МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Кафедра прикладної математики

Курсовий проект на тему:

«Метод Розенброка»

із дисципліни

«Дослідження операцій»

Виконав:

Студент групи КМ-82

Карпілов В.І.

Керівник:

Ладогубець Т.С

Зміст

ТЕОРЕТИЧНІ ВІДОМОСТІ				
Практичні дослідження та висновки	6			
Опис параметрів функції	7			
Критерій закінчення	8			
Виду метода одновимірного пошуку (ДСК-Пауелла або Золотого перетину)	8			
Точності метода одновимірного пошуку	10			
Значення параметру в алгоритмі Свена	12			
Залежність від параметрів методу	14			
Залежність від початкового кроку	14			
Залежність від R	15			
Модифікації методу.	17			
Розташування локального мінімума	18			
Виду допустимої області	20			
Висновок	22			
Література	24			
Додаток(код програми)	26			

ПОСТАНОВКА ЗАДАЧІ

Дослідити збіжність адаптивного методу випадкового пошуку зі зміним кроком при мінімізації кореневої функції в залежності від:

- 1. Виду метода одновимірного пошуку (ДСК-Пауелла або Золотого перетину).
- 2. Точності метода одновимірного пошуку.
- 3. Значення параметру в алгоритмі Свена.
- 4. Параметрів методу.
- 5. Модифікації методу.

Використати адаптивний метод випадкового пошуку зі зміним кроком в якості метода спуску для умовної оптимізації в залежності від:

- 1. Розташування локального мінімума (всередині / поза допустимою областю).
- 2. Виду допустимої області (випукла / невипукла / з лінійними обмеженнями).

ТЕОРЕТИЧНІ ВІДОМОСТІ

Основна ідея методу випадкового пошуку полягає в тому, що точку кожного пробного досвіду для вивчення поверхні відгуку в районі базової (початкової) точки вибирають випадковим чином (звідси і назва методу). Незважаючи на довільність вибору пробної точки, алгоритм випадкового пошуку дозволяє послідовно наближатися до екстремальної області. Досліди проводять у вихідній (початкової) точці і в випадково обраної пробної точці, вимірювання відгуку в них порівнюють і, якщо шукається максимум, роблять робочий крок в напрямку зростання цільової функції. Нову робочу точку приймають за нову початкову і знову вибирають пробну точку випадковим чином. Зазвичай довжина робочого кроку перевищує інтервал варіювання між нульовою і пробної точками.

рис 1. Візуалізація роботи алгоритму

Випадкове значення точки розраховується наступним чином:

$$x^{(k+1)} = x^{(k)} + \lambda^{(k)} \left[\beta \frac{z^{(k)}}{\|z^{(k)}\|} + (1 - \beta) r^{(k)} \right]$$

де

 $\lambda^{(k)}$ — величина кроку (збільшується після успіху, зменшується після невдачі),

 $r^{(k)}$ одиничний вектор нормальних відхилень,

 β – коефіцієнт, що змінюється у процесі пошуку,

Стратегія пошуку полягає у наступному:

Вибирається довільна точка

Береться вектор заданої довжини у випадковому напрямку

Якщо значення функції у отриманій точці менше початкового - вона стає новою початковою з збільшенням (для прискорення наближення)

Якщо протягом заданої кількості ітерацій функція не зменшується - зменшуємо крок

Практичні дослідження та висновки

В якості досліджуваної функції у даній курсовій роботі виступає функція Розенброка, яка відома, зокрема, завдяки тому, що вона має дуже вигнутий «яр» (рос. овраг). Такі «ярові» функції є досить важкими для дослідження, зокрема, використовуючи евристичні методі.

рис 2. Графік функції Розенброка

Функція Розеброка в околі точки мінімума

Програма була написана мові програмування Python з використанням бібліотеки питру. Метод Розенброка був протестований на

функції Розенброка:
$$f(x_1, x_2) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2$$
 Початкова точка $\mathbf{x}^{(0)} = (-1, 2; 0, 0)$.

Опис параметрів функції

В якості початкового кроку було обрано 1е-2

Параметр який відповідає за довжину кроку на першій ітерації В якості макс кількості випадкових векторів було обрано 1e+3

Параметр який відповідає за максимальну кількість ітерацій яку алгоритм може здійснити для пошуку точки, $\mathbf{x}^{(k)}$

В якості є

1e-3

Критерій закінчення

Основний критерій закінчення було обрано: $\|\Delta y\| \le \varepsilon$ (1)

Оскільки він дає найбільшу точність, проте через особливості алгоритмів з випадковою генерацією - було додано ще один критерій зупинки N>Mде N це кількість спроб зі зменшенням кроку під час яких не було знайдено жодної точки меншої, ніж наявний мінімум.

Виду метода одновимірного пошуку (ДСК-Пауелла або Золотого перетину)

рис 4. Робота алгоритму з використанням методу Пауелла

При багатократних повторних запусках тенденція зберігалась - вибір методу для оптимізації кроку не сильно впливав на результат, оскільки сам алгоритм має дуже високу швидкість сходження і перерахування кроку відбувається не так часто.

Кодова реалізація

Точності метода одновимірного пошуку

рис 5. Робота алгоритму з точністю метода одновимірного пошуку $\varepsilon = 1$

рис 5. Робота алгоритму з точністю метода одновимірного пошуку $\varepsilon = 0.1$

рис 5. Робота алгоритму з точністю метода одновимірного пошуку ϵ =0.01

Як ми бачимо точність методу одновимірного пошуку доволі сильно впливає на роботу алгоритму, це відбувається оскільки довжина вектору, який ми використовуємо для знаходження нової точки залежить від кроку і якщо ми наблизились до точки мінімуму нам дуже важливо підібрати кофіцієнт таким чином, аби на радіусі вектору знаходилась точка, яка буде менша ніж мінімум, який у нас ε .

Також можна помітити цікаву особливість вірогіднісних алгоритмів - тривалість їх роботи не постійна і залежить не тільки від коефіцієнтів самого алгоритму, так ми бачимо що при точності метода одновимірного пошуку 0.1 алгоритму вдалось знайти спадну послідовність з 33-х точок, на відміну від запуску з точністю 0.01, де, хоч ми і отримали результат ближче до теоретичного, проте знайшли послідовність лише з 30-ти елементів.

Кодова реалізація

```
for i in range(3):
 plotpoints = []
  print(1*10**(-i))
  adaptiveSearch([-1.2,0],
                 h=[1*10**2,1*10**2],
                 n=1*10**3,
                 R=1*10**-i,
                 k=0.9,
                 func= powFunction,
                 h_diff = 1e-3,
                 alpha = 1e-3,
                 eps_singleDim = 1*10**-i,
                 searchAlgorythm='d',
                 max_deep=10)
 plt.plot(plotpoints)
 plt.show()
```

Значення параметру в алгоритмі Свена

рис 6. Робота алгоритму з α = 1

рис 7. Робота алгоритму з q = 0.1

рис 8. Робота алгоритму з q = 0.01

Загалом параметр в алгоритмі свена не сильно впливає на результат, на відміну від точності метода одновимірного пошуку.

Кодова реалізація

Залежність від параметрів методу

Залежність від початкового кроку

рис 8. Робота алгоритму з h = 0.1

рис 9. Робота алгоритму з h = 0.01

рис 9. Робота алгоритму з h = 0.001

Крок 1 не розглядався через те, що мінімуму на цьому радіусі алгоритм явно не знайде, а далі він підбере новий крок і ми не зможемо дослідити залежність саме від початкового кроку

рис 9. Робота алгоритму з R = 0.1

рис 10. Робота алгоритму з R = 0.01

рис 11. Робота алгоритму з R = 0.001

На рис 10 зображено ще одну цікаву особливість випадкових алгоритмів, а саме - на перших ітераціях алгоритм отримав доволі точний результат, насправді це погано, оскільки в цей момент у нього ще досі доволі великий крок, через що він не встигне зменшити його достатньо швидко і припинить роботу, через відсутність прогресії, проте результат був отриманий за мінімальну кількість операцій.

На рис 9 ми бачимо зворотню ситуацію, поступове наближення до результату дає нам отримати доволі довгу послідовність, проте не надто точний результат через низьку задану точність в конкретно даному випадку (R=0.1).

На ри 11 типова робота цього алгоритму - поступове скачко-подібне наближення до мінімуму

Очевидно що при збільшенні точності ми збільшуємо кількість ітерацій та середній час роботи алгоритму, проте завдяки своїм особливостям, як було продемонстровано у випадку 2 - це не завжди має сенс і на великих об'ємах даних це може бути не виправданою тратою ресурсів

Кодова реалізація

Модифікації методу.

У якості модифікації методу було обрано змінити критерій зупинки і відключити можливість зупинки алгоритму через перевищення кількості ітерацій без прогресії

рис 12. Робота алгоритму з useMaxDeep=False

Результат - збільшення кількість ітерацій

Кодова реалізація

Розташування локального мінімума

рис 13. Робота алгоритму з локальним мінімумом в середині області

рис 14. Робота алгоритму з локальним мінімумом ззовні області

def constraint(x):

```
return True
 plotpoints = []
 adaptiveSearch([-1.2,0], h=[1*10**2,1*10**2],
                n=1*10**3, R=1*10**-3, k=0.9,
                func= powFunction,h_diff = 1e-3,
                alpha = 1e-3, eps_singleDim = 1e-2,
                searchAlgorythm='d', max_deep=10,
                constraint=constraint, useMaxDeep=True
 plt.plot(plotpoints)
 plt.show()
def constraint(x):
  return (norm(x-[0,0]) > 0.05)
plotpoints = []
adaptiveSearch([-1.2,0], h=[1*10**2,1*10**2],
               n=1*10**3, R=1*10**-3, k=0.9,
               func= powFunction,h_diff = 1e-3,
               alpha = 1e-3, eps_singleDim = 1e-2,
               searchAlgorythm='d', max_deep=10,
               constraint=constraint, useMaxDeep=True)
plt.plot(plotpoints)
plt.show()
```

Виду допустимої області

рис 15. Робота алгоритму у випуклій допустимій області

рис 16. Робота алгоритму у впуклій допустимій області

рис 17. Робота алгоритму у допустимій області з лінійними обмеженнями

Чомусь загалом наявність обмежень ніяк не впливає на роботу алгоритму (оскільки всередині одного кроку відбувається багато ітерацій), проте ситуація інакша з впуклою допустимою областю, де ситуація, коли алгоритм зупиняється після перших кроків трапляється частіше ніж при інших умовах.

```
def constraint(x):
  return (x[0] + 2)**2 - x[1]**2 + 4 > 0
plotpoints = []
adaptiveSearch([-1.2,0],
               h=[1*10**2,1*10**2],
               n=1*10**3, R=1*10**-3,
               k=0.9, func= powFunction,
               h_diff = 1e-3, alpha = 1e-3,
               eps_singleDim = 1e-2, searchAlgorythm='d',
               max_deep=10, constraint=constraint,
               useMaxDeep=True)
plt.plot(plotpoints)
plt.show()
def constraint(x):
  return (x[0] + 2)^{**2} - x[1]^{**2} + 4 > 0 and (x[0] + 2)^{**2} - x[1]^{**2} - 4 > 0
plotpoints = []
adaptiveSearch([-1.2,0], h=[1*10**2,1*10**2],
                n=1*10**3, R=1*10**-3, k=0.9,
                func= powFunction,h_diff = 1e-3,
                alpha = 1e-3, eps_singleDim = 1e-2,
                searchAlgorythm='d', max_deep=10,
                constraint=constraint, useMaxDeep=True)
plt.plot(plotpoints)
plt.show()
def constraint(x):
  return x[0] < 1 and x[0] > -2
plotpoints = []
adaptiveSearch([-1.2,0], h=[1*10**2,1*10**2],
               n=1*10**3, R=1*10**-3, k=0.9,
               func= powFunction,h_diff = 1e-3,
               alpha = 1e-3, eps_singleDim = 1e-2,
               searchAlgorythm='d', max_deep=10,
               constraint=constraint, useMaxDeep=True)
plt.plot(plotpoints)
plt.show()
```

У ході цієї курсової роботи було досліджено метод методу випадкового пошуку зі зміним кроком, було виявленно, що метод дуже погано працює в впуклими областями, також було виявленно, що найбільший вплив дають: вибір точності методу одномірного пошуку та вибір точності самого алгоритму, також було дослідженно що вибір самого алгоритму одномірного пошуку не дає великого впливу на результат, як і параметр алгоритму Свена.

Загалом методи випадкового пошуку - дуже цікава группа методів, особливо цікава особливість пошуку наближеного мінімуму за мінімальну кількість операцій, так у одному з прикладів вище, було знайдено наближений мінімум на перших 2-х кроках, таким чином алгоритми даної групи можна використовувати для функцій, справжній мінімум яких шукати надто складно, також адаптивний алгоритм має значний недолік, порівняно зі звичайним алгоритмом випадкового пошуку - набагато вижчу вірогідність "потрапити" у локальний мінімум, оскільки в такому випадку алгоритм почне зменшувати крок і не зможе "вийти" з нього.

Література

1. Алгоритмы / С. Дасгупта, Х. Пападимитриу, У. Вазирани; Пер. с англ. под ред. А. Шеня. — М.: МЦНМО, 2014. — 320 с

Додаток(код програми)

```
def powFunction(x):
  return (10*(x[0] - x[1])**2 + (x[0] - 1)**2)**4
powFunction([-2.22225999e-01, -3.78364743e-06])
15.608870254574194
import random
import sys
import numpy as np
import sympy as sp
numpy.set_printoptions(threshold=sys.maxsize)
from scipy.optimize import minimize
from sympy.matrices import Matrix
import matplotlib.pyplot as plt
def isLeftLower(f,x,h):
 if f(x + h) > f(x - h):
   return True
  return False
def findSectionEnd(f, x0, h, alpha):
  safer = 0
  hist = []
  hist.append(alpha)
  while safer<10000:
    y0 = f(x0)
    h = h*2
    x0 = x0 + h*alpha
    hist.append(alpha*2)
    if y0<f(x0):
      return x0, hist
  print("Overflow error")
def sven(f, x0, h, alpha):
  bufer = x0.copy()
  if isLeftLower(f, x0, h):
    return [[findSectionEnd(f, x0, h, -alpha)[0], bufer], findSectionEnd(f, x0, h, -alpha)[1]]
  return [[bufer, findSectionEnd(f, x0, h, alpha)[0]], findSectionEnd(f, x0, h, alpha)[1]]
def golden_section(interval, x0, S, f, eps):
    a, b = interval
    x1_gold = a + 0.382*(b - a)
    x2_gold = a + 0.618*(b - a)
    fx1_gold = f(x1_gold)
    fx2_gold = f(x2_gold)
    while True:
        if fx1 gold <= fx2 gold:
            b = x2 \text{ gold}
            x2_gold = x1_gold
            x1_gold = a + 0.382*(b - a)
        else:
            a = x1_gold
            x1_gold = x2_gold
            x2 \text{ gold} = a + 0.618*(b - a)
```

```
xz_goiu = a + ω.οιδ"(υ - a)
       if abs(norm(b - a)) <= eps:
           if fx1_gold < fx2_gold:
               answ = x1_gold
            else:
                answ = x2_gold
           break
       else:
          fx1_gold = f(x1_gold)
          fx2_gold = f(x2_gold)
   return answ
def dsk_paul(x0, S, f, eps, lambdas):
 x1_dsk, x2_dsk, x3_dsk = 0, lambdas[-2], lambdas[-1]
  fx1_dsk, fx2_dsk, fx3_dsk = f(x0 + x1_dsk), f(x0 + x2_dsk), f(x0 + x3_dsk)
  x1_dsk, x2_dsk, x3_dsk = x0 + x1_dsk, x0 + x2_dsk, x0 + x3_dsk
 deltax_dsk = abs(norm(x1_dsk - x2_dsk))
 x11, x12 = Matrix(x0) + lmbd*Matrix(S)
 kvx = x2_dsk + (deltax_dsk * (fx2_dsk - fx3_dsk)) / (2*(fx1_dsk - 2*fx2_dsk + fx3_dsk))
  print(x11.subs(lmbd, kvx))
  fkvx = [f(x11.subs(lmbd, kvx), x12.subs(lmbd, kvx)])
  while True:
      if abs(fx2_dsk - fkvx) <= eps and abs(x2_dsk - kvx) <= eps:
         break
      else:
         if fkvx < fx2_dsk:
             if kvx > x2_dsk:
                 x1_dsk, x2_dsk = x2_dsk, kvx
                  fx1_dsk, fx2_dsk = fx2_dsk, fkvx
              else:
                  x2_dsk, x3_dsk = kvx, x2_dsk
                 fx2_dsk, fx3_dsk = fkvx, fx2_dsk
          else:
              if kvx > x2_dsk:
                 x3_dsk = kvx
                 fx3_dsk = fkvx
              else:
                 x1_dsk = kvx
                  fx1_dsk = fkvx
          a1 = (fx2_dsk - fx1_dsk) / (x2_dsk - x1_dsk)
          a2 = ((fx3_dsk-fx1_dsk)/(x3_dsk-x1_dsk) - (fx2_dsk-fx1_dsk)/(x2_dsk-x1_dsk)) / (x3_dsk - x2_dsk)
          kvx = (x1_dsk + x2_dsk) / 2 - (a1/(2*a2))
          fkvx = f([x11.subs(lmbd, kvx), x12.subs(lmbd, kvx)])
   # res = minimize(f, x0, method='powell',
   # options={'xtol': eps, 'disp': False})
   # return(res.direc[-1])
  return kvx
def find df(f, x, i, h):
   return ( right(f, x, i, h) + left(f, x, i, h) ) / 2
def right(f, x, i, h):
   x_h = x.copy()
   x_h[i] += h
   return ( f(x_h) - f(x) ) / h
def left(f, x, i, h):
   x_h = x.copy()
   x_h[i] -= h
```

return ($f(x) - f(x_h)$) / h

```
def norm(x):
  return (x[0]**2 + x[1]**2)**0.5
\label{eq:continuous} \mbox{def findNear}(x0, \mbox{ f, h\_diff, alpha, eps\_singleDim, searchAlgorythm}):
  dfx1 = find_df(f, x0, 0, h_diff)
  dfx2 = find_df(f, x0, 1, h_diff)
  grad = np.array([[dfx1], [dfx2]])
  S0 = - grad
  X = x0.copy()
  S = S0.copy()
  if searchAlgorythm == 'g':
   interval = sven(f, X, h_diff, alpha)[0]
    return golden_section(interval, X, S, f, eps_singleDim)
  elif searchAlgorythm == 'd':
   interval, lambdas = sven(f, X, h_diff, alpha)
   return dsk_paul(x0 = X, s=S, f=f, eps = eps_singleDim, lambdas = lambdas)
def randomStep(x,h):
  res = np.array([float()] * 2)
  y = {\tt random.uniform}(x[1]-h[1],x[1]+h[1])
  res[1] = y
  res[0] = (1-(res[1]-x[1])**2)**0.5 + x[0]
  return res
def adaptiveSearch(x, h, n, R, k, func, h_diff, alpha, eps_singleDim, searchAlgorythm, max_deep, useMaxDeep, constraint):
  y0 = func(x)
  ybof = y0
  xbof = x
  for i in range(n):
   step = randomStep(x, h)
    if y0 > func(step) and constraint(step):
     dfx1 = find_df(func, x, 0, h_diff)
     dfx2 = find_df(func, x, 1, h_diff)
      grad = np.array([[dfx1], [dfx2]])
      S0 = - grad
      S = S0.copy()
      y0 = func(step)
      x = step*(1/k)
      h =np.array(h)
     h = h*k
     i=0
     max deep = 10
  h =np.array(h)
  h = h*k
  if max_deep==0:
    return min(func(x), func(xbof))
  elif ybof - func(step) < R:</pre>
   return min(func(x), func(xbof))
  x = findNear(x0=x, f=func, h\_diff=h\_diff, alpha=alpha, eps\_singleDim=eps\_singleDim, searchAlgorythm)
  max_deep -= 1
  plotpoints.append(min(func(x), func(xbof)))
  if func(x) > func(xbof) or not constraint(x):
   x = xbof
  return adaptiveSearch(x, h, n, R, k, func, h_diff, alpha, eps_singleDim, searchAlgorythm, max_deep, useMaxDeep=True, const
def constraint(x):
 return True
```

```
def constraint(x):
 return True
plotpoints = []
adaptiveSearch([-1.2,0],
            h=[1e-2,1e-2],
            n=1*10**5,
            R=1e-3,
            k=0.2,
            func= powFunction,
            h_diff = 1e-3,
            alpha = 1e-3,
            eps_singleDim = 0.0001,
            searchAlgorythm='g',
            max_deep=10)
plt.plot(plotpoints)
plt.show()
1e-11+5.94702649e-2
10
 9
 8
 7
plotpoints = []
adaptiveSearch([-1.2,0], h=[1e-2,1e-2],
            n=1*10**5, R=1e-3, k=0.2,
            func= powFunction,h_diff = 1e-3,
            alpha = 1e-3, eps_singleDim = 0.0001,
            searchAlgorythm='d', max_deep=10)
plt.plot(plotpoints)
plt.show()
1.0
0.8
0.6
0.4
0.2
```

0.0

```
for i in range(3):
 plotpoints = []
  print(1*10**(-i))
  adaptiveSearch([-1.2,0],
                 h=[1*10**2,1*10**2],
                 n=1*10**3,
                 R=1*10**-i,
                 k=0.9,
                 func= powFunction,
                 h_diff = 1e-3,
                 alpha = 1e-3,
                 eps\_singleDim = 1*10**-i,
                 searchAlgorythm='d',
                 max_deep=10)
  plt.plot(plotpoints)
  plt.show()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarning: invalid value encountere

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarr

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarning: i

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: Runt

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarn

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarning:

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarning: invalid va

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: RuntimeWarni

