УДК 681.3

А.Е. Киселев, А.С. Пахомова, А.В. Бабурин, И.В. Шевченко

МОДЕЛИРОВАНИЕ ПРОЦЕССА АТАКИ ПЕРСПЕКТИВНЫМИ СРЕДСТВАМИ СЪЕМА ИНФОРМАЦИИ: МОДЕЛИ ПЕРЕХВАТА ТРАФИКА

В данной работе рассматривается моделирование процесса атаки перспективными средствами

съема информации на основе сетей Петри-Маркова. Дальнейшее описание модели перехвата трафика

позволяет получить вид функции ущерба и сопоставить ее со статистическими данными Ключевые слова: атака, средства негласного съема информации, ущерб, трафик

По данным WASC Threat Classification

[1] выделяют три основных вида сниффинга:

обновления сниффинг во время программного обеспечения;

- сниффинг во время первоначальной установки программного обеспечения;

- сниффинг во время установки патчей. Но не стоит забывать что сниффинг

пакетов по различным протоколам (*Telnet*,

FTP, SMTP, POP3 u $m.\partial.$) реализуется при S_3

 t_2 S_2 t_1 S_4

 S_1 – обработка данных на одном из элементов распределенной вычислительной

 S_2 — злоумышленник настроил сниффер

 t_1 — сетевая разведка

сети

каналам

 S_3 – прием/передача данных по wi-fi

Киселев Антон Евгеньевич – ВГТУ, студент, e-mail: manc@comch.ru

Пахомова Анна Степановна – ВГТУ, канд. техн. наук,

ст. науч. сотрудник, e-mail: manc@comch.ru Бабурин Александр Вильямович – ВГТУ, д-р. техн

хостами по wi-fi каналу связи. Смоделируем атаку, направленную на критически важной информации, в съем распределенных вычислительных системах с помощью сети Петри-Маркова. Для этого

обмене

пакетами

между

двумя

средств

получена

любом

Ss

 S_{5}

средств съема информации

сниффинг-атаку рассмотрим использованием перспективных мониторинга сети и съема информации [2].

 S_6 t_3 Рис. 1. Вид сети Петри-Маркова для общего вида сниффинг - атаки с использованием перспективных

 S_4 — злоумышленник готов к перехвату

информация

злоумышленником

 t_2 — перехват данных

 S_6 — анализ перехваченной информации Запишем элементы матрицы, которые

определяют функции логические срабатывания сети (без учета направленности дуг графа)

наук, глав. науч. сотрудник, e-mail: manc@comch.ru Шевченко Игорь Викторович – ВГТУ, студент, еmail: mnac@comch.ru

Построим для Маркова систему интегрально-

$$S_5$$
 0 $S_1t_1\cap S_2t_1$ 1 S_6 0 0 1 $S_1t_1\cap S_2t_1$ 1 S_6 0 0 0 1 $S_1t_1\cap S_2t_1$ 1 S_6 0 0 0 1 $S_1t_1\cap S_2t_1$ 1 S_6 0 0 0 0 1 $S_1t_1\cap S_2t_1$ 1 $S_1t_1\cap S_2t_1$ 1 $S_1t_1\cap S_2t_1$ 1 $S_1t_1\cap S_2t_1$ 2 $S_1t_1\cap S_2t_1$ 3 $S_1t_1\cap S_2t_1$ 4 $S_1t_1\cap S_2t_1$ 2 $S_1t_1\cap S_2t_1$ 3 $S_1t_1\cap S_2t_1$ 4 $S_1t_1\cap S_2t_1$ 3 $S_1t_1\cap S_2t_1$ 4 $S_1t_1\cap S_2t_1$ 4 $S_1t_1\cap S_2t_1$ 4 $S_1t_1\cap S_2t_1$ 4 $S_1t_1\cap S_2t_1$ 6 $S_1t_1\cap S_2t_1$ 7 $S_1t_1\cap S_2t_1$ 8 $S_1t_1\cap S_2t_1$ 9 $S_1t_1\cap S_2t_1$ 8 $S_1t_1\cap S_2t_1$ 9 $S_1t_1\cap S_2t_1\cap S_2t_1$ 9 $S_1t_1\cap S_2t_1\cap S_2t_1\cap$

Построим для данной сети Петри- дифференциальных урагаркова систему интегрально-
$$\Phi_{S_1t_1}(t) = \lambda_{11} \int_0^t f_{S_1t_1}(\tau) d\tau,$$

$$\Phi_{S_2t_1}(t) = \lambda_{21} \int_0^t f_{S_2t_1}(\tau) d\tau,$$

$$\Phi_{S_3t_2}(t) = \lambda_{32} \int_0^t f_{S_3t_2}(\tau) d\tau,$$

$$\Phi_{S_4t_2}(t) = \lambda_{42} \int_0^t f_{S_4t_2}(\tau) d\tau,$$

аркова систему интегрально-
$$\Phi_{S_1t_1}(t) = \lambda_{11} \int_0^t f_{S_1t_1}(\tau) d\tau,$$

$$\Phi_{S_2t_1}(t) = \lambda_{21} \int_0^t f_{S_2t_1}(\tau) d\tau,$$

$$\Phi_{S_3t_2}(t) = \lambda_{32} \int_0^t f_{S_3t_2}(\tau) d\tau,$$

$$\Phi_{S_4t_2}(t) = \lambda_{42} \int_0^t f_{S_4t_2}(\tau) d\tau,$$

$$\Phi_{S_5t_3}(t) = \lambda_{32} \int_0^t f_{S_5t_2}(\tau) \Phi_1(t-\tau) d\tau,$$

 $\Phi_{S_6t_3}(t) = \lambda_{43} \int_0^t f_{S_6t_3}(\tau) \Phi_1(t-\tau) d\tau,$

(1)

Построим для данной сети Петри- дифференциальных уравнений.
Ф
$$_{S_1t_1}(t) = \lambda_{11} \int_0^t f_{S_1t_1}(\tau) d\tau$$
,
Ф $_{S_2t_1}(t) = \lambda_{21} \int_0^t f_{S_2t_1}(\tau) d\tau$,
Ф $_{S_3t_2}(t) = \lambda_{32} \int_0^t f_{S_3t_2}(\tau) d\tau$,
Ф $_{S_4t_2}(t) = \lambda_{42} \int_0^t f_{S_4t_2}(\tau) d\tau$,
Ф $_{S_5t_3}(t) = \lambda_{32} \int_0^t f_{S_5t_2}(\tau) \Phi_1(t-\tau) d\tau$, (1)
Ф $_{S_6t_3}(t) = \lambda_{43} \int_0^t f_{S_6t_3}(\tau) \Phi_1(t-\tau) d\tau$,

 $+f_{S_1t_2}(\tau)\Phi_{S_2t_2}(\tau)d\tau$.

Полагаем, что плотности распределения вероятностей являются экспоненциальными

получаем среднее время перемещения по

 $V_{S_1t_2} =$

$$\Phi_{S_6t_3}(t) = \lambda_{43} \int_0^t f_{S_6t_3}(\tau) \Phi_1(t-\tau) d\tau,$$

$$\Phi_1(t) = \int_0^t f_{S_1t_1}(\tau) \Phi_{S_2t_1}(\tau) + f_{S_2t_1}(\tau) \Phi_{S_1t_1}(\tau) + f_{S_3t_2}(\tau) \Phi_{S_4t_2}(\tau) +$$

 $f_{S_it_i} = \beta_{ij}e^{-\beta_{ij}t},$ где $\beta = \frac{1}{\tau_{ii}}$ при i = 1,...,6; j = 1,...,3. Применяя пуассоновское приближение,

 $\tau_2 = \frac{\tau_{12}^2 + \tau_{12}\tau_{22} + \tau_{22}^2}{\tau_{12} + \tau_{22}},$ $\tau_3 = \tau_1 + \tau_2 + \tau_{32},$

 $\tau_4 = \tau_1 + \tau_2 + \tau_{32} + \tau_{42},$

 $\tau = \frac{\tau_{11}^2 + \tau_{11}\tau_{21} + \tau_{21}^2}{\tau_{11} + \tau_{21}} + \frac{\tau_{12}^2 + \tau_{12}\tau_{22} + \tau_{22}^2}{\tau_{12} + \tau_{22}} + \tau_{32} + \tau_{42},$

 $P(t) = 1 - e^{-\frac{1}{\tau}t}.$

перехвату

 $\tau_1 = \frac{\tau_{11}^2 + \tau_{11}\tau_{21} + \tau_{21}^2}{\tau_{11} + \tau_{21}},$

перемещения:

настройки

съема по wi-fi каналу. Проведя сетевую разведку.

Маркова модель, является обобщенной моделью атаки с помощью перспективных средств съема информации. По приведенной классификации средств

Рис. 2. Зависимость вероятности реализации сниффинг-атак с помощью

сети Петри-Маркова из начальной позиции

до конечного перехода и вероятность этого

 au_{11} =5c – среднее время работы хоста в сети

программы для реализации сетевой разведки = 0,5с - среднее время передачи количества пакетов по сети достаточного для

 $P(t)^{-1}$

0.7 0.6 0.5 0.4 0.3 0.2 0.1

время

необходимое для мониторинга сети

среднее

где:

 $\tau_{21} = 20c$

анализа

Представленная с помощью сетей-Петри

перспективных средств съема информации от времени классов, то данные модели будут отличаться лишь используемым обеспечением.

В упрощенном виде модель перехвата трафика предполагает наличие хоста работающего В сети И хоста злоумышленника, встраивающегося в сеть

программным

 $au_{22} - 0,1c$ - среднее время подготовки к

 $au_{32} - 0,1$ с среднее время перехвата пакетов $au_{42} - 0,5$ с среднее время анализа пакетов

ранее информации можно смоделировать любую сниффинг - атаку для каждого класса средств в отдельности. Так как схема реализации

атаки практически одинакова для

Хост злоумышленника начинает мониторинг	$\frac{dj}{dt} = \xi j. \tag{4}$
сети с сохранением следующих данных:	ut
- пакеты с информацией о времени	Данное уравнение имеет следующее
получения пакета, МАС-адресах отправителя	аналитическое решение (1)
и получателя, IP-адресах отправителя и получателя, протоколе передачи, портах	$u(t) = 1 + (-1) \cdot e^{-\xi t}. \tag{5}$
источника и получателя пакетов, размер	Применительно к сниффинг-атако распределение функции ущерба можно
ТСР-окна, номер последовательности пакета	записать следующим образом:
и номер подтверждения этого пакета	$u(t) = 1 - e^{-\xi(t - t_0)^2}.$ (6)
- декодированная информация об	гле
отдельных полях пакета;	ξ - интенсивность атаки
- содержимое самого пакета [3].	t_0 - время начала атаки.
Пусть произвольный хост сети,	Введем дополнительный весовой
состоящей из постоянного количества M	аргумент характеризующий скорость работь
хостов, может находиться в двух	процессора злоумышленника
состояниях— уязвимом (S) и	Соответственно время необходимое для
прослушиваемом (J), т.е. $S + J = M$. Положим	реализации сниффинг-атаки, (дешифрования
что сниффинг wi-fi трафика происходит с	сообщений, зашифрованных 64-х битным
постоянной скоростью ξ . В простейшем	ключом) будет существенно сокращаться
случае <i>ξ</i> будет определяться следующим соотношением	при использовании более современных
	ЭВМ. Соответственно весовая функция
$\xi = V_{scan} \frac{M}{M_o} , \tag{3}$	ущерба примет вид
0	$u(t) = 1 - e^{-\xi \frac{V}{k} \cdot (t - t_0)^2} , \qquad (7)$
где V_{scan} – скорость сканирования сети; M_o - число перехваченных	где
M_0 - число перехваченных злоумышленником пакетов.	V – тактовая частота процессора;
Для описания динамики сканирования	t - время реализации атаки;
сети введем переменные $j = J/M$ и $s =$	k- коэффициент, определяемый
S/M. Уравнение динамики перехвата	экспертным методом с учетом значимости
трафика по wi-fi сети имеет следующий	каждого эксперта
вид:	
	Таблица 1
	ерба в результате реализации сниффинг-атаки
1	ремени
Время (t), c	Ущерб (U(t))
0	0,0001
10	0,00031
20	0,0015
35	0,0055
50	0,055
68	0,252
79	0,391
95	0,599
108	0,8
120	0,89
140	1

Рис. 3. Графическое (статистическое) представление ущерба

это

(9)

(12)

Тогда полином $L_n(x)$ будет как раз тем, Для доказательства соответствия теоретической и статистической функции который нам и нужен, поскольку

полином степени не выше n и $L_n(x_k) = y_k$ воспользуемся аппроксимацией функции с

глобальной для всех k = 1, 2, ..., n + 1. помощью интерполяции.

полиномами

 $\Phi_n(x)$

являются

функции

Построим полином Лагранжа [2]. Предположим, что для k = 1, 2, ..., n + 1

 $L_n(x) = \sum_{k=1}^{n+1} y_k \Phi_k(x).$ степени n, которые обладают следующим свойством: Построим функции $\Phi_n(x)$.

$$\Phi_{k}(x_{j}) = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases}$$

$$(x - x_{1})(x - x_{2}) \cdot \dots \cdot (x - x_{k-1})(x - x_{k+1}) \cdot \dots \cdot (x - x_{n})(x - x_{n+1}).$$
(10)

$$(x-x_1)(x-x_2) \cdot ... \cdot (x-x_{k-1})(x-x_{k+1}) \cdot ... \cdot (x-x_n)(x-x_{n+1}).$$
 (10) Данная функция является полиномом всех x_j не равных x_k . В точке x_k она степени n , который обращается в ноль для принимает значение:

тепени
$$n$$
, который обращается в ноль для принимает значение $(x_k-x_1)(x_k-x_2)\cdot...\cdot(x_k-x_{k-1})(x_k-x_{k+1})\cdot...$

$$(x_k - x_n)(x_k - x_{n+1}).$$
 (11)
Тогда: $\Phi_k(x) =$

 $= \frac{(x-x_1)(x-x_2) \cdot \dots \cdot (x-x_{k-1})(x-x_{k+1}) \cdot \dots \cdot (x-x_n)(x-x_{n+1})}{(x_k-x_1)(x_k-x_2) \cdot \dots \cdot (x_k-x_{k-1})(x_k-x_{k+1}) \cdot \dots \cdot (x_k-x_n)(x_k-x_{n+1})}$ $\Phi_k(x) = \prod_{j=1,2,\dots,n+1} \frac{x-x_j}{x_k-x_j}.$ (1)

Построим Лагранжа информации, будет полином съема который применительно К сниффинг-атаке выглядеть следующим образом: реализуемой перспективными средствами $\Phi_0(z) = \frac{(z-10)(z-20)(z-35)(z-50)(z-68)(z-79)(z-95)(z-108)}{(0-10)(0-20)(0-35)(0-50)(0-68)(0-79)(0-95)(0-108)}$ (z-120)(z-100) $\Phi_1(z) = \frac{(z-0)(z-20)(z-100)'}{(10-0)(10-20)(10-35)(z-50)(z-68)(z-79)(z-95)(z-108) \cdot (z-120)(z-100)}$ $\cdot (z-120)(z-100)$ (10-108)(10-120)(10-100)' $\Phi_2(z) = \frac{(z-0)(z-10)(z-35)(z-50)(z-68)(z-79)(z-95)(z-108)}{(20-0)(20-10)(20-35)(20-50)(20-68)(20-79)(20-95)} \cdot (z-120)(z-100)$ (20-108)(20-120)(20-100)' $\Phi_3(z) = \frac{(z-0)(z-10)(z-20)(z-50)(z-68)(z-79)(z-95)(z-108)}{(35-0)(35-10)(35-20)(35-50)(35-68)(35-79)(35-95)} \cdot (z-120)(z-100)$ $\cdot (35-108)(35-120)(35-100)^{2}$ $\Phi_4(z) = \frac{(z-0)(z-10)(z-20)(z-35)(z-68)(z-79)(z-95)(z-108)}{(50-0)(50-10)(50-20)(50-35)(50-68)(50-79)(50-95)}.$ (z-120)(z-100)(50-108)(50-120)(50-100)' $\Phi_5(z) = \frac{(z-0)(z-10)(z-20)(z-35)(z-50)(z-79)(z-95)(z-108)}{(68-0)(68-10)(68-20)(68-35)(68-50)(68-79)(68-95)}.$ (z-120)(z-100) $\overline{\cdot (68-108)(68-120)(68-100)}$ $\Phi_6(z) = \frac{(z-0)(z-10)(z-20)(z-35)(z-50)(z-68)(z-95)(z-108)}{(79-0)(79-10)(79-20)(79-35)(79-50)(79-68)(79-95)}.$ (z-120)(z-100) $\overline{\cdot (79-108)(79-120)(79-100)}$ $\Phi_7(z) = \frac{(z-0)(z-10)(z-20)(z-35)(z-50)(z-68)(z-79)(z-108)}{(95-0)(95-10)(95-20)(95-35)(95-50)(95-68)(95-79)}.$ (z-120)(z-100) $\Phi_8(z) = \frac{(z-0)(z-108)(95-120)(95-100)'}{(108-0)(108-10)(108-20)(108-35)(108-50)(108-68)}.$ (z - 120)(z - 100)(108-79)(108-95)(108-120)(108-100)'

 $\Phi_9(z) = \frac{(z-0)(z-10)(z-20)(z-35)(z-50)(z-68)(z-79)(z-95)}{(120-0)(120-10)(120-20)(120-35)(120-50)(120-68)} \cdot (z-108)(z-100)$ $\overline{\cdot (120-79)(120-95)(120-108)(120-100)'}$ $\Phi_{10}(z) = \frac{(z-0)(z-10)(z-20)(z-35)(z-50)(z-68)(z-79)(z-95)}{(100-0)(100-10)(100-20)(100-35)(100-50)(100-68)} \cdot (z-108)(z-120)$ $\overline{(100-79)(100-95)(100-108)(100-120)}$ Общий вид аппроксимированной функции примет следующий вид: $fU(z) = 0.0001 \cdot \Phi_0(z) + 0.00033 \cdot \Phi_1(z) + 0.0017 \cdot \Phi_2(z) + 0.0055 \cdot \Phi_3(z) +$ $+0.055 \cdot \Phi_4(z) + 0.252 \cdot \Phi_5(z) + 0.391 \cdot \Phi_6(z) + 0.58 \cdot \Phi_7(z) + 0.765 \cdot \Phi_8(z)$ $+0.79 \cdot \Phi_{0}(z) + 1 \cdot \Phi_{10}(z).$ (13)функций ранее в статистической модели и сопоставим сравнения ушерба (статистической и теоретической), построим ее с графиком статистической функции функцию теоретическую (по формуле ущерба модели перехвата траффика), используя теже $u(t) = 1 - e^{-\xi \cdot \frac{V}{k} \cdot (t - t_0)^2}$. (14)параметры, которые были использованы 0.9 0.8 0.7 0.6 0.5 0.40.3 0.2 0.1 0 20 80 100 120 40 60 140 u(t)fu(t)Рис. 4 Графическое представление сравнения теоретического и практического ущерба модели перехвата трафика

SECURITY

при

информационно-

систем

удаленного

Ущерб (U(t)) 0,0001

0,00033

0,0017

0.0055

В дальнейшем полученные результаты могут быть использованы для обоснования

Литература

1. WASC Threat Classification. Version

2. Радько Н.М., Скобелев И.О. Риск-

3. Hansman, S., Hunt R., "A taxonomy of

network and computer attacks". Computer and

APPLICATION

выбора аналитического выражения риска.

угроз

предыдущем разделе.

WEB

security (2005).

Бремя (і), с	
0	

10

20

35

50	0,055
68	0,252
79	0,391
95	0,58
108	0,765
120	0,79
140	1
На основе данного сравнения можно	моделировании сетей Петри – Маркова в

возможно

времени

сниффинг-атаки использование модели перехвата трафика. На основе функции ущерба (7) получим функцию полезности $U(t) = 1 - e^{-\xi \cdot \frac{V}{k} \cdot (t)^2} .$ Оценим

утверждать, что для описания процесса

реализации

информации,

(15)

рероятность наступления ость наступления ущерба:
$$= 1 - e^{-\frac{(t-\tau_a)}{\tau}}$$
, (16) 2.0/ WEB APPLICATION SECURITY CONSORTIUM http://www.webappsec.org. 2. Радько Н.М., Скобелев И.О. Рискмодели информационнотелекоммуникационных систем при реализации угроз удаленного и непосредственного доступа. - М: РадиоСофт. 2010. 230 С.

ущерба вероятность наступления ущерба: $P(t) = 1 - e^{-\frac{(t-\tau_a)}{\tau}}, \quad (16)$ $t - \tau_a = t_0$ – время начала атаки; τ_a – время действия атаки; т – время для подготовки сниффинг-

полученное

атаки перспективными средствами

Воронежский государственный технический университет Voronezh State Technical University

съема

при

MODELLING THE PROCESS OF ATTACK BY STEALING PERSPECTIVE MEANS OF

A.E. Kiselyov, A.S. Pakhomova, A.V. Baburin, I.V. Shevchenko

In this work modeling of process of attack by perspective means съема information on the basis of Petri-Markov's networks is considered. The further description of model of interception of a traffic allows to receive a type of function of damage and to compare it with statistical data Key words: attack, means secret съема information, damage, traffic

INFORMATION: MODEL OF INTERCEPTION OF TRAFFIC