Week 2

Agenda

- 1. Async Review: KNN
- 2. Case study: house price prediction
- 3. Parameters & Hyperparameters
- 4. Terminology and data sets
- 5. Breakout: Project 1
- 6. If time notebooks

Warm up

- 1. Performance on test data is always worse than performance on training data, true or false?
- 2. Performance on test data is always more meaningful than performance on training data, true or false?
- 3. Ideally you should use your test data
 - exactly once.
 - only for error analysis.
 - for repeat experiments.
- 4. Simple decision boundaries are more likely to generalize to new data, true or false?
- 5. Find L1 distance for x1 = [1,2,2], x2 = [4,4,2]
- 6. MNIST: number of possible inputs is:

```
28 x 28
28 x 28 x 10
256<sup>(28x28)</sup>
```

KNN

KNN Review

Test set size = 10,000 digits		
k = 1; Euclidean (L2) distance		
Training	Error %	Time (secs
100	30.0	0.3
1,000	12.1	2.3
10,000	5-3	28.
60,000	2.7	220
Deskewing	2.3	
Blurring	1.8	
Pixel shifting	1.2	

- 1. Describe the NN Algorithm?
- What changes with K-NN?
- 3. How much memory is used to store the trained model?
- 4. How computationally fast are predictions?
- 5. In general, what is the difference between regression and classification problems?
- 6. What is edited KNN?

Natural Domains for KNN

Comparables

From Wikipedia, the free encyclopedia

Comparables (or comps) is a real estate appraisal term referring to properties with characteristics that are similar to a subject property whose value is being sought. This can be accomplished either by a real estate agent who attempts to establish the value of a potential client's home or property through market analysis or, by a licensed or certified appraiser or surveyor using more defined methods, when performing a real estate appraisal.

- 1. When have you seen people naturally use NN-like algorithms?
- 2. From a data perspective, when do you think you might want to use NN?

House prices case study: what goes into that?

Parameters and Hyperparameters

Parameters

$$price = \alpha + \beta(bedrooms) + \gamma(bathrooms)$$

- 1. What are the parameters in this model?
- 2. What is the role of data in parametric modeling?
- 3. What might make one set of parameter values better than another?

Hyperparameters

Price = KNN(house, trainingData, similarity, K)

- 1. What are the parameters in this model?
- 2. What are hyperparameters?
- 3. What happens when K == size of training Data?
- 4. Is there a Hyperparameter in the last example?

Similarity Measures

Similarity/Distance Measures

Distance Metrics

$$L^{n}(x_{1}, x_{2}) = \sqrt[n]{\sum_{i=1}^{\# \text{dim}} |x_{l,i} - x_{2,i}|^{n}}$$

- · For numeric features:
 - o Manhattan distance
 - · Euclidean distance
 - $\circ L^n$ -norm

$$\frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^{n} A_i \times B_i}{\sqrt{\sum\limits_{i=1}^{n} \left(A_i\right)^2} \times \sqrt{\sum\limits_{i=1}^{n} \left(B_i\right)^2}}$$

- · For cosine similarity:
 - o Only the angle between the vectors matters.

```
Edit Distance: Example

TGCATAT → ATCCGAT in 5 steps

TGCATAT → (delete last T)

TGCATA → (delete last A)

TGCAT → (insert A at front)

ATGCAT → (substitute C for 3<sup>rd</sup> G)

ATCCAT → (insert G before last A)

ATCCGAT (Done)

What is the edit distance? 5?
```

- What are some similarity measures you know?
- 2. What makes for a 'good' similarity measure?

Measures and Metrics

- 1. $d(x, y) \ge 0$ (non-negativity, or separation axiom)
- 2. d(x, y) = 0 if and only if x = y (coincidence axiom)
- 3. d(x, y) = d(y, x) (symmetry)
- 4. $d(x, z) \le d(x, y) + d(y, z)$ (subadditivity / triangle inequality).

- 1. What is a 'metric'? Semi-metric?
- 2. What is an example of a metric?

Machine Learning Workflows/Terminology

Design Matrix

Building Datasets

Digit Classification

- · MNIST digit data set
 - · Widely used test data for classification systems.
 - o Contains 70,000 labeled digits.
 - o 60,000 for training
 - o 10,000 for testing
 - · Half are from Census Bureau workers.
 - · Half are from high school students.
 - Data should be randomized to include samples from the workers and students.
 - Data were scaled and centered.

- 1. What makes MNIST a good/bad benchmark dataset? Could you use it to "learn" what a cat looks like?
- 2. How would you create a benchmark dataset for home price prediction?

Workflow

- 1. What is the role of a dev dataset?
- 2. What is the role of error analysis?

Cross-Validation

- Split a single set of data into training and test sets in many different ways.
- Important when there are a small amount of data.
- We want to use as much data as possible for training and as much data as possible for testing.
- Jack-knife: Split data into training and test data.
- · Leave-one-out: Use all of the data for training except for one.
 - Repeated until each data point has been left out
- Randomized splits: jack-knife split with random partitions.

- 1. When might you consider using cross-validation?
- 2. How do you deploy a model Developed using CV?

Notebook from git and Scikit learn

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html