LECTURE 4E – TIME SERIES REGRESSION

Lecture 4E-1

Regression Assumptions - Revisited

- Population Model:
 - $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$ with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$.
- (Sample) Regression Model or Prediction Model
 - $\hat{y} = \hat{x} + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$ with residual (also called error or noise) terms $e = (y \hat{y})$
- In order for our conclusions about the regression model (that we fit) to be valid, we need to check four main assumptions:
 - Linearity/Nonlinearity between predictors and dependent variable
 - Normality of Residuals
 - Homoscedasticity (constant variance of residuals across X) or the opposite, heteroscedasticity
 - Statistical Independence of residuals (relevant in time-series data)
- In addition, other problems (have to be considered and fixed) such as:
 - Multicollinearity of predictors (excessive correlations among predictors)
 - Missing Data, especially in large secondary datasets in analytics)
- Failure to address these problems could result in invalid conclusions from the regression analysis.

Autocorrelation

- When the error terms are dependent on each other (as often happens with time series data where data is collected across time), on measure of the dependence is autocorrelation.
- Autocorrelation (also called serial correlation) is a linear relationship among residuals of the model across time.
- We will use a simple model examining the relationship between Microsoft's marketing and advertising expenditures and its revenues to illustrate autocorrelation.

REVENUES Microsoft's real quarterly revenues, in millions of dollars1

MARKETING Microsoft's real quarterly expenditures on marketing and

advertising, in millions of dollars

SUMMER =1 when REVENUES and MARKETING are from the third quarter (July-September), 0 otherwise

FALL = 1 when REVENUES and MARKETING are from the fourth quarter

(Oct.-Dec.), 0 otherwise

	P		()					
	0bs	Year	Quarter	Revenues	Marketing	Summer	Fall	Winter
1	1	1987	1	60.02	13.44	0	0	1
2	2	1987	2	71.62	16.80	0	0	0
3	3	1987	3	85.66	18.36	1	0	0
4	4	1987	4	86.68	22.54	0	1	0
5	5	1988	1	88.74	23.26	0	0	1
6	6	1988	2	132.73	31.48	0	0	0

Regression Model (AutoCorr.R)

- Revenues = $\hat{\alpha}$ + $\hat{\beta}_{mkt}$ Marketing
- We run this model in R
- The model appears to be an excellent fit, but always have to check for autocorrelations in data that are a series of observation over a time period.
- In our data set, Obs can be used as a time variable because the Obs 1 represents Time period 1, Obs2 represents Time Period 2 etc. on a quarterly basis. That is, Obs 1 is the first quarter of 1987 and Obs 2 the second quarter of 1987 and so on.
- To check for autocorrelations visually, we can plot the residuals of from the model against time.

```
> mod1 <- lm(Revenues ~ Marketing, data=df)
  > summary(mod1)
  Call:
  lm(formula = Revenues ~ Marketing, data = df)
  Residuals:
      Min
               1Q Median
  -421.33 -160.95 17.77 141.17 577.79
  Coefficients:
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) -203.6130 49.8504 -4.084 0.00015 ***
  Marketing
                 5.7596 0.1754 32.839 < 2e-16 ***
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Residual standard error: 227 on 53 degrees of freedom
  Multiple R-squared: 0.9532, Adjusted R-squared: 0.9523
  F-statistic: 1078 on 1 and 53 DF, p-value: < 2.2e-16
> # Read csv file as a DataFrame
> setwd("C:\Users\\sarathy\\Documents\\2019-Teaching\\Fall2019\\Fall2019-MSIS5503\\MSIS-5503-Data")
> df <- read.table('Microsoft.csv',
              header = TRUE, sep = ',')
> print(head(df))
 Obs Year Quarter Revenues Marketing Summer Fall Winter
           1 60.02 13.44
            2 71.62
            3 85.66 18.36
4 4 1987
           4 86.68 22.54
5 5 1988
            1 88.74 23.26
6 6 1988
            2 132.73
```

Residual Plot to check for independence of Residuals

- We will plot the residuals against their position in time.
- If the residuals (from one observation/period) to the next were independent, and therefore uncorrelated, we should see no particular pattern, and they should be spread uniformly above and below the zero line within a rectangle defined by the value boundaries of the X (time) and Y axes.
- Instead, we see a definite pattern over time, suggesting the existence of **autocorrelation** (or also called **serial correlation**).
- We also see that the magnitude of residuals gets larger over time (heteroscedasticity). So, we will convert Revenues to InRevenues using a log transformation.
 - InRevenues <- log(Revenues)
- We re-do the regression and residuals for InRevenues

```
> mod1 <- lm(Revenues ~ Marketing, data=df)
> summary(mod1)
lm(formula = Revenues ~ Marketing, data = df)
Residuals:
            1Q Median
-421.33 -160.95 17.77 141.17 577.79
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -203,6130
                      49.8504 -4.084 0.00015 ***
                         0.1754 32.839 < 2e-16 ***
              5.7596
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 227 on 53 degrees of freedom
Multiple R-squared: 0.9532, Adjusted R-squared: 0.9523
F-statistic: 1078 on 1 and 53 DF, p-value: < 2.2e-16
> resid1 <- residuals(mod1)
> obs <- df$0bs
> plot (obs, resid1,
        main= "Residuals from lm(Revenues ~ Marketing) Microsoft from Q1 - 1987 to Q3 2000",
        xlab = "Quarter",
        ylab = "Residuals",
        type = "1")
```

Residuals from Im(Revenues ~ Marketing) Microsoft from Q1 - 1987 to Q3 2000

Modified Regression Model Call: Im(for

- $\ln \widehat{Revenues} = \widehat{\alpha} + \widehat{\beta}_{mkt} Marketing$
- The residuals look better but continue to show a pattern, rather than being uniformly distributed around 0 across the X-axis (time).
- The residuals are clearly correlated with each other across time, displaying autocorrelation.

```
> InRevenues <- log(df$Revenues)
> mod2 <- lm(lnRevenues ~ Marketing, data=df)
> summary(mod2)
lm(formula = lnRevenues ~ Marketing, data = df)
Residuals:
             10 Median
-0.9767 -0.2395 0.1084 0.2792 0.5056
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9852310 0.0808894
Marketing 0.0064078 0.0002846
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3683 on 53 degrees of freedom
Multiple R-squared: 0.9054, Adjusted R-squared: 0.9036
F-statistic: 507 on 1 and 53 DF, p-value: < 2.2e-16
> resid2 <- residuals(mod2)
> plot (obs, resid2,
       main= "Residuals from lm(Revenues ~ lnMarketing) Microsoft from Q1 - 1987 to Q3 2000",
        xlab = "Quarter",
       ylab = "Residuals",
        type = "1")
```


Autocorrelation

- Autocorrelation measures the linear dependence between residuals of successive (immediate or later) observations.
- The presence of autocorrelation does not mean that the values of an independent variable are correlated over time, or with each other, as occurs with multicollinearity.
- Instead, it is really about the *relationship between* X and Y (say, Revenues and Marketing) over time.
- The most common type of autocorrelation, **first-order autocorrelation**, is present when an observed error tends to be influenced by the observed error that **immediately precedes** it in the previous time period.
- We call this first-order autocorrelation because only one time period separates the two correlated error term observations.

Autocorrelation

- Since autocorrelation is a measure of linear relationship we have the following simple regression *among the residuals*:
 - $e_t = \rho * e_{t-1} + u_t$
 - Where e_t = residual from time period t and e_{t-1} = residual from time period (t-1) i.e., previous time period
- If we <u>standardized the residuals</u>, we know that ρ is just the correlation between e_t and e_{t-1} . Assuming the residuals are standardized, the value of ρ must fall between -1 and 1 since it measures correlation.
- If ρ were to **exactly** equal 1 or -1, the effect of one error on the next would not die out over time. For this reason, ρ must be greater than -1 and less than 1.

Understanding Autocorrelation

- We create the standardized residuals for our model, first.
- We create the lag1 residuals; i.e., we lag the residuals by 1 period so that the residual in time period 2, becomes the residual for time 1 in the ne set of residuals. Clearly, there will be one missing value.
- In **R**, we create lag1 standardized residuals using the head() function.
- To calculate the correlation, we have to account for the missing lagged observation in the first period. Using the *ha.omit()* function.
- Here is what the originals and lagged residuals look like
- The first-order autocorrelation is the correlation between these two columns of data.
- A scatterplot shows a definite linear trend between the original and lagged residuals.

```
> st_resid2 <- rstandard(mod2)</pre>
> st_resid2_l1 <- c(NA head(st_resid2, -1))
> M <- cbind(st_resid2, st_resid2_l1)
> print(head(M))
   st_resid2 st_resid2_l1
2 -2.2812072
                 2.713273
3 -1.8115111
                2.281207
4 -1.8520245
 -1.7994899
6 -0.8277391
                -1.799490
> print(cor(na.omit(M)))
             st_resid2 st_resid2_l1
st_resid2
             1.0000000
st_resid2_l1 0.9188692
                          1.0000000
> plot(st_resid2, st_resid2_l1,
       main= "Standardized Lagged Residuals vs Standardized Residuals",
       xlab = "Standardized Residuals",
       ylab = "Lag1 Standardized Residuals")
```


Zero Autocorrelation ("White Noise")

- If ρ is zero, then one error has nothing to do with the next error, so there is no autocorrelation.
- The residuals we see will not follow a pattern over time.
- However, it is often hard to tell visually. There are other advanced functions that can be used to confirm lack of autocorrelation, that are beyond the scope of this course.

Positive Autocorrelation

- If ρ is positive, the residuals tend (for the most part) to have the same sign from one period to the next.
 - If e_{t-1} is positive, then e_t tends to be positive; if e_{t-1} is negative, e_t tends to be negative.
- A positive ρ indicates positive autocorrelation, also called positive serial correlation. In our example, the error term observations exhibit positive first-order autocorrelation. But a scatterplot is not always the best way to see this.

Residuals from Im(Revenues ~ InMarketing) Microsoft from Q1 - 1987 to Q3 2000


```
> st_resid2 <- rstandard(mod2)</pre>
> st_resid2_l1 <- c(NA, head(st_resid2, -1))
> M <- cbind(st_resid2, st_resid2_l1)</pre>
> print(head(M))
   st_resid2 st_resid2_l1
1 -2.7132728
2 -2.2812072
                -2.713273
                -2.281207
3 -1.8115111
4 -1.8520245
                -1.811511
5 -1.7994899
                -1.852024
6 -0.8277391
                -1.799490
> print(cor(na.omit(M)))
             st_resid2 st_resid2_l1
st_resid2
             1.0000000
                           0.9188692
st_resid2_l1 0.9188692
                           1.0000000
> plot(st_resid2, st_resid2_l1,
       main= "Standardized Lagged Residuals vs Standardized Residuals",
       xlab = "Standardized Residuals",
       ylab = "Lag1 Standardized Residuals")
```

Negative Autocorrelation

• If ρ is negative, the errors tend to alternate signs, indicating **negative first-order autocorrelation** or negative serial correlation. In this situation, a positive observed error term is usually followed by a negative one, which is usually followed by a positive one, and so on. Negative first-order autocorrelation is less common than positive autocorrelation.

Effects of Autocorrelation

- The presence of autocorrelation indicates that an important predictor (namely, time) is missing from the model.
- While the estimates of the slope coefficients remain unbiased, the standard errors of estimates of predictors in the model tend to be smaller than they should be.
- Therefore, the <u>t-statistic tends to inflate</u> and the overall model F-test as well as the tests of coefficients tend to become significant, even if they may not be.
- Therefore, even though Marketing appears to be a significant predictor of InRevenues in our model (p-value near 0), we cannot trust this conclusion from our model if we find that significant autocorrelation is present among the residuals.
- To test for significance of autocorrelation amongst the residuals, we use the **Durbin-Watson** statistic and the Durbin-Watson test.

```
> InRevenues <- log(df$Revenues)
> mod2 <- lm(lnRevenues ~ Marketing, data=df)
> summary(mod2)
Call:
lm(formula = lnRevenues ~ Marketing, data = df)
Residuals:
   Min
            10 Median
-0.9767 -0.2395 0.1084 0.2792 0.5056
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9852310 0.0808894 61.63
Marketing 0.0064078 0.0002846 22.52 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3683 on 53 degrees of freedom
Multiple R-squared: 0.9054, Adjusted R-squared: 0.9036
F-statistic: 507 on 1 and 53 DF, p-value: < 2.2e-16
```

DURBIN WATSON TEST FOR SIGNIFICANT AUTOCORRELATION

Lecture 4E-2

Test for First-order Autocorrelation – The Durbin Watson Statistic (AutoCorr.R)

- The Durbin-Watson statistic provides a test **a test for first-order**autocorrelation.
- The Durbin-Watson statistic is:

```
\frac{(\hat{e}_2 - \hat{e}_1)^2 + (\hat{e}_3 - \hat{e}_2)^2 + \dots + (\hat{e}_n - \hat{e}_{n-1})^2}{(\hat{e}_1^2 + \hat{e}_2^2 + \hat{e}_3^2 + \dots + \hat{e}_n^2)}
```

- In **R**, you need to install package "lmtest" and then use the and then use the dwtest() function.
- The Durbin-Watson statistic is *approximately* equal to $(2 2 \rho)$.
- In our example, the first-order autocorrelation was 0.9189 and the D-W statistic for our model is 0.1447.
- The test shows that there is significant autocorrelation, at $\alpha = 0.05$, because the p-value is almost 0.

Test for First-order Autocorrelation – The Durbin Watson Statistic

- Since, the Durbin-Watson statistic is *approximately* equal to $(2 2 \rho)$.
 - If there is no autocorrelation, then $\rho = 0$. The Durbin-Watson statistic = 2.
 - The worst possible case of positive first-order autocorrelation occurs when ρ is very close to 1. If $\rho = 1$, the Durbin-Watson statistic = 0.
 - This means the closer the Durbin-Watson statistic is to zero, the more likely serious first-order positive autocorrelation exists.
 - For negative first-order autocorrelation, the worst possible case occurs when ρ is close to -1. If ρ = -1, the Durbin-Watson statistic = 4.
 - This means that when the Durbin-Watson statistic is closer to 4, the chances of first-order negative first-order autocorrelation increase.
- In summary, the Durbin-Watson statistic varies from 0 to 4:
 - values closer to 0 indicate positive first-order autocorrelation;
 - values close to 2 indicate no first-order autocorrelation; and
 - values closer to 4 indicate negative first-order autocorrelation.

Test for First-order Autocorrelation – The Durbin Watson Statistic

- Most hypothesis tests use a critical value to separate the regions where the null hypothesis is rejected or not rejected.
- The Durbin-Watson statistic has **three regions** with two critical values referred to as $\mathbf{d}_{\mathbf{U}}$ ("d-upper") and $\mathbf{d}_{\mathbf{L}}$ ("d-lower") and are given in Tables.
- The decision rules for the Durbin-Watson test for positive first-order autocorrelation are as follows:
 - If the Durbin-Watson statistic is less than **d**_L, **reject** the null hypothesis of no first-order autocorrelation; assume positive first-order autocorrelation.
 - If the Durbin-Watson statistic is greater than d_u , do not reject the null hypothesis of no first-order autocorrelation; assume no first-order autocorrelation.
 - If the Durbin-Watson statistic lies between $\mathbf{d_L}$ and $\mathbf{d_u}$ (or exactly equal to either $\mathbf{d_L}$ or $\mathbf{d_u}$), the test is **inconclusive** regarding first-order autocorrelation.
- Use the number of independent variables in your regression to find the correct column for d_U and d_L in the table, and the sample size n to find the correct row.

V i i	L.							tson Sta	tester.	rer cen	Signin	cance i i				
	_	k**=1		k'=2		k'=3		k*=4	k'=5		k'=6		k'=7		k'=8	
	dL.	dU	dL.	dU	dL	dU	dL	dU	dL	dU	dL	dU	dL.	dU	dL.	dU
	0.610	1.400														
	0.700	1.356	0.467	1.896	*****	*****		*****	*****	*****	*****		*****		*****	
	0.763	1.332	0.559	1.777	0.367	2.287		*****	*****	*****	*****	*****	*****	*****	*****	
	0.824	1.320	0.629	1.699	0.455	2.128	0.296	2.588	*****	****		*****	*****		*****	
0	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822						
1	0.927	1.324	0.758	1.604	0.595	1.928	0.444	2.283	0.315	2.645	0.203	3.004	*****		*****	
2	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.380	2.506	0.268	2.832	0.171	3.149		
3	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.444	2.390	0.328	2.692	0.230	2.985	0.147	3.266
4	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296	0.389	2.572	0.286	2.848	0.200	3.111
5	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220	0.447	2.471	0.343	2.727	0.251	2.979
6	1.106	1.371	0.982	1.539	0.857	1.728	0.734	1.935	0.615	2.157	0.502	2.388	0.398	2.624	0.304	2.860
7	1.133	1.381	1.015	1.536	0.897	1.710	0.779	1.900	0.664	2.104	0.554	2.318	0.451	2.537	0.356	2.757
8	1.158	1.391	1.046	1.535	0.933	1.696	0.820	1.872	0.710	2.060	0.603	2.258	0.502	2.461	0.407	2.668
9	1.180	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	0.649	2.206	0.549	2.396	0.456	2.589
0	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991	0.691	2.162	0.595	2.339	0.502	2.521
1	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	0.731	2.124	0.637	2.290	0.546	2.461
2	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940	0.769	2.090	0.677	2.246	0.588	2.407
3	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920	0.804	2.061	0.715	2.208	0.628	2.360
4	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	0.837	2.035	0.750	2.174	0.666	2.318
5	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886	0.868	2.013	0.784	2.144	0.702	2.280
6	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992	0.816	2.117	0.735	2.246
7	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.974	0.845	2.093	0.767	2.216
8	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028	1.850	0.951	1.959	0.874	2.071	0.798	2.188
9	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050	1.841	0.975	1.944	0.900	2.052	0.826	2.164
0	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833	0.998	1.931	0.926	2.034	0.854	2.141
2	1.363	1.496	1.309	1.570	1.244	1.650	1.160	1.732	1.090	1.825	1.020	1.920	0.950	2.018	0.879	2.102
		1.502	1.321		1.258		1.177		1.109	1.819	1.061	1.900	0.972	1.991	0.904	2.085
3	1.383	1.514		1.577	1.271	1.651	1.193	1.730	1.127	1.813		1.891	1.015	1.978	0.927	2.069
5	1.402	1.519	1.333	1.584	1.283	1.653	1.222	1.726	1.144	1.808	1.079	1.884	1.034	1.967	0.930	2.054
6	1.411	1.525	1.354	1.587	1.295	1.654	1.236	1.724	1.175	1.799	1.114	1.876	1.053	1.957	0.991	2.041
7	1.419	1.530	1.364	1.590	1.307	1.655	1.249	1.723	1.173	1.795	1.131	1.870	1.071	1.948		2.029
8	1.427	1.535	1.373	1.594	1.318	1.656	1.249	1.723	1.204	1.793	1.146	1.864	1.088	1.939	1.011	2.029
9	1.435	1.540	1.382	1.597	1.328	1.658	1.273	1.722	1.218	1.789	1.161	1.859	1.104	1.932	1.047	2.007
0		1.544	1.391	1.600	1.338	1.659	1.285	1.721		1.786	1.175	1.854	1.120	1.924	1.064	1.997
5	1.442	1.566	1.430	1.615	1.383	1.666	1.336	1.721	1.230	1.776	1.238	1.835	1.120	1.895	1.139	1.958
0	1.503	1.585	1.462	1.628	1.421	1.674	1.378	1.721	1.335	1.770	1.291	1.822	1.246	1.875	1.201	1.930
5	1.528	1.601	1.490	1.641	1.452	1.681	1.414	1.724	1.374	1.768	1.334	1.814	1.294	1.861	1.253	1.909
0	1.549	1.616	1.514	1.652	1.480	1.689	1.444	1.727	1.408	1.767	1.372	1.808	1.335	1.850	1.298	1.894

Table A.2

Testing for Positive First-order Autocorrelation

- For positive first-order autocorrelation the hypotheses are:
 - H_0 : $\rho = 0$ and H_a : $\rho > 0$.
- In our case, the Durbin-Watson statistic was 0.1447, our sample p was 0.9189, indicating strong positive first-order autocorrelation.
- For our example, from **Tables**:
 - k = 1 and n=55,
 - At $\alpha = 0.05$, $\mathbf{d_1} = 1.528$ and $\mathbf{d_{11}} = 1.601$.
 - The calculated statistic is: 0.1447
 - In our case, 0.1447 〈 dL (=1.528) so we reject the null hypothesis of no first-order positive autocorrelation at a 5% significance level.
- From the Durbin-Watson test in **R**, we see that the p-value is close to 0, indicating that the **null hypothesis of zero autocorrelation** is rejected.
- We can assume that there is significant positive first-order autocorrelation.
- Therefore, because of the significant autocorrelation, we cannot safely conclude that the coefficient for MARKETING is statistically significant even though the t-test in reports it is significant at 1%.
- This t-statistic for the slope of Marketing could be inflated by the significant autocorrelation.

```
> mod2 <- lm(lnRevenues ~ Marketing, data=df)
> summary(mod2)
Call:
lm(formula = lnRevenues ~ Marketing, data = df)
Residuals:
             1Q Median
-0.9767 -0.2395 0.1084 0.2792 0.5056
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9852310 0.0808894 61.63
Marketing 0.0064078 0.0002846 22.52 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3683 on 53 degrees of freedom
Multiple R-squared: 0.9054, Adjusted R-squared: 0.9036
F-statistic: 507 on 1 and 53 DF, p-value: < 2.2e-16
45 # install.packages("lmtest")
46 library(lmtest)
47 dwtest(mod2, alternative = c("greater"))
       Durbin-Watson test
data: mod2
DW = 0.14474, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0
```

Testing for Negative First-order Autocorrelation

- The decision rules for a Durbin-Watson negative autocorrelation test are different from those for positive first-order autocorrelation.
- The null and alternative hypotheses are H_0 : $\rho = 0$ and H_a : $\rho < 0$.
- When the Durbin-Watson statistic comes out greater than 2, negative firstorder autocorrelation may be present.
- The decision rules for a Durbin-Watson test of negative first-order autocorrelation:
 - If the Durbin-Watson statistic is greater than 4 d_L, reject the null hypothesis of no first-order autocorrelation; assume negative first-order autocorrelation.
 - If the Durbin-Watson statistic is less than $4 d_U$, do not reject the null hypothesis of no first-order autocorrelation; assume no first-order autocorrelation.
 - If the Durbin-Watson statistic lies between $4 \mathbf{d_L}$ and $4 \mathbf{d_U}$ (or exactly equal to either $4 \mathbf{d_L}$ or $4 \mathbf{d_U}$), the test is *inconclusive* regarding negative first-order autocorrelation.

- In the usual OLS regression models, when significant autocorrelation is present, one approach is to include time as a predictor
- Suppose that the observed series is y_t , for t=1,2,...,n.
 - For a linear trend, use t (the time index) as a predictor variable in a regression.
 - For a quadratic trend, we might consider using both t and t².
 - For quarterly data, with possible seasonal (quarterly) effects, we can define indicator variables such as $S_j = 1$ if observation is in quarter j of a year and 0 otherwise. There are 3 such indicators.
- Model with linear and quadratic trends and seasonal factor Obs Year Quarter Revenues Marketing Summer Fall Winter 1 1987 1 60.02 13.44 0 0 0 1

$$\hat{y}_t = \hat{\alpha} + \hat{\beta}_1 t + \hat{\beta}_2 t^2 + \hat{\beta}_{s1} S_1 + \hat{\beta}_{s2} S_2 + \hat{\beta}_{s3} S_3$$

Notes:

- We can include other X predictors (like MARKETING in our example)
- $\hat{\beta}_1$ models a linear trend in $\hat{y_t}$ with time, adding $\hat{\beta}_2$ models a quadratic trend in $\hat{y_t}$ with time
- $\hat{\beta}_{s1}$, $\hat{\beta}_{s2}$, and $\hat{\beta}_{s3}$ model seasonal components as dummy variables.

71.62

85.66

88.74

132.73

5 1988

6 1988

16.80

22.54

- Going back to our example, we will first try a model with linear trend term.
 - $\ln \widehat{Revenues} = \widehat{\alpha} + \widehat{\beta}_1 \text{ obs (note: obs is our time indicator, t)}$
 - \blacksquare lnRevenues = -4.36301+ 0.0736t
- We will look at model fit, the Durbin-Watson statistic, as well as the plot of residuals against time
- The plot shows a quadratic trend with time
- In **R**, the D-W statistic of 0.5377 has a p-value near 0, and still shows significant positive auto-correlation at $\alpha = 0.05$.

Using Tables, k = 1 and n = 55:

- At $\alpha = 0.05$, $\mathbf{d_L} = 1.528$ and $\mathbf{d_U} = 1.601$.
- The calculated statistic is: 0.5377
- For positive autocorrelation the hypotheses are: H0: $\rho = 0$ and Ha: $\rho > 0$.
- In our case $0.5377 < d_L$ so we reject the null hypothesis of no first-order autocorrelation at $\alpha = 0.05$.
- · We can assume that there is significant positive autocorrelation.

```
> mod3 <- lm(lnRevenues ~ obs)
> summary(mod3)
Call:
lm(formula = lnRevenues ~ obs)
Residuals:
              1Q Median
-0.34190 -0.05929 0.00643 0.10630
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.363010 0.036472 119.63
           0.073567 0.001133 64.92
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1334 on 53 degrees of freedom
Multiple R-squared: 0.9876, Adjusted R-squared: 0.9873
F-statistic: 4215 on 1 and 53 DF, p-value: < 2.2e-16
> st_resid3 <- rstandard(mod3)</p>
> plot (obs, st_resid3,
        main= "Residuals from lm(lnRevenues ~ obs) Microsoft from Q1 - 1987 to Q3 2000"
        xlab = "Quarter",
        ylab = "Residuals",
 dwtest(mod3, alternative = c("greater"))
        Durbin-Watson test
 W = 0.5377), p-value = 1.125e-11
alternative hypothesis: true autocorrelation is greater than 0
```


- We next try a model with linear and quadratic trend terms.
 - $\ln \widehat{Revenues} = \widehat{\alpha} + \widehat{\beta}_1 obs + \widehat{\beta}_2 obs^2$
 - \blacksquare lnRevenues = 4.1109 + 0.1t 0.00047t²
- The Durbin-Watson statistic (1.532) looks much better
- The spread of the residuals show no curved pattern of autocorrelations and the model fit is excellent suggesting we have a good model.
- In **R**, the p-value of the DW Test is 0.0195 suggesting that we would reject the null hypothesis of no autocorrelation and conclude that there is still significant autocorrelation at $\alpha = 0.05$.

However, from **Tables**, k = 2 and n = 55:

- At $\alpha = 0.05$, $\mathbf{d}_{L} = 1.490$ and $\mathbf{d}_{U} = 1.641$.
- The calculated statistic is: 1.5322
- For positive autocorrelation the hypotheses are: H0: $\rho = 0$ and Ha: $\rho > 0$.
- In our case $d_U > 1.5322 > d_L$ so the **test of no first-order** autocorrelation is <u>inconclusive</u> at $\alpha = 0.05$.

```
> mod4 <- lm(lnRevenues ~ obs+obs_sq)
> summary(mod4)
Call:
lm(formula = lnRevenues \sim obs + obs_sq)
Residuals:
                 1Q Median
 -0.162740 -0.060743 0.006585 0.042251 0.193853
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.111e+00 3.273e-02 125.59 < 2e-16 ***
             1.001e-01 2.697e-03 37.12 < 2e-16 ***
            -4.739e-04 4.668e-05 -10.15 6.15e-14 ***
obs_sq
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07799 on 52 degrees of freedom
Multiple R-squared: 0.9958, Adjusted R-squared: 0.9957
F-statistic: 6218 on 2 and 52 DF, p-value: < 2.2e-16
> st_resid4 <- rstandard(mod4)</p>
> plot (obs, st_resid4,
        main= "Residuals from lm(lnRevenues ~ obs+obs_sq) Microsoft from Q1 - 1987 to Q3 2000",
        xlab = "Quarter",
        ylab = "Residuals",
        type = "1")
> dwtest(mod4, alternative = c("greater"))
        Durbin-Watson test
DW = 1.532), p-value = 0.01953
alternative hypothesis: true autocorrelation is greater than 0
```


- We model *ln(revenues)* with linear and quadratic trend terms and with **Marketing** as predictor.
 - $\ln(\text{revenuest}) = \hat{\beta}_1 \text{obs} + \hat{\beta}_2 \text{obs}^2 + \hat{\beta}_{mkt} \text{marketing}$
 - $ln(revenues) = 4.10 + 0.097t 0.0007t^2 + 0.0013marketing$
- Using **R**, the Durbin-Watson statistic is 1.3835 is smaller and the DW Test has a p-value of 0.003227, implying significant autocorrelation at $\alpha = 0.05$.
- The model suggests that marketing is a significant predictor with the time-related variables in the model.
- However, given the larger D_W statistic is smaller compared to the previous model and the significant first-order autocorrelation we may prefer the previous model.

Using **Tables**, k = 3 and n = 55:

- At $\alpha = 0.05$, $\mathbf{d}_{L} = 1.452$ and $\mathbf{d}_{U} = 1.681$.
- The calculated statistic is: 1.383
- For positive autocorrelation the hypotheses are: H0: $\rho = 0$ and Ha: $\rho > 0$.
- In our case 1.383 \langle d_L so we reject the null hypothesis of no first-order autocorrelation at $\alpha = 0.05$.

```
> mod5 <- lm(lnRevenues ~ obs+obs_sq+Marketing, data=df)
> summary(mod5)
Call:
lm(formula = lnRevenues ~ obs + obs_sq + Marketing, data = df)
Residuals:
                1Q Median
-0.122498 -0.057361 -0.001252 0.047121 0.185079
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.102e+00 3.103e-02 132.212 < 2e-16 ***
            9.738e-02 2.730e-03 35.670 < 2e-16 ***
obs_sq
            -6.746e-04 8.552e-05 -7.888 2.17e-10 ***
Marketing 1.306e-03 4.770e-04 2.738 0.0085 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07353 on 51 degrees of freedom
Multiple R-squared: 0.9964, Adjusted R-squared: 0.9962
F-statistic: 4665 on 3 and 51 DF, p-value: < 2.2e-16
> st_resid5 <- rstandard(mod5)</pre>
> plot (obs, st_resid5,
        main= "Residuals from lm(lnRevenues ~ obs+obs_sq+Marketing) Micro
        xlab = "Quarter",
       ylab = "Residuals",
       type = "1")
> dwtest(mod5, alternative = c("greater"))
        Durbin-Watson test
DW = 1.3835, p-value = 0.003227
alternative hypothesis: true autocorrelation is greater than 0
```


- Among the 4 models we tested, Model 3 with only the linear and quadratic terms for time as predictor, resulted in the least auto-correlation.
- The DW Test in **R** suggests continued presence of significant autocorrelation, while the table suggests that the test is inconclusive.
- We could try the seasonal terms $\hat{y_t} = \hat{\alpha} + \hat{\beta}_1 t + \hat{\beta}_2 t^2 + \hat{\beta}_{s1} S_1 + \hat{\beta}_{s2} S_2 + \hat{\beta}_{s3} S_3$ model, but the residuals do not display a clear seasonal pattern; also, it is beyond the scope of this course.
- We can therefore stop with the quadratic model: lnRevenues = 4.1109 + 0.1t 0.00047t² (given the basic modeling approach that we used).
- Note that this is **not** a very "constructive model" because it models revenue purely as a function of time. It may be good for prediction, but does not give insights into variables that determine revenue
- More advanced techniques may be required to obtain a better model.
- In particular there are other time series modeling approaches that may suggest better models.

Advanced Methods to Account for Autocorrelation

- Other more advanced approaches to Time Series Models:
 - 1) Auto-regressive (AR) Models use lagged versions of the dependent variable as a predictor i.e., in predicting Y_t , we use Y_{t-1} and/or Y_{t-2} , etc. as predictors. That is, we are regressing Y on a version of itself (autoregressive).
 - 2) Moving average (MA) Models use a moving average predictor term that consists of a past (lagged) error term multiplied by a coefficient. i.e., in predicting Y_t , we use θe_{t-1} as a predictor.
 - 3) Use a differencing approach Use a difference between the predictor at time t and its lagged version to predict the difference between the dependent variable and its lagged version. i.e., for example, use $(X_t X_{t-1})$ to predict $(Y_t Y_{t-1})$
 - 4) Combine 2), 3) and 4) in various ways the so-called ARIMA models. ARIMA models use Maximum Likelihood Estimation (MLE) and not OLS (typically)