

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin ósmoklasisty	
Przedmiot:	Matematyka	
Formy arkusza:	OMAP-100-2406 OMAP-200-2406 OMAP-400-2406 OMAP-700-2406 OMAP-C00-2406 OMAU-C00-2406	
Termin egzaminu: Data publikacji dokumentu:	11 czerwca 2024 r. 21 czerwca 2024 r.	

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2024¹	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	III. Liczby całkowite. Uczeń:
1. Wykonywanie nieskomplikowanych	2) porównuje liczby całkowite.
obliczeń w pamięci lub w działaniach	
trudniejszych pisemnie oraz	
wykorzystywanie tych umiejętności	
w sytuacjach praktycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	V. Działania na ułamkach zwykłych
1. Wykonywanie nieskomplikowanych	i dziesiętnych. Uczeń:
obliczeń w pamięci lub w działaniach	2) dodaje [] ułamki dziesiętne w pamięci
trudniejszych pisemnie oraz	(w przykładach najprostszych) lub pisemnie.
wykorzystywanie tych umiejętności	
w sytuacjach praktycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 15 lipca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu ósmoklasisty przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022 poz. 1591).

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	VII. Potęgi o podstawach wymiernych.
reprezentacji.	Uczeń:
1. Używanie prostych, dobrze znanych	2) mnoży i dzieli potęgi o wykładnikach
obiektów matematycznych,	całkowitych dodatnich.
interpretowanie pojęć matematycznych	IV. Ułamki zwykłe i dziesiętne:
i operowanie obiektami matematycznymi.	12) porównuje ułamki (zwykłe []).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

FΡ

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	IX. Tworzenie wyrażeń algebraicznych
reprezentacji.	z jedną i z wieloma zmiennymi. Uczeń:
1. Używanie prostych, dobrze znanych	4) stosuje oznaczenia literowe nieznanych
obiektów matematycznych, interpretowanie	wielkości liczbowych i zapisuje zależności
pojęć matematycznych i operowanie	przedstawione w zadaniach w postaci
obiektami matematycznymi.	wyrażeń algebraicznych jednej lub kilku zmiennych.
	X. Przekształcanie wyrażeń algebraicznych.
	Sumy algebraiczne i działania na nich.
	Uczeń:
	2) dodaje i odejmuje sumy algebraiczne
	i dokonuje przy tym redukcji wyrazów
	podobnych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

BD

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	III. Liczby całkowite. Uczeń:
1. Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich	interpretuje liczby całkowite na osi liczbowej;
przetwarzanie.	wykonuje proste rachunki pamięciowe na liczbach całkowitych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	II. Działania na liczbach naturalnych. Uczeń:
Przeprowadzanie prostego	7) rozpoznaje liczby podzielne przez 2, 3, 4,
rozumowania, podawanie argumentów	5, 9, 10, 100.
uzasadniających poprawność	
rozumowania, rozróżnianie dowodu od	
przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

B2

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	XVI. Własności figur geometrycznych na
reprezentacji.	płaszczyźnie. Uczeń:
1. Używanie prostych, dobrze znanych	3) stosuje twierdzenie o sumie kątów
obiektów matematycznych,	trójkąta.
interpretowanie pojęć matematycznych	XVII. Wielokąty. Uczeń:
i operowanie obiektami matematycznymi.	7) oblicza miary kątów, stosując przy tym poznane własności kątów [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

PP

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	XI. Obliczenia procentowe. Uczeń:
1. Odczytywanie i interpretowanie danych	2) oblicza liczbę a równą p procent danej
przedstawionych w różnej formie oraz ich	liczby b;
przetwarzanie.	3) oblicza, jaki procent danej liczby <i>b</i> stanowi
	liczba a.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

AC

Zadanie 9. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi.	XXI. Odczytywanie danych i elementy statystyki opisowej. Uczeń: 2) oblicza średnią arytmetyczną kilku liczb.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

PP

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	VIII. Pierwiastki. Uczeń:
1. Wykonywanie nieskomplikowanych	1) oblicza wartości pierwiastków
obliczeń w pamięci lub w działaniach	kwadratowych i sześciennych z liczb, które
trudniejszych pisemnie oraz	są odpowiednio kwadratami lub sześcianami
wykorzystywanie tych umiejętności	liczb wymiernych.
w sytuacjach praktycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie

AC

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	XVIII. Oś liczbowa. Układ współrzędnych na	
2. Interpretowanie i tworzenie tekstów	płaszczyźnie. Uczeń:	
o charakterze matematycznym oraz	1) znajduje współrzędne danych (na rysunku)	
graficzne przedstawianie danych.	punktów kratowych w układzie	
	współrzędnych na płaszczyźnie.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

P

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	VI. Obliczenia praktyczne. Uczeń:	
reprezentacji.	4) zamienia i prawidłowo stosuje jednostki	
2. Dobieranie modelu matematycznego do	długości: [] centymetr, [] metr [];	
prostej sytuacji oraz budowanie go	6) oblicza rzeczywistą długość odcinka, gdy	
w różnych kontekstach, także w kontekście	dana jest jego długość w skali [].	
praktycznym.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	XVII. Wielokąty. Uczeń:	
3. Stosowanie strategii wynikającej z treści	4) oblicza obwód wielokąta o danych	
zadania, tworzenie strategii rozwiązania	długościach boków.	
problemu, również w rozwiązaniach		
wieloetapowych oraz w takich, które		
wymagają umiejętności łączenia wiedzy		
z różnych działów matematyki.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymagania szczegółowe	
I. Sprawność rachunkowa.	V. Działania na ułamkach zwykłych	
Wykonywanie nieskomplikowanych	i dziesiętnych. Uczeń:	
obliczeń w pamięci lub w działaniach	5) oblicza ułamek danej liczby naturalnej.	
trudniejszych pisemnie oraz	II. Działania na liczbach naturalnych. Uczeń:	
wykorzystywanie tych umiejętności	1) dodaje i odejmuje w pamięci liczby	
w sytuacjach praktycznych.	naturalne dwucyfrowe lub większe [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym.	XIX. Geometria przestrzenna. Uczeń: 1) rozpoznaje graniastosłupy proste, ostrosłupy [] w sytuacjach praktycznych i wskazuje te bryły wśród innych modeli brył.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

ZADANIA OTWARTE

Uwagi ogólne

- Akceptowane są wszystkie odpowiedzi merytorycznie poprawne, spełniające warunki zadania.
- Za rozwiązanie zadania na danym etapie uczeń może otrzymać punkty tylko wtedy, gdy przedstawia poprawne sposoby rozwiązania na wszystkich wcześniejszych etapach.
- Jeżeli na dowolnym etapie rozwiązania zadania uczeń popełnia jeden lub więcej błędów rachunkowych (albo błąd przepisania wartości poprawnie zidentyfikowanej danej albo wartości z wcześniejszych etapów rozwiązania), ale stosuje poprawne sposoby rozwiązania i konsekwentnie doprowadza rozwiązanie zadania do końca, to ocenę rozwiązania obniża się o 1 punkt.
- Jeżeli na pewnym etapie rozwiązania zadania uczeń podaje kilka sprzecznych ze sobą rozwiązań i nie wskazuje, które z nich należy uznać za poprawne, to może uzyskać punkty tylko za wcześniejsze poprawne etapy rozwiązania.
- Jeżeli na pewnym etapie rozwiązania zadania uczeń podaje kilka sprzecznych ze sobą rozwiązań i wskazuje, które z nich należy uznać za poprawne, to zapisów w innych rozwiązaniach nie bierze się pod uwagę w ocenianiu.
- Jeżeli w zadaniach 16., 17., 18. i 19. uczeń podaje tylko poprawny końcowy wynik, to otrzymuje 0 punktów.
- W pracy ucznia uprawnionego do dostosowanych zasad oceniania dopuszcza się:
 - 1. lustrzane zapisywanie cyfr i liter (np. 6–9)
 - 2. gubienie liter, cyfr, nawiasów
 - 3. problemy z zapisywaniem przecinków w liczbach dziesiętnych
 - 4. błędy w zapisie działań pisemnych (dopuszczalne drobne błędy rachunkowe)
 - 5. luki w zapisie obliczeń obliczenia pamięciowe
 - uproszczony zapis równania i przekształcenie go w pamięci; brak opisu niewiadomych
 - 7. niekończenie wyrazów
 - 8. problemy z zapisywaniem jednostek (np. $^{\circ}$ C OC)
 - 9. błędy w przepisywaniu
 - 10. chaotyczny zapis operacji matematycznych
 - 11. mylenie indeksów górnych i dolnych (np. x^2 x_2 , m_2 m^2).
- Uczeń uprawniony do korzystania z kalkulatora może otrzymać punkty za rozwiązanie zadania na danym etapie tylko wtedy, gdy przedstawi poprawne sposoby rozwiązania.
- Jeżeli uczeń uprawniony do korzystania z kalkulatora zapisze poprawny sposób rozwiązania zadania, ale w wyniku końcowym zapisze błędną wartość liczbową, to traktujemy to jako błąd rachunkowy.

Zadanie 16. (0-2)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym.	XXI. Odczytywanie danych i elementy statystyki opisowej. Uczeń: 1) odczytuje i interpretuje dane przedstawione w tekstach, za pomocą [] diagramów słupkowych []. XX. Wprowadzenie do kombinatoryki i rachunku prawdopodobieństwa. Uczeń: 2) [] oblicza prawdopodobieństwa zdarzeń	
	w doświadczeniach losowych.	

Zasady oceniania

2 punkty – pełne rozwiązanie

poprawny sposób obliczenia prawdopodobieństwa, że losowo wybrany zawodnik zdobył ponad 20 punktów, prawidłowe obliczenia *oraz* prawidłowy wynik $\left(\frac{4}{11}\right)$.

1 punkt

- poprawny sposób obliczenia liczby wszystkich zawodników biorących udział w grze Kulki LUB
- zapisanie liczby wszystkich zawodników biorących udział w grze Kulki (11) bez przedstawienia sposobu jej obliczenia, LUB
- poprawny sposób obliczenia liczby zawodników, którzy zdobyli więcej niż 20 punktów w grze Kulki, LUB
- zapisanie liczby zawodników, którzy zdobyli więcej niż 20 punktów w grze *Kulki* (4) bez przedstawienia sposobu jej obliczenia.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

<u>Uwaga</u>

Jeżeli uczeń tylko zapisze, że prawdopodobieństwo jest równe $\frac{4}{11}$, to otrzymuje 2 punkty.

Przykładowe rozwiązanie ocenione na 2 punkty

Obliczymy liczbę wszystkich zawodników biorących udział w grze Kulki:

$$1 + 2 + 4 + 3 + 1 = 11$$

Obliczymy liczbę wszystkich zawodników, którzy zdobyli ponad 20 punktów:

$$3 + 1 = 4$$

Prawdopodobieństwo, że losowo wybrany zawodnik zdobył ponad 20 punktów jest równe:

$$\frac{4}{11}$$

Odpowiedź: Prawdopodobieństwo, że losowo wybrany zawodnik zdobył ponad 20 punktów jest równe $\frac{4}{11}$.

Zadanie 17. (0-3)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	XXII. Zadania tekstowe. Uczeń:	
reprezentacji.	5) do rozwiązywania zadań osadzonych	
2. Dobieranie modelu matematycznego do	w kontekście praktycznym stosuje zdobytą	
prostej sytuacji oraz budowanie go	wiedzę z zakresu arytmetyki i geometrii oraz	
w różnych kontekstach, także w kontekście	nabyte umiejętności rachunkowe, a także	
praktycznym.	własne poprawne metody.	

Zasady oceniania

3 punkty – pełne rozwiązanie

- poprawny sposób obliczenia liczby kubków w sześciu dużych opakowaniach, prawidłowe obliczenia oraz prawidłowy wynik liczbowy (168)
 LUB
- zastosowanie metody prób i błędów sprawdzenie wszystkich warunków zadania dla co najmniej dwóch różnych par liczb określających liczby kubków w małych i dużych opakowaniach, w tym odpowiednio dla liczb 14 i 28 oraz prawidłowe obliczenie liczby kubków w sześciu dużych opakowaniach (168), LUB
- zastosowanie metody prób i błędów sprawdzenie wszystkich warunków zadania tylko dla liczb 14 i 28 oraz prawidłowe obliczenie liczby kubków w sześciu dużych opakowaniach (168).

2 punkty

 zapisanie poprawnego równania z jedną niewiadomą prowadzącego do obliczenia liczby kubków w dużym opakowaniu, np.

$$2d + 3d = 140$$
 lub zapisy równoważne

LUB

 zapisanie poprawnego równania z jedną niewiadomą prowadzącego do obliczenia liczby kubków w małym opakowaniu, np.

$$4m + 6m = 140$$
 lub zapisy równoważne,

LUB

zastosowanie niepełnej metody prób i błędów – sprawdzenie wszystkich warunków
zadania dla co najmniej dwóch różnych par liczb określających liczbę kubków w małych
i dużych opakowaniach, w tym odpowiednio dla liczb 14 i 28 bez obliczenia poprawnej
liczby kubków w sześciu dużych opakowaniach.

1 punkt

 zapisanie dwóch poprawnych zależności między liczbą kubków w małym i dużym opakowaniu, np.

$$d=2m$$
 oraz $2d+6m=140$ albo
$$m=\frac{1}{2}d$$
 oraz $2d+6m=140$ LUB

- zastosowanie niepełnej metody prób i błędów sprawdzenie wszystkich warunków zadania dla co najmniej dwóch różnych par liczb określających liczbę kubków w małych i dużych opakowaniach, innych niż liczby 14 i 28, LUB
- zastosowanie niepełnej metody prób i błędów sprawdzenie wszystkich warunków zadania tylko dla liczb 14 i 28 bez wskazania poprawnej liczby kubków w dużym opakowaniu.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

Przykładowe rozwiązania ocenione na 3 punkty

I sposób

Oznaczymy liczbę kubków w dużym opakowaniu jako d oraz liczbę kubków w małym opakowaniu jako m.

W dużym opakowaniu jest dwa razy więcej kubków niż w małym opakowaniu, zatem:

$$d = 2m$$
, stad $3d = 6m$

W dwóch dużych opakowaniach i sześciu małych jest łącznie 140 kubków, zapiszemy i rozwiążemy równanie:

$$2d + 6m = 140$$

 $2d + 3d = 140$
 $5d = 140$
 $d = 28$

Obliczymy liczbę kubków w sześciu dużych opakowaniach:

$$28 \cdot 6 = 168$$

Odpowiedź: W sześciu dużych opakowaniach jest 168 kubków.

II sposób

W dwóch dużych opakowaniach i sześciu małych znajduje się łącznie 140 kubków:

$$2d + 6m = 140$$

W dużym opakowaniu jest dwa razy więcej kubków niż w małym:

$$d = 2m$$

Zapiszemy równanie i obliczymy liczbę kubków w dużym opakowaniu:

$$4m + 6m = 140$$

$$m = 14$$

$$d = 2 \cdot 14 = 28$$

Obliczymy liczbę kubków w sześciu dużych opakowaniach:

$$6 \cdot 28 = 168$$

Odpowiedź: W sześciu dużych opakowaniach jest 168 kubków.

III sposób

W małym opakowaniu jest dwa razy mniej kubków niż w dużym opakowaniu:

$$m = \frac{1}{2}d$$

Zapiszemy i rozwiążemy równanie:

$$2d + 6m = 140$$

$$2d + 6 \cdot \frac{1}{2}d = 140$$

$$2d + 3d = 140$$

$$5d = 140$$

$$d = 28$$

Obliczymy liczbę kubków w sześciu dużych opakowaniach:

$$28 \cdot 6 = 168$$

Odpowiedź: W sześciu dużych opakowaniach jest 168 kubków.

IV sposób

Metoda prób i błędów

Liczba kubków				
w dużym	20	24	28	32
opakowaniu				
Liczba kubków				
w małym	10	12	14	16
opakowaniu				
Liczba kubków				
w 2 dużych				
i 6 małych	40 + 60 = 100	48 + 72 = 120	56 + 84 = 140	64 + 96 = 160
opakowaniach				
Wniosek	100 < 140	120 < 140	140 = 140	160 > 140
	(za mało)	(za mało)	(dobrze)	(za dużo)

Obliczymy liczbę kubków w sześciu dużych opakowaniach:

$$28 \cdot 6 = 168$$

Odpowiedź: W sześciu dużych opakowaniach jest 168 kubków.

Zadanie 18. (0-2)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	XVII. Wielokąty. Uczeń:	
Odczytywanie i interpretowanie danych	5) stosuje wzory na pole [] prostokąta,	
przedstawionych w różnej formie oraz ich	kwadratu [] przedstawionych na rysunku	
przetwarzanie.	oraz w sytuacjach praktycznych, a także do	
	wyznaczania długości odcinków [].	

Zasady oceniania

2 punkty – pełne rozwiązanie

poprawny sposób obliczenia pola powierzchni wytyczonego kwietnika, prawidłowe obliczenia oraz prawidłowy wynik liczbowy zgodny z zastosowaną jednostką (24 m²).

1 punkt

• poprawny sposób obliczenia długości boków kwietnika, np. zapisanie:

$$9-2\cdot 2,5$$
 oraz $9-2\cdot 1,5$ albo $6,5-2,5$ oraz $7,5-1,5$ LUB

 zapisanie zgodnie z oznaczeniami, że pole kwietnika jest różnicą pola trawnika o wymiarach 9 m × 9 m i pól czterech pozostałych prostokątów, na które można podzielić trawnik, np.

$$P_{\text{kwietnika}} = 9^2 - (P_A + P_{A'} + P_B + P_{B'})$$
.

0 punktów

rozwiązanie błędne albo brak rozwiązania.

<u>Uwaga</u>

Nie ocenia się stosowania jednostki.

Przykładowe rozwiązania ocenione na 2 punkty

I sposób

Oznaczymy na rysunku wymiary trawnika oraz długości ścieżek.

Obliczymy długość krótszego boku kwietnika:

$$9 - 2 \cdot 2,5 = 4 \text{ (m)}$$

Obliczymy długość dłuższego boku kwietnika:

$$9 - 2 \cdot 1.5 = 6 \text{ (m)}$$

Obliczymy pole powierzchni kwietnika:

$$P = 4 \cdot 6 = 24 \text{ (m}^2\text{)}$$

Odpowiedź: Pole powierzchni kwietnika jest równe 24 m².

II sposób

Trawnik w kształcie kwadratu możemy podzielić na pięć prostokątów: A, A', B, B' oraz kwietnik.

Obliczymy długości dłuższych boków prostokątów A i A':

$$9 - 2.5 = 6.5$$

Obliczymy pola prostokątów A i A':

$$P_A = P_{A'} = 6.5 \cdot 1.5 = 9.75 \text{ (m}^2\text{)}$$

Obliczymy długości dłuższych boków prostokątów B i B':

$$9 - 1.5 = 7.5$$

Obliczymy pola prostokatów B i B':

$$P_B = P_{B'} = 7.5 \cdot 2.5 = 18.75 \text{ (m}^2\text{)}$$

Obliczymy pole powierzchni kwietnika:

$$P_{\text{kwietnika}} = P_{\text{trawnika}} - (P_A + P_{A'} + P_B + P_{B'})$$

$$P_{\text{kwietnika}} = 9^2 - (2 \cdot 9,75 + 2 \cdot 18,75)$$

$$P_{\text{kwietnika}} = 81 - (19,5 + 37,5) = 81 - 57 = 24 \text{ (m}^2)$$

Odpowiedź: Pole powierzchni kwietnika jest równe 24 m².

III sposób

Trawnik w kształcie kwadratu ma wymiary $9 \text{ m} \times 9 \text{ m}$. Wierzchołki tego kwadratu oznaczymy jako ABCD. Zaznaczymy punkty E oraz F.

Obliczymy długość odcinka EB:

$$9 - 2.5 = 6.5$$
 (m)

Obliczymy długość odcinka FC:

$$9 - 1.5 = 7.5$$
 (m)

Obliczymy długości boków kwietnika:

$$|EB| - 2.5 = 6.5 - 2.5 = 4$$
 (m)

$$|FC| - 1.5 = 7.5 - 1.5 = 6$$
 (m)

Obliczymy pole powierzchni kwietnika:

$$P_{\text{kwietnika}} = 4 \cdot 6 = 24 \text{ (m}^2\text{)}$$

Odpowiedź: Pole powierzchni kwietnika jest równe 24 m².

Zadanie 19. (0-3)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	XIX. Geometria przestrzenna. Uczeń:	
3. Stosowanie strategii wynikającej z treści	5) oblicza objętości […] graniastosłupów	
zadania, tworzenie strategii rozwiązania	prostych i prawidłowych.	
problemu, również w rozwiązaniach		
wieloetapowych oraz w takich, które		
wymagają umiejętności łączenia wiedzy		
z różnych działów matematyki.		

Zasady oceniania

3 punkty – pełne rozwiązanie

poprawny sposób obliczenia objętości graniastosłupa, prawidłowe obliczenia *oraz* prawidłowy wynik liczbowy zgodny z zastosowaną jednostką objętości (63 cm³).

2 punkty

 poprawny sposób obliczenia długości krawędzi podstawy oraz długości krawędzi bocznej graniastosłupa oraz poprawny sposób obliczenia objętości graniastosłupa (zgodnie z przyjętymi oznaczeniami lub otrzymanymi wartościami liczbowymi), np. zapisanie:

$$a = 30 - 27$$
 oraz $b = (27 - 2 \cdot (30 - 27)) : 3$ oraz $V = a^2 \cdot b$

lub zapisy równoważne

LUB

ustalenie (np. zapisanie na rysunku) prawidłowych długości krawędzi podstawy *oraz*długości krawędzi bocznej graniastosłupa (3 cm i 7 cm) *oraz* poprawny sposób
obliczenia objętości graniastosłupa, tzn. zastosowanie wzoru na objętość i podstawienie
wartości liczbowych do wzoru, np. zapisanie:

$$V=3^2\cdot 7$$
 albo
$$V=a^2\cdot b \;, \qquad \text{gdzie} \qquad a=3 \quad \textit{oraz} \quad b=7.$$

1 punkt

• zapisanie poprawnych zależności między długościami krawędzi graniastosłupa, np.

$$2a + 3b = 27$$
 oraz $3a + 3b = 30$

LUB

zapisanie różnicy między długościami krawędzi zaznaczonych na obu rysunkach oraz
poprawny sposób obliczenia sumy długości krawędzi bocznych graniastosłupa
zaznaczonych pogrubioną linią, np. zapisanie

$$30-27$$
 oraz $27-(30-27)\cdot 2$ lub zapisy równoważne, *LUB*

 poprawny sposób obliczenia długości krawędzi podstawy oraz poprawny sposób obliczenia pola podstawy graniastosłupa, np. zapisanie

$$30-27=a$$
 oraz $P_p=a^2$ lub zapisy równoważne, LUB

• ustalenie (np. zapisanie na rysunku) poprawnych długości krawędzi podstawy i krawędzi bocznej graniastosłupa (3 cm i 7 cm).

0 punktów

rozwiązanie błędne albo brak rozwiązania.

<u>Uwagi</u>

- Jeżeli uczeń ustali nieprawidłowe długości dwóch krawędzi (np. zapisze na rysunku) bez zapisania sposobu obliczenia każdej z nich, to za całe rozwiązanie otrzymuje 0 punktów.
- Jeżeli uczeń ustali nieprawidłową długość jednej krawędzi bez zapisania sposobu jej obliczenia, konsekwentnie obliczy długość drugiej krawędzi, korzystając z zależności wynikającej z warunków zadania i doprowadzi rozwiązanie zadania do końca
 - a) bez błędów rachunkowych, to otrzymuje 2 punkty.
 - b) z błędami rachunkowymi, to otrzymuje 1 punkt.
- 3. Poprawność stosowania jednostek ocenia się tylko w wyniku końcowym.
- 4. Zapisanie niewłaściwej jednostki objętości lub brak jednostki objętości w wyniku końcowym traktuje się jako błąd rachunkowy.

Przykładowe rozwiązania ocenione na 3 punkty

l sposób

Możemy zauważyć, że w porównaniu z rysunkiem 1. na rysunku 2. zaznaczono pogrubioną linią o jedną więcej krótszą krawędź graniastosłupa, a więc krótsza krawędź ma długość równa 3 cm, gdyż:

$$30 \text{ cm} - 27 \text{ cm} = 3 \text{ cm}$$

Obliczymy sumę długości trzech krawędzi bocznych graniastosłupa zaznaczonych na rysunku 1. pogrubioną linią:

$$27 - (3 + 3) = 21$$
 (cm)

Zatem długość jednej krawędzi bocznej graniastosłupa jest równa:

$$21:3 = 7 \text{ (cm)}$$

Obliczymy objętość graniastosłupa:

$$V = 3^2 \cdot 7 = 63 \text{ (cm}^3\text{)}$$

Odpowiedź: Objętość tego graniastosłupa jest równa 63 cm³.

II sposób

Obliczymy wymiary graniastosłupa. Oznaczymy:

a – długość krawędzi podstawy graniastosłupa,

b – długość krawędzi bocznej graniastosłupa

Rysunek 1. Rysunek 2.

Obliczymy długość krawędzi podstawy graniastosłupa:

$$2a + 3b = 27$$
 oraz $3a + 3b = 30$
 $3a + 3b - 2a - 3b = 30 - 27$
 $a = 3$

Obliczymy długość krawędzi bocznej graniastosłupa:

$$2a + 3b = 27$$

$$a = 3$$

$$2 \cdot 3 + 3b = 27$$

$$3b = 27 - 6$$

$$3b = 21$$

$$b = 7$$

Obliczymy pole podstawy graniastosłupa o krawędzi a = 3 cm:

$$P_p = 3^2 = 9 \text{ (cm}^2\text{)}$$

Obliczymy objętość graniastosłupa:

$$V = 9 \cdot 7 = 63 \text{ (cm}^3\text{)}$$

Odpowiedź: Objętość tego graniastosłupa jest równa 63 cm³.