

Figura 1.1.9 Múltiplos escalares de un vector a.

vamos a considerar que dos vectores son *iguales* si tienen igual tamaño, dirección y sentido. Cuando el extremo inicial de los vectores se encuentra en el origen, hablamos de *vectores fijos*. Cuando el extremo inicial de los vectores se encuentra en cualquier otro punto, entonces diremos que tenemos *vectores libres* o simplemente *vectores*.

La multiplicación de vectores por un escalar también tiene una interpretación geométrica. Si α es un escalar y ${\bf a}$ un vector, definimos $\alpha {\bf a}$ como un vector cuya longitud es $|\alpha|$ veces la longitud de ${\bf a}$ y que tiene el mismo sentido que ${\bf a}$ si $\alpha>0$ y sentido opuesto si $\alpha<0$. La Figura 1.1.9 muestra varios ejemplos.

Basándonos en los triángulos semejantes, determinamos que si ${\bf a}=(a_1,a_2,a_3)$ y α es un escalar, entonces

$$\alpha \mathbf{a} = (\alpha a_1, \alpha a_2, \alpha a_3).$$

Es decir, la definición geométrica coincide con la algebraica.

Dados dos vectores \mathbf{a} y \mathbf{b} , ¿cómo representamos el vector $\mathbf{b} - \mathbf{a}$ geométricamente?, es decir, ¿cuál es la geometría de la resta de vectores? Puesto que $\mathbf{a} + (\mathbf{b} - \mathbf{a}) = \mathbf{b}$, vemos que $\mathbf{b} - \mathbf{a}$ es el vector que hay que sumar a \mathbf{a} para obtener \mathbf{b} . En vista de esto, podemos concluir que $\mathbf{b} - \mathbf{a}$ es un vector con el mismo tamaño y paralelo al segmento dirigido que comienza en el punto final de \mathbf{a} y termina en el punto final de \mathbf{b} cuando \mathbf{a} y \mathbf{b} parten del mismo punto (véase la Figura 1.1.10).

Figura 1.1.10 Geometría de la resta de vectores.

Ejemplo 4

Sean ${\bf u}$ y ${\bf v}$ los vectores mostrados en la Figura 1.1.11. Dibujar los vectores ${\bf u}+{\bf v}$ y $-2{\bf u}$. ¿Cuáles son sus componentes?

Figura 1.1.11 Determinar $\mathbf{u} + \mathbf{v} \ \mathbf{y} - 2\mathbf{u}$.