

Binary Operations Ex 3.5 Q1

 $a \times_4 b$ = the remainder when ab is divided by 4.

eg. (i)
$$2 \times 3 = 6 \Rightarrow 2 \times_4 3 = 2$$

[When 6 is divided by 4 we get 2 as remainder]

(ii)
$$2 \times 3 = 4 \Rightarrow 2 \times_4 2 = 0$$

[When 4 is divided by 4 we get 0 as remainder]

The composition table for \times_4 on $set S = \{0, 1, 2, 3\}$ is:

×4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Binary Operations Ex 3.5 Q 2

 $a +_5 b =$ the remainder when a + b is divided by 5.

eg.
$$2+4=6 \Rightarrow 2+_5 4=1$$
 \because [we get 1 as remainder when 6 is divided by 5]

The composition table for $+_5$ on set $S = \{0, 1, 2, 3, 4\}$.

+5	0	1	2	ω	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Binary Operations Ex 3.5 Q3

 $a \times_6 b =$ the remainder when the product of ab is divided by 6.

The composition table for \times_6 on set $S = \{0, 1, 2, 3, 4, 5\}$.

× ₆	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

 $a \times_5 b =$ the remainder when the product of abis divided by 5.

The composition table for \times_5 on $Z_5 = \{0, 1, 2, 3, 4\}$.

×5	0	1	2	ω	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	Э	2	1

Binary Operations Ex 3.5 Q5 $a \times_{10} b =$ the remainder when the product of ab is divided by 10.

The composition table for $\times_{10}^{}$ on set $S = \{1, 3, 7, 9\}$

×10	1	m	7	9
1	1	3	7	9
3	з	9	1	7
7	7	1	9	3
9	9	7	3	1

We know that an element $b \in S$ will be the inverse of $a \in S$

if
$$a \times_{10} b = 1$$

 $\begin{bmatrix} \because \mathbf{1} \text{ is the identity element with} \\ \text{respect to multiplication} \end{bmatrix}$

$$\Rightarrow 3 \times_{10} b = 1$$

From the above table b = 7

Inverse of 3 is 7.

******* END *******