last time:

Thm let H be reparable hilbert space let $K \in L(H)$ be compact. Then $Y \in \mathcal{F}_{0}$, \exists finite rank operator K_{E} s.t. $||K - K_{E}|| < \Sigma$.

 $\frac{\operatorname{Part}: k_{\epsilon}(x) = \sum_{n=1}^{N} (ke_{n})(x, e_{n})}{\operatorname{Part}: k_{\epsilon}(x) = \sup_{n=1}^{N} (ke_{n})(x, e_{n})} \cdot \operatorname{Nad ho show} = \operatorname{spenximator againster}$

Prove by embadichin. μ_N bounded so $\mu_N \to \mu > 0$. We alsume $\mu > 0$. We alsume $\mu > 0$. We found $(x_n)_{n=1}^{\infty}$, $\|x_n\| = 1$, $x_n \perp span \{e_1,\dots,e_N\}$ and $\|kx_n\| > \frac{\mu}{a}$. We find a subsequence kx_n that conveyor to y. With y=0.

 $s_{o} | (\chi_{n}^{(i)}, k^{*}y) | \leq ||\chi_{n}^{(i)}|| \cdot ||f_{n}|| k^{*}y||$ where $|f_{n}|| k^{*}y = \sum_{j=n+1}^{\infty} (e_{n}, k^{*}y) e_{n} (2^{n+1} + e_{i}m_{i}) + e_{i}m_{i}$

Then $\| [P_n K^* y] \| = \sum_{j=n+1}^{\infty} | (e_n | K^* y) | \longrightarrow 0$ as $n \to \infty$ $([P_n K^* y]) = \sum_{j=n+1}^{\infty} | (e_n | K^* y) | \longrightarrow 0$ as $n \to \infty$

Tala h→ ~ in (*), lly 11 = 0. ↓

do compact operator are limits of finite mak operators in sep. Hilbert. space.

 $T_{\underline{h}\underline{n}}$ Fredholm Altrative. Let k be a compact operator on a separable Hilbert space. Then either I-k is invertible or kf=f has a solution $f\neq 0$, $f\in H$.

Remark: O If $H = \mathbb{C}^n$. Then k (mutrix) either I - k invertible or kx = x, $x \neq 0$.

Ex: Consider $A \times (E) = E \times (E)$ on $L^2 (0,2)$. Then $A \times E \times has no solution but <math>(I-A)^{-1}$ not bounded. (exercise).

The terms of solving f-kf=g. If for any g+f, there is always a solution, then there is always a solution. (compactness of uniqueness) =) existence.

Proof: fick a finite rank operator F so that ||K-F|| < 1. (for any ϵ we can find F by approx. F then I - (k-F) invertible b/c norm < 1. I - (k-E) = I - k + F.

Then I-k=(I-T)(I-k+F) here $T=F(I-k+F)^{-1}$. Fir finite rank \Rightarrow T is finite rank. We can find orthogonal vector $e_{i_1...}, e_N$ so that $F(x)=\sum_{i=1}^N \alpha_i(x)e_i$ — we can always do this on finite rank.

Then $d_n(x)$ are bounded liver functionalt on H. By Ricca RepHinhatian, find $\Psi_n \in H$ s.f. $d_n(x) = (\Psi_n, x)$.

S. F(x) = \(\frac{1}{2} \) (\(\psi_n \) \(\psi_n \) \(

Intuition: I-K+F is invertible. If I-k isolatish = I-T incertible.

Tir finite rank! so reduced to every problem.

Then
$$T_{X}=$$
 $\sum_{n=1}^{N} \left(\gamma_{n}^{n},\chi\right) e_{n}$ where $\gamma_{n}=\left(\left(I-k+\bar{F}\right)^{-1}\right)^{\frac{1}{N}}e_{n}$.

I-k ir invertish iff I-T invertible. And fekf her a solution iff gety har a solution.

If g=Tg, g is in the range of T, so we can write it in the form of \mathfrak{O} . let $g=\sum_{n=1}^{N}\beta_{n}e_{n}$ and β_{n} should satisfy $(\beta_{n}e_{n})$.

βn = ≥ (γn, lm) βn

let A = (Anm), Anm = (Yn, lm). So g = Tg har a solution if

let (I-A)=0.

on the other hand, if $det(I-A) \neq 0$, we can solve (I-T)g=h for any h.

we set $g = h + \sum_{n=1}^{N} \beta_n \psi_n$ when $\beta_n = (\psi_n, h) + \sum_{m=1}^{N} (\psi_n, e_m) \beta_m$ (you can verify this).

8. I-T ionrhby.

Ex: let K be integral operator: $K: L^2(a,b) \to L^2(a,b)$ with kernel K(s,t) continuous. We will see next of compact.

Then integral equal,

fakfzy, tycli

har solution of kf = f har only O-solution.

Frexumple kf= 1 f(x) dx

11) Hilbert - Schmidt Opentur

This is a special class of compact operators.

Remark: 10 we can define time for operator A

to A = \(\xi_{n=1}^{\infty} \left(e_n, Ae_n \right) \) if finite. Then A is Hibert-Schmidt if

to A*A finite.

(en, A*Aln) = (Acn, Alen) = |\Aen||2.

(2) The chira of $(e_n)_{n=1}^{\infty}$ door not matter.

If $(f_n)_{n=1}^{\infty}$ complete orthorough sequence, then $\underset{n=1}{\overset{\infty}{\sum}} \|Af_n\|^2 < \infty \iff \underset{n=1}{\overset{\infty}{\sum}} \|Ae_n\|^2 < \infty$

The Hilbert Schmidt operature are compact.

Proof: Next time.

Coming next: Spectral Theorem.