Covariant Formulation of 2D Chiral Scalars

Calvin YR Chen LeCosPA 18th Apr 2025 NTU String Theory Seminar

Covariant Formulation of 2D Chiral Scalars

based on 2501.16463 in collaboration with E. Joung, K. Mkrtchyan, and J. Yoon

Warm-Up: Maxwell Theory

Electromagnetic Duality

Consider the theory for gauge field $A \in \Omega^1(M)$ on a 4-manifold (M,g), described by the **Maxwell action**

$$S_{\text{Maxwell}} = \int_{M} -\frac{1}{2}F \wedge \star F, \quad F = dA$$

The field strength obeys:

Bianchi Identity

Equation of Motion

$$d^2 = 0 \longrightarrow dF = 0$$

$$\delta S = 0 \longrightarrow d \star F = 0$$

• Electromagnetic Duality refers to invariance of equations under

$$F \mapsto \star F, \quad \star F \mapsto -F$$

• Here: Enhancement to invariance of equations under (S)O(2) rotations

$$\begin{pmatrix} F \\ \star F \end{pmatrix} \mapsto \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} \begin{pmatrix} F \\ \star F \end{pmatrix}$$

Off-Shell Duality Invariance

Switch to vector notation

$$E_i = F_{0i}, \quad B^i = \frac{1}{2} \epsilon^{ijk} F_{jk}$$

Action takes the form

$$S_{\text{Maxwell}} = \frac{1}{2} \int d^4 x \left(|\mathbf{E}|^2 - |\mathbf{B}|^2 \right)$$

Duality rotation is now

$$\begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} \mapsto \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix}$$

→ Action only invariant under **hyperbolic** rotations?

Is EM duality only a "symmetry" of the equations of motion?

Key insight: "Formal transformation [...] only meaningful [...] if it can be implemented at the level of the basic field variable [...]."

Off-Shell Duality Invariance

In first-order form:

$$S_{\text{Maxwell}} = \frac{1}{2} \int d^4x \left(\left| \dot{\mathbf{A}}^T \right|^2 - \left| \mathbf{\nabla} \times \mathbf{A}^T \right|^2 + \left| \dot{\mathbf{A}}^L - \mathbf{\nabla} A_0 \right|^2 \right)$$

 \rightarrow Third term is constraint, and e.o.m. is $\ddot{\mathbf{A}}^T = \nabla^2 \mathbf{A}^T$.

Now consider following transformation

$$\delta \mathbf{A}^T = -\beta \nabla^{-2} \mathbf{\nabla} \times \dot{\mathbf{A}}^T$$

This generates

$$\delta \mathbf{E} = \delta \dot{\mathbf{A}}^T = -\beta \nabla^{-2} \mathbf{\nabla} \times \ddot{\mathbf{A}}^T, \quad \delta \mathbf{B} = \mathbf{\nabla} \times \delta \mathbf{A}^T = \beta \mathbf{E}$$

- → Duality rotation on-shell.
- Changes action by total time derivative, and generated by (time-local) conserved charge.
- → Duality invariance is off-shell **symmetry**, <u>BUT</u> have to break **manifest covariance** to see this.

Twisted Self-Duality

Can make duality manifest using doubled field content.

• Introduce extra index $a \in \{1, 2\}$ on gauge fields A^a . Then

$$F^a = dA^a \longrightarrow dF^a = 0$$

- \rightarrow By construction, **invariant** under SO(2) rotations in "extra directions".
- Would like to identify

$$F^1 = \star F, \quad F^2 = F$$

such that **EM duality** is equivalent to condition:

$$\star F^2 = F^1$$

→ This is twisted self-duality relation: Implies original equations of motion.

Manifest Duality

Duality invariance made manifest by following local action

$$S_{\text{Schwarz-Sen}} = -\frac{1}{2} \int \mathrm{d}^4 x \left(\delta_{ab} \mathbf{B}^a \cdot \mathbf{B}^b - \varepsilon_{ab} \mathbf{E}^a \cdot \mathbf{B}^b \right) \qquad \text{[Henneaux \& Teitelboim '11]}$$

• Equation of motion for ${f A}^2$ sets ${f B}^2={f E}^1$ (up to gauge transformations). Plugging back into action, recover

$$S_{\text{Schwarz-Sen}} = -\frac{1}{2} \int d^4x \left(\mathbf{B}^1 \cdot \mathbf{B}^1 - \mathbf{E}^1 \cdot \mathbf{E}^1 \right)$$

- → **Maxwell** action.
- Manifestly gauge invariant.
- Not manifestly covariant, but it is: Manifest invariance under spatial rotations but not boosts – latter changes action, but by boundary term.

(Twisted) Self-Duality

Linearised Gravity

For example, consider linearised gravity in D dimensions.

In vacuum, linearised Riemann tensor satisfies

Bianchi Identity

Equation of Motion

$$R_{\mu[\nu\rho\sigma]} = R_{\mu\nu[\rho\sigma,\lambda]} = 0$$

$$R_{\mu\nu} = 0$$

Same relations satisfied by linearised dual Riemann tensor

$$\tilde{R}_{\mu\nu\rho\sigma} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} R^{\alpha\beta}{}_{\rho\sigma}$$

• Gravitational Duality: $R \mapsto R$ (enhanced to full rotations in D=4) off-shell symmetry of theory – can phrase as twisted self-duality.

[Henneaux & Teitelboim '05; Bünster, Henneaux, and Hörtner '13]

- → Make manifest at expense of covariance.
- Similar holds for (partially) massless higher-spin fields.
- Non-linearities: Exchanges Schwarzschild mass with Taub-NUT parameter.

Form Fields

Most straightforward **generalisation** to Maxwell theory.

[Henneaux '85]

Theory of p-form gauge field $A \in \Omega^p(M)$ on manifold (M,g) with $\dim(M)=d$, described by action

$$S = \int_{M} -\frac{1}{2}F \wedge \star F, \quad F = dA$$

- Numerous examples in string theory/supergravity: p=2 in Kalb-Ramond sector, and p=1,3 and p=0,2,4 in type-IIA and -IIB respectively.
- Electromagnetic Duality: $F \mapsto \star F$ (enhanced to full rotations in d = 2p + 2) off-shell symmetry can phrase as twisted self-duality relation.
 - → Make manifest at expense of covariance.

(Anti-) Self-Duality

Can also have (anti-) self-duality relations!

Again, consider p-form $A \in \Omega^p(M)$ satisfying

$$dA = \sigma \star dA, \quad \sigma = \pm 1$$

- For consistency (in Lorentzian signature), need $d=2(p+1), p\in 2\mathbb{N}_{>0}$.
- Use null coordinates two-dimensional (Lorentzian) submanifold

$$dA = \partial_{-}A dx^{-} + \partial_{+}A dx^{+}$$

Then $\star dx^{\pm} = \pm dx^{\pm}$, so (anti-) self-duality amounts to

$$\partial_+ A = 0$$

- → Chirality condition: Halves degrees of freedom!
- Notorious example: Self-dual 4-form in **type-IIB** supergravity.

(Twisted) Self-Duality

Twisted self-duality most general one-derivative eq. for bosonic fields.

- For particular (D,p) find (anti-) self-duality/EM duality: **Dimensional reduction** of chiral fields in D=4k+2 to D=4k gives EM duality.
- **Democratic actions**: Twisted self-duality as e.o.m. (from latter).
- Expect two-derivative eq. → difficult to find covariant actions!
 - For gauge fields: Actions with manifest EM duality.
 - For chiral fields: Describing right degrees of freedom. E.g. naïve action

$$S = \int_{M} F \wedge \star F + \lambda \wedge (F - \sigma \star F)$$

Democratic Actions

Americans for Democratic Action

Democratic Formulations

Fields obeying (twisted) self-duality relations clearly ubiquitous. For quantisation, convenient to have actions.

Correct degrees of freedom, nothing manifest.

[Siegel '84; Tseytlin '90; Floreanini & Jackiw '87]

Duality invariance, no covariance.

[Schwarz & Sen '94; Henneaux & Teitelboim '11]

Manifest duality and covariance.

[Pasti, Sorokin, and Tonin '97; Sen '15; Mkrtchyan '19]

<u>Unifying picture</u>: Descent from **topological field theory** in <u>one</u> higher dimension.

[Arvanitakis, Cole, Hulik, Sevrin, and Thompson '22]

- Description of EM, p-forms and other gauge theories from CS/BF theory.
- → Straightforward generalisation to **interactions**.

Example: Maxwell Theory

Consider $H_1, H_2 \in \Omega^2(M)$ with $\dim(M) = 5$ described by BF-type action

$$S = \int_{M} -H_2 \wedge dH_1 + dH_2 \wedge H_1 - \frac{1}{2} \int_{\partial M} H_a \wedge \star H_a$$

Bulk equations of motion:

$$dH_a = 0$$

- → Pure gauge (non-dynamical) in bulk.
- Boundary equation of motion:

$$H_1 = \star H_2$$

→ Twisted self-duality!

Idea: Covariant reduction to the boundary should lead to covariant action of boundary degrees of freedom!

Topological Reduction

Trick: Decompose

$$H_a = H_a^{\perp} + v \wedge H_a^{\parallel}$$

for closed, constant, and nowhere-null $v \in \Omega^1(M)$ — defines **foliation**.

• H_a^{\parallel} acts as Lagrange multiplier for **constraint**

$$v \wedge dH_a^{\perp} = 0$$

→ General solution

$$H_a^{\perp} = dA_a + v \wedge S_a \longrightarrow H_a = dA_a + v \wedge R_a$$

Plug back into action: Obtain democratic action in Mkrtchyan form

$$S = \int_{\partial M} \left[-\frac{1}{2} \delta^{ab} H_a \wedge \star H_b - \varepsilon^{ab} v \wedge R_a \wedge dA_b \right]$$

[Mkrtchyan '19]

2D chiral fields can be described as boundary degrees of freedom of 3D gravity

Goal: Do this!

3D (Higher-Spin) Gravity

Focus on the gravitational sector for now

Frame-Like Formulation

For gravity in first-order form, fundamental fields: vielbein $\{e^a\}$ and connection $\{\omega^a{}_b\}$.

 \rightarrow In D=3, useful to dualise

$$\omega^a = \frac{1}{2} \epsilon^a{}_{bc} \omega^{bc}$$

• Einstein-Hilbert action with $\Lambda = -1/\ell^2 < 0$

$$S_{\rm EH} = \frac{1}{8\pi G} \int_M e^a \wedge \left[d\omega^a + \frac{1}{2} \epsilon^a{}_{bc} \left(\omega^b \wedge \omega^c + \frac{1}{3\ell^2} e^b \wedge e^c \right) \right]$$

• Equations of motion are vanishing of torsion and curvature respectively:

$$\mathcal{T}^{a} := de^{a} + \omega^{a}{}_{b} \wedge e^{b} = 0,$$

$$\mathcal{R}^{a}{}_{b} := d\omega^{a} + \epsilon^{a}{}_{bc} \left(\omega^{b} \wedge \omega^{c} + e^{b} \wedge e^{c}\right) = 0$$

> Reproduce **Einstein's equation** with

$$g_{\mu\nu} = e^a_\mu e^b_\nu \eta_{ab}$$

Chern-Simons Formulation

Can write in **Chern-Simons formulation**.

• Define $\mathfrak{sl}(2,\mathbb{R})$ -valued gauge fields

$$A^a = \omega^a + \frac{e^a}{\ell}, \quad \tilde{A}^a = \omega^a - \frac{e^a}{\ell}$$

→ Useful basis of generators is

$$[L_m, L_n] = (m-n)L_{m+n} \longrightarrow A = \sum_{n=-1}^{+1} A^{(n)}L_n$$

Identifying $k=\ell/4G$,

$$S_{\text{EH}} = S_{\text{CS}}[A] - S_{\text{CS}}[\tilde{A}], \quad S_{\text{CS}}[A] = \frac{k}{4\pi} \int_{M} \text{Tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$$

- Einstein's equation equivalent to flatness condition on both field strengths.
- \rightarrow (Classical) equivalence of AdS_3 gravity with $\mathfrak{so}(2,2) \sim \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R})$ CS theory.

Aymptotically AdS Fluctuations

Put on **curved background**: Flat background gauge field \underline{A} , *i.e.* for which

$$d\underline{A} + \underline{A} \wedge \underline{A} = 0$$

Action for fluctuations: "Minimal coupling"

$$S[a] = \frac{k}{4\pi} \int_{M} \text{Tr}\left(a \wedge Da + \frac{2}{3}a \wedge a \wedge a\right), \quad D \cdot = d \cdot + [\underline{A}, \cdot]$$

Most general asymptotically AdS_3 solution

$$ds^2 = \frac{\ell^2}{z^2} \left[\left(dx^+ + z^2 \tilde{\mathcal{L}}(x^-) dx^- \right) \left(dx^- + z^2 \mathcal{L}(x^+) dx^+ \right) + dz^2 \right]$$

[Bañados '99]

Explicitly for chiral part:

$$\underline{A}^z = \frac{\mathrm{d}z}{z}, \quad \underline{A}^+ = 2\frac{\mathrm{d}x^+}{z}, \quad \underline{A}^- = 2z\mathcal{L}(x^+)\,\mathrm{d}x^+$$

Incorporate higher-spins now!

Higher-Spin Fields

Why higher-spins?

- Fields characterised by mass + spin: Higher-spin fields natural (in the free case).
- Natural context: String theory and AdS/CFT (e.g. W_N -minimal model holography)
- Presence of s>2 typically implies existence of spin-2: Higher-spin gravity.
- For interactions: Various no-go "theorems"!
 - E.g. in $D \ge 4$ need infinitely many higher spins, e.g. Vasiliev HS gravity (dual to vector model)
- \rightarrow <u>Caveat</u>: In D=3, **little group** does not admit arbitrary helicity massless rep. (no dynamical HS bulk degrees of freedom), but good toy model.

Fronsdal Field

Massless spin-s on curved space described by symmetric rank-s tensor field obeying

$$\left(\Box - m_s^2\right)\phi_{\mu[s]} + \dots = 0$$

 $\rightarrow \alpha[n] = \alpha_1 \dots \alpha_n$

Invariance under gauge transformation

$$\delta \phi_{\mu[s]} = s \nabla_{(\mu_s} \epsilon_{\mu[s-1])}, \quad \epsilon_{\mu[s-3]}^{\lambda}{}_{\lambda} = 0$$

Higher-spin analogues of vielbein and spin connection $\{e^{a_1...a_{s-1}}, \omega^{a_1...a_{s-1}}\}$.

Fronsdal action around spin-2 background, schematically

$$S_{\text{Fronsdal}} \sim \int_{M} \left\{ e \wedge \left[d\omega + \underline{\omega} \wedge \omega \right] + \underline{e} \wedge \left[\omega \wedge \omega + e \wedge e \right] \right\}$$

- E.o.m.: Vanishing of higher-spin torsion and curvature \rightarrow Fronsdal equation.
- Identification with Fronsdal field via

$$\varphi_{\mu[s]} = \underline{e}^{a_1}_{(\mu_1} \cdots \underline{e}^{a_{s-1}}_{(\mu_{s-1}} e_{\mu_s)a[s-1]}$$

Chern-Simons Formulation

For CS formulations, define $\mathfrak{sl}(N,\mathbb{R})$ -valued gauge fields

$$a^{a_1 \dots a_{s-1}} = \omega^{a_1 \dots a_{s-1}} + \frac{1}{\ell} e^{a_1 \dots a_{s-1}}, \quad \tilde{a}^{a_1 \dots a_{s-1}} = \omega^{a_1 \dots a_{s-1}} - \frac{1}{\ell} e^{a_1 \dots a_{s-1}}$$

Useful basis of generators

$$[L_m, W_n^s] \sim W_{m+n}^s, \quad \text{Tr}\left(W_m^s W_n^{s'}\right) \sim \delta_{m,-n} \delta_{s,s'} \longrightarrow a = \sum_{n=-(s-1)}^{s-1} a^{(s,n)} W_n^{(s)}$$

Fronsdal action now

$$S_{\text{Fronsdal}}[e, \omega] = S_{\text{CS}}^{(2)}[a] - S_{\text{CS}}^{(2)}[\tilde{a}]$$
$$S_{\text{CS}}^{(2)}[a] = \frac{k}{4\pi} \int_{M} \text{Tr}(a \wedge Da), \quad Da = da + \underline{A} \wedge a + a \wedge \underline{A}$$

Description of massless spin-s around on-shell gravitational background.

 \rightarrow E.g. includes linearised gravity for spin-2!

Covariant Reduction to Boundary

Boundary Theory

Focus on the **linearised** theory.

For full reduction, careful about boundary terms.

• For any $\mathfrak{sl}(N,\mathbb{R})$

$$S[a, \tilde{a}] = S_L[a] - S_R[\tilde{a}]$$

with opposite sign

$$S_{L}[a] = \frac{k}{4\pi} \left[\int_{M} \text{Tr} (a \wedge Da) - \frac{1}{2} \int_{\partial M} \text{Tr} (a \wedge \star a) \right]$$

$$S_{R}[\tilde{a}] = \frac{k}{4\pi} \left[\int_{M} \text{Tr} (\tilde{a} \wedge D\tilde{a}) + \frac{1}{2} \int_{\partial M} \text{Tr} (\tilde{a} \wedge \star \tilde{a}) \right]$$

Correct boundary equation/condition: Chirality condition

$$(a - \star a) \big|_{\partial M} = 0$$

Topological Reduction of Linearised Theory

Follow topological boundary reduction procedure from before.

Trick: Decompose

$$a = b + v \psi$$

• Field ψ acts as Lagrange multiplier enforcing constraint

$$v \wedge Db = 0 \longrightarrow a = D\varphi + v\rho$$

Plug back into action:

$$S_L = -\frac{k}{4\pi} \int_{\partial M} \text{Tr} \left[-\frac{1}{2} \left(D\varphi + v\rho \right) \wedge \star \left(D\varphi + v\rho \right) - D\phi \wedge v\rho \right]$$

→ Covariant action!

Is this the correct action?

Dynamical Content

Connect it to non-covariant formulations.

• Integrate auxiliary field ρ out:

$$S_L = -\frac{k}{4\pi} \int d^2x \frac{1}{v_-} \text{Tr} \left(\varepsilon^{\alpha\beta} v_\alpha D_\beta \varphi D_- \varphi \right)$$

- → PST-type action (covariant + duality symmetric, but non-polynomial)!
- Gauge fixing $v = dx^0$

$$S_L = -\frac{k}{2\pi} \int d^2x \operatorname{Tr} \left(D_1 \varphi D_- \varphi \right)$$

→ FJ-type action: Up to gauge freedom, equation of motion reduces to:

$$D_{-}\varphi = 0$$

as expected.

→ <u>BUT</u> for right degrees of freedom, need to impose asymptotic boundary conditions.

Boundary Conditions

Fluctuations should be subdominant to background.

• Gauge-fixing $v=\mathrm{d}x^0$, asymptotic AdS conditions:

$$a_1^{(s,n)} = \mathcal{O}(z^{1-n}), \text{ for } n > -(s-1)$$

- Spin-1 reduction: Floreanini-Jackiw
- Spin-2 reduction: (non-chiral) WZW/Liouville or Alekseev-Shatashvili.

[Coussaert, Henneaux, van Driel '95] [Cotler & Jensen '18]

• Asymptotic symmetry algebra: Drinfeld-Sokolov reduction of affine- $\mathfrak{sl}(2,\mathbb{R})$ to Virasoro (matching central charge!).

[Brown & Henneaux '86]

- Higher-spin reduction: Toda or higher-spin generalisation of AS.
 - Asymptotic symmetry \mathcal{W}_N -algebra!

Higher-Order Chiral Scalar

Higher-spin AAdS conditions trivialised by

$$a^{(s,n)} = z^{-n} \mathrm{D}\phi^{(s,n)}, \quad \mathrm{D}_1 \phi^{(s,n)}(0,x) = 0, \quad \text{for} \quad n > -(s-1)$$

- → Only need half of these.
- Gives recurrence relation

$$\phi^{(s,n)} = -\frac{\partial_1 \phi^{(s,n+1)} + (s+n+1)\mathcal{L}\phi^{(s,n+2)}}{s-n-1}$$

- \rightarrow Solve everything in terms of $\phi^{(s,s-1)}$!
- Plug back into FJ-type action: HS generalisation of FJ/AS describing higher-order scalar

$$S_L \sim \int_{\partial M} d^2x \, D_1 \phi^{(s,1-s)} \partial_- \phi^{(s,s-1)} \sim \int_{\partial M} d^2x \, \mathcal{D}_{\mathcal{L}}^{(2s-1)} \phi^{(s,s-1)} \partial_- \phi^{(s,s-1)}$$

Higher-Order Chiral Scalar

What is this operator $\mathcal{D}_{\mathcal{L}}^{(2s-1)}$?

• **Differential operator** of maximal order 2s-1, defined by recurrence relation: *E.g.* for spin-2 and -3

$$\mathcal{D}_{\mathcal{L}}^{(3)} = \partial_1^3 - 2(\partial_1 \mathcal{L} + \mathcal{L} \, \partial_1),$$

$$\mathcal{D}_{\mathcal{L}}^{(5)} = \partial_1^5 - 2(2 \, \partial_1^3 \mathcal{L} + 3 \, \partial_1^2 \mathcal{L} \, \partial_1 + 3 \, \partial_1 \mathcal{L} \, \partial_1^2 + 2 \mathcal{L} \, \partial_1^3) + 8(3 \, \partial_1 \mathcal{L}^2 + 2 \mathcal{L} \, \partial_1 \mathcal{L} + 3 \mathcal{L}^2 \, \partial_1)$$

• For constant \mathcal{L} : Operator **factorises**

$$\mathcal{D}_{\mathcal{L}}^{(2s-1)} = \partial_1 \prod_{n=1}^{s-1} \left(\partial_1^2 - 4\mathcal{L}n^2 \right)$$

 \rightarrow Coincides with Bol operators: Invariant under projective action of $SL(2,\mathbb{R})$.

[Bol '49; Gieres & Theisen '94]

• Physical degrees of freedom are chiral scalar: Tachyonic (massive) scalars in $(A)dS_2$ with definite-sign momentum (energy).

For non-linear reduction for spin-2 and -3 cf. our paper ©

Conclusion

Concluding Remarks

Various fields obey twisted self-duality relations in theoretical physics.

- For gauge theories, EM duality symmetry.
- For chiral fields, (anti-) self-duality → chirality.

Long history of attempts at covariant actions with twisted self-duality relations as equations of motion.

- → Recent development: **Topological boundary reduction**.
- Applied this to higher-order chiral scalars: Boundary degrees of freedom in $\ensuremath{AdS_3}$ HS gravity.

Goal: Repeat for linearised (HS) gravity in D=4.

Thanks for your attention!

Bonus Slides

Non-Linear HS Gravity

Non-linear **HS** gravity is $\mathfrak{sl}(N,\mathbb{R}) \oplus \mathfrak{sl}(N,\mathbb{R})$ CS theory: Massless fields up to spin-N with HS self-interactions.

• Including **boundary terms**:

$$S_{\text{HSG}} = S_L[\mathcal{A}] - S_R[\tilde{\mathcal{A}}], \quad \mathcal{A} = \sum_{n=-1}^{1} A^{(n)} L_n + \sum_{s=3}^{N} \sum_{m=-(s-1)}^{s-1} a^{(s,n)} W_n^{(s)}$$

where

$$S_{L/R}[\mathcal{A}] = \int_{M} \operatorname{Tr} \left[\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A} \right] \pm \int_{\partial M} \operatorname{Tr} \left[\mathcal{A} \wedge \star \mathcal{A} \right]$$

• Bulk equations of motion: Flatness condition, solved by

$$\mathcal{A} = G^{-1} dG = g_{\varphi}^{-1} \underline{\mathcal{A}} g_{\varphi} + g_{\varphi}^{-1} dg_{\varphi}$$

Boundary equation of motion: Chirality condition

$$(\mathcal{A} - \star \mathcal{A}) \big|_{\partial M} = G^{-1} \partial_{-} G = 0$$

Boundary Reduction

Once again interested in covariant boundary reduction.

Action reduces to

$$S_L = \int_{\partial M} \operatorname{Tr} \left[-\frac{1}{2} \left(g^{-1} dg + v\rho \right) \wedge \star \left(g^{-1} dg + v\rho \right) + v \wedge (\rho + \lambda) g^{-1} dg \right] + S_{WZW}[g]$$

• Connect to non-covariant formalisms by integrating and fixing gauge:

$$S_L = -2 \int_{\partial M} d^2 x \operatorname{Tr} \left[g^{-1} \partial_1 g g^{-1} \partial_- g \right] - \frac{1}{3} \int_M \operatorname{Tr} \left[\left(g^{-1} dg \right)^3 \right]$$

Need to supply with asymptotic conditions

$$v \wedge \mathcal{A}^{(s,n)} \Big|_{\partial M} = v \wedge \underline{\mathcal{A}}^{(s,n)}, \quad \text{for} \quad n > 1 - s$$

→ In terms of group elements,

$$g^{-1}\partial_1 g = L_{+1}$$
, for $n > -(s-1)$

Spin-2 Reduction

Consider e.g. reduction procedure for spin-2.

Gauss decomposition of group element

$$g_{\phi} = e^{\varepsilon (L_1 - \mathcal{L}L_{-1})} e^{\sigma L_0} e^{fL_{-1}}$$

In fund. rep., asymptotic conditions are

$$e^{-\sigma} = \partial_1 \chi, \quad f = -\frac{1}{2} \partial_1 \sigma$$

upon which action becomes

$$S_L = \int_{\partial M} d^2x \left(-\frac{\partial_1^2 \chi \partial_- \partial_1 \chi}{(\partial_1 \chi)^2} - 4\mathcal{L} \partial_1 \chi \partial_- \chi \right)$$

→ Alekseev-Shatashvili action.

For spin-3, possible but long expressions...