Álgebra Linear - Semana 01

27 de Março de 2017

Conteúdo

1	Estrutura do Curso	1
2	Sistemas Lineares	1
3	Formas escalonadas e formas escalonadas reduzidas	4
4	Algoritmo de escalonamento	5
5	Existência e unicidade de solução	8
	5.1 Sistemas que possuem apenas uma solução	8
	5.2 Sistemas impossíveis ou inconsistentes	8
	5.3 Sistemas com mais de uma solução	8
	5.4 Conclusões	9

1 Estrutura do Curso

Ver plano de ensino ou plataforma Moodle.

2 Sistemas Lineares

Começamos nosso estudo diretamente com um exemplo:

Exemplo 1. Considere o sistema linear que consiste de duas equações e duas variáveis

$$\begin{cases} x+3y &= 1\\ 2x-y &= -2 \end{cases}$$
 (1)

Nosso objetivo é descobrir o valor das variáveis x e y.

Solução 1. Ao multiplicar toda a primeira equação por -2, não alteramos a solução do sistema, pois, caso quiséssemos voltar ao sistema original, bastaria dividir a primeira equação do sistema abaixo por -2. Ficamos assim com o sistema

$$\begin{cases}
-2x - 6y &= -2 \\
2x - y &= -2
\end{cases}.$$

Em seguida, somamos as duas equações e mantemos uma delas.

$$\begin{cases}
-2x - 6y &= -2 \\
-7y &= -4
\end{cases}$$

Este sistema também tem as mesmas soluções do anterior, pois podemos a qualquer hora retornar ao sistema original fazendo (linha 2) – (linha 1).

Em verdade, manter a equação da primeira linha multiplicada por -2 não ajuda em nada na resolução do sistema e voltaremos à equação original. Além disso, na linha dois já podemos isolar a variável y e descobrir o seu valor. Ficamos então com o sistema:

$$\begin{cases} x+3y &= 1\\ -7y &= -4 \end{cases}$$
 (2)

Observamos, finalmente, que a solução do último sistema (que é a mesma do sistema original) já está muito fácil de ser obtida. Sabemos o valor de y pela segunda equação e, para descobrir o valor de x, basta usar a primeira equação:

$$y = \frac{4}{7} \implies x + 3 \cdot \frac{4}{7} = 1 \implies x = 1 - \frac{12}{7} = -\frac{5}{7}.$$

Podemos escrever a solução do sistema como

$$\begin{cases} x = -5/7 \\ y = 4/7 \end{cases} \triangleleft$$

O símbolo ⊲ acima nas nossas notas indica o fim de uma solução, exemplo ou observação. Em seguida, fazemos algumas observações.

Observação 2. O sistema linear como o acima possui duas equações e duas variáveis e por isto é conhecido como um sistema linear 2×2 (lê-se dois por dois). Mais geralmente, um sistema linear com m equações e n variáveis é conhecido como um sistema linear $m \times n$ (lê-se m por n).

Observação 3. Sistemas 2×2 são dos mais simples de resolver e por isso o método acima pode parecer desnecessariamente complicado. Mas, como veremos, este método pode ser aplicado para qualquer sistema. Logo, é essencial que se entenda completamente todos os seus passos para um bom acompanhamento do que está por vir.

Vamos analisar a solução apresentada acima mais de perto. Para chegar do sistema linear em (1) para o sistema em (2), fizemos uma sequência de operações que:

- não alteram a solução do sistema linear original e que;
- resumidamente, podem ser descritas como adicionar um múltiplo da linha um na linha dois.

Que a solução permanece a mesma pode ser justificado tal qual está na "Solução 1" acima.

Operações nas linhas de um sistema que não alteram o conjunto de soluções são chamadas de **operações elementares**. São as seguintes:

- 1. Multiplicar uma linha por uma constante;
- 2. Trocar duas linhas de lugar;
- 3. Somar um múltiplo de uma linha a outra linha.

Um artifício que torna todo o processo mais "automático" é o de formar uma tabela de números com os coeficientes do sistema:

$$\left\{ \begin{array}{lll} x+3y&=&1\\ 2x-y&=&-2 \end{array} \right. \quad \rightsquigarrow \quad \left[\begin{array}{cc|c} 1&3&1\\ 2&-1&-2 \end{array} \right].$$

A tabela de números da direita é conhecida como a **matriz aumentada associada ao sistema linear**. Vamos nos referir às linhas da matriz associada como ℓ_1 e ℓ_2 . Deste modo, "adicionar um múltiplo da linha 1 na linha dois" corresponde a fazer:

$$\left[\begin{array}{cc|c} 1 & 3 & 1 \\ 2 & -1 & -2 \end{array}\right] \quad \xrightarrow{-2\ell_1 + \ell_2 \text{ em } \ell_2} \quad \left[\begin{array}{cc|c} 1 & 3 & 1 \\ 0 & -7 & -4 \end{array}\right].$$

Para este tipo de operação, olhamos para as colunas da matriz associada, fizemos mentalmente (ou em uma folha de rascunho) os cálculos envolvidos e preenchemos os valores na respectiva linha da nova matriz que está à direita:

$$(-2) \cdot 1 + 2 = 0,$$
 $(-2) \cdot 3 + (-1) = -7,$ $(-2) \cdot 1 + (-2) = -4.$

Exemplo 4. Consideramos agora um sistema com três equações e três variáveis;

$$\begin{cases} x + 2y + z = 12 \\ x - 3y + 5z = 1 \\ 2x - y + 3z = 10 \end{cases}.$$

Vamos diretamente escrever a matriz aumentada associada ao sistema, que é a matriz com os coeficientes da variável x na primeira coluna, os coeficientes da variável y na segunda coluna, os coeficientes de z na terceira coluna e os coneficientes independentes na última coluna:

$$\left[\begin{array}{ccc|c} 1 & 2 & 1 & 12 \\ 1 & -3 & 5 & 1 \\ 2 & -1 & 3 & 10 \end{array}\right].$$

Em seguida, utilizamos operações elementares nas linhas como no exemplo anterior. Ao substituir $-\ell_1+\ell_2$ em ℓ_2 , obtemos

$$\left[\begin{array}{ccc|c}
1 & 2 & 1 & 12 \\
0 & -5 & 4 & -11 \\
2 & -1 & 3 & 10
\end{array}\right].$$

Ou seja, eliminamos o valor 1 da primeira posição da segunda linha (em outras palavras, eliminamos a variável x da segunda equação). Prosseguindo com a eliminação dos valores abaixo da diagonal principal da matriz, obtemos:

$$\begin{bmatrix} 1 & 2 & 1 & | & 12 \\ 0 & -5 & 4 & | & -11 \\ 2 & -1 & 3 & | & 10 \end{bmatrix} \quad \xrightarrow{-2\ell_1 + \ell_3 \text{ em } \ell_3} \quad \begin{bmatrix} 1 & 2 & 1 & | & 12 \\ 0 & -5 & 4 & | & -11 \\ 0 & -5 & 1 & | & -14 \end{bmatrix} \quad \xrightarrow{-\ell_2 + \ell_3 \text{ em } \ell_3} \quad \begin{bmatrix} 1 & 2 & 1 & | & 12 \\ 0 & -5 & 4 & | & -11 \\ 0 & 0 & -3 & | & -3 \end{bmatrix}.$$

Voltando à notação original do sistema, obtemos

$$\begin{cases} x +2y +z = 12 \\ -5y +4z = -11 \\ -3z = -3 \end{cases}$$

Por causa do seu formato, este sistema é dito estar em **forma triangular** ou ainda que o sistema é **triangular**.

Como já tínhamos percebido no nosso primeiro exemplo, sistemas triangulares são fáceis de resolver. Pela última equação concluimos que z=1. Subsituindo este valor na segunda equação, obtemos

$$-5y + 4 = -11 \implies y = 3.$$

Finalmente, substituindo estes dois valores na primeira equação, obtemos

$$x + 2 \cdot 3 + 1 = 12 \implies x = 5.$$

Portanto, a solução para o sistema é (x, y, z) = (5, 3, 1).

Esta técnica de resolver sistemas lineares é importante por ser aplicável a sistemas de qualquer ordem e é conhecida como **escalonamento** ou **eliminação Gaussiana**.

3 Formas escalonadas e formas escalonadas reduzidas

Vimos dois exemplos de como resolver sistemas lineares por escalonamento. Vamos agora introduzir uma terminologia, esperando tornar o método mais sistemático.

Dizemos que uma matriz está em forma escalonada quando

- 1. As linhas que contém apenas zeros estão abaixo das demais.
- 2. O primeiro elemento não nulo de uma linha, conhecido como **elemento líder**, está em uma coluna à direita do elemento líder da linha acima.

Estas duas condições *implicam* que os elementos que estão abaixo de elementos líder são todos iguais a zero.

Por exemplo,

$$\begin{bmatrix}
1 & a_0 & a_1 & a_2 & a_3 \\
0 & 0 & 2 & a_4 & a_5 \\
0 & 0 & 0 & -1 & a_6 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
(3)

é uma matriz em forma escalonada. Notamos que os coeficientes a_1, a_2, a_3, a_4, a_5 e a_6 podem ser quaisquer números sem alterar o fato de a matriz estar em forma escalonada.

Outros exemplos, retirados livro do David C. Lay:

$$\begin{bmatrix} \blacksquare & a_0 & a_1 & a_2 \\ 0 & \blacksquare & a_3 & a_4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \blacksquare & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \\ 0 & 0 & \blacksquare & a_9 & a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & 0 & 0 & 0 & \blacksquare & a_{15} & a_{16} & a_{17} & a_{18} & a_{19} \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & a_{20} & a_{21} & a_{22} & a_{23} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & a_{24} \end{bmatrix}.$$

Quando uma matriz está em forma escalonada, as posições marcadas com ■ são chamadas de **posições de pivô**. Observe que, caso a matriz não esteja em forma escalonada, o elemento líder de uma linha pode não estar na posição de pivô. Dizemos também que uma coluna é uma **coluna pivô** quando a coluna possui uma posição de pivô. Por exemplo, na primeira matriz acima, as duas primeiras colunas são colunas pivô enquanto a terceira e a quarta não são.

Uma matriz estará em **forma escalonada reduzida** quando:

- 1. Está na forma escalonada;
- 2. Todos os elementos líder são iguais a 1 e são os únicos elementos não nulos das suas colunas.

Por exemplo,

é uma forma escalonada reduzida da matriz da fórmula (3) acima.

Quanto aos outros exemplos, temos

Observação 5. A forma escalonada reduzida ainda não apareceu na seção anterior quando estávamos resolvendo sistemas, mas nota que pode ser utilizada para automatizar o processo. Vamos

retomar o Exemplo 4. Fazendo mais algumas operações elementares, é possível transformar a matriz aumentada do sistema em uma matriz em forma escalonada reduzida:

$$\begin{bmatrix} 1 & 2 & 1 & | & 12 \\ 0 & -5 & 4 & | & -11 \\ 0 & 0 & -3 & | & -3 \end{bmatrix} \xrightarrow{\ell_2 \div (-5) \text{ e } \ell_3 \div (-3)} \begin{bmatrix} 1 & 2 & 1 & | & 12 \\ 0 & 1 & -4/5 & | & 11/5 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{4}{5}\ell_3 + \ell_2 \text{ em } \ell_2} \begin{bmatrix} 1 & 2 & 1 & | & 12 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{-\ell_3 + \ell_1 \text{ em } \ell_1} \begin{bmatrix} 1 & 2 & 0 & | & 11 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{-2\ell_2 + \ell_1 \text{ em } \ell_1} \begin{bmatrix} 1 & 0 & 0 & | & 5 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}.$$

A última matriz acima está em forma escalonada reduzida e está associada ao sistema

$$\begin{cases} x & = 5 \\ y & = 3 \\ z & = 1 \end{cases}$$

que, na verdade, já é a solução explícita do sistema original.

4 Algoritmo de escalonamento

Sistematicamente, encontramos a forma escalonada de uma matriz aplicando os seguintes passos:

- Analisar a primeira coluna pivô da esquerda para a direita, esta é a primeira coluna que possui algum elemento diferente de zero – e, se necessário, aplicar operações elementares para que o elemento da primeira linha (esta é a posição de pivô!) passe a ser diferente de zero;
- 2. A partir de operações elementares, eliminar todos elementos que estão abaixo do elemento na posição de pivô que obtivemos no Passo 1;
- 3. Desconsiderando por um momento a primeira linha, procuramos pela próxima coluna pivô aquela que tem algum elemento não nulo abaixo da *primeira linha*. Se necessário, aplicar operações elementares para que, na segunda linha, o elemento passe a ser diferente de zero;
- 4. A partir de operações elementares, eliminar todos elementos que estão abaixo do elemento na posição de pivô que obtivemos no Passo 3;
- 5. Desconsiderando por um momento a primeira e a segunda linhas, procuramos pela próxima coluna pivô aquela que tem algum elemento não nulo abaixo *da primeira e da segunda* linha. Se necessário, aplicar operações elementares para que, na segunda linha, o elemento passe a ser diferente de zero;
- 6. A partir de operações elementares, eliminar todos elementos que estão abaixo do elemento na posição de pivô que obtivemos no Passo 5 e ssim por diante.

Essencialmente, são apenas dois passos que se repetem até que se esgotem as colunas que possuem posição de pivô. Vejamso um exemplo.

Exemplo 6. Considere a matriz

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & -3 & -1 & 2 & -11 \\ 0 & 0 & 6 & 2 & -4 & 22 \\ 0 & 0 & -2 & 1 & 2 & -3 \end{bmatrix}.$$

Passo 1. A primeira coluna pivô é a terceira. Escolhemos um elemento não nulo da terceira coluna para ocupar a posição de pivô. Por exemplo, a segunda linha. Trocando a primeira e a segunda linhas de lugar (esta é uma operação elementar), obtemos:

$$\begin{bmatrix} 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -1 & 2 & -11 \\ 0 & 0 & 6 & 2 & -4 & 22 \\ 0 & 0 & -2 & 1 & 2 & -3 \end{bmatrix}.$$

Passo 2. Eliminar os elementos abaixo do 2 que está na posição de pivô da terceira coluna:

$$\begin{bmatrix} 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -1 & 2 & -11 \\ 0 & 0 & 6 & 2 & -4 & 22 \\ 0 & 0 & -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{\frac{3}{2}\ell_1 + \ell_3 \text{ em } \ell_3} \begin{bmatrix} 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 1 \\ 0 & 0 & 6 & 2 & -4 & 22 \\ 0 & 0 & -2 & 1 & 2 & -3 \end{bmatrix}$$

Passo 3. A partir de agora, vamos essencialmente repetir o processo acima desconsiderando a primeira coluna. Notamos que a próxima coluna que contém elementos não nulos (sem olhar para a primeira linha!) é a quarta coluna. Portanto, esta é uma coluna pivô e vamos posicionar um elemento não nulo na segunda linha. Por exemplo, podemos trocar a segunda e a terceira linhas.

$$\begin{bmatrix} 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & 0 & 1/2 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & -2 \\ 0 & 0 & 0 & 2 & 1 & 5 \end{bmatrix}.$$

Antes de prosseguir, podemos simplificar alguns cálculos multiplicando linhas por escalares (fazer isso é realizar um operação elementar!):

$$\begin{bmatrix} 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & 0 & 1/2 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & -2 \\ 0 & 0 & 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{2 \cdot \ell_3 \text{ e } (-1) \cdot \ell_4} \begin{bmatrix} 0 & 0 & 2 & 1 & -1 & 8 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 2 & 1 & 5 \end{bmatrix}$$

Passo 4. Prosseguimos como no Passo 2:

Passo 5. Finalmente, identificamos a coluna 5 como coluna pivô e obtemos uma matriz em forma escalonada:

Agora, para obter a forma escalonada reduzida *a partir da forma escalonada*, primeiramente aplicamos os passos acima para obter uma matriz em forma escalonada. Em seguida outros passos iterativos:

- 1. Começar pela posição de pivô mais à *direita* e eliminar os elementos não nulos *acima* da posição de pivô;
- 2. Se necessário, dividir a linha pelo valor do elemento líder (que está na posição de pivô) para que o elemento líder fique igual a 1;
- 3. Repetir os primeiros passos para o elemento líder na próxima (da direita para a esquerda) coluna pivô.

Observamos que poderíamos ter primeiro realizado o Passo 2 e depois o Passo 1 se julgássemos que seria mais simples para efetuar os cálculos.

Exemplo 7. Voltamos ao Exemplo 6. Identificando novamente as posições de pivô:

O mais da direita é o -1 da quinta coluna. Eliminando os termos não nulos acima, obtemos:

A próxima posição de pivô mais à direita é o 1 na linha 2, coluna 4. Eliminando o termo não nulo acima, obtemos:

Finalmente, dividimos a primeira linha por 2 e a terceira linha por -1 para chegar na forma escalonada reduzida da matriz inicial:

7

5 Existência e unicidade de solução

5.1 Sistemas que possuem apenas uma solução

Os sistemas que vimos até agora possuiam apenas uma solução. Esta propriedade, como veremos, nem sempre é válida. No entanto, é fácil de identificar quando um sistema possui solução única analisando a forma escalonada da matriz associada: **quando todas as colunas referentes às variáveis da equação possuirem posição de pivô**. Por exemplo,

$$\left[\begin{array}{cc|cc|c} 1 & 3 & 1 \\ 0 & -7 & -4 \end{array}\right], \left[\begin{array}{cc|cc|c} 1 & 2 & 1 & 12 \\ 0 & -5 & 4 & -11 \\ 0 & 0 & -3 & -3 \end{array}\right], \left[\begin{array}{cc|cc|c} 2 & 0 & 0 & 0 & 10 \\ 0 & 1 & 0 & 0 & -12 \\ 0 & 0 & 2 & 0 & 6 \\ 0 & 0 & 0 & 1 & 1 \end{array}\right].$$

De fato, todas as matrizes com esta propriedade tem em sua forma escalonada reduzida a matriz identidade do lado esquerdo da barra que separa as variáveis e os valores do lado direito da igualdade do sistema:

$$\left[\begin{array}{cc|c} 1 & 0 & -5/7 \\ 0 & 1 & 4/7 \end{array}\right], \left[\begin{array}{ccc|c} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{array}\right], \left[\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -12 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{array}\right].$$

Escrevendo o sistema associado as estas últimas matrizes, é fácil de ver que a solução será única.

5.2 Sistemas impossíveis ou inconsistentes

Nem todo sistema linear possui solução. Um exemplo simples deste fato é

$$\begin{cases} x+y=1\\ x+y=2 \end{cases}$$
 (4)

É claro que x+y não pode ser ao mesmo tempo igual a 1 e igual a 2; portanto, o sistema não possui solução. O fato de o sistema não possuir solução – ser **inconsistente** – nem sempre é tão fácil de ser identificado apenas olhando para o sistema. Mas esta propriedade salta aos olhos quando analisamos a forma escalonada da matriz associada ao sistema. De fato, na matriz escalonada de um sistema inconsistente aparece uma linha da forma

$$[0 \ 0 \ 0 \ 0 \ 0 \ a],$$

com uma constante $a \neq 0$. Esta linha representa no sistema uma equação do tipo $0 = a \neq 0$, que é impossível de ser satisfeita.

No sistema da fórmula (4) acima, temos a matriz aumentada

$$\left[\begin{array}{cc|c} 1 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right] \xrightarrow{-\ell_1 + \ell_2 \text{ em } \ell_2} \quad \left[\begin{array}{cc|c} 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right].$$

Logo, nosso sistema é equivalente ao sistema impossível

$$\begin{cases} x+y &= 1\\ 0 &= 1 \end{cases}.$$

5.3 Sistemas com mais de uma solução

Com exceção da subseção anterior, todos os sistemas que resolvemos anteriormente possuiam apenas uma solução. Vejamos um exemplo onde este não é o caso.

Exemplo 8. Resolver

$$\begin{cases} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = & -5 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = & 9 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = & 15 \end{cases}.$$

A matriz aumentada associada a este sistema é

$$\begin{bmatrix}
0 & 3 & -6 & 6 & 4 & | & -5 \\
3 & -7 & 8 & -5 & 8 & | & 9 \\
3 & -9 & 12 & -9 & 6 & | & 15
\end{bmatrix}.$$

Transformando esta matriz em sua forma escalonada reduzida (faça todos os cálculos!), obtemos

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right],$$

que é equivalente ao sistema linear

$$\begin{cases} x_1 - 2x_3 + 3x_4 &= -24 \\ x_2 - 2x_3 + 2x_4 &= -7 \\ x_5 &= 4 \end{cases}$$

Neste sistema x_5 possui um valor fixo igual a 4, mas as outras variáveis tem dois graus de liberdade. De fato, atribuindo valores quaisquer para x_3 e x_4 , obtemos os valores de x_1 e x_2 pelas duas primeiras equações acima e temos uma solução do sistema. Diferentes escolhas dos parâmetros x_3 e x_4 geram soluções diferentes.

Uma forma sistemática de analisar a situação é a seguinte: As variáveis correspondentes a colunas que possuem posição de pivô são chamadas de **variáveis dependentes** e as demais são chamadas de **variáveis livres**. Assim, podemos escrever

$$\begin{cases} x_1 = 2x_3 - 3x_4 - 24 \\ x_2 = 2x_3 - 2x_4 - 7 \\ x_3, x_4 \text{ livres} \\ x_5 = 4 \end{cases}$$

e o sistema possui infinitas soluções.⊲

5.4 Conclusões

Ao analisar a matriz aumentada associada a um sistema linear, concluiremos *inevitavelmente* que uma das seguintes situações é válida:

• Todas as colunas referentes às variáveis do sistema possuem posição de pivô, e.g.,

$$\left[\begin{array}{ccc|c}
1 & 3 & -6 & 6 \\
0 & -8 & 11 & \pi \\
0 & 0 & 12 & -9
\end{array}\right].$$

Neste caso, vimos que o sistema possui **apenas uma solução**. Nota que esta possibilidade apenas é possível se tivermos um sistema com o número de equações igual ao número de variáveis.

 Caso a coluna referentes à alguma variável do sistema não possua posição de pivô, teremos duas possibilidades

9

(i) Alguma coluna não é coluna pivô mas não existem linhas inconsistentes, e.g,

$$\left[\begin{array}{cccc|cccc}
1 & 3 & 2 & -6 & 2 & 6 \\
0 & -8 & 4 & 11 & -1 & -3 \\
0 & 0 & 0 & 12 & 1 & -9
\end{array}\right].$$

Neste caso, as variáveis referentes a colunas que não são pivô (na matriz acima, colunas 3 e 5) podem ser consideradas variáveis livres e o sistema **possui infinitas soluções**.

(ii) Alguma coluna não é coluna pivô mas existem linhas que são inconsistentes, e.g.,

$$\left[\begin{array}{ccc|ccc|ccc|ccc|ccc|} 1 & 3 & 2 & -6 & 2 & 6 \\ 0 & -8 & 4 & 11 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -9 \end{array}\right].$$

Neste caso, **não existem soluções** para o sistema, pois uma das equações é impossível de ser satisfeita.

Concluimos assim que *um sistema linear ou não possui solução*, *ou tem apenas uma solução ou então possui infinitas soluções*. São estes três todos os casos possíveis e podemos decidir em qual estamos apenas olhando para a forma escalonada da matriz aumentada associada ao sistema.