11 July 2022 08:39

> ferform the histogram equalisation for an 8x8 image shown below Graylevel 0 1 2 3 4 5 6 7

15

lo

11

8

histogram equalised image

Gray level n_k PDF $P_r(r_k) = \frac{1}{2} p_{MN}$ $r_0 = 0$ q $P_r(r_0) = 0.141$ $r_1 = 1$ $r_2 = 2$ $r_3 = 0.125$ $r_2 = 2$ $r_3 = 0.172$

4

10

15

 $P_{x}(x_{2}) = 0.172$ $P_{x}(x_{3}) = 0.062$ $P_{x}(x_{4}) = 0.156$ $P_{x}(x_{5}) = 0.234$

Pr(87)=0.062 Pr(87)=0.047

Round off CDF = EPr(ri) Sk=(L-1)XOF j=0 0'141 1 0.987 1.862 0.266 0.438 3.066 3.5 0.2 4.592 0.656 6.23 0.89 6.664 0.952 6.993 0.999

O/P image

V3=3

84 = 4

75-5

V6 =6

Gray levels	1	2	3	4	(b	6	7
no of pinels	9	8	11	4	lo	15	7
		•					

Q. For the given ip image perform histogram equalisation & give the oppimage.

Sd. ip image 4 4 4 4 4 3 4 5 4 3 3 5 5 5 3 3 4 5 4 3 4 4 4 4 $M \times N = 5 \times 5 = 25 = Total no. of pixels$ max intensity in image = 5 .: no. of bits = 3 .: max. gray levels = $2^3 - 1 = 7$

Gray lands nik PDF Po(VK)=MYMN CDF= Ser(Vj) SK=(L-1)X(DF Round off

6666	Gray levels 80 = 0 81 = 1 82 = 2 84 = 4 85 = 5 87 = 7	nx 00064500 ing	2726	000000000000000000000000000000000000000	Sk=(L-1)X(DF 00 0 1.68 5.6 7 7	Kound off. 0000216777
------	---	-----------------	------	---	--	-----------------------

Q. Resporm histogram equalisation for the following image f(x,y) = 1 + 2 + 1 + 1 + 1

$$S = T(x) = (L-1) \left| \sum_{j=0}^{K} P_{r}(y^{*}_{j}) \right|$$

An image with intensities in the range [0, 1] has the PDF $p_r(r)$ shown in the following diagram. It is desired to transform the intensity levels of this image so that they will have the specified $p_z(z)$ shown. Assume continuous quantities and find the transformation (in terms of r and z) that will accomplish this.

First, we obtain the histogram equalization transformation:

$$s = T(r) = \int_{0}^{r} p_r(w) dw = \int_{0}^{r} (-2w + 2) dw = -r^2 + 2r.$$

Next we find

$$v = G(z) = \int_{0}^{z} \rho_{z}(w) dw = \int_{0}^{z} 2w dw = z^{2}.$$

Finally,

$$z = G^{-1}(v) = \pm \sqrt{v}.$$

But only positive intensity levels are allowed, so $z=\sqrt{v}$. Then, we replace v with s, which in turn is $-r^2+2r$, and we have

$$z = \sqrt{-r^2 + 2r}.$$