SVMs, Ensembles & Neural Networks

Contents

Support Vector Machines

Ensemble Learning

Neural Networks

Readings

Section 8.2 (Ensemble learning)

Section 9 (SVM)

Section 11 (Neural Networks)

Section 12 (SVM)

Sections 15, 16 (Ensemble learning)

SVM, p. 140

Ensemble learning, p. 175

Neural Networks, p. 244

Support Vector Machines

- Theoretically beautiful,
- Very powerful,
- Versatile
 (classification, regression, outlier detection) ...

... machine learning model.

Separating hyperplanes

Maximal Margin Classifier

Ensemble Learning

Bagging

• Random Forests

Boosting

Bagging

- Reduces variance, increases accuracy
- Trained on bootstrapped samples
- Average the prediction of hundreds of trees into a single prediction; trees grow deep, remain unprunned
- Lacks interpretability of the model, but does not overfit

Random Forests

- Bagging produces correlated trees
- Random forests only allow a small subset
 of predictors in each split, preventing strong predictors
 to emerge in roots, making trees correlated
- Lacks interpretability of the model, but does not overfit

Boosting

- Uses the entire training set, not bootstrapped samples
- Fitting residuals instead of outcomes
- Lacks interpretability, may overfit for large number of trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes) to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i).$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$

Neural Networks

• Biologically inspired (McCulloch & Pitts, 1943)

Extremely powerful

Extremely versatile ...

... machine learning model.

A Neuron

Neural Networks

Feed-forward:
 Connections in one direction, from inputs to outputs.
 No loops; directed acyclic graph.

Recurrent:
 Connects its own outputs to its own inputs.

 Have short-term memory.

Perceptron

- Single-layer neural network
- All inputs connected directly to outputs

Multilayer feed-forward neural network

Learning by back-propagation

