Controllability, Observability Control Theory, Lecture 11

by Sergei Savin

Spring 2025

CONTENT

- Cayley–Hamilton
- Controllability of Discrete LTI
 - ► Controllability matrix
 - ► Controllability criterion
- Observability of Discrete LTI
 - Dual system
 - Observability criterion
- Controllability of Continuous-Time LTI

DEFINITIONS

Definition (Controllability)

A system is controllable on time interval $t_0 \leq t \leq t_f$, if it is possible to find control input u(t) that would drive the system to a desired state $\mathbf{x}(t_f)$ from any initial state $\mathbf{x}(t_0)$.

Definition (Observability)

A system is observable on time interval $t_0 \le t \le t_f$, if using output $\mathbf{y}(t)$ on that time interval it is possible to estimate exactly the state of the system $\mathbf{x}(t_f)$, given any initial estimation error.

Definition (Observability, alternative)

A system is observable on time interval $t_0 \le t \le t_f$, if any initial state $\mathbf{x}(t_0)$ is uniquely determined by output $\mathbf{y}(t)$ on that interval.

CONTROLLABILITY OF DISCRETE LTI

Consider discrete LTI:

 $\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1 + \mathbf{B}\mathbf{u}_1$

$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i \tag{1}$$

Assume the initial state is \mathbf{x}_1 . Then we can deduce that:

$$\mathbf{x}_3 = \mathbf{A}\mathbf{x}_2 + \mathbf{B}\mathbf{u}_2 = \mathbf{A}(\mathbf{A}\mathbf{x}_1 + \mathbf{B}\mathbf{u}_1) + \mathbf{B}\mathbf{u}_2$$
 $\mathbf{x}_4 = \mathbf{A}\mathbf{x}_3 + \mathbf{B}\mathbf{u}_3 = \mathbf{A}(\mathbf{A}(\mathbf{A}\mathbf{x}_1 + \mathbf{B}\mathbf{u}_1) + \mathbf{B}\mathbf{u}_2) + \mathbf{B}\mathbf{u}_3$
...
 $\mathbf{x}_{n+1} = \mathbf{A}^n\mathbf{x}_1 + \mathbf{A}^{n-1}\mathbf{B}\mathbf{u}_1 + ... + \mathbf{A}^{n-k}\mathbf{B}\mathbf{u}_k + ... + \mathbf{A}\mathbf{B}\mathbf{u}_{n-1} + \mathbf{B}\mathbf{u}_n$

Controllability matrix

 $\mathbf{x}_{n+1} = \mathbf{A}^n \mathbf{x}_1 + \mathbf{A}^{n-1} \mathbf{B} \mathbf{u}_1 + ... + \mathbf{A}^{n-k} \mathbf{B} \mathbf{u}_k + ... + \mathbf{A} \mathbf{B} \mathbf{u}_{n-1} + \mathbf{B} \mathbf{u}_n$ can be re-written as:

$$\mathbf{x}_{n+1} - \mathbf{A}^n \mathbf{x}_1 = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2 \mathbf{B} & \dots & \mathbf{A}^{n-1} \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{u}_n \\ \mathbf{u}_{n-1} \\ \mathbf{u}_{n-2} \\ \dots \\ \mathbf{u}_1 \end{bmatrix}$$
(2)

Notice that in order for the system to go from \mathbf{x}_1 to \mathbf{x}_{n+1} , vector $\mathbf{x}_{n+1} - \mathbf{A}^n \mathbf{x}_1$ needs be in the column space of $\mathcal{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$.

Since \mathbf{x}_{n+1} can be anything, and \mathbf{x}_1 might be equal to zero (among other possibilities), we should require that all vectors in \mathbb{R}^n are in the column space of \mathcal{C} , meaning \mathcal{C} needs to be full row rank.

CONTROLLABILITY CRITERION

Controllability

The system $\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i$, $\mathbf{x} \in \mathbb{R}^n$ is controllable if its controllability matrix $\mathcal{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$ is full row-rank $(\operatorname{rank}(\mathcal{C}) = n)$.

CAYLEY-HAMILTON

Equation $\det(\mathbf{M} - \lambda \mathbf{I}) = 0$ is called *characteristic equation* of matrix \mathbf{M} , its roots being eigenvalues of the matrix.

Theorem (Cayley–Hamilton)

A matrix $\mathbf{M} \in \mathbb{R}^{n,n}$ satisfies its own characteristic equation.

A characteristic equation can be written as $\lambda^n + a_{n-1}\lambda^{n-1} + ... + a_0 = 0$, meaning that we can write:

$$\mathbf{M}^{n} + a_{n-1}\mathbf{M}^{n-1} + \dots + a_{1}\mathbf{M} + a_{0}\mathbf{I} = 0$$
 (3)

Meaning that \mathbf{M}^n is a linear combination of \mathbf{M}^{n-1} , \mathbf{M}^{n-2} , ..., \mathbf{I} . See Appendix.

CONTROLLABILITY MATRIX RANK

What happens if we add more columns to the controllability matrix, for example $\mathbf{A}^{n}\mathbf{B}$? Consider the matrix:

$$C_{+} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} & \mathbf{A}^{n}\mathbf{B} \end{bmatrix}$$
 (4)

But from Cayley–Hamilton we know that:

$$\mathbf{A}^n = -a_{n-1}\mathbf{A}^{n-1} - \dots - a_0\mathbf{I} \tag{5}$$

$$\mathbf{A}^n \mathbf{B} = -a_{n-1} \mathbf{A}^{n-1} \mathbf{B} - \dots - a_0 \mathbf{B}$$
 (6)

Meaning that columns of $\mathbf{A}^n\mathbf{B}$ are expressed as linear combination of columns of \mathcal{C} , hence the matrix \mathcal{C}_+ has the same rank as \mathcal{C} .

Observability of Discrete LTI

Consider discrete LTI:

$$\begin{cases} \mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i \\ \mathbf{y}_i = \mathbf{C}\mathbf{x}_i \end{cases}$$
 (7)

And an observer:

$$\hat{\mathbf{x}}_{i+1} = \mathbf{A}\hat{\mathbf{x}}_i + \mathbf{B}\mathbf{u}_i + \mathbf{L}(\mathbf{y}_i - \mathbf{C}\hat{\mathbf{x}}_i)$$
 (8)

Remember that we can define observation error $\mathbf{e}_i = \hat{\mathbf{x}}_i - \mathbf{x}_i$ and write its dynamics:

$$\mathbf{e}_{i+1} = \mathbf{A}\mathbf{e}_i - \mathbf{L}\mathbf{C}\mathbf{e}_i \tag{9}$$

Dual system (which is stable if and only if the original is stable), has form:

$$\varepsilon_{i+1} = \mathbf{A}^{\mathsf{T}} \varepsilon_i - \mathbf{C}^{\mathsf{T}} \mathbf{L}^{\mathsf{T}} \varepsilon_i \tag{10}$$

Observability of Discrete LTI

Dual system

Dynamical system $\varepsilon_{i+1} = \mathbf{A}^{\top} \varepsilon_i - \mathbf{C}^{\top} \mathbf{L}^{\top} \varepsilon_i$, we can be represented as:

$$\begin{cases} \varepsilon_{i+1} = \mathbf{A}^{\top} \varepsilon_i + \mathbf{C}^{\top} \mathbf{v}_i \\ \mathbf{v}_i = -\mathbf{L}^{\top} \varepsilon_i \end{cases}$$
 (11)

Controllability matrix of this system is:

$$\mathcal{O}^{\top} = \begin{bmatrix} \mathbf{C}^{\top} & (\mathbf{A}^{\top})\mathbf{C}^{\top} & \dots & (\mathbf{A}^{\top})^{n-1}\mathbf{C}^{\top} \end{bmatrix}$$
 (12)

It is easier to represent this matrix in its transposed form:

$$\mathcal{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \dots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$$
 (13)

OBSERVABILITY CRITERION

Observability

The system
$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i$$
 and $\mathbf{y}_i = \mathbf{C}\mathbf{x}_i$, $\mathbf{x} \in \mathbb{R}^n$ is observable, if the observability matrix $\mathcal{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ ... \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$ is full

column-rank $(\operatorname{rank}(\mathcal{O}) = n)$.

Controllability, continuous-time (1)

Matrix exponential $e^{\mathbf{A}t}$ is defined as a series:

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \frac{1}{2}\mathbf{A}\mathbf{A}t^2 + \frac{1}{6}\mathbf{A}\mathbf{A}\mathbf{A}t^3 + \dots$$
 (14)

Using Cayley–Hamilton we can observe that any powers of \mathbf{A} higher than n can be represented as a linear combination of lower powers. This gives us the following expression:

$$e^{\mathbf{A}t} = \phi_0(t)\mathbf{I} + \phi_1(t)\mathbf{A} + \phi_2(t)\mathbf{A}^2 + \dots + \phi_{n-1}(t)\mathbf{A}^{n-1}$$
 (15)

This allows us to re-write the forced state response:

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{b}u(\tau)d\tau$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t (\phi_0(t-\tau)\mathbf{I} + \phi_1(t-\tau)\mathbf{A} + \dots + \phi_{n-1}(t-\tau)\mathbf{A}^{n-1})\mathbf{b}u(\tau) d\tau$$

Controllability, continuous-time (2)

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t \phi_0(t - \tau)\mathbf{b}u(\tau)d\tau$$
$$+ \int_0^t \phi_1(t - \tau)\mathbf{A}\mathbf{b}u(\tau)d\tau + \dots \int_0^t \phi_{n-1}(t - \tau)\mathbf{A}^{n-1}\mathbf{b}u(\tau)d\tau$$

$$\mathbf{x}(t) - e^{\mathbf{A}t}\mathbf{x}(0) = \begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{n-1}\mathbf{b} \end{bmatrix} \begin{bmatrix} \int_0^t \phi_0(t-\tau)u(\tau)d\tau \\ \int_0^t \phi_1(t-\tau)u(\tau)d\tau \\ \dots \\ \int_0^t \phi_{n-1}(t-\tau)u(\tau)d\tau \end{bmatrix}$$

If the controllability matrix is rank-deficient, there will exist a state \mathbf{x}_f and which cannot be reached from some initial conditions \mathbf{x}_0 .

PBH CONTROLLABILITY CRITERION

There is an alternative way to test the controllability of a pair $(\mathbf{A}, \ \mathbf{B})$:

PBH controllability criterion

If for any $\lambda \in \mathbb{C}$, the matrix $[(\mathbf{A} - \lambda \mathbf{I}), \mathbf{B}]$ has full row-rank, then the pair (\mathbf{A}, \mathbf{B}) is controllable.

- If λ is not an eigenvalue of **A**, then $\det(\mathbf{A} \lambda \mathbf{I}) \neq 0$ and the matrix has full row rank.
- If $det(\mathbf{A} \lambda \mathbf{I}) = 0$ it is sufficient to test the rank of $[(\mathbf{A} \lambda \mathbf{I}), \mathbf{B}]$.

READ MORE

■ Controllability and Observability (Rutgers University) https://www.ece.rutgers.edu/ gajic/psfiles/chap5.pdf Lecture slides are available via Github:

github.com/SergeiSa/Control-Theory-2025

Appendix A: Analytical solution (recap)

MATRIX EXPONENTIAL

Exponential e^a is defined as a series:

$$e^{a} = 1 + a + \frac{1}{2}a^{2} + \frac{1}{6}a^{3} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}a^{n}$$
 (16)

Matrix exponential $e^{\mathbf{A}}$ is defined as a series:

$$e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \frac{1}{2}\mathbf{A}\mathbf{A} + \frac{1}{6}\mathbf{A}\mathbf{A}\mathbf{A} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}\mathbf{A}^n$$
 (17)

ANALYTICAL SOLUTION TO ODE

An ODE of the form $\dot{x} = ax$ has analytical solution $x(t) = e^{at}x(0)$.

An ODE of the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ has analytical solution $\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$.

Let us check that this is a solution:

$$\mathbf{x}(t) = \left(\mathbf{I} + \mathbf{A}t + \frac{1}{2}\mathbf{A}\mathbf{A}t^2 + \frac{1}{6}\mathbf{A}\mathbf{A}\mathbf{A}t^3 + \dots\right)\mathbf{x}(0)$$
 (18)

$$\dot{\mathbf{x}}(t) = \left(\mathbf{A} + \mathbf{A}\mathbf{A}t + \frac{1}{2}\mathbf{A}\mathbf{A}\mathbf{A}t^2 + \dots\right)\mathbf{x}(0) \tag{19}$$

$$\dot{\mathbf{x}}(t) = \mathbf{A} \left(\mathbf{I} + \mathbf{A}t + \frac{1}{2} \mathbf{A} \mathbf{A}t^2 + \dots \right) \mathbf{x}(0)$$
 (20)

$$\dot{\mathbf{x}}(t) = \mathbf{A}e^{\mathbf{A}t}\mathbf{x}(0) \tag{21}$$

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) \tag{22}$$

FORCED STATE RESPONSE (LTI) (1)

An ODE of the form $\dot{x} = ax + bu(t)$ also has analytical solution. To find it, we first find the following derivative:

$$\frac{d}{dt}\left(e^{-at}x(t)\right) = e^{-at}\dot{x}(t) - ae^{-at}x(t) \tag{23}$$

Multiplying $\dot{x} = ax + bu(t)$ by e^{-at} we see:

$$e^{-at}\dot{x} = e^{-at}ax + e^{-at}bu(t) \tag{24}$$

$$e^{-at}\dot{x} - e^{-at}ax = e^{-at}bu(t) \tag{25}$$

$$\frac{d}{dt}\left(e^{-at}x(t)\right) = e^{-at}bu(t) \tag{26}$$

$$\int_0^t \frac{d}{d\tau} \left(e^{-a\tau} x(\tau) \right) d\tau = \int_0^t e^{-a\tau} b u(\tau) d\tau \tag{27}$$

FORCED STATE RESPONSE (LTI) (2)

Continuing the derivation:

$$\int_0^t \frac{d}{d\tau} \left(e^{-a\tau} x(\tau) \right) d\tau = \int_0^t e^{-a\tau} b u(\tau) d\tau \tag{28}$$

$$e^{-at}x(t) - x(0) = \int_0^t e^{-a\tau}bu(\tau)d\tau$$
 (29)

$$x(t) = e^{at}x(0) + e^{at} \int_0^t e^{-a\tau}bu(\tau)d\tau$$
 (30)

$$x(t) = e^{at}x(0) + \int_0^t e^{a(t-\tau)}bu(\tau)d\tau$$
 (31)

FORCED STATE RESPONSE (LTI) (3)

State-space equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}(t)$ also has an analytical solution:

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$
 (32)

The same can be re-written as:

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + e^{\mathbf{A}t} \int_0^t e^{-\mathbf{A}\tau} \mathbf{B}\mathbf{u}(\tau) d\tau$$
 (33)

CAYLEY-HAMILTON ILLUSTRATION

Consider matrix **M** and its characteristic equation $\lambda^n + a_{n-1}\lambda^{n-1} + ... + a_0 = 0$ and a decomposition $\mathbf{M} = \mathbf{V}^{-1}\Lambda\mathbf{V}$. Let's prove that the following expression is zero:

$$\mathbf{E} = \mathbf{M}^{n} + a_{n-1}\mathbf{M}^{n-1} + \dots + a_{1}\mathbf{M} + a_{0}\mathbf{I}$$
 (34)

$$\mathbf{E} = \mathbf{V}^{-1} \Lambda^{n} \mathbf{V} + a_{n-1} \mathbf{V}^{-1} \Lambda^{n-1} \mathbf{V} + \dots + a_{1} \mathbf{V}^{-1} \Lambda \mathbf{V} + a_{0} \mathbf{I}$$
 (35)

$$\mathbf{VEV}^{-1} = \Lambda^{n} + a_{n-1}\Lambda^{n-1} + \dots + a_{1}\Lambda + a_{0}\mathbf{VV}^{-1}$$
 (36)

$$\mathbf{VEV}^{-1} = \begin{bmatrix} (\lambda_1^n + a_{n-1}\lambda_1^{n-1} + \dots + a_0) & & & \\ & & \dots & & \\ & & (\lambda_n^n + a_{n-1}\lambda_n^{n-1} + \dots + a_0) \end{bmatrix}$$
(37)

$$\mathbf{VEV}^{-1} = \begin{bmatrix} 0 & & \\ & \dots & \\ & & 0 \end{bmatrix}$$
 (38)

$$\mathbf{VEV}^{-1} = 0 \tag{39}$$

$$0 = \mathbf{E} = \mathbf{M}^n + a_{n-1}\mathbf{M}^{n-1} + \dots + a_1\mathbf{M} + a_0\mathbf{I} \quad \Box$$
 (40)