روش های ریاضی در مهندسی

باسمه تعالی دانشگاه صنعتی شریف

دانشکده مهندسی برق

روشهای ریاضی در مهندسی – گروه دکتر امینی نمسال اول $^{\circ}$ - $^{\circ}$

تمرین تئوری سری سوم

- ۱. مهلت تحویل این تمرین مطابق تاریخ اعلام شده در سامانه CW می باشد.
- ۲. ۱۰ روز تاخیر مجاز برای تحویل تمرین های تئوری در اختیار شما خواهد بود.
- ۳. سقف تاخیر برای تحویل هر تمرین ۷ روز خواهد بود و پس از آن پاسخنامه تمرین منتشر خواهد شد.
- ۴. ابهامات و مشكلات خود در مورد این تمرین را می توانید با دستیاران طراح، خانم جعفری و آقای صفوی مطرح كنید.
 % و مشكلات خود در مورد این تمرین را می توانید با دستیاران طراح، خانم جعفری و آقای صفوی مطرح كنید.
 % و مشكلات خود در مورد این تمرین را می توانید با دستیاران طراح، خانم جعفری و آقای صفوی مطرح كنید.

۱ ماتریس پاسکال

درایههای ماتریس مربعی پاسکال S به صورت زیر تعریف میشوند:

$$S_{ij} = \binom{i+j}{i} = \binom{i+j}{j}$$

برای مثال برای ماتریس 5×5 داریم:

$$S = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

الف) تجزیه LU این ماتریس را در حالت کلی $(n \times n)$ بدست آورید و ثابت کنید که دترمینان این ماتریس همواره برابر ۱ خواهد بود.

 $(n \times n)$ یکی از درایههای روی قطر اصلی این ماتریس را در حالت کلی $(n \times n)$ یک واحد کاهش دهید و دترمینان ماتریس حاصل را بدست آورید.

۲ یک نامساوی!

اگر ماتریس X به صورت $(x_1,x_2,...,x_n)$ باشد که $x_i\in\mathbb{R}^n$ ، ثابت کنید داریم:

$$|det(X)| \le \prod_{i=1}^n ||x_i||$$

راهنمایی: از تجزیه QR کمک بگیرید.

روش های ریاضی در مهندسی

Hessenberg دترمینان ماتریس

ماتریس Hessenberg، یک ماتریس مثلثی به همراه یک قطر اضافه است. برای نمونه سه ماتریس آن به صورت زیر هستند:

$$H_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, H_3 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, H_4 = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

رابطهای برای دترمینان H_n پیدا کنید و مقدار دترمینان H_{10} را از این رابطه بدست آورید.

۴ ماتریس دوران

با استفاده از قطریسازی ماتریس دوران ثابت کنید:

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \implies A^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$$

۵ ماتریسهای متشابه

اگر $A,B\in M_n$ و ماتریسهای A و B متشابه باشند، موارد زیر را ثابت کنید:

$$tr(B) = tr(A)$$
 .الف

$$det(B) = det(A)$$
 ...

ج.
$$A^2$$
 و B^2 نیز متشابه هستند.

د. اگر A قطری شدنی باشد، B نیز قطری شدنی است.

۶ صحيح و غلط!

درستی یا نادرستی عبارات زیر را با ذکر دلیل یا مثال نقض مشخص کنید.

الف. ماتریسی با مقادیر ویژه حقیقی و n بردار ویژه حقیقی، متقارن است.

vب. ماتریسی با مقادیر ویژه حقیقی و v بردار ویژه متعامد یکه، متقارن است.

ج. ماتریس وارون یک ماتریس وارون پذیر متقارن، متقارن است.

۷ ماتریس بلوکی

اگر $A = X\Lambda X^{-1}$ ، آنگاه ماتریس بلوکی $A = \begin{bmatrix} 2A & 0 \\ 0 & A \end{bmatrix}$ را قطریسازی کرده و مقادیر و بردارهای ویژه آن را بنویسید.

۸ ضرب داخلی و مقادیر ویژه

اگر ماتریس $X \in \mathbb{F}^n$ یک ماتریس هرمیتی باشد، آنگاه برای هر $X \in \mathbb{F}^n$ ثابت کنید داریم:

$$\lambda_{min} ||x||^2 \le \langle Ax, x \rangle \le \lambda_{max} ||x||^2$$

روش های ریاضی در مهندسی _____ تمرین سری سوم

۹ استقلال بردارهای ویژه

اثبات کنید اگر ماتریس X دارای مقادیر ویژه $\lambda_1,...,\lambda_n$ باشد که متناظر با بردارهای ویژه $v_1,...,v_n$ هستند، اگر مقادیر ویژه $\lambda_1,...,\lambda_s$ مستقل خطی خواهند بود.

۱۰ امتیازی: یک نامساوی دیگر!

میخواهیم یک نامساوی نسبتا پیچیده را اثبات کنیم. برای این کار دو لم را اثبات میکنیم و سپس به سراغ قضیه اصلی میرویم!

لم ۱: ماتریس A یک ماتریس متقارن است و ماتریس B از حذف سطر و ستون آخر ماتریس A به دست میآید. ثابت کنید داریم:

$$\lambda_{min}(B) \ge \lambda_{min}(A)$$

لم Y: ماتریس بلوکی متقارن A را که به صورت زیر تعریف می شود در نظر بگیرید:

$$A = \begin{bmatrix} B & C \\ C^T & D \end{bmatrix}$$

ثابت كنيد داريم:

$$\lambda_{min}(A) + \lambda_{max}(A) \le \lambda_{min}(B) + \lambda_{max}(D)$$

راهنمایی: از این قضیه استفاده کنید که برای هر بردار نرمال مانند x داریم:

$$x^T A x \ge \lambda_{min}(A)$$

قضیه: ثابت کنید اگر ماتریس بلوکی متقارن A که از k^2 ماتریس کوچکتر به صورت زیر تشکیل شده است را درنظر بگیریم:

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,k} \\ A_{1,2}^T & A_{2,2} & \dots & A_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1,k}^T & A_{2,k}^T & \dots & A_{k,k} \end{bmatrix}$$

برای $2 \geq k$ داریم:

$$(k-1)\lambda_{min}(A) + \lambda_{max}(A) \le \sum_{i=1}^{k} \lambda_{max}(A_{i,i})$$