Chapter 14 Megacells

- Mobile satellite systems
 - Global service
 - Land, sea, air
 - GEO, LEO, ICO
- Shadowing and fast fading
- Narrowband and wideband
- Statistical and physical models
- Multi-state modelling

Free space loss for a **LEO** satellite

Doppler shift

- Doppler shift only since the satellite passes following one direction and there is not scattering included
- No Doppler spread
- Simple to compensate or tune the receiver

Local sources for propagation caused impairment

Local sources:

- Trees
- Buildings
- Terrain

Mechanisms:

- Reflection
- Scattering
- Diffraction
- Multipath

Signal variations

Shadowing

- Roadside buildings produce significant attenuation when > 0.6 x first Fresnel zone blocked
- Trees produce attenuation around 1.7dB/m at 900 MHz

Multipath

- Reflections and rough surface scattering produces multipath and hence fast fading
- Path length differences small, so wideband effects modest
- Multiple scattering weak (e.g. satellite-x-y) Satellite

Empirical roadside shadowing model

Predict the probability of fading to a given depth in presence of roadside trees

ITU-R method at 1.5 GHz (Rec. P.681)

$$L(P,\theta) = -(3.44 + 0.0975\theta - 0.002\theta^2) \ln P + (-0.443\theta + 34.76)$$

where *P* is percentage of distance and θ elevation angle

Extend to the range 0.8-20 GHz

$$L(f_2) = L(f_1)e^{1.5\left(\frac{1}{\sqrt{f_1}} - \frac{1}{\sqrt{f_2}}\right)}$$

UNIK4150/9150

Empirical roadside shadowing (ERS) model predictions

10

Coherent Diffuse $\alpha = A_c s_c e^{j\phi} + r s_d e^{j(\theta + \phi)}$

Statistical model

- Channel statistics using Rice, Rayleigh, and log-normal
- A_C- coherent, s_c and s_d shadowing, r complex Gausian -> amplitude
 Rayleigh
- Multiplicative channel as sum of coherent (line-of-sight) and diffuse (scattered) parts
- Loo, Corazza, Lutz

Loo model

- For tree shadowing
- Coherent part lognormal (d)
- Multipath is Rayleigh (s)

$$\alpha = de^{j\phi_0} + se^{j\phi}$$
$$r = |\alpha|$$

$$p(r) \approx \begin{cases} \frac{r}{\sigma_m^2} \exp\left(-\frac{r^2}{2\sigma_m^2}\right) & \text{for } r << \sigma_m \\ \frac{1}{20 \log r \sqrt{2\pi\sigma_0}} \exp\left[-\frac{(20 \log r - \mu)^2}{2\sigma_0}\right] & \text{for } r >> \sigma_m \\ \text{Lognormal} \end{cases}$$

Loo versus ERS

1.5 GHz 45° elevation $\sigma_{\rm m} = 0.3$ $\sigma_{\rm 0} = 5$ $\mu = 0.1$

Lutz model

- Two distinct channel states
- Distinct statistics in each state

Lutz statistics

• Good state:
$$p_{good}(r) = p_{rice}(r)$$

- Overall: $p_r(r) = (1 A)p_{good}(r) + Ap_{bad}(r)$
- A is the time-share of shadowing

Markov model of channel state

Represents variations between states by transition probabilities

$$p_{gg} = 1 - p_{gb}$$
 and $p_{bb} = 1 - p_{bg}$

Time series example

Lutz model parameters for highway

Lutz model parameters for city

Semi-Markov multi-state model

Building height distribution

Log-normal:

$$p_b(h_b) = \frac{1}{h_b \sqrt{2\pi}\sigma_b} \exp\left(-\left(1/2\sigma_b^2\right) \ln^2\left(h_b/\mu\right)\right)$$

· Rayleigh:

$$p_b(h_b) = \frac{h_b}{\sigma_b^2} \exp\left(-h_b^2/2\sigma_b^2\right)$$

City	Log-norma	Log-normal p.d.f.		Rayleigh p.d.f.	
	Mean μ	Standard o	leviation σ_b	Standard deviation σ_b	
	Westminster	20.6	0.44	17.6	
	Guildford	7.1	0.27	6.4	

City and sub-urban time share for shadowing

Conclusions

- Megacell channels a relatively new field; apparently more considered a few years ago
- Same physics as for terrestrial, but noting
 - Large distance to satellite
 - Elevation angles are much more important
- Effects of the troposphere and ionosphere are the same as for fixed satellite systems

Chapter 17 Overcoming wideband fading

- Previous chapter narrowband fading channel techniques, although antenna diversity also works for wideband
- More advanced techniques to exploit the frequency diversity potential
- Three broad techniques depending on modulation and multiple access scheme
 - For TDMA and single user improvement with equaliser
 - For CDMA improvement with Rake receiver
 - For OFDMA improvement partly via the receiver structure

System model for receiver with equaliser

$$\mathbf{b} = [b_0, b_1, \dots, b_{m-1}], \ b_i = \pm 1$$
 $s(t, \mathbf{b}) = u(t, \mathbf{b})^* h(\tau)$ $y(t) = s(t, \mathbf{b}) + n(t)$

Continuous waveform sampled at symbol interval T

Discrete values {y_k} sampled at symbol time intervals T

The discrete channel has 2D+1 taps

The received signal expressed as a sum of the desired signal, the intersymbol interferences (ISI) resulting from the delay spread, and noise

$$y_k = y(t_0 + kT)$$
$$= s_k + n_k$$

$$S_k = \sum_{j=-D}^{D} h_j u_{k-j}$$

$$y_k = u_k h_0 + \sum_{\substack{-D \le j \le D \\ j \ne 0}} h_j u_{k-j} + n_k$$

desired

ISI

noise

ISI is zero, first Nyquist criterion

The narrowband case of only one single tap gives ISI = 0, but also if ISI is zero at sampling points $t = t_0 + kT$. Then the channel obeys the *first Nyquist criterion*. The transfer function can then be calculated as below.

The spectrum of the discrete signal is periodic. The spectrum of received waveform y(t) is Y(t), sampled version $Y_a(t)$, and the received signal is the inverse Fourier transform, signal with bandwidth W.

$$-2/T -1/T 0 1/T 2/T f$$

$$Y_a(f) = \sum_{N=-\infty}^{\infty} Y\left(f + \frac{n}{T}\right)$$

$$y_k = y(kT + t_0) = \int_{-W/2}^{W/2} Y_a(f)e^{j2\pi fkT} df$$

Zero ISI requires for y_0 and y_k

$$y_0 = \int_{-W/2}^{W/2} Y_a(f) df = 1$$

Hence $Y_a(f) = Y_a$ for all f.

$$y_k = y(kT + t_0) = \int_{-W/2}^{W/2} Y_a(f) e^{j2\pi f kT} df = 0$$
 for $k \neq 0$

First Nyquist criterion

Can only happen if the aliased spectrum components fill the gaps: Signal spectrum must have odd symmetry around f = 1/2T.

Usually achieved by distributing the transmit and receive filters such that their common transfer function satisfied the criterion. On example is the a filter called *root-raised cosine*.

Simple linear equalisers

Transverse filter with 2*M*+1 coefficients. Symbol spaced intervals *T*, but even better performance with fractional spaced intervals. Coefficients *C* chosen to best combat adverse effects.

Zero-forcing equalisers

Unlikely that first Nyquist criterion is met. Therefore the coefficients are chosen to do this, i.e. ISI terms set to zero.

$$\sum_{\substack{-M \leq i \leq M \\ i \neq 0}} \sum_{\substack{-D \leq j \leq D \\ j \neq 0}} h_j c_i u_{k-j} = 0$$

The folded spectrum of channel $H_a(f)$ and equaliser C(f)

$$C(f)H_a(f) = \begin{cases} T & |f| \le \frac{1}{2T} \\ 0 & |f| > \frac{1}{2T} \end{cases}$$

Problems with Zero-forcing equaliser

The frequency response of the equaliser is the inverse of the channel. However, this method may enhance noise and lead to undesirable low signal-to-noise ratio at output. Solution might be to use least mean squares minimising the total disturbance.

Least mean square equaliser

- Minimises total disturbance consisting of all the ISI and the noise
- Estimate channel, then compute Wiener solution directly
- Size of matrix, and hence computation time, grows rapidly with length of equaliser

$$J = E \left[|u_k - \hat{u}_k|^2 \right] = E \left[\left| u_k - \sum_{i=-M}^{M} c_i y_{k-i} \right|^2 \right]$$

solved by choosing c_i to minimze J

$$\mathbf{c} = \mathbf{R}_{yy}^{-1} \mathbf{r}_{yu}$$
 (the Wiener solution)

where \mathbf{R}^{-1} is the inverse correlation matrix of the vector of inputs to the filter

$$\mathbf{R}_{yy} = E[\mathbf{y}(k)\mathbf{y}^{H}(k)], \quad \mathbf{y}(k) = [y_k, y_{k-1}, ..., y_{k-2M}]^T \quad and \quad \mathbf{r}_{yu} = E[\mathbf{y}(k)u_k^*]$$

(Hermittian, or transposed complex conjugate, transposed vector)

Adaptive equalisers

The channel varies with time and coefficients have adaptively to be chosen. An algorithm is used to find the optimum coefficients, called *convergence* algorithm.

Burst data used for training

Many practical systems send data in bursts. A training sequence can then be part of the burst, e.g., as preamble or midamble. Also blind algorithms are used.

Least mean square iterative algorithm

Coefficients c updated with step size parameter μ $c_{k+1} = c_k + \mu y_k e_k^*$. Simple, but still too slow for many applications. Need to look for other algorithms.

Non-linear equalisers, decision feedback

Two parts, feedforward and feedback filters. The feedback provides a noise-free version of received symbols used to remove ISI. If detection errors the result may be catastrophic with many further errors to come, error propagation phenomenon.

Maximum likelihood sequence estimator

 Estimate data sequence which minimises mean squared error between TX and RX sequences:

$$D^{2}(\mathbf{b}) = E[s(t) - u(t, \mathbf{b})]^{2} = E[s(t)]^{2} + |u(t, \mathbf{b})|^{2} - 2\operatorname{Re}(s(t)u * (t, \mathbf{b}))]$$

Equivalent to maximising this metric:

$$J(\mathbf{b}) = E[\operatorname{Re}(s(t)u * (t, \mathbf{b}))]$$

If statistics constant with time over p symbols:

$$J_p(\mathbf{b}) = \int_{t=0}^{pT} \text{Re}(s(t)u * (t, \mathbf{b}))dt$$

 Calculate over all possible sequences, maximum likelihood sequence estimation (MLSE)

Viterbi equalisation

- MLSE requires search over M^P possible sequences, where M is number of bits per symbol – too complex
- Rewrite metric as:

$$J_{p}(\mathbf{b}) = \int_{t=0}^{(p-1)T} \operatorname{Re}(s(t)u * (t, \mathbf{b}))dt + \int_{t=(p-1)T}^{pT} \operatorname{Re}(s(t)u * (t, \mathbf{b}))dt$$
$$= J_{p-1}(\mathbf{b}) + Z_{p}(\mathbf{b})$$

where $Z_p(\mathbf{b})$ is called the incremental metric.

- This represents the correlation of the transmitted signal for sequence **b** with only the portion of the actual signal received during the *p*th symbol interval.
- Example follows:

Viterbi equalisation state table and trellis diagram

Consider binary modulation (-1 or 1) and delay spread extending two intervals. ISI caused to bit depends on the values of the two previous bits. Four states possible for b_k .

State	b _{k-2}	b _{k-1}
S_0	-1	-1
S ₁	1	-1
S_2	-1	1
S_3	1	1

In the two intervals there are eight possible waveforms for u(t) in the interval [(k-1)T, kT].

Largest total metric is the maximum likelihood sequence, know as Viterbi algorithm.

Viterbi equaliser structure

Viterbi equaliser performance for BPSK in a Rayleigh channel

Wideband channel representation

Desired user

Rake receiver

Possible use of multipath components

The possible number is:

$$L = \frac{T_m}{T_c} = \frac{T_m}{1/W} = T_m W$$

Required that the power is over –10 dB referred to maximum. Possible to use 4 components.

 T_{m} Time

Maximum delay spread

Orthogonal frequency division multiplexing (OFDM)

- Commonly used in several systems: DVB-T, DAB, WiMAX
- Subdivide a high bit stream R bit/s into N parallel streams each R/N bit/s, and modulate each sub-stream onto a sub-carrier
- Delay spread of N-times can be tolerated for each substream compared to the single channel main stream option
- Need guard-band
- Doppler needs to be considered

Generic OFDM system

OFDM spectrum

Conclusions

- Wideband channel can be overcome
- Linear equalisers improve performance by suppressing ISI
- Nonlinear equalisers can improve performance by making constructive use of ISI
- All require estimation of channel (implicit or explicit)