Spacecraft Guidance

Space System Design, MAE 342, Princeton University Robert Stengel

- Oberth's "Synergy Curve"
- · Explicit ascent guidance
- Impulsive △V maneuvers
- Hohmann transfer between circular orbits
- Sphere of gravitational influence
- Synodic periods and launch windows
- · Hyperbolic orbits and escape trajectories
- · Battin's universal formulas
- Lambert's time-of-flight theorem (hyperbolic orbit)
- · Fly-by (swingby) trajectories for gravity assist

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Guidance, Navigation, and Control

- Navigation: Where are we?
- Guidance: How do we get to our destination?
- Control: What do we tell our vehicle to do?

Energy Gained from Propellant

Specific energy = energy per unit weight

$$\mathbb{E} = h + \frac{V^2}{2g}$$

h: height; V: velocity

Rate of change of specific energy per unit of expended propellant mass

$$\frac{d\mathbb{E}}{dm} = \frac{dh}{dm} + \frac{V}{g} \frac{dV}{dm} = \frac{1}{\left(\frac{dh}{dm}\right)} \left(\frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}\right)$$

$$= \frac{1}{\left(\frac{dh}{dt}\right)} \left(\frac{dh}{dt} + \frac{1}{g} \mathbf{v}^{T} \frac{d\mathbf{v}}{dt}\right) = \frac{1}{\left(\frac{dm}{dt}\right)} \left(V \sin \gamma + \frac{1}{g} \mathbf{v}^{T} \left(\mathbf{T} - m\mathbf{g}\right)\right)$$

$$= \frac{1}{\left(\frac{dm}{dt}\right)} \left(V \sin \gamma + \frac{VT}{mg} \cos \alpha - V \sin \gamma\right)$$

Oberth's Synergy Curve

 γ : Flight Path Angle

 θ : Pitch Angle

α: Angle of Attack

dE/dm maximized when a = 0, or $\theta = \gamma$, i.e., thrust along the velocity vector

Approximate round-earth equations of motion

$$\frac{dV}{dt} = \frac{T}{m}\cos\alpha - \frac{Drag}{m} - g\sin\gamma$$
$$\frac{d\gamma}{dt} = \frac{T}{mV}\sin\alpha + \left(\frac{V}{r} - \frac{g}{V}\right)\cos\gamma$$

Gravity-Turn Pitch Program

With angle of attack, $\alpha = 0$

$$\frac{d\gamma}{dt} = \frac{d\theta}{dt} = \left(\frac{V}{r} - \frac{g}{V}\right)\cos\gamma$$

Locally optimal flight path

Minimizes aerodynamic loads

Feedback controller minimizes a or load factor

5

Gravity-Turn Flight Path

- Gravity-turn flight path is function of 3 variables
 - Initial pitchover angle (from vertical launch)
 - Velocity at pitchover
 - Acceleration profile, T(t)/m(t)

Gravity-turn program closely approximated by tangent steering laws (see Supplemental Material)

Feedback Control Law

Errors due to disturbances and modeling errors corrected by feedback control

Motor Gimbal Angle $(t) \triangleq \delta_G(t) = c_\theta \left[\theta_{des}(t) - \theta(t)\right] - c_q q(t)$ $\theta_{des} = \text{ Desired pitch angle}; \ q = \frac{d\theta}{dt} = \text{ pitch rate}$ $c_\theta, c_q : \text{Feedback control law gains}$

7

Thrust Vector Control During Launch Through Wind Profile

- Attitude control
 - Attitude and rate feedback
- Drift-minimum control
 - Attitude and accelerometer feedback
 - Increased loads
- Load relief control
 - Rate and accelerometer feedback
 - Increased drift

Effect of Launch Latitude on Orbital Parameters

- Launch latitude establishes <u>minimum</u> orbital inclination (without "dogleg" maneuver)
- · Time of launch establishes line of nodes
- Argument of perigee established by
 - Launch trajectory
 - On-orbit adjustment

9

Guidance Law for Launch to Orbit

(Brand, Brown, Higgins, and Pu, CSDL, 1972)

- Initial conditions
 - End of pitch program, outside atmosphere
- Final condition
 - Insertion in desired orbit
- Initial inputs
 - Desired radius
 - Desired velocity magnitude
 - Desired flight path angle
 - Desired inclination angle
 - Desired longitude of the ascending/ descending node
- Continuing outputs
 - Unit vector describing desired thrust direction
 - Throttle setting, % of maximum thrust

Guidance Program Initialization

- Thrust acceleration estimate
- · Mass/mass flow rate
- Acceleration limit (~ 3g)
- Effective exhaust velocity
- Various coefficients
- Unit vector normal to desired orbital plane, i_a

$$\mathbf{i}_{q} = \begin{bmatrix} \sin i_{d} \sin \Omega_{d} \\ \sin i_{d} \cos \Omega_{d} \\ \cos i_{d} \end{bmatrix}$$

i_j: Desired inclination angle of final orbit

 Ω_d : Desired longitude of descending node

11

Guidance Program Operation: Position and Velocity

- Obtain thrust acceleration estimate,
 a_T, from guidance system
- Compute corresponding mass, mass flow rate, and throttle setting, δT

 $\mathbf{i}_r = \frac{\mathbf{r}}{r}$: Unit vector aligned with local vertical $\mathbf{i}_r = \mathbf{i}_r \times \mathbf{i}_a$: Downrange direction

Position

$$\begin{bmatrix} r \\ y \\ z \end{bmatrix} = \begin{bmatrix} |\mathbf{r}| \\ r\sin^{-1}(\mathbf{i}_r \bullet \mathbf{i}_q) \\ open \end{bmatrix}$$

Velocity

 $\mathbf{v}_{\mathit{IMU}}$: Velocity estimate in IMU frame

Guidance Program:

Velocity and Time to Go

Effective gravitational acceleration

$$g_{eff} = -\frac{\mu}{r^2} + \frac{\left|\mathbf{r} \times \mathbf{v}\right|^2}{r^3}$$

Time to go (to motor burnout)

$$t_{go_{new}} = t_{go_{old}} - \Delta t$$

 $t_{go_{new}} = t_{go_{old}} - \Delta t$ \(\Delta t\) : Guidance command interval

Velocity to be gained

$$\mathbf{v}_{go} = \begin{bmatrix} (\dot{r}_d - \dot{r}) - g_{eff} t_{go} / 2 \\ -\dot{y} \\ \dot{z}_d - \dot{z} \end{bmatrix}$$

Time to go prediction (prior to acceleration limiting)

$$t_{go} = \frac{m}{\dot{m}} \left(1 - e^{-v_{go}/c_{eff}} \right)$$
 c_{eff} : Effective exhaust velocity

13

Guidance Program Commands

Guidance law: required radial and cross-range accelerations

$$a_{T_r} = \frac{a_T \left[A + B(t - t_o) \right] - g_{eff}}{a_{T_y}} = \frac{a_T \left[C + D(t - t_o) \right]}{a_T}$$

$$a_T = \text{Net available acceleration}$$

Guidance coefficients, A, B, C, and D are functions of

Required thrust direction, i_{7} (i.e., vehicle orientation in (i_{r}, i_{q}, i_{z}) frame

$$\mathbf{a}_{T} = \begin{bmatrix} a_{T_{r}} \\ a_{T_{y}} \\ \text{what's left over} \end{bmatrix}; \quad i_{T} = \frac{\mathbf{a}_{T}}{|\mathbf{a}_{T}|}$$

Throttle command is a function of a_T (i.e., acceleration magnitude) and acceleration limit

Impulsive ΔV Orbital Maneuver

- If rocket burn time is short compared to orbital period (e.g., seconds compared to hours), impulsive ΔV approximation can be made
 - Change in position during burn is ~ zero
 - Change in velocity is ~ instantaneous

Velocity impulse at apogee

Vector diagram of velocity change

15

Orbit Change due to Impulsive ΔV

- Maximum energy change accrues when ΔV is aligned with the instantaneous orbital velocity vector
 - Energy change -> Semi-major axis change
 - Maneuver at perigee raises or lowers apogee
 - Maneuver at apogee raises or lowers perigee
- Optimal transfer from one circular orbit to another involves two impulses [Hohmann transfer]
- · Other maneuvers
 - In-plane parameter change
 - Orbital plane change

Assumptions for Impulsive Maneuver

Instantaneous change in velocity vector

$$\mathbf{v}_2 = \mathbf{v}_1 + \Delta \mathbf{v}_{rocket}$$

Negligible change in radius vector

$$\mathbf{r}_2 = \mathbf{r}_1$$

Therefore, new orbit intersects old orbit Velocities different at the intersection

17

Geometry of Impulsive Maneuver

Change in velocity magnitude, IvI, vertical flight path angle, γ , and horizontal flight path angle, ξ

$$\mathbf{v}_{1} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix}_{1} = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \begin{bmatrix} V\cos\gamma\cos\xi \\ V\cos\gamma\sin\xi \\ -V\sin\gamma \end{bmatrix}_{1}$$

$$\mathbf{v}_{2} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix}_{2} = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}_{2} = \begin{bmatrix} V\cos\gamma\cos\xi \\ V\cos\gamma\sin\xi \\ -V\sin\gamma \end{bmatrix}_{2}$$

$$\Delta \mathbf{v} = \begin{bmatrix} \Delta v_x \\ \Delta v_y \\ \Delta v_z \end{bmatrix} = \begin{bmatrix} \left(v_{x_2} - v_{x_1} \right) \\ \left(v_{y_2} - v_{y_1} \right) \\ \left(v_{z_2} - v_{z_1} \right) \end{bmatrix}$$

Required Δv for Impulsive Maneuver

$$\Delta \mathbf{v}_{rocket} = \begin{bmatrix} \Delta V_{rocket} \\ \boldsymbol{\xi}_{rocket} \\ \boldsymbol{\gamma}_{rocket} \end{bmatrix} = \begin{bmatrix} \left(\Delta v_x^2 + \Delta v_y^2 + \Delta v_z^2 \right)_{rocket}^{1/2} \\ \sin^{-1} \left(\frac{\Delta v_y}{\left(\Delta v_x^2 + \Delta v_y^2 \right)^{1/2}} \right)_{rocket} \\ \sin^{-1} \left(\frac{\Delta v_z}{\Delta V} \right)_{rocket} \end{bmatrix}$$

19

Single Impulse Orbit Adjustment Coplanar (i.e., in-plane) maneuvers

- Change energy
- Change angular momentum
- Change eccentricity

$$\mathbb{E} = \frac{1}{2}v^2 - \mu/r = (e^2 - 1)\mu^2/h^2$$

$$h = \sqrt{\frac{\mu^2(e^2 - 1)}{\mathbb{E}}} = \sqrt{\frac{\mu^2(e^2 - 1)}{v^2/2 - \mu/r}}$$

$$e = \sqrt{1 + 2\mathbb{E}h^2/\mu^2}$$

Required velocity increment

$$v_{new} \triangleq v_{old} + \Delta v_{rocket} = \sqrt{2(\mathbb{E}_{new} + \mu/r)}$$
$$= \sqrt{2[(e_{new}^2 - 1)\mu^2/h_{new}^2 + \mu/r]}$$
$$\Delta v_{rocket} = v_{new} - v_{old}$$

Single Impulse Orbit Adjustment Coplanar (i.e., in-plane) maneuvers

- Change semi-major axis
 - magnitude
 - orientation (i.e., argument of perigee); in-plane isosceles triangle

- Change apogee or perigee
 - radius
 - velocity

$$a_{new} = \frac{h_{new}^2/\mu}{1 - e_{new}^2}$$

$$r_{perigee} = a(1-e)$$

$$r_{apogee} = a(1+e)$$

$$v_{perigee} = \sqrt{\frac{\mu}{a} \left(\frac{1+e}{1-e}\right)}$$

$$v_{apogee} = \sqrt{\frac{\mu}{a} \left(\frac{1-e}{1+e}\right)}$$

2

In-Plane Orbit Circularization

Initial orbit is elliptical, with apogee radius equal to desired circular orbit radius

Initial Orbit
$$a = (r_{cir(target)} + r_{insertion})/2$$

$$e = (r_{cir(target)} - r_{insertion})/2a$$

$$v_{apogee} = \sqrt{\frac{\mu}{a}(\frac{1-e}{1+e})}$$

Velocity in circular orbit is a function of the radius "Vis viva" equation:

$$v_{cir} = \sqrt{\mu \left(\frac{2}{r_{cir}} - \frac{1}{a_{cir}}\right)} = \sqrt{\mu \left(\frac{2}{r_{cir}} - \frac{1}{r_{cir}}\right)} = \sqrt{\frac{\mu}{r_{cir}}}$$

Rocket must provide the difference

$$\Delta v_{rocket} = v_{cir} - v_{apogee}$$

Single Impulse Orbit Adjustment Out-of-plane maneuvers

- Change orbital inclination
- Change longitude of the ascending node
- v_1 , Δv , and v_2 form isosceles triangle perpendicular to the orbital plane to leave in-plane parameters unchanged

Change in Inclination and Longitude of Ascending Node

Inclination

Longitude of Ascending Node

Two Impulse Maneuvers

Transfer to Non-Intersecting Orbit

1st Δv produces target orbit intersection
2nd Δv matches target orbit Minimize (IΔv₁I + IΔv₂I) to minimize propellant use

Phasing Orbit

Rendezvous with trailing spacecraft in same orbit
At perigee, increase speed to increase orbital period
At future perigee, decrease speed to resume original orbit

25

Hohmann Transfer between Coplanar Circular Orbits (Outward transfer example)

Thrust in direction of motion at transfer perigee and apogee

$$v_{cir_1} = \sqrt{\frac{\mu}{r_{cir_1}}}$$

$$v_{cir_2} = \sqrt{\frac{\mu}{r_{cir_2}}}$$

Transfer Orbit
$$a = (r_{cir_1} + r_{cir_2})/2$$

$$e = (r_{cir_2} - r_{cir_1})/2a$$

$$v_{p_{transfer}} = \sqrt{\frac{\mu}{a} \left(\frac{1+e}{1-e}\right)}$$

$$v_{a_{transfer}} = \sqrt{\frac{\mu}{a} \left(\frac{1-e}{1+e}\right)}$$

Outward Transfer Orbit Velocity Requirements

Δv at 1st Burn

Δv at 2nd Burn

$$\Delta v_{1} = v_{p_{transfer}} - v_{cir_{1}}$$

$$= v_{cir_{1}} \left(\sqrt{\frac{2r_{cir_{2}}}{r_{cir_{1}} + r_{cir_{2}}}} - 1 \right)$$

$$\Delta v_{2} = v_{cir_{1}} - v_{a_{transfer}}$$

$$= v_{cir_{2}} \left(1 - \sqrt{\frac{2r_{cir_{1}}}{r_{cir_{1}} + r_{cir_{2}}}} \right)$$

$$v_{cir_2} = v_{cir_1} \sqrt{\frac{r_{cir_1}}{r_{cir_2}}}$$

Hohmann Transfer is energy-optimal for 2-impulse transfer between circular orbits and $r_2/r_1 < 11.94$

$$\Delta v_{total} = v_{cir_1} \left[\sqrt{\frac{2r_{cir_2}}{r_{cir_1} + r_{cir_2}}} \left(1 - \frac{r_{cir_1}}{r_{cir_2}} \right) + \sqrt{\frac{r_{cir_1}}{r_{cir_2}}} - 1 \right]$$

27

28

Rendezvous Requires Phasing of the Maneuver

Transfer orbit time equals target's time to reach rendezvous point

- Same equations used for Earth-referenced orbits
 - Dimensions of the orbit
 - Position and velocity of the spacecraft
 - Period of elliptical orbits
 - Different gravitational constant

$$\mu_{Sun} = 1.3327 \times 10^{11} \text{km}^3/\text{s}^2$$

29

Escape from a Circular Orbit

Minimum escape trajectory shape is a parabola

In-plane Parameters of Earth Escape Trajectories

Dimensions of the orbit

 $p = h^2 / \mu =$ "The parameter" or semi-latus rectum

h =Angular momentum about center of mass

$$e = \sqrt{1 + 2 \frac{\mathbb{E} p}{\mu}} = \text{Eccentricity} \ge 1$$

 $\mathbb{E} = \text{Specific energy}, \geq 0$

$$a = \frac{p}{1 - e^2}$$
 = Semi-major axis, < 0

$$r_{perigee} = a(1-e) =$$
Perigee radius

31

In-plane Parameters of Earth Escape Trajectories

Position and velocity of the spacecraft

$$r = \frac{p}{1 + e \cos \theta} = \text{Radius of the spacecraft}$$

$$\theta$$
 = True anomaly

$$\theta = \text{True anomaly}$$

$$V = \sqrt{2\mu \left(\frac{1}{r} - \frac{1}{2a}\right)} = \text{Velocity of the spacecraft}$$

$$V_{periose} \ge \sqrt{\frac{2\mu}{r}}$$

$$V_{perigee} \ge \sqrt{\frac{2\mu}{r_{perigee}}}$$

Escape from Circular Orbit

Velocity in circular orbit

$$V_c = \sqrt{\mu \left(\frac{2}{r_c} - \frac{1}{r_c}\right)} = \sqrt{\frac{\mu}{r_c}}$$

Velocity at perigee of parabolic orbit

$$V_{perigee} = \sqrt{\mu \left(\frac{2}{r_c} - \frac{1}{(a \to \infty)}\right)} = \sqrt{\frac{2\mu}{r_c}}$$

Velocity increment required for escape

$$\Delta V_{escape} = V_{perigee_{parabola}} - V_c = \sqrt{\frac{2\mu}{r_c}} - \sqrt{\frac{\mu}{r_c}} \approx 0.414V_c$$

33

Earth Escape Trajectory

Δv₁ to increase speed to escape velocity Velocity required for transfer at <u>sphere of influence</u>

Transfer Orbits and Spheres of Influence

- Sphere of Influence (Laplace):
 - Radius within which gravitational effects of planet are more significant than those of the Sun
- Patched-conic section approximation
 - Sequence of 2-body orbits
 - Outside of planet's sphere of influence, <u>Sun</u> is the center of attraction
 - Within planet's sphere of influence, <u>planet</u> is the center of attraction
- Fly-by (swingby) trajectories dip into intermediate object's sphere of influence for gravity assist

35

Solar System Spheres of Influence

for
$$\frac{m_{Planet}}{m_{Sun}} \ll 1$$
, $r_{SI} \simeq r_{Planet-Sun} \left(\frac{m_{Planet}}{m_{Sun}}\right)^{2/5}$

Planet	Sphere of Influence, km		
Mercury	112,000		
Venus	616,000		
Earth	929,000		
Mars	578,000		
Jupiter	48,200,000		
Saturn	54,500,000		
Uranus	51,800,000		
Neptune	86,800,000		
Pluto	27,000,000-45,000,000		

Interplanetary Mission Planning

- Example: Direct Hohmann Transfer from Earth Orbit to Mars Orbit (No fly-bys)
- 1) Calculate required perigee velocity for transfer orbit Sun as center of attraction: Elliptical orbit
- 2) Calculate △v required to reach Earth's sphere of influence with velocity required for transfer Earth as center of attraction: Hyperbolic orbit
- 3) Calculate △v required to enter circular orbit about Mars, given transfer apogee velocity Mars as center of attraction: Hyperbolic orbit

Launch Opportunities for Fixed Transit Time: The Synodic Period

- Synodic Period, S_n: The time between conjunctions
 - $-P_A$: Period of Planet A
 - P_B : Period of Planet B
- Conjunction: Two planets, A and B, in a line or at some fixed angle

$$S_n = \frac{P_A P_B}{P_A - P_B}$$

Launch Opportunities for Fixed Transit Time: The Synodic Period

	Synodic Period with	
Planet	respect to Earth, days	Period
Mercury	116	88 days
Venus	584	225 days
Earth	-	365 days
Mars	780	687 days
Jupiter	399	11.9 yr
Saturn	378	29.5 yr
Uranus	370	84 yr
Neptune	367	165 yr
Pluto	367	248 yr

39

Hyperbolic Orbits

Orbit Shape	Eccentricity, e	Energy, E
Circle	0	<0
Ellipse	0 < e <1	<0
Parabola	1	0
Hyperbola	>1	>0

$$\mathbb{E} = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}, \quad \therefore a < 0$$

Velocity remains positive as radius approaches ∞

$$v \xrightarrow[r \to \infty]{} v_{\infty}$$

$$\therefore \mathbb{E}_{\infty} = \frac{v_{\infty}^{2}}{2}, \text{ and } v_{\infty} = \sqrt{-\frac{\mu}{a}} \text{ or } a = -\frac{\mu}{v_{\infty}^{2}}$$

Hyperbolic Encounter with a Planet

- Trajectory is deflected by target planet's gravitational field
 - In-plane
 - Out-of-plane
- Velocity w.r.t. Sun is increased or decreased

 Δ : Miss Distance, km

 δ : Deflection Angle, deg or rad

41

Hyperbolic Orbits

Asymptotic Value of True Anomaly

Polar Equation for a Conic Section

$$r = \frac{p}{1 + e\cos\theta} = \frac{a(1 - e)}{1 + e\cos\theta}$$
$$\cos\theta = \frac{1}{e} \left[\frac{a(1 - e^2)}{r} - 1 \right]$$

$$\theta \xrightarrow[r \leftrightarrow \infty]{} \theta_{\infty}$$

$$\theta_{\infty} = \cos^{-1} \left(-\frac{1}{e} \right)$$

Hyperbolic Orbits

Angular Momentum

$$h = \text{Constant} = v_{\infty} \Delta$$
$$= \sqrt{\mu p} = \sqrt{\mu a (1 - e^2)} = \sqrt{\frac{\mu^2 (e^2 - 1)}{v_{\infty}^2}}$$

Eccentricity

$$e = \sqrt{1 + \frac{2h^2 \mathbb{E}}{\mu^2}} = \sqrt{1 + \frac{v_{\infty}^4 \Delta^2}{\mu^2}}$$

Perigee Radius

$$r_p = a(1-e) = \frac{\mu}{v_{\infty}^2} (e-1)$$

Eccentricity

$$e = \left[1 + \frac{r_p v_{\infty}^2}{\mu}\right]$$

43

Hyperbolic Mean and Eccentric Anomalies

H: Hyperbolic Eccentric Anomaly

$$M = e \sinh H - H$$

Newton's method of successive approximation to find *H* from *M*, similar to solution for *E* (Lecture 2)

$$\theta(t) = 2 \tan^{-1} \left[\sqrt{\frac{e+1}{e-1}} \tanh \frac{H(t)}{2} \right]$$

$$r = a(1 - e \cosh H)$$

see Ch. 7, Kaplan, 1976

Battin's Universal Formulas for Conic Section Position and Velocity as Functions of Time

$$\mathbf{r}(t_2) = \left[1 - \frac{\chi^2}{r(t_1)}C\left(\frac{\chi^2}{a}\right)\right]\mathbf{r}(t_1) + \left[t_2 - \frac{\chi^3}{\sqrt{\mu}}S\left(\frac{\chi^2}{a}\right)\right]\mathbf{v}(t_1)$$

$$\mathbf{v}(t_2) = \frac{\sqrt{\mu}}{r(t_1)r(t_2)} \left[\frac{\chi^3}{a} S\left(\frac{\chi^2}{a}\right) - \chi \right] \mathbf{r}(t_1) + \left[1 - \frac{\chi^2}{r(t_2)} C\left(\frac{\chi^2}{a}\right) \right] \mathbf{v}(t_1)$$

$$\chi = \begin{cases} \sqrt{a} \left[E(t_2) - E(t_1) \right], & \text{Ellipse} \\ \sqrt{-a} \left[H(t_2) - H(t_1) \right], & \text{Hyperbola} \end{cases}$$
$$\sqrt{p} \left[\tan \frac{\theta(t_2)}{2} - \tan \frac{\theta(t_1)}{2} \right], & \text{Parabola} \end{cases}$$

see Ch. 7, Kaplan, 1976; also Battin, 1964

45

Lambert's Time-of-Flight Theorem (Hyperbolic Orbit)

$$(t_2 - t_1) = \sqrt{\frac{-a^3}{\mu}} [(\sinh \gamma - \gamma) + (\sinh \delta - \delta)]$$

where

$$\gamma \triangleq 2 \sinh^{-1} \sqrt{\frac{r_1 + r_2 + c}{-4a}}; \quad \delta \triangleq 2 \sinh^{-1} \sqrt{\frac{r_1 + r_2 - c}{-4a}}$$

see Ch. 7, Kaplan, 1976; also Battin, 1964

http://www.mathworks.com/matlabcentral/fileexchange/39530-lambert-s-problem

http://www.mathworks.com/matlabcentral/fileexchange/26348-robust-solverfor-lambert-s-orbital-boundary-value-problem

Asteroid Encounter

47

Swing-By/Fly-By Trajectories

- Hyperbolic encounters with planets and the moon provide gravity assist
 - Shape, energy, and duration of transfer orbit altered
 - Potentially large reduction in rocket ΔV required to accomplish mission

Why does gravity assist work?

Effect of Target Planet's Gravity on Probe's Sun-Relative Velocity

Deflection – Velocity Reduction

Effect of Target Planet's Gravity on Probe's Sun-Relative Velocity

Deflection - Velocity Addition

Planet Capture Trajectory

51

Effect of Target Planet's Gravity on Probe's Velocity

Next Time: Spacecraft Environment

53

Supplemental Material

Phases of Ascent Guidance

- Vertical liftoff
- · Roll to launch azimuth
- Pitch program to atmospheric "exit"
 - Jet stream penetration
 - Booster cutoff and staging
- Explicit guidance to desired orbit
 - Booster separation
 - Acceleration limiting
 - Orbital insertion

Tangent Steering Laws

 Neglecting surface curvature

$$\tan \theta(t) = \tan \theta_o \left(1 - \frac{t}{t_{BO}} \right)$$

 "Open-loop" command, i.e., no feedback of vehicle state

 Accounting for effect of Earth surface curvature on burnout flight path angle

$$\tan \theta(t) = \tan \theta_o \left[1 - \frac{t}{t_{BO}} - \tan \beta \left(\frac{t}{t_{BO}} \right) \right]$$

Jet Stream Profiles

- Launch vehicle must able to fly through strong wind profiles
- Design profiles assume 95th-99th-percentile worst winds and wind shear

57

Longitudinal (2-D) Equations of Motion for Re-Entry

Differential equations for velocity $(x_1 = V)$, flight path angle $(x_2 = y)$, altitude $(x_3 = h)$, and range (x_4)

Angle of attack (a) is optimization control variable

$$\begin{split} \dot{x}_1 = -D(x_1, x_3, \alpha)/m - g\cos x_2 \\ \dot{x}_2 = \left[g/x_1 - x_1/(R + x_3)\right] \sin x_2 - L(x_1, x_3, \alpha)/mx_1 \\ \dot{x}_3 = x_1\cos x_2 \\ \dot{x}_4 = x_1\sin x_2/(1 + x_3/R) \end{split} \qquad \begin{array}{l} D = \text{drag} \\ L = \text{lift} \\ M = \text{pitch moment} \\ R = \text{Earth radius} \end{split}$$

Equations of motion define the dynamic constraint

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \alpha(t)]$$

A Different Approach to Guidance: **Optimizing a Cost Function**

 Minimize a scalar function, J, of terminal and integral costs

$$J = \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} L[\mathbf{x}(t), \mathbf{u}(t)] dt$$
 L[.]: Lagrangian

with respect to the control, $\mathbf{u}(t)$, in (t_0, t_t) , subject to a dynamic constraint

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)], \quad \mathbf{x}(t_o) \ given$$

$$\frac{\dim(\mathbf{x}) = n \times 1}{\dim(\mathbf{u}) = m \times 1}$$

$$\dim(\mathbf{u}) = m \times 1$$

Guidance Cost Function

$$\begin{vmatrix} \phi \Big[\mathbf{x}(t_f) \Big] \\ L \Big[\mathbf{x}(t), \mathbf{u}(t) \Big] \end{vmatrix}$$

- $\phi\Big[\mathbf{x}(t_f)\Big] \quad \text{Terminal cost, e.g., in final position and velocity} \\ L\Big[\mathbf{x}(t),\mathbf{u}(t)\Big] \quad \text{Integral cost, e.g., tradeoff between control usage and trajectory error}$
- Minimization of cost function determines the optimal state and control, x* and u*, over the flight path duration

$$\min_{u} J = \min_{u} \left\{ \phi \left[\mathbf{x}(t_{f}) \right] + \int_{t_{o}}^{t_{f}} L\left[\mathbf{x}(t), \mathbf{u}(t) \right] dt \right\}$$

$$= \phi \left[\mathbf{x}^{*}(t_{f}) \right] + \int_{t_{o}}^{t_{f}} L\left[\mathbf{x}^{*}(t), \mathbf{u}^{*}(t) \right] dt \rightarrow \left[\mathbf{x}^{*}(t), \mathbf{u}^{*}(t) \right]$$

Example of Re-Entry FlightPath Cost Function

$$J = a[V(t_f) - V_d]^2 + b[r(t_f) - r_d]^2 + \int_{t_o}^{t_f} c[\alpha(t)]^2 dt$$

- Cost function includes
 - Terminal range and velocity
 - Penalty on control use
 - a, b, and c tradeoff importance of each factor
- Minimization of this cost function
 - Defines the optimal path, $x^*(t)$, from t_o to t_f
 - Defines the optimal control, $a^*(t)$, from t_o to t_f

61

Extension to Three Dimensions

- Add roll angle as a control; add crossrange as a state
- For the guidance law, replace range and crossrange from the starting point by distance to go and azimuth to go to the destination

Optimal Trajectories for Space Shuttle Transition

Optimal
Controls for
Space Shuttle
Transition

Optimal Guidance System Derived from Optimal Trajectories

Guidance Functions for Space Shuttle Transition

Lunar Module Navigation, Guidance, and Control Configuration

67

Lunar Module Transfer Ellipse to Powered Descent Initiation

Lunar Module Powered Descent

69

Lunar Module Descent Events

	Event	TFI, ^a min:sec	Inertial velocity, ps	Altitude rate, fps	Altitude, ft	ΔV, fps
A	Uliage	-00:07				
В	Powered descent initiation	00:t-c	5560	-4	48 814	0
C	Throttle to maxi- mum thrust	00:26	5529	-3	48 725	31
D	Rotate to windows- up position	02:56	4000	-50	44 934	1572
E	LR altitude update	04:18	3065	-89	39 201	2536
F	Throttle recovery	06:24	1456	-106	24 639	4239
G	LR velocity update	06:42	1315	-127	22 644	4399
H	High gate	08-26	506	-145	7 515	5375
I	Low gate	10:06	55 (^b 68)	-16	512	6176
J	Touchdown (probe contact)	11:54	-15 (^b 0)	-3	12	6775

aTime from ignition of the DPS.

^bHorizontal velocity relative to surface.

Lunar Module Descent Targeting Sequence

Braking Phase (P63)
Approach Phase (P64)
Terminal Descent Phase (P66)

71

Characterize Braking Phase By Five Points

Lunar Module Descent Guidance Logic

(Klumpp, Automatica, 1974)

- Reference (nominal) trajectory, r_r(t), from target position back to starting point (Braking Phase example)
 - Three 4th-degree polynomials in time
 - 5 points needed to specify each polynomial

$$\mathbf{r}_r(t) = \mathbf{r}_t + \mathbf{v}_t t + \mathbf{a}_t \frac{t^2}{2} + \mathbf{j}_t \frac{t^3}{6} + \mathbf{s}_t \frac{t^4}{24}$$

$$\mathbf{r}(t) = \begin{vmatrix} x(t) \\ y(t) \\ z(t) \end{vmatrix}$$

73

Coefficients of the Polynomials

$$\mathbf{r}_r(t) = \mathbf{r}_t + \mathbf{v}_t t + \mathbf{a}_t \frac{t^2}{2} + \mathbf{j}_t \frac{t^3}{6} + \mathbf{s}_t \frac{t^4}{24}$$

- r = position vector
- v = velocity vector
- a = acceleration vector
- j = jerk vector (time derivative of acceleration)
- s = snap vector (time derivative of jerk)

$$\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

$$\mathbf{j} = \begin{bmatrix} j_x \\ j_y \\ i \end{bmatrix}$$

$$\mathbf{s} = \begin{vmatrix} s_x \\ s_y \\ s_z \end{vmatrix}$$

Corresponding Reference Velocity and Acceleration Vectors

$$\mathbf{v}_r(t) = \mathbf{v}_t + \mathbf{a}_t t + \mathbf{j}_t \frac{t^2}{2} + \mathbf{s}_t \frac{t^3}{6}$$

$$\mathbf{a}_r(t) = \mathbf{a}_t + \mathbf{j}_t t + \mathbf{s}_t \frac{t^2}{2}$$

- a_r(t) is the reference control vector
 - Descent engine thrust / mass = total acceleration
 - Vector components controlled by orienting yaw and pitch angles of the Lunar Module

Guidance Logic Defines Desired Acceleration Vector

 If initial conditions, dynamic model, and thrust control were perfect, a_r(t) would produce r_r(t)

$$\mathbf{a}_r(t) = \mathbf{a}_t + \mathbf{j}_t t + \mathbf{s}_t \frac{t^2}{2} \Rightarrow \mathbf{r}_r(t) = \mathbf{r}_t + \mathbf{v}_t t + \mathbf{a}_t \frac{t^2}{2} + \mathbf{j}_t \frac{t^3}{6} + \mathbf{s}_t \frac{t^4}{24}$$

- · ... but they are not
- Therefore, feedback control is required to follow the reference trajectory

Guidance Law for the Lunar Module Descent

Linear feedback guidance law

$$\mathbf{a}_{command}(t) = \mathbf{a}_{r}(t) + \mathbf{K}_{V} [\mathbf{v}_{measured}(t) - \mathbf{v}_{r}(t)] + \mathbf{K}_{R} [\mathbf{r}_{measured}(t) - \mathbf{r}_{r}(t)]$$

 \mathbf{K}_{V} : velocity error gain \mathbf{K}_{R} : position error gain

Nominal acceleration profile is corrected for measured differences between actual and reference flight paths

Considerable modifications made in actual LM implementation (see Klumpp's original paper on *Blackboard*)