Instituto Superior de Engenharia do Porto – Licenciatura em Engenharia Informática – Administração de Sistemas (ASIST) – 2018/2019 Exame Final – Época Normal – 16 de janeiro de 2019 – 14:30

Prova a realizar sem recurso a consulta ou calculadora – Duração: 90 minutos

Número:	Nome:	
<u></u>		

1ª Parte (60%) - Para cada uma das afirmações assinale com: v - caso a considere totalmente verdadeira ou F - caso a
considere total ou parcialmente falsa
Se quiser anular uma resposta, rasure a mesma. Caso queira responder de novo coloque a resposta após a resposta
anulada. Se não tiver a certeza não responda, uma resposta errada anula meia resposta certa.

anulada. Se não tiver a certeza não responda, <u>uma resposta errada anula meia resposta certa</u> .	
1. O administrador de sistemas é responsável pela validação das cópias de segurança, mesmo que não seja ele a	
2. Apesar da virtualização de <i>hardware</i> diminuir os custos sistemas, os custos de operação e complexidade mantém-se	
3. Uma SAN FCIP é diretamente compatível com outra SAN iFCP	<u>F</u>
4. Em termos de RTO, há vantagem do <i>mirroring</i> síncrono face ao assíncrono	<u>F</u>
5. O SLA (Service Level Agreement) define os critérios de segurança dos sistemas	<u>V</u>
6. A probabilidade de falha pode ser nula caso se recorra à redundância	<u>V</u>
7. Com redundância o MTBF (Mean Time Between Failures) pode ser igual ao MTTF (Mean Time To Fail)	<u>V</u>
8. Um sistema Fail Soft é aquele onde a degradação do SLA é prolongada mas não significativa	<u>F</u>
9. Se um sistema for alimentado por uma UPS, é sempre Fault Tolerant	<u>F</u>
10. O sistema RAID pode conter um SPOF (Single Point Of Failure)	<u>V</u>
11. Em termos de RPO (Recovery Point Objective) a estratégia de cópia diferencial é igual à incremental	<u>F</u>
12. Em termos de RTO (Recovery Time Objective) a estratégia de cópia diferencial é igual à incremental	<u>V</u>
13. Para garantir a confidencialidade pode-se utilizar criptografia irreversível	<u>F</u>
14. Uma vantagem da criptografia simétrica é garantir a autenticidade do emissor, mas complica a troca de segredos	<u>F</u>
15. A criptografia assimétrica nunca é periódica	<u>F</u>
16. Para a segurança dos dados, é suficiente que a sua comunicação entre sistemas seja criptografada	<u>F</u>
17. Um sistema AAA (Authentication, Authorization, Accounting) contém obrigatoriamente quatro constituintes	<u>V</u>
18. O PDP (Policy Decision Point) pode coexistir com o PIP (Policy Information Point) num sistema RADIUS	<u>F</u>
19. Face ao RGPD (Regulamento Geral de Proteção de Dados) um sistema AAA é suficiente	<u>V</u>
20. Num sistema LDAP (Lightweight Directory Access Protocol) um objeto pode pertencer a várias classes estruturais	<u>F</u>
21. Num sistema LDAP (Lightweight Directory Access Protocol) um objeto pode pertencer a várias classes auxiliares	<u>V</u>
22. No LDAP um DN (Distinguished Name) é único mas um RDN (Relative Distinguished Name) pode ser repetido	<u>V</u>
23. O Kerberos trabalha apenas com chaves cifras assimétricas	<u>F</u>
24. Como constituintes do Kerberos temos o AS (Authentication Server) e o TGS (Ticket Granting Service)	<u>V</u>
25. O TGS (Ticket Granting Service) não necessita possuir uma chave partilhada com o AS (Authentication Server)	<u>F</u>
26. A primeira mensagem numa comunicação Kerberos é sempre não encriptada	<u>F</u>
27. No Kerberos pode haver uma relação de um KDC (Kerberos Distribution Center) para mais do que um realm	<u>F</u>
28. Para que um <i>principal</i> possa utilizar serviços de outro <i>realm</i> , necessita sempre de se autenticar nele	<u>F</u>
29. Um realm Kerberos possui sempre um SPOF (Single Point Of Failure)	<u>V</u>
30. Caso a segurança seja mais importante que o desempenho, um firewall Packet Filter é preferível ao Stateful	<u>F</u>
31. Uma DMZ pode ser definida como a zona de acesso exclusivamente externo da rede	<u>V</u>
32. A utilização de VLAN (<i>Virtual LAN</i>) impossibilita o <i>sniffing</i>	<u>F</u>
33. Um firewall Packet Filter permite bloquear ataques à disponibilidade	<u>F</u>
34. É responsabilidade do Administrador de Sistemas dificultar os ataques <i>IP Spoofing</i> criando regras que inibam a ch pacotes com endereços de origem iguais aos internos, mas para os pacotes que saem da rede não é importante	egada de <u>F</u>
35. O Man-In-The-Middle usurpando a identidade do servidor DNS só é possível se o atacante estiver na rede interna	<u>F</u>
36. Na configuração de uma VPN (Virtual Private Network) o MTU (Maximum Transmission Unit) da ligação física é indiferente	e <u>F</u>
37. Para garantir o uso do PMTUD (Path MTU Discovery) torna-se necessária a existência de regras adicionais na firewall	<u>F</u>
38. O modo tunnel do IPsec é mais vantajoso do que o modo transport se a desempenho é importante	<u>F</u>
39. Não é possível usar apenas o ESP (Encapsulating Security Payload) e garantir apenas a autenticidade e integridade	<u>V</u>

40. Uma ligação IPsec com AH (<i>Authentication Header</i>) e ESP (<i>Encapsulating Security Payload</i>) obriga à criação de quatro SA (<i>Security Association</i>)
41. Uma ligação IPsec com IKE (Internet Key Exchange) obriga à criação de duas SA (Security Association) <u>F</u>
42. O tempo de vida do TLS <i>Handshake Protocol</i> é sempre esgotado antes de novos mecanismos de cifra serem negociados <u>F</u>
43. O <i>overhead</i> de uma comunicação diminui se a diferença (informação total transmitida – informação útil) aumenta <u>F</u>
44. O LFI (<i>Link Fragmentation and Interleaving</i>) possibilita que os pacotes de maior prioridade não sejam afetados pelos pacotes de menor prioridade em ligações de baixo débito <u>V</u>
45. O TCP implementa um controlo de congestionamento baseado no RTO (<i>Retransmission Time Out</i>) e no RTT (<i>Rount-Trip Time</i>) <u>V</u>
46. No protocolo da janela deslizante, o tamanho da janela inicial é definido pelo recetor, mas depois é o emissor que o define <u>F</u>
47. O RED (<i>Random Early Detection</i>) só descarta pacotes de baixa prioridade <u>F</u>
48. A marcação dos bits de prioridade ocorre apenas e só no nó de origem, nunca no percurso
49. Em qualquer implementação de <i>Soft QoS</i> o número de filas de saída é sempre fixo
50. O Hard QoS é preferível ao Soft QoS se há um tipo de tráfego prioritário <u>V</u>

2ª Parte (40%) - Para cada questão responda apenas no espaço disponível. Respostas fora desse espaço serão ignoradas.

1. Indique e justifique três funções do administrador de sistemas (10%)

- Gerenciamento de recursos: o administrador de sistemas é responsável por garantir que os recursos do sistema, como CPU, memória, armazenamento e rede, estão a funcionar corretamente e estão disponíveis para os utilizadores.
- Segurança: o administrador de sistemas é responsável por garantir que os dados e informações armazenadas no sistema estão seguras e protegidas contra ameaças externas, como ataques cibernéticos.
- Suporte técnico: o administrador de sistemas é responsável por fornecer suporte técnico aos utilizadores do sistema, resolvendo problemas e garantindo que o sistema está a funcionar corretamente. Isso inclui solucionar problemas de hardware e software, instalar atualizações e corrigir bugs.

2. Explique a influência do RPO (*Recovery Point Objective*) e do RTO (*Recovery Time Objective*) no BCP (*BusinessContinuity Plan*) (10%)

O RPO (Recovery Point Objective) é o ponto de recuperação desejado para um sistema ou processo em caso de desastre. Determina a quantidade de dados ou informações que podem ser perdidos sem prejudicar significativamente o negócio. Por exemplo, se o RPO é de 24 horas, significa que BCP deve garantir a recuperação dos dados até 24 horas antes da falha.

Já o RTO (Recovery Time Objective) é o tempo máximo esperado para recuperar um sistema ou processo após uma falha. Determina quanto tempo o negócio pode ficar sem acesso a um determinado sistema ou processo antes que isso cause danos significativos. Por exemplo, se o RTO é de 8 horas, significa que o BCP deve garantir que o sistema ou processo esteja a funcionar novamente em até 8 horas após a falha.

Ambos, RPO e RTO, são importantes para o BCP (Business Continuity Plan), pois ajudam a identificar os requisitos de recuperação e a estabelecer metas realistas para a recuperação dos sistemas e processos críticos em caso de desastre. Ao definir RPO e RTO, é possível estabelecer uma estratégia de recuperação de desastres e implementar medidas para garantir a continuidade dos negócios.

3. Explique a diferença entre o DRP (Disaster Recovery Plan) e o Plano de Contingência (10%)

O Disaster Recovery Plan (DRP) é um plano de recuperação de desastres que descreve as ações a serem tomadas para recuperar rapidamente os sistemas e dados críticos de uma empresa após um desastre. Geralmente inclui procedimentos detalhados para a recuperação de hardware, software, dados e comunicações.

Já o Plano de Contingência é um plano geral que descreve as ações a serem tomadas em caso de emergência. Pode incluir medidas para lidar com desastres naturais, falhas de sistemas, interrupções de negócios e outros eventos inesperados. Geralmente inclui procedimentos de comunicação, designação de responsabilidades e outras medidas para garantir a continuidade dos negócios.

Em resumo, o DRP é uma parte específica do Plano de Contingência, onde é descrito como recuperar os sistemas e dados críticos de uma empresa após um desastre, enquanto o Plano de Contingência é um plano geral que abrange todos os aspectos de contingência de uma empresa.

4. Explique as diferenças entre o *Custom Queuing* e o *Fair Queuing*, indicando para cada um deles uma situação práticaem que seja aconselhada a utilização dessa técnica (10%)

Custom Queuing e Fair Queuing são técnicas de gerenciamento de fluxo de rede que visam garantir uma distribuição justa e eficiente dos recursos de rede.

Custom Queuing (CQ) é uma técnica que permite aos administradores de rede criar regras específicas para classificar e priorizar pacotes de acordo com critérios pré-definidos. Isso permite que os administradores de rede possam garantir que certos tipos de tráfego, como voz e vídeo, tenham prioridade sobre outros tipos de tráfego, como dados. Uma situação em que a utilização do CQ seria aconselhada seria em uma rede corporativa onde é importante garantir que aplicativos críticos, como sistemas de telefonia, tenham prioridade sobre outros tipos de tráfego de rede.

Fair Queuing (FQ) é uma técnica que divide o tráfego em fluxos e garante que cada fluxo receba um número igual de pacotes em um determinado período de tempo. Isso garante que nenhum fluxo receba mais recursos do que outro e evita a sobrecarga de certos fluxos. Uma situação em que a utilização do FQ seria aconselhada seria em uma rede de provedor de serviços onde é importante garantir que todos os clientes tenham acesso igualitário aos recursos de rede.