讲稿(教学内容、步骤)

第3章 词法分析(1)

1. 词法分析(lexical analysis)

逐个读入源程序字符,输出"单词符号",供语法分析使用。

- 主要任务: 读源程序,产生单词符号
- 其他任务: ① 滤掉空格,跳过注释、换行符; ②追踪换行标志,复制出错源程序; ③宏展开, ……
- (1) 单词符号: 一般可分为下列五种 标识符: 各种名称,如常量名、变量名、过程名 常数: 25,3.1415,TRUE, "ABC"等 关键字(保留字): begin, end, if, while 运算符: 如 + - * / < =等 界符: 逗号,分号,括号等
- (2) 词法分析的输出形式
 - 二元式(单词种类,单词自身的值)

【举例】 if i<5 then x=y;

单词	二元式
关键字 if	(3, 'if')
标识符 i	(1, 指向i的符号表入口)
小于号 <	(4 , '<')
常数 5	(<mark>2</mark> , '5')
关键字 then	(3, 'then')
标识符 x	(1,指向x的符号表入□)
赋值号 =	(<mark>4</mark> , '=')
标识符 y	(1, 指向y的符号表入□)
分号 ;	(<mark>5</mark> , ';')

- (3) 词法分析程序与语法分析程序的接口方式
 - ◆ 方式一(常用):

优点:

- (1) 整个编译结构简洁、清晰、条理化
- (2) 可移植性好

方式二(PL/0采用):

2. PL/0 编译器的词法分析

PL/0 的词法分析是一个独立的函数,调用一次,就按序返回一个单词的信息。

- 输出信息存放在三个全局变量中: sym, ident, num
- 词法分析函数:

参见 P42-43 和第1章流程图 int getsym()

词法分析的任务:

- ① 滤空格
- ② 识别保留字
- ③ 识别标识符
- ⑤ 拼复合词
- ⑥ 输出源程序

通过 三个全程量 将识别出的单 词信息传递给语法分析程序

- SYM: 存放单词的类别,如 ifsym, ident, number
- ID: 存放用户所定义的 标识符的值
- NUM: 存放用户定义的数

验证方法:

```
void main()
    打开源程序文件
    while(···)
          getsym();
          printf(..., sym, ident, num);
    关闭源程序文件;
}
```

- 3. 单词的形式化描述工具和识别工具:
 - (1) 正规文法(正则文法、3型文法)
 - (2) 正规式(正则式)
 - (3) 有穷自动机

三者之间可以相互转换

4. 正规文法(3 型文法,正则文法)

文法中每个产生式的形式:

右线性 (A→aB 或 A→a)或

左线性 (A→Ba 或 A→a)

其中 A, B \in V_N , a \in V_T

【举例】

- 标识符的正规文法: (若 i 表示任一字符, d 表示任一数字) 〈标识符〉→i〈字母数字〉 〈字母数字〉→ ε | i〈字母数字〉| d〈字母数字〉
- 无符号整数的正规文法: 〈无符号整数〉→ d | d〈无符号整数〉
- 运算符的正规文法:
 〈运算符〉→ +|-|*|/|=|<〈等号〉|>〈等号〉·······
 〈等号〉→ =
- 界符的正规文法:〈界符〉→ , | ; | (|) | ·······
- 正规式(正则表达式): 也是一种描述单词符号串规则的工具,即表示正规集的工具。 设 字母表为Σ

辅助字母表 Σ' ={ Φ, ε, |, •, *, (,) }

● *表示"闭包",即任意有限次的自重复连接

- 表示"连接",有时可以省略
- | 表示"或"

优先顺序为 ()、*、•、|

*、•、|都是左结合的

则

- (1) Φ和ε都是Σ上的正规式
- (2) 任何 a ∈ Σ , a 是 Σ 上的正规式
- (3) (e1)、e1|e2、e1e2、e1* 都是Σ上的正规式(e1 和 e2 表示Σ上的正规式)
- (4) 仅由有限次使用上述 3 步定义的表达式才是Σ上的正规式

【举例】

例 1: \diamondsuit Σ={0, 1}, Σ上正规式和相应正规集的例子有:

正规式 正规集
0 {0}
0|1 {0,1}
01 {01}
(0|1)(0|1) {00,01,10,11}

(0|1)(0|1) (00,01,10,11)

0* {ε,0,0,任意个 0 的串}

(0|1) {ε,0,1,00,01所有由 0 和 1 组成的串}

(0|1)*(00|11)(0|1)* { Σ 上所有含有两个相继的 0 或两个相继的 1 组成的串}

6. 两个正规式等价

若两个正规式 e1 和 e2 所表示的正规集相同,

则说 e1 和 e2 等价。

记作 e1=e2

【举例】0|1=1|0

1(01)*= (10)*1

(0|1)*= (0*|1*)*

7. 正规式的代数运算

设 r, s, t 为正规式,则有:

r(s|t)=rs|rt (s|t)r=sr|tr 分配律

Er=r rE=r ε是 "连接" 的恒等元素

【举例】

程序中的单词符号都能用正规式表示:

e=<字母>(<字母>|<数字>)*

8. 正规式转换为等价的正规文法

- ① 任何正规式 r: 定义S为开始符号 S→r
- ② 转换规则

正规式	正规文法
А→ху	A→xB B→y
A→x*y	A→xA A→y
A→x y	A→x A→y

③ 不断用上述规则进行变换,直到每个产生式的右部只含一个终结符为止。

【举例】

例:正规式 r = O(0|1)* ,写出对应的正规文法。

S→ <u>0 (0 1)*</u>	S→0A A→(0 1)*	A→(0 1)A	A→0A 1A A→ε	A→1A
		Ś	A→ε	

【练习】 r=(01|10)*(0|1), 写出对应的正规文法。

9. 正规文法转换为等价的正规式

① 等价转换的规则

正规文法	正规式
A→xB	A = xy
в⇒у	
A→xA	A = x*y
A→y	
A→x	A = x y
А→у	

② 不断用上述规则进行变换,直到最后只剩一个 开始符号为止。

【举例】

例:正规文法 G[S]: $S \rightarrow aA$, 写出等价的正规式。

 $S \rightarrow a$ $A \rightarrow aA$ $A \rightarrow dA$ $A \rightarrow a$ $A \rightarrow d$

S = aA a	$S = a(A \epsilon)$	$S = a(A \epsilon)$	
A = aA dA	A = (a d)A	A = (a d)*(a d)	
A = a d	A = a d	$S = a((\underline{a} \underline{d})^*(\underline{a} \underline{d}))$	
	•	S = a(a d)*	
	A = aA dA	$A = aA dA \qquad A = (a d)A$	$A = aA dA \qquad A = (a d)A \qquad A = (a d)*(a d)$ $S = a((a d)*(a d))$

【练习】课后习题8

G[S]: $S \rightarrow 0A$

S→1B

A→1S

A→1

B→0S

B→0

给出对应的正规式。

参考答案: (01 | 10)*(01 | 10) (01 | 10)(01 | 10)*

- 10. 有穷自动机(FA,Finite Automata)
 - 有穷自动机: 是一个识别装置,用于识别"所有句子"
 - 引入 FA 的目的:
 为词法分析程序的自动构造寻找特殊的方法和工具
 - 类型:
 - ✓ 确定的有穷自动机 DFA (Deterministic Finite Automata)
 - ✓ 不确定的有穷自动机 NFA (Nondeterministic Finite Automata)

11. DFA

- (1) 定义: 一个 DFA 是一个五元组 M=(K,Σ,f,S,Z)
 - K: 有穷的状态集
 - Σ: 有穷的字母表(即输入符号的集合)
 - f: 转换函数 K×Σ→K 上的映像
 - S: 初态(初态唯一)
 - Z: 终态集(终态不唯一)

【举例】DFA M =({S,U,V,Q}, {a,b}, f, S, {Q})

f: f(S,a)=U f(S,b)=V f(U,a)=Q f(U,b)=V f(V,a)=U f(V,b)=Qf(Q,a)=Q f(Q,b)=Q

- (1) DFA的"直观"表示
 - 状态图(状态转换图)
 - ✔ 每个状态用结点表示

✓ 初态用 "=>" 或 "-" 标出 终态用 双圈 或 "+" 标出

矩阵

- ✓ 列标题:输出符号 行标题:状态
- ✓ 若 f(Ki, a) = Kj, 则 Ki 和 a 的交汇处是 Kj
- ✓ 初态用 "=>" 标出 或 默认第一行(表格左端) 终态用 "1"标出(表格右端) 非终态用 "0"标出(表格右端)

【举例】

上例对应的状态图(动画演示):

矩阵(动画演示):

		а	b	
=>	S	δÚ	V	0
	U	Q	V	0
	V	U	Q	0
	Q	Q	Q	1

- (2) DFA 可以接受的句子(符号串):
 - 若 $t \in \Sigma^*$,且存在 f(S,t)=...=Q,Q \in 终态集,则 t 为该 DFA 可以接受的句子。即:从初态 s 到某终态结点 Q 的道路上,所有弧上的标记符连接而成字符串 t,t 为该 DFA 可以接受的句子。

【举例】

例: 判断下列句子能否被该DFA 接受: abba baab abb aa a 接受 接受 接受 接受 不

- DFA M 能够接受的句子的全体记为 L(M)
- (3) DFA 的确定性

 $f: K \times \Sigma \to K$ 是一个单值函数 对任何状态 K,当输入一个字符时,下一状态唯一。

【举例】DFA:

(4) DFA M= (K, Σ , f, S, Z) 的行为模拟程序:

12. NFA

- (1) 定义: 一个 NFA 是一个五元组 M=(K, Σ, f, S, Z)
 - K: 有穷的状态集
 - Σ: 有穷的字母表(即输入字符的集合)
 - f: 转换函数 $K \times \Sigma^* \rightarrow K^+$ 上的映像 (K^+ 表示 K 的子集)
 - S: 初态集(初态不唯一)
 - Z: 终态集

【举例】NFA M'=({0,1,2,3,4}, {a,b}, f,{0},{2,4})

f: $f(0,a)=\{0,3\}$ $f(0,b)=\{0,1\}$ $f(1,b)=\{2\}$ $f(2,a)=\{2\}$ $f(2,b)=\{2\}$

f(3,a)={4}

 $f(4,a)={4}$ $f(4,b)={4}$

(2) NFA 的"直观"表示

【举例】

状态图 (状态转换图)

矩阵

Λ×.				_
		а	b	
=>	0	0, 3	0, 1	0
	1		2	0
	2	2	2	1
	3	4		0
	4	4	4	1

- (3) NFA 可以接受的句子(符号串)
 - 若 $t \in \Sigma^*$,且存在 $f(S,t)= \cdots = Q$,Q \in 终态集,则 t 为该 NFA 可以接受的句子。

【举例】

判断下列句子能否被上面的NFA接受:

aaabaababba ababab接受接受接受不接受不接受

● NFA M'能够接受的句子的全体记为 L(M')

(4) ε可以被 NFA 能够接受的两种情况

● 情况 1: 某结点既是初态,又是终态

情况 2: 存在一条从初态到终态的ε道路

【讨论】如下哪个NFA可以接受ε?为什么?

(5) NFA 的不确定性

对于状态K,当输入同一字符时,下一状态不一定唯一。

(6) NFA 的确定化

- 对于每个 NFA M'存在一个 DFA M,使得 L(M')= L(M) 注:与某一 NFA 等价的 DFA 不唯一。
- 找到与 NFA 等价的 DFA 的方法,是"子集法"。