6.2 ОБОРУДОВАНИЕ Версия 2.2

#### 6.2.1.1

Цифровое и аналоговое RAS-, WAN- и связное оборудование, прежде всего, делят на:

- 1. *Абонентское* -- CPE (Customer Premises Equipment) -- устанавливают у потребителя услуг.
- 2. Провайдерское -- SPE (Service Provider Equipment) -- устанавливают у поставщика услуг и интегрируют в инфраструктуру определенного уровня (например, городского).

#### 6.2.1.2

Зоны ответственности абонента и провайдера разграничивает демаркационная линия (demarcation point).

Где проходит демаркационная линия зависит от законодательства той или иной страны.

Физический канал между граничащими СРЕ и SPE принято называть «последней милей» («last mile») или «локальной петлей» («local loop»).

#### 6.2.1.3

К абонентскому оборудованию относят, в первую очередь, различные модемы, различные телефонные аппараты и офисные АТС. Хотя на стороне абонента может быть и достаточно сложная инфраструктура.

К высокоспециализированному провайдерскому оборудованию относят, в первую очередь, различные коммутаторы и модули, устанавливаемые в маршрутизаторы и ATC.

#### 6.2.2.1

Основные критерии классификации модемов:

- 1. Технология и СрПД.
- 2. Для коммутируемой либо выделенной линии.
- 3. Аналоговые или цифровые.
- 4. Аппаратные или программные.
- 5. Внешние (RS-232, USB, Ethernet и другие) или внутренние (PCI и другие).

6.3 ПОСЛЕДОВАТЕЛЬНЫЕ СЕТЕВЫЕ ИНТЕРФЕЙСЫ Версия 2.4

## 6.3.1.1 Отличительной особенностью RASes и WANs является широкое применение последовательных сетевых интерфейсов различной пропускной способности -- вплоть до около 50 Mbit/s.

#### 6.3.1.2

Большинство стандартов в области последовательных интерфейсов разработаны тремя организациями: ANSI/TIA/EIA (американские, продолжение серии RS -- Recommended Standards), ITU-T (международные, продолжение стандартов ССІТТ; серии V и X плюс G, M, T) и ISO/IEC (международные).

#### 6.3.1.3a

Основные моменты, связанные с последовательными интерфейсами:

- -- в стандартах четко разделены роли DCE и DTE;
- -- при непосредственном соединении двух последовательных сетевых интерфейсов (третьего или более высоких уровней) имеют смысл только подключения DTE -- DCE и DTE -- DTE, при этом в первом случае применяют «прямые» кабели, а во втором -- кросс-кабели;
  - -- DTE и DCE отличаются формой контактов: М и F соответственно;
- -- практически ни один из протоколов нельзя ассоциировать только с одним видом разъемов;
- -- список цепей для взаимодействия DCE и DTE унифицирован и функционально полон;
- -- цепи могут быть как несбалансированными (unbalanced, single-ended), так и сбалансированными (balanced, differential);
- -- благодаря более эффективному заполнению полосы пропускания, в СПД значительно чаще применяют именно синхронный, а не асинхронный режим;

#### 6.3.1.3b

- -- в синхронном режиме синхронизация, как правило, осуществляется не путем вставки в информационные цепи синхробайтов, а путем тактирования через отдельные цепи;
- -- в нормальной ситуации источником тактирования является DCE, но иногда эту роль возлагают на DTE (например, при подключениях DTE--DTE);
- -- тактовый генератор обычно один, но для тактирования предусмотрены несколько независимых цепей: при передаче от DCE, при приеме от DCE, при передаче от DTE, при приеме от DTE; как альтернативу, допускают внешнее тактирование; возможно побитное и побайтное тактирование;
- -- последовательные интерфейсы образуют не только point-to-pointтопологии, но и различные point-to-multipoint-топологии;
- -- как и положено, компьютерная информация передается по последовательным интерфейсам в виде пакетов (кадров), при этом возможны канальное кодирование, канальное сжатие и канальное фрагментирование;
- -- отличительной особенностью последовательных интерфейсов является отсутствие MAC-адресов.

#### 6.3.1.4

Ключевые стандарты: TIA-232, TIA-422, TIA-423, TIA-449, TIA-530, V.35, X.21 и HSSI (High Speed Serial Interface).

Основные разъемы: DE-9, DA-15, DB-25, DC-37, LFH60, ISO 2593 и SS26.

#### Pin Assignments 25-Pin Style



#### [OMEGA Engineering]

#### 6.3.1.6





[Cisco]

При применении топологий point-to-point в RASes и WANs значительное место отведено протоколу PPP (Point-to-Point Protocol) (RFC 1661).

Протокол PPP пришел на смену протоколу SLIP (Serial Line IP).

PPP -- это очень гибкий протокол второго уровня, который позволяет устанавливать канальное point-to-point-соединение. Затем это соединение может использоваться практически любыми протоколами третьего уровня, причем «одновременно» (SLIP поддерживает только IP).

### 6.3.2.2 Над РРР концентрируется очень большое количество протоколов. Из четырех групп можно выделить две основные: 1. LCPs (Link-layer Control Protocols). 2. NCPs (Network Control Protocols).



Собственно LCP (Link Control Protocol) обеспечивает создание, конфигурирование, опциональное тестирование, контроль состояния и закрытие соединения.

Под конфигурированием понимают согласование опций инкапсуляции, то есть согласование максимальной длины пакетов, способа аутентификации, способа сжатия и другое. Тем самым происходит адаптация к конкретной СрПД.

Работа LCP базируется на механизме запросов-подтверждений.

Набор NCPs позволяет адаптировать подготовленное соединение к нуждам протоколов третьего уровня и включает: IPCP (IP Control Protocol), IPv6CP, IPXCP, CCP (Compression CP) и так далее.

Например, IPCP позволяет согласовать возможность сжатия заголовков пакетов и правило назначения IP-адреса.

РРР поддерживает два алгоритма аутентификации на канальном уровне:

- 1. PAP (Password Authentication Protocol) -- «двойное рукопожатие», разовый обмен незашифрованными PAP-сообщениями.
- 2. CHAP (Challenge Handshake Authentication Protocol) -- «тройное рукопожатие», периодический обмен зашифрованными СНАР-сообщениями.

Еще две серьезные возможности РРР:

- 1. Multilink -- задейстрование соединением ресурсов нескольких параллельных физических каналов (фрагментация, перемежение, балансировка нагрузки и другое).
  - 2. Bridging -- поддержка мостов.

## 6.3.3.1a Пример настройки интерфейса последовательного сетевого маршрутизатора Cisco (по умолчанию считается DTE).

#### 6.3.3.1b

```
Router(config) #interface se0/0/0
Router(config-if) #clock rate 64000
Router(config-if) #encapsulation ppp
Router(config-if) #ppp multilink
Router(config-if) #exit
```

# 6.3.3.2a Примеры настройки РАР- и СНАР-аутентификации между двумя маршрутизаторами.

#### 6.3.3.2b

```
R1(config) #username router2 password cisco
R1(config)#interface se0/0/1
R1(config-if)#encapsulation ppp
R1(config-if) #ppp authentication pap
R1(config-if)#exitë
R2(config) #interface se0/0/0
R2(config-if)#encapsulation ppp
R2(config-if) #ppp pap sent-username router2 password cisco
R2(config-if)#exit
R1(config) #username R2 password cisco
R1(config)#interface se0/1/0
R1(config-if)#encapsulation ppp
R1(config-if) #ppp authentication chap
R1(config-if)#exit
R2(config) #username R1 password cisco
R2(config) #interface se0/1/1
R2(config-if)#encapsulation ppp
R2(config-if) #ppp authentication chap
R2(config-if)#exit
```

| Status Line         | Possible Condition                                                 |
|---------------------|--------------------------------------------------------------------|
| Serial x is down,   | ->The router is not sensing a CD signal, which means the CD is     |
| line protocol is    | not active.                                                        |
| down (DTE mode)     | ->A WAN carrier service provider problem has occurred, which       |
|                     | means the line is down or is not connected to CSU/DSU.             |
|                     | ->Cabling is faulty or incorrect.                                  |
|                     | ->Hardware failure has occurred ( <u>CSU/DSU</u> ).                |
| Serial x is         | ->The router configuration includes the shutdown interface         |
| administratively    | configuration command.                                             |
| down,               | ->A duplicate IP address exists                                    |
| line protocol is    |                                                                    |
| down                |                                                                    |
| Serial x is up,     | ->A high error rate has occurred due to a WAN service provider     |
| line protocol is    | problem.                                                           |
| down (disabled)     | ->A CSU or DSU hardware problem has occurred.                      |
|                     | ->Router hardware (interface) is bad.                              |
| Serial x is up,     | ->A local or remote router is misconfigured.                       |
| line protocol is    | ->Keepalives are not being sent by the remote router.              |
| down (DTE mode)     | ->A leased-line or other carrier service problem has occurred,     |
|                     | which means a noisy line or misconfigured or failed switch.        |
|                     | ->A timing problem has occurred on the cable, which means serial   |
|                     | clock transmit external (SCTE) is not set on CSU/DSU. SCTE is      |
|                     | designed to compensate for clock phase shift on long cables.       |
|                     | ->A local or remote <u>CSU/DSU</u> has failed.                     |
|                     | ->Router hardware, which could be either local or remote, has      |
|                     | failed.                                                            |
| Serial x is up,     | ->The clockrate interface configuration command is missing.        |
| line protocol is    | ->The DTE device does not support or is not set up for SCTE        |
| down (DCE mode)     | mode (terminal timing).                                            |
|                     | ->The remote CSU or DSU has failed.                                |
| Serial x is up,     | ->A loop exists in the circuit. The sequence number in the         |
| line protocol is up | keepalive packet changes to a random number when a loop is         |
| (looped)            | initially detected. If the same random number is returned over the |
|                     | link, a loop exists.                                               |
| Serial x is up,     | ->This is the proper status line condition.                        |
| line protocol is up |                                                                    |

Состояния последовательных сетевых интерфейсов Cisco [Cisco]