

Machine Failure Prediction

PROGNOSTICS HEALTH MANAGEMENT 8 (PHM08) CHALLENGE

Contents

- Introduction
- Background
- Related Work
- Dataset
- Methods & Evaluation
- Future Work
- References

Introduction

PROGNOSTICS AND HEALTH MANAGEMENT

"Prognostics and Health Management (PHM) is a multidisciplinary field aiming at maintaining physical systems in their optimal functioning conditions."

https://en.wikipedia.org/wiki/Turbofan

Background

THE CHALLENGE

Train a machine learning model to identify machine failures.

Dataset: PHM08 by NASA Prognostics Center of Excellence (PCoE).

EXPERIMENTAL SCENARIO

Multiple Multivariate time series data.

Flight engines of the same types with initial wear.

Engines are simulated with 3 operational settings that have

substantial effect on engine performance.

Sensors recording various parameters are also contaminated with noise.

Symbol	Description	Units
Parameters available to participants as sensor data		
T2	Total temperature at fan inlet	°R
T24	Total temperature at LPC outlet	°R
T30	Total temperature at HPC outlet	°R
T50	Total temperature at LPT outlet	°R
P2	Pressure at fan inlet	psia
P15	Total pressure in bypass-duct	psia
P30	Total pressure at HPC outlet	psia
Nf	Physical fan speed	rpm
Ne	Physical core speed	rpm
epr	Engine pressure ratio (P50/P2)	
Ps30	Static pressure at HPC outlet	psia
phi	Ratio of fuel flow to Ps30	pps/psi
NRf	Corrected fan speed	rpm
NRc	Corrected core speed	rpm
BPR	Bypass Ratio	
farB	Burner fuel-air ratio	
htBleed	Bleed Enthalpy	
Nf dmd	Demanded fan speed	rpm
PCNfR dmd	Demanded corrected fan speed	rpm
W31	HPT coolant bleed	lbm/s
W32	LPT coolant bleed	lbm/s
Parameters for	calculating the Health Index	
T48 (EGT)	Total temperature at HPT outlet	°R
SmFan	Fan stall margin	
SmLPC	LPC stall margin	
SmHPC	HPC stall margin	

Source: [1]

Related Work

18+ publications with PHM08 dataset. [2]

Target problem solved:

- 1. Classification
- 2. Prognostics

Uncertainty management:

Probability theory, set-membership, belief functions, others

Performance measures:

PHM08 score, MSE, MAE, precision, others

Methods:

RNN, KF, MLP, genetic algo, Ensemble, logistic regression, Baysian updating, similarity matching, etc.

Figure: Guidelines to Using C-MAPSS Datasets.
Source: [2]

Steps in Jupyter notebook

- Understanding Data
- Defining problem
- Data Preparation
 - Data Splits
 - Sensor Selection
 - Normalization
- Learning and Predicting
- Performance Evaluation

Dataset

- No missing or undefined data.
- Train.txt has trajectories until failure.
- unit, time, op. setting 1, op. setting 2, op. setting 3, sensor 1,....26

Data preparation

RUL added

RUL = max cycles - current cycle

Splitting

- 70:15:15 ratio.
- No shuffling.
- Keep full trajectory.

Train trajectories

218

Size

~9MB

Rows

45,918

Columns

26

Correlation matrix

Sensor Data: Unit = 1, all cycles

Operational Conditions: Kmeans clustering

add modes as a feature

Sensor Data : Unit = 1, regime = 1 cycles

sensor group types:
 Increasing, decreasing, constant

Normalization

```
mean = train.mean()
std = train.std()
new val = (old val -mean)/std
```


Methods

EXTREME GRADIENT BOOSTING REGRESSOR

Problem definition is of Prognostics. Classification methods work on window approach and find a label for the next window.

Approach 1:

Use sensor as inputs, HIC as latent variable, RUL as output. Bayesian Probability.

Approach 2:

Sequence models like RNN/LSTM or CNN(1D) with window to find label to next window. labels: healthy, failure, normal degradation, accelerated degradation.

Approach 3:

Ensemble models with regression trees.

Evaluation

Metrics:

- PHM08 score: 1054983.68
- mean absolute error (MAE): 22.51
- root mean squared error (RMSE): 29.91
- R2 score 0.8

Future Work

- Cluster engines/cycles in 6 regimes and then perform RUL separately.
- Implement PCA and select most imporant sensors, since Corr. matrix was inconclusive.
- Remove noise. moving avg. norm?
- Implement MLP/DNN. MLP + Kalman filter?

Thank You

JAYANT YADAV

References:

[1] Saxena A, Goebel K, Simon D, Eklund N. Damage propagation modeling for aircraft engine run-to-failure simulation. In2008 international conference on prognostics and health management 2008 Oct 6 (pp. 1-9). IEEE.

[2] Ramasso E, Saxena A. Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset. InAnnual Conference of the Prognostics and Health Management Society 2014. 2014 Sep 29.