Solution to Level_2 Paper_5 Section_A Q1 (2014/15): page 1 of 1

(a) An ignorable coordinate is a generalised coordinate that does not appear explicitly in the Lagrangian of a system although its time derivative does. [2 marks,B] Each ignorable coordinate has an associated constant of motion, the canonically conjugate momentum, that reduces by one the number of differential equations that need to be solved for the system. [2 marks,B]

(b) The auxiliary equation is the quadratic in λ for the assumed solution $x = e^{\lambda t}$. This is $\lambda^2 + b\lambda + k/m = 0$. [2 marks,B] The critically damped solution has two equal roots, so $b = 2\sqrt{k/m}$. [2 marks,B]

(c) A Green's function describes the response of a system to the application of an impulsive force, i.e. the evolution of a dynamical system subsequent to the application of an impulsive force.

[2 marks,B]

By considering the driving force to be made up of a sum of an infinite number of impulsive forces, the motion of a driven oscillator can be constructed using an integral of an infinite number of Green's functions. This can be written as a convolution.

[2 marks,B]

(d) Using the fact that $p = \partial L/\partial \dot{q} = \alpha\beta\dot{q}^{\beta-1}$, and noting that $T = \alpha\dot{q}^{\beta}$, we have $H = \alpha\beta\dot{q}^{\beta} - T + V$. [2 marks,U] By inspection, E = T + V. For H = E, we need $\alpha\beta\dot{q}^{\beta} - T = T$. Hence, $\alpha\beta\dot{q}^{\beta} = 2\alpha\dot{q}^{\beta}$ and $\beta = 2$ is a necessary condition for H = E. [2 marks,U]

(e) Noether's theorem: if the Lagrangian is invariant under a continuous symmetry transformation, then there are conserved quantities associated with that symmetry. [2 marks,B]

For example, if the Lagrangian is rotationally symmetric, then the angular momentum vector is conserved (or any other reasonable example). [2 marks,B]

- (f) The Euler force is an inertial/fictitious/pseudo force. Such forces arise when considering dynamics in a non-inertial, i.e. accelerating, reference frame. [2 marks,B] Its magnitude is proportional to the rate of change of the angular velocity of the rotating frame, which, for the Earth, is usually negligibly small. [2 marks,B]
- (g) Using $\rho=M/(8a^3)$ to represent the uniform density of the cube, the required moment of inertia is

$$I = \int_{-a}^{a} \int_{-a}^{a} \int_{-a}^{a} \rho(x^{2} + y^{2}) dx dy dz = \frac{2}{3} Ma^{2}.$$

[4 marks,U]

(h) The principal axis theorem states that it is always possible to rotate the coordinates such that the inertia tensor for a rigid body is diagonal. [2 marks,B] An oblate symmetric ellipsoid has one short axis, with a large principal moment of inertia, and two long axes with smaller, equal, principal moments. Hence, $I_3 > I_1 = I_2$. $(I_1 > I_2 = I_3$ also fine.) [2 marks,B]

(a) [6 marks total] (Unseen)

The kinetic energy is $T = [m_1(a\dot{\theta})^2 + m_2(a\dot{\theta})^2]/2$.

The potential energy can be written as $V = m_1 g a (1 - \sin \theta) + m_2 g a (1 - \sin(\theta + \alpha))$. Hence,

$$L = T - V = \frac{(m_1 + m_2)}{2} (a\dot{\theta})^2 - ga[m_1 + m_2 - m_1 \sin \theta - m_2 \sin(\theta + \alpha)].$$

[4 marks]

Applying the Euler-Lagrange equation implies

$$(m_1 + m_2)a^2\ddot{\theta} - ga[m_1\cos\theta + m_2\cos(\theta + \alpha)] = 0,$$

from which the required result follows.

[2 marks]

(b) (i) [1 mark total] (Unseen)

The equilibrium configuration has $\theta \to \alpha$

The equilibrium configuration has $\theta_{\rm eq} + \alpha/2 = \pi/2$, i.e. $\theta_{\rm eq} = \pi/2 - \alpha/2$. [1 mark]

(ii) [7 marks total] (Unseen)

Putting $m_1 = m_2 = m$ into the expression for $\ddot{\theta}$ gives

$$\ddot{\theta} = \frac{g}{a}\cos\left(\frac{\alpha}{2}\right)\cos\left(\theta + \frac{\alpha}{2}\right).$$

[1 mark]

As $\phi = \theta - \theta_{eq}$, $\theta + \alpha/2 = \phi + \pi/2$. Therefore

$$\begin{split} \ddot{\theta} &= \ddot{\phi} &= \frac{g}{a} \cos \left(\frac{\alpha}{2}\right) \cos \left(\phi + \frac{\pi}{2}\right) \\ &= -\frac{g}{a} \cos \left(\frac{\alpha}{2}\right) \sin \phi \\ &\approx -\omega^2 \phi, \end{split}$$

where $\omega = \sqrt{g\cos(\alpha/2)/a}$ and the oscillations are assumed to be small. [5 marks]

Hence,

$$\phi(t) = \phi(0)\cos\omega t + \frac{\dot{\phi}(0)}{\omega}\sin\omega t.$$

[1 mark]

- (iii) [3 marks total] (**Unseen**) When $\alpha = \pi$, the equal mass particles are on opposite sides of the diameter of the hoop and $\ddot{\phi} = 0$. Hence $\phi(t) = \phi(0) + \dot{\phi}(0)t$ and the rod rotates indefinitely with a constant angular velocity. [3 marks]
- (c) [3 marks total] (Unseen) In this case, $L=(2m)(a\dot{\phi})^2/2-2mga(1-\cos\phi)$ and $\ddot{\phi}\approx -(g/a)\phi$. Hence $\omega_{2m}=\sqrt{g/a}$. (This is also the limiting case of $\alpha\to 0$ in the previous case.) [3 marks]

(a) (i) [4 marks total] (Unseen)

The gravitational acceleration is GM/R^2 towards the centre of the planet, so the centrifugal force needs to balance this. [2 marks] The centrifugal acceleration points radially away from the axis of rotation and has size $\omega^2 R$. Hence $\omega = \sqrt{GM/R^3}$. [2 marks]

(ii) [3 marks total] (Bookwork)

The centrifugal force vanishes at the poles as $\omega \times r = 0$. [1 mark] The Coriolis acceleration has size $|\underline{a}_{Cor}| = 2\omega v$ and it acts to the right of the direction of motion of the particle. [2 marks]

(b) (i) [5 marks total] (Unseen)

The time taken for the arrow to reach the target can be approximated as T=l/v. [1 mark] During this period, an acceleration of $\ddot{x}=2\omega v$ to the right is experienced by the arrow. [1 mark] Thus, the arrow will be displaced by $x_{disp}=\ddot{x}T^2/2$ to the right at the distance of the target, which is an angle $\theta_{disp}=x_{disp}/l=\omega l/v$ to the right of the

of the target, which is an angle $\theta_{disp} = x_{disp}/l = \omega l/v$ to the right of the target. Thus, the north pole archer will aim this same angle to the left of the target centre in order to hit it.

[3 marks]

(ii) [2 marks total] (Unseen)

The Coriolis force acts to the left at the south pole, so the south pole archer will aim an angle $\omega l/v$ to the right of the target centre and miss by a distance $2\omega l^2/v$ to the right. [2 marks]

(c) [6 marks total] (Unseen)

The north pole archer will again aim a distance $\omega l^2/v$ to the left of the target. However, this time the arrow will only take a time T = fl/v to reach the target. Thus it will miss the centre by a distance

$$\Delta x_{NP} = -\frac{\omega l}{v}.v.\frac{fl}{v} + \frac{1}{2}(2\omega v)\left(\frac{fl}{v}\right)^2 = \frac{\omega l^2}{v}(-f + f^2),$$

i.e. to the left of the centre.

[2 marks]

The south pole archer will aim a distance $\omega(fl)^2/v$ to the right of the target, taking into account that they know the new distance to the target. Thus their arrow will miss the centre by a distance

$$\Delta x_{SP} = \frac{\omega(fl)}{v} \cdot v \cdot \frac{fl}{v} + \frac{1}{2} (2\omega v) \left(\frac{fl}{v}\right)^2 = \frac{2\omega(fl)^2}{v},$$

to the right of the centre.

[2 marks]

For the southerner to win the competition, we need $|\Delta x_{SP}| < |\Delta x_{NP}|$. Thus $2f^2 < f - f^2$, which is satisfied by f < 1/3. [2 marks]

All the short questions are bookwork.

(a) Linear independence of the set $|\phi_1\rangle, |\phi_2\rangle, \dots, |\phi_n\rangle$ means that there are **no non-zero complex numbers** b_i such that

$$\sum_{i} b_i |\phi_i\rangle = \underline{0}$$

where $\underline{0}$ is the null state vector.

[2 marks]

An orthonormal basis satisfies the condition

$$\langle \phi_i | \phi_j \rangle = \delta_{ij}$$

where $\delta_{ij} = 1$ if i = j, 0 otherwise is the Kroenecker symbol.

[2 marks]

(b) Hermitian operators \hat{A} have the defining property that

$$\langle \alpha | \{ \hat{A} | \beta \rangle \} = \left[\langle \beta | \{ \hat{A} | \alpha \rangle \} \right]^*$$

where * denotes the complex conjugate.

[2 marks]

If
$$\hat{A}|\alpha_i\rangle = a_i|\alpha_i\rangle$$
 then

$$\langle \alpha_i | \hat{A} | \alpha_i \rangle = a_i \langle \alpha_i | \alpha_i \rangle$$

The left-hand side of this expression is real using the Hermiticity condition above. On the right-hand side $\langle \alpha_i | \alpha_i \rangle$ is real since it is an inner product of identical states, hence we conclude that the eigenvalues a_i are real. [2 marks]

(c) In Dirac notation the corresponding wavefunction is $\psi(x) = \langle x | \psi \rangle$. [1 mark]

Inserting a complete set of position eigenstates

$$\langle \phi | \psi \rangle = \int dx \langle \phi | x \rangle \langle x | | \psi \rangle$$

[2 marks]

$$= \int dx \phi^*(x) \psi(x)$$

an overlap integral of the two wavefunctions.

[2 marks]

(d) An operator \hat{A} is unitary if $\hat{A}\hat{A}^{\dagger}=\hat{A}^{\dagger}\hat{A}=\hat{1}$ where \hat{A}^{\dagger} is the adjoint operator defined by

$$\langle \alpha | \hat{A}^{\dagger} | \beta \rangle = \left[\beta | \hat{A} | \alpha \rangle \right]^*$$

and $\hat{1}$ is the unit operator.

[2 marks]

We have $\langle \phi' | \psi' \rangle = \langle \phi' | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \phi' \rangle^* = \langle \psi | \hat{A}^{\dagger} \hat{A} | \phi \rangle^* = \langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle$. as required. [2 marks]

(e) We have the anticommutation relation $\hat{b}\hat{b}^{\dagger} + \hat{b}^{\dagger}\hat{b} = 1$ If we require that b annihilates the vacuum state then $b|0\rangle = 0$. Acting with the number operator $\hat{N} = \hat{b}\hat{b}^{\dagger}$ on $\hat{b}^{\dagger}|0\rangle$ yields

$$\hat{N}\hat{b}^{\dagger}|0\rangle = \hat{b}^{\dagger}\hat{b}\hat{b}^{\dagger}|0\rangle = \hat{b}^{\dagger}(1 - \hat{b}^{\dagger}\hat{b})|0\rangle = (\hat{b}^{\dagger} - \hat{b}^{\dagger}\hat{N})|0\rangle = \hat{b}^{\dagger}|0\rangle$$

So we see that $\hat{b}^\dagger |0\rangle = |1\rangle$ is an eigenstate of \hat{N} with eigenvalue n=1. [1 mark]

If we attempt to create another quantum by acting again with \hat{b}^{\dagger} , however, we find

$$\hat{N}\hat{b}^\dagger|1\rangle = \hat{b}^\dagger(1 - \hat{b}^\dagger\hat{b})|1\rangle = \hat{b}^\dagger(1 - \hat{N})|1\rangle = 0$$

So the state $|1\rangle$ is annihilated by \hat{b}^{\dagger} , and the possible eigenvalues are n=0 and n=1. [2 marks]

This is exactly what is required by the Pauli exclusion principle for fermions. [1 mark]

(f) The Heisenberg picture evolution equation is

$$\frac{\partial \hat{0}}{\partial t} = \frac{i}{\hbar} [\hat{H}, \hat{O}]$$

[2 marks]

If the operator corresponds to a conserved quantity one then finds $[\hat{H}, \hat{O}] = 0$, and the operator commutes with the Hamiltonian. [2 marks]

(g) The general expression is

$$[\hat{L}_i, \hat{L}_j] = i\epsilon_{ijk}\hat{L}_k$$

Solution to Level_2 Paper_5 Section_B Q4 (2014/15): page 3 of 3

where ϵ_{ijk} is the Levi-Civita symbol with $\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=+1$ and $\epsilon_{132}=\epsilon_{213}=\epsilon_{321}=-1$. Corresponding to odd and even signature permutations of $\{1,2,3\}$ respectively. [3 marks] So we find $[\hat{L}_x,\hat{L}_z]=i\epsilon_{132}\hat{L}_y=-i\hat{L}_y$. [1 mark]

Parts (a)-(c) are bookwork, parts (d) and (e) are unseen.

(a) The creation operator in terms of \hat{x} and \hat{p} is

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i\hat{p}}{m\omega} \right)$$

and the annihilation operator is

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i\hat{p}}{m\omega} \right)$$

[2 marks]

(b) From the expressions in (a) we find directly

$$[\hat{a}, \hat{a}^{\dagger}] = \frac{1}{2\hbar} (-i[\hat{x}, \hat{p}] + i[\hat{p}, \hat{x}]) = 1$$

as required, using $[\hat{x}, \hat{p}] = i\hbar$.

[2 marks]

(c) We have

$$\hat{N}\hat{a}|n\rangle = \hat{a}^{\dagger}\hat{a}\hat{a}|n\rangle = (\hat{a}\hat{a}^{\dagger} - 1)\hat{a}|n\rangle = (\hat{a}\hat{N} - \hat{a})|n\rangle = (n - 1)\hat{a}|n\rangle$$

So we see that $\hat{a}|n\rangle$ is an eigenstate of \hat{N} with eigenvalue n-1, i.e $\hat{a}|n\rangle = c_-|n-1\rangle$ where c_- is a normalization constant. [1 mark] Similarly

$$\hat{N}\hat{a}^{\dagger}|n\rangle = \hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}|n\rangle = \hat{a}^{\dagger}(\hat{a}^{\dagger}\hat{a} + 1)|n\rangle = (\hat{a}^{\dagger}\hat{N} + \hat{a}^{\dagger})|n\rangle = (n+1)\hat{a}^{\dagger}|n\rangle$$

So we see that $\hat{a}^{\dagger}|n\rangle$ is an eigenstate of \hat{N} with eigenvalue n+1, i.e $\hat{a}|n\rangle=c_{+}|n-1\rangle$ where c_{+} is a normalization constant. [1 mark] To fix c_{-} and c_{+} if we assume that $|n\rangle$ is normalized with $\langle n|n\rangle=1$ then we have

$$n = \langle n | \hat{N} | n \rangle = \langle n | \hat{a}^{\dagger} \hat{a} | n \rangle = \langle \hat{a} n | \hat{a} n \rangle = c_{-}^{2} \langle n - 1 | n - 1 \rangle = c_{-}^{2}$$

So we conclude that up to a phase $c_{-} = \sqrt{n}$ as required. [1 mark] Similarly one can write

$$\langle n|\hat{a}\hat{a}^{\dagger}|n\rangle = \langle n|(\hat{a}^{\dagger}\hat{a}+1)|n\rangle = \langle n|(\hat{N}+1)|n\rangle = n+1$$

This can also be written as

$$\langle n|\hat{a}\hat{a}^{\dagger}|n\rangle = \langle \hat{a}^{\dagger}n|\hat{a}^{\dagger}n\rangle = c_{+}^{2}$$

Comparing these expressions we find up to a phase $c_+ = \sqrt{n+1}$ as required. [1 mark]

(d) Given that $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ we can rewrite the result for \hat{a} obtained in (a) as

$$\hat{a} = \sqrt{\frac{\alpha}{2}} \left(x + \frac{1}{\alpha} \frac{\partial}{\partial x} \right)$$

where $\alpha = \frac{m\omega}{\hbar}$. Then $\hat{a}|0\rangle = 0$ yields the differential equation [3 marks]

$$\sqrt{\frac{\alpha}{2}} \left(x + \frac{1}{\alpha} \frac{d}{dx} \right) \psi_0(x) = 0$$

So

$$\frac{d\psi_0}{dx} = -\alpha x \psi_0$$

[2 marks]

with solution

$$\psi_0(x) = N \exp\left(-\alpha \frac{x^2}{2}\right)$$

[1 mark]

(e) We have

$$\hat{T} = \frac{1}{2m}\hat{p}^2 = -\frac{\hbar m\omega}{4m} \left[\hat{a}^{\dagger 2} + \hat{a}^2 - \hat{a}^{\dagger}\hat{a} - \hat{a}\hat{a}^{\dagger} \right]$$

$$\hat{V} = \frac{m\omega^2}{2}\hat{x}^2 = \frac{\hbar m\omega^2}{4m\omega} \left[\hat{a}^{\dagger 2} + \hat{a}^2 + \hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger} \right]$$

[2 marks]

When sandwiched between the same eigenstates $\langle n|$ and $|n\rangle$, the quadratic terms $\hat{a}^{\dagger 2}$ and \hat{a}^2 must vanish, leading to

$$\begin{split} \langle n|\hat{T}|n\rangle &= \langle n|\hat{V}|n\rangle = \frac{\hbar\omega}{4} \left\langle n\left|\left(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger}\right)\right|n\right\rangle \\ &= \frac{\hbar\omega}{2} \left\langle n\left|\left(\hat{N} + \frac{1}{2}\right)\right|n\right\rangle = \frac{\hbar\omega}{2} \left(n + \frac{1}{2}\right) \;. \end{split}$$

[4 marks]

Parts (a)-(d) are bookwork, parts (e) and (f) are unseen.

(a)

$$\begin{bmatrix} \hat{L}_i, \, \hat{L}_j \end{bmatrix} = i\hbar \epsilon_{ijk} \hat{L}_k$$
$$\begin{bmatrix} \hat{L}_i, \, \hat{L}^2 \end{bmatrix} = 0.$$

[4 marks]

(b) They are the spherical harmonics:

$$\hat{L}^2 Y_{lm} = l(l+1)\hbar^2 Y_{lm}$$

$$\hat{L}_z Y_{lm} = m\hbar Y_{lm} .$$

[2 marks]

(c) The eigenfunctions are the spherical harmonics, and

$$\hat{H}Y_{lm} = \frac{l(l+1)\hbar^2}{2J}Y_{lm}$$

[1 mark]

The energy-eigenvalues $l(l+1)\hbar^2/(2J)$ are (2l+1)-fold degenerate, since for each given l there are (2l+1) eigenfunctions, corresponding to $m=-l,-(l-1),-(l-2),\ldots,0,1,2,3\ldots,l$. [1 mark]

(d) If we choose the \underline{B} field in the z-direction the Hamiltonian in the presence of the field will become

$$\hat{H}' = \frac{\hat{L}^2}{2} 2J - \mu |\underline{B}| \hat{L}_z$$

So the energy eigenvalues become

$$\hat{H}'|l,m\rangle = \left(\frac{\hbar^2 l(l+1)}{2J} - \mu |\underline{B}| m\hbar\right) |l,m\rangle$$

.

So each original energy of $\hbar^2 l(l+1)/2J$ splits into 2l+1 distinct energies, distributed symmetrically above and below the original energy eigenvalues and spaced by an energy of $\mu |\underline{B}|\hbar$. [2 marks]

(e) With the definitions in the hint

$$\cos^{2}\theta = \frac{\sqrt{4\pi}}{3} \left[\sqrt{\frac{4}{5}} Y_{20}(\theta, \phi) + Y_{00}(\theta, \phi) \right]$$
$$\sin^{2}\theta \cos(2\phi) = \sqrt{\frac{8\pi}{15}} \left[Y_{22}(\theta, \phi) + Y_{2-2}(\theta, \phi) \right]$$

[2 marks]

After identifying the wavefunction as

$$|\psi\rangle = N \left\{ \sqrt{\frac{16\pi}{45}} Y_{20}(\theta, \phi) + \sqrt{\frac{4\pi}{9}} Y_{00}(\theta, \phi) + \sqrt{\frac{8\pi}{15}} \left[Y_{22}(\theta, \phi) + Y_{2-2}(\theta, \phi) \right] \right\},$$

the normalisation follows from the orthonormality of the spherical harmonics, yielding

$$\frac{1}{N^2} = \frac{16\pi}{45} + \frac{4\pi}{9} + \frac{8\pi}{15} + \frac{8\pi}{15} = \frac{(16+20+24+24)\pi}{45} = \frac{28\pi}{15},$$

Therefore

$$|\psi\rangle = \sqrt{\frac{4}{21}}|20\rangle + \sqrt{\frac{5}{21}}|00\rangle + \sqrt{\frac{2}{7}}\left[|22\rangle + |2-2\rangle\right]$$

$$= \sqrt{\frac{12}{63}}Y_{20}(\theta, \phi) + \sqrt{\frac{15}{63}}Y_{00}(\theta, \phi)$$

$$+\sqrt{\frac{2}{7}}\left[Y_{22}(\theta, \phi) + Y_{2-2}(\theta, \phi)\right].$$

[4 marks]

(f) The energy eigenvalues are $l(l+1)\hbar^2/2J$ so energies of $3\hbar^2/J$, \hbar^2/J and zero correspond to l=2,1,0, respectively. The probabilities for observing these energies in the state $|\psi\rangle$ are

$$P(l(l+1)\hbar^2/2J) = \sum_{m=-l}^{l} |\langle lm|\psi\rangle|^2$$

So from the expression for $|\psi\rangle$ above we can obtain $P(3\hbar^2/J)=\frac{16}{21},$ $P(\hbar^2/J)=0,$ and $P(0)=\frac{5}{21}.$ [4 marks]