Глава 4. Восходящий синтаксический анализ

4.2. Грамматики простого предшествования

4.2.4. Функции предшествования

Если грамматика состоит из n символов, то матрица предшествования имеет размер $n \times n$. Причем многие элементы будут иметь значение «пусто». Можно применить известные методы компактного хранения разреженных массивов, что обычно приводит к дополнительным временным затратам. Поэтому чаще вместо матриц предшествования синтаксические анализаторы используют так называемые функции предшествования f и g, отображающие символы грамматики в целые числа. При этом должны выполняться следующие соотношения:

$$f(X) = g(Y)$$
, если $X \doteq Y$, $f(X) < g(Y)$, если $X < Y$, $f(X) > g(Y)$, если $X > Y$.

Однако не всякая матрица предшествования может иметь функции предшествования, хотя обычно на практике они существуют. Тогда вместо n^2 элементов достаточно хранить только 2n элементов.

Процедура построения функций предшествования по заданной матрице предшествования заключается в следующем:

- 1. Создать символы f_X и g_X для каждого символа X грамматики, включая и символ \bot .
- 2. Сгруппировать созданные символы на как можно большее число групп таким образом, что если $X \doteq Y$, то f_X и g_Y должны входить в одну группу. Следует отметить, что в одну группу могут попасть символы, не связанные отношением \doteq . Например, если $a \doteq b$ и $c \doteq b$, то f_a и f_c должны находиться в одной и той же группе, поскольку оба находятся в той же группе, что и g_b . Если, кроме того, $c \doteq d$, то f_a и g_d находятся в одной группе, даже если не выполняется условие $a \doteq d$.
- 3. Создать ориентированный граф, вершины которого представляют собой определенные в п. 2 группы. Для всех X и Y, если X < Y, проводится дуга из группы, в которой находится g_Y , в группу с f_X . Если X > Y, дуга проводится из группы с f_X в группу с g_Y . Таким образом, дуга (путь) от группы с f_X к группе с g_Y означает, что f(X) превосходит g(Y); путь от группы с g_Y к группе с f_X означает, что g(Y) должно превосходить f(X).
- 4. Если построенный граф имеет циклы, то для заданной таблицы предшествования не существуют функции предшествования. Если циклов нет, то значением f(X) является длина самого длинного пути, начинающегося в группе с f_X ; значение g(X) равно длине самого длинного пути из группы с g_X .

В качестве примера определим функции предшествования для матрицы предшествования с рис. 4.3. Построенный граф показан на рис. 4.4. Поскольку $a \doteq A$, элементы f_a и g_A объединены в одну группу. Элементы f_b , f_D и g_B объединены в одну группу, т. к. $b \doteq B$ и $D \doteq B$, несмотря на то, что символы b и D не связаны никаким отношением предшествования.

	S	D	A	В	a	b	_
\overline{S}							
\overline{D}		 	 	=	 	<	† : ! !
\overline{A}		 	 		 	>	; ; ;
B		 	 		 	 	⋄
a		 	•		<	♭	
b		 	 !	≐		<	>
$\underline{\underline{\bot}}$		<	<		<		; ; ;

Рис. 4.4. Граф отношений предшествования

Этот граф не имеет циклов, следовательно, функции предшествования существуют. Определим самые длинные пути от каждой вершины графа:

```
группы \{f_S\}, \{g_\bot\}, \{f_\bot\} и \{g_S\} не имеют исходящих дуг, т. е. длины путей равны 0, \{f_A\} \to \{g_b\} \to \{f_b, f_D, g_B\} \to \{g_\bot\} длины 3, \{f_B\} \to \{g_\bot\} длины 1, \{f_b, f_D, g_B\} \to \{g_\bot\} длины 1, \{f_a, g_A\} \to \{g_b\} \to \{f_b, f_D, g_B\} \to \{g_\bot\} длины 3, \{g_D\} \to \{f_\bot\} длины 1, \{g_a\} \to \{f_a, g_A\} \to \{g_b\} \to \{f_b, f_D, g_B\} \to \{g_\bot\} длины 4, \{g_b\} \to \{f_b, f_D, g_B\} \to \{g_\bot\} длины 2.
```

Полученные длины путей и будут являться значениями соответствующих функций предшествования. Например, поскольку группы $\{f_S\}$, $\{g_\bot\}$, $\{f_\bot\}$ и $\{g_S\}$ не имеют исходящих дуг (длины путей равны 0), $f(S) = g(\bot) = f(\bot) = g(S) = 0$. Самый длинный путь из $\{f_a, g_A\}$ имеет длину 3, поэтому f(a) = g(A) = 3. Аналогично определяются остальные значения функций.

Результат построения функций предшествования выглядит следующим образом:

Недостатком использования функций предшествования является то, что теряется информация о несуществующих отношениях, которые могут быть использованы для обнаружения синтаксических ошибок. На практике потеря возможности обнаружения ошибок не считается достаточно серьезной, поскольку в большинстве случаев они могут быть обнаружены при попытке выполнения свертки для необнаруженной основы, но на более поздних этапах разбора.

В качестве примера обнаружения ошибки рассмотрим разбор строки $aba\bot$, не принадлежащей языку, порождаемому грамматикой. При использовании матрицы предшествования (табл. 4.3) ошибка фиксируется на более раннем этапе разбора по несуществующему отношению для символов b и a. При использовании функций предшествования (табл. 4.4) ошибка обнаруживается на более позднем этапе при попытке выполнения операции свертки подстроки bD, поскольку в грамматике нет продукции с данной правой частью, т. е. основа не обнаружена.

Таблица 4.3 Процесс разбора строки $aba\bot$ по матрице предшествования

Входной буфер	Содержимое стека	Основа	Выполняемое действие
aba⊥	上		Перенос a в стек, т. к. $\bot \le a$
ba⊥	$\perp \lessdot a$	а	Свертка для $A \rightarrow a$, т. к. $a > b$
ba⊥	$\perp \lessdot A$	\boldsymbol{A}	Свертка для $D \rightarrow A$, т. к. $A > b$
ba⊥	$\perp \lessdot D$		Перенос b в стек, т. к. $D < b$
$a\perp$	$\perp \lessdot D \lessdot b$		Синтаксическая ошибка, т. к. для симво-
			лов b и a не существует отношение пред-
			шествования

	S	D	A	В	a	b	_
\overline{S}							
\overline{D}		 	 	≐	 	<	
\overline{A}			 		 	>	
B			 	 	 		>
a					<		
b					 		>
<u>I</u>		<	<		<		I

Таблица 4.4 Процесс разбора строки $aba\bot$ по функциям предшествования

Входной буфер	Содержимое стека	Основа	Выполняемое действие
abaot	\perp		Перенос a в стек, т. к. $f(\bot) < g(a)$
ba⊥	$\perp < a$	а	Свертка для $A \rightarrow a$, т. к. $f(a) > g(b)$
ba⊥	$\perp < A$	\boldsymbol{A}	Свертка для $D \rightarrow A$, т. к. $f(A) > g(b)$
ba⊥	$\perp < D$		Перенос b в стек, т. к. $f(D) < g(b)$
$a\perp$	$\perp < D < b$		Перенос a в стек, т. к. $f(b) < g(a)$
	$\perp < D < b < a$	а	Свертка для $A \to a$, т. к. $f(a) > g(\bot)$
	$\perp < D < b < A$	\boldsymbol{A}	Свертка для $D \rightarrow A$, т. к. $f(A) > g(\bot)$
	$\perp < D < b = D$	bD	Попытка свертки подстроки bD , т. к.
			$f(D) > g(\bot)$. Синтаксическая ошибка, по-
			скольку нет продукции с правой частью bD