

Dept. of Electronics & Communication Engineering

Harbin Institute of Technology Harbin 150001, P.R. China

E-mail: qwu@hit.edu.cn

Tel. +86 451 6413502

手机设计概述 (一)

吴群 教授,工学博士

目录

- 数字手机原理框图
- 手机供电系统框图
- · GSM 手机设计
- · CDMA手机设计
- 手机功率放大器设计

手机电路组成

数字手机原理框图

手机供电系统框图

• 为保证手机的EMC性能,LNA、IF、 Modulator、 Demodulator、PA、 PLL、 TX-VCO应采用独立电源

GSM 手机设计

GSM手机设计内容

- 随着GSM手机用户的不断增大,双频段手机成为将来的发展趋势,因为能从900MHz自动切换到1.8GHz,或者甚至到1.9GHz的网络。
- 作为手机的制造商,除手机外观设计外,必须 寻求实现双频段或三频段接入的技术解决方案, 同时还要进一步解决手机体积变小、提高通话 和待机时间,提高产品竞争力。

GSM传输方式

- 众所周知,在900MHz频段,接收(Rx)和发射(Tx)频段 之间双工分离,890MHz至915MHz用于移动台到基站 的传输,935MHz至960MHz用於基站到移动台的传输,
- Rx和Tx频段都包含有124个200kHz带宽的频率载波信道。
- 在GSM1.8GHz频段,提供374个200kHz带宽的频率载 波信道,同900MHz系统保持相同的讯号处理和协议 (见下表)。

GSM频带分配表

018	GSM 900	GSM 1800	GSM 1900
发射频带	890 to 915MHz	1,710 to 1,785MHz	1,805 to 1,910MHz
接收频带	935 to 960MHz	1,805 to 1,880MHz	1,930 to 1,990MHz
双工隔离	45	95	80
類率范围	70MHz	170MHz	140MHz
通道数量	124	374	299
调制	GMSK	GMSK	GMSK
单元半径	<35km	<4km	<4km
终端功率	2W	1W	1W
移动性	250km/h	125km/h	125km/h

GSM信号的传输与越区切换过程

- GSM使用FDMA和TDMA的组合,使用户共享无线频谱资源。通过TDMA 4.6ms帧,每个载波频率提供8个信道("突发"或577 μ s的"时隙"),一个物理信道一次只用一个时隙(即一个话音连接)。
- 在每一帧内,移动台在一个时隙发射的同时,监视5个相邻基站及它所对应基站的空闲接收时隙,用于接收信号场强指示RSSI (receive signal strength indication)。此信息在每一秒钟至少传一次给BSC,与BSC切换算法一起确定呼叫转换到下一个基站的时间,基站也应用RSSI确定是否和什么时候改变手机的功率电平(以2dB的间隔)。
- "切换"允许手机从一个单元移动到另一个单元,并以新的功率电平在新的时/频位置注册。手机报告6个最强的讯号场强并识别相邻单元(通常16中选6)。移动台和MSC都能启动切换,它可发生在一个信道内(时隙内)、单元内、不同单元之间、从微单元漫游到伞形宏单元。

GSM 900MHz/1800双频网络

- 对于4类手机,GSM 900MHz 手机功率电平高至33dBm(或2W)。因此,蜂窝式单元的半径可达35km。典型1.8GHz GSM手机功率电平为30dBm(或1W),而1.8GHz无线信号的衰减几乎是900MHz的两倍,因此GSM1800有限的工作距离仅100m至4km。但比GSM900能提供更高的通讯容量。
- 双频段 900/1800网络的优点是网络运营商可以使用双频段,为GSM900用户提供更大的覆盖范围;同时,为GSM1800用户提供更高的通讯容量。

接收信号的动态范围

- 最小接收讯号为-102dBm,最大接收讯号为-33dBm。到达天线的干扰讯号可达到0dBm,接收机必须对它进行处理。
- ·接收机前端必须具有很大的动态范围,前端IC要求具有高的压缩点和低的噪声系数。

RF前端和PA关系

- 如接收前端的信号纯度高,就可以减小对PA之前滤波器的高要求, 在PA之前减小相位误差,使PA以更高的效率工作(PA进入非线性 状态),而不提高系统的相位误差(小於20pprms)。
- 可以提供超过50dB线性范围的准确控制。
- 在GSM1900频带使用1.8GHz PA进行接续或宽带匹配时,则需要一些增加外部电路。对三频带手机电路,滤波器、振荡器、PA和天线的设计就更关键。
- 双频带应用,天线后面的接收通路必须分成两个,所以可用两个独立的接收滤波器。如果集成镜像消除滤波器,可把传统前端、双带的5个SAW滤波器数量减少到3个。
- 对于三频带接收机,还需要增加一个前端滤波器,但1.8GHz和 1.9GHz频带可以共享。

GSM 手机设计

• GSM 手机有四项重要RF电气指标 射频输出功率 频率误差 接收灵敏度 相位误差 其中前三项是发射指标。

而相位误差(PE)也是一项重要的指标

发射通道技术方案

• 上变频方案

电路简单

· OFFSET频率方案

频率误差和PE较小;

绝大多数手机都采用OFFSET频率方案。

• 上两种方案的差别:

主要是RF已调信号的形成方法。对于上变频方案,通过传统的IF到RF的频谱搬迁;对于OFFSET频率方案,则是通过增加一个IF PLL,其输出控制一个专用的发射VCO,达到实现RF调制信号的目的。

哈爾濱工業大學

GSM手机射频电路通用设计 --接收单元

- 一般采用一次变频或二次变频的接收机方案(多次变频将导致总的滤波器数目的增加)
- 低噪声放大器LNA
 - (1) N_F: 1.5dB-2.5dB,第一级为0.8-1dB。
 - (2)G: 15dB-20dB, LNA可用一级放大器来实现,增益太高将导致整机抗阻塞和互调指标差。
 - (3)功耗: 4mA-8mA(FET), 1-2mA(Bipolar)。
 - (4)具有键控式AGC控制功能(通过偏置控制来实现)。

第1混频器

- (1)采用RF平衡输入,IF平衡输出的有源混频器,以提供足够的增益, 降低串话的干扰。
- (2)噪声系数: 6dB—8dB,
- (3) G: 8dB—10dB
- (4)本振电平: -5dBm—0dBm. 过高的本振电平会增加功耗。

哈爾濱工業大學

GSM手机射频电路通用设计--发射单元 (1)

- 有多种可以采用的电路方案:
- (1)单中频

优点: PLL电路简单,不易产生互调干扰,re和Pe指标较好。

缺点:选择性指标比采用双中频的方案要差一些。

• (2)双中频

优点:选择性指标容易保证,带外抑制指标比较高,频差Fe和相差 Pe指标比较好,

缺点: PLL要复杂一些, 易产生互调干扰。

• (3)直接调制到RF(无中频)

优点: 电路简单,

缺点:选择性指标比较差,re和Pe指标难以保证。

•

哈爾濱工業大學

GSM手机射频电路通用设计--发射单元(2)

• (4)末级Tx—VC0采用上变频

优点: 电路相对简单。

缺点: re和Pe指标稍差。

• (5)末级Tx—VCO采用PLL VCO

优点: Fe和Pe指标容易保证。

缺点: 电路要相对复杂一些。

- (6) PA采用开环控制
- 优点: 省去定向耦合器、功率检测和比较电路。
- (7) PA采用闭环控制

优点: PA直接与电池连接,无需MOS管,稳定性、可靠性较高。

缺点:需要用定向耦合器、功率检测和比较电路,电路复杂。

双频GSM900MHz技术指标

- 工作频率:
 - 上行TX: 880MHz-915MHz
 - 下行RX: 925MHz-960MHz
- 双工频率间隔: 45MHz, 载波间隔: 200KHz
- 调制方式: I/Q正经GMSK
- 动态范围: -47dBm-110dBm
- 射频功率输出: 33dBm(5级)-5dBm(19级), 级差: 2dB(15个功率等级)
- * 30dBm(1W)

双频DCS1800MHz技术指标

- 工作频率:
 - 上行TX: 1710MHz-1785MHz
 - 下行RX: 1805MHz-1880MHz
- 收发频率间隔: 95MHz,
- 静态接收灵敏度: -100dBm
- 射频功率输出: 24dBm(3级)-5dBm(19级), 级差: 2dB(13个功率等级)
 - * 24dBm(200mW)

CDMA手机设计

CDMA技术指标

• 灵敏度和动态范围的最低要求

灵敏度:-104 dBm(1.23MHz带宽)

定义:保证接收帧误率FER<0.5%所需的最低CDMA信道功率

动态范围:典型90dB线性(最大输入信号功率为-25dBm)

因为CDMA包络起伏变化大,典型的峰平比为8-10dB,要求接收机在接收信号动态范围内保持良好的线性。

手机发射功率数据比较: IS98 27dBm

cdma2000 24dBm(200mW)

GSM 30dBm(1W)

微波技术课系列讲座 March 2003

CDMA手机LNA设计

- 在设计高性能CDMA接收机中,最为苛刻的部分应属于低噪声放大器(LNA),
- 当接收灵敏度为-104 dBm、IIP3(双音三阶互调失真截距点)为几个+dBm,则要求LNA噪声系数小于2dB,才能获得批量生产时达到2-3dB,这就是说,LNA要有最大的动态范围。为使LNA具有几个+dBm、IIP3(+3~+5dBm),而满足低的噪声系数(< 2dB),所需要的电流消耗就是几十mA (~20mA)。由此可见,同时实现低功耗、高线性度以及低噪声设计是CDMA LNA的技术关键。
- 当接收信号强度高时(-30-20dBm),混频器对接收通道是一个关键门槛,所以还要求LNA具有15dB的增益动态范围。

手机功率放大器设计

功率放大器

- PA把微弱的功率调制信号放大到所要求的输出功率,在GSM中是采用GMSK是调制方式,其特点是恒包络调制,为使PA效率更高,PA输出就要出现轻微的非线性。通常双工器也产生一定的损耗,如采用无双工器的电路结构就可降低对PA的输出功率要求。
- 根据GSM标准,天线上功率最大值是-33dBm。假如手机一直处于最高功率,PA效率大於40%,而电池容量为550mAh。如果电池可以用到其容量的70%而不降低供电电压,可提供的平均dc功率是P1=550mAH×Vcc/0.7(见下表)。

功率放大器特点

- 功率放大器是手机中消耗电量最大的部件,它的效率直接影响到连续通话时间的长短。
- 如取效率为30%时的通话时间作为标准,将效率从40%提高到50%,连续通话时间将可增加15分钟。
- 对手机中用的功放(PA),不仅要求其体积小, 且效率高,理论上讲,PA的放大效率为78.5 % (B级工作),可是,其效率与保持低失真之间存 在着矛盾,需在满足低失真前提下,追求PA的 最大效率化。目前PA的效率在50%以上。

各种手机标准对功放 (PA) 设计的独特要求

- 手机制式(标准)的差异,对功放(PA)设计有很大影响。因此,有各种PA设计方法以满足每种标准的独特要求。
- 每种标准的主要参数,都有不同的数值 参数(见下表)

功放(PA)多种标准的主要参数

参数	AMPS	GSM	IS-54/136 (TDMA)	IS-95 (CDMA) +28	
PA最大发射功率(dBm)	+32	+35	+28		
典型发射功率(dBm)	+20 至 +32	+20 至 +35	+20 至 +29	-10 至 +15	
減小功率以满足线性度 要求(dB)	无	无	2 至 4	3 至 6	
占空比	100	12.5	33	12.5 至 100	
调制方式	FM	GMSK	DOPSK	OQPSK	
典型的PA要求: 最大功率时的PAE(%) 瞬态电流(mA)	55 非关键	45 非关键	40 非关键	30 <100	

DMA IS-54/136 (时分多址标准)和 CDMA IS-95 (码分多址标准)

- DMA IS-54/136(时分多址标准)和CDMA IS-95(码分多址标准)采用线性调变技术,对幅度和相位失真要求很严,因此要求PA以"线性"方式工作。为使相邻和交换通讯信道的失真度符合规范,PA的工作功率必须比饱和功率低2至6dB,以保证线性度。
- PA在上述功率电平下,比在饱和功率状态下工作效率要低得多。对TDMA来说,在最大发射功率时,输出级效率通常在35%至45%的范围内,而对CDMA则为25-35%。好在CDMA标准中,采用较低发射功率,否则,就要用很大的器件,更无法用电池供电。

调制方式

• MPS(FM调制)和GSM(GMSK高斯滤波最小频移键控调变),是采用等包络调制技术,幅度失真对其影响较小,这样,PA就可工作在各种功率、直至饱和状态,达到更高的效率。

占空比是PA设计中的概念

- 占空周期可以从通常的时间意义上入手,也可侧重从功率的观点来考虑。
- 在CDMA IS-95中,PA峰值发射功率是28dBm,但平均发射功率至少要低15至30dB(这种情况只是CDMA)。
- 在低发射功率下具有小的静态电流,可以获得最长的通话时间。

占空比是PA设计中的概念

- 对于其它标准,还是以通常的时间概念来看待占空周期。
- GSM采用1/8占空周期。PA只有1/8时间在工作, 这就降低了通话时间对PA效率的敏感度。
- TDMA采用的占空周期是1/3, 而AMPS是100%时间工作。
- 对于类似AMPS这样是100%占空周期,PA设计中就最重视PA的效率。

RFIC芯片和器件的选型

- 制造芯片所采用的材料有硅(Si)和砷化镓(GaAs)器件: Si bipolar、Si MOSFET、GaAs MESFET、GaAs HBT和GaAs PHEMT。
- 为简单起见,可从功率附加效率(PAE)*、工作电压、 成本三个方面来比较这些技术(见下表)。
- PAE与每次电池充电后通话时间长短直接有关。PAE 考虑了器件集电极或漏极的效率,以及为达到某一输出功率,需要多大的输入射频功率。故PAE能很好地反映器件的功率增益。
 - *PAE参数定义为: (射频输出功率 射频输入功率)/总直流输入功率

RFIC芯片和器件的选型

- 对于900MHz, PAE就应该根据成本、工作电压性能折衷来选择器件。 Si MOSFET和GaAs MESFET成本较低,常被优先选用。对900 MHz的低电压操作,就选用Si BJT和GaAs PHEMT。
- 对于1.8GHz, MOSFET增益低。
- 如采用3V供电,GaAs PHEMT和Si BJT 都可选用。

器件材料特性参数

西件类型	PAE1 (%) (4.8V, 900MHz)	PAE2 (%) (3V, 1.86GHz)	最佳工作 电压(V)	每瓦特 的成本	建议
SIBJT	60至70	50至60	3 至5	集	IZ
SI MOSFET	60至70	20 至 30	4至6	最低	AUT ON SALE
GnAs MESFET	60 至70	45 至 55	4 E 6	中等	需要負債級 电压或 DC/DC 変換器
GaAs PHEMT	60 至70	55 至 65	3 X 5	A	如果不是增强模式。 到需要负权依电压
GaAs HBT	60至70	45至55	3.5 至 6	量英	ี่ xyy xx re viurch

h 2003

GPS与手机合成

手机辐射问题与EMC考虑

手机辐射问题

"Before"

手机辐射值

- CDMA手机辐射值在50-150微瓦/平方厘米之间
- GSM大都在800微瓦以上,辐射最高的达10000微瓦。
- 内藏天线小于外置天线,但内置天线手机的背部电磁辐射比前板多出好几倍。

防辐射手机天线设计

- 为保护人体大脑不直接受电磁波辐射,已 开始设计一种功能环保天线。
- 因手机接听时要将电话贴紧 大脑,根据 天线方向图改变,最大辐射场强绕开人 体大脑的原则设计,在天线内部安装不 同角度的反射器改变了天线最大辐射方 向,从而起来 保护长期使用手机用户的 目的。

人体模型辐射测试研究

各种GMS手机天线

可折叠式方案

• Queen Mary, University of London, UK

Fig.1 Rotatable antenna

Fig. 2 Field distribution

方向图控制式方案

• Tokyo Institute of Technology, Japan

FDTD Tissue Modeling

--Brigham Young University

国家专利(1)

- 专利名称: 环保型移动通信手机天线
- 专利申请号: 97240233
- IPC分类号: H01Q 9/00
- 国别省市代码: 81
- 代理人: 朱丽华
- 专利所有权人: 电子工业部第七研究所
- 发明人: 刘礼白
- 所有权人地址: (510310)广东省广州市新港中路381号
- 专利文摘: 本实用新型提供了一种环保型的移动通信手机,是在 移动通信机背面(即与贴近使用人面部的机壳相对的一面)放置 反射板的平面型天线,在不影响正常通信的前提下,大大减少天 线辐射的电磁能量进入人体头部,起到保护大脑和眼睛的作用。 本实用新型适用于所有的移动通信手机。

国家专利(2)

- "防辐射移动电话"发明专利
- (专利号: 99123046.9)
- 该技术在于对现有手机的拉杆天线进行 了改进,在使用时天线可弹出一个抛物 面防护罩,以防止手机辐射可能对手机 用户的危害。

海尔防辐射手机新概念???

- 手机释放出的电磁波在电话拨号至接通时最强,达到 1000微瓦/平方厘米。
- 在通常通话时, 电磁波强度达到300微瓦/平方厘米。
- 测试表明,手机电磁辐射的一半被人体吸收,其中四分之一被人脑吸收。
- 根据辐射强度在手机接通期间对人体危害最大这一关键点,利用软件技术研制开发手机的接通提示功能。
- 用户在拨号呼叫过程中,不必放在身边监听,对方通话后,自动发出一声接通提示音或振动提示电话已接通。

手机EMI问题

通讯产品

- 交换机
- 接入网
- 移动通信系统
- 数据通信
- 传输系统
- 视讯系统
- 智能电源

- 智能网
- 网管系统
- 计费产品
- STP
- 手机
- 集中监控系统
- 变电站自动化

手机噪声的传播机理

- 噪声传播有两种途径: 传导和辐射。
 - 传导是通过导线、印刷电路板线迹、金属机 壳或电子元件(如电容器)传播噪声。
 - 辐射是通过空气或PCB传播噪声能量。
- 传导噪声可用传统电路技术滤波;辐射噪声通常用屏蔽技术使其减至最小。

手机中的EMI问题

- 目前生产的手机都是数字式。尽管称作数字蜂窝电话,但还是离不开许多的模拟功能。
- 手机电路面临混合信号设计问题。
- 便携式通信设备继续缩小尺寸、减轻重量而不断增加功能和芯片的集成度。设计电路板要避免干扰、噪声引起的误差和地回波是很艰巨的任务。
- 随着芯片几何尺寸的进一步减小和板上线距的缩短, 其物理定律开始失去部分意义。
- 紧靠在一起的PCB并行线将存在的更大的寄生电容耦合,对邻近线之间产生耦合干扰。
- 在电源管理中的DC-DC变换器本身就是潜在的EMI噪声源。

手机开关电源所产生的噪声频谱图

手机开关电源所产生的噪声控制

- 开关电源产生的噪声频谱最低频率为800KHz, 是开关电源的开关工作频率,也是基波频率。
- 各次谐波频率之间的频带宽度刚好等于基波频率。
- 如何分布则与时域波形电流大小电感电容取值以及 PCB 布线/ 布局都有关 系
- 开关噪声可通过传导方式到达开关电源的输入端、输出端、地线,还可通过PCB线迹发射成为辐射干扰,因此必须使开关电源的纹波电压及传导噪声尽可能的小。

传统设计方法出现的问题

- 电磁干扰 (EMI) 问题
 - 环路设计,形成天线效应
 - 电源层的槽缝会构成了四分之一波长的天线。
 - 密集过孔(如BGA封装器件)
 - 大型接插件(特别是背板)
 - 感性元件。注意: 在元件面的两个平行放置的电感会构成变压器。
 - 由于不完全接地层的影响,内层低阻抗引起外层较大的瞬态电流。

GSM手机的EMC设计

EMC认证要求和执行国家标准

- 进入WTO,手机产品首先要通过EMC认证
- 手机EMC国家标准(制订中)
- 国家质量技术监督局发布《电磁兼容认证管理办法》,批准建立了"中国电磁。容认证委员会"。国家质量技术监督局将对移动电话强制实行电磁兼容认证。

系统内部EMI复杂程度等级

EMI的抑制技术

- 三种有效方法
- 接地
- 屏蔽
- 滤波
- 接地或屏蔽措施----PCB布线和结构工艺
- 滤波----电路设计和元器件的选用

EMC Design Techniques

- · Screening & Shielding
- Cables
- Cross-talk & Coupling
- PCB Design
- Power Supply

EMC设计指南数据库

- 长期的EMC研究中对资料全面收集消化的基础上,结合实际应用, 积累的自己的研究心得和看法。
- EMC的研究中的经验积累,已获得的实用化的研究成果。
- 用Visual Basic制作成可供查询的资料数据库。
- 表达高校和通讯企业的合作愿望,负责版本的内容更新和升级维护。
- 可查询有关的设计规则、设计经验和相关技巧等问题的信息,还 包括实际电路EMC设计实例。

适合于: 缺乏EMC设计经验、没有受过正规EMC教育的电子工程师、EMC设计工程师。

通过此数据库的使用,也可学习有关的设计规则并逐渐积累 EMC设计经验,指导设计人员的工程设计。

GSM手机EMC设计特点

- 手机的EMC性能将影响
 - 工作稳定性
 - RF指标性能
 - 人体天线感应

GSM手机采用TDMA脉冲突法发式工作(Burst),对电源滤波提出较高的要求

GSM手机EMC设计特点

• 接地方式

- 接地可为电源和信号通路建立低的阻抗回路
- 一般是采取大面积的接地或短而粗的导线
- 在PCB中则采用大面积接地层接地和周边汇流条接地方式。

• 屏蔽方式

- 屏蔽材料的选用
- 天线附近的敏感电路进行屏蔽处理

GSM手机EMC设计特点

- 滤波方式
 - 利用滤波电路滤除干扰信号
 - 在GSM手机EMC设计中,如出现EMC超标,则要考虑对RF接收前端、功放、频率合成器、等分别采用有源滤波供电电源,以保证隔离。

设计原则

- 了解手机电路子系统对噪声的敏感程度, 针对来源是辐射还是传导,采取相应的 对策。
- PCB的布局应尽量减小电流环路面积, 降低噪声辐射和传导辐射强度。
- 采用升压采用升压电源变换器和大电容可以把PA 发射瞬间产生的噪声最小化。