Primer Control Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			4/2018	Primavera 2018
Nom:	Cognoms:	Grup:	DNI:	

Durada: 1h30mn. El test es recollirà en 25 mn. Respondre en el mateix enunciat.

Test. (4 punts). Totes les preguntes poden ser multiresposta. Valen la meitat si hi ha un error, 0 si més. Marqueu la resposta correcta.

	IIIe	es. Marqueu la resposta correcta.
l.	Res	pecto a los modelos TCP/IP:
		Un datagrama IP transporta información de TCP, pero no de aplicación.
		Sobre un protocolo de red sin conexión, sólo podemos usar protocolos de transporte sin conexión.
		Los protocolos de DNS se sitúan en el nivel de aplicación.
	П	Una entidad de nivel N debe procesar las cabeceras de nivel N.
2.	_	da la subred 10.10.10.0/28:
		Sus direcciones son privadas.
		10.10.10.1/28 puede ser una subred suya.
		10.10.10.2 puede ser la dirección de un Router de dicha subred.
,		10.10.10.3 y 10.10.10.100 pueden ser direcciones de hosts de dicha subred.
3.	_	nemos el rango de direcciones 100.0.0.0/29. Queremos direccionar en dicho rango 2 subredes de 1 host.
		No tenemos suficientes direcciones para conseguirlo.
		100.0.0.0/29 y 100.0.0.4/30 pueden ser las dos subredes.
		100.0.0.6 puede ser un host en una de las subredes.
1.	Pos	100.0.0.3 puede ser la dirección de broadcast en una de las subredes. pecto a los protocolos de soporte a IP:
٠.		Los mensajes ARP son enviados para obtener la dirección física que corresponde a una dirección IP.
		Un Router no genera mensajes ICMP como respuesta a errores de datagramas que contienen otros mensajes de error
		ICMP.
		El DNS sirve para obtener la dirección del servidor de nombres local.
		Los mensajes DNS viajan sobre UDP.
5.	En l	la cabecera IPv4:
		Sólo incluimos el campo Offset cuando hay fragmentación.
		Hay un campo para indicar la longitud de la cabecera, pero no para indicar la longitud del datagrama completo.
ΞΙc	amr	po Protocol indica el protocolo que viaja en el payload (datos de usuario) del datagrama.
		Si no se usan opciones, no enviamos ningún campo de opciones.
5 .	Sob	ore los Routers:
		Analizan el payload de los datagramas para optimizar su ruta en función del protocolo de aplicación en el datagrama.
		Un Router suele incluir un servidor DHCP y puede proporcionar servicio NAT.
		Se comunican con otros Routers para proporcionar el servicio NAT conjuntamente.
		No envían un datagrama a nadie hasta que no han consultado la tabla de enrutamiento para saber a quién hay que
		entregarlo.
7.		ore la seguridad en IP:
		Añadir un túnel de salida por un Router no afecta a la tabla de enrutamiento.
		Una ACL sirve para filtrar datagramas para evitar que salgan de, o entren a, un Router en función de información que
		sólo se encuentra en la cabecera IP.
		Si queremos permitir que un servidor Web que tenemos en nuestra subred sea accedido desde el exterior, es
		imprescindible que lo pongamos en una subred independiente de otros hosts que no queremos que sean accedidos.
		Una forma de implementar un túnel es incluir el datagrama que queremos que atraviese el túnel como payload de otro
	_	datagrama.
3.	_	relación a RIP:
	Ш	Cuando se construye un mensaje RIP Update, el valor de la métrica se incrementa en uno respecto al que tenemos en la
		tabla de enrutamiento.
		Los mensajes RIP Update se pueden enviar en cuanto hay cambios en las tablas de enrutamiento aunque no hayan
	\Box	pasado 30 segundos desde el último update.
		Los mensajes que intercambian los Routers en OSPF son más complejos que cuando usan RIP. Al usar Split Horizon en RIP se envía más información entre Routers

Primer control de Xarxes de Comp	16/04/18	Primavera 2018	
NOM (en MAJÚSCULES): COGNOMS (en MAJÚSCULES):		GRUP:	DNI:

Duració: 1h 30 minuts. El test es recollirà en 25 minuts.

Problema 1 (4 puntos).

Un grupo de escuelas (A, B, C) dispone de una red según la figura.

Cada escuela tiene una pequeña red para gestión con 5 PCs cada una (N1, N3, N5) y otra para aulas (N2, N4, N6, las tres del mismo tamaño). Las escuelas están interconectadas y comparten dos conexiones a Internet.

Utilizamos el rango de direcciones 192.168.0.0/24 para todas las direcciones en estas redes.

a) (1 punto) Comenzando la asignación por un extremo, o bien las direcciones más altas

(192.168.0.255) o las más bajas (192.168.0.0), explica qué direcciones asignar a cada extremo de los enlaces RA-RB, RA-RC y RB-RC.

Interfaz	Red/num	IP
RAe1		
RAe2		
RBe0		
RBe1		
RCe3		
RCe4		

b) (1.5 punto) ¿Qué rangos de direcciones asignarías a cada red para que N2, N4, N6 tengan el máximo (y el mismo) número de PCs? Explicar qué direcciones quedarían sin asignar.

Red	Red/num
N1	
N3	
N5	
N2	
N4	
N6	
Sin asignar	

Se activa RIPv2 con split horizon en los routers:

c) (0.75 punto) Rellenar la tabla de routing del router RB

Destino	Gateway	Interfaz	Métrica
N3	*	e3	1
N4	*	e4	1
NAB			
NBC			
NAC			
N1			
N2			
N5			
N6			
0.0.0.0/0	*	e2	1

d) (0.25 punto) Si falla el enlace RA-RB, qué métrica anunciará RA y RB cuando lo detecten?

e) (0.5 punto) Si además del enlace RA-RB, también falla la conexión a Internet de RB, cómo quedará la tabla de routing finalmente? (Escribir sólo las modificaciones)

Destino	Gateway	Interfaz	Métrica
N3	*	e3	1
N4	*	e4	1
NAB			
NBC			
NAC			
N1			
N2			
N5			
N6			
0.0.0.0/0			

Primer control de Xarxes de Compu	16/04/18	Primavera 2018	
NOM (en MAJÚSCULES): COGNOMS (en MAJÚSCULES):		GRUP:	DNI:

Duració: 1h 30 minuts. El test es recollirà en 25 minuts.

Problema 2 (1 punt)

A la interfície externa del router de la figura es defineix la següent llista d'accés (ACL) o regles del tallafocs (Firewall). El port 53 correspon al servei de DNS i el port 80 al de HTTP (web).

	IN/OUT	IP src	port src	IP dst	port dst	Protocol	Action
1	IN	ANY		N		ICMP	ACCEPT
2	IN	D1	53	N	>1024	UDP/TCP	ACCEPT
3	OUT	N	>1024	D1	53	UDP/TCP	ACCEPT
4	IN	ANY	80	N	>1024	TCP	ACCEPT
5	OUT	N	>1024	ANY	80	TCP	ACCEPT
6	IN	ANY	>1024	N	80	TCP	ACCEPT
7	OUT	N	80	ANY	>1024	TCP	ACCEPT
8	ANY	ANY	ANY	ANY	ANY	ANY	DENY

Per a cada una de les transaccions indica la seqüència de paquets que entren i surten per la interfície externa del router. A la columna "Acció" indica amb X quan el tallafocs no permet el pas del datagrama. Les fletxes indiquen el sentit de transmissió: ← cap a Internet, → cap a la xarxa interna N.

Per exemple: PC es vol connectar al servidor de correu M i envia un paquet SMTP cap al servidor extern.

←/→	Aplicació	Protocol	Regla	Acció
←	Mail (SMTP)	TCP	8	X

a) Des d'un dispositiu extern es fa "ping PC"

←/→	Aplicació	Protocol	Regla	Acció

b) Des del PC es fa una consulta al servidor extern de DNS D1

←/→	Aplicació	Protocol	Regla	Acció

c) Des del PC es fa una consulta al servidor extern de DNS D2

←/→	Aplicació	Protocol	Regla	Acció

- d) Pot haver connexions de clients externs a servidors HTTP ubicats a la subxarxa N? Quines regles ho permeten o ho prohibeixen?
- e) Pot haver connexions a servidors HTTP externs des de la subxarxa N? Quines regles ho permeten o ho prohibeixen?