Unsupervised Learning (cont'd)

Praphul Chandra

- 1. James, Gareth, et al. An introduction to statistical learning. Vol. 6. New York: springer, 2013.
- 2. Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. Springer, Berlin: Springer series in statistics, 2001.
- 3. Kuhn, Max, and Kjell Johnson. *Applied predictive modeling*. New York: Springer, 2013.

What does data look like?

Unsupervised Learning: Definitions

• ... algorithms used to draw inferences from datasets consisting of input data without labeled responses.

- ... task of inferring a function to describe hidden structure from unlabeled data.
 - Distribution / Density
 - Summary statistics
 - Clustering
 - Principal Components Analysis

Patterns in data

- They describe structure (patterns) in the data
 - i. Which value(s) occur most frequently?
 - ii. How much does the data vary?
 - iii. How symmetrically does data vary around center?
 - iv. Is data clustered around value(s)?
 - v. Sub-space where data is "concentrated"
- Summary statistics
 - i. Median
 - ii. Variance, Standard Deviation
 - iii. Skewness, Kurtosis
 - iv. Mode
- Multiple dimensions
 - i. Are two features / dimensions correlated

- Clustering
 - Find data elements which are similar.
 - Finding "areas" in space where data is concentrated
- Association Rules
 - Find features (dimensions) which occur together
 - Find features (dimensions) which are "correlated"
- Dimensionality Reduction
 - Find smaller dimensional representations of the data which preserve it's essential structure.
 - Find subspaces where data varies the most.

Association Rule Mining

Conceptual Overview

Association Rules

- What does the value of one feature tell us about the value of another feature?
 - People who buy diapers are likely to buy baby powder
 - If (people buy diaper), then (they buy baby powder)
 - Caution: Watch the directionality! (A→B does not mean B→A)
- Association rules
 - Are statements about relations among features (attributes): across elements (tuples)
 - Use a transaction-itemset data model

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

	Beer	Brea	Milk	Diap	Eggs	Coke
1	0	1	1	0	0	0
2	1	1	0	1	1	0
3	1	0	1	1	0	1
4	1	1	1	1	0	0
5	0	1	1	1	0	1

Association Rules = Market Basket Analysis?

Most common use

• Each basket (purchase) is a row and each item is a column

T_1	0	1	1	0	0	0
T_2	1	1	0	1	1	0
T_3	1	0	1	1	0	1
T_4	1	1	1	1	0	0
T_5	0	1	1	1	0	1

Not the only use

- Can work in any dataset where features take only two use values: 0/1
- Can work in any dataset where features can be *represented as* taking only two use values : 0/1
 - Preprocessing: Discretization, Feature selection

Association Rules beyond Market Basket Analysis

- People who visit webpage X are likely visit webpage Y.
- Nodes which run a web server are likely to run linux.
- People who have age-group [30,40] & income [>\$100k] are likely to own home

Measures of effectiveness

- What do association rules look like?
 - {diapers} → {baby powder}
 - {bread, butter} → {milk}
 - {bat, ball, pads} → {helmet}
 - X → Y :: If {X}, Then {Y}
 - If Precondition, Then Conclusion
 - If Antecedent, Then Consequent
- How good / significant is a rule?
 - An association rule is a probabilistic statement
 - How much historical data **supports** your rule?
 - How confident are we that the rule holds?

- Support (a.k.a. Coverage) of X→Y
 - Fraction of rows containing both X & Y
 - P(X and Y): Joint Probability
 - Support $(X \rightarrow Y) = Support (Y \rightarrow X)$
- Confidence of X→Y
 - Among rows containing X, fraction of rows containing Y
 - P(Y|X): Conditional Probability
 - Confidence (X → Y) ≠ Confidence (Y → X)
- What do association rules really look like?
 - $X \rightarrow$ support, confidence Y

Measures of effectiveness (cont'd)

- {Diaper, Beer} → Milk
 - Support = 2/5, Confidence = 2/3
- {Milk} → {Diaper, Beer}
 - Support = 2/5, Confidence = 2/4
- {Milk, Diaper} → Bread
 - Support = 2/5, Confidence = 2/3
- {Milk, Beer} → Diaper?
- Confidence = 1?
 - Caution: Diaper is very popular!
 - Does the inclusion of {Milk, Beer} increase the probability of Diaper?
- Lift
 - Confidence (X→ Y)/Support(Y) or equivalently P(Y|X) / P(Y)
 - > 1 : X & Y positively correlated (Presence of X lifts probability of Y's presence) 0.6
 - < 1 : X & Y negatively correlated (Presence of X reduces probability of Y's presence)
 - = 1 X & Y not correlated

Measures of effectiveness (cont'd)

- Support
- Confidence
- Lift
- Others: Affinity, Leverage

$$\begin{aligned} &\text{Rule} = \text{A} \rightarrow \text{C} \\ &\text{Support} \ (\text{A}) = \frac{n_{\text{A}}}{n} \qquad \text{Support} \ (\text{C}) = \frac{n_{\text{C}}}{n} \qquad \text{Support} \ (\text{A\&C}) = \frac{n_{\text{A\&C}}}{n} \\ &\text{Confidence} \ (\text{A} \rightarrow \text{C}) = \frac{\text{Support}(\text{A\&C})}{\text{Support}(\text{A})} = \frac{n_{\text{A\&C}}}{n_{\text{A}}} \\ &\text{Lift}(\text{A\&C}) = \frac{\text{Confidence}(\text{A} \rightarrow \text{C})}{\text{Support}(\text{C})} = \frac{\text{Support}(\text{A\&C})}{\text{Support}(\text{A}) * \text{Support}(\text{C})} = \frac{n * n_{\text{A\&C}}}{n_{\text{A}} * n_{\text{C}}} \\ &\text{Affinity}(\text{A\&C}) = \frac{\text{Support}(\text{A\&C})}{\text{Support}(\text{A}) + \text{Support}(\text{C}) - \text{Support}(\text{A\&C})} = \frac{n_{\text{A\&C}}}{n_{\text{A}} * n_{\text{C}} - n_{\text{A\&C}}} \\ &\text{Leverage}(\text{A\&C}) = \text{Support}(\text{A\&C}) - [\text{Support}(\text{A}) * \text{Support}(\text{C})] = \frac{n_{\text{A\&C}}}{n} - \frac{n_{\text{A}} * n_{\text{C}}}{n^2} \end{aligned}$$

Apriori

- Key Idea
 - If {a,c,f} is frequent, {a,c} must be frequent
 - Downward closure a.k.a. anti-monotonicity
- Algorithm
 - Find all frequent 1-itemsets (frequent → > support)
 - Find all frequent 2-itemsets for filtered 1-itemsets
 - Find all frequent 3-itemsets for filtered 2-itemsets
 - ...
- Salient Features
 - Exploits downward closure to optimize search
 - Lower Support → Higher computational complexity
 - Confidence, Lift as post-processing filters

Database		(C_1	
TID	Items	Itemset	Support	
100	1 3 4	{1}	2]
200	2 3 5	{2}	3	
300	1 2 3 5	{3}	3	
400	2 5	{5}	3	
				_

		•	{2 5}*	3
Itemset	Support		{3 5}*	2
{1 3 4}	1		{1 2}	1
{2 3 5}*	2	C ₃	{1 5}	1
{1 3 5}	1			

Itemset

{1 3}* {1 4} {3 4}

{23}*

Support

Example: Apriori in R

```
data("AdultUCI");
Adult = as(AdultUCI, "transactions");
rules = apriori(Adult, parameter=list(support=0.01, confidence=0.5));
```

Scatter plot for 317848 rules

Apriori : Limitations

- Computational Complexity
 - How long does it take to run?
 - How much memory does it need?
- Approaches
 - Throw more compute / RAM at it
 - Parallelize
 - Increase support
 - Leverage item hierarchy
 - Another algorithm?

- Rare patterns
 - Rules with low support but maybe very valuable
 - People who buy _____ likely to buy luxury cars
- When sequence of transactions matters
 - Define a sequence as an item
 - Combinatorial Explosion : Computational Complexity
 - Read-Up!

Frequent Pattern Growth: Association Rule Mining

- Apriori
 - Use **frequent** k-itemsets to generate k+1-itemsets candidates
 - Scan DB to determine frequent k+1-itemsets
 - Iterate
 - → Multiple scans of DB;
 - + Multiple itemsets (Computational Complexity; Does not scale)
- FP Growth: Key !dea
 - Scan the DB only twice;
 - Summarize itemsets in an efficient data structure (FP-Tree)
 - Extract frequent itemsets from the FP-Tree

FP-Growth: Growing the Tree

TID	Items
1	E, A, D, B
2	D, A, C, E, B
3	C, A, B. E
4	B, A, D
5	D
6	D,B
7	A,D,E
8 Transa	B,C ction data in DB

TID	frequency
Α	5
В	6
C	3
D	6
E	4

priori	ty
3	
1	
5	
2	
4	

TID	Items	Ordered Items
1	E, A, D, B	B,D,A,E
2	D, A, C, E, B	B,D,A,E,C
3	C, A, B. E	B,A,E,C
4	B, A, D	B,D,A
5	D	D
6	D,B	B,D
7	A,D,E	D,A,E
8	B,C	B,C

1-Itemset

FP-Growth: Building and Rules Extraction

- Scan-1
 - Find support for each 1-itemset; Discard in-frequent 1-itemsets
 - Sort frequent 1-itemsets in decreasing order of support
- Scan-2
 - Read 1 transaction at a time & map it to a path in the tree
 - Fixed sorted order ensures paths overlap when transactions share itemsets (counters incremented)
 - More paths overlap → More compression → Tree fits in memory
 - If all transactions contain the same itemset → 1 path in the tree
 - If no transactions share itemsets → Tree as big as DB
- Association Rules Extraction
 - Pick an 1-itemset (Say e)
 - Check if it is a frequent itemset (Yes; support =4)
 - Check 2-itemsets ending in e: de, ce, be, ae
 - Supports : de (0), ce(0), be(0), ae(4)
 - Check 3-itemsets ending in ae: bae, cae, dae
 - ...
 - Note: This is the conditional FP-tree for e.

Association Rules : Summary

Association Rules

- Are probabilistic statements
- About relations among features across elements
- Use a transaction-itemset data model
- The strength (statistical significance) of an association rule is measured using support, confidence, lift etc.

Applications

- Market Basket Analysis
- Any dataset where features take values: 0/1
- Can work in any dataset where features can be represented as taking only two use values: 0/1
 - Preprocessing: Discretization, Feature selection

Apriori

- Input : Dataset, minsupport
- Output: association rules
- Exploits downward closure to optimize search
- Lower Support → Higher computational complexity
- Confidence, Lift as post-processing filters

FP Growth

- Scan the DB only twice;
- Summarize itemsets in an efficient data structure (FP-Tree)
- Extract frequent itemsets from the FP-Tree

Unsupervised Learning: Summary

- ... algorithms used to draw inferences from datasets consisting of input data without labeled responses.
- ... the task of inferring a function to describe hidden structure from unlabeled data.
 - Distribution / Density
 - Summary statistics
 - Clustering: Find data elements (rows) which are similar.
 - Association Rules: Find features (dimensions) which are correlated
 - Dimensionality Reduction: Find smaller dimensional representations which preserve data's essential structure.

Unsupervised

- Association Rules: Find patterns when we don't know what we are looking for.
 - {Diaper, Beer} → Milk
 - {Milk} → {Diaper, Beer}
 - {Milk, Diaper} → Beer

Supervised

- What if we are only interested in identifying customers who bought Milk?
- Split the customer base into two classes: Customers who bought Milk and who did not.
- Binary classification problem: Given purchases of other customers

Praphul Chandra Insofe

Rare pattern mining: NBrules

- Key Idea
 - Assume frequency of items follows a distribution
 - Baseline: items occur independently of each other
 - Compare deviation of empirical data from baseline
- Frequency of an item (1-itemset)
 - Poisson distribution
 - Different items: Different rates in Poisson
 - Rates themselves follow a Gamma distribution
 - Resulting distribution : Negative Binomial
- Parameter estimation

$$Pr[R=r] = \int_0^\infty \frac{e^{-\lambda} \lambda^r}{r!} dG_{\Lambda}(\lambda), \ r=0,1,2,..., \ \lambda > 0.$$

$$g_{\Lambda}(\lambda) = \frac{e^{-\lambda/a} \lambda^{k-1}}{a^k \Gamma(k)}, \ a > 0, \ k > 0,$$

$$Pr[R=r] = (1+a)^{-k} \frac{\Gamma(k+r)}{\Gamma(r+1)\Gamma(k)} \left(\frac{a}{1+a}\right)^r, \ r=0,1,2,...$$

$$\bar{r} = \text{mean}(freq)$$
 $s^2 = \text{var}(freq)$
 $\tilde{k} = \bar{r}^2/(s^2 - \bar{r})$ $\tilde{a} = \bar{r}/\tilde{k}$

Rare pattern mining: NBrules (cont'd)

$$Pr[R=r] = (1+a)^{-k} \frac{\Gamma(k+r)}{\Gamma(r+1)\Gamma(k)} \left(\frac{a}{1+a}\right)^{r}, \ r=0,1,2,...$$

 $\bar{r} = \text{mean}(freq)$ $s^2 = \text{var}(freq)$ $\tilde{k} = \bar{r}^2/(s^2 - \bar{r})$ $\tilde{a} = \bar{r}/\tilde{k}$

- Beyond 1-itemset
 - 2-itemset : Negative Binomial (Baseline: independence)
- Frequency of a 1-extension of itemset ℓ of length k
 - Baseline: Negative Binomial (independence)
 - Parameter Estimation:
 - k (same shape)
 - Rescale a : parameter per incidence x # of incidents of itemset- \(\ell \)

h k
$$Pr[R_l=r]=(1+a_l)^{-k}\frac{\Gamma(k+r)}{\Gamma(r+1)\Gamma(k)}\left(\frac{a_l}{1+a_l}\right)^r \ for \ r=0,1,2,...$$

$$\tilde{a}' = \frac{\tilde{a}}{\sum_{t \in \mathcal{D}} |t|}$$
 $\tilde{a}_l = \tilde{a}' \sum_{\{t \in \mathcal{D} | t \supset l\}} |t \setminus l|$

- Key Idea
 - Look for deviations (high frequency itemset) from the baseline model
 - Find all frequent 1-itemsets
 - Find frequent 2-itemsets: set of non-random ("too high" co-occurrence frequency) 1-extensions
 - Find frequent 3-itemsets: set of non-random ("too high" co-occurrence frequency) 2-extensions

The NB distribution provides a baseline (independence) for frequency distribution of the candidate items.

Rare pattern mining: NBrules (cont'd)

The NB distribution provides a baseline (independence) for frequency distribution of the candidate items.

- Defining "too high"
 - To find a set of non-random 1-extensions of itemset-\(\ell \),

 - we need to identify a frequency thre σ_l^{freq} !
 where accepting item candidates with a frequen $r \geq \sigma_l^{freq}$ separates associated items best from items which co-occur often by pure chance.
 - Closely related to the idea of confidence of a ru' $\operatorname{supp}(l \cup \{c\}) \geq \sigma_l \Leftrightarrow \operatorname{conf}(l \longrightarrow \{c\}) \geq \gamma_l.$

Example

- Suppose a database contains 20,000 transactions
- itemset- ℓ appears in 1600 transactions which gives supp(ℓ) = 1600/20,000 = 0.08.
- If we require the 1-extension of itemset-\(\ell \) to have a co-occurrence frequency with itemset-\(\ell \), of at least 1200,
- we use a minimum support of $\ell = 1200/20,000 = 0.06$.
- All rules $I \rightarrow \{c\}$ which can be constructed for itemset- ℓ with $\{c\}$ will have at least a confidence of = 0.06/0.08 = 0.75.

Rare pattern mining: NBrules (cont'd)

- $\bullet \ \ \text{Identifying a frequency thres} \ \sigma_l^{\textit{freq}} \ | \qquad \qquad \text{precision}_l(\rho) = \begin{cases} (o_{[r \geq \rho]} e_{[r \geq \rho]})/o_{[r \geq \rho]} & \textit{if} \ o_{[r \geq \rho]} \geq e_{[r \geq \rho]} \ \textit{and} \ o_{[r \geq \rho]} > 0 \\ 0 & \textit{otherwise}. \end{cases}$
 - Precision : proportion of correctly predicted positive cases in all predicted positive cases.
 - Predicted precision for a 1-extensions of itemset-\ell
 - All 1-extensions of itemset- ℓ are considered non-spurious if their predicted precision is greater than a threshold π
 - The smallest pos $\sigma_l^{freq} = \operatorname{argmin}_{\rho} \{\operatorname{precision}_l(\rho) \geq \pi \}$ extensions of l, which satisfies the set minimum precision threshold π , can be round by

$$\sigma_l^{freq}$$

- The predicte $1 \operatorname{precision}_{l}(\sigma_{l}^{freq})$ sing a threshold
 - is given by
 - A suitable selection criterion for a count threshold is to allow only a percentage of falsely accepted associations.
 - If we need for an application all rules with the antecedent I and a single item as the consequent
 - and the maximum number of acceptable spurious rules is 5%,
 - we can find all 1-extension of I and use a minimum precision threshold of π = 0.95

The NB distribution provides a baseline (independence) for frequency distribution of the candidate items.

The aim of developing the model-based frequency constraint is to find as many non-spurious

Association Rules: Summary

Association Rules

- Are probabilistic statements
- About relations among features across elements
- Use a transaction-itemset data model
- The strength (statistical significance) of an association rule is measured using support, confidence, lift etc.

Applications

- Market Basket Analysis
- Any dataset where features take values: 0/1
- Can work in any dataset where features can be represented as taking only two use values: 0/1
 - Preprocessing: Discretization, Feature selection

Apriori

- Input : Dataset, minsupport
- Output: association rules
- Exploits downward closure to optimize search
- Lower Support → Higher computational complexity
- Confidence, Lift as post-processing filters

NBminer

- Find rare patterns (low support, high confidence)
- NB distribution provides a baseline (independence) for frequency distribution of the candidate items.
- Find as many non-spurious associations as possible in a data base
- Input: Dataset, precision threshold (1 tolerance for spurious rules)
- Output : association rules

Unsupervised Learning: Summary

- ... algorithms used to draw inferences from datasets consisting of input data without labeled responses.
- ... the task of inferring a function to describe hidden structure from unlabeled data.
 - Distribution / Density
 - Summary statistics
 - Clustering: Find data elements (rows) which are similar.
 - Association Rules: Find features (dimensions) which are correlated
 - Dimensionality Reduction: Find smaller dimensional representations which preserve data's essential structure.

Unsupervised

- Association Rules: Find patterns when we don't know what we are looking for.
 - {Diaper, Beer} → Milk
 - {Milk} → {Diaper, Beer}
 - {Milk, Diaper} → Beer

Supervised

- What if we are only interested in identifying customers who bought Milk?
- Split the customer base into two classes: Customers who bought Milk and who did not.
- Binary classification problem : Given purchases of other customers

