Two-Species Lotka-Volterra Competition

LV Background Qs

Poll ended | 1 question | 21 of 24 (87%) participated

1. Experience w/ LV competition (Single choice)
21/21 (100%) answered

0 - None (0/21) 0%

1 - Seen it once or twice... (5/21) 24%

2 - Seen it and remember results (10/21) 48%

3 - Could reanalyse (phase plane) (6/21) 29%

4 - Know it in sleep (0/21) 0%

Lotka-Volterra Competition Model

Alfred Lotka

(Kingsland 1995)

AT THE LEFT: THE SIRE OF A LEADING DAIRY-FARM HERD. AT THE RIGHT: ONE OF THE COWS, WHO IN FIFTEEN MONTHS HAS HAD THREE CALVES AND PRODUCED IN A 365-DAY TEST 11,728 POUNDS OF MILK TESTING 6-32 PERCENT BUTTER FAT

THE HIGH PRICE OF MILK

SOME OF THE CAUSES, AND THE REMEDY
BY ALFRED J. LOTKA

Lotka-Volterra Competition Model (r-K form)

Start with two logistic equations (intraspecific competition)...

$$\frac{dN_1}{dt} = r_1 \left(1 - \frac{N_1}{K_1} \right) N_1$$

$$\frac{dN_2}{dt} = r_2 \left(1 - \frac{N_2}{K_2} \right) N_2$$

 r_i — intrinsic growth rates

 K_i — carrying capacities

Lotka-Volterra Competition Model (r-K form)

Add interspecific competition...

$$\frac{dN_1}{dt} = r_1 \left(1 - \frac{N_1}{K_1} - \frac{N_2}{K_1} \right) N_1$$

$$\frac{dN_2}{dt} = r_2 \left(1 - \frac{N_2}{K_2} - \frac{N_1}{K_2} \right) N_2$$

 r_i — intrinsic growth rates

 K_i — carrying capacities

Lotka-Volterra Competition Model (r-K form)

Include competition coefficients to scale strength of intra- vs interspecific competition...

$$\frac{dN_1}{dt} = r_1 \left(1 - \frac{N_1}{K_1} - \alpha_{12} \frac{N_2}{K_1} \right) N_1$$

$$\frac{dN_2}{dt} = r_2 \left(1 - \frac{N_2}{K_2} - \alpha_{21} \frac{N_1}{K_2} \right) N_2$$

 r_i — intrinsic growth rates

 K_i — carrying capacities

 α_{ij} — competition coefficients

Lotka-Volterra Competition Model (r- α form)

$$\frac{dN_1}{dt} = (r_1 - \alpha_{11}N_1 - \alpha_{12}N_2)N_1$$

$$\frac{dN_2}{dt} = (r_2 - \alpha_{21}N_1 - \alpha_{22}N_2)N_2$$

$$K_i = r_i/\alpha_{ii}$$

Phase-Plane Analysis

- Classic approach in theoretical ecology
- Each point is a state of the system
- Plot change in each species at each point

N_1 Isocline

$$\frac{dN_1}{dt} = 0$$

$$(r_1 - \alpha_{11}N_1 - \alpha_{12}N_2)N_1 = 0$$

$$N_1 = 0$$
or
$$r_1 - \alpha_{11}N_1 - \alpha_{12}N_2 = 0$$

N_1 Isocline

$$\frac{dN_1}{dt} = 0$$

$$(r_1 - \alpha_{11}N_1 - \alpha_{12}N_2)N_1 = 0$$

$$N_1 = 0$$
or
$$r_1 - \alpha_{11}N_1 - \alpha_{12}N_2 = 0$$

N_2 Isocline

$$\frac{dN_2}{dt} = 0$$

$$(r_2 - \alpha_{21}N_1 - \alpha_{22}N_2)N_2 = 0$$

$$N_2 = 0$$
or
$$r_2 - \alpha_{21}N_1 - \alpha_{22}N_2 = 0$$

Put isoclines together

- Focus on long-term dynamics $(t \to \infty)$
- <u>Isoclines</u> are where ONE species doesn't change
- <u>Equilibria</u> are where BOTH species don't change

Five Cases of LV Competition

Case I – 1 outcompetes 2

$$r_1/\alpha_{11} > r_2/\alpha_{21}$$

 $r_1/\alpha_{12} > r_2/\alpha_{22}$

Equilibria $(\widehat{N}_1, \widehat{N}_2)$:

(0,0) — unstable

 $(r_1/\alpha_{11}, 0)$ — stable

 $(0, r_2/\alpha_{22})$ — unstable

Case II – 2 outcompetes 1

$$r_2/\alpha_{21} > r_1/\alpha_{11}$$

 $r_2/\alpha_{22} > r_1/\alpha_{12}$

Equilibria $(\widehat{N}_1, \widehat{N}_2)$:

(0,0) — unstable

 $(r_1/\alpha_{11},0)$ — unstable

 $(0, r_2/\alpha_{22})$ — stable

Case III - 1 & 2 coexist

$$r_2/\alpha_{21} > r_1/\alpha_{11}$$

 $r_1/\alpha_{12} > r_2/\alpha_{22}$

Equilibria $(\widehat{N}_{1}, \widehat{N}_{2})$: (0,0) — unstable $(r_{1}/\alpha_{11},0)$ — unstable $(0,r_{2}/\alpha_{22})$ — unstable $(\frac{r_{1}\alpha_{22}-r_{2}\alpha_{12}}{\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21}},\frac{r_{2}\alpha_{11}-r_{1}\alpha_{21}}{\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21}})$ — stable

Case IV – 1 or 2 wins (founder control)

$$r_1/\alpha_{11} > r_2/\alpha_{21}$$

 $r_2/\alpha_{22} > r_1/\alpha_{12}$

Equilibria
$$(\widehat{N}_{1}, \widehat{N}_{2})$$
:
$$(0,0) - \text{unstable}$$

$$(r_{1}/\alpha_{11},0) - \text{stable}$$

$$(0,r_{2}/\alpha_{22}) - \text{stable}$$

$$(\frac{r_{1}\alpha_{22}-r_{2}\alpha_{12}}{\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21}}, \frac{r_{2}\alpha_{11}-r_{1}\alpha_{21}}{\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21}}) - \text{unstable}$$

Case 0 – neutrality

$$r_1/\alpha_{11} = r_2/\alpha_{21}$$

 $r_2/\alpha_{22} = r_1/\alpha_{12}$

Equilibria $(\widehat{N}_1, \widehat{N}_2)$: (0,0) - unstable line of equilibria — neutrally stable

More analysis (general)...

Find Equilibria

Solve

$$\begin{cases} \frac{dN_1}{dt} = f_1(N_1, N_2) = 0\\ \frac{dN_2}{dt} = f_2(N_1, N_2) = 0 \end{cases}$$

for $(\widehat{N}_1, \widehat{N}_2)$

Converts differential equations into algebraic equations.

Linear Stability Analysis

Consider a *small* perturbation from an equilibrium.

Calculate eigenvalues λ of Jacobian matrix J evaluated at an equilibrium \widehat{N} :

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial N_1} & \frac{\partial f_1}{\partial N_2} \\ \frac{\partial f_2}{\partial N_1} & \frac{\partial f_2}{\partial N_2} \end{bmatrix}_{\widehat{N}}$$

Rules:

Equilibrium is stable if all eigenvalues have negative real part.

Equilibrium is <u>unstable</u> if any eigenvalue has positive real part.

If largest eigenvalue is 0, linear stability analysis fails (possibly neutral).

Invasion Analysis

Can each species *i* invade a monoculture of the other *j*? Calculate its *per capita* growth rate when *rare*:

$$\lambda_{ij} = \frac{1}{N_i} \frac{dN_i}{dt} \bigg|_{(\widehat{N}_j, \widehat{N}_i) = (K_j, 0)}$$

Rules:

If $\lambda_{12} > 0$ and $\lambda_{21} < 0$, 1 outcompetes 2

If $\lambda_{12} < 0$ and $\lambda_{21} > 0$, 2 outcompetes 1

If $\lambda_{12} > 0$ and $\lambda_{21} > 0$, 1 & 2 coexist ("mutual invasibility")

If $\lambda_{12} < 0$ and $\lambda_{21} < 0$, founder control

(Metz et al. 1992, Grainger et al. 2019)

Invasion Analysis Limitations

- Unprotected coexistence (Allee effects)
- Resident strikes back
- Demographic stochasticity
- Not clear how to apply to >2 species

Mathematica examples...

see "2 – lv competition.nb"

Varying strength of competition

$$\alpha_{11}=\alpha_{22}=1$$

$\alpha_{12} = \alpha_{21} = 0.5$ stable coexistence

$\alpha_{12} = \alpha_{21} = 1$ neutral

$\alpha_{12} = \alpha_{21} = 2$ founder control

$\alpha_{12} = \alpha_{21} = 0$ non-interacting

$\alpha_{12} = \alpha_{21} = -0.25$ weak mutualism

(Gause & Witt 1935)

$\alpha_{12} = \alpha_{21} = -1.1$ strong mutualism

Modern coexistence theory

Modern coexistence theory

- Based on work of Peter Chesson (e.g. 2000, 2020)
- Two strains
 - LV-based
 - Invasion-based
- Understand coexistence based on niche differences & fitness differences
- See also Barabás et al. 2018

Rearrange invasion criteria

1 & 2 coexist if $\lambda_{12} > 0$, $\lambda_{21} > 0$:

$$r_1 > \frac{r_2 \alpha_{12}}{\alpha_{22}}, r_2 > \frac{r_1 \alpha_{21}}{\alpha_{11}}$$

Combine with r_1/r_2 in the middle:

$$\frac{\alpha_{12}}{\alpha_{22}} < \frac{r_1}{r_2} < \frac{\alpha_{11}}{\alpha_{21}}$$

Symmetrize:

$$\sqrt{\frac{\alpha_{12}\alpha_{21}}{\alpha_{11}\alpha_{22}}} < \sqrt{\frac{\alpha_{22}\alpha_{12}}{\alpha_{11}\alpha_{21}}} \frac{r_1}{r_2} < \sqrt{\frac{\alpha_{11}\alpha_{22}}{\alpha_{12}\alpha_{21}}}$$

$$\frac{1}{\rho} < \Delta < \rho$$

 Δ — fitness difference ρ — niche overlap

Stabilizing & equalizing coexistence mechanisms

LV Competition: Pros & Cons

Pros

- Analytically tractable
- Graphical approach
- Shows 5 outcomes of competition
- Phenomenological

Cons

- Linear competitive effects
- No physical meaning to parameters
- How does competitive outcome depend on environmental gradients?
- Curse of dimensionality
- How are parameters related / constrained?

References

Barabás G, D'Andrea R, Stump SM (2018) Chesson's coexistence theory. *Ecological Monographs* 88: 277–303.

Chesson P (2000) Mechanisms of maintenance of species diversity. *Annual Review of Ecology, Evolution, and Systematics* 31: 343–366

Chesson P (2020) Species coexistence. In: *Theoretical Ecology*. Oxford University Press, pp 5–27

Gause GF, Witt AA (1935) Behavior of mixed populations and the problem of natural selection. *American Naturalist* 69: 596–609

Grainger TN, Levine JM, Gilbert B (2019) The invasion criterion: a common currency for ecological research. *Trends in Ecology & Evolution* 34: 925–935.

Kingsland S (1995) Modeling Nature: Episodes in the History of Population Ecology. 2nd edition.

Mallet J (2012) The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation. *Evolutionary Ecology Research* 14: 627–655

Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define "fitness" for general ecological scenarios. Trends in Ecology & Evolution 7: 198–202