3. 译码器实现逻辑函数

例: 用译码器和逻辑门实现下列一组函数

$$F_1(A, B, C) = A\overline{B}C + B\overline{C} + \overline{A} \cdot \overline{C}$$

$$F_2(A,B,C) = (A + \overline{B} + C)(\overline{B} + \overline{C})$$
 变成标准形式

F_1 AB								
C		00	01	11	10			
	0	1	1	1	_ (2			
	1			<i>^</i> A	CIP			

F_2 AB								
C	00	01	11	10				
0		0						
1		0	0					

$$F_1(A, B, C) = \sum (0, 2, 5, 6) = \prod (1, 3, 4, 7)$$

 $F_2(A, B, C) = \sum (0, 1, 4, 5, 6) = \prod (2, 3, 7)$

$$F_2(A, B, C) = \sum (0,1,4,5,6) = \prod (2,3,7)$$

方法 1: 译码器 + 或门

标准与或式

高电平有效译码器

输出: 最小项

$$F_1(A, B, C) = \sum (0, 2, 5, 6)$$
$$F_2(A, B, C) = \sum (0, 1, 4, 5, 6)$$

方法2: 译码器 + 与非门

与或式 → 与非门

$F_1(A, B, C) = \sum (0, 2, 5, 6)$ $F_2(A, B, C) = \sum (0, 1, 4, 5, 6)$

低电平有效译码器 (74138)

与非门 → 最小项编号

$$F_{1}(A,B,C) = m_{0} + m_{2} + m_{5} + m_{6}$$

$$= \overline{m_{0} + m_{2} + m_{5} + m_{6}}$$

$$= \overline{m_{0} \cdot m_{2} \cdot m_{5} \cdot m_{6}}$$

方法 3: 译码器 + 与门

低电平有效译码器

$$F_{1}(A,B,C) = \Pi (1,3,4,7)$$

$$= M_{1} \cdot M_{3} \cdot M_{4} \cdot M_{7}$$

$$= \overline{m}_{1} \cdot \overline{m}_{3} \cdot \overline{m}_{4} \cdot \overline{m}_{7}$$

$$F_{2}(A,B,C) = \Pi (2,3,7)$$

$$= M_{2} \cdot M_{3} \cdot M_{7}$$

$$= \overline{m}_{2} \cdot \overline{m}_{3} \cdot \overline{m}_{7}$$

标准或与式:低电平有效译码器 + 与门

结论:

用一个译码器实现一组函数

高电平有效译码器 + 或门

(最小项编号)

低电平有效译码器 +与门(与非门)

最大项编号

最小项编号

例:用3-8线译码器扩展成4-16线译码器(例4.6)

用使能端扩展 数据输入: $D_3D_2D_1D_0$

4-16线译码器 $S_A(I)=1$

 D_3 : $S_A(II)$ 接 $S_B(I)$, 作为4-16线译码器MSB $S_A(II)$ 、 $S_C(II)$ 、 $S_C(I)$ 作为4-16线译码器使能端

总使能端

§ 4.4.2 BCD码转十进制译码器

BCD-to-Decimal Decoders

功能: 将 BCD 码转换成十进制码

4-10线译码器 IC 7442

注意:

输出:低电平有效

输入:有效输入0000-1001

无效输入 1010-1111

输入数码是几, 第几号输出就是唯一的低电平0

4线10线译码器7442管脚图和符号图

§ 4.4.3 显示译码器 (/驱动器)

Display Decoder (/Driver)

1. 7段数码管

连接方式不同分成共阴极和共阳极两种

共阴极

二极管 → 逻辑高 → 亮

共阳极

二极管 → 逻辑低 → 亮

BS201B

2. 显示译码器

要显示0-9十个数字,需要用译码器来驱动

显示译码器/驱动器 7448

输入 4 线 4 位二进制数 / 8421 BCD 码

输出 7线 ----- 驱动 7-段数码管

输出高有效, 驱动共阴极管

不一定只有一个输出端高(或低)有效