Três VIPs da Teoria dos Números

É claro, "VIP" significa "Very Important Problems". Os problemas discutidos aqui, além de suas variações, são bastante comuns em Olimpíadas de Matemática e costumam ser resolvidos com técnicas bem definidas.

As duas primeiras partes tratam de problemas de divisibilidade; a terceira e última parte é sobre problemas de expoente.

1. Problemas de divisibilidade

Os problemas de divisibilidade vêm desde o primeiro problema de todas as IMOs (veja o problema 2) e ainda estão presentes (até o momento, sua última aparição na IMO foi em 2003; 2007 se contarmos a próxima parte).

Utilizaremos a seguinte terminologia para simplificar as coisas: quando $a \mid b$ diremos que a é o divisor e b é o múltiplo.

A resolução desses problemas pode geralmente ser feita com o seguinte procedimento:

Problemas de divisibilidade 1

Passo 1 Reduza o grau do múltiplo usando combinação linear;

Passo 2 Quando o grau do múltiplo é menor do que o grau do divisor, aplique a propriedade $d \mid a \Longrightarrow |d| \le |a|$ ou a=0 e encontre um limitante superior (pequeno, se possível) para algumas variáveis;

 $Passo\ 3$ Estude os casos obtidos e, se necessário, aplique os passos 1 e 2 novamente.

Isso vai ficar mais claro após vermos o nosso primeiro exemplo, que é o problema 4 da IMO 1998:

Exemplo 1.1.

Determine todos os pares (x, y) de inteiros positivos tais que $x^2y + x + y$ é divisível por $xy^2 + y + 7$.

Resolução

Primeiro, note que o grau de ambos o divisor e o múltiplo é 3. Vamos então reduzir o grau do múltiplo, utilizando combinação linear. A ideia é cancelar os termos com grau máximo multiplicando o divisor e o múltiplo por números convenientes. Como $xy^2 + y + 7 \mid x^2y + x + y$ os termos de grau máximo são xy^2 e x^2y , multiplixamos o divisor por -x e o múltiplo por y:

$$xy^2 + y + 7 \mid (x^2y + x + y) \cdot y + (xy^2 + y + 7) \cdot (-x) \iff xy^2 + y + 7 \mid y^2 - 7x$$

Já conseguimos um múltiplo com grau menor do que o divisor (2 contra 3). Se não conseguíssemos, a ideia seria continuar com o mesmo procedimento. Isso é essencialmente o Passo 1.

Vamos agora ao Passo 2. Como $d \mid a \implies |d| \le |a|$ or a = 0,

$$xy^2 + y + 7 \mid y^2 - 7x \implies xy^2 + y + 7 \le |y^2 - 7x|$$
 ou $y^2 - 7x = 0$

Temos três casos:

Primeiro caso: $y^2 - 7x = 0$. Temos $x = 7k^2$ e y = 7k, $k \in \mathbb{Z}_+^*$, e é fácil verificar que $(7k^2, 7k)$ forma uma família de soluções.

Segundo caso: $y^2-7x>0 \Longrightarrow |y^2-7x|=y^2-7x.$ Não há soluções nesse caso, pois $x\geq 1$ e y+7>0, de modo que $xy^2+y+7>y^2>y^2-7x$, absurdo.

Terceiro caso: $y^2-7x<0\Longrightarrow |y^2-7x|=7x-y^2$. A desigualdade é equivalente a $(7-y^2)x\ge y^2+y+7$, que implica $7-y^2>0$, ou seja, y=1 ou y=2. Em todo caso temos um problema de divisibilidade de uma variável só: para y=1, temos $x+8\mid 7x-1$, assim $x+8\mid 7x-1-7(x+8)\iff x+8\mid 57\implies x=11$ ou x=49. Ambos (11,1) e (49,1) soluções; para y=2, temos $4x+9\mid 7x-4$ e o leitor deve verificar que não há soluções nesse caso.

As soluções são então (11, 1), (49, 1) e $(7k^2, 7k)$, $k \in \mathbb{Z}_{+}^*$.

A principal razão pela qual essa abordagem costuma funcionar bem é na verdade o Passo 2, que nos permite limitar uma variável. Polinômios com grau maior tendem a ser muito maiores do que polinômios com grau menor, então se o divisor é um polinômio com grau maior do que o do múltiplo normalmente é possível obter um limitante superior para alguma variável.

Em alguns problemas, nem sempre esse limitante é fácil de se obter. Nessas horas,

1.1. A diferença faz a diferença

O próximo exemplo é o Problema 2 da IMO 2003.

Exemplo 1.2.

Determine todos os pares de inteiros positivos (a,b) tais que $\frac{a^2}{2ab^2-b^3+1}$ é um inteiro positivo.

Resolução

Note que o grau do divisor já é maior do que o grau do múltiplo. Infelizmente, isso não resolve o problema, porque o divisor ainda pode ser pequeno: se b = 2a ele é igual a 1! O que nos leva à nossa primeira família infinita de soluções: (n, 2n), n inteiro positivo.

Suponha então que $b \neq 2a$. Então 2a > b, pois a^2 e $2ab^2 - b^3 + 1 = b^2(2a - b) + 1$ são ambos positivos. Em vez de nos perguntarmos o tempo todo "estamos utilizamos a desigualdade 2a > b?", o fazemos automaticamente com a substituição k = 2a - b > 0.

Essa substituição parece boba, mas faz o problema ficar bem mais fácil: obtemos $\frac{a^2}{2ab^2-b^3+1} = \frac{(b+k)^2}{4(b^2k+1)}$ e obtemos um problema com o qual estamos mais acostumados.

Mas o problema requer ainda um pouco mais de trabalho. Primeiro separe o caso b=1, que nos leva à nossa segunda família infinita de soluções (2n,1), n inteiro positivo (substitua b=1 diretamente no problema original para verificar!). Suponha então que $b\geq 2$. Temos $4(b^2k+1)\leq (b+k)^2$, que nos dá a estimativa $k\geq 4b^2-2b$. Essa estimativa não parece muito interessante, então procuremos outra. Você pode provar (tente!) que $b^2k+1\mid b^4-2b-k$ e o Passo 2 nos dá nossa terceira família infinita de soluções $(8n^4-n,2n)$, n inteiro positivo e, caso contrário, outra estimativa $k\leq b^2-2$. Isso implica $b^2-2\geq 4b^2-2b$, absurdo.

Então as soluções são (n, 2n), (2n, 1), $(8n^4 - n, 2n)$, n inteiro positivo.

Observação: Essas estimativas polinomiais não foram questão de sorte. Você precisa fazer algumas divisões de polinômios e fazer algumas estimativas. Algumas são bastante fracas, como $b^2 - 4 \ge 0$, por exemplo.

Exercícios

- 01. E se $\frac{a^2}{2ab^2-b^3+1}$ pudesse ser inteiro qualquer? Resolva o problema nesse caso.
- 02. Seja ninteiro. Prove que a fração $\frac{21n+4}{14n+3}$ é irredutível.

Observação: Esse é o primeiro problema na primeira IMO, e é só uma aplicação direta de combinação linear.

03. (Problema 1, IMO 1992) Encontre todos os inteiros a, b, c, 1 < a < b < c, tais que (a-1)(b-1)(c-1) é um divisor abc-1.

Dica: Faça x = a - 1, y = b - 1, z = c - 1.

- 04. (Problema 4, IMO 1994) Encontre todos os pares ordenados (m, n) em que m e n são inteiros positivos tais que $\frac{n^3+1}{mn-1}$ é um inteiro.
- 05. Encontre todos os inteiros que podem ser expresso unicamente na forma $\frac{x^2+y}{xy+1}$, $x \in y$ inteiros positivos.
- 06. (APMO) Encontre todos os inteiros positivos m e n tais que $\frac{m^2+n}{n^2-m}$ e $\frac{n^2+m}{m^2-n}$ são ambos inteiros.

Você deve estar se perguntando: "E se eu não conseguir aplicar o Passo 2?" Então você deve estar enfrentando

2. Problemas com root-flipping

Nesse caso, geralmente temos infinitas soluções. Uma ideia é reduzir todas as soluções a um conjunto finito (e preferivelmente pequeno) de soluções finitas usando equações do segundo grau.

O próximo exemplo é da IMO 2007.

Exemplo 2.1.

Sejam a e b inteiros positivos. Prove que se 4ab-1 divide $(4a^2-1)^2$, então a=b.

Resolução

Quando você sabe que está lidando com problemas de root-flipping? Uma evidência é quando o máximo que você consegue ao reduzir o grau do múltiplo é obter $4ab - 1 \mid (a - b)^2$. O que fazer?

Root-flipping

- Passo~1~ Seja $k=\frac{\text{múltiplo}}{\text{divisor}}.$ Reescreva essa equação como uma equação de segundo grau em uma das variáveis.
- $Passo~2~{
 m Seja}~(a_0,b_0)$ uma solução minimal (a_0 minimal, b_0 minimal, a_0+b_0 minimal, o que fizer as contas mais fáceis). Encontre outra solução usando soma e/ou produto da equação do segundo grau (isso é o "root-flipping").
- $Passo\ 3$ Use o fato de que (a_0,b_0) é minimal para obter uma desigualdade.
- Passo 4 Encontre os possíveis valores de (a_0, b_0) usando a desigualdade ou obtenha uma contradição.

Como usual, esse procedimento fica mais claro após vê-lo em ação. Seja $k = \frac{(a-b)^2}{4ab-1}$. Então $a^2 - (4kb+2b)a + (b^2+k) = 0$ (*) (esse é o Passo 1). Note que todas as soluções (a,b) do problema original satisfaz (*) para algum inteiro k.

Seja (a_0,b_0) uma solução minimal. O que vai ser minimal vai ser decidio mais tarde (não dá para prever as contas agora). Sejam a_0 e a_1 as raízes de (*). Então $a_0+a_1=4kb_0+2b_0$ e $a_0\cdot a_1=b_0^2+k$. Vamos trabalhar com $a_1=\frac{b_0^2+k}{a_0}$ (na verdade, trabalhar com a outra relação dá o mesmo resultado). Note que $a_1=4kb_0+2b_0-a_0$ é inteiro positivo. Esse é o Passo 2.

Agora estamos prontos para decidir o que vai ser minimal e, além disso, considerando a simetria do problema, qual dos números a_0 e b_0 é maior. Como estamos lidando com a_1 e a_0 , é natural considerarmos

 a_0 minimal, assim $a_1 \ge a_0 \iff b_0^2 + k \ge a_0^2$. Mas podemos supor também, ser perda de genaralidade, que $a_0 > b_0$ e temos $k \ge a_0^2 - b_0^2$. Esse é o Passo 3.

E agora vamos ao Passo 4. Lembre que $k=\frac{(a_0-b_0)^2}{4a_0b_0-1}$. Substituindo e cancelando a_0-b_0 obtemos $\frac{a_0-b_0}{4a_0b_0-1}\geq a_0+b_0$, que é uma contradição, pois $\frac{a_0-b_0}{4a_0b_0-1}\leq a_0-b_0< a_0+b_0$. Então não podíamos ter $a_0>b_0$ nem cancelado a_0-b_0 , porque na verdade $a_0=b_0$. Logo k=0 e, portanto, a=b.

Exercícios

07. (Problema 6, IMO 1988) Sejam a e b inteiros positivos tais que ab+1 divide a^2+b^2 . Prove que $\frac{a^2+b^2}{ab+1}$ é um quadrado perfeito.

Observação: Ninguém do comitê seletor de problemas da IMO daquele ano resolveu o problema. Ainda assim, alguns alunos resolveram o problema durante a prova.

- 08. Sejam a e b inteiros positivos tais que $\frac{a^2+b^2+1}{ab}$ é inteiro. Prove esse inteiro é 3.
- 09. (Romênia, Teste de Seleção) Sejam a e b inteiros positivos tais que $ab \neq 1$. Encontre todos os valores inteiros de $f(a,b) = \frac{a^2 + ab + b^2}{ab 1}$.
- 10. (Brasil, 1996) Prove que a equação $x^2 + y^2 + z^2 = 3xyz$ tem infinitas soluções inteiras.
- 11. Seja m inteiro positivo. Mostre que existem infinitos pares (a, b) de inteiros positivos tais que a divide $b^2 + m$ e b divide $a^2 + m$.
- 12. (IMO Shortlist, 2002) Existe um inteiro positivo m tal que a equação $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{abc} = \frac{m}{a+b+c}$ é satisfeita por infinitos inteiros positivos a, b, c?
- 13. (EUA, Teste de Seleção 2009) Encontre todos os pares de inteiros positivos (m, n) tais que mn 1 divide $(n^2 n + 1)^2$.

Até agora só resolvemos problemas de divisibilidade envolvendo polinômios. Mas o que fazer se a variável estiver no expoente?

3. Problemas de expoente

Se uma variável está no expoente, geralmente utilizamos o pequeno teorema de Fermat, ordem e lema de Hensel.

Pequeno teorema de Fermat. Se p é primo e a não é múltiplo de p então $a^{p-1} \equiv 1 \pmod{p}$.

Demonstração

É um caso particular do teorema de Euler-Fermat.

Definição 3.1. Sejam $a \in m$ inteiros primos entre si. A ordem de a módulo m, denotado por ord $_m a$, é o menor inteiro positivo d tal que $a^d \equiv 1 \pmod{m}$.

Propriedade da ordem (o menor divide). $a^x \equiv a^y \pmod{m} \iff x \equiv y \pmod{m}$. Em particular, $a^t \equiv 1 \pmod{m} \iff \operatorname{ord}_m a \mid t$.

Demonstração

Divida t por ord_m a, ou seja, $t = q \cdot \operatorname{ord}_m a + r$, $0 \le r < \operatorname{ord}_m a$. Então $a^t = (a^{\operatorname{ord}_m a})^q a^r \equiv 1 \pmod{m}$ $\Longrightarrow a^r \equiv 1 \pmod{m}$. Como ord_a m é mínimo e $r < \operatorname{ord}_m a$, então r deve ser zero. Isso prova o caso particular. O caso geral pode ser reduzido a esse caso: $a^x \equiv a^y \pmod{m} \iff a^{x-y} \equiv 1 \pmod{m}$.

Corolário. ord_m $a \mid \phi(m)$. Em particular, se p é primo, ord_p $a \mid p-1$.

Demonstração

Basta utilizar o último fato e o teorema de Euler-Fermat.

Definição 3.2. Dizemos que p^{α} divide exatamente m e denotamos por $p^{\alpha} \parallel m$ o fato de que m tem exatamente α fatores primos p.

O próximo teorema nos diz que se sabemos quantos fatores p primo $a\pm 1$ e n têm então sabemos quantos fatores p o número $a^n\pm 1$ tem. E não são muitos!

Lema de Hensel. Seja p primo ímpar, a inteiro, n inteiro positivo. Se $p^{\alpha} \parallel a - 1$, $\alpha > 0$ e $p^{\beta} \parallel n$ então $p^{\alpha+\beta} \parallel a^n - 1$. Além disso, se n é ímpar, $p^{\alpha} \parallel a + 1$, $\alpha > 0$ e $p^{\beta} \parallel n$ então $p^{\alpha+\beta} \parallel a^n + 1$.

Demonstração

Indução em β , utilizando o binômio de Newton (faça as contas!).

Note que esse lema nos diz que $a^n \pm 1$ tem tantos fatores p quanto $(a \pm 1)n$. Isso é propício para diminuir mdc, obter desigualdades...

Problemas com expoentes podem ser resolvidos com o seguinte "algoritmo":

Problemas com expoentes

Passo 1 Fatore o expoente n em primos, digamos $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, com $p_1 < p_2 < \cdots < p_k$.

Passo 2 Faça i = 1.

Passo 3 (Ordem e progresso) Encontre p_i , usando o teorema de Fermat e ordem.

Passo 4 Encontre α_i , usando o lema de Hensel.

 $Passo\ 5$ Se encontramos uma contradição em algum dos dois passos anteriores, terminamos. Caso contrário, faça i=i+1 e volte ao Passo 3. Se for o caso, prove que é possível continuar indefinidamente por indução.

Começamos com esse problema da IMO 1990, que na época foi considerado uma grande inovação.

Exemplo 3.1.

Encontre todos os inteiros positivos n tais que $\frac{2^n+1}{n^2}$ é inteiro.

Resolução

Note primeiro que n=1 é uma solução. Suponha agora que n>1. Seja $n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdots p_k^{\alpha_k}$, com $p_1< p_2<\cdots< p_k$.

Encontremos p_1 . Note que como $n^2 \mid 2^n+1, \ p_1 \mid 2^n+1 \iff 2^n \equiv -1 \pmod{p_1} \implies 2^{2n} \equiv 1 \pmod{p_1}$. Seja $d_1 = \operatorname{ord}_{p_1} 2$. Então $d_1 \mid 2n, \ d_1$ não divide n e $d_1 \mid p_1-1$. Logo $d_1 \mid \operatorname{mdc}(2n, p_1-1)$. Mas note que p_1-1 é menor do que qualquer fator primo de n, de modo que não pode ter divisores comuns com n. Portanto $\operatorname{mdc}(2n, p_1-1) \mid 2$, e temos $d_1 \mid 2 \implies 2^2 \equiv 1 \pmod{p_1} \implies p_1=3$.

Agora vamos ao lema de Hensel. Coom 3 || 2 + 1 e $3^{\alpha_1} \parallel n$, pelo lema de Hensel $3^{1+\alpha_1} \parallel 2^n + 1$. Mas $3^{2\alpha} \parallel n^2$, logo $2\alpha_1 \leq 1 + \alpha_1 \implies \alpha_1 = 1$.

Nenhuma contradição, então encontremos p_2 . Novamente, $2^n \equiv -1 \pmod{p_2}$ e $2^{2n} \equiv 1 \pmod{p_2}$. Seja $n_2 = n/3 = p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ e $d_2 = \operatorname{ord}_{p_2} 2$. Logo $d_2 \mid 6n_2$, d_2 não divide $3n_2$ e $d_2 \mid p_2 - 1$. Como todos os divisores primos de n_2 são maiores do que $p_2 - 1$, $d_2 \mid 6$ e d_2 não divide 3. Portanto $2^6 \equiv 1 \pmod{p_2} \implies p_2 = 7$. Isso é uma contradição porque $d_2 = \operatorname{ord}_7 2 = 3$ e d_2 não divide 3.

Portanto não há p_2 (e primos maiores também), e as únicas soluções são n=1 e n=3.

Achamos que esse material não estaria completo sem um exemplo em que o "algoritmo" continue indefinidamente (e é por isso que "algoritmo" está entre aspas). O próximo problema, da IMO 2000, é um exemplo disso.

Exemplo 3.2.

Existe um inteiro positivo n tal que n tem exatamente 2000 divisores primos e n divide $2^n + 1$?

Resolução

```
Seja (novamente) n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}, com p_1 < p_2 < \cdots < p_k.
```

Exatamente como no exemplo anterior, encontramos $p_1 = 3$. Mas agora o divisor é n em vez de n^2 , então podemos escolher α_1 qualquer. Isso é indicativo que a resposta ao problema deve ser sim, então vamos tentar encontrar valores possíveis para $p_2, p_3, \ldots, p_{2000}$.

Nesse caso, indução geralmente vai bem, como em muitos outros problemas de Teoria dos Números. Suponha que já encontramos m fatores primos, isto é, suponha que já encontramos $n_m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ tal que $n_m \mid 2^{n_m} + 1$. Vamos encontrar p_{m+1} .

Como? Basta seguir o nosso "algoritmo"! Primeiro, vamos provar que é possível encontrar p_{m+1} . Primeiro vamos ver **onde** procurar esse primo. Temos, como usual, $p_{m+1} \mid 2^{n_{m+1}} + 1 \iff 2^{n_{m+1}} \equiv -1$ (mód. $p_{m+1}) \implies 2^{2n_{m+1}} \equiv 1$ (mód. p_{m+1}). Seja $d_{m+1} = \operatorname{ord}_{p_{m+1}} 2$. Então $d_{m+1} \mid 2n_{m+1}, d_{m+1} \mid p_{m+1} - 1$ mas d_{m+1} não divide n_{m+1} . Novamente, como $n_{m+1} = p_{m+1}^{\alpha_{m+1}} n_m$, temos na verdade $d_{m+1} \mid 2n_m$ e que d_{m+1} não divide n_m . Então $2^{2n_m} \equiv 1$ (mód. p_{m+1}) $\iff (2^{n_m})^2 \equiv 1$ (mód. p_{m+1}) $\iff 2^{n_m} \equiv \pm 1$ (mód. p_{m+1}) (é por isso que trabalhar módulo primo é muito melhor! Isso não vale para compostos). Mas $2^{n_m} \not\equiv 1$ (mód. p_{m+1}) (caso contrário, d_{m+1} dividiria n_m), então $2^{n_m} \equiv -1$ (mód. p_{m+1}). Logo p_{m+1} deve dividir $2^{n_m} + 1$. Como p_{m+1} não divide n_m , concluímos que p_{m+1} divide. $\frac{2^{n_m+1}}{n_m}$! E tem mais: **qualquer** divisor primo de $\frac{2^{n_m+1}}{n_m}$ funciona. Por quê? Note que p_{m+1} e n_m dividem $2^{n_m} + 1$; como mdc $(p_{m+1}, n_m) = 1$, $n_m p_{m+1}$ divide $2^{n_m} + 1$, que divide $(2^{n_m})^{p_{m+1}} + 1 = 2^{n_m p_{m+1}} + 1$. Então, nosso próximo divisor primo pode ser qualquer divisor primo de $\frac{2^{n_m+1}}{n_m}$! Legal, não? Vamos ver de novo o exemplo anterior, a título de ilustração: encontrar p_2 tornou-se impossível no momento que encontramos que $\alpha_1 = 1$: $\frac{2^3+1}{3} = 3$ não tem novos primos!

E nessa hora, os pessimistas podem perguntar "ei, e se $\frac{2^{n}m+1}{n_m}$ não tiver novos fatores primos?" Nós, os otimistas, respondemos primeiro que $\frac{2^{3^2}+1}{3^2}=3\cdot 19$. Na verdade, o fato de que podemos escolher **qualquer** α_1 no primeiro passo agora parece **crucial** para o problema. Então, vamos colocar esse fato na hipótese de indução (isso é frequente em induções: precisa de outro fato? Inclua-o na hipótese de indução!). Então agora temos que encontrar p_{m+1} E provar que podemos escolher α_{m+1} **qualquer**.

Como conseguir novos primos? Resposta: mdc pequeno! Coloque outro fator p_m em n_m , ou seja, considere $n_m \cdot p_m$. Da nossa (nova e estendida) hipótese de indução, $n_k p_k$ divide $2^{n_k p_k} + 1$ e podemos escolher qualquer divisor primo de $\frac{2^{n_k p_k} + 1}{n_k p_k}$. Temos $\frac{2^{n_m p_m} + 1}{2^{n_m} + 1} = (2^{n_m})^{p_m - 1} - (2^{n_m})^{p_m - 2} + \dots + 1 \equiv (-1)^{p_m - 1} - (-1)^{p_m - 2} + \dots + 1 = p_m \pmod{2^{n_m} + 1}$, então mdc $(\frac{2^{n_m p_m} + 1}{2^{n_m} + 1}, 2^{n_m} + 1)$ divide p_m e é pequeno comparado a $\frac{2^{n_m p_m} + 1}{2^{n_m} + 1}$ (faça as contas para verificar isso!). Então deve existir um primo novo entre os divisores de $\frac{2^{n_m p_m} + 1}{2^{n_m} + 1}$. Nenhum deles divide $n_m p_m$, então esse novo primo p_{m+1} também aparece em $\frac{2^{n_m p_m} + 1}{n_m p_m}$.

Agora vamos provar que podemos escolher α_{m+1} qualquer. Isso é mais um trabalho para o nosso "algoritmo": como $p_{m+1}^t \parallel 2^{n_m} + 1$ para algum t > 0, pelo lema de Hensel $p_{m+1}^{\alpha_{m+1}+t} \parallel 2^{n_m} p_{m+1}^{\alpha_{m+1}} + 1$. Ou seja, se $n_{m+1} = n_m p_{m+1}^{\alpha_{m+1}}$ então $n_{m+1} \mid 2^{n_{m+1}} + 1$ para todo α_{m+1} . Faça m = 2000 e o problema terminou.

Exercícios

- 14. Seja n > 1 um inteiro. Prove que n não divide $2^n 1$.
- 15. (IMO 1999, Problema 4) Encontre todos os pares de inteiros positivos (n, p) tais que p é primo, $n \le 2p$ e n^{p-1} é um divisor de $(p-1)^n + 1$.

Observação: Na verdade você pode ignorar a condição $n \leq 2p$ e resolver o problema.

16. (IMO 2003, Problema 6) Seja p um número primo. Prove que existe um número primo q tal que, para todo inteiro n, o número $n^p - p$ não é divisível por q.

Dica: Tente encontrar q tal que $p^{\frac{q-1}{p}} \not\equiv 1 \pmod{q}$. Sendo mais específico: encontre q tal que $p = \operatorname{ord}_q p$ e $q \not\equiv 1 \pmod{p^2}$.

- 17. (IMO Shortlist, 1997) Sejam b, m, n inteiros positivos tais que b > 1 e $m \neq n$. Prove que se $b^m 1$ e $b^n 1$ têm os mesmos divisores primos então b + 1 é uma potência de 2.
- 18. (IMO Shortlist, 2000) Encontre todos os inteiros positivos a, m, n tais que $a^m + 1$ divide $(a + 1)^n$.

Dica: Lema de Hensel em ação! Aliás, esse problema é brasileiro!

19. (IMO Shortlist, 2001) Seja p > 3 um primo. Mostre que existe um inteiro positivo $n tal que <math>n^{p-1} - 1$ e $(n+1)^{p-1} - 1$ não são divisíveis por p^2 .