Mathe 1 für ET - Prof. Dr. V. Bach - WS 2016/17

Aufgabe 1. [Folgen]

(1+2+2 Punkte)

i.) Geben Sie die Definition der Konvergenz einer Zahlenfolge $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ an.

ii.) Gegeben sei die Folge $(a_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$, $a_n = \cos(\pi n) \cdot \frac{n+3}{n(n+5)}$.

Entscheiden Sie, ob $(a_n)_{n=1}^{\infty}$ konvergiert und geben Sie ggf. den Grenzwert von $(a_n)_{n=1}^{\infty}$ für $n \to \infty$ an.

iii.) Gegeben sei die Folge $(b_n)_{n=1}^{\infty}$, $b_n = \frac{(-3)^n + 2}{3^{n-1} + 2^n}$.

Bestimmen Sie alle Häufungspunkte von $(b_n)_{n=1}^{\infty}$.

Aufgabe 2. [Reihen]

(2, 5 + 2, 5 Punkte)

Untersuchen Sie folgende Reihen auf Konvergenz und absolute Konvergenz:

i.)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2},$$

ii.)
$$\sum_{n=1}^{\infty} \frac{n}{3^n}.$$

Aufgabe 3. [Stetigkeit]

(1+1+3 Punkte)

Es seien $U \subseteq \mathbb{R}$, $U \neq \emptyset$, eine nichtleere Teilmenge der reellen Zahlen, $x_0 \in U$, $y \in \mathbb{R}$ und $f: U \to \mathbb{R}$ eine Abbildung.

- i.) Wie ist $\lim_{x \to x_0} f(x) = y$ definiert?
- ii.) Formulieren Sie, was man unter Folgenstetigkeit von f im Punkt x_0 versteht.
- iii.) Untersuchen Sie die Abbildung

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} x^2, & x \le 1, \\ \frac{x}{2} + 1, & x > 1, \end{cases}$$

auf Stetigkeit im Punkt $x_0 = 1$.

Aufgabe 4. [Differentiation, Satz von Taylor]

(2, 5 + 2, 5 Punkte)

i.) Bestimmen Sie alle lokalen Maxima und Minima der Funktion

$$f:(0,\pi]\to\mathbb{R},\quad f(x)=-\frac{1}{2}x\cos(2x)+\frac{1}{4}\sin(2x).$$

ii.) Bestimmen Sie $\cos\left(\frac{1}{10}\right)$ mit einer Genauigkeit von mindestens 10^{-4} .

Aufgabe 5. [Integrale]

(2,5+2,5) Punkte

Berechnen Sie folgende Integrale:

i.)
$$\int_{0}^{\pi} x \sin(2x) dx$$
,

ii.)
$$\int_{0}^{1} \frac{2x}{x^2 + 2} dx$$
.

- i.) Es seien X ein \mathbb{R} -Vektorraum und $Y\subseteq X$ eine Teilmenge. Formulieren Sie das Unterraum-kriterium so, dass Y ein Unterraum von X ist.
- ii.) Es sei $Y := \{\vec{x} \in \mathbb{R}^3 : x_1 + x_2 = 0, x_2 x_3 = 0\}$. Zeigen Sie, dass Y ein Unterraum von \mathbb{R}^3 ist und berechnen Sie eine Basis von Y sowie dim(Y).

Aufgabe 7. [Lineare Gleichungssysteme]

(4 + 1 Punkte)

Es seien

$$A:=egin{pmatrix}1&1&0\2&0&0\-2&-1&4\end{pmatrix}\in\mathfrak{M}_{3 imes3}(\mathbb{R})\quad ext{und}\quadec{b}\coloneqqegin{pmatrix}0\2\-1\end{pmatrix}\in\mathbb{R}^3.$$

- i.) Prüfen Sie A auf Invertibilität und bestimmen Sie ggf. die inverse Matrix A^{-1} .
- ii.) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems $A\vec{x}=\vec{b}.$

Aufgabe 8. [Schmidtsches Orthonormierungsverfahren]

(1+4 Punkte)

- i.) Geben Sie die Definition einer orthonormalen Teilmenge $A\subseteq X$ eines \mathbb{R} -Vektorraums X mit Skalarprodukt $\langle\cdot|\cdot\rangle:X\times X\to\mathbb{R}$ an.
- ii.) Gegeben sei die Basis

$$\mathcal{B} := \left\{ \vec{x}_1 := \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \ \vec{x}_2 := \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \ \vec{x}_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

von \mathbb{R}^3 . Bestimmen Sie eine Orthonormalbasis $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ von \mathbb{R}^3 .

Bonus-Aufgabe. [Differenzierbarkeit, Invertierbarkeit]

(2, 5 + 2, 5 Punkte)

i.) Untersuchen Sie die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

auf Differenzierbarkeit im Punkt $x_0 = 0$ und geben Sie ggf. die Ableitung im Punkt $x_0 = 0$ an.

ii.) Überprüfen Sie, ob folgende Matrix invertibel ist: