TABLE OF CONTENTS

LIST OF FIGURES	Pag
	V1
ABSTRACT	vii
CHAPTER 1 INTRODUCTION	1
1.1. INTRODUCTION	-
	2
1.2. SCOPE	2
1.3. NOVELTY OF IDEA	3
CHAPTER 2 PROBLEM DEFINITION	6
CHAPTER 3 LITERATURE SURVEY	9
CHAPTER 4 PROJECT DESCRIPTION	15
4.1. SYSTEM DESIGN	17
CHAPTER 5 REQUIREMENTS	22
5.1. FUNCTIONAL REQUIREMENTS	23
5.2. NON-FUNCTIONAL REQUIREMENTS	23
5.3. HARDWARE REQUIREMENTS	23
5.4. SOFTWARE REQUIREMENTS	24
CHAPTER 6 METHODOLOGY	25
CHAPTER 7 EXPERIMENTATION	34
CHAPTER 8 TESTING AND RESULTS	37
8.1 RESULTS	37
CHAPTER 9 CONCLUSION AND FUTURE WORK	
10.1. CONCLUSION	42
10.1. SCOPE FOR FUTUREWORK	42
CHAPTER 10	
REFERENCES	44
SAMPLE CODE	46

LIST OF FIGURES

Fig. No.	Description of the figure	Page No.
4.1.2(a)	CNN representation of Image feature extraction	18
4.1.2(b)	ResNet50 Model Architecture	19
4.1.3(a)	Simple representation of RNN	19
4.1.3(b)	LSTM Architecture	20
4.1.4	Model for Training and Testing	20
4.2.1	Architecture used for Emotion Detection	21
6.1	Data Flow of The Model	29
7.2	Predicted Results	35
8.1	Result Prediction of Image Captioning	38
8.2	Result predicted for Emotion Detection	39
8.3	Conversion images of 2D images to 3D models	40

ABSTRACT

We have taken up Image Captioning using Deep Learning since we can explore multiple applications of Computer Vision. This involves Deep Learning algorithms such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) which are used for image feature extraction and Natural Language Processing respectively. This project has many real-world applications, and we can use this model as a steppingstone to explore other applications using Computer Vision. We can expect a minimum accuracy of the captions generated of an image to be 70% and can work on the model to increase its accuracy to a higher extent.