Warsztat 4

Zadanie – router IP z funkcją filtrowania ruchu

- Kierowanie na podstawie adresu IP
 - o Docelowa podsieć (klucz w tabeli) oraz port wyjściowy i następny węzeł (parametry akcji)
 - Obsługa TTL (w tym odrzucanie pakietów)
 - Aktualizacja sumy kontrolnej
- Filtrowanie (blokowanie) ruchu na podstawie:
 - o Adres docelowy IP
 - Port docelowy warstwy transportowej
 - Protokół warstwy transportowej
- Hosty w różnych podsieciach
 - Statycznie przypisane adresy MAC lub implementacja obsługi protokołu ARP
 - Podmiana na właściwe adresy MAC
- Brak obsługi protokołu ICMP
- Statystyki
 - Odebrane/wysłane pakiety oddzielnie dla każdego portu
 - Przesłane pakiety dalej dla każdego portu
 - Odrzucone pakiety zbiorczo dla wszystkich portów

Sprawozdanie

- Zamieszczony kod źródłowy
- Wpisywane polecenia (wraz z krótkim opisem), które:
 - Nie były wymienione w instrukcji
 - Należało "odkryć" wg instrukcji
- Termin
 - Grupa poniedziałkowa: 22 kwietnia (do końca dnia)
 - Grupa środowa: 10 kwietnia (do końca dnia)

Zadanie – środowisko

• Skrypty wypracowane na poprzednich zajęciach

Tabela – dopasowanie ternary

- Klucz tabeli składa się z 2 części
 - Wartości klucza (V)
 - Maski (M)
 - Maska i wartość są tej samej długości (mają tyle samo bitów)
- Aby i-ty wpis tabeli mógł być dopasowany do pakietu (P), musi zajść zależność:

$$V_{i} \& M_{i} = P \& M_{i}$$

 Może zostać dopasowanych wiele wpisów w tabeli – wybierany jest ten o najwyższym priorytecie

counter i direct_counter

- Obiekty służące do zliczania bajtów lub pakietów (lub obu tych wartości)
- counter liczniki trzymane w osobnej tablicy (indeksowanej od 0)
- direct_counter liczniki trzymane razem ze wpisem w tabeli
- Utworzenie instancji

```
o counter<index_t>(size, CounterType.???) cnt_instance;
o direct counter(CounterType.???) dcnt instance;
```

- index_t typ indeksu (tylko dla V1MODEL VERSION >= 20200408)
- size maksymalna liczba wpisów
- CounterType typ wyliczeniowy, określający rodzaj zliczanych danych
- Zwiększenie wartości licznika:

```
o cnt_instance.count(index)
o dcnt_instance.count()
```

verify_checksum

- Weryfikuje sumę kontrolną
- W przypadku błędu ustawi pole checksum_error na 1 w strukturze standard metadata
- Możliwa do wywołania tylko w bloku VerifyChecksum
- verify checksum<T, O>(in bool condition, in T data, in O checksum, HashAlgorithm algo);
 - o condition warunek konieczny, aby suma kontrolna była weryfikowana (np. nagłówek został sparsowany)
 - o data lista pól
 - o checksum aktualna wartość sumy kontrolnej
 - o algo algorytm; dla IPv4, TCP, UDP: csum16
- Przykłady: <u>https://github.com/p4lang/p4c/blob/main/testdata/p4_16_samples/checksum-l4-bmv2.p4</u>

update_checksum

- Oblicza sumę kontrolną
- Możliwa do wywołania tylko w bloku ComputeChecksum
- update_checksum<T, O>(in bool condition,
 in T data, inout O checksum,
 HashAlgorithm algo);
 ochecksum pole, w którym zostanie zapisana wartość sumy kontrolnej
- Przykłady jak dla verify checksum

Zapisy liczb

[Nw]L

- N liczba bitów, na których liczba ma być zapisana (opcjonalnie)
- L liczba właściwa
 - Może zawierać znaki podkreślenia (_) są ignorowane
 - Możliwe prefiksy określające podstawę
 - 0x, 0X zapis szesnastkowy
 - 0o, 0O zapis ósemkowy
 - Od, OD zapis dziesiętny (domyślny)
 - Ob, OB zapis binarny
- Przykłady: 0, 8w0, 32w0xFFFF_FFFF

Przetwarzanie pakietu po bloku ingress

```
if (a clone primitive action was called) {
   Create clone(s) of the packet
if (digest to generate) {
    Send a digest message to the control plane software
if (resubmit was called) {
    Start ingress processing over again for the original packet
} else if (egress spec == DROP PORT) {
   Drop packet
} else if (mcast grp != 0) {
   Multicast the packet to the output port(s)
} else {
   Unicast the packet to the port equal to egress spec
```

Źródło: https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md

Przetwarzanie pakietu po bloku egress

```
if (a clone primitive action was called) {
    Create clone(s) of the packet
if (egress spec == DROP PORT) {
    Drop packet
} else if (recirculate was called) {
    Start processing the packet over again
 else {
    Send the packet to the port
```

Źródło: https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md

Przydatne materiały

Te same co na poprzednich warsztatach