Статистика и анализ данных в R

Лекция 7. Линейные модели. Часть 1

(29.10.2022)

Даниил Литвинов

Мягкое введение

Что это такое?

х — баллы за экзамен по английскому 1

у — баллы за экзамен по английскому 2

Х	У
1	5
3	11
9	35
10	33

Что это такое?

А какая модель нам нужна?

$$\frac{5}{5}(y_i - \hat{y}_i)^2$$

Интерпретация коэффициентов

Зачем нужны линейные модели?

yeur = wo + w1- S + v2. percet go wife

- 1. Предсказание интересующей нас величины
- 2. Оценка влияния различных факторов на нашу целевую переменную
- 3. Линейные модели очень легко использовать и интерпретировать
- 4. Линейные модели могут восстанавливать даже **нелинейные зависимости**

t-tests

y = w, + 10

×= rangerus -P

y ~ wo Hulk

А как искать эти ваши w_0 и w_1 ?


```
> summary(m)
```

```
Call:
lm(formula = y \sim u + v + w)
```

Residuals:

```
Min 1Q Median 3Q Max -3.3965 -0.9472 -0.4708 1.3730 3.1283
```

Coefficients:

y= wo+w, u+ +wzv+ + wz w

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.625 on 26 degrees of freedom Multiple R-squared: 0.4981, Adjusted R-squared: 0.4402 F-statistic: 8.603 on 3 and 26 DF, p-value: 0.0003915

Как оценивать коэффициенты модели?

y=w₀, w₁x+ε; ŷ=w₀+w₁x; y-ŷ=ε loss=(y;-w₀-w₁x;)² -> min ζως (y;-w₀-w₁x;)² -> min ζως (y;-w₀-w₁x;)² -> min

Таблица производных

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^2$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	$k e^{kx}$
$\ln x = \log_{\mathrm{e}} x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\sin kx$	$k\cos kx$
$\cos x$	$-\sin x$
$\cos kx$	$-k\sin kx$

Как оценивать коэффициенты модели? Loss - É (y; -wo-w,x;)? $\frac{\partial Loss}{\partial w_o} = \sum_{i=1}^{N} -2 \cdot (y_i - w_o - w_o x_i)$

 $\frac{\partial LOSS}{\partial w_{1}} = \frac{2}{2} - 2 \cdot x_{1}(y_{1} - w_{0} - w_{1} \times y_{1})$ $\frac{\partial LOSS}{\partial w_{0}} = 0$ $\frac{\partial LOSS}{\partial w_{0}} = 0$ $\frac{\partial LOSS}{\partial w_{0}} = 0$

—— Отдых

А если у нас много независимых переменных?

$$y=w_0+w_1x+w_2z+\ldots+w_nt+\epsilon$$

площадь	число комнат	школа близко	цена квартиры
50	2	нет	5000
1000	7	да	11000
30	1	нет	3500
100	4	нет	33333

Множественная линейная регрессия дает нам плоскость

Как оценивать коэффициенты модели теперь?

$$\hat{y} = w_0 + w_1 \times_1 + w_2 \times_2$$

$$\cos z = \sum (y - w_0 + w_1 \times_1 - w_2 \times_2)$$

Капелька линейной алгебры

 $\frac{1}{2} \cos \alpha = -1$

« cuanernese mongle!
a, b - becomognes!

 $|a| \cdot |B| \cdot \cos \alpha$ $= \frac{1}{2} \cdot \frac{1}$

$$=\frac{1}{2}a_{i}^{2}-b_{i}=(a_{i}b_{i})$$
 $=\frac{1}{2}(a_{i}b_{i})$
 $=\frac{1}{2}(a_{i}b_{i})$
 $=\frac{1}{2}(a_{i}b_{i})$

И еще немного...

$$n \stackrel{-}{A} = \stackrel{-}{E} n \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

МНК в матричном виде

МНК в матричном виде. Функция потерь
$$\hat{y} = Xu$$
 $(y - \hat{y})^2 = (y - Xu)^2 \cdot (y^2 - Xu)^2 \cdot (y^2 - xu)^2 \cdot (y^2 - y^2)^2 \cdot$

Подбор коэффициентов в R и Python

Продолжаем сами искать коэффициенты

Loss =
$$(y - Xw)^T$$
. $(y - Xw)$
 v_0, w_1, w_2, w_3
 $\frac{\partial Loss}{\partial w_0}$
 $\frac{\partial Loss}{\partial w_1}$
 $\frac{\partial Loss}{\partial w_2}$
 $\frac{\partial Loss}{\partial w_3}$

, y-Xw). 3(y-x, NXM

Приравняем градиент к нулю...

$$Z \cdot X^{T} \cdot (Xw - Y) = 0$$

$$X^{T} \cdot Xw - X^{T}y = 0$$

$$X^{T}Xw = X^{T}Y$$

$$(X^{T}X)^{T}X^{T}Xw = (X^{T}X)^{T}X^{T}Y$$

$$E \qquad \omega = (X^{T}X)^{T} \cdot X^{T}Y$$

Проблемы с обратной матрицей

p-value для коэффициентов

```
> summary(m)
Call:
lm(formula = y \sim u + v + w)
Residuals:
   Min
            10 Median
                                 Max
                                                                                                 ???
-3.3965 -0.9472 -0.4708 1.3730 3.1283
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4222
                       1.4036 1.013 0.32029
            1.0359 0.2811 3.685 0.00106 **
            0.9217 0.3787 2.434 0.02211 *
            0.7261
                       0.3652 1.988 0.05744 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.625 on 26 degrees of freedom
Multiple R-squared: 0.4981, Adjusted R-squared: 0.4402
F-statistic: 8.603 on 3 and 26 DF, p-value: 0.0003915
```

А как нам посчитать дисперсию коэффициентов?

Отдых -> самое интересное

А если обратную матрицу совсем не хочется считать?

Градиентный спуск

Регуляризация

Регуляризация

Регуляризация

