A Supplementary File for "An Analysis of Control Parameters of MOEA/D Under Two Different Optimization Scenarios"

Ryoji Tanabe, Hisao Ishibuchi*

Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China

Abstract

This is a supplementary file for "An Analysis of Control Parameters of MOEA/D Under Two Different Optimization Scenarios".

^{*}Corresponding author

 $Email\ addresses:\ \mathtt{rt.ryoji.tanabe@gmail.com}\ (Ryoji\ Tanabe),\ \mathtt{hisao@sustc.edu.cn}\ (Hisao\ Ishibuchi)$

Figure S.1: Performance of MOEA/D with various μ settings on the DTLZ1 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.2: Performance of MOEA/D with various μ settings on the DTLZ2 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.3: Performance of MOEA/D with various μ settings on the DTLZ3 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.4: Performance of MOEA/D with various μ settings on the DTLZ4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.5: Performance of MOEA/D with various μ settings on the WFG1 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.6: Performance of MOEA/D with various μ settings on the WFG2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.7: Performance of MOEA/D with various μ settings on the WFG3 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.8: Performance of MOEA/D with various μ settings on the WFG4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.9: Performance of MOEA/D with various μ settings on the WFG5 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.10: Performance of MOEA/D with various μ settings on the WFG6 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.11: Performance of MOEA/D with various μ settings on the WFG7 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.12: Performance of MOEA/D with various μ settings on the WFG8 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.13: Performance of MOEA/D with various μ settings on the WFG9 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.14: Performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$ with $\theta=5$) on the DTLZ1 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.15: Performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$ with $\theta=5$) on the DTLZ2 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.16: Performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$ with $\theta=5$) on the DTLZ3 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.17: Performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$ with $\theta=5$) on the DTLZ4 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.18: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG1 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.19: Performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$ with $\theta=5$) on the WFG2 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.20: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG3 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.21: Performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$ with $\theta=5$) on the WFG4 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.22: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG5 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.23: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG6 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.24: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG7 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.25: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG8 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.26: Performance of MOEA/D with the three scalarizing functions (g^{chm} , g^{chd} , and g^{pbi} with $\theta=5$) on the WFG9 problem with $M\in\{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.27: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the DTLZ1 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.28: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the DTLZ2 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.29: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the DTLZ3 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.30: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the DTLZ4 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.31: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG1 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.32: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG2 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.33: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG3 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.34: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.35: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG5 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.36: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG6 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.37: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG7 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.38: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG8 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.39: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG9 problem with $M \in \{2,3,4,5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.

Figure S.40: Influence of μ on the performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$) on the DTLZ1 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.41: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the DTLZ2 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.42: Influence of μ on the performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$) on the DTLZ3 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.43: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the DTLZ4 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.44: Influence of μ on the performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$) on the WFG1 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.45: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the WFG2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.46: Influence of μ on the performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$) on the WFG3 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.47: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the WFG4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.48: Influence of μ on the performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$) on the WFG5 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.49: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the WFG6 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.50: Influence of μ on the performance of MOEA/D with the three scalarizing functions ($g^{\rm chm}$, $g^{\rm chd}$, and $g^{\rm pbi}$) on the WFG7 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.51: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the WFG8 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.52: Influence of μ on the performance of MOEA/D with the three scalarizing functions $(g^{\text{chm}}, g^{\text{chd}}, \text{and } g^{\text{pbi}})$ on the WFG9 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.53: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ1 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.54: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ2 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.55: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ3 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.56: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ4 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.57: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG1 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.58: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG2 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.59: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG3 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.60: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG4 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.61: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG5 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.62: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG6 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.63: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG7 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.64: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG8 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.65: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG9 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.66: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ1 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.67: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ2 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.68: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ3 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.69: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the DTLZ4 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.70: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG1 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.71: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG2 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.72: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG3 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.73: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG4 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.74: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG5 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.75: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG6 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.76: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG7 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.77: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG8 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.78: Influence of μ on the performance of MOEA/D using g^{pbi} with various θ values on the WFG9 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.79: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the DTLZ1 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.80: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the DTLZ2 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.81: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the DTLZ3 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.82: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the DTLZ4 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.83: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG1 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.84: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the WFG2 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.85: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG3 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.86: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG4 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.87: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG5 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.88: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG6 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.89: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG7 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.90: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the WFG8 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.91: Comparison of the two Chebyshev functions $(g^{\text{chm}} \text{ and } g^{\text{chd}})$ and g^{pbi} with various θ values on the WFG9 problem with $M \in \{2,3,5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.