Pseudo-Code:

- 1. Initialise policy parameters θ and state value function parameters W.
- 2. For each episode:
 - 1. Initialise state s
 - 2. while(s is not terminal) do
 - 1. Sample action a based on actors policy μ_{ρ} ,

$$a \sim \mu_{\theta}(s, a, \theta)$$

- 2. Take action a and receive reward r and move to next state s'
- 3. Add reward to the episodes total rewards,

$$E_r = E_r + r$$

where,

 $E_r = Total rewards obtained for the current episode.$

4. Calculate td(0) error,

$$\delta = r + \gamma * V(s') - V(s)$$

- 5. Update networks,
 - 1. Compute total value loss,

a.
$$loss_{value} = \delta^2$$

2. Compute total policy loss,

a.
$$loss_{policy} = -log(\pi(s, a)) * \delta$$

3. Compute total loss,

a.
$$total_{loss} = loss_{value} + loss_{policy}$$

- 4. Update parameters θ , W based on $total_{loss}$
- 3. Store total episode rewards, $episode_{rewards}. append (E_r)$

Network Architectures used:

Policy Network: (input: state vector $\phi(s)$ output: probability of the 2 actions $\pi(s, a)$)

• Input layer: 4 nodes

Hidden layer 1: 32 nodesHidden layer 2: 32 nodes

• Output layer: 2 nodes

Value Network: (input: state vector $\phi(s)$ output: value of state v(s))

Input layer: 4 nodes
Hidden layer 1: 32 nodes
Hidden layer 2: 32 nodes
Output layer: 1 node

Note: Networks do not share any parameters.

Note: Loss functions.

$$L_{critic}(w) = 0.5 * ||\hat{V}_w - V||^2$$

Where,

 $\hat{V}_{w} = Estimated value function$

V = True value function

In our case(td(0) critic updates),

$$V(s_t) = r + \gamma * \hat{V}_w(s_{t+1})$$

$$L_{actor}(\theta) = log(\pi(\theta)) * \delta$$

Where,

 $\pi(\theta) = probability of taking action a_t at time t$

 $\delta = td(0)$ error at current time step