Sample Quiz 4, Math 1554, Fall 2019

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name	Last Name	
GTID Number:		
Student GT Email Address:	@gatech.edu	
Section Number (e.g. A4, M2, QH3, etc.)	TA Name	

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

You do not need to justify your reasoning for questions on this page.

1. (3 points) Indicate whether the statements are true or false.

true false

- \bigcirc If $A \in \mathbb{R}^{2\times 2}$, $A = A^T$, and A has distinct eigenvalues λ_1 and λ_2 , the corresponding eigenvectors \vec{v}_1 and \vec{v}_2 are orthogonal.
- \bigcirc The quadratic form $Q = -x^2 2xy y^2$ is negative definite.
- \bigcirc $2x^2 2xy + y^2 \ge 0$ for all real values of x and y.
- 2. (4 points) If possible, give examples of the following.
 - (a) A non-zero 2×2 elementary matrix, A, that can be diagonalized as PDP^{T} .

$$A = \left(\begin{array}{c} \\ \end{array}\right)$$

(b) An indefinite quadratic form that has no cross terms, and is expressed in the form $Q = \vec{x}^T A \vec{x}$, where $\vec{x} \in \mathbb{R}^2$.

$$Q(\vec{x}) =$$

- 3. (3 points) Fill in the blanks.
 - (a) A unit vector that that gives the location of the maximum value of $Q(\vec{x}) = x_1^2 2x_2^2$ subject to $\vec{x}^T \vec{x} = 1$, $\vec{x} \in \mathbb{R}^2$, is $\begin{pmatrix} \\ \end{pmatrix}$.
 - (b) \vec{p} is an eigenvector of A with unit length that corresponds to eigenvalue $\lambda = 12$. The value of $\vec{p}^T A \vec{p}$ is
 - (c) The maximum value of $Q = \vec{x}^T A \vec{x} = \vec{x}^T \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \vec{x}$ subject to the constraints

$$\vec{x}^T \vec{x} = 1$$
 and $\vec{x} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$ is equal to _____.