Function Approximation Methods-II

CS771: Introduction to Machine Learning
Purushottam Kar

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2} + \lambda \cdot \sum_{i=1}^{d} \mathbf{w}_{i} \log \mathbf{w}_{i}$$
s.t. $\mathbf{w}_{i} \ge 0$

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2 + \lambda \cdot \sum_{i=1}^{d} \mathbf{w}_i \log \mathbf{w}_i$$

 $s.t.w_i \geq 0$

Loss Function

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2 + \lambda \cdot \sum_{i=1}^{d} \mathbf{w}_i \log \mathbf{w}_i$$

 $\text{s.t.}\mathbf{w}_i \geq 0$

Regularizer

Loss Function

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2 + \lambda \cdot \sum_{i=1}^{d} \mathbf{w}_i \log \mathbf{w}_i$$

 $\text{s.t.}\mathbf{w}_i \geq 0$

Regularizer

Loss Function

Constraint

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} \ell(y^i, \langle \mathbf{w}, \mathbf{x}^i \rangle)$$

insensitive loss

Hinge loss

Logistic loss

Squared Hinge loss

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} \ell(y^i, \langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Can use non-linear functions too!

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \geq 1$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\arg\min} \ \frac{\lambda}{2} \left\| \mathbf{w} \right\|_{2}^{2}$$
 s.t. $y^{i} \left\langle \mathbf{w}, \mathbf{x}^{i} \right\rangle \ge 1$ Margin

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\ket{i}$$
 to Want magnitude of $\ket{\mathbf{w},\mathbf{x}^i}$ to be large too!

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\arg\min} \ \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
 s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \ge 1$ Margin

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \ge 1$

Regularization parameter

Margin Why 1? Want magnitude of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be large too!

August 23, 2017

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \geq 1$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \geq 1$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \geq 1$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Slack variable

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \geq 1 - \xi_{i}$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Slack variable

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}, \{\xi_i\}} \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^n \xi_i$$
More params i.t. $y^i \langle \mathbf{w}, \mathbf{x}^i \rangle \ge 1 - \xi_i$

to optimize

$$\begin{array}{l}
\text{.t. } y^i \left\langle \mathbf{w}, \mathbf{x}^i \right\rangle \ge 1 - \xi_i \\
\xi_i > 0
\end{array}$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Slack variable

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}, \{\xi_i\}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{n} \xi_{i}$$
s.t. $y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle \geq 1 - \xi_{i}$

$$\xi_{i} \geq 0$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{n} \ell_{\operatorname{hinge}}(y^{i}, \langle \mathbf{w}, \mathbf{x}^{i} \rangle)$$

$$\sum_{i=1}^{n} \ell_{\text{hinge}}(y^i, \langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \|\mathbf{w}\|_{2}^{2} + C \cdot \sum_{i=1}^{n} \ell_{\operatorname{hinge}}(y^{i}, \langle \mathbf{w}, \mathbf{x}^{i} \rangle)$$

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Want magnitude of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be large too!

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \|\mathbf{w}\|_{2}^{2} + C \cdot \sum_{i=1}^{n} \ell_{\operatorname{hinge}}(y^{i}, \langle \mathbf{w}, \mathbf{x}^{i} \rangle)$$

Large Margin Classifier

Binary Classification

$$\hat{y}^i = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x}^i \rangle)$$

Want sign of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be correct

Want magnitude of $\langle \mathbf{w}, \mathbf{x}^i \rangle$ to be large too!

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \|\mathbf{w}\|_{2}^{2} + C \cdot \sum_{i=1}^{n} \ell_{\operatorname{hinge}}(y^{i}, \langle \mathbf{w}, \mathbf{x}^{i} \rangle)$$

Large Margin Classifier SVM

Loss Functions for Structured ML problems

Multi-class and Multi-label classification

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

$$\hat{y}^i = \underset{j \in [K]}{\arg\max} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

$$\hat{y}^i = \underset{j \in [K]}{\arg\max} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

$$\hat{\mathbf{w}}^{j} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \ell(y^{i,(j)}, \langle \mathbf{w}, \mathbf{x}^{i} \rangle)$$

$$y^{i,(j)} = \begin{cases} 1 & ; y^{i} = j \\ -1 & ; y^{i} \neq j \end{cases}$$

August 23, 2017

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

$$\hat{\mathbf{w}}^{j} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \ell(y^{i,(j)}, \langle \mathbf{w}, \mathbf{x}^{i} \rangle)$$

$$y^{i,(j)} = \begin{cases} 1 & ; y^{i} = j \\ -1 & ; y^{i} \neq j \end{cases}$$

hinge, logistic etc

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right
angle$$

$$\hat{y}^i = \underset{j \in [K]}{\arg\max} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

CS771: Intro to ML

Multi-classification using MLE

- K > 2 classes need more detailed parameters
- For each point, its label profile is a vector

$$oldsymbol{\eta}(\mathbf{x}) = oldsymbol{0}$$

$$\mathbb{P}\left[y^{i} = k \mid \mathbf{x}^{i}, \{\mathbf{w}^{l}\}_{1,...,K}\right] \propto \exp(\langle \mathbf{w}^{k}, \mathbf{x}^{i} \rangle)$$

$$\mathbb{P}\left[y^{i} = k \mid \mathbf{x}^{i}, \{\mathbf{w}^{l}\}_{1,...,K}\right] = \frac{\exp(\langle \mathbf{w}^{k}, \mathbf{x}^{i} \rangle)}{\sum_{l=1}^{K} \exp(\langle \mathbf{w}^{l}, \mathbf{x}^{i} \rangle)}$$

Likelihood function is multinomial instead of binomial

$$\mathbb{P}\left[\mathbf{y} \mid \mathbf{X}, \mathbf{w}\right] = \prod_{i=1}^{n} \hat{\boldsymbol{\eta}}_{y^{i}}^{i}(\mathbf{x}) \qquad \hat{\boldsymbol{\eta}}_{k}^{i}(\mathbf{x}) = \frac{\exp(\left\langle \mathbf{w}^{k}, \mathbf{x}^{i} \right\rangle)}{\sum_{l=1}^{K} \exp(\left\langle \mathbf{w}^{l}, \mathbf{x}^{i} \right\rangle)}$$

Softmax Regression

$$\hat{y}^i = \underset{j \in [K]}{\arg\max} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

CS771: Intro to ML

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}}_{\mathrm{MLE}} = \underset{\mathbf{W}}{\mathrm{arg\,min}} \sum_{i=1}^{n} \ell_{\mathrm{sm}}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$
 $\widehat{\mathbf{W}}_{\mathrm{MLE}} = \operatorname*{arg\,min}_{\mathbf{W}} \sum_{i=1}^n \ell_{\mathrm{sm}}(y^i, \langle \mathbf{W}, \mathbf{x}^i \rangle)$
 $\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \dots, \boldsymbol{\eta}_K]$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K}]$$

$$\widehat{\mathbf{W}}_{\text{MLE}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \ell_{\text{sm}}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \dots, \boldsymbol{\eta}_{K}]$$

$$\ell_{\text{sm}}(y, \{\boldsymbol{\eta}_{j}\}) = -\log \frac{\exp(\boldsymbol{\eta}_{y})}{\sum_{k=1}^{K} \exp(\boldsymbol{\eta}_{k})}$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}}_{\mathrm{MLE}} = \underset{\mathbf{W}}{\mathrm{arg\,min}} \sum_{i=1}^{n} \ell_{\mathrm{sm}}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \dots, \boldsymbol{\eta}_K]$$

$$\ell_{\text{sm}}(y, \{\boldsymbol{\eta}_j\}) = -\log \frac{\exp(\boldsymbol{\eta}_y)}{\sum_{k=1}^K \exp(\boldsymbol{\eta}_k)}$$

Softmax loss function

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K} \end{bmatrix}$$

$$\widehat{\mathbf{W}} = \underset{k=1}{\operatorname{arg min}} \sum_{k=1}^{K} \|\mathbf{w}^{k}\|_{2}^{2}$$
s.t. $\langle \mathbf{w}^{y^{i}}, \mathbf{x}^{i} \rangle \geq \langle \mathbf{w}^{k}, \mathbf{x}^{i} \rangle + 1$

August 23, 2017

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K} \end{bmatrix}$$

$$\widehat{\mathbf{W}} = \underset{k=1}{\operatorname{arg min}} \sum_{k=1}^{K} \|\mathbf{w}^{k}\|_{2}^{2}$$
s.t. $\langle \mathbf{w}^{y^{i}}, \mathbf{x}^{i} \rangle \ge \langle \mathbf{w}^{k}, \mathbf{x}^{i} \rangle + 1$

$$\forall k \neq y^{i}$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg\,min}} \ \sum_{k=1}^{K} \|\mathbf{w}^{k}\|_{2}^{2}$$

s.t.
$$\langle \mathbf{w}^{y^i}, \mathbf{x}^i \rangle \ge \langle \mathbf{w}^k, \mathbf{x}^i \rangle + 1 - \xi_i$$

$$\forall k \neq y^i$$

Slack

variable

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg\,min}} \ \sum_{k=1}^{K} \|\mathbf{w}^{k}\|_{2}^{2}$$

s.t.
$$\left\langle \mathbf{w}^{y^i}, \mathbf{x}^i \right\rangle \ge \left\langle \mathbf{w}^k, \mathbf{x}^i \right\rangle + 1 - \xi_i$$

$$\xi_i \ge 0$$

 $\forall k \neq y^i$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg\,min}} \sum_{k=1}^{K} \|\mathbf{w}^{k}\|_{2}^{2} + \sum_{i=1}^{n} \xi_{i}$$

s.t.
$$\left\langle \mathbf{w}^{y^i}, \mathbf{x}^i \right\rangle \ge \left\langle \mathbf{w}^k, \mathbf{x}^i \right\rangle + 1 - \xi_i$$

$$\xi_i \ge 0$$

 $\forall k \neq y^i$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}, \{\xi_i\}}{\operatorname{arg\,min}} \sum_{k=1}^{K} \left\| \mathbf{w}^k \right\|_2^2 + \sum_{i=1}^{m} \xi_i$$

s.t.
$$\langle \mathbf{w}^{y^i}, \mathbf{x}^i \rangle \ge \langle \mathbf{w}^k, \mathbf{x}^i \rangle + 1 - \xi_i$$

$$\xi_i \ge 0$$

 $\forall k \neq y^i$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg\,min}} \sum_{k=1}^{K} \left\| \mathbf{w}^{k} \right\|_{2}^{2} + \sum_{i=1}^{n} \ell_{\mathrm{cs}}(y^{i}, \left\langle \mathbf{W}, \mathbf{x}^{i} \right\rangle)$$

One-vs-All (OVA)
$$\hat{y}^i = rg \max_{j \in [K]} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$
 $\widehat{\mathbf{W}} = \operatorname*{arg\,min}_{\mathbf{W}} \sum_{k=1}^K \left\| \mathbf{w}^k \right\|_2^2 + \sum_{i=1}^n \ell_{\mathrm{cs}}(y^i, \langle \mathbf{W}, \mathbf{x}^i \rangle)$
 $\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \dots, \boldsymbol{\eta}_K]$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg min}} \sum_{k=1}^K \|\mathbf{w}^k\|_2^2 + \sum_{i=1}^n \ell_{\operatorname{cs}}(y^i, \langle \mathbf{W}, \mathbf{x}^i \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \dots, \boldsymbol{\eta}_K]$$

$$\ell_{\operatorname{cs}}(y, \{\boldsymbol{\eta}_j\}) = [1 + \max_{k \neq y} \boldsymbol{\eta}_k - \boldsymbol{\eta}_y]_+$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K}]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \sum_{k=1}^{K} ||\mathbf{w}^{k}||_{2}^{2} + \sum_{i=1}^{n} \ell_{\mathrm{cs}}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \dots, \boldsymbol{\eta}_{K}]$$

$$\ell_{\mathrm{cs}}(y, \{\boldsymbol{\eta}_{j}\}) = [1 + \max_{k \neq y} \boldsymbol{\eta}_{k} - \boldsymbol{\eta}_{y}]_{+}$$

Exercise

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K}]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg min}} \sum_{k=1}^{K} ||\mathbf{w}^{k}||_{2}^{2} + \sum_{i=1}^{n} \ell_{cs}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \dots, \boldsymbol{\eta}_{K}]$$

$$\ell_{cs}(y, \{\boldsymbol{\eta}_{j}\}) = [1 + \max_{k \neq y} \boldsymbol{\eta}_{k} - \boldsymbol{\eta}_{y}]_{+}$$

Exercise

Crammer-Singer loss function

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K}]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \sum_{k=1}^{K} ||\mathbf{w}^{k}||_{2}^{2} + \sum_{i=1}^{n} \ell_{\mathrm{cs}}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} = [\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \dots, \boldsymbol{\eta}_{K}]$$

$$\ell_{\mathrm{cs}}(y, \{\boldsymbol{\eta}_{j}\}) = [1 + \max_{k \neq y} \boldsymbol{\eta}_{k} - \boldsymbol{\eta}_{y}]_{+}$$

Exercise

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\mathbf{W} = [\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K}]$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{arg min}} \sum_{k=1}^{K} \|\mathbf{w}^{k}\|_{2}^{2} + \sum_{i=1}^{n} \ell_{cs}(y^{i}, \langle \mathbf{W}, \mathbf{x}^{i} \rangle)$$

$$\langle \mathbf{W}, \mathbf{x} \rangle = \boldsymbol{\eta} / [\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \dots, \boldsymbol{\eta}_{K}]$$

$$\ell_{cs}(y, \{\boldsymbol{\eta}_{j}\}) + \underset{k \neq y}{\operatorname{max}} \boldsymbol{\eta}_{k} - \boldsymbol{\eta}_{y}]_{+}$$

cxercis

More powerful regularizers? $\|\mathbf{W}\|_{F}^{2}$, $\|\mathbf{W}\|_{*}$, $\|\mathbf{W}\|_{0}$, $\|\mathbf{W}^{\mathsf{T}}\|_{2,0}$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \left\langle \mathbf{w}^j, \mathbf{x}^i \right\rangle$$

$$\begin{aligned} \mathbf{X} &= [\mathbf{x}^{1}, \mathbf{x}^{2}, \dots, \mathbf{x}^{n}] \\ \|\mathbf{X}\|_{*} &= \sum \sigma_{i}(\mathbf{X}) \\ \|\mathbf{X}\|_{p,q} &= \left\| \|\mathbf{x}^{1}\|_{p}, \|\mathbf{x}^{2}\|_{p}, \dots, \|\mathbf{x}^{n}\|_{p} \right\|_{q} \end{aligned} \text{rg min } \sum_{k=1}^{K} \left\| \mathbf{w}^{k} \right\|_{2}^{2} + \sum_{i=1}^{n} \ell_{cs}(y^{i}, \langle \mathbf{Y}^{i}, \langle \mathbf{$$

$$\mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K]$$

$$\underset{\mathbf{W}}{\operatorname{rg\,min}} \sum_{k=1}^{K} \left\| \mathbf{w}^{k} \right\|_{2}^{2} + \sum_{i=1}^{n} \ell_{\mathrm{cs}}(y^{i}, \left\langle \mathbf{W}, \mathbf{x}^{i} \right\rangle)$$

$$\langle oldsymbol{W}, \mathbf{x}
angle = oldsymbol{\eta} / igl\langle [oldsymbol{\eta}_1, oldsymbol{\eta}_2, \dots, oldsymbol{\eta}_K]$$

$$\ell_{\mathrm{cs}}(y, \{\boldsymbol{\eta}_j\}) + \max_{k \neq y} \boldsymbol{\eta}_k - \boldsymbol{\eta}_y]_+$$

More powerful regularizers? $\|\mathbf{W}\|_{F}^{2}, \|\mathbf{W}\|_{*}, \|\mathbf{W}\|_{0}, \|\mathbf{W}^{\mathsf{T}}\|_{2.0}$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

August 23, 2017

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

Expensive!

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

Expensive!

Other techniques: use DT to eliminate classes, error correcting codes

August 23, 2017

$$\hat{y}^i = \underset{j \in [K]}{\operatorname{arg\,max}} \sum_{k \neq j} \left\langle \mathbf{w}^{j,k}, \mathbf{x}^i \right\rangle$$

Expensive!

Other techniques: use DT to eliminate classes, Exercise: Develop fo training techniques train AVA classifiers error correcting codes

$$\left| \left\{ i: \begin{array}{l} \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = 1 \end{array} \right\} \right|$$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = 1 \end{cases} \right| \quad \left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = 1 \end{cases} \right| \quad \left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\left| \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = 1 \end{array} \right\} \right|$$

$$\begin{vmatrix} \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = 1 \end{array} \right\} \begin{vmatrix} \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = -1 \end{array} \right\} \end{vmatrix}$$
$$\begin{vmatrix} \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = 1 \end{array} \right\} \end{vmatrix} \begin{vmatrix} \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = -1 \end{array} \right\} \end{vmatrix}$$

$$\begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = 1 \\ \mathbf{y}_{i} = 1 \right\} \end{vmatrix} \begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = 1 \\ \mathbf{y}_{i} = -1 \right\} \end{vmatrix}$$
$$\begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = -1 \\ \mathbf{y}_{i} = 1 \right\} \end{vmatrix} \begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = -1 \\ \mathbf{y}_{i} = -1 \right\} \end{vmatrix}$$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = 1 \end{cases} \right| \left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = 1 \end{cases} \right| \left| \begin{cases} i : \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\ell_{\text{Hamming}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{b+c}{a+b+c+d}$$

$$\begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = 1 \\ \mathbf{y}_{i} = 1 \right\} \end{vmatrix} \begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = 1 \\ \mathbf{y}_{i} = -1 \right\} \end{vmatrix}$$
$$\begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = -1 \\ \mathbf{y}_{i} = 1 \right\} \end{vmatrix} \begin{vmatrix} \left\{ i : \hat{\mathbf{y}}_{i} = -1 \\ \mathbf{y}_{i} = -1 \right\} \end{vmatrix}$$

$$\ell_{\text{Hamming}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{b+c}{a+b+c+d}$$

$$r_{\text{Precision}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{a}{a+b}$$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = 1 \end{cases} \right| \left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = 1 \end{cases} \right| \left| \begin{cases} i : \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\ell_{\text{Hamming}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{b+c}{a+b+c+d}$$

$$r_{\text{Precision}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{a}{a+b}$$
 $r_{\text{Recall}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{a}{a+c}$

$$\left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ i : \mathbf{y}_i = 1 \end{cases} \right| \quad \left| \begin{cases} i : \hat{\mathbf{y}}_i = 1 \\ \mathbf{y}_i = -1 \end{cases} \right|$$

$$\left| \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = 1 \end{array} \right\} \right| \quad \left| \left\{ i : \begin{array}{c} \hat{\mathbf{y}}_i = -1 \\ \mathbf{y}_i = -1 \end{array} \right\} \right|$$

$$\ell_{\text{Hamming}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{b+c}{a+b+c+d}$$

$$r_{\text{Precision}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{a}{a+b}$$
 $r_{\text{Recall}}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{a}{a+c}$

$$\hat{\mathbf{y}}$$

$$F(\mathbf{y}, \hat{\mathbf{y}}) = \frac{2r_{\text{Prec}} \cdot r_{\text{Rec}}}{r_{\text{Prec}} + r_{\text{Rec}}} = \frac{2a}{2a + b + c}$$

Precision@k

Precision@2

CS771: Intro to ML

How to optimize these losses?

... aka where is the rest of the Math?

Some Fundamentals

Functional Analysis, Optimization Theory

$$\mathcal{C}\subseteq\mathbb{R}^d$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$

 $\forall \lambda \in [0, 1]$

CONVEX SET

$$\mathcal{C}\subseteq\mathbb{R}^d$$

CONVEX SET

NON-CONVEX SET

$$\forall \lambda \in [0, 1]$$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

CONVEX SET

NON-CONVEX SET

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$

$$\forall \lambda \in [0, 1]$$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$

$$\forall \lambda \in [0, 1]$$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y} \in \mathcal{C}$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$

 $\forall \lambda \in [0, 1]$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y} \in \mathcal{C}$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

CONVEX SET

NON-CONVEX SET

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$

 $\forall \lambda \in [0, 1]$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y} \in \mathcal{C}$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$
$$\forall \lambda \in [0, 1]$$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y} \in \mathcal{C}$$

$$\mathcal{C} \subseteq \mathbb{R}^d$$

NON-CONVEX SET

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$$

$$\forall \lambda \in [0, 1]$$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y} \in \mathcal{C}$$

$$f: \mathbb{R}^d o \mathbb{R}$$

CONVEX FUNCTION

CONVEX FUNCTION

NON-CONVEX FUNCTION

 $\forall \mathbf{x}, \mathbf{y}$

CONVEX FUNCTION

NON-CONVEX FUNCTION

 $\forall \mathbf{x}, \mathbf{y}$ $\forall \lambda \in [0, 1]$

CONVEX FUNCTION

NON-CONVEX FUNCTION

CONVEX FUNCTION

 $orall \mathbf{x}, \mathbf{y}$

 $\forall \lambda \in [0, 1]$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$$

NON-CONVEX FUNCTION

$orall \mathbf{x}, \mathbf{y}$

CONVEX FUNCTION

NON-CONVEX FUNCTION

$$\forall \lambda \in [0, 1]$$

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$$
$$f(\mathbf{z}) \le \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y})$$

$orall \mathbf{x}, \mathbf{y}$

 $\forall \lambda \in [0,1]$

CONVEX FUNCTION

$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$

$$f(\mathbf{z}) \le \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y})$$

NON-CONVEX **FUNCTION**

 $\forall \mathbf{x}, \mathbf{y}$

 $\forall \lambda \in [0,1]$

CONVEX FUNCTION

NON-CONVEX FUNCTION

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$$
$$f(\mathbf{z}) \le \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y})$$

 $\forall \mathbf{x}, \mathbf{y} \\ \forall \lambda \in [0, 1]$

CONVEX FUNCTION

NON-CONVEX FUNCTION

$$\mathbf{z} = \lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y}$$
$$f(\mathbf{z}) \le \lambda \cdot f(\mathbf{x}) + (1 - \lambda) \cdot f(\mathbf{y})$$

CONVEX FUNCTION NON-CONVEX FUNCTION

 $\forall \mathbf{x}, \mathbf{y}$

CONVEX FUNCTION

Differentiable function!

NON-CONVEX FUNCTION

 $\forall \mathbf{x}, \mathbf{y}$

CONVEX FUNCTION

NON-CONVEX FUNCTION

Differentiable function!

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

 $\forall \mathbf{x}, \mathbf{y}$

CONVEX FUNCTION

NON-CONVEX FUNCTION

Differentiable function!

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

FUNCTION

 $\forall \mathbf{x}, \mathbf{y}$

CONVEX FUNCTION

Differentiable function!

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

Gradients vanish at local optima

$$\partial f(\mathbf{x}) = \{ \mathbf{g} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \}$$

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\ \text{if } f \ \text{differentiable}$$

$$\partial f(\mathbf{x}) \ni \mathbf{0}$$
 if \mathbf{x} minimum

Gradients vanish at local optima

$$\partial f(\mathbf{x}) = \{ \mathbf{g} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \}$$

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\ \text{if } f \ \text{differentiable}$$

$$\partial f(\mathbf{x}) \ni \mathbf{0}$$
 if \mathbf{x} minimum

Gradients vanish at local optima

$$\partial f(\mathbf{x}) = \{ \mathbf{g} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \}$$

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\ \text{if } f \ \text{differentiable}$$

$$\partial f(\mathbf{x}) \ni \mathbf{0}$$
 if \mathbf{x} minimum

Gradients vanish at local optima

The subdifferential at minima must include the null vector

$$\partial f(\mathbf{x}) = \{ \mathbf{g} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \}$$

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\ \text{if } f \ \text{differentiable}$$

$$\partial f(\mathbf{x}) \ni \mathbf{0}$$
 if \mathbf{x} minimum

Gradients vanish at local optima

$$\partial f(\mathbf{x}) = \{ \mathbf{g} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \}$$

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\ \text{if } f \ \text{differentiable}$$

$$\partial f(\mathbf{x}) \ni \mathbf{0}$$
 if \mathbf{x} minimum

Hinge loss

Gradients vanish at local optima

$$\partial f(\mathbf{x}) = \{ \mathbf{g} : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \}$$

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\ \text{if } f \ \text{differentiable}$$

$$\partial f(\mathbf{x}) \ni \mathbf{0}$$
 if \mathbf{x} minimum

Hinge loss

The subdifferential at

the null vector

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

Empirical Loss function

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

Empirical Loss function

Regularizer

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

Empirical Loss function

Regularizer

Examples

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

Empirical Loss function

Regularizer

Examples

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

Empirical Loss function

Regularizer

Examples

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2} \quad f(\mathbf{w}) = \sum_{i=1}^{n} \log (1 + \exp(-y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle))$$

$$r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_1$$
 $r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_2^2$

Use Optimality Condition

Only works for the simplest of problems

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{2}^{2}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2$$

$$r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_2^2$$

$$2\sum (\langle \mathbf{w}, \mathbf{x}^i \rangle - y^i) \cdot \mathbf{x}_i + 2\lambda \cdot \mathbf{w} = \mathbf{0}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2$$

$$r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_2^2$$

$$\left(\sum_{i=1}^{n} (\mathbf{x}^{i})(\mathbf{x}^{i})^{\top} + \lambda \cdot I\right) \mathbf{w} = \sum_{i=1}^{n} y^{i} \mathbf{x}^{i}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$

$$r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_2^2$$

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \cdot I)^{-1} \mathbf{X}\mathbf{y}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$\partial f(\mathbf{w}) + \partial r(\mathbf{w}) \ni \mathbf{0}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$\nabla f(\mathbf{w}) + \partial r(\mathbf{w}) \ni \mathbf{0}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg} \min} f(\mathbf{w}) + r(\mathbf{w})$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2} \quad f(\mathbf{w}) = \sum_{i=1}^{n} \log (1 + \exp(-y^{i} \langle \mathbf{w}, \mathbf{x}^{i} \rangle))$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{2}^{2}$$

$$\nabla f(\mathbf{w}) + \partial r(\mathbf{w}) \ni \mathbf{0}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

$$\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} \left(y^i - \left\langle \mathbf{w}, \mathbf{x}^i \right\rangle \right)^2 \quad f(\mathbf{w}) = \sum_{i=1}^{n} \log \left(1 + \exp(-y^i \left\langle \mathbf{w}, \mathbf{x}^i \right\rangle) \right)$$

$$r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_2^2$$

$$\nabla f(\mathbf{w}) + \partial r(\mathbf{w}) \ni \mathbf{0}$$

$$\sum_{i=1}^{n} (1 - \sigma(y^i \langle \mathbf{w}, \mathbf{x}^i \rangle)) y^i \cdot \mathbf{x}^i + 2\lambda \cdot \mathbf{w} = \mathbf{0}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{arg\,min}} f(\mathbf{w}) + r(\mathbf{w})$$

 $\nabla f(\mathbf{w}) + \nabla r(\mathbf{w}) = \mathbf{0}$

$$f(\mathbf{w}) = \sum_{i=1}^{n} (y^{i} - \langle \mathbf{w}, \mathbf{x}^{i} \rangle)^{2}$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_{1}$$

$$f(\mathbf{w}) = \sum_{i=1}^{i=1} (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2$$
$$r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_1$$

$$\nabla f(\mathbf{w}) + \partial r(\mathbf{w}) \ni \mathbf{0}$$

$$f(\mathbf{w}) = \sum_{i=1}^{n} \left(y^i - \left\langle \mathbf{w}, \mathbf{x}^i \right\rangle \right)^2 \quad f(\mathbf{w}) = \sum_{i=1}^{n} \log \left(1 + \exp(-y^i \left\langle \mathbf{w}, \mathbf{x}^i \right\rangle) \right)$$

$$r(\mathbf{w}) = \lambda \cdot \|\mathbf{w}\|_2^2$$

Use (sub)Gradient Descent

Use this technique before anything else

Gradient Descent Move opposite to the gradients

Gradient Descent Move opposite

Gradient Descent Move opposite to the gradients

GRADIENT DESCENT

- !1. Initialize \mathbf{w}^0
- 2. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta_t \cdot \mathbf{g}^t$
- 3. Repeat until convergence

3. Repeat until convergence

CS771: Intro to ML

3. Repeat until convergence

CV, Adam,
Adagrad

Many convergence criteria - length of gradient, performance threshold, dual criteria

GRADIENT DESCENT

- 1. Initialize **w**0
- 2. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta_t \cdot \mathbf{g}^t$
- 3. Repeat until convergence

learning rate

Tuned carefully CV, Adam, Adagrad

Please give your Feedback

http://tinyurl.com/ml17-18afb

