Value-Based Reinforcement Learning

Shusen Wang

Action-Value Functions

Discounted Return

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

- The return depends on actions A_t , A_{t+1} , A_{t+2} , \cdots and states S_t , S_{t+1} , S_{t+2} , \cdots
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.)
- States are random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$. (State transition.)

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a}_t\right].$$

- Taken w.r.t. actions $A_{t+1}, A_{t+2}, A_{t+3}, \cdots$ and states $S_{t+1}, S_{t+2}, S_{t+3}, \cdots$
- Integrate out everything except for the observations: $A_t = a_t$ and $S_t = s_t$.

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

Definition: Optimal action-value function.

- $Q^*(s_t, \mathbf{a_t}) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a_t}).$
- Whatever policy function π is used, the result of taking a_t at state s_t cannot be better than $Q^*(s_t, a_t)$.

Deep Q-Network (DQN)

Approximate the Q Function

Goal: Win the game (\approx maximize the discounted return.)

Question: If we know $Q^*(s, a)$, what is the best action?

Approximate the Q Function

Goal: Win the game (\approx maximize the discounted return.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \operatorname{argmax} Q^*(s, a)$.

 Q^* is an indication for how good it is for an agent to pick action a while being in state s.

Approximate the Q Function

Goal: Win the game (\approx maximize the discounted return.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$.

Challenge: We do not know $Q^*(s, a)$.

- Solution: Use a neural network to approximate $Q^*(s, a)$.
- Let Q(s, a; w) be a neural network parameterized by w.
- The input is state; the outputs are values for every a.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Question: Based on the predictions, what should be the action?

Reference

- 1. Sutton and others: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation. In NIPS, 2008.
- 2. Sutton and others: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In *ICML*, 2009.

• I want to drive from NYC to Atlanta.

• Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss: $L = \frac{1}{2}(q y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \mid_{\mathbf{w} = \mathbf{w}_t}$.

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

Can I update the model before finishing the trip?

- I want to drive from NYC to Atlanta (via DC).
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

- Can I update the model before finishing the trip?
- Can I get a better w as soon as I arrived DC?

• Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).

Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model now updates its estimate:

DC to Atlanta: 600 minutes (estimate).

- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.

- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.

• TD target y = 900 is a more reliable estimate than 1000.

- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.
- TD target y = 900 is a more reliable estimate than 1000.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.

 TD error

TD target.

- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes.
- TD target y = 900 is a more reliable estimate than 1000.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = (1000 900) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Why does TD learning work?

- Model's estimates:
 - NYC to Atlanta: 1000 minutes.
 - DC to Atlanta: 600 minutes.
 - NYC to DC: 400 minutes.
- Ground truth:
 - NYC to DC: 300 minutes.

• Model's estimate: $Q(\mathbf{w}) = 600$ minutes (DC to Atlanta.)

• Continue driving. Update the model again upon arriving at Charlotte.

- Model's estimate: $Q(\mathbf{w}) = 600$ minutes (DC to Atlanta.)
- Continue driving. Update the model again upon arriving at Charlotte.
- I arrive at Charlotte, I have the new TD target:

- Model's estimate: $Q(\mathbf{w}) = 600$ minutes (DC to Atlanta.)
- Continue driving. Update the model again upon arriving at Charlotte.
- I arrive at Charlotte, I have the new TD target:

$$360 + 250 = 610$$
 minutes.

- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) 610)^2$.
- Update the model again using gradient descent.

TD Learning for DQN

How to apply TD learning to DQN?

Definition of discounted return:

•
$$U_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \gamma^3 \cdot r_{t+3} + \gamma^4 \cdot r_{t+4} + \cdots$$

•
$$U_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \gamma^3 \cdot r_{t+3} + \gamma^4 \cdot r_{t+4} + \cdots$$

 $= r_t + \gamma \cdot (r_{t+1} + \gamma \cdot r_{t+2} + \gamma^2 \cdot r_{t+3} + \gamma^3 \cdot r_{t+4} + \cdots)$
 $= U_{t+1}$

Identity: $U_t = r_t + \gamma \cdot U_{t+1}$.

•
$$U_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \gamma^3 \cdot r_{t+3} + \gamma^4 \cdot r_{t+4} + \cdots$$

 $= r_t + \gamma \cdot (r_{t+1} + \gamma \cdot r_{t+2} + \gamma^2 \cdot r_{t+3} + \gamma^3 \cdot r_{t+4} + \cdots)$
 $= U_{t+1}$

Identity: $U_t = r_t + \gamma \cdot U_{t+1}$.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$, is estimate of $\mathbb{E}[U_t]$.
- DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$, is estimate of $\mathbb{E}[U_{t+1}]$.

Identity: $U_t = r_t + \gamma \cdot U_{t+1}$.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$, is estimate of $\mathbb{E}[U_t]$.
- DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$, is estimate of $\mathbb{E}[U_{t+1}]$.

• Thus,
$$Q(s_t, a_t; \mathbf{w}) \approx \mathbb{E}[r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w})].$$

$$\approx \mathbb{E}[U_t]$$

$$\approx \mathbb{E}[U_{t+1}]$$

Identity: $U_t = r_t + \gamma \cdot U_{t+1}$.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$, is estimate of $\mathbb{E}[U_t]$.
- DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$, is estimate of $\mathbb{E}[U_{t+1}]$.

• Thus,
$$Q(s_t, a_t; \mathbf{w}) \approx \mathbb{E}[r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w})].$$
Prediction TD target

Train DQN using TD learning

- Prediction: $Q(s_t, a_t; \mathbf{w}_t)$.
- TD target:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$$
$$= r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

Train DQN using TD learning

- Prediction: $Q(s_t, a_t; \mathbf{w}_t)$.
- TD target:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$$
$$= r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

- Loss: $L_t = \frac{1}{2} [Q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Summary

Value-Based Reinforcement Learning

Definition: Optimal action-value function.

•
$$Q^*(s_t, \mathbf{a_t}) = \max_{\pi} \mathbb{E}\left[U_t | s_t, \mathbf{a_t}\right].$$

Value-Based Reinforcement Learning

Definition: Optimal action-value function.

• $Q^*(s_t, a_t) = \max_{\pi} \mathbb{E}\left[U_t | s_t, a_t\right].$

DQN: Approximate $Q^*(s, a)$ using a neural network (DQN).

- $Q(s, a; \mathbf{w})$ is a neural network parameterized by \mathbf{w} .
- Input: observed state s (e.g., a screenshot of game.)
- Output: a vector, each entry of which corresponds to an action a.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a}_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a}_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $\mathbf{y_t} = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w_t})$.
- 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$.

Thank you!