Mcahine Vision HW3 Report

資工三 110590004 林奕廷

Dependencies

```
python = ">=3.9,<4"
opencv-python = "^4.9.0.80"
alive-progress = "^3.1.5"
matplotlib = "^3.8.3" # optional, for visualing the histogram</pre>
```

Run

python 110590004_hw3.py

Question 1

Grayscaling and Binarization

- Use $(0.3 \times R) + (0.59 \times G) + (0.11 \times B)$ to convert the RGB image to grayscale image.
- Implement Triangle algorithm to binarize the grayscale image.
 - Apply smoothing in the histogram to get a better threshold.
 - ▶ If the matplotlib is installed, the histogram and threshold will be shown in debug folder.
 - ► Thresholds: img 1: 237, img 2: 242, img 3: 241, img 4: 234.

Part 1

N-Connected Distance Transform

- Implement the 4-connected and 8-connected distance transform.
- Using the following formula to calculate the distance:

$$f^{0}[i,j] = f[i,j]$$

$$f^{m}[i,j] = f^{0}[i,j] + \min(f^{m-1}[u,v])$$

where (u,v) is n-neighbors of (i,j)

Part 2

Skeletonization

- 1. Start with the smallest number h = 1 in the distance transform.
- 2. Iteratively remove the points with height h that are not the local maximum of 4-neighbors.
- 3. If removing the point would leads to a connectivity lose, then keep the point.
- 4. Increase the height h and repeat the process until the height is larger than the maximum height in the distance transform.
- 5. Use the structure element to do thinning on the skeleton. The structure element is defined as:

	0	0	0		0	0
ĺ		1		1	1	0
ĺ	1	1	1		1	

6. At each iteration, the image is first thinned by the left hand structuring element, and then by the right hand one, and then with the remaining six 90° rotations of the two elements.

Result

4-Connected Distance Transform

8-Connected Distance Transform

Skeletonization

Machine Vision

