Syntax for \mathcal{L}^{LP}

LOGIC I Benjamin Brast-McKie September 10, 2024

Object Language and Metalanguage

Object Language: \mathcal{L}^{PL} is the OBJECT LANGUAGE under study.

Metalanguage: Mathematical English is the METALANGAUGE with

which we will conduct our study.

Quotation: To talk about \mathcal{L}^{PL} we will take a quoted expression to

be the CANONICAL NAME for the expression quoted.

Use/Mention: We MENTION expressions by putting them in quotes,

whereas otherwise they are USED.

• 'Sue' is a nickname for Susanna.

• The complex sentence $A \to B'$ includes the sentence

letters 'A' and 'B'.

• 'A' belongs to \mathcal{L}^{PL} , but "'A'" and A do not.

The Expressions of $\mathcal{L}^{ t PL}$

Sentential Operators: $(\neg', \land', \lor', \rightarrow', \text{ and } \leftrightarrow')$.

• $'\sim'$, '&', ', ', ', ', and $'\equiv'$ are also sometimes used.

Punctuation: '(' and ')'.

Sentence Letter: $(A_0)', (A_1)', \ldots, (B_0)', (B_1)', \ldots, (Z_0)', (Z_1)', \ldots$

Question: How can we specify all sentence letter explicitly?

• A SENTENCE LETTER is the result of subscripting a

capital English letter with a numeral.

Corner Quotes: Let $\lceil \varphi_x \rceil$ refer to the result of concatenating φ with x.

• $\lceil \varphi_x \rceil$ is a SENTENCE LETTER for any capital letter φ

and numeral for a natural number x.

Primitive Symbols: The sentential operators, punctuation, and sentence

letters are the PRIMITIVE SYMBOLS of \mathcal{L}^{PL} .

Expressions: The EXPRESSIONS of \mathcal{L}^{PL} are defined recursively:

• The primitive symbol of \mathcal{L}^{PL} are expression of \mathcal{L}^{PL} .

• If φ and ψ are expressions of \mathcal{L}^{PL} , then so is $\lceil \varphi \psi \rceil$.

• Nothing else is an expression of \mathcal{L}^{PL} .

The Sentences of \mathcal{L}^{PL}

Uninterpretable: The expressions ' $\neg\neg\neg\neg$ ', ' B_3A_0 ', ')) \leftrightarrow ', and ' A_4 \lor ' cannot be assigned truth-values in a meaningful way.

• Compare 'MIT is in session' and ' $A_4 \wedge P_1$ '.

Well-Formed Sentences: Letting $\varphi, \psi, \chi, \dots$ be variables with expressions for values, we may define the WFSS of \mathcal{L}^{PL} as follows:

• Every sentence letter of \mathcal{L}^{PL} is a wfs of \mathcal{L}^{PL} .

• If the expressions φ and ψ are wfss of \mathcal{L}^{PL} , then:

1. $\neg \varphi \neg$ is a wff of \mathcal{L}^{PL} ;

2. $\lceil (\varphi \wedge \psi) \rceil$ is a wff of \mathcal{L}^{PL} ;

3. $\lceil (\varphi \lor \psi) \rceil$ is a wff of \mathcal{L}^{PL} ;

4. $\lceil (\varphi \to \psi) \rceil$ is a wff of \mathcal{L}^{PL} ; and

5. $\lceil (\varphi \leftrightarrow \psi) \rceil$ is a wff of \mathcal{L}^{PL} .

• Nothing else is a wff of \mathcal{L}^{PL} .

Sentential Variables: We will often restrict ' φ' , ' ψ' , ' χ' ,... to the wfs of \mathcal{L}^{PL} .

Main Operator: The MAIN OPERATOR is the last operator used in the

construction of a sentence.

Arguments: The inputs to a main operator are its ARGUMENTS.

Scope: The main operator has SCOPE over its arguments.

Metalinguistic Conventions

Subscripts: We will suppress the subscript $'_0$ ' to ease exposition.

Task: Build increasingly complex sentences from just *A*.

Naming: We will refer to the NEGAND in a NEGATION, the

CONJUNCTS in a CONJUNCTION, the DISJUNCTS in a DISJUNCTION, the ANTECEDENT and CONSEQUENT in a MATERIAL CONDITIONAL, and the ARGUMENTS

in a MATERIAL BICONDITIONAL.

Quotation: We will sometimes drop quotes and corner quotes when the intended meaning is clear from the context.

• We will only do so when this improves readability.

Punctuation: We will drop outermost parentheses for ease.

• Compare $A \wedge B$, $A \vee B \vee C$, and $A \vee B \wedge C$.

Therefore: We will use '∴' for inline arguments.

Metalinguistic: These abbreviations all happen in the metalanguage.

Truth Functionality

Interpretations: Improving on last time, an Interpretation ${\mathcal I}$ is an

assignment of truth-values to sentence letters of \mathcal{L}^{PL} .

Valuation: We may then define a VALUATION function $\mathcal{V}_{\mathcal{I}}$ which assigns truth-values to every sentence of \mathcal{L}^{PL} by way

of the following semantic clauses:

• $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{I}(\varphi)$ if φ is a sentence letter of $\mathcal{L}^{\mathtt{PL}}$.

• $\mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \text{ (i.e., } \mathcal{V}_{\mathcal{I}}(\varphi) \neq 1).$

 $\bullet \quad \mathcal{V}_{\mathcal{I}}(\phi \wedge \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\phi) = 1 \text{ and } \mathcal{V}_{\mathcal{I}}(\psi) = 1.$

• $\mathcal{V}_{\mathcal{I}}(\varphi \lor \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 1 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$

• $\mathcal{V}_{\mathcal{I}}(\varphi \to \psi) = 1$ iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 0$ or $\mathcal{V}_{\mathcal{I}}(\psi) = 1$ (or both).

• $\mathcal{V}_{\mathcal{I}}(\varphi \leftrightarrow \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\psi).$

Observe: These clauses resemble the composition rules for \mathcal{L}^{PL} .

Homophonic Semantics: The clauses for \neg , \land , and \lor use analogous operators

in the metalanguage, but not so for \rightarrow and \leftrightarrow .

Truth Tables: Use the semantics to fill out the TRUTH TABLES below:

φ	$ \neg \varphi$	φ	ψ	$\varphi \wedge \psi$	$\varphi \lor \psi$	$\phi ightarrow \psi$	$\varphi \leftrightarrow \psi$
1	0	1	1	1	1	1	1
0	1	1	0	0	1	0	0
		0	1	0	1	1	0
		0	0	0	1 0	1	1

Truth Functions: The sentential operators express truth-functions, and

so are often called TRUTH-FUNCTIONAL OPERATORS.

Question: How many unary/binary truth-functions are there?

Adequacy: Given these limitations, what should we hope to be

able to adequately regiment in \mathcal{L}^{PL} ?

Logical Truths: φ is a LOGICAL TRUTH of \mathcal{L}^{PL} iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ for all \mathcal{I} .