Langevin Dynamics for sampling and global optimization

Kirill Neklyudov

Goals of this talk

- Introduction to the Langevin dynamics
- Derive basics (1st half)
- Outline some important results (2nd half)
- Recommend some literature

Langevin Equation

Ito Stochastic Differential Equation (SDE):

$$dX(t) = -\nabla U(X(t))dt + \sigma dBt$$
Force Random fluctuations

Discrete approximation:

$$X_{t+1} - X_t = -dt \nabla U(X_t) + \sigma \sqrt{dt} \mathcal{N}(0, 1)$$

$$W_{t+1} - W_t = -\varepsilon \nabla \mathcal{L}(W_t) + \sigma \sqrt{\varepsilon} \mathcal{N}(0, 1)$$

1-d simulation

Langevin equation

Fokker-Planck equation

Derivation of the Fokker-Planck equation

Langevin equation:

$$dX(t) = -\nabla U(X(t))dt + \sigma dBt$$

Increments of the Brownian motion:

$$dB_t \sim \mathcal{N}(0, dt \cdot I)$$

Consider a small increment of X(t):

$$x - x' = -dt\nabla U(x') + \mathcal{N}(0, \sigma^2 dt)$$

$$x \sim \mathcal{N}\left(x' - \nabla U(x')dt, \sigma^2 dt\right)$$

Derivation of the Fokker-Planck equation

Density of particle distribution:
$$p(x,t) = \int dx' p(x,t|x',t-dt) p(x',t-dt) \qquad \qquad y$$

$$p(x,t|x',t-dt) = \frac{1}{(2\pi\sigma^2 dt)^{n/2}} \exp\left(\frac{-(x'-x-\nabla U(x')dt)^2}{2\sigma^2 dt}\right)$$

Using the change of variables formula, we obtain:

$$p(x,t) = \int dy \left| \frac{\partial x'}{\partial y} \right| \mathcal{N}(y|0, \sigma^2 dt \cdot I) p(x'(y), t - dt)$$

The change of variables:

$$y = x' - x - \nabla U(x')dt$$

$$y = x' - x - \nabla U(x')dt \qquad \left| \frac{\partial x'}{\partial y} \right| = ? \qquad x'(y) = ?$$

$$y = x' - x - \nabla U(x')dt \qquad \left| \frac{\partial x}{\partial y} \right| = ? \qquad x'(y) = ?$$

$$y = x' - x - \left(\nabla U(x) + \frac{\partial \nabla U(x)}{\partial x} (x' - x) dt + o(x' - x) \right) dt$$

$$\left(I - \frac{\partial \nabla U(x)}{\partial x}dt\right)x' = y + x + \nabla U(x)dt - \frac{\partial \nabla U(x)}{\partial x}xdt + o(dt)$$

$$x' = \left(I - \frac{\partial \nabla U(x)}{\partial x}dt\right)^{-1} \left(y + x + \nabla U(x)dt - \frac{\partial \nabla U(x)}{\partial x}xdt + o(dt)\right)$$

$$x' = \left(I - \frac{\partial \nabla U(x)}{\partial x}dt\right)^{-1} \left(y + x + \nabla U(x)dt - \frac{\partial \nabla U(x)}{\partial x}xdt + o(dt)\right)$$

$$= \left(I + \frac{\partial \nabla U(x)}{\partial x}dt\right) + o(dt) \left(y + x + \nabla U(x)dt - \frac{\partial \nabla U(x)}{\partial x}xdt + o(dt)\right)$$

$$= y + x + \frac{1}{2} \frac{A}{2} \frac{A}{2$$

From the previous slide:

$$x' = x + y + \nabla U(x)dt + \frac{\partial \nabla U(x)}{\partial x}ydt + o(dt)$$

 $x - x' = -dt \nabla U(x') + \mathcal{N}(0, \sigma^2 dt)$

$$ydt = (x' - x - \nabla U(x)dt)dt$$

$$= (x - x - \nabla U(x)a\iota)a\iota$$

$$\sqrt{dt}\mathcal{N}(0,\sigma^2) = o(dt)$$

 $ydt = dt\sqrt{dt}\mathcal{N}(0,\sigma^2) = o(dt)$ Note that

$$y=\sqrt{dt}\mathcal{N}(0,\sigma^2)
eq o(dt)$$
 since $\lim_{dt o 0} rac{\sqrt{dt}\mathcal{N}(0,\sigma^2)}{dt} = \infty$

Equation for the increment (Langevin equation)

Finally!

$$x' = x + y + \nabla U(x)dt + o(dt)$$

With a little more efforts (homework):

$$\left| \frac{\partial x'}{\partial y} \right| = 1 + \text{div} \nabla U(x) dt + o(dt)$$

Reminder:
$$\operatorname{div} \overrightarrow{f}(\overrightarrow{x}) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \ldots + \frac{\partial f_n}{\partial x_n}$$

Derivation of the Fokker-Planck equation

$$p(x,t) = \int dy \left| \frac{\partial x'}{\partial y} \middle| \mathcal{N}(y|0,\sigma^2 dt \cdot I) p(x'(y),t-dt) \right| \text{ Increment of the density}$$

$$x' = x + y + \nabla U(x) dt + o(dt)$$

$$\left| \frac{\partial x'}{\partial y} \middle| = 1 + \operatorname{div} \nabla U(x) dt + o(dt) \right| \text{ Change of variables}$$

$$p(x,t) = (1 + \operatorname{div} \nabla U(x) dt) \mathbb{E}_y \left[p(y+x+\nabla U(x) dt,t-dt) \right]$$

$$y \sim \mathcal{N}(0,\sigma^2 dt \cdot I)$$

Derivation of the Fokker-Planck equation

$$\mathbb{E}_y \left[p(y+x+\nabla U(x)dt, t-dt) \right] = \mathbb{E}_y \left[$$

Oth order: p(x,t)+

1st order:
$$+\nabla_x p(x,t)(y+\nabla U(x)dt)+\frac{\partial}{\partial t}p(x,t)(-dt)+$$

2nd order:
$$+\frac{1}{2}(y+\nabla U(x)dt)^T\frac{\partial^2 p(x,t)}{\partial x^2}(y+\nabla U(x)dt)$$

Taking the expectation

Oth order:
$$p(x,t)+$$

$$\mathbb{E}_{u}p(x,t) = p(x,t)$$

1st order:
$$+\nabla_x p(x,t)(y+\nabla U(x)dt)+\frac{\partial}{\partial t}p(x,t)(-dt)+$$

$$\mathbb{E}_y \left[\nabla_x p(x,t)^T (y + \nabla U(x) dt) \right] = \nabla_x p(x,t)^T \mathbb{E}_y [y] + dt \nabla_x p(x,t)^T \nabla U(x)$$

$$y \sim \mathcal{N}(0, \sigma^2 dt)$$

$$g \sim \mathcal{N}(0, \sigma \cdot at)$$

$$= 0 + dt \nabla_x p(x, t)^T \nabla U(x)$$

$$\mathbb{E}_y \left| dt \frac{\partial}{\partial t} p(x, t) \right| = dt \frac{\partial}{\partial t} p(x, t)$$

Taking the expectation (2nd order)

$$\mathbb{E}_{y} \left[(y + \nabla U(x)dt)^{T} \frac{\partial^{2} p(x,t)}{\partial x^{2}} (y + \nabla U(x)dt) \right] =$$

$$= \mathbb{E}_{y} \left[y^{T} \frac{\partial^{2} p(x,t)}{\partial x^{2}} y + 2dt \nabla U(x)^{T} \frac{\partial^{2} p(x,t)}{\partial x^{2}} y + dt^{2} \nabla U(x)^{T} \frac{\partial^{2} p(x,t)}{\partial x^{2}} \nabla U(x) \right] =$$

$$= \mathbb{E}_{y} \left[\sum_{i,j} \left(\frac{\partial^{2} p(x,t)}{\partial x^{2}} \right)_{ij} y_{i} y_{j} \right] + 2dt \nabla U(x)^{T} \frac{\partial^{2} p(x,t)}{\partial x^{2}} \mathbb{E}_{y} y + o(dt) =$$

$$= \underbrace{\sum_{i=j}^{j} \left(\frac{\partial^2 p(x,t)}{\partial x^2}\right)}_{i} \underbrace{\mathbb{E}_y \left[y_i^2\right]}_{i} + \sum_{i\neq j} \left(\frac{\partial^2 p(x,t)}{\partial x^2}\right)_{ij} \underbrace{\mathbb{E}_y \left[y_i y_j\right]}_{i} + o(dt) = \underbrace{\sum_{i=j}^{j} \left(\frac{\partial^2 p(x,t)}{\partial x^2}\right)}_{ij} = 0$$

Derivation of the Fokker-Planck equation

$$p(x,t) = (1+\operatorname{div}\nabla U(x)dt)\mathbb{E}_y\left[p(y+x+\nabla U(x)dt,t-dt)\right] \qquad \text{Increment of the density}$$

$$p(x,t) = 1+\operatorname{div}\nabla U(x)dt \left(p(x,t)+dt\nabla_x p(x,t)^T\nabla U(x)-\frac{\partial}{\partial t}p(x,t)+\frac{1}{2}\sigma^2dt\Delta p(x,t)+o(dt)\right) \qquad \text{Taylor series}$$

$$-dt\frac{\partial}{\partial t}p(x,t)+\frac{1}{2}\sigma^2dt\Delta p(x,t)+o(dt)$$

$$+p(x,t)\operatorname{div}\nabla U(x)dt+o(dt)$$

$$\frac{\partial}{\partial t}p(x,t) = \nabla_x p(x,t)^T \nabla U(x) + p(x,t) \operatorname{div} \nabla U(x) + \frac{1}{2}\sigma^2 \Delta p(x,t) + \frac{o(dt)}{dt}$$

5 min break

Fokker-Planck equation

$$\frac{\partial}{\partial t}p(x,t) = \nabla_x p(x,t)^T \nabla U(x) + p(x,t) \operatorname{div} \nabla U(x) + \frac{1}{2}\sigma^2 \Delta p(x,t)$$

Stationary distribution of the Langevin dynamics

$$\frac{\partial}{\partial t}p(x,t) = \nabla_x p(x,t)^T \nabla U(x) + p(x,t) \operatorname{div} \nabla U(x) + \frac{1}{2}\sigma^2 \Delta p(x,t)$$

 $p(x,t) = \widehat{p}(x)$ (density does not change anymore)

Let
$$p_G(x) = \frac{1}{Z} \exp\left(-\frac{U(x)}{T}\right)$$
, $Z = \int dx \exp\left(-\frac{U(x)}{T}\right)$ Gibbs distribution

With a little efforts (homework), we obtain:

$$0 = \nabla \widehat{p}(x)^T \nabla U(x) + \widehat{p}(x) \operatorname{div} \nabla U(x) + \frac{1}{2} \sigma^2 \Delta \widehat{p}(x) \text{ when } T = \frac{\sigma^2}{2}$$

Sampling via the Langevin dynamics

$$dX(t) = -\nabla U(X(t))dt + \sigma dBt$$
 Langevin equation

Particles have the stationary distribution:

$$p_G(x) = rac{1}{Z} \expigg(-rac{2U(x)}{\sigma^2}igg), \quad Z = \int dx \expigg(-rac{2U(x)}{\sigma^2}igg)$$
 Gibbs distribution

We want to sample from $p(x) = \frac{\widehat{p}(x)}{Z'}$

$$U(x) = -\log p(x), \ \sigma = \sqrt{2}$$

$$p_G(x) = \frac{1}{Z} \exp\left(-\frac{-2\log p(x)}{2}\right) = p(x), \quad Z = \int dx \exp(\log p(x)) = 1$$

Note!
$$\nabla U(x) = -\nabla \log p(x) = -\nabla \log \widehat{p}(x) - \nabla \log Z'$$

Sampling via the Langevin dynamics

Stochastic Differential Equation for sampling:

$$dX(t) = \nabla \log p(X(t))dt + \sqrt{2}dB_t$$

Discrete approximation:

$$X_{t+1} = X_t + dt\nabla \log p(X_t) + \mathcal{N}(0, 2dt)$$

More popular way:

$$X_{t+1} = X_t + \frac{\varepsilon}{2} \nabla \log p(X_t) + \mathcal{N}(0, \varepsilon)$$

$$X_t \sim p(x), \quad \forall \ t > t_{\infty}$$

Langevin dynamics for the Bayesian inference

Predictive distribution

$$p(y|D_{ ext{train}}) = \mathbb{E}_{p(\theta|D_{ ext{train}})} p(y|\theta) \simeq rac{1}{K} \sum_{i=1}^{K} p(y|\theta_i), \quad \theta_i \sim p(\theta|D_{ ext{train}})$$

$$d\theta(t) = \nabla \log p(\theta(t)|D_{\text{train}})dt + \sqrt{2}dB_t$$

$$\theta_{t+1} = \theta_t + \frac{\varepsilon}{2}\nabla \log p(\theta_t|D_{\text{train}}) + \mathcal{N}(0,\varepsilon)$$

We need samples

$$\theta_i \sim p(\theta|D_{\mathrm{tra}})$$

Langevin equation

Discrete approximation

$$\theta_{t+1} = \theta_t + \frac{\varepsilon}{2} \nabla_{\theta} \left(\sum_{i=1}^{N} \log p(\theta_t | (x_i, y_i)) + \log p(\theta_t) \right) + \mathcal{N}(0, \varepsilon)$$

$$\theta_{t+1} = \theta_t + \frac{\varepsilon}{2} \nabla_{\theta} \left(\frac{N}{B} \sum_{k=1}^{B} \log p(\theta_t | (x_{i_k}, y_{i_k})) + \log p(\theta_t) \right) + \mathcal{N}(0, \varepsilon)$$

Borkar, Mitter, 1999

Consider a SDF:

$$dX(t) = h(X(t))dt + \sigma dBt$$

Stationary distribution

$$X(t) \sim p_{\sigma}(x), \quad t > t_{\infty}$$

Discrete approximation:

$$X_{k+1} = X_k + \varepsilon(h(X_k) + M_k) + \mathcal{N}(0, \sigma^2 \varepsilon) \quad X_k \sim \widehat{p}_{\sigma}(x), \quad k > k_{\infty}$$

$$X_k \sim \widehat{p}_{\sigma}(x), \quad k > k_{\infty}$$

Stationary distribution

 $\mathbb{E}M_k=0, \ \forall k$

Theorem

$$\forall \delta > 0, \exists \varepsilon : \mathrm{KL}(p_{\sigma}(x)||\widehat{p}_{\sigma}(x)) < \delta$$

Sketch of the proof

$$\widetilde{X}(t) = X(0) + \int_{0}^{t} \left(h(\widetilde{X}(\lfloor s \rfloor_{\varepsilon}) + \xi_{s} \right) ds + \sigma \widetilde{B}(t)$$

$$\lfloor s \rfloor_{\varepsilon} = k\varepsilon, \text{ if } s \in [k\varepsilon, (k+1)\varepsilon)$$

$$\xi_{s} = M_{k}, \text{ if } s \in [k\varepsilon, (k+1)\varepsilon)$$

$$\widetilde{B}((k+1)\varepsilon) - \widetilde{B}(k\varepsilon) = \mathcal{N}(0,\varepsilon)$$

$$\mathbf{Lemma}$$

$$\forall t \ \mathbb{E} \left[\|X(t) - \widetilde{X}(t)\|^{2} \right] \to 0, \text{ as } \varepsilon \to 0$$

$$\mathcal{E}(\mathsf{k-1}) \qquad \mathcal{E}(\mathsf{k} + \varepsilon)$$

What happened to the noise?

$$dX(t) = h(X(t))dt + \sigma dBt$$
 Original dynamics

$$X(t) = X(0) + \int_0^t h(X(s)) ds + \sigma B(t)$$
 The same but integrated

$$\widetilde{X}(t) = X(0) + \int_0^t \left(h(\widetilde{X}(\lfloor s \rfloor_{arepsilon}) + \xi_s
ight) ds + \sigma \widetilde{B}(t)$$
 Our approximation

Free speed-up?

Lemma says
$$X(t) = \widetilde{X}(t)$$
, when $\varepsilon \to 0$

What happened to the noise?

Computational efforts are hidden here

$$X(t) = \widetilde{X}(t), \text{ when } \varepsilon \to 0$$

Sketch of the proof

Stationary distribution

Stationary distribution

$$X(t) \sim p_{\sigma}(x), \quad t > t_{\infty}$$

$$X(t) \sim p_{\sigma}(x), \quad t > t_{\infty} \quad X_k \sim \widehat{p}_{\sigma}(x), \quad k > k_{\infty}$$

Lemma 1

$$\forall t \ \mathbb{E}\left[\|X(t) - \widetilde{X}(t)\|^2\right] \to 0, \text{ as } \varepsilon \to 0$$

Lemma 2

$$X(t) \sim p(x,t)$$

 $\mathrm{KL}(p_{\sigma}(x)||p(x,t))$ is strictly decreasing in t

Theorem

$$\forall \delta > 0, \exists \varepsilon : \mathrm{KL}(p_{\sigma}(x)||\widehat{p}_{\sigma}(x)) < \delta$$

Global optimization

Temperature annealing

$$dX(t) = -\nabla U(X(t))dt + \sigma dBt$$
 Langevin equation

Particles have the stationary distribution:

$$p_T(x) = rac{1}{Z} \exp{\left(-rac{U(x)}{T}
ight)}, \quad Z = \int dx \exp{\left(-rac{U(x)}{T}
ight)} \quad ext{Gibbs distribution} \quad T = rac{\sigma^2}{2}$$

$$dX(t) = -\nabla U(X(t))dt + \sqrt{2T}dB_t$$

$$p_T(x) = \exp\left(-\frac{U(x)}{T}\right) \xrightarrow{\mathcal{D}} \pi(x)$$

Annealing example

DIFFUSION FOR GLOBAL OPTIMIZATION IN \mathbb{R}^{n*}

TZUU-SHUH CHIANG†, CHII-RUEY HWANG† AND SHUENN-JYI SHEU†

$$dX(t) = -
abla U(X(t))dt + \sqrt{2T(t)}dB_t$$
 Langevin equation

???

$$X(t) \sim p(x,t)$$
 Distribution of particles

$$p_T(x) = \exp\left(-\frac{U(x)}{T}\right) \xrightarrow{\mathcal{D}} \pi(x)$$

Theorem:

Annealing schedule

$$T(t) = \frac{c}{\log t}$$

$$p(x,t) \xrightarrow[t \to \infty]{P} \pi(x)$$

RECURSIVE STOCHASTIC ALGORITHMS FOR GLOBAL OPTIMIZATION IN \mathbb{R}^{d*}

SAUL B. GELFAND† AND SANJOY K. MITTER‡

$$X_{k+1} = X_k - \varepsilon_k(\nabla U(X_k) + M_k) + \sqrt{2T_k}\mathcal{N}(0,1) \qquad \mathbb{E}M_k = 0, \quad \forall k$$

$$X_k \sim p(x,k)$$
 Distribution of particles $p_T(x) = \exp\left(-rac{U(x)}{T}
ight) rac{\mathcal{D}}{T
ightarrow 0} \pi(x)$

Theorem:

Annealing schedule

$$\varepsilon_k = \frac{c_1}{k}$$
 $T_k = \frac{c_2}{k \log \log k}$ $p(x, k) \xrightarrow{P} \pi(x)$

Non-Convex Learning via Stochastic Gradient Langevin Dynamics: A Nonasymptotic Analysis

Maxim Raginsky*

Alexander Rakhlin[†]

Discretization error

Matus Telgarsky[‡]

Continuous process

Stationary distribution

Discrete approximation

 $p_T(x) = \frac{1}{Z} \exp\left(-\frac{U(x)}{T}\right)$ **Convergence speed**

 $X(t) \sim p(x,t)$ $X_k \sim p(x,k)$

 $W_2(p(x,k), p_T(x)) = W_2(p(x,k), p(x,t)) + W_2(p(x,t), p_T(x))$

$$W_2\left(p(x,k), p_T(x)\right) = O\left((C + \varepsilon^{1/4})\varepsilon k\right) + O\left(\exp(-\varepsilon k)\right)$$

Further reading

C.W. Gardiner

Handbook of Stochastic Methods

for Physics, Chemistry and the Natural Sciences

Second Edition With 29 Figures

Bernt Øksendal

Stochastic Differential Equations

An Introduction with Applications Fifth Edition, Corrected Printing Springer-Verlag Heidelberg New York

Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest

The end