CURRICULUM VITAE

Xinqiu YAO (Xin-Qiu YAO), Ph.D.

DEPARTMENT OF CHEMISTRY · GEORGIA STATE UNIVERSITY 29 PEACHTREE CENTER AVE NE · ATLANTA, GA 30303-2515, USA (734) 355-1268 · xinqiu.yao@gmail.com · https://xinqyao.github.io

BIOINFORMATICS • COMPUTATIONAL CHEMISTRY • BIOPHYSICS • MOLECULAR DYNAMICS • COARSE-GRAINED MODEL • DOCKING • FREE ENERGY CALCULATION • MACHINE LEARNING • GENOME INFORMATICS

RESEARCH INTERESTS

2004

My research applies bioinformatics and computational chemistry to fundamental questions in molecular biochemistry and biophysics. My general approach is to develop and apply state-of-the-art computational techniques that can be coupled to experiments and be predictive of a wide range of physiological and pathophysiological processes.

EDUCATION	
2008	Ph.D. in Mechanics (Biomechanics and Medical Engineering), <u>Peking University</u> , China Title of dissertation: "A Complex Systems Approach to Studies of Protein Structures"
2002	B.Sc. in Applied Physics (Minored in Japanese), <u>Hunan University</u> , China
APPOINTMEN	ITS AND RESEARCH EXPERIENCE
2017–	 Postdoctoral Associate in Chemistry, Georgia State University Developing new computational methods for understanding allosteric regulations Elucidating mechanisms underlying human enzymes with molecular dynamics (MD)
2012–2017	 Postdoctoral Fellow in Computational Medicine and Bioinformatics, <u>University of Michigan</u> Lead developer of Bio3D, an R package for biomolecular sequence, structure, dynamics, and evolution analysis; Developer of Bio3D-web, a web application for interactive online structural analysis Developed the ensemble correlation network analysis method and applied it to elucidate the activation mechanisms in heterotrimeric G proteins Developed the ensemble normal mode analysis for exploring dynamical aspects from structural biological data Identified the allosteric pathway during activation of GPCR kinases Developed a combined approach of molecular docking, MD, and binding free energy calculation to predicting HLA-specific drug hypersensitivities Activation and allosteric mechanisms in estrogen receptors
2008–2012	 Postdoctoral Fellow in Biophysics, <u>Kyoto University</u>, Japan Elucidated mechanisms underlying drug export in the multidrug transporter AcrB with coarse-grained molecular simulations Developed CafeMol, a software package for coarse-grained biomolecular modeling and simulations
2002–2008	 Research Assistant, Center for Theoretical Biology, <u>Peking University</u>, China Developed a novel approach to protein secondary structure prediction using dynamic Bayesian networks and neural networks Investigated the folding mechanisms of the small protein Trp-cage with MD Developed algorithms for prokaryotic gene identification

Internship, Intel China Research Center, Beijing, China

Improved the CE structural alignment algorithm for remote homology detection

PUBLICATIONS

Book Chapter

Grant BJ, Skjærven L, and <u>Yao XQ</u>. Comparative protein structure analysis with Bio3D-web. *Methods*in *Molecular Biology* (2019), submitted (invited).

Peer-reviewed Journal Articles (*Joint-First; §Co-Corresponding) – 2018 –

- 1. Li H, <u>Yao XQ</u>, and Grant BJ. Comparative structural dynamic analysis of GTPases. *PLoS Comput Biol* (2018) **14**:e1006364.
- 2. <u>Yao XQ</u>§, Momin M, and Hamelberg D§. Elucidating allosteric communications in proteins with difference contact network analysis. *J Chem Inf Molel* (2018) 58:1325-1330.
- 3. Rodriguez-Bussey I, <u>Yao XQ</u>, Shouaib AD, Lopez J, and Hamelberg D. Decoding allosteric communication pathways in cyclophilin A with a comparative analysis of perturbed conformational ensembles. *J Phys Chem B* (2018) 122:6528-6535.
- Momin MF, Yao XQ, Thor W, and Hamelberg D. Substrate sequence determines catalytic activities, domain-binding preferences, and allosteric mechanisms in Pin1. J Phys Chem B (2018) 122:6521-6527.
- 5. Vu PJ*, <u>Yao XQ*</u>, Momin M, and Hamelberg D. Unraveling allosteric mechanisms of enzymatic catalysis with an evolutionary analysis of residue-residue contact dynamical changes. *ACS Catalysis* (2018) **8**:2375-2384.
- 2017 -
- Yao XQ*, Cato MC*, Labudde E, Beyett TS, Tesmer JJG, and Grant BJ. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. *J Biol Chem*. (2017) 292:16032-16043.
- 7. Bouley R, Waldschmidt HV, Cato MC, Cannavo A, Song J, Cheung JY, Yao XQ, Koch WJ, Larsen SD, and Tesmer JJG. Structural determinants influencing the potency and selectivity of indazole-paroxetine hybrid G protein-coupled receptor kinase 2 inhibitors. *Mol Pharmacol* (2017) 92:707-717.
- 8. Stender JD, Nwachukwu JC, Kastrata I, Kim Y, Strid T, Yakir M, Srinivasan S, Nowak J, Izard T, Erumbi R, Carlson KE, Katzenellenbogen JA, <u>Yao XQ</u>, Grant BJ, Leong HS, Lin CY, Frasor J, Nettles KW, Glass C. Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. *Mol Cell* (2017) 65:1122-1135.e5.
- 9. Nwachukwu JC, Srinivasan S, Bruno NE, Nowak J, Wright NJ, Minutolo F, Rangarajan ES, Izard T, <u>Yao</u> <u>XQ</u>, Grant BJ, Kojetin DJ, Elemento O, Katzenellenbogen JA, Nettles KW. Systems structural biology analysis of ligand effects on ERα predicts cellular response to environmental estrogens and anti-hormone therapies. *Cell Chem Biol* (2017) 24:35-45.
- 10. Jariwala S, Skjærven L, <u>Yao XQ</u>, and Grant BJ. Investigating protein sequence-structure-dynamics relationships with Bio3D-web. *J Vis Exp* (2017) 125:e55640.
- 2016 -
- 11. Yao XQ, Skjærven L, and Grant BJ. Rapid characterization of allosteric networks with ensemble normal mode analysis. *J Phys Chem B* (2016) 120:8276-8288.
- 12. Yao XQ*, Malik RU*, Griggs NW, Skjærven L, Traynor JR, Sivaramakrishnan S, and Grant BJ. Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins. *J Biol Chem* (2016) 291:4742-4753.
- 13. Skjærven L, Jariwala S, <u>Yao XQ</u>, and Grant BJ. Online interactive analysis of protein structure ensembles with Bio3D-web. *Bioinformatics* (2016) 32:3510-3512.
- 2008-2015 -
- 14. Scarabelli G, Soppina V, <u>Yao XQ</u>, Atherton J, Moores C, Verhey K, and Grant BJ. Mapping the processivity determinants of the kinesin-3 motor domain. *Biophys J* (2015) 109:1537-1540.
- 15. Skjærven L, <u>Yao XQ</u>, Scarabelli G, and Grant BJ. Integrating protein structural dynamics and evolutionary analysis with Bio3D. *BMC Bioinformatics* (2014) 15:399.

- 16. Yao XQ and Grant BJ. Domain-opening and dynamic coupling in the α -subunit of heterotrimeric G proteins. *Biophys J* (2013) 105:L08-L10.
- 17. Yao XQ, Kimura N, Murakami S, and Takada S. Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments. *J Am Chem Soc* (2013) 135:7474-7485.
- 18. Kenzaki H, Koga N, Hori N, Kanada R, Li WF, Okazaki K, <u>Yao XQ</u>, and Takada S. CafeMol: a coarse-grained biomolecular simulator for simulating proteins at work. *J Chem Theory Comput* (2011) 7:1979-1989.
- 19. Yao XQ, Kenzaki H, Murakami S, and Takada S. Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. *Nature Commun* (2010) 1:117. (The work was highlighted in *Nikkei Business Daily*, *Nikkan Kogyo Shimbun*, and *Kyoto Shimbun*).
- 20. Gao M, Zhu HQ, <u>Yao XQ</u>, and She ZS. Water dynamics clue to key residues in protein folding. *Biochem Biophys Res Comm* (2010) 392:95-99.
- 21. Gao M, <u>Yao XQ</u>, She ZS, Liu ZR, and Zhu HQ. Intermediate structure and slow hydration water dynamics in protein folding process. *Acta Physico-chimica Sinica* (2010) 26:1998-2006.
- 22. Kang H, <u>Yao XQ</u>, She ZS, and Zhu HQ. Water-protein interplay reveals the specificity of alpha-lytic protease. *Biochem Biophys Res Comm* (2009) 385:165-169.
- 23. **Yao XQ** and She ZS. Key residue-dominated protein folding dynamics. *Biochem Biophys Res Comm* (2008) 373:64-68.
- 24. <u>Yao XQ</u>, Zhu HQ, and She ZS. A dynamic Bayesian network approach to protein secondary structure prediction. *BMC Bioinformatics* (2008) 9:49.

GRANTS	
2018	Co-Writer, "Predicting the Impact of Genetic Variations on the Function of Proteins", R01
	[Under review]
2015	Co-Writer, "G Protein Activation Mechanisms", Proposal for allocation of simulation time
	on Anton at Pittsburgh Supercomputing Center [Awarded]

TEACHING AND MENTORING

2013 **Co-Mentor,** Undergraduate Research Opportunity Program (UROP), <u>University of Michigan</u>

Coached an undergraduate student during his summer research project about computer-aided discovery of novel druggable pockets in heterotrimeric G proteins. Helped the student develop proper research strategies, master necessary techniques to conduct the research, and give a presentation about the results on a conference.

Teaching Assistant (Statistical Physics), School of Physics, Peking University, China

- Instructed students on solving problems
- Assisted the lecturer to grade course assignments and the final exam

PRESENTATIONS

Talks

2003

- "Elucidating allosteric communications in proteins with difference contact network analysis", The
 256th ACS National Meeting & Exposition, Boston (2018)
- "Allosteric modulation of G protein-coupled receptor kinase (GRK) activation," Sigtrans Seminar, University of Michigan (2017)
- "Dynamic coupling and activation mechanisms of heterotrimeric G proteins," *Cytoskeleton Seminar*, University of Michigan (2016)
- "Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins," Sigtrans Seminar, University of Michigan (2015)
- "G protein allosteric networks from molecular dynamics and normal mode analysis," Sigtrans Seminar, University of Michigan (2014)

- "Probing the activation mechanism of heterotrimeric G proteins with multiscale molecular simulations," Tools and Technology Seminar, University of Michigan (2014)
- "Nucleotide-dependent Transitions of the alpha-subunit of heterotrimeric G proteins probed with computational methods," Sigtrans Seminar, University of Michigan (2013)
- "Drug translocation and allosteric coupling in a multidrug transporter studied by molecular simulations," The 17th International Biophysics Congress (IUPAC), Beijing, China (2011)
- "Drug translocation and allosteric coupling in a multidrug transporter studied by molecular simulations," Center for Theoretical Biology, Peking University, Beijing, China (2011)
- "Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulations," The 13th Annual Meeting of Chinese Life Science Association, Kyoto, Japan (2011)
- "The uptake and export of drugs in a multidrug transporter studied by coarse-grained simulations," The 49th Annual Meeting of the Biophysical Society of Japan, Himeji, Japan (2011)
- "Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations,"
 New Era of Biosimulations with Supercomputers, Osaka, Japan (2011)
- "Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation,"
 The 47th Annual Meeting of the Biophysical Society of Japan, Tokushima, Japan (2009)
- "Rotatory mechanism of AcrB transporter studied by coarse-grained simulation," Workshop for Next-Generation Integrated Simulation of Living Matters on Molecular Scale, Tokyo, Japan (2009)
- "Protein sequence, structure, and dynamics," *Institute for theoretical physics, Chinese Academy of Science*, Beijing, China (2007)

Posters

- Vu PJ, <u>Yao XQ</u>, Momin M, and Hamelberg D. Evolutionarily conserved and divergent residue-residue contact dynamics provide insights into the allosteric regulation of cyclophilins. *The9th Southeast Enzyme Conference*, Atlanta (2018)
- Vu PJ, <u>Yao XQ</u>, Momin M, and Hamelberg D. Evolutionarily conserved and divergent residue-residue contact dynamics provide insights into the allosteric regulation of cyclophilins. *The 255th ACS National Meeting & Exposition*, New Orleans (2018)
- Vu PJ, Yao XQ, Momin M, and Hamelberg D. Evolutionarily conserved and divergent residue-residue contact dynamics provide insights into the allosteric regulation of cyclophilins. The 62nd Annual Meeting of Biophysical Society, San Francisco (2018)
- Yao XQ, Jariwala S, Grant BJ. In silico prediction of HLA-associated drug hypersensitivity. *The 61st Annual Meeting of Biophysical Society*, New Orleans (2017)
- Yao XQ, Malik RU, Griggs NW, Skjærven L, Traynor JR, Sivaramakrishnan S, Grant BJ. Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins. *The 60th Annual Meeting of Biophysical Society*, LA (2016)
- Skjærven L, Jariwala S, Yao XQ, Ide J, Grant BJ. The Bio3D project: interactive tools for Structural Bioinformatics. The 60th Annual Meeting of Biophysical Society, LA (2016)
- Skjærven L, Yao XQ, Jariwala S, Grant BJ. Bio3D: interactive tools for structural bioinformatics. The 60th Annual Meeting of Biophysical Society, LA (2016)
- Scarabelli G, Soppina V, Yao XQ, Atherton J, Moores CA, Verhey KJ, Grant BJ. Mapping the processivity determinants of the kinesin-3 motor domain. The 60th Annual Meeting of Biophysical Society, LA (2016)
- Li H, **Yao XQ**, Grant BJ. Comparative structure dynamic analysis of G proteins. *The 60th Annual Meeting of Biophysical Society*, LA (2016)
- Yao XQ, Skjærven L, Grant BJ. Characterizing nucleotide dependent allostery in G-proteins with molecular dynamics and normal mode analysis. *Symposium on Computational Discovery in Complex Systems Biology*, University of Michigan (2015)
- Yao XQ, Skjærven L, and Grant BJ. G-protein allosteric networks from molecular dynamics and normal mode analysis. *The 59th Annual Meeting of Biophysical Society*, Baltimore (2015)
- Yao XQ, Scarabelli G, Skjærven L, Grant BJ. The Bio3D package: new interactive tools for Structural Bioinformatics. *The 58th Annual Meeting of Biophysical Society*, San Francisco (2014)

- Yao XQ, Jariwala S, and Grant BJ. Predicting HLA-specific drug hypersensitivity with molecular docking and molecular dynamics simulation. *The 58th Annual Meeting of Biophysical Society*, San Francisco (2014)
- Yao XQ and Grant BJ. Nucleotide-dependent transitions of the alpha subunit of heterotrimeric G-proteins probed with accelerated molecular dynamics simulations. The 57th Annual Meeting of Biophysical Society, Philadelphia (2013)
- Yao XQ, Kenzaki H, and Takada S. Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation: exploring the binding pathways of drugs. *The 55th Annual Meeting of Biophysical Society*, Baltimore (2011)
- Yao XQ, Kenzaki H, and Takada S. Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulations. *The 54th Annual Meeting of the Biophysical Society*, San Francisco (2010)
- Kenzaki H, Koga N, Fujiwara S, Hori N, Kanada R, Okazaki K, Yao XQ, Li WF, Takada S. Biomolecular coarse-grained simulation program CafeMol. The 54th Annual Meeting of the Biophysical Society, San Francisco (2010)
- Yao XQ, Kenzaki H, and Takada S. Functionally rotating mechanism of multidrug transporter studied by coarse-grained simulations. *The 48th Annual Meeting of the Biophysical Society of Japan*, Sendai, Japan (2010)
- Yao XQ, Kenzaki H, and Takada S. Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation. *The 2nd Biosupercomputing Symposium*, Tokyo, Japan (2010)
- Yao XQ, Kenzaki H, and Takada S. Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation. *The 4th International Symposium on Molecular Science of Fluctuations toward Biological Functions*, Shiga, Japan (2010)

TRAININGS	
2018 "Scalable and Reproducible Structural Bioinformatics Workshop & Hackathon 2018	
	San Diego, CA
2015	"Anton Workshop 2015," Pittsburgh, PA
2003	"School of Parallel Computing," Chinese Academy of Science, Beijing, China

HONORS AND AWARDS		
2011	The Best Talk, "The 13th Annual Meeting of Chinese Life Science Association,"	
	Kyoto, Japan	
2010	The Best Poster, "The 2nd Biosupercomputing Symposium," Tokyo, Japan	
2008	Presentation Award, "Bio-rad Forum of Graduate Students," Peking University, China	
1999-2000	General Scholarship, Hunan University, China	

PROFESSIONAL AFFILIATIONS

2018-	American Chemical Society
2009-	Biophysical Society
2010-2012	Biophysical Society of Japan

SKILLS

OS Linux, Windows

Software Amber, Gromacs, AutoDock, Modeller, VMD, PyMol, etc.

Programming R, Bash, C/C++, FORTRAN, Python, Perl, Tcl

REVIEWER SERVICES

Journals:

Nature Communications • BMC Bioinformatics • Proteins: Structure, Function, and Bioinformatics
The Journal of Physical Chemistry • PLoS ONE • Journal of Molecular Graphics and Modelling
Communications Chemistry (Nature Publishing Group) • Chemical Physics Letters
Computational Biology and Chemistry • Journal of Bioinformatics and Computational Biology

Conferences:

2017's Scientific Computing Day, Atlanta 2018's Scientific Computing Day, Atlanta

REFERENCES

Available upon requests