DOCUMENT SUMMARY This 1977 study by Hasher, Goldstein, and Toppino demonstrates that repeating a plausible statement, regardless of its actual truth, increases a person's belief in its validity. Over three sessions, subjects rated their certainty about various statements; statements that were repeated were judged as significantly more likely to be true than non-repeated statements. This effect occurred for both true and false items, providing empirical support for the idea that **frequency** of exposure is a key criterion people use to judge the truthfulness of information, a phenomenon now often called the "illusory truth effect."

FILENAME hasher_1977_research_study_frequency_effect_belief_validity.md

METADATA Category: RESEARCH Type: Study Relevance: Reference Update Frequency: Static Tags: [#illusory_truth_effect, #frequency, #repetition, #belief, #cognitive_bias, #referential_validity, #misinformation, #persuasion] Related Docs: None specified. Supersedes: None specified.

FORMATTED CONTENT

Frequency and the Conference of Referential Validity

Authors: Lynn Hasher, David Goldstein, and Thomas Toppino

Published: Journal of Verbal Learning and Verbal Behavior, 16, 107-112 (1977)

Abstract

Subjects rated how certain they were that each of 60 statements was true or false. The statements were sampled from areas of knowledge including politics, sports, and the arts, and were plausible but unlikely to be specifically known by most college students. Subjects gave ratings on three successive occasions at 2-week intervals. Embedded in the list were a critical set of statements that were either repeated across the sessions or were not repeated.

For both true and false statements, there was a significant increase in the validity judgments for the repeated statements and no change in the validity judgments for the non-repeated statements.

Frequency of occurrence is apparently a criterion used to establish the **referential validity** of plausible statements.

In the standard memory task, the learner is presented information which he is instructed to read or remember. The information may range from simple units such as nonsense syllables, numbers, and words, to complex units such as phrases and prose passages. Memory for that information may be tested using any of a wide range of procedures. From the subject's perspective these input events have what we call

episodic validity. That is, the information units occur in a situation surrounded by scientific dignity, requiring responsible behavior from the subject (Orne, 1973), and also in a situation in which the subject has volunteered his services, further contributing to the subject's compliance with the demands and expectations of the experimenter (Rosenthal & Rosnow, 1975). The information units themselves, however, have little validity apart from that conferred on them by the experimental context. For example, the statement "the rock which rolled down the mountain crushed the tiny hut at the edge of the woods" in the context of a memory experiment (Bransford & Franks, 1971) has validity in the sense that it occurs in that experimental episode. The subject need not believe, nor is it even likely to occur to him, that the statement refers to a real world event in order for him to comprehend and respond to that statement.

We were curious about the kinds of processing subjects do with information units that have potential reference to the real world, that is, with items that have what we will call

referential validity. Take as an example, the statement that "The total population of Greenland is about 50,000." This sentence, unlike the previous example, is plausible; that is, it is potentially verifiable in that there is a specific referent. However, it is also a statement about whose

referential validity most of us would have some uncertainty. We can of course judge that such a statement might be true, presumably by using general information from semantic memory. Nevertheless, it seemed to us that people are willing to make judgments about the truth or falsity of such plausible statements in the absence of certain knowledge. What, then, could be the basis for such judgments? This is a question not about the contents of semantic memory, nor about the relations among those contents, but rather about the fundamental problem of how our general knowledge, including our certainty about that knowledge, accumulates in the first place.

The

frequency with which such plausible statements are heard seemed likely to be an important variable in this problem. Humans are profoundly sensitive to

frequency (e.g., Estes, 1964, 1976: Underwood, 1971): Subjects can make reasonably accurate judgments of the **frequency** of events in an experiment (e.g., Hintzman, 1969); they can make **frequency** judgments of real world events, e.g., single words (Shapiro, 1969), single letters (Attneave, 1953), and pairs of letters (Underwood, 1971), that correlate with their actual **frequency** of occurrence; they can also make the rather fine grained distinction between the **frequency** of verbatim repetitions of sentences and of their paraphrased repetitions (Gude & Zechmeister, 1975). Differences in

frequency between items will alter a subject's choice in a verbal discrimination task (Ekstrand, Wallace, & Underwood, 1966), in probability learning tasks (Estes, 1976), and will influence simple retention measures such as recognition and recall (Underwood, Zimmerman, & Freund, 1971).

Frequency might also serve as the major access route that plausible statements have into our pool of general knowledge. That is, the more often you hear that 50,000 people live in Greenland, even if you do so in contexts that are explicitly ambiguous or equivocal, the more certain you will become that indeed they do. Such was the logic underlying the present experiment.

METHOD

Design

On three successive occasions, each separated by a 2-week interval, subjects heard a series of 60

plausible assertions and rated each for its validity on a 7-point scale. Twenty of the first sixty statements were selected as critical items and occurred on each of the three presentations. All other items were new. Validity ratings of the 20 repeated assertions were compared with those for nonrepeated statements. Crossed with the repeated and nonrepeated variable and the sessions variable, was a third variable, the actual truth or falsity of the assertion. The design was then a 2 (repeated vs. nonrepeated statements) x 3 (sessions) x 2 (truth vs. falsity) withinsubject factorial.

Materials

A total of 140

plausible assertions were formed by culling reference works on 10 general topics: history, government and politics, sports, political science, biology and medicine, current affairs, the arts, geography, demography, and religion and social customs. Based on these references, statements were selected and written so that they were plausible without being so familiar that most students would know with certainty whether or not they were true. Fourteen instances were written for each category, seven of which were true, and seven of which were false. Two examples of statements, one true and one false, from each of the ten topics may be seen in Table 1.

From the total pool of 140 statements, 20 were selected to serve as the repeated items by choosing one true and one false statement from each of the 10 general categories. Within these constraints, the particular statements that served as repeated items were randomly selected. The remaining 120 statements were then divided into 3 groups of 40 each, half of which were true and half of which were false. Each of the 3 groups of 40 were then combined with the 20 repeated statements to generate the 3 sets of 60 statements presented to the students for their validity judgments. Within a set of 60, statements were assigned to a position randomly with the constraint that only non-repeated items occupied the first 10 and last 10 slots in the list. Repeated and nonrepeated items were then interspersed throughout the middle 40 slots in a list. Critical comparisons on the three variables in the study were performed on the ratings assigned to items in these middle slots.

The decision to use only nonrepeated statements as recency and primacy buffers was based on the following logic: The statements most likely to be remembered after a session were those in the buffer positions. If a curious and scholarly student were to look up a statement, these buffer items would be his most likely targets. That would leave us with a reasonable probability that the repeated items were not researched and so any changes in validity ratings could be attributed to the

repetition manipulation rather than to extraexperimentally acquired knowledge.

Category Validity Example

History	True	Kentucky was the first state west of the Alleghenies to be settled by pioneers.
	False	The People's Republic of China was founded in 1947.
Government & Politics	True	French horn players get cash bonuses to stay in the U.S. Army
	False	Zachary Taylor was the first President to die in office.
Current Affairs	True	About 1.6 billion items of litter are tossed away each year on California public lands.
	False	Total U.S. defense spending has risen steadily since 1965.
Sports	True	The Philadelphia Phillies have won only two National League pennants since 1900.
	False	Tulane defeated Columbia in the first Sugar Bowl Game.
Physical Science	True	Lithium is the lightest of all metals.
	False	It takes twice as much force to move a ton of freight by railroad as it does by truck.
Biological Science	True	The thigh bone is the longest bone in the human body.
	False	The capybara is the largest of the marsupials.
The Arts	True	Ernest Hemingway received a Pulitzer Prize for The Old Man and the Sea.
	False	The largest museum in the world is the Louvre in Paris.
Geography	True	Australia is approximately equal in area to the continental United States.

False Outside of New York and Chicago, the

tallest building in America is found in

Dallas.

Demography True Cairo, Egypt has a larger population

than Chicago, Illinois.

False In the U.S., divorced people outnumber

those who are widowed.

Religion & Custom

True In Malaya, if a man goes to jail for

being drunk, his wife goes too.

False Divorce is found only in technically

advanced societies.

Table 1: Examples of instances from the ten knowledge categories

Export to Sheets

The three sets of 60 statements were then tape recorded by a speaker using standard English pronunciation. They were recorded with 10 seconds between the beginning of one statement and the beginning of the next. Since on the average it took 5 seconds to complete a statement, there were approximately 5 seconds of quiet time between the end of one statement and the beginning of the next. Two different orderings of the 3 sets of 60 statements were selected with half of the subjects run in one order and half in the other.

Procedure

Subjects were instructed that they would hear statements that might or might not be true and that each one should be rated on a 7-point scale where four indicated "uncertain," five indicated "possibly true," six "probably true," and seven "definitely true." The same adjectives were used to describe false statements and occurred respectively with the ratings numbered three, two, and one. Subjects were informed that they should rate each item immediately after it occurred and prior to the next statement. They were told that they were involved in validating a new test of the general knowledge of college students.

Subjects

There were a total of 40 college student subjects whose data were used in analyzing the results. The data from 10 subjects had to be discarded because they did not attend all three sessions. Twenty of the subjects were run in small groups ranging in size from 1 to 10, while the remaining subjects were run in an intact classroom group.

RESULTS

The dependent measure was the mean rating assigned by a subject on a given session to those items in each of four categories: true items that were either repeated across sessions or not, and false items that were also either repeated or not.

A preliminary analysis was conducted to determine whether there were differences in performance between the subjects run in small groups and those run in the intact classroom. There were none and this variable was collapsed across in all further analyses.

As can be seen in Table 2, the mean validity judgments ranged from a low of 4.04 to a high of 4.80. That is, they ranged from "uncertain" to "possibly true." Of course some items received much higher and others much lower ratings, but in general these ratings confirm that our item selection procedure was successful in providing statements that were plausible but unlikely to be in the knowledge base of most college students.

These data were then analyzed by means of a 2 (repeated vs. nonrepeated) x 2 (true vs. false) x 3 (sessions) repeated measures analysis of variance. On the average, subjects assigned higher validity ratings to statements that were true (M=4.52) than to statements that were false (M=4.28). The difference between true and false statements was significant, F(1,39)= 34.7, MSe=.20, p<.01. This dimension did not enter into any interactions with the remaining variables.

As can be seen from Table 2, the average rating assigned to repeated statements increased across successive sessions, while the rating assigned to nonrepeated statements diminished slightly. The interaction between statement

repetition and session was significant, F(2,78)=11.80, MSe=.20, p<.01. Simple main effects tests confirmed the apparent nature of the interaction. Validity ratings assigned to repeated items increased across successive tests. F(2,78)=16.34, MSe=.41, p<.01, while the validity ratings assigned to nonrepeated statements did not change, F<1.

It is important to note that during the first session there was no difference in the ratings assigned to those statements that would later recur in sessions 2 and 3 and the ratings assigned those statements that would not recur, F(1,39)=1.69, MSe=.45, p>.05.

Thus, repeated statements are more likely to be judged as "true" than are similar, non-repeated statements.

	Session 1		Session 2		Session 3	
Statement type	M	SD	M	SD	M	SD
Repeated						
True	4.52	.60	4.80	.49	4.80	.63
False	4.18	.51	4.54	.57	4.67	.46
М	4.35		4.67		4.74	

Not	
repeated	

True	4.42	.52	4.30	.48	4.29	.70
False	4.09	.68	4.15	.54	4.04	.55
М	4.25		4.22		4.16	

Table 2: Means and standard deviations assigned to groups of statements across successive sessions

Export to Sheets

DISCUSSION

The present research has demonstrated that the

repetition of a plausible statement increases a person's belief in the **referential validity** or truth of that statement.

Other research has demonstrated the sensitivity of the information processing system to the

frequency variable (cf., Estes, 1976; Underwood, 1971). Indeed, Underwood (1971) has proposed that

frequency is the attribute of memory that underlies our ability to accurately distinguish old events from new events. Furthermore, several recent experiments by social psychologists have indicated a relationship between

frequency of exposure to a stimulus and positive affect for the stimulus (Smith & Dorfman, 1975: Stang, 1975; Zajonc, 1968).

In the present experiments, the subjects' judgments that repeated statements were more probably true than nonrepeated statements occurred in a situation in which there was no verifying information available concerning the actual truth or falsity of the statements.

Frequency, then, must have served as a criterion of certitude for our subjects.

Indeed, the present experiment appears to lend empirical support to the idea that "if people are told something often enough, they'll believe it."

In particular, it should be noted that the increase in validity ratings with

repetition was equivalent for true and for false statements, despite the fact that subjects succeeded in discriminating between them.

Furthermore, the increase in validity ratings occurred for an extremely diverse set of statements, which suggest that the effect of

frequency upon the rated validity of statements is a general rather than a context specific phenomenon. The precise role of

frequency in cognition and memory is still unclear of course. Nevertheless, a rapidly growing body of evidence indicates that

frequency is a key attribute of memory, playing a fundamental role in discriminating among memories (Underwood, 1971), in developing positive affect for a stimulus (Zajonc, 1968), and in attributing **referential validity** to plausible statements.