Algebra Relazionale

Linguaggi per le basi di dati

- Operazioni sullo schema
 - Data Definition Language (DDL)
- Operazioni sui dati
 - Data Manipulation Language (DML)
 - Interrogazione (query)
 - Aggiornamento (update)

Linguaggi di interrogazione per le basi di dati

- Cosa si intende per **interrogazione**?
 - Operazione di lettura sulla base di dati che può richiedere l'accesso a più di una tabella
- Cosa è necessario fare per specificare il significato di una interrogazione?
- Due formalismi:
 - Modo dichiarativo: si specificano le proprietà del risultato ("che cosa")
 - Modo procedurale: si specificano le modalità di generazione del risultato ("come")

Linguaggi di interrogazione per le basi di dati

- Si definisce il comportamento delle interrogazioni in modo procedurale utilizzando le espressioni dell'algebra relazionale
- Si definisce qual è il **risultato** di un'interrogazione in **modo dichiarativo** utilizzando le espressioni del **calcolo relazionale**
- Il calcolo relazionale è l'effettiva semantica del linguaggio
 - Le interrogazioni sono espresse ad alto livello
 - Nessun concetto di costo
- Con l'algebra relazionale si definisce il modo in cui il DBMS esegue un'interrogazione

Algebra Relazionale

- Algebra = dati + operatori
- Algebra relazionale:
 - Dati: relazioni
 - Operatori:
 - su relazioni,
 - che producono relazioni,
 - e che possono essere composti

Operatori dell'Algebra Relazionale

- Operatori su insiemi:
 - unione, intersezione, differenza
- Operatori su relazioni:
 - ridenominazione
 - selezione
 - proiezione
 - join:
 - naturale, prodotto cartesiano, theta

Notazione

- R, R_1, R_2, \dots indicano nomi di relazione
- A, B, C, A_1, A_2, \dots indicano nomi di attributo
- X, Y, X_1, X_2, \dots indicano insiemi di attributi
- XY è un'abbreviazione di $X \cup Y$
- Una relazione con n-uple $t_1, t_2, ..., t_n$ è indicata con l'insieme $\{t_1, t_2, ..., t_n\}$
- $ullet t_i[A_j]$ indica il valore dell'attributo A_j nella n-upla t_i
- t[X] indica l'n-upla ottenuta da t considerando solo gli attributi in X

Operatori su Insiemi

- Le relazioni sono insiemi
- I risultati devono essere relazioni
- Si possono applicare gli operatori su insiemi solo a relazioni definite sugli stessi attributi
 - In modo che il risultato sia una relazione sugli stessi attributi

Unione

 L'unione di due relazioni sullo stesso insieme di attributi X è una relazione su X che contiene le n-uple sia dell'una che dell'altra relazione originarie

Laureati

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24
9824	Verdi	25

Laureati ∪ **Specialisti**

Matricola	Nome	Età
7274	Rossi	32
7432	Neri 24	
9824	Verdi	25
9297	Neri	33

Intersezione

 L'intersezione di due relazioni sullo stesso insieme di attributi X
 è una relazione su X che contiene le n-uple appartenenti a entrambe le relazioni originarie

Laureati

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24
9824	Verdi	25

Laureati ∩ **Specialisti**

Matricola	Nome	Età
7432	Neri	24
9824	Verdi	25

Differenza

• La differenza tra due relazioni sullo stesso insieme di attributi X è una relazione su X che contiene le n-uple appartenenti alla prima relazione che non appartengono anche alla seconda

Laureati

Verdi

Matricola

7274

7432

9824

Nome	Età
Rossi	32
Neri	24

25

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24

Verdi

25

Specialisti

Laureati - Specialisti

9824

Matricola	Nome	Età
7274	Rossi	32

Unione Impossibile?

 Sebbene abbia senso, come effettuare l'unione delle due relazioni seguenti?

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità ∪ Maternità ???

Ridenominazione

- Operatore con un solo operando ("monadico")
- Modifica lo schema dell'operando, lasciandone inalterata l'istanza
- Data una relazione R, in generale, questo operatore si scrive come:

$$\rho_{B_1B_2...\leftarrow A_1A_2...(R)}$$

- da leggersi:
 - ullet L'attributo A_1 viene sostituito dall'attributo B_1
 - ullet L'attributo A_2 viene sostituito dall'attributo B_2

• ...

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio	
Eva	Abele	
Eva	Set	
Sara	Isacco	

$\rho_{\mathsf{Genitore} \leftarrow \mathsf{Padre}}(\mathsf{Paternita})$

Paternità

Genitore	Figlio	
Adamo	Abele	
Adamo	Caino	
Abramo	Isacco	

ρ Genitore \leftarrow Madre (Maternità)

Maternità

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

$\rho_{\mathsf{Genitore} \leftarrow \mathsf{Padre}}(\mathsf{Paternita}) \cup \rho_{\mathsf{Genitore} \leftarrow \mathsf{Madre}}(\mathsf{Maternita})$

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

Selezione

- Operatore con un solo operando ("monadico")
- Produce un risultato che:
 - ha lo stesso schema dell'operando
 - contiene un **sottoinsieme delle** *n*-**uple** dell'operando
 - solo quelle n-uple che soddisfano una condizione fissata

Selezione

• Data una relazione R(X), in generale, questo operatore si scrive come:

$$\sigma_F(R)$$

- dove:
 - F è una espressione Booleana ottenuta componendo con gli operatori logici AND, OR e NOT delle condizioni atomiche
 - Una condizione atomica ha la forma:
 - $A \star B$, dove $A \in B$ sono **attributi** di X con domini **compatibili** e \star è un **operatore di confronto**
 - $A \star k$ dove A è un attributo di X, k è una costante con dominio compatibile con A e \star è un operatore di confronto

• Impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

$\sigma_{\textbf{Stipendio}>50}(\textbf{Impiegati})$

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64

 Impiegati che guadagnano più di 50000 euro e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

^σStipendio >50 AND Filiale='Milano' (Impiegati)

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

Selezione e Valori Nulli

 La condizione atomica è vera solo per valori non nulli in qualsiasi attributo

		_ •
In	nic	egati
	IPIC	gali
		J

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

σ Filiale='Milano'(Impiegati)

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	32

Selezione e Valori Nulli

 Per riferirsi a valori nulli esistono condizioni apposite: IS NULL e IS NOT NULL

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	NULL
9553	Milano	Milano	32

Proiezione

- Operatore con un solo operando ("monadico")
- Produce un risultato che:
 - ha un sottoinsieme degli attributi dell'operando
 - contiene tutte le n-uple cui contribuiscono tutti i valori esistenti dell'operando

Proiezione

• Data una relazione R(X) e un insieme di attributi $Y \subseteq X$, in generale, questo operatore si scrive come:

$$\pi_Y(R)$$

- Il risultato è una relazione su Y che contiene l'insieme delle n-uple di R ristrette ai soli attributi di Y
- Ricordarsi che il risultato è un insieme
 - Non può contenere n-uple uguali

• Calcolare matricola e cognome di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

$\pi_{\mathsf{Matricola},\mathsf{Cognome}}(\mathsf{Impiegati})$

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5998	Rossi

• Calcolare cognome e filiale di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

π Cognome,Filiale(Impiegati)

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma
Rossi	Roma

Cardinalità delle Proiezioni

- Una proiezione
 - Può contenere al più tante n-uple quante ne ha l'operando
 - Può contenerne di meno
- Se X è una superchiave di R allora $\pi_X(R)$ contiene esattamente tante tuple quante ne ha R

Proiezione e Selezione

- Selezione σ : decomposizione orizzontale
- Proiezione π : decomposizione verticale

 Calcolare matricola e cognome degli impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

 π Matricola,Cognome (σ Stipendio > 50 (Impiegati))

Matricola	Cognome
7309	Rossi
5998	Neri

Selezione e Proiezione

- Combinando selezione e proiezione possiamo estrarre informazioni da una sola relazione
- Non possiamo combinare informazioni presenti in relazioni diverse
- Non possiamo combinare informazioni presenti in n-uple diverse della stessa relazione

- Prove scritte in un concorso pubblico:
 - I compiti sono anonimi e a ognuno è associata una busta chiusa con il nome del candidato
 - Ogni compito e la relativa busta è contrassegnato con uno stesso numero

Numero	Voto
1	25
2	13
3	27
4	28

Numero	Candidato
1	Mario Rossi
2	Nicola Russo
3	Mario Bianchi
4	Remo Neri

Numero	Candidato	Voto
1	25	Mario Rossi
2	13	Nicola Russo
3	27	Mario Bianchi
4	28	Remo Neri

Join Naturale

- Operatore con due operandi (generalizzabile)
- Produce un risultato:
 - sull'unione degli attributi degli operandi
 - contiene le n-uple costruite ciascuna a partire da una n-upla di ognuno degli operandi

Join Naturale

• Date due relazioni $R_1(X_1)$ e $R_2(X_2)$, in generale questo operatore si scrive come

$$R_1 \bowtie R_2$$

• Il risultato è una relazione $R(X_1 \cup X_2)$ definita come

$$R(X_1 \cup X_2) = R_1(X_1) \bowtie R_2(X_2) =$$

$$= \{ t \mid \text{esistono } t_1 \in R_1 \text{ e } t_2 \in R_2 \}$$

$$\text{con } t[X_1] = t_1 \text{ e } t[X_2] = t_2 \}$$

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
А	Mori
В	Bruni

=

Impiegato	Reparto	Capo
Rossi	А	Mori
Neri	В	Bruni
Bianchi	В	Bruni

Ogni n-upla contribuisce al risultato: join completo

Impiegato	Reparto	
Rossi	А	
Neri	В	
Bianchi	В	

×

Reparto	Capo
В	Mori
С	Bruni

=

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto	
Rossi	А	
Neri	В	
Bianchi	В	

 \bowtie

Reparto	Capo
D	Mori
С	Bruni

Impiegato	Reparto	Capo

Esempio

Impiegato	Reparto
Rossi	В
Neri	В

 \bowtie

Reparto	Capo
В	Mori
В	Bruni

=

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

Cardinalità del Join

- Il join di R_1 e R_2 contiene un numero di n-uple:
 - ullet Compreso fra 0 e il prodotto di $|R_1|$ e $|R_2|$
- ullet Se il join coinvolge una chiave di R_2 allora il numero di n-uple è
 - Compreso fra 0 e $|R_1|$
- Se il join coinvolge una chiave di R_2 e un vincolo di integrità referenziale allora il numero delle n-uple è
 - Uguale a $|R_1|$

Cardinalità del Join

• Il join di $R_1(A,B)$ e $R_2(B,C)$ contiene un numero di n-uple:

$$0 \le |R_1 \bowtie R_2| \le |R_1| \times |R_2|$$

ullet Se B è una chiave di R_2 allora il numero di n-uple è

$$0 \le |R_1 \bowtie R_2| \le |R_1|$$

• Se B è una chiave di R_2 ed esiste un vincolo di integrità referenziale fra B (in R_1) e R_2 allora il numero delle n-uple è

$$|R_1 \bowtie R_2| = |R_1|$$

Join, una difficoltà

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

×

Reparto	Capo
В	Mori
С	Bruni

=

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Alcune n-uple non contribuiscono al risultato: vengono "tagliate fuori"

Join Esterno

- Il **join esterno** estende, con **valori nulli**, le *n*-uple che verrebbero tagliate fuori da un **join (interno)**
- Ne esistono tre versioni:
 - Sinistro: mantiene tutte le n-uple del primo
 operando, estendendole con valori nulli se necessario
 - Destro: mantiene tutte le *n*-uple del secondo
 operando, estendendole con valori nulli se necessario
 - Completo: mantiene tutte le *n*-uple di entrambi gli operandi, estendendole con valori nulli se necessario

Join Esterno Sinistro

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

⋈_{LEFT}

Reparto	Capo	
В	Mori	=
С	Bruni	

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	А	NULL

Join Esterno Destro

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

⊠RIGHT

Reparto	Capo	
В	Mori	
С	Bruni	

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

Join Esterno Completo

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

⋈FULL

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	Capo
В	Mori

• Date due relazioni $R_1(X_1)$ e $R_2(X_2)$

$$\pi_{X_1}\left(R_1\bowtie R_2\right)\subseteq R_1$$

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	А

Reparto	Саро
В	Mori
В	Bruni
А	Bini

Impiegato	Reparto	Саро
Neri	В	Mori
Neri	В	Bruni
Bianchi	В	Mori
Bianchi	В	Bruni
Verdi	А	Bini

• Date due relazioni $R_1(X_1)$ e $R_2(X_2)$

$$\pi_{X_1}\left(R_1\bowtie R_2\right)\subseteq R_1$$

• Data una relazione R(X) con $X = X_1 \cup X_2$

$$\left(\pi_{X_1}(R)\bowtie\pi_{X_2}(R)\right)\supseteq R$$

Prodotto Cartesiano

- Date due relazioni $R_1(X_1)$ e $R_2(X_2)$ senza attributi a comuni, cioè $X_1 \cap X_2 = \emptyset$, la definizione di join naturale funziona ugualmente
- La relazione risultante contiene sempre un numero di n-uple pari al prodotto delle cardinalità degli operandi
 - Tutte le n-uple sono combinabili tra loro
- La relazione risultante corrisponde al prodotto cartesiano delle relazioni:

$$R = R_1 \bowtie R_2 = R_1 \times R_2$$

Esempio

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Codice	Саро
А	Mori
В	Bruni

Impiegato	Reparto	Codice	Capo
Rossi	А	А	Mori
Rossi	А	В	Bruni
Neri	В	А	Mori
Neri	В	В	Bruni
Bianchi	В	А	Mori
Bianchi	В	В	Bruni

Theta-Join

 Nella pratica, il prodotto cartesiano ha senso (quasi) solo se seguito da una selezione:

$$\sigma_F(R_1 \times R_2)$$

 Questa composizione di operatori è un operatore derivato chiamato theta-join e indicato come:

$$R_1 \bowtie_F R_2$$

- La condizione F è spesso una **congiunzione** (**AND**) di atomi di confronto $A_1 \, \vartheta \, A_2$ dove ϑ è un **operatore di confronto** $(\leq , < , = , ...)$ e A_1 e A_2 sono attributi di relazioni diverse
- Se l'operatore di confronto è l'uguaglianza (=) allora si parla di equi-join

Esempio

Impiegati

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparti

Codice	Саро
А	Mori
В	Bruni

Impiegati ⋈_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Саро
Rossi	А	А	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Esercizio

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Саро
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45

Supervisione

Impiegato	Саро
7309	5698

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

$$\sigma$$
Stipendio>40 (Impiegati)

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45

Supervisione

Impiegato	Саро
7309	5698

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40

$$\pi$$
Matricola,Nome,Età (
$$\sigma_{\text{Stipendio}>40}\left(\text{Impiegati}\right)\right)$$

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45

Supervisione

Impiegato	Саро
7309	5698

• Trovare i capi degli impiegati che guadagnano più di 40

$$\pi_{\mathsf{Capo}}(\mathsf{Supervisione})$$
 $\bowtie_{\mathsf{Impiegato}=\mathsf{Matricola}}$
 $\sigma_{\mathsf{Stipendio}>40}(\mathsf{Impiegati}))$

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45

Supervisione

Impiegato	Саро
7309	5698

 Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40

 π Nome, Stipendio (Impiegati

™Matricola=Capo

 $\pi_{Capo}(Supervisione)$

[™]Impiegato=Matricola

 σ Stipendio>40 (Impiegati))

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45

Supervisione

Impiegato	Саро
7309	5698

 Trovate gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\label{eq:matr_Nome_Stip_Matr_CNomeCStipC} $\pi$ Matr, Nome, Stip, Matr_C, NomeC, StipC, EtàC \leftarrow Matr, Nome, Stip, Età (Impiegati) $$Matr_C = Capo$$ Supervisione $$M$_{Impiegato=Matr}$ Impiegati) $$
```

Operatori Relazionali Fondamentali

- Sorprendentemente, cinque operatori relazionali sono sufficienti per qualsiasi interrogazione
 - Selezione $\sigma_C(R)$
 - Proiezione $\pi_X(R)$
 - Prodotto cartesiano $R_1 \times R_2$
 - Unione $R_1 \cup R_2$
 - Differenza $R_1 R_2$
- Tutti gli altri sono operatori derivati/di convenienza

Divisione

Dati due insiemi di attributi disgiunti X₁ e X₂, una relazione r su X₁ ∪ X₂ e una relazione r₂ su X₂, la divisione r ÷ r₂ è una relazione su X₁ che contiene le n-uple ottenute come "proiezione" di n-uple di r che si combinano con tutte le n-uple di r₂ per formare n-uple di r:

$$r \div r_2 = \left\{ t_1 \text{ su } X_1 \mid \text{per ogni } t_2 \in r_2 \text{ esiste } t \in r \right.$$
$$\text{con } t[X_1] = t_1 \text{ e } t[X_2] = t_2 \right\}$$

Divisione

Sedi

Filiale	Ufficio
Roma	Acquisti
Roma	Vendite
Roma	Studi
Milano	Acquisti
Milano	Vendite
Milano	Studi
Napoli	Acquisti
Napoli	Vendite

Uffici

Ufficio		
Acquisti		
Vendite		
Studi		

Sedi ÷ Uffici

Filiale
Milano
Roma

Divisione

• L'operatore divisione è derivato perché può essere espresso con altri operatori nel seguente modo:

$$r \div r_2 = \pi_{X_1}(r) - \pi_{X_1} \left(\left(\pi_{X_1}(r) \times r_2 \right) - r \right)$$

- dove
 - $\pi_{X_1}(r) \times r_2$ contiene le n-uple di $\pi_{X_1}(r)$ "estese" con tutti i possibili valori di r_2
 - $(\pi_{X_1}(r) \times r_2) r$ contiene le "estensioni" di $\pi_{X_1}(r)$ che non compaiono in r
 - $\pi_{X_1}\left(\left(\pi_{X_1}(r)\times r_2\right)-r\right)$ contiene le n-uple di $\pi_{X_1}(r)$ per le quali un qualche "completamento" con r_2 non compare in r
 - Togliendo queste ultime n-uple a $\pi_{X_1}(r)$ otteniamo le n-uple di $\pi_{X_1}(r)$ che si "combinano" con tutte le n-uple di r_2 , cioè il risultato della divisione

Chiusura transitiva

- Per ogni impiegato, trovare tutti i superiori
 - Cioè il capo, il capo del capo, e così via

Impiegato	Саро
Rossi	Lupi
Neri	Bruni
Lupi	Falchi

Impiegato	Superiore
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Rossi	Falchi

Chiusura transitiva

- Nell'esempio precedente, basterebbe eseguire il join della relazione con se stessa, previa opportuna ridenominazione
- Aggiungiamo una nuova n—upla

Impiegato	Саро
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Falchi	Leoni

Impiegato	Superiore
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Falchi	Leoni
Rossi	Falchi
Lupi	Leoni
Rossi	Leoni

Chiusura transitiva

- Non esiste la possibilità di esprimere l'interrogazione che calcoli la chiusura transitiva di una relazione qualunque
- In algebra relazionale l'operazione si simulerebbe con un numero di join illimitato

Equivalenza di Espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante nella pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"
- Il costo dell'esecuzione di un'interrogazione viene valutato in termini delle dimensioni dei risultati intermedi della valutazione dell'espressione dell'algebra relazionale

Equivalenze I

 Atomizzazione delle selezioni: una congiunzione di selezioni può essere sostituita da una sequenza di selezioni atomiche

$$\sigma_{F_1 \wedge F_2}(E) \equiv \sigma_{F_1}(\sigma_{F_2}(E))$$

con F_1 e F_2 espressioni Booleane ed E espressione qualsiasi

• Idempotenza delle proiezioni: una proiezione può essere trasformata in una sequenza di proiezioni che eliminano i vari attributi in varie fasi

$$\pi_X(E) \equiv \pi_X(\pi_{XY}(E))$$

con E espressione definita su un insieme di attributi che contiene X e Y

Equivalenze II

Push selections down:

$$\sigma_F(E_1 \bowtie E_2) \equiv E_1 \bowtie \sigma_F(E_2)$$

se la condizione ${\cal F}$ coinvolge solo attributi della espressione ${\cal E}_2$

Push projections down:

$$\pi_{X_1Y_2}\left(E_1\bowtie E_2\right)\equiv E_1\bowtie \pi_{Y_2}\left(E_2\right)$$

dove X_1 sono gli attributi di E_1 , X_2 sono gli attributi di E_2 , $Y_2 \subseteq X_2$ e gli attributi $X_2 - Y_2$ non sono coinvolti nel join (cioè $X_1 \cap X_2 \subseteq Y_2$)

Ottimizzazione delle Interrogazioni

- Query processor (od ottimizzatore): un modulo del DBMS
- Più importante nei sistemi attuali che in quelli "vecchi" (gerarchici e reticolari):
 - Le interrogazioni sono espresse ad alto livello (ricordare il concetto di indipendenza dei dati):
 - insiemi di *n*-uple
 - poca proceduralità
- L'ottimizzatore sceglie la **strategia realizzativa** (di solito fra diverse alternative), a partire dall'istruzione SQL

Esecuzione delle Interrogazioni

Profili delle Relazioni

- Informazioni quantitative:
 - cardinalità di ciascuna relazione
 - dimensioni delle *n*-uple
 - dimensioni dei valori
 - numero di valori distinti degli attributi
 - valore minimo e massimo di ciascun attributo
- Sono memorizzate nel "catalogo" e aggiornate con comandi del tipo update statistics
- Utilizzate nella fase finale dell'ottimizzazione, per stimare le dimensioni dei risultati intermedi

Ottimizzazione Algebrica

- Il termine **ottimizzazione** è **improprio** (anche se efficace) perché il processo utilizza **euristiche**
- Si basa sulla nozione di **equivalenza**:
 - Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- I DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"
- Euristica fondamentale:
 - selezioni e proiezioni il più presto possibile (per ridurre le dimensioni dei risultati intermedi):
 - "push selections down"
 - "push projections down"

Grafo

- Un **grafo** G = (V, E) consiste in:
 - un insieme V di vertici (o nodi)
 - ullet un insieme E di coppie di vertici, detti archi
 - ogni arco connette due vertici
- Grafo orientato (o diretto): ogni arco è orientato e rappresenta relazioni orientate tra coppie di oggetti
- Grafo non orientato (o non diretto): gli archi non hanno un orientazione e rappresentano relazioni simmetriche tra coppie di oggetti

Cammino e Ciclo

- Un **cammino** in un grafo G = (V, E) da un vertice x ad un vertice y è dato da una sequenza di vertici $(v_0, v_1, ..., v_k)$ di V con $v_0 = x$ e $v_k = y$ tale che per ogni $1 \le i \le k$, l'arco $(v_{i-1}, v_i) \in E$
- Un cammino $(v_0, v_1, ..., v_k)$ tale che $v_0 = v_k$ è detto ciclo
- Un grafo diretto è detto aciclico se non contiene cicli

Albero

- Un grafo non orientato si dice connesso se esiste un cammino tra ogni coppia di vertici.
- Un albero è un grafo non orientato nel quale due vertici qualsiasi sono connessi da uno e un solo cammino

Rappresentazione Interna delle Interrogazioni

- Alberi:
 - Foglie: dati (relazioni, file)
 - Nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

$$\sigma_{A=10}(R_1\bowtie R_2)$$

$$R_1 \bowtie \sigma_{A=10}(R_2)$$

Procedura Euristica di Ottimizzazione

- 1. **Decomporre** le **selezioni congiuntive** in successive selezioni atomiche
- 2. Anticipare il più possibile le selezioni
- 3. In una sequenza di selezioni, **anticipare** le più **selettive**
- 4. Combinare prodotti cartesiani e selezioni per formare join
- 5. **Anticipare** il più possibile le **proiezioni** (anche introducendone di nuove)

Esempio

- \bullet $R_1(ABC)$, $R_2(DEF)$, $R_3(GHI)$
- Interrogazione:

SELECT A, E

FROM R_1, R_2, R_3

WHERE

B > 100 AND H = 7 AND I > 2 AND C = D AND F = G

- dove:
 - FROM: prodotto cartesiano
 - WHERE: selezione
 - SELECT: proiezione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

Esempio

L'espressione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

• diventa (passi 1, 2, 3 e 4)

$$\pi_{AE}\left(\sigma_{B>100}(r_1)\bowtie_{C=D} r_2\right)\bowtie_{F=G} \sigma_{I>2}\left(\sigma_{H=7}(r_3)\right)$$

diventa (passo 5)

$$\pi_{AE} \left(\pi_{AEF}((\pi_{AC}(\sigma_{B>100}(r_1))) \bowtie_{C=D} r_2) \bowtie_{F=G} \pi_{G}(\sigma_{I>2}(\pi_{GI}(\sigma_{H=7}(r_3))) \right)$$

Esercizio

- Si consideri il seguente schema di base di dati
 - Film(<u>CodiceFilm</u>, Titolo, CodiceRegista, Anno)
 - Produzione(<u>CasaProduzione</u>, Nazionalità, <u>CodiceFilm</u>, Costo, Incasso1annoSala)
 - Artista(<u>CodiceAttore</u>, Cognome, Nome, Sesso, DataDiNascita, Nazionalità)
 - Interpretazione(<u>CodiceFilm</u>, <u>CodiceAttore</u>, Personaggio, SessoPersonaggio)
 - Regista(<u>CodiceRegista</u>, Cognome, Nome, Sesso, DataDiNascita, Nazionalità)
 - Noleggio(<u>CodiceFilm</u>, Incasso1annoVideo, Incasso1annoDVD)
- Formulare in algebra relazionale la seguente interrogazione:
 - Nomi e cognomi dei registi che hanno diretto film che hanno incassato il primo anno di uscita meno nelle sale che per il noleggio di DVD

Esercizio

- Formulare in algebra relazionale la seguente interrogazione:
 - Nomi e cognomi dei registi che hanno diretto film che hanno incassato il primo anno di uscita meno nelle sale che per il noleggio di DVD

```
\piN.C^{(}
   \pi_{N.C.CF}(\pi_{N.C.CR}(Regista) \bowtie \pi_{CF.CR}(Film))
      M
  \pi CF^{(\sigma)}Inc1Sala<Inc1DVD<sup>(</sup>
            \piInc1Sala,CF(Produzione)
               M
            \piInc1DVD.CF(Noleggio)
```

Relazioni Derivate

- Relazioni di base: contenuto autonomo
- Relazioni derivate: contenuto funzione del contento di altre relazioni
 - Rappresentazioni diverse per gli stessi dati
 - Definite per mezzo di interrogazioni
 - Le relazioni derivate possono essere definite su altre relazioni derivate ma...
- Due tipi di relazioni derivate:
 - Viste materializzate e
 - Viste virtuali, o più semplicemente viste

Esempio di Vista

Afferenza

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В
Verdi	С

Direzione

Reparto	Саро
А	Mori
В	Bruni
С	Leoni

• Una vista:

 $\mathbf{Supervisione} = \pi_{\mathbf{Impiegato}, \mathbf{Capo}} \left(\mathbf{Afferenza} \bowtie \mathbf{Direzione} \right)$

Viste Materializzate

- Relazioni derivate memorizzate nella base di dati
- Vantaggi:
 - Immediatamente disponibili per le interrogazioni
- Svantaggi:
 - Ridondanti
 - Appesantiscono gli aggiornamenti
 - Sono raramente supportate dai DBMS

Viste Virtuali

- Relazioni derivate non memorizzate nella base di dati
- Sono supportate da tutti i DBMS
- Una interrogazione su una vista è eseguita "ricalcolando" la vista (o quasi)

Interrogazioni su viste

- Sono eseguite sostituendo alla vista la sua definizione:
- L'interrogazione

• è eseguita come

```
\begin{split} \sigma_{\text{Capo='Leoni'}}\left(\text{Supervisione}\right) = \\ &= \sigma_{\text{Capo='Leoni'}}(\\ & \qquad \qquad \pi_{\text{Impiegato,Capo}}\left(\text{Afferenza}\bowtie\text{Direzione}\right) \\ & \qquad \qquad \right) \end{split}
```

Perché le viste?

- Le viste sono uno **strumento di programmazione**:
 - Si può semplificare la scrittura di interrogazioni: espressioni complesse e sotto-espressioni ripetute
- L'uso delle viste virtuali non influisce sull'efficienza delle interrogazioni

Esempio

Supponiamo di avere le seguenti relazioni:

$$R_1(ABC)$$
, $R_2(DEF)$, $R_3(GH)$

 \bullet e di definire la seguente vista R:

$$R = \sigma_{A>D}(R_1 \bowtie R_2)$$

- Un'interrogazione può essere definita:
 - Senza vista:

$$\sigma_{B=G}\left(\sigma_{A>D}\left(R_1\bowtie R_2\right)\bowtie R_3\right)$$

Con vista:

$$\sigma_{B=G}(R\bowtie R_3)$$

Viste e aggiornamenti

- Aggiornare una vista:
 - modificare le relazioni di base in modo che la vista, "ricalcolata", rispecchi l'aggiornamento
- L'aggiornamento sulle relazioni di base corrispondente a quello specificato sulla vista deve essere univoco
 - In generale però non è univoco!
- Ben pochi aggiornamenti sono ammissibili sulle viste