Grafos sin etiquetas

Camino P_n : Camino con n vértices.

(u-caming)

Pn: n vértices n-1 aristas

Ciclo C_n : Ciclo con n vértices. (n-ciclo).

Cn: m-1617; cos

A RENIGY)

2-(0)=2

Rueda W_n : Ciclo C_n con un vértice adicional adyacente a todos los vértices del ciclo.

W3

Wn: n+1-vértices 2n - oristas

n vértices de gradu 3

1 ratice de diago u

K_n

Grafo completo K_n : Grafo simple de *n* vértices que contiene exactamente una arista entre cada par de vértices. (Vértices adyacentes 2 a 2.)

¿Clique de tamaño n? Conjunto de n vértices adjacentes 2-2 = Grafo completo de n-vértices. PERD.

Clique: 2a,b,c,e4

$K_{m,n}$

Grafo bipartito completo $K_{m,n}$: Grafo bipartito simple tal que dos vértices son adyacentes sii están en conjuntos partitos diferentes de tamaño m y n respectivamente. (**biclique**).

n vértices de grado m y m vértices de grado n · n vértices : } u2, U2, ..., un}

Formar una pareja de vértices (distintos): De un conjunto de nobjetos:

* Combinatoria
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

de formas de seleccionor Kobjetor de un conjunto de nobjetos (sin orden ni repetición)

• Si |V(G)| = n entonces se pueden seleccionar $\binom{n}{2}$ parejas de vértices.

1 casilla: 1 pareja de vértices

de grafos simples de n-vértices

$$f_j: n=4$$
 $\begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 64$

a ·