ORTHOGONALITY

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , then we regard \mathbf{u} and \mathbf{v} as $n \times 1$ matrices. The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets. The number $\mathbf{u}^T \mathbf{v}$ is called the **inner product** of \mathbf{u} and \mathbf{v} , and often it is written as $\mathbf{u} \cdot \mathbf{v}$. This inner product is also referred to as a **dot product**. If

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the inner product of u and v is

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

EXAMPLE 1 Compute
$$\mathbf{u} \cdot \mathbf{v}$$
 and $\mathbf{v} \cdot \mathbf{u}$ for $\mathbf{u} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$.

SOLUTION

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{T} \mathbf{v} = \begin{bmatrix} 2 & -5 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix} = (2)(3) + (-5)(2) + (-1)(-3) = -1$$

$$\mathbf{v} \cdot \mathbf{u} = \mathbf{v}^{T} \mathbf{u} = \begin{bmatrix} 3 & 2 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix} = (3)(2) + (2)(-5) + (-3)(-1) = -1$$

It is clear from the calculations in Example 1 why $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$. This commutativity of the inner product holds in general. The following properties of the inner product are easily deduced from properties of the transpose operation.

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- a. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- b. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- d. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

Properties (b) and (c) can be combined several times to produce the following useful rule:

$$(c_1\mathbf{u}_1+\cdots+c_p\mathbf{u}_p)\cdot\mathbf{w}=c_1(\mathbf{u}_1\cdot\mathbf{w})+\cdots+c_p(\mathbf{u}_p\cdot\mathbf{w})$$

DEFINITION

If \mathbf{v} is in \mathbb{R}^n , with entries v_1, \dots, v_n , then the square root of $\mathbf{v} \cdot \mathbf{v}$ is defined because $\mathbf{v} \cdot \mathbf{v}$ is nonnegative.

The **length** (or **norm**) of **v** is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \text{ and } \|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$$

For any scalar c, the length of $c\mathbf{v}$ is |c| times the length of \mathbf{v} . That is,

$$\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$$

(To see this, compute $||c\mathbf{v}||^2 = (c\mathbf{v}) \cdot (c\mathbf{v}) = c^2 \mathbf{v} \cdot \mathbf{v} = c^2 ||\mathbf{v}||^2$ and take square roots.)

A vector whose length is 1 is called a **unit vector**. If we *divide* a nonzero vector **v** by its length—that is, multiply by $1/\|\mathbf{v}\|$ —we obtain a unit vector **u** because the length of **u** is $(1/\|\mathbf{v}\|)\|\mathbf{v}\|$. The process of creating **u** from **v** is sometimes called **normalizing v**, and we say that **u** is *in the same direction* as **v**.

EXAMPLE 2 Let $\mathbf{v} = (1, -2, 2, 0)$. Find a unit vector \mathbf{u} in the same direction as \mathbf{v} .

SOLUTION First, compute the length of v:

$$\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v} = (1)^2 + (-2)^2 + (2)^2 + (0)^2 = 9$$

 $\|\mathbf{v}\| = \sqrt{9} = 3$

Then, multiply v by $1/\|\mathbf{v}\|$ to obtain

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \frac{1}{3} \mathbf{v} = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \\ 0 \end{bmatrix}$$

To check that $\|\mathbf{u}\| = 1$, it suffices to show that $\|\mathbf{u}\|^2 = 1$.

$$\|\mathbf{u}\|^2 = \mathbf{u} \cdot \mathbf{u} = \left(\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + (0)^2$$

= $\frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1$

EXAMPLE 3 Let W be the subspace of \mathbb{R}^2 spanned by $\mathbf{x} = (\frac{2}{3}, 1)$. Find a unit vector \mathbf{z} that is a basis for W.

SOLUTION Any nonzero vector in W is a basis for W. To simplify the calculation, "scale" \mathbf{x} to eliminate fractions. That is, multiply \mathbf{x} by 3 to get

$$\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Now compute $\|\mathbf{y}\|^2 = 2^2 + 3^2 = 13$, $\|\mathbf{y}\| = \sqrt{13}$, and normalize \mathbf{y} to get

$$\mathbf{z} = \frac{1}{\sqrt{13}} \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{13}\\3/\sqrt{13} \end{bmatrix}$$

Another unit vector is $(-2/\sqrt{13}, -3/\sqrt{13})$.

DEFINITION

For **u** and **v** in \mathbb{R}^n , the **distance between u and v**, written as dist(**u**, **v**), is the length of the vector $\mathbf{u} - \mathbf{v}$. That is,

$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

In \mathbb{R}^2 and \mathbb{R}^3 , this definition of distance coincides with the usual formulas for the Euclidean distance between two points, as the next two examples show.

EXAMPLE 4 Compute the distance between the vectors $\mathbf{u} = (7, 1)$ and $\mathbf{v} = (3, 2)$.

SOLUTION Calculate

$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
$$\|\mathbf{u} - \mathbf{v}\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

EXAMPLE 5 If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$, then

dist
$$(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})}$$

= $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2}$

DEFINITION

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.

The rest of this chapter depends on the fact that the concept of perpendicular lines in ordinary Euclidean geometry has an analogue in \mathbb{R}^n .

Consider \mathbb{R}^2 or \mathbb{R}^3 and two lines through the origin determined by vectors \mathbf{u} and \mathbf{v} . The two lines shown in Figure are geometrically perpendicular if and only if the distance from \mathbf{u} to \mathbf{v} is the same as the distance from \mathbf{u} to $-\mathbf{v}$. This is the same as requiring the squares of the distances to be the same. Now

$$[\operatorname{dist}(\mathbf{u}, -\mathbf{v})]^{2} = \|\mathbf{u} - (-\mathbf{v})\|^{2} = \|\mathbf{u} + \mathbf{v}\|^{2}$$

$$= (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u} \cdot (\mathbf{u} + \mathbf{v}) + \mathbf{v} \cdot (\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} + 2\mathbf{u} \cdot \mathbf{v}$$
(1)

The same calculations with \mathbf{v} and $-\mathbf{v}$ interchanged show that

$$[\operatorname{dist}(\mathbf{u}, \mathbf{v})]^2 = \|\mathbf{u}\|^2 + \|-\mathbf{v}\|^2 + 2\mathbf{u} \cdot (-\mathbf{v})$$
$$= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}$$

The two squared distances are equal if and only if $2\mathbf{u} \cdot \mathbf{v} = -2\mathbf{u} \cdot \mathbf{v}$, which happens if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

This calculation shows that when vectors \mathbf{u} and \mathbf{v} are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The following definition generalizes to \mathbb{R}^n this notion of perpendicularity (or *orthogonality*, as it is commonly called in linear algebra).

DEFINITION

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Observe that the zero vector is orthogonal to every vector in \mathbb{R}^n because $\mathbf{0}^T \mathbf{v} = 0$ for all \mathbf{v} .

The next theorem provides a useful fact about orthogonal vectors. The proof follows immediately from the calculation in (1) above and the definition of orthogonality.

THEOREM 2

The Pythagorean Theorem

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal to** W. The set of all vectors \mathbf{z} that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (and read as "W perpendicular" or simply "W perp").

- A vector x is in W[⊥] if and only if x is orthogonal to every vector in a set that spans W.
- W[⊥] is a subspace of ℝⁿ.

Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

PROOF The row-column rule for computing $A\mathbf{x}$ shows that if \mathbf{x} is in Nul A, then \mathbf{x} is orthogonal to each row of A (with the rows treated as vectors in \mathbb{R}^n). Since the rows of A span the row space, \mathbf{x} is orthogonal to Row A. Conversely, if \mathbf{x} is orthogonal to Row A, then \mathbf{x} is certainly orthogonal to each row of A, and hence $A\mathbf{x} = \mathbf{0}$. This proves the first statement of the theorem. Since this statement is true for any matrix, it is true for A^T . That is, the orthogonal complement of the row space of A^T is the null space of A^T . This proves the second statement, because Row $A^T = \text{Col } A$.

If **u** and **v** are nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3 , then there is a nice connection between their inner product and the angle ϑ between the two line segments from the origin to the points identified with **u** and **v**. The formula is

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \vartheta \tag{2}$$

ORTHOGONAL SETS

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

EXAMPLE 1 Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

SOLUTION Consider the three possible pairs of distinct vectors, namely, $\{\mathbf{u}_1, \mathbf{u}_2\}$, $\{\mathbf{u}_1, \mathbf{u}_3\}$, and $\{\mathbf{u}_2, \mathbf{u}_3\}$.

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 3(-1) + 1(2) + 1(1) = 0$$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 = 3\left(-\frac{1}{2}\right) + 1(-2) + 1\left(\frac{7}{2}\right) = 0$$

$$\mathbf{u}_2 \cdot \mathbf{u}_3 = -1\left(-\frac{1}{2}\right) + 2(-2) + 1\left(\frac{7}{2}\right) = 0$$

Each pair of distinct vectors is orthogonal, and so $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set.

THEOREM 4

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

PROOF If
$$\mathbf{0} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$
 for some scalars c_1, \dots, c_p , then
$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$= (c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$$

$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$. Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero and so $c_1 = 0$. Similarly, c_2, \dots, c_p must be zero. Thus S is linearly independent.

DEFINITION

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

The next theorem suggests why an orthogonal basis is much nicer than other bases. The weights in a linear combination can be computed easily.

THEOREM 5

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \qquad (j = 1, \dots, p)$$

PROOF As in the preceding proof, the orthogonality of $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ shows that

$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

Since $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero, the equation above can be solved for c_1 . To find c_j for j = 2, ..., p, compute $\mathbf{y} \cdot \mathbf{u}_j$ and solve for c_j .

EXAMPLE 2 The set $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ in Example 1 is an orthogonal basis for \mathbb{R}^3 .

Express the vector $\mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$ as a linear combination of the vectors in S.

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

SOLUTION Compute

$$\mathbf{y} \cdot \mathbf{u}_1 = 11,$$
 $\mathbf{y} \cdot \mathbf{u}_2 = -12,$ $\mathbf{y} \cdot \mathbf{u}_3 = -33$
 $\mathbf{u}_1 \cdot \mathbf{u}_1 = 11,$ $\mathbf{u}_2 \cdot \mathbf{u}_2 = 6,$ $\mathbf{u}_3 \cdot \mathbf{u}_3 = 33/2$

By Theorem 5,

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$$
$$= \frac{11}{11} \mathbf{u}_1 + \frac{-12}{6} \mathbf{u}_2 + \frac{-33}{33/2} \mathbf{u}_3$$
$$= \mathbf{u}_1 - 2\mathbf{u}_2 - 2\mathbf{u}_3$$

An Orthogonal Projection

Given a nonzero vector \mathbf{u} in \mathbb{R}^n , consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} . We wish to write

$$y = \hat{y} + z \tag{1}$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u} .

Given any scalar α , let $\mathbf{z} = \mathbf{y} - \alpha \mathbf{u}$, so that (1) is satisfied. Then $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to \mathbf{u} if and only if

$$0 = (\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - (\alpha \mathbf{u}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u})$$

That is, (1) is satisfied with **z** orthogonal to **u** if and only if $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ and $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$. The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto u**, and the vector **z** is called the **component of y orthogonal to u**.

If c is any nonzero scalar and if \mathbf{u} is replaced by $c\mathbf{u}$ in the definition of $\hat{\mathbf{y}}$, then the orthogonal projection of \mathbf{y} onto $c\mathbf{u}$ is exactly the same as the orthogonal projection of \mathbf{y} onto \mathbf{u} . Hence this projection is determined by the *subspace* L spanned by \mathbf{u} (the line through \mathbf{u} and $\mathbf{0}$). Sometimes $\hat{\mathbf{y}}$ is denoted by $\operatorname{proj}_L \mathbf{y}$ and is called the **orthogonal projection of \mathbf{y} onto** L. That is,

$$\hat{\mathbf{y}} = \operatorname{proj}_{L} \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$
 (2)

EXAMPLE 3 Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .

SOLUTION Compute

$$\mathbf{y} \cdot \mathbf{u} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40$$
$$\mathbf{u} \cdot \mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20$$

The orthogonal projection of y onto u is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \mathbf{u} = 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

and the component of y orthogonal to u is

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

The sum of these two vectors is y. That is,

$$\begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (\mathbf{y} - \hat{\mathbf{y}})$$

Note: If the calculations above are correct, then $\{\hat{y}, y - \hat{y}\}$ will be an orthogonal set. As a check, compute

$$\hat{\mathbf{y}} \cdot (\mathbf{y} - \hat{\mathbf{y}}) = \begin{bmatrix} 8 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -8 + 8 = 0$$

A set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal set** if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal basis** for W, since the set is automatically linearly independent, by Theorem 4.

The simplest example of an orthonormal set is the standard basis $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n . Any nonempty subset of $\{e_1, \ldots, e_n\}$ is orthonormal, too. Here is a more complicated example.

EXAMPLE 5 Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis of \mathbb{R}^3 , where

$$\mathbf{v}_{1} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

SOLUTION Compute

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = -3/\sqrt{66} + 2/\sqrt{66} + 1/\sqrt{66} = 0$$

$$\mathbf{v}_1 \cdot \mathbf{v}_3 = -3/\sqrt{726} - 4/\sqrt{726} + 7/\sqrt{726} = 0$$

$$\mathbf{v}_2 \cdot \mathbf{v}_3 = 1/\sqrt{396} - 8/\sqrt{396} + 7/\sqrt{396} = 0$$

Thus $\{v_1, v_2, v_3\}$ is an orthogonal set. Also,

$$\mathbf{v}_1 \cdot \mathbf{v}_1 = 9/11 + 1/11 + 1/11 = 1$$

 $\mathbf{v}_2 \cdot \mathbf{v}_2 = 1/6 + 4/6 + 1/6 = 1$
 $\mathbf{v}_3 \cdot \mathbf{v}_3 = 1/66 + 16/66 + 49/66 = 1$

which shows that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are unit vectors. Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal set. Since the set is linearly independent, its three vectors form a basis for \mathbb{R}^3 .

THEOREM 6

An $m \times n$ matrix U has orthonormal columns if and only if $U^TU = I$.

PROOF To simplify notation, we suppose that U has only three columns, each a vector in \mathbb{R}^m . The proof of the general case is essentially the same. Let $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$ and compute

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \mathbf{u}_{1}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \mathbf{u}_{2}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{3}^{T}\mathbf{u}_{1} & \mathbf{u}_{3}^{T}\mathbf{u}_{2} & \mathbf{u}_{3}^{T}\mathbf{u}_{3} \end{bmatrix}$$
(4)

The entries in the matrix at the right are inner products, using transpose notation. The columns of U are orthogonal if and only if

$$\mathbf{u}_{1}^{T}\mathbf{u}_{2} = \mathbf{u}_{2}^{T}\mathbf{u}_{1} = 0, \quad \mathbf{u}_{1}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{1} = 0, \quad \mathbf{u}_{2}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{2} = 0$$
 (5)

The columns of U all have unit length if and only if

$$\mathbf{u}_1^T \mathbf{u}_1 = 1, \quad \mathbf{u}_2^T \mathbf{u}_2 = 1, \quad \mathbf{u}_3^T \mathbf{u}_3 = 1 \tag{6}$$

The theorem follows immediately from (4)–(6).

Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^n . Then

a.
$$||U\mathbf{x}|| = ||\mathbf{x}||$$

b.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$

c.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$$
 if and only if $\mathbf{x} \cdot \mathbf{y} = 0$

Properties (a) and (c) say that the linear mapping $\mathbf{x} \mapsto U\mathbf{x}$ preserves lengths and orthogonality.

EXAMPLE 6 Let
$$U = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$. Notice that U has or-

thonormal columns and

$$U^{T}U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 2/3 & -2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Verify that $||U\mathbf{x}|| = ||\mathbf{x}||$.

SOLUTION

$$U\mathbf{x} = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$$
$$\|U\mathbf{x}\| = \sqrt{9+1+1} = \sqrt{11}$$
$$\|\mathbf{x}\| = \sqrt{2+9} = \sqrt{11}$$

Theorems 6 and 7 are particularly useful when applied to square matrices. An orthogonal matrix is a square invertible matrix U such that $U^{-1} = U^T$. By Theorem 6, such a matrix has orthonormal columns. It is easy to see that any square matrix with orthonormal columns is an orthogonal matrix.

EXAMPLE 7 The matrix

$$U = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}$$

is an orthogonal matrix because it is square and because its columns are orthonormal, by Example 5.

ORTHOGONAL PROJECTIONS

EXAMPLE 1 Let $\{\mathbf{u}_1, \dots, \mathbf{u}_5\}$ be an orthogonal basis for \mathbb{R}^5 and let

$$\mathbf{y} = c_1 \mathbf{u}_1 + \cdots + c_5 \mathbf{u}_5$$

Consider the subspace $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, and write \mathbf{y} as the sum of a vector \mathbf{z}_1 in Wand a vector \mathbf{z}_2 in W^{\perp} .

SOLUTION Write

$$\mathbf{y} = \underbrace{c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2}_{\mathbf{Z}_1} + \underbrace{c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5}_{\mathbf{Z}_2}$$

$$\mathbf{z}_1 = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 \quad \text{is in Span} \{\mathbf{u}_1, \mathbf{u}_2\}$$

where

$$\mathbf{z}_1 = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$$
 is in Span $\{\mathbf{u}_1, \mathbf{u}_2\}$

and

$$\mathbf{z}_2 = c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5$$
 is in Span $\{\mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$.

To show that \mathbf{z}_2 is in W^{\perp} , it suffices to show that \mathbf{z}_2 is orthogonal to the vectors in the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for W. Using properties of the inner product, compute

$$\mathbf{z}_2 \cdot \mathbf{u}_1 = (c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5) \cdot \mathbf{u}_1$$

$$= c_3 \mathbf{u}_3 \cdot \mathbf{u}_1 + c_4 \mathbf{u}_4 \cdot \mathbf{u}_1 + c_5 \mathbf{u}_5 \cdot \mathbf{u}_1$$

$$= 0$$

because \mathbf{u}_1 is orthogonal to \mathbf{u}_3 , \mathbf{u}_4 , and \mathbf{u}_5 . A similar calculation shows that $\mathbf{z}_2 \cdot \mathbf{u}_2 = 0$. Thus \mathbf{z}_2 is in W^{\perp} .

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
 (2)

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

PROOF Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be any orthogonal basis for W, and define $\hat{\mathbf{y}}$ by (2). Then $\hat{\mathbf{y}}$ is in W because $\hat{\mathbf{y}}$ is a linear combination of the basis $\mathbf{u}_1, \dots, \mathbf{u}_p$. Let $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$. Since \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$, it follows from (2) that

$$\mathbf{z} \cdot \mathbf{u}_1 = (\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{u}_1 = \mathbf{y} \cdot \mathbf{u}_1 - \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 \cdot \mathbf{u}_1 - 0 - \dots - 0$$
$$= \mathbf{y} \cdot \mathbf{u}_1 - \mathbf{y} \cdot \mathbf{u}_1 = 0$$

Thus **z** is orthogonal to \mathbf{u}_1 . Similarly, **z** is orthogonal to each \mathbf{u}_j in the basis for W. Hence **z** is orthogonal to every vector in W. That is, **z** is in W^{\perp} .

To show that the decomposition in (1) is unique, suppose \mathbf{y} can also be written as $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$, with $\hat{\mathbf{y}}_1$ in W and \mathbf{z}_1 in W^{\perp} . Then $\hat{\mathbf{y}} + \mathbf{z} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$ (since both sides equal \mathbf{y}), and so

$$\hat{y} - \hat{y}_1 = z_1 - z$$

This equality shows that the vector $\mathbf{v} = \hat{\mathbf{y}} - \hat{\mathbf{y}}_1$ is in W and in W^{\perp} (because \mathbf{z}_1 and \mathbf{z} are both in W^{\perp} , and W^{\perp} is a subspace). Hence $\mathbf{v} \cdot \mathbf{v} = 0$, which shows that $\mathbf{v} = \mathbf{0}$. This proves that $\hat{\mathbf{y}} = \hat{\mathbf{y}}_1$ and also $\mathbf{z}_1 = \mathbf{z}$.

EXAMPLE 2 Let
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$

is an orthogonal basis for $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

SOLUTION The orthogonal projection of y onto W is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

$$= \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{15}{30} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

A1so

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

Theorem 8 ensures that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . To check the calculations, however, it is a good idea to verify that $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2 and hence to all of W. The desired decomposition of \mathbf{y} is

$$\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

If
$$\mathbf{y}$$
 is in $W = \operatorname{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$, then $\operatorname{proj}_W \mathbf{y} = \mathbf{y}$.

This fact also follows from the next theorem.

THEOREM 9

The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \tag{3}$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{v}}$.

PROOF Take \mathbf{v} in W distinct from $\hat{\mathbf{y}}$. Then $\hat{\mathbf{y}} - \mathbf{v}$ is in W. By the Orthogonal Decomposition Theorem, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W. In particular, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}} - \mathbf{v}$ (which is in W). Since

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v})$$

the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2$$

Now $\|\hat{\mathbf{y}} - \mathbf{v}\|^2 > 0$ because $\hat{\mathbf{y}} - \mathbf{v} \neq \mathbf{0}$, and so inequality (3) follows immediately.

EXAMPLE 3 If
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$,

as in Example 2, then the closest point in W to y is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}$$

EXAMPLE 4 The distance from a point \mathbf{y} in \mathbb{R}^n to a subspace W is defined as the distance from \mathbf{y} to the nearest point in W. Find the distance from \mathbf{y} to $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, where

$$\mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

SOLUTION By the Best Approximation Theorem, the distance from \mathbf{y} to W is $\|\mathbf{y} - \hat{\mathbf{y}}\|$, where $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$. Since $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for W,

$$\hat{\mathbf{y}} = \frac{15}{30}\mathbf{u}_1 + \frac{-21}{6}\mathbf{u}_2 = \frac{1}{2} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} - \frac{7}{2} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

$$\|\mathbf{y} - \hat{\mathbf{y}}\|^2 = 3^2 + 6^2 = 45$$

The distance from y to W is $\sqrt{45} = 3\sqrt{5}$.

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$
(4)

If $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_p]$, then

$$\operatorname{proj}_{W} \mathbf{y} = U U^{T} \mathbf{y} \quad \text{for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
 (5)

PROOF Formula (4) follows immediately from (2) in Theorem 8. Also, (4) shows that $proj_W \mathbf{y}$ is a linear combination of the columns of U using the weights $\mathbf{y} \cdot \mathbf{u}_1$, $\mathbf{y} \cdot \mathbf{u}_2, \dots, \mathbf{y} \cdot \mathbf{u}_p$. The weights can be written as $\mathbf{u}_1^T \mathbf{y}, \mathbf{u}_2^T \mathbf{y}, \dots, \mathbf{u}_p^T \mathbf{y}$, showing that they are the entries in U^T y and justifying (5).

EXAMPLE 1 Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$$
, where $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $(\mathbf{x}_1, \mathbf{x}_2)$ for W

struct an orthogonal basis $\{v_1, v_2\}$ for W.

SOLUTION The component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 is $\mathbf{x}_2 - \mathbf{p}$, which is in W because it is formed from \mathbf{x}_2 and a multiple of \mathbf{x}_1 . Let $\mathbf{v}_1 = \mathbf{x}_1$ and

$$\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{p} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

Then $\{v_1, v_2\}$ is an orthogonal set of nonzero vectors in W. Since dim W = 2, the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for W.

The next example fully illustrates the Gram-Schmidt process.

EXAMPLE 2 Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is

clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W.

SOLUTION

Step 1. Let $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{Span}\{\mathbf{x}_1\} = \operatorname{Span}\{\mathbf{v}_1\}$.

Step 2. Let \mathbf{v}_2 be the vector produced by subtracting from \mathbf{x}_2 its projection onto the subspace W_1 . That is, let

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{W_{1}} \mathbf{x}_{2}$$

$$= \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \qquad \text{Since } \mathbf{v}_{1} = \mathbf{x}_{1}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

As in Example 1, \mathbf{v}_2 is the component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 , and $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for the subspace W_2 spanned by \mathbf{x}_1 and \mathbf{x}_2 .

Step 2' (optional). If appropriate, scale v_2 to simplify later computations. Since v_2 has fractional entries, it is convenient to scale it by a factor of 4 and replace $\{v_1, v_2\}$ by the orthogonal basis

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2' = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Step 3. Let \mathbf{v}_3 be the vector produced by subtracting from \mathbf{x}_3 its projection onto the subspace W_2 . Use the orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2'\}$ to compute this projection onto W_2 :

$$\operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} \overset{\operatorname{Projection of}}{\underset{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{2}}{\downarrow}} \overset{\operatorname{Projection of}}{\underset{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{2}'}{\downarrow}} \overset{\operatorname{V}}{\underset{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}{\downarrow}} = \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} + \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}'}{\mathbf{v}_{2}' \cdot \mathbf{v}_{2}'} \mathbf{v}_{2}' = \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

Then \mathbf{v}_3 is the component of \mathbf{x}_3 orthogonal to W_2 , namely,

$$\mathbf{v}_3 = \mathbf{x}_3 - \operatorname{proj}_{W_2} \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

Observe that \mathbf{v}_3 is in W, because \mathbf{x}_3 and $\operatorname{proj}_{W_2}\mathbf{x}_3$ are both in W. Thus $\{\mathbf{v}_1,\mathbf{v}_2',\mathbf{v}_3\}$ is an orthogonal set of nonzero vectors and hence a linearly independent set in W. Note that W is three-dimensional since it was defined by a basis of three vectors. Hence, $\{\mathbf{v}_1,\mathbf{v}_2',\mathbf{v}_3\}$ is an orthogonal basis for W.

EXAMPLE 3 Example 1 constructed the orthogonal basis

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

An orthonormal basis is

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1 = \frac{1}{\sqrt{45}} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$$

$$\mathbf{u}_2 = \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

THEOREM 11

The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=\operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\} \qquad \text{for } 1\leq k\leq p \tag{1}$$

PROOF For $1 \le k \le p$, let $W_k = \operatorname{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$. Set $\mathbf{v}_1 = \mathbf{x}_1$, so that $\operatorname{Span}\{\mathbf{v}_1\} = \operatorname{Span}\{\mathbf{x}_1\}$. Suppose, for some k < p, we have constructed $\mathbf{v}_1, \dots, \mathbf{v}_k$ so that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is an orthogonal basis for W_k . Define

$$\mathbf{v}_{k+1} = \mathbf{x}_{k+1} - \text{proj}_{W_k} \, \mathbf{x}_{k+1} \tag{2}$$

By the Orthogonal Decomposition Theorem, \mathbf{v}_{k+1} is orthogonal to W_k . Note that $\operatorname{proj}_{W_k} \mathbf{x}_{k+1}$ is in W_k and hence also in W_{k+1} . Since \mathbf{x}_{k+1} is in W_{k+1} , so is \mathbf{v}_{k+1} (because W_{k+1} is a subspace and is closed under subtraction). Furthermore, $\mathbf{v}_{k+1} \neq \mathbf{0}$ because \mathbf{x}_{k+1} is not in $W_k = \operatorname{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$. Hence $\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$ is an orthogonal set of nonzero vectors in the (k+1)-dimensional space W_{k+1} . This set is an orthogonal basis for W_{k+1} . Hence $W_{k+1} = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$. When k+1=p, the process stops.

An orthonormal basis is constructed easily from an orthogonal basis $\{v_1, \ldots, v_p\}$: simply normalize (i.e., "scale") all the v_k . When working problems by hand, this is easier than normalizing each v_k as soon as it is found (because it avoids unnecessary writing of square roots).

EXAMPLE Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$$
, where $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Con-

struct an orthogonal basis $\{v_1, v_2\}$ for W.

SOLUTION The subspace W is shown in Figure , along with \mathbf{x}_1 , \mathbf{x}_2 , and the projection \mathbf{p} of \mathbf{x}_2 onto \mathbf{x}_1 . The component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 is $\mathbf{x}_2 - \mathbf{p}$, which is in W because it is formed from \mathbf{x}_2 and a multiple of \mathbf{x}_1 . Let $\mathbf{v}_1 = \mathbf{x}_1$ and

$$\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{p} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

Then $\{v_1, v_2\}$ is an orthogonal set of nonzero vectors in W. Since dim W = 2, the set $\{v_1, v_2\}$ is a basis for W.

