

WEST LAKE CYBERSECURITY CONFERENCE

大数据交易与处理中的数据脱敏技术研究

井」 绀 玩

CONTENTS 日 录

PART 01

数据脱敏指标

III PART 02

基于失真的数据脱敏

Q PART 03

基于加密的数据脱敏

PART 04

商业脱敏系统方案

数据脱敏的有效性从可逆性体现,数据方法可通过变换参数和变换偏移值体现

数据脱敏的有,得知部分初始数据、或可逆的脱 多数和变换偏移值体现 敏方法、或脱敏使用的伪随机数 生成器及种子,可推演出原始数

例: $y_i = x_i + constant$

 $y_i = f(x_i)$

 $y_i = x_i + random_number$

可逆性

偏移值

部分知 识可逆

不可逆

绝对值

相对值

常量

随机值

数据脱敏的有效性从可逆性体现,数据方法可通过变换参数和变换偏移值体现

数据脱敏的有效性从可逆性体现,数据方法可通过变换参数和变换偏移值体现

基于失真的数据脱敏方法

- 最终用户关注数据的聚合结果,不关注个体数据
 - 聚合结果: 患某种疾病的人数
 - 个体数据:某个病人患该疾病
- 问题: 提取聚合结果的时候可能披露个体数据
 - 患某种疾病的人数为N
 - · 病人名字不为A, 患某种疾病的病人的人数为M
- 基于失真的数据脱敏技术: 在破坏个体隐私数据的基础上,不影响数据的聚合结果
 - 阻塞
 - 随机化

基于失真的数据脱敏方法:泛化

- 对原始数据不引入虚假噪声, 仅泛化处理
 - 典型方法1: 离散化
 - 属性值被离散化到各个区间
 - 区间大小不能等长
 - 使用区间作为属性来参与运算
 - 如: 张三的年龄为25岁,使用区间[20,30]表征张三的年龄
 - 典型方法2: 使用"?"替代数据中的某些属性
- 同一区间内的值表征形式一致, 脱敏后聚合准确率低
- 不同应用需要设计特定算法对处理后的数据进行处理

基于失真的数据脱敏方法: 随机化

- 随机化
 - 实际数据: X_i
 - 使用 $x_i + r$ r是符合某个分布的随机值
 - 均匀分布
 - r均匀分布于[$-\alpha$, $+\alpha$],平均值为0
 - 高斯分布
 - r 符合高斯分布
 - 均值 μ (r) 为0
 - 标准方差为 σ

脱敏后的源数据分布重构

• 定义:

- •原始数据值: X_1 , X_2 , ···, X_n
- 随机失真变量: *y*₁, *y*₂, …, *y*_n
- 失真样本: X_1+Y_1 , X_2+Y_2 , ···, X_n+Y_n
- F_Y : 随机失真变量 y_i 的累计分布函数CDF
- F_X : 原始数据值 X_i 的累计分布函数CDF

• 重构问题:

- •给定失真样本 $(x_1+y_1, \dots, x_n+y_n)$, F_Y
- 估算 F_X

脱敏后的源数据分布重构算法

- (1) $f_X^0 := \text{Uniform distribution}$
- (2) j := 0 // Iteration number repeat

(3)
$$f_X^{j+1}(a) := \frac{1}{n} \sum_{i=1}^n \frac{f_Y(w_i - a) f_X^j(a)}{\int_{-\infty}^{\infty} f_Y(w_i - z) f_X^j(z) dz}$$

(4) j := j + 1until (stopping criterion met)

使用贝叶斯定律运算 F_X :

- 1.初始化f(x,0):均匀分布
- 2.自j=0到终止条件
- 3.根据f(x,j)和 F_Y 计算f(x,j+1)
- 4.满足条件终止,得到 F_X

终止条件:

- ·1. 计算f(x, j).
- 2. 当f(x, j+1)与f(x, j) 之间的差值非常小时

脱敏后的源数据分布重构实验

实验结果表明: 重构后的数据分布与原始数据分布基本一致,即使随机数据样本分布与原始数据相差甚远

原始数据 随机数据 重构分布

随机化数据脱敏总结

- 通过添加随机噪声扰乱失真敏感数据
 - 随机数必须随机! 分布必须准确!
- 原始值未知,以保护数据敏感信息
- 数据脱敏后,能够准确获得聚合分类结果(支持决策树等)
- 有实验认为: 在高置信度的情况下, 高斯分布的随机噪声比均匀分布效果好
- 其他相关研究
 - 期望最大化(Expectation Maximization)算法

基于加密的数据脱敏

- 同态加密算法:
 - A way to delegate processing of your data, without giving away access to it. (Craig Gentry)
 - •他人可对加密数据进行处理,但处理过程中不会泄露原始数据
- 基于同态加密的数据脱敏技术:
 - 用户将数据进行同态加密后,提交给数据中心存储
 - •数据中心需要对数据进行分析处理时,可在不知道用户数据的前提下正确处理数据

基于加密的数据脱敏

- 同态加密算法:
 - A way to delegate processing of your data, without giving away access to it. (Craig Gentry)
 - •他人可对加密数据进行处理,但处理过程中不会泄露原始数据
- 基于同态加密的数据脱敏技术:
 - 用户将数据进行同态加密后,提交给数据中心存储
 - •数据中心需要对数据进行分析处理时,可在不知道用户数据的前提下正确处理数据

基于加密的数据脱敏: 同态加密

· 密钥生成: key

• 加密函数: 加密用户数据, 生成密文

• 评估函数: 在给定数据处理函数f下,对密文进行操作,使得结果相当于用户用密钥key对f(data)进行加密

· 解密函数: 用于获取处理结果f(data)

C = Encrypt (key, data)

Function f()

$$C' = f(C)$$

= Encrypt (key, f(data))

f(data) = Decrypt (key, C')

基于加密的数据脱敏:同态加密

- 全同态加密:
 - 支持任意给定的数据处理函数f, 脱敏后的数据可满足任意数据处理需求
 - 开销大,难以满足实际应用
- 部分同态加密:
 - 支持特定的数据处理函数f, 即脱敏后的数据只能满足特定的数据处理需求
 - 开销小, 易实现, 已可在实际应用中使用

基于加密的数据脱敏:同态加密

- 全同态加密:
 - 支持任意给定的数据处理函数f, 脱敏后的数据可满足任意数据处理需求
 - 开销大,难以满足实际应用
- 部分同态加密:
 - 支持特定的数据处理函数f, 即脱敏后的数据只能满足特定的数据处理需求
 - 开销小, 易实现, 已可在实际应用中使用

数据脱敏商用解决方案

- IBM InfoSphere Optim数据脱敏
- Oracle数据脱敏
- Informatica数据脱敏
- 苹果的差分隐私保护

数据脱敏:IBM InfoSphere Optim

数据脱敏:IBM InfoSphere Optim

变形后数据

Customers Table

Cust ID	Name	Street
10000	Auguste Renoir	Mars23
10001	Claude Monet	Venus24
10002	Pablo Picasso	Saturn25

原始数据

Customers Table

Cust ID	Name	Street
08054	Alice Bennett	2 Park Blvd
19101	Carl Davis	258 Main
27645	Elliot Flynn	96 Avenue

班 等 持 参 照 完 整 性

Orders Table

Cust ID	Item #	Order Date
10002	80-2382	20 June 2004
10002	86-4538	10 October 2005

Orders Table

Cust ID	Item #	Order Date
27645	80-2382	20 June 2004
27645	86-4538	10 October 2005

数据脱敏:Oracle

- 多种掩码技术
 - •混合掩码、基于条件的掩码、可重复掩码、打乱、加密、随机化等

数据脱敏: Informatica

- 多种脱敏技术
 - •打乱编码ID、替换名称、常量替换、信用卡掩码技术

访问审计系统

数据脱敏:苹果差分隐私技术

差分隐私,通过 laplace 和指数两种机制添加噪声,目标是做数据挖掘前先进行处理。苹果的方案,是在手机本地加入噪声后再上传,一般统计的是输入法的新词汇,表情包的使用状况,运动相关数据等。

数据脱敏:苹果差分隐私技术Privatization

THANKYOU

谢娜和