Calculate the intrinsic carrier density n_i for silicon at T = 50 K and 350 K. Ans. 9.6×10^{-39} /cm³; 4.15×10^{11} /cm³

$$N_i = B.7/2 e^{-2a/2kT}$$
 $B = 7.3 \times 10^{15} \text{ cm}^3 \text{ k}^{-3/2}$
 $K = 8.62 \times 10^{-5} \text{ eV/K}$
 $E_g = 1.012 \text{ eV}$ for Si

(a)
$$50k \rightarrow n_i = (7.3 \times 10^{15}) 50^{3/2} e^{-1.12/2 \times 50}$$

= 9.63×10^{-39} carriers/cm³

$$0.350k \rightarrow n_{i} = (7.3 \times 10^{5})_{350}^{3/2} e^{-1.12/2k350}$$

$$= 4.15 \times 10^{9} \text{ carrier/cm}^{3}$$

For a silicon crystal doped with boron, what must N_A be if at T = 300 K the electron concentration drops below the intrinsic level by a factor of 10^6 ?

Ans.
$$N_A = 1.5 \times 10^{16} / \text{cm}^3$$

$$N_{i}^{2} = N_{i} \cdot N_{A} = N_{i} \cdot 10^{6} = 1.5 \times 10^{16}$$