SECTION A (40 MARKS)

Answer ALL questions in this section

- 1. Solve the equation $Sin3\theta = Cos\theta$ for $0^o \le \theta \le 180^o$. (05 marks)
- 2. Given that $x^3 = (y 3x)^2$ show that; $2x \frac{dy}{dx} = 3y 3x$.

 (05 marks)
- 3. A(3,5) and B(-5,-1) are points on a line. Find the coordinates of point C that divides \overrightarrow{AB} in the ratio 3:1.
 - (a) Internally
 - (b) Externally

(05 marks)

- Find the equation of the tangent to the curve y = 1 + 2sinx at $x = \frac{\pi}{4}$.

 (05 marks)
- 5. Given that z = 1 + 3i find the real numbers, x and y such that $xZ + y\bar{Z} = 7 + 3i$. (05 marks)
- 6. O(0,0) and Q(4,0) are fixed points. P(x,y) is a variable point. Given that $\langle OPQ = 45^{\circ}$, find the locus of P(x,y). (05 marks)
- 7. When a polynomial P(x) is divided by $x^2 4$, the remainder is 3x + 7. find the remainder when P(x) is divided by;
 - (a) x-2
 - (b) x + 2

(05 marks)

8. Evaluate; $\int_0^{\sqrt{3}} \frac{dx}{\sqrt{3-x^2}}$ without using tables.

(05 marks)

SECTION B (60 MARKS)

- 9. \sqrt{a} Express $\sqrt{3} Sin\theta + Cos\theta$ in the form $Rsin(\theta + \alpha)$. (03 marks) Hence solve the equation $\sqrt{3}Sin\theta + Cos\theta = \sqrt{2}$, for $0^o \le \theta \le 360^o$. (03 marks)
 - (b) Prove the Cosine rule $a^2 = b^2 + c^2 2bc \, Cos A$ for any triangle ABC. Hence solve the triangle in which b = 5cm, c = 8cm and $A = 60^\circ$.
 - 10. \vee (a) Use the mathematics of small changes to evaluate Sin 29.5° to 4 dpls. (05 marks)
 - (b) A right circular cone has a slant length of 9√3cm. Calculate the maximum volume of the cone; and state the corresponding values of the height and the radius in this case. (07 marks)
 - 11. (a) Find the term in x^{-3} in the expansion of; $\left(x^2 + \frac{1}{2x}\right)^9$ (04 marks)
 - (b) Expand $\sqrt{1 \frac{1}{4}x}$ up to the term in x^3 ; and use the expansion to evaluate;
 - (i) $\sqrt{15}$ to 3dps
 - (ii) $\sqrt{7}$ to 4dps (08 marks)
 - 12. Express $\frac{x^6 + 64}{x^4 16}$ in partial fractions; hence evaluate;

$$\int_{3}^{4} \frac{x^{6} + 64}{x^{4} - 16} dx \quad to \quad 4dps$$

(12 marks)

13. \sqrt{a} Find the coordinates of the point of intersection of the lines; $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$

$$r_1 = \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
 and $r_2 = \begin{pmatrix} 10 \\ 1 \\ 7 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$;

and compute the acute angle between the lines.

(09 marks)

- (b) Write down the vector equation of the plane containing the two lines in (a) above.

 (03 marks)
- 14. Given the curve $y = \frac{2x-5}{x^2-4}$
 - (a) Find its stationary points; hence state the region within which the curve does not lie.

 (b) Charles and the curve does not lie.
 - Sketch the curve, and deduce the solution to the inequality $\frac{2x-5}{x^2-4} \ge 0$ (06 marks)
- Prove that the equations of the tangent to the parabola $y^2 = 4ax$ At the variable point $(at^2, 2at)$ is $x - ty + at^2 = 0$. (03 marks)
 - (b) Deduce the equations of the tangents to the parabola $y^2 = 4ax$ from the external point A(-6a, a); (04 marks)

 Hence (i) find the coordinates of the points of section a
 - find the coordinates of the points of contact of the tangents with the parabola.

 (02 marks)
 - (ii) show that the tangents make 45° with each other.

(03 marks)

- 16. The temperature, $\theta^o C$, at a height h metres risen above the foot of a 1000 m high mountain, decreases at a rate which is directly proportional to
 - (a) A tourist notices that the temperature of water drops from 16°C, at the foot of the mountain, to -9°C at the peak of the mountain. Set up a differential equation for this problem and solve it. (06 marks)
 - (b) Calculate the;
 - (i) height at which water starts to freeze. (03 marks)
 - (ii) temperature the water should have at the foot of the mountain if it just freezes at the top of the mountain.

END