

Competitive Programming From Problem 2 Solution in O(1)

Combinatorial Game Theory Game of Nim - Examples

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Nim with skip move

- Given the original nim game with extra rule
 - Skip turn: A player is allowed to say I will skip turn
 - Player 1 is allowed up to A skippings
 - Player 2 is allowed up to B skippings
 - Given the N piles, A, B who is the winner?
 - If A = B? Then whoever the winner can **cancel** the other player move to insure winning (**Move Cancellation**)
 - If A > B and 1st wins in normal nim, then he just plays normally and cancels moves for 2nd if he skipped
 - If A > B and 1st loses in normal nim, then he skip the first time, and then play as previous case to win too :)
 - So if A > B, 1st always win. If A < B, 2nd always win.

Dividing a number

Given an integer N

- Move: divide N by a prime power > 1
 - e.g. 3, 3², 3³...
 - primes: 2, 3, 5, 7, 11....
- Loser: N = 1
- **Solution**: Represent N using its prime powers

$$n=2^{a_1}3^{a_2}5^{a_3}7^{a_4}\cdots p_{k}^{a_k}$$

- Then we have k piles, each has ai stones
- N = 1440600 = 2*2*2*3*5*5*7*7*7*7
- So piles are = $\{3, 1, 2, 4\}$
 - \blacksquare E.g. we have 4 7s

Staircase Nim

Staircase Nim

- Staircase with n steps, each step has some coins
- Move: move some coins to the left step (except first step)
- Loser: Can't make a move (e.g. all coins at arr[0])
- Intuition: Every step is a pile? No only odd positions

Src: http://codeforces.com/blog/entry/44651

Staircase Nim

Notes

- Movement from step 1 to step $0 \Rightarrow$ remove action
- If opponent moved 5 coins from step 2 to step 1, you can just move them to step 0, hence removed them too
- Recall: this is move cancellation strategy
- In general, movements on even position are useless
- Movements from odd position to even can then be considered as **removed**, but affect game status
- Solution: xor odd positions (the piles)

Even steps are useless!

- Given a horizontal line of N coins: Head/Tail
 - **12345678910**
 - THTTHHTTTH
- Moves
 - Pick any head, and flip it to tail
 - Optionally, flip any coin on left of your chosen coin
 - Loser: No more heads to flip
- Example: THHH (let's make action on 4)
 - **THHT** (flip 4th only)
 - THTT (flip 4th and 3rd)
 HHHT(flip 4th and 1st)
 So Position 4 => 4 moves

Observations

- Action only on Heads. So may be heads ~= Nim piles
- Head in kth position has k moves. May be Pile size = k
- E.g. THHTTH \Rightarrow {2, 3, 6} as Nim pile sizes!
- We need to verify 3 game moves as 2 nim possibilities
 - We can take whole nim pile
 - We can take ANY thing < whole size

Verification for:

- Flip Head only
- Flip Head and Flip a left coin: Tail to Head
- Flip Head and Flip a left coin: Head to Tail

Verification

- Flip k-th Head only
 - If we did that, we cancelled the k moves from position
 - Seems as if we just removed while pile content!
- Flip k-th Head and t-th tail (recall k > t)
 - Head at k has k moves cancelled
 - But a tail at is now H and has t moves
 - As if pile of k stones reduced to t stones only
- Flip k-th Head and t-th head (recall k > t)
 - This is tricky. We already satisfied nim moves
 - Intuition: If this game is nim => this move is not a new case or a useless move

- Flip k-th Head and t-th head
 - This move cancels: my k moves and his t moves!!
 - As if it means, the other head will never change the final status situation (e.g. I have a winning for it)
 - Let's try example: THTTH => Nim {2, 5}
 - Recall the move duplication strategy to always win
 - Make them equal piles => (2, 2) => (0, 0) => 1st win
 - So flipping kth head means reduce k to t (e.g. 5 to 2)
 - \blacksquare Then his second pile equal to mine (2, 2)
 - So I will win anyway => e.g. the 2 H's are cancelled
- Overall: 2 equivalent games.

Your turn: Twins game

- Same as Turning Turtles Game, but
 - You must flip 2 coins, not optionally
 - Then kth position has k-1 move NOT k
 - Also, it means we can't take whole pile move!
 - Actually both previous notes lead to same thing
 - As in terms of nim, pile size = 1 is losing condition
 - So F(n) in this game = F(n-1) in normal nim
 - So kth position is pile of size n-1
 - So THHTTH \Rightarrow {1, 2, 5} NOT {2, 3, 6} sizes
 - If you **indexed** game as 0-based, then F(n) = n
 - Sometimes one of the 2 indexings makes computations/patterns easier (later)

- From judge
 - Array of N cells, that has coins (at most 1 coin in a cell)
 - Move: Pick a coin and move to any left square: BUT
 - Can't jump over other coins
 - Can't put two coins in one cell
 - Loser: Can't do a move
 - **Example.** for 4 coins in position $\{2, 5, 7, 10\}$
 - 123456789101101001010001

Thoughts

- Issue: each coin is not independent game any more
- **Intuition**: Each coin is constrained with its left one.
 - Distance between every 2 consecutive is pile size
 - E.g. $\{2, 5, 7, 11\} \Rightarrow \text{piles } \{1, 2, 1, 3\}$
 - E.g. between 7 and 11 = 3 steps
 - Wrong equivalence: Moving 7 to 6: decrease in pile and add in another (e.g. generates piles: {1, 2, 0, 4}

- Let's understand the game more
 - Input={5}: First player will win directly
 - Input={5, 6}: Second player will always win directly
 - 1st will have to move 5 to 4
 - 2nd can just return them consecutive: e.g. from 6 to 5
 - So overall even # of steps for any input $\{x, x+1\}$
 - Clearly this input is always like $\{1, 2\}$: pile size = 0
 - Input= $\{5, 8\}$
 - In similar manner, a move from 5 to 4 can be **canceled** by move from 8 to 7 to have same difference (poker)
 - So, the 2 players should **focus** on moving 2nd not 1st
 - Clearly this input is always like $\{1, 4\}$: pile size = 2

- Let's understand the game more
 - Input= $\{2, 4, 6\}$
 - One can force (4, 6) as a pile
 - And (0, 2) as a pile (e.g. 0 from left boundary)
 - And handle each pair with same winning strategy for 2 values. so total piles $\{1, 1\} \Rightarrow xor = 0$ (2nd can win)
 - Given that we identified a winning strategy that we can definitely apply (either first if will win or 2nd), we can safely consider it
 - You don't need to think of what other ways of winning: having one way to force winning is enough
 - Game using our grouping/cancellation tricks = Nim

- Let's understand the game more
 - Input= $\{2, 4, 6\}$
 - What about grouping $(2, 4) \Rightarrow$ pile size = 1
 - Now 6 is free: it doesn't corresponds to something in Nim
 - Let's restrict it with its max possible moves to left
 - 6 has 2 numbers before it: so its pile size = 6-2-1=3
 - E.g. piles (1, 3) => xor != 0 => 1st win => where mistake?
 - Although 6 has up to 3 moves to left, if one directly moved 6 to 5, now it corresponds to empty pile
 - When 4 moves to 3: 6 pile grows up again
 - So our mapping is not nim equivalent = wrong approach

Overall solution

- From most right number to left:
- Group each 2 consecutive numbers
- If they are odd, most left number will be grouped with 0

- For other ways of explaining it: <u>See1</u>, <u>See2</u>
 - Mainly, they map faster to nim and consider it poker nim
 - I cancelled a move in the game \Rightarrow Direct nim
 - Think much: Duplication, Cancellation, Actual game,
 Win strategy, Correct equivalence

Pots of gold game

- Given set of <u>coins</u> (e.g. 10, 7, 8, 12).
 - Move: Take coins in a cell from one of ends (e.g. 10 | 12)
 - The winner is the player who collected a higher number of coins at the end of game.
- Solution:
 - Don't be cheated. This is NOT nim-related game
 - Winning is not about LAST move, but overall choices
 - This is a classical search/minimax/dp problem
- Lesson: Remember properties of Nim

Final Notes

- Make sure game is impartial
 - If it is not, think in search/backtrack directions
- Remember Nim game nature
 - With exception, the independance feature of sub-games
- Dependent games are tricky/hard to analyze
 - Understand & analyze the game
 - Try to decouple to independent sub-games
 - Suggest mappings and verify it carefully
 - Let duplication/cancellation strategies be your friends

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ