

Diplomado en Minería de Datos

PEUVI, Facultad de Ciencias, UNAM

gar@ciencias.unam.mx

Minería de Datos Evaluación de varios modelo de clasificación

Calidad de vinos

El detalle de las columnas que tiene el dataset es:

acidez fija	densidad
acidez volátil	PH
ácido cítrico	sulfatos
azúcar residual	alcohol
cloruros	calidad
libre dióxido de azufre	
dióxido de azufre total	

Se busca determinar, qué características son las que contribuyen a una mejor calidad en el vino blanco. La calidad se especifica a partir de 5 clases: **3, 4, 5, 6, 7 y 8**.

Una vez que ya conocemos los puntos importantes sobre la evaluación, vamos a contrastar más de un modelo de clasificación. Para lograr esto, vamos utiliza el experimentador de Weka (Experimenter):

A partir de esta interfaz es que podemos evaluar más de un modelo de clasificación, con algunas configuraciones interesantes. Se tienen dos modos de experimentación, simple y avanzada

Vamos a dar clic en la opción New, para poder iniciar un nuevo experimento de evaluación:

En esta parte, podemos determinar dónde guardar los resultados del análisis y el formato del archivo.

Tenemos que indicar el tipo de experimento que queremos realizar. Por omisión nos indica validación de cruzada a 10 folds. Las opciones que se tienen son:

Para nuestro primer experimento, utilizaremos retención (2/3 de tuplas para entrenamiento) y el 1/3 restante para prueba:

Vamos a agregar el dataset que evalua la calidad de vino blanco:

Finalmente, vamos indicarlos modelos que deseamos comparar:

Nos movemos a la pestaña Run, para comenzar con el entrenamiento y prueba de los algoritmos seleccionados y esperamos a que terminen dichas fases:

Cambiamos a la pestaña de Analyse y vamos a dar clic en Experiment:

Vamos a realizar la siguiente configuración. En la parte de filas (DATASET):

En la parte de columnas (SCHEME):

En el campo de comparación, vamos a seleccionar la métrica con la cual deseamos realizar el experimento de contraste (NUMBER CORRECT):

5

Para realizar la prueba, tenemos como opciones (PAIRED T-TESTER (CORRECTED)):

Una prueba T, asume que las muestras son independientes, pero si se aplica validación cruzada, las muestras no son independientes, si se ignora esta suposición, se generan muchos errores tipo 1 (se rechaza la hipótesis nula cuando era cierta). La prueba T pareada corregida aplica un factor que permite contrarrestar la dependencia entre las muestras que en la práctica resulta en errores aceptables de tipo I.

Una **prueba t** es una **prueba de hipótesis de la media de una o dos poblaciones distribuidas normalmente**. Aunque existen varios tipos de prueba t para situaciones diferentes, en todas se utiliza un estadístico de prueba que sigue una distribución t bajo la hipótesis nula:

Prueba	Propósito	Ejemplo
Prueba t pareada	Prueba si la media de las diferencias entre las observaciones dependientes o pareadas es igual a un valor objetivo	Si usted registra el peso de estudiantes universitarios antes y después de que cada uno de ellos tome una píldora para adelgazar, ¿es suficientemente significativa la pérdida media de peso para llegar a la conclusión de que la píldora es efectiva?

Una propiedad importante de la prueba t es su robustez ante los supuestos de normalidad de la población. En otras palabras, las pruebas t suelen ser válidas incluso cuando se viola el supuesto de normalidad, pero solo si la distribución no es muy asimétrica. Esta propiedad la convierte en uno de los procedimientos más útiles para hacer inferencias sobre las medias de las poblaciones.

Sin embargo, con distribuciones no normales y muy asimétricas, podría ser más conveniente usar pruebas no paramétricas. Una vez configurado, vamos a efectuar la prueba:

Vamos a analizar los resultados:

Tester: weka.experiment.PairedCorrectedTTester -G 3 -D 1 -F

Analysing: Percent correct

Datasets: 1 Resultsets: 3

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 23/05/17 11:22 AM

Dataset	(1)	trees.J4	I	(2) funct	(3) trees
calidad_vino	(10)	58.57	I	58.76	67.52 v
		(v/ /*)	1	(0/1/0)	(1/0/0)

Key:

- (1) trees.J48
- (2) functions.MultilayerPerceptron
- (3) trees.RandomForest

weka.experiment.PairedCorrectedTTester -G 3 -D 1 -R 2 -: Analysing: Percent correct Datasets: 1 Resultsets: 3 Confidence: 0.05 (two tailed) Sorted by: -Date: 23/05/17 11:34 AM c (No. of datasets where [col] >> [row]) -1 (0) 1 (1) | a = (1) trees.J48 - 1 (1) | b = (2) functions.MultilayerPerceptron 0 (0) 0 (0) - | c = (3) trees.RandomForest weka.experiment.PairedCorrectedTTester -G Analysing: Percent correct Datasets: 1 Resultsets: 3 Confidence: 0.05 (two tailed) Sorted by: -23/05/17 11:39 AM >-< > < Resultset 2 0 trees.RandomForest -1 0 1 functions.MultilayerPerceptron

Finalmente, podemos comparar los modelos para ver la curva ROC con el flujo de conocimiento de Weka:

1 trees.J48

-1

Vamos a configurar el siguiente experimento a través de nodos en un flujo, los objetos que se van a seleccionar son:

CSVLOADER: unoCLASSASSIGNER: unoCLASSVALUEPICKER: uno

CROSSVALIDATIONFOLDMAKER: uno

J48: uno

• MULTILAYERPERCEPTRON: uno

CLASSIFIERPERFORMANCEEVALUATOR: dos

MODELPERFORMANCECHART: uno

COSTBENEFITANALISYS: uno

