EPITA / InfoS1		Novembre 2020
NOM:	Prénom :	Groupe :

Contrôle Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

(b) FAUX

Exercice 1. Questions de cours (3 points – pas de points négatifs pour le QCM)

a- VRAI

1.	Une maille d'un circuit correspond à une portion de circuit située entre 2 nœuds consécutifs.

- 2. Pour mesurer l'intensité du courant qui traverse un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.
 - (a) VRAI b- FAUX
- 3. L'intensité du courant qui entre dans un dipôle récepteur est supérieure à l'intensité de celui qui en ressort.
 - a- VRAI b FAUX
- 4. Une différence de potentiels entre 2 points est aussi appelée :
 - a- Une intensité

c- Une puissance

b Une tension

d- Une conductance

- 5. Si deux dipôles appartiennent à la même branche : on dit qu'ils sont :
 - a En série

- b- En parallèle
- c- On ne peut rien dire
- 6. Soit le schéma suivant : Que vaut la tension U si l'interrupteur K est ouvert ?

b- $U = \frac{E}{2}$

 $\bigcirc U = E$

d- U = -E

Exercice 2. Association de résistances (4,5 points)

Quelle est la résistance équivalente totale (détaillez votre raisonnement — On imagine que le courant « entre » par le point A et « ressort » en B)

$$6R // 3R : R' = \frac{6R \times 3R}{6R + 3R} = \frac{18R}{9R} = 2R$$

$$R_{eq} = \frac{3}{2}R$$

Exercice 3. Généralités et Lois de Kirchhoff (6 points) v_1

Soit le schéma ci-contre. On donne :

- $\bullet \quad E = V_A V_B = 240V$
- $U_1 = V_F V_B = 184V$
- $U_4 = V_C V_D = -110V$
- $U_5 = U_{AD} = 46V$

- 1. Placer les points A, B, C, D et F sur la figure.
- 2. Calculer les valeurs des tensions U_2 , U_3 , U_6 et U_7 .

grâce à la lei du mailler, on a:

$$E + U_2 - U_1 = 0$$
 $E - U_5 + U_4 - U_3 = 0$
 $U_3 = E + U_4 - U_5$
 $U_3 = E + U_4 - U_5$
 $U_3 = E + U_4 - U_5$
 $U_6 = E + U_4 - U_5 - U_1$
 $U_7 = U_7 - U_1 = 0$
 $U_8 = U_7 - U_1 - E$

And: $U_9 = -56V$
 $U_9 = -10V$

3. Déterminer les intensités des courants I_1 , I_2 et I représentés sur le schéma. On prendra $R_1=R_3=100\Omega$.

Exercice 4. Lois de Kirchoff / Ponts Diviseurs (6,5 points)

1. Soit le circuit ci-contre.

Déterminer les expressions des tensions U_1 et U_2 en fonction de E et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)

Ri et Re sout en série. E: Tension aux bornes de Ri+R3. => D'après la formule du PDT, on aura;

$$U_1 = \frac{R_1}{R_1 + R_2} E$$

$$U_2 = \frac{R_2}{R_1 + R_2} E$$

- 2. Soit le circuit ci-contre.
 - a. Exprimer I_1 et I_2 en fonction de I et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions!)

R₁, R₂ et R₃ sout en //.

I: Courant qui se divix dons R₁, R₂, R₃.

D'apris la formule du PDC, on eura:

T₁ = \frac{G_1}{G_1 + G_2 + G_3} \frac{T}{R_1 R_2 + R_1 R_3 + R_2 R_3} \frac{T}{R_1 R_2 + R_2 R_3} \frac{T}{R_1 R_2 + R_1 R_3 + R_2 R_3} \frac{T}{R_1 R_2 + R_1 R_3 + R_2 R_3} \frac{T}{R_1 R_2 + R_2 R_3} \frac{T}{R_2 R_2 + R_2 R_3} \frac{T}{R_1 R_2 + R_2 R_3} \frac{T}{R_2 R_2 + R_2 R_3} \frac{T}{R_2 R_2 + R_2 R_3} \frac{T}{R_2 R_2 + R_2 R_3}

EPITA / InfoS1

b. Donner l'expression de I en fonction de E et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)

c. <u>Application Numérique</u> : Calculer les 2 intensités I_1 et I_2 si E=10V, $r=1~\Omega$, $R_1=R_2=R_3=3k\Omega$.

$$T_{1} = \frac{R_{1}R_{3}}{\Gamma(R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}) + R_{1}R_{2}R_{3}} \wedge E = 3,33mA$$

$$T_{2} = T_{1} \quad (\cos R_{1} = R_{2} = R_{3})$$