Name: Inchara Raveendra

SCU ID: 00001653600

4.3-1

Show that the solution of T(n) = T(n-1) + n is $O(n^2)$.

$$T(n) = \begin{cases} 1 & n = 0 \\ T(n-1) + n & n = 0 \end{cases}$$

Recursion tree

$$\begin{array}{c|c}
T(n) \\
n-1 & T(n-2) \\
n-2 & T(n-3)
\end{array}$$

$$\vdots \\
n-(k-1) & T(n-k) \\
\vdots \\
T(1)$$

Substitution Method

$$T(n) = T(n-1) + n$$

$$= T(n-2) + n-1 + n$$

$$= T(n-3) + n-2 + n-1 + n$$

$$= T(n-k) + n-(k-1) + n-(k-2) + \dots$$

$$+(n-2) + (n-1) + n$$

$$= T(n-k) + (n-k+1) + (n-k+2) + \dots$$

$$+(n-2) + (n-1) + n$$
Assume $n-k=0 \Rightarrow n=k$

$$= T(0) + 1 + 2 + 3 + \dots + (n-2) + \dots$$

$$(n-1) + n$$

$$T(n) = 1 + \frac{n(n+1)}{2} = \frac{n^2 + n + 2}{2}$$

$$\therefore O(n^2)$$

4.3-2 Show that the solution of $T(n) = T(\lceil n/2 \rceil) + 1$ is $O(\lg n)$.

$$T(n) = \begin{cases} 1 & n = 1 \\ T(\lceil n/2 \rceil) + 1 & n > 1 \end{cases}$$

$$T(n) = T(\lceil n/2 \rceil) + 1 \qquad T(\lceil n/2 \rceil) = T(\lceil n/2 \rceil)$$

4.3-3

We saw that the solution of $T(n) = 2T(\lfloor n/2 \rfloor) + n$ is $O(n \lg n)$. Show that the solution of this recurrence is also $\Omega(n \lg n)$. Conclude that the solution is $\Theta(n \lg n)$.

Let assume
$$T(n) \leq \operatorname{cnlog}_2 n$$

$$T(n) \leq \operatorname{dc}_2 \lfloor \frac{1}{2} \rfloor \log \lfloor \frac{1}{2} \rfloor + n$$

$$\leq \operatorname{cnlog}_2 (n/2) + n$$

$$\leq \operatorname{cnlog}_3 n - \operatorname{cnlog}_3 n + n$$

$$\leq \operatorname{cnlog} n + (1-c)n$$

 $\leq \operatorname{cnlog} n$
 $for c \geq 0$

T(n)
$$\geq 2C(\lfloor n/2 \rfloor + 2) \log_{2}(\lfloor n/2 \rfloor + 2) + n$$

 $\geq 2C(\lfloor n/2 \rfloor + 2) \log_{2}(\lfloor n/2 \rfloor - 1 + 2) + n$
 $\geq 2C(\lfloor n/2 \rfloor + 1) \log_{2}(\lfloor n/2 \rfloor + 1) + n$

$$\geq AC\left(\frac{n+a}{x}\right)\log_2\left(\frac{n+a}{a}\right)+n$$

$$\geq c(n+2)\log(n+2) - c(n+2)\log q + n$$

$$\geq c(n+d)\log_{d}(n+d) + (1-c)n - dc$$

$$\geq C(n+a)\log_2(n+a)$$
 for $n \geq aC$,

Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn, where c is a constant, is $\Omega(n \lg n)$ by appealing to a recursion tree.

The above recoverce has & branches:

lower bound is decided by one that terminates faster. So, T(n/3) will terminate faster than $\Delta T(n/3)$

At depth
$$i = 0, 1, 2, \log n$$
 of the tree, the the leaves cost on $\log_3 n$:. Total cost of tree = $T(n) = \sum_{i=0}^{\log_3 n} cn$

$$T(n) = (\log_3 n + 1) cn$$

$$= cn \log_3 n + cn$$

$$= \frac{cn\log n}{\log_3 3} + cn$$

$$\geq cn \log n \quad \text{where } cn \geq \log_3 3$$

$$= \Omega \quad (n\log n)$$

4.4-9

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n) = T(\alpha n) + T((1-\alpha)n) + cn$, where α is a constant in the range $0 < \alpha < 1$ and c > 0 is also a constant.

Assume 0 < x < 1/x and $1-x = \beta$ So, depth of tree is $\log n$ and each level costs on

Lets guess that leaves are
$$O(n)$$

$$T(n) = \sum_{i=0}^{\log n} c_i + O(n)$$

=
$$cn \log n + \theta(n)$$

Let T(n) { dulog n for d >0 to prove upper bound

$$T(n) = T(\alpha n) + T((1-\alpha)n) + cn$$

$$\leq$$
 danlog(an)+ d(1-a)log(1-a)n + cn

= dn log, n + dn
$$(\propto \log_{1} x + (1-x) \log_{2} (1-x)) + cn$$

let T(n) z dn log n for d>0 to prove laver bound

$$T(n) = T(\alpha n) + T(1-\alpha)n + cn$$

4.5-1

Use the master method to give tight asymptotic bounds for the following recurrences

a.
$$T(n) = 2T(n/4) + 1$$
.

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

c.
$$T(n) = 2T(n/4) + n$$
.

d.
$$T(n) = 2T(n/4) + n^2$$
.

Master's Theorem for dividing functions

$$T(n) = aT(n/b) + f(n)$$

 $azi b>i f(n) = O(n^k log pn)$

if
$$p > -1$$
, $\theta(n^k \log^{p+1} n)$
if $p = -1$, $\theta(n^k \log \log n)$
if $p < -1$, $\theta(n^k)$

if
$$p \ge 0$$
 $O(n^k \log n)$
if $p < 0$ $O(n^k)$

a)
$$T(n) = \alpha T(n/4) + 1$$
 $a = \alpha$
 $b = 4$
 $p = 0$
 $\log_{b} \alpha = \log_{4} \alpha = \frac{1}{2} > k$
 \therefore It is case 1 of Marter's Theorem

$$\theta(n^{\log 2}) = \theta(n^{1/2}) = \theta(\sqrt{n})$$

b)
$$T(n) = \alpha T(n/4) + \sqrt{n}$$

 $a = \lambda$ $k = \frac{1}{4}$
 $b = 4$ $p = 0$

$$\log_{b} a = \log_{4} x = 1/2 = K$$

.. It is come 2 of Moster's Theorem

O(nk logpin) when p>-1 i-e, O(In logn)

c)
$$T(n) = \alpha T(n/4) + n$$

 $a = \lambda$ $k = 1$
 $b = 4$ $p = 0$
 $\log_{b} \alpha = \log_{4} \lambda = \frac{1}{2} \lambda < k$

: It is case 3 of Moster's Theorem

O(nklogpn) where p ≥0 i.e, O(n)

d)
$$T(n) = \alpha T(W_4) + n^{\alpha}$$
 $a = \lambda$
 $b = 4$
 $p = 0$
 $\log_b a = \log_4 \lambda = k$

: It is case 3 of Moster's Theorem
0 (nklogin) where pzo i.e, 0 (nd)