

Freescale Semiconductor, Inc.

Document Number: KL16P64M48SF4 Data Sheet: Technical Data Rev 5 08/2014

Kinetis KL16 Sub-Family

48 MHz Cortex-M0+ Based Microcontroller

Designed with efficiency in mind. Compatible with all other Kinetis L families as well as Kinetis K1x family. General purpose MCU featuring market leading ultra low-power to provide developers an appropriate entry-level 32-bit solution. This product offers:

- Run power consumption down to 50 μA/MHz in very low power run mode
- Static power consumption down to 2 µA with full state retention and 4.5 µs wakeup
- Ultra-efficient Cortex-M0+ processor running up to 48 MHz with industry leading throughput
- Memory option is up to 256 KB flash and 32 KB RAM
- Energy-saving architecture is optimized for low power with 90nm TFS technology, clock and power gating techniques, and zero wait state flash memory controller

Performance

48 MHz ARM® Cortex®-M0+ core

Memories and memory interfaces

- Up to 256 KB program flash memory
- Up to 32 KB SRAM

System peripherals

- Nine low-power modes to provide power optimization based on application requirements
- COP Software watchdog
- 4-channel DMA controller, supporting up to 63 reguest Analog Modules sources
- · Low-leakage wakeup unit
- SWD debug interface and Micro Trace Buffer
- · Bit Manipulation Engine

Clocks

- 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator
- Multi-purpose clock source

Operating Characteristics

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range (ambient): -40 to 105°C

MKL16Z256VLH4 MKL16Z256VMP4

Human-machine interface

- Low-power hardware touch sensor interface (TSI)
- Up to 54 general-purpose input/output (GPIO)

Communication interfaces

- Two 16-bit SPI modules
- I2S (SAI) module
- One low power UART module
- Two UART modules
- · Two I2C module

- 16-bit SAR ADC
- 12-bit DAC
- Analog comparator (CMP) containing a 6-bit DAC and programmable reference input

- Six channel Timer/PWM (TPM)
- Two 2-channel Timer/PWM modules
- · Periodic interrupt timers
- 16-bit low-power timer (LPTMR)
- Real time clock

Security and integrity modules

• 80-bit unique identification number per chip

Ordering Information ¹

Part Number	Men	Maximum number of I\O's	
	Flash (KB)	SRAM (KB)	
MKL16Z256VLH4	256	32	54
MKL16Z256VMP4	256	32	54

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL16P64M48SF4RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL16P64M48SF4 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_xN40H ²
Package	Package dimensions are provided in package drawings.	LQFP 64-pin: 98ASS23234W ¹
drawing		MAPBGA 64-pin: 98ASA00420D1

- To find the associated resource, go to http://www.freescale.com and perform a search using this term.
 To find the associated resource, go to http://www.freescale.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Table of Contents

1	Rati	ings	4		3.6.2	CMP and 6-bit DAC electrical specifications	30
	1.1	Therm	al handling ratings4		3.6.3	12-bit DAC electrical characteristics	33
	1.2	Moistu	re handling ratings4	3.7	Timer	s	36
	1.3	ESD h	andling ratings4	3.8	Comn	nunication interfaces	36
			e and current operating ratings4		3.8.1	SPI switching specifications	36
2	Ger	neral	5		3.8.2	Inter-Integrated Circuit Interface (I2C) timing	41
	2.1	AC ele	ectrical characteristics5		3.8.3	UART	42
	2.2	Nonsw	vitching electrical specifications5		3.8.4	I2S/SAI switching specifications	42
		2.2.1	Voltage and current operating requirements6	3.9	Huma	n-machine interfaces (HMI)	46
		2.2.2	LVD and POR operating requirements6		3.9.1	TSI electrical specifications	46
		2.2.3	Voltage and current operating behaviors7	4 Dim	nension	s	47
		2.2.4	Power mode transition operating behaviors8	4.1	Obtair	ning package dimensions	47
		2.2.5	Power consumption operating behaviors9	5 Pin	out		47
		2.2.6	EMC radiated emissions operating behaviors 15	5.1	KL16	Signal Multiplexing and Pin Assignments	47
		2.2.7	Designing with radiated emissions in mind 16	5.2	KL16	pinouts	50
		2.2.8	Capacitance attributes16	6 Ord	lering p	arts	52
	2.3	Switch	ing specifications16	6.1	Deter	mining valid orderable parts	52
		2.3.1	Device clock specifications	7 Par	t identif	fication	52
		2.3.2	General switching specifications17	7.1	Descr	iption	52
	2.4	Therm	al specifications17	7.2	Forma	at	53
		2.4.1	Thermal operating requirements17	7.3	Fields		53
		2.4.2	Thermal attributes17	7.4	Exam	ple	53
3	Peri	ipheral	operating requirements and behaviors18	8 Ter	minolo	gy and guidelines	54
	3.1	Core n	nodules	8.1	Defini	tion: Operating requirement	54
		3.1.1	SWD electricals18	8.2	Defini	tion: Operating behavior	54
	3.2	System	m modules20	8.3	Defini	tion: Attribute	54
	3.3	Clock	modules	8.4	Defini	tion: Rating	55
		3.3.1	MCG specifications20	8.5	Resul	t of exceeding a rating	55
		3.3.2	Oscillator electrical specifications22	8.6	Relati	onship between ratings and operating	
	3.4	Memo	ries and memory interfaces24		requir	ements	55
		3.4.1	Flash electrical specifications24	8.7	Guide	lines for ratings and operating requirements	56
	3.5	Securi	ty and integrity modules25	8.8	Defini	tion: Typical value	56
	3.6	Analog	j25	8.9	Typica	al value conditions	57
		3.6.1	ADC electrical specifications26	9 Rev	ision h	istory	58

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V_{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	$V_{DD} + 0.3$	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- $C_L=30 pF loads$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V_{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.7 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.35 \times V_{DD}$	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{IO_MIN} (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V_{IO_MIN} - V_{IN})/II_{ICIO}I.

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1

^{2.} Open drain outputs must be pulled to V_{DD}.

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV = 01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV = 10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	V	
V_{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	V	
V _{LVW3L}	• Level 3 falling (LVWV = 10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV = 11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

^{1.} Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET_b) • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$ • $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -2.5 \text{ mA}$	V _{DD} - 0.5 V _{DD} - 0.5	_ _	V V	1, 2
V _{OH}	Output high voltage — High drive pad (except RESET_b) • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$, $\text{I}_{OH} = -20 \text{ mA}$ • $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$, $\text{I}_{OH} = -10 \text{ mA}$	V _{DD} - 0.5 V _{DD} - 0.5	_ _	V V	1, 2
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad $ \bullet \ \ 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ I_{OL} = 5 \ mA $ $ \bullet \ \ 1.71 \ V \leq V_{DD} \leq 2.7 \ V, \ I_{OL} = 2.5 \ mA $	_ _	0.5 0.5	V V	1

Table 7. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — High drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 20 \text{ mA}$	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μА	3
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_		μΑ	3
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	4

^{1.} PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.

Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	113	124	μs	

^{2.} The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.

^{3.} Measured at $V_{DD} = 3.6 \text{ V}$

^{4.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

Table 8. Power mode transition operating behaviors (continued	Table 8.	Power mode transition	operating	behaviors	(continued
---	----------	-----------------------	-----------	-----------	------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	VLLS1 → RUN	_	112	124	μs	
	• VLLS3 → RUN	_	53	60	μs	
	• LLS → RUN		4.5	F 0		
		_	4.5	5.0	μs	
	VLPS → RUN					
		_	4.5	5.0	μs	
	• STOP → RUN					
		_	4.5	5.0	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Table 9. Power consumption operating behaviors

Symbol	Description		Тур.	Max	Unit	Note
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO_} CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V	_	6.7	_	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V	_	4.5	5.1	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24	at 1.8 V	5.6	6.3	mA	3
	MHz bus and flash, all peripheral clocks disabled, code executing from flash	at 3.0 V	5.4	6.0	mA	
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 1.8 V	_	6.9	7.3	mA	3, 4
	Run mode current - 48 MHz core / 24	at 25 °C	6.9	7.1	mA	
	MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	at 125 °C	7.3	7.6	mA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description		Тур.	Max	Unit	Note
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	2.9	3.5	mA	3 3 5 6
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	2.2	2.8	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V	_	1.6	2.1	mA	3
I _{DD_VLPRCO_CM}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V	_	798		μА	5
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V	_	167	336	μΑ	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	192	354	μΑ	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	257	431	μΑ	4, 6
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	112	286	μА	6
I_{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	306	328	μΑ	_
		at 50 °C	322	349	μΑ	
		at 70 °C	348	382	μΑ	
		at 85 °C	384	433	μA	
		at 105 °C	481	578	μΑ	
I_{DD_VLPS}	Very-low-power stop mode current at 3.0 V	at 25 °C	2.71	5.03	μA	-
	J.U V	at 50 °C	7.05	11.94	μΑ	
		at 70 °C	15.80	26.87	μA	
		at 85 °C	29.60	47.30	μA	
		at 105 °C	69.13	106.04	μA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description		Тур.	Max	Unit	Note
I _{DD_LLS}	Low leakage stop mode current at 3.0	at 25 °C	2.00	2.7	μA	_
	V	at 50 °C	3.96	5.14	μA	
		at 70 °C	7.77	10.71	μA	
		at 85 °C	14.15	18.79	μA	
		at 105 °C	33.20	43.67	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current	at 25 °C	1.5	2.2	μA	_
	at 3.0 V	at 50 °C	2.83	3.55	μΑ	
		at 70 °C	5.53	7.26	μΑ	
		at 85 °C	9.92	12.71	μΑ	
		at 105 °C	22.90	29.23	μΑ	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current	at 25 °C	0.71	1.2	μΑ	_
	at 3.0V	at 50 °C	1.27	1.9	μΑ	
		at 70 °C	2.48	3.51	μΑ	
		at 85 °C	4.65	6.29	μΑ	
		at 105 °C	11.55	14.34	μΑ	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.41	0.9	μΑ	_
	(SMC_STOPCTRL[PORPO] = 0) at 3.0	at 50 °C	0.96	1.56	μΑ	
	V	at 70 °C	2.17	3.1	μΑ	
		at 85 °C	4.35	5.32	μΑ	
		at 105 °C	11.24	14.00	μΑ	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.23	0.69	μΑ	7
	(SMC_STOPCTRL[PORPO] = 1) at 3.0 v	at 50 °C	0.77	1.35	μΑ	
		at 70 °C	1.98	2.52	μΑ	
		at 85 °C	4.16	5.14	μΑ	
		at 105 °C	11.05	13.80	μΑ	

^{1.} The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 6. MCG configured for BLPI mode.
- 7. No brownout.

^{2.} MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.

^{3.} MCG configured for FEI mode.

^{4.} Incremental current consumption from peripheral activity is not included.

^{5.} MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description		Temperature (°C)					Unit	
			-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock Measured by entering STOP o with 4 MHz IRC enabled.		56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock Measured by entering STOP m 32 kHz IRC enabled.		52	52	52	52	52	52	μΑ
I _{EREFSTEN4MHz}	External 4 MHz crystal clock at Measured by entering STOP o with the crystal enabled.		206	228	237	245	251	258	μΑ
I _{EREFSTEN32KHz}	External 32 kHz crystal clock	VLLS1	440	490	540	560	570	580	nA
	adder by means of the OSC0_CR[EREFSTEN and	VLLS3	440	490	540	560	570	580	
	EREFSTEN] bits. Measured	LLS	490	490	540	560	570	680	
	by entering all modes with the	VLPS	510	560	560	560	610	680	
	crystal enabled.	STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.		22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measure the device in VLLS1 mode with kHz crystal enabled by means RTC_CR[OSCE] bit and the R for 1 minute. Includes ERCLKS external crystal) power consum	n external 32 of the TC ALARM set 32K (32 kHz	432	357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	115200 baud rate. Includes selected clock source power consumption.	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	86	μA
	compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	OSCERCLK (4 MHz external crystal)	235	256	265	274	280	287	

Table 10. Low power mode peripheral adders — typical value (continued)

Symbol	Description	Temperature (°C)					Unit	
		-40	25	50	70	85	105	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μΑ
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	366	366	366	366	366	366	μА

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 3. Run mode supply current vs. core frequency

Figure 4. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	12	dΒμV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	7	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	4	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	М	_	2,3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 8 \,^{\circ}\text{MHz}$ (crystal), $f_{SYS} = 48 \,^{\circ}\text{MHz}$, $f_{BUS} = 24 \,^{\circ}\text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode	•	•	•
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz
LPTMR_ERCLK	LPTMR external reference clock	_	16	MHz
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	_	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{UART0}	UART0 asynchronous clock	_	8	MHz

- The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
- 2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	_	36	ns	3

- 1. The greater synchronous and asynchronous timing must be met.
- 2. This is the shortest pulse that is guaranteed to be recognized.
- 3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
T _J	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

2.4.2 Thermal attributes

Table 16. Thermal attributes

Board type	Symbol	Description	64 LQFP	64 MAPBGA	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	69	49.8	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	51	42.3	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	58	40.9	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	44	37.7	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	33	39.2	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	19	50.3	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	4	2.2	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			

32

ns

ns

ns

0

5

J10

J11

J12

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns

SWD_DIO input data hold time after SWD_CLK rise

SWD_CLK high to SWD_DIO data valid

SWD_CLK high to SWD_DIO high-Z

Table 17. SWD full voltage range electricals (continued)

Figure 5. Serial wire clock input timing

Figure 6. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Table 18. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	_	32.768	_	kHz		
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	frequency at fixed	med average DCO output voltage and temperature — I] and C4[SCFTRIM]	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70 °C		_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C	_	4	_	MHz	
Δf _{intf_ft}	Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal V _{DD} and 25 °C		_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal V _{DD} and 25 °C		3	_	5	MHz	
f _{loc_low}	Loss of external c	lock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external c	lock minimum frequency —	(16/5) x f _{ints_t}	_	_	kHz	
		Fl	L		'		
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) $640 \times f_{\text{fll_ref}}$	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) $1280 \times f_{fil_ref}$	40	41.94	48	MHz	
f _{dco_t_DMX3}	DCO output frequency	Low range (DRS = 00)	_	23.99	_	MHz	5, 6

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97	_	MHz	
		1464 × f _{fll_ref}					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	7
	• f _{VCO} = 48 M	lHz					
t _{fII_acquire}	FLL target freque	ncy acquisition time	_	_	1	ms	8
		PI	LL				
f _{vco}	VCO operating fre	equency	48.0	_	100	MHz	
I _{pll}	PLL operating current • PLL at 96 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 48)		_	1060	_	μΑ	9
I _{pll}	PLL operating current • PLL at 48 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 24)		_	600	_	μΑ	9
f _{pll_ref}	PLL reference free	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					10
	• f _{vco} = 48 MH	Hz	_	120	_	ps	
	• f _{vco} = 100 M	1Hz	_		_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MH	Ηz	_	1350	_	ps	
	• f _{vco} = 100 M	1Hz	_	600	_	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequence	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector dete	ection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints\ ft}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- 4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μΑ	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μΑ	
	• 4 MHz	_	400	_	μΑ	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
C _y	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	MΩ	
R_S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x , C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

Peripheral operating requirements and behaviors

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 21. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	_	52	452	ms	1
t _{hversall}	Erase All high-voltage time	_	52	452	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					_
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB program flash	_	88	600	ms	

Table 22.	Flash command timing	specifications	(continued)
-----------	----------------------	----------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	_
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50		years	_
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T $_{j}$ \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

3.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V_{DDA}	V _{DDA}	V	
V_{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V_{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 * VREFH	V	_
		All other modes	VREFL	_	VREFH		
C _{ADIN} Input	1 .	16-bit mode	_	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source	13-bit / 12-bit modes					3
	resistance (external)	f _{ADCK} < 4 MHz	_	_	5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

Table 25. 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 7. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3
'DDA_ADC	ADC	ADLPC = 1, ADHSC =	1.2	2.4	3.9	MHz	
	asynchronous	0	2.4	4.0	6.1	MHz	1/f _{ADACK}
	clock source	ADLPC = 1, ADHSC =	3.0	5.2	7.3	MHz	
f _{ADACK}		1	4.4	6.2	9.5	MHz	
IADACK		• ADLPC = 0, ADHSC = 0	7.7	0.2	9.5	IVII IZ	
		• ADLPC = 0, ADHSC = 1					
	Sample Time	See Reference Manual chapte	r for sample	times			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	<12-bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	ineanty	• <12-bit modes	_	±0.2	-0.3 to 0.5		
INL	INL Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		<12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
E_Q	Quantization	16-bit modes	_	-1 to 0	_	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective number	16-bit differential mode	12.8	14.5	_	bits	6
	of bits	• Avg = 32	11.9	13.8	_	bits	
		• Avg = 4					
		40 bit single and advands	12.2	13.9	_	bits	
		16-bit single-ended mode	11.4	13.1	_	bits	
		• Avg = 32					
		• Avg = 4					
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic distortion	16-bit differential mode	_	-94	_	dB	7
		• Avg = 32	_	-85	_	dB	5 5 V _{ADIN} = V _{DDA} 5
		16-bit single-ended mode					
		• Avg = 32					
SFDR	Spurious free dynamic range	16-bit differential mode	82	95	_	dB	7

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		Avg = 3216-bit single-ended modeAvg = 32	78	90	_	dB	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$	mV	I _{In} = leakage current	
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- 2. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications

Table 27. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	1.71	_	3.6	V

Table 27. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μΑ
V _{AIN}	Analog input voltage	V _{SS} - 0.3	_	V_{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μΑ
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD}\!\!-\!\!0.6~V.$

^{2.} Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

^{3. 1} LSB = V_{reference}/64

Peripheral operating requirements and behaviors

Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 28. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

- 1. The DAC reference can be selected to be V_{DDA} or $V_{\text{REFH}}.$
- 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.3.2 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	250	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V_{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60		90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T_GE	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	High power (SP _{HP})	1.2	1.7	_		
	Low power (SP _{LP})	0.05	0.12	_		
BW	3dB bandwidth				kHz	
	High power (SP _{HP})	550	_	_		
	Low power (SP _{LP})	40	_	_		

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- 6. $V_{DDA} = 3.0 \text{ V}$, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 12. Typical INL error vs. digital code

Figure 13. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to $20\%~V_{DD}$ and $80\%~V_{DD}$ thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num. Symbol Description Min. Max. Unit Note f_{periph}/2048 1 f_{op} Frequency of operation f_{periph}/2 Hz 1 SPSCK period 2 2048 x 2 t_{SPSCK} 2 x t_{periph} ns tperiph Enable lead time 1/2 3 t_{Lead} t_{SPSCK} 4 1/2 Enable lag time t_{Laq} t_{SPSCK} 5 Clock (SPSCK) high or low time 1024 x t_{periph} - 30 ns t_{WSPSCK} t_{periph} 6 Data setup time (inputs) 18 t_{SU} ns 7 Data hold time (inputs) 0 t_{HI} ns 8 Data valid (after SPSCK edge) 15 t_v ns 9 Data hold time (outputs) 0 t_{HO} 10 Rise time input t_{RI} t_{periph} - 25 Fall time input t_{FI} Rise time output 11 25 ns t_{RO} Fall time output t_{FO}

Table 30. SPI master mode timing on slew rate disabled pads

Table 31. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_

Table continues on the next page...

^{1.} For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

^{2.} $t_{periph} = 1/f_{periph}$

Table 31. SPI master mode timing on slew rate enabled pads (continued)

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	_	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{Fl}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. $t_{periph} = 1/f_{periph}$

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

^{1.}If configured as output

Figure 15. SPI master mode timing (CPHA = 1)

Table 32. SPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2.5	_	ns	_
7	t _{HI}	Data hold time (inputs)	3.5	_	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	31	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

^{2.} $t_{periph} = 1/f_{periph}$

^{3.} Time to data active from high-impedance state

^{4.} Hold time to high-impedance state

Table 33.	SPI slave mode timing on slew rate enabled pads
-----------	---

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Figure 16. SPI slave mode timing (CPHA = 0)

Figure 17. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 34. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Unit	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ³ , ⁶	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

^{1.} The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

Peripheral operating requirements and behaviors

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

Figure 18. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 **UART**

See General switching specifications.

3.8.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

3.8.4.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15.5	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	19	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	26	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Table 35. I2S/SAI master mode timing

Figure 19. I2S/SAI timing — master modes

Table 36.	12S/SAI	slave	mode	timing
-----------	---------	-------	------	--------

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	33	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	28	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 20. I2S/SAI timing — slave modes

3.8.4.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 37. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	75	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 21. I2S/SAI timing — master modes

Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns

Table continues on the next page...

Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	87	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1	_	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 22. I2S/SAI timing — slave modes

3.9 Human-machine interfaces (HMI)

3.9.1 TSI electrical specifications

Table 39. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA

Table continues on the next page...

Table 39.	TSI electrical s	pecifications	(continued)	
-----------	------------------	---------------	-------------	--

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μΑ
TSI_EN	Power consumption in enable mode	_	100	_	μΑ
TSI_DIS	Power consumption in disable mode	_	1.2	_	μA
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI_CREF TSI reference capacitor		1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19	_	1.03	V

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number			
64-pin LQFP	98ASS23234W			
64-pin MAPBGA	98ASA00420D			

5 Pinout

5.1 KL16 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64 BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
A1	1	PTE0	DISABLED		PTE0	SPI1_MISO	UART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	
B1	2	PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	

Pinout

64 BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	3	VDD	VDD	VDD							
C4	4	VSS	VSS	VSS							
E1	5	PTE16	ADC0_DP1/ ADC0_SE1	ADC0_DP1/ ADC0_SE1	PTE16	SPI0_PCS0	UART2_TX	TPM_CLKIN0			
D1	6	PTE17	ADC0_DM1/ ADC0_SE5a	ADC0_DM1/ ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	TPM_CLKIN1		LPTMR0_ ALT3	
E2	7	PTE18	ADC0_DP2/ ADC0_SE2	ADC0_DP2/ ADC0_SE2	PTE18	SPI0_MOSI		I2CO_SDA	SPI0_MISO		
D2	8	PTE19	ADC0_DM2/ ADC0_SE6a	ADC0_DM2/ ADC0_SE6a	PTE19	SPI0_MISO		I2C0_SCL	SPI0_MOSI		
G1	9	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	UART0_TX			
F1	10	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	UARTO_RX			
G2	11	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX			
F2	12	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX			
F4	13	VDDA	VDDA	VDDA							
G4	14	VREFH	VREFH	VREFH							
G3	15	VREFL	VREFL	VREFL							
F3	16	VSSA	VSSA	VSSA							
H1	17	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
H2	18	PTE30	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	DACO_OUT/ ADCO_SE23/ CMPO_IN4	PTE30		TPM0_CH3	TPM_CLKIN1			
НЗ	19	PTE31	DISABLED		PTE31		TPM0_CH4				
H4	20	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
H5	21	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
D3	22	PTA0	SWD_CLK	TSI0_CH1	PTA0		TPM0_CH5				SWD_CLK
D4	23	PTA1	DISABLED	TSI0_CH2	PTA1	UARTO_RX	TPM2_CH0				
E5	24	PTA2	DISABLED	TSI0_CH3	PTA2	UARTO_TX	TPM2_CH1				
D5	25	PTA3	SWD_DIO	TSI0_CH4	PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
G5	26	PTA4	NMI_b	TSI0_CH5	PTA4	I2C1_SDA	TPM0_CH1				NMI_b
F5	27	PTA5	DISABLED		PTA5		TPM0_CH2			I2S0_TX_ BCLK	
H6	28	PTA12	DISABLED		PTA12		TPM1_CH0			I2S0_TXD0	
G6	29	PTA13	DISABLED		PTA13		TPM1_CH1			I2S0_TX_FS	
G7	30	VDD	VDD	VDD							
H7	31	VSS	VSS	VSS							
H8	32	PTA18	EXTAL0	EXTAL0	PTA18		UART1_RX	TPM_CLKIN0			

64 BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
G8	33	PTA19	XTAL0	XTAL0	PTA19		UART1_TX	TPM_CLKIN1		LPTMR0_ ALT1	
F8	34	PTA20	RESET_b		PTA20						RESET_b
F7	35	PTB0/ LLWU_P5	ADC0_SE8/ TSI0_CH0	ADC0_SE8/ TSI0_CH0	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				
F6	36	PTB1	ADC0_SE9/ TSI0_CH6	ADC0_SE9/ TSI0_CH6	PTB1	I2C0_SDA	TPM1_CH1				
E7	37	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	TPM2_CH0				
E8	38	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	TPM2_CH1				
E6	39	PTB16	TSI0_CH9	TSI0_CH9	PTB16	SPI1_MOSI	UART0_RX	TPM_CLKIN0	SPI1_MISO		
D7	40	PTB17	TSI0_CH10	TSI0_CH10	PTB17	SPI1_MISO	UART0_TX	TPM_CLKIN1	SPI1_MOSI		
D6	41	PTB18	TSI0_CH11	TSI0_CH11	PTB18		TPM2_CH0	I2S0_TX_ BCLK			
C7	42	PTB19	TSI0_CH12	TSI0_CH12	PTB19		TPM2_CH1	I2S0_TX_FS			
D8	43	PTC0	ADC0_SE14/ TSI0_CH13	ADC0_SE14/ TSI0_CH13	PTC0		EXTRG_IN		CMP0_OUT	I2S0_TXD0	
C6	44	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15/ TSI0_CH14	ADC0_SE15/ TSI0_CH14	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0		I2S0_TXD0	
В7	45	PTC2	ADC0_SE11/ TSI0_CH15	ADC0_SE11/ TSI0_CH15	PTC2	I2C1_SDA		TPM0_CH1		I2S0_TX_FS	
C8	46	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7		UART1_RX	TPM0_CH2	CLKOUT	I2S0_TX_ BCLK	
E3	47	VSS	VSS	VSS							
E4	48	VDD	VDD	VDD							
B8	49	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	TPM0_CH3	I2S0_MCLK		
A8	50	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0		CMP0_OUT	
A7	51	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	
B6	52	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO		I2S0_RX_FS	SPI0_MOSI		
A6	53	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4	I2S0_MCLK			
B5	54	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5	I2S0_RX_ BCLK			
B4	55	PTC10	DISABLED		PTC10	I2C1_SCL		I2S0_RX_FS			
A5	56	PTC11	DISABLED		PTC11	I2C1_SDA		I2S0_RXD0			
C3	57	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0			
A4	58	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1			
C2	59	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO		
В3	60	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI		

Pinout

64 BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
A3	61	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4			
C1	62	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5			
B2	63	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	UARTO_RX		SPI1_MISO		
A2	64	PTD7	DISABLED		PTD7	SPI1_MISO	UARTO_TX		SPI1_MOSI		
C5	ı	NC	NC	NC							

5.2 KL16 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, ssee KL16 Signal Multiplexing and Pin Assignments.

Figure 23. KL16 64-pin LQFP pinout diagram

Figure 24. KL16 64-pin BGA pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL16 and MKL16

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Table 40. Part number fields descriptions

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL16
Α	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	• 256 = 256 KB
R	Silicon revision	(Blank) = MainA = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	R = Tape and reel

7.4 Example

This is an example part number:

MKL16Z256VLH4

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Table 41. Typical value conditions

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V _{DD}	3.3 V supply voltage	3.3	V

9 Revision history

The following table provides a revision history for this document.

Table 42. Revision history

Rev. No.	Date	Substantial Changes
3	3/2014	Updated the front page and restructured the chapters Updated Voltage and current operating behaviors Updated EMC radiated emissions operating behaviors Updated Power mode transition operating behaviors Updated Capacitance attributes Updated footnote in the Device clock specifications Added V _{REFH} and V _{REFL} in the 16-bit ADC electrical characteristics Updated footnote to the V _{DACR} in the 12-bit DAC operating requirements Added Inter-Integrated Circuit Interface (I2C) timing
4	5/2014	 Updated Power consumption operating behaviors Updated Definition: Operating behavior
5	08/2014	 Updated related source in the front page Updated Power consumption operating behaviors

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL16P64M48SF4 Revision 5 08/2014