

R²: 0.37074975414979394 RMSE: 1.3625189783634482

R^2 -0.9005474159660907 RMSE: 2.367937404672987

Piecewise polynomial regression results in negative R^2 for my data and high root mean squared value.

RMSE: 1.1060366152902406 R^2: 0.5853541887899862

RMSE: 1.1060372624281316 R^2: 0.5853537035744145

No difference between ridge regression and polynomial regression with degree 3.

RMSE: 1.1227078904454193 R^2: 0.5727600817975913

RMSE: 0.9569244249880072 R^2: 0.68962012551554

RMSE: 0.7607058329588232 R^2: 0.8038574730257876

Ridge regression performs better with sixth degree of polynomial feature in comparison to 3rd.

RMSE: 1.0424484451733995 R^2: 0.6316612200208955

RMSE: 0.7584777205141658 R^2: 0.8050047958357075

As the degrees of polynomials increases both RMSE and \mathbb{R}^2 improves.

RMSE: 0.7704885615246173 R^2: 0.7987802223318378

RMSE: 1.0356015376262735 R^2: 0.6364839031344398

Execution times:

For measuring the execution time of times I am generating 10 random points that follow a gaussian distribution with the same mean and covariance. Hence for reporting I am reporting the execution times of individual runs and the average time .

Then I am recording the execution times for each of the regression

Regression Type	Execut ion 1	Execut ion 2	Execut ion 3	Execut ion 4	Execut ion 5	Execut ion 6	Execut ion 7	Execut ion 8	Execut ion 9	Execut ion 10	Averag e time
Piecewise linear	0.1406 25	0.0781 25	0.0781 25	0.1093 75	0.0937 5	0.0781 25	0.0937 5	0.125	0.0937 5	0.0937 5	0.0984 375
Piecewise polynomial	0.1562 5	0.0937 5	0.0781 25	0.1093 75	0.1562 5	0.0937 5	0.0781 25	0.0781 25	0.0937 5	0.0937 5	0.1031 25
Polynomial regression(deg ree 3)	0.0937 5	0.0937 5	0.0468 75	0.0625	0.0468 75	0.0625	0.0625	0.0625	0.0468 75	0.0468 75	0.0625
Ridge Regression(de gree 3)	0.0781 25	0.0781 25	0.0625	0.0625	0.0781 25	0.0625	0.0625	0.0625	0.0625	0.0937 5	0.0703 125
Lasso Regression(de gree 3)	0.0468 75	0.0781 25	0.0625	0.0625	0.0468 75	0.0625	0.0937 5	0.0625	0.0625	0.0625	0.0640 625
Polynomial regression(deg ree 8)	0.0468 75	0.0625	0.0625	0.1093 75	0.0625	0.0468 75	0.0625	0.0625	0.0468 75	0.0468 75	0.0609 375

Ridge Regression(de gree 8)	0.1093 75	0.0625	0.0625	0.0468 75	0.0625	0.0625	0.0625	0.0781 25	0.0468 75	0.0625	0.0656 25
Lasso Regression(de gree 8)	0.0468 75	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.1093 75	0.0625	0.0656 25
Polynomial regression(deg ree 12)	0.0625	0.0625	0.0625	0.0781 25	0.0625	0.0937 5	0.0781 25	0.0625	0.0625	0.0625	0.0687
Ridge Regression(de gree 12)	0.0781 25	0.0781 25	0.0781 25	0.0468 75	0.0781 25	0.0625	0.0625	0.0625	0.0625	0.0625	0.0671 875
Lasso regression(deg ree 12)	0.0781 25	0.0625	0.0625	0.0625	0.0781 25	0.0625	0.0625	0.0781 25	0.0625	0.0625	0.0671 875
Polynomial regression(deg ree 20)	0.0781 25	0.0625	0.0625	0.0468 75	0.0468 75	0.0625	0.0937 5	0.0781 25	0.0468 75	0.0625	0.0640 625
Ridge regression(deg ree 20)	0.0781 25	0.0468 75	0.0625	0.0468 75	0.0937 5	0.0468 75	0.0625	0.0625	0.0625	0.0781 25	0.0640 625
Lasso regression (degree 20)	0.0625	0.1093 75	0.0625	0.0625	0.0468 75	0.0625	0.0625	0.0468 75	0.0625	0.0625	0.0640 625

In my case the average execution times for piecewise linear regression and piecewise polynomial regression times are higher than single polynomial regression, ridge regression and lasso regression.