

INF 302 : Langages & Automates

Chapitre 4 : Algorithmes et problèmes de décision sur les AEFDs

Yliès Falcone

 ${\tt ylies.falcone@univ-grenoble-alpes.fr -- www.ylies.fr}$

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2018 - 2019

Intuition et objectifs

- Parcours d'un automate : en largeur et profondeur.
- Détection de cycles.
- Notions d'accessibilité et de co-accessibilité.
- Problèmes de décision : langage vide, langage infini.

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
- Quelques problèmes de décision
- Résumé

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
- Quelques problèmes de décision
- Résumé

À propos du parcours d'un automate

Objectifs

- Visiter de manière ordonnée une seule fois chacun des états de l'automate (versus « pour tout état q dans $Q \dots$ »).
- « brique de base » pour d'autres algorithmes sur les automates.

Principe

- suivi des transitions de l'automate,
- collecte d'information sur les états et transitions,
- propagation de propriétés.

Comment gérer les cycles?

Algorithme paramétré par :

- une « opération de visite » des états de l'automate (où le traitement se fait) ;
- un « ordre » de parcours, influençant quels noeuds et quelles parties de l'automate sont visités en premier : profondeur d'abord ou largeur d'abord;
- la « priorité » donnée entre les successeurs d'un état.

Utiles pour le parcours d'automates

Dans la suite, nous utilisons un AEFD $(Q, \Sigma, q_{init}, \delta, F)$.

Successeurs d'un état

L'ensemble des états successeurs d'un état $q \in Q$, selon la fonction de transition δ , est :

$$\operatorname{Succ}(q) = \big\{ q' \in Q \mid \exists a \in \Sigma : \delta(q, a) = q' \big\}$$

En itérant sur Succ(q), nous obtenons les états selon la priorité donnée par les symboles.

Prédécesseurs d'un état

L'ensemble des états prédécesseurs d'un état $q \in Q$, selon la fonction de transition δ , est :

$$\Pr(q) = \{q' \in Q \mid \exists a \in \Sigma : \delta(q', a) = q\}$$

(En itérant sur Pré(q), nous obtenons les états selon la priorité donnée par les symboles.)

Remarque Un état q est successeur d'un état q' ssi q' est un prédecesseur de q

Exemple (Successeurs et prédécesseurs)

- successeurs de 0 : 1 et 2
- successeurs de 1 : 1 et 2
- successeurs de 2 : aucun
- prédécesseurs de 0 : aucun
- prédécesseurs de 1 : 0 et 1
- prédécesseurs de 2 : 0 et 2

Parcours en profondeur vs largeur d'abord depuis l'état initial

Exemple (Parcours en profondeur vs largeur d'abord)

Priorité de a sur b

- prof. d'abord : A, B, F, D, G, C, E
- largeur d'abord : A, B, E, F, C, D, G

Priorité de **b** sur a

- prof. d'abord : A, E, F, D, G, C, B
- largeur d'abord : A, E, B, F, C, D, G

Parcours d'un AEFD : version récursive en profondeur d'abord

Algorithme 1 parcourir() pour le parcours d'un automate

```
Entrée : A = (Q, \Sigma, q_{\rm init}, \delta, F) un AEFD

1: ens d'états Déjà_visité; (* variable globale aux deux algorithmes *)

2: Déjà_visité := \emptyset; (* initialement, rien n'est visité *)

3: pour chaque état q dans l'ens. d'états de départ faire (* graphe déconnecté *)

4: si q \notin  Déjà_visité alors

5: parcourir\_rec(q)

6: fin si

7: fin pour

8: retourner résultat;
```

Algorithme 2 parcourir_rec() pour le parcours à partir de l'état q **Entrée :** $q \in Q$ un état

```
    visiter l'état q;
    Déjà_visité := Déjà_visité ∪ {q};
    pour chaque état q' ∈ Succ(q) Déjà_visité faire
    si q' ∉ Déjà_visité alors
    parcourir_rec(q')
    fin si
    fin pour
```

À définir en fonction de l'algorithme basé sur le parcours. Par exemple, afficher.

(* l'état q n'est plus à visiter *)

Parcours d'un AEFD : version récursive en profondeur d'abord

Exemple (Parcours récursif en profondeur d'un AEFD)

Parcours d'un AEFD : version générique itérative de l'algorithme

Algorithme 3 parcourir() pour le parcours de l'automate

```
Entrée: A = (Q, \Sigma, q_{\text{init}}, \delta, F) un AEFD
 1: ens d'états À_visiter := Ensemble d'états de départ de la visite;
 2: ens d'états Déjà visité := 0;
                                                                        (* Initialement, rien n'est visité *)
 3: tant que A_{visiter} \neq \emptyset faire
        soit q \in A visiter;
 4.
                                                                            (* Prendre un état à visiter *)
     \dot{A} visiter := \dot{A}_visiter \ \{q\};
 5:
                                                                          (* L'état q n'est plus à visiter *)
        si q ∉ Déjà visité alors
 6:
             Visiter l'état q :
 7:
             Déjà_visité := Déjà_visité \cup \{q\};
 8:
                                                                           (* L'état q vient d'être visité *)
             \dot{A}_visiter := \dot{A}_visiter \cup (Succ(q) \ Déjà_visité);
 9:
         fin si
10:
    fin tant que
12: retourner résultat ;
```

À raffiner en fonction de l'ordre de parcours :

- file : parcours en largeur d'abord
- pile : parcours en profondeur d'abord
- (file avec priorité : ≈Dijkstra, + court chemin)

À définir en fonction de l'algorithme basé sur le parcours.

P. ex. afficher l'état.

Parcours en largeur d'un AEFD : version itérative de l'algorithme

Exemple (Parcours itératif en largeur d'un AEFD)

À visiter	Visités	Sortie
А		
E, B	А	Α
C, F, E	A, B	В
C, F	A, B, E	E
D, C	A, B, E, F	F
D	A, B, C, E, F	С
G	A,, F	D
	A,, G	G

- À_visiter est une file, avec le début de file à gauche.
- Priorité de a sur b dans le choix des voisins.

 → on enfile a puis b.

Parcours en profondeur d'un AEFD : version itérative de l'algorithme

Exemple (Parcours itératif en profondeur d'un AEFD)

	•		
	À visiter	Visités	Sortie
	А		
	B, E	Α	А
	F, C, E	A, B	В
	D, C, E	A, B, C	F
	G, E, C, E	A, B, C, F	D
\	C, E, C, E	A, B, C, D, F	G
)	E, C, E	A,, F	С
	C, E	A,, G	Е
	Е	A,, G	
		A,, G	

- À_visiter est une pile, avec le haut de pile à gauche.
- Priorité de a sur b dans le choix des voisins.
 - \hookrightarrow on empile b puis a.

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
- Quelques problèmes de décisior
- Résumé

Detection de cycles

Définition (Cycle - deux définitions équivalentes)

- séquence (non-vide) de transitions consécutives (l'état d'arrivée d'une transition est l'état de départ de la prochaine transition) t.q. le 1^{er} et le dernier états soient identiques.
- automate avec une transition arrière
 - soit une transition d'un état sur lui même,
 - soit une transition d'un état vers l'un de ces ancêtres dans l'arbre produit par le parcours en profondeur d'abord.

Exemple et contre-exemple (Cycle)

Automates sans cycle

Detection de cycles - Intuition et remarque

Question

Lors d'un parcours en profondeur, est-ce que la découverte d'un état déjà visité implique l'existence d'un cycle ?

Exemple (Découvrir un état déjà visité n'implique pas l'existence de cycle)

Lors du parcours depuis l'état initial (où les voisins sont explorés dans l'ordre alphabétique) :

2 est visité, puis il est rencontré à nouveau.

Remarque La notion d'état visité n'est pas assez fine. Elle sert uniquement pour la terminaison de l'algorithme de parcours (et ne pas traiter des états déjà traités).

Intuition pour trouver un cycle avec le parcours en profondeur récursif

- Se fait suivant la sous-structure d'arbre produit par le parcours.
- ullet Lors du parcours d'origine un état q, il y a un cycle si on rencontre l'état q.
- Se souvenir des noeuds par lesquels on est passé depuis et provenant de l'appel initial.

Détection de cycle avec parcours en profondeu

Détection des cycles dans un AEFD

Basé sur l'algorithme récursif de parcours en profondeur d'abord - algorithme 1

Algorithme 4 detection_cycle() pour détecter l'existence d'un cycle dans un automate

Entrée : $A = (Q, \Sigma, \delta, q_{\mathrm{init}}, F)$ un AEFD

- 1: ens d'états Déjà_visité, Pile_d_appel := \emptyset ;
- 2: **pour** chaque état $q \in Q$ faire
- 3: $si\ detection_cycle_état(q)\ alors\ retourner\ vrai\ fin\ si$
- 4: fin pour retourner faux

Algorithme 5 detection_cycle_état() pour détecter les cycles à partir d'un état

Entrée: $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ un AEFD, $q \in Q$ un état

Sortie : vrai s'il existe un cycle à partir de q, faux sinon

- 1: $\mathbf{si} \ q \in \text{Pile_d_appel alors retourner vrai fin si}$
- 2: **si** $q \in D\acute{e}j\grave{a}_visit\acute{e}$ alors retourner faux fin **si**
- 3: $Pile_d_appel := Pile_d_appel \cup \{q\};$
- 4: Déjà_visité := Déjà_visité ∪ {q};

(* On ajoute q à la pile d'appel *) (* L'état q devient déjà visité *)

- 5: **pour** chaque état $q' \in \operatorname{Succ}(q)$ **faire**
- 6: si $detection_cycle_état(q')$ alors retourner vrai fin si
- 7: fin pour
- 8: $Pile_d_appel := Pile_d_appel \setminus \{q\}$; (* L'état q est supprimé de la pile d'appel *)
- 9: retourner faux

Remarque Cet algorithme s'adapte facilement pour retourner tous les cycles.

Y. Falcone (UGA - Inria)

Détection des cycles dans un AEFD

Basé sur l'algorithme récursif de parcours en profondeur d'abord - algorithme 1

Exemple (Détection des cycles dans un AEFD avec l'algorithme 1)

Détection des cycles dans un AEFD

Basé sur l'algorithme récursif de parcours en profondeur d'abord - algorithme 1

Détection des cycles dans un AEFD Limites de l'algorithme 1 - Vers un algorithme 2

Limites de l'algorithme 1

- Les tests $q \in \text{Pile_d_appel}$ et $q \in \text{D\'ej\`a_visit\'e}$ sont en $\mathcal{O}(|Q|)$.
- La pile d'appel existe déjà grâce aux appels récursifs dans le parcours en profondeur.

Modifications à l'algorithme 1

- Utiliser un coloriage des états dans {BLANC, GRIS, NOIR} :
 - BLANC : état non traité :
 - GRIS : état en cours de traitement, successeurs pas tous traités ;

 - NOIR : état et tous ses successeurs traités;
- Tester la couleur d'un état est en $\mathcal{O}(1)$.

Détection des cycles dans un AEFD

Basé sur l'algorithme récursif de parcours en profondeur d'abord - algorithme 2

Algorithme 6 detection_cycle() pour détecter les cycles dans un AEFD

Entrée : $A=(Q,\Sigma,q_{\mathrm{init}},\delta,F)$ un AEFD, $q\in Q$ un état

Sortie : vrai s'il existe un cycle à partir de q, faux sinon

- 1: couleur : $Q \rightarrow \{ \text{BLANC}, \text{GRIS}, \text{NOIR} \}$ (* Initialement : $\forall q \in Q : \text{couleur}(q) = \text{BLANC *})$
- 2: **pour** chaque état $q \in Q$ faire
- 3: $\operatorname{si\ couleur}(q) == \operatorname{BLANC\ alors\ } \operatorname{detection_cycle_\acute{e}tat}(q) \operatorname{fin\ si}$
- 4: fin pour

Algorithme 7 detection_cycle_état() pour détecter les cycles à partir d'un état

Entrée : $A = (Q, \Sigma, q_{\mathrm{init}}, \delta, F)$ un AEFD, $q \in Q$ un état

Sortie : vrai s'il existe un cycle à partir de q, faux sinon

- 1: $\operatorname{couleur}(q) := \operatorname{\mathsf{GRIS}}$
- 2: **pour** chaque état $q' \in \operatorname{Succ}(q)$ faire
- 3: si couleur(q') == GRIS alors retourner vrai fin si
- 4: **si** couleur(q') = BLANC et *detection_cycle_état*(q') **alors retourner vrai**(* q' n'a pas été traité et il y a une transition arrière dans le sous-arbre de racine q' *)
- 5: fin si
- 6: fin pour
- 7: couleur(q) := NOIR
- 8: retourner faux

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
 - Accessibilité
 - Co-accessibilité
 - Vocabulaire et utilisation
- Quelques problèmes de décision
- Résumé

Accessibilité et co-accessibilité

Notions liées à la fonction de transition des AEFDs.

Accessibilité et co-accessibilité : définition informelle

Propriétés s'appliquant aux états d'un AEFD :

- état accessible : peut être atteint à en suivant la fonction de transition ;
- état co-accessible : mène à un état accepteur en suivant la fonction de transition.

Nous utiliserons ces notions :

- pour répondre à des problèmes de décision sur les automates dans la section suivante;
- caractériser certaines de leur propriétés en TD;
- dans les chapitres suivants.

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
 - Accessibilité
 - Co-accessibilité
 - Vocabulaire et utilisation
- Quelques problèmes de décision
- Résumé

Accessibilité dans les AEFDs : définition et décidabilité

Etant donné un AEFD $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$.

Définition (Accessibilité d'un état dans un AEFD)

 $q \in Q$ est accessible s'il existe un mot $u \in \Sigma^*$ tel que $\delta^*(q_{\text{init}}, u) = q$.

Exemple (États accessibles)

- accessibles: 0, 1, 2
- non accessibles : 3, 4, 5

Théorème : accessibilité dans les graphes finis

Le problème de l'accessibilité est décidable pour les graphes finis.

Corollaire

Le problème de l'accessibilité d'un état dans un AEFD est décidable.

Accessibilité dans les AEFDs : intuition sur l'algorithme

Etant donné un AEFD $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$.

Idée de l'algorithme

- ullet case de base : q_{init} est accessible
- cas d'induction : si $q \in Q$ est accessible dans A, alors s'il existe une transition dans δ de q vers un état q', alors q' est accessible dans A ($q' \in \operatorname{Succ}(q)$).

Accessibilité dans les AEFDs : algorithme itératif

Algorithme 8 *etats_accessibles*() pour le calcul des états accessibles

```
Entrée: A = (Q, \Sigma, q_{init}, \delta, F) un AEFD
```

Sortie: Accessibles $\subseteq Q$ ensemble des états accessibles dans A par δ

- 1: **ens d'états** Accessibles, À_visiter, Déjà_visité, R_{local};
- 2: Accessibles := $\{q_{init}\}$;
- 3: \dot{A} _visiter := { q_{init} }; (* Parcours depuis l'état initial *)
- 4: Déjà visité := \emptyset ;
- (* Initialement, rien n'est visité *) 5: tant que \dot{A} _visiter $\neq \emptyset$ faire
- soit $q \in A$ visiter; 6:
- \dot{A} visiter := \dot{A} _visiter \ $\{q\}$; 7:
- Déjà visité := Déjà visité $\cup \{q\}$; 8:
- Accessibles := Accessibles \cup Succ(q); 9:
- (* On ajoute les états accessibles depuis q à l'ensemble global des états accessibles *) 10:
 - \dot{A} _visiter := \dot{A} _visiter \cup (Succ(q) \ Déjà_visité);
 - (* Les nouveaux états à visiter sont ceux « découverts » *)

- 11: fin tant que
- 12: retourner Accessibles;

Remarque Cet algorithme s'adapte pour calculer les états accessibles à partir d'un état ou d'un ensemble d'états donnés de l'automate (en modifiant les lignes 2 et 3).

(* Cas de base *)

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
 - Accessibilité
 - Co-accessibilité
 - Vocabulaire et utilisation
- Quelques problèmes de décision
- Résumé

Co-accessibilité dans les AEFDs : définition et décidabilité

Etant donné un AEFD $A = (Q, \Sigma, q_{init}, \delta, F)$.

Définition (Co-accessibilité d'un état dans un AEFD)

 $q \in Q$ est co-accessible s'il existe un mot $u \in \Sigma^*$ tel que $\delta^*(q,u) \in F$.

Exemple (États co-accessibles)

- co-accessibles: 0, 1, 3, 4
- non co-accessibles : 2, 5

Théorème : co-accessibilité dans les graphes finis

Le problème de la co-accessibilité est décidable pour les graphes finis.

Y. Falcone (UGA - Inria)

INF 302: Langages & Automates

Co-accessibilité dans les AEFDs : intuition sur l'algorithme

Etant donné un AEFD $A = (Q, \Sigma, q_{\mathrm{init}}, \delta, F)$.

Définition (Idée de l'algorithme)

- case de base : les états $q \in F$ sont co-accessibles,
- cas d'induction : si $q \in Q$ est co-accessible dans A, alors s'il existe une transition dans δ depuis un état q' vers q, alors q' est co-accessible dans A.

Dans la suite, nous utilisons la notation suivante :

$$Pr\acute{e}(q) := \{ q' \in Q \mid \exists a \in \Sigma : (q', a, q) \in \delta \}$$

pour les prédécesseurs de l'état q suivant la fonction de transition δ .

Remarque La co-accessibilité peut aussi se calculer facilement avec l'accessibilité entre deux états q, q' quelconques.

Co-accessibilité dans les AEFDs : algorithme

Algorithme 9 etats_coaccessibles() pour le calcul des états accessibles

```
Entrée : A = (Q, \Sigma, q_{\text{init}}, \delta, F) un AEFD
```

Sortie : Coaccessibles $\subseteq Q$ ensemble des états accessibles dans A par δ

- 1: ens d'états $Coaccessibles, A_visiter, Déjà_visité, \textit{coR}_{\textit{local}}$;
- 2: Coaccessibles := F; (* Cas de base *)
- 3: $A_{\text{visiter}} := F$; (* On veut les états co-accessibles à tous les états accesseurs *)
- 4: Déjà_visité := \emptyset ;
- 5: tant que $A_{visiter} \neq \emptyset$ faire
- 6: soit $q \in A$ visiter;
- 7: $A_{\text{visiter}} := A_{\text{visiter}} \setminus \{q\};$
- 8: Déjà_visité := Déjà_visité $\cup \{q\}$;
- 9: Coaccessibles := Coaccessibles $\cup \operatorname{Pr\acute{e}}(q)$;
- 10: $A_{\text{visiter}} := A_{\text{visiter}} \cup (Pré(q) \setminus Déjà_{\text{visité}});$
- 11: fin tant que
- 12: retourner Coaccessibles;

Cet algorithme peut facilement être modifié pour calculer les états co-accessibles à ensemble d'états donnés de l'automate (en modifiant les lignes 2 et 3).

Co-accessibilité en réutilisant l'accessibilité

La co-accessibilité peut se résoudre en ré-utilisant l'algorithme d'accessibilité, puis

- en '« inversant » la fonction de transition,
- en « partant des états accepteurs ».

Algorithme 10 etats_coaccessibles() pour le calcul des états accessibles

Entrée : $A = (Q, \Sigma, q_{init}, \delta, F)$ un AEFD

Sortie : ensemble des états co-accessibles dans A par δ

- 1: $\delta' = \{ (q', a, q) \mid (q, a, q') \in \delta \} \cup \{ (q_{\text{new}}, a, q_f) \mid q_f \in F \land a \in \Sigma \} ;$
- 2: **automate** $E := (Q \cup \{q_{\text{new}}\}, \Sigma, \delta', q_{\text{new}}, q_{\text{init}});$
- 3: **retourner** *etats_acessibles*(E) \ { q_{new} };

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
 - Accessibilité
 - Co-accessibilité
 - Vocabulaire et utilisation
- Quelques problèmes de décision
- Résumé

Vocabulaire

Un automate dont tous les états sont accessibles est dit accessible.

Un automate dont tous les états sont co-accessibles est dit co-accessible.

Un automate accessible et co-accessible est dit émondé.

Intuitivement, dans un automate émondé, tous les états sont « utiles » à la reconnaissance des mots.

Utilisation

- Problèmes de décision (voir section suivante).
- Garder uniquement les états « utiles » d'un automate.
- Connaître et générer les états d'un automate dans les situations suivantes :
 - Lorsqu'ils ne sont pas donnés de manière explicite, mais par exemple sous forme de règles. Exemple : automate de l'étrange planète vu en introduction du cours.
 - Lorsqu'on ne veut pas les générer a priori. Exemple : produit de deux automates.

En TD

- Garder uniquement les états accessibles d'un automate : étant donné un automate, écrire un algorithme qui retourne un automate équivalent avec tous ses états accessibles.
- Même question avec la co-accessibilité.
- Produire la version émondée d'un automate.
- Produit de deux automates « à la volée ».

- Parcours
- 2 Détection de cycles
- 3 Notions d'accessibilité et de co-accessibilité
- Quelques problèmes de décision
- Résumé

Problèmes de décision

Définition (Problème de décision)

- Question que l'on peut *exprimer mathématiquement* (formellement).
- Question à un certain nombre de paramètres que l'on souhaite pouvoir passer à un programme informatique.
- La réponse à la question est oui ou non.

Deux sortes de problèmes de décision existent :

- problèmes décidables : on peut trouver un algorithme ou un programme qui sait répondre à la question (avec une mémoire et un temps non-borné).
- problèmes indécidables: on ne peut pas trouver un algorithme ou un programme qui sait répondre à la question (de manière générale).

Exemple (Problème de décision)

- décidables : évaluation d'un circuit, voyageur de commerce, SAT(isfiabilité), . . .
- indécidables : arrêt d'une machine de Turing ou de Minsky (automate avec deux compteurs) ou d'un programme, solutions entières d'une équation Diophantienne, billet d'avion le moins cher entre deux villes, . . .

Deux problèmes de décision sur les AEFDs

Considérons un AEFD A.

Problème du langage vide

Le langage reconnu par A est il vide?

Problème de la finitude du langage

Le langage reconnu par A est-il (de cardinalité) fini(e)?

Pour répondre à ces questions, nous allons utiliser les notions d'accessibilité, de co-accessibilité et de cycle.

Décision du problème du langage vide

Théorème : décision du problème du langage vide

Le problème du *langage vide est décidable* pour les automates à états finis (déterministes).

Algorithme 11 Procédure de décision pour le problème du langage vide

Entrée : $A = (Q, \Sigma, \delta, q_{init}, F)$ un AEFD

Sortie : vrai si le langage reconnu par A est vide, faux sinon

1: **ens d'états** Accessibles := *etats_accessibles(A)*;

2: **retourner** (Accessibles $\cap F$) == \emptyset ;

Décision du problème de la finitude du langage

Théorème : décision du problème de la finitude du langage

Le problème de la finitude du langage est décidable pour les AEFDs.

Idée intuitive de l'algorithme

- Le langage accepté ne sera pas fini, si l'automate peut accepter "autant de mots qu'on veut".
- Il y a un nombre fini d'états.
- Il faut pouvoir donc arriver dans un état accepteur par un nombre infini de chemins différents.
- Il faut l'existence d'un cycle.

Le langage reconnu par un automate $(Q, \Sigma, \delta, q_{\rm init}, F)$ est infini ssi : il existe un cycle non trivial accessible et co-accessible.

Décision du problème de la finitude du langage

Algorithme 12 Procédure de décision pour le problème du langage infini

Entrée: $A = (Q, \Sigma, \delta, q_{init}, F)$ un AEFD

Sortie: "vrai" si le langage reconnu par A est infini, "faux" sinon

- 1: **ens d'états** EtatsEmonde := *etats_accessibles(A)* ∩ *etats_coaccessibles(A)*;
- 2: **automate** $E := (Q \cap \text{EtatsEmonde}, \Sigma, \delta \cap \text{EtatsEmonde} \times \Sigma \times \text{EtatsEmonde}, q_{\text{init}}, F \cap \text{EtatsEmonde});$
- 3: retourner $\{q \in \text{EtatsEmonde} \mid detection_cycle_util(E, q)\} \neq \emptyset$;

- Parcour
- 2 Détection de cycle
- 3 Notions d'accessibilité et de co-accessibilité
- Quelques problèmes de décision
- Sesumé

Automate à États Fini Déterministe

- Parcours :
 - profondeur et largeur d'abord,
 - récursif vs itératif.
- Détection de cycle dans un automate :
 - basée sur un parcours en profondeur d'abord,
 - détection de transition arrière,
- Notions d'accessibilité et de co-accessibilité :
 - état accessible : existence d'un chemin depuis l'état initial vers cet état,
 - état co-accessible : existence d'un chemin depuis cet état jusqu'à un état accepteur.
- Décidabilité de certains problèmes de décision :
 - langage vide,
 - finitude du langage.

Remarque Les notions des prochains chapitres et les exercices de TD nous permettront de répondre à d'autre problèmes de décision.

Remarque Les algorithmes de parcours, détection de cycle, de calcul des états accessibles et co-accessibles restent valables pour les automates non-déterministes que nous aborderons dans un prochain chapitre.