Outlier-Detection-and-removal using InterQuartile Range(IQR)

Various algorithms like Linear, logistic regressions are Robust to outliers so we need to remove them. Removing outliers is a hectic process, let us remove outliers directly from a given Dataset using InterQuartile Range(IQR).

Implementation:

Import dataset with outliers and observe the upper and lower outlier in it,

```
import pandas as pd
df=pd.read_csv("outlier.csv")
print(df.head())
print(df.tail())
```

Output:

	v1	•	v2		
0	1		2		
1	2		4		
2	3		1		
3	120	2	36		
4	120	3	54		
		v1			v2
46	1	40		2	35
47	100	00		100	00
48	200	00		10	00
49	100	00		100	00
50	200	00		200	00

Plotting Dataset:

Boxplot shows significant outliers in dataset and can be implemented as follows,

```
#plot dataset
df.boxplot()
```

Output:

This shows significant outliers in the dataset.

Apply IQR:

In this section we remove the outliers from dataset using percentage quantile as follows,

```
Q1=df.quantile(0.25)
Q3=df.quantile(0.75)
IQR=Q3-Q1

#calculate
lower_outlier=Q1-(1.5*IQR)
higher_outlier=Q3+(1.5*IQR)

df_without_significant_outlier = df[~((df < lower_outlier)|(df > higher_outlier))]
```

Plot the result:

In this section we plot dataset after removing dataset as below

```
df_without_significant_outlier.boxplot()
```

Output:

Hence outliers are removed successfully.