Data Pipeline in Practice

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069: Applied Data Science for Social Scientists

Spring 2024 Columbia University

recap: workflow principles in the Data Science Shop

a) reproducibility

anyone should be able to arrive to your same results

b) portability

 anyone should be able to pick up where you left off on any machine

crucial tenets for collaborative work

a) scalability

 your project should also work for larger data sets and/or be on the path of automation

recap: structuring your workspace

Pro tips

- data is NEVER pushed to GitHub!!!!!!
- {secret keys} are NEVER pushed to GitHub!!!!!!
- references are transferred to GitHub wiki
- TODO is transferred to GitHub projects

question: what is data?

for our purposes, data is

information (as opposed to pure instructions)

encoded in a digital (binary) format

recorded and stored in an electronic form

question:

why is <u>data collection</u> important?

- understand your products and systems better
- provide means for organizations to make better datainformed decisions
- help identify opportunities or gaps in a product or system
- measure how your consumers interact with your products or system
- understand your potential market

In God we trust, all others bring data.

-William E. Deming

but...not all data is created equal!

Unstructured data

- does not have a predefined data model or is not organized in a pre-defined manner
- examples of unstructured data include audio, video files or No-SQL databases.

Structured data

- pre-defined data model and ready to analyze
- examples of structured data are Excel files or SQL databases
- most traditional form of data storage

but...not all data is created equal!

structured

Family Name	¥	Given Name	▼ VIAF ID ▼
Ackersdijck		Willem Cornelis	17959345
Adelung		Friedrich von	22963658
Afzelius		Arvid August	49972119
Amerling		Karel	13331054

Family Name, Given Name, VIAF ID Ackersdijck, Willem Cornelis, 17959345 Adelung, Friedrich von, 22963658 Afzelius, Arvid August, 49972119 Amerling, Karel, 13331054

fixed structure (schema)

semi-structured

```
"customerID": "103248",
"name":
                               <?xml version="1.0" encoding="UTF-8"?>
                               <events>
                                   <event>
  "first": "AAA",
                                      <week>-mtwtf-</week>
 "last": "BBB"
                                      <starttime>06:00</starttime>
                                      <endtime>11:59</endtime>
                                      <playlist>morning.m3u8</playlist>
"address":
                                  </event>
                                      <week>SMTWTFS</week>
  "street": "Main Street",
                                      <starttime>12:00</starttime>
  "number": "101",
                                      <endtime>20:59</endtime>
 "city": "Acity",
                                      <playlist>afternoon.m3u8</playlist>
                                   </event>
  "state": "NY"
                               </events>
"ccOnFile": "yes",
"firstOrder": "02/28/2003"
```


- no fixed structure (schema)
- some metadata (e.g. tags)

unstructured

no pre-defined structure (schema)

levels of datasets

First party datasets

- data generated by your own product or systems
- the most useful and valuable data you can collect about your consumers

Second party datasets

- someone else's first-party data but useful to your organization
- arrangement with trusted partners who are willing to share their customer data with you (and vice versa)

Third party datasets

- data that is widely accessible to competitors, so you aren't gaining unique advantage
- great for demographic, behavioral, and contextual targeting
- data that you buy from outside sources that are not the original collectors of that data (data aggregators)

question:

how do we get data?

let's introduce a concept: data pipelines

a **process** to **move data** across systems

a data pipeline

- "pull" data in
- "push" data to new location

also a data pipeline

- "pull" data in
- transform data
- "push" data to new location

a data pipeline matches its use case

question:

how is data stored?

The Evolution of Data Storage

Ways of storing data

Object storage

- is a way of structuring stored data so that it's characterized as objects that can be manipulated in different ways by hardware and network storage systems
- the objects are not in a file-folder hierarchy
- object stores are scalable, fast data retrieval and cost effective

Distributed file systems

- a file system with data stored on a server.
- data is accessed and processed as if it was stored on the local client machine
- convenient to share information and files among users on a network in a controlled and authorized way

Ways of storing data

Relational Databases

- uses a structure that allows us to identify and access data in relation to another piece of data in the database
- data in a relational database is organized into tables

NoSQL Databases

- a non-relational way of storing data
- mostly used to store documents, key-value pair data
- storing a large volume of data, and you don't want to lock yourself into a schema

Hands on workshop

question:

how is data managed?

data management for each age...

- raw data (central) repository
- large volumes
- multiple sources/formats

circa 2010s

- processed data (central) repository
- **smaller** volumes
- structured & normalized

circa 1990s

- data processing on top of raw data
- on-demand (streaming)
- supports **multiple** use cases

circa 2020s

perhaps more intuitively...

perhaps more intuitively...

a data lake

a data warehouse

a data lakehouse

data architectures to bring it all together

question: who provides these

services?

just a **cloud** away!

Data Pipeline in Practice

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069: Applied Data Science for Social Scientists

Spring 2024 Columbia University

our focus today: two forms of data storage

databases

object storage as repositories for data objects

low cost

data-type agnostic

databases as repositories for data

relational

non relational

relational databases still widely used...

- ideal for structured data
- organized in tables
- rigid schema / hard to change
- data identified in relation to data in other tables
- leverage SQL (Structured Query Language) "dialects"
- also known as SQL databases

use of **non-relational databases** on the rise...

- ideal for semi-structured and unstructured data
- no defined schema
- no relational structure
- query documents, columns, key-value pairs, graphs
- also known as noSQL databases

a bit of intuition on graph databases...

figure: GraphAware

a bit more intuition on graph databases...

figure: GraphAware

Data Pipeline in Practice

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069: Applied Data Science for Social Scientists

Spring 2024 Columbia University