2.6 Involutions

包除原理の特別な形

$$f_{=}(\emptyset) = \sum_{Y} (-1)^{\#Y} f_{\geq}(Y).$$

を考える. これを

$$f_{=}(\emptyset) + \sum_{\#Y \text{ odd}} f_{\geq}(Y) = \sum_{\#Y \text{ even}} f_{\geq}(Y).$$

と書き換える. これを組合せ的解釈を用いて示してみる.

集合 A の元が,性質(S の元)を持ったり持たなかったりする状況を考える.

 $M = \{x \in A : x \ dS \ o \ c o \ e \ f \ f \ h \ c \ o \ b \}$

 $N = \{(x, Y, Z) : x \in A \text{ が持つ性質が } Z \supset Y \text{ に一致し, } \#Y \text{ は奇数}\},$

 $N' = \{(x', Y', Z') : x \in A \text{ が持つ性質が } Z \supset Y \text{ に一致し,} #Y' \text{ は偶数}\}$

とする.S に全順序を入れ, $\sigma:M\cup N o N'$ を次のように定める.

$$\sigma(x) = (x, \emptyset, \emptyset) \quad ext{if } x \in M, \ \sigma(x, Y, Z) = egin{cases} (x, Y - i, Z) & ext{if } \min Y = \min Z = i, \ (X, Y \cup i, Z) & ext{if } \min Z = i < \min Y. \end{cases}$$

 σ は全単射であり、

$$\sigma^{-1}(x,Y,Z) = egin{cases} x \in M & ext{if } Y = Z = \emptyset, \ (X,Y-i,Z) & ext{if } Z
eq \emptyset ext{ and } \min Y = \min Z = i, \ (X,Y \cup i,Z) & ext{if } Z
eq \emptyset ext{ and } \min Z = i < \min Y, \end{cases}$$

ただし $\min \emptyset = \infty$ とする.

 $x\in M$ を $(x,\emptyset,\emptyset)\in N'$ と同一視すれば, $au:=\sigma\cup\sigma^{-1}:N\cup N' o N\cup N'$ は以下を満たす.

- (a) τ \sharp involution ($\tau^2 = \mathrm{id}$).
- (b) τ の不動点は $(x, \emptyset, \emptyset)$ $(x \in M)$.
- (c) (x,Y,Z) が au の不動点でないとき,au(x,Y,Z)=(x,Y',Z') とおくと

$$(-1)^{\#Y} + (-1)^{\#Y'} = 0.$$

これらを踏まえて、包除原理の式

$$egin{aligned} f_{=}(\emptyset) &= \sum_{Y} (-1)^{\#Y} f_{\geq}(Y) \ &= \sum_{Y} (-1)^{\#Y} \#\{x: Z \coloneqq \{x \ infty$$
持つ性質 $\} \supseteq Y\}, \end{aligned}$

の右辺を見ると,au で移りあう元 (x,Y,Z) 同士が係数 $(-1)^{\#Y}$ によって打ち消され,不動点 (x,\emptyset,\emptyset) $(\{x\$ が持つ性質 $\}=\emptyset)$ のみが残っている.

一般化する. 有限集合 X が 2 つの集合の disjoint union X^+ $\dot{\cup}$ X^- で表されるとし,X の involution τ が次の条件を満たすとする.

- (a) $\tau(x) = y$, $x \neq y$ ならば, x, y のちょうど片方のみが X^+ に属する.
- (b) $\tau(x) = x$ ならば $x \in X^+$.

X の元を重み関数

$$w(x) = egin{cases} 1 & ext{if } x \in X^+, \ -1 & ext{if } x \in X^-, \end{cases}$$

で重みづけするとき、

$$\#\operatorname{Fix}(au) = \sum_{x \in X} w(x),$$

が成り立つ. ただし $Fix(\tau)$ は τ の不動点の集合.

ここで,さらに別の有限集合の disjoint union $\widetilde{X}=\widetilde{X}^+\cup\widetilde{X}^-$ を考え, \widetilde{X} の involution $\widetilde{\tau}$ が (a), (b) を満たしているとする. さらに,全単射 $f:X\to\widetilde{X}$ が符号を保つ,すなわち $f(X^+)=\widetilde{X}^+$, $f(X^-)=\widetilde{X}^-$ と仮定する. このとき

$$\# \operatorname{Fix}(\tau) = \# X^+ - \# X^- = \# \widetilde{X}^+ - \# \widetilde{X}^- = \# \operatorname{Fix}(\widetilde{\tau}).$$

このとき、 $\operatorname{Fix}(\tau)$ から $\operatorname{Fix}(\widetilde{\tau})$ への自然な全単射 g を構成することができる. これを involution principle という.

 $x \in Fix(\tau)$ とする. このとき,

$$f(\tau f^{-1}\widetilde{\tau}f)^n(x)\in \mathrm{Fix}(\widetilde{\tau}),$$

を満たす非負整数 n が存在する. そのような n について,

$$g(x) = f(\tau f^{-1} \widetilde{\tau} f)^n(x),$$

と定める. この $g: \mathrm{Fix}(\tau) \to \mathrm{Fix}(\widetilde{\tau})$ は全単射である.

この involution principle について,"sieve-equivalence" という変種がある.2 つの disjoint な有限集合 X, \tilde{X} と $Y \subseteq X, \tilde{Y} \subseteq \tilde{X}$ について,全単射 $f: X \to \tilde{X}, g: Y \to \tilde{Y}$ がとれたとする.このとき $\#(X-Y) = \#(\tilde{X}-\tilde{Y})$.ここで全単射 $h: (X-Y) \to (\tilde{X}-\tilde{Y})$ を構成する.

 $x \in X - Y$ をとる. このとき,

$$f(g^{-1}f)^n(x) \in \widetilde{X} - \widetilde{Y}$$
.

を満たす非負整数 n が存在する. そのような n について,

$$h(x) = f(g^{-1}f)^n(x),$$

と定める. この $h:(X-Y) \to (\tilde{X}-\tilde{Y})$ は全単射.

例 2.6.1. 1 を不動点とする順列 $w\in \mathfrak{S}_n$ 全体の集合を Y とする. また,ちょうど 1 個のサイクルからなる順列 $w\in \mathfrak{S}_n$ 全体の集合を \widetilde{Y} とする. このとき $\#(\mathfrak{S}_n-Y)=\#(\mathfrak{S}_n-\widetilde{Y})=n!-(n-1)!$.

 \mathfrak{S}_n-Y と $\mathfrak{S}_n-\widetilde{Y}$ の間の全単射 h を構成する明らかな方法はなさそうだが,全単射 $g:Y\to\widetilde{Y}$ を構成するのは簡単である. $f:\mathfrak{S}_n\to\mathfrak{S}_n$ を恒等写像とすれば,先ほどの方法で全単射 $h:(\mathfrak{S}_n-Y)\to(\mathfrak{S}_n-\widetilde{Y})$ を構成できる.

ただし,この場合に関してはYと \widetilde{Y} が $\operatorname{disjoint}$ であることから,

$$h(w) = egin{cases} w & ext{if } w
otin \widetilde{Y}, \ g^{-1}(w) & ext{if } w \in \widetilde{Y}, \end{cases}$$

としてやれば済む.