In [1]:

```
1 options(repr.plot.width = 8, repr.plot.height = 6)
```

Регрессия: датасет Yacht Hydrodynamics ¶

http://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics# (http://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics)

Для парусных яхт нужно предсказать остаточное сопротивление на единицу массы смещения от размеров яхты и ее скорости.

In [2]:

```
1 t <- read.table('yacht_hydrodynamics.data', sep = ',', header = TRUE)
2 t[1:5,]</pre>
```

A data.frame: 5 × 7

Longitudinal_position	Prismatic_coefficient	Length.displacement_ratio	Beam.draught_ratio	Leng
-----------------------	-----------------------	---------------------------	--------------------	------

<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
-2.3	0.568	4.78	3.99	
-2.3	0.568	4.78	3.99	
-2.3	0.568	4.78	3.99	
-2.3	0.568	4.78	3.99	
-2.3	0.568	4.78	3.99	
4			•	

Разделение выборки на обучающую и тестовую

In [3]:

```
# install.packages('caret')
library(caret)

a <- createDataPartition(t$Residuary_resistance, p = 0.7, list = FALSE)
train <- t[a,]
test <- t[-a,]</pre>
```

Loading required package: lattice

Loading required package: ggplot2

Обучение

lm(formula, data, subset, weights, na.action, ...)

- formula -- формула
- data -- данные
- subset -- указывает на подмножество наблюдений, которые нужно использоваться для обучения

- weights -- веса для взвешенного МНК
- na.action -- функция, указывающая, что делать с пропусками

Возвращает объект, у которого есть:

- coefficients -- вектор коэффициентов
- residuals -- остатки модели

Полная справка:

In [4]:

```
1 ?lm
```

Обучаем на train модель вида $Residuary_resistance = \theta_1 + \theta_2 \cdot Froude_number$

In [5]:

```
1 model <- lm(formula = Residuary_resistance ~ Froude_number, data = train)
2 model</pre>
```

Call:

```
lm(formula = Residuary resistance ~ Froude number, data = train)
```

```
Coefficients:
  (Intercept) Froude_number
```

-24.22 120.89

Оценки параметров линейной регрессии

In [6]:

```
1 model$coefficients # все коэффициенты
2 model$coefficients[1] # взять первый коэффициент
```

(Intercept)

-24.2156539887165

Froude_number

120.894337147324

(Intercept): -24.2156539887165

Ковариационная матрица вектора $\widehat{\theta}$ в условиях гомоскедастичности

In [7]:

1 vcov(model)

A matrix: 2×2 of type dbl

(Intercept)	Froude_number
-------------	---------------

(Intercept) 3.243856 -10.04964 Froude_number -10.049644 34.99755

Свойства (в гауссовской линейной модели)

Некоторая информация о модели. Оба признака значимы, поскольку pvalue мало. То есть отвергаются гипотезы $\theta_1=0$ и $\theta_2=0$.

Печатает:

Остатки: минимум, 0.25-квантиль, медиана, 0.75-квантиль, максимум

Для каждого коэффициента: его оценка, стандартная ошибка, значение t-статистики гипотезы о незначимости коэффициента, pvalue этой гипотезы, звездочки значимости (чем больше, тем более значим коэффициент)

RSS и число степеней свободы, R^2 т его поправленная версия, значение F-статистики критерия Фишера о значимости регрессии вообще, число степеней свободы распределения Фишера, pvalue этой гипотезы.

In [8]:

```
1 summary(model)
```

```
Call:
```

```
lm(formula = Residuary resistance ~ Froude number, data = train)
```

Residuals:

```
Min 1Q Median 3Q Max -11.237 -7.745 -1.761 6.262 32.233
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -24.216    1.801 -13.45    <2e-16 ***
Froude_number 120.894    5.916    20.44    <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 8.795 on 214 degrees of freedom Multiple R-squared: 0.6612, Adjusted R-squared: 0.6596 F-statistic: 417.6 on 1 and 214 DF, p-value: < 2.2e-16

Можно вытащить отдельные числа

In [9]:

```
1 summary(model)$r.squared
```

0.661185066504209

Доверительные интервалы для коэффициентов

In [10]:

```
confint(model, level = 0.95)
```

A matrix: 2 × 2 of type dbl

	2.5 %	97.5 %
(Intercept)	-27.76576	-20.66554
Froude_number	109.23349	132.55518

Предсказания

Предсказания строятся с помощью универсальной функции predict. Для линейной регрессии она эквивалентна функции predict.lm. По ней можно получить справку:

In [11]:

```
1 ?predict.lm
```

В предположениях гауссовской линейной модели можно построить два типа интервалов -- доверительный (confidence) и предсказательный (prediction). Первый является доверительными интервалом в обычном смысле для среднего значения отклика. Второй является интервалом, в котором с большой вероятностью лежит само значение отклика. Второй итервал всегда шире первого.

Предсказание значений на новых объектах вместе с доверительным интервалом

In [12]:

```
predicted <- predict(model, test, level = 0.95, interval = 'confidence')
predicted[1:3,]</pre>
```

A matrix: 3×3 of type dbl

	fit	lwr	upr
2	-6.081503	-8.068719	-4.094287
3	-3.059145	-4.820265	-1.298025
8	12.052647	10.863675	13.241619

Предсказание значений на новых объектах вместе с предсказательным интервалом

In [13]:

```
predicted <- predict(model, test, level = 0.95, interval = 'prediction')
predicted[1:3,]</pre>
```

A matrix: 3 × 3 of type dbl

	fit	lwr	upr
2	-6.081503	-23.530023	11.36702
3	-3.059145	-20.483362	14.36507
8	12.052647	-5.323067	29.42836

MSE посчитаем ручками

In [14]:

```
1 mean((predicted[,1] - test$Residuary_resistance) ^ 2)
```

83.7649037492296

Посмотрим на график предсказания

In [15]:

```
plot(t$Residuary_resistance ~ t$Froude_number)
x <- seq(from = 0, to = 0.5, by = 0.1)
lines(x, model$coefficients[1] + model$coefficients[2] * x, col = "red", lwd =</pre>
```


Еще примеры

Обучаем на train модель вида $Residuary_resistance = \theta_1 + \theta_2 \cdot Froude_number + \theta_3 \cdot Froude_number^2 + \theta_4 \cdot Froude_number^3$

Обозначения в формуле:

```
(x+y)^2 эквивалентно x^2 + y^2 + xy, что означает взять признаки x^2, y^2, xy
I((x+y)^2) означает взять признак (x+y)^2.
In [16]:
    model 2 <- lm(formula = Residuary resistance ~ Froude number + I(Froude number^
 2
                 data = train)
 3
    model 2$coefficients
 4
    summary(model_2)
(Intercept)
-47.3500896285085
Froude number
684.738189461049
I(Froude_number^2)
-3113.69365771249
I(Froude number^3)
4611.89045639885
```

Call:

Residuals:

```
Min 1Q Median 3Q Max -6.1376 -1.1891 -0.2925 1.2335 11.9024
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -47.350
                                3.617 -13.09
                                                <2e-16 ***
                                                <2e-16 ***
Froude number
                    684.738
                               43.337
                                        15.80
I(Froude number^2) -3113.694
                              160.041 -19.46
                                                <2e-16 ***
                                        24.95
                                                <2e-16 ***
I(Froude number^3) 4611.890
                              184.852
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.057 on 212 degrees of freedom Multiple R-squared: 0.9816, Adjusted R-squared: 0.9814 F-statistic: 3777 on 3 and 212 DF, p-value: < 2.2e-16

Сравнить две модели можно в одной таблице

```
In [17]:
```

```
1 # install.packages('memisc')
2 library("memisc")
3 print(mtable(model, model_2))
```

Loading required package: MASS

Attaching package: 'memisc'

The following object is masked from 'package:ggplot2': syms

The following objects are masked from 'package:stats': contr.sum, contr.treatment, contrasts

The following object is masked from 'package:base': as.array

Calls:

model: lm(formula = Residuary_resistance ~ Froude_number, data = trai
n)
model_2: lm(formula = Residuary_resistance ~ Froude_number + I(Froude_
number^2) +

I(Froude number^3), data = train)

model model_2 -24.216*** -47.350*** (1.801) (3.617) 120.894*** 684.738*** (5.916) (43.337) (Intercept) Froude number (5.916)(43.337)I(Froude_number^2) -3113.694*** (160.041)I(Froude_number^3) 4611.890*** (184.852)R-squared 0.661 0.982 Ν 216 216

Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05

Значение MSE куда лучше

In [18]:

```
predicted <- predict(model_2, test)
mean((predicted - test$Residuary_resistance) ^ 2)</pre>
```

2.87253588934687

Посмотрим на график

In [19]:

Обучим регрессию на всех фичах. Как видим, все остальные фичи незначимы - pvalue мало.

Чтобы взять в формулу все признаки, можно поставить просто точку

```
In [20]:
```

```
model <- lm(formula = Residuary_resistance ~ . + I(Froude_number^2) + I(Froude_</pre>
 2
                data = train)
 3
    model$coefficients
    summary(model)
(Intercept)
-38.1592123801995
Longitudinal_position
0.261148109075172
Prismatic coefficient
-12.0388956894835
Length.displacement ratio
2.95952272775717
Beam.draught ratio
-1.23454031684979
Length.beam_ratio
-3.24403634146235
Froude number
677.212705722252
I(Froude_number^2)
-3090.25519655445
I(Froude number^3)
4589.50424004885
Call:
lm(formula = Residuary resistance ~ . + I(Froude number^2) +
    I(Froude number^3), data = train)
Residuals:
   Min
           10 Median
                         30
                               Max
-5.615 -1.234 -0.120 1.155 11.216
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                           -3.816e+01 8.114e+00 -4.703 4.68e-06 ***
(Intercept)
                           2.611e-01 8.794e-02
Longitudinal_position
                                                   2.969 0.00334 **
Prismatic coefficient
                          -1.204e+01 1.165e+01 -1.033 0.30272
Length.displacement ratio 2.960e+00 3.676e+00
                                                   0.805
                                                          0.42163
                          -1.235e+00 1.427e+00
Beam.draught ratio
                                                  -0.865
                                                          0.38792
                          -3.244e+00 3.703e+00
Length.beam ratio
                                                  -0.876
                                                          0.38197
                                                  16.178
Froude number
                           6.772e+02 4.186e+01
                                                          < 2e-16 ***
I(Froude_number^2)
                          -3.090e+03 1.546e+02 -19.992 < 2e-16 ***
I(Froude number^3)
                                                  25.705 < 2e-16 ***
                           4.590e+03 1.785e+02
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.982 on 207 degrees of freedom
Multiple R-squared: 0.9834,
                             Adjusted R-squared: 0.9827
```

F-statistic: 1529 on 8 and 207 DF, p-value: < 2.2e-16

In [21]:

```
predicted <- predict(model, test)
mean((predicted - test$Residuary_resistance) ^ 2)</pre>
```

2.82817872742203

Отбор признаков

Процедура отбора фичей из библиотеки https://cran.r-project.org/web/packages/bestglm/bestglm.pdf (https://cran.r-project.org/web/packages/bestglm/bestglm.pdf)

In [22]:

```
# install.packages('bestglm')
library('bestglm')

bestglm(t, family = gaussian, IC = "BIC")
```

Loading required package: leaps

Прикладная статистика и анализ данных, 2019

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)