Mastering Embedded Systems Online Diploma www.learn-in-depth.com

Pressure Controller

Prepared by

Eng. Mohamed Magdi

My Profile:

https://www.learn-in-depth.com/online-diploma/mohamed.m.alsehli%40g mail.com

1. Specification

- A pressure controller informs the crew of a cabin with an alarm when the pressure exceeds 20 bars in the cabin.
- The alarm duration equals 60 seconds.

2. Design Sequence

Case Study:

A pressure controlling systems has assumptions:

- 1. The controller set up and shutdown procedures are not modeled.
- 2. The controller maintenance is not modeled.
- 3. The pressure sensor never fails.
- 4. The alarm never fails.
- 5. The controller never faces power cut.
- 6. The keep track of the measured value option is not modeled in the first version of the design.

o Method:

 The V-Model is an extension of the waterfall model and is based on the association of a testing phase for each corresponding development stage. This means that for every single phase in the development cycle, there is a directly associated testing phase.
 This is a highly disciplined model, and the next phase starts only after completion of the previous phase.

o Requirement:

 Each requirement identifies a unique identifier, a description in plain text and a type.

o Requirement Diagram:

We defined the blocks in the diagram as a one main block and sub-blocks which is composed and refined to the main blocks.

o Composition:

Composition is the process of combining smaller requirements to create a larger, more comprehensive requirement.

o Refinement:

Refinement is the process of breaking down higher-level, abstract requirements into more detailed and specific sub-requirements.

Design Space Exploration:

The goal of design exploration is to find the best trade-offs among various design decisions. We will use STM32F103C6 microcontroller with a cortexm3.

We aim to design alternatives to identify the most optimal solution.

- System Analysis:
 - Analysis Method.
 - Use Case Diagram.
 Defining system boundary and main function.

2. Activity Diagram.

Describe the workflow behavior of the system.

3. Sequence Diagram.

How operations are carried out.

- o System Design:
 - O Block Diagram:

State Machines of Each Block:

o Pressure Sensor State

Pressure Controller

o Alarm Monitor

o Alarm Actuator

Simulation Tree:

Executable Symbols:

Proteus Simulation:

