EE263 Autumn 2015 S. Boyd and S. Lall

QR factorization

- lacktriangle Gram-Schmidt procedure, QR factorization
- orthogonal decomposition induced by a matrix

Gram-Schmidt procedure

given independent vectors $a_1,\ldots,a_n\in\mathbb{R}^m$, G-S procedure finds orthonormal vectors q_1,\ldots,q_n s.t.

$$\operatorname{span}(a_1,\ldots,a_r)=\operatorname{span}(q_1,\ldots,q_r) \qquad \quad \text{for } r\leq n$$

- \blacktriangleright thus, q_1, \ldots, q_r is an orthonormal basis for $\operatorname{span}(a_1, \ldots, a_r)$
- ▶ rough idea of method: first orthogonalize each vector w.r.t. previous ones; then normalize result to have norm one

- ightharpoonup step 1a. $\tilde{q}_1 := a_1$
- ▶ step 1b. $q_1 := \tilde{q}_1 / \|\tilde{q}_1\|$

(normalize)

ightharpoonup step 2a. $\tilde{q}_2 := a_2 - (q_1^{\mathsf{T}} a_2)q_1$

(remove q_1 component from a_2)

▶ step 2b. $q_2 := \tilde{q}_2 / \|\tilde{q}_2\|$

- (normalize)
- ▶ step 3a. $\tilde{q}_3 := a_3 (q_1^\mathsf{T} a_3)q_1 (q_2^\mathsf{T} a_3)q_2$ (remove q_1 , q_2 components)

▶ step 3b. $q_3 := \tilde{q}_3 / \|\tilde{q}_3\|$

(normalize)

etc.

for $i = 1, 2, \ldots, n$ we have

$$a_i = (q_1^\mathsf{T} a_i)q_1 + (q_2^\mathsf{T} a_i)q_2 + \dots + (q_{i-1}^\mathsf{T} a_i)q_{i-1} + \|\tilde{q}_i\|q_i$$

= $r_{1i}q_1 + r_{2i}q_2 + \dots + r_{ii}q_i$

(note that the r_{ij} 's come right out of the G-S procedure, and $r_{ii} \neq 0$)

${\it QR}$ decomposition

written in matrix form: A=QR, where $A\in\mathbb{R}^{m\times n}$, $Q\in\mathbb{R}^{m\times n}$, $R\in\mathbb{R}^{n\times n}$:

- $ightharpoonup Q^{\mathsf{T}}Q = I$, and R is upper triangular & invertible
- ightharpoonup called QR decomposition (or factorization) of A
- usually computed using a variation on Gram-Schmidt procedure which is less sensitive to numerical (rounding) errors
- lacktriangle columns of Q are orthonormal basis for ${\bf range}(A)$

General Gram-Schmidt procedure

- ▶ in basic G-S we assume $a_1, \ldots, a_n \in \mathbb{R}^m$ are independent
- ▶ if a_1, \ldots, a_n are dependent, we find $\tilde{q}_j = 0$ for some j, which means a_j is linearly dependent on a_1, \ldots, a_{j-1}
- ▶ modified algorithm: when we encounter $\tilde{q}_j = 0$, skip to next vector a_{j+1} and continue:

```
\begin{split} r &= 0 \\ \text{for } i &= 1, \dots, n \\ \tilde{a} &= a_i - \sum_{j=1}^r q_j q_j^\mathsf{T} a_i \\ \text{if } \tilde{a} &\neq 0 \\ r &= r+1 \\ q_r &= \tilde{a}/\|\tilde{a}\| \end{split}
```

Staircase form

on exit,

- $ightharpoonup q_1, \ldots, q_r$ is an orthonormal basis for $\operatorname{range}(A)$ (hence $r = \operatorname{Rank}(A)$)
- ightharpoonup each a_i is linear combination of previously generated q_j 's

in matrix notation we have A=QR with $Q^{\mathsf{T}}Q=I$ and $R\in\mathbb{R}^{r\times n}$ in upper staircase form

'corner' entries (shown as \times) are nonzero

Applications

- lacktriangledown directly yields orthonormal basis for ${\bf range}(A)$
- ▶ yields factorization A = BC with $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$, r = Rank(A)
- lacktriangle to check if $b\in \operatorname{span}(a_1,\ldots,a_n)$, apply Gram-Schmidt to $\left[egin{array}{ccc} a_1&\cdots&a_n&b \end{array}
 ight]$
- \blacktriangleright staircase pattern in R shows which columns of A are dependent on previous ones

works incrementally: one G-S procedure yields QR factorizations of $\begin{bmatrix} a_1 & \cdots & a_p \end{bmatrix}$ for $p=1,\ldots,n$

$$\left[\begin{array}{ccc} a_1 & \cdots & a_p \end{array}\right] = \left[\begin{array}{ccc} q_1 & \cdots & q_s \end{array}\right] R_p$$

where $s = \text{Rank}(\begin{bmatrix} a_1 & \cdots & a_p \end{bmatrix})$ and R_p is leading $s \times p$ submatrix of R

'Full' QR factorization

with $A = Q_1 R_1$ the QR factorization as above, write

$$A = \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right] \left[\begin{array}{c} R_1 \\ 0 \end{array} \right]$$

where $\left[\begin{array}{cc}Q_1&Q_2\end{array}\right]$ is orthogonal, i.e., columns of $Q_2\in\mathbb{R}^{m\times (m-r)}$ are orthonormal, orthogonal to Q_1

to find Q_2 :

- lacksquare find any matrix \tilde{A} s.t. $\left[egin{array}{ccc} A & \tilde{A} \end{array} \right]$ has rank m (e.g., $\tilde{A}=I$)
- lacktriangle apply general Gram-Schmidt to $\left[egin{array}{cc} A & ilde{A} \end{array}
 ight]$
- $ightharpoonup Q_1$ are orthonormal vectors obtained from columns of A
- $lackbox{ }Q_2$ are orthonormal vectors obtained from extra columns $(ilde{A})$

i.e., any set of orthonormal vectors can be extended to an orthonormal basis for \mathbb{R}^m

Permutation

can permute columns with \times to front of matrix:

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} P$$

where:

- $ightharpoonup Q^{\mathsf{T}}Q = I$
- $ightharpoonup R_{11} \in \mathbb{R}^{r imes r}$ is upper triangular and invertible
- ▶ $P \in \mathbb{R}^{n \times n}$ is a permutation matrix (which moves forward the columns of a which generated a new q)

Complementary subspaces

if $Q=\begin{bmatrix}Q_1&Q_2\end{bmatrix}$ and Q is orthogonal then ${\bf range}(Q_1)$ and ${\bf range}(Q_2)$ are called complementary subspaces, because

$$\mathsf{range}(Q_2) = \mathsf{range}(Q_1)^\perp$$

- ▶ they are orthogonal *i.e.*, every vector in the first subspace is orthogonal to every vector in the second subspace
- \blacktriangleright every vector in \mathbb{R}^m can be expressed as a sum of two vectors, one from each subspace
- each subspace is the orthogonal complement of the other

Orthogonal decomposition induced by A

$$\mathsf{range}(A)^\perp = \mathsf{null}(A^\mathsf{T})$$

- ▶ the columns of Q_2 are an orthonormal basis for $\mathbf{null}(A^\mathsf{T})$
- ightharpoonup called orthogonal decomposition (of \mathbb{R}^m) induced by $A \in \mathbb{R}^{m \times n}$
- ▶ every $y \in \mathbb{R}^n$ can be written uniquely as y = z + w, with $z \in \mathbf{range}(A)$, $w \in \mathbf{null}(A^\mathsf{T})$ (we'll soon see what the vector z is . . .)