Лабораторная работа №3.4.2 Закон Кюри - Вейсса

Цель работы:

Изучение температурных зависимостей магнитной восприимчивости ферромагнетизм выше точки Кюри.

В работе используются:

Катушка самоиндукции из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Теоретические основы:

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом.

При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле — по закону Кюри:

 $\chi = \frac{C}{T}$

где C – постоянная Кюри.

Для парамагнитных веществ, которые при понижении температуры становятся ферромагнитными, формула (1) должна быть видоизменена. Эта формула показывает, что температура T=0 является особой точкой температурной кривой, в которой χ неограниченно возрастает.

При $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках — под влиянием обменных сил — это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков закон Кюри должен быть заменен законом Кюри - Вейсса:

$$\chi \sim \frac{1}{T - \Theta_p}$$

где Θ_{n} – температура, близкая к температуре Кюри.

Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от Θ , но недостаточно точна при $T \approx \Theta$.

Иногда для уточнения формулы (2) вводят вместо одной две температуры Кюри, одна из которых описывает точку фазового перехода – ферромагнитная точка Кюри Θ , а другая является параметром в формуле (2) – парамагнитная точка Кюри Θ_n (рис. 1).

Рис. 1. Зависимость обратной величины магнитной восприимчивости от \
температуры.

В нашей работе изучается температурная зависимость χ (T) гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в интервале комнатных температур.

Экспериментальная установка.

Схема установки для проверки закона Кюри - Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонтирован в виде отдельного блока.

Рис. 2. Схема экспериментальной установки

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (~50 кГц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим:

$$(L-L_0)\sim \chi$$

 $\left(L-L_{0}\right)\sim\chi$ При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},$$

где C – ёмкость контура автогенератора.

Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Отсюда имеем:

$$\left(L-L_0\right) \sim \left(\tau^2-\tau_0^2\right).$$

Таким образом,

$$\chi \sim \left(\tau^2 - \tau_0^2\right)$$

Таким образом, $\chi \sim \left(\tau^2 - \tau_0^2\right).$ Из формул (2) и (6) следует, что закон Кюри - Вейсса справедлив, если выполнено соотношение $\frac{1}{\chi} \sim \left(T - \Theta_p\right) \sim \frac{1}{\left(\tau^2 - \tau_0^2\right)}.$

$$\frac{1}{\chi} \sim \left(T - \Theta_p\right) \sim \frac{1}{\left(\tau^2 - \tau_0^2\right)}.$$

Измерения проводятся в интервале температур от 14°C до 40°C. С целью экономии времени следует начинать измерения с низких температур.

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой); рабочая жидкость постоянно перемешивается.

Величина стабилизирующей температуры задается на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, не показанный на рисунке. Когда температура рабочей жидкости в сосуде приближается к заданной, непрерывный режим работы нагревателя автоматически переходит в импульсный – начинается процесс стабилизации температуры.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того, как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру.

Задание

- 1. Подготовим приборы к работе.
- 2. Оценим допустимую ЭДС термопары, если допустимая разность температур образца и рабочей жидкости $\Delta T = 0.5$ °C, а постоянная термопары k = 24 град/мВ.
- 3. Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T по показаниям дисплея и цифровому вольтметру (ΔU с учетом знака). Термопара подключена так, что при знаке «+» на табло вольтметра температура образца выше температуры рабочей жидкости.

T, °C	ΔU, мВ	τ, MKC	Т, К	$\left(\tau^2 - \tau_0^2\right)$	$\frac{1}{\left(\tau^2 - \tau_0^2\right)}$
12,73	0,002	10,83	285,78	35,44	0,03
14	-0,014	10,80	286,66	34,84	0,03
16,10	-0,001	10,66	289,08	31,77	0,03
17,99	-0,005	10,50	290,87	28,24	0,04
20,12	-0,003	10,15	293,05	21,02	0,05
22,05	-0,006	9,80	294,91	14,04	0,07
24,04	-0,012	9,54	296,75	9,05	0,11
26,04	-0,013	9,40	298,73	6,51	0,15
28,04	-0,012	9,33	300,75	5,09	0,20
30,05	-0,08	9,28	301,13	4,12	0,24
32,05	-0,007	9,24	304,88	3,51	0,28
34,02	-0,013	9,22	306,71	3,12	0,32
36,00	-0,015	9,20	308,64	2,79	0,36
38,02	-0,013	9,19	310,71	2,50	0,40
40,00	-0,014	9,18	312,66	2,30	0,44

4. Построим график зависимости $f\left(T\right)=\frac{1}{\left(au^{2}- au_{0}^{2}\right)}$

5. Определим параметры графика, воспользовавшись методом наименьших квадратов:

$$y = -6.01127 + 0.0206351\hat{x}$$

$$\sigma_k = 0.05$$

$$\sigma_b = 0,0002$$

Рассчитаем значение Θ_p и σ_{Θ_p} :

$$\Theta_p = -\frac{b}{k} = 18,3 \, ^{\circ}\text{C}$$

$$\sigma_{\Theta_n} = 0.01$$

$$\Theta_p = (18,3 \pm 0,2)^{\circ}$$
C

Вывод:

Исследовали поведение гадолиния при температуре выше температуры Кюри, убедились в выполнении для ферромагнитных веществ закона Кюри - Вейсса. Экспериментально для гадолиния вычислили точку Кюри $\Theta_p=(18,3\pm0,2)^{\circ}\mathrm{C}$, что близко к табличному значению Θ_p =16 °C.