A model to study the biological effects of Epstein-Barr virus in epithelial cells: Bioinformatics summary I

Rene Welch

Department of Statistics University of Wisconsin - Madison

November 2nd, 2015

1 Alignment statistics

2 Gene expression quantification with RSEM

3 Differential expression analysis with DESeq

4 Comparative analysis

Alignments statistics

We aligned using the **RSEM's bowtie** default parameters to the **hg19** genome.

Old data

Treatment	Cell	Replicate	Total Reads	Aligned	Failed	Supressed	Aligned %
CaFBS	NOK	Rep1	20,918,273	9,866,971	10,773,042	278,260	47.17%
CaFBS	NOK	Rep2	19,145,123	7,276,020	11,656,212	212,891	38.0%
CaFBS	NOK	Rep3	14,115,783	6,488,151	7,458,838	168,794	45.96%
MC	NOK	Rep1	25,223,604	15,607,189	9,256,244	360,171	61.88%
MC	NOK	Rep2	23,752,280	15,274,585	8,123,504	354,191	64.31%
MC	NOK	Rep3	25,125,404	13,491,436	11,342,313	291,655	53.7%
No-tr	NOK	Rep1	15,874,751	6,095,284	9,430,327	349,140	38.4%
No-tr	NOK	Rep2	20,729,192	7,489,732	12,908,019	331,441	36.13%
No-tr	NOK	Rep3	39,650,830	15,997,008	23,174,059	479,763	40.34%
No-tr	NOK	Rep4	14,691,745	4,240,920	9,507,712	943,113	28.87%
CaFBS	EBV_NOK	Rep1	46,090,189	25,856,212	19,545,057	688,920	56.1%
CaFBS	EBV_NOK	Rep2	25,832,522	8,947,614	15,786,150	1,098,758	34.64%
CaFBS	EBV_NOK	Rep3	31,548,887	12,327,626	18,283,663	937,598	39.07%
MC	EBV_NOK	Rep1	23,843,595	13,854,296	9,495,500	493,799	58.1%
MC	EBV_NOK	Rep2	22,964,158	11,297,052	11,224,921	442,185	49.19%
MC	EBV_NOK	Rep3	20,190,546	10,793,401	9,003,337	393,808	53.46%
No-tr	EBV_NOK	Rep1	24,738,646	7,319,700	16,692,994	725,952	29.59%
No-tr	EBV_NOK	Rep2	20,133,523	4,317,215	14,318,593	1,497,715	21.44%
No-tr	EBV_NOK	Rep3	44,257,592	16,636,921	25,916,808	1,703,863	37.59%
No-tr	EBV_NOK	Rep4	16,453,801	7,131,873	8,710,491	611,437	43.34%

Alignments statistics

We aligned using the **RSEM's bowtie** default parameters to the **hg19** genome. Scott's data:

Treatment	Cell	Replicate	Total Reads	Aligned	Failed	Supressed	Aligned %
MC	NOK	Rep1	23,282,428	11,707,297	11,352,280	222,851	50.28%
MC	NOK	Rep2	57,410,179	37,925,563	18,663,347	821,269	66.06%
MC	NOK	Rep3	41,102,488	11,524,597	29,374,338	203,553	28.04%
MC	NOK	Rep4	41,282,292	30,574,767	10,098,455	609,070	74.06%
No-tr	NOK	Rep1	35,298,403	21,367,644	13,535,523	395,236	60.53%
No-tr	NOK	Rep2	36,877,444	28,711,421	7,594,190	571,833	77.86%
No-tr	NOK	Rep3	38,664,441	28,591,454	9,497,438	575,549	73.95%
No-tr	NOK	Rep4	38,382,096	29,780,884	8,002,145	599,067	77.59%
MC	EBV_NOK	Rep1	24,367,026	16,254,296	7,870,336	242,394	66.71%
MC	EBV_NOK	Rep2	33,899,258	19,398,419	14,068,017	432,822	57.22%
MC	EBV_NOK	Rep3	39,523,354	29,660,612	9,226,853	635,889	75.05%
MC	EBV_NOK	Rep4	30,406,432	21,686,918	8,233,310	486,204	71.32%
No-tr	EBV_NOK	Rep1	40,184,017	4,574,064	35,526,438	83,515	11.38%
No-tr	EBV_NOK	Rep2	35,110,520	25,602,610	9,128,544	379,366	72.92%
No-tr	EBV_NOK	Rep3	50,194,500	40,804,450	8,686,319	703,731	81.29%
No-tr	EBV_NOK	Rep4	39,942,772	30,605,482	8,743,082	594,208	76.62%

Gene expression quantification with RSEM (log2 FoldChange counts)

Gene expression quantification with RSEM (log2 FoldChange counts) [with EBV as treatment]

Caption: The two plots on top correspond to the old data, and the one below comes from Scott's lab.

Differential expression analysis with DESeq

- ▶ DEseq model the count data by fitting a NegBin model on the count data.
- Calculates the dispersion for each gene, and then models the dispersion as a function of the mean gene expression.
- For this iteration, we are fitting the model for each Cell.Type by separate. In further iterations, we are going to fit Cell.Type + Treatment together.
- Additionally, need to change the software to DESeq2 (is a bit more stable).

Mean gene expression vs. estimated dispersion

MA plots

p.value histograms for diff. expression tests

CaFBS vs. no treatment (Old data)

MC vs. no treatment (Old data)

MC vs. no treatment (Scott's data)

Comparative analysis

All genes

Additional slides

Gene expression quantification with RSEM (log2 FoldChange abundance)

Gene expression quantification with RSEM (log2 FoldChange abundance) [with EBV as treatment]

Caption: The two plots on top correspond to the old data, and the one below comes from Scott's lab.

CAFBS diagnostics

Comparative analysis

Upregulated genes

Comparative analysis

Downregulated genes

