Intro to Deep Generative Models - DIRP Spring 2025

Meeting 1: Feb 8, 2025 –
 Introduction and Computer Vision Basics

Topic	Resources
Computer Vision Basics Image formation and representation Basic image processing (noise, filtering, denoising) Convolutions Edge detection and feature extraction Introduction to Python libraries (Numpy, OpenCV)	- Image Representation: □ Image Representation - Linear Filtering: □ Linear Filtering - Edge Detection: □ Edge Detection - ☆ Canny Edge Detector Paper: A Computational Approach To Edge Detection - Feature detection: □ Feature Detectors: SIFT and Variants - □ Szeliski Chapter 3.1-3.3
 Deep Learning for Vision Basics of a neural network Backpropagation Activation functions Loss functions and optimization 	First three videos of this playlist (3B1B) <u>Neural networks - YouTube</u>
Convolutional Neural Networks (CNNs) - CNN Architecture - Convolution and pooling - Popular CNN architectures - Batch normalization - Data augmentation	 What is a convolution? ■ But what is a convolution? ■ Deep Learning Book Chapter 9: https://www.deeplearningbook.org/contents/convnets.html
Recurrent Neural Networks (RNNs) - RNN architecture - LSTM and GRU	- Deep Learning Book Chapter 10: https://www.deeplearningbook.org/contents/rnn.html

Convolutional Neural Networks (CNNs) - CNN Architecture - Convolution and pooling - Popular CNN architectures - Batch normalization - Data augmentation	 What is a convolution? But what is a convolution? Deep Learning Book Chapter 9: https://www.deeplearningbook.org/contents/convnets.html
Recurrent Neural Networks (RNNs) - RNN architecture - LSTM and GRU	- Deep Learning Book Chapter 10: https://www.deeplearningbook.org/contents/rnn.html
Autoencoders - Autoencoder architectures - Latent space/dimensionality reduction - Feature learning - Variational Autoencoders (VAEs) - VAEGAN, VQ-VAE	 Variational Autoencoders → Highly recommend this video An Introduction to VAE-GANs Autoencoding beyond pixels paper: https://arxiv.org/abs/1512.09300
Generative Adversarial Networks (GANs) - GAN architecture - DCGANs, Conditional GANs	 Friendly Introduction to GANs: A Friendly Introduction to Generative Ad GAN implementation: <u>Build a GAN From Scratch</u>
Advanced Generative Models - Score based and energy based models - Diffusion Models	 Energy-Based Models Stanford CS236: Deep Generative Models I 2023 Stanford CS236: Deep Generative Models I 2023 Score-Based Models Stanford CS236: Deep Generative Models I 2023

Intro to Deep Generative Models

Q Search Intro to Deep Generative Models

Intro to Deep Generative Models

Image Representation

Introduction to Deep Generative Models

This is a reading group under the Directed Reading Program (DiRP) at UT Austin. This group will cover concepts starting from basic computer vision concepts such as filtering, convolutions, edge/object detection, etc. and will slowly build up to more complex models including CNNs, RNNs, Variational Autoencoders (VAEs, VAE-GANs, VQ-VAEs), GANs, and Diffusion Models. This website is intended to be a central hub for notes, papers, and many other resources that will be helpful to anyone researching this topic.

This site uses Just the Docs, a documentation theme for Jekyll.

Website for course notes + other resources!

What is an image? How do we represent it?

- Images are 2D
 representations of a 3D
 scene
- Three major ways of representing images:
 - Matrix form
 - Function representation
 - Digital images

Matrix Representation

- Each pixel in the image corresponds to some value (i, j) in the matrix
- Values in the matrix represent intensity ⇒ ranges from 0 to 255 (normalized: 0 to 1)
 - 0 means black (no intensity)
 - 1 means white (maximum intensity)

Color vs. Grayscale Images

- Representing grayscale images is pretty easy!
 - Requires one channel to represent the image
 - Number of channels tells us how many numbers are required to specify each pixel's color/intensity
- Color images:
 - Requires 3 channels: Red, Green, and Blue (RGB)

Color Images

- Cones in the human eye
 (receptors) perceive light roughly
 in terms of Red, Green, Blue
- When representing color images in matrix form, we actually require three matrices for R, G, B intensities
 - Stacked together to create a single matrix representing the image where (i, j) in the matrix a tuple containing intensities for red, green, and blue

Function representation

- Images can be represented as continuous functions, where f: (i, j) → I (intensity)
- Function representation is continuous, as opposed to the matrix representation, which is discrete
 - This makes function representations useful for certain mathematical operations, such as calculating gradients
- For grayscale images, f(x, y) = i
- For color images, function f is
 vector-valued f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))

Digital Images

- Use of sensor arrays
- Digital images are a discrete, 2D, digital representation of the function representation
 - Sampled and quantized

Image Transformations

What is a transformation? What can you with transformations?

Image Transformations

What is a transformation? What can you with transformations?

- Dimming/Brightening
- Rotating
- Mirroring
- much, much more!
- ⇒ Image Filtering

Image Transformation Operations

- Point
- Local
- Global

Point

Output value (m_i, n_j) is dependent upon the input value at the same coordinate.

Pixel to pixel

Local

Output value (m_i, n_j) is dependent upon the input values of pixels in a pxp neighborhood of the corresponding pixel in the input image.

Global

Output value (m_i, n_j) is dependent upon all values in the input image.

Point Operations: Applications

- Dimming/brightening
- Mirroring
- Increasing/decreasing contrast
- etc.

Local Operations: Applications

- Reducing noise
- Filtering
- Convolutions
- etc.

Global Operations: Applications

Fourier transforms

- The Fourier transform breaks down an image into a sum of complex exponentials with different frequencies, phases, and magnitudes.
- The output of the Fourier transform is a representation of the image in the frequency domain

Reducing Noise: What is noise?

Types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Source: S. Seitz

Gaussian noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

```
>> noise = randn(size(im)).*sigma;
>> output = im + noise;
```

Moving Average

- Take an nxn window and simply take the average of all the pixels in that window
- This becomes the value of the center pixel

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x,y]

F[x,y]

\sim	F	
1	n	01
(T	[x,	u
		.7

F[x,y]

20100	0	0	
	0	0	
)	0	0	
)	C	0	
)	0	0	
)	0	0	
)	0	0	
1	0	0	
	0	0	
	0	0	

F[x,y]

0 0 0 0 0 0 0 0 0	0
0 0 0 90 90 90 90 90 0	0
0 0 0 90 90 90 90 90 0	0
0 0 0 90 90 90 90 0	0
0 0 0 90 0 90 90 90 0	0
0 0 0 90 90 90 90 0	0
0 0 0 0 0 0 0 0 0	0

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	60	90	90	90	60	30
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
10	20	30	30	30	30	20	10
10	10	10	0	0	0	0	0

Image Filtering

- A linear filter is where an output pixel's value is a weighted sum of pixel values within a small neighborhood N
- The weights that you multiply each pixel by are called the kernel/filter/mask

Correlation filtering

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$
Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

Cross-Correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \frac{H[u,v]F[i+u,j+v]}{\text{Non-uniform weights}}$$

denoted $G = H \otimes F$

What can you do with correlation/cross-correlation filtering?

- Blur images (using a Gaussian filter)
- Shift images
- Dim/Brighten images
- Increase/Decrease contrast
- Edge detection
- etc.

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

?

Practice with linear filters

Original

Filtered (no change)

0	0	0
0	0	1
0	0	0
	75	

?

Original

Original

Shifted left by 1 pixel with correlation

Original

1	1	1	1
<u>-</u>	1	1	1
9	1	1	1

?

Original

Blur (with a box filter)

Original

0 0 0 0 2 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

Original

Sharpening filter: accentuates differences with local average

-