实验课

python安装与简单语法

何鸿荣 数据科学与计算机学院 中山大学

- > Python版本及操作系统选择
- Python是跨平台的语言,因此脚本可以跨平台运行,然而不同的平台运行效率不一样,一般来说Linux下的速度会比Windows快,而且是对于数据分析和挖掘任务。此外,在Linux下搭建Python环境相对来说容易一些,很多Linux发行版自带了Python程序,并且在Linux下更容易解决第三方库的依赖问题。当然,Linux的操作门槛较高,可以先在Windows熟悉,然后再考虑迁移到Linux下。

▶ Python的安装

- 在Windows下安装Python比较容易,直接到官方网站下载相应的msi安装包安装即可,和一般软件的安装无异,在此不赘述。安装包选择64位版本。
- Python的官网: https://www.python.org/

➤ 运行Python代码有两种方式,一种方式是启动Python,然后在命令窗口下直接输入相应的命令;另外就是将完整的代码写成.py脚本,如hello.py,然后通过python hello.py执行。

C:\Windows\System32\cmd.exe <u>Microsoft Windows</u> [版本 10.0.19045.4291] (c) Microsoft Corporation。保留所有权利。 C:\Users\hhr\Desktop>python hello.py hello world C:\Users\hhr\Desktop>

- ➤ 高效编辑器-VSCode
 - · 扩展商店安装python扩展

> 库的安装

- 修改配置源
 - 在cmd输入

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/

• 使用pip install 安装库

● (base) PS C:\Users\hhr\Desktop\作业\模式识别\hw1> pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ Writing to C:\Users\hhr\AppData\Roaming\pip\pip.ini

)(base) PS C:\Users\hhr\Desktop\作业\模式识别\hw1> pip install numpy
Defaulting to user installation because normal site-packages is not writeable
Looking in indexes: https://mirrors.aliyun.com/pypi/simple/

- 可能会使用到的库
- numpy, cv2
- pip install numpy
- pip install opency-python
- 库的使用
- import numpy

可以把python当作一个方便的计算器来看待。

$$a = 2$$

以上是Python几个基本的运算,第一个是赋值运算,第二是乘法, 最后是一个是幂(即a的平方),这些基本上是所有编程语言通用的。

Python支持多重赋值:

a, b,
$$c = 2, 3, 4$$

这句命令相当于:

$$a = 2$$

$$b = 3$$

$$c = 4$$

> 字符串运算

· Python支持对字符串的灵活操作:

```
s = 'I like python'
s + ' very much' #将 s 与' very much'拼接,得到'I like python very much'
s.split(' ') #将 s 以空格分割,得到列表['I', 'like', 'python']
```

> 判断

判断和循环是所有编程语言的基本命令,Python的判断语句与c++比较相似:

```
if 条件1:
语句2
elif 条件3:
语句4
else:
语句5
```

需要特别指出的是,Python一般不用花括号{},也没有end语句,它是用缩进对齐作为语句的层次标记。同一层次的缩进量要——对应,否则报错

0

➤ 循环 与 in 的使用

for 与 while 都属于循环的关键字。

其中while与c++的使用比较相似

for通常搭配 in 一起使用

in作为一个关键字,能够比较方便的取出列表中的内容。

```
Sum = 0
for i in range(10):
Sum += i
print(i)
```

> 函数

Python用def来自定义函数:

```
def harris_corner_detection (img, window_size):
...
return corners
```

Python的函数返回值可以是各种形式,比如返回列表,甚至返回多个值

•

```
def add2(x = 0, y = 0): #定义函数,同时定义参数的默认值 return [x+2, y+2] #返回值是一个列表 def add3(x, y): return x+3, y+3 #双重返回 a, b = add3(1,2) #此时a=4,b=5
```

- NumPy是一个用于进行科学计算的Python库。它提供了高性能的多维数组对象(ndarray),以及处理这些数组的数据。
- 数组切片是一种在NumPy中常用的技术,用于获取数组的子集。
- array[start:stop:step]
- 条件筛选可以选择在numpy数组中符合条件的数据。

```
import numpy as np

arr = [1,2,3,4,5,6,7]

arr = np.array(arr)

arrstep = arr[1:5:2] # [2,4]

arrgt4 = arr[arr>4] # [5,6,7]
```

- NumPy是一个用于进行科学计算的Python库。它提供了高性能的多维数组对象(ndarray),以及处理这些数组的数据。
- 切片和条件筛选

函数	说明	函数	说明
np.array(list)	从列表创建数组。	np.sum(array, axis)	计算数组元素的和。
np. zeros (shape)	创建指定形状的全 零数组。	np.mean(array, axis)	计算数组元素的平均值。
np. ones (shape)	创建指定形状的全 一数组。	np.max(array, axis)	找到数组中的最大值。
ndarray. shape	获取数组的形状	np.min(array, axis)	找到数组中的最小值
np.argwhere (condiction)	返回满足条件的数 组元素的索引。	np.concatenate(arra ys, axis)	沿指定轴连接数组
numpy.linalg. norm(array)	计算L2距离		

• cv2 (OpenCV) 是一个广泛应用于计算机视觉领域的开源计算机视觉库,它提供了用于图像处理、计算机视觉和机器学习的各种函数和工具。

函数	说明
cv2.imread(path, flag)	从文件中读取图像。
cv2.imwrite(filename, image)	将图像保存到文件中
cv2.cvtColor(image, code)	将图像从一个颜色空间转换为 另一个颜色空间。
cv2.resize(image, dsize)	调整图像的大小。
cv2.Sobel(image, ddepth, dx, dy)	计算图像的梯度。
<pre>cv2. drawMatches(img1, keypoints1, img2, keypoints2, matches)</pre>	将两个图像中的关键点及其之 间的匹配关系
cv2.warpPerspective(img, M, dsize)	对图像进行透视变换。

• cv2(OpenCV)是一个广泛应用于计算机视觉领域的开源计算机视觉库,它提供了用于图像处理、计算机视觉和机器学习的各种函数和工具。

函数	说明	
cv2. SIFT_create()	创建一个SIFT特征检测器。	
sift.compute(img, kp)	计算灰度图中的关键点的特征	
cv2. HOGDescriptor()	创建一个HOG特征检测器	
hog.compute(img, locations)	计算某个位置的hog特征	