Shusen Wang

Policy Gradient

• Use policy network, $\pi(a|s; \theta)$, for controlling the agent.

- Use policy network, $\pi(a|s; \theta)$, for controlling the agent.
- State-value function:

$$V_{\pi}(s) = \mathbb{E}_{A \sim \pi}[Q_{\pi}(s, A)]$$
$$= \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a).$$

Policy Gradient

- Use policy network, $\pi(a|s; \theta)$, for controlling the agent.
- State-value function:

$$V_{\pi}(s) = \mathbb{E}_{A \sim \pi}[Q_{\pi}(s, A)]$$
$$= \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a).$$

$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right].$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$\bullet \mathbb{E}_{A \sim \pi} \left[b \right] \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \frac{\partial \ln \pi(a \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{\alpha} \pi(\alpha \mid s; \theta) \left(\frac{\partial \ln \pi(\alpha \mid s; \theta)}{\partial \theta} \right)$$

$$= \frac{1}{\pi(\boldsymbol{a} \mid \boldsymbol{s};\boldsymbol{\theta})} \cdot \frac{\partial \pi(\boldsymbol{a} \mid \boldsymbol{s};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \left(\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta} = 1$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial 1}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial 1}{\partial \theta} = 0.$$

If
$$b$$
 is independent of A , then $\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = 0$.

If **b** is independent of **A**, then
$$\mathbb{E}_{\mathbf{A} \sim \pi} \left| \mathbf{b} \cdot \frac{\partial \ln \pi(\mathbf{A} \mid s; \mathbf{\theta})}{\partial \mathbf{\theta}} \right| = 0$$
.

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right]$$

If **b** is independent of **A**, then
$$\mathbb{E}_{\mathbf{A} \sim \pi} \left| \mathbf{b} \cdot \frac{\partial \ln \pi(\mathbf{A} \mid s; \mathbf{\theta})}{\partial \mathbf{\theta}} \right| = 0$$
.

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right] - \left[\mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot b \right] \right]$$
Equal to zero

If **b** is independent of **A**, then
$$\mathbb{E}_{\mathbf{A} \sim \pi} \left| \mathbf{b} \cdot \frac{\partial \ln \pi(\mathbf{A} \mid s; \mathbf{\theta})}{\partial \mathbf{\theta}} \right| = 0$$
.

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right] - \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot b \right]$$

If **b** is independent of **A**, then
$$\mathbb{E}_{\mathbf{A} \sim \pi} \left| \mathbf{b} \cdot \frac{\partial \ln \pi(\mathbf{A} \mid s; \mathbf{\theta})}{\partial \mathbf{\theta}} \right| = 0$$
.

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right] - \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot b \right]$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot (Q_{\pi}(s, A) - b) \right].$$

Theorem. If b is independent of A_t , then policy gradient is:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

$$= \mathbf{g}(\mathbf{A_t})$$

Policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

$$= \mathbf{g}(\mathbf{A_t})$$

• Randomly sample $a_t \sim \pi(\cdot \mid s_t; \theta)$ and compute $\mathbf{g}(a_t)$.

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

- Randomly sample $a_t \sim \pi(\cdot \mid s_t; \theta)$ and compute $\mathbf{g}(a_t)$.
- $g(a_t)$ is an unbiased estimate of the policy gradient:

$$\mathbb{E}_{\mathbf{A_t} \sim \pi}[\mathbf{g}(\mathbf{A_t})] = \frac{\partial V_{\pi}(s_t)}{\partial \theta}.$$

Stochastic Policy Gradient

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - \mathbf{b}).$$

Stochastic policy gradient ascent:

$$\theta \leftarrow \theta + \beta \cdot \mathbf{g}(a_t)$$
.

Stochastic Policy Gradient

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - \mathbf{b}).$$

• Whatever b (independent of A_t) we use, the policy gradient $\mathbb{E}_{A_t \sim \pi}[\mathbf{g}(A_t)]$ remains the same.

Stochastic Policy Gradient

Stochastic policy gradient:

$$\mathbf{g}(a_t) = \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, a_t) - b).$$

- Whatever b (independent of A_t) we use, the policy gradient $\mathbb{E}_{A_t \sim \pi}[\mathbf{g}(A_t)]$ remains the same.
- However, **b** affects $\mathbf{g}(a_t)$.
- A good b leads to small variance and speeds up convergence.

Choices of Baselines

Choice 1: b=0

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

- We can simply set b = 0.
- It becomes the standard policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot Q_{\pi}(s_t, A_t) \right].$$

Choice 2: b is state-value

Policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

• Because s_t has been observed, $b = V_{\pi}(s_t)$ is independent of A_t .

Choice 2: b is state-value

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

- Because s_t has been observed, $b = V_{\pi}(s_t)$ is independent of A_t .
- Why using such a baseline?
- $V_{\pi}(s_t)$ is close to $Q_{\pi}(s_t, A_t)$:

$$V_{\pi}(s_t) = \mathbb{E}_{A_t}[Q_{\pi}(s_t, A_t)].$$

Thank you!