Interpolace funkčních závislostí

$$y = f(x_1, x_2, ..., x_k)$$
 ... teoretická závislost (fyzikální zákon)

- V experimentu měníme hodnotu jedné nebo několika veličin x_i a studujeme závislost veličiny y.
 - např. měníme $x_1 \equiv x$, ostatní x_i bereme jako parametry $(\alpha, \beta, \gamma, ...)$:

$$y = f(x \mid \alpha, \beta, \gamma, ...)$$

- Chceme posoudit platnost závislosti y na x_i z výsledků experimentu.
 - \rightarrow tj. chceme získat odhady parametrů $\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}, ...$
- např. pro N hodnot $x_1, x_2, ... x_N$ jsme naměřili N hodnot $y_1, y_2, ... y_N$

Předpokládáme, že známe funkční závislost *f* a že přesnost nastavení hodnot veličiny *x* je řádově větší, než přesnost měření závisle proměnné *y* (která má obecně pro každý bod jinou dispersi).

Metoda nejmenších čtverců

- Metoda početní interpolace.
- Používá se pro získání odhadů parametrů $(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}, ...)$:
 - 1) Zkonstruujeme veličinu

$$\chi^{2}(\alpha, \beta, \gamma, ...) = \sum_{i=1}^{N} \frac{\left(f(x_{i} \mid \alpha, \beta, \gamma, ...) - y_{i} \right)^{2}}{\sigma_{y_{i}}^{2}}$$

2) Hledáme minimum $\chi^2(\alpha, \beta, \gamma,...)$.

Metoda nejmenších čtverců – přímka procházející počátkem

•
$$y = mx$$

•
$$\chi^{2}(m) = \sum_{i=1}^{N} \frac{(mx_{i} - y_{i})^{2}}{\sigma_{y_{i}}^{2}}$$

• minimalizace χ^2 :

$$\widetilde{m} = \frac{\sum_{i=1}^{N} \frac{y_i x_i}{\sigma_{y_i}^2}}{\sum_{i=1}^{N} \frac{x_i^2}{\sigma_{y_i}^2}}$$

• disperze m: $\sigma_{\widetilde{m}}^2 = \frac{1}{\sum_{i=1}^{N} \frac{x_i^2}{x_i^2}}$

•
$$m = \widetilde{m} \pm \sigma_{\widetilde{m}}$$

• problém: co když neznáme σ_{y_i}

Metoda nejmenších čtverců – přímka procházející počátkem

• Pokud jsou σ_{y_i} neznámé ale stejné, $\sigma_{y_i} = \sigma_y$

... potom
$$\sigma_{\widetilde{m}}^2 = \frac{\sigma_y^2}{\sum_{i=1}^N x_i^2}$$

• Pro neznámou disperzi σ_y pak lze spočítat odhad: $\widetilde{\sigma}_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \widetilde{m}x_i)^2$

ozn.
$$R_1^2 \equiv \sum_{i=1}^n (y_i - \tilde{m}x_i)^2$$
 ... minimální suma čtverců odchylek

- nevychýlený odhad:
$$(\widetilde{\sigma}_y^*)^2 = \frac{R_1^2}{n-1}$$

• Odhad disperze *m* je tedy:

$$\left(\sigma_{\widetilde{m}}^{*}\right)^{2} = \frac{1}{\sum_{i=1}^{N} x_{i}^{2}} \frac{R_{1}^{2}}{n-1}$$

Obecná přímka, obecná lineární regrese

• obecná přímka: $y = \beta_0 + \beta_1 x + \varepsilon$

naměřené hodnoty: $[x_i, y_i]$ i = 1, ..., n

nejistoty závislé veličiny y_i : $\varepsilon_i \in N(0, \sigma)$

• minimalizace χ^2 : $\frac{\partial \chi^2}{\partial \beta_1} = 0$ $\frac{\partial \chi^2}{\partial \beta_0} = 0$

vede na soustavu lineárních rovnic:

 $\beta_0 \sum_{i=1}^n \frac{x_i}{\varepsilon_i^2} + \beta_1 \sum_{i=1}^n \frac{x_i^2}{\varepsilon_i^2} + \sum_{i=1}^n \frac{\varepsilon_i x_i}{\varepsilon_i^2} = \sum_{i=1}^n \frac{x_i y_i}{\varepsilon_i^2}$ $\beta_0 \sum_{i=1}^n \frac{1}{\varepsilon_i^2} + \beta_1 \sum_{i=1}^n \frac{x_i}{\varepsilon_i^2} + \sum_{i=1}^n \frac{\varepsilon_i}{\varepsilon_i^2} = \sum_{i=1}^n \frac{y_i}{\varepsilon_i^2}$

Jak jsou parametry β_0 a β_1 (ne)závislé? $\rightarrow \text{Cov}(\beta_0, \beta_1)$

• obecná funkční závislost: $y = y(x, \beta_1, ..., \beta_m)$ \leftarrow lineární v parametrech β_i tj.

$$\beta_{1} \sum_{i=1}^{n} f_{1}(x_{i}) f_{1}(x_{i}) + \dots + \beta_{m} \sum_{i=1}^{n} f_{m}(x_{i}) f_{1}(x_{i}) = \sum_{i=1}^{n} f_{1}(x_{i}) y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\beta_1 \sum_{i=1}^n f_m(x_i) f_m(x_i) + \dots + \beta_m \sum_{i=1}^n f_m(x_i) f_m(x_i) = \sum_{i=1}^n f_m(x_i) y_i$$

Maticové vyjádření

$$y = \sum_{k=1}^{m} \beta_k f_k(x)$$
 Naměřené hodnoty: $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$

$$y = A\beta$$

Hledané parametry: $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

Matice plánu (konstrukční matice, design matrix):

$$\mathbf{A} = \begin{pmatrix} f_1(x_1) & \cdots & f_m(x_1) \\ \vdots & \ddots & \vdots \\ f_1(x_n) & \cdots & f_m(x_n) \end{pmatrix} \leftarrow \text{matice } m \times n, m \le n$$

$$\frac{\partial}{\partial \boldsymbol{\beta}} \|A\boldsymbol{\beta} - \boldsymbol{y}\|^2 = 0$$
 \rightarrow řešení pro parametry: $\boldsymbol{\beta} = (A^T A)^{-1} A^T \boldsymbol{y} = H \boldsymbol{y}$

Jak jsou parametry (ne)závislé?
$$Cov(\beta_0, \beta_1)$$

$$U_{ij} = Cov(\beta_i, \beta_j)$$

$$V_{ij} = Cov(y_i, y_i)$$

$$U = HVH^T$$

Fitování

- Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám.
 - může podléhat dodatečným podmínkám
- Lineární vs. nelineární regrese

metoda největšího spádu Gaussova-Newtonova metoda algoritmus Levenberg–Marquardt simplex

- Interpolace a vyhlazování (spline)
- Regresní analýza a extrapolace
- Softwarové nástroje
 - Excel, Matlab, Origin, ...
 - gnuplot, Python, R, ...

Testování hypotéz

Příklad:

Z 30 hodů mincí padl 19x orel a 11x panna. Je mince **poctivá**? $(\alpha = 5 \%)$

Testování hypotéz

Příklad:

Z 30 hodů mincí padl 19x orel a 11x panna. Je mince **poctivá**? $(\alpha = 5 \%)$

nulová hypotéza H_0 : mince je poctivá (výsledky se řídí binom. rozdělením s $p=\frac{1}{2}$) alternativní hypotéza H_1 : mince není poctivá (nemá binomické rozdělení s $p=\frac{1}{2}$)

• spočítáme p-hodnotu: pravděpodobnost, že poctivá mince dá pozorovaný výsledek

$$\sum_{k=1.9}^{30} B(N=30, k, p=\frac{1}{2}) = 0,100244...$$

• p-hodnota je v našem případě pravděpodobnost, že: padne 19x a více orel, nebo padne 19x a více panna

p-hodnota =
$$2 \times 0,100244 \sim 0,2$$

• p-hodnota je větší než hladina významnosti 5%, **hypotézu** tedy **nezamítneme**.

např. pro 21x orel a 9x panna už by p-hodnota byla 0,043 a H₀ bychom zamítli.

Testování hypotéz - pojmy

- Statistická hypotéza testovatelné tvrzení (např. rozdělení zkoumané veličiny, parametry, ...)
- Test hypotézy pravidlo, pomocí kterého hypotézu zamítneme nebo nezamítneme.
 - obvykle stavíme proti sobě: $nulová hypotéza H_0$ vs. $alternativní hypotéza H_1$
- Chyba:

- pokud je platná hypotéza zamítnuta (chyba 1. druhu)
- pokud neplatná hypotéza zamítnuta není (chyba 2. druhu) β
- pravděpodobnost výskytu chyb určuje kvalitu našeho testu.
- Hladina významnosti α: pravděpodobnost chyby 1. druhu nepřekročí hodnotu α
- Síla testu: 1β
- Testovací kritérium testovací statistika

hustota testové statistiky

p-hodnota: jak často nastává situace svědčící proti testované hypotéze.

 α

hypotézu H_0 zamítáme na hladině pravděpodobnosti α , pokud je p-hodnota $< \alpha$

(kritický obor - množina hodnot, pro které test hypotézu zamítá)

χ^2 -test

• užitečný při fitování

 x_1, x_2, \dots, xn

testovací statistika:

 $y_1, y_2, ..., yn$

 $y = f(x|\alpha_1, \alpha_2, ..., \alpha_k)$

$$X^{2} = \sum_{i=1}^{n} \frac{\left(y_{i} - f(x_{i} | \alpha_{1}, \dots, \alpha_{k})\right)^{2}}{\sigma_{i}^{2}}$$

$$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} \exp\left(-\frac{x^2}{2}\right)$$

srovnáváme s χ^2 rozdělením s n-k stupni volnosti:

Pokud $X^2 > \chi^2_{1-\alpha}(n-k)$, hypotézu (fit) zamítneme (na hladině významnosti α)

χ^2 -test

χ^2 rozdělení s n-k stupni volnosti:

α	0.9	0.7	0.5	0.3	0.2	0.1	0.05	0.02	0.01	0.001
n-k										
1	0.02	0.15	0.45	1.07	1.64	2.71	3.84	5.41	6.63	10.83
2	0.21	0.71	1.39	2.41	3.22	4.61	5.99	7.82	9.21	13.82
3	0.58	1.42	2.37	3.66	4.64	6.25	7.81	9.84	11.34	16.27
4	1.06	2.19	3.36	4.88	5.99	7.78	9.49	11.67	13.28	18.47
5	1.61	3.00	4.35	6.06	7.29	9.24	11.07	13.39	15.09	20.52
6	2.20	3.83	5.35	7.23	8.56	10.64	12.59	15.03	16.81	22.46
7	2.83	4.67	6.35	8.38	9.80	12.02	14.07	16.62	18.48	24.32
8	3.49	5.53	7.34	9.52	11.03	13.36	15.51	18.17	20.09	26.12
9	4.17	6.39	8.34	10.66	12.24	14.68	16.92	19.68	21.67	27.88
10	4.87	7.27	9.34	11.78	13.44	15.99	18.31	21.16	23.21	29.59
12	6.30	9.03	11.34	14.01	15.81	18.55	21.03	24.05	26.22	32.91
15	8.55	11.72	14.34	17.32	19.31	22.31	25.00	28.26	30.58	37.70
20	12.44	16.27	19.34	22.77	25.04	28.41	31.41	35.02	37.57	45.31
30	20.60	25.51	29.34	33.53	36.25	40.26	43.77	47.96	50.89	59.70
50	37.69	44.31	49.33	54.72	58.16	63.17	67.50	72.61	76.15	86.66
100	82.36	92.13	99.33	106.91	111.67	118.50	124.34	131.14	135.81	149.45

n = 20

χ²-test kvality fitu

 $\chi^2 = 2.2635$ R = 0.9964 $R^2 = 0.9928$ adj. $R^2 = 0.9920$

$$k = 3, n-k = 17$$

$$\chi^{2} = 2.2635$$

$$\chi^{2} / (n-k) = 0.1331$$

$$R = 0.9964$$

$$R^{2} = 0.9928$$
adj. $R^{2} = 0.9920$


```
k = 3, n-k = 17 k = 4, n-k = 13
\chi^2 = 2.2635
                  \chi^2 = 2.25921
                       R = 0.9964
    R = 0.9964
      R^2 = 0.9928
                       R^2 = 0.9928
                           adj. R^2 = 0.9915
      adj. R^2 = 0.9920
```

$$n = 10$$

$$k = 1, n-k = 9$$

$$\chi^2 = 0.59918$$

$$\chi^2 / (n-k) = 0.06658$$

$$R = 0.9995$$

$$R^2 = 0.9990$$
adj. $R^2 = 0.9988$

Z-test

Pro případy, kdy známe parametry μ , σ veličiny xnebo máme dostatečný vzorek ($n \gtrsim 50$)

Testujeme vůči normálnímu rozdělení:

• H_0 : $\bar{x} = \mu_0$ (zamítáme, když by $\bar{x} - \mu_0$ bylo příliš velké) standardizované skóre $z = \frac{\bar{x} - \mu}{\sigma}$ srovnáváme s N(0,1):

$$p = \int_{-\infty}^{-z} e^{-\frac{x^2}{2}} dx + \int_{z}^{\infty} e^{-\frac{x^2}{2}} dx$$

Pro naši minci:
$$z = \frac{19 - Np}{\sqrt{Np(1-p)}} = \frac{19 - 15}{\sqrt{7.5}} \doteq 1.46$$

p-hodnota: 0.144 vs. $\alpha = 0.05$

t-test

Pro případy, kdy

neznáme parametry μ , σ veličiny x a máme malý vzorek $(n \leq 50)$

$$f(t) = \frac{x}{y} = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 - \frac{t^2}{n}\right)^{-\frac{n-1}{2}}$$

Testujeme vůči Studentovu t-rozdělení s n-2 stupni volnosti:

• H_0 : $\bar{x} = \mu_0$ (zamítáme, když by $\bar{x} - \mu_0$ bylo příliš velké)

testovací statistika: $t = \frac{\bar{x} - \mu_0}{\frac{\widehat{\sigma}}{\sqrt{n}}}$ $\hat{\sigma}$ je odhad σ ze vzorku x_n

Také se používá pro testování dvou nezávislých vzorků x_n, y_n :

$$t = \frac{\bar{x} - \bar{y} - d}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}$$

Další testování - Benfordův zákon, ...

Jaké jsou četnosti prvních číslic v datech? → Benfordův zákon

• Jak správně falšovat volby?