Лабораторна робота №3

Грищенко Юрій 28-ий по списку ($28_{10} = 011100_2$), тому будуємо такі регістри:

			Мікрооперації						
a ₃	a_2	a_1	Номер пункту завдання						
			1 (CC)	2 (CA)	3 (AA)				
1	0	0	y ₂ , y ₃ , y ₈	y ₃ , y ₄	y ₁ , y ₇				

- **1. Синхронний регістр на синхронних тригерах**: 00 = зсув вправо, 01 = прийом слова паралельним кодом, 10 = інвертування
- **2. Синхронний регістр на асинхронних тригерах:** 0 = прийом слова паралельним кодом, 1 = диз'юнкція
- 3. **Асинхронний регістр на асинхронних тригерах**: y_1 = зсув вліво, y_7 = рівнозначність

			Логічні елементи						
a_6	a ₅	a ₄	Номер пункту завдання						
			1	2	3				
0	1	1	3I-HI	2АБО-НІ	2І, ЗАБО, НІ				

1. Синхронний регістр на синхронних тригерах.

Будуємо таблицю:

S_1^{S}	S_2^{S}	D_i^{S}	Q^{S}_{i+1}	Q_i^S	Q_i^{S+1}	D _i '	Ti	$R_{\rm i}$	S_{i}	J_{i}	Ki
0	0	0	0	0	0	0	0	*	0	0	*
0	0	0	0	1	0	0	1	1	0	*	1
0	0	0	1	0	1	1	1	0	1	1	*
0	0	0	1	1	1	1	0	0	*	*	0
0	0	1	0	0	0	0	0	*	0	0	*
0	0	1	0	1	0	0	1	1	0	*	1
0	0	1	1	0	1	1	1	0	1	1	*
0	0	1	1	1	1	1	0	0	*	*	0
0	1	0	0	0	0	0	0	*	0	0	*
0	1	0	0	1	0	0	1	1	0	*	1
0	1	0	1	0	0	0	0	*	0	0	*
0	1	0	1	1	0	0	1	1	0	*	1
0	1	1	0	0	1	1	1	0	1	1	*
0	1	1	0	1	1	1	0	0	*	*	0
0	1	1	1	0	1	1	1	0	1	1	*
0	1	1	1	1	1	1	0	0	*	*	0

1	0	0	0	0	1	1	1	0	1	1	*
1	0	0	0	1	0	0	1	1	0	*	1
1	0	0	1	0	1	1	1	0	1	1	*
1	0	0	1	1	0	0	1	1	0	*	1
1	0	1	0	0	1	1	1	0	1	1	*
1	0	1	0	1	0	0	1	1	0	*	1
1	0	1	1	0	1	1	1	0	1	1	*
1	0	1	1	1	0	0	1	1	0	*	1
1	1	0	0	0	*	*	*	*	*	*	*
1	1	0	0	1	*	*	*	*	*	*	*
1	1	0	1	0	*	*	*	*	*	*	*
1	1	0	1	1	*	*	*	*	*	*	*
1	1	1	0	0	*	*	*	*	*	*	*
1	1	1	0	1	*	*	*	*	*	*	*
1	1	1	1	0	*	*	*	*	*	*	*
1	1	1	1	1	*	*	*	*	*	*	*

D'

$$D' = \underbrace{S_1 \, \overline{Q}_i \vee D_i S_2 \, \overline{Q}_i \vee Q_{i+1} \, \overline{S}_1 \, \overline{S}_2 \vee S_2 \, D_i \, Q_i}_{= \overline{S_1 \, \overline{Q}_i \vee D_i S_2 \, \overline{Q}_i \vee Q_{i+1} \, \overline{S}_1 \, \overline{S}_2 \vee S_2 \, D_i \, Q_i}} = \underbrace{\overline{S_1 \, \overline{Q}_i \vee D_i S_2 \, \overline{Q}_i \vee Q_{i+1} \, \overline{S}_1 \, \overline{S}_2 \vee S_2 \, D_i \, Q_i}}_{= \overline{S_1 \, \overline{Q}_i \wedge \overline{D}_i \, S_2 \, \overline{Q}_i \wedge \overline{D}_i \, S_2 \, \overline{Q}_i \wedge \overline{Q_{i+1} \, \overline{S}_1 \, \overline{S}_2} \wedge \overline{S_2 \, D_i \, Q_i}}_{= \overline{S_1 \, \overline{Q}_i \wedge \overline{D}_i \, S_2 \, \overline{Q}_i \wedge \overline{Q_{i+1} \, \overline{S}_1 \, \overline{S}_2} \wedge \overline{S_2 \, D_i \, Q_i}}$$

$$R = S_1 Q_i \vee S_2 \overline{D}_i Q_i \vee \overline{S}_2 \overline{Q}_{i+1} Q_i = \overline{S_1 Q_i} \wedge \overline{S_2 \overline{D}_i Q_i} \wedge \overline{\overline{S}_2 \overline{Q}_{i+1} Q_i}$$

$$\mathbf{T}$$

$$T = S_1 \vee \frac{\mathbf{D}_i S_2 \overline{Q}_i}{\mathbf{Q}_i} \vee Q_i \overline{D}_i S_2 \vee Q_i \overline{S}_2 \overline{Q}_{i+1} \vee \overline{Q}_i Q_{i+1} \overline{S}_2 = \overline{\overline{S}_1} \wedge \overline{D_i S_2 \overline{Q}_i} \wedge \overline{Q_i \overline{D}_i S_2} \wedge \overline{\overline{Q}_i \overline{S}_2 \overline{Q}_{i+1}} \wedge \overline{\overline{Q}_i Q_{i+1} \overline{S}_2}$$

$$K = S_1 \vee S_2 \overline{D}_i \vee \overline{S}_2 \overline{Q}_{i+1}^- = \overline{\overline{S}_1} \wedge \overline{S_2} \overline{\overline{D}_i} \wedge \overline{\overline{S}_2} \overline{Q}_{i+1}^-$$

$$\mathbf{J}$$

$$\overline{S_{2}}$$

$$J = S_{1} \vee \overline{S}_{2} Q_{i+1} \vee S_{2} D_{i} = \overline{S_{1}} \wedge \overline{S}_{2} Q_{i+1} \wedge \overline{S}_{2} D_{i}$$

$$S' = S_1 \bar{Q}_i \vee \bar{S}_2 Q_{i+1} \bar{Q}_i \vee S_2 D_i = \overline{S_1 \bar{Q}_i} \wedge \overline{S_2} Q_{i+1} \bar{Q}_i \wedge \overline{S_2} D_i$$

Найпростіша реалізація на ЈК-тригерах.

Серед аргументів функції збудження немає Q_i, отже внутрішня затримка непотрібна.

2. Синхронний регістр на асинхронних тригерах.

Будуємо таблицю:

S ^S	T ^S	D_i^{S}	Q_i^S	Q_i^{S+1}	D _i '	T _i '	R_{i}	S _i '
0	0	0	0	0	0	0	*	0
0	0	0	1	1	1	0	0	*
0	0	1	0	0	0	0	*	0
0	0	1	1	1	1	0	0	*
0	1	0	0	0	0	0	*	0
0	1	0	1	0	0	1	1	0
0	1	1	0	1	1	1	0	1
0	1	1	1	1	1	0	0	*
1	0	0	0	0	0	0	*	0
1	0	0	1	1	1	0	0	*
1	0	1	0	0	0	0	*	0
1	0	1	1	1	1	0	0	*
1	1	0	0	0	0	0	*	0
1	1	0	1	1	1	0	0	*
1	1	1	0	1	1	1	0	1
1	1	1	1	1	1	0	0	*

D'

S

	0	0	0	0	
	0	1	1	0	D_{i}
Q_{i}	1	1	1	1	
	1	1	0	1	
•		-	Γ		•

$$D' = \overline{\overline{Q}_i} \overline{\overline{T}} \vee \overline{Q}_i \overline{D}_i \vee T \overline{S} \overline{D}_i Q_i = \dots$$

R

S

$$R = \overline{D_i \vee \overline{T} \vee S} = \overline{(\overline{D_i \vee S}) \vee \overline{T}}$$

S'

$$S' = \overline{\overline{D}_i \vee \overline{T}}$$

$$T' = \overline{D_i Q_i \vee SQ_i \vee \overline{D}_i \overline{Q}_i \vee \overline{T}} = \dots$$

Найпростіша реалізація на RS-тригерах.

Серед аргументів функції збудження немає Q_i, отже внутрішня затримка непотрібна.

3. Асинхронний регістр на асинхронних тригерах.

Будуємо таблицю:

y_1^S	y_2^{S}	D_i^{S}	Q_{i-1}^{S}	Q_i^S	Q_i^{S+1}	D _i '	T_{i}	R_{i}	Si
0	0	0	0	0	0	0	0	*	0
0	0	0	0	1	1	1	0	0	*
0	0	0	1	0	0	0	0	*	0
0	0	0	1	1	1	1	0	0	*
0	0	1	0	0	0	0	0	*	0
0	0	1	0	1	1	1	0	0	*
0	0	1	1	0	0	0	0	*	0
0	0	1	1	1	1	1	0	0	*
0	1	0	0	0	1	1	1	0	1
0	1	0	0	1	0	0	1	1	0
0	1	0	1	0	1	1	1	0	1
0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	0	0	0	*	0
0	1	1	0	1	1	1	0	0	*
0	1	1	1	0	0	0	0	*	0
0	1	1	1	1	1	1	0	0	*

1	0	0	0	0	0	0	0	*	0
1	0	0	0	1	0	0	1	1	0
1	0	0	1	0	1	1	1	0	1
1	0	0	1	1	1	1	0	0	*
1	0	1	0	0	0	0	0	*	0
1	0	1	0	1	0	0	1	1	0
1	0	1	1	0	1	1	1	0	1
1	0	1	1	1	1	1	0	0	*
1	1	0	0	0	*	*	*	*	*
1	1	0	0	1	*	*	*	*	*
1	1	0	1	0	*	*	*	*	*
1	1	0	1	1	*	*	*	*	*
1	1	1	0	0	*	*	*	*	*
1	1	1	0	1	*	*	*	*	*
1	1	1	1	0	*	*	*	*	*
1	1	1	1	1	*	*	*	*	*

D'

$$D' = Q_i \, \bar{y}_1 \, \bar{y}_2 \vee \frac{D_i \, Q_i \, y_2}{Q_i \, y_2} \vee y_1 \, Q_{i-1} \vee y_2 \, \bar{D}_i \bar{Q}_i = \dots$$

$$R = Q_{i-1}^{-} y_1 \lor Q_i \bar{D}_i y_2 = Q_{i-1}^{-} y_1 \lor \overline{(\bar{Q}_i \lor D_i \lor \bar{y}_2)}$$

S

$$S = Q_{i-1} y_1 \lor \bar{D}_i \bar{Q}_i y_2 = Q_{i-1} y_1 \lor \overline{(D_i \lor Q_i \lor \bar{y}_2)}$$

$$D' = Q_{i-1} y_2 \bar{D}_i \vee y_1 Q_{i-1} \bar{Q}_i \vee y_2 \bar{D}_i Q_{i-1} \vee y_1 Q_{i-1} Q_i = \dots$$

Найпростіша реалізація на RS-тригерах. Серед аргументів функції збудження ϵ Q_i , отже повинні мати внутрішню затримку.