Deeper and Wider Siamese Networks for Real-Time Visual Tracking

Zhipeng Zhang and **Houwen Peng**Microsoft Research Asia (MSRA)

CVPR 2019 Oral

June 16th - June 20th, Long Beach, CA

Visual Object Tracking

- Definition
 - It aims to estimate the position of arbitrary targets in a video sequence, given only the location in initial frame.
- Category
 - Single object tracking
 - Multiple object tracking

Visual Object Tracking

Challenges

Illumination Variation

Occlusion

Background Clutters

Scale Variation

Rotation

Motion Blur

Outline

- Background on Siamese Trackers
- Motivation
- Analysis and Guidelines
- Method
- Experiments

Background on Siamese Trackers

- Siamese network architecture
 - Network and weight sharing
 - Metric learning, loss
 - Increase training samples naturally
- Applications
 - Face verification
 - Person re-ID

The **Distance Function** decides if the output vectors are close enough to be similar

The **Neural Network** transforms the input into a properties vector

Input Data (image, text, features...)

Background on Siamese Trackers

- SiamFC
 - Fully-convolutional networks
 - Similarity learning
 - Offline model
- SiamRPN
 - Region proposal networks
 - More accurate localization

Outline

- Background on Siamese Trackers
- Motivation
- Analysis and Guidelines
- Method
- Experiments

Motivation

- The backbone network is still the classical AlexNet
- No significant performance improvements on more powerful backbones

Outline

- Background on Siamese Trackers
- Motivation
- Analysis and Guidelines
- Method
- Experiments

• What is the underlying causes of this phenomenon?

															,					
# NUM	1	2	3	4	(5)	6	7	8	9	10	# NUM	1	2	3	4	(5)	6	7	8	9
RF^1	Max(127)	+24	+16	+8	±0 (87) ±0	-8	-16	+16	+16	RF	+32	+16	+8	±0 (91)±0	-8	-16	+16	+16
STR	8	8	8	8	8	8	8	8	16	4	STR	8	8	8	8	8	8	8	16	4
OFS	1	3	4	5	6	16	7	8	2	7	OFS	1	3	4	5	16	6	7	2	6
PAD	X	X	X	X	Х	1	X	X	×	X	PAD	X	X	X	Х	1	X	X	X	X
Alex	0.56	0.57	0.60	0.60	0.61	0.55	0.59	0.58	0.55	0.59	ResNet	0.56	0.59	0.60	0.62	0.56	0.60	0.60	0.54	0.58
VGG	0.58	0.59	0.61	0.61	0.62	0.56	0.59	0.58	0.54	0.58	Incep. ²	0.58	0.60	0.61	0.63	0.58	0.62	0.61	0.56	0.59
141																				

Padding Influence: Padding causes performance degradation

• with v.s. without padding

• What is the underlying causes of this phenomenon?

# NUM	1	2	3	4	(5)	6	7	8	9	10	# NUM	1	2	3	4	(5)	6	7	8	9
RF^1	Max(127)	+24	+16	+8	$\pm 0 (87)$	± 0	-8	-16	+16	+16	RF	+32	+16	+8	$\pm 0 (91)$	±0	-8	-16	+16	+16
STR	8	8	8	8	8	8	8	8	16	4	STR	8	8	8	8	8	8	8	16	4
OFS	1	3	4	5	6	16	7	8	2	7	OFS	1	3	4	5	16	6	7	2	6
PAD	×	X	X	X	X	1	X	X	X	X	PAD	X	X	X	X	1	Х	X	X	×
Alex	0.56	0.57	0.60	0.60	0.61	0.55	0.59	0.58	0.55	0.59	ResNet	0.56	0.59	0.60	0.62	0.56	0.60	0.60	0.54	0.58
VGG	0.58	0.59	0.61	0.61	0.62	0.56	0.59	0.58	0.54	0.58	Incep. ²	0.58	0.60	0.61	0.63	0.58	0.62	0.61	0.56	0.59
141												Terror								

Padding Influence: Padding causes performance degradation

Receptive Field (RF) and Output Feature Size (OFC) Influence: Reasonable RF and OFS are necessary

Stride Influence: Siamese trackers prefer relatively smaller stride

RF, OFS, and stride are not independent of one another. Consider them together.

• Analysis of receptive field, stride and output feature size

Exemplar Image Patches

- Each element in the feature map corresponds to a patch in exemplar image.
- Overlap Ratio = 1 stride/RF, large overlap ratio will decrease localization precision.

Guidelines

- Siamese trackers prefer a relatively small network stride, e.g. 4 or 8.
- The receptive field of output features should be set based on its ratio to the size of the exemplar image (60%-80%).
- Network stride, receptive field and output feature size should be considered as a whole when designing a network architecture.
- For a fully convolutional Siamese matching network, it is critical to handle the problem of perceptual inconsistency between the two network streams.

Outline

- Background on Siamese Trackers
- Motivation
- Analysis and Guidelines
- Method
- Experiments

- Cropping-inside residual unit
 - CIR Module: center crop not only remove padding influence but also accelerate training and testing
 - CIR-Downsampling Module: reduce the spatial size of feature maps while doubling the number of feature channels

Why we need CIR-Downsampling?

- Modules: Cropping-inside residual units
 - Remove padding
- Design:
 - First, we determine the network stride.
 - Then, we stack CIR units.
 - When network depth increases, the receptive field may exceed this range. Therefore, we halve the stride to 4 to control the receptive field.

• Network Architecture

Stage	CIResNet-16	CIResNet-19	CIResNet-22	CIResInception-22	CIResNeXt-22	CIResNet-43	
conv1			7>	7, 64, stride 2			
			2×2 max pool, s	tride 2			
	$\lceil 1 \times 1, 64 \rceil$	$\lceil 1 \times 1, 64 \rceil$	$\lceil 1 \times 1, 64 \rceil$	$\lceil 1 \times 1, 64 \rceil$	$\lceil 1 \times 1, 64 \rceil$	$\lceil 1 \times 1, 64 \rceil$	
conv2	$3 \times 3,64 \times 1$	$3 \times 3,64 \times 2$	$3 \times 3,64 \times 3$	$3 \times 3,64 \times 3$	$\begin{bmatrix} 3 \times 3, 64, C = 32 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$3 \times 3,64 \times 14$	
	$[1 \times 1, 256]$	$1 \times 1,256$	$[1 \times 1, 256]$	$1 \times 1,256$	$1 \times 1,256$	$[1 \times 1, 256]$	
173				$[1 \times 1, 64] \times 3$			
	$[1 \times 1, 128]$	$[1 \times 1, 128]$	$[1 \times 1, 128]$	$\lceil 1 \times 1, 128 \rceil$	$\lceil 1 \times 1, 128 \rceil$		
conv3	$3 \times 3,128 \times 4$	$\begin{bmatrix} 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$3 \times 3,128 \times 4$	$3 \times 3,128 \times 4$	$3 \times 3, 128, C = 32 \times 4$		
COHVS	$1 \times 1,512$	$1 \times 1,512$	$1 \times 1,512$	$1 \times 1,512$	$\lfloor 1 \times 1,512 \rfloor$		
1-5		1000		$[1 \times 1, 128] \times 4$			
			cross	correlation Eq. 1			
# RF	77	85	93	13~93	93	105	
# OFS	7 6		5	5	5	6	
# Params	1.304 M	1.374 M	1.445 M	1.695 M	1.417 M	1.010 M	
# FLOPs	2.43 G	2.55 G	2.65 G	2.71 G	2.52 G	6.07 G	

- Applications
 - SiamFC
 - Fully-convolutional networks
 - Similarity learning
 - Offline model
 - SiamRPN
 - Region proposal networks
 - More accurate localization

Experiment

Comparison with baselines

	Backbone	ОТВ	(AUC)	VOT-17(EAO)					
		SiamFC	SiamRPN	SiamFC	SiamRPN				
	AlexNet	0.608[2]	0.637[20]	0.188[17]	0.244[20]				
CIF	ResNet-16	0.632	0.651	0.202	0.260				
CIF	ResNet-19	0.640	0.660	0.225	0.279				
CIF	ResNet-22	0.665	0.665	0.234	0.301				
CIRes	Incep22	0.666	0.673	0.215	0.296				
CIRe	sNeXt-22	0.654	0.660	0.230	0.285				
CIF	ResNet-43	0.638	0.652	0.207	0.265				

Experiment

Comparison to state-of-the-arts

Table 5: Performance comparisons on five tracking benchmarks. Red, Green and Blue fonts indicate the top-3 trackers, respectively.

Tracker	Year	OTB-2013		OTB-2015		VOT15				VOT16		VOT17		
		AUC	Prec.	AUC	Prec.	Α	R	EAO	A	R	EAO	A	VOT17 R 0.97 0.69 0.59 0.44 0.46 0.49 0.41	EAO
SRDCF [5]	2015	0.63	0.84	0.60	0.80	0.56	1.24	0.29	0.54	0.42	0.25	0.49	0.97	0.12
SINT [34]	2016	0.64	0.85	-	-	-	-	-	-	-	-			
Staple [1]	2016	0.60	0.80	0.58	0.78	0.57	1.39	0.30	0.54	0.38	0.30	0.52	0.69	0.17
SiamFC [2]	2016	0.61	0.81	0.58	0.77	0.53	0.88	0.29	0.53	0.46	0.24	0.50	0.59	0.19
ECO-HC [4]	2017	0.65	0.87	0.64	0.86	-	-	-	0.54	0.3	0.32	0.49	0.44	0.24
PTAV [8]	2017	0.66	0.89	0.64	0.85	_	-	-	_	_	-	-	_	-
DSiam [12]	2017	0.64	0.81	-	-	-	-	-	-	-	-	-	-	-
CFNet [35]	2017	0.61	0.80	0.59	0.78	-	-	-	-	-	-	-	-	-
StructSiam [40]	2018	0.64	0.88	0.62	0.85	-	-	-	-	-	0.26	-	-	-
TriSiam [7]	2018	0.62	0.82	0.59	0.78	-	-	-	-	-	-	-	-	0.20
SiamRPN [20]	2018	-	-	0.64	0.85	0.58	1.13	0.35	0.56	0.26	0.34	0.49	0.46	0.24
SiamFC+	Ours	0.67	0.88	0.64	0.85	0.57	1.18	0.31	0.54	0.38	0.30	0.50	0.49	0.23
SiamRPN+	Ours	0.67	0.87	0.67	0.86	0.59	1.08	0.38	0.58	0.24	0.37	0.52	0.41	0.30

Our SiamFC+ and SiamRPN+ obtain up to 9.8%/5.7% (AUC), 23.3%/8.8% (EAO) and 24.4%/25.0% (EAO) relative improvements over the original versions on the OTB-15, VOT-16 and VOT-17 datasets, respectively solely due to the proposed backbone.

Visual Comparison

Paper and Code

- https://arxiv.org/pdf/1901.01660.pdf
- https://github.com/researchmm/SiamDW

Thanks!

We are hiring research interns.

houwen.peng@microsoft.com

True Problems and Future Work

- Deeper Networks
- Online model update
- Instance-level representation

Backup

• Wider modules

