

Projet 6: Classifiez automatiquement des biens de consommation

Anissa TALEB

Février 2024

objectif:

- ⇒ une étude de faisabilité d'un moteur de classification d'articles, basé sur une image et une description, pour l'automatisation de l'attribution de la catégorie de l'article.
- ⇒ classification supervisée à partir des images
- ⇒ test d'API

PLAN:

- I Etude de faisabilité de classification :
 - 1 Données textuelles
 - 2 Données images
- Il Classification supervisée des images

III Test d'API

I Etude de faisabilité de classification : 1 Données textuelles

1 Prétraitement des données : NLP

- sur les deux colonnes "product_category_tree " et "description"
- Création de bag of word (tokenization, stopWords, lowerCase, lemmatization)
 - ⇒TF_iDF, Word2vec et CountVectorizer

2 Création des vecteurs : CountVectorizer et TF-idf

- Bag of words max length bow: 379
- Réduction de dimension : APC et TSNE
- Calcul de l'indice de similarité : ARI

```
CountVectorizer:

ARI: 0.4174 time: 18.0

Tf-idf:

ARI: 0.451 time: 16.0
```

Analyse graphique : TF-idf

⇒ Classification par vectorisation/bag of words est possible!

3 Word2Vec: import tensorflow.keras

- Création de modèle
- Création de la matrice d'embedding
- Création du modèle d'embedding
- Exécution du modèle
- Réduction de dimension APC et TSN-E et Calcul de l'ARI

ARI: 0.2159 time: 13.0

Analyse graphique

⇒ faisabilité médiocre en vue de ARI < 0.4

4 BERT HuggingFace:

- Création des features
- Réduction de dimension APC et TSN-E et Calcul de l'ARI

```
→ ARI: 0.3203 time: 14.0
```

Analyse graphique:

5 USE - Universal Sentence Encoder

- Création des features
- Réduction de dimension APC et TSN-E et Calcul de l'ARI

```
→ ARI: 0.4338 time: 14.0
```



```
• CountVectorizer = 0.42
```

- Tf-idf = 0.45
- Word2Vec = 0.21
- BERT = 0.32
- USE = 0.43

```
• CountVectorizer = 0.42
```

```
• Tf-idf = 0.45 ←
```

- Word2Vec = 0.21
- BERT = 0.32
- USE = 0.43

I Etude de faisabilité de classification :2 Données images

1 Approche SIFT:

- filtrer les images en niveau de gris + equalisation
- création d'une liste de descripteurs par image

Nombre de descripteurs : (517351, 128)

1 Approche SIFT:

- création d'une liste de descripteurs pour l'ensemble des images
- créer les clusters de descripteurs (MiniBatchKMeans)

Analyse des images : Selon les vraies classes

- Home Furnishing
- Baby Care
- Watches
- Home Decor & Festive Needs
- Kitchen & Dining
- Beauty and Personal Care
- Computers

Analyse des images : Selon les clusters

TSNE selon les clusters

ARI: 0.0012437155160732376

⇒ approche très peu fiable!

Analyse des images : Matrice de confusion

		precision	recall	f1-score	support
	0	0.18	0.17	0.17	150
	1	0.18	0.21	0.19	150
	2	0.14	0.13	0.13	150
	3	0.13	0.13	0.13	150
	4	0.17	0.21	0.19	150
	5	0.16	0.12	0.14	150
	6	0.17	0.17	0.17	150
accur	racy			0.16	1050
macro	avg	0.16	0.16	0.16	1050
veighted	avg	0.16	0.16	0.16	1050

Analyse des images : Matrice de confusion

1 Approche Transfer learning CNN: VGG16

- Création du modèle pré-entraîné
- Création des features des images
- Réduction de dimension PCA et TSNE
- Création de clusters à partir du T-SNE

Analyse des images : Approche Transfer learning TSNE selon les vraies classes

- Home Furnishing
- Baby Care
- Watches
- Home Decor & Festive Ne
- Kitchen & Dining
- Beauty and Personal Care
- Computers

⇒ il y a une possibilité de classifier!

Analyse des images: Approche Transfer learning

TSNE selon les clusters

cla

2 Approche Transfer learning CNN: VGG16

• Calcul de l'ARI ARI : 0.45283450222669647

Analyse des images : Matrice de confusion

	precision	recall	f1-score	support
0	0.55	0.72	0.63	150
1	0.89	0.78	0.83	150
2	0.66	0.75	0.70	150
3	0.41	0.51	0.45	150
4	0.48	0.45	0.46	150
5	0.97	0.52	0.68	150
6	0.92	0.90	0.91	150
accuracy			0.66	1050
acro avg	0.70	0.66	0.67	1050
hted avg	0.70	0.66	0.67	1050

Analyse des images : Matrice de confusion

Analyse des images : Comparaison

- SIFT : ARI = 0,0012
- Transfert learning : ARI = 0,452

Analyse des images : Comparaison

- SIFT: ARI = 0,0012
- Transfert learning : ARI = 0,452 ←

3 Classification supervisée :

- Création de modèle de classification VGG16
 ⇒Récupération modèle pré-entraîné
- Entrainement/Validation/test

Analyse des images : Classification supervisée

		precision	recall	f1-score	support
	0	0.65	0.77	0.70	26
	1	0.86	0.76	0.81	25
	2	0.88	0.88	0.88	25
	3	0.88	0.92	0.90	25
	4	0.76	0.64	0.70	25
	5	0.78	0.84	0.81	25
	6	0.96	0.92	0.94	25
accui	racy			0.82	176
macro	avg	0.82	0.82	0.82	176
veighted	avg	0.82	0.82	0.82	176

Analyse des images : Classification supervisée

- 3 Classification supervisée avec Data augmentation :
 - ImageDataGenerato

III Test API : épicerie fine :

API : épicerie fine :

```
85]: liste 10 =[response['hints'][indice]['food'] for indice in range(10)]
86]: result=[[element.get('foodId', 'NONE'),
       element.get('label', 'NONE'),
       element.get('category', 'NONE'),
       element.get('foodContentsLabel', 'NONE'),
       element.get('image', 'NONE')] for element in liste_10 ]
87]: import pandas as pd
     df= pd.DataFrame(result , columns=['foodId','label','category','foosContentsLable','image'])
```

image	foosContentsLable	category	label	foodId	Unnamed: 0
https://www.edamam.com/food- img/a71/a718cf3c52	NONE	Generic foods	Champagne	food_a656mk2a5dmqb2adiamu6beihduu	0
NONE	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR	Packaged foods	Champagne Vinaigrette, Champagne	food_b753 ithamdb8psbt0w2k9aquo06c	1
https://www.edamam.com/food- img/d88/d88b64d973	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINE	Packaged foods	Champagne Vinaigrette, Champagne	food_b3dyababjo54xobm6r8jzbghjgqe	2
NONE	CANOLA AND SOYBEAN OIL; WHITE WINE (CONTAINS S	Packaged foods	Champagne Vinaigrette, Champagne	food_a9e0ghsamvoc45bwa2ybsa3gken9	3
NONE	WATER; CANOLA AND SOYBEAN OIL; WHITE WINE (CON	Packaged foods	Champagne Vinaigrette, Champagne	food_an4jjueaucpus2a3u1ni8auhe7q9	4
https://www.edamam.com/food- img/ab2/ab2459fc2a	SOYBEAN OIL; WHITE WINE (PRESERVED WITH SULFIT	Packaged foods	Champagne Dressing, Champagne	food_bmu5dmkazwuvpaa5prh1daa8jxs0	5
NONE	sugar; butter; shortening; vanilla; champagne;	Generic meals	Champagne Buttercream	food_alpl44taoyv11ra0lic1qa8xculi	6
NONE	Sugar; Lemon juice; brandy; Champagne; Peach	Generic meals	Champagne Sorbet	food_byap67hab6evc3a0f9w1oag3s0qf	7
NONE	butter; cocoa; sweetened condensed milk; vanil	Generic meals	Champagne Truffles	food_am5egz6ag3fpjlaf8xpkdbc2asis	8