

INDIAN INSTITUTE OF TECHNOLOGY PALAKKAD

Department of Computer Science and Engineering CS5616 Computational Complexity January May 2024

Problem Set -2Name: Neeraj Krishna N Roll no: 112101033 Total Points -50Given on 09 FebDue on 16 Feb

Instructions

- Use of resources other than class notes and references is forbidden.
- Collaboration is not allowed. Credit will be given for attempts and partial answers.
- 1. (10 points) [**Properties of** \leq_m] Show that \leq_m relation is reflexive and transitive over languages in Σ^* . Is \leq_m symmetric? Argue.

Solution:

1. To prove \leq_m is reflexive:

Let L be a language, we have to prove $L \leq_m L$. Let M be a turing machine which accepts L

Now we have to prove that if L is decidable, then L is decidable, which is trivial

2. To prove \leq_m is transitive:

Let L_1, L_2, L_3 be 3 languages such that $L_1 \leq_m L_2$ and $L_2 \leq_m L_3$, we have to prove that $L_1 \leq_m L_3$

Let M_{12} be the reduction machine which converts an instance x of L_1 to an equivalent instance y of L_2 and M_{23} be the reduction machine which converts an instance y of L_2 to an equivalent instance z of L_3 (by definition of reduction machines both M_{12} and M_{23} are total)

We will construct a reduction machine M_{13} which converts an instance x of L_1 to an equivalent instance z of L_3

 $M_{13} =$

"

On input x,

- (a) Run M_{12} on x and let y denote the output
- (b) Run M_{23} on y and let z denote the output
- (c) Return z

,,

This machine M_{13} is total since both M_{12} and M_{23} are total

Let M_3 be a turing machine which accepts L_3

Now to prove $x \in L_1 \Leftrightarrow z \in L_3$

 $x \in L_1 \Leftrightarrow y \in L_2$ since M_{12} converts instance x of L_1 to an equivalent instance y of L_2

and

 $y \in L_2 \Leftrightarrow y \in L_3$ since M_{23} converts instance y of L_2 to an equivalent instance z of L_3

Hence

$$x \in L_1 \Leftrightarrow z \in L_3$$

Therefore the machine M_{13} converts an instance x of L_1 to an equivalent instance z of L_3 . Hence this is the required reduction machine

3. \leq_m is not symmetric

Example : Let $L=0^*$, we know that L is decidable, Let M be the total turing machine which accepts L

We also know that $HP \leq_m L$, since then it would be the case that HP is decidable which is not the case

To prove $L \leq_m HP$

Let the reduction machine be M_{σ} which on input x outputs $\langle M', x \rangle$ where desciption of M' is as follows

$$M' =$$

"

On input y,

- (a) Run M on x
- (b) If M accepts, halt and accepts
- (c) If M rejects, loop

,,

we will prove that $x \in L \Leftrightarrow y \in HP$

$$x \in L$$

- $\Rightarrow M$ accepts x
- $\Rightarrow M'$ halts on every input y, in particular x

$$\Rightarrow \langle M', x \rangle \in HP$$

$$x \notin L$$

 $\Rightarrow M$ will reject every input x (since M is total)

 $\Rightarrow M'$ will loop on every input y, in particular x

$$\Rightarrow \langle M', x \rangle \notin HP$$

Hence we have showed two languages L and HP such that

$$L \leq_m HP$$
 but $HP \nleq_m L$

Therefore, \leq_m is not symmetric

- 2. (20 points) [Reduction by containment !] Let $L_1, L_2 \subseteq \Sigma^*$ where $L_1 \subseteq L_2$. Consider the statements (1) " $L_2 \leq_m L_1$ " (2) " $L_1 \leq_m L_2$ "
 - (a) (5 points) Give a pair of languages where (1) is true. Provide appropriate justification if no such pair exists.
 - (b) (5 points) Give a pair of languages where (2) is true. Provide appropriate justification if no such pair exists.
 - (c) (10 points) Prove or disprove the following statements (a), (b).
 - (a) "for any L_1, L_2 with $L_1 \subseteq L_2$, (1) is true."
 - (b) "for any L_1, L_2 with $L_1 \subseteq L_2$, (2) is true."

Solution:

(a) We know that for all $L_1, L_2 \in$ decidable languages, $L_1 \leq_m L_2$

Nevertheless, for this question, let $L_1 = 0^*$ and $L_2 = 1^*0^*$

Here, $L_1 \subseteq L_2$

The reduction machine on input x, an instance of L_1 produces an instance y of L_2

To prove : $L_2 \leq_m L_1$

Let M_1 be the total turing machine which accepts L_1 , we know it exists, because L_1 is **regular**

The reduction machine M_{σ} Is

"

On input x

- (a) Run M_1 on x
- (b) If M_1 accepts, output 10
- (c) If M_1 rejects, output 01

"

Now, we have to prove $x \in L_1 \Leftrightarrow M_{\sigma}(x) \in L_2$

$$x \in L_1$$

- $\Rightarrow M_1$ accepts x
- $\Rightarrow M_{\sigma}$ outputs 10 which is in L_2

$$\Rightarrow 10 \in L_2$$

$$\Rightarrow M_{\sigma}(x) \in L_2$$

$$x \notin L_1$$

 $\Rightarrow M_1$ rejects x, since M_1 is total

$$\Rightarrow M_{\sigma}(x) = 10$$
 which is not in L_2

$$\Rightarrow M_{\sigma}(x) \notin L_2$$

Hence given $L_1 = 0^*$ and $L_2 = 1^*0^*$ such that $L_1 \subseteq L_2$ and $L_1 \leq_m L_2$

```
(b) Let L_1 = 0^* and L_2 = 1^*0^*
```

Here,
$$L_1 \subseteq L_2$$

The reduction machine on input x, an instance of L_2 produces an instance y of L_1

To prove : $L_1 \leq_m L_2$

Let M_2 be the total turing machine which accepts L_2 , we know it exists, because L_2 is **regular**

The reduction machine M_{σ} Is

"

On input x

- (a) Run M_2 on x
- (b) If M_2 accepts, output 0
- (c) If M_2 rejects, output 1

,,

Now, we have to prove $x \in L_2 \Leftrightarrow M_{\sigma}(x) \in L_1$

- $x \in L_2$
- $\Rightarrow M_2$ accepts x
- $\Rightarrow M_{\sigma}$ outputs 0 which is in L_1
- $\Rightarrow 0 \in L_1$
- $\Rightarrow M_{\sigma}(x) \in L_1$
- $x \notin L_2$
- $\Rightarrow M_2$ rejects x, since M_2 is total
- $\Rightarrow M_{\sigma}(x) = 1$ which is not in L_1
- $\Rightarrow M_{\sigma}(x) \notin L_1$

Hence given $L_1 = 0^*$ and $L_2 = 1^*0^*$ such that $L_1 \subseteq L_2$ and $L_2 \leq_m L_1$

- (c) (a) This is false, because, let $L_1 = \phi$ and $L_2 = HP$, we know that L_1 is decidable whereas L_2 is not decidable, (and also $L_1 \subseteq L_2$)
 - $L_2 \nleq_m L_1$ because if $L_2 \leq_m L_1$, then $L_2 = HP$ would have been decidable, which we know it is not the case
 - (b) This is also false, because, let $L_1 = HP$ and $L_2 = \Sigma^*$
 - $L_1 \subseteq L_2$ and L_1 is undecidable and L_2 is decidable
 - $L_1 \not\leq_m L_2$ because if $L_1 \leq_m L_2$, then $L_1 = HP$ would have been decidable, which we know it is not the case
- 3. (10 points) [**Proof of Rice's theorem 1**] In the proof of Rice's theorem for showing undecidability done in class, we assumed that the non-trivial property \mathcal{P} is false for \emptyset . Explain how can this assumption be removed. [*Hint: Use* $\overline{\mathsf{HP}}$!]

Solution:

Suppose \mathcal{P} is non-trivial and $\mathcal{P}(\phi) = 1$, we want to prove that \mathcal{P} is undecidable

Assume \mathcal{P} is decidable, and M be the total turing machine accepting \mathcal{P}

Since \mathcal{P} is decidable, $\overline{\mathcal{P}}$ has to be decidable, hence if $\mathcal{P}(\phi) = 1$, then $\overline{\mathcal{P}}(\phi) = 0$ and $\overline{\mathcal{P}}$ is also non-trivial

Now, $\exists L_1$ such that $\overline{\mathcal{P}}(L_1) = 1$ and L_1 will not be ϕ since $\overline{\mathcal{P}}(\phi) = 0$. Let M_1 be a machine accepting L_1 (existence of M_1 is guaranteed since L_1 is semi-decidable)

We will prove that $\mathsf{HP} \leq_m \overline{\mathcal{P}}$

Let the reduction algorithm on input $\langle M, x \rangle$, an instance of HP output M', an instance of $\overline{\mathcal{P}}$

Description of M' is as follows

$$M' =$$

"

On input y,

- 1. Run M on x
- 2. If M halts on x
 - (a) Run M_1 on y
 - (b) If M_1 accepts, accept
 - (c) If M_1 rejects, reject

,,

We want to prove that $\langle M, x \rangle \in \mathsf{HP} \Leftrightarrow M' \in \overline{\mathcal{P}}$

$$\langle M, x \rangle \in \mathsf{HP}$$

- $\Rightarrow M$ halts on x
- $\Rightarrow M'$ accepts y only if M_1 accepts y

$$\Rightarrow L(M') = L(M_1)$$

$$\Rightarrow \overline{\mathcal{P}}(L(M')) = \overline{\mathcal{P}}(L(M_1)) = 1$$

$$\Rightarrow M' \in \overline{P}$$

$$\langle M, x \rangle \notin \mathsf{HP}$$

- $\Rightarrow M$ does not halt on x
- $\Rightarrow M'$ loops on every input y

$$\Rightarrow L(M') = \phi$$

$$\Rightarrow \overline{\mathcal{P}}(L(M')) = \overline{\mathcal{P}}(\phi) = 0$$

$$\Rightarrow M' \notin \overline{P}$$

Hence we have proved that $HP \leq_m \overline{\mathcal{P}} \Rightarrow \overline{HP} \leq_m \mathcal{P}$

Therefore, since \overline{HP} is undecidable, \mathcal{P} is also undecidable

- 4. (10 points) [Rice's theorem?] Define the language TOTAL = $\{M \mid M \text{ halts on all inputs}\}$.
 - (a) Describe the language TOTAL in a way similar to the language TOTAL.
 - (b) Show that the languages TOTAL as well as TOTAL are not semi-decidable.

Solution:

- (a) $\overline{\mathsf{TOTAL}} = \{ M \mid \exists y \in \Sigma^*, M \text{ does not halt on } y \}$
- (b) (1) Let us argue that the property is non-monotone Before that, let us define what is the property here Property \mathcal{P} of a set of semi-decidable languages L is that $calp(L)=1\Leftrightarrow \exists M$ such that L(M)=L and M halts on all inputs Therefore TOTAL is basically the set of all machines which are total or in other words, the property \mathcal{P} is true for all decidable languages We know that ϕ is decidable and HP is undecidable and $\phi\subseteq HP$ but $\mathcal{P}(\phi)=1$ and $\mathcal{P}(HP)=0$ which proves that property \mathcal{P} is non-monotone Hence TOTAL is not semi-decidable by Rice Theorem 2
 - (2) Similarly, here, $\overline{\mathsf{TOTAL}}$ is the set of all turing machines which are not total $\overline{\mathsf{TOTAL}}$ is also non-monotone, because let $L_1 = \phi$ and $L_2 = \Sigma^*$ $L_1 \subseteq L_2$ and L_1 has a turing machine M_1 which is not total $M_1 =$

On input x, loop

Since this machine loops on every input, $L(M_1) = \phi = L_1$ But for $L_2 = \Sigma^*$ every machine M_2 which accepts Σ^* has to be total because, if at all M_2 loops on a particular input, say x, it will not accept that input x, and hence $x \notin L(M_2)$ but $L(M_2) = \Sigma^*$ which is a contradiction

Hence $\mathcal{P}(L_1) = \mathcal{P}(\phi) = 1$ but $\mathcal{P}(L_2) = \mathcal{P}(\Sigma^*) = 0$, and $L_1 \subseteq L_2$

Hence TOTAL is also not semi-decidable by Rice Theorem 2