

# MAKER'S DAY

# Index



## **About Project**

Motivation

### **Embedded**

Arduino Hardware 3d Printing

### Al

Jetson-Nano Pose-Estimation Mediapipe Ubuntu

### **Plans**

Goal Plan



ណ

건강정보 > 건강정보 ¬∼ㅎ ▼

#### 일자목(거<del>북목</del>)증후군

#### 개요-정의

거북목 증후군은 장시간 고개 숙인 자세를 유지하는 것으로 인해 목 통증이 발생하는 질환입니다. 우리나라에서는 주 용더 자세(Rounded shoulder posture), 테스트 네 증후군(Text neck syndrome) 등으로 다양하게 지칭합니다.

<mark>거북목</mark>(경추의 전만이 12.5도 미만인 경우) 상태는 25~42세 인구 중 <mark>70%여</mark>

orea Multimedia Society Vol. 24, No. 2, February 2021(pp. 285-294) org/10.9717/kmms.2020.24.2.285

웹캠 기반 거북목 판별 알고리즘을 활용한 자세 교정 반응형 헬스케어 시스템

박소연<sup>†</sup>, 류서진<sup>††</sup>, 동서연<sup>†††</sup>

# **Motivation**





| ISSN 1975-8359(Print) / ISSN 2287-4364(Online) | The Transactions of the Korean Institute of Electrical Engineers Vol. 67, No. 7, pp. 340-9416, 2018 | http://doi.org/10.5377/WIEE.2018.877.940 | http://doi.org/10.5377/WIEE.2018.877.940 |

#### 압력센서를 이용한 자세 판별에 대한 연구

A Study on the Sittring Posture Identification Using Pressure Sensors

김 경 현"·남 현 도<sup>†</sup>·김 경 호" (Gyeong-Hyeon Kim·Hyeon-Do Nam·Kyeong-Ho Kim)

## Jetson Nano & Arduino를 활용한 거북목 및 자세 교정 시스템



# Next Presenter

# **ARDUINO TEAM Report**

**Desk Lamp Desk Lamp** 스탠드로 제작한 이유, 눈 피로도를 줄여주는 스탠드의 원리 및 구현, 3D 모델링

# Desk Lamp**의 기능**





# Desk Lamp**의 재료**



### **Arduino**

네오픽셀, 조도센서, 저항, 우노 보드, 브레드 보드, 점퍼 케이블,충전 모듈, 블루투스 모듈

Jetson Nano, Camera

Modeling

Camera Case, Board Case, Pillar

# 원리 및 구현(네오픽셀)



# 원리 및 구현(네오픽셀)

```
#include <Adafruit_NeoPixel.h>
#define NUMPIXELS 4
#define PIN 6
Adafruit NeoPixel pixels(NUMPIXELS, PIN, NEO GRB + NEO KHZ800);
int buttonState = 0;
int cds = 0;
void setup()
  pixels.begin();
  Serial.begin(9600);
  pinMode(2,INPUT);
void loop()
  cds=analogRead(A0);
  buttonState=digitalRead(2);
  if(buttonState==HIGH) {
    if(cds>640) {
        pixels.setPixelColor(0,250,250,250);
     pixels.show();
     pixels.setPixelColor(1,250,250,250);
     pixels.show();
     pixels.setPixelColor(2,250,250,250);
     pixels.show();
     pixels.setPixelColor(3,250,250,250);
      pixels.show();
```

```
else if(cds>440) {
       pixels.setPixelColor(0,150,150,150);
     pixels.show();
     pixels.setPixelColor(1,150,150,150);
     pixels.show();
   pixels.setPixelColor(2,150,150,150);
    pixels.show();
     pixels.setPixelColor(3,150,150,150);
    pixels.show();
   else if(cds>240) {
       pixels.setPixelColor(0,50,50,50);
    pixels.show();
     pixels.setPixelColor(1,50,50,50);
     pixels.show();
   pixels.setPixelColor(2,50,50,50);
    pixels.show();
     pixels.setPixelColor(3,50,50,50);
    pixels.show();
  Serial.println(cds);
 else {
  pixels.clear();
  pixels.show();
```

# Modeling



# **ARDUINO TEAM Report**

**Desk Lamp** 

Chair

앞으로의 계획



### **Desk Lamp**

스탠드로 제작한 이유, <mark>눈 피로도를</mark> **줄여주는** 스탠드의 원리 및 구현, **3D** 모델링



### Chair

의자로 제작한 이유, **자세를 교정하도록** 도와주는 의자의 원리 및 구현

# Chair









```
// 압력센서 코드
#include <math.h>
int psen 0 = A0;
int psen 1 = A1;
int psen_2 = A2;
int psen 3 = A3; // 압력센서 연결
int pressure 0 = 0;
int pressure 1 = 0;
int pressure 2 = 0;
int pressure 3 = 0: // 각 압력센서로부터 얻은 값을 저장할 변수. 0으로 초기화
// 진동 모터 위치
// 3 9
// 5 10
// 6 11
void setup(){
  Serial.begin(9600);
  pinMode(9,OUTPUT);
  pinMode(10,OUTPUT);
  pinMode(11,OUTPUT);
  pinMode(3,OUTPUT);
  pinMode(5,OUTPUT);
  pinMode(6,OUTPUT);
void loop(){
  pressure 0 = analogRead(psen 0);
  pressure_1 = analogRead(psen_1);
  pressure 2 = analogRead(psen 2); // 팀커캐드상에서는 466이 최댓값
  pressure 3 = analogRead(psen 3); // 압력센서로부터 얻은 값 저장
```

```
// 무게중심 구할 때 평면벡터를 이용하기
// 압력센서 3,2,0,1 순서대로 평면좌표에서의 제 1,2,3,4분면
int xbar = pressure_3 + pressure_1 - pressure_0 - pressure_2; // x축방향
int ybar = pressure 3 + pressure 2 - pressure 1 - pressure 0; // y축방향
double gsize 0 = xbar*xbar + ybar*ybar; // 벡터의 사이즈 구하기 피타고라스법칙
double gsize = sqrt(gsize 0); // sqrt(): 제곱근 구하는 함수
// 좌표를 총 아홉 부분으로 나눔
// 1 2 3
// 4 5 6
// 7 8 9 로 나눠진다고 할 때,
if(xbar>150 && ybar>150){ // 3번간
 Serial.println("front right");
 digitalWrite(9,HIGH);
 delay(3000);
 digitalWrite(9,LOW);
else if(xbar<=150 && xbar >= -150 && ybar>150){ // 2번간
 Serial.println("too front");
 digitalWrite(9,HIGH);
 digitalWrite(3,HIGH);
 delay(3000);
 digitalWrite(9,LOW);
 digitalWrite(3,LOW);
else if(xbar < -150 && ybar>150){ // 1번칸
 Serial.println("front left");
 digitalWrite(3,HIGH);
 delay(3000);
 digitalWrite(3,LOW);
```

```
else if(xbar>150 && ybar <= 150 && ybar >= -150){ // 6번간
 Serial.println("middle right");
  digitalWrite(10, HIGH);
  delay(3000);
 digitalWrite(10,LOW);
else if(xbar <= 150 && xbar >= -150 && ybar <= 150 && ybar >= -150){ // 5번간
  Serial.println("G 0 0 D!");
else if(xbar < -150 && ybar <= 150 && ybar >= -150){ // 4번칸
 Serial.println("middle left");
  digitalWrite(5,HIGH);
  delay(3000);
  digitalWrite(5,LOW);
else if(xbar>150 && ybar < -150){ // 9번칸
 Serial.println("back right");
 digitalWrite(11,HIGH);
  delay(3000);
  digitalWrite(11,LOW);
else if(xbar<=150 && xbar >= -150 && ybar < -150){ // 8번간
  Serial.println("too back");
 digitalWrite(6,HIGH);
 digitalWrite(11, HIGH);
 delay(3000);
  digitalWrite(6,LOW);
  digitalWrite(11,LOW);
```

```
else if(xbar < -150 && ybar < -150){ // 7번간
Serial.println("back left");
digitalWrite(6,HIGH);
delay(3000);
digitalWrite(6,LOW);
}
}
```

# **ARDUINO TEAM Report**

**Desk Lamp** 

Chair

앞으로의 계획



### **Desk Lamp**

스탠드로 제작한 이유, <mark>눈 피로도를</mark> **줄여주는** 스탠드의 원리 및 구현, **3D** 모델링



### Chair

의자로 제작한 이유, **자세를 교정하도록** 도와주는 의자의 원리 및 구현



### 앞으로의 계획

스탠드와 의자의 하드웨어 구현 및 구체화, 아두이노와 pc사이의 통신

# 앞으로의 계획

hardware

#### 스탠드

- 3D 프린팅된 틀에 부품 넣기

#### 의자

- 센서 민감도, 진동 모터 세기를 기준으로 의자 선정 및 기본 압력값 결정
- 압력 센서를 이용하여 의자에 앉아 있는 시간 측정

communication

통신 속도와 정확성을 기준으로 바이너리값/텍스트기반 중 어떤 정보로 보낼지 결정



# **AI TEAM Report**



### 기존 진행상황

HW로 **젯슨 나노**사용. Mediapipe와 CV로 어깨의 비대칭성을 통해 **척추 틀어짐**을 판단하자.

### **Pose Estimation**

젯슨 나노라는 HW와 '올바른 자세 유도' 목적을 갖고 다양한 프레임워크 비교 후 선정

### **Jetson Nano**

anaconda와 Jupyter notebook 설치 시도. 기존 package 간 충돌 발생. VSCode로 세팅.

### 문제접과 계획

모델의 **정확도** 모델의 **경량화** 아두이노와의 **통신** 

# 기존 진행상황



# **AI TEAM Report**



### 기존 진행상황

HW로 **젯슨 나노**사용. Mediapipe와 CV로 어깨의 비대칭성을 통해 **척추 틀어짐**을 판단하자.

### **Pose Estimation**

젯슨 나노라는 HW와 '올바른 자세 유도' 목적을 갖고 다양한 프레임워크 비교 후 선정

### **Jetson Nano**

anaconda와 Jupyter notebook 설치 시도. 기존 package 간 충돌 발생. VSCode로 세팅.

### 문제점과 계획

모델의 **정확도** 모델의 **경량화** 아두이노와의 **통신** 

# **Pose Estimation**

### MoveNet



17개의 관절 부위 추적 ♥
작은 device나 gpu가 없는 노트북에서도 실시간으로 실행 가능한 성능♥

**On-device** 

## Mediapipe



33개의 관절 부위 추적 ⓒ 하지만, MoveNet보다 느린 속도 ☺️

**☞**명확한 판단 기준

# **Mediapipe**

### Step 01

정상 자세와 거북목 자세의 입과 어깨 거리, 각도를 비교







Step 02

정상 자세와 거북목 자세의 데이터를 학습시킨 Model







#### **Dataset**

CV를 이용해 다양한 사람들의 정상 자세, 거북목 자세가 분류된 데이터셋 구성.



### Model

Scikit-learn □ LogisticRegression, RidgeClassifier, RandomForestClassifier, GradientBoostingClassifier 사이의 정확도 분석해 가장 높은 정확도를 보인 LR 활용.

# **AI TEAM Report**



### 기존 진행상황

HW로 **젯슨 나노**사용. Mediapipe와 CV로 어깨의 비대칭성을 통해 **척추 틀어짐**을 판단하자.

### **Pose Estimation**

젯슨 나노라는 HW와 '올바른 자세 유도' 목적을 갖고 다양한 프레임워크 비교 후 선정

### **Jetson Nano**

anaconda와 Jupyter notebook 설치 시도. 기존 package 간 충돌 발생. VSCode로 세팅.

### 문제접과 계획

모델의 **정확도** 모델의 **경량화** 아두이노와의 **통신** 

# 문제점과 앞으로의 계획

다양한 사람의 입력 feature 수에 데이터셋이 모이지 않아, (총 132개, 관절 33개 \* 4개) **Overfitting Dataset** 사람에 따라 정확도에 비해 데이터셋 갯수는 매우 차이가 발생 작아 Overfitting 발생 ΑI TEAM 아두이노에서척추의 Jetson Nano에서 불균형을 감지하므로 실시간으로 판단할 수 **Arduino On-device** 서로실시간으로 있도록 모델의 경량화가 통신하여 판단하는 모델 필요 필요



# **Frontend**









# Plan

01 Week 4

**02** Week 5

03 Week 6

04 Final



AI: Data 추가 확보 Model 구현 완료 Arduino: 하드웨어 제작 및 구현

Al & Arduino : 통신 및 경량화

Al & Arduino : Multimodal 딥러닝 및 Output 제작

최종 마무리 및 발표 준비

