DERIVATE PARȚIALE. FUNCȚII DIFERENȚIABILE

Derivabilitatea funcțiilor de o variabilă cu valori în \mathbb{R}^n

Definiție. Fie $(a,b) \subseteq \mathbb{R}$, $x_0 \in (a,b)$ și $f:(a,b) \to \mathbb{R}^n$.

Dacă există (în \mathbb{R}^n), limita $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, spunem că f este derivabilă în x_0 . Limita $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ se numește derivata lui f în x_0 și se notează $f'(x_0)$.

Dacă f este derivabilă în toate punctele unei mulțimi $E \subseteq (a,b)$, atunci spunem că f este derivabilă pe E.

Observație. Fie $(a,b) \subseteq R$, $x_0 \in (a,b)$ și $f:(a,b) \to R^n$. Dacă $f=(f_1,...,f_n)$ atunci f este derivabilă în x_0 dacă și numai dacă funcțiile $f_1,...,f_n$ sunt derivabile în x_0 . În acest caz $f'(x_0)=(f_1(x_0),...,f_n(x_0))$.

Exemplu. Fie $f: \mathbb{R} \to \mathbb{R}^3$ o funcție dată de $f(x) = (e^{2x}, x^2 + x, \sin x)$. Atunci $f'(x) = (2e^{2x}, 2x + 1, \cos x)$.

Derivata după o direcție

Definiție. Fie $D \subseteq \mathbb{R}^p$, $c \in \overset{\circ}{D} = \{x \in \mathbb{R}^p \mid există \ r > 0 \ astfel încât <math>B(x,r) \overset{def}{=} \{y \in \mathbb{R}^p \mid \|y-x\| < r\} \subseteq D\}$, $u \in \mathbb{R}^p - \{0\}$ şi $f : D \to \mathbb{R}^q$. Dacă există, limita $\lim_{t\to 0} \frac{f(c+tu)-f(c)}{t}$ se numește derivata lui f în punctul c după vectorul u (sau după direcția u, dacă $\|u\| = 1$) şi se notează cu $\frac{df}{du}(c)$, $\frac{\partial f}{\partial u}(c)$ sau cu $f'_u(c)$.

Aşadar

$$\lim_{t\to 0} \frac{f(c+tu)-f(c)}{t} \stackrel{not}{=} \frac{df}{du}(c) \stackrel{not}{=} \frac{\partial f}{\partial u}(c) \stackrel{not}{=} f'_u(c).$$

Definiție. Fie $D \subseteq \mathbb{R}^p$, $c \in \overset{\circ}{D}$, $e_i = (0,0,...,0,1,0,...,0) \in \mathbb{R}^p$, unde 1 este pe poziția $i \in \{1,2,...,p\}$ și $f:D \to \mathbb{R}^q$. Derivata lui f după vectorul e_i în punctul c (dacă există) se numește derivata parțială a lui f în c în raport cu variabila x_i și se notează cu $\frac{\partial f}{\partial x_i}(c)$.

Aşadar

$$\frac{\partial f}{\partial x_i}(c) = \lim_{t \to 0} \frac{f(c + te_i) - f(c)}{t},$$

i.e.

$$\frac{\partial f}{\partial x_i}(c) = \lim_{t \to 0} \frac{f(c_1, ..., c_{i-1}, c_i + t, c_{i+1}, ..., c_p) - f(c_1, ..., c_{i-1}, c_i, c_{i+1}, ..., c_p)}{t}.$$

Exemple

1. Să se calculeze $\frac{\partial f}{\partial x}(1,1)$ şi $\frac{\partial f}{\partial y}(1,1)$ pentru $f: \mathbb{R}^2 \to \mathbb{R}$ dată de $f(x,y) = \sqrt{x^2 + y^2}$ pentru orice $(x,y) \in \mathbb{R}^2$.

Solutie. Avem

$$\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} \text{ si } \frac{\partial f}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}},$$

pentru $(x, y) \neq (0, 0)$, deci

$$\frac{\partial f}{\partial x}(1,1) = \frac{\partial f}{\partial y}(1,1) = \frac{1}{\sqrt{2}}.$$

- **2**. Să se arate că funcția $f: \mathbb{R}^2 \to \mathbb{R}$, dată de $f(x,y) = \{ \begin{array}{ll} 0, & xy=0 \\ 1, & xy \neq 0 \end{array}$, are următoarele proprietăți:
 - a) există $\frac{\partial f}{\partial x}(0,0)$ și $\frac{\partial f}{\partial y}(0,0)$;
 - b) nu este continuă în (0,0).

Soluție.

a) Avem

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0$$

şi

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0.$$

Aşadar f are derivate parţiale în origine.

b) Deoarece $f(\frac{1}{n}, \frac{1}{n}) = 1$ pentru orice $n \in \mathbb{N}$,

$$\lim_{n \to \infty} f(\frac{1}{n}, \frac{1}{n}) = 1 \neq f(0, 0),$$

deci f nu este continuă în (0,0).

3. Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}$, dată de $f(x,y) = x^2 y^3$, $c = (a,b) \in \mathbb{R}^2$ și $u = (m, n) \in \mathbb{R}^2$ un vector nenul.

Observăm că $\frac{\partial f}{\partial x}(x,y) = 2xy^3$ și $\frac{\partial f}{\partial y}(x,y) = 3x^2y^2$ pentru orice $(x,y) \in \mathbb{R}^2$.

$$\frac{\partial f}{\partial u}(c) = \lim_{t \to 0} \frac{f(c+tu) - f(c)}{t} = \lim_{t \to 0} \frac{f(a+tm,b+tn) - f(a,b)}{t} =$$

$$= \lim_{t \to 0} \frac{(a+tm)^2(b+tn)^3 - a^2b^3}{t} = \lim_{t \to 0} 2m \left(a + tm\right) \left(b + tn\right)^3 + 3n \left(a + tm\right)^2 \left(b + tn\right)^2 =$$

$$= 2mab^3 + 3na^2b^2 = m\frac{\partial f}{\partial x}(a,b) + n\frac{\partial f}{\partial y}(a,b) =$$

$$= \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right) \binom{m}{n} = \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right)u^t.$$

Exerciții

- i) Să se calculeze $\frac{\partial f}{\partial x}(1,1)$ și $\frac{\partial f}{\partial y}(1,1)$ pentru $f:\{(x,y)\in\mathbb{R}^2\mid x>0\}\to\mathbb{R}$ dată de $f(x,y)=xy\ln x$ pentru orice $y\in\mathbb{R},\,x>0$.
- ii) Să se arate că funcția $f: \mathbb{R}^2 \to \mathbb{R}$, dată de $f(x,y)=\{$ $\frac{x}{y}, \quad y\neq 0 \\ 0, \quad u=0$, are
- următoarele proprietăți: a) există $\frac{\partial f}{\partial x}(0,0)$ și $\frac{\partial f}{\partial y}(0,0)$;
 - b) nu este continuă.

Teorema de caracterizare a funcțiilor derivabile. $Fie~U=\overset{\circ}{U}\subseteq\mathbb{R},$ $c \in U$ și $f: U \to \mathbb{R}$. Atunci următoarele afirmații sunt echivalente:

- i) Funcția f este derivabilă în c.
- ii) Există o aplicație liniară $L: \mathbb{R} \to \mathbb{R}$ (i.e. $L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$, pentru orice $\alpha, \beta, x, y \in \mathbb{R}$) astfel încât $\lim_{x \to c} \frac{f(x) f(c) L(x c)}{|x c|} = 0$.

 iii) Există o aplicație liniară $L: \mathbb{R} \to \mathbb{R}$ și o funcție $\omega: U \to \mathbb{R}$ astfel
- $\hat{n}nc\hat{a}t$ şi $f(x) = f(c) + L(x-c) + |x-c|\omega(x)$ şi $\lim_{x \to c} \omega(x) = 0$.

Demonstrație. i) \Rightarrow ii) Considerând aplicația liniară $L: \mathbb{R} \to \mathbb{R}$ dată de L(u) = f'(c)u pentru orice $u \in \mathbb{R}$, avem

$$\frac{f(x) - f(c) - L(x - c)}{|x - c|} = \frac{f(x) - f(c) - f'(c)(x - c)}{|x - c|} \frac{x - c}{|x - c|} = \frac{(f(x) - f(c))}{|x - c|} - f'(c) \frac{x - c}{|x - c|},$$

de unde, cum $\lim_{x\to c} (\frac{f(x)-f(c)}{x-c}-f^{'}(c))=0$ și $\frac{x-c}{|x-c|}\in\{-1,1\}$, obținem că

$$\lim_{x \to c} \frac{f(x) - f(c) - L(x - c)}{|x - c|} = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} - f'(c)\right) \frac{x - c}{|x - c|} = 0.$$

ii) \Rightarrow i) Aplicația liniară $L: \mathbb{R} \to \mathbb{R}$ are proprietatea că

$$L(x) = L(x \cdot 1) = xL(1),$$

pentru orice $x \in \mathbb{R}$.

Ca atare, cum $\lim_{x\to c} \frac{f(x)-f(c)-L(x-c)}{|x-c|} = 0$ şi $\frac{|x-c|}{x-c} \in \{-1,1\}$, obţinem

$$\lim_{x \to c} \frac{f(x) - f(c) - L(x - c)}{|x - c|} \cdot \frac{|x - c|}{x - c} = 0,$$

i.e.

$$\lim_{x \to c} \frac{f(x) - f(c) - (x - c)L(1)}{x - c} = 0,$$

de unde

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L(1).$$

Aşadar f este derivabilă în c. \square

Această nouă abordare ne conduce la următoarea:

Definiție. Fie $D \subseteq \mathbb{R}^p$, $c \in \overset{\circ}{D}$ și $f : D \to \mathbb{R}^q$. Spunem că f este diferențiabilă (sau derivabilă) în c dacă există o aplicație liniară $L : \mathbb{R}^p \to \mathbb{R}^q$ (i.e. $L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$ pentru orice $\alpha, \beta \in \mathbb{R}, x, y \in \mathbb{R}^p$) astfel încât

$$\lim_{x \to c} \frac{f(x) - f(c) - L(x - c)}{\|x - c\|} = 0.$$

Observație. L, dacă există, este unică și se notează cu Df(c) sau f'(c) și se numește diferențiala (sau derivata) lui f în punctul c.

Notă. Aplicația L din definiția anterioară este unică.

Propoziție. Fie $D \subseteq \mathbb{R}^p$, $c \in D$ și $f: D \to \mathbb{R}^q$. Funcția f este diferențiabilă (sau derivabilă) în c dacă și numai dacă există o aplicație liniară

 $L: \mathbb{R}^p \to \mathbb{R}^q$ şi o funcţie $\omega: D \to \mathbb{R}$ astfel încât şi $f(x) = f(c) + L(x - c) + \|x - c\| \omega(x)$ pentru orice $x \in D$ şi $\lim_{x \to c} \omega(x) = 0$.

Teorema de continuitate a funcțiilor diferențiabile. Fie $D \subseteq \mathbb{R}^p$, $c \in \overset{\circ}{D}$ și $f: D \to \mathbb{R}^q$. Dacă f este diferențiabilă în c, atunci f este continuă în c.

Demonstrație.

$$\lim_{x \to c} f(x) = \lim_{x \to c} f(c) + f'(c)(x - c) + ||x - c|| \omega(x) = f(c). \square$$

Teorema privind derivabilitatea după o direcție a funcțiilor diferențiabile. Fie $D \subseteq \mathbb{R}^p$, $c \in \overset{\circ}{D}$ și $f: D \to \mathbb{R}^q$ astfel încât f este diferențiabilă în c.

Atunci

$$\frac{df}{du}(c) = Df(c)(u),$$

pentru orice $u \in \mathbb{R}^p$.

În particular

$$\frac{\partial f}{\partial x_i}(c) = Df(c)(e_i),$$

pentru orice $i \in \{1, 2, ..., p\}$.

Demonstrație. Având în vedere diferențiabilitatea lui f în c, obținem

$$\lim_{t \to 0} \frac{f(c+tu) - f(c) - Df(c)(c+tu-c)}{\|c+tu-c\|} = 0,$$

i.e.

$$\lim_{t \to 0} \frac{f(c+tu) - f(c) - tDf(c)(u)}{|t|} = 0.$$

Prin urmare

$$\lim_{t \to 0} \frac{f(c+tu) - f(c) - tDf(c)(u)}{|t|} \frac{|t|}{t} = 0,$$

i.e.

$$\lim_{t \to 0} \frac{f(c+tu) - f(c)}{t} = Df(c)(u),$$

deci există $\frac{df}{du}(c)$ și

$$\frac{df}{du}(c) = Df(c)(u),$$

pentru orice $u \in \mathbb{R}^p$. \square

Observație.

Pentru $f = (f_1, f_2, ..., f_q) : D \subseteq \mathbb{R}^p \to \mathbb{R}^q$ diferențiabilitatea lui f în c echivalează cu diferențiabilitatea funcțiilor $f_1, f_2, ..., f_q$ în c, deci, în principiu, putem presupune că q = 1.

Dacă f este diferențiabilă în c, atunci $Df(c): \mathbb{R}^p \to \mathbb{R}^q$ este dată

$$Df(c)(u_1, u_2, ..., u_p) = (Df_1(c)(u_1, u_2, ..., u_p), ..., Df_q(c)(u_1, u_2, ..., u_p)) =$$

$$= (\frac{\partial f_1}{\partial x_1}(c)u_1 + ... + \frac{\partial f_1}{\partial x_p}(c)u_p, ..., \frac{\partial f_q}{\partial x_1}(c)u_1 + ... + \frac{\partial f_q}{\partial x_p}(c)u_p),$$

pentru orice $(u_1, u_2, ..., u_p) \in \mathbb{R}^p$.

Matricea asociată acestei aplicații liniare, pentru perechea de baze canonice, este

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(c) & \frac{\partial f_1}{\partial x_2}(c) & \dots & \frac{\partial f_1}{\partial x_p}(c) \\ (\frac{\partial f_2}{\partial x_1}(c) & \frac{\partial f_2}{\partial x_2}(c) & \dots & \frac{\partial f_2}{\partial x_p}(c) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_q}{\partial x_1}(c) & \frac{\partial f_q}{\partial x_2}(c) & \dots & \frac{\partial f_q}{\partial x_p}(c) \end{pmatrix}.$$

Această matrice se numește matricea Jacobi a lui f în c și se noteză $J_f(c)$. În cazul q = 1, avem

$$Df(c)(u_1, u_2, ..., u_p) = \frac{\partial f}{\partial x_1}(c)u_1 + ... + \frac{\partial f}{\partial x_p}(c)u_p,$$

pentru orice $(u_1, u_2, ..., u_p) \in \mathbb{R}^p$, care, în mod tradițional, se scrie sub forma

$$Df(c) = \frac{\partial f}{\partial x_1}(c)dx_1 + \dots + \frac{\partial f}{\partial x_n}(c)dx_p.$$

Criteriul de continuitate. Fie $D = \overset{\circ}{D} \subseteq \mathbb{R}^p$, $c \in D$ şi $f : D \to \mathbb{R}^q$ satisfăcând următoarele două proprietăți:

- i) există derivatele parțiale în orice punct din D;
- ii) derivatele parțiale sunt mărginite pe D.

Atunci f este continuă în c.

Criteriul de diferențiabilitate. Fie $D=\overset{\circ}{D}\subseteq\mathbb{R}^p,\ c\in D\ \text{şi }f:D\to\mathbb{R}^q\ satisfăcând\ următoarele\ două\ proprietăți:}$

- i) există derivatele parțiale în orice punct din D;
- ii) derivatele parțiale sunt continue în c.

Atunci f este diferențiabilă în c.

Teorema privind comportamentul derivatelor parţiale la sumă, produs scalar și produs cu scalari. Fie $\alpha, \beta \in \mathbb{R}, D \subseteq \mathbb{R}^p, c \in D$ $u \in \mathbb{R}^p - \{0\}, f, g : D \to \mathbb{R}^q \text{ si } \varphi : D \to \mathbb{R} \text{ astfel încât } f, g \text{ si } \varphi \text{ au derivate}$ parțiale în raport cu vectorul u în c. Atunci:

 α) $\alpha f + \beta g \hat{\imath} n \ c \ si$

$$\frac{\partial(\alpha f + \beta g)}{\partial u}(c) = \alpha \frac{\partial f(c)}{\partial u} + \beta \frac{\partial g(c)}{\partial u}.$$

 β) $f \cdot g$ are derivată parțială în raport cu vectorul u în c și

$$\frac{\partial (f \cdot g)}{\partial u}(c) = g(c) \cdot \frac{\partial f(c)}{\partial u} + f(c) \cdot \frac{\partial g(c)}{\partial u},$$

pentru orice $u \in \mathbb{R}^p$.

 γ) φf are derivată parțială în raport cu vectorul u în c și

$$\frac{\partial(\varphi f)}{\partial u}(c) = \frac{\partial \varphi}{\partial u}(c)f(c) + \varphi(c)\frac{\partial f(c)}{\partial u},$$

pentru orice $u \in \mathbb{R}^p$.

$$\begin{aligned} & Demonstrație. \\ & \alpha) \lim_{t \to 0} \frac{(\alpha f + \beta g)(c + tu) - (\alpha f + \beta g)(c)}{t} = \\ & = \lim_{t \to 0} \frac{\alpha f(c + tu) - \alpha f(c)}{t} + \lim_{t \to 0} \frac{\beta g(c + tu) - \beta g(c)}{t} = \alpha \frac{\partial f(c)}{\partial u} + \beta \frac{\partial g(c)}{\partial u}. \\ & \beta) \lim_{t \to 0} \frac{(f \cdot g)(c + tu) - (f \cdot g)(c)}{t} = \lim_{t \to 0} \frac{(\sum_{i=1}^q f_i g_i)(c + tu) - (\sum_{i=1}^q f_i g_i)(c)}{t} = \\ & = \lim_{t \to 0} \sum_{i=1}^q \frac{(f_i g_i)(c + tu) - (f_i g_i)(c)}{t} = \sum_{i=1}^q \lim_{t \to 0} \frac{(f_i g_i)(c + tu) - (f_i g_i)(c)}{t} = \\ & = \sum_{i=1}^q \left(g_i(c) \frac{\partial f_i(c)}{\partial u} + f_i(c) \frac{\partial g_i(c)}{\partial u}\right) = g(c) \cdot \frac{\partial f(c)}{\partial u} + f(c) \cdot \frac{\partial g(c)}{\partial u} \\ & \gamma) \lim_{t \to 0} \frac{(\varphi f)(c + tu) - (\varphi f)(c)}{t} = \lim_{t \to 0} \frac{(\varphi f)(c + tu) - (\varphi f)(c)}{t} = \\ & = (\lim_{t \to 0} \frac{(\varphi f_i)(c + tu) - (\varphi f_i)(c)}{t})_{i=\overline{1,q}} = (\frac{\partial \varphi}{\partial u}(c) f_i(c) + \varphi(c) \frac{\partial f_i(c)}{\partial u})_{i=\overline{1,q}} = \\ & = \frac{\partial \varphi}{\partial x}(c) f(c) + \varphi(c) \frac{\partial f(c)}{\partial x}. \quad \Box \end{aligned}$$

Teorema privind comportamentul funcțiilor diferențiabile la sumă, produs scalar și produs cu scalari. Fie $\alpha, \beta \in \mathbb{R}, D \subseteq \mathbb{R}^p, c \in D$, $f,g:D\to\mathbb{R}^q$ şi $\varphi:D\to\mathbb{R}$ astfel încât f,g şi φ sunt diferențiabile în c. Atunci:

 α) $\alpha f + \beta g$ este diferențiabilă în c și

$$D(\alpha f + \beta g)(c) = \alpha Df(c) + \beta Dg(c).$$

 β) $f \cdot g$ este diferențiabilă în c și

$$D(f \cdot g)(c)(u) = g(c)Df(c)(u) + f(c)Dg(c)(u),$$

pentru orice $u \in \mathbb{R}^p$.

 γ) φf este diferențiabilă în c și

$$D(\varphi f)(c)(u) = D\varphi(c)(u)f(c) + \varphi(c)Df(c)(u),$$

pentru orice $u \in \mathbb{R}^p$.

Demonstrație.

- $\alpha)$ Deoarece f și g sunt diferențiabile în c rezultă că $\lim_{x\to c}\frac{f(x)-f(c)-f'(c)(x-c)}{\|x-c\|}=$
- 0 și $\lim_{x\to c} \frac{g(x)-g(c)-g'(c)(x-c)}{\|x-c\|}$. Înmulțind cu α și β și adunând obținem că

$$\lim_{x \to c} \frac{(\alpha f + \beta g)(x) - (\alpha f + \beta g)(c) - (\alpha f'(c) + \beta g'(c))(x - c)}{\|x - c\|} = 0.$$

- β) Deoarece f și g sunt diferențiabile în c rezultă că $\lim_{x\to c} \frac{f(x)-f(c)-f'(c)(x-c)}{\|x-c\|} =$

0 şi
$$\lim_{x \to c} \frac{g(x) - g(c) - g'(c)(x - c)}{\|x - c\|}$$
. Atunci
$$\lim_{x \to c} \frac{(f \cdot g)(x) - (f \cdot g)(c) - (g(c)Df(c) + f(c)Dg(c))(x - c)}{\|x - c\|} =$$

$$= \lim_{\|x-c\|} \frac{(f \cdot g)(x) - f(c) \cdot g(x) + f(c) \cdot g(x) - (f \cdot g)(c) - (g(c)Df(c) + f(c)Dg(c))(x-c)}{\|x-c\|} =$$

$$= \lim_{x \to c} \frac{(f \cdot g)(x) - f(c) \cdot g(x) - (g(x)Df(c))(x-c)}{\|x-c\|} + \frac{g(x)Df(c)(u)(x-c) - g(c)Df(c)(x-c)}{\|x-c\|} + \frac{g(x)Df(c)(u)(x-c) - g(c)Df(c)(u)(x-c)}{\|x-c\|} + \frac{g(x)Df(c)(u)(x-c)}{\|x-c\|} + \frac{g(x$$

$$+\frac{f(c)\cdot g(x)-(f\cdot g)(c)-f(c)Dg(c)(x-c)}{f(c)\cdot g(x)-(f\cdot g)(c)-f(c)Dg(c)(x-c)}=$$

$$= \lim_{x \to c} \frac{(g \cdot f)(x) - g(x) \cdot f(c) - g(x) Df(c)(x - c)}{\|x - c\|} + \frac{g(x) Df(c)(u)(x - c) - g(c) Df(c)(x - c)}{\|x - c\|} + \frac{f(c) \cdot g(x) - (f \cdot g)(c) - f(c) Dg(c)(x - c)}{\|x - c\|} =$$

$$+\frac{f(c)\cdot g(x)-(f\cdot g)(c)-f(c)Dg(c)(x-c)}{||x-c||}=$$

$$+\frac{f(c)\cdot g(x)-(f\cdot g)(c)-f(c)Dg(c)(x-c)}{\|x-c\|} = \lim_{x\to c} g(x) \cdot \frac{f(x)-f(c)-(Df(c))(x-c)}{\|x-c\|} + \lim_{x\to c} (g(x)-g(c))Df(c)\frac{x-c}{\|x-c\|} + \lim_{x\to c} f(c) \cdot \frac{g(x)-g(c)-Dg(c)(x-c)}{\|x-c\|} = 0.$$

so Decrease f is a sunt differentiabile in a regult f at $\lim_{x\to c} f(x)-f(c)-f(c)$

$$+\lim_{x\to c} f(c) \cdot \frac{g(x) - g(c) - Dg(c)(x - c)}{\|x - c\|} = 0.$$

 $\gamma)$ Deoarece f și g sunt diferențiabile în c rezultă că $\lim_{x\to c}\frac{f(x)-f(c)-f'(c)(x-c)}{\|x-c\|}=$

0 și
$$\lim_{x\to c}\frac{g(x)-g(c)-g'(c)(x-c)}{\|x-c\|}.$$
 Atunci

$$\lim_{x \to c} \frac{(\varphi f)(x) - (\varphi f)(c) - (\varphi' f + \varphi f')(c)(x - c)}{\|x - c\|} = \lim_{x \to c} \frac{(\varphi f)(x) - \varphi(c)f(x) + \varphi(c)f(x) - (\varphi f)(c) - (\varphi' f + \varphi f')(c)(x - c)}{\|x - c\|} = \lim_{x \to c} \frac{\varphi(x)f(x) - \varphi(c)f(x) - \varphi'(c)f(x)(x - c)}{\|x - c\|} + \frac{\varphi'(c)f(x)(x - c) - \varphi'(c)f(c)(x - c)}{\|x - c\|} + \frac{\varphi(c)f(x) - \varphi(c)f(x) - \varphi(c)f'(x)(x - c)}{\|x - c\|} = \lim_{x \to c} f(x) \frac{\varphi(x) - \varphi(c) - \varphi'(c)(x - c)}{\|x - c\|} + \lim_{x \to c} \varphi'(c)(f(x) - f(c)) \frac{x - c}{\|x - c\|} + \lim_{x \to c} \varphi(c) \frac{f(x) - f(x) - f(x)(x - c)}{\|x - c\|} = 0. \quad \Box$$

Exemple

1. Să se scrie matricea Jacobi asociată funcției $f: \{(x,y) \in \mathbb{R}^2 \mid xy > 0\} \to \mathbb{R}$, dată de $f(x,y) = \ln xy$ pentru orice $(x,y) \in \mathbb{R}^2$ cu xy > 0, în punctul (1,1).

Soluție. Deoarece

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{x} \operatorname{si} \frac{\partial f}{\partial y}(x,y) = \frac{1}{y},$$

deducem că

$$J_f(1,1) = (\frac{\partial f}{\partial x}(1,1), \frac{\partial f}{\partial y}(1,1)) = (1,1).$$

2. Fie $f: \mathbb{R}^3 \to \mathbb{R}$ dată de $f(x, y, z) = 2x^2 - y + 6xy - z^3 + 3z$ pentru orice $(x, y, z) \in \mathbb{R}^3$. Să se calculeze derivata lui f în origine după vectorul (2, 1, -3).

Solutie. Deoarece

$$\frac{\partial f}{\partial x} = 4x + 6y, \frac{\partial f}{\partial y} = -1 + 6x \text{ si } \frac{\partial f}{\partial z} = -3z^2 + 3,$$

sunt continue, deducem că f este diferențiabilă și

$$Df(x,y,z) = (4x+6y)dx + (-1+6x)dy + (-3z^2+3)dz,$$

deci

$$Df(0,0,0) = -dy + 3dz.$$

Prin urmare, derivata lui f în origine după vectorul (2, 1, -3) este

$$Df(0,0,0)(2,1,-3) = -1 - 9 = -10.$$

3. Să se demonstreze că funcția $f: \mathbb{R}^2 \to \mathbb{R}$, descrisă de

$$f(x,y) = \left\{ \begin{array}{ll} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{array} \right.,$$

are următoarele proprietăți:

- a) există $\frac{\partial f}{\partial x}$ și $\frac{\partial f}{\partial y}$;
- b) nu este diferențiabilă în (0,0).

Soluție. a) Pentru $(x,y) \neq (0,0)$ avem

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^3}{(x^2 + y^2)^{\frac{3}{2}}} \text{ si } \frac{\partial f}{\partial y}(x,y) = \frac{x^3}{(x^2 + y^2)^{\frac{3}{2}}}.$$

În plus,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0 \text{ si } \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0.$$

Aşadar f are derivate parţiale.

b) Dacă, prin reducere la absurd, f ar fi diferențiabilă în origine, atunci

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - \left[\frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y\right]}{\sqrt{x^2 + y^2}} = 0,$$

i.e.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = 0,$$

de unde contradicția

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{2}{n^2}} = 0$$
, i.e. $\frac{1}{2} = 0$.

Exerciții

- i) Fie $f: \mathbb{R}^3 \to \mathbb{R}$ dată de $f(x,y,z) = 2x^2 y + 6xy z^3 + 3z$ pentru orice $(x,y,z) \in \mathbb{R}^3$. Să se calculeze derivata lui f în origine după vectorul (1,2,0).
 - ii) Să se demonstreze că funcția $f: \mathbb{R}^2 \to \mathbb{R}$, descrisă de

$$f(x,y) = \left\{ \begin{array}{cc} xy \sin \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{array} \right.,$$

este diferențiabilă în (0,0).

Teorema de diferențiabilitate a funcțiilor compuse. Fie $D \subseteq \mathbb{R}^p$,

$$E \subseteq \mathbb{R}^q, c \in \overset{\circ}{D}, f: D \to E \text{ si } g: E \to \mathbb{R}^s \text{ astfel încât:}$$

- $i) \ f(c) \in \stackrel{\circ}{E};$
- ii) f este diferențiabilă în c;
- iii) g este diferențiabilă în f(c).

Atunci

$$(g \circ f)'(c) = g'(f)(c) \circ f'(c)$$

, în particular dacă s=1 obținem că

$$\frac{\partial(g \circ f)}{\partial x_i}(c) =$$

$$= \frac{\partial g}{\partial y_1}(f(c))\frac{\partial f_1}{\partial x_j}(c) + \frac{\partial g}{\partial y_2}(f(c))\frac{\partial f_2}{\partial x_j}(c) + \dots + \frac{\partial g}{\partial y_q}(f(c))\frac{\partial f_q}{\partial x_j}(c),$$

pentru orice $j \in \{1, ..., p\}$, unde $f = (f_1, ..., f_q)$.

Demonstratie.

Deoarece f este diferențiabilă în c rezultă că există $\omega_1 : D \to \mathbb{R}^q$ astfel încât $f(x) = f(c) + f'(c)(x - c) + ||x - c|| \omega_1(x)$ pentru orice $x \in D$ și $\lim_{x \to c} \omega_1(x) = 0$. Deoarece g este diferențiabilă în f(c) rezultă că există $\omega_2 : E \to \mathbb{R}^s$ astfel încât $g(y) = g(f(c)) + g'(f(c))(y - f(c)) + ||y - f(c)|| \omega_2(y)$ pentru orice $x \in D$ si $\lim_{x \to c} \omega_2(x) = 0$. Înlocuind pe g(c) cu obtinem

$$E \to \mathbb{R}^{s} \text{ astfel încât } g(y) = g(f(c)) + g'(f(c))(y - f(c)) + \|y - f(c)\| \omega_{2}(y)$$
pentru orice $x \in D$ şi $\lim_{x \to c} \omega_{2}(x) = 0$. Înlocuind pe y cu obţinem
$$g(f(x)) = g(f(c)) + g'(f(c))(f(x) - f(c)) + \|f(x) - f(c)\| \omega_{2}(f(x)) =$$

$$= g(f(c)) + g'(f(c))(f'(c)(x - c) + \|x - c\| \omega_{1}(x)) + \|f'(c)(x - c) + \|x - c\| \omega_{1}(x)\| \omega_{2}(f(x)) =$$

$$= g(f(c)) + g'(f(c)) \circ f'(c)(x - c) + \|x - c\| (g'(f(c)) \omega_{1}(x) + \|f'(c)(\frac{x - c}{\|x - c\|}) + \|x - c\| \omega_{1}(x)\| \omega_{2}(f(x))$$
Notam $\omega(x) = g'(f(c)) \omega_{1}(x) + \|f'(c)(\frac{x - c}{\|x - c\|}) + \|x - c\| \omega_{1}(x)\| \omega_{2}(f(x))$

Notam $\omega(x) = g'(f(c))\omega_1(x) + \left\| f'(c)(\frac{x-c}{\|x-c\|}) + \|x-c\|\omega_1(x)\|\omega_2(f(x))\right\|$. Rezultă că $\lim_{x\to c}\omega(x) = 0$ și că $(g\circ f)'(c) = g'(f)(c)\circ f'(c)$.

Exemplu. Să se arate că funcția $f: \mathbb{R}^3 \to \mathbb{R}$ descrisă de $f(x,y,z) = \varphi(xy,x^2+y^2-z^2)$ pentru orice $(x,y,z) \in \mathbb{R}^3$, unde $\varphi: \mathbb{R}^2 \to \mathbb{R}$ este o funcție diferențiabilă, constituie o soluție a ecuației $xz\frac{\partial f}{\partial x} - yz\frac{\partial f}{\partial y} + (x^2 - y^2)\frac{\partial f}{\partial z} = 0$. Soluție. Deoarece

$$\frac{\partial f}{\partial x} = y \frac{\partial \varphi}{\partial u} + 2x \frac{\partial \varphi}{\partial v}, \frac{\partial f}{\partial u} = x \frac{\partial \varphi}{\partial u} + 2y \frac{\partial \varphi}{\partial v} \text{ si } \frac{\partial f}{\partial x} = 0 \cdot \frac{\partial \varphi}{\partial u} - 2z \frac{\partial \varphi}{\partial v},$$

deducem că

$$xz\frac{\partial f}{\partial x} - yz\frac{\partial f}{\partial y} + (x^2 - y^2)\frac{\partial f}{\partial z} = (xyz - xyz)\frac{\partial \varphi}{\partial u} + (2zx^2 - 2zy^2 - 2zx^2 + 2zy^2)\frac{\partial \varphi}{\partial v} = 0.$$

În relațiile de mai sus derivatele parțiale ale funcției f au fost considerate în punctul (x, y), iar cele ale funcției φ în punctul $(xy, x^2 + y^2 - z^2)$.

Exercițiu. Să se arate că funcția $f: \mathbb{R}^2 \to \mathbb{R}$ dată de $f(x,y) = xy\varphi(x^2-y^2)$ pentru orice $(x,y) \in \mathbb{R}^2$, unde $\varphi: \mathbb{R} \to \mathbb{R}$ este o funcție diferențiabilă, constituie o soluție a ecuației $xy^2\frac{\partial f}{\partial x} + x^2y\frac{\partial f}{\partial y} = (x^2+y^2)f$.

Teorema de diferențiabilitate a inversei unei funcții. Fie $D, E \subseteq \mathbb{R}^p$ două mulțimi deschise, $c \in D$ și $f : D \to E$ astfel încât:

- i) f este bijectivă
- ii) f este diferențiabilă în c există $(f'(c))^{-1}$
- iii) f^{-1} este continuă în f(c).

Atunci f^{-1} este diferențiabilă în c și $(f^{-1})'(f(c)) = (f'(c))^{-1}$.

Teorema de inversare locală. Fie $D\subseteq \mathbb{R}^p$ o mulțime deschisă, $f:D\to \mathbb{R}^p$ și $c\in D$ astfel încât:

- i) f este diferențiabilă pe D
- ii) f' este continuă pe D
- iii) există $(f'(c))^{-1}$.

Atunci există $D_1, D_2 \subseteq \mathbb{R}^p$ astfel încât $D_1 \subseteq D$, funcția $g: D_1 \to dată$ de g(x) = f(x) pentru orice $x \in D_1$ este bijectivă.

Notă. În condițiile teoremei anterioare

- i) Funcția $g^{-1}: D_2 \to D_1$ este derivabilă în f(c) și $(g^{-1})'(f(c)) = (f'(c))^{-1}$.
- ii) Se poate alege D_1 astfel încât să existe $(f'(c))^{-1}$ pentru orice $x \in D_1$ și g^{-1} să fie derivabilă pe D_2 $((g^{-1})'(y) = (f'(g^{-1}(y))^{-1})$ pentru orice $y \in D_2$).