모델 평가

Accuracy(정확도) : 분류 모델의 평가 지표

 $Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$

True Positive: 실제 Positive인 정답을 Positive라고 예측 (True)

True Negative: 실제 Negative인 정답을 Negative라고 예측 (True)

False Positive: 실제 Negative인 정답을 Positive라고 예측 (False) - Type I error

False Negative: 실제 Positive인 정답을 Negative라고 예측 (False) - Type II error

실제	예측
1	1
1	1
0	1
0	0
1	0
0	0
0	0
1	0
1	1
1	1

정확도(Accuracy)

: 전체 예측 것 중에 올바른 예측의 비율

		Predict		
		Positive	Negative	
Actual	Positive	TP	FN	
	Negative	FP	TN	

정밀도 (Precision)

: 긍정(Positive)으로 예측한 것 중 실제로 맞춘 비율

ex) 즉, 환자로 예측한 전체 사례 중 실제 환자의 비율

		Predict	
		Positive	Negative
Actual	Positive	TP	FN
	Negative	FP	TN

민감도(Sensitivity, Recall 재현율)

: 실제 긍정(Positive)를 얼마나 잘 예측했는지를 나타내는 지표 실제 긍정 사례 전체 중에서 모델에 의해 올바르게 식별된 참 긍정의 비율

		Predict			dict
			Positive		Negative
	Positive		TP		FN
Actual	Negative		FP		TN

TP + FN

특이도(Specificity)

: 실제 Negative를 얼마나 잘 예측했는지를 나타내는 지표

ex) 환자가 아닌 사람을 아니다 라고 얼마나 잘 예측하는지 비율

		Predict		
		Positive	Negative	
Actual	Positive	TP	FN	
	Negative	FP	TN	

F1 Score

- ✓ 불균형 데이터의 분류문제에서의 평가척도로 사용
- ✓ 정밀도와 민감도의 조화 평균. 낮은 값에 더 많은 가중치를 부여
- ✓ 데이터가 불균형한 상태에서 Accuracy로 성능을 평가하기엔 데이터 편향성이 나타나 성능 척도로 사용하기에는 부적합.
- ✓ 거짓양성과 거짓음성의 중요성 사이의 균형을 유지해야 하는 경우 사용

			edict
		Positive	Negative
Astual	Positive	TP	FN
Actual	Negative	FP	TN

		Predict			
			Positive		Negative
A -41	Positive		TP		FN
Actual	Negative		FP		TN

F1 Score

✓ 정밀도와 민감도의 조화 평균

실습
 confusion_matrix.ipynb
 confusion_matrix2.ipynb - f1스코어

Q

- (1) 정확도 (Accuracy)
- (2) 정밀도 (Precision)
- (3) 재현율 (Recall, Sensitivity)
- (4) F1 Score

F1 Score: 0.14

Q. 이유?

F1 Score

✓ 불균형 데이터의 분류문제에서의 평가척도로 사용

- 2 * Sensitivity * Precision

 Sensitivity + Precision
- ✓ 정밀도와 민감도의 조화 평균. 낮은 값에 더 많은 가중치를 부여
- ✓ 데이터가 불균형한 상태에서 Accuracy로 성능을 평가하기엔 데이터 편향성이 나타나 성능 척도로 사용하기에는 부적합.
- ✔ 거짓양성과 거짓음성의 중요성 사이의 균형을 유지해야 하는 경우 사용

•F1 점수가 1에 가까운 경우:

모델의 정밀도와 재현율이 모두 높음을 의미모델이 양성을 예측하는 데 있어서 매우 정화

Score: 0.67

모델이 양성을 예측하는 데 있어서 매우 정확, 실제 양성 사례 대부분을 정확히 감지해냈다는 의미

•F1 점수가 낮은 경우:

모델의 정밀도 또는 재현율(또는 둘 다)가 낮음을 의미모델이 양성을 예측하는 데 있어서 정화도가 떨어지게

F1 Score: 0.14

모델이 양성을 예측하는 데 있어서 정확도가 떨어지거나, 실제 양성 사례들을 놓치고 있다는 의미

클래스 비대칭 데이터 처리

클래스 간 비대칭

- ✓ 데이터 세트 내에서 한 클래스의 샘플 수가 다른 클래스에 비해 현저히 많거나 적은 경우
- ✓ 이러한 비대칭 데이터는 모델이 다수 클래스에 치우쳐 학습하는 경향을 가지게 만들어,소수 클래스의 예측 성능이 저하될 수 있음

1. 데이터 레벨에서의 접근 방법

- 오버샘플링(Over-sampling):
- > 소수 클래스의 샘플을 증가시켜 데이터 세트의 균형을 맞추는 방법
- > SMOTE(Synthetic Minority Over-sampling Technique) 같은 기법을 사용하여 소수 클래스의 샘플을 합성적으로 생성
- 언더샘플링(Under-sampling):
 - > 다수 클래스의 샘플을 줄여 데이터 세트의 균형을 맞추는 방법
 - > 데이터의 손실을 초래할 수 있으므로 주의 필요

클래스 비대칭 데이터 처리

- 2. 알고리즘 레벨에서의 접근 방법
 - : 가중치 부여(Weighting):
 - > 소수 클래스의 샘플에 더 높은 가중치를 부여하여 모델 학습 과정에서 소수 클래스가 더 큰 영향력을 갖도록 하는 방법
 - : **앙상블 기법(Ensemble methods)**: 소수 클래스에 대한 예측 성능을 향상
- 3. 평가 지표의 선택 정밀도, 재현율 및 F1 점수 사용:
 - > 비대칭 데이터에서는 정확도(Accuracy)만으로 모델 성능을 평가하는 것이 적합하지 않음
 - > 정밀도와 재현율의 조화 평균인 F1 점수를 포함하여 전체적인 모델 성능 평가 필요
- 4. 기타
 - : 특징 선택(Feature Selection): 소수 클래스를 더 잘 구별할 수 있는 가장 유의미한 특징 선택

ID	모델	하이퍼파라미터	변수	전처리	결측치 처리	이상치 처리	스케일링	성능 지표 1	성능 지표 2	비고
		N/A	모든 변수	N/A	평균으로 대체	제거	Min-Max	RMSE	MAE	
1	선형 회귀									
2	결정 트리	깊이: 10, 최소 샘플 분할: 2	선택된 변수	N/A	중앙값으로 대체	IQR 방식	표준화	정확도	F1 점수	
3	랜덤 포레스트	트리 수: 100, 깊이: None	중요도 높은 변수	결측치 포함 변수 제거	N/A	N/A	N/A	AUC	정밀도	

옵션	설명	예시
데이터 분할 방식	모델 학습과 검증에 사용되는 데이터 분할 방식과 비율	k-fold
특성 공학(Feature Engineering)	기존 변수에서 새로운 정보를 추출하거나 변환하여 생성한 변수	파생변수
앙상블 방법	여러 모델의 결합	배깅, 부스팅, 스태킹
클래스 불균형 처리	클래스별 데이터 불균형 해결 방법	오버샘플링, 언더샘플링
비용 함수	모델의 예측 값과 실제 값 사이의 차이를 평가하여 모델 성능 최적화	MSE, 엔트로피
정규화 및 규제화	모델 과적합 방지	L1 규제(Lasso), L2 규제(Ridge), Elastic Net
최적화 알고리즘	모델의 비용 함수 최소화를 위한 알고리즘(모델 파라미터 조정)	SGD, Adam
학습률과 배치 크기	딥러닝 모델링을 위한 학습률과 배치 사이즈	batch = 100, learning_rate=1.0
조기 종료(Early Stopping)	모델 학습 조기 중단 종료 기법	손실(loss) 정확도(accuracy)

항목	내용
모델 식별자	모델 고유 식별자
모델 설명	모델의 목적 및 다른 모델과 구별되는 특정 기능이나 특성에 대한 설명
모델링 옵션	사용된 모델링 옵션에 대한 정보 모델 유형(예: 선형 회귀, 결정 트리, 신경망 등), 하이퍼파라미터, 특성 선택 방법, 데이터 전처리 단계(예: 정규화, 인코딩) 등 포함
데이터 분할 방법	데이터를 학습, 검증, 테스트 세트로 분할한 방법과 각 분할의 크기에 대한 설명
평가 지표	모델 성능 평가 지표 목록 ex) 정확도, 정밀도, 재현율, F1 점수, AUC-ROC, 회귀 - RMSE, MAE 등
성능 결과	각 모델이 학습, 검증, 테스트 데이터셋에서의 성능 결과
모델 해석	모델 결과의 분석, 특성 중요도, 모델의 강점 및 약점에 대한 설명
검증 방법론	모델 검증에 사용된 방법 ex) 교차 검증, 홀드아웃 검증, 부트스트래핑 등
비교 분석	현재 모델의 성능이 이전 모델이나 벤치마크와의 비교
분석가 의견	분석가의 코멘트와 노트, 개선이나 배포에 대한 추천사항 등
결론	모델에 대한 최종 결정 ex) 배포, 추가 튜닝, 폐기

Algorithms for the Travelling Salesman Problem

THANK YOU