

Міністерство освіти та науки України Національний технічний університет України "Київський політехнічний інститут" Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Домашня контрольна робота №1 з предмету "Методи оптимізації та планування"

Виконав:

студент групи IB-71

Мазан Я. В.

№ залікової книжки - 7109

Перевірив:

доц. Селіванов В.Л.

Варіант — 99

X _{imin}	X _{imax}	k	y ₁₁	y ₁₂	y ₁₃	y ₁₄	y ₁₅	y_{21}	y_{22}	y_{23}	y ₂₄	y ₂₅
-9	4	2	3.1	3.3	3.4	3.2	3.5	4.3	4.2	4.1	4.5	4.4

y ₃₁	\mathbf{y}_{32}	y 33	y ₃₄	y 35	y ₄₁	y ₄₂	y ₄₃	y ₄₄	y ₄₅	p	b [10 ⁻²]	S^2 _{ад}	d
5.5	5.2	5.1	5.4	5.3	6.1	6.4	6.2	6.3	6.5	0.94	0.325	0.225	3

Завдання №1

Визначити абсолютне значення x_{i0} та кодоване значення x_{i0}^- основного рівня фактора x_i при заданих значеннях x_{imin} та x_{imax} .

Значення x_{imin} та x_{imax} узяти із таблиці варіантів.

Абсолютні значення:

Кодовані значення:

$$X_{imin} = -9$$

$$x_{imax} = 4$$

$$x_{i0} = \frac{x_{imin} + x_{imax}}{2} = -2.5$$

$$x_{imin} = -1$$

$$x_{imax} = 1$$

$$\bar{x_{i0}} = 0$$

Завдання №2

Визначити значення (розмір) зоряного плеча \mathbf{l} , від'ємне кодоване значення $\bar{x_{i1}}$ та відповідне абсолютне значення x_{i1} фактора x_{i1} для зоряної точки при використанні рототабельного композиційного плану для \mathbf{k} факторів.

Значення k та x_{imax} узяти з таблиці варіантів, а значення x_{i0} – результат розрахунків по п.1.

$$l = \sqrt{k} = 1.414$$

Кодоване значення: $x_{ijk} = -l = -1.414$

Абсолютне значення знаходимо з формули: $x_{ilK} = \frac{x_{il} - x_{i0}}{\Delta X_i}$, $\partial e \, \Delta X_i = x_{imax} - x_{i0}$

$$x_{il} = \bar{x_{ilK}}(x_{imax} - x_{i0}) + x_{i0} = -1.414(4+2.5) - 2.5 = -11,691$$

Завдання №3

Визначити значення (розмір) зоряного плеча \mathbf{l} , додатнє кодоване значення $\bar{x_{i1}}$ та відповідне абсолютне значення x_{i1} фактора x_i для зоряної точки при використанні центрального ортогонального композиційного плану для двох факторів.

Значення x_{imax} узяти з таблиці варіантів, а значення x_{i0} — результат розрахунків по п.1.

Так, як план ортогональний, то l шукаємо із біквадратного рівняння

$$4l^{2}+4Nl^{2}+N(2k+1)=0$$

$$4l^{4}+16l^{2}+20=0$$

l = 1

Кодоване значення: $x_{ilk}^- = l = 1$

Абсолютне значення знаходимо з формули: $x_{ilK} = \frac{x_{il} - x_{i0}}{\Delta X_i}$, $\partial e \Delta X_i = x_{imax} - x_{i0}$

$$x_{il} = \bar{x_{ilK}}(x_{imax} - x_{i0}) + x_{i0} = 1(4 + 2.5) - 2.5 = 4$$

Завдання №4

Визначити середньоарифметичні значення y_m (m=1,4) для п'яти повторень вимірювань функції відгуку y_{ms} (m=1,4;s=1,5) у кожній m-ій точці факторного простору (m=5), значення статистичних оцінок дисперсій S^2_m (m=1,4) та середнє значення статистичної оцінки дисперсії S^2 .

Значення y_{ms} (m=1,4;s=1,5) узяти з таблиці варіантів.

$$\begin{split} y_1 &= \frac{y_{11} + y_{12} + y_{13} + y_{14} + y_{15}}{5} = 3.3 \qquad y_2 = \frac{y_{21} + y_{22} + y_{23} + y_{24} + y_{25}}{5} = 4.3 \\ y_3 &= \frac{y_{31} + y_{32} + y_{33} + y_{34} + y_{35}}{5} = 5.3 \qquad y_4 = \frac{y_{41} + y_{42} + y_{43} + y_{44} + y_{45}}{5} = 6.3 \\ S_1^2 &= \frac{1}{5 - 1} ((y_{11} - y_1)^2 + (y_{12} - y_1)^2 + (y_{13} - y_1)^2 + (y_{14} - y_1)^2 + (y_{15} - y_1)^2) = 0.025 \\ S_2^2 &= \frac{1}{5 - 1} ((y_{21} - y_1)^2 + (y_{22} - y_1)^2 + (y_{23} - y_1)^2 + (y_{24} - y_1)^2 + (y_{25} - y_1)^2) = 0.025 \\ S_3^2 &= \frac{1}{5 - 1} ((y_{31} - y_1)^2 + (y_{32} - y_1)^2 + (y_{33} - y_1)^2 + (y_{34} - y_1)^2 + (y_{35} - y_1)^2) = 0.025 \\ S_4^2 &= \frac{1}{5 - 1} ((y_{41} - y_1)^2 + (y_{42} - y_1)^2 + (y_{43} - y_1)^2 + (y_{44} - y_1)^2 + (y_{45} - y_1)^2) = 0.025 \\ S^2 &= \frac{S_1^2 + S_2^2 + S_3^2 + S_4^2}{4} = 0.025 \end{split}$$

Завдання №5

Визначити значення параметра G, кількість ступенів свободи f_1 і f_2 та рівень значущості q, що використовуються для перевірки однорідності дисперсії

 $\{\sigma^2[y_m]=\sigma^2=const(m=1,4)\}$ за критерієм Кохрена для заданих значень статистичних оцінок дисперсії $S^2_m(m=1,4)$ при m=5 для двох факторів (k=2). Підтвердити (чи не підтвердити) гіпотезу про однорідність дисперсії за критерієм Кохрена з ймовірністю р.

Значення ймовірності р підтвердження (чи не підтвердження) гіпотези про однорідність дисперсії за критерієм Кохрена взяти з таблиці варіантів, а значення $S^2_m(m=1,4)$ — результати розрахунків по п.4.

$$S_{max}^{2} \{ y_{i} \} = max (S_{i}^{2}) = 0.025$$

$$f_{1} = m - 1 = 4; f_{2} = N = 4; q = 0.04$$

$$G_{\kappa p} = 0.6434$$

$$G_{p} = \frac{S_{max}^{2}}{\sum_{j=1}^{m} S_{j}^{2}} = \frac{0.025}{0.025 \cdot 4} = 0.25$$

 $Gp < G_{\kappa p} o дисперсії однорідні$

Завдання №6

Визначити значення статистичної оцінки дисперсії похибки розрахунку будь-якого коефіцієнта рівняння регресії $S^2\{b\}$, значення параметра t та кількість ступенів свободи f_3 , що використовуються при перевірці значущості коєфіцієнтів лінійної регресії за критерієм Стьюдента (повний факторний експеримент) при m=5 для двох факторів (k=2). Визначити з ймовірністю р незначущі коефіцієнти лінійної регресії та кількість значущих коефіцієнтів d лінійної регресії.

Значення b узяти з таблиці варіантів, значення розраховується за формулою $f_3 = f_1 f_2$ (значення f_1 та f_2 узяти з п.5), а значення S^2 — результати розрахунків за п.4.

$$S_{B}^{2} = \sum_{j=1}^{4} \frac{S^{2} \{ y_{i} \}}{4} = \frac{S^{2} \cdot 4}{4} = 0.025$$

$$S^{2} \{ \beta_{s} \} = \frac{S_{B}^{2}}{4 \cdot 5} = \frac{0.025}{20} = 0.00125$$

$$t = \frac{|\beta|}{S^{2} \{ \beta \}} = \frac{0.325 \cdot 10^{-2}}{0.00125} = 2.6$$

3 таблиці маємо $t_{\kappa p} = 2.2354$

Так, як $t > t_{\kappa p}$, то маємо, що коефіцієнт b значимий із довірчою імовірністю p = 0.94. $d_{\kappa oe \varphi} = 3$ -> кількість значущих коефіцієнтів лінійної регресії

Завдання №7

Визначити значення параметра F, кількість ступенів свободи f_4 , що використовується при перевірці адекватності моделі (рівняння регресіі) оригіналу (усім експериментальним даним) по критерію Фішера. Визначити, чи адекватна статистична математична модель оригіналу з ймовірністю р чи ні. Значення статистичної оцінки дисперсії адекватності S^2_{ad} та кількість значущих коефіцієнтів рівняння регресії узяти з таблиці варіантів.

$$F_p = \frac{S_{a\partial}^2}{S_B^2} = \frac{0.225}{0.025} = 9$$
 $f_3 = f_1 f_2 = (m-1) N = 16; f_4 = N - d = 1$

У нас N = 4, d = 3, а m = 5. Із таблиці маємо $F_{\kappa\rho}$ = 4.9968

 $F_p > F_{\kappa p}$ -> модель не адекватна оригіналу

Завдання №8

Для лінійної форми рівняння регресії (один фактор) $y = b_0 + b_1 x$ визначити значення коефіцієнтів b_0 та b_1 і значення статистичних моментів $m_x = 1/n \sum x_i$ та $m_y = 1/n \sum y_i$ і значення статистичних коефіцієнтів $a_2 = 1/n \sum x_i^2$ та $a_{11} = 1/n \sum x_i y_i$.

Значення m_x , m_y , a_2 та a_{11} узяти з таблиці варіантів.

$\mathbf{X}_{\mathbf{i}}$	y_{i}									
-9	3.1, 3.3, 3.4, 3.2, 3.5									
4	4.3, 4.2, 4.1, 4.5, 4.4									
$y_1 =$	3.3									
$y_2 =$	4.3									
$m_y = 3$	3.8									
$m_x = -$	$m_x = -2.5$									
$a_{11} = 1/2 (-9 * 3.3 + 4*4.3) = -6.25$										
$a_2 = 1$	/2 (81 + 16) = 48.5									
$b_0 = -$	$ \begin{bmatrix} m_y & m_x \\ a_{11} & a_2 \end{bmatrix} \\ \begin{bmatrix} 1 & m_x \\ m_x & a_2 \end{bmatrix} = \frac{168.675}{42.25} = 3 $	$b_1 = \frac{\begin{bmatrix} 1 \\ m_x \\ \end{bmatrix}}{\begin{bmatrix} 1 \\ m_x \end{bmatrix}}$	$\begin{bmatrix} m_y \\ a_{11} \end{bmatrix} = \frac{3.25}{42.25} = 0.077$ $\begin{bmatrix} a_x \\ a_2 \end{bmatrix}$							

В результаті маємо рівняння регресії: y = 3.99 + 0.077x