Resumé sur les structures algébriques des ensembles avec opérations

Groupes

Groupe = ensemble G muni d'une opération $\circ: G \times G \longrightarrow G$, notée $(x,y) \mapsto x \circ y$, telle que :

- \circ est **associative** : $(x \circ y) \circ z = x \circ (y \circ z)$ pour tout $x, y \in G$;
- il existe un (unique) élément neutre $e \in G$ tel que $x \circ e = e \circ x = x$ pour tout $x \in G$;
- tout élément $x \in G$ a un (unique) inverse $x^{-1} \in G$ tel que $x \circ x^{-1} = x^{-1} \circ x = e$.

Un groupe (G, \circ) s'appelle **abélien** si l'opération \circ est **commutative** : $x \circ y = y \circ x$ pour tout $x, y \in G$.

Exemples

- 1. Nombres:
 - $(\mathbb{N}, +)$ et (\mathbb{N}, \cdot) ne sont pas des groupes car l'opposé et l'inverse d'un nombre naturel ne sont pas des nombres naturels;
 - $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ et $(\mathbb{C}, +)$ sont des groupes abéliens avec élément neutre = zéro 0;
 - si on note $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ (et même chose pour \mathbb{Q} , \mathbb{R} et \mathbb{C}), l'ensemble (\mathbb{Z}^*, \cdot) n'est pas un groupe, alors que (\mathbb{Q}^*, \cdot) , (\mathbb{R}^*, \cdot) et (\mathbb{C}^*, \cdot) sont des groupes abéliens avec élément neutre = unité 1.
 - (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) et (\mathbb{C},\cdot) ne sont pas des groupes car 0 n'est pas inversible.
- 2. Polynômes : pour $\mathbb{K} = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ et \mathbb{C} ,
 - les ensembles ($\mathbb{K}[x]$, +) sont des groupes abéliens avec élément neutre = polynôme nul 0;
 - si on note $\mathbb{K}[x]^* = \mathbb{K}[x] \setminus \{0\}$, aucun des ensembles $(\mathbb{K}[x]^*, \cdot)$ n'est un groupe.
- 3. Matrices: pour $\mathbb{K} = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ et \mathbb{C} ,
 - les ensembles $(\mathcal{M}at_{mn}(\mathbb{K}), +)$ sont des groupes abéliens avec élément neutre = matrice nulle 0;
 - si on note $\mathcal{M}at_{mn}(\mathbb{K})^* = \mathcal{M}at_{mn}(\mathbb{K}) \setminus \{0\}$, aucun des ensembles $(\mathcal{M}at_{mn}(\mathbb{K})^*, \cdot)$ n'est un groupe.
- 4. Fonctions:
 - L'ensemble des fonctions d'une variable réelle $\mathcal{F}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) \mid \text{ fonction avec domaine } D_f \subset \mathbb{R} \}$ est un groupe avec l'addition (f+g)(x) := f(x) + g(x) et l'élément neutre = fonction nulle 0(x) = 0.
 - L'ensemble des fonctions $\mathcal{F}(\mathbb{R})^* = \mathcal{F}(\mathbb{R}) \setminus \{0\}$ est un groupe avec la multiplication $(f \cdot g)(x) := f(x) \cdot g(x)$ et l'élément neutre = fonction constante 1(x) = 1.

N.B. La fonction inverse f^{-1} est définie par $f^{-1}(x) = \frac{1}{f(x)}$ sur le domaine $D_{f^{-1}} = \{x \in D_f \mid f(x) \neq 0 \}$.

Anneaux

Anneau = ensemble A muni de deux opérations $+, \circ : A \times A \longrightarrow A$ telles que :

- (A, +) est un groupe abélien, avec élément neutre noté $0 \in A$ et appellé **zéro** de l'anneau;
- \circ est associative : $(x \circ y) \circ z = x \circ (y \circ z)$, pour tout $x, y \in A$;
- l'opération \circ est **distributive** par rapport à l'opération +: $\left\{ \begin{array}{l} (x+y)\circ z=x\circ z+y\circ z\\ x\circ (y+z)=x\circ y+x\circ z \end{array} \right.$, pour tout $x,y,z\in A.$

Un anneau $(A, +, \circ)$ s'appelle **commutatif** si l'opération \circ est commutative.

Un anneau $(A, +, \circ)$ s'appelle **unitaire** si l'opération \circ a un élément neutre noté $1 \in A$ et appellé **unité** de l'anneau.

Exemples Pour $\mathbb{K} = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ et \mathbb{C} :

- 1. Nombres: les ensembles $(\mathbb{K}, +, \cdot)$ sont des anneaux commutatifs et unitaires.
- 2. Polynômes : les ensembles $(\mathbb{K}[x], +, \cdot)$ sont des anneaux commutatifs et unitaires.
- 3. Matrices: les ensembles $(\mathcal{M}at_{mn}(\mathbb{K}), +, \cdot)$ sont des anneaux unitaires <u>non</u> commutatifs.
- 4. Fonctions : $(\mathcal{F}(\mathbb{R}), +, \cdot)$ est un anneau commutatif unitaire avec unité = fonction constante 1(x) = 1.

Corps

Corps = anneau unitaire $(K, +, \circ)$ tel que si on note $K^* = K \setminus \{0\}$, alors (K^*, \circ) est un groupe.

Un corps $(K, +, \circ)$ s'appelle **commutatif** si l'opération \circ est commutative.

Exemples

- 1. Nombres:
 - l'anneau $(\mathbb{Z}, +, \cdot)$ n'est pas un corps;
 - pour $\mathbb{K} = \mathbb{Q}$, \mathbb{R} et \mathbb{C} , les anneaux $(\mathbb{K}, +, \cdot)$ sont des corps commutatifs.
- 2. Polynômes : pour $\mathbb{K} = \mathbb{Q}$, \mathbb{R} et \mathbb{C} , aucun des anneaux $(\mathbb{K}[x], +, \cdot)$ n'est un corps.
- 3. Matrices: pour $\mathbb{K} = \mathbb{Q}, \mathbb{R}$ et \mathbb{C} , aucun des anneaux $(\mathcal{M}at_{mn}(\mathbb{K}), +, \cdot)$ n'est un corps.
- 4. Fonctions: l'anneau $(\mathcal{F}(\mathbb{R}), +, \cdot)$ est un corps.