Confidence Intervals Cheat Sheet

(1-02).160% Confidence Inferval

for 0

† (Critical value) 5D/[6]

Sample Statistic Standard Error Children Value $ \begin{array}{cccccccccccccccccccccccccccccccccc$	-
Sp[6] Sp[6] Sp[6] Sp[6] Sp[6] Sp[6] Sp[6]	2
2 2	
to Use to Use \[\text{Times I - \text{value}} \] \[Times	
2 2	Sultinal Walna
to Use The course of population dist. is an all the dist. is normal example of population dist. is normal example of population dist. is normal example of population of population of the dist. I is normal population of population of example of example of population of example of population of example of population of example	Annual tipes that NAmes Do Mast

Two-Tailed Hypothesis Test Cheat Sheet

		FIA: O + Oc	Ho: 0= 60
of pecision a.	(&- critical sp[&], &+ "	· 12 00 15 17	Method
	Value		
	2010	1	

· IP | fest-shatistic | = critical Calculate Method 2 +est-slatistice = -> decision a. B) SDES]

· It'nots > decisions.

$\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}} = 2$
--

off p-value 200 => dec. of prvalue = 2 P(Z 4) stat p-value =) p(+2-1 stat) If you're not If you're using on Method 3 using on si your standard error Elvor

· Fail to reject Ho. Decision b Decision a evidence to suggest There isn't sufficient 1-1 a, 11

Dwith de=

* n2≥30 or population distribution 2 is

Burrou Si 1

+ 1-23

Min(n(-1,n)-1) normal

* Samples 1 and 2 are random

1×1 1×1 4

Reject Ho. There evidence to suggest is sufficient

11. 0, p. >10 and 0, (1-P.) >10

- napa > 10 and no(1- Pa)>10

Pr (1-Pr) + Po (1-Ps) Z 1-042

* n2<10% of population 2 * n1<10% of population 1

Example of Hypothesis Testing (Two-Tailed Test) for the Difference Between Two Proportions

Using our Pew research results, we would like to estimate if there is a difference in the proportion of all adult Independents living in the US that approve of Trump and the proportion of all adult "that have no political preference" living in the US that approve of Trump. Our Pew research dataset contains a random sample of 530 adult independents living in the US in which 34.5% approve of Trump. Our Pew research dataset contains a random sample of 41 adults with "no political preference" living in the US in which 36.6% approve of Trump.

1. Formulate the null and alternative hypotheses to test this claim.

2. What information do we know about the samples?

$$\hat{P}_{ind} = .345$$
 $\hat{P}_{nopieP} = .366$
 $n_{ind} = .530$ $n_{nopieP} = .41$

3. Formulate a 90% confidence interval for the population parameter we are interested in.

We are 90% confident pind - Propret is in

5. Use this confidence interval to make a conclusion about our null and alternative hypotheses.

Ho: Pind - P no Drof = C

6. Calculate the z-statistic.

7. Use this z-statistic to make a conclusion about our null and alternative hypotheses.

8. Calculate the p-value for this hypothesis test and use it to make a conclusion about our null and alternative hypothesis.

$$p\text{-value} = 2 P(ZZ - | Z\text{-statistic})$$

= $2 P(ZZ - | -.2637|)$

= $2 (.390)$ > poin. cdf(-.2637)

= 1.792 area clandard hormal pdf

 $p\text{-value} > \infty$

=) Fail to reject Ho. There is not sufficient evidence to suggest Ha.