CURSO ESPECIALIZADO

PELIGROSIDAD SÍSMICA

Método Determinista (DSHA)

Organizado por:

SESIÓN 6: Reproducción del terremoto de 2010 de Chile Mw 8.8

DOCENTE DEL CURSO

Mag. Ing. Jorge Trujillo

EVALUAR EL GRAN TERREMOTO DE CHILE DE 2010, MW 8.8 IMPLEMENTANDO EL METODO DETERMINISTA (DSHA) CON OPENQUAKEY QGIS

Versión: OpenQuake Engine 3.16.2

Versión: QGIS 3.28.7

Añadir su pluging: Complementos>OpenQuake

Fuente: Hayes et al (2013). Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

OBJETIVO PRINCIPAL

Reproducir el terremoto de Chile del 2010 de **Mw 8.8** implementando el método determinista (DSHA) en un OpenQuake Engine y QGIS

Fuente sísmica

El escenario sísmico es el terremoto de Chile del 2010 con epicentro en las coordenada aproximada de longitud -72.9° y latitud de -36.122°, con emplazamiento en la zona de influencia de Chile (Concepción, Coronel, Talca, Linares, Los Angeles). La magnitud máxima es de Mw. 8.8. Haciendo uso de las relaciones alternativas de subducción de Hayes et al (2017), que a partir de la magnitud se obtiene la longitud y ancho del plano de ruptura. Este terremoto generó un gran tsunami con olas desde 2 a 5 metros. Pero se habla de Run up de hasta 30m en Constitución.

Parámetros sísmicos	USGS(TP)	Melnick	Xiaopeng Tong	Han Yue (TP)	Gavin Hayes (TP)	Final
Magnitud (Mw)	8.8	8.8	8.8	8.8	8.8	8.8
Profundidad (km) hipo	22.9			25	22	22.9
Intensidad Max	IX					IX
Latitud	-36.122°S			36.29°S	-36.122°S	-36.122°S
Longitud	-72.898°O			73.24°W	-72.90°w	-72.90°w
Azimut (Strike)	9°/19°			34°S – 38.5°S	16°	19°
Buzamiento (dip)	17.5		15/18/12		14°/18°	17.5°
Mecanismo focal	Inversa	Inversa	Inversa	Inversa	Inversa (104°)	Inversa (104°)

FLUJOGRAMA DEL PROCESO DE MODELAMIENTO DEL PLANO DE RUPTURA

PELIGROSIDAD SISMICA

SEISMICX

DISEÑANDO Y CONSTRUYENDO SEGURO

Diagrama de flujo para un escenario sísmico en OQ

Es necesario generar los archivos:

- ruptura: contiene las características de la ruptura
- gmpe: contiene los M.M.T que escogemos para generar campos de movimiento
- job: contiene las instrucciones de ejecución para OQ

Variabilidad de la intensidad

En realidad las intensidades tienen una variabilidad asociada, observada en un mismo evento y en diferentes eventos, aunque se trate del mismo tipo de ruptura, magnitud y distancia

PGA EN ROCA DURA 1500M/S (TERREMOTO CHILE 2010)

PGA EN VS30 760M/S (TERREMOTO CHILE 2010)

ESPECTRO DE PELIGRO ESPECIFICO EN ROCA DURA (TERREMOTO CHILE 2010 MW 8.8)

Longitud:-73.5993°

Latitud:-37.2975

ESPECTRO DE PELIGRO ESPECIFICO EN ROCA O SUELO RÍGIDO (TERREMOTO CHILE 2010 MW 8.8)

Longitud:-73.5993°

Latitud:-37.2975

ESPECTRO ESPECIFICO (CORTICAL, INTERFASE E INTRAPLACA)

Nota: el espectro de interfase es valido los otros son valores referenciales. En un proyecto se suele elegir uno de cada fuente sísmica y evaluarlo. Se puede elegir las aceleraciones máximas, el promedio, o el percentil 84 que es el más recomendable, pero esto depende de la importancia de la estructura-

