Algorytmy dekompozycji QR

Anna Szczepaniak, 210094

Praca licencjacka przygotowana pod opieką dr, mgr inż. Piotra Kowalskiego

19.09.2019

Twierdzenie (Nierówność Bessela (?, Twierdzenie 14.22))

Jeśli $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ jest układem ortonormalnym w przestrzeni euklidesowej \mathbb{R}^k , to dla każdego wektora \mathbf{x} z przestrzeni \mathbb{R}^k spełniona jest nierówność

$$\sum_{i=1}^n \alpha_i^2 \leqslant \|\mathbf{x}\|^2,$$

gdzie $\alpha_i = (\mathbf{x}|\mathbf{b}_i)$. Ponadto, wektor $\mathbf{x} - \sum_{i=1}^n \alpha_i \cdot \mathbf{b}_i$ jest ortogonalny do podprzestrzeni span $(\mathbf{b}_1, \dots, \mathbf{b}_n)$.

Twierdzenie (Twierdzenie(Grama-Schmidta)(?))

Dla każdego układu liniowo niezależnego wektorów $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ w przestrzeni euklidesowej istnieje układ ortonormalny $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ taki, że

$$span(\mathbf{b}_1,\ldots,\mathbf{b}_k) = span(\mathbf{x}_1,\ldots,\mathbf{x}_k)$$

dla każdej liczby k ze zbioru (1, ..., n).

Twierdzenie (O rozkładzie QR)

Niech $A \in \mathbb{R}^{m \times n}$, gdzie $m \geqslant n$, której kolumny są liniowo niezależne. Istnieje wtedy jedyny rozkład QR, tzn. że istnieją takie macierze Q i R, że

$$A = QR$$

İ

ightharpoonup macierz $Q \in \mathbb{R}^{m \times n}$ jest taka, że

$$Q^T \cdot Q = D$$
,

gdzie $D = diag(d_1, d_2, ..., d_n)$, oraz $d_k > 0$ dla k = 1, 2, ..., n, oraz

lacktriangleright macierz $R \in \mathbb{R}^{n \times n}$ jest trójkątną górną spełniającą dodatkowo warunek

$$r_{kk}=1$$

dla wszystkich $k = 1, 2, \ldots, n$.

Uwaga

Rozkładem QR nazwiemy również sytuacje, gdy

$$A = QR$$

oraz $Q^TQ=I$ i R jest macierzą trójkątną górną, niekoniecznie z 1 na przekątnej. Powodem tego jest, że prezentowana tu postać oraz postać z twierdzenia 3 są sobie równoważne.

Definicja (Macierz Householdera)

Macierzą Householdera H, zwaną również refleksją, nazywamy macierz postaci

$$H = I - 2 \cdot \mathbf{v} \cdot \mathbf{v}^T,$$

gdzie
$$||v||_2 = 1$$
.

Twierdzenie (Transformacja Householdera)

Niech $\mathbf{v} \in R^m$, i $\mathbf{v} \neq 0$. Wówczas transformacją Householdera nazywamy macierz postaci:

$$H = I - W \mathbf{v} \mathbf{v}^T$$

gdzie

$$W = \frac{2}{\mathbf{v}^T \mathbf{v}}$$
.

Macierz H jest macierzą symetryczną i ortogonalną.

Definicja (Macierz Givensa)

Niech $i, j \in 1, ..., n$ i $\theta \in \mathbb{R}$. Macierz $R(i, j, \theta) \in \mathbb{R}^{n \times n}$ zdefiniowana następująco:

$$R(i,j,\theta) = \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \cos\theta & \cdots & -\sin\theta & \cdots & 0 & 0 \\ 0 & 0 & \cdots & \vdots & \ddots & \vdots & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \sin\theta & \cdots & \cos\theta & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 1 \end{bmatrix}$$

nazywamy macierzą rotacji Givensa.

```
> house = function(x) {
+    norm_x = sqrt(t(x)\cdot x)
+    if (x[1] > 0) {
+        x[1] = x[1] + norm_x;
+    } else {
+        x[1] = x[1] - norm_x;
+    }
+    return(x)
+ }
```

```
> qr_householer = function(A)
+ {
+ R = A
+ dimm = dim(A)
+ n = dimm \lceil 2 \rceil
+ m = dimm \lceil 1 \rceil
+ Q = diag(n)
+ for (i in 1:min(m-1,n)){
      u = house(R[i:m.i])
+
   den = (t(u) \% \% u) [1.1]
+
+ P = diag(n+1-i) - 2/den * (u\%*\% t(u))
+ R[i:m.i:n] = P \%*\% R[i:m.i:n]
+
   if (i>1)
        Q[i:n,1:(i-1)] = P \%*\% Q[i:n,1:(i-1)]
+
      Q[i:n,i:n] = P %*% Q[i:n,i:n]
+
+
    return(list(R=R, Q=t(Q)))
+
+ }
```

```
> givens = function(i,j,A){
+ dimm = dim(A)
+ n = dimm[1]
+ G = diag(n)
+ p = sqrt((A[i,i])^2 + (A[j,i])^2)
+ G[i,i] = A[i,i]/p
+ G[i,j] = (A[j,i])/p
+ G[j,i] = -(A[j,i])/p
+ G[i,i] = A[i,i]/p
+
+ return(G)
+
+ }
```

```
> qr_givens = function(A){
+ R = A
+
+ n = dim(A)[2]
+ m = dim(A)[1]
+ Q = diag(n)
+ for (i in 1:(n-1)) {
      for (j in (i+1):m) {
+
        G = givens(i, j, R)
        R = G \% * \% R
        Q = Q %*% t(G)
+
+
+
+
    return(list(R=R, Q=Q))
+ }
```

Rozmiar macierzy nie wpływa istotnie na jakość naszych samodzielnie opisanych funkcji w stosunku do gotowej funkcji w R. Są one mniej dokładne niż wbudowany, gotowy algorytm dekompozycji QR w R. Ponadto algorytm metodą rotacji Givensa nie zawsze jest jakościowo lepszy od algorytmu metodą odbić Householdera. Zależy to od wymiarów oraz od losowości rozkładanej macierzy.

