Lecture 14 TRANSFORMER TESTS AND THREE PHASE TRANSFORMER BASICS

Agenda

R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

How to get the parameters for the transformer model?

Lecture Outcomes

at the end of the lecture, the student must be able to ...

- Apply the open and short circuit tests to derive transformer parameters
- Explain how a three-phase Transformer works.

Transformer Tests: Short-Circuit Test

Conducted to determine series impedance With the secondary (Low-voltage side) short-circuited, apply a primary voltage (usually 2 to 12% of rated value) so that full load current flows.

Short-Circuit Test

Short-Circuit Test

$$I_e \approx 0$$
$$I_{sc} = I_I$$

$$R_{eq} = \frac{P_{SC}}{I_{SC}^2} \qquad Z_{eq} = \frac{V_{SC}}{I_{SC}} \qquad X_{eq} = \sqrt{Z_{eq}^2 - R_{eq}^2}$$

$$X_{eq} = \sqrt{Z_{eq}^2 - R_{eq}^2}$$

Transformer Tests: Open-Circuit Test

Conducted to determine shunt impedance

With the secondary (High-voltage side) open-circuited, apply rated voltage to the primary.

Open-Circuit Test

Short-Circuit and Open-Circuit Tests

Example:

50 kVA, 2400/240V, single-phase transformer

Short-Circuit Test: HV side energized

$$V_{SC} = 48 \text{ volts}$$
 $I_{SC} = 20.8 \text{ amps}$ $P_{SC} = 617 \text{ watts}$

Open-Circuit Test: LV side energized

$$V_{OC} = 240 \text{ volts}$$
 $I_{OC} = 5.41 \text{ amps}$ $P_{OC} = 186 \text{ watts}$

Determine the Series and Shunt Impedance of the transformer. What is %Z and X/R of the transformer?

Short-Circuit and Open-Circuit Tests

Solution:

From the short-circuit test

$$Z_{eq,H} = \frac{48}{20.8} = 2.31 \text{ ohm}$$

$$Z_{eq,H} = \frac{48}{20.8} = 2.31 \text{ ohm}$$

$$Z_{eq,H} = \frac{617}{(20.8)^2} = 1.42 \text{ ohm}$$

$$X_{eq,H} = \sqrt{2.31^2 - 1.42}^2 = 1.82 \text{ ohm}$$

$$X_{eq,H} = \sqrt{2.31^2 - 1.42}^2 = 1.82 \text{ ohm}$$

From the open-circuit test

$$R_{cq,L} = \frac{(240)^2}{186} = 310 \text{ ohm}$$

$$\frac{1}{X_m} = \sqrt{\left[\frac{5.41}{240}\right]^2 - \left[\frac{1}{310}\right]^2} \qquad X_{m,L} = 45 \text{ ohm}$$

$$X_{m,L} = 45$$
 ohm

Short-Circuit and Open-Circuit Tests

Referred to the HV side

$$R_{c.H} = a^2 R_{c.L} = 30,968$$
 ohm

$$X_{m,H} = a^2 X_{m,L} = 4,482 \text{ ohm}$$

%Z and X/R

$$Z_{BASE} = \frac{[2.4]^2}{50/1000} = 115.2 \text{ ohm}$$

$$\%Z = \left(\frac{2.31}{115.2}\right) x 100 = 2\%$$
 $X/R = \frac{1.82}{1.42} = 1.28$

$$X/R = \frac{1.82}{1.42} = 1.28$$

X/R Ratios of Transformers

Source: Based on IEEE Std C37.010-1979.

Transformers in Parallel

- Same turns ratio
- Connected to the same primary phase
- Identical frequency ratings
- Identical voltage ratings
- Identical tap settings
- Per unit impedances within 0.925 to
 1.075 of each other

OPEN DELTA – OPEN DELTA

Three Phase Transformer Bank

Transformer Connection

OPEN WYE - OPEN DELTA

Three Phase Transformer Bank

Windings are connected Wye or Delta internally

HOMEWORK

Example 2-2. The equivalent circuit impedances of a 20-kVA, 8000/240-V, 60-Hz transformer are to be determined. The open-circuit test and the short-circuit test were performed on the primary side of the transformer, and the following data were taken:

Open-circuit test (on primary)	Short-circuit test (on primary)
$V_{\rm OC} = 8000\mathrm{V}$	$V_{SC} = 489 \text{ V}$
$I_{\rm OC}=0.214\mathrm{A}$	$I_{SC} = 2.5 \text{ A}$
$V_{\rm OC} = 400 \mathrm{W}$	$P_{SC} = 240 \text{ W}$

Find the impedances of the approximate equivalent circuit referred to the primary side, and sketch that circuit.