

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Robótica Móvil

Clave:	Semestre:	Eje temático:	Eje temático:			
	5-8	Imágenes y Ambiente	Imágenes y Ambientes Virtuales e Inteligencia Artificial 10			
Carácte	r: Optativa	ŀ	Horas por semana		Total de horas	
Tipo: Teórico-Práctica		Teoría:	Práctica:			
		4	2	6	96	
Modalid	lad: Curso	Duración del progra	Duración del programa: Semestral			

Asignatura con seriación indictiva antecedente: Matemáticas Discretas, Estructuras de Datos, Modelado y Programación, Probabilidad I, Organización y Arquitectura de Computadoras.

Asignatura con seriación indictiva subsecuente: Ninguna

Objetivos generales:

Conocer el campo de desarrollo de la robótica móvil y las principales aportaciones que puede realizar un científico de la computación.

Aplicar algoritmos en gráficas a problemas de navegación robótica. Motivar el estudio de algoritmos y su análisis riguroso mediante su aplicación al campo de la robótica.

Utilizar técnicas de representación del conocimiento de Inteligencia Artificial para que el robot pueda planear sus acciones.

Estudiar técnicas de interacción entre robots y humanos en ambientes cotidianos (hogar, hospitales, museos, etc.)

Estudiar la implementación de los algoritmos estudiados en plataformas robóticas virtuales y físicas.

Conocer los eventos académicos internacionales relevantes e impulsar la participación en ellos.

l locial and	Temas		Horas	
Unidad			Prácticas	
	Introducción: Robots, robótica y robótica móvil	2	1	
I	Arquitecturas: Hardware y software	8	4	
Ш	Mapas	3	2	
IV	Navegación	10	6	
V	Interfaz humano-robot	16	8	
VI	Representación interna del mundo	8	4	
VII	Lenguaje natural	4	2	
VIII	Planeación	12	6	
	Total de horas:	63	33	
Suma total de horas:			96	

Contenido temático			
Unidad	Tema		
I Introducción: Robots, robótica y robótica móvil			

l.1	¿Qué es un robot?					
1.2	Componentes básicos de un robot					
I.3	Tipos de arquitecturas					
II Arquited	Il Arquitecturas: Hardware y software					
l.1	Sensores y actuadores					
1.2	Introducción al control de manipuladores					
1.3	Arquitectura de software para robots					
1.4	Ambientes de programación para robots móviles: Sistema operativo para robots (ROS)					
1.5	Uso de simuladores y control de robots físicos					
III Mapas						
III.1	Descomposición del espacio en celdas					
III.2	Mapas geométricos					
III.3	Representación de los obstáculos					
III.4	Cuantización vectorial					
III.5	Diagramas de voronoi					
III.6	Mapas topológicos					
III.7	Mapas probabilísticos					
IV Navega	ación					
IV.1	Ecuaciones de movimiento: espacio de configuraciones, grados de libertad, posiciones,					
	orientaciones y trayectorias					
IV.2	Modelado de sensores, filtros de Kalman					
IV.3	Aprendizaje de modelos dinámicos con redes neuronales					
IV.4	Navegación como recorrido en una gráfica (robótica clásica)					
IV.5	Navegación reactiva con campos potenciales (robótica reactiva)					
IV.6	Navegación usando Cadenas de Markov Ocultas (HMM)					
IV.7	Localización y creación de mapas simultáneamente (SLAM)					
V Interfaz	humano-robot					
V.1	Introducción a visión por computadora para robots					
V.2	Introducción a reconocimiento de voz					
VI. Repres	VI. Representación interna del mundo					
VI.1	Base de conocimiento					
VI.2	Representación procedimental					
VI.3	Estructuras de ranura y relleno: Dependencia conceptual, marcos y guiones					
VII. Introd	ucción al procesamiento de lenguaje natural					
VII.1	Procesamiento sintáctico					
VII.2	Análisis semántico					
VII.3	Incorporación de conocimiento a partir del lenguaje					
VIII. Planeación						
VIII.1	Planeación clásica: búsqueda en el espacio de estados					
VIII.2	Gráficas de planeación					
VIII.3	Planeación con órdenes parciales					
VIII.4	Planeación jerárquica					
VIII.5	Planeación bajo incertidumbre					

Bibliografía básica:

- 1. Siegwart, Nourbakhsh, Scaramuzza, Introduction to Autonomous Mobile Robots, 2ed. MIT Press, 2011.
- 2. Davies, Computer and Machine Vision, Theory, Algorithms, Practicalities, 4ed. Academic Press, 2012.
- 3. Ghallab, Nau, Traverso, Automated Planning, Theory and Practice, Morgan Kaufmann Publishers, 2004.
- 4. Rich, Knight, Nair, Artificial Intelligence, 3ed. McGrawHill, 2009.

Bibliografía complementaria:

- 1. Choset, Lynch, Kantor, Burgard, Kavraki, Thrun, *Principles of Robot Motion*, *Theory, Algorithms, and Implementations*, MIT Press, 2005.
- 2. Lytinen, *Conceptual Dependency and its Decendants*, Computers Math. Applic. Vol. 23, No. 2-5, pp. 51-73, 1992.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	()
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	()	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	()
Trabajo de investigación	(X)	Asistencia	()
Prácticas de taller o laboratorio	0	Proyectos de programación	(X)
Prácticas de campo	0	Proyecto final	(X)
-		Seminario	
Otras:		Otras:	

Perfil profesiográfico: Egresado preferentemente de la Licenciatura en Ciencias de la Computación con especialidad en robótica móvil inteligente, o egresado de Ingeniería en Computación o afín, con posgrado en Ciencias de la Computación en el área correspondiente. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.