CSC 212: Data Structures and Abstractions Binary Search Trees

Jonathan Schrader

[credit Marco Alverez]

Department of Computer Science and Statistics University of Rhode Island

Fall 2022

Quick notes

- Final Project (about 5 weeks)
 - ✓ requires planning and long coding hours
 - ✓ there is a lot to learn
- , Team Work
 - ✓ motivate each other
 - ✓ all team members must understand the topic and code
 - a presentation to the class will follow by the end of the semester

k-ary Trees

k-ary Trees

- In a **k-ary tree**, every node has between 0 and k children
- In a **full (proper)** k-ary tree, every node has exactly 0 or k children
- In a **complete** k-ary tree, every level is entirely filled, except possibly the deepest, where all nodes are as far left as possible
- In a **perfect** k-ary tree, every leaf has the same depth and the tree is full

Quiz (k = 2)

Full? Complete? Perfect?

Binary Tree

A k-ary tree where k = 2

How to implement binary trees?

Node:

data left child right child

Binary Search Trees

Binary Search Tree

- A BST is a binary tree
- A BST has symmetric order
 - √ each node x in a BST has a key key(x)
 - \sqrt{y} for all nodes y in the left subtree of x, key(y) < key(x) **
 - \sqrt{y} for all nodes y in the right subtree of x, key(y) > key(x)

(**) assume that the keys of a BST are pairwise distinct


```
class BSTNode {
    private:
        int data;
        BSTNode *left;
        BSTNode *right;
    public:
        BSTNode(int d);
        ~BSTNode();
    friend class BSTree;
```

```
class BSTree {
    private:
        BSTNode *root;
        void destroy(BSTNode *p);
    public:
        BSTree();
        ~BSTree();
        void insert(int d);
        void remove(int d);
        BSTNode *search(int d);
```

Search into BSTs

Search

- Start at root node
- If the search key matches the current node's key then **found**
- If search key is greater than current node's key √ search on right child
- If search key is less than current node's
 - √ search on left child
- Stop when current node is NULL (not found)

Insert into BSTs

Insert

- Perform a Search operation
- If **found**, no need to insert (may increase counter)
- If **not found**, insert node where Search stopped

Remove from BSTs

Remove

Case 1: node is a leaf

√ trivial, delete node and set parent's pointer to NULL

Case 2: node has 1 child

√ trivial, set parent's pointer to the only child and delete node

Case 3: node has 2 children

√ find successor

can also use predecessor

- √ copy successor's data to node
- √ delete successor

BST Traversals

Traversals

Preorder traversal

Inorder traversal

Postorder traversal

Preorder traversal?

Postorder traversal?

Inorder traversal?

How to destroy a binary tree?

How to print all elements in increasing order?

Analysis

Tree Shape?

Implications

Cost of basic Operations?

√Search

√Insert

Remove

Worst-case?

Best-case?

Average-case?

Average-case analysis

- If **n distinct keys** are inserted into a BST in random order, expected number of compares for basic operations is ~2 ln n ~= 1.39 log n
 - √ proof: 1-1 correspondence with quick-sort partitioning

Collections/Dictionaries

	What?	Sequential (unordered)	Sequential (ordered)	BST
search	search for a key	0(n)	O(log n)	0(h)
insert	insert a key	0(n)	0(n)	0(h)
delete	delete a key	0(n)	0(n)	0(h)
min/max	smallest/largest key	0(n)	0(1)	0(h)
floor/ ceiling	predecessor/ successor	0(n)	O(log n)	0(h)
rank	number of keys less than key	0(n)	O(log n)	0(h)**

(**) requires the use of 'size' at every node