- 高使用率的流失客戶為銀行較不信任的客戶,且客戶的月平均 消費金額幾乎達信用額度上限,猜測客戶可能是在使用上受限 故選擇離開

「年度總消費次數」與「年度總消費金額」對流失率的影響

客戶 資訊 信用卡客戶 流失預測 交易 資訊

流失客戶在年度消費次數與年度消費金額的分佈情形

• **年度總消費次數**與**年度總消費金額**將客戶劃分為三個不同族群

- 年度總消費金額超過\$11000的客戶留存率100%
- 年度總消費金額低於\$11000的客戶在年度總消費量的維度反 映出**高流失率的客戶有較低的消費次數**的現象

全體用戶信用額度的統計摘要

年度消費金額低於\$11000的客戶:

- · 流失的客戶年度總交易次數中位數為43
- 留存的客戶年度總交易次數中位數為69

後續的預測上此二變數勢必對客戶分群起到重要影響

消費次數與消費金額的「變化率(Q4/Q1)」對流失率的影響

流失客戶於Q1到Q4消費習慣的變化

衡量指標

了解客戶在Q1到Q4消費次數與消費金額的轉變

分數計算

- 消費次數變化率 = Q4消費次數 / Q1消費次數
- 消費金額變化率 = Q4消費金額 / Q1消費金額

- 9成以上的客戶,Q4的消費次數與消費金額都低於Q1,
 不是銀行端需要過度反應的一個現象
- Q4的消費次數不到Q1的一半,是客戶流失的警訊

客戶「持有產品數量」與「聯繫本銀行次數」對流失率的影響

客戶 資訊 信用卡客戶 流失預測 交易 資訊

客戶持有的產品數量對流失率的影響

Existing Customer Attrited Customer 0.75 0.75 0.25 1 2 3 4 5 6 Total_Relationship_Count

• 客戶流失率隨著持有商品數的增加而下降

• 因此推薦客戶相關金融商品可做為減少顧客流失的其一策略

客戶聯繫客服次數對對流失率的影響

- 客戶流失率隨著聯繫客服次數的增加而增長
- 因此在客戶聯繫客服的次數開始提升後,該客戶是銀行端 更需要去留意的

What is the reason causes customer churn?

探討流失客戶的特徵與消費習慣

客戶特徵 描述

相較於留下的客戶而言,流失客戶的使用者特徵更多是:

- · 年齡為40-59歲的中老年與女性客戶
- 薪資水準較多是低薪族群
- 教育程度則分成「學士後」與「博士學位」兩族群
- 信用卡使用率位在兩端(很少用/很常用)的客戶

客戶交易行為 描述

- 年度總消費金額做為客戶分群的首要指標,年度總消費次數可做為客戶分群的次要指標
- Q4的交易數量不到Q1一半是客戶潛在的離開訊號
- 客戶流失率隨著持有商品數增加而下降,故推薦金融商品是減少客戶流失的其一策略
- 客戶流失率隨著聯繫客服次數的增加而增加,**故根本解決與本銀行互動頻繁的客戶問題,是降低流失率的方式**

Agenda

- 分析目標 & 資料介紹
- 資料分析
 - 資料前處理 & EDA
 - 模型建置
- 分析總結 & Recommendation

資料前處理與建模流程

資料前處理、制定模型衡量標準

- 對5個類別變數做Dummy coding:性別、 教育水準、婚姻狀況、收入、信用卡等級
- 解決Imbalance:透過Up-sampling
- 移除完全共線性變數: Open to Buy

定義模型衡量標準:

- Accuracy
- F1 Score
- Recall(REC) = TP / (TP+FN)

	Positive (流失)	Negative (留存)
Positive (流失)	ТР	FN
Negative (留存)	FP	PN

資料切分、Hyper parameters 選取

建模準備

Random Forest (1/2)

Tune Random forest 每個節點所需的變數個數

模型設定

- 給定300棵樹(T)的情況下,每個節點選出5個變數(M)
 為Random forest的最佳組合
- 並由右圖確認該組參數(T,M)=(300,5)確實可穩定收斂

檢查 Hyper parameters 是否收斂與模型 performance

	Positive (流失)	Negative (留存)	
Positive (流失)	2502	35	
Negative (留存)	79	423	

- Accuracy = 0.9624
- F1 Score = 0.8813
- Recall = 0.9236

Random Forest (2/2)

Random forest 認為的重要變數與衡量標準(Gini)

Mean Decrease Gini

衡量變數如何影響每個節點與Terminal nodes的同質性

- 以變數能減少多大的Gini impurity為變數重要性指標
- 重要變數(Mean Decrease Gini > 100)
 - Total Trans Amt:總年度消費金額
 - Total_Trans_Ct:總年度消費次數
 - Total_Ct_Chng_Q4_Q1:消費次數變化率
 - Toal_Revolving_Bal: 月平均消費金額
 - Avg_Utitization_Ratio:信用卡使用率
 - Total Amt Chng Q4 Q1: 消費金額變化率
 - Total_Relationship_Count:持有產品數量

Gradient Boosting

Tune Gradient boosting

Learning rate	Depth of tree	Min obsinnode	Trees	Accuracy
0.1	3	10	150	0.9620469
0.1	2	10	150	0.9568283
0.1	3	10	100	0.9544287
0.1	2	10	100	0.9476582
0.1	3	10	50	0.9417328

Variables importance plot

Gradient boosting 認為的重要變數與模型 performance

- 以變數相對重要性為變數重要性指標
- 重要變數

Total Trans Ct:總年度消費次數

• Total_Trans_Amt:總年度消費金額

• Toal Revolving Bal: 月平均消費金額

	Positive (流失)	Negative (留存)
Positive (流失)	2408	129
Negative (留存)	24	478

• Recall = 0.769

K Nearest Neighbor(KNN)

Tune KNN Optimal K

模型設定

10 fold cross validation → Optimal K=5

模型說明與模型 performance

• 隨著K從5到2的過程,Validation Error開始快速上升,代表 出現overfitting的現象

	Positive (流失)	Negative (留存)
Positive (流失)	2136	401
Negative (留存)	82	420

- Accuracy = 0.841
- F1 Score = 0.635
- Recall = 0.512

Support Vector Machine(SVM)

Linear kernel

Kernel function : $K(x, z) = (1 + x'z)^{1}$

С	Error
1e-07	0.5213333
1e-06	0.5213333
1e-05	0.5213333
1e-04	0.4257778
1e-03	0.1973333

• 目標: $\min(loss + C\sum \epsilon_i)$

• Cost(C):可容忍錯誤的大小

• Optimal C = 1e-7

	Positive (流失)	Negative (留存)	
Positive (流失)	2128	409	
Negative (留存)	98	404	

- Accuracy = 0.833
- F1 Score = 0.614
- Recall = 0.500

Gaussian kernel

Kernel function : $K(\mathbf{x}, \mathbf{z}) = \exp(-\gamma |\mathbf{x} - \mathbf{z}|^2)$

С	γ	Error 0.5280000 0.5280000 0.5280000 0.5186667	
1	1e-05	0.5280000	
2	1e-05	0.5280000	
3	1e-05	0.5280000	
4	1e-05	0.5186667	
1	1e-04	0.2217778	

- 目標: $min(loss + C\sum \epsilon_i)$
- Cost(C):可容忍錯誤的大小
- Optimal C = 1
- Optimal γ = 1e-5

	Positive (流失)	Negative (留存)
Positive (流失)	2153	384
Negative (留存)	80	422

- Accuracy = 0.847
- F1 Score = 0.645
- Recall = 0.524

Agenda

- 分析目標 & 資料介紹
- 資料分析
 - 資料前處理 & EDA
 - 模型建置
- 分析總結 & Recommendation

多個模型的綜合比較與分析總結

Random forest 打敗所有模型,掌握了96%以上的的客戶流向

	Random forest	Gradient boosting	Logistic	Forward selection	Backward selection	SVM linear	SVM RBF	KNN	LDA	QDA
acc	0.962	0.950	0.895	0.895	0.895	0.833	0.847	0.841	0.850	0.881
F1	0.881	0.855	0.633	0.633	0.630	0.614	0.645	0.635	0.651	0.686
REC	0.924	0.769	0.746	0.746	0.750	0.500	0.524	0.512	0.529	0.529

模型總結

- Random forest能有效解決overfitting的問題 · 故在Up-sampling後的資料能有優異的表現
- Gradient boosting雖然有不錯的表現,但從REC相較於
 Random forest大幅下降,代表可能開始出現overfitting的現象
- 其餘模型的則沒有太特殊的表現

重要變數總結

- 年度總消費額與消費次數能有效的切出三群不同的客戶特徵
- 消費情況產生的變化同時反映出客戶可能流失的跡象
- 極端的信用卡使用情形也反映出客戶流失的機率高低
- 持有產品數正比於客戶的留存率
- · **月平均消費金額**也有效的區分出客戶的留存與否

給銀行經理的策略建議

如今已能準確的預估96%以上的流失客戶,故銀行端能採取以下行動

- 銀行可以進一步了解中老年客戶與女性客戶在信用卡的使用需求,並推出符合對應客群的信用卡服務
- 針對低使用率的高價值客戶提供更具吸引力的方案, 進而避免該群客戶流失
- 在客戶能力範圍內,適當地提升**高使用率但低信用額度客戶的信用額度**,進而滿足客戶的消費需求
- 盡可能的推薦金融商品於現有客戶,即使利潤再低都可藉此增加客戶對銀行的黏著度
- 年末(Q4)時,分析客戶消費次數與消費金額是否接近年初(Q1)的一半,進而關心這些客戶的使用需求

Thank you!

Reference

- Date resource: https://www.kaggle.com/datasets/whenamancodes/credit-card-customers-prediction/code
- Statistical learning: https://www.statlearning.com/resources-second-edition
- 分工: 黃文顥