Die Stoffmengen im Reaktionsverlauf

Essigsäure und Ethanol werden mit Zugabe von Schwefelsäure als Katalysator in ein Gefäß gefüllt und erwärmt. Es findet eine **Esterkondensation** statt.

Veränderung der Stoffmenge von Essigsäure und Ester während der Reaktion:

Zeit	Stoffmenge Essigsäure	Stoffmenge Ester
(min)	(mol)	(mol)
0	1	0
1	0,9	0,1
2	0,8	0,2
3	0,75	0,25
4	0,7	0,30
5	0,65	0,35
10	0,5	0,5
15	0,42	0,58
20	0,35	0,65
25	0,36	0,64
30	0,33	0,67
35	0,33	0,67

Aufgaben:

1. Setze die Tabelle in einem Liniendiagramm graphisch um:

Y-Achse: Konzentration Essigsäure, bzw. Ester

X-Achse: Zeit

2. Interpretiere die Graphik:

Beschreibe und interpretiere die Veränderung der Stoffmenge zu Beginn und am Ende der Reaktion? Was bedeutet das für die Zusammensetzung des Reaktionsgemischs im Gefäß?