

"Ha, I *definitely* meant that!": Detecting Sarcasm in Reddit Comments

Nanda H Krishna, Rubini U and Vikram Reddy

June 27, 2020

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

I'd *love* waking up early on a Sunday!

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

Why'd you wake me up?

- Sarcasm "the use of irony to mock or convey contempt"
- Widely employed in conversation
- Humans have a hard time detecting sarcasm
- Machines may find it even more difficult
- Important problem to solve for Natural Language Understanding
- Sarcasm probably required to pass Turing Test

Reddit

Dataset

- Original dataset gathered by Mikhail Khodak et. al.
- 1.3 million sarcastic comments
- '/s' in comments indicates sarcasm, but not always present
- Downsampled and balanced version available on Kaggle
- Further downsampled due to computational limitations
 - 125000 unique comments
 - Nearly equal number of sarcastic and non-sarcastic comments
 - 80-20 split for training and validation data

Features

Label	0
Comment	Hard to convey sarcasm over the internet
Author	dcpp4
Subreddit	Amd
Score	1
Upvotes	1
Downvotes	Ο
Year and Month	2016-09
UTC Timestamp	9/9/2016 00:31
Parent Comment	You're the only one

Methods Used

- Approach extract embeddings for text data and pass it to a classifier
- Embeddings
 - TF-IDF (<u>Term Frequency</u> <u>Inverse Document Frequency</u>)
 - BERT (<u>B</u>idirectional <u>E</u>ncoder <u>R</u>epresentations from <u>T</u>ransformers)
- Classifiers
 - Ensemble models Random Forest, Gradient Boosting
 - Gaussian Naïve Bayes
 - Neural Networks scikit-learn Multi-Layer Perceptron, Keras ANN
- Dimensionality reduction using PCA

Methods Used

- Strategies to handle text data
 - Pre-processed text (removal of punctuation and stopwords, lemmatisation)
 - Raw text
 - Using n-grams
- Features used
 - Comment
 - Parent
 - Statistics
- All 3 strategies used for TF-IDF, only raw text used for BERT

Methods Used

- Hyperparameters
 - o max_features=1000 (or) 5000 for TF-IDF
 - n_estimators=50 for Random Forest Classifier
 - hidden_size=(25,) for Multi-Layer Perceptron
 - o ANN
 - 4 hidden layers (512, 256, 128, 64) and Fully-Connected Layer
 - Adam optimiser, binary cross-entropy loss
- The pre-trained BERT-Base model was used for the BERT Embeddings.

Evaluation

- Plain accuracy isn't enough
 - Precision and recall (class-wise) are important
 - We prioritise F₁-score (harmonic mean of precision and recall)
- Explaining model outputs
 - Need to identify patterns and features that indicate sarcasm
 - Seeing how the models understand language is important
 - Qualitative evaluation
 - Look at weights, activations, feature importances, etc.
 - Important to ensure fairness and robustness of the system

- TF-IDF features extracted from pre-processed text
 - Random Forest Classifier 0.63
 - Gradient Boosting Classifier 0.53
 - Naïve Bayes Classifier 0.35
 - Multi-layer Perceptron 0.61
 - Neural Network 0.33
- Only the Random Forest Classifier truly performed well (relative to the others)
- For further experiments, we will consider only this type of classifier

- TF-IDF features extracted from raw text
 - Random Forest Classifier 0.66
 - Best performing model overall
- TF-IDF features with 1- and 2-grams
 - Random Forest Classifier 0.66
 - Same results as the previous model
- TF-IDF + PCA
 - Random Forest Classifier 0.49
 - PCA gave only one feature for 95% of the variance, did not work well

- BERT embeddings from raw text, with a Random Forest Classifier
 - Only comment embeddings 0.64
 - Comment embeddings and characteristics 0.64
 - Comment embeddings, characteristics and parent embeddings 0.63
- Surprisingly, the third method was the worst
- Cause too many features or overfitting
- Could be solved using more training data and feature selection
 - Computationally intensive

- Interpretability
- Comment author and subreddit very important features
 - Person may be sarcastic all the time
 - Subreddit may require satirical content to be posted
- Some words and word pairs also important
 - "Yeah right!"
 - "Totally"
- Good sign as these words are also used in normal conversations

Conclusion

- Random Forest, TF-IDF features from raw text performed the best
- Our work was limited by computational constraints
- Despite using less data and simple methods, we came close to SOTA (0.71)
- Good embeddings and models improve complex task performance
- Future directions
 - Using more powerful computers, training on all available data
 - Fine-tune BERT and interpret it
 - Exploring other models or network architectures

References

- Pushpak Bhattacharyya, "Sarcasm Detection: A Computational and Cognitive Study." Stanford University, CA, January 2018.
- Mikhail Khodak, Nikunj Saunshi, Kiran Vodrahalli, "A Large Self-Annotated Corpus for Sarcasm." arXiv (cs.CL), March 2018.
- Dan Ofer, "Sarcasm on Reddit." Kaggle, May 2018.

Credits

 The Reddit logo is property of Reddit, Inc. and has been used here for representational purposes only. Q & A