График в параллельных осях

Студент: Тыцкий В.И.

Научный руководитель: Майсурадзе А.И.

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

Примеры диаграмм

Классический график в параллельных осях

Естественные вопросы при построении

- ▶ В каком порядке расположить оси?
- ▶ В какую сторону направлять оси?
- ▶ Какой масштаб выбрать для каждой оси?

Модификации: кластеры

Чаще всего именно в таком виде используют график в параллельных осях.

Модификации: сглаживание линий

Человеку проще воспринимать гладкие линии, поэтому читаемость графика заметно возрастает.

Модификации: связывание линий

Модификации: связывание линий

Модификации: иерархические графики

Обзор текущих средств

- ► Ha Python есть простейшая реализация лишь в библиотеке pandas!
- ► ELKI, GGobi, Mondrian, Orange и ROOT.
- ▶ Parcoords.js интерактивная библиотека на JavaScript.

Вывод:

 Необходимо создать свою "полноценную библиотеку"! (исправить это предложение)

О библиотеке: цели

- Дать возможность исследователям "безболезненно" использовать график в параллелльных осях
- ▶ Построение красивых и информативных графиков из "коробки".
- ▶ Реализация всевозможных видов данных графиков

О библиотеке: технические подробности

- ▶ Статические графики.
- ▶ Библиотека пишется на языке Python на базе matplotilb.
- ▶ Простой высокоуровневый интерфейс. Как и в библиотеке seaborn методы могут принимать pandas.DataFrame, обычные питру массивы или списки — для всего единый интерфейс.

О библиотеке: возможности

- ▶ Построение классических графиков в параллельных осях
 - Возможность рисовать гладкие линии.
 - ▶ Возможность "связывания" линий кластеров.
 - ▶ Возможность "связывания" линий на основе близости.
- Построение иерархических графиков
 - ▶ Отрисовка полупрозрачного градиента.
 - ▶ Работа с иерархическими кластерами.
 - ▶ Изображение распределения с помощью градиента.

О библиотеке: дополнительные возможности

- выделение подмножества линий в диапазоне значений одной из осей.
- ► нахождение оптимального расположения осей.
- создание иерархических кластеров на основе входящей выборки.

Итоги (после первого семестра)

- ▶ Возможность рисовать гладкие линии. Пока что не добавлен параметр задающий вид кривой.
- Возможность "связывания" линий кластеров. Добавлен непрерывный параметр задающий степень связывания.
- Возможность связывания линий на основе близости не реализована
- ▶ Интерфейс для пользователя практически полностью повторяет реализацию seaborn.¹

¹Большинство графиков в презентации нарисованы с помощью данной библиотеки