(19)【発行国】日本国特許庁 (JP)

(12)【公報種別】特許公報 (B2)

(11) 【特許番号】第2890648号

(24)【登録日】平成11年(1999)2月26日

(45)【発行日】平成11年(1999)5月17日

(54) 【発明の名称】 難燃性ポリカーボネート樹脂組成物

(51) 【国際特許分類第6版】

CO8L 69/00

CO8G 64/08

[FI]

CO8L 69/00

CO8G 64/08

【請求項の数】3

【全頁数】4

(21) 【出願番号】特願平2-94054

(22) 【出願日】平成2年(1990) 4月11日

(65) 【公開番号】特開平3-292359

(43) 【公開日】平成3年(1991) 12月24日

【審査請求日】平成9年(1997)4月9日

(73) 【特許権者】

【識別番号】99999999

【氏名又は名称】三菱瓦斯化学株式会社

【住所又は居所】東京都千代田区丸の内2丁目5番2号

(72) 【発明者】

【氏名】石井 一彦

【住所又は居所】神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社プラスチックセンター内 (19) [Publication Office] Japanese Patent Office (JP)

(12) [Kind of Document] Japanese Patent Publication (B2)

(11) [Patent Number] 28th 90648 number

(24) [Registration Date] 1999 (1999) February 26 day

(45) [Issue Date] 1999 (1999) May 17 day

(54) [Title of Invention] FLAME-RESISTANT POLYCARBONATE RESIN COMPOSITION

(51) [International Patent Classification 6th Edition]

C08L 69/00

C08G 64/08

[FI]

C08L 69/00

C08G 64/08

[Number of Claims] 3

[Number of Pages in Document] 4

(21) [Application Number] Japan Patent Application Hei 2 - 94054

(22) [Application Date] 1990 (1990) April 1 1 day

(65) [Publication Number of Unexamined Application (A)] Japan Un

examined Patent Publication Hei 3 - 292359

(43) [Publication Date of Unexamined Application] 1991 (1991) De

cember 24 day

[Date of Request for Examination] 1997 (1997) April 9 day

(73) [Patent Rights Holder]

[Applicant Code] 999999999

[Name] MITSUBISHI GAS CHEMICAL CO. INC. (DB 69-055-3706

Address Training China Line Administration

[Address] Tokyo Chiyoda-ku Marunouchi 2-5-2

(72) [Inventor]

[Name] Ishii Kazuhiko

[Address] Inside of Kanagawa Prefecture Hiratsuka City Higashi Ya wata 5-6-2 Mitsubishi Gas Chemical Co. Inc. (DB 69-055-3706) plastic center (72) 【発明者】

【氏名】朝生 俊明

【住所又は居所】神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社プラスチックセンター内

(72)【発明者】

【氏名】島岡 悟郎

【住所又は居所】神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社プラスチックセンター内

(72)【発明者】

【氏名】水谷 誠

【住所又は居所】神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社プラスチックセンター内

【審査官】 森川 聡

(56)【参考文献】

【文献】国際公開91/885 (WO, A1)

(58) 【調査した分野】 (1 n t. C I. 6, DB名)

CO8G 64/08

CO8L 69/00

CA (STN) REGIS

(57)【特許請求の範囲】

【請求項1】芳香族ポリカーボネート樹脂95~50重量%と下記構造式(A)及び(B)で表される構造単位を有するコーポリカーボネート樹脂5~50重量%とを配合してなる難燃性ポリカーボネート樹脂組成物。

構造式(A);

(72) [Inventor]

[Name] Ashou Toshiaki

[Address] Inside of Kanagawa Prefecture Hiratsuka City Higashi Ya wata 5-6-2 Mitsubishi Gas Chemical Co. Inc. (DB 69-055-3706) plastic center

(72) [Inventor]

[Name] Shimaoka Goro

[Address] Inside of Kanagawa Prefecture Hiratsuka City Higashi Ya wata 5-6-2 Mitsubishi Gas Chemical Co. Inc. (DB 69-055-3706) plastic center

(72) [Inventor]

[Name] Mizutani sincerity

[Address] Inside of Kanagawa Prefecture Hiratsuka City Higashi Ya wata 5-6-2 Mitsubishi Gas Chemical Co. Inc. (DB 69-055-3706) plastic center

[Examiner] Morikawa Satoshi

(56) [Citation(s)]

[Literature] International Patent Publication 91/885(WO,A1)

(58) [Field of Search] (International Class 6,DB name)

C08G 64/08

(57) [Claim(s)]

[Claim 1] Combining with aromatic polycarbonate resin 95 to 50 weight % and copolycarbonate resin 5 to 50 weight % which possesses structural unit whichis displayed with below-mentioned structural formula (A) and (B) flame-resistant polycarbonate resin composition which becomes.

Structural formula (A);

構造式(B):

$$\begin{array}{c|c}
 & R^2 & 0 \\
\hline
 & 0 & 0 \\
\hline
 & 0 & 0
\end{array}$$

(構造式 (A) の n は 1 ~ 200の整数を示し、R は炭素数 2 ~ 6 のアルキレン基を示す。また、構造式 (B) のB は炭素数 1 ~ 10の直鎖、分岐鎖或いは環状のアルキリデン基、アリール置換アルキレン基、アリール基又は-O-, $-SO_2$ - を示し、R¹、R²、R³及びR⁴は水素、ハロゲン又は炭素数 1 ~ 4 のアルキル基を示す。)

【請求項2】該コーポリカーボネート樹脂の構造式 (A) で表される構造単位が0.2~50重量%である請求項1記載の難燃性ポリカーボネート樹脂組成物。

【請求項3】該コーポリカーボネート樹脂の構造式(A)中のRが、一CHR5ーCH₂ー(式中のR5はベンゼン環側の炭素原子に結合したものであり、水素またはメチル基を表す。)である請求項1記載の難燃性ポリカーボネート樹脂組成物。

【発明の詳細な説明】 [産業上の利用分野]

本発明は、機械的性質、特に低温下での耐衝撃性に優れ、 良好な外観および良好な成形加工性を示す難燃性の改良され たポリカーボネート樹脂組成物であり、透明性にも優れてい るので種々の用途にも好適に使用可能なものである。

〔従来の技術および課題〕

芳香族ポリカーボネート樹脂は耐熱性、耐衝撃性、電気特性、寸法安定性などに優れ、かつ、透明であることから有用なエンジニアリングプラスチックとして種々の用途に利用されている。

しかし、難燃性が必ずしも充分ではない。この改良法として、従来、芳香族ポリカーボネート樹脂の難燃性を改良する目的で、Brを含有するポリカーボネート共里合体としたり、Brを含有するポリカーボネートオリゴマーを配合する方法が、機械的特性、耐熱性などの物性バランスの点から用いられているが、ポリカーボネート樹脂の優れた耐衝撃性が劣ってくるものであった。

[課題を解決するための手段]

Structural formula (B);

(n of structural formula (A) shows integer of 1 to 200, R showsthe carbon number 2 to 6 alkylene group. In addition, B of structural formula (B) carbon number 1 to 10 straight chain, branched chain or cyclicthe alkylidene group, shows aryl substituted alkylene group, aryl group or - O - , - S - , - CO - , - SO2 -, R1, the R2 and R3 and R4 show hydrogen, halogen or carbon number 1 to 4 alkyl group.

[Claim 2] Flame-resistant polycarbonate resin composition which is stated in Claim 1 where structural unit which is displayed with structural formula (A) of said copolycarbonate resin is 0.2 to 50 weight %.

[Claim 3] R in structural formula (A) of said copolycarbonate resin, fl ame-resistant polycarbonate resin composition which is stated in the Claim 1 which is a - CH Rs - CH2 - (Rs in Formula is something which is connected to carbon atom of benzene ring side, hydrogen or methyl group is displayed.).

[Description of the Invention] (Industrial Area of Application)

This invention, to be superior in impact resistance under mechanic al property and theespecially low temperature, to be a polycarbonate resin composition where satisfactory external appearance and theflame resistance which shows satisfactory molding property are improved, because it issuperior even in transparency, they are useable ones ideally even in the various application.

(Prior Art and problem)

Aromatic polycarbonate resin is superior in heat resistance, impact resistance, electrical property and dimensional stability etc at same time, is utilized in various application as useful engineering plastic from the fact that it is a transparent.

But, flame resistance is not satisfactory always. As this improved m ethod, method which combines polycarbonate oligomer which until recently, with objective which improves flame resistance of aromatic polycarbonate resin, it makes polycarbonate copolymer which contains Br, contains Br, is usedfrom point of mechanical property and heat resistance or other property balance, but it was something towhich impact resistance where polycarbonate resin is superior is inferior.

(means in order to solve problem)

本発明者らは、芳香族ポリカーボネート樹脂にポリシロキ サン鎖を有するコーポリカーボネート樹脂を配合することに より、難燃性が改良されることを見出し、本発明に到達した 。

すなわち、本発明は、芳香族ポリカーボネート樹脂95~50 重量%と下記構造式(A)及び(B)で表される構造単位を 有するコーポリカーボネート樹脂5~50重量%とを配合して なる難燃性ポリカーボネート樹脂組成物である。

構造式(A);

構造式(B):

(構造式 (A) の n は 1 ~ 200の正数を示し、R は炭素数 2 ~ 6 のアルキレン基を示す。また、構造式 (B) のB は炭素数 1 ~ 10の直鎖、分岐鎖或いは環状のアルキリデン基、アリール置換アルキレン基、アリール基又は-O-, $-SO_2-$ を示し、R1、R2、R3及びR4は水素、ハロゲン又は炭素数 1 ~ 4 のアルキル基を示す。)

又、本発明において、該コーポリカーボネート樹脂の構造式(A)で表される構成単位が0.2~50重量%であること、更に、構造式(A)中のRが、一CHR5ーCH2ー(式中のR5はペンゼン環側の炭素原子に結合したものであり、水素またはメチル基を表す。)であることからなる難燃性ポリカーボネート樹脂組成物である。

以下、本発明の構成について説明する。

本発明の芳香族ポリカーボネート樹脂とは、二価フェノール系化合物とホスゲン、炭酸エステル、或いはクロロホーメートとを反応させる従来の芳香族ポリカーボネート樹脂の製法により製造されるものである。

また、本発明のコーポリカーボネート樹脂は、構成単位としてシリコーン鎖、脂肪鎖を有するビスフェノールからなる前記構造式(A)の構成単位を有することを特徴とするもの

These inventors, discovered fact that flame resistance is improved by combiningthe copolycarbonate resin which possesses polysiloxane chain in aromatic polycarbonate resin, arrived in the this invention.

Namely, this invention, combining with aromatic polycarbonate re sin 95 to 50 weight % and copolycarbonate resin 5 to 50 weight % which possesses the structural unit which is displayed with belowmentioned structural formula (A) and (B) is flame-resistant polycarbonate resin composition which becomes.

Structural formula (A);

Structural formula (B);

(n of structural formula (A) shows positive number of 1 to 200, R shows the carbon number 2 to 6 alkylene group. In addition, B of structural formula (B) carbon number 1 to 10 straight chain , branched chain or cyclicthe alkylidene group , shows aryl substituted alkylene group , aryl group or - O - , - S - , - CO - , - SO2 - , R1 , the R2 and R3 and R4 show hydrogen , halogen or carbon number 1 to 4 alkyl group.)

Regarding to also, this invention, constituting unit which is displayed with structural formula (A) of the said copolycarbonate resin is 0.2 to 50 weight %, furthermore, R in structural formula (A), is the flameresistant polycarbonate resin composition which consists of fact that it is a - CH R5 - CH2 - (R5 in Formula is something which is connected to carbon atom of benzene ring side, hydrogen or methyl group is displayed.).

You explain below, concerning constitution of this invention.

Aromatic polycarbonate resin of this invention, bivalent phenol compound and phosgene, carbonate ester or thechloroformate is something which is produced by production method of conventional aromatic polycarbonate resin whichreacts.

In addition, it is something where manufacturing method where cop olycarbonate resin of the this invention is something which designates that it possesses constituting unit of theaforementioned であり、従来の芳香族ポリカーボネート樹脂の製法において、下記した一般式(1)のシリコーン鎖、脂肪鎖を持った二 価フェノールを一部に使用することを除き従来の界面重合法 と同様の製造方法が好適に適用されるものである。

structural formula (A) which consists of bisphenol which possesses the silicone chain and aliphatic chain as constituting unit as feature is similar to conventional interfacial polymerization method the silicone chain of General Formula (1) which was inscribed, excluding fact that the bivalent phenol which had aliphatic chain is used for part in production method of the conventional aromatic polycarbonate resin, under is applied ideally.

一般式(1);

式中のn、Rは構造式(A)と同じである。

本発明で用いるコーポリカーボネート樹脂中の構造式(A) で表される構成単位は、特に限定されないが、好ましくは 0.2~50重量%の範囲、特に0.5~25重量%の範囲が好適であ り、構造式(A)中のシロキサン単位の繰り返し数(n)は 1~200の範囲、好ましくは5~100の範囲である。又、該構 造式(A)中のRとしては、エチレン、プロピレン、イソプ ロピレン、ブチレン、ペンチレン、ヘキシレンなどが例示さ れるが、特に $-CHR^5-CH_2-$ (式中の R^5 はベンゼン環側の炭 素原子に結合したものであり、水素またはメチル基を表す。)が好適である。この構造式(A)の構成単位は、前記一般 式(1)で表されるフェノール性水酸基を両末端に有する二 価フェノールを通常のビスフェノールと同様に用いることに より導入されるものである。この一般式(1)で表される化 合物は、オレフィン性の不飽和炭素-炭素結合を有するフェ ノール類、好適にはビニルフェノールやイソプロペニルフェ ノールを所定の重合度(n)を有するポリシロキサン鎖の末 端に、ハイドロシラネーション反応させることにより容易に 製造されるものである。

ここに、上記した芳香族ポリカーボネート樹脂を製造する ため、又はコーポリカーボネート樹脂のコーモノマーとして 用いることが可能な二価フェノール系化合物としては、ビス (4-ヒドロキシフェニル) メタン、ビス (4-ヒドロキシ フェニル) エーテル、ピス (4-ヒドロキシフェニル) スル ホン、ピス(4ーヒドロキシフェニル)スルホキシド、ビス (4-ヒドロキシフェニル) スルフィド、ビス (4-ヒドロ キシフェニル)ケトン、1.1ーピス(4-ヒドロキシフェニル) エタン、2,2-ピス(4-ヒドロキシフェニル) プロパン、 2.2-ピス(4-ヒドロキシフェニル) ブタン、1.1-ピス(4-ヒドロキシフェニル) シクロヘキサン、2,2-ピス (4-ヒドロキシー3.5-ジブロモフェニル)プロパン、2.2-ビス (4-ヒドロキシー3.5-ジクロロフェニル) プロパン、2.2 ービス(4ーヒドロキシー3ープロモフェニル)プロパン、 2.2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン 、2.2-ビス(4-ヒドロキシ-3.5-ジメチルフェニル)プ

General Formula (1);

N in Formula, R is same as structural formula (A).

Constituting unit which is displayed with structural formula (A) in copolycarbonate resin which is used with this invention is not limited especially. Range of preferably 0.2 to 50 weight % and range of especially 0.5 to 25 weight % are ideal, therepeat number (n) of siloxane unit in structural formula (A) is range of 1 to 200 and range of the preferably 5 to 100. As R in also, said structural formula (A), ethylene, propylene, isopropylene, butylene, the pentylene and hexylene etc are illustrated, but especially - CHR5 - CH2 -(R5 in Formula is something which is connected to carbon atom ofbenzene ring side, hydrogen or methyl group is displayed.) is ideal. constituting unit of this structural formula (A) is something which is introduced bivalent phenolwhich possesses phenolic hydroxy group which is displayed with aforementioned General Formula (1) in both ends by using in same way as conventional bisphenol. compound which is displayed with this General Formula (1), phenols which possesses unsaturated carbon-carbon bond of olefinic, ideally vinyl phenol and isopropenyl phenol in he end of polysiloxane chain which possesses specified degree of polymerization (n), is something which is produced easily hydrosilanation by reacting.

Here, aromatic polycarbonate resin which was inscribed is produc ed for sake of, bis (4 - hydroxyphenyl) methane, bis (4 hydroxyphenyl) ether, bis (4 - hydroxyphenyl) sulfone, bis (4 hydroxyphenyl) sulfoxide, bis (4 - hydroxyphenyl) sulfide, bis (4 hydroxyphenyl) ketone, the 1,1 - bis (4 - hydroxyphenyl) ethane, 2, 2 - bis (4 - hydroxyphenyl) propane, 2,2 - bis (4 - hydroxyphenyl) butane, 1,1 - bis (4 - hydroxyphenyl) cyclohexane and 2,2 - bis (4 hydroxy - 3,5-di bromophenyl) propane, the 2,2 - bis (4 - hydroxy -3,5-di chlorophenyl) propane, 2,2 - bis (4 - hydroxy - 3 bromophenyl) propane, 2,2 - bis (4 - hydroxy - 3-chloro phenyl) propane, 2,2 - bis (4 - hydroxy - 3,5-di methylphenyl) propane, 1, 1 - bis (4 - hydroxyphenyl) - 1 - phenylethane and bis (4 hydroxyphenyl) diphenylmethane are illustrated as co-monomer of the or copolycarbonate resin as bivalent phenol compound whose it is possible to use. Among these 2,2 - bis (4 - hydroxyphenyl) propane and 1,1 - bis (4 - hydroxyphenyl) cyclohexane are desirable

ロパン、1.1-ビス(4-ヒドロキシフェニル)-1-フェニ ルエタン、ピス (4-ヒドロキシフェニル) ジフェニルメタ ンが例示される。これらの中で2.2-ビス(4-ヒドロキシフ ェニル)プロパン、1.1-ビス(4-ヒドロキシフェニル)シ クロヘキサンが熱安定性の面から好ましい。また、末端停止 剤或いは分子量調節剤を通常使用するものであり、これらと しては一価のフェノール性水酸基を有する化合物が挙げられ 、通常のフェノール、p-第三ブチルフェノール、トリブロ モフェノールなどの他に、長鎖アルキルフェノール、脂肪族 カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息 香酸アルキルエステル、ヒドロキシ・フェニル酸アルキルエ ステル、アルキルエーテルフェノールなどが例示される。そ の使用量は用いる全ての二価フェノール系化合物100モルに対 して、100~0.5モル、好ましくは50~2モルの範囲であり、 二種以上の化合物を併用することも当然に可能である。更に 分岐化剤を上記の二価フェノール系化合物に対して、0.01~ 3モル%、特に0.1~1.0モル%の範囲で併用して分岐化ポリ カーボネートと出来、分岐化剤としては、フロログリシン、 2.6-ジメチルー2.4.6-トリ(4-ヒドロキシフェニル)へ プテン-3、4.6-ジメチル-2,4.6-トリ(4-ヒドロキシ フェニル) ヘプテン-2、1,3,5-トリ(2-ヒドロキシフェ ニル) ペンゾール、1.1.1ートリ(4ーヒドロキシフェニル) エタン、2.6-ビス(2-ヒドロキシ-5-メチルベンジル) -4-メチルフェノール、 α , α' , α'' ートリ (4-ヒド ロキシフェニル) -1.3.5-トリイソプロピルベンゼンなどで 例示されるポリヒドロキシ化合物、及び3,3-ビス(4-ヒド ロキシアリール) オキシインドール (=イサチンピスフェノ ール)、5-クロルイサチン、5,7-ジクロルイサチン、5-ブロムイサチンなどが例示される。

本発明の上記成分からなる難燃性ポリカーボネート樹脂組成物における芳香族ポリカーボネートとコーポリカーボネート樹脂との配合比率は、特に制限はないものであるが、通常、芳香族ポリカーボネート/コーポリカーボネート樹脂=95/5~50/50の範囲から選択される。本発明のコーポリカーボネート樹脂の配合量が少なすぎると難燃性の改良が不十分であり、一般に好ましくなく、また、配合量が多くとも難燃性の点からは好ましいものであるが、価格、その他の点から副成分とする方が好ましい。

from aspect of the thermal stability. In addition, it is something which usually uses end capping agent or themolecular weight regulator, you can list compound which possesses phenolic hydroxy group of monovalentas these, long chain alkylphenol, aliphatic carboxylic acid chloride, aliphatic carboxylic acid. hydroxybenzoic acid alkyl ester, hydroxy * phenyl acid alkyl ester and the alkyl ether phenol etc are illustrated to conventional phenol, p-t-butyl phenol and tribromo phenol or other otherthings, amount used is range of 100 to 0.5 mole and preferably 50 to 2 mole vis-a-vis all bivalent phenol compound 100 molewhich is used, also it is possible properly to jointly use compound of 2 kinds or more. Furthermore jointly using branching agent in range of 0.01 to 3 mole% and theespecially 0.1 to 1.0 mole% vis-a-vis above-mentioned bivalent phenol compound, it can make thebranched polycarbonate, fluoroglycine and 2,6-di methyl - 2,4. 6 - tri (4 - hydroxyphenyl) heptene - 3, 4,6-di methyl - 2,4,6 - tri (4 hydroxyphenyl) heptene - 2, 1,3,5 - tri (2 - hydroxyphenyl) benzol. polyhydroxy compound, and 3,3 - bis (4 - hydroxy aryl) oxy indole (= isatin bisphenol), 5 - chloro isatin, 5,7-di chloro isatin and 5 bromo isatin etc which are illustrated with 1,1,1 - tri (4 hydroxyphenyl) ethane, 2,6 - bis (2 - hydroxy - 5 - methylbenzyl) -4 - methyl phenol and , ', - tri (4 - hydroxyphenyl) - 1,3,5 tri isopropyl benzene etc areillustrated as branching agent.

As for mixing ratio of aromatic polycarbonate and copolycarbonate resin in flame-resistant polycarbonate resin composition which consists of above-mentioned component of this invention, as for especially restriction it is something which is not, but , it is usually selected from range of aromatic polycarbonate / copolycarbonate resin =95/5 to 50/50. When compounded amount of copolycarbonate resin of this invention is too little, improvement of the flame resistance is insufficient, it is not desirable generally, in addition, but compounded amount also many is desirable ones from point of flame resistance, the one which from cost and other points is made secondary component is desirable.

As though it is above, in flame-resistant polycarbonate resin composition of this invention which is untilrecently, various additive of public knowledge are blendable ones in polycarbonate resin accordingto desire, you can list reinforcing agent, filler, stabilizer, ultraviolet absorber, the antistatic agent, lubricant, mold release, dye and pigment etc as these. As for example stabilizer especially phosphorous acid, or phosphite is ideal. You can list mono of saturated aliphatic acid or ester of polyhydric alcohol as the also, mold release, stearyl stearate, behenyl behenate, pentaerythritol tetra stearate and dipentaerythritol hexa octanoate etc make preferredones and are illustrated. glass powder, glass beads, synthetic mica or fluorination mica, zinc oxide, carbon fiber and the especially fiber diameter, furthermore polycarbonate oligomer from bisphenol A, also the polyester carbonate and polyarylate or other resin such as filler and reinforcing agent of glass fiber, zinc oxide

リゴマー、ポリエステルカーボネート、ポリアリレートなど の樹脂類も当然に目的に応じて適宜好適に用いることができ るものである。

〔実施例〕

以下、実施例および比較例によって本発明を具体的に説明 する。

参考例 1

水酸化ナトリウム3.7kgを水42 ℓに溶解し、20℃に保ちながら、2.2ービス(4ーヒドロキシフェニル)プロパン(以下「BPA」と記す)6,735g、第6頁に示した一般式(1)でn=50のもの(以下「165B」と記す。)356g、ハイドロサルファイト15gを溶解した。

これにメチレンクロライド (以下「MC」と記す) 30.00 を加えて撹拌しつつ、p-t-ブチルフェノール (以下「PTBP」と記す) <math>148g を加え、ついでホスゲン3.5kg を60分で吹き込んだ。

ホスゲン吹き込み終了後、激しく撹拌して反応液を乳化させ、乳化後、8mlのトリエチルアミンを加え約1時間撹拌を続け重合させた。

重合液を、水相と有機相に分離し、有機相をリン酸で中和した後、洗液のPHが中性となるまで水洗を繰り返した後、イソプロパノールを35 ℓ 加えて、重合物を沈澱させた。沈澱物を濾過し、その後乾燥する事により、白色粉末状のコーポリカーボネート樹脂(以下「C-PC05」と記す)を得た。

参考例 2

参考例1において、BPA 6,690g、165B 1,186gとする他は 同様にして、白色粉末状のコーポリカーボネート樹脂(以下 「C-PC15」と記す)を得た。

実施例1~3および比較例1~2

下記第1表に記載の如く、参考例1、2に示した製造法によって製造したコーポリカーボネートと芳香族ポリカーボネート樹脂(三菱瓦斯化学(株)製、ユーピロン S2000、分子量25,000)とを用い、それぞれ単独或いは第1表に記載の量比で配合してシリンダー温度250~270℃の押出機を用いて溶融混練してペレットとした。

このペレットを熱風乾燥機中で120℃にて5時間以上乾燥した後、シリンダー温度270℃にて、物性測定用試験片を製造し、試験した。又、比較の為、テトラブロモビスフェノールAをBrが7重量%となるように用いた共重合ポリカーボネート樹脂(分子量25,000、「Br-CPC」と記す)についても試験した。結果を第1表に示した。

whisker, the stainless steel fiber and Kevlar fiber or other organic or inorganic which also those of 2 mor less include properly are something which can be used for as needed ideal according to the objective.

(Working Example)

This invention is explained concretely below, with Working Example and Comparative Example.

Reference Example 1

While melting sodium hydroxide 3.7 kg in water 42.script-l., mainta ining at 20 °C,the 2,2 - bis (4 - hydroxyphenyl) propane (Below "BPA" with you inscribe.) 6,735g, thing (Below "165B" with you inscribe.) 356g of n=50, it melted the hydrosulfite 15g with General Formula (1) which is shown in p.6.

While agitating in this including methylene chloride (Below "MC" with you inscribe.) 30.script-l., it blew thephosgene 3.5 kg next with 60 min including p - t-butyl phenol (Below "PTBP" with you inscribe.) 148g.

After phosgene recording ending, agitating extremely, emulsifying thereaction mixture, after emulsifying, it continued approximately 1 hour agitationincluding triethylamine of 8 ml and polymerized.

Polymer solution, is separated into aqueous phase and organic phase, afterneutralizing organic phase with phosphoric acid, until pH of washing liquidbecomes neutral, after repeating water wash, 35. script-l. adding the isopropanol, it precipitated polymer. precipitate was filtered, copolycarbonate resin (Below "C-PC05" with you inscribe.) of white powder was acquired the after that by drying.

Reference Example 2

In Reference Example 1, besides it makes BPA 6,690g and 165B 1, 186g copolycarbonate resin (Below "C-PC 15" with you inscribe.) of the white powder was acquired with as similar.

Working Example 1 to 3 and Comparative Example 1 to 2

As though it stated in below-mentioned Table 1, respective aloneo r combining with weight ratio which is stated in Table 1 copolycarbonate andaromatic polycarbonate resin which are produced with production method which is shown in Reference Example 1, 2 (Mitsubishi Gas Chemical Co. Inc. (DB 69-055-3706) make, Jupilon S2000 and molecular weight 25,000) with of making use, melt mixing doing making use of extruder of thecylinder temperature 250 to 270 °C, it made pellet.

This pellet after in hot air dryer above 5 hours drying with 120 °C, with cylinder temperature 270 °C, it produced test piece for physical measurement, tested. For also, comparison, concerning copolymerized polycarbonate resin (molecular weight 25,000, "Br-CPC" with you inscribe.) which in order for the Br to become 7 weight %, uses tetrabromobisphenol Ait tested. result was shown

なお、物性の測定は下記によった。

・燃焼性:UL-94による。試験片厚み1.6mm.

· 1. Z. : アイゾット衝撃値. 単位kg cm/cm.

·H.D.T.: 熱変形温度. 荷重 18.6kg/cm².

・全光線透過率:スガ試験機械(株)製、直読へ一ズコンピューター、厚み3mm.

in Table 1.

Furthermore, measurement of property depended on description below.

* flammability: It depends on UL - 94. test piece thickness 1.6 mm.

*I.Z.: Izod impact value. unit kg*cm/cm.

* H.D.T.: Heat deformation temperature . load 18.6 kg/cm².

* total light transmittance: Suga Test Instruments Co. Ltd. (DN 69-0 70-8508) make, direct reading haze computer and thickness 3 mm.

第1表

·		実 1	実 2	実 3	比1	比 2
組成成分	S-2000 Br-CPC C-PC05 C-PC15	50 50	64. 3 35. 7	82. 1 17. 9	100	100
1.7. 1/4" 23°C 1.7. 1/8" " " -70°C		102 94 68	103 97 89	107 100 70	40 86 23	10 15 10
燃焼性 (1.6mm)		V-1	V-0	V-1	V-2	V-0
II. D. T.	(℃)	132	131	133	135	137
全光線透過	5率 %	89	81	84	90	90

[発明の作用および効果]

本発明の難燃性ポリカーボネート樹脂組成物は難燃性が改良されるばかりでなく、耐衝撃性、特にその厚み依存性と低温での耐衝撃性に極めて優れたものである。従って、一般の成形品は無論のこと、精密成形品、低温用途の成形品としても好適な成形材料として有用なものであることが理解されるものである。

(action and effect of invention)

Flame-resistant polycarbonate resin composition of this invention f lame resistance it is improved not only, is somethingwhich quite is superior in impact resistance, especially thickness dependency and theimpact resistance in low temperature. Therefore, as for general molded article of course, precision molded product, as molded articleof low temperature application, it is something where it understands that they are usefulones as preferred molding material.