Análise de Grafos (Centralidade)

Teoria dos Grafos Prof^a Patrícia Machado, UASC/UFCG

Métricas

- ___
 - Conexão
- Centralidade
- Distribuição
- Segmentação

Conexão: Assortatividade

- Semelhança no padrão de conexão entre os vértices de um grafo, usualmente medido como a correlação entre dois vértices (medida de semelhança, ex. grau).
- Coeficiente r:
 - r = 1, o grafo possui perfeita assortatividade
 - o r = 0, o grafo não possui assortatividade
 - r = -1, o grafo é completamente não assortativo
- Aplicações: Redes sociais tendem a possuir assortatividade indivíduos se relacionam com outros similares - Ex. grau semelhante.

Conexão: Assortatividade

0.36

0.16

Conexão: Assortatividade

Centralidade

- Identifica vértices mais importantes em um grafo
- Tipos:
 - Betweenness Centrality
 - Closeness Centrality
 - Degree (graph) Centrality

Centralidade: Conceitos Básicos

Motif - subgrafo pequeno
(mutuamente conectado).

Module - subgrafo maior
(mutuamente conectado).

Hub - Vértice com alta centralidade

Rich club - conjunto de hubs
fortemente interconectados.

Centralidade

yEd:

Tools →

Centrality Measures

JGraphT:

org.jgrapht.alg.scoring

Centralidade: Betweenness Centrality

Índice que representa a quantidade de menor caminhos que passam por um vértice.

$$g(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$
, onde:

 σ_{st} — quantidade total de menores caminhos de s para t $\sigma_{st}(v)$ — quantidade total de menores caminhos de s para t passando por v

Centralidade: Closeness Centrality

Índice das distâncias entre um vértice e os demais vértices do grafo. Quanto mais próximo de 1, mais central o vértice é, ou seja, mais próximo é de todos os outros.

$$h(v) = \frac{1}{\sum_{v \neq t} d(v, t)}$$
, onde:

d(v,t) – distancia entre de v e t

Normalização multiplicando por N-1, onde N = #vértices

Centralidade: EigenVector Centrality

Medida de influência de um vértice.

Pontuação alta significa que o vértice está conectado a muitos outros com pontuação alta.

Inicialmente, cada vértice recebe uma quantidade positiva de influência. Então divide uniformemente com seus vizinhos e recebe também de seus vizinhos. O processo se repete até que todos estejam distribuindo o que estão recebendo. A quantidade estável de cada vértice é sua medida de centralidade.

Centralidade: EigenVector Centrality

Alpha-centrality:

 α - (damping factor) -

valor entre 0 e 1

0 - diferencia pouco

Ex.: $\alpha = 0.2$

f	3,15
g	3,14
d	2,82
е	2,82
С	1,96
i	1,9
b	1,66
h	1,38
а	1,33

