DS 5 : un corrigé

Questions préliminaires

 1°)

- ♦ L'addition n'est pas une loi interne sur \mathbb{C}^* , car par exemple, 1 et -1 sont dans \mathbb{C}^* , mais 1 + (-1) = 0 n'est pas dans \mathbb{C}^* . A fortiori, $(\mathbb{C}^*, +)$ n'est pas un groupe.
- \diamond D'après le cours, $(\mathbb{C}, +, \times)$ est un corps, donc \mathbb{C}^* est l'ensemble des inversibles de l'anneau $(\mathbb{C}, +, \times)$ et, toujours d'après le cours, c'est donc un groupe pour la multiplication.

 2°) \diamond Soit $x \in G$.

Soit $n \in \mathbb{N}$. Notons R(n) l'assertion : $g(x^n) = g(x)^n$.

Pour n=0, on sait d'après le cours sur les morphismes de groupes que

 $g(x^0) = g(1) = 1 = g(x)^0$, d'où R(0).

Pour $n \in \mathbb{N}$, supposons R(n) et montrons R(n+1).

 $g(x^{n+1}) = g(x^n.x) = g(x^n).g(x)$ car g est un morphisme, donc d'après R(n), $g(x^{n+1}) = g(x)^n g(x) = g(x)^{n+1}$, ce qui prouve R(n+1).

D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $g(x^n) = g(x)^n$.

Soit maintenant $n \in \mathbb{Z} \setminus \mathbb{N}$. Alors, par définition de x^n , $g(x^n) = g((x^{-n})^{-1})$, donc d'après le cours sur les morphismes de groupes, $g(x^n) = (g(x^{-n}))^{-1}$, or $-n \in \mathbb{N}$, donc ce qui précède permet d'écrire que $g(x^n) = (g(x)^{-n})^{-1} = g(x)^n$, ce qu'il fallait démontrer.

 \diamond En notation additive, si g est un caractère d'un groupe (G,+), on a donc : pour tout $x \in G$ et $a \in \mathbb{Z}$, $g(ax) = g(x)^a$.

Partie 1 : Caractères de $\mathbb Z$ et de $\mathbb R$

 3°) Soit g un caractère de \mathbb{Z} .

D'après la question précédente, pour tout $a \in \mathbb{Z}$, $g(a) = g(a \times 1) = g(1)^a$, donc si g est un caractère, il existe $r \in \mathbb{C}^*$ tel que, pour tout $a \in \mathbb{Z}$, $g(a) = r^a$.

Réciproquement, si g est de la forme $a \mapsto r^a$, où $r \in \mathbb{C}^*$, on vérifie aisément que, pour tout $a, b \in \mathbb{Z}$, g(a+b) = g(a)g(b), donc g est bien un caractère de \mathbb{Z} . En conclusion, les

caractères de \mathbb{Z} sont exactement les applications de la forme $\begin{bmatrix} \mathbb{Z} & \longrightarrow & \mathbb{C}^* \\ a & \longmapsto & r^a \end{bmatrix}$, où $r \in \mathbb{C}^*$.

4°)

 \diamond Pour tout $r, s \in \mathbb{R}$, on a g(r+s) = g(r)g(s), et g est dérivable, donc en dérivant selon r à s fixé, on obtient, pour tout $r, s \in \mathbb{R}$, g'(r+s) = g'(r)g(s). De plus, en dérivant selon s à r fixé, on obtient, pour tout $r, s \in \mathbb{R}$, g'(r+s) = g(r)g'(s).

Ainsi, pour tout $r, s \in \mathbb{R}$, g'(r)g(s) = g(r)g'(s). De plus g(0) = 1, car g est un morphisme de groupes, donc, en remplaçant le couple (r, s) par (0, t), on obtient que, pour tout $t \in \mathbb{R}$, g'(t) = g(0)g'(t) = g'(0)g(t), ce qu'il fallait démontrer en posant c = g'(0). \diamond Posons $h(t) = g(t)e^{-ct}$, pour tout $t \in \mathbb{R}$. h est dérivable et $h'(t) = e^{-ct}(g'(t) - cg(t))$, donc h'(t) = 0, ce qui prouve que h est une application constante. Or h(0) = g(0) = 1, donc h est l'application constante égale à 1. Ainsi, on a montré que si g est un caractère dérivable sur \mathbb{R} , alors il existe $c \in \mathbb{C}$ tel que $g = (t \longmapsto e^{ct})$.

Réciproquement, si g est de cette forme, on vérifie aisément que g(r+s) = g(r)g(s) pour tout $r, s \in \mathbb{R}$.

En conclusion, l'ensemble des caractères dérivables de \mathbb{R} est $\{t \longmapsto e^{ct} / c \in \mathbb{C}\}$.

 5°) Soit g un caractère continu de \mathbb{R} .

Si, pour tout $\varepsilon \in \mathbb{R}$, $\int_0^{\varepsilon} g(t) dt = 0$, alors en dérivant par rapport à ε , on obtient que $g(\varepsilon) = 0$ pour tout $\varepsilon \in \mathbb{R}$, ce qui est faux car g est à valeurs dans \mathbb{C}^* . Ainsi, il existe $\varepsilon \in \mathbb{R}$ tel que $\int_0^{\varepsilon} g(t) dt \neq 0$.

Pour tout $r \in \mathbb{R}$, $\int_0^{\varepsilon} g(r+t) \ dt = g(r) \int_0^{\varepsilon} g(t) \ dt$, puis par changement de variables, $g(r) \int_0^{\varepsilon} g(t) \ dt = \int_r^{r+\varepsilon} g(t) \ dt$, donc en notant G une primitive de g, on peut écrire que, pour tout $r \in \mathbb{R}$, $g(r) = \frac{G(r+\varepsilon) - G(r)}{\int_0^{\varepsilon} g(t) dt}$, or G est de classe C^1 , donc, ε étant fixé, g est aussi de classe C^1 .

Ainsi, l'ensemble des caractères continus de \mathbb{R} est inclus dans l'ensemble des caractères dérivables de \mathbb{R} . L'inclusion réciproque étant évidente, d'après la question précédente, l'ensemble des caractères continus de \mathbb{R} est $\{t \longmapsto e^{ct} \mid c \in \mathbb{C}\}$.

Partie 2 : Liberté de l'ensemble des caractères

Cas d'un groupe commutatif

6°) Soit
$$x, y \in G$$
. On a $g(x+y) = g(x)g(y)$,
or $g(x+y) = \sum_{i=1}^{n} \lambda_i g_i(x+y) = \sum_{i=1}^{n} \lambda_i g_i(x)g_i(y)$ et $g(x)g(y) = \sum_{1 \le i,j \le n} \lambda_i \lambda_j g_i(x)g_j(y)$,
donc $\sum_{i=1}^{n} g_i(x) \left(\lambda_i g_i(y) - \sum_{j=1}^{n} \lambda_i \lambda_j g_j(y)\right) = 0$.

Fixons y dans G et posons, pour tout $i \in \mathbb{N}_n$, $\mu_i = \lambda_i g_i(y) - \sum_{j=1}^n \lambda_i \lambda_j g_j(y)$. Alors on

peut écrire que $\sum_{i=1}^{n} \mu_i g_i = 0$, or (g_1, \dots, g_n) est supposé libre, donc pour tout $i \in \mathbb{N}_n$,

$$0 = \mu_i = \lambda_i (1 - \lambda_i) g_i(y) - \sum_{\substack{j=1 \ j \neq i}}^n \lambda_i \lambda_j g_j(y)$$
. Mais cette égalité étant vraie pour tout $y \in \mathbb{R}$,

la liberté de (g_1, \ldots, g_n) impose que $\lambda_i(1 - \lambda_i) = 0$, et $\lambda_i \lambda_j = 0$ pour tout $i, j \in \mathbb{N}_n$ avec $i \neq j$.

Cependant g est non nul, car g est à valeurs dans \mathbb{C}^* , donc il existe $i_0 \in \mathbb{N}_n$ tel que $\lambda_{i_0} \neq 0$. Alors on peut affirmer que $\lambda_{i_0} = 1$ et que pour tout $j \in \mathbb{N}_n \setminus \{i_0\}$, $\lambda_j = 0$. Ceci prouve que $g = g_{i_0}$, ce qu'il fallait démontrer.

 7°) D'après le cours, il suffit de montrer que toute partie finie de \mathcal{G} est libre, ce que l'on va démontrer par récurrence sur le cardinal de la partie finie.

Soit $n \in \mathbb{N}$. On note R(n) l'assertion suivante : toute famille de n caractères distincts de G est libre.

Pour n = 0, une famille vide est toujours libre, d'où R(0).

Pour n = 1, si $g \in \mathcal{G}$, alors $g \neq 0$, donc la famille (g) est libre, d'où R(1).

Pour $n \in \mathbb{N}^*$, supposons R(n) et montrons R(n+1).

Soit g_1, \ldots, g_{n+1} n+1 caractères de G que l'on suppose distincts deux à deux.

Soit
$$\alpha_1, \ldots, \alpha_{n+1} \in \mathbb{C}$$
 tels que $\sum_{i=1}^{n+1} \alpha_i g_i = 0$.

Supposons qu'il existe $i_0 \in \mathbb{N}_{n+1}^{i=1}$ tel que $\alpha_{i_0} \neq 0$. Quitte à réordonner les vecteurs g_1, \ldots, g_{n+1} , on peut supposer que $i_0 = n+1$.

Alors
$$g_{n+1} = \sum_{i=1}^{n} \lambda_i g_i$$
, en posant $\lambda_i = -\frac{\alpha_i}{\alpha_{n+1}}$.

D'après R(n), (g_1, \ldots, g_n) est libre, donc d'après la question précédente, il existe $i \in \mathbb{N}_n$ tel que $g_{n+1} = g_i$, ce qui est faux par hypothèse. Ainsi, pour tout $i \in \mathbb{N}_{n+1}$, $\alpha_i = 0$, ce qui prouve que la famille (g_1, \ldots, g_{n+1}) est libre. On a montré R(n+1). Le principe de récurrence permet de conclure.

Cas d'un groupe fini

- 8°) Soit g un caractère de G. Soit $x \in G$. D'après le cours, $x^n = 1$, donc d'après la question $2, 1 = g(1) = g(x^n) = g(x)^n$, ce qui prouve que $g(x) \in \mathbb{U}_n$.
- 9°) \diamond Supposons d'abord que g=h. Alors $\langle g|h\rangle=\langle g|g\rangle=\frac{1}{n}\sum_{x\in G}|g(x)|^2=1$, car d'après la question précédente, pour tout $x\in G,\,g(x)\in\mathbb{U}$.
- \diamond On suppose maintenant que $g \neq h$. Ainsi, il existe $x_0 \in G$ tel que $g(x_0) \neq h(x_0)$.

Lorsque $z \in \mathbb{U}$, $z\overline{z} = |z|^2 = 1$, donc $\overline{z} = \frac{1}{z}$. Ainsi, d'après la première question, $\langle g|h\rangle = \frac{1}{n}\sum_{x\in G}\frac{g(x)}{h(x)}$. L'application $\begin{matrix} G & \longrightarrow & G \\ x & \longmapsto & x_0x \end{matrix}$ est une bijection, dont la bijection

réciproque est
$$G \longrightarrow G$$

 $x \longmapsto x_0^{-1}x$, donc par changement de variable,
 $\langle g|h\rangle = \frac{1}{n} \sum_{x \in G} \frac{g(x_0 x)}{h(x_0 x)} = \frac{g(x_0)}{h(x_0)} \frac{1}{n} \sum_{x \in G} \frac{g(x)}{h(x)}$ car g et h sont des morphismes.

Ainsi $\langle g|h\rangle = \frac{g(x_0)}{h(x_0)}\langle g|h\rangle$, or $\frac{g(x_0)}{h(x_0)} \neq 1$, donc le complexe $\langle g|h\rangle$ est bien nul.

10°) G est fini, donc l'ensemble des applications de G dans \mathbb{U}_n étant fini, \mathcal{G} est aussi fini. Soit $(\alpha_g)_{g \in \mathcal{G}} \in \mathbb{C}^{\mathcal{G}}$ une famille de complexes telle que $\sum_{g \in \mathcal{G}} \alpha_g g = 0$.

Ainsi, pour tout $x \in G$, $\sum_{g,g} \alpha_g g(x) = 0$

Soit
$$h \in \mathcal{G}$$
. Alors $0 = \frac{1}{n} \sum_{x \in G} \left(\sum_{g \in \mathcal{G}} \alpha_g g(x) \right) \overline{h(x)} = \sum_{g \in \mathcal{G}} \alpha_g \frac{1}{n} \sum_{x \in G} g(x) \overline{h(x)},$

donc $0 = \sum_{g} \alpha_g \langle g|h\rangle$. Alors, d'après la question précédente, $0 = \alpha_h \langle h|h\rangle = \alpha_h$.

Ceci prouve que \mathcal{G} est libre.

Partie 3: Le groupe dual

11°) \diamond Soit $f, g \in \text{Hom}(G, H)$. Montrons que fg est encore un élément de Hom(G, H): Soit $x,y \in G$: (fg)(xy) = f(xy)g(xy) par définition de fg, or f et g sont des morphismes, donc (fg)(xy) = f(x)f(y)g(x)g(y). De plus H est commutatif, donc (fg)(xy) = f(x)g(x)f(y)g(y) = (fg)(x).(fg)(y).

Ainsi, la définition de fg lorsque $f, g \in \text{Hom}(G, H)$ est une loi interne sur Hom(G, H). \diamond Pour tout $f, g \in \text{Hom}(G, H)$, pour tout $x \in G$,

(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x), car H est abélien, donc fg = gf. Cette loi interne est donc commutative.

 \diamond Notons 1 l'application de G dans H constante, égale à 1_H . On vérifie que, pour tout $x, y \in G, \mathbf{1}(xy) = \mathbf{1}(x)\mathbf{1}(y), \text{ donc } \mathbf{1} \in \text{Hom}(G, H).$

On vérifie facilement que, pour tout $f \in \text{Hom}(G, H)$, $\mathbf{1}f = f$, donc $\mathbf{1}$ est un élément neutre.

 \diamond Pour tout $f, g, h \in \text{Hom}(G, H)$, pour tout $x \in G$,

(f(gh))(x) = f(x)[(gh)(x)] = f(x)[g(x)h(x)], or la multiplication dans H est associative, donc (f(gh))(x) = [f(x)g(x)]h(x) = ((fg)h)(x). Ainsi, f(gh) = (fg)h, ce qui prouve l'associativité.

 \diamond Soit $f \in \text{Hom}(G, H)$. Pour tout $x \in G$, posons $g(x) = f(x)^{-1}$.

Soit $x, y \in G : g(xy) = f(xy)^{-1} = (f(x)f(y))^{-1} = f(y)^{-1}f(x)^{-1}$, or H est commutatif, donc $g(xy) = f(x)^{-1} f(y)^{-1} = g(x)g(y)$. Ceci prouve que $g \in \text{Hom}(G, H)$.

De plus, pour tout $x \in G$, $(fg)(x) = f(x)f(x)^{-1} = 1_H$, donc fg = 1. Ceci montre que tout élément de Hom(G, H) possède un inverse dans Hom(G, H).

- \diamond En conclusion, $\operatorname{Hom}(G,H)$ est un groupe abélien, dont l'élément neutre est 1 et tel que, pour tout $f \in \text{Hom}(G, H)$, pour tout $x \in G$, $(f^{-1})(x) = f(x)^{-1}$.
- \diamond Lorsque $(H, .) = (\mathbb{C}^*, .)$, qui est bien commutatif, $\operatorname{Hom}(G, H) = \mathcal{G}$, donc \mathcal{G} possède une structure de groupe abélien.

12°

- \diamond Soit $\tau = (a \ b)$ une transposition de \mathcal{S}_m . Il existe $\sigma \in \mathcal{S}_m$ telle que $\sigma(a) = 1$ et $\sigma(b)=2$ (en fait il en existe exactement (m-2)! et $(m-2)!\geq 1$ car $m\geq 2$). Alors on vérifie que $\tau = \sigma^{-1}(1 \ 2)\sigma$: en effet, $\sigma^{-1}(1 \ 2)\sigma(a) = \sigma^{-1}(1 \ 2)(1) = \sigma^{-1}(2) = b = \tau(a)$, $\sigma^{-1}(1\ 2)\sigma(b) = \sigma^{-1}(1\ 2)(2) = \sigma^{-1}(1) = a = \tau(b)$ et lorsque $x \in \mathbb{N}_m \setminus \{a, b\},$ $\sigma(x) \notin \{1,2\}$ (car σ est injective), donc $(1\ 2)(\sigma(x)) = \sigma(x)$, puis $\sigma^{-1}(1\ 2)\sigma(x) = \sigma^{-1}\sigma(x) = x = \tau(x)$.
- \diamond Soit $g \in \mathcal{G}$. Alors, avec les notations précédentes,

 $g((a\ b)) = g(\sigma)^{-1}g((1\ 2))g(\sigma) = g((1\ 2)),$ car la multiplication dans \mathbb{C} est commutative. De plus $g((1\ 2))^2 = g((1\ 2)^2) = g(Id_{\mathbb{N}_m}) = 1$, donc $g((1\ 2)) \in \{1, -1\}$.

Supposons d'abord que $g((1\ 2)) = 1$. Ainsi, pour toute transposition τ de \mathcal{S}_m , $g(\tau) = 1$. D'après le cours, si $\sigma \in \mathcal{S}_m$, σ se décompose comme un produit de transpositions. Or g est un morphisme, donc $g(\sigma) = 1$. Ainsi, g est l'application constante égale à 1.

Supposons maintenant que $g((1\ 2)) = -1$, alors en reprenant le raisonnement précédent, pour tout $\sigma \in \mathcal{S}_m$, $g(\sigma) = (-1)^n$ où n est le nombre de transpositions qui interviennent dans la décomposition de σ . Ainsi, g est la signature, notée ε .

Réciproquement, on sait que ces deux applications sont bien des morphimes. En conclusion, le groupe dual de S_m est égal $\{1, \varepsilon\}$.

- 13°) Notons encore \mathcal{G} le groupe dual de $\mathbb{Z}/n\mathbb{Z}$.
- \diamond D'après la question 8, pour tout $g \in \mathcal{G}$, $\varphi(g) = g(\overline{1}) \in \mathbb{U}_n$.
- \diamond Soit $g,h \in \mathcal{G}$. $\varphi(gh) = (gh)(\overline{1}) = g(\overline{1})h(\overline{1}) = \varphi(g)\varphi(h)$, donc φ est un morphisme de \mathcal{G} dans \mathbb{U}_n .
- \diamond Soit $g \in \text{Ker}(\varphi)$. On a $g(\overline{1}) = 1$, donc pour tout $k \in \mathbb{Z}$, d'après la question 2,
- $g(\overline{k}) = g(k.\overline{1}) = g(\overline{1})^k = 1$. Ainsi $\operatorname{Ker}(\varphi) = \{\mathbf{1}\}$, ce qui prouve que φ est injective. φ Soit $\alpha \in \mathbb{U}_n$. Notons $g: \mathbb{Z}/n\mathbb{Z} \xrightarrow{\overline{k}} \mathbb{C}^*$ φ est correctement défini, car si $h, k \in \mathbb{Z}$

avec $\overline{h} = \overline{k}$, alors k - h est un multiple de n, or $\alpha^n = 1$, donc $\alpha^{k-h} = 1$ puis $\alpha^k = \alpha^h$. Pour tout $h, k \in \mathbb{Z}$, $g(\overline{h} + \overline{k}) = \alpha^k \alpha^h = g(\overline{h})g(\overline{k})$, donc $g \in \mathcal{G}$. De plus $\varphi(g) = g(\overline{1}) = \alpha$, donc φ est une surjection de \mathcal{G} dans \mathbb{U}_n .

En conclusion, φ est un isomorphisme de \mathcal{G} dans \mathbb{U}_n .

14°) \diamond Lorsque $f \in \text{Hom}(G_1 \times \cdots \times G_m, H)$, on note, pour tout $i \in \mathbb{N}_m$,

 $x \longmapsto f(1_{G_1}, \dots, 1_{G_{i-1}}, x, 1_{G_{i+1}}, \dots, 1_{G_m})$ Soit $i \in \mathbb{N}_m$ et $f \in \text{Hom}(G_1 \times \dots \times G_m, H)$. Montrons que $\varphi_i(f) \in \text{Hom}(G_i, H)$. En effet, pour tout $x, y \in G_i$,

$$\varphi_i(f)(xy) = f(1_{G_1}, \dots, 1_{G_{i-1}}, xy, 1_{G_{i+1}}, \dots, 1_{G_m})$$

= $f((1_{G_1}, \dots, 1_{G_{i-1}}, x, 1_{G_{i+1}}, \dots, 1_{G_m}).(1_{G_1}, \dots, 1_{G_{i-1}}, y, 1_{G_{i+1}}, \dots, 1_{G_m})),$

```
or f est un morphisme, donc
                     = f((1_{G_1}, \dots, 1_{G_{i-1}}, x, 1_{G_{i+1}}, \dots, 1_{G_m})) \cdot f((1_{G_1}, \dots, 1_{G_{i-1}}, y, 1_{G_{i+1}}, \dots, 1_{G_m}))
 \varphi_i(f)(xy)
                      = \varphi_i(f)(x)\varphi_i(f)(x).
Ainsi, en posant, pour tout f \in \text{Hom}(G_1 \times \cdots \times G_m, H), \varphi(f) = (\varphi_i(f))_{1 \leq i \leq m}, l'applica-
tion \varphi ainsi définie va de \text{Hom}(G_1 \times \cdots \times G_m, H) dans \text{Hom}(G_1, H) \times \cdots \times \text{Hom}(G_m, H).
Il reste à montrer que \varphi est un isomorphisme.
\diamond Soit f, g \in \text{Hom}(G_1 \times \cdots \times G_m, H). Soit i \in \mathbb{N}_m. Pour tout x \in G_i,
 \varphi_i(fg)(x) = (fg)(1_{G_1}, \dots, 1_{G_{i-1}}, x, 1_{G_{i+1}}, \dots, 1_{G_m})
                      = f(1_{G_1}, \dots, 1_{G_{i-1}}, x, 1_{G_{i+1}}, \dots, 1_{G_m})g(1_{G_1}, \dots, 1_{G_{i-1}}, x, 1_{G_{i+1}}, \dots, 1_{G_m})
                      = \varphi_i(f)(x)\varphi_i(g)(x)
                      = (\varphi_i(f)\varphi_i(g))(x),
donc \varphi_i(fg) = \varphi_i(f)\varphi_i(g). On en déduit que
\varphi(fg) = (\varphi_i(fg))_{1 \le i \le m} = (\varphi_i(f)\varphi_i(g))_{1 \le i \le m} = \varphi(f).\varphi(g) d'après la loi d'un groupe
produit. Ainsi \varphi est un morphisme de groupes.
\diamond Soit f \in \text{Ker}(\varphi). Alors (\varphi_i(f))_{1 \leq i \leq m} = \varphi(f) = (1_{Hom(G_1,H)}, \ldots, 1_{Hom(G_m,H)}), donc
pour tout i \in \mathbb{N}_m, pour tout x_i \in G_i, f(1_{G_1}, \dots, 1_{G_{i-1}}, x_i, 1_{G_{i+1}}, \dots, 1_{G_m}) = 1.
Soit x = (x_1, \dots, x_m) \in G_1 \times \dots \times G_m. On a
x = \prod_{i=1} (1_{G_1}, \dots, 1_{G_{i-1}}, x_i, 1_{G_{i+1}}, \dots, 1_{G_m}), \text{ or } f \text{ est un morphisme},
donc f(x) = \prod_{i=1}^{m} f(1_{G_1}, \dots, 1_{G_{i-1}}, x_i, 1_{G_{i+1}}, \dots, 1_{G_m}) = 1.
Ainsi, f = \mathbf{1}. Donc Ker(\varphi) = \{\mathbf{1}\}, ce qui prouve que \varphi est injective.
\diamond \text{ Soit } (f_1, \dots, f_m) \in \prod_{i=1} \text{Hom}(G_i, H).
Pour tout x = (x_1, \ldots, x_m) \in G_1 \times \cdots \times G_m, posons f(x) = \prod_{i=1}^m f_i(x_i).
Montrons que f \in \text{Hom}(G_1 \times \cdots \times G_m, H) et que \varphi(f) = (f_1, \dots, f_m).
Soit x = (x_1, \dots, x_m) \in G_1 \times \cdots \times G_m et y = (y_1, \dots, y_m) \in G_1 \times \cdots \times G_m.
Alors f(xy) = f((x_1y_1, \dots, x_my_m)) = \prod_{i=1}^m f_i(x_iy_i) = \left(\prod_{i=1}^m f_i(x_i)\right) \left(\prod_{i=1}^m f_i(y_i)\right), car H est
```

abélien. Ainsi, f(xy) = f(x)f(y), ce qui prouve que $f \in \text{Hom}(G_1 \times \cdots \times G_m, H)$.

Soit $i \in \mathbb{N}_m$, soit $x_i \in G_i$. Alors

 $\varphi_i(f)(x_i) = f(1_{G_1}, \dots, 1_{G_{i-1}}, x_i, 1_{G_{i+1}}, \dots, 1_{G_m}) = f_i(x_i)$, car pour tout $j \in \mathbb{N}_m \setminus \{i\}$, $f_j(1_{G_j}) = 1_H$. Ainsi, pour tout $i \in \mathbb{N}_m$, $\varphi_i(f) = f_i$, puis $\varphi(f) = (f_1, \dots, f_m)$. Ceci prouve que φ est surjectif.

En conclusion, φ est un isomorphisme.

15°)

 \diamond D'après l'énoncé, il existe un isomorphisme f de G dans $G' = \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_q\mathbb{Z}$. Si $g \in \text{Hom}(G', \mathbb{C}^*)$ est un caractère de G', et si $x \in G$, posons $\Psi(g)(x) = g(f(x))$. Pour tout $x, y \in G$, $\Psi(g)(xy) = g(f(x) + f(y))$, car f est un morphisme de G dans G'. Or g est aussi un morphisme, donc $\Psi(g)(xy) = g(f(x)).g(f(y)) = \Psi(g)(x).\Psi(g)(y)$. Ainsi, $\Psi(q) \in \text{Hom}(G, \mathbb{C}^*)$. Ceci montre que Ψ est une application de $Hom(G', \mathbb{C}^*)$ dans $\text{Hom}(G,\mathbb{C}^*)$. Montrons que c'est un isomorphisme.

 \diamond Soit $g, h \in \text{Hom}(G', \mathbb{C}^*)$. Pour tout $x \in G, \Psi(gh)(x) = (gh)(f(x)) = g(f(x)).h(f(x))$, par définition du produit dans $\text{Hom}(G', \mathbb{C}^*)$,

donc $\Psi(gh)(x) = \Psi(g)(x).\Psi(h)(x) = [\Psi(g).\Psi(h)](x)$. Ainsi, $\Psi(gh) = \Psi(g).\Psi(h)$, ce qui montre que Ψ est un morphisme.

 \diamond Si $g \in \text{Hom}(G, \mathbb{C}^*)$ est un caractère de G, et si $x \in G'$, posons $\overline{\Psi}(g)(x) = g(f^{-1}(x))$. En appliquant ce qui précède à l'isomorphisme f^{-1} , on peut affirmer que $\overline{\Psi}$ est un morphisme de $\text{Hom}(G, \mathbb{C}^*)$ dans $\text{Hom}(G', \mathbb{C}^*)$.

Soit $g \in \text{Hom}(G, \mathbb{C}^*)$. Pour tout $x \in G$,

 $(\Psi \circ \overline{\Psi})(g)(x) = \Psi(\overline{\Psi}(g))(x) = \overline{\Psi}(g)(f(x)) = g(f^{-1}(f(x))) = g(x), \text{ donc } (\Psi \circ \overline{\Psi})(g) = g,$ pour tout $g \in \text{Hom}(G, \mathbb{C}^*)$. Ainsi, $\Psi \circ \overline{\Psi} = Id_{\text{Hom}(G, \mathbb{C}^*)}$. De même on montre que $\overline{\Psi} \circ \Psi = Id_{\operatorname{Hom}(G',\mathbb{C}^*)}$. Ceci prouve que Ψ est bijective, donc c'est bien un isomorphisme.

 \diamond Ainsi, $\operatorname{Hom}(G, \mathbb{C}^*)$, le groupe dual de G, est isomorphe

à $\operatorname{Hom}(\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_q\mathbb{Z},\mathbb{C}^*)$, lequel est d'après la question précédente isomorphe

à
$$\prod_{i=1}^m \operatorname{Hom}(\mathbb{Z}/n_i\mathbb{Z},\mathbb{C}^*).$$

 \diamond Soit $i \in \mathbb{N}_m$. D'après la question 13, $\operatorname{Hom}(\mathbb{Z}/n_i\mathbb{Z}, \mathbb{C}^*)$ est isomorphe à \mathbb{U}_{n_i} . Ce dernier est un groupe cyclique d'ordre n_i , donc d'après le cours, il est isomorphe $\mathbb{Z}/n_i\mathbb{Z}$. Il existe donc un isomorphisme f_i de $\text{Hom}(\mathbb{Z}/n_i\mathbb{Z},\mathbb{C}^*)$ dans $\mathbb{Z}/n_i\mathbb{Z}$.

Pour tout
$$g = (g_1, \ldots, g_m) \in \prod_{i=1}^m \operatorname{Hom}(\mathbb{Z}/n_i\mathbb{Z}, \mathbb{C}^*)$$
, posons $f(g) = (f_i(g_i))_{1 \leq i \leq m}$. On vérifie alors que f est un isomorphisme de $\prod_{i=1}^m \operatorname{Hom}(\mathbb{Z}/n_i\mathbb{Z}, \mathbb{C}^*)$ dans $\prod_{i=1}^m \mathbb{Z}/n_i\mathbb{Z}$, selon

les mêmes techniques que précédemment. Ainsi, par composition d'isomorphismes, on

a montré que \mathcal{G} est isomorphe à $G: \mathcal{G}$ est isomorphe à $\operatorname{Hom}(\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_q\mathbb{Z},\mathbb{C}^*)$,

lequel est isomorphe à $\prod_{i=1}^m \operatorname{Hom}(\mathbb{Z}/n_i\mathbb{Z},\mathbb{C}^*)$ qui est isomorphe à $\prod_{i=1}^m \mathbb{Z}/n_i\mathbb{Z}$ lequel est isomorphe à G d'après l'énoncé.

16°)

 \diamond Si G n'est pas abélien, \mathcal{G} est abélien donc \mathcal{G} et G ne sont pas isomorphes.

 \diamond On a vu en question 3 que lorsque $G = \mathbb{Z}$, alors $\mathcal{G} = \{g_r \ / \ r \in \mathbb{C}^*\}$, où $g_r : \mathbb{Z} \longrightarrow \mathbb{C}^*$. L'application $f_r \mapsto g_r$ est une bijection dont la bijection $f_r \mapsto g_r$ est une bijection dont la bijection réciproque est $f_r \mapsto g_r$ donc d'après le cours $f_r \mapsto g_r$ est dénombrable alors

que \mathcal{G} n'est pas dénombrable. Il n'existe donc pas de bijection de G dans son groupe dual et donc a fortiori ils ne sont pas isomorphes.

17°)

 \diamond Soit $x \in G$ et $g \in \mathcal{G} = \text{Hom}(G, \mathbb{C}^*)$. Alors $\Psi(x)(g) = g(x) \in \mathbb{C}^*$, donc $\Psi(x)$ est bien une application de \mathcal{G} dans \mathbb{C}^* .

 \diamond Soit $g, h \in \mathcal{G}$. Soit $x \in G$. $\Psi(x)(gh) = (gh)(x) = g(x)h(x)$, par définition du produit dans \mathcal{G} , donc $\Psi(x)(gh) = \Psi(x)(g).\Psi(x)(h)$, ce qui prouve que $\Psi(x)$ est un morphisme de \mathcal{G} dans \mathbb{C}^* . Ainsi, $\Psi(x)$ est un élément du dual de \mathcal{G} , c'est-à-dire du bidual de \mathcal{G} , que l'on notera G.

Ceci prouve que Ψ est une application de G dans \widehat{G} .

 \diamond Soit $x, y \in G$. Soit $g \in \mathcal{G}$.

 $\Psi(xy)(g) = g(xy) = g(x)g(y) = \Psi(x)(g).\Psi(y)(g) = (\Psi(x).\Psi(y))(g)$, par définition du produit dans $\widehat{G} = \text{Hom}(\mathcal{G}, \mathbb{C}^*)$, donc $\Psi(xy) = \Psi(x).\Psi(y)$, ce qui prouve que Ψ est un morphisme de groupes.

 \diamond Soit $x \in \text{Ker}(\Psi)$. $\Psi(x) = 1_{\widehat{G}}$, donc pour tout $g \in \mathcal{G}$, $1 = \Psi(x)(g) = g(x)$.

Admettons temporairement que $x \neq 1 \Longrightarrow [\exists g \in \mathcal{G}, \ g(x) \neq 1]$. Alors par contraposée, on a x=1, donc $Ker(\Psi)=\{1\}$ ce qui prouve que Ψ est injective.

De plus, d'après la question 15 appliquée aux groupes abéliens finis G et \mathcal{G} ,

|G| = |G| = |G|, donc Ψ est un isomorphisme de G dans son bidual.

Il reste cependant à démontrer la propriété admise temporairement.

 \diamond Premier cas : supposons que G est le groupe $\mathbb{Z}/n\mathbb{Z}$, où $n \in \mathbb{N}^*$. On a vu en question 13 que l'application $g: \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{C}^* \atop \overline{k} \longmapsto e^{\frac{2i\pi k}{n}}$ est un élément de \mathcal{G} . De plus, si $g(\overline{k}) = 1$,

alors $\frac{2\pi k}{n} \equiv 0$ [2 π], donc $k \equiv 0$ [n], puis $\overline{k} = 0$. Ainsi, par contraposée, si $x \in \mathbb{Z}/n\mathbb{Z}$ avec $x \neq 0$, alors $g(x) \neq 1$, donc la propriété est démontrée lorsque G est le groupe

 \diamond Second cas: Supposons qu'il existe $q \in \mathbb{N}^*$ et $n_1, \ldots, n_q \in \mathbb{N}^*$ tels que $G = \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_q\mathbb{Z}$.

Soit $x = (\overline{k_1}, \dots, \overline{k_q}) \in G$ tel que $x \neq 0$. Il existe $j \in \mathbb{N}_q$ tel que $\overline{k_j} \neq 0$. Notons alors $g: \qquad G \longrightarrow \mathbb{C}^*$ Notons alors $(\overline{h_1}, \dots, \overline{h_q}) \longmapsto e^{\frac{2i\pi h_j}{n_j}}$. Il s'agit de la composée du morphisme

utilisé au premier cas avec la j-ème projection G $\overline{h_1}, \dots, \overline{h_q} \longrightarrow G_j$, donc $g \in \mathcal{G}$, en tant que composé de morphismes de groupes. De plus, pour les mêmes raisons qu'au premier cas, $q(x) \neq 1$.

 \diamond Dernier cas : cas général. (G, .) étant un groupe abélien, d'après l'énoncé, il existe un isomorphisme f de G dans un groupe de la forme $G' = \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_q\mathbb{Z}$. Soit $x \in G$ avec $x \neq 1$. f étant injective, $f(x) \neq 0$, donc d'après le second cas, il existe $q \in \text{Hom}(G', \mathbb{C}^*)$ tel que $q(f(x)) \neq 1$. Alors $q \circ f$ est un élément du dual de G tel que $(g \circ f)(x) \neq 1.$