ASSIGNMENT - 2

GROUP - 5

Premnath N CS14B022 R Hemanth Reddy CS14B024 M.Uday Theja CS14B044

Perceptron Classifier:

- It is a binary classifier i.e it determines whether the input represented feature vector belongs to a particular class or not .
- The function maps an input **x** with an output value **f(x)** which is a single binary value .

$$f(x) = 1 \text{ if w.x + b > 0}$$

= 0 otherwise

Here ${\bf w}$ and ${\bf x}$ are vectors and ${\bf w}.{\bf x}$ denotes the dot product between them and ${\bf b}$ is the bias .

Weight update equation :

$$w_i(t+1) = w_i(t) + (d_i - y_i(t)) * x_{i,i}$$
 for all features 0 <= i <= d.

Where,
$$y_j(t) = f[w(t).x_j]$$

 $d_i = desired output$

Perceptron(One vs One) for Linearly Separable Data

- Train *K* (*K* 1) / 2 binary classifiers for a *K*-way multiclass problem.
- Each receives the samples of a pair of classes from the original training set, and learns to distinguish these two classes.
- At prediction time, all K (K 1) / 2 classifiers are applied to an unseen sample and the class that gets the highest number of "+1" predictions gets predicted by the combined classifier.

Nature of decision surface:

- Decision surfaces are hyperplanes.
- The equation of hyperplane is w.x + b = 0

Multilayer Feed Forward Neural Networks:

- Artificial neural networks are networks of simple processing elements called neurons that operate on their local data and communicate with other similar elements.
- A typical feed forward neural network consists of an input layer, an output layer and one or more hidden layers.
- The connection between the ith and jth neuron is given by the weight \mathbf{w}_{ij} and the ith neuron by the threshold \mathbf{v}_i . The weight function determines the degree of importance of that articular connection in the neural network .

The output of i^{th} neuron \mathbf{x}_i is given by

$$\mathbf{x}_{i} = \mathbf{f}(\boldsymbol{\xi}_{i})$$
 and

$$\xi_i = v_i + \Sigma_{\text{over } j} w_{ij} x_j$$

where $\,\,\xi_{i}$ is the potential of the i^{th} neuron and f is the transfer function .

It holds that

$$f(\xi) = 1/(1 + \exp(-\xi))$$

 We vary the thresholds and weights to minimise the difference between the computed and the required output values. Thus, the objective function E is minimised.

$$E = \sum_{\text{over outputs}} 0.5 * (x_o - x_o^{\land})^2$$

where \mathbf{x}_o and \mathbf{x}^{\wedge}_o are the computed and required values of the output neurons and summation runs over all the output neurons \mathbf{o} .

Feed Forward Neural Networks:

Transfer Function: Hyperbolic tangent sigmoid transfer function

Tan-Sigmoid Transfer Function

DataDivision : Index (divideind)

Training : Scaled Conjugate Gradient (trainscg)

Performance : Cross-Entropy (crossentropy)

Calculations: MEX

Linearly Separable Data

Epoch = 35 Iterations
Performance = 0.000105
Gradient = 0.000241
Validation Checks = 6

Best Validation Performance is 0.00041847 at epoch 29

Non Linearly Separable Data

Two Hidden Layers:

Epoch = 139 Iterations
Performance = 0.000278
Gradient = 0.00138
Validation Checks = 6

Best Validation Performance is 0.0020838 at epoch 133

Single Hidden Layer

Epoch = 123 Iterations
Performance = 0.000529
Gradient = 0.000630
Validation Checks = 6

Best Validation Performance is 0.0017486 at epoch 117

Overlapping Data

Epoch = 35 Iterations
Performance = 0.0705
Gradient = 0.00568
Validation Checks = 6

Best Validation Performance is 0.061296 at epoch 29

Image Dataset

48 Dimension

Epoch = 3500 Iterations Performance = 0.0388 Gradient = 0.0718

Best Validation Performance is 0.14379 at epoch 2237

Dimensionality Reduction

Data Preprocessing (Feature Scaling / Mean Normalisation):

Mean Normalisation of data:

 $E[x] = \mu$ y = x- μ E[y] = 0

Principal Component Analysis (PCA) Algorithm

- Performs a linear mapping of the data to a lower-dimensional space in such a way that the variance of the data in the low-dimensional representation is maximized.
- Compute Covariance matrix (Sigma).
- Compute the **Eigenvectors** of matrix Sigma.

[U,S,V] = svd(Sigma) (svd: Singular Valued Decomposition) The columns of U matrix are the eigenvectors.

• Choose the first k eigenvectors and reconstruct the data.

Choosing number of Principal Components k

- Average Squared projection error = 1/N Σ || x⁽ⁱ⁾ x⁽ⁱ⁾_{approx} ||²
- Total variation in data = $1/N \Sigma || x^{(i)} ||^2$
- Choose k to be smallest such that:

Average Squared projection error / Total variation in data <= 0.01 99% variance is retained.

Image Dataset 48 Dimensions 100% Variance Retained

	Confusion Matrix : Test Data								
1	120 53.3%	2 0.9%	1 0.4%	1 0.4%	6 2.7%	92.3% 7.7%			
2	0	20	0	0	0	100%			
	0.0%	8.9%	0.0%	0.0%	0.0%	0.0%			
Output Class	0	0	27	0	0	100%			
	0.0%	0.0%	12.0%	0.0%	0.0%	0.0%			
ontpul	0	0 0.0%	0	31	0	100%			
4	0.0%		0.0%	13.8%	0.0%	0.0%			
5	0	0	0	0	17	100%			
	0.0%	0.0%	0.0%	0.0%	7.6%	0.0%			
	100%	90.9%	96.4%	96.9%	73.9%	95.6%			
	0.0%	9.1%	3.6%	3.1%	26.1%	4.4%			
	1	2	3 Target	4 Class	5				

Image Dataset

27 Dimensions 99.0661% Variance Retained

GMM

		Confu	ision Ma	trix : Tes	t Data	
1	119 52.9%	5 2.2%	0 0.0%	7 3.1%	3 1.3%	88.8% 11.2%
2	0	14	0	1	0	93.3%
	0.0%	6.2%	0.0%	0.4%	0.0%	6.7%
Output Class	0	0	28	0	0	100%
	0.0%	0.0%	12.4%	0.0%	0.0%	0.0%
ndth0	1	3	0	23	2	79.3%
	0.4%	1.3%	0.0%	10.2%	0.9%	20.7%
5	0	0	0	1	18	94.7%
	0.0%	0.0%	0.0%	0.4%	8.0%	5.3%
	99.2%	63.6%	100%	71.9%	78.3%	89.8%
	0.8%	36.4%	0.0%	28.1%	21.7%	10.2%
	1	2	3 Target	4 Class	5	

MLFFNN

Epoch = 821 Iterations Performance = 0.0556 Gradient = 8.16e-07

Best Validation Performance is 0.1028 at epoch 393

Image Dataset

11 Dimensions 95.4776% Variance Retained

GMM

,	Confusion Matrix : Test Data								
1	117 52.0%	2 0.9%	2 0.9%	2 0.9%	8 3.6%	89.3% 10.7%			
2	1	15	0	0	0	93.8%			
	0.4%	6.7%	0.0%	0.0%	0.0%	6.3%			
Output Class	0	0	22	0	0	100%			
	0.0%	0.0%	9.8%	0.0%	0.0%	0.0%			
ontput	1	2	4	28	1 0.4%	77.8%			
4	0.4%	0.9%	1.8%	12.4%		22.2%			
5	1	3	0	2	14	70.0%			
	0.4%	1.3%	0.0%	0.9%	6.2%	30.0%			
	97.5%	68.2%	78.6%	87.5%	60.9%	87.1%			
	2.5%	31.8%	21.4%	12.5%	39.1%	12.9%			
	1	2	3 Target	4 Class	5				

MLFFNN

Epoch = 1000 Iterations Performance = 0.0528 Gradient = 0.00531

Best Validation Performance is 0.12491 at epoch 515

Image Dataset

5 Dimensions 90.0455% Variance Retained

GMM

10		Confu	ısion Ma	trix : Tes	t Data	
1	109 48.4%	3 1.3%	7 3.1%	6 2.7%	5 2.2%	83.8% 16.2%
2	2	16	2	1	2	69.6%
	0.9%	7.1%	0.9%	0.4%	0.9%	30.4%
Output Class	3	0	19	1	0	82.6%
	1.3%	0.0%	8.4%	0.4%	0.0%	17.4%
ontput ₄	4 1.8%	1 0.4%	0 0.0%	22 9.8%	3 1.3%	73.3% 26.7%
5	2	2	0	2	13	68.4%
	0.9%	0.9%	0.0%	0.9%	5.8%	31.6%
	90.8%	72.7%	67.9%	68.8%	56.5%	79.6%
	9.2%	27.3%	32.1%	31.3%	43.5%	20.4%
•	1	2	3 Target	4 Class	5	

MLFFNN

Epoch = 1000 Iterations Performance = 0.0706 Gradient = 0.0275

Best Validation Performance is 0.08308 at epoch 987

Data-set 1

Linear C-SVM on Linearly Separable Data

Decision Surface takes form of Hyper-planes

Polynomial Kernel

Degree = 3 Cost = 64

RBFGamma = 0.25 Cost = 0.125

Overlapping Data

Polynomial Function

Degree=2 C=64 Coeff=1

Training Data : Accuracy = 89.6% (896/1000) (classification)
Validation Data : Accuracy = 91.3333% (548/600) (classification)

Test Data Accuracy = 91.25% (365/400) (classification)

		Cor	nfusion Ma	ntrix	
1	141	4	11	9	85.5%
	23.5%	0.7%	1.8%	1.5%	14.5%
2	4 0.7%	136 22.7%	1 0.2%	7 1.2%	91.9% 8.1%
Output Class	1	5	138	1	95.2%
	0.2%	0.8%	23.0%	0.2%	4.8%
4	4	5	0	133	93.7%
	0.7%	0.8%	0.0%	22.2%	6.3%
	94.0%	90.7%	92.0%	88.7%	91.3%
	6.0%	9.3%	8.0%	11.3%	8.7%
	1	2 T	3 arget Clas	4 S	

Confusion Matrix For Validation Data

		Coi	nfusion Ma	ntrix	
1	93	2	6	9	84.5%
	23.3%	0.5%	1.5%	2.3%	15.5%
2	1	91	1	2	95.8%
	0.3%	22.8%	0.3%	0.5%	4.2%
Output Class	5	3	93	1	91.2%
	1.3%	0.8%	23.3%	0.3%	8.8%
4	1	4	0	88	94.6%
	0.3%	1.0%	0.0%	22.0%	5.4%
	93.0%	91.0%	93.0%	88.0%	91.3%
	7.0%	9.0%	7.0%	12.0%	8.8%
	1	2 T	arget Clas	4 S	

Confusion Matrix for Testing Data

RBF

Gamma = 128 Cost = 16

Training Data Accuracy = 93.6% (936/1000) (classification)(To check for Over-fitting)

Validation Data Accuracy = 88.1667% (529/600) (classification)

Testing Data Accuracy = 87.25% (349/400) (classification)

Gamma = 16 Cost = 0.25

Training Data Accuracy = 89.7% (897/1000) (classification)(To check for Over-fiting)

Validation Data Accuracy = 91.5% (549/600) (classification)

Testing Data Accuracy = 91.5% (366/400) (classification)

		Coi	nfusion Ma	ntrix	
1	141 23.5%	4 0.7%	12 2.0%	10 1.7%	84.4% 15.6%
2	4	137	0	7	92.6%
	0.7%	22.8%	0.0%	1.2%	7.4%
Output Class	1	5	138	0	95.8%
	0.2%	0.8%	23.0%	0.0%	4.2%
Ō 4	4	4	0	133	94.3%
	0.7%	0.7%	0.0%	22.2%	5.7%
	94.0%	91.3%	92.0%	88.7%	91.5%
	6.0%	8.7%	8.0%	11.3%	8.5%
	1	2 T	arget Clas	4 S	

Confusion Matrix for Validation Data

		Coi	nfusion Ma	atrix	
1	93	2	6	8	85.3%
	23.3%	0.5%	1.5%	2.0%	14.7%
2	1	92	2	3	93.9%
s	0.3%	23.0%	0.5%	0.8%	6.1%
Output Class	5	2	92	0	92.9%
	1.3%	0.5%	23.0%	0.0%	7.1%
ō 4	1	4	0	89	94.7%
	0.3%	1.0%	0.0%	22.3%	5.3%
	93.0%	92.0%	92.0%	89.0%	91.5%
	7.0%	8.0%	8.0%	11.0%	8.5%
	1	2 T	3 arget Clas	4 S	

Confusion Matrix for Testing Data

Non-Linearly Separable Data

Polynomial Kernel Function

Degree=7 Cost =1024

Training Data: Accuracy = 74.3865% (970/1304) (classification)(Given to

check for over-fitting)

Validation Data: Accuracy = 71.867% (562/782) (classification)
Testing Data: Accuracy = 73.2692% (381/520) (classification)

Confusion Matrix for Validation Data

Confusion Matrix For Testing Data

RBF

Real World Datasets

Image Classification

5-fold Cross Validation employed after Data Distribution to avoid Over-fitting

C-SVM using RBF Kernel

Original

48 Dimensional Feature Vector

Gamma = 4 c = 64

Accuracy = 100%

Reduced:

43 Dimensional Feature Vector

Gamma = 2 Cost = 128

Accuracy = 100 %

33 Dimensional Feature Vector

Gamma = 1 Cost = 256

Accuracy = 100 %

33 Dimensional Feature Vector

Gamma = 1 Cost = 512

Accuracy = 100 %

C-SVM using polynomial Kernel

Original

48 Dimensional Feature Vector Degree =2 ,Cost = 180000 Accuracy= 100 %

Reduced

27 Dimensional Feature Vector Degree = 2 , Cost = 280000 Accuracy= 100 %

11 Dimensional Feature Vector Degree =2 Cost= 430000 Accuracy= 100 %

5 Dimensional Feature Vector Degree=2 Cost= 970000 Accuracy= 100 %

	Confusion Matrix								
1	160 53.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%			
2	0	30	0	0	0	100%			
	0.0%	9.9%	0.0%	0.0%	0.0%	0.0%			
Class	0	0	38	0	0	100%			
	0.0%	0.0%	12.6%	0.0%	0.0%	0.0%			
Output Class	0	0	0	43	0	100%			
	0.0%	0.0%	0.0%	14.2%	0.0%	0.0%			
5	0	0	0	0	31	100%			
	0.0%	0.0%	0.0%	0.0%	10.3%	0.0%			
	100%	100%	100%	100%	100%	100%			
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
	1	2	3 Target	4 Class	5				