NNDL - ETE3

Name: Kushal Sourav B Regno: 2347125

```
In [12]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import MinMaxScaler
         import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import LSTM, Dense, RepeatVector, TimeDistributed
         import seaborn as sns
         data = pd.read_csv('./weather_data.csv', parse_dates=['date'])
         data.set_index('date', inplace=True)
In [11]: print(data.head())
         print(data.info())
         print(data.describe())
         print(data.isnull().sum())
                   temperature
        date
        2014-01-01
                     10,248357
        2014-01-02
                     9.950428
        2014-01-03
                     10.362958
        2014-01-04
                     10.820167
        2014-01-05
                     9.961091
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2557 entries, 2014-01-01 to 2020-12-31
       Data columns (total 1 columns):
        #
            Column
                    Non-Null Count Dtype
            ----
                         -----
            temperature 2557 non-null float64
        dtypes: float64(1)
        memory usage: 40.0 KB
        None
              temperature
        count 2557.000000
       mean
               10.017472
        std
                 0.923047
       min
                 3.337291
        25%
                 9.335195
       50%
                10.031778
        75%
                10.681384
       max
                15.587945
       temperature
        dtype: int64
```

• Load the dataset containing temperature and date columns.

- Use parse_dates to parse the date column as datetime.
- Set the date column as the index for easier time-series handling.

```
In [9]: plt.figure(figsize=(12, 6))
   plt.plot(data.index, data['temperature'], label='Temperature', color='blue')
   plt.title("Temperature Over Time")
   plt.xlabel("Date")
   plt.ylabel("Temperature")
   plt.legend()
   plt.show()
```


Purpose:

To observe the temperature trends over time and identify seasonal patterns, spikes, or drops..

```
In [13]: plt.figure(figsize=(8, 6))
    sns.boxplot(y=data['temperature'], color='orange')
    plt.title("Boxplot of Temperature")
    plt.ylabel("Temperature")
    plt.show()
```



```
In [19]: rolling_mean = data['temperature'].rolling(window=30).mean()
    rolling_std = data['temperature'].rolling(window=30).std()

plt.figure(figsize=(14, 6))
    plt.plot(data.index, data['temperature'], label='Original Temperature', color='b
    plt.plot(data.index, rolling_mean, label='Rolling Mean (30 days)', color='red')
    plt.plot(data.index, rolling_std, label='Rolling Std (30 days)', color='green')
    plt.title("Rolling Mean and Standard Deviation")
    plt.xlabel("Date")
    plt.ylabel("Temperature")
    plt.legend()
    plt.show()
```



```
In [3]: scaler = MinMaxScaler()
  data['temperature'] = scaler.fit_transform(data[['temperature']])
```

```
train_data, test_data = train_test_split(data, test_size=0.2, shuffle=False)

time_steps = 30
def create_sequences(data, time_steps):
    sequences = []
    for i in range(len(data) - time_steps):
        seq = data.iloc[i: i + time_steps].values
        sequences.append(seq)
    return np.array(sequences)

train_sequences = create_sequences(train_data, time_steps)
test_sequences = create_sequences(test_data, time_steps)
```

- Normalize the temperature column to the range [0, 1] using MinMaxScaler.
- Split the dataset into training (80%) and testing (20%) sets without shuffling since it's time-series data.
- Convert data into sequences of time_steps length for LSTM input.

```
In [4]:
    model = Sequential([
        LSTM(64, activation='relu', input_shape=(time_steps, 1), return_sequences=Tr
        LSTM(32, activation='relu', return_sequences=False),
        RepeatVector(time_steps),
        LSTM(32, activation='relu', return_sequences=True),
        LSTM(64, activation='relu', return_sequences=True),
        TimeDistributed(Dense(1))
])

model.compile(optimizer='adam', loss='mse')
model.summary()
```

c:\Users\USER\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src
\layers\rnn\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` arg
ument to a layer. When using Sequential models, prefer using an `Input(shape)` ob
ject as the first layer in the model instead.
 super().__init__(**kwargs)

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 30, 64)	16,896
lstm_1 (LSTM)	(None, 32)	12,416
repeat_vector (RepeatVector)	(None, 30, 32)	0
lstm_2 (LSTM)	(None, 30, 32)	8,320
lstm_3 (LSTM)	(None, 30, 64)	24,832
time_distributed (TimeDistributed)	(None, 30, 1)	65

Total params: 62,529 (244.25 KB)

Trainable params: 62,529 (244.25 KB)

Non-trainable params: 0 (0.00 B)

- The encoder reduces the input dimension using two LSTM layers.
- The decoder reconstructs the input using a RepeatVector and LSTM layers.
- TimeDistributed(Dense(1)) outputs the reconstructed sequences.

Encoder

- The first LSTM layer with 64 units processes sequences while returning sequences for further processing.
- The second LSTM layer with 32 units reduces the sequence into a latent representation, which is a fixed-length vector representing the input sequence.

Decoder

- RepeatVector(time_steps): Expands the latent vector back into a sequence with the same length as the input.
- Two LSTM layers with 32 and 64 units reconstruct the temporal structure.
- TimeDistributed(Dense(1)): Outputs the reconstructed sequences for each time step.

Epoch					,	0.437			0.0404
63/63		199	s 77ms/step) -	- loss	: 0.13/4	1 -	- val_loss	: 0.0191
Epoch 63/63		4.0	60ms/step		1000	0 0171		val locci	0 0067
Epoch	3/20							_	
63/63		3s	54ms/step	-	loss:	0.0054	-	val_loss:	0.0025
Epoch		_	/ /		-				
63/63		35	54ms/step	-	loss:	0.0027	-	val_loss:	0.0022
Epoch		٦-	FF		1	0.0006			0 0000
63/63		35	55ms/step	-	1088:	0.0026	-	var_ross:	0.0020
Epoch 63/63		26	Elma/aton		1000	0 0022		val locci	0 0020
Epoch		25	52ms/step	_	1055.	0.0023	-	va1_1055.	0.0020
63/63		Λc	67ms/step	_	loss	0 0021	_	val loss.	a aa19
Epoch		73	071113/3CEP		1033.	0.0024		va1_1033.	0.0015
		45	63ms/step	_	loss:	0.0024	_	val loss:	0.0019
Epoch			озо, в сер						0.0025
		3s	53ms/step	_	loss:	0.0024	_	val loss:	0.0019
	10/20							_	
-		3s	50ms/step	-	loss:	0.0023	_	val_loss:	0.0019
Epoch	11/20							_	
63/63		3s	52ms/step	-	loss:	0.0024	-	<pre>val_loss:</pre>	0.0019
Epoch	12/20								
63/63		3s	50ms/step	-	loss:	0.0023	-	<pre>val_loss:</pre>	0.0019
•	13/20								
63/63		3s	51ms/step	-	loss:	0.0024	-	val_loss:	0.0019
	14/20				_				
63/63		3s	50ms/step	-	loss:	0.0023	-	val_loss:	0.0019
•	15/20	4 -	FF / - t		1	0 0000			0.0010
63/63		45	55ms/step	-	1088:	0.0023	-	var_ross:	0.0019
•	16/20	10	57ms/step		1000	0 0023		val locci	0 0010
	17/20	43	3/1113/3 Ceb	_	1055.	0.0023	_	va1_1055.	0.0019
•		4c	63ms/step	_	1055.	0 0023	_	val loss.	a aa19
	18/20	73	0511137 3 CCP		1033.	0.0023		va1_1033.	0.0015
		4 s	64ms/step	_	loss:	0.0023	_	val loss:	0.0018
	19/20		, P						- /
		4 s	63ms/step	_	loss:	0.0023	-	val_loss:	0.0019
	20/20		-					_	
63/63		4s	60ms/step	-	loss:	0.0023	-	<pre>val_loss:</pre>	0.0019

- Train the autoencoder using training sequences as both input and output.
- Visualize the training and validation loss to monitor model performance.

```
In [16]: train_predictions = model.predict(train_sequences)
         test_predictions = model.predict(test_sequences)
         train_error = np.mean(np.power(train_sequences - train_predictions, 2), axis=(1,
         test_error = np.mean(np.power(test_sequences - test_predictions, 2), axis=(1, 2)
         print("Training Error Stats:", pd.Series(train_error).describe())
         print("Testing Error Stats:", pd.Series(test_error).describe())
        63/63
                                  - 1s 16ms/step
        16/16
                                  - 0s 14ms/step
        Training Error Stats: count
                                        2015.000000
        mean
                    0.002261
        std
                    0.001895
        min
                    0.000589
        25%
                    0.001351
        50%
                    0.001675
        75%
                    0.002026
                    0.011240
        max
        dtype: float64
        Testing Error Stats: count
                                       482.000000
        mean
                   0.001856
        std
                   0.001042
        min
                   0.000846
        25%
                   0.001416
        50%
                   0.001600
        75%
                   0.001873
                   0.006320
        max
        dtype: float64
```

Understanding the distribution of reconstruction errors helps set a threshold for anomaly detection.

```
In [24]: threshold = np.percentile(train_error, 50)
print("Reconstruction Error Threshold:", threshold)
```

Reconstruction Error Threshold: 0.0016746018962416754

The threshold is chosen to ensure that only the 50% of reconstruction errors are flagged as anomalies.

```
In [25]: # Identify anomalies
    test_anomalies = test_error > threshold
    anomaly_dates = test_data.index[time_steps:][test_anomalies]

print(f"Number of Anomalies Detected: {len(anomaly_dates)}")
print("Anomalous Dates:", anomaly_dates)

Number of Anomalies Detected: 202
    Anomalous Dates: DatetimeIndex(['2019-09-16', '2019-09-17', '2019-09-18', '2019-09-19',
```

```
'2019-09-20', '2019-09-21', '2019-09-22', '2019-09-23',
'2019-09-27', '2019-09-28',
...
'2020-12-22', '2020-12-23', '2020-12-24', '2020-12-25',
'2020-12-26', '2020-12-27', '2020-12-28', '2020-12-29',
'2020-12-30', '2020-12-31'],
dtype='datetime64[ns]', name='date', length=202, freq=None)
```

```
In [26]: plt.figure(figsize=(15, 6))
    plt.plot(data.index, data['temperature'], label='Temperature')
    plt.scatter(anomaly_dates, data.loc[anomaly_dates, 'temperature'], color='red',
    plt.legend()
    plt.title("Temperature Anomalies")
    plt.xlabel("Date")
    plt.ylabel("Normalized Temperature")
    plt.show()
```


Anomalies Detected

Total Anomalies: 202 days out of 2,557 days (~7.9% of the data).

Anomaly Periods:

- Many anomalies were concentrated toward the latter part of the dataset, particularly in 2019-2020, suggesting unusual patterns in the temperature during these years.
- Some periods, such as September 2019 and December 2020, saw clusters of anomalies, potentially indicating rapid changes or unusual weather events.