

B2

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 410 655 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 90307952.3

(51) Int. Cl.5: C12N 15/72, C12N 1/21

(22) Date of filing: 20.07.90

(30) Priority: 27.07.89 US 386821

(71) Applicant: Mycogen Corporation
5451 Oberlin Drive
San Diego, CA 92121(US)

(43) Date of publication of application:
30.01.91 Bulletin 91/05

(72) Inventor: Wilcox, Edward R.
5 Lopa Court
North Potomac, Maryland 20878(US)

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(74) Representative: Perry, Robert Edward et al
GILL JENNINGS & EVERY 53-64 Chancery
Laneane
London WC2A 1HN(GB)

(54) Improved control of expression of heterologous genes from lac operated promoters.

(57) The invention is a process for controlling the expression of heterologous genes from lac -operated promoters by removing the CAP binding site and lac promoter from the lac operon. Illustrated is the fusion of the lacZ , Y , and A genes of the lac operon to the 3' end of the lacI structural gene. This elimination of the natural regulatory elements of the lac operon results, advantageously, in the production of lac operon gene products in a constitutive mode from the lacI promoter.

EP 0 410 655 A1

Xerox Copy Centre

BEST AVAILABLE COPY

X

IMPROVED CONTROL OF EXPRESSION OF HETEROLOGOUS GENES FROM LAC OPERATED PROMOTERS

Background of the Invention

The lactose (lac) operon consists of three protein products under the control of a lac promoter-operator. These gene products are β -galactosidase (Z), permease (Y), and thiogalactoside transacetylase (A). The protein product of the lacI transcript (repressor), an independent gene product, interacts with the operator of the lac operon and keeps synthesis off until allolactose (1,6-O- β -D-galactopyranosyl-D-glucose), a product of the β -galactosidase reaction, accumulates in the cell and binds to the repressor. The allolactose repressor complex has a changed conformation, allowing the repressor to be displaced from the operator. RNA transcription then begins from the lac promoter (Beckwith, J. [1987] in *Escherichia coli* and *Salmonella typhimurium* Cellular and Molecular Biology . Vol. 2, Neidhardt, F.C., Editor in Chief, American Society for Microbiology, Washington, D.C.).

A few molecules of the lac operon transcript are present in *E. coli*, even in the absence of lactose. Hence, permease and β -galactosidase are always present, at least at a low level. Allolactose, the natural inducer of the operon, is made in the cell when lactose (1,4-O- β -D-galactopyranosyl-D-glucose) enters the cell by the permease reaction and is converted through transgalactosidation by β -galactosidase into allolactose (Freifelder, D., [1987] Molecular Biology . Jones and Bartlett Publishers, Inc., Portola Valley, CA; Beckwith, *supra*). It was calculated that greater than 20% of the lactose acted upon by β -galactosidase is converted to allolactose (Jobe, A., Bourgeois, S., [1972] J. Mol. Biol. 69 :397-408). The majority of the remaining lactose is converted to glucose and galactose. Allolactose is a better substrate for β -galactosidase than lactose (Jobe and Bourgeois, *supra*), and is itself rapidly converted to glucose and galactose.

Another control element of the lac operon is catabolite repression. In the presence of glucose the cell is able to repress many operons. For example the lac operon is only transcribed at 2% of its maximum level in the presence of glucose (Beckwith, *supra*).

When several β -galactosides were compared for their ability to induce the lac operon *in vivo*, lactose was found to act as a very poor effector molecule. The synthetic non-metabolized β -galactoside, isopropyl- β -D-thiogalactoside (IPTG), was found to induce the lactose operon 5 times better than lactose (Monod, J., G. Cohen-Bazire and M. Cohn [1951] Biochim. Biophys. Acta. 7 :585-599). Yet, allolactose itself is as good an inducer of the operon as IPTG (Muller-Hill, B., H.V. Rickenberg and K Wallenfels [1964] J. Mol. Biol. 10 :303-318; Jobe and Bourgeois, *supra*).

Given the efficiency of lactose conversion to allolactose, one might expect lactose to work very well as an inducer of the lac operon. However, prior to the present disclosure, this has never occurred in practice (Monod et al., *supra*).

The current way to control the expression of heterologous genes from the lac promoter or lac consensus promoters such as tac (Reznikoff, W.S. and W.R. McClure [1986] Maximizing Gene Expression , W. Reznikoff and L. Gold, eds., Butterworth Publishers, Stoneham, MA) is to have enough lac repressor present in the cell, so that transcription from the tac promoter is off until IPTG or another proper inducing β -galactoside is added to the cell. Although IPTG is the current inducer of choice, it is expensive and has been labeled a potential carcinogen. Thus, there is a need to replace IPTG in commercial systems where control of the expression of heterologous genes from lac operated promoters is used.

Brief Summary of the Invention

The subject invention concerns an improved method for controlling the expression of heterologous genes from lac operated promoters. Specifically, the subject invention concerns a method for controlling the expression of heterologous genes from lac operated promoters which comprises removing the CAP binding site and lac promoter/operator from the lac operon. The subject invention is exemplified herein by use of a novel recombinant DNA construct comprising the lacZ, Y and A genes of the lac operon, to control the expression of heterologous genes from lac operated promoters. The lacZ, Y, and A genes of the lac operon were fused to the 3' end of the lacI structural gene, thereby eliminating all of the natural regulatory elements of the lac operon. By doing this, lac operon gene products are produced in a constitutive mode from the lac promoter and are not responsive to catabolite repression or to allolactose induction. When lactose is added, the constitutively synthesized β -galactosidase converts as much as 20% to allolactose,

which in turn derepresses the tac promoter and any associated heterologous gene. As long as the allolactose concentration in the cell is above 10^{-5} M the tac promoter provides high expression of the protein of interest. The complete DNA sequence of the transcriptional fusion of the lacI gene to the lacZ, Y, and A genes of the subject invention is as shown in Table 1.

5 The novel lacIZYA operon (Table 1) can be inserted in any plasmid, or it can be inserted into any microbial chromosome to improve control of heterologous gene expression from a lac operated promoter (as long as a promoter is present to drive lacIZYA transcription). It will be apparent to a person skilled in the art that other constructs can be used to fuse the genes.

10 The lac operator, which has very high affinity for the lacI repressor ($K_{D,NA} = 2.5 \times 10^{13}$ M⁻¹), is a sequence 21 b.p. long as follows; AATTGTGAGCGGATAACAATT (Barkley, M.D. and S. Bourgeois [1978] In The Operon Miller, J.H. and W.S. Reznikoff, eds. Cold Spring Harbor). Many mutations within the lac operator exist which have higher or lower affinities to the lacI repressor (Barkley and Bourgeois, *supra*; Sadler, J.R. et al. [1983] Proc. Natl. Acad. Sci. USA 80 :6785-6789; Simons, A. et al. [1984] Proc. Natl. Acad. Sci. USA 81 :1624-1628). Many mutations exist within the lacI repressor that allow for greater affinity 15 to the U operator with no significant effect on derepression (Barkley and Bourgeois, *supra*). Using any of the many different combinations of lac operator and lacI repressor, the control of heterologous gene expression is apparent to a person skilled in the art. Many different promoters (eukaryotic as well as prokaryotic) have been placed under lac operator regulation (Yansura, D.G. and D.J. Henner [1984] Proc. Natl. Acad. Sci. USA 81 :439-443; Herrin Jr., G.L and G.N. Bennett [1984] Gene 32 :349-356; Deuschle, U., 20 et al. [1986] Proc. Natl. Acad. Sci. USA 83 :4134-4137; Hu, M.C-T. and N. Davidson [1988] Gene 62 :301-314; Figge, J., et al. [1988] Cell 52 :713-722). The subject invention is designed to improve lactose induction from such lac operated promoters.

This invention enables cells to make enough lacZ and Y protein to efficiently take up lactose and convert it to glucose and galactose, as well as to the true lac inducer, allolactose. In addition, the invention 25 enables the cell to synthesize enough repressor (lacI protein) to bind to the lac operator upstream from a heterologous gene, and keep heterologous gene expression off in the absence of inducer. With excess lactose present in the medium, the cell can accumulate sufficient concentrations of allolactose for efficient derepression of the lac operator.

30

Brief Description of the Drawings

Figure 1 - pMYC 2005, LacI and Z operon fusion

A synthetic fragment of DNA was cloned into pUC18 to replace the normal sequence found at Hin d III-403 to Hae II-524. This synthetic sequence removes the lac promoter and operator sequences and replaces them with a Shine-Dalgarno site.

Figure 2 - pMYC 2101, construction of the lacIZYA operon

Three fragments of DNA were ligated and then introduced by transformation into MC1061 (Casadaban, M. and S. Cohen [1980] J. Mol. Biol. 138 :179-207) to construct the plasmid pMYC2101. The first fragment came from pMYC2005 as a Hin dIII-403 to Eae I-485 piece, the second fragment came from pMC9 as an Eco RI-1 to Eae I-1103 piece and the final fragment comes from pSKS107 as a 9889 bp Hin dIII-31 to Eco RI-1 piece. Once constructed, the Eco RI and Sal I ends were converted to Bam HI and Bgl II ends, respectively, using oligonucleotide linkers, creating pMYC2101-B.

Figure 3 - pMYC467, a tac promoted toxin-containing plasmid

The tac promoted toxin gene found in pMYC436 (NRRL deposit no. B-18292) was cloned as a 4.5 Kbp Bam HI to Pst I fragment in the vector pTJS260. Not all the sequence of pTJS260 or of the 3' flanking sequences of the toxin genes are available, hence some restriction sites are approximated in Figures 3, 4, 5 and 6.

Figure 4 - pMYC471, a lactose inducible plasmid

The lacIZYA operon was cloned into the Bam HI site of pMYC467. The resulting plasmid, pMYC471, was then induced by transformation into MB101, a *P. fluorescens*.

Figure 5 - pMYC485, an alternate lactose inducible plasmid

A lacI^QZYA operon was constructed by replacing lacI with lacI^Q as a 638 bp Bam HI to Apa I fragment. The lacI^QZYA operon was then cloned into the Bam HI site of pMYC467. The resulting plasmid, pMYC485, was tested in MB101 for lactose inducibility. The lacI^QZYA operon is shown in Table 1 wherein base 16 is a T instead of a C as shown in the table.

Figure 6 - pMYC1611, a coleopteran toxin-lactose inducible plasmid

The plasmid pMYC471 was cut with Bam HI (at position 12103) and Kpn I (at position 7933) to remove the tac -promoted lepidopteran-active toxin and then both ends were filled in with T4 DNA polymerase, resulting in blunt termini. The tac promoted toxin gene disclosed in U.S. Patent 4,771,131, was inserted into the above DNA as a blunt-ended Sca I (of pBR322) to filled-in Hin dIII fragment (at the 3' end of the coleopteran-active sequence). The 5' end of the tac promoter had been previously inserted by blunt-end ligation into the Eco RI site of pBR322.

Detailed Disclosure of the Invention

Upon removal of the CAP binding site and lac promoter/operator from the lac operon, there is realized an improved control of expression of a heterologous gene. Exemplified herein is the insertion of a lacIZYA fusion construct into a plasmid containing a tac -promoted gene encoding a lepidopteran insect toxin. The plasmid (pMYC471) was then used to transform Pseudomonas fluorescens, which was designated Pseudomonas fluorescens MR471 (pMYC471).

One element of plasmid pMYC471 provides its host with constitutive levels of lac operon gene products. For this purpose, the operon could be fused to any of a variety of available constitutive promoters. In this instance, it was fused to the lacI promoter. In addition, a new construct containing a lacI^Q promoter, instead of the lacI promoter, was made (pMYC485). This new construct provides higher levels of the repressor as well as of lac operon gene products. The plasmid, pMYC4BS, functions like pMYC471.

As a demonstration that lactose inducibility is not dependent on the specific gene under tac promoter control, another gene encoding a coleopteran-active toxin was cloned into the pMYC471 vector replacing the lepidopteran-active toxin gene, resulting in pMYC1161. Pseudomonas fluorescens strain MB101 carrying this new plasmid also permits lactose induction of toxin expression. This will hold true for any gene under control of a lac operated promoter.

Another aspect of this fusion is that the lac operon is no longer regulated by the normal control elements associated with lactose. This means that synthesis of lac operon ZYA gene products in these constructs (pMYC471, pMYC485, and pMYC1161) is constitutive and occurs independently of the concentrations of lactose or glucose present in the cell. For example, in the presence or absence of IPTG or lactose, a new protein band corresponding to the mass of β -galactosidase is apparent on SDS-PAGE and the clones cleave X-gal, forming blue colonies under the same conditions.

For ease in construction, the lacA gene has been included on all the plasmids containing lacIZYA mentioned in this disclosure. The lacA gene product has no role (Freifelder, *supra*) in production of allolactose and can easily be removed from the lacIZYA operon. For example, there is a non-unique Afl II (CTTAAG) restriction enzyme site at the stop codon of the lacY gene. By using this Afl II restriction site, it is possible to remove the lacA gene. The lacIZY operon has the same lactose induction properties as those found in the lacIZYA operon.

The data of Table 2 demonstrate toxin production is regulated by lactose or IPTG. Although the amount of lactose used for induction is 10 to 20 fold higher than IPTG induction levels, the significantly reduced cost of lactose (\$7.00 per kilo, Sigma Chemical Co.) compared to IPTG (\$20,000 per kilo, Sigma Chemical Co.) make the former inducer highly economically advantageous. For maximum production levels the metabolized substrate, lactose, must be replenished during cell growth or the culture will decrease the synthesis of the tac -promoted gene.

45

Materials and Methods

Cloning and DNA manipulation techniques are described in Maniatis, T., E.F. Fritsch and J. Sambrook (1982) Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Publishers, Cold Spring Harbor, New York.

A plasmid containing the lac operon, pSKS107, was received from Dr. M. Casadaban at the University of Chicago (Shapira, S.K., J. Chou, F.V. Richaud and M.J. Casadaban [1983] Gene 25 :71-82). The sequence of the lac operon is published (Kalnins, A., K Otto, U. Ruther and B. Muller-Hill [1983] EMBO J. 2 :593-597; Hediger, M.A., D.F. Johnson, D.P. Nierlich and I. Zabin [1985] Pro. Nat. Acad. Sci. 82 :6414-6418). The lacI gene, on a 1.7KB Eco RI restriction fragment cloned into pBR322, is available from the ATCC, as pMC9, catalogue no. 37195, 37196 and 37197. The sequence of the lacI gene is also published (Farabaugh, P.J. [1978] Nature 274 :765-769). The broad host range vector, pMMB22, was received from Dr. M.

Bagdasarian (Bagdasarian, M.M., E. Amann, R. Lurz, B. Ruckert and M Bagdasarian [1983] Gene 26 :273-282). A Hin dIII fragment of pMMB22, containing the lacI ^Q gene, was relinkered to Bam HI. The sequence of the lacI ^Q gene has also been published (Calos, M.P. [1978] Nature 274 :762-765). Analysis here is largely based on the published DNA sequences. Some of the critical portions of the constructs were confirmed by DNA sequencing, e.g., the lacI and lacI ^Q promoters and the fusion region between the lacI transcriptional unit and the lac operon. The vector, pUC18, is available from a variety of sources, such as catalogue no. 27-4949-01 of Pharmacia Corporation. The broad host range vector, pTJS260, is available from Dr. D.R. Helinski at the University of California, San Diego, La Jolla CA 92093 (Schmidhauser, T.J. [1986] Ph.D Thesis, UCSD).

10 Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

15 Example 1 - Fusions of the LacI Gene and Lac Operon.

Fusions of the lacI gene and lac operon were first carried out in pUC18. To do so, pUC18 was linearized with Hin dIII and then partially cut with Hae II. The DNA was resolved by electrophoresis on a 1.4% agarose gel. The 2402 bp band was eluted and ligated to a double-stranded synthetic DNA insert 20 produced by β -cyanoester chemistry on an Applied Biosystems 380A oligonucleotide synthesizer. This sequence starts at BP 1073 of the lacI sequence (Farabaugh, P.J., supra) as seen in Table 1.

Hae II

25 CC AAT ACG CAA ACC GCC TCT CCC CGC GCG TTG GCC GAT
CGCGGG TTA TGC GTT TGG CGG AGA GGG GCG CGC AAC CGG CTA

Eae I

30 TCA TTA ATG CAA CTC GCA CGA CAG GTC TCG AGA CTG GAA AGC
AGT AAT TAC GTT GAG CGT GCT GTC CAG AGC TCT GAC CTT TCG

Xho I

35 lacI Stop S/D lacZ Start Hind III
GGG CAG TGA GCGCTAGGAGGTAACTT ATG GAA
CCC GTC ACT CGCGATCCTCCATTGAA TAC CTTCGA

40 The above synthetic sequence removes the Pvu II site normally found at BP 1123 of lacI. A new Xhol site was inserted near the 3' end of the lacI gene (BP 1137). These changes were introduced for ease in identification of the new construct. No amino acid changes would occur as a result of the mutations introduced in making the base pair changes for the above two restriction sites. In this construct, the distance between the stop codon of lacI and the start codon of lacZ is 17 base pairs. This region contains a ribosome binding site (marked as S/D) such that a ribosome translating the lacI transcript will be able to continue synthesis of the lacZ gene product from the same transcript. A plasmid diagram of pMYC2005 is seen in Figure 1.

50

Example 2 - Confirmation of Sequence.

The synthetic portion of pMYC2005 was sequenced to validate its structure and was used in a three-piece ligation to tie the full lacI gene of pMC9 to the lac operon found in pSKS107 (Figure 2). After transformation, the lacI/Z fusion region was sequenced from a blue colony on an LB + X-gal (5-bromo-4-chloro-3-indolyl- β -D-galactosidase, a colorimetric substrate for the presence of β -galactosidase) plate. Those restriction sites that were examined yielded fragments of the predicted sized (Figure 2). The lacI

promoter region was also confirmed by sequence analysis.

Example 3 - Cloning.

5

The Eco RI and Sal I ends of the lacI^ZYA construct (Figure 2) were respectively relinkered to yield Bam HI and Bgl II restriction sites. The lacI^ZYA operon was cloned into the unique Bam HI site of pMYC467 (Figure 3) yielding pMYC471 (Figure 4). The plasmid, pMYC467, contains the tac promoted lepidopteran toxin gene of pMYC436 (a cry IA(c)-like toxin gene [NRRL deposit no. B-18292] Adang, M.J. et al. [1985] Gene 36 :289-300) cloned into the broad host range vector, pTJS260. pMYC471 was introduced by transformation into *P. fluorescens* MB101 and the resulting clone was designated MR471. MR471 was tested for the key elements of the resident pMYC471 plasmid. A functional repressor is synthesized because in the absence of IPTG or lactose no significant amount of toxin is produced (Table 1). The cells are blue when plated on X-gal because a functional β -galactosidase is present. A functional permease and β -galactosidase are present because the cells are able to induce the tac promoter in the presence of lactose (Table 1).

The subject invention can be used with any heterologous gene to control its expression from lac operated promoters. The expression product (protein) can be isolated from the culture medium of the producing microbe by means known in the art for isolating such a product from microbial cultures. 20 Alternatively, a product which remains intracellular can be used in the form of the microbe itself, for example, as a biological insecticide. See U.S. patents 4,695,455 and 4,695,462 for such uses.

25

30

35

40

45

50

55

Table 1

5

T in lac I^Q

1 GACACCATCG AATGGCGCAA AACCTTCGC GGTATGGCAT GATA^GGCC

start codon
lac I

10 51 GGAAGAGAGT CAATTCAGGG TG GTGAATGT GAAACCAGTA ACGTTATA^CCG

15 101 ATGTCGCAGA GTATGCCGGT GTCTCTTATC AGACC^GTTC CCGCGTGGTG

20 151 AACCAGGCCA GCCACGTTTC TGC^GAAAACG CGGGAAAAAAG TGGAA^GCGGC

25 201 GATGGCGGAG CTGAATTACA TTCCCAACCG CGTGGCACAA CAACTGGCGG

30 251 GCAAACAGTC GTTGCTGATT GGCGTTGCCA CCTCCAGTCT GGCCCTGCAC

35 301 GCGCCGTCGC AAATTGTCGC GGCGATTA^AAA TCTCGCGCCG ATCAACTGGG

40 351 TGCCAGCGTG GTGGTGTGA TGGTAGAACG AAGCGGCGTC GAAGCCTGTA

45 401 AAGCGGCGGT GCACAATCTT CTCGCGAAC GCGTCAGTGG GCTGATCATT

50 451 AACTATCCGC TGGATGACCA GGATGCCATT GCTGTGGAA^G CTGCCTGCAC

55 501 TAATGTTCCG GCGTTATTC TTGATGTCTC TGACCAGACA CCCATCAACA

60 551 GTATTATTTT CTCCCATGAA GACGGTACGC GACTGGCGT GGAGCATCTG

65 601 GTCGCATTGG GTCACCAGCA AATCGCGCTG TTAGCGGGCC CATTAAGTTC

70 651 TGTCTCGCGG CGTCTGCGTC TGGCTGGCTG GCATAAAATAT CTCACTCGCA

75 701 ATCAAATTCA GCCGATAGCG GAACGGGAAG GCGACTGGAG TGCCATGTCC

80 751 GGTTTTAAC AAACC^ATGCA AATGCTGAAT GAGGGCATCG TTCCCACTGC

85 801 GATGCTGGTT GCCAACGATC AGATGGCGCT GGGCGCAATG CGCGCCATTA

90 851 CCGAGTCCGG GCTGCGCGTT GGTGCGGATA TCTCGGTAGT GGGATACGAC

95 901 GATA^CGAAG ACAGCTCATG TTATATCCCG CCGTCAACCA CCATCAAACA

100 951 GGATTTTCGC CTGCTGGGGC AAACCAGCGT GGACCGCTTG CTGCAACTCT

105 1001 CTCAGGGCCA GGC^GGTGAAG GGCAATCAGC TGTTGCCGT CTCACTGGTG

110 1051 AAAAGAAAAA CCACCCTGGC GC'CCAATACG CAAACCGCCT CTCCCCGCGC

50

55

X

Table 1 continued

5	1101	GTTGGCCGAT TCATTAATGC AACTCGCACG ACAGGTCTCG AGACTGGAAA	
		stop codon lac I	start codon lac Z
		(1)	
10	1151	GCGGGCAGTG AGCGCTAGGA GGTAACCTTAT GGAA'AGCTTG GCAC TGGCCG	
	1201	TCGTTTACA ACGTCGTGAC TGGGAAAACC CTGGCGTTAC CCAACTTAAT	
	1251	CGCCTTGCAG CACATCCCCC TTTGCCAGC TGGCGTAATA GCGAAGAGGC	
15	1301	CCGCACCGAT CGCCCTTCCC AACAGTTGCG CAGCCTGAAT GGCGAATGGC	
	1351	GCTTTGCCCTG GTTTCCGGCA CCAGAACGGG TGCCGGAAAG CTGGCTGGAG	
	1401	TGCGATCTTC CTGAGGCCGA TACTGTCGTC GTCCCCCTCAA ACTGGCAGAT	
20	1451	GCACGGTTAC GATGCGCCCA TCTACACCAA CGTAACCTAT CCCATTACGG	
	1501	TCAATCCGCC GTTTGTTCCC ACGGAGAACATC CGACGGGTTG TTACTCGCTC	
	1551	ACATTTAATG TTGATGAAAG CTGGCTACAG GAAGGCCAGA CGCGAATTAT	
25	1601	TTTTGATGGC GTTAACTCGG CGTTTCATCT GTGGTGCAAC GGGCGCTGGG	
	1651	TCGGTTACGG CCAGGACAGT CGTTTGCCGT CTGAATTGAG CCTGAGCGCA	
	1701	TTTTTACGCG CCAGGAGAAAA CCGCCTCGCG GTGATGGTGC TGCCTGGAG	
30	1751	TGACGGCAGT TATCTGGAAG ATCAGGATAT GTGGCGGATG AGCGGCATTT	
	1801	TCCGTGACGT CTCGTTGCTG CATAAACCGA CTACACAAAT CAGCGATTT	
	1851	CATGTTGCCA CTCGCTTAA TGATGATTC AGCCGCGCTG TACTGGAGGC	
35	1901	TGAAGTTCAAG ATGTGGCGG AGTTGCGTGA CTACCTACGG GTAACAGTTT	
	1951	CTTTATGGCA GGGTGAAACG CAGGTCGCCA GCGGCACCGC GCCTTCGGC	
	2001	GGTGAAATTAA TCGATGAGCG TGGTGGTTAT GCCGATCGCG TCACACTACG	
40	2051	TCTGAACGTC GAAAACCGA AACTGTGGAG CGCCGAAATC CGAACATCTCT	
	2101	ATCGTGCAGGTT GGTTGAAC TGACACCGCG ACAGCACGCT GATTGAAGCA	
	2151	GAAGCCTGCG ATGTCGGTTT CCGCGAGGTG CGGATTGAAA ATGGTCTGCT	
45	2201	GCTGCTGAAC GGCAAGCCGT TGCTGATTGAG AGGCCTTAAC CGTCACGAGC	
	2251	ATCATCCTCT GCATGGTCAG GTCATGGATG AGCAGACGAT GGTGCAGGAT	
	2301	ATCCTGCTGA TGAAGCAGAA CAACTTAAC GCCGTGCGCT GTTCGCATTA	
50	2351	TCCGAACCACAT CCGCTGTGGT ACACGCTGTG CGACCGCTAC GGCCTGTATG	

Table 1 continued

5	2401	TGGTGGATGA AGCCAATATT GAAACCCACG GCATGGTGCC AATGAATCGT
	2451	CTGACCGATG ATCCCGCGCTG GCTACCGGCG ATGAGCGAAC GCGTAACGCG
	2501	AATGGTGCAG CGCGATCGTA ATCACCCGAG TGTGATCATC TGGTCGCTGG
10	2551	GGAATGAATC AGGCCACGGC GCTAATCACG ACGCGCTGTA TCGCTGGATC
	2601	AAATCTGTGAG ATCCTTCCCCG CCCGGTGCAG TATGAAGGCG GCGGAGCCGA
	2651	CACCACGGCC ACCGATATTA TTTGCCGAT GTACGCGCGC GTGGATGAAG
15	2701	ACCAGCCCTT CCCGGCTGTG CCGAAATGGT CCATAAAAAA ATGGCTTTCG
	2751	CTACCTGGAG AGACCGCGCC GCTGATCCTT TGCGAATAACG CCCACGCGAT
20	2801	GGGTAACAGT CTTGGCGGTT TCGCTAAATA CTGGCAGGCG TTTCGTCAGT
	2851	ATCCCCGTTT ACAGGGCGGC TTCGTCTGGG ACTGGGTGGA TCAGTCGCTG
	2901	ATTAATATG ATGAAAACGG CAACCCGTGG TCGGCTTACG GCGGTGATTT
25	2951	TGGCGATAACG CCGAACGATC GCCAGTTCTG TATGAACGGT CTGGTCTTTG
	3001	CCGACCGCAC GCCGCATCCA GCGCTGACGG AAGCAAAACA CCAGCAGCAG
	3051	TTTTTCCAGT TCCGTTTATC CGGGCAAACC ATCGAAGTGA CCAGCGAATA
30	3101	CCTGTTCCGT CATAGCGATA ACGAGCTCCT GCACTGGATG GTGGCGCTGG
	3151	ATGGTAAGCC GCTGGCAAGC GGTGAAGTGC CTCTGGATGT CGCTCCACAA
	3201	GGTAAACAGT TGATTGAACT GCCTGAACTA CCGCAGCCGG AGAGCGCCGG
35	3251	GCAACTCTGG CTCACAGTAC GCGTAGTGCA ACCGAACGGC ACCGCATGGT
	3301	CAGAAGCCGG GCACATCAGC GCCTGGCAGC AGTGGCGTCT GGCGGAAAAC
	3351	CTCAGTGTGA CGCTCCCCGC CGCGTCCAC GGCATCCCAC ATCTGACCAC
40	3401	CAGCGAAATG GATTTTGCA TCGAGCTGGG TAATAAGCGT TGGCAATTAA
	3451	ACCGCCAGTC AGGCTTCTT TCACAGATGT GGATTGGCGA TAAAAAAACAA
	3501	CTGCTGACGC CGCTGCGCGA TCAGTTCACCG CGTGCACCGC TGGATAACGA
45	3551	CATTGGCGTA AGTGAAGCGA CCCGCATTGA CCCTAACGCC TGGGTGAAAC
	3601	GCTGGAAGGC GGCGGGCCAT TACCAGGCCG AAGCAGCGTT GTTGCAGTGC
50	3651	ACGGCAGATA CACTTGCTGA TGCAGGTGCTG ATTACGACCG CTCACGCGTG
	3701	GCAGCATCAG GGGAAAACCT TATTTATCAG CCGGAAAACC TACCGGATTG

X

Table 1 continued

3751 ATGGTAGTGG TCAAATGGCG ATTACCGTTG ATGTTGAAGT GGCGAGCGAT
 5 3801 ACACCCGCATC CGGCGCGGAT TGGCCTGAAC TGCCAGCTGG CGCAGGTAGC
 3851 AGAGCGGGTA AACTGGCTCG GATTAGGGCC GCAAGAAAAC TATCCCGACC
 10 3901 GCCTTACTGC CGCCTGTTT GACCGCTGGG ATCTGCCATT GTCAGACATG
 3951 TATACCCCGT ACGTCTTCCC GAGCGAAAAC GGTCTGCGCT GCGGGACGCG
 4001 CGAATTGAAT TATGGCCCAC ACCAGTGGCG CGGCGACTTC CAGTTCAACA
 15 4051 TCAGCCGCTA CAGTCAACAG CAACTGATGG AAACCAGCCA TCGCCATCTG
 4101 CTGCACGGCG AAGAAGGCAC ATGGCTGAAT ATCGACGGTT TCCATATGGG
 mutated EcoRI site²
 20 4151 GATTGGTGGC GACGACTCCT GGAGCCCGTC AGTATCGGCG NNNNNNCAGC
 stop codon
 lac Z
 4201 TGAGCGCCGG TCGCTACCAT TACCAAGTTGG TCTGGTGTCA AAAAATAAA
 25 start codon
 lac Y
 4251 TAACCGGGCA GGCCATGTCT GCCCGTATTG CGCGTAAGGA AATCCATTAT
 4301 GTACTATTAA AAAAACACAA ACTTTTGAT GTTCGGTTA TTCTTTTCT
 30 4351 TTTACTTTT TATCATGGGA GCCTACTTC CCGTTTCCC GATTTGGCTA
 4401 CATGACATCA ACCATATCAG CAAAAGTGAT ACGGGTATTA TTTTGCCGC
 4451 TATTCTCTG TTCTCGCTAT TATTCCAACC GCTGTTGGT CTGCTTCTG
 35 4501 ACAAACTCGG GCTGCGAAA TACCTGCTGT GGATTATTAC CGGCATGTTA
 4551 GTGATGTTG CGCCGTTCTT TATTTTATC TTGGGGCAC TGTTACAATA
 4601 CAACATTAA GTAGGATCGA TTGTTGGTGG TATTTATCTA GGCTTTGTT
 40 4651 TTAACGCCGG TGCGCCAGCA GTAGAGGCAT TTATTGAGAA AGTCAGCCGT
 4701 CGCAGTAATT TCGAATTGG TCGCGCGCGG ATGTTGGCT GTGTTGGCTG
 45 4751 GGCCTGTGT GCCTCGATTG TCGGCATCAT GTTCACCATC AATAATCAGT
 4801 TTGTTTCTG GCTGGGCTCT GGCTGTGCAC TCATCCTCGC CGTTTTACTC
 4851 TTTTCGCCA AACGGATGC GCCCTCTTCT GCCACGGTTG CCAATGCCGT
 50 4901 AGGTGCCAAC CATTGGCAT TTAGCCTTAA GCTGGCACTG GAACTGTTCA

Table 1 continued

4951 GACAGCCAAA ACTGTGGTTT TTGTCACTGT ATGTTATTGG CGTTCCCTGC
 5 5001 ACCTACGATG TTTTGACCA ACAGTTGCT AATTCTTTA CTTCGTTCTT
 5051 TGCTACCGGT GAACAGGGTA CGCGGGTATT TGGCTACGTA ACGACAATGG
 10 5101 GCGAATTACT TAACGCCCG ATTATGTTCT TTGCGCCACT GATCATTAAAT
 5151 CGCATCGGTG GGAAAAACGC CCTGCTGCTG GCTGGCACTA TTATGTCGT
 5201 ACGTATTATT GGCTCATCGT TCGCCACCTC AGCGCTGGAA GTGGTTATTC
 15 5251 TGAAAACGCT GCATATGTT GAAGTACCGT TCCTGCTGGT GGGCTGCTTT
 5301 AAATATATTA CCAGCCAGTT TGAAGTGCCT TTTTCAGCGA CGATTTATCT
 5351 GGTCTGTTTC TGCTTCTTTA AGCAACTGGC GATGATTTTT ATGTCTGTAC
 20 5401 TGGCGGGCAA TATGTATGAA AGCATCGGT TCCAGGGCGC TTATCTGGTG
 5451 CTGGGTCTGG TGGCGCTGGG CTTCACCTTA ATTTCCGTGT TCACGCTTAG

stop codon
lac Y

25 5501 CGGCCCGGC CCGCTTCCC TGCTGCGTCG TCAGGTGAAT GAAGTCGCTT
 5551 AAGCAATCAA TGTCGGATGC GGCGCGACGC TTATCCGACC AACATATCAT

start codon
lac A

30 5601 AACGGAGTGA TCGCATTGAA CATGCCAATG ACCGAAAGAA TAAGAGCAGG
 5651 CAAGCTATTT ACCGATATGT GCGAAGGCTT ACCGGAAAAA AGACTTCGTG
 5701 GGAAAACGTT AATGTATGAG TTTAACACT CGCATCCATC AGAAGTTGAA
 35 5751 AAAAGAGAAA GCCTGATTAA AGAAATGTT GCCACGGTAG GGGAAAACGC
 5801 CTGGGTAGAA CCGCCTGTCT ATTTCTCTTA CGGTCCAAC ATCCATATAG
 5851 GCCGCAATT TTATGCAAAT TTCAATTAA CCATTGTCGA TGACTACACG
 40 5901 GTAACAATCG GTGATAACGT ACTGATTGCA CCCAACGTTA CTCTTCCGT
 5951 TACGGGACAC CCTGTACACC ATGAATTGAG AAAAAACGGC GAGATGTACT
 45 6001 CTTTCCGAT AACGATTGGC AATAACGTCT GGATCGGAAG TCATGTGGTT
 6051 ATTAATCCAG GCGTCACCAT CGGGGATAAT TCTGTTATTG GCGCGGGTAG
 6101 TATCGTCACA AAAGACATTC CACCAAACGT CGTGGCGGCT GGCGTTCTT
 50 6151 GTCGGTTAT TCGCGAAATA AACGACCGGG ATAAGCACTA TTATTCAAA

Table 1 continued

5

stop codon
lac A

6201 GATTATAAAG TTGAATCGTC AGTTAAATT ATAAAAATTG CCTGATAACGC
 6251 TGCCTTATC AGGCCTACAA GTTCAGCGAT CTACATTAGC CGCATCCGGC
 10 6301 ATGAACAAAG CGCAGGAACA AGCGTCGGCAT CATGCCCTCTT TGACCCAG
 6351 CTGCGGAAAA CGTACTGGTG CAAAACGCAG GGTTATGATC ATCAGCCAA
 15 6401 CGACGCACAG CGCATGAAAT GCCCAGTCCA TCAGGTAAATT GCCGCTGATA
 6451 CTACGCAGCA CGCCAGAAAA CCACGGGCA AGCCCGGCGA TGATAAAACC
 6501 GATTCCCTGC ATAAACGCCA CCAGCTTGCC AGCAATAGCC GGTTGCACAG
 6551 AGTGATCGAG CGCCAGCAGC AAACAGAGCG GAAACGCGCC GCCCAGACCT
 20 6601 AACCCACACA CCATCGCCCA CAATACCGGC ATTGATCG GCAGCCAGAT
 6651 AAAGCCGCAG AACCCCACCA GTTGTAAACAC CAGCGCCAGC ATTAACAGTT
 6701 TGCGCCGATC CTGATGGCGA GCCATAGCAG GCATCAGCAA AGCTCCTGCG
 25 6751 GCTTGCCAA GCGTCATCAA TGCCAGTAAG GAACCGCTGT ACTGCGCGCT
 6801 GGCACCAATC TCAATATAGA AAGCGGGTAA CCAGGCAATC AGGCTGGCGT
 6851 AACCGCCGTT AATCAGACCG AAGTAAACAC CCAGCGTCCA CGCGCGGGGA
 30 6901 GTGAATACCA CGCGAACCGG AGTGGTTGTT GTCTTGTGGG AAGAGGCGAC
 6951 CTCGCGGGCG CTTTGCCACC ACCAGGCAAA GAGCGCAACA ACGGCAGGCA
 7001 GCGCCACCAAG GCGAGTGTGT GATAACCAGGT TTCGCTATGT TGAACTAACC
 7051 AGGGCGTTAT GGCAGCACCA AGCCCACCGC CGCCCATCAG AGCCGCGGAC
 35 7101 CACAGCCCCA TCACCAAGTGG CGTGCCTGC TGAAACCGCC GTTTAATCAC
 7151 CGAACGCATCA CCGCCTGAAT GATGCCGATC CCCACCCCCAC CAAGCAGTGC
 7201 GCTGCTAAGC AGCAGCGCAC TTTGCGGGTA AAGCTCACGC ATCAATGCAC
 40 7251 CGACGGCAAT CAGCAACAGA CTGATGGCGA CACTGCGACG TTCGCTGACA
 7301 TGCTGATGAA GCCAGCTTCC GGCCAGCGCC AGCCCGCCCA TGGTAACCAC

SalI site in pSKS107

45 7351 CGGCAGAGCG GTCGAC

(1) sequence in bold, between the two ' marks, is synthetic DNA used to fuse the lac operon to the lac I or lac Z gene operon.

50 (2) pSKS107 contains an unsequenced mutation at the EcoRI site normally found in the lac Z gene.

55

X

Table 2.

Lactose Inducibility of Various Constructs				
	Hours after ⁽¹⁾ Induction	Lactose (mM)	Cells/ml	Toxin ⁽²⁾ (ug/ml)
<u>MR471</u>				
10	40	0	1.6×10^{10}	none detected
	40 no lactose	2 mM IPTG	2.3×10^{10}	1003
	15	20	9.1×10^9	1011
	24	20	1.2×10^{10}	737
	15	40	1.8×10^{10}	887
	24	40	1.1×10^{10}	1025
	23 ⁽³⁾	8.3 ⁽⁴⁾	1.9×10^{10}	938
	39 ⁽³⁾	8.3 ⁽⁴⁾	2.0×10^{10}	1555
<u>MB101 containing pMYC485</u>				
20	24	40	-	775
	24	0	-	none detected
<u>MB101 containing pMYC1161</u>				
25	24	40	-	300
	24	0	-	none detected

(1) Cultures were induced upon reaching stationary phase.

(2) Toxin concentration was determined by laser densitometry of Coomassie-stained protein bands after electrophoresis of disrupted cells on SDS-PAGE (LKB Instructional Manual 2222-010).

(3) This experiment used MR471 grown in a 10L fermentor. All other experimental data were generated using same medium in 250 ml baffled shake flasks.

(4) In the fermentor, 8.3 mM lactose/hour was fed into the culture. It was found that MR471 did not metabolize this lactose level in a fermentor, resulting in increased concentrations during the experiment. The experiments done in shake flasks were given a single dose of lactose or IPTG at the indicated times.

35

40 Claims

1. A modified lac operon, wherein the CAP binding site for catabolite repression and the promoter/operator are deleted, and wherein the lac I gene is fused to the ZY or ZYA gene, which substantially retains the parent operon's ability to control expression of a heterologous gene.
2. An operon according to claim 1, having the sequence shown in Table 1, or a mutation thereof.
3. A DNA construct comprising an operon according to claim 1 or claim 2 and also the heterologous gene.
4. A transfer vector, e.g. a plasmid, comprising an operon or DNA as defined in any preceding claim.
5. A microbial host transformed by the transfer vector of claim 4.
6. A process for preparing a polypeptide encoded by the heterologous gene, which comprises culturing a microbe comprising DNA as defined in claim 3.

55

Figure 1

PLASMIDMAP of: pMYC2005 check: 4484 from 1 to: 2526

X

Figure 2

X

PLASMIDMAP of: pMYC467 check: 9500 from 1 to: 16100

Figure 3

Figure 4

FLASHIDMAP of: DMHC471 check: 3500 from 1 to: 23500

Figure 5

PLASMIDMAP of: pMYC485 check: 3500 from 1 to: 23500

PLASMIDMAP of: pMYC1161 check: 3500 from 1 to: 21900

Figure 6

X

European
Patent Office

EUROPEAN SEARCH
REPORT

Application Number

EP 90 30 7952

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
A	GENES & DEVELOPMENT, vol. 1, no. 3, 1987, pages 227-237, New York, US; J.K. WHORISKEY et al.: "Genetic rearrangements and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions" * Abstract; page 228, column 2, line 26 - page 229, column 2, line 24; page 229, figure 3 - - -	1,2	C 12 N 15/72 C 12 N 1/21		
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 186, no. 4, 1985, pages 733-742, London, GB; K.C. CONE et al.: "Functional analysis of lac repressor restart sites in translational initiation and reinitiation" * Abstract; page 735, column 1, line 40 - page 736, column 1, line 8; page 739, column 2, line 28 - page 740, column 1, line 13 - - -	1,2			
A	NUCLEIC ACIDS RESEARCH, vol. 12, no. 13, 1984, pages 5449-5464, Oxford, GB; X.-M. YU et al.: "Deletion analysis of the CAP-cAMP binding site of the Escherichia coli lactose promoter" * Abstract; page 84, line 1 - page 85, line 5 - - -	1			
The present search report has been drawn up for all claims			TECHNICAL FIELDS SEARCHED (Int. Cl.5) C 12 N 15/00		
Place of search	Date of completion of search	Examiner			
The Hague	17 October 90	GURDJIAN D P M			
CATEGORY OF CITED DOCUMENTS					
X : particularly relevant if taken alone	E : earlier patent document, but published on, or after the filing date				
Y : particularly relevant if combined with another document of the same category	D : document cited in the application				
A : technological background	L : document cited for other reasons				
O : non-written disclosure				
P : intermediate document	& : member of the same patent family, corresponding document				
T : theory or principle underlying the invention					

X

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

 BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.