北京师范大学 2021 ~ 2022 学年第一学期期末考试试卷 (A卷)

课程名称:		效分方程		任课老师姓名:				
卷面总分:	100 分	考试时长	长: <u>120</u> 分	钟 考	试类别: 闭	卷 日 开卷	卷口 其他口	
院(系):			专业:		年	年级:		
姓名:	4 2 2		学号:					
题号	-	=	三	四	五	六	总分	
得分								

阅卷老师 (签字): _____

一 (25分). 回答下列问题

- 1. 指出非 Newton 渗流方程 $u_t = (u^p)_{xx} + (u^q)_x$ 的阶数和线性性, 其中 p,q 是常数.
 - 2. 具体写出一个调和的多项式.
- 3. 设 f(x) 是 $(-\infty, \infty)$ 上的已知函数, 写出偏微分方程 $u_{xy} = f(x)$ 的通解.
- 4. 对椭圆方程 $u_{xx} + u_{yy} = u_y$, $-\infty < x < \infty$, y > 0 关于 x 做 Fourier 变换后得到的常微分方程是什么?
 - 5. 设 $\Omega \subset \mathbb{R}^n$ 是一个有界区域. 下面哪个或哪些陈述是正确的?
 - (1) 若 $f \in C^0(\Omega)$, 则 Poisson 方程 $\Delta u = f(x)$ 的解 $u \in C^2(\Omega)$.
- (2) 对于膜振动方程 $u_{tt} a^2(u_{xx} + u_{yy}) = 0$, $(x, y) \in \mathbb{R}^2$, t > 0 来说, (x_0, y_0, t_0) 的依赖区域是圆盘 $(x x_0)^2 + (y y_0)^2 \le a^2 t_0^2$, t = 0.
 - (3) 对 $x \in \Omega$, $n \geq 3$ 和 $i = 1, 2, \dots, n$,

$$\frac{\partial}{\partial x_i} \int_{\Omega} |\xi - x|^{2-n} d\xi = (n-2) \int_{\Omega} |\xi - x|^{-n} (\xi_i - x_i) d\xi.$$

二 (25分). 求解热传导方程的初边值问题

$$\begin{cases} u_t = u_{xx} + x(1-x), & 0 < x < 1, \ t > 0, \\ u(x,0) = -\frac{1}{\pi}\sin\pi x, & 0 \le x \le 1, \\ u(0,t) = 0, \ u_x(1,t) = 1, \quad t \ge 0. \end{cases}$$

三 (20分). 在 y < 0 中, 化简 Tricomi 方程 $yu_{xx} + u_{yy} = 0$.

四 (10分). 设 a 是正常数, $\Omega \subset \mathbb{R}^n$ 是光滑的有界区域, ν 是 $\partial\Omega$ 的单位外法向量, $\sigma(x)$ 是 $\partial\Omega$ 上的有界函数. 若 $u \in C^2(\overline{\Omega} \times [0, +\infty))$ 满足

$$\begin{cases} u_{tt} - a^2 \Delta u = 0, & x \in \Omega, \ t > 0, \\ \frac{\partial u}{\partial \nu} + \sigma(x)u = 0, & x \in \partial \Omega, \ t > 0, \end{cases}$$

证明

$$E(t) = \int_{\Omega} \left(u_t^2 + a^2 |Du|^2 \right) dx + a^2 \int_{\partial \Omega} \sigma(x) u^2 dS, \quad t > 0$$

恒为常数.

五 (10分). 设 $Q = (0, l) \times (0, T]$, l, T 是正常数, $u \in C^{2,1}(Q) \cap C^0(\overline{Q})$ 满足 $u_t - a^2(x)u_{xx} - b(x)u_x \ge 0$, 其中 a(x), b(x) 是已知函数, 证明

$$\min_{\overline{Q}} u = \min_{\partial_p Q} u.$$

六 (10分). 设 $B_1(0)$ 是以原点为中心的单位球. 若 $u \in H_-(B_1(0))$, 且 $u(0) \ge u(x), x \in B_1(0)$, 试证在 $B_1(0)$ 中 $u \equiv u(0)$.