Modeling Hemodynamics During Venous Occlusion

Achala Punase Angélica Chanvoedou Afonso Ferreira Benjamin Ogwang Sofia Pagoaga

Supervisor: David Romero i Sànchez

July 10, 2025

1/15

IMW July 10, 2025

Motivation

Biomedical Relevance:

Understanding hemodynamic responses (such as blood pooling and oxygenation changes) is critical for developing non-invasive diagnostics in vascular health.

Clinical Applications:

- Early detection of vascular insufficiency
- Monitoring microcirculation
- Improving interpretation of near-infrared spectroscopy (NIRS) data

Scientific Challenge:

Translating experimental measurements into interpretable physiological parameters requires robust mathematical modeling.

IMW July 10, 2025 2 / 15

Objectives

- Model Hemodynamic Responses: Capture blood volume increase, flow reduction, and oxygen saturation changes during venous occlusion.
- Identify Physiological Parameters: Extract time constants, slopes, and model parameters that characterize the response.
- Evaluate Diagnostic Potential: Investigate how modeling outputs and parameter estimates can inform or enhance non-invasive diagnostic techniques for assessing vascular health or microcirculatory function.

IMW July 10, 2025 3/15

Data Visualization & Preprocessing

TSI (Tissue Saturation Index): A measure of local oxygen saturation in tissue derived from near-infrared spectroscopy (NIRS).

- 1 Plot raw NIRS time series (e.g., TSI—Tissue Saturation Index).
- 2 Identify baseline, occlusion, and recovery phases.

IMW July 10, 2025 4/15

Data Visualization & Preprocessing

- Smoothing and detrending.
- 2 Quantify increasing slopes (e.g., blood pooling).
- 3 Quantify decreasing slopes (e.g., recovery).

IMW July 10, 2025 5/15

IMW July 10, 2025

6 / 15

Physical Modeling of TSI Dynamics

Initial Model: Windkessel Model

- Simple representation of compliance and resistance
- Captures volume accumulation and outflow resistance

$$dP(t)/dt = \frac{1}{C} \left(Q(t) - \frac{P}{R} \right)$$

rearranging terms for Q(t)

$$Q(t) = CdP(t)/dt + \frac{P}{R}$$
$$dTSI/dt = aQ(t) - b$$

Plugging in Q(t) and solving the ODE,

$$TSI(t) = TSI(0) + a \int_0^t Q(s) ds - bt$$

Choice for P(t): $A(1 - e^{-kt})$

IMW July 10, 2025 7/15

WindKessel Model

IMW July 10, 2025 8 / 15

Physical Modeling of TSI Dynamics

Observation

 While intuitive, the Windkessel model may not fully capture oscillatory features seen in the data.

Extended Approach: Harmonic Oscillator Model

- Incorporates inertia, compliance, and damping.
- Allows modeling of underdamped or overdamped behavior in blood flow and oxygenation recovery.

$$\omega_0^2 x + 2\beta \dot{x} + \ddot{x} - F = 0$$

where

$$\omega_0 \in [0.005, 0.5]$$

and

$$\beta \in [0.0016, 0.16]$$

IMW July 10, 2025 9/15

Parameter Estimation

Optimization Strategy:

We aim to minimize the difference between the experimental TSI data and the solution of the harmonic oscillator model. To identify the optimal parameters, we implement a grid search.

Specifically:

- Cost Function: Mean Squared Error between the observed TSI and the modeled TSI.
- Parameter Estimation: A grid search is conducted to find parameter combinations that yield the smallest discrepancy

IMW July 10, 2025 10 / 15

July 10, 2025

11 / 15

Results

Feature Comparison

Feature	Healthy	Unhealthy
Baseline	Normal (65–75)	Low (50–60)
TSI AUC	Larger	Smaller
Variability	Low	Higher
Post-release recovery	Rapid	Delayed
Occlusion Slope		
Recovery Slope		

- \bullet β Damping parameter: Resistance or friction opposing re-equilibration of flow.
- ω_0 natural frequency: reflects intrinsic microvascular responsiveness (how quickly the system returns to equilibrium)
- AUC: quantifies the excess oxygen saturation delivered to the tissue after the period of restricted blood flow.

IMW July 10, 2025 12 / 15

Conclusions

- The combination of (NIRS)-derived TSI time series with mathematical modeling frameworks, including both Windkessel and damped harmonic oscillator models, enables quantitative characterization of microcirculatory dynamics during and after venous occlusion.
- Specific biomarkers derived from TSI curves—namely baseline oxygen saturation, deoxygenation slope, reoxygenation slope, TSI area under the curve, damping coefficient (β),etc.—provide complementary information reflecting tissue oxygen consumption, vascular compliance, and the efficiency of reactive hyperemia.
- The comparative analysis of these biomarkers demonstrates clear differentiation between healthy and unhealthy vascular profiles. Specifically, lower baseline TSI, reduced post-occlusion AUC, higher variability, delayed recovery slopes, increased damping, and diminished natural frequency are consistently associated with impaired microcirculatory function.

IMW July 10, 2025 13/15

Bibliografía

Hou-Jen Chen and Graham A. Wright.

A physiological model for interpretation of arterial spin labeling reactive hyperemia of calf muscles.

PLoS ONE, 12(8):e0183259, 2017.

Toi Van Vo, Peter E. Hammer, Matthew L. Hoimes, Shalini Nadgir, Sergio Fantini.

Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm.

IEEE Transactions on Biomedical Engineering, 54(4):573-584, 2007.

IMW July 10, 2025 14 / 15

Questions & Discussion

Thank You!

July 10, 2025 15 / 15