Numerical Analysis Homework 5

網頁版: https://hackmd.io/@Xaio/HkA8utfyA

♪2 找根的方法

- 定義 symbolic variable sys(x), sys x
- solve() 可以只到 symbolic 的解, fsolve() 可以找到 numerical 的解。
- fzero() 與 fsolve() 相同,但是 fzero() 找不到平滑經過的點,但是 fsolve() 可以

• roots() 專門找 polynomials 的解

:::spoiler 補充

使用 diff(y) 直接對 syms 算微分。積分同理,使用 int()。:::

\int^2 1. Determine the highest real root of f(x)

 $f(x) = x^3 - 6x^2 + 11x - 6.1$

J³ 1.a) Graphically

Highest real root: \$3.0467\$

J³ 1.b) Using the Newton-Raphson method (three iterations, \$x_i= 3.5\$)

Newton-Raphson method Iteration 1, x = 3.191304Iteration 2, x = 3.068699Iteration 3, x = 3.047317Error: 0.020882%

Newton-Raphson method 成功找到解

\int^3 1.c) Using the secant method (three iterations, $x_{i-1}=2.5$ and $x_{i-3}=3.5$).

```
Secant method

Iteration 1, x = 2.711111

Iteration 2, x = 2.871091

Iteration 3, x = 3.221923

Error: 5.751930%
```

成功找到解,誤差為 5.76%

$\int_{0.07}^{3} 1.d$ Using the modified secant method (five iterations, \$x_i = 3.5\$, \$\delta= 0.01\$).

```
Modified secant method

Iteration 1, x = 3.199597

Iteration 2, x = 3.075324

Iteration 3, x = 3.048818

Error: 0.070165%
```

Modified secant method 成功找到解

J³ 1.e) Determine all the roots with MATLAB.

```
1.0544
1.8990
3.0467
```

\int^2 2. Determine the lowest real root of \$g(x)\$

 $\$g(x) : 7\sin(x)e^{-x}-1$ \$

\$x < 0\$ 有無窮多解, 在此的 lowest real root 只討論 \$x>0\$ 的情形

J³ 1.a) Graphically

J³ 2.b) Using the Newton-Raphson method (three iterations, \$x_i= 0.3\$)

```
Newton-Raphson method Iteration 1, x = 0.144376 Iteration 2, x = 0.169409 Iteration 3, x = 0.170179 Error: 0.000422\%
```

Newton-Raphson method 成功找到解

$\int_{0.5}^{3} 2.c$ Using the secant method (three iterations, $x_{i-1}=0.5$ and $x_{i-1}=0.4$).

```
Secant method

Iteration 1, x = 0.002782

Iteration 2, x = 0.218237

Iteration 3, x = 0.178989

Error: 5.176219%
```

Secant method 找到非負最小的解 \$0.178989\$, 與此解的誤差為 \$5.2\%\$

$\int_{0.07}^{3} 2.d$ Using the modified secant method (five iterations, $x_i = 3.5$, $\lambda = 0.01$).

Modified secant method

Iteration 1, x = -5.682098

Iteration 2, x = -7.519326

Iteration 3, x = -6.790712

Iteration 4, x = -6.448305

Iteration 5, x = -6.312891

Error: 3809.537717%

Modified secant method 找到 \$x<0\$ 次大的解 \$-6.312891\$, 與此解的誤差為 \$8.083\%\$

J³ 2.e) Determine all the roots with MATLAB.

有無窮多解,x在[-45,2]的範圍內有下列這些解

roots	roots	roots	roots
0.170179993752879	-3.14772834675799	-6.28291845844458	-9.42478948913899
-12.5663701161672	-15.7079632894778	-18.8495559206084	-21.9911485751688
-25.1327412287166	-28.2743338823082	-31.4159265358979	-34.5575191894877
-37.6991118430775	-40.8407044966673	-43.9822971502571	1.89305902941322