Covariance matrix of a two-dimensional dataset

TOTAL POINTS 5

1. Compute the covariance matrix for the following dataset

1/1 point

1/1 point

$$\mathcal{D} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \end{bmatrix} \right\}$$

Here, every column vector represents a data point.

Do the exercise using pen and paper.

- $\bigcirc \begin{bmatrix} 2 & 2 \\ 4 & 1 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
 - ✓ Correct

 Good job!
- 2. Consider a data set $\mathcal D$ with covariance matrix $egin{bmatrix} 3 & 2 \ 2 & 4 \end{bmatrix}$.

What is the covariance matrix if we multiply every vector in $\mathcal D$ by 2?

- $\bigcirc \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}$
- $\bigcirc
 \begin{bmatrix}
 16 & 8 \\
 8 & 12
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$

Yes, every element in the covariance matrix is multiplied by 4.

Consider the data set $\mathcal{D}=\left\{ egin{array}{c} 1 \\ 2 \end{bmatrix}, egin{array}{c} 7 \\ 4 \end{bmatrix} \right\}$ with covariance matrix $egin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$. 1/1 point Compute the new covariance matrix when we add $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ to each element in \mathcal{D} . $\bigcirc \begin{bmatrix} 11 & 5 \\ 5 & 3 \end{bmatrix}$ B Correct Well done. The covariance will not change. Provide a valid 2x2 covariance matrix by replacing the -1 entries in the code below. 1 - def covariance_matrix():
2 """Return a valid 2x2 covariance matrix""" covariance_matrix = np.array([[9, 3], [3, 1]]) Run return covariance_matrix 7 print(covariance matrix()) Reset [[9 3] [3 1]] Correct Good job!

5.	We are looking at a data set $\mathcal D$ where every element in $\mathcal D$ consists of an x and y coordinate. The data covariance matrix is given by
	$\begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$
	Which of the following statements is correct?
	$\textcircled{m{e}}$ x and y are positively correlated, i.e., when x increases then y increases on average, and vice versa.
	$\bigcirc x$ and y are negatively correlated, i.e., when x increases then y decreases on average, and vice versa.
	$\bigcirc x$ and y are uncorrelated, i.e., when x increases then y does not change on average (and vice versa).
	✓ Correct Well done!