MSNE characterization theorem

Theorem: A mixed strategy profile $(\mathcal{T}_i^*, \mathcal{T}_i^*)$ is a MSNE iff $\forall i \in \mathbb{N}$

1
$$u_i(s_i, \sigma_i^*)$$
 is the same for all $s_i \in \delta(\sigma_i^*)$

$$2) \quad u_{i}(A_{i},\underline{\sigma}_{i}^{*}) > u_{i}(S_{i}^{*},\underline{\sigma}_{i}^{*}), \quad \forall A_{i} \in \delta(\underline{\sigma}_{i}^{*}), \quad A_{i}^{*} \notin \delta(\underline{\sigma}_{i}^{*})$$

Observations:

$$(i) \quad \max_{\sigma_i \in \Delta(S_i)} u_i (\sigma_i, \underline{\sigma}_i) = \max_{s_i \in S_i} u_i (s_i, \underline{\sigma}_i)$$

maximizing w.r.t. a distribution = whole probability mass at max

the maximizer must lie in $S(\sigma_i^*)$ - if no maximizer in $S(\sigma_i^*)$ then put all probability mass on that $S(\neq S(\sigma_i^*))$ that has the maximum value of the utility - (σ_i^*, σ_i^*) is not a MSNE.

Proof:
$$(\Rightarrow)$$
 given (σ_i^*, σ_i^*) is an MSNE

 $U_i(\sigma_i^*, \sigma_i^*) = \max_{\sigma_i \in \Delta(S_i)} U_i(\sigma_i, \sigma_i^*)$
 $= \max_{\Delta_i \in S_i} U_i(\Delta_i, \sigma_i^*)$
 $= \max_{\Delta_i \in S(\sigma_i^*)} U_i(\Delta_i, \sigma_i^*)$
 $= ---- 1$

by definition of expected utility $U_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) = \sum_{i} \sigma_{i}^{*}(A_{i}) \quad U_{i}\left(A_{i}, \sigma_{i}^{*}\right)$ $= \sum_{A_i \in \mathcal{S}(\sigma_i^*)} \sigma_i^*(A_i) \, u_i(A_i, \underline{\sigma}_i^*) \quad --- \quad 2$ 1) and 2) are equal - max is equal to weighted average - Can happen only when all values are same. Proves condition I for condition 2: suppose for contradiction $\exists s_i \in \delta(\sigma_i^*) \text{ and } s_i' \notin \delta(\sigma_i^*)$ $s.t. u_i(A_i, \underline{\sigma}_i^*) < u_i(s_i', \underline{\sigma}_i^*)$ shift the probability mass $\sigma_i^*(s_i)$ to s_i' , this new mixed strutegy gives a strict better utility – contradiction to MSNE. (€) Given the two conditions of the theorem hold Let $U_i(s_i, \underline{\sigma}_i^*) = M_i(\underline{\sigma}_i^*), \forall s_i \in \delta(\underline{\sigma}_i^*) - \text{condition } |$ write $W_i(\underline{\tau}_i^*) = \max_{J_i \in S_i} U_i(J_i,\underline{\tau}_i^*) - Condition 2$ $u_i(\sigma_i^*, \underline{\sigma}_i^*) = \sum \sigma_i^*(s_i) u_i(s_i, \underline{\sigma}_i^*) - by defn. of \delta(\sigma_i^*)$ = m, (o, t) - previous conclusion = max $U_i(S_i, T_i^*)$ - previous condusion $A_i \in S_i$ from the Observation = max $U_i(\sigma_i, \sigma_i^*) > U_i(\sigma_i, \sigma_i^*), \forall \sigma_i \in \Delta(s_i)$ algorithmic way to find MSNE $a_i \in V(z^i)$