- 1. The polarization in a dielectric cube of side L centered at the origin is given by $\mathbf{P} = P_0(\mathbf{a_x}x + \mathbf{a_y}y + \mathbf{a_z}z)$.
 - a) Determine the surface and volume bound-charge densities.
 - b) Show that the total bound charge is zero.
- 2. Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization **P** exists.
- 3. Assume that the z=0 plane separates two lossless dielectric regions with $\epsilon_{r1}=2$ and $\epsilon_{r2}=3$. If we know that $\mathbf{E_1}$ in region 1 is $\mathbf{a_x}2y-\mathbf{a_y}3x+\mathbf{a_z}(5+z)$, what do we also know about $\mathbf{E_2}$ and $\mathbf{D_2}$ in region 2? Can we determine $\mathbf{E_2}$ and $\mathbf{D_2}$ at any point in region 2? Explain.
- 4. Dielectric lenses can be used to collimate electromagnetic fields. As shown in the figure below, the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If $\mathbf{E_1}$ at point $P(r_0, 45^{\circ}, z)$ in region 1 is $\mathbf{a_r} 5 \mathbf{a_{\phi}} 3$, what must be the dielectric constant of the lens in order that $\mathbf{E_3}$ in region 3 is parallel to the x-axis?

- 5. The radius of the core and the inner radius of the outer conductor of a very long coaxial transmission line are r_i and r_o , respectively. The space between the conductors is filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are ϵ_{r1} for $r_i < r < b$ and ϵ_{r2} for $b < r < r_o$. Determine its capacitance per unit length.
- 6. Prove that equations

$$W_e = \frac{1}{2}CV^2$$

$$W_e = \frac{1}{2}QV$$

$$W_e = \frac{Q^2}{2C}$$

for stored electrostatic energy hold true for any two-conductor capacitor.