CS 577- Intro to Algorithms

Greed (Part 4)

Dieter van Melkebeek

October 22, 2020

Outline

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of each component.

Correctness argument

- Greed stays ahead: interval scheduling, shortest paths
- ► Exchanges: interval scheduling, minimizing maximum lateness, optimal binary codes

Outline

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of each component.

Correctness argument

- Greed stays ahead: interval scheduling, shortest paths
- Exchanges: interval scheduling, minimizing maximum lateness, optimal binary codes, minimum spanning tree

Problem

Input: connected graph G = (V, E) and $w : E \to \mathbb{R}$

Problem

```
Input: connected graph G=(V,E) and w:E\to\mathbb{R}
Ouput: tree T=(V,F) with F\subseteq E such that w(T)\doteq\sum_{e\in F}w(e) is minimized
```

Problem

```
Input: connected graph G=(V,E) and w:E\to\mathbb{R}
Ouput: tree T=(V,F) with F\subseteq E such that w(T)\doteq\sum_{e\in F}w(e) is minimized
```

Greedy algorithm

Problem

```
Input: connected graph G=(V,E) and w:E\to\mathbb{R}
Ouput: tree T=(V,F) with F\subseteq E such that w(T)\doteq\sum_{e\in F}w(e) is minimized
```

Greedy algorithm

- ▶ Tree growing
 - Maintain minimum spanning tree T for connected subgraph induced by $S \subseteq V$.
 - Grow S until it reaches V.

Problem

```
Input: connected graph G=(V,E) and w:E\to\mathbb{R}
Ouput: tree T=(V,F) with F\subseteq E such that w(T)\doteq\sum_{e\in F}w(e) is minimized
```

Greedy algorithm

- ► Tree growing
 - Maintain minimum spanning tree T for connected subgraph induced by $S \subseteq V$.
 - Grow S until it reaches V.
- ▶ Tree joining
 - Maintain minimum spanning forest T of G.
 - Join two trees of the forest until there is only a single tree left.

Grow set $S \subseteq V$ and maintain MST T for subgraph induced by S.

- ▶ Start with $S = \{s\}$ and trivial MST T.
- While $S \neq V$, find $(u^*, v^*) = \arg\min_{(u,v) \in E \cap S \times \overline{S}} (w(u, v))$ and connect v^* to T via (u^*, v^*) .

Grow set $S \subseteq V$ and maintain MST T for subgraph induced by S.

- ▶ Start with $S = \{s\}$ and trivial MST T.
- While $S \neq V$, find $(u^*, v^*) = \arg\min_{(u,v) \in E \cap S \times \overline{S}} (w(u, v))$ and connect v^* to T via (u^*, v^*) .

Implementation

Priority queue for $v \in \overline{S}$ with key $\lambda(v) \doteq \min_{u \in S:(u,v) \in E}(w(u,v))$

Grow set $S \subseteq V$ and maintain MST T for subgraph induced by S.

- Start with $S = \{s\}$ and trivial MST T.
- While $S \neq V$, find $(u^*, v^*) = \arg\min_{(u,v) \in E \cap S \times \overline{S}} (w(u,v))$ and connect v^* to T via (u^*, v^*) .

Implementation

Priority queue for $v \in \overline{S}$ with key $\lambda(v) \doteq \min_{u \in S:(u,v) \in E}(w(u,v))$

Running time with binary heap

- ► Initialization: O(n)
- ightharpoonup n min extractions: $O(n \log n)$
- ▶ Total: $O((n+m)\log n) = O(m\log n)$ as $m \ge n-1$

Tree Joining

Tree Joining

Coarsen partition of G into connected subgraphs, and maintain collection T of MSTs for each of the subgraphs.

- Start with partition consisting of all individual vertices, and trivial spanning forest T.
- While T has more than one subgraph, add (u^*, v^*) to T where $(u^*, v^*) = \arg\min_{(u,v) \in E: u \not\sim_T v} (w(u,v))$.

Tree Joining

Coarsen partition of G into connected subgraphs, and maintain collection \mathcal{T} of MSTs for each of the subgraphs.

- Start with partition consisting of all individual vertices, and trivial spanning forest T.
- While T has more than one subgraph, add (u^*, v^*) to T where $(u^*, v^*) = \arg\min_{(u,v) \in E: u \not\sim_T v} (w(u,v))$.

Implementation

- ▶ Consider edges $(u, v) \in E$ in order of nondecreasing weight.
- ▶ Add (u, v) to T if $u \not\sim_T v$.

Lazy relabeling

- ► When merging connected components, relabel smaller one by the larger one.
- ► Each time vertex gets relabeled, its connected component grows by a factor at least 2 in size.
- Number of times each given vertex gets relabeled $\leq \log n$.

Lazy relabeling

- ► When merging connected components, relabel smaller one by the larger one.
- ► Each time vertex gets relabeled, its connected component grows by a factor at least 2 in size.
- Number of times each given vertex gets relabeled $\leq \log n$.

Lazy relabeling

- ▶ When merging connected components, relabel smaller one by the larger one.
- ► Each time vertex gets relabeled, its connected component grows by a factor at least 2 in size.
- Number of times each given vertex gets relabeled $\leq \log n$.

Running time

▶ Sorting the edges: $O(m \log m)$

Lazy relabeling

- ▶ When merging connected components, relabel smaller one by the larger one.
- ► Each time vertex gets relabeled, its connected component grows by a factor at least 2 in size.
- Number of times each given vertex gets relabeled $\leq \log n$.

- ▶ Sorting the edges: $O(m \log m)$
- ► Testing edges: *O*(*m*)

Lazy relabeling

- ▶ When merging connected components, relabel smaller one by the larger one.
- ► Each time vertex gets relabeled, its connected component grows by a factor at least 2 in size.
- Number of times each given vertex gets relabeled $\leq \log n$.

- ▶ Sorting the edges: $O(m \log m)$
- ► Testing edges: *O*(*m*)
- Maintaining connected components: $O(n \log n)$

Lazy relabeling

- ▶ When merging connected components, relabel smaller one by the larger one.
- ► Each time vertex gets relabeled, its connected component grows by a factor at least 2 in size.
- Number of times each given vertex gets relabeled $\leq \log n$.

- ▶ Sorting the edges: $O(m \log m)$
- ► Testing edges: *O*(*m*)
- ▶ Maintaining connected components: $O(n \log n)$
- ► Total: $O(m \log(m) + n \log(n)) = O(m \log n)$ as $m \ge n 1$

Based on tree growing

- ▶ Binary heap: $O(m \log n)$
- ▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$

Based on tree growing

- ▶ Binary heap: $O(m \log n)$
- ▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$

Based on tree joining

- \triangleright $O(m \log m)$ due to sorting edges
- ▶ Lazy relabeling: $O(m + n \log n)$ given sorted edges
- ▶ Improved data structures (Union-Find): $O(m \cdot \alpha(n, m))$ given sorted edges, where α is inverse Ackermann

Based on tree growing

- ▶ Binary heap: $O(m \log n)$
- ▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$

Based on tree joining

- \triangleright $O(m \log m)$ due to sorting edges
- ▶ Lazy relabeling: $O(m + n \log n)$ given sorted edges
- Improved data structures (Union-Find): $O(m \cdot \alpha(n, m))$ given sorted edges, where α is inverse Ackermann

Other approaches

 $O(m \cdot \alpha(n))$ where α is inverse Ackermann

Correctness

Correctness

Correctness

Common setting

- ▶ Suppose we know a subset $F \subseteq E$ such that there exists an MST T of G that contains F.
- ▶ Consider a subset $S \subseteq V$ such that no edge in F crosses the cut (S, \overline{S}) , i.e., $F \cap S \times \overline{S} = \emptyset$.

Observation

T has to contain an edge in $E \cap S \times \overline{S}$. This edge contributes at least $\min_{e \in E \cap S \times \overline{S}} (w(e))$ to w(T).

Cut property

Let $e^* = \arg\min_{e \in E \cap S \times \overline{S}} (w(e))$. There exists an MST T' of G that contains $F \cup \{e^*\}$.

Exchange Argument

Exchange Argument

Exchange Argument

Cut property

Let $e^* = \arg\min_{e \in E \cap S \times \overline{S}} (w(e))$. There exists an MST T' of G that contains $F \cup \{e^*\}$.

Proof

- Suppose e^* not in T; otherwise done.
- Consider adding e^* to T. This induces cycle that crosses (S, \overline{S}) somewhere else, say at $e \in E \cap S \times \overline{S}$.
- ▶ Replacing e by e^* in T yields spanning tree T' of G.
- ► Since $w(e^*) \le w(e)$,

$$w(T') = w(T) + w(e^*) - w(e) \le w(T).$$

ightharpoonup ... T' is an MST of G containing $F \cup \{e^*\}$

▶ Apply cut property with *F* the set of edges included thus far.

- ▶ Apply cut property with *F* the set of edges included thus far.
- ► Tree growing: *S* is set of vertices in current tree.

- ▶ Apply cut property with *F* the set of edges included thus far.
- ► Tree growing: *S* is set of vertices in current tree.
- ▶ Tree joining: S is set of vertices connected to u^* in current forest, where (u^*, v^*) is edge under consideration.