第六章 定积分

§ 6.1 定积分的概念与性质

- 1. 利用定积分的几何意义, 计算下列定积分:
- (1) $\int_0^2 |x-1| dx$;

 $(2) \int_{-1}^{1} \sin x dx;$

(3)
$$\int_{-1}^{\frac{\sqrt{2}}{2}} \sqrt{1-x^2} dx.$$

2. 不计算积分,比较下列各积分值的大小(**指出明确的"**>,<,=**"关系, 并给出必要的理由**).

$$(1) \int_0^1 x^2 dx = \int_0^1 x dx;$$

$$(3) \int_1^2 x^2 dx = \int_1^2 x dx;$$

$$(3) \int_0^{\frac{\pi}{2}} \sin x dx = \int_0^{\frac{\pi}{2}} x dx.$$

3. 利用定积分的性质,估计 $I = \int_0^2 xe^{-x} dx$ 的大小.

(2) $\int_0^2 f(x) dx$, $\sharp + f(x) = \begin{cases} x^2, & x \neq 1 \\ 2, & x = 1 \end{cases}$.

4. 设 f(x)在区间 [0,1]上连续,在 (0,1)内可导,且满足 $f(1)=3\int_0^{\frac{1}{3}}f(x)dx$,

试证: 在(0,1)内至少存在一点 ξ , 使得 $f'(\xi)=0$.

6. 写出函数 f(x)在 [a,b]上可积以及定积分 $\int_a^b f(x)dx$ 的数学定义.

5. 试判断下列定积分是否有意义(即,被积函数在相应的积分区间上是否"可积"),并说明理由.

 $(1) \quad \int_{-1}^{1} \frac{1}{x} dx;$

 7^* . 根据定积分的定义,将极限 $\lim_{n\to\infty}\frac{1}{n}\left(\sin\frac{\pi}{n}+\sin\frac{2\pi}{n}+.....+\sin\frac{n\pi}{n}\right)$ 表达

为定积分的形式(不需要计算出具体的数值结果):

§ 6.2 微积分基本定理

- 1. 求下列函数关于 x 的导数:
- (1) $\int_{1}^{x} (2-\sin 3t)^{\frac{1}{t}} dt$;
- (2) $\int_{\sqrt{x}}^{1} te^{t^2} dt$;

(3) $\int_{\sqrt{x}}^{x^2} e^{t^2} dt$;

 $(4^*) \int_0^x (x-t) \sin t dt .$

2. 求下列极限:

(1)
$$\lim_{x\to 0}\int_0^x \frac{1}{x^3} (e^{u^2} - 1) du$$
;

(2) $\lim_{x\to 0} \frac{1}{x^4} \int_0^{x^2} (1-\cos\sqrt{u}) du$.

3. 计算下列定积分:

(1)
$$\int_{1}^{2} \frac{1+x^{3}}{x^{2}+x^{3}} dx$$
;

(2)
$$\int_{-\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^2} \sin \frac{1}{x} dx;$$

6*. 设 f(x)在[0,1]上连续,且满足 $f(x) = -2x + 3\int_0^1 x f(x) dx$,试求 f(x).

(3)
$$\int_0^{\frac{\pi}{2}} \left| \frac{1}{2} - \cos x \right| dx$$
;

7*. 利用定积分的定义计算极限

(1)
$$\lim_{n\to\infty} \frac{1}{n} \left(\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\frac{n\pi}{n} \right)$$

(4)
$$\int_{-2}^{3} \min\{1, x^2\} dx$$
;

(2)
$$\lim_{n\to\infty} \left(\frac{1}{2n+1} + \frac{1}{2n+2} + \dots + \frac{1}{2n+n} \right)$$

5. 设
$$f(x)$$
在 $[0,1]$ 上连续,且满足 $f(x) = -2x + 3\int_0^1 f(x)dx$,试求 $f(x)$.

§ 6.3 定积分的换元积分法与分部积分法

(4)
$$\int_0^2 \frac{x}{x^4 + 2x^2 + 2} dx;$$

1. 利用定积分的换元法计算下列积分:

(1)
$$\int_{1}^{2} \sqrt{x-1}(x+1)^{2} dx$$
;

2. 利用函数的奇偶性计算 $\int_{-1}^{1} \left(x^5 + 3x^2 - x\sqrt{1 + x^2} \right) dx$.

(2)
$$\int_{\frac{\sqrt{2}}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx;$$

3. 设f(x)是R上的连续函数,试证:对于任意常数a > 0,均有

$$\int_0^a x^3 f(x^2) dx = \frac{1}{2} \int_0^{a^2} x f(x) dx.$$

- 4*. 设 f(x)是 R 上的连续函数,并满足 $\int_0^x f(x-t)e^{-t}dt = x^2$,试求 f(x).
- $(3) \int_{1}^{e^{\frac{\pi}{2}}} \cos \ln x dx.$

- 5. 利用定积分的分部积分法计算下列积分:
- $(1) \int_0^{\frac{\pi}{4}} x \sin x dx;$

(2) $\int_{0}^{1} x \ln(1+x) dx$

6*. 试计算 $\int_0^{\frac{\pi}{2}} f(x) dx$,其中 $f(x) = \int_x^{\frac{\pi}{2}} \frac{\sin t}{t} dt$.

 7^* . 已知 f(x)是 R 上的连续函数, 试证:

$$\int_0^x f(t)(x-t)dt = \int_0^x \left[\int_0^t f(u)du \right] dt.$$

§ 6.4 定积分的应用

1. 计算下列曲线围成的平面封闭图形的面积:

(1)
$$y = x^3 - 4x$$
, $y = 0$;

(2) $y = \sqrt{x}, y = x, y = 2x$.

2. 假设曲线 $y = 1 - x^2$ $(0 \le x \le 1)$ 、 x 轴和 y 轴所围成的区域被曲线 $y = ax^2 (a > 0)$ 分为面积相等的两部分,试确定常数 a 的值.

3. 求由下列曲线围成的平面图形绕指定轴旋转一周而成的立体体积:

(2) $y = x^3$, y = 0, x = 2:

量), 试求最大利润.

(i) 绕*x*轴;

(ii) 绕 y 轴.

5. 己知某产品在定价 p=1时的市场需求量 Q=a,在任意价格 p 处的需求价格弹性为 $E_p=\frac{b}{Q}$,其中 a>0,b<0 均为常数,Q 为产品在价格 p 处的市场需求量。试求该产品的市场需求函数 Q=Q(p).(提示:弹性 $E_p=\frac{dQ}{dp}\frac{p}{Q}$)

4. 已知某产品的固定成本为50,边际成本和边际收益函数分别为

 $MC(q) = q^2 - 4q + 6$, MR(q) = 105 - 2q, 其中 q 为产品的销售量(产

§ 6.5 反常积分初步

2. 求下列极限:

1. 判定下列无穷限积分的敛散性; 若收敛, 则求其值.

(1)
$$\int_{-\infty}^{0} (1-x)^q dx$$
 (q 为常数);

(1) $\lim_{x \to +\infty} \frac{\int_{1}^{x} t^{-3} dt}{\int_{1}^{x} t^{-2} dt};$

(2)
$$\int_{-\infty}^{+\infty} \frac{\sin x}{1 + \cos^2 x} dx$$
 (其中, q, k 均为常数).

$$(2^*) \quad \lim_{x \to +\infty} \frac{\int_0^x \arctan u du}{\sqrt{1+x^2}}.$$

- 3. 判定下列积分的敛散性; 若收敛, 则求其值.
- $(1) \int_0^1 \ln x dx;$

 $\Gamma\left(\frac{11}{2}\right), \qquad \frac{\Gamma(3)\Gamma\left(\frac{5}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \not\equiv B(3.5, 3).$

 $(2) \quad \int_1^e \frac{1}{x\sqrt{1-\ln^2 x}} dx.$

- 5. 计算下列反常积分(提示:利用 Γ 函数的定义,以及 $\Gamma\left(\frac{1}{2}\right)$ 的结果)
- (1) $\int_0^{+\infty} e^{-x} x^{\frac{3}{2}} dx$;

- (2) $\int_0^{+\infty} e^{-x^2} x^2 dx$.
- 4. 利用 Γ 函数和B函数的性质,以及 $\Gamma\left(\frac{1}{2}\right)$ 的结果,分别计算:

第六章 自测题

一、选择题

- 1. 设 f(x)是 [a,b]上的连续函数,则下列论断不正确是().
- (A) $\int_{a}^{x} f(x) dx \, dx \, dx \, dx$ 的一个原函数
- (B) $\int_{x}^{b} f(x) dx$ 是 -f(x) 的一个原函数
- (C) $\int_a^b f(x) dx \, dx \, dx \, dx$ 的一个原函数
- (D) f(x)在[a,b]上可积
- 2. 设f(x)是连续函数,F(x)是f(x)的原函数,则().
- (A) 当 f(x)是奇函数时,F(x)必为偶函数
- (B) 当 f(x) 是偶函数时,F(x) 必为奇函数
- (C) 当f(x)是周期函数时,F(x)必为周期函数
- (D) 当 f(x)是单调递增函数时,F(x)必为单调递增函数
- 3. 设在区间[a,b]上, f(x) > 0, f'(x) < 0, f''(x) < 0, 则下列不等式成立的是().

- (A) $(b-a)f(a) < \int_a^b f(x)dx < (b-a)\frac{f(a)+f(b)}{2}$
- (B) $(b-a) f(b) = \int_a^b f(x) dx \left(-b \frac{f(a) + f(b)}{2}\right)$
- (C) $(b-a)\frac{f(a)+f(b)}{2} < \int_a^b f(x) dx + (b) dx$
- (D) $(b-a)\frac{f(a)+f(b)}{2} < \int_a^b f(x) dx \ (b \ a)$
- 4. 设 f(x)在 $(-\infty,\infty)$ 内为连续可导的奇函数,则下列函数中为奇函数的是 ().
- (A) $\sin f'(x)$
- (B) $\int_0^x \sin x f(t) dt$
- (C) $\int_0^x f(\sin t)dt$
- (D) $\int_0^x \sin t f(t) dt$
- 5. 设函数 f(x) 有连续的导数, f(0) = 0, $f'(0) \neq 0$ 且当 $x \to 0$ 时,
- $F(x) = \int_0^x (\sin^2 x \sin^2 t) f(t) dt$ 与 x^k 为同阶无穷小,则 k = ().
- (A) 1

(B) 2

(C) 3

- (D) 4
- 6. $\exists \exists f(x) = \int_0^{x^2} e^{-t^2} dt + \int_0^{-x^2} e^{-t^2} dt 1, \ y \ f(x) \ y(x)$.
- (A) 正常数
- (B) 负常数
- (C) 零
- (D) 非常数
- 7. 已知 $F(x) = \int_{x}^{x+2\pi} e^{\sin x} \sin x dx$,则F(x)为().
- (A) 正常数
- (B) 负常数
- (C) 零
- (D) 非常数

二、填空题

(2)
$$\int_0^{\sqrt{\ln 2}} x^3 e^{x^2} dx;$$

1. 设函数 f(x) 具有一阶连续导数,且 f(0)=0, $f'(0)\neq 0$,则

$$\lim_{x \to 0} \frac{\int_0^{x^2} f(t)dt}{x^2 \int_0^x f(t)dt} = \underline{\qquad}.$$

- 2. 设 f(x) 连续,则 $\frac{d}{dx} \left(\int_0^x t f(x^2 t^2) dt \right) = _____.$
- 3. 设 f(x) 在区间 $[0,+\infty)$ 上具有二阶连续导数, f(1)=1, f'(1)=2, (3) $\int_0^a \sqrt{a^2-x^2} dx$ (a>0);

$$(3) \int_0^a \sqrt{a^2 - x^2} dx \quad (a > 0) ;$$

$$\int_0^1 x^2 f''(x) dx = 6, \quad \int_0^1 f(x) dx = \underline{\qquad}.$$

4 已知连续函数 f(x) 满足关系式 $\int_0^x f(x-t)e^t dt = \sin x$, 则 f(x)

- 三、解答题
- 1. 求下列定积分:

$$(1) \int_1^4 \frac{\ln x}{\sqrt{x}} dx \; ;$$

- 2. 求下列反常积分:
- $(1) \qquad \int_0^{+\infty} e^{-ax} \cos bx dx \ (a > 0);$

3. 求由抛物线 $y = -x^2 + 4x - 3$ 与它在点 M(0, -3) 及点 N(3, 0) 处的两条 切线所围成图形的面积.

4. 函数 f(x) 在区间 $[0,2\pi]$ 上单调递减,证明 $\int_0^{2\pi} f(x) \sin x dx \ge 0$.

(2) $\int_{1}^{3} \frac{1}{\sqrt{(1-x)(x-3)}} dx.$

3. 分别写出下列区域的"x-型"与"y-型"表达形式:

(1) 由 y = x、 x = 2、 y = 1 所围成的区域;

第七章 多元函数微积分学

§ 7.1 预备知识 § 7.2 多元函数的概念

1. 已知点 A (4,1,2), 在 ox 轴上找出与点 A 相距 $\sqrt{30}$ 的点 B .

(2) 由 $y = x^2$ 、 y = 2 所围成的区域;

2. 求过点(1,0,3), (2,-1,2), (4,-3,7)的平面方程.

(3) 由 $y^2 = x$ 、 y = x - 2 所围成的区域.

- 4. 求函数 $z = \arcsin \frac{y-x^2}{2} + \ln \ln(14-4x^2-y^2)$ 的定义域,画出定义域 (2*) $\lim_{(x,y)\to(+\infty,+\infty)} \frac{x^2+y^2}{e^{x+y}}$.

的示意图.

7*. 设
$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 , 讨论 $f(x,y)$ 在点 $(0,0)$ 处的

连续性.

6. 试求下列二元函数的极限:

(1)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+1}-1}$$
;

§ 7.3 偏导数与全微分

(2)
$$z = (x + \sin y)^{xy}$$
, $\Re \frac{\partial z}{\partial y}$.

1. 求下列函数在给定点处的偏导数:

(1)
$$z = x\sqrt{x^2 + y^3}$$
, $\Re z'_x(1, 2), z'_y(1, 2)$;

是否连续、是否存在偏导数.

(2) $u = (1 + xy)^z$, $\Re u'_x(1, 2, 3), u'_y(1, 2, 3), u'_z(1, 2, 3)$.

2. 求下列函数的指定偏导数:

(1)
$$z = \ln(x^2 + y^2)$$
, $\Re \frac{\partial z}{\partial x}$;

4. 求函数 $z = e^{y(x^2+y^2)}$ 的全微分.

7. 已知某矩形的长为 6 米、宽为 8 米。当长度增加 5 厘米,宽度减少 10 厘米时,求矩形对角线长度变化的近似值。

5. 求函数 $z = x^2y + y^2$ 在点(2,1)处的全微分.

- 8. (1) 写出 f(x, y) 在点 (x_0, y_0) 处偏导数的定义;
- (2) 写出 f(x,y) 在点 (x_0,y_0) 处全微分的定义;
- (3) 指出二元函数可微与偏导数存在之间的关系,并给出证明或反例.

6. 利用全微分计算1.065.03的近似值.

§ 7.4 多元复合函数与隐函数微分法

4. 设函数 y = y(x)由方程 $x^y - y^x = \ln xy$ 所确定,试求 $\frac{dy}{dx}$.

1. 求下列复合函数的偏导数或导数:

(1)
$$z = \frac{u^2}{v}, u = x - 2y, v = x + 2y, \quad \stackrel{?}{R} \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y};$$

2. 设
$$z = f(x^2 - y^2, e^{xy})$$
, 求 $\frac{\partial z}{\partial y}$.

3. 设
$$f(u)$$
 可导, $z = x^n f(\frac{y}{x^2})$, 证明: $x \frac{\partial z}{\partial x} + 2y \frac{\partial z}{\partial y} = nz$.

- 5. 求下列二元 (三元) 方程所确定的隐函数 y = y(x) (z = z(x, y)) 的 全微分:
- (1) $2xz 2xyz + \ln(xyz) = 0$;

(2)
$$x^y + \cos(x - y) = \arctan \frac{x}{y}$$
.

 6^* . 设函数 z = f(x, y)与 y = y(x)均可微,且 y = y(x)由方程 $\varphi(x, y) = 0$ 所确定,其中 $\varphi'_y \neq 0$,试证: 一元函数 z = f(x, y(x))的驻点 x_0 必然满足 方程 $f'_x(x, y(x))\varphi'_y(x, y(x)) = f'_y(x, y(x))\varphi'_x(x, y(x))$. § 7.5 高阶偏导数

1. 设
$$z = \sqrt{x^2 + y^2}$$
, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$.

3. 设
$$f(u, v)$$
 的两个偏导函数连续, $z = f(x^2y, \ln(xy))$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 设
$$z = \sin(x^2 y)$$
,求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y \partial x}$.

4. 设
$$z^3 - 2xz + y = 0$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

§ 7.6 多元函数的极值

1. 求 $f(x, y) = xy - xy^2 - x^2y$ 的极值.

4. 求曲线 $\begin{cases} z = x^2 + y^2 \\ xy = 1 \end{cases}$ 上到 xoy 平面距离最短的点.

2. 求 $u = x - x^2 - y^2$ 在 $D = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大值与最小值.

5. 假设某企业在两个相互分割的市场上出售同一种商品,商品在两个市场上的需求量与定价分别满足 $p_1 = 18 - 2q_1$, $p_2 = 12 - q_2$, 其中 p_1 , p_2 分别是该产品在两个市场上的价格(单位:万元/吨), q_1 , q_2 分别是该产品在两个市场上的需求量(单位:吨),且该企业生产这种产品的总成本函数为 $C = 2(q_1 + q_2) + 5$ 。如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及统一的价格,使该企业的总利润最大化。

3. 求 z = xy 在条件 x + 2y = 1, $x, y \ge 0$ 下的最值.

§ 7.7 二重积分

1. 将二重积分 $\iint_D f(x,y) dx dy$ 按照两种次序化为累次积分,其中积分区域

D 分别给定如下:

(1) D 由曲线 $y = x^2$ 与直线 y = 1 所围成;

(3) D 由直线 y = x, y = 2x, x = 3 所围成.

2. 交换积分次序:

$$(1) \int_0^1 dx \int_x^{\sqrt{x}} f(x, y) dy;$$

(2) $\int_0^2 dy \int_{y^2}^{y+2} f(x, y) dx$;

(3) $\int_0^1 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy.$

3. 计算二重积分:

(1)
$$\iint_{\substack{0 \le x \le \pi \\ 0 \le y \le x}} y \cos(x+y) d\sigma;$$

(2) $\iint_D ye^{xy} dxdy$, 其中 $D ext{ the } xy = 1, x = 2, y = 1$ 所围成.

- 4. 计算累次积分:
- (1) $\int_0^1 dx \int_x^1 e^{y^2} dy$;

6. 计算 $\iint_D (x^2 + y^2) dx dy$, $D = \{(x, y) \mid -1 \le y \le 1, -2 \le x \le -\sqrt{1 - y^2}\}$.

 $(2) \int_0^{\pi} dx \int_0^x \frac{\sin y}{\pi - y} dy.$

7. 利用极坐标变换计算: $\iint\limits_{x^2+y^2\leq 4x}(x+y)dxdy.$

- 5. 画出区域 D, 并把 $\iint_D f(x, y) dx dy$ 化为极坐标系下的二次积分:
- (1) $D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4\};$

8. 用二重积分计算曲线 $y = x^2$, $y = \sqrt{x}$ 围成的平面图形的面积.

(2) $D = \{(x, y) \mid 2x \le x^2 + y^2 \le 4x\}.$

9. 用二重积分计算由坐标面与平面 x + 2y + 3z = 6 所围立体的体积.

11*.
$$\[\[\mathcal{C}_{x,y} \] = \begin{cases} 1, & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}, \ D = \{ (x,y) \] 0 \le x \le 1, \ 0 \le y \le 1 \}. \ \text{\triangle} \]$$

常数 z , 试求下列反常积分:

1)
$$\iint_{x+y\leq z} f(x,y)dxdy;$$

10*. 计算二重积分 $\iint_{x^2+y^2\leq 9} |x^2+y^2-4| \, dxdy$.

 $2) \int_{-\infty}^{+\infty} f(x,z-x) dx.$

第七章 自测题

一、选择题

- 1. 极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在的充分条件是 []
- [A] 点 P(x,y) 沿无穷条路径趋于点 $P_0(x_0,y_0)$ 时,f(x,y) 的极限均存在且相等
- [B] $f'_x(x_0, y_0), f'_y(x_0, y_0)$ 存在
- [C] 点 P(x,y)沿过 (x_0,y_0) 的任意直线趋于 (x_0,y_0) 时,f(x,y)的极限均存在且相等
- [D] f(x,y)在 (x_0,y_0) 处连续
- 2. 若 $f(xy, x + y) = x^2 + y^2 + xy$,则 $\frac{\partial f(x, y)}{\partial x} = [$].
- [A] -1
- [B] 2y
- [C] 2(x+y)
- [D] 2x
- 3. z = f(x, y) 在点 (x_0, y_0) 的偏导数存在是其在该点可微的 [].
- [A] 充分条件 [B] 必要条件 [C] 充要条件 [D] 非充要条件
- 4. 设 f(x, y) 定义于有界闭区域 D ,下列命题正确的个数是 []

- [A] $0 \uparrow$ [B] $1 \uparrow$ [C] $2 \uparrow$ [D] $3 \uparrow$
- 1) 若 f 可微、存在唯一驻点 P_0 , 且为极值点,则 P_0 必为最值点
- 2) 若f可微,且存在最值点 P_0 ,则 P_0 必为驻点
- 3) 若 f 连续,且存在唯一的极值点 P_0 ,则 P_0 必为最值点
- 4) 若f连续于D,则f在D内必存在最值
- 5. 设 $\varphi(x,y)$ 在 (x_0,y_0) 的某邻域内具有连续的偏导数,且 $\varphi'_x(x_0,y_0) \neq 0$.

若 (x_0, y_0) 是可微函数 f(x, y) 在约束条件 $\varphi(x, y) = 0$ 之下的极值点,则下列命题正确的是 [].

[A] 恒有
$$f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$$

[B]
$$f'_x(x_0, y_0) = 0 \Rightarrow f'_y(x_0, y_0) = 0$$

[C]
$$f'_{y}(x_0, y_0) = 0 \Rightarrow f'_{x}(x_0, y_0) = 0$$

[D]
$$f'_{y}(x_0, y_0) = 0 \Rightarrow \varphi'_{y}(x_0, y_0) = 0$$

- 二、填空题
- 1. $\lim_{\substack{x \to \infty \\ y \to a}} (1 + \frac{1}{x})^{\frac{x^2}{x+y}} = \underline{\hspace{1cm}}$

- 2. 求下列函数的全微分:
- 3. 设 dz = (2x+3y)dx + (3x+2y)dy,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _______.
- (1) $z = x^{\ln y}$, $\Re dz|_{(1,e)}$;
- 4. 设在 xoy 坐标系下, $D = \{(x, y) \mid 0 \le y \le \sqrt{2}, y \le x \le \sqrt{4 y^2} \}$,则

在极坐标系下,**D**=______.

5. 无穷限积分 $\int_0^{+\infty} e^{-x^2} dx =$ _______.

(2) $u = \sqrt{x^2 + y^2 + z^2}$, $\Re du$;

三、解答题

点(0,0)的连续性、偏导数以及f(x,y)的偏导函数在在点(0,0)的连续性.

(3) 已知 f(u,v) 有连续的偏导数, $z = \ln f(xy, x + \ln y)$,求 dz .

3. 设 f(x, y) 在连续偏导数,n 为正整数,证明 f(x, y) 满足 $f(tx, ty) = t^n f(x, y), \ t \in (0, +\infty) \text{ 的充要条件是对任意}(x, y) 有 x f'_x(x, y) + y f'_y(x, y) = n f(x, y).$

6. 设
$$z = f(x, y)$$
 由方程 $xy + yz + zx = 1$ 所确定,求 $\frac{\partial^2 z}{\partial x \partial y}$.

7. 求 $f(x, y) = (x^2 + 2x + y)e^{2y}$ 的极值.

4. 设 $xyz = \arctan(x + y + z)$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\Big|_{(0,1,-1)}$.

- 5. 设 f 具有二阶连续偏导数, u = f(x + y + z, xyz), 求 $\frac{\partial^2 u}{\partial x \partial z}$.
- 8. 己知闭区域 $D = \{(x, y) | x^2 + y^2 \le 16\}$, 求 $f(x, y) = 3x^2 + 3y^2 x^3$ 在 D 上的最值.

姓名

9*. 求周长为定值 2p 的三角形面积的最大值.

(提示: $S = \sqrt{p(p-x)(p-y)(p-z)}$, 其中x, y, z 为三角形的各边长)

11. 计算二重积分:

$$(1) \iint_{\substack{0 \le x \le 1 \\ x \le y \le \sqrt{x}}} \frac{\sin y}{y} dx dy :$$

10. 某厂生产甲、乙两种产品,当两种产品的产量分别是x和y(单位:吨)时,总收益函数为 $R=27x+42y-x^2-2xy-4y^2$,总成本函数为C=36+12x+8y(单位:万元)。此外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每吨还需支付排污费2万元。在限制排污费用支出总额为6万元的情况下,两种产品的产量各为多少时总利润最大?最大总利润是多少?

$$(2) \iint_{\substack{0 \le y \le 1 \\ y \le x \le \sqrt[3]{y}}} e^{x^2} dx dy$$

$$(3) \iint_{\substack{-1 \le x \le 1 \\ -1 \le y \le 1}} \sqrt{|y-x|} dx dy$$

$$(4) \iint_{0 \le y \le x} e^{-x-y} dx dy$$

 14^* . 已知 f(x), g(x) 连续于 [a, b], 试证不等式:

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

12*. 用二重积分计算圆锥体 $z \ge \sqrt{x^2 + y^2}$ 被平面 z = 2所截部分的体积.

15*. 已知 p(x), f(x) 及 g(x) 连续于 [a,b], 且 $p(x) \ge 0$, f(x) 与 g(x) 均单增,证明

$$\int_a^b p(x)f(x)g(x)dx \int_a^b p(x)dx \ge \int_a^b p(x)f(x)dx \int_a^b p(x)g(x)dx.$$

 13^* . 已知 f(x) 为 [a,b] 上的正的连续函数,证明:

$$\int_{a}^{b} f(x) dx \int_{a}^{b} \frac{1}{f(x)} dx \ge (b - a)^{2};$$

错题小结

第八章 无穷级数

§ 8.1 常数项级数的概念和性质

- 1. 利用级数收敛定义判断下列级数是否收敛; 若收敛, 求其和值.
- (1) $\sum_{n=1}^{\infty} \frac{1}{(3n-1)(3n+2)}$;

 $(2) \sum_{n=1}^{\infty} \ln \frac{n}{n+1}.$

- 2. 己知级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 且和值为 S, 证明:
- (1) 级数 $\sum_{n=1}^{\infty} (u_{n+1} + u_{n+2})$ 收敛,且和值为 $2S 2u_1 u_2$;
- (2) 级数 $\sum_{n=1}^{\infty} (u_n + \frac{1}{2^n})$ 收敛.

4. 利用级数性质以及几何级数与调和级数的敛散性, 判别下列级数敛散性:

(1)
$$\frac{1}{20} + \frac{1}{\sqrt{20}} + \frac{1}{\sqrt[3]{20}} + \dots + \frac{1}{\sqrt[n]{20}} + \dots$$
;

(2)
$$1 + \frac{1}{5} + \sum_{n=1}^{\infty} \frac{1}{3^n}$$
;

$$(3)^* \frac{2}{1} - \frac{2}{3} + \frac{4}{3} - \frac{2^2}{3^2} + \frac{6}{5} - \frac{2^3}{3^3} + \frac{8}{7} - \frac{2^4}{3^4} + \dots$$

5. 给定级数 $\sum_{n=1}^{\infty} u_n$,有 $\lim_{n\to\infty} S_{2n}=a$, $\lim_{n\to\infty} u_n=0$, 试证级数 $\sum_{n=1}^{\infty} u_n$ 收敛,其 和 S=a .

§8.2 正项级数

- 1. 利用比较判别法或其极限形式判别下列级数的敛散性:
- $(1) \sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{5^n};$

 $(2) \sum_{n=1}^{\infty} \frac{1-\cos\frac{\pi}{n}}{\sqrt{n+3}};$

2. 利用比值判别法或根值法判别下列级数的敛散性:

$$(1) \sum_{n=1}^{\infty} \frac{3^n}{(2n+1)!};$$

(2) $\sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdot 9 \dots (4n-3)}{2 \cdot 5 \cdot 8 \dots (3n-1)};$

(3)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{n+1}{n} \right)^{n^2}$$
;

$$(4) \sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n};$$

$$(3)^* \sum_{n=2}^{\infty} \frac{\ln n}{n^2} .$$

$$(4)^* \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}} .$$

 3^* . 证明: 若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n^2$ 与 $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ 均收敛.

§ 8.3 任意项级数

(2) $\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1} + \dots + \frac{1}{\sqrt{n}-1} - \frac{1}{\sqrt{n}+1} + \dots$

1. 判别下列级数是绝对收敛,条件收敛还是发散?

(1)
$$\sum_{n=1}^{\infty} (-1)^n \sqrt{\frac{n}{n+2}}$$
;

(2)
$$\sum_{n=1}^{\infty} \frac{\cos na}{(n+1)^2}$$
;

(3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n+1}};$$
 $(4)^* \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n^2}}{n!}.$

- 3^* . 如果级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛,试证:
- (1) 级数 $\sum_{n=1}^{\infty} \frac{n+1}{n} u_n$ 绝对收敛;

(2) 级数
$$\sum_{n=1}^{\infty} \left(u_n + \frac{1}{n} \right)^2$$
 收敛.

2. 判别下列交错级数的敛散性:

(1)
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\left[n + (-1)^n\right]^2};$$

§ 8.4 幂级数

- 1. 求下列级数的收敛半径、收敛区间和收敛域:
- $(1) \sum_{n=0}^{\infty} 5^n x^n ;$

(2) $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$;

2. 求下列级数的收敛域,以及它们在收敛域上的和函数:

$$(1) \sum_{n=1}^{\infty} \frac{1}{2n+1} x^{2n+1};$$

(2)
$$\sum_{n=1}^{\infty} n(n+1)x^n$$
.

3. 求解幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 收敛域及和函数,并求常数项级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$

的和.

5. 将下列函数展开成 x 的幂级数, 并写明幂级数的收敛域.

(1)
$$f(x) = \frac{x^2}{1+x}$$
;

(2)
$$f(x) = \ln(4-3x)$$
.

- 4. 已知 $\sum_{n=0}^{\infty} a_n (2x-3)^n$ 在 x=3 时收敛, 试判定 $\sum_{n=0}^{\infty} a_n (2x-3)^n$ 在以下各点 6. 求函数 $f(x)=\frac{1}{1+x}$ 在指定点 $x_0=2$ 的幂级数展开式,并求收敛域.

处的敛散性: (1) x = 0; (2) x = 2; (3) $x = \frac{1}{2}$; (4) x = 4.

第八章 自测题

一、选择题

- 1. 正项级数 $\sum_{n=0}^{\infty} u_n$ 收敛的充分必要条件是 [].
- [A] $\lim_{n\to\infty} u_n = 0$

- [B] 数列 $\{u_n\}$ 单调有界
- [C] 部分和数列 $\{S_n\}$ 有上界
- $[D] \lim_{n\to\infty} \frac{u_{n+1}}{u_{-}} = \rho < 1$
- 2. 下列结论中正确的是[].
- [A] 若级数 $\sum_{n=0}^{\infty} u_n$, $\sum_{n=0}^{\infty} v_n$ 都发散, 则级数 $\sum_{n=0}^{\infty} (u_n + v_n)$ 发散;
- [B] 若级数 $\sum_{n=0}^{\infty} (u_n + v_n)$ 收敛,则级数 $\sum_{n=0}^{\infty} u_n$ 与 $\sum_{n=0}^{\infty} v_n$ 都收敛;
- [C] 若级数 $\sum_{n=0}^{\infty} u_n$ 与 $\sum_{n=0}^{\infty} v_n$ 都收敛,则级数 $\sum_{n=0}^{\infty} (u_n + v_n)$ 收敛;
- [D] 若级数 $\sum_{n=0}^{\infty} u_n$ 收敛, $\sum_{n=0}^{\infty} v_n$ 发散, 则 $\sum_{n=0}^{\infty} (u_n + v_n)$ 的敛散性不确定
- 3. 己知 $\lim_{n\to\infty} a_n = a$,则级数 $\sum_{n=0}^{\infty} (a_n a_{n+1})$ [].

[A] 收敛且其和为 a_1

- [B] 收敛且其和为-a
- [C] 收敛且其和为 $a_1 a$
- [D] 发散
- 4. 下列级数中发散的是 [].
- [A] $\sum_{n=0}^{\infty} \left(\frac{a-1}{a}\right)^n (a>1)$ [B] $\sum_{n=0}^{\infty} \ln\left(1+\frac{1}{n}\right)$
- [C] $\sum_{n=0}^{\infty} \left(\sqrt{n+2} 2\sqrt{n+1} + \sqrt{n} \right)$ [D] $\sum_{n=0}^{\infty} \frac{n^2}{n!}$
- 5. 设 $0 \le a_n < \frac{1}{n} (n = 1, 2, \dots)$,则下列级数中收敛的是 [].

- [A] $\sum_{n=0}^{\infty} a_n$ [B] $\sum_{n=0}^{\infty} (-1)^n a_n$ [C] $\sum_{n=0}^{\infty} \sqrt{a_n}$ [D] $\sum_{n=0}^{\infty} (-1)^n a_n^2$
- 6. 命题 "若 $\sum_{n=0}^{\infty} a_n$ 发散,则 $\sum_{n=0}^{\infty} b_n$ 发散"成立的条件是 [].
- [A] $a_n \le b_n$ [B] $a_n \le b_n$ [C] $|a_n| \le b_n$ [D] $|a_n| \le b_n$
- 7. 若幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -1 收敛,则该级数在 x = 2 处 [].
- [A] 条件收敛

[B] 绝对收敛

[C] 发散

[D] 敛散性不能确定

8. 若 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = a$,则幂级数 $\sum_{n=0}^{\infty} a_n x^{bx}$ (b > 1) 的收敛半径 R = [].

三、解答题

1. 判别下列级数的敛散性:

- [A] a [B] $a^{1/b}$ [C] $\frac{1}{a}$ [D] $\left(\frac{1}{a}\right)^{1/b}$
 - (1) $\sum_{n=1}^{\infty} \frac{\ln(1+\frac{1}{n})}{(n+1)^{1/3}}$;

二、填空题

- 1. 若级数 $\sum_{n=1}^{\infty} u_n$,则级数 $\sum_{n=1}^{\infty} (u_n u_{n+1})$ 收敛于______.
- 2. 若级数 $\sum_{n=0}^{\infty} u_n$ 收敛于 S,则级数 $\sum_{n=0}^{\infty} (u_n + u_{n+1})$ 收敛于______.
- $(2) \sum_{n=1}^{\infty} \frac{n}{2^n} \cos^2 \frac{n\pi}{3};$

- 级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n^{\alpha}+1} \frac{1}{n^{\alpha}+1}\right), (\alpha > \frac{1}{2})$ 的敛散性是______.

- (3) $\sum_{n=1}^{\infty} \frac{x^n}{(1+x^n)(1+x^2^n) + \frac{n}{2}} \cdot (x > 0)$
- 5. 设幂级数 $\sum_{n=0}^{\infty} a_n(x+1)^n$ 在 x=3 条件收敛,则该幂级数的收敛半径至少

等于_____.

2. 证明: 若级数 $\sum_{n=1}^{\infty} u_n^2$ 收敛,则级数 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 绝对收敛.

$$(3) \sum_{n=1}^{\infty} ne^{-nx};$$

 $(4) \sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} \sin^n x.$

3. 求下列级数的收敛域:

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \left(\frac{1-x}{1+x} \right)^n;$$

$$(2) \sum_{n=1}^{\infty} \left(\frac{1}{3} \ln x\right)^n;$$

4. 求解幂级数 $\sum_{n=1}^{\infty} n(n+1)x^n$ 的收敛半径、收敛区间、收敛域以及和函数,

并求常数项级数 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2^n}$ 的和.

5. 将下列函数展开为 x 的幂级数, 并求其收敛域:

(1)
$$f(x) = x^3 e^{-x}$$
;

(2)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
;

(3)
$$f(x) = \frac{\ln(1+x)}{x}$$
.

错题小结

第九章 微分方程初步

§ 9.1 微分方程的基本概念

1. 验证下列各函数是否为所给微分方程的通解:

(1)
$$y' + y = e^{-x}$$
, $y = (x + C)e^{-x}$;

(2) $x'' + 9x = 10\cos 2t$, $x = 2\cos 2t + C_1\cos 3t + C_2\sin 3t$;

3. 验证函数 y = 1是否分别为: 1) 微分方程 y'' - 2y' + y = 1的解; 2) 初值问题 y'' - 2y' + y = 1, y(0) = 1, y'(0) = 1的解.

2. 验证函数 $y = \frac{1}{x+1}$ 是否为初值问题 (x+1)y' + y = 0 , y(0) = 1 的解.

(3) (x-2y)y' = 2x - y, $x^2 - xy + y^2 = C$.

§ 9.2 一阶微分方程

2. 设函数 y(x)满足方程 $y(x) = \int_0^{3x} y(\frac{t}{3}) dt + e^{2x}$, 试求 y(x).

1. 求下列方程的通解或在给定条件下的特解:

(1)
$$yy' + xe^y = 0$$
, $y(1) = 0$;

(2)
$$x \frac{dy}{dx} = y \ln \frac{y}{x}$$
;

3*. 设函数
$$z = f(\sqrt{x^2 + y^2})$$
满足方程 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$, 试求 $f(x)$.

(3)
$$y' + y \cos x = e^{-\sin x}$$
;

(4)
$$y' - \frac{y}{x+1} = (x+1)e^x$$
, $y(0) = 1$.

$$4^*$$
. 设 $y = 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} x^n$, 证明: 和函数 $y(x)$ 满足微分方程 方程 $(1-x)y' = \frac{y}{2}$, 并求 $y(x)$.

附录一: 期中模拟试卷

《微积分二》期中模拟试卷一(考到 7.3)

- 一、单选题(共4小题,每小题2分,满分8分)
- 1. 已知函数在 $R \perp f(x)$ 连续,且 $F'(x) = f(x), x \in R$,则下列等式中不 成立的是[]
- [A] $\int F'(x)dx = F(x) + C$ [B] $[\int f(x)dx]' = f(x) + C$
- [C] $d[\int F(x)dx] = F(x)dx$ [D] $d[\int dF(x)] = f(x)dx$
- 2. 下列不定积分中, 能用初等函数表示的是 []
- [A] $\int \frac{1}{1+x^3} dx$

- [B] $\int \frac{\sin x}{x} dx$
- [C] $\int \sqrt{1+x^3} dx$
- [D] $\int e^{-x^2} dx$
- 3. 设 f(x) 连续于R,且 $F'(x) = f(x), x \in R$,给定以下四个命题:
- 1) F(x) 为偶函数的充要条件是 f(x) 为奇函数;
- 2) F(x) 为有界函数的充分非必要条件是 f(x) 为有界函数;
- 3) F(x) 为奇函数的充要条件是 f(x) 为偶函数;
- 4) F(x) 为周期函数的必要非充分条件是 f(x) 为周期函数,

其中的真命题是[]

- [B] 2) 3) [A] 1) 2)
- [C] 1) 4)
- [D] 3) 4)
- 4. 函数 $f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$ 在点 (0,0)处 []
- [A] 可微且偏导数存在
- [B] 不可微但偏导数存在
- [C] 不可微且偏导数不存在
- [D] 不可微但连续
- 二、填空题(本题共4小题,每小题3分,满分12分)
- 1. 若 f(x) 的一个原函数是 e^{x^2} ,则 $\int x f'(x) dx =$ ______
- 3. 无穷限积分 $\int_{0}^{+\infty} e^{-x^2} dx =$ _____.

则其在(0,0)处的偏导 $f_{x}(0,0)$ = .

三、解答题(本题共8小题,满分60分)

4. (**7分**) 设 $\int_0^x f(x-t)tdt = e^x - x - 1$, 求连续函数 f(x).

5. (8分) 设 f(u,v) 可微, $f_u(1,2)=3$, $f_v(1,2)=4$,求 z=f(xy,x+y) 在 (1,1) 处的全微分.

6. (8 分)设 y = y(x) 是由函数方程 $e^{xy^2} = x + y + 1$ 在 (0,0) 点附近所确定的隐函数,求曲线 y = y(x) 在 (0,0) 点处的法线方程.

- 7. (9分) 过点(-1,-1)作曲线 Γ : $y = x^3$ 的切线L, 求:
- (1) Γ 与L所围平面图形D的面积; (6分)
- (2) 图形 D 的 $x \ge 0$ 的部分绕 x 轴旋转一周所得立体的体积. (3 分)
- 8. (9分) 设 f(x) 连续于 [a,b],且 $\int_a^b f(x)dx = \int_a^b e^x f(x)dx = 0$.
- (1) 证明: f(x)在(a,b)内至少有两个零点; (6 %)
- (2) 进一步,在什么条件下, f(x) 在 (a,b) 内至少有三个零点? 试说明理由. (3分)

《微积分二》期中模拟试卷二(考到7.3)

一、填空题(本题共5小题,每小题2分,满分10分)

1. 设
$$\int f(x)dx = \sqrt{1+x} + C$$
, 则 $\int xf(x^2)dx =$ _____.

2. 极限
$$\lim_{x\to 0} \frac{\int_0^x \ln(1-t)dt}{x^2} = \underline{\hspace{1cm}}$$
.

3.
$$\int_{-1}^{1} x^3 - x^2 + x \cos x^2 dx = \underline{\hspace{1cm}}.$$

- 利用全微分可得(1.02)^{3.03} ≈ ______. (精确到小数点后两位)
- 5. 极限 $\lim_{n\to\infty} \left(\frac{1}{3n+1} + \frac{1}{3n+2} + \dots + \frac{1}{3n+n} \right) = \underline{\hspace{1cm}}$

二、选择题(本题共4小题,每小题2分,满分8分)

1. 下列结论正确的是()

(A)
$$\int_{-1}^{1} x^{-3} dx = 0$$
 (B) $\int_{-\infty}^{+\infty} \frac{\sin x}{2 + \cos x} dx = 0$ (C) $\lim_{x \to +\infty} \frac{\int_{1}^{x} t^{-7} dt}{\int_{1}^{x} t^{-5} dt} = 0$

- (D) $\lim_{x \to +\infty} \int_0^x 2e^{-u^2} du = \sqrt{\pi}$
- 2. 下列命题**正确的个数**是()
- (A) 1个 (B) 2个 (C) 3个 (D) 4个

- 1) 若f(x)在[a,b]上可积, $f(x) \ge 0$ 且不恒为零,则 $\int_a^b f(x) > 0$
- 2) 若 f(x)在 [a,b]上有界,则 f(x)在 [a,b]上可积
- 3) 若 f(x)在 [a,b]上不连续,则 f(x)在 [a,b]上不可积
- 4)设 f(x)在 $(-\infty,+\infty)$ 内连续且以T 为周期,则对任意常数a ,均有 $\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$
- 3. 设函数 f(x) 在 [0,1] 上连续,且满足 $f(x) = 3x^2 x \int_0^1 f(t) dt$,则 $\int_0^1 f(x) dx = ($
- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{5}{4}$ (D) 2
- 4. 下列命题**错误的个数**是()
- (A) 1个 (B) 2个 (C) 3个 (D) 4个
- 1) 若 $f'_x(x_0, y_0)$, $f'_y(x_0, y_0)$ 均存在,则 z = f(x, y)在 (x_0, y_0) 处可微且

$$dz|_{(x_0,y_0)} = f'_x(x_0,y_0)dx + f'_y(x_0,y_0)dy$$

- 2) 若 f(x, y) 在 (x_0, y_0) 处的偏导 $f'_x(x_0, y_0)$ 存在,则 $f(x, y_0)$ 在 $x = x_0$ 处 连续
- 3) 若点P(x,y)沿过 (x_0,y_0) 的任意直线趋于 (x_0,y_0) 时f(x,y)的极限都

存在且相等,则 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在

4)若 f(0,0) = 0 且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-2x-y}{\sqrt{x^2+y^2}} = 0$,则 z = f(x,y)在(0,0)处

4. 设z = f(x, y)是由方程 $\sin z = x^2 yz$ 确定的隐函数,求dz.

可微

三、(本题共5小题,每小题7分,满分35分)

1. 计算 $\int_{2}^{5} \frac{1}{x\sqrt{x-1}} dx$.

5. 已知函数 f(u,v)可微, $f'_u(2,0)=3$, $f'_v(2,0)=4$. 试求函数 $z = f(xy,y-2x) \pm (x,y) = (1,2) \pm 0.$ 处的偏导数 $\frac{\partial z}{\partial x}|_{(1,2)}$.

2. 求 $\int_{-1}^{2} \max\{x^2, x\} dx$ ($\max\{a, b\}$ 表示 a, b 两数的最大者)

四、(满分 10 分) 设平面图形由曲线 $y = \sqrt{x}$ 与直线 y = x 围成. 试求:

1) 此平面图形的面积(5分);

3. 判定 $\int_0^{+\infty} e^{-x} \cos x dx$ 敛散性. 若收敛, 求其值.

2) 此平面图形绕 y 轴旋转一周而成的立体体积 (5分).

五、(满分 7 分) 已知某产品的固定成本为 50,边际成本和边际收益分别 为 $MC(q) = q^2 - 4q + 6$, MR(q) = 105 - 2q, 其中 q 为产品的产量(销售量),试求最大利润.

六、证明题(本题共2小题,每小题5分,满分10分)

1. 己知 f(x)在区间 [0,a]上连续, 试证: $\int_0^a f(x) dx = a \int_0^1 f(ax) dx$.

2. 设 f(x)连续于[0,1],可导于(0,1),且满足 $f(0) = 2\int_{\frac{1}{2}}^{1} e^{x} f(x) dx$. 试证: 存在 $\xi \in (0,1)$,使得 $f'(\xi) + f(\xi) = 0$.

《微积分二》期中模拟试卷三(考到7.3)

 $2. \ \text{计算} \int_0^1 e^{\sqrt{x}} \, dx \, .$

一、填空题(本题共5小题,每空3分,满分15分)

1. 已知 F(x) 是 f(x)的一个原函数,且 F(1)=1, F(0)=0,则

$$\int_0^1 f(x) dx \underline{\qquad}.$$

- 2. $\int_{-1}^{1} x^{3} \left[5x + (x + \sin x)^{2016} \right] dx = \underline{\qquad}.$
- 3. $\lim_{n\to\infty} \frac{1}{n} \left(\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\frac{n\pi}{n} \right) = \underline{\qquad}.$
- 4. $\lim_{(x,y)\to(1,0)} \frac{\sin(xy)}{y} = \underline{\hspace{1cm}}$

填"一定", "不一定").

- 二、计算题(本题共5小题,每题7分,满分35分)
- 1. 己知 $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & other \end{cases}$, 计算 $\int_{-\infty}^{+\infty} f(x) dx$.

3. $u = \sin(x^2 - y^2 - e^z)$, $\Re \frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$.

4. 设 $z = x^2 - 2xy + y^3$,求 $\frac{\partial^2 z}{\partial y \partial x}$.

5. 设 f(u, v) 具有二阶连续偏导数, z = f(xy, x - y),求 dz, $\frac{\partial^2 z}{\partial y \partial x}$.

三、解答题(本题共5小题,每题10分,满分50分)

- 1. 设 f(x)是 R 上的连续函数,并满足 $\int_{0}^{x} f(x-t)e^{-t}dt = x^{2}$,试求 f(x).
- 4. 设z = f(x, y)是由方程 $\sin z = xy + yz + xz$ 确定的隐函数,求dz.

- 2. 曲线 $y = x^3$, y = 0, x = 2 所围成一个封闭的平面图形,(1)求该平面图形的面积;(2)求将该平面图形绕 x 轴旋转一周形成的旋转体体积.
- 5. 设 $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$, 分别讨论 f(x,y) 在 (0,0) 处是否连续、是否存在偏导数、是否可微.

3. 已知某产品的固定成本为 50,边际成本和边际收益函数分别为 $MC(q)=q^2-4q+6$, MR(q)=105-2q,其中 q 为产品的销售量(产量),试求最大利润.

附录二:期末模拟试卷

《微积分二》期末模拟试卷一

一、填空题(共5小题,每小题2分,满分10分)

- 1. 定积分 $\int_{-1}^{1} x^5 + 2x^2 \frac{x}{\sqrt{1+x^2}} dx = \underline{\qquad}$
- 2. 设 $f(x) = \int_{x^2}^{0} \ln(1+t^2) dt$, 则导数 f'(1) =______
- 3. 将函数 xe^x 展开成 x 的幂级数后,其中 x^4 的系数等于_____.
- 4. 交换积分次序 $\int_0^1 dy \int_y^{\sqrt{y}} f(x, y) dx =$ ______.
- 5. 微分方程 $y' + y = e^{-x}$ 满足 y(0) = 1的解为______.

二、单项选择题(共5小题,每小题2分,满分10分)

1. 由曲线 $y = \sqrt{x}$, x = 0 , y = 1 围成的平面图形绕 y 旋转一周后所成立体的体积等于 []

- (A) $\frac{\pi}{5}$ (B) $\frac{4\pi}{5}$ (C) $\frac{\pi}{2}$ (D) π
- 2. 下列命题正确的个数是[]

- (A) 0 个 (B) 1 个 (C) 2 个 (D) 3 个
- 1)设f(x)连续于 $[0,+\infty)$ 且严格大于零,则 $a \to +\infty$ 时 $\int_0^a f(x)dx \to +\infty$.
- 2) 若 f(x, y)在 (x_0, y_0) 处两个偏导 $f'_x(x_0, y_0)$, $f'_y(x_0, y_0)$ 均存在,则极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 也存在.
- 3)若f(x,y)在 (x_0,y_0) 处取得极小值,则 $f(x_0,y)$ 也在 y_0 处取得极小值.
- 4) 若 (x_0, y_0) 是可微函数 f(x, y)在有界闭区域 D 内部的唯一驻点且极小
- 值点,则 (x_0, y_0) 是 f(x, y)在 D 上的最小值点.
- 3. 反常积分 $\int_{1}^{+\infty} x^{p} dx$ 收敛的充要条件是 []
- (A) p < 1 (B) p > 1 (C) p < -1 (D) p > -1
- 4. 下列级数收敛的是[]
- (A) $\sum_{n=1}^{\infty} (-1)^n$ (B) $\sum_{n=1}^{\infty} \cos \frac{1}{n}$ (C) $\sum_{n=2}^{\infty} \left(\frac{2}{n} \frac{1}{2^n} \right)$ (D) $\sum_{n=1}^{\infty} \frac{n}{2^n}$
- 5. 下列命题错误的个数是[]
- (A) 1 个 (B) 2 个 (C) 3 个 (D) 4 个
- 1)绝对收敛的级数必然条件收敛.

2) 若数列 $\{u_n\}$ 单调递减、各项恒正且 $\lim_{n\to\infty}u_n=0$,则交错级数 $\sum_{n=1}^{\infty}(-1)^nu_n$ 3. 设 $z=\cos(x^2y)$,求 $\frac{\partial^2 z}{\partial r\partial y}$.

条件收敛.

- 3) 若 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛.
- 4) 若 $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = 2$,则 $\sum_{n=1}^{\infty} |u_n|$ 发散,但 $\sum_{n=1}^{\infty} u_n$ 可能收敛.

4. 设 z = z(x, y) 由方程 $x^2 z = ye^z$ 所确定,求 $dz|_{(1,0,0)}$

三、计算题(共7小题,每小题6分,满分42分)

1.
$$\Re \int_{-1}^{2} f(x) dx$$
, $\# f(x) = \begin{cases} 2 - x, & x \le 1 \\ x^2, & x > 1 \end{cases}$.

2. 判断 $\int_0^{+\infty} xe^{-2x} dx$ 的敛散性. 若收敛, 求其值.

6. $\[\sharp \iint_{D} |y-x| dxdy \]$, $\[\sharp + D = \{(x,y) | 0 \le x \le 2, 1 \le y \le 2 \}. \]$

- 五、(8分) 设有幂级数 $\sum_{n=1}^{\infty} \frac{1}{n+1} x^n$, 试求:
- 1) 该级数的收敛域;

- 7. 试求由曲面 $z = e^{-(x^2+y^2)}$, $x^2 + y^2 = 4$, z = 0 所围成的封闭立体体积.
- 2) 该级数在收敛域上的和函数.

四、(8分) 判定级数 $\sum_{n=2}^{\infty} (-1)^n \tan \frac{\pi}{2n}$ 的敛散性. 若收敛,指明是绝对收敛

还是条件收敛.

六、(7分)设某产品的生产仅需耗费资本和劳动力两种要素. 经统计,该产品的产量Q与这两种要素投入量K,L的依赖关系为 $Q=K^{\frac{1}{3}}L^{\frac{2}{3}}$. 已知资本要素的价格为8,劳动力要素的价格为2. 当产量限定为240时,试问:使得总成本最小的资本要素投入量K与劳动力要素投入量L各自为多少?

八、证明题(共2小题,每小题5分,满分10分)

1、已知 f(x)在 $(-\infty,+\infty)$ 上连续,试证: $\frac{1}{2}\int_{1}^{3} f(x)dx = \int_{0}^{1} f(1+2x)dx$.

七、(5 分) 设函数 f(x)在[0,1]上连续,且满足 $f(x)=x^2-3x\int_0^1 f(t)dt$,试求 f(x).

2、已知 f(x)在 [a,b]上连续, f(a) = a,且 $\int_a^b f(x) dx = \frac{b^2 - a^2}{2}$,试证: 存在 $\xi \in (a,b)$, 使得 $f(\xi) + f'(\xi) = \xi + 1$.

《微积分二》期末模拟试卷二

一、填空题(共6小题,每小题2分,满分12分)

1. 己知 $f(x) = \int_0^x te^t dt$,则 f'(x) =_______.

- 2. 将函数 $f(x) = e^x$ 展开成 x 的幂级数,其结果是_____
- 4. 已知级数 $\sum_{n=1}^{\infty} u_n$ 的部分和 $S_n = \frac{2n-n^2}{2n^2-1}$,则该级数的和等于______.
- 5. 微分方程 y' + y = 1 满足 y(0) = 0 的解为
- 6. 以下命题正确的是______. (**不定项选择**).
- (A) 若 f(x)在 [a,b]上不连续,则 f(x)在 [a,b]上不可积.
- (B) $f'_{x}(x_{0}, y_{0})$ 存在,当且仅当 $f(x, y_{0})$ 在 $x = x_{0}$ 处可微.
- (C) 若 (x_0, y_0) 是可微函数 f(x, y)在有界闭区域 D 内部的唯一驻点且极 小值点,则 (x_0,y_0) 是f(x,y)在D上的最小值点.
- (D) 若正项级数 $\sum_{n=0}^{\infty} u_n$, $\sum_{n=0}^{\infty} v_n$ 满足 $\lim_{n\to\infty} \frac{v_n}{u_n} = \frac{1}{e}$, 且 $\sum_{n=0}^{\infty} v_n$ 发散,则 $\sum_{n=0}^{\infty} u_n$ 发散.

二、计算与分析(共9小题,满分60分)

1. 判断 $\int_{-\infty}^{0} \frac{2}{1+x^2} dx$ 的敛散性. 若收敛, 求其值. (6分)

2. 己知
$$\frac{\partial z}{\partial y} = \ln(x^2 + 2y)$$
,求 $\frac{\partial^2 z}{\partial y \partial x}$. (6分)

- 3. 设z = f(x, y)由方程 $z^5 + 2xz y = 1$ 所确定. 试求: (7分)
- 1) dz;
- 2) f(0.05, 0.05)的近似值(结果保留至小数点后两位).

- 4. 求 $f(x,y) = x^3 + y^3 3xy$ 的极值,并指明极大值还是极小值. (6分)
- 7. 判定级数 $\sum_{n=1}^{\infty} (-1)^n \ln(1+\frac{1}{n})$ 的敛散性. 若收敛,指明是绝对收敛还是

条件收敛. (8分)

5. 求 $\iint_D x dx dy$, 其中D由 $y = \sqrt{x}$, y = x 围成. (6分)

- 8. 对于幂级数 $\sum_{n=1}^{\infty} \frac{2}{n} x^n$, 试求: **(8分)**
- 1) 该级数的收敛域;

2) 该级数在收敛域上的和函数.

6. 交换积分次序 $\int_0^1 dx \int_x^1 e^{y^2} dy$, 并计算出结果. (6分)

9. 己知 $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x < 0$ 或 $x > \pi \end{cases}$, 对于给定的 $t \in (-\infty, +\infty)$, 计算 $\Phi(t) = \int_0^t f(x) dx \cdot (7 \%)$

平?

食物获取活动上分配精力。鲁滨逊的健康水平记为U,其收获的椰子和鱼

的数量分别记为 x 和 y ,三者之间满足 $U=x^{\frac{1}{3}}y^{\frac{2}{3}}$ 。受制于自身的技能与

自然资源,他能够获取的椰子和鱼在数量上满足 $x^2 + 2y^2 = 1$ 。试问:椰

子采摘量x和鱼的捕捞量y各自多少时,能为鲁滨逊带来最高的健康水

三、应用(共3小题,满分23分)

- 1. **(共8分)** 曲线 $y = x^2$, y = x 围成一封闭的平面图形, 试求:
- 1) 该图形的面积;

2) 该图形绕 x 轴旋转一周所成立体的体积.

- 2. **(7分)** 已知某地区居民各自的税前收入(单位:十万元)介于0到4之间。收入为 $x \in [0,4]$ 的居民占总人数的比例为 $-\frac{3}{32}(x^2-4x)$,并且需要缴纳个人所得税 $\frac{x}{5}$,试求该地区居民的税后人均收入.
- 3. (8 分) 漂流到孤岛上的鲁滨逊为了生存,需要在椰子采摘与捕鱼两项

《微积分二》期末模拟试卷三

一、填空(共5小题,每小题2分,满分10分)

- 1. 已知 f(x) 在区间 [a,b] 上连续, xe^x 是函数 f(x) 的一个原函数,则 $\int_0^1 f(x)dx = \underline{\qquad}.$
- 2. 已知 f(x) 在区间 [a,b] 上连续,则积分上限函数的导数 $\left(\int_a^x f(t) dt\right)$
- 3. 已知 f(x) 是 T 为最小正周期的连续的奇函数,则 $\int_0^T f(x)dx$
- 4. 将函数 e^x 在 x=0 处展开成 x 的幂级数后,其中 x^4 的系数等
- 5. 已知首项等于 5 的数列 $\{u_n\}$ 满足 $\lim_{n\to\infty} u_n = 0$,则级数 $\sum_{n=1}^{\infty} (u_{n+1} u_n)$

的和等于 .

二、选择题(共5小题,每小题2分,满分10分)

- 1. 反常积分 $\int_{1}^{+\infty} \frac{1}{r^{p}} dx$ 收敛的充要条件是(
- A. p < 1 B. p > 1 C. $p \le 1$
- D. $p \ge 1$
- 2. 由曲线 $y = \sqrt{x}$, 直线 x = 2 以及 x 轴所围成的平面图形绕 x 轴旋转
- 一周,所得旋转体的体积等于(
- B. π C. 2

D. 2π

- 3. $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+v^2} = ($
- A. 0
- C. 2
- D. 不存在
- 4. 下列命题中,正确的是().
- A. 若 f(x,y)在 (x_0,y_0) 处不连续,则 f(x,y)在 (x_0,y_0) 处不存在偏 导数.
 - B. 若 f(x, y) 在 (x_0, y_0) 处连续,则 f(x, y) 在 (x_0, y_0) 处存在偏导数.
- C. 若 f(x, y) 在 (x_0, y_0) 处不可微,则 f(x, y) 在 (x_0, y_0) 处不存在偏 导数.
- D. 若 f(x,y) 在 (x_0,y_0) 处不存在偏导数,则 f(x,y) 在 (x_0,y_0) 处不 可微.
 - 5. 下列命题中,**错误的**是().

3. 交换积分次序 $\int_0^{\frac{\pi}{6}} dy \int_{y}^{\frac{\pi}{6}} \frac{\cos x}{x} dx$, 并计算出结果.

- A. 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ 条件收敛,但不绝对收敛.
- B. 若幂级数 $\sum_{n=0}^{\infty} a_n (2x-1)^n$ 在 x = -1 处收敛,则在 x = 1 处绝对收敛.
- C. 若 $\frac{u_{n+1}}{u_n}$ < 1,则 $\sum_{n=1}^{\infty} u_n$ 收敛.
- D. 两个正项级数 $\sum_{n=1}^{\infty} u_n$ 、 $\sum_{n=1}^{\infty} v_n$ 满足 $\lim_{n\to\infty} \frac{u_n}{v_n} = 1$,则 $\sum_{n=1}^{\infty} v_n$ 与 $\sum_{n=1}^{\infty} u_n$ 同时

4. 求一阶线性微分方程 $y' + \frac{1}{x}y = \frac{1}{x^2}$ 的通解.

收敛或同时发散.

三、计算题(共5小题,每小题6分,满分30分)

1. 己知
$$f(t) = \begin{cases} e^{-t}, & t > 0 \\ 0, & t \le 0 \end{cases}$$
 , 求 $F(x) = \int_{-1}^{x} f(t) dt$.

5. 求由三元方程 $\ln(1+x+yz)=x+y+z$ 所确定的隐函数 z=z(x,y)的偏导数和全微分.

2. 设 $z = \sin(x^2 y)$, 求二阶混合偏导数 $\frac{\partial^2 z}{\partial y \partial x}$.

四、解答题(共3小题,满分24分)

1. 按照"分割、近似代替、求和、取极限"的四个步骤,计算由抛物线 $v=x^2$,直线 x=0, x=1 以及 x 轴所围成的平面图形的面积.(6分)

2. 利用极坐标计算二重积分 $\int_0^{+\infty}\int_0^{+\infty}e^{-(x^2+y^2)}dxdy$,并据此写出概率积分 $\int_0^{+\infty}e^{-x^2}dx$ 的值. (8分)

2) 该级数在收敛域上的和函数.

五、应用题(共2小题,每小题10分,满分20分)

- 1. 某企业为生产甲、乙两种型号的产品,投入固定成本 10 (万元)。设该企业生产甲、乙两种型号的产品分别为x (件)和y (件),且这两种产品的边际成本分别为 20+0.5x (万元/件)和 6+y (万元/件),两种产品的总收益为 $R(x,y)=-\frac{3}{4}x^2+22x+xy+9y$.
 - (1) 求甲、乙两种型号产品的总成本C(x, y)。

3. (10 分)对于幂级数 $\sum_{n=0}^{\infty} \frac{1}{n+2} x^n$, 试求:

1) 该级数的收敛域;

(2) 当甲、乙两种型号的产品分别为多少件时,总利润最大,并求出最大利润。

2. 投资者小王希望将 100 万人民币投资于股票市场,用于购买 A、B、C 三种股票,打算将 100x 万元、100y 万元、100z 万元分别用于购买 A、B、C 三种股票,即 (x,y,z) 为投资 A、B、C 三种股票的投资比例,也称为投资组合, $0 \le x,y,z \le 1$ 且 x+y+z=1。根据历史经验,对于给定投资 比例 (x,y,z) 的投资组合,,其风险可以用 $U=0.04x^2-0.04xy+0.09y^2+0.01z^2$ 来衡量。小王希望其投资的风险最小,请帮助小王确定其最优投资比例 (x,y,z) 为多少?

六、证明题(共1小题,满分6分)

设 f(x) 在 [a,b] 上连续, $\int_a^b f(x)dx = \int_a^b f(x)e^x dx = 0$,求证: f(x) 在 (a,b) 内至少存在两个不同的零点.

《微积分二》期末模拟试卷四

一、填空题(本题共5小题,每小题2分,满分10分)

- 1. 己知 F'(x) = f(x), F(2) = 2, F(1) = 1, 则 $\int_{2}^{1} f(x) dx =$ ______.
- 2. 极限 $\lim_{x\to 0} \frac{\int_0^x \sin t dt}{x^2} = \underline{\qquad}$.
- 3. 函数 z = f(x, y)可微,且满足 $dz = 3x^2ydx + x^3dy$,

则
$$f_x'(x, y) =$$
______.

- 4. 反常积分 $\int_0^{+\infty} e^{-x^2} dx =$ ______.
- 5. 某地居民沿着长度为1的街道 AB 分布,距路口 A 为 x 的居民的人口密度为 $p(x) \in [0,1]$,如下图所示。假设 p(x)可视为定义在 [0,1]上的连续函数.某超市开设在路口 A,则该地居民从住地到超市的平均距离等于______.

二、选择题(本题共4小题,每小题2分,满分8分)

- 1. 下列命题**正确的个数**是 [
- (A) 1 个 (B) 2 个 (C) 3 个 (D) 4 个

- 1) 若 f(x)连续于[a,b],则存在 $\xi \in (a,b)$,使得 $\int_a^b f(x)dx = f(\xi)(b-a)$.
- 2)若 f(x)在 [a,b]上连续,则 $\Phi(x) = \int_a^x f(t)dt$ 在 [a,b]上可导,且满足 $\Phi'(x) = f(x)$.
- 3)若f(x,y)在有界闭区域D上连续,则f(x,y)在D上必有最大最小值.
- 4)若 f(x,y)在 (x_0,y_0) 处的偏导数 $f'_x(x_0,y_0)$, $f'_y(x_0,y_0)$ 均存在,则 f(x,y)在 (x_0,y_0) 处可微.
- 2. 函数 $z = 3xy + x^3 y^3$ 的所有极小值点是 []
- (A) (0,0) (B) (1,-1) (C) (0,0)与(1,-1) (D) 以上选项都不对
- 3. 由曲线 $y = \sqrt{x}$, y = x 围成的平面图形面积等于 []
- (A) $\frac{1}{6}$ (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D) 1
- 4. 下列命题**正确的个数**是 [
- (A) $4 \uparrow$ (B) $3 \uparrow$ (C) $2 \uparrow$ (D) $1 \uparrow$
- 1) 若 f(x)连续于 $[0,+\infty)$ 且严格大于零,则 $\lim_{a\to+\infty}\int_0^a f(x)dx = +\infty$.
- 2) 若 f(x, y) 在 (x_0, y_0) 处的偏导数 $f'_x(x_0, y_0)$ 存在,则 $f(x, y_0)$ 在 $x = x_0$ 处连续.

值.

- 3) 若 f(x,y)在 (x_0,y_0) 处取得极大值,则 $f(x_0,y)$ 在 $y=y_0$ 处取得极大
- 3. $z = x^3 y x^2 + xy^2 e$, $\Re \frac{\partial^2 z}{\partial x \partial y}$.
- 4) 若 (x_0, y_0) 是可微函数 f(x, y)在有界闭区域 D 内部的唯一驻点且极小

值点,则 (x_0,y_0) 是f(x,y)在D上的最小值点.

三、计算题(共7小题,第1至6每题6分,第7小题8分,满分44分)

4. 设z = z(x, y)由方程 $xyz = \sin z$ 所确定,求dz.

1. $\exists \exists f(x) = \begin{cases} x^2, & x > 0 \\ 1 - x, & x \le 0 \end{cases}$, $\exists \int_{-1}^2 f(x) dx$.

5. 求 $\iint_{D} y dx dy$, 其中 D 由 x = 0, y = 1, y = x 围成.

2. 判定 $\int_{0}^{+\infty} 2^{-x} dx$ 的敛散性. 若收敛, 求其值.

6.
$$\iint_{D} \sqrt{x^2 + y^2} \, dx dy, \quad \sharp \oplus D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}.$$

7. 甲、乙两种商品给消费者带来的主观满足水平("效用")记为U. 当这两种商品的消费量分别为x, y 时, $U = x^3 y^2$. 已知甲、乙两种商品的单价分别为20元和10元,消费者可支配的收入为1000元. 试问: 消费者分别购买多少数量的甲、乙商品,可最大化自身效用?

四、利用全微分计算 $(1.015)^{2.013}$ 的近似值(写出计算过程,结果保留至小数点后两位). **(8分)**

五、(本题共2小题,每小题5分,满分10分)

1. 已知 f(x) 是 \Re 上的连续函数,试证: $\int_0^4 x f(x) dx = 2 \int_0^2 x^3 f(x^2) dx$.

2. 设f(x)的导函数f'(x)在 \Re 上连续, $g(x) = \int_a^x (x-t)f'(t)dt$,a 为给定的常数. 试求g'(x).