EPC2218 – Enhancement Mode Power Transistor

 V_{DS} , $100\,V$ $R_{DS(on)}\,,\,3.2\,m\Omega$ $I_{D}\,,\,60\,A$

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings						
	PARAMETER	VALUE	UNIT				
	Drain-to-Source Voltage (Continuous)	Drain-to-Source Voltage (Continuous) 100					
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150 °C) 120		V				
	Continuous (T _A = 25°C)	60					
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	231	A				
.,	Gate-to-Source Voltage		V				
V_{GS}	Gate-to-Source Voltage	-4	V				
TJ	Operating Temperature	-40 to 150	% ا				
T _{STG}	Storage Temperature	-40 to 150					

	Thermal Characteristics						
	PARAMETER TYP UNIT						
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.5					
R _{θJB} Thermal Resistance, Junction-to-Board		1.4	°C/W				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	53					

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

EPC2218 eGaN® FETs are supplied only in passivated die form with solder bars. Die Size: 3.5 mm x 1.95 mm

Applications

- DC-DC Converters
- USB-C
- BLDC Motor Drives
- Lidar
- Sync Rectification for AC/DC and DC-DC
- Class D AudioLED Lighting
- Point of Load Converters
- E-Mobility

Benefits

- Ultra High Efficiency
- No Reverse Recovery
- Ultra Low Q_G
- Small Footprint

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.4 \text{ mA}$	100			V	
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$		0.08	0.35		
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.02	0.5	mA	
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V, T}_{J} = 125 ^{\circ}\text{C}$		0.6	9	IIIA	
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.06	0.4		
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	0.8	1.1	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 25 \text{ A}$		2.4	3.2	mΩ	
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A, } V_{GS} = 0 \text{ V}$		1.5		V	

[#] Defined by design. Not subject to production test.

EPC2218 eGaN® FET DATASHEET

	Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
C _{ISS}	Input Capacitance#			1189	1570		
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		4.3			
Coss	Output Capacitance#			562	843	pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+= F0VV 0V		740			
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		925			
R_{G}	Gate Resistance			0.4		Ω	
Q_{G}	Total Gate Charge#	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 25 \text{ A}$		10.5	13.6		
Q _{GS}	Gate-to-Source Charge			3.2			
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 25 \text{ A}$		1.5			
Q _{G(TH)}	Gate Charge at Threshold			1.9		nC -	
Qoss	Output Charge#	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		46	69		
Q _{RR}	Source-Drain Recovery Charge			0			

 $[\]hbox{\it\#}\ Defined\ by\ design.\ Not\ subject\ to\ production\ test.}$

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Transfer Characteristics

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 5b: Capacitance (Log Scale)

Figure 6: Output Charge and Coss Stored Energy

Figure 7: Gate Charge

Figure 8: Reverse Drain-Source Characteristics

Figure 9: Normalized On-State Resistance vs. Temperature

Figure 12: Transient Thermal Response Curves

TAPE AND REEL CONFIGURATION

Die is placed into pocket solder bump side down (face side down)

	Dimension (mm)		
EPC2218 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
(Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dout		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2218	2218	YYYY	ZZZZ

DIE OUTLINE

Solder Bump View

	Micrometers				
DIM	MIN	Nominal	MAX		
A	3470	3500	3530		
В	1920	1950	1980		
C		1625			
d		1800			
е		775			
f		250			
g		500			
h	·	1025			

Pad 1 is Gate;

Pads 2,4,6,8 are Source;

Pads 3, 5, 7 are Drain;

Side View	

					518 ±-25
	丆			$\overline{\mathcal{O}}$	\
Seating plane					120 ± 12

RECOMMENDED LAND PATTERN

(units in μ m)

Land pattern is solder mask defined Solder mask opening is 180 µm It is recommended to have on-Cu trace PCB vias

Pad 1 is Gate; Pads 2,4,6,8 are Source;

are Source;
Pads 3, 5, 7 are Drain;

DIM	Nominal
A	3500
В	1950
c1	1605
d1	1780
e1	755
f	230
g	500
h	1025

RECOMMENDED STENCIL DRAWING

(units in μ m)

DIM	Nominal
A	3500
В	1950
c1	1605
d1	1780
e1	755
f1	230
f2	210
g	500
h	1025

Recommended stencil should be 4 mil (100 μm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

The corner has a radius of R60.

Split stencil design can be provided upon request, but EPC has tested this stencil design and not found any scooping issues.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\ast}$ is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.
Revised June, 2021