Chapter 1 Section 1 Exercises

1. With $S_1 = \{2, 3, 5, 7\}$, $S_2 = \{2, 4, 5, 8, 9\}$, and $U = \{1 : 10\}$, compute $\overline{S}_1 \cup S_2$. *Solution.*

$$\overline{S}_1 = \{1, 4, 6, 8, 9, 10\} \quad \Rightarrow \quad \overline{S}_1 \cup S_2 = \{1, 2, 4, 5, 6, 8, 9, 10\}.$$

2. With $S_1 = \{2, 3, 5, 7\}$, $S_2 = \{2, 4, 5, 8, 9\}$, compute $S_1 \times S_2$ and $S_2 \times S_1$. **Solution.**

$$S_{1} \times S_{2} = \{(2,2), (2,4), (2,5), (2,8), (2,9), \\ (3,2), (3,4), (3,5), (3,8), (3,9), \\ (5,2), (5,4), (5,5), (5,8), (5,9), \\ (7,2), (7,4), (7,5), (7,8), (7,9)\}.$$

$$S_{2} \times S_{1} = \{(2,2), (2,3), (2,5), (2,7), \\ (4,2), (4,3), (4,5), (4,7), \\ (5,2), (5,3), (5,5), (5,7), \\ (8,2), (8,3), (8,5), (8,7), \\ (9,2), (9,3), (9,5), (9,7)\}.$$

3. For $S = \{2, 5, 6, 8\}$ and $T = \{2, 4, 6, 8\}$, compute $|S \cap T| + |S \cup T|$. *Solution.*

$$S \cap T = \{2, 6, 8\}, \quad S \cup T = \{2, 4, 5, 6, 8\} \quad \Rightarrow \quad |S \cap T| + |S \cup T| = 3 + 5 = 8.$$

4. What relation between two sets S and T must hold so that $|S \cup T| = |S| + |T|$. **Solution.**

$$|S \cup T| = |S| + |T| - |S \cap T| = |S| + |T| \quad \Rightarrow \quad |S \cap T| = 0 \quad \Rightarrow \quad S \cap T = \varnothing.$$

Therefore, S and T are disjoint.

5. Show that for all sets S and T, $S - T = S \cap \overline{T}$.

Proof.

$$S-T=\{x:x\in S \text{ and } x\notin T\}$$

$$\iff S-T=\{x:x\in S \text{ and } x\in \overline{T}\}$$

$$\iff S-T=S\cap \overline{T}.$$

6. Prove DeMorgan's laws,

$$\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2},$$

$$\overline{S_1 \cap S_2} = \overline{S_1} \cup \overline{S_2}.$$

by showing that if an element x is in the set on one side of the equality, then it must also be in the set on the other side of the equality.

Proof.

$$S_1 \cup S_2 = \{x : x \in S_1 \text{ or } x \in S_2\} \quad \Rightarrow \quad \overline{S_1 \cup S_2} = \{x : x \notin S_1 \text{ and } x \notin S_2\}.$$

$$\overline{S_1} = \{x : x \notin S_1\}, \quad \overline{S_2} = \{x : x \notin S_2\} \quad \Rightarrow \quad \overline{S_1} \cap \overline{S_2} = \{x : x \notin S_1 \text{ and } x \notin S_2\}.$$

Therefore,

$$\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2}.$$

$$S_1 \cap S_2 = \{x: x \in S_1 \text{ and } x \in S_2\} \quad \Rightarrow \quad \overline{S_1 \cap S_2} = \{x: x \notin S_1 \text{ or } x \notin S_2\}.$$

$$\overline{S_1} = \{x: x \notin S_1\}, \quad \overline{S_2} = \{x: x \notin S_2\} \quad \Rightarrow \quad \overline{S_1} \cup \overline{S_2} = \{x: x \notin S_1 \text{ or } x \notin S_2\}.$$

Therefore,

$$\overline{S_1 \cap S_2} = \overline{S_1} \cup \overline{S_2}.$$

7. Show that if $S_1 \subseteq S_2$, then $\overline{S_2} \subseteq \overline{S_1}$. *Proof.*

$$S_{1} \subseteq S_{2}$$

$$\Rightarrow (\in S_{1} \Rightarrow x \in S_{2})$$

$$\Rightarrow (x \notin S_{2} \Rightarrow x \notin S_{1})$$

$$\Rightarrow (x \in \overline{S_{2}} \Rightarrow x \notin \overline{S_{1}})$$

$$\Rightarrow \overline{S_{2}} \subseteq \overline{S_{1}}.$$

8. Show that $S_1 = S_2$ if and only if $S_1 \cup S_2 = S_1 \cap S_2$. *Proof.*

1.
$$S_1 = S_2 \implies S_1 \cup S_2 = S_1 \cap S_2$$
.
 $S_1 = S_2 \implies S_1 \cup S_2 = S_1 \cup S_1 = S_1$
 $S_1 = S_2 \implies S_1 \cap S_2 = S_1 \cap S_1 = S_1$ $\Rightarrow S_1 \cup S_2 = S_1 \cap S_2$.

2. $S_1 \cup S_2 = S_1 \cap S_2 \implies S_1 = S_2$. Assume that $S_1 \cup S_2 = S_1 \cap S_2$ and $S_1 \neq S_2$,

- $\exists x \in S_1 \text{ and } x \notin S_2 \quad \Rightarrow \quad x \in S_1 \cup S_2 \text{ and } x \notin S_1 \cap S_2 \quad \Rightarrow \quad S_1 \cup S_2 \neq S_1 \cap S_2.$
- $\exists x \in S_2 \text{ and } x \notin S_1 \quad \Rightarrow \quad x \in S_1 \cup S_2 \text{ and } x \notin S_1 \cap S_2 \quad \Rightarrow \quad S_1 \cup S_2 \neq S_1 \cap S_2.$

The result contradicts with the permise. Therefore, $S_1 \cup S_2 = S_1 \cap S_2 \implies S_1 = S_2$.

To sum up, $S_1 = S_2$ if and only if $S_1 \cup S_2 = S_1 \cap S_2$.

9. Use induction on the size of S to show that if S is a finite set, then $|2^S| = 2^{|S|}$. **Proof.**

1. Basis

If |S| = 0, $S = \emptyset$. Then

$$2^S = \{\emptyset\}.$$

Therefore, $|2^S| = 2^{|S|} = 1$.

If |S| = 1, assume that $S = \{a\}$. Then

$$2^S = \{\varnothing, \{a\}\}.$$

Therefore, $|2^S| = 2^{|S|} = 2$.

2. Inductive Assumption

Assume that $|2^{S}| = 2^{|S|}$, for $|S| = 1, 2, \dots, n$.

3. Inductive Step

For |S| = n + 1, assume that $S = \{a_1, a_2, \dots, a_n, a_{n+1}\}$. Let $T = \{a_1, a_2, \dots, a_n\}$, then

$$2^T = \{T_1, T_2, \cdots, T_{2^n}\}.$$

For $\forall i = 1, 2, \dots, 2^n$ where $i \in \mathbb{N}^*$

$$T_i \subseteq T$$
 $T \subseteq S$ \Rightarrow $T_i \subseteq S$.

However,

$$S - T = \{a_{n+1}\} \quad \Rightarrow \quad a_{n+1} \notin T \quad \Rightarrow \quad a_{n+1} \notin T_i.$$

In addition

$$T_i \subseteq S$$
 $a_{n+1} \in S_i \Rightarrow \{a_{n+1}\} \subseteq S$
 $\Rightarrow T_i \cup \{a_{n+1}\} \subseteq S.$

Let

$$T_{i}' = T_{i} \cup \{a_{n+1}\}, \qquad U = \{T_{1}', T_{2}', \cdots, T_{2^{n}}'\}.$$

Now, for $\forall S_i \subseteq S$

• If $a_{n+1} \notin S_i$, then $S_i \subseteq T$, so $S_i \in 2^T$.

• If $a_{n+1} \in S_i$, then $S_i - \{a_{n+1}\} \subseteq T$, so $S_i - \{a_{n+1}\} \in 2^T$. Assume that $S_i - \{a_{n+1}\} = T_j \quad \Rightarrow \quad S_i = T_j \cup \{a_{n+1}\} \quad \Rightarrow \quad S_i \in U.$

Moreover, 2^T and U are disjoint. Therefore,

$$2^{S} = 2^{T} \cup U$$
, $|2^{S}| = |2^{T}| \cup |U| = 2^{n} + 2^{n} = 2^{n+1} = 2^{|S|}$.

To sum up, if S is a finite set, then $|2^S| = 2^{|S|}$.

10. Show that if S_1 and S_2 are finite sets with $|S_1| = n$ and $|S_2| = m$, then

$$|S_1 \cup S_2| \leqslant n + m.$$

Proof. Assume that

$$S_1 = \{a_1, a_2, \cdots, a_n\}, \qquad S_2 = \{b_1, b_2, \cdots, b_m\}.$$

1. S_1 and S_2 are disjoint. Then

$$S_1 \cup S_2 = \{a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_m\}.$$

Therefore,

$$|S_1 \cup S_2| = n + m.$$

2. S_1 and S_2 are not disjoint. Assume that

$$c_1, c_2, \cdots, c_k \in S_1 \text{ and } c_1, c_2, \cdots, c_k \in S_2.$$

where $k \leq n, \ k \leq m, \ k \in \mathbb{N}^*$. Assume that

$$b_{i_1}=c_1,\ b_{i_2}=c_2,\ \cdots,\ b_{i_k}=c_k.$$

Now

$$S_1 \cup S_2 = \{a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_{i_1-1}, b_{i_1+1}, \cdots, b_{i_k-1}, b_{i_k+1}, \cdots, b_m\}.$$

Therefore,

$$|S_1 \cup S_2| = n + m - k < n + m.$$

To sum up, if S_1 and S_2 are finite sets with $|S_1| = n$ and $|S_2| = m$, then

$$|S_1 \cup S_2| \leqslant n + m$$
.

11. If S_1 and S_2 are finite sets, show that $|S_1 \times S_2| = |S_1||S_2|$. **Proof.** Assume that $S_1 = \emptyset$ or $S_2 = \emptyset$, then

$$S_1 \times S_2 = \emptyset \quad \Rightarrow \quad |S_1 \times S_2| = 0, \ |S_1||S_2| = 0 \times 0 = 0 \quad \Rightarrow \quad |S_1 \times S_2| = |S_1||S_2|.$$

Assume that $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$,

$$S_1 = \{a_1, a_2, \cdots, a_n\}, \qquad S_2 = \{b_1, b_2, \cdots, b_m\}.$$

where $n, m \in \mathbb{N}^*$.

Therefore,

$$S_1 \times S_2 = \{(a_1, b_1), (a_2, b_1), \cdots, (a_n, b_1), (a_1, b_2), (a_2, b_2), \cdots, (a_n, b_2), \vdots \\ (a_1, b_m), (a_2, b_m), \cdots, (a_n, b_m)\}.$$

Thus,

$$|S_1 \times S_2| = nm = |S_1||S_2|.$$

12. Consider the relation between two sets defined by $S_1 \equiv S_2$ if and only if $|S_1| = |S_2|$. Show that this is an equivalence relation.

Proof.

1. Reflexivity

$$|S_1| = |S_1|$$
 for all S_1 . \Rightarrow $S_1 \equiv S_1$ for all S_1 .

2. Symmetry

if
$$|S_1| = |S_2|$$
, then $|S_2| = |S_1|$. \Rightarrow if $S_1 \equiv S_2$, then $S_2 \equiv S_1$.

3. Transitivity

$$\begin{split} \text{if } |S_1| &= |S_2| \text{ and } |S_2| = |S_3|, \text{ then } |S_1| = |S_3|. \\ & \qquad \qquad \\ & \qquad \qquad \\ \text{if } S_1 \equiv S_2 \text{ and } S_2 \equiv S_3, \text{ then } S_1 \equiv S_3. \end{split}$$

Therefore, this is an equivalence relation.

13. Occassionally, we need to use the union and intersection symbols in a manner analogous to the summation sign \sum . We define

$$\bigcup_{p \in \{i,j,k,\cdots\}} S_p = S_i \cup S_j \cup S_k \cdots$$

with an analogous notation for the intersection of several sets.

5

With this notation, the gereral DeMorgan's laws are written as

$$\overline{\bigcup_{p \in P} S_p} = \bigcap_{p \in P} \overline{S_p}$$

and

$$\overline{\bigcap_{p \in P} S_p} = \bigcup_{p \in P} \overline{S_p}.$$

Prove these identities when P is a finite set.

Proof.

1. Basis

For |P| = 2, according to DeMorgan's laws

$$\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2}, \qquad \overline{S_1 \cap S_2} = \overline{S_1} \cup \overline{S_2}.$$

2. Inductive Assumption

For $|P| = 2, 3, \dots, n$ where $n \in \mathbb{N}^*$

$$\overline{\bigcup_{p \in P} S_p} = \bigcap_{p \in P} \overline{S_p}, \qquad \overline{\bigcap_{p \in P} S_p} = \bigcup_{p \in P} \overline{S_p}.$$

3. Inductive Step

For |P| = n + 1 where $n \in \mathbb{N}^*$, $\forall i \in P, |P - \{i\}| = n$,

$$\overline{\bigcup_{p \in P} S_p} = \overline{(\bigcup_{p \in P - \{i\}} S_p) \cup S_i} = \overline{(\bigcup_{p \in P - \{i\}} S_p)} \cap \overline{S_i} = (\bigcap_{p \in P - \{i\}} \overline{S_p}) \cap \overline{S_i} = \bigcap_{p \in P} \overline{S_p},$$

$$\overline{\bigcap_{p \in P} S_p} = \overline{(\bigcap_{p \in P - \{i\}} S_p) \cap S_i} = \overline{(\bigcap_{p \in P - \{i\}} S_p)} \cup \overline{S_i} = (\bigcup_{p \in P - \{i\}} \overline{S_p}) \cup \overline{S_i} = \bigcup_{p \in P} \overline{S_p}.$$

Therefore, for $|P| = 2, 3, \cdots$

$$\overline{\bigcup_{p \in P} S_p} = \bigcap_{p \in P} \overline{S_p}, \qquad \overline{\bigcap_{p \in P} S_p} = \bigcup_{p \in P} \overline{S_p}.$$

14. Show that

$$S_1 \cup S_2 = \overline{\overline{S_1} \cap \overline{S_2}}.$$

Proof. According to DeMorgan's laws

$$\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2} \quad \Rightarrow \quad \overline{\overline{S_1 \cup S_2}} = \overline{\overline{S_1} \cap \overline{S_2}} \quad \Rightarrow \quad S_1 \cup S_2 = \overline{\overline{S_1} \cap \overline{S_2}}.$$

15. Show that $S_1 = S_2$ if and only if

$$(S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2) = \varnothing.$$

Proof.

1.
$$S_1 = S_2 \implies (S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2) = \emptyset$$
.

$$S_1 = S_2 \quad \Rightarrow \left\{ \begin{array}{c} S_1 \cap \overline{S_2} = S_1 \cap \overline{S_1} = \varnothing \\ \overline{S_1} \cap S_2 = \overline{S_1} \cap S_2 = \varnothing \end{array} \right\} \Rightarrow \quad (S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2) = \varnothing.$$

2.
$$S_1 = S_2 \quad \Leftarrow \quad (S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2) = \varnothing$$
.

Assume that $S_1 \neq S_2$,

•
$$\exists x \in S_1 \text{ and } x \notin S_2 \quad \Rightarrow \quad x \in S_1 \cap \overline{S_2} \quad \Rightarrow \quad x \in (S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2).$$

•
$$\exists x \notin S_1 \text{ and } x \in S_2 \quad \Rightarrow \quad x \in \overline{S_1} \cap S_2 \quad \Rightarrow \quad x \in (S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2).$$

Therefore, $(S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2) \neq \emptyset$, which is a contradiction. Thus $S_1 = S_2$.

To sum up,

$$S_1 = S_2 \iff (S_1 \cap \overline{S_2}) \cup (\overline{S_1} \cap S_2) = \emptyset.$$

16. Show that

$$S_1 \cup S_2 - (S_1 \cap \overline{S_2}) = S_2.$$

Proof.

$$S_1 \cup S_2 - (S_1 \cap \overline{S_2}) = (S_1 \cup S_2) \cap \overline{(S_1 \cap \overline{S_2})}$$

$$= (S_1 \cup S_2) \cap \overline{(S_1 \cap \overline{S_2})}$$

$$= (S_1 \cup S_2) \cap (\overline{S_1} \cup \overline{\overline{S_2}})$$

$$= (S_1 \cup S_2) \cap (\overline{S_1} \cup S_2).$$

1. If $x \in S_2$

$$x \in S_2 \quad \Rightarrow \quad x \in S_1 \cup S_2 \text{ and } x \in \overline{S_1} \cup S_2 \quad \Rightarrow \quad x \in (S_1 \cup S_2) \cap (\overline{S_1} \cup S_2).$$

2. If $x \notin S_2$ and $x \in S_1$

$$x\notin S_2 \text{ and } x\in S_1 \quad \Rightarrow \quad x\in S_1\cup S_2 \text{ and } x\notin \overline{S_1}\cup S_2 \quad \Rightarrow \quad x\notin (S_1\cup S_2)\cap (\overline{S_1}\cup S_2).$$

3. If $x \notin S_2$ and $x \notin S_1$

$$x \notin S_2 \text{ and } x \notin S_1 \quad \Rightarrow \quad x \notin S_1 \cup S_2 \text{ and } x \in \overline{S_1} \cup S_2 \quad \Rightarrow \quad x \notin (S_1 \cup S_2) \cap (\overline{S_1} \cup S_2).$$

To sum up

$$S_1 \cup S_2 - (S_1 \cap \overline{S_2}) = (S_1 \cup S_2) \cap (\overline{S_1} \cup S_2)$$

= S_2 .

7

17. Show that the distributive law

$$S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3)$$

holds for sets.

Proof.

1. If $x \notin S_1$

$$x \notin S_1 \quad \Rightarrow \left\{ \begin{array}{cc} x \notin S_1 \cap (S_2 \cup S_3) \\ x \notin S_1 \cap S_2 \text{ and } x \notin S_1 \cap S_3 \quad \Rightarrow \quad x \notin (S_1 \cap S_2) \cup (S_1 \cap S_3) \end{array} \right.$$

2. If $x \in S_1$, $x \notin S_2$ and $x \notin S_3$

$$x \in S_1, \ x \notin S_2 \text{ and } x \notin S_3 \Rightarrow x \notin S_2 \cup S_3 \Rightarrow x \notin S_1 \cap (S_2 \cup S_3).$$

 $x \in S_1, \ x \notin S_2 \text{ and } x \notin S_3 \Rightarrow x \notin S_1 \cap S_2 \text{ and } x \notin S_1 \cap S_3$
 $\Rightarrow x \notin (S_1 \cap S_2) \cup (S_1 \cap S_3).$

3. If $x \in S_1$ and $x \in S_2$

$$x \in S_1 \text{ and } x \in S_2 \quad \Rightarrow \left\{ \begin{array}{ccc} x \in S_1 \text{ and } x \in S_2 \cup S_3 & \Rightarrow & x \in S_1 \cap (S_2 \cup S_3) \\ x \in S_1 \cap S_2 & \Rightarrow & x \in (S_1 \cap S_2) \cup (S_1 \cap S_3) \end{array} \right.$$

4. If $x \in S_1$, $x \notin S_2$ and $x \in S_3$

$$x \in S_1, \ x \notin S_2 \text{ and } x \in S_3 \quad \Rightarrow \quad x \in S_1 \text{ and } x \in S_2 \cup S_3$$

$$\Rightarrow \quad x \in S_1 \cap (S_2 \cup S_3).$$

$$x \in S_1, \ x \notin S_2 \text{ and } x \in S_3 \quad \Rightarrow \quad x \in S_1 \cap S_3$$

$$\Rightarrow \quad x \in (S_1 \cap S_2) \cup (S_1 \cap S_3).$$

To sum up

$$S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3).$$

18. Show that

$$S_1 \times (S_2 \cup S_3) = (S_1 \times S_2) \cup (S_1 \times S_3).$$

Proof. Assume that $S_1 = \emptyset$, then

$$S_1 \times (S_2 \cup S_3) = \varnothing$$

$$S_1 \times S_2 = \varnothing, \ S_1 \times S_3 = \varnothing \Rightarrow (S_1 \times S_2) \cup (S_1 \times S_3) = \varnothing$$

$$\Rightarrow S_1 \times (S_2 \cup S_3) = \varnothing$$

$$(S_1 \times S_2) \cup (S_1 \times S_3) = \varnothing$$

Assume that $S_2 = \emptyset$, then

$$S_2 \cup S_3 = S_3 \Rightarrow S_1 \times (S_2 \cup S_3) = S_1 \times S_3$$

$$S_1 \times S_2 = \varnothing \Rightarrow (S_1 \times S_2) \cup (S_1 \times S_3) = S_1 \times S_3$$

$$\Leftrightarrow S_1 \times (S_2 \cup S_3) = S_1 \times S_3$$

$$\Leftrightarrow (S_1 \times S_2) \cup (S_1 \times S_3).$$

Assume that $S_3 = \emptyset$, then

$$S_2 \cup S_3 = S_2 \Rightarrow S_1 \times (S_2 \cup S_3) = S_1 \times S_2$$

$$S_1 \times S_3 = \varnothing \Rightarrow (S_1 \times S_2) \cup (S_1 \times S_3) = S_1 \times S_2$$

$$\Leftrightarrow (S_1 \times S_2) \cup (S_1 \times S_3) = S_1 \times S_2$$

Assume that $S_1 \neq \emptyset$, $S_2 \neq \emptyset$, $S_3 \neq \emptyset$

$$S_1 = \{a_1, a_2, \dots, a_p\}, \qquad S_2 = \{b_1, b_2, \dots, b_q\}, \qquad S_3 = \{c_1, c_2, \dots, c_r\}.$$

where $p, q, r \in \mathbb{N}^*$.

Then

$$S_2 \cup S_3 = \{b_1, b_2, \cdots, b_q, c_1, c_2, \cdots, c_r\}.$$

$$S_1 \times (S_2 \cup S_3) = \{(a_1, b_1), (a_1, b_2), \cdots, (a_1, b_q), \\ (a_2, b_1), (a_2, b_2), \cdots, (a_2, b_q), \\ \vdots \\ (a_p, b_1), (a_p, b_2), \cdots, (a_p, b_q), \\ (a_1, c_1), (a_1, c_2), \cdots, (a_1, c_r), \\ (a_2, c_1), (a_2, c_2), \cdots, (a_2, c_r), \\ \vdots \\ (a_p, c_1), (a_p, c_2), \cdots, (a_p, c_r)\}$$

$$S_1 \times S_2 = \{(a_1, b_1), (a_1, b_2), \cdots, (a_1, b_q), S_1 \times S_3 = \{(a_1, c_1), (a_1, c_2), \cdots, (a_1, c_r), \\ (a_2, b_1), (a_2, b_2), \cdots, (a_2, b_q), (a_2, c_1), (a_2, c_2), \cdots, (a_2, c_r), \\ \vdots \\ (a_p, b_1), (a_p, b_2), \cdots, (a_p, b_q)\} (a_p, c_1), (a_p, c_2), \cdots, (a_p, c_r)\}$$

$$(S_1 \times S_2) \cup (S_1 \times S_3) = \{(a_1, b_1), (a_1, b_2), \cdots, (a_1, b_q), \\ (a_2, b_1), (a_2, b_2), \cdots, (a_2, b_q), \\ \vdots \\ (a_p, b_1), (a_p, b_2), \cdots, (a_p, b_q), \\ (a_1, c_1), (a_1, c_2), \cdots, (a_1, c_r), \\ (a_2, c_1), (a_2, c_2), \cdots, (a_2, c_r), \\ \vdots \\ (a_p, c_1), (a_p, c_2), \cdots, (a_p, c_r)\}$$

Therefore,

$$S_1 \times (S_2 \cup S_3) = (S_1 \times S_2) \cup (S_1 \times S_3).$$

19. Give conditions on S_1 and S_2 necessary and sufficient to ensure that

$$S_1 = (S_1 \cup S_2) - S_2$$
.

Solution.

$$S_1 \cap S_2 = \emptyset \iff S_1 = (S_1 \cup S_2) - S_2.$$

1.
$$S_1 \cap S_2 = \emptyset \implies S_1 = (S_1 \cup S_2) - S_2$$

$$S_1 \cap S_2 = \varnothing$$

$$S_1 = S_1 \cap U = S_1 \cap (S_2 \cup \overline{S_2}) = (S_1 \cap S_2) \cup (S_1 \cap \overline{S_2})$$

$$\Rightarrow S_1 = S_1 \cap \overline{S_2},$$

$$(S_1 \cup S_2) - S_2 = (S_1 \cup S_2) \cap \overline{S_2} = (S_1 \cap \overline{S_2}) \cup (S_2 \cap \overline{S_2}) = S_1 \cap \overline{S_2},$$

Therefore,

$$S_1 = (S_1 \cup S_2) - S_2.$$

2.
$$S_1 \cap S_2 = \emptyset \iff S_1 = (S_1 \cup S_2) - S_2$$

$$S_1 = (S_1 \cup S_2) - S_2 = (S_1 \cup S_2) \cap \overline{S_2} = (S_1 \cap \overline{S_2}) \cup (S_2 \cap \overline{S_2}) = S_1 \cap \overline{S_2},$$

Therefore,

$$S_1 \cap S_2 = (S_1 \cap \overline{S_2}) \cap S_2 = S_1 \cap (\overline{S_2} \cap S_2) = S_1 \cap \emptyset = S_1.$$

To sum up,

$$S_1 = (S_1 \cup S_2) - S_2.$$

20. Use the equivalence defined in Example 1.4 to partition the set {2, 4, 5, 6, 9, 22, 24, 25, 31, 37} into equivalence classes.

Solution. Because

$$2 \mod 3 = 5 \mod 3 = 2$$
,

$$4 \mod 3 = 22 \mod 3 = 25 \mod 3 = 31 \mod 3 = 37 \mod 3 = 1$$

$$6 \mod 3 = 9 \mod 3 = 24 \mod 3 = 0.$$

The equivalence classes are

$$\{2,5\}, \{4,22,25,31,37\}, \{6,9,24\}.$$

21. Show that if f(n) = O(g(n)) and g(n) = O(f(n)), then $f(n) = \Theta(g(n))$. **Proof.** Because f(n) = O(g(n)), $\exists c_1 > 0$, $N_1 \in \mathbb{N}^*$ such that $\forall n > N_1$

$$f(n) \leq c_1 |q(n_1)|$$
.

Because $g(n) = O(f(n)), \exists c_2 > 0, N_2 \in \mathbb{N}^*$ such that $\forall n > N_2$

$$q(n) \leqslant c_2 |f(n_2)|$$
.

Let $N = \max\{N_1, N_2\}$, assume that $\forall n > N$

$$f(n) \geqslant 0, \qquad g(n) \geqslant 0.$$

Therefore

$$\frac{1}{c_2}|g(n)| \leqslant |f(n)| \leqslant c_1|g(n)| \quad \Rightarrow \quad f(n) = \Theta(g(n)).$$

22. Show that $2^n = O(3^n)$, but $2^n \neq \Theta(3^n)$.

Proof. $\exists c_1 = 1 > 0$ such that for all $n \ge 1$

$$2^n \leqslant c_1 |3^n| = 3^n$$
.

Therefore,

$$2^n = O(3^n).$$

However, $\forall c_2 > 0, \ \exists \ N = [\log_{\frac{2}{3}} c_2] + 1, \text{ if } n > N$

$$c_2|3^n| = c_23^n > |2^n| = 2^n.$$

Therefore,

$$2^n \neq \Theta(3^n)$$
.

23. Show that the following order-of-magnitude results hold.

1.
$$n^2 + 5 \log n = O(n^2)$$
.

2.
$$3^n = O(n!)$$
.

3.
$$n! = O(n^n)$$
.

Proof.

1.
$$n^2 + 5 \log n = O(n^2)$$
.

Let

$$f(n) = n^2 + 5\log n,$$
 $g(n) = n^2.$

Let
$$c=2$$
, then $h(n)=f(n)-c|g(n)|=5\log n-n^2$.

$$h'(n) = \frac{5}{n} - 2n \implies h'(n)$$
 is a monotonically decreasing function.

If $n \geqslant 2$, h'(n) < 0, so if $n \geqslant 2$, h(n) is a monotonically decreasing function. Because $h(2) = 5 \log 2 - 4 < 0$, if $n \geqslant 2$, h(n) < 0. $\exists \ c = 2 > 0$ such that for all $n \geqslant 2$

$$h(n) = f(n) - c|g(n)| = 5\log n - n^2 < 0 \implies f(n) \le c|g(n)|.$$

Thus

$$f(n) = O(g(n))$$
 \Rightarrow $n^2 + 5 \log n = O(n^2)$.

2. $3^n = O(n!)$.

Let

$$f(n) = 3^n, \qquad g(n) = n!.$$

 $\exists c = 9 > 0 \text{ such that for all } n \geqslant 3$

$$f(n) - c|g(n)| = 3^n - 9n! = 3^n (1 - \frac{9n!}{3^n}) = 3^n (1 - 2 \prod_{i=3}^n \frac{i}{3}) < 0 \quad \Rightarrow \quad f(n) < c|g(n)|.$$

Thus

$$f(n) = O(g(n)) \implies 3^n = O(n!).$$

3. $n! = O(n^n)$.

Let

$$f(n) = n!,$$
 $g(n) = n^n.$

 $\exists \ c=1>0 \ \mathrm{such} \ \mathrm{that} \ \mathrm{for} \ \mathrm{all} \ n\geqslant 1$

$$|f(n) - c|g(n)| = n! - n^n = n!(1 - \prod_{i=1}^n \frac{n}{i}) \le 0 \implies f(n) \le c|g(n)|.$$

Thus

$$f(n) = O(g(n)) \implies n! = O(n^n).$$

24. Show that $\frac{n^3 - 2n}{n+1} = \Theta(n^2)$.

Proof. Let

$$f(n) = \frac{n^3 - 2n}{n+1}$$
, $g(n) = n^2$, $c_1 = \frac{1}{3}$, $c_2 = 1$.

Because

$$f(n) = \frac{n^3 - 2n}{n+1} = \frac{n(n^2 - 2)}{n+1}.$$

If $n \geqslant 2$

$$|f(n)| = \left|\frac{n(n^2 - 2)}{n + 1}\right| \geqslant 0 \quad \Rightarrow \quad |f(n)| = f(n).$$

Now

$$|f(n)| - c_1|g_n| = \left|\frac{n^3 - 2n}{n+1}\right| - \frac{1}{3}|n^2| = \frac{n^3 - 2n}{n+1} - \frac{1}{3}n^2 = \frac{n(2n+3)(n-2)}{3(n+1)}.$$

If $n \geqslant 2$

$$|f(n)| - c_1|g_n| = \frac{n(2n+3)(n-2)}{3(n+1)} \geqslant 0 \quad \Rightarrow \quad |f(n)| \geqslant c_1|g_n|.$$

Then

$$|f(n)| - c_2|g_n| = \left|\frac{n^3 - 2n}{n+1}\right| - |n^2| = \frac{n^3 - 2n}{n+1} - n^2 = -\frac{n(n+2)}{n+1}.$$

If n > 0

$$|f(n)| - c_2|g_n| = -\frac{n(n+2)}{n+1} < 0 \quad \Rightarrow \quad |f(n)| < c_2|g_n|.$$

To sum up, if $n \geqslant 2$

$$|c_1|g_n| \leqslant |f(n)| < c_2|g_n| \quad \Rightarrow \quad f(n) = \Theta(g(n)) \quad \Rightarrow \quad \frac{n^3 - 2n}{n+1} = \Theta(n^2).$$

25. Show that $\frac{n^3}{\log(n+1)} = O(n^3)$ but not $O(n^2)$.

Proof. $\forall x > 0$, assume that the base of $\log(x+1)$ is 2. Let

$$f(x) = \log(x+1) - 1.$$

Then

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{1}{(x+1)\ln 2} > 0.$$

Therefore, if x > 0, f(x) is a strictly monotonically increasing function, then

$$f(1) = \log(1+1) - 1 = \log 2 - 1 = 0.$$

If $x \in \mathbb{N}^*$, $x \geqslant 1$. Let x = n

$$f(n) \geqslant f(1) = 0 \quad \Rightarrow \quad \log(n+1) - 1 \geqslant 0 \quad \Rightarrow \quad \frac{n^3}{\log(n+1)} \leqslant n^3.$$

Let $c_1 = 1$

$$\frac{n^3}{\log(n+1)} - c_1|n^3| = \frac{n^3}{\log(n+1)} - n^3 \leqslant 0 \quad \Rightarrow \quad \frac{n^3}{\log(n+1)} = O(n^3).$$

 $\forall x \ge 1$, assume that the base of $\log(x+1)$ is 2. Let

$$g(x) = \sqrt{x} - \log(x+1).$$

Then

$$\frac{\mathrm{d}g(x)}{\mathrm{d}x} = \frac{1}{2\sqrt{x}} - \frac{1}{(x+1)\ln 2} > \frac{1}{2\sqrt{x}} - \frac{1}{x\ln 2} > \frac{1}{2\sqrt{x}} - \frac{2}{x} = \frac{\sqrt{x}-4}{2x}.$$

If x > 16,

$$\frac{\mathrm{d}g(x)}{\mathrm{d}x} = \frac{\sqrt{x} - 4}{2x} > 0.$$

Therefore, if x > 16, g(x) is a strictly monotonically increasing function, then

$$g(19) = \sqrt{19} - \log(20) > 0.$$

Thus, if x > 19,

$$g(x) = \sqrt{x} - \log(x+1) > 0 \quad \Rightarrow \quad -\log(x+1) > -\sqrt{x}.$$

 $\forall c_2 > 0, \ \exists \ N = \max\{20, \ [c_2^2] + 1\}$ such that

$$\frac{N^3}{\log(N+1)} - c_2|N^2| = \frac{N^2}{\log(N+1)} [N - c_2 \log(N+1)]$$

$$> \frac{N^2}{\log(N+1)} (N - c_2 \sqrt{N})$$

$$\geqslant 0.$$

Therefore,

$$\frac{n^3}{\log(n+1)} \neq O(n^2).$$

26. What is wrong with the following argument?

$$x=O(n^4), \quad y=O(n^2), \quad {\rm therefore} \quad \frac{x}{y}=O(n^2).$$

Proof. Let

$$f_1(n) = n^3$$
, $f_2(n) = 1$, $g_1(n) = n^4$, $g_2(n) = n^2$.

 $\exists \ c_1=1, \ c_2=1 \ \mathrm{such \ that} \ \forall \ n\in \mathbb{N}^*$

$$|f_1(n) - c_1|q_1(n)| = n^3 - n^4 \le 0,$$
 $|f_2(n) - c_2|q_2(n)| = 1 - n^2 \le 0.$

Therefore

$$f_1(n) = O(g_1(n)) = O(n^4), f_2(n) = O(g_2(n)) = O(n^2).$$

Let

$$x = f_1(n) = n^3$$
, $y = f_2(n) = 1$. $\Rightarrow \frac{x}{y} = n^3$.

However $\forall c > 0, \exists N = [c] + 1$ such that

$$\frac{x}{y_{n=N}} - c|N^2| = N^3 - cN^2 = N^2(N-c) > 0.$$

Thus

$$\frac{x}{y} \neq O(n^2).$$

27. What is wrong with the following argument?

$$x = \Theta(n^4), \quad y = \Theta(n^2), \quad \text{therefore} \quad \frac{x}{y} = \Theta(n^2).$$

Proof. This statement is correct. Assume that $\exists c_1 > 0, c_2 > 0, c_3 > 0, c_4 > 0$ and $\exists N_1 > 0, N_2 > 0$ where $N_1, N_2 \in \mathbb{N}^*$ such that if $n > N_1$

$$c_1|n^4| \leqslant |x| \leqslant c_2|n^4|$$

and if $n > N_2$

$$|c_3|n^2| \leqslant |y| \leqslant |c_4|n^2| \quad \Rightarrow \quad \frac{1}{|c_4|n^2|} \leqslant \frac{1}{|y|} \leqslant \frac{1}{|c_3|n^2|}.$$

Therefore let $N = \max\{N_1, N_2\}$, if n > N

$$\frac{c_1|n^4|}{c_4|n^2|} \leqslant \frac{|x|}{|y|} \leqslant \frac{c_2|n^4|}{c_3|n^2|} \quad \Rightarrow \quad \frac{c_1}{c_4}|n^2| \leqslant \left|\frac{x}{y}\right| \leqslant \frac{c_2}{c_3}|n^2|.$$

Thus

$$\frac{x}{y} = \Theta(n^2).$$

28. Prove that if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)). **Proof.** Because f(n) = O(g(n)), $\exists c_1 > 0$, $N_1 \in \mathbb{N}^*$ such that $\forall n > N_1$

$$f(n) \leqslant c_1 |g(n)|.$$

Because $g(n) = O(h(n)), \exists c_2 > 0, N_2 \in \mathbb{N}^*$ such that $\forall n > N_2$

$$g(n) \leqslant c_2 |h(n)|$$
.

Let $N = \{N_1, N_2\}$. Assume that $\forall n > N$

$$g(n) \geqslant 0$$
.

Then $\forall n > N$

$$f(n) \leqslant c_1 |g(n)| = c_1 g(n) \leqslant c_1 c_2 |h(n)|.$$

Therefore

$$f(n) = O(h(n)).$$

29. Show that if $f(n) = O(n^2)$ and $g(n) = O(n^3)$, then

$$f(n) + g(n) = O(n^3)$$

and

$$f(n)g(n) = O(n^5).$$

Proof. Because $f(n) = O(n^2)$, assume that $\exists c_1 > 0, \ N_1 \in \mathbb{N}^*$ such that $\forall n > N_1$

$$f(n) \leqslant c_1 |n^2|.$$

Because $g(n)=O(n^3)$, assume that $\exists \ c_2>0, \ N_2\in \mathbb{N}^*$ such that $\forall \ n>N_2$

$$g(n) \leqslant c_2 |n^3|.$$

Let $N = \{N_1, N_2\}$. Assume that $\forall n > N$

$$g(n) \geqslant 0$$
.

Then $\forall n > N$

$$f(n) + g(n) \le c_1 |n^2| + c_2 |n^3| \le (c_1 + c_2) |n^3|,$$

 $f(n)g(n) \le c_1 |n^2| \cdot c_2 |n^3| = c_1 c_2 |n^5|.$

Therefore

$$f(n) + g(n) = O(n^3),$$
 $f(n)g(n) = O(n^5).$

30. Assume that $f(n) = 2n^2 + n$ and $g(n) = O(n^2)$. What is wrong with the following argument?

$$f(n) = O(n^2) + O(n),$$

so that

$$f(n) - g(n) = O(n^2) + O(n) - O(n^2).$$

Therefore,

$$f(n) - g(n) = O(n).$$

Proof. Assume that

$$g(n) = n^2$$
.

$$\exists c_1 = 2, N_1 = 1, \forall n > N_1$$

$$g(n) - c_1|n^2| = n^2 - 2n^2 = -n^2 < 0 \quad \Rightarrow \quad g(n) \le 2|n^2| \quad \Rightarrow \quad g(n) = O(n^2).$$

Let

$$h(n) = f(n) - g(n) = 2n^2 + n - n^2 = n^2 + n.$$

However, $\forall c_2 > 0, \ \exists \ N_2 = [c_2] + 1 \text{ such that } \forall \ n > N_2$

$$h(n) - c_2|n| = n^2 + n - c_2n = (n - c_2 + 1)n > 0.$$

Therefore

$$h(n) = f(n) - g(n) \neq O(n).$$