Forelesning 10 — torsdag den 18. september

2.8 Relativt primiske heltall og Euklids lemma

Merknad 2.8.1. Korollar 2.7.20 er et svært viktig teoretisk verktøy. I denne og neste del av kapittelet skal vi se på noen eksempler som kan hjelpe oss å få en følelse for hvordan Korollar 2.7.20 kan benyttes.

Proposisjon 2.8.2. La l og n være heltall. La k være et naturlig tall. La d være et naturlig tall slik at d er den største felles divisoren til l og n. Da er kd den største felles divisoren til kl og kn.

Bevis. Siden d er den største felles divisoren til l og n, har vi:

- (1) d | l;
- (2) $d \mid n$.

Fra (1) og Korollar 2.5.21 deduserer vi at $kd \mid kl$. Fra (2) og Korollar 2.5.21 deduserer vi at $kd \mid kn$.

La c være et naturlig tall slik at:

- (i) $c \mid kl$;
- (ii) $c \mid kn$.

Vi gjør følgende observasjoner.

(1) Ut ifra Korollar 2.7.20 finnes det heltall u og v slik at

$$d = ul + vn$$
.

Det følger at

$$kd = ukl + ukn.$$

- (2) Fra (i) og Korollar 2.5.18 følger det at $c \mid ukl$.
- (3) Fra (ii) og Korollar 2.5.18 følger det at $c \mid vkn$.
- (4) Fra (2), (3), og Proposisjon 2.5.24 følger det at $c \mid ukl + ukn$.
- (5) Fra (1) og (4) følger det at

$$c \mid kd$$
.

- (6) Siden k og d er naturlige tall, er kd et naturlig tall.
- (7) Siden c er et naturlig tall, følger det fra (5), (6), og Proposisjon 2.5.30 at $c \leq kd$.

For å oppsummere beviset så langt, har vi bevist at:

- (1) $kd \mid kl;$
- (2) $kd \mid kn;$
- (3) dersom $c \mid kl \text{ og } c \mid kn$, er $c \leq kd$.

Dersom er kd den største felles divisoren til kl og kn.

Eksempel 2.8.3. Vi har: sfd(18, 24) = 6. Siden $90 = 5 \cdot 18$ og $120 = 5 \cdot 24$, følger det fra Proposisjon 2.8.2 at

$$sfd(90, 120) = 5 \cdot sfd(18, 24) = 5 \cdot 6 = 30.$$

Eksempel 2.8.4. Vi har: sfd(13, -21) = 1. Siden $91 = 7 \cdot 13$ og $-147 = 7 \cdot -21$, følger det fra Proposisjon 2.8.2 at

$$sfd(91, -147) = 7 \cdot sfd(13, -21) = 7 \cdot 1 = 7.$$

Korollar 2.8.5. La l og n være heltall. La k være et heltall slik at $k \neq 0$. La d være et naturlig tall slik at d er den største felles divisoren til l og n. Da er $|k| \cdot d$ den største felles divisoren til kl og kn.

Bevis. Ett av følgende utsagn er sant:

- (1) k > 0;
- (2) k < 0.

Anta først at (1) er sant. Da er k et naturlig tall, og |k| k. Dermed følger utsagnet fra Proposisjon 2.8.2.

Anta nå at (2) er sant. Da er -k et naturlig tall, og |k| = -k. Det følger fra Proposisjon 2.8.2 at $|k| \cdot d$ er den største felles divisoren til $(-k) \cdot l$ og $(-k) \cdot n$. Fra Korollar 2.6.18 følger det at |k| er den største felles divisoren til $-(-k) \cdot l$ og $-(-k) \cdot n$, altså til l og n.

Eksempel 2.8.6. Vi har: sfd(14,63) = 7. Det følger fra Korollar 2.8.5 at

$$sfd(-154, -693) = |-11| \cdot 7 = 11 \cdot 7 = 77.$$

Eksempel 2.8.7. Vi har: sfd(-76, 20) = 4. Det følger fra Korollar 2.8.5 at

$$sfd(380, -100) = |-5| \cdot 4 = 5 \cdot 4 = 20.$$

Proposisjon 2.8.8. La l og n være heltall. Da er $\mathsf{sfd}(l,n) = 1$ hvis og bare hvis det finnes heltall u og v slik at

$$1 = ul + vn$$
.

Bevis. Anta først at sfd(l, n) = 1. Da følger det fra Korollar 2.7.20 at det finnes heltall u og v slik at

$$1 = ul + vn.$$

Anta istedenfor at det finnes heltall u og v slik at

$$1 = ul + vn$$
.

La c være et naturlig tall slik at:

- (i) $c \mid l$;
- (ii) $c \mid n$.

Vi gjør følgende observasjoner.

- (1) Det følger fra (1) og Korollar 2.5.18 at $c \mid ul$.
- (2) Det følger fra (2) og Korollar 2.5.18 at $c \mid vn$.
- (3) Det følger fra (1), (2), og Proposisjon 2.5.24 at $c \mid ul + vn$.

Det følger fra (3) og ligningen 1 = ul + vn at $c \mid 1$.

Dermed har vi bevist at $c \mid 1$ dersom $c \mid l$ og $c \mid n$. I tillegg har vi: $1 \mid l$ og at $1 \mid n$. Vi konkluderer at $\mathsf{sfd}(l,n) = 1$.

Eksempel 2.8.9. Vi har:

$$1 = (-2) \cdot 14 + 29.$$

Derfor fastslår Proposisjon 2.8.8 at sfd(14, 29) = 1.

Eksempel 2.8.10. Vi har:

$$1 = 5 \cdot 13 - 8 \cdot 8.$$

Derfor fastslår Proposisjon 2.8.8 at sfd(13,8) = 1.

Merknad 2.8.11. Proposisjon 2.8.8 stemmer ikke om vi bytter 1 med et annet heltall. For eksempel er

$$2 = 3 \cdot 3 + (-1) \cdot 7,$$

men $sfd(3,7) \neq 2$. Faktisk er sfd(3,7) = 1.

Terminologi 2.8.12. La l og n være heltall slik at sfd(l,n) = 1. Da sier vi at l og n er relativt primiske.

Proposisjon 2.8.13. La l og n være heltall, og la d være et heltall slik at $\mathsf{sfd}(l,n) = d$. La k_l være heltallet slik at $l = k_l d$, og la k_n være heltallet slik at $n = k_n d$. Da er $\mathsf{sfd}(k_l, k_n) = 1$.

Bevis. Ut ifra Korollar 2.7.20, finnes det heltall u og v slik at

$$d = ul + vn$$
.

Derfor er

$$d = uk_l d + uk_n n,$$

altså

$$d = d(uk_l + uk_n).$$

Det følger fra Proposisjon 2.2.25 at

$$1 = uk_l + uk_n.$$

Fra Proposisjon 2.8.8 konkluderer vi at $sfd(k_l, k_n) = 1$.

Merknad 2.8.14. Fra definisjonen til $\mathsf{sfd}(l,n)$ vet vi at $d \mid l$ og at $d \mid r$. Derfor finnes det heltall k_l og k_n slik at ligningene i Proposisjon 2.8.13 er sanne. Ut ifra Korollar 2.2.20 er dessutten k_l og k_n de eneste heltallene slik at disse to ligningene er sanne.

Eksempel 2.8.15. Vi har:

$$sfd(108, 45) = 9.$$

Derfor fastslår Proposisjon 2.8.13 at

$$sfd(12,5) = 1.$$

Eksempel 2.8.16. Vi har:

$$sfd(-48, 27) = 3.$$

Derfor fastslår Proposisjon 2.8.13 at

$$sfd(-16, 9) = 1.$$

Proposisjon 2.8.17. La l, l', og n være heltall. Anta at $l \mid n$ og at $l' \mid n$. Dersom sfd(l, l') = 1, har vi: $l \cdot l' \mid n$.

Bevis. Vi gjør følgende observasjoner.

- (1) Siden $l \mid n$, finnes det et heltall k_l slik at $n = k_l l$.
- (2) Siden $l' \mid n$, finnes det et heltall $k_{l'}$ slik at $n = k_{l'}l'$.
- (3) Ut ifra Korollar 2.7.20 finnes det heltall u og v slik at

$$1 = ul + vl'.$$

Det følger fra (1) - (3) at

$$n = uln + vl'n$$

= $ulk_{l'}l' + vl'k_{l}l$
= $(uk_{l'} + vk_{l})ll'$.

Dermed har vi: $ll' \mid n$.

Eksempel 2.8.18. Vi har: $5 \mid 80 \text{ og } 8 \mid 80$. Siden $\mathsf{sfd}(5,8) = 1$, fastslår Proposisjon 2.8.17 at $5 \cdot 8 \mid 40$, altså at $40 \mid 80$.

Eksempel 2.8.19. Vi har: $-9 \mid 882 \text{ og } -14 \mid 882$. Siden $\mathsf{sfd}(-9, -14) = 1$, fastslår Proposisjon 2.8.17 at $-9 \cdot -14 \mid 882$, altså at $126 \mid 882$.

Merknad 2.8.20. Proposisjon 2.8.17 stemmer ikke om $\mathsf{sfd}(l,n) \neq 1$. For eksempel er $\mathsf{sfd}(9,15) = 3$, og vi har: $9 \mid 45$ og $15 \mid 45$. Men $9 \cdot 15 = 135$, og det er ikke sant at $135 \mid 45$.

Merknad 2.8.21. Den følgende proposisjonen er kjernen til et teorem vi kommer til å bevise i det neste kapitelet. Det kalles noen ganger *Euklids lemma*.

Proposisjon 2.8.22. La l, n, og n' være heltall slik at $l \mid n \cdot n'$. Dersom $\mathsf{sfd}(l,n) = 1$, har vi: $l \mid n'$.

Bevis. Siden sfd(l, n) = 1, fastslår Korollar 2.7.20 at det finnes heltall u og v slik at

$$1 = ul + vn$$
.

Derfor er

$$n' = (u \cdot l) \cdot n' + (v \cdot n) \cdot n') = (u \cdot n') \cdot l + v \cdot (n \cdot n').$$

Vi gjør følgende observasjoner.

- (1) Siden $l \mid l$, følger det fra Korollar 2.5.18 at $l \mid (u \cdot n') \cdot l$.
- (2) Fra Korollar 2.5.18 og antakelsen at $l \mid n \cdot n'$, har vi: $l \mid v \cdot (n \cdot n')$.

Fra (1), (2), og Proposisjon 2.5.24, følger det at $l \mid l \cdot (u \cdot n') + v \cdot (n \cdot n')$. Dermed har vi: $l \mid n'$.

Eksempel 2.8.23. Vi har: $\mathsf{sfd}(9,25) = 1$. I tillegg har vi: $9 \mid 1125$. Siden $1125 = 25 \cdot 45$, fastslår Proposisjon 2.8.22 at

$$9 \mid 45.$$

Eksempel 2.8.24. Vi har: sfd(-17, 24) = 1. I tillegg har vi: $-17 \mid 2248$. Siden $2248 = 24 \cdot 102$, fastslår Proposisjon 2.8.22 at

$$-17 \mid 102.$$

Merknad 2.8.25. Proposisjon 2.8.22 stemmer ikke om $\mathsf{sfd}(l,n) \neq 1$. For eksempel er $\mathsf{sfd}(2,4) = 2$, og $2 \mid 28$. Vi har: $28 = 4 \cdot 7$, men det er ikke sant at $2 \mid 7$.

Proposisjon 2.8.26. La l, m, og n være heltall. La d være et naturlig tall slik at d er den største felles divisoren til l og m. Anta at $1 = \mathsf{sfd}(l,n)$. Da er d den største felles divisoren til l og mn.

Bevis. Oppgave O2.1.10.

Merknad 2.8.27. Dersom $1 = \mathsf{sfd}(l, n)$, er med andre ord $\mathsf{sfd}(l, m) = \mathsf{sfd}(l, mn)$.

Eksempel 2.8.28. Vi har: sfd(33, 44) = 11. I tilleg har vi: sfd(33, 50) = 1. Proposisjon 2.8.26 fastslår at $sfd(33, 44 \cdot 50) = sfd(33, 44)$, altså at sfd(33, 2200) = 11.

Eksempel 2.8.29. Vi har: sfd(18, -27) = 9. I tilleg har vi: sfd(18, 29) = 1. Proposisjon 2.8.26 fastslår at $sfd(18, -27 \cdot 29) = sfd(18, -27)$, altså at sfd(18, -783) = 9.

Proposisjon 2.8.30. La x, y, og z være heltall. Da er $\mathsf{sfd}(x,yz) = 1$ om og bare om $\mathsf{sfd}(x,y) = 1$ og $\mathsf{sfd}(x,z) = 1$.

Bevis. Anta først at $\mathsf{sfd}(x,y) = 1$ og $\mathsf{sfd}(x,z) = 1$. Siden $\mathsf{sfd}(x,y) = 1$, følger det fra Proposisjon 2.8.26 at $\mathsf{sfd}(x,yz) = \mathsf{sfd}(x,z)$. Siden $\mathsf{sfd}(x,z) = 1$, konkluderer vi at $\mathsf{sfd}(x,yz) = 1$.

Anta istedenfor at sfd(x, yz) = 1. La w være et naturlig tall slik at $w \mid x$ og $w \mid y$. Vi gjør følgende observasjoner.

- (1) Siden $w \mid y$, følger det fra Korollar ?? at $w \mid yz$.
- (2) Siden $w \mid x \text{ og } w \mid yz$, følger det fra antakelsen $\mathsf{sfd}(x, yz) = 1$ at w = 1.

Således har vi bevist at, dersom w er et naturlig tall slik at $w \mid x$ og $w \mid y$, er w = 1. Dermed er $\mathsf{sfd}(x,y) = 1$.

Et lignende argument fastslår at, dersom w er et naturlig tall slik at $w \mid x$ og $w \mid z$, er w = 1. Dermed er $\mathsf{sfd}(x, z) = 1$.

Eksempel 2.8.31. Ved å benytte Euklids algoritme, finner vi at sfd(8, 1155) = 1. Siden $1155 = 33 \cdot 35$, fastslår da Proposisjon 2.8.30 at sfd(8, 33) = 1 og sfd(8, 35) = 1. Dette er riktignok sant.

Eksempel 2.8.32. Siden $\mathsf{sfd}(9, -26) = 1$ og $\mathsf{sfd}(9, 77) = 1$, fastslår Proposisjon 2.8.30 at $\mathsf{sfd}(9, (-26) \cdot 77) = 1$, altså at $\mathsf{sfd}(9, -2002) = 1$. Ved å benytte Euklids algoritme, finner vi at dette riktignok er sant.

2.9 Lineære diofantiske ligninger

Merknad 2.9.1. La oss se på ligningen

$$x + 2y = 0.$$

Det er lett å finne alle heltallene x og y slik at denne ligningen er sann. For hvert heltall z, er x=-2z og y=z en løsning. Disse er de eneste løsningene. Således har vi for eksempel de følgende løsningene:

- (1) x = 2 og y = 1;
- (2) x = 8 og y = 4;
- (3) x = -18, y = -9.

La oss se istedenfor på ligningen

$$2x + 4y = 3.$$

Det finnes ikke noe heltall x og y slik at denne ligningen er sann. For alle heltall x og y er 2x + 4y et partall, mens 3 er et oddetall. Derfor er det umulig at 2x + 4y kan være lik 3.

La nå a, b, og c være heltall. Ved hjelp av begrepet «største felles divisor», skal vi i denne delen av kapittelet se på hvordan vi kan finne alle heltallsløsningene til en hvilken som helst ligning

$$ax + by = c$$
.

Terminologi 2.9.2. La a, b, og c være heltall. Når vi er interessert i heltall x og y slik at

$$ax + by = c$$
,

kalles denne ligningen en lineær diofantisk ligning.

Merknad 2.9.3. En stor del av tallteori handler om heltallsløsninger til ligninger. Generelt sett er det veldig vanskelig å finne alle heltallsløsningene til en gitt ligningen: i dagens forskning innen tallteori benytter matematikere svært sofistikerte og abstrakte verktøy for å få en forståelse. Likevel er i mange tilfeller løsningene fremdeles et mysterium.

Proposisjon 2.9.4. La a, b, c være heltall. La d være et naturlig tall slik at $\mathsf{sfd}(a, b) = d$. Fra Korollar 2.7.20 vet vi at det finnes heltall u og v slik at d = ua + vb. Anta at $d \mid c$, altså at det finnes et heltall k slik at c = kd. Da er x = ku og y = kv en løsning til ligningen

$$ax + by = c$$
.

Bevis. Vi regner som følger:

$$ax + by = a(ku) + b(kv)$$

$$= k(au + bv)$$

$$= kd$$

$$= c.$$

Merknad 2.9.5. Dette beviset er lett. Imidlertid er proposisjonen langt fra triviell. Det er Korollar 2.7.20, altså Euklids algoritme, som gir oss muligheten til å løse ligningen

$$ax + by = c$$

når $d \mid c$, ved å fastslå at vi kan finne heltall u og v slik at d = ua + bv.

Eksempel 2.9.6. Ved å benytte Euklids algoritme og algoritmen i Merknad 2.7.15, får vi:

- (1) sfd(63, 49) = 7;
- (2) $7 = (-3) \cdot 63 + 4 \cdot 49$.

Siden 252 = 36·7, har vi i tillegg: 7 | 252. Derfor fastslår Proposisjon 2.9.4 at $x=36\cdot(-3)$ og $y=36\cdot4$, altså x=-108 og y=144, er en løsning til ligningen

$$63x + 49y = 252.$$

Eksempel 2.9.7. Ved å benytte Euklids algoritme og algoritmen i Merknad 2.7.15, får vi:

- (1) sfd(286, 455) = 13;
- (2) $13 = 8 \cdot 286 + (-5) \cdot 455$.

Siden

$$-429 = (-33) \cdot 13$$

har vi i tillegg: 13 | -429. Derfor fastslår Proposisjon 2.9.4 at $x=(-33)\cdot 8$ og $y=(-33)\cdot (-5)$, altså x=-264 og y=165, er en løsning til ligningen

$$286x + 455y = -429.$$

Eksempel 2.9.8. Ved å benytte Euklids algoritme og algoritmen i Merknad 2.7.15, får vi:

- (1) $\operatorname{sfd}(-24, 136) = 8$;
- (2) $8 = (-6) \cdot (-24) + (-1) \cdot 136$.

Siden $1072 = 134 \cdot 8$, har vi i tillegg: $8 \mid 1072$. Derfor fastslår Proposisjon 2.9.4 at $x = 134 \cdot (-6)$ og $y = 134 \cdot (-1)$, altså x = -804 og y = -134, er en løsning til ligningen

$$-24x + 136y = 1072.$$

Proposisjon 2.9.9. La a, b, c være heltall. La d være et naturlig tall slik at $\mathsf{sfd}(a, b) = d$. La x og y være heltall slik at

$$ax + by = c$$
.

Da er $d \mid c$.

Bevis. Ut ifra definisjonen til sfd(a, b) er $d \mid a$ og $d \mid b$. Derfor finnes det et heltall k_a slik at $a = k_a d$, og et heltall k_b slik at $b = k_b d$. Nå regner vi som følger:

$$c = ax + by$$

$$= k_a dx + k_b dy$$

$$= (k_a x + k_b y)d.$$

Dermed er $d \mid c$.

Eksempel 2.9.10. Ved å benytte Euklids algoritme får vi: sfd(57, 133) = 19. Siden det ikke er sant at $19 \mid 36$, følger det fra Proposisjon 2.9.9 at ligningen

$$57x + 133y = 36$$

har ingen heltallsløsning.

Eksempel 2.9.11. Vi har: sfd(-12, -18) = 6. Siden det ikke er sant at $6 \mid 10$, følger det fra Proposisjon 2.9.9 at ligningen

$$-12x - 18y = 10$$

har ingen heltallsløsning.

Korollar 2.9.12. La a, b, c være heltall. La d være et naturlig tall slik at $\mathsf{sfd}(a,b) = d$. Ligningen

$$ax + by = c$$

har en heltallsløsning hvis og bare hvis $d \mid c$.

Bevis. Følger umiddelbart fra Proposisjon 2.9.4 og Proposisjon 2.9.9. \Box

Oppgaver

O2.1 Oppgaver i eksamens stil

Oppgave O2.1.10. La l, m, og n være heltall. La d være et naturlig tall slik at $\mathsf{sfd}(l,m) = d$. Anta at $\mathsf{sfd}(l,n) = 1$. Bevis at $\mathsf{sfd}(l,mn) = d$. Tips: Gjør først følgende, og benytt da (3) i løpet av beviset ditt.

- (1) La c være et heltall slik at $c \mid l$, og la s være et heltall. Bevis at $\mathsf{sfd}(c,s) \leq \mathsf{sfd}(l,s)$.
- (2) La c være et heltall slik at $c \mid l$. Deduser fra (1) og antakelsen at $\mathsf{sfd}(l,n) = 1$ at $\mathsf{sfd}(c,n) = 1$.
- (3) Dersom c er et naturlig tall slik at $c \mid mn$, deduser fra (2) og Proposisjon 2.8.22 at $c \mid m$.

Oppgave O2.1.11. For hver av de følgende ligningene, finn en heltall løsning dersom det er mulig. Hvis det ikke er mulig, forklar hvorfor.

- $(1) \ 396x 165y = 462.$
- (2) -546x + 312y = -317.
- (3) 288x + 186y = 6138.