_	冼择题	(30分,每	岳小颙24	(/				·	LA STATE OF THE ST
		算法时间复杂)。				
Α	: 问题的规	见模	B: 输入	.值				1	
C	: 计算结果	<u> </u>	D: 算法	的策略					
							14		
2. 铂	连表不具有的	的特点是()。			K		
	A: 可随机	l访问任意元	素	B: 插 <i>)</i>	入和删除不需	言要移动元	素		
	C: 不必事	先估计存储	空间	D: 所需	需空间与线性	生表长度成	正比		
3. t	设有三个元素	素 X,Y,Z	顺序进栈	(进的过程	呈中允许出村	浅),下列征	导不到的出村	浅排列是 (().
A	: XYZ	В:	YZX		C: ZXY		D: ZYX		
				//					
<mark>4.</mark>	间定一个无序	字表 Q(链表	長实现)	空的条件	是()	o			
A	: Q.head =	= None	I	3: Q=	None				
C	: Q.head =	=0	I	D: Q.hea	ıd!= None				
5. 君	吉定义二叉村	对中根结点的	内层数为零	,树的高	度等于其结	点的最大	昙数加一。 贝	则当某二叉	(树的前序
序列	可和后序序列	列正好相反,	则该二叉	(树一定是	()	的二叉树	ס		
A	: 空或只	有一个结点	B: 高	5度等于其	节点数				
(C: 任一结.	点无左孩子	D:	任一结点是	无右孩子				
	/								
6. 信	£意一棵二乙	叉树中,所有	有叶结点在	前序、中	序和后序周	游序列中	的相对次序	()。
A	发生改	变	В:	不发生改	变				
10	: 不能确定	定	D:	以上都不	对				
					和 key2,现				
					司的情况下,	再根据数据	居项 key2 的	值进行非	递减排序。
., .,	,,,,,,	的排序方法是	_)。					
Α	: 先按 key	1 值进行冒滑	包排序,再	按 key2 f	直进行直接选	上择排序			
F	3: 先接 kev?	2 值讲行冒》	包排序, 再	i按 kev1 fi	直进行直接说	 上 择 排 序			

C: 先按 keyl 值进行直接选择排序,再按 key2 值进行冒泡排序

D: 先按 key2 值进行直接选择排序,再按 key1 值进行冒泡排序
8.有 n ² 个整数,找到其中最小整数需要比较次数至少为()次。 A: <i>n</i> B: log ₂ <i>n</i> C: <i>n</i> ² -1 D: <i>n</i> -1
9. n 个顶点的无向完全图的边数为 ()。
A: n (n-1) B: n (n+1)
C: n (n-1) /2 D: n (n+1) /2
10. 设无向图 G= (V, E),和 G'=(V', E'),如果 G'是 G 的生成树,则下面说法中错误的是 ()。
A: G'是G的子图 B: G'是G的连通分量
C: G'是 G 的极小连通子图且 $V=V'$ $D: G'$ 是 G 的一个无环子图
11. 有一个散列表如下图所示, 其散列函数为 h(key)=key mod 13, 该散列表使用再散列函数
H2(Key)=Key MOD 3 解决碰撞,问从表中检索出关键码 38 需进行几次比较()。
0 1 2 3 4 5 6 7 8 9 10 11 12
26 38 17 33 48 25
A: 1 B: 2 C: 3 D: 4
12. 在一棵度为 3 的树中,度为 3 的节点个数为 2, 度为 2 的节点个数为 1, 则度为 0 的节点个数 为 ()。 A: 4 B: 5 C: 6 D: 7
13. 由同一组关键字集合构造的各棵二叉排序树()。
A: 其形态不一定相同,但平均查找长度相同 B: 其形态不一定相同,平均查找长度也不一定相同
B: 共形态小一定相侧,十均恒找长度也小一定相问 C: 其形态均相同,但平均查找长度不一定相同
D: 其形态均相同,但于均重找长度也都相同
D: 共形态均相间,「均直找区反巴即相间
14. 允许表达式内多种括号混合嵌套,检查表达式中括号是否正确配对的算法,通常选用()。
A: 栈 B: 线性表 C: 队列 D: 二叉排序树
15. 在映射抽象数据类型(ADT Map)的不同实现方法中,适合对动态查找表进行高效率查找的组织结构是()。
A: 有序表 B: 堆排序 C: 二叉排序树 D: 快速排序
二. 判断(10分,每小题1分;对填写"Y",错填写"N")

1. () 考虑一个长度为 n 的顺序表中各个位置插入新元素的概率是相同的,则顺序表的插入算

	法平均时间复杂度为 O(n) 。
2.	() 希尔排序算法的每一趟都要调用一次或多次直接插入排序算法,所以其效率比直接插入
	排序算法差。
3.	() 直接插入排序、冒泡排序、希尔排序都是在数据正序的情况下比数据在逆序的情况下要
	快。
4.	()由于碰撞的发生,基于散列表的检索仍然需要进行关键码对比,并且关键码的比较次数
	仅取决于选择的散列函数与处理碰撞的方法两个因素。
5.	() 若有一个叶子结点是二叉树中某个子树的前序遍历结果序列的最后一个结点,则它一定
	是该子树的中序遍历结果序列的最后一个结点。
6.	() 若某非空二叉树的先序序列和后序序列正好相同,则该二叉树只有一个根结点。
7.	()有 n 个节点的二叉排序树有多种,其中树高最小的二叉排序树是搜索效率最好。
8.	() 强连通分量是有向图中的最小强连通子图。
9.	() 用相邻接矩阵法存储一个图时,在不考虑压缩存储的情况下,所占用的存储空间大小只
	与图中结点个数有关,而与图的边数无关。
10	. () 若定义一个有向图的根是指可以从这个结点可到达图中任意其他结点,则可知一个有
	向图中至少有一个根。
_	
	三. 填空(20分,每题2分) - ************************************
1.	线性表的顺序存储与链式存储是两种常见存储形式;当表元素有序排序进行二分检索时,应采
0	用存储形式。 // / / / / / / / / / / / / / / / / /
۷.	如果只想得到1000个元素的序列中最小的前5个元素,在冒泡排序、快速排序、堆排序和归并
0	排序中,哪种算法最快?
3.	设环形队列的容量为20《单元编号从0到19》,现经过一系列的入队和出队运算后,队头变量
	(第一个元素的位置) front=18, 队尾变量(待插入元素的位置) rear=11, 在这种情况下,
4	环形队列中有
4.	
_	的结点个数是。 已知之叉树的前序遍历结果(先根周游序列)为 ADC,这棵二叉树的树型有
5.	
6.	种可能。
9.	了已知二叉树的中序序列为 DGBAECF, 后序序列为 GDBEFCA, 该二叉树的前序序列是
7	。 对于具有 57 个结点的完全二叉树,如果按层次自顶向下,同一层自左向右,顺序从 0 开始对
١.	全部结点进行编号,则有:编号为 18 的结点的父结点的编号是
	的结点的右子女结点的编号是。
8.	
	对一组记录进行降序排序,其关键码为(46,70,56,38,40,80,60,22),采用初始步长
η.	/i 组心水处1) 阵厅排厅,共大健时/y (40, 70, 50, 50, 40, 60, 60, 60, 在/),木用彻如少下

为 4 的希尔(shell)排序,第一趟扫描的结果是(______);而采用

归并排序第一轮归并结果是(______)。

10. 如果一个图节点多而边少(稀疏图),适宜采用邻接矩阵和邻接表中的_____方式进行存储。

四. 简答(24分,每小题6分)

1、树周游算法可以很好地应用到森林的周游上。查看下列森林结构,请给出其深度优先周游序列和广度优先周游序列。

2、哈夫曼树是进行编码的一种有效方式。设给定五个字符,其相应的权值分别为{4,8,6,9,18},试画出相应的哈夫曼树,并计算它的带权外部路径长度 WPL。

- 3、下图是一棵完全二叉树:
 - 1)请根据初始建堆算法对该完全二叉树建堆,请画出构建的小根堆(2分);
 - 2) 基于(1) 中得到的堆, 删除其中的最小元素, 请用图给出堆的调整过程(2分);
 - 3) 基于(1)中得到的堆,向其中插入元素 2,请给出堆的调整过程(2分)。
 - 注: 每移动一个元素视为一个执行步骤, 画出所有执行步骤。

4、已知图 G 的顶点集合 $V=\{V0,V1,V2,V3,V4\}$,邻接矩阵如下图所示,可用 prim 算法求 G 的最小生成树。

- 1) 根据邻接矩阵, 画出图 G(2分);
- 2) 根据 prim 算法, 求图 G 从顶点 V0 出发的最小生成树 (2分);
- 3) 用图表示出最小生成树每一步的生成过程(2分)。

五、算法(16分,每小题8份)

1. 已知下列 pre2post 函数的功能是根据一个满二叉树的前序遍历序列,求其后序遍历序列,请完成填空(假设序列长度不超过32)。

```
# 返回先根序列 preorder[start:start+length]对应的后根序列 def pre2post(preorder, start, length):
    if length == 1:
        return ______(1分)
    else:
        length = ______(2分)
        left = pre2post(preorder, _______(1分))
        right = pre2post(preorder, ______(2分))
        root = _______(2分)
        return left + right + root
```

print(pre2post("ABC", 0, 3)) # 输出 BCA
print(pre2post("ABDECFG", 0, 7)) # 输出 DEBFGCA

2. 阅读下列程序,完成图的深度优先周游算法实现的迷宫探索。已知图采用邻接表表示, Graph 类和 Vertex 类基本定义如下:

```
class Graph:
   def __init__(self):
   def addVertex(self, key, label): #添加节点, id 为 key, 附带数据 label
   def getVertex(self, key): #返回id为key的节点
   def __contains__(self, key): # 判断 key 节点是否在图中
   def addEdge(self, f, t, cost=0): #添加从节点 id==f 到 id==t 的边
   def getVertices(self): #返回所有的节点key
   def __iter__(self): # 迭代每一个节点对象
class Vertex:
   def __init__(self, key, label=None): # 缺省颜色为"white"
   def addNeighbor(self, nbr, weight=0): #添加到节点 nbr 的边
   def setColor(self, color): #设置节点颜色标记
   def getColor(self): #返回节点颜色标记
   def getConnections(self): #返回节点的所有邻接节点列表
   def getId(self): #返回节点的id
   def getLabel(self): #返回节点的附带数据 label
mazelist = [
   "+++++++++++++++++
   "+ + + ++
             ++
   "+++++ + +
             + + S+ + +",
   "+++++ +/+ + +
   "++++++++++++++++++++++++++++
]
def mazeGraph(mlist, rows, cols): # 从 mlist 创建图, 迷宫有 rows 行 cols 列
   mGraph = Graph()
   vstart = None
   for row in range(rows):
      for col in range(cols):
         if mlist[row][col] != "+":
             mGraph.addVertex((row, col), mlist[row][col])
             if mlist[row][col] == "S":
                vstart = _____(1分)
```

```
for v in mGraph:
       row, col = v.getId()
       for i in [(-1, 0), (1, 0), (0, -1), (0, +1)]:
          if (0 \le \text{row} + i[0] \le \text{rows}) and (0 \le \text{col} + i[1] \le \text{cols}):
              if (row + i[0], col + i[1]) in mGraph:
                  mGraph.addEdge(_____(1分))
   return mGraph, vstart # 返回图对象,和开始节点
def searchMaze(path, vcurrent): # 从 vcurrent 节点开始 DFS 搜索迷宫
   vcurrent.setColor('gray')
   path.append(vcurrent.getId())
   if vcurrent.getLabel() != "E":
       done = False
       for nbr in _____(2分):
          if nbr.getColor() == "white":
              done = searchMaze(_____
              if done:
                 break
       if not done:
              (2分)
          vcurrent.setColor("white")
   else:
       done = True
   return done # 返回是否成功找到通路
g, vstart = mazeGraph(mazelist, len(mazelist), len(mazelist[0]))
path = []
searchMaze(path, vstart)
print(path)
```