

Machine Learning

Problem motivation

Anomaly detection example

Aircraft engine features:

 $\rightarrow x_1$ = heat generated

 $\Rightarrow x_2$ = vibration intensity

...

New engine: x_{test}

Density estimation

- \rightarrow Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- \rightarrow Is x_{test} anomalous?

$$p(x_{test}) < \varepsilon \rightarrow flog$$
anomaly
$$p(x_{test}) \ge \varepsilon \rightarrow GK$$

你将很可能发现飞机引擎 很可能发现模型p(x) 将会认为在中心区域的这些点 有很大的概率值 而稍微远离中心区域的点概率会小一些

p(x)

X2

X4

Anomaly detection example

也许异常检测 最常见的应用是 是欺诈检测

- >> Fraud detection:
 - $\rightarrow x^{(i)}$ = features of user *i* 's activities
 - \rightarrow Model p(x) from data.
- \rightarrow Identify unusual users by checking which have $p(x) < \varepsilon$

异常检测的另一个例子是在工业生产领域 事实上 我们之前已经谈到过 飞机引擎的问题

Manufacturing

- 第三个应用是 数据中心的计算机监控 → Monitoring computers in a data center.
 - $\rightarrow x^{(i)}$ = features of machine i
 - x_1 = memory use, x_2 = number of disk accesses/sec,
 - x_3 = CPU load, x_4 = CPU load/network traffic.

Machine Learning

Gaussian distribution

Gaussian (Normal) distribution

Say $x \in \mathbb{R}$. If x is a distributed Gaussian with mean μ , variance σ^2 .

Gaussian distribution example

Parameter estimation

riangle Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $\underline{x^{(i)} \in \mathbb{R}}$

Andrew Ng

这个版本的公式

Machine Learning

Anomaly detection

Algorithm

Density estimation

假如说我们有一个无标签的训练集 共有 m 个训练样本 \rightarrow Training set: $\{x^{(1)},\ldots,x^{(m)}\}$

Each example is $x \in \mathbb{R}^n$

我们要从数据中 建立一个 p(x) 概率模型

假定x1分布 服从高斯正态分布... 这就是我要说的模型

$$= P(x_1, \mu_1, e_1^2) P(x_2, \mu_2, e_2^2) P(x_3, \mu_3, e_2^2) \cdots P(x_n, \mu_n, e_n^2)$$

$$= \prod_{i=1}^{n} P(x_i, \mu_i, e_3^2)$$

$$= \prod_{i=1}^{n} P(x_i, \mu_i, e_3^2)$$

$$= |x_2 \times 3 \times \dots \times n|$$

Anomaly detection algorithm

這句話很misleading,可以不看。

- \rightarrow 1. Choose features x_i that you think might be indicative of
- \rightarrow 2. Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)}$$
 $p(x_{j}, \mu_{j}, \kappa_{j}^{(i)})$ $f(x_{j}, \mu_{j}, \kappa_{j}, \kappa_{j}^{(i)})$ $f(x_{j}, \mu_{j}, \kappa_{j}, \kappa_{j}^{(i)})$ $f(x_{j}, \mu_{j}, \kappa_{j}, \kappa_{j}, \kappa_{j}, \kappa_{j}^{(i)})$ $f(x_{j}, \mu_{j}, \kappa_{j}, \kappa_{$

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Anomaly if p

Anomaly detection example

-> b(x) = b(x1; h1.8;)

$$arepsilon=0.02$$
 我会在后面讲到如何选取 $arepsilon$ 的值

 x_2

$$p(x_{test}^{(1)}) = 0.0426 > \epsilon$$

$$p(x_{test}^{(2)}) = 0.0021 < \epsilon$$

Machine Learning

Developing and evaluating an anomaly detection system

The importance of real-number evaluation 意思就是評價一個算法好不好

When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

- -> Assume we have some labeled data, of anomalous and nonanomalous examples. (y = 0 if normal, y = 1 if anomalous).
- \rightarrow Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ (assume normal examples/not anomalous)

Aircraft engines motivating example

- > 10000 good (normal) engines
- flawed engines (anomalous) 2-50 training set中無anomalous ルル・デールル・61.
- Training set: 6000 good engines (y=0) (y=0) (y=0) (y=1) (y=1) Test: 2000 good engines (y=0), 10 anomalous (y=1)
 - Alternative: 其实我真的不推荐这么分 但就有人喜欢这么分
 - Training set: 6000 good engines
- ightharpoonup CV: 4000 good engines (y=0), 10 anomalous (y=1)
- \rightarrow Test: 4000 good engines (y=0) 10 anomalous (y=1)

Algorithm evaluation

- → Fit model $\underline{p(x)}$ on training set $\{x^{(1)}, \dots, x^{(m)}\}$ $(x^{(i)}, y^{(i)})$ → On a cross validation/test example \underline{x} , predict

$$y = \begin{cases} \frac{1}{0} & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

Possible evaluation metrics:

-> - True positive, false positive, false negative, true negative 見Lec 11 p11, p14

- Precision/Recall

→ - F₁-score <</p>

-种选择参数ε的方法 就是你可以试一试 多个不同的 的取值 然后选出一个 使得F1-积分的值最大的那个ε

Can also use cross validation set to choose parameter ε

来评价这个算法 然后决定

Machine Learning

Anomaly detection vs. supervised learning

为什么我们不 直接用监督学习的方法呢? 为什么不直接用 逻辑回归或者 神经网络的方法 来直接学习这些带标签的数据 从而给出预测 y=1 或 y=0 呢?

Anomaly detection

- > Very small number of positive examples (y = 1). (0-20 is common).
- \rightarrow Large number of negative (y=0) examples.
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like;
- → future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

VS.

Supervised learning

→ Fraud detection 如果你掌握了大量的实施诈骗犯罪的人那么有时候欺诈检测 方法也可能会 偏向于使用监督学习算法

的____

Email spam classification
 对于垃圾邮件的问题 我们通常有足够多的垃圾邮件的样本

Manufacturing (e.g. aircraft engines)

 Weather prediction (sumy/ rainy/etc).

 Monitoring machines in a data center Cancer classification

•

Machine Learning

Choosing what features to use

如果我有一个特征变量 比如 x1 直方图是 用异常检测时 对它的效率 影响最大的 因素之一是 你使用什么features 这样的 那么我就用 x1 的对数 log(x1) Non-gaussian features 来替换掉 x1 所以 经过替换 这就是我的 x1 我把它的直方图画在右边 这看起来 600 500 400 300 除了取对数变换之外 200 还有别的一些方法 100 也可以用 数据进行一些不 200 更像高斯分布 虽然通常来说你 不这么做 算法也

Error analysis for anomaly detection

断出错的样本中表现更

Want p(x) large for normal examples x. p(x) small for anomalous examples x.

Most common problem:

p(x) is comparable (say, both large) for normal and anomalous examples

Monitoring computers in a data center

- Choose features that might take on unusually large or small values in the event of an anomaly.
 - \rightarrow x_1 = memory use of computer
 - $\rightarrow x_2$ = number of disk accesses/sec
 - $\rightarrow x_3 = CPU load <$
 - x_4 = network traffic x_5 x_5 anx_6 and x_5 and x_6 and x_5 and x_6 and x

Machine Learning

Multivariate
Gaussian distribution

看起来 CPU 负载很低 但是内存使用量很高 我以前从没在 训练集中见过这样的 看起来它应该是异常的

Motivating example: Monitoring machines in a data center

Andrew Ng

Multivariate Gaussian (Normal) distribution

 $\Rightarrow x \in \mathbb{R}^n$. Don't model $p(x_1), p(x_2), \ldots$, etc. separately.

Model p(x) all in one go.

Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$P(x;\mu,\Xi)$$
 = $exp(-\frac{1}{2}(x-\mu)^{T}\Xi^{-1}(x-\mu))$ (2下) $^{n/2}(\Xi^{-1})$ exp(- $\frac{1}{2}(x-\mu)^{T}\Xi^{-1}(x-\mu))$ def(Signa)

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_2$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_2$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$$

Machine Learning

Anomaly detection using the multivariate
Gaussian distribution

Multivariate Gaussian (Normal) distribution

Parameters μ, Σ

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Parameter fitting:

Given training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ \longleftarrow

$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$

$$= \frac{1}{m} \sum_{i=1}^{m} x^{(i)} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Anomaly detection with the multivariate Gaussian

1. Fit model
$$p(x)$$
 by setting
$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^T$$

X1 (CPU Load)

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Flag an anomaly if $p(x) < \varepsilon$

Relationship to original model

Original model:
$$p(x) = p(x_1; \mu_1(\sigma_1^2) \times p(x_2; \mu_2, \sigma_2^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Corresponds to multivariate Gaussian

$$\Rightarrow p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where

在实际应用当中 左边这个原来的模型比较常用

Original model

$$p(x_1; \mu_1, \sigma_1^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Manually create features to capture anomalies where x_1, x_2 take unusual combinations of values.

Computationally cheaper (alternatively, scales better to large n=10,000, n=100,000)
OK even if m (training set size) is

small

典型的经验法则是 我**只**在当 m 远大于 n 的时候使用多元高斯模型

vs. 🤝 Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{7} (\Sigma^{-1}(x-\mu))\right)$$

Automatically captures correlations between features

Tao:注意前面的例子中, CPU 负载和内存使用量是正相關的

Computationally more expensive

Must have m > n or else Σ is non-invertible.

Andrew Ng