Tensor network approach to studying fractal lattice

E lab, Nagoya University
Temma Hanyuda
2024-11-16

Tensor Network 2024 @Shiinoki Cultural Complex, Kanazawa

Collaborators: Yuki Sato, Daisuke Kadoh, Yoshiyasu Ito

Motivation

- Fractals often appear in nature. (self-similarity, non-integer fractal dimensions, …)
- Physical models on fractal spaces.
 (Gefen-Mandelbrot-Aharony (1980, 1982, 1983, 1984))
- → Universality? A field-theoretic description on a fractal?
- Dimensional regularization and quantum gravity models, involve the emergence of non-integer dimensions.
- → Are fractals significant?
- Self-similar repeating structure → Suitable for TRG calculations?

In this talk, I consider the Ising model on a fractal space, and calculate various physical quantities using TRG to understand physical models on fractals.

Contents

1. What are Fractals

2. TRG on Sierpiński carpet

3. Numerical Results

1. What are Fractals

Fractal

Self-similarity

https://minorinosato-togane.com/2016/03/07/8880

(Examples) the boundaries of clouds, coastlines, mountain surfaces, and so on.

Hausdorff dimension

Normally, when the length is L, the volume in d dimensions becomes $S = L^d$

$$d = \log S / \log L$$

$$d_H = \frac{\log 3}{\log 2} \approx 1.584962$$

Statistical models on Sierpinski gasket/carpet

The Ising model on a Sierpiński gasket

- Finite bond cuts → decomposable into clusters (ramification is finite) → 1D-like
- No phase transition

Sierpinski carpet

- Ramification is infinite.
- Phase transition occurs.

We study the case of Sierpinski carpet using TRG.

Sierpiński carpet

2. TRG on Sierpiński carpet

Sierpiński carpet - S(b,c)

A single square is divided into b² smaller squares, from which c^2 squares are removed.

例
$$SC(3,1)$$
 $n=1$

$$d_{\rm H} = \log(b^2 - c^2)/\log b$$

$$n=2$$

$$d_{\rm H} = \log_3 8 \approx 1.8927$$

$$n=3$$

→ Spins are placed on the faces.

The Ising model on the Sierpiński carpet

The Ising model on the Sierpiński carpet

The Ising model on the Sierpiński carpet

Corner Matrix $C^{(1)}$

$$j - C = C = C = C$$

$$C_{ij}^{(1)} = C = C$$

$$C_{ij}^{(1)} = C$$

$$C_{ij}^{(1)} = \sum_{\xi=\pm 1} \exp\left[K\xi \left(\sigma_a + \sigma_b\right)\right]$$

where
$$i = (\sigma_a + 1)/2, j = (\sigma_b + 1)/2$$

$$Z^{(1)} = \sum_{ijkl} C_{ij}^{(1)} C_{jk}^{(1)} C_{kl}^{(1)} C_{li}^{(1)} = \text{Tr} \left[C^{(1)} \right]^4 =$$

$$n = 1$$

$X^{(1)}$

$$X_{ijkl}^{(1)} = \sum_{\xi\eta} \exp\left[K\left(\sigma_a\sigma_b + \sigma_c\sigma_d + \xi\eta\right)\right]$$
$$\times \exp\left[K\xi\left(\sigma_a + \sigma_d\right) + K\eta\left(\sigma_b + \sigma_c\right)\right]$$

New C

$$\begin{split} C_{ij}^{(n+1)} &= C_{(i_1 i_2)(j_1 j_2)}^{(n+1)} \\ &= \sum_{abcdef} C_{aj_2}^{(n)} X_{abcj_1}^{(n)} C_{fc}^{(n)} C_{db}^{(n)} X_{dei_1 f}^{(n)} C_{i_2 e}^{(n)} \end{split}$$

New X

SVD of X

Jozef Genzor, Andrej Gendiar, Tomotoshi Nishino (2019)

$$\begin{split} X_{(i_1 i_2)(j_1 j_2 k_1 k_2 l_1 l_2)}^{(n+1)} &= \sum_{\xi} U_{(i_1 i_2) \, \xi} \, \omega_{\xi} \, V_{(j_1 j_2 k_1 k_2 l_1 l_2) \, \xi} \\ &\simeq \sum_{i}^{D} U_{(i_1 i_2) \, i} \, \omega_{i} \, V_{(j_1 j_2 k_1 k_2 l_1 l_2) \, i} \end{split}$$

U is used to truncate the bond dimension of X and C.

Renormalization of C and X

3. Numerical results

Previous results

Jozef Genzor, Andrej Gendiar, Tomotoshi Nishino (2019)

arxiv: 1904.10645

n = 35

Free energy

Internal Energy

$$n = 35$$
$$D = 7$$

Specific heat

$$n = 35$$

$$D = 7$$

Successfully reproduced the results

dC/dT

Third-order phase transition?

Tc=1.48 is consistent with Tc ≈1.47829 that was obtained in Genzor-Gendiar-Nishino(2019).

Summary

- We succeeded in reproducing the results of Genzor-Gendiar-Nishino (2019).
- We are in the process of improving the code to be able to calculate even larger bond dimensions.
- Other fractals
- Universality class, field theory on fractals?