EVALUATING MODELL FIT: ROC-AUC

Joseph Nelson, Data Science Immersive

AGENDA

- Logistic Regression Quick Review
- Confusion Matrix
- Sensitivity & Specificity Tradeoff
- AUC and ROC Graphs
- Coding Implementation

QUICK REVIEW: LOGISTIC REGRESSION

- Logistic regression is a modeling tactic where our dependent variable is bound by [0,1] used for class predictions
- If a value exceeds some threshold, we can say the outputted response is of class
 =1, or of class =0 if we're below some threshold

The Logistic Function

- A confusion matrix is a table of how we plot the output of our classifier
- How many classes are there?
- How many patients?
- How many times is a disease predicted?
- How many patients actually have the disease?

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

- A confusion matrix is a table of how we plot the output of our classifier
- True Positives
- True Negatives
- False Positives
- False Negatives
- Accuracy: Overall, how often is this correct?
- Misclassification: Overall, how often is this wrong?

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

- Sensitivity: when actual value is positive, how often is our prediction correct?
- ▶ (True Positive/Recall)
- Specificity: when actual value is negative, how often is our prediction correct?
- False Positive Rate: When actual value is negative, how often is our prediction wrong?

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Probability density function for 'true' and 'false' cases of logistic regression

AUC AND ROC CURVES

AUC = curve created by Sensitivity versus Specificity

- Sensitivity and Specificity move in opposite directions – but there is an optimum value to be found
- Sensitivity: TP/ (TP+FN)
- Area under the curve plotting the sensitivity and specificity against one another yields the strength of our classifier (we want to bring this value to one)
 - Specificity: TN/(TN+FP)

 The most popular AUC is the Receiver Operating Characteristic (ROC) Curve

Area under the curve shows how far you are from the baseline

baseline AUC = 0.5

Perfect AUC = 1.0

- We plot Sensitivity vs 1-Specificity so that the two move in the same direction
- The ROC curve compares the true positive rate against the false positive rate. It is unaffected by the distribution of class labels since it is only comparing the correct vs. incorrect label assignments for one class.

Threshold sets where you land on this curve

AUC AND ROC CURVES

ROC AUC used in machine learning to compare models: how well can your model seperate examples and create a threshold?

Area under the curve shows how far you are from the baseline

baseline AUC = 0.5

Perfect AUC = 1.0

