COT 5407 – Introduction to Algorithms

Final Exam Take Home

Problem 1 (5 points) – Transitive Closure of a Dynamic Graph Given a directed graph G = (V, E), we need to update the transitive closure of the edges inserted so far. Assume that the graph has no edges initially and the transitive closure is represented by a Boolean matrix.

(1) (2 points) Give an $O(V^2)$ algorithm to update the transitive closure $G^* = (G, E^*)$ of a graph G = (V, E) when a new edge e = (u, v) is added;

Let 'A' be the $|V| \times |V|$ matrix representing the transitive closure, such that A[i,j] is 1 if there is a path from i to j, and 0 if not:

```
initialize 'A' as follows:A[i,j] = { 1 if i=j, 0 otherwise}'A' can be updated as follow when an edge (u, v) is added to G.
```

```
Transitive-closure-update (u, v)

For i= 1 to |V|

do for j = 1 to |V|

do if A [i, u] = 1 and A [v, j] = 1

then A[i,j] =1
```

In order to add edge (u, v) to graph G, we have to create a path from every vertex that could already reach u to every vertex that could already be reached from v. To accomplish this, we set A[u,v] = 1 if and only if the initial values A[u,u] = A[v,v] = 1.

As this algorithm involves two nested loops, this takes O(V2) time.

(2) (1 point) Give an example and an edge e = (u, v) such that $\Omega(V^2)$ time is required to update the transitive closure after the insertion of e into G, no matter what algorithm is used;

Let's consider the following Graph G with vertices A, B, C. i.e. n=3

In this matrix, there are a total of n² (9) entries.

$$G\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

If we add another edge u, we have to change at least $(n+1)^2 - (((n+1)*(n+1+1))/2)$ or $(n+1)^2 - (((n+1)*(n+2))/2)$ or $\Theta(n^2) = \Theta(V^2)$ entries. This in the following G we have to change 6 entries.

Thus, any algorithm that updates the transitive closure must take $\Omega(V^2)$ time.

(3) (2 points) Give an efficient algorithm for updating the transitive closure as edges are inserted into the graph. For any sequence of n insertions, your algorithm should have a total time $\sum_{i=0}^{n}(t)i = V(O^3)$, where t_i is the time to update the transitive closure upon inserting the ith edge. Analyze the complexity of your algorithm.

The algorithm in part 1 would take O (V^4) time to insert all possible O (V^2) edges, so we need a more efficient algorithm in order for any sequence of insertion to take only O (V^3) total time.

To improve the algorithm, notice that the loop over j is pointless when A[i,v] = 1. That is , if there is already a path $i \rightarrow v$. then adding the edge (u,v) can't make any new vertices reachable from i. the loop to set A[i,j] to 1 for j such that there is a path $v \rightarrow j$ is just setting entries that are already 1. Remove this redundant processing as follows:

```
Transitive-closure-update (u, v)

1. For i= 1 to |V|

2. do for A [i, u] = 1 and A [i, v] = 0

3. then for j = 1 to |V|

4. do if A [v, j] = 1
```

then A[i,j] = 1

5.

Analysis: There can't be more than $|V|^2$ edges in G, so $n \le |V|^2$. Summed over n insertions, time for the first two lines $O(GV) = O(V^3)$. Lines 3,4 and 5 which takes O(V) time are executed only $O(V^2)$ times for n insertions. To see this, notice that the last three lines are executed only when A [i, v] = 0, and in that case, the last line sets A [i, v] = 1. Thus, the number of 0 entries in 'A' is reduced by at least 1 each time the last three lines run. Since there are only $|V^2|$ entries in 'A', these lines can run at most $|V|^2$ times. Hence the total running time over n insertions is $O(V^3)$

Problem 2 (5 points) - String Matching

(1) (1 point) Suppose that all characters in the pattern P are different. Describe how to accelerate NAIVE-STRING-MATCHER to run in time O(n) on an character text T.

A character mismatch $P[i] \neq T[s+i]$ for I > 1 indicates that characters in P[1....i] and T[s+1....s+i) matched successfully. As all characters in P are distinct, this partial match means that only P[1] = T[s+1] and thus none of T(s+1...s+i) could match P[1] and start a new potentially valid match. Taking advantage of this fact, our algorithm can skip to character T[s+i] — the first character that can potentially match P[1]:

```
Distinct-chars-pattern-matcher (T, P)
```

```
1. n = T.length
2. m = P.length
3. s = 0
4. While s \le n - m
5.
        i=1
6.
        While i \le m and P[i] = T[s+i]
7.
             i = i + 1
8.
        If i = m + 1
             Print "Pattern occurs with shift" s
9.
        s = max (s + 1, s + i - 1)
10.
```

(2) (1 point) Working with q=11, how many spurious hits does the Rabin-Karp matcher encounter in the text T=3141592653589793 when looking for pattern P=26?

The number of digits in P and q is 2 therefore window size m becomes 2. Assume x is the remainder.

A spurious hit will occur when p has a value, such that the value of P mod q is 4.

A proper match will occur when remainder is 4 and p is 26.

Now, each time extract two digits from the text T, and match as follow.

	Different(P)	R (p mod q)	status
P1	31	9	No hit
P2	14	3	No hit
Р3	41	8	No hit
P4	15	4	spurious hit
P5	59	4	spurious hit
P6	92	4	spurious hit
P7	26	4	Proper match
P8	65	10	No hit
P9	53	9	No hit

P10	35	2	No hit
P11	58	3	No hit
P12	89	1	No hit
P13	97	9	No hit
P14	79	2	No hit
P15	93	5	No hit

Observe the above table, the remainder is 4 is obtained, when P is 26, the match is a proper match, but not a spurious hit.

Therefore, the number of spurious hits is 3.

(3) (2 points) Construct the string-matching automaton for the pattern P=aabab and illustrate its operation on the text string T=aaababaabaabaabaab.

Applying the DFA construction method with P = aabab and $\{a, b\}$ gives the following transition table:

State	а	b
0	1	0
1	2	0
2	2	3
3	4	0
4	2	5
5	1	0

With the following sequence of state transitions for T = aababaabaabaabaab:

- $a: 0 \rightarrow 1$
- a: $1 \rightarrow 2$
- a: $2 \rightarrow 2$
- b: $2 \rightarrow 3$
- a: $3 \rightarrow 4$
- b: $4 \rightarrow 5$ (match)
- a: $5 \rightarrow 1$
- a: $1 \rightarrow 2$
- b: $2 \rightarrow 3$

a:
$$3 \rightarrow 4$$

a:
$$4 \rightarrow 2$$

a:
$$2 \rightarrow 3$$

a:
$$3 \rightarrow 4$$

b:
$$4 \rightarrow 5$$
 (match)

a:
$$5 \rightarrow 1$$

a:
$$1 \rightarrow 2$$

b:
$$2 \rightarrow 3$$

(4) (1 point) Draw a state-transition diagram for a string-matching automaton for the pattern P=ababbabbab over the alphabet $\Sigma=\{a,b\}$.

State	а	b
0	1	0
1	1	2
1 2 3 4 5 6 7 8	3	0 2 0 4 5 0 7
3	1	4
4	3	5
5	6	0
6	1	7
7	3	8
8	9	0
9	1 3 9 1	10
10	3	0