

Multidisciplinary Design Optimization of a HALE drone regarding environmental impact

Edouard Duriez

Pr Joseph Morlier

Use: pseudo-satellite

- -Earth-observation
- -Earth monitoring
- -Communication
- => Long flight

Principle

- -Solar powered
- -Large-span
- -Batteries

ECO-HALE

Assets

- -Repairable
- -Flexible
- -Permanent coverage
- -cheaper*
- -Environmental friendly?

Drawbacks

- -Technical complexity
- -Smaller coverage

https://www.esa.int/Applications/Navigation/Crossing_drones_with_satellites_ESA_eyes_high-altitude_aerial_platforms

Kirsch, B., & Montagnier, O. (2018). Maîtriser la conception des drones solaires à voilure souple : Vers l'avènement des pseudo-satellites à hautes altitudes (HAPS). *Technologie Et Innovation*, *3*(3). doi:10.21494/iste.op.2018.0252

I/Introduction
II/Background
III/Model
IV/Results
V/Conclusion

Subject/aims

- Optimize the environmental impact of a HALE drone : eco-design
- Include material selection in MDO
- Select optimal material in a big database : CES Selector
- Significant computing time improvement compared to « brutal force »

Material	E (GPA)	Density (kg/m3)	CO2 (kg/kg)
Stainless steel	200	7750	3.4
Aluminum	72.5	2800	8.2
GFRP	21.4	1860	6.2
CFRP	55	1565	48
Sandwich	42.5	500-560	40-45

State of the art: Ashby's method

One part at a time, one loading case at a time

State of the art: SIMP

- Solid Isotropic Material with Penalization (SIMP)
- $E_e(\rho_e) = A_E * \rho_e^p + B_E$, $\rho_e \in [\rho_i, \rho_{i+1}], A_E = \frac{E_i - E_{i+1}}{\rho_i^p - \rho_{i+1}^p}, B_E = E_i - A_E * \rho_i^p$

Technical context: OpenAeroStruct

- Low fidelity tool for aerostructural MDO, based on OpenMDAO framework (NASA). Optimizer used: SLSQP
- Derivatives by adjoint method with analytic gradients
- Aerodynamics : vortex lattice method (VLM)
- Structure: 1D finite element analysis with wingbox elements.

I/Introduction

Chauhan, S. & R. R. A. Martins, J. (2018). Low-Fidelity Aerostructural Optimization of Aircraft Wings with a Simplified Wingbox Model Using OpenAeroStruct. 418-431. 10.1007/978-3-319-97773-7_38.

Gray, J., Moore, K., & Naylor, B. (2010). OpenMDAO: An Open Source Framework for Multidisciplinary Analysis and Optimization. *13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference*. doi:10.2514/6.2010-9101

Jasa, J. P., Hwang, J. T., & Martins, J. R. R. A. (2018). Open-source coupled aerostructural optimization using Python. *Structural and Multidisciplinary Optimization*, *57*(4), 1815–1827. doi: 10.1007/s00158-018-1912-8

OpenAeroStruct new formulation

	Initial formulation	New formulation
Objective function	Fuel burn	CO2 impact of the drone
Constraints	 Mechanical failure Range by Breguet equation Flight (L=W) 	 Enough power Simple buckling constraint Mechanical failure Flight (L=W)
Design variables	ThicknessesTwistThickness to chord ratio	 Thicknesses Twist Thickness to chord ratio Density

OpenAeroStruct new formulation

- Change commercial aircraft into HALE drone with same characteristics as FBHALE for comparison.
- Power balance depending on mass, payload and avionics
 -> constraint on wing surface
- Added mass of solar panels, batteries (worst case : 13h night), avionics, propulsion
- CO2 impact of solar panels and batteries

Colas, D., Roberts, N. H., & Suryakumar, V. S. (2018). HALE Multidisciplinary Design Optimization Part I: Solar-Powered Single and Multiple-Boom Aircraft. 2018 Aviation Technology, Integration, and Operations Conference. doi:10.2514/6.2018-3028

Wetzel, T., & Borchers, S. (2014). Update of energy payback time and greenhouse gas emission data for crystalline silicon photovoltaic modules. *Progress in Photovoltaics: Research and Applications*, *23*(10), 1429–1435. doi: 10.1002/pip.2548

Material design variable

- OpenAeroStruct only accepts continuous design variables
 - -> Material variable needed to be made continuous
- All material characteristics are introduced as a function of density, and linearly interpoled between two real materials.
 - -> only one material design variable : density

I/IntroductionII/BackgroundIII/ModelIV/ResultsV/Conlusion

Material design variable

- The optimum could be an unexisting material.
- A power term is added at the end of convergence in order to force it to a real material. (negative curvature for CO2, as smaller CO2 is advantageous)

New formulation: design variables

Variable	Bondaries	Lowest starting value	Highest starting value	Number of starting values	unit
Skin thickness	0,0001-0,1	0,001	0,0016	7	m
Spar thickness	0,0001-0,1	0,0001	0,0001	1	m
Wing span	1-1000	55	65	3	m
Wing chord	1,4-500	1,5	1,5	1	m
Wing taper	0,3-0,99	0,3	0,3	1	-
Wing thickness over chord ratio	0,01-0,4	0,11	0,17	3	-
Twist	-30 - +30	+15	+15	1	0
Density	400-8000	1250	2000	2	Kg/m3

Validation: Comparison with FBHALE

Fixed mass comparison with FBHALE:

Variable	Modified OpenAeroStruct	FBHALE
Total mass (kg)	378	320
Wing surface (m ²)	87	72
Aspect ratio	94	29
CL	1.31	1.33

Simple buckling, 1-cosine gust, flutter and snowball effect

Results: convergence graphs

II/Background

III/Model

IV/Results

iteration

V/Conlusion

Results: convergence graphs

Results: final design

Design variables	Final value
Span (m)	108
Chord (m)	1.4
Taper ratio	0.36
Density(kg/m3)	505
Skin thickness (mm)	1-6
Spar thickness(mm)	0.2
Wing twist(°)	12-30
T/C ratio	0.02-0.15

The final material is a sandwich panel (UD CFRP – expanded PS foam – UD CFRP)

=> The same material as FBHALE

Constraints	Final value
Buckling	5.4 E-5
Failure	-0.28
Power	1.3 E-6
Lift	-7.3 E-7

Objective and other results	Final value
CO2 emissions (kg)	15421
Total mass (kg)	473
Battery + PV mass (kg)	226
Payload + avionics mass (kg)	20.5
Wing Structure mass (kg)	155

Results: density sensitivity

- Change in material CO2 => change in optimal material
- Big co2 change necessary for small rho change

Material data	CFRP - PS foam	CFRP - cork
Density	504.5	560.5
CO2/kg	44.9	44.9 / CO2ratio
Other material data	identical	

CO2 ratio	Optimal material
1	CFRP - PS foam
1.1	CFRP - PS foam
1.2	CFRP - PS foam
1.3	CFRP - cork
1.4	CFRP - cork
1.5	CFRP - cork
1.6	CFRP - cork

Results: comments

- Model very sensitive to the input data (snowball effect)
- Optimal material in terms of CO2 very close to optimal material in terms of weight
 - ->battery heaviest impact on CO2
- CO2 emitted by material must be significantly lower for an eco-material to be a good substitute.

Conclusion: Eco-design in the MDO loop

- OpenAeroStruct derived for HALE drones
- Material selection integrated to MDO as a continuous variable
- Method can be adapted to any aerostructure / MDO
- HALE drones could be a cleaner alternative to satellites (no launch) => important to make them as clean as possible.

Conclusion: Next steps

- Multi-material structure
- Improve model (gust, buckling)
- Adapt to bigger material database
- Speed up process (other material variable)

QUESTIONS?

Technical context: OpenAeroStruct

- Low fidelity tool for aerostructural MDO, based on OpenMDAO framework (NASA). Solver used: NonLinearBlocksGaussSiedel
- Gradient optimization: derivatives obtained by couple adjoint method
- Aero : vortex lattice method (VLM)
- Structure (lifting surfaces): 1D finite element analysis with wingbox elements.
- Objective function : Fuel burn
- Design variables: thicknesses, twist, thickness to chord ratio

Gray, J., Moore, K., & Naylor, B. (2010). OpenMDAO: An Open Source Framework for Multidisciplinary Analysis and Optimization. *13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference*. doi:10.2514/6.2010-9101

Technical context : OpenAeroStruct

- Constraints: mechanical failure
 - range by Breguet equation
 - flight (L=W)
- Two test cases: Cruise flight: Ma=0,85
 - Maneuver: Ma=0,64; 2,5g

New formulation: Continuous material

- OpenAeroStruct only accepts continuous design variables
 -> Material variable needed to be made continuous
- All material characteristics are introduced as a function of density, and linearly interpoled between two real materials.

