

Part III – Knowledge and Reasoning

9 Inference in First-Order Logic

- Inference Rules. Generalised Modus Ponens.
- Forward and Backward Chaining.
 Resolution.

10 Logical Reasoning Systems

- Indexing, Retrieval and Unification. Logic
 Programming / Prolog. Production Systems.
- Frames and Semantic / Conceptual Networks.
- Managing Retractions, Assumptions, and Explanations.

Example of Resolution Proof (CNF)

Example of Resolution Proof (INF)

Refutation

Resolution is incomplete

- There exist entailed sentences that it cannot prove
 - e.g. Empty KB (!), KB \mid P \vee ¬P, but resolution cannot prove it

Resolution by refutation

Proof by contradiction (reductio ad absurdum):
 To prove P true, assume it false and prove a contradiction i.e.

$$(KB \land \neg P \Rightarrow FALSE) \Leftrightarrow (KB \Rightarrow P)$$

- Simple, sound, complete
 - e.g. assume ¬(P ∨ ¬P), rewrite as ¬P Λ P, infer contradiction.

Another Example Proof

Problem statement and query

- "Jack owns a dog. Every dog owner is an animal lover.
 No animal lover kills an animal. Either Jack or curiosity killed the cat, who is named Tuna."
- Did curiosity kill the cat?

Translation in First Order Logic

- 1. ∃x Dog(x) ∧ Owns(Jack,x)
- 2. $\forall x \forall y \, \text{Owns}(x,y) \, \Lambda \, \text{Dog}(y) \Rightarrow \text{AnimalLover}(x)$
- 3. $\forall x \text{ AnimalLover}(x) \Rightarrow (\forall y \text{ Animal}(y) \Rightarrow \neg \text{Kills}(x,y))$
- 4. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
- 5. Cat(Tuna)
- 6. $\forall x Cat(x) \Rightarrow Animal(x)$ [background knowledge]

Variations on Translation to FOL

Example

- Statement: "No animal lover kills an animal."
- Translation in FOL:

1.
$$\forall x \ L(x) \Rightarrow (\forall y \ A(y) \Rightarrow \neg K(x,y))$$

 $\forall x \ \neg L(x) \lor (\forall y \ \neg A(y) \lor \neg K(x,y))$
 $\forall x \ \forall y \ \neg L(x) \lor \neg A(y) \lor \neg K(x,y)$ **CNF**

2.
$$\forall x,y \neg (L(x) \land A(y)) \lor \neg K(x,y)$$
 $\neg (L(x) \land A(y) \land K(x,y))$ $\forall x,y \ L(x) \land A(y) \Rightarrow \neg K(x,y)$ $L(x) \land A(y) \land K(x,y) \Rightarrow F$

INF

Conversion from FOL to CNF

- 1. $\exists x Dog(x) \land Owns(Jack,x)$
 - \rightarrow 1a. Dog(D)
 - \rightarrow 1b. Owns(Jack,D)
- 2. ∀x ∀y Owns(x,y) Λ Dog(y) ⇒ AnimalLover(x)
 → 2. ¬Dog(y) ∨ ¬Owns(x,y) ∨ AnimalLover(x)
- 3. ∀x AnimalLover(x) ⇒ (∀y Animal(y) ⇒ ¬Kills(x,y))
 → 3. ¬AnimalLover(u) ∨ ¬Animal(v) ∨ ¬Kills(u,v)
- 4. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
 → 4. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
- 5. Cat(Tuna)
 - \rightarrow 5. Cat(Tuna)
- 6. \forall x Cat(x) ⇒ Animal(x)
 - \rightarrow 6. \neg Cat(z) \vee Animal(z)

Query:

- ? Kills(Curiosity,Tuna)
- ¬Kills(Curiosity,Tuna)

Conversion from FOL to INF

- 1. $\exists x Dog(x) \land Owns(Jack,x)$
 - \rightarrow 1a. Dog(D)
 - \rightarrow 1b. Owns(Jack,D)
- 2. $\forall x \forall y \, Owns(x,y) \, \Lambda \, Dog(y) \Rightarrow AnimalLover(x)$
 - \rightarrow 2. Dog(y) Λ Owns(x,y) \Rightarrow AnimalLover(x)
- 3. $\forall x \text{ AnimalLover}(x) \Rightarrow (\forall y \text{ Animal}(y) \Rightarrow \neg \text{Kills}(x,y))$
 - \rightarrow 3. AnimalLover(u) Λ Animal(v) Λ Kills(u,v) \Rightarrow FALSE
- 4. Kills(Jack, Tuna) ∨ Kills(Curiosity, Tuna)
 - → 4. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
- 5. Cat(Tuna)
 - \rightarrow 5. Cat(Tuna)
- 6. \forall x Cat(x) ⇒ Animal(x)
 - \rightarrow 6. Cat(z) \Rightarrow Animal(z)

Query:

? Kills(Curiosity,Tuna)

Kills(Curiosity, Tuna) \Rightarrow F

Proof by Resolution-Refutation (CNF)

Proof by Resolution—Refutation (INF)

Resolution Strategies

- Resolution is guaranteed to find a solution, but how?

Unit Preference

Favour short sentences (even <u>unit clauses</u>, if possible)

Set of Support

- Define a subset of the KB and use those sentences only
 - e.g. { negated query }, as in refutation

Input Resolution

Combine KB sentences some inferred sentence

Subsumption

Eliminate all sentences subsumed (more specific than)
 existing sentences in the KB, e.g. if P(x) then P(A) not needed

Proof Using IR and UP Strategies

Theorem Provers

Differences with LPL

- Use full first-order logic
- Control kept distinct from knowledge
 - Order of writing does not matter, e.g. $A \leftarrow B \land C$ or $A \leftarrow C \land B$

Design of a theorem prover

- Design of a control strategy, e.g. OTTER
 - Using a set of support, unit preference, other strategies ...
- Extending Prolog , e.g. PTTP
 - Make search sound: use Occur-Check in unification
 - Make search complete: use IDS instead of depth-first search
 - Make inference complete: using linear input resolution
 - Use locking: store rules different ways
 Allow negated literals

Using Theorem Provers

Practical uses

- Assistant, e.g. decision making
- Proof-checker, supervised by a mathematician
- Socratic reasoner
 - Provide partial answers, so that a series of "right" questions always leads to the solution
- Verification of software and hardware
 - e.g. computer algorithms (RSA, Boyer-Moore, etc.), logic design
- Synthesis of software and hardware
 - i.e. prove "there exists a program p satisfying the specification s"
 - e.g. hand-guided synthesis of new algorithms, deductive synthesis in circuit design, large-scale integration

Summary

Inference rules for first-order logic ...

- Are simply extended from propositional logic.
- Are complex to use, because of a huge branching factor.

Unification ...

 Improves efficiency by identifying appropriate variable substitutions.

The Generalised Modus Ponens ...

- Uses unification to provide a powerful inference rule.
- Can be either data-driven, using forward-chaining, or goal-oriented, using backward-chaining.

. . .

Summary

- Uses sentences in Horn form, i.e. $\alpha_1 \wedge ... \wedge \alpha_n \Rightarrow \beta$.
- Is not complete.

The Generalised Resolution ...

- Provides a complete system for proof by refutation.
- Requires sentences in either Conjunctive Normal Form or Implicative Normal Form, i.e. $\alpha_1 \wedge ... \wedge \alpha_m \Rightarrow \beta_1 \vee ... \vee \beta_n$ (which are equivalent).
- Can use several strategies (heuristics) to improve efficiency and reduce the size of the search space.

References

- Boolos, G. S. and Jeffrey, R. C. (1989). Computability and Logic.
 Cambridge University Press, Cambridge, third edition.
- Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foundations of Artificial Intelligence. Morgan Kaufmann, San Mateo, California.
- Hunter, G. (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press, Berkeley and Los Angeles.
- Siekmann, J. and Wrightson, G., editors (1983). Automation of Reasoning. Springer-Verlag, Berlin. Two volumes.
- Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1992). Automated Reasoning: Introduction and Applications. McGraw-Hill, New York, second edition.