A Detailed Proofs

▶ Lemma 37. If $x \ge y$, then $\mathbb{P}^{\sigma}(s)(\mathfrak{C}(a_1 \dots a_n, x)) \ge \mathbb{P}^{\sigma}(s)(\mathfrak{C}(a_1 \dots a_n, y))$.

Proof. If $x \geq y$, then

$$\mathfrak{C}(S \dots S, \{a_1\} \dots \{a_n\}, B_x^n) \supseteq \mathfrak{C}(S \dots S, \{a_1\} \dots \{a_n\}, B_y^n),$$

and the result then follows from monotonicity of probability measures.

Proof of Proposition 6. Clearly, if for all schedulers σ for V there exists a scheduler σ' for U such that $\mathbb{P}^{\sigma}(u_0)(C) \geq \mathbb{P}^{\sigma'}(v_0)(C)$ for all time-bounded cylinders C, then $U \leq_{\mathrm{ft}} V$ by taking C' = C. If $U \leq_{\mathrm{ft}} V$, then consider an arbitrary scheduler σ , and time-bounded cylinder $C = \mathfrak{C}(a_1 \ldots a_n, x)$. There exists a scheduler σ' and $x' \in \mathbb{R}_{\geq 0}$ such that $x \geq x'$ and $\mathbb{P}^{\sigma'}(u_0)(a_1 \ldots a_n, x') \geq \mathbb{P}^{\sigma}(v_0)(a_1 \ldots a_n, x)$. By monotonicity, $x \geq x'$ implies that $\mathbb{P}^{\sigma'}(u_0)(a_1 \ldots a_n, x) \geq \mathbb{P}^{\sigma'}(u_0)(a_1 \ldots a_n, x')$, and hence $\mathbb{P}^{\sigma'}(u_0)(C) \geq \mathbb{P}^{\sigma}(v_0)(C)$.

▶ **Proposition 38.** For any SMDP M, scheduler σ for M, and $s \in S$, we have

$$\mathbb{P}^{\sigma}(s)(\mathfrak{C}(S \dots S, \{a_1\} \dots \{a_n\}, R_1 \dots R_n))$$

$$= \sum_{s_n \in S} \dots \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \dots \tau^{\sigma}(s_{n-1}, a_n)(s_n)$$

$$\cdot \rho(s) \times \rho(s_1) \times \dots \times \rho(s_{n-1})(R_1 \times R_2 \times \dots \times R_n).$$

Proof. The proof is by induction on the length n of the cylinder. If the cylinder has length n = 1 then

$$\mathbb{P}^{\sigma}(s)(\mathfrak{C}(S, \{a_1\}, R_1)) = \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \cdot \rho(s)(R_1).$$

If the cylinder has length n = k + 1, then

$$\mathbb{P}^{\sigma}(s)(\mathfrak{C}(S \dots S, \{a_1\} \dots \{a_{k+1}, R_1 \dots R_{k+1}\}))$$

$$= \rho(s)(R_1) \cdot \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \cdot \\
\mathbb{P}^{\sigma}(s_1)(\mathfrak{C}(S \dots S, \{a_2\} \dots \{a_{k+1}\}, R_2 \dots R_{k+1}))$$

$$= \rho(s)(R_1) \cdot \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \qquad \text{(ind. hyp.)}$$

$$\cdot \sum_{s_{k+1} \in S} \dots \sum_{s_2 \in S} \tau^{\sigma}(s_1, a_2)(s_2) \dots \tau^{\sigma}(s_k, a_{k+1})(s_{k+1})$$

$$\cdot \rho(s_1) \times \dots \times \rho(s_{k+1})(R_2 \times \dots \times R_{k+1})$$

$$= \sum_{s_{k+1} \in S} \dots \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \dots \tau^{\sigma}(s_k, a_{k+1})(s_{k+1})$$

$$\cdot \rho(s) \times \rho(s_1) \times \dots \times \rho(s_{k+1})(R_1 \times \dots \times R_{k+1}).$$

Hence, for any Borel set $R^n = R_1 \times \cdots \times R_n \in \mathbb{R}^n_{>0}$, it makes sense to write

$$\mathbb{P}^{\sigma}(s)(\mathfrak{C}(S \dots S, \{a_1\} \dots \{a_n\}, R^n))$$

$$= \sum_{s_n \in S} \dots \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \dots \tau^{\sigma}(s_{n-1}, a_n)(s_n) \cdot \rho(s) \times \rho(s_1) \times \dots \times \rho(s_{n-1})(R^n)$$

$$= \mathbb{P}^{\sigma}(s)(\mathfrak{C}(S \dots S, \{a_1\} \dots \{a_n\}, R_1 \dots R_n)).$$

Proof of Proposition 7. By Proposition 38, we know that

$$\mathbb{P}^{\sigma}(s)(\mathfrak{C}(a_1 \dots a_n, x))$$

$$= \sum_{s_n \in S} \dots \sum_{s_1 \in S} \tau^{\sigma}(s, a_1)(s_1) \dots \tau^{\sigma}(s_{n-1}, a_n)(s_n)$$

$$\cdot \rho(s) \times \rho(s_1) \times \dots \times \rho(s_{n-1})(B_n^n).$$

Hence, if we can show that

$$\rho(s) \times \rho(s_1) \times \dots \times \rho(s_{n-1})(B_x^n) = (\rho(s) * \rho(s_1) * \dots * \rho(s_{n-1}))([0,x]),$$

the proof is done.

The proof now proceeds by induction on the length n of the time-bounded cylinder $\mathfrak{C}(a_1 \dots a_n, x)$. If n = 1, then

$$\rho(s)(B_x^1) = \rho(s)([0, x]).$$

If n = k + 1, then

$$\begin{split} &(\rho(s)\times\rho(s_1)\times\dots\times\rho(s_k))(B_x^{k+1})\\ &=\int_0^x(\rho(s_1)\times\dots\times\rho(s_k))(B_{x-t}^k)\;\rho(s)(\mathrm{d}t) \\ &=\int_0^x(\rho(s_1)\times\dots\times\rho(s_k))([0,x-t])\;\rho(s)(\mathrm{d}t) \\ &=(\rho(s)*(\rho(s_1)\times\dots*\rho(s_k)))([0,x]) \\ &=(\rho(s)*(\rho(s_1)\times\dots*\rho(s_k)))([0,x]) \\ &=(\rho(s)*\rho(s_1)\times\dots*\rho(s_k))([0,x]). \end{split} \tag{Fubini}$$

Proof of Lemma 13. Assume first that $\pi \in \Diamond_{\leq x}^M a$. Then there exists $i \in \mathbb{N}$ such that $\pi[\![i]\!] = a$ and $\pi[\![k]\!] \neq a$ for all k < i, and $\sum_{j=1}^i \pi \langle j \rangle \leq x$. By letting k = i-1, it follows that $\pi \in \mathfrak{C}(a_1 \ldots a_k a, x)$.

Next assume that $\pi \in \bigcup_{k \in \mathbb{N}_0} \bigcup_{(a_1, \dots, a_k) \in (L \setminus \{a\})^k} \mathfrak{C}(a_1 \dots, a_k a, x)$. Then there exists $k \in \mathbb{N}_0$ and $(a_1, \dots, a_k) \in (L \setminus \{a\})^k$ such that $\pi \in \mathfrak{C}(a_1 \dots a_k a, x)$. Now let i = k + 1. Then $i \in \mathbb{N}$, $\pi[\![i]\!] = a$, $\pi[\![k]\!] \neq a$ for all k < i, and $\sum_{j=1}^i \pi \langle j \rangle \leq x$, so $\pi \in \Diamond_{\leq x}^M a$.

Proof of Theorem 14. Let σ be an arbitrary scheduler for V. By Lemma 13, we have

$$\mathbb{P}^{\sigma}(v_0)(\lozenge_{\leq x}a) = \sum_{k \in \mathbb{N}_0} \sum_{(a_1, \dots, a_k) \in L^k} \mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(a_1 \dots a_k a, x))$$

since all the cylinders $\mathfrak{C}(a_1 \dots a_k a, x)$ are disjoint. Because $U \leq_{\mathrm{ft}} V$, we have that there exists a scheduler σ' for U such that

$$\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_k a, x)) \ge \mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(a_1 \dots a_k a, x))$$

for all k and cylinders $\mathfrak{C}(a_1 \dots a_k a, x)$. Hence we get

$$\sum_{k \in \mathbb{N}_0} \sum_{(a_1, \dots, a_k) \in L^k} \mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(a_1 \dots a_k a, x)) \leq \sum_{k \in \mathbb{N}_0} \sum_{(a_1, \dots, a_k) \in L^k} \mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_k a, x))$$
$$= \mathbb{P}^{\sigma'}(u_0)(\lozenge_{< x} a)$$

Proof of Theorem 18. Note first that $U \leq_{\mathrm{ft}} V$ if and only if for all σ there exists σ' such that $\mathbb{P}^{\sigma}(v_0)(C) \geq q$ implies $\mathbb{P}^{\sigma'}(u_0)(C) \geq q$ for all cylinders C and $q \in \mathbb{Q}_{\geq 0}$.

(\Longrightarrow) Assume that for all cylinders C, all $q \in \mathbb{Q}_{\geq 0}$, and all schedulers σ , there exists σ' such that $\mathbb{P}^{\sigma}(v_0)(C) \geq q$ implies $\mathbb{P}^{\sigma'}(u_0)(C) \geq q$. Assume that $V, v_0 \models \psi$. ψ must be of the form $\psi = \mathcal{P}_{\geq q}(\varphi)$ for some path formula φ . Then $\mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(\varphi)) \geq q$ for some scheduler σ . Hence, by assumption, there must exist a scheduler σ' such that $\mathbb{P}^{\sigma}(u_0)(\mathfrak{C}(\varphi)) \geq q$, which means that $U, u_0 \models \psi$.

 (\Leftarrow) Let $\mathfrak{C}(a_1\ldots a_n,x)$ be a cylinder and $q\in\mathbb{Q}_{\geq 0}$. Let σ be an arbitrary scheduler and assume that $\mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(a_1\ldots a_n,x))\geq q$. If x=0, then $\mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(a_1\ldots a_n,x))=0$, implying that q=0, and therefore it follows that $\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1\ldots a_n,x))\geq q$ for any scheduler σ' . If x>0, let $\varepsilon>0$, and let δ be given by right-continuity. Now choose $x_1,\ldots,x_n\in\mathbb{Q}_{\geq 0}$ such that $x_1+\cdots+x_n=x'$ and $x< x'< x+\delta$ and let $\varphi_\varepsilon=\langle a_1\rangle_{x_1}\ldots\langle a_n\rangle_{x_n}$. Then $\mathfrak{C}(\varphi_\varepsilon)=\mathfrak{C}(a_1\ldots a_n,x')$, and by monotonicity we have $\mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(\varphi_\varepsilon))\geq \mathbb{P}^{\sigma}(v_0)(\mathfrak{C}(a_1\ldots a_n,x))\geq q$. Therefore we get $V,v_0\models P_{\geq q}(\varphi_\varepsilon)$, implying by assumption that $U,u_0\models P_{\geq q}(\varphi_\varepsilon)$, and hence there exists σ' such that $\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(\varphi_\varepsilon))\geq q$. By right-continuity, we have

$$|\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(\varphi_{\varepsilon})) - \mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_n, x))| < \varepsilon. \tag{1}$$

Now assume towards a contradiction that $\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_n, x)) < q$. Then there exists a $q' \in \mathbb{Q}_{\geq 0}$ such that $\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_n, x)) < q' < q$. Pick an $\varepsilon' > 0$ such that $\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_n, x)) < q' < q' + \varepsilon' < q \leq \mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(\varphi_{\varepsilon'}))$. Then $|\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(\varphi_{\varepsilon'})) - \mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_n, x))| > q' + \varepsilon' - q' > 0$, contradicting (1). Hence we conclude that $\mathbb{P}^{\sigma'}(u_0)(\mathfrak{C}(a_1 \dots a_n, x)) \geq q$.

Proof of Lemma 22. Since there are $|S_U| \cdot |S_V|$ ways of choosing a pair $(u_i, v_j) \in S_U \times S_V$ of states from U and V, if we pair the states of π_U and π_V such that we get the pairs $(\pi_U[1], \pi_V[1]), (\pi_U[2], \pi_V[2]), \ldots, (\pi_U[n], \pi_V[n]),$ there must be two of these pairs that are the same because $n > |S_U| \cdot |S_V|$. Hence we get states $\pi_U[i] = \pi_U[j]$ and $\pi_V[i] = \pi_V[j]$ with $i < j \le n$. It also follows that i and j can be chosen so that $i < j \le |S_U| \cdot |S_V|$, because otherwise we would have $j - i > |S_U| \cdot |S_V|$ different pairs $(\pi_U[i], \pi_V[i]), (\pi_U[i+1], \pi_V[i+1]), \ldots, (\pi_U[j], \pi_V[j]),$ contradicting the fact that there are only $|S_U| \cdot |S_V|$ such different pairs.

Proof of Theorem 23. Because we are considering a singleton set L as transition labels, there is only one possible scheduler, and hence we will omit discussions of schedulers.

Let $C = \mathfrak{C}(a_1 \dots a_k, x)$ be a cylinder of length $k > |S_U| \cdot |S_V|$. Because U and V have deterministic Markov kernels, there will exist some paths π_U in U and π_V in V of length k such that

$$\mathbb{P}(u_0)(C) = (\rho_U(\pi_U[1]) * \cdots * \rho_U(\pi_U[k]))([0,x])$$

and

$$\mathbb{P}(v_0)(C) = (\rho_V(\pi_V[1]) * \cdots * \rho_V(\pi_V[k]))([0, x]).$$

By Lemma 22, there must be some index $i < j \le |S_U| \cdot |S_V|$ such that $\pi_U[i] = \pi_U[j]$ and $\pi_V[i] = \pi_V[j]$. For convenience, let $u_i = \pi_U[i]$, $v_i = \pi_V[i]$, and $\rho_M^{m,n} = (\rho(\pi_M[m]) * \cdots * \rho(\pi_M[n]))$. This means that we can split π_U into several parts, each of length less than or equal to $|S_U| \cdot |S_V|$, and all starting in either $\pi_U[1]$ or u_i :

$$(\rho_U(\pi_U[1]) * \cdots * \rho_U(\pi_U[k]))([0,x]) = (\rho_U^{1,i-1} * \rho_U^{i,j-1} * \cdots * \rho_U^{i,j-1} * \rho_U^{i,k})([0,x])$$

and

$$(\rho_V(\pi_V[1]) * \cdots * \rho_V(\pi_V[k]))([0,x]) = (\rho_V^{1,i-1} * \rho_V^{i,j-1} * \cdots * \rho_V^{i,j-1} * \rho_V^{i,k})([0,x]).$$

There must exist cylinders C_1 , C_2 , and C_3 such that

$$\mathbb{P}(u_0)(C_1) = \rho_U^{1,i-1}([0,x]) \text{ and } \mathbb{P}(v_0)(C_1) = \rho_V^{1,i-1}([0,x]),$$

$$\mathbb{P}(u_i)(C_2) = \rho_U^{i,j-1}([0,x]) \text{ and } \mathbb{P}(v_i)(C_2) = \rho_V^{i,j-1}([0,x]),$$

and

$$\mathbb{P}(u_i)(C_3) = \rho_U^{i,k}([0,x]) \text{ and } \mathbb{P}(v_i)(C_3) = \rho_U^{i,k}([0,x]).$$

Since u_i and v_i are recurrent states, we know that

$$\mathbb{P}(u_0)(C_1) \ge \mathbb{P}(v_0)(C_1),$$

$$\mathbb{P}(u_i)(C_2) \ge \mathbb{P}(v_i)(C_2),$$

and

$$\mathbb{P}(u_i)(C_3) \geq \mathbb{P}(v_i)(C_3).$$

Hence it follows that $\mathbb{P}(u_0)(C) \geq \mathbb{P}(v_0)(C)$, and therefore $U \leq_{\text{ft}} V$.

Proof of Theorem 24. By Theorem 23, it suffices to decide whether $\mathbb{P}(u)(C) \geq \mathbb{P}(v)(C)$ for the initial states, all recurrent states, and all cylinders of length $k \leq |S_U| \cdot |S_V|$. Since L is a singleton and U and V have deterministic Markov kernels, there exist paths π_U in U and π_V in V such that

$$\mathbb{P}(u)(C) = (\rho_U(\pi_U[1]) * \cdots * \rho_U(\pi_U[n]))([0,x])$$

and

$$\mathbb{P}(v)(C) = (\rho_V(\pi_V[1]) * \cdots * \rho_V(\pi_V[n]))([0, x]).$$

Hence the inequality is decidable by assumption, and since are only finitely many of these, this is decidable.

Proof of Theorem 31. Let $\mathfrak{C}(a_1 \ldots a_n, x)$ be an arbitrary time-bounded cylinder, and let $\sigma_{V,W'}$ be an arbitrary scheduler for $V \parallel_{\star} W'$. Because $(U,W) \lesssim_{\star} (V,W')$, there exists a

scheduler σ_V for V and a path π such that

$$\mathbb{P}^{\sigma_{V,W'}}(v_0 \parallel_{\star} w'_0)(\mathfrak{C}(a_1 \dots a_n, x)) \\
= \tau^{\sigma_{V,W'}}(\pi[1], a_1)(\pi[2]) \cdots \tau^{\sigma_{V,W'}}(\pi[n], a_n)(\pi[n+1]) \qquad (\text{det. Markov kernel}) \\
\cdot (\rho(\pi[1]) * \cdots * \rho(\pi[n]))([0, x]) \\
\leq \tau_V^{\sigma_V}(\pi_V[1], a_1)(\pi_V[2]) \cdots \tau_V^{\sigma_V}(\pi_V[n], a_n)(\pi[n+1]) \qquad (\text{def. 30}) \\
\cdot (\rho_V(\pi_V[1]) * \cdots * \rho_V(\pi_V[n]))([0, x]) \\
\leq \sum_{\pi \in \Pi_{n+1}[v_0]} \tau_V^{\sigma_V}(\pi[1], a_1)(\pi[2]) \cdots \tau_V^{\sigma_V}(\pi[n], a_n)(\pi[n+1]) \\
\cdot (\rho_V(\pi[1]) * \cdots * \rho_V(\pi[n]))([0, x]) \\
= \mathbb{P}^{\sigma_V}(v_0)(\mathfrak{C}(a_1 \dots a_n, x)),$$

Since $U \leq_{\text{ft}} V$, there must exist some scheduler σ_U for U such that

$$\mathbb{P}^{\sigma_V}(v_0)(\mathfrak{C}(a_1 \dots a_n, x))) \leq \mathbb{P}^{\sigma_U}(u_0)(\mathfrak{C}(a_1 \dots a_n, x)).$$

Again, since $(U, W) \lesssim_{\star} (V, W')$, there exists a scheduler $\sigma_{U,W}$ for $U \parallel_{\star} W$ such that

$$\mathbb{P}^{\sigma_{U}}(u_{0})(\mathfrak{C}(a_{1} \dots a_{n}, x))
= \sum_{\pi \in \Pi_{n+1}[u_{0}]} \tau_{U}^{\sigma_{U}}(\pi[1], a_{1})(\pi[2]) \cdots \tau_{U}^{\sigma_{U}}(\pi[n], a_{n})(\pi[n+1])
\cdot (\rho_{U}(\pi[1]) * \cdots * \rho_{U}(\pi[n]))([0, x])
\leq \sum_{\pi_{W} \in \Pi_{n+1}[w_{0}]} \sum_{\pi \in \Pi_{n+1}[u_{0}]} \tau_{U}^{\sigma_{U}}(\pi[1], a_{1})(\pi[2]) \cdots \tau_{U}^{\sigma_{U}}(\pi[n], a_{n})(\pi[n+1])
\cdot (\rho_{U}(\pi[1]) * \cdots * \rho_{U}(\pi[n]))([0, x])
\leq \sum_{\pi \in \Pi_{n+1}[u_{0}|_{*}w_{0}]} \tau^{\sigma_{U,W}}(\pi[1], a_{1})([2]) \cdots \tau^{\sigma_{U,W}}([n], a_{n})([n+1])$$

$$\cdot (\rho(\pi[1]) * \cdots * \rho(\pi[n]))([0, x])
= \mathbb{P}^{\sigma_{U,W}}(u_{0}|_{*}w_{0})(\mathfrak{C}(a_{1} \dots a_{n}, x)).$$

Proof of Lemma 35. Assume that $(U, W) \leq_{\star}^{m} (V, W')$. Then $(U, W) \leq_{\star}^{k} (V, W')$ for all $k \leq m$. Hence it remains to show that $(U, W) \leq_{\star}^{k} (V, W')$ for all k > m.

Let k > m and consider two state paths $\pi_U = u_1 u_2 \dots u_k$ and $\pi_W = w_1 w_2 \dots w_k$ of U and W, respectively, both of length k. By Lemma 22 there must exist $i < j \le |S_U| \cdot |S_W|$ such that $u_i = u_j$ and $w_i = w_j$. Since there exists a state path from u_1 to u_i , it must be possible to reach this state in less than $|S_U|$ steps, and likewise for W. Hence there must exist $l \le \max\{|S_U|, |S_W|\}$, and state paths $u_1 u_2' \dots u_l' u_i u_{i+1} \dots u_j$ and $w_1 w_2' \dots w_l' w_i w_{i+1} \dots w_j$ of length $l + (j-i) \le \max\{|S_U|, |S_W|\} + |S_U| \cdot |S_W| \le m$. Hence we know that the conditions of Definition 32 are satisfied for $u_i \dots u_j$ and $w_i \dots w_j$. By removing the states $u_{i+1} \dots u_j$ and $w_{i+1} \dots w_j$ from π_U and π_W we end up with two new state paths π_U' and π_W' of length k' = k - (j-i). We can keep doing this as long as k' > m, so at some point we must end up with state paths π_U^* and π_W^* of length $k^* \le m$, for which the conditions of Definition 32 are satisfied by assumption, and hence they are satisfied for all of π_U and π_W . The same argument can be applied to two state paths π_V and π_W' of V and W', so we conclude that $(U, W) \le_* (V, W')$.

Proof of Theorem 36. Note first of all that since L and W' are finite, it is decidable whether W' has a deterministic Markov kernel by looking at all the states. By Lemma 35, it suffices to check whether $(U,W) \leq_{\star}^{m} (V,W')$ where $m = \max\{|S_{U}| \cdot |S_{W}|, |S_{V}| \cdot |S_{W'}|\} + \max\{|S_{U}|, |S_{V}|, |S_{W}|, |S_{W'}|\}$. This can be done by exploiting the decidability of the first-order theory of the reals in the following way. Since L is finite and U, V, W, and W' are all finite, there are finitely many state paths $\pi_{U} \in \Pi_{m}[u_{0}], \pi_{V} \in \Pi_{m}[v_{0}], \pi_{W} \in \Pi_{m}[w_{0}],$ and $\pi_{W'} \in \Pi_{m}[w'_{0}]$. Because of this, and since the sets $\{x \in \mathbb{R}_{\geq 0} \mid F_{\rho(\pi_{U}[i])}, \pi_{W}[i])(x) \geq F_{\rho(\pi_{U}[i])}(x)\}$ and $\{x \in \mathbb{R}_{\geq 0} \mid F_{\rho_{V}}, \pi_{V}[i])(x) \geq F_{\rho(\pi_{V}[i])}, \pi_{W'}[i]}$, which we need to check for the first condition, were assumed to be semialgebraic, it is possible to express the conditions of Definition 32 in the first-order theory of the reals, using finitely many quantifiers and inequalities. Since the first-order theory of the reals is decidable, the truth value of the resulting formula is decidable.