Letting Process Drive Design The RocketMEMS® Model Alissa M. Fitzgerald | 6 October 2014

Overview

- About us
- The 'Long Tail' of the MEMS market
- Customer profile: System integrators
- What's wrong with MEMS development
- The RocketMEMS model

Company background

- Founded 2003 by Alissa M.
 Fitzgerald, self-funded
- Burlingame, CA: near SFO and Silicon Valley
- Goal: to be the premier MEMS product development firm
- Consistent growth
 - Over 125 clients served to date
- Active member of the MEMS Industry Group

Headquarters in Burlingame, CA

Fab operations at 1500m² UCBerkeley Marvell Nanolab

Full development services from concept to production

- Custom MEMS development from start to finish
 - Multi-disciplinary, expert engineering team
- Design and process integration for volume production
- In-house prototype fabrication, easy transition to production partners

A Tale of Two MEMS Markets

Top 30 MEMS Players with a focus on cell phone & tablet revenu - 2013 Revenue

(Source: MEMS & Sensors for Mobile Phones & Tablets, June 2014)

The Long Tail concept of market distribution

[Source: C. Anderson, Wired, October 2004.]

The MEMS Industry has a Long Tail

[Source: C. Anderson, Wired, October 2004.]

Some applications in the MEMS Long Tail

Long Tail company profile

- A well-established system integrator or OEM
 - Has a mature product line
 - Deeply understands their market
 - Examples: Schlumberger, Medtronic
- Sees MEMS as an opportunity to make new products and gain a competitive advantage
 - New sensing capabilities
 - Lower existing product cost to expand market
- Sees market opportunity, needs < 2 years development to enter market at right time

Long Tail company profile - continued

- No experience with MEMS chip design or integration
 - No confidence nor desire to hire a MEMS team or to develop **MEMS** capabilities (yet)
- Views MEMS as a component in their system
 - Developing new patents not that important
 - IP is in package and system integration
- Would prefer to buy finished MEMS chips to minimize overall product development risk
- Does not understand why MEMS development takes so long and is so risky!

How to serve the Long Tail market

- Serving the Long Tail requires selling many different items in small unit volumes
- Amazon is the master of the Long Tail market
 - Super-efficient operations model
- Current barriers in MEMS:
 - Long development times (usually 5+ years)
 - Hard to recover cost of custom development when unit volumes are so low

The challenge of MEMS development

"One product, one process"

Jean-Christophe Eloy, Yole Développment

Current MEMS fabless model → **design-fab-test cycles**

Digital ASIC Fabless Model

Reference designs, IP blocks	Verified physics models	Foundry- specific design rules	Process modeling	Design simulation	Rule checking, Verification				
New Design 18 months, 95+% yield → Product									

MEMS Fabless Model

Process development consumes a lot of time

It's a different story for the Top 30 MEMS companies

- They own their fabs and have characterized their processes
 - Mature process libraries, design rules
 - Customized EDA tools, IP blocks ("cells")

Captive Fab MEMS Development

Letting process drive MEMS design

Why can't MEMS copy the CMOS fabless model?

CMOS

- Process flow fixes Z axis
 - 2D design of circuits → many chip types
- Many ASIC designers

- CMOS foundry strongly motivated to create standard process flows
 - TSMC, GF, etc.

MEMS

- Needs 3D design freedom
 - Process flow fixes Z axis → few sensor types
- Few MEMS designers

- MEMS foundry has <u>little</u> motivation to create standard process flows
 - Contract mfg. model

What about MEMS "Platforms"?

- Mature process flows opened to public
- Customer must provide the chip design
 - Most Long Tail companies cannot provide a design!

Some MEMS platforms:

Facility	Service Name	Target Market	Process	Wafer size
ST	Thelma	Motion sensors	Thick epi-poly	200
Dalsa	MIDIS	Motion sensors	SOI with vacuum and pressure cavity	200
X-FAB	XMB-10	Motion sensors	Cavity SOI	150, 200
InvenSense	NF Shuttle	Motion sensors	CMOS cap, SOI wafer	200

Platforms are not effective without MEMS Designers

- There are very few of us!
 - MEMS is introduced very late in engineering education
 - Graduate-level only, usually Ph.D.
- Lack of full-featured design tools means experts must do design

RocketMEMS: A Model for Designer-Foundry Cooperation

- Designer and foundry define design/process together
- Use stable, characterized process modules
 - Silex SmartBlocks[™] library
- Collaboratively assemble process flow from modules
- Create reference designs relevant to market needs
 - Many, but not all, sensor needs may be met
- Ownership:
 - Designer owns reference designs
 - Foundry owns process library
 - Customer gets silicon fast!

RocketMEMS® vs. Custom Development

RocketMEMS: Skips Process Development

First RocketMEMS sensor type: Pressure

What can be customized?

- **Pressure range**
- Sensitivity
- Die size & thickness
- **Bond pad location & size**
- **Bridge resistance**
- Full vs. Half bridge

Examples of various RocketMEMS pressure sensors (with test structures)

Economical production that scales

 Multi-Project Wafer (MPW) format for cost saving

- Multiple customers served by AMFitzgerald
- Production options at different volumes
 - Prototype
 - 500+ die
 - Low volume production
 - 10,000+ die
 - High volume dedicated runs at Silex
 - 100,000+ die

Multi-Project Wafer: Many different chip designs are processed on the same wafer

RocketMEMS: Our philosophy

"Design for Verified Process"

- No process development
- Use proven reference designs and tailor them to customer specification
- Our long-term vision for RocketMEMS:
 - A menu of sensor types and foundries to suit a wide range of customer needs

Summary

- Two MEMS industries: the Head and the Long Tail
 - Good business opportunities exist in the Long Tail if one can serve it efficiently
- New models are needed to speed up MEMS development and serve the Long Tail
 - RocketMEMS is a new model evolved from the ASIC design house model
- The RocketMEMS model can benefit the entire industry
 - Helps to grow the MEMS Fabless model and ecosystem
 - Connect OEMs/System Integrators to rapid MEMS solutions
 - loT, etc.

