§ 2.6 数值比较器和加法器

§2.6.1 数值比较器 (comparator)

比较两个二进制数的大小。

- 1. 四位数值比较器 (74LS85)
 - 1) 结构与功能:

输入信号: 数码输入

级联输入(低位比较结果)

输出信号: 比较结果

比较输入									汲联输.	输出			
A_3	B_3	A_2	B_2	A_1	B_1	A_0	B_0	A>B	A < B	A = B	$P_{A>B}$	$P_{A\leq B}$	$P_{A=B}$
1	0	×	×	×	×	×	×	×	×	×	1	0	0
0	1	\times	×	×	×	×	×	×	×	\times	0	1	0
$A_3=$	$=B_3$	1	0	×	×	×	×	×	×	\times	1	0	0
A ₃ =	= B ₃	0	1	×	×	×	×	×	×	×	0	1	0
A ₃ =	$=B_3$	A_2 =	$=B_2$	1	0	×	×	×	×	×	1	0	0
$A_3=$	$^{2}B_{3}$	$A_2 =$	$=B_2$	0	1	×	×	×	×	×	0	1	0
A_3 =	$=B_3$	A_2 =	$=B_2$	$A_1 =$	$=B_1$	1	0	×	×	×	- 1	0	0
$A_3=$	$=B_3$	A_2 =	$=B_2$	A_1 =	$=B_1$	0	1	×	\times	×	0	1	0
A3=	<i>B</i> 3	$A_2=$	-B ₂	A =	$=B_1$	A ₀ =	$=B_0$	1	0	0	1	0	0
A3=	■ <i>B</i> ₃	$A_2=$	=B ₂	A1=	∞ <i>B</i> 1	A_0 =	$=B_0$	0	1	0	0	1	0
A3***	B ₃	A_2 =	= B ₂	$A_1 =$	$=B_1$	A_0 =	$=B_{i0}$	0	0	1	0	0	1

注意: 级联输入信号只能有一个为高电平, 要避免其他输入可能。

例用两片四位比较器(74LS85)比较三位二进制数。

例用两片四位比较器(74LS85)比较八位二进制数。

解:利用级联输入,采用分段比较方法,由高位开始,逐级向低位进行。

最低位级联输入接固定信号。

§2.6.2 加法器 (adder)

实现两个多位二进制数相加。

$\begin{array}{c} 1101 \longrightarrow A \\ +1101 \longrightarrow B \\ C \longrightarrow 11010 \longleftarrow S \end{array}$

1) 串行进位加法器

把n位全加器串联起来,低位的进位输出连接到高位的进位输入。 进位逐级传递。

优点:结构简单。

缺点:速度慢。

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = A_i B_i + (A_i \oplus B_i) C_{i-1}$$

2) 超前进位加法器 (74LS83)

是各级进位同时发生,高位加法不必等低位的运算结果。 工作速度得以提高。

$$C_{i} = A_{i}B_{i} + (A_{i} \oplus B_{i})C_{i-1}$$

$$G_{i}$$

$$P_{i}$$

$$C_i = G_i + P_i C_{i-1}$$

$$S_i = P_i \oplus C_{i-1}$$

$$C_2 = G_2 + P_2C_1 = G_2 + P_2(G_1 + P_1C_0) = G_2 + P_2(G_1 + P_1(G_0 + P_0C_{-1}))$$

$$= G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_{-1}) = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_{-1}$$

高位不需等待低位的计算结果。最低位的进位可以超前送到最高位及各位上。

输入:

 $A_3 A_2 A_1 A_0$ 、 $B_3 B_2 B_1 B_0$ C_{-1} 是低位的进位

输出: $S_3S_2S_1S_0$ 是四位和数,

C₃是进位信号

3) 全加器的应用

(1) 使用74LS83实现n位二进制加法运算。

(2) 代码转换:

• 利用全加器将 5421 码转换为 2421 码。

5 4 2 1	2 4 2 1	
0000	$0\ 0\ 0\ 0$	0
0001	0001	1
0010	0010	2
0011	0011	3
0100	$0\ 1\ 0\ 0$	4
$1\ 0\ 0\ 0$	1011	5
1001	1100	6
1010	1101	7
1011	1110	8
1100	1111	9

(3) 用全加器构成二进制减法器(、乘法器)

利用 _"加补" 概念,可将减法用加法来实现。

$$(A+B)_{\uparrow \mid } = (A)_{\uparrow \mid } + (B)_{\uparrow \mid }$$
$$(A-B)_{\uparrow \mid } = (A)_{\uparrow \mid } + (-B)_{\uparrow \mid }$$

有进位输出的差是正数,无进位输出的差是负数。

二进制减法器

$$S=A-B$$

二进制并行加法/减法器

(5) 用四位全加器构成8421码的加法电路

原则: 两位8421码相加,和仍为8421码,否则结果错误。

$$7+9=16$$

$$= (0001 \ 0110)_{8421}$$
 $7+5=12$

$$= (0001 \ 0010)_{8421}$$
 $7+5$

$$= 0111$$

$$+ 1001$$

$$1 0000$$

$$+ 0110$$

$$1 0110$$

$$1 0010$$

$$7+5=12$$

$$= (0001 \ 0010)_{8421}$$

$$+ 0101$$

$$+ 0110$$

$$+ 0110$$

$$1 0010$$

一旦需要修正,则8421码必有进位输出。

判 9 加 6 修正电路:

1) 当有进位输出 或 2) 当和数>9;

应修正让其产生进位,且加(0110);

设计两个一位8421BCD码加法电路应由三部分组成。

$$F = \overline{\overline{C_0} \cdot \overline{S_3 S_2} \cdot \overline{S_3 S_1}}$$

$$F = \overline{\overline{C_o} \cdot \overline{S_3 S_2} \cdot \overline{S_3 S_1}}$$

相加之和小于9,加0修正。 有进位或相加之和大于9,加6修正。 C₀作进位输出

六、 奇偶校验器(74LS280)

1. 基本功能:

根据输入中1的奇偶来决定其输出值。

A~I	EVEN	ODD
偶数个"1"	1	0
奇数个"1"	0	1

$$ODD = A \oplus B \oplus C \oplus D \oplus E \oplus F \oplus G \oplus H \oplus I$$

$$EVEN = \overline{ODD}$$

$$= A \oplus B \oplus C \oplus D \oplus E \oplus F \oplus G \oplus H \oplus I \oplus 1$$

2. 奇偶校验器的应用:

1) 奇偶检验器

用74LS280构成8 位奇偶检验电路和17 位奇偶检验电路

2) 奇偶校验位(监督位)发生器

用74LS280设计一个4位二进制码的偶校验位发生器

偶校验位(监督位):

 $P = C_1 \oplus C_2 \oplus C_2 \cdots \oplus C_n$

用74LS280设计一个4位二进制码的奇校验位发生器

奇校验位(监督位):

$$P = C_1 \oplus C_2 \oplus C_2 \cdots \oplus C_n \oplus 1$$

3) 校验位产生 / 校验检测

接收无错: $F_{OD2} = 1$

接收门开启,数据继续传送。

§ 2.1.5 组合逻辑电路的竞争冒险

一、险象的产生的原因

竞争: 同一信号经不同路径到达输出门有时间差的现象。

冒险: 当有竞争能力的信号发生变化时,可能使电路产生了暂时错误输出。

"1"冒险 出现正尖脉冲。

两个互补输入信号同时向相反状态变化的情况下-----竞争冒险

"0"冒险 出现负尖脉冲

2. 译码器的竞争冒险(功能冒险)

当有两个或两个以上输入信号同时产生变化时,在输出端产生毛刺。

译码器容易产生毛刺, 设计译码逻辑电路时必须十分小心。利用:

- 使能端在输入稳定后有效, 可消除毛刺。
- 格雷码可消除毛刺。

二. 冒险现象判别(逻辑冒险)

1. 代数法

- 1) 检查变量,原、反同时出现;
- 2) 代入其余变量的取值组合,考察是否冒险。

$$F = A + \overline{A}$$
 "0" 冒险 $F = A \bullet \overline{A}$ "1" 冒险

$$F = B\overline{C} + AC$$

判断 $F = \overline{AD} + \overline{AC} + AB\overline{C}$ 是否可能出现险象

分析: ① 变量A和C均具备竞争条件

②检查A:

③检查C:

当

$$B = 1$$

$$C = 0$$

$$D = 1$$

时

$$F = A + \overline{A}$$

BCD=101时,出现"0"冒险。

$$F \neq C + \overline{C}$$

: *C*发生变化时不会产生险象.

判断 $F = (A+B)(\overline{A}+C)(\overline{B}+C)$ 描述的电路是否可能出现险象

分析: ① 变量A、B均具备竞争条件

② 考察A变量:

③ 考察B变量:

当

$$B = 0$$

$$C = 0$$

时

$$F = A \cdot \overline{A}$$

: 当BC=00时, 电路出现"1"险象

当
$$A=0$$

$$C = 0$$

时

$$F = B \cdot \overline{B}$$

:. 当AC=00时,出现"1"险象

三、冒险现象的消除

1. 加冗余项法:

$$F = \overline{AD} + \overline{AC} + AB\overline{C}$$

BCD=101时,出现"0"冒险。

$$F = \overline{AD} + \overline{AC} + AB\overline{C} + B\overline{C}D$$

BCD=101时, F=1, 消除冒险。

2. 选通法:

取样脉冲仅在输出门处于稳定值期间到来,保证输出结果正确,目的是避开冒险。 有严格的时间要求。

3. 输出端加一滤波电容:

电容 (4pF~20pF)滤波以减小尖脉冲(丰富的高频分量)的幅度。

影响输出波形。

本章小结

- 1. 组合逻辑电路的特点是:任一时刻的输出状态只决定于该时刻各输入状态的组合。电路仅由门电路构成。
- 2. 小规模组合逻辑电路的分析步骤: 写出各输出端的逻辑表达式→化简和变换逻辑表达式→列出真值表→确定功能。

3. 小规模组合逻辑电路的设计步骤:根据设计求列出真值表→写出逻辑表达式(或填写卡诺图)→逻辑化简和变换→画出逻辑图

4. 中规模组合逻辑部件

掌握典型集成电路的外部功能、扩展、应用。

- 数据选择器: 根据地址码的要求,从多路输入信号中选择其中一路输出。

- 译码器:特定意义信息的二进制代码翻译出来,常用的有二进制译码器、二-十进制译码器、数码显示译码器。

-编码器:将具有特定含义的信息编成、相应二进制代码输出,常用的有二-十进制编码器、优先编码器。。

- 加法器: 多位加法运算(串行进位、并行进位)。

- 比较器: 级联输入端的接入方法。
- 奇偶校验器: 输出表达式。
- 5.了解组合逻辑电路中竞争冒险现象、克服方法。

	•	的BCDQ 靠性代			`		\		 等。	_等,	常
2.	将十	进制数	45转换	总成842	1码可行	导		o			
		据选择 位。	器的数	括输入	、端的/	个数为	8时,	则其均	也址码边	选择端	应
4.	-	-四位二 4个		•						o	
码) ,	注计一个 需要_					个异或	门。	C采用作 D. 5	禺检验	

- 6. 在下列逻辑电路中,不是组合逻辑电路的有

- A. 译码器 B. 编码器 C. 全加器 D. 寄存器
 - 7. 组合逻辑电路不存在输出到输入的______通路,因此其前一状态 不影响后一状态。
- 8. 四位二进制编码器有____个输入端; ____个输出端。
- $\frac{9. \text{ 函数 } F = \overline{A} + \overline{AB} + A(C+D)}{F} = ; 对偶式F*=______。$
 - 10. 最小项 ABCD 的逻辑相邻项是_____
 - 11.逻辑函数 $F = A \oplus (A \oplus B)$ 的值是 。

12. 下列各函数相等,其中无冒险现象的逻辑函数是____。

A.

$$F = AC + B\overline{C} + CD + BD + AB$$
$$F = AC + B\overline{C} + CD + BD + AB$$

$$B. F = AC + B\overline{C} + CD$$

$$F = AC + CD + B\overline{CD} + BD$$
 D. $F = CD + B\overline{C} + AC\overline{D}$

13. 一个由3:8译码器构成的逻辑电路如图9所示,函数F 的最小项表达式为____。

14. 一个逻辑函数如果有n个变量,则有_____个最小项。任 何一个逻辑函数可以化成一组_____之和表达式。

15. A_1 、 A_2 、 A_3 、 A_4 是四位二进制码,若电路采用奇校验,则监督码元(校验位)P的逻辑表达式为P = ----。

设计:

设8421BCD码对应的十进制数为X, 当 $X \leq 2$,或 $\geqslant 7$ 时电路输出F为高电平,否则为低电平。试设计该电路,并用与非门实现之。