Разбиение графа на независимые множества

- Множество вершин $U \subseteq V$ графа G = (V, E) называется независимым, если любые вершины, входящие в U, несмежны
 - \star U независимо \Leftrightarrow подграф в G, порожденный U, не имеет ребер
- Существует класс задач, которые моделируются графами так:
 - вершины некоторые объекты
 - ребро между двумя вершинами означает «несовместимость» этих объектов
- В задаче может требоваться
 - найти наибольшее совместимое множество объектов (Independent set)
 - или совместимое множество заданного размера
 - разбить все объекты на совместимые множества (Graph coloring)
 - разбиваем на минимальное или на заданное количество множеств
- Мы рассматриваем задачи второго типа о раскраске графа
 - Расписание:
 - дано множество занятий в формате (кто ведет, у кого ведет, номер аудитории)
 - включить все занятия в недельное расписание так чтобы занятия, проходящие в одно время, не пересекались ни по одному из параметров
 - ⋆ Доступ к ресурсам:
 - дано множество процессов, запрашивающих доступ к последовательным ресурсам
 - выполнить все процессы как можно быстрее, избежав конфликтов доступа
 - Выделение памяти:
 - дана программа, использующая объекты данных («переменные») и набор регистров, которые можно использовать (их меньше, чем переменных)
 - у переменных есть время жизни с момента первого вычисления до момента последнего использования
 - назначить переменные регистрам так, чтобы данные не портились в ходе выполнения программы

Основные определения и простые оценки

- Пусть $k \in \mathbb{N}$
- ullet Раскраска графа G=(V,E) в k цветов (k-раскраска) функция $f:V \to [1..k]$ ullet если f(v)=i, то говорят, что v раскрашена в цвет i
- Раскраска f графа G называется правильной, если $f(u) \neq f(v)$ для любого ребра $(u,v) \in E$
 - граф G k-раскрашиваем, если для него существует правильная k-раскраска
 - ⋆ ориентация и кратность ребер не влияют на правильность раскрасок, а граф с петлями невозможно правильно раскрасить
 - поэтому в задачах о раскраске рассматриваются обыкновенные графы
 - \star если f правильная раскраска, то множество $\{v \mid f(v)=i\}$ независимое
- ullet Число $k=\chi(G)-$ хроматическое число графа G, если G k-раскрашиваем, но не (k-1)-раскрашиваем
 - ullet правильная $\chi(G)$ -раскраска графа G называется оптимальной
- ★ Вычисление хроматического числа трудная задача
 - и остается трудной даже для планарных графов!

Классы графов, для которых $\chi(G)$ указать легко:

- $\star~\chi(G)=1\Leftrightarrow$ в G нет ребер $\star~\chi(G)=2\Leftrightarrow G$ двудольный (хотя бы с одним ребром)
- двудольный граф по определению разбивается на два независимых множества $\star \chi(K_n) = n$
- все вершины полного графа должны иметь разные цвета
- $\star \chi(C_n) = 2 + n \mod 2$
 - четный цикл двудольный граф, нечетный превращается в двудольный удалением вершины

Нижние оценки хроматического числа

Лемма о нижних оценках

- 1. Пусть $\omega(G)$ максимальное число вершин в полном подграфе графа G (кликовое число). Тогда $\chi(G) \geqslant \omega(G)$.
- 2. Пусть $\beta(G)$ максимальное число вершин в независимом множестве графа G (число независимости). Тогда $\chi(G) \geqslant n/\beta(G)$, где n число вершин в G.

Доказательство:

- lacktriangledown в G есть подграф $K_{\omega(G)}$, для раскраски которого нужно $\omega(G)$ цветов
- ② множество вершин разбивается на $\chi(G)$ независимых множеств, каждое мощности не более $\beta(G)$, откуда $n \leqslant \chi(G)\beta(G)$
- ! Придумайте примеры графов, для которых
 - $\chi(G) \omega(G) \geqslant 1$; $\chi(G) \omega(G) \geqslant 2$
 - $\chi(G)/\beta(G) = \Omega(n)$
- ★ Главная проблема приведенных нижних оценок не в том, что они неточны, а в том, что задачи поиска кликового числа и числа независимости — тоже трудные

Раскраска блоков

- * При раскраске графа компоненты связности можно раскрашивать независимо
 - \star хроматическое число графа равно максимуму хроматических чисел его компонент
- ⋆ Верно более сильное утверждение:

Лемма о раскраске блоков

Хроматическое число графа равно максимуму хроматических чисел его блоков.

Доказательство:

- \star достаточно доказать лемму для связного графа G
- \bullet пусть B(G) дерево блоков G
- любая точка сочленения принадлежит по крайней мере двум блокам
- \Rightarrow листья B(G) блоки (назовем их концевыми блоками)
- проведем индукцию по числу *k* блоков графа *G*
- ullet база индукции: k=1 очевидно
- ullet шаг индукции: пусть лемма верна для графов с $\leqslant k$ блоками, а G имеет k+1 блок
- \bullet пусть B концевой блок G, а G' объединение всех остальных блоков
- \Rightarrow графы B и G' имеют ровно одну общую вершину v, которая является точкой сочленения

Раскраска блоков (окончание доказательства)

- ullet пусть r максимум хроматических чисел блоков графа $G \Rightarrow \chi(G) \geqslant r$
- ullet граф G' имеет k блоков $\Rightarrow \chi(G') \leqslant r$ по предположению индукции
- ullet зафиксируем произвольные оптимальные раскраски графов B и G' и рассмотрим два случая:
- lacktriangledown в графах B и G' раскрашена одинаково
- \Rightarrow получили правильную раскраску графа G в $\max\{\chi(B),\chi(G')\}=r$ цветов
- 🔞 вершина v в графе B раскрашена в i-й цвет, а в графе G' в j-й цвет, $i \neq j$
- \Rightarrow заменим раскраску f графа B раскраской $f\circ\phi$, где $\phi:[1..r]\to [1..r]$ перестановка, такая что $\phi(i)=j$ и $\phi(j)=i$
- \Rightarrow получили правильную раскраску B, подходящую под случай 1
- Раскраски графов не единственный класс задач, которые сводятся к случаю, когда граф является блоком
 - ! Докажите, что граф планарен, если все его блоки планарны

Дискретная математика

Верхние оценки хроматического числа

Лемма о жадной оценке

Пусть G — произвольный граф, $\Delta(G)$ — максимальная степень вершины в G. Тогда $\chi(G)\leqslant \Delta(G)+1$.

 \square оказательство: раскрасим G следующим жадным алгоритмом:

- вершины G упорядочиваются в список произвольным образом
- очередная вершина v красится в наименьший из цветов, не совпадающих с цветами уже покрашенных смежных вершин
- * алгоритм строит правильную раскраску
- \star любая вершина имеет не более $\Delta(G)$ окрашенных соседей и получает цвет $\leqslant \Delta(G)+1$
- ! Приведите пример, когда алгоритм раскрасит цикл C_{6} в три цвета вместо двух
- ★ Удивительно (и печально), но приведенную простую оценку не удается улучшить более, чем на единицу; наилучшей общей верхней оценкой является

Теорема Брукса

Если G — неполный граф и $\Delta(G) \geqslant 3$, то $\chi(G) \leqslant \Delta(G)$.

Еще о простых алгоритмах и сложных задачах

- Стратегия
 - разбить граф на блоки
 - используя подходящую эвристику, упорядочить вершины блока
 - раскрасить блок жадным алгоритмом с предыдущего слайда
 - в большинстве случаев позволит получить раскраску в число цветов, мало отличающееся от хроматического, но...
- * В предположении о том, что задача оптимальной раскраски трудная, для любого полиномиального алгоритма раскраски и любого достаточно большого n существуют «сложные» графы, на которых алгоритм ошибается в числе цветов в $\Omega(\frac{n}{\log 3}\frac{n}{n})$ раз
- 🛨 Задача проверки 3-раскрашиваемости графа по-прежнему трудна
 - проверка 2-раскрашиваемости проста, поскольку это проверка двудольности
- ★ Задача проверки 3-раскрашиваемости планарного графа все еще трудна
 - . а задача проверки 4-раскрашиваемости планарного графа тривиальна:

Теорема о четырех красках (Аппель, Хакен, 1976)

Хроматическое число любого планарного графа не превосходит 4.

- Первое доказательство теоремы, опирающееся на компьютерный перебор
- «Руками» можно доказать более слабое утверждение (см. следующий фрагмент)

Теорема Хивуда

Теорема Хивуда

Хроматическое число любого планарного графа не превосходит 5.

Для доказательства нам потребуется

Лемма о вершине степени ≤ 5

В любом обыкновенном планарном графе есть вершина степени не более 5.

Доказательство:

- число ребер и число вершин обыкновенного планарного графа G=(V,E) связаны неравенством $m\leqslant 3n-6$
 - следствие из теоремы Эйлера о плоских графах
- $\Rightarrow \sum_{v \in V} \deg(v) = 2m \leqslant 6n 12$
- ullet сумма n слагаемых меньше $6n \Rightarrow$ найдется слагаемое, меньшее 6

1 / 4

Доказательство теоремы Хивуда

- Пусть G (обыкновенный) планарный граф с n вершинами, Γ его правильное изображение; докажем теорему Хивуда индукцией по n
 - база индукции (n = 1) очевидна
 - ullet шаг индукции: пусть n>1
 - \bullet выберем в графе G вершину v c $deg(v) \leqslant 5$
 - вершина v существует по доказанной лемме
 - граф G-v имеет правильную раскраску f не более чем 5 красками по пред положению индукции
 - \star если для раскраски вершин, смежных с v, использовано менее 5 цветов, то f можно дополнить до правильной раскраски графа G 5 красками, раскрасив вершину v «незанятым» цветом
 - ⇒ далее считаем, что соседи v раскрашены в 5 разных цветов; значит,
 - v₁, v₂, v₃, v₄, v₅ все смежные с v вершины
 - нумерация вершин в порядке следования на изображении Г по часовой стрелке
 - $f(v_1) = 1, \ldots, f(v_5) = 5$

- ullet $G_{1,3}$ подграф графа G, порожденный всеми вершинами u такими, что $f(u) \in \{1,3\}$
 - граф $G_{1,3}$ содержит вершины v_1 и $v_3 \Longrightarrow$

Доказательство теоремы Хивуда (2)

- ullet Граф $G_{1,3}$ может быть связным или несвязным; возможны два случая
 - f 1 вершины v_1 и v_3 лежат в разных компонентах связности графа $G_{1,3}$
 - ullet пусть K компонента связности $G_{1,3}$, содержащая v_1
 - ullet переопределим f на K, перекрасив вершины цвета 1 в цвет 3 и наоборот
 - \star новая функция f' правильная раскраска графа $G{-}v$:
 - новые вершины цвета 1 не смежны между собой
 - \bullet имели один цвет в f, а f правильная
 - новые вершины цвета 1 не смежны со «старыми» вершинами цвета 1
 - находятся в разных компонентах графа $G_{1,3}$
 - то же верно для вершин цвета 3
 - для вершин остальных цветов ничего не изменилось
 - \Rightarrow построена правильная 5-раскраска f' графа G-v, в которой ни одна из вершин, смежных с v в графе G, не имеет цвета 1
 - ullet при перекраске вершина v_1 получила цвет 3, вершины v_2, v_3, v_4 и v_5 сохранили цвет
 - \Rightarrow можно покрасить вершину v в цвет 1, получая правильную 5-раскраску графа G
 - $\mathbf{2}$ вершины v_1 и v_3 лежат в одной компоненте связности графа $G_{1,3}$
 - \Rightarrow в G есть (v_1, v_3) -путь, все вершины которого имеют цвета 1 и 3
 - ullet дополним 1-3 раскрашенный (v_1,v_3) -путь ребрами (v,v_1) и (v_3,v) до простого цикла $C\colon$

Доказательство теоремы Хивуда (3)

• Дополним (v_1, v_3) -путь ребрами (v, v_1) и (v_3, v) до простого цикла C:

- \star C ограничивает часть плоскости, содержащую ровно одну из вершин v_2 и v_4
- рассмотрим подграф $G_{2,4}$ графа G, порожденный всеми вершинами цветов 2 и 4 граф G_{2,4} содержит вершины v₂ и v₄
- пусть v_2 и v_4 лежат в одной компоненте связности графа $G_{2,4}$
- \Rightarrow существует простой (v_2, v_4) -путь, проходящей только через вершины графа $G_{2,4}$
 - изображение этого пути в Γ линия, соединяющая точки v_2 и v_4
- \Rightarrow эта линия пересекает изображение цикла C
 - одна из вершин v₂, v₄ внутри, а другая вовне области, ограниченной изображением С
 - Г правильное ⇒ общая точка цепи и цикла вершина графа
- \Rightarrow в C есть вершина цвета 2 или 4 \Rightarrow противоречие
- \Rightarrow вершины v_2 и v_4 лежат в разных компонентах связности графа $G_{2,4}$
 - аналогично случаю 1, перекрасим компоненту связности $G_{2,4}$, содержащую v_2 , поменяв цвета 2 и 4 местами
- \Rightarrow полученная раскраска f'' будет правильной 5-раскраской графа G-v
- среди смежных с ν вершин нет вершины цвета 2
- ullet положив f''(v)=2, получим правильную 5-раскраску графа G