Deflection of Electrons in Presence of Electric and Magnetic Field

Riddhiman Bhattacharya

June 4, 2023

1 Introduction

Here we'll try to inquire about the behavior of electrons when exposed to magnetic fields.

2 Mathematical Calculations and Theories

Let's consider a beam of particles with charge q mass m moving at velocity v through vacum. If there is a presence of a uniform electric field \vec{E} and uniform magnetic field \vec{B} , the force on each particle is given by Lorentz Force

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

2.1 Diagram

Before moving to the actual calculation, let us see the arrangement for the magnetic deflection of the charged particles.

2.2 Derivation

The magnetic force is constant and perpendicular to \vec{u} . The particles will move in a circular trajectory and it's radius can be found out by equating the magnetic force to the centripetal force needed to move in a circle of radius R.

$$qvB = \frac{mv^2}{R}$$

Figure 1: Arrangements for Magnetic Deflection of Charged Particles. Magnetic field is distributed uniforly over the entire distance L_B

$$R = \frac{mv}{qb}$$

The total deflection \mathcal{D}_B can be written from the figure as

$$D_B = R - R\cos(\phi)$$

Because the angle is very small, we'll use small angle approximations to get our final

 $L_B \approx R\phi$ and $\cos(\phi) \approx 1 - \frac{\phi^2}{2}$ Substituting the values in total deflection D_B , we get

$$D_B = \left(\frac{q}{m}\right) \left(\frac{(L_B)^2}{2v}\right) B$$