

FORMATO DE SYLLABUS Código: AA-FR-003 Macroproceso: Direccionamiento Estratégico Versión: 01 Fecha de Aprobación:

Proceso: Autoevaluación v Acreditación

SIGUD V

Cuál:

FACULTAD: Tecnológica PROYECTO CURRICULAR: CÓDIGO PLAN DE ESTUDIOS: Tecnología en Electrónica Industrial I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO NOMBRE DEL ESPACIO ACADÉMICO: SISTEMAS DINÁMICOS 11206 Número de créditos académicos: 3 Código del espacio académico: HTD HTC 2 HTA 5 Distribución horas de trabajo: Cátedra Tipo de espacio académico: Asignatura х NATURALEZA DEL ESPACIO ACADÉMICO: Obligatorio Obligatorio Flectivo Flectivo Intrínseco х Básico Complementario Extrínseco CARÁCTER DEL ESPACIO ACADÉMICO: Teórico Práctico Teórico-Práctico Otros: Cuál: MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:

27/07/2023

Otros:

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

El estudiante debe tener fundamentos sólidos en cálculo diferencial, álgebra lineal, física, y sistemas eléctricos básicos. Se recomienda experiencia previa en MATLAB/SIMULINK, conocimientos introductorios de instrumentación y lógica digital. También es deseable haber desarrollado proyectos básicos de simulación de procesos físicos o electrónicos.

Virtual

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La comprensión y análisis de sistemas dinámicos es una competencia transversal para el diseño de soluciones de automatización, control y digitalización industrial. En el marco de la Industria 4.0, el modelado preciso de sistemas físicos y su integración en entornos de simulación, control predictivo y gemelos digitales es esencial. Esta asignatura sienta las bases del análisis dinámico de sistemas lineales mediante modelos matemáticos, abordando tanto la representación interna como la entrada-salida. Se promueve la capacidad de simular procesos, evaluar estabilidad, predecir comportamientos y conectar modelos con arquitecturas modernas de automatización e interoperabilidad industrial (ISA-112, OPC-UA, Digital Twin).

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Presencial

x

Dotar al estudiante de herramientas matemáticas y computacionales para modelar, simular y analizar el comportamiento dinámico de sistemas físicos lineales, con enfoque en aplicaciones de control, automatización inteligente y digitalización industrial.

Objetivos Específicos:

Identificar y clasificar sistemas dinámicos según sus características estructurales.

Presencial con

incorporación de TIC

Modelar sistemas físicos utilizando representaciones en espacio de estados y funciones de transferencia.

Analizar la respuesta temporal y frecuencial de sistemas dinámicos.

Evaluar la estabilidad y la sensibilidad de los sistemas ante perturbaciones.

Utilizar plataformas como MATLAB/Simulink y Python para simular y validar modelos dinámicos.

Explorar el rol de los modelos en entornos de gemelos digitales, digital thread e Industria 4.0.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Desarrollar competencias de modelado, simulación y validación de sistemas físicos e industriales.

Establecer la base teórica para el diseño de controladores, observadores y simuladores industriales.

Integrar los fundamentos de los sistemas dinámicos con herramientas de digitalización y automatización.

Resultados de aprendizaje esperados:

Modela sistemas dinámicos físicos mediante representaciones de entrada-salida y espacio de estados.

Analiza el comportamiento transitorio y permanente de sistemas dinámicos lineales.

Evalúa la estabilidad, sensibilidad y desempeño de sistemas industriales modelados.

Utiliza software de simulación para validar y comparar modelos dinámicos.

Aplica representaciones gráficas (diagrama de bloques, flujos, ecuaciones de estado) para describir procesos.

Integra modelos dinámicos en procesos de simulación industrial con enfoque en gemelos digitales.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos de modelado de sistemas (2 semanas)

Concepto de sistema dinámico

Clasificación y analogías físicas

Estado y condiciones iniciales

Linealidad, causalidad, invariancia

2. Modelado por entrada-salida (2 semanas)

Ecuaciones diferenciales lineales

Modelado de sistemas eléctricos, mecánicos, térmicos, hidráulicos

Sistemas electromecánicos e interdisciplinarios

Analogías con circuitos eléctricos

3. Modelado en espacio de estados (2 semanas)

Variables de estado y representación matricial

Sistemas multivariable

Diagonalización y transformación de similitud

Casos prácticos con MATLAB y Python

4. Representaciones gráficas (2 semanas)

Diagramas de bloques

Diagramas de flujo de señal

Gráficas de estados (ISA-5.5)

Fórmulas de Mason

5. Solución de modelos dinámicos (2 semanas)

Función de transferencia

Polos, ceros y modos del sistema $\,$

Matriz de transición de estado

Transformada de Laplace y solución computacional

6. Análisis en el dominio del tiempo (2 semanas)

Respuesta transitoria y estacionaria

Sistemas de primer y segundo orden

Estabilidad: Routh-Hurwitz

EASA (entrada acotada - salida acotada)

7. Análisis en el dominio de la frecuencia (2 semanas)

Diagrama de Bode y Nyquist

Análisis de frecuencia y margen de estabilidad

Interpretación de sensibilidad frecuencial

Simulación y comparación con datos reales

8. Simulación e implementación (1 semana)

Simulación de sistemas físicos en Simulink

Introducción al gemelo digital (Digital Twin)

Introducción al modelado con objetos en Python/Modelica

Integración con sistemas de monitoreo OPC-UA

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante estrategias activas de aprendizaje: resolución de problemas, trabajo colaborativo, laboratorios de simulación, proyectos integradores y análisis de casos reales. Se fomentará el uso de herramientas digitales como MATLAB, Python (SciPy/Control), Simulink y software de visualización de datos industriales. Se utilizará aprendizaje basado en proyectos (ApP) orientados al modelado de sistemas reales o virtuales.

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35% Segundo corte (hasta la semana 16) à 35% Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta MATLAB/Simulink, Python (SciPy, control, matplotlib), computadores con licencias y librerías de modelado, sistemas físicos simplificados (módulos hidráulicos, térmicos, mecatrónicos), herramientas gráficas y tableros didácticos y documentación ISA (5.5, 112), manuales técnicos y hojas de datos.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se recomienda una visita a laboratorios de simulación industrial, empresas que apliquen digital twins, plantas piloto automatizadas o centros de control de procesos donde se evidencie la modelación de sistemas en tiempo real, integración de sensores y sistemas supervisados.

XI. BIBLIOGRAFÍA

Close, C.M., Frederick, D., Newell, J. Modeling and Analysis of Dynamic Systems. Wiley

Ogata, K. Ingeniería de Control Moderna. Pearson

Kuo, B.C. Sistemas Automáticos de Control. Pearson

Chen, C.-T. Analog and Digital Control System Design. Saunders

ISA. ISA-5.5 – Graphic Symbols for Process Displays

ISA. ISA-112 – SCADA Systems Standards and Guidance

Peschl, H. Digital Twin Driven Smart Manufacturing. Springer

Cómbita, L.F. Introducción al Modelado y Análisis de Sistemas Dinámicos. UDFJC

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:		
Fecha aprobación por Consejo Curricular:	Número de acta:	