		0.70
	You are given a dataset for which you have to fit a complex regression model. Suppose you are using Ridge Regression with a penalty p. Which	2/2
	of the following options describe bias in the best way? *	
•	In case of very large p; bias is high	✓
0	We can't say about bias	
0	In case of very large p, bias is low	
0	None of these	
/	You are working on multi-class classification problem. There are 4 classe and you want to train a SVM model on the data using the "One-vs-All"	es2/2
	method". How many times do we need to train our SVM model in such a case? *	
0	2	
0	3	
•	4	✓
0	1	
/	Which of the following statements is FALSE about Ridge and Lasso Regression? *	2/2
	These are types of regularization methods to solve the overfitting problem.	
	Lasso Regression is a type of regularization method.	
	Ridge Regression shrinks the coefficient to a lower value.	
<u>~</u>	Ridge Regression lowers some coefficients to a zero value.	✓
/	Evaluation metrics are key to evaluate the performance of the model. Hence, it is very important to choose the correct metric. Keeping this in	1/1
	mind, which of the following evaluation metrics cannot be applied in cas of logistic regression output to compare with the target variables? *	е
	AUC-ROC	
	Accuracy	
\Box		
	Log-Loss	

H

✓	Which of the following algorithms do we use for Variable Selection? *	1/1
•	LASSO	✓
0	Ridge	
0	Both	
0	None of these	
~	Suppose you got a job at YouTube HQ. Your job is to build a classifier so that videos are safe for kids. Your aim should be *	2/2
0	High Recall	
•	High Precision	✓
0	High Accuracy	
0	None of the above	
0	Increase Gamma and Decrease C Decrease Gamma and Increase C	
•	Increase Gamma and Increase C	✓
0	Decrease Gamma and Decrease C	
×	Feature Normalization is a scaling technique in which values are shifted and rescaled so that they end up ranging between 0 and 1. We usually use it before using a Gaussian Kernel in a SVM model. What is true about feature normalization? *	0/3 t
×	and rescaled so that they end up ranging between 0 and 1. We usually use it before using a Gaussian Kernel in a SVM model. What is true about	
×	and rescaled so that they end up ranging between 0 and 1. We usually use it before using a Gaussian Kernel in a SVM model. What is true about feature normalization? *	
×	and rescaled so that they end up ranging between 0 and 1. We usually use it before using a Gaussian Kernel in a SVM model. What is true about feature normalization? * We do feature normalization so that the new features will dominate the other Sometimes, it is not feasible to use feature normalization such as in the case of	
×	and rescaled so that they end up ranging between 0 and 1. We usually use it before using a Gaussian Kernel in a SVM model. What is true about feature normalization? * We do feature normalization so that the new features will dominate the other Sometimes, it is not feasible to use feature normalization such as in the case of categorical variables.	t

H

×	What is the accuracy obtained after training the SVM model (C=1)? (accuracy*100) *	0/1
	(4554.45)	
0	79.36	
0	80.98	
•	80.33	×
0	78.11	
Corr	ect answer	
•	80.98	
✓	What is the accuracy obtained after training the SVM model (C=50)? (accuracy*100) *	1/1
0	80.45	
0	79.13	
•	78.34	✓
0	77.65	
~	What is the ROC Score obtained after training the SVM model (C=1 & C=50)? [Use .predict()] *	1/1
0	77.25, 79.23	
0	77.30, 79.68	
•	80.72, 78.11	✓
0	80. 23, 77.22	
~	What is the F1 Score (for class 0 and class 1 resp.) obtained after training the SVM model (C=1)? *	ig 1/1
0	0.80, 0.82	
0	0.79, 0.82	
0	0.81, 0.80	
•	0.83, 0.79	✓

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms