QBS 181 Final Project Aim 2 (Say OK)

Say OK

2024-10-28

```
Load Libraries
```

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v forcats
              1.0.0
                        v stringr
                                     1.5.1
## v lubridate 1.9.3
                        v tibble
                                     3.2.1
              1.0.2
                         v tidyr
                                     1.3.1
## v purrr
## v readr
              2.1.5
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                    masks stats::lag()
## x dplyr::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tidyr)
library(readxl)
library(ppcor)
## Loading required package: MASS
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
       select
```

```
library(lme4)

## Warning: package 'lme4' was built under R version 4.3.3

## Loading required package: Matrix

## Attaching package: 'Matrix'

## ## The following objects are masked from 'package:tidyr':

## expand, pack, unpack

library(knitr)

## Warning: package 'knitr' was built under R version 4.3.3
```

I. Load and Merge Datasets

1. Load the cleaned agricultural dataset (from Excel worksheet)

Please refer to the excel file for details on data cleaning, calculations, and exploratory steps. We created a sheet named "R", which includes all columns needed for input into R.

```
# Set working directory ("Session" --> "Set Working Directory")
# Input the sheet named "R" in the Excel file
ag_data <- read_excel("/Users/violet/Documents/QBS Fall 2024/QBS 181/Final Project/Data/Ag_Data_Clean.x
head(ag_data)
## # A tibble: 6 x 15
     State_Fips_Code State_Name Geographic_Region Geographic_Division Total_Acres
##
##
               <dbl> <chr>
                                 <chr>>
                                                   <chr>
                                                                              <dbl>
## 1
                   1 ALABAMA
                                 South
                                                   East South Central
                                                                            8629101
## 2
                   2 ALASKA
                                 West
                                                   Pacific
                                                                             869852
## 3
                   4 ARIZONA
                                 West
                                                   Mountain
                                                                           25525087
## 4
                   5 ARKANSAS
                                 South
                                                   West South Central
                                                                           13722525
## 5
                   6 CALIFORNIA West
                                                   Pacific
                                                                           24190604
## 6
                   8 COLORADO
                                                   Mountain
                                                                           30213899
## # i 10 more variables: Total_Chemical_Expenditure <dbl>,
       Chemical_Expenditure_per_Acres <dbl>,
       Insecticide_No_Nema_Treatment_Acres <dbl>,
## #
## #
       'Insecticide_No_Nema_Treatment_Percentage_(%)' <dbl>,
## #
       Insecticide_Nema_Treatment_Acres <dbl>,
       'Insecticide_Nema_Treatment_Percentage_(%)' <dbl>,
## #
       Herbicide_Treatment_Acres <dbl>, ...
dim(ag_data)
```

[1] 50 15

2. Load 2022 Parkinson mortality rate data (downloaded from CDC)

Longitudinal data on Parkinson's disease mortality rate over years can be downloaded directly from CDC. All rates are age-adjusted mortality rates and represent the number of deaths per 100,000 total population.

```
# Set working directory ("Session" --> "Set Working Directory")
# Input the sheet named "R" in the Excel file
mortality <- read.csv("/Users/violet/Documents/QBS Fall 2024/QBS 181/Final Project/Data/Parkinson Morta
# Remove the last column (unnecessary URL)
mortality <- mortality[, -ncol(mortality)]</pre>
head(mortality)
     YEAR STATE RATE DEATHS
##
## 1 2022
            AL 10.7
                        696
## 2 2022
            AK 10.9
                         62
## 3 2022
          AZ 9.9 1,007
## 4 2022
            AR 9.8
                        382
## 5 2022
            CA 9.4 4,289
## 6 2022
            CO 10.7
                        665
dim(mortality)
## [1] 501
Filter to keep 2022
# Filter to keep year == 2022
mortality <- mortality %>%
  filter(YEAR == 2022)
dim(mortality)
```

[1] 51 4

3. Combine agricultural dataset with 2022 Parkinson mortality rate data

Create a conversion table as state is presented as full name in ag_data whereas it is presented as abbreviation in the mortality.

```
"South Dakota", "Tennessee", "Texas", "Utah", "Vermont",
                     "Virginia", "Washington", "West Virginia", "Wisconsin",
                     "Wyoming")),
  State_Abbrev = c("AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "FL", "GA",
                  "HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD",
                  "MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH", "NJ",
                        "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI",
                  "SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI", "WY")
)
head(state_abbreviations)
##
          State State_Abbrev
## 1
        ALABAMA
## 2
         ALASKA
                          AK
## 3
        ARIZONA
                          AZ
## A
       ARKANSAS
                          AR
## 5 CALIFORNIA
                           CA
                           CO
## 6
       COLORADO
Merge the datasets
ag_data <- merge(ag_data, state_abbreviations, by.x = "State_Name", by.y = "State", all.x = TRUE)
df <- merge(ag_data, mortality, by.x = "State_Abbrev", by.y = "STATE", all.x = TRUE)</pre>
head(df)
     State_Abbrev State_Name State_Fips_Code Geographic_Region Geographic_Division
## 1
               AK
                      ALASKA
                                            2
                                                            West
                                                                              Pacific
## 2
               AL
                     ALABAMA
                                            1
                                                           South East South Central
## 3
               AR
                    ARKANSAS
                                            5
                                                           South West South Central
## 4
               AZ
                     ARIZONA
                                            4
                                                            West
                                                                             Mountain
                                            6
## 5
               CA CALIFORNIA
                                                            West
                                                                              Pacific
## 6
               CO
                    COLORADO
                                            8
                                                            West
                                                                             Mountain
     Total_Acres Total_Chemical_Expenditure Chemical_Expenditure_per_Acres
##
## 1
          869852
                                      646000
                                                                   0.7426551
## 2
         8629101
                                   188889000
                                                                  21.8897658
## 3
        13722525
                                                                  55.5066943
                                   761692000
## 4
        25525087
                                   198303000
                                                                   7.7689451
## 5
        24190604
                                  2806374000
                                                                 116.0109107
## 6
        30213899
                                   229485000
                                                                   7.5953454
     Insecticide_No_Nema_Treatment_Acres
## 1
                                      587
## 2
                                   852151
## 3
                                  2973520
## 4
                                   440869
## 5
                                  4811723
## 6
                                   864811
     Insecticide_No_Nema_Treatment_Percentage_(%) Insecticide_Nema_Treatment_Acres
## 1
                                        0.06748274
## 2
                                        9.87531610
                                                                               358745
## 3
                                       21.66889840
                                                                               546309
## 4
                                        1.72719881
                                                                               115041
## 5
                                       19.89087581
                                                                              1316284
```

```
## 6
                                        2.86229526
                                                                               111125
##
     Insecticide_Nema_Treatment_Percentage_(%) Herbicide_Treatment_Acres
## 1
                                    0.009656815
## 2
                                    4.157385572
                                                                   1967762
## 3
                                    3.981111348
                                                                   6395120
## 4
                                                                    622607
                                    0.450697778
## 5
                                    5.441302747
                                                                   5554203
## 6
                                    0.367794306
                                                                   4647801
     Herbicide_Treatment_Percentage_(%) Fungicide_Treatment_Acres
## 1
                                1.198365
                                                                168
## 2
                               22.803789
                                                             289571
## 3
                                                            1671797
                               46.603085
## 4
                                2.439196
                                                              96524
## 5
                               22.960167
                                                            2565494
## 6
                               15.382990
                                                             180797
     Fungicide_Treatment_Percentage_(%) YEAR RATE DEATHS
## 1
                              0.01931363 2022 10.9
## 2
                              3.35574934 2022 10.7
                                                       696
## 3
                             12.18286722 2022 9.8
                                                       382
## 4
                              0.37815346 2022 9.9 1,007
## 5
                             10.60533255 2022 9.4 4,289
## 6
                              0.59839016 2022 10.7
```

II. Aim 2a: Investigate the relationship between PD mortality rates and total agricultural chemical expenditure per state.

1. PD mortality rates vs. Total agricultural chemical expenditure per state

a. scatter plot visualization

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of PD Mortality Rates vs. Total Chemical Expenditure

b. Spearman's rank correlation for statistical testing

```
spearman_correlation <- cor(df$Total_Chemical_Expenditure, df$RATE, method = "spearman", use = "complet
spearman_correlation</pre>
```

[1] 0.2019572

Result: There is a weak positive monotonic relationship between Total Chemical Expenditure and Mortality RATE.

2.PD mortality rates vs. Chemical Expenditure per Farmland Acres per State

a. scatter plot visualization

```
ggplot(df, aes(x = Chemical_Expenditure_per_Acres, y = RATE)) +
geom_point(color = "blue", alpha = 0.7) +
geom_smooth(method = "lm", color = "red", se = TRUE) +
labs(title = "Scatter Plot of PD Mortality Rates vs. Chemical Expenditure per Farmland Acres",
    x = "Chemical Expenditure per Farmland Acres",
    y = "PD Mortality Rate (per 100,000 population)") +
theme_minimal()
```

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of PD Mortality Rates vs. Chemical Expenditure per Farmland A

b. Spearman's rank correlation for statistical testing

[1] -0.2528793

Result: There is a weak inverse relationship, meaning that as agricultural chemical expenditure rises, Parkinson's mortality rate slightly decreases.

3. PD mortality rates vs. Total Chemical Expenditure Considering Geographic Regions

a. boxplot and heatmap

Box Plot of PD Mortality Rates by Geographic Region

Heatmap of PD Mortality Rates by Region and Expenditure Le

b. Fit the mixed-effects model Since the Geographic Region is a higher-level above State, we can use a mixed-effects model to show a more accurate relationship

Warning: Some predictor variables are on very different scales: consider ## rescaling

```
# Summary of the model
summary(model)
```

```
## Random effects:
                                  Variance Std.Dev.
## Groups
                     Name
## Geographic_Region (Intercept) 0.03491 0.1868
                                  1.47136 1.2130
## Residual
## Number of obs: 50, groups: Geographic_Region, 4
##
## Fixed effects:
                              Estimate Std. Error t value
##
## (Intercept)
                              9.636e+00 2.479e-01 38.875
## Total_Chemical_Expenditure 3.323e-10 3.222e-10
## Correlation of Fixed Effects:
               (Intr)
## Ttl_Chmcl_E -0.612
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
# Check normality of residuals of the dependent variable
## Fit a simple linear regression model
model <- lm(RATE ~ Total_Chemical_Expenditure, data = df)</pre>
summary(model)
##
## Call:
## lm(formula = RATE ~ Total_Chemical_Expenditure, data = df)
## Residuals:
##
      Min
                1Q Median
                                3Q
## -3.2127 -0.9480 0.2332 0.9647 2.7585
## Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                              9.631e+00 2.273e-01 42.379
                                                             <2e-16 ***
## Total_Chemical_Expenditure 3.709e-10 3.125e-10
                                                    1.187
                                                              0.241
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.222 on 48 degrees of freedom
## Multiple R-squared: 0.02851,
                                   Adjusted R-squared: 0.008274
## F-statistic: 1.409 on 1 and 48 DF, p-value: 0.2411
## Extract residuals
residuals <- resid(model)</pre>
qqnorm(residuals)
qqline(residuals, col = "red")
```

Normal Q-Q Plot

pretation: The coefficient indicates that for each dollar increase in Total Chemical Expenditure, the RATE (PD mortality rate) is expected to increase by 3.709e-10 per 100,000 person. In other word, for each billion-dollar increase in Total Chemical Expenditure, the RATE (PD mortality rate) is expected to increase by 0.3709 deaths per 100,000 people. The p-value for Total_Chemical_Expenditure is 0.241, which is above the significance level (0.05). This means the effect of Total Chemical Expenditure on PD mortality rate is not statistically significant in this model.

Inter-

III. Aim 2b: Evaluate the association between the amount of acreage treated with three types of pesticides and PD mortality rates.

Look at totals and averages

```
# create a summary table of the total acreage of treated farmland
# for different types of pesticides and the mortality rate
summary_table <- df %>%
summarise(
    Insecticide_No_Nema_Sum_Acres =
        sum(Insecticide_No_Nema_Treatment_Acres, na.rm = TRUE),
    Insecticide_No_Nema_Avg_Percentage =
        mean(`Insecticide_No_Nema_Treatment_Percentage_(%)`, na.rm = TRUE),
    Insecticide_No_Nema_SD_Percentage =
        sd(`Insecticide_No_Nema_Treatment_Percentage_(%)`, na.rm = TRUE),
    Insecticide_Nema_Sum_Acres =
        sum(Insecticide_Nema_Treatment_Acres, na.rm = TRUE),
    Insecticide_Nema_Avg_Percentage =
```

```
mean(`Insecticide_Nema_Treatment_Percentage_(%)`, na.rm = TRUE),
    Insecticide_Nema_SD_Percentage =
      sd(`Insecticide_Nema_Treatment_Percentage_(%)`, na.rm = TRUE),
    Herbicide_Sum_Acres =
      sum(Herbicide_Treatment_Acres, na.rm = TRUE),
    Herbicide_Avg_Percentage =
      mean(`Herbicide Treatment Percentage (%)`, na.rm = TRUE),
    Herbicide SD Percentage =
      sd(`Herbicide_Treatment_Percentage_(%)`, na.rm = TRUE),
    Fungicide_Sum_Acres =
      sum(Fungicide_Treatment_Acres, na.rm = TRUE),
    Fungicide_Avg_Percentage =
      mean(`Fungicide_Treatment_Percentage_(%)`, na.rm = TRUE),
    Fungicide_SD_Percentage =
      sd(`Fungicide_Treatment_Percentage_(%)`, na.rm = TRUE),
    Mortality_Sum_Rate = sum(RATE, na.rm = TRUE),
    Mortality_Avg_Rate = mean(RATE, na.rm = TRUE),
    Mortality_SD_Rate = sd(RATE, na.rm = TRUE)
  )
print(summary_table)
##
     Insecticide_No_Nema_Sum_Acres Insecticide_No_Nema_Avg_Percentage
## 1
                           82860848
                                                               11.33876
     Insecticide No Nema SD Percentage Insecticide Nema Sum Acres
##
## 1
                               9.365526
                                                          21210813
##
     Insecticide_Nema_Avg_Percentage Insecticide_Nema_SD_Percentage
## 1
                             2.873056
                                                             2.998834
     Herbicide_Sum_Acres Herbicide_Avg_Percentage Herbicide_SD_Percentage
##
               264177083
## 1
                                          30.04337
                                                                    22.3878
##
     Fungicide_Sum_Acres Fungicide_Avg_Percentage Fungicide_SD_Percentage
## 1
                40710631
                                          5.666355
                                                                   4.813071
     {\tt Mortality\_Sum\_Rate\ Mortality\_Avg\_Rate\ Mortality\_SD\_Rate}
## 1
                  490.3
                                      9.806
                                                     1.227476
(correlations <- data.frame(</pre>
  Treatment_Type = c("Insecticide No Nema Acres",
                      "Insecticide No Nema Percentage",
                     "Insecticide Nema Acres",
                      "Insecticide Nema Percentage",
                      "Herbicide Acres",
                     "Herbicide Percentage",
                     "Fungicide Acres",
                     "Fungicide Percentage"),
  Spearman_Correlation_with_Mortality = c(
    cor(df$Insecticide_No_Nema_Treatment_Acres, df$RATE,
        method = "spearman", use = "complete.obs"),
    cor(df$`Insecticide_No_Nema_Treatment_Percentage_(%)`,
        df$RATE, method = "spearman", use = "complete.obs"),
```

```
cor(df$Insecticide_Nema_Treatment_Acres, df$RATE,
        method = "spearman", use = "complete.obs"),
    cor(df$`Insecticide_Nema_Treatment_Percentage_(%)`,
        df$RATE, method = "spearman", use = "complete.obs"),
    cor(df$Herbicide_Treatment_Acres, df$RATE,
        method = "spearman", use = "complete.obs"),
    cor(df$`Herbicide Treatment Percentage (%)`, df$RATE,
        method = "spearman", use = "complete.obs"),
    cor(df$Fungicide_Treatment_Acres, df$RATE,
        method = "spearman", use = "complete.obs"),
    cor(df$`Fungicide_Treatment_Percentage_(%)`,
        df$RATE, method = "spearman", use = "complete.obs")
  )
))
                     Treatment_Type Spearman_Correlation_with_Mortality
##
## 1
          Insecticide No Nema Acres
                                                              0.22484574
## 2 Insecticide No Nema Percentage
                                                             -0.13829263
             Insecticide Nema Acres
## 3
                                                              0.22114319
## 4
        Insecticide Nema Percentage
                                                             -0.09285225
## 5
                    Herbicide Acres
                                                              0.27677760
## 6
               Herbicide Percentage
                                                              0.00778978
## 7
                                                              0.18844535
                    Fungicide Acres
## 8
               Fungicide Percentage
                                                             -0.15233347
kable(correlations, caption = "Spearman Correlation Matrix")
```

Table 1: Spearman Correlation Matrix

Treatment_Type	${\bf Spearman_Correlation_with_Mortality}$
Insecticide No Nema Acres	0.2248457
Insecticide No Nema Percentage	-0.1382926
Insecticide Nema Acres	0.2211432
Insecticide Nema Percentage	-0.0928522
Herbicide Acres	0.2767776
Herbicide Percentage	0.0077898
Fungicide Acres	0.1884453
Fungicide Percentage	-0.1523335

```
labs(
   title = "Spearman Correlation between Treatment and Mortality Rate",
   x = "Pesticide Treatment",
   y = "Spearman Correlation with Mortality Rate"
) +
theme_minimal() +
theme(
   axis.text.x = element_text(angle = 45, hjust = 1),
   plot.title = element_text(hjust = 0.5)
)
```

Spearman Correlation between Treatment and Mortality Rate

Spearman Correlation with Mortality Rate

Interpretation: There is no clear association between these pesticide treatments (measured as total acreage and percentage of farmland treated) with PD mortality rate.

```
cor_data <- df %>%
  dplyr::select(
   Total_Acres,
   Insecticide_No_Nema_Treatment_Acres,
   `Insecticide_No_Nema_Treatment_Percentage_(%)`,
   Insecticide_Nema_Treatment_Acres,
   `Insecticide_Nema_Treatment_Percentage_(%)`,
   Herbicide_Treatment_Acres,
```

```
`Herbicide_Treatment_Percentage_(%)`,
    Fungicide_Treatment_Acres,
    `Fungicide_Treatment_Percentage_(%)`,
   DEATHS
  )
cor_data <- cor_data %>% mutate(across(everything(), as.numeric))
## Warning: There was 1 warning in 'mutate()'.
## i In argument: 'across(everything(), as.numeric)'.
## Caused by warning:
## ! NAs introduced by coercion
# Compute Spearman correlation matrix
cor_matrix <- cor(cor_data, method = "spearman", use = "complete.obs")</pre>
# Display the correlation matrix
print(cor_matrix)
##
                                                 Total_Acres
## Total_Acres
                                                  1.0000000
## Insecticide No Nema Treatment Acres
                                                  0.73016741
## Insecticide_No_Nema_Treatment_Percentage_(%) -0.01827333
## Insecticide Nema Treatment Acres
                                                  0.65882482
## Insecticide_Nema_Treatment_Percentage_(%)
                                                 -0.05022431
## Herbicide_Treatment_Acres
                                                  0.85687712
## Herbicide_Treatment_Percentage_(%)
                                                  0.26578400
## Fungicide Treatment Acres
                                                  0.65794945
                                                 -0.07429697
## Fungicide_Treatment_Percentage_(%)
## DEATHS
                                                  0.04847357
##
                                                 Insecticide_No_Nema_Treatment_Acres
## Total_Acres
                                                                            0.7301674
## Insecticide_No_Nema_Treatment_Acres
                                                                            1.000000
## Insecticide_No_Nema_Treatment_Percentage_(%)
                                                                            0.6124302
## Insecticide_Nema_Treatment_Acres
                                                                            0.9501040
## Insecticide_Nema_Treatment_Percentage_(%)
                                                                            0.5452457
## Herbicide_Treatment_Acres
                                                                            0.9536054
## Herbicide_Treatment_Percentage_(%)
                                                                            0.7724040
## Fungicide_Treatment_Acres
                                                                            0.9610461
## Fungicide_Treatment_Percentage_(%)
                                                                            0.5194223
## DEATHS
                                                                            0.3373454
##
                                                 Insecticide_No_Nema_Treatment_Percentage_(%)
## Total Acres
                                                                                   -0.01827333
## Insecticide_No_Nema_Treatment_Acres
                                                                                    0.61243024
## Insecticide_No_Nema_Treatment_Percentage_(%)
                                                                                    1.00000000
## Insecticide_Nema_Treatment_Acres
                                                                                    0.65072765
## Insecticide_Nema_Treatment_Percentage_(%)
                                                                                    0.94594595
## Herbicide_Treatment_Acres
                                                                                    0.43669986
## Herbicide_Treatment_Percentage_(%)
                                                                                    0.91180654
## Fungicide_Treatment_Acres
                                                                                    0.66976693
## Fungicide_Treatment_Percentage_(%)
                                                                                    0.94857205
## DEATHS
                                                                                    0.45201882
```

```
##
                                                 Insecticide_Nema_Treatment_Acres
## Total Acres
                                                                         0.6588248
                                                                         0.9501040
## Insecticide No Nema Treatment Acres
## Insecticide_No_Nema_Treatment_Percentage_(%)
                                                                         0.6507277
## Insecticide_Nema_Treatment_Acres
                                                                         1.0000000
## Insecticide Nema Treatment Percentage (%)
                                                                         0.6577306
## Herbicide Treatment Acres
                                                                         0.9087428
## Herbicide_Treatment_Percentage_(%)
                                                                         0.7824707
## Fungicide Treatment Acres
                                                                         0.9610461
## Fungicide_Treatment_Percentage_(%)
                                                                         0.5721633
                                                                         0.4688697
##
                                                 Insecticide_Nema_Treatment_Percentage_(%)
## Total_Acres
                                                                                -0.05022431
## Insecticide_No_Nema_Treatment_Acres
                                                                                 0.54524565
## Insecticide_No_Nema_Treatment_Percentage_(%)
                                                                                 0.94594595
## Insecticide_Nema_Treatment_Acres
                                                                                 0.65773061
## Insecticide_Nema_Treatment_Percentage_(%)
                                                                                 1.0000000
## Herbicide Treatment Acres
                                                                                 0.38220812
## Herbicide_Treatment_Percentage_(%)
                                                                                 0.83608710
## Fungicide Treatment Acres
                                                                                 0.61855783
## Fungicide_Treatment_Percentage_(%)
                                                                                 0.89232958
## DEATHS
                                                                                 0.55049787
##
                                                 Herbicide_Treatment_Acres
## Total Acres
                                                                 0.8568771
## Insecticide No Nema Treatment Acres
                                                                 0.9536054
## Insecticide No Nema Treatment Percentage (%)
                                                                 0.4366999
## Insecticide_Nema_Treatment_Acres
                                                                 0.9087428
## Insecticide_Nema_Treatment_Percentage_(%)
                                                                 0.3822081
## Herbicide_Treatment_Acres
                                                                 1.0000000
## Herbicide_Treatment_Percentage_(%)
                                                                 0.6874932
## Fungicide_Treatment_Acres
                                                                 0.9067732
## Fungicide_Treatment_Percentage_(%)
                                                                 0.3557282
## DEATHS
                                                                 0.2951089
##
                                                 Herbicide_Treatment_Percentage_(%)
## Total Acres
                                                                           0.2657840
## Insecticide_No_Nema_Treatment_Acres
                                                                           0.7724040
## Insecticide No Nema Treatment Percentage (%)
                                                                           0.9118065
## Insecticide_Nema_Treatment_Acres
                                                                           0.7824707
## Insecticide_Nema_Treatment_Percentage_(%)
                                                                           0.8360871
## Herbicide_Treatment_Acres
                                                                           0.6874932
## Herbicide Treatment Percentage (%)
                                                                           1.0000000
## Fungicide Treatment Acres
                                                                           0.7951636
## Fungicide Treatment Percentage (%)
                                                                           0.8441843
## DEATHS
                                                                           0.4561768
                                                 Fungicide_Treatment_Acres
## Total_Acres
                                                                 0.6579494
## Insecticide_No_Nema_Treatment_Acres
                                                                 0.9610461
## Insecticide_No_Nema_Treatment_Percentage_(%)
                                                                 0.6697669
## Insecticide_Nema_Treatment_Acres
                                                                 0.9610461
## Insecticide_Nema_Treatment_Percentage_(%)
                                                                 0.6185578
## Herbicide_Treatment_Acres
                                                                 0.9067732
## Herbicide_Treatment_Percentage_(%)
                                                                 0.7951636
## Fungicide_Treatment_Acres
                                                                 1.0000000
## Fungicide Treatment Percentage (%)
                                                                 0.6319072
```

```
## DEATHS
                                                                  0.4049677
##
                                                 Fungicide_Treatment_Percentage_(%)
                                                                         -0.07429697
## Total Acres
## Insecticide_No_Nema_Treatment_Acres
                                                                          0.51942226
## Insecticide_No_Nema_Treatment_Percentage_(%)
                                                                          0.94857205
## Insecticide Nema Treatment Acres
                                                                          0.57216326
## Insecticide Nema Treatment Percentage (%)
                                                                          0.89232958
## Herbicide_Treatment_Acres
                                                                          0.35572820
## Herbicide_Treatment_Percentage_(%)
                                                                          0.84418427
## Fungicide_Treatment_Acres
                                                                          0.63190721
## Fungicide_Treatment_Percentage_(%)
                                                                          1.00000000
## DEATHS
                                                                          0.39205602
##
                                                     DEATHS
## Total_Acres
                                                 0.04847357
## Insecticide_No_Nema_Treatment_Acres
                                                 0.33734544
## Insecticide_No_Nema_Treatment_Percentage_(%) 0.45201882
## Insecticide_Nema_Treatment_Acres
                                                 0.46886968
## Insecticide_Nema_Treatment_Percentage_(%)
                                                 0.55049787
## Herbicide_Treatment_Acres
                                                 0.29510887
## Herbicide_Treatment_Percentage_(%)
                                                 0.45617682
## Fungicide_Treatment_Acres
                                                 0.40496772
## Fungicide_Treatment_Percentage_(%)
                                                 0.39205602
## DEATHS
                                                 1.00000000
colnames(cor_matrix) <- c(</pre>
  "Total Acres", "Insect No Nema Acres", "Insect No Nema %",
  "Insect Nema Acres", "Insect Nema \%", "Herb Acres", "Herb \%",
  "Fung Acres", "Fung %", "Deaths"
rownames(cor matrix) <- c(</pre>
  "Total Acres", "Insect No Nema Acres", "Insect No Nema %",
 "Insect Nema Acres", "Insect Nema %", "Herb Acres", "Herb %",
  "Fung Acres", "Fung %", "Deaths"
kable(cor_matrix, caption = "Spearman Correlation Matrix")
```

Table 2: Spearman Correlation Matrix

•		Insect No	Insect	Insect	Insect					
	Total	Nema	No	Nema	Nema	Herb	Herb	Fung	Fung	
	Acres	Acres	Nema $\%$	Acres	%	Acres	%	Acres	%	Deaths
Total	1.0000000	0.7301674	-	0.6588248	-	0.85687	70.2657	840065794	94 -	0.0484736
Acres			0.0182733		0.050224	3			0.07429	970
Insect No	0.73016741.0000000		0.6124302	0.9501040	0.54524570.953605				22 3 .3373454	
Nema										
Acres										
Insect No	-	0.6124302	1.0000000	0.6507277	0.945945	90.43669	999.9118	0 65 66976	6 9 .9485	720.4520188
Nema $\%$	0.0182733									
Insect	0.6588248	0.9501040	0.6507277	1.0000000	0.657730	60.90874	1208.7824	707 96104	60.57216	63 3 .4688697
Nema										
Acres										
Insect	-	0.5452457	0.9459459	0.6577306	1.000000	00.38220	080.8360	8 7 0161855	78.89232	296.5504979
Nema $\%$	0.0502243									

	Total Acres	Insect No Nema Acres	Insect No Nema %	Insect Nema Acres	$\begin{array}{c} {\rm Insect} \\ {\rm Nema} \\ \% \end{array}$	Herb Acres	Herb	Fung Acres	Fung	Deaths
Herb Acres	0.8568771	0.9536054	0.4366999	0.9087428	0.382208	11.00000	000.6874	9 30 29067	73 0 .35572	28 2 .2951089
Herb %	0.2657840	0.7724040	0.9118065	0.7824707	0.836087	10.68749	932.0000	0007951	6 36 .84418	84 3 .4561768
Fung Acres	0.6579494	0.9610461	0.6697669	0.9610461	0.618557	80.90677	73 0 .7951	6 36 00000	00 0 .63190	0 72. 4049677
Fung $\%$	- 0.0742970	0.5194223	0.9485721	0.5721633	0.892329	60.35572	28 0 .8441	8436319	072.00000	000.3920560
Deaths	0.0484736	0.3373454	0.4520188	0.4688697	0.550497	90.29510)8 9 .4561	7684049	6 70 .3920	56 0 .0000000

very weak to weak correlation of some treatment measurements and PD mortality