PLSC 504 – Fall 2020 Panel/TSCS Data: Unit Effects + Dynamics

October 7, 2020

Starting Points

- "Longitudinal" ≠ "Time Series"
- Terminology:
 - "Unit" / "Units" / "Units of observation" / "Panels" = Things we observe repeatedly
 - "Observations" = Each (one) measurement of a unit
 - "Time points" = When each observation on a unit is made
 - $i \in \{1...N\}$ indexes units
 - $t \in \{1...T\}$ or $\{1...T_i\}$ indexes observations / time points
 - If $T_i = T \ \forall i$ then we have "balanced" panels / units
 - NT = Total number of observations (if balanced)
- Averages:
 - Y_{it} indicates a variable that varies over both units and time,
 - $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$ = the over-time mean of Y,
 - $\bar{Y}_t = \frac{1}{N} \sum_{i=1}^{N} Y_{it}$ = the across-unit mean of Y, and
 - $\bar{Y} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it}$ = the grand mean of Y.

More Terminology

- $N >> T \rightarrow$ "panel" data
 - NES panel studies (N = 2000, T = 3)
 - Panel Study of Income Dynamics ($N = \text{large}, T \approx 12$)
- T >> N or $T \approx N \rightarrow$ "time-series cross-sectional" ("TSCS") data
- $N=1 \rightarrow$ "time series" data

Variation: A Tiny (Fake) Example

id	year	gender	pres	pid	approve
1	2014	female	obama	dem	3
1	2016	female	obama	dem	3
1	2018	female	trump	dem	5
1	2020	female	trump	dem	3
2 2 2 2 2	2014 2016 2018 2020	male male male male	obama obama trump trump	gop gop gop gop	2 1 4 3
3 3 3 3	2014 2016 2018 2020	male male male male	obama obama trump trump	gop gop gop dem	2 2 4 1

Within- and Between-Unit Variation

Define:

$$\bar{Y}_i = \frac{1}{T_i} \sum_{t=1}^{T_i} Y_{it}$$

Then:

$$Y_{it} = \bar{Y}_i + (Y_{it} - \bar{Y}_i).$$

- The total variation in Y_{it} can be decomposed into
- The between-unit variation in the \bar{Y}_i s, and
- The within-unit variation around \bar{Y}_i (that is, $Y_{it} \bar{Y}_i$).

Variation: TSCS Data

>	summary	(Demos)
_	Summar y	(Demos)

ccode	Year	POLITY	GDP
Min. : 2	Min. :1945	Min. :-10.0	Min. : 185
1st Qu.:235	1st Qu.:1969	1st Qu.: -7.0	1st Qu.: 1579
Median:451	Median :1985	Median: 0.0	Median: 4000
Mean :456	Mean :1984	Mean : 0.6	Mean : 8118
3rd Qu.:663	3rd Qu.:2000	3rd Qu.: 8.0	3rd Qu.: 10361
Max. :950	Max. :2014	Max. : 10.0	Max. :134040
		NA's :111	NA's :2349
Monarch	lnDemons	ColdWar	
Min. :0	Min. :0	Min. :0.000	
1st Qu.:0	1st Qu.:0	1st Qu.:0.000	
Median :0	Median :0	Median :1.000	
Mean :0	Mean :0	Mean :0.563	
3rd Qu.:0	3rd Qu.:0	3rd Qu.:1.000	
Max. :1	Max. :4	Max. :1.000	
NA's :1198			

POLITY: Total Variation

POLITY: "Between" Variation

POLITY: "Within" Variation

Regression!

Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

assumes:

- All the usual OLS assumptions, plus
- $\beta_{0i} = \beta_0 \forall is$
- $\beta_{1i} = \beta_1 \forall is$

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

(same)

Variable Intercepts

$$Y_{it} = \beta_{0i} + \beta_1 X_{it} + u_{it}$$
 (unit-level)

$$Y_{it} = \beta_{0t} + \beta_1 X_{it} + u_{it}$$
 (time-level)

$$Y_{it} = \beta_{0it} + \beta_1 X_{it} + u_{it}$$
 (unit- and time-level)

Varying Intercepts

Varying Intercepts

Varying Slopes (+ Intercepts)

$$Y_{it} = \beta_0 + \beta_{1i} X_{it} + u_{it}$$
 (unit-level slopes)

$$Y_{it} = \beta_{0i} + \beta_{1i}X_{it} + u_{it}$$
 (unit-level slopes and intercepts)

$$Y_{it} = \beta_{0t} + \beta_{1t}X_{it} + u_{it}$$
 (time-level slopes and intercepts)

$$Y_{it} = \beta_{0it} + \beta_{1it} X_{it} + u_{it}$$
 (unit- and time-level slopes and intercepts)

${\sf Varying\ Slopes}\,+\,{\sf Intercepts}$

The Error

$$u_{it} \sim \text{i.i.d.} N(0, \sigma^2) \ \forall \ i, t$$

$$Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (i.e., no cross-unit heteroscedasticity)$$

 $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s \ (i.e., no temporal heteroscedasticity)$
 $Cov(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, \ \forall \ t \neq s \ (i.e., no auto- or spatial correlation)$

Pooling

- Adds data
- Enhances generalizability

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

Implies

- that the process governing the relationship between X and Y
 is exactly the same for each i,
- that the process governing the relationship between X and Y is the same for all t,
- that the process governing the us is the same $\forall i$ and t as well.

"Partial" Pooling

Two regimes:

$$Y_A = \beta_A' \mathbf{X}_A + u_A$$

$$Y_B = \beta_B' \mathbf{X}_B + u_B$$

with $\sigma_A^2 = \sigma_B^2$, and $Cov(u_A, u_B) = 0$.

Estimators:

$$\hat{\beta}_{A,B} = (\mathbf{X}_{A,B}^{\prime}\mathbf{X}_{A,B})^{-1}\mathbf{X}_{A,B}^{\prime}Y_{A,B}$$

and

$$\widehat{\mathsf{Var}(eta_{A,B})} = \hat{\sigma}_{A,B}^2(\mathbf{X}_{A,B}'\mathbf{X}_{A,B})^{-1},$$

A Pooled Estimator

$$\hat{\beta}_{P} = (\mathbf{X}'_{A}\mathbf{X}_{A} + \mathbf{X}'_{B}\mathbf{X}_{B})^{-1}(\mathbf{X}'_{A}Y_{A} + \mathbf{X}'_{B}Y_{B})
= (\mathbf{X}'_{A}\mathbf{X}_{A} + \mathbf{X}'_{B}\mathbf{X}_{B})^{-1}[\beta_{A}(\mathbf{X}'_{A}\mathbf{X}_{A}) + \beta_{B}(\mathbf{X}'_{B}\mathbf{X}_{B})],$$

$$E(\hat{\beta}_P) = \beta_A + (\mathbf{X}_A'\mathbf{X}_A + \mathbf{X}_B'\mathbf{X}_B)^{-1}\mathbf{X}_B'\mathbf{X}_B(\beta_B - \beta_A)$$
$$= \beta_B + (\mathbf{X}_A'\mathbf{X}_A + \mathbf{X}_B'\mathbf{X}_B)^{-1}\mathbf{X}_A'\mathbf{X}_A(\beta_A - \beta_B)$$

...and a test:

$$F = \frac{\frac{\hat{\mathbf{u}}_P' \hat{\mathbf{u}}_P - (\hat{\mathbf{u}}_A' \hat{\mathbf{u}}_A + \hat{\mathbf{u}}_B' \hat{\mathbf{u}}_B)}{K}}{\frac{(\hat{\mathbf{u}}_A' \hat{\mathbf{u}}_A + \hat{\mathbf{u}}_B' \hat{\mathbf{u}}_B)}{(N_A + N_B - 2K)}} \sim F_{[K,(N_A + N_B - 2K)]}$$

Fractional Pooling

$$\hat{\boldsymbol{\beta}}_{\lambda} = (\lambda^2 \mathbf{X}_A' \mathbf{X}_A + \mathbf{X}_B' \mathbf{X}_B)^{-1} (\lambda^2 \mathbf{X}_A' Y_A + \mathbf{X}_B' Y_B)$$

with $\lambda \in [0,1]$:

- $\lambda=0$ \rightarrow separate estimators for $\hat{\beta}_A$ and $\hat{\beta}_B$,
- $\lambda=1$ o "fully pooled" estimator \hat{eta}_P ,
- $0 < \lambda < 1 \rightarrow$ a regression where data in regime A are given some "partial" weighting in their contribution towards an estimate of β .

Pooling, Summarized

"(R)oughly speaking, it makes sense to pool disparate observations if the underlying parameters governing those observations are sufficiently similar, but not otherwise."

One- and Two-Way Unit Effects

Two-way variation:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$

→ two-way effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

One-way effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$
 (time)

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$
 (units)

"Brute force" model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

= $\mathbf{X}_{it}\boldsymbol{\beta} + \alpha_1 I(i=1)_i + \alpha_2 I(i=2)_i + ... + u_{it}$

Alternatively:

$$\bar{X}_i = \frac{\sum_{N_i} X_{it}}{N_i}$$

and

$$\tilde{X}_{it} = X_{it} - \bar{X}_i$$
.

Yields:

$$Y_{it} = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + (\mathbf{X}_{it} - \bar{X}_i) \boldsymbol{\beta}_W + \alpha_i + u_{it}$$

"Fixed" Effects

Means that:

$$Y_{it}^* = Y_{it} - \bar{Y}_i$$

 $\mathbf{X}_{it}^* = \mathbf{X}_{it} - \bar{\mathbf{X}}_i$

$$Y_{it}^* = \beta_{FE} \mathbf{X}_{it}^* + u_{it}.$$

 \equiv "Within-Effects" Model.

"Fixed" Effects: Test(s)

Standard *F*-test for

$$H_0: \alpha_i = \alpha_j \forall i \neq j$$

versus

$$H_A: \alpha_i \neq \alpha_j$$
 for some $i \neq j$

is
$$\sim F_{N-1,NT-(N-1)}$$
.

An Example: Demonstrations, 1945-2014

Data:

- 180 countries
- 70 years
- i indexes countries, t indexes years

Model:

$$ln(\text{Demonstrations} + 1)_{it} = \beta_0 + \beta_1 \text{POLITY}_{it} + \beta_2 \text{POLITY}_{it}^2 + \beta_3 \ln(\text{GDP})_{it} + \beta_4 \text{Monarch}_{it} + \beta_5 \text{Cold War}_{it} + u_{it}$$

Visualizing Panel Data: Continuous X

Visualizing Panel Data: Discrete X

(Created using panelView.)

Pooled OLS

```
> OLS<-lm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
           data=PDF)
>
> summary(OLS)
Call:
lm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF)
Residuals:
  Min
          10 Median
                       30 Max
-0.450 -0.293 -0.218 -0.075 4.107
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.124639 0.058208 -2.14
                                        0.032 *
POT.TTY
            0.006296 0.001179 5.34 9.5e-08 ***
I(POLITY^2) -0.002267 0.000255 -8.90 < 2e-16 ***
InGDP 0.057679 0.007513 7.68 1.9e-14 ***
Monarch -0.046393 0.028572 -1.62 0.104
ColdWar 0.027883 0.013961 2.00 0.046 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.526 on 6499 degrees of freedom
  (2863 observations deleted due to missingness)
Multiple R-squared: 0.0261, Adjusted R-squared: 0.0253
F-statistic: 34.8 on 5 and 6499 DF. p-value: <2e-16
```

"Fixed" (Within) Effects

```
> FE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
            data=PDF. effect="individual", model="within")
> summarv(FE)
Oneway (individual) effect Within Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "individual", model = "within")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                               Max
-1 3556 -0 2120 -0 0768 0 0193 4 0496
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
POLITY
           0.001526 0.001553 0.98 0.32604
I(POLITY^2) -0.001942  0.000296  -6.55  6.1e-11 ***
lnGDP 0.054586 0.015200 3.59 0.00033 ***
Monarch 0.047976 0.068071 0.70 0.48097
ColdWar -0.035487 0.016235 -2.19 0.02887 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
Residual Sum of Squares: 1400
R-Squared:
               0.013
Adj. R-Squared: -0.0102
F-statistic: 16.7177 on 5 and 6355 DF, p-value: <2e-16
```

A Nicer Table

Table: Models of Demonstrations

	OLS	FE
POLITY	0.006***	0.002
	(0.001)	(0.002)
POLITY Squared	-0.002***	-0.002***
	(0.0003)	(0.0003)
In(GDP)	0.058***	0.055***
	(800.0)	(0.015)
Monarch	-0.046	0.048
	(0.029)	(0.068)
Cold War	0.028**	-0.035**
	(0.014)	(0.016)
Constant	-0.125**	
	(0.058)	
Observations	6,505	6,505
R^2	0.026	0.013
Adjusted R ²	0.025	-0.010
Residual Std. Error	0.526 (df = 6499)	
F Statistic	34.820*** (df = 5; 6499)	16.720*** (df = 5; 6355)

^{*}p<0.1; **p<0.05; ***p<0.01

Issues (?) with "Fixed" Effects

Pros:

- Specification Bias
- Intuitive
- Widely Used/Understood

Cons:

- Can't Estimate β_B
- Slowly-Changing Xs
- (In)Efficiency / Inconsistency (Incidental Parameters)

"Between" Effects

From:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) \beta_W + \alpha_i + u_{it}.$$

"Between" effects:

$$ar{Y}_i = ar{\mathbf{X}}_i oldsymbol{eta}_B + u_{it}$$

- Essentially cross-sectional
- Based on N observations

"Between" Effects

```
> BE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
           data=PDF, effect="individual",model="between")
>
> summarv(BE)
Oneway (individual) effect Between Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "individual", model = "between")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Observations used in estimation: 145
Coefficients:
           Estimate Std. Error t-value Pr(>|t|)
(Intercept) -0.30601 0.20837 -1.47 0.1442
         0.00597 0.00489 1.22 0.2244
POT.TTY
I(POLITY^2) -0.00302  0.00112  -2.69  0.0079 **
          0.06883 0.02734 2.52 0.0130 *
1 nGDP
Monarch -0.04966 0.10320 -0.48 0.6312
ColdWar 0.25872 0.08482 3.05 0.0027 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                      8.75
Residual Sum of Squares: 7.64
R-Squared:
               0.127
Adj. R-Squared: 0.0961
F-statistic: 4.06164 on 5 and 139 DF, p-value: 0.0018
```

A Nicer Table (Again)

Table: Models of Demonstrations

	OLS	FE	BE
POLITY	0.006***	0.002	0.006
	(0.001)	(0.002)	(0.005)
POLITY Squared	-0.002***	-0.002***	-0.003***
	(0.0003)	(0.0003)	(0.001)
In(GDP)	0.058***	0.055***	0.069**
	(0.008)	(0.015)	(0.027)
Monarch	-0.046	0.048	-0.050
	(0.029)	(0.068)	(0.103)
Cold War	0.028**	-0.035**	0.259***
	(0.014)	(0.016)	(0.085)
Constant	-0.125**		-0.306
	(0.058)		(0.208)
Observations	6,505	6,505	145
R ²	0.026	0.013	0.127
Adjusted R ²	0.025	-0.010	0.096
Residual Std. Error	0.526 (df = 6499)		
F Statistic	34.800*** (df = 5; 6499)	16.700*** (df = 5; 6355)	4.060*** (df = 5; 139)

 $^{^*}p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

with:

$$u_{it} = \alpha_i + \lambda_t + \eta_{it}$$

and

$$\begin{split} E(\alpha_i) &= E(\lambda_t) = E(\eta_{it}) &= 0, \\ E(\alpha_i \lambda_t) &= E(\alpha_i \eta_{it}) = E(\lambda_t \eta_{it}) &= 0, \\ E(\alpha_i \alpha_j) &= \sigma_\alpha^2 \text{ if } i = j, \text{ 0 otherwise,} \\ E(\lambda_t \lambda_s) &= \sigma_\lambda^2 \text{ if } t = s, \text{ 0 otherwise,} \\ E(\eta_{it} \eta_{js}) &= \sigma_\eta^2 \text{ if } i = j, \text{ } t = s, \text{ 0 otherwise,} \\ E(\alpha_i \mathbf{X}_{it}) &= E(\lambda_t \mathbf{X}_{it}) = E(\eta_{it} \mathbf{X}_{it}) &= 0. \end{split}$$

"Random" Effects

"Variance Components":

$$Var(Y_{it}|\mathbf{X}_{it}) = \sigma_{\alpha}^2 + \sigma_{\lambda}^2 + \sigma_{\eta}^2$$

If we assume $\lambda_t = 0$, then we get a model like:

$$Y_{it} = \mathbf{X}_{it}\beta + \alpha_i + \eta_{it}$$

with total error variance:

$$\sigma_u^2 = \sigma_\alpha^2 + \sigma_\eta^2.$$

"Random" Effects: Estimation

$$E(\mathbf{u}_{i}\mathbf{u}_{i}') \equiv \mathbf{\Sigma}_{i} = \sigma_{\eta}^{2}\mathbf{I}_{T} + \sigma_{\alpha}^{2}\mathbf{i}\mathbf{i}'$$

$$= \begin{pmatrix} \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \sigma_{\alpha}^{2} & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} \end{pmatrix}$$

$$\mathsf{Var}(\mathbf{u}) \equiv \mathbf{\Omega} = egin{pmatrix} \mathbf{\Sigma}_1 & 0 & \cdots & 0 \ 0 & \mathbf{\Sigma}_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \mathbf{\Sigma}_N \end{pmatrix}$$

"Random" Effects: Estimation

Can estimate:

$$\mathbf{\Sigma}^{-1/2} = rac{1}{\sigma_{\eta}} \left[\mathbf{I}_{\mathcal{T}} - \left(rac{ heta}{\mathcal{T}} \mathbf{i} \mathbf{i}'
ight)
ight]$$

where

$$\theta = 1 - \sqrt{\frac{\sigma_{\eta}^2}{T\sigma_{\alpha}^2 + \sigma_{\eta}^2}}.$$

With $\hat{\theta}$, calculate:

$$Y_{it}^* = Y_{it} - \hat{\theta} \bar{Y}_i$$

$$X_{it}^* = X_{it} - \hat{\theta} \bar{X}_i,$$

estimate:

$$Y_{it}^* = (1 - \hat{\theta})\alpha + X_{it}^* \beta_{RE} + [(1 - \hat{\theta})\alpha_i + (\eta_{it} - \hat{\theta}\bar{\eta}_i)]$$

and iterate...

"Random" Effects: An Alternative View

Random Effects

```
> RE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar,
               data=PDF, effect="individual", model="random")
> summarv(RE)
Oneway (individual) effect Random Effect Model
  (Swamv-Arora's transformation)
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "individual", model = "random")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Effects:
                var std dev share
idiosyncratic 0.2197 0.4687 0.8
            0.0563 0.2373 0.2
individual
theta:
                       Mean 3rd Qu.
  Min. 1st Ou. Median
                                     Max.
 0 108 0 708 0 736 0 724 0 757 0 757
Coefficients:
            Estimate Std. Error z-value Pr(>|z|)
(Intercept) -0.131708 0.104987 -1.25
                                         0.210
POT.TTY
            0.002574 0.001450 1.78
                                         0.076 .
I(POLITY^2) -0.001953  0.000287  -6.81  9.6e-12 ***
1nGDP
          0.057117 0.012443 4.59 4.4e-06 ***
Monarch -0.006937 0.053291 -0.13 0.896
ColdWar -0.023580 0.015008 -1.57
                                         0.116
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
Residual Sum of Squares: 1430
               0.0124
R-Squared:
Adj. R-Squared: 0.0117
Chisq: 81.0788 on 5 DF, p-value: 4.99e-16
```

Random Effects Remix (using 1mer)

```
> library(lme4)
> AltRE<-lmer(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar+
                  (1|ccode), data=Demos)
> summary(AltRE)
Linear mixed model fit by REML ['lmerMod']
Formula: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar +
   (1 | ccode)
  Data: Demos
REML criterion at convergence: 9005
Random effects:
Groups Name
                     Variance Std.Dev.
         (Intercept) 0.0536 0.232
 ccode
 Residual
                     0.2200 0.469
Number of obs: 6507, groups: ccode, 145
Fixed effects:
            Estimate Std. Error t value
(Intercept) -0.133634 0.104246 -1.28
POT.TTY
            0.002623 0.001447
                                1.81
I(POLITY^2) -0.001972  0.000287  -6.88
1nGDP
          0.057513 0.012371 4.65
Monarch
        -0.015175 0.052863 -0.29
ColdWar
        -0.022225 0.014986 -1.48
Correlation of Fixed Effects:
           (Intr) POLITY I (POLI lnGDP Monrch
POT.TTY
            0.109
I(POLITY^2) 0.134 -0.135
1nGDP
         -0.968 -0.140 -0.270
          0.004 0.172 -0.163 -0.022
Monarch
ColdWar
        -0.391 0.387 -0.210 0.351 0.014
```

A Nicer Table (Yet Again)

Table: Models of Demonstrations

	OLS	FE	BE	RE
POLITY	0.006***	0.002	0.006	0.003*
	(0.001)	(0.002)	(0.005)	(0.001)
POLITY Squared	-0.002***	-0.002***	-0.003***	-0.002***
	(0.0003)	(0.0003)	(0.001)	(0.0003)
In(GDP)	0.058***	0.055***	0.069**	0.057***
	(800.0)	(0.015)	(0.027)	(0.012)
Monarch	-0.046	0.048	-0.050	-0.007
	(0.029)	(0.068)	(0.103)	(0.053)
Cold War	0.028**	-0.035**	0.259***	-0.024
	(0.014)	(0.016)	(0.085)	(0.015)
Constant	-0.125**		-0.306	-0.132
	(0.058)		(0.208)	(0.105)
Observations	6,505	6,505	145	6,505
R ²	0.026	0.013	0.127	0.012
Adjusted R ²	0.025	-0.010	0.096	0.012
Residual Std. Error	0.526 (df = 6499)			
F Statistic	34.800*** (df = 5; 6499)	16.700*** (df = 5; 6355)	4.060*** (df = 5; 139)	81.100***

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

"Random" Effects: Testing

Hausman test (FE vs. RE):

$$\hat{\mathcal{W}} = (\hat{\beta}_{\mathsf{FE}} - \hat{\beta}_{\mathsf{RE}})'(\hat{\mathbf{V}}_{\mathsf{FE}} - \hat{\mathbf{V}}_{\mathsf{RE}})^{-1}(\hat{\beta}_{\mathsf{FE}} - \hat{\beta}_{\mathsf{RE}})$$

$$W \sim \chi_k^2$$

Issues:

- Asymptotic
- No guarantee $(\hat{\mathbf{V}}_{\mathsf{FE}} \hat{\mathbf{V}}_{\mathsf{RE}})^{-1}$ is positive definite
- A general specification test...

Hausman Test

```
Hausman test (FE vs. RE):
> phtest(FE, RE)
Hausman Test
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar chisq = 10, df = 5, p-value = 0.05
alternative hypothesis: one model is inconsistent
```

Practical "Fixed" vs. "Random" Effects

- "Panel" vs. "TSCS" Data
- Data-Generating Process
- Covariate Effects

Unit Effects Models: Software

R:

- the lme4 package; command is lmer
- the plm package; plm command
- the nlme package; command lme

Stata: xtreg

- the re (the default) = random effects
- the fe = fixed (within) effects
- the be = between-effects

Dynamics

Lagged: Y?

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

If ϵ_{it} is perfect...

- $\hat{\beta}_{LDV}$ is biased (but consistent),
- O(bias) = $\frac{-1+3\beta_{LDV}}{T}$

If ϵ_{it} is autocorrelated...

- $\hat{\beta}_{LDV}$ is biased and inconsistent
- IV is one (bad) option...

Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$

 $u_{it} = \phi u_{it-1} + \eta_{it}$

as

$$Y_{it} = \mathbf{X}_{it}\beta_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\beta_{AR} + \phi(Y_{it-1} - \mathbf{X}_{it-1}\beta_{AR}) + \eta_{it}$$

$$= \phi Y_{it-1} + \mathbf{X}_{it}\beta_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where $\psi = \phi \beta_{AR}$ and $\psi = 0$ (by assumption).

Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates" $\hat{\beta}_{LDV}$ relative to $\hat{\phi}$, "suppress" the effects of $\mathbf{X}...$

Keele & Kelly (2006):

- ullet Contingent on ϵ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{\beta}_{LR} = \frac{\hat{\beta}_{LDV}}{1 - \hat{\phi}}$$

Long-Run Impact for $\hat{eta}=1$

Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^* \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

"Nickell" Bias

Bias in $\hat{\phi}$ is

- toward zero when $\phi > 0$,
- increasing in ϕ .

Including unit effects still yields bias in $\hat{\phi}$ of $O(\frac{1}{T})$, and bias in $\hat{\beta}$.

Solutions:

- Difference/GMM estimation
- Bias correction approaches

First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$

$$\Delta Y_{it} = \phi \Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If \nexists autocorrelation, then use ΔY_{it-2} or Y_{it-2} as instruments for ΔY_{it-1} ...

- Consistent in theory,
- in practice, the former is preferred, and both have issues if ϕ is high;
- both are inefficient.

Arellano & Bond (also Wawro): Use *all* lags of Y_{it} and \mathbf{X}_{it} from t-2 and before.

- "Good" estimates, better as $T \to \infty$,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R, xtabond in Stata).
- Model is fixed effects...
- \mathbf{Z}_i has T p 1 rows, $\sum_{i=p}^{T-2} i$ columns \rightarrow difficulty of estimation declines in p, grows in T.

Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects $\hat{\alpha}$...

- \rightarrow reparameterize the α s so that they are *information-orthogonal* to the other parameters in the model (including the β s and ϕ)
- Key idea: Transform the α s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.

References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data."
 Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

Stationarity and Unit Roots in Panel Data

- Short series + Asymptotic tests → "borrow strength"
- · Requires uniform unit roots across cross-sectional units
- Various alternatives:
 - Maddala and Wu (1999)
 - Hadri (2000)
 - Levin, Lin and Chu (2002)
- What to do?
 - Difference the data...
 - Error-correction models

Demonstrations: Panel Unit Root Tests

```
> purtest(lnDemons.exo="trend".test=c("levinlin"))
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: InDemons
z = -3.2, p-value = 0.0007
alternative hypothesis: stationarity
Warning message:
In selectT(1, theTs) : the time series is long
> purtest(lnDemons.exo="trend".test=c("hadri"))
Hadri Test (ex. var.: Individual Intercepts and Trend)
(Heterosked, Consistent)
data: InDemons
z = 671, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(lnDemons.exo="trend".test=c("ips"))
Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts
and Trend)
data: InDemons
Wtbar = -24, p-value <2e-16
alternative hypothesis: stationarity
```

Some Dynamic Models

	LDV	First Difference	FE	LDV + FE
Intercept	-0.104	0.010		
	(0.053)	(0.007)		
Lagged In(Demonstrations)	0.440*			0.267*
	(0.012)			(0.013)
POLITY	0.003*	0.001	0.002	< 0.001
	(0.001)	(0.004)	(0.002)	(0.002)
POLITY Squared	-0.001*	-0.003*	-0.002*	-0.002*
	(< 0.001)	(0.001)	(< 0.001)	(< 0.001)
In(GDP)	0.038*	-0.108	0.055^{*}	0.049^{*}
	(0.007)	(0.079)	(0.015)	(0.015)
Monarch	-0.017	-0.004	0.048	0.070
	(0.026)	(0.139)	(0.068)	(0.067)
Cold War	0.011	-0.134*	-0.035^{*}	-0.029
	(0.013)	(0.052)	(0.016)	(0.016)
R ²	0.200	0.004	0.013	0.077
Adj. R ²	0.199	0.003	-0.010	0.055
Num. obs.	6419	6360	6505	6419

p < 0.05

FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)

OPM Results: Short- and Long-Run Effects

For $\hat{\phi} \approx$ 0.32:

Parameter	Short-Run	Long-Run	
POLITY	0.0010	0.0015	
POLITY Squared	-0.0018	-0.0027	
In(GDP)	0.0655	0.0956	
Monarch	0.0629	0.0913	
Cold War	-0.0206	-0.0310	

Final Thoughts: Dynamic Panel Models

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you really care about?