Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data

Feature space

- Intuitively: a domain with a distance function
- Formally: feature space F = (Dom, dist):
 - Dom is a set of attributes / features
 - dist: a numerical measure of the degree to which the two compared objects differ
 - □ $dist: Dom \times Dom \rightarrow R^+_0$
- □ For all x, y in Dom, $x\neq y$, dist is required to satisfy the following properties:
 - dist(x,y) > 0 (non-negativity)
 - dist(x,x) = 0 (reflexivity)

Metric space

- Formally: Metric space $M = \{Dom, dist\}$:
 - M is a feature space
 - i.e, dist(x,y) > 0 (non-negativity) and,
 - dist(x,x) = 0 (reflexivity)

 - $\forall x, y \in Dom: dist(x, y) = dist(y, x)$ (symmetry)
 - ∀x,y,z ∈ Dom : dist(x,z) ≤ dist(x,y) + dist(y,z) (triangle inequality)

- Famous example: Euclidean vector space *E*=(*Dom*, *dist*)
 - (Dom, dist) is a metric space
 - $Dom = \mathbb{R}^d$

• dist	$\dot{z}(x,y) = \sqrt{1}$	$\sum_{i=1}^{d} (x_i)$	$-y_i)^2$
--------	---------------------------	------------------------	-----------

- Notation:
 - Euclidean vector space =: "Feature space"
 - Vectors (Objects in the Euclidean feature space) =: "Feature vectors"
 - □ The *d* dimensions of the vector space =: "Features"
- Standardization is necessary, if scales differ (normalization)!
 - e.g., age (e.g., range [0-100] vs salary (e.g., range: 10000-100000))

We will come back to this in a few slides

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Point coordinates

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance matrix

- Manhattan distance or City-block distance (L₁ norm)
 - $dist_1 = |p_1-q_1| + |p_2-q_2| + ... + |p_d-q_d|$
 - The sum of the absolute differences of the p,q coordinates
- Euclidean distance (L₂ norm)
 - $dist_2 = ((p_1-q_1)^2 + (p_2-q_2)^2 + ... + (p_d-q_d)^2)^{1/2}$
 - The length of the line segment connecting p and q
- Supremum distance (L_{max} norm or L_{∞} norm)
 - $dist_{\infty} = max\{|p_1-q_1|, |p_2-q_2|, ..., |p_d-q_d|\}$
 - The max difference between any attributes of the objects.
- Minkowski Distance (Generalization of L_p-distance)
 - $dist_p = (|p_1-q_1|^p + |p_2-q_2|^p + ... + |p_d-q_d|^p)^{1/p}$ for $p = 1... \infty$

Example

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Point coordinates

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

	_			
L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

$\mathrm{L}_{\!\scriptscriptstyle{\infty}}$	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

L1 distance matrix

L2 distance matrix

L_∞ distance matrix

Source:http://www.econ.upf.edu/~michael/stanford/maeb5.pdf

- Let *x,y* in [-1,1]
- For L1 norm

$$|(x,y)|_1=1=>x+y=1$$

- □ If x=1, y=0
- □ If x=0.8, y=0.2
- For L2 norm
 - $(x^2+y^2)^{1/2}=1$
 - It is circle
- **...**

Unit Circle for different Lp-distances

Source:https://de.wikipedia.org/wiki/P-Norm

Normalization

- Attributes with large ranges outweigh ones with small ranges
 - e.g. income [10K-100K]; age [10-100]
- To balance the "contribution" of an attribute A in the resulting distance, the attributes are scaled to fall within a small, specified range.
- min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- e.g. normalize age=30 in [0-1], when min=10,max=100. new age=((30-10)/(100-10))*(1-0)+0=2/9
- z-score normalization also called zero-mean normalization
 - After zero-mean normalizing each feature will have a mean value of 0

$$v' = \frac{v - mean_4}{stand \ dev_4}$$
 e.g. normalize 70,000 iff μ =50,000, σ =15,000. new_value = (70,000-50,000)/15,000=1.33

Proximity between binary attributes 1/2

- A binary attribute has only two states: 0 (absence), 1 (presence)
- A contingency table for binary data

Instance i

		_	
	1	0	sum
1	q	r	q+r
0	s	t	s+t
sum	q + s	r+t	p

Instance j

q = the number of attributes where i was 1 and j was 1 t = the number of attributes where i was 0 and j was 0

s =the number of attributes where i was 0 and j was 1 r =the number of attributes where i was 1 and j was 0

- Simple matching coefficient (for symmetric binary variables)
- for asymmetric binary variables:
- Jaccard coefficient

(for asymmetric binary variables)

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

Proximity between binary attributes 2/2

Example:

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	0	1	0	0	0
Mary	1	0	1	0	1	0
Jim	1	1	0	0	0	0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

(from previous slide)

q = the number of attributes where i was 1 and j was 1 t = the number of attributes where i was 0 and j was 0

s = the number of attributes where i was 0 and j was 1 r = the number of attributes where i was 1 and j was 0

$$d(i,j) = \frac{r+s}{q+r+s}$$

Proximity between categorical attributes

- A nominal attribute has >2 states (generalization of a binary attribute)
 - e.g. color={red, blue, green}
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Name	Hair color	Occupation
Jack	Brown	Student
Mary	Blond	Student
Jim	Brown	Architect

- Method 2: Map it to binary variables
 - create a new binary attribute for each of the M nominal states of the attribute

Name	Brown hair	Blond hair	IsStudent	IsArchitect
Jack	1	0	1	0
Mary	0	1	1	0
Jim	1	0	0	1

Selecting the right proximity measure

- The proximity function should fit the type of data
 - □ For dense continuous data, metric distance functions like Euclidean are often used.
 - For sparse categorical data, typically measures that ignore 0-0 matches are employed
 - We care about characteristics that objects share, not about those that both lack
- Domain expertise is important, maybe there is already a state-of-the-art proximity function in a specific domain and we don't need to answer that question again.
- In general, choosing the right proximity measure can be a very time consuming task
- Other important aspects: How to combine proximities for heterogenous attributes (binary and numeric and nominal etc.)
 - e.g., using attribute weights ... but research on this issue is still ongoing.

Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data