Projeto e Desenvolvimento de Algoritmos

Introdução Adriano Cruz e Jonas Knopman

Índice

- Objetivos
- Sucessos e fracassos da Computação
- Um pouco de história
- O Software
- O Hardware

Objetivos

- Mostrar aspectos da história da computação
- Definir termos e palavras chaves usadas pelos profissionais da área
- Apresentar conceitos básicos sobre software e hardware

Avanços

- Aumento de velocidade desde anos 40 foi da ordem de 100000
- Custo caiu de milhões de dólares para valores em torno de milhares
- Consumo caiu de centenas de kilowatts para apenas alguns
- Tamanho caiu de centenas de metros quadrados para menos de um metro quadrado

ENIAC

 Considerado por muito tempo o primeiro computador programável digital

Lei de Moore

Em 1965 Gordon Moore, um dos fundadores da Intel, enunciou o que ficou conhecido como a lei de Moore.

"Cada novo circuito integrado terá o dobro do número de transistores do anterior e será lançado em um intervalo entre 18 e 24 meses."

Lei de Moore cont.

- Transistores são os tijolos básicos usados na construção dos microprocessadores
- Redução de tamanho dos transistores significa:
 - Menor consumo;
 - Menor tamanho;
 - Maior velocidade;

A Família x86 e sucessores

Ano	Processado r	Transistores	Ano	Processado r	Transistores
1971	4004	2.250	1989	80486DX	1, 180,000
1972	8008	2.500	1993	Pentium	3.100.000
1974	8080	5.000	1997	Pentium II	7.500.000
1982	80286	120.000	1999	Pentium III	24.000.000
1985	80386	275.500	2000	Pentium 4	42.000.000

Onde parar?

- Moore achava que sua lei valeria até 1975, mas ela continua valendo até hoje
- A fronteira final é o tamanho de um elétrons, que está se aproximando rapidamente
- Intel anunciou em final de 2001 um transistor com 70 átomos de largura e 3 átomos de profundidade permitindo integrados com 1,5 Bilhões de transistores e velocidade 20 Gigahertz

O Futuro

- Computadores paralelos, que são vários processadores cooperando para acelerar a solução do trabalho
- Computadores quânticos, armazenam informação no alinhamento e rotação dos eletrons
- Computadores biológicos, viagem completa!

Os Fracassos

- Onde está o computador HAL do filme 2001-Uma Odisséia no Espaço de Stanley Kubrik?
- HAL falava, via e até ficou maluco.
- Não temos nenhum neste nível, nem maluco!
- O olho de HAL

<u>cederj</u>

Computadores são estúpidos!

Picasso na sua genialidade apontou que o rei está nu e disse:

"Computadores são estúpidos, eles somente respondem perguntas."

E a Internet?

- A Internet, a rede das redes, será mesmo o maior e mais completo sucesso?
- Hoje faz-se tudo na Internet: namorar, comprar, estudar, comunicar-se, jogar, etc.
- Quem sabe no futuro teremos uma enorme praça virtual onde, como na Grécia Antiga, iremos discutir nossas leis?

Evolução da Internet

Meio de Comunicação	Anos p/ atingir 50 milhões usuários		
Telefone	70		
Rádio	38		
Televisão	13		
Internet	5		

Distribuição da Internet

Meio	Lançado	Atingiu 50 M habitantes	População Mundial	Um sistema para cada
Telefone	1900	1970	3.8 B	76
Rádio	1930	1968	3.7 B	74
Televisão	1950	1964	3.2 B	64
Internet	1990	1990	5.8 B	116

Comentários s/ Internet

- A Internet foi o meio que mais rapidamente atingiu 50 milhões de usuários
- No entanto também o meio que está pior distribuído
- Atualmente, para uso requer mais tanto em treinamento como em investimento monetário

Pré-história

- Ábaco (2500 A.C.)
- Máquina de Calcular Mecânica (1642 -Pascal)
- Primeiro computador de uso específico (mecânico) projetado por Charles Babbage em 1812

Charles Babbage

- Características do projeto de 1840
- 50 dígitos decimais de precisão;
- Memória para 1000 números (165000 bits);
- Controle das operações em cartões perfurados;
- Soma e subtração em 1 segundo;
- Multiplicação e divisão em 1 minuto;
- Subrotinas, arredondamento automático e detecção de transbordo (overflow);

Charles Babbage

Durante a 2ª Guerra Mundial

- John Atanasoff: depois de um caso judicial, passou a ser considerado o construtor do primeiro computador digital (1939, Iowa State University)
- Howard Aiken: (1937-1944, Harvard University)
- George R. Stibitz: (1938-1940, Bell Telephone Labs) Primeiro a usar um computador remotamente.

Durante a 2ª Guerra Mundial

- Konrad Zuze: Computadores destruídos durante a guerra (1936-1940, Berlin Technishe Hochsule)
- J. P. Eckert e J. Mauchly: (1946, Universidade da Pensilvânia) Primeiro computador digital operacional chamado de ENIAC (Electronic Numerical Integrator and Calculator). Perderam o título para John Atanassof

ENIAC

- •19.000 válvulas, 15.000 relés e milhares de componentes diversos
- 42 painéis com 2,70 m de altura, 60 cm de largura e 30 cm de comprimento
- 200 Kw de consumo, espaço especial com ar
- Programado por especialistas com fios

EDSAC

- Electronic Delay Storage Automatic Calculator (1949), Universidade de Cambridge, Inglaterra
- Primeiro computador a usar programa armazenado na memória junto com dados
- Adeus aos programas com fios!

Hardware

- "Hardware é o que vemos nos computadores"
- Um computador simples é composto de:
 - processador a parte do computador onde os dados sofrem modificações;
 - memória principal local onde o processador busca dados e instruções para operar;
 - periféricos dispositivos usados para armazenar dados ou interagir com humanos.

Hardware

- Um processador composto por um ou uns integrados é o microprocessador
- Um microprocessador mais memória e periféricos é o microcomputador

 Estação de trabalho é apenas um microcomputador de maior desempenho

<u>cederj</u>

Bits e Bytes

- Bit é a menor unidade de informação processada pelo computador
- Bit somente pode assumir valores 0 e 1
- Um conjunto de 8 bits é o byte
- Uma palavra de memória é um conjunto de bytes, mais comum 4 bytes.

Muitos bytes

- Em matemática kilo (k) significa 10³=1000
- Em computação tudo está relacionado a base 2, então k é igual a 2¹⁰=1024
- Mega (M) igual a 1k ×1k = 2²⁰ = 1024 ×1024 = 1.048.576
- Giga igual a $1M \times 1k = 2^{20} \times 2^{10}$

Megabytes?

- Uma memória de computador de 128 Mega bytes significa 128 vezes 1.048.576 bytes
- Em cada byte pode ser armazenado um caracter de texto
- Uma página de texto ocupa aproximadamente 3k bytes, portanto em 128 M podemos armazenar, também aproximadamente, 40.000 páginas de texto.

Palavras e Bytes

- A memória do processador é dividida em conjuntos de bytes, as palavras
- Os tamanhos de palavras mais comuns são
 2, 4 e 8 bytes
- Os computadores podem processar palavras inteiras

Memórias e Endereços

- Como recuperar informação com tantos bytes?
- Os dados são referenciados por meio de endereços como nossas casas
- Cada palavra de memória possui um endereço único
- Dado um endereço posso escrever ou ler o seu conteúdo

RAMs

- Random Access Memory (RAM) ou memória de acesso randômico
- RAM é uma memória que pode ser lida e escrita pelo processador com igual facilidade
- As memórias, ditas principais, dos computadores são compostas por chips de memória RAM
- A partir destas memórias, que são muito rápidas, são rodados os programas

ROMs

- Read Only Memory, ou memória somente de leitura, armazena dados que não se modificam durante o funcionamento do computador ou quando ele é desligado
- A BIOS, que é o primeiro programa que o computador executa ao ser ligado é armazenado em ROM

Tipos de ROMs

- ROM gravada pelo fabricante e nunca modificada
- PROM possível de ser gravada em equipamentos especiais pelos usuários
- EPROM possível de ser gravada e desgravada
- EEPROM possível de ser gravada e desgravada eletricamente

Periféricos

- Existem periféricos para entrada, saída e entrada e saída ao mesmo tempo.
- Periféricos de entrada de dados: teclado, mouse, joystick, CD-ROM
- Periféricos de saída de dados: vídeo, impressora, plotter
- Periféricos de entrada e saída de dados: disquetes, fitas magnéticas, discos rígidos

Computador e Periféricos

Software

- "Se hardware é o que vemos podemos dizer que software é o que não vemos."
- Software engloba todos os programas que rodam no computador
- Exemplos de programas que usamos: editores de texto, planilhas eletrônicas, jogos, sistemas operacionais, correios eletrônicos e navegadores de internet.

Linguagens de Programação

- Neste curso iremos aprender a desenvolver algoritmos, que são receitas indicando como resolver um determinado problema
- Este algoritmo deve ser escrito em uma linguagem que possa ser traduzida para a linguagem que o computador usa
- As linguagens que usamos para escrever os algoritmos são chamadas de linguagens de programação

Linguagens de Programação cont

- Existem diversas linguagens de programação a nossa disposição para escrever nossos algoritmos
- Embora sejam linguagens de uso geral, há que se escolher a linguagem que melhor se adapte ao problema
- A escolha depende, entre outros fatores, do problema, do conhecimento do programador e do custo

Linguagens de Programação exemplos

- Pascal e C usadas para desenvolver programas de uso geral e para ensino
- Delphi e C++ linguagens orientadas à objetos derivadas de Pascal e C respectivamente
- Basic o nome diz tudo, básica e simples
- Lisp e Prolog usadas em programas de IA
- Fortran, do tempo dos dinossauros, usada em engenharia e ciência
- COBOL, da mesma época, usada em programas comerciais

Sistemas Operacionais

- Programas que gerenciam o funcionamento do computador
- Controlam quem vai usar o que por quanto tempo
- O que pode ser o processador, impressora, espaço em disco, uso de memória, etc
- Quem, são os diversos programas que usamos

Sistemas Operacionais Exemplos

- Família Windows, produzido pela Microsoft e muito popular
- Família Unix, marca registrada do Bell Labs, usado em estações de trabalho.
- Unix é produto de diversos fabricantes por exemplo: AIX (IBM), HPUX (HP), Linux (software livre), etc