P292 13

- a) $0+0+0+0+0+1+1+1+1+1+1 \equiv 0 \pmod{2}$ This string is correct.
- b) $1+0+1+0+1+0+1+0+1 \equiv 0 \pmod{2}$ This string is correct.
- c) $1+1+1+1+1+1+0+0+0+0+0 \equiv 0 \pmod{2}$ This string is correct.
- d) $1+0+1+1+1+1+0+1+1+1+1 \equiv 1 \pmod{2}$ This string has an error.

P304 11

From the function we can know that c-13 \equiv 15p (**mod** 26). From Euclidean algorithm we can have 1+4*26=7*15, so the inverse of 15 modulo 26 is 7.

So we have $p \equiv 7(c-13) \equiv 7c+13 \pmod{26}$. The decryption function is $p \equiv 7c+13 \pmod{26}$.

P305 27

From Euclidean algorithm we can know that 1+5*2436=937*13. The inverse of e=13 modulo 42.58 is 937.

Then we have 667^{937} **mod** 43.59 = 1808, 1947^{937} **mod** 43.59 = 1121 and 671^{937} **mod** 43.59 = 0417.

It's clearly that 1808 1121 0417 means SILVER.

Then the plaintext is SILVER.

P330 13

Let
$$P(n)$$
 denote $1^2 - 2^2 + \dots + (-1)^{n-1}n^2 = (-1)^{n-1} \frac{n(n+1)}{2}$.

Basic step:

When n=1, $1^2 = (-1)^0 \frac{1(1+1)}{2} = 1$ and P(1) is true.

Inductive step:

For any integer k>1, let's assume that P(k) is true.

Then we have:

$$1^{2} - 2^{2} + \dots + (-1)^{k} (k+1)^{2}$$

$$= (-1)^{k-1} \frac{k(k+1)}{2} + (-1)^{k} \frac{(k+1)^{2}}{2}$$

$$= (-1)^{k} (k+1)(k+1 - \frac{k}{2})$$

$$= (-1)^{k} \frac{(k+1)(k+2)}{2}$$

So P(k+1) is true. This completes the inductive step.

$$1^2 - 2^2 + \dots + (-1)^{n-1}n^2 = (-1)^{n-1}\frac{n(n+1)}{2}$$
 is true.

Let P(n) denote $1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1)$.

Basic step:

When $n=1, 1 > 2(\sqrt{2} - 1)$. So P(1) is true.

Inductive step:

For any integer k>1, assume that P(k) holds. Then $1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>2\big(\sqrt{k+1}-1\big)+\frac{1}{\sqrt{k+1}}$. To prove P(k+1) is true, we need to prove that $2\sqrt{k+1}+\frac{1}{\sqrt{k+1}}>2\sqrt{k+2}$, which is equivalent to $\frac{1}{\sqrt{k+1}}>2\sqrt{k+2}-2\sqrt{k+1}$. We can easily know that $2\sqrt{k+2}-2\sqrt{k+1}=\frac{2}{\sqrt{k+2}+\sqrt{k+1}}<\frac{2}{2\sqrt{k+1}}=\frac{1}{\sqrt{k+1}}$. So P(k+1) is true.

This completes the inductive step.

So for every positive integer n, $1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1}-1)$ is true.