Tutorial of ST5215

AY2020/2021 Semester 1

5 Nov 2020

Exercise 1. Let (Y_1, \ldots, Y_n) be a random sample such that Y_i is distributed as $N(\theta, \theta)$ with an unknown $\theta > 0$.

Show that one of the solutions of the likelihood equation is the unique MLE of θ . Obtain the asymptotic distribution of the MLE of θ .

Exercise 2. Let (X_1, \ldots, X_n) be a random sample from the exponential distribution on (a, ∞) with scale parameter θ , where $a \in \mathcal{R}$ and $\theta > 0$ are unknown. Obtain the asymptotic relative efficiency of the MLE of a with respect to the UMVUE of a.

Exercise 3. Consider a linear model in matrix form $X_{n\times 1} = Z_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$. Under the assumption that $\epsilon \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$ where σ is known, compute the Fisher information $I(\boldsymbol{\beta})$. When is $I(\boldsymbol{\beta})$ positive definite?