"电子技术课程设计"建议进度及检查细则参考

任务一: 音乐计算器的设计与实现

第臺周周二:根据任务书中预习任务要求检查预习情况,其中 ALU 要求如下:

模块	仿 真	说明
8位 ALU	各项运算在 Modelsim 的同一个 testbench 中仿真,依次进行加、减、 与或、比较;需设置多组数据激励, 以体现零标志位、进位/借位标志 位结果各为 0、1 的各类情形	加、减结果波形显示为 unsigned 数据 类型; 与或、比较结果波形显示为二进制数 据类型;

第壹周周三/四:实现主体计算功能

模块	下载	说明
计算功能	各种三位数之间的各种运算,同时注意零标志位、进位/借位标志位的灯正确亮灭 一次计算完成后,不需复位,可直接进行下一次运算按RST键,所有输入清除超过三位数时只取前3位输入,且包括前导0输入能有效处理长按键,处理效果自拟 具有非法情形的处理,应和真实计算器一致;例如连续输入多个运算符号应以最后一个符合为有效符号;或上一次计算结束后,继续按"-44="键,结果应为上一次计算的结果减44。	1.使用状态机设计控制电路; 2.键盘输入—— 最多三位输入,取前三位,并且要求有前导 0 处理,如 0、1、2、3,取 012;具有防抖及长按键处理机制;连续输入多个运算符号,取后一个,如 3+-5,取 3-5;其他非法输入情况可以参考其他计算器,处理合理并统一即可; 3.ALU—— 只允许使用 1 个 8 位ALU,分两次进行计算,分别计算低8位和高8位;ALU模块carry_out信号表示低8位向高8位的进借位;比较运算的结果可以自己拟定,合理即可。 4. 因允许前导 0 的输入,所以上电时数码管上的显示全灭。5.连续计算——按等号后继续计算11+22=33-44=(必做部分);输入长运算式计算 11+22-44=(选做部分,带优先级 or 不带优先级)

第臺周周五:加入音乐功能,实现整体音乐计算器

模块	下载	说明
计算功能	各种三位数之间的各种运算,同时 注意零标志位、进位/借位标志位 的灯正确亮灭	主体计算功能的各细节要求不变;
分频		分频得到简单的 do、la、mi 等音高;
音乐乐谱		记录各音高及音符长短;
整体音乐模块	新一轮计算未完成,音乐不播放; 计算完成,正负分别播放不同的足够长的音乐; 随时按 RST 键,音乐停止 计算完成音乐播放,拨码开关 B7 上拨时,音乐随时停止,此时再返	音乐模块—— 结果正负播放不同的 音乐,有音高、音符长短变化;音乐 足够长,能够听出简单的旋律;开始 新的计算或按 rst 键停止播放;关闭 播放开关,停止播放,并且再打开也 不再播放;
	回下拨状态,音乐不播放。	

任务二: 远程控制系统的设计与实现

预习任务	检查项目
→ >4- BB -4G >BB - >4- TV	串口调试助手发出的数据格式(单字节、多字节)
示波器观测、记录波形	分频器输出的时钟频率(9600 位/秒的波特率)
收发状态转换图	串口接收、发送状态转换图,说明每个状态含义及状态转移条 件。该转换图在预习报告中检查。
收发模块封装设计	收发模块的封装

模 块	仿真	下载
FPGA 发送	得到发送开始信号后,可发送单个字节、连续多字节数据(如给模块并行输入学号末几位),仿真使用 Modelsim 实现,波形显示均为 unsigned 数据类型。发送完成后,给出握手信号(发送完毕信号)。	功能实现: 键盘数字→FPGA→串口调试助手(收) 键盘上可以发送任意字节的数据的 长度(提示:可设置最长字节,小 于最长字节时, 发送数据与接收数 据内容相同 ,超出最长字节时应有 相应处理)
模 块	说	明

模块应有 RST 键,可随时复位清零(清除数码管上显示的数字,同时清除输入的全部数字); 数码管上实时显示输入的数字,显示方式自定; 键盘输入数字后,按下 "="键,数字全部发送到串口调试助手上,在未按下 新的数字键时,再次按下 "="键,发送上次输入的内容; 设置 "C"键,用于清除输入的 1 位错误数字(按一次 "C",清除刚刚输入的 1 位错误数字); 发送模块的最大发送字节长度提示使用 parameter 记录,实例化发送相关模块时,可更改 parameter 的值,从而更改最大发送字节的长度。

模块	仿真	下载
FPGA 接收	可接收单个字节、连续多字节数据(如给模块串行输入学号),仿真使用 Modelsim 实现,波形显示均为 unsigned 数据类型。接收完毕后,给出握手信号(接收完毕信号)	功能实现: 串口助手(发)→FPGA→数码管显示 FPGA 接收到的串口调试助手发出的数据必须先存储,按"="键之后显示到数码管上(对于超过数码管位数(n位)时数字显示前n位还是后n位,由设计者确定); 串口调试助手可发送任意长度的字节数据(可设置最长字符长度)
说明	提示用状态机; 模块应有 RST 键,可随时对数码管显示的数字进行清零;	

模块	仿真	下载
接收发送联合	仿真激励设置单个字节、连续多字节数据的接收,数据接收完成后,按"="键后再将数据连续发送出去,仿真设置的波形应与示波器观测到的波形一致;仿真使用 Modelsim 实现,波形显示均为unsigned 数据类型;注意:握手信号的使用。	功能实现: 串口助手(发)→FPGA→串口助手(收) FPGA 接收到的串口调试助手发出的数据必须先 存储 ,按"="键之后再发送; FPGA 接收到的串口调试助手发出的数据使用数码管显示(对于超过数码管位数(n位)时数字显示前n位还是后n位,由设计者确定); 串口调试助手可发送任意长度的字节(可设置最长字符长度)。

第 机 周 周 三/四:自行拟定内容,实现一个"远程控制系统"。该电路的举例和要求在课上还会说明。