Compte-rendu de travaux pratiques de chimie

Dosages acido-basique de l'eau de Perrier

Benjamin LOISON et Alice MILFORD ASSEO (MPSI 1)

30 mars 2019

Exploitation 2

2.1 Courbe n°1

La réaction de dosage est la suivante: $H_2CO_3 + OH^- \rightleftharpoons HCO_3^- + H_2O$

1
1
1
1
1
1
1
1
1
1
1
1
1
1
⊣ .

On trouve $V_1 = 19.5$ mL.

A l'équivalence, on a: $[H_2CO_3]V_{Perrier} = [OH^-]V_1$ D'où: $[H_2CO_3] = \frac{[OH^-]V_1}{V_{Perrier}}$ AN: $x = [H_2CO_3] = \frac{0.1*19.5*10^{-3}}{50*10^{-3}} = 3.9*10^{-2} \text{ mol/L}.$

2.2 Courbe n°2

La réaction de dosage est la suivante: $HCO_3^- + Cl^- \rightleftharpoons CO_4^{2-} + HCl$

On trouve $V_2 = 4.5 \text{ mL}$.

13

14

15

A l'équivalence, on a: $[HCO_3^-]V_{Perrier} = [Cl^-]V_2$

D'où: $[HCO_3^-] = \frac{[Cl^-]V_2}{V_{Perrier}}$ AN: $y = [HCO_3^-] = \frac{0.1*4.5*10^{-3}}{50*10^{-3}} = 9.0*10^{-3} mol/L$.

2.3 pH de l'eau de Perrier

2.09

2.05

2.02

On a: $pH = pKa + \log(\frac{y}{x})$

AN: pH = $6.3 + \log(\frac{9.0*10^{-3}}{3.9*10^{-2}}) = 5.66$. Expérimentalement on mesure un pH de 5.34. On a: $|\frac{pH_{th\acute{e}orique} - pH_{exp\acute{e}rimental}}{pH_{exp\acute{e}rimental}}| = |\frac{5.66 - 5.34}{5.34}| = 5.99*10^{-2}$.

On trouve un écart relatif entre la valeur expérimentale et celle théorique de 6 %.

10

15

2.4 "Raccorder" les deux courbes précédentes

v (en mL)	рН
0	5.35