ECOLE SUPERIEURE POLYTECHNIQUE

Technologie des ordinateurs

Ecole Supérieure Polytechnique (ESP)

Département Génie Informatique (DGI)

Diplôme Supérieur de Technicien en Informatique (DSTI)

Licence 1

Année académique 2019-2020

Chapitre 2 : Représentation et traitement de l'information :

Logique combinatoire

Comment sont traitées les informations dans les ordinateurs ?

OBJECTIFS DU CHAPITRE

- Ce cours a pour objectifs de permettre à l'étudiant de pouvoir :
- Comprendre le fonctionnement des composants internes des ordinateurs à travers la maîtrise
 - de l'algèbre de Boole,
 - des portes logiques et des circuits logiques,
 - de la logique combinatoire,
 - Apprendre la structure de quelques circuits combinatoires souvent utilisés (additionneur, soustracteur, décodeur, multiplexeur, afficheur 7 segments, ...),
 - Apprendre comment utiliser des circuits combinatoires pour concevoir d'autres circuits plus complexes.

PLAN

- Algèbre de Boole
 - Variables booléennes
 - Opérations logiques élémentaires
- ☐ Fonctions (ou portes) logiques
 - fonctions logiques élémentaires (AND, OR et NOT)
 - fonctions logiques induites (NAND, NOR et XOR)
- Théorèmes fondamentaux
 - Théorèmes de base
 - Théorèmes de De Morgan
- Universalité des portes NAND et NOR
- ☐ Simplification des fonctions logiques
 - méthodes algébriques et
 - Tables de Karnaugh
- Quelques applications des circuits (additionneur, soustracteur, comparateur, UAL, multiplexeur, démultiplexeur, codeur, décodeur, transcodeur)

INTRODUCTION

- Un système numérique complexe est réalisé à partir
 - d'un assemblage hiérarchique d'opérateurs logiques élémentaires
 - réalisant des opérations simples sur des variables logiques.
- Les systèmes (circuits) logiques fonctionnent en mode binaire ⇒ les variables d'entrée et de sortie sont booléennes.

Une variable	logique	(dite	booléenne)	est une	grandeur	binaire	
	61	(6		,

peut prendre 2 valeurs (états) 0 (faux ou niveau bas) ou 1 (vrai ou niveau haut).

utilisée pour représenter une proposition ou l'état d'un objet.

Dans la	pratique	il r	ne s'agira	pas	de	niveaux	discrets	mais	plutôt	de	plages	de
tension.												

En électronique numérique, toute tension est interprétée comme une suite de symboles logiques (0/1). La manipulation de ces symboles est basée sur l'algèbre de Boole ou algèbre booléenne.

☐ La manipulation de ces symboles est basée sur l'algèbre de Boole .

haut	bas
vrai	faux
oui	non
1	0

INTRODUCTION

- Deux grands types de circuits logiques :
 - circuits logiques combinatoires :
 - Circuits numériques dont la sortie ne dépend que de l'état présent des entrées (sans mémoire des états passés); pour chaque état d'une combinaison d'entrée correspond un et unique état de sortie.

- circuits logiques séquentielles (avec mémoire) :
 - > valeurs de sorties dépendent non seulement des valeurs d'entrée, mais aussi de l'état précédent des sorties du circuit.
 - > la logique séquentielle est donc une logique combinatoire avec une mémorisation des sorties.

Opérations logiques élémentaires

- L'algèbre de Boole ne possède que trois opérations.
 - Addition: + OU OR
 - Multiplication :• ET AND
 - Complément ou inversion : A NON NOT
- Tables de vérité
- Beaucoup de circuits possèdent plusieurs entrées pour une sortie.

☐ La table de vérité permet de décrire l'état de la sortie en fonction des combinaisons des entrées.

A	В	S
0	0	0
0	1	1
1	0	0
1	1	1

Opérations de base

- Fonction NON (NOT)
- Elle ne concerne qu'une variable à la fois ; son résultat est la complémentation ou l'inversion.
- \square Elle se note $S = \overline{A}$.
- Sa table de vérité est:

A	S
0	1
1	0

Les symboles correspondants sont :

- ☐ IEC (International Electrotechnical Commission),
- ☐ IEEE (Institute of Electrical and Electronics Engineers)

Opérations de base

- ☐ Fonction OU (OR)
- \square Elle s'exprime par l'addition S = A + B. Sa table de vérité est :
- Sa table de vérité est :

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Le symbole correspondant est :

■ **NB**: Une opération OU peut avoir N entrées. Si une entrée est à l'état 1, la sortie S = 1. 1 est alors prioritaire.

Opérations de base

- Fonction ET (AND)
- \square Elle s'exprime par la multiplication : S = AB ou S = A.B.
- Sa table de vérité est :

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Le symbole correspondant est :

■ NB : Une opération ET peut avoir N entrées. Si une entrée est à l'état 0, la sortie S=0. 0 est alors prioritaire.

Opérations induites

- Opération NON-OU (NOR)
- Elle s'exprime par l'addition complémentée $S = \overline{A + B}$.
- Sa table de vérité est :

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Les symboles correspondants sont :

$$A \longrightarrow S$$

$$\square$$
 NB: $\overline{A + B} \neq \overline{A} + \overline{B}$

- Opération NON-ET (NAND)
- Elle s'exprime par la multiplication complémentée $S = (\overline{AB})$ ou $S = (\overline{A \cdot B})$.
- Sa table de vérité est :

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

☐ Les symboles correspondants sont :

 \square NB : $\overline{AB} \neq \overline{A} \overline{B}$

Opérations induites

- Opération OU-EXCLUSIF (XOR)
- \square Elle s'exprime par $S = A \oplus B$.
- Sa table de vérité est :

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

☐ Les symboles correspondants sont :

$$A \longrightarrow B \longrightarrow S$$

$$\square$$
 NB: A \bigoplus B = $\overline{A}B + A\overline{B}$

- Opération NON-OU-EXCLUSIF (XNOR)
- \square Elle s'exprime par $S = \overline{A \oplus B}$.
- Sa table de vérité est :

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Les symboles correspondants sont :

Sommes de produits, produits de sommes et forme canon

Notions de min-termes et max-termes :

- Un min-terme est donc représenté par un produit logique comportant tous les termes de base sans exception sous leur forme vraie ou leur forme complémentée.
- Un max-terme est donc représenté par la somme logique comportant tous les termes de base sans exception sous leur forme vraie ou leur forme complémentée.
- Exemple : 3 variables

A	В	С	S	Min – termes	Max – termes
0	0	0	1	$\overline{A} \overline{B} \overline{C}$	
0	0	1	1	$\overline{A} \overline{B} C$	
0	1	0	0		$A + \overline{B} + C$
0	1	1	0		$A + \overline{B} + \overline{C}$
1	0	0	0		$\overline{A} + B + C$
1	0	1	1	A B C	
1	1	0	0		$\overline{A} + \overline{B} + C$
1	1	1	1	АВС	

Expression logique:

Somme de produits

$$S = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} C + ABC$$

Produit de sommes

$$S = (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

Chronogramme de circuits logiques

- Chronogramme (diagramme des temps):
- ☐ Plusieurs modèles pour la description du fonctionnement désiré d'un système et de la conception d'un système.
- Chronogramme (diagramme des temps): C'est le graphe de l'évolution temporelle des variables et des fonctions logiques.
 - C'est un modèle graphique qui représente l'évolution au cours du temps de toutes les entrées et sorties du système.
 - Cette représentation permet de définir un certain nombre d'états du système.
 - L'état initial est choisi arbitrairement.

Exemple: Chronogramme d'une fonction ET

Conception et représentation d'un circuit numérique

- Conception et représentation d'un circuit numérique
- ☐ Dans beaucoup d'applications, on cherche à réaliser un circuit à partir d'une description théorique (cahier des charges).
- On établit
 - 1. d'abord la *table de vérité*,
 - 2. puis on détermine l'expression algébrique
 - 3. et enfin on représente le schéma du circuit.
- La conception d'un circuit numérique peut être délicate, car il peut y avoir de multiples contraintes :
 - obligation ou non d'utiliser des puces du même type (matériel)
 - minimiser ou non le nombre de portes (consommation)
 - optimiser ou non la rapidité de l'opération (caractéristiques)
 - permettre ou non des modifications ultérieures (souplesse)

• • • •

Conception et représentation d'un circuit numérique

Conception et représentation d'un circuit numérique

- Exercice d'application 1 :
- Concevoir un circuit à trois entrées, dont la sortie est à l'état haut si le nombre d'entrées à l'état haut vaut 2 ou 3.
- Sa table de vérité est :

A	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$s = \overline{A}BC$$

$$s = A\overline{B}C$$

$$s = AB\overline{C}$$

$$s = ABC$$

- \square S = $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$
- \square Résultat final S = AB + AC + BC Comment trouver ceci?

Conception et représentation d'un circuit numérique

Simplification des fonctions logiques

Nécessité :

- Utiliser le moins de composants possibles
- Simplifier au maximum le schéma de câblage
- Il faut donc trouver la forme minimale de l'expression logique considérée.

Deux méthodes :

- Mathématique ou Algébrique (en utilisant des propriétés et des théorèmes)
- Graphique (tableaux de Karnaugh; ...)

Simplification algébrique

- ☐ Théorèmes fondamentaux
- Théorèmes de base

Multiplication

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A \cdot 1 = A$$

$$A \cdot 1 = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + 1 = 1$$

$$A + 1 = 1$$

$$A \cdot A = A$$
 $A \longrightarrow A$

$$A + A = A$$
 $A \longrightarrow A$

$$A \cdot \overline{A} = 0$$
 $A - 0$

$$A + \overline{A} = 1$$
 $A \longrightarrow 1$

$$A + B = B + A$$

$$A \cdot B = B \cdot A$$

$$A + (B + C) = (A + B) + C$$
 et $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

et
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$ightharpoonup$$
 Trois résultats utiles : $\overline{\overline{A}} = A$ $A + AB = A$ et $A + \overline{A}B = A + B$

$$A + AB = A$$

$$A + \overline{A}B = A + B$$

Exercice d'application 2 : Démontrer ces trois dernières relations.

Simplification algébrique

- ☐ Théorèmes fondamentaux
- ☐ Théorèmes de De Morgan
- Utiles pour convertir des sommes en des produits et vice-versa.
- Théorèmes pour 2 variables :

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

$$\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$$

Théorèmes pour N variables :

$$\sum X_i = \prod \overline{X}_i$$

$$\prod X_i \, = \, \sum \overline{X}_i$$

- **Exercice d'application 3**:
- Simplifier les expressions suivantes :

1.
$$F = (A + B)(\overline{A} + \overline{B})$$

2.
$$F = \overline{\overline{AB} + \overline{\overline{A} + B}}$$

3.
$$F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B \overline{C} + A \overline{B} C$$

Simplification algébrique

- Universalité des portes NAND et NOR
- ☐ Il est possible de réaliser toutes les opérations booléennes au moyen d'une seule sorte d'opérateur : opérateurs NAND ou opérateurs NOR. Elle permettent de réaliser n'importe quelle autre porte.

Pour NAND Pour NOR \Leftrightarrow NOT AND OR

- Exercice 4:
- \square Réaliser à l'aide d'opérateurs NAND puis NOR l'opérateur XOR : $S = A \oplus B = \overline{A}B + A\overline{B}$

Simplification graphique : table de Karnaugh

- Permet d'écrire une équation booléenne, de la simplifier et de déduire une implémentation des composants pour le montage correspondant.
 - Avec N=3 : A, B et C sont les entrées.

BC	ВĒ	ВC	ВС	ВĒ
A	00	01	11	10
\overline{A} 0				
A 1				

Avec N=4 : A, B, C, D sont les entrées.

CD	$\overline{C}\overline{D}$	СD	CD	$C\overline{\mathrm{D}}$
AB	00	01	11	10
ĀB 00				
ĀB 01				
AB 11				
A <u>B</u> 10				

□ Règles pratiques

- A partir de la table, on simplifie en regroupant les 1 adjacents.
- \triangleright La taille d'un groupe est un multiple de 2 c.-à-d. 2^k (2^0 =1, 2^1 =2, 4, 8, ...).
- \triangleright Un groupe de 2^k 1 permet de réduire k variables.
- Le groupe est soit rectangulaire ou carré.
- > Former les plus gros groupes possibles.
- Un 1 peut faire partie de plusieurs groupes.
- D'une colonne à l'autre, on ne complémente qu'une seule variable (Gray).
- Les bords sont périodiques (le tableau est cyclique).
- La variable qui apparait à la fois complémentée et non complémentée (c.-à-d. la variable qui change de valeur) est à éliminer.

Simplification graphique : table de Karnaugh

- Exemples
- ☐ Reprenons l'exemple de l'exercice d'application 1.
- La table de vérité étant la suivante :

	Entré	Sortie	
A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

BC A	<u>B</u> C 00	BC 01	BC 11	B̄C̄ 10
\overline{A} 0	0	0	1	0
A 1	0	1	1	1

$$Y = AC + AB + BC$$

Simplification graphique : table de Karnaugh

- Exemples
- □ Soit un circuit à 3 entrées, la sortie S est :

$$S = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + A\overline{B}\overline{C} + \overline{A}BC$$

Nous obtenons les tables suivantes :

	Entré	Sortie	
A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

BC A	00	01	11	10
0	1	0	1	1
1	1	0	0	0

$$S = \overline{BC} + \overline{AB}$$

Simplification graphique : table de Karnaugh

- Exemples
- ☐ Soit un circuit à 4 entrées, la sortie S est :

$$S = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}C\overline{D}$$

Nous obtenons la table de Karnaugh :

CD	00	01		11	10	
AB						
00	0		1		1	1
01	0		1		1	0
11	0		1		0	0
10	0		1		0	1

$$S = \overline{C}D + \overline{A}D + \overline{B}C\overline{D}$$

Simplification graphique : table de Karnaugh

- Exemples
- Si un état n'est pas spécifié, on laisse un « X » ou « ϕ » (état indéterminé) et on lui attribue la valeur qui convient le mieux.
- Prenons les 2 exemples suivants :

CD AB	00	01		11		10	
00	0		1		1		0
01	0		1		ϕ		0
11	0		1		0		φ
10	0		1		0		0

$$S = \overline{C}D + \overline{A}D$$

CD AB	00	01	11	10
00	ϕ	1	1	φ
01	1	1	φ	0
11	0	1	0	φ
10	0	1	0	0

$$S = \overline{CD} + \overline{AD} + \overline{A}\overline{C}$$

Tableau récapitulatif des portes logiques

Récapitulatif

V 50-324	Tableau I. –	Opérations logiques élé	mentaires.	
Opération	Symbole usuel	Symbole normalisé	pole normalisé Table de vérité	
NOT - INV	Ā	A - 1 - A	A A O 1 0	A 0
AND - ET	A	A	A B AB A+B O O O O	0 0 A 0 1
OR-OU	A + B	A	0 1 0 1 1 1 1	B 0 1 A 1 1
XOR - OU Exclusif	A	A — — A ⊕ B	A B A⊕B A⊕B 0 0 0 1	0 1 A 1 0
XNOR - NON OU Exclusif	$A \longrightarrow \bigcirc -A \oplus B$	A — 1 → A ⊕ B	0 1 1 0 1 1 0 1 1 1	1 0 A 0 1
NAND - NON ET	$\stackrel{A}{B} = \bigcirc - \frac{\overline{A} \overline{B}}{\overline{A} + \overline{B}}$	B — 4 B	A B AB A+B 0 0 1 1 1 0 1 1 0	A 1 0
NOR - NON OU	$\frac{A}{B} = \sum_{A \in \mathcal{B}} \frac{\overline{A} + B}{\overline{A} \cdot B} =$	A B≥10 A + B	0 1 1 0 1 0 1 0 1 1 0 0	1 0 A 0 0

Quelques applications des circuits logiques

- Circuits logiques qui jouent un rôle important dans le hardware (circuits combinatoires standards)
- Les fonctions les plus couramment utilisées :
 - Additionneur
 - Soustracteur
 - Comparateur
 - Codeurs
 - Décodeurs
 - Multiplexeurs
 - Démultiplexeur
 - Afficheur 7 segments

• ..

- Demi-additionneur (half adder)
- Un additionneur est un circuit combinatoire qui permet de réaliser la somme arithmétique de 2 nombres A et B.
- **Demi-additionneur** : somme de 2 bits A_i et B_i en entrée, avec en sortie la somme S_i et la retenue R_i .

 $\underline{Rôle}$: Additionner $\underline{A_i}$ et $\underline{B_i}(\underline{S_i} = \underline{A_i} + \underline{B_i})$ en conservant la retenue $\underline{R_i}$

Table de vérité

A_i	B_i	S_i	R_i
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Equations

$$\dot{S}_i = A_i \oplus B_i$$

$$R_i = A_i B_i$$

Schéma du circuit

Exercice

Faire le circuit du demi-soustracteur

Additionneur complet (full adder)

L'additionneur complet un bit réalise la somme de 2 bits A_i et B_i en tenant compte de la retenue

d'entrée R_{i-1} .

Enti	rée	Sortie		
Ri-1	Ai	Bi	Ri	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Table de vérité

Equations

$$S_{i} = \overline{A}_{i}.\overline{B}_{i}.R_{i-1} + \overline{A}_{i}.B_{i}.\overline{R}_{i-1} + A_{i}.\overline{B}_{i}.\overline{R}_{i-1} + A_{i}.B_{i}.R_{i-1}$$

$$R_{i} = \overline{A}_{i}B_{i}R_{i-1} + A_{i}\overline{B}_{i}R_{i-1} + A_{i}B_{i}\overline{R}_{i-1} + A_{i}B_{i}R_{i-1}$$

- Exercice :
- ☐ Faire le circuit de l'additionneur complet à 1 bit en utilisant 2 demi-additionneurs.

Additionneur complet (full adder)

Solution :

$$R_i = A_i.B_i + R_{i-1}.(B_i \oplus A_i)$$

 $S_i = A_i \oplus B_i \oplus R_{i-1}$
Si on posc $X = A_i \oplus B_i$ et $Y = A_iB_i$
On obtient :
 $R_i = Y + R_{i-1}.X$
 $S_i = X \oplus R_{i-1}$
et si on posc $Z = X \oplus R_{i-1}$ et $T = R_{i-1}.X$
On obtient :
 $R_i = Y + T$
 $S_i = Z$

X et Y sont les sorties du premier demi-additionneur ayant comme entrées A_i et B_i .

Z et T sont les sorties du deuxième demi-additionneur ayant comme entrées X et R_{i-1} .

$$X = A_{i} \oplus B_{i}$$

$$Y = A_{i}B_{i}$$

$$Z = X \oplus R_{i-1}$$

$$T = R_{i-1}.X$$

$$R_{i} = Y + T$$

$$S_{i} = Z$$

- Additionneur complet à n bits par propagation de retenue
- \square Circuit combinatoire qui réalise la somme arithmétique de deux nombres de n bits :

En utilisant les additionneurs complets à 1 bit :

En utilisant les additionneurs complets à un bit :

Circuits arithmétiques

🔷 Comparateur à 1 bit

C'est un circuit combinatoire qui permet de comparer deux nombres binaires A et B.

Rôle: Comparer entre deux bits (A et B):

fe: égalité (A=B)

 $fi \ : \ inférieur \ (\ A < B)$

fs: supérieur (A > B)

Table de vérité

Α	В	fs	fe	fi
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Equations

$$fs = A.\overline{B}$$

 $fi = \overline{AB}$
 $fe = \overline{AB} + AB = \overline{A \oplus B} = \overline{fs + fi}$

Dr. B. DIOUF

32

Circuits de transcodage

- Applications des décodeurs : UAL (Unité Arithmétique et Logique)
- Un décodeur est un dispositif essentiel à l'entrée de l'UAL du processeur.
- Exemple : conversion simplifiée d'UAL à 1 bit :
- Cette UAL possède 2 entrées (A et B) à un bit sur lesquelles 4 opérations sont faites :
 - NOT A
 - A AND B
 - A OR B
 - A + B (addition arithmétique).

Circuits de transcodage

♦ Transcodeur BCD/XS3 :

■ Exercice: Réaliser un transcodage du code BCD vers le code à excès de 3 (XS3(N) = BCD(N) + 3). Les nombres d'entrée et de sortie sont exprimés sur 4 bits, et ce transcodeur pourra convertir tous les chiffres de 0 à 9.

Chiffre	Entrées (BCD)				Sorties [XS 3]					
converti	E ₃	E ₂	E ₁	E ₀	S ₃	S ₂	S ₁	S ₀		
0	0	0	0	0	0	0	1	1		
1	0	0	0	1	0	1	0	0		
2	0	0	1	0	0	1	0	1		
3	0	0	1	1	0	1	1	0		
4	0	1	0	0	0	1	1	1		
5	0	1	0	1	1	0	0	0		
6	0	1	1	0	1	0	0	1		
7	0	1	1	1	1	0	1	0		
8	1	0	0	0	1	0	1	1		
9	1	0	0	1	1	1	0	0		
(#)	1	0	1	0	x	x	x	×		
(-	1	0	1	1	X	x	×	x		
-	1	1	0	0	x	x	X	x		
-	1	1	0	1	X	x	X	X		
	1	1	1	0	X	x	X	x		
(#)	1	1	1	1	X	X	X	X		

E, E,	€ 00	01	11	10	
00	0	0	0	0	
01	0	1	1	1	
11	X	X	X	X	
10	1	1	X	X	

S ₃ =	E ₃	+	E ₂	E ₀	+	E2	E ₁	
-------------------------	----------------	---	----------------	----------------	---	----	----------------	--

E, E, 00		01	11	10
00	1	0	1	0
01	1	0	1	0
11	X	X	X	X
10 1		0	X	X

$$\mathbf{S}_1 = \overline{\mathbf{E}_1 \mathbf{E}_0} + \mathbf{E}_1 \mathbf{E}_0 = \overline{\mathbf{E}_1 \oplus \mathbf{E}_0}$$

E, E,	00	01	11	10		
00	0	1	1	1		
01	1	0	0	0		
11	X	Х	Х	Х		
10	0	1	X	X		

E, E ₀ 00		01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

Circuits de transcodage

♦ Transcodeur HEXA/7 SEGMENTS :

■ Les 16 chiffres 0, ..., 9 et A, ..., F sont affichés au moyen d'un dispositif appelé afficheur à segments. Cet afficheur est un ensemble de diodes électroluminescentes (DEL) :

a f b b g b g b f b f f g b f g l b f		a a a l c e d	f g c c c		a g b c d	b g t c e d	a f b f
---	--	---------------	-----------	--	-----------	-------------	---------

Chiffre décimal	Ei D		ées B		a	b		ies d		f	g	Afficheur
0	0	0	0	0	1	1	1	1	1	1	0	← []
1	0	0	0	1	0	1	1	0	0	0	0	<
2	0	0	1	0	1	1	0	1	1	0	1	<-C'
3	0	0	1	1	1	1	1	1	0	0	1	← ∃
4	0	1	0	0	0	1	1	0	0	1	1	<
5	0	1	0	1	1	0	1	1	0	1	1	<u>←</u> 5
6	0	1	1	0	0	0	1	1	1	1	1	←
7	0	1	1	1	1	1	1	0	0	0	0	← -
8	1	0	0	0	1	1	1	1	1	1	1	← - '
9	1	0	0	1	1	1	1	0	0	1	1	← □

Exercice: A l'aide du tableau de Karnaugh déterminer les expressions simplifiées et le schéma logique des 7 sorties