

- 1. (16 punti) Date due espressioni regolari E_1edE_2 , la notazione $E_1=E_2$ indica che esse denotano lo stesso linguaggio Per ognuna delle seguenti relazioni, dire se essa è vera o falsa illustrando il linguaggio comune a E_1 e E_2 oppure fornendo due stringhe che mostrano che $E_1 \neq E_2$; risposte non giustificate non saranno valutate.
 - $\begin{array}{lll} (a) \ \emptyset^* = \epsilon^* & (b) \ (0 \cup 1)^* = 0^* \cup 1^* & (c) \ (0 \cup 1)(1^* \cup 0) = 00 \cup 11^* \cup 10 \cup 11^* \\ (d) \ (01)^* = 0^*1^* & (e) \ (000^* \cup 111^*) = (00 \cup 11)^*. & (f) \ (0^* \cup 1^*)1^* = (01)^* \cup 1^*. \end{array}$
- (16 punti) Data l'espressione regolare E = (0* ∪ 1*0)1*, utilizzare il metodo studiato per costruire un automa finito A tale che L(A) = L(E). Illustrare e spiegare ogni passaggio fatto.
- 3. (16 punti) Sia L = L(A) il linguaggio riconosciuto dall'automa finito $A = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{a, b, c\}$, $F = \{q_2\}$ e δ è descritta dalla tabella seguente. Determinare il diagramma di una macchina di Turing M tale che $L(M) = \overline{L}$. È necessario spiegare il ragionamento fatto.

	a	b	c
9	$\{q_2\}$		q_0
9	$q_1 \mid \{q_1\}$		Ø
9	$\{q_2\}$	Ø	$\{q_3\}$
9	13 Ø	$\{q_2\}$	$\{q_3\}$

- 4. (18 punti) Si consideri il linguaggio
 - $S_n = \{ \langle M \rangle \mid M$ è una macchina di Turing deterministica con alfabeto Σ e $L(M) \cap \Sigma^n \neq \emptyset \}$, con $n \in \mathbb{N}, n > 0$. Enunciare il Teorema di Rice ed applicarlo per mostrare che S_n non è decidibile. N.B.: L'utilizzo del teorema di Rice deve essere preciso e dettagliato.
- (16 punti) Definire il problema 3-SAT. Definire il problema Independent-Set. Spiegare la riduzione polinomiale da 3-SAT a Independent-Set utilizzando la formula

$$(x \lor y \lor \overline{z}) \land (\overline{x} \lor y \lor t) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor \overline{t})$$

Se la formula é soddisfacibile mostrare l'insieme indipendente nell'istanza di Independent-Set ottenuta.

- 6. (18 punti) Sia INDEPENDENT SET il complemento di INDEPENDENT SET.
 - Definire formalmente il problema *INDEPENDENT SET*.
 - Dire quali delle seguenti affermazioni è vera. Occorre motivare la risposta, enunciando tutti i risultati intermedi utilizzati. Risposte non motivate non saranno valutate.
 - Se $P \neq NP$ allora $INDEPENDENT SET \notin P$
 - Se $\overline{INDEPENDENT}$ \overline{SET} $\notin P$ allora $P \neq NP$.
- 7. Dimostrare formalmente e con precisione che il seguente linguaggio L non è regolare

 $L = \{w \in \{a, b, c, d\}^* \mid \text{ il numero dei fattori } ab \text{ in } w \text{ è uguale al numero dei fattori } cd \text{ in } w\}.$