Segmentez des clients d'un site d'e-commerce

Parcours Data Scientist - OPENCLASSROOMS

Plan de la présentation

- Exploration des données
 - a. Présentation de la problématique
 - b. Nettoyage des données
- Modélisation des données
 - a. Réduction dimensionnelle avec l'ACP
 - b. Utilisation du k-means
 - c. Autres approches
 - d. Etude de stabilité dans le temps
- 3. Conclusion

Exploration des données

Présentation de la problématique

Présentation de la problématique

- Olist => solution de vente sur les marketplaces en ligne
- Comprendre les profils des différents utilisateurs pour aider le marketing
- Les données fournies:
 - Un fichier d'utilisateurs
 - Un fichier de localisation
 - Un fichier des produits commandés par ordre
 - Un fichier des ordres
 - Un fichier de géolocalisation
 - Un fichier de paiements
 - Un fichier de produits
 - Un fichier de vendeurs
 - Et un fichier de traduction des noms de produits

Présentation de la problématique

Exploration des données

Agrégation de tous les différents CSVs ⇒ 119151 lignes et 44 colonnes

- On retire les lignes pour lesquelles y a pas de seller_id
- Imputation du product name, review message et review title ...
- Imputation des dates pour le 'approved at', 'delivered date', et 'delivered carrier date'
- Imputation de valeurs à 0 pour les photos, la longueur de description du produit

- Transformation des colonnes 'date' en 'délai'
- Créer 9 catégories de produits:
 - Misc
 - Electronic
 - Office
 - Construction
 - Food
 - House
 - Mode
 - Leisure
 - Auto

- Utilisation du volume de produit (au lieu de longueur, largeur et hauteur)
- Création d'une variable distance (pour remplacer les coordonnées de départ et d'arrivée)
- Création d'une colonne par type de paiement, et par type d'ordre

- Nos données après avoir appliqué un grouping : 96461 lignes et 35 colonnes
- Grouper le price et les frais de livraison en une seule valeur total value

- 0.50

-0.25

--0.50

Distribution des données

Modélisation des données

Modélisation des données

Silhouette analysis for KMeans clustering on sample data with n_clusters = 9

On va rajouter des labels plus explicites à chaque cluster

Modélisation des données

Autres approches

Autres approches : Clustering hiérarchique

Autres approches: DBScan

DBSCAN number of clusters Heat Map

Autres approches: DBScan

DBSCAN Unclassified data Heat Map

Modélisation des données

Stabilité dans le temps

• Utilisation de la colonne purchase_delay, qu'on va "décaler":

Evolution on cluster for data > 30 days

-0.6

- 0.4

- 0.2

Evolution on cluster for data > 300 days

-0.4

- 0.2

Evolution on cluster for data > 100 days

- 0.2

Conclusion

Conclusion

- Utilisation du k-means permet de détecter quelques cluster intéressants 9 au total.
- Les Clusters sont stables sur 100 jours à priori
- Pistes d'amélioration:
 - o Tenter d'autres catégorisations des produits, ou pouvoir avoir des tags depuis le site
 - Avoir un échantillon plus représentatif (actuellement la majorité des clients ont commandé une seule fois)