Vorlesung 2 - Exam Assignments

1) What causes false sharing?

2) Performance gains after Moore's law ends

The Top

Technology	01010011 01100011 01101001 01100101 01101110 01100011 01100101 00000000		
	Software	Algorithms	Hardware architecture
Opportunity	Software performance engineering	New algorithms	Hardware streamlining
Examples	Removing software bloat	New problem domains	Processor simplification
	Tailoring software to hardware features	New machine models	Domain specialization

The Bottom

for example, semiconductor technology

- Die Autoren unterscheiden in Computersystemen zwischen der "Spitze" und dem "Boden"
- Mit dem Boden ist die Halbleitertechnologie gemeint
- Die vergangenen Leistungssteigerungen in der Computerentwicklung beruhten zu großen Teilen auf der Miniaturisierung der Halbleiter (Moores-Gesetz: Verdopplung der Halbleiter auf einem Computerchip verdoppelt sich alle 2 Jahre)
- Aufgrund physikalischer Grenzen schreitet diese Miniaturisierung allerdings immer langsamer voran – Möglichkeiten für Leistungssteigerungen am Boden nehmen dramatisch ab
- Autoren sehen aber noch große Verbesserungsmöglichkeiten an der Spitze (höhere Ebene der Computertechnologie)

- Im Gegensatz zum Moor'schen Gesetz, dass die Leistungssteigerungen für alle gleich angehoben hat, wird die Verbesserung der Spitze nur opportunistische, ungleichmäßige und sporadische Gewinne bringen
- Großteil der vorhandenen Software nutzt die architektonischen Merkmale von Chips, wie z. B. Parallelprozessoren und Vektoreinheiten, nicht aus
- Einteilung der Spitze in 3 Schichten: Hardware-Architektur (programmierbare digitale Schaltungen, die Berechnungen durchführen) Software (Code, der die digitalen Schaltungen anweist, was zu berechnen ist) Algorithmen (effiziente Problemlösungsroutinen, die eine Berechnung organisieren)
- Umstrukturierung von Software (Software performance engineering) kann dazu beitragen, dass Anwendungen schneller laufen
 - o entfernen aufgeblähter Programme (einfaches Programmieren spart Zeit, erzeugt aber langsame Programme)
 - Zuschneiden der Software auf bestimmte Merkmale der Hardware-Architektur
 zB. Parallelität oder Lokalität (Fähigkeit effizient auf Datenelemente zuzugreifen)
- Neue Algorithmen können Leistungssteigerungen bringen
 - Angriff auf neue Problembereiche (es treten neue Probleme auf oder werden wichtiger, die noch nicht algorithmisch untersucht wurden)
 - o Berücksichtigung von Skalierbarkeitsproblemen
 - Algorithmen an moderne Hardware anpassen (Berücksichtigung von Eigenschaften wie Parallelität, Vektoreinheiten oder Caching)
- Hardware-Architektur anpassen
 - Verschlankung der Hardware (Implementierung von Hardware-Funktionen mit weniger Transistoren und Siliziumfläche -> mehr Chipfläche für parallel arbeitende Schaltkreise) (On-Chip-Verbindungen können einfacher werden, weniger Energie und Fläche verbrauchen, wenn die Anwendung, die sie nutzt, Lokalität enthält)
 - Prozessorvereinfachung (komplexer Prozessorkern durch einfacheren Kern ersetzt, der weniger Transistoren benötig)
 - o Spezialisierung der Hardware auf einen bestimmten Anwendungsbereich