Stochastic Process

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	Convergence of Random Variables				
	1.1 Definitions	1			
	1.2 Markov's Inequality	2			
	1.3 Properties	2			
2 Markov Decision Process					
3	Poisson Process	7			
	3.1 Homogeneous Poisson Process	7			

ii *CONTENTS*

Convergence of Random Variables

1.1 Definitions

Definition (Convergence in Distribution). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let F_n be the cumulative distribution function of X_n . Let X be a random variable. Let F_X be the cumulative distribution function of X. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges in distribution to X, denoted by $X_n \stackrel{d}{\longrightarrow} X$, if $\forall x$ at which F is continuous,

$$\lim_{n \to \infty} F_n(x) = F_X(x).$$

In this case, we say F_X is the asymptotic distribution of $\{X_n\}_{n\in\mathbb{N}}$.

Definition (Convergence in Probability). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges in probability to X, denoted by $X_n \stackrel{p}{\longrightarrow}$, if

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0.$$

Or equivalently,

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1.$$

Definition (Almost Sure Convergence). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges almost surely to X if

$$P(\lim_{n\to\infty} X_n = X) = 1.$$

Definition (Sure Convergence). Let Ω be a sample space of the underlying probability space. Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges surely to X if

$$\forall \omega \in \Omega, \quad \lim_{n \to \infty} X_n(\omega) = X(\omega).$$

Definition (Convergence in Mean). Let $r \geq 1$. Let $\{X_n\}_{n \in \mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n \in \mathbb{N}}$ converges in the r^{th} mean to X, denoted by $X_n \xrightarrow{L^r} X$, if the r^{th} absolute moments $\mathbb{E}[|X_n^r|]$ and $\mathbb{E}[|X|^r]$ of X_n and X exists and

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^r] = 0.$$

1.2 Markov's Inequality

Theorem 1 (Markov's Inequality). Let X be a random variable. Let k and c be arbitrary positive numbers. Then

$$P(|X| \ge c) \le \frac{\mathbb{E}[|X|^k]}{c^k}.$$

Corollary.

$$P(|X - \mathbb{E}[X]| > k\sqrt{\operatorname{var}[X]}) \le \frac{1}{k^2}.$$

1.3 Properties

Proposition 1.3.1. Convergence in probability implies convergence in distribution.

Proposition 1.3.2. Almost sure convergence implies convergence in probability.

Proposition 1.3.3. Convergence in the r^{th} mean for $r \geq 1$ implies convergence in probability.

Proposition 1.3.4. Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of random variables. Let c be a constant. Then $\{X_i\}_{i\in\mathbb{N}}$ converges to c in distribution if and only if $\{X_i\}_{i\in\mathbb{N}}$ converges to c in probability.

Sketch Proof.

$$P(|X_i - c| \ge \varepsilon) = P(X_i \ge c + \varepsilon) + P(X_i \le c - \varepsilon)$$

$$= 1 - P(X_i < c + \varepsilon) + F_i(c - \varepsilon)$$

$$\le 1 - P(X_i \le c + \varepsilon/2) + F_i(c - \varepsilon)$$

$$= 1 - F_i(c + \varepsilon/2) + F_i(c - \varepsilon)$$

1.3. PROPERTIES 3

$$\lim_{i \to \infty} \left[1 - F_i(c + \varepsilon/2) + F_i(c - \varepsilon) \right]$$

$$= 1 - F(c + \varepsilon/2) + F(c - \varepsilon)$$

$$= 1 - 1 + 0$$

$$= 0.$$

Proposition 1.3.5 (Continuous Map). Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of random variables. Let g be a continuous function on the X_i 's. Then

(1) if $X_i \xrightarrow{d} X$, we have $g(X_i) \xrightarrow{d} g(X)$.

(2) if $X_i \xrightarrow{p} c$, we have $g(X_i) \xrightarrow{p} g(c)$.

Proposition 1.3.6 (Slutsky's Theorem). Let $\{X_i\}_{i\in\mathbb{N}}$ and $\{Y_i\}_{i\in\mathbb{N}}$ be sequences of random variables. Suppose $X_i \stackrel{d}{\longrightarrow} X$ for some random variable X and $Y_i \stackrel{p}{\longrightarrow} c$ for some constant c. Then

- (1) $X_i + Y_i \xrightarrow{d} X + c$.
- (2) $X_i Y_i \stackrel{d}{\longrightarrow} cX$.
- (3) $X_i/Y_i \xrightarrow{d} X/c$.

Markov Decision Process

Poisson Process

3.1 Homogeneous Poisson Process

3.1.1 Definitions

Definition (Homogeneous Poisson Process). We say a counting process is a homogeneous **Poisson counting process** with rate $\lambda > 0$ if it has the following three properties:

- N(0) = 0;
- it has independent increments; and
- the number of events in any interval of length t is a Poisson random variable with parameter λt .

Definition (Homogeneous Poisson Process). We say a point process is a homogeneous **Poisson point process** with rate $\lambda > 0$ if the following two conditions hold:

• The probability $\mathbb{P}\{N(a,b]=n\}$ of the number N(a,b] of points of the process in the interval (a,b] being equal to some counting number n is given by

$$\mathbb{P}\{N(a,b] = n\} = \frac{[\lambda(b-a)]^n}{n!}e^{-\lambda(b-a)}.$$

i.e. the number of arrivals in each finite interval has a Poisson distribution.

• For any positive integer k and non-overlapping intervals $(a_1, b_1], ..., (a_k, b_k],$

$$\mathbb{P}\left\{\bigwedge_{i=1}^k N(a_i, b_i] = n_i\right\} = \prod_{i=1}^k \mathbb{P}\{N(a_i, b_i] = n_i\}.$$

i.e. the number of arrivals in disjoint intervals are independent random variables.