10. Критерии за сходимост на несобствени интеграли

Принцип за сравняване

Теорема (Принцип за сравняване на несобствени интеграли от неотрицателни функции)

Нека $f,g:[a,b) \to \mathbb{R}$ са непрекъснати и удовлетворяват неравенствата

$$0 \le f(x) \le g(x), \quad x \in [a,b). \tag{1}$$

Тогава:

- (a) ако несобственият интеграл $\int_a^b g(x) \, dx$ е сходящ, то сходящ е и несобственият интеграл $\int_a^b f(x) \, dx$;
- (б) ако несобственият интеграл $\int_a^b f(x) \, dx$ е разходящ, то разходящ е и несобственият интеграл $\int_a^b g(x) \, dx$.

Символът \boldsymbol{b} може да означава и $+\infty$.

Доказателство

(a) Полагаме за $\boldsymbol{p} \in [\boldsymbol{a}, \boldsymbol{b})$

$$F(p) := \int_{a}^{p} f(x) dx$$
 и $G(p) := \int_{a}^{p} g(x) dx$. (2)

Понеже $f(x) \geq 0$, $x \in [a,b)$, то F(p) е монотонно растяща. Действително за $x_1 < x_2$, $x_1, x_2 \in [a,b)$, поради адитивността на интеграла имаме

$$F(x_2) - F(x_1) = \int_a^{x_2} f(x) \, dx - \int_a^{x_1} f(x) \, dx = \int_{x_1}^{x_2} f(x) \, dx \ge 0. \tag{3}$$

Аналогично се вижда, че G(p) е също монотонно растяща.

От монотонността на интеграла и $f(x) \leq g(x), x \in [a,b)$, следва

$$F(p) \leq G(p), \quad p \in [a, b).$$
 (4)

Несобственият интеграл $\int_a^b g(x)\,dx$ е сходящ. По дефиниция

$$\lim_{\rho \to b} G(\rho) = \int_{a}^{b} g(x) \, dx. \tag{5}$$

Като вземем още предвид, че G(p) е монотонно растяща, от (5) получаваме, че G(p) е ограничена отгоре. Сега от (4) следва, че F(p) е ограничена отгоре. Тя е монотонно растяща. Следователно има граница при $p \to b - 0$ ($p \to +\infty$, ако $b = +\infty$) (Твърдение,

Тема 15, ДИС1). Следователно несобственият интеграл $\int_a^b f(x) dx$ е сходящ.

(б) следва от (а) с допускане на противното.

Критерии за сходимост — несобств. инт. от II вид

Твърдение 1

Нека $f:[a,b)\to\mathbb{R},\ b\in\mathbb{R},$ е непрекъсната и неограничена. Ако съществува границата

$$\lim_{x \to b-0} f(x)(b-x)^{\lambda} \quad \text{с някое } \lambda < 1, \tag{6}$$

то несобственият интеграл $\int_a^b f(x) dx$ е абсолютно сходящ.

Твърдение 2

Нека $f:[a,b)\to\mathbb{R},\,b\in\mathbb{R},$ е непрекъсната и неограничена. Ако съществува границата

$$\lim_{x \to b-0} f(x)(b-x) \neq 0 \quad \text{(но се допуска } \pm \infty), \tag{7}$$

то несобственият интеграл $\int_a^b f(x) dx$ е разходящ.

Критерии за сходимост — несобств. инт. от I вид

Твърдение 3

Нека $f:[a,+\infty) \to \mathbb{R}$ е непрекъсната. Ако съществува границата

$$\lim_{x \to +\infty} f(x)x^{\lambda} \quad \text{с някое } \lambda > 1, \tag{8}$$

то несобственият интеграл $\int_{a}^{+\infty} f(x) dx$ е абсолютно сходящ.

Твърдение 4

Нека $f:[a,+\infty) \to \mathbb{R}$ е непрекъсната. Ако съществува границата

$$\lim_{x \to +\infty} f(x)x \neq 0 \quad \text{(но се допуска } \pm \infty), \tag{9}$$

то несобственият интеграл $\int_a^{+\infty} f(x) dx$ е разходящ.

Упътване за доказателство на твърденията

Прилага се Принципът за сравняване на несобствени интеграли от неотрицателни функции към |f(x)| и функция от вида $|x-c|^{-\lambda}$. Използва се, че

$$\int \frac{dx}{x^{\lambda}} = \begin{cases} \frac{x^{1-\lambda}}{1-\lambda}, & \lambda \neq 1, \\ \ln x, & \lambda = 1. \end{cases}$$
 (10)

Оттук се вижда, че интегралът има крайна граница при $x \to 0 \iff \lambda < 1$, а при $x \to +\infty \iff \lambda > 1$.

Примери

1) $\int_0^1 \sqrt{\frac{1+x^2}{1-x}} \, dx$. Забелязваме, че $\sqrt{\frac{1+x^2}{1-x}} (1-x)^{\frac{1}{2}}$ е

непрекъсната и следователно има граница в т. 1. Тук $\lambda = \frac{1}{2} < 1$. Следователно несобственият интеграл е сходящ (Твърдение 1).

- 2) $\int_0^1 \ln x \, dx$. Знаем, че $\lim_{x\to 0+0} x^{\lambda} \ln x = 0$ за всяко $\lambda > 0$, в частност, например, с $\lambda = \frac{1}{2} < 1$. Следователно несобственият интеграл е сходящ (Твърдение 1).
- 3) $\int_{2}^{+\infty} \frac{dx}{\ln x}$. Използваме, че $\lim_{x \to +\infty} \frac{x}{\ln x} = +\infty$. Следователно несобственият интеграл е разходящ (Твърдение 4).

