Un retour d'expériences sur la résolution de problèmes combinatoires bi-objectifs

Fabien DEGOUTIN et Xavier GANDIBLEUX

LAMIH - Recherche Opérationnelle et Informatique Université de Valenciennes et du Hainaut-Cambrésis Le Mont Houy, F-59313 Valenciennes cedex 9 - FRANCE fabien.degoutin@inrets.fr
xavier.gandibleux@univ-valenciennes.fr

Journée Programmation Mathématique Multiobjectifs (PM20) 17 mai 2002 — Angers

Résolution de problèmes combinatoires bi-objectifs :

solveur IP conventionnel !!! Méthodes exactes, métaheuristiques, mais rien à partir d'un

Plusieurs problèmes classiques considérés :

Assignment, Knapsack, Set Covering / Packing Problems.

• Peu de connaissances disponibles :

impact du type des données sur les résultats Difficulté de résolution, limites d'un solveur comme CPLEX.

N

• Orientation de ce travail :

- Procédure itérative élémentaire couplée à la librairie CPLEX : CPLEX 6.6.2, programmation en C.
- Résoudre plusieurs familles d'instances numériques : instances: AP, KP, SCP, SPP bi-objectifs.
- Analyse des résultats obtenus et observations : iques. temps CPU, relaxation linéaire, résolution exacte, heurist-
- Préliminaires à l'étude des problèmes bi-objectifs de SPP : problématique de la capacité d'infrastructure ferroviaire

L'exposé :

Matériel mis en place / résultats expérimentaux / conclusion.

Notations

Problème d'optimisation combinatoire multi-objectifs (MOCO)

"
$$\min_{x \in X} " (z^1(x), \dots, z^p(x))$$

(MOCO) est un problème d'optimisation discret décrit de la sorte :

- x un vecteur binaire de variables, $x \in \{0,1\}^n$.
- . n variables x_i , $i = 1, \ldots, n$.
- . p objectifs z^j , $j = 1, \ldots, p$.
- . k contraintes, $l=1,\ldots,k$ définissant l'espace de décision X.

Définitions

Pareto optimalité:

 $\forall q = 1, ..., p \ et \exists q' \ tel \ que \ z^{q'}(x') < z^{q'}(x).$ $x \in X$ est efficace s'il n'existe pas de $x' \in X$ tel que $z^q(x') \le z^q(x)$

• Efficacité:

Si x est Pareto optimal alors $z(x)=(z^1(x),\ldots,z^p(x))$ est nondominé. L'ensemble des z(x) décrit la frontière efficace

- L'ensemble des solutions efficaces (Pareto optimales) E.
- Supportées(SE) et non supportées(NE).

S

Le Problème d'affectation (AP)

$$\min \sum_{i=1}^{m} \sum_{l=1}^{m} c_{il}^{1} x_{il}
\min \sum_{i=1}^{m} \sum_{l=1}^{m} c_{il}^{2} x_{il}
\mathbf{s/c} \qquad \sum_{i=1}^{m} x_{il} = 1 \quad l = 1, \dots, m
\sum_{l=1}^{m} x_{il} = 1 \quad i = 1, \dots, m
x_{il} \in \{0, 1\}$$

Le problème de sac-à-dos (KP)

$$\max \sum_{i=1}^{n} c_i^1 x_i$$

$$\max \sum_{i=1}^{n} c_i^2 x_i$$

$$\sum_{i=1}^{n} a_i x_i \leq b$$

 x_i

 $\in \{0,1\}$

Le problème de couverture d'ensembles (SCP)

$$\min \sum_{i=1}^{n} c_{i}^{1} x_{i}$$
 $\min \sum_{i=1}^{n} c_{i}^{2} x_{i}$
 $\min \sum_{i=1}^{n} c_{i}^{2} x_{i}$
 $s/c \sum_{i=1}^{n} a_{li} x_{i} \geq 1 \quad l = 1, \dots, k$
 $x_{i} \in \{0, 1\}$
avec $a_{li} \in \{0, 1\}$

Le Problème de "set packing" (SPP/MIS)

$$\max \sum_{i=1}^{n} c_i^1 x_i$$
 $\max \sum_{i=1}^{n} c_i^2 x_i$

$$s/c$$
 $\sum_{i=1}^{n} a_{li} x_i \le 1 \quad l = 1, ..., k$ $x_i \in \{0, 1\}$

avec $a_{li} \in \{0, 1\}$.

Pour les problèmes MIS (Maximum Independant Set) seul 2 a_{li} sont à 1 par contrainte.

Outils

• LPSolve :

Instabilités numériques.

• CPLEX:

- CPLEX d'ILOG version 6.6.2.
- Appel à la librairie via un code en C.

• La machine :

- Compaq AlphaServer DS20 bi-processor EV6 / 500 MHz
- 2 Go de mémoire vive
- Tru Unix V 4.0 F

Algorithme d'énumération

premierePhase : procedure () is

- ! Calculer lexicographiquement $x^{(1)}$ et $x^{(2)}$ pour les deux objectifs seuls. !
- ! On a ainsi les composantes des points optimaux : (z^{11}, z^{12}) et (z^{21}, z^{22}) . !
- $x^{(1)} \leftarrow \text{ResolutionLexicographique} \ (z11 \downarrow, z12 \downarrow)$ $x^{(2)} \leftarrow \text{ResolutionLexicographique} \ (z22 \downarrow, z21 \downarrow)$ $E \leftarrow \{x^{(1)}, x^{(2)}\}$
- ! Calcul de toutes les solutions efficaces entre $x^{(1)}$ et $x^{(2)}$. !
- Mettre a jour E avec toutes les nouvelles solutions trouvees. !

 $\texttt{ResolutionRecursive}(x^{(1)}\downarrow \text{, } x^{(2)}\downarrow \text{, } E\updownarrow)$

fin premierePhase

Resolution recursive : procedure ($x^{(A)}\downarrow$, $x^{(B)}\downarrow$, $E\updownarrow$) is

- Calculer la solution optimale $x^{(C)}$ de (P_{λ}) : $\min\{\lambda_1 z^1(x) + \lambda_2 z^2(x) \mid x \in X\}$ avec $\lambda_1 = z^2(x^{(A)}) - z^2(x^{(B)})$, et $\lambda_2 = z^1(x^{(B)}) - z^1(x^{(A)})$.

 $x^{(C)} \leftarrow \mathbf{Resoudre} \ P_{\lambda} \ (\lambda \downarrow, z^1(x^{(B)}) \downarrow, z^2(x^{(A)}) \downarrow)$! utilisation de la librairie CPLEX 6.6.2.!

 ${f si}$ existe $(x^{(C)})$ alors

$$E \leftarrow E \cup \{x^{(C)}\}$$

ResolutionRecursive($x^{(A)}\downarrow$, $x^{(C)}\downarrow$, $E\updownarrow$) ResolutionRecursive($x^{(C)}\downarrow$, $x^{(B)}\downarrow$, $E\updownarrow$)

finsi

fin ResolutionRecursive

Méthode alternative : ϵ -contrainte.

Heuristique: glouton constructif

 \Rightarrow 200 directions de recherche : $\lambda = 0, \dots, 1$.

- AP :

- . Choisir le plus petit c_{il}^{λ} ,
- Arrêter dès que toutes les contraintes sont satisfaites.

一 大丁:

- Choisir le plus grand rapport c_i^{λ}/a_i ,
- Arrêter dès qu'il n'est plus possible de remplir le sac

- SCP:

- Choisir le plus petit rapport c_i^{λ} sur nombre de contraintes couvertes,
- Arrêter quand toutes les contraintes sont satisfaites.

- SPP/MIS:

- Choisir le plus grand rapport c_i^{λ} sur nombre de contraintes saturées,
- Arrêter quand il n'est plus possible de sélectionner d'autres variables.

Caractéristiques des instances

La taille : n = #variables

 $25 \dots 2500$

 $50 \dots 500$

100 ... 1000

SCP

KP

AP

 $100 \dots 200$

SPP/MIS

k = #contraintes

10...100

10...200

300...1000

Les contraintes :

KP

SCP

SPP/MIS

 $densite = 2\% \dots 34\%$

 $\max \# 1 = 10 \dots 200$

 $\sum_{i=1}^{n} a_i = 1.5 * b$

densite = $1.5\% \dots 3\%$

Les fonctions objectifs : quatre familles

A: aléatoires

 c_i^1, c_i^2 générés aléatoirement pour $i = 1, \ldots, n$;

B: aléatoires et conflictuelles

 c_i^1 générés aléatoirement pour $i=1,\ldots,n;$

$$c_{n-i+1}^2 = c_i^1 \ i = 1, \dots, n;$$

C: motifs

 $l_1 = rnd(), l_2 = rnd(), \dots ; v_1 = rnd(), v_2 = rnd(), \dots ;$ $c_{l_1+1}^1 = c_{l_1+2}^1 = \dots = c_{l_1+l_2}^1 = v_2; \dots$ $c_1^1 = c_2^1 = \ldots = c_{l_1}^1 = v_1;$

D: motifs et conflictuelles

B et C combinés;

Résumé

• 4*10 instances d'AP,

• 4*10 instances de KP,

4*11 instances de SCP,

4*19 instances de SPP / MIS,

soit un total de 200 instances.

 \Rightarrow Disponibles sur www.univ-valenciennes.fr/ROAD/MCDM/

Pour chacun des problèmes...

Etat de la littérature

torial optimization, Ehrgott M, Gandibleux X; OR Spektrum, volume 22, 2000, pages 425-460 A survey and annotated bibliography of multiobjective combina-

• Temps CPU

Bornes supérieures et inférieures

problems, Ehrgott M, Gandibleux X; LNEMS 507, SPRINGER Bounds and bounds set for biobjective combinatorial optimization

- Solutions
- Résumé

Le problème d'affectation (AP)

1	2	multi-objectifs
1	4	bi-objectifs
approchées	exactes	méthodes

Résumé

- La relaxation linéaire fournit toutes les solutions supportées.
- Temps de résolution court : peu d'intérêt d'une métaheuristique.
- . Mauvaise performance d'un glouton simple.
- Plus de solutions trouvées que les résultats publiés par Tuyttens

NB: Réparer les solutions fournies par la relaxation linéaire?

6	4	multi-objectifs
6	ن ت	bi-objectifs
approchées	exactes	méthodes

Résumé

- . Le temps de résolution croît rapidement.
- Les bornes sont très bonnes et très rapides à calculer .
- La relaxation linéaire ne fournit que très peu de solutions entières, tout comme le glouton.
- . On observe une très grande similitude entre les familles A et B. Quelques ressemblances entre les familles C et D.
- . Les familles avec motifs semblent moins difficiles à résoudre sauf pour les instances à 400 variables.

Le problème de couverture d'ensemble (SCP)

0	2	multi-objectifs
1	0	bi-objectifs
approchées	exactes	méthodes

Résumé

- Les familles A et B sont proches. Les instances des familles C et D sont difficiles à résoudre quelque soit leur densité.
- Plus la densité est forte et plus les bornes supérieures et inférieures sont mauvaises
- Les familles A et B amènent plus de solutions.
- Pas de problèmes jusqu'aux instances 80 :
- 11/41/42/43: simples instances
- . 61/62/81/82 : **moyennes** instances
- . 101/102/201 : difficiles instances (surtout avec motifs)

Le problème de "set packing" (SPP)

0	0	multi-objectifs
0	0	bi-objectifs
approchées	exactes	méthodes

Résumé

- . Le nombre de solutions semble lié à la densité et au nombre de contraintes.
- Pas d'information sur la forme de la frontière efficace, ni sur sa localisation à partir des bornes.
- . Le temps CPU pour le SPP est le plus important de tous les problèmes.
- Les instances de SCP ont été résolues en SPP mais on ne peut rien en dire (trop rapide).

Points importants des différents problèmes :

. AP : Résolution rapide, relaxation linéaire très intéressante

. KP : Très bonnes bornes : à utiliser.

. SCP : Les instances avec motifs et fortes densités sont plus difficiles.

. SPP : Le problème le plus difficile!

SPP: un problème à investiguer

. Pas encore de travaux effectués en multi-objectifs.

. Rôle des métaheuristiques pour ce problème

. Application sur cas réel.

Capacité d'infrastructure ferroviaire :

Données :

Infrastructure.

Normes de sécurité.

Qualité de service.

Matériel roulant.

Grilles horaires.

→ Faisabilité.

 \rightarrow Saturation.

ferroviaires, Delorme X. Thèse en cours: Modélisation de l'exploitation d'infrastructures

driguez J and Gandibleux X (2001) → Heuristics for railway infrastructure saturation, Delorme X, Ro-

