

Secure Foundation for connected devices – Platform Security Architecture

Samuel Chiang
Sn BD Director, IoT Line of Business

Agenda

- ♣ IoT What is an IoT device
- + IoT attack surfaces
- ♣ Introducing Platform Security Architecture
- Security counter-measures
- Development platforms for PSA designs

Anatomy of IoT devices

IoT – Still the wild west?

- Unregulated, no common standards
- Inconsistent approach to security
- Immature and fragmented end markets with diverse requirements

What is Platform Security Architecture?

Introducing Platform Security Architecture (PSA)

• A recipe for building more secure systems from analysis to implementation

The PSA onion model of security by isolation

PSA consists of three parts

Threat Modelling

Analyze: Analysis of security threats and risks

- Understand application security requirements
- What do I need to protect against?
- What are the attack vectors?
- What are the security objectives?
- What are the security requirements?
- What solutions can provide the requirements?
- Security designed in from the start

Security is a balance…

Cost/effort to secure

Threat modelling considers "How much security

PSA Analysis Stage

Assess the potential vulnerabilities

Physical

(including noninvasive and invasive)

Software

(Including buffer overflows, interrupts and malware)

Communication

(including man-inthe-middle, weak RNG and code vulnerabilities)

Lifecycle

(including code downgrade, ownership changes and unauthorized overproduction

Physical mitigation

SecurCore, Cortex-M35P, CryptoCell-312P, CryptoIsland-300P

Software mitigation

Arm
TrustZone and
Arm
processors
with TrustZone
support

Communication mitigation

Arm CryptoCell & CryptoIsland, Arm Mbed IoT Device Platform

Lifecycle mitigation

Arm CryptoCell & CryptoIsland, Arm Mbed IoT Device Platform

STRIDE threat model

Spoofing identity

• illegally accessing and then using another user's authentication information

Tampering with data

- malicious modification
- unauthorized changes

S E D

Repudiation

- deny performing an malicious action
- non-repudiation refers to the

Elevation of privilege

- unprivileged user gains privileged access to compromise the system
- effectively penetrated and become part of the trusted system

Denial of service

- deny service to valid users
- threats to system availability

Information disclosure

 exposure of information to individuals not supposed to access

Analysis: Establishing the "right" level of security

www.arm.com/psa-resources

Three example Threat Models and Security Analyses (TMSA) documents available now

Use case

Security

considerations

Asset tracker

Long range asset-tracking device used for tracking people, vehicles, containers or valuables

Cellular communication,

SIM-based network authentication, real-time tracking

Smart water meter

Smart water meters used in domestic and business locations

Battery-powered, limited over-the-air maintenance, long lifecycles, large deployments

Network camera

Network-connected cameras found in homes and offices. Can be used for high security use cases

Provisions to automatically connect to network

Security starts with analysis

Analysis leads to requirements

Arm will deliver representative IoT device security analyses & requirements

Example

Asset: metering data to be protected in integrity & confidentiality

Threat: Remote SW attacks

Security objective: Strong Crypto

Security requirement: Hardware based key store

Mitigation methods

Security by separation / isolation

- PSA protects sensitive assets (keys, credentials and firmware) by separating these from the application firmware and hardware
- PSA defines a Secure Processing Environment (SPE) for this data, the code that manages it and its trusted hardware resources
- The application firmware runs in the Nonsecure Processing Environment (NSPE)
- PSA defines a secure boot process so only authentic, trusted firmware runs in the SPE
- PSA depends on secure installation of the initial keys and firmware during manufacture

Isolation techniques

Memory protection unit

Two Cortex-M processors

TrustZone for Armv8-M

TBSA-M

TBSA-M comprises a set of requirements aimed at providing a secure hardware foundation for M-Class MCUs.

Types of requirements:

- Enforce TrustZone system principles
- Supports baseline S/W secure services
- Prohibitions on bad practices
- Propagation of good practices

Builds on TBSA-Client (for A class)

- Authored Specification
- Requirements
- Recommendations

Draft

- System view
- ✓ Infrastructure
- Fuses
- Cryptographic keys
- ✓ Trusted boot
- ✓ Trusted timers
- ✓ Version counters
- ☑ Entropy source
- ☑ Cryptographic acceleration
- Debug
- **✓** External interface peripherals
- ✓ DRAM protection
- ✓ Device lifecycle

Trusted Firmware-M

What is Trusted Firmware?

- It is a set of foundational software components which implement the services required for a secure platform:
- Reference software for partners to build on which creates a trusted execution environment
- Secure Function invocation (Software Interface to TrustZone)
- Secure Device Initialisation and Setup
- Trusted Boot (image verification derived from RoT)
- PSA Compliance

Trusted Firmware-M Open Source Project

- Trusted Firmware-M
- Reference firmware for PSA architecture specification
- Targeting M-profile SoCs (Initially Armv8-M)
- Available on <u>www.trustedfirmware.org</u>
- Arm Mbed OS will include an implementation of PSA
- Based on TF-M for secure services
- Used by Mbed TLS, Pelion Device Mgmt & Mbed OS
- Components being introduced now to future Mbed releases

https://connect.linaro.org/resources/hkg18/hkg18-212/

PSA Firmware Framework Concepts

- Secure Partition Manager (SPM)
 - provides the boot, isolation and IPC services to the SPE
- Partition
 - the unit of execution
- Secure function
 - a set of related APIs invoked through secure IPC
- Trusted function
 - a secure function that provides a Root of Trust service

PSA firmware isolation levels

TF-M approach for ARMv8M based system

Constrained implementation with PSA alignment

- This figure represents the current view of TF-M architecture at PSA level 1 isolation.
- TF-M project will provide mechanisms to include existing APIs in the TF-M API handlers.
- Existing apps and secure libs will most likely need some updates.
- Extent of rework will depend upon the design

TF-M secure services today

TF-M secure services 2019

PSA In Action – TLS Session Setup

Getting started with a secure system

Get started now: Platform Security Architecture

Deliverables already available - www.arm.com/psa-resources

 Download example threat models and assess your risks

 Specifications available under NDA

- Download opensource firmware (TF-M) and contribute
- Request a Musca board

Development platforms for PSA

Musca-A1: the development board for PSA Request your free board (arm.com/musca)

- Arm Cortex-M33 based dev board
- Used for internal software development
- Test chip built on PSA recommendations
- Prototype your system

You could also choose to develop via MPS2/MPS3 FPGA boards with fixed virtual platforms

Summary – Secure foundations

- PSA provides a complete set of security deliverables reducing TTM and cost
- PSA makes security easier to implement through a common architecture
- Enabling success for the ecosystem, by providing confidence and trust

