ct-bio-signal-analysis-for-smoking

January 22, 2024

1 Bio Signal Analysis for Smoking

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: df = pd.read_csv('smoking.csv')
     df = df.drop(columns=['ID', 'oral'])
     df
[2]:
            gender
                     age
                          height(cm)
                                        weight(kg)
                                                     waist(cm)
                                                                  eyesight(left)
     0
                 F
                      40
                                  155
                                                 60
                                                           81.3
                                                                              1.2
     1
                 F
                      40
                                  160
                                                 60
                                                           81.0
                                                                              0.8
     2
                                                           80.0
                 М
                      55
                                  170
                                                 60
                                                                              0.8
     3
                 М
                      40
                                  165
                                                 70
                                                           88.0
                                                                              1.5
     4
                 F
                                                           86.0
                      40
                                  155
                                                 60
                                                                              1.0
                 F
                                  170
                                                           75.0
                                                                              0.9
     55687
                      40
                                                 65
                                                           70.0
     55688
                 F
                      45
                                  160
                                                 50
                                                                              1.2
     55689
                 F
                      55
                                  160
                                                 50
                                                           68.5
                                                                              1.0
                                  165
                                                 60
                                                           78.0
     55690
                 М
                      60
                                                                              0.8
     55691
                 М
                      55
                                  160
                                                 65
                                                           85.0
                                                                              0.9
             eyesight(right)
                                hearing(left)
                                                 hearing(right)
                                                                   systolic
                                                                                    LDL
     0
                          1.0
                                           1.0
                                                             1.0
                                                                      114.0
                                                                                  126.0
                                                                             ...
                          0.6
                                           1.0
                                                             1.0
                                                                      119.0
                                                                                  127.0
     1
     2
                          0.8
                                           1.0
                                                             1.0
                                                                      138.0
                                                                                  151.0
                                                             1.0
     3
                          1.5
                                           1.0
                                                                      100.0
                                                                                 226.0
     4
                          1.0
                                           1.0
                                                             1.0
                                                                      120.0
                                                                                  107.0
                          0.9
                                                                      110.0
     55687
                                           1.0
                                                             1.0
                                                                                  118.0
     55688
                          1.2
                                           1.0
                                                             1.0
                                                                      101.0
                                                                                  79.0
     55689
                          1.2
                                           1.0
                                                             1.0
                                                                      117.0 ...
                                                                                   63.0
     55690
                          1.0
                                           1.0
                                                             1.0
                                                                      133.0
                                                                                 146.0
     55691
                          0.7
                                           1.0
                                                             1.0
                                                                      124.0 ...
                                                                                 150.0
```

	hemoglobin	Urine	prot	ein	serum	creatinine	AST	ALT	${ t Gtp}$	\
0	12.9			1.0		0.7	18.0	19.0	27.0	
1	12.7			1.0		0.6	22.0	19.0	18.0	
2	15.8			1.0		1.0	21.0	16.0	22.0	
3	14.7			1.0		1.0	19.0	26.0	18.0	
4	12.5			1.0		0.6	16.0	14.0	22.0	
•••	•••		•••				•••			
55687	12.3			1.0		0.6	14.0	7.0	10.0	
55688	14.0		:	1.0		0.9	20.0	12.0	14.0	
55689	12.4		:	1.0		0.5	17.0	11.0	12.0	
55690	14.4		:	1.0		0.7	20.0	19.0	18.0	
55691	15.0			1.0		0.8	26.0	29.0	41.0	
	dental carie	es tai	rtar	smol	king					
0		0	Y		0					
1		0	Y		0					
2		0	N		1					
3		0	Y		0					
4		0	N		0					
•••	•••	•••	•••							
55687		1	Y		0					
55688		0	Y		0					
55689		0	N		0					
55690		0	N		0					
55691		0	Y		1					

[55692 rows x 25 columns]

Exploratory Data Analysis (EDA)

[3]: df.shape

[3]: (55692, 25)

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 55692 entries, 0 to 55691
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	gender	55692 non-null	object
1	age	55692 non-null	int64
2	height(cm)	55692 non-null	int64
3	weight(kg)	55692 non-null	int64
4	waist(cm)	55692 non-null	float64
5	<pre>eyesight(left)</pre>	55692 non-null	float64
6	eyesight(right)	55692 non-null	float64

```
7
   hearing(left)
                         55692 non-null float64
8
   hearing(right)
                         55692 non-null
                                         float64
9
   systolic
                         55692 non-null
                                         float64
10
   relaxation
                         55692 non-null float64
   fasting blood sugar
                         55692 non-null float64
   Cholesterol
                         55692 non-null float64
13
   triglyceride
                         55692 non-null float64
   \mathtt{HDL}
                         55692 non-null float64
14
15
   LDL
                         55692 non-null float64
16
   hemoglobin
                         55692 non-null float64
17
   Urine protein
                         55692 non-null float64
18
   serum creatinine
                         55692 non-null float64
19
   AST
                                        float64
                         55692 non-null
20
   ALT
                         55692 non-null
                                         float64
                         55692 non-null
                                         float64
21
   Gtp
   dental caries
                         55692 non-null
                                         int64
23
   tartar
                         55692 non-null
                                         object
24 smoking
                         55692 non-null
                                         int64
```

dtypes: float64(18), int64(5), object(2)

memory usage: 10.6+ MB

[5]: df.describe()

[5]:		age	height(cm)	weight(kg)	waist(c	n) eyesi	.ght(left)	\
	count	55692.000000	55692.000000	55692.000000	55692.0000	00 556	92.000000	
	mean	44.182917	164.649321	65.864936	82.0464	18	1.012623	
	std	12.071418	9.194597	12.820306	9.2742	23	0.486873	
	min	20.000000	130.000000	30.000000	51.0000)0	0.100000	
	25%	40.000000	160.000000	55.000000	76.0000)0	0.800000	
	50%	40.000000	165.000000	65.000000	82.0000)0	1.000000	
	75%	55.000000	170.000000	75.000000	88.0000)0	1.200000	
	max	85.000000	190.000000	135.000000	129.0000)0	9.900000	
		eyesight(right) hearing(le	•	-	systolic	\	
	count	55692.00000	0 55692.000	55692.	000000 5569:	2.000000		
	mean	1.00744	3 1.025	5587 1.	026144 12	1.494218		
	std	0.48596	4 0.157	902 0.	159564 13	3.675989		
	min	0.10000	0 1.000	0000 1.	000000 7	1.000000		
	25%	0.80000	0 1.000	0000 1.	000000 11	2.000000		
	50%	1.00000	0 1.000	0000 1.	000000 120	0.000000		
	75%	1.20000	0 1.000	0000 1.	000000 130	0.000000		
	max	9.90000	0 2.000	000 2.	000000 240	0.000000		
		relaxation	Н	IDL	LDL hemog	Lobin \		
	count	55692.000000	55692.0000	00 55692.000	000 55692.0	0000		
	mean	76.004830	57.2903	114.964	501 14.6	22592		
	std	9.679278	14.7389	63 40.926	476 1.50	34498		

min	40.000000	4.00000	0 1.000000	4.900000	
25%	70.000000	47.00000	0 92.000000	13.600000	
50%	76.000000	55.00000	0 113.000000	14.800000	
75%	82.000000	66.00000	0 136.000000	15.800000	
max	146.000000	618.00000	0 1860.000000	21.100000	
	Urine protein	serum creatin	ine AS	ST ALT	\
count	55692.000000	55692.000	000 55692.00000	00 55692.000000	
mean	1.087212	0.885	738 26.18293	35 27.036037	
std	0.404882	0.221	524 19.35546	30.947853	
min	1.000000	0.100	000 6.00000	1.000000	
25%	1.000000	0.800	000 19.00000	15.000000	
50%	1.000000	0.900	000 23.00000	21.000000	
75%	1.000000	1.000	000 28.00000	31.000000	
max	6.000000	11.600	000 1311.00000	2914.000000	
	$\operatorname{Gtp} olimits$	dental caries	smoking		
count	55692.000000	55692.000000	55692.000000		
mean	39.952201	0.213334	0.367288		
std	50.290539	0.409665	0.482070		
min	1.000000	0.000000	0.00000		
25%	17.000000	0.000000	0.000000		
50%	25.000000	0.000000	0.000000		
75%	43.000000	0.000000	1.000000		
max	999.000000	1.000000	1.000000		

[8 rows x 23 columns]

[6]: df.isnull().sum()

```
[6]: gender
                              0
     age
                              0
     height(cm)
                              0
     weight(kg)
                              0
     waist(cm)
                              0
     eyesight(left)
                              0
     eyesight(right)
                              0
     hearing(left)
                              0
     hearing(right)
                              0
     systolic
                              0
     relaxation
                              0
     fasting blood sugar
                              0
     Cholesterol
                              0
                              0
     triglyceride
     \mathtt{HDL}
                              0
     LDL
                              0
     hemoglobin
                              0
```

```
Urine protein
                             0
                             0
     serum creatinine
     AST
                             0
                             0
     ALT
                             0
     Gtp
                             0
     dental caries
     tartar
                             0
                             0
     smoking
     dtype: int64
[7]: df.apply(lambda x: x.unique())
                                                                           [F, M]
[7]: gender
                             [40, 55, 30, 45, 50, 35, 60, 25, 65, 20, 80, 7...
     age
                             [155, 160, 170, 165, 180, 150, 175, 140, 185, ...
     height(cm)
                             [60, 70, 75, 90, 65, 45, 55, 50, 85, 80, 100, ...
     weight(kg)
                             [81.3, 81.0, 80.0, 88.0, 86.0, 85.0, 85.5, 96...
     waist(cm)
                             [1.2, 0.8, 1.5, 1.0, 0.7, 0.9, 0.3, 0.2, 0.1, ...]
     eyesight(left)
     eyesight(right)
                             [1.0, 0.6, 0.8, 1.5, 1.2, 0.7, 0.4, 0.9, 0.3, ...
                                                                       [1.0, 2.0]
     hearing(left)
     hearing(right)
                                                                       [1.0, 2.0]
     systolic
                             [114.0, 119.0, 138.0, 100.0, 120.0, 128.0, 116...
     relaxation
                             [73.0, 70.0, 86.0, 60.0, 74.0, 76.0, 82.0, 96...
                             [94.0, 130.0, 89.0, 96.0, 80.0, 95.0, 158.0, 8...
     fasting blood sugar
                             [215.0, 192.0, 242.0, 322.0, 184.0, 217.0, 226...
     Cholesterol
     triglyceride
                             [82.0, 115.0, 182.0, 254.0, 74.0, 199.0, 68.0,...
                             [73.0, 42.0, 55.0, 45.0, 62.0, 48.0, 34.0, 43...
     HDL
     LDL
                             [126.0, 127.0, 151.0, 226.0, 107.0, 129.0, 157...
                             [12.9, 12.7, 15.8, 14.7, 12.5, 16.2, 17.0, 15...
     hemoglobin
                                                 [1.0, 3.0, 2.0, 4.0, 5.0, 6.0]
     Urine protein
     serum creatinine
                             [0.7, 0.6, 1.0, 1.2, 1.3, 0.8, 1.1, 0.9, 0.5, \dots]
                             [18.0, 22.0, 21.0, 19.0, 16.0, 38.0, 31.0, 26...
     AST
     ALT
                             [19.0, 16.0, 26.0, 14.0, 27.0, 71.0, 31.0, 24...
                             [27.0, 18.0, 22.0, 33.0, 39.0, 111.0, 14.0, 63...
     Gtp
     dental caries
                                                                           [0, 1]
     tartar
                                                                           [Y, N]
                                                                           [0, 1]
     smoking
     dtype: object
    DATA VISUALIZATION
```

```
[8]: sns.barplot(x=df['gender'],y=df['smoking'])
plt.show()
```



```
[9]: plt.figure(figsize=(15, 5))
sns.countplot(x=df['gender'], hue=df['smoking'])
plt.show()
```



```
[10]: plt.figure(figsize=(10,7))
df['smoking'].value_counts().plot.pie(autopct='%0.2f')
plt.show()
```



```
[11]: # Suppress FutureWarning related to use_inf_as_na
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

plt.figure(figsize=(12,7))
sns.histplot(x=df['age'],hue=df['smoking'])
plt.show()
```



```
[12]: for i in df.columns:
    if(df[i].dtypes=='int64' or df[i].dtypes=='float64'):
        sns.boxplot(df[i])
        plt.show()
```


DATA PREPROCESSING

```
[13]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

# Apply label encoding to each categorical column and convert to int64
c_cols = ['gender' , 'tartar', 'dental caries' ]
df[c_cols] = df[c_cols].apply(lambda col: le.fit_transform(col).astype('int64'))
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 55692 entries, 0 to 55691
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype		
0	gender	55692 non-null	int64		
1	age	55692 non-null	int64		
2	height(cm)	55692 non-null	int64		
3	weight(kg)	55692 non-null	int64		
4	waist(cm)	55692 non-null	float64		
5	<pre>eyesight(left)</pre>	55692 non-null	float64		
6	<pre>eyesight(right)</pre>	55692 non-null	float64		
7	hearing(left)	55692 non-null	float64		
8	hearing(right)	55692 non-null	float64		
9	systolic	55692 non-null	float64		
10	relaxation	55692 non-null	float64		
11	fasting blood sugar	55692 non-null	float64		
12	Cholesterol	55692 non-null	float64		
13	triglyceride	55692 non-null	float64		
14	HDL	55692 non-null	float64		
15	LDL	55692 non-null	float64		
16	hemoglobin	55692 non-null	float64		
17	Urine protein	55692 non-null	float64		
18	serum creatinine	55692 non-null	float64		
19	AST	55692 non-null	float64		
20	ALT	55692 non-null	float64		
21	Gtp	55692 non-null	float64		
22	dental caries	55692 non-null	int64		
23	tartar	55692 non-null	int64		
24	smoking	55692 non-null	int64		
dtypes: float64(18), int64(7)					

dtypes: float64(18), int64(7)

memory usage: 10.6 MB

FEATURE SELECTION USING FEATURE IMPORTANCE

```
[14]: X = df.iloc[:,:-1]
       y = df.iloc[:, -1]
[15]: from sklearn.ensemble import ExtraTreesClassifier
       model = ExtraTreesClassifier()
       model.fit(X,y)
[15]: ExtraTreesClassifier()
[16]: df1= pd.Series(model.feature_importances_,index=X.columns)
       plt.figure(figsize=(8,8))
       df1.nlargest(24).plot(kind='barh')
       plt.show()
                 hearing(left)
                hearing(right)
                 dental caries
                      tartar
                Urine protein
               eyesight(right)
                eyesight(left)
              serum creatinine
                  Cholesterol
                       LDL
                        ALT
                     systolic
                   relaxation
            fasting blood sugar
                       HDL
```


0.075

0.100

0.125

0.150

0.175

0.200

waist(cm) age weight(kg) Gtp

triglyceride height(cm) hemoglobin gender

0.000

0.025

0.050

```
'waist(cm)','age','HDL','fasting blood
sugar','LDL','relaxation','ALT','systolic','Cholesterol']]
y = df.iloc[:, -1]
```

Logistic Regression

[18]:		actaul_value	<pre>predicted_value</pre>
	33967	0	0
	21956	1	0
	15458	0	1
	36215	0	1
	8886	0	1
	•••	•••	•••
	17853	0	0
	31224	1	0
	24589	0	0
	43475	0	0
	33600	1	1

[11139 rows x 2 columns]

```
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

Accuracy: 0.73

Classification Report:

support	f1-score	recall	precision	
7027	0.78	0.76	0.80	0
4112	0.65	0.69	0.62	1
11139	0.73			accuracy
11139	0.72	0.72	0.71	macro avg
11139	0.73	0.73	0.74	weighted avg

Confusion Matrix:

[[5321 1706] [1295 2817]]

```
[20]: # Create a figure and axis
plt.figure(figsize=(12, 7))

# Plot the kernel density estimate for actual and predicted values
sns.kdeplot(y_test, label='Actual', fill=True, color='skyblue')
sns.kdeplot(y_pred, label='Predicted', fill=True, color='salmon')
plt.xlabel('Values')
plt.ylabel('Density')
plt.title('Comparison of Actual vs Predicted Values')
plt.legend()
plt.show()
```


Decision Tree Classifier

```
[21]: from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)

y_pred = dt.predict(X_test)
```

```
[22]: # Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

print("\nClassification Report:")
print(classification_report(y_test, y_pred))

print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

Accuracy: 0.79

Classification Report:

	precision	recall	f1-score	support
0	0.83	0.83	0.83	7027
1	0.72	0.71	0.71	4112

```
accuracy 0.79 11139
macro avg 0.77 0.77 0.77 11139
weighted avg 0.79 0.79 0.79 11139
```

Confusion Matrix: [[5865 1162] [1178 2934]]

```
[23]: # Create a figure and axis
plt.figure(figsize=(12, 7))

# Plot the kernel density estimate for actual and predicted values
sns.kdeplot(y_test, label='Actual', fill=True, color='skyblue')
sns.kdeplot(y_pred, label='Predicted', fill=True, color='salmon')
plt.xlabel('Values')
plt.ylabel('Density')
plt.title('Comparison of Actual vs Predicted Values')
plt.legend()
plt.show()
```


Ensemble Learning with Bagging Classifier

```
[24]: from sklearn.ensemble import BaggingClassifier
      bagg = BaggingClassifier(base_estimator =__
       →DecisionTreeClassifier(),n_estimators=1000)
      bagg.fit(X_train, y_train).score(X_test,y_test)
      y_pred = bagg.predict(X_test)
[25]: # Evaluate the model
      accuracy = accuracy_score(y_test, y_pred)
      print(f"Accuracy: {accuracy:.2f}")
      print("\nClassification Report:")
      print(classification_report(y_test, y_pred))
      print("\nConfusion Matrix:")
      print(confusion_matrix(y_test, y_pred))
     Accuracy: 0.83
     Classification Report:
                   precision
                                recall f1-score
                                                    support
                0
                        0.88
                                  0.84
                                            0.86
                                                       7027
                1
                        0.75
                                  0.80
                                            0.77
                                                       4112
                                            0.83
                                                      11139
         accuracy
        macro avg
                        0.81
                                  0.82
                                            0.82
                                                      11139
                        0.83
                                            0.83
     weighted avg
                                  0.83
                                                      11139
     Confusion Matrix:
     [[5927 1100]
      [ 842 3270]]
[26]: # Create a figure and axis
      plt.figure(figsize=(12, 7))
      # Plot the kernel density estimate for actual and predicted values
      sns.kdeplot(y_test, label='Actual', fill=True, color='skyblue')
      sns.kdeplot(y_pred, label='Predicted', fill=True, color='salmon')
      plt.xlabel('Values')
      plt.ylabel('Density')
      plt.title('Comparison of Actual vs Predicted Values')
      plt.legend()
      plt.show()
```


Ensemble Learning with Extra Trees Classifier

```
[27]: from sklearn.ensemble import ExtraTreesClassifier
  et = ExtraTreesClassifier(n_estimators=1000,random_state=42)
  et.fit(X_train,y_train)

y_pred = et.predict(X_test)
```

```
[28]: # Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

print("\nClassification Report:")
print(classification_report(y_test, y_pred))

print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

Accuracy: 0.83

Classification Report:

	precision	recall	f1-score	support
0	0.88	0.83	0.86	7027
1	0.74	0.81	0.78	4112

```
accuracy 0.83 11139
macro avg 0.81 0.82 0.82 11139
weighted avg 0.83 0.83 0.83 11139
```

Confusion Matrix: [[5860 1167] [762 3350]]

```
[29]: # Create a figure and axis
plt.figure(figsize=(12, 7))

# Plot the kernel density estimate for actual and predicted values
sns.kdeplot(y_test, label='Actual', fill=True, color='skyblue')
sns.kdeplot(y_pred, label='Predicted', fill=True, color='salmon')
plt.xlabel('Values')
plt.ylabel('Density')
plt.title('Comparison of Actual vs Predicted Values')
plt.legend()
plt.show()
```


Random Forest Classifier

```
[30]: from sklearn.ensemble import RandomForestClassifier
      rfc = RandomForestClassifier(n_estimators=1000)
      rfc.fit(X_train, y_train)
      y_pred = rfc.predict(X_test)
[31]: # Evaluate the model
      accuracy = accuracy_score(y_test, y_pred)
      print(f"Accuracy: {accuracy:.2f}")
      print("\nClassification Report:")
      print(classification_report(y_test, y_pred))
      print("\nConfusion Matrix:")
      print(confusion_matrix(y_test, y_pred))
     Accuracy: 0.83
     Classification Report:
                   precision
                                recall f1-score
                                                    support
                0
                                  0.85
                                                       7027
                        0.88
                                             0.86
                        0.75
                1
                                  0.80
                                             0.77
                                                       4112
                                             0.83
                                                      11139
         accuracy
                        0.81
                                   0.82
                                             0.82
                                                      11139
        macro avg
     weighted avg
                        0.83
                                   0.83
                                             0.83
                                                      11139
     Confusion Matrix:
     [[5940 1087]
      [ 837 3275]]
[32]: # Create a figure and axis
      plt.figure(figsize=(12, 7))
      # Plot the kernel density estimate for actual and predicted values
      sns.kdeplot(y_test, label='Actual', fill=True, color='skyblue')
      sns.kdeplot(y_pred, label='Predicted', fill=True, color='salmon')
      plt.xlabel('Values')
      plt.ylabel('Density')
      plt.title('Comparison of Actual vs Predicted Values')
      plt.legend()
      plt.show()
```


SELECTING THE BEST MODEL

```
[35]: from sklearn.metrics import recall_score, precision_score, f1_score
      # List of classifiers
      classifiers = [lr, dt, bagg, et, rfc] # Assuming these are the names of your_
       ⇔classifiers
      classifier_names = ['Logistic Regression', 'Decision Tree', 'Bagging_
       ⇔Classifier', 'Extra Trees Classifier', 'Random Forest']
      # Initialize lists to store metrics
      models = []
      confusion_matrices = []
      classification_reports = []
      accuracies = []
      recalls = []
      precisions = []
      f1_scores = []
      # Loop through each classifier
      for clf, clf_name in zip(classifiers, classifier_names):
          # Get predictions
          y_pred = clf.predict(X_test)
          # Store metrics in lists
```

```
models.append(clf_name)
          confusion_matrices.append(confusion_matrix(y_test, y_pred))
          classification_reports.append(classification_report(y_test, y_pred))
         accuracies.append(accuracy_score(y_test, y_pred))
         recalls.append(recall_score(y_test, y_pred, average='weighted'))
         precisions.append(precision_score(y_test, y_pred, average='weighted'))
         f1_scores.append(f1_score(y_test, y_pred, average='weighted'))
      # Create a DataFrame with metrics
     metrics df = pd.DataFrame({
          'Model': models,
          'Accuracy': accuracies,
          'Recall': recalls,
          'Precision': precisions,
          'F1 Score': f1_scores
     })
      # Display the metrics table
     print("Metrics for Each Model:")
     print(metrics_df)
     Metrics for Each Model:
                         Model Accuracy
                                           Recall Precision F1 Score
           Logistic Regression 0.730586 0.730586 0.737281 0.732940
                 Decision Tree 0.789927 0.789927 0.789760 0.789842
     1
     2
            Bagging Classifier 0.825658 0.825658 0.828607 0.826679
     3 Extra Trees Classifier 0.826825 0.826825 0.832034 0.828319
                 Random Forest 0.827274 0.827274 0.830095 0.828257
[36]: # Visualize confusion matrices using heatmaps
     for clf, clf_name, confusion_matrix in zip(classifiers, classifier_names,__
       ⇔confusion_matrices):
         plt.figure(figsize=(8, 6))
         sns.heatmap(confusion_matrix, annot=True, cmap='Blues', fmt='g')
         plt.title(f'Confusion Matrix - {clf_name}')
         plt.xlabel('Predicted')
         plt.ylabel('Actual')
         plt.show()
```


The best model is Random Forest with an accuracy of 0.83

```
[]:
```