Mathematics – I (KAS - 103)

MODULE 1: Matrices

Assignment No. - 1.1

Name Of Faculty: -----

Date of Submission: -----

Ouestion:

Topic Name	No of Ques/Onli ne Ques.	% Covered in Exam	% Ques. From old paper	Text /Reference books to refer**
Elementary Transformations Inverse of a matrix by elementary transformations Rank of a matrix by Normal form Rank of a matrix by Echelon Form	9	3 to 6	75	B V RAMANA (Pg.13.1 – 13.10) KREYSZIG (Pg. 182 – 200) B S GREWAL (Pg. 35 – 42)

Very Short Question:

- **Q.1** For the given matrix $A = \begin{bmatrix} -5 & -3 \\ 2 & 0 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ prove that $A^3 = 19A + 30I$. [AKTU 2016]
- **Q.2** Prove that if A, B are symmetric, then so is A+B.
- **Q.3** If A is square matrix, prove that A A' is skew-symmetric.
- **Q.4** Find the rank of matrix by reducing it into normal form: $=\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. [AKTU-2017] Ans: 2j
- **Q.5** Find the rank of the matrix $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$. [**AKTU-2019**] **Ans:** 1

> Short Question:

- **Q.6** Express matrix $\begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.
- **Q.7** Find the value of 'P' for which the rank of the matrix $\begin{bmatrix} 3 & P & P \\ P & 3 & P \\ P & P & 3 \end{bmatrix}$ is 1. [MTU 2012]

- (i) $\begin{bmatrix} l & -1 & 2l \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ [MTU 2013] (ii) $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ [GBTU 2012, AKTU. 2017] Ans: (i) $\frac{1}{4} \begin{bmatrix} 0 & 1 & -2 \\ -4 & 3i & 2i \\ 0 & 1 & 2 \end{bmatrix}$ (ii) $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$.

Ans: (i)
$$\frac{1}{4} \begin{bmatrix} 0 & 1 & -2 \\ -4 & 3i & 2i \\ 0 & 1 & 2 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$

Q.9 Find the rank of the matrices by reducing it to normal form or canonical form:

^{**} Page no. may differ as per the edition of the book. **Dept. of Mathematics**

(i)
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$$
 [UPTU(SUM)2010]
(ii)
$$\begin{bmatrix} 2 & -1 & 3 & -1 \\ 1 & 2 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$
 [GBTU(C.O.) 2011, UPTU 2006, AKTU 2017]

Ans:

- (i) Rank = 3 (ii) Rank = 3

Q.10 Find the rank of matrix by reducing into Echelon form $\begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{bmatrix}$

[UPTU 2004]

Ans: rank = 3

Q.11 Find the inverse employing elementary transformation $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$.[**AKTU-2019**] **Ans:** $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

Q.12 Reduce the matrix A to Normal form and hence find the rank of A where $A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$.

Ans: rank = 3

Suggested Links:

Inverse of a matrix by elementary transformations

https://www.youtube.com/watch?v=kcL5WWJjmIU

Rank of a matrix by Normal form

https://www.youtube.com/watch?v=VTHz4gjzsKI

Rank of a matrix by Echelon Form

.com/wbe.com/watch?v=N33SOw1 atch?v=njDiwBhttps://www.youtube43w80

https://www.youtuA5fo

^{**} Page no. may differ as per the edition of the book. Dept. of Mathematics

Mathematics – I (KAS - 103)

MODULE 1: Matrices

Assignment No. - 1.2

Name Of Faculty: -----Date of Submission: -----

Ouestion:

Topic Name	No of Ques/Online Ques.	% Covered in Exam	% Ques. From old paper	Text /Reference books to refer**
Linear dependence and Independence	10	6 to 8	50	B V RAMANA (Pg. 13.10-13.17)
System of Homogeneous Linear Equation				KREYSZIG (Pg. 201 – 220) B S GREWAL (Pg. 46 – 54)
System of Non-Homogeneous Linear Equation				D 3 OKE WAL (1 g. 40 – 34)

Very Short Question:

- **Q.1** Discuss the condition of consistency and inconsistency of non-homogeneous linear equation.
- **Q.2** For what value of 'k', the system of equation x + y + z = 2, x + 2y + z = -2, x + y + (k 5)z = k has no **Ans:** k = 6 and $k \ne 2$. solution.
- **Q.3** Find the value of k so that the equations x + y + 3z = 0, 4x + 3y + kz = 0,

2x + y + 2z = 0 have a non-trivial solution.

[UPTU (SUM) 2008]

Ans: k = 8

Q.4 Test the consistency of system of equations and solve if possible by Gauss elimination method.

2x - y + 3z = 8

- (i) -x+2y+z=4 [U.P.T.U.2011]
 - 3x + y 4z = 0.
 - 2x 3y + 7z = 5
- (ii) 3x + y - 3z = 13[U.P.T.U.2010]

2x + 19y - 47z = 32

- **Ans:** (i) x = 2; y = 2; z = 2
- (ii) Inconsistent.
- Test the consistency for the following system of equations and if system is consistent, solve them: x + y + z =**Q.5** 6, x + 2y + 3z = 14, x + 4y + 7z = 30.

Ans: x = k - 2, y = 8 - 2k, z = k, where k is arbitrary.

- Find the values of λ and μ for which the system of equations has (i) no solution **Q.6**
 - (ii) unique solution (iii) infinite number of solutions.

2x-5y+2z=8; 2x+4y+6z=5; $x+2y+\lambda z=\mu$.

[U.P.T.U.2015,(C.O.)2013,(SUM)2007, AKTU 2017]

Ans: (i) $\lambda = 3, \mu \neq 5/2$ (ii) $\lambda \neq 3, \mu$ may have any value (iii) $\lambda = 3, \mu = 5/2$

0.7 Show that the equations do not have a solution unless a+c=2b.

$$3x + 4y + 5z = a$$
,

$$4x + 5y + 6z = b,$$

[U.P.T.U.(SUM) 2008; M.T.U 2011]

5x + 6y + 7z = c.

0.8 Determine b such that the system of homogeneous equations:

$$2x + y + +2z = 0$$
, $x + y + 3z = 0$, $4x + 3y + bz = 0$

has (i) Trivial solution (ii) non-trivial solution. find the non-trivial solution.

Ans: (i) $b \neq 8$ (ii) b = 8, x = k, y = -4k, z = k.

Dept. of Mathematics

^{**} Page no. may differ as per the edition of the book.

Suggested Links:

Linear dependence and Independence

https://www.youtube.com/watch?v=yLi8RxqfowA

System of Homogeneous Linear Equation

www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf

System of Non-Homogeneous Linear Equation

https://www.youtube.com/watch?v=4jcvZmMK_28

^{**} Page no. may differ as per the edition of the book.

Dept. of Mathematics