

JONAH INFILL DRILLING PROJECT DRAFT AIR QUALITY TECHNICAL SUPPORT DOCUMENT SUPPLEMENT

Prepared for

Bureau of Land Management Wyoming State Office Cheyenne, Wyoming

Pinedale Field Office Pinedale, Wyoming

and

Wyoming Department of Environmental Quality Air Quality Division Cheyenne, Wyoming

Prepared by

TRC Environmental Corporation Laramie, Wyoming

TD 195 .G3 J652

August 2005

1D: 88064073

195 .63 Je52 2005

BUREAU OF LAND MANAGEMENT LIBRARY

DRAFT

JONAH INFILL DRILLING PROJECT DRAFT AIR QUALITY TECHNICAL SUPPORT DOCUMENT SUPPLEMENT

Prepared for

Bureau of Land Management Wyoming State Office Cheyenne, Wyoming

and

Bureau of Land Management Pinedale Field Office Pinedale, Wyoming

and

Wyoming Department of Environmental Quality
Air Quality Division
Cheyenne, Wyoming

Prepared by

TRC Environmental Corporation Laramie, Wyoming

TRC Project 35982

August 2005

THASIG

JONAR DESTRUCTION OF TROPING OF THE STATE OF

with temporal for

Hurran of Land Management Wymatog State vietna Cheranne, Wymaine

Charles Teld Alexanders

(Quality Teld Alfrica

(Charles Alexanders

(Ch

Wranity Department of Ecological Professor Air United Stocking Vileywood, Dyonbay

and description

THE Restreament Corporation Laborator, Wolconing

COST HALLY DOWN

ERRE PROPERTY

EXECUTIVE SUMMARY

This Draft Air Quality Technical Support Document Supplement was prepared to document additional air quality analyses that have been performed for the Bureau of Land Management (BLM) in support of the proposed Jonah Infill Drilling Project (JIDP). The additional air quality modeling analyses supplement the air quality analyses that were performed and presented for a range of project alternatives in the *Draft Environmental Impact Statement, Jonah Infill Drilling Project, Sublette County, Wyoming* (DEIS) (BLM 2005) and summarized in detail in the *Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement* (AQTSD) (TRC 2004). The additional air quality analyses quantify project-specific and cumulative air quality impacts from additional configurations of the proposed JIDP Preferred Alternative, and quantify project-specific and cumulative impacts from project and regional sources during the early-project-development stage of the JIDP. The additional analyses were deemed necessary by the BLM to 1) evaluate alternative potential mitigation strategies for the Preferred Alternative and 2) identify potential early-project-development stage impacts from JIDP and regional emissions (i.e., drilling) to determine if they would produce impacts greater than those projected for peak production within the JIDPA.

These analyses utilized the CALMET and CALPUFF models to assess impacts from project and non-project cumulative air emissions of PM₁₀, PM_{2.5}, NO_x, and SO₂ on air quality and air quality related values (AQRVs) at far-field and mid-field locations and within the JIDPA. Far-field pollutant impacts were assessed at Prevention of Significant Deterioration (PSD) Class I areas (Bridger, Fitzpatrick, Teton, and Washakie Wilderness Areas and Grand Teton and Yellowstone National Parks), and at sensitive PSD Class II areas (Popo Agie Wilderness Area and Wind River Roadless Area). Far-field analyses included impact assessments of concentration, visibility (regional haze), atmospheric deposition, and lake acidity at sensitive lakes within the Wilderness Areas (Black Joe, Deep, Hobbs, Lazy Boy, and Upper Frozen lakes within the Bridger Wilderness Area, Ross Lake in the Fitzpatrick Wilderness Area, and Lower Saddlebag Lake in the Popo Agie Wilderness Area). Mid-field visibility (regional haze) impact analyses were performed for the Wyoming regional community locations of Big Piney, Big Sandy, Boulder, Bronx, Cora, Daniel, Farson, LaBarge, Merna, and Pinedale, although these communities are

classified as PSD Class II areas where no visibility protection exists under local, State, or Federal law. In-field analyses included assessments of concentration impacts within the JIDPA.

Preferred Alternative

Configurations of the Preferred Alternative that are different from those analyzed in the DEIS were modeled to provide a representation of a range of impacts possible under the Preferred Alternative. A low emissions scenario and a high emissions scenario were modeled, as were four potential levels of air pollution mitigation of proposed project sources through emission reductions within the JIDPA (emission reductions of 20%, 40%, 60%, and 80%). The modeling analyses for these additional configurations of the Preferred Alternative follow the methodologies described in the AQTSD, and are directly comparable to the analyses conducted for the DEIS. As in the DEIS modeling, the modeling scenarios were based upon anticipated field characteristics in year 2017, the presumed year of peak emissions. Only project emissions differed in this analysis from those modeled for the DEIS; non-project emissions remained the same.

The findings of the Preferred Alternative analyses are summarized in Tables ES-1 and ES-2. These tables summarize the impacts that could occur for the range of Preferred Alternative scenarios. Table ES-1 provides a summary of the potential concentration and deposition impacts from the Preferred Alternative high emissions case, low emissions case, and the high emissions mitigation case with an 80 percent emission reduction (maximum reduction). Table ES-2 provides a summary of the potential impacts to visibility (regional haze) for these scenarios. Results summaries shown in green (normal text) in these tables indicate that potential impacts are below ambient air quality standards, PSD increments, and BLM-recognized significant threshold values and levels of concern. Results summaries shown in red (bold text) indicate that potential impacts are above these levels. A complete disclosure of all modeled impacts from the Preferred Alternative analyses with comparisons to ambient air quality standards, PSD increments, and to BLM and other Federal Land Manager (FLM) significance threshold values and levels of concern is presented in the text of this document.

Table ES-1 Preferred Alternative Air Quality Concentrations and Deposition Impacts Summary

Air Quality Component	Criteria	Source Group & Impact Area	Preferred Alternative: WDR250 High Emissions Case	Preferred Alternative: WDR250 Low Emissions Case	Preferred Alternative: WDR250 80% Mitigation Case
		Project: In-Field	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS	$\begin{aligned} &PM_{10} < NAAQS\&WAAQS \\ &PM_{2.5} < NAAQS\&WAAQS \\ &NO_2 < NAAQS\&WAAQS \\ &SO_2 < NAAQS\&WAAQS \end{aligned}$
	Air Quality	Cumulative: In-Field	$\begin{aligned} &PM_{10} < NAAQS\&WAAQS \\ &PM_{2.5} < NAAQS\&WAAQS \\ &NO_2 < NAAQS\&WAAQS \\ &SO_2 < NAAQS\&WAAQS \end{aligned}$	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS
Concentrations	Standards	Project: Far-Field	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS
		Cumulative: Far-Field	$PM_{10} < NAAQS\&WAAQS$ $PM_{2.5} < NAAQS\&WAAQS$ $NO_2 < NAAQS\&WAAQS$ $SO_2 < NAAQS\&WAAQS$	PM ₁₀ < NAAQS&WAAQS PM _{2.5} < NAAQS&WAAQS NO ₂ < NAAQS&WAAQS SO ₂ < NAAQS&WAAQS	$\begin{aligned} &PM_{10} < NAAQS\&WAAQS \\ &PM_{2.5} < NAAQS\&WAAQS \\ &NO_2 < NAAQS\&WAAQS \\ &SO_2 < NAAQS\&WAAQS \end{aligned}$
	PSD Class I Increments ¹	Cumulative: Far-Field	PM_{10} < increment NO_2 < increment SO_2 < increment	PM ₁₀ < increment NO ₂ < increment SO ₂ < increment	PM_{10} < increment NO_2 < increment SO_2 < increment
	PSD Class II Increments ¹	Cumulative: Far-Field	PM_{10} < increment NO_2 < increment SO_2 < increment	PM ₁₀ < increment NO ₂ < increment SO ₂ < increment	PM_{10} < increment NO_2 < increment SO_2 < increment
	N Deposition	Project: Far-Field	Bridger WA, N > DAT Fitzpatrick WA, N > DAT Popo Agie WA, N > DAT Wind River RA, N > DAT Grand Teton NP, N < DAT Teton WA, N < DAT Yellowstone NP, N < DAT Washakie WA, N < DAT	Bridger WA, N > DAT Fitzpatrick WA, N < DAT Popo Agie WA, N > DAT Wind River RA, N > DAT Grand Teton NP, N < DAT Teton WA, N < DAT Yellowstone NP, N < DAT Washakie WA, N < DAT	Bridger WA, N > DAT Fitzpatrick WA, N < DAT Popo Agie WA, N > DAT Wind River RA, N < DAT Grand Teton NP, N < DAT Teton WA, N < DAT Yellowstone NP, N < DAT Washakie WA, N < DAT
		Total: Far-Field	N < LOC, All Areas	N < LOC, All Areas	N < LOC, All Areas
Atmospheric Deposition	S Deposition	Project: Far Field	Bridger WA, S > DAT Fitzpatrick WA, S < DAT Popo Agie WA, S < DAT Wind River RA, S < DAT Grand Teton NP, S < DAT Teton WA, S < DAT Yellowstone NP, S < DAT Washakie WA, S < DAT	Bridger WA, S < DAT Fitzpatrick WA, S < DAT Popo Agie WA, S < DAT Wind River RA, S < DAT Grand Teton NP, S < DAT Teton WA, S < DAT Yellowstone NP, S < DAT Washakie WA, S < DAT	Bridger WA, S < DAT Fitzpatrick WA, S < DAT Popo Agie WA, S < DAT Wind River RA, S < DAT Grand Teton NP, S < DAT Teton WA, S < DAT Yellowstone NP, S < DAT Washakie WA, S < DAT
		Total: Far-Field	S < LOC, All Areas	S < LOC, All Areas	S < LOC, All Areas
	Sensitive Lakes	Project: Far-Field	ANC Change < LAC, All Lakes	ANC Change < LAC, All Lakes	ANC Change < LAC, All Lake
	Lakes	Cumulative: Far-Field	ANC Change < LAC, All Lakes	ANC Change < LAC, All Lakes	ANC Change < LAC, All Lake

The PSD demonstrations serve information purposes only and do not constitute a regulatory PSD Increment consumption analysis.

Table ES-2 Preferred Alternative Visibility (Regional Haze) Impacts Summary

			Preferred Alternative:	Preferred Alternative:	Preferred Alternative:
			WDR250	WDR250	WDR250
Air Quality Component	Impact Area	Source Group	High Emissions Case	Low Emissions Case	80% Mitigation Case
			Bridger WA, >1.0 -dv 31 days, max dv = 6.44	Bridger WA, >1.0 -dv 9 days, max dv = 3.26	Bridger WA, >1.0 -dv 3 days, max dv = 1.66
			Fitzpatrick WA, >1.0 -dv 3 days, max dv = 1.54	Fitzpatrick WA, >1.0 -dv 0 days, max dv = 0.61	Fitzpatrick WA, >1.0-dv 0 days, max dv = 0.33
			Popo Agie WA, >1.0 -dv 2 days, max dv = 1.36	Popo Agie WA, >1.0 -dv 0 days, max dv = 0.59	Popo Agie WA, >1.0 -dv 0 days, max dv = 0.29
		Project	Wind River RA, >1.0 -dv 1 days, max dv = 1.22	Wind River RA, >1.0 -dv 0 days, max dv = 0.50	Wind River RA, >1.0 -dv 0 days, max dv = 0.26
		Troject	Grand Teton NP, >1.0 -dv 0 days, max dv = 0.66	Grand Teton NP, >1.0 -dv 0 days, max dv = 0.31	Grand Teton NP, >1.0 -dv 0 days, max dv = 0.14
			Teton WA, >1.0 -dv 0 days, max dv = 0.28	Teton WA, >1.0 -dv 0 days, max dv = 0.14	Teton WA, >1.0 -dv 0 days, max dv = 0.06
	PSD Class I and		Yellowstone NP, >1.0 -dv 0 days, max dv = 0.31	Yellowstone NP, >1.0 -dv 0 days, max dv = 0.15	Yellowstone NP, >1.0 -dv 0 days, max dv = 0.06
	Sensitive Class II		Washakie WA, >1.0 -dv 0 days, max dv = 0.48	Washakie WA, >1.0 -dv 0 days, max dv = 0.23	Washakie WA, >1.0 -dv 0 days, max dv = 0.10
	Areas		Bridger WA, >1.0 -dv 39 days, max dv = 6.82	Bridger WA, >1.0 -dv 15 days, max dv = 3.78	Bridger WA, >1.0 -dv 6 days, max dv = 2.62
	Alcas		Fitzpatrick WA, >1.0-dv 3 days, max dv = 1.58	Fitzpatrick WA, >1.0-dv 0 days, max dv = 0.85	Fitzpatrick WA, >1.0 -dv 0 days, max dv = 0.57
			Popo Agie WA, >1.0 -dv 6 days, max dv = 1.67	Popo Agie WA, >1.0 -dv 0 days, max dv = 0.97	Popo Agie WA, >1.0 -dv 0 days, max dv = 0.75
		Cumulative	Wind River RA, >1.0 -dv 5 days, max dv = 1.54	Wind River RA, >1.0 -dv 2 days, max dv = 1.19	Wind River RA, >1.0 -dv 0 days, max dv = 0.96
		Cumulative	Grand Teton NP, >1.0 -dv 0 days, max dv = 0.83	Grand Teton NP, >1.0 -dv 0 days, max dv = 0.49	Grand Teton NP, >1.0 -dv 0 days, max dv = 0.35
			Teton WA, >1.0 -dv 0 days, max dv = 0.34	Teton WA, >1.0 -dv 0 days, max dv = 0.23	Teton WA, >1.0 -dv 0 days, max dv = 0.17
			Yellowstone NP, >1.0 -dv 0 days, max dv = 0.40	Yellowstone NP, >1.0 -dv 0 days, max dv = 0.25	Yellowstone NP, >1.0 -dv 0 days, max dv = 0.18
			Washakie WA, >1.0 -dv 0 days, max dv = 0.58	Washakie WA, >1.0 -dv 0 days, max dv = 0.33	Washakie WA, >1.0 -dv 0 days, max dv = 0.23
Visibility			Big Piney, >1.0 -dv 18 days, max dv = 3.93	Big Piney, >1.0 -dv 4 days, max dv = 1.89	Big Piney, >1.0 -dv 0 days, max dv = 0.92
(Regional Haze)			Big Sandy, >1.0 -dv 62 days, max dv = 5.76	Big Sandy, >1.0 -dv 21 days, max dv = 2.92	Big Sandy, >1.0 -dv 4 days, max dv = 1.45
(Regional Haze)			Boulder, >1.0 -dv 33 days, max dv = 4.58	Boulder, >1.0 -dv 10 days, max dv = 2.30	Boulder, >1.0 -dv 2 days, max dv = 1.10
			Bronx, > 1.0 -dv 9 days, max dv = 3.82	Bronx, >1.0 -dv 1 days, max dv = 1.60	Bronx >1.0 -dv 0 days, max dv = 0.89
		Project	Cora, >1.0 -dv 14 days, max dv = 6.70	Cora, > 1.0 -dv 1 days, max dv = 3.03	Cora, > 1.0 -dv 1 days, max dv = 1.75
		Troject	Daniel, >1.0 -dv 16 days, max dv = 5.50	Daniel, >1.0 -dv 1 days, max dv = 2.42	Daniel, >1.0 -dv 1 days, max dv = 1.37
			Farson, >1.0 -dv 13 days, max dv = 4.88	Farson, >1.0 -dv 5 days, max dv = 2.21	Farson, >1.0 -dv 1 days, max dv = 1.19
			Labarge, >1.0 -dv 6 days, max dv = 2.59	Labarge, >1.0 -dv 2 days, max dv = 1.27	Labarge, >1.0 -dv 0 days, max dv = 0.57
	Wyoming		$Merna, >1.0-dv \ 5 \ days, \ max \ dv = 1.64$	Merna, > 1.0 -dv 0 days, max dv = 0.75	Merna, >1.0 -dv 0 days, max dv = 0.35
	Regional		Pinedale, >1.0-dv 21 days, max dv = 8.48	Pinedale, >1.0 -dv 3 days, max dv = 4.07	Pinedale, >1.0 -dv 1 days, max dv = 2.37
	Communities		Big Piney, >1.0 -dv 36 days, max dv = 4.32	Big Piney, >1.0 -dv 19 days, max dv = 2.57	Big Piney, >1.0 -dv 13 days, max dv = 2.28
	Communities		Big Sandy, >1.0 -dv 74 days, max dv = 6.18	Big Sandy, >1.0 -dv 32 days, max dv = 3.48	Big Sandy, >1.0 -dv 12 days, max dv = 2.13
			Boulder, >1.0 -dv 40 days, max dv = 5.58	Boulder, >1.0 -dv 20 days, max dv = 3.60	Boulder, >1.0 -dv 9 days, max dv = 3.09
			Bronx, > 1.0 -dv 15 days, max dv = 3.88	Bronx, >1.0-dv 1 days, max dv = 1.68	Bronx, > 1.0 -dv 0 days, max dv = 0.97
		Cumulative	Cora, > 1.0 -dv 17 days, max dv = 6.77	Cora, >1.0 -dv 7 days, max dv = 3.13	Cora, > 1.0 -dv 2 days, max dv = 1.86
		Cumulative	Daniel, >1.0-dv 23 days, max dv = 5.56	Daniel, >1.0 -dv 11 days, max dv = 2.52	Daniel, >1.0 -dv 2 days, max dv = 1.47
		· ·	Farson, > 1.0 -dv 21 days, max dv = 5.05	Farson, >1.0 -dv 11 days, max dv = 2.68	Farson, >1.0 -dv 10 days, max dv = 1.87
			Labarge, >1.0 -dv 16 days, max dv = 3.97	Labarge, >1.0 -dv 11 days, max dv = 2.85	Labarge, >1.0 -dv 6 days, max dv = 2.30
			Merna, >1.0 -dv 10 days, max dv = 1.93	Merna, >1.0-dv 4 days, max dv = 1.11	Merna, >1.0 -dv 1 days, max dv = 1.03
			Pinedale, >1.0-dv 27 days, max dv = 8.56	Pinedale, >1.0-dv 8 days, max dv = 4.18	Pinedale, >1.0 -dv 6 days, max dv = 2.50

Direct project and cumulative impacts from all modeled Preferred Alternative scenarios are less than applicable ambient air quality standards and PSD increments at all PSD Class I and sensitive Class II areas. The PSD demonstrations serve information purposes only and do not constitute a regulatory PSD Increment consumption analysis, which may be completed as necessary by WDEQ-AQD.

Direct project and cumulative impacts from all modeled Preferred Alternative scenarios are less than applicable ambient air quality standards with in JIDPA.

Direct project and cumulative impacts from all Preferred Alternative scenarios would result in no significant acidification at any acid-sensitive lake analyzed.

Direct project sulfur deposition impacts from the Preferred Alternative high emissions scenario were greater than the thresholds of concern at the Bridger Wilderness Area and less than the thresholds at all other sensitive areas. Direct project sulfur deposition impacts from all other Preferred Alternative scenarios were less than the thresholds. Direct project nitrogen deposition impacts from all Preferred Alternative scenarios were greater than the thresholds of concern at the Bridger and Popo Agie Wilderness Areas. Direct project nitrogen deposition impacts were greater than the thresholds of concern at the Wind River Roadless Area for the "low emissions" scenario, and at the Fitzpatrick Wilderness Area and Wind River Roadless Area for the "high emissions" scenario. The exceedences of these thresholds trigger a management concern but are not necessarily indicative of an adverse impact (NPS 2004).

Direct project and cumulative total deposition impacts from all Preferred Alternative scenarios were less than deposition levels of concern.

Direct project visibility (regional haze) impacts was greater than the "just noticeable visibility change" (1.0-dv) threshold at the Bridger Wilderness Area for all analyzed scenarios, (ranging from 3 days per year up to 31 days per year), and under the high emissions scenario direct project visibility impacts were greater than the 1.0-dv threshold at the Fitzpatrick Wilderness Area

(maximum of 3 days), Popo Agie Wilderness Area (maximum of 2 days) and Wind River Roadless Area (maximum of 1 day).

Cumulative visibility impacts were greater than the 1.0-dy threshold at the Bridger Wilderness Area for all analyzed scenarios, (ranging from 6 days per year up to 39 days per year), and under the high emissions scenario impacts were greater than the 1.0-dy thresholds at the Fitzpatrick Wilderness Area (maximum of 3 days), Popo Agie Wilderness Area (maximum of 6 days) and Wind River Roadless Area (maximum of 5 days).

Direct project visibility impacts were greater than the 1.0-dv threshold at most of the analyzed mid-field locations, with maximum potential impacts ranging from 4 days per year at Big Sandy under the lowest emissions scenario up to 62 days per year under the "high emissions" scenario.

Cumulative visibility impacts were greater than the 1.0-dv threshold at most of the analyzed midfield locations, with maximum potential impacts ranging from 12 days per year at Big Sandy under the lowest emissions scenario up to 74 days per year under the "high emissions" scenario.

Early-Project-Development Stage

An analysis of JIDP early-project-development stage air quality conditions in the vicinity of the JIDPA was also performed. What was modeled and presented for the Preferred Alternative considered the "most likely case" maximum emissions scenario for the JIDP. However, when quantifying maximum cumulative impacts regionally, it is possible that peak regional impacts could occur prior to JIDP maximum emissions as a result of the development of other natural gas projects in the region, specifically the Pinedale Anticline Project (PAP), South Piney Project (SPP), Riley Ridge Project (RRP), and Jack Morrow Hills Project (JMHP). The BLM performed this analysis because 1) regional impacts appear to be greatest during the early stages of JIDP development due to accelerated development paces in these nearby project areas, and 2) the emissions from increased drilling near Pinedale had not been adequately characterized in the DEIS. The Record of Decision (ROD) for the Pinedale Anticline EIS (BLM 1999) stated that if emissions of nitrogen oxides (NOx) from the Jonah and Pinedale Anticline gas fields reached 693.5 tons per year, the BLM would perform further air quality analyses. The analysis for the Questar Year-round drilling EA (BLM 2004), published after completion of the DEIS analysis, indicated that NOx emissions had substantially exceeded that level, due mainly to emissions from drill rigs. Drill rig emissions were higher than assumed in the PAPA EIS because:

- there were more drill rigs operating than estimated;
- conditions required drill rig engines to have larger horsepower than estimated; and
- directional drilling required drill rigs to operate for a longer period of time per well than estimated.

Results for the early-project-development stage modeling analyses are summarized in Tables ES-3 and ES-4. Table ES-3 provides a summary of the potential concentration and deposition impacts for both direct project and cumulative scenarios and Table ES-4 provides a summary of the potential impacts to visibility (regional haze) for these scenarios. Results summaries shown in green (normal text) in these tables indicate that potential impacts are below ambient air quality standards, PSD increments, and BLM-recognized significant threshold values and levels of concern. Results summaries shown in red (**bold text**) indicate that potential impacts are above these levels. These modeling analyses are not directly comparable to the results presented earlier or in the DEIS due to differences in the regional emissions inventories and the expanded compression estimates included in this analysis. A complete disclosure of all modeled impacts from the early-project-development stage modeling analyses with comparisons to ambient air quality standards, PSD increments, and to BLM and other FLM significance threshold values and levels of concern is presented in the text of this document.

Direct project and cumulative impacts from early-project-development stage source emissions would be less than the applicable ambient air quality standards and PSD increments at all PSD Class I and sensitive Class II areas. The PSD demonstrations serve information purposes only and do not constitute a regulatory PSD Increment consumption analysis, which may be completed as necessary by WDEQ-AQD.

Direct project and cumulative impacts from early-project-development stage source emissions would be less than the applicable ambient air quality standards with in JIDPA.

Direct project and cumulative impacts from early-project-development stage source emissions would not result in significant acidification at any acid-sensitive lake analyzed.

Direct project sulfur deposition impacts from early-project-development stage source emissions would be below thresholds of concern at all analyzed sensitive areas.

Direct project nitrogen deposition impacts from early-project-development stage source emissions were greater than the thresholds of concern at the Bridger and Popo Agie Wilderness Areas. The exceedences of these thresholds trigger a management concern but are not necessarily indicative of an adverse impact (NPS 2004).

Table ES-3 Early-Project-Development-Stage Air Quality Concentrations and Deposition Impacts

		Impacts	
Air Quality Component	Criteria	Source Group & Impact Area	Early-Project-Development Stage: WDR250
		Project: In-Field	$\begin{array}{l} PM_{10}\!<\!NAAQS\&WAAQS\\ PM_{2.5}\!<\!NAAQS\&WAAQS\\ NO_2\!<\!NAAQS\&WAAQS\\ SO_2\!<\!NAAQS\&WAAQS\\ \end{array}$
	Air Quality	Cumulative: In-Field	$\begin{aligned} &PM_{10} < NAAQS\&WAAQS\\ &PM_{2.5} < NAAQS\&WAAQS\\ &NO_2 < NAAQS\&WAAQS\\ &SO_2 < NAAQS\&WAAQS \end{aligned}$
Concentrations	Standards	Project: Far-Field	$\begin{aligned} &PM_{10} < NAAQS\&WAAQS\\ &PM_{2.5} < NAAQS\&WAAQS\\ &NO_2 < NAAQS\&WAAQS\\ &SO_2 < NAAQS\&WAAQS \end{aligned}$
		Cumulative: Far-Field	$\begin{array}{l} PM_{10} < NAAQS\&WAAQS \\ PM_{2.5} < NAAQS\&WAAQS \\ NO_{2} < NAAQS\&WAAQS \\ SO_{2} < NAAQS\&WAAQS \end{array}$
	PSD Class I Increments ¹	Cumulative: Far-Field	PM_{10} < increment NO_2 < increment SO_2 < increment
	PSD Class II Increments ¹	Cumulative: Far-Field	PM_{10} < increment NO_2 < increment SO_2 < increment
	N Deposition	Project: Far-Field	Bridger WA, N > DAT Fitzpatrick WA, N < DAT Popo Agie WA, N > DAT Wind River RA, N < DAT Grand Teton NP, N < DAT Teton WA, N < DAT Yellowstone NP, N < DAT Washakie WA, N < DAT
Atmospheric		Total: Far-Field	N < LOC, All Areas
Deposition	S Deposition	Project: Far-Field	S < DAT, All Areas
		Total: Far-Field	S < LOC, All Areas
	Sensitive	Project: Far-Field	ANC Change < LAC, All Lakes
	Lakes	Cumulative: Far-Field	ANC Change < LAC, All Lakes

The PSD demonstrations serve information purposes only and do not constitute a regulatory PSD Increment consumption analysis.

Table ES-4 Early-Project-Development-Stage Visibility (Regional Haze) Impacts

Air Quality Component	Impact Area	Source Group	Early-Project-Development Stage: WDR250
	PSD Class I and Sensitive Class II	Project	Bridger WA, >1.0-dv 9 days, max dv = 2.42 Fitzpatrick WA, >1.0dv 0 days, max dv = 0.95 Popo Agie WA, >1.0-dv 2 days, max dv = 1.06 Wind River RA, >1.0-dv 1 days, max dv = 1.01 Grand Teton NP, >1.0-dv 0 days, max dv = 0.67 Teton WA, >1.0-dv 0 days, max dv = 0.37 Yellowstone NP, >1.0-dv 0 days, max dv = 0.32 Washakie WA, >1.0-dv 0 days, max dv = 0.43
	Areas	Cumulative	Bridger WA, >1.0-dv 61 days, max dv = 6.57 Fitzpatrick WA, >1.0-dv 11 days, max dv = 3.37 Popo Agie WA, >1.0-dv 23 days, max dv = 3.35 Wind River RA, >1.0-dv 15 days, max dv = 3.39 Grand Teton NP, >1.0-dv 8 days, max dv = 2.63 Teton WA, >1.0-dv 4 days, max dv = 1.33 Yellowstone NP, >1.0-dv 3 days, max dv = 1.22 Washakie WA, >1.0-dv 2 days, max dv = 1.70
Visibility (Regional Haze)	Wyoming	Project	Big Piney, >1.0-dv 24 days, max dv = 6.62 Big Sandy, >1.0-dv 24 days, max dv = 3.66 Boulder, >1.0-dv 18 days, max dv = 3.37 Bronx, >1.0-dv 18 days, max dv = 1.79 Cora, >1.0-dv 11 days, max dv = 2.17 Daniel, >1.0-dv 14 days, max dv = 2.93 Farson, >1.0-dv 33 days, max dv = 5.18 Labarge, >1.0-dv 11 days, max dv = 5.73 Merna, >1.0-dv 7 days, max dv = 2.46 Pinedale, >1.0-dv 14 days, max dv = 2.94
	Regional Communities	Regional Communities	Cumulative

Total deposition impacts from early-project-development stage source emissions and cumulative source emissions were less than deposition levels of concern.

Direct project visibility (regional haze) impacts from early-project-development stage source emissions were greater than the "just noticeable visibility change" (1.0-dv) threshold at the Bridger Wilderness Area (up to 9 days per year), Popo Agie Wilderness Area (maximum of 2 days) and at the Wind River Roadless Area (maximum of 1 day).

Cumulative visibility impacts from early-project-development stage sources and cumulative sources were greater than the 1.0-dv threshold at all of the analyzed areas with maximum impacts occurring at the Bridger Wilderness Area, (up to 61 days per year).

Direct project visibility impacts from early-project-development stage sources were greater than the 1.0-dv threshold at all of the analyzed mid-field locations, with maximum potential impacts occurring at Farson, where up to 33 days per year of impairment could occur.

Cumulative visibility impacts from early-project-development stage and regional sources were greater than the 1.0-dv threshold at all of the analyzed mid-field locations, with maximum potential impacts occurring at Boulder, where up to 131 days per year of impairment could occur.

TABLE OF CONTENTS

Sectio	<u>n</u>			Page
1.0	INTRO	DUCTI	ION	1
2.0	PREFI 2.1 2.2 2.3 2.4	LOW E HIGH F MITIGA MODE 2.4.1 2.4.2 2.4.3	ALTERNATIVE MODELING ANALYSES EMISSONS CONFIGURATION EMISSIONS CONFIGURATION ATION ANALYSES L RESULTS Concentration Deposition Sensitive Lakes Visibility	
3.0	3.1 3.2 3.3	EMISSI 3.1.1 3.1.2 3.1.3 3.1.4 MODEL MODEL 3.3.1 3.3.2 3.3.3	ECT DEVELOPMENT STAGE MODELING	21 23 25 26 26 29 31 32
Table	2.1		ng Scenarios Analyzed for Preferred Alternative and Regional ons, Jonah Infill Drilling Project, Sublette County, Wyoming, 2005	58
Table	2.2	and Cla	S, WAAQS, PSD Class I and Class II Increments, and PSD Class ass II Significance Levels for Comparison to Far-field Analysis (μg/m³).	
Table	2.3	Backgro	ound Ambient Air Quality Concentrations (μg/m³)	11
Table	2.4	Backgro	ound ANC Values for Acid Sensitive Lakes.	13
Table	2.5	IMPRO	OVE Background Aerosol Extinction Values	14

Table 2.6	FLAG Report Background Extinction Values. ¹
Table 2.7	Monthly f(RH) Factors from Regional Haze Rule Guidance
Table 3.1	Summary of Year 2006 Drilling Rigs Counts and Flaring Operations22
Table 3.2	Summary of Year 2002 Drilling Rigs Counts and Flaring Operations24
Table 3.3	Summary of Expanded Field Compression Estimates
	LIST OF FIGURES
Figure 1	Jonah Infill Project Study Area
Figure 2	Source Locations for Early Project Development Stage Assessment28
Figure 3	JIDP and Atlantic Rim/Seminoe Road Projects Cumulative Study Area30
	LIST OF APPENDICES
APPENDIX A	AJUNE 2005 AIR QUALITY IMPACT ASSESSMENT PROTOCOL
APPENDIX E	3PREFERRED ALTERNATIVE EMISSIONS INVENTORY
APPENDIX C	PREFERRED ALTERNATIVE MODELING RESULTS
APPENDIX I	EARLY PROJECT DEVELOPMENT STAGE EMISSIONS INVENTORY
APPENDIX E	EARLY PROJECT DEVELOPMENT STAGE MODELING RESULTS

ACRONYMS AND ABBREVIATIONS

ANC acid neutralizing capacity
AQRV air quality related value

AQTSD air quality technical support document

BLM U.S. Department of Interior, Bureau of Land Management

CDPHE/APCD Colorado Department of Public Health and Environment/Air Pollution

Control Division

DAT data analysis threshold (deposition)
DEIS draft environmental impact statement

dv deciview

EPA U.S. Environmental Protection Agency FEIS final environmental impact statement

FLAG Federal Land Manager's Air Quality Related Values Workgroup

FLM Federal Land Manager

IDEQ Idaho Division of Environmental Quality

JMHP Jack Morrow Hills Project
JIDP Jonah Infill Drilling Project
JIDPA Jonah Infill Drilling Project Area
LAC level of acceptable change (ANC)
LOC level of concern (deposition)

LOP life-of-project

NAAQS national ambient air quality standard

NO₂ nitrogen dioxide
NO_x oxides of nitrogen
NP National Park
NPS National Park Service
PAP Pinedale Anticline Project

PM particulate matter

PM₁₀ particulate matter less than 10 microns in diameter PM_{2.5} particulate matter less than 2.5 microns in diameter

PSD Prevention of Significant Deterioration

RA road-less area

RFFA reasonably foreseeable future actions RFD reasonably foreseeable development

RRP Riley Ridge Project SO₂ sulfur dioxide SPP South Piney Project

TRC Environmental Corporation

USDA Forest Service U.S. Department of Agriculture, Forest Service

UDEQ-AQD Utah Department of Environmental Quality-Air Quality Division

ACRONYMS AND ABBREVIATIONS (continued)

VOC volatile organic compound

WA wilderness area

WAAQS Wyoming ambient air quality standard

WDEQ-AQD Wyoming Department of Environmental Quality, Air Quality Division

WDR well development rate

WOGCC Wyoming Oil and Gas Conservation Commission

WRAP Western Regional Air Partnership

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) has prepared this Air Quality Technical Support Document (AQTSD) supplement to summarize additional air quality analyses that have been performed in support of the proposed Jonah Infill Drilling project (JIDP). These air quality modeling analyses have been requested by the Bureau of Land Management (BLM) to supplement the air quality analyses that were performed and presented for a range of project alternatives in the Draft Environmental Impact Statement, Jonah Infill Drilling Project, Sublette County, Wyoming (DEIS) (BLM 2005) and provided in detail in the Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement (AQTSD) (TRC 2004). The additional air quality analyses quantify project-specific and cumulative air quality impacts from additional configurations of the proposed JIDP Preferred Alternative which were not analyzed as part of the DEIS, and quantify project-specific and cumulative impacts from potential emissions which reflect early-project-development stage conditions existing in the region surrounding the Jonah Infill Drilling Project area (JIDPA). The additional analyses were deemed necessary by the BLM to evaluate alternative potential mitigation strategies for the Preferred Alternative in an effort to identify possible project development requirements to reduce adverse air quality impacts, and to identify maximum earlyproject-development stage regional emissions (i.e., drilling) which could reveal that regional impacts are more severe at this stage due to impacts from the development of other regional projects, which at present have not been adequately evaluated.

The methodologies used for these analyses are described in the June 2005, *Air Quality Impact Assessment Protocol, Jonah Infill Drilling Project Draft Environmental Impact Statement Impact Analysis Supplement* (provided in Appendix A), which was developed by TRC with input from the BLM, Wyoming Department of Environmental Quality Air Quality Division (WDEQ-AQD), U.S. Environmental Protection Agency (EPA), National Park Service (NPS), and U.S. Department of Agriculture Forest Service (USDA Forest Service).

These analyses involve the use of the CALMET and CALPUFF models to assess impacts from project and non-project cumulative air emissions on air quality and air quality related values (AQRVs) at far-field and mid-field locations within the JIDPA cumulative study area, shown in Figure 1. Cumulative analyses include project impacts plus impacts from permitted sources, reasonably foreseeable development (RFD), and reasonably foreseeable future actions (RFFA) which were projected to exist after a specified date and would be located within a defined regional area (see TRC 2004 for further detail). All air emissions sources within the study domain were not explicitly modeled; some sources were considered to already be included ambient air background values. Far-field pollutant impacts were assessed at the Prevention of Significant Deterioration (PSD) Class I areas (Bridger, Fitzpatrick, Teton, and Washakie Wilderness Areas and Grand Teton and Yellowstone National Parks), and at the sensitive Class II Popo Agie Wilderness Area and Wind River Roadless Area. Far-field analyses include impact assessments of concentration, visibility, acid deposition, and lake acidity (at sensitive lakes within the Wilderness Areas). Mid-field visibility impact analyses were performed at the Wyoming regional community locations of Big Piney, Big Sandy, Boulder, Bronx, Cora, Daniel, Farson, LaBarge, Merna, and Pinedale.

The Preferred Alternative modeling analyses presented in this document are directly comparable to the analyses conducted for the DEIS. Unlike the Preferred Alternative modeling analyses, early-project-development stage modeling is not directly comparable to either the analyses conducted for the DEIS or the Preferred Alternative modeling analyses contained herein.

The remainder of this AQTSD supplement summarizes the analysis of the Preferred Alternative additional configurations (Section 2.0) and the analysis of early-project-development stage conditions in the JIDPA region (Section 3.0).

2.0 PREFERRED ALTERNATIVE MODELING ANALYSES

The Preferred Alternative for the JIDP consists of the development of 3,100 new natural gas wells on approximately 8,316 acres of new surface disturbance in the JIDPA, and assumes approximately 50% directionally drilled wells and 50% straight hole wells. Depending upon the authorized rate of development (75, 150, or 250 wells per year), development operations are expected to last from approximately 12 to 42 years, with a total life-of-project (LOP) of approximately 76 to 105 years. Modeling scenarios presented in the DEIS for Alternative F approximate the potential impacts for the Preferred Alternative. These modeling scenarios assumed the maximum field emissions which could potentially occur concurrently (i.e., the final year of construction representing the maximum annual construction activity rate combined with nearly full-field production). Three well development rates (WDRs) were analyzed--250 wells/year (WDR250), 150 wells/year (WDR150), and 75 wells/year (WDR75). Modeling results presented in the DEIS for Alternative F with a WDR of 250 wells per year are assumed to represent the maximum impacts from the Preferred Alternative at peak year emissions. Peak year project emissions were assumed to occur in year 2017, and included emissions from 2,850 wells in production and 250 wells under construction, consistent with the field configuration anticipated for year 2017 (the field at nearly full production and the last year of construction in the field). The modeling also assumed a 50/50 split between straight and directional wells (consistent with the Preferred Alternative) and a 50/50 split between EPA Tier 1 and Tier 2 emissions levels for drilling rig engines. The modeling included 80 percent flareless completions (20 percent of completions flared) and JIDPA compression emissions at maximum levels projected at the time of the DEIS.

Additional configurations of the Preferred Alternative were modeled herein to provide a representation of the range of possible impacts (low and high emissions scenarios), and a representation of impacts which could occur using various mitigation methods in the JIDPA. Each of the modeling scenarios are based upon anticipated field characteristics in year 2017, the presumed year of peak project emissions. For the low and high emissions scenario, WDR250, WDR150 and WDR75 were analyzed (i.e., 20, 12, and 6 drill rigs operating continuously). The

low emissions scenario assumes all drilling rig engines are at EPA Tier 2 emissions levels, and the high emissions scenario assumes a combination of 80 percent Tier 0 (AP-42) (EPA 1995) emission levels and 20 percent Tier 1 emission levels for the drilling rigs. Four mitigation scenarios were analyzed. The mitigation scenarios were based on emission reduction percentages of 20, 40, 60, and 80 percent from the JIDP high emissions configuration at a 250WDR. A total of 10 additional configurations of the Preferred Alternative were modeled to determine direct project impacts of PM₁₀, PM_{2.5}, NO_x, and SO₂ emissions. Only JIDP emissions differ from those previously modeled for the DEIS; non-project emissions remain unchanged. (Note that volatile organic compound [VOC] emissions were not modeled for this interim report, and revised VOC emissions and corresponding ozone impacts will be included in the final environmental impact statement [FEIS].) Direct project and regional emissions of PM₁₀, PM_{2.5}, NO_x, and SO₂ emissions were modeled for all scenarios, a total of 20 modeling scenarios. These additional scenarios are described in Sections 2.1 - 2.3.

Non-project regional emissions include sources newly permitted by state agencies through June 30, 2003, RFD, RFFA, and Operator-projected compressions estimates. These data were originally compiled as part of the DEIS using data obtained from the BLM, WDEO-AQD, Colorado Department of Public Health and Environment/Air Pollution Control Division (CDPHE/APCD), Utah Department of Environmental Quality-Air Quality Division (UDEO-AQD), and Idaho Division of Environment Quality (IDEQ). These non-project regional sources are modeled as they were in the DEIS to maintain consistency and comparability with results reported in the original DEIS and AQTSD.

Modeling analyses for these additional configurations follow the methodologies described in the Air Quality Impact Assessment Protocol, Jonah Infill Drilling Project, Sublette County, Wyoming (2003 Protocol) (TRC 2003) which preceded the AQTSD, and are directly comparable to the analyses conducted for the DEIS. The CALMET (Version 5.53) and CALPUFF (Version 5.711) modeling system that was developed and applied for the DEIS analyses was used to estimate both project and cumulative pollutant impacts at far-field PSD Class I and sensitive Class II areas, at mid-field Wyoming regional community locations, and within the JIDPA. All model methodologies, switch settings, source parameters, and model receptors are identical to analyses performed for the DEIS. Model results for the Preferred Alternative scenarios are summarized in Section 2.4.

2.1 LOW EMISSIONS CONFIGURATION

Project sources for the low emissions analysis included all drilling rig engine emissions at Tier 2 emission levels. WDRs of 250, 150, and 75 were analyzed, with 20, 12, and 6 drill rigs operating continuously, respectively. A 50/50 split between straight and directionally drilled wells was assumed. All other project sources were identical to Alternative F in the DEIS. Drill rig engine sizes and source parameters are also consistent with assumptions in the DEIS. Tier 2 drilling rig emissions calculations are shown in Appendix B. A summary of all project emissions modeled is provided in Table B.1.1 of Appendix B. Modeling was performed for both project-specific and cumulative emissions scenarios.

2.2 HIGH EMISSIONS CONFIGURATION

Project sources for the high emissions analysis included 80% of drilling rig engine emissions at Tier 0 emission levels (AP-42 levels) (EPA 1995) and 20% of engine emissions at Tier 1 emission levels. WDR250, WDR150, and WDR75 were analyzed, with 20, 12, and 6 drill rigs operating continuously, respectively. A 50/50 split between straight and directionally drilled wells was assumed. All other project sources were identical to Alternative F in the DEIS. Drill rig engine sizes and source parameters are also consistent with assumptions in the DEIS. Tier 0 and Tier 1 drilling rig emissions calculations are shown in Appendix B. A summary of all project emissions modeled is provided in Table B.1.1 of Appendix B. Modeling was performed for both project-specific and cumulative emissions scenarios.

2.3 MITIGATION ANALYSES

Because the actual mitigation methods to be utilized in the JIDPA are not yet known, four general mitigation scenarios were analyzed, each assuming a certain percentage of emissions control would occur in the field. The scenarios were based on the JIDP Preferred Alternative high emissions configuration at a 250WDR with a 50/50 split between straight and directionally drilled wells. This configuration was analyzed with emissions at 1) 80% of Preferred Alternative high emissions, 2) 60% of Preferred Alternative high emissions, 3) 40% of Preferred Alternative high emissions, and 4) 20% of Preferred Alternative high emissions. These analyses are sensitivity modeling runs that can be used to identify minimum impacts levels from project-specific source emissions. Drill rig engine sizes and source parameters are consistent with assumptions presented in the DEIS. A summary of project emissions modeled for each mitigation scenario is provided in Table B.1 of Appendix B. Modeling was performed for both project-specific and cumulative emissions scenarios.

2.4 MODEL RESULTS

CALPUFF modeling was performed to compute direct project impacts for each of the analyzed scenarios and for estimating cumulative impacts from potential project and regional sources. Regional emission inventories of existing state-permitted RFD and RFFA sources were modeled in combination with project sources to provide cumulative impact estimates for each scenario. A total of 20 modeling scenarios were evaluated in this analysis. These model results are directly comparable to all other alternatives analyzed and presented in the DEIS. A list of these scenarios is summarized in Table 2.1.

For each far-field sensitive area, CALPUFF-modeled concentration impacts were post-processed with POSTUTIL and CALPOST to derive: 1) concentrations for comparison to Wyoming and National ambient air quality standards (WAAQS and NAAQS), PSD Class I significance thresholds, and PSD Class I and II Increments; 2) deposition rates for comparison to sulfur (S) and nitrogen (N) deposition levels of concern and to calculate changes to acid neutralizing capacity (ANC) at sensitive lakes; and 3) light extinction changes for comparison to visibility impact thresholds. For the mid-field analyses, CALPOST concentrations were post-processed to

Table 2.1 Modeling Scenarios Analyzed for Preferred Alternative and Regional Emissions,Jonah Infill Drilling Project, Sublette County, Wyoming, 2005.

Modeling Scenario	Source Impacts Evaluated	Scenario Description	Number of New Wells in Production	Number of Wells under Construction
1	Direct Project	Low Emissions – Tier 2 Drill Rigs	2,850	250/year
2	Direct Project	Low Emissions - Tier 2 Drill Rigs	2,950	150/year
3	Direct Project	Low Emissions - Tier 2 Drill Rigs	3,025	75/year
4	Direct Project	High Emissions – 80% Tier 0, 20% Tier 1 Drill Rigs	2,850	250/year
5	Direct Project	High Emissions – 80% Tier 0, 20% Tier 1 Drill Rigs	2,950	150/year
6	Direct Project	High Emissions – 80% Tier 0, 20% Tier 1 Drill Rigs	3,025	75/year
7	Direct Project	Mitigation Analysis (20 % Emissions Reduction)	2,850	250/year
8	Direct Project	Mitigation Analysis (40 % Emissions Reduction)	2,850	250/year
9	Direct Project	Mitigation Analysis (60 % Emissions Reduction)	2,850	250/year
10	Direct Project	Mitigation Analysis (80 % Emissions Reduction)	2,850	250/year
11	Cumulative ¹	Low Emissions - Tier 2 Drill Rigs	2,850	250/year
12	Cumulative ¹	Low Emissions - Tier 2 Drill Rigs	2,950	150/year
13	Cumulative ¹	Low Emissions – Tier 2 Drill Rigs	3,025	75/year
14	Cumulative ¹	High Emissions – 80% Tier 0, 20% Tier 1 Drill Rigs	2,850	250/year
15	Cumulative ¹	High Emissions – 80% Tier 0, 20% Tier 1 Drill Rigs	2,950	150/year
16	Cumulative ¹	High Emissions – 80% Tier 0, 20% Tier 1 Drill Rigs	3,025	75/year
17	Cumulative ¹	Mitigation Analysis (20 % Emissions Reduction)	2,850	250/year
18	Cumulative ¹	Mitigation Analysis (40 % Emissions Reduction)	2,850	250/year
19	Cumulative ¹	Mitigation Analysis (60 % Emissions Reduction)	2,850	250/year
20	Cumulative ¹	Mitigation Analysis (80 % Emissions Reduction)	2,850	250/year

^{1.} Includes regional source emissions inventory.

estimate light extinction changes at regional communities for comparison to the visibility impact thresholds. For in-field locations, CALPUFF concentrations were post-processed to compute maximum concentration impacts for comparison to WAAQS and NAAQS. All post-processing methods and background data assumptions are consistent with the analyses presented in the DEIS.

2.4.1 Concentration

The CALPOST and POSTUTIL post-processors were used to summarize concentration impacts of NO₂, SO₂, PM₁₀, and PM_{2.5} at PSD Class I and sensitive PSD Class II areas and at in-field locations. Predicted impacts are compared to applicable ambient air quality standards, PSD Class I and Class II Increments, and significance levels as shown in Table 2.2.

Table 2.2 NAAQS, WAAQS, PSD Class I and Class II Increments, and PSD Class I and Class II Significance Levels for Comparison to Far-field Analysis Results $(\mu g/m^3)$.

Pollutant/Averaging Time	NAAQS	WAAQS	PSD Class I Increment	PSD Class II Increment	PSD Class I Significance Level ¹	PSD Class II Significance Level
NO ₂			1			n-3 Distribute
Annual ²	100	100	2.5	25	0.1	1.0
SO ₂						
3-hour ³	1,300	1,300	25	512	1.0	25.0
24-hour ³	365	260	5	91	0.2	5.0
Annual ²	80	60	2	20	0.1	1.0
PM ₁₀						
24-hour ³	150	150	8	30	0.3	5.0
Annual ²	50	50	4	17	0.2	1.0
PM _{2.5}						
24-hour ⁴	65	65				
Annual 4	15	15	din - non-min		od panacona	-

Proposed Class I significance levels from 61 Federal Register 142, pg. 38292, July 23, 1996.

The PSD demonstrations serve information purposes only and do not constitute a regulatory PSD Increment consumption analysis, which may be completed as necessary by WDEQ-AQD. The approach to this PSD screening analysis is consistent with the 2003 Protocol.

Annual arithmetic mean.

No more than one exceedance per year is allowed.

Standard not yet enforced in Wyoming; -- = no current or proposed value.

PM₁₀ concentrations were computed by adding predicted CALPUFF concentrations of PM₁₀ (fraction of PM greater than PM_{2.5}), PM_{2.5}, SO₄, and NO₃. PM_{2.5} concentrations were calculated as the sum of modeled PM_{2.5}, SO₄, and NO₃ concentrations. Consistent with the DEIS analyses for post-processing the PM₁₀ impacts at all far-field receptor locations, project traffic emissions of PM₁₀ (production and construction) were not included in the total estimated impacts, only the PM_{2.5} impacts were considered. This assumption was based on supporting documentation from the Western Regional Air Partnership (WRAP) analyses of mechanically generated fugitive dust emissions that suggest that particles larger than PM_{2.5} tend to deposit out rapidly near the emissions source and do not transport over long distances (Countess et al. 2001). However, the total PM₁₀ impacts from traffic emissions were included in all in-field concentration estimates.

Far-field Results

The maximum predicted concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} at each of the analyzed PSD Class I and sensitive Class II areas, for each of the 20 modeled direct project and cumulative source scenarios, are provided in Appendix C. Predicted direct impacts are compared to applicable PSD Class I and Class II Increments and significance levels, and then added to representative background pollutant concentrations (Table 2.3), the total concentration is compared to applicable NAAQS and WAAQS. Cumulative impacts from all analyzed scenarios are compared directly to applicable PSD Class I and Class II Increments, and to the NAAOS and WAAOS when background pollutant concentrations are added. Tables C.1.1-C.1.20 provide the maximum modeled NO₂ concentrations at each of the sensitive areas. The maximum modeled SO₂ concentrations are provided in Tables C.2.1-C.2.20, and the maximum modeled PM₁₀ and PM_{2.5} impacts are provided in Tables C.3.1-C.3.20, and Tables C.4.1-C.4.20, respectively. Summaries of results by scenario for NO_x, SO₂, PM₁₀, and PM_{2.5} are provided in Tables C.10.1-C10.2, C.10.3-C.10.4, C.10.5-C.10.6, and C.10.7-C.10.8, respectively.

Table 2.3 Background Ambient Air Quality Concentrations (µg/m³).

Pollutant	Averaging Period	Measured Background Concentration
NO ₂ ¹	Annual	3.4
PM_{10}^{2}	24-hour	33
	Annual	16
$PM_{2.5}^{2}$	24-hour	13
	Annual	5
SO_2^3	3-hour	132
	24-hour	43
	Annual	9

Data collected at Green River Basin Visibility Study site, Green River, Wyoming during period January-December 2001 (Air Resource Specialists 2002).

Data collected by WDEQ-AQD at Emerson Building, Cheyenne, Wyoming, Year 2001.

In-Field Results

The maximum predicted concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} within and nearby the JIDPA, for each of the 20 modeled direct project and cumulative scenarios are provided in Appendix C, Tables C.5.1 - C.5.20. A summary of results by scenario is provided in Tables C.10.9 and C.10.10. Predicted direct project and cumulative impacts are added to representative background pollutant concentrations and are compared to applicable NAAQS and WAAQS.

2.4.2 Deposition

Maximum predicted S and N deposition impacts were estimated for each analyzed direct project and cumulative source scenario. The POSTUTIL utility was used to estimate total S and N fluxes from CALPUFF predicted wet and dry fluxes of SO2, SO4, NOx, NO3, and HNO3. CALPOST was then used to summarize the annual S and N deposition values from the POSTUTIL program. Predicted direct project impacts were compared to the NPS deposition analysis thresholds (DATs) for total N and S deposition in the western U.S., which are defined as 0.005 kilograms per hectare per year (kg/ha-year) for both N and S. Total deposition impacts from direct project and regional sources were compared to USDA Forest Service levels of

Data collected at LaBarge Study Area at the Northwest Pipeline Craven Creek Site 1982-1983.

concern, defined as 5 kg/ha-yr for S and 3 kg/ha-yr for N (Fox et al. 1989). It is understood that the USDA Forest Service no longer considers these levels of concern to be protective; however, in the absence of alternative Federal Land Manager (FLM)-approved values, comparisons with these values were made. The maximum predicted N and S deposition impacts for each of the analyzed scenarios are provided in Appendix C, Tables C.6.1 - C.6.4. A summary of results by scenario is provided in Tables C.10.11 - C.10.14.

2.4.3 Sensitive Lakes

The CALPUFF-predicted annual deposition fluxes of S and N at sensitive lake receptors were used to estimate the change in acid neutralizing capacity (ANC). A list of the sensitive lakes and the background ANC values is provided in Table 2.4. The change in ANC was calculated following the January 2000, USDA Forest Service Rocky Mountain Region's Screening Methodology for Calculating ANC Change to High Elevation Lakes, User's Guide (USDA Forest Service 2000). The predicted changes in ANC are compared with the USDA Forest Service's Level of Acceptable Change (LAC) thresholds of 10% for lakes with ANC values greater than 25 microequivalents per liter (µeq/l) and 1 µeq/l for lakes with background ANC values of 25 µeq/l or less. Of the seven lakes listed in Table 2.4 and identified by the USDA Forest Service as acid sensitive. Upper Frozen and Lazy Boy lakes are considered extremely acid sensitive.

ANC calculations were performed for each of the analyzed direct project and cumulative source scenarios, with the results presented in Appendix C, Tables C.7.1 - C.7.20. A summary of results by scenario is provided in Tables C.10.15 and C.10.16.

Table 2.4 Background ANC Values for Acid Sensitive Lakes.

Wilderness Area	Lake	Latitude (Deg-Min-Sec)	Longitude (Deg-Min-Sec)	10th Percentile Lowest ANC Value (µeq/l)	Number of Samples	Monitoring Period
Bridger	Black Joe	42°44'22"	109°10'16"	67.0	61	1984-2003
Bridger	Deep	42°43'10"	109°10'15"	59.9	58	1984-2003
Bridger	Hobbs	43°02'08"	109°40'20"	69.9	65	1984-2003
Bridger	Lazy Boy	43°19'57"	109°43'47"	18.8	1	1997
Bridger	Upper Frozen	42°41'13"	109°09'39"	5.0	6	1997-2003
Fitzpatrick	Ross	43°22'41"	109°39'30"	53.5	44	1988-2003
Popo Agie	Lower Saddlebag	42°37'24"	108°59'38"	55.5	43	1989-2003

2.4.4 Visibility

The CALPUFF model-predicted concentration impacts at far-field PSD Class I and sensitive Class II areas and at mid-field regional community locations were post-processed with CALPOST to estimate potential impacts to visibility (regional haze) for each analyzed direct project and cumulative source scenario for comparison to visibility impact thresholds. CALPOST estimated visibility impacts from predicted concentrations of PM₁₀, PM_{2.5}, SO₄, and NO₃. PM₁₀ emissions from project traffic emissions were not included in the total estimated impacts (see Section 2.4.1), only the impacts to visibility from PM_{2.5} were considered.

Visibility impairment calculations were performed using estimated natural background visibility conditions obtained from FLAG (2000) (FLAG method) and measured background visibility conditions from the Bridger Wilderness Area and Yellowstone National Park IMPROVE sites (IMPROVE method). IMPROVE-method data are based on the quarterly mean of the 20% cleanest days as shown in Table 2.5.

IMPROVE Background Aerosol Extinction Values.1 Table 2.5

IMPROVE Site	VE Site Quarter		Non-hygroscopic (Mm ⁻¹) ²	Monitoring Period	
Bridger Wilderness Area	1	0.845	1.666	1989-2002	
	2	1.730	3.800	1988-2002	
	3	1.902	5.637	1988-2002	
	4	0.915	2.035	1988-2002	
Yellowstone National Park	1	1.126	2.973	1988-2002	
	2	1.502	4.531	1988-2002	
	3	1.811	7.330	1988-2002	
	4	1.033	2.990	1988-2002	

Cooperative Institute for Research in the Atmosphere (2003).

The IMPROVE background visibility data are provided as reconstructed aerosol total extinction data, based on the quarterly mean of the 20% cleanest days measured at the Bridger Wilderness Area and Yellowstone National Park IMPROVE sites for the historical monitoring period of record through December 2002.

For the FLAG method, estimated natural background visibility values as provided in Appendix 2.B of FLAG (2000), and monthly relative humidity factors as provided in the Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule (EPA 2003) were used. The natural background visibility data used with the FLAG visibility analysis for each area analyzed are shown in Table 2.6.

 Mm^{-1} = inverse megameters.

FLAG Report Background Extinction Values.1 Table 2.6

Site	Season	Hygroscopic (Mm ⁻¹) ²	Non-hygroscopic (Mm ⁻¹) ²
Bridger, Fitzpatrick, Teton, and	Winter	0.6	4.5
Waskakie Wilderness Areas, and Grand Teton and Yellowstone National Parks ³	Spring	0.6	4.5
Teton and Tenowstone National Parks	Summer	0.6	4.5
	Fall	0.6	4.5

FLAG (2000).

The IMPROVE method used the measured background conditions at the Bridger Wilderness Area and at the Yellowstone National Park site, and the monthly relative humidity factors as provided in EPA (2003). Visibility data from the Bridger Wilderness Area IMPROVE site were used for the Bridger, Fitzpatrick, and Popo Agie Wilderness Areas and for the Wind River Roadless Area, and visibility data from the Yellowstone National Park IMPROVE site were used for the Teton and Washakie Wilderness Areas and for Grand Teton and Yellowstone National Parks. Background visibility data measured at the Bridger Wilderness Area IMPROVE site are cleaner (more pristine) than the FLAG data during quarters 1 and 4. Therefore since visibility impacts are calculated as percent increases of modeled light extinction above background values, the use of these more pristine background data will result in higher estimated visibility impacts than with the use of the FLAG natural background data during these quarters.

CALPOST visibility processing method "MVISBK=6" was used in combination with the two sets of background visibility data and monthly relative humidity factors. These visibility processing methods are consistent with the original DEIS and AQTSD analyses.

Background visibility data monitored at the Bridger Class I Wilderness Area IMPROVE site, an area more pristine than populated residential areas (i.e., lacking suburban/rural emissions such as

Mm⁻¹ = inverse megameters

Also used for Popo Agie Wilderness, Wind River Roadless Area, and regional communities.

those from traffic and wood stoves), were used to estimate potential visibility impairment at the regional community locations. These data were used because no visibility monitoring has been conducted in the populated areas of the region. Since visibility impacts are calculated as percent increases of modeled light extinction above background values, the use of a more pristing background likely results in an overestimate of potential visibility impacts at these locations.

As recommended in EPA (2003), monthly relative humidity factors determined from the Bridger IMPROVE site were used for the Bridger and Fitzpatrick Wilderness Areas; Yellowstone IMPROVE data were used for Yellowstone and Grand Teton National Parks and for the Teton Wilderness Area; and North Absaroka IMPROVE data were used for the Washakie Wilderness Area. Relative humidity data for the Bridger site were also used for the Popo Agie Wilderness Area and for the Wind River Roadless Area. Table 2.7 provides the relative humidity factors (f[RH]) that were used in the analyses.

Table 2.7 Monthly f(RH) Factors from Regional Haze Rule Guidance.

IMPROVE Site	Quarter	Months	f(RH) Values
Bridger Wilderness Area ¹	1	Jan, Feb, Mar	2.5, 2.3, 2.3
	2	Apr, May, Jun	2.1, 2.1, 1.8
	3	Jul, Aug, Sep	1.5, 1.5, 1.8
	4	Oct, Nov, Dec	2.0, 2.5, 2.4
North Absaroka Wilderness Area ²	1	Jan, Feb, Mar	2.4, 2.2, 2.2
	2	Apr, May, Jun	2.1, 2.1, 1.9
	3	Jul, Aug, Sep	1.6, 1.5, 1.8
	4	Oct, Nov, Dec	2.0, 2.3, 2.4
Yellowstone National Park ³	1	Jan, Feb, Mar	2.5, 2.3, 2.2
	2	Apr, May, Jun	2.1, 2.1, 1.9
	3	Jul, Aug, Sep	1.7, 1.6, 1.8
	4	Oct, Nov, Dec	2.1, 2.4, 2.5

Used for Bridger, Fitzpatrick, and Popo Agie Wilderness Areas, Wind River Roadless Area, and regional communities.

Used for Washakie Wilderness Area.

Used for Teton Wilderness Area and Yellowstone and Grand Teton National Parks.

Change in atmospheric light extinction relative to background conditions is used to measure regional haze. Analysis thresholds for atmospheric light extinction are set forth in FLAG (2000), with the results reported in percent change in light extinction and change in deciview (dv). The thresholds are defined as 5% and 10% of the reference background visibility or 0.5 and 1.0 dv for project sources alone and cumulative source impacts, respectively. The BLM considers a 1.0 dv change as a significant adverse impact; however, there are no applicable local, state, tribal, or federal regulatory visibility standards. It is the responsibility of the FLM or Tribal government responsible for that land to determine when adverse impacts are significant or not, and these may differ from BLM levels for significant adverse impacts (e.g., the USDA Forest Service considers a 0.5-dy change as a threshold for protection of visibility in sensitive areas).

Far-Field Results

The maximum predicted far-field visibility impacts for each of the analyzed scenarios are provided in Appendix C, Tables C.8.1 - C.8.20. A summary of results by scenario is provided in Tables C.10.17 - C.10.20. Predicted impacts are shown using both the FLAG and IMPROVE background visibility data. For each Class I and sensitive Class II area the maximum predicted change in dv and the estimated number of days per year that could potentially exceed 0.5 and 1.0 dy thresholds are provided. Tables that present all predicted impacts above the thresholds and the days when the impacts were predicted to occur are also provided in Appendix C (Tables C.8.21 - C.8.32) for each Class I and sensitive Class II area where the maximum predicted change in dv is estimated to exceed 0.5 and 1.0 dv thresholds.

Mid-Field Results

The maximum predicted mid-field visibility impacts for each of the analyzed Preferred Alternative scenarios are provided in Appendix C, Tables C.9.1 - C.9.20. A summary of results by scenario is provided in Tables C.10.21 - C.10.24. Predicted impacts are shown using both the FLAG and IMPROVE background visibility data. The maximum predicted visibility impacts (dv) at regional communities and the estimated number of days per year that could potentially exceed the 1.0 dv threshold are provided for each community location using both the FLAG and IMPROVE background visibility data. Tables that present all predicted impacts above the

threshold and the days when the impacts were predicted to occur are also provided in Appendix C (Tables C.9.21 – C.9.40) for each regional community location.

3.0 EARLY-PROJECT-DEVELOPMENT STAGE MODELING

At the request of the BLM, an analysis of JIDP early-project-development stage air quality conditions in the vicinity of the JIDPA was performed. What has been modeled and presented in the DEIS and supplemented herein for the Preferred Alternative (see Section 2.0) considers the "most likely case" emissions scenarios for the JIDP. However, when quantifying maximum cumulative impacts regionally, it is possible that peak regional impacts could occur prior to JIDP maximum emissions as a result of the development of other natural gas projects in the region, specifically the Pinedale Anticline Project (PAP), South Piney Project (SPP), Riley Ridge Project (RRP), and Jack Morrow Hills Project (JMHP). The BLM requested this analysis because it was considered probable that regional impacts would be greatest during the early stages of JIDP development due to accelerated development paces in these nearby project areas. Unlike the Preferred Alternative modeling analyses (see Section 2.0), modeling analyses of the early-project-development stage emissions are not directly comparable to the results presented in the DEIS for reasons explained below.

The goal of this analysis was to quantify a maximum PM₁₀, PM_{2.5}, NO_x, and SO₂ emissions scenario that could potentially occur within the next few years in the air basin located southwest of the Bridger Wilderness Area, as a result of 1) increased well drilling and flaring activities among several active natural gas field developments, and 2) expanded compression requirements, beyond what was analyzed for the DEIS. To accomplish this goal a study baseline year, determined based on available background pollutant data, was selected. Emissions estimates of well drilling and flaring were quantified for this baseline year for the JIDP, PAP, SPP, RRP and JMHP. Emission estimates of well drilling, flaring, and expanded compression for these projects, and other companies operating within these project areas, which are representative of current year or early-project-development stage conditions, were then determined. Emission estimates for the baseline year were subtracted from the early-project-development stage emissions. This emissions "netting" determined the emissions changes from background to current conditions, and avoided "double-counting" existing background conditions in future air quality conditions. These emission changes were then modeled in combination with other JIDP sources and regional sources to estimate both project-specific and cumulative pollutant impacts

at far-field PSD Class I and sensitive Class II areas, at mid-field Wyoming regional community locations, and within the JIDPA. Other JIDP sources include expanded compression estimates beyond what was analyzed for the DEIS, production and construction traffic emissions and wellsite heater emission representative of early project emissions, and wind erosion as it was calculated and analyzed in the DEIS (BLM 2005, TRC 2004). Non-project regional emissions, with the exception of the PAP, SPP, RRP, and JMHP, included in the DEIS and as described in detail in the AOTSD were included in the modeling analyses. For the PAP, SPP, RRP, and JMHP, the well drilling and flaring emissions differences were included along with any emissions that were included in the permitted source and RFD inventories for the DEIS analyses. The regional emissions include sources newly permitted by the state agencies through June 30, 2003, RFD, RFFA, and Operator-projected compression estimates. These data were originally compiled as part of the DEIS using data obtained from the BLM, WDEQ-AQD, CDPHE/APCD, UDEQ-AQD, and IDEQ. These inventories were updated to include additional source emissions permitted through March 31, 2004, and these additional source emissions were included in the cumulative modeling analyses.

The emissions information available for well drilling and flaring activities and expanded compression requirements, obtained prior to a cut-off date of May 26, 2005, were used in the analysis. A study baseline year of 2002 was used because background visibility data through 2002 were available. Year 2006 was selected as representative of a maximum emissions scenario for regional emissions. The 2006 inventory also included recent expanded compression estimates, in addition to the expanded compression estimates that were obtained prior to the DEIS analyses and included in the DEIS modeling. Details on the additional emissions inventories developed for this analysis are provided in Section 3.1. The modeling analyses of the early-project-development stage emissions are not directly comparable to the results presented in Section 2.4 or in the DEIS due to differences (emissions increases) in the regional (non-project) emissions inventories and the expanded compression estimates included in this analysis.

The modeling analysis was performed generally following the methodologies used for the DEIS and AQTSD. The CALMET and CALPUFF model versions that were used for the DEIS analysis were used to estimate direct JIDP and cumulative pollutant impacts at far-field PSD Class I and sensitive Class II areas, and at mid-field Wyoming regional community locations and within the JIDPA. A discussion of the model parameters is provided in Section 3.2. Model results for the early-project-development stage modeling scenarios are summarized in Section 3.3.

3.1 EMISSIONS INVENTORIES

3.1.1 Year 2006 Drilling and Flaring Emissions

Emissions for drilling activities and completion flaring were developed for the JIDP, PAP, SPP, RRP, and JMHP based on a review of proposed well development rates and drilling activities for each project, from information available from the Wyoming Oil and Gas Conservation Commission (WOGCC) for drill rig "spud" activity data, and from information and estimates provided by the BLM, Pinedale Field Office. Emissions were determined for monthly drilling activities to capture seasonal variations in drilling. Table 3.1 provides a summary of the project-specific drilling rig and flare information that was used for year 2006 modeling.

A WDR250 was used for the JIDP (i.e., 20 drill rigs operating continuously per month), with 3 completion flares operating continuously per month. For the JIDP it was assumed that 50% of the wells would be directionally drilled and 50% of the wells would be straight hole, approximately 80% of the wells would have flareless completions, and there would be an 80%/20% combination of drilling engines with Tier 0 and Tier 1 emissions levels, respectively. Drill rig engine sizes and flare assumptions are identical to those used for the DEIS analyses. Three additional drill rigs and 1 additional completion flare were also added to account for potential expanded Jonah Field operations. These emissions were determined using JIDP emissions estimates, assuming directional drilling for each of the three rigs and an 80%/20% combination for Tier 0/Tier 1 drill rig emissions.

Table 3.1 Summary of Year 2006 Drilling Rigs Counts and Flaring Operations.

Field	Months	Operating Drilling Rigs	Operating Flares
JIDP	Jan, Feb, Mar,	20, 20, 20,	3, 3, 3,
	Apr, May, Jun,	20, 20, 20,	3, 3, 3,
	Jul, Aug, Sep,	20, 20, 20,	3, 3, 3,
	Oct, Nov, Dec	20, 20, 20	3, 3, 3
IIDD Evnandad	Jan, Feb, Mar,	3, 3, 3,	1, 1, 1,
JIDP – Expanded Jonah Field	Apr, May, Jun,	3, 3, 3,	1, 1, 1,
Operators	Jul, Aug, Sep,	3, 3, 3,	1, 1, 1,
	Oct, Nov, Dec	3, 3, 3	1, 1, 1
	Jan, Feb, Mar,	25, 25, 25,	4, 4, 4,
PAP	Apr, May, Jun,	25, 25, 30,	4, 4, 5,
PAP	Jul, Aug, Sep,	35, 35, 35,	5, 5, 5,
	Oct, Nov, Dec	30, 25, 25	5, 4, 4
Free Men = 11	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
SPP	Apr, May, Jun,	0, 3, 3,	0, 1, 1,
SPP	Jul, Aug, Sep,	3, 3, 3,	1, 1, 1,
	Oct, Nov, Dec	3, 0, 0	1, 0, 0
	Jan, Feb, Mar,	2, 2, 2,	1, 1, 1,
DDD	Apr, May, Jun,	2, 3, 3,	1, 1, 1,
RRP	Jul, Aug, Sep,	6, 6, 6,	1, 1, 1,
	Oct, Nov, Dec	3, 2, 2	1, 1, 1
ЈМНР	Jan, Feb, Mar,	1, 1, 1,	1, 1, 1,
	Apr, May, Jun,	1, 1, 1,	1, 1, 1,
	Jul, Aug, Sep,	1, 1, 1,	1, 1, 1,
	Oct, Nov, Dec	1, 1, 1	1, 1, 1
D: 1-1- E: -14	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
Pinedale Field	Apr, May, Jun,	0, 0, 0,	0, 0, 0,
Office – Wildcat	Jul, Aug, Sep,	3, 3, 0,	1, 1, 0,
Rigs	Oct, Nov, Dec	0, 0, 0	0, 0, 0

For the PAP, the 2006 monthly well development rates were determined from well development rates obtained from the WOGCC for year 2004 and from drill rig estimates provided by the BLM, Pinedale Field Office, which include estimates from Questar, BP AMOCO, Yates, Anschutz, Shell, Stone Energy, and Ultra Petroleum. Emissions data were determined from drill rig data obtained from the WDEQ for Questar Corporation's year-round drilling project along the Pinedale Anticline. Drill rig emissions were calculated using the emissions data for the 6 yearround drilling rigs from Questar's year-round drilling project, assuming an additional 6 5,000 horsepower (hp) drill rigs to account for other Operator's year-round drilling projects, and basing the remainder of the drill rig assumptions off Questar's data for a 3,216 hp drill rig. Since actual drill rig data was available there were no additional assumptions made for straight/directional drill rig percentages. Emissions from Questar's 6 year-round drilling rigs assumes Tier 0 emissions for 3 drill rigs, Tier 1 emissions for 2 drill rigs, and a combination of Tier 0/Tier 1 emissions on 1 drill rig. Emissions from the six 5,000 hp year-round drill rigs and the additional 3.216 hp drill rigs were determined assuming an 80%/20% Tier 0/Tier 1 emissions ratio. Completion flaring estimates assume approximately 80% flareless completions, with flare emissions estimates obtained from the Pinedale Anticline EIS (BLM 1999). calculations for the drill rigs and completion flares are provided in Appendix D.

For the SPP, year 2006 drilling activity was assumed to occur only during the summer months (May-Oct) with 3 drill rigs and 1 flare operating continuously for these months. Two 2,100 hp rigs and 1 2,600 hp rig were assumed. Flaring emissions estimates were obtained from the SPP Emissions Inventory for the South Piney Natural Gas Development Project (BLM 2003). The RRP estimates include 2 to 6 drill rigs (each at 2,100 hp) and 1 flare operating throughout the year with an increase in activity in the summer months. JIDP flaring emissions were utilized for the RRP. JMHP estimates include a single operating rig (2,600 hp) and flare operating continuously throughout the year (JIDP flaring emissions were used). 3 additional 5,000 hp "wildcat" drilling rigs and 1 completion flare were added to the inventory to account for exploratory drilling north of the Pinedale Anticline in the summer months (July and August). For the SPP, RRP, JMHP, and the "wildcat" rigs it was assumed that 100% of the wells will be straight hole, 100% of the wells will be flared, and 100% of drilling engines will be at Tier 0 emissions levels. Emissions calculations for each project area are provided in Appendix D.

Year 2002 Drilling and Flaring Emissions

Baseline study year emissions for drilling activities and completion flaring were developed for the JIDP, PAP, SPP, RRP, and JMHP based on a review of actual monthly well development

rates and drilling activities that occurred in the region during 2002. Year 2002 emissions were quantified to determine the level of emissions that existed in background ambient air quality during 2002. Well development rates and drilling activities for each project were determined from WOGCC data for drill rig "spud" activity that occurred in the project areas during year 2002.

For each project area drill rig engine sizes and flaring estimates were assumed to be consistent with the estimates used for the 2006 calculations. For the PAP year 2002 calculations, 3.216 hp engine sizes (Questar data) were used for each drill rig. It was assumed that during year 2002 all drilling engines would be at Tier 0 emissions levels. For all project areas, 100% straight hole drilling was assumed. Completion flaring emissions was determined from a review of actual well development rates and the assumption that 100% of the developed wells required flaring. A summary of the drilling rig and flare information that was used for the year 2002 modeling is provided in Table 3.2.

3.1.3 Expanded Compression

The BLM, field Operators, and other gas compression companies operating nearby were contacted to determine an estimate of expanded field compression requirements for the area. The expanded compression is in addition to the compression estimates that were obtained, from field Operators, state permits, and RFD, and modeled for the DEIS. A summary of the recent (up through May 26, 2005) expanded compression estimates used for this analysis and the field compression estimates that were included in the DEIS analyses are provided in Table 3.3. Emissions for expanded field compression were calculated based on best available data information obtained from the WDEQ-AQD. These emissions are shown in Appendix D, Tables D.1.54 - D.1.60.

Table 3.2 Summary of Year 2002 Drilling Rigs Counts and Flaring Operations.

Field	Months	Operating Drilling Rigs	Operating Flares
JIDP	Jan, Feb, Mar,	6, 6, 6,	3, 3, 3,
	Apr, May, Jun,	8, 5, 7,	4, 2, 3,
	Jul, Aug, Sep,	4, 5, 8,	2, 2, 4,
	Oct, Nov, Dec	5, 4, 5	2, 2, 2
	Jan, Feb, Mar,	4, 3, 3,	2, 1, 1,
DAD	Apr, May, Jun,	1, 7, 3,	1, 3, 1,
PAP	Jul, Aug, Sep,	8, 5, 3,	4, 2, 1,
	Oct, Nov, Dec	3, 0, 1	1, 0, 1
	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
CDD	Apr, May, Jun,	0, 0, 0,	0, 0, 0,
SPP	Jul, Aug, Sep,	0, 0, 2,	0, 0, 1,
	Oct, Nov, Dec	0, 2, 1	0, 1, 1
	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
DDD	Apr, May, Jun,	0, 1, 2,	0, 1, 1,
RRP	Jul, Aug, Sep,	2, 4, 2,	1, 1, 1,
	Oct, Nov, Dec	2, 1, 1	1, 1, 1
	Jan, Feb, Mar,	1, 1, 1,	1, 1, 1,
IMIID	Apr, May, Jun,	1, 1, 1,	1, 1, 1,
JMHP	Jul, Aug, Sep,	1, 1, 1,	1, 1, 1,
	Oct, Nov, Dec	1, 1, 1	1, 1, 1

Table 3.3 Summary of Expanded Field Compression Estimates.

Field	Permitted/RFD	on to page of anxion principal	Expanded Compression
	Compression Included	Expanded Compression	Estimates Beyond those
	in DEIS Analysis	Included in DEIS Analysis	included in the DEIS
	13,269 hp (Falcon)	7,336 hp (Falcon)	2,888 hp (Falcon)
JIDP	0 hp (Luman)	11,604 hp (Luman)	11,248 hp (Luman)
JIDP	9,405 hp (Bird)	11,004 hp (Bird)	30,928 hp (Bird)
	5,285 hp (Jonah)	3,900 hp (Jonah)	3,000 hp (Jonah)
	12,094 hp (Paradise)	7,336 hp (Paradise)	9,624 hp (Paradise)
PAP	25,110 hp (Gobblers	10,000 hp (Gobblers Knob)	1,160 hp (Gobblers Knob)
	Knob, Mesa 1, Mesa 2)		, and the last well as
SPP	48,500 hp	0 hp	0 hp
RRP	0 hp	0 hp	0 hp
JMHP	3,480 hp	0 hp	2,940 hp

Permitted Source Emissions Inventory 3.1.4

As part of the JIDP DEIS, an inventory of permitted source emissions was developed using data obtained from the WDEQ-AQD, CDPHE/APCD, UDEQ-AQD, and IDEQ. This inventory included sources that had received permits through June 30, 2003. The inventory was been updated to include additional source emissions permitted through March 31, 2004. These additional source emissions were obtained from the source inventory that was developed by TRC for the Atlantic Rim Natural Gas Project and the Seminoe Road Gas Development Project. The extent of the inventory domain for these projects and the JIDP study domain are shown on Figure 2. The cross-hatched area on Figure 2 illustrates the area within the JIDP study domain where an additional nine months (July 1, 2003 - March 31, 2004) of permitted source emissions were available and included in the modeling analysis. A list of these additional sources is summarized in Appendix, Tables D.1.61 and D.1.63.

3.2 MODEL PARAMETERS

The modeling analysis was performed generally following the methodologies used for the DEIS and AQTSD. The CALMET (Version 5.53) and CALPUFF (Version 5.711) model versions used for the DEIS analyses were used to estimate both project and cumulative pollutant impacts at farfield PSD Class I and sensitive Class II areas, at mid-field Wyoming regional community locations, and within the JIDPA. All CALPUFF model methodologies, switch settings, source parameters, and model receptors are identical to the analyses performed for the DEIS unless otherwise indicated. Modeled emissions included JIDP, PAP, SPP, RRP, and JMHP well drilling and flaring emissions differences calculated on a monthly basis (2006 minus the baseline study year 2002), well drilling and flaring estimates for other expanded Jonah Field Operators and "wildcat" drill rigs, other JIDPA emissions, expanded compression emissions, sources permitted by state agencies through March 31, 2004, and the RFD and RFFA emissions that were determined for the DEIS. The 'other' JIDPA emissions sources include expanded compression estimates, beyond what was analyzed for the DEIS, production and construction traffic emissions and wellsite heater emission representative of early project emissions, and wind erosion. For early-project-development stage analyses, production traffic, wellsite heater, and wind erosion emissions assumed 700 wells operating in year 2006. This assumption was based off 198 wells (developed in the JIDPA since January 2002 - DEIS assumption) and 2 years of well field development at a 250 WDR. Construction traffic emissions for the JIDPA were based on WDRs determined in Sections 3.1.1 and 3.1.2. Production traffic, construction traffic, wellsite heater, and wind erosion emissions, and assumptions determined for the DEIS analyses were used for the early-project-development stage analyses.

The total direct project emissions and regional emissions modeled for the early-projectdevelopment stage analyses are shown in Appendix D Table D.1.1. The calculated emissions differences for drilling rig and flaring activities for the JIDP, PAP, SPP, and RRP are given in Appendix D, Tables D.1.11, D.1.30, D.1.45, and D.1.36, respectively. For the JMHP there were no emissions changes due to drilling or flaring operations between years 2002 and 2006.

Emissions differences determined for the JIDP, PAP, SPP, RRP, and JMHP were modeled as point sources, spread within each project area. These are locations are shown in Figure 3. Representative source parameters consistent with the JIDP DEIS analyses were used for drill rig engines and flares. Emissions from expanded compression were modeled as point sources located at existing compressor station locations using existing source characterizations or estimated based on best available information.

The CALMET wind fields used for early-project-development stage analysis differ from the wind fields used for the DEIS and Preferred Alternative modeling. The CALMET wind fields used for this modeling were developed without the use of the "kinematic effects" CALMET switch setting option, which was used for all DEIS analyses and Preferred Alternative modeling. The change in wind field development was made to correct a potential CALMET model anomaly, which could produce unrealistically high wind speeds in the wind field layers above the surface layer. Model tests for the DEIS cases indicated that the use of IKINE produced more conservative (slightly higher) model predictions at the Bridger Wilderness Area.

Recent CALMET model peer review studies and model developer suggestions are the basis for this change. The switch setting was originally selected based on peer review of the 1995 Southwest Wyoming Technical Air Forum (SWWYTAF) wind fields, which indicated that surface wind speeds from CALMET were underestimated. The use of IKINE produced better agreement with surface wind observations. In addition since the JIDPA is approximately 30 km from the Bridger Wilderness the use of terrain was justified as "best science" to more appropriately model terrain affects.

3.3 MODEL RESULTS

CALPUFF modeling was performed to calculate direct JIDP impacts for early-projectdevelopment stage conditions and for estimating cumulative impacts from potential project and regional sources. Regional emissions inventories of existing state-permitted, RFD, and RFFA sources were modeled in combination with project sources to provide cumulative impact estimates for each scenario.

For each far-field sensitive area, CALPUFF-modeled concentration impacts were post-processed with POSTUTIL and CALPOST to derive: 1) concentrations for comparison to ambient air quality standards (WAAQS and NAAQS), PSD Class I significance thresholds, and PSD Class I and II Increments; 2) deposition rates for comparison to sulfur (S) and nitrogen (N) deposition levels of concern and to calculate changes to ANC at sensitive lakes; and 3) light extinction changes for comparison to visibility impact thresholds. For the mid-field analyses, CALPOST concentrations were post-processed to estimate light extinction changes at regional communities for comparison to the visibility impact thresholds. For in-field locations, CALPUFF concentrations were post-processed to compute maximum concentration impacts for comparison to WAAQS and NAAQS.

3.3.1 Concentration

The CALPOST and POSTUTIL post-processors were used to summarize concentration impacts of NO₂, SO₂, PM₁₀, and PM_{2.5} at PSD Class I and sensitive PSD Class II areas, and at in-field locations. Predicted impacts are compared to applicable ambient air quality standards, PSD Class I and Class II Increments, and significance levels as shown in Table 2.2. The PSD demonstrations serve information purposes only and do not constitute a regulatory PSD Increment consumption analysis, which may be completed as necessary by WDEQ-AQD. The approach to this PSD screening analysis is consistent with the original DEIS and AQTSD analyses.

PM₁₀ concentrations were computed by adding predicted CALPUFF concentrations of PM₁₀ (fraction of PM greater than PM2.5), PM2.5, SO4, and NO3. PM2.5 concentrations were calculated as the sum of modeled PM_{2.5}, SO₄, and NO₃ concentrations. Consistent with the DEIS analyses, for post-processing the PM₁₀ impacts at all far-field receptor locations, project traffic emissions of PM₁₀ were not included in the total estimated impacts, only the PM_{2.5} impacts were considered. However, the total PM₁₀ impacts from traffic emissions were included in all in-field concentration estimates.

Far-field Results

The maximum predicted concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} at each of the analyzed PSD Class I and sensitive Class II areas, for direct project and cumulative source scenarios, are provided in Appendix E. Predicted direct project impacts are compared to applicable PSD Class I and Class II Increments and significance levels, and then added to representative background pollutant concentrations (Table 2.3), the total concentration is compared to applicable NAAQS and WAAQS. Cumulative impacts are compared directly to applicable PSD Class I and Class II Increments, and to the NAAQS and WAAQS when background pollutant concentrations are added. Tables E.1.1 and E.1.2 provide the maximum modeled NO₂ concentrations at each of the sensitive areas. The maximum modeled SO₂ concentrations are provided in Tables E.2.1 and E.2.2, and the maximum modeled PM₁₀ and PM_{2.5} impacts are provided in Tables E.3.1 and

E.3.2, and Tables E.4.1 and E.4.2, respectively. Results summaries for NO_x, SO₂, PM₁₀, and PM_{2.5} are provided in Tables E.10.1, E.10.2, E.10.3, and E.10.4, respectively.

In-Field Results

The maximum predicted concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} within and nearby the JIDPA, for both direct project and cumulative scenarios are provided in Appendix E. Tables E.5.1 and E.5.2. Results summaries are provided in Table E.10.5. Predicted direct project and cumulative impacts are added to representative background pollutant concentrations and are compared to applicable NAAQS and WAAQS.

Deposition 3.3.2

Maximum predicted S and N deposition impacts were estimated for both direct project and cumulative source scenarios. The POSTUTIL utility was used to estimate total S and N fluxes from CALPUFF predicted wet and dry fluxes of SO₂, SO₄, NO₃, NO₃, and HNO₃. CALPOST was then used to summarize the annual S and N deposition values from the POSTUTIL program. Predicted direct project impacts were compared to the NPS (0.005 kg/ha-year) DAT for total N and S deposition in the western U.S. Total deposition impacts from direct project and regional sources were compared to USDA Forest Service levels of concern, 5 kg/ha-yr for S and 3 kg/hayr for N. It is understood that the USDA Forest Service no longer considers these levels of concern to be protective; however, in the absence of alternative FLM-approved values, comparisons with these values were made. The maximum predicted N and S deposition impacts for each of the analyzed scenarios are provided in Appendix E, Tables E.6.1 and E.6.2. Results summaries are provided in Table E.10.6 and E.10.7.

Sensitive Lakes 3.3.3

The CALPUFF-predicted annual deposition fluxes of S and N at sensitive lake receptors were used to estimate the change in ANC. A list of the sensitive lakes and the background ANC values is provided in Table 2.4. The change in ANC was calculated following the January 2000, USDA Forest Service guidance. The predicted changes in ANC are compared with the USDA

Forest Service's Level of LAC thresholds of 10% for lakes with ANC values greater than 25 μeq/l and 1 μeq/l for lakes with background ANC values of 25 μeq/l or less.

ANC calculations were performed for both direct project and cumulative source scenarios, with the results presented in Appendix E, Tables E.7.1 and E.7.2. Results summaries are provided in Table E.10.8.

3.3.4 Visibility

The CALPUFF model-predicted concentration impacts at far-field PSD Class I and sensitive Class II areas and at mid-field regional community locations were post-processed with CALPOST to estimate potential impacts to visibility (regional haze) for both direct project and cumulative source scenarios for comparison to visibility impact thresholds. CALPOST estimated visibility impacts from predicted concentrations of PM₁₀, PM_{2.5}, SO₄, and NO₃. PM₁₀ emissions from project traffic emissions were not included in the total estimated impacts (see Section 2.4.1), only the impacts to visibility from PM_{2.5} were considered.

Visibility impairment calculations were performed using both the FLAG and IMPROVE background data sets as described in Section 2.4.4. CALPOST visibility processing methods "MVISBK=6" and "MVISBK=2" were used in combination with the two sets of background visibility data. CALPOST method "MVISBK=6", as described in Section 2.4.4, utilizes monthly relative humidity factors in combination with background visibility data to estimate light extinction changes. This method was used for all DEIS analyses and Preferred Alternative modeling. CALPOST method "MVISBK=2" utilizes hourly relative humidity data from surface meteorological station measurements (included as part of the CALMET windfield data) in combination with background visibility data to compute potential light extinction change. Consistent with the FLAG document a relative humidity cutoff value of 98 percent was used for these calculations.

Far-Field Results

The maximum predicted far-field visibility impacts for both direct project and cumulative scenarios are provided in Appendix E, Tables E.8.1 – E.8.4. Results summaries are provided in Tables E.10.9 - E.10.12. Predicted impacts are shown using both the FLAG and IMPROVE background visibility data for each of the CALPOST visibility processing methods. For each Class I and sensitive Class II area the maximum predicted change in dv and the estimated number of days per year that could potentially exceed 0.5 and 1.0 dy thresholds are provided. Tables that present all predicted impacts above the thresholds and the days when the impacts were predicted to occur are also provided in Appendix E (Tables E.8.5 – E.8.36) for each Class I and sensitive Class II area where the maximum predicted change in dv is estimated to potentially exceed 0.5 and 1.0 dy thresholds.

Mid-Field Results

The maximum predicted mid-field visibility impacts for both direct project and cumulative scenarios are provided in Appendix E, Tables E.9.1 – E.9.4. A summary of results by scenario is provided in Tables E.10.13 - E.10.16. Predicted impacts are shown using both the FLAG and IMPROVE background visibility data for both CALPOST processing methods. The maximum predicted visibility impacts (change in dv) at regional communities and the estimated number of days per year that could potentially exceed the 1.0 dv threshold are provided for each community location. Tables that present all predicted impacts above the threshold and the days when the impacts were predicted to occur are also provided in Appendix E (Tables E.9.5 – E.9.44) for each regional community location.

REFERENCES

- Air Resource Specialists. 2002. Green River Basin Visibility Study. Monitored Air Quality Data. Air Resource Specialists, Fort Collins, Colorado.
- Bureau of Land Management. 1999. Pinedale Anticline Oil and Gas Exploration and Development Project Draft Environmental Impact Statement-Technical Report. U.S. Department of Interior, Bureau of Land Management, Pinedale Field Office, Pinedale, Wyoming, in cooperation with U.S. Forest Service, U.S. Army Corps of Engineers, and State of Wyoming.
- . 2003. Emissions Inventory for the South Piney Natural Gas Development Project. U.S. Department of Interior, Bureau of Land Management, Pinedale Field Office. December 2003.
- 2004. Finding of No Significant Impact (FONSI) and Decision Record for Questar Yearround Drilling Proposal. EA #WY-100-EA05-034. U.S. Department of the Interior, Bureau of Land Management, Pinedale Field Office, Pinedale, Wyoming. November 2004.
- 2005. Draft Environmental Impact Statement Jonah Infill Drilling Project, Sublette County, Wyoming. U.S. Department of Interior, Bureau of Land Management, Pinedale and Rock Springs Field Offices. February 2005.
- Cooperative Institute for Research in Atmosphere. 2003. Interagency Monitoring of Protected Visual Environments (IMPROVE) summary data provided by Scott Copeland, Cooperative Institute for Research in the Atmosphere, Colorado State University, October 2003.
- Countess, R.J., W.R. Barnard, C.S. Claiborn, D.A. Gillette, D.A. Latimer, T.G. Pace, J.G. Watson. 2001. Methodology for Estimating Fugitive Windblown and Mechanically Resuspended Road Dust Emissions Applicable for Regional Scale Air Quality Modeling. Report No. 30203-9. Western Regional Air Partnership, Denver, Colorado.
- Environmental Protection Agency. 1985. Compilation of Air Pollutant Emission Factors, AP-42, Volume II: Mobile Sources, Fourth Edition.
- . 1995. Compilation of Air Pollutant Emission Factors (AP-42), Vol. 1, Stationary Point and Area Sources, Fifth Edition with Supplements through 2004. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.
- . 2003. Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.

- Federal Land Managers' Air Quality Related Values Workgroup. 2000. Federal Land Managers' Air Quality Related Values Workgroup (FLAG) Phase I Report. U.S. Forest Service-Air Quality Program, National Park Service-Air Resources Division, U.S. Fish and Wildlife Service-Air Quality Branch. December 2000.
- Fox, Douglas, Ann M. Bartuska, James G. Byrne, Ellis Cowling, Rich Fisher, Gene E. Likens, Steven E. Lindberg, Rick A. Linthurst, Jay Messer, and Dale S. Nichols. 1989. A Screening Procedure to Evaluate Air Pollution Effects on Class I Wilderness Areas. General Technical Report RM-168. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, 36 pp.
- National Park Service. 2001. Guidance on Nitrogen and Sulfur Deposition Analysis Thresholds. National Park Service and U.S. Fish and Wildlife Service. National Park Service Air Resources Division. http://www.aqd.nps.gov/ard/flagfree/2001>, Data accessed July 2003.
- TRC. 2003. Air Quality Impact Assessment Protocol, Jonah Infill Drilling Project, Sublette County, Wyoming. Prepared for U.S. Department of Interior, Bureau of Land Management, Wyoming State Office and Pinedale Field Office. TRC Environmental Corporation, Laramie, Wyoming. October 2003.
- . 2004. Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement. Prepared for U.S. Department of Interior, Bureau of Land Management, Wyoming State Office and Pinedale Field Office. TRC Environmental Corporation, Laramie, Wyoming. November 2004.
- USDA Forest Service. 2000. Screening Methodology for Calculating ANC Change to High Elevation Lakes, User's Guide. U.S. Department of Agriculture (USDA) Forest Service, Rocky Mountain Region. January 2000.

ATTACHMENT

Figure 1

APPENDIX A

JUNE 2005 AIR QUALITY IMPACT ASSESSMENT PROTOCOL

JONAH INFILL DRILLING PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT IMPACT ANALYSIS SUPPLEMENT

AIR QUALITY IMPACT ASSESSMENT PROTOCOL JONAH INFILL DRILLING PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT IMPACT ANALYSIS SUPPLEMENT

PREFERRED ALTERNATIVE MITIGATION RUNS AND EARLY PROJECT DEVELOPMENT STAGE MODELING

Prepared for:

Bureau of Land Management Pinedale Field Office Pinedale, Wyoming

Bureau of Land Management Wyoming State Office Cheyenne, Wyoming

and

Wyoming Department of Environmental Quality
Air Quality Division
Cheyenne, Wyoming

Prepared by:

James Zapert
Peter Guernsey
Susan Connell
TRC Environmental Corporation
Laramie, Wyoming

TRC Project 35982

June 14, 2005

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) has prepared this Air Quality Impact Assessment Protocol (Protocol) to identify the methodologies to be used to:

- quantify project-specific and cumulative air quality impacts from additional configurations of the proposed Jonah Infill Drilling Project (JIDP) Preferred Alternative which were not analyzed as part of the Draft Environmental Impact Statement (DEIS), and
- quantify project-specific and cumulative impacts from potential emissions which reflect early-project-development stage conditions existing in the region surrounding the Jonah Infill Drilling Project area (JIDPA).

The air quality modeling analyses defined herein have been requested by the Bureau of Land Management (BLM) to supplement the air quality analyses that were performed and presented for a range of project alternatives in the DEIS.

The additional analyses were deemed necessary by the BLM to:

- evaluate alternative potential mitigation strategies for the Preferred Alternative in an
 effort to identify possible project development requirements to reduce adverse air
 quality impacts, and
- identify maximum early-project-development stage regional emissions (i.e., drilling)
 which could reveal that regional impacts are more severe at this stage due to impacts
 from the development of other regional projects, which at present have not been
 adequately evaluated.

This Protocol presents the methodologies for these analyses prior to study initiation to ensure that the approach, input data, and computation methods are acceptable to the BLM and Wyoming Department of Environmental Quality-Air Quality Division (WDEQ-AQD), and that other interested parties have the opportunity to review the Protocol and provide input before the study is initiated.

The methodologies for these additional modeling analyses generally follow the approaches described in the October 2003, Jonah Infill Drilling Project Air Quality Impact Assessment Protocol and the November 2004, Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement, with any changes described herein. The new analyses include an assessment of pollutant concentrations in the JIDPA as well as the use of the CALMET and CALPUFF models to assess far-field and mid-field pollutant impacts within the cumulative study area, shown in Figure 1, attached. Far-field pollutant impacts will be assessed at the Prevention of Significant Deterioration (PSD) Class I areas (Bridger, Fitzpatrick, Teton, and Washakie Wilderness Areas and Grand Teton and Yellowstone National Parks), and at the sensitive Class II Popo Agie Wilderness Area and Wind River Roadless Area. Far-field analyses will include impact assessments of concentration, visibility, acid deposition, and lake acidity (at sensitive lakes within the Wilderness Areas). Mid-field visibility impact analyses will be performed at the Wyoming regional community locations of Big Piney, Big Sandy, Boulder, Bronx, Cora, Daniel, Farson, LaBarge, Merna, and Pinedale.

The remainder of this Protocol describes the methodologies for analysis of the Preferred Alternative additional configurations (Section 2.0) and the methodologies for analysis of early-project-development stage conditions in the JIDPA region (Section 3.0).

2.0 PREFERRED ALTERNATIVE MODELING ANALYSES

Additional configurations of the Preferred Alternative will be modeled to provide a representation of the range of impacts possible under this alternative (low and high emissions scenarios), and a representation of impacts which could occur using various mitigation methods in the JIDPA. Modeling analyses for these additional configurations will generally follow the methodologies described in the October 2003 Jonah Infill Drilling project *Air Quality Impact Assessment Protocol*, and will be directly comparable to the analyses conducted for the DEIS. The CALMET (Version 5.53) and CALPUFF (Version 5.711) models used in the DEIS analyses will again be used to estimate both project and cumulative pollutant impacts at far-field PSD Class I and sensitive Class II areas, at mid-field Wyoming regional community locations, and within the JIDPA.

Only project emissions will differ from those emissions modeled for the DEIS. Non-project cumulative emissions will be modeled as they were included in the DEIS and as described in detail in the *Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement*. These include sources newly permitted by the state agencies through June 30, 2003, reasonably foreseeable development (RFD), and reasonably foreseeable future actions (RFFA). Project and cumulative emissions of PM₁₀, PM_{2.5}, NO_X, and SO₂ emissions will be modeled. Revised VOC emissions and resulting revised ozone impacts will be included in the FEIS.

Non-project cumulative emissions will differ from those included in the early project development stage modeling described in Section 3.0 of this Protocol. Early project development stage modeling is proposed to include additional estimates of future compression requirements beyond those projected by regional operators and included in the DEIS analysis. The Preferred Alternative modeling analyses described in this section will include only the originally projected compression estimates to maintain consistency and comparability with the DEIS analysis.

The Preferred Alternative for the JIDP consists of the development of 3,100 new natural gas wells on approximately 8,316 acres of new surface disturbance in the JIDPA, and assumes approximately 50% directionally drilled wells and 50% straight hole wells. Modeling results presented in the DEIS for Alternative F with a well development rate (WDR) of 250 wells per year are assumed to represent the maximum impacts from the Preferred Alternative at peak year emissions. Peak year emissions were assumed to occur in year 2017, and included emissions from 2,850 wells in production and 250 wells under construction, consistent with the field configuration anticipated for year 2017 (the field at nearly full production and the last year of construction in the field). The modeling also assumed a 50/50 split between straight and directional wells (consistent with the Preferred Alternative) and a 50/50 split between EPA Tier 1 and Tier 2 emissions levels for drilling rig engines. The modeling included 80 percent flareless completions (20% of completions flared) and JIDPA compression emissions at maximum levels projected at the time of the DEIS. This analysis remains the "most likely" emissions/impact assessment for the Preferred Alternative based upon current knowledge and assuming voluntary commitments made by developers.

Sections 2.1 through 2.3 describe the model scenarios analyzed to provide a range of impacts possible under the Preferred Alternative. Each of these scenarios is based upon anticipated field characteristics in year 2017, the presumed year of peak emissions.

2.1 LOW EMISSIONS CONFIGURATION

The Preferred Alternative will be modeled using the methods and inputs described in Section 2.0, with the exception of drilling rig engine emissions. This analysis will include all drilling rig engine emissions at Tier 2 emission levels. Development rates of 250, 150, and 75 wells per year will be analyzed (i.e., 20, 12, and 6 drill rigs operating continuously). Modeling will be performed for both project-specific and cumulative emissions scenarios.

2.2 HIGH EMISSIONS (BASE CASE) CONFIGURATION

The Preferred Alternative will be modeled using the methods and inputs described in Section 2.0, with the exception of drilling rig engine emissions. This analysis will include 80% of drilling rig engine emissions at Tier 0 emission levels (AP-42 levels), and 20% of engine emissions at Tier 1 emission levels. Development rates of 250, 150, and 75 wells per year will be analyzed. Modeling will be performed for both project-specific and cumulative emissions scenarios.

2.3 MITIGATION ANALYSES

Modeling will be performed to determine project-specific impacts based on emission reduction percentages from the high emissions (base case) configuration at a 250 WDR. Specifically, project emissions for this modeling configuration will be reduced by 20, 40, 60 and 80 percent, and these four emissions scenarios will be modeled. These analyses are sensitivity modeling runs that can be used to identify minimum impacts levels from project-specific source emissions. Modeling will be performed for both project-specific and cumulative emissions scenarios.

2.4 MODEL RESULTS

CALPUFF output will be post-processed to derive: 1) concentrations for comparison to ambient standards, significance thresholds, and Class I and II Increments; 2) deposition rates for comparison to sulfur (S) and nitrogen (N) deposition thresholds and to calculate acid neutralizing capacity (ANC) for sensitive lakes; and 3) light extinction for comparison to visibility impact thresholds in Class I and sensitive Class II areas and at regional communities. The modeling results will be presented in a supplemental report, summarized in the JIDP Final EIS (FEIS), and presented in detail in the Final JIDP Air Quality Technical Support Document. These results will be directly comparable to all other alternatives analyzed and presented in the DEIS.

Modeled concentrations combined with appropriate ambient background pollutant concentrations will be calculated at each far-field PSD Class I and sensitive Class II area and within the JIDPA, and will be compared to Wyoming and National Ambient Air Quality Standards (WAAQS and NAAQS). Both JIDP-specific and cumulative source modeling results will be presented.

Modeled concentrations predicted from the JIDP alone in Federal PSD Class I areas will be compared to Class I significance levels (Class I SILs) and Class I Increments, and cumulative modeling results predicted within Federal PSD Class I areas will be compared to Class I Increments. Project and cumulative impacts predicted at far-field sensitive areas designated as PSD Class II areas will be compared to Class II Increments. The PSD demonstrations serve information purposes only and will not constitute a regulatory PSD Increment consumption analysis, which may be completed as necessary by WDEQ-AQD. The approach to this PSD screening analysis is consistent with the original October 2003 Jonah Infill Drilling Project *Air Quality Impact Assessment Protocol*.

Visibility impacts (measured as change in light extinction) will be calculated using two methods, FLAG and IMPROVE, which differ by the background data used to derive the percent change in visibility. CALPOST visibility processing method MVISBK=6 will be used in combination with the two sets of background visibility data and monthly relative humidity factors from the *Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule*. These visibility processing methods are consistent with the October 2003 Protocol and the analyses presented in the DEIS. No updates to the 2002 baseline IMPROVE data set will be made. Changes in light extinction will be estimated from both JIDP emissions and cumulative source emissions at far-field PSD Class I and sensitive Class II areas, and at mid-field Class II Wyoming regional community locations. The 0.5 deciview change threshold value (for project source impacts) and the 1.0 deciview change threshold value (for cumulative source impacts) will be compared to far-field results modeled at PSD Class I and sensitive Class II areas. A summary of number of days greater than each of these threshold values will be provided in the text and, consistent with the DEIS, a summary of far-field cumulative impacts above both the 0.5 and 1.0 deciview change threshold values will be included in the appendices. Modeled results at

mid-field Class II regional locations from both project source and cumulative source impacts will be compared to the 1.0 deciview change threshold.

The total S deposition and N deposition at far-field PSD Class I and sensitive Class II areas from project emissions will be calculated and presented in kilograms/hectare/year (kg/ha/yr). These values will be compared to the 0.005 kg/ha/yr deposition analysis threshold (DAT) defined by the National Park Service (NPS) for total N and total S. Estimated total deposition fluxes of S and N from cumulative source impacts at the sensitive areas will be compared with levels of concern values of 5 and 3 kg/ha/yr for total S and N deposition fluxes, respectively. It is understood that the U.S. Department of Agriculture, Forest Service (USFS) no longer considers these levels of concern to be protective; however, in the absence of alternative Federal Land Manager-approved values, comparisons with these values will be made.

Predicted annual deposition fluxes of S and N at sensitive lake receptors from both JIDP and cumulative source emissions will be used to estimate the change in ANC. The predicted changes in ANC will be compared with the USFS's Level of Acceptable Change (LAC) thresholds of 10% for lakes with ANC values greater than 25 microequivalents per liter (μ eq/l) and 1 μ eq/l for lakes with background ANC values of 25 μ eq/l and less.

3.0 EARLY PROJECT DEVELOPMENT STAGE MODELING

At the request of the BLM, an analysis of early-project-development stage air quality conditions in the vicinity of the JIDPA will be performed. What has been modeled and presented in the DEIS for the JIDP considers the "most likely case" maximum emissions scenario for the project, as described in greater detail in Section 2.0. However, when quantifying maximum cumulative impacts regionally, it is possible that peak regional impacts could occur prior to JIDP maximum emissions as a result of the development of other natural gas projects in the region. The BLM requested this analysis because it was considered probable that regional impacts would be greatest during the early stages of JIDP development due to accelerated development paces in nearby project areas. Unlike the Preferred Alternative modeling analyses (see Section 2.0), the modeling of the early project development stage will not be directly comparable to the results presented in the DEIS for reasons explained below.

The goal of this analysis is to quantify a maximum PM_{10} , $PM_{2.5}$, NO_X , and SO_2 emissions scenario that could potentially occur within the next few years in the air basin located southwest of the Bridger Wilderness Area, as a result of 1) increased well drilling and flaring activities among several active natural gas field developments, and 2) expanded compression requirements, beyond what was analyzed for the DEIS. To accomplish this goal, a study baseline year has been selected, for which emissions will be quantified and subtracted from a selected year which is representative of current conditions. This accounting will allow ambient background concentrations to be added to modeled impacts without "double-counting" existing background conditions. The emissions information available for well drilling and flaring activities and expanded compressions requirements up through a cut-off date of May 26, 2005 will be used in the analysis.

A study baseline year of 2002 is proposed for use based on the availability of background visibility data through 2002. Year 2006 is proposed as a representative year to analyze for a maximum emissions scenario. The 2006 inventory would include drilling and completion flaring activities occurring within the JIDPA, Pinedale Anticline Project (PAP), South Piney Project (SPP), Riley Ridge Project (RRP), and Jack Morrow Hills Project (JMHP) areas. The 2006

inventory would also include expanded compression estimates and a more recent emissions inventory of permitted sources for the area.

The modeling analysis will be performed generally following the methodologies described in the October 2003 Jonah Infill Drilling Project *Air Quality Impact Assessment Protocol*. Modeled emissions will include expanded compression emissions, reasonably foreseeable development (RFD) and reasonably foreseeable future actions (RFFA) that were determined for the DEIS, with the exception of the JIDP, PAP, SPP, RRP and JMHP emissions that were modeled for the DEIS. For these projects, emissions will be determined as the difference between maximum development emission rates calculated for 2006 minus the emissions determined to be included in background in baseline study year 2002. This approach results in an analysis of incremental emissions changes on both a project-specific and cumulative basis. Emissions differences determined for the JIDP, PAP, SPP, RRP, and JMHP will be modeled as point sources, spread within each project area. Emissions from expanded compression will be modeled as point sources located based on best available information. Details on the revised emissions inventories for this analysis are provided in Section 3.1 of this Protocol.

The CALMET and CALPUFF model versions that were used for the DEIS analysis will be used to estimate cumulative pollutant impacts at far-field PSD Class I and sensitive Class II areas, and at mid-field Wyoming regional community locations. However, the CALMET wind fields used for this analysis will differ from the wind fields used for the DEIS and Preferred Alternative modeling. The CALMET wind fields used for the current conditions modeling will be developed without the use of the "kinematic effects" CALMET switch setting option, which was used for all previous DEIS analyses. The change in wind field development will be made to correct a potential CALMET model anomaly, which could produce unrealistically high wind speeds in the wind field layers above the surface layer. Recent CALMET model peer review studies and model developer suggestions are the basis for this change. This change was not made for the Preferred Alternative modeling analyses to maintain consistency and comparability with the DEIS analyses.

3.1 EMISSIONS INVENTORIES

3.1.1 Permitted Source Emissions Inventory

As part of the JIDP DEIS, an inventory of permitted source emissions was developed using data obtained from the WDEQ-AQD, Colorado Department of Public Health and Environment/Air Pollution Control Division (CDPHE/APCD), Utah Department of Environmental Quality-Air Quality Division (UDEQ-AQD), and Idaho Division of Environment Quality (IDEQ). This source inventory included sources that had received permits through June 30, 2003. This inventory will be updated to include additional source emissions permitted through March 31, 2004. These additional source emissions will be obtained from the source inventory that was developed for the Atlantic Rim Natural Gas Project and the Seminoe Road Gas Development Project. The extent of the inventory domain for these projects is shown in Figure 1, attached.

3.1.2 Year 2006 Drilling and Flaring Emissions

Emissions for drilling activities and completion flaring have been developed for the JIDP, PAP, SPP, RRP, and JMHP based on a review of proposed well development rates and drilling activities for each project, from information available from the Wyoming Oil and Gas Conservation Commission (WOGCC) for drill rig "spud" activity, and from information provided by the BLM, Pinedale Field Office. Emissions will be determined for monthly drilling activities in order to capture seasonal variations in drilling. Table 1 provides a summary of the drilling rig and flare information that will be used for year 2006 modeling for all projects.

A WDR of 250 will be used for the JIDP (20 drill rigs [10 at 2,100 hp and 10 at 2,600 hp], and 3 completion flares operating continuously per month). An additional 3 drill rigs (all at 2,600 hp) and 1 completion flare will also be added to account for other operators expanded Jonah Field operations. For the JIDP it will be assumed that 50% of the wells will be directionally drilled and 50% of the wells will be straight hole, 80% of the wells will have flareless completions, and

there will be an 80%/20% combination of drilling engines with Tier 0 and Tier 1 emissions levels, respectively (Tier 0 emissions will be determined using EPA AP-42 emission factors).

For the PAP, the 2004 monthly well development rates obtained from the WOGCC, along with additional information provided by the BLM, Pinedale Field Office, will be used for 2006. Emissions are based on 6 year-round drilling rigs from Questar's year-round drilling project, 6 5,000 hp rigs based off of Questar's biggest rig to account for other operator's year-round drilling projects, and the remainder of the rigs based off of a representative 3,216 hp rig operating in the area. Emissions from Questar's 6 year-round drilling rigs assumes Tier 0 emissions for 3 rigs, Tier 1 emissions for 2 rigs, and a combination of Tier 0/Tier 1 emissions on 1 rig. These estimates come from emissions data provided by WDEQ/Questar. Emissions from the six 5,000 hp year-round drill rigs and the additional 3,216 hp drill rigs assume an 80%/20% Tier 0/Tier 1 emissions ratio. The analysis for the PAP also assumes 80% flareless completions.

The SPP project year 2006 drilling activity will be assumed to occur only during the summer months (May-Oct) with 3 drill rigs and 1 flare operating continuously for these months. The RRP will include 2 to 6 drill rigs and 1 flare operating throughout the year with an increase in activity in the summer months. The JMHP project will include a single operating rig and flare operating continuously throughout the year. Three 5,000 hp "wildcat" drilling rigs and 1 completion flare were added to the inventory to account for exploratory drilling in the BLM Pinedale Field Office area. It was assumed that this activity would only take place during the summer months (Jul-Aug). For the SPP, RRP, JMHP, and the "wildcat" rigs it will be assumed that 100% of the wells will be straight hole, 100% of the wells will be flared, and 100% of drilling engines will be Tier 0.

Table 1: Summary of Year 2006 Drilling Rigs Counts and Flaring Operations

Field	Months	Operating Drilling Rigs	Operating Flares
	Jan, Feb, Mar,	20, 20, 20,	3, 3, 3,
ЛDР	Apr, May, Jun,	20, 20, 20,	3, 3, 3,
JIDP	Jul, Aug, Sep,	20, 20, 20,	3, 3, 3,
	Oct, Nov, Dec	20, 20, 20	3, 3, 3
JIDP – Expanded	Jan, Feb, Mar,	3, 3, 3,	1, 1, 1,
Jonah Field	Apr, May, Jun,	3, 3, 3,	1, 1, 1,
	Jul, Aug, Sep,	3, 3, 3,	1, 1, 1,
Operators	Oct, Nov, Dec	3, 3, 3	1, 1, 1
	Jan, Feb, Mar,	25, 25, 25,	4, 4, 4,
PAP^1	Apr, May, Jun,	25, 25, 30,	4, 4, 5,
rar	Jul, Aug, Sep,	35, 35, 35,	5, 5, 5,
	Oct, Nov, Dec	30, 25, 25	5, 4, 4
	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
SPP	Apr, May, Jun,	0, 3, 3,	0, 1, 1,
SFF	Jul, Aug, Sep,	3, 3, 3,	1, 1, 1,
	Oct, Nov, Dec	3, 0, 0	1, 0, 0
	Jan, Feb, Mar,	2, 2, 2,	1, 1, 1,
RRP	Apr, May, Jun,	2, 3, 3,	1, 1, 1,
KKP	Jul, Aug, Sep,	6, 6, 6,	1, 1, 1,
	Oct, Nov, Dec	3, 2, 2	1, 1, 1
	Jan, Feb, Mar,	1, 1, 1,	1, 1, 1,
JMHP	Apr, May, Jun,	1, 1, 1,	1, 1, 1,
JIVITIP	Jul, Aug, Sep,	1, 1, 1,	1, 1, 1,
	Oct, Nov, Dec	1, 1, 1	1, 1, 1
Pinedale Field	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
	Apr, May, Jun,	0, 0, 0,	0, 0, 0,
Office – Wildcat	Jul, Aug, Sep,	3, 3, 0,	1, 1, 0,
Rigs	Oct, Nov, Dec	0, 0, 0	0, 0, 0

¹ Drill rig estimates for PAP include 6 drilling rigs for the Questar year-round drilling program and 2 each for Anschutz, Ultra, and Shell.

3.1.3 Year 2002 Drilling and Flaring Emissions

Baseline study year emissions for drilling activities and completion flaring have been developed for the JIDP, PAP, SPP, RRP, and JMHP based on a review of monthly actual well development rates and drilling activities that occurred in the region during 2002. Year 2002 emissions are

quantified to determine the level of emissions that existed in background ambient air quality. Information from the WOGCC was used to determine 2002 development rates and drill rig counts. It will be assumed that during year 2002 all drilling engines would be at Tier 0 emissions levels. For all project areas, 100% straight hole drilling will be assumed. Completion flaring emissions will be determined from a review of actual well development rates and will assume 100% of the developed wells required flaring. A summary of the preliminary drilling rig and flare information that will be used for the year 2002 modeling is provided in Table 2.

Table 2: Summary of Year 2002 Drilling Rigs Counts and Flaring Operations

Field	Months	Operating Drilling Rigs	Operating Flares
	Jan, Feb, Mar,	6, 6, 6,	3, 3, 3,
JIDP	Apr, May, Jun,	8, 5, 7,	4, 2, 3,
JIDF	Jul, Aug, Sep,	4, 5, 8,	2, 2, 4,
	Oct, Nov, Dec	5, 4, 5	2, 2, 2
	Jan, Feb, Mar,	4, 3, 3,	2, 1, 1,
PAP	Apr, May, Jun,	1, 7, 3,	1, 3, 1,
rar	Jul, Aug, Sep,	8, 5, 3,	4, 2, 1,
	Oct, Nov, Dec	3, 0, 1	1, 0, 1
	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
SPP	Apr, May, Jun,	0, 0, 0,	0, 0, 0,
SPP	Jul, Aug, Sep,	0, 0, 2,	0, 0, 1,
	Oct, Nov, Dec	0, 2, 1	0, 1, 1
	Jan, Feb, Mar,	0, 0, 0,	0, 0, 0,
nnn	Apr, May, Jun,	0, 1, 2,	0, 1, 1,
RRP	Jul, Aug, Sep,	2, 4, 2,	1, 1, 1,
	Oct, Nov, Dec	2, 1, 1	1, 1, 1
	Jan, Feb, Mar,	1, 1, 1,	1, 1, 1,
DALID	Apr, May, Jun,	1, 1, 1,	1, 1, 1,
JMHP	Jul, Aug, Sep,	1, 1, 1,	1, 1, 1,
	Oct, Nov, Dec	1, 1, 1	1, 1, 1

3.1.4 Expanded Compression

The BLM, field operators, and other gas compression companies operating nearby were contacted to determine an estimate of expanded field compression requirements for the area. The expanded compression is in addition to the compression estimates that were obtained, from

field operators, state permits, and RFD, and modeled for the DEIS. A summary of the expanded compression estimates that have been obtained, and the field compression estimates included in the DEIS analyses are provided in Table 3. Emissions for expanded field compression were calculated based on best available data provided by BLM, operators, and information obtained from the WDEQ-AQD.

Table 3: Summary of Expanded Field Compression Estimates

Field	Permitted/RFD		Expanded Compression
	Compression Included	Expanded Compression	Estimates Beyond that
	in DEIS Analyses	Included in DEIS Analyses	included in the DEIS
	13,269 hp (Falcon)	7,336 hp (Falcon)	2,888 hp (Falcon)
ЛДР	0 hp (Luman)	11,604 hp (Luman)	11,248 hp (Luman)
JIDI	9,405 hp (Bird)	11,004 hp (Bird)	30,928 hp (Bird)
	5,285 hp (Jonah)	3,900 hp (Jonah)	3,000 hp (Jonah)
	12,094 hp (Paradise)	7,336 hp (Paradise)	9,624 hp (Paradise)
PAP	25,110 hp (Gobblers	10,000 hp (Gobblers Knob)	1,160 hp (Gobblers
	Knob, Mesa 1, Mesa 2)	The second of th	Knob)
SPP	48,500 hp	0 hp	0 hp
RRP	0 hp	0 hp	0 hp
JMHP	3,480 hp	0 hp	2,940 hp

3.2 MODEL RESULTS

CALPUFF output will be post-processed to derive: 1) concentrations for comparison to ambient standards, significance thresholds, and Class I and II Increments; 2) deposition rates for comparison to S and N deposition thresholds and to calculate ANC change for sensitive lakes; and 3) light extinction for comparison to visibility impact thresholds in Class I and sensitive Class II areas. The modeling results will be presented in a supplemental report for the DEIS, summarized in the JIDP FEIS (Chapter 3.0), and presented in detail in the Final JIDP Air Quality Technical Support Document. It is important to note that the results of this modeling analyses will not be directly comparable to the results presented in the DEIS or those presented for the Preferred Alternative (see Section 2.0) due to differences (emissions increases) in the cumulative emissions (non-project) inventories and the expanded compression estimates included in this analysis.

Modeled concentrations combined with appropriate ambient background pollutant concentrations will be calculated for each far-field PSD Class I and sensitive Class II area and will be compared to WAAQS and NAAQS.

Modeled concentrations predicted in Federal PSD Class I areas from project-specific sources alone will be compared to Class I SILs and Class I Increments, and cumulative impacts will be compared to Class I Increments. Impacts predicted at far-field sensitive areas designated as PSD Class II areas will be compared to Class II Increments. This demonstration will be for information purposes only and will not constitute a regulatory PSD Increment consumption analysis, which may be completed as necessary by WDEQ-AQD. The approach to this PSD screening analysis is consistent with the original October 2003 Jonah Infill Drilling Project Air Quality Impact Assessment Protocol.

Visibility impacts will be calculated using two methods, FLAG and IMPROVE, and using MVISBK=2 and MVISBK=6 visibility change estimate methods available in CALPOST. The MVISBK=6 method, which was used in all DEIS analyses, uses monthly relative humidity factors. The MVISBK=2 method uses hourly relative humidity data from the CALMET wind fields. Changes in light extinction will be estimated at far-field PSD Class I and sensitive Class II areas, and at mid-field Class II Wyoming regional community locations.

The 0.5 deciview change threshold value (for project source impacts) and the 1.0 deciview change threshold value (for cumulative source impacts) will be compared to far-field results modeled at PSD Class I and sensitive Class II areas. A summary of number of days greater than each of these threshold values will be provided in the text and, consistent with the DEIS, a summary of far-field cumulative impacts above both the 0.5 and 1.0 deciview change threshold values will be included in the appendices. Modeled results at mid-field Class II regional locations will be compared to a 1.0 deciview change thresholds for both project source and cumulative source impacts.

The total S deposition and N deposition at far-field PSD Class I and sensitive Class II areas from project emissions will be calculated and presented in kilograms/hectare/year (kg/ha/yr). These values will be compared to the 0.005 kg/ha/yr DAT defined by NPS for total N and total S. The total S deposition and N deposition impacts at far-field PSD Class I and sensitive Class II areas will be compared with levels of concern values of 5 and 3 kg/ha/yr for total S and N deposition fluxes, respectively. It is understood that the USFS no longer considers these levels of concern to be protective; however, in the absence of alternative Federal Land Manager-approved values, comparisons with these values will be made.

Predicted annual deposition fluxes of S and N at sensitive lake receptors will be used to estimate the change in ANC. The predicted changes in ANC will be compared with the USFS's Level of Acceptable Change (LAC) thresholds of either 10% for lakes with ANC values greater than 25 μ eq/l, or 1 μ eq/l for lakes with background ANC values of 25 μ eq/l and less.

APPENDIX B

PREFERRED ALTERNATIVE EMISSIONS INVENTORY

The following is a list of the tables included within this appendix:

- B.1.1 Summary of Maximum Field Wide Emissions Scenarios Preferred Alternative
- B.1.2 Drilling Emissions AP-42 Straight Drilling
- B.1.3 Drilling Emissions Tier 1 Straight Drilling
- B.1.4 Drilling Emissions Tier 2 Straight Drilling
- B.1.5 Drilling Emissions AP-42 Directional Drilling
- B.1.6 Drilling Emissions Tier 1 Directional Drilling
- B.1.7 Drilling Emissions Tier 2 Directional Drilling

sometry, and rector but its or to the above into a provented of

H. C. Denner, of Mariness Sold Wate Dennesses - Despesso Allegans, No. 2 Dennesses - Despesso Allegans, No. 2 Dennesses Dennes

Table B.1.1
Jonah Infill Drilling Project
Summary of Maximum Field Wide Emissions Scenarios - Preferred Alternative
(Tons Per Year)

				(
	High WDR250	Emissions WDR150	Cases WDR75	Low WDR250	Emissions (WDR150	Cases WDR75	80%	Mitigation 60%	on Runs ⁷ 40%	20%
Production Emissions										
Wells ¹										
NO _x	129.2	133.8	137.2	129.2	133.8	137.2	103.4	77.5	51.7	25.8
SO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PM ₁₀	24.7	25.6	26.3	24.7	25.6	26.3	19.8	14.8	9.9	4.9
PM _{2.5}	24.7	25.6	26.3	24.7	25.6	26.3	19.8	14.8	9.9	4.9
Traffic ²										
NO _x	23.9	24.7	25.4	23.9	24.7	25.4	19.1	14.3	9.6	4.8
SO ₂	0.7	0.7	0.7	0.7	0.7	0.7	0.5	0.4	0.3	0.1
PM ₁₀	652.0	674.9	692.0	652.0	674.9	692.0	521.6	391.2	260.8	130.4
PM _{2.5}	99.1	102.6	105.2	99.1	102.6	105.2	79.3	59.5	39.7	19.8
Compression ³										
NO _x	211.0	211.0	211.0	211.0	211.0	211.0	168.8	126.6	84.4	42.2
SO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PM ₁₀	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PM _{2.5}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Construction Emission	s									
Well Drilling⁴										
NO _x	2,421.6	1,453.0	726.5	786.2	471.7	235.9	1,937.3	1,453.0	968.6	484.3
SO ₂	161.9	97.1	48.6	30.0	18.0	9.0	129.5	97.1	64.8	32.4
PM ₁₀	464.9	278.9	139.5	28.8	17.3	8.6	371.9	278.9	186.0	93.0
PM _{2.5}	464.9	278.9	139.5	28.8	17.3	8.6	371.9	278.9	186.0	93.0
Traffic ⁵										
NO _x	13.5	8.1	4.1	13.5	8.1	4.1	10.8	8.1	5.4	2.7
SO ₂	0.4	0.2	0.1	0.4	0.2	0.1	0.3	0.2	0.2	0.1
PM ₁₀	225.1	135.1	67.5	225.1	135.1	67.5	180.1	135.1	90.0	45.0
PM _{2.5}	34.5	20.7	10.3	34.5	20.7	10.3	27.6	20.7	13.8	6.9
Flaring ⁶										
NO _x	406.9	271.3	135.6	406.9	271.3	135.6	325.5	244.1	162.8	81.4
SO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PM ₁₀	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PM _{2,5}	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total .										
NO _x	3,206.1	2,101.8	1,239.7	1,570.7	1,120.6	749.1	2,564.9	1,923.7	1,282.5	641.2
SO ₂	162.9	98.1	49.4	31.0	18.9	9.8	130.3	97.8	65.2	32.6
PM ₁₀	1,366.8	1,114.5	925.3	930.7	852.8	794.5	1,093.4	820.1	546.7	273.4
PM _{2.5}	623.3	427.9	281.3	187.2	166.2	150.5	498.6	374.0	249.3	124.7

Includes emissions from indirect heater, separator heater, and dehyrator heater.

² Includes emissions from all traffic associated with full field production. Emissions calculations assume 20 wells can be visited per day.

³ Includes emissions from the following compressor stations: Bird Canyon, Luman, Falcon, Jonah and the Jonah Water Well.

Includes emissions from drilling rigs operating continuously during the year.

Well Development Rates of 250, 150 and 75 assume drill rig counts of 20, 12, and 6, respectively.

High emissions cases assume 50% straight and 50% directional at an 80%/20% Tier 0/Tier 1 ratio.

Low Emissions cases assume 50% straight and 50% directional with 100% Tier 2 compliant rigs.

Includes emissions from all traffic associated with 20, 12, and 6 drilling rigs in operation.

⁶ Includes emissions from 3, 2, and 1 "completion/testing" flares operating continously during the year.

Mitigation runs assume 80%, 60%, 40% and 20% of the high-emissions WDR250 case emissions, respectively.

605 Skyline Drive Laramie, WY 8207 Phone: (307) 742 Fax: (307) 745-	I KC Environmental Corporation 605 Skyline Drive 1 Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	r op			Scenario: Straight Scenario: Straight Activity: Drilling Emissions: Diesel C from Dr	Froger, Sonai minit orining Project Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA AP-42 Date: 6/30/2005	n Emissions nes - EPA AP-42	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower All Engines ²	Overall Load Factor³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lb/hp-hr)	(dy)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
8	0.00668	2,100	0.42	19	24	2,702.63	5.93	25.96
NOX	0.031	2,100	0.42	91	24	12,542.17	27.50	120.47
SO ₂	0.00205	2,100	0.42	9	24	829.40	1.82	7.97
VOC	0.0025	2,100	0.42	10	24	1,011.47	2.22	9.72
PM ₁₀ 4	0.0022	2.100	0.42	19	24	890.09	1 95	8.55

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline

and Diesel Industrial Engines."

² Drilling engine horsepower based on three engines, two at 800hp and one at 500hp. ³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

Drilling Emissions Tier 1 - Straight Drilling Table B.1.3

2.5	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	72.82	59.12	1.34	8.57	3.43
g Project n Emissions nes - EPA Tier 1	Emissions per Rig	(lb/hr)	16.63	13.50	0.31	1.96	0.78
Project: Jonah Infill Drilling Project Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions Per Well	(lb/well)	7,581.69	6,154.55	139.77	891.96	356.79
Project: Jonah I Scenario: Straight Activity: Drilling Emissions: Diesel (from Dr	Drilling Activity Duration	(hours/day)	24	24	24	24	24
1	Drilling Activity Duration	(days/well)	19	10	19	19	9
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42
uoj	Total Horsepower Overall Load All Engines ² Factor ³	(dh)	2,100	2,100	2,100	2,100	2,100
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		8	NOX	SO24	VOC	PM ₁₀ ^S

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards; USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

Drilling engine horsepower based on three engines, two at 800hp and one at 500hp.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. PM2.5 assumed equivalent to PM10 for drilling engines.

Table B.1.4 Drilling Emissions Tier 2 - Straight Drilling

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	22.28	35.13	1.34	1.43	1.29
g Project n Emissions nes - EPA Tier 2	Emissions per Well Emissions per Rig	(lb/hr)	5.09	8.02	0.31	0.33	0.29
Project: Jonah Infill Drilling Project Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 2 Date: 6/30/2005	Emissions per Well	(lb/well)	2,319.11	3,657.05	139.77	148.87	133.79
Project: Scenario: Activity: Emissions: Date:	Drilling Activity Duration	(hours/day)	24	24	24	24	24
	Drilling Activity Duration	(days/well)	19	19	19	19	19
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42
Б	Total Horsepower All Engines ²	(dh)	2,100	2,100	2,100	2,100	2,100
TRC Environmental Corporation GOS Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0057	0.0090	0.00035	0.0004	0.00033
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 745-8 Fax: (307) 745-8	Pollutant		8	NOX	SO ₂ ⁴	000	PM ₁₀ ⁵

Emission factor for Tier 2 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/KVM (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

NO_x and HC Emission Factors estimated based on Tables 3 and 5 of "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling-

Compression-Ignition," NR-009c, EPA, April 2004.

^L Drilling engine horsepower based on three engines, two at 800hp and one at 500hp. The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

¹The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Olifield Mechanical Rig Power" specification sheets. PM2.5 assumed equivalent to PM10 for drilling engines.

Table B.1.5 Drilling Emissions AP-42 - Directional Drilling

605 Skylin Laramie, V Phone: (3 Fax: (3	IRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	ation			Project: Johan II Scenario: Directio Activity: Drilling Emissions: Diesel (Date: 6130/200	Project: Jonan Intili Drilling Scenario: Directional Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA AP-42 Date: 6/30/2005	roject Emissions 5 - EPA AP-42	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower Overall Load All Engines ² Factor ³	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions Per Well	Emissions Per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
00	0.00668	2,600	0.45	23	24	4,050.56	7.34	32.14
XON	0.031	2,600	0.42	23	24	18,797.53	34.05	149.15
SO2	0.00205	2,600	0.45	23	24	1,243.06	2.25	9.86
VOC	0.0025	2,600	0.42	23	24	1,515.93	2.75	12.03
PM.	0.0022	2.600	0.42	23	24	1,334.02	2.42	10.59

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline

and Diesel Industrial Engines."

² Drilling engine horsepower based on three engines, two at 800hp and one at 500hp.

³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

Table B.1.6 Drilling Emissions Tier 1 - Directional Drilling

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	90.16	73.19	1.66	10.61	4.24
roject imissions from A Tier 1	Emissions per Rig	(lb/hr)	20.59	16.71	0.38	2.42	0.97
Project: Jonah Infill Drilling Project Scenario: Directional Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions per Well Emissions per Rig	(lb/well)	11,363.04	9,224.12	209.48	1,336.83	534.73
Project: Jonah II Scenario: Directio Activity: Drilling Emissions: Diesel C Drilling	Drilling Activity Duration	(hours/day)	24	24	24	24	24
	Drilling Activity Duration	(days/well)	23	23	23	23	23
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42
uo	Total Horsepower Overall Load All Engines ² Factor ³	(dh)	2,600	2,600	2,600	2,600	2,600
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8:	Pollutant		00	NOX	SO ₂ ⁴	VOC	PM ₁₀ s

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

Engine Emission Standards, g/KV/h (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html. Drilling engine horsepower based on four engines, two at 800hp and two at 500hp.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. Therefore, the overall load factor = 0.65 + 0.65 = 0.42.

⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

PM2.5 assumed equivalent to PM10 for drilling engines.

Table B.1.7 Drilling Emissions Tier 2 - Directional Drilling

Pollutant Total Horsepower Overall Load Drilling Activity Drilling Activity	yline e, W) (30	TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	tion			Project: Jonah II Scenario: Directio Activity: Drilling Emissions: Diesel C Drilling	Project: Jonah Infill Drilling Project Scenario: Directional Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 2 Date: 6/30/2005	Project Emissions from PA Tier 2	
(hp) (days/well) (thours/day) (tb/well) (tb/hr) 2,600 0.42 23 24 5,481.00 9.93 2,600 0.42 23 24 5,481.00 9.93 2,600 0.42 23 24 209.48 0.38 2,600 0.42 23 24 223.12 0.40 2,600 0.42 23 24 200.52 0.36		Pollutant Emission Factor ¹	Total Horsepower All Engines ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
2,600 0,42 23 24 3,475.75 6.30 2,600 0,42 23 24 5,481.00 9.93 2,600 0,42 23 24 209.48 0.38 2,600 0,42 23 24 223.12 0,40 2,600 0,42 23 24 200.52 0,36		(lb/hp-hr)	(dy)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
2,600 0.42 23 24 5,481.00 9.93 2,600 0.42 23 24 209.48 0.38 2,600 0,42 23 24 223.12 0.40 2,600 0,42 23 24 200.52 0.36		0.0057	2,600	0.42	23	24	3,475.75	6.30	27.58
2,600 0.42 23 24 209.48 0.38 2,600 0.42 23 24 223.12 0.40 2,600 0.42 23 24 200.52 0.36		0.0090	2,600	0.42	23	24	5,481.00	9.93	43.49
2,600 0.42 23 24 223.12 0.40 2,600 0.42 23 24 200.52 0.36		0.00035	2,600	0.42	23	24	209.48	0.38	1.66
2,600 0.42 23 24 200.52 0.36		0.0004	2,600	0.42	23	24	223.12	0.40	1.77
		0.00033	2,600	0.42	23	24	200.52	0.36	1.59

Emission factor for Tier 2 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel NO, and HC Emission Factors estimated based on Tables 3 and 5 of "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling-Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

Compression-Ignition," NR-009c, EPA, April 2004. Drilling engine horsepower based on four engines, two at 800hp and two at 500hp.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%

⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. ^o PM2.5 assumed equivalent to PM10 for drilling engines.

APPENDIX C

PREFERRED ALTERNATIVE MODELING RESULTS

Court many the state of the sta

S SETTINGS IN

A 7.7 S. DE 2001 PARTIES TOTAL PROPERTY AND ADDRESS OF THE PARTIES.

LIST OF TABLES

Modeled NO₂ Concentration Impacts

- Table C.1.1 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Low Emissions WDR250
- Table C.1.2 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Low Emissions WDR150
- Table C.1.3 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Low Emissions WDR075
- Table C.1.4 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources High Emissions WDR250
- Table C.1.5 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources High Emissions WDR150
- Table C.1.6 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources High Emissions WDR075
- Table C.1.7 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 20% Emissions Reduction WDR250
- Table C.1.8 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 40% Emissions Reduction WDR250
- Table C.1.9 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 60% Emissions Reduction WDR250
- Table C.1.10 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 80% Emissions Reduction WDR250

- Table C.1.11 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Low Emissions WDR250) and Regional Sources
- Table C.1.12 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Low Emissions WDR150) and Regional Sources
- Table C.1.13 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Low Emissions WDR075) and Regional Sources
- Table C.1.14 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (High Emissions WDR250) and Regional Sources
- Table C.1.15 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (High Emissions WDR150) and Regional Sources
- Table C.1.16 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (High Emissions WDR075) and Regional Sources
- Table C.1.17 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 20% Emissions Reduction WDR250) and Regional Sources
- Table C.1.18 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 40% Emissions Reduction WDR250) and Regional Sources
- Table C.1.19 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 60% Emissions Reduction WDR250) and Regional Sources
- Table C.1.20 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 80% Emissions Reduction WDR250) and Regional Sources

Modeled SO₂ Concentration Impacts

- Table C.2.1 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250
- Table C.2.2 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150
- Table C.2.3 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075
- Table C.2.4 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250
- Table C.2.5 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150
- Table C.2.6 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075
- Table C.2.7 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250
- Table C.2.8 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250
- Table C.2.9 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250
- Table C.2.10 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250
- Table C.2.11 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources
- Table C.2.12 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and Regional Sources

- Table C.2.13 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources
- Table C.2.14 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources
- Table C.2.15 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources
- Table C.2.16 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources
- Table C.2.17 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources
- Table C.2.18 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources
- Table C.2.19 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources
- Table C.2.20 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

Modeled PM₁₀ Concentration Impacts

- Table C.3.1 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250
- Table C.3.2 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150
- Table C.3.3 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075

- Table C.3.4 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250
- Table C.3.5 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150
- Table C.3.6 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075
- Table C.3.7 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250
- Table C.3.8 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250
- Table C.3.9 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250
- Table C.3.10 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250
- Table C.3.11 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources
- Table C.3.12 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and Regional Sources
- Table C.3.13 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources
- Table C.3.14 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources
- Table C.3.15 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources

- Table C.3.16 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources
- Table C.3.17 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources
- Table C.3.18 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources
- Table C.3.19 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources
- Table C.3.20 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

Modeled PM_{2.5} Concentration Impacts

- Table C.4.1 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250
- Table C.4.2 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150
- Table C.4.3 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075
- Table C.4.4 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250
- Table C.4.5 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150
- Table C.4.6 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075
- Table C.4.7 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250

- Table C.4.8 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250
- Table C.4.9 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250
- Table C.4.10 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250
- Table C.4.11 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources
- Table C.4.12 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and Regional Sources
- Table C.4.13 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources
- Table C.4.14 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources
- Table C.4.15 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources
- Table C.4.16 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources
- Table C.4.17 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources
- Table C.4.18 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

- Table C.4.19 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources
- Table C.4.20 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

Modeled Impacts Compared to Ambient Air Quality Standards

- Table C.5.1 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR250 Compared to Ambient Air Quality Standards
- Table C.5.2 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR150 Compared to Ambient Air Quality Standards
- Table C.5.3 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR075 Compared to Ambient Air Quality Standards
- Table C.5.4 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative High Emissions WDR250 Compared to Ambient Air Quality Standards
- Table C.5.5 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative High Emissions WDR150 Compared to Ambient Air Quality Standards
- Table C.5.6 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative High Emissions WDR075 Compared to Ambient Air Quality Standards
- Table C.5.7 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards
- Table C.5.8 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards
- Table C.5.9 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards
- Table C.5.10 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards

- Table C.5.11 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR250 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.12 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR150 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.13 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR075 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.14 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative High Emissions WDR250 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.15 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative High Emissions WDR150 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.16 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative High Emissions WDR075 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.17 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.18 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.19 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources Compared to Ambient Air Quality Standards
- Table C.5.20 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources Compared to Ambient Air Quality Standards

Modeled Nitrogen (N) and Sulfur (S) Deposition Impacts

- Table C.6.1 Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources
- Table C.6.2 Maximum Modeled Total Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative and Regional Sources
- Table C.6.3 Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources
- Table C.6.4 Maximum Modeled Total Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative and Regional Sources

Modeled Change in Acid Neutralizing Capacity

- Table C.7.1 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR250
- Table C.7.2 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR150
- Table C.7.3 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR075
- Table C.7.4 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR250
- Table C.7.5 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR150
- Table C.7.6 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR075
- Table C.7.7 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 20% Emissions Reduction WDR250
- Table C.7.8 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 40% Emissions Reduction WDR250

- Table C.7.9 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 60% Emissions Reduction WDR250
- Table C.7.10 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 80% Emissions Reduction WDR250
- Table C.7.11 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR250 and Regional Sources
- Table C.7.12 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR150 and Regional Sources
- Table C.7.13 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR075 and Regional Sources
- Table C.7.14 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR250 and Regional Sources
- Table C.7.15 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR150 and Regional Sources
- Table C.7.16 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR075 and Regional Sources
- Table C.7.17 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources
- Table C.7.18 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources
- Table C.7.19 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

Table C.7.20 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas

Table C.8.1 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 Table C.8.2 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR 150 Table C.8.3 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 Table C.8.4 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 Table C.8.5 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Table C.8.6 Areas from Preferred Alternative High Emissions WDR075 Table C.8.7 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 Table C.8.8 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 Table C.8.9 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 Table C.8.10 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 Table C.8.11 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive

TRC Environmental Corporation

Table C.8.12 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive

Regional Sources

Regional Sources

PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and

PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and

- Table C.8.13 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources
- Table C.8.14 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources
- Table C.8.15 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources
- Table C.8.16 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources
- Table C.8.17 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources
- Table C.8.18 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources
- Table C.8.19 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources
- Table C.8.20 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources
- Table C.8.21 Bridger Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.22 Bridger Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.23 Fitzpatrick Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)

- Table C.8.24 Fitzpatrick Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.25 Grand Teton National Park Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Each Preferred
 Alternative Modeling Scenario (1-20)
- Table C.8.26 Grand Teton National Park Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.27 Popo Agie Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.28 Popo Agie Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.29 Washakie Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.30 Washakie Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.8.31 Wind River Roadless Area Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Each Preferred
 Alternative Modeling Scenario (1-20)
- Table C.8.32 Wind River Roadless Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Modeled Visibility Impacts at Wyoming Regional Community Locations

- Table C.9.1 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR250
- Table C.9.2 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR150

- Table C.9.3 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR075
- Table C.9.4 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR250
- Table C.9.5 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR150
- Table C.9.6 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR075
- Table C.9.7 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 20% Emissions Reduction WDR250
- Table C.9.8 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 40% Emissions Reduction WDR250
- Table C.9.9 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 60% Emissions Reduction WDR250
- Table C.9.10 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 80% Emissions Reduction WDR250
- Table C.9.11 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR250 and Regional Sources
- Table C.9.12 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR150 and Regional Sources
- Table C.9.13 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR075 and Regional Sources
- Table C.9.14 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR250 and Regional Sources

- Table C.9.15 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR150 and Regional Sources
- Table C.9.16 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR075 and Regional Sources
- Table C.9.17 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources
- Table C.9.18 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources
- Table C.9.19 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources
- Table C.9.20 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources
- Table C.9.21 Big Piney Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.22 Big Piney Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.23 Big Sandy Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.24 Big Sandy Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.25 Boulder Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)

- Table C.9.26 Boulder Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.27 Bronx Summary of Days Above Visibility Thresholds Using FLAG Background
 Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (120)
 - Table C.9.28 Bronx Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.29 Cora Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.30 Cora Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.31 Daniel Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.32 Daniel Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.33 Farson Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.34 Farson Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.35 LaBarge Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
 - Table C.9.36 LaBarge Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)

- Table C.9.37 Merna Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.38 Merna Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.39 Pinedale Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)
- Table C.9.40 Pinedale Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Summary of Maximum Modeled Impacts

- Table C.10.1 Summary of Maximum Modeled NO_2 Concentration Impacts ($\mu g/m^3$) at PSD Class I and Sensitive Class II Areas from Direct Project Sources
- Table C.10.2 Summary of Maximum Modeled Cumulative NO₂ Concentration Impacts (μg/m³) at PSD Class I and Sensitive Class II Areas from Direct Project and Regional Sources
- Table C.10.3 Summary of Maximum Modeled SO_2 Concentration Impacts ($\mu g/m^3$) at PSD Class I and Sensitive Class II Areas from Direct Project Sources
- Table C.10.4 Summary of Maximum Modeled Cumulative SO₂ Concentration Impacts (μg/m³) at PSD Class I and Sensitive Class II Areas from Direct Project and Regional Sources
- Table C.10.5 Summary of Maximum Modeled PM_{10} Concentration Impacts ($\mu g/m^3$) at PSD Class I and Sensitive Class II Areas from Direct Project Sources
- Table C.10.6 Summary of Maximum Modeled Cumulative PM_{10} Concentration Impacts $(\mu g/m^3)$ at PSD Class I and Sensitive Class II Areas from Direct Project and Regional Sources
- Table C.10.7 Summary of Maximum Modeled PM_{2.5} Concentration Impacts (μg/m³) at PSD Class I and Sensitive Class II Areas from Direct Project Sources

- Table C.10.8 Summary of Maximum Modeled Cumulative PM_{2.5} Concentration Impacts (μg/m³) at PSD Class I and Sensitive Class II Areas from Direct Project and Regional Sources
- Table C.10.9 Summary of Maximum Modeled In-field Pollutant Concentrations (μg/m³) from Direct Project Sources Within the JIDPA Compared to Ambient Air Quality Standards
- Table C.10.10 Summary of Maximum Modeled Cumulative In-field Pollutant Concentrations (μg/m³) from Direct Project and Regional Sources Within the JIDPA Compared to Ambient Air Quality Standards
- Table C.10.11 Summary of Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources
- Table C.10.12 Summary of Maximum Modeled Total Nitrogen (N) Deposition Impacts (kg/hayr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources
- Table C.10.13 Summary of Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources
- Table C.10.14 Summary of Maximum Modeled Total Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources
- Table C.10.15 Summary of Maximum Modeled Change in ANC (μeq/L) at Acid Sensitive Lakes from Direct Project Sources
- Table C.10.16 Summary of Maximum Modeled Cumulative Change in ANC (μ eq/L) at Acid Sensitive Lakes from Direct Project and Regional Sources
- Table C.10.17 Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources Using FLAG Background Data
- Table C.10.18 Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources Using IMPROVE Background Data
- Table C.10.19 Summary of Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources Using FLAG Background Data

- Table C.10.20 Summary of Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources Using IMPROVE Background Data
- Table C.10.21 Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Direct Project Sources Using FLAG Background Data
- Table C.10.22 Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Direct Project Sources Using IMPROVE Background Data
- Table C.10.23 Summary of Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Direct Project and Regional Sources Using FLAG Background Data
- Table C.10.24 Summary of Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Direct Project and Regional Sources Using IMPROVE Background Data

Table C.1.1 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Low Emissions WDR250

NAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
WAAQS	(µg/m ₃)	100	100	100	100	100	100	100	100	
Total Concentration	(mg/m³)	3.53	3.41	3.40	3.44	3.40	3.40	3.43	3.40	
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Increment	(ng/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Applicable PSD Significance Level	(hg/m³)	0.1	0.1	0.1	1.0	0.1	0.11	1.0	0.1	
Direct Modeled Impact	(mg/m ₃)	0.126	0.00532	0.00162	0.0421	0.000727	0.00102	0.025	0.000543	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		NO2								

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.2 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Low Emissions WDR150

NAAQS	(hg/m³)	100	100	100	100	100	100	100	100	
WAAQS	(hg/m ₃)	100	100	100	100	100	100	100	100	
Total Concentration	(hg/m³)	3.49	3.40	3.40	3.43	3.40	3.40	3.42	3.40	
Background Concentration	(µg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Increment	(ng/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Applicable PSD Significance Level	(hg/m³)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1	
Direct Modeled Impact	(µg/m ₃)	0.0872	0.00379	0.00114	0.0298	0.000508	0.000713	0.0178	0.00038	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		NO2								

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.3 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Low Emissions WDR075

(mg/m ₃)	100	100	100	100	100	100	100	100
(hg/m³)	100	100	100	100	100	100	100	100
(mg/m³)	3.45	3.40	3.40	3.42	3.40	3.40	3.41	3.40
(m/grl)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
(hg/m³)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1
(µg/m ₃)	0.0546	0.00251	0.000744	0.0201	0.000332	0.000465	0.0116	0.000247
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
	Annual							
	NO2							
) (h/grl) (hg/m³) (μg/m³) (μg/m³) (μg/m³)	$ \frac{(\mu g/m^3)}{(\mu g/m^3)} ($	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.0546 0.1 ¹ 2.5 3.4 3.45 100 Fitzpatrick WA 0.00251 0.1 ¹ 2.5 3.4 3.40 100	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.00251 0.1¹ 2.5 3.4 3.40 100 Grand Teton NP 0.000744 0.1¹ 2.5 3.4 3.40 100	Annual Bridger WA 0.0546 0.1 ¹ 2.5 3.4 3.45 100 Fitzpatrick WA 0.00251 0.1 ¹ 2.5 3.4 3.40 100 Grand Teton NP 0.000744 0.1 ¹ 2.5 3.4 3.40 100 Popo Agie WA 0.0201 1.0 25.0 3.4 3.42 100	Annual Bridger WA 0.0546 0.1 ¹ 2.5 3.4 3.45 100 Fitzpatrick WA 0.00251 0.1 ¹ 2.5 3.4 3.40 100 Grand Teton NP 0.000744 0.1 ¹ 2.5 3.4 3.40 100 Popo Agie WA 0.0201 1.0 2.5 3.4 3.42 100 Teton WA 0.000332 0.1 ¹ 2.5 3.4 3.40 100	Annual Bridger WA 0.0546 0.1 ¹ 2.5 3.4 3.45 100 Fitzpatrick WA 0.00251 0.1 ¹ 2.5 3.4 3.40 100 Grand Teton NP 0.000744 0.1 ¹ 2.5 3.4 3.40 100 Teton WA 0.000332 0.1 ¹ 2.5 3.4 3.40 100 Washakie WA 0.000465 0.1 ¹ 2.5 3.4 3.40 100	Annual Bridger WA 0.0546 0.1 ¹ 2.5 3.4 3.45 100 Fitzpatrick WA 0.00251 0.1 ¹ 2.5 3.4 3.40 100 Grand Teton NP 0.000744 0.1 ¹ 2.5 3.4 3.40 100 Teton WA 0.000332 0.1 ¹ 2.5 3.4 3.40 100 Washakie WA 0.000465 0.1 ¹ 2.5 3.4 3.40 100 Wind River RA 0.0116 1.0 2.5 3.4 3.41 100

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.4 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources High Emissions WDR250

NAAQS	(mg/m ₃)	100	100	100	100	100	100	100	100
WAAQS	(hg/m ₃)	100	100	100	100	100	100	100	100
Background Total Concentration Concentration	(hg/m³)	3.71	3.41	3.40	3.50	3.40	3.40	3.46	3.40
Background Concentration	(µg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Applicable PSD Significance Level	(mg/m³)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.11
Direct Modeled Impact	(µg/m³)	0.306	0.0116	0.00345	0.0965	0.00157	0.00209	0.0581	0.00118
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO							

¹ Proposed Class I significance level, Federal Register/Vol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.5 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources High Emissions WDR150

(hg/m³)	100	100	100	100	100	100	100	100
(hg/m³)	100	100	100	100	100	100	100	100
(hg/m³)	3.60	3.41	3.40	3.46	3.40	3.40	3.44	3.40
(mg/m ₃)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
(mg/m ₃)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
(m/6rl)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.11
(µд/ш ₃)	0.195	0.00756	0.00225	0.063	0.00101	0.00135	0.038	0.000762
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
	Annual							
	NO2							
	(hg/m^3) (hg/m^3) (hg/m^3) (hg/m^3)	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.195 0.1¹ 2.5 3.4 3.60	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.195 0.1¹ 2.5 3.4 3.60 Fitzpatrick WA 0.00756 0.1¹ 2.5 3.4 3.41	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.195 0.1¹ 2.5 3.4 3.60 Fitzpatrick WA 0.00756 0.1¹ 2.5 3.4 3.41 Grand Teton NP 0.00225 0.1¹ 2.5 3.4 3.40	Annual Bridger WA 0.00756 0.1 ¹ 2.5 3.4 3.60 100 Teitzpatrick WA 0.00225 0.1 ¹ 2.5 3.4 3.41 100 Teitzpatrick WA 0.00225 0.1 ¹ 2.5 3.4 3.40 100 Teitzpatrick WA 0.0063 1.0 2.5 3.4 3.46 100 Teitzpatrick WA 0.063 1.0 2.5 3.4 3.46 100 Teitzpatrick WA 0.063 1.0 2.5 3.4 3.46 100 Teitzpatrick WA 0.063 1.0 2.5 3.4 3.46 1.00 Teitzpatrick WA 0.063 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	Annual Bridger WA 0.195 0.1 ¹ 2.5 3.4 3.60 100 Fitzpatrick WA 0.00225 0.1 ¹ 2.5 3.4 3.41 100 Grand Teton NP 0.00225 0.1 ¹ 2.5 3.4 3.40 100 Teton WA 0.00101 0.1 ¹ 2.5 3.4 3.40 100	Annual Bridger WA 0.195 0.1 ¹ 2.5 3.4 3.60 100 Fitzpatrick WA 0.00756 0.1 ¹ 2.5 3.4 3.41 100 Grand Teton NP 0.00225 0.1 ¹ 2.5 3.4 3.40 100 Teton WA 0.00101 0.1 ¹ 2.5 3.4 3.40 100 Washakie WA 0.00135 0.1 ¹ 2.5 3.4 3.40 100	Annual Bridger WA 0.195 0.1 ¹ 2.5 3.4 3.60 100 Fitzpatrick WA 0.00756 0.1 ¹ 2.5 3.4 3.41 100 Grand Teton NP 0.00225 0.1 ¹ 2.5 3.4 3.40 100 Teton WA 0.00135 0.1 ¹ 2.5 3.4 3.40 100 Washakie WA 0.00135 0.1 ¹ 2.5 3.4 3.40 100 Wind River RA 0.038 1.0 2.5 3.4 3.40 100

¹ Proposed Class I significance level, Federal Register NoI. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.6 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources High Emissions WDR075

NAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
WAAQS	(mg/m ₃)	100	100	100	100	100	100	100	100	
Total Concentration	(µg/m³)	3.50	3.40	3.40	3.44	3.40	3.40	3.42	3.40	
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Increment	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Applicable PSD Significance Level	(µg/m³)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1	
Direct Modeled Impact	(µg/m³)	0.101	0.0043	0.0013	0.038	0.00057	0.00076	0.021	0.00043	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		NO2								

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.7 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 20% Emissions Reduction WDR250

								-	
NAAQS	(mg/m ₃)	100	100	100	100	100	100	100	100
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100
Total Concentration	(mg/m³)	3.65	3.41	3.40	3.48	3.40	3.40	3.45	3.40
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(ng/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Applicable PSD Significance Level	(mg/m ₃)	0.1	0.11	0.1	1.0	0.1	0.1	1.0	0.1
Direct Modeled Impact	(hg/m³)	0.245	0.00925	0.00276	0.0772	0.00126	0.00167	0.0464	0.000944
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO2							

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.8 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 40% Emissions Reduction WDR250

NAAQS	(µg/m ₃)	100	100	100	100	100	100	100	100	
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
Background Total Concentration Concentration	(hg/m³)	3.58	3.41	3.40	3.46	3.40	3.40	3.43	3.40	
Background Concentration	(mg/m ₃)	4.6	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Increment	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Applicable PSD Significance Level	(µg/m³)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.11	
Direct Modeled Impact	(µg/m³)	0.184	0.00694	0.00207	0.0579	0.000942	0.00126	0.0348	0.000708	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		NO ₂								

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.9 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 60% Emissions Reduction WDR250

NAAQS	(µg/m³)	100	100	100	100	100	100	100	100
WAAQS	(hg/m³)	100	100	100	100	100	100	100	100
Total Concentration	(hg/m³)	3.52	3.40	3.40	3.44	3.40	3.40	3.42	3.40
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(mg/m ₃)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Applicable PSD Significance Level	(mg/m ₃)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1
Direct Modeled Impact	(µg/m ₃)	0.123	0.00462	0.00138	0.0386	0.000628	0.000837	0.0232	0.000472
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging		Annual							
Pollutant		ő							

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.10 Maximum Modeled NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources Mitigation 80% Emissions Reduction WDR250

	_									
NAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
WAAQS	(hg/m³)	100	100	100	100	100	100	100	100	
Background Total Concentration Concentration	(hg/m³)	3.46	3.40	3.40	3.42	3.40	3.40	3.41	3.40	
Background Concentration	(mg/m ₃)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Increment	(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Applicable PSD Significance Level	(hg/m³)	٠1.0	0.1	0.1	1.0	0.1	0.1	1.0	0.1	
Direct Modeled Impact	(µg/m³)	0.0613	0.00231	0.00069	0.0193	0.000314	0.000419	0.0116	0.000236	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		NO2								

¹ Proposed Class I significance level, Federal Register/Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.1.11 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Low Emissions WDR250) and Regional Sources

Averaging Time	ig Receptor Area	Modeled	Applicable PSD Background Increment Concentration	Background	Total Concentration	WAAQS	NAAQS
		(µg/m ₃)	(µg/m³)	(hg/m³)	(µg/m³)	(µg/m³)	(µg/m ₃)
Annual	Bridger WA	0.237	2.5	3.4	3.64	100	100
	Fitzpatrick WA	0.017	2.5	3.4	3.42	100	100
	Grand Teton NP	0.030	2.5	3.4	3.43	100	100
	Popo Agie WA	0.068	25.0	3.4	3.47	100	100
	Teton WA	0.007	2.5	3.4	3.41	100	100
	Washakie WA	0.010	2.5	3.4	3.41	100	100
	Wind River RA	0.049	25.0	3.4	3.45	100	100
	Yellowstone NP	0.003	2.5	3.4	3.40	100	100

Table C.1.12 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Low Emissions WDR150) and Regional Sources

NAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
Background Total Concentration Concentration	(µg/m³)	3 60	3.41	3.43	3.46	3.41	3.41	3.44	3.40	
Background Concentration	(hg/m³)	24	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Background Increment Concentration	(µg/m³)	25	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Modeled Impact	(µg/m³)	0.199	0.015	0.030	0.056	0.007	0.010	0.042	0.003	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		ÓN	7							

Table C.1.13 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Low Emissions WDR075) and Regional Sources

			1						
NAAQS	(mg/m ₃)	100	100	100	100	100	100	100	100
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100
Background Total Concentration Concentration	(hg/m³)	3.57	3.41	3.43	3.45	3.41	3.41	3.44	3.40
Background Concentration	(mg/m ₃)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(µg/m ₃)	0.167	0.014	0.029	0.046	0.007	0.010	0.036	0.003
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO ₂							

Table C.1.14 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (High Emissions WDR250) and Regional Sources

NAAQS	(hg/m³)	100	100	100	100	100	100	100	100
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100
Total Concentration	(hg/m³)	3.82	3.42	3.43	3.52	3.41	3.41	3.48	3.40
Background Concentration	(па/ш _з)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(µg/m³)	0.418	0.023	0.032	0.120	0.007	0.010	0.082	0.004
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO2							

Table C.1.15 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (High Emissions WDR150) and Regional Sources

NAAQS	(ла/m ₃)	100	100	100	100	100	100	100	100
WAAQS	(hg/m³)	100	100	100	100	100	100	100	100
Total Concentration	(µg/m³)	3.71	3.42	3.43	3.49	3.41	3.41	3.46	3.40
Background Total Concentration Concentration	(µg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(hg/m³)	0.307	0.019	0.031	0.087	0.007	0.010	0.062	0.003
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO2							

Table C.1.16 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (High Emissions WDR075) and Regional Sources

	_,									
00	NAAUS	(µg/m³)	100	100	100	100	100	100	100	100
000	WAAGS	(µg/m ₃)	100	100	100	100	100	100	100	100
Total	Concentration	(µg/m³)	3.61	3.42	3.43	3.46	3.41	3.41	3.45	3.40
Background	Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD	Increment	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled	Impact	(µg/m³)	0.213	0.015	0.030	0.062	0.007	0.010	0.045	0.003
	Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging	Time		Annual							
	Pollutant		NO2						5	

Table C.1.17 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 20% Emissions Reduction WDR250) and Regional Sources

NAAQS	(hg/m³)	100	100	100	100	100	100	100	100
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100
Background Total Concentration Concentration	(hg/m³)	3.76	3.42	3.43	3.50	3.41	3.41	3.47	3.40
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Background Increment Concentration	(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(µg/m³)	0.356	0.020	0.031	0.101	0.007	0.010	0.071	0.003
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO ₂				ī			

Table C.1.18 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitgation 40% Emissions Reduction WDR250) and Regional Sources

	_								
NAAQS	(hg/m³)	100	100	100	100	100	100	100	100
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100
Background Total Concentration Concentration	(hg/m³)	3.70	3.42	3.43	3.48	3.41	3.41	3.46	3.40
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Background Increment Concentration	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(µg/m³)	0.295	0.018	0.031	0.081	0.007	0.010	0.059	0.003
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO ₂							

Table C.1.19 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 60% Emissions Reduction WDR250) and Regional Sources

NAAQS	(µg/m³)	100	100	100	100	100	100	100	100
WAAQS	(hg/m³)	100	001	90	100	100	100	100	100
Total Concentration	(µg/m³)	3 63	3.42	3.43	3.46	3.41	3.41	3.45	3.40
Background Concentration	(µg/m³)	4	. w	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Background Increment Concentration	(µg/m³)	2.5	25	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(µg/m ₃)	0 234	0.016	0.030	0.063	0.007	0.010	0.048	0.003
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		ó	7						

Table C.1.20 Maximum Modeled Cumulative NO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative (Mitigation 80% Emissions Reduction WDR250) and Regional Sources

NAAQS	(hg/m³)	100	100	100	100	100	100	100	100	
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100	
Total Concentration	(µg/m³)	3.57	3.41	3.43	3.44	3.41	3.41	3.44	3.40	
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	
Applicable PSD Background Increment Concentration	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5	
Modeled Impact	(hg/m³)	0.174	0.014	0.029	0.045	0.007	0.010	0.036	0.003	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								
Pollutant		NO ₂								

Table C.2.1 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250

Pollutant	Averaging	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background Concentration	Total Concentration WAAQS	WAAQS	NAAQS
			(µg/m³)	(hg/m³)	(hg/m ₃)	(hg/m³)	(hg/m³)	(µg/m ₃)	(µg/m ₃)
SO2	Annual	Bridger WA	0.004	0.1	2	0.6	9.00	9	8
		Fitzpatrick WA	0.000	0.1	2	9.0	9.00	09	80
		Grand Teton NP	0.000	0.1	2	9.0	9.00	09	80
		Popo Agie WA	0.001	1.0	20	0.6	9.00	9	80
		Teton WA	0.000	0.1	2	0.6	9.00	9	80
		Washakie WA	0.000	0.1	2	0.6	00.6	09	80
		Wind River RA	0.001	1.0	20	9.0	00.6	09	80
		Yellowstone NP	0.000	0.1	2	0.6	9.00	09	80
SO ₂	24-hr	Bridger WA	0.079	0.5	9	43.0	43.1	260	365
		Fitzpatrick WA	900.0	0.2	2	43.0	43.0	260	365
		Grand Teton NP	0.003	0.2	2	43.0	43.0	260	365
		Popo Agie WA	0.014	5.0	91	43.0	43.0	260	365
		Teton WA	0.001	0.2	S	43.0	43.0	260	365
		Washakie WA	0.002	0.2	2	43.0	43.0	260	365
		Wind River RA	0.011	5.0	91	43.0	43.0	260	365
		Yellowstone NP	0.001	0.21	5	43.0	43.0	260	365
0			0.000	10,					
SC2	3-hr	Bridger WA	0.254	0.1	25	132.0	132.3	1,300	1,300
		Fitzpatrick WA	0.021	1.01	25	132.0	132.0	1,300	1,300
		Grand Teton NP	600.0	1.01	25	132.0	132.0	1,300	1,300
		Popo Agie WA	0.090	25.0	512	132.0	132.1	1,300	1,300
		Teton WA	0.008	1.01	25	132.0	132.0	1,300	1,300
		Washakie WA	0.007	1.01	25	132.0	132.0	1,300	1,300
		Wind River RA	0.041	25.0	512	132.0	132.0	1,300	1,300
		Vallowetone ND	0000	101	20	1000	1220	000	000

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.2 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150

Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background Concentration	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(µg/m ₃)	(µg/m³)	(hg/m³)	(m/bd/)	(µg/m³)	(mg/m ₃)	(µg/m3)
SO ₂	Annual	Bridger WA	0.002	0.1ء	2	9.0	9.00	09	80
		Fitzpatrick WA	0.000	0.1	2	0.6	9.00	09	8
		Grand Teton NP	0.000	0.1	2	0.6	9.00	09	80
		Popo Agie WA	0.001	1.0	20	0.6	9.00	09	80
		Teton WA	0.000	0.1	2	0.6	9.00	09	80
		Washakie WA	0.000	0.1	2	0.6	9.00	09	80
		Wind River RA	0.001	1.0	20	0.6	9.00	9	80
		Yellowstone NP	0.000	0.1	2	0.6	9.00	09	80
SO ₂	24-hr	Bridger WA	0.050	0.2	S	43.0	43.0	260	365
		Fitzpatrick WA	0.004	0.21	ß	43.0	43.0	260	365
		Grand Teton NP	0.002	0.2	2	43.0	43.0	260	365
		Popo Agie WA	600.0	5.0	91	43.0	43.0	260	365
		Teton WA	0.001	0.21	2	43.0	43.0	260	365
		Washakie WA	0.001	0.2	2	43.0	43.0	260	365
		Wind River RA	0.007	5.0	91	43.0	43.0	260	365
		Yellowstone NP	0.001	0.21	2	43.0	43.0	260	365
so,	3-hr	Bridger WA	0.157	1.0	25	132.0	132.2	1,300	1,300
		Fitzpatrick WA	0.014	1.01	25	132.0	132.0	1,300	1,300
		Grand Teton NP	0.005	1.01	25	132.0	132.0	1,300	1,300
		Popo Agie WA	0.060	25.0	512	132.0	132.1	1,300	1,300
		Teton WA	0.005	1.01	25	132.0	132.0	1,300	1,300
		Washakie WA	0.004	1.01	25	132.0	132.0	1,300	1,300
		Wind River RA	0.026	25.0	512	132.0	132.0	1,300	1,300
		Volley and Alley	2000	-0,	25	132.0	1320	1300	1 300

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.3 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075

Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background Concentration	S	WAY	SOS SE
			(mg/m)	(mg/m)	(-m/grl)	(m/bd/)	(mg/m_)	(mg/m)	
SO ₂	Annual	Bridger WA	0.001	0.1	2	0.6	9.00	9	
		Fitzpatrick WA	0.000	0.1	2	0.6	9.00	9	
		Grand Teton NP	0.000	0.1	2	0.6	9.00	9	
		Popo Agie WA	0.000	1.0	20	9.0	9.00	9	
		Teton WA	0.000	0.1	2	0.6	9.00	9	
		Washakie WA	0.000	0.1	2	0.6	9.00	9	
		Wind River RA	0.000	1.0	20	0.6	9.00	09	
		Yellowstone NP	0.000	0.1	2	9.0	9.00	9	
C	2	A) Windowskin		[00	ų	0	0 0	000	
200	111-47	Dilagei vv	0.024	4.0	o	0.04	0.04	700	
		Fitzpatrick WA	0.002	0.5	ω.	43.0	43.0	260	
		Grand Teton NP	0.001	0.2	2	43.0	43.0	260	
		Popo Agie WA	0.005	5.0	91	43.0	43.0	260	
		Teton WA	0.000	0.2	S	43.0	43.0	260	
		Washakie WA	0.001	0.21	S	43.0	43.0	260	
		Wind River RA	0.004	5.0	91	43.0	43.0	260	
		Yellowstone NP	0.000	0.21	S.	43.0	43.0	260	
SO ₂	3-hr	Bridger WA	0.081	1.01	25	132.0	132.1	1,300	
		Fitzpatrick WA	0.007	1.01	25	132.0	132.0	1,300	
		Grand Teton NP	0.003	1.01	25	132.0	132.0	1,300	
		Popo Agie WA	0.029	25.0	512	132.0	132.0	1,300	
		Teton WA	0.003	1.01	25	132.0	132.0	1,300	
		Washakie WA	0.003	1.01	25	132.0	132.0	1,300	
		Wind River RA	0.012	25.0	512	132.0	132.0	1,300	
		Yellowstone NP	0.001	1.01	25	132.0	132.0	1,300	

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.4 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250

Pollutant	Averaging	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(µg/m³)	(hg/m³)	(hg/m³)	(m/grl)	(µg/ш ₃)	(µg/m ₃)	(µg/m ₃)
SO2	Annual	Bridger WA	0.019	0.1	2	0.6	9.02	09	80
		Fitzpatrick WA	0.001	0.1	2	0.6	9.00	9	80
		Grand Teton NP	0.000	0.1	7	0.6	9.00	09	80
		Popo Agie WA	900.0	1.0	20	0.6	9.01	09	80
		Teton WA	0.000	0.1	2	0.6	9.00	9	80
		Washakie WA	0.000	0.1	7	0.6	9.00	09	80
		Wind River RA	0.004	1.0	20	0.6	9.00	09	80
		Yellowstone NP	0.000	0.1	2	0.6	9.00	09	80
SO ₂	24-hr	Bridger WA	0.382	ر2.0	S	43.0	43.4	260	365
		Fitzpatrick WA	0.028	0.21	2	43.0	43.0	260	365
		Grand Teton NP	0.012	0.2	2	43.0	43.0	260	365
		Popo Agie WA	0.068	5.0	91	43.0	43.1	260	365
		Tetan WA	0.007	0.2	2	43.0	43.0	260	365
		Washakie WA	0.011	0.2	S	43.0	43.0	260	365
		Wind River RA	0.055	2.0	91	43.0	43.1	260	365
		Yellowstone NP	0.005	0.2	2	43.0	43.0	260	365
SO ₂	3-hr	Bridger WA	1.232	1.0	25	132.0	133.2	1,300	1,300
		Fitzpatrick WA	0.102	1.01	25	132.0	132.1	1,300	1,300
		Grand Teton NP	0.041	1.01	25	132.0	132.0	1,300	1,300
		Popo Agie WA	0.437	25.0	512	132.0	132.4	1,300	1,300
	,	Teton WA	0.038	1.01	25	132.0	132.0	1,300	1,300
		Washakie WA	0.031	1.01	25	132.0	132.0	1,300	1,300
		Wind River RA	0.196	25.0	512	132.0	132.2	1,300	1,300
		Vollowstone ND	3400	10,	40	7000	1220	4 200	000

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.5 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150

| | | | | |

 |

 | | | | _ | | | | _ | | | | _
 | _ | | | _ | | |
|----------------------|---|--|---|---
--

--
---|---|---|--|---|--
--|---|---|--|--|---|---|---|--
---|--|--|---|
| (µg/m ₃) | 80 | 80 | 80 | 80 | 80

 | 80

 | 80 | 80 | 365 | 365 | 365 | 365 | 365 | 365 | 365 | 365 | 1,300 | 1,300
 | 1,300 | 1,300 | 1,300 | 1,300 | 1,300 | 1,300 |
| (µg/m³) | 09 | 09 | 09 | 09 | 09

 | 09

 | 09 | 09 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 1,300 | 1,300
 | 1,300 | 1,300 | 1,300 | 1,300 | 1,300 | 1,300 |
| (hg/m³) | 9.01 | 9.00 | 9.00 | 9.00 | 9.00

 | 9.00

 | 9.00 | 9.00 | 43.2 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 132.8 | 132.1
 | 132.0 | 132.3 | 132.0 | 132.0 | 132.1 | 132.0 |
| (µg/m³) | 0.6 | 0.6 | 0.6 | 9.0 | 0.6

 | 0.6

 | 9.0 | 0.6 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 43.0 | 132.0 | 132.0
 | 132.0 | 132.0 | 132.0 | 132.0 | 132.0 | 132.0 |
| (µg/m³) | 2 | 2 | 2 | 20 | 2

 | 2

 | 20 | 7 | s. | 2 | 5 | 91 | 2 | 5 | 91 | c) | 25 | 25
 | 25 | 512 | 25 | 25 | 512 | 25 |
| (µg/m³) | ١.0 | 0.1 | 0.1 | 1.0 | 0.1

 | 0.1

 | 1.0 | 0.1 | ر2.0 | 0.21 | 0.21 | 5.0 | 0.2 | 0.2 | 2.0 | 0.21 | 1.01 | 1.01
 | 1.01 | 25.0 | 1.01 | 1.01 | 25.0 | 1.01 |
| (mg/m ₃) | 0.012 | 0.001 | 0.000 | 0.004 | 0.000

 | 0.000

 | 0.002 | 0.000 | 0.237 | 0.018 | 0.008 | 0.045 | 0.004 | 900.0 | 0.034 | 0.003 | 0.750 | 0.065
 | 0.025 | 0.292 | 0.023 | 0.020 | 0.124 | 600.0 |
| | Bridger WA | Fitzpatrick WA | Grand Teton NP | Popo Agie WA | Teton WA

 | Washakie WA

 | Wind River RA | Yellowstone NP | Bridger WA | Fitzpatrick WA | Grand Teton NP | Popo Agie WA | Teton WA | Washakie WA | Wind River RA | Yellowstone NP | Bridger WA | Fitzpatrick WA
 | Grand Teton NP | Popo Agie WA | Teton WA | Washakie WA | Wind River RA | Yellowstone NP |
| | Annual | | | |

 |

 | | | 24-hr | | | | | | | | 3-hr |
 | | | | | | |
| | SO ₂ | | | |

 |

 | | | SO ₂ | | | | | | | | 202 | | | | | | | | | | | | | | |
 | | | | | | |
| | $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ | $ \frac{(\mu g/m^3)}{(\mu g/m^3)} \frac{(\mu g/m^3)}{(\mu g/m^3)} \frac{(\mu g/m^3)}{(\mu g/m^3)} \frac{(\mu g/m^3)}{(\mu g/m^3)} $ Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60 | (µg/m³) (µg/m | (μg/m³) (μg/m³) | (µg/m³) (µg/m³) <t< td=""><td>(µg/m³) (µg/m³) <t< td=""><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Fopo Agie WA 0.004 0.1¹ 2 9.0 9.0 60 Popo Agie WA 0.000 0.1³ 2 9.0 9.0 60 Teton WA 0.000 0.1° 2 9.0 9.00 60 Washakie WA 0.000 0.1² 2 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Forth MA 0.000 0.1¹ 2 9.0 9.00 60 Forth MA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Wind River RA 0.002 1.0 20 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60 Popo Agie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Wind River RA 0.002 1.0 20 9.0 9.00 60 Yellowstone NP 0.000 0.1¹ 2 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 GO GO</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 9.0</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.01 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.018 0.2¹ 5 43.0 43.0 260 Grand Teton NP 0.008 0.2¹ 5 43.0 43.0 260</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fizzpatrick WA 0.001 0.11 2 9.0 9.01 60 9.01 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 9.0</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.01 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Washake WA 0.000 0.1¹ 2 9.0 9.00 60 Yellowstone NP 0.000 0.1¹ 2 9.0 9.00 60 Fizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 5 43.0 43.0 260 Fizpatrick WA 0.018 0.2¹ 5 43.0 43.0 260 Fizpatrick WA 0.045 5.0 91 43.0 260 Fizpatrick WA 0.045 6.0 91 60 Fizpatrick</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Wind River RA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.018 0.21 5 43.0 43.0 260 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Popo Agie WA 0.006 0.21 5 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.004 0.11 2 9.0 9.01 60 Grand Teton NP 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Mashakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.004 5.0 91 43.0 260 Washakie WA 0.003 5.0 91 43.0 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 260 260 260 260 260 260 26</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.21 5 43.0 43.0 260 Grand Teton NA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 260 Yellowstone NP 0.000 0.21 5 43.0 43.0 260 Yellowstone NP 0.000 0.21 5 7 43.0 260 Yellowstone NP 0.000 0.21</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NA 0.001 0.11 2 9.0 9.0 9.01 60 Grand Teton NA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.0 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Grand Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Vind River RA 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.8 1,300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.237 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 132.0 132.0 132.0 132.0 132.0 133.0</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton WA 0.002 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.21 5 43.0 43.0 260 Febro Washakie WA 0.004 0.21 5 43.0 43.0 260 Febro Washakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 132.0 132.1 1,300 Grand Teton NP 0.005 1.01 25 132.0 132.0 132.0 132.0 132.0 132.0</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.21 5 43.0 260 Grand Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Wand River RA 0.034 5.0 91 43.0 132.0 132.0 132.0 132.0 Popo Agie WA 0.065 1.01 25 132.0 132.0 132.0 132.0 132.0 Popo Agie WA 0.025 25.0 512 132.0 132.0 132.0 133.0</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton WA 0.002 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 60 Oyashakie WA 0.000 0.11 2 9.0 9.0 60 Washakie WA 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Z4-hr Bridger WA 0.000 0.11 2 9.0 9.0 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Vollowstone NP 0.003 0.21 5 43.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 13</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0001 0.11 2 9.0 9.00 60 Grand Teton NA 0.0004 0.11 2 9.0 9.00 60 Popo Agie WA 0.0004 0.11 2 9.0 9.00 60 Washakie WA 0.0004 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Etzpatrick WA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.001 0.02 5 43.0 43.0 260 Fopo Agie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.005 0.21 5 43.0 43.0 260 Washakie WA 0.005 0.21 5 43.0 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.0 132.0 Fitzpatrick WA 0.005 0.21 5 132.0 132.0 1300 Fitzpatrick WA 0.005 0.21 5 132.0 132.0 1300 Popo Agie WA 0.005 0.22 5.0 512 132.0 132.0 1300 Popo Agie WA 0.005 0.023 1.01 25 132.0 132.0 1300 Popo Agie WA 0.002 1.01 25 132.0 132.0 1300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 (lug/m³) (lug/m³)</td></t<></td></t<> | (µg/m³) (µg/m³) <t< td=""><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Fopo Agie WA 0.004 0.1¹ 2 9.0 9.0 60 Popo Agie WA 0.000 0.1³ 2 9.0 9.0 60 Teton WA 0.000 0.1° 2 9.0 9.00 60 Washakie WA 0.000 0.1² 2 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Forth MA 0.000 0.1¹ 2 9.0 9.00 60 Forth MA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Wind River RA 0.002 1.0 20 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60 Popo Agie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1¹ 2 9.0 9.00 60 Wind River RA 0.002 1.0 20 9.0 9.00 60 Yellowstone NP 0.000 0.1¹ 2 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 GO GO</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 9.0</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.01 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.018 0.2¹ 5 43.0 43.0 260 Grand Teton NP 0.008 0.2¹ 5 43.0 43.0 260</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fizzpatrick WA 0.001 0.11 2 9.0 9.01 60 9.01 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 9.0</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.01 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Washake WA 0.000 0.1¹ 2 9.0 9.00 60 Yellowstone NP 0.000 0.1¹ 2 9.0 9.00 60 Fizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1¹ 5 43.0 43.0 260 Fizpatrick WA 0.018 0.2¹ 5 43.0 43.0 260 Fizpatrick WA 0.045 5.0 91 43.0 260 Fizpatrick WA 0.045 6.0 91 60 Fizpatrick</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Wind River RA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.018 0.21 5 43.0 43.0 260 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Popo Agie WA 0.006 0.21 5 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.004 0.11 2 9.0 9.01 60 Grand Teton NP 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Mashakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.004 5.0 91 43.0 260 Washakie WA 0.003 5.0 91 43.0 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 260 260 260 260 260 260 26</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.21 5 43.0 43.0 260 Grand Teton NA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 260 Yellowstone NP 0.000 0.21 5 43.0 43.0 260 Yellowstone NP 0.000 0.21 5 7 43.0 260 Yellowstone NP 0.000 0.21</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NA 0.001 0.11 2 9.0 9.0 9.01 60 Grand Teton NA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.0 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Grand Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Vind River RA 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.8 1,300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.237 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 132.0 132.0 132.0 132.0 132.0 133.0</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton WA 0.002 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.21 5 43.0 43.0 260 Febro Washakie WA 0.004 0.21 5 43.0 43.0 260 Febro Washakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 132.0 132.1 1,300 Grand Teton NP 0.005 1.01 25 132.0 132.0 132.0 132.0 132.0 132.0</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.21 5 43.0 260 Grand Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Wand River RA 0.034 5.0 91 43.0 132.0 132.0 132.0 132.0 Popo Agie WA 0.065 1.01 25 132.0 132.0 132.0 132.0 132.0 Popo Agie WA 0.025 25.0 512 132.0 132.0 132.0 133.0</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton WA 0.002 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 60 Oyashakie WA 0.000 0.11 2 9.0 9.0 60 Washakie WA 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Z4-hr Bridger WA 0.000 0.11 2 9.0 9.0 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Vollowstone NP 0.003 0.21 5 43.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 13</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0001 0.11 2 9.0 9.00 60 Grand Teton NA 0.0004 0.11 2 9.0 9.00 60 Popo Agie WA 0.0004 0.11 2 9.0 9.00 60 Washakie WA 0.0004 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Etzpatrick WA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.001 0.02 5 43.0 43.0 260 Fopo Agie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.005 0.21 5 43.0 43.0 260 Washakie WA 0.005 0.21 5 43.0 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.0 132.0 Fitzpatrick WA 0.005 0.21 5 132.0 132.0 1300 Fitzpatrick WA 0.005 0.21 5 132.0 132.0 1300 Popo Agie WA 0.005 0.22 5.0 512 132.0 132.0 1300 Popo Agie WA 0.005 0.023 1.01 25 132.0 132.0 1300 Popo Agie WA 0.002 1.01 25 132.0 132.0 1300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 (lug/m³) (lug/m³)</td></t<> | Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Fopo Agie WA 0.004 0.1¹ 2 9.0 9.0 60 Popo Agie WA 0.000 0.1³ 2 9.0 9.0 60 Teton WA 0.000 0.1° 2 9.0 9.00 60 Washakie WA 0.000 0.1² 2 9.0 9.00 60 | Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60 Fitzpatrick WA 0.000 0.1 ¹ 2 9.0 9.00 60 Forth MA 0.000 0.1 ¹ 2 9.0 9.00 60 Forth MA 0.000 0.1 ¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Wind River RA 0.002 1.0 20 9.0 9.00 60 | Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1 ¹ 2 9.0 9.00 60 Grand Teton NP 0.000 0.1 ¹ 2 9.0 9.00 60 Popo Agie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washakie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Wind River RA 0.002 1.0 20 9.0 9.00 60 Yellowstone NP 0.000 0.1 ¹ 2 9.0 9.00 60 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 GO | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Fitzpatrick WA 0.000 0.11 2 9.0 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 9.0 | Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.01 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Grand River RA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Frizpatrick WA 0.000 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.018 0.2¹ 5 43.0 43.0 260 Grand Teton NP 0.008 0.2¹ 5 43.0 43.0 260 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fizzpatrick WA 0.001 0.11 2 9.0 9.01 60 9.01 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 60 9.00 9.0 | Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60 Grand Tetron NP 0.000 0.1 ¹ 2 9.0 9.01 60 Grand Tetron NP 0.000 0.1 ¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1 ¹ 2 9.0 9.00 60 Washake WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washake WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washake WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washake WA 0.000 0.1 ¹ 2 9.0 9.00 60 Yellowstone NP 0.000 0.1 ¹ 2 9.0 9.00 60 Fizpatrick WA 0.000 0.1 ¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1 ¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1 ¹ 2 9.0 9.00 60 Grand Tetron NP 0.000 0.1 ¹ 5 43.0 43.0 260 Fizpatrick WA 0.018 0.2 ¹ 5 43.0 43.0 260 Fizpatrick WA 0.045 5.0 91 43.0 260 Fizpatrick WA 0.045 6.0 91 60 Fizpatrick | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Wind River RA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.018 0.21 5 43.0 43.0 260 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Popo Agie WA 0.006 0.21 5 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.004 0.11 2 9.0 9.01 60 Grand Teton NP 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.004 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Mashakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.004 5.0 91 43.0 260 Washakie WA 0.003 5.0 91 43.0 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 260 Washakie WA 0.004 5.0 91 43.0 260 260 260 260 260 260 260 260 260 26 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.21 5 43.0 43.0 260 Grand Teton NA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 43.0 260 Mind River RA 0.000 0.21 5 43.0 260 Yellowstone NP 0.000 0.21 5 43.0 43.0 260 Yellowstone NP 0.000 0.21 5 7 43.0 260 Yellowstone NP 0.000 0.21 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NA 0.001 0.11 2 9.0 9.0 9.01 60 Grand Teton NA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.0 60 Grand River RA 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.0 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Grand Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Vind River RA 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.8 1,300 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.237 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Grand Teton WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 132.0 132.0 132.0 132.0 132.0 133.0 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton WA 0.002 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.11 2 9.0 9.00 60 Grand Teton WA 0.001 0.21 5 43.0 43.0 260 Febro Washakie WA 0.004 0.21 5 43.0 43.0 260 Febro Washakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 132.0 132.1 1,300 Grand Teton NP 0.005 1.01 25 132.0 132.0 132.0 132.0 132.0 132.0 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 9.00 60 Grand Teton NP 0.000 0.21 5 43.0 260 Grand Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Washakie WA 0.003 0.21 5 43.0 43.0 260 Wand River RA 0.034 5.0 91 43.0 132.0 132.0 132.0 132.0 Popo Agie WA 0.065 1.01 25 132.0 132.0 132.0 132.0 132.0 Popo Agie WA 0.025 25.0 512 132.0 132.0 132.0 133.0 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton WA 0.002 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 60 Oyashakie WA 0.000 0.11 2 9.0 9.0 60 Washakie WA 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Vollowstone NP 0.000 0.11 2 9.0 9.0 60 Z4-hr Bridger WA 0.000 0.11 2 9.0 9.0 60 Grand Teton NP 0.008 0.21 5 43.0 43.0 260 Teton WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Vollowstone NP 0.003 0.21 5 43.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 13 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0001 0.11 2 9.0 9.00 60 Grand Teton NA 0.0004 0.11 2 9.0 9.00 60 Popo Agie WA 0.0004 0.11 2 9.0 9.00 60 Washakie WA 0.0004 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Etzpatrick WA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.001 0.02 5 43.0 43.0 260 Fopo Agie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.005 0.21 5 43.0 43.0 260 Washakie WA 0.005 0.21 5 43.0 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.0 132.0 Fitzpatrick WA 0.005 0.21 5 132.0 132.0 1300 Fitzpatrick WA 0.005 0.21 5 132.0 132.0 1300 Popo Agie WA 0.005 0.22 5.0 512 132.0 132.0 1300 Popo Agie WA 0.005 0.023 1.01 25 132.0 132.0 1300 Popo Agie WA 0.002 1.01 25 132.0 132.0 1300 | Annual Bridger WA 0.012 0.11 2 9.0 9.01 (lug/m³) (lug/m³) |

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.6 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075

Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	PSD Significance Level	Applicable PSD Increment	Background Concentration	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(hg/m³)	(µg/m³)	(µg/m³)	(hg/m³)	(µg/m³)	(hg/m³)	(mg/m ₃)
SO ₂	Annual	Bridger WA	0.005	0.1	2	0.6	9.01	09	80
		Fitzpatrick WA	0.000	0.1	2	0.6	9.00	09	80
		Grand Teton NP	0.000	0.1	2	9.0	9.00	09	80
		Popo Agie WA	0.002	1.0	20	0.6	9.00	09	80
		Teton WA	0.000	0.1	2	9.0	9.00	09	80
		Washakie WA	0.000	0.1	2	0.6	9.00	09	80
		Wind River RA	0.001	1.0	20	0.6	9.00	09	80
		Yellowstone NP	0.000	0.11	2	9.0	9.00	09	80
SO ₂	24-hr	Bridger WA	0.113	0.2	ĸ	43.0	43.1	260	365
		Fitzpatrick WA	600.0	0.21	2	43.0	43.0	260	365
		Grand Teton NP	0.004	0.2	S	43.0	43.0	260	365
		Popo Agie WA	0.027	5.0	91	43.0	43.0	260	365
		Teton WA	0.002	0.2	S	43.0	43.0	260	365
		Washakie WA	0.003	0.2	Ŋ	43.0	43.0	260	365
		Wind River RA	0.019	5.0	91	43.0	43.0	260	365
		Yellowstone NP	0.001	0.2	c)	43.0	43.0	260	365
SO ₂	3-hr	Bridger WA	0.382	1.01	25	132.0	132.4	1,300	1,300
		Fitzpatrick WA	0.033	1.01	25	132.0	132.0	1,300	1,300
		Grand Teton NP	0.013	1.01	25	132.0	132.0	1,300	1,300
		Popo Agie WA	0.142	25.0	512	132.0	132.1	1,300	1,300
		Teton WA	0.012	1.01	. 25	132.0	132.0	1,300	1,300
		Washakie WA	0.011	1.01	25	132.0	132.0	1,300	1,300
		Wind River RA	0.059	25.0	512	132.0	132.1	1,300	1,300
					11	1 1 1	1 1 1		

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.7 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250

NAAQS	(hg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(mg/m ₃)	09	09	09	09	09	09	9	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS NAAQS	(µg/m³)	9.02	9.00	9.00	9.00	9.00	9.00	9.00	9.00	43.3	43.0	43.0	43.1	43.0	43.0	43.0	43.0	133.0	132.1	132.0	132.3	132.0	132.0	132.2	132.0
Background Concentration	(hg/m³)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(µg/m³)	2	2	2	20	2	2	20	2	ιΩ	3	S	91	S	S	91	2	25	25	25	512	25	25	512	25
Applicable PSD Significance Level	(µg/m³)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1	0.2	0.2	0.21	5.0	0.2	0.2	5.0	0.2	1.01	1.01	1.01	25.0	1.01	1.01	25.0	1.01
Direct Modeled Impact	(µg/m³)	0.015	0.001	0.000	0.005	0.000	0.000	0.003	0.000	0.306	0.022	0.010	0.055	900.0	0.009	0.044	0.004	0.985	0.082	0.033	0.350	0.031	0.024	0.156	0.012
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Tetan WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								80,								SO ₂							

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.8 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250

								_				_		_							_	_		
(mg/m ₃)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
(µg/m³)	9	09	09	9	09	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
(mg/m ₃)	9.01	9.00	9.00	9.00	9.00	9.00	9.00	9.00	43.2	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.7	132.1	132.0	132.3	132.0	132.0	132.1	132.0
(hg/m³)	0.6	0.6	9.0	9.0	0.6	0.6	9.0	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
(mg/m ₃)	7	2	2	20	2	2	20	2	S	S	S	91	Ŋ	S	91	2	25	25	25	512	25	25	512	25
(mg/ш ₃)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1	0.2	0.21	0.2	5.0	0.21	0.21	5.0	0.2	1.01	1.01	1.01	25.0	1.01	1.01	25.0	1.01
(hg/m³)	0.012	0.001	0.000	0.004	0.000	0.000	0.002	0.000	0.229	0.017	0.007	0.041	0.004	900.0	0.033	0.003	0.739	0.061	0.025	0.262	0.023	0.018	0.117	0.009
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
	Annual								24-hr								3-hr							
	SO ₂								SO ₂								SO ₂							
	$(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$	$ \frac{(\mu g/m^3)}{(\mu g/m^3)} \frac{(\mu g/m^3)}{(\mu g/m^3)} \frac{(\mu g/m^3)}{(\mu g/m^3)} \frac{(\mu g/m^3)}{(\mu g/m^3)} $ Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.012 0.1¹ 2 9.0 9.00 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.012 0.1¹ 2 9.0 9.0 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60	(µg/m³) (µg/m³) <t< td=""><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.00 9.00 60</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 60 Popo Agie WA 0.000 0.11 2 9.0 9.0 60 Teton WA 0.000 0.1 2 9.0 9.00 60 Washakie WA 0.000 0.1 2 9.0 9.00 60</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1¹ 2 9.0 9.00 60 Grand Teton NP 0.000 0.1¹ 2 9.0 9.00 60 Teton WA 0.000 0.1¹ 2 9.0 9.00 60 Washkie WA 0.000 0.1¹ 2 9.0 9.00 60 Washkie MA 0.000 0.1¹ 2 9.0 9.00 60 Wash Kiver RA 0.002 1.0 20 9.00 60</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 60 Go Go</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 GO GO</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 9.</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.007 0.21 5 43.0 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 (bg/m³) (lug/m³) (lug/m³)</td><td>Annual Bridger WA 0.012 0.1¹ 2 9.0 9.01 (μg/m³) (μg/</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.01 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.017 0.21 5 43.0 43.0 260 Grand Teton NP 0.007 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Teton WA 0.006 0.21 5 43.0 260 Teton WA 0.006 0.21 5 43.0 260 Teton WA 0.006 0.21 5 43.0 260</td><td>Annual Bridger WA 0.012 0.11 2 9.0 (μg/m³) (μg/m²) (μg</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 60 60 60 60 60 60 60 60 60 60 60 60</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 (lug/m³) (lug/m³)</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.00 60 Grand Tetron WA 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Tetron WA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Carand Tetron WA 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.029 0.21 5 9.0 9.00 60 Carand Tetron WA 0.007 0.21 5 43.0 43.0 260 Popo Agie WA 0.007 0.21 5 43.0 43.0 260 Popo Agie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Yellowstone NP 0.003 0.21 5 132.0 132.7 1,300 Fitzpatrick WA 0.061 1.01 25 132.0 132.1 1,300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Vashakie WA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Z4-hr Bridger WA 0.029 0.21 5 43.0 9.00 60 Fitzpatrick WA 0.017 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Yellowstone NP 0.006 0.21 5 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.1 1300 Grand Teton NP 0.025 1.01 25 132.0 132.1 1300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0012 0.11 2 9.0 9.00 60 Grand Tetron NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.004 1.0 20 9.0 9.00 60 Washakie WA 0.002 0.11 2 9.0 9.00 60 Wind River RA 0.002 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Etzpatrick WA 0.022 1.0 20 9.0 9.00 60 Grand Tetron WA 0.022 0.21 5 43.0 9.00 60 Fitzpatrick WA 0.041 5.0 91 43.0 260 Fopo Agie WA 0.004 0.21 5 43.0 260 Washakie WA 0.004 0.21 5 43.0 260 Washakie WA 0.004 0.21 5 43.0 260 Wind River RA 0.003 0.21 5 43.0 260 Willowstone NP 0.003 0.21 5 132.0 132.1 1,300 Fitzpatrick WA 0.062 2.5.0 512 132.0 132.3 1,300 Fopo Agie WA 0.262 2.5.0 512 132.0 132.3 1,300</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 (19/m³) (19/m³</td><td>Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0001 0.11 2 9.0 9.00 60 Crand Tetron WA 0.0004 0.11 2 9.0 9.00 60 Popo Agie WA 0.0004 0.11 2 9.0 9.00 60 Vasahakie WA 0.0004 0.11 2 9.0 9.00 60 Vasahakie WA 0.0007 0.11 2 9.0 9.00 60 Vallowstone NP 0.000 0.11 2 9.0 9.00 60 Squard Tetron WA 0.000 0.11 2 9.0 9.00 60 Vallowstone NP 0.000 0.11 2 9.0 9.00 60 Crand Tetron WA 0.000 0.11 2 9.0 9.00 60 Vallowstone NP 0.001 0.11 2 9.0 9.00 60 Vashakie WA 0.007 0.21 5 43.0 43.0 260 Vallowstone NP 0.006 0.21 5 43.0 43.0 260 Vallowstone NP 0.006 0.21 5 43.0 43.0 260 Vallowstone NP 0.007 0.21 5 132.0 132.0 1300 Crand Tetron NP 0.007 1.01 25 132.0 132.0 1300 Fitzpatrick WA 0.006 1.01 25 132.0 132.0 1300 Popo Agie WA 0.007 0.23 5.0 512 132.0 1300 Vasahakie WA 0.007 0.23 5.0 512 132.0 1300 Vashakie WA 0.007 0.023 1.01 25 132.0 132.0 1300 Vashakie WA 0.007 0.023 1.01 25 132.0 132.0 1300</td><td>Annual Bridger WA (ug/m³) (ug/m³)</td></t<>	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.00 9.00 60	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.0 60 Grand Teton NP 0.000 0.11 2 9.0 9.0 60 Popo Agie WA 0.000 0.11 2 9.0 9.0 60 Teton WA 0.000 0.1 2 9.0 9.00 60 Washakie WA 0.000 0.1 2 9.0 9.00 60	Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.1 ¹ 2 9.0 9.00 60 Grand Teton NP 0.000 0.1 ¹ 2 9.0 9.00 60 Teton WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washkie WA 0.000 0.1 ¹ 2 9.0 9.00 60 Washkie MA 0.000 0.1 ¹ 2 9.0 9.00 60 Wash Kiver RA 0.002 1.0 20 9.00 60	Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 60 Go	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 GO	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 9.	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand River RA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NA 0.000 0.11 2 9.0 9.00 60 Grand Teton NP 0.007 0.21 5 43.0 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260 60 Grand Teton NP 0.007 0.21 5 43.0 260	Annual Bridger WA 0.012 0.11 2 9.0 9.01 (bg/m³) (lug/m³)	Annual Bridger WA 0.012 0.1 ¹ 2 9.0 9.01 (μg/m³) (μg/	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.01 60 Grand Teton WA 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Teton WA 0.000 0.11 2 9.0 9.00 60 Washakie WA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Fitzpatrick WA 0.017 0.21 5 43.0 43.0 260 Grand Teton NP 0.007 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Teton WA 0.006 0.21 5 43.0 260 Teton WA 0.006 0.21 5 43.0 260 Teton WA 0.006 0.21 5 43.0 260	Annual Bridger WA 0.012 0.11 2 9.0 (μg/m³) (μg/m²) (μg	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 60 60 60 60 60 60 60 60 60 60 60 60	Annual Bridger WA 0.012 0.11 2 9.0 9.01 (lug/m³)	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.00 60 Grand Tetron WA 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Tetron WA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Carand Tetron WA 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.029 0.21 5 9.0 9.00 60 Carand Tetron WA 0.007 0.21 5 43.0 43.0 260 Popo Agie WA 0.007 0.21 5 43.0 43.0 260 Popo Agie WA 0.004 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 43.0 260 Washakie WA 0.006 0.21 5 43.0 260 Yellowstone NP 0.003 0.21 5 132.0 132.7 1,300 Fitzpatrick WA 0.061 1.01 25 132.0 132.1 1,300	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.001 0.11 2 9.0 9.00 60 Grand Teton NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.000 0.11 2 9.0 9.00 60 Vashakie WA 0.000 0.11 2 9.0 9.00 60 Vind River RA 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Z4-hr Bridger WA 0.029 0.21 5 43.0 9.00 60 Fitzpatrick WA 0.017 0.21 5 43.0 43.0 260 Teton WA 0.004 0.21 5 43.0 43.0 260 Yellowstone NP 0.006 0.21 5 43.0 260 Yellowstone NP 0.003 0.21 5 43.0 260 Yellowstone NP 0.005 0.21 5 132.0 132.1 1300 Grand Teton NP 0.025 1.01 25 132.0 132.1 1300	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0012 0.11 2 9.0 9.00 60 Grand Tetron NP 0.000 0.11 2 9.0 9.00 60 Popo Agie WA 0.004 1.0 20 9.0 9.00 60 Washakie WA 0.002 0.11 2 9.0 9.00 60 Wind River RA 0.002 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Yellowstone NP 0.000 0.11 2 9.0 9.00 60 Etzpatrick WA 0.022 1.0 20 9.0 9.00 60 Grand Tetron WA 0.022 0.21 5 43.0 9.00 60 Fitzpatrick WA 0.041 5.0 91 43.0 260 Fopo Agie WA 0.004 0.21 5 43.0 260 Washakie WA 0.004 0.21 5 43.0 260 Washakie WA 0.004 0.21 5 43.0 260 Wind River RA 0.003 0.21 5 43.0 260 Willowstone NP 0.003 0.21 5 132.0 132.1 1,300 Fitzpatrick WA 0.062 2.5.0 512 132.0 132.3 1,300 Fopo Agie WA 0.262 2.5.0 512 132.0 132.3 1,300	Annual Bridger WA 0.012 0.11 2 9.0 9.01 (19/m³) (19/m³	Annual Bridger WA 0.012 0.11 2 9.0 9.01 60 Fitzpatrick WA 0.0001 0.11 2 9.0 9.00 60 Crand Tetron WA 0.0004 0.11 2 9.0 9.00 60 Popo Agie WA 0.0004 0.11 2 9.0 9.00 60 Vasahakie WA 0.0004 0.11 2 9.0 9.00 60 Vasahakie WA 0.0007 0.11 2 9.0 9.00 60 Vallowstone NP 0.000 0.11 2 9.0 9.00 60 Squard Tetron WA 0.000 0.11 2 9.0 9.00 60 Vallowstone NP 0.000 0.11 2 9.0 9.00 60 Crand Tetron WA 0.000 0.11 2 9.0 9.00 60 Vallowstone NP 0.001 0.11 2 9.0 9.00 60 Vashakie WA 0.007 0.21 5 43.0 43.0 260 Vallowstone NP 0.006 0.21 5 43.0 43.0 260 Vallowstone NP 0.006 0.21 5 43.0 43.0 260 Vallowstone NP 0.007 0.21 5 132.0 132.0 1300 Crand Tetron NP 0.007 1.01 25 132.0 132.0 1300 Fitzpatrick WA 0.006 1.01 25 132.0 132.0 1300 Popo Agie WA 0.007 0.23 5.0 512 132.0 1300 Vasahakie WA 0.007 0.23 5.0 512 132.0 1300 Vashakie WA 0.007 0.023 1.01 25 132.0 132.0 1300 Vashakie WA 0.007 0.023 1.01 25 132.0 132.0 1300	Annual Bridger WA (ug/m³) (ug/m³)

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.9 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250

																_										
NAAQS	(па/ш ₃)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	000	005,1	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m³)	09	09	09	09	09	09	09	09	260	260	260	260	260	260	260	260	000	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS NAAQS	(па/m ₃)	9.01	9.00	9.00	9.00	9.00	9.00	9.00	9.00	43.2	43.0	43.0	43.0	43.0	43.0	43.0	43.0	000	132.3	132.0	132.0	132.2	132.0	132.0	132.1	132.0
Background Concentration	(hg/m³)	9.0	9.0	9.0	0.6	9.0	9.0	9.0	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	000	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	2	2	2	20	2	2	20	2	2	2	S	91	2	2	91	2	Ċ	67	25	25	512	25	25	512	25
Applicable PSD Significance Level	(hg/m³)	٥.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1	0.2	0.2	0.2	5.0	0.2	0.21	5.0	0.21	-0 -	2	1.0	1.01	25.0	1.01	1.01	25.0	1.01
Direct Modeled Impact	(hg/m³)	0.008	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.153	0.011	0.005	0.027	0.003	0.004	0.022	0.002	0 400	0.430	0.041	0.017	0.175	0.015	0.012	0.078	9000
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	V/V/100	CAN Infinia	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								6	11-0							
Pollutant		SO ₂								SO ₂								Č	200							

¹ Proposed Class I significance level, Federal Register/Vol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.10 Maximum Modeled SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250

(µg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365		1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
(µg/m ₃)	9	09	09	09	09	09	09	09	260	260	260	260	260	260	260	260		1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
(µg/m³)	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	43.1	43.0	43.0	43.0	43.0	43.0	43.0	43.0		132.2	132.0	132.0	132.1	132.0	132.0	132.0	132.0
(µg/m³)	0.6	9.0	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0		132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
(µg/m³)	2	2	2	20	2	7	20	2	S	5	2	91	S	S	91	9		25	25	25	512	25	25	512	25
(µg/m³)	0.1	0.11	0.1	1.0	0.1	0.1	1.0	0.1	0.2	0.21	0.2	2.0	0.2	0.2	5.0	0.2	·	1.0.1	1.01	1.01	25.0	1.01	1.01	25.0	1.01
(µg/m ₃)	0.004	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.076	0.006	0.002	0.014	0.001	0.002	0.011	0.001		0.246	0.020	0.008	0.087	0.008	9000	0.039	0.003
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
	Annual								24-hr									3-hr							
	SO ₂								80%									SO ₂							
	(µ/gu) (µg/m³) (µg/m³) (µg/m³)	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.004 0.1¹ 2 9.0	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.004 0.1¹ 2 9.0 Fitzpatrick WA 0.000 0.1¹ 2 9.0	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.000 0.1¹ 2 9.0 Fitzpatrick WA 0.000 0.1¹ 2 9.0 Grand Teton NP 0.000 0.1¹ 2 9.0	(Lig/m³) (Lig/m³) (Lig/m³) (Lig/m³) (Lig/m³) Annual Bridger WA 0.004 0.1¹ 2 9.0 Fitzpatrick WA 0.000 0.1¹ 2 9.0 Grand Teton NP 0.000 0.1¹ 2 9.0 Grand Teton WA 0.001 1.0 20 9.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Poppo Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0	(Hg/m³) (Hg/m³) (Hg/m³) (Hg/m³) (Hg/m³) Annual Bridger WA 0.004 0.1¹ 2 9.0 Fitzpatrick WA 0.000 0.1¹ 2 9.0 Grand Teton NP 0.000 0.1¹ 2 9.0 Teton WA 0.001 1.0 20 9.0 Wasshakie WA 0.000 0.1¹ 2 9.0	(Lig/m³) (Li	(Lig/m³) (Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Yellowstone NP 0.000 0.11 2 9.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Foto Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Fitzpatrick WA 0.006 0.11 2 9.0 Fitzpatrick WA 0.006 0.21 5 43.0 Fitzpatrick WA 0.006 0.21 5 43.0	Annual Bridger WA 0.004 0.1 ¹ 2 9.0 Fitzpatrick WA 0.000 0.1 ¹ 2 9.0 Grand Teton NP 0.000 0.1 ¹ 2 9.0 Grand Teton WA 0.000 0.1 ¹ 2 9.0 Wind River RA 0.000 0.1 ¹ 2 9.0 Wind River RA 0.000 0.1 ¹ 2 9.0 Wind River RA 0.001 1.0 20 9.0 Yellowstone NP 0.000 0.1 ¹ 2 9.0 Z4-hr Bridger WA 0.076 0.2 ¹ 5 43.0 Grand Teton NP 0.002 0.2 ¹ 5 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Fitzpatrick WA 0.006 0.21 5 43.0 Fitzpatrick WA 0.006 0.21 5 43.0 Fobo Adie WA 0.014 5.0 91 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Frizpatrick WA 0.000 0.11 2 9.0 Fopo Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.21 5 43.0 Fitzpatrick WA 0.006 0.21 5 43.0 Frizpatrick WA 0.001 0.21 5 43.0 Frizpatrick WA 0.001 0.21 5 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Fitzpatrick WA 0.006 0.21 5 43.0 Grand Teton NP 0.005 0.21 5 43.0 Teton WA 0.001 0.21 5 43.0 Washakie WA 0.002 0.21 5 43.0 Washakie WA 0.002 0.21 5 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fopo Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.21 5 43.0 Fitzpatrick WA 0.000 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Washakie WA 0.001 0.21 5 43.0 Wind River RA 0.011 5.0 91 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River WA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.21 5 43.0 Fitzpatrick WA 0.006 0.21 5 43.0 Teton WA 0.001 0.21 5 43.0 Wind River RA 0.011 5.0 91 43.0 Yellowstone NP 0.001 0.21 5 43.0 Vashakie WA 0.001 0.21 5 43.0 Vallowstone NP 0.001 0.21 5 43.0 Vallowstone NP 0.001 0.21 5 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NA 0.000 0.11 2 9.0 Popo Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River WA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Fitzpatrick WA 0.007 0.11 2 9.0 Washakie WA 0.001 0.21 5 43.0 Teton WA 0.001 0.22 5 43.0 Wind River RA 0.011 5.0 91 43.0 Yellowstone NP 0.001 0.21 5 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Fopo Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.21 5 43.0 Fopo Agie WA 0.001 0.21 5 43.0 Wind River RA 0.001 0.21 5 43.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Vind River RA 0.001 0.11 2 9.0 Vind River RA 0.001 0.11 2 9.0 Vind River RA 0.001 0.11 2 9.0 24-hr Bridger WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Teton WA 0.001 0.21 5 43.0 Wind River RA 0.011 0.21 5 43.0 Vind River RA 0.011 0.21 5 132.0 Fitzpatrick WA 0.2246 1.01 25 132.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Wind River RA 0.001 1.0 20 9.0 Wind River WA 0.000 0.11 2 9.0 Wind River WA 0.000 0.11 2 9.0 Z4-hr Bridger WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Wind River RA 0.011 0.21 5 43.0 Yellowstone NP 0.001 0.21 5 43.0 Wind River RA 0.011 0.21 5 43.0 Yellowstone NP 0.001 0.21 5 132.0 Grand Teton NP 0.000 1.01 25 132.0 Grand Teton NP 0.000 1.01 25 132.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.11 2 9.0 Sahr Bridger WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Washakie WA 0.001 0.21 5 43.0 Yellowstone NP 0.001 0.21 5 132.0 Fitzpatrick WA 0.001 2.5 132.0 Fitzpatrick WA 0.008 1.01 25 132.0 Popo Agie WA 0.087 25.0 512 132.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Vind River RA 0.001 1.0 20 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fitzpatrick WA 0.000 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Fitzpatrick WA 0.001 0.21 5 43.0 Wind River RA 0.011 5.0 91 43.0 Vind River RA 0.011 5.0 91 43.0 Fitzpatrick WA 0.001 0.21 5 132.0 Fitzpatrick WA 0.001 0.21 5 132.0 Fitzpatrick WA 0.001 0.21 5 132.0 Fitzpatrick WA 0.000 1.01 25 132.0 Grand Teton WA 0.000 1.01 25 132.0 Fitzpatrick WA 0.000 1.01 25 132.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Grand Teton NP 0.000 0.11 2 9.0 Fopo Agie WA 0.000 0.11 2 9.0 Teton WA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Wind River RA 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.21 5 43.0 Teton WA 0.000 0.21 5 43.0 Yellowstone NP 0.001 0.21 5 132.0 Grand Teton WA 0.020 1.01 25 132.0 Grand Teton NP 0.008 1.01 25 132.0 Teton WA 0.008 1.01 25 132.0 Teton WA 0.008 1.01 25 132.0 Teton WA 0.008 1.01 25 132.0	Annual Bridger WA 0.004 0.11 2 9.0 Fitzpatrick WA 0.000 0.11 2 9.0 Fractor VA 0.000 0.11 2 9.0 Fractor VA 0.000 0.11 2 9.0 Fractor VA 0.000 0.11 2 9.0 Washakie WA 0.000 0.11 2 9.0 Wind River RA 0.001 1.0 20 9.0 Yellowstone NP 0.000 0.11 2 9.0 Yellowstone NP 0.000 0.2 5 43.0 Teton VA 0.001 0.2 5 43.0 Yellowstone NP 0.001 0.2 5 132.0 Yellowstone NP 0.001 0.2 5 132.0 Fitzpatrick WA 0.020 1.0 2 5 132.0 Fitzpatrick WA 0.020 1.0 2 5 132.0 Fractor WA 0.008 1.0 25 132.0 Fractor WA 0.008 1.0 25 132.0 Wind River RA 0.009 25.0 512 132.0 Washakie WA 0.009 1.0 25 132.0

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.2.11 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources

Averaging Time	aging	Receptor Area	Modeled	Applicable PSD Increment	Background	Total	WAAQS	NAAOS
			(µg/m³)	(µg/m³)	(hg/m³)	(hg/m³)	(µg/m³)	(µg/m³)
Annual	nal	Bridger WA	0.000	7	0.6	9.00	09	80
		Fitzpatrick WA	0.000	7	9.0	9.00	09	80
		Grand Teton NP	0.007	2	9.0	9.01	09	80
		Popo Agie WA	0.000	20	0.6	9.00	09	80
		Teton WA	0.001	2	0.6	9.00	09	80
		Washakie WA	0.000	2	9.0	9.00	09	80
		Wind River RA	0.000	20	0.6	9.00	09	80
		Yellowstone NP	0.001	7	9.0	9.00	09	80
24-hr	ř	Bridger WA	0.086	2	43.0	43.1	260	365
		Fitzpatrick WA	0.007	2	43.0	43.0	260	365
		Grand Teton NP	0.038	2	43.0	43.0	260	365
		Popo Agie WA	0.016	91	43.0	43.0	260	365
		Teton WA	0.012	2	43.0	43.0	260	365
		Washakie WA	0.008	2	43.0	43.0	260	365
		Wind River RA	0.015	91	43.0	43.0	260	365
		Yellowstone NP	0.013	2	43.0	43.0	260	365
3-hr	=	Bridger WA	0.269	25	132.0	132.3	1,300	1,300
		Fitzpatrick WA	0.023	25	132.0	132.0	1,300	1,300
		Grand Teton NP	0.201	25	132.0	132.2	1,300	1,300
		Popo Agie WA	0.091	512	132.0	132.1	1,300	1,300
		Teton WA	0.037	25	132.0	132.0	1,300	1,300
		Washakie WA	0.022	25	132.0	132.0	1,300	1,300
		Wind River RA	0.118	512	132.0	132.1	1,300	1,300
		Yellowstone NP	0.075	25	132 0	132.1	1 300	1,300

Table C.2.12 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and Regional Sources

NAAQS	(µg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m ₃)	09	09	9	9	9	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration	(µg/m³)	9.00	9.00	9.01	9.00	9.00	9.00	9.00	9.00	43.1	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.2	132.0	132.2	132.1	132.0	132.0	132.1	132.1
Background Concentration	(µg/m³)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	2	2	2	20	2	2	20	2	Ŋ	2	2	91	2	2	91	22	25	25	25	512	25	25	512	25
Receptor Area Modeled Impact	(hg/m³),	0.000	0.000	0.007	0.000	0.001	0.000	0.000	0.001	90.0	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.17	0.02	0.20	90.0	0.04	0.02	0.11	0.07
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								SO ₂								SO ₂							

Table C.2.13 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources

	П			_	_	_	_							_	_	_				_	_		_	_	_
NAAQS	(µg/m ₃)	80	80	80	80	80	80	80	8	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(mg/m ₃)	09	09	09	09	09	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS	(µg/m³)	9.00	9.00	9.01	9.00	9.00	9.00	9.00	9.00	43.04	43.01	43.04	43.01	43.01	43.01	43.01	43.01	132.17	132.02	132.20	132.03	132.04	132.02	132.11	132.07
Background Concentration	(hg/m³)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	2	2	7	20	2	2	20	2	9	5	2	91	2	2	91	သ	25	25	25	512	25	25	512	25
Modeled Impact	(hg/m³)	0.000	0.000	0.007	0.000	0.001	0.000	0.000	0.001	0.04	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.17	0.02	0.20	0.03	0.04	0.02	0.11	0.07
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								SO ₂								SO ₂							

Table C.2.14 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources

Annual Bridger WA Fitzpatrick WA Grand Teton NP Popo Agie WA Teton WA Washakie WA		(µg/m³)	(mg/m ₃)		08	Concentration WAAQS NAAQS
		2		(µg/m³)	(µg/m³)	(µg/m ₃)
Fitzpatrick V Grand Tetor Popo Agie V Teton WA Washakie W			0.6	9.01	09	80
Grand Tetor Popo Agie V Teton WA Washakie M		2	9.0	9.00	09	80
Popo Agie V Teton WA Washakie W		2	0.6	9.01	09	80
Teton WA Washakie M		20	0.6	9.00	09	80
Washakie M		2	0.6	9.00	09	80
		2	0.6	9.00	09	80
Wind River RA		20	0.6	9.00	09	80
Yellowstone NP	NP 0.001	2	9.0	9.00	09	80
24-hr Bridger WA	0.39	22	43.0	43.39	260	365
Fitzpatrick WA	VA 0.02	2	43.0	43.02	260	365
Grand Teton NP		5	43.0	43.04	260	365
Popo Agie WA	VA 0.07	91	43.0	43.07	260	365
Teton WA	0.01	2	43.0	43.01	260	365
Washakie WA		5	43.0	43.01	260	365
Wind River RA		91	43.0	43.05	260	365
Yellowstone NP		22	43.0	43.01	260	365
3-hr Bridger WA	1.25	25	132.0	133.25	1,300	1,300
Fitzpatrick WA		25	132.0	132.09	1,300	1,300
Grand Teton NP		25	132.0	132.20	1,300	1,300
Popo Agie WA		512	132.0	132.44	1,300	1,300
Teton WA	0.04	25	132.0	132.04	1,300	1,300
Washakie WA	VA 0.02	25	132.0	132.02	1,300	1,300
Wind River RA		512	132.0	132.20	1,300	1,300
Yellowstone NP		25	132.0	132.07	1,300	1,300

Table C.2.15 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources

NAAQS	(µg/m ₃)	80	80	80	80	8	8	8	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1.300
WAAQS	(mg/m ₃)	09	09	9	09	09	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1.300
Total Concentration WAAQS NAAQS	(mg/m ₃)	9.01	9.00	9.01	9.00	9.00	9.00	9.00	9.00	43.24	43.02	43.01	43.04	43.00	43.01	43.03	43.00	132.75	132.06	132.03	132.29	132.02	132.02	132.12	132.01
Background Concentration	(m/brl)	9.0	9.0	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(m/br/)	2	2	2	20	2	2	20	2	S	cy.	3	91	9	9	91	ιΩ	25	25	25	512	25	25	512	25
Modeled Impact	(hg/m³)	0.006	0.000	0.007	0.000	0.001	0.000	0.000	0.001	0.24	0.02	0.01	0.04	0.00	0.01	0.03	0.00	0.75	90.0	0.03	0.29	0.02	0.02	0.12	0.01
Receptor Area	11/0/24/50	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								SO ₂								SO ₂							

Table C.2.16 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources

NAAQS	(µg/m ₃)	80	80	80	80	80	80	80	80	000	202	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(hg/m³)	09	09	09	9	09	9	09	09	000	700	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration	(hg/m³)	9.00	9.00	9.01	9.00	9.00	9.00	9.00	9.00	0,000	43.12	43.01	43.04	43.03	43.01	43.01	43.01	43.01	132.39	132.03	132.20	132.14	132.04	132.02	132.11	132.07
Background	(hg/m³)	0.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6		43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(µg/m³)	2	2	2	20	2	2	20	2	ι	ဂ	2	2	91	9	2	91	S	25	25	25	512	25	25	512	25
Modeled	(hg/m³)	0.000	0.000	0.007	0.000	0.001	0.000	0.000	0.001		0.12	0.01	0.04	0.03	0.01	0.01	0.01	0.01	0.39	0.03	0.20	0.14	0.04	0.02	0.11	0.07
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual									74-hr								3-hr							
Pollutant		SO ₂								Č	202 202								SO ₂							

Table C.2.17 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources

										_															
NAAQS	(hg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m³)	09	09	09	09	09	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS	(hg/m³)	9.01	9.00	9.01	9.00	9.00	9.00	9.00	9.00	43.31	43.02	43.04	43.06	43.01	43.01	43.04	43.01	133.00	132.07	132.20	132.35	132.04	132.02	132.16	132.07
Background Concentration	(µg/m³)	0.6	9.0	9.0	0.6	9.0	0.6	9.0	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	2	2	2	20	2	2	20	2	2	5	2	91	2	2	91	2	25	25	25	512	25	25	512	25
Modeled Impact	(µg/m³)	0.010	0.000	0.007	0.001	0.001	0.000	0.000	0.001	0.31	0.02	0.04	90.0	0.01	0.01	0.04	0.01	1.00	0.07	0.20	0.35	0.04	0.02	0.16	0.07
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO2								SO ₂								SO ₂	R.						

Table C.2.18 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

	_			_																			_		
NAAQS	(µg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m³)	09	09	09	9	9	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS	(hg/m³)	9.01	9.00	9.01	9.00	9.00	9.00	9.00	9.00	43.24	43.01	43.04	43.04	43.01	43.01	43.02	43.01	132.75	132.05	132.20	132.26	132.04	132.02	132.13	132.07
Background Concentration	(hg/m³)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	2	2	2	20	2	2	20	2	S	ß	2	91	2	2	91	ιΩ	25	25	25	512	25	25	512	25
Modeled	(hg/m³)	900.0	0.000	0.007	0.000	0.001	0.000	0.000	0.001	0.24	0.01	0.04	0.04	0.01	0.01	0.02	0.01	0.75	0.05	0.20	0.26	0.04	0.02	0.13	0.07
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								SO ₂								SO ₂							

Table C.2.19 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

		-		_		_	_			_				_												
NAAQS	(µg/m ₃)	80	80	80	80	80	80	80	80		365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m ₃)	09	09	09	09	09	09	09	09		260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS NAAQS	(m/brl)	9.00	9.00	9.01	9.00	9.00	9.00	9.00	9.00		43.16	43.01	43.04	43.03	43.01	43.01	43.02	43.01	132.51	132.03	132.20	132.18	132.04	132.02	132.13	132.07
Background Concentration	(hg/m³)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6		43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(µg/m ₃)	2	2	2	20	2	2	20	2		2	2	2	91	2	S	91	5	25	25	25	512	25	25	512	25
Modeled	(hg/m³)	0.002	0.000	0.007	0.000	0.001	0.000	0.000	0.001		0.16	0.01	0.04	0.03	0.01	0.01	0.02	0.01	0.51	0.03	0.20	0.18	0.04	0.02	0.13	0.07
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual									24-hr								3-hr							
Pollutant		80,									802								80,							

Table C.2.20 Maximum Modeled Cumulative SO2 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

Pollutant	Averaging Time	Receptor Area	Modeled	PSD	Background Concentration	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(hg/m ₃)	(hg/m³)	(hg/m³)	(hg/m³)	(µg/m ₃)	(µg/m ₃)
SO ₂	Annual	Bridger WA	0.000	2	0.6	9.00	9	80
		Fitzpatrick WA	0.000	2	0.6	9.00	9	80
		Grand Teton NP	0.007	2	0.6	9.01	09	80
		Popo Agie WA	0.000	20	0.6	9.00	09	80
		Teton WA	0.001	2	9.0	9.00	9	80
		Washakie WA	0.000	2	9.0	9.00	9	80
		Wind River RA	0.000	20	0.6	9.00	09	80
		Yellowstone NP	0.001	7	0.6	9.00	9	80
SO ₂	24-hr	Bridger WA	0.08	2	43.0	43.08	260	365
		Fitzpatrick WA	0.01	5	43.0	43.01	260	365
		Grand Teton NP	0.04	5	43.0	43.04	260	365
		Popo Agie WA	0.02	91	43.0	43.02	260	365
		Teton WA	0.01	2	43.0	43.01	260	365
		Washakie WA	0.01	2	43.0	43.01	260	365
		Wind River RA	0.01	91	43.0	43.01	260	365
		Yellowstone NP	0.01	2	43.0	43.01	260	365
(0	L	0	0	000	000
202	3-nr	Bridger WA	0.20	67	132.0	132.20	1,500	000
		Fitzpatrick WA	0.02	25	132.0	132.02	1,300	1,300
		Grand Teton NP	0.20	25	132.0	132.20	1,300	1,300
		Popo Agie WA	0.09	512	132.0	132.09	1,300	1,300
		Teton WA	0.04	25	132.0	132.04	1,300	1,300
		Washakie WA	0.02	25	132.0	132.02	1,300	1,300
		Wind River RA	0.12	512	132.0	132.12	1,300	1,300
		Yellowstone NP	0.07	25	132.0	132.07	1.300	1.300

Table C.3.1 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250

Pollutant	Averagin g Time	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(hg/m³)	(hg/m³)	(µg/m³)	(hg/m³)	(µg/m³)	(hg/m³)	(hg/m³)
DM.	Anna	Bridger W/A	0.058	100	-	9	90	C	C
01.41	100	_	0.00	1.	1	0.0	0.00	000	00
		Fitzpatrick WA	900.0	0.2	4	16.0	16.01	20	20
		Grand Teton NP	0.003	0.21	4	16.0	16.00	20	20
		Popo Agie WA	0.016	1.0	17	16.0	16.02	20	20
		Teton WA	0.002	0.2	4	16.0	16.00	20	20
		Washakie WA	0.002	0.2	4	16.0	16.00	20	20
		Wind River RA	0.012	1.0	17	16.0	16.01	20	20
		Yellowstone NP	0.001	0.21	4	16.0	16.00	20	20
PM ₁₀	24-hr	Bridger WA	1.502	0.3	00	33.0	34.50	150	150
		Fitzpatrick WA	0.168	0.31	œ	33.0	33.17	150	150
		Grand Teton NP	0.088	0.31	00	33.0	33.09	150	150
		Popo Agie WA	0.237	5.0	30	33.0	33.24	150	150
		Teton WA	0.040	0.31	∞	33.0	33.04	150	150
		Washakie WA	0.072	0.31	œ	33.0	33.07	150	150
		Wind River RA	0.182	5.0	30	33.0	33.18	150	150
		Yellowstone NP	0.041	0.31	∞	33.0	33.04	150	150

¹ Proposed Class I significance level, Federal Register/Vol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.2 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150

	_						_											
NAAQS	(µg/m ₃)	20	20	20	20	20	20	20	20	150	750	150	150	150	150	150	150	
WAAQS	(µg/m³)	20	20	20	20	20	20	20	20	150	0 4	150	150	150	150	150	150	
Total Concentration	(µg/m³)	16.05	16.00	16.00	16.01	16.00	16.00	16.01	16.00	34 19	20 - 10	33.07	33.20	33.03	33.05	33.16	33.03	
Applicable PSD Background Total Increment Concentration Concentration WAAQS NAAQS	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	0.00	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	α	0 0	ο α	30	00	œ	30	00	
Applicable PSD Significance Level	(µg/m³)	0.2	0.21	0.2	1.0	0.21	0.2	1.0	0.21	, E		0. C	5.0.5	0.3	0.3	5.0	0.31	
Direct Modeled Impact	(µg/m³)	0.047	0.005	0.002	0.013	0.001	0.001	0.010	0.001	100	2 2 2	0.120	0.20	0.031	0.055	0.157	0.031	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	V/V/1000	Can lagar van	Fitzpatrick wA	Pono Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								2	111-4-7							
Pollutant		PM ₁₀								200	L 10110							

¹ Proposed Class I significance level, Federal Register/Vol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.3 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075

			No Policio	Total car American Com Elimento VIII	200000	01010			
Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background Concentration	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(µg/m ₃)	(hg/m³)	(hg/m³)	(hg/m³)	(hg/m³)	(hg/m³)	(µg/m³)
PM ₁₀	Annual	Bridger WA	0.038	0.5	4	16.0	16.04	20	20
		Fitzpatrick WA	0.004	0.21	4	16.0	16.00	20	20
		Grand Teton NP	0.001	0.2	4	16.0	16.00	20	20
		Popo Agie WA	0.010	1.0	17	16.0	16.01	20	20
		Teton WA	0.001	0.21	4	16.0	16.00	20	20
		Washakie WA	0.001	0.2	4	16.0	16.00	20	20
		Wind River RA	0.008	1.0	17	16.0	16.01	20	20
		Yellowstone NP	0.001	0.21	4	16.0	16.00	20	20
PM ₁₀	24-hr	Bridger WA	0.937	0.3	œ	33.0	33.94	150	150
		Fitzpatrick WA	0.097	0.31	œ	33.0	33.10	150	150
		Grand Teton NP	0.048	0.3	œ	33.0	33.05	150	150
		Popo Agie WA	0.171	5.0	30	33.0	33.17	150	150
		Teton WA	0.027	0.31	œ	33.0	33.03	150	150
		Washakie WA	0.040	0.3	œ	33.0	33.04	150	150
		Wind River RA	0.137	5.0	30	33.0	33.14	150	150
		Yellowstone NP	0.022	0.31	00	33.0	33.02	150	150

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.4 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250

Annual Bridger WA 0.117 0.2¹ 4 16.0 16.01 6.00 6.00 6.00 6.00 6.00 6.0	100	Averaging	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Direct Modeled	Applicable PSD Significance	Applicable PSD		Total	000	0000
Annual Bridger WA 0.117 0.2¹ 4 16.0 16.12 50 Fitzpatrick WA 0.012 0.2¹ 4 16.0 16.01 50 Grand Teton NP 0.005 0.2¹ 4 16.0 16.01 50 Popo Agie WA 0.034 1.0 17 16.0 16.03 50 Teton WA 0.003 0.2¹ 4 16.0 16.03 50 Washakie WA 0.023 1.0 17 16.0 16.00 50 Wind River RA 0.023 1.0 17 16.0 16.00 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.00 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.00 50 Fitzpatrick WA 0.366 0.3¹ 8 33.0 33.40 150 150 Teton WA 0.414 5.0 30 33.0 33.0 150 150 Teton WA 0.45 0.3¹ 8 33.0 33.0 150 150 Washakie WA 0.36 0.3¹ 8 33.0 33.0 150 170 Vellowstone NP 0.081 0.3¹ 8 33.0 33.0 150 170 Vellowstone NP 0.081 0.3¹ 8 13.0 150 170	- Ollutail		Neceptor Vice	(µg/m³)	(hg/m³)			(µg/m³)	(hg/m³)	(hg/m³)
Fitzpatrick WA 0.012 0.2¹ 4 16.0 16.01 50 Grand Teton NP 0.005 0.2¹ 4 16.0 16.01 50 Popo Agie WA 0.034 1.0 17 16.0 16.01 50 Teton WA 0.004 0.2¹ 4 16.0 16.00 50 Wind River RA 0.023 1.0 17 16.0 16.00 50 Yellowstone NP 0.182 0.3¹ 8 33.0 33.4 150 Teton WA 0.145 0.03¹ 8 33.0 33.0 33.4 150 Washakie WA 0.39 6.0 3³ 8 33.0 33.0 33.4 150 Yellowstone NP 0.081 0.3³ 8 33.0 33.4 150 Yellowstone NP 0.081 0.3³ 8 33.0 33.0 150 Yellowstone NP 0.081 0.3³ 8 150 Yellowstone NP 0.081 0.3³ 8 150	PM ₁₀	Annual	Bridger WA	0.117	0.21	4	16.0	16.12	20	20
Grand Teton NP 0.005 0.2¹ 4 16.0 16.01 50 Popo Agie WA 0.034 1.0 17 16.0 16.03 50 Washakie WA 0.003 0.2¹ 4 16.0 16.00 50 Wind River RA 0.023 1.0 17 16.0 16.00 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.0 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.00 50 Z4-hr Bridger WA 3.165 0.3¹ 8 33.0 33.40 150 1 Popo Agie WA 0.182 0.3¹ 8 33.0 33.40 150 1 Popo Agie WA 0.414 5.0 30 33.0 33.0 150 1 Washakie WA 0.081 0.3¹ 8 33.0 33.6 150 1 Washakie WA 0.081 6.0³ 30 33.0 33.15 1			Fitzpatrick WA	0.012	0.21	4	16.0	16.01	20	20
Popo Agie WA 0.034 1.0 17 16.0 16.03 50 Teton WA 0.003 0.2¹ 4 16.0 16.00 50 Washakie WA 0.004 0.2¹ 4 16.0 16.00 50 Wind River RA 0.023 1.0 17 16.0 16.00 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.00 50 Yellowstone NP 0.020 0.2¹ 4 16.0 16.00 50 Teton WA 0.396 0.3¹ 8 33.0 33.40 150 11 Teton WA 0.081 0.3¹ 8 33.0 33.41 150 11 Washakie WA 0.145 0.3¹ 8 33.0 33.41 150 11 Washakie WA 0.145 0.3¹ 8 33.0 33.15 150 11 Washakie WA 0.319 5.0 30 33.0 33.15 150 11 Yellowstone NP 0.081 0.3¹ 8 33.0 33.15 150 11			Grand Teton NP	0.005	0.2	4	16.0	16.01	20	20
Teton WA 0.003 0.2¹ 4 16.0 16.00 50 Washakie WA 0.004 0.2¹ 4 16.0 16.00 50 Wind River RA 0.023 1.0 17 16.0 16.02 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.02 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.02 50 Teton Washakie WA 0.396 0.3¹ 8 33.0 33.40 150 110 Teton WA 0.081 0.3¹ 8 33.0 33.41 150 110 Washakie WA 0.145 0.3¹ 8 33.0 33.41 150 110 Washakie WA 0.145 0.3¹ 8 33.0 33.15 150 110 Washakie WA 0.145 0.3¹ 8 33.0 33.15 150 110 Washakie WA 0.319 5.0 30 33.0 33.0 150 110			Popo Agie WA	0.034	1.0	17	16.0	16.03	20	20
Washakie WA 0.004 0.2¹ 4 16.0 50 Wind River RA 0.023 1.0 17 16.0 16.02 50 Yellowstone NP 0.002 0.2¹ 4 16.0 16.00 50 24-hr Bridger WA 3.165 0.3¹ 8 33.0 36.17 150 1 Prizpatrick WA 0.182 0.3¹ 8 33.0 33.40 150 1 Popo Agie WA 0.182 0.3¹ 8 33.0 33.41 150 1 Teton WA 0.081 0.3¹ 8 33.0 33.41 150 1 Washakie WA 0.145 0.3¹ 8 33.0 33.08 150 1 Wind River RA 0.319 5.0 30 33.0 33.0 150 1 Yellowstone NP 0.081 0.3¹ 8 33.0 33.08 150 1			Teton WA	0.003	0.21	4	16.0	16.00	20	20
Wind River RA 0.023 1.0 17 16.0 16.02 50 Yellowstone NP 0.002 0.2 ¹ 4 16.0 16.02 50 24-hr Bridger WA 3.165 0.3 ¹ 8 33.0 36.17 150 1 Grand Teton NP 0.182 0.3 ¹ 8 33.0 33.4 150 1 Popo Agie WA 0.414 5.0 30 33.0 33.4 150 1 Washakie WA 0.145 0.3 ¹ 8 33.0 33.0 150 1 Wind River RA 0.319 5.0 30 33.0 33.3 150 1 Yellowstone NP 0.081 0.3 ¹ 8 33.0 33.08 150 1			Washakie WA	0.004	0.21	4	16.0	16.00	20	20
Yellowstone NP 0.002 0.2¹ 4 16.0 50 24-hr Bridger WA 3.165 0.3¹ 8 33.0 36.17 150 1 Grand Teton NP 0.182 0.3¹ 8 33.0 33.40 150 1 Grand Teton NP 0.182 0.3¹ 8 33.0 33.48 150 1 Teton WA 0.081 0.3¹ 8 33.0 33.41 150 1 Washakie WA 0.145 0.3¹ 8 33.0 33.08 150 1 Wind River RA 0.319 5.0 30 33.0 33.22 150 1 Yellowstone NP 0.081 0.3³ 8 33.0 33.08 150 1			Wind River RA	0.023	1.0	17	16.0	16.02	20	20
24-hr Bridger WA 3.165 0.3¹ 8 33.0 36.17 150 Fitzpatrick WA 0.396 0.3¹ 8 33.0 33.40 150 Grand Teton NP 0.182 0.3¹ 8 33.0 33.18 150 Popo Agie WA 0.414 5.0 30 33.0 33.41 150 Teton WA 0.081 0.3¹ 8 33.0 33.15 150 Washakie WA 0.145 0.3¹ 8 33.0 33.15 150 Wind River RA 0.319 5.0 30 33.0 33.0 150 Yellowstone NP 0.081 0.3¹ 8 33.0 33.08 150			Yellowstone NP	0.002	0.2	4	16.0	16.00	20	20
0.396 0.3¹ 8 33.0 33.40 150 0.182 0.3¹ 8 33.0 33.18 150 0.414 5.0 30 33.0 33.41 150 0.081 0.3¹ 8 33.0 33.08 150 0.145 0.3¹ 8 33.0 33.15 150 0.081 0.3¹ 8 33.0 33.32 150 0.081 0.3¹ 8 33.0 33.08 150	PM ₁₀	24-hr	Bridger WA	3.165	0.3	œ	33.0	36.17	150	150
0.182 0.31 8 33.0 33.18 150 0.414 5.0 30 33.0 33.41 150 0.081 0.31 8 33.0 33.08 150 0.145 0.31 8 33.0 33.15 150 0.081 5.0 30 33.0 33.32 150 0.081 0.31 8 33.0 33.08 150			Fitzpatrick WA	0.396	0.31	00	33.0	33.40	150	150
0.0414 5.0 30 33.0 33.41 150 0.081 0.3¹ 8 33.0 33.08 150 0.145 0.3¹ 8 33.0 33.15 150 0.319 5.0 30 33.0 33.0 150 0.081 0.3¹ 8 33.0 33.08 150			Grand Teton NP	0.182	0.31	00	33.0	33.18	150	150
0.081 0.3 ¹ 8 33.0 33.08 150 0.145 0.3 ¹ 8 33.0 33.15 150 0.319 5.0 30 33.0 33.32 150 0.081 0.3 ¹ 8 33.0 33.08 150 0.081 0.3 ¹ 8 33.0 33.08 150 0.081			Popo Agie WA	0.414	5.0	30	33.0	33.41	150	150
0.145 0.3 ¹ 8 33.0 33.15 150 0.319 5.0 30 33.0 33.32 150 0.081 0.3 ¹ 8 33.0 33.08 150 0.081 0.			Teton WA	0.081	0.31	00	33.0	33.08	150	150
0.319 5.0 30 33.0 33.32 150 30 0.081 0.3 ¹ 8 33.0 33.08 150 3			Washakie WA	0.145	0.3	00	33.0	33.15	150	150
0.081 0.31 8 33.0 33.08 150			Wind River RA	0.319	5.0	30	33.0	33.32	150	150
			Yellowstone NP	0.081	0.3	œ	33.0	33.08	150	150

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.5 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150

				,					
Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	Applicable PSD Significance Level	Applicable PSD Increment	Background Concentration	Total Concentration WAAQS NAAQS	WAAQS	NAAQS
			(µg/m ₃)	(hg/m³)	(µg/m³)	(µд/ш³)	(µg/m³)	(µg/m ₃)	(hg/m³)
PM ₁₀	Annual	Bridger WA	0.082	0.21	4	16.0	16.08	20	20
		Fitzpatrick WA	0.008	0.21	4	16.0	16.01	20	20
		Grand Teton NP	0.004	0.2	4	16.0	16.00	20	20
		Popo Agie WA	0.023	1.0	17	16.0	16.02	20	20
		Teton WA	0.002	0.21	4	16.0	16.00	20	20
		Washakie WA	0.003	0.2	4	16.0	16.00	20	20
		Wind River RA	0.016	1.0	17	16.0	16.02	20	20
		Yellowstone NP	0.001	0.2	4	16.0	16.00	20	20
k									
PM ₁₀	24-hr	Bridger WA	2.199	0.3	00	33.0	35.20	150	150
		Fitzpatrick WA	0.264	0.31	œ	33.0	33.26	150	150
		Grand Teton NP	0.125	0.3	00	33.0	33.12	150	150
		Popo Agie WA	0.296	5.0	30	33.0	33.30	150	150
		Teton WA	0.055	0.31	œ	33.0	33.05	150	150
		Washakie WA	0.100	0.3	∞	33.0	33.10	150	150
		Wind River RA	0.215	5.0	30	33.0	33.21	150	150
		Yellowstone NP	0.055	0.31	∞	33.0	33.05	150	150

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.6 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075

	_																	
NAAQS	(µg/m ₃)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
WAAQS	(hg/m ₃)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
Applicable PSD Background Total Increment Concentration Concentration WAAQS NAAQS	(hg/m³)	16.05	16.01	16.00	16.02	16.00	16.00	16.01	16.00	34.39	33.16	33.08	33.21	33.03	33.06	33.16	33.03	
Background Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(µg/m ₃)	4	4	4	17	4	4	17	4	œ	œ	œ	30	œ	œ	30	00	
Applicable PSD Significance Level	(µg/m³)	0.2	0.2	0.21	1.0	0.2	0.2	1.0	0.2	0.3	0.3	0.31	5.0	0.31	0.31	5.0	0.3	
Direct Modeled Impact	(hg/m³)	0.054	0.005	0.002	0.015	0.001	0.002	0.011	0.001	1.393	0.161	0.077	0.211	0.034	0.061	0.156	0.033	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								24-hr								
Pollutant		PM ₁₀								PM ₁₀								

¹ Proposed Class I significance level, Federal Register IVol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.7 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250

NAAOS	(µg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
WAAQS	(µg/m ₃)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
Total	(hg/m³)	16.09	16.01	16.00	16.03	16.00	16.00	16.02	16.00	35.53	33.32	33.15	33.33	33.06	33.12	33.26	33.06
Background Total Concentration Concentration WAAQS NAAQS	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	œ	œ	00	30	œ	∞	30	00
Applicable PSD Significance Level	(µg/m³)	0.21	0.21	0.2	1.0	0.21	0.2	1.0	0.2	0.31	0.3	0.31	5.0	0.31	0.3	5.0	0.31
Direct Modeled Impact	(µg/m³)	0.094	0.009	0.004	0.027	0.003	0.003	0.018	0.002	2.532	0.317	0.146	0.331	0.065	0.116	0.255	0.065
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging		Annual								24-hr							
Pollutant		PM ₁₀								PM ₁₀							

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.8 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250

NAAQS	(hg/m ₃)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
WAAQS	(hg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
Applicable PSD Background Total Increment Concentration Concentration WAAQS NAAQS	(hg/m³)	16.07	16.01	16.00	16.02	16.00	16.00	16.01	16.00	34.90	33.24	33.11	33.25	33.05	33.09	33.19	33.05
Background Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	∞	œ	00	30	00	00	30	∞
Applicable PSD Significance Level	(µg/m³)	0.21	0.21	0.2	1.0	0.2	0.2	1.0	0.21	0.3	0.31	0.31	5.0	0.31	0.31	5.0	0.31
Direct Modeled Impact	(hg/m³)	0.070	0.007	0.003	0.020	0.002	0.002	0.014	0.001	1.899	0.238	0.109	0.248	0.049	0.087	0.191	0.049
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging		Annual								24 hr							
Pollutant		PM ₁₀								PM ₁₀							

¹ Proposed Class I significance level, Federal Register/Vol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.9 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250

2S NAAQS	³) (µg/m³)	20	20	50	20	50	50	20	20	9	150	150	150	150	150	150	150	
WAAG	(µg/m³	20	20	20	20	20	20	20	20		150	150	150	150	150	150	150	
Total Concentration	(m/br/)	16.05	16.00	16.00	16.01	16.00	16.00	16.01	16.00		34.27	33.16	33.07	33.17	33.03	33.06	33.13	
Applicable PSD Background Total Increment Concentration WAAQS NAAQS	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0		33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4		00	00	œ	30	00	00	30	
Applicable PSD Significance Level	(µg/m³)	0.2	0.21	0.21	1.0	0.21	0.2	1.0	0.21		0.3	0.31	0.31	5.0	0.31	0.31	5.0	
Direct Modeled Impact	(µg/m³)	0.047	0.005	0.002	0.013	0.001	0.002	600.0	0.001		1.266	0.158	0.073	0.165	0.032	0.058	0.128	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	
Averaging Time		Annual									24-hr							
Pollutant		PM ₁₀									PM ₁₀							

¹ Proposed Class I significance level, *Federal Register N*ol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.10 Maximum Modeled PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250

	,						1											
NAAQS	(µg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
WAAQS	(hg/m ₃)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
Applicable PSD Background Total Increment Concentration Concentration WAAQS NAAQS	(hg/m ₃)	16.02	16.00	16.00	16.01	16.00	16.00	16.00	16.00	33.63	33.08	33.04	33.08	33.02	33.03	33.06	33.02	
Background Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	œ	œ	ω	30	∞	00	30	∞	
Applicable PSD Significance Level	(µg/m³)	0.2	0.21	0.21	1.0	0.2	0.2	1.0	0.2	0.3	0.31	0.31	5.0	0.3	0.3	5.0	0.3	
Direct Modeled Impact	(hg/m³)	0.023	0.002	0.001	0.007	0.001	0.001	0.005	0.000	0.633	0.079	0.036	0.083	0.016	0.029	0.064	0.016	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								24-hr								
Pollutant		PM ₁₀								PM ₁₀								

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table C.3.11 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources

D to et al.	Averaging	Receptor Area	Direct Modeled Impact	Applicable PSD Increment	Background	Total Concentration	WAAQS	NAAQS
			(mg/m ₃)	(hg/m³)	(mg/m ₃)	(hg/m³)	(µg/m ₃)	(hg/m ₃)
PM	Annual	Bridger WA	0.075	4	16.0	16.08	50	20
2		Fitzpatrick WA	0.011	4	16.0	16.01	50	20
		Grand Teton NP	0.015	4	16.0	16.01	20	20
		Popo Agie WA	0.022	17	16.0	16.02	20	20
		Teton WA	9000	4	16.0	16.01	20	20
		Washakie WA	0.005	4	16.0	16.00	20	20
		Wind River RA	0.020	17	16.0	16.02	20	20
		Yellowstone NP	0.005	4	16.0	16.00	20	20
PM	24- hr	Bridger WA	1.661	00	33.0	34.66	150	150
2		Fitzpatrick WA	0.195	œ	33.0	33.20	150	150
		Grand Teton NP	0.136	œ	33.0	33.14	150	150
		Popo Agie WA	0.293	30	33.0	33.29	150	150
		Teton WA	0.077	00	33.0	33.08	150	150
		Washakie WA	0.087	œ	33.0	33.09	150	150
		Wind River RA	0.287	30	33.0	33.29	150	150
		Yellowstone NP	0.062	∞	33.0	33.06	150	150
							200	

Table C.3.12 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and Regional Sources

																- 1	
NAAQS	(µg/m³)	20	20	20	20	20	90	20	20	150	150	150	150	150	150	150	150
WAAQS	(µg/m³)	20	50	20	20	20	20	20	20	150	150	150	150	150	150	150	150
Total Concentration	(hg/m³)	16.06	16.01	16.01	16.02	16.01	16.00	16.02	16.00	34.35	33.17	33.13	33.26	33.07	33.07	33.26	33.06
Background Total Concentration Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Applicable PSD Increment	(mg/m ₃)	4	4	4	17	4	4	17	4	œ	∞	∞	30	∞	∞	30	œ
Direct Modeled Impact	(hg/m³)	0.064	0.010	0.014	0.019	9000	0.004	0.017	0.005	1.354	0.172	0.133	0.256	0.067	0.070	0.264	0.056
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24 - hr							
Pollutant		PM ₁₀								PM ₁₀							

Table C.3.13 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources

Table C.3.14 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources

(ha/m³)	50	20	20	20	20	20	20	20		150	150	150	150	150	150	150	150
(hg/m³)	20	20	20	20	20	20	20	20		150	150	150	150	150	150	150	150
(hg/m³)	16.13	16.02	16.02	16.04	16.01	16.01	16.03	16.01		36.32	33.41	33.23	33.46	33.12	33.16	33.37	33.10
(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0		33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
(hg/m³)	4	4	4	17	4	4	17	4		∞	œ	œ	30	œ	œ	30	œ
(ng/m³)	0.134	0.017	0.018	0.040	0.008	0.007	0.031	900.0		3.319	0.406	0.227	0.462	0.120	0.160	0.371	0.098
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
	Annual									24-hr							
	PM ₁₀									PM ₁₀							
	$({\rm hg/m}^3)$ $({\rm hg/m}^3)$ $({\rm hg/m}^3)$	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.134 4 16.0 16.13 50	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.134 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Popo Agie WA 0.040 17 16.0 16.04 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Grand Teton NP 0.018 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Popo Agie WA 0.004 17 16.0 16.04 50 Teton WA 0.008 4 16.0 16.01 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Popo Agie WA 0.004 17 16.0 16.04 50 Teton WA 0.008 4 16.0 16.01 50 Washakie WA 0.007 4 16.0 16.01 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Popo Agie WA 0.040 17 16.0 16.04 50 Teton WA 0.008 4 16.0 16.01 50 Washakie WA 0.007 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.03 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Popo Agie WA 0.040 17 16.0 16.04 50 Teton WA 0.008 4 16.0 16.01 50 Washakie WA 0.037 4 16.0 16.01 50 Yellowstone NP 0.006 4 16.0 16.01 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Popo Agie WA 0.040 17 16.0 16.04 50 Teton WA 0.008 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.03 50 Yellowstone NP 0.006 4 16.0 16.01 50	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.040 17 16.0 16.02 50 Popo Agie WA 0.040 17 16.0 16.04 50 Teton WA 0.008 4 16.0 16.01 50 Washakie WA 0.007 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.03 50 Yellowstone NP 0.006 4 16.0 16.03 50 24-hr Bridger WA 3.319 8 33.0 36.32 150	Annual Bridger WA 0.134 4 16.0 (Lg/m³)	Annual Bridger WA 0.134 4 16.0 16.13 50 Grand Teton NP 0.018 4 16.0 16.02 50 Grand Teton NP 0.008 4 16.0 16.04 50 Teton WA 0.007 4 16.0 16.01 50 Washakie WA 0.007 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Wind River WA 0.031 17 16.0 16.01 50 Yellowstone NP 0.006 4 16.0 16.01 50 Z4-hr Bridger WA 3.319 8 33.0 36.32 150 Grand Teton NP 0.227 8 33.0 33.23 150	Annual Bridger WA 0.134 4 16.0 16.13 50 Grand Teton NP 0.018 4 16.0 16.02 50 Grand Teton WA 0.008 4 16.0 16.04 50 Teton WA 0.007 4 16.0 16.01 50 Washakie WA 0.007 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Vind River RA 0.031 17 16.0 16.01 50 Yellowstone NP 0.006 4 16.0 16.01 50 Stand Teton WA 3.319 8 33.0 36.32 150 Grand Teton WA 0.227 8 33.0 33.23 150 Popo Agie WA 0.462 30 33.0 33.46 150	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton NP 0.018 4 16.0 16.02 50 Grand Teton WA 0.008 4 16.0 16.01 50 Washakie WA 0.007 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Fitzpatrick WA 0.466 8 33.0 33.41 150 Fitzpatrick WA 0.462 30 33.0 33.46 150 Feton WA 0.462 8 33.0 33.12 150 Feton WA 0.462 8 33.0 33.12 150	Annual Bridger WA 0.134 4 16.0 16.13 50 Fitzpatrick WA 0.017 4 16.0 16.02 50 Grand Teton WA 0.008 4 16.0 16.04 50 Popo Agie WA 0.007 4 16.0 16.04 50 Washakie WA 0.007 4 16.0 16.01 50 Wind River RA 0.031 17 16.0 16.01 50 Vind River RA 0.031 17 16.0 16.01 50 Yellowstone NP 0.006 4 16.0 16.01 50 Z4-hr Bridger WA 3.319 8 33.0 36.32 150 Grand Teton NP 0.227 8 33.0 33.46 150 Popo Agie WA 0.120 8 33.0 33.12 150 Washakie WA 0.120 8 33.0 33.12 150 Washakie WA 0.120 8 33.0 33.12 150 Washakie WA 0.120 8 33.0 33.16 150	Annual Bridger WA 0.134 4 16.0 (µg/m³)

Table C.3.15 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources

Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	Applicable PSD Increment	Background Concentration	Total Concentration	WAAQS	NAAQS
			(µg/m³)	(µg/m³)	(hg/m³)	(hg/m³)	(µg/m³)	(µg/m³)
PM ₁₀	Annual	Bridger WA	0.099	4	16.0	16.10	20	20
		Fitzpatrick WA	0.013	4	16.0	16.01	50	20
		Grand Teton NP	0.016	4	16.0	16.02	50	90
		Popo Agie WA	0.029	17	16.0	16.03	90	20
		Teton WA	0.007	4	16.0	16.01	50	20
		Washakie WA	900.0	4	16.0	16.01	50	90
		Wind River RA	0.024	17	16.0	16.02	90	20
		Yellowstone NP	0.005	4	16.0	16.01	90	20
								800
PM ₁₀	24-hr	Bridger WA	2.353	∞	33.0	35.35	150	150
		Fitzpatrick WA	0.273	00	33.0	33.27	150	150
		Grand Teton NP	0.170	∞	33.0	33.17	150	150
		Popo Agie WA	0.351	30	33.0	33.35	150	150
		Teton WA	0.093	œ	33.0	33.09	150	150
		Washakie WA	0.115	œ	33.0	33.11	150	150
		Wind River RA	0.316	30	33.0	33.32	150	150
		Yellowstone NP	0.071	œ	33.0	33.07	150	150

Table C.3.16 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources

		P																
NAAQS	(µg/m ₃)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
WAAQS	(hg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
Total Concentration	(hg/m³)	16.07	16.01	16.01	16.02	16.01	16.00	16.02	16.00	34.55	33.18	33.13	33.27	33.07	33.08	33.27	33.06	
Background Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	00	œ	œ	30	œ	œ	30	œ	
Direct Modeled Impact	(µg/m³)	0.071	0.010	0.015	0.021	9000	0.005	0.019	0.005	1.547	0.179	0.130	0.266	0.073	0.077	0.270	0.058	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								24-hr								
Pollutant		PM								PM ₁₀		ł						

Table C.3.17 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources

	_		_	_	_			_	_	_	_	_	_				_		_
NAAQS	(ng/m³)	20	20	20	20	20	20	20	20		150	150	150	150	150	150	150	150	
WAAQS	(µg/m ₃)	20	20	20	50	20	20	20	20		150	150	150	150	150	150	150	150	
Total Concentration	(hg/m³)	16.11	16.01	16.02	16.03	16.01	16.01	16.03	16.01		35.69	33.33	33.19	33.38	33.10	33.13	33.34	33.08	
Background Total Concentration Concentration	(µg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0		33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(µg/m³)	4	4	4	17	4	4	17	4		ω	œ	œ	30	œ	œ	30	∞	
Direct Modeled Impact	(µg/m³)	0.111	0.014	0.016	0.033	0.007	900.0	0.026	0.005		2.686	0.326	0.190	0.379	0.104	0.131	0.335	0.082	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual									24-hr								
Pollutant		PM ₁₀									PM ₁₀								

Table C.3.18 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

NAAQS	(µg/m ₃)	20	20	20	20	20	20	20	20	ì	150	150	150	150	150	150	150	150	
WAAQS	(hg/m³)	20	20	20	20	20	20	20	90		150	150	150	150	150	150	150	150	
Total Concentration	(µд/ш ₃)	16.09	16.01	16.02	16.03	16.01	16.01	16.02	16.00		35.05	33.25	33.15	33.30	33.09	33.10	33.30	33.07	
Background Total Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0		33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4		∞	œ	∞	30	œ	∞	30	∞	
Direct Modeled Impact	(µg/m³)	0.087	0.012	0.015	0.026	0.007	0.005	0.022	0.005		2.053	0.247	0.154	0.297	0.088	0.103	0.300	0.067	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual									24-hr								
Pollutant		PM ₁₀									PM ₁₀						r		

Table C.3.19 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

						_												
NAAQS	(µg/m³)	90	90	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
WAAQS	(µg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
Total Concentration	(mg/m³)	16.06	16.01	16.01	16.02	16.01	16.00	16.02	16.00	34.42	33.17	33.13	33.22	33.07	33.07	33.26	33.06	
Background Total Concentration Concentration	(µg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(µg/m³)	4	4	4	17	4	4	17	4	80	00	œ	30	œ	00	30	80	
Direct Modeled Impact	(µg/m³)	0.064	0.010	0.014	0.020	9000	0.004	0.017	0.005	1.420	0.173	0.129	0.222	0.072	0.074	0.265	0.058	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								24-hr								
Pollutant		PM	2							PM30	2							

Table C.3.20 Maximum Modeled Cumulative PM10 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

NAAQS	(µg/m³)	90	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
WAAQS	(hg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150	
Total Concentration	(hg/m³)	16.04	16.01	16.01	16.01	16.01	16.00	16.01	16.00	33.79	33.15	33.13	33.18	33.06	33.05	33.23	33.05	
Background Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	ø	00	00	30	œ	œ	30	œ	
Direct Modeled Impact	(па/ш _з)	0.041	0.007	0.013	0.013	900.0	0.004	0.012	0.004	0.787	0.151	0.125	0.180	0.056	0.054	0.230	0.050	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								24-hr								
Pollutant		PM ₁₀								PM ₁₀					1			

Table C.4.1 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250

NAAQS	(hg/m³)	15	15	15	15	15	15	15	15	99	99	65	65	92	99	65	65	
WAAQS1	(hg/m³)	15	15	15	15	15	15	15	15	99	65	65	65	65	65	65	99	
Total Concentration	(hg/m³)	5.06	5.01	5.00	5.02	5.00	5.00	5.01	5.00	14.50	13.17	13.09	13.24	13.04	13.07	13.18	13.04	
Background Concentration	(hg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
Direct Modeled Impact	(m/grl)	0.058	900.0	0.003	0.016	0.002	0.002	0.012	0.001	1.502	0.168	0.088	0.237	0.040	0.072	0.182	0.041	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging		Annual								24-hr								
Pollutant		PM _{2.5}								PM _{2.5}								

¹ Standard not yet enforced in Wyoming.

Table C.4.2 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150

								_		_								
NAAQS	(µg/m³)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	92
WAAQS1	(hg/m³)	15	15	15	15	15	15	15	15		99	65	65	65	65	65	65	99
Total Concentration WAAQS ¹	(hg/m³)	5.05	5.00	9.00	5.01	2.00	2.00	5.01	5.00		14.19	13.13	13.07	13.20	13.03	13.05	13.16	13.03
Background Concentration	(hg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
Direct Modeled Impact	(hg/m³)	0.047	0.005	0.002	0.013	0.001	0.001	0.010	0.001		1.195	0.128	0.067	0.201	0.031	0.055	0.157	0.031
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual									24-hr							
Pollutant		PM _{2.5}									PM _{2.5}							

¹ Standard not yet enforced in Wyoming.

Table C.4.3 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075

NAAQS	(µg/m ₃)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	65
WAAQS1	(µg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	65
Background Total Concentration Concentration	(hg/m³)	5.04	2.00	2.00	5.01	2.00	2.00	5.01	2.00	13.94	13.10	13.05	13.17	13.03	13.04	13.14	13.02
Background Concentration	(hg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
Direct Modeled Impact	(µg/m ₃)	0.038	0.004	0.001	0.010	0.001	0.001	0.008	0.001	0.937	0.097	0.048	0.171	0.027	0.040	0.137	0.022
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr							
Pollutant		PM _{2.5}								PM _{2.5}							

¹ Standard not yet enforced in Wyoming.

Table C.4.4 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250

NAAQS	(hg/m³)	15	15	15	15	15	15	15	15	65	65	92	92	92	92	99	92	
WAAQS1	(µg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	92	
Background Total WAAQS¹	(hg/m³)	5.12	5.01	5.01	5.03	5.00	2.00	5.02	5.00	16.17	13.40	13.18	13.41	13.08	13.15	13.32	13.08	
Background Concentration	(hg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
Direct Modeled Impact	(µg/m³)	0.117	0.012	0.005	0.034	0.003	0.004	0.023	0.002	3.165	0.396	0.182	0.414	0.081	0.145	0.319	0.081	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging Time		Annual								24-hr								
Pollutant		PM _{2.5}								PM _{2.5}								

¹ Standard not yet enforced in Wyoming.

Table C.4.5 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150

											_		-		-	_	
NAAQS	(hg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	99
WAAQS1	(µg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	65
Background Total Concentration WAAQS ¹	(hg/m ₃)	5.08	5.01	5.00	5.02	2.00	5.00	5.02	2.00	15.20	13.26	13.12	13.30	13.05	13.10	13.21	13.05
Background Concentration	(µg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
Direct Modeled Impact	(µg/m ₃)	0.082	0.008	0.004	0.023	0.002	0.003	0.016	0.001	2.199	0.264	0.125	0.296	0.055	0.100	0.215	0.055
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr							
Pollutant		PM _{2.5}								PM _{2.5}							
	Ш																

1 Standard not yet enforced in Wyoming.

Table C.4.6 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075

					_													
NAAQS	(hg/m ₃)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	65
WAAQS1	(hg/m ₃)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	92
Background Total Concentration WAAQS ¹	(hg/m ₃)	5.05	5.01	5.00	5.02	2.00	2.00	5.01	2.00		14.39	13.16	13.08	13.21	13.03	13.06	13.16	13.03
Background Concentration	(µg/m³)	2.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
Direct Modeled Impact	(µg/m³)	0.054	0.005	0.002	0.015	0.001	0.002	0.011	0.001		1.393	0.161	0.077	0.211	0.034	0.061	0.156	0.033
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual									24-hr							
Pollutant		PM _{2.5}									PM _{2.5}							
			_			_		_	_	_				_		_		

¹ Standard not yet enforced in Wyoming.

Table C.4.7 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250

(µg/m ₃)	15	15	15	15	15	15	15	15		65	65	92	65	65	65	65	65	
(hg/m ₃)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	65	
(hg/m³)	5.09	5.01	2.00	5.03	2.00	2.00	5.02	2.00		15.53	13.32	13.15	13.33	13.06	13.12	13.26	13.06	
(mg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
(hg/m³)	0.094	0.009	0.004	0.027	0.003	0.003	0.018	0.002		2.532	0.317	0.146	0.331	0.065	0.116	0.255	0.065	
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
	Annual									24-hr								
	PM _{2.5}									PM _{2.5}								
	(hg/m³) (µg/m³) (µg/m³)	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.094 5.0 5.09 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.00 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.00 15 Popo Agie WA 0.027 5.0 5.03 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.099 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.00 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.00 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.00 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.02 15	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.027 5.0 5.00 15 Teton WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Wind River RA 0.003 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.02 15 Yellowstone NP 0.002 5.0 5.00 15	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Wind River RA 0.003 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 2.532 13.0 15.53 65 Fitzpatrick WA 0.317 13.0 15.32 65	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 2.532 13.0 15.53 65 Grand Teton NP 0.146 13.0 13.15 65	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.007 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 2.532 13.0 13.32 65 Popo Agie WA 0.331 13.0 13.33 65	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.027 5.0 5.03 15 Teton WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 2.532 13.0 15.53 65 Fitzpatrick WA 0.317 13.0 13.32 65 Teton WA 0.331 13.0 13.36 65 Teton WA 0.331 13.0 13.36 65	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Teton WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 0.018 5.0 5.00 15 Grand Teton NA 2.532 13.0 15.53 65 Fitzpatrick WA 0.317 13.0 15.33 65 Teton WA 0.065 13.0 13.15 65 Washakie WA 0.065 13.0 13.15 65 Washakie WA 0.065 13.0 13.15 65	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.099 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Villowstone NP 0.002 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 0.317 13.0 13.32 65 Grand Teton NP 0.146 13.0 13.32 65 Teton WA 0.331 13.0 13.36 65 Washakie WA 0.166 13.0 13.26 65 Washakie WA 0.166 13.0 13.26 65	Annual Bridger WA 0.094 5.0 5.09 15 Fitzpatrick WA 0.009 5.0 5.01 15 Grand Teton NP 0.004 5.0 5.01 15 Popo Agie WA 0.003 5.0 5.00 15 Washakie WA 0.003 5.0 5.00 15 Wind River RA 0.018 5.0 5.00 15 Vind River RA 0.018 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Fitzpatrick WA 0.012 5.0 5.00 15 Grand Teton NP 0.146 13.0 13.32 65 Teton WA 0.331 13.0 13.38 65 Teton WA 0.316 13.0 13.06 65 Washakie WA 0.116 13.0 13.06 65 Yellowstone NP 0.065 13.0 13.06 65 Yellowstone NP 0.065 13.0 13.06 65

¹ Standard not yet enforced in Wyoming.

Table C.4.8 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250

	_	_		_		-	-			_	_	_	-	_	-	_	-
(hg/m³)	15	15	15	15	15	15	15	15	65	65	65	92	65	99	9	99	
(hg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	99	
(hg/m³)	5.07	5.01	2.00	5.02	5.00	5.00	5.01	2.00	14.90	13.24	13.11	13.25	13.05	13.09	13.19	13.05	
(hg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
(hg/m³)	0.070	0.007	0.003	0.020	0.002	0.002	0.014	0.001	1.899	0.238	0.109	0.248	0.049	0.087	0.191	0.049	
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
	Annual								24-hr								
	PM _{2.5}								PM _{2.5}								
	$(\mathrm{hg/m}^3)$ $(\mathrm{hg/m}^3)$ $(\mathrm{hg/m}^3)$	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.070 5.0 5.07 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.020 5.0 5.02 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.077 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Teton WA 0.020 5.0 5.00 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Teton WA 0.020 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.020 5.0 5.00 15 Teton WA 0.002 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.01 15	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.00 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.020 5.0 5.00 15 Teton Washakie WA 0.022 5.0 5.00 15 Wind River RA 0.014 5.0 5.00 15 Yellowstone NP 0.001 5.0 5.00 15	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.07 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.020 5.0 5.00 15 Teton WA 0.002 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.001 5.0 5.01 15 Yellowstone NP 0.001 5.0 5.01 15	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.020 5.0 5.00 15 Teton WA 0.020 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.001 5.0 5.00 15 Fitzpatrick WA 1.899 13.0 14.90 65 Fitzpatrick WA 0.238 13.0 13.24 65	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Opo Agie WA 0.020 5.0 5.00 15 Wind River RA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.00 15 Yellowstone NP 0.001 5.0 5.00 15 Yellowstone NP 0.001 5.0 5.00 15 Yellowstone NP 0.001 5.0 5.00 15 Grand Teton NP 0.109 13.0 13.24 65	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.07 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.020 5.0 5.00 15 Washakie WA 0.020 5.0 5.00 15 Wind River RA 0.014 5.0 5.00 15 Yellowstone NP 0.001 5.0 5.00 15 Fitzpatrick WA 1.899 13.0 14.90 65 Fitzpatrick WA 0.238 13.0 13.25 65 Popo Agie WA 0.248 13.0 13.25	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.07 15 Grand Teton NP 0.003 5.0 5.00 15 Teton WA 0.020 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.001 5.0 5.00 15 Fitzpatrick WA 0.001 5.0 5.00 65 Fitzpatrick WA 0.001 13.0 13.24 65 Fitzpatrick WA 0.009 13.0 13.05 65 Teton WA 0.009 13.0 13.05 65	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.002 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.001 5.0 5.00 15 Yellowstone NP 0.002 5.0 5.00 15 Yellowstone NP 0.001 5.0 5.01 15 Grand Teton NP 0.238 13.0 13.24 65 Grand Teton NP 0.109 13.0 13.11 65 Teton WA 0.248 13.0 13.05 65 Washakie WA 0.049 13.0 13.05 65	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.01 15 Grand Teton NP 0.003 5.0 5.00 15 Popo Agie WA 0.002 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.001 5.0 5.01 15 Fitzpatrick WA 0.238 13.0 13.24 65 Grand Teton NP 0.109 13.0 13.25 65 Washakie WA 0.248 13.0 13.25 65 Washakie WA 0.087 13.0 13.09 65 Washakie WA 0.087 13.0 13.09 65	Annual Bridger WA 0.070 5.0 5.07 15 Fitzpatrick WA 0.007 5.0 5.00 15 Grand Teton NP 0.003 5.0 5.00 15 Teton WA 0.002 5.0 5.00 15 Washakie WA 0.002 5.0 5.00 15 Wind River RA 0.014 5.0 5.00 15 Vina River WA 0.020 5.0 5.00 15 Vina River WA 0.021 5.0 5.00 15 Vina River WA 0.002 5.0 5.00 15 Vina River WA 0.001 5.0 5.00 15 Crand Teton NP 0.001 13.0 13.24 65 Grand Teton NP 0.109 13.0 13.25 65 Washakie WA 0.248 13.0 13.0 13.05 65 Vina River RA 0.049 13.0 13.09 65 Vina River RA 0.191 13.0 13.05 65 Vina River RA 0.191 13.0 13.05 65 Vina River RA 0.191 13.0 13.05

¹ Standard not yet enforced in Wyoming.

Table C.4.9 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250

Pollutant	Averaging Time	Receptor Area	Direct Modeled Impact	Background Concentration	Total Concentratio n	WAAQS¹	NAAQS
			(hg/m³)	(hg/m ₃)	(hg/m³)	(hg/m³)	(µg/m³)
PM _{2.5}	Annual	Bridger WA	0.047	5.0	5.05	15	15
		Fitzpatrick WA	0.005	5.0	2.00	15	15
		Grand Teton NP	0.002	5.0	2.00	15	15
		Popo Agie WA	0.013	5.0	5.01	15	15
		Teton WA	0.001	5.0	2.00	15	15
		Washakie WA	0.002	5.0	2.00	15	15
		Wind River RA	600.0	5.0	5.01	15	15
		Yellowstone NP	0.001	5.0	2.00	15	15
PM _{2.5}	24-hr	Bridger WA	1.266	13.0	14.27	65	92
		Fitzpatrick WA	0.158	13.0	13.16	65	65
		Grand Teton NP	0.073	13.0	13.07	. 69	65
		Popo Agie WA	0.165	13.0	13.17	65	65
		Teton WA	0.032	13.0	13.03	65	65
		Washakie WA	0.058	13.0	13.06	65	65
		Wind River RA	0.128	13.0	13.13	65	65
		Yellowstone NP	0.032	13.0	13.03	65	9

¹ Standard not yet enforced in Wyoming.

Table C.4.10 Maximum Modeled PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250

NAAQS	(mg/m ₃)	15	15	15	15	15	15	15	15	92	65	65	65	65	65	65	92	
WAAQS	(µg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	65	
Background Total Concentration WAAQS NAAQS	(µg/m³)	5.02	5.00	5.00	5.01	5.00	5.00	5.00	5.00	13.63	13.08	13.04	13.08	13.02	13.03	13.06	13.02	
Background	(µg/m³)	5.0	5.0	5.0	5.0	5.0	2.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
Direct Modeled Impact	(µg/m ₃)	0.023	0.002	0.001	0.007	0.001	0.001	0.005	0.000	0.633	0.079	0.036	0.083	0.016	0.029	0.064	0.016	
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging		Annual								24-hr								
Pollitant		, Md	6.7							PM _{2.5}								

¹ Standard not yet enforced in Wyoming.

Table C.4.11 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources

	Averaging			Background	Total		
Pollutant	Time	Receptor Area	Modeled Impact	Concentration	Concentration	WAAQS1	NAAQS
			(hg/m³)	(hg/m³)	(hg/m³)	(hg/m³)	(hg/m ₃)
PM _{2.5}	Annual	Bridger WA	0.076	5.0	5.08	15	15
		Fitzpatrick WA	0.012	5.0	5.01	15	15
		Grand Teton NP	0.015	5.0	5.02	15	15
		Popo Agie WA	0.025	5.0	5.03	15	15
		Teton WA	0.007	5.0	5.01	15	15
		Washakie WA	0.005	5.0	5.01	15	15
		Wind River RA	0.021	5.0	5.02	15	15
		Yellowstone NP	0.005	5.0	5.01	15	15
PM _{2.5}	24-hr	Bridger WA	1.659	13.0	14.66	65	99
		Fitzpatrick WA	0.195	13.0	13.20	65	65
		Grand Teton NP	0.134	13.0	13.13	65	65
		Popo Agie WA	0.291	13.0	13.29	65	9
		Teton WA	0.073	13.0	13.07	65	65
		Washakie WA	0.087	13.0	13.09	65	65
		Wind River RA	0.278	13.0	13.28	65	65
		Yellowstone NP	0.060	13.0	13.06	65	92

¹ Standard not yet enforced in Wyoming.

Table C.4.12 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150 and Regional Sources

NAAOS	(hg/m ₃)	15	15	15	15	15	15	15	15		99	65	65	65	65	92	65	65	
WAAOS	(µg/m ₃)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	65	
Total	(µg/m³)	5.07	5.01	5.01	5.02	5.01	5.00	5.02	5.00		14.35	13.17	13.13	13.25	13.06	13.07	13.26	13.06	
Background	(µg/m³)	5.0	5.0	5.0	2.0	5.0	5.0	5.0	5.0		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
Modeled Impact		0.065	0.010	0.015	0.021	0.006	0.005	0.019	0.005		1.351	0.166	0.125	0.254	0.063	0.070	0.255	0.055	
O rotage	אפיפטיט איני	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Averaging	D =	Annual									24-hr								
to the first of	TOIINI	PMs	6.7								PM2.5								
						_			_	_			_	_		_			_

¹ Standard not yet enforced in Wyoming.

Table C.4.13 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075 and Regional Sources

Pollutant	Averaging Time	Receptor Area	Modeled Impact	Background	Total	WAAQS	NAAQS
			(hg/m³)	(hg/m³)	(hg/m³)	(µg/m³)	(µg/m³)
PM _{2.5}	Annual	Bridger WA	0.056	2.0	5.06	15	15
		Fitzpatrick WA	600.0	5.0	5.01	15	15
		Grand Teton NP	0.014	5.0	5.01	15	15
		Popo Agie WA	0.019	2.0	5.02	15	15
		Teton WA	9000	5.0	5.01	15	15
		Washakie WA	0.004	2.0	5.00	15	15
		Wind River RA	0.017	5.0	5.02	15	15
		Yellowstone NP	0.005	5.0	2.00	15	15
PM _{2.5}	24-hr	Bridger WA	1.094	13.0	14.09	65	99
		Fitzpatrick WA	0.155	13.0	13.16	65	92
		Grand Teton NP	0.122	13.0	13.12	65	92
		Popo Agie WA	0.224	13.0	13.22	65	92
		Teton WA	0.056	13.0	13.06	65	92
		Washakie WA	0.059	13.0	13.06	65	9
		Wind River RA	0.236	13.0	13.24	65	99
		Vellowstone NP	0.051	13.0	13.05	65	65

¹ Standard not yet enforced in Wyoming.

Table C.4.14 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250 and Regional Sources

NAAQS	(hg/m ₃)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	65
WAAQS1	(hg/m³)	15	15	15	15	15	15	15	15	65	65	65	65	65	65	65	92
Total Concentration	(hg/m³)	5.14	5.02	5.02	5.04	5.01	5.01	5.03	5.01	16.32	13.41	13.23	13.46	13.12	13.16	13.36	13.10
Background	(µg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
Modeled	(µg/m³)	0.135	0.017	0.018	0.042	0.008	0.007	0.032	9000	3.317	0.406	0.229	0.460	0.117	0.160	0.361	0.100
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging		Annual								24-hr							
Pollutant		PM _{2.5}								PM _{2.5}							

¹ Standard not yet enforced in Wyoming.

Table C.4.15 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150 and Regional Sources

	Averaging		10000	Background	Total	10/00/00/1	SOAM
Pollutant	e line	Neceptol Alea	(µg/m³)	(µg/m³)	(µg/m³)	(µ/6d)	(µg/m³)
PM	Annual	Bridger WA	0.100	5.0	5.10	15	15
ì		Fitzpatrick WA	0.014	5.0	5.01	15	15
		Grand Teton NP	0.016	5.0	5.02	15	15
		Popo Agie WA	0.032	5.0	5.03	15	15
		Teton WA	0.007	5.0	5.01	15	15
		Washakie WA	0.006	5.0	5.01	15	15
		Wind River RA	0.025	5.0	5.03	15	15
		Yellowstone NP	0.005	5.0	5.01	15	15
PM,	24-hr	Bridger WA	2.351	13.0	15.35	65	99
		Fitzpatrick WA	0.273	13.0	13.27	65	99
		Grand Teton NP	0.171	13.0	13.17	65	65
		Popo Agie WA	0.349	13.0	13.35	92	65
		Teton WA	0.089	13.0	13.09	92	65
		Washakie WA	0.115	13.0	13.11	65	65
		Wind River RA	0.306	13.0	13.31	65	65
		Yellowstone NP	0.074	13.0	13.07	65	65

¹ Standard not yet enforced in Wyoming.

Table C.4.16 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075 and Regional Sources

Averaging Modeled Time Receptor Area Impact	Background Total Concentration WAAQS ¹
(m/gm)	(hg/m³) (hg/m³) (hg/m³)
Bridger WA 0.072	5.0 5.07 15
Fitzpatrick WA 0.01	0 5.01 15
Grand Teton NP 0.01	0 5.02 15
WA	
	5.0 5.01 15
Washakie WA 0.008	5.0 5.00 15
Wind River RA 0.020	
Yellowstone NP 0.009	
Bridger WA 1.545	13.0 14.54 65
Fitzpatrick WA 0.179	13.18
Grand Teton NP 0.123	
Popo Agie WA 0.264	13.26
	13.07
Washakie WA 0.077	13.08
	13.26
Yellowstone NP 0.05	
	13.06

¹ Standard not yet enforced in Wyoming.

Table C.4.17 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources

Pollutant	Averaging	Receptor Area	Modeled Impact	Background	Total	WAAOS	NAAQS
			1 1	(mg/m ₃)	(m/grl)	(µg/m³)	(µg/m ₃)
PM _{2.5}	Annual	Bridger WA	0.112	5.0	5.11	15	15
		Fitzpatrick WA	0.015	5.0	5.02	15	15
		Grand Teton NP	0.017	5.0	5.02	15	15
		Popo Agie WA	0.036	2.0	5.04	15	15
		Teton WA	0.008	5.0	5.01	15	15
		Washakie WA	0.006	5.0	5.01	15	15
		Wind River RA	0.027	2.0	5.03	15	15
		Yellowstone NP	900.0	5.0	5.01	15	15
PM _{2.5}	24-hr	Bridger WA	2.684	13.0	15.68	65	65
		Fitzpatrick WA	0.326	13.0	13.33	99	92
		Grand Teton NP	0.192	13.0	13.19	65	65
		Popo Agie WA	0.377	13.0	13.38	65	92
		Teton WA	0.100	13.0	13.10	65	65
		Washakie WA	0.131	13.0	13.13	65	65
		Wind River RA	0.326	13.0	13.33	65	65
		Vellowetone NP	0.084	130	13.08	85	65

¹ Standard not yet enforced in Wyoming.

Table C.4.18 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

Averaging Background Total NAAQS NAAQQS NAAQS NAAQS NAAQS NAAQS NAAQQS																			
Averaging Receptor Area Modeled Impact Concentration (Lig/m³) Total Total Annual Bridger WA Goods 6.08 5.0 5.09 Fitzpatrick WA Grand Teton NP Popo Agie WA Teton NP Popo Agie WA Goods 0.029 5.0 5.01 Washakie WA WA Goods 0.007 5.0 5.01 Wind River RA Vellowstone NP Fitzpatrick WA Goods 0.005 5.0 5.01 Yellowstone NP Fitzpatrick WA Goods 0.005 5.0 5.01 Yellowstone NP Goods 0.055 5.0 5.01 Yellowstone NP Goods 0.055 5.0 5.01 Washakie WA Goods 0.055 5.0 5.01 Washakie WA Goods 0.055 5.0 5.01 Bridger WA Goods 0.056 13.0 13.10 Washakie WA Goods 0.003 13.0 13.0 Wind River RA Goods	NAAQS	(µg/m³)	15	15	15	15	15	15	15	15	65	65	92	92	99	65	99	99	
Averaging Receptor Area Modeled Impact Concentration Annual Bridger WA 0.088 5.0 Fitzpatrick WA 0.013 5.0 Grand Teton NP 0.029 5.0 Teton WA 0.029 5.0 Washakie WA 0.029 5.0 Vind River RA 0.023 5.0 Z4-hr Bridger WA 0.023 5.0 Z4-hr Bridger WA 0.026 5.0 Z4-hr Bridger WA 0.026 5.0 S4-hr Bridger WA 0.026 5.0 Wind River RA 0.023 5.0 Fitzpatrick WA 0.026 5.0 S4-hr Bridger WA 0.026 13.0 Fitzpatrick WA 0.047 13.0 Fobo Age WA 0.034 13.0 Wind River RA 0.034 13.0 Wind River RA 0.031 13.0 Yellowstone NP 0.068 13.0	WAAQS ¹	(µg/m³)	15	15	15	15	15	15	15	15	65	65	65	92	65	92	65	65	
Averaging Annual Bridger WA Annual Bridger WA Fitzpatrick WA Grand Teton NP Vopo Agie WA O.013 Grand Teton NP Washakie WA Washakie WA O.005 Wind River RA Substantick WA Condon Supposed Sup	Total	(µg/m³)	5.09	5.01	5.02	5.03	5.01	5.01	5.02	5.01	15.05	13.25	13.16	13.29	13.08	13.10	13.29	13.07	
Averaging Time Annual Br Fr Fr VW WW VY	Background Concentration	(µg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
Averaging Time Annual Br Fr Fr VW WW VY	Modeled Impact	(hg/m³)	0.088	0.013	0.016	0.029	0.007	900.0	0.023	0.005	2.051	0.247	0.156	0.295	0.084	0.103	0.291	0.068	
	Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
Pollutant PM _{2.5}	Averaging Time		Annual								24-hr								
	Pollutant		PM _{2.5}								PM _{2.5}		1						

¹ Standard not yet enforced in Wyoming.

Table C.4.19 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

Pollutant	Averaging Time		Background Receptor Area Modeled Impact Concentration	Background	Total	WAAQS	NAAQS
			(hg/m³)	(hg/m³)	(hg/m³)	(µg/m³)	(hg/m ₃)
PM _{2.5}	Annual	Bridger WA	0.065	5.0	5.06	15	15
		Fitzpatrick WA	0.010	5.0	5.01	15	15
		Grand Teton NP	0.015	5.0	5.01	15	15
		Popo Agie WA	0.022	5.0	5.02	15	15
		Teton WA	0.007	2.0	5.01	15	15
		Washakie WA	0.005	5.0	2.00	15	15
		Wind River RA	0.018	5.0	5.02	15	15
		Yellowstone NP	0.005	5.0	5.00	15	15
PM _{2.5}	24-hr	Bridger WA	1.418	13.0	14.42	99	99
		Fitzpatrick WA	0.169	13.0	13.17	65	65
		Grand Teton NP	0.121	13.0	13.12	65	65
		Popo Agie WA	0.216	13.0	13.22	65	65
		Teton WA	0.068	13.0	13.07	65	65
		Washakie WA	0.074	13.0	13.07	65	65
		Wind River RA	0.256	13.0	13.26	65	65
		Yellowstone NP	0.057	13.0	13.06	65	99

¹ Standard not yet enforced in Wyoming.

Table C.4.20 Maximum Modeled Cumulative PM2.5 Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

							_											
(µg/m³)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	65	
(µg/m³)	15	15	15	15	15	15	15	15		65	65	65	65	65	65	65	65	
(hg/m³)	5.04	5.01	5.01	5.02	5.01	5.00	5.01	2.00		13.79	13.14	13.12	13.17	13.05	13.05	13.22	13.05	
(hg/m³)	5.0	2.0	5.0	5.0	5.0	5.0	5.0	5.0		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
(hg/m³)	0.042	0.008	0.014	0.015	900.0	0.004	0.014	0.004		0.785	0.145	0.118	0.170	0.052	0.054	0.221	0.050	
	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
	Annual									24-hr								
	PM _{2.5}									PM _{2.5}								
	$(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$	$(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ ((µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Grand Teton NP 0.014 5.0 5.01 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Grand Teton NP 0.014 5.0 5.01 15 Popo Agie WA 0.015 5.0 5.02 15	(µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Grand Teton NP 0.014 5.0 5.01 15 Popo Agie WA 0.006 5.0 5.01 15	(Lg/m³) (Lg/m³	(Lg/m³) (Lg/m³	Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Grand Teton NP 0.014 5.0 5.01 15 Popo Agie WA 0.015 5.0 5.01 15 Teton WA 0.006 5.0 5.01 15 Washakie WA 0.004 5.0 5.01 15 Willowstone NP 0.004 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15	Annual Bridger WA 0.042 5.0 (µg/m³) (µ	Annual Bridger WA 0.042 5.0 (µg/m³) (µ	Annual Bridger WA 0.042 5.0 (µg/m³) (µ	Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Popo Agie WA 0.006 5.0 5.01 15 Popo Agie WA 0.005 5.0 5.01 15 Popo Agie WA 0.005 5.0 5.01 15 Feton WA 0.006 5.0 5.01 15 Washakie WA 0.004 5.0 5.01 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15 Fitzpatrick WA 0.785 13.0 13.14 65 Grand Teton NP 0.118 13.0 13.12 65	Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Grand Teton NP 0.014 5.0 5.01 15 Pop Agie WA 0.006 5.0 5.01 15 Teton WA 0.006 5.0 5.01 15 Washakie WA 0.004 5.0 5.01 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15 Tizpatrick WA 0.785 13.0 13.14 65 Grand Teton NP 0.118 13.0 13.17 65	Annual Bridger WA 0.042 5.0 5.04 15 Fitpatrick WA 0.043 5.0 5.01 15 Grand Teton NP 0.014 5.0 5.01 15 Popo Agie WA 0.006 5.0 5.01 15 Teton WA 0.006 5.0 5.01 15 Wild River RA 0.014 5.0 5.01 15 Wind River RA 0.014 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15 Yellowstone NP 0.004 5.0 5.01 15 Tetzpatrick WA 0.785 13.0 13.14 65 Grand Teton WA 0.178 13.0 13.12 65 Teton WA 0.052 13.0 13.17 65	Annual Bridger WA 0.042 5.0 (µg/m³) (µ	Annual Bridger WA 0.042 5.0 5.04 15 Fitzpatrick WA 0.008 5.0 5.01 15 Popo Agie WA 0.014 5.0 5.01 15 Popo Agie WA 0.006 5.0 5.01 15 Fitzpatrick WA 0.006 5.0 5.01 15 Vashakie WA 0.004 5.0 5.01 15 Vallowstone NP 0.014 5.0 5.01 15 Vallowstone NP 0.014 5.0 5.01 15 Yellowstone NP 0.014 5.0 5.01 15 Fitzpatrick WA 0.785 13.0 13.14 65 Grand Teton NP 0.118 13.0 13.17 65 Popo Agie WA 0.170 13.0 13.05 65 Washakie WA 0.054 13.0 13.05 65 Washakie WA 0.0521 13.0 13.05 65	Annual Bridger WA 0.042 5.0 (µg/m³) (µ

¹ Standard not yet enforced in Wyoming.

Table C.5.1 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR250 Compared to Ambient Air Quality Standards

							6		
NAAQS	(hg/m³)	100	1,300	365	80	150	90	65	15
WAAQS	(hg/m³)	100	1,300	260	09	150	20	651	151
Total	(hg/m³)	16.4	152.3	47.1	9.4	146.0	31.8	34.3	7.9
Background Concentration	(hg/m³)	3.4	132	43	თ	33	16	13	S
Direct Predicted Impact	(hg/m³)	13.0	20.3	4.1	0.4	113.0	15.8	21.3	2.9
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	so,		***	PM ₁₀		PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.2 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR150 Compared to Ambient Air Quality Standards

Pollutant	Averaging Time	Direct Predicted Impact	Background Concentration	Total Concentration	WAAQS	NAAQS
		(hg/m³)	(hg/m³)	(hg/m³)	(µg/m³)	(hg/m³)
NO ₂	Annual	11.5	3.4	14.9	100	100
SO ₂	3 Hour	15.4	132	147.4	1,300	1,300
	24-Hour Annual	ω. 0 ∞. 4.	ზ თ	4.0 8.8 4.	260 60	365 80
PM ₁₀	24-Hour Annual	103.8	33	136.8 30.6	150	150 50
PM _{2.5}	24-Hour Annual	19.2	£ 73	32.2	651	65

¹ Standard not yet enforced in Wyoming.

Table C.5.3 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR075 Compared to Ambient Air Quality Standards

NAAQS	(µg/m³)	100	1,300	365	80	150	20	65	15
WAAQS	(hg/m³)	100	1,300	260	09	150	20	651	151
Total Concentration	(hg/m³)	13.0	147.4	46.8	6.9	130.0	29.6	30.7	7.4
Background Concentration	(µg/m³)	3.4	132	43	თ	33	16	13	9
Direct Predicted Impact	(µg/m³)	9. 9.	15.4	3.8	0.3	97.0	13.6	17.7	2.4
Averaging		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.4 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative High Emissions WDR250 Compared to Ambient Air Quality Standards

Pollutant	Averaging Time	Direct Predicted Impact	Background Concentration	Total Concentration	WAAQS	NAAQS
		(hg/m³)	(hg/m³)	(hg/m³)	(µg/m³)	(µg/m³)
NO ₂	Annual	34.2	3.4	37.6	100	100
SO ₂	3 Hour	6.66	132	231.9	1,300	1,300
	24-Hour	20.3	43	63.3	260	365
	Annual	2.0	O	11.0	09	80
PM ₁₀	24-Hour	116.0	33	149.0	150	150
	Annual	17.5	16	33.5	20	20
PM _{2.5}	24-Hour	25.2	13	38.2	651	65
	Annual	4.7	2	9.7	151	15

¹ Standard not yet enforced in Wyoming.

Table C.5.5 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative High Emissions WDR150 Compared to Ambient Air Quality Standards

NAAQS	(hg/m³)	100	1,300	365	80	150	90	65	15	
WAAQS	(hg/m³)	100	1,300	260	09	150	50	651	151	
Total Concentration	(hg/m³)	34.1	207.8	61.5	10.8	137.9	32.1	35.0	9.2	
Background Concentration	(mg/m³)	3.4	132	43	თ	33	16	13	2	
Direct Predicted Impact	(hg/m³)	30.7	75.8	18.5	1.8	104.9	16.1	22.0	4.2	
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual	
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}		

¹ Standard not yet enforced in Wyoming.

Table C.5.6 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative High Emissions WDR075 Compared to Ambient Air Quality Standards

NAAQS	(µg/m³)	100	1,300	365	80	150	90	65	15	
WAAQS	(µg/m³)	100	1,300	260	09	150	90	651	151	
Total Concentration	(µg/m³)	28.2	207.8	61.5	10.4	130.1	30.9	34.9	8.8	
Background Concentration	(µg/m³)	3.4	132	43	თ	33	16	13	2	
Direct Predicted Impact	(hg/m³)	24.8	75.8	18.5	4.	97.1	14.9	21.9	3.8	
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual	
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}		

¹ Standard not yet enforced in Wyoming.

Table C.5.7 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards

(Hg/m) (Hg/m) (Hg/m) (Hg/m) (132 211.9 1,300 43 59.2 260 60 60 10.6 60 15 16 15 15 15 15 15 15 15 15 15 15 15 15 15	Averaging Time	Dire	Background Concentration	Total Concentration	WAAQS	NAAQS
3.4 30.7 100 132 211.9 1,300 43 59.2 260 9 10.6 60 33 125.9 150 16 30.0 50 18 33.1 65 ¹ 66 5 8.7 15 ¹ 16		(_m/grl)	(mg/m-)	(_m/grl)	(m/grl)	(m/grl)
132 211.9 1,300 1,300 4,3 59.2 260 60 60 60 60 60 60 60 60 60 60 60 60 6		27.3	3.4	30.7	100	100
43 59.2 260 9 10.6 60 33 125.9 150 16 30.0 50 13 33.1 65¹ 65 5 8.7 15¹ 15¹		79.9	132	211.9	1,300	1,300
33 125.9 150 16 30.0 50 13 33.1 65 ¹ 65 5 8.7 15 ¹ 15		16.2	43	59.2	260	365
33 125.9 150 16 30.0 50 13 33.1 65 ¹ 65 5 8.7 15 ¹ 15		1.6	O	10.6	09	80
16 30.0 50 13 33.1 65 ¹ 65 5 8.7 15 ¹ 15		92.9	33	125.9	150	150
13 33.1 65 ¹ 5 8.7 15 ¹		14.0	16	30.0	20	20
5 8.7 151		20.1	13	33.1	651	92
		3.7	2	8.7	151	15

¹ Standard not yet enforced in Wyoming.

Table C.5.8 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards

(0)		0	0	55	80	0	20	
NAAQS	(hg/m³)	100	1,300	365	ω	150	co.	65
WAAQS	(mg/m ₃)	100	1,300	260	09	150	20	65 ⁻ 15 ⁻
Total Concentration	(mg/m³)	23.9	191.9	55.2	10.2	102.7	26.5	28.1
Background Concentration	(hg/m³)	3.4	132	43	o o	33	16	2 2 2 2
Direct Predicted Impact	(hg/m³)	20.5	59.9	12.2	1.2	69.7	10.5	15.1
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour Annual
Pollutant		NO2	80%			PM		PM _{2.5}

¹ Standard not yet enforced in Wyoming.

Table C.5.9 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards

NAAQS	(hg/m³)	100	1,300	365	80	150	20	65	15
WAAQS	(hg/m³)	100	1,300	260	09	150	20	651	151
Total Concentration	(hg/m³)	17.1	171.9	51.1	89.	79.5	23.0	23.1	6.9
Background Concentration	(mg/m³)	3.4	132	43	თ	33	16	13	c)
Direct Predicted Impact	(µg/m³)	13.7	39.9	8.1	0.8	46.5	7.0	10.1	1.9
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.10 Maximum Predicted Impacts Within the JIDPA from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 Compared to Ambient Air Quality Standards

NAAQS	(µg/m³)	100	1,300	365	80	150	20	99	15
WAAQS	(hg/m³)	100	1,300	260	09	150	20	651	151
Total Concentration	(hg/m³)	10.2	152.0	47.1	9.4	56.2	19.5	18.0	5.9
Background Concentration	(hg/m³)	3.4	132	43	တ	33	16	13	5
Direct Predicted Impact	(hg/m³)	6.8	20.0	4.1	0.4	23.2	3.5	5.0	6.0
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.11 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR250 and Regional Sources - Compared to Ambient Air Quality Standards

NAAQS	(hg/m ₃)	100	1,300	365	80	150	20	65	15
WAAQS	(hg/m³)	100	1,300	260	09	150	20	651	151
Total Concentration	(hg/m³)	16.7	152.2	47.0	9.4	146.1	31.8	34.4	7.9
Background Concentration	(µg/m³)	3.4	132	43	თ	33	16	13	S
Direct Predicted Impact	(µg/m³)	13.3	20.2	4.0	0.4	113.1	15.8	21.4	2.9
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.12 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR150 and Regional Sources - Compared to Ambient Air Quality Standards

Pollutant	Averaging Time	Direct Predicted Impact	Background Concentration	Total Concentration	WAAQS	NAAQS
		(mg/m ₃)	(hg/m³)	(hg/m³)	(hg/m³)	(hg/m³)
NO2	Annual	11.7	3.4	15.1	100	100
SO ₂	3 Hour	15.4	132	147.4	1,300	1,300
	24-Hour	3.6	43	46.6	260	365
	Annual	4.0	σ	4.6	09	80
PM ₁₀	24-Hour	103.9	33	136.9	150	150
	Annual	14.6	16	30.6	20	20
PM _{2.5}	24-Hour	19.3	13	32.3	651	65
	Annual	2.6	2	7.6	151	15

¹ Standard not yet enforced in Wyoming.

Table C.5.13 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Low Emissions WDR075 and Regional Sources - Compared to Ambient Air Quality Standards

				_		+	_			
NAAQS	(hg/m³)	100	1,300	365	80	150	20	65	15	
WAAQS	(µg/m³)	100	1,300	260	09	150	20	651	151	
Total Concentration	(hg/m³)	13.3	147.4	46.6	9.3	130.1	29.6	30.8	7.4	
Background Concentration	(µg/m³)	3.4	132	43	တ	33	16	13	2	
Direct Predicted Impact	(hg/m³)	<u>დ</u>	15.4	3.6	0.3	97.1	13.6	17.8	2.4	
Averaging		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual	
Pollutant		NO ₂	so,			PM ₁₀		PM _{2.5}		

¹ Standard not yet enforced in Wyoming.

Table C.5.14 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative High Emissions WDR250 and Regional Sources - Compared to Ambient Air Quality Standards

Averaging Time	Direct Predicted Impact	Background Concentration	Total Concentration	WAAQS	NAAQS
	(ˈm/bd)	('m/grd)	('m/gu')	(hg/m²)	(hg/m²)
Annual	34.4	3.4	37.8	100	100
3 Hour	8.66	132	231.8	1,300	1,300
24-Hour	20.2	43	63.2	260	365
Annual	9.1	σ	10.9	09	80
24-Hour	116.3	33	149.3	150	150
Annual	17.5	16	33.5	20	20
24-Hour	25.1	13	38.1	651	65
Annual	4.7	2	9.7	151	15

¹ Standard not yet enforced in Wyoming.

Table C.5.15 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative High Emissions WDR150 and Regional Sources - Compared to Ambient Air Quality Standards

NAAQS	(hg/m³)	100	1,300	365	150	65 5 5	
WAAQS	(hg/m³)	100	1,300	260 60	150 50	65 ¹	
Total Concentration	(hg/m³)	34.4	207.8	61.4	138.0 32.1	35.0	
Background	(µg/m³)	8.	132	43	33	£ &	
Direct Predicted Impact	(µg/m³)	31.0	75.8	18.4	105.0	22.0	
Averaging		Annual	3 Hour	24-Hour Annual	24-Hour Annual	24-Hour Annual	
Pollutant		NO ₂	SO ₂	The state of the s	PM ₁₀	PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.16 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative High Emissions WDR075 and Regional Sources - Compared to Ambient Air Quality Standards

NAAQS	(hg/m³)	100	1,300	365	80	150	50	65	15	
WAAQS	(hg/m³)	100	1,300	260	09	150	20	65,	151	
Total Concentration	(hg/m³)	28.5	207.8	61.4	10.4	130.3	30.9	34.9	8.8	
Background Concentration	(hg/m³)	3.4	132	43	თ	33	16	13	2	
Direct Predicted Impact	(hg/m³)	25.1	75.8	18.4	4.	97.3	14.9	21.9	3.8	
Averaging Time	,	Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual	
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}		

¹ Standard not yet enforced in Wyoming.

Table C.5.17 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources - Compared to Ambient Air Quality Standards

Pollutant	Averaging Time	Direct Predicted Impact	Background Concentration	Total Concentration	WAAQS	NAAQS
		(hg/m³)	(hg/m³)	(hg/m³)	(hg/m³)	(hg/m³)
NO ₂	Annual	27.6	3.4	31.0	100	100
SO ₂	3 Hour	79.8	132	211.8	1,300	1,300
	24-Hour	16.1	43	59.1	260	365
	Annual	1.6	o	10.6	09	80
PM ₁₀	24-Hour	93.0	33	126.0	150	150
	Annual	14.0	16	30.0	20	20
PM _{2.5}	24-Hour	20.1	13	33.1	651	65
	Annual	3.8	2	8.8	151	15

¹ Standard not yet enforced in Wyoming.

Table C.5.18 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources - Compared to Ambient Air Quality Standards

NAAQS	(µg/m³)	100	1,300	365	80	150	20	92	15
WAAQS	(mg/m³)	100	1,300	260	09	150	20	651	151
Total Concentration	(hg/m³)	24.2	191.8	55.1	10.2	102.8	26.5	28.0	7.8
Background Concentration	(hg/m³)	3.4	132	43	თ	33	16	13	9
Direct Predicted Impact	(hg/m³)	20.8	59.8	12.1	1.2	69.8	10.5	15.0	2.8
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	80,			PM ₁₀		PM _{2.5}	

¹ Standard not yet enforced in Wyoming.

Table C.5.19 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources - Compared to Ambient Air Quality Standards

ation WAAQS NAAQS	(hg/m³) (hg/m³)	100 100	1,300	260 365	09	150 150	50 50	651 65	
Total Concentration	(hg/m³)	17.3	171.8	51.0	9.8	79.6	23.0	23.0	
Background Concentration	(mg/m ₃)	3.4	132	43	თ	33	16	13	
Direct Predicted Impact	(hg/m³)	13.9	39.8	8.0	8.0	46.6	7.0	10.0	
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}	

1 Standard not yet enforced in Wyoming.

C-120

Table C.5.20 Maximum Predicted Cumulative Impacts Within the JIDPA from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources - Compared to Ambient Air Quality Standards

	_								
NAAQS	(hg/m³)	100	1,300	365	80	150	20	92	15
WAAQS	(hg/m³)	100	1,300	260	09	150	20	651	151
Total Concentration	(hg/m³)	10.5	151.9	47.0	9.4	56.3	19.5	18.0	0.9
Background	(hg/m³)	3.4	132	43	o	33	16	13	c)
Direct Predicted	(hg/m³)	7.1	19.9	4.0	0.4	23.3	3.5	5.0	1.0
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual
Pollutant		NO ₂	80,	4		PM	•	PM	

1 Standard not yet enforced in Wyoming.

Table C.6.1 Maximum Modeled Nitrogen (N) Deposition Impacts (g/lha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Sources

es	suc										
7	0000	Low Emissions	Low Emissions	High Emissions	High Emissions	High Emissions	20% Emissions Reduction	40% Emissions Reduction	60% Emissions Reduction	80% Emissions Reduction	Deposition Analysis
	4250	WDK150	WDK0/s	WDRZSO	WDR150	WDR075	WDR250	WDRZ50	WDRZS0	WDR250	Inreshold for Project Alone
	200	0.023	0.00	0.07	0.051	0.031	0.062	0.048	0.031	0.015	0.005
	1258	0.0018	0.0012	0.0055	0.0036	0.0020	0.0044	0.0033	0.0022	0.0011	0.005
	1112	0.0008	0.00051	0.00239	0.0015	0.00088	0.00191	0.0014	0.00096	0.00048	0.005
opo Agle WA 0.0159	159	0.011	0.007	0.0354	0.023	0.014	0.0283	0.021	0.014	0.0071	0.005
Teton WA 0.000	1053	0.00037	0.00024	0.00113	0.00073	0.00041	0.00090	0.00068	0.00045	0.00023	0.005
fashakie WA 0.00069	690	0.00048	0.00031	0.00142	0.00092	0.00052	0.00114	0.00085	0.00057	0.00028	0.005
	1945	0,0067	0.0043	0.0214	0.014	0.0077	0.0172	0.0129	0.0086	0.0043	0.005
	0380	0.00027	0.00018	0.00084	0.00054	0.00031	0.00067	0,00050	0.00034	0.00017	0.005

¹ National Park Service (2001).

Table C.6.2. Maximum Modeled Total Nitrogen (N) Deposition Impacts ((g/na-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Atternative and Regional Sources

	Low Emissio	ins WDR250	Low Emission	ns WDR150	Low Emission	ns WDR075	High Emissio	ns WDR250	High Emissio,	ins WDR150	
											Level of Concern
Recentor Area	Modeled Impact	Total Impact ²	for Total Impacts								
ridger WA	0.055	1.555	0.047	1.547	0.040	1.540	0.093	1.593	0.070	1.570	3.00
fzpatrick WA	0.0078	1.508	0.0070	1.507	0.0064	1.506	0.011	1,511	0,0088	1.509	3.00
rand Teton NP	0.0103	1.510	0.010	1.510	0.010	1.510	0.012	1.512	0.011	1.511	3.00
Popo Agie WA	0.028	1.528	0.023	1.523	0.020	1.520	0.048	1.548	0.035	1,535	3.00
Feton WA	0.0036	1.504	0.0035	1,503	0.0033	1,503	0.0042	1.504	0,0038	1.504	3.00
Vashakle WA	0.0040	1.504	0.0039	1.504	0.0037	1.504	0.0046	1.505	0.0042	1.504	3.00
And River RA	0.020	1.520	0.017	1.517	0.015	1.515	0.032	1.532	0.025	1.525	3.00
ellowstone NP	0.0026	1.503	0.0025	1.503	0.0024	1.502	0.0030	1.503	0.0028	1.503	3.00

	High Emissio	ins WDR075	20% Emissions Re	aduction WDR250	40% Emissions Re	eduction WDR250	60% Emissions Re	eduction WDR250	80% Emissions Re	duction WDR250	
											Level of Concern
Receptor Area	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	for Total Impacts
ridger WA	0.050	1.550	0.080	1.580	0.067	1.567	0.054	1.554	0.042	1.542	3.00
tzpatrick WA	0.0072	1.507	9600'0	1.510	0.0085	1.509	0.0074	1.507	0.0063	1,506	3.00
Grand Teton NP	0.010	1.510	0.011	1.511	0.011	1,511	0,010	1.510	0.010	1.510	3.00
opo Agie WA	0.026	1.526	0.041	1.541	0.033	1.533	0.026	1.526	0.019	1.519	3.00
aton WA	0.0035	1.503	0.0040	1.504	0.0038	1.504	0.0035	1,504	0.0033	1.503	3.00
Vashakie WA	0.0039	1.504	0.0044	1.504	0.0041	1.504	0.0039	1,504	0.0037	1.504	3.00
And River RA	0.018	1.518	0.028	1.528	0.024	1.524	0.019	1.519	0.015	1.515	3.00
Plowstone NP	0.0025	1.503	0.0029	1.503	0.0027	1.503	0.0026	1,503	0.0024	1.502	3.00

¹ Fox et al. (1989) ² Includes N deposition value of 1.5 kg/ha-yr measured near Pinedale for the year 2001.

Table C.6.3 Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Allemative Sources

						Modeling	Scenario				
	Low Emissions	Low Emissions	Low Emissions	High Emissions	High Emissions	High Emissions	20% Emissions Reduction	40% Emissions Reduction	60% Emissions Reduction	80% Emissions Reduction	Deposition Analysis
Receptor Area	WDR250	WDR150	WDR075	WDR250	WDR150	WDR075	WDR250	WDR250	WDR250	WDR250	Threshold for Project Alone
Rridger WA	0.0016	0,0010	0.00057	0.0077	0.0048	0.0027	0,00616	0.0046	0.0031	0.0015	0.005
itzpatrick WA	0.00016	0.00010	0.000050	0.00079	0.00048	0.00023	0.00063	0.00047	0.00032	0.00016	0.005
Grand Teton NP	0.000073	0.000044	0.000022	0.00035	0.00021	0.00010	0.00028	0.00021	0.00014	0.000070	0.005
opo Agie WA	0.00081	0.00050	0.00027	0.00390	0.0024	0.0012	0.00312	0.0023	0.0016	0.00078	0.005
eton WA	0.000041	0.000025	0.000012	0.00020	0.00012	0.000057	0.00016	0.00012	0.000078	0.000039	0.005
Vashakie WA	0.000047	0.000029	0.000014	0.00023	0.00014	0.000065	0.00018	0.00014	0.000091	0.000045	0.005
Wind River RA	0.00047	0.00029	0.00014	0.0023	0.0014	0,00065	0,0018	0.0014	0.00091	0.00045	0.005
rellowstone NP	0.000027	0.000016	0.000008	0.00013	0.000078	0.000038	0.00010	0.000077	0.000051	0.000026	0.005

¹ National Park Service (2001).

Table C.6.4 Maximum Modeled Total Suffur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative and Regional Sources

	Low Emission	ns WDR250	Low Emission	ns WDR150	Low Emission	ns WDR075	High Emission	ns WDR250	High Emissio	ins WDR150	
											Level of Concern
Receptor Area	Modeled Impact	Total Impact ²	for Total Impacts								
Bridger WA	-0.00085	0.74915	-0.00087	0.74913	-0.00089	0.74911	0.0041	0.75408	0.0011	0.75113	2.00
rizpatrick WA	-0.00075	0.74925	-0.00078	0.74922	-0.00079	0.74921	-0.00051	0.74949	-0.00063	0.74937	5.00
Brand Teton NP	0.0034	0.75345	0.0034	0.75342	0.0034	0.75340	0.0037	0.75372	0.0036	0.75358	9.00
Popo Agie WA	-0.0021	0.74793	-0.0023	0.74770	-0.0025	0.74753	0.00027	0.75027	-0.00089	0.74911	2.00
eton WA	0.00085	0.75085	0.00084	0.75084	0.00082	0.75082	0.00101	0.75101	0.00093	0.75093	5.00
Vashakie WA	-0.00013	0.74987	-0.00013	0.74987	-0.00014	0.74986	-0.00008	0.74992	-0.00011	0.74989	9.00
Mnd River RA	-0.0011	0.74892	-0.0011	0.74889	-0.0011	0.74887	-0.0004	0.74961	-0.0010	0.74904	9.00
Allowstone NP	0.0010	0.75102	0.0010	0.75101	0.0010	0.75100	0.0011	0.75110	0.0011	0.75106	9.00

	High Emission	ns WDR075	20% Emissions Re	aduction WDR250	40% Emissions Re	eduction WDR250	60% Emissions Re	duction WDR250	80% Emissions Rec	duction WDR250	
											Level of Concern
Receptor Area	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	Modeled Impact	Total Impact ²	for Total Impacts1
Bridger WA	-0.00083	0.74917	0.00254	0.75254	0.0010	0.75100	-0.00054	0.74946	-0.00085	0.74915	9.00
Itzpatrick WA	-0.00072	0.74928	-0.00057	0.74943	-0.00063	0.74937	-0.00069	0,74931	-0.00075	0.74925	5.00
Brand Teton NP	0.0035	0.75348	0.0037	0.75365	0.0036	0.75358	0.0035	0.75351	0.0034	0.75344	5.00
opo Agie WA	-0.0018	0.74823	-0.00034	0.74966	-0.00093	0.74907	-0.0015	0.74849	-0.0021	0.74790	5.00
eton WA	0.00087	0.75087	0.00097	0.75097	0.00093	0.75093	0.00089	0.75089	0.00085	0.75085	5.00
Vashakie WA	-0.00012	0.74988	-0.00009	0.74991	-0.00011	0.74989	-0.00012	0,74988	-0.00013	0.74987	5.00
Vind River RA	-0.0011	0.74894	-0.0008	0.74916	-0.0010	0.74904	-0.0010	0.74898	-0.0011	0.74891	5.00
'ellowstone NP	0.0010	0.75103	0.0011	0.75108	0.0011	0.75106	0.0010	0.75104	0.0010	0.75102	5.00

¹ Fox et al. (1989) ² Indudes S deposition value of 0.75 kg/ha-yr measured near Pinedale for the year 2001.

Note: Negative results reflect a net decrease in cumulative SO 2 emissions.

Table C.7.1 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR250

Lake	Wilderness Area	Background ANC (µeq/L)	Level of Acceptable Change ¹ (µeq/L)	ANC Change (µeq/L)	Percent ANC Change (%)
Slack Joe	Bridger	67.0	6.70	0.10	0.149%
	Bridger	59.9	5.99	0.11	0.183%
Hobbs	Bridger	6.69	6.99	0.02	0.029%
Boy	Bridger	18.8	1.00	0.01	0.037%
r Saddlebag	Popo Agie	55.5	5.55	0.12	0.223%
	Fitzpatrick	53.5	5.35	0.01	0.013%
Jpper Frozen	Bridger	5.0	1.00	0.14	2.705%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.2 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR150

Lake	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.7	0.07	0.105%
Deep	Bridger	59.9	0.9	0.08	0.129%
Hobbs	Bridger	6.69	7.0	0.01	0.020%
Lazy Boy	Bridger	18.8	1.0	0.00	0.026%
Lower Saddlebag	Popo Agie	55.5	5.6	60.0	0.157%
Ross	Fitzpatrick	53.5	5.4	0.00	%600.0
Upper Frozen	Bridger	5.0	1.0	0.10	1.903%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.3 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR075

Lake	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.7	0.047	0.071%
Deep	Bridger	59.9	0.9	0.051	0.085%
Hobbs	Bridger	6.69	7.0	600.0	0.013%
Lazy Boy	Bridger	18.8	1.0	0.003	0.017%
Lower Saddlebag	Popo Agie	55.5	5.6	0.058	0.104%
Ross	Fitzpatrick	53.5	5.4	0.003	%900.0
Upper Frozen	Bridger	5.0	1.0	0.062	1.235%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.4 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR250

	_						_		_
Percent ANC Change	(%)	0.350%	0.429%	0.068%	0.082%	0.509%	0.029%	6.432%	
ANC Change	(hed/L)	0.234	0.257	0.048	0.015	0.283	0.015	0.322	
Level of Acceptable Change ¹	(hed/L)	6.7	0.9	7.0	1.0	5.6	5.4	1.0	
Background ANC	(hed/L)	67.0	59.9	6.69	18.8	55.5	53.5	2.0	
Wilderness Area		Bridger	Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger	
Lake		Black Joe	Deep	Hobbs	Lazy Boy	Lower Saddlebag	Ross	Upper Frozen	

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.5 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR150

Lake	Wilderness Area	Background ANC	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
ed you	Bridger	(heq/L)	(hed/L)	(µeq/L)	(%)
)	Bridger	59.9	0.0	0.167	0.278%
	Bridger	6.69	7.0	0.030	0.043%
Lazy Boy	Bridger	18.8	1.0	0.010	0.054%
addlebag	Popo Agie	55.5	5.6	0.183	0.329%
	Fitzpatrick	53.5	5.4	0.010	0.019%
Jpper Frozen	Bridger	5.0	1.0	0.210	4.191%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.6 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR075

Lake	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.7	0.087	0.130%
Deep	Bridger	59.9	0.9	0.093	0.156%
Hobbs	Bridger	6.69	7.0	0.016	0.023%
Lazy Boy	Bridger	18.8	1.0	900'0	0.030%
Lower Saddlebag	Popo Agie	55.5	5.6	0.109	0.197%
Ross	Fitzpatrick	53.5	5.4	9000	0.011%
Upper Frozen	Bridger	5.0	1.0	0.117	2.334%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.7 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 20% Emissions Reduction WDR250

	_							
Percent ANC Change	(%)	0.280%	0.343%	0.055%	0.066%	0.407%	0.023%	5.146%
ANC Change	(hed/L)	0.187	0.206	0.038	0.012	0.226	0.012	0.257
Level of Acceptable Change ¹	(hed/L)	6.7	0.9	7.0	1.0	5.6	5.4	1.0
Background ANC	(hed/L)	67.0	59.9	6.69	18.8	55.5	53.5	5.0
Wilderness Area		Bridger	Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger
Lake		Black Joe	Deep	Hobbs	Lazy Boy	Lower Saddlebag	Ross	Upper Frozen

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.8 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 40% Emissions Reduction WDR250

A Acce	Level of Level of
	Background / SS Area ANC (µeq/L) 67.0 67.0
Background ANC (µeq/L) 67.0 59.9	ss Area
	Wilderness Area Bridger Bridger

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.9 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 60% Emissions Reduction WDR250

94	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe E	Sridger	67.0	6.7	0.094	0.140%
	Sridger	59.9	6.0	0.103	0.172%
	Sridger	6.69	7.0	0.019	0.027%
Lazy Boy E	Sridger	18.8	1.0	900'0	0.033%
bag	Popo Agie	55.5	5.6	0.113	0.204%
•	Fitzpatrick	53.5	5.4	900'0	0.012%
Upper Frozen E	Bridger	5.0	1.0	0.129	2.573%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.10 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 80% Emissions Reduction WDR250

Lake	Wilderness Area	Background ANC	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.7	0.047	0.070%
Deep	Bridger	59.9	0.9	0.051	0.086%
Hobbs	Bridger	6.69	7.0	0.010	0.014%
Lazy Boy	Bridger	18.8	1.0	0.003	0.016%
Lower Saddlebag	Popo Agie	55.5	5.6	0.057	0.102%
Ross	Fitzpatrick	53.5	5.4	0.003	0.006%
Upper Frozen	Bridger	5.0	1.0	0.064	1.286%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.11 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR250 and Regional Sources

Lake	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.70	0.180	0.27%
Deep	Bridger	6.69	5.99	0.190	0.32%
Hobbs	Bridger	6.69	6.99	0.061	%60.0
Lazy Boy	Bridger	18.8	1.00	0.031	0.17%
Lower Saddlebag	Popo Agie	55.5	5.55	0.215	0.39%
Ross	Fitzpatrick	53.5	5.35	0.032	%90.0
Upper Frozen	Bridger	2.0	1.00	0.220	4.40%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.12 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR150 and Regional Sources

	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.70	0.152	0.23%
Deep	Bridger	59.9	5.99	0.160	0.27%
Hobbs	Bridger	6.69	6.99	0.055	0.08%
Lazy Boy	Bridger	18.8	1.00	0.029	0.16%
Lower Saddlebag	Popo Agie	55.5	5.55	0.179	0.32%
Ross	Fitzpatrick	53.5	5.35	0.030	%90.0
Upper Frozen	Bridger	5.0	1.00	0.182	3.64%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.13 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Low Emissions WDR075 and Regional Sources

Wilderness Area	Background ANC (µeq/L)	Level of Acceptable Change ¹ (µeq/L)	ANC Change (µeq/L)	Percent ANC Change (%)
Bridger	67.0	6.70	0.130	0.19%
Bridger	59.9	5.99	0.135	0.23%
Bridger	69.6	6.99	0.050	0.07%
Bridger	18.8	1.00	0.028	0.15%
Popo Agie	55.5	5.55	0.152	0.27%
Fitzpatrick	53.5	5.35	0.029	0.05%
Bridger	5.0	1.00	0.150	3.00%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.14 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR250 and Regional Sources

La Ke	Wilderness Area	Background	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(T/barl)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.70	0.299	0.45%
Deep	Bridger	69.6	5.99	0.321	0.54%
Hobbs	Bridger	6.69	6.99	0.084	0.12%
Lazy Boy	Bridger	18.8	1.00	0.038	0.20%
Lower Saddlebag	Popo Agie	55.5	5.55	0.354	0.64%
Ross	Fitzpatrick	53.5	5.35	0.039	%20.0
Upper Frozen	Bridger	5.0	1.00	0.387	7.74%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.15 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR150 and Regional Sources

Percent ANC Change	(%)	0.33%	0.40%	0.18%	0.48%	%90.0	2.66%
ANC Change	(hed/L)	0.224	0.239	0.034	0.264	0.034	0.283
Level of Acceptable Change ¹	(hed/L)	6.70	5.99 6.09	1.00	5.55	5.35	1.00
Background ANC	(hed/L)	67.0	0.00 0.00	18.8	55.5	53.5	2.0
Wilderness Area		Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger
Lake		Black Joe	Deep	Lazy Boy	Lower Saddlebag	Ross	Upper Frozen

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.16 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative High Emissions WDR075 and Regional Sources

O O								
Percent ANC Change	(%)	0.25%	0.29%	0.08%	0.16%	0.36%	0.06%	3.98%
ANC Change	(hed/L)	0.166	0.172	0.056	0.030	0.197	0.031	0.199
Level of Acceptable Change [†]	(hed/L)	6.70	5.99	6.99	1.00	5.55	5.35	1.00
Background	(hed/L)	67.0	59.9	6.69	18.8	55.5	53.5	2.0
Wilderness Area		Bridger	Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger
Lake		Black Joe		Hobbs			Ross	Upper Frozen

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.17 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources

Percent ANC Change	(%)	0.38%	0.46%	0.11%	0.19%	0.55%	%200	6.51%	
ANC Change	(hed/L)	0.256	0.274	0.075	0.036	0.303	0.036	0.326	
Level of Acceptable Change ¹	(hed/L)	6.70	5.99	6.99	1.00	5.55	5.35	1.00	
Background ANC	(hed/L)	67.0	59.9	6.69	18.8	55.5	53.5	2.0	
Wilderness Area		Bridger	Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger	
Lake		Black Joe	Deep	Hobbs	Lazy Boy	Lower Saddlebag	Ross	Upper Frozen	

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.18 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

O N								
Percent ANC Change	(%)	0.32%	0.38%	0.10%	0.17%	0.45%	%90.0	5.33%
ANC Change	(hed/L)	0.213	0.227	0.067	0.033	0.251	0.034	0.267
Level of Acceptable Change ¹	(hed/L)	6.70	5.99	6.99	1.00	5.55	5.35	1.00
Background ANC	(hed/L)	67.0	6.69	6.69	18.8	52.5	53.5	2.0
Wilderness Area		Bridger	Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger
Lake		Black Joe	Deep	Hobbs	Lazy Boy	Lower Saddlebag	Ross	Upper Frozen

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.19 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

			3
Percent ANC Change	(%)	0.25% 0.30% 0.08% 0.16%	0.06% 4.16%
ANC Change	(hed/L)	0.170 0.180 0.058 0.030 0.199	0.031
Level of Acceptable Change ¹	(hed/L)	6.30 6.90 6.90 6.00 6.00 6.00 6.00	5.35
Background	(hed/L)	67.0 59.9 69.9 18.8 55.5	53.5
Wilderness Area		Bridger Bridger Bridger Bridger Popo Agie	Fitzpatrick Bridger
Lake		Black Joe Deep Hobbs Lazy Boy Lower Saddlebag	Ross Upper Frozen

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.7.20 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

ra Ak	Wilderness Area	Background ANC	Level of Acceptable Change ¹	ANC Change	Percent ANC Change
		(hed/L)	(hed/L)	(hed/L)	(%)
Black Joe	Bridger	67.0	6.70	0.127	0.19%
Deep	Bridger	59.9	5.99	0.133	0.22%
Hobbs	Bridger	6.69	6.99	0.050	0.07%
Lazy Boy	Bridger	18.8	1.00	0.027	0.15%
Lower Saddlebag	Popo Agie	55.5	5.55	0.147	0.27%
Ross	Fitzpatrick	53.5	5.35	0.028	0.05%
Upper Frozen	Bridger	5.0	1.00	0.149	2.98%

¹ USFS Level of Acceptable Change (USFS 2000).

Table C.8.1 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250

	F	FLAG Background Data	Sackground Data ¹		IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 ∆dv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(ApV)	(days)	(days)	(vb∆)	(days)	(days)
Bridger WA	2.96	22	တ	3.26	26	თ
Fitzpatrick WA	0.53	2	0	0.61	m	0
Grand Teton NP	0.31	0	0	0.31	0	0
Popo Agie WA	0.51	2	0	0.59	2	0
Teton WA	0.13	0	0	0.14	0	0
Washakie WA	0.23	0	0	0.23	0	0
Wind River RA	0.43	0	0	0.50	0	0
Yellowstone NP	0.15	0	0	0.15	0	0

¹ Adv = change in deciview.

Table C.8.2 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR150

	F	FLAG Background Data	ata¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 ∆dv	Visibility Impact	> 0.5 Adv	> 1.0 ∆dv
	(∆dv)	(days)	(days)	(\p\\nabla)	(days)	(days)
Bridger WA	2.23	13	2	2.46	18	9
Fitzpatrick WA	0.37	0	0	0.43	0	0
Grand Teton NP	0.22	0	0	0.23	0	0
Popo Agie WA	0.37	0	0	0.43	0	0
Teton WA	0.10	0	0	0.10	0	0
Washakie WA	0.17	0	0	0.17	0	0
Wind River RA	0.31	0	0	0.35	0	0
Yellowstone NP	0.11	0	0	0.11	0	0

¹ Adv = change in deciview.

Table C.8.3 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR075

ſ			_	-	_			_	_	_	_	_	
	Data ¹	Number of Days Number of Days	> 1.0 ∆dv	(days)		2	0	0	0	0	0	0	0
	IMPROVE Background Data	Number of Days	> 0.5 ∆dv	(days)		10	0	0	0	0	0	0	0
S VACION SI	IMPR	Maximum	Visibility Impact	(\p\p\)		1.77	0.29	0.15	0.31	90.0	0.11	0.25	0.07
Fielelied Alterialive Low Ellissions vyDryol o	ata ¹	Maximum Visibility Number of Days Number of Days >	1.0 Adv	(days)		2	0	0	0	0	0	0	0
rielelled Alle	FLAG Background Data	Number of Days	> 0.5 ∆dv	(days)		တ	0	0	0	0	0	0	0
	Н	Maximum Visibility	Impact	(\d\\pi\)		1.59	0.25	0.15	0.28	90.0	0.11	0.22	0.07
			Receptor Area			Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP

¹ ∆dv = change in deciview.

Table C.8.4 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR250

	ī	חבובובו	Telefled Attelliative High Enflished works			
	FU	FLAG Background Data	ata	IMPR	IMPROVE Background Data	Data
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 Adv	> 1.0 ∆dv
	(∆dV)	(days)	(days)	(\p\\pi)	(days)	(days)
Bridger WA	5.92	29	23	6.44	70	31
Fitzpatrick WA	1.34	9	2	1.54	თ	က
Grand Teton NP	0.65	-	0	0.66	-	0
Popo Agie WA	1.21	17	2	1.36	19	2
Teton WA	0.27	0	0	0.28	0	0
Washakie WA	0.47	0	0	0.48	0	0
Wind River RA	1.06	10	_	1.22	15	-
Yellowstone NP	0:30	0	0	0.31	0	0

¹ $\Delta dv = change in deciview.$

Table C.8.5 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR150

		בובופוופת טונפ	רופופוופת שונפווומנוואפ ווופון דוווופפוסוופ אסויופס	IIS WOLVING		
	Ë	FLAG Background Data	ata	IMPR	IMPROVE Background Data	Data
Maximum Visibility	<u>ا</u> _	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days
Impact		> 0.5 ∆dv	1.0 ∆dv	Visibility Impact	> 0.5 Adv	> 1.0 ∆dv
(AdV)		(days)	(days)	(\dag{\range})	(days)	(days)
						!
4.23		38	15	4.64	46	17
0.88		ო	0	1.01	4	-
0.44		0	0	0.45	0	0
0.79		က	0	0.90	2	0
0.18		0	0	0.18	0	0
0.31		0	0	0.32	0	0
0.69		7	0	0.80	ო	0
0.20		0	0	0.20	0	0

¹ ∆dv = change in deciview.

Table C.8.6 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative High Emissions WDR075

	FL	FLAG Background Data	ata¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\d\nabla\)	(days)	(days)	(∆dv)	(days)	(days)
Bridger WA	2.61	17	00	2.97	21	7
Fitzpatrick WA	0.50	0	0	0.58	_	0
Grand Teton NP	0.26	0	0	0.26	0	0
Popo Agie WA	0.47	0	0	0.55	2	0
Teton WA	0.10		0	0.10	0	0
Washakie WA	0.18	0	0	0.18	0	0
Wind River RA	0.41	0	0	0.47	0	0
Yellowstone NP	0.12	0	0	0.12	0	0

¹ $\Delta dv = change in deciview.$

Table C.8.7 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

or o	Table C.S./ Maximum Modeled Visibility Impacts at PSD Class Faile Sensitive FSD Class in Algas in Alga	red Alternative Miti	mum Modeled Visibility Impacts at PSD Class Land Serishing FSD C Preferred Alternative Mitigation 20% Emissions Reduction WDR250	ns Reduction WDF	250 Class II Aleas I	
	F.	FLAG Background Data	ata¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 ∆dv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\dv)	(days)	(days)	(\p\p\)	(days)	(days)
Bridger WA	4.98	52	19	5.45	52	20
Fitzpatrick WA	1.08	4	-	1.25	4	_
Grand Teton NP	0.53	-	0	0.53	_	0
Popo Agie WA	0.98	11	0	1.11	12	2
Teton WA	0.22	0	0	0.22	0	0
Washakie WA	0.38	0	0	0.38	0	0
Wind River RA	0.85	9	0	0.98	œ	0
Yellowstone NP	0.24	0	0	0.25	0	0

¹ Adv = change in deciview.

Table C.8.8 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

Prefer	red Alternative Mit	igation 40% Emissio	Preferred Alternative Mitigation 40% Emissions Reduction WDRZ50	0673	
FL	FLAG Background Data	ata¹	IMPR	IMPROVE Background Data	Data ¹
Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days
Impact	> 0.5 Adv	1.0 Adv	Visibility Impact	> 0.5 Adv	> 1.0 Adv
(\d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(days)	(days)	(vb∆)	(days)	(days)
3.95	37	14	4.34	39	15
0.82	က	0	0.95	ო	0
0.40	0	0	0.40	0	0
0.74	2	0	0.84	4	0
0.17	0	0	0.17	. 0	0
0.28	0	0	0.29	0	0
0.65	_	0	0.75	-	0
0.18	0	0	0.19	0	0

¹ Adv = change in deciview.

Table C.8.9 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

¹ Adv = change in deciview.

C-154

Table C.8.10 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250

)ata¹	Number of Days	Mailines of Days	> 1.0 ∆dv	> 1.0 ∆dv (days)	> 1.0 ∆dv (days)	(days)	(days)	(days) (days) 3 0 0	(days) (days) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(days) 3 0 0 0 0 0 0 0 0 0 0	(days) (days) (0 0 0 0 0 0 0 0 0 0	(days) (days) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	(days) (days) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0
IMPROVE Background Data	Number of Days Number of Days	> 0.5 ∆dv	(days)		တ	0	0	0	0	0	0	0	
IMPR	Maximum	Visibility Impact	(\d\p\\pi)		1.66	0.33	0.14	0.29	90.0	0.10	0.26	90.0	
FLAG Background Data ¹ IMPROVE	Maximum Visibility Number of Days Number of Days >	1.0 Adv	(days)		2	0	0	0	0	0	0	0	
FLAG Background Data	Number of Days	> 0.5 ∆dv	(days)		တ	0	0	0	0	0	0	0	
FL	Maximum Visibility	Impact	(∧p∇)		1.50	0.28	0.13	0.25	90.0	0.10	0.22	90.0	
		Receptor Area			Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	

¹ ∆dv = change in deciview.

Table C.8.11 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Low Emissions WDR250 and Regional Sources

IMPROVE Background Data ¹	Number of Days Number of Days	> 0.5 ∆dv > 1.0 ∆dv	(days) (days)	15	0 2	0	13 0	0	0	11 2	
IMPROVE Bac	Maximum Number	Visibility Impact > 0.5	ep) (∧p∇)	3.78	0.85	0.49	0.97	0.23	0.33	1.19	100
FLAG Background Data ¹	Maximum Visibility Number of Days Number of Days >	1.0 ∆dv	(days)	7	0	0	0	0	0	-	•
FLAG Background Data	Number of Days	> 0.5 ∆dv	(days)	37	2	0	œ	0	0	9	•
F	Maximum Visibility	Impact	(\dv()	3.43	0.74	0.48	0.83	0.23	0.33	1.07	
		Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	

¹ $\Delta dv = change in deciview.$

Table C.8.12 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

	Preterr	ed Alternative Low	Preferred Alternative Low Emissions WDR150 and Regional Sources) and Regional Sou	rices	
	U.S.	FLAG Background Data	ata ¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\d\\nabla\)	(days)	(days)	(∆dV)	(days)	(days)
Bridger WA	2.74	27	œ	3.03	34	ത
Fitzpatrick WA	0.60	က	0	0.69	4	0
Grand Teton NP	0.40	0	0	0.40	0	0
Popo Agie WA	0.73	9	0	0.85	00	0
Teton WA	0.20	0	0	0.20	0	0
Washakie WA	0.28	0	0	0.28	0	0
Wind River RA	0.97	2	0	1.08	7	2
Yellowstone NP	0.20	0	0	0.20	0	0

¹ $\Delta dv = change in deciview.$

Table C.8.13 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

	Prefer	ed Alternative Low	Preferred Alternative Low Emissions WDRU/5 and Regional Sources	s and Regional Sol	rices	
	FU	FLAG Background Data	ata ¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 ∆dv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\dv)	(days)	(days)	(\p\p\)	(days)	(days)
Bridger WA	2.30	20	4	2.63	24	ဖ
Fitzpatrick WA	0.52	-	0	0.60	2	0
Grand Teton NP	0.36	0	0	0.36	0	0
Popo Agie WA	0.66	က	0	0.76	9	0
Teton WA	0.18	0	0	0.18	0	0
Washakie WA	0.24	0	0	0.24	0	0
Wind River RA	0.89	4	0	0.99	9	0
Yellowstone NP	0.18	0	0	0.18	0	0

¹ $\Delta dv = change in deciview.$

Table C.8.14 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

Preferred Alternative High Emissions WDR250 and Regional Sources	IMPROVE Background Data ¹	Number of Days	> 1.0 ∆dv	(days)	39	က	0	9	0	0	22	0
		Number of Days	> 0.5 ∆dv	(days)	06	13	ო	31	0	_	22	0
		Maximum	Visibility Impact	(\p\p\)	6.82	1.58	0.83	1.67	0.34	0.58	1.54	0.40
	FLAG Background Data ¹	Number of Days >	1.0 ∆dv	(days)	32	ო	0	4	0	0	ო	0
		Maximum Visibility Number of Days >	> 0.5 Adv	(days)	80	10	ო	28	0	-	22	0
		Maximum Visibility	Impact	(\dv)	6.28	1.37	0.82	1.45	0.34	0.57	1.39	0.39
			Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP

¹ $\Delta dv = change in deciview.$

Table C.8.15 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

	Preferr	ed Alternative Higi	Preferred Alternative High Emissions WDR150 and Regional Sources	0 and Regional So	urces	
	FL	FLAG Background Data	ata	IMPR	MPROVE Background Data	Data'
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 ∆dv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\day)	(days)	(days)	(√d√)	(days)	(days)
Bridger WA	4.66	62	18	5.09	63	24
Fitzpatrick WA	0.93	7	0	1.07	თ	2
Grand Teton NP	0.61	_	0	0.62	-	0
Popo Agie WA	1.06	17	-	1.22	21	က
Teton WA	0.27	0	0	0.27	0	0
Washakie WA	0.41	0	0	0.42	0	0
Wind River RA	1.15	15	2	1.28	17	2
Yellowstone NP	0.29	0	0	0:30	0	0

¹ Adv = change in deciview.

Table C.8.16 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

	בום בו	El AG Background Data	El AG Background Data IMDROVE IMDROVES	o and regional so	MDBOVE Background Data	12421
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 Adv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(∆dv)	(days)	(days)	(∆dv)	(days)	(days)
Bridger WA	3.11	32	1	3.42	40	13
Fitzpatrick WA	99.0	4	0	0.76	9	0
Grand Teton NP	0.43	0	0	0.44	0	0
Popo Agie WA	0.78	7	0	06.0	1	0
Teton WA	0.21	0	0	0.21	0	0
Washakie WA	0.29	0	0	0.30	0	0
Wind River RA	0.95	2	0	1.06	10	2
Yellowstone NP	0.21	0	0	0.21	0	0

¹ ∆dv = change in deciview.

Table C.8.17 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources

	FL	FLAG Background Data	FLAG Background Data ¹ IMPROVE Background	IMPR	MPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\dv)	(days)	(days)	(\pq\)	(days)	(days)
		i			Î	C
Bridger WA	5.38	71	25	5.87	/3	67
Fitzpatrick WA	1.12	တ	2	1.29	12	က
Grand Teton NP	0.70	_	0	0.70	7	0
Popo Agie WA	1.23	22	m	1.42	26	4
Teton WA	0.30	0	0	0:30	0	0
Washakie WA	0.48	0	0	0.48	0	0
Wind River RA	1.26	18	2	1.40	20	ო
Yellowstone NP	0.33	0	0	0.34	0	0

¹ Adv = change in deciview.

Table C.8.18 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

_	_	_			_							_
Data ¹	Number of Days Number of Days	> 1.0 Adv	(days)	21	0	0	m	0	0	2	0	
IMPROVE Background Data	Number of Days	> 0.5 Adv	(days)	58	თ	-	21	0	0	15	0	
IMPR	Maximum	Visibility Impact	(\p\p\)	4.80	1.00	0.58	1.16	0.26	0.39	1.26	0.28	
lta¹	Maximum Visibility Number of Days Number of Days >	1.0 ∆dv	(days)	16	0	0	-	0	0	_	0	
FLAG Background Data	Number of Days	> 0.5 ∆dv	(days)	52	7	_	15	0	0	11	0	
FL	Maximum Visibility	Impact	(\dv)	4.39	0.86	0.57	1.01	0.26	0.38	1.13	0.27	
		Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	

¹ Adv = change in deciview.

Table C.8.19 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

	Tielelled Altellia	FLAG Background Data	FLAG Background Data ¹ IMPROVE Background	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days >	Maximum	Number of Days	Number of Days Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\dv)	(days)	(days)	(\day)	(days)	(days)
Bridger WA	3.29	34	1	3.62	41	15
Fitzpatrick WA	0.66	4	0	0.76	9	0
Grand Teton NP	0.44	0	0	0.45	0	0
Popo Agie WA	0.79	7	0	0.92	11	0
Teton WA	0.21	0	0	0.22	0	0
Washakie WA	0.30	0	0	0.30	0	0
Wind River RA	1.00	4	0	1.11	10	2
Yellowstone NP	0.21	0	0	0.22	0	0

¹ ∆dv = change in deciview.

Table C.8.20 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

	FLV	FLAG Background Data	ata ¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility Number of Days Number of Days >	Number of Days	Number of Days >	Maximum	Number of Days	Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 ∆dv
	(\dv)	(days)	(days)	(\p\p\)	(days)	(days)
Bridger WA	2.29	19	22	2.62	21	9
Fitzpatrick WA	0.49	0	0	0.57	2	0
Grand Teton NP	0.34	0	0	0.35	0	0
Popo Agie WA	0.64	2	0	0.75	4	0
Teton WA	0.17	0	0	0.17	0	0
Washakie WA	0.23	0	0	0.23	0	0
Wind River RA	0.86	4	0	96.0	4	0
Yellowstone NP	0.17	0	0	0.18	0	0

¹ Adv = change in deciview.

Table C.8.21 Bridger Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian	Day Mo	onth	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	2	1	2	1	-	1	0.65		-	0.52	:	-	-	0.80	0.78	0.77	1.10	0.90	0.77	0.98	0.86	0.78	0.7
	4	1	4	-	-	-	0.97	0.72	-	0.78	0.59	-	-	0.53	-	-	1.06	0.81	0.56	0.88	0.69	-	-
	6	1	6		2.06	1.46	5.70	4.08	2.61	4.79	3.79	2.68	1.43	3.05	2.62	2.30	5.91	4.33	2.89	5.02	4.05	2.96	
	7 17	1	7 17	1.55	1.17	0.85	3.28 0.76	2.28	1.36	2.71 0.62	2.10	1.45	0.75	2.06 0.52	1.70	1.39	3.71 0.94	2.75 0.68	1.87	3.16 0.80	2.58 0.65	1.96 0.50	1.2
	18	1	18			-	0.76	0.54		0.70	0.53			0.52			0.99	0.67		0.82	0.65	0.50	-
	20	1	20	0.50	-	-	1.21	0.82	-	0.98	0.74	0.50	-	0.61	-	-	1.32	0.93	0.61	1.09	0.85	0.62	-
	21	1	21	0.66	-	-	1.62	1.10	0.69	1.32	1.00	0.68		0.85	0.67	0.54	1.79	1.28	0.87	1.49	1.18	0.87	0.5
	22 23	1	22	1.27	0.89	0.64	2.92	1.92	1.25	0.52	1.86	1.27	0.66	1.56	1.19	0.95	0.71	0.55	1.53	0.59 2.66	2 13	1.56	0.9
	24	1	24	0.63	-	0.04	1.34	0.85	0.56	1.09	0.83	0.56	0.00	1.58	1.41	1.26	2.23	1.75	1.35	2.00	1.76	1.52	
	26	1	26	0.51	-	-	1.03	0.67	-	0.83	0.63	-	-	0.60	- 1-	-	1.11	0.76	-	0.91	0.71	0.51	-
	27	1	27	-	-	-	0.91	0.60	-	0.73	0.56		-	0.60	0.50	-	1.00	0.74	0.54	0.84	0.69	0.54	
	28 30	1	28 30	1.68	1.22	0.79	4.00	2.80	1.63	3.32	2.58	1.79	0.94	0.91	0.85 1.28	0.84	1.07	0.88	0.86 1.70	1.01	0.96	0.91 1.86	1.0
	39	2	8	-	1.22	- 0.73	0.95	0.66	-	0.76	0.58	1.73	-	1.75	-	-	0.99	0.70	1.70	0.80	0.62	1.00	1.0
	40	2	9	0.61	-	-	1.39	0.93	-	1.13	0.86	0.58	-	0.64	-	-	1.42	0.96	-	1.16	0.89	0.61	-
	41	2	10	-	-	-	-	-	-	-	-	-	-	-	-	-	0.52	1.5.	-		-	-	-
	43 44	2	12 13	0.77	0.57	-	1.84	1.26	0.74	1.49	1.14	0.77	-	0.94	0.74	0.57	1.99	0.50	0.91	0.56 1.65	1.30	0.94	0.5
	45	2	14	0.11	0.57	-	0.62	1.20	0.74	1.49	1.14	0.77		0.56	0.74	0.57	0.87	0.67	0.52	0.75	0.63	0.51	0.5
	53	2	22	-		-	0.56		-	-	-	-		0.62	0.62	0.62	0.69	0.62	0.62	0.62	0.62	0.62	0.6
	54	2	23	-	-	-		-	-	-	-	-	-	-	-	-	0.53	-	-	-	-	-	-
	56	2	25	-	-	-	-	-	-	-	-	-	-	-	-	-	0.56	-	-	-		-	-
	57 58	2	26 27	-	-		0.52		- 1				-	-			0.61	-		0.51			
	61	3	2	-			0.89	0.57		0.72	0.54			0.83	0.71	0.60	1.30	0.99	0.72	1.13	0.96	0.80	0.63
	62	3	3	-	7	-	0.86	0.56	-	0.70	0.53	-	-	0.57	- "	-	1.02	0.73	0.53	0.86	0.69	0.55	-
	63	3	4	-	-	-	0.87	0.60	-	0.70	0.53	-	-	0.69	0.57	-	1.08	0.82	0.59	0.91	0.75	0.58	-
	74 76	3	15	-	- 1		0.64		-	0.52	-	-		-	-	-	0.51	0.52	-	0.58	-	-	-
	77	3	18	- 2			0.57			0.52	-	- 1		- 1			0.62	0.52		0.50	-	1	- 3
	84	3	25	-	-	-	-	-	-	-	-	-		-			0.56	-	-	-		-	
	85	3	26	-	-	-	0.85	0.60	-	0.69	0.52	-	-	-	-	-	0.91	0.65	-	0.74	0.58	-	-
	86 87	3	27	-	-	-	0.94	0.64	-	0.76	0.57	-	-	0.65	0.53	-	1.13	0.84	0.59	0.96	0.78	0.59	-
	90	3	28 31				0.54	0.65		0.76	0.58	- 1		0.52			1.05	0.55	-	0.61	0.51		-
	92	4	2	-	1.11		0.75	0.52		0.61	-			-		-	0.83	0.60	-	0.68	0.54		
	103	4	13	-			-		-	-	-	-	-	-	-	-	0.54	-	-	-	-	-	-
	108	4	18	1.14	0.83	0.58	2.65	1.78	1.06	2.17	1.67	1.14	0.59	1.18	0.87	0.62	2.68	1.82	1.10	2.20	1.71	1.18	0.63
	109 116	4	19 26	1.61	1.17	0.80	3.70	2.58	1.53	3.06	2.38	1.65	0.86	1.65	1.21	0.84	3.73 0.65	2.61 0.50	1.57	3.10 0.56	2.42	1.69	0.90
	119	4	29				0.62										0.03	0.50		0.62	0.50		_
	132	5	12	-	-	-	0.98	0.74		0.79	0.60	-		0.68	0.59	-	1.22	0.99	0.57	1.04	0.85	0.66	-
	198	7	17	-	-		0.57	-	-	-	-	-	-	-	-	-	0.61	-	-	-	-	-	-
	201 205	7	20 24		-	-	0.73	0.51	-	0.58	-	-	•	-	-	-	0.74	0.52	-	0.59		-	-
	254	g	11				0.55				-		- 1	- 1	1		0.62	- 1	1	0.51	1		
	262	9	19		-		0.58			-		-	-	-	-	-	0.63			0.52	-		
	263	9	20	-	-	-	0.74	-	-	0.60	-	-	-	-		-	0.88	0.63	-	0.74	0.60	-	-
	265	9	22	0.57	-		1.32	0.94	0.57	1.07	0.81	0.55	-	0.65	0.52	-	1.40	1.02	0.65	1.15	0.90	0.64	-
	266 268	9	23 25	-	- 1	1.	0.62	1		0.50	-	-	-	-	-	•	0.82	0.59	-	0.70	0.58	-	-
	269	9	26		-	-	0.65		-	0.53		-	-	-	-	_	0.67	0.55		0.55		-	
	274	10	1	0.94	0.67		2.24	1.52	0.91	1.83	1.41	0.96	-	1.25	0.99	0.78	2.52	1.81	1.22	2.12	1.70	1.27	0.8
	275	10	2		-	-	0.54	-	-	-	-	-	-	-	-	-	0.61	-	-	0.50	-	-	-
	279 280	10 10	6	-			0.68	-	-	0.55		-	-	-	-	-	0.74	0.55		0.61	0.58	-	-
	281	10	8				-			0.07		-		-			0.85	0.50		0.71	0.58		-
	282	10	9	0.64	0.52	1 .11	1.37	1.02	0.67	1.11	0.85	0.57	-	0.69	0.57	-	1.41	1.06	0.72	1.15	0.89	0.62	-
	309	11	5	-	-	-	1.18	0.80	0.50	0.96	0.73	-	-	0.62	-	-	1.34	0.97	0.69	1.12	0.89	0.66	-
	320 322	11	16 18	-		-	0.84	0.61	-	0.68	0.51	-	-	1	1 1-	-	0.89	0.66	-	0.73	0.56	-	-
	325	11	21	-			0.82			0.66	0.50	-	1	-	-	-	0.88	0.56		0.72	0.56	1	-
	326	11	22	-	-		0.57				-						0.76	0.57		0.65	0.54		
	351	12	17	-	-	-	0.91	0.61	-	0.73	0.56	-	-	0.52	-	-	0.97	0.67	-	0.80	0.62	-	-
	352	12	18	1.10	0.81	0.62	2.50	1.72	1.18	2.05	1.58	1.08	0.55	1.18	0.90	0.71	2.58	1.80	1.27	2.13	1.66	1.17	0.6
	353 354	12 .	19 20	0.85	0.63		1.84	1.22	0.83	1.50	1.14	0.78	-	0.89	0.68	0.54	1.88	1.26	0.88	1.54	1.19	0.82	-
	355	12	21	0.70			0.70	0.93		0.56	0.93	0.65		0.77	0.56	10.1	0.75	0.51	0.54	0.62	1.03	0.72	
	356	12	22	2.95	2.23	1.59	5.92	4.23	2.61	4.98	3.95	2.80	1.50	3.43	2.74	2.14	6.28	4.66	3.11	5.38	4.39	3.29	2.0
	357	12	23	1.16	0.85	0.60	2.42	1.60	0.88	1.98	1.52	1.04	0.53	1.46	1.16	0.91	2.69	1.89	1.17	2.26	1.81	1.35	8.0
	358	12 12	24 25	-	-	-	0.50	-	1	-	-	15	-		116	-	0.58	-	-	-	-	-	-
			25			:	0.69	-	-	0.55		-	1	-	-	-	0.59	0.52	-	0.53	-	-	-
	359 360						0.55	-		-	-		-	-	-	1	0.73	0.52	-	0.59	0.50		
		12 12	27	-	-			0.71		0.87	0.66			0.92	0.05								
	360 361 362	12 12	27 28	0.52	-	-	1.07	0.71	-		0.66	-	-	0.92	0.85	0.81	1.32	0.97	0.83	1.12	0.94	0.86	0.7
	360 361 362 363	12 12 12	27 28 29	0.52 0.70	-	:	1.70	1.11	-	1.38	1.06	0.72	-	0.95	0.85	0.81	1.93	1.35	0.83	1.12	1.30	0.86	
	360 361 362	12 12	27 28			:						0.72	-										
umber of Davs	360 361 362 363 364	12 12 12 12	27 28 29	0.70	13	9	1.70 0.74	1.11	17	1.38 0.60	1.06	-	-	0.95	0.75	0.55	1.93 0.83	1.35 0.57	0.76	1.62 0.69	1.30 0.54	0.97	0.6
lumber of Days lumber of Days Maximur	360 361 362 363 364 Δ dv >= 0.5 Δ dv >= 1.0	12 12 12 12	27 28 29		13 5 2.23	9 2	1.70		17	1.38		0.72 20 9	9 2				1.93	1.35		1.62	1.30		0.7

Table C.8.22 Bridger Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day 2	Month 1	Day 2	1	2	3	0.75	5 0.51	6	0.60	8	9	10	0.92	0.90	0.89	1.27	1.04	16	1.13	0.99	0.90	-
3	1	3	0.50	-	*	0.54	0.83	0.53	0.90	0.69	-	-	0.52	0.52	-	0.83	0.68	0.51 0.65	0.73	0.63	0.52	
6	1	6	3.15	2.36	1.67	1.12 6.38	4.61	2.97	5.39	4.29	3.05	1.64	3.47	2.98	2.63	6.61	4.88	3.29	5.64	4.57	3.37	:
7	1	7	1.78	1.35	0.98	3.72	2.60	1.56	3.08	2.40	1.66	0.86	2.36	1.95	1.60	4.20	3.13	2.14	3.59	2.93	2.24	
12 13	1	12	1	1	1	1	-	1	1	-	-		-	-	-	0.55	-	-	-	1	-	
14	1	14	_	-				-			-	-	-	-	-	0.58	-	-	0.51	-	-	
16 17	1	16 17	-	-	-	0.88	0.57	-	0.71	0.54	-	-	0.60	-	-	1.09	0.78	0.54	0.92	0.75	0.58	
17	1	1/	-	-	-	1.00	0.57	-	0.71	0.54	-	-	0.60		-	1.14	0.78	0.54	0.92	0.75	0.56	
20	1	20	0.58	-	-	1.39	0.95	0.58	1.13	0.86	0.58	-	0.71	0.56	-	1.51	1.08	0.71	1.25	0.99	0.71	
21	1	21	0.76	0.55	-	1.86	1.27	0.79	1.51	1.15	0.79	-	0.98	0.77	0.62	2.05	1.48	1.01	1.71	1.36	1.00	
22 23	1	22	1.46	1.02	0.74	0.74	0.55	1.43	2.74	2 12	1 47	0.76	1.78	1.37	1.09	0.83	2.50	1.76	3.03	2.43	1.79	
24	1	24	0.73	0.51	-	1.54	0.98	0.65	1.25	0.95	0.65	-	1.82	1.62	1.45	2.55	2.01	1.54	2.28	2.02	1.74	
26	1	26 27	0.59	-	-	1.18	0.78	-	0.96	0.73	-	-	0.69	0.52	-	1.28	0.88	0.56	1.05	0.82	0.59	
27 28	1	28	-	-	1	1.05	0.69		0.85	0.64	1	-	1.05	0.58	0.97	1.15	1.02	0.63	1.17	1.11	1.04	
30	1	30	1.93	1.40	0.91	4.51	3.19	1.87	3.76	2.94	2.06	1.08	2.00	1.48	0.99	4.57	3.25	1.95	3.82	3.01	2.13	
39 40	2	8	0.70	0.52	-	1.10	0.76 1.08	0.50	0.89	0.67 1.00	0.68	-	0.53	0.56	-	1.14	0.81	0.54	0.93	1.03	0.50	
41	2	10	0.70	0.52		0.54	1.00	0.50	1.31	1.00	0.00	-	0.74	0.56	-	0.60	1.12	0.57	0.50	1.03	0.71	
43	2	12	-		-	0.50	-	-	-	-	-	1		-	-	0.75	0.58	-	0.65	0.55	-	
44	2	13	0.89	0.66	-	2.11	1.45	0.86	1.72	1.32	0.90	-	1.09	0.86	0.66	1.01	1.64	1.05	1.90	1.51 0.74	1.09	
45 53	2 2	14	-			0.72		-	0.58		1	-	0.65	0.56	0.72	0.80	0.78	0.60	0.87	0.74	0.60	
54	2	23	-	-	-	0.52	-	-	-			-	-	-	-	0.61	-	-	0.51	-	-	
56	2	25	-	-	-	0.55	-	-	-	-	~	-	-	-	-	0.65		-	0.55	-	-	
57 58	2 2	26 27	-	-	-	0.60	-	*	^	-	-		•	-	-	0.70	0.52	-	0.59	-	-	
61	3	2	-	-		1.03	0.67		0.83	0.63		- 0	0.96	0.82	0.70	1.50	1.15	0.83	1.31	1.12	0.92	
62	3	3	-	-	-	1.00	0.65	-	0.81	0.61	-	-	0.66	0.57	-	1.18	0.84	0.61	0.99	0.80	0.64	
63	3	15	0.54	-	-	1.00	0.69		0.81	0.61	-	-	0.80	0.67	0.56	1.25 0.60	0.94	0.69	1.06	0.87	0.67	
75	3	16	-	1	-	-	-		-		-		0.54	0.55	0.33	0.56	0.55	0.34	0.30	0.55	0.34	
76	3	17	-	-	-	0.74	0.53		0.60	-	-	-	-	-	-	0.82	0.61	-	0.68	0.53	-	
77	3	18	-	-	-	0.67	-	-	0.54	-	-	-	-	-	-	0.71	0.50	-	0.59	-	*	
78 84	3	19	-	-	1	0.57	-	-	-	-	-	_	-	-	-	0.65	-	0	0.54	-		
85	3	26	-	-		0.99	0.69	-	0.80	0.60	-	-	-			1.05	0.75		0.86	0.67		
86	3	27	0.52	-	-	1.09	0.74	*	0.88	0.67	-	1	0.76	0.62	0.50	0.83	0.97	0.68	0.71	0.90	0.69	
87 90	3	28 31	-	-	1	0.63	0.75		0.51	0.67	-	-	0.61		-	1.21	0.87		1.00	0.59	0.58	
91	4	1	-			-	-		-	-	-	_	-	-	-	0.51	-		-	-	-	
92	4	2	-	-		0.68	-	-	0.55	-		-		-		0.75	0.54	-	0.62		4.07	
108	4	18 19	1.04	0.75	0.52	2.42	1.63	0.96	1.98	1.52	1.04	0.53	1.07	0.79	0.56	2.45	1.66	1.00	2.01	1.55	1.07	
116	4	26	1.40	1.07	0.72	3.40	2.30	1.33	2.01	2.11	-	0.70	-	1.10	0.70	0.59	-	1.40	0.51	-	-	
119	4	29	-	-	-	0.56	10	-	-	-	-	-			-	0.67			0.57			
132 198	5	12	-		-	0.89	0.67	-	0.72	0.54	-	-	0.61	0.53		1.11 0.51	0.89	0.52	0.94	0.77	0.60	
201	7	20	-			0.61	-	-	- 1	-	-			-	-	0.62	-	-	-	-		
205	7	24	-	-	-	-	-	-	-	-	-	-	*	-	-	0.51	-	-	-	-	-	
254 262	9	11	-		-	-		-	-	- 1	-	-	-	-		0.52	1		-	-	-	
263	9	20			- 1	0.61		-		_						0.73	0.52	1	0.61	-	-	
265	9	22	-			1.09	0.77	-	0.88	0.67	-	-	0.54	-	-	1.16	0.84	0.54	0.95	0.74	0.52	:
266 268	9	23	-	-	-	0.51	-	-	-	*	-	-	-	-	-	0.67	-	-	0.57	-	- 1	
268	9	25 26				0.55		-	-	-	-	-	-	0	-	0.55		-	-	-		
274	10	1	0.77	0.55	-	1.87	1.26	0.75	1.52	1.16	0.79	-	1.03	0.82	0.64	2.10	1.50	1.01	1.76	1.41	1.05	i
275	10	2	-	-	-	0.61	-	-	0.62	-	-	-	-	-	-	0.69	0.50	-	0.57	0.53		
279 280	10	6		-	1	0.77	0.56		0.64		-	-	0.56	-	-	0.03	0.70	0.53	0.80	0.65	0.50	,
281	10	8		-		-	-	-	-	-	-	-	0.53	-	-	0.70	0.57	-	0.61	0.54	-	
282	10	9	0.72	0.59	-	1.54	1.15	0.76	1.25	0.95	0.64	-	0.77	0.64	0.51	1.59 0.53	1.20	0.81	1.30	1.00	0.70	1
291 309	10	18				0.50	0.89	0.56	1.06	0.81	0.55	-	0.69	0.56	-	1.49	1.08	0.77	1.24	0.99	0.73	ı
320	11	16				0.94	0.68	-	0.76	0.57	-	-	-	-	-	0.99	0.73	-	0.81	0.63	-	
322	11	18	-		*	0.91	0.54	-	0.74	0.56	-	-	-	-	-	0.98	0.62	-	0.80	0.62	-	
325 326	11	21	-	*		0.60	-	1	0.51	-	- 1		0.53		-	0.74	0.63		0.03	0.60	- 1	
329	11	25				0.04			-	~	-		-	-	-	0.51	-		-	-	-	
342	12	8		-	-		-		-	-	-	-	-	-	-	0.52	-		-	-	-	
349 351	12 12	15		-	-	1.01	0.68		0.82	0.62	-	-	0.58	-	-	1.08	0.75	-	0.89	0.69	1	
352	12	18		0.90	0.69	2.77	1.90	1.32	2.27	1.75	1.20	0.62	1.32	1.00	0.79	2.85	1.99	1.41	2.36	1.84	1.30)
353	12	19	0.94	0.70	0.56	2.04	1.36	0.93	1.66	1.27	0.87	-	1.00	0.75	0.61	2.09	1.41	0.98	1.71	1.32	0.92	
354 355	12	20		0.54		1.71 0.78	1.06	0.51	1.39	1.06	0.72	1	0.86	0.62	1	1.79 0.84	1.14	0.60	0.69	0.54	0.81	
355	12	21		2.46	1.77	6.44	4.64	2.88	5.45	4.34	3.09	1.66	3.78	3.03	2.37	6.82	5.09	3.42	5.86	4.80	3.62	
357	12	23	1.29	0.95	0.67	2.67	1.77	0.98	2.19	1.69	1.16	0.60	1.62	1.29	1.01	2.97	2.09	1.31	2.50	2.01	1.50	1
358	12	24		-	-	0.56	-	-	-	-	-	-	-	-	-	0.65	0.54	-	0.54	0.52	1	
359 360	12 12	25		-	-	0.77	0.53		0.62		-	-		-		0.81	0.58	-	0.66	0.51	-	
361	12	27	-			0.61	-	-		-	-	-	-		-	0.80	0.59		0.68	0.56		1
	12	28			-	1.19	0.79		0.96		0.80	-	1.02	0.95	0.90	1.47	1.08	0.92	1.25	1.04	0.95 1.08	į
362	12	29		0.55	-	1.89	1.23	0.56	0.67	0.50	0.00		1.00	0.04	0.02	0.93	0.64	-	0.77	0.61	-	Ĭ.
363	12					0.00	0.04															
	12	30																	70			
363	= 0.5	50	26 9	18	10	70 33	46 17	21	52 20	39 16	20 9	9	44 16	34	24 6	90 39	63	40	73 29	58	41 15	

Table C.8.23 Fitzpatrick Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	1		6 -	-	-	-	0.54	-	-	-	-	-	-	0.50	-	-	0.77	0.61	-	0.68	0.58	-	-
	7	1		7 -	-	-	-	-	-	-	-	-	-	-	-	-	-	0.59	-	-	0.51	-	-	-
	23	1	2	3 .	-	-	-	0.50	-	-	-	-	-	-	-	-	-	0.58	-	-	-	-	-	_
	26	1	2	6 -	-	-	-	0.93	0.60	-	0.75	0.57	-	-	0.64	0.50	-	1.10	0.78	0.52	0.93	0.75	0.56	-
	27	1	2	7 0.	.51	-	-	1.05	0.71	-	0.85	0.64	-	-	0.74	0.60	-	1.26	0.93	0.66	1.06	0.86	0.66	-
	30	1	3	0 0	.53	-	-	1.34	0.88	-	1.08	0.82	0.56	-	0.57	-	-	1.37	0.92	0.54	1.12	0.86	0.60	-
	44	2	1	3 -	-	-	- /	-	-	-	-	-	-	-	-	-	-	0.63	-	-	0.54	-	-	-
	45	2	1	4 .	-	-	-	-	-	-	-	-	-	-	0.61	0.56	0.52	0.78	0.66	0.57	0.71	0.63	0.56	-
	83	3	2	4 .	-	-	-	0.69	-	-	0.56	-	-	-	-	-	-	0.79	0.58	-	0.66	0.52	-	-
	356	12	2	22	-	-	-	-		-	-	-	-	-	-	-	-	0.74	0.56	-	0.65	0.56	-	-
Number	of Days Δ dy >	>= 0.5		:	2	0	0	6	3	0	4	3	1	O	5	3	1	10	7	4	9	7	4	0
Number	of Days A dy >	>= 1.0			0	0	0	2	0	0	1	0	0	0	0	0	0	3	0	0	2	0	0	0
	Maximum Δ dv			0.	.53	0.00	0.00	1.34	0.88	0.00	1.08	0.82	0.56	0.00	0.74	0.60	0.52	1.37	0.93	0.66	1.12	0.86	0.66	0.00

Table C.8.24 Fitzpatrick Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian D	ay	Month	Day	- 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	1	6	-	-	-	0.62	-	-	-	-	-	-	0.58	0.51	-	0.89	0.70	0.54	0.78	0.67	0.56	-
	7	1	7	-	-	-	-	-	-	-	-	-	-	-	~	-	0.68	0.53	-	0.59	0.50	-	-
	23	1	23	-	-	-	0.58	-	-	-	-	-	-	- /	-	-	0.67	-	-	0.56	-	-	
	26	1	26	0.53	-	-	1.08	0.69	-	0.87	0.66	-	-	0.74	0.58	-	1.27	0.90	0.60	1.07	0.86	0.65	-
	27	1	27	0.59	-	-	1.21	0.82	-	0.98	0.74	0.50	-	0.85	0.69	0.56	1.45	1.07	0.76	1.22	1.00	0.76	0.52
	30	1	30	0.61	-	-	1.54	1.01	0.58	1.25	0.95	0.64	-	0.65	-	-	1.58	1.06	0.62	1.29	0.99	0.69	-
	44	2	13	-	-	-	0.55	-	-	-	-	-	-		-	-	0.73	0.55	-	0.63	0.52	-	-
	45	2	14	-	-	-	-	-	-	-	-	-	-	0.70	0.65	0.60	0.90	0.77	0.66	0.82	0.74	0.65	0.57
	83	3	24	-	-	-	0.80	0.55	-	0.65	-	-	-	0.52	-	-	0.92	0.67	-	0.76	0.61	-	-
	282	10	9	-	-	-	0.50	-	-	-	-	-	-	-	-	-	0.52	-	-	-	-	-	-
	356	12	22	-	-	-	0.53	-	-	-	-	-	-	0.54	-	-	0.82	0.63	0.50	0.72	0.62	0.52	-
	357	12	23	-	-	-	-	-	-	-	-	-	-	-	-	-	0.54	-	-	0.51	-	-	-
	362	12	28	-	-	-	-	-	-	-	-	-	-	-	-	-	0.54	-	-	0.51	-	-	-
Number of Days A	dv >	= 0.5		3	0	0	9	4	1	4	3	2	0	7	4	2	13	9	6	12	9	16	2
Number of Days A				0	0	0	3	1	0	11	0	0	0	0	0	0	3	2	0	3	1	0	0
Maximum				0.61	0.00	0.00	1.54	1.01	0.58	1.25	0.95	0.64	0.00	0.85	0.69	0.60	1.58	1.07	0.76	1.29	1.00	0.76	0.57

Table C.8.25 Grand Teton National Park - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	0.57	-	-	-	-	-	-
25	- 1	25	-	-	-	0.65	-,	-	0.53	-	-	-	-	-	-	0.82	0.61	-	0.69	0.57	-	
39	2	8	-	-	-	-	-	-	-	-	-	-	-	-	-	0.53	-	-	-	-	-	-
Number of Days Δ dv >	= 0.5		0	0	0	1	0	0	1	0	0	0	0	0	0	3	1	0	1	1	0	0
Number of Days A dv >	= 1.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Δ dv	/		0.00	0.00	0.00	0.65	0.00	0.00	0.53	0.00	0.00	0.00	0.00	0.00	0.00	0.82	0.61	0.00	0.69	0.57	0.00	0.0

Table C.8.26 Grand Teton National Park - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	0.58	-	-	0.50	-	-	-
25	1	25	-	-	-	0.66	-	-	0.53	-	-	-	-	-	-	0.83	0.62		0.70	0.58	-	-
39	2	8	-	-	-	-	-	-	-	~	-	-	-	-	-	0.54	-	-	-	-	-	-
umber of Days Δ dv >	= 0.5		0	0	0	1	0	0	1	0	0	0	0	0	0	3	1	0	2	1	0	(
umber of Days A dv >	= 1.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Maximum Δ dv	,		0.00	0.00	0.00	0.66	0.00	0.00	0.53	0.00	0.00	0.00	0.00	0.00	0.00	0.83	0.62	0.00	0.70	0.58	0.00	0

Table C.8.27 Popo Agie Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	2	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	0.61	0.50	-	0.55	-	-	-
	3	.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	0.70	0.56	-	0.61	0.53	-	-
	7	1	7	0.51	-	-	1.18	0.78	1	0.96	0.73	-	-	0.79	0.66	0.55	1.45	1.06	0.76	1.23	1.01	0.78	0.54
	18	1	18	-	-	-	0.65	-	-	0.52	-	-	-	-	-	-	0.80	0.56	-	0.68	0.55	-	-
	23	1	23	-	-	-	0.64	-	-	0.52	-	-	-	-	-	-	0.80	0.58	-	0.68	0.55	-	-
	24	1	24	-	-	-	0.69	1.	-	0.56	-	-	-	0.62	0.55	-	1.01	0.76	0.61	0.88	0.75	0.61	-
	28	1	28	-	-	-	-	-	-	-	-	-	-	-	-	-	0.55	-	-	0.50	-	-	-
	30	1	30	-	-	-	0.67	-	-	0.54	-	-	-	-	-	-	0.71	-	-	0.58	-	-	-
	43	2	12	1	-	-	0.51	-	-	-	-	-	-	-	-	-	0.74	0.57	-	0.64	0.54	-	-
	44	2	13	-	-	-	-	-	-	-	-	-	-	-	-	-	0.57	-	-	0.51	-	-	-
	45	2	14	-	-	-	-	-	-	-	-	-	-	-	-	-	0.51	-	-	-	-	-	-
	46	2	15	-	-	-	-	-	-	-	-	_	-	-	-	-	0.52	-	-	-	-	-	-
	61	3	2	-	-	-	0.79	0.52	-	0.63	-	-	-	0.83	0.73	0.65	1.22	0.97	0.77	1.08	0.94	0.79	0.64
	62	3	3	U	-	-	0.63	-	-	0.51	-	-	-	0.59	0.51	-	0.91	0.71	0.54	0.80	0.67	0.55	-
	86	3	27	_	U	- 1	_	-	-	-		-	-	-	-	-	0.54	_		-	-	-	-
	92	4	2	_	11 -	-	_	-	-	-	-	-	-	-	-	-	0.56	-	-	-	-	_	_
	119	4	29	-	-	-	0.50	-	-	-	-	-	-	-		-	0.62	-	-	0.52	-	-	-
	263	9	20	-	-	-	-	-	-	-	-	-	_	-	-	-	0.59	-	-	0.53	-	_	_
	274	10	1	2	-	-	0.67	-	-	0.54	-	-	-	-	-	-	0.76	0.54	-	0.64	0.51	-	_
	281	10	8	-	-	-	0.51	-	-	-	-	-	-	0.50	-	-	0.78	0.62	-	0.68	0.58	_	_
	309	11	5	-	-		0.67	-	-	0.54	-	-	-	-	-	-	0.80	0.59	-	0.68	0.54	-	-
	326	11	22	-	-	-	0.56	-	-	-	-	-	-	-	-	-	0.75	0.56	-	0.64	0.53	-	-
	354	12	20	-		-	0.53	-	-	-	-		-	-	-	-	0.58	-	-	-	-	_	_
	356	12	22	-	-	-	0.57	-	-	-	-	-	_	-	-	-	0.71	0.51	-	0.60	-	-	_
	357	12	23	0.51	-	-	1.21	0.79	-	0.98	0.74	0.50	-	0.70	0.58	0.50	1.38	0.97	0.64	1.15	0.92	0.69	_
	361	12	27	112	-	-	-	-	-	-	-	-	-	-	-	-	0.51	-	-	-	-	-	-
	362	12	28	-	-	-	-	-	-	-	-	-	-	0.57	0.51	-	0.80	0.65	0.54	0.71	0.62	0.53	_
	363	12	29	-	-	-	0.75	-	-	0.61	-	-	-	0.57	-	-	0.98	0.72	0.51	0.83	0.69	0.54	-
Num	ber of Days Δ dv	>= 0.5		2	0	0	17	3	0	11	2	1	0	8	6	3	28	17	7	22	15	7	2
Num	ber of Days A dv	>= 1.0		0	0	0	2	0	0	0	0	O	0	0	0	0	4	1	0	3	1	0	0
	Maximum Δ d	v		0.51	0.00	0.00	1.21	0.79	0.00	0.98	0.74	0.50	0.00	0.83	0.73	0.65	1.45	1.06	0.77	1.23	1.01	0.79	0.64

Table C.8.28 Popo Agie Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	1	2	-	-	-	-	-	-	-	-	-	-	0.51	-	-	0.70	0.58	-	0.63	0.56	-	-
3	1	3	-	-	-	0.51	-	-	-	-	-	-	-	-	-	0.81	0.65	0.51	0.71	0.61	0.51	-
7	1	7	0.59	-	-	1.36	0.90	0.55	1.11	0.84	0.57	-	0.92	0.76	0.64	1.67	1.22	0.88	1.42	1.16	0.90	0.63
18	1	18	-	-	-	0.75	-	-	0.60	-	-	-	-	-	-	0.93	0.65	-	0.78	0.64	-	-
23	1	23	-	-	-	0.74	-	-	0.60	-	-	~	0.53	-	-	0.92	0.67	-	0.78	0.64	-	-
24	1	24	-	-	-	0.80	-	-	0.64	-	-	-	0.72	0.64	0.57	1.16	0.88	0.70	1.01	0.86	0.71	0.57
27	1	27	-	~	-	-	-	-	-	-	-	-	-	-	-	0.51	-	-	-	-	-	-
28	1	28	-	-	-	-	-	-	-	-	-	-	-	-	-	0.63	0.51	-	0.58	0.53	-	-
30	1	30	-	-	-	0.77	-	-	0.62	-	-	-	-	-	-	0.82	0.54	-	0.67	0.52	-	-
43	2	12	-	-	-	0.59	-	-	-	-	-	-	0.56	-	-	0.86	0.67	0.51	0.74	0.63	0.52	-
44	2	13	-	-	-	-	-	-	-	-	-	-	-	-	~	0.67	0.54	-	0.59	0.52	-	
45	2	14	-	-	-	-	-	-	-	-	-	-	-	-	-	0.59	0.52	-	0.55	0.51	-	-
46	2	15	-	-	-	-	-	-	-	-	-	-	0.52	-	-	0.61	0.55	0.51	0.58	0.54	0.51	-
60	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	0.54	-	-	0.50	-	-	-
61	3	2	-	-	-	0.91	0.60	-	0.74	0.56	-	-	0.97	0.85	0.76	1.41	1.12	0.90	1.25	1.08	0.92	0.75
62	3	3	-	-	-	0.73	-	-	0.59	-	-	-	0.69	0.59	0.51	1.06	0.83	0.63	0.92	0.78	0.64	0.50
86	3	27	-	-	-	0.51	-	-	-	-	-	-	-	-	-	0.62	-	-	0.52	-	-	-
92	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	0.50	-	-	-		-	-
119	4	29	-	-	-	-	-	-	-	-	-	-	-	-	-	0.56	-	-	-	-	-	-
274	10	1	-	-	-	0.55	-	-	-	-		-	-	-	-	0.63	-	-	0.52	-	-	-
281	10	8	-	-	-	0.58	-	-	-	-	-	-	0.57	0.51	-	0.88	0.70	0.56	0.77	0.66	0.55	-
305	11	1	-	-	-	-	-	-	-	-	-	-	-	-	-	0.54	-	-	-	-	-	-
309	11	5	-	-	-	0.75	0.50	-	0.60	-	-	-	-	-	-	0.89	0.65	-	0.75	0.61	-	-
322	11	18	-	-	-	-	-	-	-	-	-	-	-	-	-	0.53	-	-	-		-	-
326	- 11	22	-	-	-	0.63	-	-	0.51	-	-	-	0.51	-	-	0.83	0.62	-	0.71	0.59	-	-
354	12	20	-	-	-	0.60	-	-	-	-	-	-	-	-	-	0.64	-	-	0.53	-		-
356	12	22	-	-	-	0.64	-	-	0.51	-	-	-	-	-	~	0.79	0.57	-	0.67	0.55	-	-
357	12	23	0.57	-	-	1.34	0.88	0.50	1.09	0.83	0.56	-	0.78	0.65	0.56	1.53	1.08	0.71	1.28	1.03	0.77	-
361	12	27	-	-	-	-	-	-	-	-	-	-	-	-	-	0.57	-	-	0.50	-	-	-
362	12	28	-	-	-	0.52	-	-	-	-	-	-	0.64	0.57	0.52	0.90	0.73	0.60	0.80	0.70	0.60	-
363	12	29	-	-	-	0.84	0.55	-	0.68	0.51	-	-	0.64	0.53	-	1.09	0.81	0.57	0.93	0.77	0.61	-
Number of Days Δ dv	>= 0.5		2	0	0	19	5	2	12	4	2	0	13	8	16	31	21	11	26	21	11	14
Number of Days Δ dv			0	0	0	2	0	0	2	0	0	0	0	0	0	6	3	0	4	3	0	0
Maximum Δ d			0.59	0.00	0.00	1.36	0.90	0.55	1.11	0.84	0.57	0.00	0.97	0.85	0.76	1.67	1.22	0.90	1.42	1.16	0.92	0.75

Table C.8.29 Washakie Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11-	12	13	14	15	16	17	18	19	20
27	1	27	-	-	-	-	-	-	-	-	-	-	-	~	-	0.57	-	-	-	-	-	-
Number of Days Δ dv	>= 0.5		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Number of Days ∆ dv	>= 1.0		0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Δ d	lv		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.57	0.00	0.00	0.00	0.00	0.00	0.00

Table C.8.30 Washakie Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	27	1	27	-	-	-	-	-	-	-	-	-	-	-	-	-	0.58	-	-	-	-	-	-
Number	of Days Δ dv	>= 0.5		0	0	0	0	0	0	0	0.	0	0	0	0	0	1	0	0	0	0	0	0
Number of	of Days A dv	>= 1.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٨	Maximum A d	v		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00

Table C.8.31 Wind River Roadless Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Jı	ulian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	1	6	-	-	-	-	-	-	-	-	-	-	-	-	-	0.53	-	-	-	-	-	-
	7	1	7	-	~	-	-	-	-	-	-	-	-	-	-	-	0.67	0.52	-	0.58	-	-	-
	16	1	16	-	-	-	-	-	-	-	-	-	-	-	-	-	0.61	0.55	-	0.56	0.52	-	-
	23	1	23	-	-	-	-	-	-	-	-	-	-	-	-	-	0.53	-	-	-	-	-	-
	24	1	24	-	-	-	-	-	-	-	-	-	-	-	-	-	0.61	-	-	0.52		-	-
	26	1	26	-	-	-	0.54	-	-	-	-	-	-	- +	-	-	0.67	0.51	-	0.57	-	-	-
	27	1	27	-	-	-	0.65	-	-	0.52	-	-	-	0.54	-	-	0.87	0.66	-	0.75	0.62		-
	30	. 1	30	-	-	-	1.06	0.69	-	0.85	0.65	-	-	-	-	-	1.10	0.73	0.4	0.89	0.69		-
	44	2	13	-	-	-	0.54	-	-	-	-	-	-	-	-	-	0.75	0.57	-	0.65	0.55	-	-
	45	2	14	-	-	-	0.63	-	~	0.50	-	-	-	0.96	0.88	0.80	1.23	1.04	0.88	1.11	1.00	0.88	0.76
	61	3	2	-	-	-	-	-	-	-	-	-	-	0.62	0.56	0.51	0.88	0.72	0.59	0.79	0.70	0.61	0.51
	62	3	3	-	-	-	-	-	-	-	-	-	-	-	-	~	0.69	0.54	-	0.60	0.50	-	-
	74	3	15	-	-	-	-	-	-	-	-	-	-	0.61	0.58	0.57	0.69	0.60	0.57	0.66	0.63	0.60	0.57
	83	3	24	-	-	-	0.50	-	-	-	-	-	-	-	-	-	0.59	-	-	-	-	-	-
	263	9	20	-	-	-	-	-	-	-	-	-	-	-	-	-	0.59	-	-	0.53	-	-	-
	274	10	1	-	-	-	-	-	-	-	-	-	-	-	-	-	0.57	-	-	-	-	-	-
	280	10	7	-	-	~	0.53	-	-	-	-	-	-	-	-	-	0.64	-	-	0.54	-	-	-
	281	10	8	-	-	-	-	-	-	-	-	-	-	-	-	-	0.74	0.59	-	0.65	0.56	-	-
	351	12	17	-	-	-	0.70	0.54	-	0.56	-	-	-	-	-	-	0.75	0.59	-	0.62	-	-	-
	356	12	22	-	-	-	-	-	-	-	-	-	-	-	-	-	0.66	0.50	-	0.57	-	-	-
	357	12	23	-	-	-	0.63	-	-	0.51	-	-	-	0.58	0.51	-	0.84	0.66	0.52	0.72	0.60	-	-
	362	12	28	-		-	0.73	-	-	0.59	-	-	-	1.07	0.97	0.89	1.39	1.15	0.95	1.26	1.13	1.00	0.86
er of	Days Δ dv >	= 0.5		0	0	ō	10	2	0	6	1	0	0	6	5	4	22	15	5	18	11	4	4
	Days A dv ?			0	0	0	1	0	0	0	0	0	0	- 1	0	0	3	2	0	2	2	1	0
Ma	ximum A dv	1		0.00	0.00	0.00	1.06	0.69	0.00	0.85	0.65	0.00	0.00	1.07	0.97	0.89	1.39	1.15	0.95	1.26	1.13	1.00	0.86

Table C.8.32 Wind River Roadless Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	1	6	-	-	-	-	-	-	-	-	-	-	-	-	-	0.61	-	-	0.53	-	-	-
	7	1	7	-	-	-	0.52	-	- 1	-	-	-	-	-	-	-	0.77	0.61	-	0.68	0.57	-	-
	16	1	16	-	-	-	-	-	-	-	-	-	-	0.57	0.54	0.51	0.71	0.63	0.57	0.65	0.60	0.54	~
	23	1	23	-	-	-	-	-	-	-	-	-	-	-	-	-	0.61	-	-	0.51	-	-	- "
	24	1	24	-	-	-	0.54	~	-	-	-	-	-	-	-	-	0.71	-	-	0.60	-	-	-
	. 26	1	26	-	-	-	0.62	-	-	0.50	-	-	-	-	-	-	0.77	0.59	-	0.66	0.54	-	-
	27	- 1	27	-	-	-	0.75	-	-	0.60	-	-	-	0.63	0.53	-	1.00	0.76	0.58	0.86	0.72	0.57	-
	30	1	30	-	-	-	1.22	0.80	-	0.98	0.75	0.50	-	0.54	-	-	1.26	0.84	0.52	1.03	0.79	0.55	-
	44	2	13		-	-	0.62	-	-	0.50	-	-	-	0.54	-	-	0.88	0.67	0.51	0.76	0.64	0.51	-
	45	2	14	-	-	-	0.73	-	-	0.59	-	-	-	1.12	1.01	0.92	1.42	1.20	1.02	1.29	1.15	1.02	0.88
	61	3	2	-		-	0.57	-	-	-	-	-	-	0.72	0.65	0.59	1.02	0.84	0.68	0.92	0.81	0.70	0.59
	62	3	3	-	175	-	0.56	-	-	-	-	-	_	0.51	-	-	0.80	0.62	-	0.69	0.58	-	-
	74	3	15		-	-	-	-	-	-	-	-	-	0.70	0.67	0.66	0.80	0.69	0.66	0.77	0.73	0.70	0.67
	83	3	24	-	-	_	0.59	-	-	-	-	-	-	-	-	-	0.69	0.51	-	0.57	-	-	-
	280	10	7	112	-	_	0.60	-	-	-	-		-	-	-	-	0.72	0.53	-	0.61	-	-	-
	281	10	8	_	-	-	0.54	-	-	-	-	-	-	0.55	-	-	0.83	0.67	0.54	0.73	0.63	0.52	-
	309	11	5	-	-	-	-		-	-	-	-	-	-	-	-	0.52	-	-	-	-	-	-
	325	11	21	_	-	-	-	-	-	-	-	-	-	-	-	-	0.51	-		-	-	-	-
	351	12	17	-	-	-	0.78	0.60	-	0.63	-	-	-	-	-	-	0.84	0.66	-	0.69	0.54	-	-
	356	12	22	11_		-	-	-	-	-	-	-	-	-	-	-	0.73	0.56	-	0.64	0.54	-	-
	357	12	23	-	-	-	0.70	-	-	0.57	-	-	-	0.65	0.57	0.52	0.94	0.74	0.58	0.81	0.68	0.55	-
	362	12	28	-	-	-	0.82	0.53	-	0.66	-	-	-	1.19	1.08	0.99	1.54	1.28	1.06	1.40	1.26	1.11	0.96
Number	of Days Δ dv	= 0.5		0	0	0	15	3	0	8	1	1	0	11	7	6	22	17	10	20	15	10	4
	of Days A dv			0	0	0	1	0	0	0	'n	n	0	2	2	0	5	2	2	3	2	2	0
Number	Maximum Δ d			0.00	0.00	0.00	1.22	0.80	0.00	0.98	0.75	0.50	0.00	1.19	1.08	0.99	1.54	1.28	1.06	1.40	1.26	1.11	0.96

Table C.9.1 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR250

	FLAG Back	FLAG Background Data	IMPROVE Ba	IMPROVE Background Data
	Maximum Visibility	Maximum Visibility Number of Days > 1.0	Maximum Visibility	Number of Days >
Receptor Area	Impact	νþ∇	Impact	1.0 ∆dv
	(∆dv) ¹	(days)	(∆dv) ¹	(days)
Big Piney	1.64	2	1.89	4
Big Sandy	2.64	17	2.92	21
Boulder	2.01	7 .	2.30	10
Bronx	1.40	_	1.60	_
Cora	2.66	_	3.03	_
Daniel	2.12	_	2.42	_
Farson	1.93	2	2.21	2
Labarge	1.10	2	1.27	2
Merna	0.65	0	0.75	0
Pinedale	3.60	2	4.07	ო

¹ Adv = change in deciview.

Table C.9.2 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR150

			_										
MPROVE Background Data	Number of Days >	VD D.I	(days)	2	13	4	_	-	-	2	0	0	2
IMPROVE Bac	Maximum Visibility	Impact	(\d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.40	2.18	1.67	1.16	2.23	1.77	1.57	0.90	0.55	3.07
FLAG Background Data	Number of Days > 1.0	ΛΦΛ	(days)	_	80	က	-	-	_	m	0	0	_
FLAG Back	Maximum Visibility	Impact	,(vb∆)	1.21	1.97	1.46	1.01	1.95	1.54	1.36	0.78	0.48	2.69
		Receptor Area		Big Piney	Big Sandy	Boulder	Bronx	Cora	Daniel	Farson	Labarge	Merna	Pinedale

¹ Adv = change in deciview.

Table C.9.3 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR075

¹ Adv = change in deciview.

Table C.9.4 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR250

	FLAG Back	FLAG Background Data	IMPROVE Ba	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days >
Receptor Area	Impact	νþ∇	Impact	1.0 ∆dv
	(∆dv) ¹	(days)	(∆dv)	(days)
Big Pinev	3.45	21	3.93	40
Big Sandy	5.28	26	5.76	62
Boulder	4.06	33	4.58	30
Bronx	3.37	7	3.82	o
Cora	0.00	+	6.70	14
Daniel	4.89	16	5.50	15
Farson	4.33	10	4.88	13
Labarge	2.27	9	2.59	2
Merna	1.43	4	1.64	2
Pinedale	2.66	18	8.48	21

¹ ∆dv = change in deciview.

Table C.9.5 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR150

	FLAG Back	FLAG Background Data	IMPROVE Ba	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maxin	Number of Days >
Receptor Area	Impact	γργ	Impact	1.0 Adv
	(∆dv)¹	(days)	(∆dv) ¹	(days)
Big Piney	2.36	7	2.71	13
Big Sandy	3.76	29	4.13	33
Boulder	2.84	21	3.23	21
Bronx	2.34	-	2.67	-
Cora	4.32	က	4.87	2
Daniel	3.46	m	3.92	2
Farson	2.96	œ	3.37	∞
Labarge	1.52	2	1.74	4
Merna	0.98	0	1.13	2
Pinedale	5.67	7	6.34	∞

¹ Adv = change in deciview.

Table C.9.6 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR075

	FLAG Back	FLAG Background Data	IMPROVE Ba	IMPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days >
Receptor Area	Impact	νþ∇	Impact	1.0 ∆dv
	(∆dv) ¹	(days)	(∆dv) ¹	(days)
Verio sia	1 25	c	7	c
Bio Sandy	2.49	1 6	2.75	20
Boulder	1.75	2 ~	2.01	_
Bronx	1.35	-	1.56	-
Cora	2.58	-	2.94	-
Daniel	2.04	-	2.33	-
Farson	1.87	4	2.14	S
Labarge	0.88	0	1.02	-
Merna	0.57	0	0.66	0
Pinedale	3.52	_	3.98	2

¹ $\Delta dv = change in deciview.$

Table C.9.7 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 20% Emissions Reduction WDR250

_							_	_		_		-
MPROVE Background Data	Number of Days >	(days)	16	45	56	7	တ	13	10	4	က	16
IMPROVE Bad	Maximum Visibility	(∆dv) ¹	3.25	4.84	3.82	3.16	5.68	4.61	4.08	2.12	1.34	7.27
FLAG Background Data	Number of Days > 1.0	(days)	16	38	25	_	9	o	∞	2	2	14
FLAG Back	Maximum Visibility	Impact (∆dv)¹	2.85	4.42	3.37	2.78	5.06	4.09	3.60	1.85	1.16	6.53
	d	Receptor Area	Bia Pinev	Big Sandv	Boulder	Bronx	Cora	Daniel	Farson	Labarge	Merna	Pinedale

¹ $\Delta dv = change in deciview.$

Table C.9.8 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 40% Emissions Reduction WDR250

	Days >	>	()											
ckground Dat	Number of Days >	1.0 Adv	(days)	12	27	21	_	ო	4	∞	ო	_	9	
IMPROVE Background Data	Maximum Visibility	Impact	(∆dv)	2.53	3.83	2.99	2.46	4.53	3.64	3.20	1.63	1.02	5.89	
FLAG Background Data	Number of Days > 1.0	νþ∇	(days)	œ	28	17	_	-	2	7	2	0	2	
FLAG Back	Maximum Visibility	Impact	(∆dv)	2.21	3.48	2.63	2.15	4.01	3.21	2.82	1.42	0.88	5.25	
		Receptor Area		Big Piney	Big Sandy	Boulder	Bronx	Cora	Daniel	Farson	Labarge	Merna	Pinedale	

¹ $\Delta dv = change in deciview.$

Table C.9.9 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 60% Emissions Reduction WDR250

	FLAG Back	FLAG Background Data	IMPROVE Ba	IMPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maxin	Number of Days >
Receptor Area	Impact (Adv) ¹	(davs)	(\Delta dv)	(days)
	(
Big Piney	1.53	2	1.76	2
Big Sandy	2.45	17	2.71	19
Boulder	1.83	∞	2.09	თ
Bronx	1.48	-	1.70	_
Cora	2.85	-	3.24	_
Daniel	2.25	-	2.57	
Farson	1.96	22	2.25	2
Labarge	0.97	0	1.12	2
Merna	09.0	0	0.69	0
Pinedale	3.79	2	4.28	က

¹ Adv = change in deciview.

Table C.9.10 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 80% Emissions Reduction WDR250

	FLAG Back	FLAG Background Data	IMPROVE Bac	IMPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days >
Receptor Area	Impact	γp∇	Impact	1.0 ∆dv
	(∆dv) ¹	(days)	(∆dv) ¹	(days)
Big Piney	0.79	0	0.92	0
Big Sandy	1.30	_	1.45	4
Boulder	0.95	0	1.10	2
Bronx	0.77	0	0.89	0
Cora	1.52	-	1.75	-
Daniel	1.19	-	1.37	_
Farson	1.03	-	1.19	_
Labarge	0.50	0	0.57	0
Merna	0.30	0	0.35	0
Pinedale	2.07	-	2.37	_

¹ ∆dv = change in deciview.

Table C.9.11 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR250 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE B	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	νþ∇	Impact	νþ∇
	(∆dv)¹	(days)	(∆dv)¹	(days)
Bia Diney	205	Ψ.	2.57	6
Bio Sandy	3.16	3. 5	3.48	32
Boulder	3.17	18	3.60	20
Bronx	1.46	-	1.68	_
Cora	2.75	9	3.13	7
Daniel	2.20	9	2.52	1
Farson	2.42	7	2.68	11
Labarge	2.50	თ	2.85	7
Merna	0.99	0	1.11	4
Pinedale	3.70	80	4.18	œ

¹ Adv = change in deciview.

Table C.9.12 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR150 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE Ba	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	νþ∇	Impact	νρν
	(∆dv)	(days)	(∆dv) ¹	(days)
Big Piney	2.09	13	2.39	15
Big Sandy	2.51	17	2.78	23
Boulder	2.88	11	3.27	11
Bronx	1.08	-	1.24	-
Cora	2.04	2	2.34	22
Daniel	1.63	-	1.87	9
Farson	1.94	10	2.22	10
Labarge	2.24	9	2.56	o
Merna	96.0	0	1.07	-
Pinedale	2.80	00	3.19	00

¹ ∆dv = change in deciview.

Table C.9.13 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Low Emissions WDR075 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE B	IMPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maxim	Number of Days > 1.0
Receptor Area	Impact	ΛΦΛ	Impact	Λρ∇
	(\dv) ¹	(days)	(∆dv)	(days)
Big Pinev	200	σ	233	4.
Big Sandy	2.00) (2	2.22	<u> </u>
Boulder	2.78	7	3.16	ത
Bronx	0.73	0	0.84	0
Cora	1.38	_	1.58	က
Daniel	1.11	_	1.27	_
Farson	1.71	10	1.96	10
Labarge	2.02	ဖ	2.31	ဖ
Merna	0.94	0	1.04	-
Pinedale	1.94	2	2.23	7

¹ ∆dv = change in deciview.

Table C.9.14 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR250 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE Ba	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	Δdv	Impact	νpγ
	(∆dv) ¹	(days)	(∆dv) ¹	(days)
	0	20	200	96
DIG PINEY	10.0	40	4.32	000
Big Sandy	5.67	64	6.18	74
Boulder	4.97	39	5.58	40
Bronx	3.42	12	3.88	15
Cora	6.07	16	6.77	17
Daniel	4.95	21	5.56	23
Farson	4.49	19	5.05	21
Labarge	3.51	15	3.97	16
Merna	1.68	თ	1.93	10
Pinedale	7.73	23	8.56	27

¹ Adv = change in deciview.

Table C.9.15 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR150 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE Ba	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	νþ∇	Impact	νbΔ
	(∆dv) ¹	(days)	(∆dv)	(days)
Big Pinev	2.76	24	3.16	25
Big Sandv	4.22	43	4.63	20
Boulder	3.87	28	4.38	26
ronx	2.40	7	2.73	2
ora	4.40	12	4.96	13
Daniel	3.54	4	4.00	16
arson	3.14	12	3.56	15
Labarde	2.86	17	3.25	4-
Merna	1.26	2	1.45	9
inedale	5.75	16	6.43	18

¹ Adv = change in deciview.

Table C.9.16 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative High Emissions WDR075 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE Ba	IMPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	νpν	Impact	νpγ
	(∆dv)¹	(days)	(∆dv) ¹	(days)
i		:		
Big Piney	2.11	13	2.41	18
Big Sandy	3.01	25	3.32	29
Boulder	2.87	41	3.27	15
Bronx	1.42	-	1.63	-
Cora	2.67	2	3.04	7
Daniel	2.13	ო	2.43	7
Farson	2.09	10	2.39	11
Labarge	2.33	9	2.66	o
Merna	0.97	0	1.08	-
Pinedale	3.62	∞	4.09	∞

¹ Adv = change in deciview.

Table C.9.17 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 20% Emissions Reduction WDR250 and Regional Sources

FLAG Background Data IMPROVE Bac	IMPROVE Background Data
Number of Days > 1.0 Maximum Visibility	Number of Days > 1.0
Δdv Impact	ΛÞ∇
(days) $(\Delta dv)^1$	(days)
3.68	30
53 5.30	69
34 4.91	32
3.22	12
13 5.75	16
16 4.69	19
15 4.26	19
3.57	14
1.64	ത
7.35	21
<u> </u>	7.35

¹ Adv = change in deciview.

Table C.9.18 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 40% Emissions Reduction WDR250 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE B	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	γdν	Impact	νbΔ
	(∆dv)¹	(days)	(∆dv)¹	(days)
Big Piney	2.61	21	2.99	24
Big Sandy	3.96	35	4.34	40
Boulder	3.71	25	4.20	22
Bronx	2.21	-	2.53	s.
Cora	4.09	7	4.62	12
Daniel	3.29	41	3.73	16
Farson	2.99	12	3.40	14
Labarge	2.77	11	3.15	12
Merna	1.16	4	1.35	9
Pinedale	5.34	41	5.98	15

¹ ∆dv = change in deciview.

Table C.9.19 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 60% Emissions Reduction WDR250 and Regional Sources

	בשם סעור	FLAG Background Data	INPROVE B	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	νþ∇	Impact	ΛÞ∇
	(∆dv)¹	(days)	(∆dv)¹	(days)
Big Pinev	2.20	41	2.51	17
Big Sandv	2.97	27	3.28	30
Boulder	3.02	16	3.43	17
Bronx	1.55	-	1.78	-
Cora	2.93	9	3.33	7
Daniel	2.33	က	2.66	တ
Farson	2.16	10	2.46	11
Labarge	2.40	7	2.74	o
Merna	0.97	0	1.08	2
Pinedale	3.89	∞	4.39	တ

¹ Adv = change in deciview.

Table C.9.20 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Preferred Alternative Mitigation 80% Emissions Reduction WDR250 and Regional Sources

	FLAG Back	FLAG Background Data	IMPROVE Ba	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0
Receptor Area	Impact	νbΩ	Impact	νþ∇
	(\dag{\dag{\dag{\dag{\dag{\dag{\dag{	(days)	(∆dv) ¹	(days)
				:
Big Piney	1.99	000	2.28	13
Big Sandy	1.88	o	2.13	12
Boulder	2.72	ø	3.09	ത
Bronx	0.84	0	0.97	0
Cora	1.62	-	1.86	7
Daniel	1.28	-	1.47	7
Farson	1.63	80	1.87	10
Labarge	2.02	9	2.30	ဖ
Merna	0.93	0	1.03	-
Pinedale	2.19	S	2.50	ဖ

¹ Adv = change in deciview.

Table C.9.21 Big Piney - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
6	1	6	-	-	-	1.97	1.33	-	1.61	1.23	-	-	1.40	1.16	-	2.38	1.77	1.21	2.03	1.67	1.29	-1.
7	1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	1.16	-	-	1.01	-	-	-
20	1	20	-	-	-	-	-	-	-	-	-	-	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27
21	1	21	-	-	-	1.58	1.06	-	1.28	-	-	-	1.33	1.14	~	2.09	1.63	1.22	1.83	1.55	1.27	-
22	1	22	-	-	-	-	-	-	-	-	-	-	-	-	-	1.05	-	-	-	-	-	-
23	1	23	-	-	-	2.01	1.29	-	1.64	1.25	-	-	2.25	2.00	1.82	3.20	2.58	2.11	2.88	2.55	2.20	1.84
24	1	24	-	-	-	-	-	-	-	-	-	-	2.16	2.09	2.04	2.32	2.18	2.09	2.24	2.16	2.08	1.99
28	1	28	-	-	-	-	-	-	-	-	-	-	1.14	1.12	1.10	1.20	1.15	1.12	1.17	1.15	1.12	1.09
39	2	8	-	-	-	1.32	-	-	1.07	~	-	~	-	-	-	1.40	-	-	1.15	-	-	-
40	2	9	-	-	-	1.72	1.13	-	1.40	1.07	-	-	1.11	-	-	1.98	1.40	-	1.66	1.34	1.01	-
44	2	13	-	-	-	1.89	1.24	~	1.54	1.18	-	-	1.40	1.20	1.03	2.37	1.76	1.30	2.03	1.70	1.37	1.02
45	2	14	-	-	-	-	-	-	-	-	-	-	-	-	-	1.22	-	-	1.04	-	-	-
61	3	2	1.64	1.21		3.45	2.36	1.35	2.85	2.21	1.53	-	2.07	1.67	1.33	3.81	2.76	1.81	3.23	2.61	1.96	1.29
62	3	3	1.32	-	-	2.64	1.73	1.21	2.17	1.67	1.14	-	1.47	1.08	-	2.78	1.88	1.37	2.31	1.82	1.30	-
87	3	28	-	-	-	1.49	1.01	-	1.21	-	-	-	-	-	-	1.76	1.29	-	1.48	1.20	-	-
88	3	29	-	-	-	1.48	1.02	-	1.20	-	-	-	-	-	-	1.53	1.08	-	1.25	-	-	-
109	4	19	-	-	-	-	-	-	-	-	-	-	-	-	-	1.34	1.01	-	1.17	1.00	-	-
118	4	28	-	-	-	1.05	-	-	-	-	-	-	-	-	-	1.25	-	-	1.06	-	-	-
124	5	4	-	-	-	1.45	-	-	1.18	-	-	-	1.11	-	-	1.79	1.28	-	1.53	1.26	-	-
147	5	27	-	-		1.04	-	-	-	-	-	-	-	-	-	1.17	-	-	-		-	-
213	8	1		-	-	1.05	-	-	-	-	-	-	~	-	-	1.19	-	-	-	_	-	-
216	8	4	-	-	-	-	-	-	-	-	-	-	-	-	-	1.14	-		-	-	-	-
217	8	5	-	-	-	1.40	-	-	1.14	-	-	-	-	-	-	1.61	1.14	-	1.35	1.08	-	-
252	9	9	-	-	-	-	-	-	-	-	-	-	-	-	-	1.08	-		-	-	-	-
264	9	21	-	-	-	1.00	-	-	-	-	-	-	-	-	-	1.35	1.04	-	1.16	-	-	
351	12	17	-	-	-	1.68	1.26	-	1.37	1.04	-	-	-	-	-	1.79	1.38	-	1.48	1.16	-	-
352	12	18	-	-	-	1.40	-	-	1.14	-	-	-	-	-	_	1.48	1.00	-	1.22	-	-	-
353	12	19	-	-	-	1.52	-	-	1.23	-	-	-	-	-	-	1.68	1.13	-	1.40	1.11	-	-
354	12	20	-	-	-	-	-	-	-	-	-	-	1.15	1.04	_	1.48	1.19	1.02	1.36	1.23	1.10	-
355	12	21	-	-	-	1.12	-	-	-	-	-	-	1.01	-	-	1.62	1.22	-	1.41	1.21	-	-
356	12	22	-	-	-	1.71	1.14	-	1.39	1.06	-	-	1.71	1.50	1.32	2.55	2.03	1.58	2.26	1.96	1.64	1.32
357	12	23	-	-	-	-	-	-	-	-	-	-	1.22	1.11	1.03	1.37	1.20	1.08	1.25	1.14	1.03	-
358	12	24	-	-	-	-	-	-	-	-	-	-	-	-	-	1.05	-	-	-	-	-	-
361	12	27	-	-	-	-	-	-		-	-	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
lumber of Days Δ d	v >= 1.0		2	1	0	21	11	2	16	8	2	0	16	13	9	34	24	13	28	21	14	8
Maximum Δ	dv		1.64	1.21	0.00	3.45	2.36	1.35	2.85	2.21	1.53	0.00	2.25	2.09	2.04	3.81	2.76	2.11	3.23	2.61	2.20	1.99

Table C.9.22 Big Piney - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	3	1	3	-	-	-	-	-	-	-	-	-	-	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
	6	1	6	1.09	-	-	2.26	1.53	-	1.84	1.41	-	~	1.61	1.33	1.09	2.72	2.03	1.39	2.33	1.91	1.49	1.04
	7	1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	1.34	1.05	-	1.17	-	-	-
	20	1	20	-	-	-	-	-	-	-	-	-	-	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46
	21	1	21	-	-	-	1.81	1.22	-	1.47	1.12	-	-	1.52	1.32	1.14	2.39	1.87	1.41	2.09	1.78	1.47	1.13
	22	1	22	-	-	-	-	-	-	-	-	-	-	-	-	-	1.21	- 1	-	1.05	-	-	-
	23	1	23	1.04	-	-	2.30	1.48	-	1.88	1.44	-	-	2.57	2.29	2.08	3.64	2.94	2.41	3.28	2.90	2.51	2.11
	24	1	24	~	-	-	-	-	-	-	-	-	-	2.47	2.39	2.33	2.65	2.49	2.39	2.56	2.47	2.37	2.28
	28	1	28	-	-	-	-	-	-	-	-	-	-	1.31	1.29	1.27	1.38	1.33	1.29	1.35	1.32	1.29	1.26
	39	2	8	-	-	-	1.53	-	-	1.24	-	-	-	-	-	-	1.62	1.09	~	1.33	1.04	-	-
	40	2	9	-	-	-	1.98	1.30	-	1.62	1.24	-	-	1.28	1.01	-	2.27	1.61	1.11	1.92	1.55	1.16	-
	43	2	12	-	-	-	-	~	-	-	-	-	-		~	-	1.10	~	-	-	-	-	-
	44	2	13	-	-	-	2.17	1.44	-	1.77	1.36	-	-	1.62	1.38	1.20	2.71	2.03	1.50	2.34	1.96	1.58	1.18
	45	2	14	-	-	-	1.08	-	-	-	-	-	-	-	-	-	1.41	1.06	-	1.21	1.00	-	-
	61	3	2	1.88	1.40	-	3.92	2.71	1.56	3.25	2.53	1.76	-	2.37	1.92	1.54	4.32	3.15	2.08	3.68	2.99	2.25	1.49
	62	3	3	1.52	1.06	-	3.02	1.99	1.39	2.49	1.92	1.32	-	1.70	1.25	-	3.18	2.16	1.58	2.65	2.09	1.50	
	87	3	28	-	-	-	1.72	1.17	-	1.39	1.06	-	-	1.11	-	-	2.02	1.49	1.02	1.71	1.39	1.06	-
	88	3	29	-	-	-	1.70	1.18	-	1.38	1.06	~	-	-	-	-	1.76	1.25	-	1.45	1.12	-	
	89	3	30	-	-	-	-	-	-	-	-	-	-	_	-	-	1.05	-	_	-	_	-	
	109	4	19	-	-	-		-	-	-	-	-	-	-	_	-	1.22	_	-	1.06	-	_	
	118	4	28	-	-	-	-	-	-	-	_		_	_	-	_	1.14	-	_	-	4.	-	-
	124	5	4	-	-	-	1.32	-	-	1.07	-	-	-	1.01	-	_	1.63	1.17		1.39	1.14	_	-
	147	5	27	-		-	-	-	-	-	_		-	-	-	-	1.07		-	-	-	_	
	217	8	5	-	-	-	1.18	-	_	_	_	-	-	_	-	_	1.35	_	_	1.13	-	_	-
	264	9	21	-	-	-	-	_	_	-	-	-	-	-	-	-	1.12	-	-	-	-	-	-
	325	11	21	-	-	-	-	_	-	-	_	_	_	_	_	-	1.04	-	_	-	-	_	- 1
	351	12					1.87	1.40	_	1.52	1.16	-		1.06	_		1.99	1.53	1.01	1.65	1.29	_	-
	352	12					1.56	1.03	-	1.27	-	-	-	-	_	-	1.65	1.12	-	1.36	1.06	-	
	353	12				-	1.69	1.08	-	1.37	1.05	-	_	_	_	_	1.86	1.26		1.55	1.23	-	_
	354	12			-		-	-	_	-	-	-		1.27	1.15	1.08	1.65	1.33	1.13	1.51	1.37	1.22	1.08
	355	12		-	-		1.24	_		1.00	-		-	1.12	-	-	1.79	1.36	1.07	1.57	1.34	1.11	-
	356	12				_	1.90	1.27		1.55	1.18			1.90	1.66	1.46	2.82	2.25	1.76	2.50	2.17	1.82	1.47
	357	12			-	_								1.35	1.24	1.14	1.52	1.34	1.20	1.39	1.27	1.14	1.02
	358	12										-		1.00	1.2.4		1.17		1.20	1.03	-		-
	360	12				-											1.05			1.02			
	361	12												1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39
	301	12	21	·				-						1.55	1.55	1.00	1.00	1.55	1.33	1.00	1.00	1.00	1.55
Numbe	er of Days A	dv >= 1.0)	4	2	0	18	13	2	16	12	2	0	19	15	13	36	25	18	30	24	17	13
	Maximum A			1.88	1.40	0.00	3.92	2.71	1.56	3.25	2.53	1.76	0.00	2.57	2.39	2.33	4.32	3.15	2.41	3.68	2.99	2.51	2.28

Table C.9.23 Big Sandy - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day M	onth	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	2	1	2	-	-	-	1.27	7	-	1.03	-	-	-	1.23	1.10	-	1.84	1.49	1.12	1.62	1.38	1.14	-
	3	1	3	-	•	-	1.09	- 40	4.07	4.50	4.04	-	-	1.01	-	-	1.55	1.24	1.33	1.35	1.14	1.09	-
	4	- 1	4	-	-	-	1.94	1.43	1.07	1.58	1.21	-	-	1.02	-	-	2.17	1.56	1.25	1.77	1.39	1.00	
	7	1	7	1.54	1.15	-	3.30	2.29	1.40	2.72	2.11	1.46		2.14	1.77	1.46	3.81	2.85	1.99	3.26	2.68	2.06	1.40
	17	1	17	1.54	1.15		1.62	1.09	1.40	1.32	1.01	1.40		1.03	1.77	1.40	1.91	1.39	1.55	1.61	1.31	2.00	1.40
	20	1	20		-		1.09	1.00		1.52	1.01	_	_	1.15	_		1.56	1.27	1.15	1.36	1.16	_	_
	22	- 1	22	1.20			2.60	1.96	1.27	2.13	1.64	1.12	_	1.30	1.07	-	2.69	2.06	1.37	2.22	1.74	1.22	-
	23	1	23	1.85	1.31	3. 9	4.08	2.74	1.32	3.38	2.64	1.83		2.28	1.76	1.26	4.42	3.13	1.75	3.76	3.04	2.27	1.43
	24	1	24	1.41	1.02	_	3.14	2.22	1.53	2.59	2.00	1.38	-	2.19	1.86	1.55	3.82	2.98	2.28	3.31	2.76	2.19	1.58
	28	1	28	1.38	-	_	3.12	1.87	1.12	2.57	1.99	1.37	-	2.45	2.05	1.81	4.04	2.90	2.22	3.54	3.01	2.45	1.86
	30	1	30	1.10	-	-	2.46	1.62	-	2.01	1.55	1.06	-	1.45	1.15	-	2.76	1.95	1.31	2.33	1.88	1.41	-
	39	2	8		-	-	-	-	-	-	-	-	-	-	-	-	1.03	-	-	-	-	-	-
	40	2	9	-	-	-	1.32	-	-	1.07	-	-	-	-	1	-	1.35	-	-	1.10	1/2	-	-
	41	2	10	-	-	-	-	-	-	-	-	-	-	-	-	-	1.01	- "	-	-	-	-	-
	44	2	13	1.07	-	-	2.50	1.70	-	2.05	1.57	1.08	-	1.26	-	-	2.67	1.88	1.18	2.23	1.76	1.27	-
	53	2	22	-	-	-	1.37	-	-	1.11	-	-	-	-	-	-	1.57	1.11	-	1.32	1.06	-	-
	54	2	23	-	-	-	1.13	-	-	-	-	-	-	-	-	-	1.36	1.01	-	1.15		-	-
	55	2	24	- "	-	-	1.08	-	-	-	-	-	-	-	-	-	1.17	-	-	-	-	-	-
	56	2	25	-	-	~	1.00	-	-	-	-	-	-	-	-	-	1.22	1.02	-	1.03	-	-	-
	57	2	26	-	- 1	-	1.01	-	-	-	-	-	-	-	-	-	1.17	-	-	-	-	-	-
	60	3	1	-	-	-	-	-	-	~	-	-	-	-	-	-	1.26		-	1.08	-	-	-
	61	3	2	-	-	-	1.04	-	-	-	-	-	-	-	-	-	1.37	1.03	-	1.18	~	-	-
	63	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-	1.08	-	-	-	-	-	-
	85	3	26	-	-	-	1.06		-	4.70	-	-	-			-	1.18	4.70	4.07	-	4.50		-
	86	3	27		4.00	-	2.08	1.44	4.50	1.70	1.30	474	-	1.24	1.01	4.05	2.35	1.73	1.07	1.98	1.59	1.19	4.07
	90	3	31	1.74	1.30	-	3.89	2.71	1.53	3.23	2.51	1.74	-	1.89	1.45	1.05	4.01	2.85	1.68	3.35 1.03	2.65	1.89	1.07
	91	4	1	-	-	-	1.05	4 27	-	4.50	4.24	•		1.06	-	-		1.54	-		1.38	1.00	-
	92	4	2	-	-	-	1.94	1.37	-	1.58	1.21	-	-	1.00	-	-	2.11 1.62	1.12	-	1.75	1.09	1.00	-
	93 115	4	25	-	-	7	1.41	-	-	1.01	-	-	-	-	-	-	1.36	1.03	-	1.12	1.05	-	-
	116	4	26		-	-	1.68	1.11	-	1.37	1.04		-	1.01		- 0	1.95	1.39	-	1.64	1.33	1.00	
	119	4	29	-	-		1.32	1.11		1.07	1.04			1.01			1.49	1.07		1.25	1.00	1.00	
	132	5	12				1.16			1.07		10.3					1.41	1.05		1.19			
	184	7	3			-	1.24	_		1.00	-	-		-			1.28	-		1.04	-	_	_
	263	9	20	1.17		-	2.62	1.78	1.01	2.14	1.65	1.13	-	1.30	_	-	2.73	1.90	1.14	2.26	1.77	1.26	_
	265	9	22	-	-	-	1.06	-	-	-	-	-	_	-	-	-	1.16	-	-	-	-	-	_
	266	9	23	-	-	4	-	-	-	-	-	-	-	-	-	-	1.08	-	-	-	-	-	-
	273	9	30	1.35	_	-	2.97	2.04	1.22	2.44	1.88	1.30	-	1.59	1.23	-	3.17	2.26	1.46	2.66	2.11	1.54	_
	274	10	1	1.71	1.24	-	3.82	2.65	1.65	3.17	2.46	1.71	-	2.06	1.62	1.26	4.11	2.98	2.01	3.47	2.79	2.06	1.27
	279	10	6	-	-	-	1.15	-	-	-	-	-	-	-	-	-	1.23	-	-	1.01	-	-	-
	281	10	8	-	-	-	1.21	-	-	-	-	-	-	-	-	-	1.54	1.10	-	1.31	1.09	-	-
	282	10	9	-	-	-	1.37	1.05	-	1.11	-	-	-	-	-	-	1.44	1.12	-	1.18	-	-	-
	297	10	24	-	-	-	1.18	-	-	-	-	-	-	-	-	-	1.35	-	-	1.13	-	-	-
	309	11	. 5	-	-	-	1.76	1.37	-	1.44	1.10	-	-	1.07	-	-	2.03	1.65	-	1.71	1.38	1.04	-
	320	11	16	-	-	-	2.19	1.29	-	1.79	1.37	-	-	1.01	-	-	2.26	1.36	-	1.86	1.44	1.01	-
	322	11	18	-	-	-	1.32	-		1.07	-	-	-	-	-	-	1.39	-	-	1.14	-	-	-
	325	.11	21	-	-	-	1.20	7	-	*	-	-	-	-	-		1.27	-	-	1.04	-	-	-
	326	11	22	-	-	-		-	-	-	-	-	-	-	-	-	1.20	-	-	1.04	-	-	-
	338	12	4	-	-	-10	1.14	-	-	-	-	-	-	-	-	-	1.27	-	-	1.05	-	-	-
	341	12	7	-	-	-	4.05	-	-	-	-	-	-	-		-	1.10	-	-	-	-	-	-
	350 352	12		-	- 1	-	1.05	1.49	1.04	1.81	1.38	-	-	4.04	-	-	1.13	1.57	1.13	1.89	1.47	1.03	-
	353	12		-	-	-	1.42	1.49	1.04	1.15	1.38	-	-	1.04	-	-	1.47	1.01	1.13	1.20	1.47	1.03	_
	354	12		1.43	-	-	3.38	2.22	-	2.79	2.16	1.40	-	1.52	1.08	-	3.46	2.31	1.07	2.87	2.25	1.58	
	355	12		1.43	-	-	2.07	1.53	-	1.69	1.29	1.49	-	1.52	1.00		2.18	1.64	1.07	1.80	1.41	1.00	
	356	12		2.64	1.97	1.42	5.28	3.76	2.49	4.42	3.48	2.45	1.30	3.15	2.51	2.00	5.67	4.22	3.01	4.85	3.96	2.97	1.88
	357	12			1.40	1.04	4.06	2.85	1.89	3.37	2.63	1.83	1.50	2.26	1.79	1.45	4.36	3.19	2.27	3.69	2.98	2.20	1.36
	359	12			1.40	1.04	2.34	1.77	1.03	1.92	1.47	1.00		1.58	1.79	1.09	2.73	2.18	1.39	2.32	1.90	1.45	1.00
	360	12					2.72	2.05	1.11	2.23	1.72	1.18		1.42	1.17	1.00	2.87	2.21	1.30	2.39	1.89	1.36	
	361	12		1.24			1.21	2.03	1.11	2.23	1.72	1.10		1.00	1.17		1.58	1.17	1.50	1.36	1.14	1.30	
	362	12			-		1.62	1.15	-	1.31	1.00	_		1.16			1.89	1.44	1.11	1.60	1.29		
	363	12		1.59	1.17		3.57	2.46	1.51	2.95	2.29	1.59		2.12	1.73	1.40	4.01	2.95	2.04	3.42	2.79	2.12	1.40
	364	12		-	-	-	-		-		-	-		-	-	-	1.11		2.04	-		-	
		-	30																				
Numb	er of Days ∆ dv	>= 1.0)	17	8	2	56	29	16	38	28	17	1	31	17	10	64	43	25	53	35	27	9
	Maximum Δ o			2.64	1.97	1.42	5.28	3.76	2.49	4.42	3.48	2.45	1.30	3.15	2.51	2.00	5.67	4.22	3.01	4.85	3.96	2.97	1.88

Table C.9.24 Big Sandy - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

					1 Tour	olog i	200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ioi La		iciica	rucine	auve iv	loueilli	y occ	iano (1-20)							
,	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
	3	1	2	1.18	-	-	1.89	1.45	-	1.54	1.18	-		1.85	1.68	1.51	2.52	2.11	1.67	2.19 1.82	1.85	1.50	1.13	
	2	1	2	-		-	1.46	1.04	-	1.19	1.02	-		1.41	1.27	1.12	2.11	1.71	1.29	1.85	1.59	1.32	1.04	
	3		3	-	-	-	1.25	- 1	-	1.02	-	-	-	1.16	1.04	-	1.77	1.43	1.03	1.55	1.32	1.08	-	
	4		4	1.01	-	-	2.22	1.64	1.23	1.81	1.39	-	-	1.31	1.10	-	2.48	1.92	1.53	2.09	1.68	1.25	-	
	6	1	6	1.01	1.33	-	2.29 3.75	1.62	1.27	1.87 3.10	1.43	1.67		1.18	2.03	1.67	2.44	1.79	1.43	2.03 3.70	1.60	1.15	1.61	
	13	1	13	-	1.00		3.73	2.01	1.01	5.10	2.41	1.07		2.40	2.03	1.07	1.08	3.24	2.20	3.70	3.00	2.50	1.01	
	14		14	-		-	-	-	-	-	-	-	-	-	-	-	1.12	-	-	-	-	-	-	
	17	1	17	-	-	-	1.86	1.25		1.52	1.16	-	-	1.19	-	-	2.18	1.60	1.12	1.85	1.50	1.14	-	
	20 22		20 22	1.38	1.11		1.26	2.24	1.46	1.02	1.88	1.29	-	1.33	1.15	1.08	1.79	1.46	1.32	1.56	1.33	1.09	-	
	23		23	2.12	1.11		4.60	3.12	1.46	3.84	3.01	2.10	1.11	2.61	2.02	1.45	4.98	2.35 3.56	1.57	2.54 4.25	1.99 3.45	2.59	1.64	
	24		24	1.62	1.17		3.57	2.54	1.76	2.95	2.29	1.58		2.50	2.13	1.78	4.32	3.38	2.60	3.75	3.14	2.50	1.81	
	28		28	1.58	1.06	-	3.55	2.14	1.29	2.93	2.28	1.57	-	2.80	2.34	2.07	4.56	3.30	2.54	4.00	3.41	2.79	2.13	
	30		30	1.27	-	-	2.80	1.86	1.12	2.30	1.77	1.22	-	1.66	1.33	1.08	3.14	2.23	1.50	2.66	2.15	1.62	1.05	
	39 40		8	-	-	-	1.14	1.01	-	1.23	-	-	-	-	-	-	1.19	1.04	-	1.27	-	-	-	
	41						1.02	1.01	-	1.20	-	-		-			1.16	1.04		1.21			-	
	44	2	13	1.24		-	2.86	1.95	1.14	2.35	1.81	1.24	-	1.46	1.13		3.06	2.16	1.37	2.55	2.03	1.47	-	
	52			-	-	-	1.03	-	-	- '	-	-	-	-	-	-	1.14	-	-	-	-	-	-	
	53 54			-	-	-	1.59	1.05	-	1.29	-	-	-	1.05	-	-	1.81	1.29	1.11	1.52	1.22	-	-	
	54				1	1	1.31			1.06		- 0	1				1.35	1.17		1.11	1.08		-	
	56						1.16			-		-		- 1			1.41	1.18		1.20			-	
	57			-	-	-	1.17	-	-	-	-	-	1 -	-	-		1.35	1.02	-	1.13	-	-	-	
	60			-	-	-	1.13	-	-	-	-	-	-	-	-	-	1.46	1.12	-	1.25	1.04		-	
	61 62			-	-	-	1.20	-	-	-	-	-	*		-	-	1.58	1.19	-	1.36	1.14	-	-	
	63				0		1.03					-		1		-	1.11		1	1.05	1	1		
	67						-					-			-	-	1.13	-	_	-		-	-	
	75			-	-	-	-	-	-	-	-	-	-	-	-		1.04	-	-	-	-		-	
	76			-	-	-	1.03	-	-	-	-	-	-	-	-	-	1.10	-	-	-	-	-	-	
	77 78					-	-	-	-	-	-	-	-	-	-	-	1.11	-	•		- [- 1		
	85				- 1		1.22					-					1.37			1.13				
	86			1.09	-	-	2.39	1.66		1.95	1.50	1.02	-	1.43	1.17	-	2.69	1.99	1.24	2.27	1.83	1.37	-	
	90			2.01	1.50	1.03	4.42	3.10	1.77	3.67	2.88	2.01	1.05	2.18	1.67	1.21	4.55	3.25	1.94	3.82	3.03	2.17	1.24	
	91			-	-	-	1.21	-	-		-	-	-	-	-	-	1.42	1.08	-	1.20	4.00	-	-	
	92 93		3	-	-	-	1.77	1.24	-	1.44	1.10	-		-	-		1.92	1.40	- 1	1.60	1.26			
	115				1		1.13			1.04		-					1.23	1.02		1.02			-	
	116				-	-	1.53	1.01	-	1.25	-	-	-	-	-	-	1.78	1.26	-	1.50	1.21		-	
	119			-	-	-	1.20	-	-	-	-	-	-	-	-	-	1.36	-	-	1.13	-	-	-	
	132			-	-	-	1.06	-	•	-	-	-	-	-	-	7	1.28		-	1.08	-		-	
	184 263			- 1			1.04	1.48		1.78	1.37		1	1.07	-	2	2.28	1.58		1.89	1.47	1 04	-	
	273			1.12	-		2.49	1.69	1.01	2.04	1.57	1.07		1.32	1.02	-	2.66	1.88	1.21	2.22	1.76	1.27	-	
	274			1.42	1.03		3.22	2.22	1.37	2.66	2.06	1.42	-	1.72	1.34	1.04	3.47	2.50	1.67	2.92	2.34	1.72	1.05	
	279			-	-	-	1.29	-	-	1.04	-	-	-	-	-	-	1.38	4.00	4.07	1.13	4.00	-	-	
	281 282			-	-	-	1.36	1.18	-	1.11	-	-	-	1.03	-		1.72	1.23	1.07	1.48	1.22			
	295			-	-		1.55	1.10	- 1	1.20		-	-				1.12	1.20		-	-		-	
	297			-	-	-	1.32	-	-	1.07	-	-	-	-	-	-	1.52	1.08	-	1.28	1.02	-	-	
	298			-	- 1	-	-	-	-			-	-	-	-	-	1.05	-	-	-	4.50		-	
	309 320			1.04	-	-	1.95	1.52	-	1.59 1.98	1.22	1.04		1.19	1.03	-	2.24	1.82	1	1.89	1.53	1.15		
	320			1.04			1.46	1.43		1.19	1.02	1.04		1.12			1.54	1.02		1.27	1.00	-	-	
	325			-	-		1.33	-	-	1.08	-	-	-		-	-	1.41	1.01	-	1.15	-	-	-	
	326				-	-	-	-		-	-	-	-	-	-	-	1.33	1.05	-	1.15	-	-	-	
	338			-	-	-	1.27	-	-	1.03	-	-	-	-	-	-	1.41	1.01	-	1.17	-	-	-	
	341 349			-	-	- 1	-	-	1	-	-	-			-	-	1.22			1.04	1	-	- 1	
	350						1.16		1	-		-		-			1.25			1.03	-	-	-	
	352				-		2.45	1.65	1.16	2.00	1.54	1.05		1.16	-	-	2.54	1.75	1.26	2.10	1.63	1.15	-	
	353	12	19	-	-	-	1.58	1.07	-	1.28	-	-	-	-	-	-	1.63	1.13	-	1.34	1.03	-	-	
	354				1.09	-	3.72	2.46	1.09	3.08	2.39	1.66	-	1.69	1.20	-	3.80	2.55	1.19	3.17	2.49	1.76	-	
	355 356				2.18	1.58	2.29 5.76	1.70 4.13	1.05	1.87	1.44	271	1 45	1.05	2.78	2 22	2.41 6.18	1.83	1.19	5.30	1.57	3.28	2.09	
	357				1.55	1.16	4.46	3.15	2.09	3.71	2.90	2.03	1.07	2.50	1.98	1.62	4.78	3.51	2.51	4.06	3.28	2.44	1.51	
	359	12	25	1.26	1.02	-	2.59	1.96	1.05	2.12	1.63	1.12	-	1.75	1.52	1.22	3.02	2.42	1.55	2.57	2.10	1.61	1.09	
	360	12	26		1.10	-	3.00	2.26	1.24	2.47	1.90	1.31	-	1.58	1.30	-	3.17	2.45	1.44	2.65	2.10	1.51	-	
	361			-	-	-	1.35		-	1.09		-	-	1.12	1.07	-	1.76	1.30	1.04	1.51	1.27	1.02	-	
	362				1 24	-	1.79	1.28	1.67	1.46 3.26	1.11	1.76	-	1.29	1.07	1.56	4.40	3.25	2.26	3.76	3.08	2.34	1.55	
	363 364			1.77	1.31	-	3.93 1.03	2.72	1.07	3.20	2.04	1.70	-	2.00	-	-	1.23	-	-	1.04	-	-	-	
	304	12	. 50																					
	of Days A		0	23	13	3	64	35	20	47	29	19	4	34	25	15	76	52	31	61 5.30	42	32	13 2.13	
	Maximum .	Δ·dv		2.92	2.18	1.58	5.76	4.13	2.75	4.84	3.83	2.71	1.45	3.47	2.78	2.22	6.18	4.63	3.32	5.30	4.34	3.26	2.13	

Table C.9.25 Boulder - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian I	Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		4	1	4	-	-	-	1.45	-	-	1.17	-	-	-	-	-	-	1.70	1.20	-	1.44	1.17	-	-
		6	1	6	2.01	1.46	-	4.05	2.80	1.64	3.36	2.62	1.82	-	3.17	2.73	2.35	4.97	3.87	2.87	4.36	3.71	3.02	2.34
		7	1	7	-	-	-	1.49	-	-	1.21	-	-	-	1.32	1.14	-	2.09	1.62	1.23	1.82	1.55	1.27	-
		20	1	20	-	-	-	-	-	-	-	-	-	-	-	-	-	1.01	-	-	-	-	~	~
		21	1	21	1.62	1.18	-	3.72	2.57	1.62	3.08	2.39	1.66	-	2.30	1.90	1.59	4.24	3.15	2.29	3.63	2.99	2.32	1.61
		23	1	23	-		-	1.59	1.04	-	1.29	-	-	-	2.35	2.18	2.04	3.08	2.61	2.23	2.82	2.56	2.29	2.03
		24	1	24	-	-	-	1.01	-	-	-	-	-	-	3.00	2.88	2.78	3.34	3.06	2.84	3.19	3.03	2.88	2.72
		26	1	26	-	-	-	1.56	1.23	-	1.26	-	-	-		-	-	1.67	1.35	-	1.39	1.09	-	-
		27	1	27	-	-	-	1.11	-	-	~	-	-	-	-	-	-	1.27	1.00	-	1.06	-	-	-
		29	1	29	1.00	-	-	2.37	1.71	1.16	1.94	1.49	1.02	-	1.07	-	-	2.42	1.76	1.22	2.00	1.55	1.08	-
		30	1	30	1.76	1.29	-	4.06	2.84	1.75	3.37	2.63	1.83	-	1.96	1.50	1.12	4.22	3.02	1.95	3.54	2.81	2.02	1.17
		40	2	9	-	-	-	1.75	1.17	-	1.42	1.09	-	-	-	-	-	1.83	1.25	-	1.51	1.17	-	-
		44	2	13	1.28	-	-	2.88	1.98	1.25	2.36	1.82	. 1.25	-	1.52	1.19	-	3.08	2.20	1.49	2.57	2.04	1.49	-
		61	3	2	-	-	-	1.91	1.33	-	1.55	1.19	-	-	1.30	1.11	-	2.36	1.80	1.23	2.02	1.67	1.31	-
		62	3	3	-	-	-	1.89	1.31	-	1.54	1.18	-	-	1.06	-	-	2.11	1.54	-	1.77	1.41	1.04	-
		87	3	28	-	-	-	1.02	-	-	-	-	-	-	-	-	-	1.15	-	-	-	-	-	-
		109	4	19	-	-	-	1.59	1.04	-	1.29	-	-	-	-	-	-	1.62	1.07	-	1.32	1.01	-	-
		110	4	20	-	-	-	-	-	-	-	-	-	-	-	-	-	1.08	-	-	-	-	-	-
		111	4	21	-	-	-	1.10	-	-	-	-	-	-	-	-	-	1.21	~	~	1.00	-	-	-
		112	4	22	-	-	-	1.21	-	-	-	-	-	-	-	-	-	1.31	-	-	1.08	-	-	-
		132	5	12	-	-	-	-	-	-	-	-	-	-	1.06	1.03	1.01	1.14	1.08	1.03	1.11	1.07	1.04	-
		198	7	17	-	-	-	1.16	-	-	-	-	-	-	-	-	-	1.23	-	-	1.01	-	-	-
		222	8	10	-	-	-	1.62	1.17	-	1.32	1.00	-	-	-	-	-	1.72	1.28	-	1.42	1.11	-	-
		262	9	19	-	-	-	1.09	-	-	-	-	-	-	-	-	-	1.25		-	1.05	-	-	-
		263	9	20	-	-	-	-	-	-	-	-	-	-	-	-	-	1.07	-	-	-	-	-	-
		265	9	22	-	-	-	1.20	-	-	-	-		-	-	- 1	-	1.43	1.04	-	1.22	-	-	-
		268	9	25	-	-	-	-	-	-	-	-	-	-	7	-	-	1.01	-	115	-	-	-	-
		269	9	26	-	-	-	1.73	1.17	-	1.41	1.07	-	-	-	-	-	1.83	1.27	-	1.51	1.18	-	-
		322	11	18	-	-	-	2.49	1.61	-	2.04	1.57	1.07	-	1.14	-	-	2.65	1.81	1.00	2.21	1.75	1.27	-
		325	11	21	-	-	-	2.04	1.32	-	1.66	1.27	-	-	1.02	-	-	2.15	1.42	-	1.78	1.39	-	-
		351	12	17	-	-	-	1.26	-	-	1.02	-	-	-	-	-	-	1.33	-	-	1.09	-	-	-
		352	12	18	-	-	-	1.89	1.28	-	1.54	1.18	-	-		-	-	1.97	1.37	-	1.63	1.26	-	-
		353	12	19	1.14	-	-	2.58	1.82	1.21	2.12	1.63	1.11	-	1.21	-	-	2.64	1.88	1.27	2.18	1.69	1.18	-
		354	12	20	-	-	-	2.28	1.41	-	1.87	1.43	-	-	1.10	-	-	2.40	1.53	-	1.99	1.56	1.11	-
		355	12	21	1.25	-	-	3.02	2.00	1.06	2.49	1.92	1.32	-	1.39	1.02	-	3.13	2.12	1.19	2.60	2.04	1.45	-
		356	12	22	-	-	-	1.63	1.09	-	1.33	1.01	-		2.35	2.16	2.02	3.01	2.54	2.21	2.75	2.48	2.21	1.93
		358	12	24	-	-	-	1.58	1.04	-	1.28	-	-	-	1.04	-	-	1.72	1.19	-	1.43	1.13	-	-
		360	12	26	-	-	-	-	-	-	-	-	-	-	-	-	-	1.15	-	-	1.02	-	-	-
		364	12	30	-	-	-	1.46	-	-	1.19	10	17.1	-	-	-	-	1.53	1.01	-	1.26	-	-	-
Numl	per of Days	sΔd	v >= 1.0		7	3	0	33	21	7	25	17	8	0	18	11	7	39	28	14	34	25	16	6
	Maximu	um Δ	dv		2.01	1.46	0.00	4.06	2.84	1.75	3.37	2.63	1.83	0.00	3.17	2.88	2.78	4.97	3.87	2.87	4.36	3.71	3.02	2.72

Table C.9.26 Boulder - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
7 1 7		4	1		-			1.66	1.05		1.35	1.03	-		1.06		-	1.94	1.38	-	1.65	1.35	1.04	-	
20		6	1	6	2.30	1.67	1.12	4.57	3.19	1.88	3.81	2.99	2.09	1.10	3.60	3.10	2.68	5.58	4.38	3.27	4.91	4.20	3.43	2.67	
21 1 21 1.86 1.36 - 4.21 2.93 1.86 3.50 2.73 1.90 - 2.62 2.17 1.82 4.78 3.58 2.62 4.11 3.40 2.65 1.84 2.22 1 2.2			1		-	-	-	1.71	1.15	-	1.39	1.06	-	-	1.51	1.31	1.14	2.39	1.86	1.41	2.09	1.78	1.47	1.14	
22 1 22 1.83 120 - 1.49 1.13 2.68 2.49 2.34 3.50 2.97 2.54 3.21 2.92 2.61 2.32 2.41 1 24 1.17 3.41 3.27 3.16 3.78 3.50 2.97 2.54 3.21 2.92 2.61 2.32 2.41 1 24 1.17 3.41 3.27 3.16 3.78 3.70 3.75 2.54 3.21 2.92 2.61 2.32 2.61 2.61 2.62 1.62 1.62 1.62 1.62 1.6		20	1	20	-	-	-	-	~	-	-	-	-	-	-	~	-	1.16	-	-	1.02	-	-	-	
23 1 23		21	1	21	1.86	1.36	-	4.21	2.93	1.86	3.50	2.73	1.90	-	2.62	2.17	1.82	4.78	3.58	2.62	4.11	3.40	2.65	1.84	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		22	1	22	-	-	-	-	-	-	-	-	-	-	-	-	-	1.14	-	-	-	-	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		23	1	23	-	-	-	1.83	1.20	-	1.49	1.13	-	-	2.68	2.49	2.34	3.50	2.97	2.54	3.21	2.92	2.61	2.32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		24	1	24	-	-	-	1.17	-	-	-	- 1	-	-	3.41	3.27	3.16	3.78	3.47	3.23	3.62	3.44	3.27	3.09	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		26	1	26	-	-	-	1.78	1.41	-	1.45	1.11	-	-	1.08	-	-	1.92	1.55	1.02	1.59	1.25	-	-	
30 1 30 20 149 104 458 323 201 382 299 209 110 224 1.72 128 476 3.43 223 401 3.19 2.31 1.34 40 2 9 2.01 1.35 - 1.64 1.26 2.11 1.45 - 1.74 1.36 444 2 131 1.48 1.09 - 3.28 2.28 1.45 2.71 2.10 1.45 - 1.75 1.37 1.09 3.51 2.52 1.72 2.94 2.35 1.71 1.04 61 3 2 2.19 1.53 - 1.79 1.37 1.50 1.28 1.06 2.70 2.07 1.41 2.32 1.92 1.51 1.09 62 3 3 2.17 1.51 - 1.77 1.36 1.22 - 2.42 1.78 1.13 2.03 1.63 1.21 - 1.77 1.36 1.28 1.06 2.70 2.07 1.41 2.32 1.92 1.51 1.09 62 3 3 2.17 1.51 - 1.77 1.36 1.22 2.42 1.78 1.13 2.03 1.63 1.21 - 1.77 1.36 1.22 1.34 1.13 2.03 1.63 1.21 1.09 4 19 1.18 1.18 1.18 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		27	1	27	-	-	-	1.27	-	-	1.03	-	-	-	-		-	1.46	1.15	-	1.22	-	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		29	1	29	1.16	-	-	2.70	1.95	1.34	2.22	1.71	1.17	-	1.23	-	-		2.02	1.41	2.28	1.78	1.24	-	
44 4 2 13 1.48 1.09 - 3.28 2.28 1.45 2.71 2.10 1.45 - 1.75 1.37 1.09 3.51 2.52 1.72 2.94 2.35 1.71 1.04 61 3 2 2.19 1.53 - 1.79 1.37 1.50 1.28 1.06 2.70 2.07 1.41 2.32 1.92 1.51 1.09 62 3 3 3 2.17 1.51 - 1.77 1.36 1.52 1.2 - 2.42 1.78 1.13 2.03 1.83 1.21 8.77 3 1.8 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.15 1.2 1.34 1.3 2.03 1.83 1.21 1.10 1.99 4 1.9 1.18 1.0 1.34 1.3 2.0 1.83 1.21 1.10 1.09 4 1.9 1.18 1.0 1.34 1.3 2.0 1.83 1.21 1.11 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		30	1	30	2.02	1.49	1.04	4.58	3.23	2.01	3.82	2.99	2.09	1.10	2.24	1.72	1.28	4.76	3.43	2.23	4.01	3.19	2.31	1.34	
61 3 2 2.19 1.53 - 1.79 1.37 1.50 1.28 1.06 2.70 2.07 1.41 2.32 1.92 1.51 1.09 62 3 3 3 2.17 1.51 - 1.77 1.36 1.22 2.42 1.78 1.13 2.03 1.63 1.21 1.77 1.36 1.22 2.42 1.78 1.13 2.03 1.63 1.21 1.77 1.36 1.3 1.20 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28		40	2	9	-	-	-	2.01	1.35	-	1.64	1.26	-	-	-	-	-	2.11	1.45	-	1.74	1.36	-	-	
61 3 2 2 2.19 1.53 - 1.79 1.37 - 1.50 1.28 1.06 2.70 2.07 1.41 2.32 1.92 1.51 1.09 62 3 3 3 2.17 1.51 - 1.77 1.36 1.22 2.42 1.78 1.13 2.03 1.63 1.21 1.77 1.36 1.22 1.15 1.15 1.15 1.15 1.15 1.15 1.16 1.09 1.41 1.41 1.41 1.5 1.45 1.18 1.45 1.18 1.45 1.18 1.45 1.18 1.45 1.18 1.45 1.18 1.45 1.18 1.45 1.18 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45		44	2	13	1.48	1.09	-	3.28	2.28	1.45	2.71	2.10	1.45	-	1.75	1.37	1.09			1.72			1.71	1.04	
62 3 3 3 2.17 1.51 - 1.77 1.36 1.22 - 2.42 1.78 1.13 2.03 1.63 1.21 - 77 3 18		61	3	2	-	-	-	2.19	1.53	-	1.79		-	-	1.50										
77 3 18		62	3	3	-		-	2.17	1.51	-	1.77		-	_		-	-							-	
87 3 28 1.18 1.34 1.11 1.09 4 19 1.45 1.18 1.34 1.11 1.09 4 19 1.45 1.18 1.48 1.20 1.11 4 21 1.00 1.10 1.10 1.11 4 21 1.00 1.10 1.10 1.11 2 4 22 1.10 1.19 1.10 1 1.11 2 5 12 1.04 1.01 1.11 1 2 5 12 1.04 1.01 1.04		77	3	18	-	-	-		_	_	-	_	_	_	-	-	-		-	-	-	-	-	- *	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3		-		-	1.18	_	_	_	_	-	-		-	_		-	-	1.11	-	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4		-		-		_	_	1.18	_	-	_		-	-		-	-		-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4		_	-	-		_	_	-	_	-		-	-	_		_	-	-	_	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					12		_		-	_		_		-	_		_				_	-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									_	_	_	_		_	_						1.01	-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-	_	_	_	_	_	_		-	-	-				-	-	-		-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1 37		_	1 11								1.08		1 20	_	_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					_				_														_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						2															1.00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1 43		-	1 16								1.05						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1.40	2		1.10								1.00		1.20				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.04			2.75	1 79		2 26	174	1 19		1 26				2.00	1 12	2 44	1 94	1.41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													1.10												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.01				1.40			1.41			1.10							1.04	1.11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									1.43			1 31			1.06							1 41			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 27					134			1 24			1.03				1.42			1 31		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-											_			1.72					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-	-							-			-			1 22					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.39	-	-						1.47				2 22							2 14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-	-	-	1.01	1.21	-	1.40	1.15		-	2.55	2.55	2.23		2.01	2.44	5.05	2.14	2.44	2.14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-	-	-	4.75	4.45	-	4.42	1.00	-	-	4 40	-			1 22	-	1 50	1 26	-	-	
364 12 30 1.63 1.05 - 1.32 1.01 1.70 1.13 - 1.40 1.09 1.09 - 1.00					-	10	-	1.75	1.15	-	1.42	1.09	-	-	1.10	-	-			-		1.20	-	-	
Number of Days Δ dv >= 1.0 10 4 2 30 21 7 26 21 9 2 20 11 9 40 26 15 32 22 17 9					-	-	-	4.00	4.05	-	4.00	4.04	-	-	-	-	-					4.00	-	-	
		364	12	30	-	-		1.63	1.05		1.32	1.01	-	-	-	-	-	1.70	1.13	-	1.40	1.09	-	-	
	Numb	er of Days A	dv >= 1.0)	10	4	2	30	21	7	26	21	9	2	20	11	9	40	26	15	32	22	17	9	
					2.30	1.67	1.12	4.58	3.23	2.01	3.82	2.99	2.09	1.10	3.60	3.27	3.16	5.58	4.38	3.27	4.91	4.20	3.43	3.09	

Νι

C-202

Table C.9.27 Bronx - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	7	1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	1.23	-	-	1.08	-	-	-
	21	1	21	-	-	-	1.17	-	-	-	-	-	-	-	-	-	1.36	-	-	1.14	-	-	-
	23	1	23	-	-	-	1.04	-	-	-	-	-	-	-	-	-	1.12	-	-	-	-	-	-
	30	1	30	1.40	1.01	-	3.37	2.34	1.35	2.78	2.15	1.48	-	1.46	1.08	-	3.42	2.40	1.42	2.83	2.21	1.55	-
	40	2	9	-	-	-	1.03	-	-	-	-	-	-	~	-	-	1.36	1.03	-	1.17	-	-	-
	45	2	14	-	-	-	-	-	-	~	-	-	-	-	-	-	1.04	-	-	-	-	~	-
	62	3	3	-	-	-	-	-	-	-	-	-	-	~	-	~	1.12	-	~	-	-	-	-
	87	3	28	-	-	-	1.07	-	-	-	-	- "	-	-	-	-	1.31	-	-	1.11	-	-1	-
	325	11	21	-	-	-	-	~	-	-	-	-	-	-	-	-	1.18	-	-	1.01	-	-	-
	353	12	19	-	-	-	1.05	-	-	-	-	-	~	-	-	~	1.19	-	-	-	-	-	
	355	12	21	-	-	-	1.01	~	-	-	-	-	-	~	-	-	1.14	-	-	-	-	~	-
	356	12	22	-	-	-	-	-	-	-	-	-	-	-	-	-	1.09	-	-	-	-	-	-
Numb	er of Days A	tv >= 1.0)	1	1	0	7	1	1	1	1	1	0	1	1	0	12	2	-1	6	1	1	0
	Maximum /	\ dv		1.40	1.01	0.00	3.37	2.34	1.35	2.78	2.15	1.48	0.00	1.46	1.08	0.00	3.42	2.40	1.42	2.83	2.21	1.55	0.00

Table C.9.28 Bronx - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 -
	6	1	6	-	-	-	-	-	0	-	-	12	-	-	-	-	1.07	-	-	-	_	-	-
	7	1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	1.41	1.12	~	1.24	1.07	-	_
	21	1	21	-	-	-	1.34	-	-	1.09	-	-	-	-	-	-	1.56	1.09	-	1.31	1.05	-	-
	23	1	23	-	-	-	1.19	-	-	-	-	-	-	-	-	-	1.29	-	-	1.07	-	~	-
	27	1	27	- 1	-	-	-	-	-	-	-	-	-	-	-	-	1.08	-	-	-	-	-	-
	30	1	30	1.60	1.16	-	3.82	2.67	1.56	3.16	2.46	1.70	-	1.68	1.24	-	3.88	2.73	1.63	3.22	2.53	1.78	-
	40	2	9	-		-	1.20	-	-	-	-	-	-	-	-	-	1.57	1.20	-	1.35	1.13	-	-
	45	2	14	-	-	-	-	-	-	-	-	-	-	-	-	-	1.20	-	-	1.04	-	-	-
	62	3	3	-	-	-	1.05	-	-	-	-	-	-	-	-	-	1.29	-	-	1.09	-	-	-
	87	3	28	-	-	-	1.23	-	-	-	-	-	-	-	-	-	1.51	1.14	-	1.28	1.05	-	-
	325	11	21	-	-	-	1.02	-	-	-	-	-	-	-	-	-	1.31	-	-	1.12	-	-	-
	352	12	18	-	-	-	-	-	-	-	-	-	-	-	-	-	1.11	-	-	-	-	-	-
	353	12	19	-	-	-	1.17	-	-	-	-	-	-		-	-	1.32	-	-	1.10	-	-	_
	355	12	21	-	-	-	1.12	-	-	-	-	-	-	-	-	-	1.27	-	-	1.05	-	-	-
	356	12	22	-	-	-	-	-	-	-	-	-	-	-	-	-	1.22	-	-	1.06	-	-	-
Month																	45			40			
Numb	er of Days ∆ o		,	1	. 1	0	9	1	1	2	1	1	0	1	1	0	15	5	1	12	. 5	1	0
	Maximum A	dv		1.60	1.16	0.00	3.82	2.67	1.56	3.16	2.46	1.70	0.00	1.68	1.24	0.00	3.88	2.73	1.63	3.22	2.53	1.78	0.00

Table C.9.29 Cora - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15	16	17	18	19	20
	6	1	6	-	-	-	-	-	-	-	-	2	-	1.04	-	-	1.41	1.17	-	1.28	1.14	1.01	-
	7	1	7	-	-	-	1.09	-	-	-	-	-	-	1.08	-	-	1.63	1.29	-	1.44	1.24	1.03	-
	21	1	21	-	-	-	1.61	1.05	-	1.31	-	-	-	-	-	-	1.85	1.31	-	1.56	1.26	-	-
	23	1	23	-	-	-	1.40	-	-	1.13	-	-	-	-	-	-	1.51	1.03	-	1.25	-	-	-
	26	1	26	-	-	-	1.61	1.03	-	1.31	-	-	-	1.20	-	-	1.96	1.41	-	1.67	1.37	1.06	-
	27	1	27	-	-	-	1.33	-	-	1.08	-	-	-	1.20	1.03		1.84	1.42	1.07	1.60	1.35	1.10	-
	30	1	30	2.66	1.95	1.27	6.00	4.32	2.58	5.06	4.01	2.85	1.52	2.75	2.04	1.38	6.07	4.40	2.67	5.13	4.09	2.93	1.62
	40	2	9	-	-	-	1.18	-	-	-	-	-	-	-	-	-	1.43	1.07	-	1.22	-	-	-
	45	2	14	-	-	-	-	-	-	-	~	-	-	-	-	-	1.34	1.02	-	1.15	-	-	-
	62	3	3	-	-	=	-	-	-	-	-	-	-	-	-	-	1.03	-	-	-	-	-	-
	87	3	28	-	-	-	1.08	-	-	-	-	-	-	-	-	-	1.35	1.04	-	1.15	-	-	-
	325	11	21	-	-	-	-	-	-	-	-	-	-	-	-	-	1.15		-	-	-	-	-
	352	12	18	-	-	-	1.09	-	-	-	-	-	-	-	-	-	1.30	-	-	1.09	-	-	-
	353	12	19	-	-	-	1.33	-	-	1.08	-	-	-	-	-	-	1.48	1.05	-	1.23	~	-	-
	355	12	21	-	-	-	-	-	-	-	-	-	-		-	-	1.10	-	-	-	-	-	-
	356	12	22	-	-	-	1.05	-	-	-	-	-	-	1.01	-	-	1.58	1.21	-	1.39	1.20	1.00	-
Numb	er of Days Δ	dv >= 1.0)	1	1	1	11	3	1	6	1	1	1	6	2	1	16	12	2	13	7	6	1
	Maximum .	Δ dv		2.66	1.95	1.27	6.00	4.32	2.58	5.06	4.01	2.85	1.52	2.75	2.04	1.38	6.07	4.40	2.67	5.13	4.09	2.93	1.62

Table C.9.30 Cora - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	1	6	-	-	-	-	-	-	-	-	-	-	1.20	1.10	1.01	1.62	1.35	1.13	1.47	1.32	1.16	1.01
	7	1	7	-	-	-	1.25	-	-	1.02	-	-	-	1.24	1.09	-	1.87	1.48	1.14	1.65	1.42	1.18	-
	21	1	21	-	-	-	1.85	1.22	-	1.51	1.15	-	-	1.05	~	-	2.12	1.51	1.01	1.79	1.44	1.09	-
	23	1	23	-	-	-	1.61	1.06	-	1.30	-	-	-	-	-	-	1.73	1.19	-	1.43	1.13	-	-
	26	1	26	-	-	-	1.85	1.19	-	1.50	1.15	-	-	1.38	1.12	-	2.24	1.62	1.14	1.91	1.57	1.22	_
	27	1	27	-	-	-	1.53	1.02	-	1.24	-	-	-	1.38	1.19	1.03	2.10	1.63	1.23	1.83	1.55	1.27	-
	30	1	30	3.03	2.23	1.47	6.70	4.87	2.94	5.68	4.53	3.23	1.75	3.13	2.34	1.58	6.77	4.96	3.04	5.75	4.62	3.33	1.86
	40	2	9	-	-	-	1.36	-	-	1.10	-	-	-	-	-	-	1.65	1.23	-	1.40	1.15	-	-
	44	2	13	-	-	-	-	-	-	-	-	-	-	-	-	-	1.06	-	-	-	-	- 1	-
	45	2	14	-	-	-	1.15	-	-	- 1	-	-	-	-	-	-	1.54	1.18	-	1.33	1.12	- 1	-
	62	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	1.20	-	-	1.03	-	-	-
	87	3	28	-	-	-	1.25	-	-	1.01	-	-	-	-	-	-	1.56	1.21		1.33	1.10	-	-
	325	11	21	-	-	-	1.03	-	-	-	-	-	-	-	-	-	1.28	-	-	1.09	-	-	-
	352	12	18	-	-	-	1.21	-	-	-	-	-	-	-	-	-	1.44	1.07	-	1.22	-	-	-
	353	12	19	-	-	-	1.48	-	-	1.20	-	-	-	-	-	-	1.64	1.17	-	1.37	1.08	-	-
	355	12	21	-		-	1.10	-	-	-	-	-	-	-	-	-	1.22	-	-	1.02	-	-	-
	356	12	22	-	-	-	1.17	-	-	-	-	-	-	1.13	-	-	1.76	1.34	1.04	1.55	1.33	1.11	-
Numb	er of Days Δ e	dv >= 1.0)	1	1	1	14	5	1	9	3	1	1	7	5	3	17	13	7.	16	12	7	2
	Maximum /	\ dv		3.03	2.23	1.47	6.70	4.87	2.94	5.68	4.53	3.23	1.75	3.13	2.34	1.58	6.77	4.96	3.04	5.75	4.62	3.33	1.86

Table C.9.31 Daniel - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julia	n Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		5	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	1.06	-	-	-	-	-	-
		6	1	6	_	-	-	1.09	-	-	-	-	-	-	1.01	00-1	-	1.58	1.23	-	1.38	1.18	_	-
		7	1	7	-	-	-	1.03	-	-	-	-	-	-	-	-	-	1.46	1.13	-	1.27	1.07	-	_
		21	1	21	-	-	-	1.87	1.21	-	1.52	1.16	-	-	1.17	-	-	2.25	1.62	1.10	1.91	1.57	1.21	_
		22	1	22	-	_	-	1.07	-	-	-	-	-	-	_	-	-	1.13	-	-	-	_	-	-
		23	1	23		-	-	1.28	-	-	1.04	-	-	-	1 4	-	-	1.40	-	_	1.16	_	-	
		24	1	24	-	-	_	-	-	-	-	-	-	-	1.01	-	-	1.26	1.04	-	1.14	1.02	-	-
		27	1	27	-	_	_	-	-	-	-	_	-	-	-	-	-	1.07	-	-	-	-	_	_
		30	1	30	2.12	1.54	1.01	4.89	3.46	2.04	4.09	3.21	2.25	1.19	2.20	1.63	1.11	4.95	3.54	2.12	4.15	3.29	2.33	1.28
		40	2	9	-	-	-	1.54	1.04	-	1.25	-	-	-	1.06	-	-	1.85	1.36	-	1.57	1.28	-	-
		44	2	13	_		_		-	-	-	-	-	-	-	-	-	1.15	-	-	1.02		-	_
		45	2	14	-		_	1.12	-	_	_	-	-	-	-	-	-	1.46	1.09	-	1.25	1.04	_	_
		62	3	3			_	1.27		-	1.03	-	-	-	_	-	_	1.61	1.22		1.38	1.14	_	-
		87	3	28			-	1.31			1.06	_	-	-	_	-	-	1.59	1.17	-	1.34	1.10		_
		109	4	19		_		-		_	-	_	-	-	-	-		1.11	-		-	-	_	_
		253	9	10			-	1.00		-				-	-	-	-	1.12		_	_	-	-	-
		325	11	21				1.26			1.02	-	-	-	-	-	-	1.55	1.13	_	1.32	1.08	_	
		352		18			_	1.21	_	-	-	_	-	-		-	-	1.49	1.12	-	1.27	1.04	_	_
		353	12	19				1.35		_	1.09		-	-	_	-	_	1.56	1.07		1.31	1.06	-	
		355		21				1.46			1.18							1.75	1.26	-	1.48	1.21		
		356		22				1.16			1.10				1.14			1.76	1.35	1.05	1.55	1.34	1.12	
		330	12	22				1.10							1.14			1.10	1.00	1.00	1.00	1.04	1.12	
Num	ber of Da	ays Δ c	tv >= 1.0)	1	1	1	16	3	Ħ	9	2	1	1	16	1	1	21	14	3	16	14	3	1
	Maxi	mum A	\ dv		2.12	1.54	1.01	4.89	3.46	2.04	4.09	3.21	2.25	1.19	2.20	1.63	1.11	4.95	3.54	2.12	4.15	3.29	2.33	1.28

Table C.9.32 Daniel - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	5	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	1.22	-	-	1.05	-	-	-
	6	1	6	-	-	-	1.26	-	-	1.02	-	_	-	1.16	1.01	-	1.82	1.41	1.07	1.59	1.36	1.12	-
	7	1	7	-	-	-	1.19	1721	-	-	-	-	-	1.07	-	-	1.67	1.30	-	1.46	1.24	1.01	-
	21	1	21		-	-	2.14	1.40	-	1.75	1.34	-	-	1.34	1.09	-	2.57	1.86	1.26	2.19	1.80	1.39	-
	22	1	22	-	-	-	1.23	-	1	-		-	-	-	-	-	1.30	-	-	1.07	-	-	-
	23	1	23	-	-	-	1.48	-	-	1.20	-	-	-	-	-	-	1.61	1.12	-	1.34	1.06	-	-
	24	1	24	-	-	-	-	-	-	-	-	-	-	1.16	1.06	-	1.45	1.20	1.02	1.32	1.18	1.04	-
	25	1	25	-	-	-	-	14	-	-	-	-		-	-	-	1.13	-	-	-	-	-	-
	27	1	27	-	-	-	-	-	-	-	-	-	-	-	-	-	1.24	-	-	1.08	-	-	-
	30	1	30	2.42	1.77	1.17	5.49	3.92	2.33	4.61	3.64	2.57	1.37	2.52	1.87	1.27	5.56	4.00	2.43	4.69	3.72	2.66	1.47
	39	2	8	-	-	-	-	-	-	-	-	-	-	-	-	-	1.13	-	-	-	-	-	-
	40	2	9	-	-	-	1.78	1.21	-	1.45	1.11	-	-	1.22	1.00	-	2.13	1.57	1.09	1.81	1.48	1.14	-
	44	2	13	-	-	-	-	-	-	-	-	-	-	-	-	-	1.33	1.07	-	1.18	1.03	-	
	45	2	14	-	-	-	1.30	-	-	1.05	-		-	1.03	-	-	1.68	1.26	-	1.45	1.20	-	-
	62	3	3	-	-	-	1.46	-	-	1.19	-	-	-	1.08	-	-	1.86	1.41	1.02	1.59	1.32	1.04	-
	87	3	28	-	-	-	1.52	1.03	-	1.23	-	-	-	1.11	-	-	1.83	1.36	-	1.55	1.27	-	-
	109	4	19	-	-	-	-	-	-	-	~		-	-	-	-	1.01	-	-	-	-	-	-
	325	11	21	-	-	-	1.39	-	-	1.13	-		-	-	-	-	1.71	1.25	-	1.46	1.20	-	-
	352	12	18	-	-	-	1.34	-	-	1.09	-	-	-	-	-	-	1.66	1.25	-	1.41	1.16	-	-
	353	12	19	-	-	-	1.50	-	-	1.22	-	-	-	-	-	-	1.74	1.19	- 1	1.46	1.18	-	-
	355	12	21	-	-	-	1.62	1.06	-	1.31	1.00	-	-	1.02	-	-	1.94	1.40	-	1.64	1.34	1.03	-
	356	12	22	-	-	-	1.29	-	-	1.05	-	-	-	1.27	1.11	-	1.96	1.50	1.17	1.73	1.49	1.25	1.00
	357	12	23	-	-	-	-	-	-	-	-	-	-	-	-	-	1.06	-	-	-	-	-	-
Numt	er of Days ∆ o	dv >= 1.0)	1	1	1	15	5	1	13	4	1	1	11	6	1	23	16	7	19	16	9	2
	Maximum A	\ dv		2.42	1.77	1.17	5.49	3.92	2.33	4.61	3.64	2.57	1.37	2.52	1.87	1.27	5.56	4.00	2.43	4.69	3.72	2.66	1.47

Table C.9.33 Farson - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	3	1	3	-	-	-	-	-	-	-	-	~	-	1.29	1.24	1.20	1.46	1.35	1.27	1.38	1.30	1.22	1.13
	7	1	7	-	-	-	-	-	-	-	-	-		-	-	-	1.02	-	-	-	-	-	-
	22	1	22	1.93	1.36	-	4.33	2.96	1.87	3.60	2.82	1.96	1.03	2.13	1.57	1.14	4.49	3.14	2.06	3.77	2.99	2.16	1.24
	23	1	23	1.24	-	-	2.41	1.62	-	1.97	1.51	1.03	-	1.84	1.51	1.21	2.94	2.20	1.57	2.53	2.10	1.65	1.19
	28	1	28	1.17	-	-	2.40	1.66	1.04	1.97	1.51	1.03	-	2.21	1.94	1.71	3.33	2.65	2.09	2.93	2.51	2.08	1.63
	29	1	29	1.62	1.20	-	3.21	2.25	1.42	2.65	2.05	1.41	-	2.17	1.78	1.44	3.68	2.77	1.98	3.14	2.58	1.97	1.33
	41	2	10	-	-	-	-	-	-	-	-	-	-	-	-	-	1.11	-	-	-	-	-	-
	43	2	12	-	-	-	-	-	-	-	-	-	-	-	-	-	1.27	-	-	1.10	-	-	-
	86	3	27	-	-	-	-	-	- 1	-	-	-	-	-	-	-	1.03	-	-	-	-	-	-
	90	3	31	-	-	-	-	-	-	-	-	-	-	-	-	-	1.10	1=	-	-	-	-	-
	306	11	2	-	-	-	1.17	-	-	-	-	-	-	-	-	-	1.36	-	-	1.14	-	-	-
	332	11	28	-	-	-	1.52	1.06	-	1.24	-	-	-	-	-	-	1.74	1.28	-	1.46	1.17	-	-
	354	12	20	-	-	-	1.75	1.12	-	1.43	1.09	-	-	1.00	-	-	1.95	1.33	-	1.63	1.30	-	-
	355	12	21	1.85	1.35	-	3.45	2.34	1.43	2.85	2.21	1.52	-	2.42	1.94	1.53	3.93	2.88	2.02	3.36	2.76	2.11	1.42
	356	12	22	-	-	-	1.11	-	-	-	-	- /	-	-	-	-	1.30	-	-	1.10	-	-	-
	357	12	23	-	-	-	1.65	1.12	-	1.34	1.02	-	-	1.42	1.19	1.00	2.15	1.65	1.24	1.86	1.56	1.25	-
	359	12	25	-	-	-	-	-	-	-	-	-	~	1.34	1.22	1.13	1.67	1.42	1.23	1.52	1.37	1.21	1.05
	360	12	26	-		-	-	-	-	-	-	-	-	1.31	1.18	1.07	1.58	1.35	1.15	1.42	1.26	1.11	-
	363	12	29	-	-	-	-	-	-		-	-	-	1.54	1.49	1.47	1.63	1.54	1.49	1.57	1.51	1.45	1.39
Numb	er of Days Δ d	v >= 1.0		5	3	0	10	8	4	8	7	5	1	11	10	10	19	12	10	15	12	10	8
	Maximum ∆	dv		1.93	1.36	0.00	4.33	2.96	1.87	3.60	2.82	1.96	1.03	2.42	1.94	1.71	4.49	3.14	2.09	3.77	2.99	2.16	1.63

Table C.9.34 Farson - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	3	1	3	-	-	-	-	-	-	1	-	-	-	1.48	1.43	1.38	1.68	1.55	1.46	1.59	1.49	1.40	1.30
	7	1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	1.17	-	-	1.07	2	-	-
	22	1	22	2.21	1.57	1.06	4.88	3.37	2.14	4.08	3.20	2.24	1.19	2.43	1.80	1.31	5.05	3.56	2.36	4.26	3.40	2.46	1.43
	23	1	23	1.43	1.02		2.75	1.86	1.09	2.26	1.74	1.19	_	2.11	1.73	1.40	3.34	2.51	1.80	2.88	2.40	1.90	1.37
	28	1	28	1.35	1.00	-	2.74	1.90	1.20	2.25	1.73	1.19	-	2.52	2.21	1.96	3.77	3.02	2.39	3.33	2.87	2.38	1.87
	29	1	29	1.85	1.38	-	3.64	2.57	1.63	3.01	2.34	1.62	-	2.47	2.04	1.65	4.17	3.15	2.26	3.57	2.93	2.26	1.53
	41	2	10	-	-	-	1.10	-	-	-	-	-	-	-	-	-	1.28	-	-	1.08	-	-	-
	43	2	12	-	-	-	1.04	-	-	-	-	-	-	-	-	-	1.47	1.14	-	1.28	1.08	-	-
	86	3	27	-	-	-	-	-	-	-	-	-	-	-	-	-	1.19	-	-	1.02	-	-	-
	90	3	31	-	-	-	1.03	-		-	-	-	-	-	-	-	1.28	-	-	1.08	-	-	-
	306	11	2	-	-	-	1.30	-	-	1.05	-	-	-	-	-	-	1.51	1.08	-	1.27	1.02	-	-
	322	11	18	-	-	-	-	-	-	-	-	-	-	-	-	-	1.01	-	-	-	-	-	-
	332	11	28	-	-	-	1.69	1.18	-	1.37	1.05	-	-	-	-	-	1.92	1.42	1.02	1.61	1.29	-	-
	354	12	20	-	-	-	1.95	1.25	-	1.59	1.21	-	-	1.12	-	-	2.16	1.48	-	1.81	1.44	1.06	-
	355	12	21	2.06	1.50	1.01	3.79	2.59	1.59	3.14	2.44	1.69	-	2.68	2.15	1.70	4.32	3.18	2.24	3.70	3.04	2.34	1.58
	356	12	22	-	-	-	1.24	-	-	1.00	-	-	-	-	-	-	1.45	1.03	-	1.22	-	-	-
	357	12	23	-	-	-	1.83	1.25	-	1.49	1.14	-	-	1.58	1.33	1.12	2.38	1.84	1.38	2.06	1.73	1.39	1.03
	358	12	24	-	-	-	-	-		-	-	-	-	-	-	-	1.08	-	-	-	-	-	-
	359	12	25	-	-	-	-	-	-	-	-	-	-	1.49	1.36	1.25	1.86	1.58	1.36	1.69	1.52	1.35	1.17
	360	12	26	-	-	-	-	_	-	-	-	-	-	1.45	1.32	1.19	1.75	1.50	1.28	1.58	1.41	1.23	1.05
	363	12	29	-	-	-	-	-	- "	-	-	-	-	1.71	1.65	1.63	1.81	1.72	1.66	1.74	1.67	1.61	1.54
Numbe	er of Days ∆ o	tv >= 1.0)	5	5	2	13	8	5	10	8	5	1	11	10	10	21	15	11	19	14	11	10
	Maximum A	\ dv		2.21	1.57	1.06	4.88	3.37	2.14	4.08	3.20	2.24	1.19	2.68	2.21	1.96	5.05	3.56	2.39	4.26	3.40	2.46	1.87

Table C.9.35 La Barge - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	1	6	1.08	-	-	2.06	1.36	-	1.68	1.28	-	-	1.21	-	-	2.17	1.48	-	1.79	1.40	-	-
	21	1	21	-	~	-	-	-	-	-	-	-	~	-	-	-	1.09	-	~	-	-	-	-
	22	1	22	-	-	-	-	-	-	~	-	-	-	1.43	1.36	1.31	1.71	1.52	1.37	1.61	1.52	1.42	1.32
	23	1	23	1.10	-	-	2.27	1.52	-	1.85	1.42	-	~	2.50	2.24	2.02	3.51	2.86	2.33	3.14	2.77	2.40	2.02
	43	2	12	-	-	-	1.49	-	-	1.21	-	-	-	1.00	-	-	1.88	1.29	-	1.61	1.33	1.04	-
	61	3	2	-	-	-	1.33	-	-	1.08	-	-	-	-	-		1.55	1.12	-	1.31	1.06	-	-
	162	6	11	-	-	-	1.30	-	-	1.06	-	-	-	-	-	-	1.59	1.13	-	1.35	1.10	-	-
	264	9	21	-	-	-	1.04	-	-	-	-	-	-	-	-	-	1.25	-	-	1.06	-	-	-
	354	12	20	-	~	-	-	- `	-	-	-	-	-	-	-	~	1.19	-	-	1.09	-	-	-
	355	12	21	-	-	~	-	-	-	-	-		-	1.84	1.75	1.69	2.14	1.92	1.76	2.02	1.90	1.78	1.65
	356	12	22	-	-	~	-	-	~	-	-	-	~	1.04	-	-	1.39	1.14	-	1.24	1.08	-	-
	358	12	24	-	-	-	-	-	-	-	-	-	-	-	-	-	1.19	-	-	1.03	-	~	-
	359	12	25	-	-	-	-	-	-	~	-	-	-	1.09	1.08	1.06	1.16	1.11	1.08	1.14	1.11	1.08	1.06
	360	12	26	-	-	-	-	-	-	-	-	-	-	1.34	1.31	1.29	1.46	1.38	1.32	1.42	1.37	1.33	1.28
	363	12	29	-	-	-	-	-	-	-	-	-	-	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.57
umi	per of Days Δ o	dv >= 1.0)	2	0	0	6	2	0	5	2	0	0	9	6	6	15	11	6	14	11	7	6
	Maximum /	\ dv		1.10	0.00	0.00	2.27	1.52	0.00	1.85	1.42	0.00	0.00	2.50	2.24	2.02	3.51	2.86	2.33	3.14	2.77	2.40	2.02

2,

Table C.9.36 La Barge - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20
	6	1	6	1.25	-	-	2.35	1.56	-	1.92	1.48	1.01	-	1.39	1.03	~	2.48	1.69	1.12	2.05	1.61	1.15	-
	21	1	21	-	-	-	-	-	-	_	-	-	-	1.02	-	-	1.26	1.07	-	1.12	-	-	-
	22	1	22	-	-	-	-	-	-	-	-	-	-	1.64	1.57	1.50	1.96	1.75	1.58	1.85	1.74	1.63	1.51
	23	1	23	1.27	-	-	2.59	1.74	1.02	2.12	1.63	1.12	-	2.85	2.56	2.31	3.97	3.25	2.66	3.57	3.15	2.74	2.30
	43	2	12	-	-	-	1.72	1.02	-	1.39	1.06	-	-	1.16	-	-	2.16	1.50	1.07	1.85	1.53	1.21	-
	61	3	2	-		-	1.53	1.02	-	1.24	-	-	-	-	-	-	1.79	1.30	-	1.51	1.22	-	-
	162	6	11	-	-	-	1.21	-	-	-	-	-	-	-	-	-	1.47	1.05	-	1.25	1.02	-	-
	264	9	21	-	-	-	-	-	-	-	-	-	-	-	-	-	1.03	-	-	-	-	-	-
	354	12	20	-	-	-	-	-	-	-	-	-	-	1.09	1.00	-	1.32	1.10	-	1.22	1.11	-	-
	355	12	21	-	-	-	-	-	-	-	- 1	-	-	2.04	1.95	1.88	2.37	2.12	1.96	2.24	2.11	1.97	1.83
	356	12	22	-	-	- 1	-	-	-	-	-	-	-	1.16	1.04	-	1.54	1.27	1.06	1.37	1.20	1.02	-
	357	12	23	-	-	-	-	-	-	-	-	-	-	-	-	-	1.09	-	-	-	-	-	-
	358	12	24	-	-	-	-	-	-	-	-	-	-	-	-	-	1.32	1.00	-	1.14	-	-	-
	359	12	25	-	-	-	-	-	-	-	-	-	-	1.22	1.20	1.18	1.29	1.24	1.20	1.26	1.24	1.21	1.18
	360	12	26	-	-	-	-		-	-	-	-	-	1.49	1.45	1.43	1.62	1.53	1.47	1.57	1.52	1.48	1.43
	363	12	29	-	-	14	-	-	-	-	-	-	-	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75
Numb	er of Days Δ o	dv >= 1.0)	2	0	0	5	4	1	4	3	2	0	11	9	6	16	14	9	14	12	9	6
	Maximum /			1.27	0.00	0.00	2.59	1.74	1.02	2.12	1.63	1.12	0.00	2.85	2.56	2.31	3.97	3.25	2.66	3.57	3.15	2.74	2.30

Table C.9.37 Mema - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	1	5		-	-	1.09	-	-	-		THE .	-	-		-	1.34	1.01	-	1.13	-	-	-
24	1	24	-	-	-	-	_	-	-	-	-	-	-	~	-	1.24		-	1.09	-	-	-
25	1	25	-	-	-	1.43	-	-	1.16	14	-	-	-	-	-	1.61	1.16	-	1.34	1.07	-	-
40	2	9	-	-	-	1.00	-	-	-	-	~	-	-	-	-	1.41	1.08	-	1.22	1.03	-	-
62	3	3	-	~	-	1.38	-	~	1.12	-	-	-	-	~	~	1.68	1.26	-	1.42	1.16	-	-
353	12	19	-	-	-	-	-	~	-	-	-	-	-	-	~	1.10		-	-	-	-	-
355	12	21	-	-	-	-	-	-	-	-	-	-	-	-	-	1.17	~	-	-	-	-	-
356	12	22	~	-	-	-	-	~	-	-	-	~	-	-	-	1.02	-	-	-	-	-	-
357	12	23	-	-	-	-	-	-	-	-	-	-	-	-	-	1.11	1.03	-	1.06	1.01	-	-
Number of Days Δ d	iv >= 1.0		0	0	0	4	0	0	2	0	0	0	0	O	0	9	5	0	6	4	0	0
Maximum A	dv		0.00	0.00	0.00	1.43	0.00	0.00	1.16	0.00	0.00	0.00	0.00	0.00	0.00	1.68	1.26	0.00	1.42	1.16	0.00	0.00

Table C.9.38 Merna - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	5	1	5	-	-	-	1.25	-	-	1.01	-	-	-	-	4.1	-	1.54	1.16	-	1.31	1.07	-	-
	24	1	24	-	-	-	-	-	-	-	-	-	-	1.04	~	-	1.43	1.11	-	1.25	1.07	-	-
	25	1	25	-	-	-	1.64	1.13	-	1.34	1.02	~	-	-	-	-	1.84	1.34		1.54	1.23	-	-
	40	2	9	-	- 1	-	1.16	-	-	-	-	-	-	1.07	-	-	1.62	1.25	-	1.41	1.20	-	-
	62	3	3	-	-	-	1.60	1.10	-	1.30	-	-	-	1.09	-	-	1.93	1.45	-	1.64	1.35	1.04	-
	353	12	19	-	-	-	-	-	-	-	-	-	-	-	-	-	1.22	-	-	1.05	-	-	4
	354	12	20	-	-	-	-	-	-	-	-	-	-	-	-	-	1.05	-	-	-	-	-	-
	355	12	21	-	-	-	1.03	-	-	-	-	-	-	-	~	-	1.30	-	-	1.11	-	-	-
	356	12	22	-	-	-	-	-	-	-	-	-	-	-	-	-	1.14	-	-	1.00	- 1	-	-
	357	12	23	-	-	-	-	-	-	-	-	-	-	1.11	1.07	1.04	1.23	1.14	1.08	1.18	1.13	1.08	1.03
Numb	er of Days Δ o	dv >= 1.0)	0	0	0	5	2	0	3	1	0	0	4	1	1	10	6	1	9	6	2	1
	Maximum /	\ dv		0.00	0.00	0.00	1.64	1.13	0.00	1.34	1.02	0.00	0.00	1.11	1.07	1.04	1.93	1.45	1.08	1.64	1.35	1.08	1.03

Table C.9.39 Pinedale - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	4	1	4	-	-	-	1.09	-	-	-	-	-	-	-	-	-	1.13	-	-	-	-	-	-
	6	1	6	-	. ~	-	1.53	1.02	-	1.25	-		-	2.16	1.98	1.83	2.88	2.43	2.04	2.62	2.37	2.10	1.83
	7	1	7	-	-	-	1.28	-	-	1.04	-	-	~	1.31	1.15	1.01	1.95	1.56	1.21	1.72	1.49	1.25	1.01
	21	1	21	-	-	-	2.17	1.44	-	1.77	1.36	-	-	1.32	1.07	-	2.55	1.85	1.28	2.17	1.77	1.35	_
	22	1	22	-	-	-	1.22	-	~	-	-	-	-	-	-	~	1.30	-	-	1.07	-	-	-
	23	1	23	-	-	-	1.32	-	-	1.07	-	-7	-	-	-	-	1.49	1.04	-	1.24	-	-	-
	24	1	24	(11)	-	-	-	-	-	-	-	-	-	1.25	1.20	1.15	1.38	1.26	1.18	1.31	1.25	1.18	1.12
	26	1	26	1.25	-	-	2.36	1.59	-	1.93	1.48	1.01	-	1.40	1.08	-	2.48	1.72	1.07	2.06	1.62	1.18	~
	27	1	27	1,7-	-	-	1.55	1.06	-	1.26	-	-	-	1.20	1.01	-	1.89	1.43	1.05	1.62	1.36	1.09	-
	30	1	30	3.60	2.69	1.83	7.66	5.67	3.52	6.53	5.25	3.79	2.07	3.70	2.80	1.94	7.72	5.75	3.62	6.60	5.34	3.88	2.19
	40	2	9	-	-		1.25	-	-	1.01	-	-	-	-	-	-	1.49	1.10	-	1.26	1.02	-	-
	44	2	13	-	-	~	1.24	-	-	1.00	-	-	-	-	-	-	1.50	1.09	-	1.28	1.04	-	-
	45	2		-	-	-	-	-	-	-	-	-	-	-	-	-	1.18	-	-	1.01	-	-	-
	62	3		-	-	-	-	~	-	-	-		-	~	-	-	1.01	-	-	-	-	-	-
	87	3		-	-	-	1.06	-	-	-	-	-	-	-	-	-	1.34	1.05	~	1.14	-	-	-
	109	4		-	-	-	1.67	1.08	-	1.36	1.03	-	-	-	~	-	1.70	1.11	-	1.38	1.06	-	-
	112		22	-	- ,	-	1.22	-	-	-	- '	-	-	-	-	-	1.42	-	-	1.19	-	-	-
	351	12		-	-	-	-	-	-	-	-	-	-	-	-	-	1.00	-	-	-	-	-	-
	352			-	-	-	1.38	-	~	1.12	-	-	-	-	-	-	1.55	1.13	-	1.30	1.04	-	-
	353			-	-	-	1.83	1.23	-	1.49	1.13	-	-	-	-	-	1.94	1.35		1.60	1.26	-	-
	354	12		-	-	-	-	-	-	-	~	-	-	-	-	-	1.08	-	~	-	-	-	-
	355			-	-	-	1.25	-	-	1.01	-	-	-	-	-	~	1.49	1.03	-	1.26	1.02	-	
	356	12	22	-	-	-	1.45	-	-	1.18	-	-	-	1.46	1.27	1.14	2.20	1.71	1.36	1.94	1.68	1.41	1.14
Numl	er of Days ∆ o	tv >= 1.0)	2	1	1	18	7	1	14	5	2	1	8	8	5	23	16	8	19	14	8	5
	Maximum Z	dv /		3.60	2.69	1.83	7.66	5.67	3.52	6.53	5.25	3.79	2.07	3.70	2.80	1.94	7.72	5.75	3.62	6.60	5.34	3.88	2.19

Table C.9.40 Pinedale - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Each Preferred Alternative Modeling Scenario (1-20)

	Julian Day	Month	Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	4	1 1	4	-	-	-	1.26	-	-	1.02	-	-	-	-	-	-	1.30	-	-	1.06	-	-	-
	6	3 1	6	-	-	-	1.76	1.18	-	1.43	1.09	-	-	2.46	2.27	2.10	3.27	2.77	2.33	2.99	2.70	2.40	2.09
	7	1 1	7	-	-	-	1.48	-	-	1.20	-	-	-	1.51	1.33	1.17	2.23	1.79	1.39	1.98	1.71	1.44	1.16
	20) 1	20	-	-	-	-	-	-	-	-	-	-	-	-	-	1.01	-	-	-	-	-	-
	21	1 1	21	1.03	-	-	2.48	1.66	-	2.03	1.56	1.07	-	1.52	1.23	1.01	2.91	2.12	1.47	2.48	2.03	1.55	1.06
	22	2 1	22	-	-	-	1.40	-	-	1.14	-	-	-	-	-	-	1.50	1.09	-	1.24	-	-	_
	23	3 1	23	-	-	-	1.52	-	-	1.23	-	-	-	-		-	1.71	1.20	-	1.43	1.14	-	-
	24	1	24	-	-	-	-	-	-	-	-		-	1.44	1.38	1.33	1.58	1.45	1.35	1.51	1.43	1.36	1.29
	26	3 1	26	1.43	1.03	-	2.69	1.82	1.05	2.21	1.70	1.16	-	1.61	1.25	1.00	2.82	1.97	1.23	2.35	1.86	1.36	-
	27	7 1	27	-	-	-	1.78	1.23	-	1.45	1.11	-	-	1.38	1.17	-	2.16	1.65	1.22	1.86	1.56	1.25	-
	29	1	29	-	-	-	1.03	-	-	-	-	-	-	-	-	_	1.08	_	-	-	-	-	-
	30) 1	30	4.07	3.07	2.09	8.48	6.34	3.98	7.27	5.89	4.28	2.37	4.18	3.19	2.22	8.56	6.43	4.09	7.35	5.98	4.39	2.50
	40) 2	9	-	-	-	1.45	-	-	1.17	-	-	-	-	_	-	1.72	1.27	-	1.46	1.18	-	-
	44	1 2	13	-	-	-	1.43	-	-	1.16	-	-	-	-	-	-	1.74	1.26	-	1.47	1.21	-	-
	45	5 2	14	-	-	-	1.02	-	-	-	-	-	-	~	-	-	1.36	1.04	-	1.17	-	-	-
	61	1 3	2	-	-	~	-	-	-	-	-	-	-	-	-	-	1.02	-	-	-	-	-	_
	62	2 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	1.17	-	-	-	-	-	
	87	7 3	28	-	-	-	1.23	-	-	-	-	-	-	-	-	-	1.55	1.22	-	1.32	1.09	-	-
	109	9 4	19	-	-	-	1.52	-	-	1.23	-	-	-	-	-	-	1.54	1.01	-	1.26	-	-	1
	112	2 4	22	-	-	-	1.11	-	-	-	-	-	-	13-1	-	-	1.29	-		1.08	-	-	-
	325	5 11	21	-	-	-	-	-	-	-	-	-	~	-	-	-	1.10	-	-	-	-	-	-
	351	1 12	17	-	-	-	-	-	-	-	-	11- 5	-	-	-	-	1.12	-	-	-	-	-	-
	352	2 12	18	-	-	-	1.53	1.04	-	1.24	-	-	-	_ "	-	-	1.72	1.26		1.45	1.16	-	-
	353	3 12	19	-	-	-	2.02	1.37	-	1.65	1.26	-	-	-	-	-	2.15	1.50	-	1.78	1.40	1.03	-
	354	1 12	20	-	-	-	1.04	-	-	-	-	-	_	-	-	-	1.20	-	-	1.01	-	-	
	355	5 12	21	-	-	-	1.39	-	-	1.13	-	-	-	-	-	-	1.66	1.14	-	1.40	1.14	-	-
	356	3 12	22	-	-	-	1.61	1.03	-	1.31	-	-	-	1.62	1.42	1.27	2.43	1.90	1.51	2.15	1.86	1.57	1.26
Numbe	er of Days Δ	dv >= 1.	0	3	2	1	21	8	2	16	6	3	1	8	8	7	27	18	8	21	15	9	6
	Maximum	Δ dv		4.07	3.07	2.09	8.48	6.34	3.98	7.27	5.89	4.28	2.37	4.18	3.19	2.22	8.56	6.43	4.09	7.35	5.98	4.39	2.50

C-216

Table C.10.1 - Summary of Maximum Modeled NO₂ Concentration Impacts (μg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources

		Bridger Wildemess Class	mess Class I	Fitzpatrick Wildemess Class	mess Class I	Popo Agie Wildemess Class II	emess Class II	Wind River Roadless Area Class II	ess Area Class II
		Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration
Afternative	WDR	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
Low Emissions Cases	250	0.128	3.53	0.005	3.41	0.042	3.44	0.025	3.43
	150	0.087	3.49	0.004	3.40	0.030	3.43	0.018	3.42
	75	0.055	3.45	0.003	3.40	0.020	3.42	0.012	3.41
High Emissions Cases	250	0.306	3.71	0.012	3.41	0.097	3.50	0.058	3.46
	150	0.195	3.60	0.008	3.41	0.063	3.46	0.038	3,44
	75	0.101	3.50	0.004	3.40	0.038	3.44	0.021	3.42
Mitigation Runs	20 5	0.245	3.65	0.008	3.41	0.077	3.48	0.046	3.45
	40 2	0.184	3.58	0.007	3.41	0.058	3.46	0.035	3.43
	60 2	0.123	3.52	0.005	3.40	0.039	3.44	0.023	3,42
	80 2	0.061	3.46	0.002	3.40	0.019	3.42	0.012	3.41

Pierd Monthele Impact Total Concentration Direct Monthele Impact Direct Monthele Imp			Grand Teton National Park Class	ional Park Class I	Teton Wildemess Class	ness Class I	Yellowstone National Park Class	onal Park Class I	Washakle Wilderness Area Class I	ness Area Class I
WDPA Annual Annual <th></th> <th></th> <th>Direct Modeled Impact</th> <th>Total Concentration1</th> <th>Direct Modeled Impact</th> <th>Total Concentration</th> <th>Direct Modeled Impact</th> <th>Total Concentration1</th> <th>Direct Modeled Impact</th> <th>Total Concentration</th>			Direct Modeled Impact	Total Concentration1	Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration1	Direct Modeled Impact	Total Concentration
230 0.0022 3.40 0.001 3.40 0.001 3.40 0.001 150 0.001 3.40 0.000 3.40 0.000 3.40 0.001 250 0.001 3.40 0.000 3.40 0.000 3.40 0.000 150 0.002 3.40 0.001 3.40 0.001 3.40 0.002 150 0.002 3.40 0.001 3.40 0.001 3.40 0.001 207 0.003 3.40 0.001 3.40 0.001 3.40 0.001 407 0.002 3.40 0.001 3.40 0.001 3.40 0.001 807 0.001 3.40 0.001 3.40 0.001 3.40 0.001 807 0.001 3.40 0.000 3.40 0.001 0.001	ternative	WDR		Annual	Annual	Annual	Annual	Annual	Annual	Annual
150 0.001 340 0.001 340 0.001 340 0.001 75 0.001 340 0.002 340 0.002 340 0.002 75 0.002 340 0.001 340 0.001 340 0.001 75 0.001 340 0.001 340 0.001 340 0.001 407 0.002 340 0.001 340 0.001 340 0.001 407 0.002 340 0.001 340 0.001 340 0.001 807 0.001 340 0.001 340 0.001 340 0.001 807 0.001 340 0.000 340 0.001 0.001	ow Emissions Cases	1	0.002	3.40	0.001	3.40	0.001	3.40	0.001	3.40
75 0.001 3.40 0.000 3.40 0.000 3.40 0.000 230 0.002 3.40 0.001 3.40 0.001 3.40 0.002 150 0.002 3.40 0.001 3.40 0.001 3.40 0.001 20 0.001 3.40 0.001 3.40 0.001 3.40 0.001 20 0.002 3.40 0.001 3.40 0.001 3.40 0.001 40 0.002 3.40 0.001 3.40 0.001 3.40 0.001 80 0.001 3.40 0.001 3.40 0.001 3.00 80 0.001 3.40 0.000 3.40 0.001 0.001 80 0.001 3.40 0.000 3.40 0.001 0.001		150	0.001	3.40	0.001	3.40	0.000	3.40	0.001	3,40
250 0.003 3.40 0.002 3.40 0.001 3.40 0.001 75 0.001 3.40 0.001 3.40 0.001 3.40 0.001 20 0.001 3.40 0.001 3.40 0.001 3.40 0.001 20 0.002 3.40 0.001 3.40 0.001 3.40 0.001 80 0.001 3.40 0.001 3.40 0.001 3.40 0.001 80 0.001 3.40 0.000 3.40 0.001 3.00 80 0.001 3.40 0.000 3.40 0.000 0.000		75	0.001	3,40	0.000	3.40	0.000	3.40	0.000	3.40
150 0.002 3.40 0.001 3.40 0.001 3.40 0.001 75 0.001 3.40 0.001 3.40 0.001 3.40 0.001 20 2 0.003 3.40 0.001 3.40 0.001 3.40 0.002 40 2 0.001 3.40 0.001 3.40 0.001 0.001 80 2 0.001 3.40 0.000 3.40 0.000 0.000	igh Emissions Cases		0.003	3.40	0.002	3,40	0,001	3.40	0.002	3.40
75 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.001 3.40 0.000 3.		150	0.002	3.40	0.001	3,40	0.001	3.40	0.001	3.40
20.7 0.003 3.40 0.001 3.40 0.001 3.40 0.002 40.7 0.002 3.40 0.001 3.40 0.001 3.40 0.001 60.7 0.001 3.40 0.001 3.40 0.001 3.40 0.001 80.7 0.001 3.40 0.000 3.40 0.001 0.001		75	0.001	3.40	0.001	3.40	0.000	3,40	0.001	3.40
0,002 3,40 0,001 3,40 0,001 3,40 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,000 0,001 0,0	ritigation Runs	20		3.40	0.001	3.40	0.001	3.40	0.002	3.40
0.001 3.40 0.000 3.40 0.000 3.40 0.000 0.000 0.000		40		3.40	0.001	3,40	0.001	3.40	0.001	3.40
0.001 3.40 0.000 3.40 0.000 3.40 0.000		09		3.40	0.001	3.40	0,000	3.40	0.001	3.40
		80		3.40	0,000	3.40	0,000	3.40	0,000	3.40

¹ Total concentration includes direct modeled impact and background concentration for comparison to NAAGSWAAGS which are 100 µg/m² on an annual basis.
2 JIPP % Emissions Reductions

Table C.10.2 - Summary of Maximum Modeled Cumulative NO₂ Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources

		Bridger Wildemess Class I	mess Class I	Fitzpatrick Wildemess Class	emess Class I	Popo Agie Wildemess Class II	amess class II	Wind River Roadless Area Class II	less Area Class II
		Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration1	Direct Modeled Impact	Total Concentration
Alternative	WDR	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
Low Emissions Cases	250	0.237	3.64	0.016	3.42	0.068	3.47	0.049	3.45
	150	0.199	3.60	0.015	3,41	0.056	3,46	0.042	3.44
	75	0.167	3.57	0.014	3.41	0.046	3.45	0.036	3.44
High Emissions Cases	\$ 250	0.418	3.82	0.023	3.42	0.120	3.52	0.082	3.48
	150	0.307	3.71	0.019	3.42	0.087	3.49	0.062	3.46
	75	0.213	3.61	0.015	3.42	0.062	3.46	0.045	3.45
Mitigation Runs	20 2	2 0.356	3.76	0.020	3.42	0.101	3.50	0.071	3.47
	40 2	2 0.295	3.70	0.018	3.42	0.081	3.48	0.059	3.46
	60 2	2 0.234	3.63	0.016	3.42	0.063	3.46	0.047	3,45
	80 2	2 0.174	3.57	0.013	3.41	0.044	3.44	0.036	3.44

		Grand Teton National Park Class	ional Park Class I	Teton Wildemess Class	ness Class i	Yellowstone National Park Class	anal Park Class I	Washakie Wilderness Area Class I	ness Area Class I
	1	Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration	Direct Modeled Impact	Total Concentration1	Direct Modeled Impact	Total Concentration
Alternative	WDR	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
ions Cases	250	0.030	3.43	0.007	3.41	0.003	3.40	0.010	3.41
	150	0.030	3.43	0.007	3.41	0.003	3.40	0.010	3.41
	75	0.029	3.43	0.007	3.41	0.003	3.40	0.010	3.41
High Emissions Cases	250	0.032	3.43	0.007	3,41	0.004	3.40	0.010	3.41
	150	0.031	3.43	0.007	3.41	0.003	3.40	0.010	3.41
	75	0.030	3.43	0.007	3.41	0.003	3.40	0.010	3,41
Mitigation Runs	20 2	0.031	3.43	0.007	3.41	0,003	3.40	0.010	3.41
	40 5	0.031	3.43	0.007	3.41	0.003	3.40	0.010	3.41
	60 2	0.030	3.43	0.007	3.41	0.003	3.40	0.010	3.41
	80 2	0.029	3.43	0.007	3.41	0.003	3.40	0.010	3.41

Total concentration includes direct modeled impact and background concentration for comparison to NAAQS/WAAQS which are 100 µg/m 3 on an annual basis.

² JIDP % Emissions Reductions

Table C.10.3 - Summary of Maximum Modeled SO₂ Concentration (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources

			ã	Bridger Wilderness Class I	demess C	lassi			Fitz	patrick W	Fitzpatrick Wilderness Class	Class I			Popo	Agie Wi	Popo Agie Wildemess Class II	Class II			Wind F	iver Roa	Wind River Roadless Area Class II	Class I	
		- travic	Modelad	Direct Modeled Impact	Total	Total Concentration	ration	Dire	Direct Modeled	paled	Total	Total Concentration	"ation"	Dire	Direct Modeled	pel	Total	Total Concentration	ation1	Dig	Direct Modeled	pel	Total	Total Concentration	ation,
Alternative	a CAN	3.hr	24-hr	24-hr Annual	3-hr	24-hr	Annual	3.hr		24-hr Annual	6,	24-hr	Annual	3-17-		Annual	3-hr	24-hr	Annual	3+hr	24-hr	24-hr Annual	3-hr	24-hr	Annual
Low	250	0.254		0.004	132.25	43.08		0.021		0.000	132.02	43.01	9.00	0.090		0.001	132.09	43.01	9.00	0.041	0.011 0.001	0.001	132.04	43.01	9.00
Emissions	150	0.157	0.050	0.002	132.16	43.05	8.00	0.014	0.004	0.000	132.01	43.00	9.00	0.060	0.009	0.001	132.06	43.01	9.00	. 0.026	0.007	0.001	132.03	43.01	9.00
Cases	75	0.081	0.024	0.001	132.08	43.02	9.00	0.007	0.002	0.000	132.01	43.00	9.00	0.029	0.005 0.000	0.000	132.03	43.01	9.00	0.012	0.004	0.000	132.01	43.00	9.00
High	250	1.232	0.382	0.019	133,23	43.38	9.02	0,102	0.028	0.001	132.10	43.03	9.00	0.437	0.068	900.0	132.44	43.07	9.01	0.186	0.055	0.004	132.20	43.06	9.00
Emissions	150	0.750	0.237	0.012	132.75	43.24	9.01	0.065	0.018	0.001	132.06	43.02	9.00	0.292	0.045	0.004	132.29	43.04	9.00	0.124	0.034	0.002	132.12	43.03	9.00
Cases	75	0.382	0.113	0.005	132.38	43.11	9.01	0.033	0.009	0.000	132.03	43.01	9.00	0.142	0.027	0.002	132.14	43.03	8.00	0.059	0.019	0.001	132.06	43.02	8.00
Mitigation	20 2	0.985	0.306	0.015	132.99	43.31	9.02	0.082	0.022	0.001	132.08	43.02	9.00	0.350	0.055 0.005	0.005	132.35	43.05	9.00	0.156	0.044	0.003	132.16	43.04	8.00
Runs	40 2	0.739	0.229	0.012	132.74	43.23	9.01	0.061	0.017	0.001	132.06	43.02	9.00	0.262	0.041	0.004	132.26	43.04	9.00	0.117	0.033	0.002	132.12	43.03	9.00
	80 2	0.493	0.153	0.008	132.49	43.15	9.01	0.041	0.011	0.000	132.04	43.01	9.00	0.175	0.027	0.002	132.17	43.03	9.00	0.078	0.022	0.002	132.08	43.02	9.00
	80 2	0.246	0.076	0.004	132.25	43.08	9.00	0.020	9000	0.000	132.02	43.01	9.00	0.087	0.014 0.001	0.001	132.09	43.01	9.00	0.039	0.011	0.001	132.04	43.01	9.00

			Grand	Teton N	Grand Teton National Park Class	rk Class			Ţ	eton Wilc	Teton Wilderness Class	lass			Yellows	Yellowstone National Park Class	ional Par	k Class			Washa	kie Wilde	Washakie Wildemess Area Class	a Class	
		Direct N	Modeled	Direct Modeled Impact	Total	Total Concentration	ation1	Dire	Direct Modeled Impact	peled	Total	Total Concentration1	ation1	Direc	Direct Modeled Impact	pel	Total C	Total Concentration	rtion,	Dire	Direct Modeled Impact	pel	Total	Total Concentration ¹	ation1
Memative	MON	3-hr	24-hr	Annual	3-hr	24-hr	Annual	3-hr		24-hr Annual	3-hr	24-hr	Annual	3-hr	24-hr Annual	unnual	3-hr	24-hr	Annual	3-hr		24-hr Annual	3-hr	24-hr	Annual
wo	250	0.009		0.000	132.01	43.00	9.00	0.008		0.000	132.01	43.00	9.00	0.003	0.003 0.001 0.000		132.00	43.00	9.00	0.007	0.002	0.000	132.01	43.00	8.00
Emissions	150	0.005	0.002	0.000	132.01	43.00	9.00	0.005	0.001	0.000	132.00	43.00	9.00	0.002	0.001	0.000.1	132.00	43,00	9.00	0.004	0.001	0.000	132.00	43.00	9.00
diode of	75	0.003	0.001	0.000	132.00	43.00	9.00	0.003	0.000	0.000	132.00	43.00	8.00	0.001	0,000	0.000 1	132.00	43.00	9.00	0.003	0.001	0.000	132.00	43.00	9.00
															-				1	-	-				
ligh	250	0.041	0.012	0.000	132.04	43.01	9.00	0.038	0.007	0.000	132.04	43.01	8.00	0.015	0.005	0.000	132.02	43.00	8.00	0.031	0,011	0.000	132.03	43.01	9.00
Emissions	150	0.025	0.008	00000	132.03	43.01	9.00	0.023	0.004	0.000	132.02	43.00	9.00	0.009	0.003	0.000.0	132.01	43.00	9.00	0.020	900'0	0.000	132.02	43.01	9.00
2000	75	0.013	0.004	0.000	132.01	43.00	9.00	0.012	0.002	0.000	132.01	43.00	9.00	900.0	0.001	0.000	132.00	43.00	9.00	0.011	0.003	0.000	132.01	43,00	9.00
Mitigation	20 2	0.033	0.010	0.000	132.03	43.01	9.00	0.031	90000	00000	132.03	43.01	8.00	0.012	0.004	0.000 1	132.01	43.00	8.00	0.024	0.009	0.000	132.02	43.01	9.00
Runs	40 5	0.025	0.007	0.000	132.02	43.01	9.00	0.023	0.004	0.000	132.02	43.00	9.00	0.009	0.003	0.000	132.01	43.00	9.00	0.018	0.006	00000	132.02	43.01	8.00
	60 2	0.017	0.005	0.000	132.02	43.00	9.00	0,015	0.003	00000	132.02	43.00	8.00	900.0	0.002	0.000 1	132.01	43.00	8.00	0.012	0.004	0.000	132.01	43.00	8.00
	80 2	0.008	0.002	0.000	132.01	43.00	9.00	0.008	0.001	0.000	132.01	43.00	9.00	0.003	0.001	0.000 1	132.00	43.00	8.00	900'0	0.002	00000	132.01	43,00	8.00

¹ Total concentration includes direct modeled impact and background concentration for comparison with NAAGS/WAAGS which are 1,300 µg/m³ on a 3-hour basis, 365/260 µg/m³ on a 24-hour basis and 80-80 µg/m³ on an annual basis.

JIDP % Emissions Reductions

Table C,10.4 - Summary of Maximum Modeled Cumulative SO₂ Concentration (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources

			Bridg	Bridger Wildemess Class	ness Cla	Iss			Fitzpa	strick Will	Fitzpatrick Wildemess Class	Class I			Popo A	pie Wild	Popo Agie Wildemess Class II	lass II	i	M	Wind River Roadless Area Class II	oadless	Area C	188
		Direct	Direct Modeled Impact	Impact		Total Concentration1	ration	Direct	Modelea	Impact	Direct Modeled Impact Total Concentration	Concent	ration1	Direc	Direct Modeled Impact	pe	Total Co	Total Concentration	tion1	Direc	Direct Modeled Impact	Į.	Total Concentration	entratio
Afternative	WDR	3-hr	24-hr	Annual	3-hr	24-hr	24-hr Annual	i 3-hr	24-hr	24-hr Annual		24-hr	3-hr 24-hr Annual 3-hr 24-hr Annual	3-hr	24-hr #	unnual	3-hr 24-hr Annual	24-hr #		3-hr	3-hr 24-hr Annual		3-hr 24-hr Amual	hr Am
Low Emissions 250	250	0.269	0.086	0.000	132.27	43.09 9.00	9.00	1	0.023 0.007 0.000	0.000	132.02 43.01 9.00	43.01	9.00	0.091 0.016 0.000	0.016	1	132.09 43.02 9.00	43.02	1	0.118	0.118 0.015 0.000		132.12 43.01	01 8.00
Cases	150	0.170	0.056	0.000	132.17 43.06 9.00	43.06	9.00		0.020 0.007 0.000	0.000	132.02	43.01	132.02 43.01 9.00 0.062 0.011 0.000	0.062	0.011		132.06 43.01 9.00	43.01		0.110	0.110 0.014 0.000		132.11 43.01	9.00
	75	0.167	0.042	0.000	132.17	43.04	9.00	0.020	0.006	0.000	132.02	43.01	9.00	0.032	0.010 0.000		132.03	43.01	8.00	0.110	0.014 0.000		132.11 43.01	9.00
High Emissions 250	250	1.246	0.388	0.014	133.25	43,39	9.01	0.086	0.023	0.000	132.09	43.02	9.00	0.438	0.070 0.002		132.44 43.07		9.00	0.196	0.046 0.001		132.20 43.05	9.00
Cases	150	0.785	0.243	900.0	132.76	43.24	9.01	0.054	0.014	0.000	132.05	43.01	9.00	0.294	0.047	0.000	132.29	43.05	9.00	0.124	0.025 0.000		132.12 43.03	3 9.00
	75	0.395	0.119	0.000	132.39	43.12	9.00	0.029	0.008	0.000	132.03	43.01	9.00	0.144	0.028 0.000		132.14 43.03		9.00	0.110	0.014 0.000	132.11	11 43.01	00'6 10
Mitigation Runs	202	20 2 1.000	0.312	0.010	133.00		43.31 9.01	0.069		0.019 0.000	132.07 43.02	43.02	9.00	0.351 0.056 0.001	950.0		132.35 43.06		8.00	0.157	0.035 0.000		132.16 43.04	9.00
	40 2	0.753	0.236	90000	132.75	43.24	9.01	0.052	0.014	0.000	132.05	43.01	9.00	0.263	0.043	0.000	132.26	43.04	9.00	0.133	0.024 0.000		132.13 43.02	00.6 20
	60 2	0.507	0.159	0.002	132.51	43.16	9.00	0.034	0.009	0,000	132.03	43.01	9.00	0.176	0.029	0.000	132.18	43.03	8.00	0.125	0.016 0.000		132.13 43.02	00 8 70
	80 2	0.261	0.083	0.000	132.26	43.08	9.00	0.023	0.007	00000	132.02	43.01	9.00	0.089	0.016 0.000		132.09	43.02	9.00	0.117	0.015 0.000		132.12 43.01	00.6 10

Direct Modeled Impact Total Concentration Direct Modeled Impact Direct Modeled Impac				Grand Te:	Grand Teton National Park Class	nal Park	Class I			Tetor	Teton Wildemess Class	ess Clas.	- 5		Ye	llowsto	ne Natio	Yellowstone National Park Class I	Class		8	shakie	Wilder	Washakie Wilderness Area Class	a Class	
VOR 547 2-47 Annual 347 Cabe A			Direct	Wodeled I	Impact	Total C	oncentr	ation	Direct M	pelepo		Total Co	ncentra	tion1	Direct	Modeli	pe	Total Co	ncentra	tion1	Direc	t Model	pe	Total C	oncentra	tion
0.201 0.038 0.0077 132.20 4.304 6.01 0.037 0.012 0.001 132.04 4.301 8.00 0.075 0.013 0.001 132.07 4.301 8.00 0.022 0.008 0.000 132.04 4.301 8.00 0.022 0.008 0.000 132.04 4.301 8.00 0.003	Alternative	WDR	3-hr	24-hr	Annual	3-hr	24-hr	Annual		24-hr A			24-hr A		3-hr 2	4-hr A			24-hr A		3-hr	24-hr A	nunai	3-hr	24-hr	unus
0.201 0.038 0.007 13220 4.504 8.01 0.037 0.012 0.001 13204 4.501 8.00 0.075 0.013 0.001 13207 4.501 8.00 0.022 0.008 0.000 13222 4.501 0.001 0.002 0.002 0.002 0.008 0.000 13222 4.501 0.001 0.003 0.007 0.002 0.001 0.003 0.007 0.003 0.007 0.003 0.007 0.001 0.003 0.007 0.003 0.007 0.003 0.003 0.007 0.003 0.0	Low Emissions	250	0.201	0.038	0.007	132.20	43.04	9.01	0.037	0.012	0.001	32.04	43.01	9.00	0.075 0	0.013 0	100.	32.07	43.01		0.022	800.0		132.02		8.00
0.201 0.038 0.007 13220 43.04 9.01 0.037 0.012 0.001 132.04 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.022 0.008 0.000 132.02 43.01 9.00 0.075 0.013 0	Cases	150	0.201	0.038	0.007	132.20									0.075 0	0.013 0		32.07	43.01		0.022	800.0	000	132.02	43.01	9.00
0.201 0.038 0.007 132.20 43.04 8.01 0.044 0.012 0.001 132.04 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.010 0.000 132.02 43.01 0.000 132.22 43.01 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.011 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.011 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.011 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075 0.013 0.011 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 0.000 132.04 43.01 8.00 0.075		75	0.201	0.038	0.007	132.20	43.04								0.075 0	0.013 0					0.022		000		43.01	9.00
150 0.201 0.038 0.007 132.20 43.04 8.01 0.037 0.012 0.001 132.04 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 8.00 0.075 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 8.00 0.022 0.008 0.000 132.02 43.01 8.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	High Emissions	250	0.201	0.038	0.007	132.20									0 520.0	0 210					0.022	0.010		132.02	43.01	9.00
73 0.201 0.003 0.007 132.20 43.44 801 0.0037 0.012 0.001 132.04 43.01 800 0.013 0.001 132.07 43.01 8.00 0.022 0.008 0.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.01 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 43.01 80.01 8.00 8.000 132.02 83.01 83.	Cases	150	0.201	0.038	0.007	132.20									0.075 0	0 610		32.07			0.022		000	132.02	43.01	9.00
20° 0.201 0.038 0.007 132.20 43.04 8.01 0.037 0.012 0.001 132.04 43.01 8.00 0.078 0.018 0.001 132.07 43.01 8.00 0.022 0.088 0.000 132.02 43.01 4.00 0.021 0.023 0.023 0.020 0.		75	0.201	0.038	0.007	132.20	43.04								0.075 0	0.013 0					0.022				43.01	9.0
40° 0.201 0.038 0.007 132.20 43.04 6.01 0.037 0.012 0.001 132.04 43.01 8.00 0.017 0.013 0.001 132.07 43.01 8.00 0.027 0.013 0.001 132.04 43.01 8.00 0.017 0.013 0.001 132.07 43.01 8.00 0.000 132.02 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.007 0.013 0.001 132.07 43.01 8.00 0.013 0.013 0.001 132.07 43.01 8.001 0.001 132.07 43.01 8.001 0.013 0.013 0.001 132.07 43.01 8.001 0.013 0.013 0.013 0.001 132.07 43.01	Majoration Runs		0 201	0.038	0 007	132 20	43.04								0 520	013 0					0.022		000		43.01	9.0
0,201 0.038 0.007 192,20 43.04 8.01 0.037 0.017 0.017 0.013 0.017 0.013 0.013 0.014 132.07 43.01 0.001 0.001 0.001 0.002 0.000 192.02 43.01 0.001 0.001 0.001 0.002 0.000 192.02 43.01 0.001 0.001 0.002 0.000 192.02 43.01			0.201	0.038	0.007	132.20	43.04								0 570.0	0 510					0.022		000		43.01	0.0
0.201 0.038 0.007 132.20 43.04 9.01 0.037 0.012 0.001 132.04 43.01 9.00 0.075 0.013 0.001 132.07 43.01 9.00 0.022 0.008 0.000 132.02 43.01		60 2		0.038	0.007	132.20	43.04								0.075 0	0 610					0.022		000	132.02	43.01	9.00
		80 2		0.038	0.007	132.20		9.01				32.04			0 570.0	0 610.		32.07			0.022	900.0		132.02	43.01	9.0

Total concentration includes direct modeled impact and background concentration for comparison with NAAGSWAAGS which are 1,300 µg/m² on a 3-hour basis. and 80/60 µg/m³ on an annual basis.

2 JIDP % Emissions Reductions

Table C.10.5 - Summary of Maximum Modeled PM₁₀ Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources

			Bridger Wildemess Class	mess Class I		FR	Fitzpatrick Wilderness Class	emess Class		Po	Popo Agie Wildemess Class II	mess Class	-	Wind	Wind River Roadless Area Class II	less Area Cla	ass II
		Direct Modeled Impact	sled Impact	Total Concentration1	centration1	Direct Modeled Impact	eled Impact	Total Concentration	centration1	Direct Modeled Impact	eled Impact	Total Concentration	entration1	Direct Modeled Impact	sled Impact	Total Concentration	centration,
Alternative	WDR	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Low Emissions Case	250	1.502	0.058	34.50	16.06	0.168	900'0	33.17	16.01	0.237	0.016	33.24	16.02	0.182	0.012	33.18	16.01
	150	1.195	0.047	34.19	16.05	0.128	0.005	33.13	16.00	0.201	0.013	33.20	16.01	0.157	0.010	33.16	16.01
	75	0.937	0.038	33.84	16.04	0.097	0.004	33.10	18.00	0.171	0.010	33.17	16.01	0.137	0.008	33.14	16.01
High Emissions Case	250	3,165	0.117	36.17	16.12	0.396	0.012	33.40	16.01	0.414	0.034	33.41	16.03	0.319	0.023	33.32	16.02
	150	2.199	0.082	35.20	16.08	0.264	0.008	33.26	16.01	0.296	0.023	33.30	16.02	0.215	0.016	33.21	16.02
	75	1,393	0.054	34.39	16.05	0.161	0.005	33.16	16.01	0.211	0.015	33.21	16.02	0.156	0.011	33.16	16.01
Mitigation Runs	20 2	2.532	0.084	35.53	16.09	0.317	0.009	33.32	16.01	0.331	0.027	33.33	16.03	0.255	0.018	33.26	16.02
	40 5	1.899	0.070	34.90	16.07	0.238	0.007	33.24	16.01	0.248	0.020	33.25	16.02	0.181	0.014	33.19	16.01
	60 2	1.266	0.047	34.27	16.05	0.158	0.005	33.16	16.00	0.165	0.013	33.17	16.01	0.128	600.0	33.13	16.01
	80 2	0.633	0.023	33,63	16.02	0.079	0.002	33.08	16.00	0.083	0.007	33.08	16.01	0.064	0.005	33.06	18.00

		Gran	Grand Teton National Park Class	onal Park Cla	ISS I		Teton Wildemess Class	ness Class I		Yello	Yellowstone National Park Class	nal Park Cla	188	Wasi	Washakie Wildemess Area Class	less Area Cla	1881
		Direct Modeled Impact	eled Impact	Total Concentration1	entration1	Direct Mod	Direct Modeled Impact	Total Concentration1	entration1	Direct Mode	Direct Modeled Impact	Total Concentration1	entration1	Direct Modeled Impact	eled Impact	Total Concentration	entration
Alternative	WDR	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Low Emissions Case	250	0.088	0.003	33.09	16.00	0.040	0.002	33.04	16.00	0.041	0.001	33.04	16.00	0.072	0.002	33.07	18.00
	150	0.067	0.002	33.07	16.00	0.031	0.001	33.03	16.00	0.031	0.001	33.03	16.00	0.055	0.001	33.05	16.00
	75	0.048	0.001	33.05	16.00	0.027	0.001	33.03	16.00	0.022	0.001	33.02	16.00	0.040	0.001	33.04	16.00
High Emissions Case	250	0.182	0.005	33.18	16.01	0.081	0.003	33.08	16.00	0.081	0.002	33.08	16.00	0.145	0.004	33.15	16.00
	150	0.125	0.004	33.12	16.00	0.055	0.002	33.05	16.00	0.055	0.001	33.05	16.00	0.100	0.003	33.10	16.00
	75	0.077	0.002	33.08	16.00	0.034	0.001	33.03	16.00	0.033	0.001	33.03	16.00	0.061	0.002	33.06	16.00
Mitigation Runs	20 3	0,146	0.004	33.15	16.00	0.065	0.003	33.06	16.00	0.065	0.002	33.06	16.00	0.116	0.003	33.12	16.00
	40 3	0.108	0.003	33.11	16.00	0.049	0.002	33.05	16.00	0.049	0.001	33.05	16.00	0.087	0.002	33.09	16.00
	60 2	0.073	0.002	33.07	16.00	0.032	0.001	33.03	16.00	0.032	0.001	33.03	16.00	0.058	0.002	33.06	16.00
	80 2	0.036	0.001	33.04	16.00	0.016	0.001	33.02	16.00	0.016	00000	33.02	16.00	0.029	0.001	33.03	16.00

Total Concentration includes direct modeled impact and background concentration for comparison to NAAQSWAAQS whalch are 150 µg/m³ on a 24-hour basis and 50 µg/m³ on an annual basis.

Table C.10.6 - Summary of Maximum Modeled Cumulative PM₁₀ Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources

			Bridger Wildemess Class	mess Class		FR	Fitzpatrick Wildemess Class	emess Class	-	Po	Popo Agie Wildemess Class II	emess Class	=	Wind Riv	Wind River Roadless Area	Area	Class II
		Direct Mod	Direct Modeled Impact	Total Concentration	centration1	Direct Modeled Impact	eled Impact	Total Concentration	entration	Direct Mod	Direct Modeled Impact	Total Concentration	centration1	Direct Mod	Direct Modeled Impact	Total Cor	Total Concentration
Alternative	WDR	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Low Emissions	250	1.661	0.075	34.66	16.08	0.195	0.011	33.20	16.01	0.293	0.022	33.29	16.02	0.287	0.020	33.29	16.02
Case	150	1,354	0.064	34.35	16.06	0.172	0.010	33.17	16.01	0,256	0.019	33.26	16.02	0.264	0.017	33.26	16.02
	75	1.096	0.055	34.10	16.06	0.161	0.009	33.16	16.01	0.226	0.017	33.23	16.02	0.245	0.016	33.24	16.02
High Emissions	250	3.319	0.134	36.32	16.13	0.406	0.017	33,41	16.02	0.462	0.040	33.46	16.04	0.371	0.031	33.37	16.03
Case	150	2.353	0.099	35.35	16.10	0.273	0.013	33.27	16.01	0.351	0.029	33.35	16.03	0.316	0.024	33.32	16.02
	75	1.547	0.071	34.55	16.07	0.179	0.010	33.18	16.01	0.266	0.021	33.27	16.02	0.270	0.019	33.27	18.02
Mitigation Runs	20 3	2.686	0.111	35,69	16.11	0.326	910.0	33.33	16.01	0.379	0.033	33.38	16.03	0.335	0.026	33.34	16.03
	40 2	2.053	0.087	35.05	16.09	0.247	0.012	33,25	16.01	0.297	0.026	33.30	16.03	0.300	0.022	33,30	16.02
	60 2	1.420	0.064	34.42	16.06	0.173	0.010	33.17	16.01	0.222	0.020	33.22	16.02	0.285	0.017	33.26	16.02
	80 2	0.787	0.041	33.79	16.04	0.151	0.007	33.15	16.01	0.180	0.013	33.18	16.01	0.230	0.012	33.23	16.01

Principal Model Total Concentration Direct Modelled Model Concentration Direct Modelled			Gra	Grand Teton National Park Class I	onal Park Cla	assi		Teton Wildemess Class	ness Class I		Yellowsto	Yellowstone National Park	ark	Class	Was	Washakie Wildemess Area Class	ess Area Ci	188
VOA. 2.64 Annual Annual Annual 2.64 Annual			Direct Mod	feled Impact	Total Conc	centration1	Direct Mode	sled Impact	Total Conc	entration1	Direct Mode	eled Impact	Total Conc	entration1	Direct Mode	iled Impact	Total Con	entration1
01 25 01 01 03 33.0 1601 0262 02063 33.06 16.00 02087 02093 33.09 16.00 02087 02093 33.09 16.00 02082 02083 33.06 16.00 02082 02083 33.06 16.00 02.00	Mernative	WDR		Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
150 0.134 0.014 33.13 16.01 0.007 0.000 33.07 16.01 0.025 0.004 33.05 16.00 0.007 0.004 33.07 16.01 0.025 0.004 33.05 16.01 0.007 0.004 33.05	Low Emissions	250	0.136	0.015	33.14	16.01	0.077	9000	33.08	16.01	0.062	0.005	33.06	16.00	0.087	0.005	33.09	16.00
75 0.12 0.014 33.13 16.01 0.006 33.06 16.01 0.006 33.06 16.01 0.006 33.06 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.01 16.01 0.01 0.006 33.01 16.01 0.006 33.01 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.02 16.01 0.006 33.0	Case	150	0.133	0.014	33.13	16.01	0.067	900.0	33.07	16.01	0.056	0.005	33.06	16.00	0.070	0.004	33.07	16.00
26 0.227 0.016 33.13 16.02 0.109 33.12 16.01 0.086 0.007 33.10 16.01 0.006 33.11 16.02 0.020 0.007 33.12 16.01 0.008 33.17 16.01 0.007 0.008 33.17 16.01 0.016 0.017 0.008 33.10 16.01 0.017 0.008 33.17 16.01 0.017 0.008 33.17 16.01 0.017 0.008 33.11 0.008 0.008 0.008 33.02 0.		75	0.129	0.014	33.13	16.01	090.0	90000	33.06	16.01	0.052	0.004	33.05	16.00	0.059	0.004	33.06	16.00
150 0.170 0.016 33.17 16.02 0.089 0.007 33.09 16.01 0.077 0.005 33.07 16.01 0.015 0.005 33.07 16.01 0.015 0.005 33.01 16.01 0.015 0.005 0.007 0.005	High Emissions	250	0.227	0.018	33.23	16.02	0.120	0.008	33.12	16.01	0.098	900.0	33.10	16.01	0.160	0.007	33.16	16.01
75 0.130 0.015 33.13 16.01 0.073 0.009 31.07 16.01 0.085 0.005 31.08 16.00 0.077 0.005 31.08 16.00 0.077 0.005 31.09 17.0 0.005 0.01	ase	150	0.170	910.0	33.17	16.02	0.093	0.007	33.09	16.01	0.071	0.005	33.07	16.01	0.115	0.006	33.11	16.01
20, 0,190 0,016 33,19 16.02 0,104 0,007 33,10 16.01 0,082 0,005 33,09 16.01 0,131 0,006 33,13 0,104 0,007 0,103 0,007 0,		75	0.130	0.015	33.13	16.01	0.073	9000	33.07	16.01	0.058	90000	33.06	16.00	0.077	0.005	33.08	16.00
0.154 0.015 33.15 16.02 0.088 0.007 33.08 16.01 0.087 0.005 33.37 16.00 0.103 0.005 33.10 0.103 0.005 0.031 0.013 0.005 0.031 0.013 0.001 0.0074 0.004 0.0074 0.004 0.0074 0.004 0.0074 0.004 0.0074 0.004 0.0074 0.0074 0.004 0.0074 0.0075 0.0	Mitigation Runs	20 3		0.016	33.19	16.02	0.104	0.007	33.10	16.01	0.082	0.005	33.08	16.01	0.131	0.008	33.13	16.01
0,129 0,014 33,13 16,01 0,072 0,006 33,07 16,01 0,058 0,005 33,50 16,00 0,074 0,004 33,07 0,125 0,013 33,13 16,01 0,056 0,006 33,06 16,01 0,056 0,004 33,05 16,00 0,054 0,004 33,05		40		0.015	33,15	16.02	0.088	0.007	33.09	16.01	0.067	0.005	33.07	16.00	0.103	0.005	33.10	16.01
0.125 0.013 33,13 16.01 0.056 0.008 33,06 16.01 0.050 0.004 33,05 16.00 0.054 0.004 33,05		. 09		0.014	33.13	16.01	0.072	900.0	33.07	16.01	0.058	0.005	33.06	16.00	0.074	0.004	33.07	16.00
		80		0.013	33.13	16.01	0.056	900.0	33.06	16.01	0.050	0.004	33.05	16.00	0.054	0.004	33.05	16.00

Total Concentration includes direct modeled impact and background concentration for comparison to NAAGSWAAGS whatch are 150 µg/m³ on a 24-hour basis and 50 µg/m³ on an annual basis.

Table C.10.7 - Summary of Maximum Modeled PM_{2.5} Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources

			Bridger Wilderness Class	mess Class						-	come controlled order		-	-	DAIL DAIL	TOTAL PORTER TOTAL PORTER TOTAL	11 00
		Direct Mod	Direct Modeled Impact	Total Cond	Total Concentration1	Direct Mod	Direct Modeled Impact	Total Concentration1	entration1	Direct Mod	Direct Modeled Impact	Total Concentration	entration	Direct Mod	Direct Modeled Impact	Total Concentration	centration,
Alternative	WDR		Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Low Emissions Case		1	0.058	14.50	90.5	0.168	9000	13.17	5.01	0.237	0.016	13.24	5.02	0.182	0.012	13.18	5.01
	150	1,195	0.047	14.19	5.05	0.128	0.005	13.13	9.00	0.201	0.013	13.20	5.01	0.157	0.010	13.16	5.01
	75	0.937	0.038	13,84	5.04	0.097	0.004	13.10	5.00	0.171	0.010	13.17	5.01	0.137	0.008	13.14	5.01
High Emissions	250	3.165	0.117	16.17	5.12	0.396	0.012	13.40	5.01	0.414	0.034	13.41	5.03	0.319	0.023	13.32	5.02
Case	150	2.189	0.082	15.20	5.08	0.264	0.008	13.26	5.01	0.296	0.023	13.30	5.02	0.215	0.016	13.21	5.02
	75	1.393	0.054	14.39	5.05	0.161	0.005	13.16	5.01	0.211	0.015	13.21	5.02	0.156	0.011	13.16	5.01
Mitigation Runs	20 2	2.532	0.084	15.53	5.09	0.317	0.009	13.32	5.01	0.331	0.027	13.33	5.03	0.255	0.018	13.26	5.02
	40 2	1.899	0.070	14.90	5.07	0.238	0.007	13.24	5.01	0.248	0.020	13.25	5.02	0.191	0.014	13,19	5.01
	60 2	1,266	0.047	14.27	5.05	0.158	0.005	13.16	5.00	0.165	0.013	13.17	5.01	0.128	600'0	13.13	5.01
	80 2	0.633	0.023	13.63	5.02	0.079	0.002	13.08	9.00	0.083	0.007	13.08	5.01	0.084	0.005	13.06	9.00

		Gra	Grand Teton National Park Class	onal Park Cls	ISS I		Teton Wilderness Class	ness Class I		Yell	Yellowstone National Park Class I	inal Park Cla	ISS I	Wasi	Washakie Wildemess Area Class	ess Area Cl	188
		Direct Mod	Direct Modeled Impact	Total Concentration	centration1	Direct Modeled Impact	led Impact	Total Concentration	entration1	Direct Modeled Impact	eled Impact	Total Concentration	entration1	Direct Modeled Impact	sled Impact	Total Concentration	entration1
Alternative	ACM		Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Low Emissions Case			0.003	13.09	5.00	0.040	0.002	13.04	5.00	0.041	0.001	13.04	5.00	0.072	0.002	13.07	9.00
	150	0.067	0.002	13.07	9.00	0.031	0.001	13.03	9.00	0.031	0.001	13.03	9.00	0.055	0.001	13.05	2.00
	75	0.048	0.001	13.05	5.00	0.027	0.001	13.03	9.00	0.022	0.001	13.02	5.00	0.040	0.001	13.04	9.00
ah Emissions	250	0.182	0.006	13.18	5.01	0.081	0.003	13.08	9.00	0.081	0.002	13.08	9.00	0.145	0.004	13.15	9.00
Case	150	0.125	0.004	13.12	5.00	0.055	0.002	13.05	9.00	0.055	0.001	13.05	9.00	0.100	0.003	13.10	9.00
	75	0.077	0.002	13.08	9.00	0.034	0.001	13.03	9.00	0.033	0.001	13.03	5.00	0.061	0.002	13.06	9.00
Mitigation Runs	20 3	0.146	0.004	13.15	5.00	0.065	0.003	13.06	9.00	0.085	0.002	13.08	9.00	0.118	0.003	13.12	5.00
	40 2	0,109	0.003	13.11	5.00	0.049	0.002	13.05	9,00	0.049	0.001	13.05	9.00	0.087	0.002	13.09	5.00
	60 2	0.073	0.002	13.07	5.00	0.032	0.001	13.03	9.00	0.032	0.001	13.03	9.00	0.058	0.002	13.08	5.00
	80 2	0.036	0.001	13,04	9.00	0.016	0.001	13.02	9.00	0.016	0000	13.02	9.00	0.029	0.001	13.03	2.00

¹ Total concentration includes direct modeled impact and background concentration for comparison to NAAGSWAAACS which are 65 µg/m² on a 24-hour basis and 15 µg/m³ on an annual basis.
2 JDP % Emissions Reductions

Table C.10.8 - Summary of Maximum Modeled Cumulative PM_{2.5} Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources

			Bridger Wilderness Class	mess Class I		F	Fitzpatrick Wildemess Class	emess Class	_	Pc	Popo Agie Wildemess Class II	emess Class	===	Wind	Wind River Roadless Area Class II	ess Area Cla	ass II
		Direct Mod	Direct Modeled Impact	Total Concentration	centration1	Direct Modeled Impact	led Impact	Total Concentration	entration,	Direct Mod	Direct Modeled Impact	Total Concentration	centration1	Direct Mode	Direct Modeled Impact	Total Concentration	centration
Alternative	WDR		Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Low Emissions	250	1.659	920.0	14.66	5.08	0.185	0.012	13.20	5.01	0.291	0.025	13.29	5.03	0.278	0.021	13.28	5.02
Case	150	1.351	0.065	14.35	5.07	0.186	0.010	13.17	5.01	0.254	0.021	13.25	5.02	0.255	0.019	13.26	5.02
	75	1.094	0.056	14.09	90'9	0.155	600'0	13.16	5.01	0.224	0.019	13.22	5.02	0.236	0.017	13.24	5.02
High Emissions	250	3,317	0.135	16.32	5.14	0.406	0.017	13.41	5.02	0.460	0.042	13.46	5.04	0.361	0.032	13,36	5.03
Case	150	2.351	0.100	15.35	5.10	0.273	0.014	13.27	5.01	0.349	0.032	13.35	5.03	0.306	0.025	13.31	5.03
	75	1.545	0.072	14.54	5.07	0.179	0.011	13.18	5.01	0.284	0.024	13.26	5.02	0.261	0.020	13.26	5.02
Mitigation Runs	20 2	2.684	0.112	15,68	5.11	0.326	0.015	13.33	5.02	0.377	0.036	13.38	5.04	0.326	0.027	13.33	5.03
	40 5	2.051	0.088	15.05	5.09	0.247	0.013	13,25	5.01	0.295	0.029	13.29	5.03	0.291	0.023	13.29	5.02
	60 2	1,418	0.065	14.42	5.06	0.169	0.010	13.17	5.01	0.216	0.022	13.22	5.02	0.256	0.018	13.26	5.02
	80 2	2 0.785	0.042	13.79	5.04	0.145	0.008	13.14	5.01	0.170	0.015	13.17	5.02	0.221	0.014	13.22	5.01

Direct Modeled Impact Apple Apple Apple		Total Concentration ¹ 24-hr Annual 13.13 5.02						T CHI	Yellowstone National Park Class	DUAL PARK CH	1221	Char	vedstiakie vyliderriess Alea Class	Gas Alva Cit	355
	Annual 0.015 0.015 0.014		tration1	Direct Modeled Impact	led Impact	Total Concentration	entration1	Direct Mode	Direct Modeled Impact	Total Concentration	centration1	Direct Modeled Impact	eled impact	Total Concentration	pentration,
ons 250 150 75 ions 250	0.015	13.13	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
150 75 250 150	0.015	43 43	5.02	0.073	0.007	13.07	5.01	0.060	0.005	13.06	5.01	0.087	0.005	13.09	5.01
75 250 150	0.014	2	5.01	0.063	90000	13.06	5.01	0.055	0.005	13.06	5.00	0.070	0.005	13.07	5.00
150		13.12	5.01	0.056	900.0	13.06	5.01	0.051	0.005	13.05	2.00	0.059	0.004	13.06	5.00
150	0.018	13.23	5.02	0.117	0.008	13.12	5.01	0.100	0.008	13.10	5.01	0.160	0.007	13.16	5.01
	0.016	13.17	5.02	0.089	0.007	13.09	5.01	0.074	0.005	13.07	5.01	0.115	900'0	13.11	5.01
75 0.123	0.015	13.12	5.02	690.0	0.007	13.07	5.01	0.057	0.005	13.06	5.00	0.077	0.005	13.08	9.00
Mitigation Runs 20 ² 0.192	0.017	13.19	5.02	0.100	0,008	13.10	5.01	0.084	900'0	13.08	5.01	0.131	900'0	13.13	5.01
40 2 0.156	0.016	13.16	5.02	0.084	0.007	13.08	5.01	0.068	0.005	13.07	5.01	0.103	9000	13.10	5.01
60 2 0.121	0.015	13.12	5.01	0.068	0.007	13.07	5.01	0.057	0.005	13.06	9,00	0.074	0.005	13.07	5.00
80 2 0.118	0.014	13.12	5.01	0.052	900'0	13.05	5.01	0.050	0.004	13.05	5.00	0.054	0.004	13.05	5.00

Total concentration includes direct modeled impact and background concentration for comparison to NAAQSWAAQS which are 65 µg/m³ on a 24-hour basis and 15 µg/m³ on a 24-hour basis and 15 µg/m³ on an annual basis.

Table C.10.9 - Summary of Maximum Modeled In-field Pollutant Concentrations (ugm³) from Direct Project Sources Within the JIDPA Compared to NAAQS/WAAQS

			NO ₂						SO ₂								PM ₁₀				PM26				
		Direct Modeled Impact	Total Concentration ¹	NAAQS/WAAQS		Direct Modelec	peled	Total	oncentr	Total Concentration1		NAAQS/WAAQS	AAOS	Dire	Direct Modeled Impact		Total Concentration ¹		NAAQS/WAAQS	Direct Modeled Impact		Total Concentration ¹		NAAGS/WAAGS	AAO
temative	WDR	Annual	Annual	Annual	3-hr	24-hr	24-hr Annual	3-hr	24-hr	24-hr Annual	3-hr	24-hr	Annual	1 24-hr	Annual		24-hr Annual		24-hr Annual	24-hr An	Annual 2	24-hr Ar	Annual	24-hr	Annual
Low Emissions Case	250	13.0	16.4	100	20.3	4.1	4.0	152.3	47.1	9.4	1,300	365/260	09/08 0	113.0	15.8	146.0	.0 31.8		150 50	21.3	2.9	34.3	7.9	65	15
	150	11.5	14.9	100	15.4	3.8	4.0	147.4	46.8	4.6	1,300	365/260	09/08 0	103.8	14.6	136.8	8 30.6		150 50	19.2	2.6	32.2	7.6	99	15
	75	9.6	13.0	100	15.4	3.8	0.3	147.4	46.8	9.3	1,300	365/260	09/08 0	97.0	13.6	130.0		29.6 15	150 50	17.7	2.4	30.7	7.4	92	15
High Emissions Case	250	34.2	37.6	100	99.9	20.3	5.0	231.8	63.3	11.0	1,300	365/260	09/08 0	116.1	17.5	148.1	.1 33.5		150 50	25.2	4.7	38.2	7.6	92	15
	150	30.7	34.1	100	75.8	18.5	1.8	207.8	61.5	10.8	1,300	365/260	09/08 0	104.9	16.1	137.9	.9 32.1		150 50	22.0	4.2	35.0	9.2	99	15
	75	24.8	28.2	100	75.8	18.5	4.4	207.8	61.5	10.4	1,300	365/260	09/08 0	97.1	14.9	130.1		30.9 1	150 50	21.9	3.8	34.9	80	99	15
Mitigation Runs	20 2	27.3	30.7	100	79.9	16.2	9.	211.9	59.2	10.6	1,300	365/260	09/08 04	92.9	14.0	125.9		30.0	150 50	20.1	3.7	33.1	8.7	65	15
	40 5	20.5	23.9	100	59.9	12.2	1.2	191.9	55.2	10.2	1,301	365/261	11 80/61	69.7	10.5	102.7		26.5 18	150 50	15.1	2.8	28.1	7.8	65	15
	60 2	13.7	17.1	100	39.9	8.1	0.8	171.9	51.1	8,0	1,300	365/260	09/08 01	46.5	7.0	79.5		23.0 14	150 50	10.1	9.1	23.1	6.9	65	15
	80 3	6.8	10.2	100	20.0	4.1	9.0	152.0	47.1	9.4	1,300	365/260	09/08 0	23.2	3,5	56.2		19.5 14	150 50	5.0	6.0	18.0	5.9	65	15

Total concentration includes direct modeled impact and background concentration.

JIDP % Emissions Reductions

Table C.10.10 - Summary of Maximum Modeled Cumulative In-field Pollutant Concentrations (.ug/m ³) from Direct Project and Regional Sources Within the JIDPA Compared to NAAQS/WAAQS

			NO2						SO ₂							PM ₁₀	90						PM _{2.6}		
		Direct	Total		Direct	Direct Modeled	De.	Total	Teo .					Direct		Total				Mod	Direct	T ₀	Fotal		
		Impact	Concentration	NAAQS/WAAQS	-	Impact		Concentration	ration1		NAAOS	NAAQS/WAAQS		Impact		Concentration1	, uc	NAAQS	NAAQS/WAAQS	Imp	Impact	Concer	Concentration		NAAQS/WAAQS
Alternative	MON	Annual	Annual	Annual	3-hr 24-hr Annual	4-hr Ar		3-hr 24	24-hr Annual	uai 3-hr		24-hr Annual	ual 24	24-hr Annual		24-hr Ann	Annual 24	24-hr	Annual	24-hr	24-hr Annual	24-hr	Annual	24-hr	Annual
Low Emissions Case	250	13.3	16.7	100	20.2	4.0	0.4	152.2 47.0 9.4	0.	-	300 365	365/280 80/	80/60 11	113.1 15.8		146.1 31	31.8	150	90	21.4	5.9	34.4	7.9	99	15
	150	11.7	15.1	100	15.4	3.6	0.4	147.4 46	46.6 9.4		1,300 365	365/260 80/	80/60 10	103.9 14.6		136.9 30	30.6	150	90	19.3	2,6	32.3	7.6	65	15
	75	8.8	13.3	100	15.4	3.6	0.3	147.4 46	46.6 9.3	•	300 365	365/260 80	6 09/08	97.1 13.6		130.1 28	29.6	150	90	17.8	2.4	30.8	7.4	65	15
																							1	1	
High Emissions Case	250	34.4	37.8	100	88.8	20.2	1.9	231.8 63	63.2 10.9		1,300 365	365/260 80/	80/60 11	116.3 17.5		149.3 33	33.5	150	20	25.1	4.7	38.1	9.7	65	15
	150	31.0	34.4	100	75.8	18.4	1.8	207.8 61	61.4 10.8		300 365	365/260 80/	80/60 10	105.0 16.1		138.0 32	32.1 1	150	20	22.0	4.2	35.0	9.2	92	15
	75	25.1	28.5	100	75.8	18.4	1.4	207.8 61	61.4 10.4	4 1,300	365	365/260 80/	80/08	97.3 14.9	Ì	130.3 30	30.9	150	20	21.9	3.8	34.9	8.8	92	15
Mitigation Runs	20 2	27.6	31.0	100	79.8	16.1	1.5	211.8 59	59.1 10.5		300 365	365/260 80	80/08	93.0 14.0		126.0 30	30.0	150	20	20.1	3,8	33.1	80	65	15
	40 5	20.8	24.2	100	59.8	12.1	1.2	191.8 55	55.1 10.2	2 1,301		365/261 80/	80/61 69	69.8 10.5		102.8 26	26.5 1	150	20	15.0	2.8	28.0	7.8	65	15
	60 2	13.9	17.3	100	39.8	8.0	0.8	171.8 51	51.0 9.8		300 365	365/260 80/	80/60 46	46.6 7.0		79.6 23	23.0 1	150	90	10.0	1.9	23.0	6.9	92	15
	80 2	7.1	10.5	100	19.9	3.9	1 4.0	151.9 46	46.9 9.4	4 1,300		365/260 80	80/60 23	23.3 3.5		56.3 18	18.5	150	90	5.0	1.0	18.0	6.0	99	15

Total concentration includes direct modeled impact and background concentration.

Table C.10.11 - Summary of Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources1

Alternative	WDR	Bridger Wilderness Class I	Fitzpatrick Wilderness Class I	Popo Agie Wilderness Class II	Wind River Roadless Area Class II	Grand Teton National Park Class I	Teton Wilderness Class I	Yellowstone National Park Class I	Washakie Wilderness Area Class I
Low Emissions Case	1	0.0334	0.0026	0.0159	0.0095	0.0011	0.0005	0.0004	0.0007
	150	0.0235	0.0018	0.0112	0.0067	0.0008	0.0004	0.0003	0.0005
	75	0.0160	0.0012	0.0075	0.0043	0.0005	0.0002	0.0002	0.0003
High Emissions	250	0.0770	0.0055	0.0354	0.0214	0.0024	0.0011	0.0008	0.0014
Case	150	0.0506	0.0036	0.0232	0.0140	0.0015	0.0007	0.0005	0.0009
	75	0.0312	0.0020	0.0137	0.0077	0.0009	0.0004	0.0003	0.0005
Mitigation Runs	20 2	J	0.0044	0.0283	0.0172	0.0019	0.0009	0.0007	0.0011
	40	_	0.0033	0.0213	0.0129	0.0014	0.0007	0.0005	0.0009
	60 2	0.0308	0.0022	0.0142	0.0086	0.0010	0.0005	0.0003	0.0006
	80 2	U	0.0011	0.0071	0.0043	0.0005	0.0002	0.0002	0.0003

Nitrogen deposition analysis threshold for direct project impacts = 0.005 kg/ha-yr. JIDP % Emissions Reductions

Table C.10.12 - Summary of Maximum Modeled Total Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources

		Bridger Wildemess Class	ness Class I	Fitzpatrick Wilderness Class I	erness Class I	Popo Agie Wilderness Class II	erness Class II	Wind River Roadless Area Class II	ess Area Class II
Alternative	WDR	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³
Low Emissions Case	250	0.0555	1.5555	0.0078	1.5078	0,0280	1.5280	0.0201	1.5201
	150	0.0473	1.5473	0.0070	1.5070	. 0.0234	1.5234	0.0173	1.5173
	75	0.0404	1.5404	0.0064	1.5064	0.0197	1.5197	0.0150	1,5150
High Emissions Case	250	0.0929	1.5929	0.0107	1.5107	0.0476	1.5476	0.0321	1.5321
	150	0.0697	1.5697	0.0088	1.5088	0.0354	1.5354	0.0247	1.5247
	75	0.0502	1.5502	0.0072	1.5072	0.0258	1.5258	0.0184	1.5184
Mitigation Runs	20 2	0.0801	1.5801	0.0096	1.5096	0.0405	1.5405	0.0278	1.5278
	40 2	0.0672	1.5672	0.0085	1,5085	0.0334	1.5334	0.0235	1.5235
	60 2	0.0544	1.5544	0.0074	1.5074	0.0264	1.5264	0.0192	1.5192
	80 2	0.0415	1.5415	0.0063	1.5063	0.0193	1,5193	0.0149	1.5149

		Grand Teton National Park Class	nal Park Class I	Teton Wilderness Class	ness Class I	Yellowstone National Park Class	nal Park Class I	Washakie Wilderness Area Class	ess Area Class I
Alternative	WDR	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³
Low Emissions Case	250	0.0103	1.5103	0.0036	1.5036	0.0026	1.5026	0.0040	1.5040
	150	0.0100	1.5100	0.0035	1.5035	0.0025	1.5025	0.0039	1.5039
	75	0.0098	1,5098	0.0033	1.5033	0.0024	1.5024	0.0037	1.5037
High Emissions Case	250	0.0116	1.5116	0.0042	1.5042	0.0030	1.5030	0.0046	1.5046
	150	0.0107	1.5107	0.0038	1.5038	0.0028	1.5028	0.0042	1.5042
	75	0.0101	1.5101	0.0035	1.5035	0.0025	1.5025	0.0039	1.5039
Mitigation Runs	20 2	0.0111	1.5111	0.0040	1.5040	0.0029	1.5029	0.0044	1.5044
	40 2	0.0107	1.5107	0.0038	1.5038	0.0027	1,5027	0.0041	1.5041
	60 2	0.0102	1.5102	0.0035	1.5035	0.0026	1.5026	0.0039	1.5039
	200	0.0097	1.5097	0 0033	1.5033	0 0024	1 5024	0.0037	1.5037

Nitrogen deposition analysis level of concern for total impacts - 3.00 kg/ha-yr.
JIDP % Emissions Reductions
Includes N deposition value of 1.5 kg/ha-yr measured near Pinedale for the year 2001.

Table C.10.13 - Summary of Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources¹

Alternative	QV.	Bridger Wilderness	Fitzpatrick	Popo Agie	Wind River Roadless	Grand Teton National	Teton Wilderness	Yellowstone National	Washakie Wildemess
Low Emissions Case	250	0.00160	0.00018	000084	0 00007	7 alk Class I	Class	Talk Ciass I	Area Class I
	201	0.00.0	0.000.0	00000	100000	0.0000	4,00004	0.00003	0.00003
	150	0.00100	0.00010	0.00050	0.00029	0.00004	0.00002	0.00002	0.00003
	75	0.00057	0.00005	0.00027	0.00014	0.00002	0.00001	0.00001	0.00001
High Emissions Case	250	0.00770	0.00079	0.00390	0.00226	0.00035	0.00020	0.00013	0.00023
	150	0.00477	0.00048	0.00239	0.00138	0.00021	0.00012	0.00008	0.00014
	75	0.00265	0.00023	0.00125	0.00065	0.00010	0.00006	0.00004	0.00007
Mitigation Runs	20 2	0.00616	0.00063	0.00312	0.00181	0.00028	0.00016	0.00010	0.00018
	40 5	0.00462	0.00047	0.00234	0.00136	0.00021	0.00012	0.00008	0.00014
	90 2	0.00308	0.00032	0.00156	0.00091	0.00014	0.00008	0.00005	0.00009
	80 2	0.00154	0.00016	0.00078	0.00045	0.00007	0.00004	0.00003	0.00005

Sulfur deposition analysis threshold for direct Project impacts = 0.005 kg/ha-yr. JIDP % Emissions Reductions

Table C.10.14 - Summary of Maximum Modeled Total Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources1

		Bridger Wilderness Class I	rness Class I	Fitzpatrick Wilderness Class I	erness Class I	Popo Agie Wilderness Class II	erness Class II	Wind River Roadless Area Class I	ess Area Class II
Alternative	WDR	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³
ow Emissions Case	250	-0.0009	0.7491	-0.0008	0.7492	-0.0021	0.7479	-0.0011	0.7489
	150	-0.0009	0.7491	-0.0008	0.7492	-0.0023	0.7477	-0.0011	0.7489
	75	-0.0009	0.7491	-0.0008	0.7492	-0.0025	0.7475	-0.0011	0.7489
High Emissions Case	250	0.0041	0.7541	-0.0005	0.7495	0.0003	0.7503	-0.0004	0.7496
	150	0.0011	0.7511	-0.0006	0.7494	60000-	0.7491	-0.0010	0.7490
	75	-0.0008	0.7492	-0.0007	0.7493	-0.0018	0.7482	-0.0011	0.7489
Mitigation Runs	20 2	0,0025	0.7525	-0.0006	0.7494	-0.0003	0.7497	-0.0008	0.7492
•	40 2	0	0.7510	-0.0006	0.7494	-0.0009	0.7491	-0.0010	0.7490
	60 2	7	0.7495	-0.0007	0.7493	-0.0015	0.7485	-0.0010	0.7490
	80 2	ľ	0.7491	-0.0008	0,7492	-0.0021	0.7479	-0.0011	0.7489

		Grand Teton National Park Class I	onal Park Class I	Teton Wilderness Class	ness Class I	Yellowstone National Park Class	onal Park Class I	Washakie Wilderness Area Class	less Area Class I
lternative	WDR	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³	Modeled Impact	Total Impact ³
ow Emissions Case	250	0.0034	0.7534	6000.0	0.7509	0.0010	0.7510	-0.0001	0.7499
	150	0.0034	0.7534	0.0008	0.7508	0.0010	0.7510	-0.0001	0.7499
	75	0.0034	0.7534	0.0008	0.7508	0.0010	0.7510	-0.0001	0.7499
High Emissions Case	250	0.0037	0.7537	0.0010	0.7510	0.0011	0.7511	-0.0001	0.7499
	150	0.0036	0.7536	0,0009	0.7509	0.0011	0.7511	-0.0001	0.7499
	75	0.0035	0.7535	0.0009	0.7509	0.0010	0.7510	-0.0001	0.7499
Aitigation Runs	20 2	0.0037	0.7537	0.0010	0.7510	0.0011	0.7511	-0.0001	0.7499
	40 2		0.7536	0.0009	0.7509	0.0011	0.7511	-0.0001	0.7499
	60 2	0.0035	0.7535	0.0009	0.7509	0.0010	0.7510	-0.0001	0.7499
	80 2	0.0034	0.7534	0.0009	0.7509	0.0010	0.7510	-0.0001	0.7499

Sulfur deposition analysis level of concern for total impacts = 5.0 kg/ha-y.

² JIDP % Emissions Reductions ³ Includes S deposition value of 0.75 kg/ha-yr measured near Pinedale for the year 2001. Note: Negative results reflect a net decrease in cumulative SO 2 emissions.

Table C.10.15 - Summary of Maximum Modeled Change in ANC (μeq/L) at Acid Sensitive Lakes from Direct Project Sources

		Black J	Black Joe Lake	Deep Lake	Lake	Hopps Lake	Lake	Lazy Bo	Lazy Boy Lake	Upper Frozen Lake	zen Lake	Lowers	Lower Saddlebag	Koss	Ross Lake
		Bridger Wild	Bridger Wilderness Class I	Bridger Wilderness Class I	filderness	Bridger Wilderness Class I	filderness ss I	Bridger Wilderness Class I	ilderness ss I	Bridger Wilderness Class I	fiderness is I	Popo Agie Cla	Popo Agie Wilderness Class II	Fitzpatrick Cla	Fitzpatrick Wilderness Class I
		ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC	ANC
Alternative	WDR	Change (µeq/L)	Change (%)	Change (µeq/L)	Change (%)	Change (µeq/L)	Change (%)	Change (µeq/L)	Change (%)	(heq/L)	Change (%)	(meq/L)	(%)	(heq/L)	(%)
Level of Acceptable Change (meq/L)	1	6.70	1	5.99	1	6.99	1	1.00	1	1.00	1	5.55	1.	5.35	1
Background ¹	1	0.79	ı	6.69	ı	6.69	;	18.8	1	5.0	1	55.5	1	53.5	1
Low Emissions Case	250	0.100	0.15%	0.109	0.18%	0.021	0.03%	0.007	0.04%	0.135	2.71%	0.124	0.22%	0.007	0.01%
	150	0.071	0.11%	0.077	0.13%	0.014	0.02%	0.005	0.03%	0.095	1.90%	0.087	0.16%	0.005	0.01%
	75	0.047	0.07%	0.051	0.08%	600.0	0.01%	0.003	0.02%	0.062	1.23%	0.058	0.10%	0.003	0.01%
High Emissions Case	250	0.234	0.35%	0.257	0.43%	0.048	0.07%	0.016	0.08%	0.322	6.43%	0.283	0.51%	0.015	0.03%
	150	0.151	0.23%	0.167	0.28%	0.030	0.04%	0.010	0.05%	0.210	4.19%	0.183	0.33%	0.010	0.05%
	75	0.087	0.13%	0.093	0.16%	0.016	0.02%	900.0	0.03%	0.117	2.33%	0.109	0.20%	900.0	0.01%
Mitigation Runs	20 1	0.187	0.28%	0.206	0.34%	0.038	0.05%	0.012	0.07%	0.257	5.15%	0.226	0.41%	0.012	0.02%
	40 1	0.141	0.21%	0.154	0.26%	0.029	0.04%	0.009	0.05%	0.193	3.86%	0.170	0.31%	0.009	0.05%
	60 1	0.094	0.14%	0.103	0.17%	0.019	0.03%	900.0	0.03%	0.129	2.57%	0.113	0.20%	9000	0.01%
	80	0.047	0.07%	0.051	%60.0	0.010	0.01%	0.003	0.02%	0.064	1.29%	0.057	0.10%	0.003	0.01%

¹ JIDP % Emissions Reductions

Table C.10.16 - Summary of Maximum Modeled Cumulative Change in ANC (μ eq/L) at Acid Sensitive Lakes from Direct Project and Regional Sources

			loe Lake erness Class I		p Lake lemess Class I	Hobbs Bridger Wilde	s Lake erness Class I	Lazy B Bridger Wilde	ness Class I
Alternative	WDR	ANC Change (µeq/L)	Percent ANC Change (%)	ANC Change (µeq/L)	Percent ANC Change (%)	ANC Change (µeq/L)	Percent ANC Change (%)	ANC Change (µeq/L)	Percent ANC Change (%)
_evel of Acceptable Change (meq/L)	-	6.70	-	5.99	-	6.99	-	1.00	-
Background ANC	-	67.0	-	59.9	-	69.9	-	18.8	-
Low Emissions Case	250	0.180	0.27%	0.190	0.32%	0.061	0.09%	0.031	0.17%
	150	0.152	0.23%	0.160	0.27%	0.055	0.08%	0.029	0.16%
	75	0.130	0.19%	0.135	0.23%	0.050	0.07%	0.028	0.15%
High Emissions Case	250	0.299	0.45%	0.321	0.54%	0.084	0.12%	0.038	0.20%
	150	0.224	0.33%	0.239	0.40%	0.068	0.10%	0.034	0.18%
	75	0.166	0.25%	0.172	0.29%	0.057	0.08%	0.030	0.16%
Mitigation Runs	20 1	0.256	0.38%	0.274	0.46%	0.075	0.11%	0.036	0.19%
	40 ¹	0.213	0.32%	0.227	0.38%	0.067	0.10%	0.033	0.17%
	60 ¹	0.170	0.25%	0.180	0.30%	0.059	0.08%	0.030	0.16%
	80 ¹	0.127	0.19%	0.133	0.22%	0.050	0.07%	0.028	0.15%

		Upper Fr	ozen Lake	Lower	Saddlebag	Ross	Lake
		Bridger Wilde	mess Class I	Popo Agie Wil	Idemess Class II	Fitzpatrick Wik	lemess Class I
Alternative	WDR	ANC Change (μeq/L)	Percent ANC Change (%)	ANC Change (µeq/L)	Percent ANC Change (%)	ANC Change (µeq/L)	Percent ANC Change (%)
Level of Acceptable Change (meq/L)	-	1.00	-	5.55	-	5.35	-
Background ANC		5.0	-	55.5	-	53.5	-
Low Emissions Case	250	0.220	4.40%	0.215	0.39%	0.032	0.06%
	150	0.182	3.64%	0.179	0.32%	0.030	0.06%
	75	0.150	3.00%	0.152	0.27%	0.029	0.05%
High Emissions Case	250	0.387	7.74%	0.354	0.64%	0.039	0.07%
	150	0.283	5.66%	0.264	0.48%	0.034	0.06%
	75	0.199	3.98%	0.197	0.36%	0.031	0.06%
Mitigation Runs	20 1	0.326	6.51%	0.303	0.55%	0.036	0.07%
	40 ¹	0.267	5.33%	0.251	0.45%	0.034	0.06%
	60 ¹	0.208	4.16%	0.199	0.36%	0.031	0.06%
	80 ¹	0.149	2.98%	0.147	0.27%	0.028	0.05%

¹ JIDP % Emissions Reductions

Table C.10.17 - Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources Using FLAG Background Data

		Bridge	r Wildemess	Class I	Fitzpatri	ck Wildemes	s Class I	Popo Ag	ie Wildernes	s Class II	Wind Rive	r Roadless A	rea Class II
Alternative	WDR	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Adv (days)	Maximum Visibility Impact (Δdv)		Number of Days > 1.0	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 Δdv (days)	Number of Days > 1.0 Δdv (days)	Maximum Visibility Impact (Δdv).	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Δdv (days)
ow Emissions Case	250	2.96	22	9	0.53	2	0	0.51	2	0	0.43	0	0
	150	2.23	13	5	0.37	0	0	0.37	0	0	0.31	0	0
	75	1.59	9	2	0.25	0	0	0.28	0	0	0.22	0	0
High Emissions Case	250	5.92	67	23	1.34	6	2	1.21	17	2	1.06	10	1
	150	4.23	38	15	0.88	3	0	0.79	3	σ	0.69	2	0
	75	2.61	17	8	0.50	0	0	0.47	0	0	0.41	0	0
Mitigation Runs	20 1	4.98	52	19	1.08	4	1	0.98	11	0	0.85	6	0
	40 1	3.95	37	14	0.82	3	0	0.74	2	0	0.65	1	0
	60 ¹	2.80	20	9	0.56	1	0	0.50	1	0	0.44	0	0
	80 ¹	1.50	9	2	0.28	0	0	0.25	0	0	0.22	0	0

		Grand Tete	on National F	Park Class I	Teton	Wildemess	Class I	Yellowsto	ne National F	ark Class I	Washakie	Wilderness	Area Class I
Alternative	WDR	Maximum Visibility Impact (Δdv)		Number of Days > 1.0 \(\Delta\text{dv} \) (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 Δdv (days)		Maximum Visibility Impact (Δdv)		Number of Days > 1.0 Δdv (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5	Number of Days > 1.0 Δdv (days)
Low Emissions Case	250	0.31	0	0	0.13	0	0	0.15	0	0	0.23	0	0
	150	0.22	0	0	0.10	0	0	0.11	0	0	0.17	0	. 0
	75	0.15	0	0	0.06	0	0	0.07	0	0	0.11	0	0
High Emissions Case	250	0.65	1	0	0.27	0	0	0.30	0	0	0.47	0	0
	150	0.44	0	0	0.18	0	0	0.20	0	0	0.31	0	0
	75	0.26	0	0	0.10	0	0	0.12	0	0	0.18	0	0
Mitigation Runs	20 ¹	0.53	1	0	0.22	0	0	0.24	0	0	0.38	0	0
	40 ¹	0.40	0	0	0.17	0	0	0.18	0	. 0	0.28	0	0
	60 ¹	0.27	0	0	0.11	0	0	0.12	0	0	0.19	0	0
	80 1	0.13	0	0	0.06	0	0	0.06	0	0	0.10	0	. 0

Note: Adv = change in deciview.

1 JIDP % Emissions Reductions

Table C.10.18 - Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project Sources Using IMPROVE Background Data

Maximum Number of Number o														
The control of colors Colo			Maximum Visibility Impact	Number of Days > 0.5 Adv	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5 Adv	Zã	Maximum Visibility Impact	Number of Days > 0.5 Adv	Number of Days > 1.0
150 2.46 19 6 0.43 0 0 0	temative	WDR 250	(Adv)	(days)	(days)	(Adv)	(days)	(days)	(Adv)	(days)	(days)	(Adv) 0.50	(days)	(days)
75 1,17 10 2 0.29 0 0		150	2.46	18	9	0.43	0	0	0.43	0	0	0.35	0	0
150 444 70 31 154 9 3 154		75	1.77	10	7	0.29	0	0	0.31	0	0	0.25	0	0
150 4.64 46 17 1.01 4 1 1 1 1 1 1 1 1	igh Emissions Case	250	6.44	70	31	1,54	0	ю	1.36	19	2	1.22	15	-
75 287 21 7 0.58 1 0		150	4.84	46	17	1.01	4	-	0.90	40	0	0.80	eo	0
434 52 20 128 4 1		75	2.97	12	7	0.58	-	0	0.55	7	0	0.47	0	0
1,26 2,06 20 0.054 2 0.05	tigation Runs	201	5,45	25	50	1.25	4		1.11	12	2	0.98	80	0
1,566 5,09 5,00 5,00 5,00 6,00		40 1	4.34	38	15	98.0	6	0	0.84	4	0	0.75	1	0
1,68 9 3 0.23 0 0		60 1	3.09	20	6	0.64	7	0	0.57	7	0	0.50	-	0
Control Tetron National Park Class Tetron Wildermess Class		108	1.66	o	60	0.33	0	0	0.29	0	0	0.26	0	0
Maximum Mischer of Number of Maximum Number of			Grand Tet	on National Pa	ark Class I	Teton	Wilderness C	lass	Yellowsto	ne National Pa	ark Class I	Washakie	Washakie Wildemess Area Class I	rea Class I
			Maximum Visibility	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility	Number of Days > 0.5	Number of Days > 1.0
250 0.53 0 0 0.10 0.10 0.10 0.10 0.10 0.10 0.10		2	Impact	Λρ∇	App	Impact	VDA	VPA	Impact	VDA V	App.	Impact	ADA (aveh)	VDA VDA
150 0.23 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0	w Emissions Case	250	0.31	0	0	0.14	0	0	0.15	0	0	0.23	0	0
75 0.15 0 0.06 0 0.08 0 0 250 0.06 1 0 0.28 0 0 150 0.04 0 0 0.18 0 0 201 0.05 1 0 0.10 0 0 401 0.40 0 0 0.77 0 0 402 0.27 0 0 0.77 0 0 401 0.27 0 0 0.77 0 0		150	0.23	0	0	0.10	0	0	0.11	0	0	0.17	0	0
250 0.66 1 0 0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		75	0.15	0	0	90.0	0	0	0.07	0	0	0.11	0	0
150 045 0 0 0 0.18 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gh Emissions Case		99.0	-	0	0.28	0	0	0.31	0	0	0.48	0	0
75 026 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		150	0.45	0	0	0.18	0	0	0.20	0	0	0.32	0	0
201 0.55 11 0 0.22 0 0 0 40' 0.40 0 0 0 0.17 0 0 0 0 0 0.17 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		75	0.26	0	0	0.10	0	0	0.12	0	0	0.18	0	0
0.40 0 0.47 0 0 0.27 0 0 0.41	tigation Runs	20 1	0.53	-	0	0.22	0	0	0.25	0	0	0.38	0	0
0.27 0 0 0.11 0 0		40,	0.40	0	0	0.17	0	0	0.19	0	0	0.29	0	0
		60 1	0.27	0	0	0.11	0	0	0.12	0	0	0.19	0	0
0.00		108	0.14	0	0	90.0	0	0	90.0	0	0	0.10	0	0

Note: ∆dv = change in deciview.
¹ JIDP % Emissions Reductions

Table C.10.19 - Summary of Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources Using FLAG Background Data

		Bridge	Bridger Wilderness Class I	Class I	Fitzpatr	Fitzpatrick Wildemess Class I	Class I	Popo Ag	Popo Agie Wilderness Class II	Class II	Wind Rive	Wind River Roadless Area Class II	ea Class II
		Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5 Adv	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0
Attemative	WDR	(ADV)	(days)	(days)	(\p\p\)	(days)	(days)	(ADA)	(days)	(days)	(ADA)	(days)	(days)
Low Emissions Case	250	3.43	37	11	0.74	so.	0	0.83	80	0	1.07	9	1
	150	2.74	27	80	09.0	60	0	0.73	9	0	0.97	9	0
	75	2.30	20	4	0.52	-	0	99.0	8	0	0.89	4	0
High Emissions Case 250	250	6.28	80	32	1.37	10	6	1.45	28	4	1.39	22	6
	150	4.66	62	18	0.93	7	0	1.06	11	1	1.15	15	2
	75	3.11	32	#	99.0	4	0	0.78	7	0	0.85	40	0
Mitigation Runs	20 2	5,38	71	25	1.12	O)	2	1.23	22	69	1.26	60	2
	40 3	4.39	52	16	98.0	7	0	1.01	15	-	1.13	11	-
	60 2	3.29	34	11	99'0	4	0	0.79	7	0	1.00	4	0
	80 2	2.28	19	40	0.49	0	0	0.64	2	0	0.86	4	0

		Grand Tet	Grand Teton National Park Class	ark Class I	Teton	Teton Wildemess Class I	lass i	Yellowstor	Yellowstone National Park Class I	rk Class I	Washakie	Washakie Wilderness Area Class I	rea Class I
•		Maximum Visibility Impact	Number of Days > 0.5 Adv	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Zā	Maximum Visibility Impact	Number of Days > 0.5	Žα
Atternative	WDR	(Adv)	(days)	(days)	(ADA)	(days)	(days)	(Adv)	(days)	(days)	(Adv)	(days)	(days)
Low Emissions Case 250	150	0.40	0 0	0 0	0.20	0 0	0 0	0.20			0.28	. 0	0 0
	75	0.36	0	0	0.18	0	0	0.18	0	0	0.24	0	0
High Emissions Case 250	250	0.82	ю	0	0.34	0	0	0.39	0	0	0.57	-	0
	150	0.61	1	0	0.27	0	0	0.29	0	0	0.41	0	0
	75	0.43	0	0	0.21	0	0	0.21	0	0	0.28	0	0
Mitigation Runs	20 2	0.70	-	0	0.30	0	0	0.33	0	0	0.48	0	0
	40 5	0.57	-	0	0.26	0	0	0.27	0	0	0.38	0	0
	60 2	0.44	0	0	0.21	0	0	0.21	0	0	0.30	0	0
	80 2	0.34	0	0	0.17	0	. 0	0.17	0	0	0.23	0	0

¹ Adv = change in deciview.
² JIDP % Emissions Reductions

Table C.10.20 - Summary of Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Direct Project and Regional Sources Using IMPROVE Background Data

		Bridge	Bridger Wildemess Class	Slass	Fitzpatr	Fitzpatrick Wildemess Class I	Class I	Popo Ag	Popo Agie Wilderness Class II	Class II	Wind Rive	Wind River Roadless Area Class II	ea Class II
Affernative	NO.	Maximum Visibility Impact (Adv)	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Adv (days)	Maximum Visibility Impact (Adv)	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Adv (days)	Maximum Visibility Impact (Adv)	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Adv (days)	Maximum Visibility Impact (Adv)	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Adv (days)
Low Emissions Case	250	3.78	44	15	0.85	7	0	0.97	13	0	1.19	11	2
	150	3.03	34	Ф	0.69	4	0	0.85	80	0	1.08	7	6
	75	2.63	24	φ	09.0	73	0	0.76	ဖ	0	0.99	99	0
High Emissions Case	250	6.82	06	39	1.58	13	6	1.67	31	9	1.54	22	5
	150	5.09	63	24	1.07	0	2	1.22	21	8	1.28	17	7
	75	3.42	40	13	0.78	φ	0	0.90	±	0	1.06	10	2
Mitigation Runs	20 2	5.87	73	29	1.29	12	8	1.42	56	4	1.40	20	60
	40 5	8.4	28	21	1.00	ø	0	1.16	21	60	1.26	15	2
	60 2	3.62	4	15	97.0	9	0	0.92	£	0	1.11	10	2
	80 2	2.62	21	9	0.57	2	0	0.75	4	0	0.96	4	0

	,	Grand Tel	Grand Teton National Park Class I	irk Class I	Teton	Teton Wildemess Class I	ass	Yellowsto	Yellowstone National Park Class I	rk Class I	Washakie	Washakie Wilderness Area Class I	rea Class I
		Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0
Alternative	WDR	(ADV)	(days)	(days)	(APV)	(days)	(days)	(AdV)	(days)	(days)	(Adv)	(days)	(days)
Low Emissions Case	250	0.49	0	0	0.23	0	0	0.25	0	0	0.33	0	0
	150	0.40	0	0	0.20	0	0	0.20	0	0	0.28	0	0
	75	0.36	0	0	0.18	0	0	0.18	0	0	0.24	0	0
High Emissions Case	250	0.83	6	0	0.34	0	0	0.40	0	0	0.58	-	0
	150	0.62	-	0	0.27	0	0	0.30	0	0	0.42	0	0
	75	0.44	0	0	0.21	0	0	0.21	0	0	0.30	0	0
Mitigation Runs	20 2	0.70	7	0	0.30	0	0	0.34	0	0	0.48	0	0
	40 5	0.58		0	0.26	0	0	0.28	0	0	0.39	0	0
	60 2	0.45	0	0	0.22	0	0	0.22	0	0	0.30	0	0
	80 2	0.35	0	0	0.17	0	0	0.18	0	o	0.23	0	0

Δdv = change in deciview.

2 JIDP % Emissions Reductions

Table C.10.21 - Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Direct Project Sources Using FLAG Background Data

		Big Piney	iney	Big Sandy	ndy	Boulder	ler	Bronx	X	Cora	ra
A Paration	Š	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)
Low Emissions Case		ı	2	2.64	17	2.01	7	1,40	-	2.66	-
	150	121	-	1.97	00	1.46	3	1.01	-	1.95	-
	75	0.85	0	1.43	2	0.98	0	99.0	0	1.28	-
High Emissions Case	250	3,45	21	5.28	99	4.06	33	3.37	7	6.00	11
	150	2.36	11	3.76	58	2.84	21	2.34	-	4.32	60
	75	1.35	2	2.49	16	1.75	7	1.35	1	2.58	-
Mitigation Runs	20 2	2.85	16	4.42	38	3.37	25	2.78	-	5.08	90
	40 5	2 2.21	60	3.48	28	2.63	17	2.15	-	4.01	-
	60 2	1.63	2	2.45	17	1.83	80	1.48	-	2.85	-
	80 2	2 0.79	0	1.30	-	0.95	0	77.0	0	1.52	-

		Daniel	leit	Farson	no	Labarge	-ge	Mema	na	Pinedale	dale
Alternative	NO.	Maximum Visibility impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact (Adv) ¹	Number of Days > 1.0 Adv¹ (days)	Maximum Visibility Impact (Adv) ¹	Number of Days > 1.0 Adv ¹ (days)
Low Emissions Case	250		1	1.93	5	1.10	2	0.65	0	3.60	2
	150	1.54	-	1.36	6	0.78	0	0.48	0	2.69	-
	75	1.01	+	0.82	0	0.51	0	0.32	0	1.83	-
High Emissions Case	250	4.89	16	4.33	10	2.27	9	1.43	4	7.66	92
	150	3.46	60	2.96	60	1.52	2	0.98	0	5.67	7
	75	2.04	-	1.87	4	0.88	0	0.57	0	3.52	-
Mitigation Runs	20 2	4.09	ø.	3.60	80	1.85	9	1.16	2	6.53	14
	40 2	3.21	2	2.82	7	1.42	2	0.88	0	5.25	S
	60 2	2.25	1	1.96	9	0.97	0	0.60	0	3.79	2
	80 2	1.19	1	1.03	-	0.50	0	0.30	0	2.07	-

¹ ∆dv ≈ change in deciview.
² JIDP % Emissions Reductions

Table C.10.22 - Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Direct Project Sources Using IMPROVE Background Data

		Big Piney	iney	Big Sandy	indy	Boulder	der	Bronx	UX	Cora	ra
			Number of								
		Maximum Visibility Impact	Days > 1.0								
Utemative	WDR	(Adv)	(days)	(\pq\)	(days)	(\pq)	(days)	(ADV)	(days)	(ADA)	(days)
Low Emissions Case	250	1.89	4	2.92	21	2.30	10	1.60	-	3.03	1
	150	1.40	2	2.18	13	1.67	4	1.16	+	2.23	-
	75	0.98	0	1.58	6	1.12	8	92.0	0	1.47	-
High Emissions Case	250	3.93	18	5.76	62	4.58	30	3.82	ø	6.70	4.
	150	2.71	13	4.13	33	3.23	21	2.67	-	4.87	10
	75	1.56		2.75	. 20	2.01	7	1.56	-	2.94	+
Mitigation Runs	20 3	3.25	91	4.84	45	3.82	26	3.16	2	5.68	Ф
	40 5	2.53	12	3.83	27	2.99	21	2.46	1	4.53	8
	60 2	1.76	2	2.71	19	2.09	Ф	1.70	-	3.24	-
	80 2	0.92	0	1,45	4	1.10	2	0.89	0	1.75	-

		Daniel	lei	Farson	no	Labarge	-co-	Merna	ma	Pine	Pinedale
			Number of		Number of		Number of		Number of		Number of
		Maximum Visibility Impact	Days > 1.0	Maximum Visibility Impact	_						
Attemative	WDR		(days)	(404)	(days)	(\pv)	(days)	(\DQ)	(days)	(ADA)	(days)
Low Emissions Case	250	2.42	1	2.21	2	1.27	2	92.0	0	4.07	3
	150	1.77	-	1.57	45	06'0	0	0.55	0	3.07	64
	75	1.17	-	1.06	2	0.59	0	0.37	0	2.09	-
High Emissions Case	250	5.50	15	4.88	13	2.59	v,	1.64	vn	8.48	21
	150	3.92	un.	3.37	60	1.74	4	1.13	2	6.34	60
	75	2.33	-	2.14	vs.	1.02	-	99'0	0	3,98	7
Mitigation Runs	20 2	4.61	13	4.08	10	2.12	4	1.34	en	72.7	16
	40 2	3.64	4	3.20	80	1,63	6	1.02	-	5.89	49
	60 2	2.57	-	2.25	\$	1.12	2	69'0	0	4.28	8
	80 2	1.37	-	1.19	-	0.57	0	0.35	0	2.37	-

1 Adv = change in deciview.
2 JIDP % Emissions Reductions

Table C.10.23 - Summary of Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Direct Project and Regional Sources Using FLAG Background Data

		Big Piney	iney	Big Sandy	andy	Boulder	der	Bronx	nx	Cora	ra
Afternative	WO.	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact	Number of Days > 1.0 Δdv ¹ (days)	Maximum Visibility Impact (Δdv) ¹	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact (Δdv)	Number of Days > 1.0 Adv ¹ (days)
Low Emissions Case	250		16	3.16	31	3.17	18	1.46	-	2.75	9
	150	2.09	13	2.51	11	2.68	1	1.08	-	2.04	7
	75	2.04	os .	2.00	10	2.78	7	0.73	0	1.38	-
High Emissions Case	250	3.81	34	5.67	49	4.97	38	3.42	12	6.07	16
	150	2.76	24	4.22	43	3.87	28	2.40	2	4.40	12
	75	2.11	5	3.01	25	2.87	4	1,42	1	2.67	7
Mitigation Runs	20 2	3.23	28	4.85	53	4.36	34	2.83	9	5.13	13
	40 3	2.61	21	3,96	35	3.71	25	2.21	-	4.09	7
	60 2	2.20	41	2.97	27	3.02	16	1.55	-	2.93	40
	80 2	1,99	80	1,88	6	2.72	9	0.84	0	1.62	-

		Dar	Daniel	Farson	ou	Labarge	rge	Merna	na	Pinedale	dale
Alfernative	NO.	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact (Adv)	Number o Days > 1. Adv ¹ (days)	Maximum Do Visibility Impact	Number of Days > 1.0 Adv ¹ (days)	Maximum Visibility Impact (Adv) ¹	Number of Days > 1.0 Δdv ¹ (days)
Low Emissions Case	250		9	2.42	11	2.50		66.0	0	3.70	80
	150	1.63	-	1.94	10	2.24	9	96.0	0	2.80	80
	75	11.11	-	1.71	10	2.02	9	0.94	0	1.94	9
High Emissions Case	250	4.95	21	4.48	19	3.51	15	1.68	o	7.73	23
	150	3.54	14	3.14	12	2.86	1	1.26	9	5.75	16
	75	2.13	69	2.09	10	2.33	9	0.97	0	3.62	80
Mitigation Runs	20 2	4.15	16	3.77	15	3.14	4	1.42	9	6,60	19
	40 2	3.29	14	2.99	12	2.77	11	1.16	4	5.34	4
	60 2	2.33	8	2.16	10	2.40	7	0.97	0	3,89	60
	80 2	1.28	1	1.63	60	2.02	9	0.83	0	2.19	\$

Adv = change in deciview.

2 JIDP % Emissions Reductions

Table C.10.24 - Summary of Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Direct Project and Regional Sources Using IMPROVE Background Data

		Big Piney	ney	Big Sandy	indy	Boulder	der	Bronx	UX.	Cora	2
		Maximum Visibility Impact	Number of Days > 1.0								
Alternative	WDR 250	(Adv) 2.57	(days)	(Adv) ³	(days)	(Adv) ¹	(days)	(Adv) 1.68	(days)	(Adv)	(days)
	150	2.39	15	2.78	23	3.27	=	1.24	-	2.34	· vo
	75	2.33	13	2.22	13	3.16	6	0.84	0	1.58	60
High Emissions Case	250	4.32	38	8.18	74	5.58	40	3.88	15	6.77	17
	150	3.16	25	4.63	90	4.38	26	2.73	40	4.96	13
	75	2.41	18	3.32	58	3.27	15	1.63	-	3.04	7
Mitigation Runs	20 2	3.68	30	5.30	59	4.91	32	3.22	12	5.75	16
	40 5	2.99	24	4.37	40	4.20	22	2.53	49	4.62	12
	60 2	2.51	11	3.28	30	3.43	11	1.78	-	3.33	7
	80 2	2.28	13	2.13	12	3.09	æ	0.97	0	1.86	2

		Daniel	liel	Farson	on	Labarge	- ag	Mema	та	Pinedale	dale
		Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0 Adv ¹						
Alternative	WDR	(ADA)	(days)	(\pq\)	(days)	(ADA)	(days)	(ADV)	(days)	(\pq)	(days)
Low Emissions Case	250	2.52	11	2.68	11	2.85	11	1.11	4	4.18	80
	150	1.87	9	2.22	0	2.56	6	1.07	-	3.19	60
	75	1.27	-	1.96	10	2.31	9	1.04	-	2.23	7
High Emissions Case	250	5.56	23	5.05	12	3.97	16	1.93	10	8.56	27
	150	4.00	16	3.56	15	3.25	14	1.45	9	6.43	18
	75	2.43	7	2.39	11	2.66	o	1.08	-	4.09	80
Mitigation Runs	20 2	4.69	9	4.26	9	3.57	4.	1.64	on	7.35	23
	40 2	3.73	16	3,40	4	3.15	12	1.35	9	5.98	15
	60 2	2.68	ø	2.46	17	2.74	on .	1.08	2	4.39	ø
	80 2	1.47	2	1.87	10	2.30	9	1.03	-	2.50	9

1 Adv = change in deciview.
2 JIDP % Emissions Reductions

C-240

APPENDIX D

EARLY PROJECT DEVELOPMENT STAGE EMISSIONS INVENTORY

The following is a list of the tables included within this appendix:

- Table D.1.1 Early Project Development Stage Modeling Emissions
- Table D.1.2 Jonah Field Drilling Emissions AP-42 Straight Drilling
- Table D.1.3 Jonah Field Drilling Emissions Tier 1 Straight Drilling
- Table D.1.4 Jonah Field Drilling Emissions Tier 2 Straight Drilling
- Table D.1.5 Jonah Field Drilling Emissions AP-42 Directional Drilling
- Table D.1.6 Jonah Field Drilling Emissions Tier 1 Directional Drilling
- Table D.1.7 Jonah Field Drilling Emissions Tier 2 Directional Drilling
- Table D.1.8 Jonah Field Completion Flaring Emissions
- Table D.1.9 Jonah Field Summary 2002
- Table D.1.10 Jonah Field Summary 2006
- Table D.1.11 Jonah Field Summary 2006-2002
- Table D.1.12 Jonah Field Expanded Field Operators Summary 2006
- Table D.1.13 Pinedale Anticline Drilling Emissions Manufacturer's/AP-42 Rig #232
- Table D.1.14 Pinedale Anticline Drilling Emissions Tier 1 Rig #232
- Table D.1.15 Pinedale Anticline Drilling Emissions Manufacturer's/AP-42 Rig #235
- Table D.1.16 Pinedale Anticline Drilling Emissions Tier 1 Rig #235
- Table D.1.17 Pinedale Anticline Drilling Emissions Manufacturer's/AP-42 Rig #236
- Table D.1.18 Pinedale Anticline Drilling Emissions Tier 1 Rig #236
- Table D.1.19 Pinedale Anticline Drilling Emissions Tier 1 Caza Rig 85
- Table D.1.20 Pinedale Anticline Drilling Emissions Tier 1 Caza Rig 86
- Table D.1.21 Pinedale Anticline Drilling Emissions Tier1/AP-42 Caza Rig 24
- Table D.1.22 Pinedale Anticline Drilling Emissions Tier 1 Caza Rig 24
- Table D.1.23 Pinedale Anticline Drilling Emissions AP-42 Summer Rigs
- Table D.1.24 Pinedale Anticline Drilling Emissions Tier 1 Summer Rigs
- Table D.1.25 Pinedale Anticline Drilling Emissions AP-42 Other Winter Rigs
- Table D.1.26 Pinedale Anticline Drilling Emissions Tier 1 Other Winter Rigs
- Table D.1.27 Pinedale Anticline Completion Flaring Emissions
- Table D.1.28 Pinedale Anticline Summary 2002

- Table D.1.29 Pinedale Anticline Summary 2006
- Table D.1.30 Pinedale Anticline Summary 2006-2002
- Table D.1.31 Riley Ridge Drilling Emissions AP-42
- Table D.1.32 Riley Ridge Drilling Emissions Tier 1
- Table D.1.33 Riley Ridge Completion Flaring Emissions
- Table D.1.34 Riley Ridge Summary 2002
- Table D.1.35 Riley Ridge Summary 2006
- Table D.1.36 Riley Ridge Summary 2006-2002
- Table D.1.37 South Piney Drilling Emissions AP-42 CBM Wells
- Table D.1.38 South Piney Drilling Emissions Tier 1 CBM Wells
- Table D.1.39 South Piney Drilling Emissions AP-42 Deep Wells
- Table D.1.40 South Piney Drilling Emissions Tier 1 Deep Wells
- Table D.1.41 South Piney Completion Flaring Emissions CBM Wells
- Table D.1.42 South Piney Completion Flaring Emissions Deep Wells
- Table D.1.43 South Piney Summary 2002
- Table D.1.44 South Piney Summary 2006
- Table D.1.45 South Piney Summary 2006-2002
- Table D.1.46 Jack Morrow Hills Drilling Emissions AP-42
- Table D.1.47 Jack Morrow Hills Drilling Emissions Tier 1
- Table D.1.48 Jack Morrow Hills Completion Flaring Emissions
- Table D.1.49 Jack Morrow Hills Summary 2002
- Table D.1.50 Jack Morrow Hills Summary 2006
- Table D.1.51 Wildcat Rigs Drilling Emissions AP-42
- Table D.1.52 Wildcat Rigs Drilling Emissions Tier 1
- Table D.1.53 Wildcat Rigs Summary 2006
- Table D.1.54 Compression Increases Falcon Compressor Station
- Table D.1.55 Compression Increases Luman Compressor Station
- Table D.1.56 Compression Increases Bird Canyon Compressor Station
- Table D.1.57 Compression Increases Jonah Compressor Station
- Table D.1.58 Compression Increases Paradise Compressor Station

Table D.1.59 Compression Increases – Gobblers Knob Compressor Station

Table D.1.60 Compression Increases – Jack Morrow Hills Compressor Station

Table D.1.61 MSI Increases - CO Sources

Table D.1.62 MSI Increases – WY Sources

Table D.1.63 Included RFFA

Table D.1.1
Jonah Infill Drilling Project
Early Project Development Stage Modeling Emissions
(Tons Per Year)

14-	Direct Project	Develepment Stage Cases Non-Project Regional Emissions
Production Emissions		
Wells ¹		
NO _x	31.7	_
SO ₂	0.0	
PM ₁₀	6.1	
PM ₂₅	6.1	1 2
25	···	
Traffic ²		
NO _x	5.9	
SO ₂	0.2	
PM ₁₀	160.1	
PM _{2.5}	24.3	_
-		
Compression ³		
NO _x	503.4	189.0
SO ₂	0.0	0.0
PM ₁₀	0.0	0.0
PM _{2.5}	0.0	0.0
Construction Emissions		
W. u B. ini A		
Well Drilling ⁴ NO _x	4 700 0	
NO _x SO ₂	1,728.9	6,105.0
	116.1	365.0
PM ₁₀	415.7	509.6
PM _{2.5}	415.7	509.6
Traffic ⁵		
NO _x	9.6	
NO _x SO ₂	0.3	1 -
PM ₁₀		
PM ₂₅	160.4	-
rw25	24.6	7.7
Flaring ⁶		
NO _x	45.2	332.0
SO ₂	0.0	0.0
PM ₁₀	0.0	21.9
PM _{2.5}	0.0	
. 11125	0.0	21.9
Other Inventory Emissions		
MSI ⁷		
NO _x		4,059.7
SO ₂	-	(48.0)
PM ₁₀		700.8
PM _{2.5}	-	605.3
RFFA [®]		
NO _x	= .	810.7
SO ₂	-	(1,347.1)
PM ₁₀	- Gran To -	(1,196.6)
PM _{2.5}	44	(500.4)
nent		
RFD [®] NO _v		
	-	3,166.5
SO ₂	-	56.1
PM ₁₀		84.0
PM _{2.5}	-	81.9
Total		
Total NO _x	22247	
	2,324.7	14,662.8
SO ₂	116,5	(973.9)
PM _{to}	742.3	119.7
PM _{2.5}	470.7	718.2

Includes emissions from indirect heater, separator heater, and dehyrator heater (scaled from DEIS).

Includes emissions from all traffic associated with full field production(scaled from DEIS).

Includes emissions from all traffic associated with full field production(scaled from DEIS).

Includes compression estimates from DEIS and expanded compression estimates post DEIS.

Includes emissions from difficult properties of the production of the series of the pear.

80% Tier 020% Tier 1. Emissions breakdowns can be found in the following tables.

Includes emissions from all parties for well construction from DEIS scaled by a factor of 14.25/20 to account for the difference between 2006 and 2002 construction estimates.

Includes emissions from facts operating confiniously throughout the year.

Emissions breakdowns can be found in the following tables.

Includes sources from DEIS and all post DEIS up to 3-3-1-04.

Includes sources from DEIS as well as post DEIS up to 3-3-1-04.

Includes sources from DEIS.

Jonah Field - Drilling Emissions - AP-42 - Straight Drilling Table D.1.2

TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	tion			Project: Jonah I Scenario: Straight Activity: Drilling Emissions: Diesel (from Dr Date: 6/30/20(Project: Jonah Infill Drilling Project Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA AP-42 Date: 6/30/2005	g Project n Emissions nes - EPA AP-42	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower All Engines ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
8	0.00668	2,100	0.42	19	24	2,702.63	5.93	25.96
NOX	0.031	2,100	0.42	19	24	12,542.17	27.50	120.47
SO ₂	0.00205	2,100	0.42	19	24	829.40	1.82	7.97
VOC	0.0025	2,100	0.42	19	24	1,011.47	2.22	9.72
PM104	0.0022	2,100	0.42	19	24	890.09	1.95	8.55
1 AD 42 /E	DA 1006) Saction	1 AD 49 (EDA 1008) Soution 2.9 Constitution and Discol Industrial Engineer Table 2.9.4 "Emission Endough Anni Investralled (Seeding	I leistein la	Table 3 3	1 "Emission Factor) bellostacoul Last as	Section	

and Diesel Industrial Engines."

³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. ² Drilling engine horsepower based on three engines, two at 800hp and one at 500hp.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

Table D.1.3 Jonah Field - Drilling Emissions Tier 1 - Straight Drilling

								_
	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	72.82	59.12	1.34	8.57	3.43	
g Project n Emissions nes - EPA Tier 1	Emissions per Rig	(lb/hr)	16.63	13.50	0.31	1.96	0.78	
Project: Jonah Infill Drilling Project Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions Per Well	(lb/well)	7,581.69	6,154.55	139.77	891.96	356.79	
Project: Jonah II Scenario: Straight Activity: Drilling Emissions: Diesel C from Dr	Drilling Activity Duration	(hours/day)	24	24	24	24	24	
	Drilling Activity Duration	(days/well)	9	6	10	9	19	
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42	
tion	Total Horsepower All Engines ²	(hp)	2,100	2,100	2,100	2,100	2,100	
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088	i
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		8	XON	SO24	VOC	PM ₁₀ ⁵	1 Production &

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

² Drilling engine horsepower based on three engines, two at 800hp and one at 500hp.

³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

¹ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

⁵ PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.4 Jonah Field - Drilling Emissions Tier 2 - Straight Drilling

Project: Jonah Infill Drilling Project Scenario: Straight Drilling Activity: Orilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 2 Date: 6/30/2005	Yearly Emissions rall Load Drilling Activity Drilling Activity Emissions per Well Emissions per Rig Per Rig Based on actor ³ Duration Duration Confinuous Operation	(days/well) (hours/day) (lb/well) (lb/nr) (tpy)	0.42 19 24 2,319.11 5.09 22.28	0.42 19 24 3,657.05 8.02 35.13	0.42 19 24 139.77 0.31 1.34	0.42 19 24 148.87 0.33 1.43	
	Overall Load Drillin Factor³ Du	(da)	0.42	0.42	0.42	0.42	
5	Total Horsepower All Engines ²	(dy)	2,100	2,100	2,100	2,100	
RC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 745-8843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0057	0.0000	0.00035	0.0004	
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		00	×ON	SO24	VOC	4

Emission factor for Tier 2 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

NO, and HC Emission Factors estimated based on Tables 3 and 5 of "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling-Compression-Ignition," NR-009c, EPA, April 2004.

⁴ Drilling engine horsepower based on three engines, two at 800hp and one at 500hp.
³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7,001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

PM2.5 assumed equivalent to PM10 for drilling engines.

Jonah Field - Drilling Emissions AP-42 - Directional Drilling Table D.1.5

TRC Environmental 605 Skyline Drive Laramie, WY 82070	TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070	ation			Project: Scenario: Activity:	Project: Jonah Infill Drilling Project Scenario: Directional Drilling Activity: Drilling	roject	
Fax: (3	Pnone: (307) 742-3843 Fax: (307) 745-8317				Emissions: Date:	Emissions: Diesel Combustion Emissions from Drilling Engines - EPA AP-42 Date: 6/30/2005	missions s - EPA AP-42	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower Overall Load Drilling Activity All Engines ² Factor ³ Duration	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions Per Well	Emissions Per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
8	0.00668	2,600	0.42	23	24	4,050.56	7.34	32.14
XON	0.031	2,600	0.42	23	24	18,797.53	34.05	149.15
SO ₂	0.00205	2,600	0.42	23	24	1,243.06	2.25	9.86
VOC	0.0025	2,600	0.42	23	24	1,515.93	2.75	12.03
PM104	0.0022	2,600	0.42	23	24	1,334.02	2.42	10.59

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."

* Drilling engine horsepower based on three engines, two at 800hp and one at 500hp.
* The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

8-<u>0</u>

Table D.1.6 Jonah Field - Drilling Emissions Tier 1 - Directional Drilling

4.5	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	90.16	73.19	1.66	10.61	4.24	
roject imissions from A Tier 1	Emissions per Rig	(lb/hr)	20.59	16.71	0.38	2.42	0.97	
Project: Jonah Infill Drilling Project Scenario: Directional Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions per Well	(lb/well)	11,363.04	9,224.12	209.48	1,336.83	534.73	
Project: Scenario: Activity: Emissions: Date:	Drilling Activity Duration	(hours/day)	24	24	24	24	24	
	Drilling Activity Duration	(days/well)	23	23	23	23	23	
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42	
uoj	Total Horsepower Overall Load All Engines ² Factor ³	(hp)	2,600	2,600	2,600	2,600	2,600	
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088	
TRC Environmental Cor 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant		00	NOX	SO ₂ ⁴	VOC	PM ₁₀ 5	

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

Engine Emission Standards, g/KV/h (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

Drilling engine horsepower based on four engines, two at 800hp and two at 500hp.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.7 Jonah Field - Drilling Emissions Tier 2 - Directional Drilling

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	27.58	43.49	1.66	1.77	1.59
Project Emissions from	Emissions per Rig	(lb/hr)	6.30	9.93	0.38	0.40	0.36
Project: Jonah Infill Drilling Project Scenario: Directional Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 2 Date: 6/30/2005	Emissions per Well Emissions per Rig	(lb/well)	3,475.75	5,481.00	209.48	223.12	200.52
Project: Jonah Ir Scenario: Direction Activity: Drilling Emissions: Diesel C Drilling I	Drilling Activity Duration	(hours/day)	24	24	24	24	24
		(days/well)	23	23	23	23	23
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42
tion	Total Horsepower Overall Load Drilling Activity All Engines ² Factor ³ Duration	(dh)	2,600	2,600	2,600	2,600	2,600
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 745-8317 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0057	0.0090	0.00035	0.0004	0.00033
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		00	NOX	SO24	VOC	PM ₁₀ s

Emission factor for Tier 2 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel NOx and HC Emission Factors estimated based on Tables 3 and 5 of "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling--Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

Compression-Ignition," NR-009c, EPA, April 2004.

² Drilling engine horsepower based on four engines, two at 800hp and two at 500hp.

³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.8 Jonah Field - Completion Flaring Emissions

TRC Environmental Corporation								Jonah Infill		oject
605 Skyline Drive								All Scenario		
Laramie, WY 82070								Completion		
Phone: (307) 742-3843							Emissions:	Gas Flaring		
Fax: (307) 745-8317								Flowback S	eparator U	nits
				_			Date:	6/30/2005		
Flaring Specifications:										
Total Volume of Gas Emitted	35000	mcf								
Total Volume of Condensate Emitted	250	bbls								
Average Heat Content	1092.9	BTU/scf								
Flaring/Flowback Activity Duration	120	hrs/well								
laring Duration	80	hr/well								
Pre-ignition Flow-back Duration	40	hr/well								
Pre-ignition Flow-back Time Involving a										
Gas Stream	10	%								
Actual Hours Gas is Vented	4	hrs								
Total Hours in which Gas is Vented or										
Flared ¹	84	hrs								
Average Flowrate of Gas ²	416.67	mcf/hr								
Total Volume of Gas Vented ³	1,666.67	mcf								
Total Volume of Flared Gas ⁴	33,333.33									
Average Flowrate of Condensate	2.98	bbls/hr								
Pre-flare Volume of Condensate	11.90	bbls								
/olume of Condensate Flared	238.10	bbls								
						Emission				
		Volume			Emission	Factor		Total		Hourly
Activity	Volume	Units	Pollutant		Factor	Units	Emission Factor Source ⁶		Duration	
								(tons)	(hours)	(lb/hr)
Venting - Natural Gas 5	1,666.67	mcf	voc		4.70	lb / 1000 scf	Gas Constituent Analysis	3.91	4	1,956.8
			1140 (4-4-1)		0.47	11- / 4000 /	00			71.07
			HAP (total)		0.17		Gas Constituent Analysis	0.14	4	71.37
			n-Hexane Benzene		0.08		Gas Constituent Analysis	0.070	4	35.13
			Toluene		0.026		Gas Constituent Analysis	0.022	4	10.75
					0.041		Gas Constituent Analysis	0.034	4	17.02
			Ethylbenzene		0.0019		Gas Constituent Analysis		4	0.80
			Xylenes		0.018	IB / 1000 SCI	Gas Constituent Analysis	0.015	4	7.67
Flaring - Natural Gas	33,333.33	mcf	NOx		0.068	lb / 10^6 BTU	AP-42 Section 13.5	1.24	80	30.97
			CO		0.37	Ib / 10^6 BTU	AP-42 Section 13.5	6.74	80	168.49
			voc		0.05	II. (4000	00			
			VOC		2.35	ID / 1000 SCI	Gas Constituent Analysis	39.14	80	978.43
			HAP (total)		0.09	lb / 1000 scf	Gas Constituent Analysis	1.43	80	35.69
			n-Hexane		0.042		Gas Constituent Analysis	0.70	80	17.57
			Benzene		0.013		Gas Constituent Analysis	0.22	80	5.38
			Toluene		0.020	lb / 1000 scf	Gas Constituent Analysis	0.34	80	8.51
			Ethylbenzene		0.001	lb / 1000 scf	Gas Constituent Analysis	0.016	80	0.40
			Xylenes		0.009	lb / 1000 scf	Gas Constituent Analysis	0.15	80	3.83
Flaring - Condensate	238.10	bbls	VOC		121.98	lb/bbl	ndensate Constituent Analy	14.52	80	363.03
									-	-
			HAP (total)		25.85		ndensate Constituent Analy		80	76.93
			n-hexane Benzene		4.59		ndensate Constituent Analy		80	13.67
					1.42	lb/bbl	ndensate Constituent Analy	0.17	80	4.22
			Toluene		6.11	lb/bbl	ndensate Constituent Analy		80	18.19
						lb/bbl	ndensate Constituent Analy Indensate Constituent Analy Indensate Constituent Analy	0.09	80 80 80	18.19 2.19 38.66

 $^{^1}$ Calculated as 10% $^{\rm *}$ 40 hrs of pre-ignition flowback + 80 hrs of flaring. 2 Calculated as 3500 mcf / 84 hrs.

³ Calculated as 416.67 mct/hr * 4 hrs. ⁴ Calculated as 416.67 mct/hr * 80 hrs.

SAn estimated 11.9 bbl of condensate are captured prior to flare ignition. Flashing from this condensate is not analyzed.

⁶ For all emission factors that used the constituent analysis, a 50% destruction rate was assumed.

Table D.1.9 Jonah Field - Summary - 2002

TRC Environmental Corporation 605 Skyline Drive

Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Jonah Infill Drilling Project

Scenario: Estimated 2002 Drilling and Completion Emissions

2,100 hp, 100 % Tier 0 100% Straight Drilling

Date: 6/30/2005

		# of Operating	# of Operating	Rig Emissions	Tier 0	Average Drilling Emissions per	Total Emissions	
Month	Pollutant	Drilling Rigs	Flares	(Tier 0)	Fraction	Rig ¹	from all Rigs ¹	Flaring Emission
				(lb/hr)		(lb/hr)	(ib/hr)	(lb/hr)
	NO _x			27.50	1.0	27.50	165.03	92.90
January	SO ₂	6	3	1.82	1.0	1.82	10.91	-
	PM ₁₀			1.95	1.0	1.95	11.71	-
	NO _x		-	27.50	1.0	27.50	165.03	92.90
February	SO ₂	6	3	1.82	1.0	1.82	10.91	-
	PM ₁₀			1.95	1.0	1.95	11.71	-
	NO _x			27.50	1.0	27.50	165.03	92.90
March	SO ₂	6	3	1.82	1.0	1.82	10.91	32.30
Watur	PM ₁₀	1 "	3	1.95	1.0	1.95	11.71	-
	NO _x			27.50	1.0	27.50	220.04	123.86
April	SO ₂	8	4	1.82	1.0	1.82	14.55	-
	PM ₁₀			1.95	1.0	1.95	15.62	-
	NO,			27.50	1.0	27.50	137.52	61.93
May	SO ₂	5	2	1.82	1.0	1.82	9.09	-
	PM ₁₀			1.95	1.0	1.95	9.76	-
	luo			07.50				
luma	NO _x	7	3	27.50	1.0	27.50	192.53	92.90
June	SO ₂ PM ₁₀	1 '	3	1.82	1.0	1.82	12.73	-
				1		1		1
	NO _x			27.50	1.0	27.50	110.02	61.93
July	SO ₂	4	2	1.82	1.0	1.82	7.28	-
	PM ₁₀	1		1.95	1.0	1.95	7.81	-
	NO _x			27.50	1.0	27.50	137.52	61.93
August	SO ₂	5	2	1.82	1.0	1.82	9.09	-
	PM ₁₀			1.95	1.0	1.95	9.76	
	NO,			27.50	1.0	27.50	220.04	123.86
September	SO ₂	8	4	1.82	1.0	1.82	14.55	123.06
ochtember	PM ₁₀	1 "	7	1.95	1.0	1.95	15.62	
	NO _x			27.50	1.0	27.50	137.52	61.93
October	SO ₂	5	2	1.82	1.0	1.82	9.09	•
	PM ₁₀			1.95	1.0	1.95	9.76	-
	NO,			27.50	1.0	27.50	110.02	61.93
November	SO ₂	4	2	1.82	1.0	1.82	7.28	
	PM ₁₀			1.95	1.0	1.95	7.81	-
	NO _x	1		27.50	4.0	07.50	407.50	24.05
	SO ₂	5	2	1.82	1.0	27.50 1.82	137.52 9.09	61.93
December								

¹ Emissions are calculated based on 2,100 hp 100 % Tier 0 engines.

² Flaring emissions taken from the "Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement November, 2004.

TRC Environmental Corporation 605 Skyline Drive Laramile, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317					
	TRC Environmental Corporation	605 Skyline Drive	Laramie, WY 82070	Phone: (307) 742-3843	

Project: Jonah Infill Drilling Project Scenario: Estimated 2006 Drilling and Completion Emissions 50% Straight, 50% Directional 80% Tier 0, 20% Tier 1 Date: 6/30/2005

		Flaring Emissions ³	(lb/hr)	
	Total Emissions	from all Rigs ²	(lb/hr)	
	Average Drilling	n Fraction Emissions per Rig ² from all Rigs ² Flaring Emissions ³	(lb/hr)	
	Tier 1	Fraction		
	Tier 0	Fraction Fraction Er		
Tier 1 Drilling	is- Emissions- Emissions-	Directional	(lb/hr)	
lier o Drilling	Emissions -	Directional	(lb/hr)	
lier 1 Drilling	Emissions -	Straight	(Ib/hr)	
lier 0 Drilling	Emission	Straight	(lb/hr)	
	# of Operating	Flares		
# of Operating	Drilling Rigs			
		Pollutant		
		Month ¹		
				L

34.05	13.50 34.05	e)
2.25	1.82 2.25	.82 1.82 2.25
10.59	1.95 10.59	

All months have equal numbers of 20 diffully digs and 3 flates.
 Emissions based on 50% directional driffing and 50% straight driffing, as well as 80% Tier 0 engines and 20% Tier 1 compliant engines.
 Emissions based on 50% directional 60% straight driffing, as well as 80% Tier 0 engines and 20% Tier 1 compliant engines.
 Elating emissions taken from the "Draft Air Quality Technical Support Document for the Jonah Intill Drilling Project Environmental Impact Statement", November, 2004.
 Flating emissions taken from the "Draft Air Quality Technical Support Document for the Jonah Intill Drilling Project Environmental Impact Statement", November, 2004.

Project: Jonah Infill Scenario: 2006-2002 Emissions and Modeling Scalars Date: 6/30/2005

Month	Pollutant	Total Emissions from all Rigs (2006)	Flaring Emissions (2006)	Total Emissions from all Rigs (2002)	Flaring Emissions (2002)	Emissions Difference - Rigs - (2006 - 2002)	Emissions Difference - Flares - (2006 - 2002)	Rig Scalar	Flare Sca
		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)		
	NO _x	552.88	92.90	165.03	92.90	387.85	0.00	0.8758	0.00
January	SO ₂	36.96	-	10.91	-	26.05	-	0.8775	-
	PM ₁₀	106.14	-	11.71	-	94.43	-	0.9603	-
	NO _x	552.88	92.90	165.03	92.90	387.85	0.00	0.8758	0.00
February	SO ₂	36.96	52.50	10.91	02.00	26.05		0.8775	0.00
rebidary	PM ₁₀	106.14	-	11.71		94.43		0.9603	-
	1 10								
	NO _x	552.88	92.90	165.03	92.90	387.85	0.00	0.8758	0.00
March	SO ₂	36.96	-	10.91	-	26.05	-	0.8775	-
	PM ₁₀	106.14	-	11.71	-	94.43	-	0.9603	-
	NO.	552.88	92.90	220.04	123.86	332.84	-30.97	0.7516	-1.00
April	SO ₂	36.96	-	14.55	-	22.41	-	0.7549	-
	PM ₁₀	106.14	-	15.62	-	90.52	-	0.9206	-
	NO _x	552.88	92.90	137.52	61.93	415.36	30.97	0.9379	1.00
May	SO ₂	36.96	-	9.09	-	27.87	-	0.9387	-
	PM ₁₀	106.14	-	9.76	-	96,38	L	0.9801	
	NO _x	552.88	92.90	192.53	92.90	360,35	0.00	0.8137	0.00
June	SO ₂	36.96	-	12.73	-	24.23	-	0.8162	-
	PM ₁₀	106.14	-	13.66	-	92.47	-	0.9404	-
total.	NO _x	552.88	92.90	110.02	61.93	442.86	30.97	1.0000	1.00
July	SO ₂	36.96	-	7.28	-	29,69	-	1.0000	-
	PM ₁₀	106.14	-	7.81	-	98.33	-	1.0000	-
	NO _x	552.88	92.90	137.52	61.93	415.36	30.97	0.9379	1.00
August	SO ₂	36.96	-	9.09		27.87	-	0.9387	-
	PM ₁₀	106.14		9.76	-	96.38	-	0.9801	-
	NO _x	552.88	00.00	222.04	402.00	222.24	20.07	0.7540	4.00
September	SO ₂	36.96	92.90	220.04 14.55	123.86	332.84 22.41	-30.97	0.7516	-1.00
оортонноог	PM ₁₀	106.14	-	15.62	-	90.52	-	0.7549	-
	1. 1010	100.14		10.02		30.32		0.3200	
	NO _x	552.88	92.90	137.52	61.93	415.36	30.97	0.9379	1.00
October	SO ₂	36.96	-	9.09	-	27.87	-	0.9387	-
	PM ₁₀	106.14	-	9.76	-	96.38	- "	0.9801	-
	NO _x	552.88	92.90	110.02	61.93	442.86	30.97	1.0000	1.00
November	SO ₂	36.96	-	7.28	- 01.93	29.69	30.97	1.0000	1.00
	PM ₁₀	106.14		7.81	_	98.33	-	1.0000	-
								1,000	
	NO _x	552.88	92.90	137.52	61.93	415.36	30.97	0.9379	1.00
December	SO ₂	36.96	-	9.09	-	27.87	-	0.9387	-
	PM ₁₀	106.14	-	9.76	-	96.38	-	0.9801	-

Jonah Field - Expanded Field Operators - Summary - 2006 Table D.1.12

ators	30.97
anded Field Oper pletion Emission	5.63
Project: Jonah Infill Drilling Project - Expanded Field Operators Scenario: Estimated 2006 Drilling and Completion Emissions 2800 hp Rigs 80% Tier 0, 20% Tier 1 Date: 6/30/2005	30.58 1.88 8.66
oject: Jonah Infill Drilling Pri rario: Estimated 2006 Drillin 2600 hp Rigs 80% Tier 0, 20% Tier 1 Date: 6/30/2005	0.2
Project: Scenario: Date:	8.0
	16.71
	34.05
	1
oration	ю
onmental Corpo e Drive VY 82070 VQT) 742-3843 OT) 745-8317	NO _x SO ₂
TRC Envir 605 Skylin. Laramie, W Phone: (3 Fax: (3	₹
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	NO _x

¹ All months have equal numbers of 3 drilling rigs.
² Emissions based on 2600 hp Rigs with 80% Tier 0 engines and 20% Tier 1 compliant engines.
³ Flaring emissions taken from the "Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement", November, 2004.

Table D.1.13 Pinedale Anticline - Drilling Emissions - Manufacturer's/AP-42 - Rig # 232

Project: Pinedale Anticline Scenario: Rig # 232 Activity: Drilling

Emissions: Diesel Combustion Emissions from Drilling Engines - Manufacturer's and AP-42 Date: 6/30/2005

Yearly Emissions

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based or Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(ib/well)	(lb/hr)	(tpy)
	СО	0.00668	912	0.56	60	24	4,912.72	3.41	14.94
	NOx	0.0101	912	N/A	60	24	13,299.98	9.24	40.45
Cat. 398 TA	SO ₂	0.00205	912	0.56	60	24	1,507.65	1.05	4.59
	voc	0.0025	912	0.56	60	24	1,838.59	1.28	5.59
	PM ₁₀ ⁴	0.0022	912	0.56	60	24	1,617.96	1.12	4.92
	со	0.00668	912	0.56	60	24	4,912.72	3.41	14.94
	NOx	0.0101	912	N/A	60	24	13,299.98	9.24	40.45
Cat. 398 TA	SO ₂	0.00205	912	0.56	60	24	1,507.65	1.05	4.59
	voc	0.0025	912	0.56	60	24	1,838.59	1.28	5.59
	PM ₁₀ ⁴	0.0022	912	0.56	60	24	1,617.96	1.12	4.92
	СО	0.00668	912	0.56	60	24	4,912.72	3.41	14.94
	NOx	0.0101	912	N/A	60	24	13,299.98	9.24	40.45
Cat. 398 TA	SO ₂	0.00205	912	0.56	60	24	1,507.65	1.05	4.59
	VOC	0.0025	912	0.56	60	24	1,838.59	1.28	5.59
	PM ₁₀ ⁴	0.0022	912	0.56	60	24	1,617.96	1.12	4.92
	СО	0.00668	480	0.14	60	24	646.41	0.45	1.97
	NOx	0.0024	480	N/A	60	24	1,640.01	1.14	4.99
Cat. 3408 TA	SO ₂	0.00205	480	0.14	60	24	198.37	0.14	0.60
	voc	0.0025	480	0.14	60	24	241.92	0.17	0.74
	PM ₁₀ ⁴	0.0022	480	0.14	60	24	212.89	0.15	0.65
	со		3,216		60	24	15,384.56	10.68	46.79
	NOx		3,216		60	24	41,539.95	28.85	126.35
Rig Totals	SO ₂		3,216		60	24	4,721.31	3.28	14.36
	voc		3,216		60	24	5,757.70	4.00	17.51
	PM ₁₀ ⁴		3,216		60	24	5,066.77	3.52	15.41

¹ NOx based on data provided by WDEQ/Questar, all other pollutants based on AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines.

Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."
² Drilling engine horsepower based on data provided by WDEQ/Questar.

The overall load factor is based on data provided by WDEQ/Questar. Load factor for NOx is accounted for in the emission factor as it is load-weighted.

⁴ PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.14 Pinedale Anticline - Drilling Emissions - Tier 1 - Rig # 232

Project: Pinedale Anticline Scenario: Rig # 232 Activity: Drilling **Emissions: Diesel Combustion Emissions from** Drilling Engines - Tier 1 Date: 6/30/2005

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emission Per Rig Based o Continuous Operation
		(ib/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
	co	0.0187	912	0.56	60	24	13,781.64	9.57	41.92
	NOx	0.015	912	0.56	60	24	11,187.45	7.77	34.03
Cat. 398 TA	SO24	0.00035	912	0.56	60	24	254.07	0.18	0.77
	voc	0.0022	912	0.56	60	24	1,621.37	1.13	4.93
	PM ₁₀ ⁵	0.00088	912	0.56	60	24	648.55	0.45	1.97
	со	0.0187	912	0.56	60	24	13,781.64	9.57	41.92
	NOx	0.015	912	0.56	60	24	11,187.45	7.77	34.03
Cat. 398 TA	SO24	0.00035	912	0.56	60	24	254.07	0.18	0.77
	voc	0.0022	912	0.56	60	24	1,621.37	1.13	4.93
	PM ₁₀ ⁵	0.00088	912	0.56	60	24	648.55	0.45	1.97
	со	0.0187	912	0.56	60	24	13,781.64	9.57	41.92
	NOx	0.015	912	0.56	60	24	11,187.45	7.77	34.03
Cat. 398 TA	SO ₂ ⁴	0.00035	912	0.56	60	24	254.07	0.18	0.77
	voc	0.0022	912	0.56	60	24	1,621.37	1.13	4.93
	PM ₁₀ ⁵	0.00088	912	0.56	60	24	648.55	0.45	1.97
	со	0.0187	480	0.14	60	24	1,813.37	1.26	5.52
	NOx	0.015	480	0.14	60	24	1,472.03	1.02	4.48
Cat. 3408 TA	SO24	0.00035	480	0.14	60	24	33.43	0.02	0.10
	voc	0.0022	480	0.14	60	24	213.34	0.15	0.65
	PM ₁₀ ⁵	0.00088	480	0.14	60	24	85.34	0.06	0.26
	co		3,216		60	24	43,158.28	29.97	131.27
	NOx		3,216		60	24	35,034.37	24.33	106.56
Rig Totals	SO24		3,216		60	24	795.64	0.55	2.42
	voc		3,216		60	24	5,077.45	3.53	15.44
	PM ₁₀ ⁵		3.216		60	24	2,030.98	1.41	6.18

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieseinet.com/standards/us/offroad.html.
**Drilling engine horsepower based on data provided by WDEG/Questar.
**The overall load rator is based on data provided by WDEG/Questar.

The Overain sour lactor is used of rating provised by WILE_CALCHERIA.

"The SO, emission factor is calculated assuming 26 4 galln't net consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.00 it logal. Fuel consumption ate taken from Caterpillar "Oitfield Mechanical Rig Power" specification sheets.

#WILE assume equivalent to PMI for drilling enginger.

Table D.1.15 Pinedale Anticline - Drilling Emissions - Manufacturer's/AP-42 - Rig # 235

Project: Pinedale Anticline Scenario: Rig # 235 Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Manufacturer's and AP-42 Date: 6/30/2005

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissio Per Rig Based Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
	со	0.00668	912	0.56	60	24	4,912.72	3.41	14.94
	NOx	0.0101	912	N/A	60	24	13,299.98	9.24	40.45
Cat. 398 TA	SO ₂	0.00205	912	0.56	60	24	1,507.65	1.05	4.59
	voc	0.0025	912	0.56	60	24	1,838.59	1.28	5.59
10-10	PM ₁₀ 4	0.0022	912	0.56	60	24	1,617.96	1.12	4.92
-	СО	0.00668	912	0.56	60	24	4,912.72	3.41	14.94
	NOx	0.0101	912	N/A	60	24	13,299.98	9.24	40.45
Cat. 398 TA	SO ₂	0.00205	912	0.56	60	. 24	1,507.65	1.05	4.59
	voc	0.0025	912	0.56	60	24	1,838.59	1.28	5.59
	PM ₁₀ ⁴	0.0022	912	0.56	60	24	1,617.96	1.12	4.92
	со	0.00668	912	0.56	60	24	4,912.72	3.41	14.94
	NOx	0.0101	912	N/A	60	24	13,299.98	9.24	40.45
Cat. 398 TA	SO ₂	0.00205	912	0.56	60	24	1,507.65	1.05	4.59
	voc	0.0025	912	0.56	60	24	1,838.59	1.28	5.59
	PM ₁₀ ⁴	0.0022	912	0.56	60	24	1,617.96	1.12	4.92
	со	0.00668	725	0.14	60	24	976.35	0.68	2.97
	NOx	0.0030	725	N/A	60	24	3,140.04	2.18	9.55
Cat. 3412TA	SO ₂	0.00205	725	0.14	60	24	299.63	0.21	0.91
	voc	0.0025	725	0.14	60	24	365.40	0.25	1.11
	PM ₁₀ ⁴	0.0022	725	0.14	60	24	321.55	0.22	0.98
	со		3,461		60	24	15,714.50	10.91	47.80
	NOx		3,461		60	24	43,039.98	29.89	130.91
Rig Totals	SO ₂		3,461		60	24	4,822.56	3.35	14.67
	voc		3,461		60	24	5,881.18	4.08	17.89
	PM ₁₀ ⁴		3,461		60	24	5,175,43	3.59	15.74

¹ NOx based on data provided by WDEQ/Questar, all other pollutants based on AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines.

Table 3.3.1, "Ensistent Education and Description and Desentrollary Report Section 3.3, Galotine and Desentrollary Engines. Table 3.3.1, "Ensistent Package To Chronic Tool Galotine and Desentrollary Engines."

Drilling engine horsepower based on data provided by WDEQ/Questar.

"The overall Board factor is based on data provided by WDEQ/Questar. Load factor for NOX is accounted for in the emission factor as it is load-weighted.

"PM2.5 assumed equivalent to PM10 for drilling engines."

Table D.1.16 Pinedale Anticline - Drilling Emissions - Tier 1 - Rig # 235

Project: Pinedale Anticline Scenario: Rig # 235 Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Tier 1 Date: 6/30/2005

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based or Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
	со	0.0187	912	0.56	60	24	13,781.64	9.57	41.92
	NOx	0.015	912	0.56	60	24	11,187.45	7.77	34.03
Cat. 398 TA	SO24	0.00035	912	0.56	60	24	254.07	0.18	0.77
	voc	0.0022	912	0.56	60	24	1,621.37	1.13	4.93
	PM ₁₀ ⁵	0.00088	912	0.56	60	24	648,55	0.45	1.97
	со	0.0187	912	0.56	60	24	13,781.64	9.57	41.92
	NOx	0.015	912	0.56	60	24	11,187.45	7.77	34.03
Cat. 398 TA	SO ₂ 4	0.00035	912	0.56	60	24	254.07	0.18	0.77
	voc	0.0022	912	0.56	60	24	1,621.37	1.13	4.93
	PM ₁₀ ⁵	0.00088	912	0.56	60	24	648.55	0.45	1.97
	СО	0.0187	912	0.56	60	24	13,781.64	9.57	41.92
	NOx	0.015	912	0.56	60	24	11,187.45	7.77	34.03
Cat. 398 TA	SO24	0.00035	912	0.56	60	24	254.07	0.18	0.77
	voc	0.0022	912	0.56	60	24	1,621.37	1.13	4.93
	PM ₁₀ 5	0.00088	912	0.56	60	24	648.55	0.45	1.97
	со	0.0187	725	0.14	60	24	2,738.95	1.90	8.33
	NOx	0.015	725	0.14	60	24	2,223.38	1.54	6.76
Cat. 3412 TA	SO ₂ ⁴	0.00035	725	0.14	60	24	50.49	0.04	0.15
	voc	0.0022	725	0.14	60	24	322.23	0.22	0.98
	PM ₁₀ ⁵	0.00088	725	0.14	60	24	128.89	0.09	0.39
	со		3,461		60	24	44,083.86	30.61	134.09
	NOx		3,461		60	24	35,785.72	24.85	108.85
Rig Totals	SO24		3,461		60	24	812.71	0.56	2.47
	voc		3,461		60	24	5,186.34	3.60	15.78
	PM ₁₀ ⁵		3,461		60	24	2.074.53	1.44	6.31

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

Engine Emission Standards, g/kWh (g/bhp-hr)," Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

2 Drilling engine horsepower based on data provided by WDEQ/Questar.

The overall load factor is based on data provided by WDEQ/Questar.

^{*}The SQ, emission factor is calculated assuming 28.4 gailth fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel damages of 7.00 it logal. Fuel consumption rate taken from Caterpillar *Oiffeld Mechanical Rig Power* specification sheets.

*PMZ-5 assumed equivalent to PMI foll of rdniling engings.

Table D.1.17 Pinedale Anticline - Drilling Emissions - Manufacturer's/AP-42 - Rig # 236

Project: Pinedale Anticline Scenario: Rig # 236 Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Manufacturer's and AP-42 Date: 6/30/2005

Engine	Poliutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emission Per Rig Based of Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
-	со	0.00668	975	0.52	60	24	4,918.20	3.42	14.96
	NOx	0.0085	975	N/A	60	24	11,900.00	8.26	36.20
Cat. 398 TA	SO ₂	0.00205	975	0.52	60	24	1,509.33	1.05	4.59
	voc	0.0025	975	0.52	60	24	1,840.64	1.28	5.60
	PM ₁₀ ⁴	0.0022	975	0.52	60	24	1,619.77	1.12	4.93
	со	0.00668	975	0.52	60	24	4,918.20	3.42	14.96
	NOx	0.0085	975	N/A	60	24	11,900.00	8.26	36.20
Cat. 398 TA	SO ₂	0.00205	975	0.52	60	24	1,509.33	1.05	4.59
Cat. 555 1A									
	VOC	0.0025	975	0.52	60	24	1,840.64	1.28	5.60
	PM ₁₀ ⁴	0.0022	975	0.52	60	24	1,619.77	1.12	4.93
	со	0.00668	975	0.52	60	24	4,918.20	3.42	14.96
	NOx	0.0085	975	N/A	60	24	11,900.00	8.26	36.20
Cat. 398 TA	SO ₂	0.00205	975	0.52	60	24	1,509.33	1.05	4.59
	voc	0.0025	975	0.52	60	24	1,840.64	1.28	5.60
	PM ₁₀ ⁴	0.0022	975	0.52	60	24	1,619.77	1.12	4.93
	со	0.00668	725	0.14	60	24	976.35	0.68	2.97
	NOx	0.0030	725	N/A	60	24	3,140.04	2.18	9,55
Cat. 3412TA	SO ₂	0.00205	725	0.14	60	24	299.63	0.21	0.91
	voc	0.0025	725	0.14	60	24	365.40	0.25	1.11
	PM ₁₀ ⁴	0.0022	725	0.14	60	24	321.55	0.22	0.98
	СО	0.00668	725	0.41	60	24	2,880.93	2.00	8.76
	NOx	0.0055	725	N/A	60	24	5,760.00	4.00	17.52
Cat. 3412TA	SO ₂	0.00205	725	0.41	60	24	884.12	0.61	2.69
	voc	0.0025	725	0.41	60	24	1,078.19	0.75	3.28
	PM ₁₀ ⁴	0.0022	725	0.41	60	24	948.81	0.66	2.89
	со		4,375		60	24	18,611.88	12.92	56.61
	NOx		4,375		60	24	44,600.02	30.97	135.66
Rig Totals	SO ₂		4,375		60	24	5,711.73	3.97	17.37
	voc		4,375		60	24	6,965.52	4.84	21.19
	PM ₁₀ 4		4,375		60	24	6,129.66	4.26	18.64

¹ NOx based on data provided by WDEQ/Questar, all other pollutants based on AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."

² Drilling engine horsepower based on data provided by WDEQ/Questar.

The overall based after is based on data provided by WDEQ/Questar. Load factor for NOx is accounted for in the emission factor as it is load-weighted.

⁴ PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.18 Pinedale Anticline - Drilling Emissions - Tier 1 - Rig # 236

Project: Pinedale Anticline Scenario: Rig # 236 Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Tier 1 Date: 6/30/2005

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based or Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
	со	0.0187	975	0.52	60	24	13,681.25	9.50	41.61
	NOx	0.015	975	0.52	60	24	11,105.96	7.71	33.78
Cat. 398 TA	SO24	0.00035	975	0.52	60	24	252.22	0.18	0.77
	VOC	0.0022	975	0.52	60	24	1,609.56	1.12	4.90
	PM ₁₀ ⁵	0.00088	975	0.52	60	24	643.82	0.45	1.96
	со	0.0187	975	0.52	60	24	13,681.25	9.50	41.61
	NOx	0.015	975	0.52	60	24	11,105.96	7.71	33.78
Cat. 398 TA	SO24	0.00035	975	0.52	60	24	252.22	0.18	0.77
	voc	0.0022	975	0.52	60	24	1,609.56	1.12	4.90
	PM ₁₀ ⁵	0.00088	975	0.52	60	24	643.82	0.45	1.96
	со	0.0187	975	0.52	60	24	13,681.25	9.50	41.61
	NOx	0.015	975	0.52	60	24	11,105.96	7.71	33.78
Cat. 398 TA	SO24	0.00035	975	0.52	60	24	252.22	0.18	0.77
	VOC	0.0022	975	0.52	60	24	1,609.56	1.12	4.90
	PM ₁₀ ⁵	0.00088	975	0.52	60	24	643.82	0.45	1.96
	co	0.0187	725	0.14	60	24	2,738.95	1.90	8.33
	NOx	0.015	725	0.14	60	24	2,223.38	1.54	6.76
Cat. 3412 TA	SO24	0.00035	725	0.14	60	24	50.49	0.04	0.15
	voc	0.0022	725	0.14	60	24	322.23	0.22	0.98
	PM ₁₀ ⁵	0.00088	725	0.14	60	24	128.89	0.09	0.39
	со	0.0187	725	0.41	60	24	8,021.21	5.57	24.40
	NOx	0.015	725	0.41	60	24	6,511.33	4.52	19.81
Cat. 3412 TA	SO24	0.00035	725	0.41	60	24	147.87	0.10	0.45
	VOC	0.0022	725	0.41	60	24	943.67	0.66	2.87
	PM ₁₀ ⁵	0.00088	725	0.41	60	24	377.47	0.26	1.15
	со		4,375		60	24	51,803.92	35.97	157.57
	NOx		4,375		60	24	42,052.59	29.20	127.91
Rig Totals	SO24		4,375		60	24	955.03	0.66	2.90
	voc		4,375		60	24	6,094.58	4.23	18.54
	PM ₁₀ ⁵		4,375		60	24	2,437.83	1.69	7.42

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

Engine Emission Standards, g/kWh (g/bhp-hr)," Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

Drilling engine horsepower based on data provided by WDEQ/Questar.

³ The overall load factor is based on data provided by WDEQ/Questar.

^{*}The SO, emission factor is calculated assuming 26.4 gall/n fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.00 lbguit. Fuel consumption are taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. *PMZ.5 assume queuient to PMI for drilling engingers.

Table D.1.19 Pinedale Anticline - Drilling Emissions - Tier 1 - Caza Rig 85

Project: Pinedale Anticline Scenario: Caza Rig 85 Activity: Drilling

Emissions: Diesel Combustion Emissions from Drilling Engines - Tier 1 - Engines reported to be Tier 1 compliant Date: 6/30/2005

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emission Per Rig Based of Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
	со	0.0187	1,321	0.58	60	24	20,670.88	14.35	62.87
	NOx	0.015	1,321	0.58	60	24	16,779.89	11.65	51.04
Cat. 3512 TA	SO24	0.00035	1,321	0.58	60	24	381.08	0.26	1.16
	voc	0.0022	1,321	0.58	60	. 24	2,431.87	1.69	7.40
	PM ₁₀ ⁵	0.00088	1,321	0.58	60	24	972.75	0.68	2.96
	со	0.0187	1,321	0.58	60	24	20,670.88	14.35	62.87
	NOx	0.015	1,321	0.58	60	24	16,779.89	11.65	51.04
Cat. 3512 TA	SO24	0.00035	1,321	0.58	60	24	381.08	0.26	1.16
	voc	0.0022	1,321	0.58	60	24	2,431.87	1.69	7.40
-	PM ₁₀ ^S	0.00088	1,321	0.58	60	24	972.75	0.68	2.96
4	со	0.0187	1,321	0.58	60	24	20,670.88	14.35	62.87
	NOx	0.015	1,321	0.58	60	24	16,779.89	11.65	51.04
Cat. 3512 TA	SO24	0.00035	1,321	0.58	60	24	381.08	0.26	1.16
	voc	0.0022	1,321	0.58	60	24	2,431.87	1.69	7.40
	PM ₁₀ ⁵	0.00088	1,321	0.58	60	24	972.75	0.68	2.96
	со		3,963		60	24	62,012.63	43.06	188.62
	NOx		3,963		60	24	50,339.66	34.96	153.12
Rig Totals	SO24		3,963		60	24	1,143.23	0.79	3.48
	voc		3,963		60	24	7,295.60	5.07	22.19
	PM ₁₀ ⁵		3,963		60	24	2,918.24	2.03	8.88

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, gWMn (g/bhp-hp.)" Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

¹ Orlining engine horsepower hased on data provided by WDEQ/Questle.

³ The overall load factor is based on data provided by WDEQ/Questar.

^{*}The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% suffur content of #2 diesel fuel, and fuel density of 7.001 lbgl. Fuel consumption rate taken from categories of the property of th

Table D.1.20 Pinedale Anticline - Drilling Emissions - Tier 1 - Caza Rig 86

Project: Pinedale Anticline Scenario: Caza Rig 86 Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Tier 1 - Engines reported to be Tier 1 compliant

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emission: Per Rig Based of Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
	co	0.0187	1,321	0.58	60	24	20,670.88	14.35	62.87
	NOx	0.015	1,321	0.58	60	24	16,779.89	11.65	51.04
Cat. 3512 TA	SO24	0.00035	1,321	0.58	60	24	381.08	0.26	1.16
	voc	0.0022	1,321	0.58	60	24	2,431.87	1.69	7.40
	PM ₁₀ ⁵	0.00088	1,321	0.58	60	24	972.75	0.68	2.96
	CO	0.0187	1,321	0.58	60	24	20,670.88	14.35	62.87
	NOx	0.015	1,321	0.58	60	24	16,779.89	11.65	51.04
Cat. 3512 TA	SO ₂ ⁴	0.00035	1,321	0.58	60	24	381.08	0.26	1.16
	voc	0.0022	1,321	0.58	60	24	2,431.87	1.69	7.40
	PM ₁₀ 5	0.00088	1,321	0.58	60	24	972.75	0.68	2.96
	СО	0.0187	1,321	0.58	60	24	20,670.88	14.35	62.87
	NOx	0.015	1,321	0.58	60	24	16,779.89	11.65	51.04
Cat. 3512 TA	SO24	0.00035	1,321	0.58	60	24	381.08	0.26	1.16
	voc	0.0022	1,321	0.58	60	24	2,431.87	1.69	7.40
	PM ₁₀ ⁵	0.00088	1,321	0.58	60	24	972.75	0.68	2.96
	со		3,963		60	24	62,012.63	43.06	188.62
	NOx		3,963		60	24	50,339.66	34.96	153.12
Rig Totals	SO24		3,963		60	24	1,143.23	0.79	3.48
	voc		3,963		60	24	7,295.60	5.07	22.19
	PM ₁₀ ⁵		3,963		60	24	2,918.24	2.03	8.88

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.
² Drilling engine horsepower based on data provided by WDEQ/Questar.

The overall load factor is based on data provided by WDEQ/Questar.

The Overall sola tactor is assessed or uses provinced up virus. The SQ emission factor is calculated assuring 26.4 galfur fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 bigual. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. "PMZ.5 assume queuient to PMI for drilling engines."

Table D.1.21 Pinedale Anticline - Drilling Emissions - Tier1/AP-42 - Caza Rig 24

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317

Project: Pinedale Anticline Scenario: Caza Rig 24 Activity: Drilling

Emissions: Diesel Combustion Emissions from

Drilling Engines - Cat 3508s at Tier 1, 3412s at AP-42

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Per Rig Based or Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(ib/hr)	(tpy)
	со	0.0187	650	0.60	60	24	10,545.09	7.32	32.07
	NOx	0.015	650	0.60	60	24	8,560.13	5.94	26.04
Cat 3508 TA	SO ₂ ⁴	0.00035	650	0.60	60	24	194.40	0.14	0.59
	voc	0.0022	650	0.60	60	24	1,240.60	0.86	3.77
	PM ₁₀ ⁵	0.00088	650	0.60	60	24	496.24	0.34	1.51
	со	0.0187	650	0.60	60	24	10,545.09	7.32	32.07
	NOx	0.015	650	0.60	60	24	8,560.13	5.94	26.04
Cat. 3508 TA	SO24	0.00035	650	0.60	60	24	194.40	0.14	0.59
	voc	0.0022	650	0.60	60	24	1,240.60	0.86	3.77
	PM ₁₀ ^S	0.00088	650	0.60	60	24	496.24	0.34	1.51
	со	0.0187	650	0.60	60	24	10,545.09	7.32	32.07
	NOx	0.015	650	0.60	60	24	8,560.13	5.94	26.04
Cat. 3508 TA	SO ₂ 4	0.00035	650	0.60	60	24	194.40	0.14	0.59
	voc	0.0022	650	0.60	60	24	1,240.60	0.86	3.77
	PM ₁₀ ⁵	0.00088	650	0.60	60	24	496.24	0.34	1.51
	со	0.00668	725	0.41	60	24	2,880.65	2.00	8.76
	NOx	0.0062	725	N/A	60	24	6,424.62	4.46	19.54
Cat. 3412 TA	SO24	0.00205	725	0.41	60	24	884.03	0.61	2.69
	Voc	0.0025	725	0.41	60	24	1,078.09	0.75	3.28
	PM ₁₀ ⁵	0.0022	725	0.41	60	24	948.72	0.66	2.89
	СО	0.00668	725	0.41	60	24	2,880.65	2.00	8.76
	NOx	0.0062	725	N/A	60	24	6,424.62	4.46	19.54
Cat. 3412 TA	SO24	0.00205	725	0.41	60	24	884.03	0.61	2.69
	voc	0.0025	725	0.41	60	24	1,078.09	0.75	3.28
	PM ₁₀ ⁵	0.0022	725	0.41	60	24	948.72	0.66	2.89
	со		3,400		60	24	37,396.56	25.97	113.75
	NOx		3,400		60	24	38,529.63	26.76	117.19
Rig Totals	SO ₂ ⁴		3,400		60	24	2,351.27	1.63	7.15
	voc		3,400		60	24	5,877.97	4.08	17.88
	PM ₁₀ ⁵		3,400		60	24	3,386.15	2.35	10.30

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/N/m (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/officad.html.

For Caterpillar 3412TAs NOx based on data provided by WDEQ/Questar, all other pollutants based on AP-42 (EPA, 1996). Section 3.3, Gasoline and Diesel Industrial Engines.

Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."

Table 3-5, Chillips engine horsepower based on data provided by WDEQ/Questar.

The overall load factor is based on data provided by WDEQ/Questar.

The overall load factor is based on data provided by WDEQ/Questar.

The SO2 emission factor for the Cat. 3508TAs is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Olifield Mechanical Rig Power" specification sheets. Cat 3412TAs are based on AP-42.

*PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.22 Pinedale Anticline - Drilling Emissions - Tier 1 - Caza Rig 24

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317

Project: Pinedale Anticline Scenario: Caza Rig 24 Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Tier 1 Date: 6/30/2005

Engine	Pollutant	Pollutant Emission Factor ¹	Horsepower ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based or Continuous Operation
		(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/welf)	(lb/hr)	(tpy)
-	co	0.0187	650	0.60	60	24	10,545.09	7.32	32.07
	NOx	0.015	650	0.60	60	24	8,560.13	5.94	26.04
Cat. 3508 TA	SO24	0.00035	650	0.60	60	24	194.40	0.14	0.59
	voc	0.0022	650	0.60	60	24	1,240.60	0.86	3.77
	PM ₁₀ 5	0.00088	650	0.60	60	24	496.24	0.34	1.51
	co	0.0187	650	0.60	60	24	10,545.09	7.32	32.07
	NOx	0.015	650	0.60	60	24	8,560.13	5.94	26.04
Cat. 3508 TA	SO24	0.00035	650	0.60	60	24	194.40	0.14	0.59
	voc	0.0022	650	0.60	60	24	1,240.60	0.86	3.77
	PM ₁₀ ⁵	0.00088	650	0.60	60	24	496.24	0.34	1.51
	со	0.0187	650	0.60	60	24	10,545.09	7.32	32.07
	NOx	0.015	650	0.60	60	24	8,560.13	5.94	26.04
Cat. 3508 TA	SO24	0.00035	650	0.60	60	24	194.40	0.14	0.59
	voc	0.0022	650	0.60	60	24	1,240.60	0.86	3.77
	PM ₁₀ ⁵	0.00088	650	0.60	60	24	496.24	0.34	1.51
	со	0.0187	725	0.41	60	24	8,081.07	5.61	24.58
	NOx	0.015	725	0.41	60	24	6,559.93	4.56	19.95
Cat. 3412 TA	SO24	0.00035	725	0.41	60	24	148.98	0.10	0.45
	VOC	0.0022	725	0.41	60	24	950.71	0.66	2.89
	PM ₁₀ ⁵	0.00088	725	0.41	60	24	380.29	0.26	1.16
	co	0.0187	725	0.41	60	24	8,081.07	5.61	24.58
	NOx	0.015	725	0.41	60	24	6,559.93	4.56	19.95
Cat. 3412 TA	SO24	0.00035	725	0.41	60	24	148.98	0.10	0.45
	voc	0.0022	725	0.41	60	24	950.71	0.66	2.89
	PM ₁₀ ^S	0.00088	725	0.41	60	24	380.29	0.26	1.16
	co		3,400	-	60	24	47,797.42	33.19	145.38
	NOx		3,400		60	24	38,800.26	26.94	118.02
Rig Totals	SO24		3,400		60	24	881.17	0.61	2.68
	voc		3,400		60	24	5,623.23	3.91	17.10
	PM ₁₀ ⁶		3,400		60	24	2,249.29	1.56	6.84

¹ Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel

1

Engine Emission Standards, gNWh (g/bhp-h)." Available on-line at http://www.dieselnet.com/standards/us/offroad html.

*Drilling engine horsepower based on data provided by WDEQ/Questar.

*The overall load factor is based on data provided by WDEQ/Questar.

The overal rocal roctor is used of usual provision by MCCL-actives.

"The overal rocal roctor is calculated assuring 26 4 gailsh fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel diesely of 7.00 tilisely in the consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

"PMZ-5 assurance queuellar fuel Poli for drilling engines."

Table D.1.23 Pinedale Anticline - Drilling Emissions - AP-42 - Summer Rigs

10.5 Skyline Drive 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Laramie, WY 82070 Phone: (307) 745-8317				Scenario: Summe Activity: Drilling Emissions: Diesel C Date: 6/30/200	Project: Vineaale Anticline Scenario: Summer Rigs Activity: Drilling missions: Diesel Combustion Emit Drilling Engines - AP-42 Date: 6/30/2005	Froject: Pinedale Anticline Scenario: Summer Rigs Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - AP-42 Date: 6/30/2005	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower All Engines ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Drilling Activity Duration Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lp/hp-hr)	(dh)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
8	0.00668	3,216	0.50	09	24	15,384.15	10.68	46.79
XON	0.031	3,216	0.50	09	24	71,393.50	49.58	217.16
SO ₂	0.00205	3,216	0.50	09	24	4,721.18	3.28	14.36
VOC	0.0025	3,216	0.50	90	24	5,757.54	4.00	17.51
PM104	0.0022	3,216	0.50	90	24	5,066.64	3.52	15.41

and Diesel Industrial Engines." 2 Drilling engine horsepower based on Rig # 232, data provided by WDEQ/Questar. 3 The overall load factor is based on Rig #232, data provided by WDEQ/Questar. 4 PM $_{2.5}$ assumed equivalent to PM $_{10}$ for drilling engines.

Table D.1.24
Pinedale Anticline - Drilling Emissions - Tier 1 - Summer Rigs

INC Environmental Col 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	TRC Environmental Corporation 805 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317				Project: Scenario: Activity: Emissions: Date:	Project: Pinedale Anticine Scenario: Summer Rigs Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - Tier 1 Date: 6/30/2005	missions from	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower Overall Load All Engines ² Factor ³	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well Emissions per Rig	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lb/hp-hr)	(dy)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
00	0.0187	3,216	0.50	09	24	43,157.12	29.97	131.27
NOX	0.015	3,216	0.50	09	24	35,033.43	24.33	106.56
SO ₂	0.00035	3,216	0.50	09	24	795.62	0.55	2.42
VOC	0.0022	3,216	0:00	09	24	5,077.31	3.53	15.44
PM104	0.00088	3,216	0.50	09	24	2,030.92	1.41	6.18

Engine Emission Standards, g/KVM (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html. * Onilling engine horsepower based on Rig # 232, data provided by WDEO/Ouestar.

⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel ³ The overall load factor is based on Rig #232, data provided by WDEQ/Questar.

density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Olifield Mechanical Rig Power" specification sheets.
^a PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.25 Pinedale Anticline - Drilling Emissions - AP-42 - Other Winter Rigs

Laramie, V Phone: (3 Fax: (3	605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317					Activity: Emissions: Date:	Scenario: Other Wilher rugs Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA AP Date: 6/30/2005	Other Winter Rigs Drilling Diesel Combustion Emissions from Drilling Engines - EPA AP-42 6/30/2005
Pollutant	Pollutant Emission Factor ¹	Total Horsepower All Engines ²	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
	(lb/hp-hr)	(dy)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
8	0.00668	5,000	0.44	09	24	21,272.86	14.77	64.70
XON	0.031	5,000	0.44	09	24	98,721.36	68.56	300.28
SO ₂	0.00205	2,000	0.44	09	24	6,528.35	4.53	19.86
V0C	0.0025	5,000	0.44	09	24	7,961.40	5.53	24.22
PM ₁₀	0.0022	5.000	0.44	09	24	7 006.03	4.87	21.31

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."

² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

3 The overall load factor is calculated based on the average load factor of Rig #236, the largest rig data on the Anticline was available for, data provided by WDEQ/Questar.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

Table D.1.26 Pinedale Anticline - Drilling Emissions - Tier 1 - Other Winter Rigs

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	181.52	147.35	3.35	21.35	8.54	
Project n Emissions nes - EPA Tier 1	Emissions per Rig	(lb/hr)	41.44	33.64	0.76	. 88:	1.95	
Project: Pinedale Anticline Project Scenario: Other Winter Rigs Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions Per Well	(lb/well)	59,676.71	48,443.45	1,100.17	7,020.79	2,808.32	
Project: Pinedal Scenario: Other W Activity: Drilling Emissions: Diesel C from Dr	Drilling Activity Duration	(hours/day)	24	24	24	24	24	
	Drilling Activity Duration	(days/well)	09	09	09	09	09	
	1		0.44	0.44	0.44	0.44	0.44	
uo	Total Horsepower Overall Load All Engines ² Factor ³	(hp)	5,000	5,000	5,000	5,000	5,000	
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088	
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		00	XON	SO ₂ ⁴	VOC	PM ₁₀ 5	

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/kWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

³ The overall load factor is calculated based on the average load factor of Rig #236, the largest rig data on the Anticline was available for, Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.
PM2.5 assumed equivalent to PM10 for drilling engines. data provided by WDEQ/Questar.

Table D.1.27 Pinedale Anticline - Completion Flaring Emissions

TRC Environmental Corporation

605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Pinedale Anticline Scenario: Completion Flaring

Activity: Flaring Date: 6/2/2005

Assumptions:

 Hours of Operation:
 3 days
 Jonah II EIS

 24 hours/day
 Jonah II EIS

 Gas Flared:
 5 MMCFD
 Jonah II EIS

 Gas Heat Content:
 1000 Btu/scf
 Jonah II EIS

Pollutant	Pollutant Emission Factor ¹		Emissions per Well	
	(lb/MMCF)	(lb/hr - Max)	(lb/well)	(ton/well)
NO _x	68.00	14.17	1020	0.51
CO ¹	370.00	77.08	5550	2.78
VOCs1	63.00	13.13	945	0.47
PM ₁₀ ²	7.60	1.58	114	0.06
PM _{2.5} ²	7.60	1.58	114	0.06
SO ₂	0.00	0.00	0.00	0.00
Benzene ²	0.0021	0.0004	0.03	0.0000
Formaldehyde ²	0.0750	0.02	1.13	0.0006
Hexane ²	1.80	0.38	27.00	0.0135
Toluene ²	0.0034	0.0007	0.051	0.0000

¹ AP-42, Tables 13.5-1 and 13.5-2, 9/91.

Note: Table data presented as found in "Pinedale Anticline Oil and Gas Exploration and Development Project Draft Environmental Impact Statement", Technical Report, BLM, Pinedale Field Office, November, 1999.

² AP-42, Tables 1.4-2 and 1.4-3 (3/98).

Table D.1.28 Pinedale Anticline - Summary - 2002

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070

Phone: (307) 742-3843 Fax: (307) 745-8317

Project: Pinedale Anticline Project Scenario: Estimated 2002 Drilling and Completion Emissions 3,216 hp, 100 % Tier 0

Date: 6/30/2005

of Operating Drilling
Rigs # of Operating
Flares #232 Rig Emissions Average Drilling Total Emissions

(Tier () Tier () Fraction Emissions per Right from all Right Flag

Month	Pollutant		Flares	(Tier 0)	Tier 0 Fraction	Emissions per Rig	from all Rigs ¹	Flaring Emissio
				(lb/hr)		(lb/hr)	(lb/hr)	(lb/hr)
	NO _x		1	28.85	1.0	28.85	115.39	28.33
January	SO ₂	4	2	3.28	1.0	3.28	13.11	0.00
	PM ₁₀			3.52	1.0	3.52	14.07	3.17
	NO _x			28.85	1.0	28.85	86.54	14.17
February	SO ₂	3	1	3.28	1.0	3.28	9.84	0.00
	PM ₁₀			3.52	1.0	3.52	10.56	1.58
-	NO _x		T	28.85	1.0	28.85	86.54	14.17
March	SO ₂	3	1	3.28	1.0	3.28	9.84	0.00
	PM ₁₀			3.52	1.0	3.52	10.56	1.58
								•
	NO _x			28.85	1.0	28.85	28.85	14.17
April	SO ₂	1	1	3.28	1.0	3.28	3.28	0.00
	PM ₁₀		1	3.52	1.0	3.52	3.52	1.58
	NO,		1	28.85	1.0	28.85	201.93	42.50
May	SO ₂	7	3	3.28	1.0	3.28	22.95	0.00
	PM ₁₀			3.52	1.0	3.52	24.63	4.75
								-
	NO _x			28.85	1.0	28.85	86.54	14.17
June	SO ₂	3	1	3.28	1.0	3.28	9.84	0.00
	PM ₁₀		1	3.52	1.0	3.52	10.56	1.58
	NO _x		T	28.85	1.0	28.85	230.78	56.67
July	SO ₂	8	4	3.28	1.0	3.28	26.23	0.00
,	PM ₁₀			3.52	1.0	3.52	28.15	6.33
	NO _x			28.85	1.0	28.85	144.24	28.33
August	SO ₂	5	2	3.28	1.0	3.28	16.39	0.00
	PM ₁₀			3.52	1.0	3.52	17.59	3.17
	NO,		1	28.85	1.0	28.85	86.54	14.17
eptember		3	1	3.28	1.0	3.28	9.84	0.00
ортонные	PM ₁₀			3.52	1.0	3.52	10.56	1.58
						1		-
	NO _x			28.85	1.0	28.85	86.54	14.17
October	SO ₂	3	1	3.28	1.0	3.28	9.84	0.00
	PM ₁₀			3.52	1.0	3.52	10.56	1.58
	NO,		T	28.85	1.0	28.85	0.00	0.00
November	SO ₂	0	0	3.28	1.0	3.28	0.00	0.00
1040111001	PM ₁₀			3.52	1.0	3.52	0.00	0.00
	•							
	NO _x			28.85	1.0	28.85	28.85	14.17
December		1	1	3.28	1.0	3.28	3.28	0.00
	PM ₁₀			3.52	1.0	3.52	3.52	1.58

¹ Emissions are calculated based on 3,216 hp Questar Rig #232 at Tier 0 emissions.

² Flaring Emissions based on data from the "Pinedale Anticline Oil and Gas Exploration and Development Project Draft Environmental Impact Statement Technical Report", BLM, November, 1999.

Table D.1.29 Pinedale Anticline - Summary - 2006

TRC Environmental Corporation 605 Skyline Drive Laranie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317

Project: Pinedale Anticline Scenario: Estimated 2006 Drilling and Completion Emissions Date: 6/30/2005

Flaring Emissions ²	(lb/hr)	56.67		6.33	56.67		6.33	56.67		6.33	56.67		6.33	56.67		6.33	70.83		7.92	70.83		7.92	70.83		7.92	70.83		7.92	70.83		7.92	56.67		6.33	56.67		6.33
Total Emissions from all Rigs 1	11	1134.70	72.03	83.73	1134.70	72.03	83.73	1134.70	72.03	83.73	1134.70	72.03	83.73	1134.70	72.03	83.73	1357.34	85.69	99.21	1579.98	99.36	114.70	1579 98	98.36	114.70	1579.98	99.36	114.70	1357.34	85.69	99.21	1134.70	72.03	83.73	1134.70	7203	83.73
Average Drilling Emissions per Rla ¹	(lb/hr)	45.39	2.88	3,35	45,39	2.88	3.35	46.39	2.88	3,35	45,39	2.88	3.35	45.39	2.88	3,35	45.24	2.86	3.31	45.14	2.84	3.28	4514	284	3.28	45.14	2.84	3,28	45.24	2.86	3.31	45.39	2.88	3.35	45.39	2 88	2 2 5
Tier 1		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	00	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	00	000	2.0
Tier 0 Fraction		0.8	0.8	8.0	0.8	8.0	9.0	9.0	8.0	8.0	0.8	8.0	8.0	8.0	8.0	9.0	9.0	8.0	9.0	8.0	0.8	8.0	80	80	0.8	9.0	8.0	8.0	0.8	8.0	8.0	8.0	0.8	0.8	80	900	0.0
Summer Rigs	(Ib/hr)	24.33	0.55	1.41	24.33	0.55	1,41	24.33	0.55	1.41	24.33	0.55	1,41	24.33	0.55	1.41	24.33	0.55	1.41	24.33	0.55	1.41	24 33	0.55	1,41	24.33	0,55	1,41	24.33	0.55	1.41	24.33	0.55	1.41	24.33	0.56	0.33
ummer Rigs 8	(lb/hr)	49.58	3.28	3.52	49.58	3.28	3,52	49.58	3.28	3.52	49.58	3.28	3.52	49.58	3.28	3.52	49.58	3.28	3.52	49.58	3.28	3.52	40.58	128	3.52	49,58	3.28	3.52	49.58	3.28	3.52	49.58	3.28	3.52	40 58	3 28	3.40
Other Winter Summer Rigs Summer Rigs Rios (Tier 1) (Tier 0) (Tier 1)	(lb/hr)	33.64	0.76	1.95	33.64	92.0	1.95	33.64	0.76	1.95	33.64	0.76	1.95	33.64	9.76	1.95	33.64	92.0	1.95	33,64	0.76	1.95	22.64	0.76	1.95	33.64	92.0	1.95	33.64	0.76	1,95	33.64	0.76	1.95	13.64	27.0	0.70
Other Winter	(lb/hr)	68.56	4.53	4.87	68.56	4.53	4.87	68.56	4.53	4.87	68.56	4.53	4.87	68.56	4.53	4.87	68.56	4.53	4.87	68,56	4.53	4.87	23 62	4 53	4.87	68.56	4.53	4.87	68.56	4.53	4.87	68.56	4.53	4.87	68 56	4 63	4.00
Caza Rig #24		26.76	1.63	2.35	26.76	1.63	2.35	26.76	1.63	2.35	26.76	1.63	2.35	26.76	1.63	2.35	26.76	1.63	2.35	26.76	1.63	2.35	27.30	1 63	2.35	26.76	1.63	2.35	26.76	1.63	2.35	26.76	163	2.35	37.30	4 60	20.0
Caza Rig # C	(lb/hr)	34 96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.06	0.70	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34 06	020	0.78
Caza Rig #	(lb/hr)	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	24.06	0.70	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34.96	0.79	2.03	34 96	24.90	0.78
Rig # 236	11	30.97	3.97	4.26	30.97	3.97	4.26	30.97	3.87	4.26	30.97	3.97	4.26	30.97	3.97	4.26	30.97	3.97	4.26	30.97	3.97	4.26	20.07	207	4.26	30.97	3.97	4.26	30.97	3,97	4.26	30.97	3.97	4.26	30.07	20.00	3.87
Rig # 235	(lb/hr)	29.89	3.35	3.59	29.89	3.35	3.59	29.89	3.35	3.59	29.89	3,35	3.59	29.89	3,35	3.59	29.89	3.35	3.59	29.89	3.35	3.59	00 00	225	3.59	29.89	3.35	3.59	29.89	3,35	3.59	29.89	335	3,59	20.80	20.00	3.35
Rig # 232	(lb/hr)	28.85	3.28	3.52	28.85	3.28	3.52	28.85	3.28	3.52	28.85	3.28	3.52	28.85	3.28	3.52	28.85	3.28	3.52	28.85	3.28	3,52	20 00	20.02	3.52	28.85	3.28	3.52	28.85	3.28	3.52	28.85	3.28	3.52	28 85	20.02	3.28
# of Operating	20101		4			4			4			4			4			9			5			4			9			9			4			,	
# of Operating Drilling Rigs			25			25			25			25			25			30			35			35	3		35			30			25			30	67
Pollitant	TIESTON OF THE PROPERTY OF THE	CN	300	PM ₁₀	NO	so,		ON	80%	PM ₁₀	NO.	80,	PM ₁₀	ON	80%	PM ₁₀	NO.	SO,	PM,0	NO	000	PM ₁₀	Cia	200	PM ₁₀	NO	80,	PM ₁₀	NO.	80,	PM ₁₀	NO.		PM,0	ON		202
Month			January			February			March			April			May			June			July			Andres	n n		September			October			November			Passage Land	December

^{*} Emissions are acclusted based on the 6-year-round drifting right from the WDEDQuester data, aix (6) 5.000 pt figs to round out the where dilling engines and the remainder as 3.216 to right based on Questar Rig #322. The 6 right data is available for are based on Titler 0 or Titler 1 authorizes appropriate part agreement again. The device face uses a NOS The Titler Titler Commonstal Impact Statement Tennical Report. BLM, November 1989.

Table D.1.30 Pinedale Anticline - Summary - 2006-2002

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Pinedale Anticline Project Scenario: 2006-2002 Emissions and Modeling Scalars Date: 6/30/2005

Month	Pollutant	Total Emissions from all Rigs (2006)	Flaring Emissions (2006)	Total Emissions from all Rigs (2002)	Flaring Emissions (2002)	Emissions Difference - Rigs - (2006 - 2002)	Emissions Difference - Flares - (2006 - 2002)	Rig Scalar	Flare Scal
		(lb/hr)	(lb/hr)	(lb/hr)	(ib/hr)	(lb/hr)	(lb/hr)		
	NO _v	1134.70	56.67	115.39	28.33	1019.31	28.33	0.6825	0.50
January	SO ₂	72.03	0.00	13.11	0.00	58.91	0.00	0.6581	N/A
	PM ₁₀	83.73	6.33	14.07	3.17	69.65	3.17	0.6688	0.50
									1 1
	NO _x	1134.70	56.67	86.54	14.17	1048.15	42.50	0.7018	0.75
February	SO ₂	72.03	0.00	9.84	0.00	62.19	0.00	0.6947	N/A
	PM ₁₀	83.73	6.33	10.56	1.58	73.17	4.75	0.7026	0.75
	NO.	1134.70	56.67	86.54	14.17	1048.15	42.50	0.7018	0.75
March	SO ₂	72.03	0.00	9.84	0.00	62.19	0.00	0.6947	N/A
	PM ₁₀	83.73	6.33	10.56	1.58	73.17	4.75	0.7026	0.75
	110	-	0.00	10.00	1.00	10.77	1	0.1020	0.70
	NO _x	1134.70	56.67	28.85	14.17	1105.85	42.50	0.7405	0.75
April	SO ₂	72.03	0.00	3.28	0.00	68.75	0.00	0.7679	N/A
	PM ₁₀	83.73	6.33	3.52	1.58	80.21	4.75	0.7702	0.75
	NO _x	1134.70	56.67	201.93	42.50	932.77	14.17	0.6246	0.25
May	SO ₂	72.03	0.00	22.95	0.00	49.08	0.00	0.5482	N/A
may	PM ₁₀	83.73	6.33	24.63	4.75	59.10	1.58	0.5675	0.25
	Ir ivi10	03.73	0.33	24.03	4.13	35.10	1.50	0.3073	0.25
	NO.	1357.34	70.83	86.54	14.17	1270.80	56.67	0.8509	1.00
June	SO ₂	85.69	0.00	9.84	0.00	75.86	0.00	0.8473	N/A
	PM ₁₀	99.21	7.92	10.56	1.58	88.66	6.33	0.8513	1.00
	lua I		70.00				1		
July	NO _x	1579.98	70.83	230.78	56.67	1349.21	14.17	0.9034	0.25
July	SO ₂	99.36 114.70	0.00 7.92	26.23 28.15	0.00 6.33	73.13 86.55	0.00	0.8169	N/A 0.25
	PM ₁₀	114.70	7.92	28.15	6.33	86.55	1.56	0.8311	0.25
	NO _x	1579.98	70.83	144.24	28.33	1435.75	42.50	0.9614	0.75
August	SO ₂	99.36	0.00	16.39	0.00	82.97	0.00	0.9268	N/A
	PM ₁₀	114.70	7.92	17.59	3.17	97.10	4.75	0.9324	0.75
	NO.	1579.98	70.83	86.54	14.17	1493.44	56.67	1.0000	1.00
September	SO ₂	99.36	0.00	9.84	0.00	89.52	0.00	1.0000	N/A
Оортопівої	PM ₁₀	114.70	7.92	10.56	1.58	104.14	6.33	1.0000	1.00
	NO _x	1357.34	70.83	86.54	14.17	1270.80	56.67	0.8509	1.00
October	SO ₂	85.69	0.00	9.84	0.00	75.86	0.00	0.8473	N/A
	PM ₁₀	99.21	7.92	10.56	1.58	88.66	6.33	0.8513	1.00
	NO _x	1134.70	56.67	0.00	0.00	1134.70	56.67	0.7598	1.00
November	SO ₂	72.03	0.00	0.00	0.00	72.03	0.00	0.8045	N/A
	PM ₁₀	83.73	6.33	0.00	0.00	83.73	6.33	0.8040	1.00
	NO _x	1134.70	56.67	28.85	14.17	1105.85	42.50	0.7405	0.75
December	SO ₂	72.03	0.00	3.28	0.00	68.75	0.00	0.7679	N/A
2300111001	PM ₁₀	83.73	6.33	3.52	1.58	80.21	4.75	0.7702	0.75

Numbers that scalars are based on.

These scalars are used in model input files for modeling monthly emissions.

Table D.1.31 Riley Ridge - Drilling Emissions - AP-42

Total Horsepower Overall Load Drilling Activity All Engines Factor Duration (days/well)

¹ AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."

² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

Riley Ridge - Drilling Emissions - Tier 1 Table D.1.32

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	72.82	59.12	1.34	8.57	3.43
n Emissions nes - EPA Tier 1	Emissions per Rig	(lb/hr)	16.63	13.50	0.31	1.96	0.78
Project: Riley Ridge Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions Per Well	(lb/well)	1	1	1	1	1
Project: Riley Ri Scenario: Straighi Activity: Drilling Emissions: Diesel C from Dr	Drilling Activity Duration	(hours/day)	24	24	24	24	24
	Drilling Activity Duration	(days/well)	1	1	ı	ı	1
			0.42	0.42	0.42	0.42	0.42
lon	Total Horsepower Overall Load All Engines ² Factor ³	(hp)	2,100	2,100	2,100	2,100	2,100
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		00	XON	SO ₂ ⁴	VOC	PM ₁₀ 5

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/kV/h (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html. i Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%

The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁵ PM2.5 assumed equivalent to PM10 for drilling engines.

Environmental Corporation	kyline Drive	nie, WY 82070	e: (307) 742-3843	(307) 745-8317
TRC Env	809 8	Laran	Phon	Fax:

Project: Riley Ridge Scenario: Completion Flaring Activity: Flaring Date: 6/30/2005

	٥	2	4
	ı		3
	3		
	1		
	ì		
	ŝ		
	í	g	ņ
	8	Ú	

Hours of Operation:

Amount of Gas Flared:

Average Heat Content:

6.50'
Average Wol. Weight

7.70

3 days 2.5 MMSCF/well 1189.6 Btu/scf 6.50% weight 17.705 lb/lb-mol

Pollutant	Emission	Emission Factor	Operational Kate	nai Kate		Emissions per vveil	
	(lb/MMBtu)	(lb/MMscf)	(MMBtu)	(MMscf)	(lb/hr - Max)	(lb/well)	(ton/well)
NOX	0.068		2974.00		2.81	202.23	0.10
00	0.37		2974.00		15.28	1100.38	0.55
VOCs					2.10	151.20	0.0756
802					0.00	0.00	0.0000
TSP		7.60		2.50	0.26	19.00	0.0095
PM10		7.60		2.50	0.26	19.00	0.0095
PM2.5		7.60		2.50	0.26	19.00	0.0095
Benzene		0.0021		2.50	0.0001	0.0053	0.0000
Toluene		0.0034		2.50	0.0001	0.0085	0.0000
Hexane		1.8		2.50	90.0	4.50	0.0023
Formaldehyde		0.075		2.50	0.00	0.19	0.0001

¹ AP-42, Volume I, Section 13.5 (9/91).

Note: Table data given as found in "Draft Air Quality Technical Support Document for the South Piney Natural Gas Development Project Environmental Impact Statement", August, 2004. - Riley Ridge assumed to be similar to South Piney.

Table D.1.34 Riley Ridge - Summary - 2002

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070

Phone: (307) 742-3843 Fax: (307) 745-8317

Project: Riley Ridge Scenario: Estimated 2002 Drilling and Completion Emissions 2,100 hp, 100 % Tier 0

Date: 6/30/2005

Month	Pollutant	# of Operating Drilling Rigs	# of Operating Flares	Rig Emissions (Tier 0)	Tier 0 Fraction	Average Drilling Emissions per Rig ¹	Total Emissions from all Rigs ¹	Flaring Emission
				(lb/hr)		(lb/hr)	(lb/hr)	(lb/hr)
	NO _x	T 1		27.50	1.0	27.50	0.00	0.00
January	SO ₂	0	0	1.82	1.0	1.82	0.00	0.00
	PM ₁₀			1.95	1.0	1.95	0.00	0.00
	NO _x			27.50	1.0	27.50	0.00	0.00
February	SO ₂	0	0	1.82	1.0	1.82	0.00	0.00
	PM ₁₀	1		1.95	1.0	1.95	0.00	0.00
	NO _x			27.50	1.0	27.50	0.00	0.00
March	SO ₂	0	0	1.82	1.0	1.82	0.00	0.00
maron	PM ₁₀			1.95	1.0	1.95	0.00	0.00
	1							
	NO _x			27.50	1.0	27.50	0.00	0.00
April	SO ₂	0	0	1.82	1.0	1.82	0.00	0.00
	PM ₁₀			1.95	1.0	1.95	0.00	0.00
	To a							
	NO _x			27.50	1.0	27.50	27.50	2.81
May	SO ₂	1 1	1	1.82	1.0	1.82 1.95	1.82	0.00
	PM ₁₀			1.95	1.0	1.95	1.95	0.26
	NO _x			27.50	1.0	27.50	55.01	2.81
June	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
	NO _x			27.50	1.0	27.50	55.01	2.81
July	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
	NO,			27.50	1.0	27.50	110.02	2.81
August	SO ₂	4	1	1.82	1.0	1.82	7.28	0.00
, angust	PM ₁₀			1.95	1.0	1.95	7.81	0.26
	110							
-	NO _x			27.50	1.0	27.50	55.01	2.81
September		2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
	I.o.							
0-4-1-	NO _x			27.50	1.0	27.50	55.01	2.81
October	SO ₂	2	1	1.82	1.0	1.82 1.95	3.64	0.00
	PM ₁₀			1.95	1.0	1.35	3.90	0.26
	NO.	T		27.50	1.0	27.50	27.50	2.81
November	SO ₂	1	1	1.82	1.0	1.82	1.82	0.00
	PM ₁₀			1.95	1.0	1.95	1.95	0.26
	NO _x			27.50	1.0	27.50	27.50	2.81
December	SO ₂	1	1	1.82	1.0	1.82	1.82	0.00
	PM ₁₀			1.95	1.0	1.95	1.95	0.26

¹ Emissions are calculated based on 2,100 hp 100 % Tier 0 engines.

² Flaring Emissions based on data from the "Draft Air Quality Technical Support Document for the South Piney Natural Gas Development Project Environmental Impact Statement", August, 2004. Riley Ridge is assumed to be equivalent to South Piney.

Table D.1.35 Riley Ridge - Summary - 2006

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843

Fax: (307) 745-8317

Project: Riley Ridge Scenario: Estimated 2006 Drilling and Completion Emissions 2,100 hp, 100 % Tier 0 Date: 6/30/2005

		# of Operating Drilling Rigs	# of Operating	Rig Emissions		Average Drilling	Total Emissions	
Month	Pollutant		Flares	(Tier 0)	Tier 0 Fraction	Emissions per Rig ¹	from all Rigs ¹	Flaring Emission
				(lb/hr)		(lb/hr)	(lb/hr)	(lb/hr)
	NO,			27.50	1.0	27.50	55.01	2.81
January	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
oundary	PM ₁₀			1.95	1.0	1.95	3.90	0.26
-	1		100		1			-
	NO _x			27.50	1.0	27.50	55.01	2.81
February	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
	Ivo			27.50	1 40	27.50	55.01	2.81
Manuel	NO _x	2		1.82	1.0	1.82	3,64	0.00
March	SO ₂	2	1					
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
	NO.			27.50	1.0	27.50	55.01	2.81
April	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
				,		,		
	NO _x			27.50	1.0	27.50	82.51	2.81
May	SO ₂	3	1	1.82	1.0	1.82	5.46	0.00
	PM ₁₀			1.95	1.0	1.95	5.86	0.26
	NO _x	Г		27.50	1.0	27.50	82.51	2.81
June	SO ₂	3	1	1.82	1.0	1.82	5.46	0.00
Julio	PM ₁₀	1		1.95	1.0	1.95	5.86	0.26
							The state of the s	
	NO _x			27.50	1.0	27.50	165.03	2.81
July	SO ₂	6	1	1.82	1.0	1.82	10.91	0.00
	PM ₁₀			1.95	1.0	1.95	11.71	0.26
	NO _x			27.50	1.0	27.50	165.03	2.81
August	SO ₂	6	1	1.82	1.0	1.82	10.91	0.00
ragast	PM ₁₀	1 1		1.95	1.0	1.95	11.71	0.26
	1			-				
	NO _x		10.00	27.50	1.0	27.50	165.03	2.81
September	SO ₂	6	1	1.82	1.0	1.82	10.91	0.00
	PM ₁₀			1.95	1.0	1.95	11.71	0.26
	INO			27.50	1 10	07.50	20.54	1 0.04
October	NO _x	3	1	27.50	1.0	27.50	82.51	2.81
October	SO ₂	3		1.82	1.0	1.82	5.46	0.00
	PM ₁₀			1.95	1.0	1.95	5.86	0.26
	NO,			27.50	1.0	27.50	55.01	2.81
November	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26
		,						
	NO _x			27.50	1.0	27.50	55.01	2.81
December	SO ₂	2	1	1.82	1.0	1.82	3.64	0.00
	PM ₁₀			1.95	1.0	1.95	3.90	0.26

Emissions are calculated based on 2,100 hp 100 % Tier 0 engines.
 Flaring Emissions based on data from the "Draft Air Quality Technical Support Document for the South Piney Natural Gas Development Project Environmental Impact Statement", August, 2004. Riley Ridge is assumed to be equivalent to South Piney.

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Riley Ridge Project Scenario: 2006-2002 Emissions and Modeling Scalars Date: 6/30/2005

Month	Pollutant	Total Emissions from all Rigs (2006)	Flaring Emissions (2006)	Total Emissions from all Rigs (2002)	Flaring Emissions (2002)	Emissions Difference - Rigs - (2006 - 2002)	Emissions Difference - Flares - (2006 - 2002)	Rig Scalar	Flare Sca
		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)		
	NO _x	55.01	2.81	0.00	0.00	55.01	2.81	0.50	1.00
January	SO ₂	3.64	0.00	0.00	0.00	3.64	0.00	0.50	N/A
	PM ₁₀	3.90	0.26	0.00	0.00	3.90	0.26	0.50	1.00
	NO _x	55.01	2.81	0.00	0.00	55.01	2.81	0.50	1.00
February	SO ₂	3.64	0.00	0.00	0.00	3.64	0.00	0.50	N/A
	PM ₁₀	3.90	0.26	0.00	0.00	3.90	0.26	0.50	1.00
	NO _x	55.01	2.81	0.00	0.00	55.01	2.81	0.50	1.00
March	SO ₂	3.64	0.00	0.00	0.00	3.64	0.00	0.50	N/A
	PM ₁₀	3.90	0.26	0.00	0.00	3.90	0.26	0.50	1.00
	luo	55.04	0.04	0.00	0.00	55.04		2.52	
April	NO _x	55.01	2.81	0.00	0.00	55.01	2.81	0.50	1.00
April	SO ₂	3.64	0.00	0.00	0.00	3.64	0.00	0.50	N/A
	PM ₁₀	3.90	0.26	0.00	0.00	3.90	0.26	0.50	1.00
	NO _x	82.51	2.81	27.50	2.81	55.01	0.00	0.50	0.00
May	SO ₂	5.46	0.00	1.82	0.00	3.64	0.00	0.50	N/A
	PM ₁₀	5.86	0.26	1.95	0.26	3.90	0.00	0.50	0.00
	NO _x	82.51	2.81	55.01	2.81	27.50	0.00	0.25	0.0
June	SO ₂	5.46	0.00	3.64	0.00	1.82	0.00	0.25	N/A
	PM ₁₀	5.86	0.26	3.90	0.26	1.95	0.00	0.25	0.00
	NO,	165.03	2.81	55.01	2.81	110.02	0.00	1.00	0.0
July	SO ₂	10.91	0.00	3.64	0.00	7.28	0.00	1.00	N/A
	PM ₁₀	11.71	0.26	3.90	0.26	7.81	0.00	1.00	0.00
	NO,	165.03	0.04	440.00	0.04	55.04	0.00	0.50	
August		10.91	0.00	7.28	2.81 0.00	55.01 3.64	0.00	0.50	0.00
August	SO ₂ PM ₁₀	11.71	0.00	7.81	0.26	3.90	0.00	0.50	0.0
	NO _x	165.03	2.81	55.01	2.81	110.02	0.00	1.00	0.00
September	SO ₂	10.91	0.00	3.64	0.00	7.28	0.00	1.00	N/A
	PM ₁₀	11.71	0.26	3.90	0.26	7.81	0.00	1.00	0.0
	NO _x	82.51	2.81	55.01	2.81	27.50	0.00	0.25	0.0
October	SO ₂	5.46	0.00	3.64	0.00	1.82	0.00	0.25	N/A
	PM ₁₀	5.86	0.26	3.90	0.26	1.95	0.00	0.25	0.0
	NO _x	55.01	2.81	27.50	2.81	27.50	0.00	0.25	0.0
November	SO ₂	3.64	0.00	1.82	0.00	1.82	0.00	0.25	N/A
	PM ₁₀	3.90	0.26	1.95	0.26	1.95	0.00	0.25	0.00
	NO _x	55.01	2.81	27.50	2.81	27.50	0.00	0.25	0.00
December	SO ₂	3.64	0.00	1.82	0.00	1.82	0.00	0.25	N/A
December	-	3.90	0.00	1.95	0.00	1.95	0.00	0.25	0.00
	PM ₁₀	3.90	0.20	1.90	0.20	1.50	0.00	0.20	0.0

Table D.1.37 South Piney - Drilling Emissions - Tier 1 - Deep Wells

Emissions es - AP-42	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	24.58	114.06	7.54	9.20
Project: South Piney Scenario: CBM Drill Rig Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - AP-42 Date: 6/30/2005	Emissions per Rig	(lb/hr)	5.61	26.04	1.72	2.10
Project: South Pl Scenario: CBM Dri Activity: Drilling Emissions: Diesel C from Dri Date: 6/30/200	Emissions per Well Emissions per Rig	(lp/well)	1,346.69	6,249.60	413.28	504.00
	Drilling Activity Duration	(hours/day)	24	24	24	24
	Drilling Activity Duration	(days/well)	10	10	10	10
	Overall Load Factor ³		0.40	0.40	0.40	0.40
ion	Total Horsepower Overall Load Drilling Activity All Engines ² Factor ³ Duration	(dų)	2,100	2,100	2,100	2,100
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 745-8317 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lp/hp-hr)	0.00668	0.031	0.00205	0.0025
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8:	Pollutant		8	×	SO ₂	000

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline

8.09

1.85

443.52

24

10

0.40

2,100

0.0022

and Diesel Industrial Engines."

² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

³ Load factor taken from "Draff Air Quality Technical Support Document for the South Piney Natural Gas Development Project EIS" (McVehil-Monnett, 2004) ⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

South Piney - Drilling Emissions - Tier 1 - Deep Wells Table D.1.38

South Piney CBM Drill Rig Drilling Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 6/30/2005	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	68.95	55.97	1.27	8.11	3.24	
Project: South Piney Scenario: CBM Drill Rig Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tie Date: 6/30/2005	Emissions per Rig	(lp/hr)	15.74	12.78	0.29	1.85	0.74	
Project: South P Scenario: CBM Dr Activity: Drilling Emissions: Diesel C from Dr	Emissions Per Well	(lb/well)	3,777.86	3,066.73	69.65	444.45	177.78	
	Drilling Activity Duration	(hours/day)	24	24	24	24	24	
	Drilling Activity Duration	(days/well)	10	10	10	10	10	
	Overall Load Factor ³		0.40	0.40	0.40	0.40	0.40	
lon	Total Horsepower Overall Load All Engines ² Factor ³	(hp)	2,100	2,100	2,100	2,100	2,100	
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088	
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		00	NOX	SO ₂ ⁴	VOC	PM ₁₀ ⁵	

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/KWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets. PM2.5 assumed equivalent to PM10 for drilling engines.

Load factor taken from "Draff Air Quality Technical Support Document for the South Piney Natural Gas Development Project EIS" (McVehil-Monnett, 2004) ⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel ² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

South Piney - Drilling Emissions - Tier 1 - Deep Wells Table D.1.39

605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317					Activity: Drilling Emissions: Diesel O from Dri Date: 6/30/200	Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - AP-42 Date: 6/30/2005	Emissions ss - AP-42	
Pollutant	Pollutant Emission Factor ¹	Total Horsepower Overall Load Drilling Activity All Engines ² Factor ³ Duration	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions per Well Emissions per Rig		Yearly Emissions Per Rig Based on Continuous Operation	
	(lb/hp-hr)	(dų)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)	1
8	0.00668	2,600	0.40	12	24	2,000.79	6.95	30.43	
NOX	0.031	2,600	0.40	12	24	9,285.12	32.24	141.21	_
SO ₂	0.00205	2,600	0.40	12	24	614.02	2.13	9.34	
00A	0.0025	2,600	0.40	12	24	748.80	2.60	11.39	
PM104	0.0022	2,600	0.40	12	24	658.94	2.29	10.02	

- Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

*Load factor taken from "Draft Air Quality Technical Support Document for the South Piney Natural Gas Development Project EIS" (McVehil-Monnett, 2004)

*PM_{2.8} assumed equivalent to PM₁₀ for drilling engines.

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	tion				Project: Scenario: Activity: Emissions: Date:	Project: South Piney Scenario: Deep Drill Rig Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tie Date: 6/30/2005	South Piney Deep Drill Rig Drilling Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 6/30/2006
Pollutant Total Horsepow Pollutant Emission Factor ¹ All Engines ²	Total Horsepower Overall Load Drilling Activity Drilling Activity All Engines ² Factor ³ Duration Duration	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions Per Emissions per Well Rig	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
CO 0.0187	2,600	0.40	12	24	5,612.82	19.49	85.36

69.29

15.82 0.36 2.29 0.92

4,556.29 103.48 660.33 264.13

24 24 24 24

12

0.40

2,600

2,600

0.00035

SO₂⁴

Š

1.57

10.04

4.02

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/KVM (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

12

5 5

2,600

0.0022

0.00088

Load factor taken from "Draff Air Quality Technical Support Document for the South Piney Natural Gas Development Project EIS" (McVehil-Monnett, 2004) ² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

PM2.5 assumed equivalent to PM10 for drilling engines.

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	oration					Project: South Piney Scenario: Completion Activity: Flaring Formation: Mesa Verde Date: 6/30/2005	Project: South Piney Scenario: Completion Flaring Activity: Flaring ormation: Mesa Verde Date: 6/30/2005
Assumptions:							
Hours of Operation: Amount of Gas Flared: Average Heat Content:	3 days 0.25 MMSCI 1048.413 Btu/scf	3 days 0.25 MMSCF/well 8.413 Btu/scf					
Average VOC Content: Average Mol. Weight	2.50% weight 17.705 lb/lb-m	2.50% weight 17.705 lb/lb-mol					
Pollutant	Emission Factor	, Factor	Operational Rate	lal Rate		Emissions per Well	
	(Ib/MMBtu)	(lb/MMscf)	(MMBtu)	(MMscf)	(lb/hr - Max)	(lb/well)	(ton/well)
NOX	0.068		262.10		0.25	17.82	0.01
8	0.37		262.10		1.35	96.98	0.05
VOCs					0.08	5.90	0.0030
802					0.00	0.00	0.0000
TSP		7.60		0.25	0.03	1.90	0.0010
PM10		7.60		0.25	0.03	1.90	0.0010
PM2.5	- Habe	7.60		0.25	0.03	1.90	0.0010
Benzene		0.0021		0.25	0.0000	0.0005	0.0000
Toluene		0.0034		0.25	0.0000	0.0009	0.0000
Hexane		1.8		0.25	0.01	0.45	0.0002
Formaldehyde		0.075		0.25	0.00	0.02	0.0000

¹ AP-42, Volume I, Section 13.5 (9/91).

Note: Data taken from "Draff Air Quality Technical Support Document for the South Piney Natural Gas Development Project Environmental Impact Statement", August, 2004.

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	oration					Project: South Pi Scenario: Complet Activity: Flaring Formation: Frontier Date: 6/30/200	Project: South Piney Scenario: Completion Flaring Activity: Flaring ormation: Frontier Date: 6/30/2005	
Assumptions:								-
Hours of Operation: Amount of Gas Flared:	3	3 days						
Average Heat Content:	1189.6	189.6 Btu/scf						
Average VOC Content: Average Mol. Weight	6.50%	6.50% weight 17.705 lb/lb-mol						
Pollutant	Emissio	Emission Factor	Operational Rate	nal Rate		Emissions per Well		_
	(lb/MMBtu)	(Ib/MMscf)	(MMBtu)	(MMscf)	(lb/hr - Max)	(lb/well)	(ton/well)	
NOX	0.068		2974.00	-	2.81	202.23	0.10	_
8	0.37		2974.00		15.28	1100.38	0.55	
VOCs					2.10	151.20	0.0756	
SO2					000	000	0000	

	_	_										
	(ton/well)	0.10	0.55	0.0756	0.000	0.0095	0.0095	0.0095	0.000	0.000	0.0023	0.0001
Emissions per well	(lb/well)	202.23	1100.38	151.20	0.00	19.00	19.00	19.00	0.0053	0.0085	4.50	0.19
	(lb/hr - Max)	2.81	15.28	2.10	0.00	0.26	0.26	0.26	0.0001	0.0001	90.0	0.00
al Kate	(MMscf)					2.50	2.50	2.50	2.50	2.50	2.50	2.50
Operational Rate	(MMBtu)	2974.00	2974.00									•
Factor	(lb/MMscf)					7.60	7.60	7.60	0.0021	0.0034	1.8	0.075
Emission Factor	(lb/MMBtu)	0.068	0.37									
Pollutant		NOX	000	VOCs	802	TSP	PM10	PM2.5	Benzene	Toluene	Hexane	Formaldehyde

¹ AP-42, Volume I, Section 13.5 (9/91).

Note: Table data given as found in "Draff Air Quality Technical Support Document for the South Piney Natural Gas Development Project Environmental Impact Statement", August, 2004.

Table D.1.43 South Piney - Summary - 2002

Particle Particle	(307) 745-6317									Date:	2100 hp CBM, 2,600 hp Deep Date: 6/30/2005	77% CDM Wells, 2.7% Deep Gas Wells 2100 hp CBM, 2,600 hp Deep 6/30/2005	
1,172 21,13 0.05 0.05 0.07 0.23 1.0 1.142 0.00 1,173 2.13 0.05 0.05 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,173 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,174 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,175 2.13 0.05 0.05 0.07 0.07 0.23 1.0 1.143 0.00 1,175 2.13 0.05 0.05 0.07 0.07 0.03 1.0 1.143 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.143 0.00 1,185 2.25 0.05 0.05 0.07 0.07 0.03 1.0 1.143 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.143 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07 0.03 1.0 1.145 0.00 1,185 2.24 0.05 0.05 0.07 0.07		# of Operating Drilling Rigs	# of Operating Flares	CBM Rig (Tier 0) (lb/hr)	Deep Rig (Tier 0) (lb/hr)	CBM Flaring (lb/hr)	Deep Flaring (Ib/hr)	CBM Fraction	Deep Fraction	Tier 0 Fraction	Average Drilling Emissions per Rig ¹ (lb/hr)	Total Emissions from all Rigs ¹ (lb/hr)	Flaring Emissions ² (lb/hr)
1,157 2,159 0.025 0.027 0.027 0.023 1.0 1.044 0.000						200							
1,185 229 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,182 2.13 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,183 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,184 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.29 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.20 0.77 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0.07 0.25 1.0 1.18 0.00 1,185 2.29 0.03 0.00 0		0	0	1 72	2 13	0.00	0.00	0.77	0.23	0.0	1 27.47	0.00	0.00
No. No.				1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,172 2,13 0,00 0,00 0,77 0,23 10 1,13 0,40 1,18 2,24 0,25 2,24 0,25 2,24 0,77 0,23 10 1,13 0,40 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 0,27 10 1,13 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 10 1,13 1,13 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 10 1,13 1,13 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 10 1,13 1,13 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 10 1,13 1,13 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 10 1,13 1,13 1,18 2,24 0,25 2,24 0,25 2,24 0,27 0,27 10 1,13 1,13 1,14 1,18 2,24				26.04	32.24	0.25	2.81	0.77	0.23	1.0	27.47	0.00	0.00
1,55 2.25 0.05 0.25 0.77 0.23 1.0 1.155 0.00 1,75 2.13 0.25 0.05 0.07 0.27 0.23 1.0 1.155 0.00 1,75 2.13 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.13 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.07 0.25 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.77 0.23 1.0 1.155 0.00 1,75 2.25 0.05 0.05 0.07 0.05	_	0	0	1.72	2.13	0.00	0.00	0.77	0.23	1.0	1.82	0.00	0.00
No. 1, 172 2, 124 0, 125	_			1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,172 2,13 0,00 0,00 0,77 0,23 10 1,183 0,00 0,00 0,77 0,23 10 1,183 0,00 0,00 0,77 0,23 10 1,183 0,00 0,00 0,77 0,23 10 1,183 0,00 0,00 0,00 0,77 0,23 10 1,183 0,00	\vdash			26.04	32.24	0.25	2.81	0.77	0.23	1.0	27.47	0.00	0.00
1,55 222 0.020 0.25 0.77 0.23 1.0 1.55 0.00 1,55 2.13 0.224 0.25 2.51 0.77 0.23 1.0 1.55 0.00 1,55 2.13 0.00 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.03 0.26 0.77 0.23 1.0 1.55 0.00 1,55 2.23 0.23 0.25 0.27 0.23 1.0 1.55 0.00 1,55 2.24 0.25 2.51 0.77 0.23 1.0 1.55 0.00 1,55 2.24 0.25 2.51 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55 0.00 1,55 2.25 0.03 0.00 0.77 0.23 1.0 1.55	-	0	0	1.72	2.13	0.00	0.00	0.77	0.23	1.0	1.82	0.00	0.00
1,172 2,174 0,274 0,275 0,277 0,275 1,10 1,147 0,000 1,172 2,174 0,000 1,172 2,174 0,000 0,000 0,000 0,077 0,223 1,10 1,147 0,000 0,000 0,000 0,077 0,223 1,10 1,147 0,000 0,000 0,000 0,007 0,223 1,10 1,147 0,000 0,000 0,000 0,007 0,223 1,10 1,147 0,000 0,000 0,000 0,007 0,223 1,10 1,147 0,000 0,000 0,000 0,007 0,223 1,10 1,147 0,000 0,000 0,007 0,223 1,10 1,147 0,000 0,000 0,007 0,023 1,10 1,147 0,000 0,000 0,007 0,023 1,10 1,147 0,000 0,000 0,007 0,023 1,10 1,147 0,000 0,000 0,007 0,023 1,10 1,147 0,000 0,000 0,007	$\overline{}$			1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,172 2,13 0,000 0,000 0,77 0,23 1,0 1,18 0,000 0,0	-			26.04	32.24	0.25	2.81	0.77	0.23	10	27.47	000	000
1,555 2.29 0.000 0.29 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.500 0.200 0.77 0.23 1.0 1.185 0.200	_	0	0	1.72	2.13	0.00	0.00	0.77	0.23	10	1.82	0.00	0.00
1,172 21,13 0.05 0.05 0.077 0.23 1.0 27,47 0.50 1,172 2.13 0.03 0.05 0.077 0.23 1.0 1,182 0.00 1,173 2.24 0.03 0.05 0.77 0.23 1.0 1,182 0.00 1,173 2.24 0.03 0.05 0.77 0.23 1.0 1,182 0.00 1,173 2.24 0.03 0.05 0.07 0.77 0.23 1.0 1,182 0.00 1,173 2.24 0.03 0.05 0.07 0.77 0.23 1.0 1,182 0.00 1,174 2.24 0.05 0.26 0.77 0.23 1.0 1,187 0.00 1,175 2.21 0.03 0.05 0.07 0.23 1.0 1,187 0.00 1,174 2.24 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,175 2.21 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.07 0.23 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 0.00 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.02 1.0 1,187 1.0 1,18 2.24 0.05 0.05 0.07 0.05 1.0 1,187 1.0 1,18 1,1	\vdash			1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,157 2,129 0,100 0,107 0,229 1,10 1,145 0,00 1,157 2,129 0,103 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,103 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,103 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,103 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,103 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,103 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,209 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,209 0,209 0,777 0,229 1,10 1,145 0,00 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,00 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,00 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 0,40 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 1,147 1,147 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 1,147 1,147 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,145 1,147 1,147 1,147 1,157 2,129 0,209 0,209 0,777 0,239 1,10 1,147 1,	-			1000	1000	200							
1,15 2,20 0.00 0.00 0.77 0.23 1.0 1.44 0.00 0.00 0.77 0.23 1.0 1.44 0.00 0.00 0.77 0.23 1.0 1.44 0.00 0.00 0.77 0.23 1.0 1.44 0.00 0.00 0.77 0.23 1.0 1.42 0.40 0.00 0.77 0.23 1.0 1.42 0.40 0.00 0.77 0.23 1.0 1.42 0.40 0.00 0.77 0.23 1.0 1.42 0.40 0.00 0.77 0.23 1.0 1.42 0.40 0.00 0.77 0.23 1.0 1.42 0.40 0.40 0.77 0.23 1.0 1.42		•	•	26.04	32.24	0.25	2.81	0.77	0.23	0.	27.47	0.00	0.00
1,172 2,13 0.05 0.05 0.077 0.23 1.0 27,47 0.400 1.12 0.400 1.12 0.200 0.000 0.77 0.23 1.0 0.182 0.400 1.12 0.200 0.200 0.77 0.23 1.0 0.182 0.400 0.200 0.77 0.23 1.0 0.182 0.400 0.200 0.77 0.23 1.0 0.182 0.400 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0.200 0.200 0.77 0.23 1.0 0.244 0	_	,		1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,25 2,24 0,20 0,20 0,77 0,23 1,0 1,24 0,00 1,15 2,23 0,20 0,25 0,77 0,23 1,0 1,45 0,00 1,15 2,13 0,20 0,20 0,77 0,23 1,0 1,45 0,00 1,15 2,13 0,20 0,20 0,77 0,23 1,0 1,45 0,00 1,15 2,23 0,23 0,23 0,77 0,23 1,0 1,45 0,00 1,15 2,23 0,23 0,23 0,77 0,23 1,0 1,45 0,00 1,15 2,23 0,23 0,23 0,77 0,23 1,0 1,45 0,00 1,15 2,23 0,23 0,23 0,77 0,23 1,0 1,45 0,00 1,15 2,23 0,23 0,23 2,41 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,23 2,41 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,23 2,41 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,23 2,41 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,23 0,24 0,77 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,23 0,24 0,77 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,26 0,77 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,26 0,77 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,26 0,27 0,23 1,0 1,45 0,40 1,15 2,23 0,23 0,26 0,27 0,23 1,0 1,45 0,40 1,15 2,24 0,25 2,24 0,25 2,24 0,27 0,23 1,0 1,45 0,40 1,15 2,24 0,25 2,24 0,25 2,24 0,27 0,23 1,0 1,45 0,40 1,15 2,24 0,25 2,24 0,25 2,24 0,27 2,23 1,0 1,45 2,47 1,15 2,25 0,20 0,26 0,77 0,23 1,0 1,45 2,47 2,47 1,15 2,24 0,25 2,24 0,25 2,24 0,27 2,23 1,0 1,45 2,47 1,15 2,24 0,25 2,24 0,25 2,24 0,27 2,27 1,0 1,47 1,47 1,47 1,15 2,24 0,25 2,24 0,25 2,24 0,27 2,23 1,0 1,47 1,47 1,47 1,15 2,24 0,25 2,24 0,25 2,24 0,27 2,23 1,0 1,47 1,47 1,47 1,15 2,24 0,25 2,24 0,25 2,24 0,27 2,23 1,0 1,47 1,4	L												
1,614 2,224 0.039 0,277 0,233 1,0 1,44 0,000 1,62 2,13 0,039 0,274 0,233 1,0 1,44 0,000 1,63 2,23 0,23 0,23 0,23 0,77 0,23 1,0 1,18 0,000 1,63 2,23 0,23 0,23 0,23 0,77 0,23 1,0 1,18 0,000 1,63 2,24 0,25 2,81 0,77 0,23 1,0 1,18 0,000 1,63 2,24 0,25 2,81 0,77 0,23 1,0 1,18 0,000 1,63 2,24 0,25 2,81 0,77 0,23 1,0 1,18 0,000 1,73 2,13 0,000 0,000 0,77 0,23 1,0 1,18 0,000 1,74 2,13 0,000 0,000 0,77 0,23 1,0 1,18 0,000 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 0,000 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 0,000 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 0,000 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 1,18 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 1,18 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 1,18 1,85 2,24 0,25 2,81 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,00 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,00 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,00 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,00 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,00 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,23 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,73 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,73 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,73 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,73 1,0 1,18 1,18 1,87 2,13 0,000 0,77 0,70	-	•	•	472	32.24	0.25	2.81	0.77	0.23	0.1	27.47	0.00	0.00
0 286.04 32.24 0.35 2.81 0.77 0.23 1.0 27.47 0.40 1.72 2.13 0.03 0.50 0.77 0.23 1.0 1.82 0.40 1.73 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.73 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.73 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.74 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.75 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.76 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.77 2.24 0.35 0.30 0.77 0.23 1.0 1.82 0.40 1.78 2.24 0.35 2.81 0.77 0.23 1.0 1.82 0.40 1.79 2.24 0.35 0.26 0.77 0.23 1.0 1.82 0.40 1.70 2.24 0.35 0.30 0.77 0.23 1.0 1.82 0.40 1.71 2.24 0.35 0.30 0.77 0.23 1.0 1.82 0.40 1.72 2.24 0.35 0.30 0.77 0.23 1.0 1.82 0.40 1.85 2.24 0.35 0.30 0.77 0.23 1.0 1.82 0.40 1.85 2.24 0.35 0.35 0.77 0.23 1.0 1.85 3.30 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 2.81 0.77 0.23 1.0 2.74 2.74 2.74 1.87 2.24 0.35 0.3		,	,	1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
0 1,17 2,13 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,103 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,103 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,103 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,00 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 0,20 0,20 0,77 0,23 1,0 1,18 0,40 1,18 2,29 2,21 0,20 0,20 0,77 0,23 1,0 1,18 1,18 1,18 2,29 2,21 0,20 0,20 0,77 0,23 1,0 1,18 1,18 1,18 2,29 2,21 0,20 0,20 0,77 0,23 1,0 1,18 1,18 1,18 2,29 2,21 0,20 0,20 0,77 0,23 1,0 1,18 1,18 1,18 2,29 2,21	1												
1,55 2,29 0,50 0,28 0,77 0,25 1,0 1,14 0,00 1,72 2,13 0,50 0,29 0,77 0,25 1,0 1,14 0,00 1,72 2,13 0,00 0,00 0,77 0,25 1,0 1,18 0,00 1,73 2,13 0,00 0,00 0,77 0,25 1,0 1,18 0,00 1,74 2,13 0,00 0,00 0,77 0,25 1,0 1,18 0,10 1,75 2,13 0,00 0,00 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 0,26 0,77 0,25 1,0 1,18 1,10 1,85 2,24 0,25 2,81 0,77 0,25 1,0 1,18 1,18 1,87 2,13 0,00 0,00 0,77 0,25 1,0 1,18 1,18 1,87 2,13 0,00 0,00 0,77 0,25 1,0 1,18 1,18 1,87 2,13 0,00 0,00 0,77 0,25 1,0 1,18 1,18 1,87 2,13 0,00 0,00 0,77 0,25 1,0 1,18 1,18 1,87 2,13 0,00 0,00 0,77 0,25 1,0 1,18 1,18 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87	-	o	0	1 72	32.24	0.25	2.81	0.77	0.23	1.0	27.47	0.00	0.00
1,172 213 0.05 0.05 0.77 0.23 1.0 27,47 0.40 1,172 2.13 0.00 0.00 0.77 0.23 1.0 1.82 0.40 1,172 2.24 0.05 0.05 0.77 0.23 1.0 1.82 0.40 1,172 2.13 0.00 0.00 0.77 0.23 1.0 1.82 0.40 1,172 2.24 0.05 2.81 0.77 0.23 1.0 1.82 0.40 1,172 2.29 0.05 0.05 0.77 0.23 1.0 1.82 0.40 1,172 2.29 0.05 0.00 0.77 0.23 1.0 1.82 0.40 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.85 0.40 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.45 0.40 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.45 0.40 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.45 0.40 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.45 0.40 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.47 0.43 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.47 0.43 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 2.13 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.23 1.0 1.48 1.48 1,18 2.29 0.00 0.00 0.77 0.20 0.00 0.77 0.77 0.70 0.	-			1.85	2.28	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,172 2,13 0,000 0,007 0,253 1,0 1,454 0,000	L			26.04	32.24	90.0	284	74.0	0.22		44.44	000	000
1,65 2.29 0.05 0.26 0.77 0.25 1.0 1.85 0.00 1,172 2.13 0.05 0.26 0.77 0.25 1.0 1.85 0.00 1,172 2.13 0.05 0.26 0.77 0.25 1.0 1.85 3.16 1,185 2.29 0.05 0.26 0.77 0.25 1.0 1.85 3.16 1,185 2.24 0.25 2.81 0.77 0.25 1.0 1.85 0.80 1,185 2.24 0.25 0.26 0.77 0.25 1.0 1.85 0.80 1,185 2.24 0.25 2.81 0.77 0.25 1.0 1.85 0.80 1,185 2.24 0.25 0.26 0.77 0.25 1.0 1.85 0.80 1,185 2.24 0.25 0.26 0.77 0.25 1.0 1.85 3.10 1,185 2.24 0.25 0.25 0.77 0.25 1.0 1.85 3.10 1,185 2.24 0.25 0.25 0.77 0.25 1.0 1.85 3.10 1,185 2.24 0.25 2.81 0.77 0.25 1.0 1.85 3.10 1,187 2.13 0.00 0.00 0.77 0.25 1.0 1.85 3.10 1,187 2.13 0.00 0.00 0.77 0.25 1.0 1.85 3.10 1,187 2.13 0.00 0.00 0.77 0.25 1.0 1.85 3.10 1,187 1.187 1.187 1.187 1.187		0	0	172	2 13	000	000	0.77	0.23	2.0	4 82	000	00.0
1,12 2,13 0.25 0.25 2.81 0.77 0.23 1.0 27.47 94.43 1.12 2.13 0.00 0.20 0.77 0.23 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 1.82 2.84 1.0 2.84 1.0 2.84 2.84 2.84 2.84 0.20 0.77 0.23 1.0 2.84 2.84 2.84 2.84 0.20 0.77 0.23 1.0 2.84				1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1,172 2.11 0.00 0.00 0.77 0.23 1.0 1.82 3.45 1,182 2.29 0.05 0.20 0.77 0.23 1.0 1.85 3.89 0 1,22 2.13 0.00 0.00 0.77 0.23 1.0 1.85 0.00 1,12 2.13 0.00 0.00 0.77 0.23 1.0 1.45 0.00 1,15 2.29 0.03 2.29 0.77 0.23 1.0 1.45 0.40 1,15 2.13 0.00 0.00 0.77 0.23 1.0 1.47 0.43 1,15 2.29 0.03 0.00 0.77 0.23 1.0 1.48 3.50 1,15 2.29 0.00 0.00 0.77 0.23 1.0 1.85 3.50 1,17 2.13 0.00 0.00 0.77 0.23 1.0 1.85 3.50 1,17 2.13 0.00 0.00 0.77 0.23 1.0 1.85 3.50 1,18 1.18 1.18 1.18 1.18 1.18 1.18 1,17 2.13 0.00 0.00 0.77 0.23 1.0 1.187 1.18	\vdash			26.04	32.24	0.25	2.81	0.77	0.23	1.0	27.47	54.93	0.84
1,85 2.29 0.03 0.26 0.77 0.23 1.0 1,85 3.80 26,04 32.24 0.25 2.81 0.77 0.23 1.0 1,85 3.80 1,72 2,13 0.03 0.00 0.77 0.23 1.0 1,85 0.00 1,85 2.29 0.03 0.26 0.77 0.23 1.0 1,85 0.00 1,85 2.24 0.25 2.81 0.77 0.23 1.0 1,85 0.40 1,15 2.24 0.25 0.20 0.77 0.23 1.0 1,85 3.90 1,85 2.29 0.03 0.26 0.77 0.23 1.0 1,85 3.90 1,85 2.29 0.03 0.20 0.77 0.23 1.0 1,85 3.90 1,72 2.13 0.00 0.00 0.77 0.23 1.0 1,85 1.82	_	7	-	1.72	2.13	00.0	00:00	0.77	0.23	1.0	1.82	3.63	0.00
0 28644 2324 0.58 2.81 0.09 0.77 0.23 1.0 13.7 0.00 1.67 2.24 0.60 0.77 0.23 1.0 1.18 0.00 2.66 2.73 0.60 0.77 0.23 1.0 1.18 0.00 1.67 2.86 0.70 0.77 0.23 1.0 1.18 0.00 1.17 2.24 0.30 0.70 0.77 0.23 1.0 1.18 3.90 1.18 2.29 0.03 0.00 0.77 0.23 1.0 1.18 3.90 1.77 0.23 0.77 0.23 1.0 1.38 3.90 1.87 2.24 0.05 0.00 0.77 0.23 1.0 2.74 1.84 1.77 0.23 1.0 2.74 0.85 2.81 0.77 0.23 1.0 1.34	_			1.85	2.28	0.03	0.26	0.77	0.23	1.0	1.95	3.90	80.0
0 1,72 2,13 0,00 0,00 0,77 0,23 1,0 1,18 0,00 0,00 0,77 0,23 1,0 1,18 0,00 0,00 0,77 0,23 1,0 1,18 0,100 0,100 0,17 0,23 1,0 1,18 0,100 0,17 0,23 1,0 1,18	_			26.04	32.24	0.25	2.81	0.77	0.23	1.0	27.47	0.00	0.00
1.85 2.29 0.03 0.28 0.77 0.23 1.0 1.85 0.00 28.64 20.24 0.25 2.81 0.77 0.23 1.0 27.47 54.43 1.72 2.13 0.03 0.00 0.77 0.23 1.0 1.85 3.90 1.85 2.29 0.03 0.28 0.77 0.23 1.0 1.85 3.90 1.72 2.13 0.00 0.00 0.77 0.23 1.0 1.85 2.81 1.72 2.13 0.00 0.00 0.77 0.23 1.0 1.82 1.82		0	0	1.72	2.13	00.0	00.00	0.77	0.23	1.0	1.82	0.00	0.00
1 28.64 22.24 0.25 2.81 0.77 0.23 1.0 27.47 64.93 1.172 2.13 0.00 0.00 0.77 0.23 1.0 1.85 3.80 1.185 2.29 0.03 0.28 0.77 0.23 1.0 1.85 3.80 1.77 0.23 1.0 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74	_			1.85	2.28	0.03	0.26	0.77	0.23	1.0	1.95	0.00	0.00
1 172 213 0.000 0.000 0.77 0.23 1.0 1.45 3.43 1.0 1.45 2.29 0.03 0.25 0.77 0.23 1.0 1.45 3.43 2.40 2.40 0.03 0.03 0.77 0.23 1.0 1.45 2.40 2.40 0.03 0.07 0.23 1.0 1.45 2.40 2.40 0.000 0.77 0.23 1.0 1.42 1.42 1.42				26.04	32.24	0.25	2.81	0.77	0.23	10	27.47	FA 93	0.84
1.85 2.29 0.03 0.29 0.77 0.23 1.0 1.35 3.30 1.2 2.24 0.25 2.25 0.77 0.23 1.0 27.47	_	7	-	1.72	2.13	0.00	0.00	0.77	0.23	10	1.82	3.63	000
26.04 32.24 0.25 2.81 0.77 0.23 1.0 27.47 27.47 1.72 1.13 0.00 0.00 0.77 0.23 1.0 1.82 1.82	-			1.85	2.29	0.03	0.26	0.77	0.23	1.0	1.95	3.90	80.0
1 1.72 2.13 0.00 0.00 0.77 0.23 1.0 1.82 1.82				26.04	32.24	0.25	2.81	7.0	0.23	1.0	27.47	27.47	0.84
		,											

* Emission are calcided and set of 17th of which are 2 (01) to CBM rigs and 25% are 2 600 by deep par sys.

*Emission sead on and home the "Dreft Al Casilly, Their distribution and Superhorman and Statement," August, 2004,

*Flanting is also reticed to 77% CBM completions and 22% statement and 22% statement, and 25% statement, and 25%

Table D.1.44 South Piney - Summary - 2006

n Emissions	Flaring Emissions ² (ib/hr)	0.00	0.00	00.0	0.00	0.00	0.00		000	00'0	0.84	00.0	80.0	0.84	00.0	0.08	0.84	0000	90.0	0.84	0.08	0.84	0.00	0.08	0.84	0.00	2000	0.00	0.00	0.00	00.00	
ling and Completic % Deep Gas Wells hp Deep	Total Emissions from all Rigs [†] (Ib/hr)	0.00	0.00	0.00	0.00	0.00	00.00		0000	0.00	82.40	5.45	5.85	82.40	5,45	5.85	82.40	5.45	0.00	82.40	5.85	82.40	5,45	5.85	82.40	5.45	2000	0.00	00.0	0.00	00.0	
Project: South Piney Scenario: Esmusados Orlling and Completion Emissions Tyte, Elix Walls, 224: Ceep Gas Wells 2100 hp CBM, 2,600 hp Deep Date: 63002005	Average Drilling Emissions per Rig [†] (lb/hr)	27.47	1,95	27.47	1.95	27.47	1.95		183	1.95	27.47	1.82	1.95	27.47	1.82	1.95	27.47	1.82	06:	27.47	1.95	27.47	1.82	1.95	27.47	1.82	26:1	27.47	1.95	27.47	1.82	
Project: Scenario: Date:	Tier 0 Fraction	1.0	1,0	1.0	1.0	1.0	1.0		0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2	1.0	1.0	1.0	1.0	
	Deep Fraction	0.23	0.23	0.23	0.23	0.23	0.23	000	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.50	0.23	0.23	0.23	0.23	
	CBM Flaring Deep Flaring CBM Fraction (lb/hr)	0.77	0.77	0.77	0.77	0.77	77.0	1000	0.77	0.77	22.0	0.77	0.77	72.0	0.77	22.0	0.77	0.77	0.11	0.77	0.77	14.0	0.77	0.77	72.0	77.0	100	72.0	0.77	74.0	0.77	
	Deep Flaring (lb/hr)	2.81	0.26	2.81	0.26	2.81	0.00		7.87	0.26	281	00'0	0.26	2.81	0.00	0.26	2.81	0.00	0.20	2.81	0.26	2.81	0.00	0.26	2.81	00.00	0.40	2.81	0.26	2.81	0.00	
	CBM Flaring (lb/hr)	0.25	0.00	0.25	0.00	0.25	0.00	000	67.0	0.03	0.25	0.00	0.03	0.25	00.00	0.03	0.25	0.00	0.03	0.25	0.03	0.25	00.00	0.03	0.25	0.00	20.0	0.25	0.03	0.25	00.00	
	Deep Rig (Tier 0) (Ib/hr)	32.24	2.29	32.24	2.29	32.24	2.13		32.24	2.29	32.24	2.13	2.29	32.24	2.13	2.29	32.24	2.13	67.7	32.24	2.29	32.24	2.13	2.29	32.24	2.13	67.7	32.24	2.29	32.24	2.13	
	CBM Rig (Tier 0) (lb/hr)	26.04	1.85	26.04	1.85	26.04	1.72		4 72	1.85	26.04	1.72	1.85	26.04	1.72	1.85	26.04	1.72	1.60	26.04	1.85	26.04	1.72	1.85	26.04	1.72	20.	26.04	1.85	26.04	1.72	-
	# of Operating Flares		0		0		0		c	,		-			-			-			-		-			-			0		0	
ration	# of Operating Drilling Rigs		D		0		0		c	,		0			6			6			,		60			6			0		0	
RC Environmental Corporation 105 Skyline Drive Jaranie, WY 82070 Phyne: (307) 742-3843 Fax: (307) 745-8317	Pollutant	NOx	SO ₂	NOx	PM ₁₀	NOx	SO ₂		XON O	PMrg	CN	80°	PM ₁₀	NOx	SO ₂	P.M.c	NOx	502	PMto	NO	PM ₁₀	NO.	_	PM ₁₀	NO.	502	986	NO,	PMrs	NO	SO ₂	
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Month		January		February		March		Anni			May			June			July			rendan		September			October			Jaguanon		December	

Templaces are adjusted based on all Time Organ TYNs or belon as a 2100 to GBM riga and 25% are 2,500 to deep gas riga.

Flamp Emission based on all men To Tark All Organ TYNs or belon as a 2500 to deep gas riga.

Flamp Emission based on the the "Dark All Organ TYNs deep gas completed. Boomert for the South Prings had not been been promptled to an AZD State See gas completed. Boomert for the South Prings had been been been promptled to the Complete and ZDS see gas completed. Boomert for the Complete and ZDS see gas completed by the Complete and ZDS see gas completed by the ZDS see gas compl

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317

Numbers that scalars are based on.

Project: South Piney Project Scenario: 2006-2002 Emissions and Modeling Scalars Date: 6/30/2005

Month	Pollutant	Total Emissions from all Rigs (2006)	Flaring Emissions (2006)	Total Emissions from all Rigs (2002)	Flaring Emissions (2002)	Emissions Difference - Rigs - (2006 - 2002)	Emissions Difference - Flares - (2006 - 2002)	Rig Scalar	Flare Scal
		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)		
	NO _x	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
January	SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A
	PM ₁₀	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	NO _x	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
February		0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A
rebruary	SO ₂		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	PM ₁₀	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	NO _x	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
March	SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A
	PM ₁₀	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	NO.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
April	SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A
April	PM ₁₀	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1 - 1V110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	NO _x	82.40	0.84	0.00	0.00	82.40	0.84	1.00	1.00
May	SO ₂	5.45	0.00	0.00	0.00	5.45	0.00	1.00	N/A
	PM ₁₀	5.85	0.08	0.00	0.00	5.85	0.08	1.00	1.00
							1		
1	NO _x	82.40	0.84	0.00	0.00	82.40	0.84	1.00	1.00
June	SO ₂	5.45	0.00	0.00	0.00	5.45	0.00	1.00	N/A
	PM ₁₀	5.85	0.08	0.00	0.00	5.85	0.08	1.00	1.00
	NO _x	82.40	0.84	0.00	0.00	82.40	0.84	1.00	1.00
July	SO ₂	5.45	0.00	0.00	0.00	5.45	0.00	1.00	N/A
	PM ₁₀	5.85	0.08	0.00	0.00	5.85	0.08	1.00	1.00
	NO _x	82.40	0.84	0.00	0.00	82.40	0.84	1.00	1.00
August	SO ₂	5.45	0.00	0.00	0.00	5.45	0.00	1.00	N/A
	PM ₁₀	5.85	0.08	0.00	0.00	5.85	0.08	1.00	1.00
	NO _x	82.40	0.84	54.93	0.84	27.47	0.00	0.33	0.00
September	SO ₂	5.45	0.00	3.63	0.00	1.82	0.00	0.33	N/A
	PM ₁₀	5.85	0.08	3.90	0.08	1.95	0.00	0.33	0.00
	luo	82.40	0.84	0.00	1 0.00	02.40	0.04	1 100	1 400
October	NO _x	82.40 5.45	0.84	0.00	0.00	82.40 5.45	0.84	1.00	1.00 N/A
COLODE	PM ₁₀	5.45	0.00	0.00	0.00	5.85	0.08	1.00	1.00
	1. 14110	0.00	0.00	0.00	0.00	5.05	0.00	1.00	1.00
	NO _x	0.00	0.00	54.93	0.84	-54.93	-0.84	-0.67	-1.00
November	SO ₂	0.00	0.00	3.63	0.00	-3.63	0.00	-0.67	N/A
	PM ₁₀	0.00	0.00	3.90	0.08	-3.90	-0.08	-0.67	-1.00
	NO.	0.00	0.00	27.47	0.84	-27,47	-0.84	-0.33	-1.00
December	SO ₂	0.00	0.00	1.82	0.00	-27.47	0.00	-0.33	-1.00 N/A
	1002	0.00	0.00	1.02	1 0.00	-1.02	0.00	1 -0.00	IWA

These scalars are used in model input files for modeling monthly emissions.

Jack Morrow Hills - Drilling Emissions - AP-42 Table D.1.46

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	25.96	120.47	7.97	9.72
n Emissions nes - EPA AP-42	Emissions per Rig	(lb/hr)	5.93	27.50	1.82	2.22
Project: Jack Morrow Hills Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA AP-42 Date: 6/30/2005	Emissions per Well	(lb/well)	1	ı	ı	,
Project: Jack Mc Scenario: Straight Activity: Drilling Emissions: Diesel C from Dr Date: 6/30/200	Drilling Activity Duration	(hours/day)	24	24	24	24
	Drilling Activity Duration	(days/well)	ı	1	1	ı
	Overall Load Factor ³		0.42	0.42	0.42	0.42
tion	Total Horsepower Overall Load Drilling Activity All Engines ² Factor ³ Duration	(dų)	2,100	2,100	2,100	2,100
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.00668	0.031	0.00205	0.0025
TRC Environmental 605 Skyline Drive Laramile, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		8	XON	SO2	VOC

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines."

8.55

1.95

24

0.0022

² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ PM_{2.5} assumed equivalent to PM₁₀ for drilling engines.

Table D.1.47 Jack Morrow Hills - Drilling Emissions - Tier 1

	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	72.82	59.12	1.34	8.57	3.43
n Emissions nes - EPA Tier 1	Emissions per Rig	(lb/hr)	16.63	13.50	0.31	1.96	0.78
Project: Jack Morrow Hills Scenario: Straight Drilling Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 6/30/2005	Emissions Per Well	(lb/well)	I	1	1	ı	t
Project: Jack Mc Scenario: Straight Activity: Drilling Emissions: Diesel C from Dr	Drilling Activity Duration	(hours/day)	24	24	24	24	24
	Drilling Activity Duration	(days/well)	1	1	ı	1	ı
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42
ion	Total Horsepower Overall Load All Engines ² Factor ³	(hp)	2,100	2,100	2,100	2,100	2,100
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.0187	0.015	0.00035	0.0022	0.00088
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3 Fax: (307) 745-8	Pollutant		8	NOX	SO ₂ ⁴	00 NOC	PM ₁₀ 6

Emission factor for Tier 1 engine taken from Diesel Net, Emissions Standards: USA: Nonroad Diesel Engines, Table 1, "EPA Tier 1-3 Nonroad Diesel Engine Emission Standards, g/KWh (g/bhp-hr)." Available on-line at http://www.dieselnet.com/standards/us/offroad.html.

Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.48 Jack Morrow Hills - Completion Flaring Emissions

TRC Environmental Corporation 605 Skyline Drive						Scenario:	Jack Morrow I All Scenarios		
aramie, WY 82070							Completion/To		
Phone: (307) 742-3843						Emissions:	Gas Flaring w	ithout High I	Pressure
Fax: (307) 745-8317							Flowback Sep 6/30/2005		
Flaring Specifications:		1				Date:	6/30/2005		
Total Volume of Gas Emitted	35000	mcf							
otal Volume of Condensate Emitted verage Heat Content	250 1092.9	bbls BTU/scf							
laring/Flowback Activity Duration	120	hrs/well							
Taring Duration	80	hr/well							
Pre-ignition Flow-back Duration Pre-ignition Flow-back Time Involving a	40	hr/well							
Gas Stream	10	%							
Actual Hours Gas is Vented Total Hours in which Gas is Vented or	4	hrs							
Flared ¹	84	hrs							
Average Flowrate of Gas ²	416.67	mcf/hr							
Total Volume of Gas Vented ³		mcf							
otal Volume of Flared Gas ⁴	33,333.33								
Average Flowrate of Condensate	2.98	bbls/hr							
Pre-flare Volume of Condensate	11.90	bbls							
Volume of Condensate Flared	238.10	bbls							
		Volume		Emission	Emission		Total		Hourly
Activity	Volume	Units	Pollutant	Factor	Factor Units	Emission Factor Source ⁶	Emissions (tons)	Duration (hours)	Emission (lb/hr)
Venting - Natural Gas 5	1,666.67	mcf	VOC	4.70	lb / 1000 scf	Gas Constituent Analysis	3.91	4	1,956.87
			HAP (total)	0.17	lb / 1000 scf	Gas Constituent Analysis	0.14	4	71.37
			n-Hexane	0.08	lb / 1000 scf	Gas Constituent Analysis	0.070	4	35.13
			Benzene	0.026	lb / 1000 scf	Gas Constituent Analysis	0.022	4	10.75
			Toluene	0.041	lb / 1000 scf	Gas Constituent Analysis	0.034	4	17.02
			Ethylbenzene	0.0019	lb / 1000 scf	Gas Constituent Analysis	0.0016	4	0.80
			Xylenes	0.018	lb / 1000 scf	Gas Constituent Analysis	0.015	14	7.67
Flaring - Natural Gas	33,333.33	mcf	NOx	0.068	Ib / 10^6 BTU	AP-42 Section 13.5	1.24	80	30.97
			со	0.37	lb / 10^6 BTU	AP-42 Section 13.5	6.74	80	168.49
			voc	2.35	lb / 1000 scf	Gas Constituent Analysis	39.14	80	978.43
			HAP (total)	0.09	lb / 1000 scf	Gas Constituent Analysis	1.43	80	35.69
			n-Hexane	0.042	ib / 1000 scf	Gas Constituent Analysis	0.70	80	17.57
			Benzene	0.042	lb / 1000 scf	Gas Constituent Analysis	0.70	80	5.38
			Toluene	0.020	lb / 1000 scf	Gas Constituent Analysis	0.34	80	8.51
			Ethylbenzene	0.001	lb / 1000 scf	Gas Constituent Analysis	0.016	80	0.40
			Xylenes	0.009	lb / 1000 scf	Gas Constituent Analysis	0.15	80	3.83
Flaring - Condensate	238.10	bbls	voc	121.98	lb/bbl	Condensate Constituent Analysi	14.52	80	363.03
			HAP (total)	25.85	lb/bbl	Condensate Constituent Analysi	3.08	80	76.93
			n-hexane	4.59	lb/bbl	Condensate Constituent Analysi	0.55	80	13.67
			Benzene	1.42	lb/bbl	Condensate Constituent Analysis	0.17	80	4.22
			Toluene	6.11	lb/bbi	Condensate Constituent Analysi	0.73	80	18.19
			Ethylbenzene	0.74	lb/bbl	Condensate Constituent Analysi	0.09	80	2.19
			Xylenes	12.99	lb/bbl	Condensate Constituent Analysi	1.55	80	38.66

¹ Calculated as 10% * 40 hrs of pre-ignition flowback + 80 hrs of flaring.
² Calculated as 3500 mcf / 84 hrs.

³ Calculated as 416.67 mcf/hr * 4 hrs.

⁴Calculated as 416.67 mcf/hr * 80 hrs.

⁵ An estimated 11.9 bbl of condensate are captured prior to flare ignition. Flashing from this condensate is not analyzed.

⁶ For all emission factors that used the constituent analysis, a 50% destruction rate was assumed. Note: Jack Morrow Hills completion flaring assumed to be similar to Jonah Infill Project estimated flaring.

Jack Morrow Hills - Summary - 2002 Table D.1.49

TRC Environmental Corporation 605 Skyline Drive Laramile, WY 82070 Phone: (307) 745-8317 Fax: (307) 745-8317	ooration			Project Scenario Date	Project: Jack Morrow Hills Scenario: Estimated 2002 Drilling and Completion Emissions 2,600 hp, 100% Tier 0 Date: 6/30/2005	iling and Completi .0	ion Emissions
Pollutant	# of Operating Drilling Rigs	# of Operating Flares	Drill Rig (Tier 0)	Tier 0 Fraction	Average Drilling Total Emissions Emissions per Rig ² from all Rigs ² Flaring Emissions ³	Total Emissions from all Rigs ²	Flaring Emissions ³
			(lb/hr)		(lb/hr)	(lb/hr)	(lb/hr)
VO,			27.50	1.0	27.50	27.50	30.97
502	1	-	1.82	1.0	1.82	1.82	
PM ₁₀			1.95	1.0	1.95	1.95	

¹ All months have equal numbers of 1 drilling rig and 1 flare.
² Emissions based on 100% Tier 0 engines.
³ Flaring emissions taken from the "Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement", November, 2004. Jack Morrow Hills flaring assumed to be equivalent to that calculated for the Jonah Infill Project.

Jack Morrow Hills - Summary - 2006 Table D.1.50

				_
Flaring Emissions ³	(lb/hr)	30.97		
Total Emissions from all Rigs ²	(lb/hr)	27.50	1.82	1.95
Average Drilling Emissions per Rig ²	(lb/hr)	27.50	1.82	1.95
Tier 0 Fraction		1.0	1.0	1.0
Drill Rig (Tier 0)	(lb/hr)	27.50	1.82	1.95
# of Operating Flares			-	
# of Operating Drilling Rigs			-	
Pollutant		NOx	SO ₂	PM ₁₀
Month ¹			₹	
	# of Operating Flares	# of Operating # of Operating Drill Rig Drilling Rigs # of Operating (Tier 0)	# of Operating # of Operating Drill Rig Drilling Rigs Flares (Tier 0) (Ib/hr) 27.50	# of Operating # of Operating Drill Rig Drilling Rigs Flares (Tier 0) (Ib/hr)

¹ All months have equal numbers of 1 drilling rig and 1 flare.
² Emissions based on 100% Tier 0 engines.
³ Flaring emissions taken from the "Draft Air Quality Technical Support Document for the Jonah Infill Drilling Project Environmental Impact Statement", November, 2004. Jack Morrow Hills flaring assumed to be equivalent to that calculated for the Jonah Infill Project.

Table D.1.51 Wildcat Rigs - Drilling Emissions - AP-42

Wildcat Rigs Drilling Diesel Combustion Emissions from Drilling Engines - EPA AP-42 6/30/2005	Yearly Emissions Per Rig Based on Continuous Operation	(tpy)	61.81	286.84	18.97	23.13	20.36
	Emissions per Rig	(lb/hr)	14.11	65.49	4.33	5.28	4.65
Project: Wildcat Scenario: Activity: Drilling Emissions: Diesel (from Dr Date: 6/30/200	Emissions per Well	(Ib/well)	1	1	,	1	ı
	Drilling Activity Duration	(hours/day)	24	24	24	24	24
	Drilling Activity Duration	(days/well)	1	1	1	1	1
	Overall Load Factor ³		0.42	0.42	0.42	0.42	0.42
uo	Total Horsepower Overall Load Drilling Activity Drilling Activity All Engines ² Factor ³ Duration Duration	(hp)	5,000	2,000	2,000	2,000	2,000
TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317	Pollutant Emission Factor ¹	(lb/hp-hr)	0.00668	0.031	0.00205	0.0025	0.0022
TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 745-3 Fax: (307) 745-8	Pollutant		8	XON	SO ₂	VOC	PM10 4

AP-42 (EPA, 1996), Section 3.3, Gasoline and Diesel Industrial Engines. Table 3.3-1, "Emission Factors for Uncontrolled Gasoline

and Diesel Industrial Engines."

² Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.
³ The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%.

Therefore, the overall load factor = 0.65 * 0.65 = 0.42. 4 PM $_{2.5}$ assumed equivalent to PM $_{10}$ for drilling engines.

Wildcat Rigs - Drilling Emissions - Tier 1 Table D.1.52

Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317				Scenario: Activity: Drilling Emissions: Diesel C from Dr	Scenario: Activity: Drilling Emissions: Diesel Combustion Emissions from Drilling Engines - EPA Tier 1 Date: 4(2017)005	n Emissions nes - EPA Tier 1	
Pollutant Emission Factor	t Total Horsepower	Overall Load Factor ³	Drilling Activity Duration	Drilling Activity Duration	Emissions Per Well	Emissions per Rig	Yearly Emissions Per Rig Based on Continuous Operation
(lb/hp-hr)	(hp)		(days/well)	(hours/day)	(lb/well)	(lb/hr)	(tpy)
0.0187	5,000	0.45	1	24	1	39.59	173.39
0.015	5,000	0.42	1	24	1	32.14	140.75
0.00035	5,000	0.45	1	24	1	0.73	3.20
0.0022	5,000	0.45		24	1	4.66	20.40
0.00088	2,000	0.42		24	1	1.86	8.16

Engine Emission Standards, g/kV/h (g/bhp-hr)," Available on-line at http://www.dieselnet.com/standards/us/offroad.html. * Drilling engine horsepower based on 5/26/2005 e-mail from Carol Kruse, BLM.

The overall load factor is calculated based on average throttle setting of 65% and a load factor of 65%. Therefore, the overall load factor = 0.65 * 0.65 = 0.42.

⁴ The SO₂ emission factor is calculated assuming 26.4 gal/hr fuel consumption, with 0.05% sulfur content of #2 diesel fuel, and fuel density of 7.001 lb/gal. Fuel consumption rate taken from Caterpillar "Oilfield Mechanical Rig Power" specification sheets.

PM2.5 assumed equivalent to PM10 for drilling engines.

Table D.1.53 Wildcat Rigs - Summary - 2006

TRC Environmental Corporation 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Wildcat Rigs Scenario: Estimated 2006 Drilling Emissions 5,000 hp Tier 0 engines Date: 6/30/2005

Month	Pollutant	# of Operating Drilling Rigs	# of Operating Flares	Other Summer Rigs (Tier 0)	Tier 0 Fraction	Average Drilling Emissions per Rig ¹	Total Emissions from all Rigs ¹	Flaring Emissio
				(lb/hr)		(lb/hr)	(lb/hr)	(lb/hr)
	NO _x			65.49	1.0	65.49	0.00	0.00
January	SO ₂	1 0	0	4.33	1.0	4.33	0.00	0.00
	PM ₁₀			4.65	1.0	4.65	0.00	0.00
	NO,			65.49	1.0	65.49	0.00	0.00
February		- 0	0	4.33	1.0	4.33	0.00	0.00
rebluary	SO ₂	- "	١ ،	4.65	1.0	4.65	0.00	0.00
	PM ₁₀		l	4.00	1.0	4.05	0.00	0.00
	NO _x			65.49	1.0	65.49	0.00	0.00
March	SO ₂	7 0	. 0	4.33	1.0	4.33	0.00	0.00
	PM ₁₀			4.65	1.0	4.65	0.00	0.00
	luo			05.40	4.0	25.40		
A	NO _x	0	0	65.49	1.0	65.49	0.00	0.00
April	SO ₂	-1 "	0	4.33	1.0	4.33	0.00	0.00
	PM ₁₀	1		4.65	1.0	4.65	0.00	0.00
	NO,			65.49	1.0	65.49	0.00	0.00
May	SO ₂	0	0	4.33	1.0	4.33	0.00	0.00
	PM ₁₀			4.65	1.0	4.65	0.00	0.00
	Tuo.			05.40		05.40		1 222
tion a	NO _x	. 0	0	65.49	1.0	65.49	0.00	0.00
June	SO ₂ PM ₁₀	. 0	U	4.33 4.65	1.0	4.33 4.65	0.00	0.00
	IL IAI10			4.00	1.0	4.03	0.00	0.00
	NO _x			65.49	1.0	65.49	196.46	14.17
July	SO ₂	3	1	4.33	1.0	4.33	12.99	0.00
	PM ₁₀			4.65	1.0	4.65	13.94	1.58
	NO _x	1		65.49	1.0	65.49	196.46	14,17
August	SO ₂	3	1	4.33	1.0	4.33	12.99	0.00
August	PM ₁₀	- "	'	4.65	1.0	4.65	13.94	1.58
	110	-		1.00	1.0	4.00	10.04	1.03
	NO _x			65.49	1.0	65.49	0.00	0.00
September		0	0	4.33	1.0	4.33	0.00	0.00
	PM ₁₀			4.65	1.0	4.65	0.00	0.00
	NO,	1		65.49	1.0	65.49	0.00	0.00
October	SO ₂	0	0	4.33	1.0	4.33	0.00	0.00
Colonel	PM ₁₀	- ·		4.65	1.0	4.65	0.00	0.00
		4		1.00		1.00	0.00	
	NO _x			65.49	1.0	65.49	0.00	0.00
	SO ₂	0	0	4.33	1.0	4.33	0.00	0.00
November				4.65	1.0	4.65	0.00	0.00
November	PM ₁₀					-		
November						65.40		
November	NO _x	- 0	0	65.49 4.33	1.0	65.49 4.33	0,00	0.00

¹ Emissions are calculated based on a 5,000 hp Drill Rig at Tier 0 emission factors and a 0.42 load factor

² Flaring Emissions based on data from the "Pinedale Anticline Oil and Gas Exploration and Development Project Draft Environmental Impact Statemen

Technical Report", BLM, November, 1999. Wildcat flanng assumed to be equivalent to Pinedale Anticline flaring.

Table D.1.54 Compression Increases - Falcon Compressor Station

TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Jonah Infill Drilling Project Scenario: All Scenarios Activity: Projected Jonah Field Increase

in Compression Emissions: Falcon C.S. Date: 6/30/2005

Fuel Combustion Source:						
Unit Description	Falcon Compre	ssor Station				
Engine design increases (hp)	2,888					
Operating Parameters:						
Operated	24	hr/day,	7	days/wk,	365	days/yr.
Operating hours	8760					
Capacity (%)	100					
Annual Engine Load Factor	0.9					

Potential Fuel Combustion for the Year for Unit:

Volume of Natural Gas Combusted	167.00	MMSCF
Assumes gas consumed at rate of	6601	Btu/hp-hr
Heat Content	1000	Btu/scf

Emission Data:			Method of	Emission		
	lb/hr	TPY	Determination	Factor ¹	Units	
PM10	0.0	0.0	AP-42	7.71E-05	lb/MMscf	
PM2.5	0.0	0.00	AP-43	7.71E-05	lb/MMscf	
Sulfur dioxide	0.0	0.0	Fuel Analysis	0.00	lb/MMscf	
Nitrogen oxides	4.0	17.6	BACT	0.7	g/hp-hr	
Carbon monoxide	1.7	7.5	Permitted Emissions ²	0.300	g/hp-hr	
voc	2.9	12.5	Permitted Emissions ²	0.500	g/hp-hr	
Formaldehyde	0.5	2.0	Permitted Emissions ²	0.080	g/hp-hr	

¹ Based on a 4-stroke lean burn engine, taken from AP-42 Table 3.2-3.

² Emission rates taken from a Pinedale Anticline Permit for an engine with 0.7 g/hphr NOx.

Table D.1.55 Compression Increases - Luman Compressor Station

RC Environmental 05 Skyline Drive aramie, WY 82070 hone: (307) 742-8843 ax: (307) 745-8317				Project: Jonah Infill Drilling Project Scenario: All Scenarios Activity: Projected Jonah Field Increases Emissions: Luman C.S. Date: 6/30/2005			
Fuel Combustion Source:		-					
Unit Description	Luman Compre	ssor Station					
Engine design increases (hp)	11,248						
(rp)	. 1,210						
Operating Parameters:							
Operated	24	hr/day,	7		days/wk,	365	days/yr.
Operating hours	8760						
Capacity (%)	100						
Annual Engine Load Factor:	0.9						
Potential Fuel Combustion for the Ye	ar for Unit:						
Volume of Natural Gas Combusted	650.41	MMSCF					
Assumes gas consumed at rate of	6601	Btu/hp-hr					
Heat Content	1000	Btu/scf					
Emission Data:			Method of		Emission		
	lb/hr	TPY	Determination		Factor ¹	Units	
PM10	0.0	0.0	AP-42		7.71E-05	lb/MMscf	-
PM2.5	0.0	0.00	AP-43		7.71E-05	lb/MMscf	
Sulfur dioxide	0.0	0.0	Fuel Analysis		0.00	lb/MMscf	
Nitrogen oxides	15.6	68.4	BACT		0.7	g/hp-hr	
Carbon monoxide	6.7	29.3	Permitted Emission	s ²	0.300	g/hp-hr	
voc	11.2	48.9	Permitted Emission	s ²	0.500	g/hp-hr	
Formaldehyde	1.8	7.8	Permitted Emission	s ²	0.080	g/hp-hr	

Table D.1.56
Compression Increases - Bird Canyon Compressor Station

TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Jonah Infill Drilling Project Scenario: All Scenarios Activity: Projected Jonah Field Increases Emissions: Bird Canyon C.S. Date: 6/30/2005

Fuel Combustion Source: Unit Description

Unit Description Bird Canyon Compressor Station Engine design increases (hp) 30,928

100

0.9

Capacity (%)

 Operating Parameters:
 24
 hr/day,
 7
 days/wk,
 365
 days/yr.

 Operating hours
 8760

Annual Engine Load Factor:

 Potential Fuel Combustion for the Year for Unit:

 Volume of Natural Cas Combusted
 1788.40
 MMSCF

 Assumes gas consumed at rate of
 6601
 Btl/mp-h

 Heat Content
 1000
 Btu/scf

Emission Data: Method of Emission lb/hr TPY Determination Factor1 Units PM10 0.0 0.0 AP-42 7.71E-05 lb/MMscf PM2 5 0.0 0.00 AP-43 7.71E-05 lb/MMscf Sulfur dioxide 0.0 0.0 Fuel Analysis 0.00 lb/MMscf BACT Nitrogen oxides 43.0 188.1 0.7 g/hp-hr Carbon monoxide 18.4 80.6 Permitted Emissions² 0.300 g/hp-hr VOC 30.7 134.4 Permitted Emissions² 0.500 g/hp-hr Formaldehyde Permitted Emissions² 4.9 21.5 0.080 g/hp-hr

¹Based on a 4-stroke lean burn engine, taken from AP-42 Table 3.2-3.

²Emission rates taken from Bird Canyon Permit for an engine with 0.7 g/hp-hr NOx.

Table D.1.57 Compression Increases - Jonah Compressor Station

TRC Environmental 605 Skyline Drive Laramie, WY 82070				Scenario:	Jonah Infill Drilli All Scenarios Projected Jonah	1
Phone: (307) 742-3843				Emissions:		ricia incicases
					6/30/2005	
Fax: (307) 745-8317				Date:	6/30/2005	
Fuel Combustion Source:						
Unit Description	Jonah Compres	ssor Station				
Engine design increases (hp)	3,000					
Operating Parameters:						
Operated	24	hr/day,	7	days/wk,	365	days/yr.
Operating hours	8760					
Capacity (%)	100					
Annual Engine Load Factor:	0.9					
Potential Fuel Combustion for the	Vanafaa Haite					
Volume of Natural Gas Combusted	173.47	MMSCF				
	6601	Btu/hp-hr				
Assumes gas consumed at rate of Heat Content	1000	Btu/scf				
neat Content	1000	Diu/sci				
Emission Data:						
			Method of	Emission		
	lb/hr	TPY	Determination	Factor1	Units	
PM10	0.0	0.0	AP-42	7.71E-05	lb/MMscf	
PM2.5	0.0	0.00	AP-43	7.71E-05	lb/MMscf	
Sulfur dioxide	0.0	0.0	Fuel Analysis	0.00	lb/MMscf	
Nitrogen oxides	4.2	18.3	BACT	0.7	g/hp-hr	
Carbon monoxide	1.8	7.8	Permitted Emissions ²	0.300	g/hp-hr	
VOC	3.0	13.0	Permitted Emissions ²	0.500	g/hp-hr	
Formaldehyde	0.5	2.1	Permitted Emissions ²	0.080	g/hp-hr	

Table D.1.58 Compression Increases - Paradise Compressor Station

605 Skyline Drive Laramie, WY 82070				Scenario:	Jonah Infill Drillin All Scenarios Projected Pineda	g Project le Anticline Increases
Phone: (307) 742-3843				-	Paradise C.S.	
Fax: (307) 745-8317					6/30/2005	
Fuel Combustion Source:						7-
Unit Description	Paradise Comp	ressor Station				
Engine design increases (hp)	9,624					
Operating Parameters:						
Operated	24	hr/day,	7	days/wk,	365	days/yr.
Operating hours	8760					
Capacity (%)	100					
Annual Engine Load Factor:	0.9					
Potential Fuel Combustion for the	Year for Unit:					
Volume of Natural Gas Combusted	556.51	MMSCF				
Assumes gas consumed at rate of	6601	Btu/hp-hr				
	1000	Btu/scf				
Heat Content						
Heat Content Emission Data:			Method of	Emission		
	lb/hr	TPY	Method of Determination	Emission Factor ¹	Units	
Emission Data:	b/hr 0.0	TPY 0.0			Units lb/MMscf	
			Determination	Factor ¹		
Emission Data:	0.0	0.0	Determination AP-42	Factor ¹ 7.71E-05	lb/MMscf	
Emission Data: PM10 PM2.5	0.0	0.0 0.00	Determination AP-42 AP-43	Factor ¹ 7.71E-05 7.71E-05	lb/MMscf lb/MMscf	
Emission Data: PM10 PM2.5 Sulfur dioxide	0.0 0.0 0.0	0.0 0.00 0.0	Determination AP-42 AP-43 Fuel Analysis	Factor ¹ 7.71E-05 7.71E-05 0.00	lb/MMscf lb/MMscf lb/MMscf	
Emission Data: PM10 PM2.5 Sulfur dioxide Nitrogen oxides	0.0 0.0 0.0 13.4	0.0 0.00 0.0 58.5	Determination AP-42 AP-43 Fuel Analysis BACT	Factor ¹ 7.71E-05 7.71E-05 0.00 0.7	lb/MMscf lb/MMscf lb/MMscf g/hp-hr	

Table D.1.59

Compression Increases - Gobblers Knob Compressor Station

TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Project: Jonah Infill Drilling Project Scenario: All Scenarios Activity: Projected Compression Increases Emissions: Gobblers Knob C.S.

Phone: (307) 742-3843 Fax: (307) 745-8317					Gobblers Knob C 6/30/2005	.5.
Fuel Combustion Source:						
Unit Description	Gobblers Knob	Compressor Sta	tion (Comprised of Pinedal	le. Mesa 1. and	Mesa 2)	
Engine design increases (hp)	1,160				,	
Operating Parameters:						
Operated	24	hr/day,	7	days/wk,	365	days/yr.
Operating hours	8760					
Capacity (%)	100					
Annual Engine Load Factor:	0.9					
Potential Fuel Combustion for the	Year for Unit:					
Volume of Natural Gas Combusted	67.08	MMSCF				
Assumes gas consumed at rate of	6601	Btu/hp-hr				
Heat Content	1000	Btu/scf				
rical content						
Emission Data:			Method of	Emission		
	lb/hr	TPY	Method of Determination	Emission Factor ¹	Units	
Emission Data:		TPY 0.0			Units lb/MMscf	
Emission Data:			Determination	Factor ¹		
Emission Data: PM10 PM2.5	0.0	0.0	Determination AP-42	Factor ¹ 7.71E-05	lb/MMscf	
	0.0	0.0	Determination AP-42 AP-43	Factor ¹ 7.71E-05 7.71E-05	lb/MMscf lb/MMscf	
Emission Data: PM10 PM2.5 Sulfur dioxide	0.0 0.0 0.0	0.0 0.00 0.0	Determination AP-42 AP-43 Fuel Analysis	7.71E-05 7.71E-05 0.00	lb/MMscf lb/MMscf lb/MMscf	
Emission Data: PM10 PM2.5 Sulfur dioxide Nitrogen oxides	0.0 0.0 0.0 1.6	0.0 0.00 0.0 7.1	Determination AP-42 AP-43 Fuel Analysis BACT	Factor ¹ 7.71E-05 7.71E-05 0.00 0.7	lb/MMscf lb/MMscf lb/MMscf g/hp-hr	

² Emission rates taken from a Pinedale Anticline WDEQ permit for an engine with 0.7 g/hp-hr NOx.

Table D.1.60 Compression Increases - Jack Morrow Hills Compressor Station

TRC Environmental 605 Skyline Drive Laramie, WY 82070 Phone: (307) 742-3843 Fax: (307) 745-8317 Project: Jonah Infill Drilling Project Scenario: All Scenarios Activity: Projected Compression Increases Emissions: Jack Morrow Hills C.S. Date: 6/30/2005

Fuel Combustion Source:

Unit Description Jack Morrow Hills Compressor Station

Engine design increases (hp) 2,940

Operating Parameters:

Annual Engine Load Factor: 0.9

Potential Fuel Combustion for the Year for Unit:

Volume of Natural Gas Combusted 170.00 MMSCF
Assumes gas consumed at rate of 6601 Btu/hp-hr
Heat Content 1000 Btu/scf

Emission Data: Method of Emission lb/hr TPY Determination Factor1 Units AP-42 7.71E-05 PM10 0.0 0.0 lb/MMscf PM2.5 0.0 0.00 AP-43 7.71E-05 lb/MMscf Sulfur dioxide Fuel Analysis 0.00 lb/MMscf 0.0 0.0 BACT Nitrogen oxides 4.1 17.9 0.7 g/hp-hr Permitted Emissions² Carbon monoxide 1.8 7.7 0.300 g/hp-hr VOC 2.9 12.8 Permitted Emissions² 0.500 g/hp-hr Formaldehyde 0.5 2.0 Permitted Emissions² 0.080 g/hp-hr

¹ Based on a 4-stroke lean burn engine, taken from AP-42 Table 3.2-3.

² Emission rates taken from surrounding area compression permits for an engine with 0.7 g/hp-hr NOx

Table D.1.61
Permitted Source Inventory Increases - CO Sources

		Permit		Height	Temperature	Velocity	Diameter	×ON	SO ₂	PM ₁₀	PM _{2.5}
Facility Name	Site ID	Number	County	(m)	3	(m/s)	(E)	(tpy)	(tby)	(tpy)	(tpy)
Coch Exploration Co. LLC - Walker 3-1	169	03MF0434	Moffat	3.05	808.15	14.73	0.10	23.04	3.06	0.00	0.00
Questar Gas Management Co Lion C.S.	161	03MF0662	Moffat	4.57	866.48	12.50	0.30	14.30	0.00	0.00	0.00
Soch Exploration Co. LLC - Walker 12-5	168	03MF0808	Moffat	3.05	808.15	12.50	0.10	11.50	0.00	0.00	0.00
Coch Exploration Co. LLC - Walker 12-2	177	03MF0809	Moffat	2.13	833.15	12.50	0.10	31.23	2.07	2.22	2.22
Coch Exploration Co. LLC - Walker 12-4	178	03MF0810	Moffat	2.13	833.15	12.50	0.10	31.23	2.07	2.22	2.22
Coch Exploration Co. LLC - Walker 3-2	223	03MF0811	Moffat	2.13	833.15	12.50	0.10	31.23	2.07	2.22	2.22
Coch Exploration Co. LLC - Walker 3-4	224	03MF0812	Moffat	2.13	833.15	12.50	0.10	31.23	2.07	2.22	2.22
Coch Exploration Co. LLC - Walker 3-3	228	03MF0943	Moffat	2.13	833.15	11.34	0.10	31.23	2.07	2.22	2.22
Tom Brown, Inc Federal Land Bank 21-14	225	03MF0962	Moffat	9.05	294.26	11.34	0.76	1.44	0.00	0.00	0.00
Tom Brown, Inc Federal Land Bank 33-15	226	03MF0963	Moffat	32.93	829.82	12.50	0.76	1.44	0.00	0.00	0.00
Tom Brown, Inc Schroeder 33-32	229	03MF1025	Moffat	9.05	810.93	12.50	0.76	1.73	0.00	0.00	0.00
Blue Mountain Energy - Deserado Mine	14	03RB0569F	Rio Blanco	0.00	294.26	00.00	0.00	0.00	0.00	66.97	20.09
Blue Mountain Energy - Deserado Mine	14	03RB0570	Rio Blanco	0.00	294.26	00.00	0.00	00.00	0.00	54.86	54.86
KLT Gas Inc Pinyon Ridge Field	232	03RB0578	Rio Blanco	2.44	255.37	12.50	0.20	24.00	0.00	0.00	00.0
Blue Mountain Energy - Deserado Mine	4	12RB802-3F	Rio Blanco	22.38	294.26	77.7	0.67	00.00	0.00	8.69	2.61
				Total Co	Total Colorado State-Permitted Source Emissions	mitted Sour	P Fmissions	233.60	13.41	141 62	88.66

Table D.1.62
Permitted Source Inventory Increases - WY Sources

		Permit		Height	Height Temperature	Velocity	Diameter	Ň	SO2	PM ₁₀	PM _{2.5}
Company	Facility	Number	County	(E)	S.	(m/s)	(m)	(tpy)	(tpy)	(tpy)	(tby)
Williams Field Services	Opal Gas Plant	MD-917	Lincoln	16.69	742.00	1.37	34.17	(550.60)	0.00	0.00	0.00
Bill Barrett Corporation	Wallace Creek Compressor Station	MD-954	Natrona	7.32	734.80	35.40	0.30	44.40	0.00	0.00	0.00
CREDO Petroleum Company	Marianne Compressor Station	MD-971	Sweetwater	9.05	509.82	12.50	92.0	3.90	0.00	0.00	0.00
Double Eagle Petroleum Company	Cow Creek Central Production Facility	MD-951	Carbon	9.05	509.82	12.50	0.76	9.90	0.00	0.00	0.00
Mountain Gas Resources	Granger Gas Plant	MD-963	Sweetwater	7.92	904.00	32.90	0.38	16.60	0.00	0.00	0.00
Mountain Gas Resources	Hay Reservoir Central Compressor Station	MD-975	Sweetwater	13.11	880.40	20.00	0.46	16.70	0.00	0.00	0.00
Mountain Gas Resources	Storm Shelter Compressor Station	MD-935	Sweetwater	9.05	509.82	12.50	0.76	3.30	0.00	0.00	0.00
Tom Brown Incorporated	Frenchie Draw Graham Unit Central Tank Battery	CT-3436	Sweetwater	15.00	422.00	10.00	0.31	4.00	0.00	0.00	0.00
Tom Brown Incorporated	Fuller Compressor Station	CT-3449	Fremont	8.23	895.37	15.70	0:30	47.90	0.00	0.00	0.00
Warren E & P, Inc.	Pacific Rim Generator Station #1	CT-3472	Sweetwater	9.08	509.82	12.50	0.76	10.50	0.00	0.00	0.00
Western Gas Resources, Inc.	Wild Rose Compressor Station	CT-3412	Sweetwater	6.70	903.70	32.90	0.38	120.60	0.00	0.00	0.00
			Tot	al Wyomi	Total Wyoming State-Permitted Source Emissions	itted Source	e Emissions	(272.80)			

Table D.1.63 Included RFFA

		Permit		Height	Height Temperature	Velocity	Diameter	Ň	SO ₂	PM ₁₀	PM2.5
Company	Facility Name	Number	County	(m)	8	(m/s)	Œ	(tpy)	(tpy)	(tpy)	(tpy)
Exxon Mobil Corporation	Shute Creek Treating Facility	MD-913	Lincoln	99'09	355.00	54.78	1.83	(33.20)	(0.06)	(3.20)	(3.20)
Sinclair Oil Company	Sinclair Refinery	MD-976	Carbon	17.77	389.37	5.24	1.83	(85.70)	0.00	00.00	0.00
Anadarko Gathering Company	Blue Sky	MD-950	Carbon	11.00	730.00	71.60	0.25	17.50	0.00	00.0	00.00
Anadarko Gathering Company	Doty Mountain Compressor Station	CT-3349	Carbon	11.00	730.40	71.60	0.25	46.70	0.00	00.0	00.0
Anadarko Gathering Company	Muddy Mountain Compressor Station	CT-3352	Carbon	11.00	730.40	71.60	0.25	46.70	0.00	00.0	00.00
Anadarko Gathering Company	Red Rim Compressor Station	CT-3393	Carbon	11.00	730.40	71.60	0.25	53.00	0.00	00.0	00.00
Bill Barrett Corporation	Cooper Reservoir Unit Compressor Station	MD-904	Natrona	5.80	648.70	45.84	0.30	25.40	0.00	00.00	00.00
Duke Energy Field Services, LP	Yates Bicycle Federal Compressor #18	CT-3477	Sweetwater	9.05	509.82	12.50	0.76	6.30	0.00	00.0	00.00
Duke Energy Field Services, LP	Yates Bicycle Federal Compressor #6	CT-3507	Sweetwater	9.05	509.82	12.50	9.76	6.30	0.00	00.0	00.0
Duke Energy Field Services, LP	Yates Huffy State Compressor #16	CT-3508	Sweetwater	9.05	509.82	12.50	92.0	6.30	0.00	00.00	00.00
FMC Wyoming Corporation	Soda Ash Facility - Green River Plant	MD-964	Sweetwater	25.49	361.71	17.29	1.04	24.30	0.00	6.10	6.10
Jonah Gas Gathering Company	JGGC/OTTCO Interconnect	MD-925	Lincoln	15.00	422.00	10.00	0.31	4.10	0.00	00.0	00.00
LeGrand Johnson	Hot Mix Asphalt Plant CT-3416	CT-3416	Uinta	14.12	350.04	10.03	0.91	65.20	24.70	12.70	12.70
McMurry Ready Mix	Hot Mix Asphalt Plant	MD-899	Carbon	14.12	350.04	10.03	0.91	23.50	15.10	8.50	8.50
Merit Energy Company	South Baggs Compressor Station	CT-3542	Carbon	9.05	509.82	12.50	0.76	16.20	0.00	00.0	00.0
New Mexico Resources, LLC	Bitter Creek Zeolite Mine/Processing Plant	CT-3490	Sweetwater	15.00	422.00	10.00	0.31	38.00	7.90	9.80	9.80
Rees's Enterprise	CT-3465	CT-3465	Uinta	11.68	326.21	15.37	0.73	98.20	8.00	51.90	51.90
Sinclair Oil Company	Sinclair Refinery	MD-976	Carbon	17.77	389.37	5.24	1.83	0.00	4.30	0.40	0.40
Tom Brown Incorporated	Frenchie Draw Satellite/Graham West Station	MD-980	Fremont	9.05	509.82	12.50	92.0	18.00	0.00	00.00	00.0
Tom Brown Incorporated	Frenchie Draw/Graham Unit #5	CT-3467	Fremont	9.05	509.82	12.50	0.76	36.00	0.00	00.00	00.0
Warren E & P, Inc.	Pacific Rim Compressor Station #1	CT-3471	Sweetwater	9.05	509.82	12.50	0.76	17.10	0.00	0.00	0.00
				Ī	Total Wyoming RFFA Source Emissions	FA Source	Emissions	429.90	59.94	86.20	86.20

APPENDIX E

EARLY PROJECT DEVELOPMENT STAGE MODELING RESULTS

CHAIR AND LINEAR PRODUCT SEQUENTIAL PRODUCT AND ADDRESS OF THE PRODUCT PRODUCT

APPENDIX E

THE RESIDENCE OF THE PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF T

name and the same and the

LIST OF TABLES

Modeled NO₂ Concentration Impacts

- Table E.1.1 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources
- Table E.1.2 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

Modeled SO₂ Concentration Impacts

- Table E.2.1 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources
- Table E.2.2 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

Modeled PM₁₀ Concentration Impacts

- Table E.3.1 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources
- Table E.3.2 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

Modeled PM_{2.5} Concentration Impacts

- Table E.4.1 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources
- Table E.4.2 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

Modeled Impacts Compared to Ambient Air Quality Standards

- Table E.5.1 Maximum Predicted Impacts Within the JIDPA from Early Jonah Infill Project Development Stage Sources Compared to Ambient Air Quality Standards
- Table E.5.2 Maximum Predicted Impacts Within the JIDPA from Early Project Development Stage and Regional Sources Compared to Ambient Air Quality Standards

Modeled Nitrogen (N) and Sulfur (S) Deposition Impacts

- Table E.6.1 Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources Direct and Total
- Table E.6.2 Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources Direct and Total

Modeled Change in Acid Neutralizing Capacity

- Table E.7.1 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Early Jonah Infill Project Development Stage Sources
- Table E.7.2 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Early Jonah Infill Project Development Stage and Regional Sources

Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas

- Table E.8.1 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II
 Areas from Early Jonah Infill Project Development Stage Sources MVISBK=6
- Table E.8.2 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources MVISBK=6
- Table E.8.3 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II
 Areas from Early Jonah Infill Project Development Stage Sources MVISBK=2
- Table E.8.4 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources MVISBK=2

- Table E.8.5 Bridger Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.6 Bridger Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Adv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.7 Fitzpatrick Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.8 Fitzpatrick Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.9 Grand Teton National Park Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Adv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.10 Grand Teton National Park Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted Adv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.11 Popo Agie Wilderness Area Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.12 Popo Agie Wilderness Area Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted Adv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.13 Teton Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.14 Teton Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.15 Washakie Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6

- Table E.8.16 Washakie Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.17 Wind River Roadless Area Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.18 Wind River Roadless Area Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.19 Yellowstone National Park Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.20 Yellowstone National Park Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=6
- Table E.8.21 Bridger Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.22 Bridger Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.23 Fitzpatrick Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.24 Fitzpatrick Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.25 Grand Teton National Park Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Adv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.26 Grand Teton National Park Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=2

E-4

- Table E.8.27 Popo Agie Wilderness Area Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.28 Popo Agie Wilderness Area Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted \(\Delta \text{V} \) Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.29 Teton Wilderness Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.30 Teton Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.31 Washakie Wilderness Area Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Δdv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.32 Washakie Wilderness Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.33 Wind River Roadless Area Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.34 Wind River Roadless Area Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.35 Yellowstone National Park Summary of Days Above Visibility Thresholds
 Using FLAG Background Data Predicted Adv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=2
- Table E.8.36 Yellowstone National Park Summary of Days Above Visibility Thresholds
 Using IMPROVE Background Data Predicted ∆dv Shown for Early Project
 Development Stage Direct and Cumulative Scenarios MVISBK=2

Modeled Visibility Impacts at Wyoming Regional Community Locations

- Table E.9.1 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage Sources MVISBK=6
- Table E.9.2 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage and Regional Sources MVISBK=6
- Table E.9.3 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage Sources MVISBK=2
- Table E.9.4 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage and Regional Sources MVISBK=2
- Table E.9.5 Big Piney Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.6 Big Piney Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.7 Big Sandy Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.8 Big Sandy Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.9 Boulder Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.10 Boulder Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6

- Table E.9.11 Bronx Summary of Days Above Visibility Thresholds Using FLAG Background
 Data Predicted Δdv Shown for Early Project Development Stage Direct and
 Cumulative Modeled Scenarios MVISBK=6
- Table E.9.12 Bronx Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.13 Cora Summary of Days Above Visibility Thresholds Using FLAG Background
 Data Predicted Δdv Shown for Early Project Development Stage Direct and
 Cumulative Modeled Scenarios MVISBK=6
- Table E.9.14 Cora Summary of Days Above Visibility Thresholds Using IMPROVE
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.15 Daniel Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.16 Daniel Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.17 Farson Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.18 Farson Summary of Days Above Visibility Thresholds Using IMPROVE

 Background Data Predicted Δdv Shown for Early Project Development Stage –

 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.19 La Barge Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.20 La Barge Summary of Days Above Visibility Thresholds Using IMPROVE
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.21 Merna Summary of Days Above Visibility Thresholds Using FLAG Background
 Data Predicted Δdv Shown for Early Project Development Stage Direct and
 Cumulative Modeled Scenarios MVISBK=6

- Table E.9.22 Merna Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.23 Pinedale Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.24 Pinedale Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=6
- Table E.9.25 Big Piney Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.26 Big Piney Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.27 Big Sandy Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.28 Big Sandy Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.29 Boulder Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.30 Boulder Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.31 Bronx Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.32 Bronx Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2

E-8

35982

- Table E.9.33 Cora Summary of Days Above Visibility Thresholds Using FLAG Background
 Data Predicted Δdv Shown for Early Project Development Stage Direct and
 Cumulative Modeled Scenarios MVISBK=2
- Table E.9.34 Cora Summary of Days Above Visibility Thresholds Using IMPROVE
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.35 Daniel Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.36 Daniel Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.37 Farson Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.38 Farson Summary of Days Above Visibility Thresholds Using IMPROVE
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.39 La Barge Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.40 La Barge Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.41 Merna Summary of Days Above Visibility Thresholds Using FLAG Background
 Data Predicted Δdv Shown for Early Project Development Stage Direct and
 Cumulative Modeled Scenarios MVISBK=2
- Table E.9.42 Merna Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage Direct and Cumulative Modeled Scenarios MVISBK=2
- Table E.9.43 Pinedale Summary of Days Above Visibility Thresholds Using FLAG
 Background Data Predicted Δdv Shown for Early Project Development Stage –
 Direct and Cumulative Modeled Scenarios MVISBK=2

Table E.9.44 Pinedale – Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δdv Shown for Early Project Development Stage – Direct and Cumulative Modeled Scenarios – MVISBK=2

Summary of Maximum Modeled Impacts

- Table E.10.1 Summary of Maximum Modeled NO₂ Concentration Impacts (μg/m³) at PSD Class II Areas from Early Project Development Stage and Regional Sources
- Table E.10.2 Summary of Maximum Modeled SO₂ Concentration Impacts (μg/m³) at PSD Class II Areas from Early Project Development Stage and Regional Sources
- Table E.10.3 Summary of Maximum Modeled PM_{10} Concentration Impacts ($\mu g/m^3$) at PSD Class II Areas from Early Project Development Stage and Regional Sources
- Table E.10.4 Summary of Maximum Modeled PM_{2.5} Concentration Impacts (µg/m³) at PSD Class II Areas from Early Project Development Stage and Regional Sources
- Table E.10.5 Summary of Maximum Modeled In-field Pollutant Concentrations (µg/m³) from Early Project Development Stage and Regional Sources Within the JIDPA Compared to Ambient Air Quality Standards
- Table E.10.6 Summary of Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources
- Table E.10.7 Summary of Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources
- Table E.10.8 Summary of Maximum Modeled Change in ANC (μeq/L) at Acid Sensitive Lakes from Early Project Development Stage and Regional Sources
- Table E.10.9 Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using FLAG Background Data MVISBK=6
- Table E.10.10 Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using IMPROVE Background Data MVISBK=6

- Table E.10.11 Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using FLAG Background Data MVISBK=2
- Table E.10.12 Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using IMPROVE Background Data MVISBK=2
- Table E.10.13 Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using FLAG Background Data MVISBK=6
- Table E.10.14 Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using IMPROVE Background Data MVISBK=6
- Table E.10.15 Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using FLAG Background Data MVISBK=2
- Table E.10.16 Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using IMPROVE Background Data MVISBK=2

Table E.1.1 Maximum Modeled NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources

NAAQS	(mg/m ₃)	100	100	100	100	100	100	100	100
WAAQS	(µg/m³)	100	100	100	100	100	100	100	100
Total Concentration WAAQS	(mg/m³)	3.45	3.40	3.40	3.42	3.40	3.40	3.41	3.40
Background Concentration	(hg/m³)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Increment	(µg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Applicable PSD Significance Level	(hg/m³)	0.1	0.11	0.1	1.0	0.1	0.1	1.0	0.1
Direct Modeled Impact	(µg/m³)	0.049	0.0040	0.0027	0.015	0.0014	0.0012	0.0065	0.0009
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO2							

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table E.1.2 Maximum Modeled Cumulative NO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

				1					
NAAQS	(hg/m³)	100	100	100	100	100	100	100	100
WAAQS	(hg/m³)	100	100	100	100	100	100	100	100
Total Concentration	(hg/m³)	3.73	3.43	3.44	3.49	3.42	3.42	3.45	3.41
Background Concentration	(mg/m ₃)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Applicable PSD Background Increment Concentration	(hg/m³)	2.5	2.5	2.5	25.0	2.5	2.5	25.0	2.5
Modeled Impact	(hg/m³)	0.33	0.035	0.045	0.085	0.016	0.017	0.050	0.010
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual							
Pollutant		NO ₂							

Table E.2.1 Maximum Modeled SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources

					_	-													_	_		_		-	
NAAQS	(µg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m ₃)	09	09	09	90	9	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS NAAQS	(hg/m³)	9.00	9.00	9.00	9.00	9.00	9.00	00.6	9.00	43.1	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.2	132.1	132.0	132.1	132.0	132.0	132.0	. 132.0
Background Concentration	(hg/m ₃)	9.0	9.0	9.0	9.0	0.6	0.6	9.0	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	7	2	2	20	2	2	20	2	S	32	ς.	91	5	2	91	S	25	25	25	512	25	25	512	25
Applicable PSD Significance Level	(ng/m ₃)	0.1	0.1	0.1	1.0	0.1	0.1	1.0	0.1	0.2	0.2	0.21	5.0	0.21	0.21	5.0	0.2	1.01	1.01	1.01	25.0	1.01	1.01	25.0	1.01
Direct Modeled Impact	(hg/m³)	0.004	0.001	0.0004	0.002	0.0002	0.0003	0.001	0.0001	0.064	0.015	0.011	0.018	0.007	0.005	0.015	900.0	0.224	0.066	0.037	0.081	0.019	0.018	0.048	0.015
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Tetan WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								80,								SO ₂							

¹ Proposed Class I significance level, Federal Register Nol. 61, No. 142, pg. 38292, July 23, 1996.

Table E.2.2 Maximum Modeled Cumulative SO₂ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

																			_						
NAAQS	(hg/m³)	80	80	80	80	80	80	80	80	365	365	365	365	365	365	365	365	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
WAAQS	(µg/m³)	09	9	09	90	09	09	09	09	260	260	260	260	260	260	260	260	1,300	1,300	1,300	1,300	1,300	1,300	1,300	1,300
Total Concentration WAAQS	(mg/m ₃)	9.01	9.00	9.01	9.00	9.00	9.00	9.00	9.00	43.2	43.1	43.1	43.0	43.0	43.0	43.1	43.0	132.8	132.2	132.4	132.2	132.1	132.1	132.2	132.1
Background Concentration	(m/brl)	9.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0
Applicable PSD Increment	(hg/m³)	2	7	7	20	2	2	20	2	52	2	2	91	2	2	91	2	25	25	25	512	25	25	512	25
Modeled	(hg/m³)	0.014	0.001	0.008	0.002	0.003	0.001	0.002	0.002	0.210	0.064	0.093	0.047	0.029	0.019	0.056	0.024	0.847	0.249	0.354	0.204	0.093	0.076	0.230	960.0
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr								3-hr							
Pollutant		SO ₂								SO ₂								SO ₂					>		
			_		_	_	_	_				_			_	_				_	_	_	_	_	

Table E.3.1 Maximum Modeled PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources

S	3)																
NAAQS	(hg/m ³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
WAAQS	(hg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
Total Concentration	(µg/m³)	16.05	16.01	16.01	16.02	16.00	16.00	16.01	16.00	33.96	33.27	33.30	33.32	33.25	33.15	33.30	33.21
Background Concentration	(µg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Applicable PSD Significance Applicable PSD Level Increment	(µg/m³)	4	4	4	17	4	4	17	4	00	00	00	30	∞	∞	30	∞
Applicable PSD Significance Level	(hg/m³)	0.21	0.21	0.21	1.0	0.21	0.21	1.0	0.2	0.31	0.31	0.31	5.0	0.31	0.3	5.0	0.31
Direct Modeled Impact	(mg/m ₃)	0.047	0.010	0.007	0.022	0.0044	0.0042	0.013	0.0029	0.96	0.27	0.30	0.32	0.25	0.15	0.30	0.21
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averagin g Time		Annual								24- hr							
Pollutant		PM ₁₀								PM ₁₀							

¹ Proposed Class I significance level, Federal Register/Vol. 61, No. 142, pg. 38292, July 23, 1996.

Table E.3.2 Maximum Modeled Cumulative PM₁₀ Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

Ø	()	9 8				ı										Fig.	B
NAAQS	(µg/m³	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
WAAQS	(hg/m³)	20	20	20	20	20	20	20	20	150	150	150	150	150	150	150	150
Total Concentration	(hg/m³)	16.17	16.04	16.04	16.07	16.02	16.02	16.05	16.02	35.56	33.97	33.79	33.98	33.39	33.53	33.99	33.34
Background Concentration	(hg/m³)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Applicable PSD Increment	(hg/m³)	4	4	4	17	4	4	17	4	œ	œ	00	30	œ	œ	30	∞
Modeled Impact	(µg/m³)	0.17	0.044	0.039	0.073	0.024	0.020	0.053	0.015	2.56	0.97	0.79	0.98	0.39	0.53	0.99	0.34
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24- hr							
Pollutant		PM ₁₀								PM ₁₀							

Table E.4.1 Maximum Modeled PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources

Pollutant	Averaging	Receptor Area	Direct Modeled Impact	Background	Background Total Concentration Concentration Concentration Concentration Concentration WAAQS ¹	WAAQS1	NAAQS
			(µg/m³)	(hg/m³)	(µg/m³)	(hg/m ₃)	(µg/m ₃)
PM2.5	Annual	Bridger WA	0.047	5.0	5.05	15	15
		Fitzpatrick WA	0.010	5.0	5.01	15	15
		Grand Teton NP	0.0062	5.0	5.01	15	15
		Popo Agie WA	0.022	5.0	5.02	15	15
		Teton WA	0.0040	5.0	2.00	15	15
		Washakie WA	0.0042	5.0	2.00	15	15
		Wind River RA	0.013	5.0	5.01	15	15
		Yellowstone NP	0.0027	5.0	2.00	15	15
PM _{2.5}	24-hr	Bridger WA	96.0	13.0	13.96	65	92
		Fitzpatrick WA	0.27	13.0	13.27	99	65
		Grand Teton NP	0.21	13.0	13.21	65	65
		Popo Agie WA	0.32	13.0	13.32	65	65
		Teton WA	0.14	13.0	13.14	65	92
		Washakie WA	0.15	13.0	13.15	65	92
		Wind River RA	0.30	13.0	13.30	65	92
		Yellowstone NP	0.12	13.0	13.12	92	65

¹ Standard not yet enforced in Wyoming.

Table E.4.2 Maximum Modeled Cumulative PM_{2.5} Concentration Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage and Regional Sources

	T					_								_		_	
NAAQS	(hg/m ₃)	15	15	15	15	15	15	15	15	92	99	92	99	9	92	9	9
WAAQS1	(hg/m³)	15	15	15	15	15	15	15	15	92	92	65	65	65	65	65	92
Total Concentratio WAAQS ¹	(m/grl)	5.17	5.05	5.04	5.08	5.02	5.02	5.05	5.02	15.55	13.96	13.79	13.97	13.38	13.53	13.98	13.34
Background Concentration	(hg/m³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
Modeled Impact	(hg/m³)	0.17	0.045	0.039	0.076	0.024	0.021	0.054	0.015	2.55	96.0	0.79	0.97	0.38	0.53	0.98	0.34
Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP
Averaging Time		Annual								24-hr							
Pollutant		PM _{2.5}								PM _{2.5}							

¹ Standard not yet enforced in Wyoming.

Table E.5.1 Maximum Predicted Impacts Within the JIDPA from Early Jonah Infill Project Development Stage Sources Compared to Ambient Air Quality Standards

NAAQS	(hg/m³)	100	1,300	365	80	150	20	65	15	
WAAQS	(hg/m³)	100	1,300	260	09	150	50	651	151	
Total Concentration	(hg/m³)	22.2	162.5	52.7	10.2	115.6	28.9	49.2	11.2	
Background	(hg/m³)	3.4	132	43	თ	33	16	13	ιΩ	
Direct Predicted Impact	(hg/m³)	18.8	30.5	9.7	1.2	82.6	12.9	36.2	6.2	
Averaging Time		Annual	3 Hour	24-Hour	Annual	24-Hour	Annual	24-Hour	Annual	
Pollutant		NO ₂	SO ₂			PM ₁₀		PM _{2.5}		

¹ Standard not yet enforced in Wyoming.

Table E.5.2 Maximum Predicted Impacts Within the JIDPA from Early Project Development Stage and Regional Sources Compared to Ambient Air Quality Standards

Pollutant	Averaging Time	Direct Predicted Impact	Background Concentration	Total Concentration	WAAQS	NAAQS
		(m/g/m ₃)	(hg/m³)	(hg/m³)	(hg/m³)	(m/brl)
NO ₂	Annual	27.1	3.4	30.5	100	100
SO ₂	3 Hour	37.7	132	169.7	1,300	1,300
	24-Hour	12.1	43	55:1	260	365
	Annual	1.7	თ	10.7	09	80
PM ₁₀	24-Hour	89.0	33	122.0	150	150
	Annual	15.0	16	31.0	20	20
PM _{2.5}	24-Hour	49.4	13	62.4	651	65
	Annual	8.2	5	13.2	151	15

¹ Standard not yet enforced in Wyoming.

Table E.6.1 Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources - Direct and Total

	Direct	Cumulative	Total	Deposition Analysis	Level of Concern
Receptor Area	Project Impact	Modeled Impact	Impact ¹	Threshold for Direct Project ²	for Total ³
Bridger WA	0.0136	960.0	1.596	0.005	3.0
Fitzpatrick WA	0.0032	0.025	1.525	0.005	3.0
Grand Teton NP	0.0019	0.020	1.520	0.005	3.0
Popo Agie WA	0.0094	0.049	1.549	0.005	3.0
Teton WA	0.0011	0.011	1.511	0.005	3.0
Washakie WA	0.0013	0.012	1.512	0.005	3.0
Wind River RA	0.0049	0.033	1.533	0.005	3.0
Yellowstone NP	0.0007	0.008	1.508	0.005	3.0

¹ Total impact includes N deposition value of 1.5 kg/ha-yr measured near Pinedale for the year 2001.

² National Park Service (2001)

³ Fox et al. (1989)

Table E.6.2 Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Jonah Infill Project Development Stage Sources - Direct and Total

	Direct	Cumulative	Total	Deposition Analysis	Level of Concern	
	Project Impact	Modeled Impact	Impact ¹	Threshold for Direct Project ²	for Total ³	
Bridger WA	0.0018	0.0062	0.7562	0.005	3.0	
Fitzpatrick WA	0.00050	0.0010	0.7510	0.005	3.0	
Grand Teton NP	0.00030	0.0048	0.7548	0.005	3.0	
Popo Agie WA	0.0013	0.0012	0.7512	0.005	3.0	
Teton WA	0.00018	0.0023	0.7523	0.005	3.0	
Washakie WA	0.00020	0.00089	0.7509	0.005	3.0	
Wind River RA	0.00077	0.0010	0.7510	0.005	3.0	
Yellowstone NP	0.00011	0.0015	0.7515	0.005	3.0	

Total impact includes S deposition value of 0.75 kg/ha-yr measured near Pinedale for the year 2001.

² National Park Service (2001)

³ Fox et al. (1989)

Table E.7.1 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Early Jonah Infill Project Development Stage Sources

Lake			5		
		Background	Acceptable		Percent ANC
	Wilderness Area	ANC	Change ¹	ANC Change	Change
		(hed/L)	(hed/L)	(hed/L)	(%)
-	ger	67.0	6.70	0.064	0.10%
_	ger	59.9	5.99	0.068	0.11%
Hobbs Bridg	Bridger	6.69	6.99	0.040	%90.0
ш	Jer	18.8	1.00	0.021	0.11%
_	o Agie	55.5	5.55	0.079	0.14%
Ross Fitzp	atrick	53.5	5.35	0.019	0.04%
Upper Frozen Bridg	Bridger	5.0	1.00	0.073	1.45%

¹ USFS Level of Acceptable Change (USFS 2000).

Table E.7.2 Maximum Modeled Change in Acid Neutralizing Capacity (ANC) at Acid Sensitive Lakes from Early Jonah Infill Project Development Stage and Regional Sources

Percent ANC Change	(%)	0.52%	0.62%	0.40%	0.75%	0.71%	0.26%	7.96%
ANC Change	(hed/L)	0.350	0.371	0.278	0.141	0.394	0.136	0.398
Level of Acceptable Change ¹	(hed/L)	6.70	5.99	6.99	1.00	5.55	5.35	1.00
Background ANC	(hed/L)	67.0	59.9	6.69	18.8	55.5	53.5	5.0
Wilderness Area		Bridger	Bridger	Bridger	Bridger	Popo Agie	Fitzpatrick	Bridger
Lake		Black Joe	Deep	Hobbs	Lazy Boy	Lower Saddlebag	Ross	Upper Frozen

¹ USFS Level of Acceptable Change (USFS 2000).

Table E.8.1 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

	Early	Jonah Infill Project	Early Jonah Infill Project Development Stage Sources - MVISBK=6	Sources - MVISB	K=6	
	73	FLAG Background Data	ata ¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility	Number of Days	Maximum Visibility Number of Days Number of Days >	Maximum	Number of Days	Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 Adv	> 1.0 Adv
	(\d\p\\)	(days)	(days)	(\pdo)	(days)	(days)
Bridger WA	2.19	28	∞	2.42	34	თ
Fitzpatrick WA	0.86	4	0	0.95	2	0
Grand Teton NP	99:0	_	0	0.67	-	0
Popo Agie WA	0.95	9	0	1.06	10	7
Teton WA	0.36	0	0	0.37	0	0
Washakie WA	0.42	0	0	0.43	0	0
Wind River RA	0.91	2	0	1.01	က	-
Yellowstone NP	0.32	0	0	0.32	0	0

¹ $\Delta dv = change in deciview.$

Table E.8.2 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stade and Regional Sources - MVISBK=6

_	_										
Data ¹	Number of Days	> 1.0 ∆dv	(days)	29		∞	23	4	2	15	ო
IMPROVE Background Data	Number of Days	> 0.5 ∆dv	(days)	128	27	20	51	12	10	31	S.
IMPR	Maximum	Visibility Impact	(\p\(\pi\))	6.57	3.37	2.63	3.35	1.33	1.70	3.39	1.22
FLAG Background Data ¹ IMPROVE	Maximum Visibility Number of Days Number of Days >	1.0 Adv	(days)	61	1	00	20	4	2	12	m
FLAG Background Data	Number of Days	> 0.5 Adv	(days)	124	25	24	20	15	თ	32	ဖ
FL	Maximum Visibility	Impact	(∆dv)	6.04	3.06	2.60	3.04	1.31	1.66	3.08	1.21
		Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP

¹ Adv = change in deciview.

Table E.8.3 Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from

Data ¹	Number of Days	> 1.0 ∆dv	(days)	21	4	-	-	0	0	-	0	
OVE Background I	Number of Days	> 0.5 ∆dv	(days)	47	00	2	18	ო	2	က	2	
IMPR	Maximum	Visibility Impact	(\p\p\)	5.95	2.42	1.32	1.08	0.97	0.80	1.11	0.85	
a¹	Number of Days >	1.0 Adv	(days)	22	က	2	_	-	0	2	-	
AG Background Dat	Number of Days 1	> 0.5 ∆dv	(days)	46	တ	œ	21	co.	2	က	2	
FLV	Maximum Visibility	Impact	(\dv)	5.92	2.40	1.59	1.46	1.18	0.81	1.16	1.04	
		Receptor Area		Bridger WA	Fitzpatrick WA	Grand Teton NP	Popo Agie WA	Teton WA	Washakie WA	Wind River RA	Yellowstone NP	
	FLAG Background Data [†] IMPROVE Background Data [‡]	umber of Days > Maximur	FLAG Background Data¹ Maximum Visibility Number of Days Number of Days > Maximum Impact > 0.5 ∆dv Visibility Impact	FLAG Background Data† IMPRG Maximum Visibility Number of Days Maximum Impact > 0.5 Δdv 1.0 Δdv Visibility Impact (Δdv) (days) (days) (Δdv)	FLAG Background Data¹ IMPRG Maximum Visibility Number of Days Nu	FLAG Background Data	FLAG Background Data IMPRG	FLAG Background Data† IMPRG	Area FLAG Background Data¹ IMPRG Area Impact > 0.5 Δdv 1.0 Δdv Visibility Impact AA 2.40 (days) (days) (Δdv) AA 2.40 9 3 2.42 INP 1.59 8 2 1.32 VA 1.46 21 1 0.97 VA 1.18 5 1 0.97 AA 1.16 3 2 1.11 NP 1.04 2 1 0.85			

¹ $\Delta dv = change in deciview.$

Table E.8.4 Maximum Modeled Cumulative Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stace and Regional Sources - MVISBK=2

	F	FLAG Background Data	ata¹	IMPR	IMPROVE Background Data	Data ¹
	Maximum Visibility Number of Days Number of Days >	Number of Days	Number of Days >	Maximum	Number of Days	Number of Days
Receptor Area	Impact	> 0.5 ∆dv	1.0 Adv	Visibility Impact	> 0.5 ∆dv	> 1.0 Adv
	(∆dV)	(days)	(days)	(∆d√)	(days)	(days)
Bridger WA	13.51	147	94	13.56	143	96
Fitzpatrick WA	8.12	23	26	8.15	52	19
Grand Teton NP	4.46	52	31	3.76	46	26
Popo Agie WA	4.98	93	20	3.67	88	49
Teton WA	3.94	44	28	3.32	36	20
Washakie WA	3.79	23	13	3.02	20	5
Wind River RA	6.39	33	17	3.83	32	17
Yellowstone NP	3.54	33	16	2.98	29	11
ו פווסאאוסוום ו	6.04	ŝ	<u>o</u>	7.30		67

¹ ∆dv = change in deciview.

Table E.8.5 Bridger Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

 				Scer	
Julian Day	Month	Day		1	2
5	1		5	-	0.52
7	1		7	1.19	5.17
9	1		9	0.63	1.33
10	1		10	0.64	1.26
11	1		11	0.60	1.46
12	1		12	-	1.44
13	1		13	0.57	1.40
14	1		14	0.51	1.57
15	1		15	-	0.54
16	1		16	0.71	1.91
17	1		17	1.87	5.47
21	1		21	-	0.80
22	1		22	-	0.82
23	1		23	0.58	2.15
24	1		24	0.88	4.17
26	1		26	-	1.34
30	1		30	-	1.87
40	2		9	-	3.12
41	2		10		0.86
42	2		11		0.63
43	2		12	0.66	2.83
44	2		13		1.79
45	2		14	017	2.09
46	2		15	0.0	0.68
48	2		17	0	
49	2			0.0	0.69
			18	0.0	0.56
53	2		22	01	1.44
56	2		25	-	0.75
58	2		27	-	0.51
59	2		28	-	1.70
60	3		1	-	1.69
61	3		2	1.11	3.79
62	3		3	-	1.83
63	3		4	-	1.76
65	3		6	-	0.81
67	3		8	0.56	3.17
68	3		9	0.55	2.49
69	3		10	0.78	2.38
70	3		11	-	0.90
71	3		12	-	0.59
72	3		13	-	0.71
73	3		14	-	0.77
74	3		15	-	0.97
77	3		18	-	0.50
78	3		19	_	0.65
80	3		21	-	0.55
81	3		22	-	0.84
82	3		23		0.60
84	3		25	11	0.77
86	3		27	0.75	2.76
87	3		28	0.75	1.13
90	3		31		
92	4		2		1.49
				1	0.92
96	4		6	1 P	0.51
97	4		7	1	0.73
98	4		8	1	0.68
99	4		9	-	1.04
105	4		15	1.7	0.58
111	4		21		1.08

				nario
Julian Day	Month	Day	1	2
115	4	25	-	0.57
116	4	26		2.02
118	4	28		0.99
119	4	29		0.77
			-	
120	4	30	-	0.78
132	5	12	-	0.87
133	5	13	-	0.55
134	5	14	-	1.10
136	5	16	-	0.71
184	7	3	-	0.57
218	8	6		0.70
224	8	12		0.67
			-	
237	8	25	-	0.75
252	9	9	-	0.54
254	9	11	-	0.74
262	9	19	-	0.56
263	9	20	_	1.08
264	9	21		1.02
	9			
265		22		1.02
269	9	26	-	1.59
271	9	28	-	0.67
274	10	1	-	2.05
275	10	2	-	1.17
277	10	4	-	0.51
280	10	7	-	1.05
281		8	0.55	
	10			1.44
285	10	12	-	1.17
290	10	17	-	0.61
295	10	22	-	0.87
298	10	25	-	0.98
304	10	31	-	0.64
305	11	1	0.87	1.91
306	11	2	-	1.13
		5		
309	11			0.70
310	11	6	-	1.34
311	11	7	-	0.51
313	11	9	-	0.51
314	11	10	-	0.51
320	11	16		1.08
321	11	17		0.69
323	11	19		1.04
325	11	21	0.58	2.42
326	11	22	-	2.06
329	11	25	-	0.83
330	11	26	-	0.55
331	11	27	-	1.08
336	12	2		0.68
		4	11	2.08
338	12		-	
339	12	5		0.57
342	12	8	0.89	3.18
344	12	10	-	0.61
345	12	. 11	-	1.73
346	12	12	-	0.91
347	12	13		0.74
				2.57
350	12	16	0.59	
353	12	19	1.33	4.70
354	12	20	2.14	5.47
355	12	21	0.87	3.94
356	12	22	0.88	4.46
357	12	23	2.19	6.04
		20	2	5.07
359	12	25	-	0.61

			Sce	nario
Julian Day	Month	Day	1	2
361	12	27	-	0.59
362	12	28	1.45	4.21
363	12	29	1.32	3.76
Number of Days Δ dv >= 0.5			28	124
Number of Days $\Delta dv >= 1.0$			8	61
Maximum Δ dv			2.19	6.04

Table E.8.6 Bridger Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

 				enario
Julian Day	Month	Day	1	2
2	1	2		0.52
5	1	5		0:60
7	1	7	1.37	5.80
9	1	9	0.73	1.53
10	1	10	0.74	1.45
11	1	11		1.67
12	1	12		1.65
13	1	13		1.60
14	1	14		1.80
15	1	15		0.62
16	1	16		2.19
17	1	17		6.13
21	1	21		0.92
22	1	22		0.94
23	1	23		2.46
24	1	24	1.02	4.71
26	:1	26		1.54
27	1	27		0.54
30	1	30) -	2.14
40	2	9	0.54	3.56
41	2	10		0.99
42	2	11		0.73
43	2	12		3.23
44	2	13		2.06
45	2	14		2.40
	2			
46		15		0.79
48	2	17		0.80
49	2	18		0.65
53	2	22		1.66
56	2	25		0.88
58	2	27		0.59
59	2	28	3 -	1.96
60	3	- 1	-	1.95
61	3	2	2 1.29	4.30
62	3		0.52	2.10
63	3	4	0.58	2.02
64	3			0.52
65	3	(0.94
67	3			3.61
68	3			2.86
69	3	10		2.73
70	3	1		1.04
71	3	1:		0.69
72	3	13		0.82
73	3	14		0.89
74	3	15		1.13
75	3	16	3 -	0.51
77	3	18	3 -	0.58
78	3	19	9 -	0.76
80	3	2	1 -	0.64
81	3	2:		0.97
82	3	2		0.70
84	3	25		0.89
86	3	2		3.15
				1.31
87	3	21		
90	3	3		1.72
92	4		2 -	0.84
97	4		7 -	0.66

				cenario	
Julian Day	Month	Day	1	2	
99	4	9	-	0.94	
105	4	15	-	0.52	
111	4	21	-	0.98	
115	4	25	-	0.52	
116	4	26	-	1.84	
118	4	28	-	0.90	
119	4	29	-	0.70	
120	4	30	-	0.71	
132	5	12	-	0.79	
134	5	14	-	1.00	
136	5	16	-	0.64	
218	8	6	-	0.59	
224	8	12	-	0.56	
237	8	25	-	0.62	
254	9	11	-	0.61	
263	9	20	-	0.89	
264	9	21	-	0.85	
265	9	22	-	0.84	
269	9	26	-	1.32	
271	9	28	-	0.55	
274	10	1	-	1.71	
275	10	2	-	1.32	
277	10	. 4	-	0.58	
280	10	7		1.18	
281	10	8	0.62	1.62	
285	10	12	-	1.32	
290	10	17	-	0.68	
295	10	22	_	0.98	
298	10	25	_	1.10	
299	10	26	-	0.51	
302	10	29	_	0.54	
304	10	31		0.72	
305	11	1	0.98	2.14	
306	11	2	-	1.25	
309	11	5	-	0.78	
310	11	6	-	1.49	
311	11	7	-	0.57	
312	11	8	-	0.54	
313	11	9	-	0.57	
314	11	10	-	0.57	
320	11	16	-	1.20	
321	11	17	-	0.76	
322	11	18	-	0.50	
323	11	19	-	1.16	
325	11	21	0.65	2.67	
326	11	22	-	2.27	
329	11	25		0.92	
330	11	26		0.61	
331	. 11	27	_	1.20	
336	12	2	_	0.76	
338	12	4	0.55	2.30	
339	12	5	-	0.64	
342	12	8	1.00	3.50	
344	12	10	-	0.69	
345	12	11	-	1.92	
346	12	12		1.01	
347	12	13	-	0.82	
348	12	14	-	0.51	
350	12	16	0.66	2.83	
353	12	19	1.48	5.14	
354	12	20	2.37	5.97	

			Scer	nario
Julian Day	Month	Day	1	2
356	12	22	0.98	4.88
357	12	23	2.42	6.57
359	12	25	-	0.68
360	12	26	-	0.90
361	12	27	-	0.66
362	12	28	1.61	4.62
363	12	29	1.47	4.13
Number of Days Δ dv >= 0.5			34	128
Number of Days Δ dv >= 1.0)		10	60
Maximum Δ dv			2.42	6.57

Table E.8.7 Fitzpatrick Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

*			Sce	nario
Julian Day	Month	Day	1	2
7	1	7		1.54
23	1	23	-	0.69
24	1	24	-	1.12
40	2	9	-	0.71
41	2	10	-	0.60
44	2	13	-	0.68
61	3	2	0.66	2.54
62	3	3		1.68
63	3	4	-	0.68
68	3	9	-	0.76
87	3	28	-	0.76
116	4	26	-	0.92
118	4	28	-	0.62
218	8	6	-	0.57
263	9	20	-	0.93
269	9	26	-	0.79
325	11	21	-	1.35
350	12	16	- / /	0.58
353	12	19	-	1.27
354	12	20	0.86	2.91
355	12	21	-	2.26
356	12	22	- 10	1.73
357	12	23	0.76	3.06
362	12	28	0.67	2.09
363	12	29	- 87	0.68
Number of Days Δ dv >= 0.5			4	25
Number of Days Δ dv >= 1.0			0	11
Maximum Δ dv			0.86	3.06

Table E.8.8 Fitzpatrick Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scei	nario
Julian Day	Month	Day	1	2
7	1	7	-	1.77
23	1	23	-	0.79
24	1	24	-	1.29
40	2	9	-	0.82
41	2	10	-	0.70
44	2	13	-	0.78
61	3	2	0.76	2.91
62	3	3	0.57	1.93
63	3	4	-	0.79
68	3	9	-	0.89
69	3	10	-	0.51
87	3	28	-	0.89
116	4	26	-	0.84
118	4	28	-	0.56
263	9	20	-	0.77
269	9	26	-	0.65
280	10	7	-	0.54
285	10	12	-	0.53
325	11	21	-	1.50
350	12	16	-	0.64
353	12	19	-	1.41
354	12	20	0.95	3.21
355	12	21	-	2.50
356	12	22	-	1.92
357	12	23	0.85	3.37
362	12	28	0.75	2.31
363	12	29	-	0.76
Number of Days Δ dv >= 0	0.5		5	27
Number of Days Δ dv >= 1			0	11
Maximum Δ			0.95	3.37

Table E.8.9 Grand Teton National Park - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scer	nario
Julian Day	Month	Day	1	2
5	1	5	-	1.97
6	1	6	-	0.82
24	1	24	-	0.77
25	1	25	0.66	2.60
26	1	26	-	1.25
27	1	27	-	1.46
39	2	8	-	0.63
40	2	9	-	0.77
44	2	13	-	1.24
107	4	17	-	0.89
122	5	2		0.54
125	5	5	-	0.72
197	7	16	-	0.51
235	8	23	-	0.75
247	9	4	-	0.64
248	9	5	-	0.54
261	9	18	-	0.79
270	9	27	-	0.66
351	12	17	-	0.63
353	12	19	-	1.12
354	12	20	-	0.62
355	12	21	-	1.22
356	12	22	-	0.96
357	12	23	-	1.20
Number of Days Δ dv >= 0.5			1	24
Number of Days $\Delta dv >= 1.0$			0	8
Maximum Δ dv			0.66	2.60

Table E.8.10 Grand Teton National Park - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scer	nario
Julian Day	Month	Day	1	2
5	1	5	-	1.99
6	1	6	-	0.83
24	1	24	-	0.78
25	1	25	0.67	2.63
26	1	26	-	1.27
27	1	27		1.48
39	2	8	-	0.65
40	2	9	-	0.78
44	2	13	-	1.26
107	4	17	-	0.80
125	5	5	-	0.64
235	8	23	-	0.58
261	9	18	-	0.60
270	9	27	-	0.50
351	12	17	-	0.64
353	12	19	-	1.15
354	12	20	-	0.64
355	12	21	-	1.25
356	12	22	-	0.98
357	12	23	-	1.23
Number of Days Δ dv >= 0.5			1	20
Number of Days Δ dv >= 1.0			0	8
Maximum Δ dv			0.67	2.63

Table E.8.11 Popo Agie Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

111	Davi	Month	Davi		cenario
Juliar		Month	Day	1	2
	7	1	7	-	1.72
	12	1	12	-	0.67
	14	1	14	-	0.56
	23	1	23	-	1.73
	24	1	24	-	0.97
	30	1	30	-	0.80
	41	2	10	-	0.61
	43	2	12	-	2.05
	44	2	13	-	0.64
	48	2	17	-	0.51
	53	2	22	-	1.05
	59	2	28	-	0.69
	60	3	đ	-	1.08
	61	3	2	0.67	2.66
	62	3	3	-	1.84
	65	3	6	-	0.50
	67	3	8	-	1.31
	82	3	23	-	0.50
	84	3	25	-	0.54
	86	3	27	0.52	1.91
	87	3	28	-	0.90
	92	4	2	-	0.75
	105	4	15	-	0.55
	116	4	26	-	1.49
	119	4	29	-	0.54
	132	5	12	-	0.63
	136	5	16	-	0.55
	263	9	20	-	0.93
	265	9	22	-	0.74
	274	10	1		0.92
	280	10	7		0.74
	281	10	8	-	1.18
	298	10	25		0.72
	304	10	31	_	0.54
	305	11	1		0.53
	306	11	2		1.30
	309	11	5		0.57
	320	11	16		0.68
	323	11	19	-	0.69
	325	11	21		1.18
	326	11	22		1.63
	338	12	4		0.60
	342	12	8	-	1.29
	350	12	16		0.63
	354	12	20	0.86	2.61
	355	12	21	0.54	
	356	12	22	0.54	2.35
	357	12			1.31
			23	0.95	3.04
	362	12	28	0.00	0.99
	363	12	29	0.92	2.56
umber of Days Δ d				6	50
umber of Days ∆ d				0	20
Maxim	um Δ dv			0.95	3.04

Table E.8.12 Popo Agie Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scer	
Julian Day	Month	Day	11	2
7	1	7		1.97
12	1	12	-	0.78
14	1	14	-	0.65
23	1	23	0.51	1.98
24	1	24	-	1.12
30	1	30	-	0.92
41	2	10	-	0.71
43	2	12	-	2.36
44	2	13	-	0.74
48	2	17	-	0.59
53	2	22	-	1.21
59	2	28	-	0.80
60	3	1	-	1.25
61	3	2	0.78	3.04
62	3	3	0.50	2.12
65	3	6	-	0.58
67	3	8	_	1.51
82	3	23	-	0.58
84	3	25	_	0.63
86	3	27	0.61	2.19
87	3	28	-	1.05
92	4	2		0.69
105	4	15		0.50
116	4	26		1.36
132	5	12	-	0.57
136	5	16	-	
	9		-	0.50
263		20	-	0.76
265	9	22	-	0.61
274	10	1	-	0.75
280	10	7		0.83
281	10	8	0.54	1.33
298	10	25	-	0.81
304	10	31	-	0.61
305	11	1	-	0.60
306	11	2	-	1.44
309	11	5	-	0.64
320	11	16	-	0.76
323	11	19	-	0.77
325	11	21	-	1.31
326	11	22	-	1.81
338	12	4	-	0.67
342	12	8	0.56	1.44
350	12	16	-	0.71
354	12	20	0.96	2.88
355	12	21	0.60	2.60
356	12	22	-	1.46
357	12	23	1.06	3.35
359	12	25	-	0.51
360	12	26	-	0.55
362	12	28		1.10
363	12	29	1.03	2.82
303		20	1.00	
Number of Days Δ dv >= 0.5	5		10	51
Number of Days $\Delta dv >= 0.3$			2	23
willing of Days a uv >= 1.0	,		1.06	3.35

Table E.8.13 Teton Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scei	nario
Julian Day	Month	Day	1	2
25	1	25		1.18
26	1	26	-	1.19
27	1	27	-	1.31
40	2	9	-	0.68
44	2	13	-	0.71
247	9	4	-	0.55
252	9	9	-	0.51
261	9	18	- /	0.53
351	12	17	-	0.52
353	12	19	-	0.74
354	12	20	-	0.67
355	12	21	-	0.76
356	12	22	-	0.56
357	12	23	-	0.93
362	12	28	-	1.20
Number of Days Δ dv >= 0.5			0	15
Number of Days Δ dv >= 1.0			0	4
Maximum Δ dv			0.00	1.31

Table E.8.14 Teton Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scei	nario
Julian Day	Month Da	Day	1	2
25	1	25		1.19
26	1	26	-	1.20
27	1	27	-	1.33
40	2	9	-	0.69
44	2	13	-	0.72
351	12	17	-	0.53
353	12	19	-	0.76
354	12	20	-	0.69
355	12	21	-	0.79
356	12	22	-	0.57
357	12	23	-	0.96
362	12	28		1.23
Number of Days Δ dv >= 0.5			0	12
Number of Days Δ dv >= 1.0			0	4
Maximum Δ dv			0.00	1.33

Table E.8.15 Washakie Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

Julian Day			Scei	nario
	Month	Day	1	2
26	1	26	-	0.73
44	2	13	-	0.50
45	2	14	-	0.78
62	3	3	-	1.66
252	9	9	-	0.69
354	12	20	-	0.81
355	12	21		0.68
357	12	23	-	0.87
362	12	28	-	1.56
Number of Days Δ dv >= 0.5			0	9
Number of Days $\Delta dv >= 1.0$			0	2
Maximum Δ dv			0.00	1.66

Table E.8.16 Washakie Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

			Scer	nario
Julian Day	Month	Day	1	2
26	1	26	-	0.74
44	2	13	-	0.52
45	2	14		0.79
62	3	3	-	1.70
252	9	9	-	0.53
354	12	20	-0	0.84
355	12	21	- 2	0.70
356	12	22	-	0.51
357	12	23	-	0.90
362	12	28	-	1.61
Number of Days Δ dv >= 0.5			0	10
Number of Days Δ dv >= 1.0			0	2
Maximum Δ dv			0.00	1.70

Table E.8.17 Wind River Roadless Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

					nario
Julian (Month	Day	1	2
	7	1	7	-	1.75
	16	1	16	-	0.53
	23	1	23	-	0.95
	24	1	24	-	0.93
	41	2	10	-	0.57
	43	2	12		0.63
	44	2	13	-	0.57
	53	2	22	-	0.51
	61	3	2	-	2.61
	62	3	3	-	1.32
	86	3	27	-	0.58
	87	3	28	-	0.89
	105	4	15	-	0.60
	116	4	26	-	1.43
	118	4	28	-	0.55
	252	9	9	-	0.56
	263	9	20	-	1.69
	274	10	1	-	0.86
	280	10	7	-	0.64
	281	10	8	-	0.67
	306	11	2	-	0.65
	325	11	21	-	1.27
	338	12	4	-	0.61
	342	12	8	-	0.60
	350	12	16	-	0.57
	353	12	19	-	0.73
	354	12	20	0.87	2.69
	355	12	21	-	2.27
	356	12	22		1.46
	357	12	23	0.91	3.08
	362	12	28		1.15
	363	12	29	-	1.13
lumber of Days ∆ dv	>= 0.5	5		2	32
Number of Days Δ dv				0	12
Maximu				0.91	3.08

Table E.8.18 Wind River Roadless Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

0

			Scer	
Julian Day	Month	Day	1	2
3	1	3	-	0.56
7	1	7		2.00
16	1	16	-	0.61
23	1	23	-	1.09
24	1	24	-	1.07
41	2	10	-	0.67
43	2	12	-	0.73
44	2	13	-	0.66
53	2	22	-	0.59
61	3	2	0.54	2.99
62	3	3	-	1.52
86	3	27	-	0.67
87	3	28	-	1.03
105	4	15	- "	0.54
116	4	26	-	1.30
263	9	20	- "	1.40
274	10	1	-	0.71
280	10	7	-	0.72
281	10	8	-	0.76
306	11	2	-	0.73
325	11	21	-	1.41
338	12	4	-	0.68
342	12	8	-	0.67
350	12	16		0.64
353	12	19	-	0.81
354	12	20	0.97	2.97
355	12	21	-	2.51
356	12	22	-	1.62
357	12	23	1.01	3.39
362	12	28	-	1.27
363	12	29	- 37	1.25
Number of Days Δ dv >= 0.5			3	31
Number of Days Δ dv >= 1.0			1	15
Maximum ∆ dv			1.01	3.39

Table E.8.19 Yellowstone National Park - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

Julian Day			Scenario	
	Month	Day	1	2
5	1	5	-	1.04
25	1	25	-	1.21
26	1	26	-	0.83
27	1	27	-	1.16
261	9	18	-	0.51
353	12	19	-	0.51
Number of Days ∆ dv >= 0.5			Ö	6
Number of Days Δ dv >= 1.0			0	3
Maximum ∆ dv			0.00	1.21

Table E.8.20 Yellowstone National Park - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=6

Julian Day			Scei	nario
	Month	Day	1	2
5	1	5	-	1.05
25	1	25	-	1.22
26	1	26	-	0.85
27	1	27	-	1.18
353	12	19	-	0.53
Number of Days Δ dv >= 0.5			0	5
Number of Days Δ dv >= 1.0			0	3
Maximum Δ dy 0.00			1.22	

Table E.8.21 Bridger Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

 Julian Day	Day Month Day			Scenario		
 Julian Day	Month 1	Day 7	1	2		
			1.36	5.87		
8	1	8	-	0.56		
9	1	9	1.20	2.67		
10	1	10	1.48	2.78		
11	1	11	1.49	3.57		
12	1	12	1.29	3.59		
13	1	13	1.25	2.84		
14	1	14	1.62	3.84		
15	1	15	-	1.68		
16	1	16	1.04	3.48		
17	1	17	1.52	4.47		
21	1	21	-	0.72		
23	1	23		1.26		
24	1	24	0.79	3.74		
26	1	26	0.84	2.44		
27	1	27	-	1.43		
28	1	28		1.67		
30	1	30	0.54	2.57		
40	2	9	0.84			
				5.20		
41	2	10	0.53	1.96		
42	2	11		1.82		
43	2	12	0.74	3.12		
44	2	13	-	2.12		
45	2	14	0.51	2.68		
46	2	15	-	2.01		
48	2	17	-	0.88		
53	2	22	-	1.06		
58	2	27	-	0.87		
59	2	28	1.02	5.11		
60	3	1	-	2.33		
61	3	2	1.25	3.93		
62	3	3	0.78	3.01		
63	3	4	1.53	5.13		
64	3	5	_	0.76		
65	3	6	100	1.45		
67	3	8		2.47		
68	3	9				
			-	1.53		
69 70	3	10	2 -	1.47		
		11	0.74	1.10		
71	3	12	0.71	2.12		
72	3	13	0.74	2.35		
73	3	14	-	0.92		
74	3	15	-	1.12		
75	3	16	-	0.63		
76	3	17	-	0.58		
77	3	18	-	0.87		
78	3	19	-	0.53		
81	3	22	-	0.98		
82	3	23	1.26	2.19		
84	3	25	0.94	2.38		
86	3	27	0.67	2.48		
87	3	28	-	1.43		
90	3	31	(1)			
92	4	2	11/2	1.11 0.57		

	D			Scenario		
Julian Day	Month	Day	1	2		
98	4	8	-	0.62		
99	4	9	0.99	3.20		
103	4	13	-	0.55		
105	4	15	-	1.15		
107	4	17	-	0.67		
110	4	20	-	1.25		
111	4	21	-	2.09		
115	4	25	- "	1.05		
116	4	26	0.70	4.22		
118	4	28	-	0.91		
119	4	29		2.72		
120	4	30	0.77	2.55		
121	5	1	-	0.87		
123	5	3	_	0.76		
	5	5	-	0.69		
125			-			
131	5	11	-	0.56		
132	5	12	1.49	3.35		
133	5	13		1.34		
134	5	14	0.92	2.43		
136	5	16	-	0.73		
141	5	21	-	0.71		
153	6	2	-	0.59		
157	6	6	-	1.21		
158	6	7	-	0.93		
163	6	12	-	1.60		
170	6	19	0.80	2.14		
180	6	29	-	0.98		
184	7	3	-	0.82		
192	7	11	-	0.65		
202	7	21	-	0.55		
203	7	22	_	0.56		
205	7	24	-	0.65		
218	8	6	_	0.53		
224	8	12		1.11		
236	8	24		1.75		
237	8	25		1.91		
				1.61		
249	9	6				
252	9	9	0.85	1.96		
253	9	10	-	1.76		
254	9	11	-	0.88		
262	9	19	-	0.77		
263	9	20	0.63	3.89		
264	9	21	-	2.73		
265	9	22	-	4.58		
269	9	26	-	1.18		
270	9	27		0.74		
271	9	28	0.85	2.67		
274	10	1	0.55	3.00		
275	10	2	-	0.98		
280	10	7	-	1.05		
281	10	8	-	0.99		
282	10	9	-	0.77		
285	10	12		0.70		
297	10	24		0.99		
298	10	25		2.95		
304	10	31		2.05		
304						
305	11	1	0.68	2.48		

				nario
Julian Day	Month	Day	1	2
310	11	6		0.81
311	11	7		0.62
312	11	8	3 -	0.77
313	11	9	-	1.14
314	11	10) -	1.07
317	11	13	3 -	1.09
320	11	16	-	0.90
322	11	18	3 -	1.05
323	11	19	-	0.87
325	11	21	-	1.16
326	11	22	2 -	1.33
329	11	25	· -	0.85
331	11	27	-	0.62
337	12	3	3 -	0.65
338	12	4	-	1.04
339	12	5	· -	0.76
341	12	7	-	0.52
342	12	8	0.87	2.23
344	12	10	-	0.58
345	12	11	-	3.81
346	12	12	1.08	2.20
347	12	13	-	1.76
348	12	14	-	1.12
350	12	16	0.74	3.36
353	12	19	2.23	7.26
354	12	20	5.21	11.29
355	12	21	2.16	7.95
356	12	22	1.46	6.84
357	12	23	5.92	13.51
359	12	25		0.59
360	12	26		0.51
361	12	27		1.19
362	12	28		5.65
363	12	29		3.08
				2.00
umber of Days Δ dv >= 0.5			46	147
umber of Days Δ dv >= 1.0			22	94
Maximum Δ dv			5.92	13.51

Table E.8.22 Bridger Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

 L.C. D.	Month Day			nario
Julian Day	Month	Day	1	2
7	1	7	1.55	6.51
8	1	8	11.5	0.60
9	1	9	1.26	2.80
10	1	10	1.59	2.99
11	1	11	1.54	3.68
12	1	12	1.35	3.66
13	1	13	1.41	3.16
14	1	14	1.75	4.10
15	1	15	-	1.65
16	1	16	1.11	3.67
17	1	17	1.75	5.06
21	1	21	-	0.80
22	1	22	-	0.54
23	1	23	_	1.49
24	1	24	0.91	4.20
26	1	26	0.82	2.41
27	1	27		1.43
28	1	28	-	1.65
30	1	30	0.58	2.75
40	2	9	0.86	5.29
41	2	10	0.60	2.00
42	2	11	-	2.00
43	2	12	0.85	3.53
43	2	13	-	2.41
	2		0.57	3.00
45		14		
46	2	15	-	2.05
48	2	17	-	1.00
53	2	22	-	1.22
58	2	27	-	1.00
59	2	28	1.12	5.51
60	3	1	0.55	2.63
61	3	2	1.44	4.45
62	3	3	0.88	3.35
63	3	4	1.48	5.00
64	3	5	-	0.84
65	3	6	-	1.47
67	3	8	0.52	2.88
68	3	9	-	1.81
69	3	10	0.59	1.74
70	3	11	-	1.15
71	3	12	0.71	2.11
72	3	13	0.81	2.53
73	3	14	-	1.05
74	3	15	-	1.20
75	3	16	-	0.67
76	3	17	-	0.62
77	3	18	-	0.97
78	3	19	-	0.62
81	3	22	_	1.09
82	3	23	1.27	2.19
84	3	25	0.97	2.44
	3	25	0.97	2.82
86				1.62
87	3	28	-	1.62

	Scenario					
Julian Day	Month	Day	1	2		
92	4	2		0.55		
97	4	7	-	0.63		
98	4	8	-	0.57		
99	4	9	0.79	2.60		
105	4	15	-	0.98		
110	4	20	-	1.06		
111	4	21	-	1.62		
115	4	25	_	0.75		
116	4	26	0.59	3.69		
118	4	28		0.82		
119	4	29		1.85		
120	4	30	0.51	1.75		
121	5					
123	5	1 3	51 11	0.73		
				0.59		
125	5	5	-	0.52		
132	5	12	0.94	2.17		
133	5	13	. 1.	0.90		
134	5	14	0.56	1.59		
136	5	16	-	0.62		
141	5	21	-	0.50		
157	6	6	-	0.98		
158	6	7	-	0.68		
163	6	12	-	1.26		
170	6	19	0.55	1.48		
180	6	29	-	0.57		
184	7	3	-	0.68		
205	7	24	-	0.54		
224	8	12	_	0.92		
236	8	24	_	1.34		
237	8	25		1.26		
249	9	6		1.00		
252	9	9	0.58	1.35		
253	9	10	-			
254	9		-	1.12		
	9	11	-	0.72		
262		19	-	0.56		
263	9	20	-	2.22		
264	9	21	-	1.51		
265	9	22	-	3.12		
269	9	26	-	1.00		
270	9	27	-	0.60		
271	9	28	0.57	1.84		
274	10	1	-	1.82		
275	10	2	-	1.07		
280	10	7	-	1.17		
281	10	8	-	1.06		
282	10	9		0.73		
285	10	12		0.81		
295	10	22		0.56		
297	10	24	8.1	1.04		
298	10	25		2.87		
304	10	31	-			
305			0.75	1.99		
	11	. 1	0.75	2.32		
306	- 11	2	-	3.15		
310	11	6	-	0.93		
311	11	7	-	0.68		
312	11	8	-	0.79		
313	11	9		1.20		

				nario
Julian Day	Month	Day	1	2
314	11	10	-	1.01
316	11	12	-	0.51
317	11	13	-	0.98
320	11	16	-	1.00
322	11	18	-	1.15
323	11	19	-	0.99
325	11	21	-	1.34
326	11	22	-	1.52
329	11	25	-	0.92
331	11	27	-	0.67
337	12	3	-	0.67
338	12	4	-	1.21
339	12	5	-	0.74
341	12	7	-	0.58
342	12	8	0.89	2.28
344	12	10	-	0.67
345	12	11	-	3.80
346	12	12	1.13	2.30
347	12	13	-	1.64
348	12	14	-	1.11
350	12	16	0.79	3.55
351	12	17	-	0.50
353	12	19	2.35	7.59
354	12	20	5.19	11.25
355	12	21	2.17	8.00
356	12	22	1.52	7.09
357	12	23	5.95	13.56
359	12	25	-	0.67
360	12	26	-	0.58
361	12	27	-	1.29
362	12	28	2.20	6.03
363	12	29	1.27	3.41
umber of Days Δ dv >= 0.5			47	143
lumber of Days Δ dv >= 1.0			21	96
Maximum Δ dv			5.95	13.56

Table E.8.23 Fitzpatrick Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

Iulian Day	Iulian Day Month Day		Scenario 1	
Julian Day 7	Month 1	Day 7	-	1.91
11	1	11	-	0.94
12	1	12		1.37
			-	
13	1	13	-	0.58
14	1	14	-	0.69
16	1	16	-	0.54
24	1	24	-	1.27
26	1	26	-	0.52
40	2	9	-	2.17
41	2	10	-	1.65
44	2	13	-	0.81
45	2	14	-	0.65
61	3	2	0.75	2.73
62	3	3	0.94	3.08
63	3	4	0.61	2.66
69	3	10	-	0.50
70	3	11	-	0.70
71	3	12	-	0.88
72	3	13	-	1.16
77	3	18	-	0.71
81	3	22		0.71
87	3	28	-	0.73
99	4	9	10	1.08
116	4	26	-	0.96
118	4	28	-	0.62
120	4	30	-	1.28
132	5	12	-	1.07
133	5	13	-	0.92
153	6	2	-	0.58
163	6	12	-	1.50
192	7	11	-	0.53
194	7	13	112	0.73
195	7	14	_	0.71
218	8	6		0.78
224	8	12	- 6	1.02
237	8	25	- 31	0.99
239	8	27		1.80
251	9	8	70	
	9			0.67
252		9	T Dr	2.44
253	9	10	-	1.18
254	9	11		1.05
263	9	20	0.52	4.27
264	9	21	-	1.50
269	9	26	-	0.69
325	11	21	-	0.63
350	12	16	-	0.72
353	12	19	0.71	2.15
354	12	20	2.22	6.68
355	12	21	0.87	4.86
356	12	22	-	2.92
357	12	23	2.40	8.12
362	12	28	1.08	3.28
363	12	29	-	0.60
303	12	2.5		0.00
lumber of Days Δ dv >= 0.5			9	53
lumber of Days Δ dv >= 0.5			3	26

Table E.8.24 Fitzpatrick Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

Lillian D	Manualla	Davi		nario
Julian Day	Month	Day	1	2
7	1	7	-	2.17
11	1	11	-	0.89
12	1	12	-	1.37
13	1	13	-	0.66
14	1	14	-	0.75
16	1	16	-	0.57
24	1	24	-	1.44
26	1	26	-	0.51
40	2	9	-	2.21
41	2	10	-	1.72
44	2	13	-	0.93
45	2	14	-	0.67
61	3	2	0.87	3.11
62	3	3	1.06	3.43
63	3	4	0.59	2.59
68	3	9		0.52
69	3	10	-	0.56
70	3	11	-	0.74
71	3	12	-	0.87
72	3	13	-	1.23
77	3	18	-	0.79
81	3	22	-	0.74
84	3	25	-	0.54
87	3	28	-	0.85
99	4	9	-	0.86
116	4	26	-	0.86
118	4	28	-	0.54
120	4	30	-	0.80
132	5	12	-	0.74
133	5	13	-	0.72
163	16	12	-	1.18
194	7	13	-	0.54
195	7	14	-	0.55
218	8	6		0.64
224	8	12	-	0.71
237	8	25	-	0.61
239	8	27		1.45
252		9	-	1.62
253		10		0.74
254	9	11	_	0.74
263	9	20		2.56
264		21		0.87
269		26		0.58
325		21	-	0.73
350		16	-	0.77
353		19	0.76	2.27
353		20	2.21	6.65
354 355		21	0.88	4.90
355		22	-	3.05
		22	2.41	8.15
357				3.53
362		28	1.17	
363	12	29	-	0.65
Number of Days Δ dv >=	0.5		8	52
Number of Days ∆ dv >=			4	19
Maximum Δ			2.41	8.15

Table E.8.25 Grand Teton National Park - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

					nario
Julia	an Day	Month	Day	1	2
	5	1	5	-	1.55
	6	1	6	-	0.81
	16	1	16	-	0.65
	20	1	20	-	1.75
	24	1	24		0.72
	25	1	25	0.68	2.74
	26	1	26	0.55	1.96
	27	1	27	1.59	4.45
	28	1	28	0.50	2.00
	39	2	8	-	0.69
	40	2	9	-	2.14
	44	2	13	-	1.29
	62	3	3	-	0.51
	74	3	15	-	0.56
	83	3	24	-	0.65
	107	4	17	-	0.95
	108	4	18	-	0.69
	111	4	21	-	0.72
	118	4	28	-	0.61
	122	5	2	-	1.98
	125	5	5	1.05	3.04
	126	5	6		1.05
	127	5	7	0.65	2.16
	128	5	8	-	0.73
	131	5	11	-	1.45
	147	5	27	-	1.72
	154	6	3	_	1.58
	163	6	12	-	1.97
	173	6	22	_	0.78
	180	6	29	_	1.12
	194	7	13	-	0.70
	197	. 7	16	_	2.09
	199	7	18	_	0.67
	202	7	21	_	0.75
	204	7	23	_ 17.4	0.59
	235	8	23	0.67	4.45
	236	8	24		1.28
	238	8	26		1.07
	239	8	27	_	0.51
	247	9	4	200	2.42
	248	9	5		1.68
	252	9	9	. 11	1.89
	261	9	18		0.85
	270	9	27	1.1	0.68
	272	9	29	-0.82	1.24
	351	12	17	-	1.24
	353	12	19	-	
				-	1.74
	354 355	12	20	0.50	1.68
		12	21	0.56	3.26
	356	12	22	-	1.73
	357	12	23	-	3.44
	362	12	28	-	0.72
Number of Days ∆				8	52
Number of Days ∆	dv >= 1.6 mum Δ dv			2	31
				1.59	4.45

Table E.8.26 Grand Teton National Park - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

			Scenario				
	Julian Day	Month		Day		1	2
	5		1		5	-	1.60
	6		1		6	-	0.82
	16		1		16	-	0.54
	20		1		20	-	1.44
	24		1		24	-	0.73
	25		1		25	0.68	2.77
	26		1		26	0.54	1.93
	27		1		27	1.32	3.76
	28		1		28	- 1	1.66
	39		2		8	-	0.59
	40		2		9	-	1.89
	44		2		13	-	1.32
	62		3		3	-	0.50
	83		3		24	-	0.63
	107		4		17	-	0.86
	111		4		21	-	0.58
	118		4		28	- "	0.54
	122		5		2	-	1.52
	125		5		5	0.78	2.31
	126		5		6	-	0.83
	127		5		7	-	1.49
	128		5 .		8	-	0.55
	131		5		11	-	1.09
	147		5		27	-	1.26
	154		6		3	-	1.14
	163		6		12	_	1.48
	173		16		22	-	0.57
	180		6		29	-	0.93
	197		7		16	-	1.47
	199		7		18	-	0.50
	235		8		23	-	2.91
	236		8		24		0.82
	238		8		26	-	0.63
	247		9		4		1.68
	248		9		5		1.16
	252		9		9		1.14
	261		9		18		0.66
	270		9		27		0.53
	272		9		29		0.93
	351		12		17		1.17
	353		12		19		1.70
	354		12		20		1.53
	355		12		21	0.52	3.03
			12		22	-	1.66
	356				23		3.20
	357 362		12 12		28	-	0.72
Number of Day	vs Λ dv >= 0	5				5	46
		v					
Number of Day		0				1	26

Table E.8.27 Popo Agie Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

 Inlian Day	David Manth David			Scenario		
 Julian Day	Month	Day	-	1	2	
7	1		7	-	2.34	
8	1		8	-	0.51	
9	1		9		0.59	
10	1		10	0.56	1.02	
12	1		12	0.91	2.80	
14	1		14	-	1.73	
15	1		15	157	0.73	
16	1		16	17	0.71	
17	1		17	/6	0.70	
23	1		23	0.50	1.98	
24	1		24	-	1.10	
28	1		28	-	1.11	
30	1		30	-	1.33	
41	2		10	-	1.75	
42	2		11	-	0.54	
43	2		12	-	2.17	
44	2		13	-	0.64	
46	2		15	-	1.66	
48	2		17	-	0.74	
53	2		22	-	0.91	
59	2		28	-	0.89	
60	3		1		1.33	
61	3		2	0.51	2.09	
62	3		3	-	1.44	
67	3		8		0.80	
72	3		13	- 17	1.42	
73	3		14		0.55	
74	3		15	- 0	0.80	
76	3		17	- 1	0.59	
82	3		23	0.97	1.92	
84	3		25			
86	3		27	0.64 0.51	1.73	
87	3				1.88	
	4		28		1.19	
97			7	Ī	0.51	
98	4		8	-	0.65	
99	4		9	0.55	1.83	
105	4		15	-	1.25	
107	4		17	-	0.98	
111	4		21	-	1.66	
115	4		25	-	0.57	
116	4		26	0.52	4.98	
119	4		29	-	1.79	
120	4		30	0.75	2.21	
132	5		12	1.46	3.15	
133	5		13	-	0.94	
134	5		14	0.59	1.72	
136	5		16	-	0.51	
141	5		21	-	0.52	
143	5		23	-	0.73	
157	6		6	-	0.69	
158	6		7	-	0.79	
170	6		19	0.76	1.83	
180	6		29	-	1.02	
184	7		3		0.64	

				Scenario		
J	ulian Day	Month	Day	1	2	
	237	8	25	-	1.83	
	249	9	6	-	1.48	
	252	9	9	0.80	1.90	
	253	9	10	-	2.03	
	254	9	11	-	0.52	
	262	9	19	-	0.85	
	263	9	20	0.83	4.24	
	264	9	21	-	2.17	
	265	9	22	-	4.07	
	271	9	28	0.57	1.87	
	274	10	1	-	2.34	
	275	10	2		0.68	
	280	10	7	~	0.93	
	281	10	8	-	0.81	
	282	10	9	-	0.57	
	297	10	24	-	0.62	
	298	10	25	-	2.21	
	304	10	31	-	1.38	
	305	11	1	0.65	2.44	
	306	11	2	-	3.70	
	312	11	8	-	0.81	
	313	11	9	-	0.84	
	314	11	10	-	1.06	
	317	11	13	-	0.96	
	320	11	16	-	0.66	
	322	11	18	-	0.54	
	323	11	19	-	0.56	
	325	11	21	-	0.66	
	326	11	22	-	1.06	
	329	11	25	-	0.56	
	337	12	3	-	0.62	
	339	12	5	-	0.69	
	342	12	8	0.54	1.40	
	354	12	20	0.99	2.92	
	355	12	21	-	2.10	
	356	12	22	-	1.31	
	357	12	23	0.75	2.43	
	362	12	28	-	0.73	
	363	12	29	0.75	2.03	
Number of Day	s Δ dv >= 0.	5		21	93	
Number of Day				1	50	
	aximum Δ d			1.46	4.98	

Table E.8.28 Popo Agie Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

					nario
Julian Day	Month	Day		1	2
7	1		7	0.50	2.61
8	1		8	-	0.55
9	1		9	-	0.56
10	1		10	0.53	0.97
12	1		12	0.88	2.73
14	1		14	-	1.67
15	1		15	-	0.68
16	1		16	-	0.80
17	1		17	-	0.76
23	1		23	0.57	2.23
24	1		24	-	1.23
28	1		28	-	1.09
30	1		30		1.43
41	2		10		1.77
42	2		11		0.60
43	2			Ī	
43	2		12	Ī	2.47
			13	37	0.75
46	2		15	177	1.70
48	2		17	Til	0.84
53	2		22	7	1.05
59	2		28	-	1.02
60	3		1	-	1.51
61	3		2	0.59	2.40
62	3		3	-	1.67
67	3		8	-	0.95
72	3		13	-	1.38
73	3		14	-	0.58
74	3		15	-	0.83
76	3		17	-	0.63
82	3		23	0.97	1.92
84	3		25	0.66	1.77
86	3		27	0.59	2.15
87	. 3		28	_	1.35
98	4		8	-	0.57
99	4		9	-	1.17
105	4		15	_	1.06
107	4		17	_	0.66
111	4		21		1.27
116	4		26	_	3.66
119	4		29		1.20
120	4		30	0.50	
132	5		12	0.50	1.51
132	5				2.04
			13	-	0.63
134	5		14	-	1.06
157	6		6	-	0.56
158	6		7	-	0.57
170	6		19	0.52	1.26
180	6		29	-	0.59
184	7		3	-	0.54
237	8		25	-	1.09
249	9		6	-	0.92
252	9		9	0.54	1.30
253	9		10	-	1.29
262	9		19		0.65

			Scer	
Julian Day	Month	Day	1	2
263	9	20	-	2.43
264	9	21	-	1.30
265	9	22	- 16	2.75
271	9	28	-	1.27
274	10	1	-	1.40
275	10	2	-	0.74
280	10	7	-	1.03
281	10	8	-	0.87
282	10	9	-	0.54
297	10	24	-	0.65
298	10	25	-	2.14
304	10	31	-	1.40
305	11	1	0.60	2.28
306	11	2	-	3.66
311	11	7	-	0.54
312	11	8	-	0.83
313	11	9	-	0.88
314	11	10	-	0.99
317	11	13	-	0.86
320	11	16	-	0.74
322	11	18	-	0.59
323	11	19	-	0.63
325	11	21	-	0.76
326	11	22	-	1.21
329	11	25	-	0.61
337	12	3	-	0.64
339	12	5	-	0.67
342	12	8	0.56	1.44
354	12	20	1.08	3.18
355	12	21	0.55	2.33
356	12	22	-	1.46
357	12	23	0.85	2.73
359	12	25	-	0.51
362	12	28	-	0.83
363	12	29	0.85	2.26
Number of Days Δ dv >= 0.9	5		18	89
Number of Days Δ dv >= 1.0)		1	49
Maximum Δ dv	/		1.08	3.66

Table E.8.29 Teton Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

				nario
Julian Day	Month	Day	1	2
16	1	16	-	0.92
25	1	25	-	1.19
26	1	26	0.62	1.90
27	1	27	1.17	3.93
28	1	28	-	1.82
40	2	9	-	1.92
44	2	13	-	0.74
74	3	15	-	0.53
75	3	16	-	1.30
83	3	24	-	0.70
111	4	21	-	1.30
120	4	30	-	0.95
122	5	2	-	1.51
125	5	5	0.68	1.70
127	5	7	0.58	1.89
128	5	8	-	0.93
131	5	11	-	0.51
163	6	12	-	2.13
173	6	22	-	0.70
180	6	29	-	1.04
194	7	13	_	0.60
197	7	16	-	1.13
202	7	21	-	0.54
205	7	24	_	0.67
235	8	23	-	1.56
236	8	24	-	1.29
238	8	26	_	1.13
239	8	27	-	0.95
247	9	4	- 01	2.32
248	9	5	- 111	1.22
252	9	9	. 61	2.53
261	9	18	_ 6	0.57
263	9	20	_	1.01
264	9	21	-	0.68
271	9	28	-	0.50
272	9	29		1.23
280	10	7		0.73
351	12	17		1.08
353	12	19		1.15
354	12	20	0.56	1.83
355	12	21	-	2.02
356	12	22	-	1.14
357	12	23	-	2.83
362	12	28	-	1.81
Number of Days Δ dv >= 0.5			5	44
Number of Days ∆ dv >= 1.0			1	28

Table E.8.30 Teton Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

			Scer	nario
Julian Day	Month	Day	1	2
16	1	16	-	0.77
25	1	25	-	1.20
26	1	26	0.52	1.87
27	1	27	0.97	3.32
28	1	28	-	1.51
40	2	9	-	1.69
44	2	13	-	0.76
75	3	16	-	1.03
83	3	24	-	0.67
111	4	21	-	1.05
120	4	30	-	0.61
122	5	2	-	1.16
125	5	5	-	1.27
127	5	7	-	1.30
128	5	8	-	0.69
163	6	12	-	1.60
173	6	22	-	0.51
180	6	29	-	0.87
197	7	16	-	0.78
235	8	23	-	0.97
236	8	24	-	0.82
238	8	26	-	0.67
239	8	27	-	0.60
247	9	4	-	1.61
248	9	5	-	0.83
252	9	9	-	1.63
263	9	20	-	0.56
272	9	29	-	0.92
280	10	7		0.69
351	12	17	-	1.02
353	12	19	-	1.12
354	12	20	0.51	1.68
355	12	21	-	1.88
356	12	22	-	1.08
357	12	23	-	2.62
362	12	28	-	1.81
Number of Days Δ dv >= 0.5	5		3	36
Number of Days Δ dv >= 1.0			0	20
Maximum Δ dv			0.97	3.32

Table E.8.31 Washakie Wilderness Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

				Scer	nario
	Julian Day	Month	Day	1	2
-	16	1	16	- 1	0.68
Number of D	26	1	26	-	1.56
Number of D	45	2	14	-	0.89
	62	3	3	0.81	3.08
	63	3	4	-	1.91
	111	4	21	-	0.60
	119	4	29	-	0.81
	120	4	30	-	1.29
	163	6	12	-	1.22
	180	6	29	-	0.61
	194	7	13	-	0.74
	237	8	25	- 10	0.66
	239	8	27	-	0.94
	252	9	9	-	3.79
	263	9	20	-	2.28
	264	9	21	-	1.12
	351	12	17	-	0.81
	353	12	19	-	0.81
	354	12	20	0.68	2.30
	355	12	21	-	1.82
	356	12	22	-	1.05
	357	12	23	-	2.77
	362	12	28	~	2.47
Number of Da	ays Δ dv >= 0.5			2	23
	ays Δ dv >= 1.0			0	13
	Maximum Δ dv			0.81	3.79

Table E.8.32 Washakie Wilderness Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

			Scer	nario
Julian Day	Month	Day	1	2
16	1	16		0.60
26	1	26	-	1.22
45	2	14	-	0.90
62	3	3	0.80	3.02
63	3	4	-	1.54
119	4	29	-	0.59
120	4	30	-	0.82
163	6	12	-	1.02
194	7	13	-	0.52
239	8	27	-	0.71
252	9	9		2.49
263	9	20	-	1.30
264	9	21	-	0.63
351	12	17	-	0.77
353	12	19	-	0.78
354	12	20	0.62	2.11
355	12	21	-	1.69
356	12	22	-	0.99
357	12	23	-	2.57
362	12	28	-	2.48
Number of Days Δ dv >= 0.5	5		2	20
Number of Days Δ dv >= 1.0)		0	10
Maximum Δ dv			0.80	3.02

Table E.8.33 Wind River Roadless Area - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

			Sce	nario
Julian Day	Month	Day	1	2
7	Ħ	7	-	2.29
16	. 1	16	-	0.93
17	1	17	-	0.69
41	2	10	-	1.49
43	2	12	-	0.60
61	3	2	-	2.04
62	3	3	-	1.30
86	3	27	-	0.57
87	3	28	-	1.03
105	4	15	-	0.54
111	4	21	-	0.61
116	4	26	-	2.35
119	4	29	-	0.51
120	4	30	-	0.89
143	5	23	-	0.86
144	5	24	-	0.52
146	5	26	-	0.60
180	6	29	-	0.88
252	9	9	-	1.21
253	9	10	-	2.03
263	9	20	1.16	6.39
264	9	21	-	2.06
265	9	22	-	1.98
274	10	1	-	2.30
306	11	2	-	0.71
325	11	21	-	0.60
353	12	19	-	0.77
354	12	20	1.01	3.04
355	12	21	-	2.03
356	12	22	-	1.48
357	12	23	0.74	2.48
362	12	28	-	0.84
363	12	29		1.07
Number of Days Δ dv >= 0.5			3	33
Number of Days Δ dv >= 1.0			2	17
Maximum Δ dv			1.16	6.39

Table E.8.34 Wind River Roadless Area - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

				Scenario
Julian Day	Month	Day	1	2
7	1	7		2.61
16	1	16	-	1.04
17	1	17	-	0.78
23	1	23	-	0.52
40	2	9	-	0.52
41	2	10	-	1.68
43	2	12	-	0.69
44	2	13	-	0.55
61	3	2	-	2.35
62	3	3	-	1.51
86	3	27	-	0.66
87	3	28	-	1.19
111	4	. 21	-	0.56
116	4	26	-	2.08
120	4	30	-	0.62
143	5	23	-	0.54
180	6	29	-	0.51
252	9	9	-	0.84
253	9	10	-	1.29
263	9	20	0.62	3.83
264	9	21	-	1.12
265	9	22	-	1.29
274	10	1	-	1.37
306	11	2	-	0.78
325	11	21	-	0.69
353	12	19	-	0.86
354	12	20	1.11	3.32
355	12	21	-	2.26
356	12	22	-	1.65
357	12	23	0.84	2.79
362	12	28	-	0.95
363	12	29	-	1.20
Number of Days Δ dv >= 0.5	5		3	32
Number of Days Δ dv >= 1.0			1	17
Maximum Δ dv			1.11	3.83

Table E.8.35 Yellowstone National Park - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

				nario
Julian Day	Month	Day	1	2
5	1	5	-	0.81
16	1	16	-	0.72
25	, 1	25	-	1.66
26	1	26	0.85	2.89
27	1	27	1.03	3.54
28	1	28	-	1.49
39	2	8	-	0.88
40	2	9	-	1.57
75	3	16	-	0.53
83	3	24	-	0.65
108	4	18	-	0.77
111	4	21	-	1.09
122	5	2		1.25
125	5	5	-	1.93
127	5	7	-	1.09
128	5	8	- 14	0.93
154	6	3	-	0.97
163	6	12	-	1.11
173	6	22	-	0.55
197	7	16	-	0.90
235	8	23	-	2.21
236	8	24	-	0.84
247	9	4	-	1.77
248	9	5	- 4	1.12
252	9	9		1.86
261	9	18	-	0.56
272	9	29	-	0.65
351	12	17	_	0.71
353	12	19		0.79
354	12	20		0.55
355	12	21	_	1.27
356	12	22		0.60
357	12	23	-	1.23
Number of Days Δ dv >= 0.	5		2	33
Number of Days $\Delta dv >= 1$.			1	16
Maximum Δ d			1.03	3.54

Table E.8.36 Yellowstone National Park - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Scenarios - MVISBK=2

				Scer	
J	Julian Day	Month	Day	1	2
	5	1	5	-	0.84
	16	1	16	-	0.60
	25	1	25	-	1.56
	26	1	26	0.66	2.29
	27	1	27	0.85	2.98
	28	1	28	-	1.23
,	39	2	8	-	0.75
	40	2	9	-	1.34
	83	3	24	-	0.63
	108	4	18	-	0.55
	111	4	21	-	0.88
	122	5	2	-	0.95
	125	5	5	-	1.44
	127	5	7	-	0.74
	128	5	8	-	0.70
	154	6	3	-	0.69
	163	6	12	-	0.82
	197	7	16	-	0.62
	235	8	23	-	1.39
	236	8	24	-	0.53
	247	9	4	-	1.22
	248	9	5	-	0.76
	252	9	9	-	1.12
	351	12	17	-	0.67
	353	12	19	-	0.77
	354	12	20		0.50
	355	12	21	-	1.18
	356	12	22	-	0.56
	357	12	23	-	1.13
Number of Day	s Δ dv >= 0.	5		2	29
Number of Day				0	11
	laximum ∆ d			0.85	2.98

Table E.9.1 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage Sources - MVISBK=6

	FLAG Back	FLAG Background Data	IMPROVE Ba	IMPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days >
Receptor Area	Impact	νþ∇	Impact	1.0 Adv
	(∆dv) ¹	(days)	(∆dv) ¹	(days)
Big Pinev	5.91	24	6 62	24
ia Sandy	3 33	2.2	99.5	24
Soulder	3.06	13	3.37	18
	1.56	4	1.79	. ∞
	1.96	σ	2.17	=
-	2.65	13	2.93	41
Farson	4.74	31	5.18	33
Labarge	5.11	10	5.73	1
Aerna	2.15	9	2.46	7
inedale	2.67	12	2.94	14

¹ Adv = change in deciview.

Table E.9.2 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage and Regional Sources - MVISBK=6

Nulliber of Days 7 1.0	daximum visibility
(days)	0)
85	
107	-
2	15
e	9
_	7
00	œ
1	7
7	m
3	33
2	11

¹ Adv = change in deciview.

Table E.9.3 Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage Sources - MVISBK=2

¹ Adv = change in deciview.

Table E.9.4 Maximum Modeled Cumulative Visibility Impacts at Wyoming Regional Community Locations from Early Jonah Infill Project Development Stage and Regional Sources - MVISBK=2

	FLAG Back	FLAG Background Data	IMPROVE Bac	MPROVE Background Data
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days >
Receptor Area	Impact	νþ∇	Impact	1.0 Adv
	(∆dv)¹	(days)	(∆dv) ¹	(days)
i		•	;	;
Big Piney	17.65	110	18.55	105
Big Sandy	15.89	91	15.94	86
Boulder	19.09	126	19.14	123
Bronx	13.04	73	13.08	65
Cora	15.34	74	15.39	71
Daniel	17.51	96	17.56	88
Farson	13.46	95	14.12	91
Labarge	14.23	67	15.06	53
Merna	10.88	46	10.93	41
Pinedale	17.91	115	17.96	113

¹ $\Delta dv = change in deciview.$

Table E.9.5 Big Piney - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

			Scenario		
Julian Day	Month	Day	1	2	
5	1	5	2.31	4.00	
6	1	6	3.06	13.31	
7	1	7	3.98	10.96	
20	1	20	-	1.16	
21	1	21	-	5.69	
22	1	22	-	3.43	
23	1	23	1.35	4.95	
24	1	24	2.83	8.17	
25	1	25	3.69	4.93	
27	1	27	1.65	4.30	
28	1	28	-	3.90	
30	1	30	-	1.42	
39	2	8	2.33	4.70	
40	2	9	1.21	3.62	
43	2	12	2.21	3.22	
44	2	13	1.24	2.21	
53	2				
		22	-	2.67	
57	2	26	-	1.18	
61	3	2	5.91	10.59	
62	3	3	1.66	2.69	
74	3	15	1.05	3.50	
75	3	16	1.41	2.58	
77	3	18	-	1.01	
87	3	28	-	1.46	
99	4	9	-	1.56	
106	4	16	-	1.64	
109	4	19	-	2.63	
111	4	21	-	1.46	
112	4	22		1.85	
113	4	23	-	2.04	
117	4	27	-	1.61	
118	4	28	1.09	3.45	
119	4	29		2.83	
122	5	2	_	1.53	
123	5	3	-	1.33	
124	5	4	-	1.53	
125	5	5	2.05	3.11	
128	5	8		1.55	
131	5	11	-	1.55	
132	5				
		12	-	1.75	
143	5	23	-	1.14	
150	5	30	-	1.11	
153	6	2	-	1.85	
154	6	3	-	1.04	
162	6	11	-	2.62	
163	6	12	-	3.07	
172	6	21	- 1	1.51	
180	6	29		1.12	
183	7	2	-	1.13	
196	7	15	-	1.58	
197	7	16	-	1.56	
198	7	17	-	1.10	
199	7	18	-	1.08	
201	7	20		1.33	
202	7	21		1.03	
213	8	1		1.15	
210	0	- 1		1.15	

					nario
	Julian Day	Month	Day	1	2
	216	8	4		1.23
	217	8	5	-	2.05
	218	8	6	-	1.38
	232	8	20	-	1.48
	235	8	23	-	1.53
	238	8	26	-	1.50
	243	8	31	-	1.02
	244	9	1	-	1.00
	253	9	10	-	2.13
	262	9	19	-	1.48
	263	9	20	-	2.67
	264	9	21	-	2.21
	265	9	22	-	1.62
	268	9	25	-	1.42
	280	10	7	-	3.35
	281	10	8	-	1.67
	325	11	21	-	2.67
	326	11	22	-	1.64
	350	12	16	-	1.57
	351	12	17	2.53	5.08
	352	12	18	3.01	6.31
	353	12	19	4.09	6.30
	354	12	20	2.22	8.85
	355	12	21	2.72	9.45
	356	12	22	4.00	10.50
	357	12	23	1.48	5.36
	358	12	24	-	1.30
	362	12	28	-	3.37
	363	12	29	-	3.15
ımber of	f Days Δ dv >= 1	.0		24	85
	Maximum Δ d			5.91	13.31

Table E.9.6 Big Piney - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month Day		1	nario 2
Julian Day 5	Month 1	Day 5	2.63	4.52
6	1	6	3.48	14.43
7	1	7		
			4.50	11.98
20	1	20		1.33
21	1	21	1.04	6.36
22	1	22	-	3.89
23	. 1	23	1.55	5.56
24	1	24	3.21	9.03
25	1	25	4.17	5.54
27	1	27	1.89	4.85
28	1	28	-	4.41
30	1	30	-	1.64
39	2	8	2.67	5.31
40	2	9	1.40	4.11
43	2	12	2.54	3.67
44	2	13	1.44	2.54
53	2	22	-	3.05
57	2	26		1.36
61	3	20		
			6.62	11.62
62	3	3	1.92	3.08
74	3	15	1.21	3.98
75	3	16	1.62	2.95
77	3	18	-	1.17
87	3	28	-	1.68
89	3	30	-	1.10
99	4	9	-	1.42
106	4	16	-	1.50
109	4	19		2.40
111	4	21	-	1.33
112	4	22		1.69
113	4	23	_	1.86
117	4	27		1.46
118	4	28		3.16
119	4	29		2.59
122	5	2		
				1.39
123	5	3	-	1.21
124	5	4	-	1.39
125	5	5	1.87	2.85
128	5	8	-	1.41
131	5	11	-	1.41
132	5	12	-	1.59
143	5	23	-	1.04
150	5	30	-	1.00
153	6	2	-	1.72
162	6	11	-	2.43
163	6	12		2.86
172	6	21		1.40
180	6	29		1.04
196	7	15		
			-	1.33
197	7	16	•	1.31
201	7	20	-	1.12
216	8	4	-	1.03
217	8	5	-	1.74
218	8	6	-	1.17
232	8	20	-	1.25

				Sce	nario
Julian D	ay	Month	Day	1	2
	238	8	26	-	1.26
	253	9	10	-	1.78
	262	9	19	-	1.23
	263	9	20	-	2.24
	264	9	21	-	1.84
	265	9	22	-	1.34
	268	9	25	-	1.17
	280	10	7	-	3.72
	281	10	8	-	1.87
	290	10	17	-	1.09
	325	11	21	-	2.94
	326	11	22	-	1.81
	350	12	16	-	1.75
	351	12	17	2.79	5.54
	352	12	18	3.32	6.86
	353	12	19	4.49	6.84
	354	12	20	2.45	9.53
	355	12	21	3.00	10.16
	356	12	22	4.39	11.25
	357	12	23	1.64	5.84
	358	12	24	-	1.45
	362	12	28	-	3.70
	363	12	29	-	3.47
Number of Days Δ dv	>= 1	.0		24	79
Maximur				6.62	14.43

Table E.9.7 Big Sandy - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Day	Scenario 2	
Julian Day 2	iviontn 1	Day 2		1.10
			-	
4	1	4	-	3.05
7	1	7	2.05	7.59
8	1	8	-	1.06
9	1	9	1.03	2.53
10	1	10	-	2.15
12	1	12	1.02	3.82
13	1	13	-	3.03
14	1	14	1.38	4.60
17	1	17	2.12	5.94
20	1	20		2.14
21	1	21	-	2.38
22	1	22	-	2.89
23	1	23	1.96	5.44
24	1	24	1.35	4.51
28	1	28	-	1.10
30	1	30	-	4.32
31	1	31	-	1.25
41	2	10	-	1.47
42	2	11		3.31
43	2	12	-	3.26
46	2	15	-	2.30
48	2	17	-	2.83
49	2	18		1.14
53	2	22	-	2.07
56	2	25	-	1.01
58	2	27	-	1.83
59	2	28	1.28	4.61
60	3	1	-	3.87
61	3	2	-	2.64
62	3	3	-	1.00
64	3	5	-	1.28
65	3	6	-	2.00
67	3	8	2.45	6.68
68	3	9	-	2.51
72	3	13	-	1.12
77	3	18	-	1.40
78	3	19	-	1.33
82	3	23		1.01
84	3	25		1.55
86	3	27	1.06	2.69
90	3	31	1.15	3.72
92	4	2	-	1.54
97	4	7	-	1.22
98	4	8	-	1.01
99	4	9	M.	1.68
108	4	18	-	1.28
111	4	21		2.16
115	4	25		1.41
116	4	26		2.92
119	4	29		1.64
132	. 5	12		1.04
134	5	14		2.50
254	9	11		1.29
265	9	22		1.92
271	9	22		1.32

-				Scenario	
Julian Day	Month	Day	1	2	
274	10	1	-	1.33	
275	10	2	-	1.78	
280	10	7	-	1.13	
281	10	8	-	1.73	
292	10	19	-	1.30	
297	10	24	-	1.17	
298	10	25		3.53	
302	10	29		1.29	
304	10	31		1.37	
305	11	1	2.34	4.16	
307	11	3	-	1.19	
308	11	4	-	1.86	
309	11	5	_	1.73	
310	11	6	1.04	2.92	
311	11	7	-	1.56	
313	11	9	-	1.89	
314	11	10	-	1.16	
316	11	12	-	1.35	
320	11	16		1.86	
321	11	17	_	1.14	
322	11	18		1.10	
323	11	19		2.36	
325	11	21		1.69	
326	11	22		3.37	
328	11	24		1.18	
329	11	25		2.95	
	11	26		1.07	
330			4)		
331	11	27	-	1.75	
336	12	2	-	2.24	
337	12	4	-	1.54	
338	12		-	1.56	
340	12	6	-	2.14	
341	12	7	-	2.26	
342	12	8	2.24	5.48	
344	12	10	-	3.03	
345	12	11	-	2.86	
346	12	12	-	2.76	
347	12	13	-	1.55	
348	12	14	-	1.37	
349	12	15	-	3.89	
350	12	16	1.06	3.09	
353	12	19	-	1.55	
354	12	20	3.33	7.12	
355	12	21	1.34	5.38	
356	12	22	2.13	5.59	
357	12	23	3.00	7.56	
360	12	26	-	2.09	
361	12	27	-	1.74	
362	12	28	2.18	4.29	
363	12	29	2.65	6.56	
365	12	31	-	1.82	
Number of Days Δ dv >=			21	107	
Maximum △	. dv		3.33	7.59	

Table E.9.8 Big Sandy - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Day		nario
Julian Day	Month	Day	1	2
2	1	2		1.26
4	1	4	1.05	3.46
7	1	7	2.35	8.42
8	1	8	-	1.22
9	1	9	1.18	2.89
10	1	10	1.12	2.46
11	1	11	-	1.02
12	1	12	1.17	4.32
13	1	13	-	3.44
14	1	14	1.59	5.17
17	1	17	2.42	6.64
20	1	20		2.44
21	1	21	1	2.71
22	1	22		3.29
23	1	23	2.24	6.09
24	1	24	1.56	5.07
28	1	28	-	1.26
30	1	30		4.87
31	1	31	We .	
41				1.44
	2	10	-	1.70
42	2	11	-	3.76
43	2	12	-	3.71
46	2	15	-	2.64
47	2	16	7	1.09
48	2	17	1.05	3.23
49	2	18	-	1.32
53	2	22	-	2.37
56	2	25	-	1.17
58	2	27		2.11
59	2	28	1.48	5.21
60	3	1	-	4.39
61	3	2	-	3.02
62	3	3	_	1.16
64	3	5	-	1.48
65	3	6		2.30
67	3	8	2.80	7.46
68	3	9	2.00	2.87
72	3	13		
77	3		111	1.29
		18	-	1.61
78	3	19		1.53
82	3	23	-	1.16
84	3	25	157	1.78
86	3	27	1.23	3.08
87	3	28	-	1.15
90	3	31	1.33	4.22
92	4	2	-	1.41
97	4	7	-	1.11
99	4	9	-	1.53
108	4	18	-	1.16
111	4	21	-	1.97
115	4	25	-	1.28
116	4	26		2.67
119	4	29		1.50
134	5	14	-	
			-	2.28
254	9	11	-	1.07
265	9	22		1.60

***************************************			Scer	nario
Julian Day	Month	Day	1	2
274	10	1	-	1.10
275	10	2	-	1.99
280	10	7	-	1.27
281	10	8		1.94
292	10	19		1.46
297	10	24	-	1.32
298	10	25	-	3.91
299	10	26	-	1.09
302	10	29	-	1.45
304	10	31	-	1.54
305	11	1	2.61	4.61
307	11	- 3	-	1.32
308	11	4	-	2.06
309	11	5	-	1.92
310	11	6	1.15	3.22
311	11	7	-	1.73
313	11	9		2.10
314	11	10	-	1.29
316	11	12	-	1.49
320	11	16	-	2.06
321	11	17	-	1.27
322	11	18	111	1.22
323	11	19		2.60
325	11	21		1.87
326	11	22		3.70
328	11	24		1.31
329	11	25		3.24
330	11	26		1.19
331	11	27		1.19
336	12	2		2.47
337	12	3		1.71
338	12	4		1.73
340	12	6		2.37
340		7		2.50
	12			
342	12	8	2.48	5.97 3.34
344	12	10	-	
345	12	11		3.15
346	12	12		3.05
347	12	13	-	1.73
348	12	14	-	1.52
349	12	15	-	4.27
350	12	16	1.18	3.41
353	12	19	-	1.72
354	12	20	3.66	7.71
355	12	21	1.49	5.87
356	12	22	2.36	6.10
357	12	23	3.30	8.18
360	12	26	-	2.31
361	12	27	-	1.93
362	12	28	2.41	4.70
363	12	29	2.93	7.12
365	12	31	-	2.02
r of Days Δ dv >= 1.	.0		24	108
Maximum ∆ dv	1		3.66	8.42

Table E.9.9 Boulder - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

				nario
Julian Day	Month	Day	1	2
4	1	4		1.42
7	1	7	2.40	9.64
8	1	8	-	2.32
9	1	9	-	2.65
10	1	10	-	1.41
- 11	1	11	-	2.14
12	1	12		4.47
13	1	13	-	3.64
14	1	14	1.22	4.99
15	1	15	-	1.56
16	1	16	-	2.99
17	1	17	-	6.20
21	1	21	-	3.65
22	1	22	13:	2.38
23	1	23	-	5.21
24	1	24	1.83	8.15
26	1	26	-	1.12
30	1	30	-	3.92
40	2	9	-	2.85
41	2	10	-	1.34
43	2	12	-	1.93
44	2	13	-	1.32
45	2	14	-	2.02
46	2	15	-	2.79
47	2	16	-	1.50
48	2	17	-	2.15
49	2	18	017	3.84
53	2	22	6.	2.62
56	2	25	-	1.76
58	2	27		2.10
59	2	28	-	2.86
60	3	1	-	2.08
61	3	2	1.61	5.09
62	3	3	-	3.04
65	3	6	-	1.79
67	3	8	-	7.98
68	3	9	-	4.76
69	3	10	1.30	2.86
72	3	13	-	2.87
73	3	14	111	2.49
74	3	15	-	1.64
77	3	18	-	2.23
78	3	19	-	1.72
81	3	22	-	1.07
84	3	25	-	1.11
86	3	27	-	2.65
87	3	28	-	1.35
89	3	30	-	3.41
90	3	31	-	3.68
92	4	2	-	2.33
96	4	6	-	1.26
97	4	7	-	2.74
98	4	8	-	1.23
99	4	9	-	2.23
110	4	20	-	1.13
111	4	21		1.98

			Scenario		
Julian Day	Month	Day	1	2	
115	4	25	-	1.14	
116	4	26	-	2.62	
119	4	29	-	2.21	
120	4	30	-	1.95	
132	5	12	-	1.46	
134	5	14	-	2.98	
184	7	3	1-	1.10	
212	7	31	-	1.27	
223	8	11	-	1.34	
224	8	12	-	1.26	
230	8	18	-	1.06	
236	8	24	-	1.86	
237	8	25	-	1.04	
241	8	29	-	1.00	
254	9	11	-	1.15	
262	9	19	-	1.03	
263	9	20	-	1.98	
264	9	21		2.48	
265	9	22	-	1.62	
268	9	25	-	1.09	
269	9	26	-	2.36	
271	9	28	-	2.51	
272	9	29	-	1.07	
274	10	1	-	3.13	
275	10	2	-	1.01	
277	10	4		1.39	
280	10	7		1.85	
281	10	8	-	2.37	
285	10	12	-	1.60	
286	10	13	-	1.76	
292	10	19	-	1.14	
295	10	22	-	1.58	
298	10	25	-	3.52	
303	10	30	-	1.14	
304	10	31	-	2.59	
305	11	1	-	5.26	
307	11	3	-	1.26	
308	11	4	-	1.38	
309	11	5	-	1.99	
310	11	6	-	3.89	
311	11	7	_	1.13	
313	11	9	_	1.53	
316	11	12	_	1.12	
320	11	16	_	2.24	
323	11	19	_	1.54	
325	11	21		3.17	
326	11	22		3.17	
328	11	24		2.22	
329	11	25		2.11	
	11				
330 331	11	26	-	2.37	
331	11	27 29	-	2.47 1.12	
			-		
335	12	1	-	1.09	
336	12	2	-	2.84	
337	12	3	4.00	1.32	
338	12	4	1.29	4.97	
339	12	5	-	1.35	
340	12	6	-	4.44	

			Scer	nario
Julian Day	Month	Day	1	2
344	12	10		4.01
345	12	11	-1111	4.99
346	12	12		2.83
347	12	13	-	2.23
348	12	14		1.47
349	12	15	-	2.83
350	12	16	1.07	4.60
353	12	19	2.82	6.15
354	12	20	1.90	7.75
355	12	21	1.13	6.91
356	12	22	1.47	8.88
357	12	23	3.06	9.83
358	12	24	-	1.07
361	12	27	-	2.05
362	12	28	2.51	6.25
363	12	29	-	2.42
Days Δ dv >= 1.	0		13	131
			3.06	9.83
	344 345 346 347 348 349 350 353 354 355 356 357 358 361 362 363 Days △ dv >= 1.	344 12 345 12 346 12 347 12 348 12 349 12 350 12 353 12 354 12 355 12 356 12 357 12 358 12 361 12 362 12	344 12 10 345 12 11 346 12 12 347 12 13 348 12 14 349 12 15 350 12 16 353 12 19 354 12 20 355 12 21 356 12 22 357 12 23 358 12 24 361 12 27 362 12 28 363 12 29 Days Δ dv >= 1.0	344 12 10 - 345 346 12 11 - 346 12 12 13 - 347 12 13 - 348 12 14 - 349 12 15 - 350 12 16 1.07 353 12 19 2.82 354 12 20 1.90 355 12 21 1.13 356 12 22 1.47 357 12 23 3.06 358 12 24 - 361 12 27 - 362 12 28 2.51 363 12 29 - 329 20 20 20 20 20 20 20 20 20 20 20 20 20

Table E.9.10 Boulder - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Iulian Day	Month	Day		nario
Julian Day	Month	Day	1	2
4	1	4	-	1.64
7	1	7	2.73	10.59
8	. 1	8	-	2.64
9	1	9	-	3.02
10	1 :	10	-	1.62
11	1	11	1.11	2.44
12	1	12	-	5.03
13	1	13	-	4.12
14	1	14	1.40	5.60
15	1	15	-	1.79
16	1	16	-	3.39
17	1	17	-	6.92
21	1	21		4.13
22	1	22		2.72
23	1	23		5.84
24	1	24	2.10	9.00
26	1	26		1.29
30	1	30	-	4.43
31	1	31	-	1.03
40	2	9	-	3.25
41	2	. 10	-	1.55
43	2	12	-	2.22
44	2	13	-	1.53
45	2	14	-	2.32
46	2	15	-	3.18
47	2	16	-	1.73
48	2	17	-	2.47
49	2	18	-	4.36
53	2	22	-	2.99
56	2	25	-	2.03
58	2	27	-	2.41
59	2	28	-	3.27
60	3	1	-	2.38
61	3	2	1.85	5.73
62	3	3	1.11	3.46
63	3	4	-	1.13
65	3	6	-	2.06
67	3	8	-	8.85
	3	9	1.13	5.38
68				
69	3	10	1.50	3.27
71	3	12	-	1.11
72	3	13	-	3.27
73	3	14	-	2.85
74	3	15	-	1.89
77	3	18	-	2.56
78	3	19	-	1.98
80	3	21	-	1.05
81	3	22	-	1.23
84	3	25	-	1.28
86	3	27	-	3.03
87	3	28	-	1.56
89	3	30	-	3.88
90	3	31	_	4.18
92	4	2		2.13
92	4	6		1.14

norio	Can			
enario 2	1	Day	Month	Iulian Day
1.12	-	8	4	98
2.04	-	9	4	99
1.03	-	20	4	110
1.80	-	21	4	111
1.04	-	25	4	115
2.39	-	26	4	116
2.02		29	4	119
1.78		30	4	120
1.33		12	5	132
2.73	-	14	5	134
1.07	-	31	7	212
1.12		11	8	223
1.06	-	12	8	224
1.57	-	24	8	236
1.64		20	9	263
2.07	-	21	9	264
1.34	-	22	9	265
1.97	-	26	9	269
2.09	-	28	9	271
2.63	-	1	10	274
1.13	-	2	10	275
1.56	-	4	10	277
1.04	-	6	10	279
2.07	-	7	10	280
2.64	-	8	10	281
1.80	-	12	10	285
1.98	-	13	10	286
1.28	-	19	10	292
1.77	-	22	10	295
3.90	_	25	10	298
1.06	_	26	10	299
1.29	-	30	10	303
2.89	-	31	10	304
5.78	1.00	1	11	305
1.40		3	11	307
1.53	-	4	11	308
2.20	_	5	11	309
4.26	_	6	11	310
1.25	-	7	11	311
1.70	-	9	11	313
1.25	-	12	11	316
2.47	-	16	11	320
1.71	-	19	11	323
3.48	1.07	21	11	325
3.46	-	22	11	326
2.45		24	11	328
2.33	_	25	11	329
2.61	-	26	11	330
2.72	-	27	11	331
1.24	_	29	11	333
1.21	-	1	12	335
3.13	-	2	12	336
1.47		3	12	337
5.43	1.44	4	12	338
1.50		5	12	339
	-	6	12	340
4.86 1.08	-	7	12	341
5.58		8	12	342
4.40	-	10	12	344

				Scenario	
Julia	n Day	Month	Day	1	2
	345	12	11	-	5.45
	346	12	12	-	3.12
	347	12	13	-	2.46
	348	12	14	-	1.63
	349	12	15	- 1	3.12
	350	12	16	1.19	5.04
	353	12	19	3.11	6.68
	354	12	20	2.11	8.38
	355	12	21	1.26	7.49
	356	12	22	1.63	9.56
	357	12	23	3.37	10.55
	358	12	24	-	1.19
	361	12	27	-	2.27
	362	12	28	2.77	6.79
	363	12	29	-	2.68
Number of Days A	dv >= '	1.0		18	130
	mum Δ c			3.37	10.59

Table E.9.11 Bronx - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Day	1	nario 2
Julian Day 5	Worth 1	Day		
		5	-	2.57
7	1	7	-	1.88
11	1	11	-	1.13
12	1	12	-	1.18
14	1	14	-	1.34
24	1	24	1.56	6.80
25	1	25	-	3.74
26	1	26	1.52	4.10
27	1	27	-	3.26
39	2	8	-	2.18
40	2	9	-	3.93
43	2	12	-	1.22
44	2	13	-	3.86
45	2	14	-	1.91
61	3	2	-	3.68
62	3	3	-	4.13
63	3	4		3.68
74	3	15		2.55
75	3	16	_	1.11
87	3	28		2.42
99	4	9		1.46
104	4	14		1.50
104	4	16	-	1.01
106	4			
		17	-	1.41
109	4	19	-	1.13
110	4	20	-	2.74
116	4	26	-	1.24
118	4	28	- 11	1.28
119	4	29	-	1.22
120	4	30	- 13	1.64
127	5	7	- 70	1.01
131	5	11	-	1.36
184	7	3	-	1.15
187	7	6	-	1.07
205	7	24	-	1.12
218	8	6	-	1.07
234	8	22		1.05
235	8	23		1.34
237	8	25	-	1.97
238	8	26		1.11
239	8	27	_	1.23
241	8	29	_	1.03
246	9	3	_	1.00
252	9	9		1.08
254	9	11	0.00	1.36
263	9	20		
264	9	21	-	4.10
			-	1.02
268	9	25	-	1.48
269	9	26	-	2.59
271	9	28	-	1.63
280	10	7	-	2.69
281	10	8	-	1.94
285	10	12	-	1.52
325	11	21	-	3.20
326	11	22	-	1.11
350	12	16		3.32

			Sce	nario
Julian Day	y Month	Day	1	2
351	12	17	-	1.54
353	12	19	1.52	8.92
354	12	20	-	5.62
355	12	21	-	4.78
356	12	22	-	5.67
357	12	23	-	6.02
362	12	28	1.20	6.49
Number of Days Δ dv >= 1	.0		4	63
Maximum Δ d	V		1.56	8.92

Table E.9.12 Bronx - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data
Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

	Scenario				
Julian Day	Month	Day	1	2	
5	1	5	-	2.93	
7	1	7	-	2.16	
11	1	11	-	1.30	
12	1	12	-	1.36	
14	1	14	-	1.54	
16	1	16	- 1	1.12	
24	1	24	1.79	7.57	
25	1	25	-	4.24	
26	1	26	1.74	4.63	
27	1	27	-	3.70	
39	2	8	-	2.50	
40	2	9	1.03	4.45	
43	2	12	-	1.41	
44	2	13	-	4.37	
45	2	14	-	2.19	
61	3	2	-	4.18	
62	3	3	1.07	4.68	
63	3	4	1.16	4.18	
70	3	11	-	1.06	
74	3	15		2.92	
75	3	16	_	1.28	
77	3	18		1.16	
87	3	28		2.77	
99	4	9		1.33	
104	4	14		1.36	
107	4	17		1.28	
109	4	19		1.03	
110	4	20		2.50	
116	4	26	-	1.13	
118	4	28		1.16	
119	4	29		1.11	
120	4	30		1.50	
131	5	11		1.24	
235	8	23	-	1.13	
237	8	25		1.67	
239	8	27	-		
254	9			1.04	
263	9	11 20		1.13	
268	9				
		25	-		
269	9	26	-	2.17	
271 280		28	-	1.35	
	10	7	-	3.00	
281 285	10	8	-	2.17	
	10	12	-	1.70	
295	10	22		1.01	
305	11	1	-	1.02	
325	11	21	-	3.51	
326	11	22	-	1.23	
350	12	16	-	3.66	
351	12 🔻	17	-	1.72	
353	12	19	1.69	9.60	
354	12	20	1.10	6.12	
355	12	21	-	5.23	
356	12	22	-	6.18	
357	12	23		6.55	
362	12	28	1.33	7.05	
Number of David A.					
Number of Days Δ dv >= 1.			8	56	
Maximum Δ dv	1		1.79	9.60	

Table E.9.13 Cora - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Indian Da	84 4b	D	Scenario 2		
Julian Day	Month	Day		2	
5	1	5	-	1.48	
7	1	7	-	3.35	
9	1	9	-	1.60	
10	1	10	-	1.41	
11	1	11	-	3.00	
12	1	12	-	1.50	
13	1	13	-	1.78	
14	1	14	-	2.09	
15	1	15	-	1.26	
16	1	16	-	1.40	
24	1	24	1.66	7.44	
25	1	25	-	1.67	
26	1	26	1.22	3.77	
27	1	27	-	2.32	
39	2	8		1.08	
40	2	9	1.00	4.09	
	2			1.26	
43		12	-		
44	2	13	-	2.95	
45	2	14	-	2.68	
53	2	22	-	1.12	
56	2	25	-	1.27	
61	3	2	1.24	4.64	
62	3	3	-	3.86	
63	3	4	1.02	3.21	
65	3	6	-	1.50	
68	3	9	-	3.57	
69	3	10	-	2.70	
70	3	11	-	2.01	
72	3	13	-	2.25	
74	3	15	-	2.22	
75	3	16	-	1.02	
80	3	21	-	1.00	
84	3	25		1.19	
87	3	28		2.67	
95	4	5		1.42	
96	4	6		1.3	
99	4	9		1.47	
		16	-	1.11	
. 106	4				
110	4	20	-	3.03	
116	4	26	-	2.24	
118	4	28	-	1.35	
119	4	29	-	1.29	
120	4	30	-	1.70	
224	8	12	-	1.45	
237	8	25	-	1.54	
254	9	11	-	1.66	
263	9	20	-	3.70	
264	9	21	-	1.97	
265	9	22	-	1.84	
268	9	25	-	1.38	
269	9	26		1.80	
271	9	28	-	1.60	
280	10	7	-	2.12	
281	10	8	-	1.6	
285	10	12		2.50	
200	10	12	_	2.01	

				nario
Julian Day	Month	Day	1	2
305	11	1	-	4.43
320	11	16	-	1.08
325	11	21		4.27
326	11	22	-	1.88
338	12	4	-	1.16
340	12	6	-	1.63
346	12	12	-	1.10
347	12	13	-	1.56
350	12	16	-	4.78
353	12	19	1.96	9.25
354	12	20	1.23	6.70
355	12	21	-	4.86
356	12	22	-	6.86
357	12	23	1.05	7.36
362	12	28	1.73	7.16
Number of Days Δ dv >= 1.	0		9	71
Maximum Δ dv	1		1.96	9.25

Table E.9.14 Cora - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Month Day		nario 2
		Day	1	
5	1	5	-	1.70
7	1	7	-	3.80
9	1	9	-	1.83
10	1	10	-	1.62
11	1	11	-	3.41
12	1	12	-	1.72
13	1	13	-	2.04
14	1	14	-	2.39
15	1	15	-	1.45
16	1	16	-	1.61
24	1	24	1.90	8.26
25	1	25	-	1.91
26	1	26	1.40	4.26
27	1	27	-	2.64
39	2	8	-	1.25
40	2	9	1.16	4.63
43	2	12	-	1.45
44	2	13	-	3.36
45	2	14	-	3.06
53	2	22	-	1.29
56	2	25	-	1.46
61	3	2	1.43	5.24
62	3	3	1.13	4.38
63	3	4	1.18	3.66
65	3	6	-	1.73
68	3	9	_	4.06
69	3	10	_	3.09
70	3	11	_	2.31
72	3	13	_	2.58
74	3	15		2.55
75	3	16	_	1.18
80	3	21		1.16
84	3	25		1.37
87	3	28		3.05
95	4	5		1.29
96	4	6		1.19
99	4	9		1.34
106	4	16		1.01
110	4	20		2.77
116	4	26	-	2.05
118	4	28	-	1.23
	4	29	-	1.17
119	4	30		1.17
120			-	1.22
224	8	12	-	1.22
237	8	25	-	
254	9	11	-	1.37
263	9	20	-	3.12
264	9	21	-	1.64
265	9	22	-	1.53
268	9	25	-	1.14
269	9	. 26	-	1.49
271	9	28	-	1.32
280	10	7	-	2.37
281	10	8	-	1.85
285	10	12	-	2.79
				3.50

		*		Sce	nario
	Julian Day	Month	Day	1	2
	305	11	1		4.89
	320	11	16	-	1.19
	325	11	21	1.06	4.67
	326	11	22	-	2.07
	336	12	2	-	1.07
	338	12	4	-	1.30
	340	12	6	-	1.80
	346	12	12	-	1.22
	347	12	13	-	1.74
	350	12	16	-	5.23
	353	12	19	2.17	9.95
	354	12	20	1.37	7.27
	355	12	21	-	5.31
	356	12	22	-	7.43
	357	12	23	1.17	7.96
	362	12	28	1.92	7.75
	363	12	29	-	1.02
Number of [Days Δ dv >= 1.	.0		11	73
	Maximum ∆ dv	1		2.17	9.95

Table E.9.15 Daniel - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Day	1	enario 2	
5 Julian Day	1	5	-	4.50	
6	1	6		2.11	
7	1	7	100	5.21	
21	1	21		2.05	
23	1	23		1.50	
24	1	24	2.20	9.19	
25	1	25	1.18	5.79	
26	1	26	1.63	4.37	
27	1	27	1.19	4.90	
39	2	8	-	4.32	
40	2	9	1.20	4.73	
43	2	12	-	2.27	
44	2	13		4.05	
45	2	14		1.60	
53	2	22	-	2.88	
56	2	25	-	2.93	
	3	25	1.36		
61				8.52	
62	3	3	1.42	6.02	
63			1.12	5.22	
68	3	9	-	1.85	
70	3	11		1.12	
74	3	. 15	-	5.27	
75	3	16	-	2.11	
76	3	17	-	1.32	
77	3	18	-	1.68	
80	3	21	-	1.79	
83	3	24	-	1.20	
87	3	28	-	3.38	
96	4	6	-	1.73	
97	4	7	-	1.19	
98	4	8	-	1.17	
99	4	9	-	2.68	
103	4	13	-	1.03	
104	4	14	-	2.44	
106	4	16	-	2.09	
107	4	17	-	2.88	
109	4	19	-	2.59	
110	4	20	-	3.40	
116	4	26	-	4.16	
117	4	27	-	1.09	
118	4	28	-	2.76	
119	4	29	-	2.91	
120	4	30	-	2.03	
122	5	2	-	1.11	
125	5	5	-	1.72	
127	5	7	-	1.36	
131	5	11	-	2.28	
136	5	16	-	1.22	
147	5	27	-	1.43	
163	6	12	-	1.09	
166	6	15	-	1.94	
169	6	18	-	1.25	
170	6	19	-	2.44	
205	7	24	-	1.28	
214	8	2	-	1.08	
217	8	5		1.25	

		178717	Sce	nario
Julian Day	Month	Day	1	2
237	8	25	-	2.19
245	9	2	-	1.15
246	9	3		1.35
252	9	9	0 .	1.25
254	9	11	-	2.23
262	9	19	-	1.04
263	9	20	-	5.28
264	9	21	-	3.24
265	9	22	-	1.20
268	9	25	-	2.15
269	9	26	-	3.14
270	9	27	-	1.44
271	9	28	15.	3.37
272	9	29	-	1.48
280	10	7	-	5.22
281	10	8	-	3.84
285	10	12	-	2.17
290	10	17	-	1.74
295	10	22	-	1.96
320	11	16	-	2.75
325	11	21	1.20	7.36
326	11	22	-	2.23
350	12	16		4.52
351	12	17	-	3.36
352	12	18		3.16
353	12	19	2.65	11.88
354	12	20	1.33	9.05
355	12	21	-	7.92
356	12	22	1//-	8.06
357	12	23	1.15	9.26
362	12	28	1.30	9.68
363	12	29	-	1.31
Number of Days Δ dv >= 1.	.0		13	88
Maximum Δ dv	/		2.65	11.88

Table E.9.16 Daniel - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Day	1	nario 2
5	1	5 5	-	5.07
6	1	6		2.41
7	1	7	-	5.84
14	1	14	-	1.10
21	1	21	-	2.35
	1			
23 24	1	23 24	2.51	1.72
				10.11
25	1	25	1.36	6.47
26	1	26	1.87	4.93
27	1.	27	1.37	5.51
39	2	8		4.88
40	2	9	1.38	5.33
43	2	12	-	2.60
44	2	13	11/2	4.59
45	2	14	-	1.84
53	2	22	-	3.29
56	2	25	-	3.35
61	3	2	1.57	9.43
62	3	3	1.64	6.74
63	3	4	1.29	5.88
68	3	9	-	2.12
69	3	10	-	1.04
70	3	11	• •	1.29
74	3	15	-	5.93
75	3	16	-	2.42
76	3	17	-	1.52
77	3	18	-	1.94
80	3	21	-	2.07
82	3	23	-	1.11
83	3	24	-	1.39
87	3	28	-	3.84
96	4	6	-	1.58
97	4	7	-	1.08
98	4	8	-	1.06
99	4	9	-	2.45
104	4	14	-	2.23
106	4	16	-	1.90
107	4	17	-	2.64
109	4	19	-	2.37
110	4	20	-	3.12
116	4	26	-	3.83
118	4	28	-	2.53
119	4	29	-	2.67
120	4	30	-	1.85
122	5	2	-	1.00
125	5	5	-	1.56
127	5	7	-	1.24
131	5	11	-	2.08
136	5	16	-	1.11
147	5	27	-	1.30
163	6	12	-	1.01
166	6	15	-	1.80
169	6	18	-	1.15
170	6	19	-	2.27
205	7	24	-	1.08
217	8	5		1.05

			Sce	enario
Julian Day	Month	Day	1	2
237	8	25	-	1.86
246	9	3	-	1.12
252	9	9		1.03
254	9	11	-	1.86
263	9	20	-	4.50
264	9	21	-	2.72
268	9	25	-	1.79
269	9	26	-	2.63
270	9	27	-	1.19
271	9	28	-	2.83
272	9	29	-	1.22
280	10	7	-	5.74
281	10	8	-	4.26
285	10	12	-	2.43
289	10	16	-	1.03
290	10	17	-	1.95
295	10	22	-	2.19
320	11	16		3.03
325	11	21	1.33	7.95
326	11	22	-	2.47
350	12	16	-	4.94
351	. 12	17	-	3.70
352	12	18	-1	3.48
353	12	19	2.93	12.68
354	12	20	1.48	9.74
355	12	21	-	8.56
356	12	22	1.09	8.70
357	12	23	1.28	9.96
362	12	28	1.45	10.40
363	12	29	-	1.46
f Days Δ dv >= 1.	0		14	86
Maximum Δ dv			2.93	12.68

Nu

Table E.9.17 Farson - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Julian Day	Month	Day	1	nario 2
Julian Day 3	iviontn 1	з	-	
	1		-	3.37
4		4	-	1.23
7	1	. 7	-	2.64
17	1	17	-	1.47
21	1	21		1.17
22	1	22	4.27	9.89
23	1	23	1.98	5.59
24	1	24	-	1.20
28	1	28	1.72	5.36
29	1	29	-	1.56
30	1	30	1.84	4.63
41	2	10	1.92	3.82
43	2	12	-	1.53
46	2	15	-	2.14
52	2	21	-	1.14
53	2	22	1.61	3.23
54	2	23	2.35	5.20
55	2	24	-	1.99
57	2	26	2.93	5.78
59	2	28	-	1.35
60	3	1	-	1.53
76	3	17	1.45	4.79
86	3	27	-	1.63
90	3	31	-	1.93
92	4	2	_	2.49
94	4	4		1.02
96	4	6		1.66
97	4	7		1.19
115	4	25		1.13
119	4	29	1.12	2.55
120	4	30	1.12	2.42
123	5	3	-	1.88
	5	8	-	1.54
128	5	13	-	
133	5		-	1.91
137		17	4.04	2.32
139	5	19	1.31	2.79
140	5	20	1.53	3.82
142	5	22	1.34	2.7
147	5	27	-	1.46
148	5	28	1.19	2.26
157	6	6	-	1.36
184	7	3	-	1.43
188	7	7	1.08	2.09
231	8	19	-	1.38
256	9	13	-	1.28
267	9	24	- 1	1.32
274	10	1	-	2.82
275	10	2	-	1.2
276	10	3	2.36	5.60
279	10	6	-	1.54
282	10	9	-	2.60
283	10	10		1.91
284	10	11	2.51	4.63
289	10	16	-	2.46
290	10	17	-	2.33

			Sce	nario
Julian Day	Month	Day	1	2
297	10	24	-	1.80
309	11	5	-	1.80
321	11	17	1.04	2.50
322	11	18	1.24	2.85
323	11	19	-	1.08
324	11	20	1.01	3.32
325	11	21	~	1.92
326	11	22	1.08	2.15
327	11	23	-	1.18
332	11	28	1.29	4.01
354	12	20	2.12	4.45
355	12	21	4.74	9.29
356	12	22	1.07	3.38
357	12	23	1.06	3.10
358	12	24	1.96	4.27
359	12	25	1.16	3.52
360	12	26	1.35	3.52
361	12	27	-	1.12
362	12	28	-	1.09
363	12	29	1.38	4.15
364	12	30	-	1.90
ays ∆ dv >= 1.	0		31	77
Maximum Δ dv	917		4.74	9.89

Numbe

Table E.9.18 Farson - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

1 " 5				nario
Julian Day	Month	Day	1	2
3	1	3	1.11	3.82
4	1	4	-	1.41
7	1	7	-	3.00
17	1	17	-	1.69
21	1	21	-	1.35
22	1	22	4.82	10.85
23	1	23	2.27	6.26
24	1	24	-1	1.38
28	1	28	1.97	6.00
29	1	29	-	1.79
30	1	30	2.11	5.21
41	2	10	2.21	4.33
43	2	12	-	1.76
46	2	15	-	2.46
52	2	21	-	1.32
53	2	22	1.86	3.68
54	2	23	2.69	5.86
55	2	24	-	2.28
57	2	26	3.34	6.48
59	2	28	-	1.56
60	3	1	-	1.76
76	3	17	1.67	5.41
78	3	19	1.07	1.11
86	3	27	-	1.88
	3		-	2.21
90		31	-	
92	4	2	-	2.27
96	4	6	-	1.51
97	4	7	-	1.08
115	4	25	-	1.01
119	4	29	1.02	2.33
120	4	30	-	2.21
123	5	3	-	1.72
128	5	8	-	1.40
133	5	13	-	1.75
137	5	17	-	2.12
139	5	19	1.19	2.55
140	5	20	1.39	3.51
142	5	22	1.22	2.54
147	5	27	-	1.33
148	5	28	1.08	2.06
157	6	6	-	1.26
184	7	3	-	1.20
188	7	7	-	1.77
231	8	19	-	1.16
256	9	13	-	1.06
267	9	24	-	1.09
274	10	1	-	2.36
275	10	2	-	1.36
276	10	3	2.64	6.15
279	10	6	-	1.73
282	10	9	2	2.89
283	10	10	1.02	2.14
	10	11	2.79	5.11
284				2.74
289	10	16	4.00	
290	10	17	1.00	2.60
291	10	18	1.51	4.26

			Sce	nario
Julian Day	Month	Day	1	2
297	10	24		2.02
309	11	5	-	2.00
321	11	17	1.15	2.76
322	11	18	1.38	3.14
323	11	19	-	1.20
324	11	20	1.12	3.64
325	11	21	-	2.13
326	11	22	1.20	2.37
327	11	23	-	1.31
332	11	28	1.43	4.39
354	12	20	2.34	4.87
355	12	21	5.18	9.99
356	12	22	1.20	3.71
357	12	23	1.18	3.41
358	12	24	2.17	4.68
359	12	25	1.29	3.87
360	12	26	1.50	3.87
361	12	27	-	1.24
362	12	28	-	1.21
363	12	29	1.54	4.55
364	12	30	-	2.11
lumber of Days Δ dv >= 1.	0		33	77
Maximum ∆ dv			5.18	10.85

Table E.9.19 La Barge - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

-				nario
Julian Day	Month	Day	1	2
6	1	6	5.11	10.14
7	1	7	1.95	5.64
21	1	21	-	2.56
22	1	22	-	3.19
23	1	23	3.07	9.37
24	1	24	-	2.66
28	1	28	1.87	4.34
30	1	30	-	2.42
39	2	8	-	1.90
40	2	9	-	1.16
53	2	22	-	1.28
61	3	2	-	1.29
87	3	28	-	1.04
89	3	30	-	1.02
109	4	19	-	1.70
112	4	22	-	1.66
118	4	28	-	1.23
124	5	4	-	1.46
150	5	30	-	1.03
160	6	9	1.29	1.39
162	6	11		2.09
163	6	12	-	1.18
180	6	.29	1.30	1.62
201	7	20	-	1.59
202	7	21	-	1.05
213	8	1	-	1.56
216	8	4		1.28
262	9	19	-	1.47
264	9	21	-	2.95
273	9	30	-	2.55
325	11	21	-	1.45
352	12	18	1.37	2.49
354	12	20	2.09	4.81
355	12	21	3.17	8.44
356	12	22	2.69	6.72
357	12	23	-	1.88
363	12	29	-	2.24
nber of Days ∆ dv >=	1.0		10	37
Maximum Δ			5.11	10.14

Nu

Table E.9.20 La Barge - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

				nario
Julian Day	Month	Day	1	2
2	1	2	-	1.01
6	1	6	5.73	11.12
7	1	7	2.24	6.31
21	1	21	-	2.92
22	1	22	-	3.62
23	1	23	3.48	10.31
24	1	24	1.15	3.04
25	1	25	-	1.12
28	1	28	2.14	4.89
30	1	30	14 (2)	2.76
39	2	8	-	2.19
40	2	9	-	1.35
53	2	22		1.48
61	3	2	-	1.49
87	3	28	-	1.20
89	3	30	-	1.18
109	4	19	-	1.55
112	4	22		1.51
118	4	28		1.12
124	. 5	4	11 _	1.33
160	6	9	1.19	1.29
162	6	11	_	1.93
163	6	12	-	1.10
180	6	29	1.21	1.51
201	7	20	-	1.34
213	8	1	-	1.32
216	8	4	11.	1.08
262	9	19	-	1.22
264	9	21		2.47
273	9	30		2.13
280	10	7		1.01
281	10	8		1.10
325	11	21	_	1.60
352	12	18	1.52	2.75
354	12	20	2.31	5.26
355	12	21	3.49	9.10
356	12	22	2.97	7.29
357	12	23	-	2.08
363	12	29	-	2.48
ys Δ dv >= 1.0)		11	39
faximum ∆ dv			5.73	11.12

Table E.9.21 Merna - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Scenario

Julian Day	Month	Day	1	2
5	1	5	1.55	5.25
6	1	6	-	2.41
7	1	7	-	1.12
24	1	24	1.30	4.92
25	1	25	2.15	5.58
26	1	26	-	1.86
27	1	27	1.15	3.02
39	2	8	-	2.37
40	2	9	-	2.59
44	2	13	-	4.27
61	3	2	-	2.83
62	3	3	-	3.24
74	3	15	-	1.05
75	3	16	-	1.19
87	3	28	1.03	3.31
106	4	16	-	1.60
107	4	17	-	2.52
109	4	19	-	1.81
110	4	20	-	1.44
118	4	28		1.88
125	5	5	-	1.86
263	9	20	-	3.23
269	9	26	-	1.64
270	9	27	-	1.29
325	11	21	-	1.20
351	12	17		2.20
352	12	18	-	1.04
353	12	19	1.29	5.44
354	12	20	-	4.41
355	12	21	-	4.79
356	12	22	-	5.24
357	12	23	-	4.36
362	12	28	-	2.61
Number of Days Δ dv >= 1.	0		6	33
Maximum ∆ dv			2.15	5.58

Table E.9.22 Merna - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

	-			Scenario		
Julian Day	Month	Day	1	2		
5	1	5	1.78	5.89		
6	1	6	-	2.75		
7	1	7	-	1.29		
24	1	24	1.50	5.53		
25	1	25	2.46	6.24		
26	1	26	114	2.13		
27	1	27	1.33	3.43		
39	2	8	17.	2.72		
40	2	9	-	2.96		
44	2	13	1.07	4.84		
61	3	2		3.23		
62	3	3		3.69		
74	3	15		1.22		
75	3	16		1.38		
87	3	28	1.19	3.77		
106	4	16		1.46		
107	4	17	-	2.30		
109	4	19		1.65		
110	4	20	-	1.31		
118	4	28		1.71		
125	5	5		1.70		
263	9	20	11.	2.71		
269	9	26	11.	1.36		
270	9	27		1.06		
325	11	21		1.33		
351	12	17		2.44		
352	12	18		1.16		
353	12	19	1.44	5.93		
354	12	20		4.83		
355	12	21		5.23		
356	12	22	-	5.72		
357	12	23		4.77		
362	12	28	-	2.88		
Days Δ dv >= 1.0)		7	33		
Maximum ∆ dv			2.46	6.24		

Table E.9.23 Pinedale - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

				Scenario	
Julian Day	Month	Day	1	2	
5	1	5	-	1.26	
7	1	7	1.22	5.96	
8	1	8	-	1.44	
9	1	9	-	2.89	
10	1	10	-	2.33	
11	1	11	-	3.38	
12	1	12	-	1.68	
13	1	13	-	3.17	
14	1	14	-	3.31	
15	1	15	-	2.66	
16	1	16	-	2.57	
21	1	21	~	2.12	
23	1	23	-	2.59	
24	1	24	1.84	9.38	
26	1	26	1.07	3.07	
27	1	27	-	1.78	
30	1	30	-	1.33	
39	2	8	-	1.09	
40	2	9	-	4.50	
43	2	12	-	2.61	
44	2	13	-	2.94	
45	2	14	_	3.20	
46	2	15	_	2.25	
49	2	18	-	1.83	
53	2	22	_	2.37	
56	2	25	-	1.96	
60	3	1	-	1.09	
61	3	2	1.65	5.39	
62	3	3	1.04	3.82	
63	3	4	-	2.42	
65	3	6		2.03	
67	3	8	-	2.37	
68	3	9	1.62	4.63	
69	3	10	1.90	4.27	
70	3	11	-	1.25	
71	3	12		1.18	
72	3	13	-	2.73	
73	3	14	-	2.73	
74	3	15	-	2.44	
75	3	16		1.15	
			=		
78	3	19	-	1.39	
80	3	21	-	1.28	
81	3	22	-	1.13	
86	3	27	-	1.07	
87	3	28	-	2.73	
92	4	2	=	1.14	
93	4	3	-	1.01	
96	4	6	-	1.45	
97	4	7	-	1.72	
99	4	9	-	1.70	
110	4	20	-	2.59	
111	4	21	-	1.22	
115	4	25	-	1.29	
116	4	26	-	3.01	
				1.35	
118	4	28	-	1.35	

				nario
Julian Day	Month	Day	1	2
120	4	30	-	2.45
132	5	12	-	1.16
170	6	19	-	1.14
224	8	12	-	1.97
236	8	24	-	1.58
237	8	25	-	1.50
252	9	9	-	1.02
254	9	11	-	1.48
262	9	19	-	1.27
263	9	20	-	4.37
264	9	21	-	3.68
265	19	22		2.07
268	9	25	-	1.63
269	9	26	-	2.06
271	9	28	-	1.88
277	10	4	-	1.05
279	10	6	-	1.44
280	10	7	-	2.19
281	10	8	-	2.16
285	10	12		2.50
286	10	13	_	1.45
290	10	17	-	1.06
295	10	22		2.95
305	11	1		5.43
310	11	6	-	2.64
311	11	7	3	1.20
312	11	8	-	
320	11		-	1.01
	11	16		1.87
325		21	1.04	3.98
326	11	22	-	2.32
328	11	24	-	1.68
330	11	26	-	1.50
331	11	27	-	1.82
336	12	2	-	2.36
338	12	4	-	2.97
339	12	5	-	1.08
340	12	6	-	2.94
342	12	8	-	3.46
344	12	10	-	1.78
345	12	11	-	4.16
346	12	12	-	1.89
347	12	13	-	2.50
350	12	16	-	5.19
353	12	19	2.66	8.45
354	12	20	1.56	8.08
355	12	21	-	5.48
356	12	22	-	8.63
357	12	23	1.79	9.04
358	12	24	1.75	1.03
362	12	28	2.24	6.97
363	12	29	2.24	1.32
000	12	29	11.0	1.32
ays Δ dv >= 1.0)		12	107
ays Δ uv >= 1.0 Maximum Δ dv	,		2.66	107

Table E.9.24 Pinedale - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=6

Iulian Day	Month	Day		nario
Julian Day 5	Month 1	Day 5	1	1.45
6	1	6	-	1.10
7	1	7	1.41	6.66
8	1	8	-	1.65
9	1	9	-	3.29
10	1	10	-	2.66
11	1	11	-	3.83
12	1	12	-	1.93
13	1	13	-	3.60
14	1	14	-	3.75
15	1	15	-	3.04
16	1	16	-	2.93
21	1	21	-	2.42
22	1	22	-	1.13
23	1	23	-	2.95
24	1	24	2.11	10.32
25	1	25	-	1.14
26	1	26	1.23	3.48
27	1	27	-	2.04
30	1	30		1.53
39	2	8	-	1.26
40	2	9	1.10	5.09
43	2	12	-	2.98
44	2	13		3.36
45	2	14	-	3.64
46	2	15	-	2.58
	2			2.10
49		18	-	
53	2	22	-	2.72
56	2	25	-	2.25
58	2	27	-	1.14
60	3	1	-	1.26
61	3	2	1.91	6.06
62	3	3	1.21	4.33
63	3	4	-	2.77
65	3	6	-	2.33
67	3	8	-	2.71
68	3	9	1.86	5.23
69	3	10	2.18	4.84
70	3	11	-	1.45
71	3	12	-	1.36
72	3	13	-	3.13
73	3	14	-	2.73
74	3	15	-	2.79
75	3	16	-	1.33
78	3	19	-	1.60
80	3	21	_	1.48
81	3	22	_	1.31
84	3	25		1.01
86	3	27		1.24
87	3	28	-	3.12
			-	
92	4	2	-	1.04
96	4	6	-	1.32
97	4	7	-	1.57
99	4	9	-	1.55
110	4	20	-	2.37
111	4	21		1.11

				Sce	enario
Juli	an Day	Month	Day	1	2
	115	4	25		1.17
	116	4	26	-	2.76
	118	4	28		1.23
	119	4	29	_	1.47
	120	4	30		2.24
	132	5	12	4	1.06
		6			
	170		19	-	1.06
	224	8	12	-	1.67
	236	8	24	-	1.33
	237	8	25	-	1.26
	254	9	11	-	1.23
	262	9	19	-	1.05
	263	9	20	4	3.70
	264	9	21	-	3.10
	265	9	22	_	1.72
	268	9	25	-	1.35
		9			1.71
	269		26	-	
	271	9	28	-	1.56
	277	10	4	-	1.18
	279	10	6	-	1.62
	280	10	7	-	2.45
	281	10	8	-	2.41
	285	10	12	-	2.79
	286	10	13	-	1.62
	290	10	17		1.20
	295	10	22	-	3.29
	305	11	1		
					5.97
	310	11	6	-	2.90
	311	11	7	-	1.33
	312	11	8	-	1.12
	314	11	10	-	1.09
	320	11	16	-	2.07
	321	11	17	-	1.02
	325	11	21	1.15	4.35
	326	11	22	-	2.56
	328	11	24	_	1.86
	330	11	26		1.66
	331	11	27		2.01
	335	12	1	1	
					1.01
	336	12	2	-	2.61
	338	12	4	-	3.27
	339	12	5	-	1.21
	340	12	6	-	3.25
	342	12	8	-	3.81
	344	12	10	-	1.98
	345	12	11	-	4.57
	346	12	12	_	2.10
	347	12	13		2.77
	350	12	16		
					5.66
	353	12	19	2.94	9.12
	354	12	20	1.73	8.72
	355	12	21	-	5.98
	356	12	22	1.01	9.30
	357	12	23	1.98	9.73
	358	12	24	_	1.15
	362	12	28	2.47	7.56
	363	12	29	2.41	1.47
	303	12	29		1.47
mbor of De	A du > - 4	1.0		4.4	446
mber of Days				14	113
Maxi	imum Δ d	V		2.94	10.32

Table E.9.25 Big Piney - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

				nario
Julian Day	Month	Day	1	2
5	1	5	1.33	2.25
6	1	6	4.76	17.65
7	1	7	6.68	16.10
14	1	14	7	1.04
17	1	17	-	1.50
20	1	20	15	3.12
21	1	21	1.56	9.09
22	1	22	-	1.98
23	1	23	-	2.55
24	1	24	1.46	4.57
25	- 1	25	2.25	3.02
26	1	26	1.05	1.32
27	1	27	5.79	12.23
28	. 1	28	2.58	11.83
31	-1	31		1.21
39	2	8	2.31	3.88
40	2	9	2.65	7.98
41	2	10	-	1.78
43	2	12	2.69	3.92
44	2	13	1.47	2.63
46	2	15	-	1.04
53	2	22	-	1.58
61	3	2	6.24	10.99
62	3	3	2.29	3.61
73	3	14	-	1.68
74	3	15	3.74	10.22
75	3	16	2.06	4.00
87	3	28	-	1.13
89	3	30	-	1.05
97	4	7	-	1.04
98	4	8	-	1.66
99	4	9	1.83	6.37
106	4	16	-	1.77
107	4	17	-	1.23
108	4	18	-	3.31
109	4	19	-	3.40
110	4	20	1.26	1.99
111	4	21	-	2.58
112	4	22	-	5.39
113	4	23	2.34	7.37
117	4	27	1.72	4.77
118	4	28	2.56	6.32
119	4	29	1.46	8.12
120	4	30	-	3.43
122	5	2	1.88	5.42
123	5	3	1.44	6.28
124	5	4	1.10	3.87
125	5	5	7.83	11.00
127	5	7	1.03	1.66
128	5	8	-	2.22
131	5	11	3.59	5.57
132	5	12	-	6.55
133	5	13	_	1.69
134	5	14		2.04
135	5	15		2.54
			-	1.11
141	5	21		1.11

				enario
Julian Day	Month	Day	1	2
143	5	23	. 5.	2.94
146	5	26	2.15	3.11
147	5	27	1.35	4.04
148	5	28	-	3.28
149	5	29	-	2.28
150	5	30	-	2.40
153	6	2	-	1.80
154	6	3	-	1.44
155	6	4	-	1.99
156	6	5	1.16	3.59
161	6	10	10.	2.09
162	6	11	1.26	8.28
163	6	12	-	5.45
170	6	19	_	2.74
172	6	21	-	2.16
180	6	29	_	1.62
183	7	2	11.	1.28
184	7	3	117	1.06
196	7	15		1.56
197	7	16		1.62
201	7	20		3.04
202	7	21		2.80
205	7	24	71-	1.38
217	8	5	10.	1.64
217	8	6		
232	8			1.13
		20		1.12
235	8	23	1.54	2.50
237	8	25	-	1.34
238	8	26	-	1.37
247	9	4	-	1.28
253	9	10	-	1.68
262	9	19	•	1.48
263	9	20	1.17	3.19
264	9	21	-	2.18
265	9	22	1.56	5.76
268	9	25	1.08	5.99
273	9	30	-	3.09
274	10	1	-	1.33
280	10	7	-	2.96
281	10	8	-	1.67
305	11	1	-	1.37
325	11	21	-	1.30
326	11	22	-	1.04
342	12	8	-	1.43
350	12	16	-	1.65
351	12	17	1.92	4.21
352	12	18	3.96	7.97
353	12	19	8.34	11.41
	12	20	2.00	7.83
354			2.62	8.94
354 355	12	21		
355	12	21		
355 356	12	22	3.16	8.43
355 356 357	12 12	22 23	3.16 1.31	8.43 4.83
355 356 357 362	12 12 12	22 23 28	3.16	8.43 4.83 3.80
355 356 357	12 12	22 23	3.16 1.31	8.43 4.83
355 356 357 362 363	12 12 12 12	22 23 28	3.16	8.43 4.83 3.80 3.32
355 356 357 362	12 12 12 12 12	22 23 28	3.16 1.31	8.43 4.83 3.80

Table E.9.26 Big Piney - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Iulian Day	Manth	Davi		nario
Julian Day	Month	Day	1	2
5	1	5	1.59	2.66
6	1	6	5.18	18.55
7	1	7	7.16	16.88
- 14	1	14	-	1.02
17	1	17	-	1.58
20	1	20	-	3.15
21	1	21	1.71	9.66
22	1	22	-	2.33
23	1	23	-	3.01
24	1	24	1.74	5.30
25	1	25	2.64	3.52
26	1	26	1.09	1.38
27	1	27	5.65	12.01
28	1	28	2.57	11.82
30	1	30	-	1.15
31	1	31	-	1.27
39	2	8	2.50	4.16
40	2	9	2.75	8.23
41	2	10	-	1.74
43	2	12	2.99	4.32
44	2	13	1.68	2.98
46	2	15	-	1.08
53	2	22	-	1.87
61	3	2	6.97	12.02
62	3	3	2.60	4.07
73	3	14	-	1.59
74	3	15	3.62	9.98
75	3	16	2.11	4.09
87	3	28	-	1.31
88	3	29		1.03
89	3	30		1.21
98	4	8		1.37
99	4	9	1.12	4.22
106	4	16	1.12	1.56
108	4	18	-	2.13
109	4		-	2.13
		19		
110	4	20	•	1.20
111	4	21	-	1.80
112	4	22		4.63
113	4	23	1.51	5.16
117	4	27	1.29	3.70
118	4	28	2.17	5.50
119	4	29	17	5.83
120	4	30	-	2.13
122	5	2	1.13	3.47
123	5	3	1.03	4.79
124	5	4	-	2.60
125	5	5	5.93	8.61
127	5	7	-	1.04
128	5	8	-	1.95
131	5	11	2.23	3.59
132	5	12	-	4.25
133	5	13	-	1.05
134	5	14	-	1.20
135	5	15	-	1.56
143	5	23		1.92

				Scenario	
Julian Day	Month	Day	1	2	
146	5	26	1.27	1.86	
147	5	27	-	2.49	
148	5	28	-	1.98	
149	5	29	- "	1.39	
150	5	30	-	1.99	
153	6	2	-	1.68	
154	6	3	-	1.20	
155	6	4	-	1.21	
156	6	5	-	2.42	
161	6	10	-	1.23	
162	6	11	-	5.77	
163	6	12	-	4.92	
170	6	19	-	1.87	
172	6	21	- "	1.99	
180	6	29	-	1.33	
183	7	2	-	1.07	
196	7	15	-	1.33	
197	7	16		1.37	
201	7	20	_	2.50	
202	7	21	-	2.11	
205	7	24	-	1.11	
217	8	5	-	1.42	
235	8	23	1.24	2.01	
238	8	26	-	1.17	
247	9	4		1.00	
253	9	10		1.45	
262	9	19		1.23	
263	9	20		2.61	
264	9	21	_	1.80	
265	9	22		3.93	
268	9	25	_	3.99	
273	9	30		1.95	
280	10	7	_	3.34	
281	10	8		1.75	
305	11	. 1		1.73	
325	11	21		1.50	
326	11	22		1.16	
342	12	8		1.30	
350	12	16		1.82	
351	12	17	2.01	4.38	
352	12	18	4.21	8.38	
353	12	19	8.61	11.73	
354	12	20	2.17	8.35	
355	12	21	2.17	9.70	
356	12				
357	12	22	3.56	9.25	
		23	1.49	5.37	
358	12	24	-	1.06	
362	12	28	-	4.16	
363	12	29	11	3.65	
Days Δ dv >= 1.6			34	105	
Maximum ∆ dv			8.61	18.55	

Table E.9.27 Big Sandy - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Day	Month	Day	Scenario 2		
Julian Day	1	Day 4	-	2.02	
7	1	7	2.25	8.28	
8	1	8	-	1.50	
9	1	9	1.95	5.02	
10	1	10	2.09	4.44	
11	1	11	-	2.19	
12	1	12	1.22	4.09	
13	1	13	1.34	3.99	
14	1	14	3.07	7.27	
15	1	15	-	1.43	
17	1	17	1.73	4.91	
20	1	20	1.70	2.27	
21	1	21		1.76	
22	1	22	-	1.71	
23	1	23	1.26	3.60	
24	1	24	-	2.51	
30	1	30		4.02	
31	1	31		2.58	
41	2	10		1.93	
42	2	11		3.41	
43	2	12		3.83	
46	2	15	1.31	3.74	
48	2	17	-	2.57	
50	2	19		1.35	
53	2	22		1.40	
58	2	27	-	3.32	
59	2	28	3.22	11.6	
60	3	1	1.20	5.48	
	3	2		2.56	
61		4		1.62	
63	3	5	•	1.69	
64	3	6		2.33	
65	3	8	2.02	5.63	
67	3	9		1.80	
68			1	1.73	
72	3	13 19		1.19	
78	3		11.	2.00	
84	3	25	-		
86	3	27	111	1.95	
90	3	31	7	2.82	
97	4	7		1.08	
99	4	9	2.08	4.92	
111	4	21	-	1.77	
115	4	25	-	1.05	
116	4	26	-	2.9	
119	4	29	-	1.48	
120	4	30	-	2.65	
132	5	12	•	1.57	
133	5	13	-	1.35	
134	5	14	1.46	3.99	
224	8	12	-	1.10	
236	8	24	1.11	3.36	
254	9	11	-	1.08	
264	9	21	-	1.03	
265	9	22	-	1.40	
274	10	1	-	1.19	
275	10	2		1.23	

				Sce	nario
	Julian Day	Month	Day	1	2
	276	10	3	-	1.29
	281	10	8		1.00
	298	10	25	-	2.09
	304	10	31		4.61
	305	11	1	1.76	3.41
	308	11	4	-	1.00
	310	11	6	-	1.90
	311	11	7	-	1.14
	313	11	9	-	1.14
	323	11	19	-	1.17
	326	11	22		1.71
	329	11	25		1.63
	331	11	27	-	1.29
	336	12	2	-	1.46
	340	12	6		1.27
	341	12	7		1.79
	342	12	8	1.34	3.36
	344	12	10	-	2.45
	345	12	11		6.64
	346	12	12	1.61	5.17
	347	12	13	1.62	3.08
	348	12	14		3.31
	349	12	15	-	5.73
	350	12	16	1.25	3.88
	353	12	19	1.33	2.66
	354	12	20	7.61	13.85
	355	12	21	3.23	9.57
	356	12	22	3.30	8.21
	357	12	23	7.64	15.89
	360	12	26	-	1.99
	361	12	27	_	3.12
	362	12	28	2.77	5.41
	363	12	29	2.19	6.09
	364	12	30	-	1.60
	365	12	31	-	4.30
Number of D	ays Δ dv >= 1	1.0		27	91
	Maximum Δ d			7.64	15.89

Table E.9.28 Big Sandy - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Iulian Day	Month Day		Scenario 2		
Julian Day		Day			
4 7	1 1	4 7	254	2.37	
			2.54	9.09	
8	1	8	-	1.62	
9	1	9	2.05	5.23	
10	1	10	2.25	4.74	
11	1	11	-	2.26	
12	1	12	1.28	4.27	
13	1	13	1.50	4.41	
14	1	14	3.29	7.70	
15	1	15	-	1.41	
17	1	17	1.99	5.53	
20		20	-	2.59	
21	1	21	-	2.05	
22	1	22	4.40	2.02	
23	1	23	1.49	4.17	
24	1	24	-	2.95	
28	1	28	11.7	1.07	
30	1	30	-	4.59	
31	1	31	-	2.88	
33	2	2	-	1.02	
41	2	10	-	2.20	
42	2	11	-	3.93	
43	2	12	1.07	4.31	
45	2	14	-	1.12	
46	2	15	1.48	4.18	
48	2	17	-	2.98	
49	2	18	-	1.04	
50	2	19	-	1.47	
53	2	22	-	1.65	
58	2	27	-	3.78	
59	2	28	3.50	12.29	
60	3	1	1.35	6.04	
61	3	2	-	2.92	
62	3	3	-	1.12	
63	3	4	-	1.67	
64	3	5	-	1.87	
65	3	6	1.03	2.65	
67	3	8	2.36	6.40	
68	3	9	-	2.12	
72	3	13	-	1.86	
78	3	19	-	1.39	
82	3	23	-	1.14	
84	3	25	-	2.20	
86	3	27	-	2.24	
87	3	28	-	1.10	
90	3	31	1.06	3.30	
97	4	7	-	1.01	
99	4	9	1.67	4.05	
111	4	21	-	1.67	
116	4	26	-	2.63	
119	4	29	-	1.32	
120	4	30	-	2.04	
132	5	12	-	1.29	
133	5	13	-	1.18	
134	5	14	1.24	3.46	
236	8	24	_	2.63	

		_	Scer	
Julian Day	Month	Day	1	2
265	9	22	-	1.05
275	10	2	-	1.40
276	10	3	-/6/	1.34
281	10	8	-	1.15
298	10	25	-	2.40
304	10	31	-	4.49
305	11	1	1.94	3.73
307	11	3	-	1.06
308	11	4	-	1.16
309	11	5	-	1.09
310	11	6	-	2.18
311	11	7	-	1.30
313	11	9	-	1.31
316	11	12	-	1.00
320	11	16	16 -	1.05
323	11	19	-	1.35
326	11	22		1.95
329	11	25	-	1.87
331	11	27	19.	1.40
336	12	2	25.	1.67
337	12	3	10 -	1.13
340	12	6	-	1.46
341	12	7	111	2.01
342	12	8	1.54	3.80
344	12	10	-	2.77
345	12	11	111	6.62
346	12	12	1.68	5.36
347	12	13	1.51	2.88
348	12	14	1.51	3.30
349	12	15		6.08
350	12	16	1.33	4.09
353	12	19	1.41	
354	12			2.81
355		20	7.59	13.81
	12	21	3.25	9.63
356	12	22	3.44	8.49
357	12	23	7.67	15.94
360	12	26	-	2.19
361	12	27	-	3.36
362	12	28	2.98	5.78
363	12	29	2.38	6.51
364	12	30	0 -	1.59
365	12	31	-	4.20
ys Δ dv >= 1.0	0		29	98
laximum Δ dv			7.67	15.94

Table E.9.29 Boulder - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Day	Month	Day	Scenario 1	
7	1	7	2.91	11.42
8	1	8	-	3.53
9	1	9	-	5.40
10	1	10	_	2.74
11	1	11	2.42	5.43
12	1	12	1.74	6.06
13	1	13	-	5.20
14	1	14	3.39	9.73
15	1	15	-	4.10
16	1	16	1.93	5.95
17	1	17	-	5.07
21	1	21	-	2.94
22	1	22	-	
22	1	22	-	1.40 3.42
			-	
24	1	24	1.02	4.95
27	1	27	-	1.37
30	1	30	-	3.74
31	1	31	-	2.63
40	2	9	-	3.66
41	2	10	-	1.68
43	2	12	-	2.28
44	2	13	-	1.50
45	2	14	-	2.43
46	2	15	-	4.87
47	2	16	-	1.13
48	2	17	-	1.90
49	2	18	-	2.62
53	2	22	17.	1.67
56	2	25	-	1.04
58	2	27	-	2.85
59	2	28	-	7.50
60	3	1	-	2.02
61	3	2	1.70	5.14
62	3	3	-	3.06
63	3	4	-	2.29
64	3	5	-	1.24
65	3	6	-	2.01
67	3	8	-	6.78
68	3	9		3.51
69	3	10	_	1.84
71	3	12	1.23	2.60
72	3	13	1.93	6.58
73	3	14	-	3.04
74	3	15	-	1.59
77	3	18	-	1.27
78	3	19	-	1.31
	3	22		1.76
81			-	
84	3	25	-	1.98
86	3	27	-	2.12
87	3	28	-	1.10
89	3	30	-	2.46
90	3	31	-	2.85
92	4	2	-	1.34
97	4	7	-	2.37
98	4	8	-	1.13
99	4	9	1.77	6.74

Iulian Day	Month	Day	1	nario 2
Julian Day		Day	1	
110	4	20	-	2.85
111	4	21	-	1.78
116	4	26	-	3.10
118	4	28	-	1.03
119	4	29	-	2.89
120	4	30	-	5.10
121	5	1		1.30
123	5	3	-	1.12
132	5	12	-	2.52
134	5	14	-	4.53
158	6	7		1.00
170	6	19		1.07
184	7	3		1.54
212	7	31		1.10
223	8	11	-	1.77
			-	
224	8	12	-	1.87
230	8	18	-	1.06
236	8	24	-	6.45
237	8	25	-	2.06
252	9	9	-	1.10
262	9	19	-	1.61
263	9	20	-	1.87
264	9	21	-	3.26
265	9	22	-	2.20
269	9	26	_	1.59
271	9	28	-	2.53
274	10	1		2.56
277	10	4		1.03
279	10		-	
		6	-	1.03
280	10	7	-	1.24
281	10	8	-	1.38
285	10	12	-	1.01
286	10	13	-	1.13
298	10	25	-	2.19
303	10	30	-	4.00
304	10	31	-	5.76
305	11	1	-	3.90
307	11	3	-	1.04
309	11	5	-	1.11
310	11	6	-	2.40
320	11	16	_	1.12
325	11	21		1.58
326	11	22		1.58
328	11	24		1.34
329	11	25	-	
			-	1.21
330	11	26	-	1.50
331	11	27	-	1.54
336	12	2	-	1.83
338	12	4	-	2.78
340	12	6	-	2.96
341	12	7	-	1.19
342	12	8	-	3.14
344	12	10	-	3.78
345	12	11	-	9.55
346	12	12	1.68	5.02
347	12	13	-	5.00
348	12	14		3.40
349	12	15		4.09
349	12	15	-	4 09

				Sce	nario
J	ulian Day	Month	Day	1	2
	353	12	19	4.49	9.11
	354	12	20	4.63	14.15
	355	12	21	2.93	11.94
	356	12	22	2.45	12.22
	357	12	23	7.70	19.09
	358	12	24		1.76
	361	12	27	-	3.61
	362	12	28	4.13	8.84
	363	12	29	-	2.22
	364	12	30	-	1.25
	365	12	31	-	1.82
Number of Day	ys Δ dv >= 1	1.0		18	126
	aximum Δ c			7.70	19.09

Table E.9.30 Boulder - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage- Direct and Cumulative Modeled Scenarios - MVISBK=2

Lutters De	11	D	Scenario		
Julian Day	Month	Day	1	2	
4	1	4		1.06	
7	1	7	3.29	12.39	
8	1	8	-	3.77	
9	1	9	-	5.63	
10	1	10		2.94	
11	1	11	2.49	5.58	
12	1	12	1.83	6.29	
13	1	13		5.72	
14	1	14	3.63	10.24	
15	1	15	- 1	4.03	
16	1	16	2.05	6.24	
17	1	17	-	5.71	
21	1	21	-	3.41	
22	1	22	-	1.66	
23	1	23	-	3.97	
24	1	24	1.22	5.72	
27	1	27	-	1.36	
30	1	30	-	4.29	
31	1	31	-	2.95	
40	2	9	-	4.17	
41	2	10	-	1.91	
43	2	12		2.59	
44	2	13	-	1.72	
45	2	14	-	2.73	
46	2	15	-	5.41	
47	2	16	-	1.31	
48	2	17	-	2.21	
49	2	18	-	3.03	
53	2	22	-	1.96	
56	2	25	-	1.24	
58	2	27	-	3.25	
59	2	28	-	8.02	
60	3	1	-	2.27	
61	3	2	1.95	5.78	
62	3	3	1.10	3.46	
63	3	4	-	2.35	
64	3	5	-	1.37	
65	3	6	-	2.29	
67	3	8	88-	7.66	
68	3	9		4.08	
69	3	10	1.01	2.17	
71	3	12	1.22	2.59	
72	3	13	2.08	6.99	
73	3	14	-	3.43	
74	3	15	-	1.84	
77	3	18	-	1.50	
78	3	19	-	1.53	
81	3	22		1.94	
84	3	25	-	2.18	
86	3	27	1-	2.42	
87	3	28	-	1.28	
89	3	30	114	2.87	
90	3	31	1212	3.33	
92	4	2	_	1.29	
97	4	7	V _	2.23	
98					

ulian Day	Month	Day	Scer 1	2
99	4	Day 9	1.42	5.64
110	4	20	-	2.44
111	4	21		1.68
116	4	26		2.81
119	4	29		2.60
120	4	30		4.02
120	5	1		1.10
132	5	12		2.09
			-	
134	5	14	11.	3.95
184	7	3	-	1.30
223	8	11	-	1.48
224	8	12	-	1.57
236	8	24	-	5.20
237	8	25	-	1.64
262	9	19	-	1.19
263	9	20	-	1.44
264	9	21	-	2.22
265	9	22	-	1.66
269	9	26	-	1.38
271	9	28	-	2.10
274	10	1	-	2.09
277	10	4	-	1.18
279	10	6	-	1.05
280	10	7	-	1.43
281	10	8	-	1.58
285	10	12	-	1.17
286	10	13	-	1.31
295	10	22	-	1.10
298	10	25	-	2.51
303	10	30	-	4.38
304	10	31	-	5.63
305	11	1	-	4.26
307	11	3	-	1.17
309	11	5	-	1.28
310	11	6	-	2.73
311	11	7	-	1.01
313	11	9	-	1.11
320	11	16	-	1.29
325	. 11	21	-	1.81
326	11	22	-	1.81
328	11	24		1.54
329	11	25		1.39
330	11	26		1.72
331	11	27		1.67
336	12	2		2.09
		4		
338 340	12 12	6		3.18 3.37
	12	7		1.34
341		8		3.56
342	12			
344	12	10		4.25
345	12	11	4.75	9.53
346	12	12	1.75	5.21
347	12	13	-	4.70
348	12	14	-	3.39
349	12	15	-	4.36
350	12	16	1.53	6.30
353	12	19	4.72	9.49
354	12	20	4.61	14.10
355	12	21	2.95	12.00

			Sce	nario
Julian Day	Month	Day	1	2
356	12	22	2.56	12.57
357	12	23	7.74	19.14
358	12	24	-	1.91
361	12	27	-	3.88
362	12	28	4.43	9.35
363	12	29	-	2.41
364	12	30	-	1.24
365	12	31	-	1.77
Number of Days Δ dv >= 1			20	123
Maximum Δ d	v		7.74	19.14

Table E.9.31 Bronx - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Day	Month	Day	1	nario 2
Julian Day 5	Month 1	Day 5	-	1.31
7	1	7		2.69
11	1	11		3.74
12	1	12	1.30	4.67
14	1	14		4.45
15	1	15	-	2.02
16	1	16	1.05	3.62
24	1	24	1.05	4.09
25	1	25	-	2.08
26	1	26	1.15	3.18
26	1	27	2.33	8.41
39	2	8		2.77
		9	4.44	
40	2		1.14	4.53
43	2	12	-	1.55
44	2	13	-	4.61
45	2	14	-	2.23
61	3	2	4.05	4.01
62	3	3	1.25	5.43
63	3	4	1.73	5.65
72	3	13	-	3.29
74	3	15	-	2.56
84	3	25	-	2.17
87	3	28	-	2.20
99	4	9	-	4.21
107	4	17	-	1.21
110	4	20	-	5.88
116	4	26	-	1.72
118	4	28	-	1.55
119	4	29	-	2.75
120	4	30	-	4.04
123	5	3	-	1.72
124	5	4	-	1.61
125	5	5	-	2.72
127	5	7	-	1.78
131	5	11	-	1.98
147	5	27	7	1.52
170	6	19	-	2.00
184	7	3	-	1.13
187	7	6	-	1.03
202	7	21	-	1.11
205	7	24	-	1.08
218	8	6	-	1.01
223	8	11	-	1.01
224	8	12	-	1.42
234	8	22	-	1.01
235	8	23	-	1.35
236	8	24	-	2.59
237	8	25	-	3.69
238	8	26	-	1.12
239	8	27	-	1.18
241	8	29	-	1.03
252	9	9	-	1.61
254	9	11	-	1.23
262	9	19	-	1.04
263	9	20	1.16	8.34
264	9	21	-	1.66

100				Sce	nario	
J	Iulian Day	Month	Day	1	2	
	265	9	22	-	1.69	
	268	9	25	-	1.07	
	269	9	26	-	1.87	
	271	9	28	-	2.74	
	280	10	7	-	1.95	
	281	10	8		1.12	
	325	11	21	-	1.56	
	347	12	13	-	1.14	
	350	12	16	1.35	5.84	
	351	12	17	1.24	3.98	
	352	12	18	-	2.58	
	353	12	19	2.52	12.58	
	354	12	20	2.66	11.74	
	355	12	21	1.40	10.77	
	356	12	22	1.05	8.91	
	357	12	23	2.03	13.04	
	362	12	28	1.68	9.51	
Number of Day	ys Δ dv >= 1.	.0		16	73	
M	aximum Δ dv	/		2.66	13.04	

Table E.9.32 Bronx - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Day	Month	Day	1	nario 2
		Day		
5 7	1	5	-	1.55
	1	7	-	3.04
11	1	11	4.07	3.85
12	1	12	1.37	4.86
13	1	13	17.7	1.09
14	1	14	-	4.75
15	1	15	-	1.98
16	1	16	1.12	3.82
24	1	24	1.01	4.74
25	1	25	-	2.45
26	1	26	1.34	3.67
27	1	27	2.33	8.41
39	2	8	-	3.16
40	2	9	1.32	5.12
43	2	12	-	1.77
44	2	13	-	5.16
45	2	14	-	2.51
61	3	2	-	4.54
62	3	3	1.43	6.06
63	3	4	1.78	5.77
72	3	13	-	3.53
74	3	15	-	2.94
83	3	24	~	1.04
84	3	25	-	2.39
87	3	28	-	2.54
99	4	9	-	3.45
107	4	17	-	1.13
110	4	20	-	5.14
116	4	26	-	1.55
118	4	28	-	1.39
119	4	29	-	2.47
120	4	30	-	3.15
123	5	3	-	1.36
124	5	4	-	1.08
125	5	5	-	2.10
127	5	7		1.49
131	5	11	-	1.57
147	5	27		1.12
170	6	19	-	1.80
224	8	12		1.18
235	8	23	_	1.14
236	8	24	_	2.01
237	8	25	_	2.98
239	8	27		1.02
252	9	9	-	1.33
254	9	11		1.05
263	9	20	-	6.84
264	9	21	-	1.11
	9	22	-	1.26
265	9	26	-	1.62
269			-	
271	9	28	-	2.28
280	10	7	-	2.23
281	10	8	-	1.29
285	10	12	-	1.08
325	11	21		1.80

			Sce	nario
Julian Day	Month	Day	1	2
350	12	16	1.43	6.13
351	12	17	1.28	4.09
352	12	18	-	2.73
353	12	19	2.66	13.03
354	12	20	2.64	11.70
355	12	21	1.42	10.83
356	12	22	1.10	9.20
357	12	23	2.04	13.08
362	12	28	1.82	10.04
Number of Days Δ dv >= 1	.0		16	65
Maximum Δ d	V		2.66	13.08

Table E.9.33 Cora - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Iulian Da	Month	Day		nario
Julian Day	Month	Day	11	2
7	1	7	n -	4.54
8	1	8	-	1.27
9	1	9	-	3.21
10	1	10	-	3.14
11	1	11	1.68	7.53
12	1	12	2.03	5.89
13	1	13	-	3.41
14	1	14	1.72	6.05
15	1	15	-	3.04
16	1	16	-	4.54
24	1	24	-	4.56
26	1	26	-	2.79
27	1	27	1.23	6.09
		. 8	-	
39	2			1.46
40	2	9	1.39	4.91
43	2	12	-	1.59
44	2	13	-	3.47
45	2	14	-	3.22
61	3	2	1.38	5.06
62	3	3	1.22	4.50
63	3	4	1.70	5.12
65	3	6	-	1.94
68	3	9		2.31
69	3	10	-	1.72
70	3	11		1.82
71	3	12	-	2.94
	3	13	1.17	7.22
72				
74	3	15	-	2.23
84	3	25	-	3.60
87	3	28	-	2.36
96	4	6	-	1.04
99	4	9	-	4.70
110	4	20	-	6.59
116	4	26	-	2.97
118	4	28	-	1.39
119	. 4	29	_	2.78
120	4	30		4.62
123	5	3		1.44
	5 -	4		1.31
124			-	
125	5	5	-	1.76
131	5	11	-	1.42
132	5	12	-	1.61
134	5	14	-	1.17
147	5	27	-	1.01
170	6	19	-	1.72
224	8	12	-	2.29
236	8	24	-	2.06
237	8	25	-	3.18
252	9	9		1.42
	9	11		1.43
254				
262	9	19	-	1.16
263	9	20	-	7.97
264	9	21	-	2.72
265	9	22	-	5.64
269	9	26	-	1.24
	9	27		1.12

				Scenario	
	Julian Day	Month	Day	1	2
	271	9	28	-	2.57
	280	10	7	-	1.55
	285	10	12		1.59
	295	10	22	-	1.87
	305	11	đ		3.14
	325	11	21		2.17
	340	12	6		1.04
	346	12	12	-	2.53
	347	12	13	-	3.36
	350	12	16	1.16	6.67
	351	12	17	-	1.37
	352	12	18		2.06
	353	12	19	3.21	13.09
	354	12	20	3.22	13.44
	355	12	21	1.68	10.40
	356	12	22	1.20	10.03
	357	12	23	3.03	15.34
	362	12	28	2.42	9.54
lumber of I	Days Δ dv >= 1.0			16	74
	Maximum Δ dv			3.22	15.34

Table E.9.34 Cora - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data
Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

helian D	14	D		nario
Julian Day	Month	Day	1	2
7	1	7		5.08
8	1	8	-	1.37
9	1	9	-	3.36
10	1	10		3.37
11	1	11	1.73	7.71
12	1	12	2.12	6.11
13	1	13	-	3.78
14	1	14	1.86	6.42
15	1	15	13.5	2.98
16	1	16	1.03	4.78
24	1	24	1.11	5.28
25	1	25	-	1.03
26	1	26	1.04	3.23
27	1	27	1.23	6.09
39	2	8	-	1.68
40	2	9	1.61	5.55
43	2	12	-	1.81
44	2	13	-	3.91
45	2	14	1.01	3.59
61	3	2	1.58	5.69
62	3	3	1.39	5.04
63	3	4	1.75	5.23
65	3	6	-	2.22
68	3	9	-	2.71
69	3	10	-	2.03
70	3	11	-	2.10
71	3	12	-	2.93
72	3	13	1.26	7.66
74	3	15	-	2.57
84	3	25	-	3.94
87	3	28	-	2.72
99	4	9	-	3.87
110	4	20	-	5.78
116	4	26	-	2.69
118	4	28	-	1.24
119	4	29	-	2.49
120	4	30	-	3.62
123	5	3	-	1.13
125	5	5	-	1.34
131	5	11	-	1.13
132	5	12	-	1.33
170	6	19	-	1.54
224	8	12	-	1.92
236	8	24		1.59
237	8	25	-	2.56
252	9	9		1.18
254	9	11	-	1.22
263	9	20	-	6.52
264	9	21	-	1.84
265	9	22		4.42
269	9	26	-	1.07
271	9	28		2.13
280	10	7		1.77
281	10	8		1.08
	10	12		1.83
285	10	12		1.00

				Scenario	
	Julian Day	Month	Day	1	2
	305	11	1	-	3.44
	325	11	21	-	2.49
	326	11	22		1.02
	340	12	6	-	1.19
	346	12	12	-	2.64
	347	12	13	-	3.14
	350	12	16	1.23	6.99
	351	12	17		1.41
	352	12	18	-	2.18
	353	12	19	3.38	13.55
	354	12	20	3.20	13.40
	355	12	21	1.69	10.46
	356	12	22	1.26	10.34
	357	12	23	3.04	15.39
	362	12	28	2.61	10.08
Number of	Days Δ dv >= 1.0	0		20	71
	Maximum Δ dv			3.38	15.39

Table E.9.35 Daniel - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv. Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Da	21/	Month	Day	1	cenario 2
Julian Da	5 5	IVIONIN 1	5	-	2.47
	6	1	6	-	2.47
				4.00	
	7	1	7	1.06	7.13
	11	1	11	11	2.29
	12	1	12		2.56
	14	1	14	1.12	3.32
	15	1	15	-	1.47
	16	1	16	-	2.89
	21	1	21	-	1.45
	24	1	24	1.25	5.81
	25	1	25	-	3.42
	26	1	26	1.27	3.39
	27	1	27	3.46	11.60
	39	2	8	-	4.97
	40	2	9	1.52	4.79
	43	2	12	-	2.82
	44	2	13	-	4.82
	45	2	14	-	1.87
	53	2	22	-	1.64
	56	2	25	-	2.04
	61	3	2	1.48	9.10
	62	3	3	1.92	7.80
	63	3	4	1.81	6.70
	68	3	9	-	1.25
	72	3	13	-	1.68
	74	3	15	_	5.27
	75	3	16	_	1.62
	77	3	18	_	1.26
	80	3	21	_	1.15
	83	3	24		1.09
	84	3	25	_	1.36
	87	3	28		3.33
	96	4	6		1.36
	97	4	7		1.05
	98	4	8		1.30
	99	4	9		6.78
	04	4	14		1.66
	104	4	16		1.45
		4	17		2.52
	107	4			1.81
	109	4	19	1.01	6.31
	110		20	1.01	5.62
	116	4	26	-	
	117	4	27		1.17
	118	4	28	-	3.55
	119	4	29	-	6.06
	120	4	30	-	4.61
	122	5	2	-	1.78
	123	5	3	-	3.01
	124	5	4	-	2.71
	125	5	5	1.39	5.65
1	126	5	6	-	1.03
	127	5	7	-	2.28
	131	5	11	-	3.17
	132	5	12	-	1.77
	134	5	14	-	1.12
					1.14

Indian Day	8.0 41-	D		nario
Julian Day	Month	Day	1	2
147	5	27	-	3.61
161	6	10	-	1.53
166	6	15	-	1.35
169	6	18	-	1.42
170	6	19	-	4.80
195	7	14	-	1.00
202	7	21	-	1.25
205	7	24	-	1.22
217	8	5	-	1.04
237	8	25	-	4.24
246	9	3	-	1.16
252	9	9	-	1.86
254	9	11	-	1.97
262	9	19	-	1.97
263	9	20	1.96	9.69
264	9	21	-	4.90
265	9	22	-	3.61
268	9	25	-	1.70
269	9	26	-	2.29
270	9	27	-	1.80
271	9	28	-	5.32
272	9	29	-	1.07
280	10	7	-	4.13
281	10	8	-	2.37
285	10	12	-	1.37
290	10	17	-	1.05
295	10	22	-	1.14
320	11	16	-	1.47
325	11	21	-	4.11
326	11	22	-	1.08
350	12	16	1.71	7.02
351	12	17	1.87	7.14
352	12	18	-	6.93
353	12	19	4.26	16.31
354	12	20	3.43	16.85
355	12	21	2.33	15.87
356	12	22	1.69	11.74
357	12	23	3.19	17.51
362	12	28	1.87	11.88
363	12	29	-	1.20
ys Δ dv >= 1.0	0		20	96
faximum ∆ dv			4.26	17.51

Number of

Table E.9.36 Daniel - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Day	Month	Day	Scer 1	2
Julian Day 5	Wonth 1	Day 5		2.90
6	1	6	-	2.65
7	1	7	1.21	7.87
11	1	11	-	2.36
12	1	12	-	2.68
14	1	14	1.21	3.55
15	1	15	-	1.44
16	1	16	1.02	3.06
21	1	21	-	1.69
24	1	24	1.49	6.67
25	1	25	-	3.99
26	1	26	1.49	3.90
27	1	27	3.46	11.59
39	2	8	-	5.59
40	2	9	1.76	5.41
43	2	12	-	3.19
44	2	13	1.05	5.39
45	2	14	-	2.10
53	2	22	-	1.94
56	2	25		2.40
61	3	2	1.70	10.0
62	3	3	2.19	8.60
63	3	4	1.86	6.83
68	3	9	-	1.49
70	3	11	-	1.06
72	3	13	-	1.82
74	3	15	-	5.95
75	3	16	-	1.90
77	3	18	-	1.49
80	3	21	-	1.36
83	3	24	-	1.27
84	3	25	-	1.50
87	3	28	-	3.81
96	4	6		1.28
98	4	8		1.20
99	4	9		5.67
104	4	14		1.61
104	4	16	-	1.37
	4	17	-	2.36
107			-	
109	4	19	•	1.72
110	4	20	-	5.53
116	4	26	-	5.14
117	4	27	-	1.04
118	4	28	-	3.22
119	4	29	-	5.52
120	4	30	-	3.62
122	5	2	-	1.57
123	5	3	-	2.40
124	5	4	-	1.85
125	5	5	1.05	4.49
127	5	7	-	1.92
131	5	11	_	2.56
132	5	12		1.46
	5	27		2.72
147 161	6	10	-	1.16

100			Sco	nario
Julian Day	Month	Day	1	2
169	6	18	-	1.31
170	6	19		4.37
202	7	21	-	1.02
205	7	24	-	1.04
237	8	25		3.44
252	9	9	-	1.54
254	9	11	-	1.69
262	9	19	-	1.46
263	9	20	1.51	8.04
264	9	21	-	3.43
265	9	22	-	2.76
268	9	25	-	1.35
269	9	26	-	1.99
270	9	27	-	1.47
271	9	28	-	4.51
280	10	7	-	4.65
281	10	8	-	2.70
285	10	12	-	1.58
290	10	17	-	1.21
295	10	22	-	1.31
320	11	16	-	1.69
325	11 -	21	-	4.65
326	11	22	-	1.24
350	12	16	1.82	7.35
351	12	17	1.92	7.32
352	12	18	-	7.25
353	12	19	4.48	16.82
354	12	20	3.41	16.81
355	12	21	2.35	15.94
356	12	22	1.77	12.08
357	12	23	3.21	17.56
362	12	28	2.03	12.48
363	12	29	-	1.31
Number of Days Δ dv >= 1.	.0		21	89
Maximum ∆ dv	,		4.48	17.56

Table E.9.37 Farson - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Iulian Day	Manth	Davi		nario
Julian Day	Month	Day	1	2
3	1	3	1.37	5.11
4	1	4	-	2.46
7	1	7	1.81	5.25
17	1	17	11.	3.14
18	. 1	18	-	2.01
21	1	21	-	2.47
22	1	22	6.40	13.46
23	1	23	3.06	8.23
24	1	24	-	2.65
28	1	28	3.08	8.73
29	1	29	-	2.35
30	1	30	3.00	7.18
41	2	10	3.72	6.88
43	2	12	-	2.15
46	2	15	2.26	5.18
52	2	21	2.12	4.25
53	2	22	5.81	10.14
54	2	23	6.39	12.73
55	2	24	2.03	5.67
	2			
56		25	7.44	2.93
57	2	26		12.6
58	2	27	-	1.46
59	2	28	-	2.08
60	3	1	1.23	4.13
74	3	15	-	1.35
76	3	17	3.73	11.4
78	3	19	-	1.22
86	3	27	-	1.32
90	3	31	-	1.58
92	4	2	-	2.40
96	4	6	-	1.39
98	4	8	-	1.71
100	4	10	-	1.12
109	4	19	-	2.04
111	4	21	-	1.52
113	4	23	-	1.73
115	4	25	-	1.44
116	4	26		1.82
119	4	29	1.91	4.04
120	4	30	3.87	9.25
121	5	1	-	1.73
122	5	2		1.37
123	5	3	2.63	5.69
124	5	4	-	1.63
124	5	8	1.25	3.05
		13	4.24	8.11
133	5			
137	5	17	1.17	2.69
139	5	19	1.40	2.97
140	5	20	1.96	4.66
142	5	22	1.92	3.98
147	5	27	2.17	4.97
148	5	28	5.24	8.94
157	6	6	-	1.80
161	6	10	-	1.42
162	6	11	-	1.22
102	U			

				nario
Julian Day	Month	Day	11	2
188	7	7	1.32	2.58
231	8	19	-	1.28
256	9	13	-	1.16
267	9	24	-	1.53
273	9	30	-	1.04
274	10	1	1.22	4.12
275	10	2	-	1.49
276	10	3	2.28	5.44
279	10	6	1.19	3.15
282	10	9	-	2.02
283	10	10	-	1.59
284	10	11	2.49	4.58
289	10	16	-	1.97
290	10	17	-	1.84
291	10	18	1.17	3.38
297	10	24	2.66	6.53
309	11	5	-	2.23
319	11	15	-	1.36
320	11	16	-	1.63
321	11	17	2.86	6.16
322	11	18	4.71	9.13
323	11	19	-	1.75
324	11	20	1.45	5.73
325	11	21	2.04	4.84
326	11	22	-	1.81
327	11	23	-	1.80
332	11	28	1.35	4.19
350	12	16	-	2.05
354	12	20	4.07	7.92
355	12	21	7.21	13.14
356	12	22	2.16	6.09
357	12	23	1.60	4.32
358	12	24	2.39	5.19
359	12	25	1.79	5.13
360	12	26	1.68	4.36
361	12	27	-	1.36
362	12	28	-	1.48
363	12	29	1.42	4.38
364	12	30	1.37	3.70
ys Δ dv >= 1.	0		47	95
faximum ∆ dv			7.44	13.46

Number of

Table E.9.38 Farson - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Julian Day	Month	Day	1	nario 2
3	1	3 3	1.48	5.43
4	1	4		2.63
7	1	7	1.90	
17	1	17	1.90	5.48
18	1	18		3.17
			, - ,	2.06
21	1	21	-	2.63
22		22	6.83	14.12
23	1	23	3.29	8.72
24	1	24		2.76
28	1	28	3.17	8.95
29	1	29	-	2.53
30	1	30	3.24	7.65
41	2	10	4.06	7.42
43	2	12	-	2.39
46	2	15	2.34	5.32
52	2	21	2.16	4.32
53	2	22	5.59	9.82
54	2	23	6.41	12.78
55	2	24	2.07	5.76
56	2	25		2.97
57	2	26	7.64	12.89
58	· 2	27	-	1.59
59	2	28		2.22
60	3	1	1.29	4.30
74	3	15	-	1.38
76	3	17	4.06	12.17
78	3	19	-	1.41
86	3	27	-	1.54
90	3	31	-	1.85
92	4	2	-	2.27
96	4	6	-	1.33
98	4	8	1-	1.47
109	4	19	-	1.34
111	4	21	-	1.12
113	4	23	-	1.19
115	4	25	-	1.11
116	4	26	-	1.27
119	4	29	1.43	3.10
120	4	30	3.04	7.62
121	5	1	-	1.29
123	5	3	1.72	3.91
124	5	4	-	1.27
128	5	8	1.06	2.61
133	5	13	3.32	6.59
137	5	17	1.05	2.43
139	5	19	1.29	2.75
140	5	20	1.81	4.36
142	5	22	1.64	3.43
147	5	27	1.51	3.59
148	5	28	4.06	7.17
157	6	6	-	1.67
161	6	10		1.21
162	6	11		1.01
184	7	3	_	2.69
188	7	7	1.11	2.20

				Sce	nario
	Julian Day	Month	Day	1	2
	267	9	24	-	1.27
	274	10	1	-	3.46
	275	10	2	-	1.67
	276	10	3	2.54	5.97
	279	10	6	1.31	3.43
	282	10	9	-	2.30
	283	10	10	-	1.82
	284	10	11	2.82	5.13
	289	10	16	-	2.24
	290	10	17	-	2.09
	291	10	18	1.34	3.81
	297	10	24	2.70	6.61
	309	11	5	-	2.48
	319	11	15		1.27
	320	11	16		1.55
	321	11	17	2.78	6.01
	322	11	18	4.73	9.16
	323	11	19		1.91
	324	11	20	1.51	5.94
	325	11	21	2.15	5.08
	326	11	22	-	2.01
	327	11	23		1.95
	332	11	28	1.48	4.56
	350	12	16	-	2.13
	354	12	20	4.21	8.14
	355	12	21	7.49	13.52
	356	12	22	2.31	6.42
	357	12	23	1.72	4.59
	358	12	24	2.58	5.55
	359	12	25	1.94	5.50
	360	12	26	1.82	4.67
	361	12	27	-	1.50
	362	12	28		1.62
	363	12	29	1.54	4.72
	364	12	30	1.38	3.74
Number of I	Days Δ dv >= 1.	.0		46	91
	Maximum Δ dv			7.64	14.12

Table E.9.39 La Barge - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Iulian Da	Month	Davi	1	nario
Julian Day		Day		2
6	1	6	7.67	14.23
. 7	1	7	3.58	9.37
17	1	17	-	1.39
20	1	20	-	1.43
21	1	21	1.39	4.28
22	1	22	-	1.65
23	1	23	1.57	5.34
24	1	24	-	1.19
27	1	27	-	1.62
28	1	28	6.73	12.81
30	1	30	-	1.81
39	2	8	-	1.17
40	2	9	1.12	1.68
61	3	2	-	1.44
74	3	15	-	1.85
89	3	30	-	1.23
99	4	9	-	1.56
108	4	18	-	1.27
109	4	19	_	3.61
112	4	22	_	3.24
113	4	23	1.12	2.42
114	4	24	-	2.15
117	4	27		1.35
118	4	28		2.66
119	4	29		1.77
			4.44	
122	5	2	1.44	3.81
123	5	3	-	1.63
124	5	4	2.59	4.80
125	5	5	1.33	2.15
130	5	10	-	1.12
131	5	11	-	1.03
132	5	12	-	3.44
134	5	14	-	1.70
135	5	15	-	1.10
143	5	23	1.29	2.43
144	5	24	-	1.31
147	5	27	-	1.34
148	5	28	-	4.16
149	5	29	1.21	3.02
150	5	30	-	2.35
155	6	4	-	1.44
156	6	5	1.69	3.51
160	6	9	1.29	1.85
161	6	10	-	1.70
162	6	11	3.23	7.33
163	6	12	-	2.38
172	6	21	_	1.02
175	6	24	-	1.24
180	6	29	1.22	1.48
201	7	29	1.35	2.84
202	7	21	-	3.11
205	7	24	-	1.08
213	8	1	-	1.26
216	8	4	-	1.01
235	8	23	-	1.11
262	9	19		1.51

				Sce	nario	
	Julian Day	Month	Day	1	2	
	264	9	21		3.17	
	265	9	22	1.64	2.42	
	268	9	25	1.13	1.97	
	273	9	30	1.12	8.02	
	274	10	1	-	1.19	
	352	12	18	2.16	3.96	
	354	12	20	1.41	3.37	
	355	12	21	2.75	7.30	
	356	12	22	1.87	5.05	
	357	12	23	-	1.57	
	363	12	29	-	1.93	
Number o	f Days ∆ dv >= 1.0	0		24	67	
	Maximum Δ dv			7.67	14.23	

Table E.9.40 La Barge - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

				enario
Julian Day	Month	Day	1	2
6	1	6	8.27	15.06
7	1	7	3.88	9.96
17	1	17	-	1.47
20	1	20	-	1.44
21	1	21	1.52	4.62
22	1	22	-	1.95
23	1	23	1.87	6.16
24	1	24	-	1.42
27	1	27	-	1.57
28	1	28	6.72	12.81
30	1	30	-	2.12
39	2	8	-	1.27
40	2	9	1.16	1.75
61	3	2	1.03	1.65
74	3	15	-	1.78
87	3	28	- "	1.10
89	3	30	-	1.41
109	4	19	-	3.10
112	4	22	-	2.74
113	4	23	-	1.57
114	4	24	-	1.62
117	4	27	-	1.00
118	4	28	-	2.26
119	4	29	-	1.15
122	5	2	-	2.37
123	5	3	-	1.17
124	5	4	1.70	3.28
125	5	5	-	1.52
132	5	12	-	2.11
143	5	23	-	1.57
148	5	28	-	2.55
149	5	29	-	1.87
150		30	-	1.95
156	6	5	1.11	2.37
160		9	-	1.08
162		11	2.08	5.03
163		12	-	2.11
180		29	1.00	1.21
201	7	20	1.09	2.34
202		21	-	2.36
213		1	-	1.10
262		19	-	1.25
264		21	-	2.64
265		22	1.04	1.56
268		25	-	1.22
273		30	-	5.49
352		18	2.31	4.21
354		20	1.54	3.65
355		21	3.06	7.97
356		22	2.13	5.62
357		23	-	1.77
362		28	-	1.04
363	12	29	-	2.14
	4.0		47	E2
Number of Days Δ dv >=			17	53
Maximum ∆	av		8.27	15.06

Table E.9.41 Merna - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

				nario
Julian Day	Month	Day	1	2
5	1	5	-	2.92
6	1	6	-	2.28
7	1	7	-	1.65
24	1	24	-	2.81
25	1	25	1.24	3.26
26	1	26	-	1.28
27	1	27	3.24	7.89
39	2	8	-	2.87
40	2	9	-	2.55
44	2	13	1.10	5.10
61	3	2	-	3.08
62	3	3	-	4.55
74	3	15	-	1.04
87	3	28	1.08	3.47
99	4	9	-	1.00
106	4	16		1.16
107	4	17		2.14
109	4	19	14-	1.37
110	4	20	-	1.88
118	4	28	-	2.00
119	4	29	-	1.01
122	5	2	-	1.68
123	5	3		1.59
124	5	4		1.52
125	5	5	2.04	6.12
126	5	6	_	1.11
127	5	7	77.	1.20
131	5	11		1.40
134	5	14	_	1.01
147	5	27	-	2.40
161	6	10		1.33
180	6	29	111	1.07
263	9	20	1.01	6.88
264	9	21	-	2.07
265	9	22		1.10
269	9	26		1.15
270	9	27	1/1_	1.33
350	12	16		1.29
351	12	17		4.04
352	12	18	_	2.61
353	12	19	2.16	8.29
354	12	20	2.13	9.52
355	12	21	1.58	10.88
356	12	22	1.26	8.29
357	12	23	1.48	
362	12	28	1.40	9.90 4.15
302	12	20	1	4.15
ays Δ dv >= 1.0	n		11	46
Aaximum Δ dv			3.24	10.88

Number of

Table E.9.42 Merna - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

				nario
Julian Day	Month	Day	1	2
5	1	5	-	3.42
6	1	6	-	2.58
7	1	7		1.88
24	1	24	-	3.29
25	1	25	1.47	3.80
26	1	26	-	1.50
27	1	27	3.24	7.88
39	2	8	-	3.27
40	2	9	-	2.92
44	2	13	1.25	5.70
61	3	2	-	3.50
62	3	3	1.13	5.10
74	3	15	-	1.21
75	3	16	-	1.04
87	3	28	1.26	3.97
106	4	16	-	1.10
107	4	17		2.00
109	4	19	-	1.30
110	4	20	1	1.61
118	4	28	-	1.80
122	5	2	-	1.48
123	5	3	-	1.25
124	5	4	-	1.02
125	5	5	1.56	4.89
126	5	6	-	1.00
127	5	7	-	1.00
131	5	11	-	1.11
147	5	27	-	1.78
161	6	10	11-	1.00
263	9	20	-	5.58
264	9	21	-	1.38
270	9	27	-	1.09
350	12	16	-	1.37
351	12	17	-	4.15
352	12	18	-	2.76
353	12	19	2.28	8.65
354	12	20	2.12	9.49
355	12	21	1.59	10.93
356	12	22	1.33	8.57
357	12	23	1.49	9.94
362	12	28	-	4.45
mber of Days ∆ dv >= 1	.0		11	41
Maximum Δ d			3.24	10.93

Table E.9.43 Pinedale - Summary of Days Above Visibility Thresholds Using FLAG Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

				nario
Julian Day	Month	Day	1	2
6	1	6	-	1.19
7	1	7	1.57	7.62
8	1	8	-	2.68
9	. 1	9	-	5.69
10	1	10	-	4.51
11	1	11	1.80	7.63
12	1	12	2.02	6.00
13	1	13	1.50	5.89
14	1	14	2.25	7.70
15	1	15	-	7.01
16	1	16	1.34	5.52
21	1	21	-	1.63
23	1	23		1.68
24	1	24	1.05	5.92
26	1	26	1.00	2.27
27	1	27		
	1		-	4.52
30		30	-	1.27
39	2	8	-	1.55
40	2	9	1.31	5.04
41	2	10	-	1.07
43	2	12	-	3.06
44	2	13	-	3.32
45	2	14	-	3.95
46	2	15	-	4.13
49	2	18	-	1.31
53	2	22	-	1.46
56	2	25	-	1.29
60	3	1		1.73
61	3	2	1.80	5.75
62	3	3	1.13	4.03
63	3	4	1.18	3.89
64	3	5	-	1.46
65	3	6		2.52
67	3	8		1.95
68	3	9	1.07	3.11
69	3			
	3	10	1.26	2.79
70		11	-	1.20
71	3	12	-	3.03
72	3	13	1.69	7.18
73	3	14		2.89
74	3	15	-	2.41
78	3	19	-	1.01
81	3	22	-	1.52
84	3	25	-	2.53
86	3	27	-	1.05
87	3	28	-	2.52
96	4	6	-	1.09
97	4	7	_	1.54
99	4	9	-	5.47
110	4	20	-	5.50
111	4	21		1.29
115	4	25		1.04
116	4		-	
110	4	26 28	-	3.99 1.37
110		28	-	13/
118				
118 119 120	4	29 30	-	3.06 6.57

Julian Day	Month	Day	1	nario 2
123	5	З		
123	5	4	-	1.37
125	5	5	-	1.11
131	5	11	-	1.05
132	5	12	-	2.37
134	5	14	-	1.41
147	5	27	-	1.07
170	6	19	-	2.17
223	8	11	-	1.25
224	8	12	-	2.97
236	8	24	-	5.50
237 249	8	25	-	2.96
	9	6	-	1.12
252	9	9	- 0	1.47
254	9	11	-	1.29
262	9	19	-	1.89
263	9	20	-	7.20
264	9	21	-	4.71
265	9	22	-	5.04
268	9	25	-	1.22
269	9	26	-	1.40 1.50
270	9	27	-	2.54
271		28	- 11/	1.40
279	10	6	711	1.40
280 281	10 10	8		1.24
285			-	
295	10	12		1.63
304	10 10	22 31	-	1.68
304	11	1		3.96
310	11	6		1.93
311	11	7		1.23
312	11	8		1.11
314	11	10		1.00
325	11	21		2.00
326	11	22	-	1.09
328	11	24	-	1.11
331	11	27		1.20
336	12	2		1.55
338	12	4		1.63
340	12	6	-	2.07
342	12	8	-	2.12
344	12	10	-	2.68
345	12	11	-	8.80
346	12	12	_	3.69
347	12	13	-	5.39
348	12	14	-	1.11
350	12	16	1.09	6.84
352	12	18	-	1.53
353	12	19	4.27	12.00
354	12	20	3.97	14.82
355	12	21	2.27	11.03
356	12	22	1.58	11.88
357	12	23	4.87	17.91
358	12	24	-	1.58
361	12	27		1.52
362	12	28	3.24	9.35
363	12	29	-	1.14
303	12	20		
Days Δ dv >= 1	0		21	115
Juyo Li uv I				. 10

Number

Table E.9.44 Pinedale - Summary of Days Above Visibility Thresholds Using IMPROVE Background Data Predicted Δ dv Shown for Early Project Development Stage - Direct and Cumulative Modeled Scenarios - MVISBK=2

Lifer De	1.4 th	D		nario
Julian Day	Month	Day	11	2
6	1	6	4.70	1.36
7	1	7	1.78	8.39
8	1	8	-	2.88
9	1	9	-	5.93
10	1	10	4.00	4.82
11	1	11	1.86	7.81
12	1	12	2.11	6.23
13	1	13	1.68	6.47
14	1	14	2.42	8.15
15	1	15	-	6.90
16	1	16	1.42	5.81
21	1	21	-	1.90
23	1	23	-	1.99
24	1	24	1.25	6.79
26	1	26	-	2.63
27	1	27	-	4.51
30	1	30	-	1.48
39	2	8	-	1.79
40	2	9	1.51	5.68
41	2	10	-	1.22
43	2	12	-	3.46
44	2	13	-	3.74
45	2	14	1.07	4.38
46	2	15	-	4.61
49	2	18	-	1.53
53	2	22	-	1.72
56	2	25	-	1.52
60	3	1	-	1.95
61	3	2	2.07	6.44
62	3	3	1.29	4.53
63	3	4	1.22	3.98
64	3	5	-	1.61
65	3	6		2.87
67	3	8	-	2.28
68	3	9	1.26	3.62
69	3	10	1.49	3.27
70	3	11	-	1.39
71	3	12	-	3.02
72	3	13	1.83	7.62
73	3	14	-	3.26
74	3	15		2.77
75	3	16	-	1.05
78	3	19	-	1.19
81	3	22	-	1.67
84	3	25	-	2.78
86	3	27	-	1.22
87	3	28	-	2.90
96	4	6	-	1.03
97	4	7	_	1.45
99	4	9	-	4.53
110	4	20	-	4.80
111	4	21		1.22
116	4	26	_	3.63
118	4	28		1.23
119	4	29	_	2.75
120	4	30		5.25

				nario
Julian Day	Month	Day	11	2
121	5	1	-	2.30
123	5	3	-	1.07
125	5	5	-	1.13
132	5	12	-	1.96
134	5	14	-	1.20
170	6	19	-	1.96
223	8	11		1.04
224	8	12		2.50
236	8	24	7.1	4.39
237	8	25	1	2.38
252 254	9	9	11	1.22 1.10
262	9	19		1.40
263	9	20		5.86
264	9	21		3.28
265	9	22		3.92
	9	26		1.21
269 270	9	26	-	1.21
270	9	28	-	2.11
271	10	6	-	1.43
	10	7		1.69
280 281	10	8		1.42
285	10	12		1.88
286	10	13		1.12
295	10	22		2.31
	10	31	-	1.64
304 305	11	1		4.33
310	11	6	-	2.20
310	11	7	-	1.40
			-	1.26
312	11	8 10		
314	11		-	1.14
320	11	16 21		1.08 2.30
325	11	21	-	1.25
326 328	11	24		1.28
328	11	26		1.13
330	11	27	-	1.30
	12	2		1.77
336 338	12	4		1.87
338 340	12	6	-	2.37
342	12	8	-	2.42 3.03
344	12	10 11	-	8.79
345	12		7.11	3.84
346	12	12		5.07
347	12	13 14	-	
348	12	14 16	1.16	1.11 7.17
350	12		1.16	1.62
352	12	18	4.49	1.62
353	12	19		12.44 14.78
354	12	20	3.95	
355	12	21	2.29	11.09
356	12	22	1.65	12.23
357	12	23	4.90	17.96
358	12	24		1.72
361	12	27	0.40	1.64
362	12	28	3.48	9.88
363	12	29	-	1.24
r of Days ∆ dv >=	1.0		22	113

Table E.10.1 - Summary of Maximum Modeled NO_2 Concentration Impacts ($\mu g/m^3$) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources

		Bridger Wilderness Class I	rness Class I	Fitzpatrick Wilderness Class I	lerness Class I	Popo Agie Wildt	erness Class II	Popo Agie Wilderness Class II Wind River Roadless Area Class II	less Area Class II
		Direct Modeled Impact	Total Concentration ¹	Direct Modeled Impact	Total Concentration ¹	Direct Modeled Impact	Total Concentration ¹	Direct Modeled Impact	Total Concentration ¹
Alternative	WDR	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
Early Project Development	1	0.049	3.45	0.004	3.40	0.016	3.42	0.007	3.41
Early Project Development and Regional Sources	1	0.333	3.73	0.035	3.43	0.085	3.49	0.050	3.45

		Grand Teton Nativ	Grand Teton National Park Class I	Teton Wilderness Class I	rness Class I	Yellowstone Natio	onal Park Class I	Yellowstone National Park Class I Washakie Wilderness Area Class I	less Area Class I
		Direct Modeled Impact	ed Total Concentration ¹	Direct Modeled Impact	J Total Concentration ¹	Direct Modeled Impact	ect Modeled Total Impact Concentration ¹	Direct Modeled Impact	Total Concentration ¹
Alternative	WDR	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
Early Project Development	:	0.003	3.40	0.001	3.40	0.001	3.40	0.001	3.40
Early Project Development and Regional Sources	1	0.045	3.44	0.016	3.42	0.010	3.41	0.017	3.42

¹ Total concentration includes direct modeled impact and background concentration for comparison to NAAQS/WAAQS which are 100 µg/m³ on an annual basis.

Table E.10.2 - Summary of Maximum Modeled SO₂ Concentration (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources

			-B	Bridger Wildemess Class	demess (Class I			Fitzp	atrick Wil	Fitzpatrick Wilderness Class I	Class I			Popo Agie Wilderness Class II	e Wilden	ness Class	= s		Wind	Wind River Roadless Area Class II	lless Are	a Class II	
		Direct	Modelec	Direct Modeled Impact	Total	Total Concentration ¹	tration1	Dire	Direct Modeled Impact	led	Total C	Total Concentration ¹	ation1	Dire	Direct Modeled Impact		Total Concentration ¹	entration		Direct Modeled Impact	deled	Total (Total Concentration	tion1
Alternative	WDR	WDR 3-hr	24-hr	24-hr Annual	3-hr	24-hr	Annual	3-hr	24-hr Annual	Annual	3-hr	24-hr	24-hr Annual	3-hr	3-hr 24-hr Annual	ual 3-	3-hr 24-hr Annual	hr Annu	Jal 3-	hr 24-h	3-hr 24-hr Annual		3-hr 24-hr Annual	Annual
Early Project Development	1		0.224 0.064 0.004	0.004	132.2	43.1	9.0	0.066	0.066 0.015 0.001	0.001	132.1	43.0	0.6	0.082	0.082 0.018 0.002		132.1 43.0	0.6 0.		0.048 0.015	0.015 0.001	132.0	43.0	9.0
Early Project Development and Regional Sources	1.		0.210	0.847 0.210 0.014 132.8 43.2	132.8	43.2	0.6	0.249	0.064	0.249 0.064 0.001 132.2		43.1	0.6	0.204	0.204 0.048 0.002	02 13:	132.2 43.0	0.6 0.0		0.230 0.056 0.002	\$ 0.002	132.2	43.1	0.6
			Grand	Grand Teton National Park Class I	ational Pa	ark Class	_		Te	tan Wilde	Teton Wildemess Class I	ass I			Yellowstone National Park Class	e Nation	Park Cl	assi		Wash	Washakie Wildemess Area Class I	ness Are	a Class I	
		Direct	Modeled	Direct Modeled Impact Total Concentration ¹	Total	Concen	tration1	Dire	Direct Modeled Impact	pel	Total C	Total Concentration ¹	1tion1	Direc 1	Direct Modeled Impact		Total Concentration ¹	entration		Direct Modeled Impact	deled	Total	Total Concentration ¹	tion,
Alternative	WDF	3-hr	24-hr	WDR 3-hr 24-hr Annual 3-hr	3-hr	24-hr	24-hr Annual 3-hr 24-hr Annual 3-hr 24-hr Annual	3-hr	24-hr /	Annual	3-hr	24-hr	Annual		3-hr 24-hr Annual 3-hr	ual 3-	rr 24-4	24-hr Annual		3-hr 24-hr Annual	Annual	3-hr	24-hr	Annual
Early Project Development	1		0.011	0.037 0.011 0.000	132.0	132.0 43.0	0.6		0.007	0.000	0.019 0.007 0.000 132.0 43.0 9.0	43.0	0.6	0.015	0.015 0.006 0.000 132.0 43.0	00 13	2.0 43.	0.6 0		0.018 0.005 0.000	0.000	132.0	43.0	0.6
Early Project Development and Regional Sources	1		0.093	0.354 0.093 0.008	132.4	43.1	9.0	0.093	0.093 0.029 0.003	0.003	132.1	43.0	9.0	960.0	0.096 0.025 0.002		132.1 43.0	0.6		0.076 0.019 0.001		132.1	43.0	0.6

Total concentration includes direct modeled impact and background concentration for comparison to NAAQS/WAAQS which are 1,300 µg/m³ on a 3-hour basis, 365/260 µg/m³ on a 24-hour basis and 80/60 µg/m³ on an annual basis.

Table E.10.3 - Summary of Maximum Modeled PM₁₀ Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources

Direct Modeled Impact Total Concentration Di 24-hr Annual 24-hr Annual 24-hr Annual 16.0 16.0 16.0 17.1 35.6 16.2				Bridger Wildemess Class	mess Class		H	Fitzpatrick Wildemess Class I	amess Class	- 5	Po	Popo Agie Wildemess Class II	mess Class	=		Wind River Roadless Area Class II	ess Area Cla	II SSI
nent nent			Direct Mode	aled Imnact	Total Conc	entration1	Direct Mode	aled Impact	Total Cond	pentration1	Direct Mode	eled Impact	Total Cond	centration1	Direct Mode	sled Impact	Total Cond	centration
Early Project Development — 0,956 0,047 34,0 16,0 0,269 0,010 33,3 16,0 0,318 0,022 33,3 16,0 0,302 0,013 Early Project Development — 2,560 0,171 35,6 16,2 0,968 0,044 34,0 16,0 0,976 0,073 34,0 16,1 0,988 0,053 and Regional Sources		WDR	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annua
- 2.560 0.171 35.6 16.2 0.968 0.044 34.0 16.0 0.976 0.073 34.0 16.1 0.988	Early Project Development	1	0.956	0.047	34.0	16.0	0.269	0.010	33.3	16.0	0.318	0.022	33.3	16.0	0.302	0.013	33.3	16.0
	Early Project Development and Regional Sources	ı	2.560	0.171	35.6	16.2	0.968	0.044		16.0	926.0	0.073	34.0	16.1	0.988	0.053	34.0	16.1

		- Large	d Teton Nati	Grand Teton National Park Class	SS		Teton Wilderness Class I	ness Class I		Yell	Yellowstone National Park Class I Washakie Wilderness Area Class I	mal Park Cla	assi	Was	hakie Wildern	ess Area Cl	assi
		Total Provide	polymond poly	Total Conc	ontration1	Direct Mod	aled Impact	Total Cond	sentration1	Direct Mod	Organization of Total Concentration Direct Modeled Impact Total Concentration Direct Modeled Impact Total Concentration	Total Con	centration1	Direct Mode	eled Impact	Total Con	centration1
Alternation	9	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	wind 24-hr Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
ct Development	1	0.303	0.007	33.3	16.0	0.255	0.004	33.3	16.0	0.208	33.3 16.0 0.255 0.004 33.3 16.0 0.208 0.003 33.2 16.0 0.152 0.004 33.2 16.0	33.2	16.0	0.152	0.004	33.2	16.0
Early Project Development and Regional Sources	t	0.792	0.039	33.8	16.0	0.386	5 0.024	33.4	16.0	0.33	9 0.015	33.3	33.3 16.0 0	0.533	0.533 0.020	33.5	16.0

Total concentration includes direct modeled impact and background concentration for comparison to NAAQS/WAAQS whalch are 150 µg/m³ on a 24-hour basis and 50 µg/m³ on an annual basis.

Table E.10.4 - Summary of Maximum Modeled PM2.5 Concentration Impacts (µg/m³) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources

			Bridger Wilderness Class I	rness Class I		Ē	Fitzpatrick Wildemess Class I	amess Class		Po	po Agie Wilde	mess Class	-	Wind	Wind River Roadless Area Class II	ess Area Cla	II SS II
		Direct Moc	Direct Modeled Impact Total Concentration Direct Modeled Impact Total Concentration Direct Modeled Impact Total Concentration Direct Modeled Impact Total Concentration	Total Conc	entration	Direct Mode	ed Impact	Total Conc	entration 1	Direct Mode	led Impact	Total Conc	entration1	Direct Mode	led Impact	Total Con	centration
Altemative	WDR	24-hr	WDR 24-hr Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Early Project Development - 0,956 0,047 14,0 5.1 0,289 0,010 13.3 5.0 0,318 0,022 13.3 5.0 0,302 0,013 13.3	1	0.956	0.047	14.0	5.1	0.269	0.010	13.3	5.0	0.318	0.022	13.3	5.0	0.302	0.013	13.3	5.0
Early Project Development and Regional Sources	1	2.550	2.550 0.173 15.5 5.2 0.962 0.045 14.0	15.5	5.2	0.962	0.045	14.0	5.1	0.972	6.1 0.972 0.076 14.0 5.1	14.0	1.5	0.983	0.054	14.0	1.3

		Gran	Grand Teton National Park Class I	anal Park Cla	l ss		Teton Wildemess Class I	less Class I		Yello	Yellowstone National Park Class I	nal Park Cla	ss I	Wash	Washakie Wildemess Area Class I	ess Area Cla	l ss l
		Direct Mode	led Impact	Total Cono	entration 1	Direct Mode	led Impact	Total Conc.	entration1	Direct Mode	Direct Modeled Impact Total Concentration* Direct Modeled Impact Total Concentration* Direct Modeled Impact Total Concentration*	Total Conc	entration1	Direct Mode	led Impact	Total Conc	entration 1
Alternative	WDR	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual	24-hr	WDR 24-hr Annual	24-hr	Annual	24-hr	Annual	24-hr	Annual
Early Project Development -	1	0.213	0.006	13.2	5.0	0.145 0.004	0.004	13.1	5.0	0.120	0.120 0.003 13.1 5.0 0.152	13.1	5.0	0.152	0.004	13.2	5.0
Early Project Development and Regional Sources	-1	0.788	0.039	13.8	5.0	0.384	0.024	13.4	5.0	0.338	0.015 13.3	13.3	5.0	0.534	0.021	13.5	5.0

Total concentration includes direct modeled impact and background concentration for comparison to NAAQSWAAQS which are 65 $\mu g/m^3$ on a 24-hour basis and 15 $\mu g/m^3$ on an annual basis.

Table E.10.5 - Summary of Maximum Modeled In-field Pollutant Concentrations (μg/m³) from Early Project Development Stage and Regional Sources Within the JIDPA Compared to NAAQS/WAAQS

	ľ		NO ₂					0)	0,0						PM.				C				
		Direct Modeled	Total	NAAQS/	Direct	Direct Modeled	-						Direct Modeled	deled	Total					VI25			
		Impact	Concentration1	WAAQS	III	pact	To	tal Conc.	Total Concentration1	~	MAAOSWAAOS	SO	Impar		Concentration	nn1 MA	00000000	Direct	Modeled		lotal		
Alternative	WDR	Annual	Annual	Annual	3-hr 24-hr Anniel 2-hr 24 hr Ans	dahr An	Pulol 2	hr 24	A America	170	1	1			Solicolina a	5	760/4/4/6	E	pact	Conce	oncentration	NAAGSWAAG	VAAGS
Special Designation		1			1	10	ingi o	+7	IL AUDU	3-04	24-hr	Annual	24-hr	nunal	24-hr Ann	ual 24	Annual 3-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual	24-hr	Annual	24-hr	Annual	24-hr Annu	Annual
any rioled Development	ı	18.00	22.2	100	30.5	1 1	2 16	2.5 52.	7 10.2	1,300	365/260	80/60	82.6	12.9	30.5 9.7 1.2 162.5 52.7 10.2 1,300 365/260 80/60 82.6 12.9 115.6 28.9	.9 150	0 50	36.2	36.2 6.2	49.2	11.2	65	15
Early Project Development and Regional Sources	1	27.1	30.5	100	37.7	2.1	7. 16	9.7 55.	1 10.7	1,300	365/260	80/60	89.0	15.0	122.0 31	0.	100 37.7 12.1 1.7 168.7 55.1 10.7 1,300 365/260 80/60 88.0 15.0 122.0 31.0 150 50		49.4 8.2 62.4 13.2	62.4	13.2	92	15

Total concentration includes direct modeled impact and background concentration.

Table E.10.6 - Summary of Maximum Modeled Nitrogen (N) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive Class II Areas from Early Project Development Stage and Regional Sources1

Alternative	WDR	Bridger Wilderness Class I	Fitzpatrick Wilderness Class I	Popo Agie Wilderness Class II	Wind River Roadless Area Class II
Early Project Development	1	0.0134	0.0031	0.0093	0.0048
Early Project Development and Regional Sources	1	0.0961	0.0249	0.0491	0.0327
Total Impact ²	1	1.5961	1.5249	1,5491	1,5327
Alternative	WDR	WDR Grand Teton National Park Class I	Teton Wilderness Class I	Yellowstone National Park Class I	Washakie Wilderness Area Class I
Early Project Development	ı	0.0019	0.0011	0.0007	0.0013
Early Project Development and Regional Sources	1	0.0202	0.0113	0.0076	0.0120
Total Impact ²	1	1.5202	1.5113	1.5076	1.5120

Nitrogen deposition analysis threshold for direct Project impacts = 0.005 kg/ha-yr, level of concern for total impacts is 3.00 kg/ha-yr.

Total impact includes N deposition value of 1.5 kg/ha-yr measured near Pinedale for the year 2001,

Table E.10.7 - Summary of Maximum Modeled Sulfur (S) Deposition Impacts (kg/ha-yr) at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources

				Il cool or a series in a	Mind River Roadless Area Class II
	CON	Bridger Wilderness Class	Fitzpatrick Wilderness Class I	Popo Agie Wilderness Class II	Prizzatrick Wilderness Class Fitzpatrick Wilderness Class Popo Agle Wilderness Class Villa Investment Class Fitzpatrick Wilderness Class Prizzatrick Wilderness Class Prizzatr
Alternative	אטא	The state of the s	10000	0.00135	0.0007
Early Project Development		0.00176	1.00000		
				000	0.0010
Early Project Development and Regional Sources	,	0.0062	0.0010	2100:0	
		0 7560	0.7510	0.7512	0.7510
Total Impact ²	ı	2000			

		Visit Total Machakie Wilderness Area Class I		- 00000	Washakie Wilderness Area Class I
	-	Last Total National Dark Class	Teton Wilderness Class I	Yellowstone National Park Class I	
Alternative	WDK	Grand Telon National and Stage		0.00011	0.00020
Early Project Development	1	0.00030	0.00018		
Early Project Development and Regional Sources	1	0.0048	0.0023	0.0015	0.0009
Total Impact ²	1	0.7548	0.7523	0.7515	0.7509

Sulfur deposition analysis threshold for direct Project impacts = 0.005 kg/ha-yr, level of concern for total impacts is 5.00 kg/ha-yr.

Total impact includes S deposition value of 0.75 kg/ha-yr measured near Pinedale for the year 2001.

Table E.10.8 - Summary of Maximum Modeled Change in ANC (μeq/L) at Acid Sensitive Lakes from Early Project Development Stable E.10.8 - Summary of Maximum Modeled Change and Regional Sources

		Black Joe Lake	e Lake	Deep Lake	Lake	Hobbs	Hobbs Lake	Lazy B	Lazy Boy Lake
		Bridger Wilderness Class I	ness Class I	Bridger Wilderness Class I	rness Class I	Bridger Wilderness Class I	mess Class I	Bridger Wilde	Bridger Wilderness Class I
		ANC Change	Percent ANC Change	ANC Change	Percent ANC Change	ANC Change	Percent ANC Change	ANC Change	Percent ANC Change
Alternative	WDR	(heq/L)	(%)	(heq/L)	(%)	(med/L)	(%)	(heq/L)	(%)
Level of Acceptable Change (meq/L)	1	6.70	1	5.99	ı	66.9	1	1.00	-
Background	1	67.0	1	59.9	ı	6.69	ı	18.8	ı
Early Project Development	1	0.064	0.10%	0.068	0.11%	0.040	0.06%	0.021	0.11%
Early Project Development and Regional Sources	ı	0.350	0.52%	0.371	0.62%	0.278	0.40%	0.141	0.75%

		Upper Frozen Lake	zen Lake	Lower Saddlebag	ddlebag	Ross	Ross Lake	
		Bridger Wilderness Class I	ness Class I	Popo Agie Wilderness Class II	rness Class II	Fitzpatrick Wilderness Class I	erness Class I	
		ANC Change	Percent ANC Change	ANC Change	Percent ANC Change	ANC Change	Percent ANC Change	
Alternative	WDR	(heq/L)	(%)	(heq/L)	(%)	(heq/L)	(%)	
Level of Acceptable Change (meq/L)	1	1.00		5,55	1	5.35	1	
Background	1	5.0	ı	55.5	ı	53.5	1	
Early Project Development	1	0.073	1.45%	0.079	0.14%	0.019	0.04%	
Early Project Development and Regional Sources	1	0.398	7.96%	0.394	0.71%	0.136	0.26%	

Table E.10.9 - Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using FLAG Background Data - MVISBK = 6

	Brid	Bridger Wilderness Class I	Class I	Fitzpatr	Fitzpatrick Wilderness Class I	Class I	Popo A	Popo Agie Wilderness Class II	Class II	Wind Rive	Wind River Roadless Area Class II	a Class II
	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0 ∆dv (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 L	Number of Days > 1.0 ∆dv (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 L	Number of Days > 1.0 Δdv (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 ∆dv (days)	Number of Days > 1.0 Δdv (days)
Early Project Development	2.19	28	80	0.86	4	0	0.95	ω	0	0.91	7	0
Early Project Development and Regional Sources	6.04	124	19	3.06	52	=	3.04	20	50	3.08	32	27

		Crand Tet	Later National Park Class	rk Class I	Teton	Teton Wilderness Class I	ass	Yellowstor	Yellowstone National Park Class I Washakie Wilderness Area Class I	rk Class I	Washakie	Wilderness An	ea Class I
	•	Maximum Visibility Impact	Number of Days > 0.5 [Number of Maximum Days > 1.0 Visibility Adv Impact (days) (Adv)	Maximum Visibility Impact	Number of Days > 0.5	Number of Maximum Days > 0.5 Days > 1.0 Visibility Adv Impact (days) (days) (days)	Maximum Visibility Impact (\Dav)	Number of Number of Days > 0.5 Days > 1.0 Adv Adv (days) (days)	Number of Days > 1.0 ∆dv (days)	Maximum Visibility Impact (Adv)	Number of Days > 0.5 ∆dv (days)	Number of Days > 1.0 Adv (days)
Alternative Early Project Development	1	0.66	(1493)	0	0.36	0	0	0.32	0	0	0.42	0	0
Early Project Development and Regional Sources	1	2.60	24	ω	1.31	15	4	1.21	ø	ю	1.66	σ	2

Note: Adv = change in deciview.

Table E.10.10 - Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using IMPROVE Background Data - MVISBK = 6

	,	Bridge	Bridger Wilderness Class I	Class I	Fitzpatr	Fitzpatrick Wilderness Class I	Class I	Popo A	Popo Agie Wilderness Class II	Class II	Wind Rive	Wind River Roadless Area Class I	ea Class II
Alternative		Maximum Visibility Impact (Δdv)	Number of Days > 0.5 Adv (days)	Number of 1 Days > 1.0 Adv (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5	Number of Number of Days > 0.5 Days > 1.0 Adv Adv (days)	Maximum Visibility Impact (Δdv)	n Number of Number of Maximum Days > 0.5 Days > 1.0 Visibility Adv Adv Impact (days) (days) (Adv)	Number of Days > 1.0 Adv (days)	Maximum Visibility Impact	Number of 1 Days > 0.5 Days	Number of Days > 1.0
Early Project Development	1	2.42	34	o	0.95		0		10	2	1.01		(days)
Early Project Development and Regional Sources	1	6.57	128	59	3.37	27	1	3.35	51	23	3.39	31	15

		Grand Tet	Grand Teton National Park Class I	ark Class I	Tetor	Teton Wilderness Class I	lass l	Yellowsto	Yellowstone National Park Class I Washakie Wilderness Area Class I	rk Class I	Washakie	Wilderness An	ea Class I
		Maximum Visibility	Number of Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility	Number of Days > 0.5	Number of 1	Maximum	Number of	Number of
Alternative		Impact (Adv)	Δdv (days)	Adv (days)	Impact (Δdv)	∆dv (days)	∆dv (davs)	Impact (Adv)	Adv (davs)	vbA (syeh)	Impact	vbA (dove)	Adv
Early Project Development	1	0.67	1	0	0.37	0	0	0.32	0		0.43	0	0
Early Project Development and Regional Sources	1	2.63	50	œ	1.33	12	4	1.23	w	м	1.70	01	74

Note: Adv = change in deciview.

Table E.10.11 - Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using FLAG Background Data - MVISBK = 2

	,	Bridge	Bridger Wilderness Class I	Class I	Fitzpati	Fitzpatrick Wilderness Class I	Class I	Popo Ag	Popo Agie Wildemess Class II	Class II	Wind Rive	Wind River Roadless Area Class II	ea Class II
Alternative		Maximum Visibility Impact	Number of Days > 0.5	Number of Maximum Days > 1.0 Visibility I Adv Impact (days) (Adv)	Maximum Visibility Impact (Adv)	Number of Days > 0.5 Adv (days)	Number of Days > 1.0 Δdv (days)	Maximum Visibility Impact (Δdv)	Number of Days > 0.5 i Δdv (days)	Number of Days > 1.0 ∆dv (days)	Maximum Visibility Impact (Adv)	Number of Days > 0.5 ∆dv (days)	Number of Days > 1.0 \Days (days)
Early Project Development	1	5.92	46	22	2.40	თ	ю	1.46	21	-	1.16	m	7
Early Project Development and Regional Sources	1	13.51	147	46	8.12	23	56	4.98	6 6	20	6.39	33	17

		Grand Tet	Grand Teton National Park Class I	ark Class I	Teton	Teton Wilderness Class I	lass l	Yellowsto	Yellowstone National Park Class I Washakie Wilderness Area Class I	rk Class I	Washakie	Wilderness An	ea Class I
Alternative		Maximum Visibility Impact (Δdv)	Number of Days > 0.5	Number of Maximum Days > 1.0 Visibility Adv Impact (days) (\text{Adv})	Maximum Visibility Impact (Adv)	Number of Days > 0.5 Adv (days)	Number of Number of N Days > 0.5 Days > 1.0 N Adv Adv (days)	laximur /isibility Impact (\ddv)	n Number of N / Days > 0.5 C ∆dv (days)	Number of Days > 1.0 ∆dv (days)	Maximum Visibility Impact (\Delta dv)	Number of Days > 0.5 C Δdv (days)	Number of Days > 1.0 Adv (days)
Early Project Development	1	1.59	œ	2	1.18	2	-	1.04	2	-	0.81	7	0
Early Project Development and Regional Sources	1	4.46	52	31	3.94	4	58	3.54	33	16	3.79	23	55

Note: ∆dv = change in deciview.

Table E.10.12 - Summary of Maximum Modeled Visibility Impacts at PSD Class I and Sensitive PSD Class II Areas from Early Project Development Stage and Regional Sources Using IMPROVE Background Data - MVISBK = 2

	1	Spira	bridger Wilderness Class I	lassi	righamics Wilderings Class I			2000			ı		
Alternative		Maximum Visibility Impact (Adv)	Number of Days > 0.5 [Adv (days)	Number of Days > 1.0	Maximum Visibility Impact (Adv)	Number of Days > 0.5	Number of Days > 1.0 ∆dv (days)	Maximum Visibility Impact	Number of Days > 0.5 ∆dv	Number of Days > 1.0 ∆dv	Maximum Visibility Impact	Number of Days > 0.5 ∆dv	Number of Days > 1.0
Early Project Development	1	5.95	47	21	2.42	80	4	1.08	18	1	1.11	3	1
Early Project Development and Regional Sources	1	13.56	143	S S	8.15	52	6	3.67	80	49	3.83	32	17

	ľ	Grand Te	Grand Teton National Park Class I	irk Class I	Tetor	Teton Wilderness Class I	lass I	Yellowsto	Yellowstone National Park Class I	rk Class I	Washakie	Washakie Wilderness Area Class I	ea Class I
Alternative		Maximum Visibility Impact	Number of Days > 0.5 ∆dv	Number of Days > 1.0	Maximum Visibility Impact	Number of Number of Days > 0.5 Days > 1.0 Adv Adv Adv Adv	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 0.5	Number of Days > 1.0
Early Project Development	1	1.32	5	1	76.0	(33)	0	0.85	(udys)	0	0.80	(days)	(days)
Early Project Development and Regional Sources	1	3.76	46	56	3.32	36	50	2.98	58	#	3.02	50	10

Note: Adv = change in deciview.

Table E.10.13 - Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using FLAG Background Data - MVISBK = 6

	Bia	Bia Pinev	Big S	Big Sandy	Bou	Boulder	Bre	Bronx	ŏ	Cora
Alternative	Maximum Visibility Impact (\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\tin\texit{\text{\texi}\text{\text{\texi{\texi{\texi{\text{\texit\tint{\text{\text{\texi{\texi{\texi}\texi{\texi{\texi}\texi	Number of Days > 1.0 ∆dv¹ (days)	Maxim Visibil Impa (Δdv	um Number of M iity Days > 1.0 \ ct ∆dv¹)¹ (days)	laximu /isibili Impac (∆dv)	um Number of N ty Days > 1.0 :t ∆dv¹ i (days)	Maximum Visibility Impact (∆dv)¹	Number of Maximum Days > 1.0 Visibility Δdv^{\dagger} Impact (days) $(\Delta dv)^{\dagger}$	Maximum Visibility Impact (∆dv) ¹	Number of Days > 1.0 ∆dv¹ (days)
Early Project Development	5.91	24	3.33	21	3.06	13	1.56	4	1.96	თ
Early Project Development and Regional Sources	13.31	85	7.60	107	6.83	131	8.92	63	9.25	1.7

	Da	Daniel	Fai	Farson	Lab	Labarge	Me	Merna	Pine	Pinedale
	Maximum Visibility Impact	um Number of N ty Days > 1.0	laxim /isibil Impa	um Number of Nity Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹
Alfarnative	(\p\)	(davs)	(∆dV)	(days)	(\dv) ¹	(days)	(∆dv)	(days)	(\dv)	(days)
Early Project Development	2.65	13	4.74	31	5.11	10	2.15	Ø	2.67	12
Early Project Development and Regional Sources	11.88	88	68.6	77	10.14	37	5.58	33	9.38	107

¹ Adv = change in deciview.

Table E.10.14 - Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using IMPROVE Background Data - MVISBK = 6

	Big	Big Piney	Big Sand	andy	Boulder	lder	Bri	Bronx	S	Cora
	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0	Maximum Visibility	Number of Days > 1.0	Maximum	Number of Days > 1.0	Maximum	Number of Days > 1.0
Alternative	Impact (∆dv)¹	.∨dv.	Impact (∆dv)¹	(days)	Impact (∆dv)¹	(days)	Impact (∆dv)¹	∆dv (days)	Impact (∆dv) ¹	(days)
Early Project Development	6.62	24	3.66	24	3.37	18	1.79	ω	2.17	11
Early Project Development and Regional Sources	14.43	79	8.42	108	10.59	130	9.60	99	9.95	73

	Da	Daniel	Far	Farson	Lab	abarge	Me	Merna	Pine	Pinedale
	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0
Alternative	(∆dv) ¹	(days)		(days)			(∆dv) ¹	(days)	(\DV)	(days)
Early Project Development	2.93	41	5.18	33	5.73	11	2.46	7	2.94	4
Early Project Development and Regional Sources	12.68	98	10.85	7.	11.12	38	6.25	33	10.32	113

¹ ∆dv = change in deciview.

Table E.10.15 - Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using FLAG Background Data - MVISBK = 2

	Big	Big Piney	Big Sand	Sandy	Boulder	lder	Brc	Bronx	Ö	Cora
	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0	Maximu Visibilit Impac	m Number of N y Days > 1.0		ZÕ	2 -	Number of Days > 1.0 ∆dv¹
Alternative	(\do\)	(days)	(∆dv)	(days)	(∆dv)¹	(days)	(∆dv)¹	(days)	(\doc)	(days)
Early Project Development	8.34	44	7.64	27	7.70	18	2.66	16	3.22	16
Early Project Development and Regional Sources	17.65	110	15.89	16	19.09	126	13.04	73	15.34	74

	Da	Daniel	Far	Farson	Lab	Labarge	Me	Merna	Pine	Pinedale
	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	n Number of p Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0
Alternative	(∆dv) ¹	(days)	(∆dv)	(days)	(∆dv) ¹	(days)	(∆dv) ¹	(days)	(\d\d\)1	(days)
Early Project Development	4.26	20	7.44	47	79.7	24	3.24	1	4.87	21
Early Project Development and Regional Sources	17.51	96	13.46	95	14.23	67	10.88	46	17.91	115

Δdv = change in deciview.

Table E.10.16 - Summary of Maximum Modeled Visibility Impacts at Wyoming Regional Community Locations from Early Project Development Stage and Regional Sources Using IMPROVE Background Data - MVISBK = 2

	Big	Big Piney	Big Sand	Sandy	Bou	Boulder	Bre	Bronx	Cora	ra
	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximu Visibilit Impac	im Number of N y Days > 1.0 t Δdv¹	Maximum Visibility Impact	Number of Days > 1.0
Alternative	(∆dv)	(days)	(\dv) ¹	(days)	(∆dV)	(days)	(VDA)	(days)	(Adv)	(days)
Early Project Development	8.61	34	7.67	59	7.74	20		16	3.39	20
Early Project Development and Regional Sources	18.55	105	15.94	86	19.14	123	13.08	65	15.39	72

	Da	Daniel	Far	Farson	Lab	Labarge	Me	Merna	Pine	Pinedale
	Maximum Visibility Impact	Number of Days > 1.0 ∆dv¹	Maximum Visibility Impact	m Number of N y Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0	Maximum Visibility Impact	Number of Days > 1.0
Alternative	(\dv)	(days)	(∆dv) ¹	(days)	(∆dv) ¹	(days)	(\dv)	(days)	(\dv)	(days)
Early Project Development	4.48	21	7.64	46	8.27	17	3.24	11	4.90	22
Early Project Development and Regional Sources	17.56	68	14.12	16	15.06	23	10.93	4	17.96	113

1 Adv = change in deciview.

BUREAU OF LAND MANAGEMENT LIBRARY
BUREAU DE LAND MANAGEMENT LIBRARY
BUREAU

