C0 Classes

Robin Adams

August 9, 2022

We speak informally of *classes*. A class is determined by a unary predicate. We write $\{x: P(x)\}$ or $\{x \mid P(x)\}$ for the class determined by the predicate P(x).

We define what it means for an object a to be an element of the class \mathbf{A} , $a \in \mathbf{A}$, by: $a \in \{x : P(x)\}$ means P(a).

Definition 1 (Equality of Classes). Two classes **A** and **B** are *equal*, $\mathbf{A} = \mathbf{B}$, iff they have exactly the same members.

Proposition 2. For any class A we have A = A.

Since A and A have exactly the same members.

Proposition 3. For any classes A and B, if A = B then B = A.

PROOF: If $\bf A$ and $\bf B$ have exactly the same members, then $\bf B$ and $\bf A$ have exactly the same members.

Proposition 4. For any classes A, B and C, if A = B and B = C then A = C.

PROOF: If **A** and **B** have exactly the same members, and **B** and **C** have exactly the same members, then **A** and **C** have exactly the same members. \Box

Definition 5 (Subclass). A class **A** is a *subclass* of a class **B**, $\mathbf{A} \subseteq \mathbf{B}$, iff every member of **A** is a member of **B**.

Proposition 6. For any class **A** we have $\mathbf{A} \subseteq \mathbf{A}$.

PROOF: Every member of **A** is a member of **A**. \square

Proposition 7. For any classes A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every member of $\bf A$ is a member of $\bf B$, and every member of $\bf B$ is a member of $\bf C$, then every member of $\bf A$ is a member of $\bf C$. \Box

Proposition 8. For any classes A and B, if $A \subseteq B$ and $B \subseteq A$ then A = B.

PROOF: If every member of \mathbf{A} is a member of \mathbf{B} , and every member of \mathbf{B} is a member of \mathbf{A} , then \mathbf{A} and \mathbf{B} have exactly the same members. \square

Definition 9 (Empty Class). The *empty class*, \emptyset , is $\{x : \bot\}$. **Proposition 10.** For any class **A**, we have $\emptyset \subseteq \mathbf{A}$. PROOF: Vacuously, every member of \emptyset is a member of \mathbf{A} . **Definition 11** (Universal Class). The universal class V is the class $\{x : \top\}$. **Proposition 12.** For any class A, we have $A \subseteq V$. PROOF: Every member of **A** is a member of **V**. \square **Definition 13.** For any objects a_1, \ldots, a_n , we write $\{a_1, \ldots, a_n\}$ for the class $\{x: x = a_1 \vee \cdots \vee x = a_n\}.$ **Definition 14** (Union). The *union* of classes A and B, $A \cup B$, is the set whose elements are exactly the things that are members of **A** or members of **B**. Proposition 15. For any classes A, B and C, we have: 1. $\mathbf{A} \subseteq \mathbf{A} \cup \mathbf{B}$ 2. $\mathbf{B} \subseteq \mathbf{A} \cup \mathbf{B}$ 3. If $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$ PROOF: Immediate from definitions. \square **Definition 16** (Intersection). The *intersection* of classes A and B, $A \cap B$, is the set whose elements are exactly the things that are members of both A and Proposition 17. For any classes A, B and C, we have: 1. $\mathbf{A} \cap \mathbf{B} \subseteq \mathbf{A}$ $2. \mathbf{A} \cap \mathbf{B} \subseteq \mathbf{B}$ 3. If $C \subseteq A$ and $C \subseteq B$ then $C \subseteq A \cap B$ PROOF: Immediate from definitions. **Definition 18** (Disjoint). Two classes **A** and **B** are disjoint iff they have no common members.

Proposition 19. Two classes **A** and **B** are disjoint iff $\mathbf{A} \cap \mathbf{B} = \emptyset$.

PROOF: Immediate from definitions.