An Architecture for a Secure Service Discovery Service

Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, Randy H. Katz

University of California, Berkeley {czerwin, ravenben, hodes, adj, randy}@cs.berkeley.edu

April 27, 2014

Overview

- Introduction
 - Motivation
 - Goals
- Design Concepts
- 3 Architecture
- 4 Wide Area Support

Outline

- Introduction
 - Motivation
 - Goals

Motivation

- Large scale deployment of networks and devices
- Cheaper networks and network-enabled devices

Goals

- Locate a service out of thousands
- Secure and trusted services with minimum client intervention
- Repository of (running) service descriptions
- Hierarchical load-balancing and recovery

Outline

- Motivation
- Goals

- Annoucement-based Information Dissemination
 Use of perodic multicast annoucements for recovery, bootstrapping and updating. Suitable for eventual consistency.
- Hierarchical Organisation
 If a server is overloaded a child node is started. Downwards cascading recovery for several server failures.
- XML Service Descriptions
 Flexibility, validation ability and backward compatibility.
- Privacy and Authentication
 Hybrid cryptography: symmetric and asymmetric cryptography.
 Principals and component's public keys assure authentication.

- Annoucement-based Information Dissemination
 Use of perodic multicast annoucements for recovery, bootstrapping and updating. Suitable for eventual consistency.
- Hierarchical Organisation
 If a server is overloaded a child node is started. Downwards cascading recovery for several server failures.
- XML Service Descriptions
 Flexibility, validation ability and backward compatibility.
- Privacy and Authentication
 Hybrid cryptography: symmetric and asymmetric cryptography.
 Principals and component's public keys assure authentication.

- Annoucement-based Information Dissemination
 Use of perodic multicast annoucements for recovery, bootstrapping and updating. Suitable for eventual consistency.
- Hierarchical Organisation
 If a server is overloaded a child node is started. Downwards cascading recovery for several server failures.
- XML Service Descriptions
 Flexibility, validation ability and backward compatibility.
- Privacy and Authentication
 Hybrid cryptography: symmetric and asymmetric cryptography.
 Principals and component's public keys assure authentication.

- Annoucement-based Information Dissemination
 Use of perodic multicast annoucements for recovery, bootstrapping and updating. Suitable for eventual consistency.
- Hierarchical Organisation
 If a server is overloaded a child node is started. Downwards cascading recovery for several server failures.
- XML Service Descriptions
 Flexibility, validation ability and backward compatibility.
- Privacy and Authentication
 Hybrid cryptography: symmetric and asymmetric cryptography.
 Principals and component's public keys assure authentication.

Outline

- Motivation
- Goals

3 Architecture

SDS Server

- Global multicasts authenticated messages
- Authenticated advertisements contain:
 - Certificate Authority and Capabilities Manager contact
 - Address for sending service announcements
 - Service annoucement rate
- Aggregate rate set by administrators
- Overloaded servers reaching a given threshold start another server
- Failure handled individually or cascading through the hierarchical organisation
- Privacy and authentication possible through the secure one-way service broadcast

Services

- Continously listen on the global multicast channel for SDS server announcements
- Multicast its service descriptions to the appropriate channel/frequency
- Set appropriate capabilities by contacting the Capabilities Manager

Services

- Continously listen on the global multicast channel for SDS server announcements
- Multicast its service descriptions to the appropriate channel/frequency
- Set appropriate capabilities by contacting the Capabilities Manager

Services

- Continously listen on the global multicast channel for SDS server announcements
- Multicast its service descriptions to the appropriate channel/frequency
- Set appropriate capabilities by contacting the Capabilities Manager

- Clients contact CAs for retrieving the principal's certificate
- Stores encryption key certificates and the principal's certificates
- The CA's public key is public
- The encryption key certificate is used by the client to communicate with the principal

- Clients contact CAs for retrieving the principal's certificate
- Stores encryption key certificates and the principal's certificates
- The CA's public key is public
- The encryption key certificate is used by the client to communicate with the principal

- Clients contact CAs for retrieving the principal's certificate
- Stores encryption key certificates and the principal's certificates
- The CA's public key is public
- The encryption key certificate is used by the client to communicate with the principal

- Clients contact CAs for retrieving the principal's certificate
- Stores encryption key certificates and the principal's certificates
- The CA's public key is public
- The encryption key certificate is used by the client to communicate with the principal

Capabilities Manager

- Contacted by services
- Services specify an ACL for principals principals
- Generates, stores and distributes appropriate capabilities

Capabilities Manager

- Contacted by services
- Services specify an ACL for principals principals
- Generates, stores and distributes appropriate capabilities

Capabilities Manager

- Contacted by services
- Services specify an ACL for principals principals
- Generates, stores and distributes appropriate capabilities

Authenticated Server Annoucements

- Authenticated Server Annoucements
 - Readable by all clients

- Authenticated Server Annoucements
 - Readable by all clients
 - Non-forgeable

Authenticated Server Annoucements

- Readable by all clients
- Non-forgeable
- Reply attack resistant (timestamps)

- Authenticated Server Annoucements
 - Readable by all clients
 - Non-forgeable
 - Reply attack resistant (timestamps)
- Secure One-Way Service Description Annoucements
 Hybrid public/symmetric key system: a packet is sufficient for
 describing a service which will be decrypted by the SDS server

Authenticated Server Annoucements

- Readable by all clients
- Non-forgeable
- Reply attack resistant (timestamps)
- Secure One-Way Service Description Annoucements
 Hybrid public/symmetric key system: a packet is sufficient for
 describing a service which will be decrypted by the SDS server
- Authenticated RMI
 - A handshake establishes the symmetric key for the session between client and SDS servers and between pairs of SDS servers

Outline

- Motivation
- Goals

• Hierarchies built based upon query criteria:

- Hierarchies built based upon query criteria:
 - Administrative domain

- Hierarchies built based upon query criteria:
 - Administrative domain
 - Network topology

- Hierarchies built based upon query criteria:
 - Administrative domain
 - Network topology
 - Physical location

- Hierarchies built based upon query criteria:
 - Administrative domain
 - Network topology
 - Physical location
- Aggregate service description (lossy)

Wide Area Support

- Hierarchies built based upon query criteria:
 - Administrative domain
 - Network topology
 - Physical location
- Aggregate service description (lossy)
- Use aggregation tables for routing queries

Lossy aggregation & query routing

- Hash values of tag subsets of service descriptions used as summary
- Algorithm:
 - When adding: compute description tag subset, insert into Bloom Filter table
 - When querying: compute tag subsets, examine corresponding entries in Bloom Filter table for possible matches
- Limitations:
 - Computation required: fewer subset hashes
 - Space required: use bloom filters

Bloom filters

Index aggregation & routing

Index aggregation & routing

Name	Time
DSA Signature	33.1 ms
DSA Verification	133.4 ms
RSA Encryption	15.5 ms
RSA Decryption	142.5 ms
Blowfish Encryption	$2.0 \mathrm{ms}$
Blowfish Decryption	1.7 ms

Table 1: Timings of cryptographic routines

Files	ms / query
1000	1.17
5000	1.43
10000	2.64
20000	2.76
40000	4.40
80000	5.64
160000	6.24

Table 2: XSet Query Performance

	Query	
	Null	Full
Insecure	24.5 ms	36.0 ms
Secure	40.5 ms	82.0 ms

Table 3: Query Latencies for Various Configurations

Description	Latency
Query Encryption (client-side)	5.3 ms
Query Decryption (server-side)	5.2 ms
RMI Overhead	18.3·ms
Query XML Processing	9.8 ms
Capability Checking	18.0 ms
Query Result Encryption (server-side)	5.6 ms
Query Result Decryption (client-side)	5.4 ms
Query Unaccounted Overhead	14.4 ms
Total (Secure XML Query)	82.0 ms

Table 4: Secure Query Latency Breakdown

Related Work

- DNS & Globe
- Condor Classads
- JINI
- Service Location Protocol

Conclusion

Work still needed on:

- Wide area implementation
- Benchmarking
- Ninja infrastructure necessary to evaluate

Questions?