Adrian Helberg

Arbeitspaket

Hibertsparket

Arbeitspaket 3
Arbeitspaket 4

Arheitspaket 5

Arbeitspaket 5

Arbeitspakete

Adrian Helberg

3. November 2020

- Arbeitspaket 1
 - Arbeitspaket
- Arbeitspaket 3
 Arbeitspaket 4
- Arbeitspaket 5

Hier soll die Benutzerschnittstelle erstellt werden. Es umfasst die Bereiche:

- I. Strukturieren
- II. Visualisieren

- Der Benutzer des Systems nutzt die Benutzerschnittstelle, um eine Verzweigungsstruktur zu erstellen
- ➤ Ziel ist die Weitergabe der erstellten Struktur mit Informationen wie Topologie und Transformationen an den nächsten Arbeitsschritt

- Das Programm soll folgenden Workflow umsetzen:
 - 1 Erster Anker ist vorselektiert
 - 2 Widerhole, bis Struktur erstellt ist:
 - 2.1 Selektiere ein Template aus der Liste
 - 2.2 Setze Parameter
 - 2.3 Bestätige Auswahl und Parameter
 - 2.4 Zeichne ausgewähltes Template mit Parametern
 - 2.5 Wähle nächsten Anker aus

Schlüsselwörter

Abbildung: Legende

Arbeitspakete

Adrian Helberg

Arbeitspaket 1

Arbeitspaket

Arbeitspaket 3

Arbeitspaket 4

/ ii beitspaket 5

Beispiel

Abbildung: Erster Anker ist vorselektiert

Abbildung: Setze Parameter (1/2)

Adrian Helberg

Arbeitspaket 1

Arbeitspaket

Arbeitspaket 3
Arbeitspaket 4

Beispiel

Abbildung: Setze Parameter (2/2)

Abbildung: Zeichne Template nach Bestätigung (apply)

Arbeitspaket 1

Arbeitspaket

Arbeitspaket 3

Arbeitspaket 4

Beispiel

Abbildung: Selektierter Anker 1

Abbildung: Selektierter Anker 2

◆□▶◆□▶◆■▶◆■▶ ■ か900

Adrian Helberg

Arbeitspaket 1

Arbeitspaket

Arbeitspaket 3

, ii baitapaitat o

Arbeitspaket 2

Arbeitspaket 3
Arbeitspaket 4

Arbeitspaket 5

Hier soll eine Baumstruktur aufgebaut werden. Es umfasst die Bereiche:

III. Datengenerierung

- Arbeitspaket 1
- Arbeitspaket 2
- Arbeitspaket 3
 Arbeitspaket 4
- Arbeitspaket 5

- ► **Templates** sind beliebige, atomare Verzweigungsstrukturen
- ► **Instanzen** sind transformierte Templates (z.B. skalierte, rotierte Templates)
- Die in Arbeitspaket 1 erstellte Struktur stellt eine Sammlung von verknüpften Template-Instanzen dar

Topologie und Transformation der Struktur sollen in einer Baumstruktur organisiert werden:

- ► Knoten entprechen Instanzen
- ► Kanten verknüpfen Eltern-Knoten mit ihren Kind-Knoten und stellen Parameter wie Rotation und Skalierung (relativ zum Eltern-Knoten) dar
- ▶ Blätter sind Instanzen ohne Kindknoten
- Jeder Kindknoten hate genau einen Elternknoten, also eine eingehende Kante, und n Kindknoten, also n ausgehende Kanten

Arbeitspaket 5

Der resultierende Baum ist ein Wurzelbaum (Syntaxbaum):

Der Baum ist ein gerichteter, geordneter, azyklischer Graph, in dem genau ein Knoten w Eingangsgrad 0 besitzt und alle anderen Knoten Eingangsgrad 1 besitzen. Knoten w heißt die Wurzel des Graphen

Beispiel - Templates

Arbeitspakete

Adrian Helberg

Arbeitspaket 1

Arbeitspaket 2

Arbeitspaket 3

Arbeitspaket 4

Struktur

Arbeitspakete

Adrian Helberg

Arbeitspaket

Arbeitspaket 2

Arbeitspaket

irbeitspaket i

Arbeitspaket 3
Arbeitspaket 4

Arbeitspaket 5

Hier soll ein "kleines" L-System, das <u>nur</u> die Input-Struktur beschreibt aus der Baumstruktur inferiert werden Es umfasst die Bereiche:

IV. Inferieren

¹Smallest Grammar Problem

Überlegungen

Arbeitspakete

Adrian Helberg

Arbeitspaket

Arbeitspaket

Arbeitspaket 3

\ ..b = :+= ... | ... |

Abbildung: Beispiel

- Arbeitspaket 1
- Arbeitspaket 2
- Arbeitspaket 3
 Arbeitspaket 4
- Arbeitspaket 5

- ► V als alle nicht-terminalen Symbole
- ► S als alle terminalen Symbole
- w als Axiom (Startwort)

 $L = \{V, S, w, P\}$ mit

▶ P als Menge von Produktionsregeln (geordnete Paare bsp. $A \rightarrow X$ mit X aus $V \cup S$ (Alphabet))

- Arbeitspaket 1
- Arbeitspaket 2
- Arbeitspaket 3
 Arbeitspaket 4
- Arbeitspaket 5

- $L = \{M, \omega, R\}$ mit
 - ▶ M als Menge von Modulen (bsp. A(P) mit P als Liste von Parametern)
 - w als Axiom (Startwort)
 - R als Menge von Produktionsregeln

Initialisierung:

- 1. Alphabet $M = \{F, S\}$, Regelmenge $R = \emptyset$, Axiom $\omega = S$
- 2. Füge neue Regel $\alpha: S \to A$ der Regelmenge R hinzu
- 3. Knoten $\beta = \text{nächster Knoten}^2$
- 4. Füge nächstes Symbol γ aus $\{A, B, \dots, Z\}$, das nicht in M enthalten ist, zu M hinzu

²nach Breitensuche, beginnend bei Wurzelknoten S

Schleife:

- 5. Wiederhole:
 - a. Wort $\delta = \text{Wort von } \beta$
 - b. Für alle Symbole $\{X, Y, Z\}$ aus δ
 - Ersetze Symbol mit neuem Symbol, das nicht in M enthalten ist und füge es M hinzu
 - d. Füge $\gamma \to \delta$ der Regelmenge R hinzu
 - e. Wenn es ein Symbol in $M \setminus \{F, S\}$ gibt, für das es keine Regel gibt, dann:
 - γ = nächstes Symbol aus M, für das es keine Regel gibt
 - f. Ansonsten:
 - ► Breche Schleife ab
 - g. $\beta = \text{nächster}^3 \text{ Knoten}$

³nach Breitensuche, beginnend bei Wurzelknoten S 📳 🔻 🔊 🤏

Beschreibung

Arbeitspakete

Adrian Helberg

Arbeitspaket

Arbeitspaket

Arbeitspaket 4

Arbeitensket F

Beschreibung

Arbeitspakete

Adrian Helberg

Arbeitspaket

Arbeitspaket

Arbeitspaket 5