結構控制

HW5

R04521202

魏星池

1.Find the key parameters

*a.method 1

- 1. 先將 Force 除上面積 A 得到 stress, deformation 除上厚度 t 得到 strain, 之後找出最大值將 stress 及 strain 正規化
- 2. 接著找出兩曲線峰值座標差 Δt ,又因 $\omega = 2 \times \pi \times f$,得到 $\delta = \omega \times \Delta t$

$$3.$$
 所以 $G'=rac{ au_0}{\gamma_0}cos\delta$ 、 $G''=rac{ au_0}{\gamma_0}sin\delta$ 、 $\eta=rac{G''}{G'}=tan\delta$

作圖結果:

<u>2.5mm</u>

7.5mm

計算結果:

	$G'(kN-mm^2)$	<i>G</i> "(kN−mm ²)	η
2.5mm	10.154×10^{-5}	7.2870×10^{-5}	0. 7176
7.5mm	8.6095×10^{-5}	6.6525×10^{-5}	0. 7727

∗b.method 2

- 1. 將 stress 對 strain 作圖,得到橢圓的圖形
- 2. 找出最大 strain 的位置,與原點連線即G'
- 3. 與 y 軸交點為 $G''\gamma_0$,所以除上最大 $strain\gamma_0$ 即是G''

4.
$$\eta = \frac{G''}{G'}$$

作圖結果:

<u>2.5mm</u>

7.5mm

計算結果:

	$G'(\mathrm{kN-mm^2})$	<i>G</i> "(kN-mm ²)	η
2.5mm	10.104×10^{-5}	7. 2225×10^{-5}	0. 71478
7.5mm	8.3271×10^{-5}	6.3776×10^{-5}	0. 7659

*討論:

將兩個方法比較

Method 1	$G'(kN-mm^2)$	<i>G</i> ''(kN−mm ²)	η
2.5mm	10.154×10^{-5}	7.2870×10^{-5}	0.7176
7.5mm	8.6095×10^{-5}	6.6525×10^{-5}	0.7727
Method 2	G'(kN-mm^2)	<i>G</i> ''(kN−mm ²)	η
2.5mm	10.104×10^{-5}	7.2225×10^{-5}	0. 71478
7.5mm	8.3271×10^{-5}	6.3776×10^{-5}	0.7659

- 1. 根據比較可以觀察到方法二的值皆小於方法一。
- 2. 7.5mm的 case 的 G'及 G"皆較小,從方法二可看出來因為其橢圓較為平躺, 而η較大,其橢圓面積也較大。是因為 7.5mm 的變形量較大,相對而言勁度 較小,使得橢圓斜率也較小,面積容量也相對較大。
- 3. 但整體而言值皆差不多,因為使用同種材料關係。

2.Modal strain energy method

*(1)the stiffness matrix

$$k_{d} = n \times G' \frac{A}{d}$$

$$k_{v} = k_{d} cos^{2} \theta$$

$$k_{1t} = k_{1} + k_{v} \qquad k_{2t} = k_{2} + k_{v} \qquad k_{3t} = k_{3} + k_{v}$$

$$k_{total} = \begin{bmatrix} k_{1t} + k_{2t} & -k_{2t} & 0 \\ -k_{2t} & k_{2t} + k_{3t} & -k_{3t} \\ 0 & -k_{3t} & k_{3t} \end{bmatrix}$$

計算結果:

*(2)full matrix method in modal strain energy method 忽略固有阻尼計算

阻尼比:
$$\xi_r = \frac{\eta_v}{2} [1 - \frac{\{\phi_R\}^{(r)T} [k_E] \{\phi_R\}^{(r)}}{\{\phi_R\}^{(r)T} [k_S] \{\phi_R\}^{(r)}}]$$

其中
$$\eta_{v}=1.2$$
、 $\{\phi_{R}\}=\begin{bmatrix}0.4451\\0.8019\\1\end{bmatrix}$ 、 $r=1$ (第一模態)、

$$k_E = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \cdot k_S = k_{total} = \begin{bmatrix} k_{1t} + k_{2t} & -k_{2t} & 0 \\ -k_{2t} & k_{2t} + k_{3t} & -k_{3t} \\ 0 & -k_{3t} & k_{3t} \end{bmatrix}$$

所以經計算結果得 $\xi_r = 0.0331$

*(3)frequency shift method in modal strain energy method 同樣地忽略固有阻尼

阻尼比
$$\xi_r = \frac{\eta_v}{2} [1 - \frac{\omega_r^2}{\omega_{yr}^2}]$$
 其中 $\eta_v = 1.2 \cdot r = 1$ (第一模態)

而 ω_r^2 及 ω_{sr}^2 利用 k/m 求 eignvalue 得到(matlab 指令為 eig),k 為利用前一題的 ke 及 ks 計算

所以經計算結果得 $\xi_r = 0.0331$

所以兩小題計算結果相同。因為兩題基於同樣條件下進行計算。

※(下一題在下一頁)

3. Design VE damper

*(1)設計流程為利用以下公式

A. Elastic stiffness:

$$K_d = 8.57 \times f_1^{0.3} \times \gamma^{-0.24} \times e^{-0.073T} \times 10^{-3} \times \left(\frac{A}{t}\right)^{tf}/cm$$

B. Damping coefficient:

$$C_d = 2.18 \times f_1^{-0.53} \times \gamma^{-0.089} \times e^{-0.1T} \times 10^{-3} \times \left(\frac{A}{t}\right)^{tf}/cm$$

C. Loss factor

$$\eta_v = 2\pi \times f_1 \times \left(\frac{C_d}{K_d}\right)$$

Where

 f_1 : Natural frequency of the bare frame

T: Temperature. Assume T=20°C

 γ : Shear strain. ($\gamma_{max} = 300\%$)

A: Shear area of the damper (cm²)

t: Thickness of the damper (cm)

- 1. 首先先利用空構架求出未加阻尼時的頻率,之後試誤阻尼器面積與厚度比A/t得到Kd、Cd B η_v
- 2. 利用 SAP2000 依照求出之 Kd 與 Cd 加上阻尼器,進行分析得到加了阻尼器之 頻率

SAP2000 建立 VE 過程:

a. 利用 link 定義出 VE 所需之 C 及 K 的部分 (Define-Section Properties-Link/Support Properties)

Cd參數設定

Kd 參數設定

b. 分別繪製代表 C 及 K 的 link, 畫法避免受到梁的影響,將阻尼器接於梁 柱接頭處

(Draw-Draw 2 Joint Link)

- 3. 利用 $\xi_r = \xi_c + \frac{(\eta_v 2\xi_c)}{2} (1 \frac{\omega_r^2}{\omega_{sr}^2})$ 求出加了VE 之結構物的阻尼比
- 4. 透過不斷試誤求出要求的 17%阻尼比(2% inherent+15% VE)

試誤過程:

A/t	f1	Kd	Cd	ην	ωr	Nf1	ωsr	ξr
30000	2.99544	63747.22	4487.463	1.324891	354.2264	3.71399	544.5543	0.244542
15000	2.99544	31873.61	2243.731	1.324891	354.2264	3.48162	478.5447	0.186897
10000	2.99544	21249.07	1495.821	1.324891	354.2264	3.33339	438.664	0.143663
13000	2.99544	27623.79	1944.567	1.324891	354.2264	3.42394	462.8199	0.17074
12500	2.99544	26561.34	1869.776	1.324891	354.2264	3.40916	458.8329	0.166467
12900	2.99544	27411.3	1929.609	1.324891	354.2264	3.42099	462.0227	0.169891
12950	2.99544	27517.55	1937.088	1.324891	354.2264	3.42246	462.4199	0.170314
12920	2.99544	27453.8	1932.601	1.324891	354.2264	3.42158	462.1821	0.170061
	2.99544	0	0	#DIV/0!	354.2264		0	#DIV/0!
	2.99544	0	0	#DIV/0!	354.2264		0	#DIV/0!
	2.99544	0	0	#DIV/0!	354.2264		0	#DIV/0!

所以最終面積與厚度比為 12920cm

*****(2)

Thickness of the damper (mm)	1.7 mm
Shear area of the damper (m ²)	$0.22 \mathrm{m}^2$

Period (sec)	1 st mode	2 nd mode	3 rd mode
Bare frame	0. 33384	0. 31200	0. 25818
Bare frame with VE dampers	0. 29226	0. 28838	0. 25818

第一及第二模態因為 VE 的勁度影響造成週期的下降

*****(3)

- 1. 首先依題目要求正規化所給地震歷時至 PGA=0.33g,即將歷時資料中找出最大加速度,並除其在乘上 0.33 即完成正規化,Matlab code 亦附於附頁中
- 2. 完成正規化後即進行匯入 SAP2000 進行分析工作 a. 匯入歷時(El Centro 及 TCU068 正規化後資料) (Define-Functions-Time History)

b. 設定地震歷時,並調整時間間格及阻尼比(2%) (Define-Load Cases)

- c. 進行分析 (Run)
- d. 輸出所需資料成 TXT 檔(各樓層之絕對加速度與相對位移)
- (Display-Show Plot Functions)

Joint Plot Function Joint Plot Function 3FD **Plot Function Name** 3FA Plot Function Name Joint ID 20 20 Joint ID Vector Type Mode Number Mode Number Vector Type Displ C Abs Displ Include all C Abs Displ C Displ Include all ○ Vel C Abs Vel C Include one ○ Vel C Abs Vel C Include one C Accel C Abs Accel Abs Accel C Accel C Reaction C Reaction Component Component-⊕ UX C BX OK ⊕ UX ○ RX OK. O UY C RY O UY ○ RY Cancel ○ RZ Cancel O UZ C RZ O UZ

e. 利用 Matlab 作圖

結果: Roof displacement:

TCU068:

Roof acceleration:

El Centro:

TCU068:

El Centro 結果:

	El Centro								
		Bare fran	ne	Bare frame + VE			Ratio of response		
Floor	(1)	(2)	(3)	(4)	(5)	(6)	(4)/(1)	(5)/(2)	(6)/(3)
rioor	Dis.	Vel.	Acc.	Dis.	Vel.	Acc.	Dia Batia	Val Datio	Acc. Ratio
	cm	cm/s	gal	cm	cm/s	gal	Dis. Rado	vei. Kauo	Acc. Rano
3	3.1127	53.2433	1.04E+03	1.1707	16.3437	531.2109	0.376104	0.306963	5.09E-01
2	2.6715	44.6369	951.1209	0.9581	13.2946	456.8322	0.358637	0.297839	4.80E-01
1	1.829	30.0794	761.9031	0.6361	8.9108	388.2362	0.347786	0.296243	5.10E-01

	El Centro							
Floor	Story Drift (%)							
LIOOL	Bare frame Bare frame +V							
3	2.49016	0.93656						
2	2.1372	0.76648						
1	1.2193333	0.424066667						

TCU068 結果:

	TCU068								
		Bare fran	ne	Bai	re frame +	- VE	Rat	io of respo	nse
Floor	(1)	(2)	(3)	(4)	(5)	(6)	(4)/(1)	(5)/(2)	(6)/(3)
FIOOL	Dis.	Vel.	Acc.	Dis.	Vel.	Acc.	Dia Batio	Val Datio	Acc. Ratio
	cm	cm/s	gal	cm	cm/s	gal	Dis. Kano	vei. Kauo	Acc. Kano
3	2.9	36.4	971.0919	1.6	23.4	696.51	0.551724	0.642857	0.717244
2	2.5	30.6	847.8783	1.3	19.2	614.4003	0.52	0.627451	0.724633
1	1.7	20.8	687.4848	8.66E-01	12.8	499.6233	0.509235	0.615385	0.726741

TCU068						
Floor	Story Drift (%)					
FIOOL	Bare frame Bare frame +VE					
3	2.32	1.28				
2	2	1.04				
1	1.13333333	5.77E-01				

比較與討論:

- 1. 從表格各項中發現加了 VE 之後對於無論是位移、速度及加速度皆有很好的抑制效果,但兩筆地震來看其中 EL Centro 效果很好皆下降至 3~5 成不等比例,而 TCU068 下降約至 5~7 成,效果沒有 EL Centro 那樣子好。
- 2. 若從位移與層間變位來看亦是如此 EL Centro 只有原來的三成, story drift 降低 1.5%左右, 而 TCU068 為原來五成, story drift 降低 1%左右, 效果雖沒 EL Centro 好, 但也是很顯著了。
- 3. 亦可觀察到低樓層的效果較為高樓層好,但有可能與 damper 擺放位置 有關。像是因為三樓處沒加 damper,所以可發現三樓有些數值表現未如 預期的相對小。

4.Design VE Damper

* $\frac{T_e}{T_0} vs. SR_{VE}$ diagram:

$$\because \frac{T_e}{T_0} = \sqrt{\frac{K_f}{K_e}} = \sqrt{\frac{K_f}{K_f + K_{VE}}} = \sqrt{\frac{K_f}{K_f + SR_{VE}K_f}} = \sqrt{\frac{1}{1 + SR_{VE}}}$$

所以利用此關係式畫圖

結果:

* $\xi_{VE} vs. SR_{VE}$ diagram:

$$\xi_{VE} = \frac{\eta_V}{2} \left(1 - \frac{\omega_r^2}{\omega_{sr}^2} \right)$$

其中
$$\omega_r^2 = (\frac{2\pi}{T_0})^2$$
 where T0=0.32288

$$\omega_{sr}^2=(\frac{2\pi}{T_e})^2$$
 where $T_e=T_0\sqrt{\frac{1}{1+SR_{VE}}}$

$$\eta_V = \frac{2\pi C_d}{T_0 K_d}$$

$$K_d = K_{VE} = SR_{VE}K_f = SR_{VE}m\frac{4\pi^2}{{T_0}^2}$$
, m = 24750kgf

並利用下式反求 A/t

$$K_d=8.57 imes f_1^{0.3} imes \gamma^{-0.24} imes e^{-0.1T} imes \left(rac{A}{t}
ight)\,kgf/cm$$
 , $\gamma=300\%=3$, $T=20$ °C 所以

$$C_d = 2.18 \times f_1^{-0.53} \times \gamma^{-0.089} \times e^{-0.1T} \times \left(\frac{A}{t}\right) \, kgf/cm$$

綜合以上得到 ξ_{VE} 與 SR_{VE} 的關係式,並以 Matlab 作圖

結果:

所以以上兩張圖與講義所附圖形是一致,不過第一章圖可以在畫更厚段出來,不過為與講義比較只畫到 2 , 而兩張圖的公式推導改寫中發現 , 很多其餘的參數其實會消掉 , 因此 y 軸的東西皆可畫成純粹與 SEvie 有關的式子 , 所以這兩張圖蠻具有通用性。

※(全部所使用 Matlab code 在下頁開始)

```
Matlab code:
第一題:
方法一
clc;
clear;
[T] = xlsread('C:\Users\USER\Desktop\PaC\HW5\VE damper properties test.xlsx',
'0.303Hz_2.5mm', 'A3:A3747');
[D] = xlsread('C:\Users\USER\Desktop\PaC\HW5\VE damper properties test.xlsx',
'0.303Hz_2.5mm', 'B3:B3747');
[F] = xlsread('C:\Users\USER\Desktop\PaC\HW5\VE damper properties test.xlsx',
'0.303Hz_2.5mm', 'C3:C3747');
%0.303Hz_7.5mm4817 0.303Hz_2.5mm3747
A=1500000;
t=5;
stress=F/A;
strain=D/t;
stress=smooth(stress, 100);
strain=smooth(strain, 100);
Mstress=(max(stress)-min(stress))/2;
Mstrain=(max(strain)-min(strain))/2;
Nstress=stress/Mstress:
Nstrain=strain/Mstrain;
n=0;
nn=0;
for i=2:length(T)-1
    if \ (abs(Nstress(i)) > abs(Nstress(i-1))) \ \& \ (abs(Nstress(i)) > abs(Nstress(i+1))) \\
        n=n+1;
        T1(n, 1)=T(i);
    end
    if (abs(Nstrain(i))>abs(Nstrain(i-1))) & (abs(Nstrain(i))>=abs(Nstrain(i+1)))
        nn=nn+1;
        T2(nn, 1)=T(i);
    end
end
```

```
w=2*pi*0.303;
dt=abs(T1-T2);
delta=dt*w;
avedelta=sum(delta)/length(delta);
Gpp=Mstress/Mstrain*sin(avedelta);
Gp=Mstress/Mstrain*cos(avedelta);
inta=Gpp/Gp;
plot(T, Nstrain, T, Nstress)
title('Time-history of stress and strain');
xlabel('time (sec)');
ylabel('normalizaed stress and strain');
legend('strain', 'stress');
axis([T(1), T(end), -1.5, 1.5])
方法二
clc;
clear;
[T] = xlsread('C:\Users\USER\Desktop\PaC\HW5\VE damper properties test.xlsx',
'0.303Hz_2.5mm', 'A3:A3747');
[D] = xlsread('C:\Users\USER\Desktop\PaC\HW5\VE damper properties test.xlsx',
'0.303Hz_2.5mm', 'B3:B3747');
[F] = xlsread('C:\Users\USER\Desktop\PaC\HW5\VE damper properties test.xlsx',
'0.303Hz_2.5mm', 'C3:C3747');
%0.303Hz_7.5mm4817 0.303Hz_2.5mm3747
A=1500000;
t=5;
stress=F/A;
strain=D/t;
stress=smooth(stress, 100);
strain=smooth(strain, 100);
plot(strain, stress)
title('the stress-strain curve');
xlabel('strain');
ylabel('stress');
```

```
n=0;
nn=0;
for i=2:length(T)-1
    if (abs(strain(i))>abs(strain(i-1))) & (abs(strain(i))>=abs(strain(i+1)))
        n=n+1;
        Mstrain(n, 1)=strain(i);
        Cstress(n, 1)=stress(i);
    end
    if strain(i)*strain(i+1)<0;</pre>
        nn=nn+1;
        Gstress(nn, 1)=(stress(i)+stress(i+1))/2;
    end
end
{\tt Gpp=sum}(abs({\tt Gstress./Mstrain}(1:nn,1)))/nn;
Gp=sum(Cstress./Mstrain)/n;
inta=Gpp/Gp;
第二題
%% 1
inta=1.2;
n=2;
\cos=4/5;
T=32;
A=0.09*0.11;
d=0.024;
M=10*9.81*1000;
Gp=exp(10.17433)*T^(-3.10205)*1.34840758*1e6;
kd=Gp*A/d*n;
kv=kd*cos*cos;
k1=7000000;
k2=6600000;
```

```
k3=7000000;
k1t=k1+kv;
k2t=k2+kv;
k3t=k3+kv;
kt=[k1t+k2t -k2t 0;-k2t k2t+k3t -k3t;0 -k3t k3t]
%% 2
phi=[0.4451;0.8019;1];
ke=[k1+k2 -k2 0;-k2 k2+k3 -k3;0 -k3 k3];
ks=kt;
kersi=inta/2*(1-(phi'*ke*phi)/(phi'*ks*phi))
%% 3
wr2=eig(ke)./M;
wsr2=eig(ks)./M;
kersi2=inta/2*(1-wr2(1)/wsr2(1))
第三題:
正規化
clc
clear all
[AE]=textread('E1_ew200Hz.txt','%f','headerlines',0);
[AT]=textread('TCU068ew200Hz.txt','%f','headerlines',0);
NAE=AE/max(AE)*0.33;
NAT = AT / max(AT) * 0.33;
fid=fopen('NormalizeEl_ew200Hz.txt','w');
fprintf(fid, '%f\r\n', NAE);
fclose(fid);
fid=fopen('NormalizeTCU068ew200Hz.txt','w');
fprintf(fid, '%f\r\n', NAT);
fclose(fid);
```

```
繪圖
clc
clear all
[ETDT
ETDD]=textread('C:\Users\USER\Desktop\PaC\RE\3FDTCU.txt','%f%f','headerlines',12);
[ EEDT
EEDD]=textread('C:\Users\USER\Desktop\PaC\RE\3FDEL.txt','%f%f','headerlines',12);
[ETAT
ETAA]=textread('C:\Users\USER\Desktop\PaC\RE\3FATCU.txt','%f%f','headerlines',12);
EEAT
EEAA]=textread('C:\Users\USER\Desktop\PaC\RE\3FAEL. txt', '%f%f', 'headerlines', 12);
[TDT
TDD]=textread('C:\Users\USER\Desktop\PaC\R\3FDTCU.txt','%f%f','headerlines',12);
[EDT
EDD]=textread('C:\Users\USER\Desktop\PaC\R\3FDEL.txt','%f%f','headerlines',12);
[TAT
TAA]=textread('C:\Users\USER\Desktop\PaC\R\3FATCU.txt','%f%f','headerlines',12);
[EAT
EAA]=textread('C:\Users\USER\Desktop\PaC\R\3FAEL.txt','%f%f','headerlines',12);
figure(1)
plot(ETDT, ETDD*1000, TDT, TDD*1000):
title('Roof relative displacement TCU068');
xlabel('Time (sec)');
ylabel('displacement (cm)');
legend('Bare frame', 'Bare frame + VE');
figure(2)
plot(EEDT, EEDD, EDT, EDD);
title('Roof relative displacement El Centro');
xlabel('Time (sec)');
ylabel('displacement (cm)');
legend('Bare frame', 'Bare frame + VE');
figure(3)
plot(ETAT, ETAA*981, TAT, TAA*981);
title('Roof absolute acceleration TCU068');
```

```
xlabel('Time (sec)');
ylabel('acceleration (gal)');
legend('Bare frame', 'Bare frame + VE');
figure(4)
plot(EEAT, EEAA, EAT, EAA);
title('Roof absolute acceleration El Centro');
xlabel('Time (sec)');
ylabel('acceleration (gal)');
legend('Bare frame', 'Bare frame + VE');
 找值
clc
clear all
[ETDT
ETDD]=textread('C:\Users\USER\Desktop\PaC\RE\1FDTCU.txt','%f%f','headerlines',12);
[EEDT
EEDD]=textread('C:\Users\USER\Desktop\PaC\RE\1FDEL.txt','%f%f','headerlines',12);
FETAT
ETAA]=textread('C:\Users\USER\Desktop\PaC\RE\1FATCU.txt','%f%f','headerlines',12);
EEAA]=textread('C:\Users\USER\Desktop\PaC\RE\1FAEL.txt','%f%f','headerlines',12);
FETVT
ETVV]=textread('C:\Users\USER\Desktop\PaC\RE\1FVTCU.txt','%f%f','headerlines',12);
FEEVT
EEVV]=textread('C:\Users\USER\Desktop\PaC\RE\1FVEL.txt','%f%f','headerlines',12);
[TDT
TDD]=textread('C:\Users\USER\Desktop\PaC\R\1FDTCU.txt','%f%f','headerlines',12);
[EDT
EDD]=textread('C:\Users\USER\Desktop\PaC\R\1FDEL.txt','%f%f','headerlines',12);
[TAT
TAA]=textread('C:\Users\USER\Desktop\PaC\R\1FATCU.txt','%f%f','headerlines',12);
[EAT
EAA]=textread('C:\Users\USER\Desktop\PaC\R\1FAEL.txt','%f%f','headerlines',12);
TVV]=textread('C:\Users\USER\Desktop\PaC\R\1FVTCU, txt', '%f%f', 'headerlines', 12);
FEVT
```

```
EVV]=textread('C:\Users\USER\Desktop\PaC\R\1FVEL.txt','%f%f','headerlines',12);
%no
ed=max(abs(EEDD))
ev=max(abs(EEVV))
ea=max(abs(EEAA))
td=max(abs(ETDD))
tv=max(abs(ETVV))
ta=max(abs(ETAA))
%with
Ved=max(abs(EDD))
Vev=max(abs(EVV))
Vea=max(abs(EAA))
Vtd=max(abs(TDD))
Vtv=max(abs(TVV))
Vta=max(abs(TAA))
第四題
clear
clc
%% Te/T0 vs. SRVE
SRV=0:0.01:2;
TT = (1./(SRV+1)).^0.5;
figure(1)
plot(SRV,TT)
title('T e/T 0 vs. SR V E');
xlabel('SR V E');
ylabel('T e/T 0');
%% kersiVE vs. SRVE
SRV=0:0.01:8;
T0=0.32288;
m=24750;
TT = (1./(SRV+1)).^0.5;
wr2=(2*pi/T0)^2;
```

```
Te=T0*TT;
wsr2=(2*pi./Te).^2;

Kf=m*4*pi*pi/T0/T0;
Kd=SRV*Kf;
AT=Kd/8.57/(1/T0)^0.3/3^-0.24/exp(-0.073*20);
Cd=2.18*(1/T0)^-0.53*3^-0.089*exp(-0.1*20)*AT;
eta=2*pi*Cd/T0/Kd;

kersiv=eta/2*(1-wr2./wsr2);

figure(2)
plot(SRV,kersiv)
title('\xi_V_E vs. SR_V_E');
xlabel('SR_V_E');
ylabel('\xi_V_E');
```