# Extremely Low Passive Microwave Brightness Temperatures Due To Thunderstorms

Daniel J. Cecil
NASA Marshall Space Flight Center
Daniel.J.Cecil@nasa.gov

20<sup>th</sup> Conference on Satellite Meteorology and Oceanography (2015)

#### **Data Sources**

- SSMI data from NCDC, calibrated by Colorado State University
- > SSMI grouped into precipitation features by Chuntao Liu, TAMU-CC
- AMSR-E data from NSIDC, calibrated by AMSR-E science team
- AMSR-E grouped into precipitation features by Clay Blankenship, USRA
- TMI data from NASA PPS, grouped into precipitation features
- GMI data V03B from PPS, grouped into precipitation features by Chuntao Liu, TAMU-CC

#### **Objectives**

- 1) document the lower limits on brightness temperatures from previously observed storms
- From TMI, SSMI, AMSR-E, GMI

  Spoiler Alert: ~40 K @ 85 GHz, ~70 K @ 37 GHz
- 2) map the locations where the "strongest of the strong" storms do occur.

Spoiler Alert: mostly northern Argentina

3) describe objective methods for identifying valid measurements of extreme storms and separating out the measurements likely compromised by noise (*filtering at the storm-level, not pixel-level*)

#### TRMM case with lowest 37 GHz; northern Argentina





#### Most extreme cases from each satellite



#### **Sensors Used**

SSMI data from CSU; AMSR-E from NSIDC; TMI from TSDIS/PPS

| Sensor / Platform | Period of record | 37 GHz footprint | 85 GHz footprint | mode time of day |
|-------------------|------------------|------------------|------------------|------------------|
| SSMI / F08        | Jul 1987         | 37 x 29 km       | 15 x 13 km       | 5-7 am; 5-7 pm   |
|                   | Dec 1988         |                  |                  | 5 am NH; 5 pm    |
|                   |                  |                  |                  | SH               |
| SSMI / F10        | Dec 1990         | 37 x 29 km       | 15 x 13 km       | 8-11 am; 8-11    |
|                   | Nov 1997         |                  |                  | pm               |
|                   |                  |                  |                  | 10 am NH; 10     |
|                   |                  |                  |                  | pm SH            |
| SSMI / F11        | Dec 1991         | 37 x 29 km       | 15 x 13 km       | 5-8 am; 5-8 pm   |
|                   | Mar 2000         |                  |                  | 7 am NH; 7 pm    |
|                   |                  |                  |                  | SH               |
| SSMI / F13        | May 1995         | 37 x 29 km       | 15 x 13 km       | 5-7 am; 5-7 pm   |
|                   | Nov 2009         |                  |                  | 5 pm NH; 5 am    |
|                   |                  |                  |                  | SH               |
| SSMI / F14        | May 1997         | 37 x 29 km       | 15 x 13 km       | 7-10 am; 7-10    |
|                   | Aug 2008         |                  |                  | pm               |
|                   |                  |                  |                  | 8 pm NH; 8 am    |
|                   |                  |                  |                  | SH               |
| TMI / TRMM        | Dec 1997 Oct     | 16 x 9 km        | 7 x 5 km         | any              |
|                   | 2014             |                  |                  |                  |
| AMSR-E / Aqua     | Jul 2002 Feb     | 14 x 8 km        | 6 x 4 km         | ~2 AM and PM     |
|                   | 2010             |                  |                  |                  |
| GMI               | Mar –Oct 2014    | 14 x 9 km        | 7 x 4 km         | any              |

#### **Lowest 85 GHz PCT**

SSMI Min 85 GHz generally in 50's K for 13x15 km footprint

Note: F08 SSMI 85 GHz became too noisy to search beyond March 1988.

| Sensor /<br>Platform | Date              | Time<br>UTC /<br>LST | Lon         | Lat        | Min<br>37 | Min<br>85 | Location                                    | Notes                                   |
|----------------------|-------------------|----------------------|-------------|------------|-----------|-----------|---------------------------------------------|-----------------------------------------|
| SSMI<br>F08          | 09<br>Mar<br>1988 | 2153 /<br>6 pm       | 64.56 W     | 34.01<br>S | 182.4     | 77.0      | Cordoba,<br>Argentina                       | -                                       |
| SSMI<br>F10          | 30<br>Dec<br>1996 | 1455 /<br>11 pm      | 116.11<br>E | 16.07<br>S | 187.4     | 60.8      | Eastern<br>Indian Ocean                     | Cyclone<br>Phil (sheared,<br>weakening) |
| SSMI<br>F11          | 28 Jun<br>1998    | 0026 /<br>9 pm       | 92.67<br>W  | 43.78<br>N | 119.1     | 63.4      | Minnesota,<br>USA                           | Same as<br>F11 case<br>for 37 GHz       |
| SSMI<br>F13          | 16<br>Nov<br>1998 | 2205 /<br>6 pm       | 63.46<br>W  | 23.01<br>S | 129.2     | 51.0      | Salta,<br>Argentina                         | Same as<br>F13 case<br>for 37 GHz       |
| SSMI<br>F14          | 30<br>Dec<br>1997 | 0046 /<br>9 pm       | 62.22<br>W  | 27.93<br>S | 129.4     | 58.3      | Santiago del<br>Estero,<br><b>Argentina</b> | Same as<br>TMI case<br>for 37 GHz       |
| SSMI<br>F15          | 13<br>Nov<br>2009 | 2152 /<br>6 pm       | 59.37<br>W  | 28.70<br>S | 124.4     | 53.6      | Santa Fe, Argentina                         | Same as<br>F15 37<br>GHz case           |

#### **Lowest 85 GHz PCT**

| Higher     | Sensor / | Date  | Time   | Lon      | Lat   | Min   | Min  | Location       | Notes   |
|------------|----------|-------|--------|----------|-------|-------|------|----------------|---------|
| resolution | Platform |       | UTC /  |          |       | 37    | 85   |                |         |
| sensors    |          |       | LST    |          |       |       |      |                |         |
| see        |          |       |        |          |       |       |      |                |         |
| Min85/89   | TMI      | 14    | 0109 / | 58.14    | 28.15 | 123.0 | 39.4 | Corrientes,    |         |
| GHz ~40 K  | TRMM     | Nov   | 9 pm   | W        | S     |       |      | Argentina      |         |
|            |          | 2009  |        |          |       |       |      |                |         |
|            | AMSR-E   | 18    | 0502 / | 127.33 E | 15.90 | 109.7 | 41.1 | Philippine Sea | Typhoon |
|            | Aqua     | Nov   | 1 pm   |          | N     |       |      |                | Bolaven |
|            |          | 2005  |        |          |       |       |      |                |         |
|            | GPM      | 9 May | 1509 / | 92.16 E  | 24.84 | 116.6 | 46.3 | Bangladesh     |         |
|            | GMI      | 2014  | 9 pm   |          | N     |       |      |                |         |
|            |          |       |        |          |       |       |      |                |         |

GMI initial analysis limited to 8 March – 31 October 2014

Lowest 37 GHz PCT

> Min 37 GHz generally in the 120's K for 37x29 km SSMI footprint

| t       | Sensor /<br>Platform | Date              | Time<br>UTC /<br>LST | Lon        | Lat        | Min<br>37 | Min<br>85 | Location                                    | Notes                                                           |
|---------|----------------------|-------------------|----------------------|------------|------------|-----------|-----------|---------------------------------------------|-----------------------------------------------------------------|
| Z       | SSMI /<br>F08        | 12<br>Dec<br>1988 | 2202 /<br>6 pm       | 62.78<br>W | 27.84<br>S | 146.9     | 88.7      | Santiago del<br>Estero,<br><b>Argentina</b> |                                                                 |
| Ηz      | SSMI /<br>F10        | 22<br>Dec<br>1991 | 0104 /<br>9 pm       | 61.25<br>W | 26.72<br>S | 120.9     | 64.5      | Chaco, Argentina                            |                                                                 |
| in<br>K | CCNAT /              | 28 Jun<br>1998    | 0026 /<br>6 pm       | 92.67<br>W | 43.78<br>N | 119.1     | 63.4      | Minnesota,<br>USA                           | 1.75" hail, 81<br>kt wind                                       |
|         | SSMI /<br>F13        | 16<br>Nov<br>1998 | 2205 /<br>6 pm       | 63.46<br>W | 23.01<br>S | 129.2     | 51.0      | Salta,<br><b>Argentina</b>                  |                                                                 |
|         | SSMI /<br>F14        | 04 Jul<br>1999    | 1507 /<br>9 am       | 94.22<br>W | 47.02<br>N | 123.8     | 64.9      | Minnesota,<br>USA                           | "Boundary Waters Derecho". Tornado, hail, wind damage reported. |
|         | SSMI<br>F15          | 13<br>Nov<br>2009 | 2152 /<br>6 pm       | 59.23<br>W | 28.76<br>S | 124.4     | 53.6      | Santa Fe,<br>Argentina                      | Same as F15<br>85 GHz case                                      |

| Lowest                                  | Sensor /<br>Platform | Date              | Time<br>UTC /<br>LST | Lon        | Lat        | Min 37 | Min<br>85 | Location                                    | Notes                                                                              |
|-----------------------------------------|----------------------|-------------------|----------------------|------------|------------|--------|-----------|---------------------------------------------|------------------------------------------------------------------------------------|
| 37 GHz PCT  Higher resolution sensors   | TMI /<br>TRMM        | 30<br>Dec<br>1997 | 0127 /<br>9 pm       | 62.05<br>W | 27.67<br>S | 68.1   | 44.1      | Santiago del<br>Estero,<br><b>Argentina</b> | 40 dBZ radar<br>echo above<br>19 km. See<br>Zipser et al.<br>(2006 and<br>Table 3) |
| see<br>Min37/36<br>GHz below            | AMSR-E /<br>Aqua     | 05 Jan<br>2010    | 1824 /<br>2 pm       | 61.78<br>W | 35.69<br>S | 79.6   | 56.8      | Buenos<br>Aires,<br><b>Argentina</b>        | 153 K 18-<br>GHz                                                                   |
| 100 K,<br>down to<br>68 K <i>so far</i> | GMI                  | 28<br>Oct<br>2014 | 2059 /<br>5 pm       | 59.94<br>W | 34.14<br>S | 91.1   | 46.4      | Buenos<br>Aires,<br><b>Argentina</b>        | Tornado,<br>hail, flood                                                            |

GMI initial analysis limited to 8 March – 31 October 2014

#### Filters for distinguishing storms from noise

Storms have spatially coherent TB patterns that help distinguish them from "noise"

"Precipitation Features" (PFs) are clusters of pixels with 85 GHz < 250 K

Basic statistics from the PFs objectively screen much of the noise

Snow/Ice: Very large areas of 85 GHz < 250 K are from snow/ice cover, not storms.

Npixels > 5000 → snow

Small Storms: Noise often occurs in isolated pixels. Storms that occur in isolated pixels are usually too weak to be of interest here. If a storm really has 85 GHz < 100 K, it probably has a few adjoining pixels below 150 K and several more below 250 K.

Nlt150 < 3 or nlt250 lt 4  $\rightarrow$  possible noise

All Pixels <150 K: If there is a cluster of pixels below 150 K without any adjoining pixels < 250 K, that is very likely instrument noise.

 $Nlt150 = nlt250 \rightarrow very likely noise$ 

37 GHz < 85 GHz: Not a physical result of strong thunderstorms at current footprint sizes.

Min37 = Min85 → definitely noise

#### 85 vs 37 GHz from GMI



#### 85 vs 37 GHz from SSMI



#### **Statistical filters for Precip Features**



#### SSMI "storms" with 85 GHz < 130 K & 37 GHz < 200 K



Blue = Snow/Ice Red/Orange = Small storms / isolated noise Green/Pink = Other noise Black = Real Storms

#### SSMI "storms" with 85 GHz < 130 K & 37 GHz < 200 K



#### **Summary of Statistical Filters**

## Precipitation features with intense convection tend to have recognizable statistical properties:

- They are clusters of several adjacent pixels with low brightness temperatures.
- Their total size is larger than the area of intense convection itself.
- The 85 GHz PCT is substantially lower than the 37 GHz PCT.

### Can be filtered somewhat effectively at *Precipitation Feature level*, *instead of pixel level*:

- > npixels gt 3: Removes isolated bad pixels (pixel size ~200 km²)
- > npixels It 5000: Removes enormous snowpacks (~1 million km²)
- > min37pct gt min85pct: Removes problematic channel combinations
- > nlt150 gt 2: From experience, intense storms are large enough for multiple pixels
- > npixels gt nlt150: If all the pixels have low TB, something is probably wrong.
- > min85pct lt 130 and min37pct lt 200: Helps to remove snowpack
- min85pct gt 40 and min37pct gt 80 (FOR SSMI RESOLUTION): From examination of cases satisfying the above criteria— anything that looks like a real storm has values well above these for SSMI.

# Summary - Lowest observed TBs associated with convection

**85 GHz: ~40 K** (Hi-Res – TMI, AMSR-E, GMI – 5x7 km) **~50-60 K** (Lo-Res – SSMI – 13x15 km)

**37 GHz: ~70-90 K** (Hi-Res – TMI,
AMSR-E, GMI – 9x16 km) **~120 K** (Lo-Res – SSMI –
29x37 km)

Mostly in Argentina, Central USA, a few scattered elsewhere

Values are low enough they seem like outliers — would be easy to just throw them out as noise via automated filters that do not expect "real" brightness temperatures to be this low.