Chapitre 1:Rappels et compléments de probabilités Lois et espérances conditionnelles

Rabah Messaci

Département de Probabilités-Statistique USTHB

Octobre 2011

Définition : Loi conditionnelle

Soit X et Y deux v.a discrêtes à valeurs respectivement dans

$$\mathcal{X} = \{x_1, x_2, ..., x_n,\}$$
 et dans $\mathcal{Y} = \{y_1, y_2, ..., y_p,\}.$

On appelle loi conditionnelle de X sachant que $Y=y_p$ la loi définie par :

$$P(X = x_n/Y = y_p) = \frac{P(X = x_n, Y = y_p)}{P(Y = y_p)}$$

pour tout $n \in N$.

Exemple 1

$$\begin{array}{l} X_1 \sim B(p), \ X_2 \sim B(p) \ \ \text{indépendantes. Loi de} \ X_1/X_1 + X_2 = 1? \\ \text{Il faut déterminer} \ P(X_1 = 0/X_1 + X_2 = 1) \ \ \text{et} \ P(X_1 = 1/X_1 + X_2 = 1) \\ \text{On a} : \ X_1 + X_2 \backsim B(2,p) \\ P(X_1 = 0/X_1 + X_2 = 1) = \frac{P(X_1 = 0, X_1 + X_2 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 + X_2 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 = 0, X_1 = 1)} = \frac{P(X_1 = 0, X_1 = 1)}{P(X_1 = 0, X_1 = 1)$$

Lois conditionnelles

Soit (X, Y) un vecteur aléatoire absolument continu de densité $f_{(X,Y)}$. On appelle loi conditionnelle de X sachant que Y = y la loi définie par :la densité :

$$f_X(x/Y = y) = \frac{f_{(x,Y)}(x,y)}{f_Y(y)}$$

pour tout $x \in R$.

Exemple 2

Soit un vecteur aléatoire (X,Y) de densité $f(x,y)=xe^{-xy}\ 1_{\{x>0,\,y>1\}}$. Loi de X/X+Y=y?

On a après calculs :
$$f_Y(y) = \frac{1}{y^2} 1_{\{y>1\}} \implies$$

$$f_X(x/Y = y) = \frac{xe^{-xy}1_{\{x>0\ ,\ y>1\}}}{\frac{1}{y^2}1_{\{\ y>1\}}} = xy^2e^{-xy}1_{\{x>0\ \}}$$
 Par exemple :

$$f_X(x/Y=1) = xe^{-x}1_{\{x>0\}}$$
, donc $X/Y=1 \sim \gamma(2,1)$
 $f_X(x/Y=2) = 4xe^{-2x}1_{\{x>0\}}$, donc $X/Y=2 \sim \gamma(2,2)$

D'une manière générale on remarque que : $X/Y = y \sim \gamma(2, y)$

Définition : espérance conditionnelle

On appelle espérance conditionnelle de X sachant que Y=y l'espérance de la loi conditionnelle de X sachant que Y=y , i.e

- Dans le cas discret : $E(X/Y = y_p) = \sum_{i=1}^{+\infty} x_i P(X = x_i/Y = y_p)$
- Dans le cas continu : $E(X/Y = y) = \int_R x f_X(x/Y = y) dx$

Exemples

- Exemple 1 : $E(X_1/X_1 + X_2 = 1) = \frac{1}{2}$ (puisque $X_1/X_1 + X_2 = 1 \sim B(\frac{1}{2})$)
- Exemple 2 : E(X/Y=1)=2, E(X/Y=2)=1. D'une manière générale $E(X/Y=y)=\frac{2}{y}$

Exemples

- Exemple 1 : $E(X_1/X_1+X_2=1)=\frac{1}{2}$ (puisque $X_1/X_1+X_2=1\sim B(\frac{1}{2})$)
- Exemple 2 : E(X/Y=1)=2, E(X/Y=2)=1. D'une manière générale $E(X/Y=y)=\frac{2}{y}$

Exemples

$$X \sim N_2(m, \Sigma)$$
 avec $m = (m_1, m_2)^t$ et $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \ \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$ on a alors : $f_X(x/Y = y) = \frac{1}{\sqrt{2\pi}\sigma_1\sqrt{1-\rho^2}} \exp(-\frac{1}{2\sigma_1^2(1-\rho^2)}(x-m_1-\frac{\rho\sigma_1(y-m_2)}{\sigma_2})^2)$ donc $X/Y = y \sim N_1(m_1-\frac{\rho\sigma_1(y-m_2)}{\sigma_2},\sigma_1^2(1-\rho^2))$ On déduit : $E(X/Y = y) = m_1-\frac{\rho\sigma_1(y-m_2)}{\sigma_2}$ et $Var(X/Y = y) = \sigma_1^2(1-\rho^2)$

la courbe de $y \to E(X/Y = y)$ set dite courbe de régresion de X sur Y. Dans le cas gaussien, c'est donc une droite dite droite de régression.

On peut définir de même les autres moments conditionnels

- $E(X^k/Y = y) = \int_R x^k f_X(x/Y = y) dx$ moment d'ordre k de la loi conditionnelle
- notamment la variance conditionnelle $Var(X/Y = y) = E(X^2/Y = y) (E(X/Y = y))^2$

Définition

On appelle espérance conditionnelle de X sachant Y la variable aléatoire qui prend la valeur E(X/Y=y) lorsque Y prend la valeur Y.

Définition

On appelle moment conditionnel d'ordre k de X sachant Y la variable aléatoire, notée $E(X^k/Y)$ qui prend la valeur $E(X^k/Y=y)$ lorsque Y prend la valeur Y. En particulier $Var(X/Y)=E(X^2/Y)-E(X/Y)^2$

Remarque:

Les variables aléatoires E(X/Y), $E(X^k/Y)$, Var(X/Y) sont des fonctions de la v.a Y. Elles admettent à leur tour des moments, et on a par exemple :

$$E(X/Y) = \int\limits_R E(X/Y = y) f_Y(y) dy = \int\limits_R (\int\limits_R x f_X(x/Y = y) dx) f_Y(y) dy$$

Exemples

Exemple 2:
$$E(X/Y = y) = \frac{2}{y} \implies E(X/Y) = \frac{2}{Y}$$

 $Var(X/Y = y) = \frac{2}{y^2} \implies Var(X/Y) = \frac{2}{Y^2}$
Cas gaussien:

Cas gaussien:

$$E(X/Y = y) = m_1 - \frac{\rho \sigma_1(y - m_2)}{\sigma_2} \implies E(X/Y) = m_1 - \frac{\rho \sigma_1(Y - m_2)}{\sigma_2}$$

$$Var(X/Y = y) = \sigma 1^2 (1 - \rho^2) \implies Var(X/Y) = \sigma_1^2 (1 - \rho^2)$$

Estimation

Théorème de l'espérance cconditionnelle

On a
$$E(E(X/Y)) = E(X)$$

Démonstration (Dans le cas continu)

$$E(E(X/Y)) = \int_{R} (\int_{R} x f_X(x/Y = y) dx) f_Y(y) dy = \int_{R} \int_{R} x f_X(x/Y = y) f_Y(y) dx dy = \int_{R} \int_{R} x \frac{f_{(X,Y)}(x,y)}{f_Y(y)} f_Y(y) dx dy = \int_{R} \int_{R} x f_{(X,Y)}(x,y) dx dy = E(X)$$

$$\int\limits_R \int\limits_R x \frac{f_{(X,Y)}(x,y)}{f_Y(y)} f_Y(y) dx dy = \int\limits_R \int\limits_R x f_{(X,Y)}(x,y) dx dy = E(X)$$

Théorème de la variance cconditionnelle

On a
$$Var(X) = E(Var(X/Y)) + Var(E(X/Y))$$