Comparing models of irrational behaviour against individual variance

Lenard Dome and Andy Wills

Apr 12, 2022

XKCD:2323

TOOL FOR TAKING HARD PROBLEMS AND MOVING THEM TO THE METHODS SECTION.

Structure

- 1. The framework
- 2. The tools
- 3. The phenomenon
- 4. The method
- 5. The findings

The framework: global model behaviour

Roberts and Pashler (2000) pointed out three distinct areas not covered by a goodness-of-fit:

- 1. prediction What does the model say will happen?
- 2. heterogeneity Between-subject variability is not explained by goodness-of-fit.
- 3. *a priori* likelihood How likely that the model will be a good fit?

We evaluate models on these neglected areas of formal modelling.

The tools: parameter space partitioning

- To model behavior, we need to know how models behave (Pitt, Kim, MNavarro, Myung, 2006)
- MCMC method to define disjointed regions in the parameter space
- Tells us what unobserved results the model predicts

We implemented the technique in an que package: psp

The tools: g-distance

The relationship between these sets will be our measure

The tools: g-distance

Sufficiency of accomodation
$$lpha = rac{|M \cap H|}{|H|}$$

The tools: g-distance

Breadth of **prediction**
$$eta = rac{|M \cap H'|}{|H'|}$$

$$g=\sqrt{w_lpha(1-lpha)^2+(1-w_lpha)(0-eta)^2},$$

The phenomenon: the inverse base-rate effect

Abstract Design

Training	Test	
AB o common x3	A, B, C	
AC ightarrow rare x1	ВС	

- ullet Participants overwhelmingly prefer BC
 ightarrow rare
- ullet BC o rare is observed even when:
 - o participants have high accuracy
 - o participants have low accuracy
 - stimuli are pictures, colours, symptoms, person characteristics

See Don, Worthy and Livesey (2021)'s excellent paper for a more thorough review.

Method: ordinal patterns

Ordinal patterns are a qualitative description of a relationship between an independent variable as defined by at least one of the dependent variables.

Directed Graph

Inequality Matrices

Method: procedure

Empirical

- We implemented IBRE in the simplest way possible
- Stopped data collection at 117 participants
- Long test phase
- ullet Confirmed group-level resultsfo BC o rare > BC o common

Computational

- All models were implemented in catlearn 📢 🥨
- Ran PSP for each participant on different ordinal complexities
- Models we tested: EXIT, NNCAG, DGCM

The findings: results

The computer was on a figurative 🔥

- There are 3 possible patterns.
- Hmans showed all three.

```
## [[1]]
## Ø NA -1
## BC NA NA
## [[2]]
## Ø NA 1
## BC NA NA
##
## [[3]]
## Ø BC
## Ø NA 0
## BC NA NA
```

	pattern	g- distance	accomodation	prediction
EXIT	ВС	0.47	1.00	0.67
NNCAG	ВС	0.43	0.91	0.55
DGCM	ВС	0.47	1.00	0.67

The findings: results (increasing complexity)

- There are 19 possible patterns
- Humans showed 17 of them.

```
## [[1]]
## Ø A BC
## Ø NA 1 1
## A NA NA -1
## BC NA NA NA
```

	pat	tern	g- distance	accomodation	prediction
EXIT	BC,	А	0.67	0.20	0.41
NNCAG	BC,	А	0.61	0.18	0.19
DGCM	BC,	А	0.53	0.38	0.42

The findings: results (increasing complexity more)

- There are 171 possible patterns
- Humans showed 41 of them.
- EXIT showed 70 of them (41%) independent of trial order.

```
## [[1]]
## Ø B BC 0
## Ø NA 1 1 0
## B NA NA 0 -1
## BC NA NA NA NA NA
```

	pattern	g- distance	accomodation	prediction
EXIT	BC, B, C	0.67	0.08	0.14
	BC, B, C	0.65	0.09	0.07
DGCM	BC, B, C	0.57	0.20	0.12

The findings: conclusion

Methodological

• Developed a novel method to evaluate aspects of computational models often neglected

Theoretical

- Provided evidence against EXIT, the best model of IBRE
 - EXIT has an issue of flexibility when trial-order is not accounted for
- The most adequate model is a non-associative learning model, DGCM
 - o but it suffers from a metatheoretical issue

The End

Lenard Dome

Buy me a coffee

- Ienard.dome@plymouth.ac.uk
- 😱 @lenarddome
- 🔰 @lenarddome

Andy Wills

- **■** andy.wills@plymouth.ac.uk
- 😱 @ajwills72
- 🔰 @ajwills72

