CIS 606 Analysis of Algorithms

Complexity: P, NP and NPC

RATIONALE

- All the algorithms we have studied thus far have been polynomial-time algorithms: on input of size n, their worst-case running time is $O(n^k)$.
- Can all problems be solved in polynomial time?

OBJECTIVES

• Understand P, NP, NPC definitions.

PRIOR KNOWLEDGE

- Sets
- Automata and formal language

OPTIMIZATION PROBLEMS

- Optimization Problem: the answer of the problem is a feasible solution with the best (minimum or maximum) value.
 - Knapsack problem
 - Single-source shortest path
 - Maximum flow
- Dynamic programming
- Divide-and-conquer

DECISION PROBLEMS

- Decision Problem: the problem of determining an answer to a class of yes/no questions.
 - Given a graph G, vertices u and v, an integer k, does a path exist from u to v consisting of at most k edges?
 - Dose a graph have a path that goes through every node exactly once?
 - Is the number x prime?
- A solution to a decision problem is given by an algorithm (e.g., a turing machine automata) that answers yes or no.

ENCODING INSTANCES TO A SET OF BINARY STRINGS

- An instance of a problem is the input to a particular problem
 - E.g., a particular graph G, particular vertices u and v of G, and a particular integer k for the decision problem Path: whether there is a path from u to v of at most k edges.
- An encoding of a set S of abstract objects is a mapping from S to the set of binary strings.

AN ALGORITHM

An algorithm for solving a decision problem is a Turing Machine for deciding the corresponding language.

One Turing machine decides a language L = {01001, 001, 001, 100}

- The Turing machine outputs 1 for every binary string in L, i.e., accepts L
- It outputs 0 for every one not in L, i.e., rejects any binary string not L.

ISSUES FOR DECIDING A LANGUAGE

- Computability Issue:
 - Does it have an algorithm at all?
 - Question the existence of an algorithm (Turing machine)
- Complexity Issue:
 - Does it have an efficient solution (algorithm)?
 - Is there algorithms with the running time scales well with the input size?

P AND NP

- P: the set of languages decided by an algorithm in polynomial time, i.e., decided in polynomial time on a deterministic Turing machine (deterministic algorithms).
 - Multiple: is the integer y a multiple of x?
 - Yes: (x, y) = (17, 51)
 - Given integers x1, x2, ..., xn, is the median value < M?
 - No: (M, x1, x2, x3, x4, x5) = (17, 82, 5, 104, 22, 10)
 - Given a graph G, two vertices u, v, and an integer k, is there
 - a path between u and v of no more than k edges?

P AND NP(CONT)

- NP (not mean "not polynomial"): the set of languages that can be verified by a polynomial-time algorithms.
 - Given a certificate of a solution of a decision problem, an algorithm verifies this solution in polynomial time.
 - E.g., decision problem: given integer x, is x composite?
 - Given an integer x = 273 and a certificate k=3, deciding whether x=273 is composed of k=3 can be done in polynomial-time verification algorithm.
- Or the set of all decision problems solvable in polynomial time on a nondeterministic Turing machine.
 - A nondeterministic TM is the one that can explore many, many paths of computation in parallel.

OPEN PROBLEM: P = NP?

- **P** ⊆ **NP**:
 - A language that can be decided in polynomial time can be

verified in polynomial time.

- How about NP ⊆ P?
 - Is a language that can be verified in polynomial time decided in
 - polynomial time?

NP

NP-COMPLETENESS AND NP-HARD

- Reducibility:
- L₁ ≤_p L₂: the reduction function f maps any instance x of the decision problem represented by L1 to an instance f(x) of the decision problem represented by L2.

- L is in NP, and
- Every language L' in NP is polynomial-time reducible to L, i.e., L'≤_p L

language L is NP-Hard if L'≤p L for every L' in NP.

If P ≠ NP

THE FIRST NPC Problem

- Circuit Boolean Satisfiability Problem (SAT)
 - An instance is a boolean combinatorial circuit.
- Question: is there a satisfying assignment, i.e., an assignment of inputs, to the circuit that satisfies it (makes its output 1)?

BOOLEAN SATISFIABILITY PROBLEM (SAT)

- The given is
 - A Boolean Formula F(x₁, x₂, ..., x_n) in conjunctive normal form
 (CNF)
- Question: does the given formula have a satisfying assignment?
 - E.g., $F = (x_1 \lor x_4 \lor x_6 \lor \neg x_n) \land (\neg x_1 \lor x_2 \lor \neg x_4 \lor x_8 \lor \neg x_n)$ $\land (\neg x_3 \lor x_9 \lor \neg x_{13} \lor x_{24} \lor \neg x_{n-1}) \dots$

3-CNF-SAT

- Given:
 - A Boolean Formula F(x₁, x₂, ..., x_n) in conjunctive normal form
 (CNF) and each clause has 3 variables.
- Question: does the given formula has a satisfying assignment?
 - E.g., $F = (x_1 \lor x_4 \lor x_6) \land (\neg x_1 \lor x_8 \lor \neg x_n) \land (\neg x_3 \lor x_9 \lor \neg x_{13}) \dots$

GRAPH 3-COLOR

 Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

VERTEX COVER

- A vertex cover of a graph is a set of vertices such that each edge is incident to at least one vertex of this set.
- The NP-complete problem:
- Given a graph G(V,E) and a positive integer k, the problem is to find whether there is a vertex cover of size at most k.

HAMILTONIAN CYCLE

- Hamiltonian cycle in an undirected graph is a graph cycle that visits each vertex exactly once.
- The problem:
- Given any undirected graph, is there a hamiltonian cycle in this graph?

NPC PROOF

- To prove that a problem B is NPC:
 - B is in NP
 - Choose some known NPC problem A, define a polynomial transformation from A to an instance B to show that A ≤_p B

SUMMARY

- P is a set of decision problems that can be solved in polynomial time.
- NP is a set of decision problems that can be verified in polynomial time.
- NPC is a subset of NP and as hard as other problems in NP
- NP-Hard is the set of problems that every NP problem can be reduced to one of it.

