~

LOGISTIC REGRESSION

A Powerful Tool for Classification

BASICS OF LOGISTIC REGRESSION

Classification Algorithm:

- One outcome variable (analysed in what follows)
- Multiple outcome variables
- ordered logistic regression (not covered here)
- unordered logistic regression (not covered here) »

A MOCK-UP EXAMPLE TO INTRODUCE THE IDEA

▼ Code

Income and Yacht Ownership

Yacht	1	0	0	0	0	1	1	1	1	┖
Income	45	50	52	09	29	250	280	320	370	500
Name	Jack	Sarah	Carl	Eric	Zoe	James	Enrico	Erica	Stephanie	Susan

USING OLS IS A TEMPTING (BUT BAD) IDEA

https://econ.lange-analytics.com/aibook/

USING OLS IS A TEMPTING (BUT BAD) IDEA

QUICK WAY TO FIND A DECISION BOUNDARY

- 1. Find the intersection point between the prediction line and the horizontal 0.5 probability line.
- 2. Draw a vertical line through the intersection point. This line is called a **decision boundary**.

WHY OLS FOR CLASSIFICATION IS A BAD IDEA

Note, incomes > \$370,000 are predicted with a probability > 100% to be yacht owners(?) E.g. probability of owning a yacht for an income of \$500,000 is 125% (?)

A similar problem can occur with negative probabilities!

200 450 400 350 300 Income in \$1,000 250 150 100 - 29 Probability of Yacht Ownership - 00.0 1.25 -0.25 -

A STEP-FUNCTION AS AN ALTERNATIVE TO OLS

POPULAR STEP-FUNCTIONS (SIGMOID FUNCTION)

- The Hyperbolic Tangent function.
- The Arc Tangent function.
- The Logistic function (confusingly sometimes also called the sigmoid function).

$$y_i = rac{1}{1+e^{-x_i}}$$

佘

1

THE LOGISTIC FUNCTION

The Logistic function (confusingly sometimes also called the sigmoid function):

$$y_i = rac{1}{1+e^{-x_i}}$$

We use: $y_i = P^{rob}_{yes,i}$ and $x_i = eta_1 Inc_i + eta_2$ which gives us:

$$P_{yes,i}^{rob} = rac{1}{1+e^{-(eta_1 Inc_i+eta_2)}}$$

 $eta_1=1$ and $eta_2=0$ gives the org. logistic function. 🧐 eta_1 and eta_2 change slope and position

WHAT MAKES THE LOGISTIC FUNCTION SO SPECIAL?

- COMPARED TO OTHER SIGMOID (STEP) FUNCTIONS -

Time for some mathematical magic:

Logistic function $P_{yes,i}^{rob}$:= probability for positive event (e.g. yacht

ownership: yes):

$$P_{yes,i}^{rob} = rac{1}{1+e^{-(eta_1 \cdot x_i + eta_2)}}$$

Take the inverse on both sides of the equation:

$$rac{1}{P_{rob}^{rob}} = 1 + e^{-(eta_1 \cdot x_i + eta_2)}$$

Subtract 1 on both sides:

$$rac{1}{P_{rob}^{rob}}-1=e^{-(eta_1\cdot x_i+eta_2)}$$

 $rac{P_{yes,i}^{rob}}{P_{yes,i}^{rob}}$ and substitute -1 accordingly, we get Consider that -1

after simplification:

$$rac{1-P_{yes,i}^{rob}}{P_{rob}^{rob}}=e^{-(eta_1\cdot x_i+eta_2)}$$

 $1-P_{yes,i}^{rob}$ equals by definition $P_{no,i}^{rob}$:

$$rac{Prob}{Prob} = e^{-(eta_1 \cdot x_i + eta_2)} \ rac{Prob}{yes,i}$$

Take again the inverse on both sides:

Take the logarithm on both sides:

$$\ln \left(rac{P_{vob}^{rob}}{P_{no,i}^{rob}}
ight) = eta_1 \cdot x_i + eta_2$$

ONE MORE STEP — ODDS VS PROBABILTIES

- The fraction of the yes/no probabilities can be interpreted as Odds as they are often used in betting.
- Example: The probability of getting two heads when flipping two coins is is $P_{yes,i}^{rob}=0.25.$
- Consequently, the probability of **not** getting two heads when flipping two coins is $P_{no,i}^{rob}=0.75.$
- Odds for 2 Heads compared to **not** 2 heads is 1 to 3 or 33%:

$$\mathcal{F}_{dds}^{rob} = rac{P_{yes,i}^{rob}}{P_{no,i}^{rob}} = rac{0.25}{0.75} = rac{1}{3} = 0.33$$

INTERPRETATION OF THE eta s: Yacht ownership

$$\ln(O^{dds}) = \ln\left(rac{P^{rob}}{P^{rob}}
ight) = 0.02 \cdot Inc_i + (-2.7)$$

Model results after running and printing the workflow():

▼ Code

```
Residual
                                                                                                                                                                                                                                                                                         Degrees of Freedom: 9 Total
                                                                                                                                                                                                                                 Income
Workflow [trained]
                                                                                                                                                                                                                                                                                                          Null Deviance:
                                                                                                                                                                                                             Coefficients:
                                                                                                                                                                                                                                                   -2.68660
                                                                                                                                                                                                                                  (Intercept)
                                                                                                                                    Model
```

https://econ.lange-analytics.com/aibook/

INTERPRETATION OF THE eta s: Yacht ownership

$$\ln(O^{dds}) = \ln\left(rac{P_{yes,i}^{rob}}{P_{no,i}^{rob}}
ight) = 0.02 \cdot Inc_i + (-2.7)$$

- If income increases by 1 (\$1,000) the logarithm of the odds increases by 0.02.
- Since change of a logarithm is a relative change (percentage):

If income increases by 1 (\$1,000) the odds increases by 2% (0.02). (careful with the results because data were made up and N is too small!)

CONFUSION MATRIX

workflow) here. This is not a proper methodology but good enough Note, in the mockup we did not create training and testing data. Therefore, we use Data Yachts (the data we used to fit/train the for the mock-up:

▼ Code

```
rediction 0 1 0 4 1 1 0 5
```

REAL WORLD CHURN ANALYSIS WITH LOGISTIC REGRESSION — THE DATA

We use data (7,043 customers) of the fictional telecommunication company TELCO, generated by IBM for training purposes:

- within the last month ($Churn = \overline{Yes}$) or not (Churn = No). ullet The outcome variable Churn indicates, if a customer departed
- Predictor variables contain:
- Customers' Gender (Female or Male),
- Customers' SeniorCitizen status (0 for no or 1 for yes),
- Customers' Tenure with TELCO (month of membership),
- Customers' MonthlyCharges (in US-\$), as well as
- Customers' TotalCharges (in US-\$).

REAL WORLD CHURN ANALYSIS WITH LOGISTIC REGRESSION - THE

▼ Code

TotalCharges	29.85	1889.50	108.15	1840.75	151.65	820.50
MonthlyCharges	29.85	56.95	53.85	42.30	70.70	99.62
Tenure		34	2	45	2	8
SeniorCitizen	0	0	0	0	0	0
Gender	Female	Male	Male	Male	Female	Female
Churn	No	No	Yes	No	Yes	Yes
		\sim	∞	4	2	9

REAL WORLD CHURN ANALYSIS WITH LOGISTIC REGRESSION

- DO IT YOURSELF -

Create the Churn analysis with logistic regression. Click on the link in the footer to get an R-script with a skeleton for the analysis. 🧐

RESULTS FROM CHURN ANALYSIS WITH LOGISTIC REGRESSION

Confusion Matrix:

S N	147	1401
Yes	235	326
	Yes	S S

Accuracy:

estimate.	0.7757231
estimator.	binary
.metric	accuracy

Sensitivity:

estimate.	0.4188948
.estimator	binary
.metric	sensitivity

Specificity:

estimate.	0.9050388
.estimator	binary
.metric	specificity

Hint: What do the column sums of the confusion matrix tell you?

PROBLEM: UNBALLANCED TRAINING DATA

L	1308	3621
Churn	Yes	S S S

Majority Class: Churn = No has 3621 observations in the training dataset.

Minority class Churn = Yes has 1308 observations in the training dataset.

WHAT CAN WE DO?

u	1308	3621
Churn	Yes	o N

- Downsampling: Randomly delete observations from majority **class** until ratio of the observations from the majority and the minority class reaches the desired ratio (e.g., 1:1).
- Upsampling: In simplest version, creates new observations for the minority class until the ratio of the observations from the majority minority class by copying randomly chosen observations from the and the minority class reaches the desired ratio (e.g., 1:1).
- Often, a combination of downsampling and upsampling is performed.

PERFORMING DOWN-SAMPLING WITH step_upsample()

add step_downsample(Churn) to the recipe (don't forget to execute You need to add the R package themis. Then in your script, you can the following command lines again). As a reminder our original DataTrain had 4,929 observations, $Churn_{Yes}=1308$, $Churn_{No}=3621:$

▼ Code

u	1308	1308
Churn	Yes	S N

Note, the number of observations has decreased by 2313. This is an information loss!

PERFORMING UP-SAMPLING WITH step_upsample()

You need to add the R package themis. Then in your script, you can add step_upsample(Churn) to the recipe (don't forget to execute the following command lines again). As a reminder our original DataTrain had 4,929 observations, $Churn_{Yes}=1308,$ $Churn_{No}=3621:$

▼ Code

u	3621	3621
Churn	Yes	S N

Note, the number of observations has increased by 2313. The information in the dataset has not increased!

PERFORMING UP-SAMPLING WITH step_smote(). WHAT IS THE ADVANTAGE

As a reminder our original DataTrain had 4,929 observations, $Churn_{Yes} = 1308, Churn_{No} = 3621:$

▼ Code

Instead of copying a record from the training dataset, step_smote finds the Nearest Neighbor to that record and creates a new record that has features generated as a weighted average between the Nearest Neighbor and the original record.