Beliefs under Ambiguity

Hans-Martin von Gaudecker

Universität Bonn

Axel Wogrolly

Universität Bonn

Christian Zimpelmann

Universität Bonn

December 19, 2018

- ▶ Beliefs are important determinants of real world decisions.
- ► If people are not ambiguity neutral, eliciting subjective probabilites becomes very hard.

- Beliefs are important determinants of real world decisions.
- If people are not ambiguity neutral, eliciting subjective probabilites becomes very hard.
- Experiments: Under ambiguity (probabilites are unknown) people behave differently than under risk (probabilites are known)
- Recently it was shown that ambiguity attitudes can also be estimated for real world events (Baillon et al. 2018). (-> subject-specific)

- In this project, we elicit both subjective beliefs and ambiguity attitudes over the development of the stock market
- ... by introducing an error model into the source model framework introduced by Abdellaoui et al. (2011).

- In this project, we elicit both subjective beliefs and ambiguity attitudes over the development of the stock market
- ... by introducing an error model into the source model framework introduced by Abdellaoui et al. (2011).
- Contributions:
 - Elicitation of ambiguity attitudes over the stock-market in representative data set.
 - Methodological: Elicitation of both subjective beliefs and ambiguity attitudes

Overview

Introduction

Data

Choice Mode

First Results

Data sets

Representative Sample of the Dutch population: Longitudinal Internet Studies for the Social sciences (LISS)

Data sets

- Representative Sample of the Dutch population: Longitudinal Internet Studies for the Social sciences (LISS)
- 2169 participants
- ➤ First wave in Mai 2018, second wave in November 2018 (planned: 8 waves)
- ► 21-28 binary choices
- One choice is payed out.

Two Options

Option A

- ► Bet on AEX
- Win 20 EUR depending on AEX performance

Two Options

Option A

- ► Bet on AEX
- Win 20 EUR depending on AEX performance

Option B

- ► Lottery with known probability
- ▶ Win 20 EUR with probability p

Two Options

seven AEX-events:

- (values adjusted by interest on savings account)
- \triangleright For each event: 3–4 choices with varying p in Option B

Distribution of Matching Probabilities

▶ Matching probability for each event calculated by switch point:

$$W(AEX)U(20 \text{ EUR}) = W(LOT)U(20 \text{ EUR})$$

 $W(AEX) = p$ (1)

Distribution of Matching Probabilities

Matching probability for each event calculated by switch point:

$$W(AEX)U(20 \text{ EUR}) = W(LOT)U(20 \text{ EUR})$$

$$W(AEX) = p$$
(1)

► One example:

Overview

Introduction

Data

Choice Model

First Results

Three components

- 1. Subjective probabilities/beliefs
- 2. Ambiguity attitudes
- 3. Error parameter

Subjective Probabilities

- Basic idea: Subjects have subjective probabilities in mind (that satisfies the requirements of probability theory)
- $ightharpoonup Pr(\emptyset) = 0, \ Pr(\Omega) = 1, \ additivity$

$$\forall$$
 disjoint $A, B : Pr(A \cup B) = Pr(A) + Pr(B)$

Subjective Probabilities

- Basic idea: Subjects have subjective probabilities in mind (that satisfies the requirements of probability theory)
- $ightharpoonup Pr(\emptyset) = 0, \ Pr(\Omega) = 1, \ additivity$

$$\forall$$
 disjoint $A, B : Pr(A \cup B) = Pr(A) + Pr(B)$

- But subjects make decisions based on probability weights that only satisfy a weaker condition.
- $ightharpoonup W(\emptyset) = 0$, $W(\Omega) = 1$, subset condition

$$\forall$$
 disjoint $A, B : W(A \cup B) \geq W(A)$

Source function

Relation between subjective probability and probability weights via source function w_{so} :

$$W(E) = w_{so}(\Pr(E))$$

▶ Source function is source dependent (Risk, Ambiguity, ...)

Source function

Relation between subjective probability and probability weights via source function w_{so} :

$$W(E) = w_{so}(\Pr(E))$$

- ► Source function is source dependent (Risk, Ambiguity, ...)
- Standard models are nested:
 - ▶ Subjective Expected Utility: $w_{so}(x) = x$
 - Probability weighting, but no ambiguity: $w_{so}(x) = w(x)$

Source function

Relation between subjective probability and probability weights via source function w_{so} :

$$W(E) = w_{so}(\Pr(E))$$

- Source function is source dependent (Risk, Ambiguity, ...)
- Standard models are nested:
 - ▶ Subjective Expected Utility: $w_{so}(x) = x$
 - Probability weighting, but no ambiguity: $w_{so}(x) = w(x)$
- We will assume: $w_{Risk}(x) = x$
- If this assumption does not hold, we measure the change in the source function introduced by ambiguity.

Ambiguity Indices (Baillon et al. 2018)

- ► Goal: Measure ambiguity attitudes (i.e. the source function) based on two indices
- Measuring the source function is not trivial because subjective probabilites are unobserved.

Ambiguity Aversion b

- ► This index captures aversion against ambiguity.
- ▶ Basic idea: Consider complementary events such that subjective probabilites cancel out.

Ambiguity Aversion b

- ► This index captures aversion against ambiguity.
- Basic idea: Consider complementary events such that subjective probabilites cancel out.
- $b = 1 (\bar{m}(E) + \bar{m}(E^C))$

- ► Common finding: Ambiguity seeking for low prob. events. Ambiguity aversion for medium and high prob. events.
- ► ⇒ Second index is needed for full picture
- Ambiguity induced likelihood insensitivity / Can be interpreted as perceived level of ambiguity

- ► Common finding: Ambiguity seeking for low prob. events. Ambiguity aversion for medium and high prob. events.
- Second index is needed for full picture
- Ambiguity induced likelihood insensitivity / Can be interpreted as perceived level of ambiguity
- ➤ This index captures the extent to which weights of events are collapsed towards 0.5, so likely events are underweighted and unlikely events are overweighted.
- Basic idea: Composite events on average twice as large as single events.

- ► Common finding: Ambiguity seeking for low prob. events. Ambiguity aversion for medium and high prob. events.
- ► ⇒ Second index is needed for full picture
- Ambiguity induced likelihood insensitivity / Can be interpreted as perceived level of ambiguity
- ➤ This index captures the extent to which weights of events are collapsed towards 0.5, so likely events are underweighted and unlikely events are overweighted.
- Basic idea: Composite events on average twice as large as single events.

$$a = 3 \cdot \left(\frac{1}{3} - \left(\bar{m}(E^C) - \bar{m}(E) \right) \right)$$

Linear source function

We assume a linear source function:

$$w_{Ambig}(\Pr(E)) = \tau + \sigma \Pr(E)$$

Linear source function

We assume a linear source function:

$$w_{Ambig}(\Pr(E)) = \tau + \sigma \Pr(E)$$

Ambiguity indices easily interpretable functions of σ, τ :

▶
$$b = 1 - 2\tau - \sigma$$

$$ightharpoonup$$
 $a = 1 - \sigma$

Error Parameter

- Deterministic model as described so far is rejected by data:
 - ▶ Implication of basic model: Subset condition
 - 55 % of participants violate one subset condition (6 possibilites to do so)

Error Parameter

- Deterministic model as described so far is rejected by data:
 - Implication of basic model: Subset condition
 - 55 % of participants violate one subset condition (6 possibilites to do so)
 - ► Implication of linear source function:

$$P(E_1) + P(E_{1^c}) = 2\tau + \sigma = P(E_2) + P(E_{2^c})$$

ightharpoonup \implies add stochastic component.

Parameters to be estimated

- 1. Subjective probabilities for 2 events: π_1, π_2 (probability for the third event is inferred)
- 2. Ambiguity attitudes $\sigma, \tau / (a, b)$
- 3. Trembling hand error parameter ω

Likelihood

$$L(c_{E_1,p}^{\mathsf{AEX}}|\pi_1,\pi_2,\sigma,\tau,\omega) = \frac{\omega}{2} + (1-\omega)\mathbb{1}_{\{\tau+\sigma\pi_1>p\}}$$

Likelihood

$$L(c_{E_1,p}^{\mathsf{AEX}}|\pi_1,\pi_2,\sigma,\tau,\omega) = \frac{\omega}{2} + (1-\omega)\mathbb{1}_{\{\tau+\sigma\pi_1>p\}}$$

Open question: Which parameters can be identified on individual level?

Intuition for identification

- \blacktriangleright π_1 : Subject chooses AEX-options which include E_1 more often.
- \triangleright τ : Subject chooses AEX-options more often in general.
- $ightharpoonup \sigma$: Choice behavior for complementary and single events is more different.
- ω: Subject makes more choices not rationalizable with deterministic model (especially subset conditions)

Overview

Introduction

Data

Choice Mode

First Results

Ambiguity attitudes

► We can identify ambiguity attitudes

- More subjects are ambiguity averse (not all)
- ► Some subjects show a-insensitivity outside the unit interval.

Source function of representative agent

Beliefs

- ► We can calculate subjective beliefs (considering ambiguity attitudes, but without error model)
- ► Subjective probabilities often outside of unit interval

Relation to general ambiguity (Elsberg urns)

- Compare individual ambiguity indices with Elsberg urn elicitation from an earlier study
- ► a-insensitivity: corr 0.012

Relation to general ambiguity (Elsberg urns)

- Compare individual ambiguity indices with Elsberg urn elicitation from an earlier study
- a-insensitivity: corr 0.012
- ▶ ambiguity aversion: corr 0.058

Relation to portfolio choice

Relation to portfolio choice

Relation to portfolio choice

	1	Ш	III	IV	V	VI
∥_in sen	0.017				0.031	0.026
	(0.015)				(0.021)	(0.020)
ambig _av	, ,	-0.046***			-0.048***	-0.040***
		(0.010)			(0.010)	(0.009)
event_e1_adj		, ,	0.014		Ò.017	Ò.017
			(0.011)		(0.011)	(0.011)
event_e2_adj			-0.004		-0.004	-0.003
			(0.007)		(800.0)	(0.008)
subset_errors			,	0.004	-0.004	-0.001
				(0.006)	(800.0)	(0.008)
wealth				,	,	0.004***
						(0.001)
l(wealth ** 2)						ò.000**
						(0.000)
\$R^2\$	0.001	0.015	0.002	0.000	0.019	Ò.097
N	1337	1337	1337	1337	1337	1337

The End