I have read the declaration on the cover sheet and confirm my agreement with it.

1

- 1. A and B are independent, $\mathbb{P}(B) = \mathbb{P}(B|A) = 0.5$
 - (a) FALSE. $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B) = 0.8 \times 0.5 = 0.4 \neq 0$ Thus, these two events are not mutually exclusive.
 - (b) FALSE. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B) = 0.8 + 0.5 0.4 = 0.9$ $\mathbb{P}(A \cap (A \cup B)) = \mathbb{P}(A) = 0.8 \neq \mathbb{P}(A \cap B) \times \mathbb{P}(A)$
 - (c) FALSE. A, B are independt, $\mathbb{P}(A|B) = \mathbb{P}(A) \neq \mathbb{P}(B)$
 - (d) TRUE.

 $\mathbb{P}(A \mid C) = \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(C)}$ $\mathbb{P}(B \mid C) = \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(C)}$. Because they have the same denomina-

tor, we are actually comparing $\mathbb{P}(A \cap C)$ and $\mathbb{P}(B \cap C)$.

We could calculate the range of each. When $A \subset C$, $\mathbb{P}_{max}(A \cap C) = \mathbb{P}(A) = 0.8$ while the minimum probability of $\mathbb{P}(A \cap C) = \mathbb{P}(A) + \mathbb{P}(C) - 1 = 0.7$. Therefore, $\mathbb{P}(A \cap C) \in [0.7, 0.8]$

Same calculate for $\mathbb{P}_{max}(B \cap C) = \mathbb{P}(B) = 0.5$ when $B \subset C$, and $\mathbb{P}_{min}(B \cap C) =$ $\mathbb{P}(B) + \mathbb{P}(C) - 1 = 0.4$. Therefore, $\mathbb{P}(B \cap C) \in [0.4, 0.5]$.

We can tell $\mathbb{P}(A \cap C) > \mathbb{P}(B \cap C)$, therefore $\mathbb{P}(A \mid C) > \mathbb{P}(B \mid C)$

- (e) TRUE. We calculate that $\mathbb{P}(B) = 0.5 < \mathbb{P}(A)$ which satisfy the claim.
- (a) (i) Let 'Trail' = hockey match

Let 'Success' = winning, so $\mathbb{P}(Success) = \frac{1}{2}$

 $X \sim \text{Geometric}(p=\frac{1}{2})$, because X is the number of failures before the first success

(ii)
$$\mathbb{E}(X) = \frac{1-p}{p} = \frac{1-\frac{1}{2}}{\frac{1}{2}} = 1$$

(iii)
$$\mathbb{P}(X=3) = (1-p)^{3}p = \frac{1}{2^4} = \frac{1}{16}$$

(b) (i) Each match is independent, so, the first win won't have influence on the next loss. Let 'Success' be the loss, then $\mathbb{P}(Success) = \frac{1}{3}$

 $X \sim \text{Geometric}(p=\frac{1}{3})$, because X is the number of failures before the first success.

(ii)
$$\mathbb{E}(X) = \frac{1-p}{p} = \frac{1-\frac{1}{3}}{\frac{1}{3}} = 2$$

(iii)
$$\mathbb{P}(X=0) = (1-p)^0 p = (1-\frac{1}{3})^0 \times \frac{1}{3} = \frac{1}{3}$$

- (c) (i) $X \sim \text{Binomial}(n=5, p=\frac{1}{3})$, because X is the number of losses within 5 matches.
 - (ii) $\mathbb{E}(X) = np = 5 \times \frac{1}{3} = \frac{5}{3}$
 - (iii) $\mathbb{P}(X \ge 1) = 1 \mathbb{P}(X = 0) = 0.868$ $\mathbb{P}(X \ge 2) = 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1) = 0.539$ $\mathbb{P}(X \ge 2 | X \ge 1) = \frac{\mathbb{P}(X \ge 2)}{\mathbb{P}(X > 1)} = \frac{0.539}{0.868} = 0.621$
- (d) (i) Let 'Trail' = hockey match

Let 'Success' = winning, so $\mathbb{P}(\text{Success}) = \frac{1}{2}$ $X \sim \text{NegBin}(k = 3, p = \frac{1}{2})$, because X is the number of failures before their kthsuccesses.

(ii)
$$\mathbb{E}(X) = \frac{k(1-p)}{p} = \frac{3 \times (1-\frac{1}{2})}{\frac{1}{2}} = 3$$

(iii)
$$\mathbb{P}(X=1) = {3+1-1 \choose 1} (\frac{1}{2})^3 (1-\frac{1}{2})^1 = \frac{3}{16}$$

(e) (i) X is the number of draws from first 5 matches, $X \sim \text{Binomial}(n=5, p=\frac{1}{6})$ Y is the number of losses from the last 5 matches, $Y \sim \text{Binomial}(n=5, p=\frac{1}{3})$ Z is a joint probability distribution of sum of two Binomial distribution with different probability, therefore it's other distribution that it's not covered in class.

(ii)
$$\mathbb{E}(Z) = \mathbb{E}(X) + \mathbb{E}(Y) = 5 \times \frac{1}{6} + 5 \times \frac{1}{3} = \frac{5}{2}$$

(iii)
$$\mathbb{P}(Z=2) = P(X=0,Y=2) + P(X=1,Y=1) + P(X=2,Y=0) = {5 \choose 0} (\frac{1}{6})^0 (\frac{5}{6})^5 * {5 \choose 2} (\frac{1}{3})^2 (\frac{2}{3})^3 + {5 \choose 1} (\frac{1}{6})^1 (\frac{5}{6})^4 * {5 \choose 1} (\frac{1}{3})^1 (\frac{2}{3})^4 + {5 \choose 2} (\frac{1}{6})^2 (\frac{5}{6})^3 * {5 \choose 0} (\frac{1}{3})^0 (\frac{2}{3})^5 = 0.286$$

(f) We assume that each penalty stroke is a Bernoulli trial with P_i with success rate $p_i = 0.8^{i-1}$.

$$\mathbb{E}\left[\sum_{i} P_{i}\right] = \sum_{i} \mathbb{E}(P_{i}) = \sum_{i} p_{i} = 3.3616$$

$$\operatorname{Var}\left[\sum_{i} P_{i}\right] = \sum_{i} \operatorname{Var}(P_{i}) = \sum_{i} p_{i}(1 - p_{i}) = 0.882$$

- (a) Because $X \sim \text{Poisson}(\lambda_1), Y \sim \text{Poisson}(\lambda_2), X$ and Y are independent. Let Z = X + Y, then we have $Z \sim \text{Possion}(\lambda_1 + \lambda_2)$. We are given Var(X) + Var(Y) = 8, and in Poisson distribution $Var(X) = \lambda_1, Var(Y) = \lambda_2$. So, $Z \sim Poisson(8)$ $\mathbb{P}(X+Y\geq 3)=1-\mathbb{P}(Z=0)-\mathbb{P}(Z=1)-\mathbb{P}(Z=2)=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{2!})e^{-8}=1-(\tfrac{8^0}{0!}+\tfrac{8^1}{1!}+\tfrac{8^2}{1!$
 - (b) $\hat{\lambda}_2 = 5$ and Var(X) + Var(Y) = 8, $\hat{\lambda}_1 = 8 5 = 3$ We have $X \sim \text{Poisson}(3)$ and $Y \sim \text{Poisson}(5)$, independently, and Z = X + Y. Then the conditional distribution of $X \mid Z$ is Binomial(z, p), where $p = \frac{3}{6}$

We are calculate $X \mid Z = 12$, therefore it's Binomial $(12, \frac{3}{9})$.

$$\mathbb{P}(X = 6 \mid Z = 12) = \binom{12}{6} (\frac{3}{8})^6 (\frac{5}{8})^6 = 0.153$$