2072U Computational Science I Winter 2022

Week	Topic
1	Introduction
1–2	Solving nonlinear equations in one variable
3–4	Solving systems of (non)linear equations
5–6	Computational complexity
6–8	Interpolation and least squares
8–10	Integration & differentiation
10-12	Additional Topics

- 1. Interpolation of data
- 2. Polynomial interpolation

3. Polynomial interpolation in a monomial basis

4. What conditions, how fast, how accurate?

2072U, Winter 2022 1/20

Key questions:

- What is an interpolant?
- How is the interpolation problem defined?
- What does polynomial interpolation mean?
- How is the solution of a polynomial interpolation problem found?
- What is a Vandermonde matrix?
- Our 3 questions: What conditions, how fast, how accurate?

$$\tilde{f}(x_k) = y_k \qquad (k = 0:n).$$

Remarks:

- $ightharpoonup \tilde{f}$ is called an interpolating function or interpolant.
- \triangleright x_k are interpolation points or nodes or abscissa.
- $ightharpoonup \tilde{f}$ provides values for points in between the x_k
- ightharpoonup Desirable to have \tilde{f} smooth, differentiable, easy to compute.

Remarks:

- $ightharpoonup \tilde{f}$ is called an interpolating function or interpolant.
- \triangleright x_k are interpolation points or nodes or abscissa.
- $ightharpoonup \tilde{f}$ provides values for points in between the x_k
- ightharpoonup Desirable to have \tilde{f} smooth, differentiable, easy to compute.
- Particular sources of interpolation problems:
 - Curve fitting (e.g. for graphics).
 - Data from experiments (see also least squares).
 - Approximate solution of differential equations

Remarks:

- $ightharpoonup \tilde{f}$ is called an interpolating function or interpolant.
- \triangleright x_k are interpolation points or nodes or abscissa.
- $ightharpoonup \tilde{f}$ provides values for points in between the x_k
- ightharpoonup Desirable to have \tilde{f} smooth, differentiable, easy to compute.
- Particular sources of interpolation problems:
 - Curve fitting (e.g. for graphics).
 - Data from experiments (see also least squares).
 - Approximate solution of differential equations
- Example: linear interpolation using SciPy's interpld

Other classes of interpolating functions

Polynomial interpolant:
$$\tilde{f}(x) = \sum_{k=0}^{n} a_k x^k$$

$$= a_0 + a_1 x + \dots + a_n x^n$$
Trigonometric interpolant:
$$\tilde{f}(x) = \sum_{k=-M}^{M} c_k e^{ikx} \qquad (M = \lfloor n/2 \rfloor)$$

$$= c_{-M} e^{-iMx} + \dots + c_0 + \dots + c_n e^{iMx}$$
Rational interpolant:
$$\tilde{f}(x) = \frac{\sum_{j=0}^{k} a_j x^j}{\sum_{\ell=0}^{n-k-1} a_{k+\ell+1} x^\ell} \qquad (k < n)$$

$$= \frac{a_0 + a_1 x^1 + \dots + a_k x^k}{a_{k+1} + a_{k+2} x^1 + \dots + a_n x^{n-k-1}}$$

2072U, Winter 2022 5/20

Interpolation

- lacktriangle As stated, problem does not specify \tilde{f} uniquely.
- Need to restrict class of functions.

Interpolation

- ightharpoonup As stated, problem does not specify \tilde{f} uniquely.
- Need to restrict class of functions.
- ▶ Choose \tilde{t} from a vector space of dimension n+1

$$\tilde{f}(x) = \sum_{k=0}^{n} a_k \phi_k(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_n \phi_n(x)$$

 $ightharpoonup \phi_k$ are basis functions, a_k are coefficients.

Interpolation

- ightharpoonup As stated, problem does not specify \tilde{f} uniquely.
- Need to restrict class of functions.
- ▶ Choose \tilde{t} from a vector space of dimension n+1

$$\tilde{f}(x) = \sum_{k=0}^{n} a_k \phi_k(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_n \phi_n(x)$$

- $ightharpoonup \phi_k$ are basis functions, a_k are coefficients.
- For $\tilde{f} = \sum_{k=0}^{n} a_k \phi_k$, a_k depend linearly on data y_k (k = 0: n).
- ► For rational interpolation, different linear equations result.

Recall: Interpolation problem

$$\tilde{f}(x_k) = y_k \qquad (k = 0:n).$$

Polynomial interpolation problem

Given n+1 data points $\{(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)\}$ with x_k distinct (k=0:n), determine a polynomial function Π_n of degree at most n that satisfies

$$\Pi_n(x_k) = y_k \qquad (k = 0:n).$$

In the case where the value y_k represents the value of a continuous function f sampled at $x = x_k$ (k = 0:n), the interpolating polynomial (or interpolant) is denoted $\Pi_n f$.

- ▶ *n* is (maximum) degree of interpolant.
- \triangleright n+1 is number of data points.

Polynomial interpolation

- Polynomials easy to evaluate, differentiate, etc.
- $ightharpoonup \Pi_n$ lies in vector space of polynomials of degree at most n.
- ▶ n+1 coefficients to determine as $deg(\Pi_n) \le n$.

$$\Pi_n(x) = \sum_{k=0}^n a_k \phi_k(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_n \phi_n(x)$$

Polynomial interpolation

- Polynomials easy to evaluate, differentiate, etc.
- $ightharpoonup \Pi_n$ lies in vector space of polynomials of degree at most n.
- ▶ n+1 coefficients to determine as $deg(\Pi_n) \leq n$.

$$\Pi_n(x) = \sum_{k=0}^n a_k \phi_k(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_n \phi_n(x)$$

▶ Practical problem: Given n + 1 data points $\{(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)\}$ with x_k distinct (k = 0 : n), find the a_k such that

$$\Pi_n(x_k) = y_k \qquad (k = 0: n).$$

4日 → 4周 → 4 里 → 4 里 → 9 Q Q

Polynomial interpolation

- Polynomials easy to evaluate, differentiate, etc.
- $ightharpoonup \Pi_n$ lies in vector space of polynomials of degree at most n.
- ▶ n+1 coefficients to determine as $deg(\Pi_n) \le n$.

$$\Pi_n(x) = \sum_{k=0}^n a_k \phi_k(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_n \phi_n(x)$$

▶ Practical problem: Given n + 1 data points $\{(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)\}$ with x_k distinct (k = 0 : n), find the a_k such that

$$\Pi_n(x_k) = y_k \qquad (k = 0: n).$$

- ▶ Gives n + 1 equations in the n + 1 unknowns a_k
- Reduces to linear algebra: solution of linear system of equations.

2072U, Winter 2022 9/20

Polynomial interpolation

Theorem (Existence/Uniqueness of polynomial interpolation:)

If all interpolation nodes are distinct the interpolant exists. If we select the polynomial interpolant of the lowest possible order, it is unique.

Interpolation in power (monomial) basis:

▶ Choose $\phi_k(x) = x^k$, and thus write polynomial Π_n as

$$\Pi_n(x) = \sum_{k=0}^n a_k x^k
= a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n
= a_0 + x^1 a_1 + x^2 a_2 + \dots + x^{n-1} a_{n-1} + x^n a_n$$

Interpolation in power (monomial) basis:

• Choose $\phi_k(x) = x^k$, and thus write polynomial Π_n as

$$\Pi_n(x) = \sum_{k=0}^n a_k x^k
= a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n
= a_0 + x^1 a_1 + x^2 a_2 + \dots + x^{n-1} a_{n-1} + x^n a_n$$

▶ Write out interpolation conditions $\Pi_n(x_k) = y_k \ (k = 0: n)$

↓□▶ ←□▶ ← □▶ ← □▶ → □ ♥ ♀○

Vandermonde system

▶ In matrix form, Va = y where

$$\underbrace{\begin{bmatrix} 1 & x_0^1 & \cdots & x_0^{n-1} & x_0^n \\ 1 & x_1^1 & \cdots & x_1^{n-1} & x_1^n \\ 1 & x_2^1 & \cdots & x_2^{n-1} & x_2^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n^1 & \cdots & x_n^{n-1} & x_n^n \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}}_{\mathbf{a}} = \underbrace{\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}}_{\mathbf{y}}$$

- ▶ Matrix $V \in \mathbb{R}^{(n+1)\times(n+1)}$ is Vandermonde matrix
- \triangleright $(n+1) \times (n+1)$ linear system of equations to solve for **a**

2072U, Winter 2022 12/20

Example of polynomial interpolation

- ► Consider data (1.0, 2.0), (1.1, 2.5), and (1.2, 1.5)
- ► In this case, n = 2 and data $\{(x_k, y_k)\}_{k=0}^n$ are

k	0	1	2
X_k	1.0	1.1	1.2
y_k	2.0	2.5	1.5

Example of polynomial interpolation

- ► Consider data (1.0, 2.0), (1.1, 2.5), and (1.2, 1.5)
- ► In this case, n = 2 and data $\{(x_k, y_k)\}_{k=0}^n$ are

▶ Seek polynomial Π_2 of degree at most 2 of the form

$$\Pi_2(x) = \sum_{k=0}^2 a_k x^k = a_0 + a_1 x + a_2 x^2$$

Example of polynomial interpolation

- ► Consider data (1.0, 2.0), (1.1, 2.5), and (1.2, 1.5)
- ► In this case, n = 2 and data $\{(x_k, y_k)\}_{k=0}^n$ are

▶ Seek polynomial Π_2 of degree at most 2 of the form

$$\Pi_2(x) = \sum_{k=0}^{2} a_k x^k = a_0 + a_1 x + a_2 x^2$$

Interpolation conditions are

$$\Pi_2(x_0) = 1 \cdot a_0 + 1.0 \cdot a_1 + 1.00 \cdot a_2 = 2,
\Pi_2(x_1) = 1 \cdot a_0 + 1.1 \cdot a_1 + 1.21 \cdot a_2 = 2.5,
\Pi_2(x_2) = 1 \cdot a_0 + 1.2 \cdot a_1 + 1.44 \cdot a_2 = 1.5$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Example of polynomial interpolation (cont.)

▶ Write system as Va = y

$$Va = \begin{bmatrix} 1 & 1.0 & 1.00 \\ 1 & 1.1 & 1.21 \\ 1 & 1.2 & 1.44 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2.5 \\ 1.5 \end{bmatrix} = \mathbf{y}$$

Example of polynomial interpolation (cont.)

▶ Write system as Va = y

$$V\mathbf{a} = \begin{bmatrix} 1 & 1.0 & 1.00 \\ 1 & 1.1 & 1.21 \\ 1 & 1.2 & 1.44 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2.5 \\ 1.5 \end{bmatrix} = \mathbf{y}$$

Solving the 3 × 3 linear system yields

$$\mathbf{a} = [a_0, a_1, a_2]^T = [-85.5, 162.5, -75]^T$$

Resulting polynomial interpolant is

$$\Pi_2(x) = \sum_{k=0}^{2} a_k x^k$$
$$= -85.5 + 162.5x - 75x^2$$

Theorem (Existence/Uniqueness of polynomial interpolation:)

If all interpolation nodes are distinct the interpolant exists. If we select the polynomial interpolant of the lowest possible order, it is unique.

▶ Obviously, the solution exists if (and only if) the Vandermonder matrix is invertible, in which case the polynomial coefficients are $\mathbf{a} = V^{-1}\mathbf{y}$.

- ▶ Obviously, the solution exists if (and only if) the Vandermonder matrix is invertible, in which case the polynomial coefficients are $\mathbf{a} = V^{-1}\mathbf{y}$.
- Now assume that this matrix *is* singular, that means that there are numbers α_k such that:

$$\alpha_0 + \alpha_1 x_k + \alpha_2 x_k^2 + \ldots + \alpha_n x_k^n = 0$$
 for $k = 0, \ldots, n$

- ▶ Obviously, the solution exists if (and only if) the Vandermonder matrix is invertible, in which case the polynomial coefficients are $\mathbf{a} = V^{-1}\mathbf{y}$.
- Now assume that this matrix *is* singular, that means that there are numbers α_k such that:

$$\alpha_0 + \alpha_1 x_k + \alpha_2 x_k^2 + \ldots + \alpha_n x_k^n = 0$$
 for $k = 0, \ldots, n$

• ... that would mean that the polynomial $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + ... + \alpha_n x^n$ has (n+1) zeros.

- ▶ Obviously, the solution exists if (and only if) the Vandermonder matrix is invertible, in which case the polynomial coefficients are $\mathbf{a} = V^{-1}\mathbf{y}$.
- Now assume that this matrix *is* singular, that means that there are numbers α_k such that:

$$\alpha_0 + \alpha_1 x_k + \alpha_2 x_k^2 + \ldots + \alpha_n x_k^n = 0$$
 for $k = 0, \ldots, n$

- ... that would mean that the polynomial $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + ... + \alpha_n x^n$ has (n+1) zeros.
- ► However, this polynomial is of order *n*, so it can have no more than *n* zeros.

- ▶ Obviously, the solution exists if (and only if) the Vandermonder matrix is invertible, in which case the polynomial coefficients are $\mathbf{a} = V^{-1}\mathbf{y}$.
- Now assume that this matrix *is* singular, that means that there are numbers α_k such that:

$$\alpha_0 + \alpha_1 x_k + \alpha_2 x_k^2 + \ldots + \alpha_n x_k^n = 0$$
 for $k = 0, \ldots, n$

- ... that would mean that the polynomial $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + ... + \alpha_n x^n$ has (n+1) zeros.
- However, this polynomial is of order n, so it can have no more than n zeros.
- ► This contradicts the assumption that the Vandermonde matrix is sigular. Therefore, it is non-singular.

Another example:

X	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin(x)	0	1/2	$1/\sqrt{2}$	$\sqrt{3}/2$	1

these exact values can be used to approximate sin(x) by a polynomial:

$$sin(x) \approx 0.9956261 \, x + 0.021372984 \, x^2 - 0.2043407 \, x^3 + 0.02879711 \, x^4 \qquad (\text{for } 0 < x < \pi/2)$$

 4□→
 3→
 3→
 3→
 3→
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 <

The difference between $\sin(x)$ and $\Pi_4(x)$ is less than 3×10^{-4} on $[0, \pi/2]$.

2072U, Winter 2022 19/20

The three questions:

1. When does it work?

2. How fast does it work?

3. How accurate is the result?