Linear System Theory

Jun Moon

Lecture 3: Existence and uniqueness of the solution

March 5, 2018

Overview

► Nonlinear systems: existence and uniqueness of a solution of differential equations

One-dimensional LTI System

$$\frac{dx(t)}{dt} = Ax(t), \ x(0) = x_0, \ , t \in [0, T], \ A \in \mathbb{R}$$

- ▶ Is there a solution?
- What is the solution?
- ▶ If there is a solution, does it exist for all $t \in [0, T]$?
- Is there a unique solution?
- ▶ Does existence and uniqueness of the solution depend on the initial condition x_0 ?
- ► These properties also hold when *A* is a matrix, which will be studied later in this course

One-dimensional LTV System

$$\dot{x}(t) = A(t)x(t), \ x(0) = x_0, \ A(t): [0, T] \to \mathbb{R}$$

- ightharpoonup A(t) is a function that is defined on [0, T]
- ▶ The solution does not exist if A(t) is not continuous
- ▶ A(t) is continuous on [0, T] \Rightarrow there exists a constant $c \ge 0$ such that $|A(t)| \le c$ for all $t \in [0, T]$ (why???), which implies

$$|A(t)x - A(t)y| \le |A(t)||x - y| \le c|x - y|$$

- ▶ It is Lipschitz!!!
- ▶ There exists a unique solution

$$\frac{dx(t)}{dt} = x^{1/3}(t), \ x(0) = 0, \ t \in [0, 1]$$

- ▶ Is there a solution? Yes
- ▶ What is the solution? x(t) = 0 and $x(t) = (2t/3)^{3/2}$
- ▶ If there is a solution, does it exist for all $t \in [0, T]$? Yes
- ► Is there a unique solution? No

$$\frac{dx(t)}{dt} = -x^2(t), \ x(0) = -1, \ t \in [0,1]$$

- ▶ Is there a solution? Yes
- ▶ What is the solution?

$$x(t) = \frac{1}{t-1}$$

- ▶ If there is a solution, does it exist for all $t \in [0,1]$? No
- finite escape time: the phenomenon that x(t) escapes to infinity at a finite time (also called "conjugate point")
- ▶ In this case, x(t) has a "finite escape time" at t=1, since $\lim_{t\to 1} x(t) = \infty$

Dynamical system

$$\dot{x} = f(t, x), \ x(t_0) = x_0$$

- $ightharpoonup x: [0, T]
 ightharpoonup \mathbb{R}^n$: state (x_0 : initial condition)
- ▶ $f: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$: vector field
- Question: What is the condition under which there exists a unique solution to the nonlinear system?

Definition

A function $f(t,x):[0,T]\times\mathbb{R}^n\to\mathbb{R}^n$ is *globally Lipschitz* uniformly in $t\in[0,T]$ if there exists a constant $L\geq 0$ such that for all $x,y\in\mathbb{R}^n$, (note that $x\in\mathbb{R}^n$, $\|x\|^2=x^Tx$)

$$||f((t,x)-f(t,y)|| \le L||x-y||$$

- ▶ f is Lipschitz uniformly in $t \in [0, T]$ if the above condition holds for any $x, y \in W \subset \mathbb{R}^n$
- A function that has infinite slope at some point is not Lipschitz Question: Is f(x) continuous?
 - ▶ Is f(x) = Ax Lipschitz? Yes (A: matrix or scalar)
 - ▶ Is $f(x) = x^{1/3}$ Lipschitz?

$$f'(x) = \frac{1}{3}x^{\frac{-2}{3}} \to \infty \text{ as } x \to 0$$

Theorem: Local existence and uniqueness

Suppose that f is continuous in t, and f(t,x) is Lipschitz uniformly in $t \in [0,T]$ for all $x,y \in B = \{x \in \mathbb{R}^n \mid \|x-x_0\| \le r\}$. Then, there exists some $\delta > 0$ such that the state equation $\dot{x}(t) = f(t,x)$ with $x(0) = x_0$ has a unique solution over $[0,\delta]$.

▶ f can be piecewise continuous in t

Theorem: Global existence and uniqueness

Suppose that f is continuous in t, and f(t,x) is globally Lipschitz uniformly in $t \in [0, T]$. Then, the state equation $\dot{x}(t) = f(t,x)$ with $x(0) = x_0$ has a unique solution over [0, T].

- f can be piecewise continuous in t
- ▶ LTI system: globally Lipschitz!!
- $\dot{x}(t) = x^{1/3}(t)$ dost not have a unique solution $\Rightarrow f(x) = x^{1/3}$ is not Lipschitz
- ▶ This is one of the main properties of LTI systems

Main idea of the proof of the local existence and uniqueness

$$\dot{x}(t) = f(x(t)), \ x(0) = x_0 \Leftrightarrow x(t) = x_0 + \int_0^t f(x(s))ds$$

- ► Let $(Px)(t) = x_0 + \int_0^t f(x(s))ds$
- ▶ If x(t) satisfies the above relation, then x(t) is a solution of the ODE
- ▶ Equivalently, if there exists x(t) such that x(t) = (Px)(t), then we are done
- \blacktriangleright $x(t) = (Px)(t) \Rightarrow$ fixed point!!!
- ▶ We can show that there exist a unique fixed point of (Px)(t) under the Lipschitz condition

Fields

Fields

A field \mathbb{F} is an object that consisting of a set of elements, and two binary operations:

addition (+), multiplication (\cdot) such that

Addition

- (i) associative: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ for all $\alpha, \beta, \gamma \in \mathbb{F}$
- (ii) commutative: $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in \mathbb{F}$
- (iii) there exists an identity element 0: $\alpha + 0 = \alpha$ for all $\alpha \in \mathbb{F}$
- (iv) for all $\alpha \in \mathbb{F}$, there exists an inverse $-\alpha$ such that $\alpha + (-\alpha) = 0$

Multiplication

- (i) associative: $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$ for all $\alpha, \beta, \gamma \in \mathbb{F}$
- (ii) commutative: $\alpha \cdot \beta = \beta \cdot \alpha$ for all $\alpha, \beta \in \mathbb{F}$
- (iii) there exists an identity element 1: $\alpha \cdot 1 = \alpha$ for all $\alpha \in \mathbb{F}$
- (iv) for all $\alpha \in \mathbb{F}$, $\alpha \neq 0$, there exists an inverse α^{-1} such that $\alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$

Fields

Examples: \mathbb{R} , \mathbb{C} , \mathbb{Q}

Example: Consider the set of all 2×2 matrices for the form Matrix addition and multiplication

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix}, \ x, y \in \mathbb{R}, \ 0 \Rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ 1 \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The inverse always exists

How about the set of all 2×2 matrices?

Vector Space

- vector space = linear space = linear vector space
- ▶ A linear space over a field \mathbb{F} , (\mathbb{V}, \mathbb{F}) , consists of a set \mathbb{V} of vectors, a field \mathbb{F} , and two operations, vector addition and scalar multiplication
- ▶ The two operations satisfy

Addition

- (a) addition: for all $x, y \in \mathbb{V}$, $x + y \in \mathbb{V}$
- (b) associative: for all $x, y, z \in \mathbb{V}$, (x + y) + z = x + (y + z)
- (c) commutative: for all $x, y \in \mathbb{V}$, x + y = y + x
- (d) there exists a unique zero vector $0 \in \mathbb{V}$ such that x+0=0+x=x for all $x \in \mathbb{V}$
- (e) there exists a unique inverse $-x \in \mathbb{V}$ such that x + (-x) = 0 for all $x \in \mathbb{V}$

Vector Space

- vector space = linear space = linear vector space
- ▶ A linear space over a field \mathbb{F} , (\mathbb{V}, \mathbb{F}) , consists of a set \mathbb{V} of vectors, a field \mathbb{F} , and two operations, vector addition and scalar multiplication
- The two operations satisfy

Multiplication

- (a) multiplication: for any $\alpha \in \mathbb{F}$ and $x \in \mathbb{V}$, $\alpha x \in \mathbb{V}$
- (b) associative: for any $\alpha, \beta \in \mathbb{F}$ and $x \in \mathbb{V}$, $\alpha(\beta x) = (\alpha \beta)x$
- (c) distributive w.r.t. scalar addition:

for any
$$\alpha \in \mathbb{F}$$
 and $x, y \in \mathbb{V}$, $\alpha(x + y) = \alpha x + \alpha y$

(d) distributive w.r.t. scalar multiplication

for any
$$\alpha, \beta \in \mathbb{F}$$
 and $x \in \mathbb{V}$, $(\alpha + \beta)x = \alpha x + \beta x$

- (e) there exists a unique $1 \in \mathbb{F}$ such that for any $x \in \mathbb{V}$, 1x = x
- (f) there exists a unique $0 \in \mathbb{F}$ such that for any $x \in \mathbb{V}$, 0x = 0

Vector Space

- vector space = linear space = linear vector space
- ▶ A linear space over a field \mathbb{F} , (\mathbb{V}, \mathbb{F}) , consists of a set \mathbb{V} of vectors, a field \mathbb{F} , and two operations, vector addition and scalar multiplication

Example: $(\mathbb{F}^n, \mathbb{F})$ where $\mathbb{F}^n = \mathbb{F} \times \cdots \times \mathbb{F}$

Example: $(\mathbb{R}^n, \mathbb{R})$, $(\mathbb{C}^n, \mathbb{C})$, $(\mathbb{C}^n, \mathbb{R})$

Example: (\mathbb{R}, \mathbb{C}) is not a vector space! (why?) $(1+i)1 = 1+i \notin \mathbb{R}$

Example: a continuous function $f:[t_0,t_1]\to\mathbb{R}^n$, the set of such functions, $(C([t_0,t_1],\mathbb{R}^n),\mathbb{R})$, is a linear space

Norm and Sequences

- ▶ Normed vector space: A vector space X is a normed vector space if there exists $\|\cdot\|: X \to R$ such that
 - ▶ $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 iff x = 0
 - ▶ $||x + y|| \le ||x|| + ||y||$ for $x, y \in X$
 - ▶ $\|\alpha x\| = |\alpha| \|x\|$ for $\alpha \in \mathbb{R}$ and $x \in X$
- ▶ Convergence: A sequence $\{x_n\} \in X$ converges to x if

$$||x_n - x|| \to 0 \text{ as } n \to \infty$$

- Cauchy sequence
 - ▶ A sequence $\{x_n\}$ ∈ X is said to be a Cauchy sequence if

$$||x_n - x_m|| \to 0$$
 as $n, m \to 0$

Norm and Sequences

Example: normed vector space

- $ightharpoonup \mathbb{R}^n$ with the Euclidian norm $|\cdot|$
- ▶ $L_p(a, b, \mathbb{R}^n)$ space with $p \ge 1$ and

$$||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{1/p},$$

where $|\cdot|$ is the Euclidean norm on \mathbb{R}^n (note that when p=2, $L_2(a,b,\mathbb{R}^n)$ is an inner product space)

▶ $C(a, b, \mathbb{R}^n)$: the space of \mathbb{R}^n -valued continuous functions on [a, b] with

$$||f||_{\infty} = \sup_{t \in [a,b]} ||f(t)||$$

Norm and Sequences

Banach space (complete normed vector space)

- ▶ A normed vector space *X* is complete if every Cauchy sequence in *X* converges to the limit in *X*.
- ▶ A complete normed vector space is called a Banach space
- ▶ A complete inner product space is called a Hilbert space
- Any Hilbert space is a Banach space

Example

- ▶ \mathbb{R}^n with $|\cdot|$: Hilbert space hence Banach space (what is inner product?)
- ▶ $L_p(a, b, \mathbb{R}^n)$ with $\|\cdot\|_p$ for $p \ge 1$: Banach space
- ▶ When p = 2, $L_2(a, b, \mathbb{R}^n)$ is a Hilbert space
- ▶ $C(a, b, \mathbb{R}^n)$ with $\|\cdot\|_{\infty}$: Banach space

Contraction Mapping

Contraction mapping theorem (Banach fixed point theorem)

Let $S \subset X$ be the closed subset of a Banach space X, and $\mathcal{T}: S \to S$, and \mathcal{T} satisfies

$$\|\mathcal{T}(x) - \mathcal{T}(y)\| \le \rho \|x - y\|, \ \forall x, y \in S, \ \rho < 1.$$

Then

- ▶ \mathcal{T} has a unique fixed point, i.e., \exists a unique x^* such that $\mathcal{T}(x^*) = x^*$
- ▶ $\mathcal{T}^n(x_1) \to x^*$ as $n \to \infty$ for any $x_1 \in S$
- ▶ Equivalently, let $x_{n+1} = \mathcal{T}(x_n)$ with $x_1 \in S$. Then $\lim_{n\to\infty} x_n = x^*$

Note

- The condition is called contraction
- ▶ The function that is contraction is Lipschitz. But not vice-versa.

Proof of Contraction Mapping Theorem

Select $x_1 \in S$. Then

$$|x_{n+1} - x_n| = |\mathcal{T}(x_n) - \mathcal{T}(x_{n-1})|$$

$$\leq \rho |x_n - x_{n-1}| \leq \rho^2 |x_{n-1} - x_{n-2}| \leq \dots \leq \rho^{n-1} |x_2 - x_1|$$

Hence

$$|x_{n+r} - x_n| \le |x_{n+r} - x_{n+r-1}| + \dots + |x_{n+1} - x_n|$$

$$\le [\rho^{n+r-2} + \rho^{n+r-3} + \dots + \rho^{n-1}]|x_2 - x_1|$$

$$\le \rho^{n-1} \sum_{i=1}^{\infty} \rho^t |x_2 - x_1| = \frac{\rho^{n-1}}{1 - \rho} |x_2 - x_1|$$

Note that as $n \to \infty$, the RHS converges to zero. This means that $\{x_n\}$ is a Cauchy sequence. Since X is a Banach space (complete normed vector space), there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$.

Proof of Contraction Mapping Theorem

Since $S \subset X$ is closed, and we assumed that $T : S \to S$, and $\{x_n\}$ is a sequence in S, $x^* \in S$.

We show that $x^* = \mathcal{T}(x^*)$. Since \mathcal{T} is contraction, we have

$$|x^* - \mathcal{T}(x^*)| \le |x^* - x_n| + |x_n - \mathcal{T}(x^*)|$$

$$= |x^* - x_n| + |\mathcal{T}(x_{n-1}) - \mathcal{T}(x^*)|$$

$$\le |x^* - x_n| + \rho|x_{n-1} - x^*|$$

Note that when $n \to \infty$, we have $|x_{n-1} - x^*| \to 0$ and $|x^* - x_n| \to 0$. Hence, $|x^* - \mathcal{T}(x^*)| \to 0$ as $n \to \infty$. This implies $x^* = \mathcal{T}(x^*)$.

Now, we show uniqueness. Suppose that there exists $y^* \neq x^*$ such that $\mathcal{T}(y^*) = y^*$. Then

$$|x^* - y^*| = |\mathcal{T}(x^*) - \mathcal{T}(y^*)| \le \rho |x^* - y^*|, \ \rho < 1$$

which is a contradiction.

23 / 36

Theorem: Local existence and uniqueness

Suppose that f is continuous in t, and f(t,x) is Lipschitz uniformly in $t \in [0,T]$ for all $x,y \in B = \{x \in \mathbb{R}^n \mid \|x-x_0\| \le r\}$. Then, there exists some $\delta > 0$ such that the state equation $\dot{x}(t) = f(t,x)$ with $x(0) = x_0$ has a unique solution over $[0,\delta]$.

▶ f can be piecewise continuous in t

Theorem: Global existence and uniqueness

Suppose that f is continuous in t, and f(t,x) is globally Lipschitz uniformly in $t \in [0, T]$. Then, the state equation $\dot{x}(t) = f(t,x)$ with $x(0) = x_0$ has a unique solution over [0, T].

- f can be piecewise continuous in t
- ▶ LTI system: globally Lipschitz!!
- $\dot{x}(t) = x^{1/3}(t)$ dost not have a unique solution $\Rightarrow f(x) = x^{1/3}$ is not Lipschitz
- ▶ This is one of the main properties of LTI systems

We have

$$\dot{x}(t) = f(x(t)), \ x(0) = x_0 \Leftrightarrow x(t) = x_0 + \int_0^t f(x(s))ds$$

Let

$$x(t) = x_0 + \int_0^t f(x(s))ds = (Px)(t)$$

Let

$$X = C(0, \delta), \| \cdot \|_{C} = \sup_{t \in [0, \delta]} | \cdot |$$
$$S = \{ x \in X \mid \|x - x_0\|_{C} \le r \}$$

- r radius of the ball in the statement of theorem
- ▶ $0 < \delta \le T$ constant to be chosen
- ▶ Note: $[0, \delta] \subseteq [0, T]$
- $|\cdot|$: norm on \mathbb{R}^n
- $\|\cdot\|_C$: norm on X

Claim 1: $(Px)(t): S \rightarrow S$

Proof: Note that $(Px)(t): X \to X$, and we have

$$\begin{split} h &= \max_{t \in [0,\delta]} |f(t,x_0)| < \infty \quad \text{(why???)} \\ |x(t) - x_0| &\leq r, \quad \forall x \in \mathcal{S}, \ t \in [0,\tau] \quad \text{(why???)} \end{split}$$

Since f is Lipschitz on B with radius r, for any $x \in S$ and $t \in [0, \tau]$,

$$|(Px)(t) - x_0| \le \int_0^t \left[|f(s, x(s)) - f(s, x_0)| + |f(s, x_0)| \right]$$

$$\le \int_0^t \left[L|x(s) - x_0| + h \right] ds \le \tau (Lr + h)$$

$$\Rightarrow \|(Px) - x_0\|_C = \sup_{t \in [0, \tau]} |(Px)(t) - x_0| \le \delta (Lr + h)$$

By choosing $\delta \le r/(Lr+h)$, we have $\|(Px)-x_0\|_C \le r$

Claim 2: (Px)(t) is contraction

Proof: Since f is Lipschitz, we can show that

$$|(Px)(t) - (Py)(x)| \le \int_0^t L|x(s) - y(s)|ds \le \int_0^t dsL||x - y||_C$$

Hence

$$\|(Px) - (Py)\| \le L\delta \|x - y\|_C \le \rho \|x - y\|_C, \ \delta \in (0, \frac{\rho}{L})$$

Choosing $\rho < 1$ and $\delta \leq \frac{\rho}{L}$, P is contraction.

This implies that if

$$\delta \leq \min\{T, \frac{r}{Lr+h}, \frac{\rho}{L}\}, \ \rho < 1$$

then

- \triangleright $P:S\rightarrow S$
- P is contraction

Therefore, there exists a unique fixed point x^* ; hence, the state equation admits a unique solution on S

Finally, we need to show that with $\delta \leq \min\{T, \frac{r}{Lr+h}, \frac{\rho}{L}\}$ and $\rho < 1$, the solution exists in X.

Claim: If the solution exists in X, then the solution must be in $S = \{x \in X \mid ||x - x_0||_C \le r\}$ for $t \in [0, \delta]$.

Proof: Assume that there exists μ such that

$$|x(\mu) - x_0| = r$$

On the other hand, for $t \leq \mu$,

$$|x(t) - x_0| \le \int_0^t \Big[L|x(s) - x_0| + h\Big]ds \le \int_0^t (Lr + h)ds$$

Hence

$$r = |x(\mu) - x_0| \le (Lr + h)\mu \Rightarrow \mu \ge \frac{r}{Lr + h} \ge \delta$$

Note that $t \in [0, \delta]$. This implies that the solution cannot leave the set S for $t \in [0, \delta]$.

In this theorem, note that since we have Global Lipschitz property, the radius r is sufficiently large. This implies $\frac{r}{Lr+h} > \frac{\rho}{L}$, and

$$\delta \leq \min\{T, \frac{\rho}{L}\}, \ \rho < 1$$

- ▶ If $T \leq \frac{\rho}{I}$, then choose $\delta = T$, and we are done
- ▶ Otherwise, set $\delta \leq \frac{\rho}{L}$, solve the problem for $[0, \delta]$, then continue $[\delta, 2\delta], \ldots, [T \delta, T]$

This completes the proof.

Back to Examples

- ▶ LTI system satisfies the Global Lipschitz condition
- ► LTV system satisfies the Global Lipschitz condition, provided that *A*(*t*) is bounded
- ▶ This is why we study linear system theory

Gronwall-Bellman Inequality

Let $\lambda:[a,b]\to\mathbb{R}$ be continuous and $\mu:[a,b]\to\mathbb{R}$ be continuous and nonnegative. If a function $y:[a,b]\to\mathbb{R}$ satisfies

$$y(t) \le \lambda(t) + \int_a^t \mu(s)y(s)ds$$

for $t \in [a, b]$, then on the same interval

$$y(t) \le \lambda(t) + \int_a^t \lambda(s)\mu(s) \exp\left[\int_s^t \mu(\tau)d\tau\right]ds$$

Proof of Gronwall-Bellman Inequality

Proof: Let $z(t) = \int_a^t \mu(s)y(s)ds$, and

$$v(t) = z(t) + \lambda(t) - y(t) \ge 0$$

Note that z is differentiable, and

$$\dot{z}(t) = \mu(t)y(t) = \mu(t)\Big[z(t) + \lambda(t) - v(t)\Big], \ z(a) = 0$$

The solution of z can be written as

$$z(t) = \int_{a}^{t} \phi(t,s) \Big[\mu(s)\lambda(s) - \mu(s)v(s) \Big] ds,$$

where

$$\phi(t,s) = \exp\left[\int_{s}^{t} \mu(\tau)d\tau\right]$$

This is the state transition matrix, and we will study this later

Proof of Gronwall-Bellman Inequality

Note that $\mu(t) \ge 0$ and $\nu(t) \ge 0$ for all $t \in [a,b]$, and $\phi(t,s) \ge 0$ for all $t,s \in [a,b]$. Hence

$$\int_a^t \phi(t,s)\mu(s)v(s)ds \geq 0$$

This implies

$$z(t) \leq \int_a^t \phi(t,s)\mu(s)\lambda(s)ds$$

Since $y(t) \le \lambda(t) + z(t)$, this completes the proof.

Summary

- ► Existence and uniqueness
- ▶ The motivation studying linear system theory
- Next class
 - ► Linear algebra