Zachary Stoebner

zstoebner@austin.utexas.edu | zstoebs.github.io

Overview_

My research interests span **machine learning**, **signal processing**, **optimization**, **probability**, **statistics**, and **control**. Currently, I am working on provably efficient, scalable, and robust algorithms for computational imaging and sequence modeling.

Education.

University of Texas at Austin

Austin, TX

PhD in Electrical & Computer Engineering (Advisor: Prof. Jon Tamir)

August 2022-Present

Coursework: Convex Optimization, Probability & Stochastic Processes, Computational MRI, Real Analysis, Advanced Computer Vision, Fourier Optics, Digital Signal Processing, Large-Scale Optimization, Advanced Probability

Vanderbilt University

Nashville, TN

BS with Honors in Computer Science & Neuroscience, Minor in Applied Mathematics

May 2021

MS in Computer Science (Advisor: Prof. Ipek Oguz)

1 ,000

The state of the s

August 2022

- Thesis: A deep learning-enabled automatic segmentation system for surgical endoscopy
- Coursework: Statistical ML, Systems Theory, Computational Game Theory, Intelligent Systems & Robotics

Work _____

Adobe

San Jose, CA

AI/ML Research Intern (Advisors: Sid Iyer, Abhishek Tandon, Oliver Brdiczka)

May 2025-Present

• Investigating state-space models for long-form text-to-image/video generation.

Research

IN PROGRESS

"Preconditioning for monotone operator learning", Zachary A. Stoebner, Jonathan I. Tamir. (2025-Present)

 Constructing preconditioners with convergence guarantees for image reconstruction via monotone operator learning using techniques from optimization and random matrix theory.

Conference

- "INFusion: diffusion regularized implicit neural representations for 2D and 3D accelerated MRI reconstruction", Yamin Arefeen, Brett Levac, **Zachary A. Stoebner**, Jonathan I Tamir. *IEEE-Asilomar* (2024). [DOI][pdf]
 - Contributed a [library] for generally defining implicit neural representations for inverse problems using PyTorch and Lightning.
- "Segmentation of kidney stones in endoscopic video feeds", **Zachary A. Stoebner**, Daiwei Lu, Seok Hee Hong, Nicholas L. Kavoussi, and Ipek Oguz. SPIE Medical Imaging: Image Processing (2022).
 [DOI][arXiv]
 - Optimized a high-performing (>0.9 Dice, 0.8 Kappa) residual U-Net with PyTorch and Comet for video segmentation and deployed it in live surgeries with OpenCV in Python.
 - Built and annotated a novel dataset of endoscopic nephrolithotomy videos using OpenCV in C++.

IOURNAL

"Reducing malware analysis overhead with coverings", Michael Sandborn, **Zachary A. Stoebner**, Westley Weimer, Stephanie Forrest, Ryan Dougherty, Jules White, Kevin Leach. *IEEE-TDSC* (2023).

[DOI][GitHub]

- Developed a high-performing (>90% hit rate) deep multilabel CNN classifier using PyTorch and Comet that predicted which sandboxes will run a stealthy malware sample using its binary image.
- Implemented scheduling algorithms in Python to simulate the analysis framework's scalability given the classifier's predictions and evaluated the algorithms' performance in simulation using NumPy.
- "Comprehensive shape analysis of the cortex in Huntington's disease", **Zachary A. Stoebner**, Kilian Hett, Ilwoo Lyu, Hans Johnson, Jane S. Paulsen, Jeffrey Long, Ipek Oguz. *Human Brain Mapping* (2023).

 [DOI][GitHub]
 - Formulated a linear-mixed model with lme4 in R to describe the cortex from the longitudinal PREDICT-HD dataset, using a novel index for gyrification, sulcal depth, and cortical thickness.
 Investigated novel areas of change associated with Huntington's disease and corroborated the degree of change reported in known areas
 - Investigated novel areas of change associated with Huntington's disease and corroborated the degree of change reported in known areas
 using SufStat in MATLAB.

July 27, 2025 Zachary Stoebner

POSTER

"Generalized system identification and joint signal reconstruction with implicit neural representations, with application to MRI", Zachary A. **Stoebner**, Jonathan I. Tamir. [6G@UT, Oden SciML Workshop] (2024)

- · Investigated implicit neural representations, state-space models, and Koopman theory, for image reconstruction and nonlinear system identification.
- · Wrote a [library] for generally defining implicit neural representations for inverse problems using PyTorch and Lightning.

PATENTS

"Systems and Methods for Navigation and Identification during Endoscopic Surgery", Nicholas L. Kavoussi, Ipek Oguz, Jie Ying Wu, Zachary A. Stoebner, Daiwei Lu, Ayberk Acar.

U.S. Patent Application No. 18/622,134.

Accolades _

2022-Present Cockrell Engineering Doctoral Fellowship, University of Texas at Austin

2017-2021 Dean's List, Vanderbilt University

Teaching .

ASSISTANT *held weekly office hours and graded homework

Spring 2022	Projects in ML, CS 3892	Vanderbilt
Fall 2021	Artificial Intelligence, CS 4260	Vanderbilt
Spring 2021	Deep Learning, CS 3891	Vanderbilt
Fall 2020	Operating Systems, CS 3281	Vanderbilt
Spring 2020	Discrete Structures, CS 2212	Vanderbilt
Fall 2019	Discrete Structures, CS 2212	Vanderbilt

Skills

Theory: Optimization, Deep Learning, Inverse Problems, Digital Sig-

nal Processing, Fourier Analysis, Probability

Practice: Python (PyTorch, OpenCV), C++ & C (OpenCV, ITK, VTK), Git, ML Workflow (Jupyter, Lightning, Comet, W&B), Visualization (PyPlot, Seaborn), MATLAB, R

Verbal: English (native), Portuguese (fluent), Spanish (advanced), French (basic)

Hobbies: climbing, lifting, trail running, backpacking, photography

References ____

Prof. Jon Tamir jtamir@utexas.edu Prof. Ipek Oguz ipek.oguz@vanderbilt.edu

Nicholas Kavoussi, MD nicholas.l.kavoussi@vumc.org

July 27, 2025 ZACHARY STOEBNER