- 1. $p_0 \in \mathbb{Z}$, 对任意的 $n \in \mathbb{N}^+$, $p_n \in \mathbb{N}$ 且 $0 \leqslant p_n \leqslant 9$, 证明: 数列 $\left\{\sum_{k=0}^n \frac{p_k}{10^k}\right\}_{n=1}^{+\infty}$ 收敛。 对任意的 $n \in \mathbb{N}^+$, $\sum_{k=0}^{n+1} \frac{p_k}{10^k} \sum_{k=0}^n \frac{p_k}{10^k} = \frac{p_{n+1}}{10^{n+1}} \geqslant 0$, 所以数列 $\left\{\sum_{k=0}^n \frac{p_k}{10^k}\right\}_{n=1}^{+\infty}$ 单调上升。而对任意的 $n \in \mathbb{N}^+$, $\sum_{k=0}^n \frac{p_k}{10^k} < p_0 + 1$, 所以数列 $\left\{\sum_{k=0}^n \frac{p_k}{10^k}\right\}_{n=1}^{+\infty}$ 有上界,所以数列 $\left\{\sum_{k=0}^n \frac{p_k}{10^k}\right\}_{n=1}^{+\infty}$ 收敛。
- 2. 证明:对任意的实数 $x \ge 0$,都存在唯一的一个数列 $\{p_n\}_{n=0}^{+\infty}$ 满足
 - (a) $p_0 \in \mathbb{N}$;
 - (b) 对任意的 $n \in \mathbb{N}^+$, $p_n \in \mathbb{N} \perp 0 \leq p_n \leq 9$;
 - (c) 对任意的 N>0, 存在整数 n > N 使得 $p_n \neq 9$;

(d)
$$x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{p_k}{10^k}$$

令 $p_0=\max\{i\in\mathbb{N}:i\leqslant x\},$ 对任意的 $n\in\mathbb{N}^+$,令 $p_n=\max\left\{i\in\mathbb{N}:i\leqslant 10^n\left(x-\sum\limits_{k=0}^{n-1}\frac{p_k}{10^k}\right)\right\}$,则数列 $\{p_n\}_{n=0}^{+\infty}$ 满足

- (a) $p_0 \in \mathbb{N}$;
- (b) 对任意的 $n \in \mathbb{N}^+$, $p_n \in \mathbb{N}$ 且 $0 \leq p_n \leq 9$;
- (c) 对任意的 N>0, 存在整数 n>N 使得 $p_n\neq 9$;

(d)
$$x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{p_k}{10^k}$$

如果任意的数列 $\{p_n\}_{n=0}^{+\infty}$ 若满足

- (a) $p_0 \in \mathbb{N}$;
- (b) 对任意的 $n \in \mathbb{N}^+$, $p_n \in \mathbb{N}$ 且 $0 \leqslant p_n \leqslant 9$;
- (c) 对任意的 N>0, 存在整数 n>N 使得 $p_n\neq 9$;

(d)
$$x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{p_k}{10^k}$$
.

因为数列 $\left\{\sum_{k=0}^n \frac{p_k}{10^k}\right\}_{n=0}^{+\infty}$ 单调上升收敛到 x , 所以 $x\geqslant p_0$; 因为存在整数 N>0 使

得 $p_N \neq 9$,又因为 $0 \leqslant p_N \leqslant 9$,则 $0 \leqslant p_N < 9$,所以

$$x - p_0 = \lim_{n \to +\infty} \sum_{k=1}^n \frac{p_k}{10^k}$$

$$= \sum_{k=1}^N \frac{p_k}{10^k} + \lim_{n \to +\infty} \sum_{k=N+1}^n \frac{p_k}{10^k}$$

$$< \sum_{k=1}^N \frac{9}{10^k} + \lim_{n \to +\infty} \sum_{k=N+1}^n \frac{9}{10^k}$$

$$= 1$$

所以 $x-1 < p_0 \leqslant x$.

对任意的 $n\in\mathbb{N}$,当 n>1 时, $x\geqslant\sum_{k=0}^n\frac{p_k}{10^k}$ 。则存在整数 n'>n 使得 $p_{n'}\neq 9$,又 因为 $0\leqslant p_{n'}\leqslant 9$ 所以 $0\leqslant p_{n'}< 9$,所以

$$10^{n} \left(x - \sum_{k=0}^{n} \frac{p_{k}}{10^{k}} \right) = 10^{n} \lim_{m \to +\infty} \sum_{k=n+1}^{m} \frac{p_{k}}{10^{k}}$$

$$= 10^{n} \left(\sum_{k=n+1}^{n'} \frac{p_{k}}{10^{k}} + \lim_{m \to +\infty} \sum_{k=n'+1}^{m} \frac{p_{k}}{10^{k}} \right)$$

$$< 10^{n} \left(\sum_{k=n+1}^{n'} \frac{9}{10^{k}} + \lim_{m \to +\infty} \sum_{k=n'+1}^{m} \frac{9}{10^{k}} \right)$$

$$= 1$$

所以
$$10^n \left(x - \sum_{k=0}^{n-1} \frac{p_k}{10^k} \right) - 1 < p_n \leqslant 10^n \left(x - \sum_{k=0}^{n-1} \frac{p_k}{10^k} \right).$$

所以,对任意的数列 $\{p_n\}_{n=0}^{+\infty}$ 和 $\{p_n'\}_{n=0}^{+\infty}$,如果 $\{p_n\}_{n=0}^{+\infty}$ 满足

- (a) $p_0 \in \mathbb{N}$;
- (b) 对任意的 $n \in \mathbb{N}^+$, $p_n \in \mathbb{N}$ 且 $0 \leq p_n \leq 9$;
- (c) 对任意的 N>0, 存在整数 n>N 使得 $p_n\neq 9$;

(d)
$$x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{p_k}{10^k}$$
.

数列 $\{p'_n\}_{n=0}^{+\infty}$ 也满足

- (a) $p'_0 \in \mathbb{N}$;
- (b) 对任意的 $n \in \mathbb{N}^+$, $p_n' \in \mathbb{N}$ 且 $0 \leqslant p_n' \leqslant 9$;
- (c) 对任意的 N>0, 存在整数 n > N 使得 $p'_n \neq 9$;

(d)
$$x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{p'_k}{10^k}$$
.

则 $x-1 < p_0 \leqslant x$, $x-1 < p_0' \leqslant x$, 且对任意的 $n \in \mathbb{N}^+$, $10^n \left(x - \sum_{k=1}^{n-1} \frac{p_k}{10^k} \right) - 1 < p_n \leqslant 10^n \left(x - \sum_{k=1}^{n-1} \frac{p_k}{10^k} \right)$, $10^n \left(x - \sum_{k=1}^{n-1} \frac{p_k'}{10^k} \right) - 1 < p_n' \leqslant 10^n \left(x - \sum_{k=1}^{n-1} \frac{p_k'}{10^k} \right)$, 再结合对任意的 $n \in \mathbb{N}, p_n \in \mathbb{N}$ 及 $p_n' \in \mathbb{N}$,由数学归纳法 可得 对任意的 $n \in \mathbb{N}$, $p_n = p_n'$.