ACOUSTIC FENCING USING MULTI-MICROPHONE SPEAKER SEPARATION (6090)

Students: Orel Ben-Reuven and Tomer Fait

Instructor: Amir Ivry

August 2021

OUTLINE

Challenge and motivation Algorithm overview Defining evaluation criteria Simulated recordings Real recordings

THE CHALLENGE

SIGNIFICANCE AND MOTIVATION

- Tiarization
- Identify locations of speakers
- Prioritizing speakers according to location
- † Highlight specific speaker among cluttered environment
- Automatic transcription and translation

PROBLEM FORMULATION

- *M* mics and *N* speech sources in noisy reverberant enclosure
- i_{th} speech signal $s^i(n)$ captured by m_{th} microphone:

$$z_m(n) = \sum_{i=1}^{N} (s^i(n) * h_m^i(n)) + W_m(n),$$

where $h_m^i(n)$ is the RIR relating the i_{th} speaker to the m_{th} microphone and $W_m(n)$ is the additive AWGN

PROBLEM FORMULATION — CONT.

- Let θ_1 , θ_2 be two reception zones
- Let $y_1(n)$, $y_2(n)$ be the output signals of the system
- The goal include only speakers located inside θ_k in $y_k(n)$

DDESS

 Deep direction estimation for speech separation (DDESS) [1] separates speakers in the STFT domain

- DDESS employs:
 - U-net network [2]
 - Classification of each TF bin to DOA
 - Reconstruction by multiplying U-net masks with reference microphone

SCHEME OF DDESS SOLUTION

- 9 microphones (8 + ref.), 2 reception zones, and 2 speakers
- Each microphone contributes a TF image with L time frames and K frequency bins Z_i
- Calculate the phase difference between each of the 8 microphones and the ref:

$$\angle \frac{Z_i}{Z_{ref}}$$

• The inputs to the net are the sine and cosine of these differences.

- Input 16 TF images with L time frames and K frequency bins R
- For each pair $\{(l, k) \mid l = 1, ..., L ; k = 1, ..., K\}$ we define:

$$r_i^1(l,k) = \cos\left(\angle \frac{Z_i(l,k)}{Z_{ref}(l,k)}\right)$$
$$r_i^2(l,k) = \sin\left(\angle \frac{Z_i(l,k)}{Z_{ref}(l,k)}\right),$$

where Z_i is the STFT transformation of z_i for i = 2, ..., 9

• Output – for each reception area $\theta_{i\in 1,2}$, we define the mask:

$$\widehat{M}_i(l,k) = p_{l,k}(\theta_i)$$
 ,

where $p_{l,k}(\theta_i)$ is the probability of bin $\{(l,k) \mid l=1,\ldots,L ; k=1,\ldots,K\}$ to be in reception area $\theta_{l\in 1,2}$

• The estimated reconstructed signals are given by:

$$y_i = iSTFT\{Z_{ref} \cdot \widehat{M}_i\} \mid i = 1,2$$

- Label is given per TF bin, according to dominant speakers' location
- Loss function was the cross-entropy loss
 - Assumes classes have a Bernoulli probability distribution

$$loss(x, class) = -\log\left(\frac{exp(x[class])}{\sum_{j} exp(x[j])}\right)$$

$$loss = \sum_{i=1}^{N} loss(i, class[i])$$

EVALUATIONS CRITERIA

- We want to separately evaluate the levels of:
 - Desired signal distortion
 - Interference suppression
- We applied the output mask to 3 STFT signals:
 - Original input signal (mix of both speakers), r(n)
 - Desired signal, p(n)
 - Interference signal, b(n)

NOTATION

$$\widehat{M}$$

$$r(n) \to r'(n)$$

$$p(n) \to p'(n)$$

$$b(n) \to b'(n)$$

From the linearity of STFT we get that:

$$p(n) + b(n) = r(n)$$

$$\Rightarrow p'(n) + b'(n) = r'(n)$$

EVALUATION CRITERIA - CONT.

- Frequency weighted SNR (fwSNRseg) [3] between the clean signal p(n) and p(n) p'(n)
- Output SIR:

$$oSIR = \frac{RMS(p')}{RMS(b')} [dB]$$

• SIR gain - the difference between output and input SIRs:

$$iSIR = \frac{RMS(p)}{RMS(b)} [dB]$$

$$SIR\ Gain = oSIR - iSIR$$

DATA CORPUS

- TIMIT contains (in English):
 - 6300 sentences
 - 630 speakers
 - 8 major dialect
 - 2000+ textually different sentences
- The test set is 27% (about 40 minutes) of the data set
- Popular database for benchmarking

SIMULATION SETUP

- Simulations include varying room dimensions, speaker/receiver setups, and reverberation times
- Each scenario is randomized from the following distributions:
 - Room dimensions: $(X, Y, Z) \sim N(4.25, 1)$
 - Mics array location: Uniform $[{}^{X}/{}_{2} \pm 0.05, {}^{Y}/{}_{2} \pm 0.05, 0.75 \pm 0.05]$
 - Speaker's radius: Uniform $[1.5 \pm 0.3]$ (up to room boundary)
 - Speaker's angle: Uniform [18° 42°]

SIMULATION SETUP

• RIR is generated using image method [4] with $RT_{60} \sim Poisson(0.3)$, bounded by [0.2, 0.8] seconds

• AWGN is added to each microphone with $SNR \sim N(35, 25)$ [dB]

SIMULATION RESULTS

Training on 2h TIMIT dataset, the test set results are: (averaged across sentences)

Evaluation Criterion	Speaker l	Speaker 2
fwSNR [dB]	13 ± 7	14 ± 7
Output SIR [dB]	12 ± 4	12 ± 5
SIR gain [dB]	12 ± 5	12 ± 5

SIMULATION RESULTS - INSIGHTS

Speakers well separated (quantitatively and qualitatively)

Noise is classified into specific zone

One can try to filter noise by creating a virtual zone

Time for real recordings ...

REAL RECORDINGS - TRAIN

REAL RECORDINGS - TRAIN

- $SIR \sim N(0,16)[dB]$
- AWGN is added to each microphone with $SNR \sim N(35, 25)$ [dB]

Computer's center

Hadas

Nimrod

REAL RECORDINGS - TEST

- We tested the trained network on 3 additional rooms
- The rooms were not present in the training set
- SIR is randomized, but no AWGN is added

REAL RECORDINGS - RESULTS

REAL RECORDINGS - RESULTS

Speaker	Evaluation criterion	Meetings room	Hadas	Computers' room	Nimrod
1	fwSNR [dB]	19 ± 4	19 ± 4	16 ± 3	16 ± 3
	Output SIR [dB]	14 ± 3	13 ± 4	9 ± 3	9 ± 4
	SIR gain [dB]	9 <u>+</u> 2	10 ± 3	6 ± 2	6 ± 3
2	fwSNR [dB]	18 ± 4	18 ± 4	14 ± 4	15 ± 4
	Output SIR [dB]	7 ± 2	7 ± 3	4 ± 3	3 ± 3
	SIR gain [dB]	12 ± 3	11 ± 3	7 ± 2	7 ± 2

REAL RECORDINGS - INSIGHTS

Separation is best at meetings room and Hadas' room High noise in Computers room may impede separation

Obstacles in Nimrod's room may impede separation

REAL RECORDINGS - CONCLUSION

Successful separation of real recordings

Generalization for untrained rooms

Evaluation criteria for Acoustic Fencing

FURTHER INFORMATION

 Our documented code is available at: https://github.com/Orelbenr/acoustic-fencing

 Full report and demo files are also available in the GitHub repository

QUESTIONS?

References

- [1] Chazan, Shlomo E., et al. "Multi-Microphone Speaker Separation based on Deep DOA Estimation." 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019.
- [2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015.
- [3] Philipos C Loizou. *Speech enhancement: theory and practice*. 2nd ed. Boca Ratton: CRC press, 2013.
- [4] J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," Journal of the Acoustical Society of America, vol. 65, pp. 943–950, Apr. 1979.