Pumping Lemma (For Regular Languages)

- >> Pumping Lemma is used to prove that a Language is NOT REGULAR
- »It cannot be used to prove that a Language is Regular

If A is a Regular Language, then A has a Pumping Length 'P' such that any string 'S' where $|S| \ge P$ may be divided into 3 parts S = xyz such that the following conditions must be true:

- (1) $\times y^i z \in A$ for every $i \ge 0$
- (2) |y| > 0
- (3) |xy|∠P

To prove that a language is not Regular using PUMPING LEMMA, follow the below steps:

(We prove using Contradiction)

- -> Assume that A is Regular
- -> It has to have a Pumping Length (say P)
- -> All strings longer than P can be pumped |S|≥P
- -> Now find a string 'S' in A such that |S|≥P
- -> Divide S into x y z
- -> Show that x yiz ∉A for some i
- -> Then consider all ways that S can be divided into x y z
- -> Show that none of these can satisfy all the 3 pumping conditions at the same time
- -> S cannot be Pumped == CONTRADICTION

Pumping Lemma (For Regular Languages) - EXAMPLE (Part-1)

Using Pumping Lemma prove that the language $A = \{a^n b^n \mid n \ge 0\}$ is Not Regular

P8004: Assume that A is Regular Pumping length = P

P = 7

Case 1: The Y is in the 'a' part

Case 2: The Y is in the 'b' part

Case 3: The Y is in the 'a' and 'b' part

Case 3: The Y is in the 'a' and 'b' part

a a a a a a a b b b b b b b

x y Z

Pumping Lemma (For Regular Languages) EXAMPLE (Part-2)

Using Pumping Lemma prove that the language $A = \{yy \mid y \in \{0,1\}^*\}$ is Not Regular

Assume that A is Regular

Then it must have a pumping length = P

S = 0°10°1

 $xy^{i}z \Rightarrow xy^{2}z$

\$ A

14/50

|214/ 6 = 7 A is not Regular

Pumping Lemma (For Context Free Languages)

Pumping Lemma (for CFL) is used to prove that a language is NOT Context Free

Context Free Language

In formal language theory, a Context Free Language is a language generated by some Context Free Grammar.

The set of all CFL is identical to the set of languages accepted by Pushdown Automata.

Context Free Grammar is defined by 4 tuples as $G = \{V, \Sigma, S, P\}$ where

V = Set of Variables or Non-Terminal Symbols

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Pumping Lemma (For Context Free Languages)

Pumping Lemma (for CFL) is used to prove that a language is NOT Context Free

If A is a Context Free Language, then, A has a Pumping Length 'P' such that any string 'S', where $|S| \gg P$ may be divided into 5 pieces S = uvxyz such that the following conditions must be true:

- (1) $u v^i x y^i z$ is in A for every $i \ge 0$
- (2) |vy| > 0
- (3) $|v \times y| \leq P$

To prove that a Language is Not Context Free using Pumping Lemma (for CFL) follow the steps given below: (We prove using CONTRADICTION)

- -> Assume that A is Context Free
- -> It has to have a Pumping Length (say P)
- -> All strings longer than P can be pumped $|S| \ge P$
- -> Now find a string 'S' in A such that $|S| \ge P$
- -> Divide S into uvxyz
- -> Show that $u v^i x y^i z \notin A$ for some i
- -> Then consider the ways that S can be divided into uvxyz
- -> Show that none of these can satisfy all the 3 pumping conditions at the same time
- -> S cannot be pumped == CONTRADICTION

<u>Pumping Lemma (for Context Free Languages) - Example</u> (Part-1)

Show that $L = \{a^Nb^Nc^N \mid N \geqslant 0\}$ is Not Context Free

- -> Assume that L is Context Free
- -> L must have a pumping length (say P)
- -> Now we take a string S such that $S = a^p b^p c^p$
- -> We divide S into parts uvxyz

Eg.
$$P = 4$$
 So, $S = a^4 b^4 c^4$

Case I: v and y each contain only one type of symbol

Pumping Lemma (for Context Free Languages) - Example (Part-2)

Show that L = { ww | $w \in \{0,1\}^*$ } is NOT Context Free

- -> Assume that L is Context Free
- -> L must have a pumping length (say P)
- -> Now we take a string S such that $S = 0^P 1^P 0^P 1^P$
- -> We divide S into parts uvxyz

Case 1: vxy does not straddle a boundary

000001111110000011111

Eg. P = 5 So, $S = 0^5 1^5 0^5 1^5$

uvixyiz uv²xy²z

11111 00000 11111 0000 000

Case 2b: vxy straddles the third boundary

00000 111111 0000 111111

u v x y z

WV2XY2Z

00000 1111 1000 00001 1111 11 00000 # L

Case 3: vxy straddles the midpoint 00000¹1111100000¹11111 u v x y z