ПЛН20

ΕΝΟΤΗΤΑ 2: ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ

Μάθημα 2.3: Νόμοι Προτασιακής Λογικής και Επαγωγή στην Πολυπλοκότητα των Τύπων

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β.Θεωρία

- 1. Νόμοι Προτασιακής Λογικής
 - 1. Εύρεση Ταυτολογικά ισοδύναμου τύπου με δεδομένους συνδέσμους.
- 2. Επαγωγή στην Πολυπλοκότητα των Τύπων
 - 1. Επαγωγή στην Πολυπλοκότητα των Τύπων
 - 2. Επαγωγή στην Πολυπλοκότητα vs Επαγωγή στους Φυσικούς
 - 3. Πλήρη Σύνολα Συνδέσμων

Γ.Ασκήσεις

- 1. Ασκήσεις Κατανόησης
- 2. Ερωτήσεις
- 3. Εφαρμογές

Α. Σκοπός του Μαθήματος

Επίπεδο Α

- Νόμοι της Προτασιακής Λογικής
- Εύρεση Ταυτολογικά Ισοδύναμου Τύπου που χρησιμοποιεί δεδομένους συνδέσμους
- > Πλήρη Σύνολα Συνδέσμων

Επίπεδο Β

> Επαγωγή στην Πολυπλοκότητα των Τύπων

Επίπεδο Γ

> (-)

1. Νόμοι Προτασιακής Λογικής

Έχουμε 11 νόμους της προτασιακής λογικής. Κάθε νόμος έχει δύο διαφορετικές χρήσεις. Π.χ. ο 1ος νόμος αντικατάστασης είναι ο ακόλουθος:

$$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$$

- 1. Οποιοσδήποτε τύπος της μορφής $(\varphi \to \psi)$ μπορεί να μετατραπεί στον ταυτολογικά ισοδύναμο τύπο: $(\neg \varphi \lor \psi)$ και αντίστροφα.
 - Π.χ. ο τύπος $((p_1 \lor p_2) \to \neg p_2)$ είναι ταυτολογικά ισοδύναμος τύπος με τον $(\neg (p_1 \lor p_2) \lor \neg p_2)$.

Άρα χρησιμοποιούμε τους νόμους για να μετατρέψουμε τύπους σε άλλους τύπους που είναι ταυτολογικά ισοδύναμοι.

2. Τα δύο μέρη της ισοδύναμίας έχουν τον ίδιο πίνακα αλήθειας:

φ	ψ	$\varphi \to \psi$	¬φ V ψ	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
A	A	A	A	A
A	Ψ	Ψ	Ψ	A
Ψ	A	A	A	A
Ψ	Ψ	A	A	A

άρα ο νόμος είναι ταυτολογία! Ισχύει ότι όλοι οι νόμοι είναι ταυτολογίες

1. Νόμοι Προτασιακής Λογικής

Αποκλεισμός Τρίτου

11

	Όνομα Νόμου	Διατύπωση
1	Αντιμεταθετικότητα	$\varphi \lor \psi \leftrightarrow \psi \lor \varphi$ $\varphi \land \psi \leftrightarrow \psi \land \varphi$
2	Προσεταιριστικότητα	$\varphi \wedge (\psi \wedge \chi) \leftrightarrow (\varphi \wedge \psi) \wedge \chi$ $\varphi \vee (\psi \vee \chi) \leftrightarrow (\varphi \vee \psi) \vee \chi$
3	Επιμεριστικότητα	$\varphi \lor (\psi \land \chi) \leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$ $\varphi \land (\psi \lor \chi) \leftrightarrow (\varphi \land \psi) \lor (\varphi \land \chi)$
4	Διπλή Άρνηση	$\neg\neg\varphi\leftrightarrow\varphi$
5	Άρνηση Συνεπαγωγής	$\neg(\varphi \rightarrow \psi) \leftrightarrow \varphi \land \neg \psi$
6	De Morgan	$\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$
7	Αντιθετοαναστροφή	$(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$
8	Εξαγωγή	$(\varphi \to (\psi \to \chi)) \leftrightarrow (\varphi \land \psi \to \chi)$
9	1 ^{ος} νόμος αντικατάστασης	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
10	2 ^{ος} νόμος αντικατάστασης	$(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

 $\varphi \lor \neg \varphi$

1. Νόμοι Προτασιακής Λογικής

- 1. Εύρεση Ταυτολογικά Ισοδύναμου Τύπου με Δεδομένους Συνδέσμους
- Συνήθης άσκηση: Μας δίνεται ένας τύπος και ζητείται να βρεθεί ένας ταυτολογικά ισοδύναμος τύπος που χρησιμοποιεί κάποιους συνδέσμους που μας δίνονται.
- Χρήσιμος θα φανεί ο ακόλουθος πίνακας:

Μετατροπή συνδέσμων	Χρήση του νόμου	Νόμος
Από → σε ∨ και αντίστροφα	1 ^{ος} νόμος αντικατάστασης	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
Από → σε ∧ και αντίστροφα	Νόμος άρνησης συνεπαγωγής	$\neg(\varphi \to \psi) \leftrightarrow \varphi \land \neg \psi$
Από ∨ σε ∧ και αντίστροφα	Νόμοι De Morgan	$\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$
Από ↔ σε Λ, →και αντίστροφα	2 ^{ος} νόμος αντικατάστασης	$(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

1. Νόμοι Προτασιακής Λογικής

1. Εύρεση Ταυτολογικά Ισοδύναμου Τύπου με Δεδομένους Συνδέσμους

ΠΑΡΑΔΕΙΓΜΑ 1: Να βρεθεί ταυτολογικά ισοδύναμος τύπος του τύπου:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

που χρησιμοποιεί μόνο τους σύνδεσμους {¬, →}

Λύση: Στον τύπο:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο άρνησης συνεπαγωγής:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο διπλής άρνησης:

$$\neg(p_1 \to p_2) \to \neg(\neg \neg p_1 \lor p_2)$$

Εφαρμόζω το 1° νόμο αντικατάστασης:

$$\neg (p_1 \to p_2) \to \neg (\neg p_1 \to p_2)$$

ΠΑΡΑΔΕΙΓΜΑ 2: Να βρεθεί ταυτολογικά ισοδύναμος τύπος του τύπου:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

που χρησιμοποιεί μόνο τους σύνδεσμους {¬,∨} Λύση: Στον τύπο:

$$(p_1 \land \neg p_2) \to \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο διπλής άρνησης:

$$\neg\neg(p_1 \land \neg p_2) \rightarrow \neg(p_1 \lor p_2)$$

Εφαρμόζω το νόμο De Morgan:

$$\neg(\neg p_1 \lor \neg \neg p_2) \to \neg(p_1 \lor p_2)$$

Εφαρμόζω το νόμο διπλής άρνησης

$$\neg(\neg p_1 \lor p_2) \to \neg(p_1 \lor p_2)$$

Εφαρμόζω τον 1° νόμο αντικατάστασης:

$$\neg\neg(\neg p_1 \lor p_2) \lor \neg(p_1 \lor p_2)$$

Εφαρμόζω τον νόμο διπλής άρνησης:

$$(\neg p_1 \lor p_2) \lor \neg (p_1 \lor p_2)$$

1. Νόμοι Προτασιακής Λογικής

1. Εύρεση Ταυτολογικά Ισοδύναμου Τύπου με Δεδομένους Συνδέσμους

ΠΑΡΑΔΕΙΓΜΑ 3: Να βρεθεί ταυτολογικά ισοδύναμος τύπος του τύπου:

$$(p_1 \leftrightarrow p_2) \rightarrow (p_1 \lor p_2)$$

που χρησιμοποιεί μόνο τους σύνδεσμους {¬, →}

Λύση: Έχουμε διαδοχικά:

$$\begin{array}{l} (p_1 \leftrightarrow p_2) \rightarrow (p_1 \lor p_2) \\ \equiv \left((p_1 \rightarrow p_2) \land (p_2 \rightarrow p_1)\right) \rightarrow (p_1 \lor p_2) \\ \equiv \left((p_1 \rightarrow p_2) \land \neg \neg (p_2 \rightarrow p_1)\right) \rightarrow (p_1 \lor p_2) \\ \equiv \left((p_1 \rightarrow p_2) \land \neg \neg (p_2 \rightarrow p_1)\right) \rightarrow (p_1 \lor p_2) \\ \equiv \neg \left((p_1 \rightarrow p_2) \rightarrow \neg (p_2 \rightarrow p_1)\right) \rightarrow (p_1 \lor p_2) \\ \equiv \neg \left((p_1 \rightarrow p_2) \rightarrow \neg (p_2 \rightarrow p_1)\right) \rightarrow (p_1 \lor p_2) \\ \equiv \neg \left((p_1 \rightarrow p_2) \rightarrow \neg (p_2 \rightarrow p_1)\right) \rightarrow (\neg \neg p_1 \lor p_2) \\ \equiv \neg \left((p_1 \rightarrow p_2) \rightarrow \neg (p_2 \rightarrow p_1)\right) \rightarrow (\neg \neg p_1 \lor p_2) \\ \equiv \neg \left((p_1 \rightarrow p_2) \rightarrow \neg (p_2 \rightarrow p_1)\right) \rightarrow (\neg \neg p_1 \lor p_2) \\ \equiv \neg \left((p_1 \rightarrow p_2) \rightarrow \neg (p_2 \rightarrow p_1)\right) \rightarrow (\neg p_1 \rightarrow p_2) \\ \end{array}$$

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

1. Επαγωγή στην Πολυπλοκότητα

Όταν μας ζητείται να αποδείξουμε ότι μια πρόταση ισχύει για κάθε προτασιακό τύπο, εφαρμόζουμε <u>επαγωγή στην πολυπλοκότητα (δομή) των τύπων:</u>

• Τα βήματα της επαγωγής στην πολυπλοκότητα είναι:

Αποδεικνύουμε ότι ΠΡΟΤΑΣΗ(φ)

- <u>Βάση Επαγωγής:</u> Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p, δηλαδή ότι ισχύει η ΠΡΟΤΑΣΗ(p)
 - Κάνουμε απόδειξη ότι ισχύει η πρόταση για μια προτασιακή μεταβλητή.
- Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ,ψ, δηλαδή ότι ισχύουν ΠΡΟΤΑΣΗ (ϕ) , ΠΡΟΤΑΣΗ (ψ)
- <u>Επαγωγικό Βήμα:</u> Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι ισχύουν:
 - $\Pi POTA\Sigma H(\neg \varphi)$
 - $\Pi POTA\Sigma H(\varphi \vee \psi)$
 - $\Pi POTA\Sigma H(\varphi \wedge \psi)$
 - $\Pi POTA\Sigma H(\varphi \rightarrow \psi)$
 - $\Pi POTA\Sigma H(\varphi \leftrightarrow \psi)$

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

1. Επαγωγή στην Πολυπλοκότητα

ΠΑΡΑΔΕΙΓΜΑ 1: Δείξτε ότι κάθε προτασιακός τύπος έχει ίδιο αριθμο αριστερών και δεξιών παρενθέσεων.

Λύση:

- <u>Βάση Επαγωγής:</u> Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p, δηλαδή ότι ο τύπος p έχει ίσες αριστερές και δεξιές παρενθέσεις
 - Απόδειξη: Ο τύπος p έχει 0 αριστερές και 0 δεξιές παρενθέσεις. Συνεπώς ισχύει.
- Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ , ψ , δηλαδή ότι ισχύει $L_{\varphi}=R_{\varphi}$ και $L_{\psi}=R_{\psi}$. (Συμβολίζουμε με L_{x} το πλήθος των αριστερών παρενθέσεων του τύπου x, και με R_{x} το πλήθος των δεξιών παρενθέσεων του τύπου x)
- Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι:
 - Ο τύπος $(\neg \varphi)$ έχει ίσο αριθμό αριστερών και δεξιών παρενθέσεων. Πράγματι ο τύπος $(\neg \varphi)$ έχει $L_{\varphi}+1$ αριστερές παρενθέσεις και $R_{\varphi}+1$ δεξιές παρενθέσεις. Από επαγωγική υπόθεση έχω $L_{\varphi}=R_{\varphi}$ άρα και $L_{\varphi}+1=R_{\varphi}+1$
 - Ο τύπος $(\varphi \lor \psi)$ έχει ίσο αριθμό αριστερών και δεξιών παρενθέσεων. Πράγματι ο τύπος $(\varphi \lor \psi)$ έχει $L_{\varphi} + L_{\psi} + 1$ αριστερές παρενθέσεις και $R_{\varphi} + R_{\psi} + 1$ δεξιές παρενθέσεις. Από επαγωγική υπόθεση έχω $L_{\varphi} = R_{\varphi}$ και $L_{\psi} = R_{\psi}$, άρα και $L_{\varphi} + L_{\psi} + 1 = R_{\varphi} + R_{\psi} + 1$.
 - Η απόδειξη για τους τύπους $(\varphi \land \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ είναι όμοια με την $(\varphi \lor \psi)$.

www.psounis.gr

Β. Θεωρία

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

1. Επαγωγή στην Πολυπλοκότητα

ΠΑΡΑΔΕΙΓΜΑ 2: Δείξτε ότι κάθε προτασιακός τύπος μπορεί να μετατραπεί σε έναν ισοδύναμο που δεν χρησιμοποιεί τους συνδέσμους $Λ, \rightarrow, \leftrightarrow$ Λύση:

- <u>Βάση Επαγωγής:</u> Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p.
 - Απόδειξη: Ο τύπος p ήδη δεν χρησιμοποιεί κανέναν από τους δεδομένους συνδέσμους.
- <u>Επαγωγική Υπόθεση:</u> Υποθέτουμε ότι ισχύει για δύο τύπους φ, ψ , δηλαδή ότι οι τύποι φ, ψ , μπορούν να γραφούν χωρίς χρήση των συνδέσμων.
- Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι:
 - Ο τύποι (¬φ), (φ ∨ ψ), ήδη δεν χρησιμοποιούν κανέναν από τους δεδομένους συνδέσμους.
 - Ο τύπος (φ ∧ ψ) γράφεται από τον νόμο διπλής άρνησης ¬¬(φ ∧ ψ) και έπειτα από τον νόμο De Morgan γράφεται: ¬(¬φ ∨ ¬ψ)
 - Ο τύπος (φ → ψ) γράφεται από τον 1° νόμο αντικατάστασης (¬φ ∨ ψ)
 - Ο τύπος $(\varphi \leftrightarrow \psi)$ γράφεται από τον 2° νόμο αντικατάστασης $(\varphi \to \psi)$ Λ $(\psi \to \varphi)$, έπειτα από τον 1° νόμο αντικατάστασης $(\neg \varphi \lor \psi)$ Λ $(\neg \psi \lor \varphi)$, έπειτα από τον νόμο διπλής άρνησης: $\neg \neg ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$ και τέλος από τον νόμο De Morgan $\neg (\neg (\neg \varphi \lor \psi) \lor \neg (\neg \psi \lor \varphi))$

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

2. Επαγωγή στην Πολυπλοκότητα νε Επαγωγή στους Φυσικούς

Είναι σημαντικό να μπορούμε να διακρίνουμε πότε κάνουμε επαγωγή στην πολυπλοκότητα και πότε κάνουμε επαγωγή στους φυσικούς:

- Κάνουμε επαγωγή στην πολυπλοκότητα, όταν μας ζητείται να αποδείξουμε μία πρόταση που ισχύει για όλους τους προτασιακούς τύπους.
 - Π.χ. κάθε τύπος έχει ίσο πλήθος αριστερών και δεξιών παρενθέσεων
 - Π.χ. κάθε τύπος μπορεί να μετατραπεί σε έναν τύπο που χρησιμοποιεί τους συνδέσμους: ¬,∨
- Κάνουμε επαγωγή στους φυσικούς, όταν μας ζητείται να αποδείξουμε μία πρόταση που μεταβάλλεται ανάλογα με την τιμή ενός φυσικού αριθμού η.
 - Π.χ. Να αποδειχθεί ο γενικευμένος κανόνας De Morgan:

$$\neg(\varphi_1 \lor \varphi_2 \lor \dots \lor \varphi_n) = \neg\varphi_1 \land \neg\varphi_2 \land \dots \land \neg\varphi_n$$

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

3. Πλήρη Σύνολα Συνδέσμων

Είδαμε σε προηγούμενο παράδειγμα ότι κάθε προτασιακός τύπος μπορεί να μετατραπεί σε έναν ταυτολογικά ισοδύναμό που δεν χρησιμοποιεί τους συνδέσμους Λ , \rightarrow , \leftrightarrow . Συνεπώς κάθε προτασιακός τύπος γράφεται ισοδύναμα μόνο με συνδέσμους από το σύνολο: $\{\neg, \lor\}$

ΟΡΙΣΜΟΣ:

Ένα σύνολο συνδέσμων θα λέγεται πλήρες σύνολο συνδέσμων (ή επαρκές σύνολο συνδέσμων) ανν κάθε προτασιακός τύπος μπορεί να μετατραπέι σε έναν ισοδύναμό που χρησιμοποιεί μόνο συνδέσμους από το δεδομένο σύνολο.

ПАРАДЕІГМАТА:

- Το σύνολο {¬,∨} είναι πλήρες.
- Το σύνολο {¬,Λ} είναι πλήρες.
- Το σύνολο {V,Λ} δεν είναι πλήρες.
- Το σύνολο {→, ↔} δεν είναι πλήρες.

Εμπειρικά για να είναι ένα σύνολο συνδέσμων πλήρες, απαιτείται να υπάρχει σε αυτό το ¬ και τουλάχιστον ένας ακόμη διμελής σύνδεσμος.

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

3. Πλήρη Σύνολα Συνδέσμων

<u>Για να δείξω ότι ένα σύνολο συνδέσμων είναι πλήρες</u> κάνω επαγωγή στην πολυπλοκότητα των τύπων:

ΠΑΡΑΔΕΙΓΜΑ: Δείξτε ότι το σύνολο συνδέσμων $\{\neg, \rightarrow\}$ είναι πλήρες

Λύση: Το δείχνουμε με επαγωγή στην πολυπλοκότητα των τύπων:

- Βάση Επαγωγής: Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p.
 - Απόδειξη: Ο τύπος *p* ήδη δεν χρησιμοποιεί συνδέσμους.
- Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ, ψ, δηλαδή ότι οι τύποι φ, ψ, μπορούν να γραφούν μόνο με τους δεδομένους συνδέσμους.
- ightharpoonup Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι:
 - Ο τύποι $(\neg \varphi)$, $(\varphi \to \psi)$, χρησιμοποιούν ήδη μόνο τους δεδομένους συνδέσμους.
 - Ο τύπος $(\varphi \lor \psi)$ γράφεται από τον νόμο διπλής άρνησης $(\neg \neg \varphi \lor \psi)$ και από τον 1° νόμο αντικατάστασης: $(\neg \varphi \to \psi)$
 - Ο τύπος $(\varphi \land \psi)$ γράφεται από τον νόμο διπλής άρνησης: $(\varphi \land \neg \neg \psi)$ και από τον νόμο άρνησης συνεπαγωγής: $\neg(\varphi \to \neg \psi)$
 - Ο τύπος $(\varphi \leftrightarrow \psi)$ γράφεται από τον 2° νόμο αντικατάστασης $(\varphi \to \psi)$ Λ $(\psi \to \varphi)$, έπειτα από τον νόμο διπλής άρνησης $(\varphi \to \psi)$ Λ $\neg \neg (\psi \to \varphi)$, και έπειτα από τον νόμο άρνησης συνεπαγωγής: $\neg ((\varphi \to \psi) \to \neg (\psi \to \varphi))$,.

2. Επαγωγή στην Πολυπλοκότητα των Τύπων

3. Πλήρη Σύνολα Συνδέσμων

<u>Για να δείξω ότι ένα σύνολο συνδέσμων ΔΕΝ είναι πλήρες</u> κατασκευάζω έναν τύπο που δεν μπορεί να εκφραστεί χρησιμοποιώντας τους συνδέσμους του συνόλου.

ΠΑΡΑΔΕΙΓΜΑ: Δείξτε ότι το σύνολο συνδέσμων {ν,Λ} δεν είναι πλήρες

Λύση: Μελετάω τον προτασιακό τύπο: $\neg p$.

- Αν p=Α, τότε ο τύπος είναι ψευδής
- Αν p=Ψ, τότε ο τύπος είναι αληθής

Αντίθετα οποιοσδήποτε προτασιακός τύπος χρησιμοποιεί εμφανίσεις της p και τους συνδέσμους v, Λ θα είναι:

- Αν p=A, τότε η παράσταση θα είναι πάντα αληθής (παράσταση που χρησιμοποιεί μόνο ∨ και ∧ και μία αληθή μεταβλητή θα είναι σίγουρα αληθής)
- ightharpoonup Άρα θα έχει αντίθετη τιμή αλήθειας από αυτήν που έχει ο τύπος $\neg p$ (είναι ψευδής αν p=A).

Δ. Ασκήσεις Άσκηση Κατανόησης 1

Χρησιμοποιώντας τους νόμους της ΠΛ βρείτε τύπους που χρησιμοποιούν μόνο τους **συνδέσμους** {¬,∨} και είναι **ταυτολογικά ισοδύναμοι** με τους:

i)
$$\neg p \land (q \leftrightarrow r)$$

$$\neg p \land (q \leftrightarrow r)$$
 ii) $p \lor \neg (q \land r)$

Δ. Ασκήσεις Άσκηση Κατανόησης 2

Χρησιμοποιώντας τους νόμους της ΠΛ βρείτε τύπους που χρησιμοποιούν μόνο τους συνδέσμους $\{\neg, \rightarrow\}$ και είναι ταυτολογικά ισοδύναμοι με τους:

i)
$$\neg p \land (q \leftrightarrow r)$$

$$\neg p \land (q \leftrightarrow r)$$
 ii) $p \lor \neg (q \land r)$

Δ. Ασκήσεις Ερωτήσεις 1

Ποια από τα παρακάτω σύνολα συνδέσμων είναι πλήρη;

1.
$$\{\neg, \rightarrow\}$$

3.
$$\{\neg, \land\}$$

Έστω m(φ) είναι το πλήθος των εμφανίσεων μεταβλητών στον τύπο φ και n(φ) το πλήθος των εμφανίσεων διμελών συνδέσμων στον τύπο φ. Δείξτε ότι για κάθε προτασιακό τύπο φ ισχύει: m(φ)=n(φ)+1.

Να αποδειχθεί, για κάθε φυσικό αριθμό n≥2, ότι ισχύει η σχέση: $\neg(\varphi_1 \lor \varphi_2 \lor \dots \lor \varphi_n) = \neg\varphi_1 \land \neg\varphi_2 \land \dots \land \neg\varphi_n$

Να δείξετε ότι το σύνολο συνδέσμων: {¬,Λ} είναι πλήρες

Να δείξετε ότι κάθε προτασιακός τύπος μπορεί να μετατραπεί ταυτολογικά ισοδύναμο τύπο που δεν χρησιμοποιεί τους συνδέσμους: {∨, →, ↔}