· FOR N IDENTICAL DISTINGUISHADLE

PARTICLES (MAXWELL-BOLTZMANN STATS) WE LABEL THE SYSTEM'S ENTIRE STATE BY EACH OF THE INDIVIOUAL PARTICLE'S STATES.

ey SUPPOSE EACH PARTICLE CAN DE IN AN ENCHAY E'STATE CASELLED BY

n=1,2,3, ...

QUANTUM No

THEN THE STATES OF THE SYSTEM IS CASELLED BY AN N-VECTOR

$$\vec{n} = (n_1, n_2, n_3, \dots, n_N)$$

WHERE

$$N_i$$
 - THE STATE OF PARTICLE (
$$\left(N_i = 1, 2, 3, ...\right)$$

TO CONSTRUCT THE CANONICAL PANTITIONS

FUNCTION Z WE MUST SUM OVER

ALL R.

THIS IS NOT USEFUL FOR IDENTICAL

INDSTRUCUISHAMS(E (I.I.) PARTICLES
IT OVERCOUNTS THE NO OF SYSTEM

STATES.

FOR I.I. PARTICLES (OF WHICH

THERE ARE TWO KINDS - BOSONS

FERMIONS)

TO CABER THE SYSTEM'S STATES WE

NISTERD USE OCCUPATION NO'S WHICH

TELL US HOW MANY PARTICLES ARE

IN EACH SINGLE PARTICLE STATE.

EXAMPLE: BOSE-EINSTEIN STATS

CONSIDER N=2 BOSONS (A & A)

EACH WITH THREE ACCESSIBLE

SINGLE PARTICLE STATES n=1, n=2, n=3.

THE POTAL NO OF STATES OF THE

2 PARTICLE SYSTEM 15:

;	4			
X = #	n=1	n=2	n=3	OCCUPATION No°S
STATE 1	AA	-		(2,0,0)
STATE 2		AA	_	(0,2,0)
STATE 3	_	_	AA	(0,0,2)
STATE 4	A	A	_	(1,1,0)
STATE 5	A	_	A	(1,0,1)
STATE 6	_	A	A	(0,1,1)
	l .			

HERE WE HAVE INTRODUCED OCCUPATION Noss

(N1, N2, N3)

Nn = No OF PARTICLES IN STATE M

NOTE: $N_1 + N_2 + N_3 = N = 2$

THERE IS A 1-1 CONNESPONDANCE

BETWEEN STATES OF THE SYSTEM &

OCCUPATION No.S.

EXAMPLE: FERMI-DIRAC STATS

For N=2 FERMIONS (A = A), EACH WITH 3 SINGLE ARTICLE STATES n=1, n=2, n=3

THE TOTAL NO OF STATES OF THE

2 I.I. PANTICUE SYSTEM 15:

			1	1
	1=1	1=2	n=3	No°S
STATE 1	A	A		(1,1,0)
STATE 2	A	_	A	(1,0,1)
STATE 3		A	A	(0,1,1)

IN GENERAL: FOR N I.I. PARTICLÉS

THE SYSTEM'S STATE IS SPECIFIED

BY A SET OF INTERES

(N1, N2, N3, ...) - OCCUPATIONS Nos

WITH $N_n = N_o^o$ OF PARTICLES IN SINGLE

ARTICLE STATE N

SUBSECT TO $\leq N_n = N$

[FOR F.O. STATS No = 0 or 1]

THE ENEMY OF THE STATE

 (N_1, N_2, N_3, \dots)

$$E_{STATE} = N_1 \mathcal{E}_1 + N_2 \mathcal{E}_2 + \cdots$$

THE PARTITION FUNCTION IS

$$= \frac{-(N_1 \mathcal{E}_1 + N_2 \mathcal{E}_2 + \cdots)}{k_B T}$$

$$= \frac{(N_1, N_2, \cdots)}{(N_1, N_2, \cdots)}$$

$$= \left(\frac{1}{2} e^{-N_1 \xi_1/k_B T}\right) \left(\frac{1}{2} e^{-N_2 \xi_2/k_B T}\right) \cdot \cdot \cdot$$

BUT THIS IS NOT SO EASY TO EVAZUATE SINCE THE SUMS OVER EACH No ANE NOT UNDSTRICTED, BUT SUBJECT TO END = N.