Sprawozdanie - Laboratorium 6

Wyznaczanie zer wielomianu metodą siecznych

Zuzanna Grzesik

8 kwietnia 2020

1 Wstęp teoretyczny

1.1 Metoda Regula Falsi

Jest to metoda, która umożliwia znalezienie pierwiastków funkcji nieliniowej. Nazwa ta oznacza "fałszywą linię prostą/regułę", ponieważ metoda ta wykorzstuje fałszywe założenie o lokalnej liniowości funkcji. Dodatkowo należy również założyć, że:

- ullet w przedziałe [a,b] funkcja ma tylko jeden pierwiastek pojedynczy,
- $f(a) \cdot f(b) < 0$,
- funkcja jest klasy C^2 ,
- \bullet pierwsza i druga pochodna nie zmieniają znaku w przedziale [a, b].

Algorytm przebiega następująco:

- 1. Przez punkty A = (a, f(a)) i B = (b, f(b)) przeprowadzamy cięciwę.
- 2. Punkt przecięcia cięciwy z osią OX x_0 przyjmowany jest jako pierwsze przybliżenie pierwiastka i można opisać jego wartość wzorem:

$$x_0 = a - \frac{f(a)}{f(b) - f(a)}(b - a) \tag{1}$$

- 3. Jeżeli przybliżenie jest wystarczająco dobre, czyli $f(x_0) = 0$ lub $\epsilon_{k+1} = |x_{k+1} x_k|$ jest bardzo małe (np. mniejsze niż 10^{-6}), czyli różnica pomiędzy kolejnymi przybliżeniami jest już znikoma algorytm kończy się.
- 4. Jeżeli nie jest odpowiednio dobre, to prowadzona jest nowa cięciwa przez punkty $(x_0, f(x_0))$ oraz punkt A lub B, w zależności od tego, który z nich ma drugą współrzędną o znaku przeciwnym do $f(x_0)$.
- 5. Wyznaczane jest przecięcie nowej cięciwy z osią OX (x_k) i wracamy do punktu 3.

Kolejne przybliżenia pierwiastka x można więc opisać wzorem:

$$\begin{cases} x_{k+1} = x_k - \frac{f(x_k)}{f(b) - f(x_k)} (b - x_k) & \text{gdy} f(b) f(x_k) \geqslant 0 \\ x_{k+1} = x_k - \frac{f(x_k)}{f(a) - f(x_k)} (a - x_k) & \text{gdy} f(a) f(x_k) \geqslant 0 \end{cases}$$
(2)

gdzie $x_0 = a$.

1.2 Metoda siecznych

Metoda ta jest modyfikacją metody Regula Falsi, opisanej w punkcie (1.1). Różnica pomiędzy nimi polega na tym, że sieczną przeprowadza się przez dwa ostatnie przybliżenia x_k oraz x_{k+1} . Kolejne przybliżenia wyznacza się za pomocą wzoru:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$
(3)

Zbieżność tej metody jest większa niż metody Regula Falsi.

Metodę siecznych można zmodyfikować by móc szukać również pierwiastków wielokrotnych. Jeżeli nie znamy krotności pierwiastka, musimy w tym celu zbadać zera funkcji u(x) = f(x)/f'(x). We wzorze na kolejne przybliżenia pierwiastku należy dokonać zamiany funkcji f(x) na u(x). W efekcie wzór wygląda następująco:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{u(x_k) - u(x_{k-1})} u(x_k).$$
(4)

2 Zadanie do wykonania

2.1 Opis problemu

Zadaniem w trakcie laboratoriów było wyznaczenie wszystkich pierwiastków równania nieliniowego postaci:

$$f(x) = (x - 1.2)(x - 2.3)(x - 3.3)^{2},$$
(5)

korzystając z metody siecznych.

Na początek należało stworzyć wykres funkcji f(x), dla $x \in [0.9, 3.7]$. Następnie należało napisać program do wyznaczania pierwiastków wielomianu (dla podwójnej precyzji). Wyznaczanie zer miało odbywać się dwoma metodami:

- (a) niemodyfikowaną metodą siecznych
- (b) modyfikowaną metodą siecznych.

Dla niemodyfikowanej metody siecznych korzystaliśmy ze wzoru (3) dla obliczania kolejnych przybliżeń pierwiastka. Natomiast dla modyfikowanej metody siecznych funkcje f(x) należało zastąpić funkcją u(x) i skorzystać ze wzoru (4) gdzie f'(x) zostało przybliżone ilorazem różnicowym:

$$f'(x) = \frac{\partial f(x)}{\partial x} = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}.$$
 (6)

Korzystając z takiego programu należało znaleźć wszystkie pierwiastki korzystając z niemodyfikowanej metody siecznych oraz pierwiastki o krotności większej niż 1 korzystając z modyfikowanej metody siecznych, jednak dla dwóch wartości Δx - 0.1 oraz 0.001.

- (a) $x_0 = 0.9, x_1 = 1.0,$
- (b) $x_0 = 1.7, x_1 = 1.75,$
- (c) $x_0 = 3.7, x_1 = 3.65$.

Jako warunek zakończenia iteracji należało przyjąć:

$$\epsilon_{k+1} = ||x_{k+1} - x_k|| < 10^{-6}. (7)$$

2.2 Wyniki

Rysunek 1: Wykres funkcji $f(x) = (x-1.2)(x-2.3)(x-3.3)^2$ oraz jej pochodnej f'(x) w przedziale $x \in [0.9, 3.7]$

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	1.13177	0.131769	0.374736
2	1.18111	0.0493456	0.0948721
3	1.19784	0.0167279	0.0105107
4	1.19993	0.00208415	0.000358444
5	1.2	7.35846e-05	1.43563e-06
6	1.2	2.95904e-07	1.97418e-10

⁽a) Pierwsze miejsce zerowe: x=1.2 (dla $x_0=0.9,$ $x_1=1.0)$

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	2.63105	0.88105	0.212
2	2.43208	0.198968	0.122586
3	2.1593	0.272784	-0.17563
4	2.31995	0.160652	0.0214606
5	2.30246	0.0174929	0.00269569
6	2.29994	0.00251296	-6.13175e-05
7	2.3	5.58899e-05	1.65087e-07
8	2.3	1.5007e-07	1.00372e-11

(b) Drugie miejsce zerowe: x=2.3 (dla $x_0=1.7$ $x_1=1.75$)

k	· · · · ·	6	f(x,)	I	14	3.30058	0.000355037	6.9551e-07
	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$	ļ		0.0000		0.000=00
1	3.51916	0.130842	0.135802		15	3.30036	0.000219611	2.65747e-07
2	3.45319	0.0659641	0.0609795		16	3.30022	0.000135798	1.01527e-07
3	3.39943	0.0537603	0.0239082		17	3.30014	8.39552 e-05	3.87845e-08
4	3.36476	0.0346713	0.00966736		18	3.30008	5.18976e-05	1.48155e-08
5	3.34123	0.0235366	0.00378918		19	3.30005	3.20784 e-05	5.65929e-09
6	3.32605	0.0151721	0.00148075		20	3.30003	1.98271e-05	2.16172e-09
7	3.31632	0.00973224	0.000572969		21	3.30002	1.22544 e-05	8.25718e-10
8	3.31018	0.00614271	0.000220855		22	3.30001	7.57385e-06	3.154e-10
9	3.30633	0.00385286	8.48219e-05		23	3.30001	4.68098e-06	1.20473e-10
10	3.30392	0.00240241	3.25142e-05		24	3.3	2.89304 e-06	4.60167e-11
11	3.30243	0.00149333	1.24463e-05		25	3.3	1.78801e-06	1.75769e-11
12	3.3015	0.000926181	4.76059e-06		26	3.3	1.10505 e-06	6.71378e-12
13	3.30093	0.00057368	1.81991e-06		27	3.3	6.82963 e-07	2.56444e-12

(c) Trzecie miejsce zerowe: x=3.3 (dla $x_0=3.7,\,x_1=3.65$)

Tabela 1: Tabele przybliżeń miejsc zerowych dla niemodyfikowanej metody siecznych, gdzie k - numer iteracji, x_{k+1} - kolejne przybliżenie miejsca zerowego, ϵ_{k+1} - różnica pomiędzy dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ - wartość funkcji w punkcie x_{k+1} s

$\mid k \mid$	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	3.25065	0.399349	0.0047475
2	3.32054	0.0698935	0.000913445
3	3.30675	0.0137991	9.65125e-05
4	3.30297	0.00377639	1.85962e-05
5	3.30161	0.00136042	5.44866e-06
6	3.30091	0.000694918	1.7565e-06
7	3.30054	0.00037378	6.13227e-07
8	3.30032	0.000215585	2.21348e-07
9	3.3002	0.000127248	8.17992e-08
10	3.30012	7.66162e-05	3.06083e-08
11	3.30007	4.65704e-05	1.15467e-08
12	3.30005	2.84972e-05	4.37654e-09
13	3.30003	1.75031e-05	1.6638e-09
14	3.30002	1.07765e-05	6.33659e-10
15	3.30001	6.64457e-06	2.416e-10
16	3.30001	4.10062e-06	9.21802e-11
17	3.3	2.53205e-06	3.51855e-11
18	3.3	1.56403e-06	1.34339e-11
19	3.3	9.66291e-07	5.12996e-12

k	$ x_{k+1} $	ϵ_{k+1}	$f(x_{k+1})$
1	3.24179	0.408215	0.00651669
2	3.31242	0.0706299	0.000329644
3	3.30056	0.0118593	6.49539e-07
4	3.3	0.000560219	3.87543e-11
5	3.3	5.18779e-06	1.67059e-12
6	3.3	4.46132e-07	4.17323e-13

(b) lloraz różnicowy obliczany z krokiem $\Delta x = 0.001$

Tabela 2: Tabele przybliżeń dwukrotnego miejsca zerowego x=3.3 dla modyfikowanej metody siecznych, gdzie k - numer iteracji, x_{k+1} - kolejne przybliżenie miejsca zerowego, ϵ_{k+1} - różnica pomiędzy dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ - wartość funkcji w punkcie x_{k+1}

Dodatkowo zmierzyłam liczbę potrzebnych iteracji by znaleźć wartości pojedynczych pierwiastków wielomianu, korzystając z modyfikowanej metody siecznych.

		Liczba iteracji dla metody siecznych				
	x	niemodyfikowanej	modyfikowanej			
			$\Delta x = 0.1$	$\Delta x = 0.001$		
	1.2	6	7	7		
	2.3	8	7	7		
	3.3	27	19	6		

Tabela 3: Tabela zmierzonych liczb iteracji potrzebnych do znalezienia wyniku w zależności od metody i Δx - kroku dla liczonej pochodnej.

3 Wnioski

Metoda siecznych pozwala na stosunkowo szybkie wyznaczenie pierwiastków wielomianu. Dla wielokrotnych pierwiastków, modyfikowana metoda jest dużo szybsza, jednak dla jednokrotnych znajduje odpowiednie wartości w podobnej lub takiej samej liczbie iteracji co metoda niemodyfikowana. Dlatego też stosowanie jej opłaca się bardziej dla pierwiastków wielokrotnych.

⁽a) Iloraz różnicowy obliczany z krokiem $\Delta x = 0.1$