R Notebook

Definición del problema

Crear un modelo de regresión con el objetivo de predecir el ancho del sépalo.

Tris

La base de datos antes mencionada contiene información acerca de la especies de flor de iris existen tres tipos en este datset setosa, virginica y versicolor.

A su ves tiene información acerca del pétalo y el sépalo ambos con sus respectivas medidas de ancho y largo respectivamente.

Importaciones de las librerias

```
library(DataExplorer)
library(ggplot2)
library(dplyr)
```

library(caret)

```
df<-read.csv("C:\\Users\\amado\\Desktop\\Ciencias de datos\\Bases de datos\\Iris.csv")
```

names(df)

Selección de variables

Seleccionamos las variables que tengan más relación con el grosor del pétalo.

```
df<- df %>%
    select(PetalLengthCm,PetalWidthCm,Species)
```

summary(df)

```
## PetalLengthCm PetalWidthCm Species
## Min. :1.000 Min. :0.100 Length:150
## 1st Qu.:1.600 1st Qu.:0.300 Class :character
## Median :4.350 Median :1.300 Mode :character
```

```
## Mean :3.759 Mean :1.199
## 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :6.900 Max. :2.500

df$Species<-as.factor(df$Species)
```

Análisis Exploratorio

¿Qué especie de iris tiene mayor longitud del péatalo?

```
ggplot(data=df,aes(x=Species,y=PetalLengthCm,fill=Species)) + geom_boxplot(fill=c('cornsilk','skyblue'
theme(legend.position = 'top') + theme_light() + ggtitle('Petal Length vs Species')
```

Petal Length vs Species

¿Qué especie de iris tiene mayor grosor péatalo?

```
ggplot(data=df,aes(x=Species,y=PetalWidthCm,fill=Species)) + geom_boxplot(fill=c('cornsilk','skyblue',
theme(legend.position = 'top') + theme_light() + ggtitle('Petal Width vs Species')
```

Petal Width vs Species

Tanto para la logitud y el grosor del sépalo la especie de flor iris virginica es superior en ambos atributos ya mencionados.

A su vez se aprecia valores fuera de lo normal.

```
ggplot(data=df,aes(x=PetalLengthCm,y=PetalWidthCm,color=Species)) + geom_point(size=3,alpha=0.3) +
theme_light() + ggtitle('Petal Length vs Petal Width vs Specie') + facet_grid(Species~.) + geom_smooth
## 'geom_smooth()' using formula 'y ~ x'
```

Petal Length vs Petal Width vs Specie

Hay una clara relación de tendecia lineal entre ambos atributos.

```
plot_correlation(df,type = 'continuous',title = 'Correlation Matrix')
```


Hay un alto grado de coeficiente de relación de Pearson que va de 0 a 1 si es una relación positiva caso contrario de 0 a -1 si.

Ingeniería de carácteristicas

```
iris_splits<-split(df,df$Species)
setosa<-iris_splits[[1]]
versicolor<-iris_splits[[2]]
virginica<-iris_splits[[3]]</pre>
```

Creamos pequeños subconjuntos de acuerdo al especie de iris.

```
lower_limit<-function(x) {mean(x)-1.5*sd(x)}
upper_limit<-function(x) {mean(x)+1.5*sd(x)}</pre>
```

Limite inferior y superior longitud del pétalo

```
aggregate(PetalLengthCm~Species,FUN=lower_limit,data=df)
```

Species PetalLengthCm

##

```
Iris-setosa
                         1.203733
## 2 Iris-versicolor
                         3.555134
## 3 Iris-virginica
                         4.724158
aggregate(PetalLengthCm~Species,FUN=upper_limit,data=df)
##
            Species PetalLengthCm
## 1
        Iris-setosa
                         1.724267
## 2 Iris-versicolor
                         4.964866
                         6.379842
## 3 Iris-virginica
Limite superior grosor del pétalo.
aggregate(PetalWidthCm~Species,FUN=upper_limit,data=df)
##
            Species PetalWidthCm
## 1
        Iris-setosa
                       0.4048143
## 2 Iris-versicolor
                       1.6226290
## 3 Iris-virginica
                       2.4379751
min_lim_replace<-function(x,limit){</pre>
 return(ifelse(x<limit,sample(x[x>limit],replace = T),x))
max_lim_replace<-function(x,limit){</pre>
 return(ifelse(x>limit,sample(x[x<limit],replace = T),x))</pre>
}
Remplazaremos los valores atípicos por valores que estan en un rango normal.
setosa$PetalLengthCm<-min_lim_replace(setosa$PetalLengthCm,1.2037)
setosa$PetalLengthCm<-ifelse(setosa$PetalLengthCm>=1.7,
                            sample(setosa$PetalLengthCm[setosa$PetalLengthCm<1.7],</pre>
                                   replace = T),
                            setosa$PetalLengthCm)
setosa$PetalWidthCm<-max_lim_replace(setosa$PetalWidthCm,0.4048143)
new_df<-rbind.data.frame(setosa,versicolor,virginica)</pre>
boxplot(PetalLengthCm~Species,data=new_df,main='Elimnate outlires')
```

Elimnate outlires

boxplot(PetalWidthCm~Species,data=new_df,main='Eliminate outlires')

Eliminate outlires

Escalado de los datos

```
new_df$PetalLengthCm<-scale(new_df$PetalLengthCm)
```

Es buena práctica estandarizar los datos con el objetivo de no manejar valores tan grandes pero tampo tan pequeños.

División datos de entrenamiento y validación.

```
set.seed(2018)

training.ids<-createDataPartition(new_df$PetalWidthCm,p=0.7,list=F)

train<-new_df[training.ids,]
test<-new_df[-training.ids,]</pre>
```

Creación del modelo.

El mismo modelo crea variables ficticias para las variables tipo factor.

```
lm=lm(PetalWidthCm~.,data=train)
summary(lm)
```

```
##
## Call:
## lm(formula = PetalWidthCm ~ ., data = train)
## Residuals:
##
                      Median
        Min
                  1Q
                                     3Q
                                              Max
## -0.61611 -0.08357 -0.01088 0.10659 0.47122
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            0.62925
                                       0.12025
                                                  5.233 8.83e-07 ***
## PetalLengthCm
                            0.30840
                                       0.08809
                                                  3.501 0.000687 ***
## SpeciesIris-versicolor 0.59667
                                       0.14995
                                                  3.979 0.000129 ***
                                       0.20555
                                                 5.214 9.59e-07 ***
## SpeciesIris-virginica
                            1.07165
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.1857 on 103 degrees of freedom
## Multiple R-squared: 0.941, Adjusted R-squared: 0.9392
## F-statistic: 547.1 on 3 and 103 DF, p-value: < 2.2e-16
Entre más asteriscos tenga las variables mayor sera el impacto de las variables al valor que tratamos predecir.
pred<-(predict(lm,newdata = test))</pre>
R2(test$PetalWidthCm,pred)
## [1] 0.9423872
test[,c('Predicted values')]<-pred</pre>
test[,c('PetalWidthCm','Predicted values')]
       PetalWidthCm Predicted values
##
                            0.2108804
## 2
                0.2
## 4
                0.2
                            0.2283465
## 8
                0.2
                            0.2283465
## 19
                0.3
                            0.2108804
## 22
                0.4
                            0.2283465
## 27
                0.4
                            0.2458125
## 28
                0.2
                            0.2283465
## 30
                0.2
                            0.2458125
## 33
                0.1
                            0.2283465
## 37
                0.2
                            0.1934143
## 39
                0.2
                            0.1934143
## 43
                0.2
                            0.1934143
## 45
                0.4
                            0.2108804
## 46
                0.3
                            0.2108804
## 47
                0.2
                            0.2458125
## 54
                1.3
                            1.2616705
```

57

1.6

1.3839330

```
## 59
                 1.3
                             1.3664669
## 61
                 1.0
                             1.3490009
## 62
                 1.5
                             1.2966027
## 63
                 1.0
                             1.2616705
## 68
                 1.0
                             1.2791366
## 71
                 1.8
                             1.4013991
## 73
                 1.5
                             1.4188651
## 75
                 1.3
                             1.3140687
                             1.3839330
## 87
                 1.5
## 91
                 1.2
                             1.3315348
## 92
                 1.4
                             1.3664669
## 110
                 2.5
                             2.1034364
                 1.8
                             1.9986399
## 117
## 118
                 2.2
                             2.2082328
## 119
                 2.3
                             2.2431649
## 121
                 2.3
                             2.0335721
## 123
                 2.0
                             2.2082328
## 124
                 1.8
                             1.8938435
## 126
                 1.8
                             2.0859703
## 127
                 1.8
                             1.8763775
## 138
                 1.8
                             1.9986399
## 141
                 2.4
                             2.0161060
## 142
                 2.3
                             1.9287757
## 145
                 2.5
                             2.0335721
## 147
                 1.9
                             1.9113096
## 148
                 2.0
                             1.9462417
```

Hay muy poca variabilidad entre los valores originales y predichos ,cabe resaltar que la unidad con la que se trabajo es centimitros en la mayoria de los casos la diferencia apenas son unos cuantos milimietros.

Guardamos el modelo

```
save(lm,file = 'C:\\Users\\amado\\Desktop\\Blog\\petal_width_lm.Rda')
```