

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Nombre y Apellido:

Legajo:

Examen Final

- 1. Sea $\Gamma \subseteq \text{Prop.}$ Demuestre que si existe una valuación v tal que $\llbracket \Gamma \rrbracket_v = T$, entonces Γ es consistente.
- 2. Se define recursivamente la función $^\star: \mathsf{PROP} \to \mathsf{PROP}$ del siguiente modo:

$$\varphi^* = \neg \varphi \quad \text{si } \varphi \text{ es at\'omica}$$
$$(\varphi \wedge \psi)^* = \varphi^* \vee \psi^*$$
$$(\varphi \vee \psi)^* = \varphi^* \wedge \psi^*$$
$$(\neg \varphi)^* = \neg \varphi^*$$

Mostrar que para toda fórmula φ vale $\llbracket \varphi^{\star} \rrbracket = \llbracket \neg \varphi \rrbracket$.

- **3.** Sea \mathcal{M} un modelo para una signatura $(\mathcal{F}, \mathcal{P})$. Una fórmula $\phi \in \text{Form}_{(\mathcal{F}, \mathcal{P})}$ es realizable en \mathcal{M} sii existe un entorno s donde $\mathcal{M}, s \models \phi$ ¿Es verdadera la siguiente afirmación? $Si \ \phi$ es realizable en \mathcal{M} , entonces $\neg \phi$ no es realizable en \mathcal{M} . Justifique.
- **4.** Sea $(\mathcal{F}, \mathcal{P})$ una signatura. Determine en cada caso si es posible encontrar fórmulas y modelos que satisfagan cada una de las siguientes restricciones.
- a) ϕ , ψ , \mathcal{M} tales que $\vdash \phi \rightarrow \psi$, $\mathcal{M} \models \phi$ y $\mathcal{M} \not\models \psi$
- b) ϕ , \mathcal{M} , \mathcal{M}' tales que $|\mathcal{M}| \subseteq |\mathcal{M}'|$, $\mathcal{M}' \models \phi$ y $\mathcal{M} \not\models \phi$
- c) \mathcal{M} , ϕ tales $\mathcal{M} \not\models \phi$ y $\mathcal{M} \not\models \neg \phi$
- 5. Se desea agregar los operadores $\exists !$ y $\forall !$ a la lista de operadores derivados de CTL. El significado de $!\phi$ será " ϕ vale ahora y luego no vale más". Entonces:
 - $\exists!\phi$: " ϕ vale ahora y hay un camino donde no vuelve a valer"
 - $\forall!\phi$: " ϕ vale ahora y no existe camino donde vuelva a valer"

Se pide:

- a) Dar definiciones de ∃! y ∀! basándose en los operadores ya definidos.
- b) Elegir uno de ellos y derivar su semántica.