Aliah University

Department of Electrical Engineering

B. Tech. III sem. Examination March -2021

Sub: Circuit Theory & Networks

Full Marks: 80 Duration: 3 hrs

Instruction: 1. Write from your own understanding in your own words; don't simply copy from website/notes/books etc.

2. Avoid mixing-up the answers of different groups.

Group-A(Answer any five questions: 5 X 8 = 40 Marks)

1. Find the current in the resistor R_L using the principle of superposition in Fig. below.

- **2.** (a) Distinguish between unilateral and bilateral circuit elements.
 - (b) Determine current through resistor R_2 using mesh analysis shown in Fig. below.

- **3.** (a) State Thevenin's theorem.
 - (b) Find V_x and I_x for the circuit shown in Fig. below.

[8]

Code- EENUGOE01

[2]

[6]

[3]

[5]

[6]

[3]

[5]

(b) Consider the circuit shown in Fig. below. The switch was closed for a very long time and at time t = 0, the switch is opened. Find the expression of $v_c(t)$ for t > 0.

- 5. (a) Prove that $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$. [3]
 - (b) Find the Laplace transform of the signal shown in Fig. below. [5]

- 6. (a) Find inverse Laplace transform of $F(s) = \frac{(s+2)}{(s+1)^2(s+3)}$. [4]
 - (b) Consider the signal shown in Fig. below. Represent the signal in terms of unit step function. [4]

Group-B (Answer any Five: 5 X 8 = 40 Marks)

- **7.** (a) Derive the condition for reciprocity and symmetry for T-parameters.
 - (b) Derive h-parameters in terms of Y-parameters and T-parameters in terms of h-parameters.

[4]

[4]

9. (a) The hybrid parameters of the network 'N' shown in figure are: $h11 = 1 \Omega$, h12 = 1, h21 = -4,

h22 = 5 σ . Determine the supply voltage Vs, if the power dissipated in the load resistor R_L (= 8 Ω) is 30 W and R_S = 2 Ω .

(b) Find the transmission parameters for the network:

- 10. A 3-phase, 4-wire system having a 230 V phase voltage has the following loads connected between the respective lines & neutral: $Z_R = 15 < 30^0 \ \Omega$, $Z_Y = 15 < 45^0 \ \Omega$, & $Z_B = 15 < 60^0 \ \Omega$. Calculate the current in the neutral wire and power taken by each load.
- 11. A symmetrical 3-phase, 420 V system supplies a star-connected load of $Z_R = 8 < 30^0 \,\Omega$, $Z_Y = 10 < 45^0 \,\Omega$, & $Z_B = 12 < 50^0 \,\Omega$. Assuming the neutral of the supply is earthed, calculate the voltage of the star point to earth.
- **12.** Take an arbitrary network of your choice (minimum 4 nodes). Draw its oriented graph and select a tree. From thereon express the following:
 - (i) Relation between incidence matrix and branch current matrix
 - (ii) Relation between tie-set matrix and branch voltage matrix.
 - (iii) Relation among branch currents matrix, fundamental loop currents matrix and tie-set matrix.