Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 3.4.5

Общая физика: электричество и магнетизм

Петля гистерезиса (динамический метод)

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2022 год **Цель работы:** изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллогра, тороидальные образцы с двумя обмотками..

1 Теоретическое введение

Рис. 1: Петля гистерезиса ферромагнетика

Магнитная индукция \vec{B} и напряженность магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать магнитное поле, то его намагничивание следует кривой OACD, выходящей из

начала координат. Эту кривую называют *основной кривой намагничивания*. Индукция \vec{B} в образце состоит из индукции, связанной с намагничивающим полем \vec{B} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{M}),$$

где \vec{M} - намагниченность - магнитный момент единичного объема образца, а μ_0 - магнитная постоянная.

Намагнитим образец до насыщения - до точки D. Соответствующее значение индукции B_s называют индукцией насыщения. При уменьшении поля H до нуля зависимость B(H) имеет вид кривой DCE, и при нулевом поле индукция имеет конечное ненулевое значение. Это остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить "обратное" магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется npedenbhoŭ nemneŭ eucmepesuca.

1.1 Измерение магнитной индукции в образцах.

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$\mathscr{E} = -\frac{d\Phi}{dt}.$$

Тогда отсюда и из формулы $\Phi = BSN_{\rm \tiny M}$ получаем:

$$|B| = \frac{1}{SN_{\rm M}} \int \mathcal{E}dt.$$

Для интегрирования сигнала применяют интегрирующие схемы (рис. 2).

Рис. 2: Интегрирующая RC-цепь

Если выходной сигнал намного меньше входного ($U_{\rm вых} \ll U_{\rm вx}$,) ток в цепи пропорционален входному напряжению: $I \simeq \frac{U_{\rm вx}}{R}$, а напряжение на емкости C

$$U_{\scriptscriptstyle
m BMX} \simeq rac{1}{R{
m C}} \int U_{\scriptscriptstyle
m BX} dt.$$

Этот вывод тем ближе к ис-

тине, чем больше постоянная $\tau = RC$ превосходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U_{\scriptscriptstyle
m BMX} = rac{U_{\scriptscriptstyle
m BX}}{RC\Omega},$$

где Ω - частота сигнала.

В итоге, обозначив параметры интегрирующей цепи через $R_{\mathtt{u}}$ и $C_{\mathtt{u}}$, получаем

$$|B| = \frac{1}{SN_{\text{\tiny M}}} \int U_{\text{\tiny BX}} dt = \frac{R_{\text{\tiny M}} C_{\text{\tiny M}}}{SN_{\text{\tiny M}}} U_{\text{\tiny BbIX}}.$$

2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 3.

Действующее значение переменного тока в обмотке N0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции В с измерительной обмотки $N_{\rm II}$ на вход интегрирующей RC -цепочки подается напряжение $U_{\rm II}$ (UBX), пропорциональное

производной \dot{B} , а с выхода снимается напряжение $U_C(U_{\rm BMX})$, пропорциональное величине B, и подается на вход Y осциллограа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям B и H соответствуют эти напряжения (или токи).

Рис. 3: Схема установки для исследования намагничивания образцов