other state s_k , the expected number of steps required is m_{kj} plus 1 for the step already taken. Thus,

$$m_{ij} = p_{ij} + \sum_{k \neq j} p_{ik}(m_{kj} + 1) ,$$

or, since $\sum_{k} p_{ik} = 1$,

$$m_{ij} = 1 + \sum_{k \neq j} p_{ik} m_{kj} . (11.2)$$

Similarly, starting in s_i , it must take at least one step to return. Considering all possible first steps gives us

$$r_i = \sum_k p_{ik}(m_{ki} + 1)$$
 (11.3)

$$= 1 + \sum_{k} p_{ik} m_{ki} . (11.4)$$

Mean First Passage Matrix and Mean Recurrence Matrix

Let us now define two matrices \mathbf{M} and \mathbf{D} . The ijth entry m_{ij} of \mathbf{M} is the mean first passage time to go from s_i to s_j if $i \neq j$; the diagonal entries are 0. The matrix \mathbf{M} is called the mean first passage matrix. The matrix \mathbf{D} is the matrix with all entries 0 except the diagonal entries $d_{ii} = r_i$. The matrix \mathbf{D} is called the mean recurrence matrix. Let \mathbf{C} be an $r \times r$ matrix with all entries 1. Using Equation 11.2 for the case $i \neq j$ and Equation 11.4 for the case i = j, we obtain the matrix equation

$$\mathbf{M} = \mathbf{PM} + \mathbf{C} - \mathbf{D} , \qquad (11.5)$$

or

$$(\mathbf{I} - \mathbf{P})\mathbf{M} = \mathbf{C} - \mathbf{D} . \tag{11.6}$$

Equation 11.6 with $m_{ii} = 0$ implies Equations 11.2 and 11.4. We are now in a position to prove our first basic theorem.

Theorem 11.15 For an ergodic Markov chain, the mean recurrence time for state s_i is $r_i = 1/w_i$, where w_i is the *i*th component of the fixed probability vector for the transition matrix.

Proof. Multiplying both sides of Equation 11.6 by w and using the fact that

$$\mathbf{w}(\mathbf{I} - \mathbf{P}) = \mathbf{0}$$

gives

$$wC - wD = 0.$$

Here \mathbf{wC} is a row vector with all entries 1 and \mathbf{wD} is a row vector with *i*th entry $w_i r_i$. Thus

$$(1,1,\ldots,1)=(w_1r_1,w_2r_2,\ldots,w_nr_n)$$

and

$$r_i = 1/w_i$$
,

as was to be proved.