人工智慧與金融科技實務

20191030

Linear Regression

- Signal generator
 - ightharpoonup F1(t) = 0.063 t³ 5.284 t² + 4.887 t + 412 + noise
- Problem settings
 - ▶ Input: a series of F1 signal with t in [0.0 100.0]
 - Prior knowledge: F1 is a linear equation of t
 - ► Goal: Reverse the original equation of F1(t)

Non-linear cases

- Signal generator
 - ightharpoonup F2(t) = 0.6 t^{1.2} + 100 cos(0.4t) + noise;
- Assume
 - ► Given: $F2(t) = A^*t^B + C^*cos(D^*t) + noise$;
 - ► Find the best parameters A,B,C, and D
- Fitness function
 - ► Energy(A,B,C,D) = $| F2(t) (A*t^B + C*cos(D*t)) |$
- Exhaustive search
 - ► A = -5.11 : 0.01 : 5.12
 - ► B = -5.11 : 0.01 : 5.12
 - C = -511:512
 - ► D = -5.11 : 0.01 : 5.12

Exhaustive Search

- Experiment 1
 - Fix A,B,C to ground truth and estimate the fitness under different D settings
 - ▶ Plot the curve where Y axis is the Energy and X axis is the D value
- Experiment 2
 - ► Fix B,D and estimate the fitness under different combination of A and C settings
 - ▶ Plot the surface

Problem

- Exhaustive Search
 - ► It requires 2⁴⁰ function calls
 - ▶ If the computational time of experiment 2 in previous slides is around 30 seconds, to examine 4 variables requires 364 days
- Solution
 - Model the candidate solution and apply evolutionary algorithm, such as genetic algorithm, to find the optimal solution.

Genetic algorithm

- ▶ 定義基因
 - ▶ For example, 在我們的問題中使用一組40 bits code來代表4個變數
- ▶ 初代
 - ▶ 利用亂數或expert knowledge產生一群初始的族群
- ▶ 複製 (reproduction)
 - ▶ 計算fitness
 - ▶ 利用fitness決定適者生存
 - ▶ 輪盤式選擇 (roulette wheel selection)
 - ▶ 依照fitness分割輪盤大小,面積比例越大越容易被選中
 - ▶ 競爭式選擇 (tournament selection)
 - ▶ 只留fitness最高的一小群人survive,淘汰適應不佳的

Genetic algorithm

- ➤ 交配 (crossover)
 - ▶ 單點交配
 - ▶ 此點以後的基因互換
 - ▶ 雙點交配
 - ▶ 兩點間的基因互換
 - ▶ 遮罩交配
 - ▶ 產生一個0/1 mask或filter · mask為1的bit互換
- > 突變
 - ▶ 少數bit 0->1或1->0

Exercise

2019.10.30

Financial Application (Bubble modeling)

資料來源:國泰君安證券研究所

log-periodic power laws (LPPL) for bubble modeling

$$\ln[p(t)] \approx A + B(t_c - t)^{\beta} \{1 + C\cos[\omega \ln(t_c - t) + \phi]\},$$
 (12)

where A>0 is the value of $[\ln p(t_c)]$ at the critical time, B<0 is the increase in $[\ln p(t)]$ over the time unit before the crash if C were to be close to zero, $C\neq 0$ is the proportional magnitude of the oscillations around the exponential growth, $0<\beta<1$ should be positive to ensure a finite price at the critical time t_c of the bubble and quantifies the power law acceleration of prices, and ω is the frequency of the oscillations during the bubble, while $0<\phi<2\pi$ is a phase parameter. Expression (12), which is known as the LPPL, is the fundamental equation that describes the temporal growth of prices before a crash and it has been proposed in different forms in various papers (e.g. Sornette 2003a, Lin, Ren, and Sornette 2009 and references therein). We remark that A, B, C and ϕ are just units distributions of betas and omegas, as described in Sornette and Johansen (2001) and Johansen (2003), and do not carry any structural information.

- Two step algorithm
 - \triangleright Each gene includes 4 non-linear variables t_c, β, ω, Φ
 - ▶ Use linear regression to estimate best A, B, C
- For each parameter setting, we can measure the fitness between synthetic signals and real financial time-series data.
- Apply genetic algorithm to approximate the optimal solution by minimizing the average fitness error between time 0 and t_c .
- Homework:
 - ► LPPL
 - ▶ Find the optimal LPPL parameters, suppose t_c in [1151,1166]
 - ▶ Plot the synthetic signals and real time-series data with different colors in a figure