Quantum Schur-type dualities of finite and affine type ${\cal B}$

Chun-Ju Lai

University of Virginia cl8ah@virginia.edu

May 7, 2014

(joint work with L. Luo and W. Wang)

(old) Schur-type dualities of finite type A/B and affine type A

- Classical
- q-Schur algebra level
- Quantum group level

(new) Schur-type dualities of affine type B [L-Luo-Wang2014]

- q-Schur algebra level
- Quantum group level

2 q-Schur algebra level

finite type A finite type B affine type A affine type B (new

3 Quantum group level (cont.) finite type *B*

 $oldsymbol{4}$ new affine type B duality

The algebra \widetilde{U}^i new Schur duality

Classical Schur duality

• \mathfrak{gl}_n : general linear Lie algebra / $\mathbb{C} \Rightarrow$ left action

$$\mathfrak{gl}_n \curvearrowright V^{\otimes d}$$

Here $V:=\mathbb{C}^n$ natural representation of \mathfrak{gl}_n

• S_d symmetric group \Rightarrow right action

$$\mathfrak{gl}_n \curvearrowright V^{\otimes d} \curvearrowleft S_d$$

Classical Schur duality

$$\mathfrak{gl}_n \qquad \stackrel{\psi}{\curvearrowright} \qquad V^{\otimes d} \qquad \stackrel{\varphi}{\backsim} \qquad S_d$$
 general linear Lie algebra
$$\qquad \text{tensor space} \qquad \text{symmetric group}$$

Schur duality (1927)

- **1** The actions of \mathfrak{gl}_n and S_d on the tensor space $V^{\otimes d}$ commute.
- 2 The algebras of operators on $V^{\otimes d}$ generated by the actions of \mathfrak{gl}_n and S_d are centralizing algebras of each other. That is,

$$\begin{array}{cccc} \operatorname{End}_{\psi(U(\mathfrak{gl}_n))}(V^{\otimes d}) & \simeq & \varphi(\mathbb{C}S_d) \\ & \psi(U(\mathfrak{gl}_n)) & \simeq & \operatorname{End}_{\varphi(\mathbb{C}S_d)}(V^{\otimes d}) \end{array}$$

Deformed objects (Quantum group level)

Here $V_q = \mathbb{Q}(q)^n$.

- Quantum group level Classical Schur duality finite type A
- $\mathbf{2}$ $q ext{-Schur algebra level}$

finite type A affine type A affine type A

3 Quantum group level (cont.) finite type B

4 new affine type $\overset{_}{\mathscr{B}}$ duality

The algebra U^i new Schur duality

Hecke algebra (of finite type A)

The Hecke algebra \mathcal{H}_d^A is a $\mathbb{Q}(q)$ -algebra generated by

$$\{T_i \mid i = 1, \dots, d-1\}$$

subject to

- Braid relations (among T_i 's)
- Hecke relations $(T_i q^{-1})(T_i + q) = 0$.

Hecke algebra action (of finite type A)

- $V_q = \sum_i \mathbb{Q}(q)v_i$
- $\begin{tabular}{ll} {\bf e.g.} & {\rm when} \ d=2, \\ V_q^{\otimes 2} & \curvearrowleft {\cal H}_2^A \ {\rm by} \\ \end{tabular}$

$$(v_a \otimes v_b)T_1 = \begin{cases} v_b \otimes v_a & \text{if } b > a \\ q^{-1}v_a \otimes v_b & \text{if } b = a \\ v_b \otimes v_a + (q^{-1} - q)v_a \otimes v_b & \text{if } b < a \end{cases}$$

Specializing
$$q = 1 \Rightarrow (v_a \otimes v_b)T_1 = v_b \otimes v_a = (v_a \otimes v_b)(12)$$

• $V_q^{\otimes d} \curvearrowleft \mathcal{H}_d^A$ similarly

Quantum group (of finite type A)

The quantum group $U_q(\mathfrak{gl}_n)$ is a $\mathbb{Q}(q)$ -algebra generated by

$$\{E_i, F_i, D_j, D_j^{-1}\}$$

subject to

- q-Chevalley relations
- q-Serre relations

Remark: The quantum group $U_q(\mathfrak{sl}_n) = \{E_i, F_i, K_i, K_i^{-1}\}$ is related via the embedding

$$\begin{array}{ccc} U_q(\mathfrak{sl}_n) & \hookrightarrow & U_q(\mathfrak{gl}_n) \\ K_i & \mapsto & D_i D_{i+1}^{-1} \end{array}$$

Example: commutivity

Here's an example showing $(F_2(v_3 \otimes v_2))T_1 = F_2((v_3 \otimes v_2)T_1)$

Schur-Jimbo duality

$$\begin{array}{cccc} U_q(\mathfrak{gl}_n) & \stackrel{\psi}{\curvearrowright} & V_q^{\otimes d} & \stackrel{\varphi}{\curvearrowleft} & \mathcal{H}_d^A \\ \text{quantum group} & & & \text{Hecke algebra} \end{array}$$

Schur-Jimbo duality (Jimbo1986)

The algebras $U_q(\mathfrak{gl}_n)$ and \mathcal{H}_d^A satisfy double centralizer property. That is,

$$\begin{array}{cccc} \operatorname{End}_{\psi(U_q(\mathfrak{gl}_n))}(V_q^{\otimes d}) & = & \varphi(\mathcal{H}_d^A) \\ & \psi(U_q(\mathfrak{gl}_n)) & = & \operatorname{End}_{\varphi(\mathcal{H}_d^A)}(V_q^{\otimes d}) \end{array}$$

- Quantum group level
 Classical Schur duality
 finite type A
- $\begin{tabular}{ll} \textbf{2} q-Schur algebra level} \\ & \text{finite type } A \end{tabular}$

finite type Baffine type Aaffine type B (new)

- **3** Quantum group level (cont.) finite type B
- **4** new affine type B duality The algebra \widetilde{U}^i new Schur duality

Deformed objects (q-Schur algebra level)

q-Schur algebra (of finite type A)

- Set of Weights $\Lambda(n,d) = \{(\lambda_1,\ldots,\lambda_n) \in \mathbb{N}^n | \sum \lambda_i = d\}$ \Rightarrow "q-permutation module" $x_\lambda \mathcal{H}_d^A$, $\lambda \in \Lambda(n,d)$
- $\bigoplus_{\lambda \in \Lambda(n,d)} x_{\lambda} \mathcal{H}_d^A \simeq V_q^{\otimes d}$
- $\bullet \ \, q\text{-Schur algebra} \,\, S_q^A(n,d) := \operatorname{End}_{\mathcal{H}_d^A} \left(\bigoplus_{\lambda \in \Lambda(n,d)} x_\lambda \mathcal{H}_d^A \right) \simeq \operatorname{End}_{\mathcal{H}_d^A} \left(V_q^{\otimes d} \right)$

Quantum Schur duality of finite type A

Proposition (Dipper-James1991)

The algebras $S_q^A(n,d)$ and \mathcal{H}_d^A satisfy double centralizer property. That is,

$$\begin{array}{lcl} \operatorname{End}_{S_q^A(n,d)}(V_q^{\otimes d}) & = & \mathcal{H}_d^A \\ S_q^A(n,d) & = & \operatorname{End}_{\mathcal{H}_d^A}(V_q^{\otimes d}) \end{array}$$

- Quantum group level Classical Schur duality finite type A
- **2** q-Schur algebra level

finite type B affine type A

affine type B (new

- **3** Quantum group level (cont.) finite type B
- **4** new affine type B duality

 The algebra \widetilde{U}^i new Schur duality

Hecke algebra (of finite type B)

$$\circ \longleftarrow \circ \longrightarrow \circ$$

$$0 \qquad 1 \qquad \qquad d-1$$

The Hecke algebra \mathcal{H}_d^B is a $\mathbb{Q}(q)$ -algebra generated by

$$\{T_i \mid i = 0, 1, \dots, d-1\}$$

subject to

- Hecke relations $(T_i q^{-1})(T_i + q) = 0$
- Braid relations (among T_i 's)

Remark: $\mathcal{H}_d^A \hookrightarrow \mathcal{H}_d^B$

Hecke algebra action (of finite type B)

- $V_q^{\otimes d} \curvearrowleft \mathcal{H}_d^B$ is described by $V_q^{\otimes d} \curvearrowleft \mathcal{H}_d^A$ and $V_q^{\otimes d} \curvearrowleft T_0$
- e.g. d = 2,

$$(v_a \otimes v_b)T_0 = \begin{cases} v_{-a} \otimes v_b & \text{if } a > 0\\ v_{-a} \otimes v_b + (q^{-1} - q)v_a \otimes v_b & \text{if } a < 0 \end{cases}$$

Quantum Schur duality of finite type B

We define the q-Schur algebra $S_q^{\imath}(n,d)$ of finite type B similarly.

$$S_q^{\imath}(n,d) \ \curvearrowright \ V_q^{\otimes d} \ \ ext{\sim} \ \mathcal{H}_d^B$$
 Hecke algebra

Proposition (R. M. Green1997)

The algebras $S_q^i(n,d)$ and \mathcal{H}_d^B satisfy double centralizer property.

Remark: There are other algebras having the right to be called the q-Schur algebra of type B: the q-Schur 2 algebra [Du-Scott2000] and the (Q,q)-Schur algebra [Dipper-James-Mathas1998].

- f 1 Quantum group level Classical Schur duality finite type A
- ${f 2}$ $q ext{-Schur algebra level}$ finite type A finite type B

affine type A

- 3 Quantum group level (cont.)
 - finite type E
- 4 new affine type B duality

The algebra U^i new Schur duality

Affine Hecke algebra (of type A)

The affine Hecke algebra $\widehat{\mathcal{H}}_d^A$ is a $\mathbb{Q}(q)$ -algebra generated by

$$\{T_i|i=1,\ldots,d-1\}\cup\{X_i,X_i^{-1}|i=1,\ldots,d\}$$

such that

- $\langle T_i \rangle \simeq \mathcal{H}_d^A$
- $\langle X_i, X_i^{-1} \rangle$ is a Laurent polynomial ring
- T_i, X_j satisfy some mixed relations

Affine Hecke algebra action (of type A)

• We extend V_q periodically by setting $\mathbb{V}_q = V_q \otimes \mathbb{Q}(q)[z,z^{-1}]$ e.g.

Each $v_f \in \mathbb{V}_q$ has a unique expression $v_f = \underbrace{v_i}_{\in V_a} z^a$

Affine Hecke algebra action (of type A)

• Each element $M_f = v_{f(1)} \otimes \ldots \otimes v_{f(d)} \in \mathbb{V}_q^{\otimes d}$ has a unique expression

$$\underbrace{M_{\overline{f}}}_{\in V_q^{\otimes d}} z_f = (v_{\overline{f}(1)} \otimes v_{\overline{f}(d)}) z_1^{a_1} \dots z_d^{a_d}$$

• e.g.

$$\underbrace{v_1 \otimes v_5 \otimes v_0}_{\in \mathbb{V}_q^{\otimes 3}} = \underbrace{(v_1 \otimes v_1 \otimes v_2)}_{\in V_q^{\otimes 3}} z_2^2 z_3^{-1}$$

Affine Hecke algebra action (of type A)

ullet $\mathbb{V}_q^{\otimes d} \curvearrowleft \widehat{\mathcal{H}}_d^A$ by

$$M_{f}X_{j} = q^{2(j-1)}(\ldots \otimes v_{f(j)-n} \otimes \ldots)$$

$$M_{f}T_{i} = \begin{cases} M_{f \cdot s_{i}} & +(q^{-1}-q)M_{\overline{f}}P_{0}(f,i) & \text{if } \overline{f}(i+1) > \overline{f}(i) \\ q^{-1}M_{\overline{f}}z_{f \cdot s_{i}} & +(q^{-1}-q)M_{\overline{f}}P_{0}(f,i) & \text{if } \overline{f}(i+1) = \overline{f}(i) \\ M_{f \cdot s_{i}} & +(q^{-1}-q)M_{\overline{f}}P_{1}(f,i) & \text{if } \overline{f}(i+1) < \overline{f}(i) \end{cases}$$

Here
$$P_1, P_0 \in \mathbb{Z}[z_1, z_1^{-1} \dots, z_d, z_d^{-1}]$$

• In the central region ($z_f=1$), $P_1\equiv 1$ and $P_0\equiv 0$ and hence the action is the same as in finite case.

Quantum Schur duality of affine type A

We define the q-Schur algebra $\widehat{S}_{q}^{A}(n,d)$ of affine type A similarly.

$$\widehat{S}_q^A(n,d)$$
 \curvearrowright $\mathbb{V}_q^{\otimes d}$ \checkmark $\widehat{\mathcal{H}}_d^A$ affine q -Schur algebra affine Hecke algebra

Proposition (R. M. Green1999)

The algebras $\widehat{S}_{a}^{A}(n,d)$ and $\widehat{\mathcal{H}}_{d}^{A}$ satisfy double centralizer property.

- Quantum group level Classical Schur duality finite type A
- $\mathbf{2}$ $q ext{-Schur algebra level}$

finite type A affine type A

affine type B (new)

- **3** Quantum group level (cont.) finite type B
- **4** new affine type B duality

new Schur duality

Affine Hecke algebra (of type B)

The affine Hecke algebra $\widehat{\mathcal{H}}_d^B$ is a $\mathbb{Q}(q)$ -algebra generated by

$$\{T_i \mid i = 0, 1, \dots, d-1\} \cup \{X_j, X_j^{-1} \mid j = 1, \dots, d\}$$

such that

- $\langle T_i \rangle \simeq \mathcal{H}_d^B$
- $\langle X_i, X_i^{-1} \rangle$ is a Laurent polynomial ring
- T_i, X_j satisfy some mixed relations

Affine Hecke algebra action (of type B)

ullet We want $\mathbb{V}_q^{\otimes d} \curvearrowleft \widehat{\mathcal{H}}_d^B$ by the same formulation

$$M_f T_i = \left\{ \begin{array}{ll} M_{f \cdot s_i} & + (q^{-1} - q) M_{\overline{f}} P_0(f,i) & \text{if } \overline{f}(i+1) > \overline{f}(i) \\ q^{-1} M_{\overline{f}} z_{f \cdot s_i} & + (q^{-1} - q) M_{\overline{f}} P_0(f,i) & \text{if } \overline{f}(i+1) = \overline{f}(i) \\ M_{f \cdot s_i} & + (q^{-1} - q) M_{\overline{f}} P_1(f,i) & \text{if } \overline{f}(i+1) < \overline{f}(i) \end{array} \right.$$

where
$$P_1, P_0 \in \mathbb{Z}[z_0, z_0^{-1}, z_1, z_1^{-1}, \dots, z_d, z_d^{-1}].$$

• The extra generator T_0 causes trouble since z_0 doesn't make sense in the affine A setting. We overcome it by defining $z_0=z_1^{-1}$ and hence $P_1,P_0\in\mathbb{Z}[z_1,z_1^{-1},\ldots,z_d]$ fit perfectly in this picture.

Quantum Schur duality of affine type B

We define the q-Schur algebra $\widehat{S}^{\imath}_{q}(n,d)$ of affine type B similarly.

$$\widehat{S}^{\imath}_q(n,d) \curvearrowright \mathbb{V}_q^{\otimes d}
ightarrow \widehat{\mathcal{H}}_d^B$$
 affine q -Schur algebra affine Hecke algebra

Proposition (L-Luo-Wang, 2014)

The algebras $\widehat{S}_{a}^{i}(n,d)$ and $\widehat{\mathcal{H}}_{d}^{B}$ satisfy double centralizer property.

Quantum Schur-type dualities

finite type A	affine type ${\cal A}$
$U_q(\mathfrak{gl}_n)$	$U_q(\widehat{\mathfrak{gl}}_n)$
$ S_q^A(n,d) $	$ \begin{vmatrix} & \downarrow \\ \widehat{S}_q^A(n,d) & \curvearrowright \mathbb{V}_q^{\otimes d} & \curvearrowright & \widehat{\mathcal{H}}_d^A \end{vmatrix} $
finite type B	affine type ${\cal B}$
?	??
$\begin{bmatrix} & \downarrow \\ S_q^i(n,d) & \curvearrowright V_q^{\otimes d} & \curvearrowright & \mathcal{H}_d^B \end{bmatrix}$	$\downarrow \\ \widehat{S}_q^{\imath}(n,d) \curvearrowright \mathbb{V}_q^{\otimes d} \curvearrowleft \widehat{\mathcal{H}}_d^B$

Remark: There is other type B duality replacing $U_q(\mathfrak{gl}_n)$ by $U_q(\mathfrak{so}_{2n+1})$ and \mathcal{H}_d^B by q-Brauer algebra.

- Quantum group level Classical Schur duality finite type A
- $\mathbf{2}$ $q ext{-Schur algebra level}$

finite type Aaffine type Aaffine type A(new

- **3** Quantum group level (cont.) finite type B
- 4 new affine type B duality

The algebra U^i new Schur duality

Coideal subalgebra (of finite type B)

• The algebra U^i is generated by

$$\left\{e_i, f_i, k_i, k_i^{-1}\right\} \cup \left\{\mathbf{t}\right\}$$

subject to some Serre-type relations

• t arises from the Dynkin diagram involution

Coideal subalgebra (of finite type B)

• It has a counterpart, the algebra U^{\jmath} generated by

$$\left\{e_i, f_i, k_i, k_i^{-1}\right\}$$

ullet From the Dynkin diagram involution one sees there is no t.

• In this talk we will focus on the more interesting algebra U^i .

Coideal subalgebra (of finite type B)

- U^i is a subalgebra of $U = U_a(\mathfrak{sl}_{\bullet}) = \langle E_i, F_i, K_i, K_i^{-1} \rangle / \sim$
- The coproduct $\Delta: U \to U \otimes U$ restricts to $\Delta: U^i \to U^i \otimes U$. $\Rightarrow U^i$ is a (right) coideal subalgebra of U and (U, U^i) form a quantum symmetric pair.

Coideal subalgebra action (of finite type B)

• U^i -action v.s. U-action

i-Schur duality of finite type B,

$$U \supseteq \begin{array}{cccc} U^{\imath} & \overset{\psi}{\sim} & V_q^{\otimes d} & \overset{\varphi}{\sim} & \mathcal{H}_d^B \\ & & & & & \\ & & & & \\ S_q^B(n,d) & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Proposition (Bao-Wang, 2013)

- **1** The algebras U^i and \mathcal{H}_d^B satisfy double centralizer property.
- (U, U^i) form a quantum symmetric pair.

Example: commutivity

This commutivity is highly nontrivial!

- f 1 Quantum group level Classical Schur duality finite type A
- 2 q-Schur algebra level

finite type Aaffine type Aaffine type A

- **3** Quantum group level (cont.) finite type B
- f a new affine type B duality The algebra $\widetilde U^i$ new Schur duality

Constructing U^i

- We want to construct an analogue in affine type B.
- The algebra U^i is a $\mathbb{Q}(q)$ -algebra generated by

$$\left\{e_i, f_i, k_i, k_i^{-1}\right\} \cup \left\{t, \widetilde{t}\right\}$$

subject to similar Serre-type relations

 $oldsymbol{ ilde{t}}$ arises from the Dynkin diagram involution

action of \widetilde{U}^i (of affine type B)

• \widetilde{U}^{\imath} -action pprox periodic U^{\imath} -action, while \widetilde{t} is slightly different.

$$U_q(\widehat{\mathfrak{sl}}_ullet) \supseteq \widetilde{\underline{U}}^{\imath} \qquad \curvearrowright \qquad \mathbb{V}_q^{\otimes d} \qquad \curvearrowleft \qquad \widehat{\mathcal{H}}_d^B$$
 affine Hecke algebra

Theorem (L-Luo-Wang2014)

The actions of \widetilde{U}^{\imath} and $\widehat{\mathcal{H}}^{B}_{d}$ on $\mathbb{V}_{q}^{\otimes d}$ commute

Remark: $(U_q(\widehat{\mathfrak{sl}}_{\bullet}), \widetilde{U}^i)$ form a quantum symmetric pair

Question: How do we achieve double centralizer property?

\imath -Schur duality of affine type B

We plan to "extend" \widetilde{U}^i to an affine coideal subalgebra $\widehat{U}^i\subseteq U_q(\widehat{\mathfrak{gl}}_{ullet})$ by adding some central elements

We expect (work in progress)

- \widehat{U}^i and $\widehat{\mathcal{H}}^B_d$ have double centralizer property.
- $\ \, \underline{\widetilde{U}}{}^{\imath} \ \, \text{and} \, \, \widehat{\mathcal{H}}^B_d \ \, \text{have double centralizer property if} \, \, n>d.$

Remark: Similar result holds for affine type A [Ginzburg-Vasserot, Lusztig, Green].

References

H. Bao and W. Wang.

A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, arXiv:1310.0103 (2013).

R. M. Green.

Hyperoctahedral Schur algebra, J. Alg. 192 (1997), 418-438.

R. M. Green

The affine q-Schur algebra, J. Alg. **215**, (1999) 379–411.

C. Lai, L. Luo and W. Wang. in preparation.

M. Jimbo

A q-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247–252.

R. Dipper and G. James

q-tensor space and q-Weyl modules, Trans. Amer. Math. Soc. **327** (1991), no. 1, 251–282.