Corner Extraction

Week - 3

Image Feature Extraction

• Edge detection

Interest Point Detection (Corner, SIFT)

Image Feature Extraction

• Edge detection

Interest Point Detection (Corner, SIFT)

Three levels of Vision Processing

• Low-level vision:

- image processing, denoise, filtering, image restoration.

• Mid-level vision:

- image feature detection, image segmentation, edge, contour extraction, perceptual organization,
- 3D vision reconstruction: Multiview Geometry: 2-1/2D representation, 3D information recovery.

• High level vision:

– visual recognition, classification, object localisation, semantic understanding and labelling, action, activity, event detection.

Three levels of Vision Processing

• Low-level vision:

- image processing, denoise, filtering, image restoration.

• Mid-level vision:

- image feature detection, image segmentation, edge, contour extraction, perceptual organization,
- 3D vision reconstruction: Multiview Geometry: 2-1/2D representation, 3D information recovery.

• High level vision:

– visual recognition, classification, object localisation, semantic understanding and labelling, action, activity, event detection.

Content

- Harris Corner Detector
 - The most widely used corner point detector
- SIFT Scale Invariant Feature Transform (next lecture)

Motivation

- Find "interesting" parts/pieces inside an image
 - e.g. corners, salient patches
 - Focus of attention, fixation.
 - Speed up computation.
 - Compress/extraction of information.
- Applications of interest points
 - Image Matching, Search
 - Object Detection, Object Recognition
 - Image Alignment & Stitching
 - Stereo
 - Tracking

Interest Points

isotropic structure: flat region

not interesting, 0D, not useful for matching

linear structure: edges, lines

edge, can be localized in 1D, subject to the aperture problem

bi-directional structure: corners

corner, or interest point, can be localised in 2D, good for matching

Interest Points have 2-directional structure.

Application: Corner Detection (for camera calibration)

Application: Robot navigation

courtesy of S. Smith

Application: Matching between two images

Interest points extracted with Harris (~ 500 points)

Content Based Image Retrieval (CBIR)

Harris Corner Detector

Reference

Chris Harris & Mike Stephens, CVIU, 1988

"A Combined Corner and Edge Detector"

Harris Corner: Intuition

- We should easily recognize a corner point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

shifting the window in any direction yield a large change in appearance

Corner detector

Corner detector

Corner detector

Change of intensity for the shift [u,v] (local auto-correlation analysis):

 For small shifts [u,v], we have first-order Tylor approximation for I(x+u,y+v)

$$I(x+u,y+v) \approx I(x,y) + uI_x + vI_y$$

Definition [edit]

The Taylor series of a real or complex-valued function f(x), that is infinitely differentiable at a real or complex number a, is the power series

$$f(a) + rac{f'(a)}{1!}(x-a) + rac{f''(a)}{2!}(x-a)^2 + rac{f'''(a)}{3!}(x-a)^3 + \dots = \sum_{n=0}^{\infty} rac{f^{(n)}(a)}{n!}(x-a)^n$$

Here, n! denotes the factorial of n. The function $f^{(n)}(a)$ denotes the nth derivative of f evaluated at the point a. The derivative of order zero of f is defined to be f itself and $(x-a)^0$ and 0! are both defined to be 1. This series can be written by using sigma notation, as in the right side formula. With a=0, the Maclaurin series takes the form:

$$f(0) + rac{f'(0)}{1!}x + rac{f''(0)}{2!}x^2 + rac{f'''(0)}{3!}x^3 + \dots = \sum_{n=0}^{\infty} rac{f^{(n)}(0)}{n!}x^n.$$

$$E(u,v) = \sum_{x,y} w(x,y)(I(x+u,y+v) - I(x,y))^{2}$$

$$= \sum_{x,y} w(x,y)(I(x,y) + uI_{x} + vI_{y} - I(x,y))^{2}$$

$$= \sum_{x,y} w(x,y)(uI_{x} + vI_{y})^{2}$$

$$= \sum_{x,y} w(x,y)(u^{2}I_{x}^{2} + v^{2}I_{y}^{2} + 2uvI_{x}I_{y})$$

$$= [u,v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

For small shift [u,v], we have 1st order Tylor approximation

$$E(u, v) \approx [u, v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

• Where M is a 2x2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong [u,v]$$
 M $\begin{bmatrix} u \\ v \end{bmatrix}$ λ_1, λ_2 – eigenvalues of M

If we try every possible orientation n, the biggest change and smallest changes in intensity happen in λ_s .

Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

$$I_x \Leftrightarrow \frac{CI}{\partial x}$$

$$I_y \Leftrightarrow \frac{\partial I}{\partial y}$$

$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$
 $I_y \Leftrightarrow \frac{\partial I}{\partial y}$ $I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$

What does this matrix reveal? First, consider an axis-aligned corner:

What does this matrix reveal? First, consider an axis-aligned corner:

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis

Look for locations where **both** λ 's are large.

If either λ is close to 0, then this is **not** corner-like.

What if we have a corner that is not aligned with the image axes?

General Case

- Since M is symmetric, we have $\ M=X\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}X^T$
- (eigen value decomposition)
- We can visualize M as an eclipse with axis length determined by the eigenvalues and orientation determined by X

Explanation

• X = I (identity matrix)

•

$$\begin{pmatrix} u & v \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \lambda_1 u^2 + \lambda_2 v^2 = 1$$

What does this matrix reveal? Since M is symmetric, we have $M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$

$$Mx_i = \lambda_i x_i$$

The *eigenvalues* of *M* reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

Corner response function

"edge":

$$\lambda_1 >> \lambda_2$$

$$\lambda_2 >> \lambda_1$$

"corner":

 λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$;

"flat" region λ_1 and λ_2 are small;

Harris Corner Detector: Mathematics

Measure of corner response: (Cornerness)

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.01 - 0.1)

Harris corner detector

- 1) Compute M matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*R*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

Harris Corner Detector

Harris Corner Detector: Mathematics

- R depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

37

Compute corner response R (i.e. the "cornerness")

Find points with large corner response: R> threshold

Take only the points of local maxima of R

Recap: Harris Corner

- Compute the moment (auto-correlation) matrix M
 - captures the structure of the local neighborhood
 - measure based on eigenvalues of M ^{2*2}
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => edge or contour
 - 0 or very weak eigenvalues => flat region
- Interest point detection
 - threshold on the eigenvalues
 - local maximum for localization

Recap: Harris Corner

- Corner strength $R = det(M) k Tr(M)^2$
- Let α and β be the two eigenvalues. We don't have to calculate them! Instead, use trace and determinant:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \frac{\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}}{\operatorname{tr}(\mathbf{A}) = a_{11} + a_{22}}$$

- R is positive for corners, negative for edges, and small for flat regions
- Non-maximal suppression: select corners that are 8way local maxima

Expected Learning Outcome

• Understand why and where we need to use interest point detector.

 Learn how to implement Harris corner detector and how to use it.

Reference

• Section 7.1.1: Feature Detector (Computer Vision: Algorithms and Applications 2nd Edition)