TD 6 - Birapport, inversions, homographies.

† Birapport, homographies

Exercice 1. On définit le birapport de quatre nombres complexes distincts a, b, c, d par

$$[a, b, c, d] = \frac{a-c}{a-d} \frac{b-d}{b-c}$$

Montrer que

Remarquez que quel que soit l'ordre dans lequel on met a, b, c, d, le fait que le birapport est réel est conservé.

On admet la proposition suivante :

Proposition 1. Le birapport de quatre nombres complexes distincts est réel si et seulement si les quatre points sont cocycliques ou alignés. Ainsi, une application $f: \mathbb{C} \to \mathbb{C}$ préserve les droites et cercles si et seulement si elle préserve le fait que le birapport soit réel.

Exercice 2. (Inversions) Soit Ω un point du plan d'affixe c et $r \in \mathbb{R}^*$. L'inversion $i := i(\Omega, r)$ de centre Ω et de rapport r est l'application du plan épointé $P \setminus \{\Omega\}$ dans P qui à tout point M d'affixe z associe le point M' d'affixe z' tel que

- M' est sur la droite (ΩM) .
- Le produit scalaire $\langle \overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \rangle$ est égal à r^2 .
- 1. Montrer que l'expression complexe de $i(\Omega, r)$ est

$$i(\Omega, r)(z) = \frac{r^2}{(z-c)} + c$$

(Indication: on rappelle que le produit scalaire $\langle \overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \rangle$ est égal à $\operatorname{Re}((z-\Omega)(\overline{z'-\Omega}))$

- 2. Montrer que $i(\Omega, r)$ est une involution et déterminer son image.
- 3. Montrer que $i(\Omega, r)$ envoie droites et cercles sur droites et cercles.
- 4. Montrer que pour deux points M, N, on a $i(M)i(N) = \frac{r^2MN}{(\Omega M)(\Omega N)}$

Exercice 3. Soient $\Omega \in P$, r > 0 et $\mathcal{D} = D(\Omega, r)$ le disque de centre Ω et de rayon r. Montrer que l'inversion $i(\Omega, r)$ échange l'intérieur de \mathcal{D} (i.e le disque ouvert) et celui de $P \setminus \mathcal{D}$ (i.e le complémentaire du disque fermé) et fixe ponctuellement le cercle $\mathcal{C} := \partial \mathcal{D}$.

† Homographies, retour du projectif

Exercice 4. Soit une homographie (avec $c \neq 0$)

$$\varphi: z \mapsto \frac{az+b}{cz+d}$$

- 1. Calculer l'ensemble de définition de φ .
- 2. Montrer que si $z' = \varphi(z)$, alors

$$z = \frac{dz' - b}{-cz' + a}$$

en déduire que l'image de φ est $\mathbb{C} \setminus \left\{ \frac{a}{c} \right\}$.

- 3. Montrer que l'on étend φ en une bijection $\mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ en posant $\varphi(-d/c) = \infty, \varphi(\infty) = a/c$ À partir d'ici, quand on parlera d'homographie, on parlera toujours implicitement de son extension $\mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$
- 4. Montrer que les homographies forment un groupe.

Exercice 5. Soit une homographie

$$\varphi: z \mapsto \frac{az+b}{cz+d}$$

- 1. Montrer que toute homographie est la composée de translations, d'une inversion, de la conjugaison complexe (donc une symétrie), et d'homothétie rotation.
- 2. Montrer que toute homographie envoie droites et cercles sur droites et cercles.
- 3. Considérons l'application p qui à $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Gl_2(\mathbb{C})$ associe l'homographie $p(M): z \mapsto \frac{az+b}{cz+d}$.
 - a) Montrer que p est un morphisme surjectif de $\mathrm{Gl}_2(\mathbb{C})$ vers le groupe des homographies.
 - b) Montrer que p(M)=Id si et seulement si $M=\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda\in\mathbb{C}^*.$
 - c) En déduire un isomorphisme \bar{p} allant de $PGl_2(\mathbb{C})$ vers le groupe des homographies.

On rappelle que l'on a une bijection entre $\mathbb{C} \cup \{\infty\}$ et $\mathbb{C}P^1$:

$$f: \begin{cases} z \mapsto [z:1] \\ \infty \mapsto [1:0] \end{cases}, \quad f^{-1}: \begin{cases} [z:z'] \mapsto \frac{z}{z'} & \text{si } z' \neq 0 \\ [z:0] \mapsto \infty \end{cases}$$

Exercice 6. (Version projective des homographies)

Soit une homographie

$$\varphi: z \mapsto \frac{az+b}{cz+d}$$

1. Soit $[z:z'] \in \mathbb{C}P^1$, montrer que

$$\phi([z:z']) := f \circ \varphi \circ f^{-1}[z:z'] = [az + bz' : cz + dz'] = \begin{pmatrix} a & b \\ c & d \end{pmatrix} .[z:z']$$

- 2. Montrer qu'une homographie envoie $\infty = [1:0]$ sur ∞ si et seulement si c'est une similitude.
- 3. Montrer qu'une homographie qui préserve $\infty = [1:0]$ et 0 = [0:1] est de la forme $\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$.

Exercice 7. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in P\mathrm{Gl}_2(\mathbb{C})$ une homographie, montrer que $M^2 = 1$ si et seulement si

$$\begin{cases} a^2 = d^2 \\ b(a+d) = 0 \\ c(a+d) = 0 \end{cases}$$

En déduire que M est de la forme $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ où $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.

(Indication: Rappelez vous que X=1 dans $PGl_2(\mathbb{C})$ veut dire que X est de la forme $X=\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ pour $\lambda \in \mathbb{C}$).