Life and Death with Congestive Heart Failure

Peniel Argaw, Irene Chen, Sebastian Gehrmann, Harlin Lee, Alisha Saxena

With help from Dr. Steven Horng, Dr. Sandeep Gangireddy

5.7 million

adults in US with congestive heart failure. 50% die within 5 years.

What is Congestive Heart Failure?

Ejection Fraction != Time until Death

Class	Patient Symptoms					
1	No limitation of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea (shortness of breath).					
II	Slight limitation of physical activity. Comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnea (shortness of breath).					
III	Marked limitation of physical activity. Comfortable at rest. Less than ordinary activity causes fatigue, palpitation, or dyspnea.					
IV	Unable to carry on any physical activity without discomfort. Symptoms of heart failure at rest. If any physical activity is undertaken, discomfort increases.					
Class	Objective Assessment					
Α	No objective evidence of cardiovascular disease. No symptoms and no limitation in ordinary physical activity.					
В	Objective evidence of minimal cardiovascular disease. Mild symptoms and slight limitation during ordinary activity. Comfortable at rest.					
С	Objective evidence of moderately severe cardiovascular disease. Marked limitation in activity due to symptoms, even during less-than-ordinary activity. Comfortable only at rest.					
D	Objective evidence of severe cardiovascular disease. Severe limitations. Experiences symptoms even while at rest.					

[NYHA]

How can we better model the disease progression?

Data

- 1,961 Beth Israel Deaconess Medical Center (BIDMC) patients
 - 34% mortality rate
 - Average age of 74
- Electronic health records
 - o labs (3m)
 - emergency room admissions (3k)
 - o echocardiograms (9k)
 - medications (3k)

Example Patient Timelines

Supervised Learning Approaches

Overview of Ideas

1. Predict **mortality** at a specific time, use regression scores to represent the CHF state. (baseline LR, SVM, RF models)

2. Predict **mortality** as a multi-task learning problem. (Convex Fused Sparse Group Lasso, CNN)

3. Predict time until next visit. (RNN)

Input Features

Date Source	Variables				
First ER visit (12 total)	Age, Sex, Diabetes, Chronic kidney failure, Triage acuity, Triage vitals				
Labs done within 72 hours (31 total)	ANION GAP, BASOS, CALCIUM, CHLORIDE, CREAT , EOS, GLUCOSE, HCT, HGB, INR(PT), LYMPHS, MAGNESIUM, MCH, MCHC, MCV, MONOS, NEUTS, PHOSPHATE, PLT COUNT, POTASSIUM, PT, PTT, RBC, RDW, SODIUM, TOTAL CO2, UREA N, WBC, cTropnT, estGFR, proBNP				
Echo done within 72 hours (21 total)	Aorta - Ascending, Aorta - Valve Level, Aortic Valve - LVOT Diam, Aortic Valve - Peak Velocity, BP, Left Atrium - Four Chamber Length, Left Atrium - Long Axis Dimension, Left Ventricle - Diastolic Dimension, Left Ventricle - Ejection Fraction, Left Ventricle - Fractional Shortening, Left Ventricle - Inferolateral Thickness, Left Ventricle - Septal Wall Thickness, Left Ventricle - Systolic Dimension, Mitral Valve - A Wave, Mitral Valve - E Wave, Mitral Valve - E Wave Deceleration Time, Mitral Valve - E/A Ratio, Right Atrium - Four Chamber Length, Height, Weight				

Output: Death at different times

Time point	Number of deaths
30 days	107
3 months	181
6 months	259
1 year	359
3 years	560
5 years	606

Baseline Models (SVM, Random Forest)

Multi-task prediction of days until death

- Convex Fused Sparse Group Lasso [Zhou et al, KDD '12]
- CNN [Razavian et al, '16]

Predicting time until next visit and future diagnoses

- Model
 - o RNN
- Input
 - Admissions
 - ICD9 diagnoses

Unsupervised Learning Approaches

52 patients Lab value progression (Cluster 0, 52 patients) 1.0 Percent patients with irregular labs 0.9

UREAN

RBC

HGB

HCT

CREAT

RDW

GLUCOSE

-30-25 -20 -15

2) 360 patients

patie, nts

[Based on Haldar et al, 2008]

[Wang et al, 2014]

0.51	U Nit (BUN)	Videou and Lines	0.01	Red Cell distribution	A
0.51	Urea Nitrogen (BUN)	Kidney and Liver	0.21	width (RDW)	Anemia
0.20	Potassium	Kidney	0.20	Lymphocytes	Heart Failure
0.19	Chloride	Kidney	0.18	Neutrophils	Heart Failure
0.12	Phosphate	Kidney	0.17	International Ratio of Prothrombin Time	Blood Clotting
0.09	pH	Kidney	0.16	Prothrombin Time	Blood Clotting
	X ₃ : Mixed B	Bag	X ₄ : Heart Function		
0.42	Red Blood Cell	Anemia	0.15	Aspartate Aminotransferase	Heart and Liver
0.13	Hyaline	Dehydration	0.14	B-type Natriuretic Peptide	Heart Failure
0.13	Partial Thromboplastin Time	Blood Clotting	0.14	Hematocrit	Anemia or Hear
0.10	Cardiac-specific Troponin	Heart Attack	0.11	Hemoglobin	Anemia
0.07	Creatine Kinase	Kidney	0.08	Platelet Count	Heart Disease

X₁: Electrolyte Tests for Liver Function

 X_2 : Blood Count and Tests

[Based on Wang et al, 2014]

- 1. CHF is a **complex disease** that is difficult to stage quantitatively.
- 2. We can use death and future hospital admissions as proxies for CHF state.
- 3. Disease progression can be learned without labels using abnormal lab values.

Predicting time until next visit and future diagnoses

- Model
 - o RNN
- Input
 - Admissions
 - ICD9 diagnoses
- Output
 - Time until next visit
 - Medical codes that occur in next visit

Multi-task prediction of time until death

- Input
 - Features
- Output
 - Days until death (or -1)
 - Or binary state
 - [0, 0, 1, 1, 1, 1] if dead between 2nd and 3rd time points

- Models
 - Convex Fused Sparse Group Lasso[Zhou et al, KDD '12]
 - CNN [Razavian et al, '16]

