

LECTURE 1: INTRODUCTION

University of Washington, Seattle

Fall 2025

OUTLINE

Part 1: Welcome to EEP 596

- Instruction team
- Goal of the course
- Instruction format
- Course materials
- Instruction components
- Schedule and Canvas page
- Syllabus and Grading

Part 2: Deep Learning and Neural Networks

- Definition(s) of Deep Learning
- Model and data
- Fixed vs Learned model
- Classical machine learning methods
- Artificial neural network and Brain

Part 3: Regression

- Regression problem
- Polynomial fit: Linear regression
- Improving linear regression

PART 1:

WELCOME TO EEP 596

INSTRUCTION TEAM

Instructor:
Jimin Kim
UW NeuroAl Lab
jk55@uw.edu

Research Interests
Computational Neuroscience
and AI

TA:
Yang Zheng
UW NeuroAl Lab
jk55@uw.edu

Research Interests

Neural network efficiency and

Generative AI

TA:Urvashi Taki
utaki@uw.edu

Research Interests

Deep learning for visual data

and LLM

WHAT IS THIS COURSE ABOUT?

Fundamental concepts, skills and applications of deep learning.

Learn fundamental principles behind deep learning architecture and training.

Survey models leading up to current state of the art methods.

Apply models to real-world problems and datasets: Labeled, Visual, Time-series etc.

Comprehensive introductory course with heavy emphasis on practical aspects.

Uses Python 3 and PyTorch as main programming tools.

INSTRUCTION (Tentative)

(630pm – 640pm) Introduction and announcements

(640pm – 700pm) Canvas quiz discussion

(700pm – 820pm) Lecture: Theory

(820pm – 830pm) Break

(830pm - 910pm) Lecture: Practice (with live coding examples)

(910pm – 920pm) Lab assignment introduction

(920pm - 950pm) In-person Lab session

COURSE MATERIALS

Weekly Assignment page (Canvas)

- 1) Lecture slides/recording (.pdf, Panopto video)
- 2) Lab slides/recording (.pdf, Panopto video)
- 3) In-lab examples (.ipynb)
- 4) Lab report starter templates (.ipynb)

Additional Resources (Canvas)

Deep Learning (Ian Goodfellow)

Neural Networks and Deep Learning (Michael Nelson)

PyTorch Github Tutorials (https://github.com/yunjey/pytorch-tutorial)

INSTRUCTION COMPONENTS

1. Lecture (Theory) Theoretical Concepts

2. Canvas quiz Theoretical Concepts Feedback

3. Lecture (Lab) ———— Practical Concepts

4. Code examples ——— Code Implementations

5. Lab assignment Real-world Applications

SCHEDULE

Weekly Instruction:

Mon 6:30 PM – 9:50 PM (ECE 037)

Office Hour

Jimin: TBA

Yang: TBA

Urvashi: TBA

CANVAS PAGE

EE P 596 Au 24: Practical Introduction to Deep Learning Applications and Theory At

Image credit: Google DeepMind

Welcome to EEP 596!

Welcome to EEP 596 "Practical Introduction to Deep Learning Applications and Theory"! This is a graduate level course aiming to provide **fundamental skills**, **concepts**, **and applications of deep learning** and neural networks for the investigation of complex datasets with heavy emphasis on hands-on practices.

Home & Syllabus tabs for Detailed Course Info

Announcements tab for important course announcements

Discussions tab for student – student student – instructor discussions

Panopto tab for Post-lecture recordings

CANVAS ASSIGNMENT PAGE

Lab 1 Report At

LAB 1: PYTHON FOUNDATION

Associated lectures

(Theoretical Concepts)

Lecture 1 - Introduction (Panopto recording, Slides)

(Practice)

Lab 1 - Python Foundation (Panopto recording, Slides)

Lab materials

<u>Lab report guidelines</u> <u>↓</u> (IMPORTANT: READ THIS FIRST!)

<u>Lab 1 Examples notebook</u> ↓

ipynb file containing all the examples discussed in the lab videos. Use this to play with the examples yourself.

Lab 1 Report Template ↓

Zip file containing lab report template ipynb + exercise image files (You need image files to load problems in ipynb).

Unzip the file using windows or 7-zip.

Read **lab report guidelines** before starting your first assignment

Your lab report = Filled in report template notebook (.ipynb)

SYLLABUS (Tentative)

Neural network fundamentals and feed-forward networks (09/29 – 10/13)

(W1) Intro to ANNs/Regression | Setting up Python environment/Regression

(W2) Intro to Deep Learning and MLP | PyTorch Introduction/Classification with MLP

(W3) Convolutional Neural Networks | CNNs in PyTorch

Sequence models (10/20 – 10/27)

(W4) Recurrent Neural Networks | RNNs in PyTorch

(W5) LSTM, GRU, Encoder-Decoder architectures | LSTM, GRU, Encoder-Decoder in PyTorch

Generative models (11/03 – 11/17)

(W6) Attention and Transformers | Text processing with Transformers

(W7) Advanced CNNs | Image classification with ResNet

(W8) Generative Adversarial Networks | Image generation with GAN

Advanced models (11/24)

(W9) Deep Reinforcement Learning | Control strategies with DeepRL

Final project (12/01 – 12/08)

(W10) Project week | Selected Projects (Finals week) Project presentation

GRADING

- (i): **Canvas Quiz (20%)** individual, weekly Evaluated on concept understanding and correctness of the responses Goal: Fundamental concepts feedback
- (ii): Lab Assignment (40%) individual, weekly Evaluated on code organization, documentation and task completion Goal: Implementation and training of Deep Learning models on real datasets
- (iii): **Final Project (40%)** individual/team Evaluated on project planning, presentation and code implementation Goal: Solve an original, real-world project of your choice using deep learning

PART 2:

WHAT IS DEEP LEARNING?

Definition(s) of Deep Learning

IBM: Subset of machine learning that uses multilayered neural networks, called deep neural networks, to simulate the complex decision-making power of the human brain.

AWS: A method in artificial intelligence (AI) that teaches computers to **process** data in a way that is inspired by the human brain.

Ian Goodfellow: A form of machine learning that enables computers to **learn** from experience and understand the world in terms of a hierarchy of concepts.

Yann LeCun: Constructing networks of parameterized functional modules & **training** them from examples using gradient-based optimization.

Geoffrey Hinton: An approach to machine learning that involves **computational models** with multiple processing layers to learn representations of data with multiple levels of abstraction

Deep Learning Foundation: Model and Data

Model and Data

Model and Data

Input

Signal Multi-signal Time dependent Stationary

•

Model

System
Algorithms
Pipeline

•

Output

Signal
Multi-signal
Time dependent
Stationary
Score
Input characteristics

•

Model and Data

Model = Function of the input

Model examples

- LTI systems
 - Convolution, Fourier, Z-transform, Laplace transform
- Non-LTI systems
 - Non-linear transform
- Data fitting models
 - Linear regression
 - Polynomial regression
- Scoring models
- Classification models

Fixed vs Learned model

Fixed model

Discrete Fourier Transform (All parameters are known)

Learned model

$$\sum_{n=0}^{N-1} x_n \cdot e^{-\frac{i2\pi}{N}kn}$$

Discrete Fourier Transform (One of more parameters e.g., k needs to be learned given X_k and x_n)

Image credit: All about circuits

Machine Learning = Learning an Optimal Model for Data

Machine Learning = Learning an Optimal Model for Data

Training/Optimization

- H expression unknown(Hard)
- H expression fixed with known parameters (Easier)
- H expression can be iteratively updated through Machine Learning algorithms (optimization, training)

Machine Learning = Learning an Optimal Model for Data

Training/Optimization

Model optimization is to convert a training set to a model which satisfies the training set – Ilya Sutskever

Three Pillars of Machine Learning Training

Three Pillars of Machine Learning Training

Training set (Seen data)

Validation set (Mid-train evaluation) (Unseen data)

Testing set

Used for optimization

Used for checking training status/parameter tuning

Un-biased evaluation of the learned model

Classical Machine Learning

Classical Machine Learning

Feature extractions

- Round face
- Black eyes and nose
- Triangular ears

Limitations of Classical Machine Learning

Limitations of Classical Machine Learning

Neural Network Model

Neural Network Model

Neural Network Model

Lessons from brain

Lessons from brain

Mathematical Description of a Neuron

Activation Functions in Neural Network

$$I = x_1 w_1 + \dots + x_n w_n$$

$$y = f(I)$$

Integration

Output to other neurons

$$\sum_{i=1}^{n} x_i w_i + b$$

$$f\left(\sum_{i=1}^{n} x_i w_i + b\right)$$

$$y = f\left(\sum_{i=1}^{n} x_i w_i + b\right)$$

Mathematical Description of a Neuron

Without non-linear activation, neural network becomes a linear model

Input weight $x_1 \circ w_{i1}$ $x_2 \circ w_{i2}$ $x_3 \circ w_{i3}$ $x_j \circ w_{ij}$ Activation Function $x_1 \circ w_{ij}$ $x_1 \circ w_{ij}$ $x_2 \circ w_{ij}$ $x_3 \circ w_{ij}$ $x_1 \circ w_{ij}$

Activation function introduces **non-linearity** to the model

Neural Network Model

Model

$$y = f\left(\sum_{i=1}^{n} x_i \mathbf{w_i} + \mathbf{b}\right)$$

Learn the connection weights and biases that optimizes the training set

Biological Neural Networks are large and complex

Nematode *C. elegans* Fruit fly Mouse Human ~150k neurons ~70mil neurons 302 neurons ~10^11 neurons ~7000 synapses ~70mil synapses ~7 x 10^8 synapses ~10^14 synapses

Biological Neural Networks are large and complex

Cerebral cortex

Visual system

Biological neural networks are both Hierarchical and Recurrent (parallelism)

Deep Neural Network as Brain Analogue

Deep Learning Applications

PART 3:

Regression

Regression problem

$$Y = f(X, W)$$

Regression problem

Linear regression (polynomial fit)

$$y(x) = p_0 + p_1 x + \dots + p_m x^m \qquad \qquad y = \vec{p} \cdot \vec{x}$$

$$x = input data$$

y = output data

$$\hat{y}(x) = p_0 + p_1 x + \dots + p_m x^m$$

Goal: Minimize $e = y - \hat{y}$

$$\hat{y}(x) = p_0 + p_1 x + \dots + p_m x^m$$
 Goal: Minimize $e = y - \hat{y}$

$$\hat{y}(x) = p_0 + p_1 x + \dots + p_m x^m$$
 Goal: Minimize $e = y - \hat{y}$

$$(x_{0}, y_{0}), (x_{1}, y_{1}), \dots, (x_{n}, y_{n})$$
n-given points
$$X = \begin{pmatrix} 1 & x_{0} & x_{0}^{2} & \dots & x_{0}^{m} \\ 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{m} \end{pmatrix} \vec{\tilde{x}}_{0}$$

$$P = \begin{pmatrix} p_{0} \\ p_{1} \\ \vdots \\ p_{m} \end{pmatrix}$$

$$\hat{y}(x) = p_0 + p_1 x + \dots + p_m x^m$$
 Goal: Minimize $e = y - \hat{y}$

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$$
n-given points
$$X = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^m \\ 1 & x_1 & x_1^2 & \dots & x_1^m \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^m \end{pmatrix} \vec{\tilde{x}}_0$$

$$P = \begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{pmatrix}$$

Cost
$$J=E_2=\sum_{i=1}^n (\vec{p}\cdot\vec{\tilde{x}}_i-y_i)^2$$
 Total error

Find the parameters minimizing the error

$$J = E_2 = \sum_{i=1}^{n} (\vec{p} \cdot \vec{\tilde{x}}_i - y_i)^2$$

$$\vec{p}^* = \arg\min_{\vec{p}} J(\vec{p})$$

Find the parameters minimizing the error

$$J = E_2 = \sum_{i=1}^{n} (\vec{p} \cdot \vec{\tilde{x}}_i - y_i)^2$$

$$\vec{p}^* = \arg\min_{\vec{p}} J(\vec{p})$$

$$\forall i: \quad \frac{\partial J}{\partial p_j} = 0 \qquad \quad \frac{\partial J}{\partial p_j} = \sum_{i=1}^n 2(\vec{p} \cdot \vec{\tilde{x}}_i - y_i) \vec{\tilde{x}}_i$$

$$\vec{p}^* = (X^\mathsf{T} X)^{-1} X^\mathsf{T} \vec{y}$$

Find the parameters minimizing the error

$$J = E_2 = \sum_{i=1}^{n} (\vec{p} \cdot \vec{\tilde{x}}_i - y_i)^2$$

$$\vec{p}^* = \arg\min_{\vec{p}} J(\vec{p})$$

$$\forall i: \quad \frac{\partial J}{\partial p_j} = 0 \qquad \quad \frac{\partial J}{\partial p_j} = \sum_{i=1}^n 2(\vec{p} \cdot \vec{\tilde{x}}_i - y_i) \vec{\tilde{x}}_i$$

$$\vec{p}^* = \left(X^\mathsf{T} X\right)^{-1} X^\mathsf{T} \vec{y}$$
 Linear least square formula

Linear regression is not perfect

$$\hat{y}(x) = p_0 + p_1 x + \dots + p_m x^m$$

Linear regression is not perfect

$$\hat{y}(x) = p_0 + p_1 x + \dots + p_m x^m$$

Model might perform worse in testing in the presence of outliers

Improving Linear Regression

$$W^* = \operatorname*{arg\ min}_{W} L\left(X, W\right)$$

$$J_2 = rac{1}{n} \sum_{i=1}^n (f(ilde{x}_i, W) - y_i)^2$$
 Mean squared error

$$J_1 = rac{1}{n} \sum_{i=1}^n |f(ilde{x}_i, W) - y_i|$$
 Mean absolute error

$$J_{\infty} = \max_{1 < i < n} |f(\tilde{x}_i, W) - y_i| \quad \text{Max error}$$

Improving Linear Regression

Minimizes

$$(y - Xp)^T(y - Xp)$$

Solution

$$p = (X^T X)^{-1} X^T y$$

Unbiased

High variance

$$(y - Xp)^T(y - Xp) + \lambda |p|^2$$

$$p = (X^T X + \lambda I)^{-1} X^T y$$

Biased

Low variance

Next episode in EE P 596...

$$y = \sigma(\overrightarrow{w}^T \overrightarrow{x} + b)$$

$$\nabla_{\vec{w}} L(\hat{y}, y) = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \nabla_{\vec{w}} z$$

FWD
$$\begin{vmatrix} z = \\ \vec{w}^T \vec{x} + b \end{vmatrix} \longrightarrow \begin{vmatrix} \hat{y} = \sigma(z) \\ \frac{\partial \hat{y}}{\partial z}(z) \end{vmatrix} \longrightarrow L(\hat{y}, y)$$
BWD
$$\nabla_{\vec{w}} z \longleftarrow \frac{\partial \hat{y}}{\partial z}(z) \longleftarrow \frac{\partial L}{\partial \hat{y}}(\hat{y}, y)$$

Optimizations in Deep Learning using Back-propagation and Gradient descent