Newtonian Mechanics—Single Particle

PHYS 301: Analytical Mechanics

T. Brian Bunton, 08/22/19

Problem 1

You're driving and you approach a green traffic light with speed v_0 when the light turns yellow.

- a) If your reaction time is τ , during which you make the decision to stop and apply your foot to the brake, and if your maximum braking acceleration is a, what is the minimum distance s_{min} from the intersection at the moment the light turns yellow in which you can bring your car to a stop?
- b) If the yellow light remains on for a time t before turning red, what is the maximum distance s_{max} from the intersection at the moment the light turns yellow such that you can continue into the intersection at speed v_0 without running the red light?
- c) Show that if your initial speed v_0 is greater than $v_{0,max} = 2 a(t \tau)$, there will be a range of distances from the intersection such that you can neither stop in time nor continue through without running the red light.
- d) Make some reasonable estimates of τ , t, and a, and calculate $v_{0,\text{max}}$ in miles per hour. If $v_0 = \frac{2}{3} v_{0,\text{max}}$, calculate s_{min} and s_{max} . Use these estimates to plot graphs (in *Mathematica* or some other computer program) of s_{min} and s_{max} versus v_0 on the same set of axes.

Problem 2

A boat is slowed by a frictional force F(v). Its velocity decreases according to the formula $v(t) = k \sqrt{t - t_s}$, where k is a constant and t_s is the time at which the boat stops. Find the force F(v).

Problem 3

A boat with an initial velocity v_0 is slowed by a frictional force $F = -b e^{\alpha v}$. Find its motion, and the time and the distance required to stop.

Problem 4

Two blocks of unequal mass are connected by a string over a smooth pulley at the top of an incline. The hanging block is twice the mass of the block sitting on the incline. If the coefficient of kinetic friction is

 μ_k , what angles θ of the incline allow the masses to move at a constant speed?