정보처리기사/정보처리기사 실기 정리

정보처리기사 실기) 11장 응용 SW 기초 활용

by 코딩하는 핑가 2020. 10. 13.

의 상호작용할 수 있는 편리성을 제공

* 인터페이스: 서로 다른 시스템 또는 장치 사이에서 정보를 공유하는 시스템 또는 경계

Windows	GUI 제공, 선점형 멀티태스킹 방식 제공, 자동 감지 기능, OLE(Object Linking and Embeded) 사용
Unix	대화식 운영체제, 다중 작업 기능 제공, 다중 사용자 기능 제공, 이식성 제공, 계층적 트리구조 파일 시스템 제공
Linux	유닉스 기반, 유닉스 특징, 오픈 소스, 다양한 리눅스 운영체제 종류
MAC	유닉스 기반 GUI 운영체제 (Apple 사)
안드로이드(Android)	리눅스 기반의 안드로이드 운영체제, 런 타임 라이브러리 제공, SDK

* 안드로이드(Android) (2020 실기 2회 기출)

- 휴대전화를 비롯한 휴대용 장치를 위한 운영체제와 미들웨어, 사용자 인터페이스 그리고 표준 응용 프로그램 등을 포함하고 있는 소프트웨어 스택이자 리눅스 모바일 운영체제이다. 개발자들이 **자바와 코틀린 언어**로 응용 프로그램을 작성할 수 있게 하였으며, 컴파일된 바이트코드를 구동할 수 있는 런타임 라이브러리를 제공한다.

* 운영체제 제어

- GUI (Graphic User Interface): 마우스 클릭 등 그래픽 기반으로 제어
- CLI (Command Line Interface): 사용자가 직접 명령어 입력 후 컴퓨터에 명령을 내리는 방식
- * 리눅스/유닉스 계열 기본 명령어 (2020 실기 2회 기출)
- 쉘(Shell) : 컴퓨터 내부를 관리하는 커널과 사용자 간의 연결하는 명령어 창

* 운영체제 핵심 기능

- 중앙처리 장치, 메모리, 스토리지, 주변기기 관리
- 메모리 관리, 프로세스 관리
- 메모리에 있는 프로그램을 CPU로 이동시켜 관리
- * MMU(단답형) (Memory Management Unit)
- CPU가 메모리에 접근하는 것을 관리하는 하드웨어 부품으로 가상 메모리를 실제 메모리 주소로 변환하는 장치

2) 프로세스 관리

- 생성 상태: 사용자로 인해 프로세스가 생성된 상태
- 준비 상태: CPU에 할당받을 수 있는 상태
- 실행 상태: 프로세스가 CPU를 할당받아 동작 중인 상태
- 대기 상태: 프로세스 실행 중 처리로 인해 CPU를 양도하고 대기 리스트에서 기다리는 상태
- 완료 상태: 프로세스가 CPU 할당을 받고 주어진 시간에 완전히 수행한 상태

출처; 별랑님 블로그

* 디스패치

- 준비 상태에 있는 프로세스를 스케줄링하여 CPU에 할당
- * 타이머 런 아웃(타임아웃)
- CPU에 할당된 프로세스가 지정된 시간이 초과되면 스케줄러에 의해 PCB 저장
- * PCB(Process Control Block)
- 운영체제가 프로세스의 정보를 표현한 것
- * 문맥 교환(단답형)
- CPU가 현재 실행하고 있는 프로세스의 상태를 PCB에 저장하고 다음 프로세스의 PCB로부터 문맥을 복원하는 작업

(1) 프로세스 스케줄링: CPU를 사용하려는 프로세스 사이의 우선순위를 관리하는 작업

- 프로세스 스케줄링 이용 시 CPU 이용률 증가, 오버헤드 응답시간, 반환시간, 대기시간 감소
- * 서비스 시간: 프로세스가 결과를 산출하기 전까지 소요되는 시간
- * 응답 시간: Response Time으로 대기시간 + 수행시간
- * 대기 시간: 프로세스가 할당되기 전까지 대기 큐에서 대기하는 시간
- * 응답률 : (서비스 시간 + 대기시간) / 서비스 시간 -> HRN(Highest Response Ratio Next) (2020 실기 1회 기출)

(2) 선점형 스케줄링

- 하나의 프로세스가 CPU에 할당되어 있을 때 **우선순위가 높은 다른 프로세스가 현재 프로세스를 중단시키고 CPU** 를 점유하는 스케줄링 방식
- 라운드 로빈(RR), SRT(Shortest Remining Time First), 다단계 큐, 피드백 큐
- * 라운드 로빈
- CPU 할당 시간 설정 후 프로세스가 할당된 시간 내 **처리하지 못할 경우 큐 리스트의 가장 맨 뒤로 이동하고 다음** 프로세스를 CPU에 할당하는 기법
- * SRT
- **가장 짧은 시간이 소요되는 프로세스를 먼저 처리**하고 **남은 시간이 짧은** 프로세스가 리스트 큐에 생기면 CPU에 할당하는 기법
- * 다단계 큐
- 작업들을 분할, 여러 개의 큐를 이용하여 상위 단계 작업에 의한 하위 단계 작업 선정 및 독자적인 스케줄링
- * 다단계 피드백 큐
- FIFO + RR의 혼합, 마지막 단계는 RR 방식으로 처리

[정보처리기사 필기/2과목 소프트웨어 개발] - 정보처리기사 필기) 선점 스케줄링

(3) 비선점형 스케줄링

- 한 프로세스가 CPU를 할당받으면 작업 후 **CPU 반환 시까지 다른 프로세스가 CPU에 할당하지 못하는** 스케줄링 기법
- 우선순위, 기한부, FCFS, HRN, SJF
- * 우선순위
- 프로세스 별로 우선순위가 주어지고, 우선순위에 따라 CPU를 할당함
- * 기한부
- 작업들을 명시된 시간이나 기한 내 완료되도록 계획
- * FCFS
- 프로세스가 대기 큐 리스트에 도착한 순서에 따라 CPU를 할당
- * SJF
- 가장 작은 서비스 시간을 가진 프로세스를 우선순위로 하여 평균 대기 시간을 최소화시키는 기법
- * HRN(2020 실기 1회 기출)
- 대기 중인 프로세스 중 현재 응답률이 가장 높은 프로세스를 우선순위
- (서비스 시간 + 대기 시간) / 서비스 시간

[정보처리기사 필기/2과목 소프트웨어 개발] - 정보처리기사 필기) 비선점 스케줄링

3) 가상화

- 물리적인 리소스들을 사용자에게 하나로 보이게 하거나 하나의 물리적인 리소스를 여러 개로 보이게 하는 기술
- 플랫폼 가상화 : 플랫폼 위에 독립된 환경을 만드는 기술
- 리소스 가상화: 독립된 하드웨어에서 소프트웨어가 실행되는 것처럼 활용하는 기법
- 컴퓨터 가상화(Hyper V) : 물리적인 리소스를 논리적인 리소스로 사용
- 분산처리 기술 : 여러 대 컴퓨터를 이용하여 대용량 처리

4) 컴퓨터 클라우딩

- 인터넷을 통해 클라우드 서버를 접속하여 리소스를 제공하고 자원들을 네트워크를 통해서 어디서든지 접속할 수 있는 기술
- 인프라형(laaS): 서버, 스토리지 같은 시스템 자원 클라우드 제공
- 플랫폼형(PaaS): 인프라 생성 및 관리하는 복잡함을 없애고 애플리케이션 개발과 실행 시 사용
- 소프트웨어형(SaaS): 데이터는 중앙에 호스팅되고 사용자는 웹 브라우저 등의 클라이언트를 통해 접속하여 소프트웨어를 서비스 형태로 이용

5) 데이터 베이스

- 시스템과 프로그램이 사용할 목적으로 통합하여 관리되는 데이터의 집합
- * 데이터베이스 종류
- 파일 시스템: 파일에 이름을 부여하고 어디에 위치시켜야 하는지 등을 정의한 뒤 DB 전 단계의 데이터를 관리하는 방식
- 계층형 데이터베이스 관리시스템: 데이터를 상하 종속적인 관계로 계층화하여 관리하는 DB
- **망형 데이터베이스 관리시스템**: 데이터 구조를 **네트워크의 망 형태**로 논리적으로 표현한 DB 모델
- 관계형 데이터베이스 관리시스템: 데이터를 저장하는 테이블의 일부를 다른 테이블과 상하관계로 표시하며 상관관계를 정리한 시스템 (ORACLE, SQL Server, My SQL, Maria DB)

* 데이터베이스 도구

- DB 관리자가 데이터베이스를 편리하고 쉽게 다를 수 있도록 도와주는 도구
- DB 생성 및 삭제, SQL 명령어 수행, 상태 모니터링, 사용자 계정 관리, DB 내보내기

* DBMS

- 데이터의 관리의 복잡성을 해결하는 동시에 데이터 생성 및 관리(데이터 추가, 삭제, 검색, 변경 및 보안, 백업, 권한 등의) 기능을 지원하는 소프트웨어

* 유형

- 키-값 DBMS : GET/PUT/DELETE 기능 제공
- 칼럼 기반 데이터 저장 DBMS: Key 안에 Column과 Value의 조합
- 문서 저장 DBMS: 값의 데이터 타입을 문서 타입으로 사용
- 그래프 DBMS : 그래프 데이터 표현

* 특징

- 데이터 무결성: 데이터의 정확성, 일관성, 유효성이 유지되는 것
- 데이터 일관성 : 저장 후 데이터는 일정
- 데이터 회복성 : 장애 발생 시 회복 가능
- 데이터 보안성 : 불법적인 노출, 변경, 손실로부터 보호
- 데이터 효율성 : 응답시간, 저장 공간 활용 등 최적화

* ERD

- 업무 분석 결과로 도출된 엔티티(개체)와 엔티티(개체) 간의 관계를 도식화한 다이어그램

- 엔티티: 현실 세계의 사물이나 사건으로 정의 (다이어그램에서 네모로 표현)
- **속성**: 엔티티가 가지고 있는 요소 또는 성질 (다이어그램에서 **원**으로 표현)
- **관계**: 두 엔티티 간의 관계를 정의 (다이어그램에서 **마름모**로 표현)

6) 트랜잭션 (2020 실기 1회 기출)

- DB 시스템에서 하나의 논리적인 기능을 수행하기 위한 작업의 기본 단위
- 원자성 (Atomicity) : 전체가 실패 또는 성공
- 일관성 (Consistency) : 트랜잭션 성공 이후 항상 일관된 DB 상태 유지
- 격리성 (Isolation): 트랜잭션 실행 중 다른 트랜잭션 접근 불가
- 영속성 (Durability): 성공된 트랜잭션 결과는 DB에 영속적으로 저장
- * 트랜잭션의 특성
- Atomicity(원자성)
- : 트랜잭션의 연산은 데이터베이스에 모두 반영되도록 <mark>완료(Commit)</mark>되든지 아니면 전혀 반영되지 않도록 복구(Roll back)되어야 한다.
- : 트랜잭션 내의 모든 명령은 반드시 완벽히 수행되어야 하며, 모두가 완벽히 수행되지 않고 어느 하나라도 오류가 발생하면 트랜잭션 전부가 취소되어야 한다.
- : 타인에게 송금하는 도중 장애가 발생하였을 경우 부작용을 방지하는 특성
- Consistency(일관성)
- : 트랜잭션이 그 실행을 성공적으로 완료하면 언제나 일관성 있는 데이터베이스 상태로 변환한다.
- : 시스템이 가지고 있는 **고정 요소는 트랜잭션 수행 전과 트랜잭션 수행 완료 후의 상태가 같아야** 한다.
- Isolation(독립성, 격리성, 순차성)
- : 둘 이상의 트랜잭션이 동시에 병행 실행되는 경우 어느 하나의 트랜잭션 실행 중에 다른 트랜잭션의 **연산이 끼어**

들 수 없다.(접근 불가)

- : 수행중인 트랜잭션은 완전히 **완료될 때까지 다른 트랜잭션에서 수행 결과를 참조할 수 없다.**
- Durability(영속성, 지속성)
- :성공적으로 완료된 트랜잭션의 결과는 시스템이 고장나더라도 영구적으로 반영되어야 함

* 트랜잭션 상태

- 활동 상태 : 초기 상태, 트랜잭션이 실행 중인 상태
- 부분 완료 상태 : 마지막 명령문이 실행되고 난 후 가지는 상태
- 완료 상태 : 트랜잭션이 성공적으로 처리된 후 완료된 상태
- 실패 상태 : 정상적인 실행이 더 이상 진행되지 않는 상태

- 철회 상태: 트랜잭션이 취소되고 DB가 트랜잭션 시작 전 상태로 환원

*용어

- TCL: 트랜잭션의 결과를 허용하거나 취소하는 목적으로 사용
- COMMIT : 모든 작업을 정상적으로 처리하겠다고 트랜잭션을 확정하는 명령어
- ROLLBACK(2020 실기 2회 기출): 트랜잭션의 실패로 작업을 취소하고, 이전 상태로 되돌리는 데이터 제어어
- CHECKPOINT: 트랜잭션을 저장하는 시기를 설정하는 명령어
- Trigger : 트랜잭션을 취소하는 이외의 조치를 명세할 필요가 있는 경우 메시지를 보내 어떤 값을 자동으로 갱신 하도록 프로시저를 가동시키는 방법

7) CRUD

* 데이터베이스의 기본 연산

- CREATE: 생성 (INSERT INTO)

- READ : 조회 (SELECT FROM)

- UPDATE : 갱신 (UPDATE SET)

- DELETE: 삭제 (DELETE FROM)

8) 11장 응용 소프트웨어 단답형 및 서술형 예상 내용

- * NoSQL (NOT Only SQL)
- 전통적인 RDBMS(관계형 데이터베이스 관리 시스템)와 달리 데이터 저장이 필요한 테이블 스키마가 필요하지 않고 Join 연산도 하지 않는 수평적 확장이 가능한 DBMS

* 온톨로지(단답형)

- 설계 시 개념, 속성, 관계를 컴퓨터가 이해할 수 있도록 서술

* 시맨틱 웹(단답형)

- 온폴로지를 이용하여 서비스 검색, 조합 등 기능들을 자동화하는 웹
- * 데이터 마이닝(2020 실기 1회 기출)
- 대규모로 저장된 데이터 안에서 체계적이고 자동적으로 규칙이나 패턴을 찾아내는 기술

* 빅데이터

- 주어진 비용과 시간을 초과한 페타바이트 크기의 정형 데이터

9) 네트워크

- 원하는 정보를 수신자에게 정확하게 전달하기 위한 인프라
- WAN : 광대역 네트워크로 전송거리가 넓고 라우팅 알고리즘이 필요한 네트워크
- LAN: 근거리 네트워크로 작은 지역을 커버하는 네트워크
- * OSI 7계층
- 파일 참고

OSI 7계층.hwp 0.06MB

- * 프로토콜: 이기종 시스템간 데이터 교환을 할 수 있도록 하는 표준화 통신 규약
- * 프로토콜의 기본 요소(2020 실기 1회 기출): 구문, 의미, 타이핑
- * 네트워크 프로토콜: 컴퓨터나 통신장비 사이에서 메시지를 교환하는 통신규약이나 규칙
- * TCP(서술형/단답형)
- 근거리 통신망이나 인터넷에서 신뢰성있는 전송을 수행하는 프로토콜
- 특징: 신뢰성 보장, 연결 지향적, 흐름제어, 혼잡제어
- * UDP(서술형/단답형)
- 비연결성이고 신뢰성이 없으며 순서화되지 않는 데이터그램 서비스를 제공하는 통신 프로토콜
- 특징 : 비 연결성, 비 신뢰성, 순서화되지 않은 데이터그램 서비스 제공, 단순 헤더

[네트워크관리사] - 네트워크관리사2급) TCP/UDP

- * IPv4
- 데이터 교환을 위해 32bit 주소체계를 갖는 네트워크 계층의 프로토콜
- 유니캐스트, 멀티캐스트, 브로드캐스트
- * IPv6

- 차세대 인터넷 프로토콜로 IPv4의 주소 자원 고갈, 보안성 등 문제점을 해결하기 위해 개발된 128bit 주소체계를 갖는 프로토콜
- 유니캐스트, 멀티캐스트, **애니캐스트**

* 패킷 스위칭

- 작은 블록의 패킷으로 데이터를 전송하며 전송하는 동안만 네트워크를 사용

* X.25(단답형)

- 두 단말장치가 패킷 통신망을 통해 원활한 패킷 전송을 하기 위한 프로토콜

* 프레임 릴레이

- ISDN을 사용하기 위한 프로토콜

* ATM(단답형)

- 비동기 전송모드인 광대역 전송에 사용되는 스위칭 기법

* 서킷 스위칭

- 네트워크 리소스를 특정 사용계층이 독점하여 통신하는 방식

10) 라우팅 프로토콜(단답형)

- * 거리 벡터 알고리즘
- 인접 라우터와 정보를 공유하여 목적지까지의 방향과 거리를 결정
- RIP : 자율 시스템(AS) 내에서 사용하는 거리 벡터 알고리즘을 기반으로 개발된 통신규약으로 최대 흡수를 15개로 제한한 라우팅 프로토콜
- IGRP: RIP의 문제점을 개선하기 위해 개발된 통신규약으로 RIP보다 대규모로 복잡한 통신망에서의 운용을 상정한 규격으로 되어 있으며, 거리 백터 라우팅 알고리즘을 채용하여 목적 통신망까지의 경로는 지연, 회성의 대역폭, 신뢰성 및 부하를 고려하여 결정하는 프로토콜

* 링크 상태 알고리즘

- 링크 정보를 모든 라우터에게 전달하여 최적의 경로를 구성
- OSPF
- BGP: 규모가 큰 네트워크를 상호 연결하는 알고리즘

- * 라우팅 프로토콜(Routing Protocol)
- 최종 목적지까지 패킷을 최소 비용 또는 최소 홉수를 알고리즘을 통해 적잘한 경로를 설정해주는 프로토콜

	RIP (Routing Information Protocol)	OSPF (Open Shortest Path First)
개념	AS(Autonomous System) 내에서 사용하는 거리벡터 알고리즘 에 기초 하여 개발된 내부 라우팅 프로토콜	RIP의 단점을 개선하기 위해 자신을 기준으로 하여 링크상태 알고리 즘 기반 으로 최단 경로를 찾는 라우팅 프로토콜
라우팅 테이블 전송 시기	일정주기(30초)	변화 발생시에만
최대 지원 네트워크 크기	15개	255개