Computer Vision methods for GANimation

Jesse, Tommaso, Andrei-Daniel, Joel, Hilla

The Goal

- Generate a set of facial expressions given only one image of a face
- Conventionally: use GAN's and generate images belonging to a given domain: e.g., people with a certain expression
- Presented model (introduced in the paper) tries not to be limited on the training expressions: done via a new GAN conditioning scheme

Problem Approach

- Emotion mapping via action units: given the original image and an action units target we want to create a new image that satisfies the target action units
- Image generation realized via a trained GAN
- Loss function composed of four components: image adversarial, attention, conditional expression, identity
- Action Units used to depict key components of facial expressions: e.g., Inner / Outer Brow Raiser / Lowerer, etc.
- By interpolation of AU's the generated image is capable of depicting emotions that are not present in the training data set

Obtaining action unit values using feature detection

 Computer vision algorithms were used to obtain landmark points in faces (anatomical parts, corners, edges etc.)

- Using the landmark points and shading changes of the images, each image's expression is encoded as a vector using kernel methods.
- This was done for 1 000 000 images, which became the Emotionet database.

Action Units

- Facial expressions are encoded as action unit vectors with length ~30
- Each action unit contains information about anatomical features caused by specific facial muscles.
- Action units can have activations between 0 and 1. This continuous mapping of facial expressions enables a large number of possible expressions by just using interpolation

Generative Adversarial Network

- A generator G is trained to realistically transform the original image to an image fulfilling the expression y (= encoded AU's)
- A discriminator D is trained to evaluate the generated images in terms of their photo-realism and desired expression fulfillment

Network architecture

Network composed of:

- Generator network that produces two outputs:
 - Attention mask A
 - Color mask C
- Discriminator network

Use of convolution for feature detection

- Convolution (filtering) is used to process images small region at a time
- This can be done in order to modify an image, or to derive information with spatial awareness.
- Convolution layers used extensively in the image-to-image network
- Main purpose to detect features in input images
- Consecutive layers enable detecting larger, more complex features
- Multiple different convolution filters in a layer enables detecting many different features

Attention mask

- It is an output of the generator network together with the color mask
- It is used to allow the generator to focus only in the regions of the image that are responsible for the construction of the facial expression
- The rest of the elements of the image are just considered noise and they can left untouched, so they can just copied from the original image
 - Jewelry
 - Hats
 - Glasses
 - ...

How does it work in detail?

- The generator outputs two masks (attention and color mask)
- The **color mask** is an RGB color transformation over the entire image
- The **attention mask** defines a per pixel intensity specifying to which extend each pixel of the original image will contribute in the final rendered image
 - It relieves the color mask from having to accurately regress each pixel value
 - Only the pixels relevant to the expression change are carefully estimated,
 the rest are just noise.

Example of attention mask

Advantages of the attention mask

- Allows applying the transformation only on the cropped face, and put it back onto the original image without producing any artifact
- Allows handle images in the wild with complex backgrounds and illumination conditions
- Results are sharper and more realistic because the network is focused on facial movements

Preprocessing: Face Detection using Histogram of Oriented Gradients

- Divide image into cells and calculate a histogram of gradient orientations for each cell
- Form feature vectors for each image, use those to train a classifier
- For GANimation preprocessing:
 use the classifier to detect the face
 and crop the bounding box

Adam Geitgey:

https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78

Learning the Model

Image Adversarial loss:

- Discriminator tries to maximize the probability of correctly classifying real and generated images while the generator tries to fool the discriminator

Attention loss:

- We do not have ground truth for attention mask A or color mask C
- Regularize to prevent the masks from saturating and to ensure smooth spatial color transformation
- If the mask saturates the generator won't produce any effect -> output image is a copy of the input image

Learning the Model

Conditional Expression loss:

- The discriminator also estimates the AUs activations in the generated image to satisfy the target expression

Identity loss:

- As we have no ground truth, there is no constraint to guarantee that the input and output images correspond to the same person
- Solution: use cycle consistency loss penalize the difference between the original image and its reconstruction

Improvements compared to previous methods

How did everyone contribute?

Tafseer

- The ghost of the team

Jesse

- Demo particularly

Tommaso

- Attention mask (its importance, advantages and examples)
- Selection of images for the presentation

Andrei-Daniel

- Goals, problem approach, identified computer vision concepts Joel
- Wrote summaries, about feature detection, AUs, convolution Hilla
- Image preprocessing, learning the model, GAN Everyone participated in the discussions and preparing of the presentation (not sure about the ghost though)

Team member faces for demo

Thank you!