Cours MP2I

Alexandre

Table des matières

1 Notes				1
2	Notions d'ensemble			
	2.1	Définit	tions	. 1
	2.2	ZFC		. 1
	2.3		able quotient	
3	Propriétés des anneaux			
	3.1	Définit	tions	. 2
	3.2	Idéaux	x et anneau quotient	. 2
		3.2.1	Définitions	. 2
		3.2.2	Propositions	. 3
	3.3	Propri	iétés remaquables	
		3.3.1	Théoreme d'isomorphisme	
		3.3.2	Opérations sur les idéaux	
		3.3.3	Algèbres	
	3.4	Types	s d'anneaux	
		3.4.1	Anneaux noethériens	
		3.4.2	Anneaux factoriels	
		3.4.3	Anneaux intégralement clos	

1 Notes

Nullstellensatz : (démo?)

- Idéaux
- Algébriquement clos
- Bézout?

Topologie de Zariski:????

— Lemme de Zorn (AC)

Dimension:?
Projectif/Affine:?

2 Notions d'ensemble

2.1 Définitions

2.2 ZFC

Définition 1 (ensemble inductif)

Soit (E, \leq) un ensemble ordonné. On dit que E est un ensemble inductif si pour tout sousensemble $F \subseteq E$ totalement ordonné, F admet un majorant dans E.

On remarque alors que tout ensemble ordonné fini est inductif. Cependant ce n'est pas le cas d'ensemble comme $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \ldots$, on a bien $\mathbb{N} \subseteq \mathbb{Z}$ mais \mathbb{N} n'admet aucun majorant dans \mathbb{Z} .

Théorème 2 (lemme de Zorn)

Tout ensemble inductif admet un élément maximal.

Théorème 3 (axiome du choix)

Remarque 4

On a donc:

lemme de Zorn ⇔ axiome du choix

<Pertinence de l'axiome du choix dans le cas d'un ensemble fini?>

<TODO probleme 2 alain troesh>

2.3 Ensemble quotient

Définition 5 (classe d'équivalence)

Soit R une relation d'équivalence sur un ensemble E. Soit $x \in E$, on considère la partie \tilde{x} de E définie par :

$$y \in \tilde{x} \Leftrightarrow xRy$$

C'est la classe d'équivalence de x

C'est l'ensemble des y équivalent à x. Cette partie est non vide car $x \in \tilde{x}$.

Définition 6 (partition)

Une partition d'un ensemble E est définie par :

- (a) l'union des classes d'équivalences donne $\biguplus_{x \in E} \tilde{x} = E$
- (b) $\forall x \in E, \tilde{x} \neq \emptyset$
- (c) $\forall x, y \in E, x \neq y \Rightarrow \tilde{x} \cap \tilde{y} \neq \emptyset$

Lemme 7

Soient $x, y \in E$. On a :

$$x \sim y \iff \tilde{x} = \tilde{y}$$

On déduit que deux classes distinctes sont disjointes.

Théorème 8 (parition formée par les classes d'équivalence)

L'ensemble des classes d'équivalences sous \sim forme une parition de E.

Les différentes classes d'équivalence des éléments de E sont des parties E, non vides, disjointes, dont la réunion donne E (d'après la définition d'une partition).

Définition 9 (ensemble quotient)

L'ensemble des parties de E dont les éléments sont des classes d'équivalence s'appelle l'ensemble quotient de E par R, noté E/R

Proposition 10 (application canonique)

Si R est une relation d'équivalence, l'application $\pi: E \longrightarrow E/R$ associe un élément x de E à sa classe d'équivalence.

Elle est surjective car chaque classe d'équivalence F est non vide, tout élément de F est envoyé par π sur F (donc on a : $\forall x \in F, \pi(x) = F$)

3 Propriétés des anneaux

3.1 Définitions

Définition 11 (éléments associés)

Soit A un anneau <u>intègre</u>. Deux éléments a et b de A sont dits associés si a divise b et si b divise a.

Par exemple, si on se place dans $\mathbb{K}[X]$, deux polynomes associés sont égaux s'ils sont unitaire. <anneaux principaux>

2

3.2 Idéaux et anneau quotient

3.2.1 Définitions

Définition 12 (idéal d'un anneau)

Soit A un anneau. Un sous-ensemble $I\subseteq A$ est un idéal de A si :

- (a) (I, +) est un sous groupe de (A, +)
- (b) $\forall a \in A, \forall b \in I, ab = ba \in I$

Définition 13 (idéal premier)

Soit A un anneau, I un idéal de A, I est premier si et seulement si l'anneau A/I est intègre. Cela revient au même d'imposer :

- $-A \neq I$
- $\ \forall a,b \in A, ab \in I \Longrightarrow a \in I \text{ ou } b \in I$

Définition 14 (idéal maximal)

Un idéal I de A est dit maximal si $I \neq A$ et si pour tout idéal J de A tel que $I \subseteq J$ et $J \neq A$, on a J = I. (I est l'élément maximal pour l'inclusion)

3.2.2 Propositions

Proposition 15

Soit I un idéal de A. On a donc :

I maximal $\iff A/I$ est un corps $\implies A/I$ intègre $\iff I$ premier

Théorème 16 (lien idéaux et morphisme d'anneaux)

Une partie I d'un anneau A est un idéal bilatère si et seulement si I est le noyau d'un morphisme d'anneaux.

Démonstration. TODO

Proposition 17 (anneau quotient)

Soit I un idéal bilatère d'un anneau A. La relation d'équivalence R définie par :

$$\forall x, y \in A, \ x \mathcal{R} y \Longleftrightarrow x - y \in I$$

est compatible avec la structure d'anneau de A et l'ensemble quotient A/R aussi noté A/I est muni d'une structure d'anneau.

On peut munir l'ensemble quotient A/I (càd l'ensemble des classes d'équivalence sur A) des lois induites par I :

$$+: t \longrightarrow a \text{ et } \cdot: t \longrightarrow a$$
 $e \longmapsto f \qquad e \longmapsto f$

- <idéaux d'un anneau qotient>
- <image d'un idéal est un idéal par un morphisme?>
- <noyeau morphisme idéal?>

Lemme 18

Soit A un anneau, A est un corps si et seulement si on a :

- $(1) A \neq \{0\}$
- (2) les seuls idéaux de A sont $\{0\}$ et A

Démonstration. TODO □

Théorème 19 (Krull)

Soit I un idéal de A, $I \neq A$, il existe un idéal maximal de A contenant I.

Démonstration. Se montre à l'aide du théorème de Zorn, à voir.

3.3 Propriétés remaquables

3.3.1 Théoreme d'isomorphisme

Théorème 20 (théoreme d'isomorphisme)

Soient A et B deux anneaux et $f:A\longrightarrow B$ un morphisme d'anneau. On pose $I=\ker f$. Soit J un idéal de A contenu dans I et $\pi:A\longrightarrow A/J$ la projection canonique. Alors on a :

- (a) il existe une unique morphisme $\overline{f}: A/J \longrightarrow B$ tel que $f = \overline{f} \circ \pi$ (on dit que f se factorise par A/J)
- (b) \overline{f} est injectif si et seulement si J=I
- (c) \overline{f} est surjectif si et seulement f l'est aussi

En particulier on a Im $f \simeq A/\ker f$.

3.3.2 Opérations sur les idéaux

3.3.3 Algèbres

3.4 Types d'anneaux

3.4.1 Anneaux noethériens

On rappelle qu'on idéal I d'un anneau A est dit de type fini s'il est engendré par un nombre fini d'éléments.

Définition 21 (anneau noethérien)

Un anneau noethérien est un anneau qui vérifie l'une des trois propriété équivalentes suivantes :

- (1) tout idéal de A est de type fini
- (2) toute suite croissante $(I_n)_n$ d'idéaux de A est stationnaire
- (3) tout ensemble non vide d'idéaux de A a un élément maximal pour l'inclusion

Démonstration.

 $(1) \Rightarrow (2)$: On défini une suite $(I_n)_n$ croissante et on pose $I = \prod_{n \in \mathbb{N}} I_n$. Alors il existe $N \in \mathbb{N}$ tel que $I \subseteq I_N$. On a par définition de $I: I_N \subseteq I$. Donc $I = I_n$

 $(2) \Rightarrow (3) : TODO$

 $(3) \Rightarrow (1)$: Pas compris

Théorème 22 (Hilbert)

Si A est noethérien, A[X] est noethérien.

Corollaire 23

Si A est noethérien, $A[X_1, \ldots, X_n]$ est noethérien.

3.4.2 Anneaux factoriels

La notion d'anneau factoriel généralsie la propriété de décomposition unique en facteurs premiers dans \mathbb{Z} . Il faut noter que toutes les propriétés de \mathbb{Z} ne s'y applique pas forcément.

Définition 24

Soit A un anneau. L'anneau A est factoriel s'il vérifie ces trois propriétés :

- (1) A est intégre (il n'a pas de diviseur de zéro)
- (2) tout élément a non nul de A s'écrit $a = up_1 \dots p_r$ avec $u \in A^{\times}$ et p_1, \dots, p_r irréductible dans A
- (3) cette décomposition est unique, à permutation près et à des inversibles près : si $a = up_1 \dots p_r = vq_1 \dots q_s$, alors r = s et il existe $\sigma \in \mathscr{S}_r$ tel que p_i et $q_{\sigma(i)}$ soient associé

3.4.3 Anneaux intégralement clos

Définition 25 (élément entier)

Soit B un anneau et A un sous-anneau de B. On dit que $b \in B$ est entier sur A s'il est racine d'un polynôme unitaire à cofficients dans A. C'est à dire :

b entier
$$\iff \exists P \in A[X]$$
 unitaire, $P(b) = 0$

Proposition 26 (anneau intégralement clos)

Soit A un anneau intègre. Il est dit intégralement clos si les seuls éléments entier sur A de son corps des fractions Fr(A) sont les éléments de A.

Proposition 27

Tout anneau factoriel est intégralement clos.

 $D\acute{e}monstration$. Soit A un anneau factoriel, donc A intègre.

Soit $x \in Fr(A)$ entier sur A. Alors il existe $a_0, \ldots, a_{n-1} \in A$ tel que :

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

On suppose par l'absurde que $x \notin A$.

On pose donc $x = \frac{y}{z}$ avec $y \in A$, $z \in A \setminus \{0,1\}$ et $y \land z = 1$. Donc :

$$z^{n}P(\frac{y}{z}) = z^{n}\frac{y^{n}}{z^{n}} + a_{n-1}z^{n}\frac{y^{n-1}}{z^{n-1}} + \dots + a_{0}z^{n} = 0$$
$$z^{n}P(\frac{y}{z}) = y^{n} + a_{n-1}zy^{n-1} + \dots + a_{0}z^{n} = 0$$
$$y^{n} = z(-a_{n-1}y^{n-1} - \dots - a_{0}z^{n})$$

Or $z \nmid y^n$ car ils sont premier entre eux. Contradiction. Donc $x \in A$.

Exemple 28

Soit $d \in \mathbb{Z}$ * un entier sans facteur carré et différent de 1. On a alors :

$$d\equiv 1[4] \Longrightarrow \mathbb{Z}[\sqrt{d}]$$
 non intégralement clos

On pensera à la contraposée comme exemple d'anneau intégralement clos.