零死角玩转STM32—M4系列

串口功能框图讲解

淘宝: firestm32.taobao.com

野火论坛: www.firebbs.cn

主讲内容

01

STM32串口功能框图讲解

参考资料:《零死角玩转STM32》

"USART—串口通信"章节

1-引脚

2-数据寄存器

3-控制器

4-波特率

表 21-3 STM32F407ZGT6 芯片的 USART 引脚

	APB2(最高 84MHz)		APB1(最高 42MHz)			
	USART1	USART6	USART2	USART3	UART4	UART5
TX	PA9/PB6	PC6/PG14	PA2/PD5	PB10/PD8 /PC10	PA0/PC10	PC12
RX	PA10/PB7	PC7/PG9	PA3/PD6	PB11/PD9 /PC11	PA1/PC11	PD2
SCLK	PA8	PG7/PC8	PA4/PD7	PB12/PD10 /PC12	-	•
nCTS	PA11	PG13/PG15	PA0/PD3	PB13/PD11	-	-
nRTS	PA12	PG8/PG12	PA1/PD4	PB14/PD12	-	-

STM32F4xx数据手册—Pinouts and pin description。

ST每个系列的芯片都有一个数据手册,里面有引脚的详细功能。

TX:数据发送

RX:是数据接收

SCLK:时钟,仅同步通信时使用

nRTS:请求发送(Request To Send)

nCTS:允许发送(Clear To Send)

数据寄存器—USART_DR:9位有效,包

含一个发送数据寄存器TDR和一个接收数据寄存器RDR。一个地址对应了两个物理寄存器。

数据发送数据接收

具体流程?

USART_CR1:M(字长),0:8bit,1:9bit

USART_CR2:STOP[1:0](停止位位)

USART_CR1: PCE(奇偶校验使能)、PS(奇偶校验选择)、

PEIE(奇偶校验错误中断)

USART_SR : PE (奇偶校验错误)

USART_CR1:UE(USART使能)、TE(发送使能)、RE(接收使能)

USART_SR: TXE, Transmit data register empty

USART_CR1: TXEIE

USART_SR: TC, Transmission complete

USART_CR1 : TCIE

USART_SR:RXNE,接收数据寄存器非空

USART_CR1: RXNEIE 接收数据寄存器非空中断使能

控制器—USART_CR1、CR2、CR3 熟读手册即可

波特率—每秒钟要发送多少数据

USART_BRR:波特率寄存器,分整数和小数部分

USART_CR1: OVER8

波特率=
$$\frac{f_{PLCK}}{8 \times (2 - OVER8) \times USARTDIV}$$

USARTDIV: 无符号的定点数

FPCLK: 串口的时钟, 注区分APB2和APB1两条总线

OVER8: 过采样模式

USART: USART1, 时钟为84M

波特率:115200

OVER8: 0,16倍过才样,BRR小数位有效

$$115200 = \frac{840000000}{8 * 2 * USARTDIV}$$

解得 USARTDIV=45.57,可算得 DIV_Fraction=0x9 (0.57*2⁴=9.12 取整,在 BRR 寄存器中,表示小数位的有 4 位), DIV_Mantissa=0x2D,即应该设置 USART_BRR 的值为 0x2D9。

零死角玩转STM32—M4系列

淘宝: firestm32.taobao.com