LGT8XM GENERAL WORKING REGISTER

	7		0	Addr.	
GENERAL WORKING		R0		0x00	
		R1		0x01	
		R2		0x02	
		•••			
	F	R13		0x0D	
	F	R14		0x0E	
	F	R15		0x0F	
	F	₹16		0x10	
	F	R17		0x11	
R E G I S T E R	F	R26		0x1A	X Register Low Byte
	F	R27		0x1B	X Register High Byte
	F	R28		0x1C	Y Register Low Byte
	F	R29		0x1D	Y Register High Byte
	F	R30		0x1E	Z Register Low Byte
	F	R31		0x1F	Z Register High Byte

Most of the instructions have direct access to all of the general working registers, and most of them are also single-cycle instructions. As shown in the figure above, each register corresponds to the address of a data storage space, and these general working registers are mapped to the data storage space. These registers only really exist in SRAM, but this unified mapping storage organization gives them a lot of flexibility. The X/Y/Z register can be indexed as a pointer to any general purpose register.

X/Y/Z REGISTER

Registers R26...R31 can be combined in pairs to form three 16-bit registers. These three 16-bit registers are mainly used as address pointers for indirect addressing access. The X/Y/Z registers are structured as follows:

These registers are used as fixed offset, auto-increment, and autodecrement address pointers in different addressing modes. See the Instruction Description section for details.