TD 6 : Fonctions caractéristiques

Une étoile désigne un exercice important.

Exercice 1. Donner la fonction caractéristique de X: 1. si X suit une loi de Bernoulli de paramètre $p \in]0,1[$; 2. si X suit une loi Binomiale(n,p); 3. si X suit une loi de Poisson de paramètre λ .

Exercice 2. On effectue n essais (d'une expérience), les succès étant indépendants, de probabilité $p = \lambda/n$ (donc très petite). On note X_n le nombre total de succès.

- 1. Donner la loi et la fonction caractéristique $\phi_{X_n}(t)$ de X_n .
- 2. Montrer que pour tout $t \in \mathbb{R}$, on a $\phi_{X_n}(t) \to \phi(t)$, où $\phi(t)$ est la fonction caractéristique d'une loi que l'on précisera.

Exercice 3. Donner la fonction caractéristique de X:

- 1. si X suit une loi exponentielle de paramètre $\lambda > 0$;
- 2. si Y suit une loi exponentielle symétrique de paramètre λ (i.e. de densité $f(y) = \frac{\lambda}{2}e^{-\lambda|y|}$);
- 3. si Z suit une loi de Cauchy de paramètre λ , c'est-à-dire si X a pour densité $\frac{\lambda}{\pi(\lambda^2+x^2)}$ (Indication : on pourra utiliser la question précédente).

Exercice 4. Montrer que la loi de X est symétrique (X et -X ont la même loi) si et seulement si la fonction caractéristique de X est réelle ($\varphi_X(t) \in \mathbb{R}$ pour tout $t \in \mathbb{R}$).

- * Exercice 5. Soit $X \sim \mathcal{N}(0, \sigma^2)$, et $\Phi(t)$ sa fonction caractéristique.
 - 1. Montrer que $\Phi'(t) = -t\sigma^2\Phi(t)$ pour tout $t \in \mathbb{R}$.
 - 2. En déduire $\Phi(t)$ pour tout $t \in \mathbb{R}$.
- * Exercice 6. Montrer, en utilisant la fonction caractéristique, que
 - 1. la somme de deux v.a. de Poisson indépendantes est une v.a. de Poisson;
 - 2. la somme de deux v.a. Gaussiennes indépendantes est une v.a. Gaussienne;
 - 3. la somme de deux v.a. de Cauchy indépendantes est une v.a. de Cauchy.
- * Exercice 7. On considère $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de même loi. On suppose que $\mathbb{E}[X_1] = 0$ et $\operatorname{Var}(X_1) = \sigma^2$ et on note $\varphi(t)$ la fonction caractéristique de X. On considère la variable aléatoire $Y_n := \frac{1}{\sqrt{n}}(X_1 + \cdots + X_n)$.
 - 1. Donner la fonction caractéristique de Y_n , $\Phi_n(t)$, en fonction de φ , t et n.
 - 2. Montrer que, lorsque $x \to 0$, on a $\varphi(x) = 1 \frac{1}{2}\sigma^2 t^2 + o(t^2)$.
 - 3. En déduire que, pour tout $t \in \mathbb{R}$, $\log \Phi_n(t) \to -\frac{1}{2}\sigma^2 t^2$, et donc que $\Phi_n(t) \to \Phi(t)$ où $\Phi(t)$ est la fonction caractéristique d'une loi que l'on précisera.

Exercice 8. On dit qu'une v.a. X suit une loi stable si pour tout entier $n \geq 1$ et toutes v.a. X_1, X_2, \dots, X_n indépendantes et de même loi que X, il existe des constantes $a_n > 0$ et $b_n \in \mathbb{R}$ telles que $X_1 + X_2 + \dots + X_n$ ait même loi que $a_n X + b_n$.

- 1. Montrer que les lois gaussiennes centrées $\mathcal{N}(0, \sigma^2)$, de paramètre quelconque $\sigma > 0$, et les lois de Cauchy de paramètre quelconque a > 0 sont stables. Montrer que par contre les lois de Poisson ne le sont pas.
- 2. Calculer a_n et b_n lorsque X suit une loi stable de variance finie σ^2 . En déduire que les seules lois stables de variance finie sont les lois gaussiennes.