Classifying Human Driving Behavior via Deep Neural Networks

Jae Hoon Kim

Drexel University

June 8, 2017

Table of Contents

- Introduction
- 2 Background
- Oata Set
- 4 Technical Approach
- Experimental Result
- 6 Conclusion
- Future Work

Table of Contents

- Introduction
- 2 Background
- Oata Set
- Technical Approach
- **5** Experimental Result
- 6 Conclusion
- Future Work

Problem Statement

- Modern car systems collect real-time data of the car status and driving behavior of the driver
- Those data is worth for healthcare and research
- Using driving behavior data to diagnose medical conditions

Project Background

- Classify driving simulation data from novice and expert drivers using several different neural network models
- Explain LSTM and Auto-encoder
- Compare result from three different neural network models

Table of Contents

- Introduction
- 2 Background
- Open Data Set
- Technical Approach
- **5** Experimental Result
- 6 Conclusion
- Future Work

Neural Networks - Introduction

Figure: General Artificial Neuron

 An artificial neuron has input signals, weights, bias, and activation function

Neural Networks - Introduction

Figure: Simplified Neural Network

Figure: Example of a Neural Network

Neural network is a network made up many artificial neurons

Neural Networks - Forward Propagation

Figure: One Hidden Layer MLP

$$\vec{h} = f(\vec{x}v + \vec{c}) = f(\vec{X}V)$$

$$\vec{o} = g(\vec{h}w + \vec{b}) = g(\vec{H}W)$$

$$\vec{o} = g(h(\vec{x}v + \vec{c})w + \vec{b}) = g(h(\vec{X}V)W)$$

Neural Networks - Back Propagation

Figure: One Hidden Layer MLP

Activation Function:

$$f(z) = g(z) = sigm(z) = \frac{1}{1 + e^{-z}}$$

Error Function:

$$J(V,W) = \frac{1}{2} \sum_{i} (y_i - o_i)^2 = \frac{1}{2} \sum_{i} (y_i - g(h(\vec{X}V)W_i))^2$$

Neural Networks - Back Propagation

Update W_{ij} - *i*th neuron for *j*th input:

Figure: Back-propagation for W_{ij}

$$W_{ij}^{next} = W_{ij} - \eta \frac{\partial J}{\partial W_{ij}} = W_{ij} - \eta \frac{\partial J}{\partial o_i} \frac{\partial o_i}{\partial o'_i} \frac{\partial o'_i}{\partial W_{ij}} = W_{ij} + \eta (y_i - o_i) o_i (1 - o_i) H_j$$

Let

$$\delta_{i} = \frac{\partial J}{\partial o'_{i}} = \frac{\partial J}{\partial o_{i}} \frac{\partial o_{i}}{\partial o'_{i}}$$

Neural Networks - Back Propagation

Update V_{ij} - *i*th neuron for *j*th input:

Figure: Back-propagation for V_{ij}

$$V_{ij}^{next} = V_{ij} - \eta \frac{\partial J}{\partial V_{ij}} = V_{ij} - \eta \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial h'_i} \frac{\partial h'_i}{\partial V_{ij}} = V_{ij} - \eta \sum_{k} (\delta_k w_{ki}) h_i (1 - h_i) X_j$$

Long Short Term Memory Networks (LSTM)

- Recurrent Neural Network
- Four gates and Memory Cells handle long term dependencies

Figure: LSTM

Long Short Term Memory Networks (LSTM)

Input gate:

$$\vec{i^t} = \mathsf{sigm}(\vec{X^t}\mathsf{T}^\mathsf{ii}_\mathsf{n,m} + \vec{H^{t-1}}\mathsf{T}^\mathsf{oi}_\mathsf{m,m})$$

Input modulation gate:

$$\vec{m^t} = \tanh(\vec{X^t}\mathsf{T}_{\mathsf{n},\mathsf{m}}^{\mathsf{im}} + \vec{H^{t-1}}\mathsf{T}_{\mathsf{m},\mathsf{m}}^{\mathsf{om}})$$

Forget gate:

$$\vec{f^t} = \operatorname{sigm}(\vec{X^t}\mathsf{T}^{\operatorname{if}}_{\mathsf{n,m}} + \vec{H^{t-1}}\mathsf{T}^{\operatorname{of}}_{\mathsf{m,m}})$$

Output gate:

$$\vec{o^t} = \operatorname{sigm}(\vec{X^t}\mathsf{T}^{\mathsf{io}}_{\mathsf{n},\mathsf{m}} + \vec{H^{t-1}}\mathsf{T}^{\mathsf{oo}}_{\mathsf{m},\mathsf{m}})$$

Memory cells:

$$\vec{c^t} = \vec{i^t} * \vec{m^t} + \vec{f^t} * \vec{c^{t-1}}$$

Result:

$$\vec{h^t} = \vec{c^t} * \vec{o^t}$$

Auto-encoder (AE) - Single layer AE

Figure: Abstract structure of Auto-encoder

Auto-encoder is a neural network to attempt to copy its inputs to its outputs

Auto-encoder (AE) - Single layer AE

Figure: Basic Auto-encoder

$$\vec{e} = f(\vec{X}U)$$

$$\vec{d} = g(\vec{E}V)$$

$$E(\vec{x}, \vec{d}) = E(\vec{x}, g(\vec{E}V)) = E(\vec{x}, g(f(\vec{x}u + \vec{b_e})v + \vec{b_d}))$$

Figure: Multilayer Auto-encoder Example

Figure: Pretraining First Step

$$E(input, data_from_first_decoder)$$

$$= E(\vec{x}, g_1(f_1(\vec{X}E_1)D_1))$$

Figure: Pretraining Second Step

$$\begin{split} &E(\textit{data_from_first_encoder}, \textit{data_from_second_decoder}) \\ &= E(f_1(\vec{X} \mathsf{E}_1^{\mathsf{fixed}}), g_2(f_2(f_1(\vec{X} \mathsf{E}_1^{\mathsf{fixed}}) \mathsf{E}_2) \mathsf{D}_2)) \end{split}$$

Figure: Pretraining Thrid Step

$$\begin{split} &E(\textit{data_from_second_encoder}, \textit{data_from_third_decoder}) \\ &= E(f_2(f_1(\vec{X} E_1^{\mathsf{fixed}}) E_2^{\mathsf{fixed}}), g_3(f_3(f_2(f_1(\vec{X} E_1^{\mathsf{fixed}}) E_2^{\mathsf{fixed}}) E_3) D_3)) \end{split}$$

Figure: Multilayer Auto-encoder Example

$$\begin{split} &E(input,output)\\ &= E(\vec{x},g_1(g_2(g_3(f_3(f_2(f_1(\vec{X}E_1)E_2)E_3)D_3)D_2)D_1)) \end{split}$$

Table of Contents

- Introduction
- 2 Background
- 3 Data Set
- Technical Approach
- 5 Experimental Result
- 6 Conclusion
- Future Work

Data Set

- Collected in the high-fidelity simulator of the Center for Injury Research Prevention Studies at the Children's Hospital of Philadelphia (CHOP)
- 16 traces = 4 tracks \times (2 expert drivers + 2 inexpert drivers)
- 100 features collected at 60Hz
 - Car status: velocity, steer, Brake, throttle and etc.
 - Environment status: current speed limit, and etc.
 - instruction: left turn, right turn, and etc.
- Two datasets
 - raw dataset: 98 features without time stamps
 - filtered dataset: 23 features more important features from 100 features

Data Set

Table: Length of each of the traces

Trace	Driver	Track	Length
Trace0	Expert0	Track0	50029
Trace1	Expert0	Track1	26375
Trace2	Expert0	Track2	29629
Trace3	Expert0	Track3	26298
Trace4	Expert1	Track0	51295
Trace5	Expert1	Track1	26674
Trace6	Expert1	Track2	29680
Trace7	Expert1	Track3	27075
Trace8	Inexpert0	Track0	49691
Trace9	Inexpert0	Track1	30058
Trace10	Inexpert0	Track2	26441
Trace11	Inexpert0	Track3	27373
Trace12	Inexpert1	Track0	47658
Trace13	Inexpert1	Track1	29380
Trace14	Inexpert1	Track2	26684
Trace15	Inexpert1	Track3	27255

Min: 26298 (about 7 minutes 18 seconds)

Max: 51295 (about 14 minutes 15 seconds)

Average: 33224.6875 (about 9 minutes 13 seconds)

Table of Contents

- Introduction
- 2 Background
- 3 Data Set
- 4 Technical Approach
- Experimental Result
- 6 Conclusion
- Future Work

Cross Validation & Normalization

Figure: 4 Folds Cross Validation

- Cross Validation
 - To validate experiment models when data is not large enough
 - Divides a data set into K folds
 - Uses the *i*th fold as the test set and other folds as the training set
- Normalization
 - Normalize training set (mean 0, std 1)
 - Normalize test set by mean and standard deviation of training set

First Model

Figure: First experiment NN

- Hidden neurons in LSTM: 16, 32, 64, 128, and 256
- Without Auto-encoder on filtered dataset

Second Model

Figure: Second experiment NN

- Hidden neurons in LSTM: 16, 32, 64, 128, and 256
- With Single layer Auto-encoder on raw dataset:
 98 features → 25 features

Third Model

Figure: Third experiment NN

- Hidden neurons in LSTM: 16, 32, 64, 128, and 256
- With Three layer Auto-encoder on raw dataset:
 98 features → 75 features → 50 features → 25 features

Sampling

- Period
 - 1 over 10
 - 1 over 20
 - 1 over 50
- Sampling Methods
 - Last sample from each period
 - Mean of each period
 - Gaussian filtered value of each period

Table: Sampling and Models

Period	Method	Model		
	last	first, second, third		
1 over 10	mean	first		
	gaussian	first		
1 over 20	last	first		
	mean	first		
	gaussian	first		
1 over 50	last	first		
	mean	first		
	gaussian	first		

Table of Contents

- Introduction
- 2 Background
- Oata Set
- Technical Approach
- **5** Experimental Result
- 6 Conclusion
- Future Work

First Model with 1 over 50

Figure: Result of first model with 1 over 50 filtered dataset

- Best: 0.59375 (59.375%) on last and 16 neurons
- Worst: 0.40625 (40.625%) on gaussian and 64 neurons
- Average: 0.492708 (49.2708%)

First Model with 1 over 20

Figure: Result of first model with 1 over 20 filtered dataset

- Best: 0.59375 (59.375%) on mean and 32 and 256 neurons
- Worst: 0.375 (37.5%) on *mean* and 128 neurons
- Average: 0.515625 (51.5625%)

First Model with 1 over 10

Figure: Result of first model with 1 over 10 filtered dataset

- Best: 0.6875 (68.75%) on last and 64 neurons
- Worst: 0.40625 (40.625%) on gaussian and 32 neurons
- Average: 0.540625 (54.00625%)

Comparison of three models with 1 over 10, last method

Figure: Result of three models with 1 over 10, *last* method

Models with Auto-encoder show worse performance

Comparison of three models with 1 over 10, last method

Figure: Three Models Training Accuracy

Comparison of three models with 1 over 10, last method

Figure: Three Models Training Loss

Table of Contents

- Introduction
- 2 Background
- Oata Set
- Technical Approach
- 5 Experimental Result
- **6** Conclusion
- Future Work

Conclusion - Data Size

- The number of samples in trace
 From result of experiment with different re-sampled periods, more densely re-sampled data gives better performance
- The number of traces
 12 traces are not enough to train proposed neural networks

Conclusion - Limitation of Auto-encoders

- No optimize transfer matrices
 When Auto-encoder tries to reduce dimensions, if encoder and decoder transfer matrices are not exist, encoded data has noise. It can make hard to train following neural networks.
- Always try to keep all information
 Auto-encoder does not ignore or exclude unimportant features

Conclusion - Problem in training MAE

- Training time
 Processing of pretraining takes long time
- Learn error from previous layer during pretraining
 Fix previous layer while follow auto-encoder layer is trained

Figure: Pretraining Second Step

Table of Contents

- Introduction
- 2 Background
- Oata Set
- Technical Approach
- **5** Experimental Result
- 6 Conclusion
- Future Work

- Experiment with more traces
- Research auto-encoder that accept some form of supervision and reduce dimensions with the ability to ignore unimportant features and keep information from the important features
- Try different way to train MAE

Figure: First Step of New Way to train MAE

$$\begin{split} &E(input,output)\\ &= E(\vec{x},g_1(f_1(\vec{X}E_1)D_1)) \end{split}$$

Figure: Second Step of New Way to train MAE

$$\begin{split} &E(input,output)\\ &=E(\vec{x},g_1(g_2(f_2(f_1(\vec{X}E_1)E_2)D_2)D_1)) \end{split}$$

Figure: Thrid Step of New Way to train MAE

$$\begin{split} &\textit{E(input, output)} \\ &= \textit{E}(\vec{x}, g_1(g_2(g_3(f_3(f_2(f_1(\vec{X}E_1)E_2)E_3)D_3)D_2)D_1)) \end{split}$$

Thank You