# Transmission Media

#### Classes of Transmission Media

- Conducted or guided media
  - use a conductor such as a wire or a fiber optic cable to move the signal from sender to receiver
- Wireless or unguided media
  - use radio waves of different frequencies and do not need a wire or cable conductor to transmit signals

# Design Factors for Transmission Media

- Bandwidth: All other factors remaining constant, the greater the band-width of a signal, the higher the data rate that can be achieved.
- Transmission impairments. Limit the distance a signal can travel.
- Interference: Competing signals in overlapping frequency bands can distort or wipe out a signal.
- Number of receivers: Each attachment introduces some attenuation and distortion, limiting distance and/or data rate.

# Electromagnetic Spectrum for Transmission Media



# Electromagnetic Spectrum



ELF = Extremely low frequency

VF = Voice frequency

VLF = Very low frequency LF = Low frequency MF = Medium frequency
HF = High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Superhigh frequency

EHF = Extremely high frequency

#### **Guided Transmission Media**

- Transmission capacity depends on the distance and on whether the medium is point-to-point or multipoint
- Examples
  - twisted pair wires
  - coaxial cables
  - optical fiber

#### **Twisted Pair Wires**

- Consists of two insulated copper wires arranged in a regular spiral pattern to minimize the electromagnetic interference between adjacent pairs
- Often used at customer facilities and also over distances to carry voice as well as data communications
- Low frequency transmission medium

# Types of Twisted Pair

- STP (shielded twisted pair)
  - the pair is wrapped with metallic foil or braid to insulate the pair from electromagnetic interference
- UTP (unshielded twisted pair)
  - each wire is insulated with plastic wrap,
     but the pair is encased in an outer covering

### Ratings of Twisted Pair

- Category 3 UTP
  - data rates of up to 16mbps are achievable
- Category 5 UTP
  - data rates of up to 100mbps are achievable
  - more tightly twisted than Category 3 cables
  - more expensive, but better performance
- STP
  - More expensive, harder to work with

### Twisted Pair UTP Categories

| Category | Bandwidth | Data Rate | Digital/<br>Analog | Use       |
|----------|-----------|-----------|--------------------|-----------|
| 1        | Very Low  | <100 Kbps | Analog             | Telephone |
| 2        | < 2MHz    | 2Mbps     | Analog             | T-1 lines |
| 3        | 16MHz     | 10Mbps    | Digital            | LAN       |
| 4        | 20MHz     | 20Mbps    | Digital            | LAN       |
| 5        | 100MHz    | 100Mbps   | Digital            | LAN       |
| 6        | 200MHz    | 200Mbps   | Digital            | LAN       |
| 7        | 600MHz    | 1000Mbps  | Digital            | LAN       |

#### Twisted Pair Advantages

- Inexpensive and readily available
- Flexible and light weight
- Easy to work with and install

- —Separately insulated
- —Twisted together
- —Often "bundled" into cables
- Usually installed in building during construction



(a) Twisted pair

#### Twisted Pair Disadvantages

- Susceptibility to interference and noise
- Attenuation problem
  - For analog, repeaters needed every 5-6km
  - For digital, repeaters needed every 2-3km
- Relatively low bandwidth (3000Hz)

# Twisted Pair Applications

- Most common medium
- Telephone network
  - Between house and local exchange (subscriber loop)
- Within buildings
  - To private branch exchange (PBX)
- For local area networks (LAN)
  - 10Mbps or 100Mbps

### Coaxial Cable (or Coax)

- Used for cable television, LANs, telephony
- Has an inner conductor surrounded by a braided mesh
- Both conductors share a common center axial, hence the term "co-axial"

### Coax Layers



outer jacket (polyethylene)

shield (braided wire)

insulating material

copper or aluminum conductor

### Coax Advantages

- Higher bandwidth
  - 400 to 600Mhz
  - up to 10,800 voice conversations
- Can be tapped easily (pros and cons)
- Much less susceptible to interference than twisted pair

#### Coax Disadvantages

- High attenuation rate makes it expensive over long distance
- Bulky

#### Fiber Optic Cable

- Relatively new transmission medium used by telephone companies in place of longdistance trunk lines
- Also used by private companies in implementing local data communications networks
- Require a light source with injection laser diode (ILD) or light-emitting diodes (LED)

#### Fiber Optic Layers

consists of three concentric sections



#### Fiber Optic Types

- multimode step-index fiber
  - the reflective walls of the fiber move the light pulses to the receiver
- multimode graded-index fiber
  - acts to refract the light toward the center of the fiber by variations in the density
- single mode fiber
  - the light is guided down the center of an extremely narrow core

# Fiber Optic Signals



### Fiber Optic Advantages

- greater capacity (bandwidth of up to 2 Gbps)
- smaller size and lighter weight
- lower attenuation
- immunity to environmental interference
- highly secure due to tap difficulty and lack of signal radiation

# Fiber Optic Disadvantages

- expensive over short distance
- requires highly skilled installers
- adding additional nodes is difficult

# Wireless (Unguided Media) Transmission

- transmission and reception are achieved by means of an antenna
- directional
  - transmitting antenna puts out focused beam
  - transmitter and receiver must be aligned
- omnidirectional
  - signal spreads out in all directions
  - can be received by many antennas

# Wireless Examples

- terrestrial microwave
- satellite microwave
- broadcast radio
- infrared

#### Terrestrial Microwave

- used for long-distance telephone service
- uses radio frequency spectrum, from 2 to 40 Ghz
- parabolic dish transmitter, mounted high
- used by common carriers as well as private networks
- requires unobstructed line of sight between source and receiver
- curvature of the earth requires stations (repeaters) ~30 miles apart

# Satellite Microwave Applications

- Television distribution
- Long-distance telephone transmission
- Private business networks

# Microwave Transmission Disadvantages

- line of sight requirement
- expensive towers and repeaters
- subject to interference such as passing airplanes and rain

# Satellite Microwave Transmission

- a microwave relay station in space
- can relay signals over long distances
- geostationary satellites
  - remain above the equator at a height of 22,300 miles (geosynchronous orbit)
  - travel around the earth in exactly the time the earth takes to rotate

#### Satellite Transmission Links

- earth stations communicate by sending signals to the satellite on an uplink
- the satellite then repeats those signals on a downlink
- the broadcast nature of the downlink makes it attractive for services such as the distribution of television programming

#### Satellite Transmission Process



# Satellite Transmission Applications

- television distribution
  - a network provides programming from a central location
  - direct broadcast satellite (DBS)
- long-distance telephone transmission
  - high-usage international trunks
- private business networks

# Principal Satellite Transmission Bands

- C band: 4(downlink) 6(uplink) GHz
  - the first to be designated
- ◆ Ku band: 12(downlink) -14(uplink) GHz
  - rain interference is the major problem
- ◆ Ka band: 19(downlink) 29(uplink) GHz
  - equipment needed to use the band is still very expensive

#### Fiber vs Satellite

Table 7.6 A Comparison of Optical Fiber and Satellite Transmission

| Characteritic                 | Optical Fiber                                           | Satellite Typical transponder has a bandwidth of 36–72 MHz                 |  |
|-------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|--|
| Bandwidth                     | Theoretical limit of 1 terahertz;<br>currently 1–10 GHz |                                                                            |  |
| Immunity to interference      | Immune to electromagnetic interference                  | Subject to interference from<br>various sources, including<br>microwave    |  |
| Security                      | Difficult to tap without detection                      | Signals must be encrypted<br>for security                                  |  |
| Multipoint capability         | Primarily a point-to-point medium                       | Point-to-multipoint<br>communications easily<br>implemented                |  |
| Flexibility                   | Difficult to reconfigure to meet<br>changing demand     | Easy to reconfigure                                                        |  |
| Connectivity to customer site | Local loop required                                     | With antenna installed on<br>customer premises, local<br>loop not required |  |

#### Radio

- radio is omnidirectional and microwave is directional
- Radio is a general term often used to encompass frequencies in the range 3 kHz to 300 GHz.
- Mobile telephony occupies several frequency bands just under 1 GHz.

#### **Infrared**

- Uses transmitters/receivers (transceivers) that modulate noncoherent infrared light.
- Transceivers must be within line of sight of each other (directly or via reflection).
- Unlike microwaves, infrared does not penetrate walls.