PS8 Smith

March 29, 2024

1 Question 5 Response

beta-OLS closed form prints values are that very close to original beta. Rounding to the second decimal provides the same results are original beta.

	Unique	Missing Pct.	Mean	$^{\mathrm{SD}}$	Min	Median	Max
logwage	670	25	1.6	0.4	0.0	1.7	2.3
hgc	16	0	13.1	2.5	0.0	12.0	18.0
tenure	259	0	6.0	5.5	0.0	3.8	25.9
age	13	0	39.2	3.1	34.0	39.0	46.0
logwage_mean	670	0	1.6	0.3	0.0	1.6	2.3
$logwage_pred$	1221	0	1.7	0.3	0.0	1.7	2.3

2 Question 7 Response

The results using lbfgs come very close to original beta. Very similar results provided from closed form OLS analysis. The Nelder-Mead method results vary greatly and are not close compared to the other methods.

3 Question 9 Response and lm Summary table

	(1)
X1	1.501
	(0.002)
X2	-1.001
	(0.002)
X3	-0.252
	(0.002)
X4	0.749
	(0.002)
X5	3.501
	(0.002)
X6	-2.001
	(0.002)
X7	0.499
	(0.002)
X8	1.003
	(0.002)
X9	1.247
	(0.002)
X10	2.001
	(0.002)
Num.Obs.	100000
R2	0.991
R2 Adj.	0.991
AIC	145143.6
BIC	145248.3
Log.Lik.	-72560.811
RMSE	0.50

The results of the \lim OLS are once again very close to original beta. Rounding to two decimal places results in the same original values of beta.