Machine Learning CSE2510 – Lecture 6.1

Non-linear classification – Decision trees

Odette Scharenborg

Welcome to week 6 - lecture 1

- Administrative questions?
- Recap previous lecture

- What is non-linear classification?
- XOR problem
- Decision trees
- Splitting criterion
- Stop-splitting + class assignment
- Pruning

Administrative questions?

Recap of the previous lecture

Implicit bias

- A preference or inclination for or against something
- Based on learned coincidences, which unknowingly affect everyday perceptions, judgement, memory, and behaviour
- Subconscious thought
- We all have it
- Might result in discrimination

Multiple sources of bias in ML

- Training data
- Lack of diversity in ML developers

- Implicit human biases in our culture
- Evil programmers

Debiasing ML -> Fairness in ML

Fairness is a multi-faceted concept

To improve fairness:

- Debias training data
- Use unbiased features
- Build smart algorithms

But: is difficult to ensure on both the group and individual level simultaneously

Main points

- Bias can occur at any point in a system/ organization
- It can have a technical, societal, legal, and/or educational origin

→ Building fairness and non-discriminatory behaviour into AI models is not only a matter of technological advantage but of social responsibility

Different types of classifiers

Machine learning:

- Supervised and unsupervised classifiers
- Parametric and non-parametric classifiers
- Generative and discriminative classifiers
- New dimension: linear and non-linear classifiers

Today: supervised & non-parametric & discriminative & non-linear classification

Today's learning objectives

After practicing with the concepts of today's lecture you are able to:

- Explain the basic concepts of non-linear classification
- Explain when and why they are used
- Explain the underlying algorithm of decision trees

Why non-linear classification

 Separate data with a decision boundary that is not a single or straight line

Why needed?

XOR problem

Where do you put the decision boundary to separate the two classes?

$$X = (0,1);(1,0)$$

$$O = (0,0);(1,1)$$

How can we separate the two classes?

$$X = (0,1);(1,0)$$

 $O = (0,0);(1,1)$

Decision trees

- X = (0,1);(1,0)
- O = (0,0);(1,1)

Form of the decision boundary

- Linear classifier:
 - 2D: a line
 - Higher dimensions: a hyperplane
- Nonlinear classifier:
 - Locally, it can be linear
 - In general, has a complex shape

Different non-linear classifiers

- Decision trees (today)
- Multi-layer perceptrons (Friday)

Decision trees

Largely based on slides from Victor Lavrenko, 2011 Introduction to Applied Machine Learning University of Edinburgh, UK

Decision trees

- Split the training data into unique regions sequentially
- Structure of the tree is not predefined
- Structure grows depending on the complexity and structure of the training data
- At every node, a decision is made which splits the training data in smaller subsets

Predict if John will play tennis

Training examples:

- Divide & conquer:
 - split into subsets
 - are they pure?(all yes or all no)
 - if yes: stop
 - if not: repeat
- See which subset new data falls into

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No
New data:				
D15	Rain	High	Weak	?

9 yes / 5 no

Copyright © 2011 Victor Lavrenko

Copyright © 2011 Victor Lavrenko

UDeltt

Copyright © 2011 Victor Lavrenko

ID3 algorithm

- Split (node, {examples}):
 - 1. A ← the best attribute for splitting the {examples}
 - Decision attribute for this node ← A
 - 3. For each value of A, create new child node
 - 4. Split training {examples} to child nodes
 - If examples perfectly classified: STOP
 else: iterate over new child nodes
 Split (child_node, {subset of examples})
 - Ross Quinlan (ID3: 1986), (C4.5: 1993)
- Breimanetal (CaRT: 1984) from statistics

ID3 algorithm

- Split (node, {examples}):
 - A ← the best attribute for splitting the {examples}
 - Decision attribute for this node ← A
 - 3. For each value of A, create new child node
 - 4. Split training {examples} to child nodes
 - If examples perfectly classified: STOP
 else: iterate over new child nodes
 Split (child_node, {subset of examples})
 - Ross Quinlan (ID3: 1986), (C4.5: 1993)
- Breimanetal (CaRT: 1984) from statistics

How to find the best attribute

- What attribute to split on?
- Splitting criterion
- Stop-splitting
- Done? Assign label to class
 - E.g., majority rule

Which attribute to split on?

- Want to measure "purity" of the split
 - more certain about Yes/No after the split
 - pure set (4 yes / 0 no) => completely certain (100%)
 - impure (3 yes / 3 no) => completely uncertain (50%)
 - can't use P("yes" | set):
 - must be symmetric: 4 yes / 0 no as pure as 0 yes / 4 no

Splitting criterion: Entropy

- Entropy: $H(S) = -p_{(+)} \log_2 p_{(+)} p_{(-)} \log_2 p_{(-)}$ bits
 - S ... subset of training examples
 - $-p_{(+)}/p_{(-)}...$ % of positive / negative examples in S
- Interpretation: assume item X belongs to S
 - how many bits need to tell if X positive or negative
- impure (3 yes / 3 no):

$$H(S) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$
 bits

pure set (4 yes / 0 no):

$$H(S) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$
 bits

Stop-splitting: Information gain

- Want many items in pure sets
- Expected drop in entropy after split:

$$Gain(S,A) = H(S) - \sum_{V \in Values(A)} \frac{|S_V|}{|S|} H(S_V) \qquad \begin{array}{c} \mathsf{V} & \dots \text{ possible values of A} \\ \mathsf{S} & \dots \text{ set of examples } \{\mathsf{X}\} \\ \mathsf{S}_{\mathsf{V}} & \dots \text{ subset where } \mathsf{X}_{\mathsf{A}} = \mathsf{V} \end{array}$$

- Mutual Information
 - between attribute A and class labels of S

```
Gain (S, Wind)

= H(S) - \frac{8}{14} H(S_{weak}) - \frac{6}{14} H(S_{weak})

= 0.94 - \frac{8}{14} * 0.81 - \frac{6}{14} * 1.0

= 0.049
```


Class assignment

Rule needed to assign each leaf to a class

Procedure

- Test all attributes to find the split that gives the highest information gain
- Repeat process for the child nodes
- Until all nodes are leafs

Overfitting in decision trees

- Can always classify training examples perfectly
 - keep splitting until each node contains 1 example
 - singleton = pure
- Doesn't work on new data

Copyright © 2011 Victor Lavrenko

Figure credit: Tom Mitchell, 1997

Avoid overfitting: pruning

- Stop splitting when not statistically significant
- Grow, then post-prune
 - based on validation set
- Sub-tree replacement pruning (WF 6.1)
 - for each node:
 - pretend remove node + all children from the tree
 - measure performance on validation set
 - remove node that results in greatest improvement
 - repeat until further pruning is harmful

Problems with information gain

- Biased towards attributes with many values
- Won't work

D2 D3 D4 D1 D5 D14 1/0 0/1 1/0 1/0 0/1 all subsets perfectly pure => optimal split for new data: D15 Rain High Weak

9 yes / 5 no

Day

Use GainRatio:

$$SplitEntropy(S,A) = -\sum_{V \in Values(A)} \frac{\left|S_{V}\right|}{\left|S\right|} \log \frac{\left|S_{V}\right|}{\left|S\right|} \quad \begin{array}{l} A \ \dots \ \text{candidate attribute} \\ \forall \ \dots \ \text{possible values of A} \\ \text{S} \ \dots \ \text{set of examples } \{X\} \end{array}$$

$$GainRatio(S,A) = \frac{Gain(S,A)}{SplitEntropy(S,A)}$$

 $S_v \dots$ subset where $X_A = V$

penalizes attributes with many values

Trees are interpretable

Outlook Read rules off the tree concise description Rain Sunny Overcast of what makes an item positive Wind Humidity Yes No "black box" important Weak Normal High Strong for users No Yes Yes No

```
(Outlook = Overcast) V
Rule: (Outlook = Rain ∧ Wind = Weak) V
(Outlook = Sunny ∧ Humidity = Normal)
```

Copyright © 2011 Victor Lavrenko

Figure credit: Tom Mitchell, 1997

Continuous attributes

- Dealing with continuous-valued attributes:
 - create a split: (Temperature > 72.3) = True, False
- Threshold can be optimized

Summary: decision trees

 If the data cannot be split with a single, straight decision boundary, non-linear classifiers can be used

Decision trees

- Grow from the root down
 - Greedily selects next best attribute
- Searches a complete hypothesis space
 - Prefers smaller trees, high gain at the root
- Overfitting addressed by post-pruning
 - Prune models, while accuracy û on validation set

