

AMRL-TR-66-133
ADO 655 771

AUTOMATED INPUT/OUTPUT DIAGNOSTICS FOR A REAL-TIME SIMULATION RESEARCH SYSTEM

DON R. GUM

PATRICIA A. KNOOP

OCTOBER 1966

Distribution of this document
is unlimited

20100224 439

AEROSPACE MEDICAL RESEARCH LABORATORIES
AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Requests for copies of this report should be directed to either of the addressees listed below, as applicable:

Federal Government agencies and their contractors registered with Defense Documentation Center (DDC):

DDC
Cameron Station
Alexandria, Virginia 22314

Non-DDC users (stock quantities are available for sale from):

Chief, Storage and Dissemination Section
Clearinghouse for Federal Scientific & Technical Information (CFSTI)
Sills Building
5285 Port Royal Road
Springfield, Virginia 22151

Organizations and individuals receiving reports via the Aerospace Medical Research Laboratories' automatic mailing lists should submit the addressograph plate stamp on the report envelope or refer to the code number when corresponding about change of address or cancellation.

Do not return this copy. Retain or destroy.

AUTOMATED INPUT/OUTPUT DIAGNOSTICS FOR A REAL-TIME SIMULATION RESEARCH SYSTEM

DON R. GUM

PATRICIA A. KNOOP

**Distribution of this document
is unlimited**

Foreword

This effort was conducted by the Simulation Techniques Branch, Training Research Division, Behavioral Sciences Laboratory, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio. The work was performed in support of Project 6114, "Simulation Techniques for Aerospace Crew Training," and Task 611408, "Simulation Computers." This study was begun in April 1964 and was completed in April 1965.

Acknowledgment is made of the assistance provided the authors by Mr. Duncan Ewing of Illinois Institute of Technology Research Institute, who prepared the ADIOCE Calibration/Diagnostic Program, and Airman First Class Victor A. Wagner, who prepared the decimal input/output subroutines used by the diagnostic programs.

This technical report has been reviewed and is approved.

WALTER F. GRETHER, PhD
Technical Director
Behavioral Sciences Laboratory
Aerospace Medical Research Laboratories

Abstract

This report describes a library of automated diagnostic test-programs for the real-time input/output section of a digital training simulation research system. The application of such automated tests to simulation-system acceptance testing is explored. Included is a description of real-time simulation as a training technique and the Real-Time Simulation Research Systems (RTSRS) for which the test-programs were prepared. Detailed program listings, flow charts, and abstracts of each test and of utility subroutines are also provided.

Table of Contents

<i>Section</i>	<i>Page</i>
I. INTRODUCTION.....	1
II. TRAINING SIMULATION.....	2
III. THE REAL-TIME SIMULATION RESEARCH SYSTEM.....	4
Raytheon 440 Digital Computer.....	4
Analog-Discrete Input/Output Conversion Equipment (ADIOCE)	5
1. Real-Time Clock.....	5
2. Digital to Analog Converters.....	5
3. Analog to Digital Converter and Multiplexer.....	6
4. Discrete Inputs.....	6
5. Discrete Outputs.....	7
IV. AUTOMATED DIAGNOSTIC TEST PROGRAMS.....	8
Test Objectives.....	8
Test Descriptions.....	8
1. Discrete Input/Output Test.....	8
2. Discrete Output Dynamic Test.....	9
3. Analog Output Accuracy Test.....	9
4. Analog Output Dynamic Test.....	9
5. Computer and Real-Time Clock Tests.....	10
6. ADIOCE Calibration/Diagnostic Program.....	11
V. APPLICATION OF AUTOMATED DIAGNOSTIC TEST PROGRAMS TO THE ACCEPTANCE-TESTING OF SIMULATION SYSTEMS	13
Current Acceptance-Testing Procedures.....	13
The Advantage of Using Automated Diagnostic Test Programs	13

Table of Contents—(continued)

<i>Section</i>	<i>Page</i>
APPENDICES	16
APPENDIX I – AUTOMATED DIAGNOSTIC TEST MAIN PROGRAMS	17
Discrete Input/Output Test.....	18
Discrete Output Dynamic Test.....	35
Analog Output Accuracy Test.....	51
Analog Output Dynamic Test.....	65
Computer Clock and Real-Time Clock Measurements.....	85
APPENDIX II – AUTOMATED DIAGNOSTIC TEST UTILITY ROUTINES	117
Micro Multiply.....	117
Micro Divide.....	120
Decimal Input II (Subroutine).....	123
Decimal Out II (Subroutine).....	135
Micro Type.....	142
Micro Print.....	147
APPENDIX III – RAYTHEON 440 MICRO COMMAND LIST	155
APPENDIX IV – RAYTHEON 440 SYSTEMS COMMAND SET LIST	157
REFERENCES	161

SECTION I.

Introduction

This report (1) describes in detail a library of automated diagnostic programs for the input/output portion of a Real-Time Simulation Research System, and (2) discusses the application of such a library of programs for the acceptance testing of simulation systems and subsequent preventive and diagnostic maintenance.

The programs were designed and coded to operate on a Raytheon 440 computer, which is part of the Real-Time Simulation Research System in the Simulation Techniques Branch of the Aerospace Medical Research Laboratories. Their functional designs are applicable, however, to a wide range of digital computers and associated analog-discrete input/output equipment.

This report includes some background material on training-simulation in general and a description of the Real-Time Simulation Research System for which the programs were specifically designed and coded. The programs themselves are explained from the functional standpoint, including the objectives and specific operational features of each.

The described diagnostic programs apply only to the real-time input/output portions of the simulation system. Their recommended use, therefore, is to supplement, not replace, present test procedures; since a complete test must naturally include computer diagnostics and tests for non-real-time input/output equipment used in the preparation of programs.

SECTION II.

Training Simulation

The type of simulation referred to in this report is real-time flight simulation for training crews in the operation of aerospace vehicles. A flight simulator for this purpose is a device composed chiefly of a vehicle cockpit, an instructor station, and a digital computer, all interconnected through various input/output devices and designed to replicate the vehicle being simulated as closely as possible from an operator's standpoint. The computer is programmed to solve the flight equations of the vehicle, process the inputs from pilot and instructor controls, and generate information for cockpit and instructor-station displays. On the basis of the position of the controls and the history of flight, the computer determines various vehicle parameters such as velocity, altitude, position, and attitude, and feeds these computed values through the input/output system to the pilot and instructor instrument pointers and indicator lights.

During the simulated flight, the instructor arbitrarily introduces through his console various circumstances such as icing, rough air, or system malfunctions which may be encountered during actual flight. The computer receives these inputs and alters its computations to simulate the vehicle's performance under these conditions. The pilot's reactions to these various conditions are monitored by the instructor. Thus, the simulator provides a means for training crews for emergency situations which may be too hazardous to attempt in the actual vehicle. The overall result is a duplication of the actual vehicle being simulated that is realistic to the trainee and which provides an effective training environment if properly utilized.

The forerunner of the complex digital flight simulators of today were the simple air-activated instrument trainers of World War II vintage. These trainers eventually progressed to electrified models, then to trainers using electronic and electromechanical analog computing elements. Through further research on simulation techniques evolved the approach of using an aircraft mathematical model with aircraft data programmed on a special-purpose analog computer to implement a full mission simulator.

These analog-computer-driven simulators were very effective; however, many problems arose when changes were implemented. The characteristics of the analog approach, having an equivalent component for each major vehicle component, and the special-purpose design of the computer made simulator changes rather difficult and time-consuming. If a part or system were added, deleted, or replaced in the vehicle, the analog computer would be affected in the same manner. In addition, other undesirable characteristics such as poor small-signal response and performance degradation with age were prevalent.

With the advent of the digital computer, the feasibility of using a digital computer for the central computing element was investigated, using the same mathematical model and computer solution approach. The digital computer was investigated primarily because of its prominent advantages over analog computers, such as programming and model solution flexibility and superior accuracy and resolution. Its flexibility would be limited only by any special-purpose restrictions imposed on its design; and the ease with which the program could be changed would be controlled chiefly by its program input/output equipment and software. The desired accuracy and resolution could be achieved by the use of a suitable computer word-length or by double-precision programming techniques. The digital computer's inherent "go-no go" characteristics also offered certain maintenance advantages. The solution would be consistently accurate from one day to the

next and would not be affected by component degradation; however, if a failure did occur in the computer, the entire simulation would be likely to fail.

A study was, therefore, undertaken to determine the digital computer speed and other characteristics required for such a simulator. It was determined that at that time a digital computer of the required capabilities did not exist as a state-of-the-art device. An effort was then initiated to design such a computer. A digital computer of the established design was constructed, programmed to simulate a high-performance aircraft (F-100A), and tested to prove its feasibility. This system was called the Universal Digital Operational Flight Trainer (UDOFT). (See reference 7.)

Several years after the UDOFT program was successfully completed, commercial computers capable of handling such a simulation became available. More efficient programming techniques were also developed. The requirement for digital computation was then added to Air Force simulator specifications. Today, the majority of Air Force aerospace vehicle simulators being procured are required to be activated by digital computers.

SECTION III.

The Real-Time Simulation Research System

To enable a better understanding of the automated diagnostic test programs which are representative of the type recommended for use in simulation system acceptance testing, a description follows of the system for which the tests were prepared. Parallels may be drawn between this system and others to observe the applications which may be made of at least the functional designs of the diagnostic programs.

The major components of the system which has been named the Real-Time Simulation Research System (RTSRS) are a Raytheon 440 digital computer (ref 1), an Electronics Associates TR-48 analog computer, and some special analog and discrete input/output conversion equipment. The program input/output equipment of the system consists of a magnetic tape unit, a paper tape reader and punch, an on-line typewriter, a high-speed line printer, and a computer-controlled Cathode Ray Tube (CRT) display.

The primary function of the RTSRS is to enable the Aerospace Medical Research Laboratories to conduct applied research in simulation techniques for training aerospace crews. Work currently in progress which involves the use of the RTSRS includes the development and implementation of an orbital-reentry simulation program. This program will be used in studies of hybrid simulation techniques, numerical integration methods for real-time simulation, automatic monitoring of human performance, and real-time displays for training purposes.

Following is a brief description of each equipment-component of the RTSRS. Since the TR-48 analog computer is not used by the automated diagnostic programs, it will not be described in this report.

RAYTHEON 440 DIGITAL COMPUTER

The Raytheon 440 is a medium-sized, medium-speed, general-purpose digital computer. It is designed to permit programming at several levels. The machine micro language may be used directly; a group of micro coded routines may be used to make-up various macro commands or languages; or FORTRAN programming may be used. The micro programming feature of the computer, which permits the programmer to literally define his own command set, sets the Raytheon 440 apart from and above other general-purpose digital computers in which the (macro level) command set is fixed. (See reference 1.)

Major software components of the 440 include a Micro Assembly Program (MAP 440), a FORTRAN compiler, and a macro level assembler. The latter is based upon a Systems Command Set of instructions (ref 6) designed for real-time applications. Accompanying the Systems Command Set assembler is a Systems Command Set Generator, the use of which permits the programmer to specify which commands of a group of over 100 standard commands he wishes to use in his program. The programmer, however, is limited to 64 commands in a given program. The Generator may be altered to permit the programmer to define and use his own commands which may not be included in the Systems Command Set. The alteration may be quickly accomplished through a conversational-type program entitled the Generator-Generator.

Complete diagnostic programs exist for all peripheral equipment. Some of these programs were furnished by Raytheon for equipment purchased from them and some were prepared in-house. An extensive library of utility softwear has been prepared by the Aerospace Medical Re-

search Laboratories to aid in standard input/output, program debugging, and program documentation. Included are decimal input/output routines; tape reproducers; I/O commands for rapid access to the printer, punch, typewriter, and magnetic tape unit; source program listing routines; special commands for referencing the analog-discrete input/output system; and several typewriter input routines.

The computer has two 4K modules of 2-microsecond cycle time memory and a 512-word module of 1-microsecond, nondestructive access memory. The two 4K modules comprise what is referred to as main memory, which is normally used for program and data storage. The 512-word module is referred to as logic or fast memory and is where the micro coded macro-commands and micro coded subroutines are normally stored. Main and fast memory may be expanded to 28,672 and 4096 words capacity, respectively. (See references 1 and 5.)

ANALOG-DISCRETE INPUT/OUTPUT CONVERSION EQUIPMENT (ADIOCE)

ADIOCE, which is an acronym for analog and discrete input/output conversion equipment, is a special device which, together with the 440 and TR-48 computers, makes up the major equipment of the RTSRS. It provides the link between the digital computer and the simulator cockpit instruments and controls. It is also the link between the analog and digital computers for use in hybrid computation problems. (See reference 3.)

There are 6 major sections in ADIOCE: the I/O controller, real-time clock, digital to analog converters, analog to digital converter and multiplexer, discrete inputs, and discrete outputs. Prompted by the appropriate input/output commands in the 440, the I/O controller selects the proper section and address in ADIOCE and causes the correct function to be performed. The ADIOCE I/O controller is very similar to all other 440 I/O controllers, so further attention will not be given it at this time. The remaining five sections in ADIOCE are briefly described as follows:

REAL-TIME CLOCK

The real-time clock is used most often for controlling the iteration rate of a program relying upon real-time inputs, i.e., a simulation program. It has also been used as a timing reference for several diagnostic routines. The clock may be set under program control to intervals ranging from 100 microseconds to 1.6383 seconds. The contents of the clock may also be read under program control. A 100,000 CPS crystal oscillator supplies the basic pulse rate for the clock.

Once set, the clock counts continuously and supplies an interrupt to the computer once every interval when the clock count register (CCR) reaches zero. Upon reaching zero, the CCR is automatically loaded again with the previously specified interval (retained in a time interval register (TIR)) and continues to count.

DIGITAL TO ANALOG CONVERTERS

The digital to analog conversion section of ADIOCE is composed of 64 individual D to A converters. Fifty-six of the channels are 10-bit bipolar converters and eight channels are 14-bit bipolar converters. The 10-bit converters are adequate for most of the standard simulator instruments, while the 14-bit converters are required for some of the longer scale displays such as vertical tape instruments. The larger number of bits are required for resolution rather than accuracy, because with a larger type instrument scale and a short word-length, converter changes

of the least significant bit cause quantized detectable changes on the instrument rather than a smooth movement. The high precision 14-bit converters also provide a standard for an automated closed-loop A to D and D to A calibration program.

The 10-bit converters are built up from Computer Control Corporation digital modules. Each channel is composed of a 10-bit storage register, a ladder network, and an isolation amplifier. The eight 14-bit converters are composed of a Packard Bell DAC 20 system. The output voltage range of the converters is ± 10 volts, with a full positive computer word corresponding to +10 volts and a full negative 2's complement word corresponding to -10 volts.

All of the input/output sections in ADIOCE with the exception of the real-time clock can be accessed in either a Random or a Sequential mode. In the Random mode, the address of every I/O channel must be supplied to ADIOCE with every I/O command. In the Sequential mode, the address of the first channel to be referenced is sent during the selection of ADIOCE. With successive data transfer accesses to ADIOCE, the section being accessed is automatically stepped to the next higher channel, not requiring the address to be sent along with each access. The chief advantage of the Sequential mode is not time savings, since the access time in either mode is approximately equivalent, but that it does not require the construction of a channel address for each access.

ANALOG TO DIGITAL CONVERTER AND MULTIPLEXER

The 32 channels of analog input are provided through the use of a 12-bit analog to digital converter and a 32-channel multiplexer. The converter is a Texas Instruments Model 834 and the multiplexer is a Texas Instruments Model 845A.

In addition to the Random and Sequential modes mentioned previously, the A/I section can be accessed in a Free Run mode. In this mode, immediately after an access the A/I section is automatically stepped to the next higher channel and the conversion is initiated. The computer is free during the actual conversion period and is only charged for the data-transfer time during the access. This is only true, however, if the time between accesses is greater than the conversion time. With accesses spaced properly, this mode will permit maximum multiplexer and converter operation rate.

Although 2's complement notation is normally used in conjunction with ADIOCE, a Sign Magnitude mode of access exists to facilitate scaling operations when they are needed.

The input voltage range of the A/I system is also ± 10 volts.

DISCRETE INPUTS

ADIOCE is capable of handling 72 discrete inputs. They are divided into three groups of 24 each and brought into the computer one 24-bit word at a time. The bits of this 24-bit word must be interrogated separately to determine the state of a particular discrete input. This can be accomplished by masking the input word or shifting the bits to a position in the word that can be tested by a standard command.

The switch-inputs connect directly into ADIOCE as logic levels to the digital modules, with the switch providing the only storage. No voltage levels are required to be routed through the switch; it provides a "one" input by being open and a "zero" input by being switched to ground.

DISCRETE OUTPUTS

ADIOCE is capable of providing 70 external discrete outputs. They are arranged into 7 groups of 10 each and are left justified in the computer word. The discrete outputs are in the form of either flip-flop outputs or lamp driver outputs. The lamp drivers can operate incandescent indicator lights or low current relays. An additional group of 10 discrete outputs is used to pull special mode control relays, some of which are used for the calibrate mode of ADIOCE, and some for the analog computer mode control.

Since the discrete outputs are sent out in groups of 10, the individual outputs must be set by a masking or shifting technique similar to that used for interrogating the discrete inputs.

SECTION IV.

Automated Diagnostic Test Programs

TEST OBJECTIVES

All of the automated diagnostic tests for ADIOCE except the calibration test were written specifically for system acceptance testing. The ADIOCE calibration test (reference 2) was written by the system contractor as an initial and permanent diagnostic for ADIOCE. All tests, however, were used for acceptance testing and have become part of a permanent system-diagnostic library.

The diagnostic tests were designed to be as automated as possible with respect to operator instructions, execution, and result-recording so that maximum operational efficiency could be achieved. The tests proved to be quite useful in detecting and resolving several system malfunctions during the testing phases. Due to the success encountered with these tests and the applicability of their design to other input/output systems and computers, they are described herein as an example of tests to be added to the standard simulator system acceptance tests and used for permanent diagnostics for a digital simulator system. Similar automated techniques could be applied to other areas of acceptance testing, i.e., simulator model testing. Such tests could save a considerable amount of test time while providing more reliable and more rapid test results. The extra effort involved in the preparation of such a battery of automated tests for a single simulator may be greater than the effort saved in testing in some cases; however, when several simulators of a similar type are involved, the extra effort required initially may be well justified on a time-savings basis alone, in addition to adding increased efficiency, accuracy, and reliability to test procedures and results.

TEST DESCRIPTIONS

1. Discrete Input/Output Test

This test provides a means of exercising the discrete input and output channels in a closed-loop fashion to determine if they are operating properly. For this test, the output channels are connected to the input channels through an external cable. The program first types or prints the title and operating instructions. In this case, the instructions are for the operator to select by the use of sense switches whether or not a listing is desired of the input/output connections prior to test execution. This list is useful if a malfunction is detected, in that the output as well as the input channels involved can be determined. If an error is detected, this means that either the input or its associated output channel are malfunctioning. This ambiguity can be resolved by the use of manual discrete input switches on a test panel in ADIOCE. If the test responds properly using the manual inputs, the malfunction is in the output channel; otherwise, it is in the input channel.

The test sends out all ones and all zeros on the output channels and tests for the same on the input channels. If no malfunctions are detected, the test outputs the phrase "End of Test" and the computer halts. If a malfunction is detected, the program outputs the input channel number associated with the malfunction and indicates whether a zero or a one should have been received. The program then completes the test and outputs "End of Test" and the computer halts. (See sample output in Appendix I.)

2. Discrete Output Dynamic Test

This test provides a means of dynamically testing the discrete output channels. For this test, an indicator lamp is connected to the lamp driver of the discrete output channel. The program begins by typing the test title and operator instructions. The operator can specify a single channel or all channels to be exercised during any one execution of the program. If a single channel is selected, its group address and the number corresponding to its position in the group must be specified through the typewriter. The test then asks for a time T which determines the rate at which the channel is cycled on and off.

The test determines whether or not the channel functions properly under load and whether the selection circuitry selects only the proper channel. Through sense switch options, the operator can enter a new time T, restart the test to select a new channel or all channels, or indicate that a malfunction has occurred on the channel being tested. In case of the latter, the program records the malfunction so that a complete and permanent copy of the test results is maintained. (See sample output in Appendix I.)

3. Analog Output Accuracy Test

This test provides a means for measuring the accuracy of the low precision and high precision digital to analog converters. The equipment required for this test is a high precision digital voltmeter connected to the channel output which is under test. The test title and operator instructions are supplied to the operator via the typewriter. The operator types the address of the channel to be tested.

The test is designed to automatically record all results. A total of 21 points over the full range of the converter is checked. The typewriter types the voltage and the computer number corresponding to this voltage for the current test point. With the voltmeter connected to the channel output, the computer number is sent to the converter. If the proper voltage appears on the channel output as observed on the voltmeter, the computer number that was originally sent out to produce this voltage is typed as the number required. If the voltage is not the proper value, the output number is slewed by the operator through the use of sense switches until the proper voltage appears on the channel output. When the proper voltage is reached, the required output number is typed and the test continues to the next test-point.

The difference between the required number and the number originally outputted is the converter error in least significant bits. With this test, the entire range of the converter can be checked and the results recorded in a matter of minutes. This test can be used to select one of the high precision converters for use as a reference in the analog calibration test. (See sample output in Appendix I.)

4. Analog Output Dynamic Test

This test provides a means of dynamically testing the analog output channels. The test first outputs the test title and operator instructions through the typewriter. The program then sends information to the selected analog output channel which should produce a square wave on the output of this channel. The amplitude and period of the test signal are controllable by either of two methods: one is through typewriter inputs, where the amplitude and period are typed in; the other is through the use of two analog input channels. If the latter method is used, the operator may request a type-out of the current amplitude and period any time during the test.

With this test, the frequency response of the analog output channel, which is mainly determined by the output amplifier, can be measured and the dynamic functioning of the digital storage register and converter can be checked. It also provides a means of easily determining whether the selection circuitry selects only the proper channel.

Through sense switch options, the operator can enter a new time and amplitude to alter the test signal, restart the test to select a new channel, or indicate that distortion has occurred on the channel under test. In case of the latter, the point where the output was considered to be distorted was arbitrarily chosen to be where the output waveform was all rise-and-fall time. The program provides a printed record of all cases of distortion to provide complete test results. (See sample output in Appendix I.)

5. Computer and Real-Time Clock Tests

This test compares the operational accuracy of the computer and real-time clocks with external timing references. There are three parts to this test: one checks the computer clock against two types of external references, one checks the real time clock against the same two types of external references, and the third compares the computer clock with the real-time clock. The two external references used by the first two parts are a 60-cycle line and a sweep-second-hand clock.

For the computer clock part of the test, when a clock reference is used, the program cycles in a timing loop and accumulates time in 1-second intervals. This loop time is determined by the instructions in the loop and their respective execution times. Since the instruction times are controlled by the computer clock, the program measures (indirectly) the computer clock rate. The result outputted from this mode is the accumulated time in seconds. Sense switches are used to initiate and terminate the timing period.

With this reference, the timing period should be approximately 3 hours for a resolution of 0.01%.

When the 60-cycle line reference is used, it is fed in through a discrete input channel and its time is accumulated in 8.333-millisecond intervals. This is the half-period time of the reference signal. The computer timing loop, of which a part is the interrogation of the reference input channel, has a 1-millisecond loop. The 8.333-millisecond interval is caused by the reference signal cycling positive and negative once each cycle, and the interrogation part of the loop tests for a change in the input. The computer loop must have an interval less than this so as not to miss the reference signal change; therefore, the interval was chosen to be 1 millisecond, the next lowest power of 10 of 1 second. This mode is also initiated and terminated by sense switches. The results outputted are the reference and computer clock times in seconds and the percent error. With this reference, the timing period should be approximately 2 minutes for a resolution of 0.01%. However, since the 60-cycle line reference is more accurate over an extended period, approximately 2 hours should be used.

The real-time clock part of the test also has two modes as above and is identical except that a time interval of 10 milliseconds is set in the real-time clock. This clock provides interrupts to the computer at the interval rate, and the interrupts are accumulated in a computer register. The program output results are in the same form as the computer clock part of the test. This test not only checks the real-time clock for accuracy but accesses the clock in most of its usable modes, thereby testing its functional characteristics.

The third part is a test to cross-check the results of the first two in that it tests the computer clock against the real-time clock. There is only one mode to this part and the outputted results are in the same form as the 60-cycle reference mode of the first two parts.

Like the other automated diagnostics, this test uses conversational programming, providing complete operating instructions and hard copy results. (See sample output in Appendix I.)

6. ADIOCE Calibration/Diagnostic Program

This program was prepared by the system contractor, Illinois Institute of Technology. For a complete description, including flow charts, the reader is referred to a documentation report prepared for this branch entitled "ADIOCE Calibration/Diagnostic Program for Real-Time Training Simulation Research System."

This program provides a check on the performance of the analog-to-digital converter (ADC) and multiplexer (MX) and the digital-to-analog converters (DAC). Also, a simple check is made on the discrete input/output control facilities.

Tests are made by comparing the input from the ADC against (1) bit patterns corresponding to known voltage sources, either signal ground or output from a high-precision, hand-calibrated DAC; or (2) bit patterns which have been outputted to the DAC being tested. If the difference between these patterns exceeds prescribed limits, a print-out is produced listing the test being made, the channel used, the bit pattern inputted, the correct bit pattern, and the absolute value of their difference.

The tests are arranged so that, when they are performed in their normal order, no part of the system is used in checking out another part until its own operation has been verified. If the hand-calibrated DAC (one of eight 14-bit DAC selected with analog output accuracy test) is correct, and if the tests are performed in order, any failure can be traced to the defective device. If no errors are indicated, all devices are functioning within the prescribed limits, since the program outputs only diagnostic information when the limits are exceeded.

Before the tests of the analog equipment begin, ADIOCE is checked for status response and for its ability to return an EKO signal when accessing discrete input and output channels. Then the individual tests are performed in sequence. Following is a brief description of each test:

Test 1 – Zero Offset of ADC: The signal ground is connected to the ADC, a conversion is made, and the output is compared with zero.

Test 2 – Linearity of ADC: The reference high precision DAC is connected directly to the input to the ADC, bypassing the multiplexer. The program cycles through all possible 14-bit configurations, sends each to the reference DAC, performs conversion, and compares the ADC output with the original configuration.

Test 3 – Zero Test of Multiplexer: The signal ground is connected to the input terminals of each of the multiplexer channels, and a conversion is made through the ADC for each channel. The output is compared with zero.

Test 4 – Linearity of Multiplexer Test: The reference high-precision DAC is connected to the input terminals of each multiplexer channel in turn, while the program cycles through all possible 14-bit configurations. Each configuration is converted to a voltage by the DAC, and an AD conversion is made through a multiplexer channel. The output is compared with the original configuration.

Test 5 – DA Check, Low Precision: Each of the low precision DAC's is connected to one of the multiplexer channels, and conversions are made for every 10-bit configuration on each channel. The ADC output is compared with the original configuration.

Test 6 – DA Check, High Precision: Each of the high precision DAC's is connected to one of the multiplexer channels, and conversions are made for every 14-bit configuration on each channel. The ADC output is compared with the original configuration.

SECTION V.

Application of Automated Diagnostic Test Programs to the Acceptance-Testing of Simulation Systems

CURRENT ACCEPTANCE-TESTING PROCEDURES

Present techniques used for the acceptance-testing of digitally-activated flight simulation systems do not ordinarily include the use of automated diagnostic routines to test the input/output capabilities of the system. In fact, little emphasis is placed upon testing the digital computer and associated I/O equipment as an entity independent of the cockpit. The lack of emphasis in this area is probably a carryover from the days of all analog simulation, when there really was no simulator input/output equipment and the entire system was thought of as a single piece of equipment — a simulator — rather than a computer, input/output equipment, and a cockpit.

Most simulator tests are conducted in a manner similar to that of flight testing an actual aircraft. In fact, the tests are often designed, outlined, and run, by the airframe contractor. The simulator is usually "flown" to certain altitudes, power-settings, orientations, etc.; then human stimuli are applied to the simulator model through the cockpit controls, and the performance responses of the simulated vehicle are observed via the cockpit instruments. Primary emphasis is upon the performance characteristics of the simulated flight vehicle as observed subjectively, and relatively little attention is given to the hardware responsible for conveying them accurately and reliably from computer to cockpit.

A more desirable procedure for model and simulation-program testing which has been used in the testing of some research digital simulators consists of using a computer controlled test program. This type of program automatically initializes the simulator to specific test conditions, inserts standard computer controlled stimuli in the simulation model, and records the results for evaluation. This method is very desirable not only because of its increased operational efficiency, but because it assures more validity by removing the human element from the test.

Present techniques for maintenance-oriented diagnostic testing of the digital computer and input/output portions of a simulation system are often inadequate and difficult to apply. The diagnostic tests required and provided are not usually automated; as a result, their execution requires a great amount of operator intervention and console monitoring. In fact, these diagnostic "tests" are often not supplied as computer programs but instead as a list of manual procedures (which could just as easily have been incorporated into a computer program). Therefore, the entire diagnostic facility is unsatisfactory merely because it is so difficult and time-consuming to use.

THE ADVANTAGE OF USING AUTOMATED DIAGNOSTIC TEST PROGRAMS

The use of automated diagnostic programs for the real-time input/output portion of a digital simulation system would greatly simplify the task of running acceptance tests on this portion. This is obvious, since the test programs as described in this report are designed to require as little operator effort as necessary. Further, tests such as those described would check-out the real-time input/output hardware thoroughly and would thus enable more rapid isolation of system malfunctions as the acceptance testing proceeded. Their use would eliminate the need for trial-and-error troubleshooting of the real-time input/output equipment each time it was suspected that a malfunction existed in that equipment.

A second important advantage of using automated diagnostics is that their use would not be limited to the acceptance testing of the simulator, and their development would therefore be justified on two accounts. These test programs could be used by personnel in the field for preventive maintenance checks and regular system diagnostics after the simulator is in operation. Further, because of the simple operational features of the tests, using personnel would not need to be familiar with detailed aspects of the computer or the real-time input/output hardware.

The application of automated diagnostic test programs in general is not limited to real-time input/output equipment. Automated tests could be prepared for nearly every portion of a simulation system, including the mathematical vehicle model itself but, perhaps, excluding certain human engineering features of the total system.

Appendices

Appendices I and II consist of detailed descriptions of the automated diagnostic tests prepared for ADIOCE. The descriptions are composed of abstracts, sample output, flow charts, and assembled program listings. The format of the abstracts was designed for file records of computer programs. Essentially, the abstracts explain the function or purpose of the program, a sketch of the techniques used in accomplishing the purpose, operating procedures, and computer storage requirements and allocations.

In the assembled program listings produced by the micro assembler, MAP-440, the left-most number is the internal address of the corresponding micro pair and the next number is the octal equivalent of the micropair. These are followed horizontally by the micro command and the comments.

For uniformity, all of the test programs are coded to begin at location $70,100_8$ and execute from logic memory. Since many of the tests use common subroutines, these are stored at fixed locations for all diagnostics and are discussed as a group in Appendix II.

All the tests are coded on the micro or machine level. A brief description of the micro commands used in the coding will be found in Appendix III. (See reference 4.) Appendix IV contains a list and brief description of the Systems Command Set instructions, presented here to supplement the abbreviated description of the Raytheon 440 computer software discussed in the text. (See reference 6.)

Appendix I.

AUTOMATED DIAGNOSTIC TEST MAIN PROGRAMS

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE:	DISCRETE INPUT/OUTPUT TEST																			
PROGRAMMER:	P. A. KNOOP																			
DATE:	10 March 1965																			
ID:	None																			
FUNCTION:	The purpose of this program is to test for accuracy all discrete I/O bits in the PB-440 ADIOCE system. This is one of the ADIOCE Acceptance Test programs.																			
TECHNIQUE:	The program outputs all zeros, then all ones, to all bits in DSO groups I - 8. The DSI groups, linked physically with the DSO groups, are then tested for the correct response. In the event of an error, the program outputs the DSI group and bit number at which the error occurred.																			
LOADING PROCEDURE:	Load with Binary Loader I. The program is not relocatable.																			
OPERATING PROCEDURE &																				
LINKAGE REQUIRED:	The DSI-DSO linkage must be established prior to execution. Once the program is initiated, no special console monitoring is required. Prior to execution one of two sense switches must be set, depending upon the output mode desired, i.e., typewriter or line printer.																			
PROGRAM STORAGE:	<table><thead><tr><th>Program Segment</th><th>Octal Locs.</th><th>Total</th></tr></thead><tbody><tr><td>Main Program</td><td>70100-702I0</td><td>1I1</td></tr><tr><td>Micro Print</td><td>400-426</td><td>27</td></tr><tr><td>Micro Type</td><td>450-46I</td><td>12</td></tr><tr><td>Comments</td><td>1000-1775</td><td>776</td></tr><tr><td></td><td></td><td>1150₈</td></tr></tbody></table>		Program Segment	Octal Locs.	Total	Main Program	70100-702I0	1I1	Micro Print	400-426	27	Micro Type	450-46I	12	Comments	1000-1775	776			1150 ₈
Program Segment	Octal Locs.	Total																		
Main Program	70100-702I0	1I1																		
Micro Print	400-426	27																		
Micro Type	450-46I	12																		
Comments	1000-1775	776																		
		1150 ₈																		
INTERMEDIATE STORAGE:	Working Storage: 0 Address of selected output routine 1 Save D register during error routine 2 Save A register during error routine 3 Save D register during error output 4 Storage of output word in error routine																			
SPECIAL STORAGE:	None used																			
EXECUTION TIME:	Not applicable																			
REGISTERS:	All used																			

SENSE SWITCHES:

- 1 Typewriter output
- 2 Line printer output
- 5 DSI-DSO connections output
- 6 No DSI-DSO connections output

I/O DEVICES:

Typewriter
Line Printer
ADIOCE

PROGRAM FLAGS:

- 1 On if outputting zeros, off if outputting 1's
- 3 On if error has occurred

PROGRAM HALTS:

70100 Test completed

CONNECTOR AND CABLE DIAGRAMS FOR DISCRETE INPUT-OUTPUT TEST

CONNECTOR DIAGRAM

CONNECTOR CHART

DI 1 in Bay C Connector 7 To

DO I, II, and III in Bay A Connectors

IA and 2A.

<i>Group</i>	<i>No.</i>	<i>Bit</i>	<i>Pin</i>	<i>Group</i>	<i>No.</i>	<i>Bit</i>	<i>Pin</i>
DI I	1	0	1	DO I	1	0	17
	2	1	2		2	1	15
	3	2	3		3	2	13
	4	3	4		4	3	11
	5	4	5		5	4	9
	6	5	6		6	5	7
	7	6	7		7	6	5
	8	7	8		8	7	3
	9	8	9		9	8	33
	10	9	10	DO I	10	9	31
	11	10	11	DO II	1	0	50
	12	11	12		2	1	48
	13	12	13		3	2	46
	14	13	14		4	3	44
	15	14	15		5	4	42
	16	15	16		6	5	40
	17	16	17		7	6	38
	18	17	18		8	7	36
	19	18	19	DO II	9	8	18
	20	19	20	DO III	10	9	20
	21	20	21		1	0	17
	22	21	22		2	1	15
	23	22	23		3	2	13
DI I	24	23	24	DO III	4	3	11

CONNECTOR CHART

DI II in Bay C Connector 7 To

DO III, IV, and V in Bay A Connectors

2A and 3A.

<i>Group</i>	<i>No.</i>	<i>Bit</i>	<i>Pin</i>	<i>Group</i>	<i>No.</i>	<i>Bit</i>	<i>Pin</i>
DI II	1	0	26	DO III	5	4	9
	2	1	27		6	5	7
	3	2	28		7	6	5
	4	3	29		8	7	3
	5	4	30		9	8	33
	6	5	31	DO III	10	9	31
	7	6	32	DO IV	1	0	50
	8	7	33		2	1	48
	9	8	34		3	2	46
	10	9	35		4	3	44
	11	10	36		5	4	42
	12	11	37		6	5	40
	13	12	38		7	6	38
	14	13	39		8	7	36
	15	14	40	DO IV	9	8	18
	16	15	41	DO V	10	9	20
	17	16	42		1	0	17
	18	17	43		2	1	15
	19	18	44		3	2	13
	20	19	45		4	3	11
	21	20	46		5	4	9
	22	21	47		6	5	7
	23	22	48	DO V	7	6	5
DI II	24	23	49		8	7	3

CONNECTOR CHART

DI III in Bay C Connector 8 To

DO V, VI, VII, and VIII in Bay A

Connectors 3A and 4A.

<i>Group</i>	<i>No.</i>	<i>Bit</i>	<i>Pin</i>	<i>Group</i>	<i>No.</i>	<i>Bit</i>	<i>Pin</i>
DI III	1	0	1	DO VI	9	8	33
	2	1	2		10	9	31
	3	2	3		1	0	50
	4	3	4		2	1	48
	5	4	5		3	2	46
	6	5	6		4	3	44
	7	6	7		5	4	42
	8	7	8		6	5	40
	9	8	9		7	6	38
	10	9	10		8	7	36
	11	10	11		9	8	18
	12	11	12	DO VI	10	9	20
	13	12	13		1	0	17
	14	13	14		2	1	15
	15	14	15		3	2	13
	16	15	16		4	3	11
	17	16	17		5	4	9
	18	17	18		6	5	7
	19	18	19		7	6	4
	20	19	20		8	7	3
	21	20	21	DO VII	9	8	33
	22	21	22		10	9	31
	23	22	23	DO VIII	6	5	40
	24	23	24		7	6	38
DI III				DO VIII			

DISCRETE INPUT-OUTPUT TEST

	LDR		DISCRETE I/O TEST
	LDR		15 FEBRUARY 1965
	LDR		
*	LOC0	70100	
70100*	02704604	CTS 7 Q , CPL 0 D ,	TURN OFF ALL TOGGLES D = 0
70101*	37321602	TCT SW 2 , FTR 2 ,	LOOP UNTIL OUTPUT MODE IS SELECTED
70102*	35311476	TCF SW 1 BTR 1	
70103*	07500000	CLD 0 50 , NOP	D = 50 FOR TYPE OPTION
70104*	26735543	LDI P C ADL D C	
70105*	00000400	0000 0400	
70106*	21034573	STW 0 C , EXC P C ,	ADDRESS OF SELECTED OUTPUT ROUTINE TO WSO
70107*	03201000	0320 1000 ,	CONTROL WORD FORMAT 1
70110*	37361605	TCT SW 6 FTR 5 ,	TABLE NOT DESIRED
70111*	35351476	TCF SW 5 BTR 1	
70112*	23034573	LDW 0 C , EXC P C ,	TABLE IS DESIRED
70113*	37301032	3730 1032 ,	CONTROL WORD FORMAT 2
70114*	23034573	LDW 0 C EXC P C	
70115*	26101425	2610 1425	
70116*	46020000	CPL 0 B , NOP	B = 0
70117*	26731233	LDI P C SEL C C ,	SELECT ADDRESS
70120*	32002060	3200 2060 ,	SEQUENTIAL CHANNEL 60
70121*	65614604	COM 6 A , CPL 0 D ,	LOCK COM TO 01

70122* 10625244	DTR 6 B CIX D D	DTR TO ADI0CE
70123* 31071476	TMF 0 7 BTR 1	D EXP = 10?? NO
70124* 44042673	CIL 0 D LDI P C	YES - SET D TO 1
70125* 32002021	3200 2021	SEQUENTIAL CHANNEL 21
70126* 12330000	SEL C C N0P	SELECT ADI0CE
70127* 65611051	C0M 6 A DTR 5 A	LOCK C0M TO 01 DTR FROM ADI0CE
70130* 37016311	TCT PF 1 CCL A A	PF1 ON?? YES - COMPLEMENT INPUT WORD
70131* 30171605	TNZ A SXF FTR 5	A = 0?? NO - INCORRECT RESPONSE
70132* 52443137	CIX D D TMF 3 7	YES D EXP = 3??
70133* 14734444	BTR 4 CIL D D	NO D = D + 1
70134* 37011645	TCT PF 1 FTR 37	YES - PF1 ON?? IF SO, FINISHED
70135* 36016302	STT PF 1 CCL 0 B	IF NOT, SET PF1 ON B = ALL ONES
70136* 14600000	BTR 15 N0P	
70137* 21142121	STW 1 D STW 2 A	ERROR ROUTINE SAVE D AND A
70140* 26734143	LDI P C ADF D C	
70141* 60606000	6060 6000	
70142* 26752553	LDI P L STM L C	
70143* 00001716	0000 1716	ADDRESS FOR STORAGE OF DS1 GROUP NUMBER
70144* 23034573	LDW 0 C EXC P C	
70145* 01101706	0110 1706	CONTROL WORD FORMAT 3
70146* 37011603	TCT PF 1 FTR 3	

70147* 23034573	LDW 0 C EXC P C	
70150* 01701717	0170 1717	, CONTROL WORD FORMAT 4
70151* 16020000	FTR 2 NOP	
70152* 23034573	LDW 0 C EXC P C	
70153* 01701736	0170 1736	, CONTROL WORD FORMAT 5
70154* 46043603	CPL @ D STT PF 3	, D = 0 PF3 INDICATES ERROR HAS OCCURRED
70155* 23213014	LDW 2 A TNZ A S	, A SIGN ≠ 0??
70156* 16070000	FTR 7 NOP	YES - THIS BIT IN ERROR
70157* 44442673	CIL D D LDI P C	
70160* 77777750	7777 7750	, - 24.0
70161* 55433234	ADL D C TZ@ C S	, C = D - 24 IS C POSITIVE??
70162* 23141447	LDW 1 D BTR 24	, YES - FINISHED
70163* 23210501	LDW 2 A LRC 1	, NO
70164* 66312121	SSL L@L A STW 2 A	, SHIFT WS2 LEFT 1
70165* 14670000	BTR 8 NOP	
70166* 21344642	STW 3 D CPL D B	, TYPE/PRINT ROUTINE BIT NUMBER TO B
70167* 46012673	CPL Q A LDI P C	, A = 0
70170* 77777766	7777 7766	, - 12
70171* 05271731	LRC 23 DVS C A	, N = 23 GET DECIMAL BIT NUMBER
70172* 26736722	LDI P C SL6 B B	
70173* 60000052	6000	

0052

70174*	67226423	SL6 B B LBR B C
70175*	67116413	SL6 A A LBR A C
70176*	21430000	STW 4 C . OUTPUT WORD TO WS4 NBP
70177*	23034573	LDW 0 C EXC P C
70200*	001000174	0010 . WS4 OCTAL ADDRESS 0174 . AND NO. WORDS
70201*	23341455	LDW 3 D BTR 18
70202*	37031602	TCT PF 3 . PF3 ON?? FTR 2 . YES
70203*	23034573	LDW 0 C . NO EXC P C
70204*	00701755	0070 . CONTROL WORD 1755 . FORMAT 6
70205*	23034573	LDW 0 C EXC P C
70206*	01201764	0120 . CONTROL WORD 1764 . FORMAT 7
70207*	27770100	LDM P P . RETURN TO START HLT . AND HALT
70210*	00070100	0007 0100
		LDR
		LDR . END DISCRETE I/O TEST
*	00070100	END@ 70100

DISCRETE I/O TEST

IF OUTPUT OF DISCRETE I/O CONNECTIONS IS DESIRED, HIT SW5;
IF NOT, HIT SW6.

DISCRETE I/O CONNECTIONS

DSI GRP.	BIT	DSO GRP.	BIT	DSI GRP.	BIT	DSO GRP.	BIT	DSI GRP.	BIT	DSO GRP.	BIT
1	0	1	0	2	0	3	4	3	0	5	8
1	1	1	1	2	1	3	5	3	1	5	9
1	2	1	2	2	2	3	6	3	2	6	0
1	3	1	3	2	3	3	7	3	3	6	1
1	4	1	4	2	4	3	8	3	4	6	2
1	5	1	5	2	5	3	9	3	5	6	3
1	6	1	6	2	6	4	0	3	6	6	4
1	7	1	7	2	7	4	1	3	7	6	5
1	8	1	8	2	8	4	2	3	8	6	6
1	9	1	9	2	9	4	3	3	9	6	7
1	10	2	0	2	10	4	4	3	10	6	8
1	11	2	1	2	11	4	5	3	11	6	9
1	12	2	2	2	12	4	6	3	12	7	0
1	13	2	3	2	13	4	7	3	13	7	1
1	14	2	4	2	14	4	8	3	14	7	2
1	15	2	5	2	15	4	9	3	15	7	3
1	16	2	6	2	16	5	0	3	16	7	4
1	17	2	7	2	17	5	1	3	17	7	5
1	18	2	8	2	18	5	2	3	18	7	6
1	19	2	9	2	19	5	3	3	19	7	7
1	20	3	0	2	20	5	4	3	20	7	8
1	21	3	1	2	21	5	5	3	21	7	9
1	22	3	2	2	22	5	6	3	22	8	0
1	23	3	3	2	23	5	7	3	23	8	1

* NO ERRORS DETECTED*

END OF TEST - HIT COMP. TO RESTART

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: DISCRETE OUTPUT DYNAMIC TEST

PROGRAMMER: P. A. KNOOP

DATE: 15 February 1965

ID: None

FUNCTION: The purpose of this program is to test the response time of the discrete output channels in the PB-440 ADIOCE system.

TECHNIQUE: This program performs either of two tests:
(1) Given the time base T, it outputs to all DSO groups alternating 1's and 0's and, upon request, types out an error message.
(2) Given the DSO group number, the output word, and the time base T, it outputs the word alternately with its complement to the specified channel and, upon request, types out an error message.

LOADING PROCEDURE: Load with Binary Loader I. This program is not relocatable.

OPERATING PROCEDURES & LINKAGE REQUIRED: The program will type instructions to the operator as the test proceeds. Prior to execution, the necessary DSO linkage must be established for those groups being tested.

PROGRAM STORAGE:

<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
Micro Multiply	70040-70051	12
Main Program	70100-70256	157
Micro Type	450-461	12
Decimal Input	650-777	130
		<hr/> <i>333₈</i>

INTERMEDIATE STORAGE: Working Storage:
0 Group address and output word
1 Group address and complement output word
3 Time
5 Timing counter
6 Address of Micro Type routine

SPECIAL STORAGE: None used

EXECUTION TIME: Not applicable

REGISTERS: All registers used

SENSE SWITCHES:	1 Mode 1: All DSO Groups 2 Mode 2: Single DSO Group 3 New time 4 Channel malfunction 5 New group number and output word 6 New mode-selection
PROGRAM FLAGS:	None used
I/O DEVICES:	Typewriter ADIOCE Oscilloscope
PROGRAM HALTS:	None

DISCRETE OUTPUT DYNAMIC TEST

	LDR	,	DSB ON-OFF RESPONSE
	LDR	,	18 FEBRUARY 1965
LDR			
*			
	LOC @ 70100		
70100* 02702673	CTS 7 Q LDI P C	,	TURN OFF ALL TOGGLES
70101* 00000450	0000 0450	,	ADDRESS OF MICRO TYPE ROUTINE
70102* 21634573	STW 6 C EXC P C	,	
70103* 02401000	0240 1000	,	CONTROL WORD FORMAT 1
70104* 35301477	TCF SW X BTR 0	,	SW OFF.
70105* 23634573	LDW 6 C EXC P C	,	
70106* 04201024	0420 1024	,	CONTROL WORD FORMAT 2
70107* 37311671	TCT SW 1 FTR 57	,	SW1 ON? YES - TO MODE 1
70110* 35321476	TCF SW 2 BTR 1	,	SW2 ON? NO - LOOP
70111* 23634573	LDW 6 C EXC P C	,	MODE 2 TEST
70112* 15201066	1520 1066	,	CONTROL WORD FORMAT 3
70113* 70751601	CPF P L FTR 1	,	JUMP TO OCTAL TYPE-IN
70114* 21011613	STW 0 A FTR 11	,	GP. ADDRESS TO WSO UNCONDITIONAL TRANSFER
70115* 26731233	LDI P C SEL C C	,	OCTAL TYPE-IN SELECT TYPEWRITER
70116* 02006100	0200 6100	,	FOR INPUT
70117* 65635711	C0M 6 C XER A A	,	LOCK C0M TO 03 CLEAR A
70120* 07617043	CLD @ 61 CPF D C	,	C = 61 (SLASH)
70121* 07120503	CLD @ 12 LRC 3	,	D = 12 (BACKSPACE) N = 3

70122* 10120000	DTR 1 B NOP
70123* 57243241	XOR B D TZO D F , BACKSPACE?
70124* 70576501	CPF L P , YES - RETURN TO PROGRAM COM 0 : A* UNLOCK COM
70125* 66315723	SSL LBL A , SHIFT A LEFT 3 XOR B C
70126* 32311470	TZC C F , SLASH? BTR 7 , YES - BEGIN OVER
70127* 64211470	LBR B A , PACK WORD BTR 7
70130* 23634573	LDW 6 C EXC P C
70131* 01601240	0160 , CONTROL WORD 1240 , FORMAT 4
70132* 70751462	CPF P L BTR 13
70133* 23026412	LDW 0 B LBR A B , OUTPUT WORD TO B
70134* 63110000	CCL A A NOP
70135* 23035613	LDW 0 C AND A C
70136* 21022113	STW 0 B STW 1 C , SAVE OUTPUT WORDS
70137* 23634573	LDW 6 C EXC P C
70140* 01101256	0110 , CONTROL WORD 1256 , FORMAT 5
70141* 05022675	LRC 2 , SCALE * 2 LDI P L
70142* 00000650	0000 , ADDRESS OF 0650 , DECIMAL TYPE-IN
70143* 45750000	EXC P L NOP
70144* 21322673	STW 3 B LDI P C
70145* 30324000	3032 4000
70146* 46750440	CPL P L CLP @ 40 , JUMP TO MPY ROUTINE

70147* 26745514	LDI P D ADL A D
70150* 77777660	7777 7660
70151* 32441601	TZB D S FTR 1
70152* 07041601	CLD 4 FTR 1
70153* 05046674	LRC 4 SSL ROL D
70154* 21540000	STW 5 D NOP
70155* 00000000	NOP NOP
70156* 00000000	NOP NOP
70157* 00000000	NOP NOP
70160* 26731233	LDI P C SEL C C , SELECT ADIOCE
70161* 32003000	3200 , 3000 , SELECT WORD RANDOM: CH. 01
70162* 65610000	C0M 6 A , NOP LOCK C0M TO 01
70163* 23522352	LDW 5 B , LDW 5 B , KILL TIME
70164* 54223027	CDL B B , TNZ B SXF , B = B-1 B = 0?
70165* 14760000	BTR 1 , NOP NO - LOOP
70166* 23111021	LDW 1 A DTR 2 A , DTR OUT WS1
70167* 23042101	LDW 0 D STW 0 A
70170* 21143733	STW 1 D , TCT SW 3 , EXCHANGE WSO AND WS1 SW3 = 0?
70171* 14450000	BTR 26 , NOP NO - GET NEW T
70172* 37341607	TCT SW 4 , FTR 7 , SW4 = 0? NO - CHANNEL MALFUNCTION
70173* 37351602	TCT SW 5 , SW5 = 0?

	FTR	2	,	NO - RESELECT GRP. AND D. N.
70174* 37361410	TCT SW 6 BTR 55	,	,	SW6 = 0? NO - RESELECT MODE
70175* 14650000	BTR 10 NOP	,	,	YES - SAME TEST
70176* 23634573	LDW 6 C EXC P C	,	,	
70177* 01501223	0150 1223	,	,	CONTROL WORD FORMAT 3A.
70200* 14120000	BTR 53 NOP	,	,	GET NEW GRP. ADD.
70201* 16060000	FTR 6 NOP	,	,	INTERMEDIATE JUMP TO MODE 1
70202* 23634573	LDW 6 C EXC P C	,	,	ERROR ROUTINE
70203* 00601267	0060 1267	,	,	CONTROL WORD FORMAT 6
70204* 37331464	TCT SW 3 BTR 11	,	,	NEW T
70205* 37351470	TCT SW 5 BTR 7	,	,	NEW GRP. AND D. N.
70206* 35361475	TCF SW 6 BTR 2	,	,	
70207* 14651410	BTR 10 BTR 55	,	,	
70210* 23634573	LDW 6 C EXC P C	,	,	MODE 1 TEST
70211* 07701275	0770 1275	,	,	CONTROL WORD FORMAT 7
70212* 23634573	LDW 6 C EXC P C	,	,	
70213* 01101256	0110 1256	,	,	CONTROL WORD FORMAT 5
70214* 05020000	LRC 2 NOP	,	,	SCALE = 2
70215* 26754575	LDI P L EXC P L	,	,	
70216* 00000650	0000 0650	,	,	ADDRESS OF DECIMAL TYPE-IN
70217* 21322673	STW 3 B	,	,	T TO WS3

LDI P C

70220*	30324000	3032 4000
70221*	46750440	CPL P L CLP @ 40 ; T@ MPY ROUTINE
70222*	26745514	LDI P D ADL A D
70223*	77777340	7777 7340
70224*	32441601	TZ@ D S FTR 1
70225*	07041601	CLD 4 FTR 1
70226*	05046674	LRC 4 SSL ROL D
70227*	21540000	STW 5 D NEP
70230*	00000000	NEP NEP
70231*	00000000	NEP NEP
70232*	00000000	NEP NEP
70233*	46030000	CPL @ C ; C = 0 NEP
70234*	26740000	LDI P D NEP
70235*	32002060	3200 2060 ; SELECT WORD SEQUENTIAL - 60
70236*	05036632	LRC 3 SSL LOL B ; MICROSECONDS
70237*	12440000	SEL D D ; SELECT ADDRESS NEP
70240*	23526561	LDW 5 B ; WS5 T@ B C@M 6 A ; LOCK C@M T@ 01
70241*	54223027	CDL B B ; B = B-1 TNZ B SXF ; B = 0?
70242*	14760000	BTR 1 NEP
70243*	63334604	CCL C C ; C = COMP. (C) CPL @ D ; D = 0

70244* 10635244	DTR 6 C CIX D D	DTR OUT C
70245* 31771476	IMF 7 7 BTR 1	
70246* 37331443	TCT SW 3 BTR 28	SW 3 = 17 YES - GET NEW T
70247* 37341602	ICT SW 4 FTR 2	SW 4 = 17 YES - CHANNEL MALFUNCTION
70250* 35361463	TCF SW 6 BTR 12	SW 6 = 17 NO - SAME TEST
70251* 14350000	BTR 34 NOP	YES - RESELECT MODE
70252* 23634573	LDW 6 C EXC P C	ERROR ROUTINE
70253* 00601267	0060 1267	CONTROL WORD FORMAT 6
70254* 37331435	TCT SW 3 BTR 34	NEW T
70255* 35361476	TCF SW 6 BTR 1	NEW MODE
70256* 14300000	BTR 39 NOP	
	LDR	
	LDR	END DS0 ON-OFF RESPONSE TEST
* 00070100	END @ 70100	

DISCRETE OUTPUT ON-OFF RESPONSE TEST

TURN OFF ALL SENSE SWITCHES.

SELECT MODE:

SW1 MODE 1 - ALL DISCRETE OUTPUTS
SW2 MODE 2 - SINGLE DISCRETE OUTPUT

MODE 2 SELECTED.

TYPE IN GROUP ADDRESS AND DISCRETE OUTPUT NUMBER IN OCTAL.
THEN TYPE T IN SECONDS AND OBSERVE OUTPUT.
SENSE SWITCH OPTIONS ARE AS FOLLOWS:

SW3 NEW T
SW4 CHANNEL MALFUNCTION
SW5 NEW GROUP AND D/O NUMBER
SW6 NEW MODE SELECTION

GROUP ADDRESS = 60
DISCRETE OUTPUT NUMBER = 77770000

T = 1.0

T = .1 CHANNEL MALFUNCTION

SELECT MODE:

SW1 MODE 1 - ALL DISCRETE OUTPUTS
SW2 MODE 2 - SINGLE DISCRETE OUTPUT

MODE 1 SELECTED.

TYPE IN T IN SECONDS AND OBSERVE OUTPUT.
SENSE SWITCH OPTIONS ARE AS FOLLOWS:

SW3 NEW T
SW4 CHANNEL MALFUNCTION
SW6 NEW MODE SELECTION

T = .0001

T = 1.0

T = .5

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE:	ANALOG OUTPUT ACCURACY TEST		
PROGRAMMER:	P. A. KNOOP		
DATE:	7 April 1965		
ID:	None		
FUNCTION:	The purpose of this program, part of the ADIOCE Acceptance Test package, is to test the accuracy of the 8 high-accuracy and 56 low-accuracy digital-to-analog channels in the PB-440 ADIOCE system.		
TECHNIQUE:	After the user types in the number of the channel selected for testing, the program types the first correct output number and its true reference voltage. Then, when instructed, the program outputs the digital number over the selected AO channel. Using sense switches and a null volt meter, the user examines the output and may instruct the program to slew the output number up or down until an accurate response is observed. He then instructs the program to print the digital number actually required to obtain the true reference voltage. The test continues for output voltages ranging from plus 10 to minus 10 by decrements of approximately one volt.		
LOADING PROCEDURES:	Load with Binary Loader I. This program is not relocatable.		
OPERATING PROCEDURES & LINKAGE REQUIRED:	Hardware linkage between the null volt meter and the AO channel being tested must be established prior to execution. The program types out instructions for operation which are self explanatory. The channel number should be typed in octal and terminated with a backspace. If an error is made while typing, striking a slash (/) will permit the user to rebegin.		
PROGRAM STORAGE:	<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
	Main Program	70100-70224	125
	Output words &		
	ref. voltages	200-251	52
	Micro Type	450-461	12
	Decimal Out	500-621	122
	Comments	1000-1233	234
			567 _s

INTERMEDIATE STORAGE:	Working Storage: 0 Storage of channel number 1 Storage of address-counter for fetching current output word and voltage 4 Storage of word and channel to be output to ADIOCE
SPECIAL STORAGE:	200-251 Output words and ref. voltages
EXECUTION TIME:	Not applicable
REGISTERS:	All Used
SENSE SWITCHES:	1 Set when meter has been set to typed voltage; zeroed when ready for next test-point 2 Slew-up 3 Slew-down 4 Set to type required number; zeroed when ready for next point 5 For AO channel number request
PROGRAM FLAGS:	6 on when typing correct number; off when typing true reference voltage; used as program toggle only
I/O DEVICES:	Typewriter ADIOCE Null Volt Meter
PROGRAM HALTS:	None

ANALOG OUTPUT ACCURACY TEST

	LDR	,	ANALOG OUTPUT ACCURACY TEST
	LDR	,	7 APRIL 1965
*	LOC @ 70100	,	
70100* 02700000	CTS 7 Q	,	TURN OFF ALL PROGRAM FLAGS.
	NOP	,	INTERRUPT MASKS, AND TOGGLFS
70101* 26734573	LDI P C	,	TYPE TITLE OF TEST AND
	EXC P C	,	SENSE SWITCH OPTIONS
70102* 00000450	0000	,	ADDRESS OF MICRO TYPE-OUT
	0450	,	
70103* 16001000	1600	,	CONTROL WORD FOR TYPE-OUT
	1000	,	FORMAT 1
70104* 35351477	TCF SW 5	,	LOOP UNTIL SW 5 IS ON
	BTR 0	,	
70105* 26734573	LDI P C	,	TYPE REQUEST FOR
	EXC P C	,	CHANNEL NUMBER
70106* 00000450	0000	,	ADDRESS OF MICRO TYPE-OUT
	0450	,	
70107* 01001160	0100	,	CONTROL WORD
	1160	,	FORMAT 2
70110* 26731233	LDI P C	,	OCTAL TYPE-IN ROUTINE
	SEL C C	,	
70111* 02006100	0200	,	SELECT WORD
	6100	,	TYPERITER INPUT
70112* 65635711	C0M 6 C	,	CHANNEL 3
	XOR A A	,	CLEAR A
70113* 07617043	CLD @ 61	,	C SET TO 61 - SLASH
	CPF D C	,	
70114* 07120503	CLD @ 12	,	D = 12 (BACKSPACE)
	LRC 3	,	N = 3
70115* 10120000	DTR 1 B	,	DTR IN CHARACTER
	NOP	,	
70116* 57243241	XOR B D	,	
	TZ@ D F	,	WAS CHAR. A BACKSPACE?
70117* 16032141	FTR 3	,	YES - FINISHED
	STW 4 A	,	SAVE CH. NO. IN WS 4
70120* 66315723	SSL L0L A	,	NO - PACK CHAR. INTO WORD
	XOR B C	,	
70121* 32311470	TZ@ C F	,	WAS CHAR. A SLASH?
	BTR 7	,	YES - BEGIN OVER
70122* 64211470	LOR B A	,	NO

BTR 7

70123* 26734573	LDI P C EXC P C	TYPE COLUMN HEADINGS
70124* 00000450	0000 0450	ADDRESS OF MICRO TYPEOUT
70125* 02301170	0230 1170	CONTROL WORD FORMAT 3
70126* 21000000	STW 0 0	WS0 = 0
	NOP	
70127* 34060515	STF PF 6 LRC 13	PF 6 = 0 N = 13 FOR SCALE
70130* 23042222	LDW 0 D LDS 2 B	WS 0 TO D WORD TO BE TYPED TO B
70131* 44442104	CIL D D STW 0 D	WS 0 = WS 0 + 1
70132* 26754575	LDI P L EXC P L	TYPE TRUE NUMBER
70133* 00600500	0060 0500	ADDRESS OF DECIMAL TYPEOUT ROUTINE
70134* 26734573	LDI P C EXC P C	TYPE EIGHT SPACES
70135* 00000450	0000 0450	ADDRESS OF MICRO TYPEOUT TYPE 8 SPACES
70136* 00201161	0020 1161	CONTROL WORD FORMAT S
70137* 37061606	TCT PF 6 FTR 6	PF 6 = 17 YES
70140* 36060504	STT PF 6 LRC 4	NO - SET PF6 TRUE SET SCALE TO 4
70141* 23042222	LDW 0 D LDS 2 B	WS 0 TO D WORD TO BE TYPED TO B
70142* 44442104	CIL D D STW 0 D	WS 0 = WS 0 + 1
70143* 26754575	LDI P L EXC P L	TYPE VOLTAGE
70144* 00100500	0010 0500	ADDRESS OF DECIMAL TYPE-OUT ROUTINE
70145* 14660000	BTR 9 NOP	
70146* 35311477	TCF SW 1 BTR 0	LOOP UNTIL SW 1 = 1

70147* 23045444	LDW 0 D CDL D D	FETCH WS 0 TO D
70150* 54442222	CDL D D LDS 2 B	D = D - 2 GET CURRENT OUTPUT
70151* 23436423	LDW 4 C LOR B C	CH. NO. TO C FORM OUTPUT WORD
70152* 26711211	LDI P A SEL A A	SELECT ADDRESS
70153* 32001000	3200 1000	SELECT WORD - ADDRESS RANDOM - CH. 00
70154* 65601023	C0M 6 Q DTR 2 C	LOCK COM TO 00 DTR TO ADDRESS
70155* 21120000	STW 1 B N0P	OUTPUT WORD TO WS 1
70156* 37321623	TCT SW 2 FTR 19	SW 2 = 1? YES - SLEW UP
70157* 37331624	TCT SW 3 FTR 20	SW 3 = 1? YES - SLEW DOWN
70160* 35341475	TCF SW 4 BTR 2	SW 4 = 0? YES - LOOP
70161* 23120515	LDW 1 B LRC 13	NO - TYPE REQUIRED VALUE SCALE = 13
70162* 26754575	LDI P L EXC P L	
70163* 00600500	0060 0500	ADDRESS OF DECIMAL TYPEOUT
70164* 23012673	LDW 0 A LDI P C	WS 0 TO A
70165* 77777726	7777 7726	-42.0 (823)
70166* 55133034	ADL A C TNZ C S	WAS THIS THE LAST VALUE FOR THIS TEST?
70167* 16040000	FTR 4 N0P	NO
70170* 26734573	LDI P C EXC P C	YES
70171* 00000450	0000 0450	ADDRESS OF MICRO TYPE-BIT
70172* 02101213	0210 1213	CONTROL WORD FORMAT 4
70173* 14100000	BTR 55	TEST ON SW 5

NOP

70174* 26734573	LDI P C EXC P C	,	TYPE C/R AND 3 SPACES
70175* 00000450	0000 0450	,	ADDRESS OF MICRO TYPE-OUT
70176* 00101160	0010 1160	,	CONTROL WORD FORMAT CS
70177* 37311477	TCT SW 1 BTR 0	,	LOOP UNTIL SW 1 AND SW 4
70200* 37341477	TCT SW 4 BTR 0	,	ARE BOTH OFF
70201* 14250000	BTR 42 NOP	,	JUMP TO GET NEXT VALUE
70202* 27711603	LDM P A FTR 3	,	SLEW-UP ROUTINE
70203* 00002000	0000 2000	,	+ 1 SCALED B 13
70204* 26710000	LDI P A NOP	,	SLEW-DOWN ROUTINE
70205* 77776000	7777 6000	,	-1 SCALED B 13
70206* 23432672	LDW 4 C LDI P B	,	CH. NO. TO C
70207* 77777510	7777 7510	,	-270 FIRST HIGH ACC. CH.
70210* 55323024	ADL C B TNZ B S	,	LOW ACCURACY?
70211* 05046631	LRC 4 SSL L0L A	,	YES SHIFT A LEFT 4
70212* 23125512	LDW 1 B ADL A B	,	GET CURRENT WORD MODIFY IT
70213* 21126423	STW 1 B LOR B C	,	RESTORE WS 1 FORM OUTPUT WORD
70214* 26711211	LDI P A SEL A A	,	SELECT ADIOCE
70215* 32001000	3200 1000	,	SELECT WORD - ADIOCE RANDOM - CH. 00
70216* 65601023	C0M 6 Q DTR 2 C	,	LOCK C0M TO 000
70217* 26710000	LDI P A NOP	,	

70220* 01415177 0141 , 399,999 (B23)
5177

70221* 54113214 CDL A A , DELAY 2 SECONDS
T20 A S

70222* 14760000 BTR 1
N0P

70223* 14320000 BTR 37
N0P

* 00070100 END @ 70100

ANALOG OUTPUT ACCURACY TEST

SW5=1 FOR A/O CH. NO. REQUEST
SW1=1 WHEN METER HAS BEEN SET TO TYPED VALUE
SW2=1 TO SLEW OUTPUT NUMBER UP
SW3=1 TO SLEW OUTPUT NUMBER DOWN
SW4=1 TO TYPE OUT SLEwed VALUE
SW1=Ø AND SW4=Ø TO TYPE OUT NEXT TEST POINT

CONNECT NULL METER TO DESIRED A/O CH. BEFORE HITTING SW5...
THEN TYPE CH. NO. IN OCTAL.

CH. NO. = 27Ø

TRUE NO.	VOLTAGE	REQUIRED NO.
8191.	1Ø.ØØØØØ	8191.
7372.	9.ØØØ12	7372.
6553.	8.ØØØ24	6553.
5734.	7.ØØØ37	5734.
4915.	6.ØØØ49	4915.
4Ø96.	5.ØØØ61	4Ø96.
3277.	4.ØØØ73	3277.
2458.	3.ØØØ85	2458.
1639.	2.ØØØ98	1639.
82Ø.	1.ØØ11Ø	82Ø.
Ø.	Ø.ØØØØØ	Ø.
- 82Ø.	- 1.ØØØ97	- 82Ø.
- 1639.	- 2.ØØØ73	- 1639.
- 2458.	- 3.ØØØ48	- 2458.
- 3277.	- 4.ØØØ24	- 3277.
- 4Ø96.	- 5.ØØØØØ	- 4Ø96.
- 4916.	- 6.ØØØ97	- 4916.
- 5735.	- 7.ØØØ73	- 5735.
- 6554.	- 8.ØØØ48	- 6554.
- 7372.	- 9.ØØØ24	- 7372.
- 8191.	- 9.99877	- 8191.

END OF THIS TEST - HIT SW5 TO RESTART WITH NEW A/O CHANNEL

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: ANALOG OUTPUT DYNAMIC TEST

PROGRAMMER: P. A. KNOOP

DATE: 10 March 1965

ID: None

FUNCTION: The purpose of this program is to test the analog output response time for the PB-440 ADIOCE system. This is one of the ADIOCE Acceptance Test programs.

TECHNIQUE: Given the time base (per period), magnitude, and AO channel number, this program issues a square wave response over the AO channel. The time base and magnitude may be supplied via the on-line typewriter or via analog input channels 100 and 101. If the latter mode is chosen, the routine prints the current time-base and magnitude upon instruction from the operator. Facility is included for recording occurrences of output distortion.

LOADING PROCEDURE: Load with Binary Loader I. This program is not relocatable.

OPERATING PROCEDURES & LINKAGE REQUIRED: Hardware linkage must be established prior to execution.
The program will type instructions to the operator with self-explanatory notes in a conversational manner. Lower and upper limits on the time base are 100 microseconds and one second, respectively. Attached to this abstract is a table of time and magnitudes which would likely be desired as inputs for the program. Limits on the magnitude are plus and minus ten volts (full maximum output word).
Except for the AO channel number, all type-ins are assumed to be decimal. If analog inputs 100 and 101 are used for supplying inputs to the program, no scaling is performed but the limitations cited above still apply and are program-initiated. If the inputs are supplied via the typewriter, time should be in seconds and magnitude should be a positive or negative integer.

PROGRAM STORAGE:	<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
	Main Program	70100-70275	176
	Micro Multiply	70040-70051	12
	Comments	1000-1401	402
	Micro Type	450-461	12
	Decimal Output	500-621	122
	Decimal Input	650-777	130
			<hr/>
			1076 ₈

INTERMEDIATE STORAGE:	Working Storage: 0 Storage of magnitude 1 Storage of channel number 2 Storage of time base 3 Storage of positive output word 4 Address of micro type routine 5 Timing counter 6 Storage of negative output word
SPECIAL STORAGE:	None used
EXECUTION TIME:	Not applicable
REGISTERS:	All used
SENSE SWITCHES:	1 Mode 1 2 Mode 2 3 Enter new T, M (Mode 1) Type out T, M (Mode 2) 4 Output distorted 5 Read new T, M (Mode 2) 6 New Channel number request
PROGRAM FLAGS:	2 On for Mode 2 test Off for Mode 1 test
I/O DEVICES:	Typewriter ADIOCE Scope
PROGRAM HALTS:	None

ANALOG OUTPUT DYNAMIC TEST

TIME-MAGNITUDE TABLE

<i>Time (sec.)</i>	<i>Frequency</i>	<i>Period</i>	<i>Magnitude</i>	<i>Voltage**</i>
.0001	10 KC	.1 MS	0	0
.0010	1 KC	1.0 MS	102	1
.0100	.1 KC	10.0 MS	205	2
.1000	.01 KC	100.0 MS	307	3
1.0000	1 CPS	1 SEC.	409	4
			512	5
			614	6
			716	7
			818	8
			921	9
			1023	10

****Approximate**

ANALOG OUTPUT DYNAMIC TEST

2

Count =
 $T \cdot 10^4$

Count
> 1

n

WS 5 = 3

y

WS 5 = 3 +
10 (Count-1)

DTR in M
on Ch. 101

WS 0 = M

WS 3 =
+ M, Ch.

WS 6 =
- M, Ch.

3

	LDR	•	A/B CH. RESPONSE TEST
	LDR	•	17 FEBRUARY 1965
	LDR		
*	LOC @ 70100		
70100* 02702673	CTS 7 Q LDI P C	•	TURN OFF ALL TOGGLERS
70101* 00000450	0000 0450	•	ADDRESS OF MICRO-TYPE
70102* 21434573	STW 4 C EXC P C	•	ADDRESS TO WS4 JUMP TO TYPE ROUTINE
70103* 02501000	0250 1000	•	TITLE OF TEST FORMAT 1
70104* 35301477	TCF SW X BTR 0	•	LOOP UNTIL ALL SENSE SWITCHES OFF
70105* 23434573	LDW 4 C EXC P C	•	JUMP TO TYPE ROUTINE
70106* 04401025	0440 1025	•	SENSE SWITCH OPTIONS FORMAT 2
70107* 37311604	TCT SW 1 FTR 4	•	IF SW 1 ON, JUMP TO MODE 1
70110* 35321476	TCF SW 2 BTR 1	•	IF SW2 ON, LOOP
70111* 23434573	LDW 4 C EXC P C	•	MODE 2 TEST JUMP TO TYPE ROUTINE
70112* 13301204	1330 1204	•	MODE 2 INSTRUCTIONS FORMAT 4.2
70113* 36021602	STT PF 2 FTR 2	•	PF 2 = 1
70114* 23434573	LDW 4 C EXC P C	•	MODE 1 TEST JUMP TO TYPE ROUTINE
70115* 11301071	1130 1071	•	MODE 1 INSTRUCTIONS FORMAT 4.1
70116* 23434573	LDW 4 C EXC P C	•	JUMP TO TYPE ROUTINE
70117* 01201337	0120 1337	•	CH. NO. REQUEST FORMAT 5
70120* 26731233	LDI P C SEL C C	•	OCTAL TYPE-IN ROUTINE SELECT TYPEWRITER
70121* 02006100	0200 6100		

70122* 65635711	C0M 6 C , X0R A A ,	LOCK C0M T0 03 A = 0
70123* 07617043	CLD 0 61 CPF D C ,	C = 61
70124* 07120503	CLD 0 12 , LRC 3 ,	D = 12 N = 03
70125* 10120000	DTR 1 B , NEP	DTR INT0 B
70126* 57243241	X0R B D TZ0 D F ,	BACKSPACE?
70127* 16032111	FTR 3 , STW 1 A ,	YES - FINISHED ANS TO WS1
70130* 66315723	SSL L0L A , X0R B C	SHIFT A LEFT 3
70131* 32311470	TZ0 C F , BTR 7 ,	SLASH? YES - BEGIN OVER
70132* 64211470	L0R B A , BTR 7 ,	NO - PACK WORD DTR NEXT CHARACTER
70133* 35021670	TCF PF 2 , FTR 56 ,	PE2 = 02 YES - TO MODE 1
70134* 26731233	LDI P C , SEL C C ,	MODE 2 SELECT ADDRESS
70135* 32003000	3200 , 3000 ,	RANDOM CHANNEL 01
70136* 65610740	C0M 6 A , CLD 0 40 ,	LOCK C0M T0 01
70137* 55441034	ADL D D , DTR 3 D ,	D = 100 DTR IN T ON CH. 100
70140* 46432672	CPL D C , LDI P B ,	T T0 C PICK UP CONSTANT
70141* 10001525	1000 , 1525 ,	00048848 (B = 9)
70142* 70750440	CPF P L CLP 0 40 ,	JUMP TO MPY ROUTINE
70143* 26725512	LDI P B ADL A B ,	GET T IN SECONDS
70144* 00000321	0000 , 0321 ,	.0001 (B2)
70145* 21222673	STW 2 B , LDI P C	T T0 WS 2
70146* 04704000	0470 , 4000 ,	10000 (B16)

70147* 70750440	CPF P L CLP @ 40 ,	JUMP TO MPY ROUTINE
70150* 07376342	CLD @ 37 CCL D B ,	B = -1.0 (B18)
70151* 55123224	ADL A B TZ@ B S ,	IS B POSITIVE?
70152* 16022673	FTR 2 , LDI P C ,	YES 20 TO C
70153* 07032154	CLD 0 3 , STW 5 D ,	D = 3 WS5 = 3
70154* 16040000	FTR 4 NOP	
70155* 12000000	1200 , 0000	10.0 (B5)
70156* 70750440	CPF P L CLP @ 40 ,	JUMP TO MPY ROUTINE
70157* 07035541	CLD 03 , ADL D A	D = 3 (B23)
70160* 21510000	STW 5 A , NOP	10(10000T-1)+3
70161* 07405544	CLD @ 40 , ADL D D	FORM CH. NO. 101
70162* 44441034	CIL D D , DTR 3 D ,	D = 101 DTR INT@ D
70163* 21042311	STW 0 D , LDW 1 A ,	M TO WS0 CH. NO. TO A
70164* 64412131	LOR D A , STW 3 A ,	+ WORD AND CH. TO WS3
70165* 63444444	CCL D D CIL D D ,	-M TO D
70166* 23126442	LDW 1 B , LOR D B	CH. NO. TO B
70167* 21620000	STW 6 B , NOP	-WORD AND CH. TO WS6
70170* 00000000	NOP NOP	
70171* 23522352	LDW 5 B , LDW 5 B ,	WS5 TO B DELAY
70172* 54223027	CDL B B , TNZ B SXF ,	B = B-1 B = 0?
70173* 14760000	BTR 1 ,	NO = LOOP

NOP

70174* 23631023	LDW 6 C .	YES
	DTR 2 C .	DTR OUT M
70175* 23312161	LDW 3 A	
	STW 6 A	
70176* 21333733	STW 3 C .	EXCHANGE WS3 AND WS6
	TCT SW 3 .	SW 3 ON2
70177* 16110000	FTR 9 .	YES - TYPE T AND M
	NOP	
70200* 00000000	NOP	
	NOP	
70201* 37341603	TCT SW 4 .	SW4 = 12
	FTR 3 .	YES - OUTPUT DISTORTED
70202* 37351431	TCT SW 5 .	SW5 = 12
	BTR 38 .	YES - NEW T AND M
70203* 37361412	TCT SW 6 .	SW 6 = 12
	BTR 53 .	YES - NEW CH. NO.
70204* 14640000	BTR 11 .	NO - LOOP
	NOP	
70205* 23434573	LDW 4 C .	OUTPUT DISTORTED ROUTINE
	EXC P C .	JUMP TO TYPE ROUTINE
70206* 00701351	0070 .	OUTPUT DISTORTED
	1351 .	FORMAT 6
70207* 35361477	TCF SW 6 .	SW6 = 02
	BTR 0 .	YES - LOOP
70210* 14050000	BTR 58 .	NO - CH. NO. REQUEST
	NOP	
70211* 23434573	LDW 4 C .	TYPE T AND M ROUTINE
	EXC P C .	JUMP TO TYPE ROUTINE
70212* 01101360	0110 .	T =
	1360 .	FORMAT 8
70213* 05022322	LRC 2 .	N = 2 (SCALE)
	LDW 2 B .	T TO B
70214* 26754575	LDI P L	
	EXC P L .	TYPE T IN DECIMAL
70215* 00000500	0000 .	
	0500 .	
70216* 23434573	LDW 4 C	
	EXC P C .	JUMP TO TYPE ROUTINE
70217* 01101371	0110 .	M =
	1371 .	FORMAT 9

70220* 23020513	LDW 0 B , LRC 11 ,	M TO B N = 11 (SCALE)
70221* 26754575	LDI P L EXC P L ,	TYPE M IN DECIMAL
70222* 00600500	0060 0500	
70223* 65611455	C0M 6 A , BTR 18 ,	LOCK C0M TO 01
70224* 23434573	LDW 4 C , EXC P C ,	MODE 1 TEST JUMP TO TYPE ROUTINE
70225* 01101360	0110 1360 ,	T = FORMAT 8
70226* 05020000	LRC 2 , NOP	N = 2 (SCALE)
70227* 26754575	LDI P L EXC P L ,	JUMP TO TYPE-IN ROUTINE
70230* 00000650	0000 0650	
70231* 21220000	STW 2 B , NOP	T TO WS2
70232* 23434573	LDW 4 C EXC P C ,	JUMP TO TYPE ROUTINE
70233* 01101371	0110 1371 ,	M = FORMAT 9
70234* 05130000	LRC 11 , NOP	N = 11 (SCALE)
70235* 26754575	LDI P L EXC P L ,	JUMP TO TYPE-IN ROUTINE
70236* 00000650	0000 0650	
70237* 21022311	STW 0 B , LDW 1 A ,	M TO WSO CH. NO. TO A
70240* 64212131	LOR B A STW 3 A ,	+ WORD TO WS3
70241* 63224422	CCL B B CIL B B ,	B = -M
70242* 23116421	LDW 1 A , LOR B A	CH. NO. TO A
70243* 21612673	STW 6 A , LDI P C	-WORD TO WS6

70244*	32003000	3200	,	RANDOM
		3000	,	CH. 01
70245*	12336561	SEL C C	,	SELECT ADDRESS
		C0M 6 A	,	LOCK COM TO 01
70246*	23222673	LDW 2 B	,	T TO B
		LDI P C	,	10000. TO C
70247*	04704000	0470	,	10000. (B16)
		4000		
70250*	70750440	CPF P L		
		CLP 0 40	,	JUMP TO MPY ROUTINE
70251*	07376342	CLD 0 37		
		CCL D B	,	-1.0 (B16) TO B
70252*	55123024	ADL A B	,	B = 10000 T-1
		TNZ B S	,	IS B POSITIVE?
70253*	07041605	CLD 04	,	NO - D = 4
		FTR 05		
70254*	26734512	LDI P C	,	YES - C = 10
		EXC A B		
70255*	12000000	1200	,	10.0 (B5)
		0000		
70256*	70750440	CPF P L		
		CLP 0 40	,	JUMP TO MPY ROUTINE
70257*	07056344	CLD 0 05		
		CCL D D	,	D = -6
70260*	55140000	ADL A D		
		NEP		
70261*	21540000	STW 5 D		
		NEP		
70262*	00000000	NEP		
		NEP		
70263*	23520000	LDW 5 B	,	W\$5 TO B
		NEP		
70264*	05036631	LRC 3	,	DELAY 4 MICROSECONDS
		SSL L0L A		
70265*	54223027	CDL B B	,	B = B-1
		TNZ B SXF	,	B = 0?
70266*	14760000	BTR 1	,	NO - LOOP
		NEP		
70267*	23631023	LDW 6 C	,	YES - M TO C
		DTR 2 C	,	DTR OUT M
70270*	23312161	LDW 3 A		
		STW 6 A		

70271* 21333733	STW 3 C TCT SW 3	EXCHANGE HS3 AND HS6 SW3 = 1?
70272* 14310000	BTR 38 NEP	YES - NEW T AND M
70273* 37341411	TCT SW 4 BTR 54	NO - SW4 = 1? YES - OUTPUT DISTORTED
70274* 37361413	TCT SW 6 BTR 52	SW6 = 1? YES - NEW CH. REQUEST
70275* 00001465	NEP BTR 10	NO - LOOP
LDR		
LDR , END A/B CH. RESPONSE TEST		
* 00070100	END @ 70100	

ANALOG OUTPUT CHANNEL RESPONSE [SQUARE WAVE]

TURN OFF ALL SENSE SWITCHES.

SELECT MODE:

SW1 MODE 1 - TYPE IN VARIABLES
SW2 MODE 2 - SUPPLY VARIABLES VIA A/I 100 AND 101

MODE 1 SELECTED.

AFTER SPECIFYING ANALOG OUTPUT CHANNEL IN OCTAL, TYPE IN T AND M
IN DECIMAL AND OBSERVE OUTPUT. SENSE SWITCH OPTIONS ARE AS FOLLOWS:

SW3 ENTER NEW T AND M
SW4 OUTPUT DISTORTED
SW6 NEW CHANNEL NO. REQUEST, SAME MODE

A/O CHANNEL NUMBER 200

T = 1.0

M = 1023.

T = 1.0

M = 512.

A/O CHANNEL NUMBER 201

T = .5

M = 512. OUTPUT DISTORTED XX

A/O CHANNEL NUMBER 201

T = 1.0

M = 512.

ANALOG OUTPUT CHANNEL RESPONSE [SQUARE WAVE]

TURN OFF ALL SENSE SWITCHES.

SELECT MODE:

SW1 MODE 1 - TYPE IN VARIABLES
SW2 MODE 2 - SUPPLY VARIABLES VIA A/I 100 AND 101

MODE 2 SELECTED

AFTER SPECIFYING ANALOG OUTPUT CHANNEL IN OCTAL, VARY T AND M
VIA A/I 100 AND A/I 101, RESPECTIVELY, AND OBSERVE OUTPUT.
SENSE SWITCH OPTIONS ARE AS FOLLOWS:

SW3 TYPE-OUT T AND M
SW4 OUTPUT DISTORTED
SW5 READ NEW T OR M
SW6 NEW CHANNEL NO. REQUEST, SAME MODE

A/O CHANNEL NUMBER 200

T = - 0.983210

M = 25.

A/O CHANNEL NUMBER 201

T = - 0.984187

M = 25. OUTPUT DISTORTED **

A/O CHANNEL NUMBER 202

T = - 0.984187

M = 25.

T = - 0.983698

M = 23.

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: COMPUTER CLOCK AND REAL-TIME CLOCK MEASUREMENTS

PROGRAMMER: D. R. GUM

DATE: 1 July 1964

ID: None

FUNCTION: The purpose of this program (part of the ADIOCE Acceptance Test package) is to measure the accuracy of the PB-440 computer clock and the ADIOCE Real-Time clock.

GENERAL DESCRIPTION OF TECHNIQUE: There are three tests that can be performed using this program. The tests are: (1) Computer Clock vs. Real-Time Test, (2) Real-Time Clock vs. Real-Time Test, and (3) Computer Clock vs. Real-Time Clock Test. These tests are selected by sense switches 1, 2, and 3, respectively. Tests 1 and 2 have two modes each; a mode using a clock with a second hand as a timing reference and a mode using a 60-cycle line input to ADIOCE as a timing reference. The program is written to essentially make timers of the PB-440 and ADIOCE which are compared with the above mentioned references. The program types the accumulated time in the clock reference mode and the accumulated time of both the reference and the device being tested and the percent error as compared to the reference. The first time typed out in this mode is the reference time.

LOADING PROCEDURE: Load with Binary Loader I. This program is not relocatable.

OPERATING PROCEDURES & LINKAGE REQUIRED: The program will type instructions to the operator as indicated on the sample test type-out sheet. The operator must provide the 60-cycle square wave reference input through discrete input channel I of Group I, which is the sign bit of the 24-bit input word. This program uses five subroutines which must be stored as follows:

PROGRAM STORAGE:	<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
	Main Program	70100-70410	311
	Interrupt Routine	70000-70013	14
	Comments	1000-1312	313
	Micro Type	450-461	12
	Decimal Output	500-621	122
	Micro Multiply	70040-70051	12
	Micro Divide	70060-70067	10
			<hr/> <i>1016_s</i>

INTERMEDIATE STORAGE:

Working Storage: 1, 2, 3, 5, and 6

SPECIAL STORAGE:

Core Zero: Micro Type Address

EXECUTION TIME:

The program execution time is not of importance; however, the tests should not be run for longer than the following times to prevent overflow from the timing register.

Computer Clock vs. Real-Time Test

Mode 4 – 1000 hours

(For an accuracy of .01% should run for at least 3 hours)

Mode 5 – 1 hour

(For an accuracy of .01% it should run for at least 2 minutes)

Real-Time Clock vs. Real-Time Test

Mode 4 – 1000 hours

(For an accuracy of .01% it should run for at least 3 hours)

Mode 5 – 10 hours

(For an accuracy of .01% it should run for at least 2 minutes)

Computer Clock vs. Real-Time Clock Test

Single Mode – 10 hours

(For an accuracy of .01% it should run for at least 2 minutes)

REGISTERS:

All used

SENSE SWITCHES:

As shown on sample test type-out sheet.

PROGRAM FLAGS:

1-5 indicating test and mode

I/O DEVICES:

Typewriter and ADIOCE

PROGRAM HALTS:

None

COMPUTER CLOCK AND REAL-TIME CLOCK MEASUREMENTS

LDR COMPUTER CLOCK AND REAL-TIME CLOCK TEST

LDR , 1 APRIL 1965

LOC @ 70100

70100*	02700000	CTS 7 Q ,	0 TO ALL Toggles
		NOP	
70101*	26712501	LDI P A STM Q A ,	STORE MICRO TYPE
70102*	00000450	0000 ,	ADDRESS IN CORE 0
0450			
70103*	27034573	LDM Q C EXC P C ,	TYPE OUT MAIN TITLE AND TEST SELECTIONS
70104*	07001000	0700 1000	
70105*	02700000	CTS 7 Q ,	0 TO ALL Toggles
		NOP	
70106*	37311603	TCT SW 1 FTR 3 ,	SW 1 = 1? YES
70107*	37321671	TCT SW 2 FTR 0 71 ,	NO, SW 2 = 1? YES
70110*	37331667	TCT SW 3 FTR 0 67 ,	NO, SW 3 = 1? YES
70111*	14740000	BTR 3 ,	NO, TEST AGAIN
		NOP	
70112*	36010000	STT PF 1 ,	TEST [1]
		NOP	
70113*	27034573	LDM Q C EXC P C ,	TYPE OUT TEST [1] TITLE AND MODE SELECTIONS
70114*	04701070	0470 1070	
70115*	37341602	TCT SW 4 FTR 2 ,	SW 4 = 1? YES, GO TO MODE 4
70116*	37351617	TCT SW 5 FTR 0 17 ,	NO, SW 5 = 1? YES, GO TO MODE 5
70117*	14750000	BTR 2 ,	NO, TEST AGAIN
		NOP	
70120*	36040000	STT PF 4 ,	MODE [1-4]
		NOP	
70121*	27034573	LDM Q C EXC P C ,	TYPE OUT MODE 4 SELECTED AND INSTRUCTIONS
70122*	03201137	0320 1137	

70123* 46010000	CPL Q A NOP	CLEAR A
70124* 37341477	TCT SW 4 BTR 0	SW 4 = 0? NO
70125* 37361606	TCT SW 6 FTR 6	SW 6 = 1? YES, TYPE OUT TIME (6B)
70126* 00002673	NOP LDI P C	
70127* 00606476	0060 6476	1 SEC INTO C (1000000/5)-2
70130* 54333233	CDL C C TZ0 C XF	C = C-1 DECREMENT COUNTER C ≠ 0?
70131* 16012700	FTR 1 LDM Q Q	YES, (10 MICROSECOND LOOP)
70132* 14750000	BTR 2 NOP	NO, (5 MICROSECOND LOOP)
70133* 44111471	CIL A A BTR 6	
70134* 21110000	STW 1 A NOP	GO TO TYPE OUT TIME (6B)
70135* 16771631	FTR @ 77 FTR @ 31	
70136* 36050000	STT PF 5 NOP	MODE [1-5]
70137* 27034573	LDM Q C EXC P C	TYPE OUT MODE 5 SELECTED AND INSTRUCTIONS
70140* 02501171	0250 1171	
70141* 46014602	CPL Q A CPL Q B	CLEAR A CLEAR B
70142* 26741244	LDI P D SEL D D	SELECT ADDRESS CH. 0 (00)
70143* 32001000	3200 1000	(RANDOM)
70144* 37361622	TCT SW 6 FTR @ 22	SW 6 = 1? YES, GO TO ERROR TYPE OUT (6A)
70145* 65602774	C0M 6 Q LDM P D	
70146* 00000021	0000 0021	GROUP 1 ADDRESS
70147* 10342333	DTR 3 D	DISCRETE INPUT GROUP 1

	LDW 3 C	,	LOAD PAST DI VALUE
70150* 73433234	ADS D C TZ@ C S	,	HAS DI 1 CHANGED?
70151* 16070000	FTR 7 NOP	,	NO
70152* 21344422	STW 3 D CIL B B	,	YES, STORE NEW DI (LEFT LOOP) $B = B + 1$
70153* 26730000	LDI P C NOP	,	
70154* 00000302	0000 0302	,	(1000/5)-6
70155* 54333233	CDL C C TZ@ C XF	,	C = C-1 DECREMENT TIMER C = 0?
70156* 00001601	NOP FTR 1	,	YES
70157* 14750000	BTR 2 NOP	,	NO
70160* 44111463	CIL A A BTR @ 14	,	A = A + 1
70161* 00002673	NOP LDI P C	,	(RIGHT LOOP)
70162* 00000302	0000 0302	,	(1000/5)-6
70163* 54333233	CDL C C TZ@ C XF	,	C = C-1 C = 0?
70164* 00001601	NOP FTR 1	,	YES
70165* 14750000	BTR 2 NOP	,	NO
70166* 44111455	CIL A A BTR @ 22	,	A = A + 1
70167* 21112122	STW 1 A STW 2 B	,	A INT@ WS 1 B INT@ WS 2
70170* 26730000	LDI P C NOP	,	1/1.20 INT@ C
70171* 32525252	3252 5252	,	1/1.20
70172* 46750440	CPL P L CLP @ 40	,	B X 1/1.20 INT@ A
70173* 21212312	STW 2 A LDW 1 B	,	B X 1/1.20 INT@ WS2

70174* 26730000	LDI P C	,	.1 INT0 C
	NOP		
70175* 03146314	0314	,	
	6314	,	.1
70176* 46750440	CPL P L	,	A X .1 INT0 A
	CLP @ 40		
70177* 21111665	STW 1 A	,	
	FTR @ 65	,	GO TO ERROR TYPE OUT (6A)
70200* 16660000	FTR @ 66	,	INTERMEDIATE TRANSFER
	NOP	,	TO TEST [3]
70201* 36020000	STT PF 2	,	TEST [2]
	NOP		
70202* 27034573	LDM Q C	,	TYPE OUT TEST [2] TITLE
	EXC P C		
70203* 01301244	0130	,	
	1244	,	
70204* 27034573	LDM Q C	,	TYPE OUT MODE SELECTIONS
	EXC P C		
70205* 03401103	0340	,	
	1103	,	
70206* 37341602	TCT SW 4	,	SW 4 = 1?
	FTR 2	,	YES, MODE 4
70207* 37351622	TCT SW 5	,	NO, SW 5 = 1?
	FTR @ 22	,	YES, MODE 5
70210* 14750000	BTR 2	,	NO, TEST AGAIN
	NOP		
70211* 36040000	STT PF 4	,	MODE [2-4]
	NOP		
70212* 27034573	LDM Q C	,	TYPE OUT MODE 4 SELECTED
	EXC P C	,	AND INSTRUCTIONS
70213* 03201137	0320	,	
	1137	,	
70214* 26732674	LDI P C		
	LDI P D		
70215* 00040001	0004	,	100 MICROSECONDS FOR TIR
	0001	,	MINIMUM COUNT
70216* 32003077	3200	,	SELECT WORD (RANDOM)
	3077	,	CH. 1 (01)
70217* 12446561	SEL D D	,	SELECT ADDRESS
	COM 6 A	,	LOCK COM TO CH. 1 (01)
70220* 10632673	DTR 6 C		
	LDI P C		

70221* 00063420	0006 3420		1 SEC FOR TIR
70222* 37341477	TCT SW 4 BTR 0		SW4 = 0? No
70223* 35421477	TCF IL 2 BTR 0		YES, IL 2 = 0? YES
70224* 54011063	CDL Q A DTR 6 C		No, A = -1 1 SEC INTO TIR
70225* 26741244	LDI P D SEL D D		TURN OFF INTERRUPT
70226* 72000400	7200 0400		
70227* 65003612	COM 0 Q STT IM 2		SET IM 2 TRUE
70230* 37361635	TCT SW 6 FTR 0 35		SW6 2 1? YES, TYPE OUT TIME (6B)
70231* 14760000	BTR 1 NOP		NO TEST AGAIN
70232* 36050000	STT PF 5 NOP		MODE [2-5]
70233* 27034573	LDM Q C EXC P C		TYPE OUT MODE 5 SELECTED AND INSTRUCTIONS
70234* 02501171	0250 1171		
70235* 26732674	LDI P C LDI P D		
70236* 00040144	0004 0144		10 MSEC FOR TIR
70237* 32002077	3200 2077		SELECT WORD (SEQ) CH. 1 (01)
70240* 12446561	SEL D D COM 6 A		SELECT ADDRESS LOCK COM TO CH. 1 (01)
70241* 10636500	DTR 6 C COM 0 Q		10 MSEC INTO TIR
70242* 46014602	CPL Q A CPL Q B		CLEAR A CLEAR B
70243* 35421477	TCF IL 2 BTR 0		IL 2 = 1? No
70244* 26741244	LDI P D SEL D D		YES, RELEASE INTERRUPT
70245* 72000400	7200		

0400			
70246*	36120000	STT IM 2 NOP	SET IM2 TRUE
70247*	26741244	LDI P D SEL D D	SELECT ADDRESS (RANDOM)
70250*	32003000	3200 3000	
70251*	37361606	TCT SW 6 FTR 6	SW 6 = 1? YES
70252*	07216561	CLD 0 21 COM 6 A	NO, DI GROUP 1 ADDRESS LOCK COM TO CH. 1 (01)
70253*	10346500	DTR 3 D COM 0 Q	DISCRETE INPUT GROUP 1
70254*	23337343	LDW 3 C ADS D C	LOAD PAST DI 1 VALUE
70255*	32341473	TZ0 C S BTR 4	HAS DI 1 CHANGED NO
70256*	21344422	STW 3 D CIL B B	YES, STORE NEW VALUE B = B + 1
70257*	14710000	BTR 6 NOP	
70260*	21112122	STW 1 A STW 2 B	
70261*	26730000	LDI P C NOP	
70262*	32525252	3252 5252	1/1.2
70263*	46750440	CPL P L CLP 0 40	B X 1/1.2 INTO A
70264*	21210000	STW 2 A NOP	B X 1/1.2 INTO WS 2
70265*	16330000	FTR 0 33 NOP	TRANSFER TO TYPE OUT ERROR (6A)
70266*	16771607	FTR 0 77 FTR 7	TRANSFER TO TYPE OUT TIME (6B)
70267*	36030000	STT PF 3 NOP	TEST [3]
70270*	27034573	LDM Q C EXC P C	TYPE OUT TEST [3] TITLE AND INSTRUCTIONS
70271*	03401257	0340 1257	

70272* 26732674	LDI P C LDI P D	
70273* 00040144	0004 0144	10 MSEC FOR TIR
70274* 32004077	3200 4077	SELECT WORD (SEQ.) CH. 2 (10)
70275* 12446562	SEL D D COM 6 B	SELECT ADIECE LOCK COM TO CH. 2 (10)
70276* 10636500	DTR 6 C COM 0 Q	10 MSEC INTO TIR
70277* 46014602	CPL Q A CPL Q B	CLEAR A CLEAR B
70300* 35431477	TCF IL 3 BTR 0	IL 3 = 1? NO, TEST AGAIN
70301* 26741244	LDI P D SEL D D	YES TURN OFF INTERRUPT
70302* 72000400	7200 0400	
70303* 36130000	STT IM 3 NOP	SET IM 3 TRUE
70304* 37361606	TCT SW 6 FTR 6	SW 6 = 1? YES, GO TO ERROR TYPE OUT (6A)
70305* 00002673	NOP LDI P C	NO, LOAD REGISTER TIMER 10 MSEC INTO C
70306* 00003716	0000 3716	(10000/5)-2
70307* 54333233	CDL C C TZ0 C XF	C = C-1 C = 0?
70310* 16012700	FTR 1 LDM Q Q	YES, (10 MICROSECOND LOOP)
70311* 14750000	BTR 2 NOP	NO, (5 MICROSECOND LOOP)
70312* 44111471	CIL A A BTR 6	A = A + 1
70313* 21112122	STW 1 A STW 2 B	A INTO WS 1 B INTO WS 2
70314* 26730000	LDI P C NOP	
70315* 00025231	0002 5231	.0013
70316* 46750440	CPL P L CLP @ 40	B X .0013 INTO A

70317* 23125521	LDW 1 B ADL B A	A + B (DELTA T) INTO A
70320* 21110000	STW 1 A NOP	CORRECTED A INTO WS1 GO TO TYPE OUT ERROR (6A)
70321* 34123413	STF I M 2 STF IM 3	SET IM 1 FALSE (6A) SET IM 2 FALSE
70322* 23222673	LDW 2 B LDI P C	WS2 INTO B
70323* 00243656	0024 3656	.01
70324* 46750440	CPL P L CLP @ 40	B X .01 INTO A
70325* 05101320	LRC @ 10 SDL LOM	SCALE B 15
70326* 21510000	STW 5 A NOP	A INTO WS5
70327* 27034537	LDM Q C EXC C P	TYPE OUT (TIME =)
70330* 01001216	0100 1216	
70331* 23520517	LDW 5 B CLN @ 17	
70332* 26754557	LDI P L EXC L P	TYPE OUT NUMBER
70333* 00400500	0040 0500	
70334* 27034537	LDM Q C EXC C P	TYPE OUT SECONDS
70335* 00301226	0030 1226	
70336* 23122673	LDW 1 B LDI P C	
70337* 00243656	0024 3656	.01
70340* 46750440	CPL P L CLP @ 40	B X .01 INTO A
70341* 05101320	LRC @ 10 SDL LOM	SCALE B 15
70342* 21610000	STW 6 A NOP	
70343* 27034537	LDM Q C	

	EXC C P	TYPE OUT (TIME =)
70344* 01001216	0100 1216	
70345* 23620517	LDW 6 B CLN 0 17	
70346* 26754557	LDI P L EXC L P	TYPE OUT NUMBER
70347* 00400500	0040 0500	
70350* 27034537	LDM Q C EXC C P	TYPE OUT SECONDS
70351* 00301226	0030 1226	
70352* 23112323	LDW 1 A LDW 2 C	
70353* 05016623	LRC 1 SSL L0M C	
70354* 46750460	CPL P L CLP 0 60	WS1/WS2 SCALED B1
70355* 46016101	CPL Q A CCS Q A	
70356* 05016671	LRC 1 SSL R0L A	1 SCALED B1
70357* 61010000	CCS Q A NOP	
70360* 55122673	ADL A B LDI P C	(WS1/WS2 - 1) SCALED B1
70361* 00000144	0000 0144	
70362* 46750440	CPL P L CLP 0 40	(WS1/WS2 - 1)X100 INT0 B
70363* 05031362	LRC 3 SDL R0M B	SCALE B4
70364* 72122132	CPS A B STW 3 B	
70365* 27034537	LDM Q C EXC C P	TYPE OUT (ERROR =)
70366* 01001231	0100 1231	
70367* 23320504	LDW 3 B CLN 4	

70370* 26754557	LDI P L EXC L P ,	TYPE OUT NUMBER
70371* 00000500	0000 0500	
70372* 27034573	LDM Q C EXC P C ,	TYPE OUT (PERCENT)
70373* 00301241	0030 1241	
70374* 16100000	FTR @ 10 NOP	
70375* 34113412	STF IM 1 , STF IM 2 ,	SET IM 0 FALSE(6B) SET IM 1 FALSE
70376* 27034537	LDM Q C EXC C P ,	TYPE OUT (TIME =)
70377* 01001216	0100 1216	
70400* 23120527	LDW 1 B , LRC @ 27	WS1 INTO B
70401* 26754557	LDI P L EXC L P ,	OUTPUT NUMBER
70402* 00600500	0060 0500	
70403* 27034537	LDM Q C EXC C P ,	TYPE OUT (SECONDS)
70404* 00301226	0030 1226	
70405* 35301601	TCF SW X , FTR 1	ALL SW OFF?
70406* 14760000	BTR 1 , NOP	NO
70407* 27770000	LDM P P , NOP ,	YES, RETURN FOR NEW TEST [END]
70410* 00070105	0007 0105	
	LDR	
	LDR	
*	LOC @ 70000	
70000* 45750404	EXC P L CLP 4	
70001* 45750404	EXC P L CLP 4	

70002* 45750410	EXC P L CLP @ 10	
70003* 00000000	NOP NOP	
70004* 44112111	CIL A A , STW 1 A ,	A = A + 1 TEST [2-4 AND 5]
70005* 26741244	LDI P D SEL D D ,	RELEASE INTERRUPT
70006* 72000400	7200 0400	
70007* 45576500	EXC L P , CJM O Q	RETURN
70010* 44220000	CIL B B , NOP	B = B + 1 TEST [3]
70011* 26741244	LDI P D SEL D D ,	RELEASE INTERRUPT
70012* 72000400	7200 0400	
70013* 65004557	CJM O Q EXC L P ,	RETURN
	LDR	
* 00070100	END @ 70100	

COMPUTER CLOCK AND REAL TIME CLOCK TESTS

SELECT TEST

SW1 - COMPUTER CLOCK VS REAL TIME

SW2 - REAL TIME CLOCK VS REAL TIME

SW3 - COMPUTER CLOCK VS REAL TIME CLOCK

COMPUTER CLOCK VS REAL TIME TEST

SELECT MODE

SW4 - CLOCK REFERENCE

SW5 - 60 CYCLE LINE REFERENCE

MODE 5

SW6 ON FOR TIME AND PER CENT ERROR TYPE-OUT.

TIME = 1200.41 SECONDS

TIME = 1200.34 SECONDS

ERROR = - .005842 PER CENT

COMPUTER CLOCK AND REAL TIME CLOCK TESTS

SELECT TEST

SW1 - COMPUTER CLOCK VS REAL TIME

SW2 - REAL TIME CLOCK VS REAL TIME

SW3 - COMPUTER CLOCK VS REAL TIME CLOCK

REAL TIME CLOCK VS REAL TIME TEST

SELECT MODE

SW4 - CLOCK REFERENCE

SW5 - 60 CYCLE LINE REFERENCE

MODE 5

SW6 ON FOR TIME AND PER CENT ERROR TYPE-OUT.

TIME = 1200.27 SECONDS

TIME = 1200.21 SECONDS

ERROR = - .0005006 PER CENT

COMPUTER CLOCK AND REAL TIME CLOCK TESTS

SELECT TEST

SW1 - COMPUTER CLOCK VS REAL TIME

SW2 - REAL TIME CLOCK VS REAL TIME

SW3 - COMPUTER CLOCK VS REAL TIME CLOCK

COMPUTER CLOCK VS REAL TIME CLOCK TEST

SUG ON FOR TIME AND PER CENT ERROR TYPE-OUT.

TIME = 1200.23 SECONDS

TIME = 1200.12 SECONDS

ERROR = - 0.009180 PER CENT

Appendix II.

AUTOMATED DIAGNOSTIC TEST UTILITY ROUTINES

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: MICRO MULTIPLY

PROGRAMMER: P. A. KNOOP

DATE: 9 June 1964

ID: None

FUNCTION: The purpose of this program is to serve as a micro subroutine for multiplication. This routine is part of the ADIOCE Acceptance Test package.

TECHNIQUE: The program multiplies the contents of the B and C registers, stores the product in the coupled A-B registers, and returns control to the address provided in the L register. The calling address is 70040 in the ADIOCE Acceptance Test package.

LOADING PROCEDURE: Load with Binary Loader I. This routine is relocatable for general use but must be stored beginning at 70040 for the ADIOCE tests.

OPERATING PROCEDURES & LINKAGE REQUIRED: None

PROGRAM STORAGE:

	<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
Main Program		70040-70051	12 ₈

INTERMEDIATE STORAGE: None

EXECUTION TIME: 34-42 Microseconds

REGISTERS:

A	MSB of double-length product
B	multiplicand; LSB of double-length product
C	Multiplier
D	Not used
N	Shift Counter
L	Return Location
P	Location Counter

SENSE SWITCHES: Not used

PROGRAM FLAGS: Not used

I/O DEVICES: None

PROGRAM HALTS: None

MICRO MULTIPLY

		00001	LDR	,	MICRO MULTIPLY
		00002	LDR	,	SUBROUTINE - ADI0CE TESTS
00001	57113024	00003	XOR A A	,	CLEAR A
		00004	TNZ B S	,	B POSITIVE???
00002	62224422	00005	C&M B B	,	NO - 2 ^o S COMP. B
		00006	CIL B B	,	
00003	73323034	00007	ADS C B	,	(C + B)S TO B(S)
		00008	TNZ C S	,	C POSITIVE???
00004	62334433	00009	C&M C C	,	NO - 2 ^o S COMP. C
		00010	CIL C C	,	
00005	05270000	00011	LRC 23	,	N=23
		00012	NOP	,	
00006	15317221	00013	MPS C A	,	MULTIPLY
		00014	CPS B A	,	SIGN TO A
00007	32147057	00015	TZ0 A S	,	ANS POSITIVE???
		00016	CPF L P	,	YES - RETURN
00010	62116222	00017	C&M A A	,	NO - 2 ^o S COMP.
		00018	C&M B B	,	DBL LENGTH PRODUCT
00011	44224061	00019	CIL B B	,	
		00020	AFK N A	,	
00012	70570000	00021	CPF L P	,	RETURN
		00022	NOP	,	
	00000000	00023	END A*	,	

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: MICRO DIVIDE

PROGRAMMER: P. A. KNOOP

DATE: 9 June 1964

ID: None

FUNCTION: The purpose of this program is to serve as a micro subroutine for division. This routine is part of the ADIOCE Acceptance Test package.

TECHNIQUE: The program divides the contents of the A register by the contents of the C register and stores the quotient in the B register. It then returns control to the address in the L register. The calling address is 70060 in the ADIOCE Acceptance Test package.

LOADING PROCEDURE: Load with Binary Loader I. This routine is relocatable for general use but must be stored beginning at 70060 for the ADIOCE tests.

OPERATING PROCEDURES & LINKAGE REQUIRED: None

PROGRAM STORAGE:

<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
Main Program	70060-70067	10 ₈

INTERMEDIATE STORAGE: None

EXECUTION TIME: 35-39 Microseconds

REGISTERS:

A	Dividend
B	Quotient
C	Divisor
D	Not used
N	Shift Counter
L	Return Location
P	Location Counter

SENSE SWITCHES: Not used

PROGRAM FLAGS: Not used

I/O DEVICES: None

PROGRAM HALTS: None

MICRO DIVIDE

	00001	LDR	,	MICRO DIVIDE
	00002	LDR	,	SUBROUTINE ADI0CE TESTS
00001	46027312	00003	CPL Q B	CLEAR B
		00004	ADS A B	
00002	73323234	00005	ADS C B	FORM SIGN OF QUOTIENT
		00006	TZ0 C S	C POSITIVE?
00003	63334433	00007	CCL C C	YES - 2'S COMP. C
		00008	CIL C C	
00004	05273014	00009	LBC 23	N = 23
		00010	TNZ A S	A POSITIVE?
00005	63114411	00011	CCL A A	NO - 2'S COMP. A
		00012	CIL A A	
00006	17313024	00013	DVS C A	DIVIDE
		00014	TNZ B S	ANS POSITIVE?
00007	62224422	00015	CQM B B	NO - 2'S COMP. ANS
		00016	CIL B B	
00010	70570000	00017	CPF L P	RETURN
		00018	NOP	
	00000000	00019	END A*	

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: DECIMAL INPUT II (SUBROUTINE)

PROGRAMMER: V. A. WAGNER

DATE: 30 April 1965

PURPOSE: To input from the typewriter and convert to fixed point decimal the numbers typed. Scale (binary point position) desired by the caller is put in the N register.

METHOD: For integer: Multiply by 10_{10} and add new digit.
For fraction: Treat as integer then divide by 10^L , L being the number of digits typed behind the decimal point. The routine scales the integer B_{23} until the decimal point is typed ("."); then it normalizes the integer (i.e., shifts left until $B_1=1$). The fraction is scaled B_0 and shifted right normalized scale, and logically "or" d with the integer. This whole word is then shifted left or right to give the proper scale. If it needs to be shifted left the number is too large for the given scale and the routine types a space, a "?", and another space and waits for another input.

LOADING PROCEDURE: Load as a standard BLI tape.

ENTRY CONDITIONS: Use the following calling sequence:
LDI P L
EXC P L
OCT 00000650

EXIT CONDITIONS: Scale in N
Number in B
Typewriter disconnected
Com unlocked

LINKAGE REQUIRED: None

MEMORY REQUIREMENTS: $650_8 - 777_8$

SPEED: N/A

ACCURACY: Full 23 bits for integers only. 22 bits for integers and fractions. Last bit may be incorrect.

SPECIAL TOGGLES USED: PF 6 – negative number
PF 5 – “.” has been input
CT All normal arithmetic charges
These are reset at end of program.

REFERENCES: None

REGISTERS USED: All

SENSE SWITCH OPTIONS: None

HALTS: None

I/O USAGE: Typewriter

I/O CHANNEL ASSIGNMENT

ALTERATIONS: Typewriter connected then disconnected from Channel 3.

NOTES: It is possible to use this routine with the photo reader by selecting the photo reader on Channel 3 before calling this routine. This routine can be called by SCS by using the following calling sequence:

ETC x EXC L P
LDI P L
EXC P L
00000650
EXC L P
NOP
Next Macro

DECIMAL INPUT II (SUBROUTINE)

LDR*****

LDR\DECIMAL INPUT II

LDR\V. WAGNER 27 SEPT 1965

LDR*****

LOC\@ 650

00650	46741610	CPL P D\1ST LOCATION OF *STORAGE* TO D FTR @ 10\SKIP OVER *STORAGE*
00651	00000000	0000***** 0000**
00652	00000000	0000** 0000**
00653	00000000	0000** 0000**
00654	00000000	0000** 0000**
00655	00000000	0000** 0000**
00656	00000000	0000** 0000**
00657	00000000	0000** 0000**
00660	00000000	0000** 0000***** STORAGE *****
00661	23022104	LDW 0 B\WS 0 TO B STW 0 D\1ST LOCATION OF *STORAGE* TO WSO
00662	24422312	STI D B\WS0 TO 1ST LOCATION F0 *STORAGE* LDW 1 B\WS 1 TO B
00663	24422115	STI D B\WS1 TO NEXT LOCATION OF *STORAGE* STW 1 L\RETURN ADDRESS TO WS 1
00664	46452674	CPL D L***** LDI P D
00665	23132453	2313 2453\MOVE THE REST OF
00666	52440604	CIX D D\WS TO *STORAGE* E P D
00667	31771476	T F 7 7 BTR M 01*****
00670	77732123	CFS 7 C STW 2 C\SAVE ALL THGGLS IN WS 2
00671	21366563	STW 3 N\STORE DESIRED SCALE IN WS 3

CM 6 C\LMCK CM UTATOR TH CHANNEL 3

00672 26731203	LDI P C\SELECT TYPEWRITER FOR OUTPUT SEL Q C\IN CHANNEL 3
00673 02006040	0200 6040
00674 02700760	CTS 7 Q\CLEAR ALL Toggles CLD M 60\SP T D
00675 10240000	DTR 2 D\OUTPUT SPACE NOP
00676 07404143	CLD @ 40 ADF D C\SELECT TYPEWRITER FOR INPUT
00677 12034602	SEL Q C\ON CHANNEL 3 CPL Q B\CLEAR B
00700 10130000	DTR 1 C\INPUT CHARACTER NMP
00701 07405734	CLD @ 40\(-) T@ D XOR C D
00702 46013241	CPL Q A\CLEAR A TZ@ D F\WAS CHARACTER (-) ?
00703 14743606	BTR @ 03\YES, GO BACK PICK UP NEXT CHARACTER STT PF 6\MINUS INDICATOR)
00704 07205734	CLD @ 20\(+) XOR C D
00705 32411472	TZ@ D F\WAS CHARACTER (+) ? BTR @ 05\YES, GO BACK FOR NEXT CHARACTER
00706 07125734	CLD @ 12\BS T@ D XOR C D
00707 32411616	TZ@ D F\WAS CHARACTER (BS) ? FTR @ 16\YES, SKIP
00710 07615734	CLD @ 61\(/) T@ D XOR C D
00711 32411460	TZ@ D F\WAS CHARACTER (/) ? BTR @ 17\YES, GO BACK AND RESTART
00712 07335734	CLD @ 33\(*) T@ D XOR C D
00713 32411603	TZ@ D F\WAS CHARACTER (*) ? FTR @ 03\YES, SKIP OVER MULTIPLY
00714 07120527	CLD @ 12\10 (DEC) T@ D LRC @ 27\LOAD REPEAT COUNTER FOR MULTIPLY
00715 15414332	MPS D A\10B T@ B ADM C B\10B + B T@ B

00716	14614455	BTR 0 16\GO BACK FOR NEW CHARACTER CIL L L\INCREMENT L
00717	36054606	STT PF 5\DECIMAL POINT INDICATOR) CPL Q N\CLEAR N
00720	32271603	TZ0 BSXF\DOES B = 0 ? FTR 0 03\YES, GO DIRECTLY TO STORE
00721	46214602	CPL B A\B TO A FOR NORMALIZATION CPL Q B\CLEAR B
00722	03215063	SLC 2 A\NORMALIZE INTEGER CPX N C\N TO C
00723	05275336	LRC 0 27 ADX C N\NUMBER SHIFTED (ACTUAL SCALE)
00724	21512166	STW 5 A\STORE INTEGER STW 6 N\STORE (ACTUAL SCALE)
00725	14524605	BTR 0 25\GO BACK FOR ANOTHER CHARACTER CPL Q L\CLEAR L
00726	32231615	TZ0 B XF\FRACTION = 0 ? FTR 0 15\YES, SKIP
00727	05273505	LRC 0 27\LOAD REPEAT COUNTER FOR DIVIDE TCF PF 5\IS THERE A FRACTION ?
00730	16142166	FTR 0 14\NO, SKIP STW 6 N\STORE (ACTUAL SCALE)
00731	41752753	ADF P L\LOCATION OF 10**L TO L LD L C\10**L TH C
00732	45121606	EXC A B\B TO A FOR DIVIDE FTR 0 06\SKIP OVER TABLE
00733	77777766	7777 7766\10**1
00734	77777634	7777 7634\10**2
00735	77776030	7777 6030\10**3
00736	77754360	7775 4360\10**4
00737	77474540	7747 4540\10**5
00740	74136700	7413 6700\10**6
00741	17312366	DVS C A\AB/10(DEC) TO B REMAINDER TO A LDW 6 N\ACTUAL SCALE TO N
00742	66622351	SSL ROM B\SHIFT B ROM (ACTUAL SCALE) LDW 5 A\INTEGER TO A

00743	43122152	ADM A B\COMBINE INTEGER AND FRACTION STW 5 B
00744	23520000	LDW 5 B\LOAD NUMBER INTO B NMP
00745	23615411	LDW 6 A\ACTUAL SCALE TO A CDL A A**
00746	23336311	LDW 3 C\DESIRED SCALE TO C CCL A A**2S COMPLIMENT OF A TO A
00747	55313751	ADL C A\DESIRED SCALE-ACTUAL SCALE TO A TCT A 1\IS DESIRED SCALE-ACT SCALE POSITIVE ?
00750	16025411	FTR 0 02\NO, SKIP TO SHIFT LEFT CDL A A\DECREMENT A
00751	46166662	CPL A N\COPY K TO N SSL R0M B\SHIFT B R0M N PLACES
00752	16122336	FTR 0 12\GO TO POSITIVE NEGATIVE TEST LDW 3 N\DESIRED SCALE TO N
00753	60164601	CCX A N\ABSOLUTE VALUE OF SCALE TO N CPL Q A\CLEAR A
00754	13312336	SDL L0L A\SHIFT AB LEFT LDW 3 N\DESIRED SCALE TO N
00755	32171607	TZ0 A SXF\DCES A = 0 ? FTR M 07\YES, TH RMSITIVE NEGATIVE TEST
00756	26741244	LDI P D\NO, SEL D D***** +++++ *****
00757	02006040	0200 6040
00760	07604643	CLD 0 60 CPL D C
00761	07320000	CLD 0 32\TYPE (SP) AND (?) NOP
00762	10230000	DTR 2 C NOP
00763	10240000	DTR 2 D NOP***** +++++ *****
00764	14040000	BTR 0 73\GO BACK TO START NOP
00765	00003706	NOP TCT PF 6\IS NUMBER POSITIVE ?
00766	54226322	CDL B B\NO, CCL B B\2S COMPLIMENT OF NUMBER TO B
00767	23142174	LDW 1 D

STW 7 D\MAIN PROGRAM RETURN ADDRESS TO WS 7

00770 23052323 LDW0 L\1ST LOCATION OF *STORAGE* TO L
LDW 2 C\ORIGINAL Toggles TO C

00771 26742651 LDI P D***** +++++ *****
LDI L A

00772 20712651 2071
2651\MOVE WORKING STORAGE

00773 52440604 CIX D D\BACK TO WORKING STORAGE
EMP D

00774 31661476 TMF 6 6
BTR 0 01***** +++++ *****

00775 23752171 LDW 7 L\RETURN ADDRESS TO L
STW 7 A\WS7 TO WS7

00776 10006500 DTR 0 Q\DISC0NNCT TYPEWRITER
CEM 0 Q\UNLOCK COMMUTATOR

00777 70570273 CPF L P\RETURN ADDRESS TO P
CTS 7 C\RESET MRGINAL T0GGLES

00000000 END A*

PB-440 PROGRAM ABSTRACT

PROGRAM TITLE: DECIMAL OUT II (SUBROUTINE)

PROGRAMMER: V. A. WAGNER

DATE: 27 March 1965

FUNCTION: To take a number in the B register (scale factor in the N register) in 2's complement format and output it in decimal form.

DESCRIPTION: The micro coded Decimal Out II is located from 500 to 621 octal. All storage used is contained in these locations. Output device is optional, the operator may choose the typewriter or any other device on line by a coded command word in the calling sequence. (SEE BELOW.)

OPERATING PROCEDURE: Decimal Out II is called using the following calling sequence:
LDI P L
EXC P L
OCT
X0Y00500
X equals either 0 or 4. If X equals 4, the routine does not select any device or lock the commutator; this must be done by the programmer before the routine is called. If X equals 0, the routine will select the typewriter for output on channel 3 and will output its information on the typewriter. Y equals 0 through 7 octal. For a listing of what effect this has, see attached page.

REGISTERS: Decimal Out II uses all the registers and in general destroys their contents or makes them meaningless.

FLAGS: Effectively none; however, uses PF 6 to determine if finished or not.

SENSE SWITCHES: None used

PROGRAM HALTS: None

COMMUTATOR: Unlocked at the end of this routine. If typewriter was selected, it is still selected at the end of this routine.

Y EQUALS OUTPUT

0	nnnnnnn.nnnnnn
1	nnnnnnn.nnnnn
2	nnnnnnn.nnnn
3	nnnnnnn.nnn
4	nnnnnnn.nn
5	nnnnnnn.n
6	nnnnnnn.
7	nnnnnnn

DECIMAL OUT II (SUBROUTINE)

LOC\@ 500

LDR*****

LDR\DECIMAL OUTPUT II

LDR\V. WAGNER

LDR*****

00500 46741610 CPL P D\1ST LOCATION OF WSTORAGE TO D
FTR @ 10\SKIP OVER WSTORAGE

00501 00000000 0000***** WSTORAGE *****
0000

00502 00000000 0000
0000

00503 00000000 0000
0000

00504 00000000 0000
0000

00505 00000000 0000
0000

00506 00000000 0000
0000

00507 00000000 0000
0000

00510 00000000 0000
0000***** WSTORAGE *****

00511 23032104 LDW 0 C\WS0 TO C
STW 0 D\1ST LOC OF WSTORAGE TO WS0

00512 24432313 STI D C\WS0 TO 1ST LOC OF WSTORAGE
LDW 1 C\WS1 TO C

00513 24432115 STI D C\WS1 TO NEXT LOC OF WSTORAGE
STW 1 L\RETURN ADDRESS TO WS1

00514 46452674 CPL D L*** --- ***
LDI P D

00515 23132453 2313
2453\MOVE THE REST OF WS

00516 52440604 CIX D D\TO WSTORAGE
EMP D

00517 31771476 TMF 7 7
BTR 01*** -4- ***

00520 77732123 CFS 7 C
STW 2 C\SAVE ALL TOGGLS IN WS2

00521 21312142 STW 3 A\SAVE A IN WS3

STW 4 B\SAVE B IN WS4

00522	23155455	LDW 1 L CDL L L
00523	27540270	LDM L D\CALL AND CONTROL WORD TO D CTS 7 Q\CLEAR ALL PF, TM AND CT
00524	33773606	TMT 7 Z\INTEGER ONLY? STT PF 6\YES, SET PF6 TRUE
00525	30441603	TNZ D S\SELECT TW FOR OUTPUT FTR 03\NO, SKIP OVER SELECT
00526	26741244	LDI P D\TW SELECT WORD TO D SEL D D\SELECT TW
00527	02006040	0200\TW SELECT WORD 6040
00530	65633402	C0M 6 C\CLOCK C0M TO CHANNEL 3 STF PF 2\SET PF2 TRUE
00531	32241602	TZ0 B S\IS NUMBER POSITIVE? FTR 02\YES, SKIP COMPLIMENT
00532	54226322	CDL B B CCL B B\2'S COMPLIMENT OF B TO B
00533	36010000	STT PF 1\SET PF1 TRUE N0P
00534	46011321	CPL Q A\CLEAR X SDL 2 A\SEPARATE INTEGER AND FRACTION
00535	21620711	STW 6 B\STORE FRACTION CLD 0 11\CLEAR D EXPONENT
00536	63434612	CCL D C\2'S COMPLIMENT OF 10 (DEC.) TO C CPL A B\INTEGER TO B
00537	46751610	CPL P L\1ST LOC OF NSTORAGE TO L FTR 0 10\SKIP OVER NSTORAGE
00540	00000000	0000***** NSTORAGE ***** 0000
00541	00000000	0000 0000
00542	00000000	0000 0000
00543	00000000	0000 0000
00544	00000000	0000 0000
00545	00000000	0000 0000

00546	00000000	0000 0000
00547	00000000	0000 0000***** NSTORAGE *****
00550	05274601	LRC @ 27\LRC FOR DIVIDE CPL Q A\CLEAR A
00551	17312451	DVS C A\AB/10 TO B REMAINDER TO A STI L A\STORE REMAINDER IN NSTORAGE
00552	52443023	CIX D D\INCREMENT MODE TNZ B XF\B =0?
00553	14740000	BTR 03\NO, GO BACK TO DIVIDE AGAIN NRP
00554	45430760	EXC D C\SAVE MODE CLD @ 60\SPACE TO D
00555	37010750	TCT PF 1\WAS NUMBER NEG? CLD @ 40\YES, + TO D
00556	24540760	STI L D\STORE SIGN IN NSTORAGE CLD M 60\SPACE TO D
00557	45430000	EXC D C\SPACE TO C MODE BACK TO D NRP
00560	33771602	TMT 7 7\MODE = 7? FTR 02\YES, SKIP SPACE FILL
00561	24535244	STI L C\STORE SPACE IN NSTORAGE CIX D D\INCREMENT MODE
00562	14750000	BTR 02\LOOP NRP
00563	05066366	LRC 06 CCL N N\=7 TO N
00564	54552754	CDL L L\LAST LOC OF NSTORAGE TO L LDM L D\LAST LOC OF NSTORAGE TO D
00565	10240000	DTR 2 D\OUTPUT NSTORAGE NRP
00566	32621601	TZ@ N X\N =0? FTR 01\YES SKIP
00567	14745266	BTR 03\LOOP CIX N N\INCREMENT N
00570	37061612	TCT PF 6\INTEGER ONLY? FTR @ 12\YES, SKIP FRACTION COMPUTATION
00571	23150733	LDW 1 L*** 1 CLD @ 33\(.) TO D
00572	10240000	DTR 2 D\OUTPUT (.) NRP

00573	54550505	CDL L L*** 1 LRC 05*** 2
00574	27536066	LDM L C\CONTROL WORD TO C CCX N N\=6 TM N
00575	23620712	LDW 6 B\FRACTION TO B CLD @ 12\10 (DEC.) TO D
00576	53630000	ADX N C\CONTROL WORD-6 TO C N@P
00577	32321603	TZ@ C X\DONE? FTR 03\YES, SKIP
00600	05274601	LRC @ 27\LRC FOR MULTIPLY CPL @ A\CLEAR X
00601	15415233	MPS D A\10B TO AB CIX C C\INCREMENT C
00602	14731021	BTR 04\LCOP DTR 2 A\OUTPUT A
00603	37021000	TCT PF 2\Did THIS ROUTINE SELECT TW? DTR 0 Q\YES, DISCONNECT TW
00604	23142174	LDW 1 D** STW 7 D\RETURN ADDRESS TO WS7
00605	23052323	LDW 0 L\1ST LOC OF WSTORAGE TO L LDW 2 C**
00606	02732331	CTS 7 C\RESET ALL IM, PF, AND CT LDW 3 A\RESET A
00607	23420000	LDW 4 B\RESET B N@P
00610	26742653	LDI P D*** --- *** LDI L C
00611	20732653	2073 2653\MOVE WSTORAGE 0-6
00612	52440604	CIX D D\BACK TO WS 0-6 E P D
00613	31661476	TMF 6 6 BTR 01*** --- ***
00614	23752173	LDW 7 L\RETURN ADDRESS TO L STW 7 C\WSTORAGE 7 TO WS 7
00615	65004657	C0M 0 Q\UNLOCK C0M CPL L P\RETURN
	00000000	END A*

PB-440 PROGRAM ABSTRACT

TYPE OF PROGRAM: MICRO SUBROUTINE
PROGRAM TITLE: MICRO TYPE
PROGRAMMER: D. R. GUM
DATE: 1 February 1965
ID: None
FUNCTION: The purpose of this program is to provide an efficient means of outputting program comments via the typewriter.
GENERAL DESCRIPTION: This program is a micro coded subroutine for use with micro or SCS programs. The program types out characters which are stored sequentially in memory four characters per word. The program requires the starting location of the characters in memory and the total number of words to be typed.
LOADING PROCEDURE: Load with Binary Loader I. This program is relocatable.
OPERATING PROCEDURE &
LINKAGE REQUIRED: The program operates as a subroutine of another program. A typical micro calling sequence is shown below.

<pre> LDI P C EXC P C 0000 0450 </pre>	Micro Type Address

The micro type address may be stored in working storage and the routine called as follows.

<pre> LDW O C EXC P C </pre>	Total Number of Words

PROGRAM STORAGE:	<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
Core	Micro Type	450-461	12 ₈
Biax	None		
INTERMEDIATE STORAGE:	None		
EXECUTION TIME:	N/A		
REGISTERS:	All except B		
SENSE SWITCHES:	None		
PROGRAM FLAGS:	None		

MICRO TYPE

LDR\MICRO TYPE

LDR\I FEB 1965

LOC @ 450

00450	27352636	LDM C L\BEGINNING ADDRESS INTO L LDI C N\NUMBER OF WORDS INTO N
00451	65632671	CJM 6 C\LOCK CJM LDI P A
00452	02006040	0200\SELECT WORD 6040
00453	12114604	SEL A A\SELECT FOR TYPE OUT CPL Q D\D + 0
00454	26515466	LDI L A\LOAD FROM L TO A CDL N N\N + N + 1
00455	67115244	SLS A A\SHIFT LEFT SIX CIX D D\INCREMENT D EXPONENT
00456	10210000	DTR 2 A\OUTPUT LAST SIX BITS OF A N@P
00457	31031475	TMF 0 3\MODE BITS OF D = 3? BTR 2\N@
00460	30621473	TNZ N X\YES, N = 0? BTR 4\N@, PICK UP NEW WORDS
00461	65014537	CJM 0\ A*YES, UNLOCK CJM EXC C P\RETURN TO PROGRAM
		LDR
		LDR
	00000450	END @ 450

PB-440 PROGRAM ABSTRACT

TYPE OF PROGRAM:	MICRO SUBROUTINE
PROGRAM TITLE:	MICRO PRINT
PROGRAMMER:	D. R. GUM
DATE:	1 February 1965
ID:	None
FUNCTION:	The purpose of this program is to provide an efficient means of outputting program comments via the Datamark printer.
GENERAL DESCRIPTION:	This program is a micro coded subroutine for use with micro or SCS programs. The program types out characters which are stored sequentially in memory four characters per word. The program requires the starting location of the characters in memory and the total number of words to be printed.
LOADING PROCEDURE:	Load with Binary Loader I. This program is relocatable.
OPERATING PROCEDURE &	The program operates as a subroutine of another program.
LINKAGE REQUIRED:	A typical micro calling sequence is shown below.
	<pre> LDI P C EXC P C 0000 0400 Micro Print Address </pre> <p>Total Number of Words</p> <p>Starting Address of Words</p>
	<p>The micro print address may be stored in working storage and the routine called as follows.</p> <pre> LDW O C EXC P C </pre> <p>Total Number of Words</p> <p>Starting Address of Words</p>

PROGRAM STORAGE:	<i>Program Segment</i>	<i>Octal Locs.</i>	<i>Total</i>
Core	Micro Print	400-426	27_8
Biax	None		
INTERMEDIATE STORAGE:	None		
EXECUTION TIME:	N/A		
REGISTERS:	All		
SENSE SWITCHES:	None		
PROGRAM FLAGS:	None		

MICRO PRINT

		LDR		MICRO PRINT
		LDR		1 FEB 1965
		LOC @ 400		
00400	60066600	CCX Q N		256 MICROSECOND DELAY
		SSL O Q		
00401	27352636	LDM C L		BEGINNING ADDRESS INTO L
		LDI C N		NUMBER OF WORDS INTO N
00402	21736562	STW 7 C		STORE RETURN
		CBM 6 B		LOCK CBM
00403	37431603	TCT IL 3		TEST INTERRUPT LINE 3
		FTR 3		
00404	26711211	LDI P A		
		SEL A A		SELECT ON CH. 2
00405	22004000	2200		SELECT WORD
		4000		
00406	10210000	DTR 2 A		OUTPUT SLEW CHARACTER
		NOP		
00407	07042651	CLD 4		D = 4
		LDI L A		LOAD FROM L TO A
00410	67115444	SLS A A		SHIFT LEFT SIX
		CDL D D		D = D - 1
00411	26725612	LDI P B		
		AND A B		MASK LAST SIX BITS OF A
00412	00000077	0000		
		0077		
00413	26735723	LDI P C		
		XOR B C		XOR WITH CR CODE
00414	00000052	0000		
		0052		
00415	30311603	TNZ C F		CARRIAGE RETURN?
		FTR 3		NO
00416	27721062	LDM P B		YES
		DTR 6 B		PRINT SPACE WITH EOM
00417	00000060	0000		
		0060		
00420	44031023	CIL Q C		
		DTR 2 C		OUTPUT SLEW CHARACTER
00421	10210000	DTR 2 A		OUTPUT CHARACTER
		NOP		
00422	30411465	TNZ D F		D = 0?
		BTR 0 12		NO

00423 54663062 CDL N N , YES, N = N-1
TNZ N X , N = 02

00424 14620000 BTR @ 15 , NO, PICK UP NEW WORD
NEP

00425 65010000 CBM 0 , A+ UNLOCK CBM
NEP

00426 23734537 LDW 7 C
EXC C P , RETURN TO PROGRAM

LDR

LDR

00000400 END @ 400

Appendix III.

RAYTHEON 440 MICRO COMMAND LIST

MNEMONIC	OCTAL	MEANING
ADF	41	Add fractions
ADL	55	Add logical
ADM	43	Add magnitudes
ADS	73	Add signs
ADX	53	Add exponents
AFK	40	Add fractions with carry
ALC	51	Add logical for carry
AMK	42	Add magnitudes with carry
AND	56	Logical product
BTR	14	Backward transfer relative
CCF	71	Copy complement fraction
CCL	63	Copy complement logical
CCM	62	Copy complement magnitude
CCS	61	Copy complement sign
CCX	60	Copy complement exponent
CDL	54	Copy decrement logical
CFS	77	Copy from special storage
CIL	44	Copy increment logical
CIX	52	Copy increment exponent
CLD	07	Copy literal to D-register
CLP	04	Copy literal to P-register
COM	65	Commutator control (I/O)
CPF	70	Copy fraction
CPL	46	Copy logical
CPM	47	Copy magnitude
CPS	72	Copy sign
CPX	50	Copy exponent
CTS	02	Copy to special storage
DTR	10	Data transfer (I/O)
DVS	17	Divide step
EMP	06	Execute micro pair

MNEMONIC	OCTAL	MEANING
EXC	45	Exchange
FTR	16	Forward transfer
HLT	01	Halt
LDI	26	Load and increment
LDM	27	Load from memory
LDS	22	Load from special storage
LDW	23	Load from working storage
LOR	64	Logical "OR"
LRC	05	Load repeat count (N Register)
MPS	15	Multiply step
NOP	00	No operation
SDL	13	Shift double length
SEL	12	Select (an I/O device)
SFR	11	Shift floating right
SL6	67	Shift left six
SLC	03	Shift left and count
SSL	66	Shift single length
STI	24	Store and increment
STM	25	Store into memory
STF	34	Set toggle false
STS	20	Store into special storage
STT	36	Set toggle true
STW	21	Store into working storage
TCF	35	Test condition false
TCT	37	Test condition true
TMF	31	Test mode bits (of D register) false
TMT	33	Test mode bits (of D register) true
TNZ	30	Test non-zero
TZO	32	Test zero
XOR	57	Exclusive "OR"

Appendix IV.

RAYTHEON 440 SYSTEMS COMMAND SET LIST

1. DATA TRANSMISSIONS

MNEMONIC	MEANING
ENA	Enter A-register
ENB	Enter B-register
LAC	Load A-register with complement
LBC	Load B-register with complement
LDA	Load A-register
LBD	Load B-register
MOV	Move (A block of data)
PDQ	Push down QUEUE
SAA	Store address field of A-register into memory
SAB	Store address field of B-register into memory
STA	Store A-register into memory
STB	Store B-register into memory
STZ	Store zero into memory
XAB	Exchange A and B registers
ZTS	Zeros to memory

2. ARITHMETIC

ADA	Add memory to A-register
ADB	Add memory to B-register
CLA	Clear A-register
CLB	Clear B-register
DIV	Divide AB registers by memory
DMO	Decrement memory by one
IMO	Increment memory by one
INA	Increment A-register
INB	Increment B-register
MPY	Multiply B-register by memory
RAD	Replace-Add A-register and memory
RSB	Replace-Subtract A-register from memory
SBA	Subtract memory from A-register
SBB	Subtract memory from B-register

3. TRANSFERS

MNEMONIC	MEANING
RET	Return (indirect jump)
TAP	Transfer if A-register positive
TAZ	Transfer if A-register zero
TBP	Transfer if B-register positive
TBZ	Transfer if B-register zero
TOV	Transfer if overflow is indicated
TRA	Unconditional transfer
TSR	Unconditional transfer and set return

4. COMPARES AND SKIPS

CAE	Skip next command if A-register equals memory
CAG	Skip next command if A-register greater than memory
CAL	Skip next command if A-register less than memory
CAM	Skip next two commands if A-register greater than memory; skip next command if A-register less than memory
CBE	Skip next command if B-register equals memory
CBG	Skip next command if B-register greater than memory
CBL	Skip next command if B-register less than memory
CME	Skip next command if A-register equals memory masked by B-register
SMP	Skip next command if memory is positive
SMZ	Skip next command if memory equals zero
TLU	Table look-up

5. SHIFTS and LOGICAL

AND	Logical product of memory and A-register
CMA	Complement A-register
CMB	Complement B-register
LOR	Logical sum of memory and A-register
RLA	Shift A-register left circular
RLB	Shift B-register left circular
RLC	Shift AB-registers left circular
SLA	Shift A-register left open

5. SHIFTS and LOGICAL – (continued)

MNEMONIC	MEANING
SLB	Shift B-register left open
SLC	Shift AB-registers left open
SRA	Shift A-register right open
SRB	Shift B-register right open
SRC	Shift AB-registers right open
SSU	Selective substitute of bits in A-register and memory
XOR	Exclusive “OR” of memory and A-register

6. INDEXING

ATX	A-register to index register
BTX	B-register to index register
DXT	Decrement index register and transfer if non-zero
ENX	Enter index registers
INX	Increment index register
IXS	Increment index register by one and skip next command if index register equals specified literal
LDX	Load index register
STX	Store index register
TSX	Transfer and set index register to address of next command
XTA	Index register to A-register
XTB	Index register to B-register

7. FLOATING POINT (16, 24, or 39 bit mantissa)

FAD	Floating add
FDV	Floating divide
FIX	Fix (a floating point number)
FLD	Floating load
FLT	Float (a fixed point number)
FMP	Floating multiply
FSB	Floating subtract
FST	Floating store
FTO	Floating transfer on overflow

8. SPECIAL

<i>MNEMONIC</i>	<i>MEANING</i>
EMP	Execute micro pair
NOP	No operation
HLT	Halt and transfer
MRC	Micro subroutine call
DML	Descend to micro level
CLM	Compare limits
SCS	Set control sequence

References

1. Andresen, K. W. and D. Ewing, *A Study of Digital Computers for a Real-Time Training Simulation Research System*, AMRL-TDR-64-22 (AD 601 649), Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio, May 1964.
2. Illinois Institute of Technology, *ADIOCE Calibration/Diagnostic Program for Real-Time Training Simulation Research System*, Chicago, Illinois, October 1964. (Unpublished technical manual compiled under contract AF 33(657)-11007 for Wright-Patterson Air Force Base, Ohio.)
3. Illinois Institute of Technology, *An Introduction to Programming ADIOCE*, Chicago, Illinois, October 1964. (Unpublished technical manual compiled under contract AF 33(657)-11007 for Wright-Patterson Air Force Base, Ohio.)
4. Packard Bell Computer, *An Introduction to PB-440 Micro Programming*, Santa Ana, California, 1962.
5. Packard Bell Computer, *An Introduction to PB-440 Peripheral Equipment Microprogramming*, Santa Ana, California, 1962.
6. Packard Bell Computer, *PB-440 Systems Command Set*, Santa Ana, California, 1963.
7. Sylvania Electric Products, Inc., *The UDOFT Flight Simulation System*, AMRL-TDR-63-133 (AD 431 205), Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio, December 1963.

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Aerospace Medical Research Laboratories Aerospace Medical Div., Air Force Systems Command, Wright-Patterson AFB, Ohio 45433	2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
	2b. GROUP N/A

3. REPORT TITLE AUTOMATED INPUT/OUTPUT DIAGNOSTICE FOR A REAL-TIME SIMULATION RESEARCH SYSTEM

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report - April 1964 to April 1965

5. AUTHOR(S) (First name, middle initial, last name)

Gum, Don R.
Knoop, Patricia A.

6. REPORT DATE October 1966	7a. TOTAL NO. OF PAGES 158	7b. NO. OF REFS 7
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)	
b. PROJECT NO. 6116	AMRL-TR-66-133	
c. Task No. 611408	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
d.		

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Aerospace Medical Research Laboratories Aerospace Medical Div., Air Force Systems Command, Wright-Patterson AFB, O. 45433
-------------------------	---

13. ABSTRACT

This report describes a library of automated diagnostic test-programs for the real-time input/output section of a digital training simulation research system. The application of such automated test to simulation-system acceptance testing is explored. Included is a description of real-time simulation as a training technique and the Real-Time Simulation Research Systems (RTSRS) for which the test-programs were prepared. Detailed program listings, flow charts, and abstracts of each test and of utility subroutines are also provided.

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Digital Computers Flight Simulators Real Time Training Devices Simulation Special Purpose Computers Analog-to-Digital Converters Multiplexer Digital-to-Analog Converters Systems Engineering						