Análise e Transformação de Dados

Frequência 2 – Exemplo de Questões

maio de 2024

1. Qual das seguintes frequências é a menor frequência de amostragem, fs , de valor inteiro que verifica o Teorema da Amostragem para o sinal $x(t) = 1 + (\sin(90\pi t))^2 + 6\sin(60\pi t)\sin(180\pi t)$? \Box 61 Hz \Box 91 Hz \Box 121 Hz \Box 181 Hz \Box 241 Hz \Box 361 Hz \Box 481 Hz
2. Qual o valor do período fundamental, N , e a frequência angular fundamental Ω_0 do sinal de tempo discreto $x[n]$ que resulta da amostragem do sinal $x(t) = 1 + (\sin(90\pi t))^2 + 6\sin(60\pi t)\sin(180\pi t)$ com uma frequência de amostragem de 600 Hz?
Resposta: $N = \underline{\qquad} \Omega_0 = \underline{\qquad}$ rad
3. Considere que a Transformada de Fourier (FT) de um sinal $x(t)$ não periódico é dada por: $X_{FT}(\omega) = \begin{cases} 0 & , \omega \leq -40\pi \ \forall \ \omega \geq 40\pi \\ \frac{(40\pi - \omega)(40\pi + \omega)}{200\pi^2} & , -40\pi < \omega < 40\pi \end{cases}$ a) Sabendo que a Transformada de Fourier Discreta (DFT) do correspondente sinal amostrado, $x[n]$, tem o valor $X_{DFT}[0] = 400$, calcule o valor da frequência de amostragem (em Hz) considerada na obtenção do sinal amostrado $x[n]$ a partir de $x(t)$?
h) Considered de um single poriódico vo(t) de moríodo T. Co que esincido como esingle (t) de morto
b) Considerando um sinal periódico $xp(t)$ de período T_0 = 8s, que coincide com o sinal $x(t)$ durante um período, calcule o valor da componente c_0 da Série de Fourier complexa do sinal periódico $xp(t)$?
c) Pretendendo-se aplicar um filtro digital ideal ao sinal amostrado $x[n]$ que elimine as frequências do sinal original $x(t)$ superiores a 5Hz, diga que tipo de filtro usaria e com que frequência angular de corte Ω ?

4.	4. Suponha que o espetro de um sinal de tempo contínuo x(t) tem duas componentes às frequências 100Hz e 202.5Hz. Tendo obtido o correspondente sinal de tempo discreto de x[n], usando uma frequência de amostragem de 1kHz, com uma duração de 1s, diga como identificar de forma exata as duas componentes de frequência de x(t) a partir da DFT de x[n]?							
5.	Sendo $X_{DFT}[k]$ a Trans resultou da amostragem e sendo $X_{DTFT}(\omega)$ a re- seguintes expressões sã	$T_s = 0.25s$) on $T_s = 0.25s$	le um sinal con rmada de Fou	tínuo e periódi rier de Tempo	co x(t) ao longo	de um período,		
X_{DF}	$T_T[k] = 4X_{DTFT}(k\frac{\pi}{4}) \square \lor \square$	$\exists F \qquad X_{DFT}[k]$	$x] = X_{DTFT}(k\frac{\pi}{4})$	□V∣□F	$X_{DFT}[k] = \frac{1}{4}$	$X_{DTFT}(k\frac{1}{4}) \square \lor $		
6.	Dado o sinal de temp Transformada de Fourie	_	-	$3\pi n + \sqrt[n]{2} + \cos$	${ m S}[0.07\pi n]$, qua	ıl o período da		
Re	esposta: N =							
7.	Considerando que a Tr discreto com <i>N</i> =50 e am Indique as opções corre	ostrado a 1Hz,				•		
	$\Box x[n]$ é par;		$\Box x[$	n] é ímpar;				
	☐ A frequência máx	kima é 50Hz;	□ A ·	frequência má	xima é 1Hz;			
	$\square \ x[n]$ não é par no	em ímpar;	□ A	frequência má	xima é 2π Hz.			
8.	Considerando que a Tra discreto com <i>N</i> = 50 re expressão da Série de Fe	sultou em X _{DFT}	$[2] = -X_{DFT}[-2] :$	= -50 <i>j</i> e <i>X_{DFT}</i> [5	$] = X_{DFT}[-5] = -3$	100, complete a		
	<i>x</i> [<i>n</i>] =	cos[<i>n</i>	+] +	cos[n+]			
9.	Aplicando a STFT a um f_s =1000Hz), usando uma janela, o valor máximo o Qual o valor da frequên	a janela de larg de DFT é o 50	ura igual a 500 º valor da DFT	ms sem sobreր	oosição, verific	_		
	☐ 48 Hz ☐ 49 Hz	☐ 50 Hz	□ 98 Hz	☐ 99 Hz	☐ 100 Hz	☐ Nenhuma		

- 10. Considere um sinal de tempo discreto não estacionário que resultou da amostragem de um sinal áudio de tempo contínuo a uma frequência de amostragem *fs*=4*KHz*. Pretendendo-se localizar temporalmente a ocorrência de duas notas musicais, o Ré (294*Hz*) e o Lá (440*Hz*), aplicou-se a DFT por janelas (STFT) com uma dimensão temporal de 100ms sem sobreposição.
 - a) Em cada janela, a que índice k da transformada X[k] corresponderá a nota musical Lá?

h). Determine o valor absoluto do menor erro de estimação da frequência correspondente à nota

- b) Determine o valor absoluto do menor erro de estimação da frequência correspondente à nota musical Ré?
 - □ 0 Hz □ 1 Hz □ 4 Hz □ 6 Hz □ Nenhuma das opções
- c) Determine a expressão do sinal x[n] na $4^{\underline{a}}$ janela da STFT, sabendo que se obteve: $X_{DFT}[k] = 40j \ \delta[k+5] + 80 \ \delta[k+2] + 80 \ \delta[k-2] 40j \ \delta[k-5] \ , k = -\frac{N}{2}, \dots, \frac{N}{2} 1.$

11. Dado um sinal de tempo discreto, x[n], obtido com uma frequência de amostragem $f_s = 1KHz$,

considere a decomposição de nível 3, apresentada na figura, resultante da aplicação da Transformada de Wavelet Discreta (DWT) com a wavelet da família Daubechies de ordem 9.

 a) Efetue a caraterização tempo-frequência do sinal x[n] a partir da reconstrução do sinal com base nos coeficientes a₃ e d₃, preenchendo a seguinte tabela:

n	0 – 499	500 -999	1500 -1999	
A partir de d3 :	f ∈ [, [Hz,		f ∈ [, [Hz, C =	
A partir de a3 :	f = 0 Hz, C = f =Hz, C =	f =Hz, C =	f = Hz, C=	f = 0 Hz, C = f =Hz, C =

	b) Supondo que se pretende reconstruir o sinal $x[n]$ apenas com a frequência nula, determine,											
	justificadamente, o coeficiente que deverá ser utilizado na reconstrução, e faça um esboço do resultado da reconstrução do sinal com base nesse coeficiente.											
resultado da reconstrução d		ao sinai com bas		d6		a7		□ d7				
		ao		us	⊔ at		Li ub		Ц а/		<u> </u>	
12	2. Cons	idere a se	guinte s	série ten	nporal,:							
	t(h)	0	4	8	12	16	20					
	T(C)	9	8	10	14	NaN	12					
	a) D	etermine	o valo	or em 1	falta usa	ndo ex	trapolaç	ão de	ordem	0, e	xtrapolação	o linear e
	ir	nterpolaçã	o linea	r.								
												$a_1 = 2.0,$
	a_{i}	$a_2 = -1.2, a_2$	$_{3}=0.1,$	aplique (este mod	delo para	determ	inar o v	valor em	falta.	•	