

IRF7476

HEXFET® Power MOSFET

Applications

- High Frequency 3.3V and 5V input Pointof-Load Synchronous Buck Converters for Netcom and Computing Applications.
- Power Management for Netcom,
 Computing and Portable Applications.

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)}
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	R _{DS(on)} max	I _D
12V	$8.0 \text{m}\Omega@V_{GS} = 4.5 \text{V}$	15A

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	12	V
V _{GS}	Gate-to-Source Voltage	±12	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	15	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	12	Α
I _{DM}	Pulsed Drain Current①	120]
P _D @T _A = 25°C	Maximum Power Dissipation 4	2.5	W
P _D @T _A = 70°C	Maximum Power Dissipation ⁴	1.6	W
	Linear Derating Factor	0.02	W/°C
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol Parameter		Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient 4		50	°C/W

Notes ① through ④ are on page 8 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	12			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.014		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		6.0	8.0	mΩ	V _{GS} = 4.5V, I _D = 15A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		12	30	11122	$V_{GS} = 2.8V, I_D = 12A$ ③
V _{GS(th)}	Gate Threshold Voltage	0.6		1.9	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
lana	I _{DSS} Drain-to-Source Leakage Current			100	μA	$V_{DS} = 9.6V, V_{GS} = 0V$
I _{DSS}	Dialif-to-Source Leakage Current			250	μΛ	$V_{DS} = 9.6V, V_{GS} = 0V, T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-200	11/	$V_{GS} = -12V$

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	31			S	$V_{DS} = 6.0V, I_D = 12A$
Qg	Total Gate Charge		26	40		I _D = 12A
Q _{gs}	Gate-to-Source Charge		4.6		nC	$V_{DS} = 10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		11			$V_{GS} = 4.5V$
Q _{oss}	Output Gate Charge		17			$V_{GS} = 0V, V_{DS} = 5.0V$
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 6.0V$
t _r	Rise Time		29		ns	$I_D = 12A$
t _{d(off)}	Turn-Off Delay Time		19		113	$R_G = 1.8\Omega$
t _f	Fall Time		8.3			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		2550			V _{GS} = 0V
Coss	Output Capacitance		2190			$V_{DS} = 6.0V$
C _{rss}	Reverse Transfer Capacitance		450		pF	f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		160	mJ
I _{AR}	Avalanche Current①		12	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			2.5		MOSFET symbol	
	(Body Diode)			2.5	A	showing the	
I _{SM}	Pulsed Source Current			400	^	integral reverse	
	(Body Diode) ①			120		p-n junction diode.	
V_{SD}	Diode Forward Voltage		0.87	1.2	V	$T_J = 25^{\circ}C$, $I_S = 12A$, $V_{GS} = 0V$ ③	
V SD			0.73			T _J = 125°C, I _S = 12A, V _{GS} = 0V ③	
t _{rr}	Reverse Recovery Time		55	82	ns	$T_J = 25^{\circ}C, I_F = 12A, V_R = 12V$	
Q _{rr}	Reverse Recovery Charge		59	89	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time		54	81	ns	$T_J = 125$ °C, $I_F = 12A$, $V_R = 12V$	
Q _{rr}	Reverse Recovery Charge		60	90	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

TOR Rectifier

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 13a&b. Basic Gate Charge Test Circuit and Waveform

Fig 14a&b. Unclamped Inductive Test circuit and Waveforms

6

Fig 14c. Maximum Avalanche Energy Vs. Drain Current

IRF7476

SO-8 Package Details

INCHES MILLIMETERS DIN MAX MAX MIN MIN Α .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 .0075 0098 0.19 0.25 D 5.00 .189 .1968 4.80 Ε .1497 .1574 3.80 4.00 .050 BASIC 1.27 BASIC е .025 BASIC 0.635 BASIC Н 2284 2440 5.80 6.20 .0099 .0196 0.25 0.50 .016 .050 0.40 1.27

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.

 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF7476

International IOR Rectifier

SO-8 Tape and Reel

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

8

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 2.3mH $R_G = 25\Omega$, $I_{AS} = 12A$.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- When mounted on 1 inch square copper board.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/02