UNIVERSIDAD NACIONAL DE LUJÁN

ANÁLISIS MATEMÁTICO I (11081). LICENCIATURA EN SISTEMAS DE INFORMACIÓN 2º PARCIAL. COMISIÓN 6 18-6-2014

1-Graficar las curvas y=4-|x| , $y=x^2-2$ y calcular el área de la región limitada por ellas.

2-Calcular el volumen generado por la rotación alrededor del eje x del dominio

encerrado por las curvas
$$y=\sqrt{\frac{x^2}{e^x}}$$
, $x=1,y=0,\;x=3$

3-Mostrar que
$$\int_0^{\frac{\pi}{2}} cos^3 x \ dx = 2 \int_0^{\frac{\pi}{4}} \frac{sin^2 x}{cos^4 x} dx$$

4-Calcular, si existe, la siguiente integral impropia
$$\int_1^\infty \frac{2\arctan x}{1+x^2} dx$$

5-Estudiar la convergencia o divergencia de las siguientes series

a)
$$\sum \frac{\sqrt[4]{k^3 + 3\sqrt{k} + 1}}{\sqrt[5]{2 + k^2}}$$
 b) $\sum \frac{(k-2)!}{3^k k^2}$

6-Hallar todos los valores de x para los cuales la siguiente serie converge

$$\sum \frac{5^k x^k}{2k^2 + k}$$

7-Colocar V ó F según corresponda. Es esencial justificar las respuestas

a)
$$Si \int_0^{\pi} \sin x \, dx = 2 \Rightarrow \int_{-\frac{\pi}{2}}^{\pi} \sin x \, dx < 2$$

b) Si
$$0 < a_k \le b_k$$
 y $\sum a_k$ converge entonces la serie $\sum b_k$ diverge

c) Si la serie de potencias $\sum a_k x^k$ converge para x=1 entonces el radio de convergencia de la serie es igual a 1