

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Мегафакультет компьютерных управлений и технологии
Факультет программной инженерии и компьютерной техники

Курсовая работа

по дисциплине дискретной математики:

<u>Синтез комбинационных схем</u>

Часть II

Работа выполнена

студентом группы Р3111

Болорболд Аригуун

Преподаватель:

Доцент Поляков Владимир Иванович

г. Санкт-Петербург 2022 год

Выполняемые операции	число переменных			Разрядность н операндов		И Использование О дополнительного С кода	Фиксация переноса, заёма, или	Для операции деления формирование		Запрещенная нулевая комбинация	
	Входных	Выходных	Α	В	И	Мода	переполнения	Частного	Остатка	Α	В
$C = (A+B)_{mod10}$	5	5	3	2	-	•	*	-	-	-	-

1. Таблица истинности (в случае переноса устанавливается бит е).

Nº	a ₁	a ₂	a ₃	b ₁	b ₂	C ₁	C ₂	C 3	C 4	е
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	1	0
2	0	0	0	1	0	0	0	1	0	0
3	0	0	0	1	1	0	0	1	1	0
4	0	0	1	0	0	0	0	0	1	0
5	0	0	1	0	1	0	0	1	0	0
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	1	0	0	0
8	0	1	0	0	0	0	0	1	0	0
9	0	1	0	0	1	0	0	1	1	0
10	0	1	0	1	0	0	1	0	0	0
11	0	1	0	1	1	0	1	0	1	0
12	0	1	1	0	0	0	0	1	1	0
13	0	1	1	0	1	0	1	0	0	0
14	0	1	1	1	0	0	1	0	1	0
15	0	1	1	1	1	0	1	1	0	0
16	1	0	0	0	0	0	1	0	0	0
17	1	0	0	0	1	0	1	0	1	0
18	1	0	0	1	0	0	1	1	0	0
19	1	0	0	1	1	0	1	1	1	0
20	1	0	1	0	0	0	1	0	1	0
21	1	0	1	0	1	0	1	1	0	0
22	1	0	1	1	0	0	1	1	1	0
23	1	0	1	1	1	1	0	0	0	0
24	1	1	0	0	0	0	1	1	0	0
25	1	1	0	0	1	0	1	1	1	0
26	1	1	0	1	0	1	0	0	0	0
27	1	1	0	1	1	1	0	0	1	0
28	1	1	1	0	0	0	1	1	1	0
29	1	1	1	0	1	1	0	0	0	0
30	1	1	1	1	0	1	0	0	1	0
31	1	1	1	1	1	0	0	0	0	0

В дальнейшем для наглядности биты b_1 и b_2 будут обозначаться как a_4 и a_5 .

2. Минимизация булевых функций на картах Карно

 a_4a_5

 a_4a_5

01 11

00 01 11 10

 a_2a_3

 $a_1 = 1$

$$\mathcal{C}_1 = a_1 a_2 a_4 \overline{a_5} \, \mathsf{V} \, a_1 a_2 a_3 \overline{a_4} a_5 \, \mathsf{V} \, a_1 a_2 \overline{a_3} \, a_4 \, \mathsf{V} \, a_1 \overline{a_2} a_3 a_4 a_5$$

 $(S_Q = 22)$

 a_4a_5

 a_4a_5

00 01 11 10

00 01 11

	1	
1	1	1
	1	1
	_	

 $a_1 = 1$

$$a_1 = 0$$

 a_2a_3

 $C_2 = a_1 \overline{a_4 a_5} \vee \overline{a_1} a_2 a_4 \vee a_1 \overline{a_2 a_5} \vee a_1 \overline{a_3 a_4} \vee a_1 \overline{a_2 a_4} \vee \overline{a_1} a_2 a_3 a_5 \vee a_1 \overline{a_2 a_3} \vee \overline{a_1} a_3 a_4 a_5 \text{ (S}_Q=34)$

$$C_3 = a_2\overline{a_4a_5} \vee \overline{a_2}a_4\overline{a_5} \vee a_1\overline{a_2}a_3 \vee a_2\overline{a_3}\overline{a_4} \vee \overline{a_2}a_3\overline{a_4}a_5 \vee \overline{a_2}\overline{a_3}a_4 \vee \overline{a_1}a_2a_3a_4a_5 \text{ (Sq = 31)}$$

 a_4a_5

00	01	11	10		00	01	11	10
	1	1		00		1	1	
1			1	01	1			1
1			1	11	1			1
	1	1		10		1	1	
	a_1 =	= 0		a_2a_2		a_1 =	= 1	
$C_4 =$	$a_3\overline{a_5}$	$\sqrt{a_3}a$	5	$a_2 a_3$ (S _Q = 1	5)			

 $a_{4}a_{5}$

3. Преобразование системы булевых функций

$$\begin{cases} C_{1} = a_{1}a_{2}a_{4}\overline{a_{5}} \vee a_{1}a_{2}a_{3}\overline{a_{4}}a_{5} \vee a_{1}a_{2}\overline{a_{3}}\underline{a_{4}} \vee a_{1}\overline{a_{2}}a_{3}a_{4}a_{5} & (S_{Q}^{c_{1}} = 22) \\ C_{2} = a_{1}\overline{a_{4}}\underline{a_{5}} \vee a_{1}a_{2}\underline{a_{4}} \vee a_{1}\overline{a_{2}}\underline{a_{5}} \vee a_{1}\overline{a_{3}}\underline{a_{4}} \vee a_{1}\overline{a_{2}}\underline{a_{4}} \vee a_{1}\overline{a_{2}}\underline{a_{3}}a_{5} \vee a_{1}\overline{a_{2}}\underline{a_{3}}\nabla a_{1}\overline{a_{2}}a_{3} \vee a_{1}\overline{a_{2}}a_{3} \vee a_{1}\overline{a_{2}}a_{3}\nabla a_{1}\overline{a_{2}}a_{3}\nabla a_{1}\overline{a_{2}}a_{3}\nabla a_{1}\overline{a_{2}}a_{3}\nabla a_{2}\overline{a_{3}}a_{4}\nabla a_{2}a_{3}\overline{a_{4}}a_{5}\nabla a_{2}\overline{a_{3}}a_{4}\nabla a_{1}\overline{a_{2}}a_{3}a_{4}\nabla a_{1}\overline{a_{2}}a_{3}\nabla a_{1}\overline{a_{2}}a_{3}\nabla a_{1}\overline{a_{2}}a_{3}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{2}}a_{2}\nabla a_{1}\overline{a_{$$

Проведём раздельную факторизацию системы:

$$\begin{cases} C_{1} = a_{1}(a_{2}(a_{4}(\overline{a_{5}} \vee \overline{a_{3}}) \vee a_{3}\overline{a_{4}}a_{5}) \vee \overline{a_{2}}a_{3}a_{4}a_{5}) & (S_{Q}^{c_{1}} = 18) \\ C_{2} = a_{1}((\overline{a_{3}} \vee \overline{a_{5}})(\overline{a_{4}} \vee \overline{a_{2}}) \vee \overline{a_{2}}\overline{a_{4}}) \vee \overline{a_{1}}(a_{2}a_{4} \vee a_{3}a_{5}(a_{2} \vee a_{4})) & (S_{Q}^{c_{2}} = 25) \\ C_{3} = a_{2}\overline{a_{4}}(\overline{a_{5}} \vee \overline{a_{3}}) \vee \overline{a_{2}}(a_{4}\overline{a_{5}} \vee a_{1}a_{3} \vee \overline{a_{3}}a_{4}) \vee a_{3}a_{5}(\overline{a_{2}}\overline{a_{4}} \vee \overline{a_{1}}a_{2}a_{4}) & (S_{Q}^{c_{3}} = 29) \\ C_{4} = (a_{3} \vee a_{5})(\overline{a_{3}} \vee \overline{a_{5}}) & (S_{Q}^{c_{4}} = 5) \\ S_{0} = 77 \end{cases}$$

Проведём совместную декомпозицию системы:

$$\begin{cases} \boldsymbol{\varphi_{0}} = \overline{a_{3}} \vee \overline{a_{5}} & (S_{Q}^{\varphi_{0}} = 2) \\ \overline{\boldsymbol{\varphi_{0}}} = a_{3} a_{5} & (S_{Q}^{\varphi_{0}} = 2) \end{cases}$$

$$C_{1} = a_{1} (a_{2} (a_{4} \boldsymbol{\varphi_{0}} \vee \overline{a_{4} \boldsymbol{\varphi_{0}}}) \vee \overline{a_{2}} a_{4} \overline{\boldsymbol{\varphi_{0}}}) & (S_{Q}^{c_{1}} = 14) \end{cases}$$

$$C_{2} = a_{1} ((\boldsymbol{\varphi_{0}} (\overline{a_{4}} \vee \overline{a_{2}}) \vee \overline{a_{2}} a_{4}) \vee \overline{a_{1}} (a_{2} a_{4} \vee \boldsymbol{\varphi_{0}} (a_{2} \vee a_{4})) & (S_{Q}^{c_{2}} = 22)$$

$$C_{3} = a_{2} \overline{a_{4}} \boldsymbol{\varphi_{0}} \vee \overline{a_{2}} (a_{4} \boldsymbol{\varphi_{0}} \vee a_{1} a_{3}) \vee \overline{\boldsymbol{\varphi_{0}}} (\overline{a_{2}} \overline{a_{4}} \vee \overline{a_{1}} a_{2} a_{4}) & (S_{Q}^{c_{3}} = 23)$$

$$C_{4} = (a_{3} \vee a_{5}) \boldsymbol{\varphi_{0}} & (S_{Q}^{c_{4}} = 5)$$

$$S_{Q} = 64$$

Проведём совместную декомпозицию системы:

$$\begin{cases} \boldsymbol{\varphi}_{0} = \overline{a_{3}} \vee \overline{a_{5}} \\ \overline{\boldsymbol{\varphi}_{0}} = \underline{a_{3}} a_{5} \\ \boldsymbol{\varphi}_{1} = \overline{a_{2}} \vee \overline{a_{4}} \\ \overline{\boldsymbol{\varphi}_{1}} = a_{2} a_{4} \\ \boldsymbol{\varphi}_{2} = a_{2} \vee a_{4} \\ \overline{\boldsymbol{\varphi}_{2}} = \overline{a_{2}} \overline{a_{4}} \\ C_{1} = a_{1} (\boldsymbol{\varphi}_{0} \overline{\boldsymbol{\varphi}_{1}} \vee \overline{\boldsymbol{\varphi}_{0}} \boldsymbol{\varphi}_{1} \boldsymbol{\varphi}_{2}) & (S_{Q}^{c_{1}} = 10) \\ C_{2} = a_{1} (\boldsymbol{\varphi}_{0} \boldsymbol{\varphi}_{1} \vee \overline{\boldsymbol{\varphi}_{2}}) \vee \overline{a_{1}} (\overline{\boldsymbol{\varphi}_{1}} \vee \overline{\boldsymbol{\varphi}_{0}} \boldsymbol{\varphi}_{2}) (S_{Q}^{c_{2}} = 14) \\ C_{3} = a_{2} \overline{a_{4}} \boldsymbol{\varphi}_{0} \vee \overline{a_{2}} (a_{4} \boldsymbol{\varphi}_{0} \vee a_{1} a_{3}) \vee \overline{\boldsymbol{\varphi}_{0}} (\overline{\boldsymbol{\varphi}_{2}} \vee \overline{a_{1}} \boldsymbol{\varphi}_{1}) (S_{Q}^{c_{3}} = 20) \\ C_{4} = (a_{3} \vee a_{5}) \boldsymbol{\varphi}_{0} & (S_{Q}^{c_{4}} = 5) \\ S_{Q} = 49 \end{cases}$$

- 4. Синтез многовыходной комбинационной схемы в булевом базисе (см. ниже)
- 5. Анализ многовыходной комбинационной схемы

	Bx	ОДН	ой і	наб	Выходной				
Nº	a ₁	a ₂	a ₃	b ₁	b_2	C ₁	C ₂	C ₃	C ₄
6	0	0	1	1	0	0	0	1	1