14.170: Programming for Economists

1/12/2009-1/16/2009

Melissa Dell Matt Notowidigdo Paul Schrimpf

Lecture 3, Maximum Likelihood Estimation in Stata

Introduction to MLE

- Stata has a built-in language to write ML estimators. It uses this language to write many of its built-in commands
 - e.g. probit, tobit, logit, clogit, glm, xtpoisson, etc.
- I find the language very easy-to-use. For simple log-likelihood functions (especially those that are linear in the log-likelihood of each observation), implementation is trivial and the built-in maximization routines are good
- Why should you use Stata ML?
 - Stata will automatically calculate numerical gradients for you during each maximization step
 - Have access to Stata's syntax for dealing with panel data sets (for panel MLE this can result in very easy-to-read code)
 - Can use as a first-pass to quickly evaluate whether numerical gradients/Hessians are going to work, or whether the likelihood surface is too difficult to maximize.
- Why shouldn't you use Stata ML?
 - Maximization options are limited (standard Newton-Raphson and BHHH are included, but more recent algorithms not yet programmed)
 - Tools to guide search over difficult likelihood functions aren't great

ML with linear model and normal errors

Log-likelihood for linear regression model (using normal distribution):

$$L = \prod_{i=1}^{N} \left(\frac{1}{\sigma} \phi \left(\frac{y_i - x_i \beta}{\sigma} \right) \right)$$
$$\log(L) = \sum_{i=1}^{N} \log \left(\frac{1}{\sigma} \phi \left(\frac{y_i - x_i \beta}{\sigma} \right) \right)$$

NOTE: This log-likelihood function satisfies the "linear form" restriction since the log-likelihood function is the sum of each observations log-likelihood function.

Basic Stata ML

```
program drop _all
program mynormal_lf
args lnf mu sigma
  qui replace `lnf' = log((1/`sigma')*normalden(($ML_y1 - `mu')/`sigma'))
end

clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen y = 2*x + invnormal(uniform())
ml model lf mynormal_lf (y = x) ()
ml maximize
reg y x
```

. ml maximize

initial: feasible: rescale: rescale eq: Iteration 0: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	log likeliho	od = -108 od = -277 od = -223 od = -223 od = -161 od = -145 od = -143 od = -143	7,6507 ,86442 ,49417 ,49417 (n ,99355 ,92343 ,61901 ,61869	ould not	be evaluated))
Log likelihood	= -143.61869			Wald	er of obs = chi2(1) = > chi2 =	100 381,34 0,0000
y l	Coef.	Std. Err	. z	P>lzl	[95% Conf.	. Interval]
eq1 x _cons	1,995282 ,0798982	.1021763 .1020926			1,79502 -,1201996	2,195544 ,2799961
eq2 _cons	1,017398	.0719409	14.14	0,000	.8763964	1,1584
. regyx						
Source I	SS	df	MS		Number of obs	
Model Residual			4.721108 05622319			
Total	498,23098	99 5.	03263616		Root MSE	
y l	Coef.	Std. Err	. t	P>ItI	[95% Conf.	. Interval]
× I _cons I		.1032136 .1031291		0,000 0,440	1,790458 -,1247581	2,200106 ,2845546

ML with linear regression

```
program drop _all
program mynormal_lf
   args lnf mu sigma
   qui replace `lnf' = log((1/`sigma')*normden(($ML_y1-`mu')/`sigma'))
end

clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen y = 2*x + x*x*invnormal(uniform())
gen keep = (uniform() > 0.1)
gen weight = uniform()
ml model lf mynormal_lf (y = x) () [aw=weight] if keep == 1, robust
ml maximize
reg y x [aw=weight] if keep == 1, robust
```

```
. ml model lf mynormal_lf (y = \times) () [aw=weight] if keep == 1, robust . ml maximize
```

initial: log pseudolikelihood = -<inf> (could not be evaluated) feasible: log pseudolikelihood = -1202.2519 log pseudolikelihood = -267.49701 rescale: log pseudolikelihood = -208,45765 rescale eq: log pseudolikelihood = -208.45765 Iteration 0: (not concave) Iteration 1: log pseudolikelihood = -159.93796 Iteration 2: log pseudolikelihood = -153.65392 Iteration 3: log pseudolikelihood = -152,52916 Iteration 4: log pseudolikelihood = -152.52463 Iteration 5: log pseudolikelihood = -152,52463

Number of obs = 88 Wald chi2(1) = 51.93 Log pseudolikelihood = -152.52463 Prob > chi2 = 0.0000

	 y	Coef.	Robust Std. Err.	z	P>IzI	[95% Conf.	Interval]
eq1	x _cons	2,078282 -,1211747	.2883878 .1594751	7,21 -0,76	0.000 0.447	1,513052 -,43374	2,643512 ,1913907
eq2	 _cons	1,369295	,3806752	3,60	0,000	.6231852	2,115405

Regression with robust standard errors

Number of obs = 88 F(1, 86) = 51.34 Prob > F = 0.0000 R-squared = 0.6901 Root MSE = 1.3851

 y	Coef.	Robust Std. Err.	t	P>ltl	E95% Conf.	Interval]
x I	2,078282	.2900597	7.17	0,000	1,501662	2,654901
_cons I	-,1211747	.1603995	-0.76	0,452	-,4400384	,197689

What's going on in the background?

- We just wrote a 3 (or 5) line program. What does Stata do with it?
- When we call "ml maximize" it does the following steps:
 - Initializes the parameters (the "betas") to all zeroes
 - As long as it has not declared convergence
 - Calculates the gradient at the current parameter value
 - Takes a step
 - Updates parameters
 - Test for convergence (based on either gradient, Hessian, or combination)
 - Displays the parameters as regression output (ereturn!)

How does it calculate gradient?

- Since we did not program a gradient, Stata will calculate gradients numerically. It will calculate a gradient by finding a <u>numerical derivative</u>.
- Review:
 - Analytic derivative is the following:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 So that leads to a simple approximation formula for "suitably small but large enough h"; this is a numerical derivative of a function:

$$f'(x)pprox rac{f(x+h)-f(x)}{h}$$

- Stata knows how to choose a good "h" and in general it gets it right
- Stata updates its parameter guess using the numerical derivatives as follows (i.e. it takes a "Newton" step):

$$\theta_{t+1} = \theta_t - \frac{f'(\theta_t)}{f''(\theta_t)}$$

probit

Log-likelihood function for probit:

$$\log(L) = \sum_{i=1}^{N} \log(L_i)$$

$$\log(L_i) = \log[(\Phi(X'\beta))^{y_i} (1 - \Phi(X'\beta))^{1-y_i}]$$

$$= y_i * \log(\Phi(X'\beta)) + (1 - y_i) * (1 - \Phi(X'\beta))$$

$$= y_i * \log(\Phi(X'\beta)) + (1 - y_i) * (\Phi(-X'\beta))$$

Back to Stata ML (myprobit)

```
program drop _all
program myprobit_lf
  args lnf xb
  qui replace `lnf' = ln(norm( `xb')) if $ML_y1 == 1
  qui replace `lnf' = ln(norm(-1*`xb')) if $ML_y1 == 0
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model lf myprobit lf (y = x)
ml maximize
probit y x
```

TMTOWTDI!

```
program drop _all
program myprobit_lf
  args lnf xb
  qui replace `lnf' = ///
      ML y1*ln(norm(xb')) + (1-ML y1)*(1 - ln(norm(xb')))
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model lf myprobit lf (y = x)
ml maximize
probit y x
```

. probit y x

Iteration 0: log likelihood = -612.54939
Iteration 1: log likelihood = -542.22446
Iteration 2: log likelihood = -541.15783
Iteration 3: log likelihood = -541.15684

Probit estimates

Number of obs = 1000 LR chi2(1) = 142.79 Prob > chi2 = 0.0000 Pseudo R2 = 0.1165

Log likelihood = -541,15684

y l	Coef.	Std. Err.	z	P>IzI	[95% Conf.	Interval]
x l _cons l		.0475177 .0447145		- +	.4435918 .4873859	.6298576 .6626636

- . ml model lf myprobit_lf (y = x)
- . ml maximize

initial: log likelihood = -693.14718
alternative: log likelihood = -612.64995
rescale: log likelihood = -612.64995
Iteration 0: log likelihood = -612.64995
Iteration 1: log likelihood = -541.46569
Iteration 2: log likelihood = -541.15686
Iteration 3: log likelihood = -541.15684

Log likelihood = -541.15684

Number of obs = 1000 Wald chi2(1) = 127.58 Prob > chi2 = 0.0000

y l	Coef.	Std. Err.	z	P>IzI	[95% Conf.	Interval]
x I _cons I		.0475177 .0447146	11.30 12.86		.4435917 .4873858	.6298576 .6626636

What happens here?

```
program drop _all
program myprobit lf
  args lnf xb
  qui replace `lnf' = ln(norm( `xb')) if $ML_y1 == 1
  qui replace \ln f' = \ln(norm(-1*xb')) if ML_y1 == 0
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model lf myprobit_lf (y = x) ()
ml maximize
probit y x
```

Difficult likelihood functions?

```
. ml model lf myprobit_lf (y = x) ()
. ml maximize

initial: log likelihood = -693.14718
alternative: log likelihood = -612.64995
rescale: log likelihood = -612.64995
rescale eq: log likelihood = -612.64995
could not calculate numerical derivatives
flat or discontinuous region encountered
r(430);
```

- Stata will give up if it can't calculate numerical derivatives. This can be
 a big pain, especially if it's a long-running process and happens after a
 long time. If this is not a bug in your code (like last slide), a lot of errors
 like this is a sign to leave Stata so that you can get better control of the
 maximization process.
- A key skill is figuring whether the error above is "bug" in your program or if it is a difficult likelihood function to maximize.

Transforming parameters

```
program drop _all
program mynormal_lf
  args lnf mu ln sigma
  tempvar sigma
  gen double `sigma' = exp(`ln sigma')
  qui replace `lnf' = log((1/`sigma')*normden(($ML_y1-`mu')/`sigma'))
end
clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen y = 2*x + 0.01*invnormal(uniform())
ml model lf mynormal lf (y = x) /log sigma
ml maximize
reg y x
                                      \sigma \in (0,\infty) \Rightarrow \log(\sigma) \in (-\infty,\infty)
                                      \rho \ \in \ (-1,1) \Rightarrow \frac{1}{2} \log \left( \frac{1+x}{1-x} \right) \in (-\infty,\infty)
```

From "If" to "d0", "d1", and "d2"

- In some (rare) cases you will want to code the gradient (and possibly) the Hessian by hand. If there are simple analytic formulas for these and/or you need more speed and/or the numerical derivatives are not working out very well, this can be a good thing to do.
- Every ML estimator we have written so far has been of type "If". In order to calculate analytic gradients, we need to use a "d1" or a "d2" ML estimator
- But before we can implement the analytic formulas for the gradient and Hessian in CODE, we need to derive the analytic formulas themselves.

gradient and Hessian for probit

Gradient and Hessian functions for probit:

$$\log(L_i) = y_i * \log(\Phi(X'\beta)) + (1 - y_i) * (\Phi(-X'\beta))$$

$$g_j = \frac{\partial \log(L_j)}{\partial (X'\beta)} = y_i * \phi(X'\beta)/\Phi(X'\beta) - (1 - y_i) * (\phi(X'\beta)/\Phi(-X'\beta))$$

$$H_j = \frac{\partial^2 \log(L_j)}{\partial (X'\beta)^2} = \frac{\phi(X'\beta)(X'\beta) * \Phi(X'\beta) - \phi(X'\beta) * \phi(X'\beta)}{[\Phi(X'\beta)]^2}$$

$$= -g_j * (g_j + X'\beta)$$

note we will usually program the NEGATIVE Hessian

More probit (d0)

```
program drop all
program myprobit d0
  args todo b lnf
 tempvar xb l_j
 mleval xb' = b'
 aui {
    gen l_j' = normalden( xb') if $ML_y1 == 1
    replace l_j' = normalden(-1 * xb') if ML_y1 == 0
   mlsum `lnf' = ln(`l i')
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d0 myprobit d0 (y = x)
ml maximize
probit y x
```

```
. ml model d0 muprobit_d0 (u = x)
. ml maximize
               log\ likelihood = -693.14718
initial:
               log likelihood = -612.64995
alternative:
               log likelihood = -612.64995
rescale:
               log likelihood = -612.64992
Iteration 0:
Iteration 1:
               log likelihood = -541.46519
                                              (not concave)
Iteration 2:
               log likelihood = -541.4647
                                              (not concave)
               log likelihood = -541.27841
Iteration 3:
               \log likelihood = -541.17061
Iteration 4:
                                              (not concave)
Iteration 5:
               log likelihood = -541,16801
                                             (not concave)
               log likelihood = -541.16687
Iteration 6:
                                              (not concave)
Iteration 7:
               log likelihood = -541.18635
                                             (not concave)
               log likelihood = -541,15089
Iteration 8:
Iteration 9:
               log likelihood = -541.15749
                                             (not concave)
Iteration 10: log likelihood = -541.15691
Iteration 11: log likelihood = -541.15684
Iteration 12: log likelihood = -541.15684
                                                    Number of obs
                                                                    =
                                                                             1000
                                                   Wald chi2(1)
                                                                           131.65
Log likelihood = -541.15684
                                                    Prob > chi2
                                                                          0.0000
                             Sta. Err
                                                 P>Iz1
                                                            [95% Conf. Interval]
                                            z
                                         11.47
                                                 0.000
                                                             .4450425
                  .5367257
                              .046778
                                                                          .628409
           ×
                             .0427927
                                         13.44
                                                 0.000
                                                            .4911664
                                                                         .6589108
                  .5750386
       _cons
. probit y x
Iteration 0:
               log likelihood = -612.54939
               log likelihood = -542,22446
Iteration 1:
Iteration 2:
               log likelihood = -541.15783
Iteration 3:
               log likelihood = -541.15684
Probit estimates
                                                    Number of obs
                                                                            1000
                                                   LR chi2(1)
                                                                           142.79
                                                                    =
                                                   Prob > chi2
                                                                          0.0000
Log\ likelihood = -541.15684
                                                    Pseudo R2
                                                                           0.1165
                             Std. Err.
                     Coef.
                                                 P>Iz1
                                                            [95% Conf. Interval]
                                            z
                             .0475177
                  .5367247
                                         11.30
                                                 0.000
                                                            .4435918
                                                                         .6298576
                  ,5750247
                             .0447145
                                         12.86
                                                 0.000
                                                            .4873859
                                                                         .6626636
       _cons
```

More probit (d0)

```
program drop all
program myprobit_d0
  args todo b lnf
  tempvar xb l_j
  mleval `xb' = `b'
  qui {
    gen double l_j' = norm(xb') if ML_y1 == 1
    replace l_j' = norm(-1 * xb') if ML_y1 == 0
   mlsum `lnf' = ln(`l j')
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml \mod d0 \mod d0 \pmod y = x
ml maximize
probit y x
```

Still more probit (d1)

```
program drop _all
program myprobit d1
  args todo b lnf g
  tempvar xb l_j g1
  mleval `xb' = `b'
  qui {
   gen double l_j' = norm( xb') if $ML y1 == 1
    replace l_j' = norm(-1 * xb') if $ML y1 == 0
    mlsum `lnf' = ln(`l j')
    gen double `g1' = normden(`xb')/`l_j' if $ML_y1 == 1
    replace g1' = -normden(xb')/l_j' if $ML y1 == 0
   mlvecsum inf' g' = gl', eq(1)
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d1 myprobit d1 (y = x)
ml maximize
probit y x
```

```
. ml model d1 myprobit_d1 (y = x)
. ml maximize
               \log likelihood = -693.14718
initial:
               log likelihood = -612,64995
alternative:
               log likelihood = -612.64995
rescale:
Iteration 0:
               log likelihood = -612,64995
               log likelihood = -541.46581
Iteration 1:
Iteration 2:
               log likelihood = -541.15686
               log likelihood = -541.15684
Iteration 3:
                                                    Number of obs
                                                                              1000
                                                    Wald chi2(1)
                                                                           127.58
Log likelihood = -541.15684
                                                                           0.0000
                                                    Prob > chi2
                    Coef.
                             Std. Err.
                                                  P>IzI
                                                             [95% Conf. Interval]
           y l
                                             z
                  .5367246
                             .0475177
                                          11.30
                                                  0.000
                                                             .4435917
                                                                          .6298576
           \times 1
                  .5750247
                             .0447146
                                          12.86
                                                  0.000
                                                             .4873858
                                                                          .6626636
       _cons |
. probit y x
               log likelihood = -612.54939
Iteration 0:
Iteration 1:
               log likelihood = -542,22446
               log likelihood = -541.15783
Iteration 2:
Iteration 3:
               log likelihood = -541.15684
                                                    Number of obs
Probit estimates
                                                                              1000
                                                    LR chi2(1)
                                                                           142.79
                                                    Prob > chi2
                                                                           0.0000
Log likelihood = -541,15684
                                                                           0.1165
                                                    Pseudo R2
                                                                     =
                                                             [95% Conf. Interval]
                    Coef.
                             Std. Err.
                                                  P>IzI
           yΙ
                                             z
                  .5367247
                              .0475177
                                          11.30
                                                  0.000
                                                             .4435918
                                                                          .6298576
           ×Ι
                                          12.86
                  .5750247
                             .0447145
                                                  0.000
                                                             .4873859
                                                                          .6626636
       _cons |
```

Last probit, I promise (d2)

```
program drop all
program myprobit_d2
  args todo b lnf q negH
 tempvar xb l_j q1
 mleval xb' = b'
 qui {
   gen double `l j' = norm( `xb') if $ML y1 == 1
   replace l_j' = norm(-1 * xb') if ML_y1 == 0
   mlsum `lnf' = ln(`l j')
   gen double g1' = normden(xb')/l_j' if $ML_y1 == 1
   replace g1' = -normden(xb')/l_j' if ML_y1 == 0
   mlvecsum `lnf' `q' = `q1', eq(1)
   mlmatsum \inf' \in gH' = g1'*(g1'+xb'), eq(1,1)
end
clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d2 myprobit d2 (y = x)
ml search
ml maximize
probit y x
```

. ml model d2 myprobit_d2 (y = x). ml search log likelihood = -693.14718initial: improve: log likelihood = -693.14718log likelihood = -612,64995 alternative: rescale: log likelihood = -612,64995 . ml maximize log likelihood = -612.64995 initial: rescale: log likelihood = -612.64995 Iteration 0: log likelihood = -612,64995 Iteration 1: log likelihood = -541,46581 Iteration 2: log likelihood = -541,15686 Iteration 3: log likelihood = -541.15684 Number of obs 1000 Wald chi2(1) = 127.58 Log likelihood = -541,15684 Prob > chi2 0.0000 Std. Err. P>IzI [95% Conf. Interval] Coef. .0475177 11.30 0.000 .4435917 .6298576 .5367246 \times 1 .0447146 12.86 .5750247 0.000 .4873858 .6626636 _cons | . probit y x Iteration 0: log likelihood = -612,54939 Iteration 1: log likelihood = -542.22446 Iteration 2: log likelihood = -541.15783 Iteration 3: log likelihood = -541.15684 1000 Probit estimates Number of obs LR chi2(1) 142.79 Prob > chi2 = 0.0000 Log likelihood = -541.15684 Pseudo R2 0.1165 Std. Err. P>Iz1 [95% Conf. Interval] Coef. z .5367247 .0475177 11.30 0.000 .4435918 .6298576 \times 1 .5750247 .0447145 12.86 0.000 .4873859 .6626636 _cons |

Beyond linear-form likelihood fn's

- Many ML estimators I write down do NOT satisfy the linear-form restriction, but OFTEN they have a simple panel structure (e.g. think of any "xt*" command in Stata that is implemented in ML)
- Stata has nice intuitive commands to deal with panels (e.g. "by" command!) that work inside ML programs
- As an example, let's develop a random-effects estimator in Stata ML. This likelihood function does NOT satisfy the linear-form restriction (i.e. the overall log-likelihood function is NOT just the sum of the individual loglikelihood functions)
- This has two purposes:
 - More practice going from MATH to CODE
 - Good example of a panel data ML estimator implementation

Panel model with random effects:

$$y_{it} = x_{it}\beta + u_i + e_{it}$$

 $u_i \sim N(0, \sigma_u^2)$
 $e_{it} \sim N(0, \sigma_e^2)$

Log-likelihood function is given by the following:

$$\log(L) = \sum_{i=1}^{N} \log(L_i)$$

where i indexes the group, not the observation. The log-likelihood function for the group is the following:

$$\log(L_{i}) = \log\left(\int_{-\infty}^{\infty} f(u_{i}) \prod_{t=1}^{T} f(y_{it}|u_{i}) du_{i}\right)$$

$$= \log\left(\int_{-\infty}^{\infty} \frac{1}{\sigma_{u}\sqrt{2\pi}} \exp\left(-\frac{u_{i}^{2}}{2\sigma_{u}^{2}}\right) \prod_{t=1}^{T} \left(\frac{1}{\sigma_{e}\sqrt{2\pi}} \exp\left\{-\frac{(y_{it} - u_{i} - x_{it}\beta)^{2}}{2\sigma_{e}^{2}}\right\}\right) du_{i}\right)$$

$$= -\frac{1}{2} \left\{\frac{\sum_{t=1}^{T} z_{it}^{2} - a_{i} \left(\sum_{t=1}^{T} z_{it}\right)^{2}}{\sigma_{e}^{2}} + \log(T * \sigma_{u}^{2}/\sigma_{e}^{2} + 1) + T * \log(2\pi\sigma_{e}^{2})\right\}$$

where T is the number of observations for each group, $z_{it} = y_{it} - x_{it}\beta$ and $a_i = \sigma_u^2/(T * \sigma_u^2 + \sigma_e^2)$

```
program drop all
program define myrereg_d0
  args todo b lnf
  tempvar xb z T S_z2 Sz_2 S_temp a first
  tempname sigma_u sigma_e ln_sigma_u ln_sigma_e
  mleval xb' = b', eq(1)
  mleval `ln_sigma_u' = `b', eq(2) scalar
  mleval `ln_sigma_e' = `b', eq(3) scalar
  scalar `sigma_u' = exp(`ln_sigma_u')
  scalar `sigma_e' = exp(`ln_sigma_e')
  ** hack!
  sort $panel
  qui {
   gen double `z' = $ML_y1 - `xb'
   by panel: gen T' = N
   gen double a' = (sigma_u'^2) / (T'*(sigma_u'^2) + sigma_e'^2)
   by panel: egen double `S_z2' = sum(`z'^2)
   by $panel: egen double `S temp' = sum(`z')
   by $panel: gen double `Sz_2' = `S_temp'^2
   by $panel: gen `first' = (_n == 1)
   mlsum `lnf' = -.5 *
                                                      ///
          ((S_z2' - a'*Sz_2')/(sigma_e'^2) + ///
             log(T'*sigma_u'^2/sigma_e'^2 + 1) + ///
             `T'*log(2* pi * `sigma e'^2)
                                                     ///
          ) if `first' == 1
end
```

where T is the number of observations for each group, $z_{it}=y_{it}-x_{it}\beta$ and $a_i=\sigma_u^2/(T*\sigma_u^2+\sigma_e^2)$

```
gen double `z' = $ML_y1 - `xb'
by $panel: gen `T' = _N
gen double `a' = (`sigma_u'^2) / (`T'*(`sigma_u'^2) + `sigma_e'^2)
```


$$-\frac{1}{2} \left\{ \frac{\sum_{t=1}^{T} z_{it}^2 - a_i \left(\sum_{t=1}^{T} z_{it}\right)^2}{\sigma_e^2} + \log(T * \sigma_u^2 / \sigma_e^2 + 1) + T * \log(2\pi\sigma_e^2) \right\}$$

```
program drop _all
program define myrereg_d0
  args todo b lnf
  tempvar xb z T S_z2 Sz_2 S_temp a first
  tempname sigma_u sigma_e ln_sigma_u ln_sigma_e
  mleval `xb' = `b', eq(1)
  mleval `ln_sigma_u' = `b', eq(2) scalar
  mleval `ln_sigma_e' = `b', eq(3) scalar
  scalar `sigma_u' = exp(`ln_sigma_u')
  scalar `sigma_e' = exp(`ln_sigma_e')

** hack!
sort $panel
```

```
clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen id = 1 + floor((_n - 1)/10)
bys id: gen fe = invnormal(uniform())
bys id: replace fe = fe[1]
gen y = x + fe + invnormal(uniform())
qlobal panel = "id"
ml model d0 myrereg_d0 (y = x) / \ln_sigma_u / \ln_sigma_e
ml search
ml maximize
xtreq y x, i(id) re
```

"my" MLE RE vs. XTREG, MLE

.ml model d0 myrereg_d0 (y = x) /ln_sigma_u /ln_sigma_e

```
. ml search
initial:
              log likelihood = -207,71466
              log\ likelihood = -207.71466
improve:
              log likelihood = -192.08714
alternative:
              log\ likelihood = -191.69318
rescale:
              log likelihood = -187,99763
rescale eq:
. ml maximize
initial:
              log likelihood = -187.99763
              \log likelihood = -187.99763
rescale:
              log likelihood = -187,99763
rescale eq:
              log likelihood = -187.99763 (not concave)
Iteration 0:
Iteration 1:
              log likelihood = -154.31332
Iteration 2:
              log likelihood = -150,62272
              log likelihood = -149,93738
Iteration 3:
              log likelihood = -149.93725
Iteration 4:
Iteration 5: \log \text{ likelihood} = -149.93725
                                                Number of obs =
                                                Wald chi2(1) =
                                                                     116,17
Log likelihood = -149.93725
                                                Prob > chi2
                   Coef. Std. Err. z P>|z|
                                                        [95% Conf. Interval]
        × I 1,099201
                           .1019817
                                      10.78
                                            0.000
       _cons | .3374044
                           .2492308
                                     1.35 0.176
                                                        -.151079
                                                                    .8258877
ln_sigma_u
       _cons | -.3242579 .2658427 -1.22 0.223 -.8453001
```

_cons | -.0120325 .0745392 -0.16 0.872 -.1581266

Fitting constant-only model: Iteration 0: log likelihood = -206.05665 Iteration 1: log likelihood = -191.4423 Iteration 2: log likelihood = -187.64957 log likelihood = -187,20916 Iteration 3: Iteration 4: log likelihood = -187.19965 Iteration 5: log likelihood = -187,19965 Fitting full model: Iteration 0: log likelihood = -150.01883 Iteration 1: log likelihood = -149.93753 Iteration 2: $\log \text{ likelihood} = -149.93725$ Number of obs Random-effects ML regression Number of groups = Group variable: id Random effects u_i ~ Gaussian Obs per group: min = avg = 10.0 max = LR chi2(1) 74.52 Log likelihood = -149.93725Prob > chi2 [95% Conf. Interval] Coef. Std. Err. P>IzI .1019811 10.78 0.000 _cons | .3374044 .2492309 1.35 0.176 -.1510792 .8258879 .7230637 /sigma_u l .1922211 .4294286 1.217481 /sigma_e | .9880396 .0736465 .8537437 1.143461 .127123 .3487698 .144077 .6121367 Likelihood-ratio test of sigma_u=0: chibar2(01)= 24.32 Prob>=chibar2 = 0.000

. xtreg y x, i(id) mle

.1340616

Point estimates identical but standard errors different; why?

Exercises

- (A) Implement logit as a simple (i.e. "If") ML
 estimator using Stata's ML language
 (If you have extra time, implement as a d2
 estimator, calculating the gradient and Hessian
 analytically)
- (B) Implement conditional logit maximum likelihood (MLE) estimator using Stata's ML language (NOTE: This is <u>HARD</u>; see hints on-line)

conditional logit

log-likelihood for conditional logit:

$$\log(L_i) = \sum_{t=1}^{T} y_{it} x_{it} \beta - \log \left(\sum_{d_i \in S_i} \exp \left(\sum_{t=1}^{T} d_{it} x_{it} \beta \right) \right)$$

where d_{it} is equal to 0 or 1 such that sum of all d_{it} in the panel equal the sum of all y_{it} in the panel, and S_i is defined to be all combinations of sequences of d_{it} such that sum of all d_{it} in the panel equal the sum of all y_{it} in the panel