Productivity and Efficiency Analysis

3) Stochastic frontier analysis (SFA) c) Application of SFA

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Cost frontier model (2012-2015)

$$\ln x = \ln C(y_1, y_2, y_3) + \delta z + u + v$$

- x is the total cost
- C is the frontier cost function
- y_1 is the energy transmission (GWh of 0.4 kV equivalents)
- y_2 is the total length of the network (km)
- y_3 is the number of customers connected to the network
- z is the proportion of underground cables (%)
- *u* is an asymmetric inefficiency term
- v is a random noise term

Cost frontier model (2012-2015)

$$\ln x = \alpha + \sum_{k=1}^{3} \beta_k \ln y_k + \delta z + u + v$$

- x is the total cost
- β_k is the coefficient of output k = 1,2,3
- y_1 is the energy transmission (GWh of 0.4 kV equivalents)
- y_2 is the total length of the network (km)
- y_3 is the number of customers connected to the network
- z is the proportion of underground cables (%)
- *u* is an asymmetric inefficiency term
- v is a random noise term

Linear regression (Cobb-Douglas)

$$R^2 = 0.983$$

	Coeff.	St.Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	2,508	0,117	21,495	0,000	2,276	2,740
InEnergy	0,577	0,029	20,164	0,000	0,520	0,634
InLength	0,526	0,053	10,011	0,000	0,421	0,630
InCustomer	-0,142	0,033	-4,258	0,000	-0,208	-0,076
Underground	0,418	0,136	3,071	0,003	0,147	0,689

Corrected OLS

$$Eff_i = \exp(e_i - max_h \{e_h\})$$

Average COLS efficiency: 67.5%

Standard deviation: 10.7%

Efficiency scores of the first 8 firms:

65,6 %

71,0 %

61,5 %

74,4 %

85,7 %

59,6 %

69,0 %

71,8 %

Linear regression (translog)

 $R^2 = 0.990$

Wrong skewness: -0.318

					Lower	Upper
	Coeff. S	St.Error	t Stat	P-value	95%	95%
Intercept	4,271	0,789	5,411	0,000	2,700	5,843
InEnergy	0,770	0,175	4,392	0,000	0,421	1,119
InLength	0,021	0,291	0,073	0,942	-0,558	0,600
InCustomer	-0,286	0,141	-2,032	0,046	-0,566	-0,006
InEnergy^2	0,075	0,037	2,033	0,045	0,002	0,149
InLength^2	0,349	0,075	4,656	0,000	0,200	0,498
InCustomer^2	0,049	0,068	0,721	0,473	-0,087	0,186
InEne*InLen	-0,447	0,136	-3,301	0,001	-0,717	-0,178
InEne*InCust	0,196	0,086	2,283	0,025	0,025	0,366
InLen*InCus	-0,192	0,152	-1,265	0,210	-0,494	0,110
Underground	0,290	0,121	2,405	0,019	0,050	0,531

SFA: ML estimation in R (normal/half-normal)

```
## Error Components Frontier (see Battese & Coelli 1992)
## Inefficiency increases the endogenous variable (as in a cost function)
## The dependent variable is logged
## iteration failed
##
## final maximum likelihood estimates
                  Estimate Std. Error z value Pr(>|z|)
##
                             1.000000 2.6445 0.00818 **
## (Intercept)
                 2.644531
## log(Energy) 0.634358 1.000000 0.6344 0.52585
## log(Length) 0.388445
                            1.000000 0.3884 0.69769
## log(Customers) -0.069658
                            1.000000 -0.0697 0.94447
## sigmaSq
                 0.028295
                            1.000000 0.0283 0.97743
## gamma
                  0.050000
                             1.000000 0.0500 0.96012
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## log likelihood value: 33.7975
##
## cross-sectional data
## total number of observations = 89
##
## mean efficiency: 0.9706829
```

SFA: ML estimation in R (normal/half-normal)

$$\sigma^2 = \sigma_u^2 + \sigma_v^2, \ \lambda = \sigma_u/\sigma_v,$$

##	(Intercept)	log(Energy)	log(Length)	log(Customers)	sigmaSq
##	2.644531475	0.634357818	0.388445347	-0.069657530	0.028295350
##	gamma	sigmaSqU	sigmaSqV	sigma	sigmaU
##	0.049999853	0.001414763	0.026880587	0.168212219	0.037613340
##	sigmaV	lambdaSq	lambda	varU	sdU
##	0.163953003	0.052631416	0.229415378	0.000514097	0.022673708
##	gammaVar				
##	0.018766306				

Firm-specific efficiency estimates (JLMS)

```
##
      efficiency
                         16
                             0.9754922
                                          ## 31
                                                  0.9730620
                                                               ## 46
                                                                      0.9659315
## 1
       0.9720703
                                                  0.9706478
                      ##
                         17
                             0.9694592
                                          ## 32
                                                               ## 47
                                                                      0.9701100
## 2
       0.9697788
                      ## 18
                             0.9704523
                                          ## 33
                                                               ## 48
                                                                      0.9670671
                                                  0.9730504
       0.9693864
## 3
                                                               ## 49
                      ##
                         19
                             0.9702723
                                          ## 34
                                                  0.9638306
                                                                      0.9730074
## 4
       0.9684544
                                                  0.9705309
                      ##
                         20
                             0.9726286
                                          ## 35
                                                               ## 50
                                                                      0.9733094
       0.9654828
## 5
                             0.9755673
                                                               ## 51
                                                                      0.9685789
                      ##
                         21
                                          ## 36
                                                  0.9657774
## 6
       0.9728781
                             0.9765358
                                                                      0.9729340
                      ##
                         22
                                          ## 37
                                                  0.9721934
                                                               ## 52
       0.9701348
## 7
                      ##
                         23
                             0.9722030
                                          ## 38
                                                  0.9743651
                                                               ## 53
                                                                      0.9701759
## 8
       0.9705680
                      ##
                             0.9695855
                                          ## 39
                                                  0.9735792
                                                               ## 54
                                                                      0.9690873
                         24
## 9
       0.9661850
                      ##
                         25
                             0.9698858
                                                  0.9712379
                                                               ## 55
                                                                      0.9725704
                                          ## 40
## 10
       0.9735195
                                                                      0.9731197
                      ##
                         26
                             0.9715944
                                          ## 41
                                                  0.9672871
                                                              ## 56
## 11
       0.9688796
                                                               ## 57
                                                                      0.9757323
                      ## 27
                             0.9681850
                                          ## 42
                                                  0.9677890
## 12
       0.9708250
                                                                      0.9752666
                      ##
                         28
                             0.9688548
                                                               ## 58
                                          ## 43
                                                  0.9691040
## 13
       0.9685312
                                                               ## 59
                                                                      0.9754625
                             0.9689977
                      ##
                         29
                                          ## 44
                                                  0.9737874
## 14
       0.9686269
                                          ## 45
                                                               ## 60
                                                                      0.9683200
                      ## 30
                             0.9706774
                                                  0.9744659
## 15
       0.9617849
```

Advantages of SFA

 Intimate connection to regression analysis: natural approach to applied economists

- Probabilistic modeling of inefficiency and noise
 - Hypothesis testing, confidence intervals

Easily extends to panel data

Disadvantages of SFA

- Untestable parametric assumptions:
 - Functional form of the frontier (CD, translog)
 - Inefficiency distribution (half-normal, exponential,...)
 - Normally distributed noise

 Difficulty to impose shape constraints (monotonicity, convexity)

Main weakness: multiple outputs

Next lesson

4) Unified approach: StoNED

