COLLEGE CHOICE, CREDIT CONSTRAINTS AND EDUCATIONAL ATTAINMENT

M. BARBER & C. FERRALL

Queen's University

DSE Bonn August 2021

INTRODUCTION

US HIGHER EDUCATION

- Rising tuition and need-based grants, Stagnant limits on subsidized borrowing.
- Private schools up to 3 times as expensive (also ability-to-pay pricing)
- Strengthening correlation between family income & degree attainment.

Tuition, Fees, Room and Board

YEAR	Harvard [†]	Public 4 Yr. [‡]
2010	48,868	15,919
2005	39,880	12,108
2000	32,164	8,653
1995	26,230	7,014

^{†:} https://oir.harvard.edu/fact-book/undergraduate_package

^{‡:} https://nces.ed.gov/fastfacts

THIS PAPER

- Develops a lifecycle model of college quality choice, student borrowing, work and loan repayment
- Estimates the model using the NLYS97, augmented with parallel CPS data
- Distentangles selection, quality, 'tastes', and in determining choices and labor market returns
- Evaluates response to policy changes (TBD).

DETAILS

- Endogenize choice among 4 college quality types
- Model 'youth' attendance, work, credit accumulation, student borrowing, parental transfers and govt grants
- Endogenous transition to 'adulthood': loan repayment & default, saving, job search, work

RELATED LITERATURE

Models of Schooling & Credit Constraints:

Surveyed by Lochner & Naranjo (2011); Keane & Wolpin (2001), Johnson (2013)

College Quality:

Fu (2014)

Equilibrium with credit constraints:

Abbott (2019), Caucutt & Lochner (2020)

SHAMELESS PLUG

Calculations conducted in

ferrall.github.io/niqlow design, solve and estimate dynamic programs

For Context See:

Object Oriented (Dynamic) Programming: Closing the "Structural" Estimation Coding Gap ferrall.github.io/00DP

Model

Non-stationary Infinite Horizon Problem

 α : action vector

 θ : state vector

 γ : group vector

$$V(lpha; heta,\gamma)=$$

$$\int_{\zeta} \left[\max_{lpha \in A(heta)} U(lpha;\epsilon, heta,\gamma) + \zeta_lpha + \delta_k E_{lpha, heta,\gamma} V(heta';\gamma)
ight] f(\zeta) d\zeta.$$

FLOW

HETEROGENEITY

	$\int Symbol$	\underline{Choice}	\underline{Number}
$\gamma = $	k	Ability	3
	AFQT	Test Score	2
	$\ \ PI$	Parent Income	2

Distn of k depends on AFQT and PI.

AFQT and PI: indicators for above 75% percentile of the distribution.

ACTION VECTOR

```
lpha = egin{pmatrix} q & 	ext{College Quality} & 5 \ a & 	ext{Attend} & 2 \ b & 	ext{Borrow} & 3 \ w & 	ext{Work} & 3 \ m & 	ext{Miss Payment} & 2 \ s & 	ext{Save} & 3 \end{pmatrix}
```

Feasible set $A(\theta)$ depends on lifecyle phase and other state variables

STATE VECTOR

	$\int t$	Time/Age	$25 \setminus$
$\theta =$	Q	Quality Feasible Set	3
	$ec{q}$	Alma Mater	5
	H	Yrs since enrolled $(a = 1)$	3
	L	Total Loans	3
	C	Credits	5
	D	Degree Earned	2
	K	Skill	10
	$ \ reve{m}$	Missed Payment	2
	$\backslash \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Savings	3 /

: value determined by a past choice with corresponding letter.

LIFECYLE PHASES

Choices and preferences change over time

- $p(H) \in \{Y,A,M\} = (Young, Adult, Mature).$
- ullet Y ightarrow A when H=2 (consec. years not attending) OR at t=13
- Y: attend, borrow for school, receive transfers
- A: save build skill (K) through LBD
- At t=24 A \rightarrow M: stationary work & saving phase. $\check{m},\,\check{q}$, D and K are remembered but fixed.

FLOW

QUALITY CHOICE Q

- q is a once-and-for-all choice at Age 18 (t=0)
- Choose q from Q(k)

```
egin{array}{lll} Q_0(k) &=& \{	ext{None, Public}\} \ Q_1(k) &=& Q_0(k) \cup \{	ext{ElitePublic, Private}\} \ Q_2(k) &=& Q_1(k) \cup \{	ext{ElitePrivate}\} \end{array}
```

Choice of q by γ

```
QC Tables : qByDemo
                          College Quality (q)
AFQT Plnc None Public Private E.Public E. Pr
         0
               0.29
                               0.11
                                         0.03
                                                   0.0
                       0.57
         \cap
               0.07
                       0.63
                                                   \cap \cap
  1
                               ∩ 11
                                         0 16
Published by Google Sheets - Report Abuse - Updated
automatically every 5 minutes
```

CREDITS, DEGREES AND SKILLS

- Credits (years) accumulate based on ability, school quality and work
- Degree Earned after 4 earned years: $D = I\{C = 4\}$
- Initial Adult skill, K, depends on credits.
- K accumulates through LBD on adult jobs

LOAN REPAYMENT

- Subsidized borrowing up to $ar{L}$ at repayment factor h_0
- Market borrowing $L ar{L}$ at factor $h_1 > h_0$
- Scheduled payments over T_l years:

$$M(reve{m}) = (1+.1reve{m})\left[h_0 \min\left\{\,L\,,\,ar{L}\,
ight\} + h_1 \max\left\{\,L - ar{L}\,,\,0\,
ight\}
ight]$$

- Payment is missed if it exceeds 90% of GI.
- From then payment includes penalty and garnished wages:

$$egin{aligned} ext{Payment} &= (1 - reve{m}) \min \left\{ \, M(0) \, , \, 0.9 imes ext{GI} \,
ight\} \ &+ reve{m} \min \left\{ \, M(1) \, , \, 0.5 imes Earn \,
ight\} \end{aligned}$$

CONSUMPTION

$$ext{Earn} = wW \ w \in \{ ext{NW,PT,FT}\} \equiv \{0,0.5,1\}$$

When Young:

$$Consumption = Earn + a \left[Grant - Tuition + B \right] + Trans.$$

When Adult:

$$\mathrm{GI} = \mathrm{Earn} + (1 + r_{1+reve{m}})reve{s}$$

Consumption = GI - Payment - s.

UTILITY

ullet While Young U is linear:

$$egin{aligned} U_Y &= u_0 &+ u_1 ext{Consumption} \ &+ \gamma_{reve{q}} \, a &+ \gamma_w - a I_{w=FT} \gamma_x \end{aligned}$$

ullet When Adult U is concave:

$$U_A = rac{max \{ \operatorname{Consumption} \,,\, 0 \, \}^
ho}{
ho} + \gamma_w.$$

SEAM

SIZE OF THE MODEL

	SPACE		PO	INTS	NOTES					
EV()Iterating ChoiceProb.track		230400 2995200			<pre>max. contemporary transitions potential points for single type (group)</pre>					
TotalReachable				7058	actual size of state space after pruning					
Total	Groups(Gamr	ma)		12						
FEAS	IBLE ACTION	SETS								
i	[sawsbm]	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
	#States	0	34880	199680	659	456	1380	1	1	1

SPECIFICATION

SUMMARY

VECTOR	DEFINITION	SPECIFICATION
\mathcal{V}	Select Choice Set Q_j	Ordered Probit
Γ	Non-pecuniary utility	Coefficients on choices
Θ	Uni. Credit Accumulation	Logit for adding a credit
Φ	Initial Skill & Accumulation	Beta, Logit
Ω	FTE Wages	Log-linear, discrete offers
${\mathcal T}$	Grants and transfers	Exponential eqns
\mathcal{M}	Mean ability	Linear eqn
Δ	Discount Factor & ability	Logit in (0.9,0.99)

Choice Set (V)

$$egin{aligned}
u &= (-\infty,
u_1,
u_2, +\infty) \ Prob(Q_j|k) &= \Phi(
u_{j+1} - k) - \Phi(
u_j - k) \end{aligned}$$

Credits (Θ)

$$Prob\left(C'=C+1
ight)=aLogitig(heta_0+ heta_{ec{q}}\,k+ heta_pwig).$$

Skills (Φ)

Initial K

$$P_i = Beta(i/5, \phi_{reve{q}}^y C, 1), ext{ for } i = 0, 1, \ldots, 5.$$
 $Prob(K'=i) = P_{i+1} - P_i ext{ for } i = 0, 1, \ldots, 4.$ **LBD** $Prob(K'=K+1) = I_{w>0} Logit(\phi_0^o + \phi_a^o a + \phi_w^o w).$

Distn

Wages (Ω)

Offers

$$\epsilon \ \stackrel{ ext{iid}}{\sim} \ dN(0,1), \ \ ext{5 values}$$

FTE Wages

$$W = \expig(\,\omega_p + \omega_k k + \omega_{reve{q}}\,D + I_{p=A}\,ig[\omega_K K + \omega_{K2}\,K^{\,2}ig] + \sigma_p\,\epsilon\,ig)$$

Grants and Parental Transfers (\mathcal{T})

$$egin{aligned} ext{Grant} &= a \exp \left(au_0^G + au_i^G P I
ight) \ ext{Trans} &= \exp \left(au_0^T + au_k^T k - au_t t + au_a^T a + au_i^T P I
ight) \end{aligned}$$

Ability (\mathcal{M}) and Patience (Δ)

Conditional Mean Ability

$$\mu = \mu_A A F Q T + \mu_P P I.$$

Discount Factor

$$\delta = 0.9 + 0.09 Logit(\delta_0 + \delta_k k)$$

DATA & ESTIMATION

GMM

- Only way to use Geocode data outside the U.S.
- Calculated, not SMM
- Current weights: importance weights multiplied by in-sample inverse standard deviation

NLSY MOMENTS

By γ and age (t)

- Male high school graduates through 2011 (maximum t=13)
- q=0 category associated with those who never attend (ex-post labeling of a hidden ex-ante decision).
- Choosing q>0 incurs a 'cost' γ_0 : estimate will match fraction that never attend.
- Enrollment, credits, loans, work, degree, earnings, interacted with \breve{q}

AGGREGATE MOMENTS

Averaged Over γ using sample weights

- Three observations of assets and age (\breve{s}) from Johnson (2013)
- Aggregate lifetime loan default (m) rate of 10%
- ullet Work time, degree status and earnings from parallel CPS sample ($t=14,\ldots,22$)

QC Tables: Moments Work Interactions School Other q qXAtt Borr. Cred Grant Trns Sav. InDef PT FT Earn Earn2 Deg ExDeg X 0 0 X X X Χ 1,3,8 A 13 A 1-13 0 X Χ Χ Χ X X X Χ X X Χ X X X X X X X X X X X X X X X X X Χ Χ X X Χ Χ X X X X X X X X X X X X X Χ X X Χ Χ X Χ Χ Χ 14-22 Α Α Α Α Α Α

X: interacted moment is matched and is crossed with fixed Test Score and Parent Income combinations.

A: aggregate moment across fixed groups is matched to periods shown

Total Moments Matched = 4(5 + 64*11) + 4 + 9*6 = 4(708) + 76 = 2908

Moments

CURRENT ESTIMATES

QU Ia	ibles : Paramete	513			
Vector	Description	Category	Variable	Estimate	
V	Admissions	Cutoffs	Elite Public	1.6576	
			Elite Private	2.6537	
Γ	Non-pecuniary	Application	Intercept	1.4333	
	Utility	Attend	Public	0.0164	
			Private	0.0216	
			Elite Public	-0.0195	
			Elite Private	0.0152	
		Work	None	0.0000	
			Partime	-0.1639	
			Fulltime	2.3221	
			Attend X FullTime	2.0070	
Θ	Credits		None	0.0000	
			Partime	0.1584	
			Fulltime	-0.0896	
			Ability	0.7077	
Φ	Skill Accum.	Young	Intercept	1.9305	
		Adult	Intercept	6.5001	
			Ability	0.4904	
			Work (fraction)	0.0171	
Ω	Wages	Intercepts		-0.0294	
				1.3195	
		Ability		0.0062	
		Degree	Public	0.5747	
			Private	0.6662	
			Elite Public	0.7832	
			Elite Private	0.7148	
		Skill	Linear	1.0727	
			Quadratic	0.0018	
Param	eters	a. p	***	2 7002	

FIT & EXPERIMENTS

QC Tables : S_0x									
				Ordinary					
AFQT	Par. Inc	Type	None	Public	Private	Puk			
0	0	Predicted	0.358	0.607	0.016	0.0			
		Observed	0.290	0.568	0.108	0.0			
		%∆	28%	7%	-80%	-20			
1	0	Predicted	0.138	0.452	0.213	0.1			
		Observed	0.066	0.625	0.112	0.1			
		%∆	36%	-37%	77%	79			
0	1	Predicted	0.263	0.481	0.049	0.0			
		Observed	0.154	0.646	0.139	0.0			
		%∆	71%	-36%	-67%	-33			
1	1	Predicted	0.045	0.447	0.217	0.1			
S_0x		Observed	0.043	0.446	0.174	0.2			

LAST WORDS