ACCESS-Fire: Case studies

Two case studies in 2019/2020

- Sir Ivan (NSW)
- Waroona (WA)
- Black Saturday (VIC)

Five more in 2021 (Black summer fires)

- Badja (NSW)
- Corryong (VIC)
- Kangaroo Island (SA)
- Stanthorpe (QLD)
- Yanchep (WA)

Collaborations:

RFS, DEW, DBCA, Tas Fire, CFA, UKMO

Aims:

- Fire reproduction capability
- Elucidate reasons for unexpectedly catastrophic fire spread
- Enhance understanding of atmospheric fire mechanics

BOM High Impact Weather ++:

Jesse Greenslade (talking), Paul Fox-Hughes, Jeff Kepert, Mika Peace, Dragana Rajak, Abhik Santra, Tasfia Shermin, Harvey Ye

Fire spread

Can match fire spread in unorthodox conditions

Sensitivities to fuel load, topography, inversion __36.1 layer, nearby fires (in addition to fire spread parameters)

- Spread increases due to increased fuel load (run1 -> run2)
- Spread increases with addition of nearby fires (run2 -> run3)
- Spread reduced with coupling turned off (run4)

Low level winds

- Stronger low level winds apparent at several catastrophic fires
- Example: Downslope winds at Waroona.
- Fire coupling lead to stronger winds being pulled down to the fire front.

Pyrogenic thunderstorms (PCB)

 $PFT = C (Z_{fc})^2 U b_{fc}$

PFT: PCB Fire power Threshold

C : constant

Z_{fc}: free convection altitude

U : wind speed

b_{fc}: Plume escape threshold

Summary

Coupling captures atmospheric influences

Big fire outbreaks may only become explicable with coupled modelling.

Wide scope for further research

Spread can be captured

Jan 06, 2120 (LT)

sirivan_run1 201702120701(UTC)

Pyrogenic thunderstorms can be resolved

Wind jets can be pulled down to the surface