Written Assignment 9: Due Friday, May 4

Problem 1: Let U and W be subspaces of \mathbb{R}^6 with $\dim(U)=4$ and $\dim(W)=3$. Show that $U\cap W\neq\{\vec{0}\}$ Hint: Do a proof by contradiction. Start by fixing bases of U and W. What would happen if $U\cap W=\{\vec{0}\}$? A previous homework problem will be helpful.

Problem 2: Let V and W be vector spaces. Suppose that $T: V \to W$ is an injective linear transformation and that $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$ is a linearly independent sequence in V. Show that $(T(\vec{u}_1), T(\vec{u}_2), \dots, T(\vec{u}_n))$ is a linearly independent sequence in W.