МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Лабораторная работа №3.3.4

Эффект Холла в полупроводниках

выполнил студент 006 группы ФЭФМ Штрайх Роберт **Цель работы:** изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретическое введение

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом.

При повышении температуры возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) – по закону Кюри.

Для парамагнитных веществ, которые при понижении температуры становятся ферромагнитными, закон должен быть изменён. Температура T=0 является особой точкой температурной кривой, в которой χ неограниченно возрастает. При $T\to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри θ . У ферромагнетиков закон Кюри должен быть заменён законом Кюри-Вейсса:

$$\chi \sim \frac{C}{T} \sim \frac{1}{T - \theta_p},\tag{1}$$

где θ_p – температура, близкая к температуре Кюри, C – постоянная Кюри.

Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от θ , но недостаточно точна при $T \approx \theta$.

В нашей работе изучается температурная зависимость $\chi(T)$ гадолиния при температуре выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в интервале комнатных температур.

2 Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Схема установки для проверки закона Кюри-Вейсса показана на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью, входящего в состав LC-автогенератора. Катушка с образцом помещена в стеклянный сосуд, залитый трансфорамотрным маслом. Температура образца регулируется с помощью термостата.

При измененеии температуры по закону Кюри-Вейсса изменяется магнитная восприимчивость образца в катушке, и, следовательно, изменяется самоиндуктивность этой катушки. При этом изменяется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{2}$$

где C – ёмкость контура автогенератора.

Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C},\tag{3}$$

Из (2) и (3) имеем

$$\frac{1}{\chi} \sim (T - \theta_p) \sim \left(\frac{1}{\tau^2 - \tau_0^2}\right). \tag{4}$$

Измерения проводятся в интервале температур от 14 °C до 40 °C.

3 Ход работы

1. Оценим допустимую ЭДС термопары при допустимой разности температур и рабочей жидкости $\Delta T=0,5^{\circ}\mathrm{C},$ постоянная термопары k=24 град/мВ:

$$\mathscr{E} = k \cdot \Delta T = 0.02 \text{ MB},$$

2. Зафиксируем период колебаний без образца $\tau_0 = 6,909$ мкс.

Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T — по показаниям дисплея и цифровому вольтметру. Результаты измерений занесём в таблицу 1 и построим по ним график (рис. 2)

 Таблица 1: Зависимость периода колебаний в генераторе от температуры образца

T									
$T, ^{\circ}C$	13,2	15	17	19	21	23	25	27	29
T_{real} , $^{\circ}C$	13,68	15,48	17,48	19,48	21,48	23,48	25,48	27,48	29,48
τ , m κc	7,97	7,927	7,844	7,707	7,515	7,306	7,182	7,127	7,094
$\frac{1}{(\tau^2 - \tau_0^2)}, \ \mathcal{M}\kappa c^{-2}$	0,0633	0,0662	0,0725	0,0857	0,1144	0,1772	0,2600	0,3268	0,3860
$T, ^{\circ}C$	31	33	35	37	39				
T_{real} , $^{\circ}C$	31,48	33,48	35,48	37,48	39,48				
τ , mkc	7,071	7,055	7,043	7,034	7,026				
$\frac{1}{(\tau^2 - \tau_0^2)}, \ \mathcal{M}\kappa c^{-2}$	0,4415	0,4905	0,5349	0,5738	0,6133				

3. Прямую ферромагнитного участка экстраполируем к оси абсцисс, полученное значение — экспериментальное значение точки Кюри для исследуемого образца Гадолиния.

Учтём погрешности приборов, погрешность поддержания температуры термостатом – 0,01 °C; погрешность термопары (в градусах) – 0,28 °C.

Полученное значение:

$$\theta_p = (14, 1 \pm 0, 3)^{\circ} C$$

Табличное значение: 20,2 °C

4 Выводы

В ходе работы мы определили парамагнитную точку Кюри для гадолиния, исследован переход от ферромагнитного к парамагнитному состоянию.

• Экспериментальное значение точки Кюри:

$$\theta_p = (14, 1 \pm 0, 3)^{\circ} C,$$

$$\varepsilon_{\theta_p} = 2,04\%,$$

• Табличное значение точки Кюри $\theta_{theor}=20,2^{\circ}C.$

Табличное и экспериментальное значения несколько отличаются друг от друга, однако данный метод измерения лучше подходит для веществ, у которых точка Кюри находится в интервале комнатных температур.

5 Приложение

Рис. 2: $1/(\tau^2 - \tau_0^2) = f(T)$