Devoir facultatif n° 1

0. Introduction du problème et résultats utiles

On dit qu'une figure géométrique est constructible à la règle et au compas si on peut la tracer en n'utilisant qu'un compas et une règle non graduée. On dit également qu'un réel x est constructible à la règle et au compas s'il et possible de tracer à la règle et au compas un segment de longueur x. Nous allons dans ce problème nous intéresser à la construction d'un heptagone à la règle et au compas.

Tout d'abord, vous pourrez vous convaincre du fait suivant, relativement simple : si vous savez tracer un heptagone régulier inscrit dans le cercle trigonométrique de centre 0 et de rayon 1, et ayant pour sommet le point de coordonnées (1,0), alors vous savez tracer un segment de longueur cos $\left(\frac{2\pi}{7}\right)$. Réciproquement, si vous savez tracer un segment de

longueur $\cos\left(\frac{2\pi}{7}\right)$, alors vous pouvez tracer deux droites formant un angle de $\frac{2\pi}{7}$, et donc vous pouvez tracer un heptagone régulier.

Par conséquent, l'heptagone régulier est constructible à la règle et au compas si et seulement si $\cos\left(\frac{2\pi}{7}\right)$ l'est.

On utilisera alors le résultat suivant :

Théorème de Wantzel (1837) : Soit x un réel. Si x est racine d'un polynôme de degré impair, à coefficients rationels et n'ayant aucune racine rationelle, alors x n'est pas constructible à la règle et au compas.

Nous allons l'utiliser pour démontrer dans la première partie qu'un heptagone régulier n'est pas constructible à la règle et au compas. Dans la seconde partie, nous construirons à la règle et au compas une figure très proche d'un heptagone régulier.

Nous utiliserons également le résultat suivant :

Proposition : Soient z un complexe différent de 1, et n un entier naturel.

Alors
$$1 + z + z^2 + z^3 + \ldots + z^n = \frac{1 - z^{n+1}}{1 - z}$$
.

Pour finir, quelques résultats d'arithmétique, connus des élèves ayant choisi l'option mathématiques expertes :

Définition : Soient p et q deux entiers. On dit que p divise q s'il existe un entier r tel que pr = q.

On dit que p et q sont premiers entre eux si 1 est le seul entier naturel qui divise à la fois p et q.

Théorème de Bézout (1730-1783) : Deux entiers $a, b \in \mathbb{Z}$ sont premiers entre eux si et seulement s'il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1.

Un heptagone régulier n'est pas constructible à la règle et au compas

- 1) Soit $z = e^{\frac{2i\pi}{7}}$, et soit $x \in \mathbb{R}$.
 - a) Montrer que $z^6 + z^5 + z^4 + \ldots + z + 1 = 0$.
 - **b)** En déduire que $2\cos\left(\frac{6\pi}{7}\right) + 2\cos\left(\frac{4\pi}{7}\right) + 2\cos\left(\frac{2\pi}{7}\right) + 1 = 0.$
 - c) Linéariser $\cos^3(x)$ et $\cos^2(x)$ (c'est-à-dire les écrire comme somme de cosinus).
 - d) Exprimer $\cos(3x)$ et $\cos(2x)$ en fonction de $\cos x$.
 - e) Montrer que $\cos\left(\frac{2\pi}{7}\right)$ est racine du polynôme $P=8X^3+4X^2-4X-1$.
- 2) Soient p et q deux entiers relatifs non nuls premiers entre eux. On suppose que $\frac{p}{q}$ est racine du polynôme P.
 - a) Montrer que q divise $8p^3$.
 - b) Montrer que p^3 et q sont premiers entre eux, en utilisant le théorème de Bézout. On notera alors U et V deux entiers tels que $Up^3 + Vq = 1$.
 - c) En utilisant à nouveau U et V, montrer que q divise 8. 1
 - d) En suivant le raisonnement des questions précédentes, montrer que p divise q^3 puis que p divise 1.
 - e) Quelles sont les racines rationelles potentielles de P?
- 3) Conclure : $\cos\left(\frac{2\pi}{7}\right)$ n'est pas constructible à la règle et au compas.

II. Une construction approchée de l'heptagone régulier

On considère à nouveau le polynôme $P=8X^3+4X^2-4X-1$ et la fonction

^{1.} Ce résultat est connu sous le nom de théorème de Gauss, et sera vu cette année.

et l'on pose
$$I = \left[\frac{1}{2}, \frac{\sqrt{2}}{2}\right]$$
.

- 4) a) Montrer que \tilde{P}' et \tilde{P} sont strictement croissantes sur I.
 - **b)** Montrer que $\cos\left(\frac{2\pi}{7}\right)$ et $\frac{4+\sqrt{5}}{10}$ appartiennent à I.
 - c) Montrer que $0 < \frac{43\sqrt{5} 96}{125}$.
 - d) En déduire que $\cos\left(\frac{2\pi}{7}\right) < \frac{4+\sqrt{5}}{10}$.
 - e) Grâce à une intégration, montrer ² que

$$6\left(\frac{4+\sqrt{5}}{10}-\cos\left(\frac{2\pi}{7}\right)\right)\leqslant \widetilde{P}\left(\frac{4+\sqrt{5}}{10}\right)-\widetilde{P}\left(\cos\left(\frac{2\pi}{7}\right)\right).$$

- f) Montrer que $\sqrt{5} \leqslant \frac{9}{4}$, et en déduire que $\frac{4+\sqrt{5}}{10}$ est une valeur approchée à 10^{-3} près de $\cos\left(\frac{2\pi}{7}\right)$.
- 5) Considérons le cercle unité $\mathscr C$ de centre O et de diamètres perpendiculaires [II'] et [JJ'].

Soit K le milieu du segment [OI]. La droite (J'K) coupe le cercle \mathscr{C} en L; la parallèle à (J'K) passant par O coupe le quart supérieur droit du cercle \mathscr{C} en M. Notons L' et M' les projetés orthogonaux de L et M sur (OI), et A' le milieu du segment [L'M'].

Montrer que $OA' = \frac{4+\sqrt{5}}{10}$ et en déduire une construction approchée de l'heptagone régulier. ³

Effectuer cette construction en prenant 8 centimètres comme unité graphique.

— FIN —

^{2.} Ce résultat peut être démontré plus rapidement avec *l'inégalité des accroissements finis*, que l'on verra plus tard dans l'année.

^{3.} Il existe d'autres constructions approchées. Il existe également la méthode de Neusis, qui nécessite de reporter et de marquer une longueur sur une règle : ce n'est dons plus une construction "à la règle et au compas".