REMARKS

Claims 1-47 are pending, but claims 20, 21 and 25-47 have been withdrawn from consideration.

I. Amendments

Claim 1 has been amended to add a pH range to be consistent with the other independent claims. Claims 1 and 11 have also been amended to correct typographical errors by inserting hyphens in some chemical formulas. It is respectfully submitted no new matter is presented by these amendments.

II. 35 USC § 103

Claims 1-19 and 22-24 are rejected under 35 USC § 103(a) as obvious over McCall (US Patent 5,277,899) or Li et al (US Patent No. 5,580,819) each in view of AU 199915321. These rejections are respectfully traversed.

AU199915321 is not prior art because the present independent claims are entitled to the filing date of the parent of the present application. Thus, the rejection is overcome.

AU199915321 appears to be the Australian phase of WO 99/27057 (ATTACHMENT I, esp@cenet printout for WO 99/27057). WO '057 has an international filing date of 20 November 1998 and was published 3 June 1999. WO '057 designated the US but was filed before November 29, 2000. Thus, its earliest effective date as a reference is its publication date of 3 June 1999 (ATTACHMENT II, excerpt from new USPTO guidelines).

US 6,372,708 and 6,528,477 are descendants of WO '057 (ATTACHMENT III, cover pages of the '708 and '477 patents). '708 is a continuation of WO '057 and '477 is a continuation of '708.

The earliest effective 102(e) date as a reference for the descendent US patents is the US '899 filing date of May 18, 2000 according to USPTO guidelines. Although WO '057 claims priority from three provisionals, it does not have a 102(e) date from these provisional application priority dates according to the new USPTO guidelines (ATTACHMENT II, excerpt from new USPTO guidelines).

The present independent claims are entitled to the May 26, 1999 filing date of their parent application USSN 09/318,942. This parent is incorporated by reference. A

true copy of this provisional application is attached (ATTACHMENT IV). Present independent Claims 1, 11 and 12 are supported by the parent application as follows:

Present Claim 1	Support in Parent
1. (Twice Amended) A block	Page 4, line 26
polymer suds stabilizer comprising:	
i) one or more cationic group-containing	Claim 1
units; and	
ii) one or more additional building block	Claim 1
units;	
provided that the block polymer has an	Page 4, lines 18-23 states "The [block]
average cationic charge density of about 5	polymeric material preferably may
or less units per 100 daltons molecular	comprise any material provided the final
weight,	polymers have an average cationic charge
	density of about 0.05 or less per 100
	daltons molecular weight at a pH of from
	about 4 to about 12."
	The 5 of the present Claim 1 is the same as
	the 0.05 of the parent. The 0.05 of the
	parent is a raw decimal whereas the 5 is the
	value of this raw decimal converted to a per
	100 daltons molecular weight basis
	consistent with definitions in the
	applications. The presentation of the 0.05
	in raw decimal form in the parent was an
	inadvertent typographical error as
	explained in paragraphs below this Table.

selected from the group consisting of one	Claim 2
or more units having one or more hydroxyl	
groups, provided that said polymer has a	
Hydroxyl Group Density of about 0.5 or	
less,	
and one or more units having one or more	Claim 3
hydrophobe groups selected from the group	
consisting of non-hydroxyl groups, non-	
cationic groups, non-anionic groups, non-	
carbonyl groups, and/or non-H-bonding	
groups;	
wherein said block polymer comprises a	Claim 8
cationic unit of the formula:	
$ \begin{array}{c c} & R^2 \\ & R^1 \\ & R^2 \\ &$	
$A-(Z)_z$ T [I]	
wherein each of R ¹ , R ² and R ³ are	Claim 8
independently selected from the group	
consisting of hydrogen, C ₁ to C ₆ alkyl, and	
mixtures thereof;	
	<u> </u>

T is selected from the group	Claim 8
consisting of substituted or unsubstituted,	
saturated or unsaturated, linear or branched	
radicals selected from the group consisting	
of alkyl, cycloalkyl, aryl, alkaryl, aralkyl,	
heterocyclic ring, silyl, nitro, halo, cyano,	
sulfonato, alkoxy, keto, ester, ether,	
carbonyl, amido, amino, glycidyl,	
carbanato, carbamate, carboxylic, and	
carboalkoxy radicals and mixtures thereof;	
Z is selected from the group	Claim 8
consisting of: -(CH ₂)-, -(CH ₂ -CH=CH)-,	
-(CH ₂ -CHOH)-, -(CH ₂ -CHNR ⁴)-,	
-(CH ₂ -CHR ⁵ -O)- and mixtures thereof;	
R ⁴ and R ⁵ are selected from the	Claim 8
group consisting of hydrogen, C ₁ to C ₆	
alkyl and mixtures thereof;	
z is an integer selected from about 0	Claim 8
to about 12;	
A is NR ⁶ R ⁷ or NR ⁶ R ⁷ R ⁸ wherein	Claim 8
each of R ⁶ , R ⁷ and R ⁸ , when present, are	
independently selected from the group	,
consisting of H, C ₁ -C ₈ linear or branched	
alkyl, alkyleneoxy having the formula:	
—(R ⁹ O) _y R10	
wherein R ⁹ is C ₂ -C ₄ linear or branched	Claim 8
alkylene, and mixtures thereof;	
R ¹⁰ is hydrogen, C ₁ -C ₄ alkyl, and	Claim 8

mixtures thereof; and	
y is from 1 to about 10; and	Claim 8
wherein said block polymer has an average	Page 8, lines7-8
molecular weight of from about 35,000 to	
about 750,000 daltons.	

As stated above, the "0.05" of the parent page 4, lines 18-23 was an apparent typographical error and it is not new matter to correct it to "5" as in present claim 1. Thus, the parent application disclosure of about 0.05 or less supports the present recitation of 5 or less. The 0.05 is on a raw decimal basis. However, the raw decimal value should have been multiplied by 100 to equal 5 because it should have been recited on a weight percent basis (or per 100 daltons molecular weight basis).

Page 40 of the parent defines the term "cationic charge density". Page 40, lines 26-27, of the parent states:

"For purposes of the present invention the term "cationic charge density" is defined as "the number of units that are protenated at a specific pH per 100 daltons mass of polymer. (emphasis added)"

Page 41, lines 9-12, of the parent states:

"Herewith the term cationic charge density is defined as the amount of cationic charge on a given polymer, either by permanent cationic groups or via protenated groups, as a **weight percent** of the total polymer at the desired pH. (emphasis added)"

These are two ways to say the same thing because the weight percent is the number of parts per 100 parts.

The present application at page 41, lines 2-5 and 18-21, essentially has the same definitions. Also, present Claim 1 expressly recites the cationic charge density is "per 100 daltons molecular weight."

Thus, the cationic charge density ranges in the specification and claims of the parent and the present application were supposed to be expressed as weight percents (i.e., per 100 daltons molecular weight) rather than raw decimals. However, apparently the cationic charge density ranges in the specification and claims of the parent are expressed as raw decimals. These raw decimals should have been multiplied by 100 to be on the correct weight percent (i.e., per 100 daltons molecular weight) basis according to the definitions in the parent specification.

For example, page 41 of the parent, line 22, calculates:

Cationic Charge Density = 14/(157+116+116+116+72)*50%=0.0132, or 1.32%.

Please note, in this equation the 50% has nothing to do with converting a raw decimal to a weight percent. It merely indicates half the nitrogens in the molecule are protenated.

Likewise, page 41 of the parent, last line, calculates:

Cationic Charge Density = 14/(157+116+116+116)*100%=0.0277, or 2.77%.

Please note, in this equation the 100% has nothing to do with converting a raw decimal to a weight percent. The 100% merely indicates all the nitrogens in the molecule are protenated.

The raw decimals of these calculations on page 41 of the parent fall within ranges listed in the parent specification and claims, but the percentages listed on page 41 of the parent are all outside the claimed range. For example, parent claim 6 recites an average cationic charge density range from about 0.0001 to about 0.05 units per 100 daltons molecular weight.

Thus, it is apparent the ranges for cationic charge density in the specification and claims of the parent application are mistakenly on a raw decimal basis rather than being on a per 100 daltons molecular weight basis according to the definitions. Thus, it is

respectfully submitted it would not be new matter to convert these raw decimal ranges to the correct basis by multiplying them by 100 to be on a per 100 daltons molecular weight basis as was done in the present application to be consistent with the definitions.

Also, the original parent specification at page 41, lines 1-4, says 2 cationic charge units divided by 1028 daltons molecular weight equals a cationic charge density of approximately 0.002 units of cationic charge per 100 daltons molecular weight. This was a mathematical error. 2 cationic charge units/1028 daltons molecular weight = 0.002. However, this equals 0.2 *per 100 daltons molecular weight*. Thus, the disclosed value should have been multiplied by 100. This apparent typographical error was corrected in the present application. Please see the present specification at page 41, second full paragraph which shows a correct calculation wherein 2 cationic charge units divided by 1028 daltons molecular weight equals approximately 0.2 units of cationic charge per 100 daltons.

Present Claim 11.	Support in parent
A block polymer suds stabilizer comprising	Page 4, line 26
at least a first homopolymeric unit	Claim 11
comprising a series of first cationic	•
monomeric units and	
at least a second hompolymeric unit	Claim 11
comprising a series of second polymeric	
units,	
at least said first monomeric units capable	Claim 11
of having a cationic charge at a pH of from	
about 4 to about 12;	
provided that said polymer has an average	Page 4, lines 18-23 of the parent discloses
cationic charge density from about 0.05 to	about 0.0005 and about 0.05 as range
about 5 units per 100 daltons molecular	endpoints at a pH of from about 4 to about
weight at a pH of from about 4 to about 12,	12.
	As explained above, the 0.05 and 5 of the
	present claim are the same as the 0.0005
	and 0.05, respectively, of the parent. The
	0.0005 and 0.05, respectively, of the parent
	are raw decimals which support the present
	range of about 0.05 to about 5 when
	converted to the "per 100 daltons molecular
	weight" basis.
wherein said second polymeric units are	Claim 2
selected from the group consisting of one	
or more units having one or more hydroxyl	
groups, provided that said polymer has a	
Hydroxyl Group Density of about 0.5 or	
less, and	

one or more units having one or more	Claim 3
hydrophobe groups selected from the group	
consisting of non-hydroxyl groups, non-	
cationic groups, non-anionic groups, non-	
carbonyl groups, and/or non-H-bonding	
groups;	
wherein said block polymer comprises a	Claim 8
cationic unit of the formula:	
$A-(Z)_{z}$ T T	
$A-(Z)_{z} \nearrow T$ [I]	
wherein each of R ¹ , R ² and R ³ are	Claim 8
independently selected from the group	·
consisting of hydrogen, C ₁ to C ₆ alkyl, and	
mixtures thereof;	
T is selected from the group	Claim 8
consisting of substituted or unsubstituted,	
saturated or unsaturated, linear or branched	
radicals selected from the group consisting	
of alkyl, cycloalkyl, aryl, alkaryl, aralkyl,	
heterocyclic ring, silyl, nitro, halo, cyano,	
sulfonato, alkoxy, keto, ester, ether,	
carbonyl, amido, amino, glycidyl,	
carbanato, carbamate, carboxylic, and	
carboalkoxy radicals and mixtures thereof;	
Z is selected from the group consisting of: -	Claim 8
(CH ₂)-, -(CH ₂ -CH=CH)-, -(CH ₂ -CHOH)-,	

-(CH ₂ -CHNR ⁴)-, -(CH ₂ -CHR ⁵ -O)- and	
mixtures thereof;	
R ⁴ and R ⁵ are selected from the group	Claim 8
consisting of hydrogen, C ₁ to C ₆ alkyl and	
mixtures thereof;	
z is an integer selected from about 0	Claim 8
to about 12;	
A is NR ⁶ R ⁷ or NR ⁶ R ⁷ R ⁸ wherein	Claim 8
each of R ⁶ , R ⁷ and R ⁸ , when present, are	
independently selected from the group	
consisting of H, C ₁ -C ₈ linear or branched	
alkyl, alkyleneoxy having the formula:	
$(R^9O)_yR^{10}$	
wherein R ⁹ is C ₂ -C ₄ linear or branched	Claim 8
alkylene, and mixtures thereof;	
R ¹⁰ is hydrogen, C ₁ -C ₄ alkyl, and	Claim 8
mixtures thereof; and	
y is from 1 to about 10; and	Claim 8
wherein said block polymer has an average	Page 8, lines 7-8
molecular weight of from about 35,000 to	
about 750,000 daltons.	

Present Claim 12	Support in Parent
A block polymer suds stabilizer comprising	Page 4, line 26
at least one homopolymeric block of	Claim 12
monomeric units A and at least one	
member of the group consisting of a	
homopolymeric block of monomeric units	
B and a homopolymeric block of	
monomeric units C	
provided that said polymer has an average	Page 4, lines 18-23 states "The [block]
cationic charge density of at most about 5	polymeric material preferably may
units per 100 daltons molecular weight at a	comprise any material provided the final
pH of from about 4 to about 12; and	polymers have an average cationic charge
	density of about 0.05 or less per 100
	daltons molecular weight at a pH of from
	about 4 to about 12."
	As explained above, the 5 of the present
	Claim 12 is the same as the 0.05 of the
	parent. The 0.05 of the parent is a raw
	decimal whereas the 5 is the value of this
	raw decimal converted to a per 100 daltons
	molecular weight basis consistent with
	definitions in the applications.
wherein said block polymer has an average	Page 8, lines 7-8
molecular weight of from about 35,000 to	
about 750,000 daltons:	

said block of cationic monomeric Claim 12 units A having a Formula I: $-(CH_2-CH_2-R_2)$ wherein R¹ is H or an alkyl having 1 to 10 carbon atoms, R² is a moiety selected from the group Claim 12 consisting of wherein R³ is selected from the group Claim 12

consisting of

a is an integer from 0 to 16; b is an integer	Claim 12
from 2 to 10; c is an integer from 2 to 10; d	
is an integer from 1 to 100;	
R ⁴ and R ⁵ are independently selected from	Claim 12
the group consisting of -H, and	
R9	
—R ⁸ —N ;	
R10	
R ⁸ is independently selected from	Claim 12
the group consisting of a bond and an	
alkylene having 1 to 18 carbon atoms;	
R ⁹ and R ¹⁰ are independently	
selected from the group consisting of -H,	
alkyl having 1 to 10 carbon atoms;	
R ¹² and R ¹³ are independently	
selected from the group consisting of H and	
alkyl having from 1 to 10 carbon atoms;	

	Claim 12
CH ₂ CH ₂ CH ₂ CH ₂ NH	
	Claim 12
c=o	
(CH _b)t	
, N	
wherein t is an integer from 2 to 10;	Claim 12
B. said monomeric unit B is selected	Claim 12
from the group consisting of:	
a monomeric unit of Formula IV	
$ \begin{array}{c} $	
K	
wherein R ²⁰ is selected from the group	
consisting of H and CH ₃ ;	

R ²¹ is selected from the group consisting	Claim 12
of:	
Č=O	
Ņ	
$\begin{array}{cccc} \operatorname{CH}_2 & \operatorname{CH}_2 & \\ \operatorname{CH}_2 & \operatorname{CH}_2 & \end{array},$	
CH ₂ CH ₂ ,	
) o'	
	Claim 12
O, N	
O C CH ₂ CH ₂ CH ₂ —CH ₂	
CH ₂ —ĊH ₂	
	Claim 12
,,0	
_o_c	
`CH₃	
	Claim 12
—он ,	
0	
<u>—</u> L	
ОН	
—С—О—(CH ₂) _е —ОН ,	
0	
wherein e is an integer from 3 to 25;	

-O-(CH₂)_f-CH₃ Claim 12 wherein f is an integer from 0 to 25; Claim 12 wherein g is an integer from 1 to 100, h is an integer from 1 to 100, R^{23} is -H, -CH₃ or -C₂H₅, R²⁴ is -CH₃ or -C₂H₅; Claim 12 wherein j is an integer from 1 to 25;

	Claim 12
C-O-(CH ₂) _k -O-c H C OH OH OH	
wherein k is an integer from 1 to 25;	
; SO ₃ H	
-NH-(CH ₂) _r -NH ₂ ·HCl, wherein r is an integer from 1 to 25; and	Claim 12
a polyhydroxy monomeric unit of Formula VI:	Claim 12
ОН ОН —О (СН —СН) ₩ VI	
wherein w is an integer from 1 to 50; and	

C	Claire 12
C. monomeric unit C is selected from	Claim 12
the group consisting of:	
$ \begin{array}{c} $	
wherein R ²⁵ is -H or -CH ₃ ,	
wherein it is if or eas,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
wherein R ²⁶ is -H or CH ₃ , and	
x represents the total number of monomeric units	Claim 12
within the block polymer; m, n, o, when present,	
represent the mole ratio of their respective	
monomeric units in a given block polymer,	
wherein at least two different monomeric units	
are present in the block polymer.	

As all the art rejections include AU '321 it is respectfully submitted all the art rejections are overcome.

III. <u>35 USC 112</u>

The Office action asserts Claims 7 and 8 stand in wrong dependency. Applicant respectfully traverses. Claims 7 and 8 were amended by a prior amendment to depend from Claims 11 and 12. It is respectfully submitted that it is permissible to amend claims

Y

to have a dependent claim before its base claim. Moreover, the molecular weights of the dependent claims are narrower than those of their base claims. If Applicant has misinterpreted the Examiner's rejection she is encouraged to contact the undersigned to discuss this.

IV. Conclusion

In view of the above, it is respectfully submitted that all objections and rejections are overcome. Thus, a Notice of Allowance is respectfully requested.

Respectfully submitted,

Date: \/

By:

Anthony P. Venturino Registration No. 31,674

APV

ATTORNEY DOCKET NO. APV30271CIP

STEVENS, DAVIS, MILLER & MOSHER, L.L.P. 1615 L STREET, N.W., SUITE 850 WASHINGTON, D.C. 20036 TEL. 202-785-0100 / FAX. 202-408-5200

ATTACHMENT I - esp@cenet printout

WO9927057 Biblio

Claims.

LIQUID DETERGENT COMPOSITIONS COMPRISING POLYMERIC SUDS ENHANCERS

Patent

Number:

WO9927057

Publication

date:

1999-06-03

Inventor(s):

KASTURI CHANDRIKA (US); KLUESENER BERNARD WILLIAM (US); SCHAFER MICHAEL GAYLE (US); SCHEPER WILLIAM

MICHAEL (US); SIVIK MARK ROBERT (US)

KASTURI CHANDRIKA (US); KLUESENER BERNARD WILLIAM Applicant(s):

(US); SCHAFER MICHAEL GAYLE (US); SCHEPER WILLIAM MICHAEL (US); SIVIK MARK ROBERT (US); PROCTER & GAMBLE

(US)

Requested

Patent:

WO9927057

Application

Number:

WO1998US24852 19981120

Priority Number US19970066747P 19971121; US19980087714P 19980602;

US19980091672P 19980702 (s):

IPC

Classification: C11D3/37; C11D3/30

EC

C11D3/00B5, C11D3/37C8F

Classification: Equivalents:

AU1532199, BR9812788, CZ20001603, T EP1032633

(WO9927057), JP2001524587T

Cited Documents: DE4302315; US4579681; EP0013585; EP0560519; EP0494554; WO9500611; WO9828393; WO9637597; WO9602622; JP57044700

Abstract

The present invention relates to liquid detergent compositions comprising a polymeric material which is a suds enhancer and a suds volume extender, said compositions having increased effectiveness for preventing re-deposition of grease during hand washing. The polymeric material which are suitable as suds volume and suds endurance enhancers comprise an effective amount of a polymeric suds stabilizer comprise: I) units capable of having a cationic charge at a pH of from about 4 to about 12; provided that said suds stabilizer has an average cationic charge density from about 0.0005 to about 0.05 units per 100 daltons molecular weight at a pH of from about 4 to about 12.

Data supplied from the esp@cenet database - I2

Guidelines

Page 17

Example 9: References based on a § 111(a) Application which is a

Continuation (filed prior to any entry of the National Stage) of an

International Application, which was filed prior to November 29, 2000

(language of the publication under PCT Article 21(2) is not relevant)

Both the U.S. publication and the U.S. patent of the § 111(a) continuation (filed prior to any entry of the National Stage) of an international application (IA) that was filed prior to November 29, 2000 have the § 102(e) prior art date of its actual U.S. filing date under §111(a). No benefit of the international filing date (nor any U.S. filing dates prior to the IA) is given for § 102(e) prior art purposes if the IA was filed prior to November 29, 2000. The IA publication under PCT Article 21(2) does not have a prior art date under § 102(e)(1) because the IA was filed prior to November 29, 2000. The IA publication under PCT Article 21(2) can be applied under § 102(a) or (b) as of its publication date.

The § 102(e)(1) date for the IA publication by WIPO is: None The § 102(e)(1) date for Publication by USPTO is: 01 Dec 2000 The § 102(e) date for the Patent is: 01 Dec 2000

The IA publication by WIPO can be applied under § 102(a) or (b) as of its publication date (01 Sept 2000).

Additional Priority/Benefit Claims:

- ✓ If the IA properly claimed priority/benefit to any earlier-filed U.S. application (whether provisional or nonprovisional), there would still be no § 102(e)(1) date for the IA publication by WIPO, and the U.S. application publication and patent would still have a § 102(e) date of the actual filing date of later-filed § 111(a) application in the example above (01 Dec 2000).
- ✓ If a second, later-filed U.S. nonprovisional (§ 111(a)) application claimed the benefit of § 111(a) application in the example above, the § 102(e) date of the patent or publication of the second, later-filed U.S. application would still be the actual filing date of the § 111(a) application in the example above (01 Dec 2000).

ATTACHMENT III - US Patent Cover Sheets

(12) United States Patent Kasturiect al.

(10) Patent No.:

US 6,372,708 B1

(45) Date of Patent:

Apr. 16, 2002

(54) LIQUID DETERGENT COMPOSITIONS COMPRISING POLYMERIC SUDS ENHANCERS

(75)	Inventors	Chandrika Kasturi, Cincinnati, OH
(12)	my cators.	Chanteling Presents Cincinnan, OH
		(US); Michael Gayle Schafer,
		Alexandria; Mark Robert Sivik.
		Mitchell, both of KY (US); Bernard
		William Kluesener, Harrison, OH
		(US); William Michael Scheper,
		Lawrenceburg, IN (US)

- (73) Assignce: The Procter & Gamble Company, Cincinnati, OH (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/574,524(22) Filed: May 18, 2000

Related U.S. Application Data

- (63) Continuation of application No. PCT/US98/24852, filed on Nov 20, 1998
- (60) Provisional application No. 60/066,747, filed on Nov. 21, 1997, provisional application No. 60/091,672, filed on Jul. 2, 1998, and provisional application No. 60/087,714, filed on Jun. 2, 1998.

(51)	Int. Cl. ⁷	C11D 3/37
(52)	U.S. Cl	510/475
(58)	Field of Search	510/476, 475,
		510/244, 374, 383

(56) References Cited

U.S. PATENT DOCUMENTS

3,580,853 A	• 5/1971	Parran, Jr 252/152
4,368,146 A		Aronson et al 252/542
4,579,681 A		Ruppert et al 252/542
5,308,532 A		Adler et al 252/174.23
5,409,639 A		Fusiak et al 252/542
5,811,386 A		Mueller et al 510/535

FOREIGN PATENT DOCUMENTS

CA	1 012 866	6/1977
DE	4 302 315	4/1994
EP	0 013 585	7/1980
EP	0 232 092	8/1987
EP	0 276 501	8/1988
EP	0 449 503	10/1991
EP	0 494 554	7/1992
EP	0 560 519	9/1993
EP	0 595 590	5/1994
FR	2 164 700	8/1973
FR	2 198 992	4/1974
FR	2 208 972	6/1974
FR	2 208 978	6/1974
GB	2 104 091	3/1983
JP	57 044700	3/1982
wo	WO 95/00611	1/1995
WO	WO 96/02622	2/1996
WO	WO 96/37597	11/1996
wo	WO 98/28393	7/1998

^{*} cited by examiner

Primary Examiner—John Hardee (74) Attorney, Agent, or Firm—Ian S. Robinson; Kevin L. Waugh; C. Brant Cook

57) ABSTRACT

The present invention relates to liquid detergent compositions comprising a polymeric material which is a suds enhancer and a suds volume extender, said compositions having increased effectiveness for preventing re-deposition of grease during hand washing. The polymeric material which are suitable as suds volume and suds endurance enhancers comprise an effective amount of a polymeric suds stabilizer comprise:

 i) units capable of having a cationic charge at a pH of from about 4 to about 12;

provided that said suds stabilizer has an average cationic charge density from about 0.0005 to about 0.05 units per 100 daltons molecular weight at a pH of from about 4 to about 12

14 Claims, No Drawings

(12) United States Patent Kasturi et al.

(10) Patent No.:

US 6,528,477 B2

(45) Date of Patent:

Mar. 4, 2003

(54) LIQUID DETERGENT COMPOSITIONS COMPRISING POLYMERIC SUDS **ENHANCERS**

(75) Inventors: Chandrika Kasturi, Cincinnati, OH (US); Michael Gayle Schafer, Alexandria, KY (US); Mark Robert Slvik, Mitchell, KY (US); Bernard William Kluesener, Harrison, OH (US); William Michael Scheper, Lawrenceburg, IN (US)

(73) Assignce: Procter & Gamble Company, Cincinnati, OH (US)

(*) Notice:

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/108,043

(22) Filed:

Mar. 27, 2002

(65)

Prior Publication Data

US 2002/0169097 A1 Nov. 14, 2002

Related U.S. Application Data

Continuation of application No. 09/574,524, filed on May 18, 2000, now Pat. No. 6,372,708, which is a continuation of application No. PCT/US98/24852, filed on Nov. 20, 1998 Provisional application No. 60/066,747, filed on Nov. 21, 1997, provisional application No. 60/091,672, filed on Jul. 2, 1998, and provisional application No. 60/087,714, filed on Jun. 2, 1998.

(58) Field of Search 510/475, 476

(56) References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

3614336 A1 • 10/1987 560519 A2 • 9/1993 641805 A1 • 3/1995 DE EP ЕP

* cited by examiner

Primary Examiner-John R. Hardee (74) Attorney, Agent, or Firm—C. Brant Cook; Kim W. Zerby; Steve W. Miller

ABSTRACT

The present invention relates to liquid detergent compositions comprising a polymeric material which is a suds enhancer and a suds volume extender, said compositions having increased effectiveness for preventing re-deposition of grease during hand washing. The polymeric material which are suitable as suds volume and suds endurance enhancers comprise an effective amount of a polymeric suds stabilizer comprise:

i) units capable of having a cationic charge at a pH of from about 4 to about 12;

provided that said suds stabilizer has an average cationic charge density from about 0.0005 to about 0.05 units per 100 daltons molecular weight at a pH of from about 4 to about

13 Claims, No Drawings

