MODEL QUESTION PAPER 2

Finite Automata and Formal Languages

(Theory of Computation: A Problem-Solving Approach) Kavi Mahesh, Wiley India, 2012, ISBN 978-81-265-3311-4

Answer any 2 questions from each of Parts A and B and any 1 question from Part C

Time: 3 Hrs Max Marks: 100

	illie: 5 HIS Wax Warks: 10		
	Part A		
1.	a) Define the terms <i>grammar</i> and <i>language</i> and explain with one example each.	04	
	b) Construct a deterministic finite automaton that accepts all strings over {0, 1} except those containing 01		
	c) Show that the language $L = \{abwba\}$, where w is any string over the alphabet $\{a, b\}$, is regular.	08	
2.	a) Write an algorithm for reducing the number of states in a deterministic finite automaton.	06	
	b) Minimize the following automaton.	00	
		08	
	(q9)		
	q^1 q^3 q^7		
	$\left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left $		
	(q10)		
	de la		
	q2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	q5 (q8)		
	c) State and explain the <i>Myhill-Nerode Theorem</i> .	06	
3.	a) Construct a regular expression to accept all binary strings containing any of these patterns: 011 or 01	0 or 06	
	100.		
	b) Convert the above RegEx to an equivalent non-deterministic automaton and simplify the result	ting 10	
	automaton.	0.4	
	c) What is the use of λ -transitions in a non-deterministic automaton?	04	
4	Part B	la aura 00	
4.	a) Show that the language of all strings over $\{a, b, c\}$ with either equal numbers of a and b or equal num of b and c is not a regular language.	bers 08	
	b) Show that the above language is a context-free language.	08	
	c) Is this language deterministic? Is it ambiguous?	04	
	c) is this language deterministic: is it ambiguous:	04	
5.	a) Prove that there exists a non-deterministic pushdown automaton whose language is the same as that of	any 08	
	given context-free grammar.		
	b) Convert the following grammar to Greibach Normal Form:	08	
	$S \rightarrow aXY, X \rightarrow bYbb, Y \rightarrow X \mid \lambda$		
	c) What are Simple grammars? How are they useful?	04	
6.	a) Prove that the language ww over the alphabet {0, 1} is not context-free.	10	
	b) Construct a context-sensitive grammar for $a^n b^n c^n$, $n \ge 0$. Show how it can derive the string <i>aaabbbccc</i> .	10	
1	Part C		

7.	a)	Write the Chomsky Hierarchy and explain it in detail.	10
	b)	Design a Turing machine that accepts all palindromes over $\{a, b\}$.	10
	l		l
8.	a)	What are primitive-recursive functions and μ -recursive functions? Explain each with an example.	06
	b)	Explain the terms: P, NP, NP-Complete and NP-Hard. Give suitable examples.	06
	c)	Prove that the Halting Problem of Turing machines is undecidable.	08