

Prowadzacy: Stefan Świerczewski

Autor: Stefan Świerczewski

Inwersja – Finaliści

Teoria

Inwersją nazywamy przekształcenie płaszczy
zny względem okręgu ω przy zachowaniu następujących za
sad:

 \bullet PunktYjest obrazem punktu X wtedy, gdy punkty X i Yleżą na tej samej półprostej o początku w punkcie Ooraz zachodzi równość:

$$OX \cdot OY = R^2$$
.

Piszemy wtedy: $I_O^R(X) = Y$ lub prościej $I_\omega(X) = Y$.

• Przybliżając punkt X do punktu O obraz tego punktu coraz bardziej przybliża się do nieskończoności, zatem wprowadzamy nowy pojedynczy punkt który znajduje się w nieskończoności. Oznaczamy go jako P_{∞} przy czym:

$$I_{\omega}(P_{\infty}) = O \quad \text{oraz} \quad I_{\omega}(O) = P_{\infty}.$$

Własności inwersji

- 1. Inwersja jest inwolucją, czyli: $I_{\omega}(I_{\omega}(X)) = X$ dla dowolnego punktu (razem z O i P_{∞}).
- 2. Obrazy punktów należących do okręgu inwersyjnego są sobą samym.
- 3. Obraz inwersyjny punktu X, leżącego na zewnątrz okręgu ω leży na prostej łączącej punkty styczności stycznych poprowadzonych z punktu X do okręgu ω i vice versa.
- 4. Punkty A,B,A',B' leżą na jednym okręgu gdzie: $I_{\omega}(A)=A'$ i $I_{\omega}(B)=B'$
- 5. $A'B' = \frac{R^2}{OA \cdot OB}AB$
- 6. Prosta przechodząca przez środek okręgu ${\cal O}$ w inwersji względem tego okręgu przechodzi na samą siebie.
- 7. Prosta w przestrzeni (nie przechodząca przez O) przechodzi na okrąg przechodzący przez O środek okręgu inwersyjnego.
- 8. Obrazami okręgów które przechodzą przez O są proste.
- 9. Inwersja zachowuje kąty. W szczególności okrąg prostopadły do inwersyjnego przechodzi na samego siebie.
- 10. Dla trójkąta ABC inwersja względem punktu A o promieniu $\sqrt{AB \cdot AC}$, złożona z odbiciem względem dwusiecznej kąta $\not A$, zamienia miejscami punkty B i C.

Prowadzacy: Stefan Świerczewski

Autor: Stefan Świerczewski

Zadanka

Zadanie 1. Danych jest $n \ge 4$ punktów, przy czym żadne trzy nie leżą na na jednej prostej. Dowieść, że jeżeli okrąg przechodzący przez dowolne trzy z tych punktów przechodzi również przez czwarty, to wszystkie te punkty leżą na jednym okręgu.

Zadanie 2. Skonstruuj nieskończony łańcuch Steinera, pomiędzy dwom stycznymi wewnętrznie okręgami.

Zadanie 3. Cztery różne okręgi o_1, o_2, o_3, o_4 są styczne wewnętrznie do okręgu ω odpowiednio w punktach A, B, C, D. Jeżeli okręgi o_1, o_3 są styczne zewnętrznie do obu okręgów o_2, o_4 oraz styczne do ω w punktach C, A przecinają się w punkcie F. Udowodnij współliniowość punktów F, B, D.

Zadanie 4. Udowodnij, że przy inwersji kąt pomiędzy dwoma okręgami zachowuje się.

Zadanie 5. W trójkącie ABC dwusieczna kąta BAC przecina bok BC w punkcie D oraz okrąg opisany Ω na trójkącie ABC w punkcie E. Okrąg ω o średnicy DE przecina Ω ponownie w punkcie F. Pokazać, że AF jest symedianą trójkąta ABC.

Zadanie 6. Punkt I jest środkiem okręgu wpisanego w trójkąt ABC, zaś ω jest okręgiem opisanym na tym trójkącie. Okrąg styczny do odcinków AB, AC jest styczny do okręgu ω w punkcie P, a S jest środkiem tego łuku BC okręgu ω , na którym leży punkt A. Wykazać, że punkty P, I, S są współliniowe.

Zadania nieco trudniejsze

Zadanie 7. Trapez ABCD o podstawach AD i BC jest wpisany w okrąg ω_1 . Okrąg ω_2 jest styczny do odcinków AB i AC oraz jest styczny wewnętrznie do okręgu ω_1 w punkcie F. Okrąg wpisany do trójkąta ABC jest styczny do odcinka BC w punkcie E. Dowieść, że punkty D, E, F leżą na jednej prostej.

Zadanie 8. Niech $A_1A_2A_3$ będzie nierównoramiennym trójkątem, a I środkiem okręgu do niego wpisanego. Niech C_i , gdzie i=1,2,3, będzie mniejszym okręgiem przechodzącym przez I oraz stycznym do A_iA_{i+1} i A_iA_{i+2} . Niech B_i , gdzie i=1,2,3, będzie drugim punktem przecięcia C_{i+1} i C_{i+2} . Udowodnić, że środki okręgów opisanych na trójkątach A_1B_1I , A_2B_2I i A_3B_3I są współliniowe.

Zadanie 9. Trójkąt różnoboczny ABC jest wpisany w okrąg o. Punkty D, E, F są środkami łuków BC, CA, AB niezawierających pozostałych wierzchołków trójkąta. Punkty D', E', F' są symetryczne do punktów D, E, F odpowiednio względem boków BC, CA, AB. Wykazać, że punkty D', E', F' oraz ortocentrum trójkąta ABC leżą na jednym okręgu.

Zadanie 10. Udowodnij twierdzenie Feuerbacha za pomocą inwersji.

