KU LEUVEN

TOWARDS ZERO-ENERGY DISTRICTS

From modelling to optimisation

dr. ir. **Glenn Reynders**KU Leuven, Building Physics Section
Glenn.Reynders @bwk.kuleuven.be

Practical announcement!

- Requirements
 - IDEAS: specific branch for exercise with additional models https://github.com/GlennReynders/IDEAS/tree/GenSim2016
 - Annex60 library
 - Gensim.mo
 https://github.com/ibpsa/project1/blob/master/meetings/2016-10-24-gensim/thursday/District/GenSim16.mo
- Opt ional
 - TEASER
 - StROBe.py https://github.com/GlennReynders/StROBe/tree/GENSIM

KU LEUVEN

TOWARDS ZERO-ENERGY DISTRICTS

From modelling to optimisation

dr. ir. **Glenn Reynders**KU Leuven, Building Physics Section
Glenn.Reynders @bwk.kuleuven.be

Source: J. Van der Veken *et al.* (2013). Studie naar kostenoptimale niveaus van de minimumeisen inzake energieprestaties van gerenoveerde bestaande residentiële gebouwen.

Source: J. Van der Veken et al. (2013). Studie naar kostenoptimale niveaus van de minimumeisen inzake energieprestaties van gerenoveerde bestaande residentiële gebouwen.

Content

Introduction

- I. Case study: District Energy Assessment
 - Impact of heat pump-based building design on distribution grid level
- II. Integrated District Energy Assessment
 - IDEAS
 - Reduced-order building models
 - Stochastic residential occupant behaviour
 - District heating distribution system

III. Workshop

I. C. Impa

I. CASE STUDY

Impact of heat pumps on district level

Traditional Building Energy Simulation

Detailed modelling of

- Envelope
- Systems
- Occupants

Evaluate

- Energy use
- Energy cost
- Comfort

Building level

Is grid-interaction affecting obtained level of nZEB?

Baetens, R., De Coninck, R., et.al. (2012). Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation. Applied Energy, 96, 74–83.

Fig. 7. Effective levels of net zero-energy plotted against the design level of net zero-energy at building (gray) and aggregated (black) level determined ideally at building level and after integrated district energy system simulation including feeder consequences for the considered feeder designs. Here, a depicted design level of net zero-energy of 1.0 denotes the exact dimensioning of the photovoltaic capacities as described whereas a design level of net zero-energy of e.g. 0.8 depicts an under-sizing by a fraction of 20% at annual basis of the provided local supply of renewable energies. The dotted lines indicate the required transformer capacity.

New challenges for energy assessment tools

- High time resolution
- Multi-domain
- Increase of dimensionality

IDEAS – Integrated District Energy Assessment by Simulation

Figure 4.1

General overview of the implemented approach in StROBe as input for IDEAS-based neighborhood simulations.

Wrap up - From building to district level

- Large scale implementation of nZEB has impact on grid
 - Obtained level nZEB not only function of building design, also of what happens on aggregated level
- New <u>challenges</u> for simulations
 - Detailed models on high time resolution
 - Evaluation at aggregated level with large number of dwellings
 - Multi-domain approach

Content

Introduction

- I. Case study: District Energy Assessment
 - Impact of heat pump-based building design on distribution grid level
- II. Concepts for District Energy Assessment
 - Reduced-order building modelling
 - Stochastic occupant behaviour
 - Grouping of subcomponents in partial models

III. Workshop

II. Concepts for District Energy Assessment Reduced-order building modelling

Reduced order building modelling

national (Belgium)	1945	BE.N.SFH.01.deta		
national			BE.N.TH.01.semi	BE.N.TH.01.terr
(Belgium)	1946 - 1970	BE.N.SFH.02.deta	BE.N.TH.02.semi	BE.N.TH.02.terr
national (Belgium)	1971 - 1990	BE.N.SFH.03.deta	BE.N.TH.03.semi	BE.N.TH.03.terr
national (Belgium)	1991 - 2005	BE.N.SFH.04.deta	BEN.TH.04.semi	BE.N.TH.04.terr
national (Belgium)	2006			
	(Belgium) national (Belgium)	national (Belgium) 1991 - 2005	national (Belgium) 1971 - 1990 BE.N.SFH.03.deta national (Belgium) 1991 - 2005 BE.N.SFH.04.deta	national (Belgium) 1971 - 1990 BE.N.SPH.03.deta BE.N.TH.03.semi BE.N.TH.04.semi ational (Belgium) 2006

Reduced order building modelling

Reduced order building modelling

	Region	Construction Year Class	Single Family House - Detached	Single Family House - Semi detached	Single Family House - Terraced
	national (Belgium)	1945	BE.N.SFH.01.deta	BE.N.TH.01:semi	BE.N.TH.01.terr
	national (Belgium)	1946 - 1970	BE.N.SFH.02.deta	BE.N.TH.02.semi	BE.N.TH.02.terr
2	national (Belgium)	1971 - 1990	BE.N.SFH.03.deta	BE.N.TH.03.somi	BE.N.TH.03.terr
3	national (Belgium)	1991 - 2005	BE.N.SFH.04.deta	BEN.TH.04.semi	BE.N.TH.04.terr
1	national (Belgium)	2006	BE.N.SFH.05.deta	BE.N.TH.05.semi	

Finding the right order?

Models

Reduced order building models

RESEARCH QUESTIONS

Model order?

Buildings 82 (2014): 263-274.

- Allocation of gains?
- Influence of heating system (FH vs RAD)?
- Prediction horizon?

Reynders, Glenn, Jan Diriken, and Dirk Saelens. "Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals." Energy and

VERIFICATION IDENTIFIED MODELS

Aggregated load-duration curve

case

VERIFICATION IDENTIFIED MODELS

Instantaneous heat demand profiles

Detached pre-'45

VERIFICATION IDENTIFIED MODELS

Instantaneous heat demand profiles (Detached post '05)

LESSONS LEARNED

- Deterministic RC models tend to overestimate the accessibility of thermal mass
- 2nd Order model is absolute minimum for short-term predictions
 - Especially if no floor heating or TABS
- 4rd Order model best results for:
 - Simulation and long-term predictions
 - Physical interpretation of grey-box parameters

For exercise: 4th order models generated by TEASER will be used

Content

- 0. Introduction
- I. Case study: District Energy Assessment
 - Impact of heat pump-based building design on distribution grid level
- II. Concepts for District Energy Assessment
 - Reduced-order building modelling
 - Stochastic occupant behaviour
 - Grouping of subcomponents in partial models
- III. Workshop

StROBe.py

short for <u>St</u>ochastic <u>R</u>esidential <u>O</u>ccupant <u>Be</u>havior providing boundary conditions for IDEAS.mo in a residential context.

Figure 4.1

General overview of the implemented approach in StROBe as input for IDEAS-based neighborhood simulations.

Baetens R. (2015) On externalities of heat pump-based low-energy dwellings at the low-voltage distribution grid. PhD Dissertation, KU Leuven

Figure 4.1

General overview of the implemented approach in StROBe as input for IDEAS-based neighborhood simulations.

cross-correlation among the variables is point of attention in the modelling approach

cross-correlation

among the variables is point of attention in the modelling approach

Figure 4.1

General overview of the implemented approach in StROBe as input for IDEAS-based neighborhood simulations.

cross-correlation among the households is point of attention in the modelling approach $\begin{array}{c} T_{sh}(t) \\ \hline Q_i(t) \\ \hline \end{array}$

cross-correlation among the variables is point of attention in the modelling approach

Figure 4.1

General overview of the implemented approach in StROBe as input for IDEAS-based neighborhood simulations.

StROBe

Currently in beta.

StROBe (Stochastic Residential Occupancy Behaviour) is an open web tool developed at the KU Leuven Building Physics Section to model the pervasive space for residential integrated district energy assessment simulations in the open **IDEAS** modeling environment (among others). Primarily conceived as a tool for scientific researchers, **StROBe** aims at providing missing boundary conditions in integrated district energy assessment simulations related to human behavior, such as the use of appliances and lighting, space heating settings and domestic hot water redrawals.

StROBe is also highly customizable and extensible, accepting model changes or extensions defined by users. For more information on the implementation, see the GitHub Wiki.

Dependencies

StROBe is implemented in Python and uses the packages Os, Numpy, Random, Time, Datetime and Ast, which are all generally available.

Examples

```
family = Household("Example family")
family.parameterize()
family.simulate()
```


Content

- Introduction
- I. Case study: District Energy Assessment
 - Impact of heat pump-based building design on distribution grid level
- II. Concepts for District Energy Assessment
 - Reduced-order building modelling
 - Stochastic occupant behaviour
 - Grouping of subcomponents in partial template models

III. Workshop

Example: simplest 2 building network

Templates

- Pre-composed
- Mostly partial models
- Standard layout

Benefits

- Workflow simplified
- Parameter inheritance
- Predefine advanced settings

IDEAS > ① User's Guide Airflow BoundaryConditions Buildings □ Controls Electric Fluid HeatTransfer Media Templates Ventilation Heating BaseCircuits **I** Interfaces ♣ Building Teeder ✓ Examples

Workflow

- 1. Create library of building structures
- 2. Create (library of) heating and ventilation systems
- 3. Instantiate buildings assign structure, heating, ventilation, occupancy
- 4. Create district heating network

Base circuits

- Preconfigured circuits
- (District) heating systems

> R HeatTransfer Media Templates Ventilation Heating ✓ BaseCircuits BalancingValve > " CollectorUnit FlowController FluidCollector MixingCircuit_EqualPercentage MixingCircuit_Linear MixingCircuit_Tset PumpSupply PumpSupply_dp PumpSupply_m_flow ThermostaticRadiatorValve > Interfaces > BaseClasses ✓ Interfaces > Puilding → Feeder ✓ Examples building >

BaseClasses > I ThermalZones

Base circuits

- Preconfigured circuits
- (District) heating systems
- Benefits
 - Fast development
 - Predefined advanced settings
 - Reusability

IV. Work shop

Aspects for workshop

- I. Reduced-order Building model
 - Generated using TEASER
- II. Occupant data
 - ISO 13790 vs StROBe
- III. Simple district heating system
 - Sizing based on dynamic simulation
 - II. Base circuits
- IV. Advanced
 - Impact of control

Thank you!

"All models are wrong. Some of them are useful." --George Box

dr. ir. Glenn Reynders Glenn.Reynders@bwk.kuleuven.be

