MAT-266: Distribución normal multivariada

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Recordatorio 1:

Una variable aleatoria (uni-dimensional) Z tiene distribución normal (univariada) con media cera y varianza uno, si su pdf¹ es de la forma:

$$f(z) = (2\pi)^{-1/2} \exp(-\frac{1}{2}z^2), \qquad z \in \mathbb{R},$$

en cuyo caso escribimos $Z \sim N(0,1)$. Más generalmente,

$$Y \sim \mathsf{N}(\mu, \sigma^2) \iff Y \stackrel{\mathsf{d}}{=} \mu + \sigma Z, \quad Z \sim \mathsf{N}(0, 1).$$

donde $\mu \in \mathbb{R}$ es la media, mientras que $\sigma^2 \geq 0$ representa la varianza.

Recordatorio 2:

Si $Y \sim N(\mu, \sigma^2)$, entonces su función característica adopta la forma:

$$\varphi(h) = \exp(ih\mu - \frac{1}{2}\sigma^2h^2), \qquad h \in \mathbb{R}.$$

 $[\]overline{^1}$ En ocasiones escribimos $f(z)=\phi(z)$ para denotar la densidad de $Z\sim {\sf N}(0,1).$

Definición 1 (Distribución normal multivariada):

Sea X vector aleatorio p-dimensional. Se dice que X tiene distribución normal multivariada con vector de medias $\mu \in \mathbb{R}^p$ y matriz de covarianza $\Sigma \geq 0$ si y sólo si,

$$Y = \mathbf{t}^{\top} \mathbf{X} \sim \mathsf{N}_1(\mu_Y, \sigma_Y^2), \quad \text{para todo } \mathbf{t} \in \mathbb{R}^p,$$

y anotamos $oldsymbol{X} \sim \mathsf{N}_p(oldsymbol{\mu}, oldsymbol{\Sigma}).$

Observación:

En la definición anterior no se ha hecho supuestos sobre la independencia de las componentes de \boldsymbol{X} .

Resultado 1 (Transformación afín):

Suponga que $X \sim \mathsf{N}_p(\mu, \Sigma)$ y considere la transformación Y = AX + b donde $A \in \mathbb{R}^{m \times p}$ con $\mathrm{rg}(A) = m$ y $b \in \mathbb{R}^m$. Entonces

$$m{Y} \sim \mathsf{N}_m(m{A}m{\mu} + m{b}, m{A}m{\Sigma}m{A}^{ op}).$$

Demostración:

Sea $oldsymbol{Y} = oldsymbol{A} oldsymbol{X} + oldsymbol{b}$ y note que

$$\boldsymbol{t}^{\top}\boldsymbol{Y} = \boldsymbol{t}^{\top}\boldsymbol{A}\boldsymbol{X} + \boldsymbol{t}^{\top}\boldsymbol{b} = (\boldsymbol{A}^{\top}\boldsymbol{t})^{\top}\boldsymbol{X} + \boldsymbol{t}^{\top}\boldsymbol{b} = \boldsymbol{h}^{\top}\boldsymbol{X} + c,$$

por la Definición 1 tenemos que $h^{\top}X$ es normal y como c es una constante, sigue que $t^{\top}Y$ tiene distribución normal multivariada.

Resultado 2 (Función característica):

Si $m{X} \sim \mathsf{N}_p(m{\mu}, m{\Sigma})$, entonces la función característica de $m{X}$ es dada por

$$\varphi(t) = \exp\left(it^{\top} \mu - \frac{1}{2}t^{\top} \Sigma t\right).$$

Demostración:

Sea Σ matriz de covarianza $p \times p$ semidefinida positiva de rango r y sea Z_1, \dots, Z_r variables aleatorias IID N(0,1). Entonces el vector $\mathbf{Z} = (Z_1, \dots, Z_r)^{\top}$ tiene función característica

$$\varphi_Z(\boldsymbol{t}) = \mathsf{E}\{\exp(i\boldsymbol{t}^{\top}\boldsymbol{Z})\} = \prod_{j=1}^r \mathsf{E}\{\exp(it_jZ_j)\}$$
$$= \prod_{j=1}^r \exp\left(-\frac{1}{2}t_j^2\right) = \exp\left(-\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{t}\right). \tag{1}$$

Considere

$$X = \mu + BZ$$

donde $B\in\mathbb{R}^{p imes r}$ con $\mathrm{rg}(B)=r$, tal que $\Sigma=BB^{ op}$ y $\mu\in\mathbb{R}^p$. Entonces X tiene función característica

$$\begin{split} \varphi_X(\boldsymbol{t}) &= \mathsf{E}\{\exp(i\boldsymbol{t}^\top\boldsymbol{X})\} = \mathsf{E}\{\exp(i\boldsymbol{t}^\top(\boldsymbol{\mu} + \boldsymbol{B}\boldsymbol{Z}))\} \\ &= \exp(i\boldsymbol{t}^\top\boldsymbol{\mu})\,\mathsf{E}\{\exp(i\boldsymbol{t}^\top\boldsymbol{B}\boldsymbol{Z})\} = \exp(i\boldsymbol{t}^\top\boldsymbol{\mu})\varphi_Z(\boldsymbol{h}), \quad \boldsymbol{h} = \boldsymbol{B}^\top\boldsymbol{t} \\ &= \exp(i\boldsymbol{t}^\top\boldsymbol{\mu})\exp(-\frac{1}{2}\boldsymbol{t}^\top\boldsymbol{B}\boldsymbol{B}^\top\boldsymbol{t}) = \exp(i\boldsymbol{t}^\top\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^\top\boldsymbol{\Sigma}\boldsymbol{t}). \end{split}$$

Tarea:

Mostrar el Resultado 1 usando la función característica.

Resultado 3:

Si $Z \sim N_p(\mathbf{0}, I)$. Entonces

$$\mathsf{E}(\boldsymbol{Z}) = \boldsymbol{0}, \qquad \mathsf{Cov}(\boldsymbol{Z}) = \boldsymbol{I}.$$

Demostración:

Para mostrar el resultado, se obtendrá

$$\mathsf{E}(\boldsymbol{Z}) = i^{-1} \frac{\partial \varphi(\boldsymbol{t})}{\partial \boldsymbol{t}} \Big|_{\boldsymbol{t} = \boldsymbol{0}}, \qquad \mathsf{E}(\boldsymbol{Z}\boldsymbol{Z}^\top) = i^{-2} \frac{\partial^2 \varphi(\boldsymbol{t})}{\partial \boldsymbol{t} \partial \boldsymbol{t}^\top} \Big|_{\boldsymbol{t} = \boldsymbol{0}}.$$

Sea Z_1, \ldots, Z_n variables aleatorias IID N(0,1). Entonces por (1), tenemos

$$\varphi_Z(\mathbf{t}) = \exp(-\frac{1}{2}||\mathbf{t}||^2), \qquad \mathbf{t} \in \mathbb{R}^n.$$

Tenemos,²

$$\begin{split} \operatorname{d}\varphi_Z(\boldsymbol{t}) &= \exp(-\tfrac{1}{2}\|\boldsymbol{t}\|^2) \cdot (-\tfrac{1}{2}\operatorname{d}\|\boldsymbol{t}\|^2) = -\exp(-\tfrac{1}{2}\|\boldsymbol{t}\|^2)\boldsymbol{t}^\top\operatorname{d}\boldsymbol{t} \\ &= -\varphi_Z(\boldsymbol{t})\boldsymbol{t}^\top\operatorname{d}\boldsymbol{t}. \end{split}$$

У

$$\begin{split} \mathsf{d}^2\,\varphi_Z(t) &= -\,\mathsf{d}\varphi_Z(t)t^\top\,\mathsf{d}t - \varphi_Z(t)(\mathsf{d}t)^\top\,\mathsf{d}t = \varphi_Z(t)(\mathsf{d}t)^\top tt^\top\,\mathsf{d}t - \varphi_Z(t)(\mathsf{d}t)^\top\,\mathsf{d}t \\ &= \varphi_Z(t)(\mathsf{d}t)^\top (tt^\top - I)\,\mathsf{d}t, \end{split}$$

de ahí que

$$\frac{\partial \varphi_Z(\boldsymbol{t})}{\partial \boldsymbol{t}} = -\varphi_Z(\boldsymbol{t})\boldsymbol{t}, \qquad \frac{\partial^2 \varphi_Z(\boldsymbol{t})}{\partial \boldsymbol{t} \, \partial \boldsymbol{t}^\top} = \varphi_Z(\boldsymbol{t})(\boldsymbol{t}\boldsymbol{t}^\top - \boldsymbol{I}).$$

Evaluando en t=0 y ponderando de forma apropiada, sigue que

$$\mathsf{E}(\boldsymbol{Z}) = i^{-1} \frac{\partial \varphi_{\boldsymbol{Z}}(\boldsymbol{t})}{\partial \boldsymbol{t}} \Big|_{\boldsymbol{t}=0} = \boldsymbol{0}, \qquad \mathsf{E}(\boldsymbol{Z}\boldsymbol{Z}^\top) = i^{-2} \frac{\partial^2 \varphi_{\boldsymbol{Z}}(\boldsymbol{t})}{\partial \boldsymbol{t} \partial \boldsymbol{t}^\top} \Big|_{\boldsymbol{t}=0} = \boldsymbol{I} = \mathsf{Cov}(\boldsymbol{Z}).$$

EX UMBRA EN SOLEM

 $^{^2}$ Evidentemente d $\|t\|^2 = (\mathrm{d}\,t)^{ op}t + t^{ op}\,\mathrm{d}\,t = 2t^{ op}\,\mathrm{d}\,t.$

Observación:

Sea

$$X = \mu + BZ$$
, $Z \sim N_p(0, I)$,

con $oldsymbol{\Sigma} = BB^ op$ con B matriz de rango completo. Por los Resultados 1 y 3, sigue que

$$oldsymbol{X} \sim \mathsf{N}_p(oldsymbol{\mu}, oldsymbol{\Sigma}), \qquad oldsymbol{\Sigma} \geq oldsymbol{0}.$$

Además,

$$\mathsf{E}(X) = \mu + B\,\mathsf{E}(Z) = \mu$$
 $\mathsf{Cov}(X) = \mathsf{Cov}(\mu + BZ) = B\,\mathsf{Cov}(Z)B^ op = \Sigma.$

Resultado 4:

Si $X \sim \mathsf{N}_p(\mu, \Sigma)$, entonces la distribución marginal de cualquier subconjunto de k (< p) componentes de X es normal k-variada.

Demostración:

Considere la siguiente partición:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$
 (2)

donde X_1 y μ_1 son vectores $k \times 1$ y Σ_{11} es $k \times k$. Aplicando el Resultado 1 con

$$A = (I_k, \mathbf{0}) \in \mathbb{R}^{k \times p}$$
 y $b = \mathbf{0}$,

sigue inmediatamente que $\boldsymbol{X}_1 \sim \mathsf{N}_k(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}).$

Observación

La inversa del Resultado 4, no es verdad en genera

Resultado 4:

Si $X \sim \mathsf{N}_p(\mu, \Sigma)$, entonces la distribución marginal de cualquier subconjunto de k (< p) componentes de X es normal k-variada.

Demostración:

Considere la siguiente partición:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$
 (2)

donde X_1 y μ_1 son vectores $k \times 1$ y Σ_{11} es $k \times k$. Aplicando el Resultado 1 con

$$A = (I_k, \mathbf{0}) \in \mathbb{R}^{k \times p}$$
 y $b = \mathbf{0}$,

sigue inmediatamente que $X_1 \sim N_k(\mu_1, \Sigma_{11})$.

Observación:

La inversa del Resultado 4, no es verdad en general.

Resultado 5:

Si $X \sim \mathsf{N}_p(\mu, \Sigma)$ y X, μ y Σ son particionadas como en la Ecuación (2). Entonces los vectores X_1 y X_2 son independientes sólo si $\Sigma_{12} = 0$.

Demostración:

Note que $\mathsf{Cov}(\boldsymbol{X}_1,\boldsymbol{X}_2) = \boldsymbol{\Sigma}_{12}$, así la independencia entre \boldsymbol{X}_1 y \boldsymbol{X}_2 implica que

$$\Sigma_{12} = 0.$$

Suponga ahora que $\Sigma_{12}=0$. Entonces la función característica

$$\begin{split} \varphi_X(t) &= \exp(it^\top \mu - \frac{1}{2}t^\top \Sigma t) \\ &= \exp(it^\top_1 \mu_1 + it^\top_2 \mu_2 - \frac{1}{2}t^\top_1 \Sigma_{11}t_1 - \frac{1}{2}t^\top_2 \Sigma_{22}t_2) \\ &= \exp(it^\top_1 \mu_1 - \frac{1}{2}t^\top_1 \Sigma_{11}t_1) \exp(it^\top_2 \mu_2 - \frac{1}{2}t^\top_2 \Sigma_{22}t_2) \\ &= \varphi_{X_1}(t_1)\varphi_{X_2}(t_2), \end{split}$$

es decir, $m{X}_1 \sim \mathsf{N}_k(m{\mu}_1, m{\Sigma}_{11})$ es independiente de $m{X}_2 \sim \mathsf{N}_{p-k}(m{\mu}_2, m{\Sigma}_{22})$.

Resultado 6 (Función de densidad):

Si $X \sim \mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$ y $\pmb{\Sigma}$ es definida positiva, entonces la densidad de X asume la forma

$$f_X(x) = |2\pi \Sigma|^{-1/2} \exp\{-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\}, \qquad x \in \mathbb{R}^p.$$

Demostración:

Sea Z_1,\dots,Z_p variables aleatorias IID N(0,1). Entonces la densidad conjunta de ${m Z}=(Z_1,\dots,Z_p)^{ op}$ es

$$f_Z(\mathbf{z}) = \prod_{i=1}^p (2\pi)^{-1/2} \exp(-z_i^2/2) = (2\pi)^{-p/2} \exp(-\frac{1}{2} ||\mathbf{z}||^2).$$

Considere $X=\mu+BZ$ con $\mu\in\mathbb{R}^p$ y $\Sigma=BB^{\top}$, con B matriz de rango completo. Entonces, tenemos la transformación inversa

$$Z = g^{-1}(X) = B^{-1}(X - \mu),$$

De este modo,

$$dZ = dg^{-1}(X) = B^{-1} dX,$$

con matriz Jacobiana D $g^{-1}(X) = B^{-1}$, como

$$|Dg^{-1}(X)|_{+} = |B|^{-1} = |BB^{\top}|^{-1/2},$$

obtenemos

$$\begin{split} f_X(\boldsymbol{x}) &= |\operatorname{D} \boldsymbol{g}^{-1}(\boldsymbol{x})|_+ f_Z(\boldsymbol{g}^{-1}(\boldsymbol{x})) \\ &= (2\pi)^{-p/2} |\boldsymbol{B} \boldsymbol{B}^\top|^{-1/2} \exp\{\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{B}^{-\top} \boldsymbol{B}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\}, \end{split}$$

notando que $\mathbf{\Sigma}^{-1} = (\mathbf{B}\mathbf{B}^{ op}) = \mathbf{B}^{- op}\mathbf{B}^{-1}$ sigue el resultado deseado.

Ejemplo:

Sea $oldsymbol{X} \sim \mathsf{N}_2(\mathbf{0}, oldsymbol{\Sigma})$ donde

$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}, \quad -1 < \rho < 1.$$

En cuyo caso, la función de densidad es dada por:

$$f(\boldsymbol{x}) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\Big\{-\frac{1}{2(1-\rho^2)}(x_1^2 + x_2^2 - 2\rho x_1 x_2)\Big\}.$$

A continuación se presenta la función de densidad para los casos $\rho=0.0, 0.4$ y 0.8.

Observación:

Es fácil notar que la función de densidad es constante sobre el elipsoide

$$(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = \lambda,$$

en \mathbb{R}^p para todo $\lambda>0$. Este elipsoide tiene centro μ , mientras que Σ determina su forma y orientación. Además, la variable aleatoria

$$(\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}^{\top} \boldsymbol{Z} = \sum_{i=1}^{p} Z_i^2,$$
 (3)

sigue una distribución chi-cuadrado con p grados de libertad y la cantidad

$$D = \{ (\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) \}^{1/2},$$

se conoce como distancia de Mahalanobis 3 de X a μ .

 $[{]f 3}$ En ocasiones, decimos que $D^2 = ({m X} - {m \mu})^{ op} {m \Sigma}^{-1} ({m X} - {m \mu})$ es la 'distancia' de Mahalanobis.

Resultado 7:

Sea $X \sim \mathsf{N}_p(\mu, \Sigma)$ y particione X, μ y Σ como:

$$m{X} = egin{pmatrix} m{X}_1 \\ m{X}_2 \end{pmatrix}, \qquad m{\mu} = egin{pmatrix} m{\mu}_1 \\ m{\mu}_2 \end{pmatrix}, \qquad m{\Sigma} = egin{pmatrix} m{\Sigma}_{11} & m{\Sigma}_{12} \\ m{\Sigma}_{21} & m{\Sigma}_{22} \end{pmatrix},$$

donde X_1 y μ_1 son vectores $k \times 1$, mientras que Σ_{11} es matriz $k \times k$. Sea Σ_{22}^- una inversa generalizada de Σ_{22} , esto es, una matriz que satisface

$$\boldsymbol{\Sigma}_{22}\boldsymbol{\Sigma}_{22}^{-}\boldsymbol{\Sigma}_{22}=\boldsymbol{\Sigma}_{22},$$

y sea $\mathbf{\Sigma}_{11\cdot 2} = \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-}\mathbf{\Sigma}_{21}$. Entonces

- (a) $\boldsymbol{X}_1 \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^-\boldsymbol{X}_2 \sim \mathsf{N}_k(\boldsymbol{\mu}_1 \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^-\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{11\cdot 2})$ y es independiente de \boldsymbol{X}_2 .
- (b) La distribución condicional

$$(X_1|X_2 = x_2) \sim N_k(\mu_1 + \Sigma_{12}\Sigma_{22}^-(x_2 - \mu_2), \Sigma_{11\cdot 2}).$$

Demostración:

Considere la transformación lineal

$$oldsymbol{Y} = egin{pmatrix} oldsymbol{Y}_1 \\ oldsymbol{Y}_2 \end{pmatrix} = egin{pmatrix} oldsymbol{I}_k & -oldsymbol{B} \\ oldsymbol{0} & oldsymbol{I}_{p-k} \end{pmatrix} egin{pmatrix} oldsymbol{X}_1 \\ oldsymbol{X}_2 \end{pmatrix} = oldsymbol{C} oldsymbol{X},$$

sigue que $oldsymbol{Y} \sim \mathsf{N}_p(oldsymbol{C}oldsymbol{\mu}, oldsymbol{C}oldsymbol{\Sigma}oldsymbol{C}^ op)$, donde

$$\begin{split} \boldsymbol{C}\boldsymbol{\mu} &= \begin{pmatrix} \boldsymbol{I}_k & -\boldsymbol{B} \\ \boldsymbol{0} & \boldsymbol{I}_{p-k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}_1 - \boldsymbol{B}\boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_2 \end{pmatrix} \\ \boldsymbol{C}\boldsymbol{\Sigma}\boldsymbol{C}^\top &= \begin{pmatrix} \boldsymbol{I}_k & -\boldsymbol{B} \\ \boldsymbol{0} & \boldsymbol{I}_{p-k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \begin{pmatrix} \boldsymbol{I}_k & \boldsymbol{0} \\ -\boldsymbol{B}^\top & \boldsymbol{I}_{p-k} \end{pmatrix} \\ &= \begin{pmatrix} \boldsymbol{\Sigma}_{11} - \boldsymbol{B}\boldsymbol{\Sigma}_{21} - \boldsymbol{\Sigma}_{12}\boldsymbol{B}^\top + \boldsymbol{B}\boldsymbol{\Sigma}_{22}\boldsymbol{B}^\top & \boldsymbol{\Sigma}_{12} - \boldsymbol{B}\boldsymbol{\Sigma}_{22} \\ \boldsymbol{\Sigma}_{21} - \boldsymbol{\Sigma}_{22}\boldsymbol{B}^\top & \boldsymbol{\Sigma}_{22} \end{pmatrix}. \end{split}$$

De este modo, nuestro interés es escoger $\Sigma_{12}-B\Sigma_{22}=0$. Es decir, $\Sigma_{12}=B\Sigma_{22}$.

Por otro lado, notando que

$$\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-}\boldsymbol{\Sigma}_{22} = \boldsymbol{B}\boldsymbol{\Sigma}_{22}\boldsymbol{\Sigma}_{22}^{-}\boldsymbol{\Sigma}_{22} = \boldsymbol{B}\boldsymbol{\Sigma}_{22} = \boldsymbol{\Sigma}_{12},$$

sigue que $\mathbf{\Sigma}_{12} \mathbf{B}^{ op} = \mathbf{B} \mathbf{\Sigma}_{22} \mathbf{B}^{ op}$ (y análogamente $\mathbf{B} \mathbf{\Sigma}_{21} = \mathbf{B} \mathbf{\Sigma}_{22} \mathbf{B}^{ op}$).

Esto es, si B es escogida como $B=\Sigma_{12}\Sigma_{22}^-$, entonces Y_1 y Y_2 son independientes con distribución conjunta

$$\begin{pmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{Y}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^- \boldsymbol{X}_2 \\ \boldsymbol{X}_2 \end{pmatrix} \sim \mathsf{N}_p \bigg(\begin{pmatrix} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^- \boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11 \cdot 2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \bigg).$$

Esto muestra la parte (a).

Para notar la parte (b), note que las densidades de $m{Y}_1$ y $m{Y}_2$ están dadas por

$$g(\boldsymbol{y}_1; \boldsymbol{\delta}_{1\cdot 2}, \boldsymbol{\Sigma}_{11\cdot 2}) = |2\pi\boldsymbol{\Sigma}_{11\cdot 2}|^{-1/2} \exp\{-\frac{1}{2}(\boldsymbol{y}_1 - \boldsymbol{\delta}_{1\cdot 2})^{\top} \boldsymbol{\Sigma}_{11\cdot 2}^{-1}(\boldsymbol{y}_1 - \boldsymbol{\delta}_{1\cdot 2})\}$$
$$f_2(\boldsymbol{y}_2; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22}) = |2\pi\boldsymbol{\Sigma}_{22}|^{-1/2} \exp\{-\frac{1}{2}(\boldsymbol{y}_2 - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}_{22}^{-1}(\boldsymbol{y}_2 - \boldsymbol{\mu}_2)\},$$

donde $\delta_{1\cdot 2}=\mu_1-\Sigma_{12}\Sigma_{22}^-\mu_2$. La densidad conjunta para $Y=(Y_1^\top,Y_2^\top)^\top$ adopta la forma

$$f(y_1, y_2; \mu, \Sigma) = g(y_1; \delta_{1\cdot 2}, \Sigma_{11\cdot 2}) f_2(y_2; \mu_2, \Sigma_{22}).$$

Como

$$f(x_1, x_2; \mu, \Sigma) = f_{1|2}(x_1; \mu, \Sigma | x_2) f_2(x_2; \mu_2, \Sigma_{22}),$$

entonces, la densidad condicional de X_1 dado $X_2 = x_2$ debe ser $g(y_1; \delta_{1\cdot 2}, \Sigma_{11\cdot 2})$.

Además, es fácil notar que la forma cuadrática

$$\begin{aligned} q(\boldsymbol{y}_{1}; \boldsymbol{\mu}_{1 \cdot 2}, \boldsymbol{\Sigma}_{11 \cdot 2}) &= (\boldsymbol{y}_{1} - \boldsymbol{\delta}_{1 \cdot 2})^{\top} \boldsymbol{\Sigma}_{11 \cdot 2}^{-1} (\boldsymbol{y}_{1} - \boldsymbol{\delta}_{1 \cdot 2}) \\ &= (\boldsymbol{x}_{1} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-} \boldsymbol{x}_{2} - \boldsymbol{\delta}_{1 \cdot 2})^{\top} \boldsymbol{\Sigma}_{11 \cdot 2}^{-1} (\boldsymbol{x}_{1} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-} \boldsymbol{x}_{2} - \boldsymbol{\delta}_{1 \cdot 2}) \\ &= (\boldsymbol{x}_{1} - \boldsymbol{\mu}_{1 \cdot 2})^{\top} \boldsymbol{\Sigma}_{11 \cdot 2}^{-1} (\boldsymbol{x}_{1} - \boldsymbol{\mu}_{1 \cdot 2}), \end{aligned}$$

donde

$$\mu_{1\cdot 2} = \mu_1 + \Sigma_{12}\Sigma_{22}^-(x_2 - \mu_2),$$

lo que muestra el resultado.

Observación:

La esperanza de la distribución condicional de $oldsymbol{X}_1$ dado $oldsymbol{X}_2$, es decir

$$\mathsf{E}(\boldsymbol{X}_1|\boldsymbol{X}_2=\boldsymbol{x}_2)=\boldsymbol{\mu}_1+\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^-(\boldsymbol{x}_2-\boldsymbol{\mu}_2),$$

se denomina función de regresión de X_1 sobre X_2 con coeficientes de regresión $B=\Sigma_{12}\Sigma_{22}^-$. Esta es una función lineal de X_2 y la matriz de covarianza $\Sigma_{11\cdot 2}$ no depende de X_2 .

Resultado 8:

Sea $X \sim \mathsf{N}_p(\mu, \Sigma)$ y considere $Y_1 = A_1 X$, $Y_2 = A_2 X$ dos funciones lineales del vector aleatorio X. La covarianza entre Y_1 y Y_2 es dada por

$$\mathsf{Cov}(oldsymbol{Y}_1,oldsymbol{Y}_2) = oldsymbol{A}_1\,\mathsf{Cov}(oldsymbol{X},oldsymbol{X})oldsymbol{A}_2^ op = oldsymbol{A}_1oldsymbol{\Sigma}oldsymbol{A}_2^ op$$

Observación:

Por el resultado anterior es evidente que $m{Y}_1$ y $m{Y}_2$ serán independientes si y sólo si

$$A_1 \Sigma A_2^{\top} = \mathbf{0}.$$

Ejemplo:

Considere X_1,\dots,X_n una muestra aleatoria desde $\mathsf{N}(\mu,\sigma^2)$ y sea

$$\boldsymbol{Z} = (Z_1, \ldots, Z_n)^{\top},$$

el vector de datos centrados con $Z_i=X_i-\overline{X},\ i=1,\ldots,n$, donde $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$. Podemos escribir

$$\overline{X} = \frac{1}{n} \mathbf{1}^{\mathsf{T}} X, \qquad Z = CX,$$

con $C=I_n-\frac{1}{n}\mathbf{1}\mathbf{1}^{\top}$ la matriz de centrado. Tenemos que $X\sim \mathsf{N}_n(\mu\mathbf{1},\sigma^2I_n)$ y \overline{X} con Z son independientes pues $C\mathbf{1}=\mathbf{0}$.

Ejemplo:

Sea $m{X} \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 m{I})$ y considere las transformaciones

$$Y_1 = AX, \qquad Y_2 = (I - A^+A)^\top X.$$

De este modo

$$\mathsf{Cov}(\boldsymbol{Y}_1,\boldsymbol{Y}_2) = \mathsf{Cov}(\boldsymbol{A}\boldsymbol{X},(\boldsymbol{I}-\boldsymbol{A}^+\boldsymbol{A})^\top\boldsymbol{X}) = \sigma^2\boldsymbol{A}(\boldsymbol{I}-\boldsymbol{A}^+\boldsymbol{A}) = \boldsymbol{0},$$

pues $AA^+A = A$ y Y_1 con Y_2 son independientes.

