

Universidade Federal de Minas Gerais Escola de Engenharia

RECONHECIMENTO DE PADRÕES - 2021/1 - ERE ELT135

Exercício 1 - Treinamento Perceptron

Autores: Vítor Gabriel Reis Caitité Email: vcaitite@ufmg.br

30 de maio de 2021

Sumário

1	Intr	3 1 3 1	2	
	1.1	Objetivo	2	
	1.2	Dados		
	1.3	Perceptron Simples		
2	Des	envolvimento	3	
	2.1	Tratamento Inicial	4	
	2.2	Treinamento e Teste	5	
	2.3	Resultados	6	
3 Anexo - Funções Utilizadas		3	7	
	3.1	Treinamento Perceptron Simples	7	
	3.2	Resposta do Perceptron Simples		
\mathbf{L}	ista	de Figuras		
	1	Organização dos dados	2	
	2	Rede Perceptron Simples. Fonte: Imagem produzida pelo autor	3	
	3	Amostras das 2 classes do conjunto de dados para todos os pares de variáveis de entrada. Fonte: Imagem produzida pelo autor utilizando a função de plot do R		
	4	Resultado encontrado.		

1 Introdução

1.1 Objetivo

O objetivo desse exercício é aplicar o modelo "preceptron simples" estudado na disciplina a um problema prático referente a um conjunto de dados disponibilizado publicamente e que envolve o reconhecimento do tipo de tumor de mama (maligno ou benigno). O database foi obtido da University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg [2].

1.2 Dados

Basicamente o arquivo contendo os dados contêm 1 coluna de Id (apenas um identificador) seguida de 9 colunas contendo os vetores de entrada x, e por fim, uma última coluna contendo a classificação do tumor correspondente ao rótulo y daquela amostra. Foram disponibilizados 699 dados.

#	Attribute	Domain
1.	Sample code number	id number
2.	Clump Thickness	1 - 10
3.	Uniformity of Cell Size	1 - 10
4.	Uniformity of Cell Shape	1 - 10
5.	Marginal Adhesion	1 - 10
6.	Single Epithelial Cell Size	1 - 10
7.	Bare Nuclei	1 - 10
8.	Bland Chromatin	1 - 10
9.	Normal Nucleoli	1 - 10
10.	Mitoses	1 - 10
11.	Class:	(2 for benign, 4 for malignant)

Figura 1: Organização dos dados.

1.3 Perceptron Simples

Como se sabe, o perceptron simples pode ser utilizado para dividir duas classes linearmente separáveis. Ou seja, o modelo de classificador desenvolvido com esse perceptron de camada única (cuja a rede está mostrada na Figura 2) é na verdade um classificador linear. Dependendo da dimensão o problema esse classificador representa uma reta, um plano ou um hiperplano no espaço de entrada. Como estamos lidando com um problema com 9 variáveis de entrada, então o classificador gerado a partir do perceptron simples representará um hiperplano nesse espaço de entrada, tentando separar os dados linearmente [1].

Figura 2: Rede Perceptron Simples. Fonte: Imagem produzida pelo autor

O algoritmo de treinamento do perceptron simples apresentado durante a disciplina baseia-se na aplicação da Equação 1 sobre os dados de treinamento até que o erro global atinja um critério de parada ou complete-se o número máximo de iterações passado como parâmetro.

$$w(t+1) = w(t) + \eta * e(t) * x(t)$$
 (1)

onde:

- w(t) valores d vetor de pesos no instante t;
- e(t) valor do erro no instante t;
- x(t) vetor de entradas no instante t;
- η passo de treinamento.

2 Desenvolvimento

Inicialmente, buscou-se entender mais sobre os dados do problema e por se tratar de uma pequena quantidade de dados decidiu - se plotar gráficos das amostras usando apenas 2 dimensões de cada vez. Isso foi feito somente no intuito de tentar visualizar uma possível separação espacial. Esses gráficos podem ser vistos na Figura 3.

OBS: O problema será resolvido utilizando todas as 9 dimensões, nesse ponto buscouse apenas investigar e mostrar uma possível separação espacial.

Como pode ser observado nos gráficos, no geral os dados apresentam uma boa separação espacial, o que inicialmente pode nos indicar que o modelo perceptron simples será capaz de realizar uma boa classificação.

Figura 3: Amostras das 2 classes do conjunto de dados para todos os pares de variáveis de entrada. Fonte: Imagem produzida pelo autor utilizando a função de plot do R.

2.1 Tratamento Inicial

O primeiro passo realizado foi carregar os dados e armazená-los. Estes dados receberão um tratamento inicial para eliminação dos dados faltantes, representados pelo string NA. Além disso, rotulou-se as amostras com valor de 0 (malígno) e 1 (benígno).

```
rm(list=ls())
source("~/Documents/list_1/trainPerceptron.R")
source("~/Documents/list_1/yperceptron.R")
library(caret)
# Carregando base de dados:
```

```
path <- file.path("~/Documents/UFMG/10/Reconhecimento de padr es/list/
    list_1/database", "BreastCancer.csv")
data <- read.csv(path)

# Rotular as amostras das Classes com o valor de 0 (maligno) e 1 (
    benigno).
data$Class <- ifelse(data$Class="malignant", 0, 1)

# Tratamento de dados faltantes - Remove—se linhas contendo NA
data <- data[complete.cases(data),]</pre>
```

Listing 1: Carregamento e tratamento dos dados

2.2 Treinamento e Teste

Nessa etapa foi treinado um perceptron simples, utilizando a rotina de treinamento de perceptron mostrada no início desse documento e a base de dados do item anterior, para classificar um tumor em maligno ou benigno. Foram utilizados 70% dos dados para treino e 30% para teste. Além disso, foram realizados 20 execuções diferentes de treinamento e teste, e os valores de acurácia (de treinamento e teste), foram apresentados na forma de média \pm desvio_padrão. Os resultados e o script desenvolvido podem ser vistos abaixo.

```
# Removendo coluna ID
  data <- data [,2:11]
  # Realiza pelo 20 execucoes diferentes
  accuracy\_train \leftarrow rep(0, 20)
  accuracy_test \leftarrow rep(0, 20)
  for (execution in 1:20) {
    # Selecionar aleatoriamente 70% das amostras para o conjunto de
        treinamento e 30% para o conjunto de teste
    partition <- createDataPartition(1:nrow(data),p=.7)
    train <- as.matrix(data[partition$Resample1,])
    test <- as.matrix(data[- partition$Resample1,])
11
    x_{train} \leftarrow as.matrix(train[, 1:(ncol(train)-1)])
12
    y_train <- as.matrix(train[, ncol(train)])
13
    x_test \leftarrow as.matrix(test[, 1:(ncol(train)-1)])
14
    y_test <- as.matrix(test[, ncol(train)])
    # Treinando modelo:
17
    retlist <- trainPerceptron(x_train, y_train, 0.1, 0.01, 1000, 1)
18
    W \leftarrow retlist[[1]]
19
20
    # Calculando acuracia de treinamento
```

```
y_hat_train <- as.matrix(yperceptron(x_train, W, 1), nrow = length_
       train, ncol = 1
    accuracy_train[execution]<-1-((t(y_hat_train-y_train) %*% (y_hat_
       train -y_train))/length(y_train))
    # Calculando acuracia de Teste:
25
    y_hat_test < as.matrix(yperceptron(x_test, W, 1), nrow = length_test
26
       , ncol = 1)
    accuracy_test [execution] <-1-((t(y_hat_test-y_test) %*% (y_hat_test-y_
27
       test))/length(y_test))
  }
28
29
30 # Media das acuracias
 mean_accuracy_train <- mean(accuracy_train) * 100
mean_accuracy_test <- mean(accuracy_test) * 100
  # Desvio Padrao das acuracias
  sd_accuracy_train <- sd(accuracy_train) * 100
35
 sd_accuracy_test <- sd(accuracy_test) * 100
37
 # Printing Result
  print (paste ("Acuracia media de treinamento do modelo: ", mean_accuracy_
     train , "%" , "    " , sd_accuracy_train , "%"))
  print (paste ("Acuracia media de teste do modelo: ", mean_accuracy_test,
               , sd_accuracy_test, "%"))
```

Listing 2: Treinamento e aplicação do perceptron simples

2.3 Resultados

O resultado encontrado ao se rodar o algoritmo acima está mostrado na Figura 4 abaixo.

```
> source('~/Documents/UFMG/10/Reconhecimento de padrões/list/list_1/perceptron_application.R')
[1] "Acurácia media de treinamento do modelo: 97.1398747390397 % ± 0.663994340597906 %"
[1] "Acurácia media de teste do modelo: 96.4460784313726 % ± 1.3761838204863 %"
```

Figura 4: Resultado encontrado.

Como pode-se notar obteve-se uma acurácia de treinamento e teste de aproximadamente 97,1% e 96,4%. Essa acurácia elevada se deve principalmente a boa separação espacial dos dados, que possibilita que o classificador gerado a partir do perceptron simples, gere um hiperplano no espaço de entrada dos dados e seja capaz de separar linearmente as duas classes de dados.

3 Anexo - Funções Utilizadas

3.1 Treinamento Perceptron Simples

```
trainPerceptron <- function ( xin , yd , eta , tol , maxepocas , par )
    dimxin<-dim(xin)
    N \leftarrow \dim \min [1]
    n < -\dim xin [2]
    if (par==1){
       wt<-as.matrix (runif(n+1) - 0.5)
       xin \leftarrow cbind (1, xin)
     } else {
       wt < -as.matrix (runif (n) - 0.5)
10
11
    nepocas <-0
12
    eepoca \leftarrow tol + 1
13
14
     evec <-matrix ( nrow =1 , ncol=maxepocas )
     while ( nepocas < maxepocas ) && ( eepoca>tol ) )
17
       ei2 < -0
19
       xseq < -sample(N)
       for ( i in 1:N)
20
21
         irand <- xseq[i]
22
         yhati < -1.0 * ( (xin[irand , ] \%*\% wt ) >= 0 )
         ei <- yd[irand] - yhati
24
         dw\!\!<\!\!-as.vector\,(\,eta\,)\ *\ as.vector\,(\,ei\,)\ *\ xin\,[\ irand
2.5
         wt < -wt + dw
         ei2<-ei2 + ei * ei
27
28
2.9
       nepocas<-nepocas+1
       evec [ nepocas ] <-ei2/N
30
31
       eepoca <-- evec [nepocas]
32
33
     retlist <- list ( wt, evec[ 1:nepocas]
     return (retlist)
35
36
```

Listing 3: Função de treinamento de um perceptron simples em R

3.2 Resposta do Perceptron Simples

```
yperceptron <- function(xvec, w, par){
    # xvec: vetor de entrada
    # w: vetor de pesos</pre>
```

```
# par: se adiciona ou nao o vetor de 1s na entrada
# yperceptron: resposta do perceptron
if ( par==1){
    xvec<-cbind ( 1 , xvec )
}
u <- xvec %*% w
y <- 1.0 * (u>=0)
return(as.matrix(y))
}
```

Listing 4: Função que calcula a resposta de um perceptron simples em R

Referências

- [1] Prof. Antônio de Pádua Braga. Aprendendo com exemplos: Principios de redes neurais artificiais e de reconhecimento de padrões. Notas de aula de disciplina.
- [2] O. L. Mangasarian and W. H. Wolberg. "cancer diagnosis via linear programming". SIAM News, Volume 23, Number 5, September 1990. pp 1 18.