# Basic Electronic Circuits (IEC-103)

Lecture-09

### DC Power Supplies

#### Power Supply

- ☐ All electronic circuits need a power source to work.
- ☐ For electronic circuits made up of transistors and / or ICs, this power source must be a DC voltage of a specific value.
- ☐ A battery is a common DC voltage source for some types of electronic equipment especially portables like cell phones and iPods.
- ☐ Most non-portable equipment uses power supplies that operate from the AC power line but produce one or more DC outputs.

#### Power Supplies

#### **Bench Power Supply**



#### Power Supplies

**Bench Power Supply** 

Switch Mode Power Supply





#### Power Supplies

**Bench Power Supply** 

Switch Mode Power Supply







#### Power Supply System

**AC** Input

Power Supply System

**DC** Output

#### Power Supply System

AC Input

Power Supply

System

DC Output

☐ The power supply system has output which is used to power an electronic circuit.

#### Power Supply System

AC Input

Power Supply
System

DC Output

- ☐ The power supply system has output which is used to power an electronic circuit.
- $\square$  The input is 230 V 50 Hz mains supply.

#### Power Supply Characteristics

- ☐ The input is the 230 V 50 Hz AC power line.
- ☐ The power supply converts the AC into DC and provides one or more DC output voltages.
- Common voltages are 48, 24, 15, 12, 9, 5, 3.3, 2.5, 1.8, 1.5, 1.2 and 1 V.
- ☐ A good example of a modern power supply is the one inside a PC that furnishes 12, 5, 3.3 and 1.2 V.



#### Power Supply Characteristics



Note: In spite of variations in the load or variations in the input voltage, the output voltage should be maintained constant.

#### Power Supply Characteristics

VI characteristics of an ideal regulated power supply















■ Voltage Transformation

- Voltage Transformation
  - ☐ Step down Transformer

- Voltage Transformation
  - ☐ Step down Transformer
- □ Rectification

- Voltage Transformation
  - ☐ Step down Transformer
- □ Rectification
  - ☐ Half Wave Rectifier
  - ☐ Full Wave Rectifier (Centre Tap)
  - ☐ Full Wave Bridge Rectifier

- Voltage Transformation
  - ☐ Step down Transformer
- □ Rectification
  - ☐ Half Wave Rectifier
  - ☐ Full Wave Rectifier (Centre Tap)
  - ☐ Full Wave Bridge Rectifier
- ☐ Filtering

- Voltage Transformation
  - ☐ Step down Transformer
- □ Rectification
  - ☐ Half Wave Rectifier
  - ☐ Full Wave Rectifier (Centre Tap)
  - ☐ Full Wave Bridge Rectifier
- ☐ Filtering
  - □ Capacitor Filter

- Voltage Transformation
  - ☐ Step down Transformer
- □ Rectification
  - ☐ Half Wave Rectifier
  - ☐ Full Wave Rectifier (Centre Tap)
  - ☐ Full Wave Bridge Rectifier
- ☐ Filtering
  - □ Capacitor Filter
- ☐ Regulation

- Voltage Transformation
  - ☐ Step down Transformer
- □ Rectification
  - ☐ Half Wave Rectifier
  - ☐ Full Wave Rectifier (Centre Tap)
  - ☐ Full Wave Bridge Rectifier
- ☐ Filtering
  - Capacitor Filter
- □ Regulation
  - □ Zener Regulator



















### Output Waveform after each Stage



□ Ripple Factor: The ratio of rms value of AC to DC component of a signal.

□ Ripple Factor: The ratio of rms value of AC to DC component of a signal.

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{{V_{rms}}^2 - {V_{dc}}^2}}{V_{dc}}$$

□ Ripple Factor: The ratio of rms value of AC to DC component of a signal.

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{{V_{rms}}^2 - {V_{dc}}^2}}{V_{dc}}$$

■ Load Regulation: Is the capability to maintain a constant voltage (or current) level on the output channel of a power supply despite changes in the load.

□ Ripple Factor: The ratio of rms value of AC to DC component of a signal.

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}}$$

□ Load Regulation: Is the capability to maintain a constant voltage (or current) level on the output channel of a power supply despite changes in the load.

$$\% LR = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$$

☐ Transformer is an AC device which can step up or step down AC voltages.

- ☐ Transformer is an AC device which can step up or step down AC voltages.
- ☐ Secondly transformer isolates the rectifier circuit from power line and thus reduces the risk of electric shock.

- ☐ Transformer is an AC device which can step up or step down AC voltages.
- ☐ Secondly transformer isolates the rectifier circuit from power line and thus reduces the risk of electric shock.



**Without Centre Tap** 



**With Centre Tap** 





$$\frac{V_2}{V_1} = \frac{N_2}{N_1}$$

The rectifier converts the AC sinusoidal signal into a pulsating DC wave.

- ☐ The rectifier converts the AC sinusoidal signal into a pulsating DC wave.
- ☐ There are several forms of rectifiers use but all of them use diodes.

- ☐ The rectifier converts the AC sinusoidal signal into a pulsating DC wave.
- ☐ There are several forms of rectifiers use but all of them use diodes.

- ☐ Can be classified into two types
  - Half wave rectifiers
  - Full wave rectifiers

# Diode Equivalent Circuits

| S.No. | Type              | Model                                         | Characteristic                                                                |
|-------|-------------------|-----------------------------------------------|-------------------------------------------------------------------------------|
| 1.    | Approximate model | + V <sub>0</sub> r <sub>f</sub> - IDEAL DIODE | $ \begin{array}{c c}  & I_F \\ \hline  & / \\ \hline  & 0 & V_0 \end{array} $ |
| 2.    | Simplified model  | + V <sub>0</sub> - IDEAL DIODE                | $ \begin{array}{c c}  & I_F \\ \hline  & V_0 \\ \hline  & V_F \end{array} $   |
| 3.    | Ideal Model       | †                                             | $V_F$                                                                         |









□ Ripple Factor

#### □ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{1}{2}\sqrt{\pi^2 - 4} = 1.21$$

□ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{1}{2}\sqrt{\pi^2 - 4} = 1.21$$

☐ The ripple content is high, so an elaborate filter is required to produce steady current.

□ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{1}{2}\sqrt{\pi^2 - 4} = 1.21$$

- ☐ The ripple content is high, so an elaborate filter is required to produce steady current.
- ☐ It delivers power only half the time, therefore output is low.

### Full Wave Rectifiers

- ☐ Full Wave Rectifiers
  - Centre-Tap Full Wave Rectifier



### Full Wave Rectifiers

- ☐ Full Wave Rectifiers
  - Centre-Tap Full Wave Rectifier
  - Full Wave Bridge Rectifier









□ Ripple Factor

#### □ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

□ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

☐ Transformer with centre-tap is needed.

□ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

- ☐ Transformer with centre-tap is needed.
- $\square$  The diodes must have high PIV (2 $V_{\rm m}$ ).

□ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

- ☐ Transformer with centre-tap is needed.
- $\square$  The diodes must have high PIV (2 $V_{\rm m}$ ).
- ☐ The DC output is small because each diode utilizes only one half of the transformer's secondary voltage



$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

□ Ripple Factor

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

Need for centre tapped transformer is eliminated

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

- Need for centre tapped transformer is eliminated
- ☐ The output is twice that of centre tap circuit for same secondary voltage.

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

- Need for centre tapped transformer is eliminated
- ☐ The output is twice that of centre tap circuit for same secondary voltage.
- ☐ The PIV is half that of centre tap circuit (for same DC output).

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^2 - V_{dc}^2}}{V_{dc}} = \frac{\sqrt{\pi^2 - 8}}{2\sqrt{2}} = 0.48$$

- Need for centre tapped transformer is eliminated
- ☐ The output is twice that of centre tap circuit for same secondary voltage.
- ☐ The PIV is half that of centre tap circuit (for same DC output).
- ☐ It requires 4 diodes.

☐ The rectifier produces a pulsating DC with high ripple content.

- The rectifier produces a pulsating DC with high ripple content.
- ☐ There filter is used to remove pulsations and create almost a smooth DC output across the load.

- The rectifier produces a pulsating DC with high ripple content.
- ☐ There filter is used to remove pulsations and create almost a smooth DC output across the load.
- ☐ The most common filter is a large capacitor

- The rectifier produces a pulsating DC with high ripple content.
- ☐ There filter is used to remove pulsations and create almost a smooth DC output across the load.
- ☐ The most common filter is a large capacitor







☐ Ripple Factor (Full Wave Rectifier)

☐ Ripple Factor (Full Wave Rectifier)

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^{2} - V_{dc}^{2}}}{V_{dc}} = \frac{1}{2\sqrt{3}fRC}$$

☐ Ripple Factor (Full Wave Rectifier)

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^{2} - V_{dc}^{2}}}{V_{dc}} = \frac{1}{2\sqrt{3}fRC}$$

☐ Larger the value of capacitor, lesser will be the ripple.

☐ Ripple Factor (Full Wave Rectifier)

$$\gamma = \frac{V_{ac}}{V_{dc}} = \frac{\sqrt{V_{rms}^{2} - V_{dc}^{2}}}{V_{dc}} = \frac{1}{2\sqrt{3}fRC}$$

- ☐ Larger the value of capacitor, lesser will be the ripple.
- ☐ If the load is connected across the filter, the power supply is termed as unregulated power supply.