Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Currently amended): A regulator circuit comprising:
2	a circuit control node;
3	a circuit output node to which a load can be connected, a voltage at said circuit
4	output node being determined based on a voltage signal at said circuit control node;
- 5	an amplifier circuit having a first amplifier input and a second amplifier input, and
6	further having an amplifier output, said first amplifier input configured for receiving a reference
7	voltage, said amplifier circuit receiving power from a first voltage source;
8	a source follower circuit having a source follower input node and a source
9	follower output, said amplifier output configured to drive said source follower input node, said
10	source follower output coupled to said circuit control node; and
11	a series-connected resistor and transistor circuit coupled to provide a bias at said
12	source follower input node, said amplifier output coupled to a control node of said transistor,
13	said amplifier output thereby driving said source follower via said series-connected resistor and
14	transistor circuit; and
15	a feedback circuit coupled between said circuit output node and said second
16	amplifier input.
1	2. (Currently amended): The circuit of claim 1 further comprising wherein
2	said transistor is a component of a current mirror circuit coupled between said amplifier output
3	and said source follower.
1	3. (Currently amended): The circuit of claim 2 further comprising awherein
2	said resistor eomponent is coupled between a second voltage source and said source follower
3	input node.

Appl. No. 10/789,774 Amdt. sent March 23, 2005 Reply to Office Action of December 2, 2004

2

3

1 4. (Original): The circuit of claim 3 wherein said first voltage source is 2 substantially the same potential as the second voltage source. 1 5. (Original): The circuit of claim 3 wherein said first voltage source is 2 different from the second voltage source. 6. 1 (Original): The circuit of claim 1 wherein said source follower circuit 2 comprises a transistor element in series connection with a current source. 7. 1 (Original): The circuit of claim 1 wherein said amplifier circuit comprises 2 a single op amp component. 1 8. (Original): The circuit of claim 1 wherein said amplifier circuit comprises 2 two or more op amp components. 1 9. (Original): The circuit of claim 1 wherein said feedback path comprises a 2 pair of resistor components configured as a voltage divider. 1 10. (Currently amended): The circuit of claim 1 wherein a pass element 2 having a control node an-can be connected to said circuit control node, wherein an output node of 3 said pass element can be connected to said circuit output node, whereby said pass element can 4 provide a regulated output voltage at its output node to a said load connected thereto. 1 11. (Original): The circuit of claim 10 wherein a second voltage source

different from said first voltage source can be connected to said load via said pass element,

thereby providing a voltage to said load that is independent of said first voltage source.

Appl. No. 10/789,774 Amdt. sent March 23, 2005 Reply to Office Action of December 2, 2004

1	12. (Currently amended): A circuit comprising:
2	a first circuit node;
3	a second circuit node, wherein a voltage level thereat varies in accordance with a
4	voltage level of said first circuit node;
5	an error amplifier having a first amplifier input configured to be coupled to a
6	reference voltage, having a second amplifier input, and having an amplifier output, said error
7	amplifier configured to receive power from a first voltage source;
8	a gain stage comprising a source follower circuit in electrical communication with
9	said amplifier output and with said first circuit node;
10	a series-connected resistor and transistor coupled to provide a bias to said gain
11	stage, said amplifier output coupled to a control node of said transistor; and
12	a feedback path coupled between said second node and said second circuit
13	amplifier input, said feedback path including a pair of resistors configured as a voltage divider.
1	13. (Currently amended): The circuit of claim 12 wherein said gain stage
2	comprises a first transistor component in series with a current source and having a control
3	terminal, said bias being applied to said control terminal, said amplifier output configured to
4	drivethereby driving said control terminal via said series-connected resistor and transistor.
1	14. (Currently amended): The circuit of claim 13 further comprising a
2	wherein said resistor component-is coupled between a second voltage source and said control
3	terminal.
1	15. (Currently amended): The circuit of claim 13 further comprising wherein
2	said transistor is a component in a current mirror-coupled between said amplifier output and said
3	gain stage .

Appl. No. 10/789,774 Amdt. sent March 23, 2005 Reply to Office Action of December 2, 2004

- 1 16. (Currently amended): The circuit of claim 15 wherein said current mirror comprises said transistor and a second transistor component and a third transistor component, each having a control node connected to said amplifier output, each having a first terminal at ground potential, said second transistor component having a second terminal connected to said first node, said third transistor component having a second terminal connected to said control node of said first transistor component.
 - 17. (Canceled)

1

2

- 1 18. (Original): The circuit of claim 14 wherein said first voltage source and 2 said second voltage source are substantially of equal DC (direct current) voltage levels.
 - 19. (Original): The circuit of claim 14 wherein said first voltage source and said second voltage source have different DC voltage levels.
- 1 20. (Original): The circuit of claim 12 wherein said second circuit node 2 provides a feedback voltage that varies with a voltage across an external load that is coupled 3 thereto.
- 1 21. (Currently amended): The circuit of claim 12 wherein a pass element
 2 having a control node and can be connected to said first circuit node, wherein a output node of
 3 said pass element can be connected to said second circuit node, whereby said pass element can
 4 provide a regulated output voltage at its output node to a load connected thereto.
- 1 22. (Original): The circuit of claim 21 wherein a second voltage source 2 different from said first voltage source can be connected to said load via said pass element, 3 thereby providing a voltage to said load that is independent of said first voltage source.

1	23. (Currently amended): A method for regulating an output voltage level of a
2	circuit output node of an electric circuit comprising:
3	detecting said output voltage level;
4	producing an error signal based on a comparison of said output voltage level
5	relative to a reference voltage;
6	controlling a source follower circuit with said error signal to produce a source
7	follower output, including driving a series-connected resistor and transistor pair with said error
8	signal to produce a bias level, and setting a DC operating point of said source follower circuit by
9	applying said bias level to said source follower circuit; and
10	varying said output voltage level based on said source follower output,
11	wherein a bandwidth at said output node has transfer function of said electric
12	circuit is characterized by having a pole at a frequency greater than the unity gain frequency of
13	said <u>electric</u> circuit.
1	24. (Currently amended): The method of claim 23 further comprising setting
2	a DC operating point of said source follower circuit via awherein said resistor element is coupled
3	to a first voltage source.
1	25. (Original): The method of claim 24 further comprising controlling a pass
2	circuit with said source follower output to produce said output voltage level.
1	26. (Original): The method of claim 25 wherein controlling said pass circuit
2	with includes applying said source follower output to a control node of said pass circuit, said
3	pass circuit being powered by a second voltage source, wherein a pole at said control node of
4	said pass circuit varies with a pole at said circuit output node.
1	27. (Original): The method of claim 26 wherein said first voltage level is
2 ·	different from said second voltage level.

I	28. (Currently amended): A voltage regulator circuit comprising:
2	first means for detecting said an output voltage level;
3	second means for producing an error signal based on a comparison of said output
4	voltage level relative to a reference voltage, said second means coupled to a first voltage source;
5	and and
6	a series-connected resistor and transistor pair configured to produce a bias by
7	controlling said transistor with said error signal; and
8	a source follower circuit in electrical communication with said first means biased
9	by said series-connected resistor and transistor pair to produce a source follower output,
10	wherein said output voltage level is varied in response to variances in said source
11	follower output,
12	wherein a bandwidth at said output node has transfer function of said circuit is
13	characterized by having a pole at a frequency greater than the unity gain frequency of said
14	circuit.
1	29. (Original): The circuit of claim 28 wherein said source follower output
2	can be connected to a pass element that is connected to a second voltage source, wherein an
3	output of said pass element constitutes said output voltage.
1	30. (Currently amended): The circuit of claim 28 further comprising awherein
1	
2	said resistor component is connected between said first voltage source and said source follower
3	circuit.