Fully Homomorphic Encryption

One of the biggest surprises in the last 20 years was **fully homorphic encryption** which allows us to evaluate arbitrary functions on encrypted data

We work with a message space \mathbb{Z}_2 which is just single bits

- We allow boolean circuits to be evaluated on this, which are just a series of additions and multiplications
- These are equivalent to XOR and AND gates

FHE Scheme

Given a function class \mathcal{C} , an **FHE scheme** consists of four PPT algorithms:

- KeyGen(n) produces (sk, ek)
 - sk is a decryption key for the user
 - ek is an evaluation key that is revealed to anyone that will be performing computations on ciphertexts encrypted by sk
- Enc(sk, u) encrypts u with sk to produce ct
- Dec(sk, ct) decrypts ct with sk to produce ct
- Eval(ek, F, ct_1, ct_2, ..., ct_l) produces ct
 - \circ F belongs to $\mathcal C$ and maps 1 bits to a single bit, which is the output
 - Note that the ciphertexts do not have to be single bits, so the output of this does not have to be a single bit

An FHE scheme has to satisfy three properties:

- ullet Correctness: evaluations of F must be correct within a negligible distance from 1
- CPA-security: the Enc function must be CPA-secure
- Compactness: the bit lengths of both the ciphertexts ct_i and the output of Eval -> ct must depend
 only on n
 - \circ Cannot depend on ℓ or |F|
 - \circ This way, the server can't just concatenate F alongside all of the ciphertexts and return that as the \cot for the client to have to evaluate

There are different types of homomorphic schemes based on the function class \mathcal{C} :

- For circuits with only addition gates, we have linearly homomorphic schemes, which we saw we can construct from LWE
- For circuits with only multiplication gates, we have **multiplicative homomorphic schemes**
- For circuits with both gates but bounded depth, we have leveled homomorphic schemes
 - The reason why these are leveled is because they might have accumultating error growth
- Arbitrary circuits
 - We can actually "boost" leveled homorphic schemes to solve these with some assumptions

Leveled Homomorphic Schemes

Gentry, Sahai, and Water's construction of levelled FHE:

- At a high level, this scheme will depend on the fact that eigenvectors of a matrix are preserved across addition and multiplication
 - That is, if we have C_1 and C_2 with the shared eigenvector v with eigenvalues λ_1 and λ_2 , then:
 - C_1+C_2 has eigenvector v with $\lambda_1+\lambda_2$
 - lacksquare $C_1 \cdot C_2$ has eigenvector v with $\lambda_1 \cdot \lambda_2$
- Idea is to:
 - $\circ \hspace{0.1in}$ Make the secret key an eigenvector v
 - \circ Our ciphertexts are matrices with eigenvector v and eigenvalue equal to the message being encrypted
 - \circ We can then decrypt by multiplying by v and looking at the eigenvalue

- However, this doesn't work directly because in practice we can find eigenvectors very quickly
 - We combine this with LWE by making sure the following equation holds:

$$C \cdot s = s \cdot \mu + e$$

We first describe the Enc and Dec steps

- Here, we will actually not use the evaluation key ek
 - We will need it to boost this scheme to arbitrary depths
- ullet We assume LWE with parameters (m,n,q,χ) with sufficiently large m
- We let $\ell = (n+1)\log q$
- KeyGen:
 - \circ Sample a random vector $s' \in \mathbb{Z}_q^n$
 - $\circ \ \, \mathsf{Output}\, s = \begin{pmatrix} -s \\ 1 \end{pmatrix}$
- Enc:
 - \circ Sample a random matrix $A \leftarrow \mathbb{Z}_q^{\ell imes n}$ and an error $e \in \chi^\ell$
 - \circ Build the matrix B by concatenating As' + e to A
 - $\circ \;\;$ Let $G \in \mathbb{Z}_q^{\ell imes n+1}$ be an error correcting matrix we will define later
 - \circ Output $C=B+\mu\cdot G$
- Dec:
 - \circ Compute $v = C \cdot s$
 - Output 0 if the magnitude of each entry in v is small (\$< q/4\$) and 1 otherwise

Before diving into how we support homomorphic operations, we first discuss correctness and security

- Since A is randomly chosen and by LWE As' + e appears random, we have that B looks random
 - \circ Therefore, C also looks random
- ullet Expanding $C \cdot s$ out, we get that it is equivalent to $\mu \cdot Gs + e$
 - This is known as the **decryption invariant** and we want this to hold after every homomorphic operation
 - \circ If $\mu=0$, this will just be an error term and all terms will be near 0
 - $\circ \;\;$ If $\mu=1$, then we expect that at least one of the terms $G\cdot s$ will have a large norm close to q/2 since s is uniformly sampled

Homomorphic Operations

To add two ciphertexts, we can simply add the matrices:

- We get that the errors terms add together, so the error accumulates
 - It at most doubles in magnitude
 - It preserves the decryption invariant

Multiplication is more difficult:

- ullet The error correcting matrix G has to be carefully selected
- We define a function *h* that has two key properties:
 - $\circ h(C) \cdot G = C$
 - \circ Given C as input, h(C) is $\log q$ times wider, and has only entries of magnitude 0 or 1
- Multiplications can then be computed as:

$$h(C_1)\cdot C_2$$

To see why, we can expand as:

$$egin{aligned} (h(C_1)\cdot C_2)\cdot s &= h(C_1)\cdot (\mu_2 G s + e_2) \ &= \mu_2 h(C_1)\cdot G s + h(C_1)\cdot e_2 \ &= \mu_1 \mu_2\cdot C_1 s + h(C_1)\cdot e_2 \ &= \mu_1 \mu_2\cdot G s + (\mu_2 e_1 + h(C_1)\cdot e_2) \end{aligned}$$

- \circ Since each entry of $h(C_1)$ is small (\$0\$ or \$1\$), the right hand side is a new error term that is relatively small
- \circ More specifically, this error term is at most $(n+1)\log q+1$ times bigger

What do we choose for G?

- ullet We choose h to be the binary decomposition function
- Each entry in C is turned into binary with $\log_2 q$ new columns taking its place
- ullet We can construct G as a semi-diagonal matrix that just reconstructs this

With this, we have that if our initial error can sit in the range [-B,B], then as long as $q>>(n\log q)^d 2B$, then we can support a boolean function of depth d

ullet Equivalently, for large enough q, we can support $dpprox n^{0.99}$