Shopper Hiring Problem

Analyzing A/B Test Results on Shopper Hiring Funnel

Jason Dexter (5/20/2019)

Contents

Project Phase 1.0	: Initial Exploratory Data Analysis (EDA)	2
Project Phase 2.0	9: Use EDA Insights to Wrangle Data for Analysis	6
Project Phase 3.0	9: Business Understanding + Business Insights	8
Project Phase 4.0	2: Data Understanding for Time-To-Conversion	10
Project Phase 5.0	9: Analyzing A/B Test Results	11
Project Phase 6.0	2: Craft Plots for Presentation	12

PROJECT + ASSIGNMENT OVERVIEW

Problem Statment: Low conversion rates of new hires b/c of drop out during hiring funnel.

Potential Solution: Initiate applicant background check earlier in hiring funnel (on day one).

Objective: Analyze A/B Test results and assess the viability of posed solution for improving conversion rates.

Ultimately, we want to see if initiating the background check sooner:

- 1) Increases the liklihood of applicants starting as shoppers.
- 2) Gets the shoppers to start more quickly.

Questions Driving Analysis - need to be answered/delivered via slide-deck (decision-making-audience):

- 1) What can we conclude at this point from the A/B test?
- 2) How confident should we be in this conclusion?
- 3) Is this change cost-effective?
- 4) How should we think about the cost-effectiveness or return on investment of this change?
 - Consider alternate costs: \$50 or \$100 instead of \$30 (be as specific as possible)
- 5) What other observations and recomendations do you have for us, based on this data?
 - E.g., what else did you find that seems relevant, or what else would you want to test if we ran an additional experiment?

Project Phase 1.0: Initial Exploratory Data Analysis (EDA)

Objective w/EDA: Gain understanding of event-level data so I can use insights to aggregate/summarize data to the applicant-level. The applicant-level data will be what I use to analyze the A/B test results.

```
# Set global options for code chunks
knitr::opts_chunk$set(
   echo
         = TRUE,
   message = FALSE,
   warning = FALSE)
# Tell RMarkdown to recognize the root directory of my Rproj file
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
# Load libraries + source plotting function
library(tidyverse)
library(lubridate)
library(tidyquant)
library(stringr)
library(sigr)
source("00_Scripts/plot_ggpairs.R")
# Read in raw data
applicant_raw_tbl <- read_csv("00_Data/applicant_data.csv")</pre>
```

1.1 VIEW DATA + ASSESS DATA TYPES + ASSESS MISSING DATA

```
# View data
applicant_raw_tbl %>% head(4)
## # A tibble: 4 x 6
    applicant_id channel
##
                                  group
                                             city
                                                     event
                                                                    event date
##
           <dbl> <chr>
                                   <chr>
                                             <chr>
                                                     <chr>
                                                                    <chr>
           10001 web-search-engi~ control
## 1
                                             Asgard application_d~ 10/1/18
## 2
           10002 social-media
                                            Midgard application_d~ 10/1/18
                                  control
           10003 web-search-engi~ treatment Midgard application_d~ 10/1/18
## 3
## 4
           10004 social-media
                                  treatment Asgard application_d~ 10/1/18
# Assess missing data (NA values): could be other ways of data missing (this is a good 1st look)
applicant_raw_tbl %>%
    # Iterate across columns and calculate % missing
   map_df(~ sum(is.na(.)) / length(.)) %>%
   knitr::kable(caption = "No NA values present in dataset")
```

Table 1: No NA values present in dataset

applicant_id	channel	group	city	event	event_date
0	0	0	0	0	0

1.2 INITIAL DATA CLEANING

```
# Clean raw data where needed
applicant_tbl <- applicant_raw_tbl %>%
    # Parse dates in event_date column
    mutate(event_date = mdy(event_date))
```

1.3 INSPECT CATEGORICAL DATA

- Here I did not include the output b/c I just did a quick look at distinct groups per categorical variable.
- This included channel, group, city, and event type.
- I'm getting a sense of what categories exists, their values, and what I might use later to **explain any** variation discovered.

1.4 INSPECT DISTINCT APPLICANTS AND GROUP SAMPLE SIZE(S)

• Looks like the study was intentionally setup as a 2/3 control & 1/3 treatment (setup/study design)

Table 2: % Distinct Applicants by Test Group

group	n	pct_in_group
control treatment	$14501 \\ 7197$	66.8% 33.2%

1.5 HOW LONG WAS THE A/B TEST RUN? SAME FOR BOTH GROUPS?

- Looks like ~41 days and the date ranges are the same for both groups.
- Upon initial inspection I suspect the A/B test was specifically for Oct, 2018.

Table 3: Min and Max event dates by group.

group	min(event_date)	max(event_date)
control	2018-10-01	2018-11-11
treatment	2018-10-01	2018-11-11

Was this an OCT Test & extra 11 days allow time for conversion?

My thoughts here are that we don't want to include applicants that never had a chance to successfully convert to a hired shopper.

This means we need a cutoff date where we don't allow any more applicantes into the analysis. For example, if it takes roughly 11 days for applicants to *complete their first batch* (success), then we need to allow that much time to pass.

- I'm now going to assess the time between application to becoming a succeful hire: "complete 1st batch"
- I will use this info to create a cutoff where anyone who applies after date X will not be in the analysis.

1.6 TIDY + TRANSFORM DATA TO STUDY TIME-TO-CONVERSION

```
# Aggregate data to assess time between application and successful hire
time_to_conversion_tbl <- applicant_tbl %>%

# Select columns and filter for event types
select(applicant_id, group, contains("event")) %>%
filter(event %in% c("application_date", "first_batch_completed_date")) %>%

# Pivot and spread event and event_date across columns
spread(key = event, value = event_date) %>%

# Filter to get only applicants who converted by dropping rows w/NA values
filter(!is.na(first_batch_completed_date)) %>%

# Calculate time between application date and hire date
mutate(days_to_conversion = first_batch_completed_date - application_date)

# View time to conversion table by pulling 5 sample rows
time_to_conversion_tbl %>% sample_n(5) %>%
knitr::kable(caption = "Days to conversion by successful applicants.")
```

Table 4: Days to conversion by successful applicants.

applicant_id	group	application_date	first_batch_completed_date	days_to_conversion
12944	treatment	2018-10-08	2018-10-11	3 days
11745	treatment	2018-10-05	2018-10-14	9 days
10761	control	2018-10-02	2018-10-14	12 days
19927	control	2018-10-23	2018-11-04	12 days
26718	treatment	2018-11-03	2018-11-09	6 days

1.7 HOW LONG DOES IT TAKE TO MOVE THROUGH HIRING FUNNEL?

What does the distribution of time-to-conversion in days look like?

Successful Applicants through Recruitment Funnel

Red line is average days (8.6) for applicants to convert to shoppers successfully.

400

200

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Days between Submitted Application to First Batch Completed

1.8 IS IT APPROPRIATE TO USE 10/31/2018 AS A CUTOFF?

The data is nicely distributed and so let's take a look closer at how it's distributed.

- This will inform our cutoff for which applicants go into the analysis of the A/B test.
- The 11 days in NOV might be enough to allow most applicants who will convert, to convert.

High-level summary (table 5) shows that the ~ 11 days is above the 75th percentile and will capture the majority of 'successes.' Meaning that this should give plenty of time for MOST conversions to have been completed.

Table 5: High-level summary of distribution stats

min	Q1	median	mean	Q3	max	IQR
2 days	6 days	8 days	8.6 days	10 days	28 days	4

Table 6: Summary of distribution stats by experimental group(s)

group	min	Q1	median	mean	Q3	max	IQR
control				$10.0 \; \mathrm{days}$			4
treatment	2 days	5 days	7 days	6.9 days	8 days	26 days	3

Key-Takeaways

- 1) Based on findings, I will use 10/31/2018 as the cutoff date and assume OCT A/B Test.
- 2) Any applicants who applied after that will be dropped from the analysis.
- 3) This is our first indication of differences between treatments (Table 6).
 - Initial inspection suggests treatment group applicants are converting quicker (10-days vs. 7-days).

1.9 SHOPPER HIRING FUNNEL: CONTROL VS. TREATMENT

Preliminary Results in plot: Data includes NOV applicants. Just wrapping my mind around funnel.

Initial inspection indicates large differences in conversion rates between Control vs. Treatment.

• See differences between groups for '1st Batch Completed' (34.3% vs. 19.8%). **PRELIMINARY**

Project Phase 2.0: Use EDA Insights to Wrangle Data for Analysis

The objective here is to aggregate event-level data to applicant-level.

NOTE: I'm often taking time to do sanity checks on my work at each stage.

2.1 PREP EVENT DATA FOR TIME-BASED CALCULATIONS - JOINED IN 2.2

```
# Pivot data to get 'application_date" and "1st_batch_date" as seperate features
app_date_batch_date_for_joins_tbl <- applicant_tbl %>%

# Select columns for pivot
select(applicant_id, event, event_date) %>%

# Pivot and spread events across columns with date completed as values
spread(key = event, value = event_date) %>%

# Select columns needed for calculating days to conversion: 1st_batch_date - app_date = days
select(applicant_id, application_date, first_batch_completed_date)
```

2.2 WRANGLE DATA INTO THE LEARNING DATA SET FOR ANALYSIS

```
# Construct learning data with target feature: coverted (success/failure)
learning_data_tbl <- applicant_tbl %>%
    # Drop event date. We will add back with joins
   select(-event_date) %>%
    # Setup temp column. For engineering binary features related to event completion
   mutate(yes_no = "Yes") %>%
    # Pivot & spread events across columns to create binary features (fill NA \mbox{w/"No"})
   mutate(event = str_replace(event, pattern = "_date", "")) %>% # remove "_date" for event
    spread(key = event, value = yes_no, fill = "No") %>% # sets event as "yes" or "no"
    # Join data for calculating days to conversion (inner join is fine b/c both have ALL applicants)
    inner_join(app_date_batch_date_for_joins_tbl, by = "applicant_id") %>%
    # Calculate days to conversion for those who successfully completed 1st batch
   mutate(days_to_conversion = (first_batch_completed_date - application_date)/ddays()) %>%
    # Setup Target feature: Success/Failure
   mutate(converted = case_when(
        first_batch_completed == "Yes" ~ "Success",
        TRUE ~ "Failure"
   )) %>%
    # Filter out applicants who applied in November
    filter(application_date <= "2018-10-31")</pre>
#learning_data_tbl %>% filter(group == "treatment") %>% count(background_check_completed)
```

2.3 COLUMNS AND ENGINEERED FEATURES IN LEARNING DATA SET

Let's take a quick glimpse of what data we now have at the applicant-level.

• The Target feature is 'converted' denoting shopper hiring funnel completion: 'Success' or 'Failure'

This is a great data set for us to answer the assigned questions.

• It's also setup nicely for further investigation if we want to do further analysis later to understand the system better e.g., what other factors are driving conversion of applicants to shoppers.

```
# Transpose data to view glimpse of all features
learning_data_tbl %>% glimpse
```

```
## Observations: 14,982
## Variables: 15
## $ applicant_id
                                <dbl> 10001, 10002, 10003, 10004, 10005, ...
## $ channel
                                <chr> "web-search-engine", "social-media"...
                                <chr> "control", "control", "treatment", ...
## $ group
## $ city
                                <chr> "Asgard", "Midgard", "Midgard", "As...
                                <chr> "Yes", "Yes", "Yes", "Yes", "Yes", ...
## $ application
## $ background_check_completed <chr> "No", "Yes", "Yes", "Yes", "Yes", "...
## $ background_check_initiated <chr> "No", "Yes", "Yes", "Yes", "Yes", "...
## $ card activation
                                <chr> "No", "Yes", "Yes", "Yes", "Yes", "...
## $ card_mailed
                                <chr> "Yes", "Yes", "Yes", "Yes", "Yes", ...
                                <chr> "No", "Yes", "No", "Yes", "Yes", "N...
## $ first_batch_completed
                                <chr> "Yes", "No", "Yes", "No", "Yes", "N...
## $ orientation_completed
## $ application_date
                                <date> 2018-10-01, 2018-10-01, 2018-10-01...
## $ first_batch_completed_date <date> NA, 2018-10-20, NA, 2018-10-06, 20...
## $ days_to_conversion
                                <dbl> NA, 19, NA, 5, 7, NA, 13, NA, 8, 9,...
## $ converted
                                <chr> "Failure", "Success", "Failure", "S...
```

Project Phase 3.0: Business Understanding + Business Insights

This phase is to quickly derive: A baseline conversion rate from the control. And then, compare the baseline from control to our treatment conversion rate.

3.1 ASSESS BASELINE CONVERSION RATE

Table 7: Conversion outcomes for control group

converted	applicants	rate_of_outcome
Failure	7346	0.73
Success	2678	0.27

Baseline Conversion Rate: 0.27

Let's see how the treatment did against the baseline (control group)

3.2 COMPARE CONTROL (BASELINE) AGAINST TREATMENT

Let's look at the Control group to get a sense of the baseline rate.

Table 8: Conversion Rates by Group

group	converted	applicants	conversion_rate
control	Success	2678	0.27
treatment	Success	2115	0.43

Key Takeaway: Conversion rate by treatment (0.43) saw a 60% increase agains control (0.27)

3.3 QUICK LOOK TO SEE IF CATEGORY CHANNEL WAS SAMPLED EQUALLY

Table 9: Proportions sampled by group, channel

group	channel	n	pct_channle_by_group
control	job-search-site	1765	0.18
control	shopper-referral-bonus	1332	0.13
control	social-media	2998	0.30
control	web-search-engine	3929	0.39
treatment	job-search-site	860	0.17
treatment	shopper-referral-bonus	659	0.13
treatment	social-media	1429	0.29
treatment	web-search-engine	2010	0.41

Overall, this looks like they were equally sampled. This will build confidence in results.

3.4 QUICK LOOK AT CONVERSION RATES BY CHANNEL

This is a quick look at how conversion rates vary by channel, and by experiment group.

NOTE: This is preliminary.

My concern here is that other factors could influence our conversion rate.

Table 10: Conversion Rates by Control Group

Group	Channel	ConversionRate
control	shopper-referral-bonus	0.34
control	social-media	0.32
control	web-search-engine	0.25
control	job-search-site	0.16

Table 11: Conversion Rates by Treatment Group

Group	Channel	ConversionRate
treatment	shopper-referral-bonus	0.50
treatment	web-search-engine	0.45
treatment	social-media	0.39
treatment	job-search-site	0.38

Key Takeaway: Definitely variation in conversion rates by Channel, Group.

• See job-search-site: 0.16 for control & 0.38 for treatment.

This variation indicates a more thorough investigation would help derive further insights to identify the primary drivers behind applicant conversion rates.

Project Phase 4.0: Data Understanding for Time-To-Conversion

Let's take a look at the distributions for time-to-conversion.

4.1 DOES THE TREATMENT SEE QUICKER START TIMES?

#learning_data_tbl %>% group_by(group) %>% summarize(mean_days = mean(days_to_conversion, na.rm = T))

Key Takeaway: Very Large differences between the two groups.

• We can say with confidence that initiating the background check earlier definitely leads to quicker start times.

Without doing a statistical test, I'd say these two distributions are VERY different and that they'd be significant if looked at closer.

Project Phase 5.0: Analyzing A/B Test Results

5.1 QUICK STATS TO GET SIGNIFICANCE

Everything so far points towards these results being significant (Results related to conversion rates).

I did get the counts below and use this calculator here to determine statistical significance Site: https://neilpatel.com/ab-testing-calculator/

I also used this site recomended by a friend of mine who is a product analyst

• I used this to get the sample size and look at minimum detectable effect details

Site: https://www.evanmiller.org/ab-testing/sample-size.html

```
# Get counts by group
learning_data_tbl %>% count(group)
## # A tibble: 2 x 2
     group
     <chr>>
               10024
## 1 control
## 2 treatment 4958
# Get success and failure by group
learning_data_tbl %>%
    count(group, converted)
## # A tibble: 4 x 3
     group
               converted
                             n
     <chr>
               <chr>
                         <int>
## 1 control
                          7346
               Failure
## 2 control
               Success
                          2678
                          2843
## 3 treatment Failure
## 4 treatment Success
                          2115
```

5.1 MY EXPERIENCE WITH A/B TESTING

Profesionally I've not used A/B Testing but am fascinated by scientific experimenation.

- I'd be very interested in building expertise in this area.
- And in more sophisticated methods that complement understanding these systems.

Project Phase 6.0: Craft Plots for Presentation

Partial Shopper Hiring Funnel

Successful conversion is when applicant completes their first batch (Botto

Lets Consider 100 Applicants for Simplicity

Plot shows the Cost of Initiating the Background Check under 3 different Cost Scenaric

