5004 Report

Liangjie LIU

April 27, 2025

1 Q1 Solving the Laplace Equation with Neumann Boundary Conditions

1.1 Problem Setup

We solve the Laplace equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
, for $(x, y) \in [0, 1] \times [0, 2]$,

subject to the Neumann boundary conditions:

$$\begin{cases} \frac{\partial \phi}{\partial x}(0,y) = 0, & \frac{\partial \phi}{\partial x}(1,y) = 0, & 0 < y < 2, \\ \frac{\partial \phi}{\partial y}(x,0) = 0, & 0 \le x \le 1, \\ \frac{\partial \phi}{\partial y}(x,2) = \sqrt{1-x^2}, & 0 \le x \le 1. \end{cases}$$

1.2 Numerical Methodology

The domain was discretized with a uniform Cartesian grid with spacing $\Delta x = \Delta y = 0.01$, resulting in grid points

$$x_i = j\Delta x$$
, $y_l = l\Delta y$, for integers j, l .

Handling Neumann Boundary Conditions

- The side-wall boundary conditions at x=0 and x=1 are homogeneous Neumann, automatically satisfied by choosing a cosine basis in x. - The bottom boundary at y=0 is homogeneous Neumann and requires no modification. - The non-homogeneous Neumann condition at the top boundary y=2 was incorporated into the discrete system by modifying the source term ρ . Specifically, the second-to-last row was adjusted:

$$\rho_{j,L-1} \leftarrow \rho_{j,L-1} - \frac{g_{\text{top}}(x_j)}{\Delta y},$$

where $g_{\text{top}}(x) = \sqrt{1 - x^2}$.

Spectral Solution via DCT

Applying a two-dimensional discrete cosine transform (DCT-II) to the modified source term:

$$\tilde{\rho}_{m,n} = \text{DCT2}(\rho_{i,l}),$$

transforms the PDE into an algebraic system in frequency space.

For each mode (m, n), the transformed Laplace equation reads:

$$\left(2\cos\left(\frac{m\pi}{J}\right) + 2\cos\left(\frac{n\pi}{L}\right) - 4\right)\tilde{\phi}_{m,n} = (\Delta x)^2 \tilde{\rho}_{m,n}.$$

The spectral coefficients $\phi_{m,n}$ were computed accordingly.

Treatment of the Zero Mode Since the Neumann problem admits solutions only up to an additive constant, the zero-frequency mode $\tilde{\phi}_{0,0}$ was explicitly set to zero:

$$\tilde{\phi}_{0,0} = 0,$$

to ensure uniqueness of the numerical solution.

Reconstruction and Visualization

The physical-space solution was recovered via the inverse DCT:

$$\phi_{j,l} = \text{IDCT2}(\tilde{\phi}_{m,n}).$$

Finally, a contour plot of $\phi(x,y)$ was generated to visualize the solution field under the specified Neumann boundary conditions.

Figure 1: Contour plot of the computed solution $\phi(x,y)$ over the domain $[0,1] \times [0,2]$.

2 Q1 Bonus: Compatibility Problem and Setting $\tilde{\phi}_{00} = 0$

1. The Compatibility Problem for Neumann Boundary Conditions

When solving the Laplace equation under Neumann boundary conditions:

$$\nabla^2\phi=0\quad \text{in}\quad \Omega,\quad \frac{\partial\phi}{\partial n}=g(x,y)\quad \text{on}\quad \partial\Omega,$$

a *compatibility condition* must be satisfied to guarantee the existence of a solution. Specifically, the net flux across the boundary must vanish:

$$\int_{\partial\Omega}g(x,y)\,ds=0.$$

Physically, this condition states that the total inflow and outflow across the boundary must balance exactly.

In this project, the prescribed Neumann data on the top boundary y = 2 is $g(x) = \sqrt{1 - x^2}$, while the other three boundaries have zero flux. Thus, the net flux is:

$$\int_0^1 \sqrt{1 - x^2} \, dx > 0,$$

which **violates** the compatibility condition. Therefore, the original boundary value problem does not admit an exact solution.

2. The Role of Setting $\tilde{\phi}_{00} = 0$

To overcome this incompatibility, the project instructs to set the spectral coefficient $\tilde{\phi}_{00}$ to zero. Here, $\tilde{\phi}_{00}$ represents the zero-frequency mode in the discrete cosine transform (DCT), corresponding to the spatial average of the solution $\phi(x, y)$.

By enforcing $\phi_{00} = 0$, the numerical method effectively:

- Removes the arbitrary additive constant inherent in Neumann problems;
- Compensates for the imbalance in net flux by adjusting the global mean of the solution;
- Ensures that a stable, well-posed discrete solution can be computed, even though the continuous problem is incompatible.

Thus, setting $\tilde{\phi}_{00} = 0$ allows the spectral method to proceed without breakdown by absorbing the inconsistency into the mean adjustment.

3. Conclusion

Although the original boundary value problem does not satisfy the compatibility condition, setting $\tilde{\phi}_{00} = 0$ enables a meaningful numerical solution by normalizing the solution's average value. This approach corrects the incompatibility implicitly and is a standard technique when using spectral methods under Neumann boundary conditions.

3 Q2 Image Deblurring by Cyclic Convolution

3.1 Q2(a) Show $||h||_1 = 1$

The point spread function (PSF) is defined as:

$$h[n] = Cr^{|n|}, \quad 0 < r < 1,$$

where C is determined by enforcing the ℓ^1 -norm condition:

$$\sum_{n=-\infty}^{\infty} |h[n]| = 1.$$

Since $r^{|n|}$ is an even function:

$$\sum_{n=-\infty}^{\infty} |h[n]| = C \left(r^0 + 2 \sum_{n=1}^{\infty} r^n \right)$$
$$= C \left(1 + 2 \frac{r}{1-r} \right)$$
$$= C \left(\frac{1+r}{1-r} \right).$$

Thus,

$$C = \frac{1-r}{1+r} \, .$$

3.2 Q2(b) Plotting g[n] and y[n]

The clear signal g[n] is defined as:

$$g[n] = \sin\left(\frac{1}{4 \times 10^{10}}n(n+300)(n+100)(n-200)(n-500)\exp\left(-\left(\frac{n}{300}\right)^2\right)\right),$$

and the blurred signal is obtained by convolution with h[n].

• Plot g[n] and y[n] over $-1000 \le n \le 1000$.

3.3 Q2(c) Deblurring with Truncated PSF

The truncated PSF $h_T'[n]$ is obtained by zeroing values outside [-512, 511] and normalizing such that:

$$||h_T'||_1 = 1.$$

The reconstructed signal $g'_T[n]$ is computed by inverse Fourier transform after division in the frequency domain.

3.4 Q2(d) Deblurring with Periodic Summation PSF

The periodic summation is defined by:

$$h'_{P}[n] = \sum_{k=-\infty}^{\infty} h[n+kM], \quad M = 1024.$$

A closed-form expression is:

$$h'_{P}[n] = \frac{1-r}{1+r} \times \frac{r^{|n|} + r^{M-|n|}}{1-r^{M}}$$

The reconstructed signal $g_P'[n]$ is obtained similarly via inverse Fourier transform.

3.5 Q2(e) Error Sequences

The error sequences are:

$$\epsilon_T[n] = |g_T'[n] - g[n]|, \quad \epsilon_P[n] = |g_P'[n] - g[n]|.$$

Their logarithmic plots are shown below:

Conclusion Periodic summation significantly reduces reconstruction error compared to simple truncation, particularly in the interior region.

4 Q3 Analytical Properties of Exponential PSF

4.1 Q3(a) Find the constant C

The point spread function (PSF) is given by

$$h[n] = Cr^{|n|}, \quad 0 < r < 1,$$

where C is determined by the normalization condition

$$\sum_{n=-\infty}^{\infty} |h[n]| = 1.$$

Since $r^{|n|}$ is even, the sum splits as:

$$\sum_{n=-\infty}^{\infty} |h[n]| = C \left(r^0 + 2 \sum_{n=1}^{\infty} r^n \right)$$
$$= C \left(1 + 2 \frac{r}{1-r} \right)$$
$$= C \left(\frac{1+r}{1-r} \right).$$

Setting this equal to 1, we solve for C:

$$C = \frac{1-r}{1+r} \, .$$

4.2 Q3(b) Find $||h'_P||_1$ and explain

The periodic summation $h'_{P}[n]$ is defined as

$$h_P'[n] = \sum_{k=-\infty}^{\infty} h[n+kM].$$

Because periodic summation only redistributes the total energy without loss, the ℓ^1 -norm is preserved:

$$||h_P'||_1 = 1.$$

Explanation: Since $||h||_1 = 1$ and periodic summation merely wraps the exponentially decaying tails into one period without adding or removing energy, the total ℓ^1 -norm remains 1.

4.3 Q3(c) Derive the analytical formula for $h'_P[n]$

Expanding the definition,

$$h'_{P}[n] = \sum_{k=-\infty}^{\infty} h[n+kM] = C \sum_{k=-\infty}^{\infty} r^{|n+kM|}.$$

We can derive a closed-form expression. For $-\frac{M}{2} \le n < \frac{M}{2}$, the periodic sum evaluates to:

$$h'_{P}[n] = \frac{1-r}{1+r} \times \frac{r^{|n|} + r^{M-|n|}}{1-r^{M}}.$$

This formula expresses $h'_P[n]$ explicitly using only n, M, and r.

4.4 Q3(d) Show that $\epsilon_P[n] = 0$ for all interior points

The deblurred signal $g'_P[n]$ is obtained via Fourier domain division:

$$G_P'[k] = \frac{Y'[k]}{H[k]},$$

where Y'[k] is the Fourier transform of the observed cyclic convolution y'[n] and H[k] is the Fourier transform of $h'_P[n]$.

Since the PSF $h'_P[n]$ is derived from an exponential h[n] and $r \in (0,1)$, the Fourier coefficients H[k] are strictly positive, ensuring that $H[k] \neq 0$ for all k.

Thus, the deblurring operation exactly recovers every frequency component, yielding:

$$g'_{P}[n] = g[n], \text{ for } -\frac{M}{2} \le n < \frac{M}{2}.$$

Therefore, the error sequence satisfies

$$\epsilon_P[n] = 0$$
 for all interior points

 ${\bf Conclusion} \quad {\bf Periodic} \ {\bf deconvolution} \ {\bf with} \ {\bf exponential} \ {\bf PSF} \ {\bf perfectly} \ {\bf reconstructs} \ {\bf the} \ {\bf original} \ {\bf signal} \ {\bf within} \ {\bf the} \ {\bf interior} \ {\bf points}.$