1. Выполните указанные действия а) (1+2i)+(4-i);

б)
$$(3-i)\cdot(2+3i)$$
; в) $(2-7i)\cdot(3-5i)$; г) $(4+7i)\cdot(-1+4i)-(5-3i)$;

д)
$$(2-5i)\cdot(5+3i)+(-24+17i)$$
; e) $(2+3i)(4-5i)+(2-3i)(4+5i)$;

ж)
$$(3-i)(4-3i)-(1-2i)(5+2i)$$
.

2. Вычислите i^5 , i^{73} , i^{195} , i^{1326}

3. Дано
$$z_1 = 2 + 3i$$
, $z_2 = 3 + 7i$, $z_3 = -3 + 4i$, $z_4 = 1 - 2i$. Найдите

a)
$$3z_1 - z_2$$
, 6) $z_3 + z_4$, B) $2z_1 - 3z_2 + 5z_4$, $z_1 - 3\overline{z}_4$,

д)
$$z_1 \cdot z_3$$
, e) $z_2 \cdot z_4$, ж) $z_1 \cdot \overline{z}_2$, з) $z_1 \cdot z_4 - z_2 \cdot z_3$; и) z_1^2 .

4. Выполните деление а) $\frac{2+4i}{-1+3i}$; б) $\frac{2+4i}{3-i}$; в) $\frac{4-2i}{-3+4i}$; г) $\frac{4+5i}{3+4i}$;

д)
$$\frac{2-3i}{1+4i}$$
; e) $\frac{1+4i}{1-3i}$; ж) $\frac{1+2i}{2-5i}$; з) $\frac{4-9i}{7-i}$ +1,9-0,4 i ; и) $\frac{i^{15}+i^{38}}{i^{91}-i^{42}}$;

к)
$$\frac{7-2i}{3+i} + \frac{2+3i}{1-i}$$
; л) $\frac{1+2i}{1-3i} + \frac{4+5i}{3+i}$; м) $\frac{2-i}{3+4i} - \frac{3+4i}{2-i}$.

5. Решите уравнения a) $x^2 + 4x + 5 = 0$; б) $x^4 + 5x^2 + 4 = 0$;

в)
$$x^4 - 5x^2 - 36 = 0$$
; г) $x^2 - 12x + 52 = 0$; д) $x^4 + 6x^2 + 25 = 0$;

e)
$$x^4 + 7x^2 - 144 = 0$$
; ж) $(1-i)\overline{z} = 3iz + 4 - 9i$;

3)
$$(5-8i)x+(4-i)y=1+20i$$
, если $x, y \in \mathbf{R}$;

и)
$$(7+2i)x+(5-4i)y=-1+16i$$
, если $x, y \in \mathbb{R}$; з

$$x \cdot z + 2z - 3z = 3 + 2i$$
.

6. а) Может ли сумма квадратов двух ненулевых чисел быть отрицательным числом?

б) Может ли сумма положительного числа и квадрата некоторого числа быть отрицательным числом?

- 7. При каких значениях x будут сопряженными комплексные числа $\sqrt{x^2-3}+3-i\sin\frac{\pi x}{4} \text{ и } \sqrt{x^2+5}+1-i\sin^2\frac{\pi x}{4}?$
- 8. Изобразите комплексные числа точками на плоскости. Найдите их модули и аргументы. Запишите эти числа в тригонометрической форме: $z_1=3+3i, \ z_2=-2+i\sqrt{12}, \ z_3=1+2i, \ z_4=-3-4i,$ $z_5=-\sqrt{3}-i, \ z_6=7i, \ z_7=-3, \ z_8=-5i, \ z_9=8$.
- 9. Представьте в алгебраической форме комплексное число $z = \sqrt{10} \left(\cos \left(\pi + \arctan 1/3 \right) + i \sin \left(\pi + \arctan 1/3 \right) \right).$
- 10. Найдите модуль и аргумент числа $z = e^{-3+2i}$.
- 11. Найдите а) $z_1 \cdot z_2$, б) $z_3 \cdot z_4$, в) $z_2 \cdot z_5$, г) z_4 / z_5 , д) z_2 / z_3 ,

e)
$$z_5/z_2$$
, ж) z_1/z_3 , 3) z_4/z_1 , и) z_1^4 , к) z_3^3 , л) z_4^6 ,

м)
$$z_2^6$$
, н) z_5^8 , если $z_1 = 2\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$,

$$z_2 = 3\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right), \quad z_3 = 5\left(\cos\frac{-2\pi}{7} + i\sin\frac{-2\pi}{7}\right),$$

$$z_4 = \sqrt{2} \left(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9} \right), \quad z_5 = \sqrt{3} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right).$$

12. Найдите модули и аргументы комплексных чисел

$$z_1 = \frac{6 - 8i}{-4 + 3i}; \quad z_2 = \frac{-4 + 4i}{1 + i}; \quad z_3 = \sqrt{2} \left[\frac{-5 + i}{1 + i} + \frac{(1 - 2i)(1 + i)^2}{2i} \right];$$

$$z_4 = \sqrt{2}(1+i)\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).$$

13. Вычислите а)
$$\left(\frac{\sqrt{3}-i}{2}\right)^{24}$$
; б) $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{30}$; в) $\frac{(1-i)^6-1}{(1+i)^6+1}$;

г)
$$\frac{(-1+i)^{124}}{(1-i)^{98}-i(1+i)^{98}};$$
 д) $\frac{(1+i)^5(\sqrt{3}+i)^{10}}{(1-i)^4(1-i\sqrt{3})^{11}};$

$$e) \left(\frac{1+i\sqrt{3}}{2}\right)^{60} - \left(\frac{1-i\sqrt{3}}{2}\right)^{60}.$$

14. Извлеките корни из чисел, заданных в алгебраической форме:

a)
$$\sqrt{-2+2\sqrt{3}i}$$
, 6) $\sqrt{6-8i}$, B) $\sqrt{-3+4i}$; Γ) $\sqrt{16-30i}$.

- 15. Вычислите корни указанной степени из заданных чисел, запиих предварительно в тригонометрической форме
 - a) $z = 27(\cos(3\pi/4) + i\sin(3\pi/4))$, $\sqrt[3]{z}$; 6) z = -16, $\sqrt[4]{z}$;

6)
$$z = -16$$
, $\sqrt[4]{z}$

B)
$$z = 64(\cos(5\pi/6) + i\sin(5\pi/6)), \sqrt[3]{z}$$
; $r) z = 32i, \sqrt[5]{z}$.

$$r) z = 32i, \sqrt[5]{z}$$
.

- 16. Решите уравнения a) $z^2 (3+i)z + (4+3i) = 0$;

6)
$$z^2 - (1+3i)z - (2-i) = 0$$
; B) $z^2 - (8+2i)z + (23+2i) = 0$;

$$\Gamma$$
) $z^2 - (3+i)z + (4+3i) = 0$;

$$\Gamma$$
) $z^2 - (3+i)z + (4+3i) = 0$; Π) $z^2 - (3+2i)z + (5+5i) = 0$;

e)
$$(3-i)z^2 + (1+i)z + 6i = 0$$
.

- 17. Изобразите на комплексной плоскости множество точек, удо
 - влетворяющих условию:
- a) Re z = 1; 6) Im z = -2;
- в) Re $z \ge -3$; г) Im $z \le 4$; д) |z| = 2; e) arg $z = 2\pi/3$;

- ж) 1 < |z+3| < 2; 3) 1 < |z-i| < 3; и) $\pi/6 < \arg z < \pi/3$;
- κ) $2 \operatorname{Re} z + 3 \operatorname{Im} z = 4$; π) $|z 2 + 3i| \le 1$, $\operatorname{Im} z \operatorname{Re} z > -4.5$.
- 18. Найдите действительную и мнимую части функций

a)
$$f(z) = z^2 + i$$
, 6) $f(z) = \overline{z} \cdot \text{Re } z^2$, B) $f(z) = \text{Re } z + \text{Im } z^2$,

- $f(z) = z \cdot \text{Im } z^2$, π) $f(z) = z^3 + i(z^2 3)$, e) f(z) = z/i + i/z,
- ж) $f(z) = \overline{z}^3 + 3z z^2 \cdot \overline{z}$ 3) $f(z) = 3\overline{z} + (z + 1 + 4i)$.
- 19. Найдите f(z), если a) u(x, y) = x + y, v(x, y) = x y;
 - 6) $u(x, y) = x^2 y^2$, v(x, y) = -2xy.
- 20. Пользуясь условиями Коши-Римана, проверьте, какие функции являются дифференцируемыми. Где это возможно вычислите производную a) $f(z) = z^2 - z - 6$; б) $f(z) = z^2 + 3iz + 2$;

в)
$$f(z) = z^2 \cdot \bar{z}$$
; г) $f(z) = z^2 \cdot \text{Re } z$; д) $f(z) = z^3 + 2z - i$;

e)
$$f(z) = z^2 + 2z \cdot \text{Re } z + 3\text{Im } z$$
; x) $f(z) = \text{Re}(z^2) + 4iz$;

3)
$$f(z) = 0.5z(\overline{z} + 2z)$$
; и) $f(z) = z^3 + 3\overline{z} - \text{Im}(z^2)$.