CSC236 Exercise 4

Siwei Tang, Jingyi Sun

due: July 20, 2020

1 Question 1

Assume the contradiction: L_2 is regular. Then $\overline{L_2}$ is also regular by closure principle under complement. Also, since 1,0 are regular, $\mathcal{L}(0^*1^*)$ is also regular by closure principle under Kleene star and concatenation.

Let $L' = \overline{L_2} \wedge \mathcal{L}(0^*1^*)$. Note that L' is also regular by closure principle under intersection. Therefore, we know that:

$$w \in L' \Leftrightarrow w \in \overline{L_2} \land w \in \mathcal{L}(0^*1^*)$$

 $\Leftrightarrow w = \{0^i 1^i \mid i \in \mathbb{N}\}$
 $\Leftrightarrow w \in L_1$

That is, $L' = L_1$. But L_1 is not regular, and this contradiction indicates our assumption is false. As such, L_2 is non-regular.

2 Question 2

Assume the contradiction: L is regular. Then L must satisfy conditions in Pumping Lemma, i.e. $\exists p \in \mathbb{N}^+, \forall w \in L, |w| \geq p$, then condition (1)-(4) holds.

Let $w=1^{p^2}$. Note that p^2 is a perfect square and $|w| \ge p$. Assume w satisfy condition (1)-(3), i.e. $\exists x, y, z, w = xyz, |xy| \le p, |y| \ge 1$.

Since w contains only 1's, we know that $w = xyz = 1^r1^s1^t$, where $r + s + t = p^2, r + s \le p$, and $s \ge 1$. If we pumped y twice, called it \bar{w} we have:

$$|\bar{w}| = r + 2s + t = p^2 + s$$

 $p^2 \le p^2 + s \le p^2 + p$ $(|y| \le |xy| \le p)$
 $\le (p+1)^2$

Since $p^2 + s$ is in between p^2 and $(p+1)^2$, it cannot be a perfect square. So $\bar{w} \notin L$, which fails the Pumping Lemma. This contradiction indicates that our assumption is false. As such, L is non-regular.