Lista de Exercícios de árvores binárias

1) Suponha que T é a árvore binária armazenada na memória, como na figura. Desenhe o diagrama de T.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
INFO	20	30	40	50	60	70	80	90			35	45	55	95
LEFT	0	1	0	0	2	0	0	7			0	3	11	0
RIGHT	0	13	0	0	6	8	0	14			12	4	0	0
RAIZ S	5				•									

- 2) Seja T a árvore binária armazenada na memória, como na Fig. 10-34, onde ROOT = 14.
 - a. Esboce o diagrama de T.
 - b. Percorra T em: (i) pré-ordem; (ii) inordem; (iii) pós-ordem.
 - c. Determine a profundidade d de T.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
INFO	Н	R		P	В		E		C	F	Q	S		A	K	L		D
LEFT	4	0		0	18		1		0	15	0	0		5	2	0		0
RIGHT	11	0		0	7		0		10	16	12	0		9	0	0		0

- 3) Considere a árvore binária T na Figura.
 - a. Encontre a profundidade d de T.
 - b. Percorra T, usando o algoritmo de pré-ordem.
 - c. Percorra T, usando o algoritmo inordem.
 - d. Percorra T, usando o algoritmo pós-ordem.
 - e. Encontre os nós terminais de T e a ordem em que eles são percorridos em (b), (c) e (d).

- 4) Seja T a árvore binária do exercício anterior. Encontre a representação sequencial de T na memória.
- 5) Uma árvore binária T tem nove nós. Esboce uma representação visual de T se o percurso pré-ordem e inordem de T levam às seguintes sequências de nós:

Pré-ordem:	G	B	Q	A	C	P	D	E	R
Inordem:	Q	В	C	A	G	P	E	D	R

- 6) Considere a expressão algébrica E = (2x + y)(5a b)³
 - a. Desenhe a 2-árvore correspondente.
 - b. Use T para escrever E na forma prefixa polonesa.
- 7) Esboce todas as possíveis e não semelhantes:
 - a. Árvores binárias T com três nós
 - b. 2-árvores T' com quatro nós externos
- 8) onsidere a árvore binária T na Figura

- (a) Por que T é uma árvore binária de busca?
- (b) Suponha que ITEM = 33 é adicionado à árvore. Encontre a nova árvore T

- 9) Encontre a árvore final T se os seguintes números são inseridos em uma árvore binária vazia de busca T: 50, 33, 44, 22, 77, 35, 60, 40
- 10) Suponha que n itens de dados A_1 , A_2 ,..., A_N já foram ordenados, isto é, $A_1 < A_2 < \cdots < A_N$
 - a. Se os itens são inseridos em ordem em uma árvore binária vazia T, descreva a árvore final T.
 - b. Qual a profundidade d da árvore final T?
 - c. Compare d com a profundidade média d* de uma árvore binária com n nós, para (i) n = 50; (ii) n = 100; (iii) n = 500
- 11) Suponha que a seguinte lista de letras é inserida em uma árvore binária vazia: J, R, D, G, W, E, M, H, P, A, F, Q
 - a. Encontre a árvore final T
 - b. Encontre o percurso inordem de T.
- 12) Seja H o heap mínimo na Figura. (H é um heap mínimo, uma vez que os elementos menores estão no topo do heap, em vez dos maiores.)
 Descreva o heap depois que ITEM = 11 é inserido em H.

- 13) Seja T a 2-árvore ponderada. Determine o comprimento do caminho ponderado P da árvore T.
- 14) Suponha que seis pesos, 4, 15, 25, 5, 8, 16, sejam dados. Encontre uma 2-árvore T com os pesos dados e com um comprimento de caminho P mínimo. (Compare T com a árvore da Figura do exercício anterior)

15) Suponha que itens de dados A, B, C, D, E, F, G ocorram com a seguinte distribuição de probabilidades:

F Itens de dados: C \boldsymbol{E} G \boldsymbol{A} BDProbabilidade: 10 30 5 15 20 15 5

Encontre um código de Huffman para os itens de dados.

- 16) Seja T a árvore binária de busca na Figura. Suponha que os nós 20, 55 e 88 são adicionados, um após o outro, a T. Determine a árvore final T.
- 17) Seja T a árvore binária de busca do exercício anterior. Suponha que os nós 22, 25 e 75 são adicionados, um após o outro, a T. Determine a árvore final T.

18) Encontre o comprimento de caminho ponderado P da árvore na Figura se os itens de dados A, B,..., G são assinalados aos seguintes pesos: (A, 13), (B, 2), (C, 19), (D, 23), (E, 29), (F, 5), (G, 9)

