ShanghaiTech University

EE 115B: Digital Circuits

Fall 2022

Lecture 15

Hengzhao Yang November 22, 2022

Basic SR latch

ō

Latched

Characteristic table (alternate)

Source: https://en.wikibooks.org/wiki/Digital_Circuits/Latches

S and R are active high signals.

Basic SR latch

Characteristic table (alternate)

S_{D}	$R_{\scriptscriptstyle m D}$	Q	Q*
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	00
1	1	1	00

Basic SR latch

Timing diagram (assume no propagation delay)

Alternate basic SR latch

- Implementation: NAND gates
- Set and reset are active low signals.

· Left to right: circuit, circuit symbol, and

characteristic table

Source: https://en.wikipedia.org/wiki/Flip-flop_(electronics)

SR latch operation			
S	R	Action	
0	0	Not allowed	
0	1	Q = 1	
1	0	Q = 0	
1	1	No change	

Gated SR latch

- Gated SR latch
 - Add a signal to control the time when the set and reset signals change values
- Two implementations
 - NOR gates
 - NAND gates

Gated SR latch with NOR gates

- Control signal: Clk
 - Clk=0, disabled: latched
 - Clk=1, enabled: basic SR latch
 - Left to right: circuit, circuit symbol, and characteristic table

Gated SR latch with NOR gates

Timing diagram

Gated SR latch with NAND gates

Circuit

Same circuit symbol and characteristic table

Cl	k	\boldsymbol{S}	R	Q^+	Comments	
0		X	×	Q	No change, typically stable states $Q=0, \overline{Q}=1$ or $Q=1, \overline{Q}=0$	
1		0	0	Q	No change, typically stable states $Q=0, \overline{Q}=1$ or $Q=1, \overline{Q}=0$	
1		0	1	0	Reset	
1		1	0	1	Set	
1		1	1	×	Avoid this setting	

Source: http://ecse.bd.psu.edu/cse271/memelem.pdf

Summary: gated SR latch

- Two implementations
 - NOR gates
 - NAND gates
 - Preferred (requires fewer transistors)

Gated D latch

- Only one input: D (data)
- Functionality
 - Clk=1: output (Q) follows input (D)
 - Clk=0: Q holds its previous value
- Circuit

Gated D latch

Circuit symbol and characteristic table

Clk	D	Q(t+1)
0	X	Q(t)
1	0	0
1	1	1

Timing diagram

Level sensitive circuits

- Level sensitive circuits
 - Circuit output is controlled by clock level
 - Circuit output keeps changing according to inputs when clock is active
 - Circuit output value may change multiple times when clock is active

Examples

- Gated SR latch
- Gated D latch
- Clock is active high: Clk=1

VHDL code for gated D latch

Clk	D	Q(t+1)
0	x	Q(t)
1	0	0
1	1	1

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY latch IS
   PORT (D, Clk : IN STD_LOGIC ;
                 : OUT STD_LOGIC);
END latch;
ARCHITECTURE Behavior OF latch IS
BEGIN
    PROCESS (D, Clk)
    BEGIN
        IF Clk = '1' THEN
            Q \leq D;
        END IF:
    END PROCESS;
END Behavior:
```