

Pentru orice formulă φ și orice evaluări $e_1,e_2:V \to \{0,1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate ${m P}$: pentru orice formulă ${m arphi}$,

$$\varphi$$
 are proprietatea P ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \ \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Pentru orice formulă φ și orice evaluări $e_1,e_2:V \to \{0,1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

• $\varphi = (\neg \psi)$ și ψ satisface $\textbf{\textit{P}}$. Fie $e_1, e_2 : V \rightarrow \{0,1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând $\textbf{\textit{P}}$ pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

2

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

• $\varphi = (\psi \to \chi)$ și ψ, χ satisfac \boldsymbol{P} . Fie $e_1, e_2 : V \to \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\psi) \subseteq Var(\varphi)$ și $Var(\chi) \subseteq Var(\varphi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi) \cap Var(\chi)$. Așadar, aplicând \boldsymbol{P} pentru ψ și χ , obținem că $e_1^+(\psi) = e_2^+(\psi)$ și $e_1^+(\chi) = e_2^+(\chi)$. Rezultă că

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

3

Modele. Satisfiabilitate. Tautologii

 artheta Fie arphi o formulă.

Definiția 1.15

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $\triangleright \varphi$ este satisfiabilă dacă admite un model.
- ▶ Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- φ este tautologie dacă orice evaluare este model al lui φ . Notație: $\vDash \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 1.16

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Dem.: Exercitiu.

Propoziție

Există o mulțime numărabilă de formule φ a.î. atât φ cât și $\neg \varphi$ sunt satisfiabile.

Dem.: Demonstrăm că mulțimea $V = \{\varphi_n := v_n \mid n \in \mathbb{N}\} \subseteq Form$ satisface condiția din enunț. Fie $n \in \mathbb{N}$. Considerăm interpretările $e_1, e_2 : V \to \{0,1\}$ definite astfel

$$e_1(v_i) = \begin{cases} 1 & \text{dacă } i = n \\ \text{arbitrar} & \text{dacă } i \neq n \end{cases}, \quad e_2(v_i) = \begin{cases} 0 & \text{dacă } i = n \\ \text{arbitrar} & \text{dacă } i \neq n \end{cases}.$$

Atunci

$$e_1^+(\varphi_n) = e_1^+(v_n) = e_1(v_n) = 1,$$

deci $e_1 \vDash \varphi_n$. Pe de altă parte,

$$e_2^+(\neg \varphi_n) = e_2^+(\neg v_n) = \neg e_2^+(v_n) = \neg e_2(v_n) = \neg 0 = 1,$$

deci $e_2 \models \neg \varphi_n$.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 1.14.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k de astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

	x_1	<i>X</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	φ
	$\overline{e_1'(x_1)}$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(\varphi)$
	$e_2'(x_1)$	$e_2'(x_2)$		$e_2'(x_k)$		$e_2^{\prime +}(\varphi)$
	:	:	٠	:	·	:
	$e'_{2^k}(x_1)$	$e'_{2k}(x_2)$		$e'_{2k}(x_k)$		$\left e_{2^k}'^+(\varphi) \right $

Pentru orice i, $e'_i^+(\varphi)$ se definește similar cu Teorema 1.12

 φ este tautologie ddacă $e_i^{\prime+}(\varphi)=1$ pentru orice $i\in\{1,\ldots,2^k\}$.

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> ₂	$v_1 \wedge v_2$	$v_2 ightharpoonup (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

7

Tautologii

Definiția 1.17

Fie φ, ψ două formule. Spunem că

- ▶ φ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- φ și ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea *Form* a formulelor lui LP.

Propoziția 1.18

Fie φ, ψ formule. Atunci

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă ($\psi \models \varphi$ și $\varphi \models \psi$) ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercitiu.

8

Tautologii, consecințe semantice și echivalențe

Propoziția 1.19

Pentru orice formule φ, ψ, χ ,

terțul exclus	$\vDash \varphi \vee \neg \varphi$	(1)
modus ponens	$\varphi \wedge (\varphi \to \psi) \vDash \psi$	(2)
afirmarea concluziei	$\psi \vDash \varphi \to \psi$	(3)
contradicția	$\vDash \neg (\varphi \wedge \neg \varphi)$	(4)
dubla negație	$\varphi \sim \neg \neg \varphi$	(5)
contrapoziția	$\varphi \to \psi \sim \neg \psi \to \neg \varphi$	(6)
negarea premizei	$\neg \varphi \vDash \varphi \to \psi$	(7)
modus tollens	$\neg \psi \land (\varphi \to \psi) \vDash \neg \varphi$	(8)
zitivitatea implicatiei	$(\varphi \to \psi) \land (\psi \to \gamma) \vDash (\varphi \to \gamma)$	(9)

)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan
$$\varphi \lor \psi \sim \neg((\neg\varphi) \land (\neg\psi)) \qquad (10)$$

$$\varphi \land \psi \sim \neg((\neg\varphi) \lor (\neg\psi)) \qquad (11)$$
 exportarea și importarea
$$\varphi \rightarrow (\psi \rightarrow \chi) \sim \varphi \land \psi \rightarrow \chi \qquad (12)$$
 idempotența
$$\varphi \sim \varphi \land \varphi \sim \varphi \lor \varphi \qquad (13)$$
 slăbirea
$$\models \varphi \land \psi \rightarrow \varphi \qquad \models \varphi \rightarrow \varphi \lor \psi \qquad (14)$$
 comutativitatea
$$\varphi \land \psi \sim \psi \land \varphi \qquad \varphi \lor \psi \sim \psi \lor \varphi \qquad (15)$$
 asociativitatea
$$\varphi \land (\psi \land \chi) \sim (\varphi \land \psi) \land \chi \qquad (16)$$

$$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi \qquad (17)$$
 absorbția
$$\varphi \land (\varphi \lor \psi) \sim \varphi \qquad (18)$$

$$\varphi \land (\varphi \lor \psi) \sim \varphi \qquad (19)$$
 distributivitatea
$$\varphi \land (\psi \lor \chi) \sim (\varphi \land \psi) \lor (\varphi \land \chi) \qquad (20)$$

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi) \qquad (21)$$

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi) \qquad (22)$$

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi) \qquad (23)$$

$$\varphi \land \psi \to \chi \sim (\varphi \to \chi) \lor (\psi \to \chi) \qquad (24)$$

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi) \qquad (25)$$

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi) \qquad (26)$$

$$\neg \varphi \sim \varphi \to \neg \varphi \sim (\varphi \to \psi) \land (\varphi \to \neg \psi) \qquad (27)$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi) \qquad (28)$$

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi \qquad (29)$$

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi \qquad (30)$$

$$\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \qquad (31)$$

$$\vDash (\varphi \to \psi) \lor (\varphi \to \neg \psi) \qquad (32)$$

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \qquad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \qquad (34)$$

Dem.: Exercițiu.

Exemplu de demonstrație

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

Definitia 1.20

Pentru orice formule φ, χ, χ' , definim

$$\varphi_{\chi}(\chi')$$
 := expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

- $\varphi_{\varphi}(\chi') = \chi'.$
- ▶ Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie $\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$.

$$\lambda = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$$

Pentru orice formule $\varphi, \chi, \chi', \varphi_{\chi}(\chi')$ este de asemenea formulă.

Dem.: Demonstrăm prin inducție după formula φ . Avem următoarele cazuri:

• $\varphi = v \in V$. Atunci

$$v_{\chi}(\chi') = \begin{cases} \chi' & \text{dacă } \chi = v \\ v & \text{dacă } \chi \neq v. \end{cases}$$

Prin urmare, $v_{\chi}(\chi')$ este formulă.

- $\varphi = \neg \psi$ și $\psi_{\chi}(\chi')$ este formulă. Dacă χ nu apare în φ , atunci $\varphi_{\chi}(\chi') = \varphi$, deci este formulă. Dacă χ este subformulă a lui φ , atunci avem două cazuri:
 - (i) $\chi = \varphi$. Rezultă că $\varphi_{\varphi}(\chi') = \chi'$ este formulă.
 - (ii) χ este subformulă a lui ψ . Atunci $\varphi_{\chi}(\chi') = \neg \psi_{\chi}(\chi')$ este de asemenea formulă.

Substituția

- $\varphi = \psi \to \theta$ și $\psi_{\chi}(\chi')$, $\theta_{\chi}(\chi')$ sunt formule. Dacă χ nu apare în φ , atunci $\varphi_{\chi}(\chi') = \varphi$. Dacă χ este subformulă a lui φ , atunci avem două cazuri:
 - (i) $\chi = \varphi$. Rezultă că $\varphi_{\varphi}(\chi') = \chi'$.
 - (ii) χ este subformulă a lui ψ sau θ (e posibil sa apară atât în ψ cât și în θ). Atunci

$$\varphi_{\chi}(\chi') = \psi_{\chi}(\chi') \to \theta_{\chi}(\chi')$$

este de asemenea formulă.

Propoziția 1.22

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Dem.: Exercițiu.

Propoziția 1.22 poate fi aplicată pentru a arăta că o formulă este tautologie.

Exemplu:

Să se demonstreze că, pentru orice formule φ , ψ , formula $\theta = (\neg \varphi \lor \psi) \lor \neg (\varphi \to \psi)$ este tautologie.

Dem.: Conform (28), $\neg \varphi \lor \psi \sim \varphi \to \psi$. Aplicăm Propoziția 1.22 cu $\chi = \neg \varphi \lor \psi$ și $\chi' = \varphi \to \psi$ pentru a obține că $\theta \sim (\varphi \to \psi) \lor \neg (\varphi \to \psi)$. Pe de altă parte, $(\varphi \to \psi) \lor \neg (\varphi \to \psi)$ este tautologie, din (1). Prin urmare, θ este tautologie.

Fie $e: V \to \{0,1\}$ o evaluare și $v \in V$ o variabilă.

Notație

Pentru orice $a \in \{0,1\}$, definim evaluarea $e_{v \leftarrow a}: V \rightarrow \{0,1\}$ prin

$$e_{v \leftarrow a}(x) = egin{cases} e(x) & ext{daca } x
eq v \ a & ext{daca } x = v. \end{cases}$$

Propoziția 1.23

Fie θ o formulă și $a:=e^+(\theta)$. Atunci pentru orice formulă φ ,

$$(e_{v\leftarrow a})^+(\varphi)=e^+(\varphi_v(\theta)).$$

Dem.: Exercițiu suplimentar.

F10p02iţia 1.24

Pentru orice formule φ, ψ, θ și orice variabilă $v \in V$,

- (i) $\varphi \sim \psi$ implică $\varphi_{\nu}(\theta) \sim \psi_{\nu}(\theta)$.
- (ii) Dacă φ este tautologie atunci și $\varphi_{\nu}(\theta)$ este tautologie.
- (iii) Dacă φ este nesatisfiabilă, atunci și $\varphi_{\nu}(\theta)$ este nesatisfiabilă.

Dem.: Fie $e:V \to \{0,1\}$ o evaluare arbitrară și $a:=e^+(\theta)$.

Aplicând Propoziția 1.23, rezultă că $e^+(\varphi_v(\theta)) = (e_{v \leftarrow a})^+(\varphi)$ și $e^+(\psi_v(\theta)) = (e_{v \leftarrow a})^+(\psi)$.

- (i) Deoarece $\varphi \sim \psi$, avem că $(e_{v \leftarrow a})^+(\varphi) = (e_{v \leftarrow a})^+(\psi)$. Deci, $e^+(\varphi_v(\theta)) = e^+(\psi_v(\theta))$.
- (ii) Deoarece φ este tautologie, avem că $(e_{v \leftarrow a})^+(\varphi) = 1$. Deci, $e^+(\varphi_v(\theta)) = 1$.
- (iii) Deoarece φ este nesatisfiabilă, avem că $(e_{v \leftarrow a})^+(\varphi) = 0$. Deci, $e^+(\varphi_v(\theta)) = 0$.

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notații

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- φ este tautologie ddacă $\varphi \sim \top$.
- φ este nesatisfiabilă ddacă $\varphi \sim \bot$.

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \lor \ldots \lor \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge ... \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, ..., n\}$.
- $e^+(\varphi_1 \vee \ldots \vee \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 1.26

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercițiu.

Fie Γ o mulțime de formule.

Definiția 1.27

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulţime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

• $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Fie Γ, Δ mulțimi de formule.

Definiția 1.28

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \vDash \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 1.29

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notatie: $\Gamma \models \Delta$.
- ▶ Γ și Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

Următoarele rezultate colectează diverse proprietăți utile.

Observație

- $\psi \vDash \varphi$ ddacă $\{\psi\} \vDash \varphi$ ddacă $\{\psi\} \vDash \{\varphi\}$.
- $\psi \sim \varphi$ ddacă $\{\psi\} \sim \{\varphi\}$.

Propoziția 1.30

- (i) $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare $e: V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- (ii) $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.