Diophantine *m*-tuples

Celal Devret

Yildiz Technical University

May - 2024

Diophantus of Alexandria (AD 200~214-284~298)

Diophantine *m*-tuples

Definition 1.1

A set of m positive integers $\{a_1, \ldots, a_m\}$ is called a *Diophantine m-tuple* if $a_i a_j + 1$ is a perfect square for all $1 \le i < j \le m$.

Definition 1.2

A set of m non-zero rational numbers $\{a_1, \ldots, a_m\}$ is called a rational Diophantine m-tuple if a_ia_j+1 is a perfect square for all $1 \leq i < j \leq m$.

Example 1.1 (Diophantus)

The set $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$ is rational Diophantine 4-tuple.

$$\frac{1}{16} \frac{33}{16} + 1 = \frac{289}{256} = \frac{17^2}{16^2}$$

$$\frac{1}{16} \frac{17}{4} + 1 = \frac{81}{64} = \frac{9^2}{8^2}$$

$$\frac{1}{16} \frac{105}{16} + 1 = \frac{361}{256} = \frac{19^2}{16^2}$$

$$\frac{33}{16} \frac{17}{4} + 1 = \frac{625}{64} = \frac{25^2}{8^2}$$

$$\frac{33}{16} \frac{105}{16} + 1 = \frac{3721}{256} = \frac{61^2}{16^2}$$

$$\frac{17}{4} \frac{105}{16} + 1 = \frac{1849}{64} = \frac{43^2}{8^2}$$

Example 1.2 (Fermat)

The set $\{1, 3, 8, 120\}$ is a Diophantine 4-tuple.

$$1 \cdot 3 + 1 = 4 = 2^2$$

$$1 \cdot 8 + 1 = 9 = 3^2$$

$$1 \cdot 120 + 1 = 121 = 11^2$$

$$3 \cdot 8 + 1 = 25 = 5^2$$

$$3 \cdot 120 + 1 = 361 = 19^2$$

$$8 \cdot 120 + 1 = 961 = 31^2$$

Example 1.3 (Euler)

The set $\{a, b, a+b+2r, 4r(a+r)(b+r)\}$ is a Diophantine 4-tuple, where $ab+1=r^2$.

Example 1.3 (Euler)

The set $\{a, b, a+b+2r, 4r(a+r)(b+r)\}$ is a Diophantine 4-tuple, where $ab+1=r^2$.

• If we take a = 1 and b = 3, we get Fermat's Diophantine 4-tuple.

Example 1.3 (Euler)

The set $\{a, b, a+b+2r, 4r(a+r)(b+r)\}$ is a Diophantine 4-tuple, where $ab+1=r^2$.

- If we take a = 1 and b = 3, we get Fermat's Diophantine 4-tuple.
- It was proved in 1969, by Baker and Davenport that a fifth positive integer can not be addded to Fermat's Diophantine 4-tuples.

Example 1.3 (Euler)

The set $\{a, b, a+b+2r, 4r(a+r)(b+r)\}$ is a Diophantine 4-tuple, where $ab+1=r^2$.

- If we take a = 1 and b = 3, we get Fermat's Diophantine 4-tuple.
- It was proved in 1969, by Baker and Davenport that a fifth positive integer can not be addded to Fermat's Diophantine 4-tuples.
- However, Euler was able to extend Fermat's Diophantine 4-tuples by adding the rational number $\frac{777480}{8288641}$.

Conjecture 1.1 (Diophantine 5-tuple Conjecture)

There does not exist a Diophantine 5-tuple.

Conjecture 1.1 (Diophantine 5-tuple Conjecture)

There does not exist a Diophantine 5-tuple.

Theorem 1.1 (Andrej Dujella, 2004)

There does not exist a Diophantine 6-tuple.

Conjecture 1.1 (Diophantine 5-tuple Conjecture)

There does not exist a Diophantine 5-tuple.

Theorem 1.1 (Andrej Dujella, 2004)

There does not exist a Diophantine 6-tuple.

Theorem 1.2 (Andrej Dujella, 2004)

There are only finitely many Diophantine 5-tuples.

Conjecture 1.1 (Diophantine 5-tuple Conjecture)

There does not exist a Diophantine 5-tuple.

Theorem 1.1 (Andrej Dujella, 2004)

There does not exist a Diophantine 6-tuple.

Theorem 1.2 (Andrej Dujella, 2004)

There are only finitely many Diophantine 5-tuples.

• Finally, in 2019, He, Togbé and Ziegler gave the proof of the Diophantine 5-tuple conjecture.

Connections with Pell's Equations

It is clear that the set $\{1,3\}$ is a Diophantine 2-tuple. Let's try to extend this set. Let the set $\{1,3,a\}$ be a Diophantine 3-tuple for some $a\in\mathbb{Z}^+$. Then

$$a+1=r^2$$
$$3a+1-s^2$$

for some $r, s \in \mathbb{Z}^+$. If we multiple the first equation by 3 and substract from the second equation, we get the following equation

$$s^2 - 3r^2 = -2$$
.

Therefore, we must solve the following equation

$$x^2 - 3y^2 = -2.$$

Is there a solution?

Is there a solution? Yes!

Is there a solution? Yes!

$$x^2 - 3y^2 \equiv x^2 \equiv 1 \equiv -2 \pmod{3}$$

There exists a solution, since 1 is quadratic residue in modulo 3.

Is there a solution? Yes!

$$x^2 - 3y^2 \equiv x^2 \equiv 1 \equiv -2 \pmod{3}$$

There exists a solution, since 1 is quadratic residue in modulo 3. How to find it?

Is there a solution? Yes!

$$x^2 - 3y^2 \equiv x^2 \equiv 1 \equiv -2 \pmod{3}$$

There exists a solution, since 1 is quadratic residue in modulo 3. How to find it?

$$x^2 - 3y^2 = -2 \implies x^2 = 3y^2 - 2$$

If y = 1, then x = 1. The $(x_0, y_0) = (1, 1)$ is a solution.

How about other solutions?

How about other solutions? First, we need to solve $x^2 - 3y^2 = 1$.

How about other solutions?

First, we need to solve $x^2 - 3y^2 = 1$.

To solve this equation we need to continued fraction of $\sqrt{3}$.

To solve this equation we need to continue
$$\sqrt{3}=[1;\overline{1,2}]$$
, i.e., $\sqrt{3}=1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{\cdots}}}$

n	-2	-1	0	1	2	3	4
a _n			1	1	2	1	2
p _n	0	1	1	2	5	7	19
q_n	1	0	1	1	3	4	11

Recall that the integers a_n are called the *cofficients* or *terms* of the continued fraction and the rational numbers p_n/q_n are called the *convergents* of the continued fraction.

The integers p_n and q_n given by

$$p_n = a_n p_{n-1} + p_{n-2}$$

 $q_n = a_n q_{n-1} + q_{n-2}$.

Since the length of the period of the continued fraction expansion of $\sqrt{3}$ is even, then all positive solutions of the equation $x^2 - 3y^2 = 1$ are given by

$$x = p_{2k-1}$$
 $y = q_{2k-1}$ $k = 1, 2, ...$

So, $(u_1, v_1) = (2, 1)$ and $(u_2, v_2) = (7, 4)$ are solution of the equation $x^2 - 3y^2 = 1$.

How to get a new solution?

How to get a new solution?

We have $(x_0, y_0) = (1, 1)$ solution of the equation $x^2 - 3y^2 = -2$ and $(u_1, v_1) = (2, 1)$ solution of the equation $x^2 - 3y^2 = 1$. That is,

$$x_0^2 - 3y_0^2 = -2$$
$$u_1^2 - 3v_1^2 = 1.$$

How to get a new solution?

We have $(x_0, y_0) = (1, 1)$ solution of the equation $x^2 - 3y^2 = -2$ and $(u_1, v_1) = (2, 1)$ solution of the equation $x^2 - 3y^2 = 1$. That is,

$$x_0^2 - 3y_0^2 = -2$$

$$u_1^2 - 3v_1^2 = 1.$$

Let's multiply of these equations.

$$(x_0^2 - 3y_0^2)(u_1^2 - 3v_1^2) = -2$$

$$x_0^2 u_1^2 - 3x_0^2 v_1^2 - 3y_0^2 u_1^2 + 9y_0^2 v_1^2 = -2$$

$$x_0^2 u_1^2 + 6x_0 u_1 y_0 v_1 + 9y_0^2 v_1^2 - 3(x_0^2 v_1^2 + 2x_0 v_1 y_0 u_1 + y_0^2 u_1^2) = -2$$

$$(x_0 u_1 + 3y_0 v_1)^2 - 3(x_0 v_1 + y_0 u_1)^2 = -2$$

Hence, we get a new solution $(x_0u_1 + 3y_0v_1, x_0v_1 + y_0u_1) = (5,3)$ of the equation $x^2 - 3y^2 = -2$.

Hence, we get a new solution $(x_0u_1 + 3y_0v_1, x_0v_1 + y_0u_1) = (5,3)$ of the equation $x^2 - 3y^2 = -2$.

Recall that we wanted solve

$$s^2 - 3r^2 = -2$$
.

Hence (s, r) = (5, 3) is a solution. So we can find a. Since $a + 1 = r^2$ this implies that a = 8.

Hence, we get a new solution $(x_0u_1 + 3y_0v_1, x_0v_1 + y_0u_1) = (5,3)$ of the equation $x^2 - 3y^2 = -2$.

Recall that we wanted solve

$$s^2 - 3r^2 = -2$$
.

Hence (s, r) = (5, 3) is a solution. So we can find a. Since $a + 1 = r^2$ this implies that a = 8.

Therefore the set $\{1,3,8\}$ is a Diophantine 3-tuple.

More Pell's Equations

Now, let's try to extend the set $\{1,3,8\}$. Let the set $\{1,3,8,b\}$ be a Diophantine 4-tuple for some $b \in \mathbb{Z}^+$. Then

$$b+1 = r^2$$
$$3b+1 = s^2$$
$$8b+1 = t^2$$

for some $r, s, t \in \mathbb{Z}^+$. Hence, we get

$$s^2 - 3r^2 = -2$$
$$t^2 - 8r^2 = -7$$

Therefore, we must solve the following equations:

$$x^2 - 3y^2 = -2$$
$$z^2 - 8y^2 = -7.$$

We already know the solutions of the equation $x^2 - 3y^2 = -2$. Let's solve the equation $z^2 - 8y^2 = -7$.

$$z^2 - 8y^2 \equiv z^2 \equiv 1 \equiv -7 \pmod{8}$$

So, there exists a solution, since 1 is quadratic residue in modulo 8.

$$z^2 - 8y^2 = -7 \implies z^2 = 8y^2 - 7$$

If y=1, then z=1. So $(z_0,y_0)=(1,1)$ is a solution of the equation $z^2-8y^2=-7$. Now, we need to solve the equation $z^2-8y^2=1$ to get a new solution of the equation $z^2-8y^2=-7$. To solve the equation $z^2-8y^2=1$, we need to continued fraction of $\sqrt{8}$.

$$\sqrt{8} = [2:\overline{1,4}].$$

n	-2	-1	0	1	2	3	4
a _n			2	1	4	1	4
p _n	0	1	2	3	14	17	82
q _n	1	0	1	1	5	6	29

Since the length of the period of the continued fraction expansion of $\sqrt{8}$ is even, then all positive solutions of the equation $z^2 - 8y^2 = 1$ are given by

$$x = p_{2k-1}$$
 $y = q_{2k-1}$ $k = 1, 2, ...$

So, $(u_1, v_1) = (3, 1)$ and $(u_2, v_2) = (17, 6)$ are solution of the equation $z^2 - 8y^2 = 1$.

If, we try $(z_0, y_0) = (1, 1)$ and $(u_1, v_1) = (3, 1)$ to get a new solution we do not get a solution of the system. So let's try $(z_0, y_0) = (1, 1)$ and $(u_2, v_2) = (17, 6)$. So we have

$$z_0^2 - 8y_0^2 = -7$$
$$u_2^2 - 8v_2^2 = 1$$

Again, let's multiply these equations:

$$(z_0^2 - 8y_0^2)(u_2^2 - 8v_2^2) = -7$$
$$(z_0u_2 - 8y_0v_2)^2 - 8(z_0v_2 - y_0u_2)^2 = -7$$

Hence, $(z_0u_2 - 8y_0v_2, z_0v_2 - y_0u_2) = (-31, -11)$ is a new solution of the equation $z^2 - 8y^2 = -7$. Also, (31, 11) is a solution.

Recall that (19,11) is a solution of the equation $x^2 - 3y^2 = -2$. Moreover, we found (31,11) is a solution of the equation $z^2 - 8y^2 = -7$. Also recall that we wanted solve

$$s^2 - 3r^2 = -2$$

$$t^2 - 8r^2 = -7.$$

Hence (s, r) = (19, 11) and (t, r) = (31, 11) is a solution of the system. So we can find b. Since $b + 1 = r^2$ this implies that b = 120. Therefore the set $\{1, 3, 8, 120\}$ is a Diophantine 4-tuple.

Generalized Diophantine *m*-tuples

There are several natural generalizations of the original problem of Diophantus and Fermat. The first of them is the replacement of number 1, in the definition of Diophantine m-tuples, by an arbitrary integer n.

Definition 2.1

Let n be an integer. A set of m positive integers $\{a_1,\ldots,a_m\}$ is said to be have have the property D(n) if a_ia_j+n is a perfect square for all $1\leq i< j\leq m$. Such a set called a Diophantine m-tuple with the property D(n) (or D(n)-m-tuple, or P_n -set of size m).

Example 2.1

The set $\{11, 13, 52\}$ is a Diophantine 3-tuple with the property D(53).

$$11 \cdot 13 + 53 = 196 = 14^2$$

$$11 \cdot 52 + 53 = 625 = 25^2$$

$$13 \cdot 52 + 53 = 729 = 27^2$$

Example 2.1

The set $\{11, 13, 52\}$ is a Diophantine 3-tuple with the property D(53).

$$11 \cdot 13 + 53 = 196 = 14^2$$

$$11 \cdot 52 + 53 = 625 = 25^2$$

$$13 \cdot 52 + 53 = 729 = 27^2$$

Example 2.2

The set $\{4, 119, 169\}$ is a Diophantine 3-tuple with the property D(53).

$$4 \cdot 119 + 53 = 529 = 23^2$$

$$4 \cdot 169 + 53 = 729 = 23^2$$

$$119 \cdot 169 + 53 = 20164 = 142^2$$

Thank you! Welcome any question.

References

David M. Burton, Elementary Number Theory, McGraw Hill, 2010.

Andrej Dujella pages on diophantine *m*-tuples https://web.math.pmf.unizg.hr/~duje/dtuples.html

A. Dujella, *There are only finitely many Diophantine quintuples*, J. Reine Angew. Math. 566 (2004), 183-214.

B. He, A. Togbé, V. Ziegler, *There is no Diophantine quintuple*, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.

Ö. Çelik, M. Eren, Some Results on Several Numerical P_{+53} Sets, Jamame 04 (2021), 1-6