1830

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федерального государственного автономного образовательного учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	космический		
КАФЕДРА	<u>K-2</u>		

отчет

по домашней работе

№ 1 ПО КУРСУ

«Конструкторско-технологическое обеспечение производства ЭВМ» вариант № 21

Студент К3-66Б	<u> Чернов В.Д.</u>
Доцент К2, к.т.н.	Удалов М.Е.

Задача 1, Вариант 1.

Вариант №21

Для приведенного списка электрорадиоэлементов (далее ЭРЭ) с использование пособия "Основы проектирования электронных средств. Конструирование электронных модулей первого структурного уровня" [1] необходимо выполнить следующие действия:

- 1. Подготовить компоновочную таблицу;
- 2. Выбрать вариант установки каждого элемента на печатную плату (далее ПП) по ОСТ 4ГО.10.030, учитывая условия эксплуатации электронного устройства;
- 3. Для выбранного варианта установки и шага координатной сетки, равного 2.5 мм, выписать упрощенное изображение элементов на ПП с его габаритными, установочными размерами и массами. Занести в компоновочную таблицу также диаметры выводов ЭРЭ;
- 4. Вычислить площадь, занимаемую всеми элементами на ПП. Данные занести в компоновочную таблицу;
- 5. Вычислить площадь монтажной зоны;
- 6. Определить длины и ширины монтажной зоны;
- 7. Учесть габаритные размеры зон подключения внешних выводов;
- 8. Учесть габаритные размеры зон размещения элементов контроля;
- 9. Учесть зоны механического крепления ПП и зоны, определяемые несущей конструкцией блока (направляющие и т.п.);
- 10. Привести полученные значения размеров ПП к стандартным.

Список ЭРЭ:

-Резисторы R1..R10: тип МЛТ ГОСТ 7113-77, мощность 0,125 Bт.

- -Номиналы резисторов: R1 390 Ом; R2 470 кОм; R3 18 кОм; R4 51 кОм; R5 100 кОм; R6, R7 10 кОм.
 - -Микросхема DA1 КФ140УД4 в корпусе 201.14.1.
 - -Диод VD1 КД 514A.
- -Конденсаторы: С1 1000 пФ; С2 10 мкФ; С3 4,7 мкФ; С4 6800 пФ; С5 0,1 мкФ; С6 220 мкФ; С7 4,7 мкФ.

Выполнение задания

1. Компоновочная таблица.

В соответствии с ОСТ4.ГО.010.30, ОСТ4.010.30 [1, прил. 18-23] я составил и заполнил компоновочную таблицу[табл.1,стр.3]

No	Группа элементов	Количество элементов в группе	Вариант установки	Шаг координатной сетки, мм	Упрощенное обозначение ЭРЭ с размерами по ОСТ4.ГО.010.	Масса i-го элемента , г	S _n , MM ²	Диаметр выводов ЭРЭ, мм
1	Резисторы R1-R10 МЛТ ГОСТ 7113-77, 0.125Вт	10	Ia	2.5	L = 6.0 1 = 10.0 D = 2.2	0.15	S = (1+2)*D S = 26.4	0.6
2	Микросхема DA1- КФ140УД4 в корпусе 201.14.1	1	VIIIa	2.5	L = 19.5 b = 6.3 B = 8 H = 5.0	1.9	S = (L+2)*B S = 172	0.5
3	Диод VD1 – КД 514А	1	Ia	2.5	L = 2.8 D = 1.2 d = 0.35 1 = 10.0	0.035	S = (l+2)*D S = 14.4	0.35
4	Конденсаторы К53-4А: С2 – 10 мкФ; С3 – 4,7 мкФ; С6 – 220 мкФ; С7 – 4,7 мкФ.	4	Ia	2.5	L = 14.0 1 = 20.0 D = 4.5	1.0	S = (l+2)*D S = 99	0.7
5	Конденсатор К10-17-1 П33 С1 – 1000 пФ.	1	Ia	2.5	L = 8.4 1 = 15.0 H = 5.5 B = 4.6	0.8	S = (l+2)*B S = 78.2	0.7
6	Конденсатор К10-17-1 М750 С4 – 6800 пФ.	1	Ia	2.5	L = 12 1 = 17.5 H = 5.5 B = 8.4	2.0	S = (l+2)*B S = 163.8	0.7
7	Конденсатор К10-17-1 Н90 С5 – 0,1 мкФ.	1	Ia	2.5	L = 6.8 1 = 12.5 H = 5.5 B = 4.6	0.5	S = (l+2)*B S = 66.7	0.7

Таблица 1 — Компоновочная таблица

2. Рассчет занимаемой ЭРЭ площади.

Сначала я рассчитал площадь каждого ЭРЭ на ПП и записал их в колонку S_n компоновочной таблицы.

Суммарная площадь ЭРЭ, S_{ЭРЭ}, составляет:

$$S_{\text{3P3}} = \sum_{i=1}^{n} S_i = (26.4 \times 10 + 172 \times 1 + 14.4 \times 1 + 99 \times 4 + 78.2 \times 1 + 163.8 \times 1 + 66.7 \times 1)$$

$$= 1155.1 \text{mm}^2$$

3. Определение размеров сторон ПП.

Я принимаю, что прибор для которого я проектирую ПП пердполагается выпрямительным, стационарным. Отсюда мною был выбран коэффициент заполнения Ks = 0.5 из таблицы 5.2 [1, стр. 47, табл. 5.2].

Суммарная площадь занимаемая ЭРЭ, $S_{\Pi\Pi}$, с учетом выбранного коэффици ента составит:

$$S_{\Pi\Pi} = (1 / Ks) * S_{3P3} = 2310,2 MM^2.$$

В первом приближении, я выбираю квадратную форму ПП, так что длинна и ширина монтажной зоны составит $L = B = \sqrt{S_{\Pi\Pi}} = 48,06 \text{ мм}^2$.

4. Выбор соединителя.

В качестве соединителя я выбрал ГРППЗ на 14 контактов, т.к. при наименьшей массе и длинне у него достаточное количество контактов для заданной схемы. Его длинна составляет 49 мм [2], и он может быть размещен на ПП без пересмотра ее размеров.

5. Расчет ориентировочных размеров.

В соответсвии с ГОСТ 10317-79 "Платы печатные. Основные размеры" для одно-, двухсторонних и многослойных ПП на жестком и гибком основа нии я взял размеры кратные 2.5мм при длинне до 100мм[1. стр.46]. Отсюда ориентировочные длина и ширина ПП составят L = B = 50 мм.

6. Расчет размеров краевых полей.

Расположение компоновочных зон и краевых полей приведено на [рис. 1, стр. 6].

Я выбрал длину краевого поля для ГРППЗ $y_1 = 17.5$ мм в соответствии с таблицей [1, прил. 24]. Лицевая панель и контрольные гнезда в проектируемом мной приборе не предусмотрены, поэтому длина краевого поля $y_2 = 2.5$ мм. Для проектируемого прибора мной был выбран штыревой разъем, поэтому длина краевого поля $x_1 = 5$ мм

7. Расчет итоговых размеров.

Я произвел рассчет итоговых размеров ПП с учетом краевых полей: Длина $L=50+y_1+y_2=50+17.5+2.5=70$ мм. Ширина $B=50+x_1*2=50+5*2=60$ мм.

Длина печатной платы: 70 мм, ширина печатной платы: 60 мм.

Задача 2, вариант 10

Согласно варианту, полученному для задачи №1 домашнего задания №1, необходимо выполнить следующие действия:

- 1. Выбрать материал основания ПП;
- 2. выбрать и обосновать типоразмеры монтажных отверстий;
- 3. выбрать форму и рассчитвть диаметр контактных площадок;
- 4. рассчитать элементы печатного рисунка;
- 5. выбрать конструктивное прокрытие для ПП;
- 6. решить вопрос о способе маркирования;
- 7. рассчитать массу ПП и сборочного узла.

В соответствии с полученным вариантом:

- Класс точности ПП: 5;
- Группа жесткости ПП: 4

Выполнение задания

1. выбор материала основания ПП.

В качестве материала ПП я выбрал гетинакс, рекомендуемый для использования в ПП 1 группы жесткости в соответствии с ГОСТ 23752-79.

Относительная толщина платы для 1 класса точности состовляет J=0.4 мм в соответствии с таблицей [1, табл. 6.1.].

Минимальный диаметр монтажного отверстия $\Pi\Pi$ b = 0.3 мм в соответствии с компоновочной таблицей [1, табл.1 стр.3].

Минимальная толщина платы рассчитывается по формуле H = b/J = 0.3/0.4 = 0.75 мм.

Мною был выбран односторонний вид печатной платы для того, чтобы мини мизировать стоимость производства.

Я выбрал материал $\Gamma\Phi$ -1-35 Γ в соответствии с Γ OCT 10316-78 [3].

2. Выбор типоразмеров монтажных отверстий.

Металлизация отверстий для ПП с использованием гетинакса возможна и позволяет соединять слои печатной платы, обеспечивая электрическое соединение между ними.

В соответствии с таблицей [1, таблица 28.2], для отверстий 1 класса точности с металлизацией без оплавления:

 $\Delta d = \pm 0.10$ мм при $d \leq 1$ мм

$$\Delta d = \pm 0.15$$
 мм при $d > 1$ мм

Мною был вычеслен минимально применимый диаметр переходного отверстия по формуле:

$$d_{\text{пер}} = J * H_{\phi} + |\Delta d| = 0.4 * (0.75 + 0.25) + 0.10 = 0.5$$
 мм где H_{ϕ} , мм- толщина $\Pi\Pi$ с учетом фольги.

Ряд диаметров выводов элементов из компоновочной таблицы состоит из значений: 0.5; 0.6; 0.7; 0.9 мм.

Значение гарантированного зазора я выбрал r=0.4 мм для автоматизирован ной установки ЭРЭ на ПП.

Для каждого диаметра вывода мною были рассчитаны размеры монтажного отверстия.

При $d_{\mbox{\tiny Bыв}} = 0.5$ мм, $d_{\mbox{\tiny Bыв}} < d_{\mbox{\tiny пер}},$ размер монтажного отверстия я рассчитал по формуле:

$$d_{\text{moht}1} = J * H + |\Delta d| + r = 0.5 + 0.4 = 0.9 \text{ mm}.$$

Для остальных случаев, когда $d_{\mbox{\tiny Bыв}} > d_{\mbox{\tiny пер}}$ я рассчитывал по формуле:

$$d_{\text{moht2}} = d_{\text{bbib}} + |\Delta d| + r = 0.6 + 0.1 + 0.4 = 1.1 \text{ mm}.$$

$$d_{\text{moht}3} = d_{\text{bbb}} + |\Delta d| + r = 0.7 + 0.1 + 0.4 = 1.2 \text{ mm}.$$

$$d_{\mbox{\tiny MOHT4}} = d_{\mbox{\tiny Bbib}} + |\Delta d| + r = 0.9 + 0.1 + 0.4 = 1.4 \mbox{ mm}. \label{eq:moht4}$$

Для того, чтобы унифицировать типоразмеры в соответствии с ГОСТ 10317-79 я выбрал размеры монтажных отверстий:

- -1.2 мм, когда $d_{\text{выв}} = 0.5$; 0.6; 0.7 мм;
- -1.4 мм, когда $d_{\text{выв}} = 0.9$ мм.

3. Выбор формы и размеров контактных площадок.

Мною была выбрана круглая форма контактной площадки, т.к. она обеспечивает более равномерное растекание припоя.

Максимальный размер монтажного отверстия $d_{imax} = 1.4$ мм.

Ширина гарантийного пояска для 1 класса точности b = 0.3 мм.

Значение позиционного допуска расположения осей отверстий $T_d = 0.20$ мм для 1 класса точности с большей стороной ПП менее 180 мм [1, табл. ПЗ1.1].

Значения позиционного допуска расположения центров контактных площадок $T_D = 0.35$ мм для 1 класса точности с большей стороной односторонней ПП менее 180 мм [1, табл. П31.2].

Минимальный эффективный диаметр контактной площадки для монтажных отверстий:

$$D_{i=bd} = 2 \times (b + d_{imax}/2 + T_d + T_D) = 2 \times (0.3 + 0.7 + 0.2 + 0.35) = 3.1 \text{MM}$$

в соответствии с формулой ПЗ1.1 [1, стр. 174].

Для изготовления ПП я решил использовать субтрактивные технологии, в этом случае минимальный размер контактной площадки составит:

$$D_{min}=D_{i \ni \varphi \varphi}+1.5H_{np}=3.1+1.5*0.035=3.1525\approx 3.2$$
 мм в соответсвии с формулой ПЗ1.3 [1, стр. 174]

4. Размещение элементов печатного рисунка.

Ширина проводника:

$$t_{min} = 0.75$$
 мм для 1 класса точности [1, табл. 6.1].

С применением субтрактивных технологий, минимальная ширина проводящего рисунка: $t_{min}=t_{min}+1.5H_{np}=0.75+1.5*0.035=0.8025\approx0.8$ мм в соответствии с формулой [1, стр. 57].

Расстояние между проводниками для 1 класса точности составит S=0.75 мм [1, табл. 6.1]

5. Выбор конструктивного покрытия.

В целях увеличения влагостойкости $\Pi\Pi$, а так же из-за того, что в условиях не было сказано о применении $\Pi\Pi$ в жестких климатических условиях, я принял решение использовать фенольный лак $\Phi\Pi$ -583.

6. Маркировка.

Маркировка будет нанесена краской МКЭ черной в соответствии с ОСТ 4.ГО.028.001. Краска устойчива к воздействию спирто-бензиновой смеси и других растворителей.

7. Рассчет массы ПП и сборочного узла.

В рассчетах мною была учтена масса соеденителя ГРПП3 $m_c=15~\Gamma$, а также объемная плотность $\rho=1.8~\Gamma/\text{см}^3$.

$$M_{n} = \Sigma^{m}_{i=1} M_{i} + m_{c} + \rho * L * B * H == 0.15*10 + 1.9 + 0.035 + 1*4 + 0.8*1 + 2.0*1 + 0.5*2 + 15 + 1.8 * 7 * 6 * 0.075 = 31.9 \ \Gamma$$

Ответы:

- материал основания печатной платы: ГФ-1-35Г;
- толщина печатной платы: 0.75 мм;

- типоразмеры монтажных отверстий: 1.2 мм; 1.4 мм;
- форма и размеры контактных площадок: круглая форма, диаметр 3.1 мм;
- конструктивное покрытие печатной платы: фенольный лак ФЛ-583;
- масса печатной платы и сборочного узла: 31.9 г

Список источников

- 1. Основы проектирования электронных средств. Конструирование электрон ных модулей первого структурного урованя: лаб. практикум / В. А. Юзова. Красноярск: Сиб. федер. ун-т, 2012.- 208 с.
- 2. СОЕДИНИТЕЛИ НИЗКОЧАСТОТНЫЕ ПРЯМОУГОЛЬНЫЕ С ГИПЕР БОЛОИДНЫМИ КОНТАКТАМИ ТИПОВ ГРППЗ, ГРПМЗ [Электронный ресурс] // ANION : [сайт].

URL: https://www.anion.ru/assets/files/pdf/grpp3 grpp3-(kopir).pdf

(дата обращения: 18.04.2025).