Individual task #1 (Topics 2 & 4)

Age of the Milky Way from the colour-magnitude diagram of the globular cluster NGC 3201

A **cluster of stars** consists of objects that were formed at the same time in the same gaseous environment (see the end of **Topic 2** and **Topic 4**). Thus, we <u>initially</u> consider <u>a distribution of MS stars having a range of masses and equal metallicity</u>

OPEN CLUSTERS IN THE MILKY WAY

Z/Z _o	age (Gyr)
1.0	0.125
1.38	0.25
1.38	0.625
0.55	1.5
0.89	4
	1.0 1.38 1.38 0.55

The cluster is observed at present days, so its <u>age</u> <u>also plays</u> <u>a role</u>!

As time goes on, the initial MS stars evolve into RGB, AGB, WD, etc, and the distribution of luminosities and effective temperatures in a L- $T_{\rm eff}$ diagram (or **colour-magnitude diagram** \equiv **CMD**) depends on its initial metallicity and age (see Table). The values in the Table are representative of real open clusters in the Milky Way (see **Topic 4**)

Lifetime vs initial mass

Higher initial mass ⇒ hotter on the main sequence and more short lived

Main sequence lifetime (at solar metallicity):

star mass (solar masses)		time (years)	Spectral type		
	60	3 million	О3		
These are in the MS in the Pleiades	30	11 million	07		
	10	32 million	B4		
	3	370 million	A5		
	1.5	3 billion	F5		
	1	10 billion	G2 (Sun)		
	0.1	1000's billions	М7		

Time to reach the red giant stage

short for big stars \rightarrow as low as 10 million (10⁷) years

long for little stars

→ up to 10 billion (10¹⁰)

years for low mass

TWO GLOBULAR CLUSTERS IN THE MILKY WAY

47 Tuc

Z = 0.004, age = 12 Gyr

M92

Z = 0.00014, age = 13 Gyr

We focus on the globular cluster (GC) NGC 3201

NGC 3201 (Wikipedia)

NGC 3201 by *HST* (credit: NASA/STScI/WikiSky)

Constellation Vela

Right ascension (RA) 10^h 17^m 36.82^s

Declination (Dec) -46° 24′ 44.9″

Distance 16.3 kly (5.0 kpc)

Apparent magnitude (V) +8.24

Physical characteristics

Mass $2.54 \times 10^5 \,\mathrm{M}_{\odot}$

Radius 40 ly

Metallicity $[Fe / H] = \log (Z/Z_{\odot})$

 $= -1.24 \, \text{dex}$

Estimated age 10.24 Gyr

1 – DATA THAT WE WIILL USE

THE ASTRONOMICAL JOURNAL, 125:208-223, 2003 January

© 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PHOTOMETRY OF THE GLOBULAR CLUSTER NGC 3201 AND ITS VARIABLE STARS

ANDREW C. LAYDEN

Department of Physics and Astronomy, 104 Overman Hall, Bowling Green State University, Bowling Green, OH 43403; layden@baade.bgsu.edu

AND

ATA SARAJEDINI

Department of Astronomy, 211 Bryant Space Science Center, University of Florida, Gainsville, FL 32611-2055; ata@astro.ufl.edu

TABLE 2 CMD.dat #10,944 stars PHOTOMETRY OF NGC 3201 STARS

ID	X_{pix}	$Y_{\rm pix}$	V	σ_V	В	σ_B		σ_I	χ	Σ
1	736.86	1268.73	11.781	0.001	13.352	0.001	10.164	0.001	1.269	-0.065
2	813.82	1175.30	11.812	0.001	13.617	0.001	10.015	0.001	1.346	-0.084
3	798.89	740.11	11.868	0.001	13.433	0.001	10.242	0.001	1.512	-0.152
4	271.33	984.05	11.895	0.001	13.536	0.001	10.226	0.001	1.091	-0.071
5	980.47	1509.81	12.072	0.001	13.607	0.001	10.497	0.001	1.177	-0.047

Note.—Table 2 is presented in its entirety in the electronic edition of the Astronomical Journal. A portion is shown here for guidance regarding its form and content.

Q2: Transform the first CMD (app), i.e., V vs. B - V, into a CMD* (app). You have to remove the reddening by interstellar extinction, i.e., correct CMD (app). Table 6 of Layden & Sarajedini displays details on the dust extinction at the positions of 54 RRab Lyrae stars. The E(B-V) values range from 0.18 to 0.37 mag, so there is a variable reddening across the field of view with $\langle E(B-V) \rangle = 0.264$ \pm 0.005 mag (rms = 0.036 mag). At the XY position of each star, find the nearest RRab star. If the RRab is within 30" of the star (each pixel has a size of 0.3"), apply the reddening of the RRab to the star; if it is not, omit the star from the dereddened CMD. This approach was used by Layden & Sarajedini

$$A(V)/E(B-V) = 3.045$$

 $V = V_0 + A(V), A(V) \equiv \text{visual extinction}$ $B - V = (B - V)_0 + E(B - V)$ $E(B - V) \equiv \text{colour excess} = A(B) - A(V)$

1 – SIMULATED ISOCHRONES

ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES

FEBRUARY I 2000, PAGE 371

Astron. Astrophys. Suppl. Ser. 141, 371–383 (2000)

Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 M_{\odot} , and from Z=0.0004 to 0.03

L. Girardi^{1,2,3}, A. Bressan⁴, G. Bertelli^{1,5}, and C. Chiosi¹

- Dipartimento di Astronomia, Università di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, Italy
- ² Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 Garching bei München, Germany
- ³ Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre RS, Brazil
- ⁴ Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, Italy
- ⁵ Consiglio Nazionale delle Ricerche (CNR), Italy

• the evo-

lutionary phases extend from the zero age main sequence (ZAMS) till either the thermally pulsing AGB regime or carbon ignition.

• From

all these tracks, we derive the theoretical isochrones in the Johnson-Cousins UBVRIJHK broad-band photometric system.

ISOCHRON.tsv

This data file contains **isochrones**, i.e., L-T_{eff} curves for different ages and metallicities. The file also includes absolute blue and visual magnitudes (M_B and M_V), so it is possible to build CMDs (abs): M_V vs. (B - V)₀, where (B - V)₀ = $M_B - M_V$. If we wish to compare these simulated CMDs (abs) with the observational CMD* (app), the distance to the GC is required

Q3: You need the distance to infer V_0 values from absolute magnitudes M_V (see below). Take the distance in the Layden & Sarajedini's paper: d = 4.87 kpc, and then build and show CMD*s (abs): V_0 vs. $(B - V)_0$, for (1) Z = 0.0004, ages = 10, 12.6, and 15.9 Gyr, (2) Z = 0.0004, age = 5.01 Gyr, and (3) Z = 0.004, age = 12.6 Gyr

$$V_0 = M_V + 5\log d - 5$$

A simple way to measure the distance to the GC is to use its variable stars. For example, RR Lyrae stars in the GC (e.g., https://openstax.org/books/astronomy/pages/19-3-variable-stars-one-key-to-cosmic-distances)

RR Lyrae stars in NGC 3201

(a) See also https://www.youtube.com/watch?v=sXJBrRmHPj8

(b) You can also measure the distance to NGC 3201 using five frames of the GC (at different observing times) and a Python code. It is new and easy-to-do! https://www.jimmynewland.com/wp/astro/measuring-the-milky-way-with-stars/

Teaching with Code: Globular Cluster Distance Lab
James Newland

Res. Notes AAS 4, 118 (2020) Q4: Compare the CMD* (app) to the CMD*s (abs) for (1) in Q3. Additionally, in two independent figures, draw the CMD* (app) along with the CMD* (abs) for (2) and (3) in Q3. Discuss whether the following statements are true or not:

- (a) NGC 3201 is a metal-poor cluster (Z = $0.02~Z_{\odot}$) that was formed at the same time as the Sun (age of $^{\sim}$ 5 Gyr)
 - (b) NGC 3201 is an old cluster (age of $^{\sim}$ 13 Gyr) with Z = 0.2 Z $_{\odot}$
 - (c) NGC 3201 is a metal-poor, old cluster with Z = 0.02 Z_{\odot} and an age of ~ 13 Gyr. Taking the previous discussion into account, give an age range for the Milky Way

The simulated MS turnoffs play a key role to distinguish between different values of the age and metallicity

