Paper Review #6

[EMNLP 2020] Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks

Dept. of Computer Science & Engineering 202122029 Meeyun Kim

2021. 08. 23.

Contents

- 1. Introduction
- 2. Method
- 3. Experiments

1. Introduction

Self-supervised learning

- Automatically generate labels.
- ex) Masked Language Modeling
- Can avoid meta-overfitting, and can solve memorization problem.

2. Method

Subset: {Democratic, Capital}

Support	set
---------	-----

Sentence		Class
•	of the [m] Party, he was the first African American to be the presidency.	1
The [m] Party is one of the two major contemporary political parties in the United States, along with its rival, the Republican Party.		1
Honolulu is the [m] and largest city of the U.S. state of Hawaii.		2
	on, D.C., formally the District of Columbia and commonly as Washington or D.C., is the [m] of the United States.	2

Query: New Delhi is an urban district of Delhi which serves as the [m] of India

Correct Prediction: 2

Creating an N-way classification task with SMLMT

Creating an N-way classification task with SMLMT (Cont'd)

$$x_{vi} \rightarrow x'_{vi} = \{ \operatorname{Mask}(X_1, v_i), \dots, \operatorname{Mask}(X_r, v_i) \}$$

[m]

Creating an N-way classification task with SMLMT (Cont'd)

Model cannot memorize the input-label!

Meta-learning Model

Text encoder

- Follow the **BERT** model.
- Add a special **CLS token** to the start of the input.

Meta-learning Model

MAML(Model-Agnostic Meta-Learning)

Learn

$$\theta_i' \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_i(\mathcal{D}^{tr}, \theta)$$

Meta learn

$$\Theta \leftarrow \Theta - \beta \nabla_{\Theta} \mathbb{E}_{T_i \sim \mathcal{P}(\mathcal{T})} \left[L_i(\mathcal{D}^{val}, \theta_i') \right]$$

$$(\Theta := \{\theta, \alpha\})$$

3. Implementation

Implementation of SMLMT

Models (same transformer architecture)

- **BERT**: used the **cased base model**.
- MT-BERT: multi-task learning model. (proposed in Bansal et al. (2019))
- MT-BERT_{softmax}: only the softmax layer is fine-tuned.
- **LEOPARD**: meta-learning model (proposed in Bansal et al. (2019))
- SMLMT : Self-supervised meta-learning model
- Hybrid-SMLMT: combination of SMLMT and supervised tasks.

Implementation of SMLMT

Hyper-parameters

Hyper-parameter	Value	
Tasks per batch	4	
Support samples per task	80	
Query samples per task	10	- SMLMT & Hybrid-SMLMT
Number of classes in SSLMT	[2,3,4]	use the same set of hyper-parameter.
d	256	
Attention dropout	0.1	
Hidden Layer Dropout	0.1	
Outer Loop Learning Rate	1e-05	
Adaptation Steps (G)	7	
λ	0.5	— Not valid for SMLMT!
Meta-training Epochs	1	
Lowercase text	False	
Sequence Length	128	
Learning-rate Warmup	10% of steps	