Switching Regression as Robust Estimation against Misclassification in Machine Learning Classification

Aleksandr Michuda

UC Davis Agricultural and Resource Economics

Introduction

- How does urban labor supply respond to agricultural income shocks?
 - Rural-Urban linkages
 - Driving Uber as insurance/income diversification
- ► Can machine learning help when location data is unavailable?
 - Requires less data
 - But introduces misclassification
 - Can we develop an estimator that is robust to that misclassification?

Data

- Uber Driver Data
 - ► Hours online
 - Earnings
- Weather Shocks
 - Drought Indices (SPI, NDVIA)
- Predicted Rural Place Origin
 - ► SAP Region (4)
 - ► FAO Agro-ecological Zones (10)
 - Distribution of probabilities

Prediction Table

Name	Central	East	North	West
Ahimbisibwe	0.144	0.003	0.001	0.925
Amin	0.149	0.057	0.651	0.140
Auma	0.040	0.267	0.674	0.017
Kadaga	0.148	0.797	0	0.054
Makubuya	0.964	0.018	0	0.017
Museveni	0.164	0.022	0.042	0.769
Oculi	0.015	0.263	0.717	0.003

Misclassification is a problem

- Predictions might contain misclassification error
 - ► For ex: we are classifying "Amin" into North, but it might be that they are actually more connected to the Center.
 - Not from any systematic bias during machine learning process
 - We can "imperfectly" break drivers into groups

What if I use OLS?

- We can estimate with OLS
- But response to drought will be attenuated.
- ▶ Is there a better way to estimate it?
 - ▶ We can model the misclassification directly
 - "What's the probability that I categorize Amin into the North regime, given that they're truly from the Center?, etc."

Objectives Today

- Presenting a Maximum Likelihood Estimator
 - inspired by switching regression literature
- How does this estimator perform under varying levels of misclassification compared to OLS?
- Explore through Monte Carlo Simulations

The Hours Function

► Each regime $i \in I$ can be expressed as a linear function of SPI^i and Hours:

$$Hours = \beta_0^i + \beta_1^i SPI^i + \varepsilon^i$$

▶ The goal is to recover β_1^0 and β_1^1

Without Misclassification

- Suppose there's a true membership indicator, I.
- ▶ The conditional expectation function is then:

$$E(Hours|I, SPI^{i}) = 1\{I = 0\}(\beta_0^0 + \beta_1^0 SPI^0) + 1\{I = 1\}(\beta_0^1 + \beta_1^1 SPI^1)$$

Nithout misclassification and with a separation indicator, we can recover β_1^0 and β_1^1 without bias, by using I as a variable in an OLS regression.

Misclassification in Regimes

- \blacktriangleright In our case we do not observe I, but we do observe r.
- r gives us a measure of I with measurement error.
- We can express the measurement error in terms of a matrix of conditional probabilities with $p_i^j = Pr(r = i|I = j)$.

If $p_0^1 = p_1^0 = 0$, then there is no misclassification.

Conditional Expectation with Misclassification

► In the case of misclassification, the conditional expectation function is then:

$$E(Hours|r) = \\ E(Hours|l=0) & Pr(r=0,l=0) \\ \hline (\beta_0^0 + \beta_1^1 SPI^0) \cdot (1-r) \cdot (1-\lambda)p_0^0 + \\ E(Hours|l=1) & Pr(r=0,l=1) \\ \hline (\beta_0^1 + \beta_1^1 SPI^1) \cdot (1-r) \cdot \lambda p_0^1 + \\ E(Hours|l=0) & Pr(r=1,l=0) \\ \hline (\beta_0^0 + \beta_1^0 SPI^0) \cdot r \cdot (1-\lambda)p_1^0 + \\ E(Hours|l=1) & Pr(r=1,l=1) \\ \hline (\beta_0^1 + \beta_1^1 SPI^1) \cdot r \cdot \lambda p_1^1 \\ \hline \end{cases}$$

$$ightharpoonup Pr(I=1)=\lambda$$

Using OLS with Misclassification

▶ If we use the same OLS strategy as before:

Hours =
$$1\{r = 0\} + 1\{r = 1\} + \beta_1^0 SPI^0 \cdot 1\{r = 0\} + \beta_1^1 SPI^1 \cdot 1\{r = 1\} + \varepsilon$$

Leads to biased estimate, proportionate to extent of misclassification

$$ABias(\beta^0) = \frac{(1-\lambda)\rho_0^1}{\rho_0^0 + \rho_0^1} \cdot (\Sigma_{00}^{-1}\Sigma_{01}\beta^1 - \beta^0)$$

•
$$ABias(\beta^1) = \frac{\lambda \rho_1^0}{\rho_1^0 + \rho_1^1} \cdot (\Sigma_{11}^{-1} \Sigma_{10} \beta^0 - \beta^1)$$

$$\beta^r = [\beta_0^r \ \beta_1^r], \ \Sigma_{jk} = E(x_j' x_k)$$

$$\triangleright x_r = [1 SPI^r]$$

ML Approach

- ► Generalizing Lee and Porter (1985) to more than two regimes
 - Switching Regression with imperfect sample separation
- Flatten probabilities to a categorical
 - ► Take maximum of probabilities as truth, *r*

original_name	Central	East	North	West	Region Indicator (r)
Ahimbisibwe	0.144	0.003	0.001	0.925	West
Amin	0.149	0.057	0.651	0.140	North
Auma	0.040	0.267	0.674	0.017	North
Kadaga	0.148	0.797	0	0.054	East
Makubuya	0.964	0.018	0	0.017	Central
Museveni	0.164	0.022	0.042	0.769	West
Oculi	0.015	0.263	0.717	0.003	North

A Maximum Likelihood Alternative

- Each regime is normally distributed with mean $Hours \beta_0^r \beta_1^r SPI^r$ and standard deviation σ_r , with density f_r .
- We can then write the joint density of ε_r and r as:

$$f(\varepsilon_r, r) = f_0(\varepsilon_0) \left[r \lambda p_0^0 + (1 - r) \lambda (1 - p_0^0) \right] + f_1(\varepsilon_1) \left[r (1 - \lambda) (1 - p_1^1) + (1 - r) (1 - \lambda) p_1^1 \right]$$

The Likelihood Function

▶ The likelihood function of the estimator is then:

$$L(\beta, \sigma, \rho, \lambda) = [f_0(\varepsilon_{i1t})\lambda p_{11} + f_1(\varepsilon_{i1t})(1-\lambda)p_{10}]^r \cdot [f_0(\varepsilon_{i0t})\lambda(1-p_{11}) + f_1(\varepsilon_{i0t})(1-\lambda)(1-p_{10})]^{1-r}$$

- We can maximize the log-likelihood to find optimal parameters for each of the parameters above.
- ▶ We can run Monte Carlo simulations of the MLE and an OLS analogue to compare the performance of the estimator.

Baseline Values for Simulation

- Data is modelled as crossection
- Actual data is panel

Parameter Simulations in each =200Drivers = 275Time periods = 10Regimes=2 $\sigma_0 = \sigma_1 = 1$ $E(SPI^0) = E(SPI^1) = 0$ $Var(SPI^0) = Var(SPI^1) = 1$ $Cov(SPI^0, SPI^1) = 0$ $\beta_0^0 = 20, \ \beta_0^1 = 35$ $\beta_1^0 = -1$. $\beta_1^1 = -2$

How is misclassification created?

Misclassification Plots R = 2

► Increase severity of misclassification

Figure 1: Increasing Misclassification R=2

Generalizing to R > 2

- For R > 2, r becomes a categorical variable and we now use the mutually exclusive and exhaustive indicator functions for each regime, $G_i \equiv 1\{r = i\}$
- ▶ There are now R-1, λ parameters
- The probability matrix will be an RxR matrix
- Consider R=3:

	$G_0 = 1$	$G_1 = 1$	$G_2 = 1$
$\overline{I=0}$ $I=1$	p_0^0 p_0^1	p_1^0 p_1^1	p_2^0 p_2^1
<i>I</i> = 2	p_0^2	p_1^2	p_2^2

Generalizing to R > 2

▶ The likelihood function now becomes:

$$L(\beta, \sigma, \rho, \lambda) = \left[f_0(\varepsilon_{i0t}) \lambda_0 \rho_0^0 + f_1(\varepsilon_{i0t}) \lambda_1 \rho_0^1 + f_2(\varepsilon_{i0t}) (1 - \lambda_0 - \lambda_1) \rho_0^2 \right]^{G_0} \cdot \left[f_0(\varepsilon_{i1t}) \lambda_0 \rho_1^0 + f_1(\varepsilon_{i1t}) \lambda_1 \rho_1^1 + f_2(\varepsilon_{i1t}) (1 - \lambda_0 - \lambda_1) \rho_1^2 \right]^{G_1} \cdot \left[f_0(\varepsilon_{i2t}) \lambda_0 \rho_2^0 + f_1(\varepsilon_{i2t}) \lambda_1 \rho_2^1 + f_2(\varepsilon_{i2t}) (1 - \lambda_0 - \lambda_1) \rho_2^2 \right]^{G_2}$$

Baseline Values for Simulation (R = 3)

► Unless otherwise stated the values of each parameter in question will be as follows:

Parameter
Simulations in each=200
Drivers =275
Time Periods $=10$
Regimes $=3$
$\sigma_0 = \sigma_1 = \sigma_2 = 1$
$E(SPI_0) = E(SPI_1) = E(SPI_2) = 0$
$Var(SPI_0) = Var(SPI_1) = Var(SPI_2) = 1$
$Cov(SPI_j, SPI_k) = 0$
$\beta_0^0 = 10$, $\beta_0^1 = 20$, $\beta_0^2 = 35$
$\beta_1^0 = -1, \beta_1^1 = -2, \ \beta_1^2 = -3$

Misclassification Plot R = 3

Figure 2: Increasing Misclassification R=3

Conclusion

- MLE method is robust to misclassification
 - but converges less often with more regimes
 - better ways to specify function or calculate standard errors?
- ► How best to sell results?
- Regressions using real data require many regimes
 - OLS regressions suggest promising results

Misclassification 2 Beta 0

Figure 3: Changing STN of Hours

Misclassification 2 Sigma

Figure 4: Changing STN of Hours

Misclassification 3 Beta 0

Figure 5: Changing STN of Hours

Misclassification 3 Sigma

Figure 6: Changing STN of Hours

Noise to Signal Ratio of Hours

► Focus on increasing the signal to noise ratio symmetrically across the two regimes

$$ightharpoonup STN = \frac{E(y_r)}{\sigma_r}$$

Correlation of SPI Shocks

- ▶ Increase correlation between SPI variables
 - ► Increase from 0 to 0.9

Figure 8: Changing Correlation of Drought Shocks

Difference across Regime Responses

- $\beta_1^0 = 0$
- \triangleright $\beta_1^{\bar{1}}$ ranges from 0 to 2

Figure 9: Regime Response Heterogeneity

Noise to Signal Ratio of Hours (R = 3)

▶ Same idea as before, but three regimes now

Figure 10: Changing STN of Hours

Correlation of Drought Shocks (R = 3)

- ▶ Increase correlation between drought variables
 - ► Increase from 0 to 0.9

Figure 11: Changing Correlation of Drought Shocks, R=3

Difference across Regime Responses (R = 3)

Figure 12: Changing Regime Response Heterogeneity, R=3

Misclassification Procedure

► The misclassification matrix is a "jittered" matrix that introduces misclassification to the drivers after their memberships have already been chosen.

Two Regimes STN Sigma

Figure 14: Two Regimes STN Sigma

Back

Two Regimes STN Beta 0

Figure 15: Two Regimes STN β_0

Back

Two Regimes Drought Correlation Sigma

Figure 16: Two Regimes Drought Correlation Sigma

Two Regimes Drought Correlation Beta 0

Figure 17: Two Regimes Drought Correlation Beta 0

Back

Two Regimes Response Sigma

Figure 18: Two Regimes Response Sigma

Two Regimes Response Beta 0

Figure 19: Two Regimes Response Sigma

Three Regimes STN Sigma

Figure 20: Three Regimes STN Sigma

Back

Three Regimes STN Beta 0

Figure 21: Three Regimes STN β_0

Three Regimes Drought Correlation Sigma

Three Regimes Drought Correlation Beta 0

Three Regimes Response Sigma

Figure 24: Three Regimes Response Sigma

Three Regimes Response Beta 0

Figure 25: Three Regimes Response Sigma

OLS Regressions on Region

	Parameter Parameter	Estimates Std. Err.	T-stat	P-value	Lower CI	Upper CI
region_class_Central	74.024	0.7525	98.372	0.0000	72.549	75.499
region_class_East	69.941	0.8790	79.570	0.0000	68.219	71.664
region_class_North	63.988	1.1560	55.354	0.0000	61.723	66.254
region_class_West	74.381	0.7921	93.902	0.0000	72.828	75.933
region_class_Central:lagged_Central	0.1891	0.0584	3.2357	0.0012	0.0746	0.3037
region_class_East:lagged_East	0.1619	0.0529	3.0634	0.0022	0.0583	0.2655
region_class_North:lagged_North	0.1621	0.0927	1.7485	0.0804	-0.0196	0.3437
region_class_West:lagged_West	0.1224	0.0551	2.2221	0.0263	0.0144	0.2303

Figure 26: Regression Results using SAP Region

MLE Estimates on Region

▶ Unavailable as MLE does not converge.