# Atom-only descriptions of atom-cavity systems

Simon B. Jäger

30.10.2024



Cavity photons mediate time-periodic interactions between the atoms



Cavity photons mediate time-periodic interactions between the atoms

 $\rightarrow$  resonant creation of coherent spatio-temporal pattern



Cavity photons mediate time-periodic interactions between the atoms

- $\rightarrow$  resonant creation of coherent spatio-temporal pattern
- $\rightarrow$  dissipation of cavity photons through mirrors stabilizes pattern





H. Keßler et al., PRL 127, 043602 (2021).

Cavity photons mediate time-periodic interactions between the atoms

- $\rightarrow$  resonant creation of coherent spatio-temporal pattern
- $\rightarrow$  dissipation of cavity photons through mirrors stabilizes pattern

Generation of new phases of matter stabilized by dissipation

 $\rightarrow$  dissipative time crystals



## Effective theoretical description



We are interested in the behavior of the atoms!

Can we eliminate the field degrees of fredom?

### Effective theoretical description



We are interested in the behavior of the atoms!

Can we eliminate the field degrees of fredom?

Gain:

- more efficient description of the dynamics
- $\bullet$  analytical results and predictions

### Effective theoretical description



We are interested in the behavior of the atoms!

Can we eliminate the field degrees of fredom?

Gain:

- more efficient description of the dynamics
- $\bullet$  analytical results and predictions

Challenge: correct descriptions of interactions + dissipation!

## Periodically driven Dissipative Dicke model





Single diss. cavity mode coupled to collective spin

$$\begin{split} &\frac{\partial \hat{\rho}}{\partial t} = -i \left[ \hat{H}, \hat{\rho} \right] - \kappa (\hat{a}^{\dagger} \hat{a} \hat{\rho} + \hat{\rho} \hat{a}^{\dagger} \hat{a} - 2 \hat{a} \hat{\rho} \hat{a}^{\dagger}) \\ &\hat{H} = \omega_0 \hat{Z} + \omega_c \hat{a}^{\dagger} \hat{a} + \frac{2g(t)}{\sqrt{N}} (\hat{a} + \hat{a}^{\dagger}) \hat{X} \\ &\hat{X} = \frac{1}{2} \sum_j \hat{\sigma}_j^x, \ \hat{Y} = \frac{1}{2} \sum_j \hat{\sigma}_j^y, \ \hat{Z} = \frac{1}{2} \sum_j \hat{\sigma}_j^z \\ &g(t) = g_0 + g_1 \cos(\omega t) \end{split}$$

# Periodically driven Dissipative Dicke model



Single diss. cavity mode coupled to collective spin

#### Exhibits time crystalline phase for parameteric driving

- R. Chitra and O. Zilberberg, Phys. Rev. A 92, 023815 (2015).
- Z. Gong, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120, 040404 (2018).
- parameteric resonances  $\frac{n\omega}{2} = \omega_{\rm res} = \omega_0 \sqrt{1 \frac{4g_0^2 \omega_c}{\omega_0 [\omega_c^2 + \kappa^2]}}$

# Periodically driven Dissipative Dicke model



Single diss. cavity mode coupled to collective spin

$$\hat{\partial}_{0.4}^{0.5} = -i \left[ \hat{H}, \hat{\rho} \right] - \kappa (\hat{a}^{\dagger} \hat{a} \hat{\rho} + \hat{\rho} \hat{a}^{\dagger} \hat{a} - 2 \hat{a} \hat{\rho} \hat{a}^{\dagger})$$

$$\hat{\partial}_{0.4}^{z} = \hat{H} = \omega_{0} \hat{Z} + \omega_{c} \hat{a}^{\dagger} \hat{a} + \frac{2g(t)}{\sqrt{N}} (\hat{a} + \hat{a}^{\dagger}) \hat{X}$$

$$\hat{\partial}_{0.5}^{z} \hat{\partial}_{z}^{z} \hat{X} = \frac{1}{2} \sum_{j} \hat{\sigma}_{j}^{x}, \ \hat{Y} = \frac{1}{2} \sum_{j} \hat{\sigma}_{j}^{y}, \ \hat{Z} = \frac{1}{2} \sum_{j} \hat{\sigma}_{j}^{z}$$

$$g(t) = g_{0} + g_{1} \cos(\omega t)$$

#### Exhibits time crystalline phase for parameteric driving

- R. Chitra and O. Zilberberg, Phys. Rev. A 92, 023815 (2015).
- Z. Gong, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120, 040404 (2018).
- parameteric resonances  $\frac{n\omega}{2} = \omega_{\rm res} = \omega_0 \sqrt{1 \frac{4g_0^2 \omega_c}{\omega_0 [\omega_c^2 + \kappa^2]}}$
- signaled by (i)  $\langle [\hat{X}]^2 \rangle \propto N^2$  and (ii)  $\langle \hat{X}(t+t_0)\hat{X}(t_0) \rangle$  is  $4\pi/\omega$  periodic in t
- $\rightarrow$  Toy model for dissipative time crystals

#### We want to eliminate the cavity!

S. B. Jäger et al., Phys. Rev. Lett 129, 063601 (2022).

#### We want to eliminate the cavity!

S. B. Jäger et al., Phys. Rev. Lett 129, 063601 (2022).

### Step 1: Move into frame which decouples cavity and spin $\|\hat{\alpha}\| \ll 1$

$$\tilde{\rho} = \hat{D}^{\dagger}\hat{\rho}\hat{D}, \ \hat{D} = \exp\left[\hat{\alpha}^{\dagger}\hat{a} - \hat{a}^{\dagger}\hat{\alpha}\right]$$

and find operator  $\hat{\alpha}$  that minimizes coupling between cavity and spin

$$\rightarrow \frac{\partial \hat{\alpha}}{\partial t} = -i[\omega_0 \hat{Z}, \hat{\alpha}] - (i\omega_c + \kappa) \hat{\alpha} - i \frac{2g(t)}{\sqrt{N}} \hat{X}$$

#### We want to eliminate the cavity!

S. B. Jäger et al., Phys. Rev. Lett 129, 063601 (2022).

### Step 1: Move into frame which decouples cavity and spin $\|\hat{\alpha}\| \ll 1$

$$\tilde{\rho} = \hat{D}^{\dagger} \hat{\rho} \hat{D}, \ \hat{D} = \exp\left[\hat{\alpha}^{\dagger} \hat{a} - \hat{a}^{\dagger} \hat{\alpha}\right]$$

and find operator  $\hat{\alpha}$  that minimizes coupling between cavity and spin

$$\rightarrow \frac{\partial \hat{\alpha}}{\partial t} = -i[\omega_0 \hat{Z}, \hat{\alpha}] - (i\omega_c + \kappa)\hat{\alpha} - i\frac{2g(t)}{\sqrt{N}}\hat{X}$$

## Step 2: Project onto the vacuum in the displaced picture $\hat{\rho}_{spin} = \langle vac | \tilde{\rho} | vac \rangle$

$$\begin{split} & \frac{\partial \hat{\rho}_{\rm spin}}{\partial t} = -i \left[ \hat{H}_{\rm eff}, \hat{\rho}_{\rm spin} \right] - \kappa (\hat{\alpha}^{\dagger} \hat{\alpha} \hat{\rho}_{\rm spin} + \hat{\rho}_{\rm spin} \hat{\alpha}^{\dagger} \hat{\alpha} - 2 \hat{\alpha} \hat{\rho}_{\rm spin} \hat{\alpha}^{\dagger}) \\ & \hat{H}_{\rm eff} = \omega_0 \hat{Z} + \frac{g}{\sqrt{N}} (\hat{\alpha}^{\dagger} \hat{X} + \hat{X} \hat{\alpha}) \end{split}$$

Master equation with cavity-mediated Interactions and Dissipation

What are the limitations?

#### What are the limitations?

#### Valid if there is a timescale separation

$$\underbrace{\kappa^{-1}, \omega_c^{-1}}_{\text{timescale of cavity}} \ll \underbrace{\omega_0^{-1}, \omega^{-1}, g^{-1}}_{\text{timescale of atom and drive}}$$

 $\rightarrow$  Cavity adiabatically follows atomic degrees



#### What are the limitations?

#### Valid if there is a timescale separation

$$\underbrace{\kappa^{-1}, \omega_c^{-1}}_{\text{timescale of cavity}} \ll \underbrace{\omega_0^{-1}, \omega^{-1}, g^{-1}}_{\text{timescale of atom and drive}}$$

 $\rightarrow$  Cavity adiabatically follows atomic degrees

#### Solution for $\hat{\alpha}$ :

$$\hat{\alpha} = \frac{\alpha_{+}(t)}{\sqrt{N}} \hat{S}^{+} + \frac{\alpha_{-}(t)}{\sqrt{N}} \hat{S}^{-} \qquad \alpha_{\pm} \approx -\underbrace{\frac{g(t)}{\omega_{c} - i\kappa}}_{\omega_{c}^{-1} g} - i \underbrace{\frac{\dot{g}(t)}{[\omega_{c} - i\kappa]^{2}}}_{\omega_{c}^{-2} g\omega} \pm \underbrace{\frac{\omega_{0} g(t)}{[\omega_{c} - i\kappa]^{2}}}_{\omega_{c}^{-2} g\omega_{0}}$$



#### What are the limitations?

#### Valid if there is a timescale separation

$$\underbrace{\kappa^{-1},\omega_c^{-1}}_{\text{timescale of cavity}} \ll \underbrace{\omega_0^{-1},\omega^{-1},g^{-1}}_{\text{timescale of atom and drive}}$$

 $\rightarrow$  Cavity adiabatically follows atomic degrees

#### Solution for $\hat{\alpha}$ :

$$\hat{\alpha} = \frac{\alpha_{+}(t)}{\sqrt{N}} \hat{S}^{+} + \frac{\alpha_{-}(t)}{\sqrt{N}} \hat{S}^{-} \qquad \alpha_{\pm} \approx -\underbrace{\frac{g(t)}{\omega_{c} - i\kappa}}_{\text{adiabatic}} - i \frac{\dot{g}(t)}{[\omega_{c} - i\kappa]^{2}} \pm \frac{\omega_{0} g(t)}{[\omega_{c} - i\kappa]^{2}}$$

## Comparison of atom-cavity and atom-only



Comparison in time-crystalline phase

# Comparison of atom-cavity and atom-only



# Comparison of atom-cavity and atom-only



## Spectral features of the time crystalline phase



We are now able to study spectral features for large NTime-crystal breaks discrete time-translational symmetry  $\rightarrow$  Closing gap at  $\lambda=i\frac{\omega}{2}+\gamma$  (subharmonic response)

## Spectral features of the time crystalline phase



We are now able to study spectral features for large  $N\,!$ 

 ${\it Time-crystal\ breaks\ discrete\ time-translational\ symmetry}$ 

- $\rightarrow$  Closing gap at  $\lambda = i\frac{\omega}{2} + \gamma$  (subharmonic response)
- (a)  $\lambda$  remains gapped. (b)  $\lambda$  closes exponentially in N

First description of this effect with only atomic degrees of freedom



Mean-field description of dynamics

$$\hat{X} = \, \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} + \, \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}, \ \hat{Y} = i (\hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} - \, \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}), \ \hat{Z} = \, \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\uparrow} - \, \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\downarrow} \ , \ \varphi_{s} = \langle \hat{b}_{s} \rangle$$

Mean-field description of dynamics

$$\begin{split} \hat{X} &= \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} + \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}, \ \hat{Y} = i(\hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} - \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}), \ \hat{Z} = \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\uparrow} - \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\downarrow} \ , \ \varphi_{s} = \langle \hat{b}_{s} \rangle \\ \frac{d\varphi_{\downarrow}}{dt} &= i \frac{V_{0}(t) - iV_{1}(t)}{N} |\varphi_{\uparrow}|^{2} \varphi_{\downarrow} + i \frac{V_{0}(t) + iV_{1}(t)}{N} \varphi_{\uparrow}^{2} \varphi_{\downarrow}^{*} \\ \frac{d\varphi_{\uparrow}}{dt} &= -i \left( \omega_{0} - \frac{V_{0}(t) + iV_{1}(t)}{N} |\varphi_{\downarrow}|^{2} \right) \varphi_{\uparrow} + i \frac{V_{0}(t) - iV_{1}(t)}{N} \varphi_{\downarrow}^{2} \varphi_{\uparrow}^{*} \end{split}$$

Mean-field description of dynamics

$$\begin{split} \hat{X} &= \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} + \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}, \ \hat{Y} = i (\hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} - \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}), \ \hat{Z} = \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\uparrow} - \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\downarrow} \ , \ \varphi_{s} = \langle \hat{b}_{s} \rangle \\ \frac{d\varphi_{\downarrow}}{dt} &= i \frac{V_{0}(t) - i V_{1}(t)}{N} |\varphi_{\uparrow}|^{2} \varphi_{\downarrow} + i \frac{V_{0}(t) + i V_{1}(t)}{N} \varphi_{\uparrow}^{2} \varphi_{\downarrow}^{*} \\ \frac{d\varphi_{\uparrow}}{dt} &= -i \left( \omega_{0} - \frac{V_{0}(t) + i V_{1}(t)}{N} |\varphi_{\downarrow}|^{2} \right) \varphi_{\uparrow} + i \frac{V_{0}(t) - i V_{1}(t)}{N} \varphi_{\downarrow}^{2} \varphi_{\uparrow}^{*} \end{split}$$









Mean-field description of dynamics

$$\begin{split} \hat{X} &= \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} + \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}, \; \hat{Y} = i(\hat{b}_{\uparrow}^{\dagger} \hat{b}_{\downarrow} - \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\uparrow}), \; \hat{Z} = \hat{b}_{\uparrow}^{\dagger} \hat{b}_{\uparrow} - \hat{b}_{\downarrow}^{\dagger} \hat{b}_{\downarrow} \; , \; \varphi_{s} = \langle \hat{b}_{s} \rangle \\ \frac{d\varphi_{\downarrow}}{dt} &= i \frac{V_{0}(t) - iV_{1}(t)}{N} |\varphi_{\uparrow}|^{2} \varphi_{\downarrow} + i \frac{V_{0}(t) + iV_{1}(t)}{N} \varphi_{\uparrow}^{2} \varphi_{\downarrow}^{*} \\ \frac{d\varphi_{\uparrow}}{dt} &= -i \left( \omega_{0} - \frac{V_{0}(t) + iV_{1}(t)}{N} |\varphi_{\downarrow}|^{2} \right) \varphi_{\uparrow} + i \frac{V_{0}(t) - iV_{1}(t)}{N} \varphi_{\downarrow}^{2} \varphi_{\uparrow}^{*} \end{split}$$



### Conclusion





- Description for time-periodic dissipative Dicke model
  - $\rightarrow$  Description of exponentially closing gap
  - $\rightarrow$  New insights into stabilization mechanism  $_{\rm S.~B.~J\"{a}ger~et~al.,~Phys.~Rev.~A~110,~L010202~(2024).}$

### Atom-only description of dissipative Dicke timecrystals



# Interaction and Dissipation engineering with bosonic modes



### General setup



Quantum system coupled to dissipative bosonic modes  $\hat{a}_k$ 

### General setup



Quantum system coupled to dissipative bosonic modes  $\hat{a}_k$ 

 $\rightarrow$  Engineer interactions within the quantum system



A. Periwal et al., Nature 600, 630 (2021).



C. Monroe et al., RMP 93, 025001 (2021).

### General setup



Quantum system coupled to dissipative bosonic modes  $\hat{a}_k$ 

- $\rightarrow$  Engineer interactions within the quantum system
- $\rightarrow$  Tailor dissipation for the quantum system



M. Hosseini et al., PRL 118, 183601 (2017).



H. Keßler et al., PRL 127, 043602 (2021).



$$\begin{split} &\frac{\partial \hat{\rho}}{\partial t} = -i \left[ \hat{H}(t), \hat{\rho} \right] - \sum_{k} \kappa_{k} (\hat{a}_{k}^{\dagger} \hat{a}_{k} \hat{\rho} + \hat{\rho} \hat{a}_{k}^{\dagger} \hat{a}_{k} - 2 \hat{a}_{k} \hat{\rho} \hat{a}_{k}^{\dagger}) \\ &\hat{H} = \hat{H}_{S} + \sum_{k} \left( \sum_{k'} \hat{a}_{k}^{\dagger} \hat{\Omega}_{S}^{k,k'} \hat{a}_{k'} + \hat{a}_{k}^{\dagger} \hat{S}_{k} + \hat{S}_{k}^{\dagger} \hat{a}_{k} \right) \end{split}$$



$$\frac{\partial \hat{\rho}}{\partial t} = -i \left[ \hat{H}(t), \hat{\rho} \right] - \sum_{k} \kappa_{k} (\hat{a}_{k}^{\dagger} \hat{a}_{k} \hat{\rho} + \hat{\rho} \hat{a}_{k}^{\dagger} \hat{a}_{k} - 2 \hat{a}_{k} \hat{\rho} \hat{a}_{k}^{\dagger})$$

$$\hat{H} = \hat{H}_{S} + \sum_{k} \left( \sum_{k'} \hat{a}_{k}^{\dagger} \hat{\Omega}_{S}^{k,k'} \hat{a}_{k'} + \hat{a}_{k}^{\dagger} \hat{S}_{k} + \hat{S}_{k}^{\dagger} \hat{a}_{k} \right)$$

Move into frame which weakly correlates modes and quantum system  $\|\hat{\alpha}_k\| \ll 1$ 

$$\tilde{\rho}=\hat{D}^{\dagger}\hat{\rho}\hat{D},\,\hat{D}=\exp\left[\sum_{k}(\hat{\alpha}_{k}^{\dagger}\hat{a}_{k}-\hat{a}_{k}^{\dagger}\hat{\alpha}_{k})\right]$$

Find system operator  $\hat{\alpha}_k$  that minimizes coupling between modes and system

### Derivation of the master equation



$$\frac{\partial \hat{\rho}}{\partial t} = -i \left[ \hat{H}(t), \hat{\rho} \right] - \sum_{k} \kappa_{k} (\hat{a}_{k}^{\dagger} \hat{a}_{k} \hat{\rho} + \hat{\rho} \hat{a}_{k}^{\dagger} \hat{a}_{k} - 2 \hat{a}_{k} \hat{\rho} \hat{a}_{k}^{\dagger})$$

$$\hat{H} = \hat{H}_{S} + \sum_{k} \left( \sum_{k'} \hat{a}_{k}^{\dagger} \hat{\Omega}_{S}^{k,k'} \hat{a}_{k'} + \hat{a}_{k}^{\dagger} \hat{S}_{k} + \hat{S}_{k}^{\dagger} \hat{a}_{k} \right)$$

Move into frame which weakly correlates modes and quantum system  $\|\hat{\alpha}_k\| \ll 1$ 

$$\tilde{\rho}=\hat{D}^{\dagger}\hat{\rho}\hat{D},\,\hat{D}=\exp\left[\sum_{k}(\hat{\alpha}_{k}^{\dagger}\hat{a}_{k}-\hat{a}_{k}^{\dagger}\hat{\alpha}_{k})\right]$$

Find system operator  $\hat{\alpha}_k$  that minimizes coupling between modes and system

$$\rightarrow \frac{\partial \hat{\alpha}_k}{\partial t} = -i[\hat{H}_S, \hat{\alpha}_k] - i\sum_{k'} \hat{\Omega}_S^{k,k'} \hat{\alpha}_{k'} - i\hat{S}_k - \kappa_k \hat{\alpha}_k$$





Step 1: Find solution of

$$\frac{\partial \hat{\alpha}_k}{\partial t} = -i[\hat{H}_S, \hat{\alpha}_k] - i \sum_{k'} \hat{\Omega}_S^{k,k'} \hat{\alpha}_{k'} - i \hat{S}_k - \kappa_k \hat{\alpha}_k$$



Step 1: Find solution of

$$\frac{\partial \hat{\alpha}_k}{\partial t} = -i[\hat{H}_S, \hat{\alpha}_k] - i \sum_{k'} \hat{\Omega}_S^{k,k'} \hat{\alpha}_{k'} - i \hat{S}_k - \kappa_k \hat{\alpha}_k$$

#### Step 2: Calculate effective master equation

$$\frac{\partial \hat{\rho}_{\text{sys}}}{\partial t} = -i \left[ \hat{H}_{\text{eff}}, \hat{\rho}_{\text{sys}} \right] - \sum_{k} \kappa_{k} (\hat{\alpha}_{k}^{\dagger} \hat{\alpha}_{k} \hat{\rho}_{\text{sys}} + \hat{\rho}_{\text{sys}} \hat{\alpha}_{k}^{\dagger} \hat{\alpha}_{k} - 2 \hat{\alpha}_{k} \hat{\rho}_{\text{sys}} \hat{\alpha}_{k}^{\dagger})$$

$$\hat{H}_{\text{eff}} = \hat{H}_{S} + \frac{1}{2} \sum_{k} (\hat{\alpha}_{k}^{\dagger} \hat{S}_{k} + \hat{S}_{k}^{\dagger} \hat{\alpha}_{k})$$



Step 1: Find solution of

$$\frac{\partial \hat{\alpha}_k}{\partial t} = -i[\hat{H}_S, \hat{\alpha}_k] - i \sum_{k'} \hat{\Omega}_S^{k,k'} \hat{\alpha}_{k'} - i \hat{S}_k - \kappa_k \hat{\alpha}_k$$

#### Step 2: Calculate effective master equation

$$\begin{split} &\frac{\partial \hat{\rho}_{\text{sys}}}{\partial t} = -i \left[ \hat{H}_{\text{eff}}, \hat{\rho}_{\text{sys}} \right] - \sum_{k} \kappa_{k} (\hat{\alpha}_{k}^{\dagger} \hat{\alpha}_{k} \hat{\rho}_{\text{sys}} + \hat{\rho}_{\text{sys}} \hat{\alpha}_{k}^{\dagger} \hat{\alpha}_{k} - 2 \hat{\alpha}_{k} \hat{\rho}_{\text{sys}} \hat{\alpha}_{k}^{\dagger}) \\ &\hat{H}_{\text{eff}} = \hat{H}_{S} + \frac{1}{2} \sum_{k} (\hat{\alpha}_{k}^{\dagger} \hat{S}_{k} + \hat{S}_{k}^{\dagger} \hat{\alpha}_{k}) \end{split}$$

Master equation of Lindblad form  $\rightarrow$  completely positive



Step 1: Find solution of

$$\frac{\partial \hat{\alpha}_k}{\partial t} = -i[\hat{H}_S, \hat{\alpha}_k] - i \sum_{k'} \hat{\Omega}_S^{k,k'} \hat{\alpha}_{k'} - i \hat{S}_k - \kappa_k \hat{\alpha}_k$$

#### Step 2: Calculate effective master equation

$$\frac{\partial \hat{\rho}_{\text{sys}}}{\partial t} = -i \left[ \hat{H}_{\text{eff}}, \hat{\rho}_{\text{sys}} \right] - \sum_{k} \kappa_{k} (\hat{\alpha}_{k}^{\dagger} \hat{\alpha}_{k} \hat{\rho}_{\text{sys}} + \hat{\rho}_{\text{sys}} \hat{\alpha}_{k}^{\dagger} \hat{\alpha}_{k} - 2 \hat{\alpha}_{k} \hat{\rho}_{\text{sys}} \hat{\alpha}_{k}^{\dagger})$$

$$\hat{H}_{\text{eff}} = \hat{H}_{S} + \frac{1}{2} \sum_{k} (\hat{\alpha}_{k}^{\dagger} \hat{S}_{k} + \hat{S}_{k}^{\dagger} \hat{\alpha}_{k})$$

#### Master equation of Lindblad form $\rightarrow$ completely positive

We assumed  $\|\hat{\alpha}_k\| \ll 1 \rightarrow$  "weak" coupling regime





$$\hat{H} = \sum_{j} \left[ \Delta_c \hat{a}_j^{\dagger} \hat{a}_j - \frac{J}{2} (\hat{a}_j^{\dagger} \hat{a}_{j+1} + \hat{a}_{j+1}^{\dagger} \hat{a}_j) + \frac{\Delta_a}{2} \hat{\sigma}_j^z + g(\hat{a}_j + \hat{a}_j^{\dagger}) \hat{\sigma}_j^x \right]$$



$$\hat{H} = \sum_{j} \left[ \Delta_{c} \hat{a}_{j}^{\dagger} \hat{a}_{j} - \frac{J}{2} (\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + \hat{a}_{j+1}^{\dagger} \hat{a}_{j}) + \frac{\Delta_{a}}{2} \hat{\sigma}_{j}^{z} + g(\hat{a}_{j} + \hat{a}_{j}^{\dagger}) \hat{\sigma}_{j}^{x} \right]$$
What are the interactions between the atoms?



$$\hat{H} = \sum_j \left[ \Delta_c \hat{a}_j^\dagger \hat{a}_j - \frac{J}{2} (\hat{a}_j^\dagger \hat{a}_{j+1} + \hat{a}_{j+1}^\dagger \hat{a}_j) + \frac{\Delta_a}{2} \hat{\sigma}_j^z + g(\hat{a}_j + \hat{a}_j^\dagger) \hat{\sigma}_j^x \right]$$

What are the interactions between the atoms?

$$0 = -i \left[ \sum_{l} \frac{\Delta_{a}}{2} \hat{\sigma}_{l}^{z}, \hat{\alpha}_{m} \right] - i \Delta_{c} \hat{\alpha}_{m} - i \frac{J}{2} (\hat{\alpha}_{m-1} + \hat{\alpha}_{m+1}) - i g \hat{\sigma}_{j}^{x} - \kappa \hat{\alpha}_{m}$$



$$\hat{H} = \sum_j \left[ \Delta_c \hat{a}_j^\dagger \hat{a}_j - \frac{J}{2} (\hat{a}_j^\dagger \hat{a}_{j+1} + \hat{a}_{j+1}^\dagger \hat{a}_j) + \frac{\Delta_a}{2} \hat{\sigma}_j^z + g(\hat{a}_j + \hat{a}_j^\dagger) \hat{\sigma}_j^x \right]$$

What are the interactions between the atoms?

$$0 = -i \left[ \sum_{l} \frac{\Delta_{a}}{2} \hat{\sigma}_{l}^{z}, \hat{\alpha}_{m} \right] - i \Delta_{c} \hat{\alpha}_{m} - i \frac{J}{2} (\hat{\alpha}_{m-1} + \hat{\alpha}_{m+1}) - i g \hat{\sigma}_{j}^{x} - \kappa \hat{\alpha}_{m}$$

Solution using Fourier transformation:

$$\begin{split} \hat{\alpha}_m &= \frac{2g}{J} \sum_n \left[ \frac{|\epsilon_+|^{|n-m|}}{\epsilon_+ - \epsilon_+^{-1}} \hat{\sigma}_n^+ + \frac{|\epsilon_-|^{|n-m|}}{\epsilon_- - \epsilon_-^{-1}} \hat{\sigma}_n^- \right] \\ \epsilon(\Delta) &= \frac{\Delta - i\kappa}{J} - \sqrt{\left[\frac{\Delta - i\kappa}{J}\right]^2 - 1} \quad \epsilon_\pm = \epsilon(\Delta_\pm), \ \Delta_\pm = \Delta_c \pm \Delta_a \end{split}$$



$$\hat{H} = \sum_j \left[ \Delta_c \hat{a}_j^\dagger \hat{a}_j - \frac{J}{2} (\hat{a}_j^\dagger \hat{a}_{j+1} + \hat{a}_{j+1}^\dagger \hat{a}_j) + \frac{\Delta_a}{2} \hat{\sigma}_j^z + g (\hat{a}_j + \hat{a}_j^\dagger) \hat{\sigma}_j^x \right]$$

What are the interactions between the atoms?

$$0 = -i \left[ \sum_{l} \frac{\Delta_{a}}{2} \hat{\sigma}_{l}^{z}, \hat{\alpha}_{m} \right] - i \Delta_{c} \hat{\alpha}_{m} - i \frac{J}{2} (\hat{\alpha}_{m-1} + \hat{\alpha}_{m+1}) - i g \hat{\sigma}_{j}^{x} - \kappa \hat{\alpha}_{m}$$

Solution using Fourier transformation:

$$\hat{\alpha}_{m} = \frac{2g}{J} \sum_{n} \left[ \frac{|\epsilon_{+}|^{|n-m|}}{\epsilon_{+} - \epsilon_{+}^{-1}} \hat{\sigma}_{n}^{+} + \frac{|\epsilon_{-}|^{|n-m|}}{\epsilon_{-} - \epsilon_{-}^{-1}} \hat{\sigma}_{n}^{-} \right]$$

$$\epsilon(\Delta) = \frac{\Delta - i\kappa}{J} - \sqrt{\left[\frac{\Delta - i\kappa}{J}\right]^{2} - 1} \quad \epsilon_{\pm} = \epsilon(\Delta_{\pm}), \ \Delta_{\pm} = \Delta_{c} \pm \Delta_{a}$$

Interacting Spins: 
$$\hat{H}_{\text{eff}} = \sum_{j} \left[ \frac{\Delta_a}{2} \hat{\sigma}_j^z + \frac{g}{2} (\hat{\alpha}_j^{\dagger} \hat{\sigma}_j^x + \hat{\sigma}_j^x \hat{\alpha}_j) \right]$$





$$\hat{H} = \Delta_c \hat{a}^\dagger \hat{a} + h \sum_j \hat{\sigma}_j^z + J \sum_j \hat{\sigma}_j^x \hat{\sigma}_{j+1}^x + g \sum_j [\hat{a}^\dagger \hat{\sigma}_j^- + \hat{\sigma}_j^+ \hat{a}]$$



$$\hat{H} = \Delta_c \hat{a}^{\dagger} \hat{a} + h \sum_j \hat{\sigma}_j^z + J \sum_j \hat{\sigma}_j^x \hat{\sigma}_{j+1}^x + g \sum_j [\hat{a}^{\dagger} \hat{\sigma}_j^- + \hat{\sigma}_j^+ \hat{a}]$$
Can we cool the ising chain to its ground state?



$$\hat{H} = \Delta_c \hat{a}^\dagger \hat{a} + h \sum_j \hat{\sigma}^z_j + J \sum_j \hat{\sigma}^x_j \hat{\sigma}^x_{j+1} + g \sum_j [\hat{a}^\dagger \hat{\sigma}^-_j + \hat{\sigma}^+_j \hat{a}]$$

Can we cool the ising chain to its ground state?

$$0 = -i \left[ h \sum_{j} \hat{\sigma}_{j}^{z} + J \sum_{j} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x}, \hat{\alpha} \right] - i \Delta_{c} \hat{\alpha} - i g \hat{\sigma}_{j}^{-} - \kappa \hat{\alpha}$$



$$\hat{H} = \Delta_c \hat{a}^\dagger \hat{a} + h \sum_j \hat{\sigma}^z_j + J \sum_j \hat{\sigma}^x_j \hat{\sigma}^x_{j+1} + g \sum_j [\hat{a}^\dagger \hat{\sigma}^-_j + \hat{\sigma}^+_j \hat{a}]$$

Can we cool the ising chain to its ground state?

$$0 = -i \left[ h \sum_{j} \hat{\sigma}_{j}^{z} + J \sum_{j} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x}, \hat{\alpha} \right] - i \Delta_{c} \hat{\alpha} - i g \hat{\sigma}_{j}^{-} - \kappa \hat{\alpha}$$







$$\hat{H} = \Delta_c \hat{a}^\dagger \hat{a} + h \sum_j \hat{\sigma}^z_j + J \sum_j \hat{\sigma}^x_j \hat{\sigma}^x_{j+1} + g \sum_j [\hat{a}^\dagger \hat{\sigma}^-_j + \hat{\sigma}^+_j \hat{a}]$$

Can we cool the ising chain to its ground state?

$$0 = -i \left[ h \sum_{j} \hat{\sigma}_{j}^{z} + J \sum_{j} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x}, \hat{\alpha} \right] - i \Delta_{c} \hat{\alpha} - i g \hat{\sigma}_{j}^{-} - \kappa \hat{\alpha}$$





Cooling to ground state

#### Conclusion





- Description for time-periodic dissipative Dicke model
  - $\rightarrow$  Description of exponentially closing gap
  - $\rightarrow$  New insights into stabilization mechanism s. B. Jäger et al., Phys. Rev. A 110, L010202 (2024).

#### Conclusion





- Description for time-periodic dissipative Dicke model
  - $\rightarrow$  Description of exponentially closing gap
  - $\rightarrow$  New insights into stabilization mechanism S. B. Jäger et al., Phys. Rev. A 110, L010202 (2024).

• Effective master equation for spins coupled by bosons



S. B. Jäger et al., Phys. Rev. Lett. 129, 063601 (2022).

# What this method can(not) do

Can do:

- Description of trapping and cooling
- Description of interactions and correlated dissipation e.g. Superradiance, Subradiance, Dicke, Self-organization
- Dynamical phases, Limit cycles, and time crystals (?!)

#### What this method can(not) do

#### Can do:

- Description of trapping and cooling
- Description of interactions and correlated dissipation e.g. Superradiance, Subradiance, Dicke, Self-organization
- Dynamical phases, Limit cycles, and time crystals (?!)

#### Cannot do:

• Everything that requires beyond Coupling<sup>2</sup> effects e.g. Higher atom-cavity systems with higher symmetries!



An optical lattice with sound

Y. Guo, R. M. Kroeze, B. P. Marsh, S. Gopalakrishnan, J. Keeling, B. L. Lev, Nature 599, 211 (2021).

