Sistemas de Información y Telemedicina II^*

Machine Learning para Mesotelioma Maligno

Irene Estela García García Ilán Francisco Carretero Juchnowicz Ignacio Maria Amat Hernández

April 19, 2020

^{*}Grado en Ingeniería Biomédica, Escuela Técnica Superior de Ingenieros Industriales, Valencia, España.

Contents

1	Ana	álisis exploratorio	4
	1.1	Tipos de datos	4
	1.2	Caja bigotes	5
	1.3	Histograma	6
	1.4	Kernel Density	7
	1.5	Cuantil - cuantil	8
	1.6	Correlaciones	9
2	Ext	racción de Características	10
	2.1	Filter methods	10
	2.2	Wrapper methods	11
	2.3	PCA	12
3	Mo	delos de Clasificación	13
4	Inte	erfaz	14
	4.1	Interfaz sin opciones	17
L	ist	of Figures	
	1	Caja bigotes	5
	2	Histograma	6
	3	Kernel Density	7
	4	Cuantil - cuantil	8
	5	Correlaciones	9
	6	Diagrama de pareto	12
	7	Ventana principal	14
	8	Selección de paciente	14
	9	Importación paciente	15
	10	Cargar variables	15
	11	Selección de modelos	16
	12	Selección de modelos	16
	13	Selección de modelos	17
L	isti	ngs	
	1	Variables de la base de datos	4
	2	Selección de variables según fscore	10

3	Mejores variables según SFS y SBS															11
4	Modelos de clasificación en Python							 								13

1 Análisis exploratorio

1.1 Tipos de datos

Comenzamos analizando la base de datos, consta de las siguientes variables:

```
RangeIndex: 324 entries, 0 to 323
 2
   Data columns (total 30 columns):
 3
         Column
                                             Non-Null Count
                                                               Dtype
        _____
 4
                                              _____
                                                              float64
 5
    0
        age
                                             324 non-null
 6
                                             324 non-null
                                                              int64
    1
        gender
 7
    2
        city
                                             324 non-null
                                                              int64
 8
        asbestos exposure
                                             324 non-null
                                                              int64
    3
9
    4
        duration of asbestos exposure
                                             324 non-null
                                                              float64
10
    5
        keep side
                                             324 non-null
                                                              int64
11
        duration of symptoms
                                             324 non-null
                                                              float64
12
    7
        dyspnoea
                                             324 non-null
                                                              int64
13
    8
        ache on chest
                                             324 non-null
                                                              int64
14
    9
        weakness
                                             324 non-null
                                                              int64
        habit of cigarette
                                             324 non-null
15
    10
                                                              int64
16
    11
        performance status
                                             324 non-null
                                                              int64
17
    12
        white blood
                                             324 non-null
                                                              float64
18
    13
        cell count (WBC)
                                             324 non-null
                                                              int64
19
    14
        hemoglobin (HGB)
                                             324 non-null
                                                              int64
20
    15
        platelet count (PLT)
                                             324 non-null
                                                              float64
21
    16
        sedimentation
                                             324 non-null
                                                              float64
22
    17
        blood lactic dehydrogenise (LDH)
                                             324 non-null
                                                              float64
23
        alkaline phosphatise (ALP)
                                             324 non-null
                                                              float64
24
        total protein
                                             324 non-null
                                                              float64
    19
25
    20
        albumin
                                                              float64
                                             324 non-null
26
                                             324 non-null
                                                              float64
    21
        glucose
27
    22
        pleural lactic dehydrogenise
                                             324 non-null
                                                              float64
28
    23
        pleural protein
                                             324 non-null
                                                              float64
29
        pleural albumin
                                             324 non-null
                                                              float64
    24
    25
        pleural glucose
30
                                             324 non-null
                                                              float64
31
    26
        pleural effusion
                                             324 non-null
                                                              float64
32
                                                              float64
    27
        pleural thickness on tomography
                                             324 non-null
        pleural level of acidity (pH)
                                                              float64
33
    28
                                             324 non-null
34
    29
       C-reactive protein (CRP)
                                             324 non-null
                                                              int64
35
   dtypes: float64(18), int64(12)
36
   memory usage: 76.1 KB
```

Listing 1: Variables de la base de datos.

Nuestra base de datos consta de 324 entradas, cada una con 30 variables. Todos los valores son floats e ints, además no tenemos ningún NULL.

1.2 Caja bigotes

Fig. 1: Caja bigotes.

Vemos que no hay diferencias notables entre los diagramas de nuestra población de pacientes sanos y enfermos. Las variables PLT, PLT, glucosa y PLD parecen tener datos anómalos.

1.3 Histograma

 $Fig.\ 2:\ Histograma.$

Como es de esperar tras juzgar los diagramas de caja bigotes, los histogramas también tienen una distribución casi idéntica. Lo único en lo que se diferencian es en la cuentas totales, ello indica que tenemos más observaciones de pacientes sanos que de enfermos.

1.4 Kernel Density

Fig. 3: Kernel Density.

A diferencia de los histogramas, al tratarse con densidades no se observan diferencias por la distinta cantidad de observaciones de sanos y enfermos. Únicamente vemos que las distribuciones son casi idénticas, como intuíamos de los histogramas.

1.5 Cuantil - cuantil

Fig. 4: Cuantil - cuantil.

1.6 Correlaciones

Fig. 5: Correlaciones.

2 Extracción de Características

2.1 Filter methods

1	Ranking	Variable
2		
3	1	pleural level of acidity (pH)
4	2	C-reactive protein (CRP)
5	3	gender
6	4	pleural lactic dehydrogenise
7	5	pleural effusion
8	6	pleural glucose
9	7	pleural albumin
10	8	keep side
11	9	blood lactic dehydrogenise (LDH)
12	10	total protein
13	11	alkaline phosphatise (ALP)
14	12	white blood
15	13	performance status
16	14	cell count (WBC)
17	15	habit of cigarette
18	16	pleural protein
19	17	duration of asbestos exposure
20	18	city
21	19	dyspnoea
22	20	ache on chest
23	21	sedimentation
24	22	asbestos exposure
25	23	platelet count (PLT)
26	24	glucose
27	25	albumin
28	26	duration of symptoms
29	27	weakness
30	28	age
31	29	hemoglobin (HGB)
32	30	pleural thickness on tomography

Listing 2: Selección de variables según fscore

Usando la puntuación de Fisher clasificamos las características de mayor a menor relevancia a la hora de resolver el problema de clasificación

2.2 Wrapper methods

```
0.67828282828283
   Sequential Forward
 2
                         Selection ('asbestos exposure',
3
                                      'keep side',
 4
                                      'weakness',
5
                                      'cell count (WBC)',
                                      'platelet count (PLT)',
 6
 7
                                      'alkaline phosphatise (ALP)',
                                      'glucose',
 8
9
                                      'pleural protein',
                                      'pleural glucose',
10
                                      'C-reactive protein (CRP)')
11
12
13
   0.5414285714285715
14
   Sequential Backward Selection ('city',
                                     'asbestos exposure',
15
                                     'keep side',
16
17
                                     'duration of symptoms',
                                     'ache on chest',
18
19
                                     'performance status',
20
                                     'platelet count (PLT)',
                                     'alkaline phosphatise (ALP)',
21
22
                                     'pleural albumin',
23
                                     'C-reactive protein (CRP)')
```

Listing 3: Mejores variables según SFS y SBS

Una selección secuencial hacia adelante y hacia atrás con un modelo de randomforest con 100 estimadores y 10 parámetros calculamos una precisión del 67%. Los resultados son menores cuando hacemos la selección hacia atrás. También lo hemos intentado con un modelo knn, los resultados son peores en torno al 50%.

2.3 PCA

Fig. 6: Diagrama de pareto.

Calculando el diagrama de pareto vemos que necesitaríamos entorno a 17 componentes para explicar el 80% de la varianza de los datos. Con estos resultados vemos que será difícil reducir al dimensionalidad en componentes principales.

3 Modelos de Clasificación

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
 3
   modeloLDA = LinearDiscriminantAnalysis ();
4
5
   from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
6
7
   modeloQDA = QuadraticDiscriminantAnalysis ();
9
   from sklearn.neighbors import KNeighborsClassifier
10
11
   modeloKNN
                = KNeighborsClassifier (n_neighbors = 50)
12
13
   from sklearn.ensemble import RandomForestClassifier
14
15
   modelFOREST = RandomForestClassifier (
           n_{estimators} = 100,
16
17
            criterion = 'gini',
18
            )
19
20
   from neupy import algorithms
21
22
   modeloPNN = algorithms.PNN (
23
           std=5,
24
            verbose=False,
25
            )
26
27
   from sklearn.neural_network import MLPClassifier as MLP
28
   modeloMLP = MLP(
29
30
           hidden_layer_sizes = (175, 100, 50, 25, ),
31
            max_iter = 500,
           random_state = 1)
32
33
34
   from sklearn import svm
35
   modeloSVM = svm.LinearSVC()
36
```

Listing 4: Modelos de clasificación en Python

Model	TP	FP	FN	TN	Accuracy	Sensitivity	Specificity	Time
LDA	58.36	10.54	21.38	7.72	0.67	0.27	0.73	5.48
QDA	56.14	12.87	22.11	6.89	0.64	0.24	0.72	5.00
KNN	68.83	0.00	29.17	0.00	0.70	0.00	0.70	10.66
FOREST	66.51	2.48	23.95	5.05	0.73	0.17	0.74	196.52
SVM	46.30	22.67	19.78	9.26	0.57	0.32	0.70	22.81
PNN	61.90	7.07	25.25	3.78	0.67	0.13	0.71	9.75
MLP	47.88	21.03	20.25	8.85	0.58	0.30	0.70	295.27

Table 1: Resultados agregados tras 1000 repeticiones.

4 Interfaz

Fig. 7: Ventana principal.

Ventana principal de nuestra interfaz. A la izquierda campos de texto para introducir las variables, se muestra entre paréntesis el rango de dicha variable en nuestra base de datos.

Fig. 8: Selección de paciente.

Para hacer mas cómodo su uso y evitar tener que introducir 30+ variables a mano, al presionar Ctrl + O se abre una ventana para seleccionar un archivo .csv, contiene todos los valores para un paciente separados por comas.

Fig. 9: Importación paciente.

Al importar el paciente se rellenan automáticamente las variables, se pueden comprobar y editar si fuera necesario.

Fig. 10: Cargar variables.

Al presionar Enter con el teclado o el botón 'Leer Vars' con el ratón se guardan las variables en la memoria del programa. Para actualizar una variable no hay más que introducir un nuevo valor y pulsar enter o el ratón. Para cargar el modelo se presiona Ctrl + M, o se elige desde el menú. Aparece una venta para seleccionar el archivo .py con los modelos en python.

Fig. 11: Selección de modelos.

Una vez cargados los modelos se selecciona que modelo se desea ejecutar, los botones son mutuamente excluyentes. Al ejecutarse el modelo se generan las métricas de evaluación a la derecha y el diagnóstico.

Fig. 12: Selección de modelos.

Cuando se selecciona otro modelo se revalúa al paciente, cada modelo tiene unas características diferentes en cuanto a exactitud, sensitividad y especificidad. En función de lo que se busque se puede seleccionar un modelo adecuado.

4.1 Interfaz sin opciones

Esta versión restringe al usuario a usar un modelo predeterminado. Al pulsar el botón ejecutar, después de haber introducido los datos del paciente se calcula el modelo y se presentan los resultados.

Fig. 13: Versión limitada para médicos.