Decision Tree Method-WORKSHOP PYTHON

Introduction to Decision Tree:Recap

- One of the most robust predictive modeling techniques, **Decision Tree** uses data mining techniques for model building.
- Decision Tree breaks down a data set into smaller subsets and presents association between target variable(dependent) and independent variables as a tree structure.
- Final result is a tree with Decision Nodes and Leaf Nodes.
- A decision node has two or more branches and leaf node represents a classification or decision.

Decision Tree – Basic Components

Component	Description	Alternate terms	
Root node	Has no incoming edges and zero or more outgoing edges	Parent node	
Internal nodes	Each has exactly one incoming edge and two or more outgoing edges	Decision nodes / Child nodes	
Leaf node	Each has exactly one incoming edges and no outgoing edges	Terminal nodes	
Branches	Categories of attributes	Edges	

Decision Tree – Basic Components

Entropy

- Entropy measures the homogeneity of a sample. It is used as a parameter for checking the amount of uncertainty associated with a set of probabilities.
- Entropy lies between 0 and 1

 If the sample is completely homogeneous the entropy is 0 and if the sample is equally divided it has entropy of 1
- Entropy can be of two types, for each category and at the variable level
- Entropy of a category is calculated as:

$$-P1 * log 2(P1) - P2 * log 2(P2)$$

where,

P1 is the proportion of class 1

P2 is the proportion of class 2

Entropy of a Category

Let us consider survey data from three cities depicting shopper's preferred brand

City	Brand A Voters	Brand B Voters	Number of Voters	% of votes for Brand A	% of votes for Brand B
Delhi	90	310	400	22.5%	77.5%
Chennai	10	90	100	10%	90%
Mumbai	100	100	200	50%	50%

Entropy for each city is calculated as:

Delhi:

Chennai:

Mumbai:

Entropy at the Variable Level

- Entropy at the variable level can be derived by adding weighted averages of all category level entropy values
- Weights are the proportion of respondents in each category(here in each city)
 In the example under consideration,

Weights for the categories are

Delhi:

Chennai:

Mumbai:

Entropy at the variable level is

Information Gain

- Information Gain is based on the decrease in entropy after a dataset is split on an attribute
- Constructing a decision tree is about finding attribute that returns the highest information gain

• Information gain can be interpreted as ability of reducing the uncertainty (Entropy) and hence increase predictability

Information Gain

City	Brand A Voters	Brand B Voters	Number of Voters	% of votes for Brand A	% of votes for Brand B
Delhi	90	310	400	22.5%	77.5%
Chennai	10	90	100	10%	90%
Mumbai	100	100	200	50%	50%

Entropy for complete sample is calculated as follows:

P1 = (Total Brand A Voters/Total Voters)

P2 = (Total Brand B Voters/Total Voters)

Information Gain

Entropy at the variable level (Weighted average)

Information Gain...

- Information Gain value is used to determine which attribute is the "best" – the attribute with most information gain is chosen
- Information gain for a variable is high when that variable has the low entropy at the variable level (Weighted average)
- Low entropy for a variable implies the classification based on that attribute is fairly homogenous, hence this attribute is selected as the first best attribute
- The same process is repeated till all attributes are used as split variables

Case Study – Predicting Loan Defaulters

Background

• The bank possesses demographic and transactional data of its loan customers. If the bank has a robust model to predict defaulters it can undertake better resource allocation.

Objective

• To predict whether the customer applying for the loan will be a defaulter

Available Information

- Sample size is 700
- Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts are the independent variables
- **Defaulter** (=1 if defaulter, 0 otherwise) is the dependent variable

Data Snapshot

BANK LOAN

Independent Variables

Dependent Variable

	SN AGE EMPLOY	ADDRESS DEB	TINC CREDDEBT OTHDEB	T DEFAULTER
Column	Description	Type	Measurement	Possible Values
SN	Serial Number	Integer	-	-
AGE	Age Groups	Integer	1(<28 years), 2(28- 40 years), 3(>40	3
EMPLOY	Number of years customer working at	Integer	-	Positive value
ADDRESS	Number of years customer staying at	Integer	-	Positive value
DEBTINC	Debt to Income Ratio	Continuou s	-	Positive value
CREDDEBT	Credit to Debit Ratio	Continuou s	-	Positive value
OTHDEBT	Other Debt	Continuou	-	Positive value

Classification Tree in Python

Importing the Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,
DecisionTreeRegressor, plot_tree

from sklearn.metrics import confusion_matrix, precision_score,
recall_score, accuracy_score,roc_curve, roc_auc_score
```

 sklearn.tree module includes Decision Tree – based models for classification and regression

Classification Tree in Python

```
# Importing and Readying the Data for Modeling
bankloan = pd.read csv("BANK LOAN.csv")
                                              drop() is used to
bankloan1 = bankloan.drop(['SN'], axis = 1)
                                              remove unwanted
bankloan1['AGE'] = bankloan1['AGE'].astype('ca')
                                              variables.
bankloan2 = pd.get_dummies(bankloan1)
bankloan2.head()
                                        pd.get_dummies()
                                        converts categorical
                                        variables into dummy
# Output
                                        variables. Since AGE is a
                                        DEFAULTER
                                                 AGE_1 AGE_2 AGE_3
  EMPLOY
         ADDRESS
                DEBTING
                        CREDDEBT
                                OTHDEBT
     17
             12
                    9.3
                          11.36
                                   5.01
     10
                   17.3
                           1.36
                                   4.00
     15
                   5.5
                           0.86
                                   2.17
             14
                                                                0
     15
             14
                    2.9
                           2.66
                                   0.82
```

3.06

17.3

1.79

Classification Tree Using Information Gain

```
# Creating Data Partitions
```

- train_test_split() from sklearn.model_selection is used to split dataset into random train and test sets.
- test_size represents the proportion of dataset to be included in the test set.
- random_state sets the seed for the random number generator.

Classification Tree Using Information Gain

Classification Tree Using Information Gain

- DecisionTreeClassifier() from sklearn.tree fits a classification tree.
- criterion= 'entropy' specifies the function to measure the split.
 Default is 'gini' for Gini impurity. 'entropy' stands for information gain.
- min_samples_split= minimum number of samples required to split an internal node. This number is set to be 10% of the sample size.
- The output displays model specifications.

Classification Tree Using Information Gain

Plotting The Tree from sklearn.tree import plot tree plt.figure(figsize = (16,10)) plot tree(dtcl, filled = True, feature names = list(X.columns)) plt.show(); plot_tree is used to plot the decision tree. # Output filled= True paints nodes to indicate majority class for classification and feature names is used to mention the entropy = 0.894 feature names. samples = 116 value = [80, 36] THDEBT <= 0.335 entropy = 0.985 samples = 48 value = [37, 11] samples = 70 samples = 86 value = [40, 30] value = [41, 45]DEBTINC <= 12.25 CREDDEBT <= 0.235 entropy = 0.894entropy = 0.998 entropy = 0.607 entropy = 0.949 samples = 121 samples = 63 samples = 57 value = [33, 30]value = [21, 36]entropy = 1.0 samples = 59 value = [29, 30]entropy = 0.996 entropy = 0.968 entropy = 0.586 value = [26, 17 value = [5, 4]DATA SCIENCE

Classification Tree Interpretation

Interpretation:

- Due to a large number of continuous predictors, a tree with several nodes and branches is generated.
- > Tree starts with all 490 observations (Train set). 360 are non-defaulters (0) and the remaining 130 are defaulters (1).
- > DEBTINC is the first split variable, left branch is <=12.6 and right branch is >12.6. 334/490 have DEBTINC<=12.6.
- EMPLOY is the second split on left branch, which further divides 334 obs. into 280 non-defaulters (0) and the remaining 54 as defaulters (1).
- The algorithm progresses till no further variable split is left.

Classification Tree in Python – Prediction

Generating Predictions for the model

```
y_pred = dtcl.predict(X_test)
y_pred_probs = dtcl.predict_proba(X_test)

cutoff = 0.3
pred_test = np.where(y_pred_probs[:,1] > cutoff, 1, 0)
pred_test
```

Output

Classification Tree in Python – ROC Curve

Area Under ROC Curve
DTfpr, DTtpr, thresholds = roc_curve(y_test, y_pred_probs[:,1])
abline_probs = [0 for _ in range(len(y_test))]
abline_auc = roc_auc_score(y_test, abline_probs)
abline_fpr, abline_tpr, _ = roc_curve(y_test, abline_probs)

plt.plot(abline_fpr, abline_tpr, linestyle='--', label='abline')
plt.plot(DTfpr, DTtpr, marker='.', label='ROC Curve')
plt.xlabel('False Positive Rate');plt.ylabel('True Positive Rate')
plt.legend(); plt.show()

Classification Tree in Python – ROC Curve

Output

Plotting The Tree

Classification Tree in Python – Confusion Matrix

```
# Confusion Matrix
confusion_matrix(y_test, pred_test, labels=[0, 1])
array([[107, 50],
       [ 14, 39]], dtype=int64)
                                      accuracy_score() = number
                                       of correct predictions out of
accuracy_score(y_test, pred_test)
0.6952380952380952
                                       total predictions
                                       precision_score() = true
precision_score(y_test, pred_test)
0.43820224719101125
                                       positives / (true positives +
                                       false positives)
recall_score(y test, pred test)
0.7358490566037735
                                       recall_score() also known as
                                       'Sensitivity' = true positives /
                                       (true positives + false
                                       negatives)
# Area Under ROC Curve
auc = roc_auc_score(y_test, y_pred_probs[:,1])
print('AUC: %.3f' % auc)
AUC: 0.720
```


THANK YOU!!

