Takagi-Sugeno Model Identification Toolbox

May 20, 2021

Example of a throttle valve as a nonlinear ARX model TS model (NARX)

V1.0

Axel Dürrbaum (axel.duerrbaum@mrt.uni-kassel.de)

Department of Measurement and Control (MRT)

Institute for System Analytics and Control (ISAC)

University of Kassel, Germany (http://www.uni-kassel.de/go/mrt)

 $Id: NARX_Throttle.m \mid Fri Feb 26 16:25:05 2021 +0100 \mid Axel Dürrbaum $$

Contents

1	Structural parameters	2
2	Identification data	2
3	Creation of the TS model	2
4	Clustering	3
5	Initialization of the local models	3
3	Prediction of the initial TS model	3
7	Optimization of the TS model	4
3	Prediction of the optimized TS model	5

Estimation of a NARX TS model from the measurement data of a throttle valve

$$y_{k+1} = \sum_{i=1}^{n_v} \phi_i(z) \cdot \left(\sum A_i \cdot x_y + B_i \cdot x_u + c_i \right)$$

with

- scheduling vector $z = [y_{k-1}, y_{k-2}, y_{k-3}, u_k]$
- \bullet FCM clustering in product-space with s=10 tries
- regression vector $x = [x_y, x_u], x_y = [y_{k-1}, y_{k-2}, y_{k-3}]$ and $x_u = [u_k]$
- initalization of the local models with global least squares
- optimization of the parameters: both cluster centers v and local models A_i, B_i, c_i

Path to TSModel class

addpath('../TSModel')

1 Structural parameters

2 Identification data

Load input vector u and output vector y from file:

```
load( 'Data/Throttle1.mat' );
Compute the time vector (for plotting)

dt = 1e-2; % Sampling time
t = dt * transpose( 0:size(u,1)-1 );
```

3 Creation of the TS model

Plot the identification data

```
plotIdentData( ts, 1 );
set(gcf, 'WindowState', 'maximized' );
```


Set the scheduling lags: u(k), y(k-1), y(k-2), y(k-3)

```
ts.setSchedulingLags( \{0\}, [1,2,3] );
Set the regressor lags: u(k), y(k-1), y(k-2), y(k-3)
ts.setRegressorLags( \{0\}, [1,2,3] );
```

4 Clustering

Clustering is done in product-space [u, y] with FCM and $\nu = 1.1$ for a multi-start of s = 10 tries and random number generator fixed initialized with seed 0

```
ts.clustering( 'FCM', 'nue', nue, 'tries',10, 'seed', 0 ); Cluster centers v_1: (columns z=[y_{k-1},y_{k-2},y_{k-3},u_k], rows=local models) v1 = getCluster( ts ) v1 = 3.3022 3.2939 3.2859 7.8404 2.5556 2.5981 2.6381 34.1314 3.5791 3.5326 3.4894 -12.1079
```

5 Initialization of the local models

The local models are intialized with global Least-Squares and FCM membership functions ($\nu = 1.1$)

```
ts.initialize( MSF, 'nue', nue, 'method', 'global' );
```

6 Prediction of the initial TS model

Prediction of the NARX TS model with the identificaton input: \boldsymbol{u}

```
y_pred = ts.predict( u,y );
plotResiduals( y, y_pred, 'figure', 2, 'title', ...
    'Throttle NARX: validation/correlation ' );
set(gcf, 'WindowState', 'maximized' );
```


7 Optimization of the TS model

by optimizing clusters centers v (MF) and local model parameters A/B/c

ts.optimize('B');

			Norm of	First-order
Iteration	Func-count	f(x)	step	optimality
0	28	0.283319		21.7
1	56	0.283319	2.00207	21.7
2	84	0.262651	0.500517	8.12
3	112	0.242779	1.00103	5.71
4	140	0.242779	0.852641	5.71
5	168	0.238057	0.21316	6.48
6	196	0.232624	0.42632	1.9
7	224	0.232188	0.182499	1.71

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.

Cluster centers v_1 : (columns: $z = [y_{k-1}, y_{k-2}, y_{k-3}, u_k]$, rows=local models)

v2 = getCluster(ts)

```
[A,B,c] = getLM(ts)
```

```
A =

2.2553  -0.0007  -1.3978
-1.6511  0.0149  0.3157
0.3925  2.0820  -0.0011

B =

0.0120
2.2056
-1.5839

c =

0.3648
0.0002
0.0592
```

8 Prediction of the optimized TS model

```
y_pred_opt = ts.predict( u,y );
Plot the correlation

plotResiduals( y, y_pred_opt, 'figure', 3, 'title', ...
    'Throttle NARX opt: validation/correlation ');
set(gcf, 'WindowState', 'maximized');
```


Plot identification and predicted output y

```
figure(4),clf
subplot(4,1,1:2)
plot( t,y,'k-',t,y_pred,'r--',t,y_pred_opt,'g-.')
grid on
ylabel('y')
legend('y_{obsv}','y_{pred}','y_{pred.opt}','Location','best')
title( 'Throttle: predicted vs. observed data-points')
subplot(4,1,3)
plot( t,y-y_pred,'k-')
grid on
ylabel('y_{obsv}-y_{pred}')
subplot(4,1,4)
plot( t,y-y_pred_opt,'k-')
grid on
ylabel('y_{obsv}-y_{pred,opt}')
xlabel( 'time t' )
set(gcf, 'WindowState', 'maximized');
```



```
figure(5),clf
hold on
plot(u,y,'k.')
plot(v1(:,1),v1(:,2),'rs','MarkerSize',12)
plot(v2(:,1),v2(:,2),'bd','MarkerSize',12)
grid on
box on
xlabel('u')
ylabel('y')
title('Throttle: cluster centers v')
legend('data-points','v FCM', 'v opt')
set(gcf, 'WindowState', 'maximized');
```

