Homework 08

1 Asymptotic series for $\log(x-2)$

Find an asymptotic series for

$$f(x) = \log(x - 2)$$

as $x \to \infty$ in terms of $\log x$ and inverse powers of x. (Hint: split the \log and use Taylor series on one part.)

$$f(x) = \log(x-2) = \log x + \log \left(1 - \frac{2}{x}\right)$$

The Taylor series expansion of log(1 - y) around y = 0 is:

$$\log(1 - y) = -y - \frac{y^2}{2} - \frac{y^3}{3} - \cdots$$

By substituting $y=\frac{2}{x}$ into this series, the asymptotic series for f(x) as $x\to\infty$ is:

$$f(x) = \log x - \frac{2}{x} - \frac{2^2}{2x^2} - \frac{2^3}{3x^3} - \dots$$

2 Watson's lemma and $\int_0^1 \frac{e^{-sx}}{1+x^2} dx$

Use Watson's lemma to find the $s \to \infty$ asymptotic series for

$$I(s) = \int_0^1 \frac{e^{-sx}}{1+x^2} dx$$

To use Watson's Lemma, we need to express $\frac{1}{1+x^2}$ as a power series at x=0. The Taylor series of $\frac{1}{1+x^2}$ around x=0 is:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

which is valid for |x| < 1. Substituting this into I(s) gives:

$$I(s) = \int_0^1 e^{-sx} (1 - x^2 + x^4 - x^6 + \cdots) dx$$

Now, we can integrate term by term:

1. For the first term:

$$\int_0^1 e^{-sx} \, dx = \frac{1}{s} (1 - e^{-s})$$

As $s \to \infty$, e^{-s} approaches 0 faster than 1/s, so this term becomes $\frac{1}{s}$.

2. For the second term:

$$-\int_0^1 x^2 e^{-sx} dx$$

Applying integration by parts or a similar method, we find this term is $O(\frac{1}{s^3})$ as $s \to \infty$.

3. Similarly, each subsequent term will contribute higher order terms in $\frac{1}{s}$.

Hence, the asymptotic expansion of I(s) as $s \to \infty$ is:

$$I(s) \sim \frac{1}{s} - \frac{1}{s^3} + \cdots$$

3 Watson's lemma and $\int_0^\infty \sin(\sqrt{x})e^{-sx^2}dx$

Use Watson's lemma to find the $s \to \infty$ asymptotic series for

$$I(s) = \int_0^\infty \sin(\sqrt{x})e^{-sx^2}dx$$

The integral I(s) does not directly fit this form of Watson's lemma due to the e^{-sx^2} term. So first, we perform a change of variable to transform the integral into a more suitable form for Watson's Lemma. Let $u=x^2$, then $du=2x\,dx$ or $dx=\frac{du}{2\sqrt{u}}$. The integral becomes:

$$I(s) = \int_0^\infty \sin(u^{1/4})e^{-su}\frac{du}{2\sqrt{u}}$$

Expand $\sin(u^{1/4})$ in a Taylor series about u=0:

$$\sin(u^{1/4}) = u^{1/4} - \frac{u^{3/4}}{3!} + \frac{u^{5/4}}{5!} - \dots$$

Substituting this series into the integral, we get:

$$I(s) = \int_0^\infty \left(u^{1/4} - \frac{u^{3/4}}{3!} + \cdots \right) e^{-su} \frac{du}{2\sqrt{u}} = \frac{\Gamma(3/4)}{2s^{3/4}} - \frac{\Gamma(5/4)}{12s^{5/4}} + \cdots$$

4 Asymptotic series for the error function

Use integration by parts to give the $x \to \infty$ asymptotic series for the error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt.$$

We can apply successive integration by parts to erfc (λ) , in which the first step gives

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-t^{2}) dt$$

$$= \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \frac{-2t \exp(-t^{2})}{-2t} dt, \left[u = \frac{1}{-2t}, dv = -2t \exp(-t^{2}) dt \right]$$

$$= \frac{2}{\sqrt{\pi}} \left[\frac{\exp(-t^{2})}{-2t} - \int \frac{\exp(-t^{2})}{2t^{2}} dt \right]_{x}^{\infty}$$

$$= \frac{2}{\sqrt{\pi}} \left[\frac{\exp(-x^{2})}{2x} - \int_{x}^{\infty} \frac{\exp(-t^{2})}{2t^{2}} dt \right]$$

$$= \frac{2e^{-x^{2}}}{\sqrt{\pi}} \left(\frac{1}{2x} \right) - \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \frac{\exp(-t^{2})}{2t^{2}} dt$$

We have obtained the first term. And applying integration by parts to the new integral gives

$$\begin{split} \int_{x}^{\infty} \frac{\exp(-t^{2})}{2t^{2}} dt &= \frac{1}{2} \int_{x}^{\infty} \frac{-2t \exp(-t^{2})}{-2t^{3}} dt \left[u = -\frac{1}{2t^{3}}, dv = -2t \exp(-t^{2}) dt \right] \\ &= \frac{1}{2} \left[\frac{\exp(-t^{2})}{-2t^{3}} - \int \frac{3 \exp(-t^{2})}{2t^{4}} dt \right]_{x}^{\infty} \\ &= \frac{1}{2} \left[\frac{\exp(-x^{2})}{2x^{3}} - \int_{x}^{\infty} \frac{3 \exp(-t^{2})}{2t^{4}} dt \right] \end{split}$$

Thus we have

erfc
$$(x) = \frac{e^{-x^2}}{\sqrt{\pi}} \left(\frac{1}{2x} - \frac{1}{4x^3} - \int_x^{\infty} \frac{3\exp(-t^2)}{2t^4} dt \right),$$

Continuing with successive integration by parts we will obtain the asymptotic expansion.

5 Stirling's formula

Use Laplace's method to derive Stirling's formula

$$n! \sim \sqrt{2\pi n} n^n e^{-n} \quad n \to \infty$$

using the Gamma function. Also find the next term in the asymptotic series.

Gamma function, which is related to the factorial by $\Gamma(n+1) = n!$ is defined as:

$$\Gamma(n) = \int_0^\infty e^{-t} t^{n-1} dt$$

For large n, we approximate this integral using Laplace's method, which is effective for integrals of the form $\int e^{Mf(t)}dt$ where M is a large parameter. Here, we can rewrite the Gamma function as:

$$\Gamma(n+1) = \int_0^\infty e^{n\log t - t} dt$$

Now, to apply Laplace's method, we find the maximum of the function $f(t) = \log t - \frac{t}{n}$. Taking the derivative and setting it to zero gives:

$$\frac{d}{dt}\left(\log t - \frac{t}{n}\right) = \frac{1}{t} - \frac{1}{n} = 0$$

This yields t = n as the point where f(t) attains its maximum. We then expand f(t) around this point:

$$f(t) \approx f(n) + \frac{1}{2}f''(n)(t-n)^2$$

where $f(n) = \log n - 1$ and $f''(n) = -1/n^2$. The integral becomes:

$$\Gamma(n+1) \approx e^{n\log n - n} \int_0^\infty e^{-\frac{1}{2}\frac{(t-n)^2}{n}} dt$$

Changing variables with $u = \frac{t-n}{\sqrt{n}}$ gives:

$$\Gamma(n+1) \approx e^{n\log n - n} \sqrt{n} \int_0^\infty e^{-\frac{1}{2}u^2} du$$

Recognizing the Gaussian integral, we get:

$$\Gamma(n+1) = n! \approx e^{n \log n - n} \sqrt{2\pi n} = \sqrt{2\pi n} n^n e^{-n} \quad n \to \infty$$

The second derivative f''(t) at the point t=n gives us the next leading term. The third derivative of f(t) is:

$$f'''(t) = \frac{2}{t^3}$$

Evaluating this at t = n gives:

$$f'''(n) = \frac{2}{n^3}$$

The corresponding term in the expansion is of the order $\frac{1}{n}$, which leads to the next term in the series being $\frac{1}{12n}$. Therefore, the improved Stirling's formula, including the next term in the asymptotic series, is:

$$n! \sim \sqrt{2\pi n} \, n^n e^{-n} \left(1 + \frac{1}{12n} \right)$$

6 Leading asymptotics of $I(x) = \int_{-1}^{1} e^{-x \sin^4 t} dt$

Use Laplace's method to find the leading asymptotics of

$$I(x) = \int_{-1}^{1} e^{-x \sin^4 t} dt$$

as $x \to \infty$.

For the given integral, we observe that $\sin^4 t$ is maximized when t=0 within the interval [-1,1]. Near this point, the function $\sin^4 t$ can be approximated by its Taylor expansion:

$$\sin^4 t \approx t^4$$

for small values of t. The integral becomes:

$$I(x) \approx \int_{-1}^{1} e^{-xt^4} dt$$

As $x \to \infty$, the contribution to the integral from regions where t is not very small becomes negligible, so we can extend the limits of the integral to infinity for the purpose of asymptotic approximation:

$$I(x) \approx \int_{-\infty}^{\infty} e^{-xt^4} dt$$

Let $u = x^{1/4}t$, then $dt = x^{-1/4}du$ and the integral becomes:

$$I(x) \approx \int_{-\infty}^{\infty} e^{-u^4} x^{-1/4} du$$

The integral $\int_{-\infty}^{\infty} e^{-u^4} du$ is a constant (independent of x), so the leading asymptotic behavior of I(x) as $x \to \infty$ is given by:

$$I(x) \sim C x^{-1/4}$$

where C is the value of the integral $\int_{-\infty}^{\infty}e^{-u^4}du$, which can be evaluated numerically.

Bibliography