Resolución numérica del problema no lineal de mínimos cuadrados. Aplicaciones a las estimación de parámetros de modelos matemáticos.

Dídac Blanco Morros

14 de febrero de 2023

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Conceptos previos

Un problema de optimización sin restricciones tiene la forma

$$\min_{x} f(x)$$

- ▶ $x \in \mathbb{R}^n$ y $f : \mathbb{R}^n \to \mathbb{R}$ es continuamente diferenciable.
- ▶ A f se le llama función objetivo.

Conceptos previos

- Norma euclídea: $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$.
- Punto estacionario de f: $\nabla f(x) = 0$.
- ▶ Mínimo x^* : existe $\delta > 0$ tal que $f(x^*) \le f(x)$.
- Mínimo estricto x^* : existe $\delta > 0$ tal que $f(x^*) < f(x)$ con $x \neq x^*$.
 - ▶ Local: para todo $x \in \mathbb{R}^n$ que satisface $||x x^*|| < \delta$.
 - ▶ Global: para todo $x \in \mathbb{R}^n$
- ▶ Producto escalar de x e y en \mathbb{R}^n : $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.
- ▶ Dirección descendente de f en x: $d \in \mathbb{R}^n$ tal que $\langle \nabla f(x), d \rangle < 0$.

Consideremos el problema inicial

$$\min_{x} f(x)$$

Consideremos el problema inicial

$$\min_{x} f(x)$$

Teorema: Condición Necesaria de Primer Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*) = 0$.

Consideremos el problema inicial

$$\min_{x} f(x)$$

Teorema: Condición Necesaria de Primer Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*) = 0$.

Teorema: Condición Necesaria de Segundo Orden

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ dos veces continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*)=0$ y $\nabla^2 f(x^*)$ es definida positiva.

Consideremos el problema inicial

$$\min_{x} f(x)$$

Teorema: Condición Necesaria de Primer Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*) = 0$.

Teorema: Condición Necesaria de Segundo Orden

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ dos veces continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*)=0$ y $\nabla^2 f(x^*)$ es definida positiva.

Teorema: Condición Suficiente de Segundo Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable en un conjunto abierto D. Si $\nabla f(x^*) = 0$ y $\nabla^2 f(x^*)$ es definida positiva, entonces $x^* \in D$ es un mínimo local.

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt