1 7. SPATII AFINE EUCLIDIENE

1.0.1 A. TEORIE

Geometria afina are ca obiect studiul proprietatilor geometrice care raman neschimbate sub actiunea transformarilor liniare nesingulare si a translatiilor. Spatiile euclidiene afine ofera cadrul natural de lucru in grafica 3D si in modelarea geometrica.

- 1. Spatiul afin euclidian \mathbf{E}^n . Consideram spatiul vectorial \mathbb{R}^n/\mathbb{R} . si o multime P ale carei elemente le numim puncte si le notam cu litere mari : A, B, C etc. Daca pentru orice pereche de puncte $(A, B) \in \mathcal{P} \times \mathcal{P}$ exista un unic vector notat $\overrightarrow{AB} \in \mathbb{R}^n$, iar functia $\alpha : \mathcal{P} \times \mathcal{P} \to \mathbb{R}^n$, $\alpha(A, B) := \overrightarrow{AB}$ verifica axiomele:
 - i. $\forall A \in \mathcal{P} \ si \ \forall \ v \in \mathbb{R}^n \ exista \ un \ unic \ punct \ B \ astfel \ ca \ v = \overrightarrow{AB} \ si$

ii.
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \forall A, B, C \in \mathcal{P}.$$

spunem ca multimea \mathcal{P} impreuna cu aplicatia α este un **spatiu** (punctual) afin n-dimensional.

Daca $Q \in P$ este un punct fixat, conform axiomei i. functia

$$\mathcal{P} \to \mathbb{R}^n$$
 definita prin $A \longmapsto \overrightarrow{QA}$

este o bijectie; este motivul pentru care, in continuare, luam

$$\mathcal{P} = \mathbb{R}^n$$
,

adica elementele din \mathbb{R}^n le consideram fie vectori, fie puncte, iar vectorul \overrightarrow{AB} este definit ca diferenta $\overrightarrow{AB} := B - A$; astfel, axioma ii. este egalitatea evidenta (B - A) + (C - B) = C - A. Daca, un plus, pe \mathbb{R}^n s-a definit un produs scalar "·" atunci (\mathbb{R}^n, \cdot) se numeste spatiu (punctual) afin euclidian (n- dimensional) si se noteaza E^n .

Daca $A = (a_1, a_2, ..., a_n)$ este un punct din \mathbb{R}^n , in loc de $A = (a_1, a_2, ..., a_n)$ scriem $A(a_1, a_2, ..., a_n)$.

In lipsa altor precizari "·" este produsul scalar canonic.

Proprietati.

- $\overrightarrow{AA} = \theta = (0, 0, ..., 0) \in \mathbb{R}^n$;
- $\overrightarrow{BA} = -\overrightarrow{AB}$
- $\overrightarrow{A_1 A_2} + \overrightarrow{A_2 A_3} + \dots + \overrightarrow{A_{k-1} A_k} = \overrightarrow{A_1 A_k}.$

2. Un reper (ortonormat) in \mathbf{E}^n este un cuplu $\mathbf{R} = (O, \mathcal{B})$ unde $O \in \mathbb{R}^n$ este un punct fixat, numit originea reperului, iar $\mathcal{B} = \{e_1, e_2, ..., e_n\}$ este o baza ortonormata a spatiului euclidian (\mathbb{R}^n, \cdot) . Asociem reperului \mathbf{R} un sistem de (semi) axe ortogonale $Ox_1, Ox_2, ..., Ox_n$, unde semiaxa Ox_i este multimea punctelor M cu proprietatea ca vectorul \overrightarrow{OM} are aceeasi directie si acelasi sens cu vectorul e_i , adica

$$Ox_i = \left\{ M \in \mathbb{R}^n \mid \overrightarrow{OM} = \lambda e_i, \lambda \in [0, \infty) \right\}$$

(prin abuz de limbaj spunem ca axa Ox_i este multimea punctelor M cu proprietatea ca vectorul \overrightarrow{OM} are aceeasi directie cu vectorul e_i).

Astfel daca A este un punct si $\overrightarrow{OA} = a_1e_1 + a_2e_2 + ... + a_ne_n$, atunci $a_i = pr_{e_i} \left(\overrightarrow{OA} \right)$. Vectorul \overrightarrow{OA} se numeste vectorul de pozitie al punctului

A, iar coordonatele $a_1, a_2, ..., a_n$ ale vectorului \overrightarrow{OA} in baza \mathcal{B} sunt, prin definitie, coordonatele punctului A relativ la reperul R (sau la sistemul de axe asociat). In plan, i.e. in \mathbf{E}^2 (sau in spatiu i.e. in \mathbf{E}^3), axele unui reper ortonormat se noteaza de regula cu Ox, Oy, (Ox, Oy, Oz) iar coordonatele unui punct arbitrar cu (x, y) (respectiv (x, y, z)).

Reperul R_c format din originea O(0,0,...,0) si din baza canonica \mathcal{B}_c se numeste reperul canonic.

Proprietati. Fie trei puncte $A(a_1, a_2, ..., a_n)$, $B(b_1, b_2, ..., b_n)$, $C(c_1, c_2, ..., c_n)$ din spatiul euclidian canonic E^n si \mathcal{R}_c reperul canonic. Atunci:

(a) vectorul \overrightarrow{AB} se poate exprima cu ajutorul vectorilor de pozitie ai punctelor A si B astfel:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA};$$

(b) norma vectorului de pozitie \overrightarrow{OA} (lungimea sa) este:

$$\|\overrightarrow{OA}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2};$$

(c) distanta dintre punctele A si B este:

$$d(A, B) = \|\overrightarrow{AB}\| = \|\overrightarrow{OB} - \overrightarrow{OA}\| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2};$$

 ${\rm (d)} \ segmentul \ [AB] \ este \ prin \ definitie$

$$[AB] := \left\{ \mathcal{P} \in \mathbb{R}^n \mid \overrightarrow{OP} = \overrightarrow{OA} + t\overrightarrow{OB}, t \in [0, 1] \right\} = \left\{ \mathcal{P} \left(a_1 + tb_1, a_2 + tb_2, ..., a_n + tb_n \right) \mid t \in [0, 1] \right\}$$

(e) mijlocul segmentului [AB] este punctul

$$M\left(\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}, ..., \frac{a_n+b_n}{2}\right);$$

(f) masura unghiului
$$\widehat{BAC}$$
 (prin abuz de limbaj, spunem uneori "unghiul " in loc de "masura unghiului") dintre vectorii \overrightarrow{AB} si \overrightarrow{AC} se determina din:
$$\cos\left(\widehat{BAC}\right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\| \|\overrightarrow{AC}\|} = \frac{(b_1 - a_1)(c_1 - a_1) + (b_2 - a_2)(c_2 - a_2) + \dots + (b_n - a_n)(c_n - a_n)}{\sqrt{(b_1 - a_1)^2 + \dots}\sqrt{(c_1 - a_1)^2 + \dots}}.$$

- 3. Orientarea bazelor si a reperelor. Fie B, B' doua baze in \mathbb{R}^n si $\mathcal{R}, \mathcal{R}'$ doua repere in E^n .
 - Bazele B si B' au acceasi orientare (sunt la fel orientate) daca determinantul matricei de trecere $T_{\mathcal{BB}'}$ este pozitiv. Baza B este dreapta (stanga) daca este la fel orientata ca baza canonica.
 - Reperele \mathcal{R} si \mathcal{R}' au **acceasi orientare** (sunt la fel orientate) daca bazele lor sunt la fel orientate.
 - Spunem ca baza B este **dreapta** daca este la fel orientata ca baza canonica; in caz contrar spunem ca este **baza stanga**.
 - Spunem ca reperul \mathcal{R} este **drept** daca are aceeasi orientare ca reperul canonic; in caz contrar spunem ca este **reper stang**.
- 4. Schimbarea reperelor in \mathbf{E}^n . Fie. $\mathbf{R} = (O, \mathcal{B} = \{e_1, e_2, ..., e_n\})$ si $\mathbf{R}' = (O', \mathcal{B}' = \{e'_1, e'_2, ..., e'_n\})$ doua repere in spatiul euclidian afin \mathbf{E}^n .

 Daca $\mathbf{R}' = (O', \mathcal{B})$ (adica $\mathcal{B} = \mathcal{B}'$) spunem ca reperul \mathbf{R}' s-a obtinut din reperul \mathbf{R} prin translatia $\overrightarrow{OO'}$ (pe directia vectorului $\overrightarrow{OO'}$, sau de-a lungul dreptei OO'). In acest caz axele ortogonale $O'x'_i, i = \overline{1,n}$ asociate reperului \mathbf{R}' sunt paralele si au aceasi directie cu axele $Ox_i, i = \overline{1,n}$ ale reperului \mathbf{R} . Daca punctul O' are coordonatele $(x_{01}, x_{02}, ..., x_{0n})$ relativ la reperul \mathbf{R} , iar punctul A are coordonatele $(a_1, a_2, ..., a_n)$ relativ la reperul \mathbf{R} si coordonatele $(a'_1, a'_2, ..., a'_n)$ relativ la reperul \mathbf{R}' , atunci $a'_i = a_i x_{0i}, i = \overline{1,n}$. Daca $\mathbf{R}' = (O, \mathcal{B}')$, spunem ca reperul \mathbf{R}' s-a obtinut din reperul \mathbf{R} prin rotatii (in jurul axelor $Ox_i, i = \overline{1,n}$ ale reperului \mathbf{R}).

Reperul R' = $(O, \mathcal{B}' = \{e'_1, e'_2\})$ din \mathbf{E}^2 este drept daca si numai daca matricea de trecere de la baza canonica $\mathcal{B}_c = \{e_1, e_2\}$ la baza \mathcal{B}' este

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

unde θ este masura unghiului (e_1, e'_1) , si este stang daca si numai daca matricea de trecere de la baza canonica la baza \mathcal{B}' este

$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Prin urmare o baza ortonormata $\{e'_1, e'_2\}$ are aceeasi orientare ca baza canonica daca si numai daca unghiurile (e_1, e'_1) si (e_2, e'_2) au aceeasi masura.

Fie $\theta \in (\pi -, \pi]$ si reperul $R' = (O, \mathcal{B}' = \{e'_1 = (\cos \theta, \sin \theta), e'_2 = (-\sin \theta, \cos \theta)\})$. Aplicatia liniara $\mathcal{R}_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ care realizeaza legatura dintre reperul canonic si reperul R' are matricea $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ si se numeste rotatie de unghi θ (a reperului canonic). Daca $v = (x, y) \in \mathbb{R}^2$, atunci $v = ||v|| (\cos \alpha, \sin \alpha)$, unde α este masura unghiului facut de v cu e_1 iar $\mathcal{R}_{\theta}(v) = ||v|| (\cos (\alpha + \theta), \sin (\alpha + \theta))$.

5. **Produs vectorial** in spatiul euclidian canonic (\mathbb{R}^3,\cdot) . Fie $\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ baza canonica si $u=x_1\overrightarrow{i}+x_2\overrightarrow{j}+x_3\overrightarrow{k},v=y_1\overrightarrow{i}+y_2\overrightarrow{j}+y_3\overrightarrow{k}$ doi vectori. Vectorul notat $u\times v$ care se obtine prin dezvoltarea determinantului

$$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

dupa prima linie se numeste produsul vectorial al vectorilor u si v.

Proprietati ale produsului vectorial. Fie u, v, w trei vectori din \mathbb{R}^3 .

- (a) Daca vectorii u, v sunt liniar independenti atunci produsul vectorial $u \times v$ este ortogonal pe vectorii u si v, iar sistemul $\{u, v, u \times v\}$ este o baza dreapta, adica produsul vectorial $u \times v$ este perpendicular pe planul determinat de vectorii u si v, iar sensul sau este dat de regula burghiului.
- (b) Sistemul ortonormat $\{u, v, w\}$ este o baza dreapta daca si numai daca se verifica una dintre relatiile: $u \times v = w, v \times w = u, w \times u = v$.
- (c) Norma produsului vectorial are valoarea $||u \times v|| = ||u|| ||v|| \sin(u, v)$ si reprezinta aria paralelogramului construit pe vectorii u si v (adica $||u|| ||v pr_u v||$).
- (d) Produsul vectorial este anticomutativ, i.e. $u \times v = -v \times u$.
- (e) $u \times v = \theta$ daca si numai daca unul dintre vectori este nul, sau cei doi vectori sunt coliniari (i.e. $u \parallel v$).
- 6. **Produsul mixt**. Fie u, v, w trei vectori din \mathbb{R}^3 . Produsul mixt $(u, v, w) := (u \times v) \cdot w$ este egal cu determinantul matricei coordonatelor celor trei vectori, i.e.

$$(u, v, w) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix},$$

unde $u = x_1e_1 + x_2e_2 + x_3e_3$, $v = y_1e_1 + y_2e_2 + y_3e_3$ si $w = z_1e_1 + z_2e_2 + z_3e_3$; daca A, B, C sunt trei puncte din \mathbb{R}^3 atunci produsul mixt $(\overrightarrow{OA} \times \overrightarrow{OB}) \times \overrightarrow{OC}$ este volumul paralelipipedului construit pe vectorii $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$.

Proprietati ale produsului mixt. Fie u, u', v, w vectori din \mathbb{R}^3 si $\alpha, \beta \in \mathbb{R}$. Atunci:

- (a) (u, v, w) = (v, w, u) = (w, u, v).
- (b) (u, v, w) = -(v, u, w).
- (c) $(\alpha u + \beta u', v, w) = \alpha(u, v, w) + \beta(u', v, w)$.
- (d) $(u \times v) \times w = (u \cdot w) v (v \cdot w) u$.
- 7. **Vectori liberi.** Fie O un punct fixat din spatiu. Spunem ca vectorii nenuli \overrightarrow{AB} si \overrightarrow{CD} au aceeasi directie daca dreptele AB si CD sunt paralele sau coincid.
- Daca A, B sunt doua puncte distincte, multimea

 $\overline{AB}:=\{\overrightarrow{CD} \mid vectorii \ \overrightarrow{AB}, \overrightarrow{CD} \ \text{au aceeasi directie, acelasi sens si aceeasi lungime}\}$

se numeste vector liber care are directia sensul si lungimea (norma) vectorului \overrightarrow{AB} ; daca A=B prin definitie $\overline{AA}:=\overline{0}$ este vectorul liber nul. Notam $\overline{a},\overline{b},\overline{c},...$ vectorii liberi, iar daca $\overline{a}=\overline{AB}$, vectorul \overrightarrow{AB} se numeste reprezentant al vectorului liber \overline{a} . Spunem ca vectorii liberi \overline{a} si \overline{b} sunt coliniari daca au aceeasi directie si coplanari daca reprezentantii lor sunt paraleli cu un plan.

• Notam cu V_3 multimea vectorilor liberi. Fie $\overline{a}, \overline{b} \in V_3$ si A, B punctele pentru care $\overline{a} = \overline{OA}$ si $\overline{b} = \overline{OB}$; suma

vectorilor liberi \overline{a} si \overline{b} are, prin definitie, reprezentantul $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$, deci $\overline{a} + \overline{b} := \overrightarrow{OC}$. Daca $\lambda \in \mathbb{R}$, definim produsul dintre scalarul λ si vectorul liber \overline{a} ca vectorul liber care are reprezentantul $\lambda \overrightarrow{OA}$. Cu aceste operatii \mathcal{V}_3 devine un spatiu vectorial real izomorf cu spatiul \mathbb{R}^3/\mathbb{R} .

• Cuplul (\mathcal{V}_3, \cdot) este spatiu euclidian, unde "·" este produsul scalar canonic definit prin $\overline{a} \cdot \overline{b} = \overrightarrow{OA} \cdot \overrightarrow{OB}$. Baza canonica a spatiului (\mathcal{V}_3, \cdot) o notam cu $\{\overline{i}, \overline{j}, \overline{k}\}$

1.0.2 B. Probleme rezolvate

1.1 C. Exercitii

- 1. Sa se figureze axele de coordonate ale reperului canonic, apoi sa se figureze reprezentanti ai vectorilor liberi \bar{a} , \bar{b} si $\bar{a} \times \bar{b}$ daca:
 - (a) $\overline{a} = \overline{i}, \overline{b} = \overline{j};$
 - (b) $\overline{a} = \overline{i} \overline{k}, \overline{b} = \overline{j};$
 - (c) $\overline{a} = \overline{i} \overline{k}, \overline{b} = \overline{j} + \overline{k};$
 - (d) $\overline{a} = \overline{i} + \overline{j}, \overline{b} = \overline{i} \overline{j}.$
- 2. Pentru ce valori ale lui α vectori
i $\overline{a}=2\overline{i}-6\overline{j}+8\overline{k}$ si $\overline{b}=\overline{i}-3\overline{j}+\alpha\overline{k}$ sunt paraleli?

Raspuns. $\alpha = 4$.

- 3. Sa se arate ca $\overline{a} \times \overline{b} = 2\overline{i} + 6\overline{j} 10\overline{k}$, unde $\overline{a} = -4\overline{i} + 3\overline{j} + \overline{k}$ si $\overline{b} = 2\overline{i} + \overline{j} + \overline{k}$.
- 4. Determinati un vector perpendicular pe planul ce trece prin P(1, -1, 0), Q(2, 1, -1), R(-1, 1, 2). Raspuns. E.g. $\overline{i} + \overline{j}$.
- 5. Determinati aria triunghiului care are varfurile $P\left(1,-1,0\right),\,Q\left(2,1,-1\right)$ si $R\left(-1,1,2\right).$

Raspuns. $3\sqrt{2}$.

- 6. Determinati aria triunghiului PQR si un versor perpendicular pe planul (PQR) cand:
 - (a) P(0,0,0), Q(1,1,1), R(1,0,-1);
 - (b) P(-2,0,2), Q(1,1,1), R(1,0,-1);
 - (c) P(1,0,0), Q(0,1,0), R(0,0,1);
 - (d) P(1,0,0), Q(0,1,0), R(0,0,-1).
- 7. Fie punctele A(1,1,-1), B(0,1,2), C(2,0,-1).
 - (a) Sa se determine $a, b \in \mathbb{R}$ astfel incat $a\overrightarrow{AB} + b\overrightarrow{BC} = \overrightarrow{AC}$.
 - (b) Sa se calculeze masura unghiului dintre vectorii \overrightarrow{AB} si \overrightarrow{BC} .
 - (c) Sa se determine mijlocul segmentului [AB].
 - (d) Sa se determine centrul de greutate al triunghiului ABC.
 - (e) Sa se calculeze $\overrightarrow{AB} \times \overrightarrow{BC}$.

(f) Sa se calculeze aria triunghiului ABC.

Raspuns. a. a = b = 1...

8. In \mathbf{E}^2 reperul $\mathbf{R}' = (O'(x_0, y_0), \mathcal{B}' = \{e'_1, e'_2\})$ s-a obtinut din reperul $\mathbf{R} = (O, \mathcal{B} = \{e_1, e_2\})$ printr-o translatie de-a lungul dreptei OO' si o rotatie de unghi θ . Determinati coordonatele (x', y') ale unui punct P relativ la reperul \mathbb{R} in functie de coordonatele sale (x, y) relativ la reperul \mathbb{R}' .

Raspuns. $x' = x \cos \theta + y \sin \theta - x_0, y' = -x \sin \theta + y \cos \theta - y_0.$

- 9. Dovediti ca afirmatiile de mai jos sunt adevarate sau false intodeauna:
 - (a) $\|\overrightarrow{AB}\| = \overrightarrow{AB} \cdot \overrightarrow{AB};$
 - (b) $\|\overrightarrow{AB}\|^2 = \overrightarrow{AB} \cdot \overrightarrow{AB};$
 - (c) $\overrightarrow{AB} \times \overrightarrow{AB} = \overrightarrow{0}$;
 - (d) $\overrightarrow{AB} \times \overrightarrow{BC} = \overrightarrow{BC} \times \overrightarrow{AB}$;
 - (e) $\overrightarrow{AB} \times \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BC} \times \overrightarrow{CD}$;
 - $\text{(f)} \ \left(\overrightarrow{AB}\times\overrightarrow{BC}\right)\cdot\overrightarrow{CD} = \overrightarrow{AB}\cdot\left(\overrightarrow{BC}\times\overrightarrow{CD}\right);$
 - (g) $(\overrightarrow{AB} \times \overrightarrow{BC}) \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot (\overrightarrow{BC} \times \overrightarrow{CD});$
 - $\text{(h) } \left(\overrightarrow{AB} \times \overrightarrow{BC}\right) \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{BC} \times \overrightarrow{CD}.$
- 10. Determinati:
 - $\overline{a} \cdot \overline{b}, \overline{a} \times \overline{b}, \|\overline{a}\|, \|\overline{b}\|;$
 - cosinusul unghiului dintre \overline{a} si \overline{b} ;
 - proiectia vectorului \bar{b} pe vectorul \bar{a}

in urmatoarele cazuri:

- (a) $\overline{a} = 2\overline{i} + 7\overline{j}, \overline{b} = \overline{k};$
- (b) $\overline{a} = 2\overline{i} 4\overline{j} + \sqrt{5k}, \overline{b} = -2\overline{i} + 4\overline{j} \sqrt{5k};$
- (c) $\overline{a} = \frac{3}{5}\overline{i} + \frac{4}{5}\overline{k}, \overline{b} = 5\overline{i} + 12\overline{j}.$
- 11. Scrieti $\overline{a}=3\overline{j}+4\overline{k}$ ca suma dintre un vector paralel cu $\overline{b}=\overline{i}+\overline{j}$ si unul perpendicular pe \overline{b} .
- 12. Scrieti $\bar{a}=\bar{j}+\bar{k}$ ca suma dintre un vector paralel cu $\bar{b}=\bar{i}+\bar{j}$ si unul perpendicular pe \bar{b} .

7

- 13. Vectorul $\overline{a} = \overline{i} + (\overline{j} + \overline{k})$ este deja scris ca suma dintre un vector \overline{a}_1 paralel cu \overline{i} si altul, \overline{a}_2 , ortogonal pe \overline{i} . Aplicand tehnica de la exercitiul precedent pentru $\overline{b} = \overline{i}$ obtineti $\overline{a}_1 = \overline{i}$ si $\overline{a}_2 = \overline{j} + \overline{k}$? Este aplicabila aceasta tehnica pentru orice vectori nenuli \overline{a} si \overline{b} ?
- 14. Fie \overrightarrow{ABC} un triunghi si \overrightarrow{M} un punct arbitrar. Sa se determine $\alpha \in \mathbb{R}$ astfel ca $\overrightarrow{MA} + 2\overrightarrow{MB} 3\overrightarrow{MC} = \overrightarrow{CA} + \alpha \overrightarrow{CB}$.
- 15. Fie $\bar{a}, \bar{b}, \bar{c}$ trei vectori nenuli. Folosind produse scalare si produse vectoriale potrivite descrieti:
 - (a) un vector ortogonal pe \overline{a} si \overline{b} ;
 - (b) un vector ortogonal pe $\overline{a} \times \overline{b}$ si \overline{c} ;
 - (c) un vector ortogonal pe $\overline{a} \times \overline{b}$ si $\overline{a} \times \overline{c}$;
 - (d) un vector ortogonal pe $\overline{a} \times \overline{b}$
- 16. Sa se determine formulele de calcul ale coordonatelor centrului de greutate al unui triunghi dat.
- 17. Fie O punctul de intersectie al diagonalelor paralelogramului \overrightarrow{ABCD} si M un punct arbitrar. Sa se determine $\alpha \in \mathbb{R}$ astfel ca $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \alpha \overrightarrow{MO}$.
- 18. Fie ABC un triunghi. Sa se arate ca G este centrul de greutate al triunghiului ABC daca si numai daca $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
- 19. Sa se scrie toate bazele drepte care contin vectorii $u = \frac{1}{\sqrt{2}} \overrightarrow{i} + \frac{1}{\sqrt{2}} \overrightarrow{j}, v = \frac{1}{\sqrt{2}} \overrightarrow{i} \frac{1}{\sqrt{2}} \overrightarrow{j}$.
- 20. Este adevarat ca $(u \times v) \times w = u \times (v \times w)$?
- 21. Care este lungimea proiectiei vectorului $\bar{a}=2\bar{i}-6\bar{j}+8\bar{k}$ pe vectorul $\bar{b}=3\bar{i}-\bar{j}?$
- 22. Este produsul vectorial invariant la schimbarea bazei ortonormate?
- 23. Fie $\overline{a}, \overline{b}, \overline{c}, \overline{d} \in \mathcal{V}_3$. Sa se arate ca $(\overline{a} \times \overline{b})(\overline{c} \times \overline{d}) = \begin{vmatrix} \overline{a} \cdot \overline{c} & \overline{a} \cdot \overline{d} \\ \overline{b} \cdot \overline{c} & \overline{b} \cdot \overline{d} \end{vmatrix}$.
- 24. **Determinantul Gram** al vectorilor $\bar{a}, \bar{b}, \bar{c} \in V_3$ este scalarul

$$d = \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} & \overline{a} \cdot \overline{c} \\ \overline{b} \cdot \overline{a} & \overline{b} \cdot \overline{b} & \overline{b} \cdot \overline{c} \\ \overline{c} \cdot \overline{a} & \overline{c} \cdot \overline{b} & \overline{c} \cdot \overline{c} \end{vmatrix}.$$

Aratati ca:

(a)
$$d = (\overline{a}, \overline{b}, \overline{c})^2$$
;

- (b) vectorii $\overline{a},\overline{b},\overline{c}$ sunt coplanari daca si numai daca determinantul lor Gram este nul.
- 25. Daca $\|\overline{a}\|=2, \|\overline{b}\|=3$ si unghiul dintre \overline{a} si \overline{b} are masura $\frac{\pi}{3}$ calculati $\|\overline{a}-2\overline{b}\|$.
- 26. Pentru ce valori ale lui α aria paralelogramului determinat de vectorii $\overline{a} = 2\overline{i} 6\overline{j} + 8\overline{k}$ si $\overline{b} = \overline{i} 3\overline{j} + \alpha\overline{k}$ este 1?
- 27. Determinati aria paralelogramului determinat de vectorii \overline{a} si \overline{b} si volumul paralelipipedului determinat de vectorii $\overline{a},\overline{b}$ si \overline{c} , unde $\overline{a}=2\overline{i}-6\overline{j}+8\overline{k}$, $\overline{b}=\overline{i}-3\overline{j}+\overline{k}$ si $\overline{c}=\overline{i}+\overline{j}+\overline{k}$.
- 28. Calculati cosinusurile directoare ale vectorilor $\overline{a} = 2\overline{i} 6\overline{j} + 8\overline{k}$, $\overline{b} = \overline{i} 3\overline{j} + \overline{k}$ si $\overline{c} = \overline{i} + \overline{j} + \overline{k}$.
- 29. Vectorii $\overline{a}, \overline{b}$ si \overline{c} sunt ortogonali doi cate doi, iar $\overline{d} = 5\overline{a} 6\overline{b} + 3\overline{c}$.
 - (a) Daca $\overline{a}, \overline{b}$ si \overline{c} sunt versori calculati norma vectorului \overline{d} .
 - (b) Daca $\|\overline{a}\|=2, \|\overline{b}\|=3$ si $\|\overline{c}\|=4$ calculati norma vectorului \overline{d} .
- 30. Versorii $\overline{a}, \overline{b}$ si \overline{c} sunt ortogonali doi cate doi, iar $\overline{d} = \alpha \overline{a} + \beta \overline{b} + \gamma \overline{c}$. Dovediti ca $\alpha = \overline{a} \cdot \overline{d}, \beta = \overline{b} \cdot \overline{d}$ si $\gamma = \overline{c} \cdot \overline{d}$ si stabiliti legatura cu exprimarea Fourier a unui vector.