Econometría I (EC402)-II semestre de 2013 Clase #6 - Supuestos del MCRL y MCO

Andrés M. Castaño

Ingeniería Comercial Universidad Católica del Norte Agosto 26 de 2013

FRP: ejemplo

INGRESO FAMILIAR SEMANAL, X, \$

Y↓ X→	80	100	120	140	160	180	200	220	240	260
Gasto de consumo	55	65	79	80	102	110	120	135	137	150
familiar semanal	60	70	84	93	107	115	136	137	145	152
Y, \$	65	74	90	95	110	120	140	140	155	175
	70	80	94	103	116	130	144	152	165	178
	75	85	98	108	118	135	145	157	175	180
	-	88	-	113	125	140	-	160	189	185
	-	-	-	115	-	-	-	162	-	191
Total	325	462	445	707	678	750	685	1 043	966	1 211
Medias condicionales de Y, E(Y X)	65	77	89	101	113	125	137	149	161	173

FRP: ejemplo

FRP: lugar geométrico de las medias condicionales de la variable dependiente para los valores fijos de las variables explicativas

FRP: ejemplo

$$E(Y \mid X_i) = f(X_i)$$

$$\begin{split} &E(Y\mid X)=f(X_i)\\ &\text{Qu\'e forma debe tomar }f(X_i)?\\ &\text{supongamos que }E(Y\mid X_i)=\beta_1+\beta_2X_i \end{split}$$

Con el fin de garantizar que $E(Y \mid X) = \beta_1 + \beta_2 X$, el Modelo Clásico de Regresión Lineal satisface los siguientes supuestos:

1. Linealidad en los parámetros

- Linealidad en variables: Y = f(x) es lineal en X si:
 - Si X aparace elevado a una potencia o índice 1 (no son ejemplos: X^2 , \sqrt{X}) y...
 - X no está multiplicada ni dividida por alguna otra variable (no son ejemplos: X*Z, $\frac{X}{Z}$, siendo $Z\neq X$)
 - $ightharpoonup rac{dY}{dX}$ es independiente de X
- Linealidad en los parámetros: $E(Y \mid X)$ es una función lineal de los parámetros, por lo tanto $E(Y \mid X) = \beta_1 + \beta_2 X_i^2$ es una función lineal (en β).

Ejemplos de modelos que no son lineales en los los parámetros:

$$Y = \beta_1 X^{\beta_2} + \mu$$
; $Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_2 \beta_3 X_4 + \mu$

Especificación estocástica de la FRP

Y↓ X→	80	100	120	140	160	180	200	220	240	260
Gasto de consumo	55	65	79	80	102	110	120	135	137	150
familiar semanal	60	70	84	93	107	115	136	137	145	152
Y. \$	65	74	90	95	110	120	140	140	155	175
	70	80	94	103	116	130	144	152	165	178
	75	85	98	108	118	135	145	157	175	180
	-	88	-	113	125	140	-	160	189	185
	-	-	-	115	-	1-1	1-	162	-	191
Total	325	462	445	707	678	750	685	1 043	966	1 211
Medias condicionales de Y, E(Y X)	65	77	89	101	113	125	137	149	161	173

Podemos definir la desvición individual μ_i como:

$$\mu_i = Y_i - E(Y \mid X_i)$$

Si partimos de que $E(Y \mid X)$ es lineal en X_i :

$$Y_i = E(Y \mid X_i) + \mu_i$$
$$= \beta_1 + \beta_2 X_i + \mu_i$$

Especificación estocástica de la FRP

Propiedad de descomposición de la FEC:

$$Y_i = E(Y \mid X_i) + \mu_i$$

Algunas propiedades importantes:

- LET (ley de expectativas totales): $E(E(Y \mid X)) = E(Y)$
- PLE (propiedad de linealidad de la esperanza):

$$E(f(X)Y \mid X) = f(X)E(Y \mid X)$$

LEI (ley de expectativas iteradas) :

$$E(E(Y\mid X,Z)\mid X) = E(Y\mid X)$$

Aplicando valor esperado a ambos lados:

$$E(Y_i \mid X_i) = E(E(Y \mid X_i) \mid X) + E(\mu_i \mid X_i)$$

Aplicando LEI:

$$E(Y_i \mid X_i) = E(Y \mid X_i) + E(\mu_i \mid X_i)$$

Ahora: ; Porqué?

$$E(\mu_i \mid X_i) = 0$$

Porqué no se colocan tantas X como sea posible

- Vaguedad de la teoría.
- No disponibilidad de información.
- Variables centrales vs variables periféricas.
- Aleatoriedad intrinseca.
- Variables proxy inadecuadas.
- Principio de parsimonia (navaja de occam).
- Forma funcional incorrecta.

Función de Regresión Muestral (FRM)

Objetivo: estimar la FRP a partir de la FRM.

Función de Regresión Muestral (FRM)

FRM:

$$\hat{Y} = \hat{\beta_1} + \hat{\beta_2} X_i$$

siendo:

$$\hat{Y} \Longrightarrow \mathsf{estimador} \; \mathsf{de} \; E(Y \mid X)$$

$$\hat{\beta_1} \Longrightarrow \mathsf{estimador} \; \mathsf{de} \; \beta_1$$

$$\hat{\beta_2} \Longrightarrow \mathsf{estimador} \; \mathsf{de} \; \beta_2$$

Función de Regresión Muestral Estocástica (FRME)

FRM:

$$\hat{Y} = \hat{\beta_1} + \hat{\beta_2} X_i + \hat{\mu_i}$$

siendo:

$$\hat{Y} \Longrightarrow \operatorname{estimador} \operatorname{de} E(Y \mid X)$$

$$\hat{\beta_1} \Longrightarrow \mathsf{estimador} \; \mathsf{de} \; \beta_1$$

$$\hat{\beta_2} \Longrightarrow \mathsf{estimador} \; \mathsf{de} \; \beta_2$$

$$\hat{\mu_i} \Longrightarrow$$
 estimador de μ_i

Podemos definir:

$$Y_i = \hat{Y}_i + \hat{\mu}_i$$

Función de Regresión Muestral Estocástica (FRME)

Porqué el método de los Mínimos Cuadrados Ordinarios (MCO)?

Método de los Mínimos Cuadrados Ordinarios (MCO)...Intuición

14 / 1

Método de los Mínimos Cuadrados Ordinarios (MCO)

$$\begin{split} \hat{\mu}_i &= Y_i - \hat{Y}_i \\ Y_i &= \beta_1 + \beta_2 X_i + \mu_i \\ \hat{Y}_i &= \hat{\beta}_1 + \hat{\beta}_2 X_i \\ \hat{\mu}_i &= Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i \end{split}$$

- Criterio 1: selecionar la FRM de tal modo que $\sum \hat{\mu}_i = \sum (Y_i \hat{Y}_i)$ sea mínimo
- Criterio 2 ⇒ Método de los Mínimos Cuadrados Ordinarios:

$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{Y}_i)^2$$

$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$

$$\sum \hat{\mu}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2)$$

Método de los Mínimos Cuadrados Ordinarios (MCO)

$$\begin{split} \hat{\mu}_i &= Y_i - \hat{Y}_i \\ Y_i &= \beta_1 + \beta_2 X_i + \mu_i \\ \hat{Y}_i &= \hat{\beta}_1 + \hat{\beta}_2 X_i \\ \hat{\mu}_i &= Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i \end{split}$$

- Criterio 1: selecionar la FRM de tal modo que $\sum \hat{\mu}_i = \sum (Y_i \hat{Y}_i)$ sea mínimo
- Criterio 2 ⇒ Método de los Mínimos Cuadrados Ordinarios:

$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{Y}_i)^2$$
$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$
$$\sum \hat{\mu}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2)$$

Implementación criterio 1 ¿Adecuado?

 $\sum \hat{\mu}_i = 0$ dado que todos los $\hat{\mu}_i$ tienen igual peso (valor)

Prof. Andrés M. Castaño Econometría I (EC402) Clase 6

16 / 1

Implementación experimental criterio 2

	<i>Y_i</i> (1)	X, (2)	Ŷ ₁ , (3)	û _{1/} (4)	\hat{u}_{1i}^{2} (5)	Ŷ ₂ , (6)	û ₂ , (7)	û _{2i} (8)
	4	1	2.929	1.071	1.147	4	0	0
	5	4	7.000	-2.000	4.000	7	-2	4
	7	5.	8.357	-1.357	1.841	8	-1	1
1	2	6	9.714	2.286	5,226	9	3	9
Suma: 2	18	16		0.0	12.214		0	14

Notas:
$$\hat{Y}_{11} = 1.572 + 1.357 X$$
, $(v. gr., \hat{\beta}_1 = 1.572 y \hat{\beta}_2 = 1.357)$.
 $\hat{\mu}_{21} = 3.0 + 1.0 X$, $(v. gr., \hat{\beta}_1 = 3 y \hat{\beta}_2 = 1.0)$.
 $\hat{\mu}_{31} = (Y_1 - \hat{Y}_{31})$.
 $\hat{\mu}_{32} = (Y_1 - \hat{Y}_{32})$.

El MCO escoge $\hat{\beta}_1$ y $\hat{\beta}_2$ de tal modo que $\sum \hat{\mu}_i^2$ se lo más pequeña posible.

El objetivo de la regresión no sólo es estimar los parámetros $(\hat{\beta}_1,\hat{\beta}_2)$, sino realizar inferencia respecto a que tan cerca están de sus contraparte poblacionales (β_1,β_2) , por lo tanto se deben realizar supuestos respecto a la forma en cómo la Y_i son generadas:

1. Linealidad en los parámetros

• Linealidad en los parámetros: $E(Y \mid X)$ es una función lineal de los parámetros, por lo tanto $E(Y \mid X) = \beta_1 + \beta_2 X_i^2$ es una función lineal (en β).

Ejemplos de modelos que no son lineales en los los parámetros:

$$Y = \beta_1 X^{\beta_2} + \mu$$
; $Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_2 \beta_3 X_4 + \mu$

2. Los valores de X son fijos en muestreo repetido

- Los valores que toma el regresor X son considerados fijos en muestreo repetido, lo que en términos técnicos implica que X es no estocástica.
- Lo anterior significa es que el análisis de regresión es una análisis de regresión condicional, es decir, condicionado a los valores dados del (los) regresor (es) X.

3. El valor medio de la perturbación $\mu_i = 0$

• Dado el valor de X, la media o el valor esperado del término aleatorio de perturbación $\mu_i=0$.

$$E(\mu_i \mid X_i) = 0$$

• Este supuesto implica los factores que no están explícitamente en el modelo y que por lo tanto están en μ_i , no afectan sistematicamente la media de Y. Los valores positivos se van a anular con los negativos de tal modo que su efecto promedio sobre y es cero.

4. Homocedasticidad o igual varianza de μ_i

• Dado el valor de X, la varianza de μ_i es la misma para todas las observaciones (varianzas condicionales de μ_i son idénticas. Simbolicamente:

$$Var(\mu_i \mid X_i) = E[\mu_i - E(\mu_i) \mid X_i]^2$$

= $E(\mu_i^2 \mid X_i) - E(\mu_i \mid X_i)^2$

⇒ por el supuesto de exogeneidad

$$=\sigma_2$$

 De manera más simple significa que las poblaciones Y correspondientes a diversos valores de X tienen la misma varianza, o que la variación alrededor de la recta de regresión es la misma para los valores de X.

- Distribución leptocurtica (Más apuntada y con colas más anchas que la normal)
- Distribución mesocurtica (la distribución normal es mesocúrtica, curtosis de 3)
- Distribución platicurtica, (menos apuntada y con colas menos anchas que la normal)

5. No existe autocorrelación entre las perturbaciones (no correlación serial

• Dados dos valores cualquiera de X_i y X_j ($i \neq j$), la correlación entre dos μ_i y μ_j es cero:

$$Cov(\mu_i, \mu_j \mid X_i, X_j) = E[(\mu_i - E(\mu_i)) \mid X_i][(\mu_j - E(\mu_j)) \mid X_i]$$

= $E(\mu_i \mid X_i)(\mu_j \mid X_j)$
= 0

ullet En términos simples, esto implica que dado X, las desviaciones de dos valores cualesquiera de μ no están relacionados.

6. La covarianza entre μ_i y X_i es cero, o $E(\mu_i X_i) = 0$

$$Cov(\mu_i, X_i) = E[(\mu_i - E(\mu_i))][(X_j - E(X_j))]$$

$$= E[\mu_i(X_j - E(X_j))]$$
 \Longrightarrow dado que $E(\mu_i) = 0$

$$= E(\mu_i X_j) - E(X_J E(\mu_i))$$

$$= E(\mu_i X_j) = 0$$

7. El número de observaciones n debe ser mayor que el número de parámetros por estimar

8. Variabilidad en los valores de X

- No todos los valores de X deben ser iguales.
- Var(X) debe ser un número positivo finito.

9. El modelo de regresión está correctamente especificado

- No hay sesgo de especificacióno o error.
- Cuáles variables deben estra incluidas en el modelo?.
- Cuál es la forma funcional del modelo?.
- Es el modelo lineal en los parámetros?
- Trate de evitar lo que Gujarati denomina "Abundancia de Datos"

Ejemplo: curva de Phillips lineal vs no lineal. En qué consiste esl sesgo de especificación?

10. No hay multicolinealidad perfecta

- No hay relaciones perfectamente lineales entre las variables explicativas.
- Tiene implicaciones en términos matriciales, y puede ocasionar que no se puedan obtener los estimadores $(\hat{\beta}_0 y \hat{\beta}_1)$.

Ahora si: Método de los Mínimos Cuadrados Ordinarios (MCO)

• Bajo que condiciones es un "buen" método?.

$$\hat{\mu}_i = Y_i - \hat{Y}_i$$

$$\hat{\mu}_i = Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i$$

Vimos porqué lo tenemos que hacer así:

$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$
$$\sum \hat{\mu}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2)$$

ahora recuerde que:

$$(Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i) * (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)$$

Resolviendo y aplicando sumatoria tenemos:

$$= \sum Y_i^2 + n\hat{\beta}_1^2 + \hat{\beta}_2^2 \sum X_i^2 - 2\hat{\beta}_1 \sum Y_i - 2\hat{\beta}_2 \sum X_i Y_i + 2\hat{\beta}_1 \hat{\beta}_2 \sum X_i$$

Recordatorio: propiedades de la sumatoria

- $\sum_{i=k}^{n} K = nK$ (donde K es una constante)
- $\bullet \ \sum_{i=1}^n KX_i = K \sum_{i=1}^n X_i$
- $\sum_{i=1}^{n} (a + bX_i) = na + b\sum_{i=1}^{n} X_i$
- $\sum_{i=1}^{n} (Y_i + X_i) = \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} Y_i$

Cómo obtenemos \hat{eta}_1 y \hat{eta}_2

$$\min \sum \hat{\mu}_i^2 = \min \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$

Derivamos respecto a cada parámetro...

$$\frac{\partial \sum \hat{\mu}_i^2}{\partial \hat{\beta}_1} = -2\sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i) = 0$$

$$\frac{\partial \sum \hat{\mu}_i^2}{\partial \hat{\beta}_2} = -2 \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)(X_i) = 0$$

Condiciones de primer orden o ecuaciones normales:

$$\sum_{i=1}^{n} Y_i - n\hat{\beta}_1 - \hat{\beta}_2 \sum_{i=1}^{n} X_i = 0$$

$$\sum_{i=1}^{n} Y_i X_i - \hat{\beta}_1 \sum_{i=1}^{n} X_i - \hat{\beta}_2 \sum_{i=1}^{n} X_i^2 = 0$$

Despejando obtenemos expresiones para \hat{eta}_1 y \hat{eta}_2

Si dividimos la primera ecuación normal entre n, obtenemos:

$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X}$$

Ahora, si dividimos la ecuación normal número 2 entre $\sum_{i=1}^{n} X_i$ y luego le restamos el valor de la ecuación anterior tendríamos:

$$\begin{split} \frac{\sum_{i=1}^{n} Y_{i} X_{i} &= \hat{\beta}_{1} \sum_{i=1}^{n} X_{i} + \hat{\beta}_{2} \sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} X_{i}} \\ \frac{\sum_{i=1}^{n} Y_{i} X_{i}}{\sum_{i=1}^{n} X_{i}} &= \hat{\beta}_{1} + \frac{\hat{\beta}_{2} \sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} X_{i}} \\ \frac{\sum_{i=1}^{n} Y_{i} X_{i}}{\sum_{i=1}^{n} X_{i}} - \bar{Y} &= \hat{\beta}_{2} (\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} X_{i}} - \bar{X}) \end{split}$$

Despejando obtenemos expresiones para \hat{eta}_1 y \hat{eta}_2

$$\hat{\beta}_2 = \frac{\frac{\sum_{i=1}^n Y_i X_i}{\sum_{i=1}^n X_i} - \bar{Y}}{\frac{\sum_{i=1}^n X_i^2}{\sum_{i=1}^n X_i} - \bar{X}}$$

 Los estimadores MCO son estimadores puntuales y su cálculo depende sólo de los datos observados.

$$\mathbf{y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}; \ \mathbf{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}; \ \mathbf{e} = \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_n \end{bmatrix}; \ \mathbf{B} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

$$y_i = X_i'\hat{\beta} + e_i$$

$$y_{i} = X'_{i}\hat{\beta} + e_{i}$$

$$e_{i} = y_{i} - X'_{i}\hat{\beta}$$

$$SRC = \sum_{i=1}^{n} (y_{i} - X'_{i}\hat{\beta})^{2}$$

$$SRC = (y - X\hat{\beta})'(y - X\hat{\beta})$$

$$= (y' - \hat{\beta}'X')(y - X\hat{\beta})$$

$$= y'y - y'X\hat{\beta} - \hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta}$$

Dado que:

$$y'X\hat{\beta} = \hat{\beta}'X'y$$

Entonces:

$$= y'y - 2y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

Ahora podemos definir: a = X'y, a' = y'X, A = X'X Entonces:

$$SRC = y'y - 2a'\hat{\beta} + \hat{\beta}A\hat{\beta}$$

Hacemos la derivada de matrices respecto el vector de parámetros:

$$\frac{\partial (SRC)}{\partial \hat{\beta}} = -2a + 2A\hat{\beta} = 0$$

Las ecuaciones normales serían:

$$-2a + 2A\hat{\beta} = 0$$
$$2A\hat{\beta} = 2a$$
$$\hat{\beta} = \frac{2a}{2A}$$
$$\hat{\beta} = \frac{X'y}{X'X}$$
$$\hat{\beta} = (X'X)^{-1}(X'y)$$

Las ecuaciones normales, usando la forma matricialse pueden reescribir como:

$$\begin{bmatrix} 1 & \dots & 1 \\ X_1 & \dots & X_n \end{bmatrix} * \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} 1 & \dots & 1 \\ X_1 & \dots & X_2 \end{bmatrix} * \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ \vdots & \vdots \\ 1 & X_1 \end{bmatrix} * \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (1)

$$\begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} y_i X_i \end{bmatrix} - \begin{bmatrix} n & \sum_{i=1}^{n} X_i \\ \sum_{i=1}^{n} X_i & \sum_{i=1}^{n} X_i^2 \end{bmatrix} * \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(2)

(y obtenemos las expresiones conocidas)

$$\hat{\beta} = (X'X)^{-1}(X'y)$$

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^n X_i \\ \sum_{i=1}^n X_i & \sum_{i=1}^n X_i^2 \end{bmatrix}^{-1} * \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n y_i X_i \end{bmatrix}$$
(3)

$$\begin{bmatrix} n & \sum_{i=1}^{n} X_i \\ \sum_{i=1}^{n} X_i \end{bmatrix}^{-1} = \frac{1}{n \sum_{i=1}^{n} X_i^2 - (\sum_{i=1}^{n} X_i)^2} * \begin{bmatrix} \sum_{i=1}^{n} X_i^2 & -\sum_{i=1}^{n} X_i \\ -\sum_{i=1}^{n} X_i & n \end{bmatrix}$$
(4)

Recuerde que (inversa de una matriz 2x2):

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \tag{5}$$

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} * \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (6)

Otro parámetro del modelo: Varianza de los errores

 En el modelo de regresión lineal simple hay otro parámetro que nos interesa estimar (por razones que quedarán claras un poco más adelante):

$$\sigma^2 = Var(\mu_i \mid X_i) = E(\mu_i^2 \mid X_i)$$

• Como μ_i no es observable, el estimador de σ^2 se obtiene a partir de los residuos $\hat{\mu}_i = Y_i - \hat{Y}_i$:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n \mu_i^2}{n-2}$$

• $\hat{\sigma}^2$ está definido si n>2. Al numerador suele llamarse Suma Cuadrática de Residuos (SCR) o Suma de Residuos al Cuadrado, o sumatoria de los residuos al cuadrado (SRC). (SRC).

Ejemplo Sencillo

d

• En una empresa el gasto en publicidad X y el ingreso por ventas Y

	l
1	
1	l
2	
2	
4	
	$\begin{bmatrix} y \\ 1 \\ 2 \\ 2 \\ 4 \end{bmatrix}$

- Queremos estimar el modelo: $Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \mu_i$; siendo i=1,....,5
- Obtenemos: n=5; $\sum_{i=1}^5 X_i=15$; $\sum_{i=1}^5 y_i=10$; $\sum_{i=1}^5 X_i^2=55$; $\sum_{i=1}^5 X_i y_i=37$, por tanto

Ejemplo Sencillo

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ 15 & 55 \end{bmatrix}^{-1} * \begin{bmatrix} 10 \\ 37 \end{bmatrix}$$
 (7)

Teniedo en cuenta la inversa esto nos daría:

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \frac{1}{50} * \begin{bmatrix} 55 & -15 \\ -15 & 5 \end{bmatrix} * \begin{bmatrix} 10 \\ 37 \end{bmatrix}$$
 (8)

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 0.7 \end{bmatrix} \tag{9}$$

La recta MCO estimada es:

$$\hat{Y}_i = -0.1 + 0.7X_i$$

Ejemplo Sencillo

• Los residuos son, para i=1,...,5 :

$$\hat{\mu}_i = Y_i - (-0.1 + 0.7X_i)$$

i	1	2	3	4	5
$\hat{\mu}_i$	0.4	-0.3	0	-0.7	0.6

Por tanto, la varianza de los errores estimada es:

$$\hat{\sigma}^2 = \frac{1,1}{5-2} = 0,36667$$