18AKSOA/19AKSPG – CONTROLLI **AUTOMATICI**

(esame del 21/07/2017)

1) Si consideri il sistema meccanico rappresentato dalla seguente equazione differenziale:

$$m\ddot{q}(t)+c\dot{q}(t)+kq(t)=f(t)$$

Considerando come ingresso la forza f(t) a gradino unitario e come uscita la velocità $\dot{q}(t)$, determinare la trasformata dell'uscita *Y(s)*

A)
$$Y(s) = \frac{1}{m s^2 + c s + k}$$

B)
$$Y(s) = \frac{s}{ms^2 + cs + k}$$

A)
$$Y(s) = \frac{1}{ms^2 + cs + k}$$

B) $Y(s) = \frac{s}{ms^2 + cs + k}$
C) $Y(s) = \frac{1}{ms^2 + cs + k}$
D) $Y(s) = \frac{s}{s^2 + cs + k}$

D)
$$Y(s) = \frac{s}{s^2 + c s + k}$$

2) Un sistema dinamico, lineare e tempo invariante, con ingresso u(t) e uscita y(t) è descritto dalla seguente equazione differenziale

$$\ddot{y}(t) + 8 \dot{y}(t) + 15 y(t) = u(t)$$

supponendo di alimentare il sistema con una sinusoide ad ampiezza unitaria, determinare quali delle seguenti funzioni è rappresentativa della sua risposta a regime:

A)
$$y(t) = K_1 e^{-3t} \sin(\omega t + \varphi_1) + K_2$$
 B) $y(t) = K_1 \sin(\omega t + \varphi_1)$
C) $y(t) = K_1 e^{-3t} \sin(\omega t + \varphi_1) + K_2$ D) $y(t) = K_1 e^{-8t} \sin(\omega t + \varphi_1)$

B)
$$y(t) = K_1 \sin(\omega t + \varphi_1)$$

C)
$$y(t) = K_1 e^{-3t} \sin(\omega t + \varphi_1) + K_2$$

D)
$$y(t) = K_1 e^{-8t} \sin(\omega t + \varphi_1)$$

 ${f 3}$) Dato il sistema a tempo discreto descritto dalle seguenti equazioni

$$x_1(k+1) = 3 x_2(k) + 2 u_1(k) x_2(k+1) = 0.7 x_1(k) + 2 u_2(k) y(k) = x_1(k) + x_2(k)$$

dire se il sistema si può classificare come:

- A) lineare, tempo invariante, SISO
- B) non lineare, tempo invariante, MISO
- C) lineare, tempo invariante, MISO
- D) non lineare, tempo variante, SISO

4) Un sistema dinamico tempo invariante a tempo continuo in variabili di stato è descritto dalle seguenti matrici:

$$A = \begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 1.1892 \\ 0 & 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}, C = \begin{bmatrix} 2.1022 & 2.1022 & 0 \end{bmatrix}, D = 0$$

Dire se il sistema è:

- A) marginalmente stabile
- C) instabile

- B) asintoticamente stabile
- D) non si può dire nulla sulla stabilità del sistema

 $\mathbf{5}$) Dato un sistema dinamico, lineare e tempo invariante descritto dalla seguente funzione di trasferimento

$$G(s) = \frac{s+1}{s^2 + p \, s + 0.25}$$

Determinare il valore del parametro p affinché la risposta a un gradino di ampiezza unitaria sia priva di oscillazioni.

A) p=0.5

- B) per nessun valore di *p*
- C) per qualunque valore di *p*
- D) p=1
- $\mathbf{6}$) Dato un sistema dinamico, lineare e tempo invariante descritto dalla seguente funzione di trasferimento:

$$G(s) = \frac{K}{s+\lambda}$$

la cui risposta al gradino unitario è rappresentata nella figura seguente

Determinare i parametri K e λ della funzione di trasferimento

- A) K = 2, $\lambda = 0.5 \text{ rad/s}$
- B) K = 4, $\lambda = -2 \text{ rad/s}$
- C) K = 4, $\lambda = 2 \text{ rad/s}$
- D) K = 2, $\lambda = -0.5 \text{ rad/s}$

7) Dato un sistema dinamico, lineare e tempo invariante descritto dal seguente diagramma di Bode:

La risposta di tale sistema ad un ingresso sinusoidale di ampiezza unitaria e frequenza di 0.4 rad/s a regime risulta caratterizzata come segue

- A) Sinusoide a frequenza inferiore a 0.4 rad/s e ampiezza unitaria
- B) Sinusoide a frequenza pari a 0.4 rad/s e ampiezza unitaria
- C) Sinusoide a frequenza pari a 0.4 rad/s e ampiezza superiore a 1

8) Dato un sistema dinamico, lineare e tempo invariante descritto dalla seguente funzione di trasferimento:

$$G(s) = \frac{s^2 + (p-3)s + 5}{s^3 + 10s^2 + 18s + 2}$$

Determinare per quali valori di *p* il sistema risulta stabile:

- A) p > 3
- B) p < 3
- C) per nessun valore di *p*
- D) per qualunque valore di *p*

9) Un sistema dinamico continuo lineare e tempo invariante è caratterizzato dalla seguente matrice di stato:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -3 & p-2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -4 & -2 \end{bmatrix}$$

Il sistema è instabile per i seguenti valori di *p*

- A) nessun valore
- B) qualunque valore C) p < 2 D) p > 2

10) Dato il sistema a tempo continuo descritto dalle seguenti matrici di stato:

$$A = \begin{bmatrix} -10.4 & -2 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

nell'ottica di voler progettare un regolatore dinamico in grado di posizionare le costanti di tempo in catena chiusa pari a 0.05 e 0.07 s con un osservatore degli stati 5 volte più veloce, dire quali delle seguenti affermazioni è vera:

- A) non è possibile progettare il regolatore
- B) è possibile progettare il regolatore, ma gli autovalori in catena chiusa non potranno essere posizionati ai valori richiesti
- C) è possibile progettare il regolatore con K = [11.9470.42] e L = [2731161]
- D) è possibile progettare il regolatore con L = [11.9470.42]' e K = [2731161]

11) Dato un sistema descritto dalla funzione di trasferimento
$$F(s) = \frac{5000}{(s+1)^2 \left(s^2 + 10s + 25\right) \left(s^2 + 16s + 100\right)}$$

progettare un controllore PID "reale" con il metodo di Ziegler-Nichols in catena aperta (si scelga N=20 nella realizzazione del polo di chiusura).

IMPORTANTE: - si realizzi il controllo con il PID nella struttura "modificata" (retroazioni P e D dall'uscita);

- indicare il metodo utilizzato per determinate la costante di tempo:

a = metodo del 63% del valore asintotico;

 $\mathbf{b} = \text{metodo del flesso}$.

Della catena chiusa così ottenuta valutare:

- il tempo di salita 10%÷90%, tr, della risposta al gradino unitario
- la sovraelongazione ŝ (%)
- la banda passante ω_B
- OPZIONALE: ω_c e i margini di stabilità m_G e m_{φ} (della catena aperta).
- Progettare il compensatore C(z) per il seguente sistema di controllo:

Dati

$$- F(s) = \frac{8}{9} \cdot \frac{s+15}{s(s+1)(s^2+s+100)}; \quad d(t) = +6t+3t^2 \text{ (rampa e parabola)}$$

- ADC e DAC sono caratterizzati dal medesimo numero di bit e dalla medesima dinamica in tensione;
- il DAC utilizza uno zoh.

Specifiche relative alla catena chiusa (da verificare con il compensatore C(z) a tempo discreto!)

- 1. errore stazionario indotto dal disturbo d(t), $|e_d| \le 45$;
- 2. errore stazionario di inseguimento del gradino unitario, $|e_g| = 0$;
- 3. errore stazionario di inseguimento alla rampa unitaria, $|e_r| = 0$;
- 4. tempo di salita, $t_r = 4 \pm 5\%$ s;
- 5. sovraelongazione, $\hat{s} \le 30 \%$.

Riportare il passo di campionamento T_s scelto, la fdt del compensatore C(s) nella forma qui di seguito suggerita e il metodo di discretizzazione di C(s).

$$C(s) = \frac{K_c}{s^h} \cdot \frac{(1 + \tau_{z1} s) \cdot \dots \cdot }{(1 + \tau_{s1} s) \cdot \dots \cdot }$$

Scrivere una breve relazione relativa al progetto. Riportare inoltre i valori effettivamente ottenuti (con C(z)!) per le grandezze elencate nella Tabella 1.

PAGINA DELLE RISPOSTE

cognome (in stampatello)									nome						
problema	1	1 2		3		_	T	(7	0 0		10		10	
problema	1	1 2		3	4	5		6	/	8	9	9		10	
risposta															
		Į.		ļ.				J.	Į.			1			
problema 11	metodo	K _F	$\theta_{\sf F}$	$ au_{ m F}$	K _p	T _I	T_{D}	t_{r}	ŝ _‰	ωв	m_{G}	mφ		ως	
		+ -	•		r			(10-90)%	70			φ			
	problema 12														
Breve relazi	Breve relazione (per es. $ \cdot $ e segno di K_c , ω_c desiderata, m_{ϕ} desiderato, ecc):														
C(s)										metodo di discre- tizzazione di C(s)				$T_{\rm s}$	
•											azione ui c	(3)			
	T		Т			1			1				ı		
puls. c		margine/i di fase m _φ	e/i	margine/i di guad. m_G	tempo di salita t _r	sovraelon- gazione $\hat{s}_{\%}$		banda passante ω _B	picco di risonanza M _{r,dB}	errore staz. indotto da d(t) e _d		err. s		,,	
crossov $\omega_{\rm c}$	er											para e		u _{max}	
		π	+		*1	- %	\dashv	ωв			1-41		rl		

Tabella 1: valori effettivamente ottenuti con C(z)

 $\text{N.B: } \left|u_{\scriptscriptstyle max}\right| \text{ rappresenta il valore massimo in modulo del comando } u(\cdot) \text{ indotto da un riferimento } r \text{ a gradino unitario.}$