

MTH 309T LINEAR ALGEBRA EXAM 1

6 6 7 7	2 ① ① ③ ③ ④ ⑤ ⑥ ⑦ 8	2 0 1 3 4 5 6 7	1mb 0 1 2 3 4 5 6 7 8 9	er: 5	2 0 1 3 4 5 6 7 8 9	0 1 2 3 4 6 6 7 8 9	j	Textelectoryou	tronic c may us full cr	calo levi e o edi	culators a ces are i ne sheet t solve o all releva	not p of no each	ermitted otes. problen
			3		4	5		6	7		TOTAL	-	RADE

16	6	10	14	2	3	1		10	57	C-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

a).
$$\begin{bmatrix} 1 & -1 & 1 & | & -2 & | & 2 &$$

b)
$$\begin{bmatrix} 1 & 1 & 1 & 2 & 1 \\ 0 & 1 & 2 & 2 \\ 2 & 3 & 0 \end{bmatrix} \xrightarrow{X-2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix}^{1} \rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & -5 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & -5 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{x_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{y_{5}} \begin{bmatrix} 1 & 0 &$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad A^{1} = \begin{bmatrix} -2 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix} 9 \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 2 & -1 \end{bmatrix} 2^{2} - 7 \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ 2 & 0 & 3 \end{bmatrix} 9 - \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{bmatrix} 7^{2}$$

$$C_{1} = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 2 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{YY}$$

$$\therefore A \text{ is inversible.}$$

$$\begin{bmatrix}
1 & 0 & 0 & -2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 2 & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & 2 & 0 \\ 1 & 0 & 1 & | & 1 \\ 0 & 2 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 1 & 0 & 2 & -1 \\ 2 & 0 & 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 2 & -1 \\ 2 & 0 & 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 1 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 1 \end{bmatrix} \xrightarrow{x-2}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \quad A = \begin{bmatrix} -1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} C = B$$

$$A^{T} \cdot A^{T+1} C = B A^{T-1}$$

$$C = B A^{T-1}$$

$$A^{T} = \begin{bmatrix} -2 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -2 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -2 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -2 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$

$$C: \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1x_1 + 1x_4 + 0x_3 & -1x_2 + 1x_5 + 0x_2 & -1x_3 + 1x_4 + 0x_1 \\ -1x_1 + 0x_4 + 2x_3 & -1x_2 + 0x_5 + 2x_2 & -1x_3 + 0x_4 + -1x_1 \\ 2x_1 + 1x_4 + -1x_3 & 2x_2 + 1x_5 + -1x_2 & 2x_3 + 1x_4 + -1x_1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 & 1 \\ 5 & 2 & -4 \\ 3 & 7 & 9 \end{bmatrix}$$

A' in correct, but fine otherwise.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix} \quad \emptyset$$

- a) Find the standard matrix of T.
- **b)** Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.
- a). $T : \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 2 & 4 & 0 & 2 & 4 \\
3 & 4 & 4 & 3 & 4 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 2 \\
3 & 4 & 4 & 3 & 4 & 2
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 2 \\ 0 & 1 & 4 & 0 & 1 & 2 \end{bmatrix} \times 7$$

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 2
\end{bmatrix} \times \frac{2}{2}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 \end{bmatrix} X_{\frac{1}{2}}^{\frac{1}{2}}$$

$$V_1 = \begin{bmatrix} -\frac{1}{2} \\ \frac{2}{0} \\ 0 \\ 0 \end{bmatrix} \qquad V_2 = \begin{bmatrix} -\frac{2}{1} \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$x_1 = -2$$

 $x_2 + x_5 = 2$
 $x_3 = 0$
 $x_4 = free$

- **6. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

[26]

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

T < why?