

Semi-Automatic Risk Analysis Interfaces

TRAN BAO KHANH DANG

Content

- 1. Introduction
- 2. The concept of Preference Learning
- 3. Application UI implementation
- 4. Machine Learning methods and models
- 5. Results & Discussion
- 6. Conclusion

Business context:

- Development of economic globalization
- Small and Medium-sized Enterprises (SMEs) play a crucial role for economic growth
- → Business lending becomes a major target for banks and investors
- → The need of increasing the power of Risk Analytics

Risk Analytics:

- Investors don't give credit to anyone who asks for it
- They need to consider the risks associated with their investments:
 - Business default or not be able to pay back the loan
 - Markets collapse
- → Analyze the borrower's background & behavior
- → Calculate the creditworthiness:
 - Credit Scoring: risk categories (e.g. "Good" or "Bad")
 - Credit Rating: grades (e.g. {A, B, C, D})

Challenges:

- Require lots of time and implicit knowledge from credit experts
- Some qualitative aspects cannot easily be explained: human feelings, opinions, common sense...
- Lack of information

Solution:

Preference Learning: Giving relative estimation is easier than absolute estimation

- → Implement a tool that:
 - 1. Allows credit experts to do relative estimation (i.e. comparing A with B)
 - 2. Achieve the final ranking of preference for all cases

2. The concept of Preference Learning

Preference Learning:

- *Preference:* the choice for one alternative over another or others
- A subfield of Machine Learning: classification method based on observed preference information
- Output of Preference Learning system:
 - A ranking list of inputs based
 - A comparison to whether A is better than B
- Applications: recommender systems, learning-to-rank search results...

The concept of Preference Learning

Types of Preference:

- Language: Python 3
- Frameworks: Flask & Dash
- → Runs in the web browser

- Main layouts:
 - Login
 - Company voting

1. Login:

2. Company Voting:

2. Company Voting:

Collected data:

mysql:	select * 1	from action_capture;	; 									
id	pair_id	company_id_voted	company_name_voted	company_id_compared	company_name_compared	button1_clicked	user	timestamp				
443	279	1192	Redo Water Systems GmbH	1501	WEMARO Tools GmbH	1	1	2020-11-02 13:36:39				
444	822	1128	DS energy GmbH	14220	IDEAL Maschinenbau GmbH	1	1	2020-11-02 13:36:40				
445	1190	1710	HMBF GmbH	22165	Hötten Industrie & Services GmbH	1	1	2020-11-02 13:36:41				
446	1282	276	AFZ BKS GmbH	64984	Matthäi Bauunternehmen GmbH & Co.KG	1	1	2020-11-02 13:36:47				

4. Machine Learning methods and models

4. Machine Learning methods and models

Training Set

X: an array of 66 dimensions

pair_id	year_1	revenue_1	depreciation_ amortization_1		year_2	revenue_2		user	button1_ clicked
552	2016	60.2990	0.7730		2016	27.5460		1	1
552	2017	60.8780	0.7990		2017	18.1310		1	1
552	2018	59.4390	0.8580		2018	23.3190		1	1
738	2016	17.1080	0.0940		2016	3.9500		15	0
738	2017	28.7580	0.2110		2017	4.1900		15	0
738	2018	32.7630	0.3100		2018	4.5700		15	0
		Company 1			C	Company 2			Y

4. Machine Learning methods and models

Models used for classification problem:

- Support Vector Machine (SVM)
- k-Nearest Neighbors (kNN)
- Using scikit-learn from Python library

- 4 end users testing
- 760 data points/ votes collected

Data distribution

→ requires normalization before model training

SVM Model Performance Optimization:

- Tuning SVM parameter (C, gamma)
- Remove duplicate X in training data
- Using NuSVC with advantage of using a parameter *nu* to effectively control the number of support vectors
- Scale data

SVM Model Performance Optimization:

- Accuracy: increases and more consistent with repeatability test
- Precision & Recall: improve

Accuracy score SVM: 0.5526315789473685

Confusion matrix SVM:

[[81 1] [67 3]]

Precision: 0.75

Recall: 0.04285714285714286

Accuracy score SVM: 0.8355263157894737

Confusion matrix SVM:

[[71 14] [11 56]]

Precision: 0.8

Recall: 0.835820895522388

SVM Model Performance Optimization:

Test run 1 Test run 2

→ Best performance using RBF kernel

kNN Model Performance Optimization:

- Selection of distance function
- Data scaling
- Choosing the right k-value

kNN Model Performance Optimization:

Test run 1 Test run 2

→ Best performance using Manhattan distance function

SUMMARY:

- Highly adaptable models
- An accuracy of 78% on average
- SVM is a better choice of model than kNN:
 - kNN performance depends on training set and k-value
 - SVM is more reliable
- Withdraws:
 - Lack of training data
 - Invisible factors

6. Conclusion

- Developed a web-application based on the concept of Preference Learning to collect and study the preferences of risk experts
- A practical framework for the implementation of credit decision making using Machine Learning
- Models with highly adaptable features

Future perspectives:

- Develop comprehensive Machine Learning algorithms
- The data's non-linearity properties need to be studied and accounted for