WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

A2

DE

(51) Internationale Patentklassifikation	7 :
C12N 15/12, C07K 14/47, C C12N 15/11, A61K 31/70, 48 16/18, G01N 33/50, A01K 67	V00, C07K

WO 00/15785 (11) Internationale Veröffentlichungsnummer:

(43) Internationales Veröffentlichungsdatum:

23. März 2000 (23.03.00)

(21) Internationales Aktenzeichen:	PCT/EP99/06534
------------------------------------	----------------

(22) Internationales Anmeldedatum: 6. September 1999 (06.09.99)

(30) Prioritätsdaten: 10. September 1998 (10.09.98) 198 41 299.1 5. Februar 1999 (05.02.99) 199 04 825.8 18. März 1999 (18.03.99) 199 12 049.8

DE DE DE 29. März 1999 (29.03.99) 199 14 229.7 30. April 1999 (30.04.99) DE 199 19 989.2 21. Mai 1999 (21.05.99) DE 199 23 539.2

(71)(72) Anmelder und Erfinder: SIFFERT, Winfried [DE/DE]; Schönleinstrasse 49, D-45147 Essen (DE).

(74) Anwalt: COHAUSZ & FLORACK; Kanzlerstrasse 8a, D-40472 Düsseldorf (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: GENE MODIFICATION IN THE GENE FOR THE DIE G β 3-SUB-UNIT OF HUMAN G-PROTEIN
- (54) Bezeichnung: GENVERÄNDERUNG IM GEN FÜR DIE Geta3-UNTEREINHEIT DES HUMANEN G-PROTEINS

(57) Abstract

The invention relates to the use of a gene modification in the gene for the $G\beta$ 3-sub-unit of the human G-protein for determining the risk of a G-protein dysregulation-associated disease, cytosine being substituted by thymin in position 825 in anlage 2 and/or cytosine being substituted by thymin in position 1429 in anlage 2.

(57) Zusammenfassung

Die Erfindung betrifft eine Verwendung einer Genveränderung im Gen für die G β 3-Untereinheit des humanen G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Ermittlung des Risikos, an einer mit G-Protein-Fehlsteuerung assoziierten Krankheit zu erkranken.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AL	Amenica	FI	Finnland	LT	Litauen	SK	Slowakei
AM	Armenich Österreich	FR	Frankreich	LU	Luxemburg	SIN	Senegal
AT	Australico	GA.	Gabun	LV	Lettland	SZ	Swasiland
AU	Australico Aserbaidschan	GB	Vereinigtes Königreich	MC	Мопасо	TD	Tschad
AZ		GE	Georgien	MD	Republik Moldau	TG	Togo
BA	Bosnien-Herzegowina Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BB		GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BE	Belgien Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BF		HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BG	Bulgarien Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BJ	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BR	Belarus	IS.	Island	MW	Malawi	US	Vereinigte Staaten von
BY		n	Italien	MX	Mexiko		Amerika
CA	Kanada	JР	Japan	NB	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	KE	Kenia	NL	Niederlande	VN	Vietnam
CG	Kongo	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CH	Schweiz			NZ	Neusceland	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	PL	Polen	2	Zillioub wo
СМ	Kamerun		Korea	PT	Portugal		
CN	China	KR	Republik Korea	RO	Rumānien		
CU	Kuba	KZ	Kasachstan	-	Russische Föderation		
CZ	Tschechische Republik	LC	St. Lucia	RU			
DE	Deutschland	u	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Genveränderung im Gen für die $G\beta3$ -Untereinheit des humanen G-Proteins

Die vorliegende Erfindung betrifft eine neue Nukleinsäuresequenz codierend für die Gβ3-Untereinheit des humanen G-Proteins, sowie die Verwendung von Gβ3-Untereinheiten der G-Proteine zur Ermittlung des Risikos, an einer Krankheit, die mit einer G-Protein-Fehlsteuerung assoziiert ist, zu erkranken.

Heterotrimere Guaninnukleotid-bindende Proteine (G-Proteine) haben eine herausragende Bedeutung bei der intrazellulären Signaltransduktion. Sie vermitteln die Weiterleitung extrazellulärer Signale nach Stimulation von Hormonrezeptoren und anderen Rezeptoren, welche nach Rezeptoraktivierung eine Konformationsänderung durchmachen. Dies führt zur Aktivierung von G-Proteinen, welche nachfolgend intrazelluläre Effektoren (z.B. Ionenkanäle, Enzyme) aktivieren oder hemmen können. G-Proteine steuern die intrazelluläre Signalverabeitung nach hormoneller Stimulation heptahelikaler Rezeptoren in der Zellmembran, aber auch nach Stimulation von Rezeptoren mit intrinsischer Tyrosinkinaseaktivität. Zu den regulierten Zellfunktionen gehören unter anderem Zellteilung und Zellwachstum, Kontraktion, Freisetzung von Zellinhaltsstoffen u.v.m..

Heterotrimere G-Proteine sind aus drei Untereinheiten, den α -, β - und γ -Untereinheiten, zusammengesetzt. Bislang wurden mehrere unterschiedliche α -Untereinheiten, 5 β -Untereinheiten und ca. 12 γ -Untereinheiten mittels biochemischer und molekularbiologischer Methoden nachgewiesen (Birnbaumer, L. and Birnbaumer, M., Signaltransduction by G proteins: 1994 edition. J.Recept.Res. 15:213-252,1995; Offermans, S. and Schultz, G.

Complex information processing by the transmembrane signaling system involving G proteins. Naunyn Schmiedebergs

Arch.Pharmacol. 350:329-338,1994; Nürnberg, B., Gudermann, T. and Schultz, G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function. J.Mol.Med. 73:123-132,1995; Neer, E.J. Heterotrimeric G proteins: Organizers of Transmembrane Signals. Cell 80:249-257, 1995; Rens-Domiano, S. and Hamm, H.E. Structural and functional relationships of heterotrimeric G proteins. FASEB J. 9:1059-1066, 1995).

Die rezeptorvermittelte Aktivierung bestimmter α -Untereinheiten kann durch Vorbehandlung mit Pertussistoxin (PTX) gehemmt werden. Dazu gehören insbesondere die α -Isoformen α -il, α -i2 und α -i3 sowie unterschiedliche α o-Untereinheiten. Solche G-Proteine werden auch als "PTX-sensitive G-Proteine bezeichnet.

βγ-Untereinheiten erfüllen wesentliche Funktionen bei der G-Protein-Aktivierung sowie bei der Modulation intrazellulärer Reaktionen. Alle bisher bekannten G-Protein-β-Untereinheiten weisen auf der Ebene der Nukleodtidsequenz und auf der Ebene der Aminosäuresequenz hohe Homologien auf. Dabei werden diese Ähnlichkeiten nicht nur innerhalb der humanen β-Untereinheiten (Gβ1, Gβ2, Gβ3) gefunden, sondern auch im Vergleich zu β-Untereinheiten anderer Spezies, beispielsweise Fruchtfliege oder Hefe.

Kürzlich konnte im humanen GNB3-Gen, das für die G β 3-Untereinheit kodiert, eine Basenveränderung in Exon 10 (C825T) beschrieben werden, die zum alternativen Spleißen von Exon 9 führt. Das alternative Spleißen wird durch eine kryptische Spleißstelle in Exon 9 begünstigt, wobei der entfernt liegende Basenaustausch C825T das Spleißen verstärkt. Das alternative Spleißprodukt (G β 3s) weist einen Verlust von T23 bp (= 41

Aminosäuren) auf. Das GNB3-825T-Allel ist mit gesteigerter Aktivierbarkeit von G-Proteinen und der essentiellen Hypertonie assoziiert (Siffert, W., Rosskopf, D., Siffert, G., Busch, S., Moritz, A., Erbel, R., Sharma, A.M., Ritz, E., Wichmann, H.E., Jakobs, K.H., and Horsthemke, B. Association of a human G-protein beta3 subunit variant with hypertension. Nat.Genet. 18(1):45-48, 1998; Clapham, D.E. and Neer, E.J. G protein βγ subunits. Annu.Rev.Pharmacol.Toxicol. 37:167-203, 1997; Hamm, H.E. and Gilchrist, A. Heterotrimeric G proteins. Curr.Opin.Cell Biol. 8:189-196, 1996).

Dieses humane GNB3-Gen ist von Levine et al. (Levine, M.A., Smallwood, P.M., Moen, P.T. Jr., Helman, L.J. und Ahn, T.G. Molecular cloning of beta 3 subunit, a third form of the G protein beta-subunit polypeptide. Proc. Natl. Acad. Sci. U.S.A. 87 (6), 2329-2333 (1990)) beschrieben worden.

Gegenstand der Erfindung ist eine neue humane cDNA für die G β 3-Untereinheit von humanem G-Protein.

Überraschenderweise hat es sich nämlich herausgestellt, daß es im humanen GNB3-Gen einen weiteren Polymorphismus gibt, der im folgenden "C1429T" genannt wird. Dieser Polymorphismus findet sich an Position 1429 der cDNA. Dies entspricht dem Exon 11 der prä-mRNA, jedoch außerhalb des offenen Leserahmens im 3' nichttranslatierten Bereich.

Dieser Polymorphismus steht in einem ausgeprägten
Verteilungsungleichgewicht mit dem bekannten C825TPolymorphismus, derart, daß nahezu alle GBN3-825C-Allele den
Genotyp 1429C und nahezu alle GBN3-825T-Allele den Genotyp
1429T aufweisen. Somit eignet sich dieser Polymorphismus C1429T
ebensogut wie der Polymorphismus C825T zum Nachweis der
gesteigerten Aktivierbarkeit von G-Proteinen.

Der Polymorphismus C1429T ist bezogen auf die Sequenz der cDNA, wie sie von Levine und Mitarbeitern beschrieben wurde. Hierbei kommt es an Position 1429 der cDNA zu einem Austausch des C durch ein T:

1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcac(c/t)a ctagggtcct

In Anhang 1 ist die vollständige cDNA-Sequenz aufgelistet.

Bezogen auf die genomische Sequenz des GBN3 Lokus, wie er von Ansari-Lari und Mitarbeitern beschrieben wurde (Ansari-Lari, M.A., Muzny, D.M., Lu, J., Lu, F., Lilley, C.E., Spanos, S., Malley, T. und Gibbs, R.A., A gene-rich cluster between the CD4 and triosephosphate isomerase genes at human chromosome 12p13. Genome Res. 6 (4), 314-326 (1996)), ist dieser Polymorphismus wie folgt lokalisiert (C59308T):

59281 TTGGCCCTGT GACTATGGCT CTGGCAC ($\underline{C/T}$) AC TAGGGTCCTG GCCCTCTTCT TATTCATGCT

In Anhang 2 ist die vollständige genomische Sequenz aufgelistet.

Der Nachweis dieses Polymorphismus erfolgt durch dem Fachmann geläufige Methoden wie spezifische Hybridisierung,
Sequenzierung, PCR- Reaktion mit anschließender
Restriktionsanalyse, DNA - Chip- Technologie, single strand conformation polymorphism etc.. In einem beispielhaften Versuch erfolgte der Nachweis durch Amplifikation des entsprechenden
Genabschnitts und anschließende Analyse des RestriktionsFragmentlängen-Polymorphismus, bei dem die Restriktionsenzyme
BanI, BshNI, Eco64I oder deren Isoschizomere verwendet werden.

Als Ergebnis findet sich eine große Übereinstimmung zwischen dem Genotyp an Positionen 825 und 1429:

Genotyp an Position 825 der GNB3 cDNA	Genotyp TT bei Position 1429 der cDNA	Genotyp TC bei Position 1429 der cDNA	Genotyp CC bei Position 1429 der cDNA
TT 119	(111 (93, 3 %)	8 (6,7%)	0
TC 116	3 (2,6 %)	103 (88,8 %)	10 (8,6 %)
CC 124	0 (0 %)	2 (1,6 %)	122 (98,4 %)

Die neue Nukleinsäuresequenz kann zur Herstellung von Antisense-Arzneimitteln zur Therapie oder Prävention von Krankheiten dienen, wobei eine zu dieser Nukleinsäuresequenz komplemetäre Nukleinsäuresequenz zur Herstellung des Antisense-Arzneimittels eingesetzt wird. Die Patienten können dabei z.B. mit Antisense-Oligonukleotiden oder Vektoren zur Verhinderung der Transkription oder Translation der G β 3-Untereinheit behandelt werden.

Gegenstand der Erfindung ist ferner die Verwendung von von β 3-Untereinheiten der G-Proteine zur Ermittlung des Risikos, an einer Krankheit, die mit einer G-Protein-Fehlsteuerung assoziiert ist, zu erkranken.

Obwohl die G β 3s- Spleißvariante, die den Polymorphismus C1429T aufweist bzw. auf den Polymorphismus C825T zurückzuführen ist, in Kombination mit den G-Protein-Untereinheiten G α i2 und G γ 5 ein funktionelles Heterotrimer bilden kann, war es unklar, auf welche Weise G β 3s zu einer gesteigerten Aktivierbarkeit von G-Proteinen führt.

Der Gegenstand der vorliegenden Erfindung beruht auf der Erkenntnis, daß die Untereinheit G β 3s zu einer gesteigerten Aktivierbarkeit von G-Proteinen führt. Der Nachweis der gesteigerten Aktivierbarkeit von G-Proteinen erfolgte über die Transfektion der entsprechenden cDNAs und Expression von G β 3 und G β 3s im dem Fachmann wohlbekannten COS-7-- Transfektionssystem. Hier zeigte sich, daß die Aktivierbarkeit

von G-Proteinen nach Transfektion von G β 3s gegenüber G β 3 deutlich gesteigert ist (Fig.1). Zur Quantifizierung der Aktivierbarkeit von G-Proteinen wurde hier der Einbau von radioaktiv markiertem [35S]GTP γ S in G-Protein α -Untereinheiten nach Stimulation mit dem Peptid Mastoparan-7 (Mas-7) gemessen.

Ahnliche Ergebnisse lassen sich im Sf9-Insektenzellen-Expressionssystem erzielen (Fig.2). Hier wird der m2-muskarinerge Rezeptor zusammen mit den G-Protein-Untereinheiten G α i3 und G γ 5 und entweder G β 3 oder G β 3-s im Sf9-System exprimiert. Nach Stimulation mit dem Agonisten Carbachol werden in Gegenwart von G β 3-s eine gesteigerte Potenz und eine gesteigerte Effizienz des Agonisten Carbachol bezogen auf die Stimulierbarkeit von G-Proteinen beobachtet.

Diese Versuche zeigen, daß die Spleißvariante Gβ3-s für eine gesteigerte Aktivierung von G-Proteinen ursächlich verantwortlich ist. Ferner beweisen diese Versuche, daß das Protein sich für eine Gentherapie für Krankheiten, die mit einer solchen G-Protein-Fehlsteuerung assoziiert sind, im Sinne der Erzielung einer gesteigerten zellulären Reaktivität eignet.

Unter Krankheiten, die mit einer G-Protein-Fehlsteuerung assoziiert sind, sind solche Erkrankungen zu verstehen, bei denen das G-Protein in der Signaltransduktion involviert ist und seine Funktion nicht in physiologischer Weise erfüllt. Die Fehlsteuerung kann eine Reihe von Ursachen haben, beispielsweise eine Veränderung im Strukturgen oder eine veränderte Genexpression. Die vorliegende Erfindung betrifft Krankheiten, die mit dem oben beschriebenen GNB3-825T-Allel bzw. GNB3-1429T-Allel assoziiert sind. Dazu zählen Diabetes mellitus (Typ-2), Übergewicht und Adipositas, koronare Herzkrankheit, Immunerkrankungen infolge einer verstärkten Funktion des Immunsystems, und Risikoschwangerschaften mit der Gefahr einer vorzeitigen Geburt (Frühgeburt).

7

Die folgenden Beispiele beziehen sich zwar auf Untersuchungen mit dem GNB3-825T-Allel. Aufgrund der großen Übereinstimmung (Kopplungsgleichgewicht) zwischen dem Genotyp an Positionen 825 und 1429 sind diese Beispiele und die aus den Versuchsergebnissen gezogenen Schlußfolgerungen für das GNB3-1429T-Allel ebenso gültig.

1. Vorhersage des Diabetes mellitus (Typ-2)

Der Typ-2-Diabetes (Synonyme: Altersdiabetes, nicht-Insulinpflichtiger Diabetes) ist eine schwerwiegende Erkrankung mit hoher kardiovaskulärer Morbidität und Mortalität. Genetische Einflüsse und Übergewicht tragen wesentlich zur Pathogenese bei. Der Typ-2-Diabetes beginnt häufig als Insulinresistenz, welche zunächst durch eine gesteigerte Insulinsekretion kompensiert wird, so daß die betroffenen Individuen symptomlos (euglykämisch) bleiben. Erst wenn die gesteigerte Insulinsekretion nicht mehr aufrecht erhalten werden kann, kommt es zum Diabetes mit gesteigerten Blutzuckerspiegeln. zellulärer Ebene können Veränderungen in Komponenten der Insulinsignaltransduktion, z.B. bei Insulin- Rezeptor- Substrat 1 (IRS-1), PI-3-Kinasen, Proteinkinasen, etc. eine Insulinresistenz bewirken. Aber auch nach einer Zellstimulation mit Agonisten (z.B. Angiotensin II), die G-Protein-gekoppelte Rezeptoren aktivieren, kann eine zelluläre Insulinresistenz herbeigeführt werden. Die Wirkung einer nachfolgenden Stimulation mit Insulin ist dann deutlich vermindert (Polonsky, K.S., Sturis, J., and Bell, G.I. Noninsulin-dependent diabetes mellitus - A genetically programmed failure of the beta cell to compensate for insulin resistance. N.Engl.J.Med. 334:777-783, 1996; O'Doherty, R., Stein, D., and Foley, J. Insulin resistance. Diabetologia 40 Suppl 3:B10-5:B10-5, 1997; Kahn, C.R., Vicent, D., and Doria, A. Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu.Rev.Med. 47:509-531, 1996; Hansen, T., Andersen, C.B., Echwald, S.M., Urhammer, S.A., Clausen, J.O., -Vestergaard, H., Owens, D., Hansen, L., and Pedersen, O. Identification of a

common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase: effects on glucose disappearance constant, glucose effectiveness, and the insulin sensitivity index. Diabetes 46(3):494-501, 1997; Folli, F., Kahn, C.R., Hansen, H., Bouchie, J.L., and Feener, E.P. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels - A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J.Clin.Invest. 100:2158-2169, 1997; Zhang, Y., Wat, N., Stratton, I.M., Warren-Perry, M.G., Orho, M., Groop, L., and Turner, R.C. UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS-1 and b3-adrenergic receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gen mutations. Diabetologia 39:1505-1511, 1996; Almind, K., Bjorbaek, C., Vestergaard, H., Hansen, T., Echwald, S., and Pedersen, O. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet 342:828-832, 1993; Laakso, M., Malkki, M., Kekäläinen, P., Kuusisto, J., and Deeb, S.S. Insulin receptor substrate-1 variants in non-insulin-dependent diabetes. J.Clin.Invest. 94:1141-1146, 1994).

Diese G-Protein-Aktivierung führt zu einer Phosphorylierung von IRS-1 an Serinresiduen, wodurch die durch Insulin induzierte Phosphorylierung an Tyrosinresiduen reduziert wird. Als Folge davon kommt es zu einer reduzierten Interaktion von IRS-1 mit dem Insulinrezeptor und der PI-3-Kinase, d.h. zu einer verminderten Insulinwirkung. Eine gesteigerte Aktivierbarkeit von G-Proteinen, die durch das GNB3 825T-Allel und die damit verbundene Spleißvariante G β 3-s in vivo bewirkt wird, verstärkt die Neigung zur Insulinresistenz deutlich.

Es hat sich nun gezeigt, daß bei gleichzeitigem Vorliegen von Mutationen in Komponenten der Insulinsignaltransduktion (IRS1-Gen, 3931A-Variante; Gly971Arg; p85 α - regulatorische Untereinheit der PI3-Kinase (1020 G \rightarrow A; Codon 326 Met \rightarrow Ile;

β3-adrenerger Rezeptor (Trp64Arg); β2-adrenerger Rezeptor (hier insbesondere die Arg16Gly- Variante und die Gln27Glu-Variante); Tumornekrosefaktor α; Leptin oder der Leptinrezeptor), welche zur Insulinresistenz führen, und dem GNB3-825T-Allel, die Neigung zur Insulinresistenz und zum Diabetes drastisch ansteigt. Dieser Zusammenhang eröffnet die Möglichkeit, eine mit dem GNB3-825T-Allel assoziierte Diabetes mellitus vom Typ 2 zu diagnostizieren und eine derart genetisch bedingte Neigung zur Diabetes mellitus vom Typ 2 bei noch gesunden bzw. beschwerdefreien Personen vorherzusagen.

Zum Beweis wurde die DNA von über 700 Patienten mit Typ-2-Diabetes und von 1400 gesunden Kontrollpersonen gewonnen. Die Häufigkeiten des GNB3-825T-Allels und der IRS-1-Gly971Arg-Variante wurden verglichen. Tabelle I zeigt zunächst einen Vergleich der Allelfrequenzen bei Kontrollen und Fällen:

Tabelle I: Allelfrequenzen bei Kontrollen und Typ-2-Diabetikern

		Kontrol	len		Diabetike	er	
		Alle	Männer	Frauen	Alle	Männer	Frauen
Total,	n	1464	962	502	720	320	400
Genoty	p, n (%):						
GNB3	TT	116	83 (9)	33 (7)	61 (8)	32 (10)	29 (7)
	TC	585 (40)	360 (37)	(225 (45)	345 (48)	161 (50)	184 (46)
	СС	763 (52)	519 (54)	(49)	314 (44)	127 (40)	187 (47)
	FT	0.28	0.271	0.29	0.322	0.35	0.30
IRS1	AA	5 (0)	4 (0)	1 (0)	8 (1)	4 (1)	4 (1)
	AG	159 (11)	108	51 (10)	108 (15)	58 (18)	50 (13)
	GG	1300 (89)	850 (88)	450 (90)	604 (84)	258 (81)	346 (87)
	FA	0.06	0.06	0.05	0.094	0.103	0.07
Alter	(SD)	49 (10)	48 (10)	50 (9)	63 (9)	62 (9)	64 (9)
Alter l	oei Diagnose (SD)				46 (10)	45 (10)	47 (10)
	g / m² (SD)	26.9 (3.9)	27.0 (3.4)	26.3 (4.8)	28.9 (4.8)	28.4 (4.4) ⁶	29.3 (5.0)
Nephro	pathy, n (%)				198 (31)	105 (36)	93 (28)
Hypert	ension, n (%)				464 (67)	181 (59)	283 (73)

Werte entsprechen n (%) für Allele und Diabetes-assoziierte Erkrankungen, und Mittelwerte (SD) für kontinuierliche Variablen. 1 , p < 0.02 (χ^2 = 8.1) versus Kontrollfrauen; 2 , p <

0.001 (χ^2 = 14.4) versus alle Kontrollen; ³, p < 0.001 (χ^2 = 20.0) versus Kontrollmänner; ⁴, p < 0.005 (χ^2 = 12.9) versus alle Kontrollen; ⁵, p < 0.01 (χ^2 = 13.2) versus Kontrollmänner; ⁶, p = 0.14 (χ^2 = 3.1) versus Kontrollfrauen.

Die folgenden Tabellen IIa und IIb zeigen das Risiko für Träger des GNB3-825T-Allels bzw. Träger des IRS1-3931A-Allels (einfache Effekte, Tabelle II.1) bzw. für Träger beider Allele (Kombinierte Effekte, Tabelle II.2), an Typ-2-Diabetes zu erkranken. Das Risiko ist hier als altersadjustierte Odds Ratio ausgedrückt, wobei die Odds Ratio für Fall-Kontroll-Studien etwa dem relativen Risiko bei prospektiven Studien entspricht.

Tabelle II: Odds Ratios für Diabetes für Träger des GNB3-T825-Allels, des IRS1-A-3931 Allels oder

beider Allele

Dargestellt sind altersadjustierte Odds ratios.

II.1 Einfache Effekte

						10000				Frauen			
		Alle			-	MARINEE			t	r	Γ		4000
Gene	Allele	٠	Diab.	156)	p-Wert	tr			(95% p-Wert	Kontr.	(a)	CT) (33	3 794-d 1661
_		(2)	<u>e</u>	E CE		(u)		3			ľ	1	6882
1	T	-	-	1 25	0.3180	83 /	_	1.44	0.2002	`	/ 67	1.62	* 000 . 0
CARS	7			_	_	•	127	(0.83-		244		- 09.0)	
			7 1	1000		-		2.51)		•		2.46)	
		Ī		4:361	11000			1.86	0.0002	F	184 /	1.12	0.5351
GNB3	בי/כנ	782	7 0 0 0		_	200	122	13.5-		244	187	- 62.0)	
			314	-/1:1				2.57		· ·		1.58)	
				1:01		1		100	0000		213 /	1.13	0.4834
GVB3	+ 11	701 /	406 /	1.44	0.0015	/ 585	, , ,		5	200	187	10.80-	
	70/00		314	(1.15-				-10.11				188	
				1.80)				2.43)			,		-04,0
			700	2 36	A 2686	4 / 850	4 / 285	1.71	0.5300	1 / 450	4 / 346	٥. / ٩	0.1.9
IRS1	AA/GG		500 \ N		_			(0.32-				(0.42-	
		1300		10.03				9.121				109.57)	
				9.59)		Ì	,	726.1	0010	15	/ 05	0.99	0.9762
IRSI	AG/GG	/ 65	108	1.35	0.0802	, 626	200	11.70		٠		10.57-	
•		1300	604	-/6.0)		200	007	107 6				1,72)	
-				1.89)				7.627	7,000			20.	0 R122
	1 4 4	164	`	1.38	0.0531	1112 /	`	1.75	0.00.0	`	, , , ,		
27				-00		850	258	(1.15-		450	346	-79.01	
	۵۵/۵۴ در	2001	5	100				2.67)				1.83)	

Tabelle II: Odds Ratios für Diabetes für Träger des GNB3-T825-Allels, des IRS1-A-3931 Allels oder beider Allele

Dargestellt sind altersadjustierte Odds ratios.

II.2 Kombinierte Effekte

		Alle				Männer				Frauen			
Gene	Allele	Kontr.	DIAB.	OR (958	(95% p-Wert	Kontr.	DIAB.	OR (95%	(95% p-Wert	Kontr.	DIAB.	OR (95%	(95% p-Wert
		(n)				(1)	3	CI)			(n)	_	•
GNB3	TT / CC	/ 901	/ 05	$\overline{}$	0.6156		25 /	1.31	0.3926	-	25 /	1.09	0.8157
(IRSI		684		(0.70-				(0.71-			160	(0.52-	
(22)				1.81)				2.42)				2.32)	
GNB3	TC / CC	210 /	/ 062	┢	0.00.0	314 /	129 /	1.90	0.0004	196 /	161 /	1.19	0.3600
(IRSI		684	264	(1.19-				(1.33-		223	160	(0.82-	
(33)				1.96)				2.70)				1.72)	
GNB3	TT+TC/	/ 919	340 /	1.46	0.0022	1 686	154 /	1.78	0.0008	227 /	/ 981	1.18	0.3743
(IRSI	ខ	684	264	(1.15-				(1.27-		223		(0.82-	
(22)				1.86)				2.50)				1.68)	
IRSI	AA + AG	_	20 /	1.48	0.1198		/ 23 /	1.78	0.0782	21 /	27 /	1.33	0.4984
(GNB3	ეე 	684	264	-06.0)		461		(0.93-			160	(0.59-	
(22)				2.43)				3.38)				3.00)	
IRSI +	TT +	_	/	3.38	0.0291	8 / 461	7 / 104	4.03	0.0333	2 / 223	4 / 160	3.39	0.1975
GNB3	or AG/	684	264	(1.13-				(1.12-				(0.49-	
	99 + pp			10.08)				14.56)				31.60)	
IRSI ' +	TC + AA	1 51	/ 55	1.69	0.0311	43 /	32 /	2.82	0.0010	7 82		0.89	0.7706
(GNB3)	or AG /	684	264	(1.05-				(1.52-		223	160	(0.41-	
	99 + 22			2.73)				5.23)				1.93)	
IRS1 +	TC	1	/ 99	1.87	0.0062	54 /	/ 68	2.99	0.0002		27 /160	1.05	0.8959
GNB3	TT + AA	684	264	(1.19-		461		(1.69-		223		(0.51-	
	or AG /			2.92)				5.30)				2.17)	
	99 + 99												

Man erkennt eine deutliche Risikosteigerung für den Typ-2-Diabetes für Träger des GNB3-825T-Allels bzw. Träger des IRS1-3931A-Allels (Tabellen II.1 und II.2). Eine drastische Risikosteigerung findet man bei Individuen, bei denen beide Gene verändert sind. Somit kann der Nachweis des GNB3-825T-Allels dazu dienen, bei den betroffenen Personen die Neigung für eine Erkrankung an Typ-2-Diabetes festzustellen bzw. eine genetisch bedingte Ursache einer bereits aufgetretenen Erkrankung zu ermitteln.

2. Vorhersage von Adipositas/Übergewicht

Die Regulation des Body Mass Index (BMI), ein Maß für das Verhältnis von Körpergewicht zu Körpergröße, wird durch viele Gene bestimmt. Übergewicht ist zu etwa 40% genetisch bedingt, wird aber auch durch überhöhte Kalorienzufuhr bei bestehendem Bewegungsmangel verursacht. Die Gβ3-s Spleißvariante ist mit dem zellulären Phänotyp eines gesteigerten Zellwachstums verbunden. Damit ist es auch möglich, daß das GNB3-825T-Allel zu einem gesteigerten Körperwachstum, u.a. Übergewicht, prädisponiert, und epi- und hypostatische Effekte ausüben kann. Dabei kann ebenso wie beim Diabetes mellitus (Typ 2) ein Zusammenhang bestehen mit Veränderungen im IRS1-Gen (3931A-Variante; Gly971Arg), im Gen, das für den β3-adrenergen Rezeptor kodiert (Trp64Arg-Variante) und im Gen, das für den β2-adrenergen Rezeptor kodiert, hier insbesondere die Arg16Gly-Variante und die Gln27Glu-Variante.

Untersuchungen an transgenen Mäusen zeigten, daß das Fehlen des Gens, welches für das IRS-1-Protein kodiert, im Gegensatz dazu zu einer starken Verzögerung des Körperwachstums führt (Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y., Ikawa, Y., Kasuga, M., Yazaki, Y., and Aizawa, S. Insulin resistance and growth retardation in mice lacking insulin_receptor substrate-1. Nature 372:182-186, 1994).

Um die Korrelation von Adipositas mit dem Vorliegen des GNB3-825-Nukleotids und der Status des IRS1-Gens bezüglich des Vorliegens der Gly971Arg-Variante zu überprüfen, wurde der BMI bei 20-30-jährigen gesunden Männern, bei denen gleichzeitig der Status des GNB3-825-Nukleotids und der Status des IRS1-Gens bezüglich des Vorliegens der Gly971Arg-Variante untersucht wurde, gemessen. Das Ergebnis ist in Figur 3 dargestellt.

Fig. 3 zeigt die Häufigkeitsverteilung der gemessenen Werte für den BMI. Bei Vorliegen des häufigeren IRS1-"GG"-Genotyps läßt sich mit dem GNB3-825T-Allel im Vergleich zum GNB3-C825-Allel eine signifikante Tendenz zu erhöhtem BMI nachweisen. Die Odds Ratio für das 75%-Quartil gegenüber dem 25 % Quartil beträgt 2,5. Dagegen wird der Neigung zu gesteigertem BMI bei Trägern des GNB3-825T-Allels bei gleichzeitiger Anwesenheit des IRS1-3931A-Allels (Gly971Arg-Variante) deutlich entgegengewirkt. Dies illustriert den interaktiven Effekt von GNB3 und IRS1 auf den BMI. Somit läßt sich das Vorliegen des GNB3-825T-Allel zuverlässig mit Adipositas korrelieren. Damit ist es möglich, eine Neigung zu Adipositas bei Trägern dieses Allels, insbesondere solchen, denen gleichzeitig das IRS1-3931A-Allel (Gly971Arg-Variante) fehlt, vorherzusagen.

825T-Allelträger weisen, wie z.B. in der DE 196 19 362 Al beschrieben, ein erhöhtes Risiko auf, an einer Hypertonie zu erkranken. Da Übergewicht und Adipositas in sehr starkem Maße für kardiovaskuläre Erkrankungen prädisponieren, wurde untersucht, ob junge Personen mit normalem Blutdruck, die ein 825T-Allel tragen, bereits ein erhöhtes Risiko für Übergewicht und Adipositas aufweisen. Dazu wurde bei 277 jungen, normotensiven Männern die Körpergröße und das Körpergewicht bestimmt und der Blutdruck gemessen. Übergewicht wird als ein BMI ≥ 25,0 kg/m² definiert und Adipositas als ≥ 27,0 kg/m². Es besteht ein deutlicher Zusammenhang zwischen BMI und Blutdruckwerten. Die Frequenz des 825T-Allels steigt über vom 1. zum 4. BMI-Quartil linear an. Für homozygote 825T-

Allelträger lassen sich die folgenden Risiken (odds ratios; OR) berechnen

- a) BMI \geq 25,0 kg/m² versus BMI < 25 kg/m² (Übergewicht versus Normalgewicht):
- OR TT/CC = 2.5 (1.1 6.1; p = 0.03); OR TC/CC 1.5 (0.8 2.6;p = 0, 2)
- b) BMI $> 27 \text{ kg/m}^2 \text{ versus BMI} < 25 \text{ kg/m}^2 \text{ (Adipositas versus)}$ Normalgewicht):
- OR TT/CC = 5.0 (1.4 18.3; p = 0.0083); OR TC/CC = 2.2 (0.8 1.4)6,3; p = 0,13).

Somit ergibt sich ein eindeutiger Zusammenhang zwischen Vorhandensein eines 825T-Allels und der Neigung zu Übergewicht und Adipositas. Dies erklärt unter anderem zum Teil das erhöhte Risiko von 825T-Allelträgern für Hypercholesterämie, Diabetes, Hypertonie und koronare Herzkrankheit/Myokardinfarkt.

GNB3 825T - Allel, BMI und Blutdruckwerte

			BMI Qu	artile		
GNB3	Alle	1	2	3	4	
		< 21.7	21.7 -	23.4-	≥ 25.0	> 27
			23.4	25.0		kg/m2
TT	28 (10)	2 (3)	6 (8)	9 (13)	11	5 (23)
					(16)	!
TC	121 (44)	27 (39)	27 (40)	34 (49)	33	11 (50)
					(47)	
СС	128 (46)	40 (58)	36 (52)	26 (38)	26	6 (27)
					(37)	
Σ	277	69	69	69	70	22
fT (%)	31.9	22.5	28.3	37.7	39.3	47.7
Alter	25.6	24.8	25.6	25.3	26.4	26.5
(Jahre)	(3.4)	(3.6)	(3.2)	(3.4)	(2.9)	(2.9)
Größe (cm)	180.4	180.8	180.5	180.7	179.6	181.0
	(7.3)	(6.4)	(7.4)	(7.1)	(7.4)	(5.9)

		16	5			
Gewicht	76.5	67.4	73.1	78.9	86.2	93.5
(kg)	(9.8)	(5.2)	(6.3)	(7.1)	(8.7)	(6.9)
BP syst	129.8	126.3	130.2	130	133	135.9
(mm Hg)	(11.1)	(9.1)	(9.4)	(11.8)	(12.9)	(10.7)
BP diast	79.1·	75.8	79.4	79.7	81.9	84.3
(mm Hg)	(7.9)	(7.9)	(5.5)	(7.3)	(9.2)	(9.8)

Genotypen sind als n (%) angegeben und kontinuierliche Variablen als Mittelwerte (Standardabweichung); fT = 825T Allelfrequenz; BMI (body mass index) ist als kg/m² angegeben. BP syst = systolischer Blutdruck; BP diast = diastolischer Blutdruck.

3. Vorhersage von koronarer Herzkrankheit und Atherosklerose

Es ist bereits bekannt, daß koronare Herzkrankheit mit einer G-Protein-Fehlsteuerung assoziiert sein können. Um einen Zusammenhang zwischen dem Auftreten einer koronaren Herzkrankheit und dem Vorhandensein des GNB3-825T-Allels zu überprüfen, wurden Patienten mit angiographisch ausgeschlossener koronarer Herzkrankheit, mit koronarer Herzkrankheit (ohne Myokardinfarkt), mit einem Myokardinfarkt und mit mehr als einem Myokardinfarkt auf das Vorhandensein dieses Alles überprüft. Das Ergebnis ist in Fig. 4 dargestellt.

Fig. 4 zeigt die Frequenz des GNB3-825T-Allels bei Patienten mit angiographisch ausgeschlossener koronarer Herzkrankheit (KHK), mit KHK (ohne Myokardinfarkt; MI), mit einem Myokardinfarkt (MI) und mit mehr als einem Myokardinfarkt.

Man erkennt einen deutlichen Anstieg der Frequenz des GNB3-825T-Allels bei KHK und MI. Das Risiko für KHK und MI wird durch das GNB3-825T-Allel gegenüber Kontrollen ohne KHK etwa verdoppelt.

Patienten mit Mutation im IRS-1 Protein (3931A-Allel; Gly971Arg-Variante) erfahren jedoch eine deutliche

Risikoreduktion um bis zu 50 % bei Vorliegen des GNB3-C825oder des GNB3-825T-Allels. Diese Veränderung im IRS-1-Protein übt also hypostatische Effekte aus, d.h. diese Variante schützt vor koronarer Herzkrankheit.

Vergleicht man Patienten mit KHK mit Individuen mit koronarangiographisch ausgeschlossener KHK, so ergeben sich die folgenden Odds Ratios:

KHK positiv	KHK negativ	OR	P - Wert
GNB3 + IRS1-Status	GNB3 + IRS1-Status		
TT/TC + AG/AA	TT/TC + GG	0.94	Nicht signifikant
	CC + GG	1,4	0,003
TT/TC + GG	CC + AG/AA	2,8	0,002

Damit ist eine Korrelation zwischen dem Vorliegen des GNB3-825T-Allels mit dem Auftreten koronarer Herzkrankheit belegt. Somit ist es möglich, eine Neigung zu koronarer Herzkrankheit bei Trägern dieses Allels, insbesondere solchen, denen gleichzeitig das IRS1-3931A-Allel (Gly971Arg-Variante) fehlt, vorherzusagen.

Ein besonderer Anwendungsbereich ist die Vorhersage einer koronaren Herzkrankheit, aber auch allgemein des kardiovaskulären Risikos (Bluthochdruck, usw.) bei Frauen, mit dem Ziel, diese einer gezielten, post-menopausalen Hormontherapie mit weiblichen Sexualhormonen zuzuführen, um das kardiovaskuläre Risiko zu vermindern.

Ein weiterer Anwendungbereich ist die Vorhersage eines erhöhten Risikos für Myokardinfarkte und plötzlichen Herztod. Dies hängt u.a. damit zusammen, daß G-Proteine auch Ionenkanäle steuern. Genauer gesagt, steuern die Gα- und Gβγ-Untereinheiten von G-Proteinen die Funktion vielfältiger Ionenkanäle, z.B. von Na[†]-Kanälen, Ca^{2†}-Kanälen und K[†]-Kanälen. Eine genau abgestimmte Regulation solcher Ionenkanäle ist für alle elektrisch erregbaren Gewebe von großer Wichtigkeit, insbesondere für das

18

Herz (De Waard, M., Liu, H., Walker, D., Scott, V.E., Gurnett, C.A., and Campbell, K.P. Direct binding of G-protein βγ complex to voltage-dependent calcium channels. Nature 385(6615):446-450, 1997; Ma, J.Y., Catterall, W.A., and Scheuer, T. Persistent sodium currents through brain sodium channels induced by G protein βγ subunits. Neuron 19(2):443-452, 1997; Kofuji, P., Davidson, N., and Lester, H.A. Evidence that neuronal G-protein-gated inwardly rectifiying K* channels are activated by Gβγ subunits and function as heteromultimers. Proc.Natl.Acad.Sci.USA 92:6542-6546, 1995; Krapivinsky, G., Krapivinsky, L., Wickman, K., and Clapham, D.E. Gβγ binds directly to the G protein-gated K* channel, I_{KACh}. J.Biol.Chem. 270:29059-29062, 1995).

Es hat sich gezeigt, daß Personen, die das GNB3-T825-Allel tragen, eine verstärkte Aktivität myokardialer K*- Kanäle zeigen. Dies führt zu einer beschleunigten Repolarisation der Herzmuskelzelle, und damit zu einer verkürzten Refraktärzeit. Diese Personen unterliegen damit einem erhöhten Risiko für Herzrhythmusstörungen, insbesondere ventrikuläre Tachykardien, Extrasystolen, Kammerflattern und Kammerflimmern. Sie tragen ein verstärktes Risiko für einen plötzlichen Herztod auch im Rahmen eines akuten Myokardinfarkts.

Schließlich zeigen Träger des GNB3-825T-Allels bereits im Alter von 20 - 30 Jahren deutliche Veränderungen der Eigenschaften von Blutgefäßen. Besonders auffällig sind eine erhöhte Pulswellengeschwindigkeit, ein gesteigertes Schlagvolumen des Herzens und ein erhöhter Pulsdruck. Diese Phänomene sind Ausdruck einer früh einsetzenden Neigung zu einer erhöhten Steife der Blutgefäße (verminderte Compliance) als Indikator für eine Atherosklerose. Die Genotypisierung zur Feststellung des GNB3-C825T-Allelstatus ist damit geeignet, ein erhöhtes Risiko für die Atherosklerose festzustellen.

4. Vorhersage einer erhöhten Cholesterinkonzentration im Blut

19

Es ist allgemein bekannt, daß Menschen mit erhöhter
Konzentration des Gesamtcholesterin im Blut'ein erhöhtes Risiko
für koronare Herzkrankheit und Herzinfarkt zuzuordnen ist. Es
wurden 232 Personen im Alter von 18 - 40 Jahren bezüglich des
C825T - Polymorphismus in GNB3 genotypisiert und das
Gesamtcholesterin im Serum wurde mittels Standardmethodik
quantifiziert. Nachfolgend wurden die gemessenen
Cholesterinkonzentrationen (mg/dl) in Quartile aufgeteilt, und
der Genotyp am GNB3 - Locus wurde den Quartilen zugeordnet. Die
niedrigste Frequenz des 825T-Allels findet sich mit 23,3 % im
1. Quartil, während die Frequenz des 825T-Allels in den
Quartilen 2-4 deutlich höher liegt.

		Cholesterin	konzentration	ì
	1. Quartil	2. Quartil	3. Quartil	4. Quartil
	- 163 mg/dl	- 181 mg/dl	- 212 mg	> 212 mg/dl
			/dl	
TT	4 (9)	4 (8)	12 (17)	7 (12)
TC	13 (29)	21 (44)	32 (46)	28 (47)
cc	28 (62)	23 (48)	26 (37)	24 (41)
ft	23,3 %	30,2 %	40,0 %	35,6 %

Die Zahlen entsprechen n (%)

Vergleicht man die Genotypverteilung oberhalb des Medianwertes (>181 mg/dl; TT = 19; TC = 60; CC = 50; Frequenz des 825T-Allels: 38 %) mit der unterhalb des Medianwertes (≤ 181 mg/dl; TT = 8; TC = 34; CC = 51; Frequenz des 825T-Allels:26,9 %), so errechnen sich die folgenden Risiken für Cholesterinwerte im Bereich oberhalb des Medians:

Odds ratio TT/CC = 2,4 (p = 0,053); odds ratio TC/CC = 1,8 (p < 0.05)

Damit ist das 825T- Allel mit einem erhöhten Risiko für eine Hypercholesterinämie verbunden.

Eine Genotypisierung am GNB3-Locus bietet also die Möglichkeit zur Feststellung eines erhöhten Risikos für eine Hypercholesterinämie und mit dem Ziel, betroffene Personen mit Pharmaka zu behandeln, die das erhöhte Cholesterin senken können. Dazu gehören insbesondere Hemmstoffe des Enzyms 3-Hydroxy-3-methyl-glutaryl-Coenzym A-Reduktase (HMG-CoA-Reduktase), z.B. Simvastatin, Pravastatin, Fluvastatin, Lovastatin, Atorvastatin und weitere sog. "Statine". Dazu gehören auch β -Sitosterin, Sitostanol-Ester (auch in Lebensmitteln), Fibrate und weitere Substanzen, die das Cholesterin senken.

Die genannten Pharmaka wirken hierbei auch als G-Protein Hemmer und lassen sich somit bei mit einer G-Protein-Fehlsteuerung assoziierten Krankheiten therapeutisch einsetzen.

5. Vorhersage einer verstärkten Funktion des Immunsytems

G-Proteine und G-Protein-gekoppelte Rezeptoren finden sich auch in allen Zellen des Immunsystems, insbesondere auch in Leukozyten. Chemotaxis von Zellen wird vorwiegend durch $\beta\gamma$ -Untereinheiten heterotrimerer G-Proteine vermittelt. Damit sollte auch das GNB3-825T-Allel zu einer gesteigerten Reaktionsfähigkeit des Immunsystems, insbesondere zu einer verstärkten Immunabwehr führen.

In der Tat weisen neutrophile Granulozyten von Trägern des GNB3-825T-Allels eine verstärkte Chemotaxis gegenüber dem Peptid fMLP auf (Fig.5). fMLP ist ein Peptid, welches für eine Vielzahl von bakteriellen Peptiden repräsentativ ist und chemotaktische Reaktionen stimuliert. Es dient daher als Testsystem für die Messung chemotaktischer Reaktionen von Zellen, welches dem Fachmann wohlbekannt ist. Der fMLP-Rezeptor aktiviert bekanntlich Pertussistoxin-sensitive G-Proteine. Die

Feststellung, daß Granulozyten von Trägern des GNB3-825T-Allels eine verstärkte fMLP-stimulierte Chemotaxis zeigen, steht in Einklang mit der Tatsache, daß die Chemotaxis von $\beta\gamma$ -Untereinheiten vermittelt wird.

Dieses Phänomen läßt sich auch in anderen Leukozyten, z.B.
Lymphozyten, nachweisen. Somit besteht eine Korrelation
zwischen dem GNB3-825T- Allel und einer gesteigerten Chemotaxis
von Zellen des Immunsystems, z.B. von neutrophilen
Granulozyten, T- Lymphozyten, siehe auch 6., oder BLymphozyten.

Ferner beobachtet man bei Trägern des GNB3-825T-Allels eine verstärkte Proliferationsneigung von Zellen des Immunsystems, besonders auch nach Impfungen.

Gesunde Träger des GNB3-825T-Allels zeigen eine erhöhte Anzahl von Leukozyten und von CD4-positiven T-Lymphozyten (absolut und prozentual) mit gesteigertem CD4/CD8 - Quotienten. Fig.6 zeigt dies für die erhöhte Zahl von CD4 - Lymphozyten. Umgekehrt zeigen Träger des GNB3-825T-Allels zeigen auch eine verstärkte Neigung, nach einer HIV-Infektion an AIDS zu erkranken, siehe auch 7., auch im Zusammenhang mit dem Nachweis der oben beschriebenen Genveränderung in Chemokinrezeptoren, insbesondere einer Δ32- Deletion im CCR5- Rezeptor oder im Bereich des Promotors dieses Gens.

Schließlich beobachtet man bei betroffenen Personen eine verstärkte Freisetzung von immunmodulatorischen Substanzen, Hormonen und anderen Substanzen aus Leukozyten (Zytokine, Interleukine, Wachstumsfaktoren, Antikörper, gefäßwirksame Substanzen). In diesem Zusammenhang resultiert auch eine verstärkte Immunabwehr nach Transplantation von Organen oder Geweben (Niere, Herz, Knochenmark, Lunge, Haut, Leber etc.) mit der Gefahr der Transplantatabstossung. Außerdem folgt daraus eine verstärkte Neigung zu Autoimmunerkrankungen (Rheuma,

Colitis ulcerosa, Morbus Crohn) und zu allergischen Erkrankungen, z.B. der Haut, der Atemwege oder anderer Organe (z.B. Neurodermitis, Heuschnupfen, Asthma bronchiale). Dies beobachtet man auch in Kombination mit dem Nachweis anderer Genveränderungen, z.B. im β 2-adrenergen Rezeptor, hier insbesondere die Argl6Gly-Variante und die Gln27Glu-Variante.

6. Vorhersage einer gesteigerten Funktion von T-Lymphozyten

T-Lymphozyten spielen eine wichtige Rolle im menschlichen Immunsystem und vermitteln dort die zelluläre Immunantwort. Eine gesteigerte Aktivierbarkeit von T-Lymphozyten hat unter anderem zur Folge, wie bereits erwähnt, daß transplantierte Organe (Niere, Leber, Herz, Lunge, Pankreas u.a.) einer verstärkten immunologischen Attacke unterliegen. In Fig. 7 ist als ein Beispiel die Chemotaxis menschlicher T-Lymphozyten nach Stimulation mit Stromal Cell-derived Factor 1α (SDF 1α) dargestellt. Man erkennt eine deutlich gesteigerte chemotaktische Antwort der Zellen von 825T – Allelträgern im Vergleich zu Zellen von homozygoten C825-Allelträgern.

In ähnlicher Weise antworten T-Lymphozyten von 825T-Allelträgern verstärkt nach Stimulation mit anderen Chemokinen, z.B. RANTES. Dieses Verhalten erklärt sich daraus, daß die chemotaktische Antwort wesentlich von betagamma - Untereinheiten heterotrimerer G- Proteine gesteuert wird (Arai, H., Tsou, C.L., and Charo, I.F. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: Evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors.

Proc. Natl. Acad. Sci. U.S.A. 94(26):14495-14499, 1997).

Die verstärkte Aktivierung von T-Lymphozyten von 825T-Allelträgern äußert sich auch in einer gesteigerten Proliferation dieser Zellen im Vergleich zu T-Lymphozyten von homozygoten C825 Allelträgern.

Somit läßt sich insgesamt vorhersagen, daß die T-Lymphozyten von 825T-Allelträgern auf geeignete Stimulation stärker reagieren, was sich in einer gesteigerten Proliferation und Chemotaxis äußert. Dieses Verhalten manifestiert sich in Form einer gesteigerten zellulären Immunabwehr, was insbesondere bei Erkrankungen und operativen Eingriffen relevant ist, bei denen eine gesteigerte zelluläre Immunabwehr vorliegt. Zu nennen ist hier besonders die immunologische Attacke von transplantierten Organen (Niere, Leber, Pankreas, Knochenmark, Herz, etc.). Es läßt sich damit vorhersagen, daß 825T-Allelträger vermehrt dazu neigen, gegen solche transplantierten Organe eine akute oder chronische Abstossungsreaktion zu entwickeln. Diese Abstossungsreaktion wird weiter verstärkt, falls die transplantierten Organe von einem Spender stammen, der selbst Träger eines 825T-Allels ist. Dies erklärt sich damit, daß Organe und Gewebe solcher Spender auf die gesteigerte immunologische Attacke durch Zellen des Empfängers bei Vorhandensein eines 825T-Allels verstärkt reagieren. Ferner findet sich eine verstärkte Reaktion bei akuten oder chronischen Virusinfektionen.

7. Vorhersage einer verstärkten Progression von AIDS

Die Vermehrung des HIV-Virus in T-Lymphozyten wird durch eine Aktivierung von Chemokinrezeptoren, deren Wirkung über die Aktivierung von G-Proteinen vermittelt wird, gesteigert (Kinter, A., Catanzaro, A., Monaco, J., Ruiz, M., Justement, J., Moir, S., Arthos, J., Oliva, A., Ehler, L., Mizell, S., Jackson, R., Ostrowski, M., Hoxie, J., Offord, R., and Fauci, A.S. CC-chemokines enhance the replication of T-tropic strains of HIV-1 in CD4(+) T cells: role of signal transduction.

Proc.Natl.Acad.Sci.U.S.A. 95(20):11880-11885, 1998).

Damit ist zu erwarten, daß in T-Lymphozyten von 825T-Allelträgern, die eine gesteigerte Aktivierbarkeit von G-Proteinen aufweisen, nach HIV-Infektion eine verstärkte Virusvermehrung stattfindet. Somit haben diese Patienten ein erhöhtes Risiko, nach HIV-Infektion früher an AIDS zu erkranken

als HIV-positive Patienten, die homozygot für das C825-Allel am GNB3-Locus sind. Nachfolgend ist die Genotypverteilung von 515 HIV-positiven Patienten und von 622 HIV-negativen Blutspendern dargestellt.

	HIV positiv	HIV negativ
TT	64	56
TC	235	276
CC	216	290
Summe	515	622
T-Allelfrequenz	35,2 %	31,2 %

Es findet sich ein signifikanter Unterschied der Genotypverteilung zwischen gesunden Kontrollprobanden und HIV-positiven Personen (chi quadrat = 4.253, 1 Freiheitsgrad, p = 0.0392; chi-square test for trend). Das Risiko für den TT-versus den CC-Genotyp, HIV-positiv zu sein beträgt damit 1,5 (1,0 - 2,3; p= 0.035; chi Quadrat = 4.4).

Es findet sich eine weitere Akkumulation des 825T-Allels innerhalb der Gruppe von HIV-positiven Patienten die an AIDS erkrankt sind, bzw. deren Anzahl CD4-positiver Zellen unter 200 pro µl Blut abgesunken ist.

	HIV positiv, CD4 < 200 Zellen/ µl Blut	HIV positiv, CD4 ≥ 200 Zellen / µl Blut
TT	40	14
TC CC	122	89
	113	80
Summe	275	183
T-Allelfrequenz	36,7 %	32 %

Damit besteht bei HIV-positiven Patienten, die ein 825T-Allel tragen, ein erhöhtes Risiko, an AIDS zu erkranken. Für homozygote 825T-Allelträger ist das Risiko gegenüber homozygoten C825-Allelträgern 2-fach erhöht (OR TT/CC = 2,0 (1,0-3,9; p<0,05)).

Eine Genotypisierung am GNB3-Locus bietet also die Möglichkeit, daß HIV-positiven 825T-Allelträgern ein erhöhtes Risiko zugeordnet wird, eine verstärkte Progression der Erkrankung zu zeigen, wobei es insbesondere zu einer verstärkten Vermehrung des AIDS-Virus kommt. Ferner ist das Risiko eines schnelleren Absinkens der CD4-Zellen damit verbunden.

Im Rahmen der Infektion mit dem HIV-Virus (sexueller Übertragungsweg) kommt es zumeist zunächst zum Befall von Makrophagen, Monozyten und Langerhanszellen. Die sogenannten "M-tropen" "R5" HIV-Viren benutzen zum Eintritt in diese Zellen u.a. einen Chemokinrezeptor vom Typ CCR5. Individuen, bei denen eine homozygote CCR5 Δ 32-Deletion nachzuweisen ist, haben ein vermindertes Risiko für eine HIV-Infektion. Personen, bei denen das CCR5 Δ 32-Allel in heterozygoter Form vorliegt, zeigen einen verlängerten Zeitraum von der HIV-Infektion bis zur Serokonversion, bzw. eine verzögerte Progression der Erkrankung. (1. Quillent, C., Oberlin, E., Braun, J., Rousset, D., Gonzalez-Canali, G., Metais, P., Montagnier, L., Virelizier, J.L., Arenzana-Seisdedos, F., and Beretta, A. HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene . Lancet 351(9095):14-18, 1998; 2. Mummidi, S., Ahuja, S.S., Gonzalez, E., Anderson, S.A., Santiago, E.N., Stephan, K.T., Craig, F.E., O'Connell, P., Tryon, V., Clark, R.A., Dolan, M.J., and Ahuja, S.K. Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat. Med. 4(7):786-793, 1998; 3. Magierowska, M., Theodorou, I., Debre, P., Sanson, F., Autran, B., Riviere, Y., Charron, D., and Costagliola, D. Combined genotypes of CCR5, CCR2, SDF1, and HLA genes can predict the long-term nonprogressor status in human immunodeficiency virus-1- infected individuals. Blood 93(3):936-941, 1999; 4. Michael, N.L., Louie, L.G., Rohrbaugh, A.L., Schultz, K.A., Dayhoff, D.E., Wang, C.E., and Sheppard, H.W. The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression [see comments]. Nat. Med.

3(10):1160-1162, 1997; 5. Fauci, A.S. Host factors and the pathogenesis of HIV-induced disease. *Nature* 384:529-534, 1996.)

26

Im Gegensatz dazu verstärkt die Gegenwart einer Variante im CCR5-Promoter (CCR5P1) die AIDS-Progression, insbesondere bei homozygoten CCR5P1-Trägern. (Martin, M.P., Dean, M., Smith, M.W., Winkler, C., Gerrard, B., Michael, N.L., Lee, B., Doms, R.W., Margolick, J., Buchbinder, S., Goedert, J.J., O'Brien, T.R., Hilgartner, M.W., Vlahov, D., O'Brien, S.J., and Carrington, M. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 282(5395):1907-1911, 1998.)

Im weiteren Verlauf der Erkrankung kommt es zu Veränderung der Virusart in der Weise, daß die sogenannten "T-tropen" (X4)-Viren überwiegen, welche dann vorwiegend CD4-positive T-Lymphozyten befallen. Der Eintritt dieser Viren erfolgt über den G-Protein- gekoppelten CXCR4 - Chemokinrezeptor, zu dessen natürlichen Liganden u.a. Stromal Cell Derived Factor 1 alpha (SDF-1 α) gehört. Eine Reihe von Chemokinen (SDF-1 α , RANTES, etc.) stimulieren die Vermehrung von T-tropen Viren in CD4positiven T-Zellen, wobei der Signalübertragung über Pertussistoxin-sensitiven G-Proteinen eine entscheidende Bedeutung zukommt: Eine Hemmung der G-Proteinaktivierung durch Inkubation von Zellen mit Pertussistoxin reduziert die Virusvermehrung insbesondere bei niedriger Viruszahl. (Kinter, A., Catanzaro, A., Monaco, J., Ruiz, M., Justement, J., Moir, S., Arthos, J., Oliva, A., Ehler, L., Mizell, S., Jackson, R., Ostrowski, M., Hoxie, J., Offord, R., and Fauci, A.S. CCchemokines enhance the replication of T-tropic strains of HIV-1 in CD4(+) T cells: role of signal transduction. Proc. Natl. Acad. Sci. U.S.A. 95(20):11880-11885, 1998.) Umgekehrt läßt sich die Schlußfolgerung ziehen, daß bei Vorliegen eines 825T-Allels, welches die Expression von G β 3-s und G β 3-s2 und eine verstärkte Aktivierbarkeit von G-Proteinen anzeigt, die Vermehrung solcher Viren und damit die AIDS -Progression gesteigert sein sollten.

Eine Veränderung im Gen, welches für SDF-1 kodiert (G→A - Transition bei Position 801, gezählt vom Startkodon) wird als SDF1-3'UTR-801G-A oder als SDF1-3'A bezeichnet. Homozygote SDF1-3'A zeigen eine verminderte Progression zu AIDS. (Winkler, C., Modi, W., Smith, M.W., Nelson, G.W., Wu, X., Carrington, M., Dean, M., Honjo, T., Tashiro, K., Yabe, D., Buchbinder, S., Vittinghoff, E., Goedert, J.J., O'Brien, T.R., Jacobson, L.P., Detels, R., Donfield, S., Willoughby, A., Gomperts, E., Vlahov, D., Phair, J., and O'Brien, S.J. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC) [see comments].

Zum Nachweis einer verstärkten AIDS-Progression von 825TAllelträgern wurden 690 HIV-positive, homo- und heterosexuelle
Personen (Männer und Frauen) untersucht, bei den das HIV-Virus
auf sexuellem Wege übertragen wurde. Nach Genotypisierung
wurden die folgenden Endpunkte der Erkrankung festgelegt, die
eine mögliche Definition der Erkrankung an AIDS darstellen:

- AIDS. Hierbei ist AIDS definiert als AIDS- definierende Erkrankung oder CD4 -Zellzahl < 200. Diese AIDS -Definition entspricht der 1993 vom Center for Disease Control (CDC; Atlanta, USA) revidierten AIDS- Definition.
- 2.CD4 Zellzahl < 200
- 3. Minimale CD4-Zellzahl
- 4. Maximale Viruslast

In Fig. 9 ist der Zeitpunkt vom ersten positiven HIV-Test bis zur AIDS- Diagnose als Kaplan- Meier- Kurven in Abhängigkeit vom Genotyp dargestellt. Fig. 9 zeigt, daß homozygote 825T-Allelträger den Endpunkt AIDS gemäß der CDC - Definition von 1993 signifikant früher erreichen, als homozygote oder heterozygote 825C-Allelträger.

Fig. 10 zeigt den Zeitraum zwischen erstem positiven HIV - Test und Absinken der CD4-Zellzahl unter 200. Hier ist der Zeitverlauf für homozygote 825T-Allelträger gegenüber homo- und heterozygoten C825-Allelträgern ebenfalls drastisch beschleunigt.

Fig. 11 zeigt den Zeitverlauf von erstem positivem HIV - Test und individuell niedrigster CD4-Zellzahl. Hier ergibt sich ebenfalls eine signifikante Beschleunigung bei homozygoten 825T-Allelträgern gegenüber homo- und heterozygoten C825-Allelträgern.

In Fig. 12 ist der Zeitraum zwischen erstem positiven HIV-Test und maximaler Viruslast dargestellt. Wiederum zeigt sich, daß 825T-Allelträger ein deutlich erhöhtes Risiko aufweisen, früher eine maximale Viruslast aufzuweisen als homo- oder heterozygote C825-Allelträger.

7.1 Korrelation zum CCR5-Allelstatus

Nachfolgend wurde zusätzlich der CCR5-Allelstatus bezüglich des Vorhandenseins der $\Delta 32$ -Deletion untersucht. Die in der nachfolgenden Tabelle dargestellten relativen Risiken (RH) werden zusammen mit den 95 % Konfidenzintervallen (95 % CI) dargestellt.

Ohne Beachtung des genetischen Hintergrunds ist das Risiko für AIDS oder Absinken der CD4-Zellzahl < 200 für homozygote 825T-Allelträger gegenüber homo- und heterozygoten C825-Allelträgern etwa verdoppelt. Ohne Berücksichtigung des genetischen Hintergrundes findet man ein 1,4-fach erhöhtes Risiko für CCR5 $\Delta 32$ -Allelträger im Beobachtungszeitraum eine CD4-Zellzahl < 200 zu erreichen. Nachfolgend wird der Einfluß des 825T-Allels für CCR5-Wildtyp und für CCR5 $\Delta 32$ getrennt untersucht. Bei Vorhandensein des homozygotem CCR5-Wildtyp beträgt das Risiko

für AIDS oder CD4-Zellzahl < 200 für homozygote 825T-Allelträger gegenüber heterozygoten C825-Allelträgern etwa 1,6.

Bei Vorhandensein des CCR5A32 Genotyps, welcher ursprünglich als protektiv beschrieben wurde, findet man jedoch für homozygote 825T-Allelträger eine weitere Erhöhung des Risikos auf nahezu das 3-fache gegenüber heterozygoten C825-Allelträgern.

Tabelle:
GNB3 825 Genotypstatus und CCR5 -Genotypstatus und AIDSProgression
COX Proportional Hazard Modell:

Konstant	Zielgröße	Genstatus untersucht	RH	95% CI
nichts	AIDS	GNB3 TT versus TC+CC	1.9	(1.4-2.6)
	CD4 < 200	n a same	1.9	(1.4-2.6)
	CD4 min	H.	1.5	
	PCR max	11		(1.2-2.0)
	FCK MAX		1.5	(1.2-2.0)
nichts	AIDS	CCR5 WT versus CCR5 Δ	ns	
	CD4 < 200		1.4	(1.0-1.9)
	CD4 min	11	ns	
	PCR max	11	ns	
CCR 5 = WT	AIDS	GNB3 TT versus TC+CC	1.6	(1.1-2.3)
	CD4 < 200	11	1.6	(1.1-2.3)
	CD4 min	15	1.4	(1.1-1.9)
	PCR max	н	1.4	(1.0-1.9)
CODE ADD	3700	CVD 3 mm		
CCR5 ∆32	AIDS	GNB3 TT versus TC +	2.7	(1.3 - 5.5)
	CD4 < 200	n,	3.0	(1.5-6.3)
	CD4 min	11	2.1	(1.1-3.8)
	PCR max	11	1.9	(1.0-3.4)

RH = relative hazard; 95% CI = 95 % Kofidenzintervall; GNB3 = G -Protein $\beta3$ -Untereinheit; TT = Homozygot für 825T; TC und CC, hetero- oder homozygot für C825; CCR5 WT = CCR5-Wildtyp (Fehlen der $\Delta32$ -Deletion); PCR-max, Zeitraum bis zur maximalen Viruslast; AIDS, Zeitraum bis zum Eintritt von AIDS gemäß CDC-Definitio von 1993; ns = nicht signifikant

Es läßt sich daher zusammenfassend für HIV-positive Patienten feststellen:

- 1. Homozygotie für das 825T-Allel in GNB3 erhöht das Risiko für die Progression zu AIDS.
- 2. Dieser Effekt wird bei Vorliegen des CCR5Δ32-Genotyps weiter verstärkt.
- 8. Vorhersage einer erhöhten CO_2 bzw. Hypoxietoleranz

Bekanntlich sind G-Proteine auch an der Regulation des Atemantriebs durch Hypoxie bzw. Hyperkapnie beteiligt (Prabhakar, N.R., Kou, Y.R., and Kumar, G.K. G proteins in carotid body chemoreception. Biol.Signals 4:271-276, 1995; Cachero, T.G., Rocher, A., Rigual, R.J., and Gonzalez, C. Effects of fluoride and cholera and pertussis toxins on sensory transduction in the carotid body. Am.J.Physiol.Cell Physiol. 269:C1271-C1279, 1995).

Es hat sich herausgestellt, daß Probanden, die das GNB3-825T-Allel tragen, einen verminderten Antrieb der Atmung (Atemminutenvolumen) bei Erhöhung des inspiratorischen pCO2 und damit eine gesteigerte CO2-Toleranz zeigen. Eine erhöhte CO2-Toleranz stellt insbesondere für solche Personen ein erhöhtes Risiko dar, in deren Arbeitsumgebung es zu einer CO2-Akkumulation kommen kann. Die verminderte CO2-Sensitivität beinhaltet dabei ein erhöhtes Risiko für eine spontan auftretende Bewußtlosigkeit, z.B. im Rahmen des narkotischen Effekts von CO2. Betroffen hiervon sind z.B. Berufstaucher, Tunnelarbeiter, Piloten, U-Boot-Fahrer usw. Mit dem Nachweis des GNB3-825T-Allels können solche Personen identifiziert und gewarnt werden, so daß das Unfallrisiko vermindert wird.

9. Vorhersage von Osteoporose

Eine generalisierte Osteoporose stellt eine der häufigsten Erkrankungen von Frauen nach der Menopause dar und beinhaltet ein erhöhtes Risiko für Knochenfrakturen. G-Proteine sind an Prozessen, die zum Umbau des Knochens führen, maßgeblich beteiligt. Eine veränderte Aktivierbarkeit von G- Proteinen ist damit erheblich am Erkrankungsrisiko für Osteoporose beteiligt (May, L.G. and Gay, C.V. Multiple G-protein involvement in parathyroid hormone regulation of acid production by osteoclasts. J.Cell Biochem. 64(1):161-170, 1997; Gordeladze, J.O., Lund, H.W., Jablonski, G., and Bruland, O.S. Diverse expression of G-proteins in human sarcoma cell lines with different osteogenic potential: Evidence for the involvement of Gizin cell proliferation. J.Cell.Biochem. 60:95-106, 1996).

Auch in diesem Fall zeigen Trägerinnen des GNB3-825T-Allels ein erhöhtes Risiko, an Osteoporose zu erkranken.

10. Vorhersage von Morbus Alzheimer

Eine geänderte Aktivierbarkeit von G-Proteinen und eine veränderte Regulation von K*-Kanälen wurde bei Patienten mit Morbus Alzheimer beschrieben. Ferner wurde eine verminderte Aktivierung der Adenylylcyclase nach Stimulation β - adrenerger Rezeptoren beschrieben. Diese Phänomene können auf eine erhöhte Aktivierbarkeit Pertussistoxin-sensitiver G-Proteine mit Expression der Gβ3s-Spleißvariante zurückgeführt werden (Okamoto, T., Takeda, S., Murayama, Y., Ogata, E., and Nishimoto, I. Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J.Biol.Chem. 270:4205-4208, 1995; Nishimoto, I., Okamoto, T., Matsuura, Y., Takahashi, S., Murayama, Y., and Ogata, E. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G_0 . Nature 362:75-79, 1993; Etcheberrigaray, R., Ito, E., Oka, K., Tofel-Grehl, B., Gibson, G.E., and Alkon, D.L. Potassium channel dysfunction in fibroblasts identifies patients with Alzheimer disease. Proc.Natl.Acad.Sci.USA 90:8209-8213, 1993; Yamatsuji, T., Matsui, T., Okamoto, T., Komatsuzaki, K., Zakeda, S., Fukumoto, H., Iwatsubo, T., Suzuki, N., Asami-Odaka, A., Ireland, S.,

Kinane, T.B., Giambarella, U., and Nishimoto, I. G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer's disease-associated mutants of APP. Science 272:1349-1352, 1996; Cowburn, R.F., Wiehager, B., Ravid, R., and Winblad, B. Acetylcholine muscarinic M2 receptor stimulated [35S]GTPγS binding shows regional selective changes in Alzheimer's disease postmortem brain. Neurodegeneration 5:19-26, 1996).

Demzufolge weisen Träger des GNB3-825T-Allels ein erhöhtes Risiko auf, an Morbus Alzheimer zu erkranken. Zudem trägt die bei Trägern des GNB3-825T-Allels zu beobachtende früh einsetzende unter 3. beschriebene Atherosklerose zur Entstehung des Morbus Alzheimer bei.

11. Vorhersage einer erektilen Dysfunktion (Impotenz)

Die Erektion des Penis nach sexueller Stimulation wird durch einen gesteigerten Blutzufluß bei gleichzeitig vermindertem Blutabfluß hervorgerufen. Die für den gesteigerten Blutzufluß erforderlichen Mechanismen umfassen die Wirkungen von Hormonen, deren Wirkung über G-Proteine vermittelt wird.

Es wurden 63 Männer mit nachgewiesener erektiler Dysfunktion und 614 gesunde, männliche Kontrollen am GNB3 825-Locus genotypisiert:

	Erektile Dysfunktion	Kontrollmänner
TT	2 (3)	55 (9)
TC	20 (32)	275 (45)
СС	41 (65)	284 (46)
Summe	63	614
FT (%)	19,0 %	31,4 %

Die Zahlen sind n (%)

Die Verteilung der Genotypen ist signifikant verschieden (chi-Quadrat = 8,7; 2 Freiheitsgrade, p = 0,01), wobei bei den Männern mit erektiler Dysfunktion eine drastische Reduktion der Frequenz des 825T-Allels auf 19 % auffällt. Hierdurch lassen sich für die erektile Dysfunktion im Vergleich zu einer randomisierten Kontrollgruppe die folgenden Risiken (odds ratios; OR) errechnen:

CC/TT, OR =
$$4.0$$
 (95 % Cl: $0.9 - 16.9$; p = 0.04)
CC/TC, OR = 2.0 (95 % Cl: $1.1 - 3.5$; p = 0.01).

Damit haben homozygote C825-Allelträger gegenüber homozygoten 825T-Allelträgern ein 4-fach erhöhtes Risiko, gegenüber heterozygoten 825T-Alleträgern ein verdoppeltes Risiko, an einer erektilen Dysfunktion (Impotenz) zu erkranken. Ferner ist das Risiko für heterozygote 825T-Allelträger gegenüber homozygoten 825T-Allelträgern etwa verdoppelt.

12. Vorhersage von Schilddrüsenfunktionsstörungen

Träger des 825T-Allels weisen häufig eine gestörte Schilddrüsenfunktion auf und müssen mit Schilddrüsenhormonen (z. B. Thyroxin) behandelt werden.

13. Vorhersage eines erhöhten Schwangerschaftsrisikos

Hochdruck, Ödembildung und das sog. "HELLP-Syndrom" bedeuten eine schwerwiegende Gefahr für die Schwangerschaft, sowohl für das Leben der Mutter als auch für das Leben des ungeborenen Kindes. Es wurde gefunden, daß bei Trägerinnen des 825T-Allels, die einen Schwangerschaftshochdruck entwickeln (Gestose, Präeklampsie) ein hohes Risiko für eine Frühgeburt (Geburt vor der 37. Schwangerschaftswoche oder Geburtsgewicht des Kindes kleiner als 2500g, siehe auch 14.) besteht, wobei für diese Kinder zusätzlich das Risiko für eine Totgeburt oder für einen Tod nach der Entbindung besteht. Gleichzeitig erhöht sich bei Frauen, die Trägerinnen des 825T-Allels sind und unter

Schwangerschaftsgestose leiden, das Risiko für spontane Aborte (habituelle Aborte).

Der Nachweis eines 825T-Allels ist daher geeignet, ein erhöhtes Todesrisiko für das ungeborene Kind von Schwangeren mit Schwangerschaftsgestose vorherzusagen.

Die Schwangerschaftsgestose (Präeklampsie) ist eine schwerwiegende Erkrankung, die mit Bluthochdruck, Ödemen und Proteinausscheidung einhergeht. Die Gestose ist mit einem erheblichen Risiko für die Schwangere, insbesondere aber für das ungeborene Kind verbunden. Es wurden 188 Frauen ohne Schwangerschaftsgestose und 191 Frauen mit Schwangerschaftsgestose untersucht. Dabei wurde der Genstatus am GNB3-Locus und der Genstatus bezüglich der Glu298Asp - Variante im Gen untersucht, das für die endotheliale NO-Synthase (eNOS) kodiert. (Yoshimura et al. "A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese", Hum Genet. 1998 Jul;103(1):65-9.)

Bei gleichzeitigem Vorliegen eines 825T-Allels in GNB3 (TC-oder TT-Genotyp) führt das homozygote Vorliegen der 298Asp-Variante in eNOS zu einem 10-fach gesteigerten Risiko für eine Schwangerschaftsgestose. Bei gleichzeitigem Vorliegen eines 825T-Allels in GNB3 (TC-oder TT-Genotyp) führt das heterozygote Vorliegen der 298Asp-Variante in eNOS zu einem 2-fach gesteigerten Risiko für eine Schwangerschaftsgestose.

14. Vorhersage eines niedrigen Geburtsgewichts

Bekannterweise besteht ein empirischer Zusammenhang, der eine inverse Relation zwischen Geburtsgewicht und dem Risiko beschreibt, im Laufe des Lebens an Übergewicht, Hypertonie, oder Typ-2- Diabetes zu erkranken. Hierbei wurde beschrieben, daß Individuen mit sehr niedrigem Geburtsgewicht besonders zu diesen Erkrankungen neigen. Es wurde deshalb untersucht, ob für

Kinder mit 825T-Allel ein erhöhtes Risiko besteht, mit niedrigem Geburtsgewicht auf die Welt zu kommen. Als niedriges Geburtsgewicht wurde dabei dasjenige Gewicht definiert, das sich nach Aufteilung aller Gewichte im niedrigsten Quartil der gesamten Verteilung befindet. Vergleicht man die Verteilung der Genotypen am GNB3-Locus zwischen dem 1. Quartil mit den zusammengefaßten Quartilen 2 - 4 so zeigt sich für homozygote 825T-Allelträger gegenüber homozygoten C825-Allelträgern ein 6-fach erhöhtes Risiko (95% CI = 1,3 - 28,6; p < 0.05) für niedriges Geburtsgewicht (Quartil 1 versus Quartile 2-4) und für heterozygote 825T-Allelträger ein 2,4-fach erhöhtes Risiko (95 % CI = 0,7 - 7,9).

G β 3 Gen 825T - Allel und Geburtsgewicht

	1.	2.	3.	4.	24.Quar-		
	Quartil	Quartil	Quartil	Quartil	til		
Geburts-	-3130 g	-3430 g	-3750 g	> 3750 g	Alle >		
gewicht					3130 g		
TT	5	1	2	2	5		
TC	11	9	11	7	27		
CC	5	11	8	11	30		
Summe	21	21	21	20	62		
% T	50	26	36	27,5	30		

Nach einer Genotypisierung am GNB3-Locus wird also Trägern eines 825T-Allels ein erhöhtes Risiko zugeordnet, mit niedrigem Geburtsgewicht geboren zu werden und einer intrauterinen Wachstumsretardierung zu unterliegen.

15. Pharmakogenetik

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Pharmakogenetik des GNB3-825T-Allels, d.h. die Möglichkeit, anhand des Genotyps die Wirkung von Pharmaka vorherzusagen.

Die meisten Pharmaka (Hormone, Rezeptoragonisten) üben ihre Wirkung über Rezeptoren aus, die an G-Proteine koppeln.
Antagonisten blockieren die Hormon- Rezeptor- Interaktion.

Es hat sich nun herausgestellt, daß die Genotypisierung am GNB3-Locus dazu geeignet ist, die Wirksamkeit von Pharmaka anhand des Genotyps vorherzusagen. Dies betrifft die Ansprechbarkeit in vivo auf Hormone, Transmitter (auch Neurotransmitter) oder Pharmaka, die solche G-Protein-Heterotrimere aktivieren, welche die G-Protein-Untereinheiten Gß3 und Gß3s beinhalten. Damit einher geht die Vorhersage einer verminderten Wirksamkeit von Hormonen, Neurotransmittern oder Pharmaka, welche die G-Protein-Untereinheit GaS stimulieren, z.B. β -adrenerge Agonisten. Dies gilt auch bei gleichzeitiger Verwendung des Nachweises der Argl6Gly-Variante und der Gln27Glu-Variante im $\beta2$ -adrenergen Rezeptor. Das Vorhandensein des GNB3-825T-Allels zeigt also eine veränderte Pharmakogenetik an und sollte bei der spezifischen Auswahl einer Therapieform (pharmakologisch oder nicht- pharmakologisch) und bei der Dosierung von Pharmaka oder Hormonen bei Hypertonie, Diabetes mellitus, koronarer Herzkrankheit, akutem Myokardinfarkt mit oder ohne Herzrhythmusstörungen, Herzrhythmusstörungen, Transplantatabstossung, erektiler Dysfunktion etc. berücksichtigt werden.

15.1 Erythropoetin

Im diesem Zusammenhang erlaubt das Vorhandensein des GNB3-825T-Allels aber auch die Vorhersage der Wirksamkeit der Gabe von Erythropoetin auf die Blutbildung und Vorhersage der Entstehung einer Hypertonie unter dieser Therapie sowie die Vorhersage der Gefahr, unter immunsuppressiver Therapie (z.B. mit Cyclosporin) eine Hypertonie zu entwickeln.

37

15.2 Agonisten am Serotonin-Rezeptor

Ebenfalls in diesem Zusammenhang kann die Wirksamkeit von Substanzen zu Therapie und Prophylaxe des Migräneanfalls (Agonisten am Serotonin-Rezeptor) vorhergesagt werden.

Dies wird anhand des folgenden Beispiels demonstriert. Hierbei wurde bei Probanden intrakoronar ein α2-adrenerger Agonist (BHT 933) appliziert, der zur Kontraktion von Koronargefäßen führt. Dieser Effekt wurde über die Flußänderung durch diese Gefäßabschnitte quantifiziert. Wie Fig. 8 zeigt, beobachtet man eine verstärkte Abnahme der Koronardurchblutung bei Trägern des GNB3-825T-Allels, unabhängig davon, ob sie an einer koronaren Herzkrankheit (KHK) erkrankt sind. Das heißt, daß bei Trägern des GNB3-825T-Allels eine Verstärkung der Wirkung solcher Pharmaka vorauszusagen ist.

15.3 β-Adrenozeptorblocker

Als weiteres Beispiel für den Einsatz einer Genotypisierung am GNB3-Locus ist die Vorhersage der Wirksamkeit von Substanzen zu benennen, welche β -adrenerge Rezeptoren blockieren. Hier ist anzuführen, daß junge, gesunde 825T-Allelträger (homo- oder heterozygot) im Vergleich zu homozygoten C825-Allelträgern ein erhöhtes Schlagvolumen des Herzens aufweisen (TC/TT = 92,9 ± 4,1 ml (n=30); CC = $74,7 \pm 4,0$ ml (n=19);p<0,01). Nach intravenöser Gabe des β-Adrenozeptorblockers Propanolol verringert sich das Schlagvolumen im Mittel um 3 ml bei homozygoten C825-Allelträgern, hingegen um 12 ml bei homo- und heterozygoten 828T-Allelträgern (p<0,05). In gleicher Weise findet sich eine verstärkte Verringerung des Herzzeitvolumens bei 825T-Allelträgern. Somit kann mittels Feststellung des GNB3 C825T-Status die pharmakologisch-physiologische Wirkung einer Blockade von β -adrenergen Rezeptoren vorhergesagt werden. Dies bezieht sich nicht nur auf nicht-selektive β -Blocker wie das

genannte Propanolol, sondern auf alle β -Adrenozeptorblocker, also auch selektive β 1- und β 2-Rezeptorblocker.

38

15.4 Prostaglandin El

Bei Vorliegen einer erektilen Dysfunktion erfolgt zur diagnostischen Abklärung, aber auch, um möglicherweise eine Dauertherapie einzuleiten, eine Injektion von Prostaglandin El ins corpus cavernosum. Prostaglandin El aktiviert die Adenylyzyclase, und die nachfolgende Bildung von cAMP relaxiert glatte Gefäßmuskelzellen und induziert damit einen erhöhten arteriellen Blutenstrom und damit die Erektion des Penis. Der Grad der erfolgenden Erektion kann über ein Punktesystem (Score 0-5) quantifiziert werden. Hierbei entsprechen die Scores 4 und 5 einer suffizienten, für eine Penetration ausreichende Erektion, während Scores < 4 als nicht ausreichend zu betrachten sind.

Bei 87 Männern mit erektiler Dysfunktion erfolgte eine Gabe von 10pg Prostaglandin E1 mit Quantifizierung des Erektions-Scores. Hierbei ergab sich folgende Verteilung der Genotypen: Ausreichende Erektion (Scores 4 und 5): TT=3; TC=15; CC=16; (Frequenz des GNB3 825T-Allels: 30.9 %). Unzureichende oder fehlende Erektion: TT=3; TC=16; CC=34; (Frequenz des GNB3 825T-Allels: 20.8 %). In ähnlicher Weise findet man bei homzygoten C825-Allelträgern nach Injektion von Prostaglandin E1 einen verminderten Anstieg der dopplersonographisch gemessenen arteriellen Durchblutung.

Somit läßt sich homozygoten 825T-Allelträgern ein ca. verdoppeltes Risiko zuordnen, auf die Injektion mit Prostaglandin El nicht mit einer ausreichenden Erektion zu reagieren.

PCT/EP99/06534 WO 00/15785

39

16. GB3-Hemmer

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Herstellung von Pharmaka, welche die Gβ3s - Spleißvariante hemmen.

Prinzipiell ist es möglich, Chemikalien zu synthetisieren, welche die Funktion des $G\beta 3s$ - Proteins hemmen, indem diese z.B. zu einem beschleunigten Abbau des Proteins führen, oder seine Interaktion und Kombination mit α - und γ - Untereinheiten des humanen G-Proteins hemmen. Zur Identifizierung solcher Substanzen ist ein Screeningsystem erforderlich. Hierzu eignet sich die Expression der Gβ3s-Untereinheit alleine oder in Kombination mit unterschiedlichen G α - und G γ -Untereinheiten in Sf9-Insektenzellen, in anderen zur Transfektion geeigneten Zellen, oder die Verwendung gereinigter Gα- und Gγβ3s -Untereinheiten in einem Rekonstitutionssystem in Ab- oder Anwesenheit eines G-Protein-gekoppelten Rezeptors. Mittels solcher Systeme läßt sich z.B. die Wirkung von Chemikalien auf die Rezeptor- vermittelte Bindung von GTP an die G α -Untereinheit untersuchen, wodurch letztendlich Chemikalien identifiziert werden können, welche die Funktion der Gβ3s-Untereinheit hemmen. Ein solches Testsystem kann prinzipiell auch als "High-Throughput-Screening-System" zur Testung einer Vielzahl von Substanzen eingesetzt werden.

Zweite Spleißvariante des Gβ3s-Proteins (Gβ3s-2)

Durch weitere Analysen des GNB3 Gens wurde eine weitere Spleißvariante der GB3s-Untereinheit heterotrimerer G-Proteine des Menschen gefunden, die mit $G\beta 3s-2$ bezeichnet wird.

Hierzu wurde aus neutrophilen Granulozyten von Menschen die homozygot für das C825 in GNB3 sind (CC-Genotyp), oder die heterozygot für den C825T - Polymorphismus sind (TC-Genotyp) WO 00/15785 PC

die mRNA mittels Standardmethoden extrahiert und mittels der reversen Transkriptasereaktion in cDNA umgeschrieben. Die cDNA, die für G β 3 kodiert wurde mittels einer Polymerasekettenreaktion amplifiziert. Dabei kamen die folgenden Primer zum Einsatz:

Sense: 5' - gcc gtc aga ctt tca ctg gc - 3'
Antisense: 5'-tgt tca ctg cct tcc act tcc - 3'

Die Lokalisation dieser Primer ist so gewählt, daß ein Primer im Bereich von Exon 9 des Gens liegt, während der andere Primer in Exon 11 im 3'-nicht-translatierten Bereich liegt.

Die folgenden PCR-Bedingungen wurden eingesetzt: 5 min.: 94 °C - 1 min., 60 °C - 45 sek., 72 °C - 1 min.; abschließend: 72 °C - 7 min.

Die PCR-Produkte wurden im 2,5 % Agarose-Gel in 0,5 x TBE plus 0,1 μ m/ml Ethidiumbromid aufgetrennt und unter UV-Licht visualisiert. Als Größenmarker wurde pBR322 DNA/Alu I eingesetzt.

Wie in Fig. 13 ersichtlich wird, detektiert man in Zellen von Personen, die an Position 825 der cDNA ein T-Allel tragen (heterozygot oder homozygot) ein weiteres spezifisches, verkürztes RT-PCR-Produkt.

Es wurde gefunden, daß das verkürzte PCR-Produkt eine neue Spleißvariante des Gβ3-Gens repräsentiert. Eine Darstellung dazu findet sich in Anlage 3. Gezeigt wird die komplette Sequenz der cDNA, wie sie früher von Levine et al. beschrieben wurde (Levine, M.A., Smallwood, P.M., Moen, P.T., Jr., Helman, L.J., and Ahn, T.G. Molecular cloning of beta 3 subunit, a third form of the G protein beta-subunit polypeptide. Proc.Natl.Acad.Sci.USA 87(6):2329-2333, 1990). Hierbei wird die ursprünglich von diesen Autoren vorgegebene Numerierung

beibehalten, so daß das Startkodon ATG der Position 6 der Nukleinsequenz zugeordnet wird.

Dargestellt ist die bereits früher beschriebene Deletion der Nukleotide 504 - 626 (entsprechend 498 - 620 falls die Numerierung mit dem Startkodon ATG beginnt), die durch alternatives Spleißen des Gens bei Trägern eines 825T-Allels bewirkt wird. In Anlage 3 wird dieser Bereich mit "Deletion in $G\beta3s$ " bezeichnet (Siffert, W., Rosskopf, D., Siffert, G,. Horsthemke, B. Association of the human G-protein beta3 subunit variant with hypertension Nat.Genet. 18(1):45-48, 1998). Die jetzt neu beschriebene Deletion tritt in Exon 10 des Gens auf, schließt den früher beschriebenen C825T-Polymorphimus mit ein und umfaßt 129 Nukleotide, was auf Proteinebene einem Verlust von 43 Aminosäuren entspricht (in Anlage 3 mit "Deletion in $G\beta3s-2$ " bezeichnet). Der offene Leserahmen bleibt dabei erhalten. Die genaue Lage der Deletion läßt sich wegen repetitiver Sequenzen nicht eindeutig feststellen. Es können die Nukleotide 708 - 836 oder die Nukleotide 712 - 840 wegfallen. Legt man das ATG des Startkodons mit 1 fest, so entfallen die Nukleotide 702 - 830 bzw. 706 - 834. Die Kenntnis der genauen Lage dieser Deletion ist für die neue cDNA- und Aminosäurensequenzen von G β 3s-2 unerheblich. In Anlage 3 sind ferner die Polymorphismusstellen C825T und C1423T dargestellt. Wegen der Verwendung der ursprünglichen Numerierung nach Levine et al. in Anlage 3 findet sich der C825T-Polymorphismus an Position 831 und der C1243T-Polymorphismus an Position 1249. Durch weiteres Sequenzieren wurde ein neuer T657A-Polymorphismus gefunden, der bei ca. 1-3 % aller Kaukasier auftritt.

Die neue cDNA-Sequenz von G β 3s-2 ist in Anlage 4 gemeinsam mit der Aminosäuresequenz kombiniert dargestellt.

G-Protein β -Untereinheiten gehören zur Familie der WD-repeat-Proteine. Solche β -Untereinheiten sind hoch kon \widehat{s} erviert.

42

Bekannt ist die Tatsache, daß solche β -Untereinheiten eine räumliche Struktur ausbilden, die der eines Propellers mit sieben Propellerblättern ähnelt (Sondek, J., Bohm, A., Lambright, D.C., Hamm, H.E. and Sigler, P.B. Crytal structure of a G protein $\beta\gamma$ dimer at 2.1Å resolution. Nature 379:369-374, 1996). Aufgrund der in G β 3s-2 auftretenden Deletion läßt sich vorhersagen, daß eine neue β -Untereinheit entsteht, welche, analog zu G β 3-s, nur sechs anstatt sieben solcher Rotorblätter aufweist. Dies ist in Fig. 14 schematisch dargestellt, wobei gleichzeitig die früher in G β 3-s gefundene Deletion gezeigt ist.

Zunächst wurde untersucht, ob G-Protein-Heterotrimere, welche Gβ3s-2 beinhalten funktionell aktiv sind. Dazu wurde, wie früher beschrieben, das Sf9-Insektionzellsystem eingesetzt (Siffert, W. Rosskopf, D., Siffert, G., Busch, S., Moritz, A., Erbel, R., Sharma, A.M., Ritz, E., Wichmann, H.E., Jakobs, K.H., and Horsthemke, B. Association of a human G-protein beta3 subunit variant with hypertension. Nat.Genet. 18(1):45-48, 1998). Die Zellen wurden mit Gai2, Gy12 und dem m2muskarinergen Acetylcholinrezeptor transfiziert. Die Bindung von 35S-GTPyS an permeabilisierte Zellen wurde nach Stimulation mit Carbachol (100µM) quantifiziert. Hierbei ist der spezifische Einbau von 35S-GTPyS ein Maß für die Aktivierung von G-Protein α -Untereinheiten. Wie in Fig. 15 dargestellt beobachtet man in Abwesenheit einer β -Untereinheit nur eine geringe G-Proteinaktivierung. Nach Transfektion von Gß3 oder $G\beta 3s$ wird die G-Proteinaktivierung deutlich verstärkt, wobei Gβ3s potenter als Gβ3 ist. Die neue Splicevariante Gβ3s-2 führt zur stärksten Potenzierung der durch den Agonisten Carbachol hervorgerufenen G-Proteinaktivierung. Damit wird gleichzeitig gezeigt, daß Gβ3s-2 trotz der Deletion eines Propellerblatts funktionell aktiv ist und sogar zu einer verstärkten Aktivierung von G-Proteinen führt. Damit werden auch frühere

Befunde erklärt, die eine verstärkte Aktivierbarkeit von G-Proteinen in Zellen von Personen nachgewiesen haben, welche ein 825T-Allel tragen (Siffert, W., Rosskopf, D., Siffert, G., Busch, S., Moritz, A., Erbel, R., Sharma, A.M., Ritz, E., Wichmann, H.E., Jakobs, K.H. and Horsthemke, B. Association of a human G-protein beta3 subunit variant with hypertension. Nat.Genet. 18(1):45-48, 1998. Pietruck, F., Moritz, A., Montemurro, M. Sell, A., Busch, S., Rosskopf, D., Virchow, S., Esche, H., Brockmeyer, N., Jakobs, K.H., and Siffert, W. Selectively enhanced cellular signalling by G_i proteins in essential hypertension. $G\alpha_{i2}$, $G\alpha_{i3}$, $G_{\beta 1}$ and $G_{\beta 2}$ are not mutated. Circ.Res. 79:974-983, 1996. Siffert, W., Rosskopf, D., Moritz, A., Wieland, T., Kaldenberg-Stasch, S., Kettler, N., Hartung, K., Bechmann, S., and Jakobs, K.H. Enhanced G protein activiation in immortalized lymphoblasts from patients with essential hypertension. J.Clin.Invest. 96:759-766, 1995. Wirchow, S., Ansorge, N., Rübben, H., Wiffert, G., and Siffert, W. Enhanced fMLP-stimulated chemotaxis in human neutrophils from individuals carrying out the G protein beta3 subunit 825 T-allele. FEBS Lett. 436(2):155-158, 1998).

Es ist allgemein bekannt, daß $\beta\gamma$ -Untereinheiten heterotrimerer G-Proteine unterschiedliche Isoformen der Phospholipase $C\beta$ stimulieren können. Dieses Enzym spaltet Phospholipide, z.B. Phosphatdylinositol-4,5- bisphosphat zu den "second messenger"-Molekülen Inositol-1,4,5-Trisphosphat (IP3) und 1,2- Diacylglycerol (DAG), IP3 bewirkt die Freisetzung von Calzium-Ionen aus intrazellulären Speichern, während DAG unterschiedliche Isoformen der Proteinkinase C aktivieren. Die Aktivierung von Phospholipase C ist damit ein wesentlicher Schritt in der Zellaktivierung. Es wurde untersucht, ob $\beta\gamma$ - Untereinheiten, welche C03s-2 beinhalten, die Phospholipase C13 (PLCC3) aktivieren können. Dazu wurde das C05-7 Zellsystem eingesetzt, welches in der allgemein zugänglichen Literatur häufig für die transiente Transfektion von Proteinen Verwendung findet. Diese Zellen wurden mit der PLCC3, C412 und

unterschiedlichen Gβ-Untereinheiten transfiziert. Die Zellen wurden mit radioaktiv markierten [3H]-Inositol vorbehandelt. Die Bildung von Inositolphosphaten (IP) wurde nach Standardverfahren quantifiziert, wobei die Menge der gebildeten IP ein Maß für die Aktivierung der PLC darstellt. Wie in Fig. 16 dargestellt, können βγ-Dimere die Gβ3, Gβ3s oder Gβ3s-2 enthalten die PLCβ3 aktivieren. Zum Vergleich ist ebenfalls die Aktivierung der PLCβ3 nach Transfektion von Gβ1 gezeigt.

Diese Untersuchungen belegen, daß $G\beta 3s-2$ in der Lage ist, die Stimulation typischer zellulärer Effektorsysteme zu bewirken. Es handelt sich somit um ein voll funktionsfähiges Protein, wobei Personen, die ein 825T-Allel tragen und dieses Protein exprimieren, eine verstärkte zelluläre Aktivierbarkeit zuzuordnen ist.

Die aufgefundene Spleißvariante G β 3s-2 läßt sich dadurch vorteilhaft nutzen, daß entsprechende Proteine hergestellt werden mit dem Ziel, Chemikalien zu entwickeln oder zu testen, die das Protein hemmen oder seine Interaktion mit G-Protein α -oder γ -Untereinheiten verhindern.

Insbesondere im Bereich der Therapie ist es sinnvoll, in Kenntnis der aufgefundenen Splicevariante Zellen oder Gewebe stabil oder transient zu transfizieren. Ebenfalls zu therapeutischen Zwecken kann die G β 3s-2 Splicevariante in menschlichen oder tierischen Zellen oder Geweben exprimiert werden.

Eine weitere Verwendung der in Anlage 3 dargestellten Nucleinsäuresequenz der cDNA besteht darin, Gensonden zum Nachweis dieser Nucleinsäuresequenz zu entwickeln. Weiterhin kann in Zellen und Geweben eine Antisense-Konstrukte (z.B. Oligonukleotid) eingebracht werden mit dem Ziel, die Synthese der G β 3s-2 Splicevariante zu unterdrücken.

Antisense-Konstrukte können auch durch Zuhilfenahme unterschiedlicher Vektoren (z.B. gentechnisch veränderte Viren) in solche Zellen oder Gewebe eingebracht werden. WO 00/15785

46

Patentansprüche

- 1. Nukleinsäuresequenz codierend für die Gß3-Untereinheit des humanen G-Proteins mit der in Anlage 1 dargestellten Sequenz.
- 2. Nukleinsäuresequenz codierend für die Gß3-Untereinheit des humanen G-Proteins mit der in Anlage 2 dargestellten Sequenz.
- 3. Verwendung einer Genveränderung im Gen für die Gß3-Untereinheit des humanes G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Ermittlung des Risikos, an einer mit G-Protein-Fehlsteuerung assoziierten Krankheit zu erkranken.
- 4. Verwendung nach Anspruch 3 zur Ermittlung des Risikos, an Diabetes mellitus Typ 2, Übergewicht und Adipositas, Hypercholesterinämie, koronare Herzkrankheit, Myokardinfarkt, plötzlichem Herztod, Osteoporose, Atherosklerose, neurodegenerativen oder cerebrovaskulären Erkrankungen, insbesondere Morbus Alzheimer, einer Krankheit, die auf einer gesteigerten Reaktionsfähigkeit des Immunsystem beruht und/oder nicht an erektiler Dysfunktion zu erkranken.
- Verwendung einer Genveränderung im Gen für die G β 3-Untereinheit des humanen G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Vorhersage des Risikos von Frauen, an einer kardiovaskulären Erkrankung, insbesondere Bluthochdruck oder koronare Herzkrankheit zu erkranken und zur Erstellung einer gezielten Hormontherapie um das kardiovaskuläre Risiko zu vermindern.

6. Verfahren zur Ermittlung des Risikos eines Probanden, an einer mit G-Protein-Fehlsteuerung assoziierten Krankheit zu erkranken, bei dem die Gensequenz für die Gβ3-Untereinheit des humanen G-Proteins des Probanden mit der Gensequenz in Anlage 1 und/oder Anlage 2 vergleicht und für den Fall, daß sie mit der Gensequenz in Anlage 2 in Position 825 und/oder in Position 1429 übereinstimmt, dem Probanden ein erhöhtes Erkrankungsrisiko zuordnet.

- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zur Ermittlung des Risikos, an Diabetes mellitus Typ 2 zu erkranken, gleichzeitig Genveränderungen im IRS1-Gen (3931A-Variante; Gly971Arg), im IRS2-Gen, im Gen, das für die p85 α -regulatorische Untereinheit der PI3-Kinase kodiert (1020 G \rightarrow A; Kodon 326 Met \rightarrow Ile), im Gen, das für den β 3-adrenergen Rezeptor kodiert (Trp64Arg), im Gen, das für den β 2-adrenergen Rezeptor kodiert (hier insbesondere die Arg16Gly- Variante und die Gln27Glu-Variante), im Gen, das für Tumornekrosefaktor α kodiert und/oder im Gen, das für Leptin oder den Leptinrezeptor kodiert, untersucht werden.
- 8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zur Ermittlung des Risikos, an Übergewicht und Adipositas zu erkranken, gleichzeitig Genveränderungen im IRS1-Gen (3931A-Variante; Gly971Arg), im Gen, das für den β3-adrenergen Rezeptor kodiert (Trp64Arg-Variante) und/oder im Gen, das für den β2-adrenergen Rezeptor kodiert, (insbesondere die Arg16Gly-Variante und die Gln27Glu-Variante) untersucht werden.
- 9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zur Ermittlung des Risikos, an koronarer Herzkrankheit und/oder Myokardinfarkt zu erkranken, gleichzeitig Genveränderungen im IRS1-Gen (3931A-Variante; Gly971Arg) untersucht werden.

- 10. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zur Ermittlung des Risikos, an Krankheiten, die mit einer gesteigerten Reaktionsfähigkeit des Immunsystems assoziiert sind, zu erkranken, gleichzeitig Genveränderungen im β 2-adrenergen Rezeptor (insbesondere die Argl6Gly- Variante und die Gln27Glu-Variante) untersucht werden.
- 11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zur Ermittlung des Risikos an Schwangerschaftsgestose zu erkranken, gleichzeitig Genveränderungen im für die endotheliale NO-Synthase kodierenden Gen (insbesondere die Glu298Asp-Variante) untersucht werden.
- 12. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß homozygoten HIV-positiven Probanden ein erhöhtes Risiko zugeordnet wird, an AIDS zu erkranken.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur Ermittlung des Risikos, an AIDS zu erkranken, gleichzeitig Genveränderungen im CCR5-Gen untersucht werden und daß den homo- oder heterozygoten Probanden für den CCR5Δ32-Polymorphismus ein weiter erhöhtes Risiko zugeordnet wird, an AIDS zu erkranken.
- 14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß zur Ermittlung des Risikos, an AIDS zu erkranken, gleichzeitig Genveränderungen im CCR5-Gen untersucht werden und daß den Probanden die das CCR5P1-Allel tragen ein weiter erhöhtes Risiko zugeordnet wird, an AIDS zu erkranken.
- 15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur Ermittlung des Risikos an AIDS zu erkranken, gleichzeitig bezüglich des SDF1-3'UTR-801G-A Polymorphismus untersucht werden und daß den Probanden, die das SDF1-3'A-Allel tragen ein weiter erhöhtes Risiko zugeordnet wird, an AIDS zu erkranken.

16. Verwendung einer Genveränderung im Gen für die G β 3-Untereinheit des humanen G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Identifizierung von Personen mit erhöhter CO₂- bzw. Hypoxietoleranz.

- 17. Verwendung einer Genveränderung im Gen für die G β 3-Untereinheit des humanen G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Vorhersage der Ansprechbarkeit eines Probanden in vivo auf Hormone, Transmitter (auch Neurotransmitter) oder Pharmaka, die solche G-Protein-Heterotrimere aktivieren, welche die G-Protein-Untereinheiten G β 3 und G β 3s beinhalten und/oder die G-Protein-Untereinheit G α S stimulieren.
- 18. Verwendung nach Anspruch 17 zur Vorhersage der Ansprechbarkeit eines Probanden, wobei gleichzeitig die Argl6Gly-Variante und die Gln27Glu-Variante im β 2-adrenergen Rezeptor nachgewiesen wird.
- 19. Verwendung nach Anspruch 17 oder 18 zur spezifischen
 Auswahl einer pharmakologischen oder nicht-pharmakologisch
 Therapieform bzw. der Dosierung von Pharmaka oder Hormonen bei
 Hypertonie, Diabetes mellitus, koronarer Herzkrankheit, akutem
 Myokardinfarkt mit oder ohne Herzrhythmusstörungen,
 Herzrhythmusstörungen und Transplantatabstossung.
- 20. Verwendung nach Anspruch 17 oder 18, zur Vorhersage der Wirksamkeit der Gabe von Erythropoetin auf die Blutbildung und/oder Vorhersage der Entstehung einer Hypertonie unter dieser Therapie.

21. Verwendung nach Anspruch 17 oder 18, zur Vorhersage der Gefahr, unter immunsuppressiver Therapie, insbesondere mit Cyclosporin, eine Hypertonie zu entwickeln.

- 22. Verwendung nach Anspruch 17 oder 18 zur Vorhersage der Wirksamkeit von Substanzen zu Therapie und Prophylaxe des Migräneanfalls.
- 23. Verwendung einer Genveränderung im Gen für die G β 3-Untereinheit des humanen G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Vorhersage der Ansprechbarkeit eines Probanden in vivo auf β -Adrenozeptorblocker.
- 24. Verwendung einer Genveränderung im Gen für die Gβ3-Untereinheit des humanen G-Proteins, wobei an Position 825 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt und/oder wobei an Position 1429 in Anlage 2 eine Substitution von Cytosin durch Thymin vorliegt, zur Vorhersage der Ansprechbarkeit eines Probanden in vivo auf Substanzen mit einer Prostaglandin El-Wirkung, insbesondere Prostaglandin El.
- 25. Verwendung einer Nukleinsäuresequenz, die komplementär zu der Nukleinsäuresequenz nach Anspruch 1 oder 2 ist, zur Herstellung eines Antisense-Arzneimittels zur Therapie oder Prävention von Krankheiten.
- 26. Verwendung des Proteins der G β 3s-Untereinheit des humanen G-Proteins in rekombinierten Systemen oder nach Transfektion in geeigneten Zellinien zur Identifizierung von Chemikalien, welche die Funktion von G β 3s hemmen.

- 27. Beta-3 Untereinheit eines humanen G-Proteins, die höchstens sechs WD-Repeat-Motive aufweist, dadurch gekennzeichnet, daß die G β 3s-2 Untereinheit die in Anlage 4 dargestellte Aminosäuresequenz aufweist.
- 28. Nucleinsäuresequenz codierend für ein Protein nach Anspruch 27.
- 29. Nucleinsäuresequenz nach Anspruch 28 mit der in Anlage 3 dargestellten Sequenz.
- 30. Verfahren zur Herstellung eines Proteins gemäß einem der Ansprüche 27 bis 29, dadurch gekennzeichnet, daß man eine Nucleinsäuresequenz gemäß einem der Ansprüche 28 oder 29 ggf. mit geeigneten Regulationssignalen versieht und in einem Wirtsorganismus zur Expression bringt.
- 31. Verfahren nach Anspruch 30, wobei die Expression in Immunzellen immundefizienter, insbesondere HIV-positiver Personen erfolgt.
- 32. Verfahren nach Anspruch 30, wobei die Expression in humanen Körperzellen erfolgt.
- 33. Verwendung einer Nucleinsäuresequenz gemäß Anspruch 28 oder 29 zur Herstellung eines Arzneimittels zur Behandlung von mit G-Protein-Fehlsteuerung assoziierten Krankheiten.
- 34. Verwendung einer Nucleinsäuresequenz, nach Anspruch 28 oder 29 zur Erzeugung transgener Tiere.
- 35. Verwendung einer Nucleinsäuresequenz, die komplementär zu der Nucleinsäuresequenz gemäß Anspruch 28 oder 29 ist zur Herstellung eines Antisense-Arzneimittels zur Therapie oder Prävention von Krankheiten, die mit G-Protein-Fehlsteuerung assoziiert sind.

36. Verwendung eines Proteins gemäß Anspruch 27 zur Herstellung von spezifisch gegen dieses Protein gerichteten Antikörpern.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

ERSATZBLATT (REGEL 26)

Fig. 14

Fig. 15

Fig. 16

PCT/EP99/06534

WO 00/15785

Anlage: Lokalisation des Polymorphismus in cDNA

- Anlage 1: \$3-Originalsequenz von Levine
 - Die Exons sind wechselweise unterstrichen.
 - Der Bereich, der durch kryptisches Splicen wegfällt,
 - ist fettgedruckt.
- qqqtcqargg gggagatgga gcaactgcgt caggaagcgg agcagctcaa gaagcagatt Start-ATG EXON 3 nach Ansari-Lari Nucleotide 1-6 scheinen nicht zuzutreffen
- GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG
 /Beginn EXON 4 /EXON 5 Beginn ==> ENDE 1 KLON ANSARI
- 121 GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG / Beginn EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC EXON 6
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC EXON 7
- 361 AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG EXON 7
- 421 CTTTCTGCTC ACACAGGTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG /EXON 8
- 481 ACCAGCTCGG GGGACACCAC GTGTGCCTTG TGGGACATTG AGACTGGGCA GCAGAAGACT /EXON 9 EXON 8

kryptisches SPLICING

- 541 STATITGIGG GACACACGGG TGACTGCATG AGCCTGGCTG TGTCTCCTGA CTTCAATCTC EXON 9 kryptisches SPLICING
- 601 TICATITUCG GEGECTETGA TECCASTECC AAGCTETEGE ATETECEGAGA GEGGACETEC kryptisches SPLICING
- 661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCCA TCTGTTTCTT CCCCAATGGA / Beginn EXON 10
- 721 GAGGCCATCT GCACGGGCTC GGATGACGCT TCCTGCCGCT TGTTTGACCT GCGGGCAGAC
- 781 CAGGAGCTGA TCTGCTTCTC CCACGAGAGC ATCATCTGCG GCATCACGTC CGTGGCCTTC acqtc tqt Polymorphismusstelle: EXON 10
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GGGCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG /Beginn EXON 11 EXON 10
- 961 GGAGTCACAG CTGACGGGAT GGCTGTGGCC ACAGGTTCCT GGGACAGCTT CCTCAAAATC EXON 11
- 1021 TGGAACTGAg gaggetggag aaagggaagt ggaaggcagt gaacacactc agcagecece End of Open Reading Frame
- 1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag
- 1141 ettteteett tgagggeagt ggggageatg ggaetgtgee tttgggagge ageateaggg EXON 11
- 1201 acacaggggc aaagaactgc cccatctcct cccatggcct tccctcccca cagtcctcac EXON 11

- 1321 gacttgagtc tgaggcccca ggccctagga ttcctccccc agagccacta cctttgtcca $\,$ EXON $11\,$

- tetggeac a cta

 1381 ggeetgggtg gtatagggeg tttggeeetg tgactatgge tetggeacea etagggteet

 EXON 11
- 1441 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct EXON 11
- 1501 <u>qcaataaaqt qtaqcaccct qqt</u>
 EXON 11 POLY A SITE

Anlage 2: Sequenz mit den beiden Polymorphismen (Numerierung nach der Levine-Sequenz)

1	gggtcgATGG	GGGAGATGGA	GCAACTGCGT	CAGGAAGCGG	AGCAGCTCAA	GAAGCAGATT
61	GCAGATGCCA	GGAAAGCCTG	TGCTGACGTT	ACTCTGGCAG	AGCTGGTGTC	TGGCCTAGAG
121		GAGTCCAGAT				
181		ACTGGGCCAC				
241		GGGACAGCTA				
301	TGGGTCATGA	CCTGTGCCTA	TGCCCCATCA	GGGAACTTTG	TGGCATGTGG	GGGGCTGGAC
361	AACATGTGTT	CCATCTACAA	CCTCAAATCC	CGTGAGGGCA	ATGTCAAGGT	CAGCCGGGAG
421	CTTTCTGCTC	ACACAGGTTA	TCTCTCCTGC	TGCCGCTTCC	TGGATGACAA	CAATATTGTG
481		GGGACACCAC				
541		GACACACGGG				
601	TTCATTTCGG	GGGCCTGTGA	TGCCAGTGCC	AAGCTCTGGG	ATGTGCGAGA	GGGGACCTGC
661		TCACTGGCCA				
721	GAGGCCATCT	GCACGGGCTC	GGATGACGCT	TCCTGCCGCT	TGTTTGACCT	GCGGGCAGAC
781	CAGGAGCTGA	TCTGCTTCTC	CCACGAGAGC	ATCATCTGCG	GCATCACGTC	TGTGGCCTTC
841	TCCCTCAGTG	GCCGCCTACT	ATTCGCTGGC	TACGACGACT	TCAACTGCAA	TGTCTGGGAC
901	TCCATGAAGT	CTGAGCGTGT	GGGCATCCTC	TCTGGCCACG	ATAACAGGGT	GAGCTGCCTG
961	GGAGTCACAG	CTGACGGGAT	GGCTGTGGCC	ACAGGTTCCT	GGGACAGCTT	CCTCAAAATC
1021	TGGAACTGAG	gaggctggag	aaagggaagt	ggaaggcagt	gaacacactc	agcagccccc
1081	tgcccgaccc	catctcattc	aggtgttctc	ttctatattc	cgggtgccat	tcccactaag
1141	ctttctcctt	tgagggcagt	ggggagcatg	ggactgtgcc	tttgggaggc	agcatcaggg
1201	acacaggggc	aaagaactqc	cccatctcct	cccatggcct	tccctcccca	cagtcctcac
1261	agcctctccc	ttaatqaqca	aggacaacct	gcccctcccc	agccctttgc	aggcccagca
1321	gacttgagtc	tgaggcccca	ggccctagga	ttcctcccc	agagccacta	cctttgtcca
1381	aacctagata	gtatagggcg	tttqqccctq	tgactatggc	tctggcacta	ctagggtcct
1441	ggccctcttc	ttattcatgc	tttctccttt	ttctaccttt	ttttctctcc	taagacacct
1501		gtagcaccct				

WO 00/15785

4

Anlage 3

Nukleinsäuresequenz der cDNA von G β 3 und Darstellung der Deletionen in G β 3s und G β 3s-2

Numerierung bezogen auf die cDNA von Levine et al. (Levine, M.A., Smallwood, P.M., Moen, P.T., Jr., Helman, L.J., and Ahn, T.G. Molecular cloning of beta 3 subunit, a third form of the G protein beta-subunit polypeptide.

Proc. Natl. Acad. Sci. USA 87(6):2329-2333, 1990) Die Numerierung beginnt hierbei nicht mit dem Startkodon ATG, sondern 6 Nukleotide früher im 5'-Bereich.

- 1 gqqtcqATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT
 Start-ATG EXON 3
 Nucleotide 1-6 scheinen nicht zuzutreffen
- 61 GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG

 /Beginn EXON 4 /EXON 5 Beginn
- 121 GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT
 EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG
 EXON 5 / Beginn EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC
 EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC
 EXON 7
- 361 AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG
 EXON 7
- 421 CTTTCTGCTC ACACAGGTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG
 EXON 7 /EXON 8

Barte Messame administra

481 ACCAGCTCGG GGGACACCAC GTG

The second control of the complete control of the c

EXON 9

EXON 9

661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCCA TCTGTTT

EXON 9 / Beginn EXON 10

Intron dazwischen 1607 bp

a viet film tigipumite in

- 721 CONTRACTOR OF THE DESIGNATION OF THE PROPERTY OF THE PROPE
- EXON 10 Polymorphismusstelle C825T: acgtc tgt
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GGGCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG
 EXON 10 /Beginn EXON 11 (Intron dazw. 989 bp)
- 961 GGAGTCACAG CTGACGGGAT GGCTGTGGCC ACAGGTTCCT GGGACAGCTT CCTCAAAATC
 EXON 11
- 1021 TGGAACTGAq gaggctgqag aaaqggaaqt qqaaqgcaqt gaacacactc agcagccccc
 EXON 11

End of Open Reading Frame B3-3

- 1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag
 EXON 11
- 1141 ctttctcctt tgagggcagt ggggagcatg ggactgtgcc tttgggaggc agcatcaggg
 EXON 11
- 1201 acacaggggc aaagaactgc cccateteet eccatggeet teeeteecca cagteeteac EXON 11

6.

- 1261 agectetece ttaatgagea aggacaacet geeceteeee agecetttge aggeceagea EXON 11
- 1321 gacttgagtc tgaggcccca ggccctagga ttcctccccc agagccacta cctttgtcca EXON 11

80.34.47.03

tctggcacaa cta

- 1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcaca ctagggtcct EXON 11
- 1441 ggccctcttc ttattcatqc tttctccttt ttctaccttt ttttctctcc taagacacct EXON 11
- 1501 <u>gcaataaagt gtagcaccct ggt</u>
 EXON 11 POLY A SITE

7

Anlage 4: Aminosäuresequenz von $G\beta 3s-2$

Kombinierte Darstellung

1	Met	Gly	Glu	Met	Glu	Gln	Leu	Arg	Gln	Glu	Ala	Glu	Gln	Leu	Lys	Lys	16
1	ATG	GGG	GAG	ATG	GAG	CAA	CTG	CGT	CAG	GAA	GCG	GAG	CAG	CTC	AAG	AAG	48
17															Ala		32
49	CAG	ATT	GCA	GAT	GCC	AGG	AAA	GCC	TGT	GCT	GAC	GTT	ACT	CTG	GCA	GAG	96
		_			_					_							
33															Thr		48
97	CTG	GTG	TCT	GGC	CTA	GAG	GTG	GTG	GGA	CGA	GTC	CAG	ATG	CGG	ACG	CGG	144
49	Ara	Thr	I.an	Δra	Glv	Hiq	Len	Δla	ī.vs	Tle	Tur	Ala	Met	His	Trp	Ala	64
45 L45	-			_	-				_		_				TGG		192
. 1.5			* * * * * *	1100	0011	00	0.0										
65	Thr	Asp	Ser	Lys	Leu	Leu	Val	Ser	Ala	Ser	Gln	Asp	Gly	Lys	Leu	Ile	80
193	ACT	GAT	TCT	AAG	CTG	CTG	GTA	AGT	GCC	TCG	CAA	GAT	GGG	AAG	CTG	ATC	240
81	Val	Trp	Asp	Ser	Tyr	Thr	Thr	Asn	Lys	Val	His	Ala	Ile	Pro	Leu	Arg	96
241	GTG	TGG	GAC	AGC	TAC	ACC	ACC	AAC	AAG	GTG	CAC	GCC	ATC	CCA	CTG	CGC	288
97															Phe		112
289	TCC	TCC	TGG	GTC	ATG	ACC	TGT	GCC	TAT	GCC	CCA	TCA	GGG	AAC	TTT	GTG	336
						_			_	_		_	_	_	_	_	100
113		-													Lys		128
337	GCA	TGT	GGG	GGG	CTG	GAC	AAC	ATG	TGT	100	AIC	IAC	AAC	CIC	AAA	100	384
129	7 ~~	C1	C1) an	Ma 3	Tuc	Val	Sar	Ara	Glu	T.e.u	Sor	Δla	Hie	Thr	Glv	144
385	_		_												ACA		432
303	CGI	GAG	GGC	Anı	GIC	mo	010	7100	-	00	011	101	001	01.0		001	752
145	Tvr	Leu	Ser	Cvs	Cys	Arq	Phe	Leu	Asp	Asp	Asn	Asn	Ile	Val	Thr	Ser	160
433	_			_	_										ACC		480
161	Ser	Gly	Asp	Thr	Thr	Cys	Ala	Leu	Trp	Asp	Ile	Glu	Thr	Gly	Gln	Gln	176
481	TCG	GGG	GAC	ACC	ACG	TGT	GCC	TTG	TGG	GAC	ATT	GAG	ACT	GGG	CAG	CAG	528
177	Lys	Thr	Val	Phe	Val	Gly	His	Thr	Gly	Asp	Cys	Met	Ser	Leu	Ala	Val	192
529	AAG	ACT	GTA	TTT	GTG	GGA	CAC	ACG	GGT	GAC	TGC	ATG	AGC	CTG	GCT	GTG	576
193			_												Ser		208
577	TCT	CCT	GAC	TTC	AAT	CTC	TTC	ATT	TCG	GGG	GCC	TGT	GAT	GCC	AGT	GCC	624

8

209	Lys	Leu	Trp	Asp	Val	Arg	Glu	Gly	Thr	Суз	Arg	Gln	Thr	Phe	Thr	Gly	224
625	AAG	CTC	TGG	GAT	GTG	CGA	GAG	GGG	ACC	TGC	CGT	CAG	ACT	TTC	ACT	GGC	672
225	His	Glu	Ser	Asp	Ile	Asn	Ala	Ile	Cys	Phe	Phe	Ser	Leu	Ser	Gly	Arg	240
673	CAG	GAG	TCG	GAC	ATC	AAC	GCC	ATC	TGT	TTC	TTC	TCC	CTC	AGT	GGC	CGC	720
241	Leu	Leu	Phe	Ala	Gly	Tyr	Asp	Asp	Phe	Asn	Cys	Asn	Val	Trp	Asp	Ser	256
721																	768
257	Met	Lys	Ser	Glu	Arg	Val	Gly	Ile	Leu	Ser	Gly	His	Asp	Asn	Arg	Val	272
769		_															816
273	Ser	Cvs	Leu	Gly	Val	Thr	Ala	Asp	Gly	Met	Ala	Val	Ala	Thr	Gly	Ser	288
		_														TCC	
289	Trp	Asp	Ser	Phe	Leu	Lys	Ile	Trp	Asn	***							
865	_	GAC															