DLNLP_2023 第一次作业: 计算中文平均信息熵

ZY2203114 王彪

1. 环境配置

```
conda create -n NLP_homework1 python=3.8
activate NLP_homework1

pip install numpy
pip install math
pip install jieba
pip install matplotlib
pip install logging
pip3 install multiprocessing
pip3 install opencc-python-reimplemented
```

2. 运行

```
|--data/
|--util/
| |--tools.py
|--CN_stopwords/
| |--cn_stopwords.txt
| |--cn_punctuation.txt
|--figs/
|--test.py
|--ZY2203114-Report.pdf
|--运行记录_最最最最新再也不改版.txt
```

```
cd ./NLP/Homework1/DLNLP2023
python test.py
```

3. 算法流程

1. 预处理并保存文件,去除stopwords

```
def SentencePreprocessing():
    line = ''
    data_txt, filenames = read_data(data_dir='./data')
    len_data_txt = len(data_txt)
    punctuations = stop_punctuation('./CN_stopwords/cn_stopwords.txt') # 停词
# 省略
```

2. jieba分词 (区分以词与以字为单位)

```
def get_split_words(file_path,flag):
```

```
with open(file_path, 'r', encoding='utf-8') as f:
    corpus = []
    split_words = []
    count = 0
    for line in f:
        if line != '\n':
            corpus.append(line.strip())
            count += len(line.strip())

corpus = ''.join(corpus)
    if flag is False:
        split_words = list(jieba.cut(corpus)) # 利用jieba分词
    elif flag is True:
        split_words = [x for x in corpus]
return split_words,len(corpus)
```

3. 计算词频

```
# 一元模型词频统计
def get_unigram_tf(tf_dic, words):
    for i in range(len(words)-1):
        tf_dic[words[i]] = tf_dic.get(words[i], 0) + 1
```

```
# 二元模型词频统计
def get_bigram_tf(tf_dic, words):
    for i in range(len(words)-1):
        tf_dic[(words[i], words[i+1])] = tf_dic.get((words[i], words[i+1]), 0) +
1
```

```
# 三元模型词频统计

def get_trigram_tf(tf_dic, words):
    for i in range(len(words)-2):
        tf_dic[((words[i], words[i+1]), words[i+2])] = tf_dic.get(((words[i], words[i+1]), words[i+2]), 0) + 1
```

4. 计算信息熵 (以一元模型为例)

```
# 计算一元模型信息熵

def calculate_unigram_entropy(file_path,words_tf,len_):
    before = time.time()

    begin = time.time()

    words_num = sum([item[1] for item in words_tf.items()])
    logging.info(file_path)
    print("分词个数: {}".format(words_num))
    print('分词种类数: {}'.format((len(words_tf))))
    print("平均词长: {:.4f}".format(len_ / float(words_num)))

entropy = 0

for item in words_tf.items():
    entropy += -(item[1] / words_num) * math.log(item[1] / words_num, 2)
    print("基于词的一元模型中文信息熵为: {:.4f} 比特/词".format(entropy))

end = time.time()
    runtime = round(end - before, 4)
```

```
print("一元模型运行时间: {:.4f} s".format(runtime))
return entropy
```

5. 绘图

```
def draw_results(data,novel_name,color,title,path): # 画柱状图
length = len(data)
x = np.arange(length)
plt.figure(figsize=(12.96, 7.2))
width = 0.6 # 单个柱状图的宽度
x1 = x + width / 2 # 第一组数据柱状图横坐标起始位置
plt.title(title, fontsize=18) # 柱状图标题
plt.ylabel("Bit per word", fontsize=15) # 纵坐标label
plt.bar(x1, data, width=width, color=color)
plt.xticks(x, novel_name, rotation=25, fontsize=12)
for a, b in zip(x1, data): # 柱子上的数字显示
    plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=12)
# plt.legend() # 给出图例
# plt.show()
plt.savefig(path)
```

4. 中文信息熵计算结果

• 以下仅作记录参考,具体运行结果见 <u>./运行记录 最最最最最新再也不改版.txt</u>

4.1 以词为单位(使用jieba.cut)

	小说名称	语料字数	1-gram 分词种 类数	1- gram 平均词 长	1-gram 信息熵	2-gram 分词种类 数	2- gram 平均词 长	2- gram 信息熵	3-gram 分词种类 数	3- gram 平均词 长	3- gram 信息熵	Average Entropy
1	三十 三剑 客图	27398	8425	1.8942	12.4196	14057	3.3165	1.4006	14368	3.8957	0.1607	4.6603
2	书剑 恩仇 录	215458	33345	1.8919	12.9941	102998	3.3751	3.5019	112828	3.8923	0.5026	5.6662
3	侠客 行	138000	22964	1.8788	12.6135	65764	3.3832	3.1879	72329	3.8807	0.5604	5.4539
4	倚天 屠龙 记	392821	50580	1.8960	13.2114	180007	3.3142	3.9723	204110	3.8973	0.6782	5.9540
5	天龙 八部	474427	60545	1.8845	13.4500	219292	3.3811	3.9611	247541	3.8871	0.6653	6.0255
6	射雕 英雄 传	377964	50881	1.8983	13.2815	176327	3.4100	3.9054	197050	3.8990	0.5102	5.8990
7	白马 啸西 风	25942	5772	1.8670	11.1289	12914	3.5787	2.3833	13820	3.8674	0.2703	4.5942
8	碧血 剑	203908	32668	1.9016	13.0251	96933	3.3243	3.4451	106247	3.9035	0.4520	5.6407
9	神雕侠侣	402542	52217	1.7951	12.8229	187089	2.9787	4.1433	215194	3.8185	0.7912	5.9191
10	笑傲 江湖	369800	48065	1.9002	13.0726	166367	3.4234	3.9301	190108	3.9033	0.8444	5.9490
11	越女	6924	1972	1.8439	10.0099	3473	3.3353	1.5652	3708	3.8452	0.5575	4.0442
12	连城	87089	16172	1.8542	12.3949	43149	3.4111	2.8637	46575	3.8557	0.4076	5.2221
13	雪山	52964	11309	1.8577	12.1144	26389	3.3049	2.5544	28009	3.8577	0.3165	4.9951
14	飞狐	179486	28087	1.8921	12.8401	85512	3.3485	3.3577	93739	3.8931	0.5476	5.5818
15	鸳鸯 刀	14263	3784	1.8635	10.9532	7262	3.4813	1.7207	7607	3.8633	0.2418	4.3052
16	鹿鼎记	471579	55751	1.8741	13.0667	211499	3.4972	4.1419	246776	3.8793	0.7544	5.9877
**	ALL	3440565	273057	1.8768	14.3238	1459121	3.3387	5.7377	1788317	3.8838	0.6441	6.9019

4.2 以字为单位(不使用jieba)

#	小说名称	语料字数	1-gram模型 信息熵	2-gram信 息熵	3-gram信 息熵	Average Entropy
1	三十三剑 客图	27398	10.0503	3.4441	0.7263	4.7402
2	书剑恩仇 录	215458	9.8583	4.6374	1.8821	5.4593
3	侠客行	138000	9.5035	4.4237	1.8183	5.2485
4	倚天屠龙 记	392821	9.7706	5.0116	2.1675	5.6499
5	天龙八部	474427	9.8887	5.0866	2.1783	5.7179
6	射雕英雄 传	377964	9.8168	4.9754	2.1798	5.6573
7	白马啸西 风	25942	9.1982	3.0427	1.3212	4.5207
8	碧血剑	203908	9.8010	4.7115	1.7905	5.4343
9	神雕侠侣	402542	9.6743	5.1705	2.1787	5.6745
10	笑傲江湖	369800	9.6102	4.9143	2.1251	5.5499
11	越女剑	6924	8.6164	2.4000	0.9969	4.0044
12	连城诀	87089	9.5919	4.1782	1.5627	5.1109
13	雪山飞狐	52964	9.5337	3.8860	1.3864	4.9354
14	飞狐外传	179486	9.6787	4.5618	1.8642	5.3682
15	鸳鸯刀	14263	9.2049	2.7862	0.9888	4.3266
16	鹿鼎记	471579	9.7428	4.9523	2.2457	5.6469
**	ALL	3440565	10.0916	7.0873	3.2491	6.8094

5. 图片绘制

5.1 以词为单位

5.1.1 1-gram-byword

5.1.2 2-gram-byword

5.1.3 3-gram-byword

5.1.4 Average-Entropy-byword

5.2 以字为单位

5.2.1 1-gram-bychar

5.2.2 2-gram-bychar

5.2.3 3-gram-bychar

5.2.4 Average-Entropy-bychar

6. 理论原理推导

6.1 信息熵

<u>熵</u>在信息论中是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量。依据 Boltzmann's H-theorem,香农把随机变量X的熵值H定义如下,其值域为 x_1,x_2,\ldots,x_n :

$$\mathrm{H}(X) = \mathrm{E}[\mathrm{I}(X)] = \mathrm{E}[-\ln{(\mathrm{P}(X))}]$$

其中,P(X)为 X的概率质量函数(probability mass function),E为期望函数,而I(X)是X的信息量(又称为自信息)。I(X)本身是个随机变量。

当取自有限的样本时,熵的公式可以表示为:

$$\mathrm{H}(X) = \sum_{i} \mathrm{P}\left(x_{i}
ight) \mathrm{I}\left(x_{i}
ight) = -\sum_{i} \mathrm{P}\left(x_{i}
ight) \log_{b} \mathrm{P}\left(x_{i}
ight)$$

在这里b是对数所使用的底,通常是 2, 自然常数 e,或是 10。当 b=2,熵的单位是 bit; 当 b=e,熵的单位是 nat; 而当 b=10,熵的单位是 Hart。

当 $p_i=0$ 时,对于一些 i值,对应的被加数 $0\times log_b0$ 的值将会是 0,与极限一致:

$$\lim_{p o 0+}p\log p=0$$

还可以定义事件 X与Y分别取 x_i 和 y_i 时的条件熵为:

$$\mathrm{H}(X\mid Y) = -\sum_{i,j} p\left(x_i,y_j
ight) \log rac{p\left(x_i,y_j
ight)}{p\left(y_j
ight)}$$

其中 $p(x_i,y_j)$ 为 $X=x_i$ 且 $Y=y_j$ 时的概率。这个量应当理解为知道Y的值前提下随机变量X的随机性的量。

6.2 分词模型

6.2.1 一元模型 (1-gram)

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

6.2.2 n元模型 (n-gram)

将自然语言句子视作N-1阶马尔可夫模型,即规定句子中某词出现的概率只同它前面出现的 N-1个词有关。常见的二元模型、三元模型:

$$egin{aligned} H(X \mid Y) &= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(x \mid y) \ H(X \mid Y, Z) &= -\sum_{x \in X} \sum_{y \in Y} \sum_{z \in Z} p(x,y,z) \log p(x \mid y,z) \end{aligned}$$

本文计算到3元模型, 计算16本小说各自的1元、2元、3元信息熵, 并计算其平均信息熵。

7. 结论

- 1. **存在的问题**:本程序计算语料字数、分词个数与参考资料有些出入,分析原因,语料字数是因为导入停词文件导致,分词个数应是程序编写的bug。
- 2. **中英文对比**:本实验中计算出在分词模式下,一元词的信息熵为**14.3238**,在字符模式下,单个字的信息熵为**10.0916**,而论文中提出的模型计算出的英文单个词信息熵为**1.75**,这一点说明,无论是以字为单位还是词为单位,中文的信息熵都要比英文高,即中文混乱程度更高,包含的信息量也更多。
- 3. **n-gram对比**: 在分词模式下,一元词的信息熵为**14.3238**,二元词的信息熵为**5.7377**,三元词的信息熵为**0.6441**,可以看出随着N的增大,平均信息熵在下降,这是因为N取值越大,通过分词后得到的文本中词组的分布就越简单,N越大使得固定的词数量越多,固定的词能减少由字或者短词打乱文章的机会,使得文章变得更加有序,减少了由字组成词和组成句的不确定性,也即减少了文本的信息熵,符合实际认知。但在分字符模式下,一元字符的信息熵为**10.0916**,二元字符的信息熵为**7.0873**,三元字符的信息熵为**3.2491**,也符合上述规律。
- 4. 两种模式对比:分词模式在一元和二元下得到的信息熵比分字符模式更高,而在三元时得到的信息熵比分字符模式更低,由分词个数我们可以发现其背后的原因,在分词模式下,一元词的数目远大于一元字符的数目,这是由于不同字符组合成词的方式非常多样,这就导致了词这一单位信息熵的增大,而当N增大时,由于词与词之间常常有一些固定的组合搭配,会形成一些固定的意思,这就使得整体的信息熵降了下来,而对于字符,虽然也有同样的趋势,字符间的组合往往比词语的组合要更加随机,因此在三元时,分字符模式的信息熵要比分词模式高。

8. 参考链接

参考链接1

参考链接2

参考链接3