Semantics for coinductive structures in stochastic processes

Infinite product measures in quasi-Borel spaces

Ohad Kammar 1 , **Seo Jin Park^2**, Sam Staton 2

¹University of Edinburgh, ²University of Oxford

CALCO 2025 Glasgow, UK - June 2025

Overview

1. Random streams - a coalgebraic interpretation

2. Quasi-Borel spaces

3. Infinite product measures in QBS

Compositional Probability [Giry, 1982]

Monadic probabilistic programs define probabilistic models.

Space and *P* may be:

- Polish spaces and Borel/Radon measures
- Standard Borel spaces and probability measures

This talk:

quasi-Borel spaces (QBS) and probability distributions [Heunen et al., 2017]

Stochastic Processes

Many stochastic processes are generated step by step.

Stochastic Processes as Random Streams

Deterministic streams	$B^{\mathbb{N}}$	Universal property [Rutten, 2000]: final coalgebra of $X \mapsto B \times X$ step : $B^{\mathbb{N}} \xrightarrow{\langle head, tail \rangle} B \times B^{\mathbb{N}}$
Random streams	$P(B^{\mathbb{N}})$	$B^{\mathbb{N}}$ is final coalgebra in Kleisli (P) in QBS for standard-Borel spaces, but it is open in general

 $B^{\mathbb{N}}$ is the final coalgebra of $X \mapsto B \times X$ in QBS:

 $\mathsf{step}: B^{\mathbb{N}} \xrightarrow{\langle \mathsf{head}, \mathsf{tail} \rangle} B imes B^{\mathbb{N}}$

 $B^{\mathbb{N}}$ is the final coalgebra of $X \mapsto B \times X$ in QBS:

$$\mathsf{step}: B^{\mathbb{N}} \xrightarrow{\langle \mathsf{head}, \mathsf{tail} \rangle} B \times B^{\mathbb{N}}$$

Question: Is $B^{\mathbb{N}}$ also the final coalgebra of $X \mapsto B \times X$ in Kleisli(P)? For all Kleisli morphisms

$$S \xrightarrow{f} P(B \times S)$$

does there exist a unique Kleisli morphism

$$\mathsf{chain}(f): S o P(B^\mathbb{N})$$

such that

$$egin{array}{ccc} S & \stackrel{f}{\longrightarrow} B imes S \ ext{chain}(f) & & & \downarrow id imes ext{chain}(f) \ B^{\mathbb{N}} & \stackrel{ ext{step}}{\longrightarrow} B imes B^{\mathbb{N}} \end{array}$$

As a probabilistic program (LazyPPL - Haskell): chain :: (S -> Prob (B,S)) -> S -> Prob (Stream B) chain f s = do {(b,s') <- f s;

Iteratively applies f in an infinite chain

$$f: S \to P(B \times S)$$

$$S \xrightarrow{f} b_1 \xrightarrow{f} b_2 \xrightarrow{f} f$$

$$S \xrightarrow{f} S_3 \xrightarrow{f} S_3 \cdots$$

$$Chain(f): S \to P(B^N)$$

$$S \xrightarrow{chain(f)} b_1 \xrightarrow{b_2} b_3 \cdots$$

Question: Is chain(f) well-defined for any S and f?

return (b:bs)}

bs <- chain f s':

Infinite Product Measures in QBS

This talk: initial progress in proving that for all qbs B, chain $(f): S \to P(B^{\mathbb{N}})$ is a well-defined qbs morphism for

$$S = (PB)^{\mathbb{N}}$$
 $f: (PB)^{\mathbb{N}} \to P(B \times (PB)^{\mathbb{N}})$
 $(p_n)_{n \geq 1} \mapsto p_1 \otimes \delta(p_2, p_3, ...)$

Then chain(f) describes the stateless processes.

$$(PB)^{\mathbb{N}} \xrightarrow{(p_n)_{n \geq 1} \mapsto p_1 \otimes \delta_{(p_2, p_3, \dots)}} B \times (PB)^{\mathbb{N}}$$

$$\downarrow \operatorname{chain}(f) \qquad \qquad \downarrow \operatorname{id} \times \operatorname{chain}(f)$$

$$B^{\mathbb{N}} \xrightarrow{\operatorname{step}} B \times B^{\mathbb{N}}$$

$$\operatorname{chain}(f)(p_1, p_2, p_3, \dots) = p_1 \otimes \operatorname{chain}(f)(p_2, p_3, \dots)$$

Program interpretation:

prod :: Stream (Prob b)
$$\rightarrow$$
 Prob (Stream b) prod (p:ps) = **do** {x <- p; xs <- prod ps; **return** (x:xs)} Intuition: the sequence of measures $(p_n)_{n\geq 1}$ are independently stitched together.

Application: Brownian motion in QBS

- [Karatzas and Shreve, 1998]: approximate Brownian motion by incrementally adding up a sequence of independent random functions.
- In QBS, can coinductively generate a random stream of functions

$$P((\mathbb{R}^{[0,T]})^{\mathbb{N}})$$

approximating Brownian motion.

Overview

1. Random streams - a coalgebraic interpretation

2. Quasi-Borel spaces

3. Infinite product measures in QBS

Higher order functions in probability

Theorem ([Aumann, 1961])

The category of measurable spaces is not Cartesian-closed.

Hence measure spaces cannot give semantics to higher-order PPLs.

Solution: Quasi-Borel spaces (QBS)

Random elements in X are represented by $\Omega \to X$ where $\Omega = [0,1].$

- Measurable spaces use σ -algebras to implicitly specify which $\Omega \to X$ to admit as random elements.
- Quasi-Borel spaces axiomatise the admissible random elements $\Omega \to X$.

Quasi-Borel Spaces [Heunen, K, S, Yang, 2017]

Definition

A quasi-Borel space (X, M_X) is:

- X: set of points
- $M_X \subset [\Omega \to X]$: set of admissible random elements, such that:
 - it contains all the constant functions,
 - $\alpha \in M_X$, $f : \Omega \to \Omega$ measurable $\implies \alpha \circ f \in M_X$,
 - $\Omega = \bigcup_{i \in \mathbb{N}} S_i$ is Borel partition, $\alpha_i \in M_X$, $i \in \mathbb{N} \implies \lambda r$.case r of $r \in S_i \to \alpha_i(r) \in M_X$.

where $\Omega = [0, 1]$.

Quasi-Borel Spaces [Heunen, K, S, Yang, 2017]

Definition

A quasi-Borel space (X, M_X) is:

- X: set of points
- $M_X \subset [\Omega \to X]$: set of admissible random elements, such that:
 - it contains all the constant functions,
 - $\alpha \in M_X$, $f: \Omega \to \Omega$ measurable $\implies \alpha \circ f \in M_X$,
 - $\Omega = \bigcup_{i \in \mathbb{N}} S_i$ is Borel partition, $\alpha_i \in M_X, i \in \mathbb{N} \implies \lambda r$.case r of $r \in S_i \to \alpha_i(r) \in M_X$.

where $\Omega = [0, 1]$.

Definition

A map $f: X \to Y$ is a **qbs morphism** if

$$(\Omega \xrightarrow{\alpha} X) \in M_X \implies (\Omega \xrightarrow{\alpha} X \xrightarrow{f} Y) \in M_Y$$

Quasi-Borel Spaces [Heunen, K, S, Yang, 2017]

Quasi-Borel spaces form a category QBS.

Properties of QBS:

- QBS is Cartesian-closed.
- QBS contains standard-Borel spaces as a full subcategory.
- QBS supports a strong commutative probability monad suitable for probabilistic programming.

QBS Probability Monad

$$\Sigma_{M_X} := \{ U \subset X \mid \forall \alpha \in M_X. \ \alpha^{-1}U \in \Sigma_{\Omega} \}$$

Fix a probability measure μ on $(\Omega, \Sigma_{\Omega})$. Then $\forall \alpha \in M_X$,

$$egin{aligned} oldsymbol{lpha_*\mu} : \Sigma_{M_X} &
ightarrow [0,1] \ U &
ightarrow \mu(lpha^{-1}U) \end{aligned}$$

is a probability measure on Σ_{M_X} , called the **pushforward measure** of α w.r.t μ .

$$\int_X k \ d\alpha_* \mu = \int_\Omega (k \circ \alpha) \ d\mu$$

 $\alpha, \beta \in M_X$ are **equal in law** if $\alpha_* \mu = \beta_* \mu$ as measures on Σ_{M_X} .

$$PX := M_X / \sim \text{ where } \sim = \text{ law equality}$$

Random Functions

- Random functions are distributions on functions.
 - ullet e.g. Brownian motion, stochastic differential equations (random functions $[0,\infty) o\mathbb{R}$).

- Defined as parametrised family of random variables $(B_t)_{t\geq 0}$, $B_t:\Omega\to\mathbb{R}\ \forall t\geq 0$.
- Random functions $X \to Y$ are explicitly modelled by $P(X^Y)$ in QBS.
- Cartesian-closure of QBS allows us to venture beyond standard probability to directly use function spaces.

Overview

1. Random streams - a coalgebraic interpretation

2. Quasi-Borel spaces

3. Infinite product measures in QBS

Defining $\operatorname{Ind} B^{\mathbb{N}}$

Characterising independence in QBS:

1. every finite prefix is independent of its suffix

2. satisfies a 0-1 law

Defining Ind $B^{\mathbb{N}}$

The strength and commutativity of *P* gives the operation

$$\otimes: PX \times PY \rightarrow P(X \times Y)$$

Hence for all finite n we have an operation

$$(PB)^n o P(B^n) \ (p_1,...,p_n) \mapsto p_1 \otimes \cdots \otimes p_n$$

Independence for infinite *n*?

QBS Products

The sigma algebra for the QBS product cannot be characterised by the product sigma algebra.

$$\bigotimes_n \Sigma_{M_{X_n}} \subsetneq \Sigma_{M_{\prod_n X_n}}$$

Defining Ind $B^{\mathbb{N}}$

Definition (0-1 law)

For all $n \geq 1$, define the sub sigma algebras of $\Sigma_{B^{\mathbb{N}}}$:

$$\Sigma_n := \{ \prod_{i=1}^n X_i \times S \mid S \in \Sigma_{\prod_{i \geq n+1} X_i} \}$$

 $\bigcap_{n\geq 1} \Sigma_n$ is called the **tail sigma algebra**. Say E is a **tail event** if $E \in \bigcap_{n\geq 1} \Sigma_n$. $p \in P(B^{\mathbb{N}})$ satisfies the **0-1 law** if

$$\forall E \in \bigcap_{n \geq 1} \Sigma_n, \ p(E) \in \{0, 1\}$$

 $\bigcap_{n\geq 1} \Sigma_n$ is the sigma algebra of events invariant under finitely many changes.

Defining Ind $B^{\mathbb{N}}$

Definition

Define $\operatorname{Ind} B^{\mathbb{N}} \subset P(B^{\mathbb{N}})$ as the subspace consisting of those measures $p \in P(B^{\mathbb{N}})$ such that:

1. There exist $\alpha_i \in M_{X_i}$, $i \geq 1$ such that for all n,

$$p = \alpha_{1*}\mu \otimes ... \otimes \alpha_{n*}\mu \otimes (p \triangleright \pi_{n+1,n+2,...})$$

2. p satisfies the 0-1 law.

Constructing prod : $(PB)^{\mathbb{N}} \to \operatorname{Ind} B^{\mathbb{N}}$

Package a sequence of admissible random elements $(\alpha_n : \Omega \to B)_{n \ge 1}$ into a single admissible random element for $\operatorname{Ind} B^{\mathbb{N}} \subset P(B^{\mathbb{N}})$:

$$\begin{array}{c} \boxed{\Omega \cong \Omega^{\mathbb{N}} \xrightarrow{\alpha_1 \times \alpha_2 \times \cdots} B^{\mathbb{N}}} \\ (\Omega \cong \Omega^{\mathbb{N}} \ \cdots \Omega = [0,1] \text{ is standard-Borel}) \end{array}$$

$$\begin{array}{l} \operatorname{ind}: (\mathcal{B}^{\Omega})^{\mathbb{N}} \to (\mathcal{B}^{\mathbb{N}})^{\Omega} \\ (\alpha_{n})_{n \geq 1} \mapsto (\Omega \cong \Omega^{\mathbb{N}} \xrightarrow{\alpha_{1} \times \alpha_{2} \times \cdots} \mathcal{B}^{\mathbb{N}}) \end{array}$$

depends only on law $\alpha_{i*}\mu$.

Theorem (Infinite product measures in QBS)

There exists a unique morphism prod : $(PB)^{\mathbb{N}} \to \operatorname{Ind} B^{\mathbb{N}}$ such that the diagram below commutes:

$$(B^{\Omega})^{\mathbb{N}} \xrightarrow{\text{law}^{\mathbb{N}}} (PB)^{\mathbb{N}}$$

$$\text{lawoind} \downarrow \qquad \qquad \qquad \downarrow^{(p_n)_n \mapsto} \\ \downarrow^{(p_1 \otimes \dots \otimes p_n)_n} \\ \text{Ind} B^{\mathbb{N}} \xrightarrow[p \mapsto (p \bowtie \pi_1, \dots, n)_n]{} \prod_{n \ge 1} P(B^n)$$

where

$$\mathsf{law}: B^\Omega \to PB$$
$$\alpha \mapsto \alpha_* \mu$$

Theorem (0-1 law for Ind)

For all $\vec{p} \in (PB)^{\mathbb{N}}$, $\operatorname{prod}(\vec{p})(E) \in \{0,1\}$ for all tail events E.

I.I.D Sequences in QBS

We also get an analogue of **i.i.d** sequences in QBS as a corollary.

$$\mathsf{iid}: PB \to \mathsf{Ind}B^{\mathbb{N}}$$
$$p \mapsto \mathsf{prod}(p, p, ...)$$

 $PB \xrightarrow{\text{iid}} \operatorname{Ind} B^{\mathbb{N}} \hookrightarrow P(B^{\mathbb{N}})$ gives semantics to the program

```
iid :: Prob b \rightarrow Prob (Stream b)
iid p = do {x <- p; xs <- iid p; return (x:xs)}
```

Theorem (Hewitt-Savage 0-1 law)

For all $p \in PX$, iid(p) satisfies the 0-1 law.

Future Work

- Full final coalgebra theorem for streams in Kleisli(P) in QBS?
- Analogue of Ionescu-Tulcea theorem [Kallenberg, 2002] for Kleisli(P) in QBS?

Summary

• Coalgebraic picture of discrete-time stochastic processes in QBS: $B^{\mathbb{N}}$ as the final $(B \times -)$ -coalgebra in Kleisli(P).

$$\mathsf{chain}(f): \mathcal{S} \to P(\mathcal{B}^\mathbb{N})$$

• Infinite product measures in QBS:

$$\mathsf{Ind} B^\mathbb{N} \subset P(B^\mathbb{N}), \; \mathsf{prod} : (PB)^\mathbb{N} \to \mathsf{Ind} B^\mathbb{N}$$

```
prod :: Stream (Prob b) \rightarrow Prob (Stream b)
prod (p:ps) = do {x <- p; xs <- prod ps; return (x:xs)}
```

• Applications: random stream of functions $P((\mathbb{R}^{[0,T]})^{\mathbb{N}})$ approximating Brownian motion in QBS.

References I

Aumann, R. J. (1961).

Borel structures for function spaces.

Illinois Journal of Mathematics, 5:614-630.

Giry, M. (1982).

A categorical approach to probability theory.

In Banaschewski, B., editor, *Categorical Aspects of Topology and Analysis*, pages 68–85, Berlin, Heidelberg. Springer Berlin Heidelberg.

Accessed on January 20, 2025.

Heunen, C., Kammar, O., Staton, S., and Yang, H. (2017).

A convenient category for higher-order probability theory.

In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), page 1–12. IEEE.

Accessed on February 19, 2025.

References II

Kallenberg, O. (2002).

Foundations of modern probability.

Probability and its Applications (New York). Springer-Verlag, New York, second edition.

Karatzas, I. and Shreve, S. E. (1998).

Brownian Motion, pages 47-127.

Springer New York, New York, NY.

Accessed on February 12, 2025.

Rutten, J. (2000).

Universal coalgebra: a theory of systems.

Theoretical Computer Science, 249.