Organizační úvod

Přednášky budou nahrávány, referáty ne.

Kontaktovat přes e-mail slavikova@karlin.mff.cuni.cz

Teoretické příklady odevzdávat přes Moodle.

1 Prvočísla

Definice 1.1 (Dělitel)

Číslo $d \in \mathbb{Z}$ nazýváme dělitelem čísla $n \in \mathbb{Z}$, značeno $d \div n$, pokud existuje $k \in \mathbb{Z}$ splňující n = kd.

Definice 1.2 (Prvočíslo)

Řekněme, že $n \in \mathbb{N}$ je prvočíslo, pokud n > 1 a jeho jediní kladní dělitelné jsou $1 \ge n$.

 $Nap \check{r} \acute{\imath} k lad$ (Několik prvních prvočísel) 2, 3, 5, 7, 11, 13, 17, ...

Věta 1.1 (Základní věta aritmetiky)

Každ'e přirozen\'e číslo $n \geq 2$ lze zapsat právě jedním způsobem jako součin prvočísel ve tvaru:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

$$k \in N, p_1 < p_2 < \cdots < p_k \text{jsou prvočísla}, \alpha_1, \dots, \alpha_k \in \mathbb{N}$$

Například

$$2020 = 2^2 \cdot 5 \cdot 101(k = 3, p_1 = 2, p_2 = 5, p_3 = 101, \alpha_1 = 2, \alpha_2 = 1, \alpha_3 = 1)$$

 $D\mathring{u}kaz$

1. krok = existence rozkladu (indukcí):

Pro n=2 zjevně platí $2=2^1$ $(k=1,p_1=2,\alpha_1=1).$

Předpokládejme, že tvrzení platí pro všechna $2 \le x \le n$. Pokud je n+1 prvočíslo, pak $n+1=(n+1)^1$ $(k=1,p_1=n+1,\alpha_1=1)$. Pokud není, pak $n+1=a\cdot b$, kde $1 < a \le b < n+1$. Podle indukčního předpokladu lze a i b rozložit na prvočísla. Zápis rozkladu n+1 pak bude sjednocením všech prvočísel a součtem příslušných α , pokud se prvočísla vyskytují v a i b. (V přednášce byl zaveden zápis bez mocnin, kde prvočísla nemusí být různá, a pak proveden součin.)

2. krok = jednoznačnost rozkladu:

Lemma 1.2 (Euklidovo lemma (bez důkazu))

Nechť $a,b \in \mathbb{Z}$ a nechť p je prvočíslo takové, že $p \mid ab$. Pak $p \mid a$ nebo $p \mid b$.

Použijeme důkaz sporem. Předpokládejme, že tvrzení neplatí. Vybereme nejmenší z přirozených čísel, pro které rozklad není jednoznačný. Označme ho n.

$$n = q_1 \cdots q_l = r_1 \cdot r_m \ (q_1, \dots, q_l, r_1, \dots, r_m \text{prvočísla})$$

A není pravda, že (r_1, \ldots, r_m) je permutací (q_1, \ldots, q_l) .

Protože $q_1 \mid n$, pak $q_1 \mid r_1 \cdots r_m$ a podle Euklidova lemmatu q_1 dělí alespoň jedno z čísel $r_1, \ldots r_m$. BÚNO $q_1 \mid r_1$, tedy $q_1 = r_1$. Vydělením n číslem q_1 dostaneme menší přirozené číslo, které nemá jednoznačný rozklad. $\left(\frac{n}{q_1} = q_2 \cdots q_l = r_2 \cdots r_m\right)$.

Věta 1.3

Prvočísel je nekonečně mnoho.

 $D\mathring{u}kaz$

Důkaz sporem. Předpokládejme, že prvočísel je konečně mnoho, a označme p největší prvočíslo. Definujeme:

$$n_p = 2 \cdot 3 \cdot 5 \cdot \cdots \cdot p + 1$$

Pak $n_p > p$ a n_p dává zbytek 1 po dělení všemi prvočísly, tedy není ani jedním dělitelné. Tedy n_p nemá prvočíselný rozklad. se základní větou aritmetiky.

Poznámka

Důkaz nedává konstrukci vyššího prvočísla, pouze dokazuje jeho existenci.

Například

Mezi 1 a 100 je 25 prvočísel.

Mezi 10^7 a $10^7 + 100$ jsou pouze 2 prvočísla.

 $Označme \Pi(N) počet prvočísel \leq N.$

Existují konstanty $c_1, c_2 > 0$ takové, že

$$\frac{c_1}{\log N} \le \frac{\Pi(N)}{N} \le \frac{c_2}{\log N}$$

Poznámka

Prvočísel je nekonečně mnoho, ale "řídnou". Musí tedy existovat dlouhé úseky bez prvočísel.

Například

Interval $[n!+2,\dots,n!+n]$ neobsahuje žádné prvočíslo. (Jeliko
žk-té číslo je dělitelné k+1.)

2 Čísla racionální a iracionální

Definice 2.1 (Racionální a iracionální číslo)

Číslo $x \in \mathbb{R}$ je racionální, pokud ho lze zapsat ve tvaru $x = \frac{p}{q}, \ q \in \mathbb{N}, \ p \in \mathbb{Z}.$

Číslo $y \in \mathbb{R}$ je iracionální, pokud není racionální.

Například (Z přednášky)

 $\sqrt{2}$ je iracionální.

Věta 2.1

Nechť $n \in \mathbb{N}$ je taková, že $\sqrt{n} \notin \mathbb{N}$ (tedy n není druhou mocninou přirozeného čísla). Pak \sqrt{n} je iracionální.

Lemma 2.2

Jsou-li p, q nesoudělná, pak p², q² jsou také nesoudělná.

 $D\mathring{u}kaz$

Dle základní věty aritmetiky každé přirozené číslo lze rozložit na součin prvočísel. Rozložíme a dokážeme. $\hfill\Box$

Důkaz (Sporem)

Předpokládejme, že \sqrt{n} je racionální, ale není to celé číslo. Pak $\sqrt{n}=\frac{p}{q}$, kde p,q jsou nesoudělná přirozená čísla $(q\geq 2)$. Umocníme: $n=\frac{p^2}{q^2}$. q|p lightning.

Věta 2.3 (Referát 1)

Existují iracionální čísla a,
b taková, že a^b je racionální. (Text: skripta z MA, str. 14--15.)

 $D\mathring{u}kaz$

Buď
$$\sqrt{2}^{\sqrt{2}}$$
 nebo $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$

Příklad (Teoretický příklad 1)

Nechť $n \in \mathbb{N}$ a nechť a_1, \ldots, a_n jsou kladná reálná čísla, taková, že $a_1 \cdot \cdots \cdot a_n = 1$.

Dokažte, že

$$(1+a_1)\cdot\cdots\cdot(1+a_n)\geq 2^n.$$

Příklad (Teoretický příklad 2)

Nalezněte supremum a infimum množiny

$$\left\{\sqrt{n} - \lfloor \sqrt{n} \rfloor : n \in \mathbb{N}\right\}$$

3 Mohutnost množin

Definice 3.1

Množiny X, Y mají stejnou mohutnost, pokud existuje bijekce X na Y. Značíme $\mathbb{X} \approx \mathbb{Y}$.

Množina $\mathbb X$ má mohutnost menši nebo rovnu mohutnosti $\mathbb Y$, pokud existuje prosté zobrazení $\mathbb X$ do $\mathbb Y$. Značíme $\mathbb X \preceq \mathbb Y$.

Množina $\mathbb X$ má menší mohutnost než $\mathbb Y,$ pokud $\mathbb X \preceq \mathbb Y,$ ale neplatí $\mathbb Y \preceq \mathbb X.$ Značíme $\mathbb X \prec \mathbb Y.$

Věta 3.1

 $(Cantor\text{-}Bernstein) \ Necht \ \mathbb{X} \ a \ \mathbb{Y} \ \textit{jsou mno\@iny splňuj\'ec\'i} \ \mathbb{X} \preceq \mathbb{Y} \ a \ \mathbb{Y} \preceq \mathbb{X}, \ pak \ \mathbb{X} \approx \mathbb{Y}.$

Lemma 3.2

Nechť \mathbb{X} je množina a $H : \mathcal{P}(\mathbb{X}) \to \mathcal{P}(\mathbb{X})$ je zobrazení splňující podmínku $\forall \mathbb{A}, \mathbb{B} \in \mathcal{P}(\mathbb{X}) : \mathbb{A} \subset \mathbb{B} \implies H(\mathbb{A}) \subset H(\mathbb{B})$. Pak existuje $\mathbb{C} \subset \mathbb{X}$ takové, že H(C) = C.

$D\mathring{u}kaz$

Položme $\mathcal{C} = \{\mathbb{A} \in \mathcal{P}(\mathbb{X}) : \mathbb{A} \subset H(\mathbb{A})\}$. Ukážeme, že $\mathbb{C} = \bigcap \mathcal{C}$ je hledanou množinou. $C \subset \mathbb{X}$ je zřejmé, $C \subset H(C)$: Pokud $\mathbb{A} \in \mathcal{C}$, pak $\mathbb{A} \subset C$, pak z vlastnosti zobrazení plyne $H(\mathbb{A}) \subset H(\mathbb{C})$. Tedy $\mathbb{A} \subset H(\mathbb{A}) \subset H(\mathbb{C})$. Z definice \mathbb{C} dostáváme $C \subset H(\mathbb{C})$. Nakonec musíme ještě dokázat $H(\mathbb{C}) \subset \mathbb{C}$. Z $\mathbb{C} \subset H(\mathbb{C})$ a z vlastnosti zobrazení $H(\mathbb{C}) \subset H(H(\mathbb{C}))$ TODO! $H(\mathbb{C}) \subset \mathbb{C}$.

$D\mathring{u}kaz$

Předpokládáme $\mathbb{X} \leq \mathbb{Y} \implies$ existuje prosté zobrazení $f: \mathbb{X} \to \mathbb{Y}$ a $\mathbb{Y} \leq X \implies$ existuje prosté zobrazení $f: \mathbb{Y} \to \mathbb{X}$.

Definujeme $H: \mathcal{P}(\mathbb{X}) \to \mathcal{P}(\mathbb{X})$ předpisem $H(\mathbb{A}) = \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{A}))$. (Pozorování, jestliže $f = g^{-1}$ je prosté a na, tak H je identita.) Nyní ověříme předpoklady Lemmatu.

Necht $\mathbb{U} \subset \mathbb{V} \subset \mathbb{X}$. Pak $f(\mathbb{U}) \subset f(\mathbb{V}) \Longrightarrow \mathbb{Y} \setminus f(\mathbb{V}) \subset \mathbb{Y} \setminus f(\mathbb{U}) \Longrightarrow g(\mathbb{Y} \setminus f(\mathbb{V})) \subset g(\mathbb{Y} \setminus f(\mathbb{U})) \Longrightarrow \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{U})) \subset \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{V})) \Longrightarrow H(\mathbb{U}) \subset H(\mathbb{V}).$

Dle lemmatu existuje $\mathbb{C} \subset \mathbb{X}$ takové, že $H(\mathbb{C}) = \mathbb{C}$. Pak $\mathbb{C} = H(\mathbb{C}) = \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{C}))$, $g(\mathbb{Y} \setminus f(\mathbb{C})) = \mathbb{X} \setminus \mathbb{C}$. Tedy $g|_{\mathbb{Y} \setminus f(\mathbb{C})}$ je prosté zobrazení $\mathbb{Y} \setminus f(\mathbb{C})$ ne $\mathbb{X} \mid \mathbb{C}$, a tedy $g^{-1}|_{\mathbb{X} \setminus \mathbb{C}}$ je prosté zobrazení $\mathbb{X} \setminus \mathbb{C}$ na $\mathbb{Y} \setminus f(\mathbb{C})$. Navíc jistě $f|_{\mathbb{C}}$ je prosté zobrazení \mathbb{C} na $f(\mathbb{C})$

Definujeme $h(a)=f(a), a\in\mathbb{C}|h(a)=g^{-1}(a), a\in\mathbb{X}\setminus\mathbb{C}.$ Potom h je prosté zobrazení \mathbb{X} na $\mathbb{Y}.$

4 Aritmetický, geometrický a harmonický průměr

Definice 4.1

Nechť $x_1, \ldots, x_n > 0$. Definujeme jejich

- aritmetický průměr jako $A_n = \frac{x_1 + \dots + x_n}{n}$.
- geometrický průměr jako $G_n = \sqrt[n]{x_1 \cdot \dots \cdot x_n}$
- harmonický průměr jako $H_n = \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}}$

Věta 4.1 (AGH nerovnost)

Poznámka (2. referát)

Existuje i aritmeticko-geometrický průměr a aritmeticko-harmonický průměr (je roven geometrickému).

Příklad (3. teoretický)

Najděte všechna celá čísla m splňující

$$(1+m)^n \ge 1+mn, \forall n \in \mathbb{N}$$

TODO? (Posloupnost $(1+\frac{1}{n})^n$ je rostoucí a shora omezená číslem 3, posloupnost $(1+\frac{1}{n})^{n+1}$ je naopak klesající).

Definice 4.2 (Aritmeticko-geometrický průměr)

že x_n a x_{n+1} jsme zvolili, že budou nejmenší a největší číslo.

Nechť $0 < b_1 < a_1$. $a_{n+1} = \frac{a_n + b_n}{2}$ a $b_{n+1} = \sqrt{a_n \cdot b_n}$. Limita těchto posloupností se nazývá aritmeticko-geometrický průměr.

Důkaz (Shodnost a existence limit)

 $a_n \ge b_n$ z AG nerovnosti. Dokáže se monotónnost, z toho plyne existence limit. Pak z AL $A = \frac{A+B}{2}$, tedy A = B.

Definice 4.3 (Aritmeticko-harmonický průměr)

Definujeme a dokazujeme obdobně jako výše.

Věta 4.2

Aritmeticko-harmonický průměr je roven geometrickému.

 $D\mathring{u}kaz$

Součin členů se stejným indexem je roven součinu prvních členů, z toho limita součinu je součin prvních členů, z toho vyplývá, že limita činitelů (jelikož je shodná) je odmocninou ze součinu prvních členů (geometrický průměr).

Věta 4.3 (Referáty)

Z množiny hromadných bodů nelze "vykonvergovat".

O množině hromadných bodů posloupnosti $\{a_n\}$ splňující $\lim_{n\to\infty}(a_{n+1}-a_n)$.

Příklad (Teoretický příklad 5)

Nechť $\{a_n\}_{n=1}^{\infty}$ je omezená posloupnost splňující

$$a_{n+1} \ge a_n - \frac{1}{2^n}.$$

Dokažte, že posloupnost $\{a_n\}$ je konvergentní.

5 Odhady faktoriálu

Tvrzení 5.1

$$\left(\frac{n}{3}\right)^n < n! < \left(\frac{n+1}{2}\right)$$

Důkaz (První nerovnost)

Označme $\beta_n = \left(\frac{n}{3}\right)^n, n \in \mathbb{N}$. Pak $\left(\frac{n}{3}\right)^n = \beta_n = \beta_1 \cdot \frac{\beta_2}{\beta_1} \cdot \ldots \cdot \frac{\beta_n}{\beta_{n-1}}$. Odhadneme $\frac{\beta_k}{\beta_{k-1}} < k$. Tedy $\beta_n < 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!$.

Důkaz (Druhá nerovnost)

AG. ______

Horní odhad lze zlepšit:

Tvrzení 5.2

$$n! < \left(\frac{n}{2}\right)^n, \ n \ge 6.$$

Důkaz (Indukcí)

 $n = 6: 6! = 720 = 9 \cdot 80 < 9 \cdot 81 = 3^{6}.$

 $(n+1)! = (n+1)n! < (n+1)\left(\frac{n}{2}\right)^n \stackrel{?}{<} \left(\frac{n+1}{2}\right)^{n+1}$. Stačí ukázat $\frac{n^n}{2^n} < \frac{(n+1)^n}{2^{n+1}}$, tedy $2 < \left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n$.

Definice 5.1 (e)

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e.$$

Tvrzení 5.3

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = e.$$

 $D\mathring{u}kaz$

Z AL: $\lim_{n\to\infty} (1+\frac{1}{n})^{n+1} = \lim_{n\to\infty} (1+\frac{1}{n})^n \cdot \lim_{n\to\infty} (1+\frac{1}{n}) = e \cdot 1 = e.$

Tvrzení 5.4

$$\left(\frac{n}{e}\right)^n < n! < \left(\frac{n}{e}\right)^{n+1}, \ n \ge 2.$$

Důkaz

1. nerovnost stejně jako výše s 3 místo e. Druhá nerovnost indukcí.

Poznámka (Stirlingova formule (odhad fakotriálu))

$$n! \approx \sqrt{2\pi} \left(\frac{n}{e}\right)^n \sqrt{n}.$$

8

(Ve smyslu $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi} \left(\frac{n}{e}\right)^n \sqrt{n}} = 1.$)

Definice 5.2 (Toeplitzova transformace)

 $\{c_{n,k}\}_{n=1,k=1}^{\infty, n}$ reálná čísla splňující: a) $\lim_{n\to\infty} c_{n,k} = 0$ pro každé $k\in N$, b) $\lim_{n\to\infty} \sum_{k=1}^n c_{n,k} = 1$, c) existuje C>0 takové, že pro všechna $n\in\mathbb{N}:\sum_{k=1}^n |c_{n,k}|\leq C$.

Necht $\{a_n\}$ je konvergentní posloupnost. Zadefinujme novou posloupnost $\{b_n\}$ vztahem

$$b_n = \sum_{k=1}^n c_{n,k} a_k, n \in \mathbb{N}.$$

Pak $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

Například (Matice (pouze dolní trojúhelník) splňující podmínky TT) Jednotková matice.

Matice mající na *i*-tém řádku $\frac{1}{i}$, tedy $c_{n,k} = \frac{1}{n}$. Taková matice zřejmě splňuje podmínky TT a způsobí, že TT převede posloupnost na průměry prvních n členů. (Tj. pokud posloupnost konverguje, tak i průměry prvních n členů konvergují ke stejné limitě).

Důkaz (Toeplitzovy věty)

- 1. krok (konstantní posloupnost): Nechť $a_n = a, n \in \mathbb{N}$. Pak $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \sum_{k=1}^n c_{n,k} a_k$ $\lim_{n \to \infty} a \sum_{k=1}^n c_{n,k} \stackrel{\text{z b}}{=} a$.
- 2. krok: Necht $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. Lze psát $a_n = (a_n a) + (a)$. Víme, že pro posloupnost a tvrzení platí, stačí tedy dokázat tvrzení pro posloupnost $a_n a$, která má limitu 0.
- 3. krok (nulová limita): Necht $\lim_{n\to\infty} a_n = 0$. Pak $\forall m > 1, n \ge m$ platí $|b_n| = |b_n 0| = |\sum_{k=1}^n c_{n,k} a_k| \le \sum_{k=1}^{m-1} |c_{n,k}| \cdot |a_k| + \sum_{k=m}^n |c_{n,k}| \cdot |a_k|$.

Nechť $\varepsilon > 0$. Protože $a_n \to 0$, pak $\exists n_1 \in \mathbb{N} \forall n \geq n_1, |a_n| < \frac{\varepsilon}{2C}$, kde C je konstanta z c). $\{a_n\}$ je konvergentní $\Longrightarrow \{a_n\}$ je omezená $\Longrightarrow |a_n| \leq D \forall n \in \mathbb{N}$. Z podmínky a) plyne, že $\exists n_2 \in \mathbb{N} \forall n \geq n_2 \sum_{k=1}^{n_1-1} |c_n, k| < \frac{\varepsilon}{2D}$.

Nyní použijeme nerovnost výše s $m=n_1,$ pro $n\geq \max\{n_1,n_2\}$:

$$|b_n| \leq \sum_{k=1}^{n_1-1} |c_{n,k}| \cdot |a_k| + \sum_{k=n_1}^n |c_{n,k}| \cdot |a_k| \leq D \sum_{k=1}^{n_1-1} |c_{n,k}| + \frac{\varepsilon}{2C} \sum_{k=n_1}^n |c_{n,k}| < D \cdot \frac{\varepsilon}{2D} + \frac{\varepsilon}{2C} \cdot C = \varepsilon.$$

Tedy
$$\lim_{n\to\infty} b_n = 0$$
.

Příklad

Nechť $\{a_n\}$ je posloupnost kladných čísel a $\lim_{n\to\infty} a_n = a$. Pak $\lim_{n\to\infty} \sqrt[n]{a_1 \cdot \ldots \cdot a_n} = a$.

Řešení

AGH nerovnost a věta o dvou strážnících (Výše jsme dokázali, že A konverguje k a a obdobně se dokáže, že převrácená hodnota H konverguje k $\frac{1}{a}$, tedy H konverguje také k a, tedy G konverguje k a).

Důsledek

Nechť $\{a_n\}$ je posloupnost kladných čísel, pro kterou $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=a$. Dokažte, že potom $\lim_{n\to\infty}\sqrt[n]{a_n}=a$.

Řešení

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \frac{a_{n-2}}{a_{n-3}} \cdot \dots \cdot \frac{a_2}{a_1} \cdot a_1},$$

což je geometrický průměr posloupnosti $\frac{a_n}{a_n-1} \to a$ rozšířené o 1 člen a_1 , tedy má dle předchozího případu limitu $\lim_{n\to\infty} \sqrt[n]{a_n} = a$.

Příklad (Teoretický příklad 6)

Platí implikace v předchozím případě i opačně?

Příklad

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}.$$

Řešení

$$a_n = \frac{n^n}{n!}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

Tedy $\frac{n}{\sqrt[n]{n}} \to e$ podle předchozího důsledku.

Věta 5.5 (Stolzova)

Nechť $\{x_n\}$, $\{y_n\}$ jsou posloupnosti splňující: a) y_n je rostoucí a $\lim_{n\to\infty}y_n=\infty$; b) $\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=A$.

 $Pak \lim_{n\to\infty} \frac{x_n}{y_n} = A.$

Důkaz

1. Dokážeme pomocné tvrzení: Necht $\{a_n\}$, $\{b_n\}$ jsou posloupnosti splňující: a) $b_n > 0$, $n \in \mathbb{N}$, $\lim_{n \to \infty} (b_1 + \ldots + b_n) = \infty$; b) $\lim_{n \to \infty} a_n = a$.

$$\operatorname{Pak} \lim_{n \to \infty} \frac{a_1 b_1 + \ldots + a_n b_n}{b_1 + \ldots + b_n} = a.$$

Důkaz: Položme $c_{n,k} = \frac{b_k}{b_1 + \ldots + b_n}$. Ověříme předpoklady Toeplitzovy věty (předpoklad 1 díky podmínce 1, předpoklad 2 vychází automaticky z definice $c_{n,k}$, stejně tak 3, jelikož $c_{n,k} \geq 0$). Pak limita výše je přesně výsledek TV.

2. krok: Předpokládejme, že $y_1>0$. Definujme $a_n=\frac{x_n-x_{n-1}}{y_n-y_{y-1}},\ b_n=y_n-y_{n-1},\ n\geq 2,$ $a_1=\frac{x_1}{y_1},\ b_1=y_1$. Následuje ověření předpokladů 1. kroku. \square

Příklad

Necht $\lim_{n\to\infty}(a_{n+1}-a_n)=a\in\mathbb{R}$. Spočtěte $\lim_{n\to\infty}\frac{a_n}{n}$.

Stolzova věta pro $x_n = a_n, y_n = n$. Výsledek a.

 $\begin{array}{l} P\check{r}iklad\\ \lim_{n\to\infty} \frac{1^k+2^k+\ldots+n^k}{n^{k+1}}, k\in\mathbb{N} \end{array}$

 $\check{R}e\check{s}en\acute{\imath}$

$$x_n = 1^k + 2^k + \dots + n^k, y_n = n^{k+1}$$

$$x_n - x_{n-1} \qquad n^k \qquad 1$$

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{n^k}{n^{k+1} - (n-1)^{k+1}} = \frac{1}{k+1}$$

Příklad (Teoretický příklad 7:)

Pro dané $k \in \mathbb{N}$ spočtěte limitu

$$\lim_{n\to\infty} \left(\frac{1^k + 2^k + \ldots + n^k}{n^k} - \frac{n}{k+1} \right).$$

Příklad

Nechť $\lim_{n\to\infty} a_n = a$. Spočtěte

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\left(a_1+\frac{a_2}{\sqrt{2}}+\ldots+\frac{a_n}{\sqrt{n}}\right).$$

$$\begin{split} & \tilde{R}\check{e}\check{s}en\acute{i} \\ & \text{Stolzova věta s } x_n = a_1 + \frac{a_2}{\sqrt{2}} + \ldots + \frac{a_n}{\sqrt{n}}, \quad y_n = \sqrt{n}. \\ & \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{\frac{a_n}{\sqrt{n}}}{\sqrt{n} - \sqrt{n-1}} = a \cdot \lim_{n \to \infty} \frac{1}{\sqrt{n}(\sqrt{n} - \sqrt{n-1})} = a \cdot 2 = 2a. \\ & \tilde{P}ozn\acute{a}mka \text{ (Speciálně } a = 1) \\ & \lim_{n \to \infty} \frac{1}{\sqrt{n}} \cdot \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}}\right) = 2 \end{split}$$

Příklad

Nechť $\lim_{n\to\infty} a_n = a$. Spočtěte

$$\lim_{n\to\infty}\frac{1}{\log n}\left(\frac{a_1}{1}+\frac{a_2}{2}+\ldots+\frac{a_n}{n}\right).$$

Řešení

Stolzova věta s $x_n = \frac{a_1}{1} + \ldots + \frac{a_n}{n}, y_n = \log n.$

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{\frac{a_n}{n}}{\log n - \log(n-1)} = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} \frac{1}{n \left(\log \frac{n}{n-1}\right)} = a \cdot 1 = a$$

Poznámka (Speciálně)

$$\lim_{n \to \infty} \frac{1}{\log n} (1 + \frac{1}{2} + \dots + \frac{1}{n}) = 1$$

Příklad

Nechť $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Uvažujme posloupnost $a_n = n\alpha - \lfloor n\alpha \rfloor$, $n \in \mathbb{N}_0$. Potom $H(\{a_n\}) = [0, 1]$.

Lemma 5.6

Nechť $m \in \mathbb{N}$. Pak existují $p \in \mathbb{Z}, q \in \mathbb{N}$, pro která platí $\left|\alpha - \frac{p}{q}\right| < \frac{1}{mq}$.

 $D\mathring{u}kaz$

Uvažujme $\{a_n\}_{n=0}^m$. Pak $a_n \in [0,1)$ a posloupnost má m+1 prvků. Lze psát

$$[0,1) = \left[0, \frac{1}{m}\right) \cup \left[\frac{1}{m}, \frac{2}{m}\right) \cup \ldots \cup \left[\frac{m-1}{m}, 1\right)$$

Tedy jeden z těchto intervalů obsahuje z dirichletova principu alespoň 2 členy posloupnosti $\{a_n\}_{n=0}^m$. Nechť to jsou $a_i, a_j, i < j$. Pak $|a_i - a_j| < \frac{1}{m}$. Položme $p = \lfloor \alpha j \rfloor - \lfloor \alpha i \rfloor$, q = j - i. $|\alpha q - p| = |\alpha j - \alpha i - \lfloor \alpha j \rfloor + \lfloor \alpha i \rfloor| = |a_i - a_j| < \frac{1}{m}$, tedy $\left|\alpha - \frac{p}{q}\right| < \frac{1}{mq}$. \square

 $D\mathring{u}kaz$

Nechť $\frac{1}{2} > \varepsilon > 0$, $x \in (\varepsilon, 1 - \varepsilon)$. Najdeme $m \in \mathbb{N}$ takové, že $m > \frac{1}{\varepsilon}$, a k němu p, q z lemmatu. Jelikož $\alpha \notin Q$, platí $p\alpha - q \neq 0$. Najdeme $n_0 \in \mathbb{Z}$ splňující $n_0(q\alpha - p) \in (x - \varepsilon, x + \varepsilon)$. Pak $n_0 \neq 0$. Dále $|n_0(\alpha q - p)| = 0$, a tedy $|n_0\alpha q - n_0p| = |n_0\alpha q| - n_0p = 0$.

Je-li $n_0 > 0$ zvolme $n = n_0 q$. Pak $n \in \mathbb{N}$ a $a_n = \alpha n_0 q - \lfloor \alpha n_0 q \rfloor > \alpha n_0 q - n_0 p \in (x - \varepsilon, x + \varepsilon)$. Indukcí lze zkonstruovat podposloupnost a_{n_k} takovou, že $a_{n_k} \to x$, tedy $x \in H(\{a_n\})$. Odtud $(0,1) \subseteq H(\{a_n\})$.

Z množiny hromadných bodů nelze vykonvergovat (referát), tedy [0,1] = H (body < 0 nebo > 1 hromadnými body nemohou být, protože $a_n \in [0,1], \forall \mathbb{N}$).

Příklad (Teoretický příklad 8)

Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnosť reálných čísel s vlastností, že pro každé $k \in \mathbb{N}, k \geq 2$ platí, že $\{a_{nk}\}_{n=1}^{\infty}$ je konvergentní. Plyne odtud, že $\{a_n\}_{n=1}^{\infty}$ musí být konvergentní?

Poznámka (Připomeňme)

 $\limsup_{n\to\infty} a_n$, značíme někdy $\overline{\lim} a_n$, je největší hromadná hodnota.

 $\liminf_{n\to\infty}a_n,$ značíme někdy $\varliminf a_n,$ je největší hromadná hodnota.

Tvrzení 5.7 (Trojúhelníková nerovnost)

 $\liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n \le \liminf_{n\to\infty} (a_n + b_n) \le \limsup_{n\to\infty} (a_n + b_n) \le \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$

 $D\mathring{u}kaz$

Přímo z definice dokážeme vlastnosti suprem a infim.

Příklad (Teoretický příklad 9)

Zkonstruujte funkci $f: \mathbb{R} \to \mathbb{R}$ splňující $\lim_{x\to 0} f(x)f(2x) = 0$, pro kterou $\lim_{x\to 0} f(x)$ neexistuje.

Příklad (Teoretický příklad 11)

Najděte spojitou funkci $f: \mathbb{R} \to \mathbb{R}$, která nabývá každé své hodnoty právě třikrát.

Definice 5.3 (Darbouxova vlastnost)

Funkce f má na intervalu I Darbouxovu vlastnost (vlastnost nabývání mezihodnot), pokud pro všechna $x_1 < x_2, x_1, x_2 \in I$, $f(x_1) \neq f(x_2)$, platí, že f nabývá na (x_1, x_2) všech hodnot mezi $f(x_1)$ a $f(x_2)$

Věta 5.8 (Z přednášky)

Každá spojitá funkce na I má na I Darbouxovu vlastnost.

Příklad (Teoretický příklad 12)

Necht $f: \mathbb{R} \to \mathbb{R}$ je prostá a spojitá. Dokažte, že f je ryze monotónní (tj. buď rostoucí nebo klesající).

6 Funkcionální rovnice

Věta 6.1 (Cauchyova funkcionální rovnice)

Najděte všechny funkce $f: \mathbb{R} \to \mathbb{R}$ splňující

$$\forall x, y \in \mathbb{R} : f(x+y) = f(x) + f(y).$$

Nechť navíc platí alespoň jedna z následujících podmínek. Pak f(x) = cx pro nějaké $c \in \mathbb{R}$.

- f je spojitá v nějakém bodě $x_0 \in \mathbb{R}$.
- f je shora omezená na nějakém intervalu (a,b).
- f je monotonní na \mathbb{R} .

 $D\mathring{u}kaz$

Důkaz $f(qx) = qf(x), q \in \mathbb{Q}$ viz 10. úkol z lingebry.

• Necht $z_n \to 0$, pak $z_n + x_0 \to x_0$ a

$$f(z_n + x_0) = f(z_n) + f(x_0).$$

Jelikož f je spojitá v x_0 , platí

$$\lim_{n \to \infty} f(z_n + x_0) = f(x_0) \implies \lim_{n \to \infty} f(z_n) = 0.$$

Tedy f je spojitá v 0 dle Heineho věty.

Nechť $x \in \mathbb{R}$, $x_n \to x$, $x_n \in \mathbb{Q}$ pro každé $n \in \mathbb{N}$. Pak $x_n - x \to 0$.

$$f(x_n - x) = f(x_n) - f(x) \xrightarrow{n \to \infty} 0 \implies f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n \cdot f(1) = x \cdot f(1) = x \cdot c$$

• Krok 1: je-li f shora omezená na (a, b), pak f je omezená na $(-\varepsilon, \varepsilon)$, $\forall \varepsilon > 0$. Důkaz: Položme $g(x) = f(x) - f(1)x, x \in \mathbb{R}$. Pak

$$g(x+y) = g(x) + g(y), g(0) = f(0) - 0 = 0 \implies g(r) = rg(0) = 0, \forall r \in \mathbb{Q}.$$

Nechť $x \in (-\varepsilon, \varepsilon)$. Pak $\exists r \in \mathbb{Q}, x+r \in (a,b)$. Tedy g(r) = f(r) - f(1)r = 0 a $g(x) = g(x) + g(r) = g(x+r) = f(x+r) - f(1) \cdot (x+r)$. f(x+r) je shora omezená z předpokladů, $f(1) \cdot (x+r)$ zřejmě. Tedy g je shora omezená na epsilonovém okolí 0, tedy i f je shora omezená na epsilonovém okolí 0, a protože je lichá, tak je i sdola omezená.

Krok 2: z definice spojitosti a linearity je tato funkce tedy spojitá v 0.

• Pokud je monotónní, pak je omezená na intervalu např. [0, 1], tedy dále postupujeme podle bodu (ii).

Příklad

Najděte všechny funkce $f: \mathbb{R} \to \mathbb{R}$ spojité, splňující f(1) > 0, f(x+y) = f(x)f(y).

Řešení

$$f(x) = f\left(\frac{x}{2} + \frac{x}{2}\right) = \left(f\left(\frac{x}{2}\right)\right)^2 \ge 0$$

Pokud $f(x_0) = 0$ pro nějaké $x_0 \in \mathbb{R}$, pak $f(x) = f(x - x_0) \cdot 0 = 0$ 4.

Tedy f(x) > 0. Tedy můžeme 'zlogaritmovat': $g(x) = \log f(x)$ spojitá na $\mathbb R$ a

$$g(x + y) = \log f(x + y) = \log f(x) + \log f(y) = g(x) + g(y).$$

Tudíž g(x) = ax pro nějaké $a \in \mathbb{R}$. Tudíž $f(x) = e^{ax} = (e^a)^x = b^x$, pro $b \in \mathbb{R}$.

Příklad

Najděte všechny spojité $f: \mathbb{R} \to \mathbb{R}$ takové, že $x - y \in \mathbb{Q} \implies f(x) - f(y) \in \mathbb{Q}$.

Řešení

g(x)=f(x+1)-f(x) spojitá. $H(g)\subseteq\mathbb{Q}\implies g$ je konstantní. Potom při označení f(0)=r je f(z)=r+zq, pro libovolné $.z\in\mathbb{Z}.$ Obdobně to dokážeme pro jiné konstanty v g než 1 a že $f\left(\frac{n}{m}\right)=r+\frac{n}{m}q$, takže ze spojitosti f(x)=r+qx pro $q\in\mathbb{Q},\ r\in\mathbb{R}.$