

- Predictive maintenance or condition monitoring
- Warranty reserve estimation
- Propensity to buy
- Demand forecasting
- Process optimization
- Telematics

Manufacturing

- Predictive inventory planning
- Recommendation engines
- Upsell and cross-channel marketing
- Market segmentation and targeting
- Customer ROI and lifetime value
- Retail

- Alerts and diagnostics from real-time patient data
- Disease identification and risk stratification
- Patient triage optimization
- Proactive health management
- Healthcare provider sentiment analysis

Healthcare and Life Sciences

- Aircraft scheduling
- Dynamic pricing
- Social media consumer feedback and interaction analysis
- Customer complaint resolution
- Traffic patterns and congestion management

Travel and Hospitality

- Risk analytics and regulation
- Customer Segmentation
- Cross-selling and up-selling
- Sales and marketing campaign management
- Credit worthiness evaluation

- Power usage analytics
- Seismic data processing
- Carbon emissions and trading
- Customer-specific pricing
- Smart grid management
- Energy demand and supply optimization

Financial Services

Energy, Feedstock, and Utilities

Aipoly video

https://www.youtube.com/watch?v=XMdct-5bERQ

Deep Learning treads where others dare not

Computer vision is now completely dominated by Deep Learning :

Interpreting the huge amount of genomic data: Deep Genomics

- **DeepMind**-detects diabetic retinopathy slightly better than doctors
- Google Photos-automatically can tag photos
- IBM-working to detect skin cancer
- SigTuple-medical diagnostics from blood smears

- Detecting cancer from blood (Freenome), accelerating Drug discovery (Merck)
- Speech recognition : Google Assistant, Cortana, Siri
- Natural Language Processing: Google Translate has been increasing in accuracy
- Text generation through Deep Learning: Legal Zoom creates documents without lawyers
- Music composition using Deep Learning: Aviva Technologies, Sony

Deep Learning: Applications

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification
Speech Recognition
Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

Deep Learning by Accenture

Claim Process Automation

- To detect automatically the amount of damage from car image
- Order spares, settle claim
- Detect fraud

Perception modules process sensory information to

- Recognize road boundaries, recognize pedestrians
- Recognize other vehicles, recognize words in road signs

Video Trawling Analytics System (VTAS)

- Provide a video ingestion and search solution to augment forensic postevent investigations
- Deployed by the Criminal Investigation Department of Singapore Police Force.

Unique Identity Service Platform

- Automated Passport Control Gates using Face Recognition in London Airports
- Self clearance for EU passport holders in Amsterdam Schiphol

Why Deep Learning

BIG DATA & DEEP LEARNING

Why Deep Learning

TRADITIONAL MACHINE LEARNING

DEEP LEARNING

Neural Networks

Lets talk technical ...

Biological Inspiration

A Neural Network

House Price Prediction Data : Regression Problem

Problem Statement : To predict House price based on number of bedrooms and floor level

No. of Bedrooms	Floor level	Price (in 1000 of \$)
3	6	300
4	7	400
2	8	350
5	4	375

Regression Model

Hidden Layer Activation = Linear

Output Layer Activation = Linear

Linear Equation : Y = m*x + b

Randomly assign the weights

 Randomly assign the bias

Y1 = 3*2+6*5+1

Input	Weights
3	2(1)
3	4(2)
6	5(1)
6	1(2)
Y1	3
Y2	7

Forward Pass

Error = Actual – Predicted
=300-242.5
=57.5

Neuron	Bias
Hidden 1	1
Hidden 2	0.5
Output	2

=242.5

Weights and Biases updated for all the neurons based on the error

 $b_{t+1} = b_t +$

Input	Iteration 1 Weights	Iteration 2 Weights
3	2(1)	2.05(1)
3	4(2)	4.02(2)
6	5(1)	5.01(1)
6	1(2)	1.03(2)
Y1	3	3.5
Y2	7	7.5

Neuron	Iteration 1 Bias	Iteration 2 Bias
Hidden 1	1	1.05
Hidden 2	0.5	1
Output	2	2.05

And the process continues ...

Considering the whole dataset

We considered only one data point for simplicity

No. of Bedrooms	Floor level	Price (in 1000 of \$)
3	6	300
4	7	400
2	8	350
5	4	375

Considering the whole dataset

Actually the whole dataset will be considered for the iterations

No. of Bedrooms	Floor level	Price (in 1000 of \$)
3	6	300
4	7	400
2	8	350
5	4	375

$$Error = \sum_{i=1}^{n} (Actual - Predicted)$$

Where n = number of rows of data

Image Classification

Labels

cat

cat

dog

cat

cat

dog

dog

dog

Processing the Data and how the Computer reads it

Original Image

Converted to numbers for the computer algorithm to understand

Classification Model

Hidden Layer Activation = Sigmoid

Output Layer Activation = Sigmoid Sigmoid/Logistic Function:

$$Y = 1 / (1 + exp(-z))$$

Where z = m*x + b

 Randomly assign the weights

Randomly assign the bias

$$Y1 = 1/1 + exp(-tempY1)$$

Input	Weights
2	3(1)
2	7(2)
5	6(1)
5	2(2)
Y1	0.5(1)
Y1	0.02(2)
Y2	0.1(1)
Y2	0.05(2)

Neuron	Bias
Hidden 1	1
Hidden 2	0.5
Output 1	0.6
Output 2	0.01

Υ2	= 1	/1+exn	(-tempY2)
1 4	— т	/ T CVD	

tempY2 = 5*7+6*2+0.5

Forward	Pass
----------------	------

More Probability to Output 1 =

Weights and Biases change according to the error

Input	Iteration 1 Weights	Iteration 2 Weights
2	3(1)	2.5(1)
2	7(2)	5.5(2)
5	6(1)	5.2(1)
5	2(2)	1.5(2)
Y1	0.5(1)	0.2(1)
Y1	0.02(2)	0.05(2)
Y2	0.1(1)	0.07(1)
Y2	0.05(2)	0.06(2)

Neuron	Bias	Bias
Hidden 1	1	0.5
Hidden 2	0.5	0.25
Output 1	0.6	0.4
Output 2	0.01	0.05

tempY1 =
$$5*2.5+6*5.2+0.5$$

= 44.2
Y1 = $1/1+exp(-44.2) = 1$

- Still more probability to **Dog**
- But the error has come down

And the process continues ...

A DEEP Neural Network a.k.a. DEEP LEARNING

Feature Representation by Deep Nets

Simple to Complex representation by the different layers

First Layer Representation

Second Layer Representation

Third Layer Representation

What made Deep Learning possible ...

Lots of data

Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs)

Lots of new and better algorithms

The Limitations of Deep Learning

- Need for large, well-labelled training datasets (for supervised learning)
- For training requires **lots of time and/or money GPUs** (Graphics Processing Unit) provide significant increase in computing power however are not cheap (thousands of \$)
- The architecture of the deep net needs to be optimized for each use case

Transfer Learning

Randomly initialized DeepNet

Trained with imagenet

Our data

Fine Tuning

Target Labels relevant to our data

The platform for Deep Learning - TensorFlow

What is Tensor Flow ?

Open Source Python artificial intelligence library using data flow graphs to build models

Helps to create a deep neural network architecture

Used in language understanding, image recognition, classification and prediction .

Lets get our hands dirty...