Perfectly-Secure Asynchronous MPC for General Adversaries

Ashish Choudhury, Nikhil Pappu

INDOCRYPT 2020

$$y = f(x_1, \dots, x_n)$$

$$y = f(x_1, \dots, x_n)$$

$$y = f(x_1, \dots, x_n)$$

$$y = f(x_1, \dots, x_n)$$

Privacy

$$y = f(x_1, \dots, x_n)$$

- Privacy
- Correctness

$$y = f(x_1, \dots, x_n)$$

- Privacy
- Correctness
- Independence of Inputs

$$y = f(x_1, \dots, x_n)$$

- Privacy
- Correctness
- Independence of Inputs
- Guaranteed Output Delivery

$$y = f(x_1, \dots, x_n)$$

- Privacy
- Correctness
- Independence of Inputs
- Guaranteed Output Delivery
- •

- Privacy
- Correctness
- Independence of Inputs
- Guaranteed Output Delivery
- •

- Privacy
- Correctness
- Independence of Inputs
- Guaranteed Output Delivery
- •

- Privacy
- Correctness
- Independence of Inputs
- Guaranteed Output Delivery
- •

- Privacy
- Correctness
- Independence of Inputs
- Guaranteed Output Delivery
- •

Synchronous Model

• Message Delays $<\Delta$

- Message Delays $< \Delta$
- Synchronized Clocks

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

Asynchronous Model [BCG93]

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

Asynchronous Model [BCG93]

Unbounded

(finite) Delays

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

Asynchronous Model [BCG93]

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

Asynchronous Model [BCG93] P_2 P_4 P_3

Unbounded (finite) Delays

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

Asynchronous Model [BCG93] P_2 P_4 P_3

Unbounded (finite) Delays

- Message Delays $<\Delta$
- Synchronized Clocks
- Computation in Rounds

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

No Input Provision

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

• No Input Provision $f(x_1, x_2, \cdot, x_4)$

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

- No Input Provision $f(x_1, x_2, \cdot, x_4)$
- Worse Resilience

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

- No Input Provision $f(x_1, x_2, \cdot, x_4)$
- Worse Resilience
- Worse Communication and Computation (Known Protocols)

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

- No Input Provision $f(x_1, x_2, \cdot, x_4)$
- Worse Resilience
- Worse Communication and Computation (Known Protocols)
- Real-World Networks

- Message Delays $< \Delta$
- Synchronized Clocks
- Computation in Rounds

- No Input Provision $f(x_1, x_2, \cdot, x_4)$
- Worse Resilience
- Worse Communication and Computation (Known Protocols)
- Real-World Networks
- Responsiveness

$$\text{Most MPC protocols: } t < \frac{n}{k}$$

Most MPC protocols:
$$t<\frac{n}{k}$$
 Can be limiting...

Most MPC protocols: $t < \frac{n}{k}$ Can be limiting...

• Computational-Security

Can be limiting...

- Computational-Security
- Guaranteed Output Delivery

Most MPC protocols: $t < \frac{n}{k}$

Can be limiting...

- Computational-Security
- Guaranteed Output Delivery

$$t < 6/2 \implies t \le 2$$

Can be limiting...

Most MPC protocols:
$$t < \frac{n}{k}$$
 Can be limiting...

$$\mathcal{Z} = \{\{P_1, P_2, P_6\}, \{P_3, P_4\}, \{P_5\}\}$$
 [HM97]

- Computational-Security
- Guaranteed Output Delivery

$$t < 6/2 \implies t \le 2$$

Most MPC protocols: $t < \frac{n}{k}$ Can be limiting...

$$\mathcal{Z} = \{\{P_1, P_2, P_6\}, \{P_3, P_4\}, \{P_5\}\}$$
 [HM97]

• monotone, maximal

- Computational-Security
- Guaranteed Output Delivery

$$t < 6/2 \implies t \le 2$$

Most MPC protocols: $t < \frac{n}{k}$ Can be limiting...

$$\mathcal{Z} = \{\{P_1, P_2, P_6\}, \{P_3, P_4\}, \{P_5\}\}$$
 [HM97]

- monotone, maximal
- ullet Size possibly exp in n

- Computational-Security
- Guaranteed Output Delivery

$$t < 6/2 \implies t \le 2$$

Most MPC protocols:
$$t < \frac{n}{k}$$
 Can be limiting...

$$\mathcal{Z} = \{\{P_1, P_2, P_6\}, \{P_3, P_4\}, \{P_5\}\}$$
 [HM97]

- monotone, maximal
- Size possibly exp in n
- Increased flexibility

- Computational-Security
- Guaranteed Output Delivery

$$t < 6/2 \implies t \le 2$$

Most MPC protocols: $t < \frac{n}{k}$ Can be limiting...

- $\mathcal{Z} = \{\{P_1, P_2, P_6\}, \{P_3, P_4\}, \{P_5\}\}$ [HM97]
 - monotone, maximal
 - ullet Size possibly exp in n
- Increased flexibility
- Communication Complexity $|\mathcal{Z}|^{\mathcal{O}(1)}$ (Known Protocols)

- Computational-Security
- Guaranteed Output Delivery

$$t < 6/2 \implies t \le 2$$

- Computational-Security
- Guaranteed Output Delivery $t < 6/2 \implies t < 2$

Most MPC protocols:
$$t < \frac{n}{k}$$
 Can be limiting...

$$\mathcal{Z} = \{\{P_1, P_2, P_6\}, \{P_3, P_4\}, \{P_5\}\}$$
 [HM97]

- monotone, maximal
- Size possibly exp in n
- Increased flexibility
- Communication Complexity $|\mathcal{Z}|^{\mathcal{O}(1)}$ (Known Protocols)
- Computational Complexity Lower Bound $\Omega(|\mathcal{Z}|)$ [HM00]

• Computationally-Unbounded

• Computationally-Unbounded

Perfect-Security 0% 1

• Computationally-Unbounded

• Malicious (Byzantine)

• Computationally-Unbounded

• Message Scheduler

• Message Scheduler

Adversary $\mathcal{Z} = \{\ldots, Z_i, \ldots\}$

• Computationally-Unbounded

Perfect-Security 0% 🔔

• Malicious (Byzantine)

• Message Scheduler

Adversary $\mathcal{Z} = \{\ldots, Z_i, \ldots\}$

• Computationally-Unbounded

Perfect-Security 0% 🔔

• Message Scheduler

Adversary $\mathcal{Z} = \{\ldots, Z_i, \ldots\}$

Partyset \mathcal{P}

Requires $\mathcal{Q}^{(4)}$ [KSR02]

• Computationally-Unbounded

Perfect-Security 0% 🔔

• Message Scheduler

Adversary $\mathcal{Z} = \{\ldots, Z_i, \ldots\}$

• Computationally-Unbounded

Perfect-Security 0% 🔔

• Malicious (Byzantine)

• Message Scheduler

Adversary $\mathcal{Z} = \{\ldots, Z_i, \ldots\}$

Requires $\mathcal{Q}^{(4)}$ [KSR02]

• Computationally-Unbounded

Perfect-Security 0% 1

• Malicious (Byzantine)

• Message Scheduler

 $[x_1 \cdot x_2 + x_3 \cdot x_4]$ **Requires Interaction** $[x_2] [x_3]$

Computationally-Unbounded

Perfect-Security 0% 1

• Message Scheduler

Adversary $\mathcal{Z} = \{\ldots, Z_i, \ldots\}$

Perfect-Security 0% 1

• Malicious (Byzantine)

• Message Scheduler

Synchronous Model

Synchronous Model

• [HM97, HM00] Feasibility Results

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19]

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

Synchronous Model

Asynchronous Model

• [HM97, HM00] Feasibility Results • [KSR02]

- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

- [KSR02]
 - Perfect-Security Setting

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

- [KSR02]
 - Perfect-Security Setting
 - MSP-based AVSS Protocol

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

- [KSR02]
 - Perfect-Security Setting
 - MSP-based AVSS Protocol
 - AMPC Protocol

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

Asynchronous Model

- [KSR02]
 - Perfect-Security Setting
 - MSP-based AVSS Protocol
 - AMPC Protocol

• Our Work

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

- [KSR02]
 - Perfect-Security Setting
 - MSP-based AVSS Protocol
 - AMPC Protocol

- Our Work
 - Perfectly-Secure Additive SS-based ([Mau02]) **AVSS Protocol**

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

- ΓKSR021
 - Perfect-Security Setting
 - MSP-based AVSS Protocol
 - AMPC Protocol

- Our Work
 - Perfectly-Secure Additive SS-based ([Mau02]) **AVSS Protocol**
 - Perfectly-Secure AMPC Protocol

Synchronous Model

- [HM97, HM00] Feasibility Results
- [CDD+99, CDM00, FHM99, Mau02, SS99] Polynomial (in $|\mathcal{Z}|$) complexities
- [HT13, L013] Improved Efficiency
- Others...
 - Byzantine Agreement [FM98, AFM03]
 - Mixed Model [BFH+08, HMZ08]
 - Cryptographic Setting [KRS+18, SW19] etc...

- ΓKSR021
 - Perfect-Security Setting
 - MSP-based AVSS Protocol
 - AMPC Protocol

- Our Work
 - Perfectly-Secure Additive SS-based ([Mau02]) **AVSS Protocol**
 - Perfectly-Secure AMPC Protocol
 - ABA Protocol (Generalization of [CR93])

Player Elimination Framework [HMP00]

Non-robust sub-protocol

Player Elimination Framework [HMP00]

Example Execution

Player Elimination Framework [HMP00]

Example Execution

Partyset $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$

Player Elimination Framework [HMP00]

Example Execution

Partyset $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Conflict Set $\{P_1, P_2, P_7\}$

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Conflict Set

 $\{P_1,P_2,P_7\}$ Choice of Adversary

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Conflict Set

 $\{P_1,P_2,P_7\}$ Choice of Adversary

$$\mathcal{P} = \{P_3, P_4, P_5, P_6\}$$

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Conflict Set

 $\{P_1,P_2,P_7\}$ Choice of Adversary

$$\mathcal{P} = \{P_3, P_4, P_5, P_6\}$$
 \mathcal{Z} remains same

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Conflict Set

$$\{P_1,P_2,P_7\}$$
 Choice of Adversary

$$\mathcal{P} = \{P_3, P_4, P_5, P_6\}$$
 \mathcal{Z} remains same

$$\mathcal{P} \subseteq \{P_1, P_3\} \cup \{P_1, P_4\} \cup \{P_1, P_5, P_6\}$$

Player Elimination Framework [HMP00]

Example Execution

Partyset
$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$$

Adversary Structure satisfying $\mathcal{Q}^{(4)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

Conflict Set

 $\{P_1,P_2,P_7\}$ Choice of Adversary

$$\mathcal{P} = \{P_3, P_4, P_5, P_6\}$$
 \mathcal{Z} remains same

$$\mathcal{P} \subseteq \{P_1, P_3\} \cup \{P_1, P_4\} \cup \{P_1, P_5, P_6\}$$
 $\mathcal{Q}^{(3)}$ Fails

Dealer

Secret

S

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$s^{(1)}$$

$$+$$

$$s^{(2)}$$

$$S = s^{(3)}$$

$$P_1, P_2, P_3$$

$$P_2, P_3$$

$$P_5, P_6, P_7$$

$$\vdots$$

$$\vdots$$

$$s^{(3)} \rightarrow \text{ one-time pad}$$

$$Non-adversary sets$$

$$s^{(1)}$$

$$+$$

$$s^{(2)}$$

$$\vdots$$

$$s^{(3)} \rightarrow \text{ one-time pad}$$

$$S = s^{(3)}$$

$$\vdots$$

$$s^{(3)} \rightarrow \text{ one-time pad}$$

$$S = s^{(3)}$$

$$S = s^{$$

Agree on a common bit

Agree on a common bit

Agree on a common bit

• Perfectly-Secure

• Perfectly-Secure

• Generalization of [CR93]

• Perfectly-Secure

- Generalization of [CR93]
- Success Probability > 1/n

• Perfectly-Secure

- Generalization of [CR93]
- Success Probability > 1/nDepends on largest set in $\mathcal Z$

• Perfectly-Secure

- Generalization of [CR93]
- Success Probability > 1/n Depends on largest set in $\mathcal Z$

• Terminates with probability 1

• Perfectly-Secure

- Generalization of [CR93]
- Success Probability > 1/n Depends on largest set in ${\mathcal Z}$

- Terminates with probability 1
- Expected Running Time $R = \mathcal{O}(n^2)$

• Perfectly-Secure

- Generalization of [CR93]
- Success Probability > 1/n Depends on largest set in ${\mathcal Z}$

- Terminates with probability 1
- Expected Running Time $R = \mathcal{O}(n^2)$

Mult

 $[a] \quad [b] \qquad \mathsf{Mult}$

$$[a] \quad [b] \qquad \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

$$[a] \quad [b] \qquad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

$$[a]$$
 $[b]$

Mult

$$[a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

 $a^{(1)}$

 $b^{(3)}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$[a] \quad [b] \qquad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

$$\{P_1, P_2\}$$

$$P_3, P_4 P_5, P_6, P_7$$

 $a^{(1)}$

 $b^{(3)}$

$$P_2, P_3 \\ P_5, P_6, P_7$$

$$\{P_1, P_4\}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$[a] \quad [b] \qquad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot e^{(l)}]$$

$$\mathcal{Q}^{(3)} \quad P_3, P_4 \\ P_5, P_6, P_7$$

$$a^{(1)}$$

$$b^{(3)} \quad P_2, P_3 \\ P_5, P_6, P_7$$

$$\{P_1, P_4\}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$[a] \quad [b] \quad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1 \dots q\} \times \{1 \dots q\}} [a^{(l)} \cdot e^{(l)}]$$

$$\mathcal{Q}^{(3)} \quad P_3, P_4 \quad P_5, P_6, P_7 \quad P_7 \quad P_7 \quad P_8, P_8 \quad P$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$[a] \quad [b] \quad \textbf{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1 \dots q\} \times \{1 \dots q\}} [a^{(l)} \cdot b^{(m)}]$$

$$\mathcal{Q}^{(3)} \quad P_3, P_4 \quad \mathcal{Q}^{(2)}$$

$$P_5, P_6, P_7 \quad P_3, P_5 \quad P_6, P_7$$

$$\mathcal{Q}^{(3)} \quad P_2, P_3 \quad P_5, P_6, P_7$$

$$\{P_1, P_4\}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$[a] \quad [b] \quad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

$$Q^{(3)} \quad P_3, P_4 \qquad Q^{(2)}$$

$$a^{(1)} \qquad P_3, P_5 \qquad P_6, P_7$$

$$b^{(3)} \qquad P_2, P_3 \qquad P_6, P_7$$

$$\{P_1, P_4\} \qquad [a^{(1)} \cdot b^{(3)}]$$

 $\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$

$$[a] \quad [b] \quad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

$$Q^{(3)} \quad P_3, P_4 \qquad Q^{(2)}$$

$$a^{(1)} \qquad P_3, P_5 \qquad P_6$$

$$b^{(3)} \qquad P_2, P_3 \qquad P_6$$

$$Q^{(3)} \quad P_5, P_6, P_7 \qquad P_1 \qquad P_7$$

$$[P_1, P_4] \qquad [a^{(1)} \cdot b^{(3)}]$$

 $\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$

$$[a] \quad [b] \quad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1...q\} \times \{1...q\}} [a^{(l)} \cdot b^{(m)}]$$

$$\mathcal{Q}^{(3)} \quad P_3, P_4 \quad \mathcal{Q}^{(2)} \quad \text{ACS}$$

$$P_5, P_6, P_7 \quad \mathcal{Q}^{(2)} \quad P_3, P_5 \quad P_6$$

$$P_6 \quad P_7 \quad P_8 \quad P_6 \quad P_6$$

$$\mathcal{Q}^{(3)} \quad P_5, P_6, P_7 \quad P_6 \quad P_6$$

$$\mathcal{Q}^{(3)} \quad P_5, P_6, P_7 \quad P_6 \quad P_6$$

$$[P_1, P_4] \quad [a^{(1)} \cdot b^{(3)}]$$

 $\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{\{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\}\}$$

$$\mathcal{Z} = \{\{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\}\}$$

$$[a] \quad [b] \quad \text{Mult} \qquad [a \cdot b] = \sum_{(l,m) \in \{1 \dots q\} \times \{1 \dots q\}} [a^{(l)} \cdot b^{(m)}]$$

$$\qquad \qquad \mathcal{Q}^{(1)}$$

$$\{P_1, P_2\} \qquad \qquad \text{ABA} \qquad \cdot \overset{n}{\cdot} \quad \text{ABA} \qquad v_1 \quad P_3 \qquad - \quad d_1 \qquad - \quad d_1 \qquad - \quad d_1 \qquad - \quad d_1 \qquad - \quad d_2 \qquad -$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

$$\mathcal{Z} = \{\{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\}\}$$

$$\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$$

 $\mathcal{Z} = \{ \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_4\}, \{P_1, P_5, P_6\}, \{P_7\} \}$

 $\left[\begin{array}{c}a^{(1)}\\ \end{array} \cdot b^{(3)}\right]$

Summary:

Summary:

We studied AMPC tolerant to general adversaries.

Summary:

We studied AMPC tolerant to general adversaries.

• Flaw in the MPC protocol of [KSR02]

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

Future Directions:

• Improving Communication Complexity

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

- Improving Communication Complexity
- Monotone Span Program based Protocols

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

- Improving Communication Complexity
- Monotone Span Program based Protocols
- Efficient Non-Optimally Resilient Protocols

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

- Improving Communication Complexity
- Monotone Span Program based Protocols
- Efficient Non-Optimally Resilient Protocols
- Statistical and Computational Security

Summary:

We studied AMPC tolerant to general adversaries.

- Flaw in the MPC protocol of [KSR02]
- Perfectly-Secure AVSS and AMPC protocols
- ABA Protocol (Generalization of [CR93])

Future Directions:

- Improving Communication Complexity
- Monotone Span Program based Protocols
- Efficient Non-Optimally Resilient Protocols
- Statistical and Computational Security

Thanks!