CS685: Data Mining Basics of Classification

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2021-22 Mon 1030-1200 (online)

Classification

- A dataset of n objects O_i , $i = 1, \ldots, n$
- A total of k classes $C_i, j = 1, \ldots, k$
- Each object belongs to a single class
- If object O_i belongs to class C_j , then $C(O_i) = j$
- Given a new object O_q , classification is the problem of determining its class, i.e., $C(O_q)$ out of possible k choices

Classification

- A dataset of n objects O_i , $i = 1, \ldots, n$
- A total of k classes $C_j, j = 1, \ldots, k$
- Each object belongs to a single class
- If object O_i belongs to class C_j , then $C(O_i) = j$
- Given a new object O_q , classification is the problem of determining its class, i.e., $C(O_q)$ out of possible k choices
- If, instead of k discrete classes, there is a continuum of values, the problem of determining the value $V(\mathcal{O}_q)$ of a new object \mathcal{O}_q is called prediction

Sets

- Total available data is divided randomly into two parts: training set and testing set
- Classification algorithm or model is built using only the training set
- Testing set should not be used at all
- Quality of method is measured using testing set
- Sometimes validation set is separated from training set to evalute method

Stratified

 If representation of each class in training set is proportional to the overall ratios

- Stratified
 - If representation of each class in training set is proportional to the overall ratios
- k-fold cross-validation
 - Training data is divided into k random parts
 - ullet k-1 groups are used as training set and the $k^{
 m th}$ group as validation set
 - Training is repeated k times with a new validation set each time
- Leave-one-out cross-validation (LOOCV): When k = n

- Stratified
 - If representation of each class in training set is proportional to the overall ratios
- k-fold cross-validation
 - Training data is divided into k random parts
 - k-1 groups are used as training set and the k^{th} group as validation set
 - Training is repeated k times with a new validation set each time
- Leave-one-out cross-validation (LOOCV): When k = n
- Stratified cross-validation
 - When representation in each of the k random groups is proportional to the overall ratios

- Stratified
 - If representation of each class in training set is proportional to the overall ratios
- k-fold cross-validation
 - Training data is divided into k random parts
 - k-1 groups are used as training set and the k^{th} group as validation set
 - ullet Training is repeated k times with a new validation set each time
- Leave-one-out cross-validation (LOOCV): When k = n
- Stratified cross-validation
 - When representation in each of the k random groups is proportional to the overall ratios
- Classification is called supervised learning
 - Algorithm or model is "supervised" by class information

Over-Fitting and Under-Fitting

Over-fitting

- Algorithm or model classifies the training set too well
- It is too complex or uses too many parameters
- Generally performs poorly with testing set
- Ends up modeling noise rather than data characteristics

Over-Fitting and Under-Fitting

Over-fitting

- Algorithm or model classifies the training set too well
- It is too complex or uses too many parameters
- Generally performs poorly with testing set
- Ends up modeling noise rather than data characteristics

Under-fitting

- The opposite problem
- Algorithm or model does not classify the training set well at all
- It is too simple or uses too less parameters
- Generally performs poorly with testing set
- Ends up modeling overall data characteristics instead of per class

Over-Fitting and Under-Fitting

Over-fitting

- Algorithm or model classifies the training set too well
- It is too complex or uses too many parameters
- Generally performs poorly with testing set
- Ends up modeling noise rather than data characteristics

Under-fitting

- The opposite problem
- Algorithm or model does not classify the training set well at all
- It is too simple or uses too less parameters
- Generally performs poorly with testing set
- Ends up modeling overall data characteristics instead of per class

Bias-variance tradeoff

- Bias measures errors in the model learnt (under-fitting)
- Variance measures errors when training set is perturbed (over-fitting)
- Low bias generally implies higher variance and vice versa

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - ullet P': Objects returned as positive by ${\mathcal A}$
 - ullet N': Objects not returned as positive by ${\mathcal A}$

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - ullet P': Objects returned as positive by ${\mathcal A}$
 - N': Objects not returned as positive by $\mathcal A$
- True Positives (*TP*):

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - ullet P': Objects returned as positive by ${\cal A}$
 - ullet N': Objects not returned as positive by ${\mathcal A}$
- True Positives (TP): Answers returned by $A: P \cap P'$

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - ullet P': Objects returned as positive by ${\cal A}$
 - ullet N': Objects not returned as positive by ${\mathcal A}$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN):

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - P': Objects returned as positive by A
 - N': Objects not returned as positive by $\mathcal A$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - P': Objects returned as positive by A
 - N': Objects not returned as positive by $\mathcal A$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$
- False Positives (FP):

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A},$
 - P': Objects returned as positive by A
 - N': Objects not returned as positive by $\mathcal A$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$
- False Positives (FP): Non-answers returned by $A: N \cap P'$

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - P': Objects returned as positive by A
 - ullet N': Objects not returned as positive by ${\mathcal A}$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$
- False Positives (FP): Non-answers returned by $A: N \cap P'$
- False Negatives (FN):

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - P': Objects returned as positive by A
 - ullet N': Objects not returned as positive by ${\mathcal A}$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$
- False Positives (FP): Non-answers returned by $A: N \cap P'$
- False Negatives (*FN*): Answers not returned by $A: P \cap N'$

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - ullet P': Objects returned as positive by ${\cal A}$
 - ullet N': Objects not returned as positive by ${\mathcal A}$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$
- False Positives (*FP*): Non-answers returned by $A: N \cap P'$
- False Negatives (FN): Answers not returned by $A: P \cap N'$

$$P = TP \cup FN$$
 $N = TN \cup FP$ $P' = TP \cup FP$ $N' = TN \cup FN$

- Positives (P): Objects that are "true" answers (for a class)
- Negatives (N): Objects that are not answers: N = D P
- ullet For a particular classification algorithm ${\cal A}$,
 - ullet P': Objects returned as positive by ${\cal A}$
 - ullet N': Objects not returned as positive by ${\mathcal A}$
- True Positives (TP): Answers returned by $A: P \cap P'$
- True Negatives (TN): Non-answers not returned by $A: N \cap N'$
- False Positives (*FP*): Non-answers returned by $A: N \cap P'$
- False Negatives (FN): Answers not returned by $A: P \cap N'$

$$P = TP \cup FN$$
 $N = TN \cup FP$ $P' = TP \cup FP$ $N' = TN \cup FN$

- In statistics,
 - Type I error: FP
 - Type II error: FN

Confusion Matrix

- Confusion matrix visually represents the information
- Rows indicate "true" answers: P and N
- Columns indicate those returned by A: P' and N'
- Shows which error is more

Sets		Returned by ${\cal A}$	
		Positives P'	Negatives N'
True answers	Positives P	TP	FN
	Negatives <i>N</i>	FP	TN

Confusion Matrix for Multiple Classes

- Is more useful when extended for multiple classes
- Shows which classes are confused more against which other classes

Sets		Predicted by ${\cal A}$		
Sets		Class C'_1	Class C'_2	Class C_3'
True answers	Class C ₁	5	3	0
	Class C ₂	2	3	1
	Class C ₃	0	2	9

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate or Hit rate	Proportion of positives returned by ${\cal A}$	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate or Hit rate	Proportion of positives returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
Specificity or True negative rate	Proportion of negatives not returned by ${\mathcal A}$	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate or Hit rate	Proportion of positives returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
Specificity or True negative rate	Proportion of negatives not returned by \mathcal{A} Proportion of negatives	$\frac{ TN }{ TN \cup FP } = \frac{ TN }{ N }$
False positive rate	returned by \mathcal{A}	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate or Hit rate	Proportion of positives returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
Specificity or True negative rate	Proportion of negatives not returned by ${\cal A}$	$\frac{ TN }{ TN \cup FP } = \frac{ TN }{ N }$
False positive rate	Proportion of negatives returned by ${\cal A}$	$\frac{ FP }{ TN \cup FP } = \frac{ FP }{ N }$
False negative rate	Proportion of positives not returned by ${\cal A}$	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or	,	
Sensitivity or	Proportion of positives	
True positive rate	returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
or Hit rate		
Specificity or	Proportion of negatives	TN _ TN
True negative rate	not returned by ${\mathcal A}$	$\frac{ TN }{ TN \cup FP } = \frac{ TN }{ N }$
False positive rate	Proportion of negatives	$\frac{ FP }{ TN \cup FP } = \frac{ FP }{ N }$
Taise positive rate	returned by ${\mathcal A}$	$ TN \cup FP = N $
False negative rate	Proportion of positives	$\frac{ FN }{ TP \cup FN } = \frac{ FN }{ P }$
Taise negative rate	not returned by ${\cal A}$	$ TP \cup FN = P $
Accuracy	Proportion of positives returned	
Accuracy	and negatives not returned by ${\mathcal A}$	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate or Hit rate	Proportion of positives returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
Specificity or True negative rate	Proportion of negatives not returned by ${\cal A}$	$\frac{ TN }{ TN \cup FP } = \frac{ TN }{ N }$
False positive rate	Proportion of negatives returned by ${\cal A}$	$\frac{ FP }{ TN \cup FP } = \frac{ FP }{ N }$
False negative rate	Proportion of positives not returned by ${\cal A}$	$\frac{ FN }{ TP \cup FN } = \frac{ FN }{ P }$
Accuracy	Proportion of positives returned and negatives not returned by ${\cal A}$	$\frac{ TP \cup TN }{ D }$
Error rate	Proportion of positives not returned and negatives returned by ${\cal A}$	

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate or Hit rate	Proportion of positives returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
Specificity or True negative rate	Proportion of negatives not returned by ${\cal A}$	$\frac{ TN }{ TN \cup FP } = \frac{ TN }{ N }$
False positive rate	Proportion of negatives returned by ${\cal A}$	$\frac{ FP }{ TN \cup FP } = \frac{ FP }{ N }$
False negative rate	Proportion of positives not returned by ${\cal A}$	$\frac{ FN }{ TP \cup FN } = \frac{ FN }{ P }$
Accuracy	Proportion of positives returned and negatives not returned by ${\cal A}$	$\frac{ TP \cup TN }{ D }$
Error rate	Proportion of positives not returned and negatives returned by ${\cal A}$	<i>FP∪FN</i> <i>D</i>

Single Measures

• Single measures capturing both precision and recall

Single Measures

- Single measures capturing both precision and recall
- F-score or F-measure or F1-score is the harmonic mean of precision and recall

$$\textit{Fscore} = \frac{2.\textit{Precision.Recall}}{\textit{Precision} + \textit{Recall}}$$

Single Measures

- Single measures capturing both precision and recall
- F-score or F-measure or F1-score is the harmonic mean of precision and recall

$$\textit{Fscore} = \frac{2.\textit{Precision.Recall}}{\textit{Precision} + \textit{Recall}}$$

In terms of errors

$$Fscore = \frac{2.TP}{2.TP + FN + FP}$$

Single Measures

- Single measures capturing both precision and recall
- F-score or F-measure or F1-score is the harmonic mean of precision and recall

$$\textit{Fscore} = \frac{2.\textit{Precision.Recall}}{\textit{Precision} + \textit{Recall}}$$

In terms of errors

$$Fscore = \frac{2.TP}{2.TP + FN + FP}$$

Similarly, G-measure is geometric mean of precision and recall

Single Measures

- Single measures capturing both precision and recall
- F-score or F-measure or F1-score is the harmonic mean of precision and recall

$$\textit{Fscore} = \frac{2.\textit{Precision.Recall}}{\textit{Precision} + \textit{Recall}}$$

In terms of errors

$$Fscore = \frac{2.TP}{2.TP + FN + FP}$$

- Similarly, G-measure is geometric mean of precision and recall
- EER or Equal Error Rate is when FP rate is equal to FN rate

Weighting Precision versus Recall

- Suppose recall and precision are weighted at a ratio $\alpha:(1-\alpha)$
- F-score is the weighted harmonic mean

$$\frac{1}{F} = \alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}$$

Weighting Precision versus Recall

- Suppose recall and precision are weighted at a ratio $\alpha:(1-\alpha)$
- F-score is the weighted harmonic mean

$$\frac{1}{F} = \alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}$$

- $\beta^2 = \frac{1-\alpha}{\alpha}$ measures the relative importance of precision over recall
 - $\alpha \in [0,1]$ while $\beta \in [0,\infty]$
 - $\beta > 1$ emphasizes precision, while $\beta < 1$ emphasizes recall

Weighting Precision versus Recall

- Suppose recall and precision are weighted at a ratio $\alpha:(1-\alpha)$
- F-score is the weighted harmonic mean

$$\frac{1}{F} = \alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}$$

- $\beta^2 = \frac{1-\alpha}{\alpha}$ measures the relative importance of precision over recall
 - $\alpha \in [0,1]$ while $\beta \in [0,\infty]$
 - ullet $\beta > 1$ emphasizes precision, while eta < 1 emphasizes recall
- Using β^2 , weighted F-score is

$$F = \frac{(\beta^2 + 1).P.R}{\beta^2.P + R}$$

- When $\beta = 1$, precision and recall are equally weighted ($\alpha = 1/2$)
- F1-score is the harmonic mean

$$\begin{split} D = & \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\} \\ \text{Correct answer set} = & \{O_1, O_5, O_7\} \\ \text{Algorithm returns} = & \{O_1, O_3, O_5, O_6\} \end{split}$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \\
N = \\
TP = \\
TN = \\
FP = \\
FN =$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = TN = FP = FN = FN = FN$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = FN = FN = FN$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_3, O_6\}$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity =
Precision =
Specificity =
F-score =
Accuracy =
Error rate =

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity = $2/3 = 0.67$
Precision =
Specificity =
F-score =
Accuracy =
Error rate =

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity = $2/3 = 0.67$

$$Precision = $2/4 = 0.5$
Specificity =
$$F\text{-score} = Accuracy = Error rate =$$$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity $= 2/3 = 0.67$

$$Precision = 2/4 = 0.5$$
Specificity $= 3/5 = 0.6$
F-score $=$
Accuracy $=$
Error rate $=$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity = $2/3 = 0.67$

$$Precision = $2/4 = 0.5$
Specificity = $3/5 = 0.6$

$$F-score = 4/7 = 0.571$$
Accuracy =
Error rate =$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity = $2/3 = 0.67$

$$Precision = $2/4 = 0.5$

$$Specificity = $3/5 = 0.6$

$$F-score = 4/7 = 0.571$$

$$Accuracy = 5/8 = 0.625$$
Error rate =$$$$

$$D = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8\}$$
Correct answer set $= \{O_1, O_5, O_7\}$
Algorithm returns $= \{O_1, O_3, O_5, O_6\}$

$$\therefore P = \{O_1, O_5, O_7\}$$

$$N = \{O_2, O_3, O_4, O_6, O_8\}$$

$$TP = \{O_1, O_5\}$$

$$TN = \{O_2, O_4, O_8\}$$

$$FP = \{O_3, O_6\}$$

$$FN = \{O_7\}$$
Recall = Sensitivity = $2/3 = 0.67$

$$Precision = $2/4 = 0.5$

$$Specificity = $3/5 = 0.6$

$$F-score = 4/7 = 0.571$$

$$Accuracy = 5/8 = 0.625$$

$$Error rate = $3/8 = 0.375$$$$$$$

ROC Curve

- Performance of an algorithm depends on parameters
- To assess over a range of parameters, ROC curve is used
 - 1 Specificity (x-axis) versus Sensitivity (y-axis)
 - False positive rate (x-axis) versus True positive rate (y-axis)

ROC Curve

- Performance of an algorithm depends on parameters
- To assess over a range of parameters, ROC curve is used
 - 1 Specificity (x-axis) versus Sensitivity (y-axis)
 - False positive rate (x-axis) versus True positive rate (y-axis)
- A random guess algorithm is a 45° line

ROC Curve

- Performance of an algorithm depends on parameters
- To assess over a range of parameters, ROC curve is used
 - 1 Specificity (x-axis) versus Sensitivity (y-axis)
 - False positive rate (x-axis) versus True positive rate (y-axis)
- A random guess algorithm is a 45° line

- Area under the ROC curve (AUC or AUROC) measures accuracy (or discrimination)
- What AUC is good?
 - 0.9+: excellent; 0.8+: good; 0.7+: fair; 0.6+: poor; 0.6-: fail
- EER denotes the point in ROC where FP rate is equal to FN rate

Precision-Recall Curve

Precision versus recall

Breakeven point where precision is the same as recall