9 אלגברה ב' - פתרון גליון

תרגיל 1 ♠

נזכור שתת-חבורה היא נורמלית אם"ם היא מהווה איחוד של מחלקות-צמידות.

תהי $\sigma = \tau_1 \cdots \tau_k$ - תמורה מעגלים שלה כמכפלה של פירוק שלה פירוק פירוק פירוק מעגלים ארים $\sigma \in S_n$ תהי $\sigma \in S_n$ תהי $\sigma \in S_n$ ונתאים לתמורה σ את הסדרה σ את הסדרה או היא המבנה המעגלי ונתאים ששתי תמורות צמודות ב- σ אם"ם יש להן אותו מבנה מעגלי.

מחלקות-הצמידות של S_4 מאופיינות, אם-כן, ע"י המבנים המעגליים

$$(1, 1, 1, 1), (1, 1, 2), (1, 3), (4), (2, 2).$$

מבין כל אלה, רק התמורות עם מבנה (1,1,2) הן תמורות אי-זוגיות, וזוהי, למעשה, הוכחה לנורמליות של A_4 של A_4 . נשים לב גם לכך שכל האיברים מטיפוס (2,2) הם תמורות זוגיות מסדר S_4 ואפשר לוודא שביחד עם איבר היחידה הם מהווים תת-חבורה נורמלית של S_4 :

$$V \triangleq \{(1), (12)(34), (13)(24), (14)(23)\}.$$

הנורמליות מיידית, מכיוון ש-V הוגדרה להיות איחוד של מחלקות-צמידות.

אנו טוענים שאין ל- S_4 תת-חבורות נורמליות נוספות (פרט לטריוויאליות) המוכלות ב- S_4 : אכן, אם תת-חבורה של A_4 מכילה מעגל באורך S_4 והיא נורמלית ב- S_4 , אזי היא מכילה את כל המעגלים תת-חבורה של A_4 איננה מכילה S_4 -מעגלים, אזי היא מוכלת ב- S_4 ולכן היא בדיוק S_4 - אם תת-חבורה של S_4 - איננה מכילה S_4 - מכריחה אותה להכיל את כל איברי S_4 - ואז הנורמליות שלה ב- S_4 - מכריחה אותה להכיל את כל איברי

כעת, אם H נורמלית ב- S_4 ומכילה תמורה איזוגית, אז היא מכילה טרנספוזיציה (ראו מבנים מעגליים $H=S_4$), והנורמליות שלה מאפשרת להסיק שהיא מכילה את כל הטרנספוזיציות, ומכאן $S_4=S_4$). ב- S_4 התמונה קצת שונה, שכן מחלקות-הצמידות שלה הן:

$$\{id\}, \{(12)(34), (23)(14), (13)(24)\}, \{(123), (124), (134), (234)\}, \{(132), (142), (143), (243)\}.$$

תת-החבורה V עדיין נורמלית מינימלית (כל תת-חבורה לא-טריוויאלית שלה איננה נורמלית), אולם מחלקת-הצמידות של המעגלים מאורך S התפצלה לשתי מחלקות. כאן, הסדר של תת-חבורה נורמלית מחלקת-הצמידות, וגם להתפרק לסכום של המספרים V וגם להתפרק לסכום של המספרים V נורמלית ב-V נורמלית ב-V נורמלית ב-V עורמלית ב-V אולם החבורה הקטנה לא נורמלית ב-V.

(Burnside על פי הוכחה של 2 (על פי הוכחה של - 6 (על פי הוכחה של - 6 (על פי הובחה של -

יהי $1 \ge 5$ וננית ש-1 = 1. הרעיון הוא להוכית ש-1 = 1 מכילה מעגל באורך 1 = 1. בשלב הבא נוכית, שבניגוד למצב עבור 1 = 1. תחילה אל השלב כל המעגלים באורך 1 = 1 היא מחלקת של 1 = 1. תחילה אל השלב השני: יהא 1 = 1 מעגל, ותהי משתי התמורות הבאות היא תמורה זוגית:

$$\sigma_1 = \sigma, \sigma_2 = (\sigma(4) \sigma(5)) \cdot \sigma.$$

 A_n -ם בחבורם ($(123), (abc) \in A_n$ שתיהן מקיימות את הדרישה ($(123) \cdot \sigma^{-1} = (abc)$, ולכן האיברים $(123), (abc) \in A_n$ בחבורה ($(123) \cdot \sigma^{-1} = (abc)$), ונראה ש $(123) \cdot \sigma^{-1} = (abc)$, ונראה ש $(123) \cdot \sigma^{-1} = (abc)$, ונראה ש $(123) \cdot \sigma^{-1} = (abc)$, ווער מעוליים בחבורה ($(123) \cdot \sigma^{-1} = (abc)$), אם אין מעגלים משולשים ב $(123) \cdot H$, אז ניקח שתי תמורות שונות מטיפוס שאלו ($(123) \cdot \sigma^{-1} = (abc)$), ואנו מסיקים שאלו (

$$(345) = \underbrace{(12)(34)}_{}\underbrace{(12)(35)}_{}\underbrace{(12)(34)}_{}\underbrace{(12)(35)}_{}\in H.$$

תרגיל 3 ▲

A אם ממשית A עם מקדמים אי-שליליים נאמר שהמקום ה-(i,j) של A הוא מינימום ב-A אם הוא המינימלי בין האיברים התיוביים של A. כעת, ננית כי A היא מטריצה דו-סטוכסטית כלשהי, וכי A הוא מינימום של A. ננית שקיים אלכסון מוכלל של A המורכב כולו מאיברים חיוביים; אזי נוכל להתאים לאלכסון מוכלל זה מטריצת פרמוטציה A, ולרשום

$$A = A_{ij}B + A',$$

כאשר A' היא מטריצה בעלת סכומי-שורה=סכומי-עמודה קבועים. אם הסכומים הנ"ל שווים לאפס, A_1 היא מטריצה המקורית A_2 שווה ל- B_1 . אם לא - ניתן לבנות מטריצה דו-סטוכסטית חדשה A_1 שהיא $A_1 = \frac{1}{1-A_{11}}A'$ ונקבל -

$$A = A_{ij}B_1 + (1 - A_{ij})A_1.$$

תהליך זה (המעבר $A_1 \mapsto A_1$) מגדיל את מספר האפסים במטריצה, ולכן, אם מפעילים אותו מספר תהליך זה (המעבר $A_1 \mapsto A_1$) מגדיל את מספר האפסים במטריצה, שתמיד ניתן למצוא אלכסון מוכלל תיובי המכיל איבר-מינימום), ונקבל הצגה של A כצירוף קמור של מטריצות פרמוטציה. מוכלל תיובי המכיל איבר מינימום במטריצה (דו-סטוכסטית) A, אז קיים אלכסון מוכלל תיובי במטריצה, המכיל איבר זה. בהצלחה! (רמז: לקבלת אינטואיציה, פרקו את המטריצה הבאה תוך שימוש באלגוריתם שתיארתי -)

$$\frac{1}{12} \cdot \left[\begin{array}{rrr} 3 & 2 & 7 \\ 2 & 6 & 4 \\ 7 & 4 & 1 \end{array} \right]$$

4 תרגיל ♠

-טטר B ואילו - היא מטריצה של מכפלה מטריצה - כלומר: מטריצה חיובית היא מטריצה היא מטריצה חיובית ביליניאריות הימטריות, ולהביא את A לצורה עבה הימטרית. נוכל להתייחס לשתיהן כאל תבניות ביליניאריות הימטריות, ולהביא את

.B אלכסונית סטנדרטית בו-זמנית, נראה כיצד משפיע שינוי הבסיס הנ"ל על התבנית אלכסונית המטריצה בו-זמנית את הדרישה את הדרישה $P_1AP_1^T=I$ שלהלן מקיימת את הדרישה את הדרישה אוני

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{bmatrix}, \quad P_1 B P_1^T = \begin{bmatrix} 0 & 0 & 1/3 \\ 0 & 1 & 0 \\ 1/3 & 0 & 0 \end{bmatrix}.$$

כעת נוכל למצוא מטריצה אורתוגונלית P_2 , שתקיים $P_2(P_1BP_1^T)P_2^*=D$, כאשר אלכסונית, ונשים לב לכך ש-

$$P_2(P_1AP_1^T)P_2^* = P_2IP_2^* = I,$$

כנדרש.