

Hi-Speed USB2.0 Double Pole Double Throw Analog Switch

1. Overview

MSUSB30 is a high-speed, low-power double-pole double-throw USB analog switch chip, its operating voltage range is +1.8V to +4.3V. It has the characteristics of low inter-symbol skew, high channel noise isolation and large bandwidth.

The D+/D- ports are fault protected to +5.25V to prevent damage to the device if the switch is shorted to the USB bus power. The main applications include: handheld devices with USB2.0 interface and consumer electronics such as mobile phones, digital cameras, notebook computers, etc.

Features 1)

Typical value of on-resistance at 3V is 4.5ÿ 2)

Typical value of inter-symbol offset is 50ps 3) Low operating voltage: +1.8V to +4.3V 4) Fast switching speed: On time: 10ns off time: 22ns 5) Crosstalk is

-41dB at 250MHz 6) When V+=0V, D+/D- ports can withstand 5.25V power failure protection 7)

Channel isolation is -41dB at 250MHz 8) Rail-to-rail input and output Operating range 9) Industrial temperature

range 10) MSOP-10, QFNWB package

·Product specification classification

product	Package form	print name
MSUSB30	MSOP-10	MSUSB30
MSUSB30N	QFNWB	7222

·Pin description

pin number		name	Pin Description	
MSOP-10	QFNWB			
10	9	V+	power supply	
5	4	GND	land	
1	10	s	alternative	
9	9	ARE YOU	output enable	
2,3,8,7,4,	1ÿ2ÿ6ÿ7ÿ	HSD1+, HSD2+, HSD1-, HSD2-,	data terminal	
6	3ÿ5	D+, D	data terminai	

·Functional block diagram

·Menu

ARE YOU	s	HSD1+ ÿHSD1-	HSD2+ ÿHSD2-
0	0	turn on	shut down
0	1	shut down	turn on
1	х	shut down	shut down

2. Characteristics

·Limit parameters

Input, supply voltage range -0V to +4.6V

Analog, digital voltage range -0V to +4.6V

Data terminal maximum current ±100mA

Data terminal maximum peak current ±100mA

Version number: 1.2 2017.04.05

Page 2 of 9

range of working temperature -40ÿ to +85ÿ

imum Junction Temperature +150ÿ

Storage temperature range -65ÿ to +150ÿ

Maximum lead temperature (soldering, 10s) +260ÿ

ESD voltage:

human body model 4000V

machine mode 400V

·Electrical parameters

(V+ = +1.8V to +4.3V, GND = 0V, VIH = +1.6V, VIL = +0.5V, TA = -40°C to +85°C. Typical

Type value is at V+ = +3.3V, $TA = +25\ddot{y}$, other cases see note)

parameter	symbol	condition	Temperature	°C Min Typ	Max Unit		
analog switch							
analog input	VIS		-40ÿ85	0		V+ V	
On mariatana a BO		Test circuit 1, V+=3.0V,	+25		4.5	8.5	Oh
On-resistance RO	N	VIS=0ÿ0.4V, ID=8mA	-40ÿ85			9	Oil
Conduction between channels	ÿRON	Ditto	+25		0.15	0.6	Oh
Resistor matching	ykon	Ditto	-40ÿ85			1.6	Oil
On-resistance level		Test circuit 1, V+=3.0V,	+25		1.5	2.0	Oh
Tandu	RFLAT(ON)	VIS=0ÿ1.0VÿID=8mA	-40ÿ85			2.6	On
Power-off leakage current	IOFF	V+ = 0V,VD = 0ÿ3.6 V,	-40ÿ85			1	uA
ÿD+,D-ÿ		VS , VOE = 0 or 3.6 V					
different control power press down ICC current	ICCT	V+=3.6V, VS, VOE =2.6 V	-40ÿ85			5	uA
port disconnect drain current	IHSD2(OFF) IHSD1(OFF)	V+=3.6V, VIS = 3.3V/ 0.3V, VD= 0.3V/ 3.3V	-40ÿ85			1	uA
On leakage current	IHSD2(ON) IHSD1(ON)	V+=3.6V, VIS = 3.3V/ 0.3V, VD= 3.3V/ 0.3V or floating	-40ÿ85			1	uA

		digital input				
Input high level VI	Н		-40ÿ85 1.6			IN
Input low level VIL			-40ÿ85		0.5 V	
Input leakage current IIN		V+ = 3.0V, -40ÿ85 VS , VOE = 0 or V+			1	uA
		Dynamic parameters		<u> </u>		
On time tON		Test circuit 2,	+25	10		ns
OFF time tOFF		VIS = 0.8V, RL = 50ÿ, CL = 10pF	+25	22		ns
break-before-make time	tD	Test circuit 3, VIS = 0.8V, RL = 50ÿ, CL = 10pF	+25	4		ns
Propagation dela	ay tPD	RL = 50ÿ, CL = 10pF	+25	0.3		ns
Off isolation OISO		Test Circuit 4, Signal Amplitude Degree 0dBm, RL = 50ÿ, f = 250MHz	+25	-35		dB
Channel-to-channel o	rosstalk XTALK	Test Circuit 5, Signal Amplitude Degree 0dBm, RL = 50ÿ, f = 250MHz	+25	-41		dB
-3dB bandwidth l	вW	Test Circuit 6, Signal Amplitude Degree 0dBm, RL = 50ÿ, CL = 5pF	+25	550		MHz
Channel-to-channe	skew tSKEW	RL = 50ÿ, CL = 10pF	+25			ns
select end-to-male with I/O charge injection	Q	Test circuit 7, VG = GND, CL = 1.0nF, RG = 0ÿ, Q = CL x*VOUT	+25		11	рС
HSDÿHSD-ÿ D+ÿD On Capacitance	WITH		+25			pF
		Power consumption parameters				
voltage	V+		-40ÿ85 1.8		4.3 V	
current	l+	V+ = 3.0V, VS VOE = 0V or V+	-40ÿ85		1	uA

·Typical performance curve

3. Test circuit

测试电路1. 导通电阻

测试电路3. 先断后通时间tD

测试电路4. 关断隔离度

Test Circuit 5. Channel-to-Channel Crosstalk

Version number: 1.2 2017.04.05 Total

9 pages Page 7

测试电路6.-3dB带宽

4. Application Guide

1) Comply with USB 2.0 Vbus short circuit requirements

Section 7.1.1 of the USB 2.0 specification states that a USB device must withstand a short between Vbus and D+ or D- when powered down or powered up. MSUSB30 can be successfully set up to fully meet the above two requirements. 2) Power loss protection For Vbus short circuit, the switch is expected to withstand at least 24 hours under this condition. The MSUSB30 has specially designed circuitry to prevent accidental signal passage while maintaining system reliability under undervoltage and overvoltage conditions. This protection circuit has been added to the common ports (D+, D-). 3) Power-on protection The USB 2.0 specification also stipulates that USB devices can withstand Vbus short-circuits when transmitting data. In the event of overvoltage, this improvement limits the current flowing back to the VCC rail, keeping the current within a safe operating range. In this application, the switch can pass an input signal of 5.25V to the selected output, while the unselected pins maintain the specified open isolation state.

4. Package diagram

MSOP—10ÿ

symbol	Dimensions (mm)			
	minimum	maximum value		
A	0.800	1.200		
A1	0.000	0.200		
A2	0.760	0.970		
b	0.30 TYPE			
С	0.152 TYPE			
D	2.900 3.100			
and	0.50 TYPE			
AND	2.900	3.100		
E1	4.700 5.100			
L	0.410	0.650		
i	0° 6°			

QFNWBÿ

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.550	0.650	0.022	0.026	
A1	0.000	0.050	0.000	0.002	
A3	0.152	REF.	0.006	REF.	
D	1.350	1.450	0.053	0.057	
E	1.750	1.850	0.069	0.073	
D1	_	_	_	_	
E1	_	_	_		
k	-				
b	0.150	0.250	0.006	0.010	
b1	0.100	0.200	0.004	0.008	
е	0.400TYP.		0.016	STYP.	
L	0.350	0.450	0.014	0.018	
L1	0.450	0.550	0.018	0.022	