⚠ This quiz has been regraded; your score was not affected.

Homework 0 Part A

Points 15 **Questions** 16 Available after Aug 29 at 12am Time Limit None Due Sep 2 at 9am

Instructions

This quiz on pre-requisite background is the first part of Homework 0. You must achieve a passing grade in order to continue in the course.

Attempt History

	Attempt	Time	Score	Regraded
LATEST	Attempt 1	5087 minutes	15 out of 15 *	15 out of 15 *

▲ Correct answers are hidden.

Score for this quiz: 15 out of 15 * Submitted Sep 2 at 2:21am This attempt took 5087 minutes.

Probability and Statistics: Distributions

Question 1

1 / 1 pts

Which of the following statements is true for the probability density function (pdf), f_X , of a continuous random variable, X, of one real-value? (Select all that applies)

- \bigcirc The range of f_X is [0,1)
- \bigcirc The range of f_X is $(-\infty,\infty)$

 \bigcirc The domain of f_X is [0,1]

Question 2	1 / 1 pts

Which of the following statements is true for the cumulative distribution function (cdf), F_X , of a continuous random variable, X, of one real-value? (Select all that apply)

- ightharpoons The range of F_X is [0,1)
- $\ \square$ The range of F_X is $(-\infty, \infty)$

$$\Box \int_{-\infty}^{\infty} F_X(x) dx = 1$$

$$\ensuremath{ \ ec V \ } \int_{-\infty}^a f_X(x) dx = F_X(a)$$
 , where f_X is the pdf of X

 $\hfill\Box$ The domain of F_X is [0,1]

Question 3 1 / 1 pts

For a continuous random variable X, the statement $f_X(2)=0.9$, where f_X is the pdf of X, means... (Select all that apply)

- $\hfill\Box$ the probability of X=2 is 0.9
- $\hfill\Box$ the probability of $X \leq 2$ is 0.9

the probability of $X\equiv 2$ is very large, therefore we are very likely to observe X with a value of 2

none of the above

Question 4	1 / 1 pts
For a continuous random variable X , the statement $F_X(2)=0.9$, where F_X is the cdf of X , (Select all that apply)	means
\square the probability of $X=2$ is 0.9	
${\overline{\mathscr{U}}}$ the probability of $X \le 2$ is 0.9	
the probability of $X=2$ is very small, therefore we are unlikely to observe X with a value 2	e of
the probability of $X=2$ is very large, therefore we are very likely to observe X with a vale of 2	lue
none of the above	

Question 5	1 / 1 pts
For a discrete random variable X , the statement $p_X(2)=0.9$, where p_X is the probability m function of X , means (Select all that apply)	ass
${\overline{ \mathscr{C}}}$ the probability of $X=2$ is 0.9	
\square the probability of $X<=2$ is 0.9	
the probability of $X=2$ is very small, therefore we are unlikely to observe X with a value \mathbf{Z}	lue of
the probability of $X = 2$ is very large, therefore we are very likely to observe X with a v of 2	/alue
none of the above	

Question 6 $1/1 \, \mathrm{pts}$ The mean of X is $0.16 \\ 3.6$ 0.6 0.5 $0.\sqrt{30}$ $0.22 \\ 3$

Question 7	1 / 1 pts
The median of \boldsymbol{X} is	
$\bigcirc \frac{16}{3}$	

6	
5	
$\sqrt{30}$	
$\frac{22}{3}$	

Question 8	1 / 1 pts
The variance of \boldsymbol{X} is	
$\bigcirc \frac{258}{3}$	
O 45	
O 10	
30	
$\odot \frac{98}{3}$	

Question 9	1 / 1 pts
The mode of X is:	
$\odot \frac{16}{3}$	
O 6	
O 5	
$\bigcirc\sqrt{30}$	

 $\circ \frac{22}{3}$

Question 10	1 / 1 pts
Suppose you're told that: "most of the single family homes in Worcester tend to be priced around \$ although there are a significant number of listings ranging above \$150,000 into the million mark." In it's reasonable to expect that:	, ,
the median price of single family homes in Worcester is higher than the mean	
the mean price of single family homes in Worcester is higher than the median	
the mean and the median of single family homes in Worcester are equal	
there is insufficient information to make a statement about the mean and/or median	

Joint, Conditional and Marginal Probabilities

Suppose you have the following information regarding the FDA trials of an experimental Hep-C test:

- 80% of the participants were Hep-C positive
- 20% of the participants were Hep-C negative and were used as control
- 95% of the Hep-C patients tested positive
- 30% of the control patients tested positive

Let H the patient's actual Hep-C status and let T be the patient's test status. Compute the following probabilities. Please explain your reasoning and state all formulae, properties you use.

Question 11 1 / 1 pts

$$P(T=+\big|H=+\big)$$

 $0.8 \cdot 0.95$

 $\bigcirc \frac{0.8 \cdot 0.95}{0.95 \cdot 0.3}$

 $0.8 \cdot 0.3$

 \bigcirc 0.8 \cdot 0.95 + 0.2 \cdot 0.3

 $0.95 \cdot 0.3$

• 0.95

$$\bigcirc \, \frac{0.8 \cdot 0.8 \cdot 0.95}{0.8 \cdot 0.95 + 0.2 \cdot 0.3}$$

 $0.8 \cdot 0.8 \cdot 0.95$

Question 12

1 / 1 pts

$$P(T=+,H=+)$$

 $\bigcirc \, \frac{0.8 \cdot 0.95}{0.95 \cdot 0.3}$

 $0.8 \cdot 0.3$

 $\bigcirc 0.8 \cdot 0.95 + 0.2 \cdot 0.3$

 $0.95 \cdot 0.3$

0.95

 $\bigcirc \frac{0.8 \cdot 0.8 \cdot 0.95}{0.8 \cdot 0.95 + 0.2 \cdot 0.3}$

 $\bigcirc~0.8\cdot0.8\cdot0.95$

Question 13 1 / 1 pts

$$P(T=+)$$

- $0.8 \cdot 0.95$
- $\bigcirc \frac{0.8 \cdot 0.95}{0.95 \cdot 0.3}$
- $0.8 \cdot 0.3$
- $\bullet 0.8 \cdot 0.95 + 0.2 \cdot 0.3$
- $0.95 \cdot 0.3$
- 0.95
- $\bigcirc \frac{0.8 \cdot 0.8 \cdot 0.95}{0.8 \cdot 0.95 + 0.2 \cdot 0.3}$
- $0.8 \cdot 0.8 \cdot 0.95$

Question 14 1 / 1 pts

$$P(H=+|T=+)$$

- $0.8 \cdot 0.95$
- $\bigcirc \frac{0.8 \cdot 0.95}{0.95 \cdot 0.3}$
- $0.8 \cdot 0.3$
- $0.8 \cdot 0.95 + 0.2 \cdot 0.3$
- $0.95 \cdot 0.3$
- \bigcirc 0.95

 $\bullet \frac{0.8 \cdot 0.8 \cdot 0.95}{0.8 \cdot 0.95 + 0.2 \cdot 0.3}$

 $0.8 \cdot 0.8 \cdot 0.95$

Incorrect

Question 15

Original Score: 1 / 1 pts Regraded Score: 1 / 1 pts

⚠ This question has been regraded.

In order to win FDA approval for commercial use, the Hep-C test must be 80% effective in indicating the existence of an Hep-C infection. Does the above experimental Hep-C test meet the standard for commercial usage?

- Yes
- No
- There is insufficient information to make this determination

Question 16

Not yet graded / 1 pts

Suppose you are given a 2 by n table of US infant birth weight data, stored as a 2-dimensional array. The first column is the age of the mother at the time of birth and the second column is the birth weight of the infant.

Write a single function, in your language of choice, that takes as input:

- 1. the birth weight table
- 2. the number of rows in the table
- 3. a number min and a number max (in this order);

that then returns:

- 1. the average,
- 2. the median
- 3. the mode of the ages of the mothers whose infant has birth weight between min lbs and max lbs.

Do not use any pre-defined or built-in functions (e.g. sort, filter, mean etc).

hw0a.js (https://instructure-

<u>uploads.s3.amazonaws.com/account_1875000000000001/attachments/2741010/hw0a.js?</u>

<u>AWSAccessKeyId=AKIAJFNFXH2V2O7RPCAA&Expires=1472825597&Signature=M8sSvI%2B0s%2FR0mGLyDcfm0s1vKFI%3D</u>

Quiz Score: 15 out of 15