Devoir à la maison n°05 : corrigé

SOLUTION 1.

- **1.** a. sh est continue est strictement croissante sur \mathbb{R} . De plus $\lim_{-\infty} \mathrm{sh} = -\infty$ et $\lim_{+\infty} \mathrm{sh} = +\infty$. Ainsi sh est une bijection de \mathbb{R} sur \mathbb{R} .
 - **b.** ch est continue et strictement croissante sur \mathbb{R}_+ . De plus, ch(0) = 1 et $\lim_{+\infty} ch = +\infty$. Ainsi ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$.
 - c. th est continue et strictement croissante sur \mathbb{R} . De plus, $\lim_{\infty} th = -1$ et $\lim_{\infty} th = 1$. Ainsi th induit une bijection de \mathbb{R} sur]-1,1[.
- **2. a.** Soit $x \in \mathbb{R}$ et posons $\theta = f(x)$. Par définition de f, sh $\theta = x$. Or ch² $\theta = \text{sh}^2 \theta + 1$. Puisque ch $\theta \geqslant 1 \geqslant 0$, ch $\theta = \sqrt{\text{sh}^2 \theta + 1} = \sqrt{x^2 + 1}$.
 - **b.** Soit $x \in [1, +\infty[$ et posons $\theta = g(x)$. Par définition de g, ch $\theta = x$. Or sh² $\theta = \text{sh}^2 \theta 1$. Par définition de g, $\theta \in \mathbb{R}_+$ donc sh $\theta \geqslant 0$. Ainsi sh $\theta = \sqrt{\text{ch}^2 \theta 1} = \sqrt{x^2 1}$.
- 3. a. sh est dérivable et strictement croissante sur $\mathbb R$ et sa dérivée ch ne s'annule pas sur $\mathbb R$. Ainsi f est dérivable sur $\mathrm{sh}(\mathbb R)=\mathbb R$ et pour tout $x\in\mathbb R$,

$$f'(x) = \frac{1}{\sinh'(f(x))} = \frac{1}{\cosh(f(x))} = \frac{1}{\sqrt{x^2 + 1}}$$

b. ch est dérivable et strictement croissante sur \mathbb{R}_+^* et sa dérivée sh ne s'annule pas sur \mathbb{R}_+^* . Ainsi g est dérivable sur ch $(\mathbb{R}_+^*)=]1,+\infty[$ et pour tout $x\in]1,+\infty[$,

$$g'(x) = \frac{1}{ch'(g(x))} = \frac{1}{sh(g(x))} = \frac{1}{\sqrt{x^2 - 1}}$$

c. th est dérivable et strictement croissante sur $\mathbb R$ et sa dérivée $1-\text{th}^2$ ne s'annule pas sur $\mathbb R$ car th est à valeurs dans]-1,1[. Ainsi h est dérivable sur $\text{th}(\mathbb R)=]-1,1[$ et pour tout $x\in\mathbb R$,

$$h'(x) = \frac{1}{th'(h(x))} = \frac{1}{1 - th^2(h(x))} = \frac{1}{\sqrt{1 - x^2}}$$

4. a. Soit $x \in \mathbb{R}$. Posons y = f(x). On a donc sh(y) = x et $ch(y) = \sqrt{x^2 + 1}$ d'après **2.a.** Ainsi

$$e^{y} = sh(y) + ch(y) = x + \sqrt{x^{2} + 1}$$

donc

$$f(x) = y = \ln\left(x + \sqrt{x^2 + 1}\right)$$

b. Soit $x \in [1, +\infty[$. On a donc ch(y) = x et $sh(y) = \sqrt{x^2 - 1}$ d'après **2.b**. Ainsi

$$e^y = sh(y) + ch(y) = x + \sqrt{x^2 - 1}$$

donc

$$g(x) = y = \ln\left(x + \sqrt{x^2 - 1}\right)$$

c. Soit $x \in]-1,1[$. Posons y=h(x). On a donc th(y)=x i.e. $\frac{e^y-e^{-y}}{e^y+e^{-y}}=x$ ou encore $e^{2y}=\frac{1+x}{1-x}$. On en déduit que

$$h(x) = y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

Remarque. Les fonctions f, g et h s'appellent en fait argsh, argch et argth. ■

SOLUTION 2.

- 1. Le calcul ne pose aucune difficulté, on trouve $I_0=\frac{\pi}{2}$ et $I_1=1$.
- **2.** Puisque \sin^n est continue, positive et non constamment nulle sur $\left[0, \frac{\pi}{2}\right]$, $I_n > 0$.
- 3. Soit $n \in \mathbb{N}$. Les fonctions $t \mapsto -\cos t$ et $t \mapsto \sin^{n+1} t$ sont de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ et leurs dérivées respectives sont $t \mapsto \sin t$ et $t \mapsto (n+1)\cos t \sin^n t$. Par intégration par parties,

$$\begin{split} I_{n+2} &= \int_0^{\frac{\pi}{2}} \sin(t) \sin^{n+1}(t) \ dt \\ &= \left[-\cos(t) \sin^{n+1}(t) \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \cos^2(t) \sin^n(t) \ dt \\ &= (n+1) \int_0^{\frac{\pi}{2}} (1 - \sin^2(t)) \sin^n(t) \ dt \\ &= (n+1) (I_n - I_{n+2}) \end{split}$$

Ainsi

$$\forall n \in \mathbb{N}, (n+2)I_{n+2} = (n+1)I_n$$

4. Par télescopage,

$$\begin{split} I_{2n} &= I_0 \prod_{k=1}^n \frac{I_{2k}}{I_{2k-2}} \\ &= \frac{\pi}{2} \prod_{k=1}^n \frac{2k-1}{2k} \\ &= \frac{\prod_{k=1}^n (2k-1)}{\prod_{k=1}^n (2k)} \cdot \frac{\pi}{2} \\ &= \frac{\left(\prod_{k=1}^n 2k\right) \left(\prod_{k=1}^n 2k-1\right)}{\left(\prod_{k=1}^n 2k\right)^2} \cdot \frac{\pi}{2} \\ &= \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2} = \frac{(2n)!}{2^{2n} n!^2} \cdot \frac{\pi}{2} \end{split}$$

De la même façon,

$$\begin{split} I_{2n+1} &= I_1 \prod_{k=1}^n \frac{I_{2k+1}}{I_{2k-1}} \\ &= \prod_{k=1}^n \frac{2k}{2k+1} \\ &= \frac{\prod_{k=1}^n 2k}{\prod_{k=1}^n 2k+1} \\ &= \frac{\left(\prod_{k=1}^n 2k\right)^2}{\left(\prod_{k=1}^n 2k\right) \left(\prod_{k=0}^n 2k+1\right)} \\ &= \frac{(2^n n!)^2}{(2n+1)!} = \frac{2^{2n} n!^2}{(2n+1)!} \end{split}$$

5. Soit $n \in \mathbb{N}$. Puisque

$$\forall t \in \left[0, \frac{\pi}{2}\right], \ 0 \leqslant \sin(t) \leqslant 1$$

on a

$$\forall t \in \left[0, \frac{\pi}{2}\right], \; 0 \leqslant \sin^{n+1}(t) \leqslant \sin^{n}(t)$$

Ainsi, après intégration sur le segment $\left[0,\frac{\pi}{2}\right]$, $I_{n+1}\leqslant I_n$. La suite $(I_n)_{n\in\mathbb{N}}$ est donc décroissante. On a donc en particulier,

$$\forall n \in \mathbb{N}, I_{n+2} \leqslant I_{n+1} \leqslant I_n$$

soit encore, d'après la relation de récurrence obtenue ci-dessus,

$$\forall n \in \mathbb{N}, \ \frac{n+1}{n+2} I_n \leqslant I_{n+1} \leqslant I_n$$

6.

7. Puisque $I_n > 0$ pour tout $n \in \mathbb{N}$,

$$\forall n \in \mathbb{N}, \ \frac{n+1}{n+2} \leqslant \frac{I_{n+1}}{I_n} \leqslant 1$$

De plus, $\lim_{n\to+\infty}\frac{n+1}{n+2}=1$ donc, en appliquant le théorème d'encadrement,

$$\lim_{n \to +\infty} \frac{I_{n+1}}{I_n} = 1$$

8. Posons $v_n = (n+1)I_{n+1}I_n$ pour $n \in \mathbb{N}$. On remarque que

$$\forall n \in \mathbb{N}, \ \nu_{n+1} = (n+2)I_{n+2}I_{n+1} = (n+1)I_nI_{n+1} = \nu_n$$

La suite (v_n) est donc constante égale à $\frac{\pi}{2}$ car

$$\nu_0=I_0I_1=\frac{\pi}{2}$$

9. Soit $n \in \mathbb{N}$. Remarquons que

$$nI_n^2 = \frac{n}{n+1} \cdot \frac{I_n}{I_{n+1}} \cdot \nu_n = \frac{n}{n+1} \cdot \frac{I_n}{I_{n+1}} \cdot \frac{\pi}{2}$$

Or on a vu précédemment que $\lim_{n\to+\infty}\frac{I_{n+1}}{I_n}=1$ et il est clair que $\lim_{n\to+\infty}\frac{n}{n+1}=1$ donc

$$\lim_{n\to+\infty}nI_n^2=\frac{\pi}{2}$$

Comme $I_n > 0$, $\sqrt{n}I_n = \sqrt{nI_n^2}$ de sorte que

$$\lim_{n\to +\infty} \sqrt{n} I_n = \sqrt{\frac{\pi}{2}}$$

SOLUTION 3.

1. A l'aide d'une formule de trigonométrie et de la linéarité de l'intégrale, on a pour tout $x \in \mathbb{R}$:

$$f(x) = \sin(x) \int_0^x \cos(t)g(t) dt - \cos(x) \int_0^x \sin(t)g(t) dt$$

Les applications $x \mapsto \int_0^x \cos(t)g(t) \, dt$ et $x \mapsto \int_0^x \sin(t)g(t) \, dt$ sont de classe \mathcal{C}^1 comme primitives de fonctions continues. Comme sin et cos sont également de classe \mathcal{C}^1 , on en déduit que f est de classe \mathcal{C}^1 et que pour tout $x \in \mathbb{R}$:

$$f'(x) = \cos(x) \int_0^x \cos(t)g(t) dt + \sin(x)\cos(x)g(x) + \sin(x) \int_0^x \sin(t)g(t) dt - \cos(x)\sin(x)g(x)$$

$$= \int_0^x (\cos(x)\cos(t) + \sin(x)\sin(t)) g(t) dt = \int_0^x \cos(t - x)g(t) dt$$

2. On a montré à la question précédente que pour tout $x \in \mathbb{R}$:

$$f(x) = \cos(x) \int_0^x \cos(t)g(t) dt + \sin(x) \int_0^x \sin(t)g(t) dt$$

On démontre comme à la première question que f' est de classe \mathcal{C}^1 i.e. que f est de classe \mathcal{C}^2 . De plus, pour tout $x \in \mathbb{R}$:

$$f''(x) = -\sin(x) \int_0^x \cos(t)g(t) dt + \cos^2(x)g(x) + \cos(x) \int_0^x \sin(t)g(t) dt + \sin^2(x)g(x)$$

$$= -\int_0^x (\sin(x)\cos(t) - \cos(x)\sin(t)) g(t) dt + g(x) = -f(x) + g(x)$$

Ceci prouve que f est bien solution de y'' + y = g.

3. La solution générale de l'équation homogène y'' + y = 0 est $x \mapsto \lambda \cos(x) + \mu \sin(x)$ avec $\lambda, \mu \in \mathbb{R}$. Comme f est une solution particulière de y'' + y = g, on en déduit que les solutions de y'' + y = g sont $x \mapsto f(x) + \lambda \cos(x) + \mu \sin(x)$ avec $\lambda, \mu \in \mathbb{R}$.