

TECHNICAL RESEARCH REPORT

An Observer Design for Nonlinear Control Systems

by

M.R. James and J.S. Baras

SYSTEMS RESEARCH CENTER UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 14 DEC 1987		2. REPORT TYPE		3. DATES COVERED 00-00-1987 to 00-00-1987			
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER					
An Observer Desig	n for Nonlinear Co		5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Maryland, Mathematics Department and Systems Research Center, College Park, MD, 20742					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)				
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO	TES						
14. ABSTRACT see report							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT	16	RESI ONSIBLE FERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

			1
المحاضي			
			:
			ı
			1
			-
	•		
			•
			1
			ilronum primary primar

.

.

!

An Observer Design for Nonlinear Control Systems ¹

M. R. James²

J. S. Baras³

October 2, 1987 Revised December 14, 1987

¹Research supported in part through NSF Grant CDR-85-00108, and AFOSR-URI Grant 87-0073.

²Mathematics Department and Systems Research Center, University of Maryland, College Park, MD, 20742, USA.

³Electrical Engineering Department and Systems Research Center, University of Maryland, College Park, MD, 20742, USA.

Abstract

We present an observer design for systems with controlled nonlinear dynamics and nonlinear observation. The design is a development of earlier work, which was motivated by nonlinear filtering asymptotics. The basic design requires that the initial conditions belong to a bounded region determined by the data and design parameters. However, for a certain class of systems, no such a priori knowledge is required. To illustrate the utility of our design, several examples are given.

Key words: Nonlinear systems, observers.

1 Introduction

In this paper we present a design for an observer for the nonlinear control system

$$\dot{x} = f(x,u), \qquad x(0) = x_0,
y = h(x)$$
(1)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $|u_i| \leq 1$ i = 1, ..., m and $y \in \mathbb{R}^p$. The initial condition x_0 is unknown.

The observer problem consists of recursively computing an estimate z(t) of x(t) for which the error decays to zero as $t \to \infty$. That is, to design a system

$$\dot{m} = F(m, u, y), \qquad m(0) = m_0,$$

$$z = G(m)$$
(2)

such that

$$\lim_{t\to\infty}|x(t)-z(t)|=0$$
 (3)

for all x_0 in a suitable class I. Here I represents a priori knowledge concerning the initial condition x_0 .

We prove the following result for our observer design: provided that we have some knowledge of x_0 (in the form $|x_0 - z_0| < \rho$, where z_0 is the initial estimate) and assuming that (1) satisfies a *detectability* condition, then the observer estimate z(t) converges exponentially to the system trajectory x(t) as $t \to \infty$ (Theorem 2.1). The radius of convergence ρ depends on the nonlinearities in the dynamics and observations as well as on certain design parameters. For a certain class of systems, no knowledge of x_0 is required (Corollary 2.1).

Our design is a development of the design given in Baras, Bensoussan and James [1], which treats systems with uncontrolled nonlinear dynamics and linear observations. The main contributions here are the results for nonlinear observations and controlled dynamics. We remark that these designs do not involve coordinate transformations, canonical forms, local linearization, etc, and seem robust when compared with other designs. However, the designs do involve solving Riccati equations and computing certain matrices and constants.

In Section 2 we give the observer design and state the main convergence results. The design involves Riccati differential equations with time-varying coefficients, and in Section 3 we obtain bounds on the solutions of these equations under certain detectability and rank conditions. These bounds are used in Section 4 to prove the convergence result. Finally in Section 5 we give several examples.

2 Observer Design

We assume that f, h are smooth with bounded derivatives of orders 1 and 2. Let $N \in L(\mathbb{R}^n, \mathbb{R}^n)$, $R \in L(\mathbb{R}^p, \mathbb{R}^p)$ and assume rank N = n and R > 0. Assume

 $t \mapsto u(t)$ is continuous.

Write A(x, u) = Df(x, u), $H(x) = R^{-1}Dh(x)$, where D denotes gradient in the x variable. Set

$$||A|| = \sup\{||A(x,u)||: x \in \mathbb{R}^n, |u_i| \le 1\}$$

and similarly define ||H||, and so on.

Consider the coupled system

$$\dot{m}(t) = f(m(t), u(t)) + Q(t)H(m(t))'R^{-1}(y(t) - h(m(t))$$
 (4)

 $m(0) = m_0$

$$\dot{Q}(t) = A(m(t), u(t))Q(t) + Q(t)A(m(t), u(t))'
-Q(t)H(m(t))'H(m(t))Q(t) + NN'$$
(5)

$$Q(0) = Q_0 > 0.$$

This is our observer for (1). It is essentially a modification of the deterministic or minimum energy estimator, as discussed in Baras, Bensoussan and James [1]. Note in particular that the Riccati differential equation (5) depends on the control. This is not necessary when f(x, u) = f(x) + Bu: set A(x) = Df(x).

Referring to Section 3, we will assume that the pair (H(x), A(x, u)) is uniformly detectable. Since N has rank n and $||A|| < \infty$, the pair (A(x, u), N) is uniformly stabilisable (refer to Section 3), and $NN' \ge r_0 I$ for some $r_0 > 0$. Let $P_0 = Q_0^{-1}$, $P(t) = Q(t)^{-1}$, and let p, q be the bounds for ||P(t)||, ||Q(t)|| (given in Section 3).

Regard A_0, N, R as design parameters. Define $\rho = \rho(Q_0, N, R)$ by

$$\rho = \frac{r_0}{q^2 \|P_0^{1/2}\|} \left(\sqrt{p} \|D^2 f\| + \sqrt{q} \|R^{-1}\|^2 \|Dh\| \|D^2 h\| \right)^{-1}$$
 (6)

Our main theorem is the following convergence result, similar to Theorem 8 in [1].

Theorem 2.1 Assume there exists Q_0, N, R such that

$$|x_0 - m_0| < \rho(Q_0, N, R)$$
 (7)

Then the system (4), (5) is an observer for the nonlinear control system (1) provided that (H(x), A(x, u)) is uniformly detectable and the above assumptions hold. That is, there exists contants $K > 0, \gamma > 0$ such that

$$|x(t) - m(t)| \le K|x_0 - m_0|e^{-\gamma t}$$
 (8)

for all $t \geq 0$.

Remark There is a trade-off between the decay rate $\gamma = \gamma(Q_0, N, R)$ and the radius of convergence ρ . The designer can optimize his choice of γ, ρ by varying the design parameters. //

By using different estimates for the nonlinearities, we obtain an observer for (1) without any contraints on the initial conditions x_0, m_0 for a class of systems. Included in this class are systems for which A(x, u) is uniformly negative definite (see the example in Section 5.2).

Define $\delta = \delta(Q_0, N, R)$ by

$$\delta = \frac{r_0}{q^2} - 4p||Df|| - 4||R^{-1}||^2 ||Dh||^2.$$
 (9)

If $D^2 f$ or $D^2 h$ is zero, we omit the corresponding term from (9).

Corollary 2.1 Assume there exist Q_0, N, R such that

$$0 < \delta(Q_0, N, R). \tag{10}$$

Then the system (4), (5) is an observer for the control system (1) provided that (H(x), A(x, u)) is uniformly detectable and the above assumptions hold. That is, there exists contants $K > 0, \gamma > 0$ such that

$$|x(t) - m(t)| \le K|x_0 - m_0|e^{-\gamma t}$$
 (11)

for all $t \geq 0$ and all $x_0, m_0 \in \mathbb{R}^n$.

Remark Our design can readily be extended to time varying systems. ///

3 Riccati Equations

Write $X = \mathbb{R}^n \times [-1, 1]^m$ and $\xi = (x, u) \in X$. If $t \mapsto \xi_t = (x_t, u_t)$ is a continuous curve, we write $A_t = A(\xi_t) = A(x_t, u_t)$, etc.

Consider the Riccati differential equations

$$\dot{Q}_t = A_t Q_t + Q_t A_t' - Q_t H_t' H_t Q_t + NN'$$
(12)

$$\dot{P}_{t} = -P_{t}A_{t} - A'_{t}P_{t} - P_{t}NN'P_{t} + H'_{t}H_{t}$$

$$Q_{0} = P_{0}^{-1} > 0$$
(13)

Existence and uniqueness for (12), (13) are standard, and note that $P_t = Q_t^{-1}$.

3.1 Uniform Detectability and Stabilisability

In this section we present sufficient conditions that ensure boundedness of the solutions of the Riccati equations (12), (13). The bound for $||Q_t||$ requires a detectability condition which we now define.

Definition The pair of matrices $(H(\xi), A(\xi))$ is uniformly detectable if there exist a constant $\alpha_0 > 0$ and a bounded continuous matrix valued function $\Lambda(\xi)$ such that

$$\eta'\left(A(\xi) + \Lambda(\xi)H(\xi)\right)\eta \le -\alpha_0 \mid \eta\mid^2 \tag{14}$$

for all $\eta \in \mathbb{R}^n$, $\xi \in X$.

This condition is similar to the well known detectability condition for linear time-invariant systems. The pair of matrices (C, A) is detectable if there exists a matrix Λ such that the eigenvalues of $A + \Lambda C$ have strictly negative real parts; uniform detectability implies detectability, but not conversely. A disadvantage of this condition is that it is in general difficult to check, and $\Lambda(x, u)$ may be hard to compute. No simple rank-type condition exists to date. In the case that H(x) is uniformly of full rank, that is,

$$H(x)'H(x) \geq s_0I, \tag{15}$$

for some $s_0 > 0$, it is possible to bound $||Q_t||$ without using (14).

To obtain a uniform bound for $||P_t||$, we assume that rank N=n and use the following uniform stabilisation result, based on Kalman [2]. Let $\Phi_F(t,t_0)$ denote the fundamental transition matrix corresponding to a time varying matrix F_t . Recall $NN' \geq r_0 I$.

Lemma 3.1 Assume rankN = n. Consider the control system

$$\dot{z}_t = -A_t z_t - N u_t, \quad z(0) = z,$$
 (16)

where $A_t = A(\xi_t)$ for some curve $t \mapsto \xi_t$. Then there exists a feedback control $u_t^o = \Gamma_t z_t$ such that

$$\parallel \Phi_{\tilde{A}}(t,t_0) \parallel \leq \sqrt{\frac{\beta_1}{\beta_0}} \exp\left(-\frac{1}{2\beta_1}(t-t_0)\right),$$
 (17)

for $t \geq t_0 \geq 0$, where $\tilde{A}_t = -A_t - N\Gamma_t$ and for any $\sigma > 0$,

$$eta_0(\sigma) = \sigma e^{-2\sigma \|A\|} \left(1 + \sigma^2 e^{2\sigma \|A\|} \parallel N \parallel^2
ight)^{-1},$$
 $eta_1(\sigma) = \sigma e^{4\sigma \|A\|} \left(1 + rac{\parallel N \parallel^2}{r_0 \sigma}
ight),$ $\parallel \Gamma_t \parallel \leq \parallel N \parallel eta_1(\sigma) \equiv \parallel \Gamma \parallel.$

Proof Consider the optimal control problem of minimising the cost

$$J_u(t_0,z) = \int_{t_0}^{\infty} \parallel z_t \parallel^2 + \parallel u_t \parallel^2 dt$$

over controls u for the system (16). Define the controllability grammian

$$\mathcal{C}(t_0, t_0 + \sigma) = \int_{t_0}^{t_0 + \sigma} \Phi_{-A}(t_0, t) N N' \Phi'_{-A}(t_0, t) dt.$$

Note that $\| \Phi_{-A}(t, t_0) \|^2 \le e^{2\|A\|}$, and

$$r_0\sigma e^{-2\|A\|}I\leq \mathcal{C}(t_0,t_0+\sigma)\leq \parallel N\parallel^2\sigma e^{2\|A\|}I$$

so that the system (16) is uniformly completely controllable [2]. The value function is given by

$$V(t_0,z) = \frac{1}{2}z'Z_{t_0}z,$$

where Z_t solves the Riccati equation

$$\dot{Z}_t = A_t Z_t + Z_t A_t' + Z_t N N' Z_t - I.$$

The optimal control is

$$u_t^o = -N'Z_t z_t.$$

Now

$$V(t_0,z) \geq \int_{t_0}^{t_0+\sigma} ||z_t||^2 dt$$

 $\geq \beta_0(\sigma) |z|^2.$

Also, using the control

$$u_t^1 = N'\Phi_{-A}(t_0,t)C(t_0,t_0+\sigma)^{-1}z,$$

we obtain

$$V(t_0,z) \leq \beta_1(\sigma) \mid z \mid^2.$$

Finally, note that V(t,z) is a Lyapunov function for

$$\dot{z}_t^o = -(A_t + N\Gamma_t) z_t^o;$$

whence (17).

3.2 Bounds

Theorem 3.1 Assume that $\xi \mapsto A(\xi), H(\xi)$ are continuous and bounded, $(H(\xi), A(\xi))$ is uniformly detectable, and rankN = n. Then we have

$$\|Q_T\| \leq \left(\|Q_0\| + \frac{\|N\|^2 + \|\Lambda\|^2}{2\alpha_0}\right) \equiv q < \infty,$$
 (18)

$$||P_T|| \le \left(\frac{\beta_0}{\beta_1}||P_0|| + \frac{||H||^2 + ||\Gamma||^2}{2\beta_0}\right) \equiv p < \infty.$$
 (19)

These bounds are independent of T > 0.

Note The bound q depends on the choice of Λ , while p depends on σ . To obtain the best bound, one can optimise over these parameters. For linear time-invariant detectable systems, one can also obtain a bound for $||Q_t||$. ///

Proof We modify an argument in [1]. To prove (18), consider the following linear optimal control problem with time-varying coefficients:

$$-\dot{\eta}_t = A_t' \eta_t + H_t' v_t, \qquad \eta_T = h, \tag{20}$$

where $h \in \mathbb{R}^n$ is given and v is the control. The cost functional is

$$J_1(v,T) = \eta_0' Q_0 \eta_0 + \int_0^T (v_t' v_t + \eta_t' N N' \eta_t) dt.$$
 (21)

Define a value function

$$V_1(h,T)=\inf\{J_1(v,T):\eta_T=h\}$$

The Hamilton-Jacobi-Bellman (HJB) equation is

$$\frac{\partial}{\partial T}V_1 + \max_{v}[D_{\boldsymbol{\eta}}V_1(-A_t' - H_t'v) - v^2 - \eta'NN_{\boldsymbol{\eta}}'] = 0$$

Let Q_t be the solution of (12). Then

$$V(\eta,t)=\eta'Q_t\eta$$

is the unique (viscosity) solution of (13) with $V(\eta,0) = \eta' Q_0 \eta$. Consider the (suboptimal) feedback control law

$$v(t) = \Lambda_t' \eta_t.$$

Then by (20),

$$-\dot{\eta}_t = (A_t' + H_t' \Lambda_t') \eta_t, \quad \eta_T = h. \tag{22}$$

Then we have

$$V(\eta,T) = h'Q_Th \le \eta_0Q_0\eta_0 + \int_0^T \eta_t'(NN' + \Lambda_t\Lambda_t')\eta_t dt$$
 (23)

Now using (22),

$$|\eta_0|^2-2\int_0^T\eta_t'(A_t'+H_t'\Lambda_t')\eta_tdt=|h|^2$$

Hence using uniform detectability (14), $|\eta_0|^2 \le |h|^2$ and

$$\int_0^T |\eta_t|^2 dt \leq \frac{|h|^2}{2\alpha_0}.$$

Combining this with (23) we obtain

$$h'Q_Th \leq h'\left(\|Q_0\| + rac{\|N\|^2 + \|\Lambda\|^2}{2lpha_0}
ight)h$$

which proves (18).

Similarly, to prove (19), consider the optimal control problem

$$\dot{\lambda}_t = A_t \, \lambda_t + N v_t, \quad \lambda_T = h \tag{24}$$

with cost

$$J_2(v,T) = \lambda_0' P_0 \lambda + \int_0^T (v_t' v_t + \lambda_t' H_t' H_t \lambda_t) dt.$$

Define the value function

$$V_2(h,T)=\inf\{J_2(v,T):\quad \lambda_T=h\}.$$

Then the HJB equation

$$rac{\partial}{\partial T}V_2 + \max_v [D_\lambda V_2 (A_t \lambda + N v) - v^2 - \lambda' H_t' H_t \lambda] = 0,$$

with $V_2(\lambda,0) = \lambda' P_0 \lambda$ and solution $V_2(\lambda,t) = \lambda' P_t \lambda$, where P_t is the solution of (13). By Lemma 3.1, set

$$v(t) = \Gamma_t \lambda_t,$$

then by (24)

$$\dot{\lambda}_t = (A_t + N\Gamma_t); \qquad \lambda_T = h. \tag{25}$$

Thus

$$h'P_Th \leq \lambda_0' P_0 \lambda_0 + \int_0^t \lambda_t' (\Gamma_t' \Gamma_t + H_t' H_t) \lambda_t dt$$
 (26)

Now

$$\lambda_t = \Phi_{\tilde{A}}(-t, -T)h,$$

and hence $|\lambda_0|^2 \le \frac{\beta_0}{\beta_1} |h|^2$ and

$$\int_0^T |\lambda_t|^2 dt \leq \frac{|h|^2}{2\beta_0}.$$

This together with (26) yields (19).

Corollary 3.1 Assume that $\xi \mapsto A(\xi)$, $H(\xi)$ are bounded and continuous, and that $H(\xi)$ is uniformly of full rank. Then

$$\parallel Q_T \parallel \leq \left(\frac{\alpha_0}{\alpha_1} \parallel Q_0 \parallel + \frac{\parallel N \parallel^2 + \parallel \Lambda \parallel^2}{2\alpha_0} \right) \equiv q \leq \infty,$$
 (27)

for all T > 0, where for any $\tau > 0$,

$$egin{aligned} lpha_0(au) &= au e^{-2 au \parallel A \parallel} \left(1 + au^2 e^{2 au \parallel A \parallel} \parallel N \parallel^2
ight)^{-1}, \ lpha_1(au) &= au e^{4 au \parallel A \parallel} \left(1 + rac{\parallel N \parallel^2}{r_0 au}
ight), \ \parallel \Lambda_t \parallel \leq \parallel H \parallel lpha_1(au) \equiv \parallel \Gamma \parallel. \end{aligned}$$

Proof Consider the control system

$$\dot{z}_t = A_t' z_t + H_t' u_t, \quad z(0) = z,$$
 (28)

where $A_t = A(\xi_t)$ for some curve $t \mapsto \xi_t$. Define the grammian

$$\mathcal{O}(t_0, t_0 + au) = \int_{t_0}^{t_0 + au} \Phi_{A'}(t_0, t) H_t' H_t \Phi_{A'}'(t_0, t) dt.$$

Now $\| \Phi_{A'}(t,t_0) \|^2 \le e^{2\|A\|}$, and

$$s_0 \tau e^{-2\|A\|} I < \mathcal{O}(t_0, t_0 + \tau) \le \|H\|^2 \tau e^{2\|A\|} I$$

so that the system (28) is uniformly completely controllable [2]. Now proceed as in the proof of Lemma 3.1.

4 Asymptotic Convergence

Using the bounds (18), (19) we prove Theorem 2.1, and Corollary 2.1.

Proof of Theorem 2.1 The error e(t) = x(t) - m(t) satisfies

$$\dot{e}(t) = f(x(t), u(t)) - f(m(t), u(t)) - Q(t)H(m_t)'R^{-1}(y(t) - h(m(t)))
= [A(m(t), u(t)) - Q(t)H(m(t))'H(m(t))]e(t)
+ [f(x(t), u(t)) - f(m(t), u(t)) - Df(m(t), u(t))e(t)]
- Q(t)H(m(t))'R^{-1}[h(x(t)) - h(m(t)) - Dh(m(t))e(t)]$$

Therefore using the Riccati equation (13) for P(t),

$$\frac{d}{dt}e(t)'P(t)e(t) = -e(t)'P(t)NN'P(t)e(t) - e(t)'H(m(t))'H(m(t))e(t)$$

$$+2e(t)'P(t)\int_0^1\int_0^1rD^2f(m(t)+rse(t),u(t))e(t)^2drds$$

$$-2e(t)'H(m(t))'R^{-1}\int_0^1\int_0^1rD^2h(m(t)+rse(t))e(t)^2drds$$

$$\frac{d}{dt}|P(t)^{\frac{1}{2}}e(t)|^{2} \leq e(t)'\left(-r_{0}/q^{2}+|P(t)^{\frac{1}{2}}e(t)|[\sqrt{p}||D^{2}f|| + \sqrt{q}||R^{-1}||^{2}||Dh|| ||D^{2}h||]\right)e(t)$$
(29)

Let $C=(\sqrt{p}\|D^2f\|+\sqrt{q}\|R^{-1}\|^2\|Dh\|\|D^2h\|)$. By hypothesis (7) we have $-\frac{r_0}{q^2}+|P_0^{\frac{1}{2}}e_0|C<0.$

Since $P(t)^{\frac{1}{2}}e(t)$ is continuous, there is an interval $[0,t_0)$ such that

$$-rac{r_0}{a^2}+|P(t)^{rac{1}{2}}e(t)|C<0$$
 on $[0,t_0)$.

But then (29) implies

$$rac{d}{dt}|P(t)^{rac{1}{2}}e(t)|^2 < 0 \quad ext{ on } \quad [0,t_0),$$

and thus

$$|P(t)^{\frac{1}{2}}e(t)| \leq |P_0^{\frac{1}{2}}e_0|$$

for $t \in [0, t_0)$. By continuity this inequality holds for $t \in [0, t_0]$. Hence we can proceed from t_0 on. Thus there exists $\delta > 0$ such that

$$|P(t)^{\frac{1}{2}}e(t)| \leq \frac{1}{C}\left(\frac{r_0}{q^2} - \delta\right)$$

This system is controllable and observable. However, the pair of matrices (Dh(x), A) is not observable for $x_1 = k\frac{\pi}{2}$, where k is an odd integer. The system has eigenvalues -1, -2 and A is symmetric, hence (Dh(x), A) is automatically uniformly detectable, with $\alpha_0 = 1$, $\Lambda(x) \equiv 0$. Let R = rI, $N = \sqrt{r_0}I$, $Q_0 = \gamma^2I$. Here, $H(x) = \frac{1}{r}(\cos x_1, 0)$. Now

$$\delta = r_0(\gamma^2 + r_0/2)^{-2} - 4r^{-2}.$$

Set r = 3, $r_0 = 0.2$, $\gamma = 0.1$. Then $\delta = 7.82$. The observer for (32) is

$$\dot{m}(t) = Am(t) + Bu(t) + \frac{1}{3}Q(t)H(m(t))'(y(t) - \sin m_1(t)), \qquad (33)$$

$$\dot{Q}(t) = AQ(t) + Q(t)A' - Q(t)H(m(t))'H(m(t))Q(t) + 0.2I.$$

By Corollary 2.1, m(t) converges exponentially to x(t) for all $x_0, m_0 \in \mathbb{R}^n$.

References

- [1] J.S. Baras, A. Bensoussan and M.R. James, Dynamic Observers as Asymptotic Limits of Recursive Filters: Special Cases, Technical Report SRC-TR-86-79, Systems Research Center, University of Maryland, December 1986. To appear, SIAM J. Applied Math.
- [2] R. E. Kalman, Contributions to the Theory of Optimal Control, Bol. Soc. Mat. Mex., 1960, pp102-119.
- [3] S. R. Kuo, D. L. Elliott, and T. J. Tarn, Exponential Observers for Non-linear Dynamic Systems, Inform. Cont. 29 (1975) 204-216.
- [4] J. O'Reilly, Observers for Linear Systems, Academic Press, London, 1983.
- [5] J. C. Willems and S. K. Mitter, Controllability, Observability, Pole Allocation, and State Reconstruction, IEEE Trans. Aut. Cont. AC-16(6), (1971) 582-595.

5 Examples

We now give some simple examples to illustrate the applicability of the above observer design.

5.1 Bilinear Dynamics, Linear Observation

Consider the general bilinear system

$$\dot{x} = \left(A + \sum_{i=1}^{m} u_i B_i\right) x, \qquad x(0) = x_0,$$

$$y = Cx.$$
(30)

We assume $|u_i| \leq 1$, p = 1, and here $\xi = u \in [-1, 1]^m = X$. Write

$$A(u) = A + \sum_{i=1}^{m} u_i B_i.$$

Define, for $\tau > 0$, the observability grammian

$$\mathcal{O}(t_0, t_0 + \tau) = \int_{t_0}^{t_0 + \tau} \Phi_{A'}(t_0, t) C' C \Phi'_{A'}(t_0, t) dt,$$

where $A_t = A(u(t))$. Assume that (30) is uniformly observable in the sense that there exists $\tau > 0$ such that for all $t_0 \ge 0$

$$\gamma_0(\tau)I \leq \mathcal{O}(t_0, t_0 + \tau) \leq \gamma_1(\tau)I$$

for constants $\gamma_0(\tau)$, $\gamma_1(\tau) > 0$, independent of the control. The we can bound $||Q_t||$ as in Corollary 3.1.

Then the following system is an observer for (30), with no contraints on the initial conditions.

$$\dot{m}(t) = A(u(t))m(t) + Q(t)C'(y(t) - Cm(t)), \ m(0) = m_0,
\dot{Q}(t) = A(u(t))Q(t) + Q(t)A(m(t))' - Q(t)C'CQ(t) + I, \ Q_0 = I.$$
(31)

For simplicity we have taken Q_0, N, R to be identity matrices. To improve the decay rate γ , one could try other values for Q_0, N, R .

Compare this design with the design for linear time-varying systems in Willems and Mitter [5], and O' Reilly [4].

5.2 Linear Dynamics, Nonlinear Observations

Consider the system

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u,$$

$$y = \sin x_1.$$
(32)

This system is controllable and observable. However, the pair of matrices (Dh(x),A) is not observable for $x_1=k\frac{\pi}{2}$, where k is an odd integer. The system has eigenvalues -1,-2 and A is symmetric, hence (Dh(x),A) is automatically uniformly detectable, with $\alpha_0=1$, $\Lambda(x)\equiv 0$. Let R=rI, $N=\sqrt{r_0}I$, $Q_0=\gamma^2I$. Here, $H(x)=\frac{1}{r}(\cos x_1,0)$. Now

$$\delta = r_0(\gamma^2 + r_0/2)^{-2} - 4r^{-2}.$$

Set r = 3, $r_0 = 0.2$, $\gamma = 0.1$. Then $\delta = 7.82$. The observer for (32) is

$$\dot{m}(t) = Am(t) + Bu(t) + \frac{1}{3}Q(t)H(m(t))'(y(t) - \sin m_1(t)), \qquad (33)$$

$$\dot{Q}(t) = AQ(t) + Q(t)A' - Q(t)H(m(t))'H(m(t))Q(t) + 0.2I.$$

By Corollary 2.1, m(t) converges exponentially to x(t) for all $x_0, m_0 \in \mathbb{R}^n$.

References

- [1] J.S. Baras, A. Bensoussan and M.R. James, Dynamic Observers as Asymptotic Limits of Recursive Filters: Special Cases, Technical Report SRC-TR-86-79, Systems Research Center, University of Maryland, December 1986. To appear, SIAM J. Applied Math.
- [2] R. E. Kalman, Contributions to the Theory of Optimal Control, Bol. Soc. Mat. Mex., 1960, pp102-119.
- [3] S. R. Kuo, D. L. Elliott, and T. J. Tarn, Exponential Observers for Non-linear Dynamic Systems, Inform. Cont. 29 (1975) 204-216.
- [4] J. O'Reilly, Observers for Linear Systems, Academic Press, London, 1983.
- [5] J. C. Willems and S. K. Mitter, Controllability, Observability, Pole Allocation, and State Reconstruction, IEEE Trans. Aut. Cont. AC-16(6), (1971) 582-595.