BCA V SEMESTER [MAIN/A.T.K.T.] EXAMINATION FEBRUARY - 2022

LINEAR ALGEBRA AND GEOMETRY

[Max. Marks : 85] [Time : 3:00 Hrs.] [Min. Marks : 28]

Note: All THREE Sections are compulsory. Student should not write any thing on question paper. नोट: सभी तीन खण्ड अनिवार्य हैं। विद्यार्थी प्रश्न–पत्र पर कुछ न लिखें।

[Section - A]

This Section contains **Multiple Choice Questions**. Each question carries **1 Mark**. इस खण्ड में **बहुविकल्पीय प्रश्न** हैं। प्रत्येक प्रश्न **1 अंक** का है।

Q. 01 The order of ω in the group $(\{1, \omega, \omega^2\}, .)$ is समूह $(\{1, \omega, \omega^2\}, .)$ में ω की कोटि है -

a) 1

b) 2

c) 3

- **d)** 0
- **Q. 02** The set of vectors $\{\alpha, \beta\}$ is called linearly independent if सदिश $\{\alpha, \beta\}$ को रैखिकतः स्वतंत्र कहते हैं, यदि -

a) $a \alpha + b \beta = 0 \Rightarrow a = 0, b \neq 0$

b) $a \alpha + b \beta = 0 \Rightarrow a \neq 0, b = 0$

c) $a \alpha + b \beta = 0 \Rightarrow a = 0, b = 0$

d) $a \alpha + b \beta = 0 \Rightarrow a \neq 0, b \neq 0$

Q. 03 Set of eigen values of a matrix A is called -

a) Eigen polynomial

b) Spectrum

c) Eigen matrix

d) None of these

आव्यूह A के सभी आइगेन मूल्यों के समुच्चय को कहते हैं -

a) आइगेन बहुपद

b) स्पेक्ट्रम

c) आइगेन आव्यूह

d) उपरोक्त में से कोई नहीं

Q. 04 The equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{2z}{c}$ represents -

a) An ellipsoid

b) An elliptic paraboloid

c) A hyperboloid

d) None of these

समीकरण $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{2z}{c}$ निरूपित करता है –

a) एक दीर्घवृत्तज

b) एक दीर्घवृत्तीय परवलयज

c) एक अतिपरवलयज

d) उपरोक्त में से कोई नहीं

Q. 05 If the axis of the cone is z-axis and semi vertical angle is α , then the equation of right circular cone is -

यदि शंकु का अक्ष z-अक्ष हो और अर्द्ध शीर्ष कोण α हो तो लम्बवृत्तीय शंकु का समीकरण है -

a) $x^2 + y^2 = z^2 \tan^2 \alpha$

- **b)** $x^2 + y^2 \tan^2 \alpha = z^2$
- c) $x^2 \tan^2 \alpha + y^2 = z^2$

d) None of these

[Section - B]

This section contains **Short Answer Type Questions**. Each question carries **5 Marks**. इस खण्ड में **लघ्उत्तरीय प्रश्न** हैं। प्रत्येक प्रश्न **5 अंकों** का है।

Q. 1 Show that the set of all positive rational numbers forms an abelian group under composition * defined by a * b = ab/2

सिद्ध कीजिये कि सभी धन परिमेय संख्याओं का समुच्चय संक्रिया '*' के सापेक्ष एक आबेली समूह बनाता है जबकि संक्रिया '*' निम्न प्रकार से परिभाषित है a * b = ab/2

OR

Prove that if f is a homomorphism of a group G into group G', then Kernel K of f is a normal subgroup of G.

सिद्ध कीजिये कि यदि f समूह G का समूह G' में एक अन्तर्क्षीपी समाकारिता है तो f का कर्नेल K, G का एक प्रसामान्य उपसमूह होता है।

Q. 2 Examine whether the set of vectors (2, 3, -1) (-1, 4, -2) and (1, 18, -4) is linearly independent or dependent in $V_3(R)$.

जाँच कीजिये कि सिदशों (2, 3, -1) (-1, 4, -2) एवं (1, 18, -4) का समुच्चय सिदश समिष्ट $V_3(R)$ में रैखिकतः स्वतंत्र है या परतंत्र।

OR

Show that the function $T: V_2 \to V_2$ defined by T(x, y) = (2x + 3y, 3x - 4y) is a linear transformation.

सिद्ध कीजिये कि फलन $T: V_2 \to V_2$ जो कि निम्न प्रकार से परिभाषित है $T(x,y)=(2x+3y,\,3x-4y)$ एक रैखिक रूपानतरण है।

Q. 3 Let T be the linear operator on R^2 defined by T(x, y) = (4x - 2y, 2x + y). Compute the matrix of T relative to the basis $B = (\alpha_1, \alpha_2)$ where $\alpha_1 = (1, 1)$ and $\alpha_2 = (-1, 0)$

माना कि R^2 पर एक रैखिक संकारक है, जो T(x, y) = (4x - 2y, 2x + y) से परिभाषित है। आधार $B = \{\alpha_1 = (1, 1), \alpha_2 = (-1, 0)\}$ के सापेक्ष T के आव्यूह की संगणना कीजिये।

OR

Cont....

Let V_1 and V_2 be two vector spaces over field F and if $T:V_1\to V_2$ is one-one and onto linear transformation, then prove that $T^{-1}:V_2\to V_1$ is also linear.

मानलो V_1 और V_2 क्षेत्र F पर सदिश समिष्टियाँ हैं तथा रूपान्तरण $T:V_1\to V_2$ एकैकी आच्छादक रैखिक रूपान्तरण है तो सिद्ध कीजिये कि $T^{-1}:V_2\to V_1$ भी एक रैखिक रूपान्तरण होगा।

Q. 4 Find the condition that the plane lx + my + nz = p my touch the central conicoid $ax^2 + by^2 + cz^2 = 1$

वह प्रतिबंध ज्ञात कीजिये जब समतल lx + my + nz = p संकेन्द्र शंकवज $ax^2 + by^2 + cz^2 = 1$ का स्पर्श तल हो।

OR

Show that the plane x + 2y - 2z = 4 touches the paraboloid $3x^2 + 4y^2 = 23z$. Find the point of contact.

दर्शाइये कि समतल x + 2y - 2z = 4 परवलयज $3x^2 + 4y^2 = 23z$ को स्पर्श करता है और स्पर्श बिन्दु ज्ञात कीजिये।

Q. 5 Find the equation of the cone whose vertex is (0, 0, 3) and base is the circle $x^2 + y^2 = 4$; z = 0

उस शंकु का समीकरण ज्ञात कीजिये जिसका शीर्ष (0, 0, 3) और आधार वक्र, वृत्त $x^2 + y^2 = 4$; z = 0 है।

OR

Find the equation of the cylinder whose generators are parallel to the line

 $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and the base curve is $x^2 + 2y^2 = 1$, z = 0

उस बेलन का समीकरण ज्ञात कीजिये जिसके जनक रेखा $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ के समान्तर है तथा आधार वक्र $x^2 + 2y^2 = 1$, z = 0 है।

[Section - C]

This section contains **Essay Type Questions**. Each question carries **11 marks**. इस खण्ड में **दीर्घउत्तरीय प्रश्न** हैं। प्रत्येक प्रश्न **11 अंकों** का है।

Q. 6 Prove that: If G is a group and H be a non empty subset of G, then H is subgroup of G if and only if $a \in H$, $b \in H \Rightarrow ab^{-1} \in H$ where b^{-1} is the inverse of b in G.

सिद्ध कीजिये कि यदि G एक समूह है तथा H, G का एक अरिक्त उपसमुच्चय है तो H, G का उपसमूह होगा यदि और केवल यदि $a \in H, b \in H \Rightarrow ab^{-1} \in H$ जहां b^{-1} , $b \in H$ का G में प्रतिलोम अवयव है।

OR

P.T.O.

3 21551

Prove that: The order of each subgroup of a finite group is a divisor of the order of the group.

सिद्ध कीजिये कि किसी परिमित समूह के प्रत्येक उपसमूह की कोटि समूह की कोटि का भाजक होता है।

Q. 7 Prove that the necessary and sufficient condition for a non - empty subset W of a vector space V(F) to be a vector subspace of V is

 $a, b \in F \text{ and } \alpha, \beta \in W \Rightarrow a \alpha + b \beta \in W.$

सिद्ध कीजिये कि सदिश समष्टि V(F) के एक अरिक्त उपसमुच्चय W को V का एक उपसमष्टि होने के लिए आवश्यक एवं पर्याप्त प्रतिबंध है

 $a, b \in F$ तथा $\alpha, \beta \in W \Rightarrow a \alpha + b \beta \in W$.

OR

Prove that : The vector space V(F) is a direct sum of two subspaces W_1 and W_2 i.e. $V=W_1\oplus W_2$ if and only if $V=W_1+W_2$ and $W_1\cap W_2=\{\overrightarrow{0}\}$ सिद्ध कीजिये कि सदिश समध्ट V(F) दो सदिश उपसमध्टियों W_1 और W_2 का एक सरल योग है अर्थात $V=W_1\oplus W_2$ यदि और केवल यदि $V=W_1+W_2$ तथा $W_1\cap W_2=\{\overrightarrow{0}\}$ होगा।

Q. 8 Find the characteristic equation of the matrix A and verify that it is satisfied by A and hence obtain A^{-1} where आव्यूह A के आइगेन समीकरण को ज्ञात कीजिये और सत्यापित कीजिये कि यह A द्वारा संतुष्ट होता है और A^{-1} भी ज्ञात कीजिये जहाँ

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

OR

Determine the eigen values and the corresponding eigen vectors of the matrix A where

आव्यूह A के आइगन मानों और संगत आइगन सदिशों का निर्धारण कीजिये जहां

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

Q. 9 Find the equation of tangent planes to the ellipsoid $7x^2 + 5y^2 + 3z^2 = 60$ which pass through the line 7x + 10y = 30, 5y - 3z = 0 सरल रेखा 7x + 10y = 30, 5y - 3z = 0 से होकर जाने वाले दीर्घवृत्तज $7x^2 + 5y^2 + 3z^2 = 60$ के स्पर्शतलों के समीकरण ज्ञात कीजिये।

Cont....

OR

Show that six normal can be drawn to an ellipsoid from a given point. दर्शाइये कि किसी दिए गए बिन्दु से किसी दीर्घवृत्त पर छः अभिलंब खींचे जा सकते हैं।

Q. 10 Prove that the equation $2x^2 + 2y^2 + 7z^2 - 10yz - 10zx + 2x + 2y + 26z - 17 = 0$ represents a cone whose vertex is (2, 2, 1) सिद्ध कीजिये कि समीकरण $2x^2 + 2y^2 + 7z^2 - 10yz - 10zx + 2x + 2y + 26z - 17 = 0$ एक शंकु निरूपित करता है जिसका शीर्ष (2, 2, 1) है।

OR

Find the equation of right circular cylinder whose radius is 2 and axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ लम्ब वृत्तीय बेलन का समीकरण ज्ञात कीजिये जिसकी त्रिज्या 2 तथा अक्ष $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ रखता है।

____o___