

Organisation nationale de lutte contre le faux-monnayage

Counterfeight notes detection based on geometric features

Euro counterfeiting on the rise

Euro market is well controlled 18 fake notes per million

Most counterfeit notes are in denominations of 20€ and 50€

554 000 counterfeit notes seized in 2024 +20% compared to 2023

- → Counterfeight rise must be controlled now
- → We need efficient, scalable methods

Assess counterfeiting with geometric data

Can we detect fake notes based on geometric data?

Fill missing values with linear regression

The assumptions of the multiple linear regression are not met

1) Linear relationship between dependent and explanatory variables

 \rightarrow We take the variables with R-squared > 0.1

Fill missing values with linear regression

The assumptions of the multiple linear regression are not met

2) Independence of the residuals: Durbin-Watson statistic

Height_right

1.18

Margin_up 1.32

Positive autocorrelation Positive autocorrelation

Length 1.86

3) Homoscedasticity of the residuals

Fill missing values with linear regression

The assumptions of the multiple linear regression are not met

4) Normality of the residuals

The residuals of the length diverge strongly from normality.

Results

No variable is fit for a linear regression with margin_low

If we do the linear regression anyway: R-squared = 0.44

Can we do better?

Fill missing values with Random Forest

Default Random Forest cannot be used

Default parameters results

R-squared on training set: **0.94**R-squared on validation set: **0.56**

Better than linear regression Badly overfitted

Random Forest hyperparameters

Max_depth
Min_sample_leaf
Min_sample_split
N estimators

Metric to maximise: R-squared

Filling data missing values

NA prediction is challenging with both methods, but the RF is better Bayesian Search in 2 steps

1 – Scan the parameters separately

2 – Scan all parameters over the 'sweet ranges'

Best parameters:

Max_depth = 2

Min_sample_leaf = 81

Min_sample_split = 100

N_estimators = 100

Results

R-squared on training set: **0.62**

R-squared on validation set: 0.62

Not overfitted 6% better than before

Counterfeight notes detection

List of algorithm tested

Supervised machine learning

- K-Nearest Neighbors
- Random Forest
- Logistic Regression
- Extreme Gradient Boosting

"Glassbox" model

Explainable boosting

Unsupervised machine learning

- Gaussian Mixture Model

Accuracy metrics used

$$Precision = \frac{TP}{TP + FP}$$

Higher values reduces false positives.

$$Recall = \frac{TP}{TP + FN}$$

Higher values reduces false negatives.

$$F1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

Balances precision and recall.

Used for model optimisation

Optimization strategy for each model type

Supervised machine learning

Hyperparameter tuning (2-step Bayesian Search)

Explainable boosting

Gaussian Mixture Model

Define number of clusters

Model fitness

Cluster ID interpretation

Accuracy assessment

F1 of training set vs F1 of validation set Confusion matrix

Confusion matrices for each model

KNN

Random Forest

Logistic regression

XGBoost

Explainable boosting

Gaussian Mixture Model

Relative importance of each parameter

The length and margin_low are by far the most important predictive variables

Model comparison

The Gaussian Mixture Model is very fast and accurate

Thank you for your attention