Lògica en la Informàtica Definició de Lògica Proposicional (LProp)

José Miguel Rivero

Dept. Ciències de la Computació Universitat Politècnica de Catalunya (UPC)

Primavera 2025

Crèdits

El material utilitzat en aquesta presentació ha estat extret del elaborat pel professor Robert Nieuwenhuis (Dept. CS, UPC) per l'assignatura *Lògica en la Informàtica* de la FIB.

En particular, del llibre *Lógica para informáticos* - Farré, R. [et al.], Marcombo, 2011. ISBN: 9788426716941.

Lògica en la Informàtica

Temari

- 1. Introducció i motivació
- 2. Proposicional (LProp)
- 3. Deducció en Lògica Proposicional
- 4. Definició de Lògica de Primer Ordre (LPO)
- 5. Deducció en Lògica de Primer Ordre
- 6. Programació Lògica (Prolog)

Definició de Lògica Proposicional

Exercicis del capítol 2 dels apunts: 🔊 p2.pdf

- 1 Exercici 5
 - ici 5 [demostració en LProp]
- 2 Exercici 7

[demostració en LProp]

3 Exercici 8

[demostració en LProp]

4 Exercici 16

[demostració en LProp]

5 Exercici 21

[equivalència lògica]

6 Exercici 18

[equivalències entre fòrmules]

Exercici 23

[lema de Substitució]

5. (dificultat 1) Siguin F i G dues fórmules qualssevol. És cert que $F \lor G$ és tautologia si i només si alguna de les dues fórmules F o G ho és?. Demostra-ho fent servir només la definició de la LProp.

No, no és cert. Donarem un **contraexemple** de fórmules F i G per a les quals la propietat és falsa, és a dir, on $F \lor G$ és tautologia, però ni F ni G són tautologies.

Sigui F la fórmula p, on p és un símbol de predicat. Sigui G la fórmula $\neg p$.

5. (dificultat 1) Siguin F i G dues fórmules qualssevol. És cert que $F \lor G$ és tautologia si i només si alguna de les dues fórmules F o G ho és?. Demostra-ho fent servir només la definició de la LProp.

a) Tenim que $p \vee \neg p$ és tautologia perquè:

```
p \vee \neg p és tautologia
                                              ssi
                                                     [ per definició de tautologia ]
                                                   [ per definició de model ]
tota I és model de p \vee \neg p
                                              ssi
                                              ssi [per definició de \models]
\forall I, I \models p \vee \neg p
\forall I, eval_I(p \vee \neg p) = 1
                                              ssi [ per definició de eval_I(... \lor ...) ]
\forall I, max(eval_I(p), eval_I(\neg p)) = 1
                                              ssi [per definició de eval_I(\neg ...)]
\forall I, max(eval_I(p), 1 - eval_I(p)) = 1
                                                     [ donat que eval_I(p) sempre és
                                              ssi
                                                       0 o 1, i per definició de max ]
                         max(0, 1 - 0) = max(1, 1 - 1) = 1
```


5. (dificultat 1) Siguin F i G dues fórmules qualssevol. És cert que $F \lor G$ és tautologia si i només si alguna de les dues fórmules F o G ho és?. Demostra-ho fent servir només la definició de la LProp.

a) Tenim que $p \vee \neg p$ és tautologia perquè:

```
p \vee \neg p és tautologia
                                                ssi
                                                       [ per definició de tautologia ]
tota I és model de p \vee \neg p
                                                ssi
                                                      [ per definició de model ]
                                                     [ per definició de \models ]
\forall I, I \models p \vee \neg p
                                                ssi
\forall I. \ eval_I(p \vee \neg p) = 1
                                                     [ per definició de eval_I(... \lor ...) ]
                                                ssi
\forall I, max(eval_I(p), eval_I(\neg p)) = 1
                                                ssi
                                                      [ per definició de eval_I(\neg ...) ]
\forall I, max(eval_I(p), 1 - eval_I(p)) = 1
                                                       [ donat que eval_I(p) sempre és
                                                ssi
                                                         0 o 1, i per definició de max ]
                   1 = 1
                                                      [ perquè 1 = 1 és cert ]
                                                ssi
```

cert

5. (dificultat 1) Siguin F i G dues fórmules qualssevol. És cert que $F \vee G$ és tautologia si i només si alguna de les dues fórmules F o G ho és?. Demostra-ho fent servir només la definició de la LProp.

b) Però tenim que ni F ni G són tautologies:

```
F no és tautologia
                                 ssi
                                        [ com F és p ]
p no és tautologia
                                      [ per definició de tautologia ]
                                  ssi
\exists I, tq I no és model de p
                                  ssi [per definició de model]
\exists I, I \not\models p
                                  ssi [per definició de ⊨]
\exists I, eval_I(p) = 0
                                 ssi
                                      [ per definició de eval_I(p) ]
\exists I, I(p) = 0
                                  ssi
                                        cert
```


5. (dificultat 1) Siguin F i G dues fórmules qualssevol. És cert que $F \lor G$ és tautologia si i només si alguna de les dues fórmules F o G ho és?. Demostra-ho fent servir només la definició de la LProp.

b) Però tenim que ni F ni G són tautologies:

```
G no és tautologia
                                             [com G és \neg p]
                                       ssi
                                             [ per definició de tautologia ]
\neg p no és tautologia
                                       ssi
\exists I, tq I no és model de \neg p
                                       ssi [per definició de model]
\exists I, I \not\models \neg p
                                       ssi [per definició de \models]
\exists I, eval_I(\neg p) = 0
                                       ssi [ per definició de eval_I(\neg ...) ]
\exists I, 1 - eval_I(p) = 0
                                             [ per definició de eval_I(p) ]
                                       ssi
\exists I, 1 - I(p) = 0
                                             [ per aritmètica ]
                                      ssi
\exists I, I(p) = 1
                                       ssi
                                             cert
```


7. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és conseqüència lògica de G, és a dir, $G \models F$ si i només si $G \land \neg F$ és insatisfactible.

```
F és conseqüència lògica de G ssi  [ per def. de conseqüència lògica ] tot model de G satisfà F ssi  [ per def. de model ] \forall I, \text{ si } I \models G, \text{ llavors } I \models F ssi  [ pel significat de si. . . llavors. . . ] \forall I, I \not\models G \text{ o bé } I \models F ssi  [ per def. de \models ] \forall I, eval_I(G) = 0 \text{ o bé } eval_I(F) = 1
```

 $G \wedge \neg F$ és insatisfactible

7. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és conseqüència lògica de G, és a dir, $G \models F$ si i només si $G \land \neg F$ és insatisfactible.

```
F és conseqüència lògica de G
                                                               [ per def. de consegüència lògica ]
                                                        ssi
tot model de G satisfà F
                                                               [per def. de model]
                                                        ssi
\forall I, si I \models G, llavors I \models F
                                                               [ pel significat de si. . . llavors. . . ]
                                                        ssi
\forall I, I \not\models G \text{ o bé } I \models F
                                                        ssi
                                                                [per def. de ⊨]
\forall I, eval<sub>I</sub>(G) = 0 o bé eval<sub>I</sub>(F) = 1
                                                        ssi
                                                               [ per aritmètica ]
\forall I, eval_I(G) = 0 o bé 1 - eval_I(F) = 0
                                                               [per def. de min]
                                                        ssi
\forall I, min(eval_I(G), 1 - eval_I(F)) = 0
                                                               [ per def. de eval_I(\neg ...) ]
                                                        ssi
\forall I, min(eval_I(G), eval_I(\neg F)) = 0
                                                                [ per def. de eval₁(...∧...)]
                                                        ssi
\forall I, eval<sub>I</sub>(G \land \neg F) = 0
                                                               [per def. de \models]
                                                        ssi
\forall I, I \not\models (G \land \neg F)
                                                        ssi
                                                                [ per def. de model ]
G \wedge \neg F no té models
                                                               [ per def. de insatisfactible ]
                                                        ssi
G \wedge \neg F és insatisfactible
```


8. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és lògicament equivalent a G ssi $(G \land \neg F) \lor (F \land \neg G)$ és insatisfactible ssi $F \leftrightarrow G$ és tautologia.

Fem primer el primer ssi:

```
(G \land \neg F) \lor (F \land \neg G) és insatisfactible

ssi [per definició de insatisfactible]

\forall I, I \not\models (G \land \neg F) \lor (F \land \neg G)

ssi [per definició de \models]

\forall I, eval_I((G \land \neg F) \lor (F \land \neg G)) = 0

ssi [per definició de eval \lor]

\forall I, max(eval_I(G \land \neg F), eval_I(F \land \neg G)) = 0

ssi [per definició de eval \land]

\forall I, max(min(eval_I(G), eval_I(\neg F)), min(eval_I(F), eval_I(\neg G))) = 0
```


8. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és lògicament equivalent a G ssi $(G \land \neg F) \lor (F \land \neg G)$ és insatisfactible ssi $F \leftrightarrow G$ és tautologia.

Fem primer el primer ssi (cont.):

```
\forall I, \max(\min(eval_I(G), eval_I(\neg F)), \min(eval_I(F), eval_I(\neg G))) = 0
\text{ssi} \quad [\text{ per definició de } eval \neg ]
\forall I, \max(\min(eval_I(G), 1 - eval_I(F)), \min(eval_I(F), 1 - eval_I(G))) = 0
\text{ssi} \quad [\text{ per definició de } \min \text{ i } \max,
\text{ i perquè } eval \text{ sempre dona } 0 \text{ o } 1 \text{ ]}
\forall I, eval_I(F) = eval_I(G)
\text{ssi} \quad [\text{ perquè } eval \text{ sempre dona } 0 \text{ o } 1 \text{ ]}
\forall I, (eval_I(F) = 1 \text{ ssi } eval_I(G) = 1)
\text{ssi} \quad [\text{ per definició de } \models ]
\forall I, (I \models F \text{ ssi } I \models G)
```


8. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és lògicament equivalent a G ssi $(G \land \neg F) \lor (F \land \neg G)$ és insatisfactible ssi $F \leftrightarrow G$ és tautologia.

Fem primer el primer ssi (cont.):

```
\forall I, (I \models F \text{ ssi } I \models G)
ssi [per definició de model]
\forall I, (I \text{ és model de } F \text{ ssi } I \text{ és model de } G)
ssi [per definició de equivalència de models]
F \text{ i } G \text{ tenen els mateixos models}
ssi [per definició de equivalència lògica]
F \text{ és lógicamente equivalente a } G.
```


8. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és lògicament equivalent a G ssi $(G \land \neg F) \lor (F \land \neg G)$ és insatisfactible ssi $F \leftrightarrow G$ és tautologia.

Per al segon ssi:

```
F\leftrightarrow G és tautologia  ssi \quad [\text{ per def.} \leftrightarrow]  (F\to G)\land (G\to F) és tautologia  ssi \quad [\text{ per def.} \to]  (\neg F\lor G)\land (\neg G\lor F) és tautologia  ssi \quad [\text{ per def. de tautologia}]  \forall I és model de (\neg F\lor G)\land (\neg G\lor F)  ssi \quad [\text{ per def. de model }]  \forall I,I\models (\neg F\lor G)\land (\neg G\lor F)  ssi \quad [\text{ per def. de }\models]  \forall I,eval_I((\neg F\lor G)\land (\neg G\lor F))=1
```


8. (dificultat 2) Siguin F i G dues fórmules qualssevol. Demostra, fent servir tan sols la definició de la LProp, que F és lògicament equivalent a G ssi $(G \land \neg F) \lor (F \land \neg G)$ és insatisfactible ssi $F \leftrightarrow G$ és tautologia.

Per al segon ssi (cont.):

```
\forall \textit{I}, \textit{eval}_{\textit{I}}(\ (\neg\textit{F} \lor \textit{G}\ ) \land (\neg\textit{G} \lor \textit{F}\ )) = 1
\text{ssi} \quad [\textit{per def. de } \textit{eval}_{\textit{I}}(\ \land\ )]
\forall \textit{I}, \textit{min}(\textit{eval}_{\textit{I}}(\neg\textit{F} \lor \textit{G}), \textit{eval}_{\textit{I}}(\neg\textit{G} \lor \textit{F})) = 1
\text{ssi} \quad [\textit{per def. de } \textit{eval}_{\textit{I}}(\ \lor\ )]
\forall \textit{I}, \textit{min}(\textit{max}(\textit{eval}_{\textit{I}}(\neg\textit{F}), \textit{eval}_{\textit{I}}(\textit{G})), \textit{max}(\textit{eval}_{\textit{I}}(\neg\textit{G}), \textit{eval}_{\textit{I}}(\textit{F}))) = 1
\text{ssi} \quad [\textit{per def. de } \textit{eval}_{\textit{I}}(\ \neg\ )]
\forall \textit{I}, \textit{min}(\textit{max}(1 - \textit{eval}_{\textit{I}}(\textit{F}), \textit{eval}_{\textit{I}}(\textit{G})), \textit{max}(1 - \textit{eval}_{\textit{I}}(\textit{G}), \textit{eval}_{\textit{I}}(\textit{F}))) = 1
\text{ssi} \quad [\textit{per definició de } \textit{min i } \textit{max}, \\ \textit{i perquè } \textit{eval}_{\textit{I}} \text{ sempre dona 0 o 1}]
\forall \textit{I}, \textit{eval}_{\textit{I}}(\textit{F}) = \textit{eval}_{\textit{I}}(\textit{G}) \\ \textit{i seguim igual que en la demostració anterior.}
```

Definició de Lògica Proposicional

Conseqüència dels exercicis 6,7,8

En la pràctica ens interessa sempre, esbrinar aquest tipus de propietats:

```
I és model de F si I satisfà a F (es denota I \models F)
F és satisfactible si F té algun model
F és insatisfactible si F no té models
F és tautologia si tota I és model de F
G és conseqüència lògica de F si tot model de F satisfà G
(es denota F \models G)
F i G són lògicament equivalents si F i G tenen el mateixos models
(es denota F \equiv G)
```

Com ho podem fer, si l'única cosa que tenim és un SAT solver?

```
F és tautologia ssi \neg F és insatisfactible. G és conseqüència lògica de F ssi F \land \neg G és insatisfactible. F i G són lògicamente equivalentes ssi (G \land \neg F) \lor (F \land \neg G) és insatisfactible.
```


16. (dificultat 2) Siguin F i G dues fórmules qualssevol. Si $F \to G$ és satisfactible i F és satisfactible, llavors G és satisfactible? Demostra-ho fent servir tan sols la definició de la LProp.

Farem un intent de demostració:

```
F \rightarrow G és satisfactible
                                                           [ per def. de \rightarrow ]
                                                     ssi
\neg F \lor G és satisfactible
                                                     ssi
                                                         [ per def. de satisfactible ]
\neg F \lor G té algun model
                                                     ssi [per def. de model]
\exists I, I \models \neg F \lor G
                                                     ssi [per def. de \models]
\exists I, eval_I(\neg F \lor G) = 1
                                                     ssi [per def. de eval_I(\vee)]
\exists I, max(eval_I(\neg F), eval_I(G)) = 1
                                                     ssi [per def. de eval_1(\neg)]
\exists I, max(1 - eval_I(F), eval_I(G)) = 1
                                                     ssi [per def. de max]
\exists I, 1 - eval_I(F) = 1 o bé eval_I(G) = 1
                                                     ssi
                                                           [ per aritmètica ]
\exists I, eval_I(F) = 0 o bé eval_I(G) = 1
```

NO puc escriure $\exists I$, $eval_I(F) = 0 \lor eval_I(G) = 1$

NO té cap sentit, perquè \vee és una connectiva que només té sentit dintre de fórmules, i $eval_I(F)=0$ NO és una fórmula. Aquí estem raonant/explicant en català.

16. (dificultat 2) Siguin F i G dues fórmules qualssevol. Si $F \to G$ és satisfactible i F és satisfactible, llavors G és satisfactible? Demostra-ho fent servir tan sols la definició de la LProp.

Farem un intent de demostració (cont):

```
F és satisfactible ssi [per def. de satisfactible] F té algun model ssi [per def. de model] ssi [per def. de \models] \exists l', l' \models F ssi [per def. de \models] \exists l', eval_{l'}(F) = 1
```

D'aquest intent de demostració, veiem que si existeix una I que no és model de F i un altre I' que sí és model de F, llavors ja és compleixen les dues condicions de que $F \rightarrow G$ és satisfactible i F és satisfactible, i això no implica res sobre la G!

16. (dificultat 2) Siguin F i G dues fórmules qualssevol. Si $F \to G$ és satisfactible i F és satisfactible, llavors G és satisfactible? Demostra-ho fent servir tan sols la definició de la LProp.

D'aquest intent de demostració, veiem que si existeix una I que no és model de F i un altre I' que sí és model de F, llavors ja és compleixen les dues condicions de que $F \to G$ és satisfactible i F és satisfactible, i això no implica res sobre la G!

Això ens inspira per a adonar-nos que la propietat és falsa, i per a donar aquest contraexemple:

Sigui F la fórmula p

Sigui G la fórmula $p \wedge \neg p$.

Llavors $F \to G$ és satisfactible i F és satisfactible, però G no ho és!

16. (dificultat 2) Siguin F i G dues fórmules qualssevol. Si $F \to G$ és satisfactible i F és satisfactible, llavors G és satisfactible? Demostra-ho fent servir tan sols la definició de la LProp.

```
F \rightarrow G és satisfactible
                                                                     [ per def. de F i G ]
                                                             ssi
p \to (p \land \neg p) és satisfactible
                                                                     [per def. de \rightarrow]
                                                             ssi
\neg p \lor (p \land \neg p) és satisfactible
                                                                     [ per def. de satisfactible ]
                                                             ssi
\neg p \lor (p \land \neg p) té algun model
                                                                     [per def. de model]
                                                             ssi
\exists I, I \models \neg p \lor (p \land \neg p)
                                                             ssi
                                                                     [per def. de \models]
\exists I, eval_I(\neg p \lor (p \land \neg p)) = 1
                                                             ssi
                                                                     [ per def. de eval_I(\vee) ]
\exists I, max(eval_I(\neg p), eval_I(p \land \neg p)) = 1
                                                                     [ per def. de eval_I(\neg) ]
                                                             ssi
\exists I, max(1 - eval_I(p), eval_I(p \land \neg p)) = 1
                                                                     [per def. de max]
                                                             ssi
\exists I, 1 - eval_I(p) = 1 \text{ o } eval_I(p \land \neg p) = 1
                                                                     [ per aritmètica ]
                                                             ssi
\exists I, eval_I(p) = 0 o eval_I(p \land \neg p) = 1
                                                             ssi
                                                                     [ agafem la / tal que
                                                                      I(p) = 0
```

cert

16. (dificultat 2) Siguin F i G dues fórmules qualssevol. Si $F \to G$ és satisfactible i F és satisfactible, llavors G és satisfactible? Demostra-ho fent servir tan sols la definició de la LProp.

```
F és satisfactible ssi [per def. de F] p és satisfactible ssi [per def. de satisfactible] p té algun model ssi [per def. de model] \exists \ l', \ l' \models p ssi [per def. de \models] \exists \ l', \ eval_{l'}(p) = 1 ssi [agafem la l' tal que l'(p) = 1] cert
```

G és insatisfactible (\square veure exercici 2).

21. (dificultat 2) Demostra que l'equivalència lògica és realment una relació d'**equivalència**.

Una relacion binària R sobre un conjunt S és un subconjunt del producte cartesià $S \times S$. És a dir R ens diu quines parelles estan relacionades, quines parelles (e,e') estan en R (on e i e' són elements de S).

```
R és reflexiva si (e,e) està en R per a tot e de S. R és simètrica si (e,e') en R implica (e',e) en R per a tot e,e' de S. R és transitiva si (e,e') en R i (e',e'') en R implica (e,e'') en R per a tot e,e',e'' de S.
```

I si R compleix les tres propietats llavors R és una relació d'**equivalència**.

21. (dificultat 2) Demostra que l'equivalència lògica és realment una relació d'**equivalència**.

Una relacion binària R sobre un conjunt S és un subconjunt del producte cartesià $S \times S$. És a dir R ens diu quines parelles estan relacionades, quines parelles (e,e') estan en R (on e i e' són elements de S).

Altres notacions:

• com un predicat binari:

```
R és reflexiva si R(e,e) per a tot e R és simètrica si R(e,e') implica R(e',e) per a tot e,e' R és transitiva si R(e,e') i R(e',e'') implica R(e,e'') per a tot e,e',e''
```


21. (dificultat 2) Demostra que l'equivalència lògica és realment una relació d'**equivalència**.

Una relacion binària R sobre un conjunt S és un subconjunt del producte cartesià $S \times S$. És a dir R ens diu quines parelles estan relacionades, quines parelles (e,e') estan en R (on e i e' són elements de S).

Altres notacions:

com un predicat infix:

R és **reflexiva** si eRe per a tot e de S. R és **simètrica** si eRe' implica e'Re per a tot e,e' de S. R és **transitiva** si eRe' i e'Re'' implica eRe'' per a tot e,e',e'' de S.

Per exemple si R és >, la notació infixa és molt més habitual: escribim e > e', etc.

18. (dificultat 2) Demostra les següents equivalèncias entre fórmules:

```
F \wedge F \equiv F idempotència de \wedge F \vee F \equiv F idempotència de \vee F \wedge G \equiv G \wedge F conmutativitat de \wedge F \vee G \equiv G \vee F conmutativitat de \vee (F \wedge G) \wedge H \equiv F \wedge (G \wedge H) associativitat de \wedge (F \vee G) \vee H \equiv F \vee (G \vee H) associativitat de \vee
```

Aquestes tres propietats (idempotència, commutativitat, asociatividad de \land i de \lor) ens indiquen que a vegades podem escriure les fórmules de manera més "relaxada", ometent alguns parèntesis. I també, que podem veure una CNF com un CONJUNT (and) de clàusules, i podem veure una clàusula com un CONJUNT (un or) de literals.

18. (dificultat 2) Demostra les següents equivalèncias entre fórmules:

```
\neg \neg F \equiv F \qquad \text{doble negació}

\neg (F \land G) \equiv \neg F \lor \neg G \qquad \text{llei de De Morgan 1}

\neg (F \lor G) \equiv \neg F \land \neg G \qquad \text{llei de De Morgan 2}
```

Aquestes tres propietats ens serveixen per a transformar fórmules "movent les negacions cap a dins", fins que només hi hagi negacions aplicades a símbols de predicat.

18. (dificultat 2) Demostra les següents equivalèncias entre fórmules:

$$(F \wedge G) \vee H \equiv (F \vee H) \wedge (G \vee H)$$
 distributivitat 1
 $(F \vee G) \wedge H \equiv (F \wedge H) \vee (G \wedge H)$ distributivitat 2

Una vegada les negacions estan aplicades als símbols de predicat, aplicant distributivitat 1 $(F \land G) \lor H \Longrightarrow (F \lor H) \land (G \lor H)$ d'esquerra a dreta obtenim una CNF.

Hi ha un detall: Demostra que $p \land (q \lor q) \equiv p \land q$. Podem "aplicar" alegrement la idempotència del \lor sobre la subfórmula $q \lor q$?

No! Cal demostrar primer el Lema de Substitució de l'exercici 23.

true

Demostrem, com a exemple, que $F \equiv \neg \neg F$:

```
F = \neg \neg F
                   ssi [per def. d'equivalència lògica]
\forall I, (I és model de F ssi I és model de \neg \neg F)
                   ssi [per def. de model]
\forall I, (I \models F \text{ ssi } I \models \neg \neg F)
                   ssi [per def. de satisfacció]
\forall I, (eval_I(F) = 1 \text{ ssi } eval_I(\neg \neg F) = 1)
                   ssi [perquè eval<sub>1</sub> sempre dona 0 o 1]
\forall I, eval_I(F) = eval_I(\neg \neg F)
                   ssi [per def. de eval_i(\neg)]
\forall I, eval_I(F) = 1 - eval_I(\neg F)
                   ssi [per def. de eval_i(\neg)]
\forall I, eval_I(F) = 1 - (1 - eval_I(F))
                   ssi [per aritmètica]
\forall I, eval_I(F) = eval_I(F)
                   ssi
```

23. (dificultat 3) Lema de Substitució.

Siguin F, G, G' fórmules qualssevol, amb $G \equiv G'$. Si en F substituïm una aparició de una subfórmula G per G' obtenim una nova fórmula F' amb $F \equiv F'$.

En el exemple anterior:

$$F$$
 és $p \wedge (q \vee q)$
 G és $(q \vee q)$
 G' és q
 F' és $p \wedge q$.

Definició de Lògica Proposicional

Per al proper dia de classe:

- Capítol 2 dels apunts: exercicis 26, 27, 28, 31, 32, 33, 34, 35, 36, 37.
- Capítol 3 dels apunts: p3.pdf