

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

AGH

Grafy i ich zastosowania Zestaw 3

Elzbieta.Strzalka@fis.agh.edu.pl p. 232/D-10

Zestaw 3, zadanie 1

Korzystając z programów z poprzednich zestawów, wygenerować spójny graf losowy. Przypisać każdej krawędzi tego grafu losową wagę będącą liczbą naturalną z zakresu od 1 do 10.

Losowanie grafu

• Losujemy graf spójny, prosty oraz dodatnie wagi dla wszystkich krawędzi.

Zestaw 3, zadanie 2

Zaimplementować algorytm Dijkstry do znajdowania najkrótszych ścieżek od zadanego wierzchołka do pozostałych wierzchołków i zastosować go do grafu z zadania pierwszego, w którym wagi krawędzi interpretowane są jako odległości wierzchołków. Wypisać wszystkie najkrótsze ścieżki od danego wierzchołka i ich długości.

Poszukiwanie najkrótszych ścieżek

Najkrótsza ścieżka 1 o 4?

Poszukiwanie najkrótszych ścieżek

Najkrótsza ścieżka 1 o 4?

$$1 - 7 - 2 - 4$$

Poszukiwanie najkrótszych ścieżek

Najkrótsza ścieżka 1 o 4?

$$1 - 7 - 2 - 4$$

- Różne algorytmy wykorzystujące metodę relaksacji (osłabiania ograniczeń).
- Wspólne: inicjalizacja (init(G, s)) oraz relaksacja (relax(u, v, w)).
- Różnice: kolejność relaksacji krawędzi i liczba ich powtórzeń.

Tablice d_s i p_s

- d_s[u] długość najkrótszej ścieżki s → u. W trakcie algorytmu: górne oszacowanie tej długości.
- $p_s[u]$ poprzednik wierzchołka u na najkrótszej ścieżce $s \to u$.

Zestaw 3, zadanie 2

5/22

relax(u, v, w) sprawdza, czy
 z s do v da się przejść krócej przez
 krawędź (u, v) (względem
 aktualnego oszacowania d_s[v]).

Algorithm: init(G, s)

1: for \forall wierzchołek $v \in G$ do

2: $d_s[v] \leftarrow \infty$

3: $p_s[v] \leftarrow \text{NIL}$

4: end for

5: $d_s[s] \leftarrow 0$

Algorithm: relax(u, v, w)

1: if $d_s[v] > d_s[u] + w(u, v)$ then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3: $p_s[v] \leftarrow u$

4: end if

AGH

relax(u, v, w) sprawdza, czy
 z s do v da się przejść krócej przez
 krawędź (u, v) (względem
 aktualnego oszacowania d_s[v]).

Algorithm: init(G, s)

1: for \forall wierzchołek $v \in G$ do

2: $d_s[v] \leftarrow \infty$

3: $p_s[v] \leftarrow \text{NIL}$

4: end for

5: $d_s[s] \leftarrow 0$

Algorithm: relax(u, v, w)

1: if $d_s[v] > d_s[u] + w(u, v)$ then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3: $p_s[v] \leftarrow u$

4: end if

```
Algorithm: dijkstra(G, w, s)
```

- 1: init(G, s)2: $S \leftarrow \emptyset$
- 3: while $S \neq z$ biór wszystkich wierzchołków G do
- $u \leftarrow \text{wierzchołek o najmniejszym } d_s[u] \text{ z niegotowych } (u \notin S)$
- 5: $S \leftarrow S \cup u$
- 6: for każdy wierzchołek $v \notin S$ będący sąsiadem u do
- relax(u, v, w)
- end for 8:
- 9: end while
 - Inicializacja tablic d_s , p_s . Zbiór S: pusty ("gotowe" wierzchołki).

Algorithm: dijkstra(G, w, s)

```
1: init(G, s)
2: S \leftarrow \emptyset
3: while S \neq zbiór wszystkich wierzchołków G do
   u \leftarrow \text{wierzchołek o najmniejszym } d_s[u] \text{ z niegotowych } (u \notin S)
4:
5: S \leftarrow S \cup u
6: for każdy wierzchołek v \notin S będący sąsiadem u do
           relax(u, v, w)
       end for
8:
9: end while
```

- Inicializacja tablic d_s , p_s . Zbiór S: pusty ("gotowe" wierzchołki).
- Wybieramy wierzchołek o **najmniejszym** $d_s[u]$ "gotowy", dodajemy do S.


```
Algorithm: dijkstra(G, w, s)
```

```
1: init(G, s)
2: S \leftarrow \emptyset
3: while S \neq zbiór wszystkich wierzchołków G do
     u \leftarrow \text{wierzchołek o najmniejszym } d_s[u] \text{ z niegotowych } (u \notin S)
4:
5: S \leftarrow S \cup u
6: for każdy wierzchołek v \notin S będący sąsiadem u do
           relax(u, v, w)
       end for
8:
9: end while
```

- Inicializacja tablic d_s , p_s . Zbiór S: pusty ("gotowe" wierzchołki).
- Wybieramy wierzchołek o **najmniejszym** $d_s[u]$ "gotowy", dodajemy do S.
- Relaksacja krawędzi do jego "niegotowych" sąsiadów.


```
Algorithm: dijkstra(G, w, s)
```

- 1: init(G,s)2: $S \leftarrow \emptyset$
- 3: while $S \neq z$ biór wszystkich wierzchołków G do
- $u \leftarrow \text{wierzchołek o najmniejszym } d_s[u] \text{ z niegotowych } (u \notin S)$
- 5: $S \leftarrow S \cup u$
- 6: for każdy wierzchołek $v \notin S$ będący sąsiadem u do
- relax(u, v, w)7:
- 8: end for
- 9: end while
 - Wierzchołki gotowe bo dalsza relaksacja nie dałaby już poprawy. Długość tych najkrótszych ścieżek jest już obliczona ⇒ tylko **jedna relaksacja** każdej krawędzi.

Oznaczenia: $(d_s[u]/p_s[u])$

- init(G, s = 1)
- S = Ø

Algorithm: relax(u, v, w)

1: if $d_s[v] > d_s[u] + w(u,v)$ then

- 2: $d_s[v] \leftarrow d_s[u] + w(u, v)$
- 3: $p_s[v] \leftarrow u$
- 4: end if

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

www.agh.edu.pl

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

Algorithm: relax(u, v, w)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

- 1: if $d_s[v] > d_s[u] + w(u,v)$ then
- 2: $d_s[v] \leftarrow d_s[u] + w(u, v)$
- 3: $p_s[v] \leftarrow u$
 - 4: end if

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

- 1: if $d_s[v] > d_s[u] + w(u,v)$ then
- 2: $d_s[v] \leftarrow d_s[u] + w(u, v)$
- 3: $p_s[v] \leftarrow u$
 - 4: end if

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\}$
- relax(1,2)
- relax(1,4)
- relax(1,5)
- relax(1,6)
- relax(1,7)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

- 2: $d_s[v] \leftarrow d_s[u] + w(u, v)$
- 3: $p_s[v] \leftarrow u$
 - 4: end if

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\} \cup 5$
- relax(5,2)
- relax(5,6)

Algorithm: relax(u, v, w)

1: if $d_s[v] > d_s[u] + w(u,v)$ then

$$2: d_s[v] \leftarrow d_s[u] + w(u,v)$$

3: $p_s[v] \leftarrow u$

4: end if

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1\} \cup 5$$

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

(9/1)(0/Ø) 6 (5/1)(7/5)(7/5)3 (∞/nil) 5 (3/1)

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1\} \cup 5$
- relax(5,2)
- relax(5,6)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

(9/1)(0/Ø) 6 (5/1)(7/5)(7/5)3 (∞/nil) 5 (3/1)

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1, 5\} \cup 7$
- relax(7,2)

- 1: if $d_s[v] > d_s[u] + w(u,v)$ then
- 2: $d_s[v] \leftarrow d_s[u] + w(u, v)$
- 3: $p_s[v] \leftarrow u$
 - 4: end if

AGH (9/1)(0/Ø) 2 (5/1)

6 (7/5)(6/7)3 (∞/nil) 5 (3/1)

Oznaczenia: $(d_s[u]/p_s[u])$

- $S = \{1, 5\} \cup 7$
- relax(7,2)

- 1: if $d_s[v] > d_s[u] + w(u,v)$ then
- $d_s[v] \leftarrow d_s[u] + w(u,v)$
- $p_s[v] \leftarrow u$
 - 4: end if

AGH

www.agh.edu.pl

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1, 5, 7\} \cup 2$$

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1, 5, 7\} \cup 2$$

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1, 2, 5, 7\} \cup 6$$

- relax(6,3)
- relax(6,4)

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1, 2, 5, 7\} \cup 6$$

1: if
$$d_s[v] > d_s[u] + w(u,v)$$

then

$$2: d_s[v] \leftarrow d_s[u] + w(u,v)$$

3:
$$p_s[v] \leftarrow u$$

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1, 2, 5, 6, 7\} \cup 4$$

Algorithm: relax(u, v, w)

1: if $d_s[v] > d_s[u] + w(u,v)$ then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

AGH

(8/2)(0/Ø) 6 2 (5/1)(7/5)(6/7)3 (11/6)5 (3/1)

Oznaczenia: $(d_s[u]/p_s[u])$

•
$$S = \{1, 2, 4, 5, 6, 7\} \cup 3$$

Algorithm: relax(u, v, w)

1: if $d_s[v] > d_s[u] + w(u,v)$ then

2:
$$d_s[v] \leftarrow d_s[u] + w(u, v)$$

3:
$$p_s[v] \leftarrow u$$

(11/6)

5 (3/1)

4

Poszukiwanie najkrótszych ścieżek: algorytm Dijkstry – przykład działania

AGH (8/2)(0/Ø) 6 2 (5/1)(7/5)(6/7)3

Oznaczenia: $(d_s[u]/p_s[u])$

Najkrótsze ścieżki

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2:

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

Najkrótsze ścieżki

- $1 \to 1: 1$
- $1 \to 2$:

990

Oznaczenia: $(d_s[u]/p_s[u])$

Najkrótsze ścieżki

- $\bullet \ 1 \rightarrow 1 : 1$
- $1 \to 2$: 7 2

(8/2)(0/Ø) 6 2 (5/1)(7/5)(6/7)3 (11/6)4 5

Oznaczenia: $(d_s[u]/p_s[u])$

Najkrótsze ścieżki

- $1 \rightarrow 1: 1$
- $1 \rightarrow 2$: 1 7 2

(3/1)

(8/2)(0/Ø) 6 2 (5/1)(7/5)(6/7)3 (11/6)5 (3/1)

Oznaczenia: $(d_s[u]/p_s[u])$

- $1 \rightarrow 1: 1$
- $1 \rightarrow 2$: 1 7 2
- 1 → 3:

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2: 1 7 2
- $1 \rightarrow 3$: 6 3

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2: 1 7 2
- $1 \rightarrow 3$: 5 6 3

Oznaczenia: $(d_s[u]/p_s[u])$

- $\bullet \ 1 \to 1{:}\ 1$
- $1 \rightarrow 2$: 1 7 2
- $1 \rightarrow 3$: 1 5 6 3

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2: 1 7 2
- $1 \rightarrow 3$: 1 5 6 3
- \bullet 1 \rightarrow 4: 1 7 2 4

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2: 1 7 2
- $1 \rightarrow 3$: 1 5 6 3
- \bullet 1 \rightarrow 4: 1 7 2 4
- \bullet 1 \rightarrow 5: 1 5

Oznaczenia: $(d_s[u]/p_s[u])$

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2: 1 7 2
- $1 \rightarrow 3$: 1 5 6 3
- \bullet 1 \rightarrow 4: 1 7 2 4
- $1 \rightarrow 5$: 1 5
- $1 \rightarrow 6$: 1 5 6

AGH

Oznaczenia: $(d_s[u]/p_s[u])$

Najkrótsze ścieżki

- $1 \to 1: 1$
- \bullet 1 \rightarrow 2: 1 7 2
- $1 \rightarrow 3$: 1 5 6 3
- \bullet 1 \rightarrow 4: 1 7 2 4
- $1 \rightarrow 5$: 1 5
- $1 \rightarrow 6$: 1 5 6
- $1 \rightarrow 7$: 1 7

Podścieżki są najkrótszymi ścieżkami.

Poszukiwanie najkrótszych ścieżek: algorytm Dijkstry

- Algorytm zachłanny, ale dowodzi się, że wynik zawsze prawidłowy^a.
- **Złożoność**^b: (n wyciągnięć u o minimalnym $d_s[u]$) × (n iteracji) + $(k \text{ relaksacji}) \Rightarrow O(n^2 + k) = O(n^2).$
- Zastosowanie tylko dla nieujemnych wag (ale może też działać dla grafów skierowanych, o ile wagi nieujemne).

^aDowód – patrz: Cormen Thomas H., Leiserson Charles E., Rivest Ronald L., Wprowadzenie do algorytmów, Warszawa, Wydawnictwo Naukowo – Techniczne

 b Ale zależy od implementacji wyboru wierzchołka o najmniejszym $d_s[u]$: przy nieoptymalnej może być większa; ale może być mniejsza (kolejka niegotowych wierzchołków przy pomocy kopca binarnego: $O(k \cdot \lg(n))$

Zestaw 3, zadanie 3

Wyznaczyć macierz odległości miedzy wszystkimi parami wierzchołków na tym grafie.

dijkstra(G, w, s = 1)

Macierz odległości

• Macierz **kwadratowa** $n \times n$.

_							
	1	2	3	4	5	6	7
1	0	6	11	8	3	7	5
2							
3							
4							
5							
6							
7							

dijkstra(G, w, s = 2)

Macierz odległości

• Macierz **kwadratowa** $n \times n$.

_							
	1	2	3	4	5	6	7
1	0	6	11	8	3	7	5
2	6	0	12	2	4	8	1
3				'			
4							
5							
6							
7							

dijkstra(G, w, s = 3), itd.

Macierz odległości

• Macierz **kwadratowa** $n \times n$.

	_	_	_	_	_	_	
	1	2	3	4	5	6	7
1	0	6	11	8	3	7	5
2	6	0	12	2	4	8	1
3	11	12	0	13	8	4	13
4	8	2	13	0	6	9	3
5	3	4	8	6	0	4	5
6	7	8	4	9	4	0	9
7	5	1	13	3	5	9	0

Macierz odległości

- Macierz **kwadratowa** $n \times n$.
- **Diagonala**: $\forall_u D[u][u] = 0$.

	1	2	3	4	5	6	7
1	0	6	11	8	3	7	5
2	6	0	12	2	4	8	1
3	11	12	0	13	8	4	13
4	8	2	13	0	6	9	3
5	3	4	8	6	0	4	5
6	7	8	4	9	4	0	9
7	5	1	13	3	5	9	0

Macierz odległości

- Macierz kwadratowa n x n.
- **Diagonala**: $\forall_u D[u][u] = 0$.
- Symetryczna (ponieważ graf nieskierowany).

	1	2	3	4	5	6	7
1	0	6	11	8	3	7	5
2	6	0	12	2	4	8	1
3	11	12	0	13	8	4	13
4	8	2	13	0	6	9	3
5	3	4	8	6	0	4	5
6	7	8	4	9	4	0	9
7	5	1	13	3	5	9	0

Zestaw 3, zadanie 4

Wyznaczyć centrum grafu, to znaczy wierzchołek, którego suma odległości do pozostałych wierzchołków jest minimalna. Wyznaczyć centrum minimax, to znaczy wierzchołek, którego odległość do najdalszego wierzchołka jest minimalna.

Centrum

Centrum minimax

	\sim								
	1	2	3	4	5	6	7	suma	odległość od najdalszego
1	0	6	11	8	3	7	5		
2	6	0	12	2	4	8	1		
3	11	12	0	13	8	4	13		
4	8	2	13	0	6	9	3		
5	3	4	8	6	0	4	5		
6	7	8	4	9	4	0	9		
7	5	1	13	3	5	9	0		

Centrum

Centrum minimax

	\sim								
	1	2	3	4	5	6	7	suma	odległość od najdalszego
1	0	6	11	8	3	7	5	40	
2	6	0	12	2	4	8	1	33	
3	11	12	0	13	8	4	13	61	
4	8	2	13	0	6	9	3	41	
5	3	4	8	6	0	4	5	30	
6	7	8	4	9	4	0	9	41	
7	5	1	13	3	5	9	0	36	

Centrum

5

Centrum minimax

	1	2	3	4	5	6	7	suma	odległość od najdalszego
1	0	6	11	8	3	7	5	40	
2	6	0	12	2	4	8	1	33	
3	11	12	0	13	8	4	13	61	
4	8	2	13	0	6	9	3	41	
5	3	4	8	6	0	4	5	30	
6	7	8	4	9	4	0	9	41	
7	5	1	13	3	5	9	0	36	

Centrum

5

Centrum minimax

	1	2	3	4	5	6	7	suma	odległość od
									najdalszego
1	0	6	11	8	3	7	5	40	11
2	6	0	12	2	4	8	1	33	12
3	11	12	0	13	8	4	13	61	13
4	8	2	13	0	6	9	3	41	13
5	3	4	8	6	0	4	5	30	8
6	7	8	4	9	4	0	9	41	9
7	5	1	13	3	5	9	0	36	13

Centrum

5

Centrum minimax

5

	1	2	3	4	5	6	7	suma	odległość od najdalszego
1	0	6	11	8	3	7	5	40	11
2	6	0	12	2	4	8	1	33	12
3	11	12	0	13	8	4	13	61	13
4	8	2	13	0	6	9	3	41	13
5	3	4	8	6	0	4	5	30	8
6	7	8	4	9	4	0	9	41	9
7	5	1	13	3	5	9	0	36	13

Zestaw 3, zadanie 5

Wyznaczyć minimalne drzewo rozpinające (algorytm Prima lub Kruskala).

www.agh.edu.pl -

Minimalne drzewo rozpinające

Las – graf bez cykli.

www.agh.edu.pl -

Minimalne drzewo rozpinające

Las – graf bez cykli.

Drzewo – spójny las. Las składa się z drzew.

Minimalne drzewo rozpinające

Drzewo

- Każde dwa wierzchołki połączone dokładnie jedną ścieżką.
- n wierzchołków $\Rightarrow n-1$ krawędzi.
- Każda krawędź jest mostem.
- Drzewo rozpinające grafu: złożone ze wszystkich wierzchołków i niektórych krawędzi tak, by było acykliczne i spójne.
- Minimalne drzewo rozpinające^a grafu: o minimalnej sumie wag.

^aZastosowanie: projektowanie układów elektronicznych o najkrótszych przewodach, łaczących końcówki układu.

Definicje

• **Przekrój**: para podzbiorów wierzchołków T i W taka, że $W = V \setminus T$ (V – zbiór wszystkich wierzchołków).

Definicje

- **Przekrój**: para podzbiorów wierzchołków T i W taka, że $W = V \setminus T$ (V zbiór wszystkich wierzchołków).
- Krawędzie krzyżujące się z przekrojem: krawędzie łączące wierzchołki należące do T z należącymi do W.

Definicje

- Przekrój: para podzbiorów wierzchołków T i W taka, że W = V \ T (V – zbiór wszystkich wierzchołków).
- Krawędzie krzyżujące się z przekrojem: krawędzie łączące wierzchołki należące do T z należącymi do W.
- Krawędź lekka: krawędź krzyżująca się z przekrojem, która ma najmniejszą wagę.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki \Rightarrow koniec.

Podzbiór W: czerwone wierzchołki (pozostałe). Krawędzie krzyżujące się z przekrojem: zielone.

Krawędź lekka: pogrubiona zielona.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki \Rightarrow koniec.

Podzbiór *T*: niebieskie wierzchołki i krawędzie (drzewo).

Podzbiór *W*: czerwone wierzchołki (pozostałe). Krawędzie krzyżujące się z przekrojem: zielone. Krawędź lekka: pogrubiona zielona.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki ⇒ koniec.

19 / 22

Podzbiór W: czerwone wierzchołki (pozostałe). Krawędzie krzyżujące się z przekrojem: zielone. Krawędź lekka: pogrubiona zielona.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki \Rightarrow koniec.

Podzbiór W: czerwone wierzchołki (pozostałe). Krawędzie krzyżujące się z przekrojem: zielone. Krawędź lekka: pogrubiona zielona.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki \Rightarrow koniec.

Podzbiór W: czerwone wierzchołki (pozostałe). Krawędzie krzyżujące się z przekrojem: zielone. Krawędź lekka: pogrubiona zielona.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki \Rightarrow koniec.

Podzbiór W: czerwone wierzchołki (pozostałe). Krawędzie krzyżujące się z przekrojem: zielone. Krawędź lekka: pogrubiona zielona.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki \Rightarrow koniec.

Algorytm Prima

- Dowolny startowy wierzchołek: dodajemy do drzewa T.
- W każdym kroku analizujemy tylko krawędzie krzyżujące się z przekrojem.
 - Do zbioru T dodajemy krawędź lekką.
- Gdy w T są wszystkie wierzchołki ⇒ koniec.

Algorytm Kruskala

- Do podzbioru T dodajemy wszystkie wierzchołki.
- Sortujemy krawędzie według niemalejących wag.
- W zadanej kolejności:
 - Jeśli krawędź łączy różne drzewa (≡ nie powoduje powstania cyklu) ⇒ dodajemy ją do drzewa T.
- **4** Gdy w T jest n-1 krawędzi ⇒ koniec.

www.agh.edu.pl -

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

www.agh.edu.pl -

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Uwaga

Nie zawsze wszystkie pierwsze krawędzie będą należały do drzewa – trzeba omijać te, które spowodowałyby powstanie cyklu.

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Uwaga

Nie zawsze wszystkie pierwsze krawędzie będą należały do drzewa – trzeba omijać te, które spowodowałyby powstanie cyklu.

Krawędź	Waga krawędzi
(u, v)	w(u, v)
(2,7)	1
(2,4)	2
(1,5)	3
(2,5)	4
(3,6)	4
(5,6)	4
(1,7)	5
(1,2)	8
(1,4)	9
(1,6)	9
(4,6)	9

Algorytm Prima i algorytm Kruskala: porównanie

Podobieństwa

- Start: zbiór T bez krawędzi, do którego dodajemy krawędzie bezpieczne.
- Niezmiennik algorytmu: T w każdym kroku jest podzbiorem minimalnego drzewa rozpinającego.
- Złożoność O(k lg(n)).
- Algorytmy zachłanne (ale wynik) zawsze prawidłowy).

Różnice

 Sposób wyszukiwania krawędzi bezpiecznych.