	DATE :/_/ PAGE :
	Porobability -> Study of uncertainity.
	Random Experimentine: It is a process for which outcome cam's be predicted with certainstey Ex: tossing a coin, rolling a dice, picking & object
	Sample Space (55) Set of all possible outcome Ex: RE> tossing a coin RE! Rolling a dice SS & E Head, Tail 3 SS: 91.2.3.4.5.6 }
	Eventie: Any Subject of Sample space Ex: RE > tossering of two coins SS > EMM, TT, TM, MT? Ex > Getting two heads EM; MY Ex > Greating at least one head EMM, TM, MT?
	RE & rolling a dice SS & 1, 2, 3, 4, 5.6} E, & getting odd no & 21, 3, 5 } get Probability of the above went Probability = no fourwable or come (Suent) of Event Total no of Possible or come (Sample Space)
• ×	P(E,) = E1 = 3 = 1 Ss 6 2 Azioms of Probability
-	$ \begin{array}{cccc} & O & \leq & P(E_1) & \leq 1 \\ & P(SS) = P(S) = 1 \end{array} $
	P(E,UE, U.E) = P(E)+P(E)+P(En) = P(ÜE) = EP(E)

	PAGE :
	Mutually Exclusive Guent: events intersection
	is nell.
	RES Slepping 2 coins =SS= HH, HT, TH, TT}
	E13 gelting 2 head & SHH?
	E, & gelling 2 tails >> {TT} E3 > gelling both headon tail >> {HH, TT)
	E3 > getting both head or tail & SMH, TT)
	So if E, NEz= \$ then E, &E, are multually
	exclusive events
	$P(\epsilon_3) = \frac{2}{4} = \frac{1}{2}$
	$ab \ E_3 \Rightarrow E_1 U E_2$ $P(E_3)=P(E_1 U E_2)=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$
	P(E3)=P(E, UE2) = 4 + 4 = 4 = 2
). W . T.
	What If event aren't mutually exclusive
	find P(E, UF.)
- 30	p(E,UE)=P(E,)+P(E2)-P(E,DE2)
_	$P(E, UE_2) = P(E, UE_2) = P(E, UE_2)$
- 21	RE > Rolling a die
	55 3 81,2,3,4,5,63
	E, o getting a prime no & 2,3,53.
	F23 gelmano-len man 6 & 1,2,3, 4,5}
	15 E, CE2
1	80, 8, ce ce (1/23)4) E2
Sol	PRE)= 3 = 1
	6 7
	P(E)=5 50,13 C 5
	6 6 6
	$P(E_1) \leq P(E_2)$
	DF, CE

DATE :__/__/_