Probability and Statistics Tutorial 7

Siyi Wang

Southern University of Science and Technology

11951002@mail.sustech.edu.cn

November 4, 2020

Outline

- Review
- 2 Homework
- Supplement Exercises
- 4 Further Reading

Review

1. Independence

- (Definition) We say X and Y are independent if $F_{X,Y}(x,y) = F_X(x)F_Y(y)$, that is, $P(X \le x, Y \le y) = P(X \le x)(Y \le y)$.
- Discrete case: The above definition is equivalent to the condition P(X = i, Y = j) = P(X = i)P(Y = j), for $\forall i, j$.
- Continuous case: The above definition is equivalent to the condition $f_{X,Y}(x,y) = f_X(x)f_Y(y)$, for $\forall x,y$.
- If X and Y are independent, then h(X) and g(Y) are independent for any function g and h.
- 2. n-dimensional Marginal Distribution and Independence $(X_1,...,X_n)$
 - Distribution Function (CDF): $F_{X_1,...X_n}(x_1,...x_n) = P(X_1 \le x_1,...,X_n \le x_n)$.
 - Marginal Distribution Function of (X_1, X_3) : $F_{X_1, X_3}(x_1, x_3) = P(X_1 \le x_1, X_3 \le x_3) = F_{X_1, ..., X_n}(x_1, +\infty, x_3, +\infty, ..., +\infty)$
 - Independence: we say $(X_1,...,X_n)$ are mutually independent if $F_{X_1,...,X_n}(x_1,...x_n) = F_{X_n}(x_1)...F_{X_n}(x_n)$.

Siyi Wang (SUSTech) Probability and Statistics November 4, 2020

3/61

Review

3. Conditional Distribution

- Discrete Case:
 - Conditional PMF: For $P_{\cdot,j} = P(Y = y_j) > 0$, we define $P_{X|Y}(x_i|y_j) = P(X = x_i|Y = y_j) = \frac{p_{ij}}{p_{\cdot,j}}$.
 - (Property) $P_{X|Y}(x_i|y_j) \geq 0$.
 - (Property) $\sum_{i} P_{X|Y}(x_i|y_j) = 1$.
 - If X and Y are independent, then $P_{X|Y}(x_i|y_j) = P(X = x_i)$.
- Continuous Case:
 - Conditional PDF: For $f_Y(y) > 0$, we define $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$.
 - (Property) $f_{X|Y}(x|y) \ge 0$
 - (Property) $\int_{-\infty}^{+\infty} f_{X|Y}(x|y) dx = 1$.
 - (Property) $P(X \in A|Y = y) = \int_A f_{X|Y}(x|y)dx$
 - If X and Y are independent, then $f_{X|Y}(x|y) = f_X(x)$.
 - (Warning!) How to calculate $P(X \in A|Y \in B)$? Answer: $P(X \in A|Y \in B) = \frac{P(X \in A, Y \in B)}{P(Y \in B)} = \frac{\int_B \int_A f(x,y) dx dy}{\int_B f_Y(y) dy}$.

19. 保設两个部件的寿命 7; 和 7; 服从独立的指数分布, 参数分别为 a 和 3. 计算 (a) P(T₁ > T₂) 和 (b) P(T₁ > 27₃).

Solution

We have $f_{T_1}(t) = \alpha \exp(-\alpha t) 1_{\{t>0\}}$, $f_{T_2}(s) = \beta \exp(-\beta s) 1_{\{s>0\}}$. Then, $f_{T_1,T_2}(t,s) = \alpha \beta \exp(-(\alpha t + \beta s)) 1_{\{t>0,s>0\}}$. (1) $P(T_1 > T_2) = \int_0^{+\infty} \int_s^{+\infty} \alpha \beta \exp(-(\alpha t + \beta s)) dt ds = \frac{\beta}{\alpha + \beta}$.

补充题 设在 ΔABC 内部任取一点 P, 在底边 BC上任取一点 Q. 求直线 PQ 与线段 AB 相交的概率.

Solution

Let |BC| = b and $S_{ABC} = S$.

 $P(PQ \text{ and } AB \text{ intersects}) = \int_0^b P(PQ \text{ and } AB \text{ intersects}|BQ = x) \frac{1}{b} dx.$

And since $P(PQ \text{ and } AB \text{ intersects} | BQ = x) = \frac{x}{b}$,

then $P(PQ \text{ and } AB \text{ intersects}) = \int_0^b \frac{x}{h^2} dx = \frac{1}{2}$.

- 一个袋中有5个球,其中2个白球3个黑球,
 - (1)先后有放回的任取一球,
 - (2) 先后无放回的任取一球,

取到的白球个数分别为 x 和 Y, 求(X,Y)的联合频率函数及边缘频率函数, 讨论独立性。

在一个以原点为圆心半径为R的圆内随机选取一点,令(X,Y)表示这一点的分布,则(X,Y)服从

$$f(x,y) = \begin{cases} c, x^2 + y^2 \le R^2, \\ 0, & \text{i.e.} \end{cases}$$

- (1) 求 c; (2)求边缘密度函数;
- (3)讨论 X 和 Y 独立性。

Solution

(1)
$$c=\frac{1}{\pi R^2}$$
.

(2)

$$f_X(x) = \begin{cases} \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{1}{\pi R^2} dy = \frac{2\sqrt{R^2 - x^2}}{\pi R^2}, & x \in (-R, R) \\ 0, & otherwise \end{cases}$$
(1)

$$f_{Y}(y) = \begin{cases} \int_{-\sqrt{R^{2} - y^{2}}}^{\sqrt{R^{2} - y^{2}}} \frac{1}{\pi R^{2}} dx = \frac{2\sqrt{R^{2} - y^{2}}}{\pi R^{2}}, & y \in (-R, R) \\ 0, & otherwise \end{cases}$$
(2)

(3) Since $f_X(x)f_Y(y) \neq f(x,y)$, then they are not independent.

1. 两个离散随机变量 X 和 Y 的联合频率逐数由下表给出。

D'						
	-1.	- 2	3	4		
1	0.10	0.05	0.02	0.02		
2	0.03	0.20	0.05	0.02		
3	0.02	0.05	0.20	0.04		
4	0.02	0.02	0.04	0.10		

71

- a. 计算 X 和 Y 的边际频率函数.
- b. 计算给定 Y = 1 时 X 的条件频率函数,以及给定 X = 1 时 Y 的条件频率函数。

Solution

×	1	2	3,	4	1
Plaker	0.5	6.26	0.71	0.11	
Pi x=	a, Y=1 Y=1.1)	P	0.1	7
_1	19	1 1	13	널	
Y	1	1 2		1	4
14 1×4	10	18	1	2	13

- 9. 假设 (X,Y) 是定义在区域 0 ≤ y ≤ 1 x² 和 -1 ≤ x ≤ 1 上的均匀分布.
 - a. 计算 X 和 Y 的边际密度.
 - b. 计算两个变量的条件密度.

Solution

a. Since $\int_{-1}^{1} \int_{0}^{1-x^2} dy dx = \frac{4}{3}$. then $f(x,y) = \frac{3}{4} \mathbf{1}_{\{-1 \le x \le 1, 0 \le y^2 \le 1-x^2\}}$.

$$f_X(x) = \begin{cases} \int_0^{1-x^2} \frac{3}{4} dy = \frac{3}{4} (1-x^2), & x \in [-1,1] \\ 0, & otherwise \end{cases}$$
 (3)

$$f_{Y}(y) = \begin{cases} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} \frac{3}{4} dy = \frac{3}{2} \sqrt{1-y}, & y \in [0,1] \\ 0, & otherwise \end{cases}$$
 (4)

Solution

b. For $y \in [0, 1]$,

$$f_{X|Y}(x|y) = \begin{cases} \frac{\frac{3}{4}}{\frac{3}{2}\sqrt{1-y}} = \frac{1}{2\sqrt{1-y}}, & x \in [-\sqrt{1-y}, \sqrt{1-y}] \\ 0, & otherwise \end{cases}$$
 (5)

For $x \in [-1, 1]$,

$$f_{Y|X}(y|x) = \begin{cases} \frac{\frac{3}{4}}{\frac{3}{4}(1-x^2)} = \frac{1}{(1-x^2)}, & y \in [0, 1-x^2] \\ 0, & otherwise \end{cases}$$
 (6)

10. 假定

$$f(x,y) = xe^{-\pi(y+1)}$$
, $0 \le x < \infty$, $0 \le y < \infty$

- a. 计算 X 和 Y 的边际密度 X 和 Y 是独立的吗?
- b. 计算 X 和 Y 的条件密度

Solution

a.

$$f_X(x) = \begin{cases} \int_0^\infty x e^{-x(y+1)} dy = e^{-x}, & x \ge 0\\ 0, & otherwise \end{cases}$$
 (7)

$$f_{Y}(y) = \begin{cases} \int_{0}^{\infty} xe^{-x(y+1)} dx = \frac{1}{(y+1)^{2}}, & y \ge 0\\ 0, & otherwise \end{cases}$$
 (8)

Since $f_X(x)f_Y(y) \neq f(x,y)$, then they are not independent.

Solution

b. For $y \geq 0$,

$$f_{X|Y}(x|y) = \begin{cases} \frac{xe^{-x(y+1)}}{1} = x(y+1)^2 e^{-x(y+1)}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$
(9)

For $x \geq 0$,

$$f_{Y|X}(y|x) = \begin{cases} \frac{xe^{-x(y+1)}}{e^{-x}} = xe^{-xy}, & y \ge 0\\ 0, & otherwise \end{cases}$$
 (10)

15. 假定 X 和 Y 具有联合密度函数

$$f(x,y) = c\sqrt{1-x^2-y^2}, \quad x^2+y^2 \le 1$$

- a. it M c.
- b. 面出联合密度图形
- e, it $\# P(X^2 + Y^2 \le \frac{1}{2})$.
- d. 计算 X 和 Y 的边际密度 X 和 Y 是独立随机变量吗?
- e. 计算条件密度.

Solution

a. Since

$$1 = \int \int_{x^2+y^2 \le 1} c \sqrt{1-x^2-y^2} dx dy = c \int_0^{2\pi} \int_0^1 \sqrt{1-r^2} r dr d\theta = \frac{2\pi c}{3}$$
, then $c = \frac{3}{2\pi}$.

$$c.P(X^2 + Y^2 \le \frac{1}{2}) = \int \int_{x^2 + y^2 \le \frac{1}{2}} \frac{3}{2\pi} \sqrt{1 - x^2 - y^2} dxdy =$$

$$c \int_{0}^{2\pi} \int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{1 - r^2} r dr d\theta = 1 - \frac{\sqrt{2}}{4}.$$

$$f_X(x) = \begin{cases} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{3}{2\pi} \sqrt{1-x^2-y^2} dy = \frac{3}{4} (1-x^2), & x \in [-1,1] \\ 0, & otherwise \end{cases}$$
(11)

$$f_Y(y) = \begin{cases} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{3}{2\pi} \sqrt{1-x^2-y^2} dx = \frac{3}{4}(1-y^2), & y \in [-1,1] \\ 0, & \text{otherwise} \end{cases}$$

(12)

Sivi Wang (SUSTech)

Solution

e. For $y \in [-1, 1]$,

$$f_{X|Y}(x|y) = \begin{cases} \frac{\frac{3}{2\pi}\sqrt{1-x^2-y^2}}{\frac{3}{4}(1-y^2)} = \frac{2\sqrt{1-x^2-y^2}}{\pi(1-y^2)}, & x \in [-\sqrt{1-y^2}, \sqrt{1-y^2}]\\ 0, & otherwise \end{cases}$$
(13)

. For $x \in [-1, 1]$,

$$f_{Y|X}(y|x) = \begin{cases} \frac{\frac{3}{2\pi}\sqrt{1-x^2-y^2}}{\frac{3}{4}(1-x^2)} = \frac{2\sqrt{1-x^2-y^2}}{\pi(1-x^2)}, & y \in [-\sqrt{1-x^2}, \sqrt{1-x^2}]\\ 0, & otherwise \end{cases}$$
(14)

将长度为d的一根木棒任意截去一段,再将剩下 的木棒任意截为两段,求这三段木棒能构成三角形 的概率.

- 1.设随机变量 X 在区间(0,1)内服从均匀分布, 在 X=x (0<x<1)的条件下,随机变量 Y 在 区间 (0,x)内服从均匀分布,求:
- (1) X 和 Y 的联合密度函数;
- (2) Y的密度函数;
- (3) P(X+Y>1)

Solution

(1) We have
$$f_X(x) = 1_{(0,1)}(x)$$
 and for $x \in (0,1)$, $f_{Y|X}(y|x) = \frac{1}{x}1_{(0,x)}(y)$.
Then, $f(x,y) = f_X(x)f_{Y|X}(y|x) = \frac{1}{x}1_{\{0 < y < x < 1\}}$.

(2)

$$f_Y(y) = \begin{cases} \int_y^1 \frac{1}{x} dx = -\ln y, & y \in (0,1) \\ 0, & otherwise \end{cases}$$
 (15)

(3)
$$P(X + Y > 1) = \int_{\frac{1}{2}}^{1} \int_{1-x}^{x} \frac{1}{x} dy dx = 1 - \ln 2.$$

2. 设二维连续随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & \text{i.e.} \end{cases}$$

- (1) 求边缘密度函数并讨论独立性;
- (2) 求条件概率密度 $f_{X|Y}(x|y)$ 和 $f_{Y|X}(y|x)$

Solution

(1)

$$f_X(x) = \begin{cases} \int_x^\infty e^{-y} dy = e^{-x}, & x > 0\\ 0, & otherwise \end{cases}$$
 (16)

$$f_Y(y) = \begin{cases} \int_0^y e^{-y} dx = ye^{-y}, & y > 0\\ 0, & otherwise \end{cases}$$
 (17)

Since $f_X(x)f_Y(y) \neq f(x,y)$, then they are not independent.

Solution

(2) For y > 0,

$$f_{X|Y}(x|y) = \begin{cases} \frac{e^{-y}}{ye^{-y}} = \frac{1}{y}, & x \in (0,y) \\ 0, & \text{otherwise} \end{cases}$$
 (18)

For x > 0,

$$f_{Y|X}(y|x) = \begin{cases} \frac{e^{-y}}{e^{-x}} = e^{-(y-x)}, & y \in (x,\infty) \\ 0, & otherwise \end{cases}$$
 (19)

Exercise 1

2. 如果二雌随机变量(X,Y) 的联合分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-\lambda_1 x} - e^{-\lambda_2 x} + e^{-\lambda_1 x - \lambda_2 x - \lambda_3 x + x + 2\mu \cos(x,y)}, & x > 0, y > 0, \\ 0, & \text{ i.i. } \end{cases}$$

试求 X 和 Y 各自的边际分布函数。

Solution

解

因为

$$\lim_{r\to\infty} |1 - e^{-\lambda_1 r} - e^{-\lambda_2 r} + e^{-\lambda_1 r - \lambda_2 r - \lambda_3 r + \alpha_1 r \sin(\alpha_1 r)}| = 1 - e^{-\lambda_1 r},$$

150

第三章 多维酸核变量及其分布

$$\lim_{n\to\infty} |1 - e^{-\lambda_1 s} - e^{-\lambda_2 s} + e^{-\lambda_1 s - \lambda_2 s - \lambda_2 s \cos(s,s)}| = 1 - e^{-\lambda_2 s},$$

所以X和Y各自的边际分布函数为

$$F_{x}(x) = F(x, +\infty) = \lim_{y \to \infty} F(x, y) = \begin{cases} 1 - e^{-t/x}, & x > 0, \\ 0, &$$
 其他.
$$F_{y}(y) = F(+\infty, y) = \lim_{x \to \infty} F(x, y) = \begin{cases} 1 - e^{-t/x}, & y > 0, \\ 0, &$$
 其他.

Exercise 2

 设平面区域 D 由曲线 y = 1/x 及直线 y = 0, x = 1, x = e² 所图成, 二维随机 变量(X,Y) 在区域 D 上版从均匀分布, 试求 X 的边际密度函数.

Solution

Exercise 3

10. 设随机变量 X 与 Y 相互独立, 其联合分布列为

试求联合分布列中的 a,b,c.

Solution

解 先对联合分布列按行、按列求和,求出边际分布列如下:

7 7	× ×	12	N-	$P(X = \epsilon_i)$
*		1/9		4+++10
- 5	L/9	b	64	1+40
$P(Y=y_i)$	w+1.9	b + 1/9	F+ 173	1

由 Z 与 Y 的独立性,从上表的第 2 行、第 2 列知 b = (b + 4/9)(b + 1/9),从中解得 b = 2/9,再从上表的第 2 行、第 5 列知 1/9 = (b + 4/9)(a + 1/9),从中解得 a = 1/18。最后由联合分布列的正则性知;a + b + c = 4/9,由此得 c = 1/6.

Exercise 4

13. 设随机变量(X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} 1, & |x| < y, & 0 < y < 1, \\ 0, & \text{ ith.} \end{cases}$$

试求(1) 边际密度函数 $p_x(x)$ 和 $p_y(y)$; (2) X 与 Y 是否独立?

Solution

解 (1)因为p(x,y)的非零区域为图 3.9 的钥影部分,

图 3.9

所以,当-1 < x < 0 时,有

$$p_x(x) = \int dy = 1 + x,$$

当0 < * < 1 时,有

$$p_{\sigma}(x) = \int dx = 1 - x$$

Solution

$$p_x(x) = \begin{cases} 1 + x, & -1 < x < 0, \\ 1 - x, & 0 < x < 1, \\ 0, & \text{i.i.} \end{cases}$$

又当0 < y < 1 时,有

$$p_{\gamma}(y) = \int_{-\infty}^{y} \mathrm{d}x = 2y,$$

因此Y的边际密度函数为

$$p_{\gamma}(\gamma) = \begin{cases} 2\gamma, & 0 < \gamma < 1, \\ 0, & \text{其他.} \end{cases}$$

这是贝塔分布 Be(2,1).

Exercise 5

14. 设二维随机变量(X, Y) 的联合密度函数如下, 试问 X 与 Y 是否相互 独立?

(1)
$$p(x,y) = \begin{cases} xe^{-(x+y)} & x > 0, y > 0, \\ 0, & \text{if the.} \end{cases}$$

(2)
$$p(x,y) = \frac{1}{\pi^2(1+x^2)(1+y^2)}, -\infty < x,y < +\infty.$$

(3)
$$p(x,y) = \begin{cases} 2, & 0 < x < y < 1, \\ 0, & 其他. \end{cases}$$

(4)
$$p(x,y) = \begin{cases} 24sy, & 0 < s < 1,0 < y < 1,0 < s + y < 1, \\ 0, & 3.66. \end{cases}$$

(5)
$$p(x,y) = \begin{cases} 12xy(1-x), & 0 < x < 1, 0 < y < 1, \\ 0, & \text{if th.} \end{cases}$$

(6)
$$p(x,y) =\begin{cases} \frac{21}{4}x^{2}y, & x^{2} < y < 1, \\ 0, & 18.46. \end{cases}$$

Solution

類 (1) 当
$$x > 0$$
 时 $, p_x(x) = \int_0^\infty x e^{-(x-y)} dy = x e^{-x}$, 而当 $y > 0$ 时 $, p_y(y) = \int_0^\infty x e^{-(x-y)} dx = e^{-x}$. 所以由 $p(x,y) = p_x(x) \cdot p_x(y)$, 知 $X = Y$ 相互独立.

注意:上述状态称为变量 X 与 Y 的密度函数是可分离的,它有两方面含义。 一是指 $p(x,y) = p_x(x)p_y(y)$,二是指 p(x,y) 的非等区域亦可分离为两个一维区域的兼积空间。

(2) 因为

Solution

(3) 当 0 < x < 1 时。
$$p_x(x) = \int_0^1 2 dy = 2(1-x)$$
 ; 而当 0 < y < 1 时, $p_y(y) =$

 $\int_{0}^{z} 2dx = 2y.$ 所以由 $p(x,y) \neq p_{x}(x)p_{y}(y)$,知 X 与 Y 不相互独立. 实际上,由于

p(x,y) 的非零区域不可分离,就可看出 X 与 Y 不相互独立。

Exercise 6

15. 在长为a的线股的中点的两边随机地各选取一点,求两点间的距离小于a/3的概率。

Solution

第 记X 为级股中点左边所取点到端点0 的距离,Y 为级股中点右边所取点到端点a 的距离,则X = U(0,a/2),Y = U(a/2,a),且X 与Y 相互独立,它们的联合密度函数为

$$p(x,y) = \begin{cases} \frac{4}{a^2}, & 0 < x < \frac{a}{2}, \frac{a}{2} < y < a, \\ 0, & \text{Hel.} \end{cases}$$

而 p(x,y) 的非零区域与||x-y| < a/3| 的交集为图 3.10 图影部分, 区此,所求概率为

$$P(|Y-X|<\frac{a}{3})=\int_{a/3}^{a/2}\int_{a/3}^{a/3+a}\frac{4}{a^2}\mathrm{d}y\mathrm{d}x=\frac{2}{9},$$

Exercise 7

2. 一射手单发命中目标的概率为p(0 为止,设 X 为第一次命中目标所需的射击次数, Y 为总共进行的射击次数, 求(X。 Y)的联合分布和条件分布。

Solution

類 只论命中与不命中的试验是伯努利试验。在一伯努利试验序列中。首 次命中的射曲次数 4 服从几何分布 Gr(p)。即

$$P(X = x) = (1 - p)^{-1}p$$
, $x = 1, 2, \cdots$,

其中 p 为命中概率,第二次命中目标的射击恢数 F 提从负二项分布 Nb(2,p),即

$$P(Y = y) = {y - 1 \choose 1} (1 - p)^{-1} \cdot p' \cdot y = 2.3, \cdots$$

由于 X 与 Y - X 相互独立、新以条件分布

$$P(Y=y|X=x)=P(Y-X=y-x|X=x)$$

$$=P(Y-X=y-z)=(1-p)^{r+d}:p,$$
 $z=1,2,\cdots,y-1,$ $y=2,3,\cdots,$

从而(1,1) 的联合分布到为

$$\begin{split} P(X = x, Y = y) &= P(X = x)P(Y = y \mid X = x) \\ &= P(X = x)P(Y - X = y = x) \\ &= (1 - y)^{x+1} \cdot p \cdot (1 - y)^{y+1} \cdot p \\ &= (1 - y)^{x+1}p^{2}, & x = 1, 2, \dots, y = 1, \\ &= 2, 3, \dots. \end{split}$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

Exercise 8

设二维连续随机变量(X,Y)的联合密度函数为

$$p(x,y) = \begin{cases} 1, & |y| < x, & 0 < x < 1, \\ 0, & \text{ if the.} \end{cases}$$

求条件密度函数 p(x|y).

Solution

解 因为p(x,y)的非零区域为图3.17的图影部分。

$$p_{y}(y) = \int_{-y}^{1} dx = 1 + y = 1 - |y|;$$

而当0 < y < 1 时,

$$p_y(y) = \int_y^1 dx = 1 - y = 1 - |y|.$$

由此得

$$p(x \mid y) = \frac{p(x,y)}{p_y(y)} = \begin{cases} 1/(1-|y|), & |y| < x < 1, \\ 0, & \text{if it.} \end{cases}$$

这是均匀分布 U(| y | ,1),其中 | y | < 1.

Exercise 9

7. 设二维连续随机变量(X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} \frac{21}{4}x^2y, & x^2 \le y \le 1, \\ 0, & \text{ 其他.} \end{cases}$$

求条件概率 $P|Y \ge 0.75 |X = 0.5|$.

Solution

解 因为 $P|Y \ge 0.75 |X = 0.5| = \int_{0.9} p(y|x = 0.5) dy, 故先求 p(y|x).$

而 p(x,y) 的非零区域为概 3.18 的閉影部分,

$$p_x(x) = \int_{x^2}^1 \frac{21}{4} x^4 y dy = \frac{21}{8} x^4 (1 - x^4).$$

四面当-1< * < 1 时,

$$p(y|x) = \frac{p(x,y)}{p_x(x)} = \begin{cases} \frac{2y}{1-x^2}, & 0 < y < 1, \\ 0, & \text{ the.} \end{cases}$$

所以当0 < y < 1 时,

$$p(y \mid a = 0.5) = \frac{32y}{15}$$

由此得

$$P \mid Y \ge 0.75 \mid X = 0.5 \mid = \int_{0.75}^{1} \frac{32y}{15} dy = \frac{7}{15}$$

Exercise 10

3. 设随机变量 X 和 Y 的分布列分别为

X	-1	0	- 1
P	204	1/2	1/4

N.	0	-1
100	1.01	Tie Are

已知 P(XY=0)=1,试求 $Z=\max\{X,Y\}$ 的分布列.

Solution

(X,Y) 的联合分布列为

所以 $Z = \max(X,Y)$ 的分布列为

Z	U	1
P	129	5/4

Exercise 11

设 X 与 Y 的联合密度函数为

$$p(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{ide.} \end{cases}$$

试求以下隨机变量的密度函数 (1) Z = (X + Y)/2; (2) Z = Y - X.

Solution

第 (1) 別知(x,y) 的中華試験為 > 0.+> 0.是以助+※ 0 計 P_g(x) = 0.前因 > 9 形成。

$$F_p(x) = P(X \le x) = P(X + Y \le 2x) = \int_{x}^{x} \int_{0}^{x-x} e^{-ixx/x} dx dx$$

 $= \int_{0}^{x} e^{-ix}(1 - e^{-ixx/x}) dx = 2 - e^{-ix} - 2xe^{-ix},$

西は、何。《5回、有_月(2)~9、日光 2~4軒、在_{月(}1))~4~ 洗涤管理分布 Gr(2,1)

(3) 当 z = 0 时 →(x,y) 新世等区域与(y - x = x) 的交通为图 3 11(x) 函數 等分。

$$F_{f}(s) = F(S \leqslant s) = F(F - S \leqslant s) = \int_{s}^{\infty} \int_{s-s}^{s} e^{-ss} dsdy$$

$$= \int_{s}^{\infty} e^{-s} e^{-ss-s} dy = e^{s/2},$$

Solution

$$p_{x}(z) = F'_{x}(z) = e^{z}/2$$
.

又因为当z > 0时,p(x,y)的非零区域与 $|y-x \leqslant z|$ 的交集为图3.11(b) 期 影都分,所以

$$\begin{split} F_{L}(z) &= P(Z \le z) = P(Y - X \le z) = \int_{z}^{\infty} \int_{0}^{\infty} e^{-(z+y)} \, \mathrm{d}y \mathrm{d}z \\ &= \int_{0}^{\infty} e^{-z} (1 - e^{-(z+y)}) \, \mathrm{d}z = 1 - e^{-z} / 2 \,, \\ p_{L}(z) &= F_{L}^{*}(z) = e^{-z} / 2 \,. \end{split}$$

由此得

$$p_I(z) = e^{-|z|}/2$$
, $-\infty < z < +\infty$.

Exercise 12

7. 设 X 与 Y 的联合密度函数为

试求Z = X - Y的密度函数.

Solution

当0 < z < 1 时,p(x,y) 的非零区域与 | x - y < z | 的交集为图 3.12 图

影部分、所以

图 3,12

$$\begin{split} F_{z}(z) &= P(Z \le z) = P(X - Y \le z) = \int_{z}^{z} \int_{z}^{3} 3z \, dy dz + \int_{z}^{1} \int_{z-1}^{\infty} 3z \, dy \, dz \\ &= \int_{z}^{1} 3z^{2} \, dz + \int_{z}^{1} 3zz \, dz = \frac{3}{2}z - \frac{1}{2}z^{3}, \\ p_{z}(z) = F_{z}^{z}(z) = \frac{3}{2}(1 - z^{2}), \qquad 0 < z < 1. \end{split}$$

在反应(1) 1) 从他。在。(。)-(

Exercise 13

8. 某种商品一周的需求量是一个随机变量,其密度函数为

$$p_1(t) = \begin{cases} te^{-t}, & t > 0, \\ 0, & t \leq 0. \end{cases}$$

设各周的需求量是相互独立的,试求

Solution

解 记X, 为第i周的需求量, i = 1, 2, 3. 根据题意知 X_1, X_2, X_3 , 相互独立,且 密度函数都为 $p_i(x), X_i$ 服从他玛分布 Ga(2,1),所以由他玛分布的可加性知 $(1) X_i + X_3 - Ga(4,1)$,其密度函数为

$$p_1(x) = \frac{x^2}{6}e^{-x}, \quad x > 0.$$

(2) X₁ + X₂ + X₃ ~ Ga(6,1),其密度減数为

$$p_3(x) = \frac{1}{\Gamma(6)}x^3e^{-x} = \frac{1}{120}x^3e^{-x}, x > 0.$$

Exercise 14

16. 设随机变量 X 与 Y 独立同分布,其密度函数为

$$p(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

- 求 U = X + Y 与 V = X/(X + Y) 的联合密度函数 p_{v,v}(u,v);
- (2) 以上的 U 与 V 独立吗?

Solution

$$(1)$$
 $\begin{cases} u = x + y \\ v - x'(x + y) \end{cases}$ 的反函数为 $\begin{cases} x = uv \\ y - x(1 - v) \end{cases}$. 支換的程可比行列式

$$f = \begin{vmatrix} \frac{\partial u}{\partial u} & \frac{\partial u}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} u & v \\ 1 - v & -u \end{vmatrix} = -uv - u(1 - v) = -uv$$

所以在(U,V) 的可能取慣范围(u > U,0 < r < 1) 内,有

13.3 医维斯氏变量函数的分割

17

$$\rho_{1,r}(u,e) = \rho_1(ue)\rho_1(u(1-e))|_{-u_1} = e^{-u}e^{-u(1-e)}u = ue^{-v}$$

(2) 四为 U 与 V 各自的边际密度函数分别为

$$\rho_{k}(u) = \int_{-u}^{u} \rho_{k,k}(u,v) dv = \int_{0}^{u} u e^{-u} dv = u e^{-u}, \quad u > 0.$$

$$\rho_{k}(v) = \int_{-u}^{u} \rho_{k,k}(u,v) du = \int_{0}^{u} u e^{-u} du = 1, \quad 0 < v < 1.$$

所以由 p_{v.s}(u, x) × p_s(u) p_s(u) , 知 U 与 V 和互積立。

Siyi Wang (SUSTech)

Thank you!