

1.1 Propriedades Básicas

- 1. Classifique as afirmações em verdadeiras (V) ou falsas (F), justificando cada resposta.
 - (a) Se x < 2, então $x^2 < 4$. (b) Se $x^2 < 4$, então x < 2. (c) Se $0 \le x \le 2$, então $x^2 \le 4$.
 - (d) Se x < 2, então $x \le 3$. (e) Se x = 3, então $x \le 3$. (f) Se |x| > 2, então x > 2.
- 2. Se p é um número ímpar, então p^2 também o é. Como consequência deduza que se p^2 é par, então p também é par.
- 3. O número $\sqrt{2}$ não é racional.
- 4. Se p é um número inteiro, tal que p^2 é divisível por 3, mostre que p também o é. Use este fato para mostrar que o número $\sqrt{3}$ não é racional.
- 5. O conjunto \mathbb{Q} é fechado para soma e produto.
 - (a) Mostre que a soma e o produto de dois números racionais é um número racional.
 - (b) Dê exemplo de dois números irracionais $x \in y$, tais que $x + y \in x \cdot y$ sejam racionais.
- 6. Sejam r um número racional e x um irracional.
 - (a) Mostre que x + r é irracional.
 - (b) Se $r \neq 0$, mostre que o produto $x \cdot r$ é irracional.
- 7. Sejam x e y dois números irracionais, de tal forma que $x^2 y^2$ seja um racional não nulo. Mostre que os números x y e x + y são irracionais. Por exemplo, $\sqrt{3} + \sqrt{2}$ e $\sqrt{3} \sqrt{2}$ são irracionais.
- 8. Reduza os números $x=5,2121\ldots$ e $y=0,21507507\ldots$ à forma de fração ordinária.

Valor Absoluto & Desigualdades 1.2

- 1. Estude o sinal de cada uma das expressões abaixo.
 - (a) $\frac{x-1}{x-2}$

- (b) (2x+1)(x-2) (c) $\frac{2-3x}{x+2}$ (d) x(x-1)(2x+3)
- (e) $(2x-1)(x^2+1)$ (f) $x(x^2+3)$ (g) $x^6(x^2+3)$ (h) $-x(x^2-4)$.

- 2. Resolva as desigualdades.

- (a) $x^2 4 > 0$ (b) $x^2 1 < 0$ (c) $x^2 < 4$ (d) $x^2 > 1$ (e) $(x a)^2 < r^2$, r > 0.
- 3. Resolva as equações.

- (a) |x| = 2 (b) |x+1| = 3 (c) |2x-1| = 1 (d) |x-2| = -1

- (e) |2x+3| = 0 (f) |x| = 2x+1 (g) |1-2x| = |3x+5| (h) $\sqrt{(x-4)^2} = -1$
- (i) $\sqrt{(x-1)^2} = 5$ (j) $\sqrt{(2-x)^2} = 4$ (k) $\left| \frac{x}{1-5x} \right| = 4$ (l) $x = \sqrt{(-4)^2}$

- 4. As desigualdades abaixo, envolvendo produtos e quocientes, podem ser resolvidas por meio do estudo do sinal, como no Exercício 9 da Seção 1.1.
 - (a) $(4x+7)^{20}(2x+8) < 0$ (b) x(2x-1)(x+1) > 0 (c) $\sqrt[3]{x^2-1} \le 0$ (d) $\frac{2x-1}{x^2} > 5$

- (e) $\frac{x}{2x-3} \le 3$
- (f) (2x-1)(x+3) < 0 (g) $\frac{2x-1}{r+1} < 0$ (h) $\frac{3x-2}{2} \le 0$

- (d) $\frac{x^2 9}{x + 1} < 0$
- (j) $(2x-1)(x^2-4) \le 0$ $\frac{x-3}{x^2+1} > 5$ (i) $\frac{x^2-4}{x^2+4} > 0$.

- 5. Resolva as Desigualdades.

- (a) $x^2 3x + 2 < 0$ (b) $x^2 + x + 1 \le 0$ (c) $3x^2 + x 2 > 0$ (d) $4x^2 4x + 1 \le 0$ (e) $x^2 + 3 > 0$ (f) $x^2 + x + 1 > 0$
- (g) $x^2 5x + 6 \ge 0$ (h) $x^2 + 5 \le 0$
- (i) (x-2)(x+3)(1-x) > 0

- (i) $x^2 + 1 < 3x x^2 3$ (k) $x(x+4)^2(x-2)^{-4} < 0$ (l) $(x^2 4)(x^2 3x + 2) < 0$
- 6. Dê o conjunto solução de cada uma das inequações modulares abaixo.

- (a) $|x| \le 1$ (b) |2x 1| < 3 (c) |x| > 3 (d) $|3x + 3| \le 1/3$ (e) $|2x^2 1| < 1$ (f) |3x 1| < -2 (g) $|x + 3| \ge 1$ (h) |2x 1| < x

- (i) |x+1| < |2x-1| (j) |x-2| |x-5| > x (k) $|(x-1)^3| < 1$ (l) |x-1| + |x+3| < |4x|
- 7. Duas desigualdades são ditas equivalentes, se possuem o mesmo conjunto de soluções. Com base nesta definição, classifique os pares de desigualdades abaixo.
 - (a) $\sqrt{x-1} < \sqrt{2-x}$ e x-2 < 1-x (b) $x^2 > 1$ e $1+\frac{2}{x^2-1} > 0$.

COMPLEMENTOS 1 NÚMEROS REAIS 3

8. Resolva os sistemas de inequações.

(a)
$$\begin{cases} 8x - 2 < x - 1 \\ 2x^2 - x \le 1 \end{cases}$$
 (b)
$$\begin{cases} 4x^2 - 4x - 3 < 0 \\ 1/x^2 \ge 1 \end{cases}$$

9. Mostre que:

$$x + \frac{1}{x} \ge 2, \quad \forall \ x > 0.$$

10. Mostre que não existem números reais x e y, tais que:

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{x+y}.$$

RESPOSTAS & SUGESTÕES

EXERCÍCIOS & COMPLEMENTOS 1.1

1. Uma sentença falsa pode ser justificada com um contra-exemplo, o qual consiste de dados que atendem à hipótese, mas, não à tese. Por exemplo, se a sentença

$$\underbrace{x < 2}_{\text{hipótese}} \Rightarrow \underbrace{x^2 < 4}_{\text{tese}}$$

fosse verdadeira, ela seria válida em qualquer valor atribuído à variável x. Note que para x=-3 a hipótese é atendida, mas a tese não.

Por outro lado, uma sentença verdadeira deve ser justificada usando conceitos e/ou regras, sem particularizar os dados. Por exemplo, a sentença

$$\underbrace{x^2 < 4}_{\text{hipótese}} \Rightarrow \underbrace{x < 2}_{\text{tese}}$$

é verdadeira. De fato:

$$x^2 < 4 \Rightarrow \sqrt{x^2} < \sqrt{4} \Rightarrow |x| < 2 \Leftrightarrow -2 < x < 2$$

e, em particular, conclui-se que x < 2, que é a tese.

(a)
$$F$$
 (b) V (c) V (d) V (e) V (f) F .

2. Se p é impar, então existe um inteiro k, tal que p = 2k + 1. Logo,

$$p^2 = (2k+1)^2 = 2m+1$$
, onde $m = 2k^2 + 2k$,

e, portanto, p^2 é um número ímpar.

3. **DEMONSTRAÇÃO POR ABSURDO** Uma Demonstração por Absurdo consiste em negar a Tese e chegar a uma contradição da Hipótese. Isso nada mais é do que a equivalência das sentenças

$$[P] \Rightarrow [Q] \quad e \quad [\sim Q] \Rightarrow [\sim P]$$
 (1.1)

 $(em (1.1) \sim Q \text{ indica a negativa da afirmação } Q)$

Para provar que $\sqrt{2}$ não é um número racional, raciocinemos por absurdo. Se $\sqrt{2}$ fosse racional, ele se escreveria sob a forma irredutível $\sqrt{2} = p/q$, sendo $p \in q$ inteiros e $q \neq 0$. Assim,

$$2 = \frac{p^2}{q^2} \Leftrightarrow p^2 = 2q^2. \tag{1.2}$$

De (1.2) segue que p e q são números pares, contradizendo a irredutibilidade da fração $\frac{p}{q}$.

4. Mais uma vez usaremos a Demonstração por Absurdo. Se p não fosse divisível por 3, então o resto da divisão de p por 3 seria um inteiro $r \neq 0$, isto é, p = 3k + r e, por conseguinte, teríamos

$$p^{2} = 3(3k^{2} + 2kr) + r^{2} = 3m + r^{2}$$
(1.3)

Segue de (1.3) que o resto da divisão de p^2 por 3 não é zero, contradizendo a divisibilidade de p^2 por 3, que é a hipótese da sentença a ser provada.

- 5. Sejam r = p/q e s = m/n dois números racionais.
 - (a) Temos:

i.
$$r+s=\frac{np+mq}{nq}$$
 é racional (quociente de dois inteiros) e ii. $r\cdot s=\frac{mp}{nq}$ é racional.

- (b) Considere os irracionais $x=\sqrt{2}$ e $y=-\sqrt{2}$. Então, x+y=0 e $x\cdot y=-2$ são ambos racionais.
- 6. Seja r = p/q um número racional qualquer.
 - (a) Se x+r fosse racional, então existiriam inteiros m e n, $n \neq 0$, tais que x+r=m/n. Assim,

$$x+r=rac{m}{n} \Rightarrow x=rac{m}{n}-rac{p}{q}=rac{mq-np}{nq}$$

de onde deduzimos que x é racional (quociente de dois inteiros), contradizendo a hipótese.

(b) Se o produto $x \cdot r$ fosse racional, então

$$x \cdot r = \frac{m}{n} \Rightarrow x = \frac{mq}{nn}$$

e daí resultaria x racional, contradizendo a hipótese.

COMPLEMENTOS 1 NÚMEROS REAIS 5

7. Por hipótese, $x \in y$ são irracionais e $x^2 - y^2$ é um racional não nulo, de modo que podemos escrever

$$(x-y)(x+y) = \frac{p}{q}.$$
(1.4)

Se, por exemplo, x - y fosse racional, segue de (1.4) que x + y também seria racional e, portanto,

$$x = \frac{1}{2} [(x - y) + (x + y)]$$

seria racional, contradizendo a hipótese.

8. x = 516/99 e y = 21486/99900.

EXERCÍCIOS & COMPLEMENTOS 1.2

1. Como ilustração, veja na Figura abaixo como se obtém o sinal da expressão $(x-1)\,(x-2)$.

Vemos que a expressão (x-1)(x-2) é positiva se x < 1 ou x > 2 e é negativa se 1 < x < 2.

	positiva	negativa	zero	indefinida
(a)	$(-\infty,1)\cup(2,+\infty)$	(1, 2)	{1}	x=2
(b)	$(-\infty, -1/2) \cup (2, +\infty)$	(-1/2,2)	$\{-1/2, 2\}$	
(c)	(-2,2/3)	$(-\infty, -2) \cup (2/3, +\infty)$	$\{2/3\}$	x = -2
(d)	$(-3/2,0)\cup(1,\infty)$	$(-\infty, -3/2) \cup (0,1)$	$\{0,1,-3/2\}$	
(e)	$(1/2, +\infty)$	$(-\infty, 1/2)$	{1/2}	
(f)	$(0,+\infty)$	$(-\infty,0)$	{0}	

2. (a)
$$x^2 > 4 \Leftrightarrow |x| > 2 \Leftrightarrow x > 2$$
 ou $x < -2$.

(b)
$$x^2 \le 1 \Leftrightarrow |x| \le 1 \Leftrightarrow -1 \le x \le 1$$
.

(c)
$$x^2 \le 4 \Leftrightarrow |x| \le 2 \Leftrightarrow -2 \le x \le 2$$
.

(d)
$$x > 1$$
 ou $x < -1$.

(e)
$$(x-a)^2 < r^2 \Rightarrow |x-a| < r \Leftrightarrow a-r < x < a+r$$
.

- 3. Decorre da definição de Valor Absoluto que $|\Box| = a \Leftrightarrow \Box = \pm a$. Esta é a propriedade a ser usada.
 - (a) $x = \pm 2$
- (b) x = 2 ou x = -4 (c) x = 0 ou x = 1

- (e) x = -3/2
- (f) x = -1/3 (g) x = -4/5 ou x = -6
- (i) x = 6 ou x = -4 (j) x = -2 ou x = 6 (k) x = 4/21 ou x = 4/19
- 4. Expressemos as respostas na forma de intervalo.
 - (a) Na expressão $(4x+7)^{20}(2x+8)$ vemos que o primeiro fator é positiva e a expressão será negativa quando 2x - 8 < 0, isto é, x < -4.
 - (b) -1 < x < 0 ou x > 1/2. Na forma de intervalo, temos $(-1,0) \cup (1/2,+\infty)$.
 - (c) [-1,1].
 - (d) (3, 14/3).
 - (e) (-3, 1/2).
 - (f) $(-\infty, 3/2) \cup (9/5, +\infty)$.
 - (g) (-1, 1/2).
 - (h) $(-\infty, 2/3] \cup (2, +\infty)$.
- 5. No estudo do sinal do trinômio do segundo grau $ax^2 + bx + c$, $a \neq 0$, ressaltamos alguns fatos:
 - Se o discriminante $\Delta = b^2 4ac$ for negativo, então o trinômio terá o mesmo sinal do coeficiente a, seja qual for o valor que se atribua a x.
 - Se $\Delta > 0$, então o trinômio terá duas raízes reais e distintas x_1 e x_2 e o sinal será o mesmo do coeficiente a, se o x não estiver entre as raízes x_1 e x_2 ; ele terá sinal contrário ao de a, se o x estiver entre as raízes
 - Se $\Delta = 0$, o trinômio terá uma única raiz real x_0 e o sinal coincide com sinal de a, se $x \neq x_0$.

Na figura abaixo ilustramos algumas situações.

(a)
$$x^2 - 3x + 2 < 0$$
, $\Delta = 1 > 0$.

As raízes são $x_1 = 2$ e $x_2 = 1$ e o trinômio será < 0 quando 1 < x < 2. O conjunto solução é

$$S = (1, 2)$$
 ou $S = \{x \in \mathbb{R} : 1 < x < 2\}$.

Veja a ilustração na figura abaixo.

- (b) $x^2 + x + 1 \le 0$, $\Delta = -3 < 0$. Conjunto solução $S = \emptyset$ (conjunto vazio).
- (c) $3x^2 + x 2 > 0$, $\Delta = 25 > 0$. Conjunto solução $S = (-\infty, -1) \cup (2/3, +\infty)$.
- (d) $4x^2 4x + 1 \le 0$, $\Delta = 0$. Conjunto solução $S = \{1/2\}$ (conjunto unitário).
- (e) $x^2 + 3 > 0$, $\Delta = -12 < 0$. Conjunto solução $S = \mathbb{R}$ ou $S = (-\infty, +\infty)$.
- (f) $x^2 + x + 1 > 0$, $\Delta = -3 < 0$. Conjunto solução $S = \mathbb{R}$ ou $S = (-\infty, +\infty)$.
- (g) $x^2 5x + 6 \ge 0$, $\Delta = 1 > 0$. Conjunto solução $S = (-\infty, 2] \cup [3, +\infty)$.
- (h) $x^2 + 5 \le 0$, $\Delta = -20 < 0$. Conjunto solução $S = \emptyset$ (conjunto vazio).
- (i) (x-2)(x+3)(1-x) > 0. Para começar, veja a ilustração na figura abaixo.

O conjunto solução é $S = (-\infty, -3) \cup (1, 2)$.

- (j) A designaldade proposta é equivalente a $2x^2 3x + 4 < 0$, onde temos a = 2 e $\Delta = -23 < 0$. O trinômio será sempre positivo (tem o mesmo sinal de) O conjunto solução $S = \emptyset$.
- (k) O termo $(x+4)^2(x-2)^{-4}$ é não negativo, exceto quando x=2. O sinal de $x(x+4)^2(x-2)^{-4}$ depende tão somente do sinal de x. Assim,

$$x(x+4)^{2}(x-2)^{-4} < 0 \Leftrightarrow x < 0$$

e o conjunto solução é $S = (-\infty, 0)$.

(l) Veja na figura os sinais dos trinômios x^2-4 e x^2-3x+2 e deduza que o conjunto solução é $S=[-2,1]\cup\{2\}$.

6. Enunciado

(a)
$$S = [-1, 1]$$
 ou $S = \{x \in \mathbb{R} : -1 \le x \le 1\}$.

(b)
$$S = (-1, 2)$$
 ou $S = \{x \in \mathbb{R} : -1 < x < 2\}$.

(c)
$$S = (-\infty, -3) \cup (3, +\infty)$$
 ou $S = \{x \in \mathbb{R} : x < -3 \text{ ou } x > 3\}$.

(d)
$$S = [-10/9, -8/9]$$
 ou $S = \{x \in \mathbb{R} : -10/9 \le x \le -8/9\}$.

(e)
$$S = (-1,0) \cup (0,1)$$
 ou $S = \{x \in \mathbb{R} : -1 < x < 1 \text{ e } x \neq 0\}$.

(f) $S = \emptyset$ (conjunto vazio).

(g)
$$S = (-\infty, -4] \cup [-2, +\infty)$$
 ou $S = \{x \in \mathbb{R} : x \le -4 \text{ ou } x \ge -2\}$.

(h)
$$S = (1/3, 1)$$
 ou $S = \{x \in \mathbb{R} : 1/3 < x < 1\}$.

(i)
$$S = (-\infty, 0) \cup (2, +\infty)$$
 ou $S = \{x \in \mathbb{R} : x < 0 \text{ ou } x > 2\}$.

(j)
$$S = (-\infty, -3)$$
 ou $S = \{x \in \mathbb{R} : x < -3\}$.

(k)
$$S = (0, 2)$$
 ou $S = \{x \in \mathbb{R} : 0 < x < 2\}$.

(1)
$$S = (-\infty, -1) \cup (1, +\infty)$$
 ou $S = \{x \in \mathbb{R} : x < -1 \text{ ou } x > 1\}$.

(a) não equivalentes (b) equivalentes.

7. Enunciado

(a)
$$S = \left[-\frac{1}{2}, \frac{1}{7} \right]$$
 ou $S = \left\{ x \in \mathbb{R} : -1/2 < x < 1/7 \right\}$.

(b)
$$S = [-\frac{1}{2}, 0) \cup (0, 1]$$
 ou $S = \{x \in \mathbb{R} : -1/2 \le x < 0 \text{ ou } 0 < x \le 1\}$.

8. Enunciado

(a) Basta observar que se x > 0, então

$$x + \frac{1}{x} \ge 2 \Leftrightarrow x^2 - 2x + 1 \ge 0$$

e esta última desigualdade é válida seja qual for o valor real que se atribua a x.

COMPLEMENTOS 1 NÚMEROS REAIS 9

(b) Se existissem tais números x e y satisfazendo

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{x+y}$$

teríamos

$$x^2 + xy + y^2 = 0 ag{1.5}$$

e, olhando (1.5) como uma equação do segundo grau em x, vemos que $\Delta=-3y^2<0$ e a equação não tem solução.