Лабораторная работа №2

Тема: Настройка DHCP, FTP

Теоретические сведения:

Прикладной уровень

Прикладной уровень (уровень приложений; англ. *application layer*) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

- позволяет приложениям использовать сетевые службы:
- удалённый доступ к файлам и базам данных,
- пересылка электронной почты;
- отвечает за передачу служебной информации;
- предоставляет приложениям информацию об ошибках;
- формирует запросы к уровню представления.

Протоколы прикладного уровня: **RDP**, **HTTP**, **SMTP**, **SNMP**, **POP3**, **FTP**, **TELNET**, **SSH** и другие.

Что такое FTP

FTP (англ. File Transfer Protocol — протокол передачи файлов) — стандартный протокол, предназначенный для передачи файлов по ТСР-сетям (например, Интернет). FTP часто используется для загрузки сетевых страниц и других документов с частного устройства разработки на открытые сервера хостинга.

Протокол построен на архитектуре "клиент-сервер" и использует разные сетевые соединения для передачи команд и данных между клиентом и сервером. Пользователи FTP могут пройти аутентификацию, передавая логин и пароль открытым текстом, или же, если это разрешено на сервере, они могут подключиться анонимно. Можно использовать протокол SSH для безопасной передачи, скрывающей (шифрующей) логин и пароль, а также шифрующей содержимое.

FTP является одним из старейших прикладных протоколов, появившимся задолго до HTTP, в 1971 году. Он и сегодня широко используется для распространения ПО и доступа к удалённым хостам.

FTP работает на прикладном уровне модели OSI и используется для передачи файлов с помощью TCP/IP. Для этого должен быть запущен FTP-сервер, ожидающий входящих запросов. Компьютер-клиент может связаться с сервером по порту 21. Это соединение (поток управления) остаётся открытым на время сессии. Второе соединение (поток данных), может быть открыт как сервером из порта 20 к порту соответствующего клиента (активный режим), или же клиентом из любого порта к порту соответствующего сервера (пассивный режим), что необходимо для передачи файла данных. Поток управления используется для работы с сессией - например, обмен между клиентом и сервером командами и паролями с помощью telnet-подобного протокола. Например, "RETR имя файла" передаст указанный файл от сервера клиенту. Вследствие этой двухпортовой структуры, FTP считается внешнеполосным протоколом, отличие внутриполосного НТТР.

Передача данных может осуществляться в любом из трёх режимов:

- Поточный режим данные посылаются в виде непрерывного потока, освобождая FTP от выполнения какой бы то ни было обработки. Вместо этого, вся обработка выполняется TCP. Индикатор конца файла не нужен, за исключением разделения данных на записи.
- Блочный режим FTP разбивает данные на несколько блоков (блок заголовка, количество байт, поле данных) и затем передаёт их TCP.
- Режим сжатия данные сжимаются единым алгоритмом (обыкновенно, кодированием длин серий).

Порты: 21/ТСР для команд, 20/ТСР для данных, 49152-65534/ТСР динамически

DHCP

DHCP (англ. Dynamic Host Configuration Protocol — протокол динамической настройки узла) — сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP. Данный протокол работает по модели «клиент-сервер». Для автоматической конфигурации компьютер-клиент на этапе конфигурации сетевого устройства обращается к так называемому серверу DHCP, и получает от него нужные параметры. Сетевой администратор может задать диапазон адресов, распределяемых сервером среди компьютеров. Это позволяет избежать ручной настройки компьютеров сети и уменьшает количество ошибок. Протокол DHCP используется в большинстве сетей TCP/IP.

Стандарт протокола DHCP был принят в октябре 1993 года. Действующая версия протокола (март 1997 года) описана в RFC 2131. Новая версия DHCP, предназначенная для использования в среде IPv6, носит название DHCPv6 и определена в RFC 3315 (июль 2003 года).

Протокол DHCP предоставляет три способа распределения IP-адресов:

- 1. Ручное распределение. При этом способе сетевой администратор сопоставляет аппаратному адресу (для Ethernet сетей это MAC-адрес) каждого клиентского компьютера определённый IP-адрес. Фактически, данный способ распределения адресов отличается от ручной настройки каждого компьютера лишь тем, что сведения об адресах хранятся централизованно (на сервере DHCP), и потому их проще изменять при необходимости.
- 2. Автоматическое распределение. При данном способе каждому компьютеру на постоянное использование выделяется произвольный свободный IP-адрес из определённого администратором диапазона.
- 3. Динамическое распределение. Этот способ аналогичен автоматическому распределению, за исключением того, что адрес выдаётся компьютеру не на постоянное пользование, а на

определённый срок. Это называется арендой адреса. По истечении срока аренды IP-адрес вновь считается свободным, и клиент обязан запросить новый (он, впрочем, может оказаться тем же самым). Кроме того, клиент сам может отказаться от полученного адреса.

Протокол DHCP является клиент-серверным, то есть в его работе участвуют клиент DHCP и сервер DHCP. Передача данных производится при помощи протокола UDP, при этом сервер принимает сообщения от клиентов на порт 67 и отправляет сообщения клиентам на порт 68.

Структура сообщений DHCP

Все сообщения протокола DHCP разбиваются на поля, каждое из которых содержит определённую информацию. Все поля, кроме последнего (поля опций DHCP), имеют фиксированную длину.

Пример процесса получения адреса

Рассмотрим пример процесса получения IP-адреса клиентом от сервера DHCP. Предположим, клиент ещё не имеет собственного IP-адреса, но ему известен его предыдущий адрес — 192.168.1.100. Процесс состоит из четырёх этапов.

Обнаружение DHCP

Вначале клиент выполняет широковещательный запрос по всей физической сети с целью обнаружить доступные DHCP-серверы. Он отправляет сообщение типа DHCPDISCOVER, при этом в качестве IP-адреса источника указывается 0.0.0.0 (так как компьютер ещё не имеет собственного IP-адреса), а в качестве адреса назначения — широковещательный адрес 255.255.255.255.

Клиент заполняет несколько полей сообщения начальными значениями:

- 1. В поле xid помещается уникальный идентификатор транзакции, который позволяет отличать данный процесс получения IP-адреса от других, протекающих в то же время.
- 2. В поле chaddr помещается аппаратный адрес (MAC-адрес) клиента.
- 3. В поле опций указывается последний известный клиенту ІР-адрес. В

данном примере это 192.168.1.100. Это необязательно и может быть проигнорировано сервером.

Сообщение DHCPDISCOVER может быть распространено за пределы локальной физической сети при помощи специально настроенных агентов ретрансляции DHCP, перенаправляющих поступающие от клиентов сообщения DHCP серверам в других подсетях.

Предложение DHCP

Получив сообщение от клиента, сервер определяет требуемую конфигурацию клиента в соответствии с указанными сетевым администратором настройками. В данном случае DHCP-сервер согласен с запрошенным клиентом адресом 192.168.1.100. Сервер отправляет ему ответ (DHCPOFFER), в котором предлагает конфигурацию. Предлагаемый клиенту IP-адрес указывается в поле уіаddr. Прочие параметры (такие, как адреса маршрутизаторов и DNS-серверов) указываются в виде опций в соответствующем поле.

Это сообщение DHCP-сервер отправляет хосту, пославшему DHCPDISCOVER, на его MAC, при определенных обстоятельствах сообщение может распространяться как широковещательная рассылка. Клиент может получить несколько различных предложений DHCP от разных серверов; из них он должен выбрать то, которое его «устраивает».

Запрос DHCP

Выбрав одну из конфигураций, предложенных DHCP-серверами, клиент отправляет запрос DHCP (DHCPREQUEST). Он рассылается широковещательно; при этом к опциям, указанным клиентом в сообщении DHCPDISCOVER, добавляется специальная опция — идентификатор сервера — указывающая адрес DHCP-сервера, выбранного клиентом (в данном случае — 192.168.1.1).

Подтверждение DHCP

Наконец, сервер подтверждает запрос и направляет это подтверждение (DHCPACK) клиенту. После этого клиент должен настроить свой сетевой интерфейс, используя предоставленные опции.

Практическое задание:

Puc. 1

Исходные данные:

x = <номер зач. кн. $> \mod 30$

 $user = < \phi$ амилия латинницой>

N=<номер зач. кн.> mod 4 +1

Ход работы:

- 1. Создаем топологию как показано на рис.1
- 2. Назначаем ІР адреса серверам следующим образом:
 - FTP: 192.168.x.1
 - DHCP: 192.168.x.2
- 3. Настраиваем сервер DHCP:
 - Pool: *user*_pool
 - GW: 192.168.x.254
 - DNS: 192.168.x.3
 - Start ip: 192.168.*x*.100
 - End ip: 192.168.*x*.120

4. Настраиваем сервер FTP

• Username: <user>

• pass: <user>

N	Права доступа
1	Write, Read
2	Write, Delete
3	Write, List
4	Write, Read, List
5	Write, Delete, List

Проверка выполнения работы:

Подключить 3 устройства (PC, Laptop, Printer) к коммутатору и проверить получают ли они IP адреса с помощью DHCP сервера. Для этого, в IP конфигурации устройств, необходимо выставить позицию DHCP.

Проверьте достижимость серверов из каждого узла, посредством отправки пакетов. Посмотрите содержимое пакетов. Что происходит при первом обращении к DHCP серверу?

Создать файл, в котором укажите свои ФИО и группу, и сохраните его с именем < user > на одном из PC устройств (используется Text Editor).

В окне Command Prompt вашего РС устройства введите следующую команду:

После подключения к FTP серверу необходимо загрузить созданный файл <user>.txt:

Убедитесь, загрузился ли файл на FTP сервер.

Попытайтесь просмотреть его содержимое.

Список литературы:

- Дуглас Камер. Сети ТСР/IP, том 1. Принципы, протоколы и структура = Internetworking with TCP/IP, Vol. 1: Principles, Protocols and Architecture.
 М.: «Вильямс», 2003. С. 880. ISBN 0-13-018380-6
- 2. Терри Оглтри. Модернизация и ремонт сетей = Upgrading and Repairing Networks. 4-е изд. М.: «Вильямс», 2005. С. 1328. ISBN 0-7897-2817-6
- 3. Андрей Робачевский, Сергей Немнюгин, Ольга Стесик. Операционная система UNIX. 2-е изд. "БХВ-Петербург", 2007. С. 656. ISBN 5-94157-538-6