Generative Adversarial Networks

DL 2.0. Workshop Gaurav Manek

What is a Generative Model?

Generative

- Produces samples from a distribution.
- Input:
 - source of randomness,
 - class label,
 - latent variable, etc.
- Output: a sample from the target distribution.

Discriminative

- Given a sample, determines if it comes from a distribution
- Input: a sample
- Output:
 - True/False,
 - a class label, etc.

Training a Generative Model

Generative

- Data
 - (Image, Label)
 - (Image, Label)
 - **–** ...
- Label -> Image
 - Not a function!
 - It is a distribution.
 - One-to-many relationship.

Discriminative

- Data
 - (Image, Label)
 - (Image, Label)
 - ...
- Image -> Label
 - Non-bijective function.
 - SGD to learn function.

Make the Generator a Function

Source of Randomness

Needed to produce different samples from the distribution.

Generator Network

Function from random vector z to an image x. We are learning weights so that x appears to be from target distribution Y.

Score the output

Score the output.

Source of Randomness

Needed to produce different samples from the distribution.

Generator Network

Function from random vector *z* to an image *x*. We are learning weights so that *x* appears to be from target distribution *Y*.

Score the Output

Given a sample *x* from *X*, we need a differentiable function that can determine how likely *x* is to be from target distribution *Y*. How can we construct such a function?

The Discriminator Network

Training the Network (1/3)

Training the Network (2/3)

Training the Network (3/3)

Output!

Comparing Output

