Subject: Engineering Mathematics Chapter: Probability & Statistics

DPP-03

Topic: Random Variable

- 1. A fair coin is tossed 3 times. Let the random variable X denote the number of heads in 3 tosses of the coin. Find the probability density function of X.
 - (a) $\left(\frac{3}{x}\right) \left(\frac{1}{2}\right)^{2x} \left(\frac{1}{2}\right)^{2-x}$
 - (b) $\left(\frac{3}{2x}\right) \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{1-x}$
 - (c) $\left(\frac{3}{x}\right) \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{3-x}$
 - (d) $\left(\frac{3}{x}\right) \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{4-x}$
- 2. If the probability of a random variable X is given by $f(x) = k(2x 1), x = 1, 2, 3, \dots, 12$. Find k.
- **3.** The density function for the continuous random variable X is

$$f_{x}(x) = \begin{cases} e^{-X} \text{ for } x > 0\\ 0 \text{ for } x \le 0 \end{cases}$$

Find the Probability P $[X \le 2 \mid X > 1]$.

4. A continuous random variable X has density function

$$f(x) = \begin{cases} 2x & 0 < x < \frac{1}{2} \\ \frac{4 - 2x}{3} & \frac{1}{2} \le x < 2 \\ 0 & elsewhere \end{cases}$$

Find P $[0.25 < x \le 1.25]$

5. Let X be a continuous random variable with probability density function

$$f(x) = \frac{1}{2} e^{-|x-1|}, -\infty < x < \infty$$

Find the value of P(1 < |X| < 2)

6. The probability function of a random variable X is given by

$$f(x) = \begin{cases} \frac{1}{4} & |x| \le 1\\ \frac{1}{4x^2} & otherwise \end{cases}$$

Then $P\left(-\frac{1}{2} \le X \le 2\right) = \underline{\hspace{1cm}}$.

7. Let X be a continuous random variable with the probability density function

$$f(x) = \begin{cases} \frac{x}{8} & 0 < x < 2 \\ \frac{k}{8} & 2 \le x \le 4 \\ \frac{6-x}{8} & 4 < x < 6 \\ 0 & \text{otherwise} \end{cases}$$

where k is a real constant. Then P (1 < X < 5) equals

8. Suppose the random variable X has a probability density function

$$f(x) = \begin{cases} \frac{|\mathbf{x}|}{4}, & -\mathbf{c} \le \mathbf{x} \le \mathbf{c} \\ 0 & \text{otherwise} \end{cases}$$

The value of c is

- (a) 0.5
- (b) 1
- (c) 2
- (d) 4
- 9. A random variable X has probability density function

$$f(x) = \begin{cases} kx(1-x), & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

The value of k is

- (a) 2
- (b) 6
- (c) 5
- (d) 4

10. The probability distribution of a discrete random variable X is given in the table below.

х	0	1	2	3	4	5
P(X=x)	0.1	0.3	0.15	0.25	0.15	0.05

The P $(1 < X \le 4)$ is

- (a) 0.55
- (b) 0.85
- (c) 0.70
- (d) 0.40

11. Suppose the random variable X has a probability density function

$$f(x) = \begin{cases} kx^3 e^{-x/2}, & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

The vale of k is

- (a) 1/96
- (b) 96
- (c) 8/3
- (d) 1/4

12. Let X be a continuous random variable with pdf

$$f_{x}(x) = \begin{cases} cx^{2}, & \text{for } 0 < x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

For some positive constant c. The value of P

$$\left(X \le \frac{2}{3} \middle| X > \frac{1}{3}\right) \text{ is }$$

- (a) 3/26
- (b) 5/26
- (c) 7/26
- (d) 11/26

13. Suppose the random variable X has the probability density function

$$f(x) = \begin{cases} ce^{x/3}, & x \le 0, \\ ce^{-x/3}, & x > 0, \end{cases}$$

For some positive constant c. The value of P

$$[X > 6/X > 0]$$
 is

- $\begin{array}{cccc} \text{(a)} & e^{-2} & & \text{(b)} & ce^{-2} \\ \text{(c)} & 0 & & \text{(d)} & 1 e^{-2} \end{array}$

14. Let X be a discrete random variable with probability

function
$$P(X = x) = \frac{2}{3^x}$$
, for $x = 1, 2, 3,$ What is

the probability that X is even?

15. Let $f(x) = \frac{k|x|}{(1+|x|)^4}, -\infty < x < \infty$

Then the value of k for which f(x) is a probability density function is

- (c) 3

16. A random variable X has a probability mass of 0.2 at X = 0 and a probability mass of 0.1 at X = 1. For all other values, X has the following density function

$$f(x) = \begin{cases} 0 & x < 0 \\ x & 0 < x < 1 \\ 2x & 1 < x < c, \text{ where c is constant} \\ 0 & x \ge c \end{cases}$$

Find P (X < 1/X > 0.5)

- (a) (0, 0.6)
- (b) (0.6, 0.7)
- (c) (0.7, 0.8)
- (d) (0.8, 0.9)

17. The distribution function of a random variable X is given by

$$f(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{4} & 0 \le x < \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} \le x < \frac{1}{2} \\ \frac{3}{4} & \frac{1}{2} \le x < \frac{3}{4} \\ \frac{x+3}{5} & \frac{3}{4} \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

Then $P\left(\frac{1}{4} \le X \le 1\right)$ is

(c)
$$\frac{7}{20}$$
 (d) $\frac{13}{20}$

(d)
$$\frac{13}{20}$$

18. Let X be a random variable with cumulative distribution function

$$F_x(x) = \begin{cases} 0 & \textit{for } x \leq 0 \\ 1 - e^{-x} & \textit{for } x > 0 \end{cases},$$

What is P $(0 \le e^x \le 4)$?

- (a) e⁻⁴
- (c) $\frac{1}{2}$
- 19. Let X is a random variable with density

$$f(x) = \frac{1}{4}e^{-\frac{|x|}{2}}, -\infty < x < \infty$$

Then E(|X|) =_____

20. If X is a random variable with density function

$$f(x) = \begin{cases} 1.4e^{-2x} + 0.9e^{-3x}, & x > 0, \\ 0 & \text{elsewhere} \end{cases}$$

Then E[X] =

- (a) $\frac{9}{20}$ (b) $\frac{5}{6}$
- (c) 1
- 21. You are given a random variable X such that its density is

$$f_{x}(x) = \begin{cases} 3x^2 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

A square with diagonal of length X is constructed. Find the expected value of the area of that square.

- (a) 0.1
- (b) 0.25
- (c) $\frac{4}{7}$
- (d) 0.3
- 22. X has a distribution which is partly continuous and partly discrete

$$f(x) = \begin{cases} \frac{1-p}{2}, & 0 < x < 1 \\ p & x = 1 \\ \frac{1-p}{2}, & 1 < x < 2 \\ 0 & \text{otherwise} \end{cases}$$

Find the variance of X in terms of p

- (a) $\frac{1-p}{3}$ (b) $\frac{2-p}{3}$
- (c) $\frac{1-p}{2}$ (d) $\frac{2-p}{2}$
- 23. X has a mean of 2 and a variance of 4. Y = aX + b has a mean of 5 and a variance of 1. What is ab assuming that a > 0?
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- **24.** Let X be a random variable with E(X) = 5 and $E(X^2) = 5$ 25. Then $E(X + E(X))^3$ is
 - (a) 0
- (b) 125
- (c) 1000
- (d) 250
- 25. Let X be a continuous variable with the probability density function symmetric about 0.

If $V(X) < \infty$. Then which of the following statement is true?

- (a) E(|X|) = E(X)
- (b) V(|X|) = V(X)
- (c) V(|X|) < V(X)
- (d) V(|X|) > V(X)

Answer Key

1.	(c)
2.	(0.0069)
3.	(0.63)
4.	(0.75)
5.	(0.78)
6.	(0.5)
7.	(0.875)
8.	(c)
9.	(b)
10.	(a)
11.	(a)
12.	(c)
13.	(a)

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if
Telegram Link: https://t.me/mathandaptitudes

