

Akademia Górniczo-Hutnicza w Krakowie Wydział Fizyki i Informatyki Stosowanej Bartosz Rogowski, II rok, 303793 4 czerwca 2020

Metody numeryczne Sprawozdanie nr 12 z zajęć laboratoryjnych Całkowanie numeryczne z użyciem

kwadratur Newtona-Cotesa

1. Wstęp teoretyczny

Oznaczenia: $\phi_k(x) = \prod_{\substack{j=0 \ i \neq k}}^{N} \frac{x - x_j}{x_k - x_j}$

Całkowanie jest niezbędnym narzędziem analitycznym, jednak ma jedną wadę z punktu widzenia "niematematycznego" – jest operacją wymagającą ciągłego zestawu danych. Definicja matematyczna co prawda wspomina o sumowaniu wielu małych elementów ("dyskretyzacja"), jednak jest ich nieskończenie wiele o nieskończenie małej długości, co jest oczywiście niemożliwe do zrealizowania w jakiejkolwiek implementacji. Zagadnieniem obliczania, a właściwie przybliżania, wartości całek zajmuje się całkowanie numeryczne. Istnieje wiele sposobów ich wyznaczania: od metody prostokątów, trapezów, kwadratur, po metody typu Monte Carlo.

Dla znanego ciągu punktów $f(x_k)$ funkcję podcałkową można interpolować wielomianem Lagrange'a, przez co:

$$\varphi(x) = \sum_{k=0}^{N} \phi_k(x) \cdot f(x_k). \tag{1}$$

W miejsce funkcji podcałkowej można podstawić wielomian Lagrange'a, wtedy całkę można zamienić na jej dyskretny odpowiednik – sumę:

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} \varphi(x) dx = \sum_{k=0}^{N} A_{k} f(x_{k}) \Rightarrow A_{k} = \int_{a}^{b} \phi_{k}(x) dx. \tag{2}$$

Taki zapis definiuje **kwadraturę**, której współczynnikami są wyrazy A_k .

Jeżeli funkcja podcałkowa zawiera osobliwości (jest nieograniczona, bądź dany jest nieograniczony przedział), wykorzystuje się wówczas funkcję wagową $f(x) = \hat{f}(x) \cdot w(x)$, co modyfikuje nieznacznie wzór (2), dlatego przy wyznaczaniu całki:

$$I_f = \int_a^b w(x) \cdot f(x) \, dx,\tag{3}$$

stosuje się wzór:

$$S_f = \sum_{k=0}^{N} A_k f(x_k). \tag{4}$$

Oznaczenia: $x \in (a, b)$

Zbiór punktów x_k stanowi węzły kwadratury.

Błąd kwadratury definiowany jest jako:

$$E_f = I_f - S_f. (5)$$

Kwadratura Newtona-Cotesa zakłada węzły równoodległe:

$$x_i = a + ih ag{6}$$

Oznaczenia: $i=0,\dots,N$ $h=\frac{b-a}{N}-\text{odległość między węzłami}-\text{iloraz długości przedziału i liczby węzłów kwadratury}$

i należy do kwadratur zamkniętych [*]. Wprowadzając nową zmienną, otrzymać można:

$$x = a + ht \Rightarrow \phi_k(t) = \prod_{\substack{j=0\\j \neq k}}^{N} \frac{t - j}{k - j}.$$
 (7)

Funkcja podcałkowa przybliżana jest zgodnie ze wzorami (1) i (2), z tym, że:

$$\int_{a}^{b} \varphi(x) dx = \sum_{k=0}^{N} A_k \int_{a}^{b} \phi_k(x) dx = \sum_{k=0}^{N} f_k \cdot h \cdot \int_{0}^{N} \varphi_k(t) dt = \sum_{k=0}^{N} A_k f_k = S_f.$$
 (8)
Oznaczenia:
$$\int_{k=0}^{k} f(a+hk)$$

Analiza funkcji ϕ_k pozwala wyliczyć współczynniki:

$$A_k = h \cdot \frac{(-1)^{N-k}}{k! \cdot (N-k)!} \cdot \int_0^N \frac{\prod_{m=0}^N (t-m)}{t-k},$$
 (9)

jednak należy pamiętać, że zależą one od N, dlatego **metoda kwadratur Newtona-Cotesa** nie jest zbieżna w klasie funkcji ciągłych:

$$\lim_{N \to \infty} |A_k| = \infty . \tag{10}$$

W zależności od N, kwadratura przyjmuje inną postać i zmienia się stopień wielomianu interpolującego.

Niech

$$\xi \in (a,b). \tag{11}$$

W tabeli 1 przedstawiono wybrane informacje na temat **kwadratur Newtona-Cotesa** (najczęściej używanych).

^{*} Kwadratury, w których końce przedziału są węzłami.

N	S_f	E_f	nazwa
1	$\frac{1}{2}h(f_0+f_1)$	$-\frac{1}{12}h^3f^{(2)}(\xi)$	trapezów
2	$\frac{1}{3}h(f_0+4f_1+f_2)$	$-\frac{1}{90}h^5f^{(4)}(\xi)$	parabol/Simpsona
3	$\frac{3}{8}h(f_0 + 3f_1 + 3f_2 + f_3)$	$-\frac{3}{80}h^5f^{(4)}(\xi)$	3/8
4	$\frac{4}{90}h(7f_0+32f_1+12f_2+32f_3+7f_4)$	$-\frac{8}{945}h^7f^{(6)}(\xi)$	Milne'a

Tabela 1. Informacje o **kwadraturach Newtona-Cotesa** dla pierwszych czterech N. W tym przypadku liczba N jest zgodna ze stopniem wielomianu interpolującego funkcję podcałkową.

Rysunek 1. Zastosowanie **metody Simpsona** do przybliżenia całki na podanym przedziale [¹].

Jak widać, metody te zależą od N+1 węzłów. Jednak przybliżanie funkcji wielomianem na danym przedziale często jest nieefektywne z powodu kształtu funkcji. Wówczas należy podzielić przedział na podprzedziały, co prowadzi do zwiększenia poprawności (zbieżności) wyniku, a **kwadratury** takie noszą miano **złożonych**.

Rysunek 2. Zastosowanie podprzedziałów w metodzie Simpsona [2].

Używanie podprzedziałów jak na rys. 2 pomaga lepiej interpolować funkcję, ponieważ to na nich dopasowuje się wielomiany interpolacyjne (podobnie jak w przypadku sklejek); a zatem kwadratura daje lepsze rezultaty.

Stosując zapis:

$$f_k = a + hk, (12)$$

wzory zawarte w tabeli 1 należy zmodyfikować względem w podprzedziałów.

liczba węzłów N	S_f	metoda
2 ^{w+1}	$\sum_{i=0}^{\frac{N}{2}-1} \frac{h}{3} \cdot (f_{2i} + 4f_{2i+1} + f_{2i+2})$	Simpsona
2 ^{w+2}	$\sum_{i=0}^{\frac{N}{4}-1} \frac{4h}{90} \cdot (7f_{4i} + 32f_{4i+1} + 12f_{4i+2} + 32f_{4i+3} + 7f_{4i+4})$	Milne'a

Tabela 2. Podstawowe parametry dla złożonych kwadratur (w oznacza liczbę podprzedziałów).

Aby poprawić zbieżność podanych sposobów, można wykorzystać np. **ekstrapolację Richardsona**. Kluczem do jej zdefiniowania jest umiejętność rozwijania funkcji w szereg Taylora w okolicy danych punktów:

$$f(x+h) = \sum_{k=0}^{\infty} \frac{h^k}{k!} f^{(k)}(x),$$
(13)

$$f(x-h) = \sum_{k=0}^{\infty} \frac{(-1)^k h^k}{k!} f^{(k)}(x).$$
 (14)

Odejmując od siebie powyższe wyrażenia można dojść do równania:

$$f(x+h) - f(x-h) = 2 \cdot \sum_{k=0}^{\infty} \frac{h^{2k+1}}{(2k+1)!} f^{(2k+1)}(x), \tag{15}$$

zatem "zostaną" tylko podwojone nieparzyste wyrazy rozwinięcia opisanego wzorem (13). Modyfikując drobnie wzór (15), można zdefiniować pochodną funkcji:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \sum_{k=1}^{\infty} \frac{h^{2k}}{(2k+1)!} f^{(2k+1)}(x).$$
 (16)

Można uprościć ten zapis do:

$$L_{h,1} = \phi(h) + \sum_{u=1}^{\infty} a_{2u} h^{2u}.$$
 (17)

Algorytm **ekstrapolacji** skupia się na stworzeniu tablicy $N \times N$ według wzoru:

$$D_{i,j} = \begin{cases} \phi\left(\frac{h}{2^{i}}\right), i = 0, \dots, N; j = 0\\ \frac{4^{j} \cdot D_{i,j-1} - D_{i-1,j-1}}{4^{j} - 1}; j = 1, \dots N; i = j, \dots, N \end{cases}$$
(18)

która jest macierzą trójkątną dolną (pozostałe elementy – nad diagonalą – są zerowe).

Błąd maleje (teoretycznie) razem z poruszaniem się w prawy dolny róg macierzy, gdzie znajduje się najlepsze oszacowanie (w praktyce należy zbadać zbieżność metody).

2. Zadanie do wykonania

2.1 Opis problemu

Naszym zadaniem było znalezienie najlepszego oszacowania całki

$$I = \int_{0}^{1} f(x) dx, \tag{19}$$

gdzie

$$f(x) = \ln(x^3 + 3x^2 + x + 0.1) \cdot \sin(18x), \tag{20}$$

stosując **metody Simpsona i Milne'a w połączeniu z ekstrapolacją Richardsona**. Wzór (18) uległ drobnej modyfikacji, bowiem pierwsza kolumna macierzy **D** (tablica 2D w programie) została wypełniona zgodnie ze wzorami, znajdującymi się w tabeli 2 (zatem pierwsza kolumna to wyniki bez ekstrapolacji). W tabeli 3 przedstawiono parametry podane w treści zadania.

a = 0	początek przedziału	
b = 1	koniec przedziału	
w = 0,1,,8	zmienna sterująca liczbą podprzedziałów	

Tabela 3. Parametry podane w treści zadania.

2.2 Wyniki

Znając wartość analityczną całki (przybliżoną), można zbadać zbieżność obu metod.

$$I = -0.186486896. (21)$$

W poniższych tabelach pokazano odpowiednie wartości macierzy **D** przed i po ekstrapolacji.

W	$D_{w,0}$	$D_{w,w}$	$ D_{w,0}-I $	$ D_{w,w}-I $
0	-0.09714104986	-0.09714104986	0.08934584614	0.08934584614
1	0.4083851989	0.5768939485	0.5948720949	0.7633808445
2	-0.2209681412	-0.4979290236	0.03448124518	0.3114421276
3	-0.1880063997	-0.1547412817	0.001519503665	0.03174561433
4	-0.1865747211	-0.1872519207	8.782506081e-05	0.0007650247413
5	-0.1864922827	-0.1864826455	5.386718806e-06	4.250453142e-06
6	-0.1864872311	-0.1864869011	3.351113103e-07	5.050220103e-09
7	-0.1864869169	-0.186486896	2.092795975e-08	7.742889663e-12
8	-0.1864868973	-0.186486896	1.315472647e-09	8.379186234e-12

Tabela 4. Oszacowania całki w macierzy *D* metodą Simpsona z ekstrapolacją Richardsona.

W	$D_{w,0}$	$D_{w,w}$	$ D_{w,0}-I $	$ D_{w,w}-I $
0	0.4420869488	0.4420869488	0.6285738448	0.6285738448
1	-0.2629250305	-0.4979290236	0.07643813452	0.3114421276
2	-0.1858089502	-0.1375818946	0.000677945769	0.04890500143
3	-0.1864792758	-0.1892838357	7.620179488e-06	0.002796939683
4	-0.1864867868	-0.1864321619	1.091706607e-07	5.473413778e-05
5	-0.1864868943	-0.1864871836	1.662522675e-09	2.876422404e-07
6	-0.186486896	-0.1864868957	1.759700718e-11	3.280941907e-10
7	-0.186486896	-0.186486896	7.97370503e-12	8.421957576e-12
8	-0.186486896	-0.186486896	8.372691429e-12	8.378964189e-12

Tabela 5. Oszacowania całki w macierzy *D* metodą Milne'a z ekstrapolacją Richardsona.

Dla lepszego zobrazowania wartości, na rys. 3 przedstawiono wykres funkcji podcałkowej (wzór 20) w podanym przedziale.

Rysunek 3. Wykres funkcji podcałkowej w podanym przedziale.

3. Wnioski

- Numeryczne obliczanie całek polega na oszacowaniu ich wartości różnymi dostępnymi metodami.
- Często stosowanymi sposobami są kwadratury Newtona-Cotesa i metody, które się z nich wywodzą – Simpsona i Milne'a.
- Błędy oszacowania zależą m.in. od wybranego algorytmu, długości przedziału oraz liczby podprzedziałów jeśli zastosowano kwadratury złożone. W celu zwiększenia dokładności powyższych metod, można połączyć je z ekstrapolacją Richardsona, która zapewnia bardzo małe błędy i przyspiesza osiągnięcie zbieżności.
- Analiza tabel 4 i 5 pokazuje, że metoda Milne'a (interpolacja wielomianem 4. stopnia) szybciej osiąga zbieżność do wyniku od metody Simpsona. Jednocześnie widać, że ekstrapolacja podnosi dokładność otrzymanych wyników.
- W praktyce wykorzystuje się raczej wielomiany niskich stopni na wielu podprzedziałach, aby obliczenia były w miarę jak najprostsze, a wyniki – jak najdokładniejsze.

4. Bibliografia

Rysunek 3 został stworzony w programie Matlab.

¹ źródło: https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas [data dostępu: 2 czerwca 2020]

² źródło: https://www.intmath.com/integration/6-simpsons-rule.php [data dostępu: 2 czerwca 2020]