Mapping Cartilage Material Properties

Matthew Africano, Anthony Andrew, Nicholas Brennan, Alec Delaney, Jason Hershman

Advisor: Professor Sandra Shefelbine

Context

- Cartilage breakdown results in:
 - Arthritis
 - Change in material properties
- Symptoms only arrive after cartilage is fully degraded
- No current means to quantify cartilage damage

Problem Statement:

Develop a machine to perform indentation tests on cartilage in order to map material properties across the surface of a dissected (in situ) joint

Issues with Phase I

Non-existent user interface

- Inability to perform indentation tests
- Components of system did not communicate

Heavy reliance on operator

Goals of Phase II

- I. Add **imaging and mapping** capability to the system
 - Capture image of sample and plot its surface
- II. Automate surface detection
 - Develop a fully automated means of locating submerged surface
- III. Create an intuitive **graphical user interface** (GUI) for the system
 - Complete control of system and automate testing procedures

Imaging & Mapping Procedure

Indentation Procedure

Project Breakdown

Imaging & Mapping

Surface Detection GUI & System Integration

Webcam Mount Assembly

Mapping Program

- Converted coordinated system of image for communication with motors
- Calculate distance between test points
- Distance is translated for Arduino to understand

Mapping Test Procedure

- Water soluble blue paint was placed on tip of the probe
- 1 mm x 1 mm graph paper placed on stage
- Test points were marked on the graph paper
- These points were selected through the GUI
- The operator manually moved the probe tip to contact the paper
- Probe location is marked in blue after traveling to each point

Surface Detection

Servo Attempt

- Wrote commands:
 - Operation Mode
 - Target Velocity
 - Start
- Fabricated custom cable
- Final communication failure

Surface Detection

Stepper Motor

- Modified mount and fixture
- Replaced coupling
- Connected to new motor shield
- Used model of X-Y stepper control to integrate function
- Substantial time saving with negligible loss of precision

Surface Detection

Load Cell

- Communication between MATLAB and Arduino achieved
- Amplifier-to-Arduino circuit built and analyzed
- Load cell/z-axis stepper motor working together in code

Surface Detection Algorithm

- 500 readings per force measurement @ 10 kHz
 - High resolution
 - Smoothing
- Checks for 2 consecutive threshold values
- Software force limit

Analog Signal Processing

- Input: -10 to +10 volts
- Output: o to +5 volts
- Fully analog
- One circuit per force component
- Paired with differential measurement method
 - Compensates for noise and errors in analog-to-digital conversion

System Integration

• Initial Design Considerations:

- Ease of use
- Feasibility within timeline
- Post-processing power
- Compatibility with components
- Serial communication enabled

• Recent Design Considerations:

- Working around low-speed serial data transfer (MATLAB)
- Robust 2-directional data transfer
- Motor power requirements

System Functionality

Initial System

User controlled single point testing

Final System

- Automated 6-point test capability
- Entire system controllable from a Graphical User Interface
 - User inputs custom test parameters
 - User can select points visually

Testing and Results

- Initial surface detection verification on rubber
- Indentation plots for banana, cartilage, and bone
 - Bone has clearest linear regime because it was stiffest material
- Six point test
 - Successful indentation tests for six points on bovine cartilage

Conclusions

- Accurate mapping of points on the surface
- System fully controllable through Graphical User Interface
- Reliable and fully automated surface detection
- Collects usable data with much less user input

Overall Schedule

Task	July	August	September	October	November
Research					
Basic Functionality					
Refine Controls					
System Integration					
Troubleshooting					
Final Testing & Analysis					

Questions?

Mapping Program

- Converted coordinated system from pixels to steps
- Calculate distance between test points
- Distance is translated into way for Arduino to understand

Initial System, Phase I

Proposed System, Phase II

Op-Amp Circuit

Offset Operation

Constrains voltage to negative range

Op-Amp Procedure

Flips voltage sign to positive

Op-Amp Gain

 Scales down the voltage range to be compatible with Arduino

