Trade Adjustment Dynamics and the Welfare Gains from Trade

George Alessandria Horag Choi Kim J. Ruhl U. Rochester Monash University NYU Stern

October 2015 | Penn State

Fundamental questions

- 1. How big are the welfare gains from trade?
- **2.** How big are trade barriers?

Advances in trade theory

- ▶ Producer-level heterogeneity
 - ► Eaton and Kortum (2002), Melitz(2003)
- ▶ Discrete-choice export decisions
 - ▶ Baldwin and Krugman (1989), Roberts and Tybout (1997)
 - ► Entry cost and continuation cost formulation
 - ► Exporting is a dynamic choice
- ▶ What have we learned?

Fundamental questions: The literature

- 1. How big are the welfare gains from trade?
 - ► Not very big
 - ▶ In "static" models: Firm heterogeneity not important (Arkolakis, Costinot, Rodriguez-Clare, 2012)
- **2.** How big are trade barriers?
 - ▶ Producer export entry costs are very large
 - ► Significant fraction of entry cost is sunk

Fundamental questions: The literature

- 1. How big are the welfare gains from trade?
 - ► Not very big
 - ▶ In "static" models: Firm heterogeneity not important (Arkolakis, Costinot, Rodriguez-Clare, 2012)
- **2.** How big are trade barriers?
 - ► Producer export entry costs are very large
 - ► Significant fraction of entry cost is sunk
- ► Missing: Exporter life cycles
 - ► Existing models don't match exporter dynamics data
 - ► Important for aggregate dynamics

Our model

- ▶ GE model with producer-level export dynamics
- ► Keep fixed cost setup
- ► Introduce stochastic variable trade costs
 - ▶ Need time, resources, and luck to become an efficient exporter
 - ▶ Model: 3 years to turn profit, 5 years to break even
- ▶ Key tradeoff: accumulating varieties vs. exporters
- ▶ Plant-level data discipline aggregate dynamics

Fundamental questions: Our answers

- 1. How big are the welfare gains from trade?
 - ► Larger than steady-state changes
 - ► Gain 2.8X larger than no-micro-dynamics model
 - ► Gain 1.5X larger than sunk-cost model
 - ▶ Unilateral liberalization: Welfare gain, but s-s consumption falls
- **2.** How big are trade barriers?
 - ► Entry costs are smaller than previous estimates
 - ► Sunk component substantially smaller
 - ► Total resources devoted to exporting are large

Overview

- ► Exporter dynamics facts
- ► Model
- ► Results
 - ightharpoonup Estimates of export technology
 - \blacktriangleright Welfare in bilateral trade reform
 - ▶ Welfare in unilateral trade reform

Micro exporter facts

- 1. Not all plants export (22% in US)
- **2.** Exporters are relatively large (5x larger)
- **3.** Exporting is persistent (83% survival)

Micro exporter facts

- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- **3.** Exporting is persistent (83% survival)
- 4. New exporters start with low export intensity

$$\mathbf{exs}_{it} = \mathbf{exports}_{it}/\mathbf{total}\ \mathbf{sales}_{it}$$

- **5.** New exporters take time (5yrs) to get to average exporter levels
- **6.** New exporters have high exit rates

Export intensity of Colombian exporters (Ruhl & Willis, 08)

Survival probability of Colombian new exporters (Ruhl & Willis, 08)

Model

- \blacktriangleright General equilibrium, infinite horizon, 2 country $\{H,F\}$ model
- ▶ Idiosyncratic uncertainty, no aggregate uncertainty
- ▶ Heterogeneous plants producing differentiated tradable goods
 - ► Monopolistic competitors
 - ▶ Fixed export costs: startup and continuation
 - ▶ Plants are created: endogenous mass of firms
- ► Exporter life cycle: time to build demand/lower marginal export costs
- ► Final C/I good combines available differentiated tradables

Model

- ▶ Mass N_t, N_t^* differentiated H & F intermediates
- ▶ Each variety produced by 1 domestic-owned establishment
 - ▶ Idiosyncratic technology shocks: z, $\phi(z'|z)$
 - ▶ Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)
 - ▶ Iceberg costs: $\xi = \{\xi_L, \xi_H, \infty\}$
 - ▶ Measure of establishments: $\varphi_{i,t}(z,\xi,f)$

Model

- ▶ Mass N_t, N_t^* differentiated H & F intermediates
- ▶ Each variety produced by 1 domestic-owned establishment
 - ▶ Idiosyncratic technology shocks: z, $\phi(z'|z)$
 - ▶ Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)
 - ▶ Iceberg costs: $\xi = \{\xi_L, \xi_H, \infty\}$
 - ▶ Measure of establishments: $\varphi_{i,t}(z,\xi,f)$
- ▶ Free entry: hire f_E workers, draw $\phi_E(z)$ in t+1
- ightharpoonup Exogenous survival: $n_s(z)$
- ► Timing: fixed costs paid 1 period in advance

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - ▶ Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\infty)$

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - ▶ Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\infty)$
- ► An exporter
 - ▶ In current period: $\xi < \infty$
 - \blacktriangleright Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - ▶ If not: exit raises cost to ∞

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - ightharpoonup Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\infty)$
- ► An exporter
 - ▶ In current period: $\xi < \infty$
 - ightharpoonup Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - ▶ If not: exit raises cost to ∞
- ▶ Our model: $\xi_H > \xi_L$, $f_H > f_L$
 - ▶ Das, Roberts, Tybout (2007): $\xi_H = \xi_L$, $f_H > f_L$
 - ▶ Ghironi and Melitz (2005): $\xi_H = \xi_L$, $f_H = f_L$
 - ▶ Krugman (1980) w/heterogeneity: $\xi_H = \xi_L$, $f_H = f_L = 0$

Consumer's problem

$$V_{C,0} = \max_{\{C_t, B_t, K_{t+1}\}} \sum_{t=0}^{\infty} \beta^t U(C_t)$$

$$C_t + K_{t+1} + Q_t \frac{B_t}{P_t} \le W_t L_t + R_t K_t + (1 - \delta) K_t + \Pi_t + T_t + \frac{B_{t-1}}{P_t},$$

- \triangleright P_t , W_t denote price level & real wage
- $ightharpoonup \Pi_t$ sum of home country profits, T_t lump sum gov't transfers
- ▶ Foreign problem is analogous; foreign variables denoted by *

$$Q_{t} = \beta \frac{U_{C,t+1}}{U_{C,t}} = \beta \frac{U_{C,t+1}^{*}}{U_{C,t+1}^{*}},$$

$$1 = \beta \frac{U_{C,t+1}}{U_{C,t}} (R_{t+1} + 1 - \delta) = \beta \frac{U_{C,t+1}^{*}}{U_{C,t}^{*}} (R_{t+1}^{*} + 1 - \delta)$$

Competitive final good producers

- ▶ Combine domestic and imported intermediates, produce goods for
 - ► Consumption
 - ▶ Investment
 - ▶ Input into production by domestic firms

$$\begin{split} D_{t} &= \left[\int_{s} y_{H,t}^{d}\left(s\right)^{\frac{\theta-1}{\theta}} \varphi_{H,t}\left(s\right) ds + \int_{s} y_{F,t}^{d}\left(s\right)^{\frac{\theta-1}{\theta}} \varphi_{F,t}\left(s\right) ds \right]^{\frac{\theta}{\theta-1}} \\ D_{t} &= C_{t} + I_{t} + \int x(s) \varphi_{H,t}\left(s\right) ds \end{split}$$

Tradable producers

▶ Individual state is
$$s = (z, \xi, f)$$

► Production Technology:
$$y_t(s) = e^z \left[k_t(s)^\alpha l_t(s)^{1-\alpha} \right]^{1-\alpha_x} x(s)^{\alpha_x}$$

 $ightharpoonup Profit, \Pi_t(s), is$

$$\max_{P_{H}, P_{H}^{*}, l, k, x} P_{H,t}(s) y_{H,t}(s) + P_{H,t}^{*}(s) y_{H,t}^{*}(s) - W_{t} l_{t}(s) - R_{t} k_{t}(s) - P_{t} x_{t}(s)$$
s.t. $y_{t}(s) = y_{H,t}^{d}(s) + (1 + \xi) y_{H,t}^{d*}(s)$,

$$V_{t}\left(z,\xi,f\right)=\max\left\{ V_{t}^{1}\left(z,\xi,f\right),V_{t}^{0}\left(z,\xi,f\right)\right\}$$

$$\begin{split} V_{t}^{1}\left(z,\xi,f\right) &= \max \Pi_{t}\left(z,\xi,f\right) - W_{t}f \\ &+ n_{s}\left(z\right) Q_{t} \sum_{\xi' \in \left\{\xi_{L},\xi_{H}\right\}} \int_{z'} V_{t+1}\left(z',\xi',f_{L}\right) \phi\left(z'|z\right) dz' \rho_{\xi}\left(\xi'|\xi\right) \end{split}$$

$$V_t^0(z,\xi,f) = \max \Pi_t(z,\xi,f)$$
$$+ n_s(z) Q_t \int_{z'} V_{t+1}(z',\infty,f_H) \phi(z'|z) dz'$$

▶ With 3 iceberg costs there are three marginal firm types

Free entry

- \blacktriangleright Hire f_E workers to enter
- ▶ Draw technology $\phi_E(z)$, produce in t+1

$$V_{t}^{E} = -W_{t}f_{E} + Q_{t}EV_{t}\left(z, \infty, f_{H}\right)\phi_{E}\left(z\right) \leq 0$$

 $\Rightarrow N_{TE,t}$ new establishments

Calibration

- ▶ Target usual plant-level moments: participation rate, starter rate, etc.
- ▶ Export technology: $\{\xi_L, \xi_H\}, \{\rho(\xi_H|\xi_H), \rho(\xi_L|\xi_L), \rho(\xi_H|\infty)\}$

Calibration

- \blacktriangleright Target usual plant-level moments: participation rate, starter rate, etc.
- ▶ Export technology: $\{\xi_L, \xi_H\}, \{\rho(\xi_H|\xi_H), \rho(\xi_L|\xi_L), \rho(\xi_H|\infty)\}$

Calibration

- \blacktriangleright Target usual plant-level moments: participation rate, starter rate, etc.
- ► Export technology: $\{\xi_L, \xi_H\}, \{\rho(\xi_H|\xi_H), \rho(\xi_L|\xi_L), \rho(\xi_H|\infty)\}$

 - ► Micro-dynamic moments
 - 1. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 08)
 - 2. 5 years to reach avg export intensity (Ruhl&Willis 08)

Calibration: Establishment data

A. Exporter dynamics and characteristics:

- 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
- **2.** Stopper rate = 17 % (ASM)
- **3.** Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 08)
- 4. 5 years to reach avg export intensity (Ruhl&Willis 08)

Calibration: Establishment data

A. Exporter dynamics and characteristics:

- 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
- 2. Stopper rate = 17 % (ASM)
- 3. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 08)
- 4. 5 years to reach avg export intensity (Ruhl&Willis 08)

B. Establishment heterogeneity:

- 5. Entrant 5-yr survival 37 % (Dunne et al. 89)
- **6.** Birth labor share =1.5% (Davis, et al. 96)
- 7. Exit labor share = 2.3 % (Davis, et al. 96)
- 8. Establishment and employment distribution (92 Census)
- 9. Establishment exporter distribution (92 Census)

Calibration: Aggregates

▶ Utility: $U(c) = \frac{c^{1-\sigma}}{1-\sigma}$

σ	IES	2
δ	Capital depreciation	0.10
β	Disounting	0.96
θ	Elasticity of substitution	5
au	Tariff (Anderson and van Wincoop)	0.1
α_x	MFR gross output/MFR $VA = 2.8$	0.81
α	Capital share of income = 34%	0.13

Overview

- ightharpoonup Exporter dynamics facts
- ► Model
- ► Results
 - \blacktriangleright Estimates of export technology
 - ▶ Welfare in bilateral trade reform
 - ▶ Welfare in unilateral trade reform

Estimate of benchmark export technology

- ▶ Entry cost 40% larger than continuation cost: $f_H/f_L = 1.4$
- ► High iceberg cost 62% larger than low iceberg cost (1.72 vs. 1.07)
- ▶ Iceberg cost very persistent: $\rho(\xi_H|\xi_H) = 0.92$

Common parameters			
	Benchmark	Sunk-cost	
f_H/f_E	0.038		
f_L/f_E	0.027		
ξ_H	1.718		
ξ_L	1.070		
ρ_{ξ}	0.916		

1-year survival rate (not targeted)

Alternative model: Sunk cost export technology

▶ Restriction: $\xi_H = \xi_L$

	Benchmark	Sunk-cost
f_H/f_E	0.038	0.058
f_L/f_E	0.027	0.015
ξ_H	1.718	1.430
ξ_L	1.070	1.430
$ ho_{\xi}$	0.916	1.000

- $ightharpoonup f_H/f_L = 3.9 \text{ vs. } f_H/f_L = 1.4 \text{ in benchmark}$
- ▶ In benchmark model, high survival rate arises because producers don't want to go through growth process again not sunk costs.

Profits (net/entry cost) of marginal starters

Overview

- ▶ Exporter dynamics facts
- ► Model
- ► Results
 - ightharpoonup Estimates of export technology
 - ▶ Welfare in bilateral trade reform
 - ▶ Welfare in unilateral trade reform

3 experiments

- 1. Benchmark: $\xi_H > \xi_L$, $f_H > f_L$
- **2.** Sunk cost: $\xi_H = \xi_L$, $f_H > f_L$
- **3.** No cost: $\xi_H = \xi_L$, $f_H = f_L = 0$
- ▶ Consider unanticipated global tariff reduction, $\tau = 0.1 \rightarrow \tau = 0$

Dynamics following elimination of 10 percent tariff Benchmark Model: Trade elasticity

Dynamics following elimination of 10 percent tariff Benchmark Model: Aggregate dynamics

The benchmark model

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30		
Avg. trade elasticity $(\bar{\varepsilon}_t)$	10.2		
SS. Consumption	0.42		
SS. Trade elasticity	11.5		

$$\bar{\varepsilon}_t = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t.$$

Source of overshooting

- ➤ Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ▶ These establishments can be converted at a low cost to exporters
- ► Size rationalization: fewer, but larger plants

Source of overshooting

- ➤ Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ▶ These establishments can be converted at a low cost to exporters
- ▶ Size rationalization: fewer, but larger plants
- ▶ Plant creation dynamics key to overshooting
- ▶ Experiment: subsidize entry so that $N_t = 1$

Dynamics following elimination of 10 percent tariff Aggregate Output

The sunk-cost model

- ► Literature has focused on sunk costs as a source of persistent exporting
- \blacktriangleright Sunk cost model misses out on a spects of new exporter dynamics.
- ► Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?

The sunk-cost model

- ► Literature has focused on sunk costs as a source of persistent exporting
- \blacktriangleright Sunk cost model misses out on a spects of new exporter dynamics.
- ► Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?
- ▶ Answer: Not so good on trade, pretty good on consumption/welfare

Trade elasticity

Consumption

Establishments

The sunk-cost model

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	
Avg. trade elasticity $(\bar{\varepsilon}_t)$	10.2	6.9	
SS. Consumption	0.42	1.98	
SS. Trade elasticity	11.5	7.2	

$$\bar{\varepsilon}_t = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t.$$

How important is endogenous exporting?

- ► Krugman (1980): all firms export
- ► Requires two main changes
 - 1. Change θ to get LR trade elasticity
 - 2. Add adjustment friction to get dynamics of trade elasticity

Consumption

Establishments

Modified Krugman (1980) model

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	2.34
Discounted trade elasticity	10.2	6.9	10.2
Consumption	0.42	1.98	3.93
Trade elasticity	11.5	7.2	11.5

- \blacktriangleright Only home country eliminates tariff
- ▶ Financial autarky; non-contingent bond; complete markets
- ► Asymmetry generates
 - ▶ Unbalanced trade
 - ▶ Real exchange rate movements

Change		Benchmark		No-cost
		Bond	Complete Markets	Bond
Welfare				
	Home	0.51		
	Foreign	5.70		
SS Consu	imption			
	Home	-2.43		
	Foreign	2.82		

Welfare gain is
$$x$$
: $\sum_{t=0}^{\infty} \beta^t U\left(C_{-1}e^x\right) = \sum_{t=0}^{\infty} \beta^t U\left(C_t\right)$

Change			No-cost	
		Bond	Complete Markets	Bond
Welfare				
	Home	0.51	4.34	
	Foreign	5.70	1.91	
SS Consu	imption			
	Home	-2.43	1.45	
	Foreign	2.82	-1.00	

Welfare gain is
$$x$$
: $\sum_{t=0}^{\infty} \beta^t U\left(C_{-1}e^x\right) = \sum_{t=0}^{\infty} \beta^t U\left(C_t\right)$

Change		Benchmark		No-cost	
		Bond	Complete Markets	Bond	
Welfare					
	Home	0.51		-0.62	
	Foreign	5.70		4.92	
SS Consu	mption				
	Home	-2.43		-0.06	
	Foreign	2.82		5.49	

Welfare gain is
$$x$$
: $\sum_{t=0}^{\infty} \beta^t U\left(C_{-1}e^x\right) = \sum_{t=0}^{\infty} \beta^t U\left(C_t\right)$

Dynamics following unilateral liberalization

