

In the Specification:

Please replace the paragraph beginning on page 24 line 19 with the following amended paragraph:

Lee-type binary metal stripe gratings were realized for forming radial and azimuthal polarization, by the process described above for the transversely varying gratings. For the radial grating, r_0 was 5 millimeters and Λ_0 was 2 microns, so that r was between 3.3 millimeters and 5 millimeters and Λ was between 2 microns and 3.2 microns. For the azimuthal grating, r_0 was 2.4 millimeters and Λ_0 was 2 microns, so that r was between 2.4 millimeters and 5 millimeters and Λ was between 2 microns and 3.2 microns. Figure 12A shows, schematically, the geometry of the radial grating. Figure 12B shows, schematically, the geometry of the azimuthal grating.

Please replace the paragraph beginning on page 27 line 3 with the following amended paragraph:

The polarization state of light can be described as a ~~stokes~~ Stokes vector $(S_0, S_1, S_2, S_3)^T$. In general, $S_0^2 \geq S_1^2 + S_2^2 + S_3^2$, with equality holding only for a fully polarized beam. In the Stokes representation, a polarizer with complex amplitude transmission coefficients t_x, t_y is represented by the 4 x 4 Mueller matrix: