MATH 4000/6000 - Homework #6

posted March 29, 2019; due by 5 PM on April 3, 2019

The beauty of mathematics only shows itself to [its] more patient followers. - Maryam Mirzakhani

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. Exercise 3.3.2(b,c,e,h).
- 2. Let R be a commutative ring. Show that if a_1, \ldots, a_k are any elements of R, then the set $\langle a_1, \ldots, a_k \rangle$ defined by

$$\langle a_1, \dots, a_k \rangle = \{r_1 a_1 + \dots + r_k a_k : r_1, \dots, r_k \in R\}$$

is an ideal of R.

Remark: When $R = \mathbb{Z}$, the sets $\langle a, b \rangle$ for $a, b \in \mathbb{Z}$ showed up in your first homework assignment. There they were denoted I(a, b).

- 3. Exercise 4.1.3. (In part (c), assume R is not the zero ring.)
- 4. Prove that every ideal of F[x] is principal, i.e., of the form $\langle f(x) \rangle$ for some $f(x) \in F[x]$.

 Hint: If 0 is the only element of the ideal, we can take f(x) = 0. Otherwise, take f(x) as a nonzero element of the ideal whose degree is as small as possible. To conclude, apply the division algorithm.
- 5. Recall that $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$, and that for $z \in \mathbb{Z}[i]$, we defined $N(z) = z\bar{z}$. (Concretely, if z = a + bi, then $N(z) = a^2 + b^2$.)

In this exercise, we outline a proof of the following division theorem for $\mathbb{Z}[i]$:

Division theorem for $\mathbb{Z}[i]$: Let $a, b \in \mathbb{Z}[i]$, with $b \neq 0$. Then there exist $q, r \in \mathbb{Z}[i]$ with

$$a = bq + r$$
, and $N(r) < N(b)$. (\dagger)

Example: Let a = 10 + i and b = 2 - i. We have

$$10 + i = (2 - i) \underbrace{(4 + 2i)}_{q} + \underbrace{i}_{n}$$

where 1 = N(i) < N(2 - i) = 5.

(a) Explain (perhaps with a picture) why every complex number is within a distance $\frac{\sqrt{2}}{2}$ of some element of $\mathbb{Z}[i]$.

Hint: Think about the complex plane. Where are the elements of $\mathbb{Z}[i]$ located there?

- (b) Given $a, b \in \mathbb{Z}[i]$ with $b \neq 0$, let Q = a/b. (Remember that \mathbb{C} is a field, so a/b exists in \mathbb{C} .) From part (a), you can find a Gaussian integer q with $|a/b q| \leq \frac{\sqrt{2}}{2}$. Prove that if we define r := a bq, then (†) holds. In fact, prove the stronger statement that $N(r) \leq \frac{1}{2}N(b)$.
- (c) Find q and r satisfying (†) if a = 5 + 7i and b = 3 i.
- 6. Prove that every ideal of $\mathbb{Z}[i]$ is principal, i.e., of the form $\langle \alpha \rangle$ for some $\alpha \in \mathbb{Z}[i]$.
- 7. Exercise 4.1.14(c). Make sure to answer the two questions at the end (is it a field? is it an integral domain?).

- 8. Exercise 4.1.10. Hint: If you get stuck, try Exercise 4.1.9 first.
- 9. Let $a_1, \ldots, a_k \in \mathbb{Z}$. By Exercise 3, $\langle a_1, \ldots, a_k \rangle$ is an ideal of \mathbb{Z} . On the other hand, we proved in class that every ideal of \mathbb{Z} has the form $\langle d \rangle$ for some integer d. Thus, there is a $d \in \mathbb{Z}$ with

$$\langle a_1, \dots, a_k \rangle = \langle d \rangle.$$

Prove that d divides all the a_i , and that if e is any integer dividing all of the a_i then $e \mid d$. (In other words, d is a greatest common divisor of a_1, \ldots, a_k .)

10. (*) Let $R = \mathbb{Z}[x]$, and let I be the set of elements of R with even constant term. Show that I is an ideal of R but that I is not principal: there is no $f(x) \in \mathbb{Z}[x]$ with $I = \langle f(x) \rangle$.