

Recursive Causal Discovery with Julia

11 July 2024

Sepehr Elahi¹

¹ School of Computer and Communication Sciences, EPFL

Overview

- 1. Causality
- 2. Causal discovery
- 3. Recursive causal discovery
- 4. Recursive causal discovery with Julia
- 5. Future direction

Causation is **NOT** correlation!

correlates with

Google searches for 'how to make baby'

- ◆ The average distance between Saturn and the Sun as measured on the first day of each month · Source: Caclculated using Astropy
- Relative volume of Google searches for 'how to make baby' (Worldwide), with quotes) · Source: Google Trends
 - 2004-2023, r=0.967, r²=0.935, p<0.01 · tylervigen.com/spurious/correlation/1522

Causality: the relationship between cause and effect: cause \rightarrow effect.

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Causality: the relationship between cause and effect: cause \rightarrow effect.

Research significance:

X: Education level

Y: Income

Z: Parental socioeconomic status

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Research significance:

• Public health: Understanding if a new drug reduces the incidence of disease.

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Research significance:

- Public health: Understanding if a new drug reduces the incidence of disease.
- Education: Assessing whether smaller class sizes improve student performance.

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Research significance:

- Public health: Understanding if a new drug reduces the incidence of disease.
- Education: Assessing whether smaller class sizes improve student performance.
- Policy making: Evaluating if tax incentives stimulate business growth.

Causal graphs: causal relationships are often represented using DAGs:

Causal graphs: causal relationships are often represented using DAGs: *Directed*: only directed edges

Causal graphs: causal relationships are often represented using DAGs:

Directed: only directed edges Acyclic: no cycles

Causal graphs: causal relationships are often represented using DAGs: *Directed*: only directed edges *Acyclic*: no cycles *Graph*: set of vertices and edges

Causal graphs: causal relationships are often represented using DAGs:

Directed: only directed edges Acyclic: no cycles Graph: set of vertices and edges

Causal graphs: causal relationships are often represented using DAGs: *Directed*: only directed edges *Acyclic*: no cycles *Graph*: set of vertices and edges

What if we don't know the causal graph?

Causal discovery

Causal discovery: the process of inferring causal relationships from data.

Causal discovery

Causal discovery: the process of inferring causal relationships from data.

Table: Sample data

X ₁	χ_2	X ₃	X_4	X ₅
1	0	1	0	1
0	1	0	1	0
1	1	1	0	0
0	0	1	1	1
1	0	0	1	0
		÷		

Causal discovery

Causal discovery: the process of inferring causal relationships from data.

Table: Sample data

X_1	χ_2	X ₃	χ_4	X ₅
1	0	1	0	1
0	1	0	1	0
1	1	1	0	0
0	0	1	1	1
1	0	0	1	0
		÷		

Common approach: PC algorithm

Goal: learn causal graph from observational data.

Goal: learn causal graph from observational data.

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

 Test each pair of variables for conditional independence (CI) given a set of other variables.

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables.
- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y.

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables.
- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y.
- Z starts empty and is iteratively grows.

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables.
- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y.
- Z starts empty and is iteratively grows.

2. Orient edges:

 Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

Test each pair of variables for conditional independence (CI) given a set of other variables. Very slow!

- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y.
- Z starts empty and is iteratively grows.

2. Orient edges:

 Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

PC can be very slow!

Goal: learn causal graph from observational data.

Steps:

1. Learn the skeleton:

Test each pair of variables for conditional independence (CI) given a set of other variables. Very slow!

- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y.
- Z starts empty and is iteratively grows.

2. Orient edges:

 Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

PC can be very slow! Exponential complexity: $O(n^22^n)!$

Problem with the PC Algorithm

PC has exponential complexity: PC requires potentially conditioning on every subset of variables: $O(n^2 2^n)$.

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

Steps:

• Learn the skeleton:

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.
 - 2. Learn the neighbors of X using CI tests.

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.
 - 2. Learn the neighbors of X using CI tests.
 - 3. Remove X from the graph. Go to step 1.

Recursive causal discovery

Goal: learn causal graph from observational data faster by recursively removing variables and learning their neighbors.

Steps:

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.
 - 2. Learn the neighbors of X using CI tests.
 - 3. Remove X from the graph. Go to step 1.
- Orient edges:
 - Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

Learned skeleton

Learned skeleton

Learned skeleton

Learned skeleton

Input to RCD algorithm

Learned skeleton

Input to RCD algorithm

Learned skeleton

Input to RCD algorithm

Learned skeleton

Input to RCD algorithm

Learned skeleton

Input to RCD algorithm

Learned skeleton

RCD: algorithms

Algorithm	Completeness	#CI tests
MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}\Delta_{\mathit{in}}^2 2^{\Delta_{\mathit{in}}})$
L-MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}(\Delta_{\mathit{in}}^+)^2 2^{\Delta_{\mathit{in}}^+})$
RSL	YES	$\mathcal{O}(n^2 + n\Delta_{in}^{m+1})$
ROL	NO	$\mathcal{O}(MAXITER \overset{'''}{ imes} n^3)$
PC	YES	$\mathcal{O}(n^2 2^{n-1})$

RCD: algorithms

Algorithm	Completeness	#CI tests
MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}\Delta_{\mathit{in}}^2 2^{\Delta_{\mathit{in}}})$
L-MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}(\Delta_{\mathit{in}}^+)^2 2^{\Delta_{\mathit{in}}^+})$
RSL	YES	$\mathcal{O}(n^2 + n\Delta_{in}^{m+1})$
ROL	NO	$\mathcal{O}(MAXITER \times n^3)$
PC	YES	$\mathcal{O}(n^2 2^{n-1})$

For more details, see our paper at go.epfl.ch/rcd.

rcd package: Recursive causal discovery in Python.

rcd package: Recursive causal discovery in Python. Implemented algorithms:

- MARVEL
- L-MARVEL
- RSL
- ROL

rcd package: Recursive causal discovery in Python. Implemented algorithms:

- MARVEL
- L-MARVEL
- RSL
- ROL

Getting started:

rcdpackage.com

Installation:

pip install rcd

rcd package: Recursive causal discovery in Python. Implemented algorithms:

- MARVFI
- L-MARVEL
- RSL
- ROL

Getting started:

rcdpackage.com

Installation:

pip install rcd

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data.

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data.

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data.

Julia is faster by a factor of 150!

RCD in Julia

RecursiveCausalDiscovery.jl: Recursive causal discovery in Julia.

RCD in Julia

RecursiveCausalDiscovery.jl: Recursive causal discovery in Julia. **Installation:**

] add RecursiveCausalDiscovery

RCD in Julia

Simple demo:

```
using RecursiveCausalDiscovery
using CSV
using Tables
# load data (columns are variables and rows are samples)
data = CSV.read("data.csv", Tables.matrix)
# use a Gaussian conditional independence test
sig_level = 0.01
ci_test = (x, y, cond_vec, data) -> fisher_z(x, y, cond_vec, data, sig_level)
# learn the skeleton of causal graph using RSL
learned_skeleton = learn_and_get_skeleton(data, ci_test)
```

RCD versus PC

Comparison: RCD vs. PC on learning graphs from synthetic data.

RCD versus PC

Comparison: RCD vs. PC on learning graphs from synthetic data.

Future direction

• Implement the other RCD algorithms (MARVEL, L-MARVEL, ROL).

Future direction

- Implement the other RCD algorithms (MARVEL, L-MARVEL, ROL).
- Add more CI tests.

Future direction

- Implement the other RCD algorithms (MARVEL, L-MARVEL, ROL).
- Add more CI tests.
- Integrate with CausalInference.jl.