ECON 207: Problem Set 1

Dr. Jane Ryngaert

September 11, 2018

1 Macroeconomic Data

1.1 GDP and Inflation

For the following problems, use 2016 as the base year.

	2016	2017
Good 1	Price: \$20	Price: \$25
	Quantity: 100	Quantity: 80
Good 2	Price: \$ 20	Price: \$20
	Quantity: 100	120

- 1. Calculate the real and nominal GDP in this economy for each 2016 and 2017.
- 2. Calculate the GDP deflator in each year. Use this to calculate inflation from 2016 to 2017
- 3. Suppose the household basket of goods consists of 100 units of Good 1 and 100 units of Good 2. Calculate the CPI in each year. Use this to calculate inflation from 2016 to 2017.
- 4. Why may the inflation rate you calculated in Question 3 be overstated? *Hint: Consider the sources of bias in the CPI*.

1.2 Labor Market Variables

Variable	Description	Number
Е	Number of Employed Persons	90 million
U	Number of Unemployed Persons	5 million
P	Working Age Population	200 million
h	hours per worker	6.5 hours

1. What is the size of the labor force in this economy?

- 2. Calculate the labor force participation rate for this economy. Why are economists interested in this statistic?
- 3. How many total hours of work does this economy provide?
- 4. Describe the concept of a discouraged worker and how discouraged workers impact the unemployment rate.

2 Modeling Growth

2.1 Cobb-Douglas Production

Inputs capital (K_t) and labor (N_t) combine to produce output according to the following production function:

$$Y_t = 100K_t^{\frac{1}{2}}N_t^{\frac{1}{2}} \tag{1}$$

In this economy: $K_t = 10$ and $N_t = 100$

- 1. Show that the production function is increasing in capital and labor at these values of K_t and N_t .
- 2. Show that the production function is constant returns to scale.
- 3. How much would this economy produce if $N_t = 0$?
- 4. Write an expression showing the total costs of a firm. Hint: This will include payments to labor at a wage rage, w_t , and capital at a rental rate, R_t .
- 5. Derive the marginal product of labor and the marginal product of capital. What is the relationship between these marginal products and the wage rate and rental rate on capital for a profit-maximizing firm?

2.2 Solow Model

The following equations can be used to characterize the basic solow model (without wages or rental rate on capital).

$$Y_t = AK_t^{\alpha} N_t^{1-\alpha} \tag{2}$$

$$Y_t = C_t + I_t \tag{3}$$

$$K_{t+1} = I_t + (1 - \delta)K_t \tag{4}$$

$$I_t = sY_t \tag{5}$$

- 1. Describe each of these equations in words.
- 2. Show that: $K_{t+1} = sAK_t^{\alpha}N_t^{1-\alpha} + (1-\delta)K_t$
- 3. Show that $C_t = (1-s)Y_t$
- 4. Put each equation into per worker terms. For Equation (4), use the form in Part 2 of this question.
- 5. Allow: A = 100, $\alpha = \frac{1}{2}$, s = 0.2, $\delta = 0.1$. Solve for the steady state level of capital per worker (k^*) , output per worker (y^*) , consumption per worker (c^*) , investment per worker (i^*) .

2.3 Augmented Solow Model

The capital accumulation equation in the augmented Solow model is:

$$K_{t+1} = sAF(K_t, Z_t N_t) + (1 - \delta)K_t \tag{6}$$

- 1. Labor grows at rate n. Labor-augmenting productivity grows at rate z. Write an expression for each N_t and Z_t in terms of N_{t-1} and Z_{t-1} .
- 2. Show that $\frac{K_{t+1}}{Z_t N_t} = (1 + n + z) \frac{K_{t+1}}{Z_{t+1} N_{t+1}}$. Assume $n \times z \approx 0$ for this question and all remaining.
- 3. Rewrite the capital accumulation equation in terms of capital per effective units of labor $(\hat{k}_t, \hat{k}_{t+1})$.
- 4. What is the amount of break even investment in this economy? How is this different than break even investment in the basic Solow model?
- 5. Solve for the steady state value of \hat{k} , \hat{k}^* , in terms of s, A, n, z, δ .
- 6. How does \hat{c}^* , the steady state value of consumption per unit of effective labor, change when we increase the savings rate, s?