

VIGILADA MINEDUCACIÓN - SNIES 1732

Solución de sistemas de ecuaciones No lineales

- Es un método iterativo.
- Necesita de valores iniciales.
- Usa las derivadas para aproximarse a la solución rápidamente.

Serie de taylor de 1er orden:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

Serie de taylor de 1er orden:

$$f(x_{i+1}) = f(x_{i}) + f'(x_{i})(x_{i+1} - x_{i})$$

Para hallar la solución:
 $f(x_{i+1}) = 0$

Serie de Taylor de 1er orden:

$$f(x_i+1) = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

Para hallar la solución:
 $f(x_{i+1}) = 0$
I gualando:
 $0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$

$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$Despejamos \qquad X_{i+1}$$

$$\chi_{i+1} = \chi_i - f(\chi_i)$$
 $\rightarrow Newton Raphson$ $f'(\chi_i)$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

Utiliza el desarrollo de Taylor para aproximar una función derivable en las proximidades de un punto.

Partimos de un sistema de la forma:

$$f_1(x_1 \dots x_n) = 0$$

•

$$f_n(x_1 \dots x_n) = 0$$

Del cual se quiere hallar una solución.

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$f(x) \approx f(x_0) + J(x - x_0)$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$f(x) \approx f(x_0) + J(x - x_0)$$

Si
$$f(x) \approx 0$$
, $J(x - x_0) \approx -f(x_0)$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$f(x) \approx f(x_0) + J(x - x_0)$$

Si
$$f(x) \approx 0$$
, $J(x - x_0) \approx -f(x_0)$

$$(x - x_0) \approx -\frac{f(x_0)}{I}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$f(x) \approx f(x_0) + J(x - x_0)$$

Si
$$f(x) \approx 0$$
, $J(x - x_0) \approx -f(x_0)$

$$(x - x_0) \approx -\frac{f(x_0)}{J}$$

$$x \approx x_0 - \frac{f(x_0)}{J}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

Matriz Jacobiana: matriz cuadrada de orden nxn, donde n representa el número de ecuaciones y de incógnitas del sistema.

$$J_{f} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

$$\int_{f} \frac{df_1}{dx} \frac{df_1}{dy} \\
 \frac{df_2}{dy} \frac{df_2}{dy}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\begin{cases}
f_1(X,y) = (X-1)^2 + (y-3)^2 = 16 \\
f_2(X,y) = 2X - y = 5
\end{cases}$$

$$X_0 = 5, \quad Y_0 = 4$$

$$J_f = \begin{cases}
2(X-1)(1) \\
T_f = 7
\end{cases}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

$$= 5$$

$$\int_{f} 2(x-1)(1) \qquad 2(y-3)(1)$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

$$= 5$$

$$\int_{f} = \left[2(x-1)(1) + 2(y-3)(1) \right]$$

$$2(y-3)(1)$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

$$J_{f} = \begin{bmatrix} 2(x-1)(1) & 2(y-3)(1) \\ 2 & -1 \end{bmatrix}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$X_0 = 5$$
, $Y_0 = 4$

$$J_{f} = \begin{bmatrix} 2x - 2 & 2y - 6 \\ 2 & -1 \end{bmatrix}$$

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{f_{1}(X,Y)}^{f_{1}(X,Y)} = (X-1)^{2} + (Y-3)^{2} = 16$$

$$\int_{f_{2}(X,Y)}^{f_{2}(X,Y)} = 2X - Y = 5$$

$$\int_{f}^{f_{2}(X,Y)}^{f_{3}(X,Y)} = 3X - Y = 5$$

i	Xi	() ل	(i)	J(X	(i) ⁻¹	f(Xi)	J(Xi)-1 * f(Xi)	Ea
0	5							
U U	4							
1								
2								
3								
,								
4								

$X_0 = 5$	yo=4
2X-2 2	24~6
1 2	~1

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

Ejemplo 1:

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

	i	Xi	J(X	(i)	J(X	i) ⁻¹	f(Xi)	J(Xi)-1 * f(Xi)	Ea
	0	5							
	U	4							
	1								
	1								
	2								
	3								
	3								
	4								

$X_0 = 5$	yo = 4
2X-2 2	24~6
2	~1

{=MINVERSA(D25:E26)}

Inversa jacobiano: selecciona la ubicación destino, escribe la fórmula y oprime Ctrl+Shift+Enter

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

$$\int_{f_{1}(X,Y)}^{f_{1}(X,Y)} = (X-1)^{2} + (Y-3)^{2} = 16$$

$$\int_{f_{2}(X,Y)}^{f_{2}(X,Y)} = 2X - Y = 5$$

$$\int_{f}^{f_{3}(X,Y)}^{f_{3}(X,Y)} = 3X - Y = 5$$

i	Xi	J(Xi)		J(Xi) ⁻¹		f(Xi)	J(Xi)-1 * f(Xi)	Ea
0	5	8	2	0,08333333	0,16666667	1	0,25	
U	4	2	-1	0,16666667	-0,66666667	1	-0,5	
1	4,75	7,5	3	0,07407407	0,2222222	0,3125	0,023148148	5,26315789
_	4,5	2	-1	0,14814815	-0,5555556	0	0,046296296	11,1111111
2	4,72685185	7,4537037	2,90740741	0,07536636	0,21912073	0,00267918	0,00020192	0,48971596
2	4,4537037	2	-1	0,15073273	-0,56175855	0	0,000403841	1,03950104
3	4,72664993	7,45329986	2,90659973	0,07537784	0,2190932	2,0386E-07	1,53665E-08	0,00427195
3	4,45329986	2	-1	0,15075567	-0,56181361	0	3,07329E-08	0,00906835
4	4,72664992	7,45329983	2,90659966	0,07537784	0,21909319	0	0	3,251E-07
	4,45329983	2	-1	0,15075567	-0,56181361	0	0	6,9012E-07

$X_0 = 5$	yo=4
2X-2	24~6
	_1

MÉTODO DE NEWTON RAPHSON MULTIVARIABLE

Ejemplo 1:

$$\int_{1}^{2} f_{1}(x,y) = (x-1)^{2} + (y-3)^{2} = 16$$

$$\int_{1}^{2} f_{2}(x,y) = 2x - y = 5$$

$$\int_{1}^{2} f_{2}(x,y) = 3x - y = 5$$

i	Xi	J(Xi)		J(Xi) ⁻¹		f(Xi)	J(Xi)-1 * f(Xi)	Ea
0	5	8	2	0,08333333	0,16666667	1	0,25	
U	4	2	-1	0,16666667	-0,66666667	1	-0,5	
1	4,75	7,5	3	0,07407407	0,2222222	0,3125	0,023148148	5,26315789
	4,5	2	-1	0,14814815	-0,5555556	0	0,046296296	11,1111111
2	4,72685185	7,4537037	2,90740741	0,07536636	0,21912073	0,00267918	0,00020192	0,48971596
	4,4537037	2	-1	0,15073273	-0,56175855	0	0,000403841	1,03950104
3	4,72664993	7,45329986	2,90659973	0,07537784	0,2190932	2,0386E-07	1,53665E-08	0,00427195
	4,45329986	2	-1	0,15075567	-0,56181361	0	3,07329E-08	0,00906835
4	4,72664992	7,45329983	2,90659966	0,07537784	0,21909319	0	0	3,251E-07
	4,45329983	2	-1	0,15075567	-0,56181361	0	0	6,9012E-07

Armar la tabla para el otro punto solución

$X_0 = 5$	yo = 4
2X-2 2	24~6
1 2	~1

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja