In [76]: # import libaries
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

In [408]: x=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset

Out[408]:

	Person ID Gender Age		Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blo Press	
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140
				•••						
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140

374 rows × 13 columns

In [409]: x=x.head(10)

Out[409]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Bloo Pressur
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/8
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/8
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/8
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	140/9
6	7	Male	29	Teacher	6.3	6	40	7	Obese	140/9
7	8	Male	29	Doctor	7.8	7	75	6	Normal	120/8
8	9	Male	29	Doctor	7.8	7	75	6	Normal	120/8
9	10	Male	29	Doctor	7.8	7	75	6	Normal	120/8

In [410]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Person ID	10 non-null	int64
1	Gender	10 non-null	object
2	Age	10 non-null	int64
3	Occupation	10 non-null	object
4	Sleep Duration	10 non-null	float64
5	Quality of Sleep	10 non-null	int64
6	Physical Activity Level	10 non-null	int64
7	Stress Level	10 non-null	int64
8	BMI Category	10 non-null	object
9	Blood Pressure	10 non-null	object
10	Heart Rate	10 non-null	int64
11	Daily Steps	10 non-null	int64
12	Sleep Disorder	10 non-null	object

dtypes: float64(1), int64(7), object(5)

memory usage: 1.1+ KB

In [412]: d=x[['Person ID', 'Gender', 'Age', 'Occupation', 'Sleep Duration']]

Out[412]:

	Person ID	Gender	Age	Occupation	Sleep Duration
0	1	Male	27	Software Engineer	6.1
1	2	Male	28	Doctor	6.2
2	3	Male	28	Doctor	6.2
3	4	Male	28	Sales Representative	5.9
4	5	Male	28	Sales Representative	5.9
5	6	Male	28	Software Engineer	5.9
6	7	Male	29	Teacher	6.3
7	8	Male	29	Doctor	7.8
8	9	Male	29	Doctor	7.8
9	10	Male	29	Doctor	7.8

In [413]:

Out[413]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	10.00000	10.000000	10.000000	10.000000	10.000000	10.000000	10.00000	10.000000
mean	5.50000	28.300000	6.590000	5.700000	51.700000	7.100000	77.40000	6070.000000
std	3.02765	0.674949	0.846496	1.251666	19.465354	0.994429	6.41526	2989.630226
min	1.00000	27.000000	5.900000	4.000000	30.000000	6.000000	70.00000	3000.000000
25%	3.25000	28.000000	5.950000	4.500000	32.500000	6.000000	71.25000	3125.000000
50%	5.50000	28.000000	6.200000	6.000000	51.000000	7.500000	76.00000	6100.000000
75%	7.75000	29.000000	7.425000	6.750000	71.250000	8.000000	84.25000	8000.00000
max	10.00000	29.000000	7.800000	7.000000	75.000000	8.000000	85.00000	10000.000000

In [414]:

Out[414]: <seaborn.axisgrid.PairGrid at 0x190d0e5fe50>

In [415]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[415]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [416]:

In [417]:

Out[417]: <AxesSubplot:>

In [418]: x=x1[['Age']]

```
In [419]: # to split my dataset into traning and test date
          from sklearn.model_selection import train_test_split
In [420]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[420]: LinearRegression()
In [421]:
           -7.105427357601002e-15
In [422]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[422]:
                Co-efficient
                       1.0
           Age
In [423]: prediction=lr.predict(x_test)
Out[423]: <matplotlib.collections.PathCollection at 0x190d25f5d60>
           29.5
           29.0
           28.5
           28.0
           27.5
           27.0
           26.5
               26.5
                      27.0
                             27.5
                                     28.0
                                            28.5
                                                    29.0
                                                           29.5
In [424]:
Out[424]: 1.0
In [425]: L
Out[425]: 1.0
In [426]:
```

```
In [427]: rr=Ridge(alpha=10)
     rr.fit(x_train,y_train)
Out[427]: 0.0
In [428]: la=Lasso(alpha=10)
Out[428]: Lasso(alpha=10)
In [429]:
Out[429]: 0.0
In [430]: from sklearn.linear model import ElasticNet
     en=ElasticNet()
Out[430]: ElasticNet()
In [431]:
Out[431]: array([0.02970297])
In [432]:
Out[432]: array([28.41584158, 28.41584158, 28.41584158])
In [433]:
Out[433]: 27.584158415841582
In [434]:
Out[434]: 0.0
In [435]:
In [436]:
     Mean Absolute Error 0.0
In [437]:
     Mean Squared Error 0.0
In [438]:
     Root Mean Squared Error 0.0
In [ ]:
```

8 of 8