

# Das Maxwell'sche Rad

Karina Overhoff & Jan Herdieckerhoff
Vortragsdatum: 01.04.2019



#### **Inhaltsverzeichnis**

#### Grundlage

Idee

Bilder

Video

#### Theorie

Geschwindigkeit

Dreh- und Trägheitsmoment

Beschleunigung

#### Durchführung

# Auswertung

Maße

Gemessener Radius

Plots - lineare Regression

Beschleunigung

Plots - Tatsächliche Daten



## **Inhaltsverzeichnis**

# Grundlage

Idee

Bilder

Video

Theori

Durchführuns

Auswertung



■ Physik des Jojos



- Physik des Jojos
  - Unterschiede:



- Physik des Jojos
  - Unterschiede:
    - Breiter



- Physik des Jojos
  - Unterschiede:
    - Breiter
    - Keine Kraftkomponente am Boden

- Physik des Jojos
  - Unterschiede:
    - Breiter
    - Keine Kraftkomponente am Boden
  - Gemeinsamkeiten:

- Physik des Jojos
  - Unterschiede:
    - Breiter
    - Keine Kraftkomponente am Boden
  - Gemeinsamkeiten:
    - Faden

- Physik des Jojos
  - Unterschiede:
    - Breiter
    - Keine Kraftkomponente am Boden
  - Gemeinsamkeiten:
    - Faden
    - Scheibenartig



## Bilder





## Bilder





## Video

Hier ein kurzes Video unseres Versuchs:





#### **Inhaltsverzeichnis**

Grundlage

#### Theorie

Geschwindigkeit

Dreh- und Trägheitsmoment

Beschleunigung

Durchführun

Auswertung



# Geschwindigkeit

$$v = \frac{s}{t}$$

$$v = \omega \cdot r$$



#### Drehmomen

$$\left| \vec{M} \right| = \left| \vec{r} \times \vec{F} \right| = I \cdot \dot{\omega} = rmg \tag{1}$$

## Trägheitsmoment

$$I_{\rm S} = \frac{1}{2}mR^2$$

$$I_{\rm M} = I_{\rm S} + m \cdot r^2 \tag{3}$$

## Beschleunigung

Mit Gleichung (1), Gleichung (2) und Gleichung (3) ergibt sich

$$(\frac{R^2}{2r^2} + 1)\dot{v} = g$$

und damit ist

$$\ddot{s} = \frac{1}{1 + \frac{R^2}{2r^2}} \cdot g.$$

Die tatsächliche Beschleunigung ergibt sich zu

$$a = \frac{2s}{t^2}.$$



## Radius

Der Radius r ergibt sich mit der abgerollten Länge von 10 Umdrehungen  $\Delta s$  zu

$$r = \frac{\Delta s}{10 \cdot 2\pi}$$



## Durchführung

- 3x Höhe und Zeit
- 1x Höhe und Umdrehungen pro Zeit im unteren Bereich



## **Inhaltsverzeichnis**

Grundlage

Theorie

Durchführung

#### Auswertung

Maße

Gemessener Radius

Plots - lineare Regression

Beschleunigung

Plots - Tatsächliche Daten

Diskussior



### Auswertung

#### Maße

 $\mathrm{Masse}\ m = 435,\!64\,\mathrm{g}$ 

Höhe über Boden  $l=26,4\,\mathrm{cm}$ 

Radius des Rades  $R=6,35\,\mathrm{cm}$ 

Radius des Schwerpunkts zur Mitte(gemessen) r= 3 mm



## **Auswertung**

## **Gemessener Radius**

Der Radius ergibt sich zu r= 3.279 mm.

## **Plots - lineare Regression**



Abbildung: Ein Graph.



Abbildung: Ein Graph.



Abbildung: Ein Graph.



# Beschleunigung

Die mittlere Steigung die sich ergibt ist s=0.535 +/- 0.049 cm/s.



Abbildung: Ein Graph.



Abbildung: Ein Graph.



Abbildung: Ein Graph.



Abbildung: Ein Graph.





■ Beschleunigung



- Beschleunigung
- Energieerhaltung



- Beschleunigung
- Energieerhaltung
- Fehlerquellen



- Beschleunigung
- Energieerhaltung
- Fehlerquellen