Problem Set 2 *

Ian McGroarty

Course Number: 625.603

February 14, 2019

Problem 2.3.10. An urn contains 24 chips. A is the event that the number is divisible by 2. B is the event that the number is divisible by 3. Find $P(A \cup B)$.

Solution: $P(A \cup B) = 0.667$

$$A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24\}$$

$$B = \{3, 6, 9, 12, 15, 18, 21, 24\}$$

$$A \cup B = \{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24\}$$

$$P(A \cup B) = 16/24$$

$$= 0.6667$$

Problem 2.4.4. Let A and B be two events such that $P((A \cup B)^C) = 0.6$ and $P(A \cap B) = 0.1$. Let E be the event that either A or B occurs but not both will occur. Find $P(E|A \cup B)$. **Solution:** $P(E|A \cup B) = 0.75$

^{*}Problem list - 2.3.10, 2.4.4, 2.4.36, 2.5.20, 2.6.12

Proof

$$P(E|A \cup B) = \frac{P(E \cap (A \cup B))}{P(A \cup B)}$$
 Def. Conditional Probability (pg 33)
$$P(E \cap (A \cup B)) = P(E) + P(A \cup B) - P(A \cup B)$$
 Theorem 2.3.6 (pg 27)
$$= P(E)$$
 This follows since $E \subseteq (A \cup B)$ Based on question.
$$P(A \cup B) = 1 - P((A \cup B)^C)$$
 Theorem 2.3.1 (pg 27)
$$P(E|A \cup B) = \frac{(1 - P((A \cup B)^C)) - P(A \cap B)}{1 - P((A \cup B)^C)}$$

$$= \frac{(1 - 0.6 - 0.1)}{1 - 0.6}$$

$$= 0.75$$

Problem 2.4.36. Probability of guilty verdict: 15% if the defense can discredit the police department and 80% if not. Attorneys has 70% chance of discrediting police department. What is the probability of a guilty verdict. Let G = 1 if guilty verdict, 0 otherwise. Let C = 1 if the attorney convinces contamination, 0 otherwise: Find P(G).

$$P(G = 1|C = 0) = 0.15$$

 $P(G = 1|C = 1) = 0.80$
 $P(G = 0|C = 0) = 0.75$
 $P(G = 0|C = 1) = 0.20$

Solution P(G)=0.345

Since $C_0 \cap C_1 = \emptyset$ and $C_0 \cup C_1 = S$ Where S is the total set of events. And $P(C_0) > 0$ and

 $P(C_1) > 0$. We can apply Theorem 2.4.1 (pg 41).

$$P(G) = \sum_{i=0}^{i=1} P(G|C_i)P(C_i)$$
$$= (0.3) * (0.8) + (0.7) * (0.15)$$
$$= 0.345$$

Problem 2.5.20. Players A,B, and C toss a fair coin in order. The first to throw a heads wins. What are their respective chances of winning.

SolutionLet A_H , A_T , B_H , B_T , C_H , C_T denote the events that A,B,C throw H (heads) or T (tails) on individual tosses. the P(A throws the first head)= $P(A_H \cup (A_T \cap B_T \cap C_T) \cup \cdots)$ It follows similarly for B and C.

$$P(Awin) = \frac{1}{2} + \frac{1}{2} * (\frac{1}{8}) + \frac{1}{2} * (\frac{1}{8})^2 + \dots = \frac{1}{2} + (\frac{1}{1 - (1/8)}) = \frac{4}{7}$$

$$P(Bwin) = \frac{1}{4} + \frac{1}{4} * (\frac{1}{8}) + \frac{1}{4} * (\frac{1}{8})^2 + \dots = \frac{1}{4} + (\frac{1}{1 - (1/8)}) = \frac{2}{7}$$

$$P(Cwin) = 1 - \frac{4}{7} - \frac{2}{7} = \frac{1}{7}$$

Problem 2.6.12. What is the minimum number of (.,-) needed to represent any letter in the English alphabet?

Solution

It follows from the multiplication rule (pg 66) that with 2 symbols and n different characters. There are 2^k number of ways to arrange the (.,-). So the number of ways to arrange (.,-) in k slots is $\sum_{k=1}^{n} 2^k$. We need 26 combinations. So

$$\sum_{k=1}^{n} 2^k < 26$$

By counting, we can see that $\Sigma_{k=1}^3 2^k = 14$ and $\Sigma_{k=1}^4 2^k = 30$. Thus, we need a minimum of 4 (.,-) to represent every letter of the alphabet.

Problem Module 2 simulation. Consider a Baseball World Series (best of 7 game series) in which team A theoretically has a 0.55 chance of winning each game against team B. Simulate the probability that team A would win a World Series against team B by simulating 1000 World Series. You many use any software to conduct the simulation.

Solution Using the R code below, I ran this simulation a few times. I received the following outputs: (0.589,0.603,0.598). I also expanded the calculation to 100,000 and received (0.60607, 061046, 0.60552). This seems reasonable since performing the calculation using hypergeometric distribution, there is a probability of 0.608287 of A winning at least 4 games.

The following is R code used to conduct this simulation:

```
count = 0 for ( i in 1:1000) { count <- count + sum(sum(sample(c("A Win", "A lose"),7,replace=TRUE,prob=c(0.55 , 0.45)) == "A Win")>=4) } count count/1000
```