

Contents

Sorting problem

- 2 sorting algorithms
 - Insertion sort
 - Merge sort

Sorting problem

keys

Input

• A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$.

Output

• A permutation (reordering) $< a'_1, a'_2, ..., a'_n >$ of the input sequence such that $a'_1 \le a'_2 \le ... \le a'_n$.

o e.g.>

- Input: < 5, 2, 4, 6, 1, 3>
- Output: < 1, 2, 3, 4, 5, 6>

Insertion sort

Insertion sort

- Description
- Correctness
- Performance

Description

- What is insertion sort?
 - A sorting algorithm using insertion.

- What is insertion?
 - Given a key and a sorted list of keys, insert the key into the sorted list preserving the sorted order.
 - e. g.> Insert 3 into <1, 2, 4, 5, 6>

Description

- Insertion sort uses insertion incrementally.
 - Let A[1..n] denote the array storing keys.
 - Insert A[2] into A[1].
 - Insert A[3] into A[1..2].
 - Insert A[4] into A[1..3].

• Insert A[n] into A[1..n-1].

Description: example

5 2 4 6 1 3

4 5 6 1 3

Description: pseudo code

INSERTION-SORT(A)

for j = 2 **to** A.length

Pseudocode conventions are given in p. 19 - 20 of the textbook.

$$key = A[j]$$
 $i = j - 1$
while $i > 0$ and $A[i] > key$
 $A[i + 1] = A[i]$
 $i = i - 1$
 $A[i + 1] = key$

n-1 iterations of insertion.

Insert A[j] into A[1..j-1].

Find a place to put A[j].

Put A[j].

Insertion sort

- Insertion sort
 - Description
 - Correctness
 - Performance
 - Running time
 - Space consumption

Running time

- How to analyze the running time of an algorithm?
 - Consider running the algorithm on a specific machine and measure the running time.
 - We cannot compare the running time of an algorithm on a machine with the running time of another algorithm on another machine.
 - So, we have to measure the running time of every algorithm on a specific machine, which is impossible.
 - Hence, we count the number of instructions used by the algorithm.

Instructions

- Arithmetic
 - Add, Subtract, Multiply, Divide, remainder, floor, ceiling
- Data movement
 - Load, store, copy
- Control
 - Conditional branch
 - Unconditional branch
 - Subroutine call and return

Running time

- The running time of an algorithm grows with the input size, which is the number of items in the input.
- For example, sorting 10 keys is faster than sorting 100 keys.
- So the running time of an algorithm is described as a function of input size n, for example, T(n).

INSERTION-SORT(A)
$$cost$$
 times
for $j = 2$ to $A.length$ c_1 n
 $key = A[j]$ c_2 $n - 1$
 $i = j - 1$ c_4 $n - 1$
while $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$
 $A[i + 1] = A[i]$ c_6 $\sum_{j=2}^{j=2} (t_j - 1)$
 $i = i - 1$ c_7 $\sum_{j=2}^{n} (t_j - 1)$
 $A[i + 1] = key$ c_8 $n - 1$

 \circ T(n): The sum of product of *cost* and *times* of each line.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$

$$+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)$$

$$+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

cost times

$$c_1$$
 n
 c_2 $n-1$
 c_4 $n-1$
 c_5 $\sum_{j=2}^{n} t_j$
 c_6 $\sum_{j=2}^{n} (t_j-1)$
 c_7 $\sum_{j=2}^{n} (t_j-1)$
 c_8 $n-1$

• T(n): The sum of product of *cost* and *times* of each line.

• t_j : The number of times the while loop test is executed for j.

Note that **for**, **while** loop test is executed one time more than the loop body.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- Although the size of the input is the same, we have
 - best case
 - average case, and
 - worst case.

- Best case
 - If A[1..n] is already sorted, $t_j = 1$ for j = 2, 3, ..., n.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)$$

$$+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

$$= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

This running time can be expressed as an+b for constants a and b; it is thus a linear function of n.

- Worst case
 - If A[1..n] is sorted in reverse order, $t_j = j$ for j = 2, 3, ..., n.

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad \text{and} \quad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - \left(c_2 + c_4 + c_5 + c_8\right)$$

This running time can be expressed as $an^2 + bn + c$ for constants a, b, and c; it is thus a *quadratic function* of n.

18

- Only the degree of leading term is important.
 - Because we are only interested in the rate of growth or order of growth.
 - For example, a quadratic function grows faster than any linear function.
- The degree of leading term is expressed as Θ -notation.
 - The worst-case running time of insertion sort is $\Theta(n^2)$.

Space consumption of insertion sort

 \circ $\Theta(n)$ space.

- Moreover, the input numbers are sorted in place.
 - n + c space for some constant c.
- A sorting algorithm is *stable* if two items compare as equal, then their relative order(input) will be preserved(output).

Self-study on Insertion Sort

- Exercise 2.1-1
- Exercise 2.1-2