# Klasifikácia pľúcneho dýchania

Roman Dzhulai, Ivan Tkachenko Nikita Pohorilyi, Dmytro Varich, Dmytro Marchuk

### O našom tíme

### Ing. Maroš Hliboký

Mentor

#### Roman Dzhulai

#### Ivan Tkachenko

#### **Nikita Pohorilyi**

#### **Dmytro Varich**

#### **Dmytro Marchuk**

- Systém pre pohodlnú tvorbu, trénovanie a testovanie modelov
- Dokumentácia
- Redaktor článku
- Model s RAFT a model s reziduálnymi blokmi
- Vykonávanie, popisovanie experimentov a testovanie modelov
- Pomoc s vývojom modelov
- Redaktor článku

- Teoretický popis riešenia, technológií a vyhľadávanie riešení
- Redaktor článku a prezentácie
- Analýza a popis datasetu a zodpovedný za medicínske technológie
- Redaktor článku a prezentácie
- Vývoj a testovanie rekurentného modelu

 Počiatočná úprava datasetu

## Čo je cieľom výskumu našej práce?

Cieľom tejto práce o klasifikácii dýchania pľúc bolo vyvinúť účinný systém, ktorý by na základe analýzy ultrazvukových údajov dokázal presne a spoľahlivo zistiť prítomnosť alebo neprítomnosť skĺznutia pľúc (lung sliding).



Pneumotorax nastáva v prípade, ak sa do pleurálnej dutiny hrudníka dostane vzduch. Nahromadenie a zvýšený tlak vzduchu spôsobí kolaps pľúc, poruchu dýchania a cirkulácie krvi.



# **Dataset** na detekciu **prítomnosti** alebo **neprítomnosti** klzkosti pľúc

#### Ultrazvukové videá

171 ultrazvukových videí pľúcnych vyšetrení od pacientov.

#### **Charakteristiky snímok**

Každé video obsahuje 20 až približne 900 snímok v odtieňoch sivej.

#### Rozdelenie dát

Pre experimenty sme používali <u>60%</u> trénovacie dáta, <u>20%</u> validačné dáta a <u>20%</u> testovacie dáta. Pre finálne testovanie modelov sme používali <u>25%</u> testovacie dáta a **75%** trénovacie dáta.

#### **Lung sliding present**

Indikuje bežný pohyb pľúc počas dýchania. Obsahuje 32 videí.

#### Lung sliding absent

Indikuje absenciu pohybu pľúc počas dýchania, čo môže predstavovať riziko pre pacienta. Obsahuje <u>139</u> videí.





ls\_p

ls\_a



Konvertovanie triednych značiek

Značky tried **ls\_p** a **ls\_a** boli prevedené na číselné hodnoty **0** a **1**, model mohol s nimi pracovať.

Výber dát

Pri výbere údajov sme mali možnosť obmedziť veľkosť výberu alebo vybrať konkrétnu časť pôvodného datasetu.

3 Rozdelenie dát

Rozdelenie údajov na trénovaciu, validačnú a testovaciu vzorku za účelom zlepšenia výkonnosti modelu.

Vyváženie tried

Vyváženia tried v trénovacej vzorke slúži na dosiahnutie rovnováhy medzi počtom príkladov rôznych tried.

5 Výpočet pomerov medzi triedami

Výpočet pomerov medzi triedami v rôznych datasetov na vyhodnotenie vyváženosti dát.

## O technológiách CNN a Optical Flow



#### Konvolučná neurónová sieť

- Špecializuje sa na spracovanie údajov s priestorovou štruktúrou.
- Efektívna extrakcia príznakov a analýza priestorových štruktúr v obrazoch.

#### Vlastnosti

- Konvergentné vrstvy: extrakcia funkcií zo vstupných údajov.
- Vrstvy poolingu: zníženie dimenzionality údajov pri zachovaní dôležitých vlastností.
- Plne prepojené vrstvy: klasifikácia na základe extrahovaných vlastností.

#### Optical Flow

- Sa používa na analýzu zmien stavu objektu na obrázku.
- Využívajú lokálne gradienty intenzity pixelov na výpočet pohybu medzi snímkami.

#### Vlastnosti

- Predpokladáme, že pohyb objektov v sekvencii je spojitý v čase.
- Citlivosť na zmeny jasu v snímkach.
- Zohľadňuje pohyb na úrovni pixelov.

## Použité technológie

- 3D Convolution
- Residual Units
- Optical Flow
- Augmentation
- Focal Loss Function
- Adam Optimizer
- Channel-Wise Normalization
- Weight Decay
- Batch Normalization
- Gradient Clipping
- Learning Rate Scheduler



# Modely a experimenty

#### Experimentovali sme najmä s:

- Rôzne architektúry modelov
- Technológie
- Úpravy datasetu
- Hyperparametre





## Ako sme začali a aké architektúry sme skúšali



2D konvolúcia a GRU

Inception v3 - konvolučná neurónová sieť na pomoc pri analýze obrazu a detekcii objektov.

RAFT (Recurrent All-Pairs Field Transforms) - architektúra hlbokej sieti pre extrakciu optical flow.

GRUs (Gated recurrent units) - sú hradlovým mechanizmom v rekurentných neurónových sieťach.

## Rekurentný konvolučný model





## Experimenty s rekurentným konvolučným modelom

Model využíva GRU.

Rôzne architektúry konvolúcie.

Balanced mini-batch training.

Prerozdelenie datasetu.

Veľký problém s overfittingom.





## Model s RAFT



Hybridný model, ktorý použiva RAFT, ako extractor optical flow, a 32x32 videí.

## Experimenty s RAFTom

Flow step hyperparameter.

Najlepšie kroky sú 1, 2 a 3.

Rýchle pretrénovanie.

Gamma hyperparameter.

Najlepšia gamma bola 2 a 3.

S týmto modelom sme nedosiahli uspokojivé výsledky.





## Finálny model



#### Augmentácia:

- zmena veľkosti pomocou bilineárnej interpolácie
- náhodné javy (horizontálne preklopenie, zmeny jasu, kontrastu a sýtosti, rotácia, orezanie a zmena veľkosti obrázka)
- normalizácia pomocou vypočítaných z trénovaného datasetu priemeru a štandardnej odchýlky

## Technológie finálneho modelu

- Reziduálne bloky znížiť problém miznutia gradientov počas a urýchliť tréningový proces.
- Augmentácia dát pomáha prekonať triednu nevyváženosť a overfitting.
- Learning rate scheduler nám umožnil dynamicky obmedziť rýchlosť učenia, čo nám pomáha vyhnúť sa "prekročeniu" optimálnych hodnôt.
- Gradient clipping zabraňuje príliš veľkým zmenám váh modelu spôsobených gradientovou explóziou.
- Regularizácia s úbytkom vah aby obmedziť rast váh a zabrániť nadmernému prispôsobeniu modelu.
- Batch normalizácia pomáha znižovať vnútorný posun kovariát a urýchľuje tréningový proces.
- Dropout pomáha predchádzať nadmernému vybaveniu náhodným vypadávaním jednotiek počas trénovania.
- Focal loss funkcia pomáha s nevyváženými dátami s ťažko zaraditeľných objektoch.

# Experimenty s finálnym modelom

Väčší batch size -> lepšie výsledky.

10 epoch.

Dobrý dropout probability by mohol výrazne znížiť pretrénovanie.

Gradient clipping aby zabrániť "explodujúcemu" gradientu.

Najlepší počet snímkov je od 34 do 45.

# TABLE II: Comparison of results using different dropout probabilities

| D. prob.    | 0.4        | 0.5        | 0.6        | 0.7        |
|-------------|------------|------------|------------|------------|
| Loss        | 0.00675014 | 0.00705843 | 0.00813567 | 0.00866412 |
| Accuracy    | 0.8258     | 0.7197     | 0.7197     | 0.2197     |
| Precision   | 0.5714     | 0.3125     | 0.3800     | 0.1953     |
| Recall      | 0.3200     | 0.4000     | 0.7600     | 1.0000     |
| F1          | 0.4103     | 0.3509     | 0.5067     | 0.3268     |
| Specificity | 0.9439     | 0.7944     | 0.7103     | 0.0374     |

# TABLE III: Comparison of results using different gradient clipping

| Grad. clip. | 0.1        | 0.4        | 0.5        | 0.8        |
|-------------|------------|------------|------------|------------|
| Loss        | 0.00813567 | 0.00748908 | 0.00851292 | 0.00772153 |
| Accuracy    | 0.7197     | 0.7576     | 0.7121     | 0.7197     |
| Precision   | 0.3800     | 0.4386     | 0.3617     | 0.3636     |
| Recall      | 0.7600     | 1.0000     | 0.6800     | 0.6400     |
| F1          | 0.5067     | 0.6098     | 0.4722     | 0.4638     |
| Specificity | 0.7103     | 0.7009     | 0.7196     | 0.7383     |

## Konečné výsledky

Väčšia veľkosť testovacieho setu.

Prijateľné výsledky klasifikácie.

Vysoký recall.



#### Hyperparametre:

| Number of frames    | 45    |
|---------------------|-------|
| Learning rate       | 0.001 |
| Weight decay        | 0.001 |
| Shed epochs         | 16    |
| Gradient clipping   | 0.4   |
| Batch size          | 20    |
| Dropout probability | 0.65  |
| Gamma               | 1     |
| Alpha               | 0.8   |

#### Loss a metriky:

| Loss        | 0.00454302 |
|-------------|------------|
| Accuracy    | 0.6700     |
| Precision   | 0.3556     |
| Recall      | 0.8000     |
| F1          | 0.4923     |
| Specificity | 0.8000     |

## Komplikované veci a problémy

Nevyvážený dataset

• Ťažko viditeľný rozdiel medzi triedami

• Rýchle pretrénovanie

• Náročné na grafickú pamäť modely

## Ďalší pokrok

Rozšírenie trénovacích dát.

• Ladenie hyperparametrov pre presnejšie výsledky.

 Skúmanie techník na identifikáciu špecifických oblastí vo videách z ultrazvuku (cenné poznatky a zlepšiť interpretovateľnosť predikcií modelu).

### Záver

Krok vpred v automatizovanej detekcii kĺžu pľúc pomocou hlbokého učenia.

Riešenie na detekciu kĺžu pľúc na ultrazvuku.

 Výskum dal nám veľa skúseností s používaním rôznych technológií pri práci s CNN, s nezbalansovaným datasetom, video dátami, a medicínskymi nuansami.

 Toto úsilie by mohlo viesť k ešte presnejším a spoľahlivejším systémom automatickej detekcie pneumothoraxu a iných hrudných ochorení.

### Pod'akovanie

Ing. Maroš Hliboký, ďakujeme za poradenstvo a pomoc pri výskume.

Taktiež by sme sa chceli poďakovať Technickej univerzite v Košiciach za poskytnutie prístupu ku GPU počas trvania výskumu.