

(11) Publication number:

11186651 A

Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number: 09351436

(51) Intl. Cl.: H01S 3/18

(22) Application date: 19.12.97

(30) Priority:

(43) Date of application

09.07.99

publication:

(84) Designated contracting states: (71) Applicant: SONY CORP

(72) Inventor: YAMAMOTO SUNAO

(74) Representative:

(54) INTEGRATED SEMICONDUCTOR LIGHT-**EMITTING DEVICE**

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an integrated semiconductor light-emitting device capable of emitting lights with different wave lengths and forming compactly, by providing a plurality types of semiconductor light-emitting elements with different lightemitting wave lengths on the same substrate.

SOLUTION: An AlGaAs based semiconductor laser LD1 with lightemitting wave length of 700 nm band and an AlGainP based semiconductor laser with lightemitting wave length of 600 nm band are integrated apart on the same n-type GaAs substrate. In the semiconductor laser LD1, an n-type buffer layer 11, an n-type clad layer 12, an activation layer 13 with a single quantum well structure or a multiple quantum well structure, a p-type clad layer 14, and a p-type gap layer 15, are laminated in sequence on the substrate 1. In the semiconductor laser LD2, an n-type buffer layer 21, an n-type clad layer 22, an activation layer 23 with a single quantum well structure or a multiple quantum well structure, a p-type clad layer 24, a p-type intermediate layer 25, and a p-type gap layer, are laminated in sequence on the substrate 1.

COPYRIGHT: (C)1999,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-186651

(43)公開日 平成11年(1999)7月9日

(51) Int.Cl.⁶

識別記号

FΙ

H01S 3/18

H01S 3/18

審査請求 未請求 請求項の数7 OL (全 25 頁)

(21)出願番号

特願平9-351436

(71)出願人 000002185

ソニー株式会社

(22)出願日 平成9年(1997)12月19日

東京都品川区北品川6丁目7番35号

(72)発明者 山本 直

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 杉浦 正知

(54) 【発明の名称】 集積型半導体発光装置

(57)【要約】

【課題】 互いに波長が異なる光を独立にまたは同時に 取り出すことができ、かつ、小型に構成することができ る集積型半導体発光装置を提供する。

【解決手段】 同一基板上に交互に互いに異なる種類の半導体層を成長させて発光素子構造を形成することにより、互いに発光波長が異なる複数種類の半導体発光素子を集積化する。半導体発光素子としては、発光波長が700nm帯のAlGaAs系半導体発光素子、発光波長が600nm帯のAlGaInP系半導体発光素子、発光波長が500nm帯のZnSe系半導体発光素子、発光波長が400nm帯のGaN系半導体発光素子などを用いる。基板としては、その上に集積化する半導体発光素子の種類に応じて、GaAs基板やSiC基板などを用いる。

【特許請求の範囲】

【請求項1】 同一基板上に成長された半導体層により 発光素子構造が形成された互いに発光波長が異なる複数 種類の半導体発光素子を有することを特徴とする集積型 半導体発光装置。

【請求項2】 上記複数種類の半導体発光素子は互いに 独立に駆動することができるように構成されていること を特徴とする請求項1記載の集積型半導体発光装置。

【請求項3】 上記複数種類の半導体発光素子は、A1 GaAs系半導体発光素子、AlGaInP系半導体発 10 されている。 光素子、II-VI族化合物半導体系半導体発光素子お よび窒化物系III-V族化合物半導体系半導体発光素 子からなる群より選ばれた少なくとも二種類の半導体発 光素子であることを特徴とする請求項1記載の集積型半 導体発光装置。

【請求項4】 上記基板はGaAs基板であり、上記複 数種類の半導体発光素子はA1GaAs系半導体発光素 子およびAIGaInP系半導体発光素子であることを 特徴とする請求項1記載の集積型半導体発光装置。

上記基板はGaAs基板であり、上記複 20 【請求項5】 数種類の半導体発光素子はAIGaAs系半導体発光素 子、AlGaInP系半導体発光素子およびII-VI 族化合物半導体系半導体発光素子であることを特徴とす る請求項1記載の集積型半導体発光装置。

【請求項6】 上記基板はSiC基板であり、上記複数 種類の半導体発光素子はAIGaAs系半導体発光素 子、AIGaInP系半導体発光素子および窒化物系I I I - V族化合物半導体系半導体発光素子であることを 特徴とする請求項1記載の集積型半導体発光装置。

上記基板はSiC基板であり、上記複数 30 【請求項7】 種類の半導体発光素子はAIGaInP系半導体発光素 子、II-VI族化合物半導体系半導体発光素子および 室化物系III-V族化合物半導体系半導体発光素子で あることを特徴とする請求項1記載の集積型半導体発光 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、集積型半導体発 光装置に関し、特に、互いに発光波長が異なる複数種類 の半導体発光素子が同一基板上に集積された集積型半導 体発光装置に関する。

[0002]

【従来の技術】現在、高密度記録が可能で大容量のディ ジタルビデオディスク(DVD)およびその再生用のD VD装置が市販されており、今後需要が益々伸びていく 商品として注目されている。

【0003】このDVDは高密度記録であるため、その 再生用のレーザ光源としては発光波長が600nm帯 (例えば、650nm) のA1GaInP系半導体レー ザが用いられている。このため、従来のDVD装置の光 50 は、AlGaAs系半導体発光素子およびAlGaIn

学ピックアップでは、発光波長が700nm帯 (例え ば、780nm)のA1GaAs系半導体レーザを用い て再生を行うコンパクトディスク (CD) やミニディス ク (MD) を再生することができなかった。

2

【0004】そこで、この問題を解決するために、別々 のパッケージにレーザチップを組み込んだ、発光波長が 600nm帯のA1GaInP系半導体レーザと発光波 長が700nm帯のA1GaAs系半導体レーザとを搭 載した、ツイン方式と呼ばれる光学ピックアップが採用

[0005]

【発明が解決しようとする課題】しかしながら、上述の ようなツイン方式の光学ピックアップは、A1Galn P系半導体レーザとA1GaAs系半導体レーザとの二 つのパッケージが搭載されていることにより、サイズが 大きく、したがってDVD装置のサイズも大きくなって しまうという問題があった。

【0006】したがって、この発明の目的は、DVD用 の光もCDおよびMD用の光も取り出すことができ、か つ、光学ピックアップの小型化を図ることができる集積 型半導体発光装置を提供することにある。

【0007】より一般的には、この発明の目的は、互い に波長が異なる光を独立にまたは同時に取り出すことが でき、かつ、小型に構成することができる集積型半導体 発光装置を提供することにある。

[0008]

【課題を解決するための手段】上記目的を達成するため に、この発明は、同一基板上に成長された半導体層によ り発光素子構造が形成された互いに発光波長が異なる複 数種類の半導体発光素子を有することを特徴とする集積 型半導体発光装置である。

【0009】この発明においては、典型的には、集積型 半導体発光装置が有する複数種類の半導体発光素子は互 いに独立に駆動することができるように構成されてお り、必要に応じて、スイッチの切り換えなどにより、こ れらの半導体発光素子のうちの一つまたは複数の半導体 発光素子を駆動して光を取り出すことができるようにな っている。

【0010】この発明において、複数種類の半導体発光 素子は、それらの発光素子構造を形成する半導体層を同 一基板上に成長させることができる限り、基本的にはど のようなものであってもよいが、具体的には、例えば、 AlGaAs系半導体発光素子、AlGaInP系半導 体発光素子、II-VI族化合物半導体系半導体発光素 子および窒化物系III-V族化合物半導体系半導体発 光素子からなる群より選ばれた少なくとも二種類の半導 体発光素子である。

【0011】この発明の一つの典型的な例においては、 基板はGaAs基板であり、複数種類の半導体発光素子

P系半導体発光素子である。

【0012】この発明の他の典型的な例においては、基板はGaAs基板であり、複数種類の半導体発光素子は、AlGaAs系半導体発光素子、AlGaInP系半導体発光素子およびII-VI族化合物半導体系半導体発光素子である。ここで、このII-VI族化合物半導体系半導体系光素子を構成するII-VI族化合物半導体としては、具体的には、Zn、Mg、Cd、HgおよびBeからなる群より選ばれた少なくとも一種類のII族元素と、Se、S、TeおよびOからなる群より選ばれた少なくとも一種類のVI族元素とにより構成されたものが用いられる。

【0013】この発明の他の典型的な例においては、基板はSiC基板であり、複数種類の半導体発光素子は、AlGaInP系半導体発光素子よび変化物系III-V族化合物半導体系半導体発光素子である。ここで、この窒化物系III-V族化合物半導体系半導体発光素子を構成する窒化物系III-V族化合物半導体系半導体発光素子を構成する窒化物系III-V族化合物半導体としては、具体的には、Ga、AI、InおよびBからなる群より選ばれた少なくとも一種類のIII族元素と、少なくともNを含み、場合によってさらにAsまたはPを含むV族元素とからなる

【0014】この発明の他の典型的な例においては、基板はSiC基板であり、複数種類の半導体発光素子は、AlGaInP系半導体発光素子、II-VI族化合物半導体系半導体発光素子および窒化物系III-V族化合物半導体系半導体発光素子である。

【0015】上述のように構成されたこの発明による集積型半導体発光装置によれば、互いに発光波長が異なる複数種類の半導体発光素子を有することにより、互いに波長が異なる光を取り出すことができる。また、これらの半導体発光素子は、同一基板上に成長された半導体層により発光素子構造が形成されているので、この集積型半導体発光装置は1チップで構成することができ、したがってパッケージは一つで済む。

[0016]

【発明の実施の形態】以下、この発明の実施形態について図面を参照しながら説明する。なお、実施形態の全図において、同一または対応する部分には同一の符号を付 40 す。

【0017】図1はこの発明の第1の実施形態による集積型半導体レーザ装置を示す。

【0018】図1に示すように、この第1の実施形態による集積型半導体レーザ装置においては、同一のn型GaAs基板1上に、発光波長が700nm帯(例えば、780nm)のAlGaAs系半導体レーザLD1と、発光波長が600nm帯(例えば、650nm)のAlGaInP系半導体レーザLD2とが、互いに分離した状態で集積化されている。n型GaAs基板1として

は、例えば、(100)面方位を有するものや、(100)面から例えば5~15°オフした面を主面とするも、のが用いられる。

【0019】AIGaAs系半導体レーザLD1においては、n型GaAs基板1上に、n型GaAsバッファ層11、n型AIGaAsクラッド層12、単一量子井戸(SQW)構造または多重量子井戸(MQW)構造の活性層13、p型AIGaAsクラッド層14およびp型GaAsキャップ層15が順次積層されている。p型AIGaAsクラッド層14の上部およびp型GaAsキャップ層15は一方向に延びるストライプ形状を有する。このストライプ部の両側の部分にはn型GaAs電流狭窄層16が設けられており、これによって電流狭窄構造が形成されている。ストライプ形状のp型GaAsキャップ層15およびn型GaAs電流狭窄層16上にはp側電極17が、p型GaAsキャップ層15とオーミックコンタクトして設けられている。p側電極17としては、例えばTi/Pt/Au電極が用いられる。

【0020】A1GaInP系半導体レーザLD2にお 20 いては、n型GaAs基板1上に、n型GaAsバッフ ァ層21、n型AlGaInPクラッド層22、SQW 構造またはMQW構造の活性層23、p型AlGaIn Pクラッド層24、p型GaInP中間層25およびp 型GaAsキャップ層26が順次積層されている。p型 AlGaInPクラッド層24の上部、p型GaInP 中間層25およびp型GaAsキャップ層26は一方向 に延びるストライプ形状を有する。このストライプ部の 両側の部分にはn型GaAs電流狭窄層27が設けられ ており、これによって電流狭窄構造が形成されている。 ストライプ形状のp型GaAsキャップ層26およびn 型GaAs電流狭窄層27上にはp側電極28が、p型 GaAsキャップ層26とオーミックコンタクトして設 けられている。p側電極28としては、例えばTi/P t/Au電極が用いられる。

【0021】n型GaAs基板1の裏面にはn側電極2 9が、このn型GaAs基板1とオーミックコンタクト して設けられている。このn側電極29としては、例え ばAuGe/Ni電極やIn電極が用いられる。

【0022】この場合、A1GaAs系半導体レーザL り D1のp側電極17およびA1GaInP系半導体レー ザLD2のp側電極28は、パッケージベース30上に 互いに電気的に分離した状態で設けられたヒートシンク H1、H2上にそれぞれはんだ付けされている。

【0023】上述のように構成されたこの第1の実施形態による集積型半導体レーザ装置においては、p側電極17とn側電極29との間に電流を流すことによりAIGaAs系半導体レーザLD1を駆動することができ、p側電極28とn側電極29との間に電流を流すことによりAIGaInP系半導体レーザLD2を駆動することができるようになっている。そして、AIGaAs系

半導体レーザLD1を駆動することにより液長700mm帯 (例えば、780mm)のレーザ光を取り出すことができ、A1GaInP系半導体レーザLD2を駆動することにより波長600m帯 (例えば、650mm)のレーザ光を取り出すことができるようになっている。A1GaAs系半導体レーザLD1を駆動するか、A1GaInP系半導体レーザLD2を駆動するかの選択は、外部スイッチの切り換えなどにより行うことができる。

【0024】次に、上述のように構成されたこの第1の 実施形態による集積型半導体レーザ装置の製造方法につ いて説明する。

【0025】まず、図2に示すように、n型GaAs基板1上に、例えば有機金属化学気相成長(MOCVD)法により、例えば800℃程度の成長温度で、n型GaAsバッファ層11、n型AlGaAsクラッド層12、活性層13、p型AlGaAsクラッド層14およびp型GaAsキャップ層15を順次成長させる。

【0026】次に、例えばCVD法によりp型GaAsキャップ層15の全面に例えば SiO_2 膜やSiN膜な 20 どの絶縁膜31を形成した後、この絶縁膜31をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。このストライプ形状の絶縁膜31の平面形状を図3に示す。

【0027】次に、図4に示すように、絶縁膜31をマスクとして例えば反応性イオンエッチング(RIE)法のようなドライエッチング法やウエットエッチング法によりp型GaAsキャップ層15、p型AlGaAsクラッド層14、活性層13、n型AlGaAsクラッド層12およびn型GaAsバッファ層11を順次エッチングする。

【0028】次に、図5に示すように、絶縁膜31をマスクとして、例えばMOCVD法により、上述のエッチングにより露出したn型GaAs基板1の表面にn型GaAsバッファ層21、n型AlGaInPクラッド層22、活性層23、p型AlGaInPクラッド層24、p型GaInP中間層25およびp型GaAsキャップ層26を選択成長させる。

【0029】次に、絶縁膜31をエッチング除去した後、例えばCVD法によりp型GaAsキャップ層15 およびp型GaAsキャップ層26の全面に例えばSiO2膜やSiN膜などの絶縁膜(図示せず)を形成した後、この絶縁膜をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。次に、この絶縁膜をマスクとして例えばウエットエッチング法によりp型AlGaAsクラッド層14およびp型AlGaInPクラッド層24の厚さ方向の途中の深さまでエッチングすることにより、図6に示すように、p型AlGaAsクラッド層14の上部およびp型GaAsキャップ層15をストライプ形状にパターニングするととも

に、p型A1GaInPクラッド層24、p型GaInP中間層25およびp型GaAsキャップ層26をストライプ形状にパターニングする。この後、この絶縁膜をマスクとして、このストライプ部の両側の部分に、最終的にn型GaAs層32を選択成長させて埋め込む。

【0030】次に、この絶縁膜をエッチング除去した後、p型GaAsキャップ層15、26およびn型GaAs層34上にリソグラフィーにより所定方向に延びるの所定形状のレジストパターン(図示せず)を形成する。次に、例えば真空蒸着法やスパッタリング法により全面にTi膜、Pt膜およびAu膜を順次形成する。次に、このレジストパターンをその上に形成されたTi膜、Pt膜およびAu膜とともに除去する(リフトオフ)。これによって、図7に示すように、p側電極17、28が形成される。

【0031】次に、図8に示すように、p側電極17、28の間の部分におけるn型GaAs層34、p型A1GaInPクラッド層24、活性層23、n型A1GaInPクラッド層22およびn型GaAsバッファ層21をエッチング除去する。

【0032】次に、n型GaAs基板1の裏面に例えば 真空蒸着法やスパッタリング法によりAuGe/Ni膜やIn膜を形成することにより<math>n側電極29を形成する。

【0033】次に、上述のようにしてレーザ構造が形成されたn型GaAs基板1をバー状に劈開して両共振器端面を形成し、さらにこれらの共振器端面に端面コーティングを施した後、このバーを劈開してチップ化する。この後、このようにして得られたレーザチップをパッケージングする。

【0034】以上のように、この第1の実施形態による 集積型半導体レーザ装置によれば、発光波長が700n m帯のAlGaAs系半導体レーザLD1と発光波長が 600nm帯のAlGaInP系半導体レーザLD2と を有することにより、DVD用のレーザ光とCDおよび MD用のレーザ光とを互いに独立に取り出すことができ る。このため、この集積型半導体レーザ装置をDVD装 置の光学ピックアップにレーザ光源として搭載すること により、DVD、CDおよびMDのいずれの再生または 記録も可能となる。しかも、これらのA1GaAs系半 導体レーザLD1およびAIGaInP系半導体レーザ LD2は、同一のn型GaAs基板1上に成長された半 導体層によりレーザ構造が形成されていることにより、 この集積型半導体レーザ装置のパッケージは一つで済 む。このため、従来のツイン方式の光学ピックアップに 比べて光学ピックアップの小型化を図ることができ、し たがってDVD装置の小型化を図ることができる。

【0035】図9はこの発明の第2の実施形態による集 50 積型半導体レーザ装置を示す。 【0036】図9に示すように、この第2の実施形態による集積型半導体レーザ装置においては、同一のn型GaAs基板1上に、発光波長が700nm帯(例えば、780nm)のAlGaAs系半導体レーザLD1と、発光波長が600nm帯(例えば、650nm)のAlGaInP系半導体レーザLD2と、発光波長が500nm帯(例えば、515nm)のZnSe系半導体レーザLD3とが、互いに離れた状態で集積化されている。n型GaAs基板1としては、例えば、(100)面方位を有するものや、(100)面から例えば5~15°オフした面を主面とするものが用いられる。

【0037】A1GaAs系半導体レーザLD1および A1GaInP系半導体レーザLD2は、第1の実施形態で述べたと同様な構成を有する。

【0038】 ZnSe系半導体レーザLD3において は、n型GaAs基板1上に、n型GaAsバッファ層 41、n型2nSeバッファ層42、n型ZnSSeバ ッファ層43、n型ZnMgSSeクラッド層44、n 型ZnSSe光導波層45、例えばZnCdSeからな るSQW構造またはMQW構造の活性層46、p型Zn SSe光導波層47、p型ZnMgSSeクラッド層4 8、p型ZnSSeキャップ層49、p型ZnSeコン タクト層50、p型ZnTe/ZnSeMQW層51お よびp型ZnTeコンタクト層52が順次積層されてい る。p型ZnSSeキャップ層49の上部、p型ZnS eコンタクト層50、p型ZnTe/ZnSeMQW層 51およびp型ZnTeコンタクト層52は一方向に延 びるストライプ形状を有する。このストライプ部の両側 の部分には例えばA12 O3 膜のような絶縁層53が設 けられており、これによって電流狭窄構造が形成されて いる。ストライプ形状のp型ZnTeコンタクト層52 および絶縁層53上にはp側電極54が、p型ZnTe コンタクト層52とオーミックコンタクトして設けられ ている。p側電極54としては、例えばPd/Pt/A u電極が用いられる。

【0039】 n型G a A s 基板1の裏面には、第1の実施形態と同様なn側電極29が設けられている。

【0040】この場合、A1GaAs系半導体レーザLD1のp側電極17、A1GaInP系半導体レーザLD2のp側電極28およびZnSe系半導体レーザLD3のp側電極54は、パッケージベース30上に互いに電気的に分離した状態で設けられたヒートシンクH1、H2およびH3上にそれぞれはんだ付けされている。

【0041】上述のように構成されたこの第2の実施形態による集積型半導体レーザ装置においては、p側電極17とn側電極29との間に電流を流すことによりA1GaAs系半導体レーザLD1を駆動することができ、p側電極28とn側電極29との間に電流を流すことによりA1GaInP系半導体レーザLD2を駆動することができ、p側電極54とn側電極29との間に電流を

流すことによりZnSe系半導体レーザLD3を駆動することができるようになっている。そして、AlGaAs系半導体レーザLD1を駆動することにより波長700nm帯(例えば、780nm)のレーザ光を取り出すことができ、AlGaInP系半導体レーザLD2を駆動することにより波長600nm帯(例えば、650nm)のレーザ光を取り出すことができ、ZnSe系半導体レーザLD3を駆動することにより波長500nm帯(例えば、515nm)のレーザ光を取り出すことができる。AlGaAs系半導体レーザLD1を駆動するか、AlGaInP系半導体レーザLD2を駆動するか、ZnSe系半導体レーザLD3を駆動するかの選択は、外部スイッチの切り換えなどにより行うことができる。

【0042】次に、上述のように構成されたこの第2の 実施形態による集積型半導体レーザ装置の製造方法について説明する。

【0043】まず、図10に示すように、n型GaAs 基板1上に、例えばMOCVD法により、例えば800 の C程度の成長温度で、n型GaAsバッファ層11、n 型A1GaAsクラッド層12、活性層13、p型A1 GaAsクラッド層14およびp型GaAsキャップ層 15を順次成長させる。

【0044】次に、例えばCVD法によりp型GaAsキャップ層15の全面に例えばSiO2膜やSiN膜などの絶縁膜31を形成した後、この絶縁膜31をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。

【0045】次に、図11に示すように、絶縁膜31を30 マスクとして例えばRIE法のようなドライエッチング 法やウエットエッチング法により p型GaAsキャップ 層15、p型A1GaAsクラッド層14、活性層13、n型A1GaAsクラッド層12およびn型GaAsバッファ層11を順次エッチングする。

【0046】次に、図12に示すように、絶縁膜31をマスクとして、例えばMOCVD法により、上述のエッチングにより露出したn型GaAs基板1の表面にn型GaAsバッファ層21、n型AlGaInPクラッド層22、活性層23、p型AlGaInPクラッド層24、p型GaInP中間層25およびp型GaAsキャップ層26を選択成長させる。

【0047】次に、絶縁膜31をエッチング除去した後、例えばCVD法によりp型GaAsキャップ層15 およびp型GaAsキャップ層26の全面に例えばSiO2膜やSiN膜などの絶縁膜(図示せず)を形成した後、この絶縁膜をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。次に、この絶縁膜をマスクとしてp型A1GaAsクラッド層14 およびp型A1GaInPクラッド層24の厚さ方向の途中の深さまでエッチングすることにより、図13に示

すように、p型A1GaAsクラッド層14の上部およびp型GaAsキャップ層15をストライプ形状にパターニングするとともに、p型A1GaInPクラッド層24の上部、p型GaInP中間層25およびp型GaAsキャップ層26をストライプ形状にパターニングする。この後、この絶縁膜をマスクとして、このストライプ部の両側の部分に、最終的にn型GaAs電流狭窄層16、27となるn型GaAs層32を選択成長させて埋め込む。

【0048】次に、図14に示すように、p型GaAsキャップ層15、26およびn型GaAs層32の全面に例えば SiO_2 膜やSiN膜などの絶縁膜33を形成した後、この絶縁膜33をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。

【0049】次に、図15に示すように、この絶縁膜33をマスクとして例えばRIE法のようなドライエッチング法やウエットエッチング法によりn型GaAs層32、p型AlGaInPクラッド層24、活性層23、n型AlGaInPクラッド層22およびn型GaAsバッファ層21を順次エッチングする。

【0050】次に、図16に示すように、例えば分子線エピタキシー(MBE)法により、例えば280℃程度の成長温度で、絶縁膜33をマスクとして、n型GaAsバッファ層41、n型ZnSeバッファ層42、n型ZnSSeバッファ層43、n型ZnMgSSeクラッド層44、n型ZnSSe光導波層45、活性層46、p型ZnSSe光導波層47、p型ZnMgSSeクラッド層48、p型ZnSSeキャップ層49、p型ZnSeコンタクト層50、p型ZnTe/ZnSeMQW層51およびp型ZnTeコンタクト層52を順次成長させる。

【0051】次に、リソグラフィーにより、p型2nTeコンタクト層52以外の部分の表面を覆い、かつ、p型2nTeコンタクト層52上に所定方向に延びる所定幅のストライプ形状のパターンを有するレジストパターン(図示せず)を形成する。次に、図16に示すように、このレジストパターンをマスクとしてp型2nSSeキャップ層49の厚さ方向の途中の深さまでウエットエッチング法によりエッチングすることにより、p型2nSeキャップ層49の上部、p型2nSeコンタクト層50、p型2nTe/ZnSeMQW層51およびp型2nTeコンタクト層52をストライプ形状にパターニングする。

【0052】次に、このエッチングに用いたレジストパターンをそのまま残した状態で例えば真空蒸着法やスパッタリング法により $A1_2O_3$ 膜を全面に形成した後、レジストパターンをその上に形成された $A1_2O_3$ 膜とともに除去する。これによって、ストライプ部の両側の部分に絶縁層53が埋め込まれる。

【0053】次に、絶縁膜33をエッチング除去した

後、図18に示すように、第1の実施形態と同様にして、リフトオフ法により、AlGaAs系半導体レーザLD1の例えばTi/Pt/Au電極のようなp側電極17、AlGaInP系半導体レーザLD2の例えばTi/Pt/Au電極のようなp側電極28、ZnSe系半導体レーザLD3の例えばPd/Pt/Au電極のようなp側電極54を形成する。

【0054】次に、図19に示すように、p側電極17、28、54の間の部分におけるp型ZnTeコンタカト層52、p型ZnTe/ZnSeMQW層51、p型ZnSeコンタクト層50、p型ZnSSeキャップ層49、p型ZnMgSSeクラッド層48、p型ZnSSe光導波層47、活性層46、n型ZnSSe光導波層45、n型ZnMgSSeクラッド層44、n型ZnSSeバッファ層43、n型ZnSeバッファ層42およびn型GaAsバッファ層41をエッチング除去する。

【0055】次に、n型GaAs基板1の裏面に例えば 真空蒸着法やスパッタリング法によりAuGe/Ni膜 20 やIn膜を形成することによりn側電極29を形成す る。

【0056】次に、上述のようにしてレーザ構造が形成されたn型GaAs基板1をバー状に劈開して両共振器端面を形成し、さらにこれらの共振器端面に端面コーティングを施した後、このバーを劈開してチップ化する。この後、このようにして得られたレーザチップをパッケージングする。

【0057】この第2の実施形態による集積型半導体レ ーザ装置によれば、発光波長が700nm帯のA1Ga As系半導体レーザLD1と発光波長が600nm帯の AlGaInP系半導体レーザLD2と発光波長が50 Onm帯のZnSe系半導体レーザLD3とを有するこ とにより、DVD用のレーザ光として600nm帯と5 00nm帯との二種類の波長のものを取り出すことがで きるとともに、これらのレーザ光とは独立にCDおよび MD用のレーザ光を取り出すことができる。そして、こ の集積型半導体レーザ装置をDVD装置の光学ピックア ップにレーザ光源として搭載することにより、DVD、 CDおよびMDのいずれの再生または記録も可能とな る。しかも、これらのAIGaAs系半導体レーザLD 1、AlGaInP系半導体レーザLD2およびZnS e系半導体レーザLD3は、同一のn型GaAs基板1 上に成長された半導体層によりレーザ構造が形成されて いることにより、この集積型半導体レーザ装置のパッケ ージは一つで済む。このため、光学ピックアップの小型 化を図ることができ、したがってDVD装置の小型化を 図ることができる。

【0058】図20はこの発明の第3の実施形態による 集積型半導体レーザ装置を示す。

50 【0059】図20に示すように、この第3の実施形態

による集積型半導体レーザ装置においては、例えば。面方位の導電性のSiC基板2上に、発光波長が700nm帯(例えば、780nm)のAlGaAs系半導体レーザLD1と、発光波長が600nm帯(例えば、650nm)のAlGaInP系半導体レーザLD2と、発光波長が400nm帯(例えば、410nm)のGaN系半導体レーザLD4とが、互いに分離した状態で集積化されている。

【0060】A1GaAs系半導体レーザLD1および A1GaInP系半導体レーザLD2は、第1の実施形態で述べたと同様な構成を有する。

【0061】GaN系半導体レーザLD4においては、SiC基板2上に、GaNバッファ層61、n型A1GaNクラッド層62、n型GaN光導波層63、例えばInGaNからなるMQW構造の活性層64、p型GaN光導波層65、p型A1GaNクラッド層66およびp型GaNコンタクト層67上にはp側電極68がオーミックコンタクトして設けられている。p側電極54としては、例えばNi/Au電極が用いられる。

【0062】SiC基板2の裏面にはn側電極29が、 このSiC基板1とオーミックコンタクトして設けられ ている。このn側電極29としては、例えばTi/AI 電極が用いられる。

【0063】この場合、A1GaAs系半導体レーザLD1のp側電極17、A1GaInP系半導体レーザLD2のp側電極28およびGaN系半導体レーザLD4のp側電極68は、パッケージベース30上に互いに電気的に分離した状態で設けられたヒートシンクH1、H2およびH3上にそれぞれはんだ付けされている。

【0064】上述のように構成されたこの第3の実施形 態による集積型半導体レーザ装置においては、p側電極 17とn側電極29との間に電流を流すことによりA1 GaAs系半導体レーザLD1を駆動することができ、 p側電極28とn側電極29との間に電流を流すことに よりA1GaInP系半導体レーザLD2を駆動するこ とができ、p側電極68とn側電極29との間に電流を 流すことによりGaN系半導体レーザLD4を駆動する ことができるようになっている。そして、AIGaAs 系半導体レーザLD1を駆動することにより波長700 nm帯 (例えば、780nm) のレーザ光を取り出すこ とができ、AIGaInP系半導体レーザLD2を駆動 することにより波長600nm帯(例えば、650n m) のレーザ光を取り出すことができ、GaN系半導体 レーザLD4を駆動することにより波長400mm帯 (例えば、410nm) のレーザ光を取り出すことがで きるようになっている。AIGaAs系半導体レーザL D1を駆動するか、A1GaInP系半導体レーザLD 2を駆動するか、GaN系半導体レーザLD4を駆動す るかの選択は、外部スイッチの切り換えなどにより行う ことができる。

【0065】次に、上述のように構成されたこの第3の 実施形態による集積型半導体レーザ装置の製造方法について説明する。

12

【0066】まず、図21に示すように、SiC基板2上に、例えばMOCVD法により、n型GaNバッファ層61、n型AlGaNクラッド層62、n型GaN光導波層65、p型AlGaNクラッド層66およびp型GaNコンタクト層67を順次成長させる。ここで、Inを含む半導体層である活性層64の成長温度は例えば760℃程度とし、Inを含まないn型GaNバッファ層61、n型AlGaNクラッド層62、n型GaN光導波層63、p型GaN光導波層65、p型AlGaNクラッド層66およびp型GaNコンタクト層67の成長温度は1000℃程度とする。

【0067】次に、例えばCVD法によりp型GaNコンタクト層67の全面に例えばSiO2膜やSiN膜などの絶縁膜31を形成した後、この絶縁膜31をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。

【0068】次に、図22に示すように、絶縁膜31をマスクとして例えばRIE法のようなドライエッチング 法によりp型GaNコンタクト層67、p型A1GaN クラッド層66、p型GaN光導波層65、活性層6 4、n型GaN光導波層63、n型A1GaNクラッド 層62およびn型GaNバッファ層61を順次エッチン グする。

【0069】次に、図23に示すように、絶縁膜31を30 マスクとして、例えばMOCVD法により、上述のエッチングにより露出したSiC基板2の表面にn型GaAsバッファ層11、n型AlGaAsクラッド層12、活性層13、p型AlGaAsクラッド層14およびp型GaAsキャップ層15を選択成長させる。

【0070】次に、絶縁膜31をエッチング除去した後、図24に示すように、例えばCVD法によりp型GaAsキャップ層15およびp型GaNコンタクト層67の全面に例えばSiO2膜やSiN膜などの絶縁膜33を形成し、この絶縁膜33をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。

【0071】次に、図25に示すように、この絶縁膜33をマスクとしてp型GaNコンタクト層67、p型GaN光導波層66、活性層65、n型GaN光導波層64、n型AlGaNクラッド層63およびn型GaNバッファ層62を順次エッチング除去する。

【0072】次に、図26に示すように、絶縁膜33をマスクとして、例えばMOCVD法により、上述のエッチングにより露出したSiC基板2の表面にn型GaAsバッファ層21、n型AlGaInPクラッド層2

2、活性層23、p型AIGaInPクラッド層24、 p型GaInP中間層25およびp型GaAsキャップ 層26を選択成長させる。

【0073】次に、絶縁膜33をエッチング除去した 後、例えばCVD法によりp型GaAsキャップ層1 5、p型GaAsキャップ層26およびp型GaNコン タクト層67の全面に例えばSiO2膜やSiN膜など の絶縁膜(図示せず)を形成し、この絶縁膜をエッチン グにより所定方向に延びる所定幅のストライプ形状にパ ターニングする。次に、この絶縁膜をマスクとしてp型 AlGaAsクラッド層14およびp型AlGaInP クラッド層24の厚さ方向の途中の深さまでエッチング することにより、図27に示すように、p型A1GaA sクラッド層14の上部およびp型GaAsキャップ層 15をストライプ形状にパターニングするとともに、p 型A1GaInPクラッド層24の上部、p型GaIn P中間層25およびp型GaAsキャップ層26をスト ライプ形状にパターニングする。次に、この絶縁膜をマ スクとして、このストライプ部の両側の部分に、最終的 にn型GaAs電流狭窄層16、27となるn型GaA s層32を選択成長させて埋め込む。

【0074】次に、絶縁膜33をエッチング除去した後、図28に示すように、第1の実施形態と同様にして、リフトオフ法により、A1GaAs系半導体レーザLD1の例えばTi/Pt/Au電極のようなp側電極17、A1GaInP系半導体レーザLD2の例えばTi/Pt/Au電極のようなp側電極28、GaN系半導体レーザLD4の例えばNi/Au電極のようなp側電極68を形成する。

【0075】次に、図29に示すように、p側電極17、28の間の部分およびp側電極28とp型GaNコンタクト層67との間の部分におけるn型GaAs層32、p型A1GaInPクラッド層24、活性層23、n型A1GaInPクラッド層22およびn型GaAsバッファ層21を順次エッチング除去する。

【0076】次に、SiC基板2の裏面に例えば真空蒸着法やスパッタリング法により例えばTi/Al膜を形成することによりn側電極29を形成する。

【0077】次に、上述のようにしてレーザ構造が形成されたSiC基板2をバー状に劈開して両共振器端面を形成し、さらにこれらの共振器端面に端面コーティングを施した後、このバーを劈開してチップ化する。この後、このようにして得られるレーザチップをパッケージングする。

【0078】この第3の実施形態による集積型半導体レーザ装置によれば、発光波長が700nm帯のA1GaAs系半導体レーザLD1と発光波長が600nm帯のA1GaInP系半導体レーザLD2と発光波長が400nm帯のGaN系半導体レーザLD4とを有することにより、DVD用のレーザ光として波長600nm帯と

波長400nm帯との二種類の波長のものを取り出すことができるとともに、これらのレーザ光とは独立にCD およびMD用のレーザ光を取り出すことができる。そして、この集積型半導体レーザ装置をDVD装置の光学ピックアップにレーザ光源として搭載することにより、DVD、CDおよびMDのいずれの再生または記録も可能となる。しかも、これらのA1GaAs系半導体レーザLD1、A1GaInP系半導体レーザLD2およびGaN系半導体レーザLD4は、同一のSiC基板2上に成長された半導体層によりレーザ構造が形成されていることにより、この集積型半導体レーザ装置のパッケージは一つで済む。このため、光学ピックアップの小型化を図ることができ、したがってDVD装置の小型化を図ることができる。

【0079】図30はこの発明の第4の実施形態による集積型半導体レーザ装置を示す。

【0080】図30に示すように、この第4の実施形態による集積型半導体レーザ装置においては、例えば。面方位の導電性のSiC基板2上に、発光波長が600nm帯 (例えば、650nm)のAlGaInP系半導体レーザLD2と、発光波長が500nm帯 (例えば、515nm)のZnSe系半導体レーザLD3と、発光波長が400nm帯 (例えば、410nm)のGaN系半導体レーザLD4とが、互いに分離した状態で集積化されている。

【0081】A1GaInP系半導体レーザLD2は第 1の実施形態で述べたと同様な構成を有し、ZnSe系 半導体レーザLD3は第2の実施形態で述べたと同様な 構成を有し、GaN系半導体レーザLD4は第3の実施 30 形態で述べたと同様な構成を有する。

【0082】この場合、A1GaInP系半導体レーザ LD2のp側電極28、ZnSe系半導体レーザLD3 のp側電極54およびGaN系半導体レーザLD4のp 側電極68は、パッケージベース30上に互いに電気的 に分離した状態で設けられたヒートシンクH1、H2お よびH3上にそれぞれはんだ付けされている。

【0083】上述のように構成されたこの第4の実施形態による集積型半導体レーザ装置においては、p側電極28とn側電極29との間に電流を流すことによりA140 GaInP系半導体レーザLD2を駆動することができ、p側電極54とn側電極29との間に電流を流すことによりZnSe系半導体レーザLD3を駆動することができ、p側電極68とn側電極29との間に電流を流すことによりGaN系半導体レーザLD4を駆動することができるようになっている。そして、A1GaInP系半導体レーザLD2を駆動することにより波長600nm帯(例えば、650nm)のレーザ光を取り出すことができ、ZnSe系半導体レーザLD3を駆動することにより波長500nm帯(例えば、515nm)のレーザ光を取り出すことができ、GaN系半導体レーザL

D4を駆動することにより波長400nm帯(例えば、410nm)のレーザ光を取り出すことができるようになっている。A1GaInP系半導体レーザLD2を駆動するか、ZnSe系半導体レーザLD3を駆動するか、GaN系半導体レーザLD4を駆動するかの選択は、外部スイッチの切り換えなどにより行うことができる。

【0084】次に、上述のように構成されたこの第4の 実施形態による集積型半導体レーザ装置の製造方法につ いて説明する。

【0085】まず、図31に示すように、SiC基板2上に、例えばMOCVD法により、n型GaNバッファ層61、n型A1GaNクラッド層62、n型GaN光導波層65、p型A1GaNクラッド層66およびp型GaNコンタクト層67を順次成長させる。ここで、Inを含む半導体層である活性層64の成長温度は例えば760℃程度とし、Inを含まないn型GaNバッファ層61、n型A1GaNクラッド層62、n型GaN光導波層63、p型GaN光導波層65、p型A1GaNクラッド層66およびp型GaNコンタクト層67の成長温度は1000℃程度とする。

【0086】次に、図31に示すように、例えばCVD 法によりp型GaNコンタクト層67の全面に例えばSiO2膜やSiN膜などの絶縁膜31を形成した後、この絶縁膜31をエッチングにより所定幅のストライプ形状にパターニングする。

【0087】次に、図32に示すように、絶縁膜31をマスクとして例えばRIE法のようなドライエッチング法によりp型GaNコンタクト層67、p型AlGaNクラッド層66、p型GaN光導波層65、活性層64、n型GaN光導波層63、n型AlGaNクラッド層62およびn型GaNバッファ層61を順次エッチングする。

【0088】次に、図33に示すように、絶縁膜31をマスクとして、例えばMOCVD法により、上述のエッチングにより露出したSiC基板2の表面にn型GaAsバッファ層21、n型AlGaInPクラッド層22、活性層23、p型AlGaInPクラッド層24、p型GaInP中間層25およびp型GaAsキャップ層26を選択成長させる。

【0089】次に、絶縁膜31をエッチング除去した後、例えばCVD法によりp型GaAsキャップ層26 およびp型GaNコンタクト層67の全面に例えばSiO2膜やSiN膜などの絶縁膜(図示せず)を形成し、この絶縁膜をエッチングにより所定方向に延びる所定幅のストライプ形状にパターニングする。次に、この絶縁膜をマスクとしてp型AIGaInPクラッド層24の厚さ方向の途中の深さまでエッチングすることにより、図34に示すように、p型AIGaInPクラッド層2

4の上部、p型GaInP中間層25およびp型GaAsキャップ層26をストライプ形状にパターニングする。次に、この絶縁膜をマスクとして、このストライプ部の両側の部分に、最終的にn型GaAs電流狭窄層27となるn型GaAs層32を選択成長させて埋め込む。

【0090】次に、図35に示すように、例えばCVD 法によりp型GaAsキャップ層26、n型GaAs層 32およびp型GaNコンタクト層67の全面に例えば 10 SiO2 膜やSiN膜などの絶縁膜33を形成した後、 この絶縁膜33をエッチングにより所定方向に延びる所 定幅のストライプ形状にパターニングする。

【0091】次に、図36に示すように、絶縁膜33をマスクとしてn型GaAs層32、p型AIGaInPクラッド層24、活性層23、n型AIGaInPクラッド層22およびn型GaAsバッファ層21を順次エッチングする。

【0092】次に、図37に示すように、例えばMBE 法により、例えば280℃程度の成長温度で、絶縁膜3 3をマスクとして、上述のエッチングにより露出したS i C基板2の表面にn型GaAsバッファ層41、n型 ZnSeバッファ層42、n型ZnSSeバッファ層4 3、n型ZnMgSSeクラッド層44、n型ZnSS e光導波層45、活性層46、p型ZnSSe光導波層 47、p型ZnMgSSeクラッド層48、p型ZnS Seキャップ層49、p型ZnSeコンタクト層50、 p型ZnTe/ZnSeMQW層51およびp型ZnT eコンタクト層52を選択成長させる。

【0093】次に、リソグラフィーにより、p型ZnT e コンタクト層52以外の部分の表面を覆い、かつ、p型ZnTe コンタクト層52上に所定方向に延びる所定幅のストライプ形状のパターンを有するレジストパターン (図示せず)を形成する。次に、図38に示すように、このレジストパターンをマスクとしてp型ZnSSeキャップ層49の厚さ方向の途中の深さまでウエットエッチング法によりエッチングすることにより、p型ZnSeキャップ層49の上部、p型ZnSeコンタクト層50、p型ZnTe/ZnSeMQW層51およびp型ZnTeコンタクト層52のストライプ形状にパターニングする。

【0094】次に、このエッチングに用いたレジストパターンをそのまま残した状態で例えば真空蒸着法やスパッタリング法により $A1_2O_3$ 膜を全面に形成した後、レジストパターンをその上に形成された $A1_2O_3$ 膜とともに除去する。これによって、ストライプ部の両側の部分に絶縁層53が埋め込まれる。

【0095】次に、絶縁膜33をエッチング除去した 後、図39に示すように、第1の実施形態と同様にし て、リフトオフ法により、AlGaInP系半導体レー 50 ザLD2の例えばTi/Pt/Au電極のようなp側電

極28、ZnSe系半導体レーザLD3の例えばPd//Pt/Au電極のようなp側電極54、GaN系半導体レーザLD4の例えばNi/Au電極のようなp側電極68を形成する。

17

【0096】次に、図40に示すように、p側電極2 8、54の間の部分およびp側電極54とp型GaNコンタクト層67との間の部分における絶縁層53、p型ZnSSeキャップ層49、p型ZnMgSSeクラッド層48、p型ZnSSe光導波層47、活性層46、n型ZnSSe光導波層45、n型ZnMgSSeクラッド層44、n型ZnSSeバッファ層43、n型ZnSeバッファ層42およびn型GaAsバッファ層41を順次エッチング除去する。

【0097】次に、SiC基板2の裏面に例えば真空蒸 着法やスパッタリング法により例えばTi/Al膜を形 成することによりn側電極29を形成する。

【0098】次に、上述のようにしてレーザ構造が形成されたSiC基板2をバー状に劈開して両共振器端面を形成し、さらにこれらの共振器端面に端面コーティングを施した後、このバーを劈開してチップ化する。この後、このようにして得られるレーザチップをパッケージングする。

【0099】この第4の実施形態による集積型半導体レ ーザ装置によれば、発光波長が600nm帯のA1Ga InP系半導体レーザLD2と発光波長が500nm帯 のZnSe系半導体レーザLD3と発光波長が400n m帯のGaN系半導体レーザLD4とを有することによ り、DVD用のレーザ光として波長600nm帯と波長 500nm帯と波長400nm帯との三種類の波長のも のを取り出すことができるとともに、これらのレーザ光 とは独立にCDおよびMD用のレーザ光を取り出すこと ができる。そして、この集積型半導体レーザ装置をDV D装置の光学ピックアップにレーザ光源として搭載する ことにより、DVD、CDおよびMDのいずれの再生ま たは記録も可能となる。しかも、これらのAIGaAs 系半導体レーザLD1、A1GaInP系半導体レーザ LD2およびGaN系半導体レーザLD4は、同一のS i C基板2上に成長された半導体層によりレーザ構造が 形成されていることにより、この集積型半導体レーザ装 置のパッケージは一つで済む。このため、光学ピックア ップの小型化を図ることができ、したがってDVD装置 の小型化を図ることができる。

【0100】さらに、この第4の実施形態による集積型 半導体レーザ装置によれば、赤色で発光するAlGaInP系半導体レーザLD2と緑色で発光するZnSe系 半導体レーザLD3と青色で発光するGaN系半導体レ ーザLD4とを有することにより、RGB三原色の発光 が可能な集積型半導体レーザ装置を実現することができる

【0101】次に、上述の第1、第2、第3または第4

の実施形態による集積型半導体レーザ装置を発光素子と して用いた光ディスク再生装置について説明する。図4 1にこの光ディスク再生装置の構成を示す。

【0102】図41に示すように、この光ディスク再生装置は、発光素子として半導体レーザ101を備えている。この半導体レーザ101としては、上述の第1、第2、第3または第4の実施形態による集積型半導体レーザ装置が用いられる。この光ディスク再生装置はまた、半導体レーザ101の出射光を光ディスクDに導くとと10 もに、この光ディスクDによる反射光(信号光)を再生するための公知の光学系、すなわち、コリメートレンズ102、ビームスプリッタ103、1/4波長板104、対物レンズ105、検出レンズ106、信号光検出用受光素子107および信号光再生回路108を備えている。

【0103】この光ディスク再生装置においては、半導体レーザ101の出射光Lはコリメートレンズ102によって平行光にされ、さらにビームスプリッタ103を経て1/4波長板104により偏光の具合が調整された後、対物レンズ105により集光されて光ディスクDに入射される。そして、この光ディスクDで反射された信号光L´が対物レンズ105および1/4波長板104を経てビームスプリッタ103で反射された後、検出レンズ106を経て信号光検出用受光素子107に入射し、ここで電気信号に変換された後、信号光再生回路108において、光ディスクDに書き込まれた情報が再生される。

【0104】なお、ここでは、上述の第1、第2、第3 または第4の実施形態による集積型半導体レーザ装置を 光ディスク再生装置の発光素子に適用した場合について 説明したが、光ディスク記録再生装置や光ディスク記録 装置の発光素子に適用することも可能であることは勿 論、光通信装置などの光装置の発光素子や、高温で動作 させる必要のある車載用機器などの発光素子に適用する ことも可能である。

【0105】以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。

40 【0106】例えば、上述の第1、第2、第3および第 4の実施形態において挙げた数値、構造、基板、プロセ スなどはあくまでも例に過ぎず、必要に応じて、これら と異なる数値、構造、基板、プロセスなどを用いてもよ い。

【0107】具体的には、第1、第2、第3および第4 の実施形態においては、この発明を集積型半導体レーザ 装置に適用した場合について説明したが、これらと同様 な構造で集積型発光ダイオード装置を実現することもで きる。

50 [0108]

【発明の効果】以上説明したように、この発明による集 積型半導体発光装置によれば、同一基板上に成長された 半導体層により発光素子構造が形成された互いに発光波 長が異なる複数種類の半導体発光素子を有することによ り、互いに波長が異なる光を独立にまたは同時に取り出 すことができ、かつ、小型に構成することができる。

【図面の簡単な説明】

【図1】この発明の第1の実施形態による集積型半導体 レーザ装置を示す斜視図である。

【図2】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図3】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図4】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図5】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図6】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図7】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図8】この発明の第1の実施形態による集積型半導体 レーザ装置の製造方法を説明するための断面図である。

【図9】この発明の第2の実施形態による集積型半導体 レーザ装置を示す斜視図である。

【図10】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図11】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図12】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図13】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図14】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図15】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図16】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図17】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

体レーザ装置の製造方法を説明するための断面図であ

【図19】この発明の第2の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図20】この発明の第3の実施形態による集積型半導 体レーザ装置を示す斜視図である。

【図21】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ 10 る。

【図22】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ る。

【図23】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図24】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ る。

【図25】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図26】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図27】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図28】この発明の第3の実施形態による集積型半導 30 体レーザ装置の製造方法を説明するための断面図であ

【図29】この発明の第3の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ

【図30】この発明の第4の実施形態による集積型半導 体レーザ装置を示す斜視図である。

【図31】この発明の第4の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ る。

【図32】この発明の第4の実施形態による集積型半導 40 体レーザ装置の製造方法を説明するための断面図であ る。

【図33】この発明の第4の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ る。

【図34】この発明の第4の実施形態による集積型半導 体レーザ装置の製造方法を説明するための断面図であ る。

【図35】この発明の第4の実施形態による集積型半導 【図18】この発明の第2の実施形態による集積型半導 50 体レーザ装置の製造方法を説明するための断面図であ

る。

【図36】この発明の第4の実施形態による集積型半導体レーザ装置の製造方法を説明するための断面図である。

【図37】この発明の第4の実施形態による集積型半導体レーザ装置の製造方法を説明するための断面図である。

【図38】この発明の第4の実施形態による集積型半導体レーザ装置の製造方法を説明するための断面図である。

【図39】この発明の第4の実施形態による集積型半導体レーザ装置の製造方法を説明するための断面図である。

【図40】この発明の第4の実施形態による集積型半導体レーザ装置を示す斜視図である。

【図41】この発明の第1、第2、第3または第4の実

施形態による集積型半導体レーザ装置を発光素子として 用いた光ディスク再生装置を示す略線図である。

【符号の説明】

1・・・n型GaAs基板、2・・・SiC基板、12・・・n型A1GaAsクラッド層、13、23、46、64・・・活性層、14・・・p型A1GaAsクラッド層、17、28、54、68・・・p側電極、22・・・n型A1GaInPクラッド層、24・・・p型A1GaInPクラッド層、29・・・n側電極、4104・・・n型ZnMgSSeクラッド層、48・・・p型ZnMgSSeクラッド層、62・・・n型A1GaNクラッド層、66・・・p型A1GaNクラッド層、66・・・p型A1GaNクラッド層、LD1・・・A1GaAs系半導体レーザ、LD2・・・A1GaInP系半導体レーザ、LD3・・・ZnSe系半導体レーザ、LD4・・・GaN系半導体レーザ

【図2】

2]

【図1】

[図5]

【図6】

【図7】

【図8】

【図10】

【図11】

【図9】

図12]

【図13】

[図14]

【図15】

[図16]

【図17】

【図18】

【図19】

【図21】

[図22]

【図23】

[図24]

【図25】

【図26】

[図27]

【図28】

【図30】

【図31】

[図32]

【図33】

【図34】

【図35】

【図36】

【図37】

【図38】

[図39]

【図40】

