

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Β΄, ΤΜΗΜΑ Ρ-Ω, ΑΚΑΔ. ΕΤΟΣ 2022–2023 ΔΙΔΑΣΚΩΝ: ΓΡΗΓΟΡΙΟΣ ΖΟΥΡΟΣ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Μαγνητοστατικά πεδία, Μαγνητικό διανυσματικό δυναμικό, Αυτεπαγωγή

Ασχηση 1

Η εκ περιστροφής διάταξη του διπλανού σχήματος αποτελείται από έναν κόλουρο κώνο ο οποίος προκύπτει από την τομή της κωνικής επιφάνειας $\theta=\theta_0$ με τα επίπεδα $z=h_1$ και $z=h_2$. Το υλικό του κόλουρου κώνου έχει διαπερατότητα μ ενώ ο υπόλοιπος χώρος μ_0 . Το άνω τμήμα του κώνου εφάπτεται ημισφαιρίου ακτίνας a, όπως φαίνεται στο σχήμα.

Στο κέντρο της κυκλικής βάσης του κώνου που βρίσκεται στο επίπεδο $z=h_1$, προσάγεται ηλεκτρικό ρεύμα I από το $z\to-\infty$, μέσω λεπτού συρματόμορφου αγωγού ο οποίος βρίσκεται στον άξονα z. Κατόπιν, το ρεύμα μετατρέπεται σε επιφανειακή πυκνότητα \mathbf{K}_1 (στην κυκλική βάση του κώνου με $z=h_1$), σε χωρική πυκνότη-

τα ${\bf J}$ (στον όγκο του κώνου), και σε επιφανειακή πυκνότητα ${\bf K}_2$ (στην κυκλική βάση του κώνου με $z=h_2$). Τέλος, το φεύμα επιστφέφει στο $z\to-\infty$ μέσω της επιφανειακής πυκνότητας ${\bf K}_3$ που βφίσκεται σε κυλινδφική επιφάνεια, όπως φαίνεται στο σχήμα.

- (α') Να υπολογιστεί η χωρική πυκνότητα ρεύματος $\mathbf{J} = J(r)\hat{r}$.
- (β') Να υπολογιστεί η ένταση του μαγνητικού πεδίου και η μαγνητική επαγωγή, παντού στο χώρο.
- (γ') Να υπολογιστούν οι επιφανειακές πυκνότητες ρεύματος $\mathbf{K}_{1,2,3}$.

Άσκηση 2

Αποδείξτε ότι το ολοκλήρωμα επαλληλίας για το μαγνητικό διανυσματικό δυναμικό

$$\mathbf{A}(\mathbf{r}) = \frac{\mu I}{4\pi} \oint_C \frac{d\ell'}{R},$$

λόγω ροής ρεύματος σε λεπτό συρματόμορφο αγωγό, ικανοποιεί τη συνθήκη Coulomb $\nabla \cdot \mathbf{A}(\mathbf{r}) = 0$.

Άσκηση 3

Η κυλινδοική διάταξη του διπλανού σχήματος έχει απέραντο μήκος κατά τον άξονα z. Ο εσωτερικός αγωγός ακτίνας a (περιοχή 1) έχει ανομοιογενή διαπερατότητα $\mu(r)=2\mu_0/[1+(r/a)^4]$. Ο εξωτερικός αγωγός αμελητέου πάχους, έχει ακτίνα b, ενώ η ενδιάμεση περιοχή 2 έχει διαπερατότητα μ_0 . Ηλεκτρικό ρεύμα έντασης I ρέει ομοιόμορφα (με σταθερή πυκνότητα) στον εσωτερικό αγωγό και επιστρέφει από τον εξωτερικό.

- (α') Να υπολογιστεί ο συνολικός συντελεστής αυτεπαγωγής (υπολογίζοντας πρώτα τους συντελεστές εσωτερικής και εξωτερικής αυτεπαγωγής) ανά μονάδα μήκους της διάταξης, μέσω υπολογισμού της πεπλεγμένης μαγνητικής ροής.
- (β') Επαληθεύστε το αποτέλεσμα (α') μέσω της μαγνητοστατικής ενέργειας.

$$\begin{aligned} &\left(\begin{array}{c} \begin{array}{c} \\ \\ \end{array}\right) \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} = \frac{1}{2\pi T \sin \theta} \frac{1-\cos \theta}{1-\cos \theta} \\ &\left(\begin{array}{c} (\cos \theta) \\ \end{array}\right) \frac{1}{2\pi T \sin \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{2\pi T \sin \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{2\pi T \sin \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{1-\cos \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{1-\cos \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{1-\cos \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{1-\cos \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{1-\cos \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) - \frac{1}{1-\cos \theta} \\ &\left(\begin{array}{c} 1-\cos \theta \\ \end{array}\right) \\ &\left(\begin{array}{c} 1-\cos \theta \\$$

$$\begin{aligned} & \mathcal{V}_{n,\xi} = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{\Gamma} dr = \frac{1}{2\pi} \int_{0}^{\infty} \ln(\frac{1}{2}\delta) & \rightarrow \mathcal{E}_{\xi, h} = \frac{1}{2\pi} \ln(\frac{1}{2}\delta) \\ & \mathcal{E}_{\xi, h} = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} dr = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} dr = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} dr = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} dr = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{2\pi} \int$$