Invariants

Eun Bae Kong

Department of Computer Science and Engineering

Chungnam National University

Daejeon, 305-764

Republic of Korea

keb@cnu.ac.kr

Integer Division

- Given X and Y, compute quotient and remainder of Y/X
- Precondition: $\{X > 0 \land Y \ge 0\}$
- Postcondition: $\{Y = qX + r \land 0 \le r < X\}$
- Invariant: $\{Y = qX + r \land 0 \le r\}$

```
q = 0; r = Y;
while (r \ge X) {
q=q+1;
r = r-X
}
```

Another Example

- Given N > 0, calculate $\lfloor \log_2 N \rfloor$
- Postcondition: Find e such that

$$\{2^e \le N < 2^{e+1}\}$$

• Invariant:

$$\{k = 2^{e+1} \quad \land \quad 2^e \le N\}$$

```
e = -1; k = 1;
while (k \le N) {
e = e+1;
k = k*2
}
```

Another Example

- Given $N \ge 0$, calculate 2^N
- Slow way

```
prod = 1;
for (i=0; i < N; i++) prod = 2 × prod;</pre>
```

Fast Way

- Idea: $2^{a+b+c} = 2^a * 2^b * 2^c$ (Actually, slow way uses a = b = c = 1)
- $2^{1011} = 2^{1000} * 2^{0010} * 2^{0001}$ (binary exponents)

bits	prod	
1011	2^{0}	
shift 1	$2^0 \times 2^1 = 2^1$	
101		
shift 1	$2^1 \times 2^2 = 2^3$	
10		
shift 0	no change	
1		
shift 1	$2^3 \times 2^8 = 2^{11}$	

a	b	
1011	0	
101	1	
10	11	
1	011	
0	1011	

 \bullet They add up to N if a is shifted left enough.

a	m	b
1011	1	0
101	2	1
10	4	11
1	8	011
0	16	1011

$$am + b = N$$

• To maintain the above assertion while shifting a bit, we execute

- We will keep the product in **prod**. (prod= 2^b)
- When we shift a 1-bit, we must multiply prod by 2^m .
- We store 2^m in **power** to avoid exponentiation.
- Invariant:

$$\{am + b = N \land power = 2^m \land prod = 2^b \land a \ge 0\}$$

```
a = N;
m = 1; power = 2;
b = 0; prod = 1;
while (a > 0) { /* bad practice */
   if (odd(a)) {
        b = b+m; prod = prod*power;
    a = a / 2;
    m = m*2;
    power = power*power;
```

```
a = N;
m = 1; power = 2;
b = 0; prod = 1;
while (a \neq 0) { /* good practice */
    if (odd(a)) {
        b = b+m; prod = prod*power;
    a = a / 2;
    m = m*2;
    power = power*power;
```