MAT-206: Test de hipótesis I

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Decidir lanzando una moneda¹

Suponga un modelo estadistico asociado a la muestra $oldsymbol{X} = (X_1, \dots, X_n)^{ op}$, como:

$$\mathcal{P} = \{ \mathsf{P}_{\theta} : \boldsymbol{\theta} \in \Theta \}.$$

De este modo, hipótesis son subconjuntos de ${\mathcal P}$ formulados mediante particionar el espacio paramétrico

$$\Theta = \Theta_0 \cup \Theta_1, \qquad \Theta_0 \cap \Theta_1 = \emptyset$$

Esta configuración es habitual en el lenguaje cienfífico, donde es usual contar con dos hipótesis que se desean comparar. La hipótesis nula H_0 , establece que $\theta \in \Theta_0$,

$$H_0: \theta \in \Theta_0$$
,

mientras que la hipótesis alternativa postula que $\theta \in \Theta_1$, es decir

$$H_1: \theta \in \Theta_1$$
.

Es decir, basado en los datos observados, deseamos decidir entre los modelos:

$$\mathcal{P}_0 = \{ \mathsf{P}_{\theta} : \boldsymbol{\theta} \in \Theta_0 \}, \quad \text{versus} \qquad \mathcal{P}_1 = \{ \mathsf{P}_{\theta} : \boldsymbol{\theta} \in \Theta_1 \}.$$

Decimos que la hipótesis H_0 es verdadera si existe evidencia de que la muestra es distribuída de acuerdo a $\mathsf{P}_\theta \in \mathcal{P}_0$.

Una hipótesis es llamada simple si especifíca completamente la distribución de interés, por ejemplo:

$$H_0: \theta = \theta_0, \quad \text{versus} \qquad H_1: \theta = \theta_1.$$

En caso contrario se dice hipotesis compuesta,

$$H_0: \theta > \theta_0$$
, versus $H_1: \theta \leq \theta_1$.

Además, hipotesis del tipo:

$$H_0: \theta = \theta_0$$
, versus $H_1: \theta \neq \theta_1$,

se dicen a dos colas.

Definición 1:

Un test δ es cualquier función $\delta: \mathcal{X}^n \to \{0, 1\}$.

Una función δ adopta el valor 0 cuando decidimos en favor de H_0 , en caso contrario toma el valor 1. Es decir, cuando decidimos en favor de H_1 .

Usualmente escribimos un test, como:

$$\delta(X_1,\ldots,X_n) = \begin{cases} 1, & T(X_1,\ldots,X_n) \in C \\ 0, & T(X_1,\ldots,X_n) \notin C \end{cases},$$

donde T es llamado estadístico de prueba y C denota la región de rechazo.

Ideas sobre test de hipótesis

¿Cómo luce una regla de decisión?

Considere el criterio para aprobar una asignatura.

Suponga que usted ha obtenido las siguientes notas en (por ejemplo) MAT-206:

$$\mathbf{x} = \{x_1, x_2, x_3\} = \{68, 32, 70\}.$$

De este modo, el profesor calcula su promedio obteniendo: $\overline{x}=56$. Por tanto,

$$\overline{x} \ge 55$$
, es decir, Ud. ha aprobado.

Podemos reescribir lo anterior como la siguiente regla de decisión:

- ▶ Si $\overline{x} \in [55, 100]$, el alumno es aprobado.
- En caso contrario,² el alumno reprueba la asignatura.

 $^{^{\}mathbf{2}}\mathrm{Es}$ decir, $\overline{x}\notin[55,100]$

Observación:

Un test, descansa en la elección de T y C. Note que δ es una variable aleatoria Bernoulli. En efecto,

$$\delta = \begin{cases} 1, & \text{con probabilidad } \mathsf{P}(T(X_1, \dots, X_n) \in C), \\ 0, & \text{con probabilidad } \mathsf{P}(T(X_1, \dots, X_n) \not\in C). \end{cases}$$

¿Cómo escoger T y C tal que δ sea una buena función test?

Cuando $H_0:\theta\in\Theta_0$ es verdad esperamos que la distribución de $\delta(X_1,\ldots,X_n)$ se encuentre concentrada en torno de 0. En caso contrario, es decir, si $H_1:\theta\in\Theta_1$ es verdadera, $\delta(X_1,\ldots,X_n)$ estará concentrada en torno de 1.

Un poco de controversia: Resultado de un juicio penal

Parecer de un juez:

¿La evidencia dada por el fiscal es suficiente para declarar culpable al acusado?

El juez tiene 2 opciones:

- Declarar al acusado culpable.
- Declarar al acusado inocente.

En términos científicos, debemos plantear las siguientes hipótesis:

 H_0 : el acusado es inocente.

 H_1 : el acusado es culpable

Así, el fiscal debe probar que el acusado es culpable, más allá de toda duda razonable.

Un poco de controversia: Resultado de un juicio penal

Parecer de un juez:

¿La evidencia dada por el fiscal es suficiente para declarar culpable al acusado?

El juez tiene 2 opciones:

- Declarar al acusado culpable.
- Declarar al acusado inocente.

En términos científicos, debemos plantear las siguientes hipótesis:

 H_0 : el acusado es inocente.

 H_1 : el acusado es culpable.

Así, el fiscal debe probar que el acusado es culpable, más allá de toda duda razonable.

De este modo, en el juicio puede ocurrir lo siguiente:

Decisión	El acusado es	
	inocente	culpable
preso	falso positivo	OK
libre	OK	falso negativo

En la nomenclatura de test de hipótesis, tenemos

Decisión	El acusado es	
	H_0 es verdadero	H_1 es verdadero
rechazar H_0		
aceptar H_0		

De este modo, en el juicio puede ocurrir lo siguiente:

Decisión	El acusado es	
	inocente	culpable
preso	falso positivo	OK
libre	OK	falso negativo

En la nomenclatura de test de hipótesis, tenemos:

Decisión	El acusado es	
	H_0 es verdadero	H_1 es verdadero
rechazar H_0	error tipo I	OK
aceptar H_0	OK	error tipo II

Definición 2 (Probabilidad de error):

Sea $H_0: \theta \in \Theta_0$ y $H_1: \theta \in \Theta_1$, dos hipótesis de interés. La probabilidad de error de tipo I se define como la función $h: \Theta_0 \to [0,1]$,

$$h(\theta) = P_{\theta}(\delta = 1), \qquad \theta \in \Theta_0,$$

mientras que la probabilidad de error de tipo II es definido como la función $g:\Theta_1 \to [0,1]$

$$g(\theta) = \mathsf{P}_{\theta}(\delta = 0), \qquad \theta \in \Theta_1.$$

Observación:

Evidentemente, $h(\theta) \neq 1 - g(\theta)$.

Observación:

La idea es escoger T y C tal que las probabilidades de error de tipo I y II sean lo más pequeñas posibles.

Ejercicio:

Sea X_1,\ldots,X_n variables aleatorias IID desde $\mathrm{N}(\mu,1)$. Deseamos probar la hipótesis

$$H_0: \mu = 0,$$
 versus $H_1: \mu \neq 0,$

usando la estadística de prueba

$$T_n(X_1,\ldots,X_n)=\overline{X}_n=\frac{1}{n}\sum_{i=1}^nX_i,$$

y el test

$$\delta(X_1, \dots, X_n) = \begin{cases} 1, & \text{si } |T_n(X_1, \dots, X_n)| \ge Q, \\ 0, & \text{en otro caso} \end{cases},$$

 $\mathsf{donde}\; Q>0.$

- (a) Determine la probabilidad de error de tipo I.
- (b) Halle la probabilidad de cometer un error de tipo II.

Sea

$$\delta(X_1,\ldots,X_n)=I\{T(X_1,\ldots,X_n)\in C\},\,$$

un test y suponga que deseamos reducir su probabilidad de error de tipo I,

$$h(\theta) = \mathsf{P}_{\theta}(\delta = 1), \qquad \theta \in \Theta_0,$$

sobre todo $\theta \in \Theta_0$. Para esto debemos "rechazar menos frecuentemente", es decir, reemplazar C por $C_* \subset C$ y obtener

$$\delta_* = I\{T(X_1, \dots, X_n) \in C_*\}.$$

Note que

$$\mathsf{P}_{\theta}(\delta_* = 1) = \mathsf{P}(T(X_1, \dots, X_n) \in C_*) \le \mathsf{P}(T(X_1, \dots, X_n) \in C)$$
$$= \mathsf{P}_{\theta}(\delta = 1), \quad \forall \, \theta \in \Theta_0.$$

Mientras que $C_* \subset C \Rightarrow C_*^c \supset C^c$, y de este modo,

$$\begin{split} \mathsf{P}_{\theta}(\delta_* = 0) &= \mathsf{P}(T(X_1, \dots, X_n) \notin C_*) \geq \mathsf{P}(T(X_1, \dots, X_n) \notin C) \\ &= \mathsf{P}_{\theta}(\delta = 0), \quad \forall \, \theta \in \Theta_1. \end{split}$$

Es decir, al intentar reducir el error de tipo I, se incrementa el error de tipo II!

Definición 3 (Método de Neyman-Pearson):

Sea $H_0: \theta \in \Theta_0$ y $H_1: \theta \in \Theta_1$ dos hipótesis de interés.

- 1. Fijar $\alpha \in (0,1)$ el nivel de significancia o tamaño del test.
- 2. Considere test $\delta: \mathcal{X}^n \to \{0,1\}$ tales que

$$\sup_{\theta \in \Theta_0} \ \mathsf{P}_{\theta}(\delta = 1) \le \alpha,$$

es decir, nos restringiremos a la clase

$$\mathcal{D}(\Theta_0,\alpha) = \Big\{\delta: \mathcal{X}^n \to \{0,1\} \Big| \sup_{\theta \in \Theta_0} \ \mathsf{P}_{\theta}(\delta=1) \leq \alpha \Big\}.$$

3. En la clase $\mathcal{D}(\Theta_0,\alpha)$ considere test con menor probabilidad de error tipo II

$$g(\theta) = \mathsf{P}_{\theta}(\delta = 0), \quad \theta \in \Theta_1,$$

o equivalentemente, aquél test con mayor poder

$$\beta(\theta) = 1 - g(\theta) = \mathsf{P}_{\theta}(\delta = 1), \quad \theta \in \Theta_1.$$

A continuación revisamos métodos para construir tests. Por simplicidad consideramos el caso 1-dimensional y los siguientes tipos de hipótesis.

1. Simple vs. Simple:

$$H_0: \theta = \theta_0 \qquad \text{versus} \qquad H_1: \theta = \theta_1$$

2. Unilateral vs. Unilateral:

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_1$ $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_1$

3. Simple vs. Bilateral:

$$H_0: \theta = \theta_0 \qquad \text{versus} \qquad H_1: \theta
eq \theta_1$$

Definición 4 (Test optimal):

Un test δ de $H_0:\theta\in\Theta_0$ versus $H_1:\theta\in\Theta_1$ es llamado óptimo³ de nivel α , si satisface que:

- 1. $\delta \in \mathcal{D}(\Theta_0, \alpha)$.
- $\text{2. } \mathsf{P}_{\theta_1}(\psi=1) \leq \mathsf{P}_{\theta_1}(\delta=1) \; \forall \, \theta_1 \in \Theta_1 \text{, } \forall \, \psi \in \mathcal{D}(\Theta_0,\alpha).$

 $^{^{\}mathbf{3}}$ o uniformemente más poderoso de nivel lpha

Lema 1 (Neyman-Pearson), Caso simple:

Sea $\pmb{X} = (X_1, \dots, X_n)^{\top}$ con densidad conjunta $f(\pmb{x}; \theta)$ y suponga que deseamos probar

$$H_0: \theta = \theta_0 \qquad \text{versus} \qquad H_1: \theta = \theta_1,$$

para algún nivel $\alpha \in (0,1)$, para $\theta_0 \neq \theta_1$. Si la variable aleatoria

$$\Lambda(\boldsymbol{x}) = \frac{f(\boldsymbol{x}; \theta_1)}{f(\boldsymbol{x}; \theta_0)} = \frac{L(\theta_1)}{L(\theta_0)},$$

es tal que existe un ${\cal Q}>0$ satisfaciendo

$$\mathsf{P}_{\theta_0}(\Lambda > Q) = \alpha,$$

entonces el test dado por

$$\delta(\boldsymbol{X}) = I\{\Lambda(\boldsymbol{X}) > Q\},\$$

es un test óptimo para probar H_0 versus H_1 a un nivel α .

Ejemplo:

Sea X_1,\dots,X_n variables IID desde ${\sf Exp}(\lambda)$ y sea $\lambda_1>\lambda_0$ dos constantes y considere el problema:

$$H_0: \lambda = \lambda_0,$$
 versus $H_1: \lambda = \lambda_1.$

La verosimilitud es

$$f(\boldsymbol{x}; \lambda) = \prod_{i=1}^{n} \lambda \exp(-\lambda x_i) = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} x_i\right).$$

De acuerdo con el Lema de Neyman-Pearson, tenemos

$$\Lambda(X_1, \dots, X_n) = \frac{f(\mathbf{X}; \lambda_1)}{f(\mathbf{X}; \lambda_0)} = \left(\frac{\lambda_1}{\lambda_0}\right)^n \exp\left[\left(\lambda_0 - \lambda_1\right) \sum_{i=1}^n X_i\right],$$

y se rechaza la hipótesis nula si $\Lambda > Q$, para Q tal que

$$\mathsf{P}_{\lambda_0}(\Lambda(X_1,\ldots,X_n)>Q)=\alpha,$$

siempre que ${\cal Q}$ exista.

Note que $\Lambda(\boldsymbol{X})$ es función decreciente de $T(X_1,\dots,X_n)=\sum_{i=1}^n X_i$, pues $\lambda_0<\lambda_1$. Así

$$\Lambda(X_1,\ldots,X_n) \ge Q \iff T(X_1,\ldots,X_n) \le q,$$

para algún q satisfaciendo

$$\alpha = \mathsf{P}_{\lambda_0}(\Lambda(\boldsymbol{X}) \geq Q) \quad \Longleftrightarrow \quad \alpha = \mathsf{P}_{\lambda_0}(T(\boldsymbol{X}) \leq q).$$

Bajo H_0 , $T(\boldsymbol{X}) \sim \mathsf{Gama}(n, \lambda_0)$. De ahí que q es tal que

$$\alpha = \mathsf{P}_{\lambda_0}(T(\boldsymbol{X}) \le q),$$

es decir q_{α} es un cuantil de la distribución $Gama(n, \lambda_0)$.

Ejemplo:

Sea $X_1,\ldots,X_n \sim \mathsf{FE}(\theta)$ 1-paramétrica, donde

$$f(x;\theta) = \exp\{\eta(\theta)T(x) - b(\theta)\}h(x),$$

con η creciente. Suponga que deseamos probar:

$$H_0: \theta = \theta_0,$$
 contra $H_1: \theta = \theta_1.$

Además, asumiremos que $\theta_0 < \theta_1$. El Lema de Neyman-Pearson lleva al estadístico de prueba

$$\delta = I\{L(\theta_1)/L(\theta_0) > Q\} = I\{\log L(\theta_1) - \log L(\theta_0) > \log Q\}.$$

Para el caso de la familia exponencial, tenemos

$$\delta = I \Big\{ (\eta(\theta_1) - \eta(\theta_0)) \sum_{i=1}^n T(X_i) - n(b(\theta_1) - b(\theta_0)) > \log Q \Big\}$$
$$= I \Big\{ \sum_{i=1}^n T(X_i) > \frac{\log Q + n(b(\theta_1) - b(\theta_0))}{\eta(\theta_1) - \eta(\theta_0)} \Big\}.$$

Como η es creciente, $\eta(\theta_1)-\eta(\theta_0)>0$ y $n(b(\theta_1)-b(\theta_0))$ es solo una constante. De modo que podemos escribir

$$\delta = I\{T(X_1, \dots, X_n) > q\}.$$

Si T es una variable aleatoria continua, y deseamos un test de nivel α , entonces q es el cuantil $(1-\alpha)$ de

$$G_0(t) = \mathsf{P}_{\theta_0}(T(X_1, \dots, X_n) \le t),$$

es decir, corresponde al cuantil- $(1-\alpha)$ de la distribución de muestreo de $T(\boldsymbol{X})$ cuando el parámetro es θ_0 (es decir la distribución nula de T).

Observación:

Cuando η es decreciente, entonces para $\theta_0<\theta_1$ tenemos $\eta(\theta_1)-\eta(\theta_0)<0$ y el test óptimo resulta:

$$\delta = I\{T(X_1, \dots, X_n) \le q\}.$$

Si deseamos un test de tamaño α y q debe ser un cuantíl- α de

$$G_0(t) = \mathsf{P}_{\theta_0}(T(X_1,\ldots,X_n) \le t).$$

Es decir, rechazamos $H_0: \theta = \theta_0$ (en favor de $H_1: \theta = \theta_1$) si:

$$T(X_1,\ldots,X_n)\leq q_\alpha,$$

con q_{α} el valor cuantil de nivel α de la distribución $G_0(t) = P_{\theta_0}(T(\boldsymbol{X}) \leq t)$.

Para la hipótesis

$$H_0: \theta = \theta_0, \qquad \text{versus} \qquad H_1: \theta = \theta_1,$$

y sea $X_1,\dots,X_n \sim \mathsf{FE}(\theta)$ 1-paramétrica. Tenemos la siguiente tabla:

η	$\theta_0 < \theta_1$	$\theta_0 > \theta_1$
creciente	$I\{T(X_1,\ldots,X_n)>q_{1-\alpha}\}$	$I\{T(X_1,\ldots,X_n)\leq q_\alpha\}$
decreciente	$I\{T(X_1,\ldots,X_n)\leq q_\alpha\}$	$I\{T(X_1,\ldots,X_n)>q_{1-\alpha}\}$

