

F. Y. B. Tech. (Applied Mathematics-I)

Mathematics Practical Using Scilab

Index

Section-I (Solve using Scilab)

- 1. Introduction to Scilab.
 - a. Basic Mathematical operations
 - b. Vectors
 - c. Matrices
 - d. Polynomials
- 2. Computing with Scilab.
 - a. Solving system of equations
 - b. Determinant and inverse of a matrix
 - c. Characteristic polynomials Eigen values, Eigen vectors and diagonalization.

About the Work Book

Objectives of this book

This workbook is intended to be used by F. Y. B. Tech. students for the Applied Mathematics-I Practical course.

The objectives of this book are

- 1. To define the scope of the course.
- 2. Bringing uniformity in the way course is conducted.
- 3. Continuous assessment of the students.
- 4. Providing ready references for students while working in the lab.

Instructions:

For Applied mathematics-1, the theory examination is of 50 marks and 50 marks are based on continuous assessment (Attendance, test performance, tutorials, group activity, journal etc.).

Advisory Committee:

Prof. (Dr.) M. Y. Gokhale,

Prof. (Dr.) Nita Kankane (Chairman, Bord of Studies – Mathematics)

Prof. Ramaa Sandu.

Co-ordinator:

Prof. (Dr.) Prashant P. Malavadkar

Members:

Board of Study (Mathematics) members

1.) Some basic Mathematical Operations: (Addition, subtraction, multiplication and division.)

ans
$$=$$
 4.

ans
$$= 0$$
.

ans
$$= 4$$
.

ans
$$= 1$$
.

2.) Vector operations:

ans
$$= 3. - 3. - 3.$$

!--error 10

Inconsistent multiplication.

(--- Component wise Multiplication)

(--- Component wise division)

F.Y.B. Tech. (Applied Mathematics-I) Mathematics practical work-book

3) Matrix Operations:

3. 4.

$$B = 3. 1.$$

2. 4.

-->A+B

ans =
$$4. 3.$$

5. 8.

-->A-B

ans =
$$-2$$
. 1.

1. 0.

-->A*B

ans =
$$7.9.$$

17. 19.

-->A/B

ans = 0.0.5

0.4 0.9

-->det(A)

ans
$$= -2$$
.

-->inv(A)

ans =
$$-2$$
. 1.

1.5 - 0.5

-->trace(A)

ans = 5.

-->diag(A)

(--- Diagonal elements in the Matrix)

(--- Multiplication by B inverse)

ans = 1.

4.

MIT-WPU

F.Y.B. Tech. (Applied Mathematics-I) Mathematics practical work-book

(--- No. of elements in A)

4) Polynomial operations:

-->length(A)

ans = 2. 2.

ans = 4.

4 + 5x + 6x

MIT-WPU

F.Y.B. Tech. (Applied Mathematics-I)

Mathematics practical work-book

ans =

2 3 4

$$4 + 13x + 28x + 27x + 18x$$

-->p+q

ans =

2

$$5 + 7x + 9x$$

-->p-q

ans =

2

-->p/q

ans =

2

1 + 2x + 3x

2

$$4 + 5x + 6x$$

$$-->[Q] = pdiv(p,q)$$

$$Q = 0.5$$

Q = 0.5

R = -1 - 0.5x

MIT-WPU

F.Y.B. Tech. (Applied Mathematics-I)

Mathematics practical work-book

ans =

- 0.3333333 - 0.4714045i

(--- LCM of two polynomials)

L =

2 3

$$4 + 13x + 28x + 27x + 18x$$

(--- g.c.d. of two polynomials)

G = 1

I =

2

x + **x**

$$-->[g]=gcd([x^2+x,x+1])$$

$$g = 1 + x$$

Computing with Scilab Part-II

- a) Solving system of linear equations: i)Gaussian- Jordan Elimination
- Q.1) Solve the following systems of equations.

$$x - 3y = -7$$
 $2x + 5y = 15$

Solution: $-->A=[1 - 3; 2 5];$
 $-->B=[-7; 15];$
 $-->rank([A B])$
 $ans = 2.$
 $-->rref([A B])$
 $ans = 1. 0. 0.9090909$
 $0. 1. 2.6363636$

Thus the solution is x = 0.91 and y = 2.64

- ii) By Matrix inversion method
- Q.1) Solve the following systems of equations.

$$x - 3y = -7$$
 $2x + 5y = 15$

Solution: -->A=[1 -3;2 5];
-->B=[-7;15];
--> det(A) = 11
-->[E]=inv(A);
-->E*B

ans = 0.9090909
2.6363636

Thus the solution is x = 0.91 and y = 2.64.

iii) Using Scilab fuction:

Q.1) Solve the following systems of equations.

$$x - 3y = -7$$

 $2x + 5y = 15$
Solution: -->A=[1 -3;2 5];
-->B=[-7;15];
-->A\B
ans = 0.9090909
2.6363636
OR
-->linsolve(A,-B)
ans = 0.9090909

2.6363636

Thus the solution is x = 0.91 and y = 2.64

b) Eigen values and Eigenvectors, Characteristic Poly and Diagonalization:

Q1) Find the eigen values and eigen vectors for Matrix A = 2. 7.

1. - 2.

Solution:

$$A = 2. 7.$$

1. - 2.

-->x=poly(0,'x')

$$x = x$$

--- (Characteristic Polynomial)

p =

2

F.Y.B. Tech. (Applied Mathematics-I) Mathematics practical work-book

- 3.3166248

-->roots(p)

Using spec function:

e =

3.3166248 0

--- (Eigen values)

0 - 3.3166248

v =

0.9827671 - 0.7963471

--- (Eigen vectors)

--- (Diagonal Matrix)

0.1848479 0.6048398

Diagonalization:

$$p = 0.8155659 1.0737943$$

-->clean(p*s*v)

0 - 3.3166248

ans = 3.3166248 0

0 - 3.3166248

1

Using **bdiag** function:

0. - 3.3166248

Assignment-1

Q1.) Find Determinants and Inverse of the following matrices using **scilab** functions. Also justify the error if any.

Q2.) Find rank by finding Reduced row echelon form of the following matrices using matrix row operations.

Q3.) Examine for linear dependence/ independence.

i)
$$x_1 = (1, 2, -1, 0), x_2 = (1, 3, 1, 2), x_3 = (4, 2, 1, 0), x_4 = (6, 1, 0, 1)$$

ii)
$$x_1 = (1, -1, 1), x_2 = (2, 1, 1), x_3 = (3, 0, 2)$$

Assignment-2

Q1.) Solve the following systems of linear equations.

i)
$$x + y=-2$$
, $y + z=1$, $x + z=1$

ii)
$$x + y + z = 4$$
, $x - y + 2z = 3$, $2x + 3y - z = 6$

iii)
$$x + 3y - z + 8w = 13$$
, $x + y + z + 6w = 13$, $3x + y + z + 11w = 25$, $4x - 2y = 6$

iv)
$$x + y + z=3$$
, $2x - y + 3z=1$, $4x + y + 5z=2$, $3x - 2y + z=4$

Q.2) Find the Characteristic polynomial, Eigen values and eigenvectors of the following matrices.

i)
$$A = 0001$$

ii)
$$D = 3 1 3$$

iii)
$$E = 203$$

iv)
$$F = 103$$