Concrete Compressive Strength Analysis with Keras

July 12, 2024

Concrete Compressive Strength Analysis with Keras

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from statsmodels.stats.outliers_influence import variance_inflation_factor
from keras.models import Sequential
from keras.layers import Dense, Input
from keras.optimizers import Adam
from keras.regularizers import 12
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
```

0.1 Download and Clean Dataset

```
[360]: data = pd.read_csv('https://cocl.us/concrete_data')
       data.head()
[360]:
                                                       Superplasticizer
          Cement Blast Furnace Slag Fly Ash Water
           540.0
                                 0.0
                                           0.0 162.0
                                                                    2.5
           540.0
                                 0.0
                                                                    2.5
       1
                                           0.0 162.0
       2
           332.5
                               142.5
                                          0.0 228.0
                                                                    0.0
       3
           332.5
                               142.5
                                          0.0 228.0
                                                                    0.0
           198.6
                               132.4
                                          0.0 192.0
                                                                    0.0
          Coarse Aggregate Fine Aggregate Age
                                                  Strength
       0
                    1040.0
                                     676.0
                                              28
                                                     79.99
                    1055.0
                                     676.0
                                             28
                                                     61.89
       1
       2
                     932.0
                                     594.0 270
                                                     40.27
                                                     41.05
       3
                     932.0
                                     594.0 365
                                                     44.30
                     978.4
                                     825.5 360
[361]: data.shape
[361]: (1030, 9)
[362]: data.describe()
```

[362]:		Cement	Blast	Furnace Slag	F	ly Ash		Water	\	
200-20	count	1030.000000		1030.000000		000000	1030.	000000	•	
	mean	281.167864		73.895825		188350		567282		
	std	104.506364		86.279342		997004		354219		
	min	102.000000		0.000000		000000		800000		
	25%	192.375000		0.000000		000000		900000		
	50%	272.900000		22.000000	0.	000000	185.	000000		
	75%	350.000000		142.950000	118.	300000	192.	000000		
	max	540.000000		359.400000	200.	100000	247.	000000		
		Superplastic		Coarse Aggrega		ne Aggr	_		Age	\
	count	1030.00		1030.0000		1030.0		1030.0		
	mean	6.20		972.9189			80485		62136	
	std	5.97		77.7539			75980		69912	
	min	0.00		801.0000			00000		00000	
	25%	0.00		932.0000			50000		00000	
	50%	6.40		968.0000			00000		00000	
	75%	10.20		1029.4000			00000		00000	
	max	32.20	0000	1145.0000	000	992.6	00000	365.0	00000	
		C+								
		Strength 1030.000000								
	count	35.817961								
	mean	16.705742								
	std min	2.330000								
	25%	23.710000								
	50%	34.445000								
	75%	46.135000								
	max	82.600000								
	IIIax	02.00000								
	Checkin	ng null items								
[363]:		snull().sum()								
[363]:	Cement		0							
		Furnace Slag	0							
	Fly Ash		0							
	Water		0							
		lasticizer	0							
		Aggregate	0							
	Fine A	ggregate	0							
	Age		0							
	Streng		0							
	dtype:	int64								

0.2 Calculating and Using VIF to Drop Variables

```
[]: """
       # Ensure all columns are numeric before calculating VIF
       numeric_data = data.select_dtypes(include=[float, int])
       # Calculate VIF for each feature
       def calculate_vif(df):
           vif = pd.DataFrame()
           vif["Features"] = df.columns
           vif["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.
        \hookrightarrow shape[1])]
           return vif
       # Calculate VIF and drop highly correlated features
       vif = calculate_vif(numeric_data.drop('Strength', axis=1))
       print(vif)
       # Dropping features with VIF greater than 10
       high_vif_features = vif[vif["VIF"] > 10]["Features"].tolist()
       data dropped = data.drop(columns=high vif features)
       data_dropped.head()
       11 11 11
[373]: # Define features and target
       X = data.drop('Strength', axis=1)
       y = data['Strength']
       X.head()
[373]:
          Cement Blast Furnace Slag Fly Ash Water Superplasticizer \
           540.0
                                 0.0
                                           0.0 162.0
                                                                    2.5
       0
       1
          540.0
                                 0.0
                                           0.0 162.0
                                                                    2.5
       2
           332.5
                                           0.0 228.0
                                                                    0.0
                               142.5
                                           0.0 228.0
                                                                    0.0
       3
           332.5
                               142.5
           198.6
                               132.4
                                           0.0 192.0
                                                                    0.0
          Coarse Aggregate Fine Aggregate Age
       0
                    1040.0
                                     676.0
                                              28
                    1055.0
                                     676.0
                                             28
       1
       2
                     932.0
                                     594.0 270
       3
                                     594.0 365
                     932.0
       4
                     978.4
                                     825.5 360
[374]: y.head()
```

```
[374]: 0 79.99
1 61.89
2 40.27
3 41.05
4 44.30
Name: Strength, dtype: float64

0.3 Normalizing the data
```

[375]: scaler = StandardScaler()

0.4 Split data into train and test

```
[377]: X_train, X_test, y_train, y_test = train_test_split(X_norm, y, test_size=0.3,_u \( \text{-grandom_state} = 30 \)
```

0.5 Building the Neural Network

```
[378]: # Define the model
model = Sequential()

# Add the input layer with specified shape
model.add(Input(shape=(X_train.shape[1],)))

# Add additional layers as needed
model.add(Dense(640, activation='relu', kernel_regularizer=12(0.00001)))
model.add(Dense(320, activation='relu', kernel_regularizer=12(0.00001)))
model.add(Dense(10, activation='relu', kernel_regularizer=12(0.00001)))
model.add(Dense(1, activation='relu', kernel_regularizer=12(0.00001)))
```

```
# Compile the model
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
# Print model summary
model.summary()
```

Model: "sequential_37"

Layer (type) →Param #	Output Shape	П
dense_178 (Dense)	(None, 640)	ш
dense_179 (Dense) →205,120	(None, 320)	П
dense_180 (Dense) →3,210	(None, 10)	П
dense_181 (Dense) → 11	(None, 1)	ш

Total params: 214,101 (836.33 KB)

Trainable params: 214,101 (836.33 KB)

Non-trainable params: 0 (0.00 B)

0.6 Training the Neural Network

0.7 Evaluating the Model

```
[296]: # Evaluate the model
loss, mae = model.evaluate(X_test, y_test)
print(f"Mean Absolute Error: {mae}")

plt.figure(figsize=(14, 7))
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
```

20.4962 - mae: 2.9416

Mean Absolute Error: 2.799144983291626


```
[297]: # Predict the Concrete Compressive Strength for the test dataset
y_pred = model.predict(X_test)

# Mean Squared Error (MSE)
mse = mean_squared_error(y_test, y_pred)

# R-squared
r2 = r2_score(y_test, y_pred)
```

```
10/10 0s 2ms/step
```

```
[298] : r2
```

[298]: 0.9388676069557774

```
[299]: mse
```

[299]: 17.34805599959136

```
[300]: # Plotting the Actual vs Predicted values

plt.figure(figsize=(10, 6))

plt.scatter(y_test, y_pred, alpha=0.5)

plt.xlabel('Actual Concrete Compressive Strength')

plt.ylabel('Predicted Concrete Compressive Strength')

plt.title('Actual vs Predicted Concrete Compressive Strength')

plt.show()
```

