Re view

- 1. Flyback converter:
- \Rightarrow Energy is stored in $L_{\underline{m}}$ & it is transferred to o/p
- ⇒ Isolated Buck Boost control

$$\mathbf{V}_0 = \mathbf{V}_{\mathsf{dc}} \left(\frac{\mathbf{N}_2}{\mathbf{N}_1} \right) \frac{\mathbf{D}}{\left(1 - \mathbf{D} \right)}$$

- ⇒ Operated in discontinuous mode (flux reseting)
- ⇒ Generally airgap is provided during the fabrication of transformer
- ⇒ Multiple o/p's are possible
- ⇒ Closed loop operation is a must

Forward Converter

With non-ideal transformer

- $\Rightarrow \mu_r \neq \infty$, R \rightarrow finite
- ... magnetising current is finite.
- \Rightarrow when $\mathbf{i_2} = \mathbf{0}$, $\mathbf{i_1} \neq 0$
- ⇒ magnetising current should be continuous
- ⇒calls for a seperate winding
- ⇒should provide a path for the magnetising 'I'(similar to fly-back connection)

Close 'S'

$$\mathbf{i}_1 = \mathbf{i}_2 + \mathbf{i}_m$$

 $i_m \rightarrow magnetising current$

'V' applied to $L_m = V_{DC}$

 $\therefore i_m \uparrow$ linearly with time.

'V' induced in N_2 supplies current to load (i_2 can leave the dot)

'V' across
$$D_F = V_{DC} \frac{N_2}{N_1}$$

Right direction for i_3 is to leave the dot. \Rightarrow not possible due to D_3

OR: – 'V' induced in $N_3 = V_{DC} \frac{N_3}{N_1}$ with '•' as +ve.

∴ 'V' across
$$\mathbf{D}_3 = -\mathbf{V}_{DC} \left(1 + \frac{\mathbf{N}_3}{\mathbf{N}_1} \right)$$

Open 'S'

$$\mathbf{i}_1 = \mathbf{0}$$
 $\therefore \mathbf{i}_2 = \mathbf{0}$

i_m & i_l should be continuous ∴ i_l flows through D_F.

'V' across $D_2 =$ 'V' induced in N_2

$$\Rightarrow \frac{d\phi}{dt}$$
 is -ve \therefore all '•' are -ve

 \Rightarrow D $_3$ starts conducting providing a path for i $_m$

Peak value of
$$i_m = I_m = \frac{V_{DC}}{I_m}DT$$

Peak value in $N_3 = I_m \frac{N_1}{N_3}$

'V' applied to $N_3 = V_{DC}$ (with '•' as -ve)

- :. Induced 'V' in $N_1 = V_{DC} \frac{N_1}{N_3}$
- ∴'V' across 'S' = $V_{DC} \left(1 + \frac{N_1}{N_3} \right)$

⇒'V' induced in $N_2 = V_{DC} \frac{N_2}{N_3}$ (with '•' as -ve) V_{DC}

∴'V' rating of
$$D_2 = V_{DC} \frac{N_2}{N_3}$$

What is the value of $N_3 = ?$

$$\uparrow d\phi = \frac{V_{DC}DT}{N_{I}}$$

$$\downarrow d\phi = \frac{V_{\text{DC}}}{N_{\text{2}}} t_{\alpha}$$

equating above equation,

$$\mathbf{t}_{\mathbf{a}} = \frac{\mathbf{N}_{3}}{\mathbf{N}_{1}} \mathbf{DT}$$

For core flux to become zero,

$$t_a < (1-D)T$$

 \therefore D must be limited to D_{max} such that

$$\frac{\mathbf{N}_3}{\mathbf{N}_1}\mathbf{D}_{\max}\mathbf{T} = (1 - \mathbf{D}_{\max})\mathbf{T}$$

$$\Rightarrow$$
 $\mathbf{D}_{\text{max}} = \frac{1}{2}$ if $\mathbf{N}_3 = \mathbf{N}_1$

If
$$N_3 = N_1$$
, $D > 0.5$:

 i_m will not become zero , because

- +V_{DC} is applied for 'DT' &
- $-V_{DC}$ is applied for (1-D)T
- \Rightarrow slope is the same
- →core will saturate
- \rightarrow : For D < 0.5, discontinuous (flux) conduction

Special Cases:

- ⇒ Primary & tertiary winding form a
 - flyback converter
 - (C & R are replaced by V_{DC})
- \Rightarrow No need to connect to V_{DC} instead connect to $C \parallel R$

OR: Using 2 – winding transformer

Close 'S'

i, enters the dot

i, can leave the dot

$$\mathbf{I}_1 = \mathbf{I}_{\mathbf{m}} + \mathbf{I}_2'$$

Open 'S'

i_m & i_L should be continuous For continuity of flux, right direction for 'i' in secondary (when 'S' is opened) is to enter the dot.

- \Rightarrow Possible.
- $\Rightarrow \overline{\mathbf{i'i'}}$ in $D_F = \overline{\mathbf{i'_m}} + \overline{\mathbf{i_L}}$
- \Rightarrow But \downarrow of d ϕ is very slow
- ⇒ Next cycle core may saturate

If L_f is not present
'V₀' appears directly
across secondary

- ⇒ Affect the energy transfer
- \Rightarrow Do not allow 'V₀' to appear across 'N₂'
- \Rightarrow Use 'L_F'
- \Rightarrow i must be continuous
- \Rightarrow Use \underline{D}_{F}

⇒ Operation in the Ist quadrant only