Exercice sur la décomposition matricielle

A. Ramadane, Ph.D.

Soit la matrice

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 3 & 0 & -4 \end{pmatrix}$$

(a) Calculer la décomposition LU de A par la méthode de Doolitle sans permutation de lignes.

N.B.: Le calcul de chaque coefficient de cette matrice doit être indiqué clairement et en détail.

- (b) Sans calculer de déterminant, comment savez-vous que A n'est pas singulière ?
- (c) L'inverse de A est une matrice telle que $AA^{-1} = I$. Si le vecteur $\vec{c_i}$ représente la i^{ieme} colonne de A^{-1} , expliquer comment trouver A^{-1} sur base de L et U. Écrire les systèmes linéaires qui correspondent.
- (d) Pour une matrice $n \times n$, sachant que le nombre d'opérations à effectuer pour calculer L et U est environ $\frac{1}{3}n^3$ et que celui des résolutions $L\vec{y} = \vec{b}$ puis $U\vec{x} = \vec{y}$ est environ n^2 , quel est le coût du calcul de A^{-1} par la méthode que vous avez décrite ?
- (e) Que faudrait-il changer à votre procédure si le pivotage partiel était autorisé ?
- (f) Sachant que

$$A^{-1} = \begin{pmatrix} 0, 4 & 0 & 0, 2 \\ -1, 7 & 1 & -0, 1 \\ 0, 3 & 0 & -0, 1 \end{pmatrix}$$

calculer le conditionnement de la matrice A avec la norme $\| \ \|_1$.

(a) La décomposition LU de Doolitle de la matrice A sans permutation de lignes est donnée par

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \text{ et } U = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -10 \end{pmatrix}$$

(b) Pour obtenir les colonnes $\vec{c_i}$ de la matrice A^{-1} , il faut résoudre à l'aide de la décomposition LU les 3 systèmes linéaires suivants:

$$A\vec{c}_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$
, $A\vec{c}_2 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ et $A\vec{c}_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$.

- (c) Le calcul de l'inverse de la matrice A de dimensions $n \times n$ nécessite $\frac{4}{3}n^3$ opérations.
- (d) Il faut d'abord permuter le vecteur \vec{b} en faisant $P\vec{b}$. On résout $L\vec{y} = P\vec{b}$ et ensuite $U\vec{x} = \vec{y}$.
- (e) $||A||_1 = \max\{6; 1; 9\} = 9$ $||A^{-1}||_1 = \max\{2, 4; 1; 0, 4\} = 2, 4 \text{ et cond}_1 A = 21, 6.$