b) v_1, v_2, v_3 sono linearmente dipendenti, ma v_3 non è multiplo scalare di v_1 né di v_2

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \text{i.i. Binerson}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$\lambda_{V_1} + \lambda_{V_2} + \lambda_{V_3} = 0 \quad \lambda_{S} = -V_s - V_c = V_$$

b)
$$v_3 \in \mathbb{R}^3$$
 tale che $\langle v_1, v_2 \rangle = \langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle$. $\forall A = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad V_1 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $V_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $V_3 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $V_4 = \begin{pmatrix} 2$

b)
$$v_3 \in \mathbb{R}^3$$
 tale che $\langle v_1, v_2 \rangle = \langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle$. $V_{A} = \begin{pmatrix} \frac{2}{4} \end{pmatrix} V_{z} = \begin{pmatrix} \frac{2}{4} \end{pmatrix}$
c) $v_3, v_4 \in \mathbb{R}^3$ tali che $v_3 \perp v_4 \in \langle v_1, v_2, v_3 \rangle = \langle v_1, v_2, v_4 \rangle = \mathbb{R}^3$.
f) $V_{Yz} = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \Rightarrow_{N \in A} \text{ indice} \text{ indice} \text{ indice} \text{ indice} \text{ cap} \phi_{N \in N z} \in \langle V_{A_z}, V_{A_z} \rangle \in \langle V_{A_z}, V_{A_z} \rangle$
b) $V_{Yz} = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \Rightarrow_{N \in A} \text{ indice} \text{ indice$

$$(1) \quad (2) \quad (2) \quad (3) \quad (4) \quad (4)$$

a) Dire quanti sono i sottoinsiemi A
$$\subseteq \{1,2,3,4,5\}$$
tali che i vettori v, con i $\in A$ formano una base di \mathbb{R}^3

b) per estere bus before estate Un., inc. Eb essee ostobomni (freming) b) Existe un sottoinsieme $A\subseteq \{1,2,3,4,5\}$ tali che i vettori ν_i con i $\in A$ formano una base ortogonale di $\mathbb{R}^{2\gamma}$ V_{i} to the todo $\rightarrow \nu o \nu$ form strong information V_{i} in $\tau \iota v \tau^{i}$ of four (ν_i) V_{i} in V_{i} V_{i}

Esercizio 1 Fare Gauss per 11 rango, create 11 sistema (preno costruito) 2 2 4 -1
$$| R_{K} = 2 |$$
 Esercizio 2 A in comune alle 3 × 3 sono quelle che rk(A)=2, $| R_{K} = 2 |$ Esercizio 2 A in comune alle 3 × 3 sono quelle che rk(A)=2, $| R_{K} = 2 |$ • Se A è una matrice nilpotente (ossia esi

ercizio 1	rate Gauss per il tango, create il sistema (premuo le 7 in commune e le diatro come indere), isono le 7, sostituisco le 7 diovate nei vettore 7, eseguo 7 · 7 - 0;
	isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
C Oisiono	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le
2 01210	λ in comune alle 3×3 sono quelle che $rk(A)=2$, tutte le altre $rk(A)=3$;
	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0
	• Se Aè una matrice simmetrica, allora A^2 è simmetrica $\rightarrow M$ simmetrica se $M=M^T \rightarrow M^T \cdot M^T = (M \cdot M)^T \Rightarrow M=M^T$, sostituisci M con A^2
	• Sia $A \in M_{3,2}(\mathbb{R})$ di rango 2, allora il sistema lineare $AX = B$ ammette soluzioni comunque si scelga la matrice B dei termini noti. \to Se si sceglie
	B t.c $rk(A B) = 3$ allora il sistema è impossibile (non ammette soluzioni) per Rouché-Capelli (∞^{2-3})

- , $A^3-A=I_2 \rightarrow A(A^2-I)=I \Rightarrow (A^2-I)=A^{-1}$ quindi $AA^{-1}=I$ (A è invertibile)
- $\bullet \quad A^3-A=0 \rightarrow A(A^2-I)=0 \Rightarrow A=0, A^2-I=0 \Rightarrow A=0, A^2=I \text{ quindi } A \text{ è invertible se } A^2=I \text{ altrimenti se } A=0 \text{ non \emptyset invertible } A=0 \text{ altrimenti } A=0$
- $\binom{1}{2}$ poi calcolo il $\bullet \quad A^3 - A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \rightarrow A(A^2 - I) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}, A^2 - I = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} + I = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} \sqrt{2} & \sqrt{2} &$ determinante delle due A e uso il teorema di Binét: det $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = 1$, det $\begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix} = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
- A è invertibile, allora $\det(A)>0 \to \text{Falso}$, per Binét A è invertibile se det $A \neq 0$ (quindi può essere anche negativo).
- Se $A \in B$ sono invertibili, $AB \in A$ invertibile $A \in AB \in AB$ invertibile se $AB \in AB \in AB$ of $AB \in AB \in AB$ det $AB \in AB \in AB$ det $AB \in AB \in AB$
- Se $A^{13} = B \in B$ è invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
 - I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango n(massimo) e quindi è invertibile
- Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\operatorname{rk}(A) < 3 \to \operatorname{vero}$, sappiamo che esistono solo due sottomatrici 3×3 quindi se entrambe hanno determinante nullo allora $\operatorname{rk}(A) < 3$
- The vettori qualsiasi di \mathbb{R}^2 sono linearmente dipendenti \rightarrow Usiamo la regola per essere base di R^N che dice che sono linearmente indipendenti se il rango della matrice composta dai vettori è N, quindi basta trovare un vettore per cui il rango non è 2 per avere i vettori linearmente dipendenti
- I vettori v_1,\dots,v_n sono base di \mathbb{R}^N se $\mathrm{rk}(M)=N$ con $M=(v_1\dots v_n)$ (M matrice composta dai vettori)
- Base ortogonale di v,w: $\begin{pmatrix} \det(R_2R_3) \\ -\det(R_1R_2) \end{pmatrix}$, R_i sono le righe dei vettori. v,w devono essere ortogonali $\det(R_1R_2)$
- Dipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + kv_n = 0$ oppure la matrice composta dai vettori non ha rango N
- Indipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0 \rightarrow \alpha = \beta = 0$ oppure la matrice composta dai vettori ha rango N
- $v_3=\begin{pmatrix} x_3\\ z_3 \end{pmatrix}$ è multiple scalare di $v_1=\begin{pmatrix} x_1\\ y_1 \end{pmatrix}$ se $\frac{x_3}{x_1}=\frac{y_3}{y_1}=\frac{z_3}{z_1}=\alpha$

Esercizio 4

- Per "generare" R^N i vettori combinati linearmente fanno ottenere qualsiasi vettore in R^N. Gli N vettori in questione devono essere linearmente
- v2 ∉ ⟨v1⟩ significa che v2 non appartiene allo spazio generato da v1 e quindi v2 non deve essere multiplo scalare di v1
- Due vettori v_1 e v_2 sono ortogonali $(v_1 \bot v_2)$ tra loro quando il loro prodotto scalare e' 0
- Norma vettore $||v||=\sqrt{v_1^2+v_2^2}$, per "allungare" un vettore a una lunghezza L si usa la formula $v'=L\cdot \frac{1}{||v||}\cdot v$
- Gauss: $R_i = R_i + \left(\frac{-a_i j}{a_j j}\right) \cdot R_j$
- Rouché-Capelli: ∞ #incognite-rk(A)
- A invertibile se det $A \neq 0$, $\det(A^{-1}) = \frac{1}{\det A}$
- A non invertibile se $A^N = 0$
- Il prodotto di due matrici diagonali è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica
- Teorema di Binét: $\det(AB) = \det A \cdot \det B$
- Calcolo matrice inversa: scriviamo (M|I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo $(I|M^{-1})$
- AX = B ammette soluzioni se rk(A|B) = rk(A)

				$23 \sqrt{576} = 24$	
				$= 22 \sqrt{529} = 23$	
				$\sqrt{441} = 21$ $\sqrt{484} = 22$	
> '	>	\	\ 25	<u>_</u> 4	- - -