머신러닝 스터디

화학소재솔루션센터 학생연구원 한요셉 2022.04.27

Index

4.1 선형회귀

1. 선형회귀

2. 비용함수

3. 정규방정식

4. 계산 복잡도

4.2 경사 하강법

1. 경사하강법

2. 배치 경사하강법

3. 확률적 경사 하강법

4. 미니 배치 경사하강법

1. 선형 회귀

- 회귀: 여러 개의 독립변수와 한 개의 종속변수간의 상관관계를 모델링 하는 기법
- 선형 회귀: 데이터의 선형성을 가정하고 선형회귀식의 회귀계수(파라미터)를 추정하는 것

Equation 4-1. Linear Regression model prediction

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Equation 4-2. Linear Regression model prediction (vectorized form)

$$\hat{y} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$$

• 최적의 회귀 계수를 추정하는 것! => " 비용함수가 최소화 될 때 회귀계수 "

2. 비용함수(Cost Function)

• 잔차(Residual) : 모델 값 - 실제값

- RSS(Residual Sum of Squares) : $\sum_{i=1}^{n} (y_i \hat{y_i})^2$
- 비용함수: RSS / m = MSE(Mean Squared Error) => MSE(비용함수)가 최소화 될 때의 파라미터를 추정하는 과정

Equation 4-3. MSE cost function for a Linear Regression model

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

최소화 방법은 정규방정식과 경사하강법을 이용함

※ 회귀에서 가장 널리 사용되는 성능은 RMSE를 최소화는 MSE를 최소화 하는 것과 같은 결과 이며 더 쉬운 문제임.

3. 정규방정식

※ 선형대수학: 최소제곱(자승)법, 특잇값 분해 참고

• 정규방정식 : 비용함수가 최소 일 때의 회귀계수를 찾기 위한 해석적인 방법 => 역행렬 문제를 푼다.

Equation 4-4. Normal Equation

$$\widehat{\mathbf{\theta}} = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \quad \mathbf{X}^T \quad \mathbf{y}$$

- 사이킷런 라이브러리를 이용해서 쉽게 구현 가능: LinearRegression 클래스를 이용하여 구현
- ※ 특잇값 분해(singular value decomposition, SVD)이용하여 계산하며, 유사역행렬을 구하는 문제로 해결함
- ※ 데이터수 보다 특성수가 많거나 특성이 중복되어 특이행렬(역행렬이 없는 행렬)에서 유사역행렬을 항상 구할 수 있음

4. 계산 복잡도(computational complexity)

- 정규 방정식은 (n+1)*(n+1) 크기가 되는 X^TX 의 역행렬 계산 하며 계산 복잡도는 $O(n^{2.4})$ to $O(n^3)$,
- 즉 특성 수가 2배로 늘어 나면 계산 시간은 2^{2.4} =5.3에서 2³ =8배로 증가
- 사이킷런의 LinearRegression 클래스가 사용하는 SVD 방법은 $O(n^2)$ 으로, 약 특성 수가 2배면 계산시간은 4배로 증가

```
[12] # 임의의 데이터 생성
    # 독립변수를 0~1의 균일분포에서 (100,1) 행렬로 난수 생성
   X = 2 * np.random.rand(100, 1)
    # 종속 변수를 생성, 오차항을 정규분포에서 (100,1)행렬 난수 생성
   y = 4 + 3 * X + np.random.randn(100, 1)
[13] plt.plot(X, y, "b.")
   plt.xlabel("$x_1$", fontsize=18)
   plt.ylabel("$y$", rotation=0, fontsize=18)
   plt.axis([0, 2, 0, 15])
   plt.show();
      14
      12
      10
    y 8
       0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
                            x_1
```

```
[14] # 정규방정식 계산
    # 모든 샘플에 x0 = 1 추가(편향 추가)
    X_b = np.c_[np.ones((100, 1)), X]
     # 정규방정식 공식적용, 넘파이 선형 대수 모듈에 있는 inv() 함수로 역행렬 계산, dot()메서드로 행렬 곱셈
     theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
    theta best
    array([[4.21509616],
           [2.77011339]])
[15] # 추정한 파라미터로 x가 0과 2일때의 y값 예측
    X_{new} = np.array([[0], [2]])
    X_{new_b} = np.c_{np.ones((2, 1)), X_{new}}
    y_predict = X_new_b.dot(theta_best)
    y_predict
    array([[4.21509616],
           [9.75532293]])
```

```
plt.plot(X_new, y_predict, "r-", linewidth=2, label="prediction")
    plt.plot(X, y, "b.")
    plt.xlabel("$x_1$", fontsize=18)
    plt.ylabel("$y$", rotation=0, fontsize=18)
    plt.legend(loc="upper left", fontsize=14)
    plt.axis([0, 2, 0, 15])
    plt.show();
□
                prediction
      12
      10
    y 8
       2
             0.25 0.50
                              1.00 1.25 1.50 1.75 2.00
        0.00
                        0.75
                               x_1
```

```
[18] # 사이킷런에서 선형회귀 모델 불러오기
     from sklearn.linear_model import LinearRegression
     # 선형회귀 모델 적합 시킴
     lin_reg = LinearRegression()
     lin_reg.fit(X, y)
    LinearRegression()
[30] # 편항(intercept)과 가중치(coef)
     lin_reg.intercept_, lin_reg.coef_
     (array([4.21509616]), array([[2.77011339]]))
[26] # X가 0과 2일때 예측
     lin_reg.predict(X_new)
    array([[4.21509616],
           [9.75532293]])
```

```
# 최소제곱 기반으로 계산
     theta_best_svd, residuals, rank, s = np.linalg.lstsq(X_b, y, rcond=1e-6)
     theta_best_svd
    array([[4.21509616],
           [2.77011339]])
[39] # 유사역행렬(특잇값 분해)로 계산
     np.linalg.pinv(X_b).dot(y)
    array([[4.21509616],
           [2.77011339]])
```

1. 경사 하강법

- 비용함수를 최소화 하기 위해 학습률과 손실함수의 순간기울기(gradient)를 이용하여 파라미터를 업데이트 하는 방법
- 함수의 기울기(=gradient)를 이용해서 함수의 최소값일 때의 x값을 찾기 위한 방법
- 파라미터 θ에 대해 gradient 계산하고 gradient 가 감소하는 방향으로 학습률을 함께 곱해서 업데이트.

Equation 4-5. Partial derivatives of the cost function Equation 4-6. Gradient vector of the cost function

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Equation 4-7. Gradient Descent step

$$\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} MSE(\theta)$$

Figure 4-3. Gradient Descent

① 학습률 고려

- 경사 하강법 중요한 하이퍼파라미터는 스텝의 크기, 학습률(learning rate)이다.
- 학습률이 너무 작으면 알고리즘이 수렴하기 위해 반복을 많이 진행해야 하므로 시간이 오래 걸림
- 학습률이 너무 크면 골짜기를 가로 질러 반대편으로 건너 뛰게 되어 이전보다 더 높은 곳으로 갈 수도 있음
- 선형회귀를 위한 MSE 비용함수는 볼록함수라 최솟값이 하나임 (하나의 전역 최솟값을 가짐)

Figure 4-4. Learning rate too small

Figure 4-5. Learning rate too large

② 최솟값 문제 고려

다양한 비용함수의 그래프에서 문제점이 발생

- 왼쪽에서 시작하면 전역 최솟값(global minimum)보다 덜 좋은 지역 최솟값(local minimum)으로 수렴하는 문제
- 오른쪽에서 시작하면 평탄한 지역을 지나기 위해 오랜 시간이 걸리고 밀찍 멈추게 되어 전역 최솟값에 도달 하지 못함

③ 특성 스케일 고려

- 특성 스케일이 매우 다르면 길쭉한 모양
- 왼쪽의 경사 하강법 알고리즘이 최솟값으로 곧장 진행
- 오른쪽 그래프에서는 처음엔 전역 최솟값의 방향에 거의 <mark>직각으로</mark> 향하다가 평면 골짜기로 길게 돌아감
- 시간이 오래 걸림 => 사이킷런의 StandardScaler를 사용한다.

Figure 4-6. Gradient Descent pitfalls

Figure 4-7. Gradient Descent with and without feature scaling

2. 배치 경사 하강법

- 배치 경사 하강법(BGD)은 비용함수의 gradient 계산에 전체 훈련 데이터 셋을 사용하는 방법.
- 모든 훈련 세트에 대해 계산 하므로 계산 시간도 엄청 길어지고, 소모되는 메모리도 엄청남.
- 적절한 학습률을 설정이 필요함 (너무 작으면 느리며, 너무 크면 발산하게 된다)
- 그리드 서치를 이용해서 적절한 학습률을 찾아야 하며 반복횟수와 허용오차를 지정하여 조절함.
- ※ 경사하강법은 특성 수에 민감하지 않기 때문에, 수십만 개의 특성에서 정규방정식이나 SVD분해보다 유리함.

Figure 4-8. Gradient Descent with various learning rates

배치 경사 하강법 예제

```
# 학습률
eta = 0.1
# 반복횟수
n_iterations = 1000
# 훈련세트
m = 100
# 무작위 초기화
theta = np.random.randn(2, 1) # random init
# 경사하강법 적용
for step in range(n_iterations):
   gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
   theta = theta - eta * gradients
theta
array([[4.21509616],
      [2.77011339]])
```

3. 확률적 경사 하강법 (stochastic gradient descent, SGD)

매 스텝에서 한 개의 샘플을 무작위로 선택하고 그 하나의 샘플에 대해 graident를 계산하는 방식

- 장점 : 매 반복에서 다뤄야 할 데이터가 매우 적어 알고리즘이 훨씬 빠르며, 매우 큰 훈련세트도 훈련에서 유용, 비용함수가 불규칙할수록 지역 최솟값을 건너 뛸 가능성이 높음
- 단점: 배치 경사 하강법 보다 훨씬 불안정 함 => 위아래로 요동치면서 평균적으로 감소 하며 전역최솟값을 다다르지 못할 수 있음.
- 보완 : 학습 스케줄(learning schedule) 이용 : 시작할 때 학습률을 크게 하여 수렴을 빠르게 하고 점차 작게 하여 전역 최솟값에 도달하게 함

※ https://box-world.tistory.com/70 참고

Figure 4-9. Stochastic Gradient Descent

Figure 4-10. Stochastic Gradient Descent first 20 steps

- ※ 공평하게 무작위로 추출 => IID(independent and identrically distributed)를 만족 해야함,
- ※ https://pasus.tistory.com/51 참고

확률적경사 하강법 예제

```
n_epochs = 50
     # 학습 스케쥴러 사용
    def learning_schedule(t):
    theta = np.random.randn(2, 1) # random init
     for epoch in range(n_epochs):
        for i in range(m):
            random_index = np.random.randint(m)
            xi = X b[random index:random index+1]
            yi = y[random_index:random_index+1]
            gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
            eta - learning_schedule(epoch * m + i)
            theta = theta - eta * gradients
[23] theta
    array([[4.00597696],
           [2.27516959]])
```

확률적 경사 하강법 예제

```
[24] # 사이킷런에서 확률적 경사하강법 이용
from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(max_iter=50, penalty=None, eta0=0.1, random_state=42)

sgd_reg.fit(X, y.ravel())

SGDRegressor(eta0=0.1, max_iter=50, penalty=None, random_state=42)

[36] sgd_reg.intercept_, sgd_reg.coef_
(array([4.24365286]), array([2.8250878]))
```

4. 미니배치 경사 하강법

미니배치라 부르는 임의의 작은 샘플 세트에 대해 그레이디언트를 계산 진행 => 훈련세트에서 몇 개의 샘플의 가져와서 계산

- 행렬 연산에 최적화된 하드웨어 GPU를 사용해야 성능을 향상 시킴
- 미니배치를 어느정도 크게 하면 파라미터 공간에서 SGD보다 덜 불규칙하게 도달 => 최솟값에 더 가까이 도달 하지만, 지역 최솟값에서 더 빠져 나오기 힘들 수도 있음

Figure 4-11. Gradient Descent paths in parameter space

Table 4-1. Comparison of algorithms for Linear Regression

Algorithm	Large m	Out-of-core support	Large n	Hyperparams	Scaling required	Scikit-Learn
Normal Equation	Fast	No	Slow	0	No	n/a
SVD	Fast	No	Slow	0	No	LinearRegression
Batch GD	Slow	No	Fast	2	Yes	SGDRegressor
Stochastic GD	Fast	Yes	Fast	≥2	Yes	SGDRegressor
Mini-batch GD	Fast	Yes	Fast	≥2	Yes	SGDRegressor