Problem C. Jerarquía

Time limit 2000 ms Mem limit 65536 kB

La compañía de Jorge tiene n empleados. Ahora, se tiene que construir una jerarquía «supervisor-subordinado» en la compañía (esto significa que todos los empleados, excepto uno, tienen exactamente un supervisor). Hay m relaciones en la compañía (a,b,c) que representan lo siguiente: «el empleado a está dispuesto a ser el supervisor de b por un costo de c». Además, para cada empleado sabes su conocimiento q_i y para cada relación se cumple que $q_a > q_b$.

¿Podrías ayudar a Jorge a organizar su compañía calculando el mínimo costo que tomaría armar esta jerarquía o decir que es imposible?

Entrada

La primera linea del input contiene un entero n $(1 \le n \le 1000)$ — la cantidad de gente en la compañía. La siguiente línea contiene n números q_j $(0 \le q_j \le 10^6)$ — el conocimiento de los empleados. La siguiente linea contiene un número m $(0 \le m \le 10000)$ — la cantidad de relaciones. Las siguientes m lineas contienen las relaciones (a_i,b_i,c_i) $(1 \le a_i,b_i \le n,\,0 \le c_i \le 10^6)$. Las distintas aplicaciones pueden ser parecidas, pueden ser del mismo supervisor al mismo empleado pero con distinto precio. Se garantiza que para cada relación $q_{a_i} > q_{b_i}$.

Salida

Imprime una sola linea — el mínimo costo de construir una jerarquía o −1 si no es posible.

Ejemplo 1

Input	Output
4	11
7 2 3 1	
4	
1 2 5	
2 4 1	
3 4 1	
1 3 5	

Ejemplo 2

[2023-1] Tarea 3 Apr 25, 2023

Input	Output
3	-1
1 2 3	
2	
3 1 2	
3 1 3	

Nota

En el primer ejemplo, una de las formas de construir una jerarquía es tomar las relaciones 1, 2 y 4, que dan un costo mínimo 11. En el segundo ejemplo, es imposible construir la jerarquía requerida así que se devuelve -1.