Digital Humans

Zhizheng Liu and Joe Lin

Research Goal

- Build **intelligent agents** that understand and interact with humans in outdoor environments (especially in urban contexts)
 - Problem: Lack of human-scene and human-agent interaction data

Q: How do we get human-scene interaction data and learn from it?

A: CityWalkers and PedGen

Learning to Generate Diverse Pedestrian Movements from Web Videos with Noisy Labels

Zhizheng Liu, Joe Lin, Wayne Wu, Bolei Zhou

Representing Humans with SMPL

- Parameterized encoding of a 3D human mesh
 - Start with mean template shape $\overline{\mathbf{T}}$
 - Body **shape** parameters $\vec{\beta}$ (vector elements represent for ex. height, weight)
 - Body **pose** parameters $\vec{\theta}$ (rotation of each joint)
 - Global orientation and translation (pose in world space)

CityWalkers: Capturing Diverse Real-World Pedestrian Movements

- 30.8 hours of highquality web videos with human motion pseudo-labels (SMPL)
- Diverse individual characteristics, human movements, urban environments, and route goals

CityWalkers: Capturing Diverse Real-World Pedestrian Movements

PedGen: Generative Model for Context-Aware Pedestrian Motion

- Diffusion model conditioned on scene context
 - Note: Same as image diffusion models from lecture. We add noise and denoise a motion vector instead of an image.

Generation Results in Real-World Scenarios and CARLA Simulation

Qualitative Results: CityWalkers

Qualitative Comparison of Training PedGen with Scene Context Factors

Q: How do we improve the pseudo-label quality?

A: JOSH

Joint Optimization for 4D Human-Scene Reconstruction in the Wild

Zhizheng Liu, Joe Lin, Wayne Wu, Bolei Zhou

Human Motion Estimation

- Predicting human movements (in SMPL) given a sequence of images
 - TRAM Combines SLAM and depth estimator to predict metric-scale global trajectory

Scene Reconstruction

- Reconstructing the 3D scene given a set of images
 - Note: Most of the time we don't have access to camera intrinsics and extrinsics
- Classical CV approach
 - **Structure from Motion** (SfM) Estimate camera poses and triangulate points with **stereo** and **epipolar** geometry
 - **COLMAP** Dense reconstruction using SfM and bundle adjustment
 - Problem: Computationally expensive and inaccurate with sparse scene views

Scene Reconstruction

- Deep learning approach
 - **DUSt3R** Dense and unconstrained stereo (two cameras) 3D reconstruction
 - MASt3R Learning additional feature descriptor for efficient 3D point matching
 - MASt3R-SfM Extending pipeline to videos and optimize dense depth, camera intrinsics, camera pose, global scale

Scene Reconstruction

- Deep learning approach
 - **DUSt3R** Dense and unconstrained stereo (two cameras) 3D reconstruction
 - MASt3R Learning additional feature descriptor for efficient 3D point matching
 - MASt3R-SfM Extending pipeline to videos and optimize dense depth, camera intrinsics, camera pose, global scale

JOSH: Joint Optimization of Scene Geometry and Human Motion

- Initialize with MASt3R and TRAM + obtain pseudo-depths
- Add human into joint optimization
 - Contact Scale Loss \mathcal{L}_{c1} matches human-scene contact points
 - Contact Static Loss \mathcal{L}_{c2} ensures contact points remain stationary across time

Evaluation Results for Global Human Motion on EMDB Dataset

Input Video from EMDB

Ground Truth

JOSH (ours)

TRAM

WHAM

*Dense scene reconstruction result is from JOSH as a reference, as no GT is available for EMDB and WHAM and TRAM cannot reconstruct the scene

Evaluation Results for Global Human Motion on SLOPER4D Dataset

Human and Scene Reconstruction Results on in-the-wild Videos

Input Web Video

4D Human-Scene Reconstruction

Thank you for listening!

If any of this interests you, feel free to reach out to Zhizheng Liu.

