1.2

INFINITE SERIES

ADDITION to infinity and beyond . . .

NOTION

SERIES

- ➤ A SUM OF INFINITELY MANY NUMBER OF TERMS
- > THE SUM OF ALL TERMS OF A SEQUENCE

Infinite Series

Let $\{u_n\}$ be a sequence of real numbers.

Define $s_n = u_1 + u_2 + ... + u_n$

The sequence $\{s_n\}$ is an infinite series denoted by

$$\sum_{n=1}^{+\infty} u_n = u_1 + u_2 + \ldots + u_n + \ldots$$

Infinite Series

$$\sum_{n=1}^{+\infty} u_n = u_1 + u_2 + \ldots + u_n + \ldots$$

 u_i 's: terms of the series

$$s_n = u_1 + u_2 + \ldots + u_n$$

 s_i 's : partial sums

Example. ZENO's PARADOX

ACHILLES wants to run a distance of **2** *KM*.

2 KM

WILL ACHILLES REACH THE 2 KM MARK?

Example. ZENO's PARADOX

LEG 1	Distance (in km) $1 \qquad \qquad \left[\left(\begin{array}{c} 1 \end{array} \right)^{n-1} \right]$
2	$\frac{1}{2} \text{ Sequence: } \left\{ \left(\frac{1}{2} \right)^{n-1} \right\}$
3	$\frac{1}{4}$ 1
4	' 8
5	$\frac{1}{16}(1)^{n-1}$
n	$\left(\overline{2} \right)$

Example. ZENO's PARADOX

Distance covered in leg
$$n = \left(\frac{1}{2}\right)^{n-1}$$

Distance covered for the first *n* legs

$$= 1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1}$$

$$= s_n$$

Total distance = INFINITE SERIES (up to infinity)

How to write infinite series

1. Using partial sums: $\{s_n\}$.

$$s_n = u_1 + u_2 + \ldots + u_n$$

2. Using summation notation.

$$\sum_{n=1}^{+\infty} u_n$$

HOW TO GET THE SUM $\sum_{n=1}^{+\infty} u_n$?

$$\sum_{n=1}^{+\infty} u_n = \lim_{n \to +\infty} s_n$$

where $s_n = u_1 + u_2 + ... + u_n$

Example.

$$\sum_{n=-1}^{+\infty} \left(\frac{1}{2}\right)^{n-1} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} + \dots$$

$$\lim_{n \to +\infty} s_n \text{ BUT } s_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1}$$
NOT A GOOD FORM!

CONVENIENT FORM OF $s_n!!!$

Consider
$$s_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1}$$

$$-\frac{1}{2}s_n = \frac{11}{2} + \frac{11}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} + \left(\frac{11}{2}\right)^{n}$$

$$\frac{1}{2}s_n = 1 - \left(\frac{1}{2}\right)^n$$

$$s_n = 2\left[1 - \left(\frac{1}{2}\right)^n\right]$$

Example.

$$s_{n} = 2 \cdot \left(1 - \left(\frac{1}{2}\right)^{n}\right)$$

$$\lim_{n \to +\infty} s_{n} = \lim_{n \to +\infty} 2 \cdot \left(1 - \left(\frac{1}{2}\right)^{n}\right) = 2$$

$$+\infty \left(1 + \frac{1}{2}\right)^{n} = 2$$

THUS,
$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{n-1} = 2$$

Detour

WILL ACHILLES REACH

THE 2 KM MARK?

up to OO

2 KM

Convergence / Divergence

$$\sum u_n$$
 is convergent

if
$$\lim_{n \to +\infty} s_n$$
 exists.

If
$$\lim_{n \to +\infty} s_n = L$$
, then $\sum_{n=1}^{+\infty} u_n = L$.

If $lim s_n$ does not exist, then the series is divergent.

Theorem

If
$$\sum_{n=1}^{+\infty} u_n$$
 is convergent,

then $\lim u_n = \mathbf{0}$

The CONTRAPOSITIVE

$$\begin{array}{ccc}
\text{If } \lim_{n \to +\infty} u_n \neq 0, \\
\end{array}$$

then $\sum_{n=0}^{+\infty} u_n^{is}$ divergent.

Clarification

$$\mathbf{If} \lim_{n \to +\infty} u_n = \mathbf{0},$$

NO CONCLUSION

on convergence/divergence

of
$$\sum_{n=1}^{+\infty} u_n$$

Example 1. Show divergence. $\sum_{n=1}^{+\infty} \frac{e^n}{n^2}$

$$\sum_{n=1}^{+\infty} \frac{e^n}{n^2}$$

Example 2. Show divergence.

$$\sum_{n=1}^{+\infty} \frac{2n^2 + 3n}{1 - 3n^2}$$

Illustration.

HARMONIC SERIES:

 $\sum_{n=1}^{+\infty} \frac{1}{n}$ is DIVERGENT.

BUT, $\lim_{n \to \infty} \frac{1}{n} = 0$.

Supplement

ADJUSTING THE TERMS OF A SERIES

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=k}^{+\infty} u_{n-(k-1)}$$

$$\sum_{n=k}^{+\infty} u_n = \sum_{n=1}^{+\infty} u_{n+(k-1)}$$

Observe ...
$$\sum_{n=1}^{+\infty} u_n = \underbrace{u_1 + u_2 + u_3 \dots + u_n + \dots}_{n=1}$$

$$\sum_{n=k}^{+\infty} u_{n-(k-1)} = \underbrace{u_{k-(k-1)} + u_{(k+1)-(k-1)}}_{+u_{(k+2)-(k-1)} + u_{(k+3)-(k-1)} + \dots}$$

$$\sum_{n=k}^{+\infty} u_{n-(k-1)} = \underbrace{u_1 + u_2 + u_3 \dots + u_n + \dots}_{n=k}$$

Illustration

$$\sum_{n=1}^{+\infty} 2^{n-1} \cdot n = \sum_{n=3}^{+\infty} 2^{n-3} \cdot (n-2)$$

$$\sum_{n=3}^{+\infty} \frac{2^n}{n} = \sum_{n=1}^{+\infty} \frac{2^{n+2}}{n+2}$$

END