Subject: Engineering Mathematics Chapter: Probability

DPP-09

Topic: Correlation & Regression

- If $\Sigma x_i = 15$, $\Sigma y_i = 36$, $\Sigma x_i y_i = 110$ and n = 5, then cov (x, y) is equal to
 - (a) 0.6
- (b) 0.5
- (c) 0.4
- (d) 0.225
- If cov(x, y) = -16.5, var(x) = 2.89 and var(y) = 100, then the coefficient of correlation r is equal to
 - (a) 0.36
- (b) -0.64
- (c) 0.97
- (d) -0.97
- If $\Sigma x_i = 24$, $\Sigma y_i = 44$, $\Sigma x_i y_i = 306$, $\Sigma x_i^2 = 164$, $\Sigma y_1^2 = 574$ and n = 4, then the regression coefficient byx is equal to
 - (a) 2.1
- (b) 1.6
- (c) 1.225
- (d) 1.75
- **4.** If $\Sigma x_i = 30$, $\Sigma y_i = 42$, $\Sigma x_i y_i = 199$, $\Sigma x_i^2 = 184$, $\Sigma y_i^2 = 318$ and n = 6, then the regression coefficient bxy is equal to
 - (a) -0.36
- (b) -0.46
- (c) 0.26
- (d) None
- Let r be the correlation coefficient between x and y and b_{yx} , b_{xy} be the regression coefficient of y on x and x on y respectively then
 - (a) $r = b_{xy} + b_{yx}$
- (b) $r = b_{xy} \times b_{yx}$
- (c) $r = \sqrt{b_{xy} \times b_{yx}}$ (d) $r = \frac{1}{2} (b_{xy} + b_{yz})$
- Which one of the following is a true statement.
 - (a) $\frac{1}{2} (b_{xy} + b_{yx}) = r$ (b) $\frac{1}{2} (b_{xy} + b_{yx}) < r$
 - (c) $\frac{1}{2}$ $\left(b_{xy} + b_{yx}\right) > r$ (d) None of these

- If $b_{yx} = 1.6$ and $b_{xy} = 0.4$ and θ is the angle between two regression lines, then tan θ is equal to
 - (a) 0.18
- (b) 0.24
- (c) 0.16
- (d) 0.3
- If cov(X, Y) = 10, var(X) = 6.25 and var(Y) = 31.36, then $\rho(X, Y)$ is
- (b) $\frac{4}{5}$
- (c)
- (d) 0.256
- Using given data points tabulated below, a straight line passing through the origin is fitted using least squares method. The slope of the line is

X	у	ху	\mathbf{x}^2
1	1.5	1.5	1
2	2.2	4.4	4
3	2.7	8.1	9
		$\Sigma xy = 14$	$\Sigma x^2 = 14$

- (a) 0.9
- (b) 1
- (c) 1.1
- (d) 1.5
- **10.** Three values of x and y are to be fitted in straight line in form y = a + bx by the method of least squares. Given $\Sigma x = 6$, $\Sigma y = 21$, $\Sigma x^2 = 14$ and $\Sigma xy = 46$, values of a and b are respectively
 - (a) 2 and 3
- (b) 1 and 2
- (c) 2 and 1
- (d) 3 and 2

Answer Key

1. (c)

2. (d)

3. (a)

4. (b)

5. (c)

6. (c)

7. (a)

8. (a)

9. (b)

10. (d)

