Next-Gen NVMe-oF Reference System: From Media to Network

2020. 11.

Duckho Bae

Samsung Electronics

Agenda

• Why Open-Source Reference for NVMe-oF System?

Software Solution for NVMe-oF

Future Works & Conclusion

- 2020 Current: Principal Engineer, Memory Division, Samsung Electronics
- 2013 2019: Staff Engineer, Memory Division, Samsung Electronics
- 2008 2013: Ph.D., Hanyang University
- 2006 2008: M.S., Hanyang University
- 2002 2006: B.S., Hanyang University

Project Poseidon

- Announced in 2020 OCP Global Summit
- Open reference storage platform based on 3-way collaboration

Disaggregated Architecture

Storage system is evolving towards the disaggregated architecture

NVMe-oF Interface

- Can break through the scaling limitation of PCle-attached NVMe
 - **X** Up to few hundreds
- Uses a transport protocol over a network to access remote NVMe
 - End-to-End NVMe semantics across a range of topologies
 - Retains NVMe efficiency and performance over network fabrics

Why NVMe-oF 'Reference' System

- NVMe ecosystem is expanding rapidly
 - NVMe grows 61.4% share by 2020 in enterprise storage * Source: IDC
- Storage disaggregation has become major trend in datacenter
 - Can scale storage resources independently in a cost effective and flexible manner
- Next-generation storage brings strict requirements
 - * PCIe Gen4/Gen5, CXL, E1.x, E3.x, ...
 - More power, higher density, higher throughput, finer QoS control are required
- There is few 'open-sourced' reference system for NVMe-oF
 - To leverage NVMe-oF eco system
 - >> Both HW and SW open-sourced references for NVMe-oF are needed!

Software Solution for NVMe-oF

Prerequisite for Software (1/3)

- 1. Abstracts logical volumes from physical devices
- 2. Supports various types of transport bindings
- 3. Fully utilize the performance of NVMe SSD
- 4. Provides flexible NVM subsystems

Prerequisite for Software (2/3)

1. Abstracts logical volumes from physical devices

- Make physical devices invisible to the initiators
- Add storage intelligence features Volume manage, RAID, compression, tiering, ...
 - Requires metadata like mapping table management

2. Supports various types of network protocols - RDMA, FC, TCP

- NVMe/TCP by default (ratified on Nov. 2018)
 - Enables datacenters to utilize their existing TCP/IP network
 - Offers tens of us latencies (normally, 40us ~ 90us)
 - Ready for future hardware-accelerated implementations

Prerequisite for Software (3/3)

3. Fully utilize the performance of NVMe SSDs

- Sequential performance of NVMe SSDs is much faster than random IO
- Clean state performance in write is superior than sustained performance

- X Samsung PM9A3 PCIe Gen4 NVMe SSD
- Need to understand the characteristics and limitations of NAND Flash
 - Ex. Different program/erase units, not allows in-place updates, EPI, read reclaim, ...
 - **X** Erase program interval

Software Concept

- Runs as user application
- Provide 'customized' virtual devices to initiators via NVMe-oF interface

■ Software Stack

- User I/O handling
- Provides NVMe-oF connectivity
- Logical Device mgmt Volume
- Performance Optimization
- User IO QoS

- Guarantee ACID of metadata
- Metadata I/O handling
- Journaling and Restore

- Provides Fault Tolerance Feature RAID / EC
- Partition mgmt System / User / Meta Area
- Physical device mgmt SSD Array, NVDIMM
- SSD device monitoring

Characteristics of Software (1/2)

- User-space NVMe-oF / NVMe IO
 - Avoids overheads of system calls and data copies
 - Spends more CPU cycles for storage services
 - Enables better latency and IOPS

Kernel-space

Characteristics of Software (2/2)

- Write buffer makes SSD-friendly writes IO
 - Can shorten write latency and make QoS stable if write buffer is placed in NV memory
 - Can enjoy the sequential write performance of NVMe SSDs
 - Can make SSDs to clean state using TRIM command

Challenges & Approaches

Challenge 1: Saturate high-bandwidth network in TCP

Challenge 2: Initiator SW stack becomes more important

Challenge 3: Efficient internal metadata management

Challenge 4: Providing fault tolerance when NVMe drive fails

■ Challenge 1: Saturate high-bandwidth network in TCP

Basically, follows SPDK philosophy

RDMA (4KB writes)

- Even if we use SPDK, CPU is still bottleneck
 - Harsh with small IO (4KB)
 - TCP stack makes worse!

Stack depth

Stack profile population

TCP (4KB writes)

- TCP consumes 3 times more CPU resources than RDMA! (35% vs 12%)
- In PCIe Gen4, this would be much worse!

■ Challenge 1: Saturate high-bandwidth network in TCP

- Approach 1: Separates CPU sockets for front-end and back-end
 - Minimizes UPI transactions to spend more CPU cycles for storage services

- NUMA0: User IO, Network,
- NUMA1: Flush, RAID, GC, ...

■ Challenge 1: Saturate high-bandwidth network in TCP

- Approach 1: Separates CPU sockets for front-end and back-end
 - Minimizes UPI transactions to spend more CPU cycles for storage services

Remote SSD access also should be minimized

■ Challenge 2: Initiator SW Stack

- Initiator SW stack does matter to exploit NVMe-oF performance
 - In case of reads, both kernel and user-space drivers can be achieved max performance
 - In case of writes, only user-space drivers can meet max performance

Other Challenges?

- Future Works
 - More NUMA-aware architecture
 - Performance measurement on PCIe Gen4 server
 - More storage feature supported
 - E2E SSD Optimization

Will be open-sourced @end of this year!

Thank You