

 $D = (Q', \Sigma, \delta', q'_s, F')$

- $Q' = \{ S \subseteq Q \mid S \text{ is gesloten onder } \varepsilon\text{-bogen} \} = \{ S \subseteq Q \mid (p \in S \land p \xrightarrow{\varepsilon} q) \Rightarrow q \in S \}$
- $\delta': Q' \times \Sigma \to Q': (S, a) \mapsto \{q \mid \exists p \in S: p \xrightarrow{a} q\} = \text{gesloten onder } \varepsilon\text{-bogen!} \Rightarrow \delta'(S, a) \in Q'$
- $q'_s = \{q_s\} \cup \{q \in Q \mid q_s \stackrel{\varepsilon}{\leadsto} q\} = \{q_s \text{ en alle toestanden die vanuit } q_s \text{ bereikbaar zijn met } \varepsilon\text{-bogen}\}$
- $F' = \{ S \in Q' \mid S \cap F \neq \emptyset \}$

Stelling. $(Q', \Sigma, \delta', q'_s, F')$ is een DFA equivalent met de NFA $(Q, \Sigma, \delta, q_s, F)$

Bewijs. Uit de constructie op pagina 27-28 volgt duidelijk dat de geconstrueerde automaat een DFA is:

- Er zijn geen ε -bogen, want $\delta'(S, a)$ is enkel gedefinieerd voor $a \in \Sigma$ (en $S \in Q'$), m.a.w. $a \neq \varepsilon$
- De functie $\delta': Q' \times \Sigma \to Q'$ is een totale functie: ze is overal goed gedefinieerd.
 - $-\delta'(S,a)$ is gesloten onder ε -bogen. Stel immers dat $p \in \delta'(S,a)$. Dit wil zeggen dat $\exists p_{-1} \in S: p_{-1} \stackrel{a}{\leadsto} p$. Stel nu dat er voor toestanden $q_i \in Q$ geldt dat $p \stackrel{\varepsilon}{\to} q_1 \stackrel{\varepsilon}{\to} \dots \stackrel{\varepsilon}{\to} q_n$ met $n \in \mathbb{N}$ (we mogen willekeurig veel ε -bogen nemen). Dan is duidelijk dat ook $p_{-1} \stackrel{a}{\leadsto} q_n$, want a is een ε -compressie van $a\varepsilon^n$. En dus geldt ook dat $q_n \in \delta'(S,a)$. Dit wil precies zeggen dat $\delta'(S,a)$ gesloten is onder ε -bogen.
 - Stel dat $S_w = \{q \mid q_s \stackrel{w}{\leadsto} q\}$. S_{wa} is de verzameling toestanden die we bereiken door uit toestanden $p \in S_w$ één a-boog te volgen gevolgd door een willekeurig aantal ε -bogen. Het is dan duidelijk dat $\delta'(S_w, a) = S_{wa}$.

Wat betreft de equivalentie, moeten we verifiëren dat

$$\forall w \in \Sigma^*: \quad q'_s \overset{w}{\leadsto} F' \text{ (in de DFA)} \quad \Longleftrightarrow \quad q_s \overset{w}{\leadsto} F \text{ (in de NFA)}$$

We bewijzen beide richtingen.

 \Rightarrow Deze implicatie volgt uit iets algemeners dat we nu zullen bewijzen: zij S een deelverzameling van Q gesloten onder ε -bogen. Dan geldt

$$\forall w \in \Sigma^*: q_s \stackrel{w}{\leadsto} S \text{ (in de DFA)} \implies \forall p \in S: q_s \stackrel{w}{\leadsto} p \text{ (in de NFA)}$$

Dit bewijzen we per inductie op de lengte van w.

- Basisstap: Als |w| = 0, dan geldt dat $w = \varepsilon =$ de lege string. Neem aan dat $q'_s \stackrel{w}{\leadsto} S$. Dan is $S = q'_s = \{q_s,$ toestanden bereikbaar vanuit q_s met $\varepsilon\}$. We zien nu duidelijk in dat de implicatie geldt, want elke toestand in $S = q'_s$ is evident bereikbaar vanuit q_s met ε .
- Inductie hypothese: veronderstel dat de stelling geldt voor alle strings w van hoogstens lengte $\overline{|w|=n}.$
- Inductiestap: Beschouw een string w' = wa (met $a \in \Sigma$) van lengte n+1. We willen aantonen dat als $q'_s \stackrel{wa}{\leadsto} S$, dan geldt $\forall p \in S : q_s \stackrel{wa}{\leadsto} p$. Zij S_{-1} de toestand in de DFA zodat $q'_s \stackrel{w}{\leadsto} S_{-1}$. Wegens de inductiehypothese geldt nu

$$\forall p \in S_{-1}: q_s \stackrel{w}{\leadsto} p$$

We kunnen in de DFA in S geraken door een pijl met label a te volgen vanuit toestand S_{-1} : $S = \delta'(S_{-1}, a)$. Dit betekent precies dat S de verzameling is van alle toestanden die we in de NFA kunnen bereiken door vanuit een toestand in $p \in S_{-1}$ een pijl te nemen met een label a erop, gevolgd door eventueel een aantal ε -bogen. Er geldt immers:

$$S = \delta'(S_{-1}, a) = \{ q \mid \exists p \in S_{-1} : p \stackrel{a}{\leadsto} q \}$$

En dus geldt voor iedere $q \in S$ dat $q_s \overset{wa=w'}{\leadsto} q$, hetgeen we wilden bewijzen.

Nu volgt dat

$$q_s' \overset{w}{\leadsto} F' \quad \Longrightarrow \quad \exists S \in F' : q_s' \overset{w}{\leadsto} S \quad \overset{\text{hierboven}}{\Longrightarrow} \quad \forall p \in S : q_s \overset{w}{\leadsto} p$$

Omdat $S \in F'$ geldt dat $\exists p \in S : p \in F$. Voor die p geldt dus ook dat $q_s \stackrel{w}{\leadsto} p$ en dus $q_s \stackrel{w}{\leadsto} F$; q.e.d.

 \Leftarrow Als $q_s \stackrel{w}{\leadsto} F$, dan bestaat er een $p \in F$ zodat $q_s \stackrel{w}{\leadsto} p$. Er bestaat in de NFA dus een accepterend pad $q_s, q_1, q_2, ..., q_n, p$. Voor een toestand q in de NFA, zij S(q) de grootste verzameling die q bevat en gesloten is onder ε-bogen. Nu is $S(q_s), S(q_1), S(q_2), ..., S(q_n), S(p)$ een accepterend pad in de DFA. En dus geldt dat $q_s' \stackrel{w}{\leadsto} S(p)$ – en dus ook dat $q_s' \stackrel{w}{\leadsto} F'$, want het beschreven pad met verzamelingen S(q), die gesloten zijn onder ε-bogen, is een accepterend pad.