Teorema degli zeri

Alessio Serraino

March 1, 2016

Teorema: (degli zeri) Sia $f: [a, b] \to \mathbb{R}$, continua in [a, b].

 $\overline{\text{E sia } f(a)} \cdot f(b) < 0$, (ovvero la funzione assume valori di segno opposto agli estremi dell'intervallo)

Allora $\exists c \in (a, b) : f(c) = 0$. Inoltre se f è monotona il punto c è unico.

Dimostrazione: (Nel caso particolare f(a) > 0, f(b) < 0, l'altro caso si dimostra in modo analogo)

Costruiamo le sequenze $\{a_n\},\{b_n\},\{c_n\}$ come segue:

$$a_0 = a, b_0 = b$$

$$c_n = \frac{a_n + b_n}{2}$$

$$se f(c_n) > 0$$

$$a_{n+1} = c_n$$

$$b_{n+1} = b_n$$

$$se f(c_n) < 0$$

$$a_{n+1} = a_n$$

$$b_{n+1} = c_n$$

altrimenti

siamo fortunati ed il teorema è dimostrato

L'idea è, partendo da [a,b], prendere il suo punto medio e dividere in 2 l'intervallo condiderato, quindi dei 2 nuovi intervalli considerare solo quello che rispetta ancora la condizione $f(a) \cdot f(b) < 0$, e ripetere il processo, finchè uno dei punti medi trovati non è uno zero (ed in quel caso il teorema è dimostrato), oppure si itera all'infinito.

Se non si è trovato nessuno zero abbiamo costruto le sequenze $\{a_n\},\{b_n\}$, con le seguenti proprietà, vere per ogni n:

- 1. $\{a_n\}$ è crescente, $\{b_n\}$ è decrescente. È sufficiente guardare come sono state costruite $(a_n \le c_n \le b_n \ \forall n)$
- 2. $a_n \leq b_n$, il che implica che $\{a_n\}$, $\{b_n\}$ sono limitate

nelle ipotesi che $f(a) \neq 0, f(b) \neq 0$.

- 3. $b_n a_n = \frac{b-a}{2^n}$, perchè dopo ogni iterazione la lunghezza dell'intervallo si dimezza.
- 4. $f(a_n) \cdot f(b_n) < 0$, perchè ogni volta si sceglie l'intervallo con questa proprietà.

Per il teorema di monotonia $a_n \to a \in [a,b], b_n \to b \in [a,b]$ quando $n \to +\infty$. Ma $a_n - b_n \to 0$, quindi, per i teoremi sull'algebra dei limiti b = a = l.

Consideriamo ora $\lim_{n\to+\infty} f(a_n) \cdot f(b_n)$, poichè f è continua il limite vale: $f(a) \cdot f(b) = f(l) \cdot f(l) = f^2(l)$. (si noti che abbiamo usato $a_n \to a$, $b_n \to b$). Ma la successione $f(a_n) \cdot f(b_n) < 0$, quindi per il teorema di permanenza del segno la disuguaglianza si conserva anche passando al limite, tuttavia diventa una disuguaglianza larga, ovvero $f^2(l) \leq 0$, la cui unica soluzione è evidentemente f(l) = 0. Quindi abbiamo dimostrato che esiste un punto, l, tale per cui la f calcolata in quel punto vale 0. Si noti che $l \in (a, b)$, in quanto si è supposto