Extremes of Stationary Sequences

Exercises

February 26, 2023

Theory exercises

Exercise 1: Equivalent independent processes

Suppose that the maximum of the stationary sequence X_1, \ldots, X_n has a limiting extreme value distribution G(x) and extremal index θ . If the sequence X_1^*, \ldots, X_n^* is i.i.d. with the same marginal distribution as the X_i , and the limiting distribution for $\max\{X_1^*, \ldots, X_n^*\}$ is $\text{GEV}(\mu, \sigma, \xi)$, find the parameters of the GEV distribution G(x) in terms of θ, μ, σ , and ξ .

Exercise 2: Moving scaled maxima

Let X_1, \ldots, X_n be a stationary time series with $X_{i+1} = \max(\alpha X_i, \varepsilon_{i+1})$ and $X_1 = \varepsilon_1$ where the ε_i 's are a sequence of *i.i.d.* variables with distribution

$$F_{\varepsilon_i}(x) = \exp\{-(1-\alpha)/x\}$$

for x > 0, and $0 \le \alpha < 1$. Show that the marginal distribution of the X_i sequence is

$$F_X(x) = \exp(-1/x)$$

and hence show that the extremal index is $\theta = 1 - \alpha$.

[HINT: What constraint must the ε_i satisfy for $\max\{X_1,\ldots,X_n\} \leq x$?]

Exercise 3: Derivation of the intervals estimator

Let $\{X_t\}_{t=1}^n$ be a stationary time series with marginal distribution F and $1 \leq S_1 < \cdots < S_N \leq n$ denote exceedance times of u by $\{X_t\}_{t=1}^n$. Recall that for the interexceedance time $T_i := T_i(u) = S_{i+1} - S_i$, we have that $\{1 - F(u)\}T_i \xrightarrow{d} T_\theta$ as $u \to \sup\{x : F(x) < 1\}$ where

$$T_{\theta} = \begin{cases} 0, & \text{with probability } (1 - \theta), \\ E_{\theta}, & \text{with probability } \theta, \end{cases}$$

and E_{θ} follows an exponential distribution with mean θ^{-1} . Assuming that the rescaled interexceedance times $\{1-F(u)\}T_i$ follow exactly the limiting mixture distribution, construct the moment-based estimator $\hat{\theta}^{\delta}$ for the extremal index θ by considering the first two moments of T_{θ} and equating them to their empirical counterparts. Refine your estimate using the fact that θ is related to the coefficient of variation, ν , of the interexceedance times by $1 + \nu^2 = \mathbb{E}(T_{\theta}^2)/\mathbb{E}(T_{\theta})^2 = 2\theta^{-1}$.

R exercises

Exercise 4:

First-order autoregressive sequence with discrete uniform noise

Consider the first-order autoregressive time series given by

$$X_n = \frac{1}{\lambda} X_{n-1} + \varepsilon_n,$$

where $\lambda \geq 2$ is integer, and ε_n (independent of X_{n-1}) are *i.i.d.* and uniformly distributed on $\{0, 1/\lambda, \dots, (\lambda - 1)/\lambda\}$. For a range of λ values, generate 1000 observations from the Chernick first-order process, estimate the extremal index and build a block bootstrap confidence interval. Compare with the theoretical value for the extremal index of this AR process, $\theta = (\lambda - 1)/\lambda$.

Exercise 5:

Montreal summer daily temperature maxima We shall use the runs estimator to estimate the extremal index and find clusters for the Montreal Montreal summer daily temperature maxima.

- 1. For a suitable range of thresholds and run lengths r, plot the estimated extremal index against threshold.
- 2. What difference does changing the run length make? What seems a sensible run length to use?
- 3. For a chosen run length and threshold, decluster the data. Fit a GPD to the cluster maxima and consider the goodness of fit.