

PSoC® Creator™ Project Datasheet for FiReBuG as Mic

Creation Time: 12/09/2014 17:37:25 User: Stud-hybrid-732\peter

Project: FiReBuG as Mic

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intl): 408.943.2600 http://www.cypress.com

Copyrights

Copyright © 2014 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics specifically provided by our customer or other third party inputs contained in this document are not intended to be claimed under Cypress's copyright.

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Designer is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name, NXP Semiconductors.

The information in this document is subject to change without notice and should not be construed as a commitment by Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear in this document. No part of this document may be copied, or reproduced for commercial use, in any form or by any means without the prior written consent of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table of Contents

1 Overview	
2 Pins	3
2.1 Hardware Pins	4
2.2 Software Pins	
3 System Settings	
3.1 System Configuration	
3.2 System Debug Settings	
3.3 System Operating Conditions	
4 Clocks	
4.1 System Clocks.	
4.2 Local and Design Wide Clocks	
5 Interrupts and DMAs.	
5.1 Interrupts.	
5.2 DMAs.	
6 Flash Memory	
7 Design Contents	
7.1 Schematic Sheet: Digital_Audio	
7.2 Schematic Sheet: Digital_Control	
7.3 Schematic Sheet: Analog	
7.4 Schematic Sheet: Misc.	
7.5 Schematic Sheet: Startup Mode Clock Info	
7.6 Schematic Sheet: Idle Mode Clock Info	
7.7 Schematic Sheet: Active Mode Clock 44.1kHz	
7.8 Schematic Sheet: Active Mode Clock 48kHz	
8 Components	
8.1 Component type: AudioClkGen [v0.83]	
8.1.1 Instance AudioClkGen	
8.2 Component type: Comp [v2.0]	
8.2.1 Instance Comp_1	
8.2.2 Instance Comp_1	
8.2.3 Instance Comp_3	
8.2.4 Instance Comp_4	
8.3 Component type: CyStatusReg [v1.80]	22
8.3.1 Instance Status_Reg_1	22
8.4 Component type: FreqDiv [v1.0]	
8.4.1 Instance FreqDiv 1	
8.5 Component type: Sample_Hold [v1.40]	
8.5.1 Instance Sample_Hold_1	
8.5.2 Instance Sample Hold 2	
8.5.3 Instance Sample_Hold_3	
8.5.4 Instance Sample_Hold_4	
8.6 Component type: SleepTimer [v3.20]	24
8.6.1 Instance SystemTickTimer	
8.7 Component type: USBFS [v2.60]	
8.7.1 Instance USBFS	
9 Other Resources	27

1 Overview

The Cypress PSoC 5 is a family of 32-bit devices with the following characteristics:

- High-performance 32-bit ARM Cortex-M3 core with a nested vectored interrupt controller (NVIC) and a high-performance DMA controller
- Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function peripherals, such as USB, I2C and SPI
- Analog subsystem that includes 20-bit Delta Sigma converters (ADC), SAR ADCs, 8-bit DACs that can be configured for 12-bit operation, comparators, op amps and configurable switched capacitor (SC) and continuous time (CT) blocks to create PGAs, TIAs, mixers, and more
- Several types of memory elements, including SRAM, flash, and EEPROM
- Programming and debug system through Serial Wire Debug (SWD), and Single Wire Viewer (SWV)
- · Flexible routing to all pins

Figure 1 shows the major components of a typical <u>CY8C58LP</u> family member PSoC 5LP device. For details on all the systems listed above, please refer to the <u>PSoC 5LP Technical Reference Manual</u>.

Figure 1. CY8C58LP Device Family Block Diagram

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics

Name	Value
Architecture	PSoC 5LP
Family	CY8C58LP
CPU speed (MHz)	67
Flash size (kBytes)	256
SRAM size (kBytes)	64
EEPROM size (Bytes)	2048
Trace Buffer (kBytes)	0
Vdd range (V)	1.71 to 5.5
Automotive qualified	No (Industrial
	Grade Only)
Temp range (Celcius)	-40 to 85
JTAG ID	0x2E127069

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by BUS_CLK, listed in the <u>System Clocks</u> section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources

Name	Resources in Use	Total Resources Available
Digital clock dividers	4 (50.0%)	8
Analog clock dividers	0 (0.0%)	4
Pins	14 (29.2%)	48
UDB Macrocells	33 (17.2%)	192
UDB Unique Pterms	60 (15.6%)	384
UDB Datapath Cells	6 (25.0%)	24
UDB Status Cells	1 (4.2%)	24
UDB Control Cells	0 (0.0%)	24
DMA Channels	6 (25.0%)	24
Interrupts	12 (37.5%)	32
DSM Fixed Blocks	0 (0.0%)	1
VIDAC Fixed Blocks	0 (0.0%)	4
SC Fixed Blocks	4 (100.0%)	4
Comparator Fixed Blocks	4 (100.0%)	4
Opamp Fixed Blocks	0 (0.0%)	4
CapSense Buffers	0 (0.0%)	2
CAN Fixed Blocks	0 (0.0%)	1
Decimator Fixed Blocks	0 (0.0%)	1
I2C Fixed Blocks	0 (0.0%)	1
Timer Fixed Blocks	0 (0.0%)	4
DFB Fixed Blocks	0 (0.0%)	1
USB Fixed Blocks	1 (100.0%)	1
LCD Fixed Blocks	0 (0.0%)	1
EMIF Fixed Blocks	0 (0.0%)	1
LPF Fixed Blocks	0 (0.0%)	2
SAR Fixed Blocks	0 (0.0%)	2

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"] pins have been omitted.)

Table 3. Device Pins

Pin	Port	Name	Type	Drive Mode	Reset State
1	P2[6]	Pin_2	Dgtl Out	Strong drive	HiZ Analog Unb
2	P2[7]	Pin_5	Dgtl Out	Strong drive	HiZ Analog Unb
3	P12[4]	SIO [unused]			HiZ Analog Unb
4	P12[5]	SIO [unused]			HiZ Analog Unb
5	Vssb	Vssb	Power		
6	Ind	Power			
7	Vb	Vb	Power		
8	Vbat	Vbat	Power		
9	Vssd	Vssd	Power		
10	XRES_N	XRES_N	Power		
11	P1[0]	GPIO [unused]			HiZ Analog Unb
12	P1[1]	GPIO [unused]			HiZ Analog Unb
13	P1[2]	Pin_11	Dgtl Out	Strong drive	HiZ Analog Unb
14	P1[3]	GPIO [unused]			HiZ Analog Unb
15	P1[4]	Pin_10	Analog	HiZ analog	HiZ Analog Unb
16	P1[5]	Pin_7	Analog	HiZ analog	HiZ Analog Unb
17	Vio1	Vio1	Power		
18	P1[6]	GPIO [unused]			HiZ Analog Unb
19	P1[7]	GPIO [unused]			HiZ Analog Unb
20	P12[6]	SIO [unused]			HiZ Analog Unb
21	P12[7]	SIO [unused]			HiZ Analog Unb
22	P15[6]	\USBFS:Dp\	Analog	HiZ analog	HiZ Analog Unb
23	P15[7]	\USBFS:Dm\	Analog	HiZ analog	HiZ Analog Unb
24	Vddd	Vddd	Power		
25	Vssd	Vssd	Power		
26	Vccd	Vccd	Power		
27	P15[0]	GPIO [unused]			HiZ Analog Unb
28	P15[1]	GPIO [unused]			HiZ Analog Unb
29	P3[0]	GPIO [unused]			HiZ Analog Unb
30	P3[1]	GPIO [unused]			HiZ Analog Unb
31	P3[2]	GPIO [unused]			HiZ Analog Unb
32	P3[3]	Pin_8	Dgtl Out	Strong drive	HiZ Analog Unb
33	P3[4]	Pin_9	Analog	HiZ analog	HiZ Analog Unb
34	P3[5]	Pin_12	Analog	HiZ analog	HiZ Analog Unb
35	Vio3	Vio3	Power		
36	P3[6]	GPIO [unused]			HiZ Analog Unb
37	P3[7]	GPIO [unused]			HiZ Analog Unb
38	P12[0]	SIO [unused]			HiZ Analog Unb
39	P12[1]	SIO [unused]			HiZ Analog Unb
40	P15[2]	GPIO [unused]			HiZ Analog Unb
41	P15[3]	GPIO [unused]			HiZ Analog Unb
42	Vcca	Vcca	Power		
43	Vssa	Vssa	Power		
44	Vdda	Vdda	Power		
45	Vssd	Vssd	Power		

Pin	Port	Name	Type	Drive Mode	Reset State
46	P12[2]	SIO [unused]			HiZ Analog Unb
47	P12[3]	SIO [unused]			HiZ Analog Unb
48	P0[0]	Pin_3	Analog	HiZ analog	HiZ Analog Unb
49	P0[1]	Pin_6	Analog	HiZ analog	HiZ Analog Unb
50	P0[2]	GPIO [unused]			HiZ Analog Unb
51	P0[3]	GPIO [unused]			HiZ Analog Unb
52	Vio0	Vio0	Power		
53	P0[4]	GPIO [unused]			HiZ Analog Unb
54	P0[5]	GPIO [unused]			HiZ Analog Unb
55	P0[6]	GPIO [unused]			HiZ Analog Unb
56	P0[7]	GPIO [unused]			HiZ Analog Unb
57	Vccd	Vccd	Power		
58	Vssd	Vssd	Power		
59	Vddd	Vddd	Power		
60	P15[4]	GPIO [unused]			HiZ Analog Unb
61	P15[5]	GPIO [unused]			HiZ Analog Unb
62	P2[0]	GPIO [unused]			HiZ Analog Unb
63	P2[1]	GPIO [unused]			HiZ Analog Unb
64	P2[2]	GPIO [unused]			HiZ Analog Unb
65	P2[3]	GPIO [unused]			HiZ Analog Unb
66	P2[4]	Pin_1	Analog	HiZ analog	HiZ Analog Unb
67	Vio2	Vio2	Power		
68	P2[5]	Pin_4	Analog	HiZ analog	HiZ Analog Unb

Abbreviations used in Table 3 have the following meanings:

- Dgtl Out = Digital Output
- HiZ Analog Unb = Hi-Z Analog Unbuffered
- HiZ analog = High impedance analog

2.2 Software Pins

Table 4 contains information about the software pins on this device in alphabetical order. (Only software-accessible pins are shown.)

Table 4. Software Pins

Name	Port	Type	Reset State
\USBFS:Dm\	P15[7]	Analog	HiZ Analog Unb
\USBFS:Dp\	P15[6]	Analog	HiZ Analog Unb
Pin_1	P2[4]	Analog	HiZ Analog Unb
Pin_10	P1[4]	Analog	HiZ Analog Unb
Pin_11	P1[2]	Dgtl Out	HiZ Analog Unb
Pin_12	P3[5]	Analog	HiZ Analog Unb
Pin_2	P2[6]	Dgtl Out	HiZ Analog Unb
Pin_3	P0[0]	Analog	HiZ Analog Unb
Pin_4	P2[5]	Analog	HiZ Analog Unb
Pin_5	P2[7]	Dgtl Out	HiZ Analog Unb
Pin_6	P0[1]	Analog	HiZ Analog Unb
Pin_7	P1[5]	Analog	HiZ Analog Unb
Pin_8	P3[3]	Dgtl Out	HiZ Analog Unb
Pin_9	P3[4]	Analog	HiZ Analog Unb
Power	Ind		

Abbreviations used in Table 4 have the following meanings:

- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl Out = Digital Output

For more information on reading, writing and configuring pins, please refer to:

- Pins chapter in the <u>System Reference Guide</u>
 CyPins API routines
- Programming Application Interface section in the cy pins component datasheet

3 System Settings

3.1 System Configuration

Table 5. System Configuration Settings

Name	Value
Device Configuration Mode	Compressed
Enable Error Correcting Code (ECC)	False
Store Configuration Data in ECC Memory	True
Instruction Cache Enabled	True
Enable Fast IMO During Startup	True
Unused Bonded IO	Allow but warn
Heap Size (bytes)	0x1000
Stack Size (bytes)	0x4000
Include CMSIS Core Peripheral Library Files	True

3.2 System Debug Settings

Table 6. System Debug Settings

Name	Value
Debug Select	GPIO
Enable Device Protection	False
Embedded Trace (ETM)	False
Use Optional XRES	False

3.3 System Operating Conditions

Table 7. System Operating Conditions

Name	Value
Vddd (V)	3.3
Vdda (V)	3.3
Variable Vdda	False
Vddio0 (V)	3.3
Vddio1 (V)	3.3
Vddio2 (V)	3.3
Vddio3 (V)	3.3
Temperature Range	-40C - 85/125C

4 Clocks

The clock system includes these clock resources:

- Four internal clock sources increase system integration:
 - o 3 to 48 MHz Internal Main Oscillator (IMO) ±5% at 3 MHz
 - o 1 kHz, 33 kHz, 100 kHz Internal Low Speed Oscillator (ILO) outputs
 - USB Clock Domain, sourced from IMO, MHz External Crystal Oscillator (MHzECO), and Digital System Interconnect (DSI)
 - 24 to 67 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI
- Clock generated using a DSI signal from an external I/O pin or other logic
- Two external clock sources provide high precision clocks:
 - o 4 to 25 MHz External Crystal Oscillator (MHzECO)
 - o 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)
- Dedicated 16-bit divider for bus clock
- Eight individually sourced 16-bit clock dividers for the digital system peripherals
- Four individually sourced 16-bit clock dividers with skew for the analog system peripherals
- IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for USB. (USB equipped parts only)

Figure 3. System Clock Configuration

4.1 System Clocks

Table 8 lists the system clocks used in this design.

Table 8. System Clocks

Name	Domain	Source	Desired	Nominal	Accuracy	Start	Enabled
			Freq	Freq	(%)	at	
			(MHz)	(MHz)		Reset	
XTAL	DIGITAL		24	0	±0	False	False
ILO	DIGITAL		0	0.1	-55,+100	True	True
PLL_OUT	DIGITAL	IMO	45.158	45	±0.25	True	True
IMO	DIGITAL		24	24	±0.25	True	True
XTAL 32kHz	DIGITAL		0.0328	0	±0	False	False
Digital Signal	DIGITAL	GenClock	1.024	1.024	±0	False	True
MASTER_CLK	DIGITAL	PLL_OUT	0	45	±0.25	True	True
BUS_CLK	DIGITAL	MASTER_CLK	0	45	±0.25	True	True
USB_CLK	DIGITAL	IMO	48	48	±0.25	False	True

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined optimization, where two or more analog or digital blocks that share a common clock profile (frequency, etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 9 lists the local clocks used in this design.

Table 9. Local Clocks

Name	Domain	Source			Accuracy	Start	Enabled
			Freq (MHz)	Freq (MHz)	(%)	at Reset	
AudioClkGen Clock_SCK	DIGITAL	PLL_OUT	0	11.25	±0.25	True	True
AudioClkGen Clock_I2S	DIGITAL	PLL_OUT	0	5.625	±0.25	True	True
AudioClkGen Ref	DIGITAL	IMO	0	24	±0.25	True	True
ClkGenOut_Sync	DIGITAL	ILO	0	0.1	-55,+100	True	True
Clock_CIC	DIGITAL	PLL_OUT	0	1.875	±0.25	True	True
USBFS_Cloc- k_vbus	DIGITAL	BUS_CLK	0	45	±0.25	True	True

For more information on clocking resources, please refer to:

- Clocking System chapter in the PSoC 5LP Technical Reference Manual
- Clocking System chapter in the PSOC SEP Technic
 Clocking chapter in the System Reference Guide
 CyPLL API routines
 CyIMO API routines
 CyILO API routines
 CyMaster API routines
 CyXTAL API routines

5 Interrupts and DMAs

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 10. Interrupts

Name	Priority	Vector
isr_InDMADone	4	4
isr_RxDMADone	4	0
isr_Tick	7	5
USBFS_arb_int	7	22
USBFS_bus_reset	7	23
USBFS_dp_int	7	12
USBFS_ep_0	7	24
USBFS_ep_2	7	1
USBFS_ep_4	7	2
USBFS_ep_6	7	3
USBFS_ord_int	7	25
USBFS_sof_int	7	21

For more information on interrupts, please refer to:

- Interrupt Controller chapter in the PSoC 5LP Technical Reference Manual
- Interrupts chapter in the <u>System Reference Guide</u>
 - Cylnt API routines and related registers
- Datasheet for cy isr component

5.2 DMAs

This design contains the following DMA components: (0 is the highest priority)

Table 11. DMAs

Name	Priority	Channel Number
RxDMA	0	0
DMA_8to16	2	4
USBFS_ep2	2	1
USBFS_ep4	2	3
USBFS_ep6	2	5
USBInDMA	3	2

For more information on DMAs, please refer to:

- PHUB and DMAC chapter in the PSoC 5LP Technical Reference Manual
- DMA chapter in the <u>System Reference Guide</u>
 - DMA API routines and related registers
- Datasheet for cy_dma component

6 Flash Memory

PSoC 5LP devices offer a host of Flash protection options and device security features that you can leverage to meet the security and protection requirements of an application. These requirements range from protecting configuration settings or Flash data to locking the entire device from external access.

Table 12 lists the Flash protection settings for your design.

Table 12. Flash Protection Settings

Start Address	End Address	Protection Level
0x0	0x3FFFF	U - Unprotected

Flash memory is organized as rows with each row of flash having 256 bytes. Each flash row can be assigned one of four protection levels:

- U Unprotected
- F External read protect (Factory upgrade)
- R External write protect (Field upgrade)
- W Full Protection

For more information on Flash memory and protection, please refer to:

- Flash Protection chapter in the PSoC 5LP Technical Reference Manual
- Flash and EEPROM chapter in the System Reference Guide
 - o CyFlash API routines
 - CyWrite API routines

7 Design Contents

This design's schematic content consists of the following 8 schematic sheets:

7.1 Schematic Sheet: Digital_Audio

Figure 5. Schematic Sheet: Digital_Audio

This schematic sheet contains the following component instances:

- Instance <u>AudioClkGen</u> (type: AudioClkGen_v0_83)
- Instance <u>USBFS</u> (type: USBFS_v2_60)

7.2 Schematic Sheet: Digital_Control

Figure 6. Schematic Sheet: Digital_Control

This schematic sheet contains the following component instances:

- Instance <u>FreqDiv_1</u> (type: FreqDiv_v1_0)
 Instance <u>Status_Reg_1</u> (type: CyStatusReg_v1_80)

7.3 Schematic Sheet: Analog

Figure 7. Schematic Sheet: Analog

This schematic sheet contains the following component instances:

- Instance Comp_1 (type: Comp_v2_0)
 Instance Comp_2 (type: Comp_v2_0)
 Instance Comp_3 (type: Comp_v2_0)

- Instance Comp 4 (type: Comp_v2_0)
- Instance Sample_Hold_v1_40)
- Instance Sample_Hold_2 (type: Sample_Hold_v1_40)
 Instance Sample_Hold_3 (type: Sample_Hold_v1_40)
- Instance Sample_Hold_v1_40)

7.4 Schematic Sheet: Misc

Figure 8. Schematic Sheet: Misc

This schematic sheet contains the following component instances:

Instance <u>SystemTickTimer</u> (type: SleepTimer_v3_20)

7.5 Schematic Sheet: Startup Mode Clock Info

Figure 9. Schematic Sheet: Startup Mode Clock Info

7.6 Schematic Sheet: Idle Mode Clock Info

Figure 10. Schematic Sheet: Idle Mode Clock Info

7.7 Schematic Sheet: Active Mode Clock 44.1kHz

Figure 11. Schematic Sheet: Active Mode Clock 44.1kHz

7.8 Schematic Sheet: Active Mode Clock 48kHz

Figure 12. Schematic Sheet: Active Mode Clock 48kHz

8 Components

8.1 Component type: AudioClkGen [v0.83]

8.1.1 Instance AudioClkGen

Description: (custom component) Instance type: AudioClkGen [v0.83]

Datasheet: (not available)

Table 13. Component Parameters for AudioClkGen

Parameter Name	Value	Description
Enable_I2Sclk	true	
Enable_Mclk	true	
Enable_Sync	true	

8.2 Component type: Comp [v2.0]

8.2.1 Instance Comp_1

Description: Analog voltage comparator.

Instance type: Comp [v2.0]

Datasheet: online component datasheet for Comp

Table 14. Component Parameters for Comp_1

Parameter Name	Value	Description
Hysteresis	Enable	Enable to add output hysteresis.
Pd_Override	Disable	Power down override to allow comparator to continue operating during sleep.
Polarity	Non Inverting	Allows output to be inverted.
Speed	Fast	Set comparator response speed.
Sync	Bypass	Allows synchronization with clock.

8.2.2 Instance Comp_2

Description: Analog voltage comparator.

Instance type: Comp [v2.0]

Datasheet: online component datasheet for Comp

Table 15. Component Parameters for Comp_2

Parameter Name	Value	Description
Hysteresis	Enable	Enable to add output hysteresis.
Pd_Override	Disable	Power down override to allow comparator to continue operating during sleep.
Polarity	Non Inverting	Allows output to be inverted.
Speed	Fast	Set comparator response speed.

Parameter Name	Value	Description
Sync	Bypass	Allows synchronization with clock.

8.2.3 Instance Comp_3

Description: Analog voltage comparator.

Instance type: Comp [v2.0]

Datasheet: online component datasheet for Comp

Table 16. Component Parameters for Comp_3

<u> </u>		
Parameter Name	Value	Description
Hysteresis	Enable	Enable to add output hysteresis.
Pd_Override	Disable	Power down override to allow comparator to continue operating during sleep.
Polarity	Non Inverting	Allows output to be inverted.
Speed	Fast	Set comparator response speed.
Sync	Bypass	Allows synchronization with clock.

8.2.4 Instance Comp 4

Description: Analog voltage comparator.

Instance type: Comp [v2.0]

Datasheet: online component datasheet for Comp

Table 17. Component Parameters for Comp_4

Parameter Name	Value	Description
Hysteresis	Enable	Enable to add output hysteresis.
Pd_Override	Disable	Power down override to allow comparator to continue operating during sleep.
Polarity	Non Inverting	Allows output to be inverted.
Speed	Fast	Set comparator response speed.
Sync	Bypass	Allows synchronization with clock.

8.3 Component type: CyStatusReg [v1.80]

8.3.1 Instance Status_Reg_1

Description: The Status Register allows the firmware to read values from digital signals.

Instance type: CyStatusReg [v1.80]

Datasheet: online component datasheet for CyStatusReg

Table 18. Component Parameters for Status_Reg_1

Parameter Name	Value	Description
Bit0Mode	Transparent	Bit Mode for Bit 0 of the Status Register
Bit1Mode	Transparent	Bit Mode for Bit 1 of the Status Register
Bit2Mode	Transparent	Bit Mode for Bit 2 of the Status Register
Bit3Mode	Transparent	Bit Mode for Bit 3 of the Status Register
Bit4Mode	Transparent	Bit Mode for Bit 4 of the Status Register
Bit5Mode	Transparent	Bit Mode for Bit 5 of the Status Register
Bit6Mode	Transparent	Bit Mode for Bit 6 of the Status Register
Bit7Mode	Transparent	Bit Mode for Bit 7 of the Status Register
BusDisplay	false	Displays the input terminals as bus
Interrupt	false	Shows the interrupt terminal
MaskValue	0	Defines the value of the interrupt mask
NumInputs	8	Defines the number of status inputs (1-8)

8.4 Component type: FreqDiv [v1.0]

8.4.1 Instance FreqDiv_1

Description: Frequency Divider Instance type: FreqDiv [v1.0]

Datasheet: online component datasheet for FreqDiv

Table 19. Component Parameters for FreqDiv_1

Parameter Name	Value	Description
Divider	8	The divider used to generate the div output from the clock input.
HighPulseTime	2	Number of clock cycles each clock period that the div output is high. 0 indicates 50% duty cycle.

8.5 Component type: Sample_Hold [v1.40]

8.5.1 Instance Sample_Hold_1

Description: Sample/Track and Hold Amplifier

Instance type: Sample_Hold [v1.40]

Datasheet: online component datasheet for Sample_Hold

Table 20. Component Parameters for Sample_Hold_1

Parameter Name	Value	Description
Power	High Power	To select the device power
Sample_Clock_Edge	Negative	To select the clock edge

Parameter Name	Value	Description
Sample_Mode	Track and Hold	To select the mode of the
		device
Vref_Type	External	To select the Vref for
		Sample_Hold mode

8.5.2 Instance Sample_Hold_2

Description: Sample/Track and Hold Amplifier

Instance type: Sample_Hold [v1.40]

Datasheet: online component datasheet for Sample Hold

Table 21. Component Parameters for Sample Hold 2

Parameter Name	Value	Description
Power	High Power	To select the device power
Sample_Clock_Edge	Negative	To select the clock edge
Sample_Mode	Track and Hold	To select the mode of the device
Vref_Type	External	To select the Vref for Sample_Hold mode

8.5.3 Instance Sample_Hold_3

Description: Sample/Track and Hold Amplifier

Instance type: Sample_Hold [v1.40]

Datasheet: online component datasheet for Sample_Hold

Table 22. Component Parameters for Sample_Hold_3

Parameter Name	Value	Description
Power	High Power	To select the device power
Sample_Clock_Edge	Negative	To select the clock edge
Sample_Mode	Track and Hold	To select the mode of the device
Vref_Type	External	To select the Vref for Sample_Hold mode

8.5.4 Instance Sample Hold 4

Description: Sample/Track and Hold Amplifier

Instance type: Sample_Hold [v1.40]

Datasheet: online component datasheet for Sample_Hold

Table 23. Component Parameters for Sample_Hold_4

Parameter Name	Value	Description
Power	High Power	To select the device power
Sample_Clock_Edge	Negative	To select the clock edge
Sample_Mode	Track and Hold	To select the mode of the device
Vref_Type	External	To select the Vref for Sample_Hold mode

8.6 Component type: SleepTimer [v3.20]

8.6.1 Instance SystemTickTimer

Description: The Sleep Timer component

Instance type: SleepTimer [v3.20]

Datasheet: online component datasheet for SleepTimer

Table 24. Component Parameters for SystemTickTimer

Parameter Name	Value	Description
EnableInt	true	Determines whether the sleep timer interrupt is enabled or disabled.
Interval	CTW_8_MS	Parameter that defines the wake up interval in milliseconds.

8.7 Component type: USBFS [v2.60]

8.7.1 Instance USBFS

Description: USB 2.0 Full Speed Device Framework

Instance type: USBFS [v2.60]

Datasheet: online component datasheet for USBFS

Table 25. Component Parameters for USBFS

Parameter Name	Value	Description
EnableCDCApi	false	Enables additional high level API's that allow the CDC device to be used similar to a UART device.
EnableMidiApi	false	Enables additional high level MIDI API's.
endpointMA	MA_Static	Endpoint memory allocation
endpointMM	EP_DMAauto	Endpoint memory management
extern_cls	false	This parameter allows for user or other component to implement his own handler for Class requests. USBFSDispatchClassRqst() function should be implemented if this parameter enabled.
extern_vbus	false	This parameter enables external VBUSDET input.
extern_vnd	false	This parameter allows for user or other component to implement his own handler for Vendor specific requests. USBFS HandleVendorRqst() function should be implemented if this parameter enabled.
extJackCount	0	Max number of External MIDI IN Jack or OUT Jack descriptors
max_interfaces_num	3	Defines maximum interfaces number

Parameter Name	Value	Description
Mode	false	Specifies whether the
		implementation will create API
		for interfacing to UART
		component(s) for a
		corresponding set of external
		MIDI connections.
mon_vbus	false	The mon_vbus parameter adds
		a single VBUS monitor pin to
		the design. This pin must be
		connected to VBUS and must
		be assigned in the pin editor.
out_sof	true	The out_sof parameter enables
		Start-of-Frame output.
Pid	F232	Product ID
Vid	04B4	Vendor ID

9 Other Resources

The following documents contain important information on Cypress software APIs that might be relevant to this design:

- Standard Types and Defines chapter in the <u>System Reference Guide</u>
 - Software base types
 - Hardware register types
 - Compiler defines
 - Cypress API return codes
 - Interrupt types and macros
- Registers
 - The full PSoC 5LP register map is covered in the PSoC 5LP Registers Technical Reference
 - o Register Access chapter in the System Reference Guide

 - § CY_GET API routines § CY_SET API routines
- System Functions chapter in the **System Reference Guide**
 - General API routines
 - o CyDelay API routines
 - o CyVd Voltage Detect API routines
- Power Management
 - o Power Supply and Monitoring chapter in the PSoC 5LP Technical Reference Manual
 - o Low Power Modes chapter in the PSoC 5LP Technical Reference Manual
 - o Power Management chapter in the System Reference Guide
 - § CvPm API routines
- Watchdog Timer chapter in the System Reference Guide
 - CyWdt API routines
- Cache Management
 - o Cache Controller chapter in the PSoC 5LP Technical Reference Manual
 - o Cache chapter in the **System Reference Guide**
 - § CyFlushCache() API routine