RML_Assignment 1

Tivon Johnson Minhye Kim Zach Vila Qunzhe Ding

5/28/2021

```
hmda_train <- read.csv("hmda_train_preprocessed.csv", header = TRUE)</pre>
hmda test <- read.csv("hmda test preprocessed.csv", header = TRUE)</pre>
names(hmda_train)
  [1] "row id"
                                        "black"
##
## [3] "asian"
                                        "white"
## [5] "amind"
                                        "hipac"
## [7] "hispanic"
                                        "non_hispanic"
## [9] "male"
                                        "female"
## [11] "agegte62"
                                        "agelt62"
## [13] "term_360"
                                        "conforming"
## [15] "debt_to_income_ratio_missing"
                                        "loan_amount_std"
## [17] "loan_to_value_ratio_std"
                                        "no_intro_rate_period_std"
## [19] "intro_rate_period_std"
                                        "property_value_std"
## [21] "income std"
                                        "debt to income ratio std"
## [23] "high_priced"
#Create new data frame containing the pertinent variables.
attach(hmda train)
new_data <- data.frame(conforming, debt_to_income_ratio_std, debt_to_income_r</pre>
atio_missing, income_std, loan_amount_std, intro_rate_period_std,
                                   loan to value ratio std, no intro rate peri
od_std, property_value_std, term_360, high_priced)
attach(new_data)
## The following objects are masked from hmda_train:
##
       conforming, debt_to_income_ratio_missing, debt_to_income_ratio_std,
##
       high_priced, income_std, intro_rate_period_std, loan_amount_std,
##
       loan to value ratio std, no intro rate period std,
##
       property value std, term 360
##
library(ggplot2)
library(plyr)
library(psych)
##
## Attaching package: 'psych'
```

```
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
multi.hist(new_data, dcol=6, bcol=2, freq=TRUE)
```


cor <- cor(new_data)
heatmap(cor)</pre>


```
corPlot(new_data, numbers=FALSE)
str(new_data)
## 'data.frame':
                   160338 obs. of 11 variables:
   $ conforming
                                  : int 111111110 ...
  $ debt_to_income_ratio_std
                                 : num 0.855 -0.425 0.123 -0.425 0.763 ...
## $ debt_to_income_ratio_missing: int 00000000000...
## $ income std
                                 : num
                                        -0.0403 -0.0181 -0.0323 -0.0181 -0.0
382 ...
## $ loan amount std
                                 : num -0.5144 -0.1186 -0.7782 -0.0747 -0.6
023 ...
## $ intro_rate_period_std
                                       -0.215 -0.215 4.611 -0.215 -0.215 ...
                                 : num
## $ loan to value ratio std
                                 : num 0.334 0.269 0.229 -1.15 0.553 ...
## $ no_intro_rate_period_std
                                 : num
                                        0.244 0.244 -4.092 0.244 0.244 ...
## $ property_value_std
                                 : num
                                        -0.536 -0.228 -0.721 0.358 -0.628 ...
##
  $ term 360
                                        1 1 1 1 1 1 1 1 1 1 ...
                                 : int
   $ high_priced
                                        00000000000...
                                  : int
#Convert binary variables to factor
new_data$high_priced <- as.factor(new_data$high_priced)</pre>
new_data$term_360 <- as.factor(new_data$term_360)</pre>
new data$debt to income ratio missing <- as.factor(new data$debt to income ra
tio missing)
new data$conforming <- as.factor(new data$conforming)</pre>
```

```
library(caret)
## Warning: package 'caret' was built under R version 4.0.3
## Loading required package: lattice
library(glmnet)
## Warning: package 'glmnet' was built under R version 4.0.4
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 4.0.5
## Loaded glmnet 4.1-1
library(lattice)
#Split new data into 70/30 training and test set.
set.seed(1)
trainIndex <- createDataPartition(new_data$high_priced, p=0.7, list=F)
new train <- new data[trainIndex, ]</pre>
new test <- new data[-trainIndex, ]</pre>
#Set up 5-fold cross-validation method
set.seed(3)
cv_5 <- trainControl(method="cv", number=5)</pre>
#Fit elastic net with tuning grid
train_elnet <- train(high_priced~., data=new_train, method = "glmnet", trCont
rol = cv_5
train elnet
## glmnet
##
## 112238 samples
##
       10 predictor
        2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 89790, 89791, 89791, 89790, 89790
## Resampling results across tuning parameters:
##
##
     alpha lambda
                          Accuracy
                                     Kappa
##
     0.10
            8.136002e-05 0.9026177 0.0020423738
##
    0.10
           8.136002e-04 0.9027424 0.0019985048
##
     0.10
           8.136002e-03 0.9032413 0.0010799528
##
     0.55 8.136002e-05 0.9025553 0.0019176604
##
     0.55
           8.136002e-04 0.9028048 0.0019764199
     0.55
##
           8.136002e-03 0.9032324 0.0006176217
##
    1.00 8.136002e-05 0.9025286 0.0017178086
```

```
##
     1.00
            8.136002e-04 0.9028849 0.0021365892
##
     1.00
            8.136002e-03 0.9032235 0.0001545347
##
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were alpha = 0.1 and lambda = 0.008136
002.
#Highest accuracy is 0.90324 at alpha 0.1
#Expand feature space with larger tuning grid
#train_elnet_int <- train(high_priced~.^2, data=new_train, method = "glmnet",</pre>
trControl = cv_5, tuneLength = 10)
#Function to get best result
#get_best_result <- function(caret_fit) {</pre>
  #best <- which(rownames(caret_fit$results) == rownames(caret_fit$bestTune))</pre>
  #best result <- caret fit$results[best, ]</pre>
  #rownames(best_result) = NULL
 #best_result
#}
#get_best_result(train_elnet_int)
#Function to calculate accuracy
calc_acc <- function(actual, predicted){</pre>
  mean(actual == predicted)
}
#Calculate accuracy
calc acc(actual = new test$high priced, predicted = predict(train elnet, newd
ata = new test))
## [1] 0.9032432
library(h2o)
## Warning: package 'h2o' was built under R version 4.0.5
##
## -----
##
## Your next step is to start H20:
##
       > h2o.init()
##
## For H2O package documentation, ask for help:
##
       > ??h2o
##
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
##
```

```
##
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
##
##
      cor, sd, var
## The following objects are masked from 'package:base':
##
##
      %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##
       colnames<-, ifelse, is.character, is.factor, is.numeric, log,
       log10, log1p, log2, round, signif, trunc
##
h2o.init()
   Connection successful!
##
##
## R is connected to the H2O cluster:
##
      H2O cluster uptime:
                                  19 minutes 7 seconds
##
      H2O cluster timezone:
                                  America/New York
##
      H2O data parsing timezone: UTC
##
      H2O cluster version:
                                  3.32.1.3
      H2O cluster version age:
##
                                  11 days
##
      H2O cluster name:
                                  H2O_started_from_R_Admin_ikc867
##
      H2O cluster total nodes:
                                  1
##
      H2O cluster total memory:
                                  3.79 GB
##
      H2O cluster total cores:
                                  4
      H2O cluster allowed cores:
##
                                  4
##
      H2O cluster healthy:
                                  TRUE
##
      H2O Connection ip:
                                  localhost
##
      H2O Connection port:
                                  54321
##
      H2O Connection proxy:
                                  NA
##
      H2O Internal Security:
                                  FALSE
      H2O API Extensions:
                                  Amazon S3, Algos, AutoML, Core V3, TargetE
##
ncoder, Core V4
                                  R version 4.0.2 (2020-06-22)
      R Version:
#Create feature names
v <- "high priced"</pre>
x <- setdiff(names(new_train), y)</pre>
#Turn training set into h2o object
train.h2o <- as.h2o(new_train)</pre>
## Warning in use.package("data.table"): data.table cannot be used without R
## package bit64 version 0.9.7 or higher. Please upgrade to take advangage of
## data.table speedups.
##
                                                                          0%
```

```
#Training basic GBM model with default parameters
h2o.fit1 \leftarrow h2o.gbm(x = x,
        training_frame = train.h2o,
        nfolds = 5)
##
                                0%
                                1%
l =
                                8%
=====
                                32%
38%
_____
                                42%
_____
                                67%
_______
                                70%
______
                                72%
______
                                75%
______
                                79%
______
                                83%
______
                                87%
                                90%
______
                                93%
_____
                                98%
______
|-----| 100%
#Model results
h2o.fit1
## Model Details:
## ========
##
## H2OBinomialModel: gbm
## Model ID: GBM_model_R_1622429036451_1410
## Model Summary:
```

```
number of trees number of internal trees model size in bytes min depth
## 1
                  50
                                            50
                                                             21901
                                                                           5
##
     max_depth mean_depth min_leaves max_leaves mean_leaves
## 1
             5
                  5.00000
                                  25
                                              32
##
##
## H2OBinomialMetrics: gbm
## ** Reported on training data. **
## MSE:
         0.07523272
## RMSE: 0.2742858
## LogLoss: 0.2506421
## Mean Per-Class Error:
                          0.2784423
## AUC:
         0.8296986
## AUCPR:
          0.3119291
## Gini:
         0.6593971
## R^2:
        0.1387537
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal thre
shold:
##
                         Error
              0
                    1
                                         Rate
## 0
          83175 18209 0.179604
                                =18209/101384
           4095 6759 0.377280
                                  =4095/10854
## Totals 87270 24968 0.198721 =22304/112238
## Maximum Metrics: Maximum metrics at their respective thresholds
##
                           metric threshold
                                                     value idx
## 1
                           max f1 0.188555
                                                 0.377366 187
## 2
                           max f2 0.111298
                                                 0.541478 262
## 3
                     max f0point5 0.259006
                                                 0.329960 121
## 4
                     max accuracy 0.420162
                                                 0.904266
                                                            33
## 5
                    max precision 0.833293
                                                 1.000000
## 6
                       max recall 0.005673
                                                 1.000000 399
## 7
                  max specificity 0.833293
                                                 1.000000
## 8
                 max absolute mcc 0.140438
                                                 0.328062 233
## 9
       max min per class accuracy 0.154566
                                                 0.751981 220
## 10 max mean_per_class_accuracy 0.095350
                                                 0.765245 276
## 11
                          max tns 0.833293 101384.000000
## 12
                          max fns 0.833293
                                             10853.000000
                                                             0
## 13
                          max fps 0.005673 101384.000000 399
## 14
                                             10854.000000 399
                          max tps 0.005673
## 15
                          max tnr
                                   0.833293
                                                 1.000000
## 16
                          max fnr
                                   0.833293
                                                 0.999908
                                                             0
## 17
                          max fpr
                                   0.005673
                                                 1.000000 399
## 18
                          max tpr 0.005673
                                                 1.000000 399
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.ga
insLift(<model>, valid=<T/F>, xval=<T/F>)`
##
## H2OBinomialMetrics: gbm
```

```
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined
holdout predictions) **
##
## MSE:
        0.07610695
## RMSE: 0.2758749
## LogLoss: 0.2540164
## Mean Per-Class Error:
                          0.2821288
## AUC:
        0.8221344
## AUCPR: 0.2897182
## Gini:
         0.6442688
## R^2: 0.1287457
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal thre
shold:
##
                         Error
                                         Rate
## 0
          82222 19162 0.189004
                               =19162/101384
           4073 6781 0.375253
                                  =4073/10854
## Totals 86295 25943 0.207015 =23235/112238
##
## Maximum Metrics: Maximum metrics at their respective thresholds
                                                    value idx
##
                           metric threshold
## 1
                           max f1 0.182744
                                                 0.368563 199
## 2
                           max f2
                                  0.100692
                                                 0.535909 276
## 3
                     max f0point5 0.254271
                                                 0.317754 131
## 4
                     max accuracy
                                   0.477167
                                                 0.903633
## 5
                    max precision 0.854327
                                                 1.000000
## 6
                       max recall 0.005457
                                                 1.000000 399
## 7
                  max specificity 0.854327
                                                 1.000000
## 8
                 max absolute mcc 0.136470
                                                 0.318991 245
       max min_per_class_accuracy 0.150206
## 9
                                                 0.745473 232
## 10 max mean_per_class_accuracy 0.100692
                                                 0.760137 276
## 11
                          max tns 0.854327 101384.000000
## 12
                          max fns 0.854327 10853.000000
## 13
                          max fps 0.005457 101384.000000 399
## 14
                          max tps 0.005457 10854.000000 399
## 15
                          max tnr 0.854327
                                                 1.000000
## 16
                          max fnr 0.854327
                                                 0.999908
                                                            0
## 17
                          max fpr 0.005457
                                                 1.000000 399
## 18
                          max tpr 0.005457
                                                 1.000000 399
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.ga
insLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary:
##
                                                 sd cv 1 valid cv 2 valid
                                  mean
## accuracy
                             0.7894789 0.010866088 0.77214056
                                                                 0.7953426
## auc
                            0.82226807
                                        0.004802158 0.81496036
                                                                0.82605195
## err
                            0.21052107 0.010866088 0.22785941
                                                                0.20465735
## err_count
                                4725.2
                                          232.05754
                                                        5102.0
                                                                    4614.0
## f0point5
                            0.29558888 0.0055195773 0.28726012 0.29427335
```

```
## f1
                           0.37004244 0.0036663387 0.36652595 0.36638287
## f2
                           0.49493015 0.0102767525 0.5062076
                                                               0.4853027
## lift_top_group
                             4.568642
                                        0.37506232 4.1362686
                                                                4.770164
                           0.25401807 0.0030391607 0.2578716 0.25045457
## logloss
## max_per_class_error
                            0.3607638
                                        0.02901928
                                                   0.3213793
                                                              0.3806871
## mcc
                           0.30914396 0.0045944043 0.31014138
                                                              0.30382285
## mean per class accuracy
                            0.7223964 0.007301601 0.73041147
                                                               0.7166252
## mean_per_class_error
                           0.27760363 0.007301601 0.26958856
                                                               0.2833748
## mse
                          0.076107666 9.033316E-4 0.0771715 0.074965365
                             0.290607 0.009188015 0.27514684 0.29937336
## pr_auc
## precision
                           0.26065308 0.0062621064 0.2510631
                                                              0.26014042
## r2
                           0.12874511 0.0051593487 0.12006736 0.13248512
## recall
                            0.6392362
                                        0.02901928 0.6786207
                                                               0.6193129
## rmse
                            0.2758723 0.0016371785 0.27779758
                                                              0.27379805
                           0.80555654 0.015034443 0.78220224
                                                              0.81393754
## specificity
                           cv 3 valid cv 4 valid cv 5 valid
## accuracy
                            0.7854873  0.79814756  0.79627657
                                       0.8203637 0.82322675
## auc
                            0.8267376
## err
                           0.21451274 0.20185243 0.20372345
## err count
                               4792.0
                                           4533.0
                                                     4585.0
## f0point5
                           ## f1
                           0.37326705 0.36980397 0.3742323
## f2
                            0.5055264 0.48604006 0.49157405
## lift_top_group
                             5.041891
                                        4.245223 4.6496644
## logloss
                           0.25151825 0.25452825 0.2557177
## max_per_class_error
                           0.33812615  0.38511327  0.37851316
## mcc
                           0.31588987
                                       0.3061047 0.30976096
## mean_per_class_accuracy
                            0.7302829 0.71628344 0.7183789
## mean_per_class_error
                            0.2697171
                                        0.2837166 0.2816211
## mse
                          0.075652964 0.075885095 0.07686341
                            0.2933567 0.29077986 0.29437825
## pr_auc
## precision
                           0.25992715
                                       0.2644135 0.26772115
## r2
                           0.13240124 0.12816203 0.13060981
## recall
                            ## rmse
                           0.27505085
                                       0.2754725 0.2772425
                             0.798692
## specificity
                                        0.8176801 0.81527096
#Train model with 5000 trees
#h2o.fit2 <- h2o.gbm(
 \#X = X
 #y = y,
 #training_frame = train.h2o,
 #nfolds = 5,
 #ntrees = 5000,
 #stopping_rounds = 10, #stop training after 10 consecutive trees have no im
provement in cv error
 #stopping_tolerance = 0,
 \#seed = 123
#)
```

```
#Model stopped after 2533 trees
#h2o.fit2@parameters$ntrees

#h2o.auc(h2o.fit2, xval = TRUE)
# AUC shows no significant improvement over first model.

#Plot variable importance
h2o.varimp_plot(h2o.fit1, num_of_features = 10)
```

Variable Importance: GBM

Partial dependency plot for loan_to_value_ratio_s


```
## PartialDependence: Partial dependency plot for loan_to_value_ratio_std
##
      loan to value ratio std mean response stddev response
## 1
                     -3.478615
                                     0.042561
                                                       0.058386
## 2
                      7.375801
                                     0.179413
                                                       0.149913
## 3
                     18.230216
                                     0.152956
                                                       0.126701
## 4
                     29.084632
                                     0.152956
                                                       0.126701
## 5
                     39.939048
                                     0.152956
                                                       0.126701
## 6
                                                       0.126701
                     50.793464
                                     0.152956
## 7
                     61.647879
                                     0.152956
                                                       0.126701
## 8
                     72.502295
                                     0.152956
                                                       0.126701
## 9
                     83.356711
                                     0.152956
                                                       0.126701
## 10
                     94.211126
                                     0.152956
                                                       0.126701
## 11
                    105.065542
                                     0.152956
                                                       0.126701
## 12
                    115.919958
                                     0.152956
                                                       0.126701
## 13
                    126.774374
                                     0.152956
                                                       0.126701
## 14
                    137.628789
                                     0.152956
                                                       0.126701
## 15
                    148.483205
                                                       0.126701
                                     0.152956
## 16
                    159.337621
                                     0.152956
                                                       0.126701
## 17
                    170.192036
                                     0.152956
                                                       0.126701
## 18
                    181.046452
                                     0.152956
                                                       0.126701
## 19
                    191.900868
                                     0.152956
                                                       0.126701
## 20
                    202.755284
                                     0.152956
                                                       0.126701
##
      std_error_mean_response
## 1
                      0.000174
## 2
                      0.000447
## 3
                      0.000378
## 4
                      0.000378
```

```
## 5
                      0.000378
## 6
                      0.000378
## 7
                      0.000378
## 8
                      0.000378
## 9
                      0.000378
## 10
                      0.000378
## 11
                      0.000378
## 12
                      0.000378
## 13
                      0.000378
## 14
                      0.000378
## 15
                      0.000378
## 16
                      0.000378
## 17
                      0.000378
## 18
                      0.000378
## 19
                      0.000378
## 20
                      0.000378
#Plot partial dependence for property_value_std
h2o.partialPlot(h2o.fit1, data = train.h2o, cols = "property_value_std")
##
                                                                               0%
```

Partial dependency plot for property_value_std

PartialDependence: Partial dependency plot for property_value_std
property_value_std mean_response stddev_response std_error_mean_response

e ##	1	-1.090958	0.255675	0.068498	0.00020		
4 ## 4	2	1.116162	0.038323	0.045015	0.00013		
## 2	3	3.323283	0.038150	0.044321	0.00013		
## 2	4	5.530404	0.038098	0.044222	0.00013		
## 2	5	7.737525	0.038098	0.044222	0.00013		
##	6	9.944646	0.038074	0.044179	0.00013		
##	7	12.151767	0.038074	0.044179	0.00013		
## 2	8	14.358888	0.038074	0.044179	0.00013		
## 2	9	16.566008	0.038074	0.044179	0.00013		
## 2	10	18.773129	0.038074	0.044179	0.00013		
## 2	11	20.980250	0.038074	0.044179	0.00013		
## 2	12	23.187371	0.038074	0.044179	0.00013		
##	13	25.394492	0.038074	0.044179	0.00013		
##	14	27.601613	0.038074	0.044179	0.00013		
## 2	15	29.808733	0.038074	0.044179	0.00013		
##	16	32.015854	0.038074	0.044179	0.00013		
##	17	34.222975	0.038074	0.044179	0.00013		
##	18	36.430096	0.038074	0.044179	0.00013		
## 2	19	38.637217	0.038074	0.044179	0.00013		
##	20	40.844338	0.038074	0.044179	0.00013		
	2						
<pre>#Plot partial dependence for debt_to_income_ratio_std h2o.partialPlot(h2o.fit1, data = train.h2o, cols = "debt_to_income_ratio_std")</pre>							
##	I				0%		
 ==		-========			== 100%		

Partial dependency plot for debt_to_income_ratio_:


```
## PartialDependence: Partial dependency plot for debt_to_income_ratio_std
##
      debt to income ratio std mean response stddev response
## 1
                      -2.527547
                                      0.050752
                                                        0.052628
## 2
                      -2.190775
                                      0.050752
                                                        0.052628
## 3
                      -1.854004
                                      0.050752
                                                        0.052628
## 4
                      -1.517232
                                      0.056119
                                                        0.061167
## 5
                      -1.180461
                                      0.056119
                                                        0.061167
## 6
                      -0.843690
                                      0.056119
                                                        0.061167
## 7
                      -0.506918
                                      0.069838
                                                        0.071677
## 8
                      -0.170147
                                      0.076971
                                                        0.075162
## 9
                       0.166625
                                      0.093299
                                                        0.092250
## 10
                       0.503396
                                      0.114812
                                                        0.113338
## 11
                       0.840168
                                      0.114664
                                                        0.113087
## 12
                       1.176939
                                      0.117609
                                                        0.114516
## 13
                       1.513710
                                      0.182935
                                                        0.141383
## 14
                       1.850482
                                      0.182935
                                                        0.141383
## 15
                       2.187253
                                      0.182935
                                                        0.141383
## 16
                       2.524025
                                      0.182935
                                                        0.141383
## 17
                       2.860796
                                      0.145769
                                                        0.120734
## 18
                       3.197568
                                      0.145769
                                                        0.120734
## 19
                       3.534339
                                      0.145769
                                                        0.120734
## 20
                                      0.145769
                       3.871110
                                                        0.120734
##
      std_error_mean_response
## 1
                      0.000157
## 2
                      0.000157
## 3
                      0.000157
## 4
                      0.000183
```

```
## 5
                      0.000183
## 6
                      0.000183
## 7
                      0.000214
## 8
                      0.000224
## 9
                      0.000275
## 10
                      0.000338
## 11
                      0.000338
## 12
                      0.000342
## 13
                      0.000422
## 14
                      0.000422
## 15
                      0.000422
## 16
                      0.000422
## 17
                      0.000360
## 18
                      0.000360
## 19
                      0.000360
## 20
                      0.000360
#Plot partial dependence for property_value_std
h2o.partialPlot(h2o.fit1, data = train.h2o, cols = "intro_rate_period_std")
##
                                                                               0%
```

Partial dependency plot for intro_rate_period_sto

PartialDependence: Partial dependency plot for intro_rate_period_std
intro_rate_period_std mean_response stddev_response std_error_mean_resp

onse ## 1	-0.215304	0.094275	0.100926	0.00
0301	0.215504	0.054275	0.100520	0.00
## 2	0.684309	0.110769	0.084960	0.00
0254				
## 3	1.583922	0.110725	0.084989	0.00
0254 ## 4	2 402526	0.066179	0.056031	0 00
## 4 0167	2.483536	0.0001/9	0.030031	0.00
## 5	3.383149	0.073119	0.065802	0.00
0196				
## 6	4.282762	0.066653	0.070457	0.00
0210				
## 7	5.182376	0.062585	0.064926	0.00
0194 ## 8	6.081989	0.065132	0.068516	0.00
0205	0.001909	0.005152	0.000010	0.00
## 9	6.981602	0.065132	0.068516	0.00
0205				
## 10	7.881216	0.065132	0.068516	0.00
0205	0.700000	0.065433	0.060546	2 22
## 11 0205	8.780829	0.065132	0.068516	0.00
## 12	9.680442	0.065132	0.068516	0.00
0205	3.000442	0.005152	0.000510	0.00
## 13	10.580056	0.065132	0.068516	0.00
0205				
## 14	11.479669	0.065132	0.068516	0.00
0205 ## 15	12 270202	0.065122	0 060516	0.00
## 15 0205	12.379282	0.065132	0.068516	0.00
## 16	13.278896	0.065132	0.068516	0.00
0205				
## 17	14.178509	0.065132	0.068516	0.00
0205				
## 18	15.078122	0.065132	0.068516	0.00
0205 ## 19	15.977736	0.065132	0.068516	0.00
0205	13.377730	0.003132	0.000010	0.00
## 20	16.877349	0.065132	0.068516	0.00
0205				
	ot(h2o.fit1, data	= train.h2o, o	cols = "loan_amount	_std")
## 				0%
l				1 100%
=======	==========			===== 100%

Partial dependency plot for loan_amount_std


```
## PartialDependence: Partial dependency plot for loan_amount_std
      loan_amount_std mean_response stddev_response std_error_mean_response
##
## 1
             -1.261924
                             0.123158
                                              0.126631
                                                                        0.000378
## 2
              1.515279
                             0.074907
                                              0.076726
                                                                        0.000229
## 3
              4.292482
                             0.075522
                                              0.077970
                                                                        0.000233
## 4
              7.069684
                             0.075522
                                              0.077970
                                                                        0.000233
## 5
              9.846887
                             0.075522
                                              0.077970
                                                                        0.000233
## 6
             12.624089
                             0.075522
                                              0.077970
                                                                        0.000233
## 7
             15.401292
                             0.075522
                                              0.077970
                                                                        0.000233
## 8
             18.178494
                             0.075522
                                              0.077970
                                                                        0.000233
## 9
             20.955697
                             0.075522
                                              0.077970
                                                                        0.000233
## 10
             23.732900
                             0.075522
                                              0.077970
                                                                        0.000233
## 11
             26.510102
                             0.075522
                                              0.077970
                                                                        0.000233
## 12
             29.287305
                             0.075522
                                              0.077970
                                                                        0.000233
## 13
             32.064507
                             0.075522
                                              0.077970
                                                                        0.000233
## 14
             34.841710
                             0.075522
                                              0.077970
                                                                        0.000233
## 15
             37.618913
                             0.075522
                                              0.077970
                                                                        0.000233
## 16
             40.396115
                             0.075522
                                              0.077970
                                                                        0.000233
## 17
             43.173318
                             0.075522
                                              0.077970
                                                                        0.000233
## 18
             45.950520
                             0.075522
                                              0.077970
                                                                        0.000233
## 19
             48.727723
                             0.075522
                                              0.077970
                                                                        0.000233
## 20
                             0.075522
             51.504926
                                              0.077970
                                                                        0.000233
h2o.partialPlot(h2o.fit1, data = train.h2o, cols = "income_std")
##
                                                                                 0%
```

Partial dependency plot for income_std

##	Par	tialDenendend	ce: Partial depende	ncy plot for income_std	
##				_response std_error_mean	response
##		-0.097823	0.083190	0.088220	0.000263
##	2	3.898190	0.117357	0.114860	0.000343
##	3	7.894204	0.117357	0.114860	0.000343
##	4	11.890218	0.117357	0.114860	0.000343
##	5	15.886231	0.117357	0.114860	0.000343
##	6	19.882245	0.117357	0.114860	0.000343
##	7	23.878258	0.117357	0.114860	0.000343
##	8	27.874272	0.117357	0.114860	0.000343
##	9	31.870286	0.117357	0.114860	0.000343
##	10	35.866299	0.117357	0.114860	0.000343
##	11	39.862313	0.117357	0.114860	0.000343
##	12	43.858326	0.117357	0.114860	0.000343
##	13	47.854340	0.117357	0.114860	0.000343
##	14	51.850354	0.117357	0.114860	0.000343
##	15	55.846367	0.117357	0.114860	0.000343
##	16	59.842381	0.117357	0.114860	0.000343
##	17	63.838394	0.117357	0.114860	0.000343
##	18	67.834408	0.117357	0.114860	0.000343
##	19	71.830422	0.117357	0.114860	0.000343
##	20	75.826435	0.117357	0.114860	0.000343

Partial dependency plot for no_intro_rate_period_s


```
## PartialDependence: Partial dependency plot for no_intro_rate_period_std
##
      no_intro_rate_period_std mean_response stddev_response
## 1
                      -4.091747
                                      0.063678
                                                       0.062087
## 2
                      -3.863529
                                      0.063678
                                                       0.062087
## 3
                      -3.635311
                                      0.063678
                                                       0.062087
## 4
                      -3.407093
                                      0.063678
                                                       0.062087
## 5
                      -3.178875
                                      0.063678
                                                       0.062087
## 6
                      -2.950657
                                      0.063678
                                                       0.062087
## 7
                      -2.722439
                                      0.063678
                                                       0.062087
## 8
                      -2.494221
                                      0.063678
                                                       0.062087
## 9
                      -2.266003
                                      0.063678
                                                       0.062087
## 10
                      -2.037785
                                      0.063678
                                                       0.062087
## 11
                      -1.809567
                                      0.097133
                                                       0.102361
## 12
                      -1.581349
                                      0.097133
                                                       0.102361
## 13
                      -1.353131
                                      0.097133
                                                       0.102361
## 14
                      -1.124913
                                      0.097133
                                                       0.102361
## 15
                      -0.896695
                                      0.097133
                                                       0.102361
                                      0.097133
                                                       0.102361
## 16
                      -0.668477
## 17
                      -0.440259
                                      0.097133
                                                       0.102361
```

```
## 18
                   -0.212042
                                 0.097133
                                                0.102361
## 19
                    0.016176
                                 0.097133
                                                0.102361
## 20
                    0.244394
                                                0.102361
                                 0.097133
##
     std_error_mean_response
## 1
                   0.000185
## 2
                   0.000185
## 3
                   0.000185
## 4
                   0.000185
## 5
                   0.000185
## 6
                   0.000185
## 7
                   0.000185
## 8
                   0.000185
## 9
                   0.000185
## 10
                   0.000185
## 11
                   0.000306
## 12
                   0.000306
## 13
                   0.000306
## 14
                   0.000306
## 15
                   0.000306
## 16
                   0.000306
## 17
                   0.000306
## 18
                   0.000306
## 19
                   0.000306
## 20
                   0.000306
h2o.partialPlot(h2o.fit1, data = train.h2o, cols = "term_360")
##
                                                                     0%
|-----| 100%
```

Partial dependency plot for term_360

Partial dependency plot for conforming


```
## PartialDependence: Partial dependency plot for conforming
     conforming mean_response stddev_response std_error_mean_response
## 1
                     0.088092
                                     0.094029
                                                              0.000281
              0
## 2
              1
                     0.097053
                                     0.102435
                                                              0.000306
h2o.partialPlot(h2o.fit1, data = train.h2o, cols = "debt_to_income_ratio_miss
ing")
##
                                                                            0%
```

artial dependency plot for debt_to_income_ratio_mi


```
## PartialDependence: Partial dependency plot for debt_to_income_ratio_missin
g
##
    debt_to_income_ratio_missing mean_response stddev_response
## 1
                                   0.096768
                                                  0.102254
                                                  0.093492
## 2
                             1
                                   0.132865
##
    std_error_mean_response
## 1
                  0.000305
## 2
                  0.000279
#Convert test set to h2o object
test.h2o <- as.h2o(new_test)</pre>
## Warning in use.package("data.table"): data.table cannot be used without R
## package bit64 version 0.9.7 or higher. Please upgrade to take advangage of
## data.table speedups.
##
                                                                     0%
   #Evaluate performance on new data
h2o.performance(model = h2o.fit1, newdata = test.h2o)
## H2OBinomialMetrics: gbm
## MSE: 0.07640013
## RMSE: 0.2764057
```

```
## LogLoss: 0.2554305
## Mean Per-Class Error:
                         0.2843115
## AUC:
        0.8181167
## AUCPR: 0.2875207
## Gini: 0.6362335
## R^2: 0.125302
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal thre
##
                   1
                        Error
                                       Rate
## 0
         34923
                8526 0.196230
                                =8526/43449
          1732 2919 0.372393
                                =1732/4651
## Totals 36655 11445 0.213264
                             =10258/48100
## Maximum Metrics: Maximum metrics at their respective thresholds
##
                          metric threshold
                                                 value idx
## 1
                          max f1
                                 0.180082
                                              0.362699 192
## 2
                          max f2 0.107392
                                              0.533937 262
## 3
                    max f0point5 0.275193
                                              0.307637 102
## 4
                    max accuracy 0.420364
                                              0.903701
## 5
                                              0.718750
                                                         9
                   max precision 0.521580
## 6
                      max recall 0.006484
                                              1.000000 398
## 7
                 max specificity 0.621394
                                              0.999977
## 8
                max absolute mcc 0.129899
                                              0.316077 242
## 9
      max min per class accuracy 0.151591
                                              0.742206 223
## 10 max mean_per_class_accuracy 0.096220
                                              0.757929 271
                         max tns 0.621394 43448.000000
## 11
## 12
                         max fns 0.621394 4649.000000
## 13
                         max fps 0.005735 43449.000000 399
## 14
                         max tps 0.006484
                                           4651.000000 398
## 15
                         max tnr 0.621394
                                              0.999977
## 16
                         max fnr 0.621394
                                              0.999570
## 17
                         max fpr 0.005735
                                              1.000000 399
## 18
                         max tpr 0.006484
                                              1.000000 398
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.ga
insLift(<model>, valid=<T/F>, xval=<T/F>)`
#Predict with h2o predict
h2o.predict(h2o.fit1, newdata = test.h2o)
##
                                                                         0%
|============| 100%
##
    predict
                   p0
## 1
          0 0.9569403 0.04305967
## 2
          0 0.9335652 0.06643483
          0 0.9806166 0.01938338
## 3
```

```
## 4 1 0.6000476 0.39995245
      0 0.8198561 0.18014389
## 5
## 6
       1 0.7909985 0.20900155
##
## [48100 rows x 3 columns]
#Predict values with predict
predict(h2o.fit1, test.h2o)
## |
                                                           0%
|-----| 100%
## predict
              р0
                       р1
## 1 0 0.9569403 0.04305967
## 2
       0 0.9335652 0.06643483
## 3
       0 0.9806166 0.01938338
## 4
       1 0.6000476 0.39995245
## 5
       0 0.8198561 0.18014389
## 6
       1 0.7909985 0.20900155
##
## [48100 rows x 3 columns]
```