## Sillage d'un avion

On considère le vol d'un avion de chasse se déplaçant dans le sens des x croissants, à une vitesse v sur une droite horizontale (y=0,z=h) alors qu'un observateur est situé au point O(0,0,0). L'avion émet un signal sonore de période T. On note  $\theta = \vec{Ox}, \vec{OA}$  l'inclinaison par rapport à l'horizontale de la direction observateur-avion. Cet angle est supposé varier peu pendant une période T.

o L'air a une masse volumique au repos  $\rho_0$  et une compressibilité  $\chi_s$ . Retrouver l'équation d'Alembert caractérisant la propagation des ondes sonores dans l'air, en explicitant la vitesse de propagation c des ondes.

On suppose dans un premier temps que l'avion se déplace à une vitesse subsonique, c'est-à-dire v < c.

- $\star$  Quelle est la période T' du signal perçu par l'observateur ? Commenter l'expression selon les valeurs prises par  $\theta$ . Comment s'appelle ce phénomène ?
- \* Quelle est la région de l'espace qui peut être atteinte à un instant donné par l'onde sonore provenant de l'avion ?

On suppose désormais que l'avion se déplace à une vitesse supersonique, c'est-à-dire v > c.

- $\diamond$  Le son émis par l'avion à l'instant t est perçu par l'observateur à l'instant t' = f(t). Déterminer la fonction f si l'avion passe à l'instant t = 0 à la verticale de l'observateur. Représenter graphiquement f.
- $\diamond$  Pourquoi le son perçu est-il particulièrement intense si dt'/dt=0? Comment s'appelle ce phénomène?
- $\diamond$  On donne h=1000m;  $v=500\text{m.s}^{-1}$ ;  $c=340\text{m.s}^{-1}$ . On note  $t_0'$  l'instant auquel le bang est perçu par l'observateur et  $t_0$  l'instant auquel les sons perçus à l'instant  $t_0'$  ont été émis par l'avion. Déterminer  $t_0$ ,  $t_0'$  et les positions de l'avion à  $t_0$  et  $t_0'$ .
- $\diamond$  L'observateur entend-il l'avion avant d'entendre le bang ? Quelle est la durée  $\Delta t$  d'émission des sons perçus entre  $t_0'$  et  $t_0' + \Delta t'$  (on pourra effectuer une développement limité de f(t)). Calculer  $\Delta t$  pour  $\Delta t' = 0.1$ s et commenter.
- ♦ Quelle est la région de l'espace qui peut être atteinte à un instant donné par une onde sonore provenant de l'avion ?
- ♦ Estimer la vitesse de l'obus en photo ci-dessous.



## Pavillon acoustique

Un pavillon acoustique, de symétrie de révolution autour de l'axe Ox, contient de l'air de masse volumique  $\rho_0$  et de compressibilité  $\chi_s$ . Une onde s'y propage suivant Ox, on suppose que l'approximation acoustique est vérifiée. On note p(x,t) la surpression acoustique et  $\Psi(x,t)$  le déplacement longitudinal de la tranche de fluide en x à l'instant t.

- ♦ Qu'est-ce que l'approximation acoustique ?
- $\Diamond$  En reliant la compressibilité à la surpression p(x,t) et au déplacement  $\Psi(x,t)$ , démontrer la relation suivante :

$$p(x,t) = -\frac{1}{\chi_s} \left( \frac{\partial \Psi}{\partial x} + \Psi(x,t) \frac{\partial}{\partial x} \left[ \ln S(x) \right] \right)$$

- $\diamondsuit$  En utilisant l'équation d'Euler (ou bilan de quantité de mouvement sur un fluide), en déduire une relation similaire à une équation d'onde portant sur  $\Psi(x,t)$  et sur p(x,t).
- $\diamondsuit$  Que devient l'équation de conservation de la masse ? On notera  $\mu(x,t)$  la variation de masse volumique par rapport à l'équilibre :  $\rho(x,t) = \rho_0 + \mu(x,t)$

Le pavillon a une allure exponentielle :  $S(x) = S_0 \exp(ax)$ . On suppose que l'onde est une onde plane, progressive et monochromatique :  $p(x,t) = p_0 \exp(j[\omega t - kx])$ . On notera la vitesse de déplacement  $v(x,t) = \partial \Psi/\partial t$ .

- $\Diamond$  Quelle est alors l'équation de dispersion ? Montrer qu'il ne peut pas y avoir de propagation en dessous d'une certaine pulsation de coupure  $\omega_c$ .
- $\Diamond$  Donner les expression de  $v(x,t),\,p(x,t),$  puis celle de l'énergie acoustique  $\varepsilon(x,t)$  et du vecteur de Poyting  $\Pi(x,t)$ .