Genetics and Molecular Biology: Lecture 3

Morgan McCarty

09 September 2024

- Genome and Chromosome Structure
 - Genomes consist of one or more chromosomes a large continuous DNA molecule
 - Classes of Cells
 - * Prokaryotic cells "before nucleus":
 - 1. Archaea, Eubacteria (domains)
 - 2. 1-5 μ m in diameter
 - 3. DNA stored in cytoplasm
 - 4. Only single-celled organisms
 - * Eukaryotic cells "true nucleus":
 - 1. Eukarya (domain)
 - 2. DNA stored in nucleus (membrane-bound)
 - 3. Organelles with specialized tasks
 - 4. 10-100 μ m in diameter
 - 5. Single-celled and multicellular organisms
 - Genome Architecture
 - * Prokaryotes:
 - 1. Very diverse
 - 2. One or more chromosomes (linear or circular)
 - 3. Can also have circular pplasmids not needed to survive: smaller than chromosomes, gained or lost due to environmental conditions
 - * Eukaryotes:
 - 1. Multiple linear chromosomes
 - 2. Chromosomes do not loop
 - Genome Size: E. coli: 4639 kilobases (kb) (0.006 ft); Human: 3200000 kb (6 ft)
 - Chromosome rearrangement causes chromosome number to vary between species
- Eukaryotic Chromosomes
 - Made of Chromatin DNA wrapped around histone proteins
 - Nucleosome DNA strans wrap as unit around histone "bead on a string"
 - 1. 8 histones per nucleosome
 - 2. Arrange into higher order packing patters: 30nm filament from nucleosomes /rightarrow extended form of chromosome /rightarrow condensed section of chromosome /rightarrow mitotic chromosome

- Cohesin proteins help pack DNA: bring sister chromatids together during mitosis, repair DNA
- Chromosome Condensation
 - More tightly packed DNA: genes less likely to be read to make proteins
 - Euchromatin: loosely packed, DNA actively being used to produce proteins
 - Heterochromatin: tightly packed, DNA not being read to produce proteins
- Covalent Modifications to Histine Proteins and DNA Changes DNA Packing Density
 - Acetylation of histone proetins loosens DNA packing (acetyl groups are polar) acetylated histones are more likely to be Euchromatin
 - Methylation of histone proteins and DNA tightens DNA packing (methyl groups are nonpolar)

• RNA Structure

- RNA vs. DNA
 - * RNA is single-stranded (usually)
 - * RNA has uracil instead of thymine
 - * RNA uses ribose instead of deoxyribose (sugar backbone)
 - * RNA can also make base pairs either on hte same RNA molecule, on different RNA molecules, or with DNA (with a single strand)
 - * RNA folds into 3D structures based on base pairing

• DNA Replication

- DNA: Double Helix of Anti-Parallel Strands
 - * One strand: 5' to 3'
 - * Other strand: 3' to 5'
 - * Sugar phosphate backbones
 - * Base pairs: $A = T, G \equiv C$
- Cell Division
 - * Prior: DNA must be replicated to make two identical copies for daughter cells
 - * Chromosome duplication and Condensation
 - * Separation of sister chromatids into two chromosomes
- Complementary strands allow for sinple replication of DNA
- Definitions:
 - * Origin of Replication: specific sites (sequences) where replication starts
 - * Replication Bubble: expanded area of replicated DNA
 - * Replication Fork: site of active replication, two per Bubble