Recurso educativo

Editor: Antonio Merino

Email: antonio23merino@hotmail.com

Variables aleatorias continuas

Probabilidad y estadística

Nota: Lo siguiente, es un extracto del libro de probabilidad y estadística del Dr. Menthor Urvina Intuitivamente podemos definir una variable aleatoria continua X sobre un espacio probabilístico Ω como función

$$X: \Omega \to R$$
 tal que:
 $P(\omega/X(\omega) = x) = 0, -\infty < x < \infty$
 $P(X = x) = 0$

Definición. Una variable aleatoria continua X sobre un espacio probabilístico Ω , es una función de valores reales tal que $\forall x \in \mathbb{R}, \{\omega/X(\omega) = x\}$ es vacío.

Definición. La función de distribución F de una variable aleatoria continua X es la función definida por:

$$F(x) = P(X \le x)$$

Proposición. Si *X* es una variable aleatoria continua, con *F* su función de distribución, se tiene:

$$F(-\infty) = 0;$$
 $F(\infty) = 1;$ $0 \le F(x) \le 1$

F es contínua y no decreciente.

Definición. Un función de densidad es una función no negativa, tal que:

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Nota. si *f* es una función de densidad, entonces *F* definidad por

$$F(x) = \int_{-\infty}^{x} f(y) \, dy$$

Se llama la función de distribución.

Si X es una variable aleatoria continua que tiene a F como función de distribución, entonces:

$$P(a \le x \le b) = F(b) - F(a)$$

En general: $P(X \in A) = \int_A f(x) dx$

Así, $P(X \in A)$ puede ser interpretado como el área bajo la curva de f cuando x toma valores en A

Observación. En muchas aplicaciones el camino más fácil para hallar densidades de variables aleatorias es:

Si se conoce la función de distribución

$$F(x) = P(X \le x) = F(x) = \int_{-\infty}^{x} f(y) \, dy$$

por el teorema fundamental del Cálculo se tiene: f(x) = F'(x)

lo cual se cumple $\forall x$ donde f es continua

Ejemplo. La función de densidad de una variable aleatoria Z tiene la forma

$$f(z) = \begin{cases} 0, & z < 1 \\ z - 1, & 1 \le z \le 2 \\ 3 - z, & 2 \le z \le 3 \\ 0, & z > 3 \end{cases}$$

(i) Hallar
$$P(Z \le \frac{3}{2})$$
; $P(\frac{3}{2} \le Z \le \frac{5}{2})$; $P(Z > \frac{5}{2})$

(ii) Hallar la función de distribución de Z

$$P(Z \le 3/2) = \int_{-\infty}^{3/2} f(z) dz = \int_{-\infty}^{3/2} (z - 1) dz = 1/8$$

$$P(3/2 \le Z \le 5/2) = \int_{3/2}^{2} (z-1) dz + \int_{2}^{5/2} (3-z) dz = 3/4$$

$$P(Z > 5/2) = \int_{5/2}^{3} (3-z) dz = 1/8$$

$$F(z) = \int_{-\infty}^{z} f(y) \, dy$$

si
$$z < 1$$
: $F(z) = \int_{-\infty}^{z} f(y) dy = 0$

$$1 \le z < 2: \quad F(z) = \int_{-\infty}^{z} f(y) \, dy = \int_{1}^{z} f(y) \, dy = \int_{1}^{z} (y - 1) \, dy = \frac{z^{2}}{2} - z + \frac{1}{2}$$

$$2 \le z < 3$$
: $F(z) = \int_{-\infty}^{z} f(y) dy = \int_{1}^{2} f(y) dy + \int_{2}^{z} (y - 1) dy$

$$= \int_{1}^{2} (y-1) \, dy + \int_{2}^{z} (3-y) \, dy = 3z - \frac{z^{2}}{2} - \frac{7}{2}$$

Definición. Sea X una variable aleatoria con función de densidad f, se define la meadia o valor esperado de X, que se denota por μ_X o E[X], como

$$\mu_{x} = \int_{-\infty}^{\infty} x f(x) \, dx$$

La viarianza de una variable aleatoria continua X, que se denota por σ_x^2 o Var[X], se define por:

$$\sigma_x^2 = E[(X - \mu_x)^2] = \int_{-\infty}^{\infty} (x - \mu_x)^2 f(x) dx$$

$$\sigma_x^2 = E[(X)^2] - \left(E[X]\right)^2$$

Observación. Si C es una constante, Y = X + C

entonces:
$$\sigma_Y^2 = \sigma_X^2$$
; si $Y = CX \Rightarrow \sigma_Y^2 = C^2 \sigma_X^2$

Ejemplo. Para
$$f(x) = \begin{cases} 0, & x < 0 \\ 2e^{-2x}, & x > 0 \end{cases}$$

hallar la media y la varianza

$$\mu = \int x f(x) dx = \int_0^\infty x.2e^{-2x} dx = \frac{1}{2}; \quad \sigma^2 = \int_0^\infty \left(x - \frac{1}{2}\right)^2 f(x) dx = \frac{1}{4}$$