Intrusion Detection

CS 458: Information Security Kevin Jin

Administrivia

- Homework 11 solution and Homework 12 released
- Quiz 4 due on Nov 22
- Final Exam
 - Date/Time: Dec 2, Regular class time
 - Exam Review on Nov 30

Reading Material

Chapter 8 of the text

Some materials borrowed from Mark Stamp at San Jose State University

Outline

- What are intrusions?
- Host-based vs. Network-based Intrusion Detection
- Signature-based vs. Anomaly-based Intrusion Detection

What is an Intrusion?

 An unauthorized entity attempts to gain access to a protected resource

- Examples
 - Root compromise
 - Privilege escalation

Intrusion Prevention

- Want to keep bad guys out
- Intrusion prevention is a traditional focus of computer security
 - Authentication is to prevent intrusions
 - Firewalls a form of intrusion prevention
 - Virus defenses aimed at intrusion prevention
 - Like locking the door on your car

Intrusion Detection

- In spite of intrusion prevention, bad guys will sometimes get in
- Intrusion detection systems (IDS)
 - Detect attacks in progress (or soon after)
 - Look for unusual or suspicious activity
- IDS evolved from log file analysis
- How to respond when intrusion detected?
 - alerting administrators via email/pager/phone
 - changing firewall configurations

– ...

Intrusion Detection Systems

- Who is likely intruder?
 - May be outsider who got through firewall
 - May be evil insider
- What do intruders do?
 - Launch well-known attacks
 - Launch variations on well-known attacks
 - Launch new/little-known attacks
 - "Borrow" system resources
 - Use compromised system to attack others. etc.

Bad Detections

- False Positive
 - Detect activity as an intrusion, but it isn't
 - Reduce by loosening intrusion detection rules
- False Negative
 - Miss reporting bad behavior as an intrusion
 - Reduce by tightening intrusion detection rules

Director/analyser (Potentially hierarchical)

- performs more significant processing of the data
- perform a time-based correlation to derive more significant actions from multiple sources

ce/Monitor

Notifiers: perform some action in response to a detected attack

- Popup a window on a screen
- Send an email or a page
- Send a new syslog message elsewhere
- Adjust a firewall or some other policy to block future action from the attacker

Data Sources

- Direct data
 - Network packets
 - System calls
- Indirect data
 - Syslog data, Windows event logs
 - Events from other intrusion detection systems
 - Netflow information generated by routers about network traffic

IDS

- Intrusion detection approaches
 - Signature-based IDS
 - Anomaly-based IDS
- Intrusion detection architectures
 - Host-based IDS
 - Network-based IDS
- Any IDS can be classified as above
 - In spite of marketing claims to the contrary!

Host-Based IDS

- Monitor activities on hosts for
 - Known attacks
 - Suspicious behavior
- Designed to detect attacks such as
 - Buffer overflow
 - Escalation of privilege, ...
- Little or no view of network activities

Host Based IDS Examples

- Tripwire Very basic detection of changes to installed binaries
- More recent HIDS. Look at patterns of actions of system calls, file activity, etc. to permit, deny, or query operations
 - Cisco Security Agent
 - Symantec
 - McAfee Entercept

Network-Based IDS

- Monitor activity on the network for...
 - Known attacks
 - Suspicious network activity
- Designed to detect attacks such as
 - Denial of service
 - Network probes
 - Malformed packets, etc.
- Some overlap with firewall
- Little or no view of host-base attacks
- Can have both host and network IDS

Classical NIDS deployment

NIDS Remediation Options

- Log the event
 - Send text or email
- Reset the connection
- Change the configuration of a nearby router or firewall to block future connections

Signature Detection Example

- Failed login attempts may indicate password cracking attack
- IDS could use the rule "N failed login attempts in M seconds" as signature
- If N or more failed login attempts in M seconds,
 IDS warns of attack
- Note that such a warning is specific
 - Admin knows what attack is suspected
 - Easy to verify attack (or false alarm)

Signature Detection

- Suppose IDS warns whenever N or more failed logins in M seconds
 - Set N and M so false alarms not common
 - Can do this based on "normal" behavior
- But, if Eve knows the signature, he/she can try
 N 1 logins every M seconds...
- Then signature detection slows down Eve, but might not stop him/her

Signature Detection

- Many techniques used to make signature detection more robust
- Goal is to detect "almost" signatures
- For example, if "about" N login attempts in "about" M seconds
 - Warn of possible password cracking attempt
 - What are reasonable values for "about"?
 - Can use statistical analysis, heuristics, etc.
 - Must not increase false alarm rate too much

Example Signature

- Signature for port sweep
 - A set of TCP packets attempting to connect to a sequence of ports on the same device in a fixed amount of time
- In some environments, the admin might run nmap periodically to get an inventory of what is on the network
 - You would not want to activate this signature in that case

Signature Detection

- Advantages of signature detection
 - Simple
 - Detect known attacks
 - Know which attack at time of detection
 - Efficient (if reasonable number of signatures)
- Disadvantages of signature detection
 - Signature files must be kept up to date
 - Number of signatures may become large
 - Can only detect known attacks
 - Variation on known attack may not be detected

Anomaly Detection

- Anomaly detection systems look for unusual or abnormal behavior
- There are (at least) two challenges
 - What is normal for this system?
 - How "far" from normal is abnormal?
- No avoiding statistics here!
 - mean defines normal
 - variance gives distance from normal to abnormal

How to Measure Normal?

- Must measure during "representative" behavior
- Must not measure during an attack...
- ...or else attack will seem normal!
- Normal is statistical mean
- Must also compute variance to have any reasonable idea of abnormal

How to Measure Abnormal?

- Abnormal is relative to some "normal"
 - Abnormal indicates possible attack
- Statistical discrimination techniques include
 - Bayesian statistics
 - Linear discriminant analysis (LDA)
 - Quadratic discriminant analysis (QDA)
 - Neural nets, hidden Markov models (HMMs), etc.
- Fancy modeling techniques also used
 - Artificial intelligence
 - Artificial immune system principles
 - Many, many, many others

- Suppose we monitor use of three commands:
 open, read, close
- Under normal use we observe Alice:
 - open, read, close, open, open, read, close, ...
- Of the six possible ordered pairs, we see four pairs are normal for Alice,
 - (open, read), (read, close), (close, open), (open, open)
- Can we use this to identify unusual activity?

- We monitor use of the three commands open, read, close
- If the ratio of abnormal to normal pairs is "too high", warn of possible attack
- How could we improve this approach?
 - Also use expected frequency of each pair
 - Use more than two consecutive commands
 - Include more commands/behavior in the model
 - More sophisticated statistical discrimination

• Over time, Alice has accessed file F_n at rate H_n

Recently, "Alice" has
accessed F_n at rate A_n

H_0	H_1	H_2	H_3
.10	.40	.40	.10

A_0	A_1	A_2	A_3
.10	.40	.30	.20

- Is this normal use for Alice?
- We compute $S = (H_0 A_0)^2 + (H_1 A_1)^2 + ... + (H_3 A_3)^2 = .02$
 - o If we consider S < 0.1 to be normal, this is normal
- How to account for use that varies over time?

- To allow "normal" to adapt to new use, we update averages: $H_n = 0.2A_n + 0.8H_n$
- In this example, H_n are updated $H_2 = 0.2 * 0.3 + 0.8 * 0.4 = 0.38$ and $H_3 = 0.2 * 0.2 + 0.8 * 0.1 = 0.12$
- And we now have

H_0	H_1	H_2	H_3
.10	.40	.38	.12

 The updated long term average is

H_0	H_1	H_2	H_3
.10	.40	.38	.12

□ Suppose new observed rates...

A_0	A_1	A_2	A_3
.10	.30	.30	.30

- □ Is this normal use?
- □ Compute $S = (H_0 A_0)^2 + ... + (H_3 A_3)^2 = .0488$
 - o Since S = .0488 < 0.1, we consider this normal
- □ And we again update the long term averages:

$$H_n = 0.2A_n + 0.8H_n$$

The starting averages were:

H_0	H_1	H_2	H_3
.10	.40	.40	.10

■ After 2 iterations, averages are:

H_0	H_1	H_2	H_3
.10	.38	.364	.156

- □ Statistics slowly evolve to match behavior
- □ This reduces false alarms
- □ But also opens an avenue for attack...
 - o Suppose Eve always wants to access F₃
 - o Can he/she convince IDS this is normal for Alice?

Anomaly Detection Issues

- Systems constantly evolve and so must IDS
 - Static system would place huge burden on admin
 - But evolving IDS makes it possible for attacker to (slowly) convince IDS that an attack is normal
 - Attacker may win simply by "going slow"
- What does "abnormal" really mean?
 - Indicates there may be an attack
 - Might not be any specific info about "attack"
 - How to respond to such vague information?
 - In contrast, signature detection is very specific

Anomaly Detection

- Advantages?
 - Chance of detecting unknown attacks
- Disadvantages?
 - Cannot use anomaly detection alone...
 - must be used with signature detection
 - Reliability is unclear
 - May be subject to attack
 - Anomaly detection indicates "something unusual", but lacks specific info on possible attack

Anomaly Detection the Bottom Line

- Anomaly-based IDS is active research topic
- Many security experts have high hopes for its ultimate success
- Often cited as key future security technology
- Hackers are not convinced!
 - Title of a talk at Defcon: "Why Anomaly-based IDS is an Attacker's Best Friend"
- Anomaly detection is difficult and tricky
- As hard as AI?

Summary

- Detecting intrusions accurately enough is difficult
- Dynamic IDS is necessary to keep up with attackers
- IDS can be applied to hosts and networks