

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\sigma_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
17	5	ω	3	3	Р	1	1	#	

$\omega_{0^{-}}^{*1} +$	$f_{0+}^{#2}$ †	$f_{0^{+}}^{#1}$ †	$\omega_{0^{+}}^{*1}$ †	
0	0	$-i\sqrt{2}kt_1$	$-t_1$	ω_0^{-7}
0	0	$-2 k^2 t_1$	$i\sqrt{2}\;kt_1$	$T_0^{"+}$
0	0	0	0	$T_0^{"\bar{+}}$
0	0	0	0	$\omega_{0^{-1}}^{m-1}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{#2}$
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$k^2 (2r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	$\frac{i k t_1}{3}$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$		$-rac{1}{3}ar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ākt₁
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-ikt_1$	0	0	0

$\sigma_{2}^{#1} + ^{\alpha \beta \chi}$	$ au_{2^{+}}^{#1} +$	$\sigma_{2^{+}}^{*1}$ †		$\omega_{2}^{#1} \dagger^{\alpha\beta\chi}$	$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$\omega_{2^{+}}^{*1}\dagger^{lphaeta}$	
	$+ \alpha \beta \left \frac{2 i}{(1+2)^2} \right $	$+\alpha\beta {(1+2)}$	$\sigma_2^{\scriptscriptstyle \pm}$	0	$\frac{ikt_1}{\sqrt{2}}$	<u>t1</u> 2	$\omega_{2}^{\#1}{}_{lphaeta}$.
0	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\sigma_{2}^{*1}{}_{lphaeta}$	0	$k^2 t_1$	$-\frac{ikt_1}{\sqrt{2}}$	$f_{2}^{\#1}_{+}\alpha\beta$
0	$\frac{4k^2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$k^2 r_1 + \frac{t_1}{2}$	0	0	$\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$
$\frac{2}{2k^2r_1+t_1}$	0	0	$\sigma_{2^-}^{\#1} \alpha eta \chi$				

	Massive particle						
?	Pole residue:	$-\frac{1}{r_1} > 0$					
	Polarisations:	5					
	Square mass:	$-\frac{t_1}{2r_1} > 0$					
?	Spin:	2					
•	Parity:	Odd					

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$