Multispecies Model- Dorazio Notation

Kristin Broms, Viviana Ruiz-Guiterrez, John Tipton

February 17, 2014

1 Introduction and motivation

2 Model of one season detection

2.1 Modelling assumptions

- There is an ecological motivation for the detection probabilities, the p, coming from a common distribution and the ocucpancy probabilities, the Ψ , coming from a common distribution
- ullet There is no heterogeneity in unobserved covariates for p and Ψ
- All species are "theoretically" available to be sampled
- No seasonality
- Closed populations within the K visits
- The actual number of species, N, lies between the observed number of species n and the number of augmented species Ω

2.2 Data model

For $j=1,\ldots,J$ sites, $i=1,\ldots,N$ 'actual' species (out of a total of Ω species), and for $k=1,\ldots,K$ revisits at each site

$$y_{ij} = \begin{cases} 0 & \text{if } Z_{ij} = 0\\ \text{Binom}(K, p_i) & \text{if } Z_{ij} = 1 \end{cases}$$

where y_{ij} is the number of times that species i is seen at site j during K visits, Z_{ij} is an indicator of presence or absence of species i at site j, and p_i is the detection probability for species i.

2.3 Process

$$Z_{ij} = \begin{cases} 0 & \text{if } W_i = 0\\ \text{Bern}(\Psi_i) & \text{if } W_i = 1 \end{cases}$$
$$p_i \sim \text{Beta}(\alpha_p, \beta_p)$$
$$\Psi_i \sim \text{Beta}(\alpha_{\Psi}, \beta_{\Psi})$$
$$W_i \sim \text{Bern}(\lambda)$$

where W_i is an indicator of whether a species exists or not in the population; $\sum_{i=1}^{\Omega} W_i = N$ is the species richness; Ψ_i is the presence probability for species i; and λ is the probability of a species being real.

2.4 Parameter

$$\begin{split} &\alpha_p \sim \operatorname{Gamma}(\alpha_{\alpha_p}, \beta_{\alpha_p}) \\ &\beta_p \sim \operatorname{Gamma}(\alpha_{\beta_p}, \beta_{\beta_p}) \\ &\alpha_\Psi \sim \operatorname{Gamma}(\alpha_{\alpha_\Psi}, \beta_{\alpha_\Psi}) \\ &\beta_\Psi \sim \operatorname{Gamma}(\alpha_{\beta_\Psi}, \beta_{\beta_\Psi}) \\ &\lambda \sim \operatorname{Beta}(\alpha_\lambda, \beta_\lambda) \end{split}$$

3 Ideas

- model $\Psi_k = f(\Psi_{-i}) + \text{randomness}$ and species interaction
- $Z_{ij} = \begin{cases} 0 & \text{if } W_i = 0 \\ \text{Bern}(\Psi_i) & \text{if } W_i = 1 \end{cases}$ where W_i represents "ghost species"
- Let Ω represent the total number of possible species, $\Omega \geq N \geq n$
- $W_i \sim \text{Bern}(\lambda) \Leftrightarrow N \sim \text{Binom}(\Omega, \lambda) \Leftrightarrow \sum_{i=1}^{\Omega} W_i = N$
- Goal: estimate Ψ_i and predict N

4 Posterior

$$\begin{bmatrix}
\mathbf{Z}, \mathbf{p}, \mathbf{\Psi}, \mathbf{W}, \alpha_{p}, \beta_{p}, \alpha_{\Psi}, \beta_{\Psi}, \lambda | \mathbf{y}, K] \propto \\
\prod_{i=1}^{\Omega} \left[\prod_{j=1}^{J} [y_{ij} | K, p_{i}]^{Z_{ij}} I\{y_{ij} = 0\}^{(1-Z_{ij})} [Z_{ij} | \Psi_{i}]^{W_{i}} I\{Z_{ij} = 0\}^{(1-W_{i})} \right] [p_{i} | \alpha_{p}, \beta_{p}] [\Psi_{i} | \alpha_{\Psi}, \beta_{\Psi}] [W_{i} | \lambda] \\
\times [\alpha_{p}] [\beta_{p}] [\alpha_{\Psi}] [\beta_{\Psi}] [\lambda] \quad (1)$$

5 Full conditionals

5.1 Z_{ii}

For
$$W_i = 0$$
, $Z_{ij} = 0$.

For
$$y_{ij} \ge 1$$
, $Z_{ij} = 1$.

For $y_{ij} = 0$ and $W_i = 1$:

$$[Z_{ij}|\cdot] \propto [y_{ij}|K, p_i]^{Z_{ij}} I\{y_{ij} = 0\}^{(1-Z_{ij})} [Z_{ij}|\Psi]^{W_i} I\{Z_{ij} = 0\}^{(1-W_i)}$$

$$\propto (1-p_i)^{JZ_{ij}} \Psi_i^{Z_{ij}W_i} (1-\Psi_i)^{(1-Z_{ij})W_i}$$

$$\propto ((1-p_i)^K \Psi_i)^{Z_{ij}} (1-\Psi_i)^{(1-Z_{ij})}$$

which is $\operatorname{Bern}(\tilde{\Psi}_i)$ where $\tilde{\Psi}_i = \left((1 - p_i)^K \Psi_i \right) / \left((1 - p_i)^K \Psi_i + (1 - \Psi_i) \right)$

5.2 p_i

$$[p_{i}|\cdot] \propto \prod_{j=1}^{J} [y_{ij}|K, p_{i}]^{Z_{ij}} [p_{i}|\alpha_{p}, \beta_{p}]$$

$$\propto \prod_{j=1}^{J} (p_{i}^{y_{ij}} (1 - p_{i})^{K - y_{ij}})^{Z_{ij}} p_{i}^{(\alpha_{p} - 1)} (1 - p_{i})^{(\beta_{p} - 1)}$$

$$\propto p_{i}^{(\alpha_{p} - 1 + \sum_{j=1}^{J} y_{ij} Z_{ij})} (1 - p_{i})^{(\beta_{p} - 1 + \sum_{j=1}^{J} Z_{ij} (K - y_{ij}))}$$

which is Beta $(\alpha_p + \sum_{j=1}^J y_{ij} Z_{ij}, \beta_p + \sum_{j=1}^J Z_{ij} (K - y_{ij}))$

5.3 Ψ_i

$$\begin{split} [\Psi_i|\cdot] &\propto \prod_{j=1}^J [Z_{ij}|\Psi_i]^{W_i} [\Psi_i|\alpha_{\Psi},\beta_{\Psi}] \\ &\propto \left(\prod_{j=1}^J \Psi_i^{Z_{ij}} (1-\Psi_i)^{(1-Z_{ij})}\right)^{W_i} \Psi_i^{(\alpha_{\Psi}-1)} (1-\Psi_i)^{(\beta_{\Psi}-1)} \\ &\propto \Psi_{ij}^{(\alpha_{\Psi}-1+W_i\sum_{j=1}^J Z_{ij})} (1-\Psi_i)^{(\beta_{\Psi}-1+W_i\sum_{j=1}^J (1-Z_{ij}))} \end{split}$$

which is Beta $(\alpha_{\Psi} + W_i \sum_{j=1}^{J} Z_{ij}, \ \beta_{\Psi} + W_i \sum_{j=1}^{J} (1 - Z_{ij}))$

$5.4 W_i$

If $\sum_{j=1}^{J} Z_{ij} > 0$, then $W_k = 1$. So only sample for $\sum_{j=1}^{J} Z_{ij} = 0$.

$$[W_{i}|\cdot] \propto \prod_{j=1}^{J} [Z_{ij}|\Psi_{i}]^{W_{i}}[W_{i}|\lambda]$$

$$\propto \left(\prod_{j=1}^{J} \Psi_{i}^{(Z_{ij}W_{i})} (1-\Psi_{i})^{((1-Z_{ij})W_{i})}\right) \lambda^{W_{i}} (1-\lambda)^{(1-W_{i})}$$

$$\propto \left(\Psi_{i}^{\sum_{j=1}^{J} Z_{ij}} (1-\Psi_{i})^{\sum_{j=1}^{J} (1-Z_{ij})} \lambda\right)^{W_{i}} (1-\lambda)^{(1-W_{i})}$$

which is $\operatorname{Bern}(\tilde{\lambda})$ where $\tilde{\lambda} = \left((1 - \Psi_i)^J \lambda \right) / \left((1 - \Psi_i)^J \lambda + (1 - \lambda) \right)$

5.5 α_p

$$[\alpha_p|\cdot] \propto \prod_{i=1}^{\Omega} [p_i|\alpha_p, \beta_p][\alpha_p]$$

where $[p_i|\alpha_p,\beta_p]$ is $\mathrm{Beta}(\alpha_p,\beta_p)$ and $[\alpha_p]$ is $\mathrm{Gamma}(\alpha_{\alpha_p},\beta_{\alpha_p})$. This can be sampled using Metropolis-Hastings

5.6 β_p

$$[\beta_p|\cdot] \propto \prod_{i=1}^{\Omega} [p_i|\alpha_p, \beta_p][\beta_p]$$

where $[p_i|\alpha_p,\beta_p]$ is $\mathrm{Beta}(\alpha_p,\beta_p)$ and $[\beta_p]$ is $\mathrm{Gamma}(\alpha_{\beta_p},\beta_{\beta_p})$. This can be sampled using Metropolis-Hastings

5.7 α_{Ψ}

$$[\alpha_{\Psi}|\cdot] \propto \prod_{i=1}^{\Omega} [\Psi_i|\alpha_{\Psi}, \beta_{\Psi}][\alpha_{\Psi}]$$

where $[\Psi_i|\alpha_{\Psi},\beta_{\Psi}]$ is Beta $(\alpha_{\Psi},\beta_{\Psi})$ and $[\alpha_{\Psi}]$ is Gamma $(\alpha_{\alpha_{\Psi}},\beta_{\alpha_{\Psi}})$. This can be sampled using Metropolis-Hastings

5.8 β_{Ψ}

$$[\beta_{\Psi}|\cdot] \propto \prod_{i=1}^{\Omega} [\Psi_i|\alpha_{\Psi}, \beta_{\Psi}][\beta_{\Psi}]$$

where $[\Psi_i|\alpha_{\Psi},\beta_{\Psi}]$ is $\mathrm{Beta}(\alpha_{\Psi},\beta_{\Psi})$ and $[\beta_{\Psi}]$ is $\mathrm{Gamma}(\alpha_{\beta_{\Psi}},\beta_{\beta_{\Psi}})$. This can be sampled using Metropolis-Hastings

5.9 λ

$$[\lambda|\cdot] \propto \prod_{i=1}^{\Omega} [W_i|\lambda][\lambda]$$

$$\propto \prod_{i=1}^{\Omega} \lambda^{W_i} (1-\lambda)^{(1-W_i)} \lambda^{(\alpha_{\lambda}-1)} (1-\lambda)^{(\beta_{\lambda}-1)}$$

which is $\text{Beta}(\alpha_{\lambda} + \sum_{i=1}^{\Omega} W_i, \beta_{\lambda} + \sum_{i=1}^{\Omega} (1 - W_i))$

6 Next Steps

• Include a probit link function.