FYS3140 - Home exam 2018

Candidate: 15028

April 2018

Problem 1: Differential equation

We are asked to find the general solution of the differential equation

$$y''(x) + \frac{3}{x}y'(x) - \frac{24}{x^2}y(x) = 56x^6.$$
 (1)

Solving this equation involves two major steps; 1) find the complementary function f_c , and 2) find the particular solution. For the complementary function, we start by multiplying through by x^2 to get

$$x^{2}y''(x) + 3xy'(x) - 24y(x) = 56x^{8},$$
(2)

which has the form $ax^2y'' + bxy^y + cy = g(x)$ and thus is a second order non-homogeneous Cauchy-Euler differential equation. Reconizing a = 1, b = 3 and c = -24, we can write

$$am(m-1) + bm + c = 0 \rightarrow m(m-1) + 3m - 24 = m^2 + 2m - 24 = 0,$$
 (3)

which yields $m_1 = 4$ and $m_2 = -6$. Since m_1 and m_2 are two distinct real roots the complementary function is a function on the form

$$y_c = c_1 x^{m_1} + c_2 x^{m^2} \to y_c = c_1 x^4 + c_2 x^{-6}.$$
 (4)

For the particular solution we will use variation of parameters. As we can see, 1 is on the form $y^{''} + p(x)y^{'} + q(x)y = g(x)$. Since $p(x) = 3/x, q(x) = -24/x^2$ and $g(x) = 56x^2$ are all continuous on an open interval, the particular solution can be found by

$$Y_p = -y_1 \int \frac{y_2 g(x)}{W(y_1, y_2)} dx + y_2 \int \frac{y_1 g(x)}{W(y_1, y_2)} dx, \tag{5}$$

where $W(y_1, y_2)$ is the Wronskian of y_1 and y_2 . y_1 and y_2 is from the complementary function. Starting by finding the Wronskian of y_1 and y_2

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \to W = \begin{vmatrix} x^4 & x^{-6} \\ 4x^3 & -6x^{-7} \end{vmatrix} = -6x^{-7}x^4 - 4x^3x^{-6} = -10x^{-3}, \quad (6)$$

we can write

$$Y_p = -x^4 \int \frac{x^{-6}56x^6}{-10x^{-3}} dx + x^{-6} \int \frac{x^456x^6}{-10x^{-3}} dx \tag{7}$$

$$= \frac{56}{10} \left(x^4 \int x^3 \ dx - x^{-6} \int x^{13} \ dx \right) \tag{8}$$

$$=\frac{56}{10}\left(\frac{x^8}{4} - \frac{x^8}{14}\right) \tag{9}$$

$$=\frac{56}{10} \left(\frac{10x^8}{56}\right) \tag{10}$$

$$=x^{8} \tag{11}$$

Finnaly, we find our general solution by adding the complementary function and the particular solution togetter

$$y(x) = y_c + Y_P \to y(x) = c_1 x^4 + c_2 x^{-6} + x^8, \tag{12}$$

which also can be written as

$$y(x) = \frac{c_2}{x^6} + c_1 x^4 + x^8, \tag{13}$$

and that's my final answer.

Problem 2: Complex analysis

Part A:

 \mathbf{a}

For a function that has a pole of order 3 at z=3+i, a zero of order 4 at z=2i, we have the following function

$$f(z) = \frac{(z-2i)^4}{(z-[3+i])^3}$$
 (14)

 \mathbf{b})

We are asked to classify the isolated singularity of the function

$$f(x) = \frac{z^3 + 8}{(z - 5)^3 (z + 2)}. (15)$$

If we write

$$f(x) = \frac{1}{(z-5)^3} \frac{z^3 + 8}{(z+2)}. (16)$$

Polynomial division, $(z^3 + 8) : (z + 2)$, yields

$$f(x) = \frac{z^2 - 2z + 4}{(z - 5)^3},\tag{17}$$

which shows z=-2 is a removable singularity. Now, if we write

$$\frac{1}{(z-5)^3} = \left(\frac{1}{z-5}\right)^3 = \left(-\frac{\frac{1}{5}}{1-\frac{z}{5}}\right)^3 \tag{18}$$

$$= \left(-\frac{1}{5} \frac{1}{1 - \frac{z}{5}}\right)^3 = \left(-\frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{z}{5}\right)^n\right)^3 \tag{19}$$

$$= \left(-\frac{1}{5}\left[1 + \frac{z}{5} + \frac{z^2}{25} + \frac{z^3}{25} + \dots\right]\right)^3 \tag{20}$$

$$= \left(\left[-\frac{1}{5} - \frac{z}{25} - \frac{z^2}{125} - \frac{z^3}{675} + \dots \right] \right)^3 \tag{21}$$

Part B:

- \mathbf{a}
- $\mathbf{b})$
- $\mathbf{c})$
- $\mathbf{d})$

Problem 3: The Dirac delta function

- $\mathbf{a})$
- **b**)
- $\mathbf{c})$
- \mathbf{a}