Cours 6

Observatie. The \mathbb{R} def. \mathbb{R} $\mathbb{U}\{\pm \infty\}$ se introduce distanța $\mathbb{R}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\mathbb{A}(x,y) = |\mathbb{P}(x) - \mathbb{P}(y)|$, unde \mathbb{P} este aplicația bijectivă $\mathbb{P}: \mathbb{R} \to \mathbb{I} - 1, 1 \mathbb{I} \subset \mathbb{R}$, $\mathbb{P}(x) = \begin{cases} -1 & \text{; dacă } x = -\infty \\ \frac{x}{1+|x|} & \text{; dacă } x \in \mathbb{R} \\ 1 & \text{; dacă } x = +\infty \end{cases}$

Buchea (P, d) este spațiu metric și perechea (P, Ta) este spațiu topologic.

Definitie. Fie (X, \overline{c}) un spotin topologic. Spunem cà (X, \overline{c}) este spatin topologic Hausdoff (san separat) doca $\forall x, y \in X, x \neq y, \exists V \in V_X, \exists W \in V_y$ a. \overline{c} . $\forall \cap W = \emptyset$.

Propozitie. Fie (X, d) un spatiu metric. Atanci (X, Ed) este spatiu topologic Hausdorff. Limite de functii

Definitie. Fie (X, \mathcal{T}_1) , i (Y, \mathcal{T}_2) două spații topologice, $A \subset X$, $X_0 \in A'$, $f: A \to Y$ și $l \in Y$. Spunem că f are limita l în X_0 dacă $+ W \in V_2$, $l \in Y$, $l \in Y_2$, $l \in Y_3$, $l \in Y_4$, $l \in Y_5$, $l \in Y_5$, $l \in Y_5$, $l \in Y_6$, l

Observatie. În contextul definiției de mai sus, dacă (Y, \mathbb{Z}_2) este spațiu topologic Hausdorff, atunci $l \in Y$ cu productatea din definiție este unic determinat și vom scrie $\lim_{x\to\infty} f(x) = l$.

Propozitie. Fie (X, d1) ji (Y, d2) doua spații metrice, ACX, a GA, f: A-> Y ji ley. Sunt echivalente:

a) $\lim_{x\to a} f(x) = l$.

b) $+ (\pm m)_m = A \setminus \{a\}$ a.c. $\lim_{n \to \infty} \pm m = a$, avem $\lim_{n \to \infty} f(\pm m) = l$.

Propozitie. Fie $f: A \subset \mathbb{R} \to \mathbb{R}$, $\chi_0 \in A'$ (χ_0 poote $f: \Lambda: +\infty$) $f: A \subset \mathbb{R}$.

- 1) Resupunem că $\chi_0 \in \mathbb{R}$ și $l \in \mathbb{R}$. Attenci $\lim_{x \to \chi_0} f(x) = l$ dacă și numai dacă $\forall \varepsilon > 0$, $\exists \mathcal{S}_{\varepsilon} > 0$ a.r. $\forall \chi \in \mathcal{A}$ su projectatea că $0 < |\chi \chi_0| < \mathcal{S}_{\varepsilon}$, avem $|f(x) l| < \varepsilon$.
- 2) Therefore cà $x_0 \in \mathbb{R}$ $\hat{x}_1 = \infty$. Attenci lim $f(x) = \infty$ dacă \hat{x}_1 numai dacă $+ \varepsilon \in \mathbb{R}$, $+ \int_{\varepsilon} > 0$ $\alpha.\lambda. + \chi \in A$ en proprietatea că $0 < |\chi \chi_0| < \int_{\varepsilon}$, aven $f(\chi) > \varepsilon$.
- 3) These perment cà $\Re \times \ker \Re = \infty$. Attenci $\lim_{x \to x_0} \Re = \infty$ docă și numai dacă $\Re \times \ker \Re = \Re = \Re \times \Re = \Re \times$
 - 4) Diesupunem cà $x_0 = \infty$ sì $l = \infty$. Attuci lim $f(x) = \infty$ dacă și numai dacă $\forall \epsilon \in \mathbb{R}$, $\exists f_{\epsilon} \in \mathbb{R}$ a.r. $\forall x \in A$ en proprietatea că $x > f_{\epsilon}$, avem $f(x) > \epsilon$.
 - 5) Dusupunem en $x_0 = \infty$ si $l = -\infty$. Attanci lim $f(x) = -\infty$

dacă și numai dacă XEER, 7 JEER a.R. + xet en propriétatea ca x> 5E, aven f(x)<E. 6) Dusyunem ca $x_0 = -\infty$ si $l = +\infty$. Attunci lim $f(x) = x \rightarrow -\infty$ =+ m dacă și numai dacă + EER, FER a.T. + XEA en propriétatea cà X<FE, aven f(x)>E. 7) Dusymen _cà x=- » si l=- ». Ittunci lin f(x)= =-∞ dacă și numai dacă + EER, ∃ SEER a. î. +xeA en propriétatea cà x<5E, aven f(x)<E. 8) Rusupunem ca xo=+po si lER. Httuna lim f(x)= =l dacă și mmai dacă + €>0, ∃ JEER a. 2. + x EA en proprietatea eà 2> JE, aven /f(x)-l/< E. 9) Dusupunem cà x=-> si leR. Attunci lim f(x)=l dacă ji numai dacă + E>O, 7 de ER a.î. + XEA en propriétatea cà X<3E, aven [f(x)-l/<E. <u>Limite remarcabile.</u> 1) lim <u>sinx</u> = 1; 2) lim tgx = 1; $x \to 0$ x 3) $\lim_{x\to 0} \frac{\text{ohe sin } x}{x} = 1$; 4) $\lim_{x\to 0} \frac{\text{arctg } x}{x} = 1$;

5)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = 2$$
; 6) $\lim_{x\to \infty} (1+\frac{1}{x})^{x} = 2$;

7)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
; 8) $\lim_{x\to 0} \frac{a^{x}-1}{x} = \ln a$, unde $a \in$

$$\frac{\epsilon}{(0;+\infty)}; 9) \lim_{x\to 0} \frac{(1+x)^{h}-1}{x} = 1, \text{ unde } h \in \mathbb{R}.$$

Propozitie. Fie (X, \overline{c}) un spațiu topologic, $A \subset X$, $X \circ \in A'$, $f: A \to \overline{\mathbb{R}}$, $g: A \to \overline{\mathbb{R}}$, $l_1 \in \overline{\mathbb{R}}$ și $l_2 \in \overline{\mathbb{R}}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \overline{\mathbb{R}}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. \overline{x} . $l_1 \in \mathbb{R}$ și $l_2 \in \mathbb{R}$ a. $l_1 \in \mathbb{R}$ si $l_2 \in \mathbb{R}$ si l

1)
$$l_1, l_2 \in \mathbb{R} \Rightarrow \lim_{X \to X_0} (f+g)(X) = l_1 + l_2$$
.

2)
$$l_1, l_2 \in \mathbb{R} \Rightarrow \lim_{x \to \infty} (f_g)(x) = l_1 l_2$$
.

4)
$$l_1 = +\infty$$
 si $l_2 > -\infty \Rightarrow lim_{X \to X_0} (f+g)(X) = +\infty$.

5)
$$l_1 = -\infty$$
 is $l_2 < +\infty \Rightarrow \lim_{X \to X_0} (f+g)(X) = -\infty$.

6)
$$l_1 = + \infty$$
 is $l_2 > 0 \Rightarrow \lim_{x \to x_0} (f \cdot g)(x) = + \infty$.

7)
$$l_1 = +\infty$$
 in $l_2 < 0 \Rightarrow \lim_{x \to \infty} (f \cdot g)(x) = -\infty$.

8)
$$\lim_{x \to x_0} (-f(x)) = -\lim_{x \to x_0} f(x) = -l_1$$

Function continue -6-

Definiție: Fie (X, T₄) și (Y, T₂) două spații topologice, x_o∈ X si f: X→Y. Yunem cà f'este continuà în punctul & dacă pentru orice [W∈ Vf(x), aven f (W) ∈ Vx.

Definitie. Fie (X, G) și (Y, G2) două spații topologice si $f: X \to Y$, Daca f este continuà în ficcare punct din X, vom spiene simplu, ca f este continuà.

Ropozitie. Fie (X, 6) un spațiu topologic, \$+ACX și G={DNA| DE 6}. Atunci (A, GA) este spatin topologic.

Inspozitie. Fie (X, 61) si(Y, 62) dona spații topologice, $A \subset X$, $X_0 \in A$ si $f: A \to Y$. Attanci f este continuà în X_0 dacă si numai dacă pentru sice We Yer, existà Ve Ve astfel most

Lf(VnA) C W.

Observatie. Den definiție rezultă că dacă (X, Z) este protin topologic, atunci aplicația identică a lui X (i.e. id X: X -> X , id X (X) = X + X EX) este continuă. De aremenea dacă (X, Z1) și (Y, Z2) runt spații topologice, atunci pentru soice y EY, functia constantă de la X la Y, egală în sice X EX cu y este continuă.

Propozitie. Fie (X, \mathcal{T}_1) , (Y, \mathcal{T}_2) și (Z, \mathcal{T}_3) thei spatii topologice și $f: X \to Y$, $g: Y \to Z$ două funcții continue în $x_0 \in X$ și, respectiv, în $y = f(x_0) \in Y$. Hunci funcția $g \circ f: X \to Z$ este continuă în x_0 .

Propozitie. Fie (X, 61) si (Y, 62) dona spatii topologice, ACX, Xo EA si f: X > Y.

1) Daca f este continua în x. atunci restricția

-8-

fla: A > Y este continuà în xo.

2) Daca AC Vx, si f/A: A >> Y este continuà În xo, atunci f este continuà în xo.

Observatii. 1) Fie (X, T) un spațiu topologic, XoEX și f: X > R. Atunii f este continuă în Xo dacă si numai dacă pentru vice €>0, există V€V xo en proprietatea cà + xEVE, aven [f(x)-f(x6)]<E. 2) Fie (X, d1) și (Y, d2) două spații metrice, xo∈X și f:X→Y. Atunci f este continuă în x_0 dacă și mumai dacă pentru sice E>0, există $f_E>0$ cu proprietatea că $\pm x_0 \times x_0 \times x_0$ încât $d_1(x_0,x_0) < f_E$, aven $d_2(f(x),f(x_0)) < E$. $(i.l. + £ \in B(x_0, J_E), aven f(x) \in B(f(x_0), E)).$ 3) Fie ACR, xoEA is f:A->R. Attunci f este continuà în x_0 dacă și numai dacă pentru vice $\varepsilon>0$, există $f_{\varepsilon}>0$ cu proprietatea că + $x\in A$ astfel încât $|x-x_0|< f_{\varepsilon}$, aven |f(x)-

 $-f(x_0)$ < \leq .

4) Fie ACR WERKER a.r. + DEA MI f: A > R. Attenci f este continua in + » dacă și numai dacă pentru vice E>0, existà Fe>0 cu proprietatea ca + x + A, x > JE, swem | f(x) - f(x) < E.

5) Fle ACR St. RUCTO ar. + DEA Sifit $\rightarrow \mathbb{R}$, $f(+\infty) = +\infty$. Attunci f este continuà în $+\infty$ dacă și numai dacă pentru sice E>0, există $f_{E}>0$ su proprietatea că $+\infty$ E, $+\infty$

even $f(x) > \epsilon$.

Propozitie. Fie (X, 61) și (Y, 62) două spații to-pologice și f: X->>. Sunt echivalente:

1) of continuà.

2) + G ∈ G2, aven f (G) ∈ G1.

3) + FCY, Findrisa (i.e. CFE 62), aven f (F) Inchisa (i.e. Cf (F) & Z1).

Ropozitie. Fie (X, 61) și (Y, 62) două spații to-pologice, ACX, A compactă și f: A>Y, f continua. Htunci f(A) compactà.

Propozitie. Fie (X, d1) și (Y, d2) două mații metrice, $x \in X$ si $f: X \to Y$. Attanci f extr continua în & dacă și numai dacă pentru olice $\sin (x_n)_n \subset X$ a.t. $\lim_{n\to\infty} x_n \stackrel{d_1}{=} x$, aven $\lim_{n\to\infty}f(x_n)\stackrel{d_2}{=}f(x).$

Inspositie. Fie (X, T) un spațiu topologic, ACX, XotA, f:A) Rig;A)R. Daca & si g sunt continue in Xo, atunci functible of + g, f.g si If sunt continue in xo. Daca f'este continuà în to si f(x) +0 + XEA atunci funcția 1/4 este continuă în Xo.

Testema. Fie (X, \mathcal{T}_1) si (Y, \mathcal{T}_2) doua spații topologice, $A \subset X$, $X_0 \in A \cap A'$ și $f: A \rightarrow Y$. Sunt echivalente:

- 1) f_continuă în Xo.
- 2) lim f(x)= f(x).

Tedemā (Tedema privind mārginisea functiiler continue). Fie (X, \mathcal{T}) un spotiu topologic, $K \subset X$ o multime
compată $f: K \to \mathbb{R}$ o funcție continuă. Atunci există $f: K \to \mathbb{R}$ o funcție continuă. Atunci există $f: K \to \mathbb{R}$ outful încât $f(f: K) = \max\{f(f: K) \mid f: K\}$ $f: K \to \mathbb{R}$ outful încât $f: K \to \mathbb{R$