The Washer Method

Chase Mathison¹

Shenandoah University

8 February 2024

Announcements

- Homework in MyOpenMath
- Make sure to come to office hours if you have questions. (Friday via Zoom, 10 AM - 12 PM)
- Quiz in Canvas today.

Other solids of revolution

Solids of revolution are a little more general than solids that always have a circular cross section. For example, let's consider finding the volume of the solid generated by rotating the region bounded by the curves

$$y = x^2$$
, $y = \sqrt{x}$

about the x-axis.

Other solids of revolution

The washer method

In general, the cross section of a solid of revolution will not be just a circle, but instead a "washer", or a circle with a smaller circle cut out of the center. Thankfully, it's still pretty easy to calculate the volume of a washer: If the "big" circle has a radius of R, and the "small" (cut out) circle has a radius of r, and the washer has a width of dx, then the volume of the washer is

From this, it's not hard to show the following.

The washer method

Theorem (The washer method)

Suppose f(x) and g(x) are continuous, nonnegative functions with $f(x) \ge g(x)$ over [a,b]. Let R denote the region bounded above by the graph of f(x) and below by the graph of g(x), and by the lines x=a and x=b. Then, the volume of the solid generated by rotating R about the x-ax is given by

Find the volume of the "napkin ring" generated by rotating the region bounded above by $y = \sqrt{4 - x^2}$, and below by y = 1 about the x-axis.

Find the volume of the solid generated by rotating the region bounded above by the graph of y=x, below by the graph of y=1/x and on the right by x=4 about the x-axis.

The washer method, again

Just like when we learned the disk method, we were also able to apply it to volumes of revolution rotated about the y-axis, we can also apply the washer method to volumes generated by rotating regions about the y-axis with very little change.

Theorem (The washer method (for functions of y))

Suppose f(y) and g(y) are continuous, nonnegative functions with $f(y) \ge g(y)$ over [c,d]. Let Q denote the region bounded on the right by the graph of f(y) and on the left by the graph of g(y), and by the lines y=c and y=d. Then, the volume of the solid generated by rotating Q about the y-axis is given by

Find the volume of the solid generated by rotating the region bounded on the right by the graph of $x = \cos y$, on the left by $x = \sin y$ and below by y = 0 about the y-axis.

BUT WHY JUST THE x- AND y- AXES?????

We can even find the volume of a solid that is generated by rotating a region about any vertical or horizontal line.

Let's try to find the volume of the solid generated by rotating the region bounded by the graphs of y = x and $y = x^2$ about the line x = 2.

Next time

There's one final method that we can use to find these volumes of revolution: cylindrical shells. We'll learn how to use this method next time.