

IBM Data Analyst Capstone Project

Van Dzung April 2024

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Current Technology Usage Trend
- Future Technology Trend
 - Language
 - Database
 - Platform
 - Web frame
- Demographics Survey
- Country & Gender Difference

INTRODUCTION

- Analyze the Technology and programming data to help:
 - Identify the most well-known programming languages, databases, platforms, and web frames in demand
 - Identify future skill requirements in the industry
 - Determine the gap in human resources
- Data must be collected from various resources then analyzed.
- Audience for this Presentation :
 - IT developers and investors
 - Students who study DA and programming.

METHODOLOGY

- Data Collection (Sources)
 - Stack overflow developer 2019 survey
 - API
- Data Wrangling
- **Data Exploration**
- **Data Cleaning**
- **Data Visualization**
 - Python matplotlib & turtle
 - Creating dashboard with IBM Cognos
- Presentation

RESULTS - Data collection Using API

- Washington DC has highest Job Posting.
- 1173 jobs posting in Python

```
api_url="http://127.0.0.1:5000/data"
def get_number_of_jobs_T(technology):
    payload={"Key Skills": technology}
    response=requests.get(api_url, params=payload)
    if response.ok:
        data=response.json()
#        print(data)
        number_of_jobs = len(data)

    return technology, number_of_jobs
```

Calling the function for Python and checking if it works.

```
get_number_of_jobs_T("Python")

: ('Python', 1173)
```

	Technology	Los Angeles	New York	San Francisco	Washington DC	Seattle	Austin	Detroit
0	С	296	1622	214	2664	1668	224	1973
1	C#	5	41	3	68	49	5	60
2	C++	3	43	3	55	41	4	32
3	Java	43	326	38	516	354	32	353
4	JavaScript	7	51	7	61	52	5	41
5	Python	24	143	17	258	133	15	170
6	Scala	0	8	0	3	4	1	5
7	Oracle	17	95	19	143	110	11	115
8	SQL Server	3	36	2	53	31	5	34
9	MySQL Server	0	0	0	0	0	0	0
10	PostgreSQL	0	1	0	3	1	0	2
11	MongoDB	2	25	2	32	21	1	25

RESULTS - Exploratory Data survey

- Data shape: 11552 rows, 85 columns
- Average Age of Surveys Takers: 30.77
- 135 Countries took the survey

```
[9]: # your code goes here
       df['Age'].mean(axis=0)
       30.77239449133718
       The dataset is the result of a world wide survey. Print how many unique countries are there in the Country column.
[10]: # your code goes here
       len(df['Country'].unique())
[10]: 135
```

RESULTS - Data Wrangling

After finding, then removing duplicate values:

 $(11552, 85) \Rightarrow (11398, 85)$

Data Normalized Annual Compensation:

100000.0

RESULTS - EDA - Distribution

RESULTS - EDA - Outliers

Most Outliers are found after Q3

RESULTS - EDA - Correlation

Respondent 0.004041

CompTotal 0.006970

ConvertedComp 0.105386

WorkWeekHrs 0.036518

CodeRevHrs -0.020469

Age 1.000000

Name: Age, dtype: float64

RESULTS - Data Visualization using SQL

Top 5 databases that respondents wish to learn next year

PROGRAMMING LANGUAGE TRENDS

Current Year

Top 10 Language Worked With

LanguageWorkedWith (Count)

Next Year

Top 10 Language Desire Next Year

LanguageDesireNextYear (Count)

PROGRAMMING LANGUAGE TRENDS - FINDINGS & **IMPLICATIONS**

Findings

- JavaScript is the most commonly used programming language, but Python has risen in the ranks again.
- HTML, SQL are still top 4 popular languages now and future

Implications

- Python is the fastest-growing major programming language today.
- Web and application development are still demanded job.
- Database manipulation is also an important skill demanded.

DATABASE TRENDS

Current Year

Top10 Database Worked With

DatabaseWorkedWith

Next Year

Top 10 Database Desire Next Year

DatabaseDesireNextYear

DATABASE TRENDS - FINDINGS & **IMPLICATIONS**

Findings

- MySQL is the most commonly used database
- MySQL, MongoDB, and PostgreSQL are still popular databases now and in the future.
- Microsoft SQL and SQL lite will be replaced by Elasticsearch and Redis.

Implications

- Private Company owned databases competitions are increasing.
- Open-Source database skills are still in high demand.
- Non relational database are also on the rise.

DASHBOARD

<The GitHub link of the Cognos dashboard goes here.>

<u>Dvan4/IBM-Data-Analyst-Capstone- (github.com)</u>

DASHBOARD TAB 1

Current Technology Usage

DASHBOARD TAB 2

Future Technology Trend

Top 10 Language Desire Next Year

LanguageDesireNextYear (Count)

Top 10 Database Desire Next Year

DatabaseDesireNextYear

Platform Desire Next Year

Top 10 WebFrame Desire Next Year

4,714

DASHBOARD TAB 3

Demographics

DISCUSSION

 In this survey, Python has climbed to the second place outperforming Java in the fastest growth of major programming languages (behind Rust)

OVERALL FINDINGS & IMPLICATIONS

Findings

- The highly used languages and databases till stay in high demand in the future
- ThePlatform used right are very similar to the predicted platforms that will be used in the future
- jQuery will take the Lead in terms of web Frame work with in the future

Implications

- Man are still the leading gender in technology
- Other continent are still lagging behind America and Europe
- 24-34 is the highest age group for

CONCLUSION

- Technology is still hot field to be interested now and, in the future
- Due to high demand in the field, competition is getting high and there is a need to quick adaptation to change.
- Companies need to look to new Horizon like Central America and Africa.
- Artificial Intelligence and the like are new area impacting the technology field and are probably skills ones must seek to acquire.

APPENDIX

 Include any relevant additional charts, or tables that you may have created during the analysis phase.

JOB POSTINGS

In Module 1 you have collected the job posting data using Job API in a file named "job-postings.xlsx". Present that data using a bar chart here. Order the bar chart in the descending order of the number of job postings.

POPULAR LANGUAGES

In Module 1 you have collected the job postings data using web scraping in a file named "popularlanguages.csv".

Present that data using a bar chart here. Order the bar chart in the descending order of salary.

