

Lab Workbook

Faculty Name: **Dr. Neetu Singla** Student Name: **Piyush Gambhir**

Roll No.: 21CSU349

Semester: VI

Group: AIML-B (A3)

Department of Computer Science and EngineeringThe NorthCap University Gurugram- 122017, India Session 2023-24

DL (CSL312) Lab Workbook Session: 2023-24

INDEX

S.No.	TITLE	
1	To explore the basic features of TensorFlow and Keras Package.	
2	To build an ANN model to convert temperature in degree Celsius to Fahrenheit	
3	To build an ANN model for regression problem or house predication dataset.	
4	To build an ANN model for classification problem on diabetes classification to see the effect of: a. Early Stopping b. Dropouts	
5	To build an advance ANN classification model for chur modelling data with: a. Cross Validation b. Grid Search c. Checkpoint	
6	To perform Convolutional Neural Networks for Image Classification on MNSIT Dataset	
7	To create CNN model with dataset containing images of cats and dogs for image classification	
8	To build an image classifier with Keras and Convolutional Neural Networks for the Fashion MNIST dataset.	
9	To train a CNN model to classify images from the CIFAR-10 dataset.	
10	To implement transfer 1earing using the pre-trained model (VGG16) on image dataset.	

DL (CSL312) Lab Workbook Session: 2023-24

GitHub Repository Link:

 $\frac{\text{ncu-lab-manual-and-end-semester-projects/NCU-CSL312-DL-Lab Manual at main}}{\text{gambhir/ncu-lab-manual-and-end-semester-projects (github.com)}}$

Experiment No: 1

Student Name and Roll Number: Piyush Gambhir – 21CSU349
Semester /Section: 6 th Semester – AIML-B (A3)
Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment
1/Experiment 1.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)
Date:
Faculty Signature:

Objective(s):

Marks:

To explore the basic features of TensorFlow and Keras Package.

Experiment 1

Problem Statement:

To explore the basic features of Tensorflow and Keras packages.

Github & Google Colab Links:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%201/Experiment%201.ipynb

Google Colab Link:

Installing Dependencies:

```
In [ ]: ! pip install tensorflow-cpu numpy matplotlib keras
```

Code

```
In []: import tensorflow as tf
        import numpy as np
        import matplotlib.pyplot as plt
        from tensorflow import keras
        # Constants and Variables
        x = tf.constant([[1., 2., 3.], [4., 5., 6.]])
        a = tf.constant([[1, 2], [3, 4]])
b = tf.constant([[1, 1], [1, 1]])
        c = tf.constant([[4.0, 5.0], [10.0, 1.0]])
        # Basic Tensor Operations
        print(x)
        print("Shape:", x.shape)
        print("DType:", x.dtype)
        print("Element-wise addition:", x + x)
print("Scalar multiplication:", 5 * x)
        # Concatenation and Mathematical Operations
        print("Concatenated:", tf.concat([x, x, x], axis=0))
        print("Softmax:", tf.nn.softmax(x, axis=-1))
        print("Sum:", tf.reduce_sum(x))
        # Element-wise and Matrix Operations
        print("Addition:\n", a + b)
        print("Element-wise Multiplication:\n", a * b)
        print("Matrix Multiplication:\n", tf.matmul(a, b))
        # Advanced Operations
        print("Max Value:", tf.reduce_max(c))
        print("Argmax:", tf.math.argmax(c))
        print("Softmax:\n", tf.nn.softmax(c))
        # Variable operations and Gradient Computation
        var = tf.Variable([0.0, 0.0, 0.0])
        var.assign([1, 2, 3])
        var.assign_add([1, 1, 1])
        x var = tf.Variable(1.0)
        with tf.GradientTape() as tape:
            y = x_var^{**}2 + 2 * x var - 5
        g_x = tape.gradient(y, x_var)
        print("Gradient dy/dx:", g_x.numpy())
        # tf.function for Graph Execution
        @tf.function
        def my func(x):
             return tf.reduce_sum(x)
```

```
print("tf.function example:", my_func(tf.constant([1, 2, 3])))
        # TensorFlow Module
        class MyModule(tf.Module):
            def __init__(self, value):
                super(MyModule, self). init ()
                self.weight = tf.Variable(value)
            @tf.function
            def multiply(self, x):
                return x * self.weight
        mod = MyModule(3)
        print("Module example:", mod.multiply(tf.constant([1, 2, 3])))
        # Simple Linear Model with Keras
        model = keras.Sequential([
            keras.layers.Dense(units=1, input_shape=[1])
        ])
        model.compile(optimizer='sgd', loss='mean_squared_error')
        xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
        ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
        model.fit(xs, ys, epochs=1000, verbose=0)
        # Convert the list [10.0] to a numpy array with shape (1, 1) for prediction
        x_predict = np.array([10.0]).reshape(-1, 1)
        predicted_value = model.predict(x_predict)
        print("Model prediction for x=10.0:", predicted value[0][0])
       tf.Tensor(
       [[1. 2. 3.]
        [4. 5. 6.]], shape=(2, 3), dtype=float32)
       Shape: (2, 3)
       DType: <dtype: 'float32'>
       Element-wise addition: tf.Tensor(
       [[ 2. 4. 6.] [ 8. 10. 12.]], shape=(2, 3), dtype=float32)
       Scalar multiplication: tf.Tensor(
       [[ 5. 10. 15.]
        [20. 25. 30.]], shape=(2, 3), dtype=float32)
       Concatenated: tf.Tensor(
       [[1. 2. 3.]
        [4. 5. 6.]
        [1. 2. 3.]
        [4. 5. 6.]
        [1. 2. 3.]
        [4. 5. 6.]], shape=(6, 3), dtype=float32)
       Softmax: tf.Tensor(
       [[0.09003057 0.24472848 0.6652409 ]
        [0.09003057 0.24472848 0.6652409 ]], shape=(2, 3), dtype=float32)
       Sum: tf.Tensor(21.0, shape=(), dtype=float32)
       Addition:
        tf.Tensor(
       [[2 3]
        [4 5]], shape=(2, 2), dtype=int32)
       Element-wise Multiplication:
       tf.Tensor(
       [[1 2]
        [3 4]], shape=(2, 2), dtype=int32)
       Matrix Multiplication:
        tf.Tensor(
        [7 7]], shape=(2, 2), dtype=int32)
       Max Value: tf.Tensor(10.0, shape=(), dtype=float32)
       Argmax: tf.Tensor([1 0], shape=(2,), dtype=int64)
        tf.Tensor(
       [[2.6894143e-01 7.3105854e-01]
        [9.9987662e-01 1.2339458e-04]], shape=(2, 2), dtype=float32)
       Gradient dy/dx: 4.0
       tf.function example: tf.Tensor(6, shape=(), dtype=int32)
       Module example: tf.Tensor([3 6 9], shape=(3,), dtype=int32)
                              - 0s 64ms/step
       Model prediction for x=10.0: 18.999922
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd
        import seaborn as sns
```

import tensorflow as tf

```
from tensorflow.keras.models import Sequential, load model
from tensorflow.keras.layers import Dense
from sklearn.model selection import train test split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean absolute error, mean squared error
# Data Generation
np.random.seed(101)
x = np.linspace(0, 50, 100)
noise = np.random.normal(loc=0.0, scale=4.0, size=len(x))
y = 2 * x + 3 + noise # y = mx + b + noise
plt.scatter(x, y)
plt.title('Generated Data Points with Noise')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
# Neural Network Model for Regression
model = Sequential([
    Dense(4, input_dim=1, activation='relu'),
    Dense(4, activation='relu'),
    Dense(1, activation='linear')
])
model.compile(loss='mse', optimizer='adam')
model.fit(x, y, epochs=500, verbose=1)
model.summary()
# Predictions and Evaluation
x for predictions = np.linspace(0, 50, 1000)
y_predicted = model.predict(x_for_predictions)
predictions = model.predict(x).flatten()
mse = mean squared error(y, predictions)
mae = mean_absolute_error(y, predictions)
print(f"Mean Squared Error: {mse}")
print(f"Mean Absolute Error: {mae}")
plt.scatter(x, y, label='Original Data')
plt.plot(x_for_predictions, y_predicted, 'r', label='Line of Best Fit')
plt.title('Original Data and Predicted Line of Best Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()
# Data Loading and Preparation
df = pd.read_csv('fake_reg.csv')
sns.pairplot(df)
plt.show()
X = df[['feature1', 'feature2']].values
y = df['price'].values
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.3, random_state=42)
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Model for Predicting Prices
price model = Sequential([
    Dense(4, input_shape=[2], activation='relu'),
    Dense(4, activation='relu'),
   Dense(1)
])
price_model.compile(optimizer='rmsprop', loss='mse')
# Fit the model and capture the history
history = price_model.fit(X_train_scaled, y_train, epochs=250, verbose=0)
# Model Evaluation
train loss = price model.evaluate(X train scaled, y train, verbose=0)
test loss = price model.evaluate(X test scaled, y test, verbose=0)
print(f"Training Loss: {train loss}")
print(f"Test Loss: {test_loss}")
# Plot Training Loss
loss = history.history['loss']
plt.plot(range(len(loss)), loss)
plt.title("Training Loss per Epoch")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
```

Generated Data Points with Noise

c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\core\dense.py:86: User
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
 super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/500

Epoch	1/500	26	5ms/step		1000	3816.8904
-, -	2/500		311137 3 CCP			301010304
4/4 —	3/500	0s	3ms/step	-	loss:	3675.2747
4/4 —	3/300	0s	3ms/step	-	loss:	3616.0183
Epoch	4/500	Ac	2ms/step	_	1000	3786.6235
Epoch	5/500		·			3700.0233
4/4 —	6/500	0s	2ms/step	-	loss:	3614.7380
4/4 —		0s	2ms/step	-	loss:	3600.3745
Epoch	7/500	As	2ms/step	_	1055.	3731.9346
Epoch	8/500					
4/4 — Enoch	9/500	0s	3ms/step	-	loss:	3544.4194
4/4 —		0s	2ms/step	-	loss:	3867.9727
Epoch 4/4 —	10/500	0s	3ms/step	_	loss:	3819.0059
Epoch	11/500		·			
4/4 — Epoch	12/500	0s	4ms/step	-	loss:	3638.5342
4/4 —	·	0s	2ms/step	-	loss:	3738.2158
Epoch 4/4 —	13/500	0s	2ms/step	_	loss:	3679.1357
	14/500		·			2700 2055
4/4 — Epoch	15/500	US	2ms/step	-	toss:	3789.3955
4/4 —	16 (500	0s	2ms/step	-	loss:	3729.8909
4/4 —	16/500	0s	2ms/step	-	loss:	3808.5630
Epoch	17/500	0.0	2ms/ston		10001	3720.5808
	18/500	0s	2ms/step	-	1055.	3720.3000
4/4 —	19/500	0s	2ms/step	-	loss:	3800.4888
4/4 —	137 300	0s	2ms/step	-	loss:	3922.3398
Epoch	20/500	As	2ms/step	_	1055.	3396.6860
Epoch	21/500	03	211137 3 сер		.055.	3330.0000
4/4 — Epoch	22/500	0s	2ms/step	-	loss:	3751.9087
4/4 —		0s	2ms/step	-	loss:	3722.5664
Epoch 4/4 —	23/500	0s	2ms/step	_	loss:	3788.3835
	24/500		·			2022 5667
4/4 — Epoch	25/500	0s	2ms/step	-	LOSS:	3823.5667
4/4 —	26 /500	0s	2ms/step	-	loss:	3814.0737
4/4 —	26/500	0s	2ms/step	-	loss:	3538.2739

Epoch 27/500 4/4	0s	2ms/step	_	loss:	4052.5713
Epoch 28/500		·			3775.7695
Epoch 29/500 4/4	0s	2ms/step	_	loss:	3720.6047
Epoch 30/500 4/4	0s	2ms/step	_	loss:	3863.3772
Epoch 31/500 4/4	0s	2ms/step	_	loss:	3772.0359
Epoch 32/500 4/4		·			3683.1426
Epoch 33/500 4/4	0s	2ms/step	_	loss:	3871.5901
Epoch 34/500		·			3788.1516
Epoch 35/500 4/4	0s	2ms/step	_	loss:	3814.4290
Epoch 36/500 4/4	0s	1ms/step	_	loss:	3506.7356
Epoch 37/500 4/4	0s	2ms/step	_	loss:	3723.1694
Epoch 38/500 4/4	0s	2ms/step	_	loss:	3822.1555
Epoch 39/500 4/4	0s	2ms/step	_	loss:	3647.8518
Epoch 40/500 4/4	0s	2ms/step	_	loss:	3642.1448
Epoch 41/500 4/4	0s	2ms/step	_	loss:	3834.0903
Epoch 42/500 4/4	0s	2ms/step	_	loss:	3767.7690
Epoch 43/500 4/4	0s	2ms/step	_	loss:	3666.2305
Epoch 44/500 4/4	0s	1ms/step	_	loss:	3787.4944
Epoch 45/500 4/4	0s	2ms/step	_	loss:	3585.8687
Epoch 46/500 4/4	0s	2ms/step	_	loss:	3544.5134
Epoch 47/500 4/4 ———————————————————————————————————	0s	2ms/step	_	loss:	3781.7695
Epoch 48/500 4/4	0s	2ms/step	_	loss:	3680.3552
Epoch 49/500 4/4 ———————————————————————————————————	0s	1ms/step	_	loss:	3668.9290
Epoch 50/500 4/4	0s	2ms/step	_	loss:	3537.4807
Epoch 51/500 4/4	0s	2ms/step	_	loss:	3689.3765
Epoch 52/500 4/4	0s	2ms/step	_	loss:	3855.9463
Epoch 53/500 4/4	0s	2ms/step	-	loss:	3758.1865
	0s	2ms/step	-	loss:	3819.4304
	0s	2ms/step	-	loss:	3773.0984
	0s	2ms/step	-	loss:	3617.3213
	0s	3ms/step	-	loss:	3531.2065
	0s	2ms/step	-	loss:	3621.2222
	0s	3ms/step	-	loss:	3594.0544
	0s	3ms/step	-	loss:	3549.4194
	0s	3ms/step	-	loss:	3401.9023
	0s	3ms/step	-	loss:	3801.1130
	0s	2ms/step	-	loss:	3791.5771
	0s	2ms/step	-	loss:	3904.9458
	0s	2ms/step	-	loss:	3530.1377
	0s	2ms/step	-	loss:	3497.6643
	0s	2ms/step	-	loss:	3849.0090
Epoch 68/500					

4/4 —	Θs	2ms/sten	_	lossi	3727 5684
Epoch 69/500					3599.6113
Epoch 70/500					3535.2051
Epoch 71/500		·			3587.6843
Epoch 72/500		·			3509.0911
Epoch 73/500		·			3870.8784
Epoch 74/500		·			3798.2300
Epoch 75/500					3791.4351
Epoch 76/500		·			3647.5059
Epoch 77/500		·			3563.2153
Epoch 78/500		·			3664.1831
Epoch 79/500		,			
Epoch 80/500		·			3700.1953
Epoch 81/500		·			3486.6387
Epoch 82/500		·			3876.1418
Epoch 83/500					3756.5974
Epoch 84/500					3595.6028
Epoch 85/500		·			3649.3088
Epoch 86/500		·			3601.9756
Epoch 87/500		·			3534.1589
Epoch 88/500		·			3663.2859
Epoch 89/500		·			3457.1731
Epoch 90/500					3707.9893
Epoch 91/500		,			3850.4265
Epoch 92/500					3573.3037
Epoch 93/500		·			3787.0315
Epoch 94/500		,			3530.4341
Epoch 95/500		·			3726.6323
Epoch 96/500		·			3707.8538 3675.9597
Epoch 97/500		,			
Epoch 98/500					3565.5083 3821.0054
Epoch 99/500					
Epoch 100/500		·			3659.5000 3803.7878
Epoch 101/500					
Epoch 102/500		·			3683.3623
Epoch 103/500					3575.9302 3881.7678
Epoch 104/500		·			
Epoch 105/500		·			3521.8792
Epoch 106/500		·			3663.3721
Epoch 107/500					3762.2756
Epoch 108/500		·			3466.2732
4/4 — Epoch 109/500		·			3778.4080
4/4 ————	υS	ziiis/step	-	1055:	3865.4961

Epoch 110/500 4/4	0s	2ms/step	_	loss:	3657.7354
Epoch 111/500 4/4	0s	3ms/step	_	loss:	3577.7549
Epoch 112/500 4/4	0s	3ms/step	_	loss:	3555.4988
Epoch 113/500 4/4					3402.5037
Epoch 114/500 4/4					3601.8081
Epoch 115/500					3877.0283
Epoch 116/500					3460.6855
Epoch 117/500					3695.4744
Epoch 118/500					3547.4724
Epoch 119/500					3823.6931
Epoch 120/500					3749.3816
Epoch 121/500		·			3551.9087
Epoch 122/500					3708.9658
Epoch 123/500					
Epoch 124/500					3624.6333
Epoch 125/500					3543.9485
4/4 Epoch 126/500					3637.2446
4/4 Epoch 127/500					3528.6948
4/4 Epoch 128/500					3726.1416
Epoch 129/500					3561.2117
4/4 Epoch 130/500		·			3685.8352
4/4 Epoch 131/500					3792.5557
4/4 Epoch 132/500					3508.3396
Epoch 133/500					3611.1714
Epoch 134/500					3676.2795
Epoch 135/500		·			3486.2947
Epoch 136/500					3752.9761
Epoch 137/500					3597.2219
Epoch 138/500					3823.5085
Epoch 139/500		·			3442.4275
Epoch 140/500					3827.8149
Epoch 141/500					3535.0696
Epoch 142/500		·			3582.6538
Epoch 143/500					3740.8047
Epoch 144/500					3583.7705
Epoch 145/500		·			3692.0676
Epoch 146/500		·			3339.5420
Epoch 147/500					3575.7456
Epoch 148/500					3555.1521
Epoch 149/500		•			3795.9875
Epoch 150/500					3550.7166
4/4 Epoch 151/500	0s	2ms/step	-	loss:	3612.2913

4/4	0.5	2mc/ston		10001	3668.6956
Epoch 152/500					
Epoch 153/500					3428.4895
Epoch 154/500		·			3717.8928
Epoch 155/500					3665.3367
Epoch 156/500		·			3798.4753
Epoch 157/500		·			3694.0249
Epoch 158/500	0s	3ms/step	-	loss:	3592.8997
Epoch 159/500	0s	3ms/step	-	loss:	3570.4670
4/4 Epoch 160/500	0s	2ms/step	-	loss:	3610.2344
Epoch 161/500	0s	2ms/step	-	loss:	3646.8958
4/4 Epoch 162/500	0s	2ms/step	-	loss:	3790.3738
4/4 Epoch 163/500	0s	2ms/step	-	loss:	3686.1350
4/4 Epoch 164/500	0s	2ms/step	-	loss:	3595.1726
4/4 Epoch 165/500	0s	3ms/step	-	loss:	3685.2866
4/4 Epoch 166/500	0s	3ms/step	-	loss:	3610.4939
4/4 — Epoch 167/500	0s	2ms/step	-	loss:	3759.0813
4/4 — Epoch 168/500	0s	3ms/step	-	loss:	3503.3552
4/4 — Epoch 169/500	0s	2ms/step	-	loss:	3902.9788
•	0s	3ms/step	-	loss:	3749.9226
4/4 — Epoch 171/500	0s	3ms/step	-	loss:	3570.8782
•	0s	2ms/step	-	loss:	3676.9365
-	0s	2ms/step	-	loss:	3787.3030
	0s	2ms/step	-	loss:	3285.4719
•	0s	2ms/step	-	loss:	3738.2148
-	0s	2ms/step	-	loss:	3722.9512
•	0s	3ms/step	-	loss:	3859.4263
4/4 — Epoch 178/500	0s	3ms/step	-	loss:	3531.3284
•	0s	2ms/step	-	loss:	3542.4065
•	0s	2ms/step	-	loss:	3951.8823
•	0s	2ms/step	-	loss:	3601.0166
•	0s	2ms/step	-	loss:	3665.3298
•	0s	2ms/step	-	loss:	3785.4243
•	0s	2ms/step	-	loss:	3615.0276
•	0s	2ms/step	-	loss:	3578.2012
•	0s	2ms/step	-	loss:	3547.1123
•	0s	3ms/step	-	loss:	3948.3577
-	0s	3ms/step	-	loss:	3787.9390
•	0s	2ms/step	-	loss:	3595.8418
•	0s	3ms/step	-	loss:	3734.6472
•	0s	2ms/step	-	loss:	3612.0278
4/4	0s	3ms/step	-	loss:	3693.4551
Epoch 192/500 4/4	0s	2ms/step	-	loss:	3711.5449

Epoch 193/500 4/4	0s	2ms/step	_	loss:	3581.8889
Epoch 194/500 4/4	0s	5ms/step	_	loss:	3506.9919
Epoch 195/500 4/4	0s	2ms/step	_	loss:	3611.2136
Epoch 196/500		·			3627.6519
Epoch 197/500		·			3451.8752
Epoch 198/500		·			3718.3813
Epoch 199/500		·			3618.7676
Epoch 200/500		·			3684.1008
Epoch 201/500		·			3488.1860
Epoch 202/500		·			3566.0291
Epoch 203/500		·			3641.5952
Epoch 204/500		·			3890.7412
Epoch 205/500		·			3665.7502
Epoch 206/500		·			
Epoch 207/500					3487.6699
Epoch 208/500		·			3779.0593
Epoch 209/500		·			3736.5266
4/4 Epoch 210/500		·			3628.9646
4/4 Epoch 211/500		·			3792.7427
Epoch 212/500		·			3514.5664
4/4 Epoch 213/500		·			3654.5886
4/4 — Epoch 214/500		·			3823.3696
4/4 — Epoch 215/500		·			3664.6343
Epoch 216/500		•			3659.7388
Epoch 217/500					3665.6597
Epoch 218/500					3681.1626
Epoch 219/500					3714.9773
Epoch 220/500		·			3735.9863
Epoch 221/500		·			3583.6680
Epoch 222/500					3386.2151
Epoch 223/500		·			3663.6296
Epoch 224/500		·			3582.3069
Epoch 225/500		·			3695.7581
Epoch 226/500					3746.1292
Epoch 227/500		·			3752.8557
Epoch 228/500		·			3622.3643
Epoch 229/500		·			3698.0437
Epoch 230/500					3506.3298
Epoch 231/500		·			3529.7114
Epoch 232/500					3594.5698
Epoch 233/500		·			3718.9463
4/4 Epoch 234/500	0s	2ms/step	-	loss:	3647.6880

4/4	0.5	2mc/cton		10001	3669.1826
Epoch 235/500					
Epoch 236/500					3814.9971
Epoch 237/500		·			3625.0571
Epoch 238/500		·			3615.2637
Epoch 239/500		·			3697.3149
Epoch 240/500		·			3550.8381
Epoch 241/500	0s	2ms/step	-	loss:	3699.4607
Epoch 242/500	0s	2ms/step	-	loss:	3607.7410
4/4 Epoch 243/500	0s	2ms/step	-	loss:	3568.6294
4/4 Epoch 244/500	0s	2ms/step	-	loss:	3595.2551
4/4 Epoch 245/500	0s	2ms/step	-	loss:	3672.4287
4/4 Epoch 246/500	0s	2ms/step	-	loss:	3741.0073
4/4 Epoch 247/500	0s	3ms/step	-	loss:	3550.4480
	0s	2ms/step	-	loss:	3858.6042
•	0s	2ms/step	-	loss:	3607.4082
•	0s	2ms/step	-	loss:	3713.8374
•	0s	2ms/step	-	loss:	3493.0554
-	0s	2ms/step	-	loss:	3716.6240
•	0s	3ms/step	-	loss:	3494.5198
4/4 ———————————————————————————————————	0s	2ms/step	-	loss:	3503.6211
•	0s	3ms/step	-	loss:	3549.8018
•	0s	2ms/step	-	loss:	3619.2717
•	0s	2ms/step	-	loss:	3425.4307
4/4 ————	0s	2ms/step	-	loss:	3591.0955
-	0s	2ms/step	-	loss:	3617.0510
	0s	3ms/step	-	loss:	3730.2864
Epoch 260/500 4/4	0s	3ms/step	-	loss:	3760.6926
•	0s	2ms/step	-	loss:	3480.3313
	0s	2ms/step	-	loss:	3680.2073
	0s	3ms/step	-	loss:	3577.4744
	0s	2ms/step	-	loss:	3598.9878
	0s	3ms/step	-	loss:	3557.6548
	0s	2ms/step	-	loss:	3580.0815
	0s	2ms/step	-	loss:	3443.1519
	0s	2ms/step	-	loss:	3607.0271
	0s	2ms/step	-	loss:	3751.3823
	0s	2ms/step	-	loss:	3598.9592
	0s	2ms/step	-	loss:	3370.8289
	0s	2ms/step	-	loss:	3749.4119
	0s	2ms/step	-	loss:	3765.1172
	0s	2ms/step	-	loss:	3753.7019
Epoch 275/500 4/4	0s	2ms/step	-	loss:	3530.5029

Epoch 276/500					
•	0s	2ms/step	-	loss:	3762.7134
4/4 —	0s	3ms/step	-	loss:	3647.8623
Epoch 278/500 4/4 ———————————————————————————————————	0s	2ms/step	-	loss:	3965.6323
Epoch 279/500 4/4	0s	2ms/step	-	loss:	3584.4011
Epoch 280/500 4/4	0s	2ms/step	-	loss:	3809.0718
Epoch 281/500 4/4	0s	2ms/step	-	loss:	3662.9648
Epoch 282/500 4/4	0s	3ms/step	-	loss:	3645.3472
	0s	2ms/step	-	loss:	3657.3889
Epoch 284/500 4/4	0s	2ms/step	-	loss:	3481.8865
Epoch 285/500 4/4	0s	2ms/step	-	loss:	3731.1421
Epoch 286/500 4/4	0s	2ms/step	-	loss:	3430.5081
Epoch 287/500 4/4	0s	3ms/step	-	loss:	3649.5869
Epoch 288/500 4/4	0s	2ms/step	-	loss:	3413.8455
Epoch 289/500 4/4	0s	3ms/step	-	loss:	3618.4810
Epoch 290/500 4/4	0s	3ms/step	-	loss:	3416.5496
Epoch 291/500 4/4	0s	2ms/step	-	loss:	3460.8340
Epoch 292/500 4/4	0s	2ms/step	-	loss:	3669.0669
Epoch 293/500 4/4	0s	2ms/step	-	loss:	3797.7305
Epoch 294/500 4/4	0s	2ms/step	-	loss:	3699.3115
Epoch 295/500 4/4	0s	2ms/step	-	loss:	3474.9795
Epoch 296/500 4/4	0s	2ms/step	_	loss:	3598.8396
Epoch 297/500 4/4	0s	3ms/step	_	loss:	3687.4304
Epoch 298/500 4/4	0s	2ms/step	_	loss:	3549.9939
Epoch 299/500 4/4	0s	2ms/step	_	loss:	3672.8447
Epoch 300/500					3427.4580
Epoch 301/500 4/4	0s	3ms/step	_	loss:	3588.5837
Epoch 302/500 4/4	0s	3ms/step	_	loss:	3783.2983
Epoch 303/500 4/4	0s	2ms/step	_	loss:	3646.0210
Epoch 304/500 4/4	0s	2ms/step	_	loss:	3685.8931
Epoch 305/500		·			3611.5291
Epoch 306/500		·			3509.1682
Epoch 307/500 4/4	0s	2ms/step	_	loss:	3665.7490
Epoch 308/500					3691.6858
Epoch 309/500					3461.4661
Epoch 310/500		·			3729.0508
Epoch 311/500		·			3452.7273
Epoch 312/500					3438.2395
Epoch 313/500					3399.6455
Epoch 314/500		·			3382.0073
Epoch 315/500		·			3629.9778
Epoch 316/500		·			3454.3887
Epoch 317/500	- -	-, στορ			

4/4	As	2ms/sten	_	1055.	3618.9810
Epoch 318/500					3439.9214
Epoch 319/500					
Epoch 320/500		·			3635.2361
Epoch 321/500		·			3800.1772
Epoch 322/500		·			3781.1365
Epoch 323/500					3579.1440
Epoch 324/500		·			3678.7109
Epoch 325/500		·			3768.5339
Epoch 326/500		·			3632.6880
Epoch 327/500		·			3634.0393
Epoch 328/500	0s	2ms/step	-	loss:	3466.8225
4/4 Epoch 329/500	0s	2ms/step	-	loss:	3790.4399
Epoch 330/500	0s	2ms/step	-	loss:	3560.4646
4/4 Epoch 331/500	0s	2ms/step	-	loss:	3512.8240
4/4 Epoch 332/500	0s	2ms/step	-	loss:	3444.1353
4/4 Epoch 333/500	0s	3ms/step	-	loss:	3560.3945
4/4 Epoch 334/500	0s	2ms/step	-	loss:	3759.6860
4/4 — Epoch 335/500	0s	2ms/step	-	loss:	3587.9236
4/4 — Epoch 336/500	0s	3ms/step	-	loss:	3354.6216
4/4 — Epoch 337/500	0s	2ms/step	-	loss:	3655.8999
4/4 — Epoch 338/500	0s	2ms/step	-	loss:	3842.3271
-	0s	2ms/step	-	loss:	3597.5894
	0s	2ms/step	-	loss:	3623.5762
-	0s	2ms/step	-	loss:	3700.5781
-	0s	2ms/step	-	loss:	3661.3533
•	0s	2ms/step	-	loss:	3481.2271
•	0s	2ms/step	-	loss:	3695.5081
•	0s	3ms/step	-	loss:	3361.4939
4/4 — Epoch 346/500	0s	3ms/step	-	loss:	3602.6375
•	0s	3ms/step	-	loss:	3356.3799
•	0s	3ms/step	-	loss:	3488.1899
	0s	2ms/step	-	loss:	3624.3035
•	0s	2ms/step	-	loss:	3441.5093
•	0s	2ms/step	-	loss:	3568.8315
-	0s	2ms/step	-	loss:	3781.4521
•	0s	2ms/step	-	loss:	3520.7346
-	0s	2ms/step	-	loss:	3391.4167
•	0s	3ms/step	-	loss:	3540.0449
-	0s	2ms/step	-	loss:	3607.8835
	0s	2ms/step	-	loss:	3780.1013
4/4	0s	2ms/step	-	loss:	3523.0718
Epoch 358/500 4/4	0s	2ms/step	-	loss:	3481.7930

Frach 250/500					
	0s	2ms/step	-	loss:	3504.8594
Epoch 360/500 4/4	0s	2ms/step	-	loss:	3634.7908
Epoch 361/500 4/4	0s	2ms/step	_	loss:	3379.5002
Epoch 362/500 4/4	0s	2ms/step	_	loss:	3667.7012
Epoch 363/500 4/4	0s	2ms/step	_	loss:	3579.1216
Epoch 364/500 4/4		•			3443.5920
Epoch 365/500		·			3610.8706
Epoch 366/500		•			3620.2825
Epoch 367/500		•			3428.5823
Epoch 368/500 4/4		•			3645.2622
Epoch 369/500		·			3346.5510
Epoch 370/500		•			
Epoch 371/500		•			3419.8677
4/4 Epoch 372/500					3613.5229
Epoch 373/500		·			3432.3372
Epoch 374/500		•			3686.5540
Epoch 375/500					3697.0808
4/4 — Epoch 376/500		·			3509.4854
4/4 — Epoch 377/500		•			3482.5789
Epoch 378/500		•			3927.1260
4/4 Epoch 379/500					3488.9758
4/4 Epoch 380/500	0s	2ms/step	-	loss:	3431.9539
4/4 Epoch 381/500	0s	2ms/step	-	loss:	3522.4609
Epoch 382/500		•			3542.3809
4/4 Epoch 383/500	0s	2ms/step	-	loss:	3497.3472
4/4 Epoch 384/500	0s	3ms/step	-	loss:	3804.5195
4/4 Epoch 385/500	0s	2ms/step	-	loss:	3419.8145
4/4 Epoch 386/500	0s	10ms/step	ο .	- loss	: 3566.4260
4/4 Epoch 387/500	0s	2ms/step	-	loss:	3688.1892
4/4 Epoch 388/500	0s	2ms/step	-	loss:	3496.9563
4/4 Epoch 389/500	0s	3ms/step	-	loss:	3615.3118
4/4 Epoch 390/500	0s	3ms/step	-	loss:	3472.7603
4/4 ———————————————————————————————————	0s	2ms/step	-	loss:	3523.1501
4/4 — Epoch 392/500	0s	2ms/step	-	loss:	3315.7944
4/4 ———————————————————————————————————	0s	2ms/step	-	loss:	3538.7412
•	0s	2ms/step	-	loss:	3736.2139
•	0s	2ms/step	-	loss:	3532.7183
•	0s	3ms/step	-	loss:	3445.5337
•	0s	2ms/step	-	loss:	3695.7170
•	0s	3ms/step	-	loss:	3613.5110
•	0s	3ms/step	-	loss:	3468.6104
4/4 —	0s	2ms/step	-	loss:	3463.7615
Epoch 400/500					

4/4	0.5	2mc/cton		10001	2650 0005
Epoch 401/500					3650.0085
Epoch 402/500					3731.3623
Epoch 403/500		·			3431.4224
Epoch 404/500		·			3700.9255
Epoch 405/500		·			3497.9287
Epoch 406/500		·			3666.8196
Epoch 407/500		·			3664.5974
Epoch 408/500	0s	2ms/step	-	loss:	3716.5508
4/4 Epoch 409/500	0s	2ms/step	-	loss:	3601.4985
Epoch 410/500	0s	2ms/step	-	loss:	3406.0740
4/4 Epoch 411/500	0s	2ms/step	-	loss:	3599.0664
4/4 Epoch 412/500	0s	2ms/step	-	loss:	3616.6870
4/4 Epoch 413/500	0s	2ms/step	-	loss:	3700.8440
4/4 Epoch 414/500	0s	3ms/step	-	loss:	3593.4841
4/4 — Epoch 415/500	0s	2ms/step	-	loss:	3603.2903
4/4 — Epoch 416/500	0s	3ms/step	-	loss:	3427.0139
4/4 — Epoch 417/500	0s	2ms/step	-	loss:	3426.0276
-	0s	2ms/step	-	loss:	3498.4465
•	0s	2ms/step	-	loss:	3407.2537
4/4 — Epoch 420/500	0s	2ms/step	-	loss:	3585.5059
•	0s	2ms/step	-	loss:	3606.3254
•	0s	2ms/step	-	loss:	3434.1121
•	0s	2ms/step	-	loss:	3425.1160
•	0s	2ms/step	-	loss:	3527.1877
-	0s	2ms/step	-	loss:	3420.0227
•	0s	3ms/step	-	loss:	3597.9490
4/4 Epoch 427/500	0s	3ms/step	-	loss:	3586.9204
•	0s	3ms/step	-	loss:	3462.8303
•	0s	2ms/step	-	loss:	3628.2527
•	0s	2ms/step	-	loss:	3614.9878
•	0s	3ms/step	-	loss:	3508.2495
•	0s	2ms/step	-	loss:	3546.2881
-	0s	3ms/step	-	loss:	3644.9766
•	0s	2ms/step	-	loss:	3596.0020
•	0s	2ms/step	-	loss:	3566.9639
4/4 ————	0s	2ms/step	-	loss:	3566.3191
Epoch 436/500 4/4 Epoch 437/500	0s	3ms/step	-	loss:	3641.2190
4/4 ————	0s	2ms/step	-	loss:	3493.6919
Epoch 438/500 4/4 ———————————————————————————————————	0s	2ms/step	-	loss:	3596.1484
	0s	2ms/step	-	loss:	3431.0552
4/4	0s	2ms/step	-	loss:	3769.8232
Epoch 441/500 4/4	0s	2ms/step	-	loss:	3681.7207

F l. 442 (F00	
	- 0s 3ms/step - loss: 3621.2769
	- 0s 2ms/step - loss: 3625.0840
Epoch 444/500 4/4 ———————————————————————————————————	- 0s 2ms/step - loss: 3457.6482
Epoch 445/500 4/4 ———————————————————————————————————	- 0s 2ms/step - loss: 3390.5500
Epoch 446/500 4/4	- 0s 2ms/step - loss: 3546.9133
Epoch 447/500 4/4 ———————————————————————————————————	- 0s 2ms/step - loss: 3669.8533
Epoch 448/500 4/4	- 0s 2ms/step - loss: 3533.9375
Epoch 449/500	- 0s 2ms/step - loss: 3490.2947
Epoch 450/500	- 0s 2ms/step - loss: 3392.1423
Epoch 451/500	- 0s 2ms/step - loss: 3558.8081
Epoch 452/500	- 0s 3ms/step - loss: 3566.5601
Epoch 453/500	- 0s 2ms/step - loss: 3414.6689
Epoch 454/500	- 0s 2ms/step - loss: 3697.1445
Epoch 455/500	·
Epoch 456/500	- 0s 2ms/step - loss: 3679.3684
Epoch 457/500	- 0s 2ms/step - loss: 3449.9719
Epoch 458/500	- 0s 3ms/step - loss: 3457.8250
Epoch 459/500	- 0s 2ms/step - loss: 3532.8232
Epoch 460/500	- 0s 2ms/step - loss: 3741.3855
Epoch 461/500	- 0s 2ms/step - loss: 3430.9460
Epoch 462/500	- 0s 3ms/step - loss: 3713.0288
4/4 Epoch 463/500	- 0s 3ms/step - loss: 3383.3713
4/4 Epoch 464/500	- 0s 2ms/step - loss: 3594.3408
4/4 Epoch 465/500	- 0s 2ms/step - loss: 3491.2532
4/4 Epoch 466/500	- 0s 13ms/step - loss: 3400.2600
4/4 Epoch 467/500	- 0s 2ms/step - loss: 3360.4033
4/4 Epoch 468/500	- 0s 2ms/step - loss: 3369.3276
4/4 Epoch 469/500	- 0s 2ms/step - loss: 3486.7615
4/4 Epoch 470/500	- 0s 2ms/step - loss: 3643.2195
4/4 ———————————————————————————————————	- 0s 2ms/step - loss: 3667.7383
4/4 Epoch 472/500	- 0s 2ms/step - loss: 3483.6396
4/4 Epoch 473/500	- 0s 2ms/step - loss: 3817.4968
4/4 — Epoch 474/500	- 0s 2ms/step - loss: 3278.1777
	- 0s 2ms/step - loss: 3666.5107
•	- 0s 2ms/step - loss: 3512.7146
•	- 0s 2ms/step - loss: 3425.8547
•	- 0s 3ms/step - loss: 3667.4707
•	- 0s 2ms/step - loss: 3402.9075
•	- 0s 2ms/step - loss: 3575.8669
•	- 0s 2ms/step - loss: 3597.7974
4/4	- 0s 2ms/step - loss: 3645.1619
	- 0s 2ms/step - loss: 3564.3828
Epoch 483/500	

4/4	– 0s	2ms/step	-	loss:	3410.9966
Epoch 484/500 4/4	– 0s	2ms/step	_	loss:	3389.3645
Epoch 485/500 4/4	0c	2mc/stan		1000	3746 4028
Epoch 486/500		-			
4/4 Epoch 487/500		-			
4/4 — Epoch 488/500	– 0s	3ms/step	-	loss:	3426.7507
4/4	– 0s	2ms/step	-	loss:	3501.9563
Epoch 489/500 4/4	– 0s	2ms/step	-	loss:	3576.9556
Epoch 490/500 4/4	- 0s	2ms/sten	_	loss:	3598.8433
Epoch 491/500 4/4					
Epoch 492/500					
4/4 — Epoch 493/500	– 0s	2ms/step	-	loss:	3300.2268
4/4	– 0s	2ms/step	-	loss:	3499.2441
Epoch 494/500 4/4	– 0s	2ms/step	-	loss:	3603.8699
Epoch 495/500 4/4	– 0s	2ms/step	_	loss:	3428.2437
Epoch 496/500 4/4					
Epoch 497/500					
4/4 — Epoch 498/500					
4/4 — Epoch 499/500	– 0s	2ms/step	-	loss:	3356.8669
4/4	— 0s	2ms/step	-	loss:	3345.0784
Epoch 500/500 4/4	– 0s	2ms/step	_	loss:	3525.1396
Model: "sequential"					

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 4)	8
dense_1 (Dense)	(None, 4)	20
dense_2 (Dense)	(None, 1)	5

Original Data and Predicted Line of Best Fit

c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\core\dense.py:86: User
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Training Loss: 419.9224548339844 Test Loss: 408.3269958496094

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Experiment No: 2

Student Name and Roll Number: Piyush Gambhir – 21CSU349				
Semester /Section: 6 th Semester – AIML-B (A3)				
Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment				
2/Experiment 2.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)				
Date:				
Faculty Signature:				
Marks:				

Objective(s):

To build an ANN model to convert temperature in degree Celsius to Fahrenheit

Experiment 2

Problem Statement:

To build an ANN Model to convert temperature in degree Celsius to Fahrenheit.

GitHub & Google Collab Links:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%202/Experiment%202.ipynb

Google Collab Link:

Installing Dependencies:

! pip install tensorflow numpy matplotlib scikit-learn pandas seaborn

Code

```
In [ ]: # importing required libraries
        import tensorflow as tf
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In []: # loading the dataset
        dataset = pd.read_csv('celcius to fahrenheit dataset.csv')
        # printing the first 5 rows of the dataset
        print("First 5 rows of the dataset:")
        print(dataset.head())
        # printing the last 5 rows of the dataset
        print("\nLast 5 rows of the dataset:")
        print(dataset.tail())
       First 5 rows of the dataset:
         Celsius Fahrenheit
                    -88.6
            -67
       1
              40
                      104.0
                    -142.6
134.6
             -97
             57
             -50
                       -58.0
       Last 5 rows of the dataset:
           Celsius Fahrenheit
               -80
                      -112.0
       996
                50
                        122.0
       997
                18
                          64.4
       998
                47
                         116.6
               -67
In [ ]: # describing the dataset
        print("\nDescription of the dataset:")
        print(dataset.describe())
        # checking information about the dataset
        print("\nInformation about the dataset:")
        print(dataset.info())
```

```
Celsius
                           Fahrenheit
             1000.000000 1000.000000
       count
       mean
                -0.029000
                             31.947800
                57.334173
                            103.201511
       std
              -100.000000
                           -148.000000
       min
       25%
               -50.000000
                            -58.000000
       50%
                -2.000000
                             28.400000
       75%
                50.000000
                            122.000000
               100.000000
                            212.000000
       max
       Information about the dataset:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1000 entries, 0 to 999
       Data columns (total 2 columns):
                       Non-Null Count Dtype
       # Column
       0 Celsius
                        1000 non-null
                                        int64
           Fahrenheit 1000 non-null
                                        float64
       dtypes: float64(1), int64(1)
       memory usage: 15.8 KB
       None
In [ ]: # plotting scatter plot between Celsius and Fahrenheit
        plt.scatter(dataset['Celsius'], dataset['Fahrenheit'])
        plt.title('Celsius vs Fahrenheit')
        plt.xlabel('Celsius')
        plt.ylabel('Fahrenheit')
        plt.show()
```


Description of the dataset:

```
In [ ]: # plotting the pair plot of the dataset
    sns.pairplot(dataset)
    plt.show()
```



```
In [ ]: # creating training and testing dataset
       X_train = dataset['Celsius']
       y_train = dataset['Fahrenheit']
       print("Shape of X_train:", X_train.shape)
       print("Shape of y_train:", y_train.shape)
      Shape of X_{train}: (1000,)
      Shape of y_train: (1000,)
In [ ]: # training the model
       model = tf.keras.Sequential()
       model.add(tf.keras.layers.Dense(units= 32 , input_shape = (1,)))
       #Dense when we have fully connected atificial neural network
       # now we are adding one more layer to the network
       model.add(tf.keras.layers.Dense(units = 32))
       # now adding the output layer
       model.add(tf.keras.layers.Dense(units = 1))
      Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
```

In []: # model summary
model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	64
dense_1 (Dense)	(None, 32)	1,056
dense_2 (Dense)	(None, 1)	33

g an `Input(shape)` object as the first layer in the model instead. super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Total params: 1,153 (4.50 KB)

Trainable params: 1,153 (4.50 KB)

Non-trainable params: 0 (0.00 B)

```
Epoch 1/30
       25/25
                                 - 1s 8ms/step - loss: 184185392.0000 - val loss: 19116780.0000
       Epoch 2/30
       25/25
                                  0s 3ms/step - loss: 8236354.5000 - val loss: 225760.6562
       Epoch 3/30
       25/25
                                 - 0s 2ms/step - loss: 179850.9219 - val loss: 13941.5430
       Epoch 4/30
       25/25
                                 - Os 2ms/step - loss: 12388.3965 - val loss: 1299.8925
       Epoch 5/30
       25/25 -
                                 - 0s 2ms/step - loss: 1352.4651 - val_loss: 669.6835
       Epoch 6/30
       25/25
                                  0s 2ms/step - loss: 537.3693 - val_loss: 290.2394
       Epoch 7/30
                                 - 0s 2ms/step - loss: 242.8764 - val_loss: 124.3791
       25/25
       Epoch 8/30
                                 - 0s 2ms/step - loss: 101.0022 - val loss: 47.9577
       25/25
       Epoch 9/30
                                 - 0s 2ms/step - loss: 38.3891 - val_loss: 16.8620
       25/25
       Epoch 10/30
       25/25
                                 • 0s 2ms/step - loss: 13.1718 - val_loss: 5.3163
       Epoch 11/30
                                 - 0s 2ms/step - loss: 4.1010 - val_loss: 1.5207
       25/25
       Epoch 12/30
       25/25
                                 - 0s 2ms/step - loss: 1.1502 - val_loss: 0.3860
       Epoch 13/30
       25/25
                                 - 0s 2ms/step - loss: 0.2851 - val_loss: 0.0883
       Epoch 14/30
                                 - 0s 2ms/step - loss: 0.0644 - val_loss: 0.0180
       25/25
       Epoch 15/30
       25/25
                                 - 0s 2ms/step - loss: 0.0129 - val_loss: 0.0033
       Epoch 16/30
                                 - 0s 3ms/step - loss: 0.0022 - val_loss: 5.1203e-04
       25/25
       Epoch 17/30
       25/25
                                 - 0s 2ms/step - loss: 3.4311e-04 - val loss: 7.0061e-05
       Epoch 18/30
                                  0s 2ms/step - loss: 4.5889e-05 - val_loss: 8.2502e-06
       25/25
       Epoch 19/30
       25/25
                                 • 0s 2ms/step - loss: 5.3816e-06 - val_loss: 8.4195e-07
       Epoch 20/30
                                 - 0s 2ms/step - loss: 5.2030e-07 - val_loss: 9.0222e-08
       25/25
       Epoch 21/30
       25/25
                                 - 0s 2ms/step - loss: 6.0556e-08 - val_loss: 1.1120e-08
       Epoch 22/30
                                  0s 2ms/step - loss: 9.3749e-09 - val_loss: 6.0435e-09
       25/25
       Epoch 23/30
       25/25
                                 - 0s 2ms/step - loss: 5.2943e-09 - val loss: 4.5255e-09
       Epoch 24/30
       25/25
                                 • 0s 2ms/step - loss: 4.3170e-09 - val_loss: 3.9230e-09
       Epoch 25/30
       25/25
                                 • 0s 2ms/step - loss: 3.5315e-09 - val_loss: 2.9899e-09
       Epoch 26/30
                                  0s 2ms/step - loss: 2.8870e-09 - val_loss: 2.6312e-09
       25/25
       Epoch 27/30
       25/25
                                 - 0s 2ms/step - loss: 2.5734e-09 - val_loss: 2.1170e-09
       Epoch 28/30
       25/25
                                 • 0s 2ms/step - loss: 1.9519e-09 - val_loss: 1.8936e-09
       Epoch 29/30
       25/25
                                 • 0s 2ms/step - loss: 1.7950e-09 - val loss: 1.6838e-09
       Epoch 30/30
       25/25
                                 - 0s 2ms/step - loss: 1.5256e-09 - val loss: 1.4503e-09
In []: # evaluating the model
        print("Loss of the model:", epochs_hist.history['loss'][-1])
        print("Validation Loss of the model:", epochs hist.history['val loss'][-1])
        # plotting the loss
        plt.plot(epochs_hist.history['loss'])
        plt.title('Model Loss Progress During Training')
        plt.xlabel('Epoch')
        plt.ylabel('Training Loss')
        plt.legend(['Training Loss'])
       Loss of the model: 1.499840363017313e-09
       Validation Loss of the model: 1.4503127587772724e-09
```

Out[]: <matplotlib.legend.Legend at 0x1ef20de7250>


```
In []: # plotting the loss and validation loss together
    plt.plot(epochs_hist.history['loss'], color='green', label='Training loss', linestyle='--')
    plt.plot(epochs_hist.history['val_loss'], color='red', label='Validation loss', linestyle='--')
    plt.title('Model Loss Progress During Training')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    plt.legend()
    plt.grid(True)
    plt.show()
```



```
In [ ]: # model weights
print("Model Weights:", model.get_weights())
```

```
Model Weights: [array([[ 0.25968587, 0.22125825, 0.28224224, -0.17559958, 0.23964815,
                  -0.22765678, \quad 0.21759656, \quad 0.35055447, \quad 0.14478815, \quad -0.26485002,
                  0.22023755, \quad 0.23763582, \quad -0.23571041, \quad 0.21217768, \quad -0.19351862,
                   0.17558281, -0.22309747, 0.16892143, -0.34211284, 0.06600088,
                  0.316667 , -0.17547919]], dtype=float32), array([-2.8962476 , 1.1375874 , 1.0828029 , -4.1755123 , -
        3.1734562
                 0.40072462\,,\quad 1.2057605\ ,\ -0.25412676\,,\quad 5.3564715\ ,\quad 3.0925992\ ,
                3.9584725 , -1.82679 , -0.6908085 , -3.962711 , 5.1209865 , -3.2419553 , -0.99446344 , 2.322351 , -0.59030426 , 5.5396786 , -1.2115853 , 0.74181646 , -1.8299431 , 4.683813 , 2.735801 , 5.0844874 , -0.9813589 , 5.412247 , 0.56680304 , -2.441406 ,
                -0.47981733, -4.6937227 ], dtype=float32), array([[-1.739051 , 2.485136 , 2.1538115 , ..., -2.3576014
                 -1.8810381 , 2.283118 ],
                [-1.3970966 , 1.282545
                                              , 1.1863807 , ..., -1.3349036 ,
                 -1.2531143 , 0.9784058 ],
                [\ 1.0310407\ ,\ -1.3818057\ ,\ -1.2115515\ ,\ \ldots,\ 0.7019355\ ,
                  0.7162694 , -1.5180666 ],
                [-1.8380595, 1.8653036, 1.6288487, ..., -1.6006715,
                -1.5952858 , 2.1657426 ],
[ 0.9168684 , -1.1619155 , -0.6694877 , ..., 0.3581251 ,
                  0.07749831, -1.3688766 ],
                [\ 0.5317285\ ,\ -0.09177828,\ -0.7525865\ ,\ \ldots,\ 0.36294675,
                   0.545534 , -0.34297764]], dtype=float32), array([ -2.4932847 , -9.675127 , 0.42501694, 10.065001
                 -0.20992652, 3.964413 , 9.729676 ,
                                                                   9.914365
                 -4.3035593 , -9.414612 , -2.7395303 , 9.503131 , 10.006139 , -9.70948 , -3.6765878 , 2.4854155 , 0.9277671 , -10.061466 , 3.09827 , 4.140408 , -3.8939774 , -5.2399974 , -9.273331 , -2.40441 , -9.771945 , -9.158293 , -1.0062532 , -3.8165867 , -9.294314 , 9.602301 , 9.229294 , -9.535021 ],
               dtype=float32), array([[-0.01261254],
                [-0.16410564],
                [-0.18116668],
                 [ 0.17280662],
                [-0.18493941],
                [ 0.07949521],
                [ 0.17311478],
                 [ 0.07412434],
                [-0.09236651],
                [ 0.03712983],
                [ 0.075584351.
                 [ 0.04765628],
                [ 0.14957748].
                 [-0.16422854],
                [-0.00980624],
                 [-0.09619454],
                [-0.04052752],
                 [-0.06529744],
                [ 0.0081004 ].
                 [ 0.12431894],
                [-0.11465567],
                 [-0.18500377],
                [ 0.02729801].
                 [ 0.03722989],
                [-0.27393368],
                 [ 0.09166551],
                 [ 0.10329478],
                 [-0.04095844],
                 [-0.22640787],
                 [-0.03853676],
                 [-0.01387837],
                 [-0.23503576]], dtype=float32), array([8.492162], dtype=float32)]
In [ ]: # Making predictions
         # Convert to a numpy array and keep it as a batch of one element
         Celsius value = np.array([100])
         Fahrenheit_value = model.predict(Celsius_value)
         print("Fahrenheit value for Celsius value 100:", Fahrenheit value[0])
         # Calculating with formula
         Fahrenheit_value_formula = 9/5 * Celsius_value[0] + 32
         print("Fahrenheit value for Celsius value 100 using formula:",
                 Fahrenheit_value_formula)
                                    - 0s 52ms/step
        Fahrenheit value for Celsius value 100: [212.00005]
        Fahrenheit value for Celsius value 100 using formula: 212.0
```

In []: # saving the model

model.save('celcius_to_fahrenheit_model.h5')

WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. T his file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_m odel.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.

Experiment No: 3

Student Name and Roll Number: Piyush Gambhir – 21CSU349

Semester / Section: 6th Semester – AIML-B (A3)

Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment 3/Experiment 3.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)

Date:

Faculty Signature:

Marks:

Objective(s):

To build an ANN model for regression problem for house price predication dataset

Experiment 3: Keras Regression - Housing Prices Prediction

Problem Statement:

To build an ANN model for regression problem on house predication dataset.

GitHub & Colab Links:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%203/Experiment%203.ipynb

Google Colab Link:

Dataset

Dataset Link: https://www.kaggle.com/harlfoxem/housesalesprediction

Dataset Description

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Feature Columns

- id Unique ID for each home sold
- · date Date of the home sale
- price Price of each home sold
- bedrooms Number of bedrooms
- bathrooms Number of bathrooms, where .5 accounts for a room with a toilet but no shower
- sqft_living Square footage of the apartments interior living space
- sqft_lot Square footage of the land space
- floors Number of floors
- waterfront A dummy variable for whether the apartment was overlooking the waterfront or not
- view An index from 0 to 4 of how good the view of the property was
- condition An index from 1 to 5 on the condition of the apartment,
- grade An index from 1 to 13, where 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high quality level of construction and design.
- sqft_above The square footage of the interior housing space that is above ground level
- sqft_basement The square footage of the interior housing space that is below ground level
- yr_built The year the house was initially built
- yr_renovated The year of the house's last renovation
- zipcode What zipcode area the house is in
- lat Lattitude
- · long Longitude
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Code

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, explained_variance_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
```

```
In [ ]: # Load the Dataset
df = pd.read_csv('kc_house_data.csv')
```

```
In [ ]: # Preliminary Data Exploration
        print(df.isnull().sum()) # Check for null values
        print(df.describe().transpose()) # Summary statistics
      id
      date
                       0
      price
                       0
      bedrooms
                       0
      bathrooms
                       0
      sqft living
                       0
       sqft_lot
                       0
       floors
                       0
      waterfront
                       0
      view
      condition
                       Θ
      grade
                       0
      sqft above
                       0
      sqft basement
      yr built
                       0
      yr renovated
                       0
      zipcode
                       0
      lat
      long
                       0
      sqft living15
      sqft lot15
                       0
      dtype: int64
                       count
                                      mean
                                                    std
                                                                  min \
      id
                     21597.0 4.580474e+09
                                           2.876736e+09
                                                         1.000102e+06
                     21597.0 5.402966e+05 3.673681e+05 7.800000e+04
      price
      bedrooms
                     21597.0 3.373200e+00 9.262989e-01 1.000000e+00
                     21597.0 2.115826e+00 7.689843e-01 5.000000e-01
      bathrooms
       sqft living
                     21597.0
                              2.080322e+03
                                           9.181061e+02
                                                         3.700000e+02
                     21597.0 1.509941e+04 4.141264e+04
                                                         5.200000e+02
       sqft_lot
       floors
                     21597.0 1.494096e+00 5.396828e-01 1.000000e+00
      waterfront
                     21597.0 7.547345e-03 8.654900e-02 0.000000e+00
      view
                     21597.0
                              2.342918e-01
                                           7.663898e-01
                                                         0.000000e+00
                     21597.0 3.409825e+00 6.505456e-01 1.000000e+00
      condition
      arade
                     21597.0 7.657915e+00 1.173200e+00 3.000000e+00
                     21597.0 1.788597e+03 8.277598e+02 3.700000e+02
      sqft above
       sqft basement 21597.0 2.917250e+02 4.426678e+02
                                                         0.000000e+00
                     21597.0 1.971000e+03 2.937523e+01 1.900000e+03
      vr built
      yr_renovated 21597.0 8.446479e+01 4.018214e+02 0.000000e+00
       zipcode
                     21597.0 9.807795e+04 5.351307e+01 9.800100e+04
      lat
                     21597.0 4.756009e+01 1.385518e-01 4.715590e+01
                     21597.0 -1.222140e+02 1.407235e-01 -1.225190e+02
      long
      sqft living15 21597.0 1.986620e+03 6.852305e+02 3.990000e+02
                     21597.0 1.275828e+04 2.727444e+04 6.510000e+02
      sqft lot15
                              25%
                                           50%
                                                         75%
      id
                     2.123049e+09 3.904930e+09 7.308900e+09 9.900000e+09
                     3.220000e+05 4.500000e+05 6.450000e+05
                                                              7.700000e+06
      price
      bedrooms
                     3.000000e+00 3.000000e+00 4.000000e+00
                                                              3.300000e+01
                     1.750000e+00 2.250000e+00 2.500000e+00 8.000000e+00
      bathrooms
       sqft_living
                     1.430000e+03 1.910000e+03 2.550000e+03 1.354000e+04
                     5.040000e+03 7.618000e+03 1.068500e+04 1.651359e+06
      sqft lot
                     1.000000e+00 1.500000e+00 2.000000e+00 3.500000e+00
      floors
      waterfront
                     0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
      view
                     0.000000e+00 0.000000e+00 0.000000e+00 4.000000e+00
      condition
                     3.000000e+00 3.000000e+00 4.000000e+00
                                                              5.000000e+00
      arade
                     7.000000e+00 7.000000e+00 8.000000e+00 1.300000e+01
                     1.190000e+03 1.560000e+03 2.210000e+03 9.410000e+03
      sqft above
       sqft basement 0.000000e+00 0.000000e+00 5.600000e+02 4.820000e+03
                     1.951000e+03 1.975000e+03
                                                1.997000e+03
                                                              2.015000e+03
      yr built
      yr renovated
                     0.000000e+00 0.000000e+00 0.000000e+00
                                                              2.015000e+03
                     9.803300e+04 9.806500e+04 9.811800e+04 9.819900e+04
      zipcode
      lat
                     4.747110e+01 4.757180e+01 4.767800e+01 4.777760e+01
      long
                    -1.223280e+02 -1.222310e+02 -1.221250e+02 -1.213150e+02
       sqft_living15 1.490000e+03 1.840000e+03 2.360000e+03 6.210000e+03
                     5.100000e+03 7.620000e+03 1.008300e+04 8.712000e+05
      sqft_lot15
In [ ]: # Visualizing the Data
        print("Visualizing the Data")
        plt.figure(figsize=(12, 8))
        sns.displot(df['price']) # Distribution of house prices
        plt.figure(figsize=(12, 8))
        sns.countplot(df['bedrooms']) # Count of bedrooms
        plt.figure(figsize=(12, 8))
        sns.scatterplot(x='price', y='sqft living', data=df) # Price vs. living area
        plt.figure(figsize=(12, 8))
```

Out[]: <Axes: xlabel='bedrooms', ylabel='price'>

<Figure size 1200x800 with 0 Axes> 1000 800


```
In []: # Dropping unnecessary features
    df.drop(['id', 'date', 'zipcode'], axis=1, inplace=True)

# Feature Engineering from 'yr_renovated' and 'sqft_basement'
    df['yr_renovated'] = df['yr_renovated'].apply(lambda x: 1 if x > 0 else 0)
    df['has_basement'] = df['sqft_basement'].apply(lambda x: 1 if x > 0 else 0)
    df.drop('sqft_basement', axis=1, inplace=True)

# Scaling and Train Test Split
    X = df.drop('price', axis=1).values
    y = df['price'].values
```

```
X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.3, random_state=101)
        scaler = MinMaxScaler()
        X train = scaler.fit transform(X train)
        X_test = scaler.transform(X_test)
In [ ]: # Creating the Neural Network Model
        model = Sequential([
            Dense(19, activation='relu'),
            Dense(19, activation='relu'),
            Dense(19, activation='relu'),
            Dense(19, activation='relu'),
            Dense(1)
        ])
        model.compile(optimizer=Adam(), loss='mse')
        # Training the Model
        model.fit(x=X_train, y=y_train, validation_data=(
           X_test, y_test), batch_size=128, epochs=400, verbose=0)
Out[]: <keras.src.callbacks.history.History at 0x19e069d79d0>
In [ ]: # Evaluating Model Performance
        losses = pd.DataFrame(model.history.history)
        losses.plot()
        predictions = model.predict(X test)
        print(f"MAE: {mean_absolute_error(y_test, predictions)}")
        print(f"RMSE: {np.sqrt(mean squared error(y test, predictions))}")
        print(
            f"Explained Variance Score: {explained_variance_score(y_test, predictions)}")
        # Plotting predictions vs actual prices
        plt.scatter(y_test, predictions)
        plt.plot(y_test, y_test, 'r')
       203/203 -
                                  — 0s 935us/step
       MAE: 100499.83408323688
       RMSE: 164049.0437463553
       Explained Variance Score: 0.7973987069435204
Out[]: [<matplotlib.lines.Line2D at 0x19e1164d050>]
          1e11
                                                                 loss
                                                                 val loss
       4
       3
       2
       1
```

1e6

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

0

Experiment No: 4

Student Name and Roll Number: Piyush Gambhir – 21CSU349

Semester / Section: 6th Semester – AIML-B (A3)

Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment 4/Experiment 4.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)

Date:

Faculty Signature:

Marks:

Objective(s):

To build an ANN model for classification problem on diabetes classification to see the effect of:

- a. Early Stopping
- b. Dropouts

Experiment 4 - ANN Model - Breast Cancer Prediction - Early Stopping & Dropout

Problem Statement:

To build an ANN model for classification problem on breast cancer classification to see the effect of:

- · a. Early Stopping
- b. Dropouts

GitHub & Google Colab Links:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%204/Experiment%204.ipynb

Google Colab Link:

Installing Dependencies

```
In [ ]: ! pip install tabulate numpy pandas matplotlib seaborn
             Requirement already satisfied: tabulate in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
             ges (0.9.0)
             Requirement already satisfied: numpy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
             (1.26.4)
             Requirement already satisfied: pandas in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
             s(2.2.2)
             Requirement already satisfied: matplotlib in c: \users\mainp\appdata\local\programs\python\python311\lib\site-pace and the constraint of the constraint of
             kages (3.8.4)
             Requirement already satisfied: seaborn in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packag
             es (0.13.2)
             Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\mainp\appdata\local\programs\python\python311\
             lib\site-packages (from pandas) (2.9.0.post0)
             Requirement already satisfied: pytz>=2020.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
             ackages (from pandas) (2024.1)
             Requirement already satisfied: tzdata>=2022.7 in c:\users\mainp\appdata\local\programs\python\python311\lib\site
             -packages (from pandas) (2024.1)
             Requirement already satisfied: contourpy>=1.0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
             te-packages (from matplotlib) (1.2.1)
             Requirement already satisfied: cycler>=0.10 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
             ackages (from matplotlib) (0.12.1)
             Requirement already satisfied: fonttools>=4.22.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
             ite-packages (from matplotlib) (4.51.0)
             Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
             ite-packages (from matplotlib) (1.4.5)
             Requirement already satisfied: packaging>=20.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
             e-packages (from matplotlib) (24.0)
             Requirement already satisfied: pillow>=8 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pack
             ages (from matplotlib) (10.3.0)
             Requirement already satisfied: pyparsing>=2.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
             te-packages (from matplotlib) (3.1.2)
             Requirement already satisfied: six>=1.5 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
             ges (from python-dateutil>=2.8.2->pandas) (1.16.0)
```

Code

```
In [ ]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model selection import train test split
        from sklearn.preprocessing import MinMaxScaler
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense, Activation, Dropout
        from tensorflow.keras.callbacks import EarlyStopping
        from sklearn.metrics import classification report, confusion matrix
        import tensorflow as tf
```

```
df = pd.read csv('cancer classification.csv')
       print(df.head().to_markdown())
          | mean radius | mean texture | mean perimeter | mean area | mean smoothness | mean compactness
      mean concavity | mean concave points | mean symmetry | mean fractal dimension | radius error | tex ture error | perimeter error | area error | smoothness error | compactness error | concavity error |
      concave points error | symmetry error | fractal dimension error | worst radius | worst texture | worst
      perimeter | worst area | worst smoothness | worst compactness | worst concavity | worst concave points
      0.1184 | 0.2776

0.07871 | 1.095 |

0.04904 | 0.05373 |

17.33 | 184.6 |
                                                                25.38 |
                                            0.6656 |
      2019 |
                                                              0.7119 |
                                                                                 0.2654 |
                       0.1622 |
                                                                                                  0.460
                                  0 |
      1 |
                         0.1189 |
                20.57 |
                                   1326 |
                                                                           0.08474 | 0.07
0.05667 | 0.5435 |
0.01308 | 0.0186 |
23.41 | 158.8
      | 1 |
                                                                               0.08474 |
                                                                                                  0.07864
                0.0869 |
                                     74.08 |
      0.7339 |
                        3.398 |
                                                      0.005225 |
                                                                24.99 |
                                                                                            158.8 |
                                               0.003532 |
      0.0134 |
                       0.01389 |
                                             0.1866 |
                                                                                 0.186 |
      1956 |
                       0.1238 |
                                                              0.2416 |
                                                                                                  0.275
                                               0 |
                       0.08902 |
                19.69 |
                                                                           0.1096 | 0.1
0.05999 | 0.7456 |
0.04006 | 0.03832 |
25.53 | 152.
                                                   130
      2 |
                                   21.25 |
                                                               1203
                                                                                                  0.1599
                                                 0.2069 |
                                    0.1279 |
                0.1974 |
                                                    0.00615 |
                                     94.03 |
      0.7869 |
                        4.585 |
                                                                23.57 |
                                               0.004571 |
                       0.0225 |
                                                                                           152.5 |
      0.02058 |
                                            0.4245 |
                                                                                 0.243 |
      1709 |
                       0.1444 |
                                                              0.4504 |
                                                                                                  0.361
                         0.08758 |
      3 |
                11.42 |
                                               0 |
                                                                                                0.2839
                                   20.38 |
                                                   77.58 |
                                                                               0.1425 |
      | 3 |
                                                                386.1 |
                                                                                           0.4956 |
                                               0.2597 |
0.00911 |
                                                                           0.09744 |
0.07458 |
26.5 |
                0.2414 |
                                   0.1052 |
                                     27.23 |
      1.156 |
                        3.445 |
                                                                                            0.05661 |
                                                               14.91 |
                                                                                  20.5 | 98.87 |
0.2575 | 9.663
                                               0.009208 |
      0.01867 |
                       0.05963 l
                       0.2098 |
      567.7 |
                                           0.8663 |
                                                              0.6869 |
                                                                                                   0.6638
                       0.173 |
                                               0 |
                                                                               0.1003 | 0.7572 |
                  20.29 |
                                                135.1 |
      | 4 |
                                   14.34 |
                                                               1297
                                                                                                  0.1328
                                                                           0.05883 |
0.02461 |
                                               0.1809 |
                                   0.1043 |
                0.198 |
                                                                                         0.05688 | 152.2 |
      0.7813 I
                        5.438 l
                                                      0.01149 |
                                     94.44 |
                                                               22.54 |
      0.01885 |
                      0.01756 |
                                                                           16.67 |
                                               0.005115 |
                                            0.205 |
      1575 |
                       0.1374 |
                                                              0.4
                                                                                   0.1625 |
                                                                                                 0.236
      4 |
                         0.07678 |
                                               0 |
In []: # understanding the data
       print("Data Info")
       print(df.info())
       print("/n")
       print("Data Description")
       print(df.describe().transpose().to_markdown())
      Data Info
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 569 entries, 0 to 568
      Data columns (total 31 columns):
       # Column
                     Non-Null Count Dtype
          mean radius
       0
                               569 non-null
                                               float64
          mean texture
                               569 non-null
                                             float64
                               569 non-null
                                               float64
          mean perimeter
                                 569 non-null
                                               float64
          mean area
          mean smoothness 569 non-null
mean compactness 569 non-null
mean concavity
                                               float64
                             Joy non-null
569 non-null
569 non-nul
                                               float64
       6
                                               float64
                                               float64
          mean concave points
                                               float64
       8
          mean symmetry
          mean fractal dimension 569 non-null
                                               float64
       10 radius error 569 non-null
                                               float64
          texture error
                                569 non-null
                                               float64
       11
                              569 non-null
       12 perimeter error
                                               float64
                               569 non-null
                                               float64
       14 smoothness error 569 non-null
15 compactness error 569 non-null
16 concavity error 569 non-null
                                               float64
                                               float64
                                               float64
       17
          concave points error 569 non-null
                                               float64
       18
                                 569 non-null
                                               float64
          symmetry error
       19
          fractal dimension error 569 non-null
                                               float64
          worst radius
                                 569 non-null
                                               float64
```

worst texture

worst perimeter

569 non-null

569 non-null

float64

float64

```
23 worst area
                            569 non-null
                                            float64
24
    worst smoothness
                            569 non-null
                                            float64
25
                            569 non-null
                                            float64
    worst compactness
26
    worst concavity
                            569 non-null
                                            float64
27
                            569 non-null
                                            float64
    worst concave points
28
    worst symmetry
                            569 non-null
                                            float64
29
    worst fractal dimension
                            569 non-null
                                            float64
30 benign 0 mal 1
                            569 non-null
                                            int64
dtypes: float64(30), int64(1)
memory usage: 137.9 KB
None
/n
Data Description
                                                         std |
                                                                                   25% |
                                                                                                 50% |
                            count |
                                           mean
                                                                        min |
75% |
           max l
                       ----:[-----:[
| mean radius
                              569 | 14.1273
                                                    3.52405
                                                                   6.981
                                                                                         13.37
                                                                                                         15
                                                                            111.7
.78 | 28.11
| mean texture
                              569 | 19.2896
                                                    4.30104
                                                                   9.71
                                                                               16.17
                                                                                           18.84
                                                                                                         21
.8 | 39.28
| mean perimeter
                              569 | 91.969
                                                   24.299
                                                                  43.79
                                                                               75.17
                                                                                           86.24
                                                                                                        104
. 1
    | 188.5
                              569 | 654.889
                                                 | 351.914
                                                                             1 420.3
                                                                                                        782
| mean area
                                                               | 143.5
                                                                                         | 551.1
.7 | 2501
                                      0.0963603
                                                    0.0140641
                                                                                             0.09587
                              569 |
                                                                   0.05263
                                                                                0.08637
                                                                                                          0
I mean smoothness
.1053 | 0.1634
                              569 |
                                      0.104341
                                                    0.0528128
                                                                   0.01938
                                                                                0.06492
                                                                                             0.09263
                                                                                                          0
| mean compactness
.1304 | 0.3454
                              569 |
| mean concavity
                                      0.0887993
                                                    0.0797198
                                                                   0
                                                                                0.02956
                                                                                             0.06154
                                                                                                          0
.1307 | 0.4268
                              569 |
                                                    0.0388028
                                                                                0.02031
                                      0.0489191
                                                                   0
                                                                                             0.0335
                                                                                                          0
| mean concave points
                                                               - |
.074 | 0.2012 |
                              569 |
                                                    0.0274143
                                      0.181162
                                                                   0.106
                                                                                0.1619
                                                                                             0.1792
                                                                                                          0
I mean symmetry
.1957 | 0.304
                                      0.0627976
                                                    0.00706036 |
                                                                                0.0577
                              569 |
                                                                   0.04996
                                                                                             0.06154
                                                                                                          0
I mean fractal dimension
.06612 | 0.09744 |
| radius error
                                      0.405172
                                                    0.277313
                              569 |
                                                                   0.1115
                                                                                0.2324
                                                                                             0.3242
                                                                                                          0
.4789 | 2.873
| texture error
                         I
                              569 |
                                      1.21685
                                                    0.551648
                                                               -
                                                                   0.3602
                                                                                0.8339
                                                                                             1.108
                                                                                                          1
.474 | 4.885
                              569 |
                                                                                                          3
| perimeter error
                                      2.86606
                                                    2.02185
                                                                   0.757
                                                                                1.606
                                                                                             2.287
.357 | 21.98
                              569 |
                                     40.3371
                                                   45.491
                                                                   6.802
                                                                               17.85
                                                                                            24.53
                                                                                                         45
l area error
.19 | 542.2
| smoothness error
                                      0.00704098 |
                                                    0.00300252 |
                                                                   0.001713
                                                                                0.005169 |
                              569 I
                                                                                             0.00638
                                                                                                          0
.008146 | 0.03113 |
                                      0.0254781
                                                    0.0179082
                                                                   0.002252
I compactness error
                              569 I
                                                                                0.01308
                                                                                             0.02045
                                                                                                          0
.03245 | 0.1354
                              569 |
                                      0.0318937
                                                    0.0301861
                                                                                0.01509
                                                                                             0.02589
                                                                                                          0
| concavity error
.04205 |
          0.396
| concave points error
                                      0.0117961
                                                    0.00617029 |
                                                                                0.007638 |
                              569 |
                                                                                             0.01093
                                                                                                          0
.01471 | 0.05279 |
| symmetry error
                              569 |
                                      0.0205423
                                                    0.00826637 |
                                                                   0.007882
                                                                                0.01516
                                                                                             0.01873
                                                                                                          0
.02348 | 0.07895 |
| fractal dimension error |
                              569 |
                                      0.0037949
                                                    0.00264607 |
                                                                   0.0008948 |
                                                                                0.002248 |
                                                                                             0.003187 |
                                                                                                          0
                                                - 1
.004558 | 0.02984 |
l worst radius
                              569 | 16.2692
                                                    4.83324
                                                                   7.93
                                                                               13.01
                                                                                            14.97
                                                                                                         18
.79 | 36.04
| worst texture
                              569 | 25.6772
                                                    6.14626
                                                                  12.02
                                                                               21.08
                                                                                            25.41
                                                                                                         29
                         .72 | 49.54
| worst perimeter
                              569 | 107.261
                                                   33.6025
                                                                  50.41
                                                                               84.11
                                                                                           97.66
                                                                                                        125
.4 | 251.2
| worst area
                              569 | 880.583
                                                 | 569.357
                                                                185.2
                                                                              515.3
                                                                                         | 686.5
                                                                                                      I 1084
| 4254
| worst smoothness
                              569 |
                                      0.132369
                                                    0.0228324
                                                                   0.07117
                                                                                0.1166
                                                                                             0.1313
                                                                                                          0
.146 | 0.2226
                              569 |
                                      0.254265
                                                    0.157336
                                                                   0.02729
                                                                                0.1472
                                                                                             0.2119
                                                                                                          0
| worst compactness
                         I
.3391 | 1.058
                              569 |
                                      0.272188
                                                    0.208624
                                                                                0.1145
                                                                                             0.2267
                                                                                                          0
| worst concavity
.3829 | 1.252
| worst concave points
                              569 |
                                      0.114606
                                                    0.0657323
                                                               -
                                                                                0.06493
                                                                                             0.09993
                                                                                                          0
.1614 | 0.291
| worst symmetry
                              569 |
                                      0.290076
                                                    0.0618675
                                                                   0.1565
                                                                                0.2504
                                                                                             0.2822
                                                                                                          0
.3179 | 0.6638 |
| worst fractal dimension |
                              569 |
                                      0.0839458
                                                    0.0180613
                                                                   0.05504
                                                                                0.07146
                                                                                             0.08004
                                                                                                          0
.09208 | 0.2075 |
| benign_0__mal_1
                              569 |
                                      0.627417
                                                    0.483918
                                                                                                          1
| 1
```

```
plt.show()

# Correlation Heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), annot=False, cmap='viridis')
plt.show()

# Correlation with Target Variable
df.corr()['benign_0_mal_1'].sort_values().plot(kind='bar')
plt.show()
df.corr()['benign_0_mal_1'][:-1].sort_values().plot(kind='bar')
plt.show()
```


X test = scaler.transform(X test)

```
In [ ]: # Creating the Model
        model = Sequential([
            Dense(units=30, activation='relu'),
            Dense(units=15, activation='relu')
            Dense(units=1, activation='sigmoid')
        model.compile(loss='binary_crossentropy')
                      optimizer='adam', metrics=['accuracy'])
        # Training the Model - Example One: Overfitting
        model.fit(x=X_train, y=y_train, epochs=600,
                  validation_data=(X_test, y_test), verbose=1)
        model loss = pd.DataFrame(model.history.history)
        model_loss.plot()
        plt.show()
        # Example Two: Early Stopping to prevent overfitting
        # Resetting the model
        model = Sequential([
            Dense(units=30, activation='relu'),
            Dense(units=15, activation='relu'),
            Dense(units=1, activation='sigmoid')
        ])
        model.compile(loss='binary_crossentropy', optimizer='adam')
       Epoch 1/600
       14/14
                                 - 1s 14ms/step - accuracy: 0.3566 - loss: 0.7173 - val accuracy: 0.3916 - val loss: 0.6
       914
       Epoch 2/600
                                 - 0s 3ms/step - accuracy: 0.4457 - loss: 0.6814 - val accuracy: 0.6853 - val loss: 0.65
       14/14
       86
       Epoch 3/600
       14/14
                                  Os 3ms/step - accuracy: 0.7696 - loss: 0.6496 - val accuracy: 0.8741 - val loss: 0.61
       98
       Epoch 4/600
       14/14
                                 - 0s 3ms/step - accuracy: 0.8958 - loss: 0.6044 - val accuracy: 0.9091 - val loss: 0.57
       14
       Epoch 5/600
       14/14
                                 - 0s 3ms/step - accuracy: 0.8730 - loss: 0.5571 - val_accuracy: 0.9161 - val_loss: 0.52
       08
       Epoch 6/600
       14/14
                                 · 0s 3ms/step - accuracy: 0.8814 - loss: 0.5056 - val accuracy: 0.8811 - val loss: 0.46
       89
       Epoch 7/600
       14/14
                                  0s 3ms/step - accuracy: 0.8947 - loss: 0.4614 - val accuracy: 0.9161 - val loss: 0.42
       29
       Epoch 8/600
       14/14
                                 - 0s 3ms/step - accuracy: 0.8992 - loss: 0.4102 - val accuracy: 0.9021 - val loss: 0.37
       29
       Epoch 9/600
       14/14
                                 - 0s 3ms/step - accuracy: 0.8809 - loss: 0.3784 - val_accuracy: 0.9231 - val_loss: 0.33
       41
       Epoch 10/600
       14/14
                                  0s 3ms/step - accuracy: 0.9268 - loss: 0.3122 - val accuracy: 0.9161 - val loss: 0.29
       66
       Epoch 11/600
                                 - 0s 3ms/step - accuracy: 0.9048 - loss: 0.2924 - val accuracy: 0.9371 - val loss: 0.27
       14/14
       00
       Epoch 12/600
       14/14
                                 - 0s 3ms/step - accuracy: 0.9191 - loss: 0.2617 - val accuracy: 0.9510 - val loss: 0.24
       35
       Epoch 13/600
       14/14
                                  0s 6ms/step - accuracy: 0.9234 - loss: 0.2497 - val accuracy: 0.9580 - val loss: 0.22
       19
       Epoch 14/600
       14/14
                                  0s 3ms/step - accuracy: 0.9172 - loss: 0.2294 - val accuracy: 0.9441 - val loss: 0.20
       64
       Epoch 15/600
                                 - 0s 3ms/step - accuracy: 0.9234 - loss: 0.2203 - val_accuracy: 0.9371 - val_loss: 0.19
       14/14
       45
       Epoch 16/600
                                  0s 3ms/step - accuracy: 0.9441 - loss: 0.1796 - val accuracy: 0.9371 - val loss: 0.18
       14/14
       42
       Epoch 17/600
                                 • 0s 3ms/step - accuracy: 0.9190 - loss: 0.2000 - val accuracy: 0.9510 - val loss: 0.17
       14/14
       43
       Epoch 18/600
       14/14
                                 - 0s 4ms/step - accuracy: 0.9382 - loss: 0.1801 - val accuracy: 0.9580 - val loss: 0.16
       54
       Epoch 19/600
                                 - 0s 3ms/step - accuracy: 0.9537 - loss: 0.1421 - val_accuracy: 0.9650 - val_loss: 0.15
       14/14
       84
       Epoch 20/600
```

```
14/14
                           0s 3ms/step - accuracy: 0.9386 - loss: 0.1522 - val accuracy: 0.9650 - val loss: 0.15
24
Epoch 21/600
14/14
                           0s 3ms/step - accuracy: 0.9402 - loss: 0.1336 - val accuracy: 0.9580 - val loss: 0.15
06
Epoch 22/600
14/14
                          - 0s 3ms/step - accuracy: 0.9559 - loss: 0.1315 - val accuracy: 0.9650 - val loss: 0.14
35
Epoch 23/600
14/14
                          - 0s 3ms/step - accuracy: 0.9603 - loss: 0.1373 - val_accuracy: 0.9720 - val_loss: 0.13
85
Epoch 24/600
14/14
                           0s 3ms/step - accuracy: 0.9376 - loss: 0.1350 - val accuracy: 0.9650 - val loss: 0.13
67
Epoch 25/600
                           0s 3ms/step - accuracy: 0.9499 - loss: 0.1530 - val accuracy: 0.9580 - val loss: 0.13
14/14
42
Epoch 26/600
14/14
                          - 0s 3ms/step - accuracy: 0.9610 - loss: 0.1195 - val accuracy: 0.9510 - val loss: 0.13
19
Epoch 27/600
                           0s 3ms/step - accuracy: 0.9708 - loss: 0.1303 - val_accuracy: 0.9510 - val_loss: 0.13
14/14
01
Epoch 28/600
14/14
                           0s 3ms/step - accuracy: 0.9767 - loss: 0.0939 - val accuracy: 0.9580 - val loss: 0.12
87
Epoch 29/600
14/14
                          - 0s 3ms/step - accuracy: 0.9822 - loss: 0.1014 - val accuracy: 0.9650 - val loss: 0.12
60
Epoch 30/600
14/14
                           0s 3ms/step - accuracy: 0.9567 - loss: 0.1128 - val accuracy: 0.9650 - val loss: 0.12
94
Epoch 31/600
14/14
                           0s 3ms/step - accuracy: 0.9801 - loss: 0.1067 - val accuracy: 0.9650 - val loss: 0.12
26
Epoch 32/600
14/14
                           0s 4ms/step - accuracy: 0.9868 - loss: 0.0860 - val accuracy: 0.9650 - val loss: 0.12
32
Epoch 33/600
14/14
                          - 0s 3ms/step - accuracy: 0.9846 - loss: 0.0875 - val accuracy: 0.9650 - val loss: 0.11
96
Epoch 34/600
14/14
                           0s 4ms/step - accuracy: 0.9854 - loss: 0.1020 - val accuracy: 0.9650 - val loss: 0.12
61
Epoch 35/600
                          - 0s 3ms/step - accuracy: 0.9762 - loss: 0.0943 - val accuracy: 0.9720 - val loss: 0.11
14/14
67
Epoch 36/600
14/14
                          - 0s 6ms/step - accuracy: 0.9832 - loss: 0.0779 - val accuracy: 0.9650 - val loss: 0.12
10
Epoch 37/600
                           0s 3ms/step - accuracy: 0.9845 - loss: 0.0794 - val accuracy: 0.9650 - val loss: 0.11
14/14
89
Epoch 38/600
14/14
                          • 0s 4ms/step - accuracy: 0.9830 - loss: 0.0779 - val accuracy: 0.9650 - val loss: 0.11
87
Epoch 39/600
14/14
                          - 0s 3ms/step - accuracy: 0.9749 - loss: 0.0868 - val accuracy: 0.9650 - val loss: 0.11
62
Epoch 40/600
14/14
                           0s 4ms/step - accuracy: 0.9805 - loss: 0.0762 - val accuracy: 0.9650 - val loss: 0.11
74
Epoch 41/600
14/14
                           0s 4ms/step - accuracy: 0.9847 - loss: 0.0722 - val accuracy: 0.9650 - val loss: 0.11
86
Epoch 42/600
14/14
                          - 0s 4ms/step - accuracy: 0.9743 - loss: 0.0877 - val_accuracy: 0.9860 - val_loss: 0.11
22
Epoch 43/600
14/14
                           0s 4ms/step - accuracy: 0.9775 - loss: 0.0749 - val accuracy: 0.9650 - val loss: 0.11
59
Epoch 44/600
                           0s 3ms/step - accuracy: 0.9831 - loss: 0.0798 - val accuracy: 0.9860 - val loss: 0.11
14/14
04
Epoch 45/600
14/14
                          - 0s 3ms/step - accuracy: 0.9716 - loss: 0.0869 - val accuracy: 0.9790 - val loss: 0.11
07
Epoch 46/600
14/14
                           0s 3ms/step - accuracy: 0.9880 - loss: 0.0629 - val accuracy: 0.9650 - val loss: 0.11
76
Epoch 47/600
14/14
                           0s 3ms/step - accuracy: 0.9780 - loss: 0.0775 - val accuracy: 0.9650 - val loss: 0.11
```

```
Epoch 48/600
14/14
                           0s 3ms/step - accuracy: 0.9709 - loss: 0.0884 - val accuracy: 0.9860 - val loss: 0.10
96
Epoch 49/600
14/14
                          • 0s 3ms/step - accuracy: 0.9898 - loss: 0.0518 - val accuracy: 0.9650 - val loss: 0.11
62
Epoch 50/600
14/14
                           0s 4ms/step - accuracy: 0.9773 - loss: 0.0804 - val accuracy: 0.9650 - val loss: 0.11
27
Epoch 51/600
14/14
                           0s 3ms/step - accuracy: 0.9723 - loss: 0.0816 - val accuracy: 0.9650 - val loss: 0.11
14
Epoch 52/600
14/14
                          - 0s 4ms/step - accuracy: 0.9805 - loss: 0.0617 - val accuracy: 0.9650 - val loss: 0.11
97
Epoch 53/600
                           0s 3ms/step - accuracy: 0.9785 - loss: 0.0648 - val accuracy: 0.9860 - val loss: 0.10
14/14
83
Epoch 54/600
14/14
                           0s 3ms/step - accuracy: 0.9832 - loss: 0.0534 - val_accuracy: 0.9650 - val_loss: 0.11
41
Epoch 55/600
14/14
                           0s 5ms/step - accuracy: 0.9700 - loss: 0.0763 - val accuracy: 0.9650 - val loss: 0.11
31
Epoch 56/600
14/14
                           0s 4ms/step - accuracy: 0.9796 - loss: 0.0655 - val accuracy: 0.9790 - val loss: 0.10
87
Epoch 57/600
14/14
                           0s 3ms/step - accuracy: 0.9644 - loss: 0.0727 - val accuracy: 0.9650 - val loss: 0.11
31
Epoch 58/600
                           0s 3ms/step - accuracy: 0.9846 - loss: 0.0643 - val accuracy: 0.9650 - val loss: 0.10
14/14
95
Epoch 59/600
14/14
                           0s 3ms/step - accuracy: 0.9702 - loss: 0.0871 - val accuracy: 0.9650 - val loss: 0.11
17
Epoch 60/600
14/14
                           0s 3ms/step - accuracy: 0.9849 - loss: 0.0562 - val_accuracy: 0.9650 - val_loss: 0.11
08
Epoch 61/600
14/14
                           0s 4ms/step - accuracy: 0.9925 - loss: 0.0466 - val accuracy: 0.9720 - val loss: 0.11
28
Epoch 62/600
                           0s 3ms/step - accuracy: 0.9806 - loss: 0.0591 - val_accuracy: 0.9650 - val_loss: 0.11
14/14
08
Epoch 63/600
14/14
                           0s 4ms/step - accuracy: 0.9833 - loss: 0.0600 - val accuracy: 0.9650 - val loss: 0.11
47
Epoch 64/600
14/14
                           0s 5ms/step - accuracy: 0.9912 - loss: 0.0482 - val accuracy: 0.9650 - val loss: 0.11
26
Epoch 65/600
14/14
                           0s 3ms/step - accuracy: 0.9651 - loss: 0.0828 - val accuracy: 0.9650 - val loss: 0.11
24
Epoch 66/600
14/14
                           0s 3ms/step - accuracy: 0.9777 - loss: 0.0620 - val accuracy: 0.9650 - val loss: 0.10
98
Epoch 67/600
14/14
                           0s 3ms/step - accuracy: 0.9768 - loss: 0.0583 - val accuracy: 0.9650 - val loss: 0.11
50
Epoch 68/600
14/14
                          · 0s 4ms/step - accuracy: 0.9748 - loss: 0.0704 - val accuracy: 0.9650 - val loss: 0.11
12
Epoch 69/600
14/14
                           0s 3ms/step - accuracy: 0.9823 - loss: 0.0652 - val accuracy: 0.9650 - val loss: 0.11
39
Epoch 70/600
14/14
                           0s 4ms/step - accuracy: 0.9832 - loss: 0.0468 - val accuracy: 0.9650 - val loss: 0.10
80
Epoch 71/600
                           0s 3ms/step - accuracy: 0.9873 - loss: 0.0518 - val_accuracy: 0.9650 - val_loss: 0.11
14/14
34
Epoch 72/600
14/14
                          · 0s 4ms/step - accuracy: 0.9900 - loss: 0.0477 - val accuracy: 0.9650 - val loss: 0.10
83
Epoch 73/600
14/14
                           0s 3ms/step - accuracy: 0.9798 - loss: 0.0570 - val accuracy: 0.9650 - val loss: 0.10
89
Epoch 74/600
14/14
                           0s 3ms/step - accuracy: 0.9851 - loss: 0.0474 - val accuracy: 0.9650 - val loss: 0.11
53
Epoch 75/600
                           0s 3ms/step - accuracy: 0.9828 - loss: 0.0575 - val_accuracy: 0.9650 - val_loss: 0.11
14/14
```

```
01
Epoch 76/600
14/14
                          - 0s 3ms/step - accuracy: 0.9835 - loss: 0.0431 - val accuracy: 0.9650 - val loss: 0.12
46
Epoch 77/600
14/14
                           0s 4ms/step - accuracy: 0.9760 - loss: 0.0605 - val accuracy: 0.9650 - val loss: 0.10
82
Epoch 78/600
14/14
                           0s 3ms/step - accuracy: 0.9784 - loss: 0.0620 - val accuracy: 0.9650 - val loss: 0.11
40
Epoch 79/600
14/14
                          · 0s 4ms/step - accuracy: 0.9920 - loss: 0.0434 - val_accuracy: 0.9650 - val_loss: 0.11
02
Epoch 80/600
14/14
                          0s 3ms/step - accuracy: 0.9815 - loss: 0.0545 - val accuracy: 0.9650 - val loss: 0.11
21
Epoch 81/600
                           0s 5ms/step - accuracy: 0.9803 - loss: 0.0580 - val accuracy: 0.9650 - val loss: 0.10
14/14
83
Epoch 82/600
14/14
                          · 0s 4ms/step - accuracy: 0.9872 - loss: 0.0435 - val accuracy: 0.9650 - val loss: 0.10
96
Epoch 83/600
                           0s 3ms/step - accuracy: 0.9867 - loss: 0.0567 - val_accuracy: 0.9650 - val_loss: 0.10
14/14
92
Epoch 84/600
14/14
                           0s 3ms/step - accuracy: 0.9790 - loss: 0.0600 - val accuracy: 0.9720 - val loss: 0.10
75
Epoch 85/600
14/14
                          - 0s 3ms/step - accuracy: 0.9813 - loss: 0.0439 - val accuracy: 0.9650 - val loss: 0.11
04
Epoch 86/600
14/14
                           0s 3ms/step - accuracy: 0.9931 - loss: 0.0397 - val accuracy: 0.9650 - val loss: 0.11
24
Epoch 87/600
                           0s 3ms/step - accuracy: 0.9924 - loss: 0.0352 - val accuracy: 0.9650 - val loss: 0.11
14/14
00
Epoch 88/600
14/14
                           0s 4ms/step - accuracy: 0.9817 - loss: 0.0588 - val_accuracy: 0.9650 - val_loss: 0.11
02
Epoch 89/600
14/14
                          - 0s 4ms/step - accuracy: 0.9844 - loss: 0.0495 - val accuracy: 0.9650 - val loss: 0.11
04
Epoch 90/600
14/14
                           0s 4ms/step - accuracy: 0.9732 - loss: 0.0742 - val accuracy: 0.9650 - val loss: 0.10
97
Epoch 91/600
                          • 0s 4ms/step - accuracy: 0.9755 - loss: 0.0593 - val accuracy: 0.9720 - val loss: 0.10
14/14
87
Epoch 92/600
14/14
                           0s 3ms/step - accuracy: 0.9771 - loss: 0.0491 - val_accuracy: 0.9650 - val_loss: 0.10
95
Epoch 93/600
14/14
                          - 0s 3ms/step - accuracy: 0.9898 - loss: 0.0432 - val accuracy: 0.9650 - val loss: 0.12
08
Epoch 94/600
14/14
                           0s 3ms/step - accuracy: 0.9901 - loss: 0.0425 - val_accuracy: 0.9650 - val_loss: 0.10
84
Epoch 95/600
                          0s 3ms/step - accuracy: 0.9794 - loss: 0.0653 - val accuracy: 0.9650 - val loss: 0.10
14/14
88
Epoch 96/600
14/14
                           0s 4ms/step - accuracy: 0.9860 - loss: 0.0438 - val accuracy: 0.9650 - val loss: 0.11
40
Epoch 97/600
14/14
                          0s 4ms/step - accuracy: 0.9877 - loss: 0.0494 - val accuracy: 0.9650 - val loss: 0.11
07
Epoch 98/600
14/14
                           0s 5ms/step - accuracy: 0.9873 - loss: 0.0432 - val_accuracy: 0.9650 - val_loss: 0.11
93
Epoch 99/600
14/14
                           0s 4ms/step - accuracy: 0.9860 - loss: 0.0545 - val accuracy: 0.9650 - val loss: 0.11
10
Epoch 100/600
                           0s 3ms/step - accuracy: 0.9849 - loss: 0.0484 - val accuracy: 0.9650 - val loss: 0.11
14/14
02
Epoch 101/600
14/14
                           0s 3ms/step - accuracy: 0.9918 - loss: 0.0390 - val accuracy: 0.9650 - val loss: 0.11
28
Epoch 102/600
14/14
                           0s 4ms/step - accuracy: 0.9802 - loss: 0.0582 - val_accuracy: 0.9650 - val_loss: 0.11
```

Epoch 103/600

```
14/14
                          · 0s 4ms/step - accuracy: 0.9741 - loss: 0.0673 - val accuracy: 0.9650 - val loss: 0.10
95
Epoch 104/600
14/14
                           0s 4ms/step - accuracy: 0.9848 - loss: 0.0365 - val accuracy: 0.9650 - val loss: 0.11
42
Epoch 105/600
14/14
                          - 0s 3ms/step - accuracy: 0.9888 - loss: 0.0395 - val accuracy: 0.9650 - val loss: 0.11
21
Epoch 106/600
14/14
                          - 0s 3ms/step - accuracy: 0.9829 - loss: 0.0552 - val_accuracy: 0.9650 - val_loss: 0.11
41
Epoch 107/600
14/14
                           0s 4ms/step - accuracy: 0.9926 - loss: 0.0359 - val accuracy: 0.9650 - val loss: 0.11
23
Epoch 108/600
                          · 0s 4ms/step - accuracy: 0.9897 - loss: 0.0432 - val accuracy: 0.9650 - val loss: 0.10
14/14
78
Epoch 109/600
14/14
                          • 0s 5ms/step - accuracy: 0.9842 - loss: 0.0473 - val accuracy: 0.9650 - val loss: 0.11
25
Epoch 110/600
14/14
                           0s 4ms/step - accuracy: 0.9872 - loss: 0.0496 - val_accuracy: 0.9650 - val_loss: 0.11
50
Epoch 111/600
14/14
                           0s 4ms/step - accuracy: 0.9801 - loss: 0.0660 - val accuracy: 0.9930 - val loss: 0.10
42
Epoch 112/600
                          · 0s 3ms/step - accuracy: 0.9775 - loss: 0.0621 - val accuracy: 0.9650 - val loss: 0.10
14/14
98
Epoch 113/600
                           0s 3ms/step - accuracy: 0.9772 - loss: 0.0600 - val accuracy: 0.9650 - val loss: 0.10
14/14
88
Epoch 114/600
14/14
                           0s 3ms/step - accuracy: 0.9823 - loss: 0.0446 - val accuracy: 0.9650 - val loss: 0.12
06
Epoch 115/600
14/14
                           0s 3ms/step - accuracy: 0.9801 - loss: 0.0510 - val accuracy: 0.9930 - val loss: 0.10
38
Epoch 116/600
14/14
                          · 0s 5ms/step - accuracy: 0.9836 - loss: 0.0520 - val accuracy: 0.9650 - val loss: 0.11
62
Epoch 117/600
14/14
                           0s 4ms/step - accuracy: 0.9808 - loss: 0.0592 - val accuracy: 0.9720 - val loss: 0.10
42
Epoch 118/600
                          - 0s 4ms/step - accuracy: 0.9845 - loss: 0.0426 - val accuracy: 0.9650 - val loss: 0.11
14/14
06
Epoch 119/600
14/14
                          - 0s 4ms/step - accuracy: 0.9858 - loss: 0.0486 - val accuracy: 0.9720 - val loss: 0.10
65
Epoch 120/600
14/14
                           0s 3ms/step - accuracy: 0.9845 - loss: 0.0559 - val accuracy: 0.9720 - val loss: 0.10
66
Epoch 121/600
14/14
                          \cdot 0s 4ms/step - accuracy: 0.9809 - loss: 0.0442 - val accuracy: 0.9650 - val loss: 0.11
72
Epoch 122/600
14/14
                          - 0s 4ms/step - accuracy: 0.9911 - loss: 0.0384 - val accuracy: 0.9650 - val loss: 0.10
90
Epoch 123/600
14/14
                           0s 4ms/step - accuracy: 0.9850 - loss: 0.0401 - val accuracy: 0.9650 - val loss: 0.10
85
Epoch 124/600
14/14
                           0s 4ms/step - accuracy: 0.9789 - loss: 0.0495 - val accuracy: 0.9650 - val loss: 0.11
05
Epoch 125/600
14/14
                          - 0s 3ms/step - accuracy: 0.9833 - loss: 0.0496 - val_accuracy: 0.9650 - val_loss: 0.11
20
Epoch 126/600
14/14
                          • 0s 3ms/step - accuracy: 0.9819 - loss: 0.0418 - val accuracy: 0.9720 - val loss: 0.10
86
Epoch 127/600
14/14
                          • 0s 4ms/step - accuracy: 0.9797 - loss: 0.0597 - val accuracy: 0.9720 - val loss: 0.10
85
Epoch 128/600
14/14
                          - 0s 3ms/step - accuracy: 0.9850 - loss: 0.0459 - val accuracy: 0.9650 - val loss: 0.11
07
Epoch 129/600
14/14
                           0s 4ms/step - accuracy: 0.9887 - loss: 0.0450 - val accuracy: 0.9650 - val loss: 0.11
42
Epoch 130/600
                           0s 3ms/step - accuracy: 0.9827 - loss: 0.0499 - val accuracy: 0.9650 - val loss: 0.10
14/14
94
```

```
Epoch 131/600
14/14
                           0s 4ms/step - accuracy: 0.9821 - loss: 0.0515 - val accuracy: 0.9650 - val loss: 0.12
39
Epoch 132/600
14/14
                          · 0s 3ms/step - accuracy: 0.9757 - loss: 0.0580 - val accuracy: 0.9720 - val loss: 0.10
71
Epoch 133/600
14/14
                           0s 4ms/step - accuracy: 0.9892 - loss: 0.0433 - val accuracy: 0.9650 - val loss: 0.11
10
Epoch 134/600
14/14
                           0s 6ms/step - accuracy: 0.9848 - loss: 0.0507 - val accuracy: 0.9650 - val loss: 0.10
96
Epoch 135/600
                          - 0s 5ms/step - accuracy: 0.9904 - loss: 0.0285 - val accuracy: 0.9650 - val loss: 0.11
14/14
42
Epoch 136/600
14/14
                           0s 4ms/step - accuracy: 0.9842 - loss: 0.0479 - val accuracy: 0.9650 - val loss: 0.11
42
Epoch 137/600
14/14
                           0s 5ms/step - accuracy: 0.9853 - loss: 0.0475 - val_accuracy: 0.9650 - val_loss: 0.11
39
Epoch 138/600
14/14
                           0s 4ms/step - accuracy: 0.9847 - loss: 0.0489 - val accuracy: 0.9650 - val loss: 0.11
16
Epoch 139/600
14/14
                           0s 3ms/step - accuracy: 0.9856 - loss: 0.0366 - val accuracy: 0.9650 - val loss: 0.12
02
Epoch 140/600
14/14
                           0s 3ms/step - accuracy: 0.9798 - loss: 0.0609 - val accuracy: 0.9790 - val loss: 0.10
61
Epoch 141/600
                           0s 3ms/step - accuracy: 0.9796 - loss: 0.0437 - val accuracy: 0.9650 - val loss: 0.12
14/14
33
Fnoch 142/600
14/14
                           0s 3ms/step - accuracy: 0.9869 - loss: 0.0453 - val accuracy: 0.9720 - val loss: 0.10
74
Epoch 143/600
14/14
                           0s 3ms/step - accuracy: 0.9922 - loss: 0.0375 - val_accuracy: 0.9650 - val_loss: 0.11
85
Epoch 144/600
14/14
                           0s 3ms/step - accuracy: 0.9891 - loss: 0.0334 - val accuracy: 0.9650 - val loss: 0.11
72
Epoch 145/600
                           0s 3ms/step - accuracy: 0.9941 - loss: 0.0256 - val accuracy: 0.9650 - val loss: 0.11
14/14
19
Epoch 146/600
14/14
                           0s 3ms/step - accuracy: 0.9926 - loss: 0.0302 - val accuracy: 0.9650 - val loss: 0.11
73
Epoch 147/600
14/14
                           0s 3ms/step - accuracy: 0.9845 - loss: 0.0446 - val accuracy: 0.9650 - val loss: 0.11
20
Epoch 148/600
14/14
                           0s 4ms/step - accuracy: 0.9883 - loss: 0.0395 - val accuracy: 0.9650 - val loss: 0.11
04
Epoch 149/600
14/14
                           0s 4ms/step - accuracy: 0.9844 - loss: 0.0396 - val accuracy: 0.9650 - val loss: 0.11
52
Epoch 150/600
14/14
                           0s 5ms/step - accuracy: 0.9756 - loss: 0.0524 - val accuracy: 0.9650 - val loss: 0.11
03
Epoch 151/600
14/14
                          - 0s 3ms/step - accuracy: 0.9881 - loss: 0.0319 - val accuracy: 0.9650 - val loss: 0.10
88
Epoch 152/600
14/14
                           0s 3ms/step - accuracy: 0.9921 - loss: 0.0329 - val accuracy: 0.9650 - val loss: 0.12
30
Epoch 153/600
14/14
                           0s 3ms/step - accuracy: 0.9799 - loss: 0.0516 - val accuracy: 0.9930 - val loss: 0.10
55
Epoch 154/600
                           0s 4ms/step - accuracy: 0.9892 - loss: 0.0339 - val_accuracy: 0.9650 - val_loss: 0.11
14/14
67
Epoch 155/600
14/14
                          • 0s 3ms/step - accuracy: 0.9829 - loss: 0.0406 - val accuracy: 0.9720 - val loss: 0.10
72
Epoch 156/600
14/14
                           0s 3ms/step - accuracy: 0.9913 - loss: 0.0299 - val accuracy: 0.9650 - val loss: 0.11
62
Epoch 157/600
14/14
                           0s 3ms/step - accuracy: 0.9850 - loss: 0.0437 - val accuracy: 0.9650 - val loss: 0.11
20
Epoch 158/600
                           0s 4ms/step - accuracy: 0.9802 - loss: 0.0392 - val_accuracy: 0.9650 - val_loss: 0.11
14/14
```

```
23
Epoch 159/600
14/14
                          - 0s 4ms/step - accuracy: 0.9879 - loss: 0.0361 - val accuracy: 0.9650 - val loss: 0.11
63
Epoch 160/600
14/14
                          - 0s 3ms/step - accuracy: 0.9942 - loss: 0.0315 - val accuracy: 0.9650 - val loss: 0.11
19
Epoch 161/600
14/14
                          0s 3ms/step - accuracy: 0.9844 - loss: 0.0429 - val accuracy: 0.9650 - val loss: 0.11
67
Epoch 162/600
14/14
                          · 0s 6ms/step - accuracy: 0.9865 - loss: 0.0411 - val_accuracy: 0.9650 - val_loss: 0.11
64
Epoch 163/600
14/14
                          0s 3ms/step - accuracy: 0.9812 - loss: 0.0476 - val accuracy: 0.9650 - val loss: 0.11
48
Epoch 164/600
                           0s 4ms/step - accuracy: 0.9888 - loss: 0.0345 - val accuracy: 0.9650 - val loss: 0.11
14/14
73
Epoch 165/600
14/14
                          · 0s 4ms/step - accuracy: 0.9876 - loss: 0.0358 - val accuracy: 0.9650 - val loss: 0.11
36
Epoch 166/600
                           0s 3ms/step - accuracy: 0.9864 - loss: 0.0398 - val_accuracy: 0.9650 - val_loss: 0.11
14/14
76
Epoch 167/600
14/14
                           0s 3ms/step - accuracy: 0.9830 - loss: 0.0459 - val accuracy: 0.9720 - val loss: 0.11
33
Epoch 168/600
14/14
                          - 0s 3ms/step - accuracy: 0.9854 - loss: 0.0355 - val accuracy: 0.9650 - val loss: 0.11
93
Epoch 169/600
14/14
                           0s 3ms/step - accuracy: 0.9824 - loss: 0.0451 - val accuracy: 0.9650 - val loss: 0.12
30
Epoch 170/600
                           0s 3ms/step - accuracy: 0.9865 - loss: 0.0361 - val accuracy: 0.9720 - val loss: 0.11
14/14
10
Epoch 171/600
14/14
                           0s 3ms/step - accuracy: 0.9839 - loss: 0.0413 - val_accuracy: 0.9650 - val_loss: 0.11
99
Epoch 172/600
14/14
                          - 0s 3ms/step - accuracy: 0.9875 - loss: 0.0437 - val accuracy: 0.9650 - val loss: 0.11
60
Epoch 173/600
14/14
                           0s 4ms/step - accuracy: 0.9891 - loss: 0.0419 - val accuracy: 0.9650 - val loss: 0.11
54
Epoch 174/600
                          - 0s 3ms/step - accuracy: 0.9864 - loss: 0.0454 - val accuracy: 0.9720 - val loss: 0.11
14/14
43
Epoch 175/600
14/14
                           0s 4ms/step - accuracy: 0.9872 - loss: 0.0406 - val_accuracy: 0.9650 - val_loss: 0.11
84
Epoch 176/600
14/14
                          - 0s 3ms/step - accuracy: 0.9913 - loss: 0.0341 - val accuracy: 0.9720 - val loss: 0.11
51
Epoch 177/600
14/14
                           0s 3ms/step - accuracy: 0.9840 - loss: 0.0378 - val_accuracy: 0.9650 - val_loss: 0.12
52
Epoch 178/600
                          0s 5ms/step - accuracy: 0.9846 - loss: 0.0429 - val accuracy: 0.9720 - val loss: 0.11
14/14
47
Epoch 179/600
14/14
                           0s 3ms/step - accuracy: 0.9927 - loss: 0.0295 - val accuracy: 0.9650 - val loss: 0.12
44
Epoch 180/600
14/14
                          0s 3ms/step - accuracy: 0.9865 - loss: 0.0349 - val accuracy: 0.9720 - val loss: 0.11
81
Epoch 181/600
14/14
                           0s 4ms/step - accuracy: 0.9884 - loss: 0.0326 - val_accuracy: 0.9720 - val_loss: 0.11
64
Epoch 182/600
14/14
                           0s 4ms/step - accuracy: 0.9843 - loss: 0.0437 - val accuracy: 0.9650 - val loss: 0.11
77
Epoch 183/600
                           0s 3ms/step - accuracy: 0.9878 - loss: 0.0413 - val accuracy: 0.9720 - val loss: 0.11
14/14
35
Epoch 184/600
14/14
                           0s 3ms/step - accuracy: 0.9919 - loss: 0.0297 - val accuracy: 0.9650 - val loss: 0.12
02
Epoch 185/600
                          • 0s 3ms/step - accuracy: 0.9848 - loss: 0.0403 - val_accuracy: 0.9720 - val_loss: 0.11
14/14
65
```

Epoch 186/600

```
14/14
                          · 0s 4ms/step - accuracy: 0.9842 - loss: 0.0443 - val accuracy: 0.9650 - val loss: 0.11
84
Epoch 187/600
                          • 0s 3ms/step - accuracy: 0.9875 - loss: 0.0307 - val_accuracy: 0.9720 - val_loss: 0.11
14/14
30
Epoch 188/600
14/14
                          - 0s 3ms/step - accuracy: 0.9879 - loss: 0.0411 - val accuracy: 0.9650 - val loss: 0.11
68
Epoch 189/600
14/14
                          - 0s 3ms/step - accuracy: 0.9805 - loss: 0.0462 - val_accuracy: 0.9650 - val_loss: 0.12
09
Epoch 190/600
14/14
                           0s 3ms/step - accuracy: 0.9957 - loss: 0.0294 - val accuracy: 0.9720 - val loss: 0.11
26
Epoch 191/600
                          • 0s 4ms/step - accuracy: 0.9911 - loss: 0.0343 - val accuracy: 0.9650 - val loss: 0.12
14/14
17
Epoch 192/600
14/14
                          • 0s 4ms/step - accuracy: 0.9769 - loss: 0.0520 - val accuracy: 0.9720 - val loss: 0.11
18
Epoch 193/600
                           0s 3ms/step - accuracy: 0.9838 - loss: 0.0398 - val_accuracy: 0.9720 - val_loss: 0.11
14/14
33
Epoch 194/600
14/14
                           0s 3ms/step - accuracy: 0.9804 - loss: 0.0443 - val accuracy: 0.9650 - val loss: 0.11
71
Epoch 195/600
                          - 0s 3ms/step - accuracy: 0.9895 - loss: 0.0358 - val accuracy: 0.9650 - val loss: 0.11
14/14
99
Epoch 196/600
14/14
                           0s 3ms/step - accuracy: 0.9852 - loss: 0.0442 - val accuracy: 0.9720 - val loss: 0.11
41
Epoch 197/600
14/14
                          · 0s 3ms/step - accuracy: 0.9898 - loss: 0.0356 - val accuracy: 0.9650 - val loss: 0.11
87
Epoch 198/600
14/14
                           0s 3ms/step - accuracy: 0.9917 - loss: 0.0357 - val accuracy: 0.9720 - val loss: 0.11
72
Epoch 199/600
14/14
                          - 0s 3ms/step - accuracy: 0.9879 - loss: 0.0308 - val accuracy: 0.9720 - val loss: 0.11
80
Epoch 200/600
14/14
                           0s 3ms/step - accuracy: 0.9935 - loss: 0.0237 - val accuracy: 0.9650 - val loss: 0.12
64
Epoch 201/600
14/14
                          - 0s 4ms/step - accuracy: 0.9877 - loss: 0.0352 - val accuracy: 0.9720 - val loss: 0.11
29
Epoch 202/600
14/14
                          - 0s 3ms/step - accuracy: 0.9881 - loss: 0.0337 - val accuracy: 0.9650 - val loss: 0.11
96
Epoch 203/600
                          · 0s 3ms/step - accuracy: 0.9896 - loss: 0.0290 - val accuracy: 0.9790 - val loss: 0.11
14/14
22
Epoch 204/600
14/14
                          \cdot 0s 3ms/step - accuracy: 0.9862 - loss: 0.0402 - val accuracy: 0.9720 - val loss: 0.11
57
Epoch 205/600
14/14
                          - 0s 3ms/step - accuracy: 0.9868 - loss: 0.0346 - val accuracy: 0.9720 - val loss: 0.11
36
Epoch 206/600
14/14
                           0s 4ms/step - accuracy: 0.9805 - loss: 0.0409 - val accuracy: 0.9720 - val loss: 0.11
62
Epoch 207/600
14/14
                          0s 3ms/step - accuracy: 0.9867 - loss: 0.0345 - val accuracy: 0.9650 - val loss: 0.11
98
Epoch 208/600
14/14
                          - 0s 3ms/step - accuracy: 0.9826 - loss: 0.0385 - val_accuracy: 0.9650 - val_loss: 0.11
90
Epoch 209/600
14/14
                          • 0s 3ms/step - accuracy: 0.9851 - loss: 0.0292 - val accuracy: 0.9720 - val loss: 0.11
70
Epoch 210/600
                          \cdot 0s 3ms/step - accuracy: 0.9776 - loss: 0.0557 - val accuracy: 0.9650 - val loss: 0.11
14/14
80
Epoch 211/600
14/14
                          - 0s 3ms/step - accuracy: 0.9880 - loss: 0.0325 - val accuracy: 0.9720 - val loss: 0.11
29
Epoch 212/600
14/14
                           0s 4ms/step - accuracy: 0.9928 - loss: 0.0285 - val accuracy: 0.9580 - val loss: 0.12
76
Epoch 213/600
14/14
                           0s 3ms/step - accuracy: 0.9892 - loss: 0.0340 - val accuracy: 0.9650 - val loss: 0.11
```

```
Epoch 214/600
14/14
                           0s 3ms/step - accuracy: 0.9842 - loss: 0.0404 - val accuracy: 0.9650 - val loss: 0.11
61
Epoch 215/600
14/14
                          · 0s 3ms/step - accuracy: 0.9866 - loss: 0.0358 - val accuracy: 0.9650 - val loss: 0.12
25
Epoch 216/600
14/14
                           0s 4ms/step - accuracy: 0.9801 - loss: 0.0433 - val accuracy: 0.9720 - val loss: 0.11
53
Epoch 217/600
14/14
                           0s 3ms/step - accuracy: 0.9850 - loss: 0.0459 - val accuracy: 0.9650 - val loss: 0.11
89
Epoch 218/600
14/14
                          - 0s 3ms/step - accuracy: 0.9898 - loss: 0.0330 - val accuracy: 0.9650 - val loss: 0.11
88
Epoch 219/600
14/14
                           0s 3ms/step - accuracy: 0.9927 - loss: 0.0261 - val accuracy: 0.9650 - val loss: 0.11
87
Epoch 220/600
14/14
                           0s 4ms/step - accuracy: 0.9873 - loss: 0.0372 - val_accuracy: 0.9580 - val_loss: 0.12
61
Epoch 221/600
14/14
                           0s 4ms/step - accuracy: 0.9778 - loss: 0.0390 - val accuracy: 0.9720 - val loss: 0.11
67
Epoch 222/600
14/14
                           0s 3ms/step - accuracy: 0.9890 - loss: 0.0295 - val accuracy: 0.9720 - val loss: 0.11
88
Epoch 223/600
14/14
                           0s 4ms/step - accuracy: 0.9855 - loss: 0.0391 - val accuracy: 0.9720 - val loss: 0.11
66
Epoch 224/600
                           0s 4ms/step - accuracy: 0.9906 - loss: 0.0245 - val accuracy: 0.9650 - val loss: 0.12
14/14
48
Fnoch 225/600
14/14
                           0s 3ms/step - accuracy: 0.9843 - loss: 0.0355 - val accuracy: 0.9720 - val loss: 0.11
88
Epoch 226/600
14/14
                           0s 3ms/step - accuracy: 0.9875 - loss: 0.0295 - val_accuracy: 0.9720 - val_loss: 0.11
86
Epoch 227/600
14/14
                           0s 3ms/step - accuracy: 0.9894 - loss: 0.0330 - val accuracy: 0.9720 - val loss: 0.11
84
Epoch 228/600
                           0s 5ms/step - accuracy: 0.9822 - loss: 0.0386 - val accuracy: 0.9720 - val loss: 0.11
14/14
99
Epoch 229/600
14/14
                           0s 3ms/step - accuracy: 0.9865 - loss: 0.0368 - val accuracy: 0.9720 - val loss: 0.11
65
Epoch 230/600
14/14
                           0s 3ms/step - accuracy: 0.9916 - loss: 0.0383 - val accuracy: 0.9720 - val loss: 0.11
69
Epoch 231/600
14/14
                           0s 3ms/step - accuracy: 0.9791 - loss: 0.0453 - val accuracy: 0.9720 - val loss: 0.11
61
Epoch 232/600
14/14
                           0s 4ms/step - accuracy: 0.9913 - loss: 0.0265 - val accuracy: 0.9650 - val loss: 0.12
23
Epoch 233/600
14/14
                           0s 4ms/step - accuracy: 0.9864 - loss: 0.0363 - val accuracy: 0.9720 - val loss: 0.12
04
Epoch 234/600
14/14
                          • 0s 3ms/step - accuracy: 0.9843 - loss: 0.0365 - val accuracy: 0.9720 - val loss: 0.11
83
Epoch 235/600
14/14
                           0s 4ms/step - accuracy: 0.9856 - loss: 0.0387 - val accuracy: 0.9650 - val loss: 0.11
91
Epoch 236/600
14/14
                           0s 4ms/step - accuracy: 0.9919 - loss: 0.0302 - val accuracy: 0.9720 - val loss: 0.11
71
Epoch 237/600
                           0s 3ms/step - accuracy: 0.9939 - loss: 0.0230 - val_accuracy: 0.9650 - val_loss: 0.12
14/14
05
Epoch 238/600
14/14
                          • 0s 3ms/step - accuracy: 0.9885 - loss: 0.0266 - val accuracy: 0.9720 - val loss: 0.12
12
Epoch 239/600
14/14
                           0s 3ms/step - accuracy: 0.9858 - loss: 0.0341 - val accuracy: 0.9720 - val loss: 0.12
01
Epoch 240/600
14/14
                           0s 5ms/step - accuracy: 0.9914 - loss: 0.0254 - val accuracy: 0.9720 - val loss: 0.11
84
Epoch 241/600
                           0s 4ms/step - accuracy: 0.9817 - loss: 0.0375 - val_accuracy: 0.9720 - val_loss: 0.11
14/14
```

```
98
Epoch 242/600
14/14
                          - 0s 3ms/step - accuracy: 0.9823 - loss: 0.0422 - val accuracy: 0.9720 - val loss: 0.11
71
Epoch 243/600
14/14
                          - 0s 3ms/step - accuracy: 0.9808 - loss: 0.0467 - val accuracy: 0.9650 - val loss: 0.12
27
Epoch 244/600
14/14
                          0s 3ms/step - accuracy: 0.9860 - loss: 0.0320 - val accuracy: 0.9790 - val loss: 0.11
49
Epoch 245/600
14/14
                          - 0s 3ms/step - accuracy: 0.9848 - loss: 0.0376 - val_accuracy: 0.9720 - val_loss: 0.11
76
Epoch 246/600
14/14
                          0s 3ms/step - accuracy: 0.9956 - loss: 0.0179 - val accuracy: 0.9650 - val loss: 0.12
23
Epoch 247/600
                          · 0s 4ms/step - accuracy: 0.9936 - loss: 0.0269 - val accuracy: 0.9650 - val loss: 0.12
14/14
39
Epoch 248/600
14/14
                          - 0s 3ms/step - accuracy: 0.9858 - loss: 0.0268 - val accuracy: 0.9720 - val loss: 0.12
22
Epoch 249/600
                           0s 3ms/step - accuracy: 0.9832 - loss: 0.0393 - val_accuracy: 0.9720 - val_loss: 0.11
14/14
79
Epoch 250/600
14/14
                           0s 3ms/step - accuracy: 0.9815 - loss: 0.0365 - val accuracy: 0.9720 - val loss: 0.11
96
Epoch 251/600
14/14
                          - 0s 5ms/step - accuracy: 0.9871 - loss: 0.0323 - val accuracy: 0.9720 - val loss: 0.12
04
Epoch 252/600
14/14
                           0s 3ms/step - accuracy: 0.9860 - loss: 0.0296 - val accuracy: 0.9860 - val loss: 0.11
20
Epoch 253/600
                           0s 3ms/step - accuracy: 0.9879 - loss: 0.0319 - val accuracy: 0.9650 - val loss: 0.12
14/14
29
Epoch 254/600
14/14
                           0s 3ms/step - accuracy: 0.9948 - loss: 0.0254 - val_accuracy: 0.9580 - val_loss: 0.12
84
Epoch 255/600
14/14
                          - 0s 3ms/step - accuracy: 0.9859 - loss: 0.0322 - val accuracy: 0.9790 - val loss: 0.11
53
Epoch 256/600
14/14
                           0s 3ms/step - accuracy: 0.9827 - loss: 0.0366 - val accuracy: 0.9720 - val loss: 0.11
90
Epoch 257/600
                          - 0s 3ms/step - accuracy: 0.9774 - loss: 0.0423 - val accuracy: 0.9720 - val loss: 0.11
14/14
87
Epoch 258/600
14/14
                           0s 3ms/step - accuracy: 0.9874 - loss: 0.0333 - val_accuracy: 0.9720 - val_loss: 0.11
75
Epoch 259/600
14/14
                          - 0s 3ms/step - accuracy: 0.9900 - loss: 0.0311 - val accuracy: 0.9720 - val loss: 0.12
08
Epoch 260/600
14/14
                           0s 3ms/step - accuracy: 0.9951 - loss: 0.0198 - val_accuracy: 0.9720 - val_loss: 0.11
91
Epoch 261/600
14/14
                          • 0s 3ms/step - accuracy: 0.9921 - loss: 0.0237 - val accuracy: 0.9720 - val loss: 0.11
59
Epoch 262/600
14/14
                           0s 4ms/step - accuracy: 0.9872 - loss: 0.0285 - val accuracy: 0.9720 - val loss: 0.11
61
Epoch 263/600
14/14
                          \cdot 0s 3ms/step - accuracy: 0.9829 - loss: 0.0300 - val accuracy: 0.9790 - val loss: 0.11
30
Epoch 264/600
14/14
                           0s 3ms/step - accuracy: 0.9840 - loss: 0.0281 - val_accuracy: 0.9650 - val_loss: 0.12
22
Epoch 265/600
14/14
                           0s 3ms/step - accuracy: 0.9805 - loss: 0.0351 - val accuracy: 0.9790 - val loss: 0.11
37
Epoch 266/600
                           0s 3ms/step - accuracy: 0.9906 - loss: 0.0249 - val accuracy: 0.9580 - val loss: 0.12
14/14
47
Epoch 267/600
14/14
                           0s 4ms/step - accuracy: 0.9846 - loss: 0.0312 - val accuracy: 0.9650 - val loss: 0.11
93
Epoch 268/600
                           0s 4ms/step - accuracy: 0.9843 - loss: 0.0321 - val_accuracy: 0.9720 - val_loss: 0.11
14/14
72
```

Epoch 269/600

```
14/14
                          · 0s 4ms/step - accuracy: 0.9832 - loss: 0.0291 - val accuracy: 0.9720 - val loss: 0.11
35
Epoch 270/600
14/14
                           0s 4ms/step - accuracy: 0.9887 - loss: 0.0298 - val accuracy: 0.9580 - val loss: 0.12
18
Epoch 271/600
14/14
                          - 0s 3ms/step - accuracy: 0.9836 - loss: 0.0367 - val accuracy: 0.9650 - val loss: 0.12
29
Epoch 272/600
14/14
                          - 0s 4ms/step - accuracy: 0.9835 - loss: 0.0329 - val_accuracy: 0.9720 - val_loss: 0.11
96
Epoch 273/600
14/14
                           0s 4ms/step - accuracy: 0.9786 - loss: 0.0436 - val accuracy: 0.9650 - val loss: 0.12
15
Epoch 274/600
                          • 0s 4ms/step - accuracy: 0.9856 - loss: 0.0369 - val accuracy: 0.9720 - val loss: 0.12
14/14
02
Epoch 275/600
14/14
                          • 0s 4ms/step - accuracy: 0.9909 - loss: 0.0245 - val accuracy: 0.9580 - val loss: 0.12
43
Epoch 276/600
14/14
                           0s 4ms/step - accuracy: 0.9858 - loss: 0.0319 - val_accuracy: 0.9650 - val_loss: 0.12
18
Epoch 277/600
14/14
                           0s 4ms/step - accuracy: 0.9917 - loss: 0.0269 - val accuracy: 0.9580 - val loss: 0.12
15
Epoch 278/600
                          - 0s 3ms/step - accuracy: 0.9926 - loss: 0.0242 - val accuracy: 0.9510 - val loss: 0.12
14/14
85
Epoch 279/600
                           0s 3ms/step - accuracy: 0.9907 - loss: 0.0262 - val accuracy: 0.9790 - val loss: 0.11
14/14
61
Epoch 280/600
14/14
                          • 0s 3ms/step - accuracy: 0.9840 - loss: 0.0384 - val accuracy: 0.9720 - val loss: 0.11
94
Epoch 281/600
14/14
                           0s 5ms/step - accuracy: 0.9827 - loss: 0.0349 - val accuracy: 0.9580 - val loss: 0.12
53
Epoch 282/600
14/14
                          - 0s 4ms/step - accuracy: 0.9873 - loss: 0.0334 - val accuracy: 0.9580 - val loss: 0.12
10
Epoch 283/600
14/14
                           0s 5ms/step - accuracy: 0.9817 - loss: 0.0335 - val accuracy: 0.9720 - val loss: 0.11
93
Epoch 284/600
14/14
                          - 0s 5ms/step - accuracy: 0.9841 - loss: 0.0347 - val accuracy: 0.9790 - val loss: 0.11
61
Epoch 285/600
14/14
                          - 0s 4ms/step - accuracy: 0.9894 - loss: 0.0241 - val accuracy: 0.9650 - val loss: 0.12
04
Epoch 286/600
14/14
                          \cdot 0s 3ms/step - accuracy: 0.9902 - loss: 0.0247 - val accuracy: 0.9790 - val loss: 0.11
38
Epoch 287/600
14/14
                          - 0s 3ms/step - accuracy: 0.9886 - loss: 0.0319 - val accuracy: 0.9650 - val loss: 0.11
97
Epoch 288/600
14/14
                          - 0s 3ms/step - accuracy: 0.9860 - loss: 0.0322 - val accuracy: 0.9650 - val loss: 0.12
20
Epoch 289/600
14/14
                           0s 4ms/step - accuracy: 0.9924 - loss: 0.0207 - val accuracy: 0.9510 - val loss: 0.12
96
Epoch 290/600
14/14
                          0s 4ms/step - accuracy: 0.9876 - loss: 0.0262 - val accuracy: 0.9790 - val loss: 0.11
80
Epoch 291/600
14/14
                          - 0s 3ms/step - accuracy: 0.9903 - loss: 0.0240 - val_accuracy: 0.9580 - val_loss: 0.12
43
Epoch 292/600
14/14
                           0s 4ms/step - accuracy: 0.9837 - loss: 0.0321 - val accuracy: 0.9790 - val loss: 0.11
55
Epoch 293/600
                          · 0s 4ms/step - accuracy: 0.9879 - loss: 0.0304 - val accuracy: 0.9441 - val loss: 0.15
14/14
73
Epoch 294/600
14/14
                          - 0s 7ms/step - accuracy: 0.9871 - loss: 0.0428 - val accuracy: 0.9790 - val loss: 0.11
29
Epoch 295/600
14/14
                           0s 4ms/step - accuracy: 0.9834 - loss: 0.0332 - val accuracy: 0.9720 - val loss: 0.12
05
Epoch 296/600
14/14
                           0s 5ms/step - accuracy: 0.9864 - loss: 0.0313 - val accuracy: 0.9790 - val loss: 0.11
84
```

```
Epoch 297/600
14/14
                           0s 4ms/step - accuracy: 0.9780 - loss: 0.0387 - val accuracy: 0.9720 - val loss: 0.11
96
Epoch 298/600
14/14
                          · 0s 3ms/step - accuracy: 0.9954 - loss: 0.0219 - val accuracy: 0.9580 - val loss: 0.12
34
Epoch 299/600
14/14
                           0s 3ms/step - accuracy: 0.9910 - loss: 0.0213 - val accuracy: 0.9580 - val loss: 0.12
46
Epoch 300/600
14/14
                          0s 3ms/step - accuracy: 0.9935 - loss: 0.0223 - val accuracy: 0.9790 - val loss: 0.11
75
Epoch 301/600
                          - 0s 3ms/step - accuracy: 0.9935 - loss: 0.0205 - val accuracy: 0.9510 - val loss: 0.12
14/14
69
Epoch 302/600
                           0s 3ms/step - accuracy: 0.9913 - loss: 0.0253 - val accuracy: 0.9790 - val loss: 0.11
14/14
75
Epoch 303/600
14/14
                           0s 4ms/step - accuracy: 0.9937 - loss: 0.0206 - val_accuracy: 0.9790 - val_loss: 0.11
86
Epoch 304/600
14/14
                           0s 3ms/step - accuracy: 0.9855 - loss: 0.0260 - val accuracy: 0.9510 - val loss: 0.12
68
Epoch 305/600
14/14
                           0s 3ms/step - accuracy: 0.9862 - loss: 0.0255 - val accuracy: 0.9790 - val loss: 0.11
78
Epoch 306/600
14/14
                           0s 5ms/step - accuracy: 0.9914 - loss: 0.0256 - val accuracy: 0.9580 - val loss: 0.12
19
Epoch 307/600
                           0s 3ms/step - accuracy: 0.9858 - loss: 0.0252 - val accuracy: 0.9580 - val loss: 0.12
14/14
43
Fnoch 308/600
14/14
                           0s 4ms/step - accuracy: 0.9873 - loss: 0.0274 - val accuracy: 0.9790 - val loss: 0.11
66
Epoch 309/600
14/14
                           0s 4ms/step - accuracy: 0.9878 - loss: 0.0275 - val_accuracy: 0.9580 - val_loss: 0.12
13
Epoch 310/600
14/14
                           0s 5ms/step - accuracy: 0.9866 - loss: 0.0289 - val accuracy: 0.9650 - val loss: 0.11
85
Epoch 311/600
                           0s 4ms/step - accuracy: 0.9961 - loss: 0.0150 - val accuracy: 0.9510 - val loss: 0.12
14/14
74
Epoch 312/600
14/14
                           0s 3ms/step - accuracy: 0.9939 - loss: 0.0236 - val accuracy: 0.9720 - val loss: 0.12
12
Epoch 313/600
14/14
                           0s 3ms/step - accuracy: 0.9856 - loss: 0.0248 - val accuracy: 0.9580 - val loss: 0.12
12
Epoch 314/600
14/14
                           0s 4ms/step - accuracy: 0.9875 - loss: 0.0250 - val accuracy: 0.9580 - val loss: 0.12
10
Epoch 315/600
14/14
                           0s 4ms/step - accuracy: 0.9910 - loss: 0.0227 - val accuracy: 0.9510 - val loss: 0.12
40
Epoch 316/600
14/14
                           0s 4ms/step - accuracy: 0.9917 - loss: 0.0193 - val accuracy: 0.9650 - val loss: 0.12
15
Epoch 317/600
14/14
                          - 0s 3ms/step - accuracy: 0.9882 - loss: 0.0258 - val accuracy: 0.9510 - val loss: 0.12
37
Epoch 318/600
14/14 -
                           0s 3ms/step - accuracy: 0.9896 - loss: 0.0242 - val accuracy: 0.9510 - val loss: 0.12
57
Epoch 319/600
14/14
                           0s 3ms/step - accuracy: 0.9811 - loss: 0.0364 - val accuracy: 0.9580 - val loss: 0.12
44
Epoch 320/600
                           0s 3ms/step - accuracy: 0.9921 - loss: 0.0214 - val_accuracy: 0.9510 - val_loss: 0.12
14/14
74
Epoch 321/600
14/14
                          • 0s 3ms/step - accuracy: 0.9923 - loss: 0.0220 - val accuracy: 0.9510 - val loss: 0.13
12
Epoch 322/600
14/14
                           0s 3ms/step - accuracy: 0.9850 - loss: 0.0285 - val accuracy: 0.9790 - val loss: 0.12
11
Epoch 323/600
14/14
                           0s 3ms/step - accuracy: 0.9859 - loss: 0.0271 - val accuracy: 0.9720 - val loss: 0.12
22
Epoch 324/600
                           0s 3ms/step - accuracy: 0.9877 - loss: 0.0218 - val_accuracy: 0.9510 - val_loss: 0.12
14/14
```

```
84
Epoch 325/600
14/14
                          - 0s 3ms/step - accuracy: 0.9923 - loss: 0.0203 - val accuracy: 0.9510 - val loss: 0.13
23
Epoch 326/600
14/14
                          - 0s 4ms/step - accuracy: 0.9877 - loss: 0.0238 - val accuracy: 0.9720 - val loss: 0.12
35
Epoch 327/600
14/14
                          0s 4ms/step - accuracy: 0.9892 - loss: 0.0220 - val accuracy: 0.9720 - val loss: 0.12
34
Epoch 328/600
14/14
                          - 0s 3ms/step - accuracy: 0.9862 - loss: 0.0241 - val_accuracy: 0.9510 - val_loss: 0.14
08
Epoch 329/600
14/14
                          0s 3ms/step - accuracy: 0.9931 - loss: 0.0250 - val accuracy: 0.9790 - val loss: 0.11
58
Epoch 330/600
                          • 0s 3ms/step - accuracy: 0.9895 - loss: 0.0347 - val_accuracy: 0.9510 - val_loss: 0.13
14/14
89
Epoch 331/600
14/14
                          - 0s 3ms/step - accuracy: 0.9809 - loss: 0.0356 - val accuracy: 0.9510 - val loss: 0.12
96
Epoch 332/600
                           0s 4ms/step - accuracy: 0.9849 - loss: 0.0270 - val_accuracy: 0.9790 - val_loss: 0.12
14/14
43
Epoch 333/600
14/14
                           0s 3ms/step - accuracy: 0.9747 - loss: 0.0342 - val accuracy: 0.9790 - val loss: 0.11
99
Epoch 334/600
14/14
                          - 0s 3ms/step - accuracy: 0.9803 - loss: 0.0318 - val accuracy: 0.9720 - val loss: 0.11
97
Epoch 335/600
14/14
                           0s 3ms/step - accuracy: 0.9820 - loss: 0.0287 - val accuracy: 0.9720 - val loss: 0.12
79
Epoch 336/600
                           0s 3ms/step - accuracy: 0.9867 - loss: 0.0251 - val accuracy: 0.9790 - val loss: 0.12
14/14
13
Epoch 337/600
14/14
                           0s 5ms/step - accuracy: 0.9884 - loss: 0.0266 - val_accuracy: 0.9510 - val_loss: 0.13
36
Epoch 338/600
14/14
                          - 0s 3ms/step - accuracy: 0.9929 - loss: 0.0217 - val accuracy: 0.9790 - val loss: 0.12
14
Epoch 339/600
14/14
                           0s 3ms/step - accuracy: 0.9895 - loss: 0.0276 - val accuracy: 0.9510 - val loss: 0.13
59
Epoch 340/600
                          - 0s 3ms/step - accuracy: 0.9872 - loss: 0.0249 - val accuracy: 0.9510 - val loss: 0.13
14/14
55
Epoch 341/600
14/14
                           0s 3ms/step - accuracy: 0.9890 - loss: 0.0220 - val_accuracy: 0.9790 - val_loss: 0.12
17
Epoch 342/600
                          - 0s 3ms/step - accuracy: 0.9864 - loss: 0.0208 - val accuracy: 0.9580 - val loss: 0.13
14/14
16
Epoch 343/600
14/14
                           0s 3ms/step - accuracy: 0.9879 - loss: 0.0214 - val_accuracy: 0.9650 - val_loss: 0.12
87
Epoch 344/600
                          0s 4ms/step - accuracy: 0.9791 - loss: 0.0307 - val accuracy: 0.9650 - val loss: 0.12
14/14
66
Epoch 345/600
14/14
                           0s 4ms/step - accuracy: 0.9872 - loss: 0.0244 - val accuracy: 0.9790 - val loss: 0.12
15
Epoch 346/600
14/14
                          0s 4ms/step - accuracy: 0.9939 - loss: 0.0177 - val accuracy: 0.9650 - val loss: 0.12
74
Epoch 347/600
14/14
                           0s 4ms/step - accuracy: 0.9848 - loss: 0.0265 - val_accuracy: 0.9580 - val_loss: 0.12
98
Epoch 348/600
14/14
                           0s 4ms/step - accuracy: 0.9841 - loss: 0.0253 - val accuracy: 0.9720 - val loss: 0.12
73
Epoch 349/600
                           0s 3ms/step - accuracy: 0.9845 - loss: 0.0292 - val accuracy: 0.9720 - val loss: 0.12
14/14
95
Epoch 350/600
14/14
                           0s 3ms/step - accuracy: 0.9938 - loss: 0.0150 - val accuracy: 0.9580 - val loss: 0.13
02
Epoch 351/600
14/14
                          • 0s 3ms/step - accuracy: 0.9920 - loss: 0.0171 - val_accuracy: 0.9580 - val_loss: 0.13
Epoch 352/600
```

```
14/14
                           0s 3ms/step - accuracy: 0.9953 - loss: 0.0217 - val accuracy: 0.9790 - val loss: 0.12
36
Epoch 353/600
14/14
                           0s 3ms/step - accuracy: 0.9872 - loss: 0.0248 - val accuracy: 0.9580 - val loss: 0.13
03
Epoch 354/600
14/14
                          - 0s 3ms/step - accuracy: 0.9841 - loss: 0.0225 - val accuracy: 0.9790 - val loss: 0.12
27
Epoch 355/600
14/14
                          - 0s 3ms/step - accuracy: 0.9927 - loss: 0.0203 - val_accuracy: 0.9510 - val_loss: 0.13
38
Epoch 356/600
14/14
                           0s 3ms/step - accuracy: 0.9876 - loss: 0.0238 - val accuracy: 0.9720 - val loss: 0.12
68
Epoch 357/600
                          • 0s 3ms/step - accuracy: 0.9818 - loss: 0.0255 - val accuracy: 0.9790 - val loss: 0.12
14/14
88
Epoch 358/600
14/14
                          - 0s 3ms/step - accuracy: 0.9908 - loss: 0.0204 - val accuracy: 0.9580 - val loss: 0.13
18
Epoch 359/600
14/14
                           0s 3ms/step - accuracy: 0.9962 - loss: 0.0221 - val_accuracy: 0.9650 - val_loss: 0.12
84
Epoch 360/600
14/14
                           0s 3ms/step - accuracy: 0.9909 - loss: 0.0253 - val accuracy: 0.9580 - val loss: 0.14
00
Epoch 361/600
                          - 0s 3ms/step - accuracy: 0.9915 - loss: 0.0318 - val accuracy: 0.9580 - val loss: 0.13
14/14
30
Epoch 362/600
14/14
                           0s 3ms/step - accuracy: 0.9917 - loss: 0.0215 - val accuracy: 0.9790 - val loss: 0.12
43
Epoch 363/600
14/14
                          • 0s 7ms/step - accuracy: 0.9851 - loss: 0.0243 - val accuracy: 0.9580 - val loss: 0.14
09
Epoch 364/600
14/14
                           0s 3ms/step - accuracy: 0.9960 - loss: 0.0174 - val accuracy: 0.9580 - val loss: 0.13
50
Epoch 365/600
14/14
                          • 0s 3ms/step - accuracy: 0.9969 - loss: 0.0162 - val accuracy: 0.9720 - val loss: 0.13
00
Epoch 366/600
14/14
                           0s 3ms/step - accuracy: 0.9899 - loss: 0.0241 - val accuracy: 0.9510 - val loss: 0.14
04
Epoch 367/600
14/14
                          - 0s 3ms/step - accuracy: 0.9955 - loss: 0.0145 - val accuracy: 0.9720 - val loss: 0.12
51
Epoch 368/600
14/14
                          - 0s 3ms/step - accuracy: 0.9888 - loss: 0.0201 - val accuracy: 0.9580 - val loss: 0.13
65
Epoch 369/600
14/14
                          · 0s 3ms/step - accuracy: 0.9950 - loss: 0.0173 - val accuracy: 0.9580 - val loss: 0.13
20
Epoch 370/600
14/14
                          · 0s 3ms/step - accuracy: 0.9974 - loss: 0.0129 - val accuracy: 0.9580 - val loss: 0.13
98
Epoch 371/600
14/14
                          - 0s 3ms/step - accuracy: 0.9944 - loss: 0.0203 - val accuracy: 0.9650 - val loss: 0.13
03
Epoch 372/600
14/14
                           0s 4ms/step - accuracy: 0.9919 - loss: 0.0230 - val accuracy: 0.9720 - val loss: 0.12
55
Epoch 373/600
14/14
                           0s 5ms/step - accuracy: 0.9894 - loss: 0.0203 - val accuracy: 0.9790 - val loss: 0.12
92
Epoch 374/600
14/14
                          - 0s 4ms/step - accuracy: 0.9886 - loss: 0.0197 - val_accuracy: 0.9510 - val_loss: 0.15
31
Epoch 375/600
14/14
                           0s 3ms/step - accuracy: 0.9923 - loss: 0.0227 - val accuracy: 0.9860 - val loss: 0.12
16
Epoch 376/600
                           0s 3ms/step - accuracy: 0.9899 - loss: 0.0256 - val accuracy: 0.9580 - val loss: 0.14
14/14
24
Epoch 377/600
14/14
                          - 0s 3ms/step - accuracy: 0.9885 - loss: 0.0315 - val accuracy: 0.9790 - val loss: 0.12
48
Epoch 378/600
14/14
                           0s 3ms/step - accuracy: 0.9891 - loss: 0.0262 - val accuracy: 0.9580 - val loss: 0.14
30
Epoch 379/600
14/14
                           0s 3ms/step - accuracy: 0.9877 - loss: 0.0270 - val accuracy: 0.9790 - val loss: 0.12
54
```

```
Epoch 380/600
14/14
                           0s 4ms/step - accuracy: 0.9926 - loss: 0.0204 - val accuracy: 0.9510 - val loss: 0.14
81
Epoch 381/600
14/14
                          · 0s 4ms/step - accuracy: 0.9974 - loss: 0.0156 - val accuracy: 0.9720 - val loss: 0.12
36
Epoch 382/600
14/14
                           0s 3ms/step - accuracy: 0.9935 - loss: 0.0192 - val accuracy: 0.9580 - val loss: 0.14
37
Epoch 383/600
14/14
                           0s 3ms/step - accuracy: 0.9889 - loss: 0.0200 - val accuracy: 0.9580 - val loss: 0.13
63
Epoch 384/600
                          - 0s 3ms/step - accuracy: 0.9916 - loss: 0.0198 - val accuracy: 0.9580 - val loss: 0.13
14/14
42
Epoch 385/600
14/14
                           0s 3ms/step - accuracy: 0.9985 - loss: 0.0159 - val accuracy: 0.9720 - val loss: 0.12
84
Epoch 386/600
14/14
                           0s 3ms/step - accuracy: 0.9941 - loss: 0.0137 - val_accuracy: 0.9580 - val_loss: 0.13
94
Epoch 387/600
14/14
                           0s 4ms/step - accuracy: 0.9888 - loss: 0.0256 - val accuracy: 0.9580 - val loss: 0.13
41
Epoch 388/600
14/14
                           0s 3ms/step - accuracy: 0.9841 - loss: 0.0242 - val accuracy: 0.9650 - val loss: 0.13
45
Epoch 389/600
                           0s 3ms/step - accuracy: 0.9867 - loss: 0.0206 - val accuracy: 0.9580 - val loss: 0.13
14/14
79
Epoch 390/600
                           0s 3ms/step - accuracy: 0.9966 - loss: 0.0167 - val accuracy: 0.9720 - val loss: 0.13
14/14
30
Fnoch 391/600
14/14
                           0s 3ms/step - accuracy: 0.9901 - loss: 0.0171 - val accuracy: 0.9580 - val loss: 0.13
63
Epoch 392/600
14/14
                           0s 3ms/step - accuracy: 0.9853 - loss: 0.0275 - val_accuracy: 0.9720 - val_loss: 0.13
16
Epoch 393/600
14/14
                           0s 3ms/step - accuracy: 0.9905 - loss: 0.0177 - val accuracy: 0.9650 - val loss: 0.13
72
Epoch 394/600
                           0s 3ms/step - accuracy: 0.9950 - loss: 0.0164 - val accuracy: 0.9580 - val loss: 0.14
14/14
42
Epoch 395/600
14/14
                           0s 3ms/step - accuracy: 0.9987 - loss: 0.0129 - val accuracy: 0.9720 - val loss: 0.13
38
Epoch 396/600
14/14
                           0s 3ms/step - accuracy: 0.9853 - loss: 0.0256 - val accuracy: 0.9650 - val loss: 0.13
80
Epoch 397/600
14/14
                           0s 3ms/step - accuracy: 0.9976 - loss: 0.0151 - val accuracy: 0.9650 - val loss: 0.13
84
Epoch 398/600
14/14
                           0s 3ms/step - accuracy: 0.9944 - loss: 0.0193 - val accuracy: 0.9650 - val loss: 0.13
91
Epoch 399/600
14/14
                           0s 3ms/step - accuracy: 0.9923 - loss: 0.0215 - val accuracy: 0.9580 - val loss: 0.14
29
Epoch 400/600
14/14
                          · 0s 5ms/step - accuracy: 0.9902 - loss: 0.0205 - val accuracy: 0.9580 - val loss: 0.15
27
Epoch 401/600
14/14
                           0s 3ms/step - accuracy: 0.9932 - loss: 0.0176 - val accuracy: 0.9720 - val loss: 0.13
47
Epoch 402/600
14/14
                           0s 3ms/step - accuracy: 0.9856 - loss: 0.0227 - val accuracy: 0.9720 - val loss: 0.13
55
Epoch 403/600
                           0s 3ms/step - accuracy: 0.9941 - loss: 0.0174 - val_accuracy: 0.9580 - val_loss: 0.15
14/14
06
Epoch 404/600
14/14
                          • 0s 3ms/step - accuracy: 0.9914 - loss: 0.0224 - val accuracy: 0.9720 - val loss: 0.14
07
Epoch 405/600
14/14
                           0s 3ms/step - accuracy: 0.9951 - loss: 0.0250 - val accuracy: 0.9720 - val loss: 0.13
57
Epoch 406/600
14/14
                           0s 3ms/step - accuracy: 0.9924 - loss: 0.0235 - val accuracy: 0.9650 - val loss: 0.14
50
Epoch 407/600
                           0s 3ms/step - accuracy: 0.9905 - loss: 0.0191 - val accuracy: 0.9650 - val loss: 0.14
14/14
```

```
71
Epoch 408/600
14/14
                          - 0s 3ms/step - accuracy: 0.9961 - loss: 0.0160 - val accuracy: 0.9650 - val loss: 0.14
48
Epoch 409/600
14/14
                          - 0s 3ms/step - accuracy: 0.9957 - loss: 0.0197 - val accuracy: 0.9720 - val loss: 0.13
82
Epoch 410/600
14/14
                          0s 3ms/step - accuracy: 0.9912 - loss: 0.0184 - val accuracy: 0.9580 - val loss: 0.15
09
Epoch 411/600
14/14
                          - 0s 3ms/step - accuracy: 0.9959 - loss: 0.0182 - val_accuracy: 0.9650 - val_loss: 0.14
48
Epoch 412/600
14/14
                          0s 3ms/step - accuracy: 0.9978 - loss: 0.0151 - val accuracy: 0.9720 - val loss: 0.13
68
Epoch 413/600
                           0s 3ms/step - accuracy: 0.9966 - loss: 0.0184 - val accuracy: 0.9580 - val loss: 0.14
14/14
73
Epoch 414/600
14/14
                          - 0s 3ms/step - accuracy: 0.9982 - loss: 0.0187 - val accuracy: 0.9790 - val loss: 0.13
92
Epoch 415/600
                           0s 4ms/step - accuracy: 0.9975 - loss: 0.0134 - val_accuracy: 0.9580 - val_loss: 0.15
14/14
23
Epoch 416/600
14/14
                           0s 4ms/step - accuracy: 0.9928 - loss: 0.0230 - val accuracy: 0.9790 - val loss: 0.13
42
Epoch 417/600
14/14
                          · 0s 6ms/step - accuracy: 0.9933 - loss: 0.0179 - val accuracy: 0.9580 - val loss: 0.14
95
Epoch 418/600
14/14
                           0s 6ms/step - accuracy: 0.9925 - loss: 0.0259 - val accuracy: 0.9720 - val loss: 0.13
30
Epoch 419/600
                           0s 6ms/step - accuracy: 0.9950 - loss: 0.0149 - val accuracy: 0.9580 - val loss: 0.15
14/14
50
Epoch 420/600
                           0s 6ms/step - accuracy: 0.9903 - loss: 0.0221 - val_accuracy: 0.9790 - val_loss: 0.13
14/14
61
Epoch 421/600
14/14
                          - 0s 6ms/step - accuracy: 0.9865 - loss: 0.0211 - val accuracy: 0.9650 - val loss: 0.14
68
Epoch 422/600
14/14
                           0s 5ms/step - accuracy: 0.9979 - loss: 0.0136 - val accuracy: 0.9650 - val loss: 0.14
28
Epoch 423/600
                          - 0s 4ms/step - accuracy: 0.9936 - loss: 0.0205 - val accuracy: 0.9580 - val loss: 0.15
14/14
26
Epoch 424/600
14/14
                           0s 4ms/step - accuracy: 0.9962 - loss: 0.0205 - val_accuracy: 0.9650 - val_loss: 0.14
27
Epoch 425/600
14/14
                          - 0s 3ms/step - accuracy: 0.9968 - loss: 0.0155 - val accuracy: 0.9580 - val loss: 0.15
09
Epoch 426/600
14/14
                           0s 4ms/step - accuracy: 0.9978 - loss: 0.0165 - val_accuracy: 0.9650 - val_loss: 0.14
30
Epoch 427/600
                          0s 5ms/step - accuracy: 0.9982 - loss: 0.0220 - val accuracy: 0.9650 - val loss: 0.14
14/14
79
Epoch 428/600
14/14
                           0s 5ms/step - accuracy: 0.9960 - loss: 0.0113 - val accuracy: 0.9650 - val loss: 0.14
62
Epoch 429/600
14/14
                          · 0s 4ms/step - accuracy: 0.9969 - loss: 0.0187 - val accuracy: 0.9650 - val loss: 0.15
11
Epoch 430/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0144 - val_accuracy: 0.9650 - val_loss: 0.14
32
Epoch 431/600
14/14
                           0s 3ms/step - accuracy: 0.9990 - loss: 0.0100 - val accuracy: 0.9650 - val loss: 0.14
76
Epoch 432/600
                           0s 4ms/step - accuracy: 0.9990 - loss: 0.0158 - val accuracy: 0.9580 - val loss: 0.16
14/14
34
Epoch 433/600
14/14
                           0s 4ms/step - accuracy: 0.9970 - loss: 0.0167 - val accuracy: 0.9650 - val loss: 0.14
35
Epoch 434/600
                           0s 4ms/step - accuracy: 0.9995 - loss: 0.0081 - val_accuracy: 0.9650 - val_loss: 0.14
14/14
```

Epoch 435/600

```
14/14
                          · 0s 5ms/step - accuracy: 0.9985 - loss: 0.0104 - val accuracy: 0.9650 - val loss: 0.14
84
Epoch 436/600
14/14
                          · 0s 5ms/step - accuracy: 0.9965 - loss: 0.0166 - val accuracy: 0.9650 - val loss: 0.15
04
Epoch 437/600
14/14
                          - 0s 4ms/step - accuracy: 0.9979 - loss: 0.0108 - val accuracy: 0.9650 - val loss: 0.14
86
Epoch 438/600
14/14
                          - 0s 6ms/step - accuracy: 0.9968 - loss: 0.0215 - val_accuracy: 0.9790 - val_loss: 0.13
67
Epoch 439/600
14/14
                           0s 4ms/step - accuracy: 0.9832 - loss: 0.0287 - val accuracy: 0.9301 - val loss: 0.21
38
Epoch 440/600
                          • 0s 5ms/step - accuracy: 0.9905 - loss: 0.0281 - val accuracy: 0.9790 - val loss: 0.14
14/14
41
Epoch 441/600
14/14
                          - 0s 5ms/step - accuracy: 0.9934 - loss: 0.0138 - val accuracy: 0.9580 - val loss: 0.16
76
Epoch 442/600
14/14
                           0s 6ms/step - accuracy: 0.9962 - loss: 0.0170 - val_accuracy: 0.9650 - val_loss: 0.15
80
Epoch 443/600
14/14
                           0s 8ms/step - accuracy: 0.9997 - loss: 0.0134 - val accuracy: 0.9650 - val loss: 0.15
09
Epoch 444/600
                          - 0s 5ms/step - accuracy: 0.9952 - loss: 0.0179 - val accuracy: 0.9650 - val loss: 0.14
14/14
77
Epoch 445/600
                           0s 4ms/step - accuracy: 0.9980 - loss: 0.0087 - val accuracy: 0.9580 - val loss: 0.15
14/14
24
Epoch 446/600
14/14
                          • 0s 3ms/step - accuracy: 0.9962 - loss: 0.0168 - val accuracy: 0.9650 - val loss: 0.15
49
Epoch 447/600
14/14
                           0s 4ms/step - accuracy: 0.9945 - loss: 0.0148 - val accuracy: 0.9650 - val loss: 0.15
11
Epoch 448/600
14/14
                          - 0s 3ms/step - accuracy: 0.9916 - loss: 0.0223 - val accuracy: 0.9441 - val loss: 0.18
32
Epoch 449/600
                           0s 4ms/step - accuracy: 0.9948 - loss: 0.0148 - val_accuracy: 0.9650 - val_loss: 0.14
14/14
85
Epoch 450/600
                          - 0s 5ms/step - accuracy: 0.9965 - loss: 0.0178 - val accuracy: 0.9650 - val loss: 0.15
14/14
12
Epoch 451/600
14/14
                          - 0s 6ms/step - accuracy: 0.9978 - loss: 0.0115 - val accuracy: 0.9650 - val loss: 0.15
13
Epoch 452/600
14/14
                          · 0s 4ms/step - accuracy: 0.9931 - loss: 0.0176 - val accuracy: 0.9650 - val loss: 0.15
36
Epoch 453/600
14/14
                          - 0s 3ms/step - accuracy: 0.9994 - loss: 0.0130 - val accuracy: 0.9650 - val loss: 0.15
63
Epoch 454/600
14/14
                          - 0s 3ms/step - accuracy: 0.9969 - loss: 0.0148 - val accuracy: 0.9650 - val loss: 0.15
58
Epoch 455/600
14/14
                          - 0s 3ms/step - accuracy: 0.9982 - loss: 0.0147 - val accuracy: 0.9580 - val loss: 0.15
78
Epoch 456/600
14/14
                           0s 3ms/step - accuracy: 0.9978 - loss: 0.0135 - val accuracy: 0.9580 - val loss: 0.16
32
Epoch 457/600
14/14
                          - 0s 3ms/step - accuracy: 0.9969 - loss: 0.0161 - val_accuracy: 0.9720 - val_loss: 0.14
90
Epoch 458/600
14/14
                          • 0s 4ms/step - accuracy: 0.9968 - loss: 0.0112 - val accuracy: 0.9650 - val loss: 0.15
19
Epoch 459/600
                          • 0s 4ms/step - accuracy: 0.9956 - loss: 0.0117 - val_accuracy: 0.9580 - val_loss: 0.16
14/14
39
Epoch 460/600
14/14
                          - 0s 8ms/step - accuracy: 1.0000 - loss: 0.0131 - val accuracy: 0.9650 - val loss: 0.15
87
Epoch 461/600
14/14
                           0s 4ms/step - accuracy: 0.9995 - loss: 0.0122 - val accuracy: 0.9650 - val loss: 0.14
89
Epoch 462/600
14/14
                           0s 4ms/step - accuracy: 0.9990 - loss: 0.0149 - val accuracy: 0.9580 - val loss: 0.15
91
```

```
Epoch 463/600
14/14
                           0s 3ms/step - accuracy: 0.9974 - loss: 0.0122 - val accuracy: 0.9650 - val loss: 0.15
27
Epoch 464/600
14/14
                          0s 4ms/step - accuracy: 0.9974 - loss: 0.0116 - val accuracy: 0.9650 - val loss: 0.16
19
Epoch 465/600
14/14
                           0s 4ms/step - accuracy: 0.9995 - loss: 0.0099 - val accuracy: 0.9650 - val loss: 0.15
92
Epoch 466/600
14/14
                           0s 3ms/step - accuracy: 0.9995 - loss: 0.0094 - val accuracy: 0.9650 - val loss: 0.15
50
Epoch 467/600
14/14
                          - 0s 4ms/step - accuracy: 1.0000 - loss: 0.0134 - val accuracy: 0.9650 - val loss: 0.15
42
Epoch 468/600
14/14
                           0s 3ms/step - accuracy: 0.9992 - loss: 0.0120 - val accuracy: 0.9580 - val loss: 0.16
63
Epoch 469/600
14/14
                           0s 3ms/step - accuracy: 0.9995 - loss: 0.0143 - val_accuracy: 0.9650 - val_loss: 0.16
43
Epoch 470/600
14/14
                           0s 3ms/step - accuracy: 0.9969 - loss: 0.0136 - val accuracy: 0.9650 - val loss: 0.15
81
Epoch 471/600
14/14
                           0s 6ms/step - accuracy: 0.9931 - loss: 0.0182 - val accuracy: 0.9650 - val loss: 0.16
31
Epoch 472/600
14/14
                           0s 3ms/step - accuracy: 0.9990 - loss: 0.0087 - val accuracy: 0.9650 - val loss: 0.16
31
Epoch 473/600
                           0s 3ms/step - accuracy: 0.9966 - loss: 0.0115 - val accuracy: 0.9650 - val loss: 0.16
14/14
26
Fnoch 474/600
14/14
                           0s 3ms/step - accuracy: 0.9915 - loss: 0.0178 - val accuracy: 0.9580 - val loss: 0.17
26
Epoch 475/600
14/14
                           0s 3ms/step - accuracy: 0.9990 - loss: 0.0139 - val_accuracy: 0.9720 - val_loss: 0.15
10
Epoch 476/600
14/14
                           0s 3ms/step - accuracy: 0.9985 - loss: 0.0078 - val accuracy: 0.9580 - val loss: 0.17
80
Epoch 477/600
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0131 - val_accuracy: 0.9720 - val_loss: 0.15
14/14
18
Epoch 478/600
14/14
                           0s 4ms/step - accuracy: 0.9925 - loss: 0.0177 - val accuracy: 0.9650 - val loss: 0.16
61
Epoch 479/600
14/14
                           0s 4ms/step - accuracy: 0.9972 - loss: 0.0137 - val accuracy: 0.9650 - val loss: 0.15
94
Epoch 480/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0129 - val accuracy: 0.9650 - val loss: 0.16
12
Epoch 481/600
14/14
                           0s 3ms/step - accuracy: 0.9969 - loss: 0.0149 - val accuracy: 0.9650 - val loss: 0.16
27
Epoch 482/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0138 - val accuracy: 0.9650 - val loss: 0.16
28
Epoch 483/600
14/14
                          · 0s 3ms/step - accuracy: 0.9982 - loss: 0.0105 - val accuracy: 0.9790 - val loss: 0.15
24
Epoch 484/600
14/14
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0150 - val accuracy: 0.9580 - val loss: 0.16
79
Epoch 485/600
14/14
                           0s 3ms/step - accuracy: 0.9951 - loss: 0.0168 - val accuracy: 0.9650 - val loss: 0.15
71
Epoch 486/600
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0095 - val_accuracy: 0.9650 - val_loss: 0.16
14/14
84
Epoch 487/600
14/14
                          • 0s 3ms/step - accuracy: 1.0000 - loss: 0.0125 - val accuracy: 0.9650 - val loss: 0.15
85
Epoch 488/600
14/14
                           0s 4ms/step - accuracy: 0.9962 - loss: 0.0150 - val accuracy: 0.9650 - val loss: 0.16
76
Epoch 489/600
14/14
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0116 - val accuracy: 0.9650 - val loss: 0.15
91
Epoch 490/600
                           0s 3ms/step - accuracy: 0.9931 - loss: 0.0145 - val_accuracy: 0.9650 - val_loss: 0.16
14/14
```

```
34
Epoch 491/600
14/14
                          - 0s 4ms/step - accuracy: 1.0000 - loss: 0.0093 - val accuracy: 0.9650 - val loss: 0.16
77
Epoch 492/600
14/14
                          - 0s 4ms/step - accuracy: 1.0000 - loss: 0.0127 - val accuracy: 0.9650 - val loss: 0.16
56
Epoch 493/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0119 - val accuracy: 0.9650 - val loss: 0.17
60
Epoch 494/600
14/14
                          · 0s 4ms/step - accuracy: 0.9982 - loss: 0.0117 - val_accuracy: 0.9790 - val_loss: 0.15
84
Epoch 495/600
14/14
                          0s 3ms/step - accuracy: 0.9962 - loss: 0.0186 - val accuracy: 0.9650 - val loss: 0.18
20
Epoch 496/600
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0119 - val accuracy: 0.9650 - val loss: 0.18
14/14
98
Epoch 497/600
14/14
                          - 0s 3ms/step - accuracy: 1.0000 - loss: 0.0103 - val accuracy: 0.9650 - val loss: 0.16
83
Epoch 498/600
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0118 - val_accuracy: 0.9650 - val_loss: 0.17
14/14
11
Epoch 499/600
14/14
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0139 - val accuracy: 0.9650 - val loss: 0.17
20
Epoch 500/600
14/14
                          - 0s 4ms/step - accuracy: 1.0000 - loss: 0.0132 - val accuracy: 0.9650 - val loss: 0.16
91
Epoch 501/600
14/14
                           0s 3ms/step - accuracy: 0.9994 - loss: 0.0120 - val accuracy: 0.9650 - val loss: 0.16
74
Epoch 502/600
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0077 - val accuracy: 0.9580 - val loss: 0.18
14/14
23
Epoch 503/600
14/14
                           0s 5ms/step - accuracy: 1.0000 - loss: 0.0120 - val_accuracy: 0.9650 - val_loss: 0.17
24
Epoch 504/600
14/14
                          - 0s 3ms/step - accuracy: 0.9987 - loss: 0.0068 - val accuracy: 0.9580 - val loss: 0.18
69
Epoch 505/600
14/14
                           0s 4ms/step - accuracy: 0.9969 - loss: 0.0132 - val accuracy: 0.9650 - val loss: 0.16
96
Epoch 506/600
                          - 0s 4ms/step - accuracy: 0.9969 - loss: 0.0077 - val accuracy: 0.9650 - val loss: 0.17
14/14
41
Epoch 507/600
14/14
                           0s 3ms/step - accuracy: 0.9994 - loss: 0.0081 - val_accuracy: 0.9650 - val_loss: 0.17
41
Epoch 508/600
14/14
                          - 0s 3ms/step - accuracy: 1.0000 - loss: 0.0114 - val accuracy: 0.9650 - val loss: 0.16
85
Epoch 509/600
14/14
                           0s 3ms/step - accuracy: 0.9990 - loss: 0.0088 - val_accuracy: 0.9650 - val_loss: 0.17
74
Epoch 510/600
                          0s 3ms/step - accuracy: 0.9969 - loss: 0.0129 - val accuracy: 0.9650 - val loss: 0.17
14/14
26
Epoch 511/600
14/14
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0101 - val accuracy: 0.9650 - val loss: 0.17
38
Epoch 512/600
14/14
                          · 0s 3ms/step - accuracy: 0.9950 - loss: 0.0114 - val accuracy: 0.9580 - val loss: 0.19
43
Epoch 513/600
14/14
                           0s 6ms/step - accuracy: 0.9961 - loss: 0.0140 - val_accuracy: 0.9720 - val_loss: 0.16
55
Epoch 514/600
14/14
                           0s 3ms/step - accuracy: 0.9919 - loss: 0.0162 - val accuracy: 0.9371 - val loss: 0.21
79
Epoch 515/600
                           0s 3ms/step - accuracy: 0.9951 - loss: 0.0143 - val accuracy: 0.9790 - val loss: 0.16
14/14
42
Epoch 516/600
14/14
                           0s 3ms/step - accuracy: 0.9974 - loss: 0.0118 - val accuracy: 0.9580 - val loss: 0.18
65
Epoch 517/600
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0101 - val_accuracy: 0.9720 - val_loss: 0.16
14/14
20
```

Epoch 518/600

```
14/14
                          · 0s 3ms/step - accuracy: 0.9963 - loss: 0.0090 - val accuracy: 0.9580 - val loss: 0.19
17
Epoch 519/600
14/14
                          · 0s 4ms/step - accuracy: 1.0000 - loss: 0.0139 - val accuracy: 0.9650 - val loss: 0.17
42
Epoch 520/600
14/14
                          - 0s 4ms/step - accuracy: 0.9987 - loss: 0.0108 - val accuracy: 0.9790 - val loss: 0.16
82
Epoch 521/600
14/14
                          - 0s 5ms/step - accuracy: 0.9978 - loss: 0.0126 - val_accuracy: 0.9650 - val_loss: 0.18
61
Epoch 522/600
14/14
                           0s 5ms/step - accuracy: 1.0000 - loss: 0.0103 - val accuracy: 0.9650 - val loss: 0.17
15
Epoch 523/600
                          · 0s 7ms/step - accuracy: 1.0000 - loss: 0.0074 - val accuracy: 0.9580 - val loss: 0.19
14/14
03
Epoch 524/600
14/14
                          - 0s 5ms/step - accuracy: 1.0000 - loss: 0.0105 - val accuracy: 0.9650 - val loss: 0.17
95
Epoch 525/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0092 - val_accuracy: 0.9650 - val_loss: 0.18
11
Epoch 526/600
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0052 - val accuracy: 0.9650 - val loss: 0.18
14/14
07
Epoch 527/600
                          • 0s 4ms/step - accuracy: 1.0000 - loss: 0.0123 - val accuracy: 0.9580 - val loss: 0.18
14/14
80
Epoch 528/600
                           0s 5ms/step - accuracy: 0.9990 - loss: 0.0061 - val accuracy: 0.9580 - val loss: 0.20
14/14
44
Epoch 529/600
14/14
                           0s 5ms/step - accuracy: 0.9962 - loss: 0.0137 - val accuracy: 0.9650 - val loss: 0.17
79
Epoch 530/600
14/14
                           0s 7ms/step - accuracy: 1.0000 - loss: 0.0098 - val accuracy: 0.9650 - val loss: 0.18
09
Epoch 531/600
14/14
                          - 0s 7ms/step - accuracy: 1.0000 - loss: 0.0079 - val accuracy: 0.9510 - val loss: 0.20
99
Epoch 532/600
                           0s 6ms/step - accuracy: 0.9949 - loss: 0.0141 - val_accuracy: 0.9650 - val_loss: 0.18
14/14
25
Epoch 533/600
                          - 0s 5ms/step - accuracy: 1.0000 - loss: 0.0095 - val accuracy: 0.9580 - val loss: 0.17
14/14
76
Epoch 534/600
14/14
                          - 0s 6ms/step - accuracy: 1.0000 - loss: 0.0080 - val accuracy: 0.9650 - val loss: 0.18
04
Epoch 535/600
14/14
                          · 0s 5ms/step - accuracy: 1.0000 - loss: 0.0109 - val accuracy: 0.9650 - val loss: 0.17
94
Epoch 536/600
14/14
                          · 0s 6ms/step - accuracy: 1.0000 - loss: 0.0079 - val accuracy: 0.9650 - val loss: 0.18
83
Epoch 537/600
14/14
                          - 0s 5ms/step - accuracy: 1.0000 - loss: 0.0093 - val accuracy: 0.9580 - val loss: 0.18
13
Epoch 538/600
14/14
                           0s 5ms/step - accuracy: 0.9978 - loss: 0.0108 - val accuracy: 0.9650 - val loss: 0.19
37
Epoch 539/600
14/14
                           0s 5ms/step - accuracy: 1.0000 - loss: 0.0073 - val accuracy: 0.9580 - val loss: 0.18
19
Epoch 540/600
14/14
                          - 0s 5ms/step - accuracy: 0.9931 - loss: 0.0121 - val_accuracy: 0.9650 - val_loss: 0.19
34
Epoch 541/600
14/14
                          • 0s 5ms/step - accuracy: 1.0000 - loss: 0.0088 - val accuracy: 0.9580 - val loss: 0.18
07
Epoch 542/600
                          • 0s 6ms/step - accuracy: 1.0000 - loss: 0.0083 - val accuracy: 0.9580 - val loss: 0.20
14/14
44
Epoch 543/600
14/14
                          • 0s 4ms/step - accuracy: 1.0000 - loss: 0.0058 - val accuracy: 0.9580 - val loss: 0.19
10
Epoch 544/600
14/14
                           0s 5ms/step - accuracy: 0.9990 - loss: 0.0055 - val accuracy: 0.9650 - val loss: 0.17
60
Epoch 545/600
14/14
                           0s 4ms/step - accuracy: 0.9978 - loss: 0.0096 - val accuracy: 0.9650 - val loss: 0.19
28
```

```
Epoch 546/600
14/14
                          0s 5ms/step - accuracy: 1.0000 - loss: 0.0094 - val accuracy: 0.9650 - val loss: 0.19
89
Epoch 547/600
14/14
                          · 0s 7ms/step - accuracy: 1.0000 - loss: 0.0111 - val accuracy: 0.9580 - val loss: 0.18
59
Epoch 548/600
14/14
                          0s 6ms/step - accuracy: 1.0000 - loss: 0.0069 - val accuracy: 0.9650 - val loss: 0.18
98
Epoch 549/600
14/14
                          0s 7ms/step - accuracy: 1.0000 - loss: 0.0074 - val accuracy: 0.9580 - val loss: 0.18
82
Epoch 550/600
14/14
                          - 0s 12ms/step - accuracy: 1.0000 - loss: 0.0094 - val accuracy: 0.9650 - val loss: 0.1
952
Epoch 551/600
14/14
                          0s 5ms/step - accuracy: 1.0000 - loss: 0.0111 - val accuracy: 0.9580 - val loss: 0.19
47
Epoch 552/600
14/14
                          0s 4ms/step - accuracy: 0.9983 - loss: 0.0077 - val_accuracy: 0.9720 - val_loss: 0.19
13
Epoch 553/600
14/14
                          0s 4ms/step - accuracy: 0.9952 - loss: 0.0097 - val accuracy: 0.9510 - val loss: 0.21
83
Epoch 554/600
14/14
                          0s 3ms/step - accuracy: 1.0000 - loss: 0.0141 - val accuracy: 0.9650 - val loss: 0.18
53
Epoch 555/600
14/14
                          0s 3ms/step - accuracy: 1.0000 - loss: 0.0073 - val accuracy: 0.9580 - val loss: 0.20
60
Epoch 556/600
                          0s 4ms/step - accuracy: 1.0000 - loss: 0.0068 - val accuracy: 0.9580 - val loss: 0.19
14/14
51
Epoch 557/600
14/14
                          0s 3ms/step - accuracy: 1.0000 - loss: 0.0078 - val accuracy: 0.9580 - val loss: 0.19
21
Epoch 558/600
14/14
                          0s 3ms/step - accuracy: 0.9987 - loss: 0.0077 - val_accuracy: 0.9580 - val_loss: 0.21
40
Epoch 559/600
14/14
                          0s 4ms/step - accuracy: 0.9982 - loss: 0.0094 - val accuracy: 0.9580 - val loss: 0.19
71
Epoch 560/600
                          0s 4ms/step - accuracy: 1.0000 - loss: 0.0074 - val accuracy: 0.9580 - val loss: 0.19
14/14
87
Epoch 561/600
14/14
                          0s 4ms/step - accuracy: 1.0000 - loss: 0.0066 - val accuracy: 0.9580 - val loss: 0.20
02
Epoch 562/600
14/14
                          0s 4ms/step - accuracy: 0.9992 - loss: 0.0074 - val accuracy: 0.9580 - val loss: 0.20
49
Epoch 563/600
14/14
                          0s 6ms/step - accuracy: 1.0000 - loss: 0.0070 - val accuracy: 0.9580 - val loss: 0.19
87
Epoch 564/600
14/14
                          0s 4ms/step - accuracy: 0.9994 - loss: 0.0053 - val accuracy: 0.9580 - val loss: 0.19
68
Epoch 565/600
14/14
                          0s 4ms/step - accuracy: 0.9990 - loss: 0.0118 - val accuracy: 0.9510 - val loss: 0.23
14
Epoch 566/600
14/14
                          • 0s 4ms/step - accuracy: 0.9951 - loss: 0.0126 - val accuracy: 0.9650 - val loss: 0.20
13
Epoch 567/600
                          0s 4ms/step - accuracy: 0.9951 - loss: 0.0097 - val accuracy: 0.9580 - val loss: 0.22
14/14
58
Epoch 568/600
14/14
                          0s 4ms/step - accuracy: 0.9994 - loss: 0.0109 - val accuracy: 0.9580 - val loss: 0.21
72
Epoch 569/600
                          0s 3ms/step - accuracy: 0.9974 - loss: 0.0117 - val_accuracy: 0.9790 - val_loss: 0.19
14/14
77
Epoch 570/600
14/14
                          • 0s 4ms/step - accuracy: 1.0000 - loss: 0.0085 - val accuracy: 0.9441 - val loss: 0.23
98
Epoch 571/600
                          0s 4ms/step - accuracy: 0.9921 - loss: 0.0145 - val accuracy: 0.9580 - val loss: 0.20
14/14
23
Epoch 572/600
14/14
                           0s 5ms/step - accuracy: 0.9937 - loss: 0.0143 - val accuracy: 0.9650 - val loss: 0.21
51
Epoch 573/600
                          0s 4ms/step - accuracy: 0.9873 - loss: 0.0215 - val_accuracy: 0.9580 - val_loss: 0.21
14/14
```

```
91
Epoch 574/600
14/14
                          - 0s 4ms/step - accuracy: 0.9978 - loss: 0.0104 - val accuracy: 0.9580 - val loss: 0.20
38
Epoch 575/600
14/14
                          - 0s 4ms/step - accuracy: 1.0000 - loss: 0.0093 - val accuracy: 0.9510 - val loss: 0.22
60
Epoch 576/600
14/14
                          0s 4ms/step - accuracy: 1.0000 - loss: 0.0108 - val accuracy: 0.9510 - val loss: 0.23
20
Epoch 577/600
14/14
                          - 0s 3ms/step - accuracy: 0.9985 - loss: 0.0088 - val_accuracy: 0.9650 - val_loss: 0.19
50
Epoch 578/600
14/14
                          · 0s 3ms/step - accuracy: 0.9969 - loss: 0.0083 - val accuracy: 0.9580 - val loss: 0.21
87
Epoch 579/600
14/14
                          - 0s 4ms/step - accuracy: 1.0000 - loss: 0.0063 - val accuracy: 0.9580 - val loss: 0.21
56
Epoch 580/600
14/14
                          - 0s 5ms/step - accuracy: 1.0000 - loss: 0.0059 - val accuracy: 0.9580 - val loss: 0.21
67
Epoch 581/600
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0088 - val_accuracy: 0.9580 - val_loss: 0.20
14/14
41
Epoch 582/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0066 - val accuracy: 0.9580 - val loss: 0.21
78
Epoch 583/600
14/14
                          - 0s 4ms/step - accuracy: 0.9975 - loss: 0.0073 - val accuracy: 0.9580 - val loss: 0.21
78
Epoch 584/600
14/14
                           0s 5ms/step - accuracy: 0.9974 - loss: 0.0126 - val accuracy: 0.9580 - val loss: 0.21
46
Epoch 585/600
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0054 - val accuracy: 0.9580 - val loss: 0.21
14/14
53
Epoch 586/600
14/14
                           0s 5ms/step - accuracy: 1.0000 - loss: 0.0073 - val_accuracy: 0.9580 - val_loss: 0.21
02
Epoch 587/600
14/14
                          - 0s 6ms/step - accuracy: 1.0000 - loss: 0.0081 - val accuracy: 0.9580 - val loss: 0.21
75
Epoch 588/600
14/14
                          • 0s 11ms/step - accuracy: 1.0000 - loss: 0.0049 - val accuracy: 0.9580 - val loss: 0.2
152
Epoch 589/600
                          - 0s 6ms/step - accuracy: 0.9987 - loss: 0.0062 - val accuracy: 0.9580 - val loss: 0.20
14/14
91
Epoch 590/600
14/14
                           0s 7ms/step - accuracy: 0.9978 - loss: 0.0061 - val_accuracy: 0.9580 - val_loss: 0.22
39
Epoch 591/600
                          - 0s 7ms/step - accuracy: 1.0000 - loss: 0.0080 - val accuracy: 0.9580 - val loss: 0.22
14/14
20
Epoch 592/600
14/14
                          · 0s 6ms/step - accuracy: 1.0000 - loss: 0.0067 - val_accuracy: 0.9580 - val_loss: 0.21
33
Epoch 593/600
                          • 0s 5ms/step - accuracy: 1.0000 - loss: 0.0105 - val accuracy: 0.9580 - val loss: 0.22
14/14
16
Epoch 594/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0078 - val accuracy: 0.9580 - val loss: 0.22
04
Epoch 595/600
14/14
                          · 0s 4ms/step - accuracy: 1.0000 - loss: 0.0054 - val accuracy: 0.9580 - val loss: 0.21
98
Epoch 596/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0052 - val_accuracy: 0.9580 - val_loss: 0.22
52
Epoch 597/600
14/14
                           0s 4ms/step - accuracy: 1.0000 - loss: 0.0064 - val accuracy: 0.9580 - val loss: 0.22
19
Epoch 598/600
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0060 - val accuracy: 0.9580 - val loss: 0.22
14/14
94
Epoch 599/600
14/14
                           0s 4ms/step - accuracy: 0.9978 - loss: 0.0065 - val accuracy: 0.9580 - val loss: 0.22
38
Epoch 600/600
14/14
                          - 0s 5ms/step - accuracy: 1.0000 - loss: 0.0047 - val_accuracy: 0.9580 - val_loss: 0.22
```


Epoch 23/600

```
In [ ]: # Early Stopping
        early_stop = EarlyStopping(
    monitor='val_loss', mode='min', verbose=1, patience=25)
        model.fit(x=X_train, y=y_train, epochs=600, validation_data=(
            X_test, y_test), callbacks=[early_stop], verbose=1)
        model_loss = pd.DataFrame(model.history.history)
        model_loss.plot()
        plt.xlabel('Epochs')
        plt.ylabel('Loss')
        plt.show()
       Epoch 1/600
       14/14
                                  3s 51ms/step - loss: 0.6708 - val_loss: 0.6407
       Epoch 2/600
                                  0s 12ms/step - loss: 0.6177 - val_loss: 0.5912
       14/14
       Epoch 3/600
                                   0s 12ms/step - loss: 0.5778 - val_loss: 0.5454
       14/14
       Epoch 4/600
                                  0s 13ms/step - loss: 0.5323 - val_loss: 0.4998
       14/14
       Epoch 5/600
                                   0s 13ms/step - loss: 0.4802 - val_loss: 0.4518
       14/14
       Epoch 6/600
                                   0s 8ms/step - loss: 0.4237 - val_loss: 0.4060
       14/14
       Epoch 7/600
                                   0s 5ms/step - loss: 0.4111 - val_loss: 0.3628
       14/14
       Epoch 8/600
       14/14
                                  0s 3ms/step - loss: 0.3476 - val loss: 0.3239
       Epoch 9/600
       14/14
                                  0s 4ms/step - loss: 0.3148 - val_loss: 0.2922
       Epoch 10/600
       14/14
                                  0s 3ms/step - loss: 0.3020 - val loss: 0.2632
       Epoch 11/600
       14/14
                                  0s 4ms/step - loss: 0.2732 - val_loss: 0.2420
       Epoch 12/600
       14/14
                                  • 0s 4ms/step - loss: 0.2440 - val_loss: 0.2217
       Epoch 13/600
                                  0s 16ms/step - loss: 0.2332 - val_loss: 0.2021
       14/14
       Epoch 14/600
       14/14
                                  0s 10ms/step - loss: 0.2336 - val_loss: 0.1898
       Epoch 15/600
       14/14
                                  0s 10ms/step - loss: 0.1998 - val_loss: 0.1830
       Epoch 16/600
       14/14
                                  • 0s 10ms/step - loss: 0.1991 - val_loss: 0.1715
       Epoch 17/600
       14/14
                                  0s 9ms/step - loss: 0.1679 - val_loss: 0.1641
       Epoch 18/600
                                  • 0s 10ms/step - loss: 0.1530 - val loss: 0.1583
       14/14
       Epoch 19/600
       14/14
                                  0s 10ms/step - loss: 0.1700 - val_loss: 0.1521
       Epoch 20/600
       14/14
                                  0s 9ms/step - loss: 0.1757 - val_loss: 0.1457
       Epoch 21/600
       14/14
                                  0s 11ms/step - loss: 0.1299 - val_loss: 0.1456
       Epoch 22/600
                                  0s 12ms/step - loss: 0.1551 - val loss: 0.1365
       14/14
```

```
14/14
                          - 0s 16ms/step - loss: 0.1493 - val_loss: 0.1358
Epoch 24/600
14/14
                           0s 12ms/step - loss: 0.1191 - val_loss: 0.1298
Epoch 25/600
                           0s 5ms/step - loss: 0.1128 - val_loss: 0.1297
14/14
Epoch 26/600
                          • 0s 12ms/step - loss: 0.1237 - val loss: 0.1261
14/14
Epoch 27/600
14/14
                           0s 10ms/step - loss: 0.1109 - val_loss: 0.1252
Epoch 28/600
14/14
                           0s 11ms/step - loss: 0.1173 - val_loss: 0.1197
Epoch 29/600
14/14
                           0s 9ms/step - loss: 0.1120 - val_loss: 0.1220
Epoch 30/600
14/14
                          0s 9ms/step - loss: 0.1137 - val_loss: 0.1191
Epoch 31/600
14/14
                           0s 9ms/step - loss: 0.1051 - val_loss: 0.1186
Epoch 32/600
14/14
                           0s 7ms/step - loss: 0.0882 - val loss: 0.1153
Epoch 33/600
14/14
                           0s 10ms/step - loss: 0.1004 - val_loss: 0.1150
Epoch 34/600
14/14
                          0s 9ms/step - loss: 0.1026 - val_loss: 0.1138
Epoch 35/600
14/14
                           0s 10ms/step - loss: 0.0777 - val_loss: 0.1125
Epoch 36/600
14/14
                           0s 9ms/step - loss: 0.0844 - val loss: 0.1107
Epoch 37/600
14/14
                           0s 10ms/step - loss: 0.0835 - val_loss: 0.1092
Epoch 38/600
                          0s 6ms/step - loss: 0.0789 - val_loss: 0.1099
14/14
Epoch 39/600
14/14
                           0s 5ms/step - loss: 0.0876 - val_loss: 0.1074
Epoch 40/600
14/14
                           0s 10ms/step - loss: 0.0745 - val loss: 0.1094
Epoch 41/600
14/14
                           0s 10ms/step - loss: 0.0697 - val loss: 0.1110
Epoch 42/600
14/14
                           0s 11ms/step - loss: 0.0626 - val_loss: 0.1100
Epoch 43/600
14/14
                           0s 12ms/step - loss: 0.0611 - val_loss: 0.1088
Epoch 44/600
14/14
                           0s 9ms/step - loss: 0.0857 - val_loss: 0.1130
Epoch 45/600
14/14
                           0s 8ms/step - loss: 0.0696 - val_loss: 0.1057
Epoch 46/600
14/14
                           0s 9ms/step - loss: 0.0719 - val_loss: 0.1075
Epoch 47/600
14/14
                           0s 13ms/step - loss: 0.0603 - val_loss: 0.1159
Epoch 48/600
14/14
                           0s 12ms/step - loss: 0.0582 - val_loss: 0.1062
Epoch 49/600
14/14
                           0s 9ms/step - loss: 0.0749 - val_loss: 0.1118
Epoch 50/600
14/14
                           0s 8ms/step - loss: 0.0638 - val_loss: 0.1085
Epoch 51/600
14/14
                           0s 8ms/step - loss: 0.0669 - val_loss: 0.1086
Epoch 52/600
14/14
                           0s 6ms/step - loss: 0.0684 - val_loss: 0.1024
Epoch 53/600
14/14
                           0s 10ms/step - loss: 0.0664 - val loss: 0.1120
Epoch 54/600
                           0s 10ms/step - loss: 0.0557 - val_loss: 0.1034
14/14
Epoch 55/600
                           0s 11ms/step - loss: 0.0578 - val loss: 0.1102
14/14
Epoch 56/600
14/14
                           0s 9ms/step - loss: 0.0613 - val_loss: 0.1120
Epoch 57/600
14/14
                           0s 10ms/step - loss: 0.0625 - val_loss: 0.1042
Epoch 58/600
                           0s 9ms/step - loss: 0.0671 - val_loss: 0.1152
14/14
Epoch 59/600
                           0s 14ms/step - loss: 0.0608 - val_loss: 0.1055
14/14
Epoch 60/600
                           0s 12ms/step - loss: 0.0674 - val loss: 0.1045
14/14
Epoch 61/600
                           0s 12ms/step - loss: 0.0524 - val_loss: 0.1096
14/14
Epoch 62/600
                           0s 10ms/step - loss: 0.0437 - val_loss: 0.1063
14/14
Epoch 63/600
                           0s 9ms/step - loss: 0.0545 - val_loss: 0.1072
14/14
Epoch 64/600
                           0s 8ms/step - loss: 0.0445 - val_loss: 0.1072
14/14
```

```
Epoch 65/600
                           0s 5ms/step - loss: 0.0480 - val_loss: 0.1118
14/14
Epoch 66/600
14/14
                           0s 5ms/step - loss: 0.0495 - val_loss: 0.1073
Epoch 67/600
                           0s 5ms/step - loss: 0.0465 - val_loss: 0.1107
14/14
Epoch 68/600
                          0s 6ms/step - loss: 0.0516 - val_loss: 0.1105
14/14
Epoch 69/600
                          • 0s 4ms/step - loss: 0.0516 - val_loss: 0.1115
14/14
Epoch 70/600
14/14
                           0s 3ms/step - loss: 0.0808 - val_loss: 0.1053
Epoch 71/600
                          - 0s 3ms/step - loss: 0.0822 - val loss: 0.1118
14/14
Epoch 72/600
                          - 0s 4ms/step - loss: 0.0530 - val loss: 0.1095
14/14
Epoch 73/600
                           0s 4ms/step - loss: 0.0527 - val loss: 0.1087
14/14
Epoch 74/600
                           0s 4ms/step - loss: 0.0650 - val_loss: 0.1133
14/14
Epoch 75/600
                           0s 4ms/step - loss: 0.0503 - val_loss: 0.1191
14/14
Epoch 76/600
                           0s 4ms/step - loss: 0.0512 - val_loss: 0.1146
14/14
Epoch 77/600
                          - 0s 4ms/step - loss: 0.0573 - val_loss: 0.1104
14/14
Epoch 77: early stopping
                                                               loss
                                                               val loss
  0.6
  0.5
  0.4
  0.3
  0.2
  0.1
```

10

20

30

40

Epochs

50

60

```
In [ ]: # Adding in DropOut Layers
        # Resetting the model
        model = Sequential([
             Dense(units=30, activation='relu'),
             Dropout (0.5),
             Dense(units=15, activation='relu'),
             Dropout (0.5),
             Dense(units=1, activation='sigmoid')
        ])
        model.compile(loss='binary_crossentropy', optimizer='adam')
        # Training with Dropout layers
        model.fit(x=X_train, y=y_train, epochs=600, validation_data=(
             X_test, y_test), callbacks=[early_stop], verbose=1)
        model loss = pd.DataFrame(model.history.history)
        model_loss.plot()
        plt.xlabel('Epochs')
plt.ylabel('Loss')
        plt.show()
```

```
Epoch 1/600
14/14
                           2s 11ms/step - loss: 0.6901 - val loss: 0.6594
Epoch 2/600
14/14
                           0s 3ms/step - loss: 0.6685 - val_loss: 0.6319
Epoch 3/600
14/14
                          - 0s 4ms/step - loss: 0.6607 - val loss: 0.6085
Epoch 4/600
14/14
                          - 0s 3ms/step - loss: 0.6163 - val_loss: 0.5764
Epoch 5/600
14/14
                          - 0s 3ms/step - loss: 0.5886 - val_loss: 0.5395
Epoch 6/600
14/14
                           0s 4ms/step - loss: 0.5830 - val_loss: 0.5042
Epoch 7/600
                          - 0s 3ms/step - loss: 0.5545 - val loss: 0.4770
14/14
Epoch 8/600
                          - 0s 4ms/step - loss: 0.5122 - val loss: 0.4419
14/14
Epoch 9/600
                          - 0s 3ms/step - loss: 0.4922 - val loss: 0.4167
14/14
Epoch 10/600
                           0s 3ms/step - loss: 0.4831 - val_loss: 0.3899
14/14
Epoch 11/600
                          - 0s 3ms/step - loss: 0.4709 - val_loss: 0.3644
14/14
Epoch 12/600
                          - 0s 3ms/step - loss: 0.4227 - val_loss: 0.3401
14/14
Epoch 13/600
                          - 0s 3ms/step - loss: 0.4342 - val_loss: 0.3193
14/14
Epoch 14/600
                           0s 3ms/step - loss: 0.4118 - val_loss: 0.3028
14/14
Epoch 15/600
14/14
                          - 0s 3ms/step - loss: 0.3903 - val_loss: 0.2830
Epoch 16/600
                          - 0s 3ms/step - loss: 0.3738 - val_loss: 0.2631
14/14
Epoch 17/600
                          - 0s 4ms/step - loss: 0.3880 - val loss: 0.2542
14/14
Epoch 18/600
                           0s 4ms/step - loss: 0.3598 - val_loss: 0.2362
14/14
Epoch 19/600
                           0s 3ms/step - loss: 0.3263 - val_loss: 0.2241
14/14
Epoch 20/600
14/14
                           0s 3ms/step - loss: 0.2939 - val_loss: 0.2116
Epoch 21/600
                          • 0s 4ms/step - loss: 0.3107 - val_loss: 0.2172
14/14
Epoch 22/600
                           0s 4ms/step - loss: 0.3118 - val_loss: 0.1981
14/14
Epoch 23/600
14/14
                          - 0s 3ms/step - loss: 0.2791 - val_loss: 0.1878
Epoch 24/600
14/14
                           0s 6ms/step - loss: 0.3027 - val_loss: 0.1875
Epoch 25/600
14/14
                          - 0s 3ms/step - loss: 0.3069 - val_loss: 0.1790
Epoch 25: early stopping
   0.7
                                                               loss
                                                               val_loss
   0.6
   0.5
   0.4
   0.3
   0.2
         0
                     5
                                 10
                                             15
                                                          20
                                                                      25
                                    Epochs
```

```
In []: # Model Evaluation using the `predict` method
predictions = model.predict(X_test)

# Convert probabilities to class labels
predictions = (predictions > 0.5).astype(int)
```

Now you can use classification_report and confusion_matrix as before
print(classification_report(y_test, predictions))
print(confusion_matrix(y_test, predictions))

5/5 0s 11ms/step				
-,-	precision	-	f1-score	support
0	0.87	0.96	0.91	55
1	0.98	0.91	0.94	88
accuracy			0.93	143
macro avg	0.92	0.94	0.93	143
weighted avg	0.93	0.93	0.93	143
[[53 2]				

[[53 2] [8 80]]

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Objective(s):

Experiment No: 5

Student Name and Roll Number: Piyush Gambhir – 21CSU349				
Semester /Section: 6 th Semester – AIML-B (A3)				
Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab				
Manual/Experiment 5/Experiment 5.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-				
semester-projects (github.com)				
Date:				
Faculty Signature:				
Marks:				

Experiment 5

Problem Statement:

To build an advance ANN classification model for churn modelling data with:

- a. Cross Validation
- · b. Grid Search
- · c. Checkpoint

GitHub & Google Colab Links:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%205/Experiment%205.ipynb

Google Colab Link:

Installing Dependencies:

In []: ! pip install tabulate numpy pandas matplotlib seaborn

```
Requirement already satisfied: tabulate in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
aes (0.9.0)
Requirement already satisfied: numpy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(1.26.4)
Requirement already satisfied: pandas in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
s(2.2.2)
Requirement already satisfied: matplotlib in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
kages (3.8.4)
Requirement already satisfied: seaborn in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packag
es (0.13.2)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\mainp\appdata\local\programs\python\python311\
lib\site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in c:\users\mainp\appdata\local\programs\python\python311\lib\site
-packages (from pandas) (2024.1)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from matplotlib) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
e-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pack
ages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from matplotlib) (3.1.2)
Requirement already satisfied: six>=1.5 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
ges (from python-dateutil>=2.8.2->pandas) (1.16.0)
```

Code

```
import pandas as pd
import numpy as np
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from sklearn.base import BaseEstimator, ClassifierMixin
```

```
In [ ]: # Load the dataset
data = pd.read_csv("./churn_modelling.csv")

# Drop the columns that are not needed for modeling
```

```
data = data.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1)
        # Separate features and target variable
        X = data.drop('Exited', axis=1)
        y = data['Exited']
        # Preprocessing for numeric columns: scale numeric features
        numeric features = X.select dtypes(
            include=['int64', 'float64']).columns.difference(['HasCrCard', 'IsActiveMember'])
        numeric_transformer = StandardScaler()
        # Preprocessing for categorical columns: one-hot encode categorical features
        categorical features = ['Geography', 'Gender']
        categorical_transformer = OneHotEncoder(drop='first')
        # Create the preprocessing pipeline
        preprocessor = ColumnTransformer(
            transformers=[
                ('num', numeric_transformer, numeric_features),
                ('cat', categorical_transformer, categorical_features)
            ])
In []: # Define the Keras Classifier Wrapper
        class KerasClassifierWrapper(BaseEstimator, ClassifierMixin):
            def init (self, neurons=64):
                self.neurons = neurons
                self.model = None
            def fit(self, X, y, **kwargs):
                def create_model():
                    model = Sequential()
                    model.add(Dense(self.neurons, activation='relu',
                              input_shape=(X.shape[1],)))
                    model.add(Dropout(0.2))
                    model.add(Dense(self.neurons, activation='relu'))
                    model.add(Dropout(0.2))
                    model.add(Dense(1, activation='sigmoid'))
                    model.compile(optimizer='adam',
                                  loss='binary_crossentropy', metrics=['accuracy'])
                    return model
                self.model = create_model()
                self.model.fit(X, y, **kwargs)
                return self
            def predict(self, X, **kwargs):
                return (self.model.predict(X, **kwargs) > 0.5).astype("int32")
            def score(self, X, y, **kwargs):
                _, accuracy = self.model.evaluate(X, y, **kwargs)
                return accuracy
            def get_params(self, deep=True):
                return {'neurons': self.neurons}
            def set params(self, **parameters):
                for parameter, value in parameters.items():
                    setattr(self, parameter, value)
                return self
In [ ]: # Split the data
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test size=0.2, random state=42)
        # Set up a pipeline that includes preprocessing and the estimator
        pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                                   ('classifier', KerasClassifierWrapper())])
        # Hyperparameter grid
        param grid = {
            'classifier__neurons': [32, 64, 128],
        # Grid search setup
        grid = GridSearchCV(pipeline, param_grid, cv=3)
        # Perform the grid search
        grid result = grid.fit(X train, y train)
        # Evaluate the model
```

print("Best parameters found: ", grid_result.best_params_)

```
print("Best accuracy found: ", grid result.best score )
  best model = grid result.best estimator
  X test transformed = best model.named steps['preprocessor'].transform(X test)
  test accuracy = best model.named steps['classifier'].score(
           X_test_transformed, y_test)
  print(f"Test Accuracy: {test accuracy:.4f}")
c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\core\dense.py:86: User
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                           - 2s 2ms/step - accuracy: 0.7645 - loss: 0.5414
                                                       - 0s 1ms/step - accuracy: 0.7920 - loss: 0.4683
84/84
c:\Users\mainp\AppData\Local\Programs\Python\Python\311\Lib\site-packages\keras\src\layers\core\dense.py:86: Users\mainp\AppData\Local\Programs\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Pyt
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
                                                           - 3s 2ms/step - accuracy: 0.7094 - loss: 0.5776
84/84 -
                                                      - 0s 2ms/step - accuracy: 0.7811 - loss: 0.4674
c:\Users\mainp\AppData\Local\Programs\Python\Python\311\Lib\site-packages\keras\src\layers\core\dense.py:86: Users\mainp\AppData\Local\Programs\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Pyt
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                          - 3s 3ms/step - accuracy: 0.6786 - loss: 0.6017
                                                      - 1s 3ms/step - accuracy: 0.8058 - loss: 0.4477
84/84
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                           - 2s 2ms/step - accuracy: 0.7945 - loss: 0.5081
84/84 -
                                                       - 0s 2ms/step - accuracy: 0.8012 - loss: 0.4535
\verb|c:\Users| a inp\AppData \Local \Programs \Python \Python \Bite-packages \keras \src\layers \core \dense.py: 86: User \Bite-packages \end{|linearize} \\
Warning: Do not pass an `input shape`/`input dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                           - 2s 1ms/step - accuracy: 0.7771 - loss: 0.5325
84/84 -
                                                       - 0s 2ms/step - accuracy: 0.7934 - loss: 0.4441
c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\core\dense.py:86: User
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                           - 3s 2ms/step - accuracy: 0.7644 - loss: 0.5186
84/84 -
                                                      - 1s 3ms/step - accuracy: 0.8148 - loss: 0.4228
c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\core\dense.py:86: User
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                           - 3s 2ms/step - accuracy: 0.7817 - loss: 0.4978
84/84
                                                      - 0s 1ms/step - accuracy: 0.8183 - loss: 0.4240
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
                                                          - 2s 3ms/step - accuracy: 0.7870 - loss: 0.4995
167/167 -
                                                       - 1s 2ms/step - accuracy: 0.7992 - loss: 0.4358
84/84
\verb|c:\Users| AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\src\\layers\\core\\dense.py:86: Users\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\layers\\l
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
   super().__init__(activity_regularizer=activity_regularizer, **kwargs)
167/167 -
                                                           - 3s 2ms/step - accuracy: 0.7589 - loss: 0.5112
84/84
                                                       - 0s 1ms/step - accuracy: 0.8237 - loss: 0.4139
Warning: Do not pass an `input shape`/`input dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
    super().__init__(activity_regularizer=activity_regularizer, **kwargs)
                                                           - 2s 2ms/step - accuracy: 0.7720 - loss: 0.5011
Best parameters found: {'classifier neurons': 128}
Best accuracy found: 0.8147505720456442
63/63
                                                       - 0s 1ms/step - accuracy: 0.8328 - loss: 0.3904
```


Student Name and Roll Number: Piyush Gambhir – 21CSU349

Experiment No: 6

Semester /Section: 6 th Semester – AIML-B (A3)
Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment
6/Experiment 6.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)
Date:
Faculty Signature:
Marks:

Objective(s):		

Experiment 6 - MNSIT Digit Classification Using Keras

Problem Statement:

To perform Convolutional Neural Networks for Image Classification on MNIST Dataset.

GitHub & Colab Link:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%206/Experiment%206.ipynb

Google Colab Link:

Installing Dependencies:

```
In [ ]: ! pip install tabulate, numpy, pandas, matplotlib, seaborn

ERROR: Invalid requirement: 'tabulate,'
```

Code

```
In []: # Task 1: Import Libraries
# Import necessary libraries for data handling and visualization
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix
import os
In []: # Task 2: Load and Preprocess Data
# Load MNIST data and normalize to facilitate efficient training
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 28*28).astype("float32") / 255
x_test = x_test.reshape(10000, 28*28).astype("float32") / 255
```

```
In []: # Task 3: Visualize the Data
# Display the first 10 images from the dataset to understand the data better
plt.figure(figsize=(10, 4))
for i in range(10):
    plt.subplot(2, 5, i + 1)
    plt.imshow(x_train[i].reshape(28, 28), cmap='gray')
    plt.title(f"Label: {y_train[i]}")
    plt.axis('off')
plt.tight_layout()
plt.show()
```


c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\core\dense.py:86: User
Warning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer usin
g an `Input(shape)` object as the first layer in the model instead.
 super(). init (activity regularizer=activity regularizer, **kwargs)

Model: "sequential"

Layer (type) Output Shape		Param #
dense (Dense)	(None, 512)	401,920
dense_1 (Dense)	(None, 10)	5,130

Total params: 407,050 (1.55 MB)

Trainable params: 407,050 (1.55 MB)

Non-trainable params: 0 (0.00 B)

plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])

plt.title('Model Loss')

```
In [ ]: # Task 5: Train the Model
        # Train the model using the training data and validate using part of it
        history = model.fit(x_train, y_train, epochs=5, batch_size=128, validation_split=0.1)
       Epoch 1/5
       422/422
                                  — 4s 8ms/step - accuracy: 0.8686 - loss: 0.4597 - val accuracy: 0.9657 - val loss: 0.
       1218
       Epoch 2/5
       422/422
                                   - 3s 8ms/step - accuracy: 0.9604 - loss: 0.1304 - val accuracy: 0.9685 - val loss: 0.
       1031
       Epoch 3/5
       422/422
                                   - 3s 6ms/step - accuracy: 0.9778 - loss: 0.0771 - val_accuracy: 0.9760 - val_loss: 0.
       0806
       Epoch 4/5
       422/422
                                   - 3s 7ms/step - accuracy: 0.9835 - loss: 0.0564 - val accuracy: 0.9808 - val loss: 0.
       0686
       Epoch 5/5
       422/422 -
                                   – 3s 7ms/step - accuracy: 0.9888 - loss: 0.0390 - val_accuracy: 0.9817 - val_loss: 0.
       0668
In []: # Task 6: Evaluate Model Performance
        # Plot accuracy and loss graphs to review the training and validation performance
        plt.figure(figsize=(12, 5))
        plt.subplot(1, 2, 1)
        plt.plot(history.history['accuracy'])
        plt.plot(history.history['val_accuracy'])
        plt.title('Model Accuracy')
        plt.ylabel('Accuracy')
        plt.xlabel('Epoch')
        plt.legend(['Train', 'Validation'], loc='upper left')
        plt.subplot(1, 2, 2)
```

```
plt.ylabel('Loss')
         plt.xlabel('Epoch')
         plt.legend(['Train', 'Validation'], loc='upper left')
         plt.show()
         # Evaluate the model on test data and print the test accuracy
         test loss, test_acc = model.evaluate(x_test, y_test)
         print(f"Test accuracy: {test_acc}")
                                Model Accuracy
                                                                                                 Model Loss
          0.99
                                                                                   Train
                     Train
                     Validation
                                                                                   Validation
          0.98
                                                                        0.25
          0.97
                                                                        0.20
          0.96
                                                                     SS 0.15
          0.95
          0.94
                                                                        0.10
          0.93
                                                                        0.05
          0.92
                      0.5
                            1.0
                                 1.5
                                       2.0
                                             2.5
                                                   3.0
                                                         3.5
                                                               4.0
                                                                              0.0
                                                                                    0.5
                                                                                         1.0
                                                                                               1.5
                                                                                                     2.0
                                                                                                           2.5
                                                                                                                 3.0
                                                                                                                       3.5
                                                                                                                             4.0
                                      Epoch
                                                                                                    Epoch
       313/313 -
                                      - 0s 1ms/step - accuracy: 0.9754 - loss: 0.0796
       Test accuracy: 0.9781000018119812
In [ ]: # Task 7: Analyze Errors with a Confusion Matrix
         # Generate predictions, calculate the confusion matrix, and visualize it
         preds = model.predict(x_test)
         pred_classes = np.argmax(preds, axis=1)
         cm = confusion_matrix(y_test, pred_classes)
         plt.figure(figsize=(8, 6))
         sns.heatmap(cm, annot=True, fmt="d", cmap='Blues')
         plt.title('Confusion Matrix')
         plt.ylabel('True label')
         plt.xlabel('Predicted label')
         plt.show()
                                      1s 2ms/step
       313/313
                                      Confusion Matrix
               971
                       1
                              1
                                     0
                                            1
                                                   1
                                                          2
                                                                 1
                                                                        2
                                                                               0
                                                                                           1000
                              3
                                                                 0
                 0
                      1121
                                     1
                                            0
                                                   1
                                                          2
                                                                               0
                                            2
                                                                        7
                       0
                             1004
                                     4
                                                   0
                                                          3
                                                                 8
                                                                               0
                                                                                           - 800
                       0
                              5
                                                          0
                                                                 6
                                                                              3
                                                   0
                                                          3
                       0
                              3
                                     1
                                           969
                                                                 3
                                                                        0
                                                                              3
                                                                                           600
                       0
                              0
                                     2
                                            1
                                                  871
                                                          7
                                                                 2
                                                                        4
                                                                              3
                                                                                          - 400
                       3
                              0
                                     0
                                            3
                                                   4
                                                         942
                                                                 0
                                                                        2
                                                                               0
                              5
                                     3
                                            0
                                                   0
                                                          0
                                                               1010
                                                                        3
                                                                              3
                                                                                          - 200
                                                          2
                                                                 2
                                                                       952
                                                                               0
                       0
                               4
                                     5
                                            4
                                                   1
                       3
                               0
                                            12
                                                          0
                                                                11
                                                                       11
                                                                              957
                                                                                          - 0
```

2

3

4

5

Predicted label

6

7

8

9

0

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Student Name and Roll Number: Piyush Gambhir – 21CSU349

Semester / Section: 6th Semester – AIML-B (A3)

 $\textbf{Link to Code:} \ \underline{\text{ncu-lab-manual-and-end-semester-projects/NCU-CSL312-DL-Lab Manual at main \cdot piyush-piyush$

gambhir/ncu-lab-manual-and-end-semester-projects (github.com)

Date:

Faculty Signature:

Marks:

Objective(s):

To create CNN model with dataset containing images of cats and dogs for image classification

Experiment 7 - CNN Model - Cats & Dogs Classification

Problem Statement:

To create CNN model with dataset containing images of cats and dogs for image classification.

GitHub & Colab Link:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%207/Experiment%207.ipynb

Google Colab Link:

Dataset

Dataset Link: https://www.kaggle.com/datasets/tongpython/cat-and-dog

Installing Dependencies:

ages (from matplotlib) (10.3.0)

```
In []: ! pip install tabulate numpy pandas matplotlib seaborn scikit-learn tensorflow keras
             Requirement already satisfied: tabulate in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
             aes (0.9.0)
             Requirement already satisfied: numpy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
             (1.26.4)
             Requirement already satisfied: pandas in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
             s(2.2.2)
             Requirement already satisfied: matplotlib in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
             kages (3.8.4)
             Requirement already satisfied: seaborn in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packag
             es (0.13.2)
             Requirement already satisfied: scikit-learn in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
             ackages (1.4.2)
             Requirement already satisfied: tensorflow in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
             kages (2.16.1)
             Requirement already satisfied: keras in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
             Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\mainp\appdata\local\programs\python\python311\
             lib\site-packages (from pandas) (2.9.0.post0)
             Requirement already satisfied: pytz>=2020.1 in c: \noindent already satisfie
             ackages (from pandas) (2024.1)
             Requirement already satisfied: tzdata>=2022.7 in c:\users\mbox{$mainp\appdata\local\programs\python\python\slib\slite} \\
             -packages (from pandas) (2024.1)
             Requirement already satisfied: contourpy>=1.0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
             te-packages (from matplotlib) (1.2.1)
             Requirement already satisfied: cycler>=0.10 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
             ackages (from matplotlib) (0.12.1)
             Requirement already satisfied: fonttools>=4.22.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
             ite-packages (from matplotlib) (4.51.0)
             Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
             ite-packages (from matplotlib) (1.4.5)
             Requirement already satisfied: packaging>=20.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
             e-packages (from matplotlib) (24.0)
```

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si te-packages (from matplotlib) (3.1.2)
Requirement already satisfied: scipy>=1.6.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages (from scikit-learn) (1.13.0)
Requirement already satisfied: joblib>=1.2.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages (from scikit-learn) (1.4.0)

Requirement already satisfied: pillow>=8 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pack

packages (from scikit-learn) (1.4.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\mainp\appdata\local\programs\python\python311\li

b\site-packages (from scikit-learn) (3.4.0)
Requirement already satisfied: tensorflow-intel==2.16.1 in c:\users\mainp\appdata\local\programs\python\python31
1\lib\site-packages (from tensorflow) (2.16.1)

Requirement already satisfied: absl-py=1.0.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\site -packages (from tensorflow-intel==2.16.1->tensorflow) (2.1.0)

Requirement already satisfied: astunparse>=1.6.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s ite-packages (from tensorflow-intel==2.16.1->tensorflow) (1.6.3)

Requirement already satisfied: flatbuffers>=23.5.26 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages (from tensorflow-intel==2.16.1->tensorflow) (24.3.25)

```
Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\users\mainp\appdata\local\programs\pyth
on\python311\lib\site-packages (from tensorflow-intel==2.16.1->tensorflow) (0.5.4)
Requirement already satisfied: google-pasta>=0.1.1 in c:\users\mainp\appdata\local\programs\python\python311\lib
\site-packages (from tensorflow-intel==2.16.1->tensorflow) (0.2.0)
Requirement already satisfied: h5py>=3.10.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from tensorflow-intel==2.16.1->tensorflow) (3.11.0)
Requirement already satisfied: libclang>=13.0.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from tensorflow-intel==2.16.1->tensorflow) (18.1.1)
Requirement already satisfied: ml-dtypes~=0.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from tensorflow-intel==2.16.1->tensorflow) (0.3.2)
Requirement already satisfied: opt-einsum>=2.3.2 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from tensorflow-intel==2.16.1->tensorflow) (3.3.0)
Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3
in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages (from tensorflow-intel==2.16.1->tens
orflow) (4.25.3)
Requirement already satisfied: requests<3,>=2.21.0 in c:\users\mainp\appdata\local\programs\python\python311\lib
\site-packages (from tensorflow-intel==2.16.1->tensorflow) (2.31.0)
Requirement already satisfied: setuptools in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
kages (from tensorflow-intel==2.16.1->tensorflow) (65.5.0)
Requirement already satisfied: six >= 1.12.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pa
ckages (from tensorflow-intel==2.16.1->tensorflow) (1.16.0)
Requirement already satisfied: termcolor>=1.1.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from tensorflow-intel==2.16.1->tensorflow) (2.4.0)
Requirement already satisfied: typing-extensions>=3.6.6 in c:\users\mainp\appdata\local\programs\python\python31
1\lib\site-packages (from tensorflow-intel==2.16.1->tensorflow) (4.11.0)
Requirement already satisfied: wrapt>=1.11.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-
packages (from tensorflow-intel==2.16.1->tensorflow) (1.16.0)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in c: \noint alre
\site-packages (from tensorflow-intel==2.16.1->tensorflow) (1.62.2)
Requirement already satisfied: tensorboard < 2.17, >= 2.16 in c: \users \mainp\appdata \local \programs \python \python 311 in c: \users \mainp\appdata \python \pyt
\lib\site-packages (from tensorflow-intel==2.16.1->tensorflow) (2.16.2)
Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\users\mainp\appdata\local\programs\pyt
hon\python311\lib\site-packages (from tensorflow-intel==2.16.1->tensorflow) (0.31.0)
Requirement already satisfied: rich in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(from keras) (13.7.1)
Requirement already satisfied: namex in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(from keras) (0.0.8)
Requirement already \ satisfied: \ optree in \ c:\users\ mainp\ appdata\ local\ programs\ python\ python\ 311\ lib\ site-package
s (from keras) (0.11.0)
Requirement already satisfied: markdown-it-py>= 2.2.0 in c: \users\mbox{$\mbox{mainp\appdata\local\programs\python}} in c: \users\mbox{$\mbox{mainp\appdata\local\programs}} in \users\mbox{$\mbox{mainp\appdata}$} in \users\mbox{$\mbox{mainp\appdata}$}
ib\site-packages (from rich->keras) (3.0.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\users\mainp\appdata\local\programs\python\python311
\lib\site-packages (from rich->keras) (2.17.2)
Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\
site-packages (from astunparse>=1.6.0->tensorflow-intel==2.16.1->tensorflow) (0.43.0)
Requirement already satisfied: mdurl \sim 0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
kages (from markdown-it-py>=2.2.0->rich->keras) (0.1.2)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\mainp\appdata\local\programs\python\python31
1\lib\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.16.1->tensorflow) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from requests<3,>=2.21.0->tensorflow-intel==2.16.1->tensorflow) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\
site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.16.1->tensorflow) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\mainp\appdata\local\programs\python\python311\lib\
site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.16.1->tensorflow) (2024.2.2)
Requirement already satisfied: markdown >= 2.6.8 in c: \users \mainp\appdata \local \programs \p thon \p tho
e-packages (from tensorboard<2.17,>=2.16->tensorflow-intel==2.16.1->tensorflow) (3.6)
Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\users\mainp\appdata\local\programs\py
thon\python311\lib\site-packages (from tensorboard<2.17,>=2.16->tensorflow-intel==2.16.1->tensorflow) (0.7.2)
Requirement already satisfied: werkzeug >= 1.0.1 in c: \users \mainp\appdata \local \programs \python \pytho
e-packages (from tensorboard<2.17,>=2.16->tensorflow-intel==2.16.1->tensorflow) (3.0.2)
```

Code

MaxPooling2D(2, 2),

MaxPooling2D(2, 2),

Conv2D(32, (3, 3), activation='relu'),

Requirement already satisfied: MarkupSafe>=2.1.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s ite-packages (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow-intel==2.16.1->tensorflow) (2.1.5)

```
Flatten(),
                                Dense(128, activation='relu'),
                                Dense(1, activation='sigmoid')
                     ])
                     # Compiler settings
                     model.compile(optimizer='adam',
                                                          loss='binary_crossentropy',
                                                         metrics=['accuracy'])
                     # Suppress warnings
                     warnings.filterwarnings('ignore')
                  c: \begin{tabular}{l} $c: \begin{tabular}{l
                   , prefer using an `Input(shape)` object as the first layer in the model instead.
                  super(). init (
In [ ]: # Image data augmentation and generators
                     train datagen = ImageDataGenerator(rescale=1./255,
                                                                                                                shear_range=0.1,
                                                                                                                zoom range=0.1,
                                                                                                                horizontal_flip=True)
                     test_datagen = ImageDataGenerator(rescale=1./255)
                     train_set = train_datagen.flow_from_directory('./dataset/training_set',
                                                                                                                                             target_size=(64, 64),
                                                                                                                                             batch_size=32,
                                                                                                                                             class_mode='binary')
                     test set = test datagen.flow from directory('./dataset/test set',
                                                                                                                                        target_size=(64, 64),
                                                                                                                                        batch size=32,
                                                                                                                                        class_mode='binary')
                  Found 8005 images belonging to 2 classes.
                  Found 2023 images belonging to 2 classes.
In [ ]: # Model training
                     history = model.fit(
                               train_set,
                                steps per epoch=100, # Adjust based on your dataset size
                                                                                       # Training for 20 epochs
                                epochs=20.
                                validation data=test set,
                                validation_steps=50 # Adjust based on your validation set size
```

```
Epoch 1/20
       100/100
                                   - 99s 937ms/step - accuracy: 0.4903 - loss: 0.7411 - val accuracy: 0.5000 - val loss:
       0.6932
       Epoch 2/20
       100/100
                                   - 66s 662ms/step - accuracy: 0.5265 - loss: 0.6923 - val accuracy: 0.5579 - val loss:
       0.6862
       Epoch 3/20
       100/100
                                    47s 471ms/step - accuracy: 0.5937 - loss: 0.6724 - val accuracy: 0.6456 - val loss:
       0.6417
       Epoch 4/20
       100/100
                                    95s 920ms/step - accuracy: 0.6341 - loss: 0.6418 - val accuracy: 0.6194 - val loss:
       0.6352
       Epoch 5/20
       100/100
                                   - 97s 976ms/step - accuracy: 0.6680 - loss: 0.6133 - val accuracy: 0.6906 - val loss:
       0.6060
       Epoch 6/20
       100/100
                                    37s 375ms/step - accuracy: 0.6771 - loss: 0.5966 - val accuracy: 0.7234 - val loss:
       0.6035
       Epoch 7/20
       100/100
                                    118s 1s/step - accuracy: 0.7049 - loss: 0.5831 - val_accuracy: 0.7138 - val_loss: 0
       .5685
       Epoch 8/20
       100/100
                                   - 79s 795ms/step - accuracy: 0.7114 - loss: 0.5515 - val accuracy: 0.7069 - val loss:
       0.5857
       Epoch 9/20
       100/100
                                    • 51s 512ms/step - accuracy: 0.7203 - loss: 0.5640 - val accuracy: 0.7281 - val loss:
       0.5531
       Epoch 10/20
                                    67s 634ms/step - accuracy: 0.7249 - loss: 0.5424 - val accuracy: 0.7707 - val loss:
       100/100
       0.5357
       Epoch 11/20
       100/100
                                   - 193s 2s/step - accuracy: 0.7491 - loss: 0.5145 - val accuracy: 0.7500 - val loss: 0
       .5170
       Fnoch 12/20
       100/100
                                    93s 938ms/step - accuracy: 0.7325 - loss: 0.5127 - val accuracy: 0.7163 - val loss:
       0.5456
       Epoch 13/20
       100/100
                                    290s 3s/step - accuracy: 0.7429 - loss: 0.5232 - val_accuracy: 0.7231 - val_loss: 0
       .5598
       Epoch 14/20
       100/100
                                    • 173s 2s/step - accuracy: 0.7521 - loss: 0.5081 - val_accuracy: 0.7423 - val_loss: 0
       .5143
       Epoch 15/20
       100/100
                                   - 49s 492ms/step - accuracy: 0.7670 - loss: 0.4919 - val accuracy: 0.7469 - val loss:
       0.5273
       Epoch 16/20
       100/100
                                    73s 677ms/step - accuracy: 0.7573 - loss: 0.5033 - val accuracy: 0.7683 - val loss:
       0.4925
       Epoch 17/20
       100/100
                                   - 79s 794ms/step - accuracy: 0.7846 - loss: 0.4787 - val accuracy: 0.7500 - val loss:
       0.5215
       Epoch 18/20
       100/100
                                   - 26s 264ms/step - accuracy: 0.7586 - loss: 0.4926 - val accuracy: 0.7825 - val loss:
       0.4505
       Epoch 19/20
       100/100
                                    90s 875ms/step - accuracy: 0.7781 - loss: 0.4705 - val accuracy: 0.7725 - val loss:
       0.4837
       Epoch 20/20
       100/100
                                   - 72s 730ms/step - accuracy: 0.7754 - loss: 0.4696 - val accuracy: 0.7707 - val loss:
       0.4765
In [ ]: # Save the trained model
        model.save('cat_dog_classifier_model.h5')
       WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. T
       his file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_m
       odel.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.
In [ ]: # Model evaluation using the new 'evaluate' method
        eval result = model.evaluate(test set)
        print(f"Validation Accuracy: {eval result[1]*100:.2f}%, Validation Loss: {eval result[0]:.6f}")
                                 - 27s 419ms/step - accuracy: 0.7738 - loss: 0.4813
       Validation Accuracy: 76.52%, Validation Loss: 0.493094
In [ ]: # Confusion matrix on the test set
        y_pred = model.predict(test_set)
        y \text{ pred} = (y \text{ pred} > 0.5)
        y_true = test_set.classes
        cm = confusion_matrix(y_true, y_pred)
        sns.heatmap(cm, annot=True, fmt='d')
        plt.xlabel('Predicted')
        plt.ylabel('True')
```

plt.title('Confusion Matrix')

Student Name and Roll Number: Piyush Gambhir – 21CSU349
Semester /Section: 6 th Semester – AIML-B (A3)
Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment 7/Experiment 7.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)
Date:
Faculty Signature:

Objective(s):

Marks:

To build an image classifier with Keras and Convolutional Neural Networks for the Fashion MNIST dataset.

Experiment 8 - MNIST Digit Classification using Keras

Problem Statement:

To build an image classifier with Keras and Convolutional Neural Networks for the Fashion MNIST dataset.

Objective:

Your task is to build an image classifier with Keras and Convolutional Neural Networks for the Fashion MNIST dataset. This data set includes 10 labels of different clothing types with 28 by 28 *grayscale* images. There is a training set of 60,000 images and 10,000 test images.

GitHub & Google Colab Link:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%208/Experiment%208.ipynb

Google Colab Link:

Installing Dependencies:

! pip install tabulate numpy pandas matplotlib seaborn torch torchvision

```
Requirement already satisfied: tabulate in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
ges (0.9.0)
Requirement already satisfied: numpy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(1.26.4)
Requirement already satisfied: pandas in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
s(2.2.2)
Requirement already satisfied: matplotlib in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
kages (3.8.4)
Requirement already satisfied: seaborn in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packag
es (0.13.2)
Requirement already satisfied: torch in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(2.3.0)
Requirement already satisfied: torchvision in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pa
ckages (0.18.0)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\mainp\appdata\local\programs\python\python311\
lib\site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in c:\users\mainp\appdata\local\programs\python\python311\lib\site
-packages (from pandas) (2024.1)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from matplotlib) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
e-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pack
ages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from matplotlib) (3.1.2)
Requirement already satisfied: filelock in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
ges (from torch) (3.13.4)
Requirement already satisfied: typing-extensions>=4.8.0 in c:\users\mainp\appdata\local\programs\python\python31
1\lib\site-packages (from torch) (4.11.0)
Requirement already satisfied: sympy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(from torch) (1.12)
Requirement already satisfied: networkx in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
ges (from torch) (3.3)
Requirement already satisfied: jinja2 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
s (from torch) (3.1.3)
Requirement already satisfied: fsspec in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
s (from torch) (2024.3.1)
Requirement already satisfied: mkl<=2021.4.0,>=2021.1.1 in c:\users\mainp\appdata\local\programs\python\python31
1\lib\site-packages (from torch) (2021.4.0)
Requirement already satisfied: intel-openmp==2021.* in c:\users\mainp\appdata\local\programs\python\python311\li
b\site-packages (from mkl<=2021.4.0,>=2021.1.1->torch) (2021.4.0)
Requirement already satisfied: tbb==2021.* in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pa
ckages (from mkl<=2021.4.0,>=2021.1.1->torch) (2021.12.0)
Requirement already satisfied: six>=1.5 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
ges (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: MarkupSafe>=2.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
e-packages (from jinja2->torch) (2.1.5)
Requirement already satisfied: mpmath>=0.19 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from sympy->torch) (1.3.0)
```

Code

In []: import numpy as np

```
import torch
        import torch.nn as nn
        import torch.optim as optim
        from torchvision import datasets, transforms
        import matplotlib.pyplot as plt
        from torch.utils.data.sampler import SubsetRandomSampler
        from torch.utils.data import DataLoader
        from collections import OrderedDict
In [ ]: # Configuration
        config = {
            'batch_size': 64,
            'n epochs': 35,
            'lr': 0.0007,
            'dropout': 0.25,
            'input size': 784, # 28x28 images
            'hidden sizes': [392, 196, 98, 49],
            'output_size': 10
        }
```

```
In [ ]: # Data Preparation
        def load data():
            transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.5,), (0.5,))
            train\_ds = datasets.Fashion MNIST('F\_MNIST\_data', download = \textbf{True}, train = \textbf{True}, transform = transform)
            test ds = datasets.FashionMNIST('F MNIST data', download=True, train=False, transform=transform)
            # Split train set into training and validation set (80/20)
            num train = len(train ds)
            indices = list(range(num_train))
            np.random.shuffle(indices)
            split = int(np.floor(0.2 * num_train))
            train_idx, val_idx = indices[split:], indices[:split]
            # Creating data samplers and loaders
            train sampler = SubsetRandomSampler(train idx)
            val sampler = SubsetRandomSampler(val idx)
            train dl = DataLoader(train ds, batch size=config['batch size'], sampler=train sampler)
            val_dl = DataLoader(train_ds, batch_size=config['batch_size'], sampler=val_sampler)
            test dl = DataLoader(test ds, batch size=config['batch size'], shuffle=True)
            return train dl, val dl, test dl
In [ ]: # Model Architecture
        def build network():
            layers = OrderedDict([
                ('fc1', nn.Linear(config['input size'], config['hidden sizes'][0])),
                ('relu1', nn.ReLU()),
                ('drop1', nn.Dropout(config['dropout'])),
                ('fc2', nn.Linear(config['hidden_sizes'][0], config['hidden_sizes'][1])),
                ('relu2', nn.ReLU())
                ('drop2', nn.Dropout(config['dropout'])),
                ('fc3', nn.Linear(config['hidden sizes'][1], config['hidden sizes'][2])),
                ('relu3', nn.ReLU()),
                ('drop3', nn.Dropout(config['dropout'])),
                ('fc4', nn.Linear(config['hidden_sizes'][2], config['hidden_sizes'][3])),
                ('relu4', nn.ReLU()),
                 ('output', nn.Linear(config['hidden_sizes'][3], config['output_size'])),
                 ('logsoftmax', nn.LogSoftmax(dim=1))
            ])
            model = nn.Sequential(layers)
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            model.to(device)
            return model, device
In [ ]: # Training and Validation
        def train_validate(model, device, train_dl, val_dl, n_epochs):
            loss fn = nn.NLLLoss()
            optimizer = optim.Adam(model.parameters(), lr=config['lr'])
            train_losses, val_losses = [], []
            for epoch in range(n_epochs):
                model.train()
                total train loss = 0
                for images, labels in train dl:
                    images, labels = images.to(device), labels.to(device)
                    images = images.view(images.shape[0], -1)
                    optimizer.zero grad()
                    outputs = model(images)
                    loss = loss_fn(outputs, labels)
                    loss.backward()
                    optimizer.step()
                    total_train_loss += loss.item()
                avg train loss = total train loss / len(train_dl)
                train losses.append(avg train loss)
                val loss, val acc = validate(model, device, val dl, loss fn)
                val_losses.append(val_loss)
                print(f'Epoch {epoch}: Train Loss: {avg_train_loss:.4f}, Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2
            plot_losses(train_losses, val_losses)
In [ ]: def validate(model, device, loader, loss_fn):
            total_loss, total_correct = 0, 0
            model.eval()
            with torch.no_grad():
                for images, labels in loader:
                    images, labels = images.to(device), labels.to(device)
                    images = images.view(images.shape[0], -1)
```

```
outputs = model(images)
                   loss = loss_fn(outputs, labels)
                   total_loss += loss.item()
                   total correct += (outputs.argmax(1) == labels).type(torch.float).sum().item()
            avg loss = total loss / len(loader)
            accuracy = 100 * total_correct / (len(loader) * config['batch_size'])
return avg_loss, accuracy
In [ ]: def plot losses(train losses, val losses):
            plt.figure(figsize=(10, 5))
            plt.plot(train_losses, label='Training loss')
            plt.plot(val_losses, label='Validation loss')
            plt.title('Losses over epochs')
            plt.xlabel('Epochs')
            plt.ylabel('Loss')
            plt.legend()
            plt.grid(True)
            plt.show()
In [ ]: # Main
        def main():
            train dl, val dl, test dl = load data()
            model, device = build network()
            train validate(model, device, train dl, val dl, config['n epochs'])
        if __name__ == '__main___':
            main()
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to F MNIST dat
      a\FashionMNIST\raw\train-images-idx3-ubyte.gz
      Extracting F MNIST data\FashionMNIST\raw\train-images-idx3-ubyte.gz to F MNIST data\FashionMNIST\raw
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to F MNIST dat
      a\FashionMNIST\raw\train-labels-idx1-ubyte.gz
      100 0%
      Extracting F MNIST data\FashionMNIST\raw\train-labels-idx1-ubyte.gz to F MNIST data\FashionMNIST\raw
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to F MNIST data
       \FashionMNIST\raw\t10k-images-idx3-ubyte.gz
      100.0%
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
      Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to F MNIST data
      \FashionMNIST\raw\t10k-labels-idx1-ubyte.gz
      100.0%
```

```
Epoch 0: Train Loss: 0.6731, Val Loss: 0.4556, Val Acc: 83.71% Epoch 1: Train Loss: 0.4570, Val Loss: 0.3980, Val Acc: 85.53%
Epoch 2: Train Loss: 0.4171, Val Loss: 0.3694, Val Acc: 86.74%
Epoch 3: Train Loss: 0.3895, Val Loss: 0.3762, Val Acc: 85.88%
Epoch 4: Train Loss: 0.3706, Val Loss: 0.3435, Val Acc: 87.28% Epoch 5: Train Loss: 0.3525, Val Loss: 0.3322, Val Acc: 87.66%
Epoch 6: Train Loss: 0.3388, Val Loss: 0.3231, Val Acc: 88.18%
Epoch 7: Train Loss: 0.3290, Val Loss: 0.3338, Val Acc: 87.33%
Epoch 8: Train Loss: 0.3182, Val Loss: 0.3175, Val Acc: 88.33%
Epoch 9: Train Loss: 0.3079, Val Loss: 0.3125, Val Acc: 88.60%
Epoch 10: Train Loss: 0.3026, Val Loss: 0.3400, Val Acc: 87.74%
Epoch 11: Train Loss: 0.2941, Val Loss: 0.3029, Val Acc: 89.05%
Epoch 12: Train Loss: 0.2840, Val Loss: 0.3207, Val Acc: 88.74%
Epoch 13: Train Loss: 0.2808, Val Loss: 0.2983, Val Acc: 88.92%
Epoch 14: Train Loss: 0.2738, Val Loss: 0.3065, Val Acc: 89.10%
Epoch 15: Train Loss: 0.2682, Val Loss: 0.3083, Val Acc: 89.01%
Epoch 16: Train Loss: 0.2648, Val Loss: 0.3060, Val Acc: 89.06%
Epoch 17: Train Loss: 0.2543, Val Loss: 0.2988, Val Acc: 89.34%
Epoch 18: Train Loss: 0.2529, Val Loss: 0.3073, Val Acc: 89.47%
Epoch 19: Train Loss: 0.2536, Val Loss: 0.2972, Val Acc: 89.54%
Epoch 20: Train Loss: 0.2477, Val Loss: 0.2971, Val Acc: 89.51%
Epoch 21: Train Loss: 0.2412, Val Loss: 0.2977, Val Acc: 89.81%
Epoch 22: Train Loss: 0.2395, Val Loss: 0.2938, Val Acc: 89.40%
Epoch 23: Train Loss: 0.2359, Val Loss: 0.2933, Val Acc: 89.70%
Epoch 24: Train Loss: 0.2326, Val Loss: 0.3064, Val Acc: 89.49%
Epoch 25: Train Loss: 0.2287, Val Loss: 0.2993, Val Acc: 89.39%
Epoch 26: Train Loss: 0.2271, Val Loss: 0.3078, Val Acc: 89.43%
Epoch 27: Train Loss: 0.2238, Val Loss: 0.2955, Val Acc: 89.46%
Epoch 28: Train Loss: 0.2181, Val Loss: 0.2995, Val Acc: 89.36%
Epoch 29: Train Loss: 0.2149, Val Loss: 0.2944, Val Acc: 89.84%
Epoch 30: Train Loss: 0.2131, Val Loss: 0.2933, Val Acc: 90.28%
Epoch 31: Train Loss: 0.2077, Val Loss: 0.3046, Val Acc: 89.83%
Epoch 32: Train Loss: 0.2091, Val Loss: 0.3172, Val Acc: 89.39%
Epoch 33: Train Loss: 0.2033, Val Loss: 0.3081, Val Acc: 89.68%
Epoch 34: Train Loss: 0.2047, Val Loss: 0.3006, Val Acc: 89.79%
```

Losses over epochs

Student Name and Roll Number: Piyush Gambhir – 21CSU349			
Semester /Section: 6 th Semester – AIML-B (A3)			
Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab			
Manual/Experiment 9/Experiment 9.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-			
semester-projects (github.com)			
Date:			
Faculty Signature:			
Marks:			

Objective(s):		

Experiment 9 - Image Classification - Alexnet on CIFAR-10 Dataset

Problem Statement:

To train a CNN model to classify images from the CIFAR-10 database.

GitHub & Google Colab Links:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%209/Experiment%209.ipynb

Google Colab Link:

Installing Dependencies:

```
In [ ]: ! pip install tabulate numpy pandas matplotlib seaborn
       Requirement already satisfied: tabulate in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
       ges (0.9.0)
       Requirement already satisfied: numpy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
       (1.26.4)
       Requirement already satisfied: pandas in c:\users\mainp\appdata\local\programs\python\python311\lib\site-package
       s(2.2.2)
       Requirement already satisfied: matplotlib in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
       kages (3.8.4)
       Requirement already satisfied: seaborn in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packag
       es (0.13.2)
       Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\mainp\appdata\local\programs\python\python311\
       lib\site-packages (from pandas) (2.9.0.post0)
       Requirement already satisfied: pytz>=2020.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
       ackages (from pandas) (2024.1)
       Requirement already satisfied: tzdata>=2022.7 in c:\users\mainp\appdata\local\programs\python\python311\lib\site
       -packages (from pandas) (2024.1)
       Requirement already satisfied: contourpy>=1.0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
       te-packages (from matplotlib) (1.2.1)
       Requirement already satisfied: cycler>=0.10 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
       ackages (from matplotlib) (0.12.1)
       Requirement already satisfied: fonttools>=4.22.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
       ite-packages (from matplotlib) (4.51.0)
       Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
       ite-packages (from matplotlib) (1.4.5)
       Requirement already satisfied: packaging>=20.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
       e-packages (from matplotlib) (24.0)
       Requirement already satisfied: pillow>=8 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pack
       ages (from matplotlib) (10.3.0)
       Requirement already satisfied: pyparsing>=2.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
       te-packages (from matplotlib) (3.1.2)
       Requirement already satisfied: six>=1.5 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
       ges (from python-dateutil>=2.8.2->pandas) (1.16.0)
```

Code

```
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.layers import BatchNormalization

from keras.regularizers import l2

In []: # Constants
NUM_CLASSES = 10
BATCH_SIZE = 32
EPOCHS = 1
L2_REG_RATE = 0.01

def load and preprocess data():
```

```
# Loads the CIFAR10 dataset
     (x train, y train), (x test, y test) = cifar10.load data()
     # One hot encode outputs
     y train = keras.utils.to categorical(y train, NUM CLASSES)
     y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)
     print('x_train shape:', x_train.shape)
     print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
     return x_train, y_train, x_test, y_test
 def build alexnet(input shape):
     # Initialize model
     model = Sequential()
     # 1st Conv Layer
     model.add(Conv2D(96, (11, 11), input_shape=input_shape,
               padding='same', kernel_regularizer=l2(L2_REG_RATE)))
     model.add(BatchNormalization())
     model.add(Activation('relu'))
     model.add(MaxPooling2D(pool_size=(2, 2)))
     # 2nd through 5th Conv Layers
     layer configs = [(256, 5, 2), (512, 3, 2), (1024, 3, 0), (1024, 3, 2)]
     for filters, kernel_size, padding in layer_configs:
         if padding:
             model.add(ZeroPadding2D((1, 1)))
         model.add(Conv2D(filters, (kernel_size, kernel_size), padding='same'))
         model.add(BatchNormalization())
         model.add(Activation('relu'))
         if padding:
             model.add(MaxPooling2D(pool size=(2, 2)))
     # Fully Connected Layers
     model.add(Flatten())
     model.add(Dense(3072))
     model.add(BatchNormalization())
     model.add(Activation('relu'))
     model.add(Dropout(0.5))
     model.add(Dense(4096))
     model.add(BatchNormalization())
     model.add(Activation('relu'))
     model.add(Dropout(0.5))
     model.add(Dense(NUM_CLASSES))
     model.add(BatchNormalization())
     model.add(Activation('softmax'))
     return model
 def main():
     x_train, y_train, x_test, y_test = load_and_preprocess_data()
     model = build alexnet(x train.shape[1:])
     model.compile(loss='categorical crossentropy'
                   optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
     # Train the model
     model.fit(x train, y train, batch size=BATCH SIZE, epochs=EPOCHS,
               validation data=(x test, y test), shuffle=True)
     # Save the model
     model.save("Trained_Models/CIFAR10_AlexNet_1_Epoch.h5")
    # Evaluate the model
     scores = model.evaluate(x_test, y_test, verbose=1)
     print('Test loss:', scores[0])
     print('Test accuracy:', scores[1])
 if name == ' main ':
     main()
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
```

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 18s Ous/step
x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples

c:\Users\mainp\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\convolutional\base_con
v.py:99: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models
, prefer using an `Input(shape)` object as the first layer in the model instead.
 super().__init__(
103/1563 - 1:01:58 3s/step - accuracy: 0.1258 - loss: 2.7051

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Student Name and Roll Number: Piyush Gambhir – 21CSU349

Semester / Section: 6th Semester – AIML-B (A3)

Link to Code: ncu-lab-manual-and-end-semester-projects/NCU-CSL312 - DL - Lab Manual/Experiment 10/Experiment 10.ipynb at main · piyush-gambhir/ncu-lab-manual-and-end-semester-projects (github.com)

Date:

Faculty Signature:

Marks:

Objective(s):

To implement transfer 1earing using the pre-trained model (VGG16) on image dataset.

Experiment 10 - Transfer Learning - Pre Trained Model VGG16

Problem Statement:

To implement transfer learning using the pre-trained model (VGG16) on image dataset.

GitHub & Google Colab Link:

GitHub Link: https://github.com/piyush-gambhir/ncu-lab-manual-and-end-semester-projects/blob/main/NCU-CSL312%20-%20DL%20-%20Lab%20Manual/Experiment%2010/Experiment%2010.ipynb

Google Colab Link:

Installing Dependencies:

In []: ! pip install tabulate numpy pandas matplotlib seaborn

```
Collecting tabulate
 Downloading tabulate-0.9.0-py3-none-any.whl.metadata (34 kB)
Requirement already satisfied: numpy in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packages
(1.26.4)
Collecting pandas
 Downloading pandas-2.2.2-cp311-cp311-win amd64.whl.metadata (19 kB)
Requirement already satisfied: matplotlib in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pac
kages (3.8.4)
Collecting seaborn
 Downloading seaborn-0.13.2-py3-none-any.whl.metadata (5.4 kB)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\mainp\appdata\local\programs\python\python311\
lib\site-packages (from pandas) (2.9.0.post0)
Collecting pytz>=2020.1 (from pandas)
 Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)
Collecting tzdata>=2022.7 (from pandas)
 Downloading tzdata-2024.1-py2.py3-none-any.whl.metadata (1.4 kB)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-p
ackages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from matplotlib) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\s
ite-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in c:\users\mainp\appdata\local\programs\python\python311\lib\sit
e-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-pack
ages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\mainp\appdata\local\programs\python\python311\lib\si
te-packages (from matplotlib) (3.1.2)
Requirement already satisfied: six>=1.5 in c:\users\mainp\appdata\local\programs\python\python311\lib\site-packa
ges (from python-dateutil>=2.8.2->pandas) (1.16.0)
Downloading tabulate-0.9.0-py3-none-any.whl (35 kB)
Downloading pandas-2.2.2-cp311-cp311-win amd64.whl (11.6 MB)
  ----- 0.0/11.6 MB ? eta -:--:-
  - ----- 0.5/11.6 MB 14.9 MB/s eta 0:00:01
  ---- 1.2/11.6 MB 14.8 MB/s eta 0:00:01
  ---- 1.4/11.6 MB 11.0 MB/s eta 0:00:01
  ----- 1.8/11.6 MB 10.2 MB/s eta 0:00:01
  ----- 2.8/11.6 MB 12.9 MB/s eta 0:00:01
  ----- 3.5/11.6 MB 13.9 MB/s eta 0:00:01
  ----- 5.0/11.6 MB 15.9 MB/s eta 0:00:01
  ----- 6.3/11.6 MB 17.5 MB/s eta 0:00:01
  ----- 7.7/11.6 MB 18.9 MB/s eta 0:00:01
  ----- 9.2/11.6 MB 20.2 MB/s eta 0:00:01
  ----- 10.4/11.6 MB 21.1 MB/s eta 0:00:01
  ----- 11.6/11.6 MB 26.2 MB/s eta 0:00:01
  ------ 11.6/11.6 MB 24.2 MB/s eta 0:00:00
Downloading seaborn-0.13.2-py3-none-any.whl (294 kB)
  ----- 0.0/294.9 kB ? eta -:--:--
  ------ 294.9/294.9 kB 17.8 MB/s eta 0:00:00
Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB)
  ----- 0.0/505.5 kB ? eta -:--:--
  ----- 505.5/505.5 kB 16.0 MB/s eta 0:00:00
Downloading tzdata-2024.1-py2.py3-none-any.whl (345 kB)
      ----- 0.0/345.4 kB ? eta -:--:--
  ----- 345.4/345.4 kB 20.9 MB/s eta 0:00:00
Installing collected packages: pytz, tzdata, tabulate, pandas, seaborn
Successfully installed pandas-2.2.2 pytz-2024.1 seaborn-0.13.2 tabulate-0.9.0 tzdata-2024.1
Code
```

```
In []: import cv2
        from keras.applications import vgg16
        from keras.preprocessing import image
        from keras.applications.vgg16 import preprocess input, decode predictions
        import numpy as np
        from os import listdir
        from os.path import isfile, join
In [ ]: # Define the path to your images
        IMAGE PATH = "images/"
        # Load the VGG16 model
        vgg model = vgg16.VGG16(weights='imagenet')
In [ ]: def load_and_preprocess_image(img_path):
            target size = (224, 224) # VGG16 uses 224x224 images
            img = image.load_img(img_path, target_size=target_size)
            x = image.img to array(img)
            x = np.expand dims(x, axis=0)
```

```
return x
def get predictions(model, x):
    preds = model.predict(x)
    return decode_predictions(preds, top=3)[0]
def draw test(name, predictions, input im):
   BLACK = [0, 0, 0]
    # Calculate needed expansion to fit text
    extra width = max(len(pred[1]) for pred in predictions) * 20
    expanded_image = cv2.copyMakeBorder(input_im, 0, 0, 0, input_im.shape[1] + extra_width, cv2.BORDER_CONSTANT
    img width = input im.shape[1]
    cv2.putText(expanded image, str(name), (img width + 10, 30), cv2.FONT HERSHEY COMPLEX SMALL, 1, (0, 0, 255)
    y offset = 60
    for i, prediction in enumerate(predictions):
        string = f"{prediction[1]}: {prediction[2]:.2f}"
        cv2.putText(expanded image, string, (img width + 10, y offset + (i * 30)), cv2.FONT HERSHEY COMPLEX SMAl
    cv2.imshow(name, expanded_image)
def process images():
    file_names = [f for f in listdir(IMAGE_PATH) if isfile(join(IMAGE_PATH, f))]
    for file in file_names:
        img path = join(IMAGE PATH, file)
        x = load_and_preprocess_image(img_path)
        # Load image using opencv for display
        img display = cv2.imread(img path)
        img\_display = cv2.resize(img\_display, \ \textit{None}, \ fx=0.5, \ fy=0.5, \ interpolation=cv2.INTER \ CUBIC)
        # Get predictions from VGG16 model
        predictions vgg = get predictions(vgg model, x)
        # Display results
        draw test(f"VGG16 Predictions - {file}", predictions_vgg, img_display)
        cv2.waitKey(0) # Wait for key press to continue
    cv2.destroyAllWindows()
if __name__ == '__main__':
```

```
In [ ]: # Main function to execute the process
            process_images()
                              - 1s 903ms/step
       1/1
```

 $x = preprocess_input(x)$

Output Explanation

Example Output Interpretation: When you run the script, for each image, it displays:

- · Name of the image file.
- Top 3 predictions where each line shows:
 - The predicted category.
 - The model's confidence in that prediction expressed as a percentage.

For instance, if the output for an image is:

```
VGG16 Predictions - cat.jpg
Persian cat: 0.45
Tabby cat: 0.30
Siamese cat: 0.10
This means:
```

- The model is 45% confident that the image is of a Persian cat.
- The second most likely category, according to the model, is a tabby cat, with 30% confidence.
- The third guess is a Siamese cat, with 10% confidence.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js