/home/nicole/Jupyter/JG3/Data/0.5/M/1

```
In [4]: ;ls
```

Correlation.G5.M.C*.txt Correlation.G5.M.JC*.txt Correlation.G5.M.JC.txt Correlation.G5.M.N.txt G0.Genotype.ID G0.ID G0.noGenotype.ID G1.Genotype.ID G1.ID G1.noGenotype.ID G2.Genotype.ID G2.ID G2.noGenotype.ID G3.Genotype.ID G3.ID G3.noGenotype.ID G4.Genotype.ID G4.ID G4.noGenotype.ID G5.Genotype.ID G5.ID G5.noGenotype.ID MarNF.txt MarNFCenter.txt PedAll.txt Phe.txt PheAll.txt Regression.G5.M.C*.txt Regression.G5.M.JC*.txt Regression.G5.M.JC.txt Regression.G5.M.N.txt all.ID alphaEstimatesJ alphaEstimatesJC alphaEstimatesLeggaraC alphaEstimatesLeggaraJC alphaEstimatesN epsiEstimatesJ epsiEstimatesJC epsiEstimatesLeggaraC epsiEstimatesLeggaraJC epsiEstimatesN genotype.ID meanOfSNPMAll meanOfSNPMG0 meanOfSNPMG1 meanOfSNPMG2 meanOfSNPMG3 meanOfSNPMG4 meanOfSNPMG5 noGenotype.ID sim.bv sim.phenotype

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]:
         ;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
 In [7]:
         ; join -v1 all.ID genotype.ID > noGenotype.ID
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [8]:
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
 In [9]:
In [10]:
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [11]:
In [12]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [15]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
         M Mats = make MMats(df, A Mats, ped, center=true);
                                                                                  # with
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                  # no
         nothing
In [31]:
         vRes
                = 0.668
                = 0.668
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2414.688057 seconds (23.02 G allocations: 723.405 GB, 7.69% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          11.2353
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
          -0.0784688
           0.0756832
           0.00775613
          -0.108253
          -0.022605
           0.0526614
           0.0280219
          -0.00172845
           0.0728995
            0.0643265
          -0.0150124
           0.0449749
          -0.0284185
           0.0985209
           0.028278
           0.120842
           0.0413133
           0.0251409
          -0.0736568
          -0.0444936
          -0.184462
           0.0320603
          -0.0151319
            0.0820374
          -0.0167096
In [34]: writedlm("alphaEstimatesC",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45906-element Array{Float64,1}:
           0.382786
          -0.40211
           0.187378
          -1.00517
           0.0954649
          -0.0231903
          -0.133603
           0.625365
          -0.975324
           0.00476845
          -0.862208
           0.0975558
          -0.134068
          -0.16985
           0.375223
           0.317608
          -0.178436
           0.60653
          -0.673013
          -0.310196
           0.0200687
           0.166032
          -0.38111
           0.0904767
          -1.41399
In [36]: writedlm("epsiEstimatesC",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.895
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.988
Out[39]: 0.8946165620431082
```

```
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: 0.13526184125159965
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.798
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.995
Out[41]: 0.798351923243795
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 1.195456022831297
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.868
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.958
Out[43]: 0.8679510025113513
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: -0.10939835449756127
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.703
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.837
Out[45]: 0.7031815276053373
```

```
In [46]: | GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: -1.223696553165289
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.996
Out[47]: 0.7646104545200129
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: -0.5449795187548476
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.753
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.995
Out[49]: 0.7527500714247691
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: -0.0024795240736704967
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ei
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.748
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.001
Out[51]: 0.7477504502975921
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 0.4745216502951792
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.017
Out[53]: 0.7490726577368666
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 0.8786643378597603
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.774
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.953
Out[55]: 0.7740171936264435
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 1.2295406553484656
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.7745201741033132
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          -0.54498
          -0.00247952
           0.474522
           0.878664
           1.22954
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          11.4021
           0.953053
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.311199036725441
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.4718144954888738
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.2965892253902815
In [63]: b=Cov/VarGEBV
Out[63]: 0.9530531601611312
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.797
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.015
Out[64]: 0.7968893655848597
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 0.23987074763175953
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.930
Out[66]: 0.8208959406883315
```

```
In [67]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[67]: 0.6175889301045238
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.773
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.846
Out[68]: 0.773038588223157
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 0.9907636453294668
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.810
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.922
Out[70]: 0.8098746373771913
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 1.2437986505134002
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.691
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.760
Out[72]: 0.6906062559410217
```

```
In [73]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: 1.5218728398905832
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation =
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.953
Out[74]: 0.7740171936264435
In [75]: writedlm("Correlation.G5.M.C.txt",cor13)
In [76]: | writedlm("Regression.G5.M.C.txt",reg13)
In [77]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[77]: 1.2295406553484656
In [78]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.688
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.854
Out[78]: 0.6883987327125439
In [79]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[79]: -1.2612239198523931
```

```
In [80]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.749
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 1.005
Out[80]: 0.7491813037984008
In [81]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[81]: -0.5747889661614981
In [82]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.737
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 0.994
Out[82]: 0.7371454643252868
In [83]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[83]: -0.027947297648109902
In [84]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.734
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.990
Out[84]: 0.7339764286417395
In [85]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[85]: 0.4547965990075324
```