

planetmath.org

Math for the people, by the people.

law of signs under multiplication in a ring

Canonical name LawOfSignsUnderMultiplicationInARing

Date of creation 2013-03-22 14:14:03 Last modified on 2013-03-22 14:14:03 Owner alozano (2414) Last modified by alozano (2414)

Numerical id 10

Author alozano (2414)
Entry type Derivation
Classification msc 20-00
Classification msc 16-00
Classification msc 13-00

Synonym $(-x) \cdot (-y) = x \cdot y$

Related topic Ring

Lemma 1. Let R be a ring with unity, which we denote by 1. For all $x, y \in R$:

$$(-x) \cdot (-y) = x \cdot y$$

where -x denotes the additive inverse of x in R.

Proof. Here we use the fact $(-1) \cdot a = -a$ for all $a \in R$. First, we see that:

$$(-1) \cdot (-1) \cdot a = (-1) \cdot ((-1) \cdot a) = (-1) \cdot (-a) = a$$

since, clearly, the additive inverse of -a is a itself.

Hence:

$$(-x) \cdot (-y) = (-1) \cdot x \cdot (-1) \cdot y = (-1) \cdot (-1) \cdot x \cdot y = x \cdot y$$

where we have used several times the associativity of \cdot and the fact that $(-1) \cdot x = x \cdot (-1) = -x$.