L4: Phase Change Memory

Term Paper and Team Project

- Finalize your topic by 1159 pm, Feb 5th
 - You will lose 5% of your grade daily for each day after the deadline
- Link: https://goo.gl/BkgftK
- Written report (4-page IEEE-style paper) due on Feb 26th
- Team project: 6 people per team (29 enrolled)
- Finalize your team and topic by Mar 4th
 - You can still submit a partial list of your team to me, where I will try my best to pair up
 - If we have to break up one or more partial team(s), the priority will be given first to partial teams with the most team members; and then to teams that contacted me earliest
- Presentation and report due on Apr 15th

Recap

- SRAM
- DRAM
- Flash

Outline

- Optical Data Storage
 - CDs, DVDs, blu-rays
- Phase Change Material
 - History
 - Phase change
- Phase Change Memory Device
 - Device structure
 - Threshold switching
- Scaling of PCM
 - Crystallization and melting temperature
 - Programming current
- Reliability
 - Endurance
 - Variability

Optical Data Storage

Cave painting

Drawing

Photography

Compact Disk Read Only Memory (CDROM)

- Invented by James Russell in 1970
- Mass production since 1985 by Philips and Sony
- Basis
 - Optical recording technology developed for audio CDs
 - 74 minutes playing time
- Bit Rate
 - 150 KB / second

- Capacity
 - 74 Minutes * 150 KB / second * 60 seconds / minute = 650 MB
- Read only, cannot be overwritten

CDROM Working Principle

CD-Rewritable (CD-RW)

- Allows writing new data over recorded data
- Endurance: 100-1000 times
- Based on phase change materials (PCMs)

History of Phase Change Material

- Discovered by Stanford Ovshinsky in 1969
- Stanford Ovshinsky (inventor and scientist)
 - >400 patents
 - Nickel-metal hydride battery
 - Phase change memory

- First reversible switching material
 - 48% Te, 30% As, 12% Si, 10% Ge
 - Continuous switching over a period of months
 - However, switching is slow ~10 μs

Rebirth of Phase Change Material

Best known: Ge₂Sb₂Te₅ (GST)

fast crystallization, good stability and large contrast

Phase Change Memory

- Non-volatile
- Fast access time ~50 ns
- Large dynamic range
- High endurance
- High packing density
- Highly scalable
- Radiation resistant

Phase Transformation

Programming

- "set": crystallization → data rate limiting (~10 ns)
- "reset": melt-quench → power limiting (~600 C)

DVD

- Improved technology upon CD-RW
- Smaller wavelength → higher density
- Better mechanical control
- Improved error correction
- Larger capacity
 - -Standard Up to 4.7 GB, 7 times more than CD-ROM
 - -Double layers 8.5 GB
 - Double-sided 17 GB
 - -Blu-ray (BD) disk 25 GB
 - Dual layer BD 50 GB

<u>Dual Layer Technology</u>

Benefits

- Increased durability
- Increased capacity

Detriments

- Decreased S/N
- Decreased data density

Numerical Aperture

- NA = $n \sin(\theta/2)$
- Spot size = λ/NA
- CD-RW $\lambda \sim 780$ nm IR
- DVD $\lambda \sim 650$ nm red
- Blu-ray $\lambda \sim 405$ nm blue

Figure 2: A solid–immersion lens (SIL) can increase the effective NA beyond 1.0, further increasing density but requiring evanescent coupling between the SIL and disk.

Comparison of Optical Storage

Depth of Focus (DoF)

- DoF = λ/NA^2
- Determines spacing of layers
- Decreasing depth of focus

 → more layer → higher
 density
- Affects S/N; places an upper limit on NA.

Photonic Memory

- Change in Absorption in photonic waveguide
- Optical memory and all photonic circuit

Phase Change Material

Temperature Dependent Resistivity

Phase Change Memory Device

PCM "Mushroom" Cell

- Mushroom cell with PCM cap
- Electrode/heater
- Threshold switching

PCM Cell Structure

Contact-minimized

Volume-minimized

- Contact-minimized cell
 - easier to fabricate, most common, halo effect
- volume-minimized cell
 - good scaling behavior, difficult to fabricate

Temperature Profile

- Temperature profile for set and reset
- Crystallization ~ 150 C
- Melting ~ 600 C

Threshold Switching

- Threshold switching E-field dependent
- Threshold switching → I↑ → Joule heating → Crystallization

Threshold Switching

- Amorphous: Poole-Frankel conduction
- Avalanche effect upon critical field→ threshold switching
- Crystalline: drift-diffusion (ohmic + Joule heating)

Threshold Switching

- Threshold switching = resistive to pseudo-conductive
- Joule heating → amorphous to crystalline
- Threshold switching is reversible
- No memory switching if voltage is removed quickly
- Dissolution of premature crystalline embryos upon removal of E-field

E-Field Dependent

- Threshold field: 10 to 100 V/µm
- No significant difference between as-deposited and meltquenched
- Needs to consider under factor like crystallization T, rate, melting T, endurance etc

Doping Effect on Crystallization Temperature

- Doping co-sputtering or ion-implantation
- Trade-off: energy consumption vs thermal stability

Thermal Stability

$$S = Ae^{-\frac{E_a}{kT}}$$

- Recrystallization occurs naturally thermodynamically favorable → data retention?
- Arrhenius plot → activation energy and retention time

Scaling of PCM Properties

PCM Parameter	Scaling Behavior	Influence on Performance
Crystallization Temperature	1	Better Data Rentention
Melting Temperature	+	Lower RESET Power
Threshold Voltage	+	Lower Power
Crystallization Speed		Faster Data Rate
Melt-quench Speed		Lower RESET Energy
Thermal Conductivity	+	Lower Switching Energy
Switching Current	+	Lower Switching Power
Thermal Cross-Talk		More Failure
Variability		Reliability Issue

Scaling: Crystallization Temperature

- T_{crys} ↑ as film thickness ↓
- Ultimate limit? What is the thinnest film that still showed a phase transition?
- 1.3 nm of GeSb with T_{crys} of 300 C vs. ~235 C for bulk
- GST: T_{crvs} starts to increase for films thinner than 20 nm
- No more fcc phase below 3.6 nm
- No crystallization below 2 nm
- $T_{crvs} \uparrow \rightarrow higher activation energy \rightarrow better data retention$

Scaling: Melting Temperature

- T_{melt} ↑ as film thickness ↓
- GeTe nanowire (60 nm) ~390 C vs. 725 C in bulk
- In2Se3 nanowire (40 nm) ~680 C vs 890 C in bulk
- GST nanowire (25 nm) ~450 C vs 650 C in bulk
- $T_{melt} \downarrow \rightarrow$ lower power consumption \rightarrow reset/melting is power limiting
- Possible reasons: better thermal insulation/localization; interfacial effect

Scaling: Programming Current

HSP Wong et al, Proc. IEEE 98, 2201 (2010)

PCM "Mushroom" Cell

S. Raoux, et al, IBM J.R.Dev. 52, 468 (2008)

- Phase change memory is highly scalable with electrode size
- Nanowire vs Nanoscale Electrode

Nanotube – PCM Device

- Make CNT nanogaps by AFM or electrical "cutting"
- CNT nanogap filled with PCMs (here GST)
- $I_{set} \sim 1 \mu A$, $I_{reset} \sim 5 \mu A$ (~100x < conventional PCM)

RESET Current Scaling

F. Xiong, M.-H. Bae, Y. Dai, A. Liao, A. Behnam, E. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013)

- I_{reset} ~ A^{0.83}
- CNT electrode → 100x reduction in I_{reset}
- Isotropic scaling (equal scaling of all three dimensions) → I_{reset} ~ A¹
- non-isotropic scaling → exponent of 0.83
- I_{reset} /A ~ A^{-0.17} → higher current density as device scales

Thermal Cross-Talk

- Thermal cross-talk: inadvertent programming of adjacent cell
- Thermal cross-talk affected by scaling of cell distance

Multi-Level Cell

- Multi-level of resistance level to increase density
- Iterative programming: reset first then set

Crossbar Memory Array

- Crossbar array
 - random access, CMOS compatible
 - high density, small cross-sectional area (low power)
 - selection device needed

- CMOS transistor could provide enough current density
- BJT consumes large power with big foot print
- Chalcogenide selector shows OTS switching but NO crystallization (high $T_{\rm crys}$ or disordered)

3D Xpoint from Intel

- stackable cross-point structure
- bridging storage and memory

PCM Endurance Issue

- The best reported endurance in PCM is 10¹² cycles for GST
- Average ~10⁶ to 10⁹ cycles
- Compare to flash (~10³-10⁴) and DRAM (~10¹⁶ to 10¹⁸)
- Intrinsically a more "damaging" process: melting and quenching
- Two major failure mechanisms in PCM
 - Void formation due to volume expansion
 - Phase segregation due to melting

Void Formation

C.-F. Chen et al., Proc. IEEE Int. Memory Workshop, 2009

- 7% volume change upon phase change in GST
- Voids will form in the phase change film
- Solution: materials with smaller volume change

Phase Segregation

- Phase segregation and void formation due to E-field
- Affects endurance; Solution: bipolar switching

Variability

- Intra-device variability
- Melt-quench reset is inherently stochastic
- Large variability → narrows the operating window esp for MLC