0)

satu jalur mengandung link-link yang tidak gagal/tidak out of service. Tentukan probabilitas kota A dan B bisa berkomunikasi? BC tersambung / fidak gagal: 1 - (0.25) = 0,984

Ac tersambung/fidax $9a941 = 1 - 0.25 \left(1 - \left(0.75(1 - \left(0.75(1 - \left(0.75^2\right)\right)\right) = 0.925 \right)$

1-0.25 : 0.75

AB tidak gagal = 1 - ((1-P(AB Dtas). (1-P(AB Bawah)) - (0.25)3 = 1 - (1- (PBC. PAC)) * (1- PAB) - (| - (| - 0,9 | 1) , 0.25

Tabel f(x,y) Х 3 0.15 0.2 0.1 0.3 0.05 0.05 0.05 0.1

80. $P(0 \le X \le 2, Y = 1) = ?$ 81. E(X) = ? 83. E(Y) = ?84. var(Y) = ?82. var(X) = ? 85. Covariance of X and Y = ?

86. Correlation coefficient of X and Y = ?import sympy as sp

Tabel probabilitas gabungan f(x, y) f_xy = sp.Matrix([[a, b, c, d], # y = 0 # y = 1 [f, g, h, i] # Soal 80: $P(0 \le X \le 2, Y = 1)$ $p_x_0_2_y_1 = f_xy[1, 0] + f_xy[1, 1] + f_xy[1, 2]$ $print("P(0 \le X \le 2, Y = 1) = ", p_x_0_2_y_1)$ # Distribusi marginal untuk X dan Y $f_x = [f_{xy}[0, i] + f_{xy}[1, i] \text{ for } i \text{ in } range(4)]$ $f_y = [sum(f_xy.row(i)) for i in range(2)]$ # Soal 81: E(X) $x_{values} = sp.Matrix([0, 1, 2, 3])$ $E_X = sum(x * f_x[i] for i, x in enumerate(x_values))$ $print("E(X) = ", E_X)$ # Soal 82: Var(X) $var_X = sum((x - E_X)**2 * f_x[i] for i, x in enumerate(x_values))$ print("Var(X) =", var_X) # Soal 83: E(Y) y_values = sp.Matrix([0, 1]) E_Y = sum(y * f_y[i] for i, y in enumerate(y_values)) print("E(Y) =", E_Y)

Soal 84: Var(Y) $var_Y = sum((y - E_Y)**2 * f_y[i] for i, y in enumerate(y_values))$ print("Var(Y) =", var_Y) # Soal 85: Covariance(X, Y) # E(XY) calculation E_XY = sum(x * y * f_xy[j, i] for i, x in enumerate(x_values) for j, y in enumerate(y_values)) $cov_XY = E_XY - E_X * E_Y$ print("Covariance(X, Y) =", cov_XY) # Soal 86: Correlation coefficient(X, Y) corr_XY = cov_XY / sp.sqrt(var_X * var_Y) print("Correlation coefficient(X, Y) =", corr_XY)

Sebuah universitas sedang memilih 1 dari 3 model komputer untuk digunakan di laboratorium penelitian: Model PQR, Model STU, dan Model VWX. • Komputer Model PQR memiliki usia pakai (waktu sampai komputer perlu diperbaiki atau diganti) yang terdistribusi normal dengan rata-rata 8500 jam dan standar deviasi 800 jam. Komputer Model STU memiliki usia pakai yang terdistribusi eksponensial dengan rata-rata 8500 jam.

 Komputer Model VWX memiliki usia pakai yang terdistribusi Weibull dengan rata-rata atau expected value 8500 jam dan parameter k=1.5k = 1.5k=1.5.

a. Probabilitas **komputer Model PQR** rusak antara 7000-8000 jam adalah... b. Expected value dari usia pakai **komputer Model PQR** adalah...

g. Apabila universitas memilih model komputer dengan pertimbangan: "dipilih model komputer dengan probabilitas rusak sebelum 8000 jam paling rendah," maka universitas akan memilih model...

import numpy as np import scipy.stats as stats from scipy.special import gamma # Mengimpor fungsi gamma dari scipy.special # Parameter mean_abc = std_dev_abc = a. Probabilitas MRI brand ABC rusak antara 9000-10000 jam prob_abc= stats.norm.cdf(8000, mean_abc, std_dev_abc) - stats.norm.cdf(7000, mean_abc, std_dev_abc) # b. Expected value ABC expected_value_abc = mean_abc

c. Probabilitas MRI brand DEF prob_def_9000_10000 = (1 - np.exp(-7000 / mean_def)) - (1 - np.exp(-80000 / mean_def)) # d. Expected value dari umur MRI brand DEF expected_value_def = mean_def

Parameter untuk MRI brand XYZ (Weibull Distribution) $k_xyz = 1.5$ $scale_{xyz} = (mean_{abc} / gamma(1 + 1/k_{xyz}))$ # Menggunakan gamma dari scipy.special # e. Probabilitas MRI brand XYZ rusak antara 9000-10000 jam (stats.weibull_min.cdf(8000, k_xyz, scale=scale_xyz) prob_xyz = stats.weibull_min.cdf(7000, k_xyz, scale=scale_xyz)) # f. Expected value dari umur MRI brand XYZ expected_value_xyz = scale_xyz * gamma(1 + 1/k_xyz) g. Memilih brand dengan probabilitas rusak sebelum 8000 jam paling rendah prob_fail_before_8000_abc = stats.norm.cdf(8000, mean_abc, std_dev_abc)

Menentukan brand dengan probabilitas rusak paling rendah min_prob_brand = np.argmin([prob_fail_before_8000_abc, prob_fail_before_8000_def, prob_fail_before_8000_xyz]) + 1 🖳 PDF (probability density function) dari random variabel A PDF (probability density function) dari random variabel B

prob_fail_before_8000_def = 1 - np.exp(-8000 / mean_def)

prob_fail_before_8000_xyz = stats.weibull_min.cdf(8000, k_xyz, scale=scale_xyz)

Expected value dari random variabel

Joint probability function dari random variabel a & bgh

Probabilitas PT. B memenangkan tender adalah

Dindependent $f(a,b) = f(a)^*f(b)$