Predictive Analysis on Data Science Salaries 2020-2023

Mai Ngo

DePaul University - College of Computing and Digital Media (CDM)

DSC 423: Data Analysis and Regression

Nandhini Gulasingam

June 5, 2023

Tables of Contents

<u>Abstract</u>	1
<u>Literature Review</u>	2
<u>Introduction</u>	3
1. Dependent and Independent Variables	3
2. Objective and Method	4
Data Exploratory	5
1. Dependent Variable	5
Applied Transformation	5
2. Categorical Variables	5
3. Continuous Variable	6
Final Dataset	7
Regression Results	8
1. First Model	8
2. Second Model	8
3. Stepwise Selection Method	9
4. Third Model	9
5. Final Model	9
Studentized Residuals	10
Global F-Test	11
<u>Prediction</u>	13
<u>Validation</u>	14
<u>Conclusion</u>	15
<u>References</u>	16
Appendix A. Data	17
Appendix B. Regression Models	23
Appendix C. Prediction	30
Annendix D. Validation	31

Abstract

Data science in general is the studies of data by using a variety of methods to make better decision. There are two main branches; first, utilizing and analyzing data to make and predict better decisions (business management related purposes). Second branch is more on machine learning (algorithm improvement for data processing). Even though data can be spoken or analyzed by algorithm, it is still essential to have human intuition involved to ensure the data is interpreted correctly. Over the past decade, Data Science has emerged as a prominent field within the technology industry, attracting workers both outside and inside technology industry seeking better career path and higher pay rates. Since the industry is still new on a global scale. However, it is dominant and has such huge direct and indirect impact on every economic aspect in the United States. In this project, we will explore the growth of Data Science salary by using the dataset captures salary worldwide from 2020-2023. The objective is to learn how Data Science field salaries has been growth throughout the year, and whether there is an equal career growth for all data scientist globally in terms of salary improvements.

Literature Review

Data science salaries are highly volatile depend on job factors such as job skills, software expertise, personal background, and the data science sector. In situations where there are two jobs have identical description, require the same skillset and experience; data scientist may earn higher salary with the job utilizes more trending and on-demand software. Research on Quantitative Data Science Salary Analysis to Predict Job Salaries discussed that Amazon Web Services (AWS) cloud computing services has 40% of higher demand and pay rate than other computing service system which attracts much more attention from highly skill data scientists (Kaur, 2022). The study also mentioned that women enjoy working in data science field and have equal opportunity to growth 40% higher than other industry. However, despite the equitable growth opportunity, women are still getting pay less than men which still aligned with the gender pay gap social norm.

Another study from Cao (2017) breaks down different components of what criteria makes a good data Scientist and corresponding career growth. The study emphasizes that in 2014, data scientists have higher compensations compared to other data-related jobs, with a median salary of \$120,000, and \$160,000 for managers. Since the job expertise commonly a master's degree for skill verification, approximately a quarter of data scientist in the study were found to hold a doctorate, while another 44% had a Master's. The study also looks at compensation on globally and in the US, annual base salary was \$91,000 globally, and \$104,000 for the US, a promising global growth of the data science field.

A study on Salary Prediction in Data Science Field Using Specialized Skills and Job Benefits conducted by Quan & Raheem in 2022, testing different predictive and classification models like linear and polynomial regressions, decision tree, K Nearest Neighbors classifier, neural network, and stochastic gradient descent, etc. The author concludes that for general cases where the dataset is highly dimensional, with effective parameter tuning using grid search, majority machine learning models produce more accurate predictions by handling both linear and non-linear relationships, especially with tree-based models. Deep learning neural network techniques shows its expertise in processing contextual data directly from job postings, allowing efficient data mining on a larger scale without labelling and structuring raw data.

Introduction

The dataset contains 3755 observations of Data Science field salaries worldwide from 2020 to 2023. The dataset is from Kaggle (.csv format), and original data source is from https://salaries.ai-jobs.net/download/. There are a total of 11 attributes: 4 numerical and 7 categorical attributes (See Appendix A - Data Introduction, Table 1 and Table 2). Variable and data type are shown below:

- work_year: The year that salary was paid (dtype = num).
- experience_level: Level of experience (dtype = char).
 - o EN Entry level, MI Mid level, SE Senior level, EX Executive level.
- employment_type: Type of employment (dtype=char).
 - o PT Part time, FT Full time, CT Contract, FL Freelance.
- job_title: Title of the job (dtype = char).
- salary: Total gross salary in 'salary currency' (dtype = num).
- salary_currency: Currency of paid salary (dtype = char).
- salary_in_usd: Salary in USD (dtype = num).
- employee_residence: Employee's country of residence (dtype = char).
- remote_ratio: Ratio of remote work (dtype = num).
 - \circ 0 No remote work (< 20%), 50 Hybrid, 100 Fully remote (> 80%).
- company_location: Employer's country of headquarter / contracting branch (dtype = char).
- company_size: Number of employees in term of size (dtype = char).
 - \circ S < 50 employees, M 50 to 250 employees, L > 250 employees.

1. Dependent Variable

salary_in_usd

Independent Variable

work_year, experience_level, employment_type, job_title, salary, salary_currency, employee residence, remote ratio, company location, company size.

2. Objective and Method

The objective of this project is to create a regression model to predict future Data Science salaries in USD currency (continuous variable) given current pay rate (original currency) and employment condition (remote ratio, company sizes, etc.). Enhance Adjusted-R2 from the full regression model yet reduce number of predictors reasonably. All attributes from the original dataset will be included in the model to start with. Given this, I will apply Multiple Linear Regression.

Furthermore, I was also aware that there is no linear relationship between Salary in original currency and Salary in USD. However, without including the only continuous variable, the model will become an Analysis of Variance (ANOVA) which is not the objective of this course. I have also attempted to transform the predictor Salary in the original currency which the outcome was not great thus, I have decided to keep the predictor as it is.

Data Exploratory

1. Dependent Variable

The dependent variable Salary in USD has a unimodal distribution and is right skewed (See Appendix A - Data Exploratory, Figure 1). The mean is \$137,570.4 greater than median at \$135,000. It can be interpreted the average income of Data Science field is around \$137,570.4 (See Appendix A - Data Exploratory, Table 3). From the histogram, we can detect that there are outliers on the higher end. The distribution range is from \$5,132 to \$450,000; with standard deviation (S/D) equals to \$63,056. Two S/D to the left gives Salary in USD value at \$11,458.4 (closer to the minimum value), and three S/D to the right gives Salary in USD value at \$326,738.4. We can conclude that any value greater than \$326,738.4 threshold will be considered as outliers. Looking at the Quantiles table, 99 percentile gives value at \$309,400 and 100 percentile gives the maximum value. Thus, there are outliers at upper range, and we need to apply transformation to address the skewness and presence of outliers.

Applied Transformation

Started with apply log transformation, which is a commonly preferred method, the distribution of dependent variable was still right skewed. Then I applied square root transformation, and the variable now has a normal distribution (See Appendix A - Data Exploratory, Figure 2). Therefore, we will move forward using square root of Salary in USD as predicted value for the regression model.

2. Categorical Variables

To visualize the distribution of each categorical attribute, I use bar chart and frequency table. All frequency count mentioned below are retrieved from frequency table of corresponding attribute. Working Year attribute represents the year salary was paid. Year 2022 and 2023 have much significant higher number of observations in the dataset: 1664 and 1785 respectively. The distribution of Salary (USD) versus each Working Year shows that salary of Data Science field has been increasing over time with salary range pretty much stay consistent. The salary median of 2020 and 2021 are similar around \$75,000, while in 2022 and 2023, salary median shot up over \$100,000 (See Appendix A - Data Exploratory, Figure 3).

Experience Level has four levels: entry, mid-level, senior and executive. Senior level accounts for the most with 2516 observations, around 67% of the dataset. The distribution of Salary (USD) versus Experience Level shows executive level has the highest median salary and range, followed by senior level. Entry and mid-level are pretty much having the same distribution (See Appendix A - Data Exploratory, Figure 4). Overall, this distribution makes sense, the higher working position a person has, the better they get paid. Employee Residence represents the country the employee lives during salary paid year. Company Location is the head quarter location or country of the employer. The two attributes have almost identical distribution where US accounts for majority of the observation (around 80% of the dataset): 3004 for Employee Residence, and 3040 for Company Location, respectively (See Appendix A - Data Exploratory, Figure 5). We could assume multicollinearity.

Salary Currency is the currency of Salary (original currency). Again, USD is dominated with 3224 observations (See Appendix A - Data Exploratory, Figure 6). Remote Ratio has three categories: no remote work, hybrid and fully remote. No remote work has the highest count of more than 3000 observations. Boxplot represents the relationship between Remote Ratio and Salary (USD) shows that fully remote and no remote at all have similar distribution with median Salary in USD of around \$130,000. While hybrid working model has lower median pay of approximately \$80,000 (See Appendix A - Data Exploratory, Figure 7). We can assume that the salary indifference here could be caused by data imbalance. Or else, this relationship is worth to explore further since we know generally tech employee prefers hybrid working model.

The two final categorical attributes are Company Size and Employment Type. Company Size attribute has three categories: small medium and large. Medium size has the most data points of 3153 counts. Employment Type is separated into 4 types: contract, freelance, full-time, and part-time. Full-time employment dominates the distribution of Employment Type with 3718 observations, almost 99% of the dataset (See Appendix A - Data Exploratory, Figure 8).

3. Continuous Variable

Below graph represents the relationship between the predicted variable - square root of Salary (USD) versus the only continuous predictors in the dataset, Salary (original currency).

The graph shows a distinct straight flat line between the two variables, which emphasizes changes from square root of Salary (USD) does not correlate with changes of Salary (original currency) (See Appendix A - Data Exploratory, Figure 9). Or in another word, there is no consistent increase or decrease in predicted variable as the predictor variable changes. The relationship between the two variables is very weak. Per mentioning in the Objective section, Salary (original currency) will be included in the model.

Final Dataset

Given all analysis and understanding from attribute exploratory phase, I apply dummy variable transformation toward all categorical attributes, except for Working Year. In addition, since there is data imbalance issue, I set the reference attribute "1" to represent the feature with the highest count frequency, and "0" will be the rest. An example, Employment Type is completely dominated with full-time position thus, full-time will be set as "1", and the rest features will be set as "0". The final dataset will have all attribute, predicted value is square root of Salary (USD), predictors are dummy variables of the eight attributes, Salary (original currency) and Working Year stay the same (See Appendix A - Final Dataset, Table 4)/

The second column of correlation table describes the correlation between each predictor versus predicted value (See Appendix A - Final Dataset, Table 5 and Table 6). Majority of the predictors has weak to moderate correlations with the predicted variable. Noticeably, Employee Residence has a very strong correlation with Company Location at 0.96146, this suggests multicollinearity which we will verify through VIF later. This strong correlation does make sense, employee tend to live near where they work. Furthermore, scatterplot matrix will not be generated since we have dummy variables as predictors. Correlation with dummy variable does not interpret the association entirely correctly, not reliable, due to fixed values at 0 and 1.

Regression Results

1. First Model

Started with running regression model on the full dataset with all attributes. Based on the regression result - Parameter Estimates (See Appendix B - First Model Regression Result, Table 1), Work Year, Employee Residence, Experience Level, Type of Employment, and Salary Currency variables are highly significant due to their p-values < 0.01. The p-values for Company Location = 0.5915, Company Size = 0.9649 and Remote Ratio = 0.3217, greater than 0.05. Thus, the three variables are not significant. Looking at standardized coefficients, Employee Residence is the most influence at +0.309, followed by Employee Experience at -0.267. Company size is the least significant variable at -0.00065.

R-square = 0.3934 indicates that 39.34% of the variance in Salary (USD) amount can be explained by all listed predictors listed here. Looking at (Variance Inflation Factor (VIF) value for multicollinearity detection, both Employee Residence and Company Location have VIF values greater than 10 and Tolerance values less than 0.10 which proves multicollinearity. Employee Residence has VIF = 14.752 and Tolerance = 0.0678, Company Location has VIF = 14.78 and Tolerance = 0.0677. Since Company Location has higher VIF value than Employee Residence's, I will re-fit the model again excluding Company Location attribute.

The variance in the studentized residuals versus predicted value seems to increase in density and has a funnel shape (See Appendix B - First Model Regression Result, Figure 1). This suggests that we may have heteroscedasticity, which means the variability of residuals is not constant and maybe influenced by the predicted value. Therefore, the assumption of Constant Variance is violated. Normal Probability Plot (NPP) has a pattern of spread shows an almost 45-degree straight line, which means the model maintains normal probability. The assumption of Normality is satisfied.

2. Second Model

Second regression model excludes Company Location attribute due to multicollinearity with Employee Residence. R-square slight changes from 39.34% to 39.35%. Root Mean Square Error (RMSE) slightly decreases from 69.94 to 69.93. F-value increases from 271.47 to 305.42

with significant P-value <.0001 (See Appendix B - Second Model Regression Result, Table 2). Looking at p-value to determine variable significance, Company Size and Remote Ratio still have high p-value greater than 0.05: 0.9754 and 0.3191, respectively. Hence, for next step, I will apply Stepwise selection method because it focuses on examine the significances of predictor variables.

3. Stepwise Selection Method

With Stepwise selection method, the final suggested model reduced to six attributes: Employee Residence, Experience Level, Salary Currency, Work Year, Employment Type, and Salary (original currency). The suggested model has R-squared = 0.3946 or 39.46% (See Appendix B - Stepwise Selection Method, Table 3). An improvement from previous model which has R-square = 39.35%. Since the suggested model has higher R-square and reduced number of predictors, we will move forward with the suggested model from Stepwise selection method.

4. Third Model

Third regression model has the six chosen attributes, the model also results output table for outliers and influential points detection (See Appendix B - Third Model Regression Result, Table 4). Since there are 3755 observations, I export the Output Statistics table to Excel to extract outliers and influential points.

After exporting to Excel (See Appendix B - Third Model Regression Result, Figure 2), I extract Studentized Residual (SR), Cook's D, and observation ID columns to a different sheet. Then create two columns to detect whether an observation is an outlier or influential point using filter formula. For studentized residuals, any observation with absolute value of SR greater than or equal to 3 is considered as an outlier. For Cook's D value, any value greater than 0.002 is considered as an influential point. Then I conditioned these two columns to a third column to obtain observations that are either or both influential points and outliers. In total, I have removed 93 observations, about 2.5% of the total number of the dataset.

5. Final Model

Model fourth regression input using a new dataset with all outliers and influential points removed. The new dataset contains 3662 observations. R-squared is now improved to 0.4184 indicates that 41.84% of the variance in the Salary (USD) can be explained by the six predictors: Work Year, Salary (original currency), Employee Residence, Experience Level, Employment Type, and Salary Currency (See Appendix B - Final Model Regression Result, Table 5). All predictors have p-value less than 0.05 with Employee Residence has the strongest influence on Salary (USD) at positive 0.28, followed by experience level at negative 0.263. All VIF value are less than 10. F-value increased from 305.42 to 440.04 with significant p-value <.0001. RMSE also reduced from 69.93 to 64.733. Overall, we have improved the model.

For coefficient interpretation, using Employee Residence Status with coefficient = 61.18466, since we set dummy variable as 1 for employee lives in the, and 0 otherwise, we can interpret as holding other variables constant, if an employee lives in the US (dummy variable = 1), the predicted Salary_in_USD is expected to increase by approximately \$3,743.604 USD = (61.18466)².

Since all predictors are significant, p-value less than 0.05 with no sign of multicollinearity. Number of predictors reduced with improved R-squared improved, reduced RMSE. We can conclude that this will be the final model.

Studentized Residuals

Looking at studentized residuals plots, for all categorical attributes that have been converted to dummy attributes, even though there is no linearity, non-Constance Variance due to distinctive pattern; since these are dummy variables distribution, we cannot draw conclusion for anomaly detection.

For studentized residuals plot versus Salary (original currency) (See Appendix B - Final Model Regression Result, Figure 3), there is a distinctive pattern where when residual increases, salary in original currency stay the same at around zero mark, and scatter points under zero line. The assumption of Linear association, Constance Variance, and Independence of the three attributes with the response variable (Bank Balance) is not satisfied. There is little or no change

in the salary attribute as the residuals vary, indicating a lack of response of the salary to the variability of the residuals.

The variance in the studentized residual versus the predicted value has a funnel shape. This suggests that we have heteroscedasticity, which means the variability of residuals is not constant and maybe influenced by the predicted value. Therefore, the assumption of Constant Variance is violated. Normal Probability Plot has a pattern of spread shows an almost 45-degree straight line, which means the model maintains normal probability. The assumption of Normality is satisfied.

Global F-Test

The F-test (goodness-of-Fit test) is used to check if the regression model hypothesis is right or wrong based on its prediction correctness. A good model will have high F-value with significant P-value (< 0.05). Since there is no upper limit for F-value, we will evaluate both values together.

Regression model

 $sqrtSalary_in_USD = \beta_0 + \beta_1*work_year + \beta_2*salary (original currency) \\ + \beta_3*numEmployee_residence + \beta_4*experience_New + \\ \beta_5*employment_FT + \beta_6*salary_currencyUSD$

for: $\beta_0 = \text{Intercept}.$

 β_1 = Coefficient for Work Year attribute.

 β_2 = Coefficient for Salary (original currency) attribute.

 B_3 = Coefficient for Employee Residence attribute.

 B_4 = Coefficient for Experience Level attribute.

 B_5 = Coefficient for Employment Type attribute.

 B_6 = Coefficient for Salary Currency attribute.

Test hypothesis

Null hypothesis: Neither of the six attributes have any association with Salary in USD attribute.

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$

<u>Alternative hypothesis:</u> At least one attribute has a significant effect on changes in Salary in USD attribute.

H_a: At least one of
$$\beta_1$$
, β_2 , β_3 , β_4 , β_5 , $\beta_6 \neq 0$

Based on the regression result, F-value is calculated using formula MS (Model) /MS (Error) = 1843958 / 4190.43803 = 440.04 with highly significant p-value <0.0001 indicates the model prediction is accurate. At least one of the attributes is relevant and significant in explaining Salary (USD) attribute. With $\beta_1 = 9.07$, $\beta_2 = 0.00001202$, $\beta_3 = 61.184$, $\beta_4 = -49.153$, $\beta_5 = 66.58$, and $\beta_6 = 51.814$, not equal to zero. Thus, the Null hypothesis (Ho) of no association between the six predictors: Work Year, Salary (original currency), Employee Residence, Experience Level, Employment Type, Salary Currency and predicted variable Salary (USD) is rejected and accepting Alternate hypothesis (Ha).

Prediction

For model prediction, I create two observations which represents two scenarios: The first prediction is for a person who lives in the US and gets paid by USD. The second prediction is for a person who lives outside the US and gets paid by their local currency. We created and merged the two datasets (See Appendix C - Prediction, Table 1). The objective is to see whether a person who lives outside the US has equal career advance opportunity in term of salary raise like a person who live inside the US. The salary prediction will be for the upcoming year 2024.

First observation: with given values, the predicted sqrtSalary_in_USD is 358.5587, approximately \$128,564.34. The 95% confidence interval range from 351.5912 to 365.5261; or \$123,616.37 to \$133,609.33, applied square from original value. Prediction intervals range from 231.45 to 485.6673; or \$53,569.1 – \$235,872.72. Therefore, we can conclude that the predicted value falls within the 95% confidence interval (See Appendix C - Prediction, Table 2).

Second observation: with given values, the predicted sqrtSalary_in_USD is 245.5592, approximately \$60,299.32. The 95% confidence interval range from 236.4812 to 254.6317; or \$55,923.36 to \$64,837.3 applied square from original value. Prediction intervals range from 118.8174 to 372.8009; or \$14,117.57 – \$138,980.511. Therefore, we can conclude that the predicted value falls within the 95% confidence interval (See Appendix C - Prediction, Table 2).

Overall, we can see that Data Science career growth in terms of salary for a person who lives outside the US is not as great as for a person who lives in the US.

Validation

For model validation, I split the data into train and test sets using 80-20 ratio. Looking at the first column "Selected", "1" indicating observations belong to train data, and "0" for test data (See Appendix D – Split Dataset, Table 1). After the split, we have 2930 observations on train set. Create new predicted value 'new_y' equals to the predicted value for train data, and null values for test data (See Appendix D – Split Dataset, Table 2). Furthermore, since applying Multiple Linear Regression, we will not be able to generate confusion matrix since it is only applicable for classification. Therefore, we will check model performance based on RMSE and R-squared.

I also want to confirm that my final model with six attributes is satisfied with just using the train data. Thus, I apply Stepwise selection method toward the training data. The suggested model is similar with the final model, indicating consistency and stability in the variable selection process (See Appendix D – Stepwise Selection Method, Table 3).

Regression on the train data gives adjusted R-square at 41.95%, RMSE = 64.76059, F-value = 353.74 with significant P-value < .0001 (See Appendix D - Regression Results, Table 4). All predictors are significant with P-value < 0.05. Also generate predicted value for test set with null 'new_y' values (See Appendix D - Regression Results, Table 5).

Regression on the test data gives adjusted R-square at 41.38%, RMSE = 64.646574, MAE = 52.1490 (See Appendix D - Regression Results, Table 6). Specifically, test set R-squared is calculated using (yhat²) = 0.64333² = 0.4138. Overall, train and test data performance have close RMSE: 64.76 for training and 64.64 for testing. R-squared on both train and test set are close to each other: 41.95% on training and 41.38% on testing. Since the indifferences are not significant, I would conclude this is not a case of overfitting or underfitting, and the model is performing well on both train and unseen data.

Conclusion

In conclusion, apply multiple linear regression on the dataset, majority of the data corresponds to US employees in terms of salary and company. The data indicates that US employees tend to receive higher pay and experience higher career growth compared to employees outside of the US. This observation aligns with the fact that the United States has a rapid growth rate in STEM, machine learning, and the tech industry. The US is known for providing growth opportunities and better salaries, which attracts tech workers from around the world. Indeed, this is not the best model for the dataset. But the best that I can generate using all knowledge and techniques that I obtain from the course. There are more room for improvement and potential expansion of the model. All predictors of the dataset were only able to explain around 40% of predicted value thus, we need more attributes to improve the model like, race, gender, number of years education, years of experience. Or incorporate other data like inflation rate or conversion rate. The project and process have provided a good insight into Data Science field salary and its growth.

References

- Cao, L. (2017). Data science: a comprehensive overview. *ACM Computing Surveys* (CSUR), 50(3), 1-42.
- Kaur, A., Verma, D., & Kaur, N. (2022, December). Utilizing Quantitative Data Science Salary Analysis to Predict Job Salaries. In 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT) (pp. 1-4). IEEE.
- Quan, T. Z., & Raheem, M. (2022). Salary Prediction in Data Science Field Using Specialized Skills and Job Benefits—A Literature. *Journal of Applied Technology and Innovation (e-ISSN: 2600-7304)*, 6(3), 70.

Appendix A. Data

Appendix A – Dataset Introduction

Ohe	work year	experience level	employment_type	ioh titlo	calany	salary currency	calany in used	employee_residence	romoto ratio	company location
1	2023	-	FT FT	Principal Data Scientist	80000		85847		100	
2	2023	MI	СТ	ML Engineer	30000	USD	30000	US	100	US
3	2023	MI	СТ	ML Engineer	25500	USD	25500	US	100	US
4	2023	SE	FT	Data Scientist	175000	USD	175000	CA	100	CA
5	2023	SE	FT	Data Scientist	120000	USD	120000	CA	100	CA
6	2023	SE	FT	Applied Scientist	222200	USD	222200	US	0	US
7	2023	SE	FT	Applied Scientist	136000	USD	136000	US	0	US
8	2023	SE	FT	Data Scientist	219000	USD	219000	CA	0	CA
9	2023	SE	FT	Data Scientist	141000	USD	141000	CA	0	CA
10	2023	SE	FT	Data Scientist	147100	USD	147100	US	0	US

Table 1: The first 10 observations of the original dataset.

	Alphabetic List of	f Varia	bles a	nd Attribu	tes	
#	Variable	Туре	Len	Format	Informat	
10	company_location	Char	2	\$2.	\$2.	
11	company_size	Char	1	\$1.	\$1.	
8	employee_residence	Char	2	\$2.	\$2.	
3	employment_type	Char	2	\$2.	\$2.	
2	experience_level	Char	2	\$2.	\$2.	
4	job_title	Char	24	\$24.	\$24.	
9	remote_ratio	Num	8	BEST12.	BEST32.	
5	salary	Num	8	BEST12.	BEST32.	
6	salary_currency	Char	3	\$3.	\$3.	
7	salary_in_usd	Num	8	BEST12.	BEST32.	
1	work_year	Num	8	BEST12.	BEST32.	

Table 2: Attribute names and data types.

Appendix A – Data Exploratory

Figure 1: Distribution of dependent variable Salary (USD) before transformation.

				Quantiles (D	efinition 5)
				Level	Quantile
				100% Max	450000
				99%	309400
				95%	249500
				90%	219000
				75% Q3	175000
	Basic	Statistical Measures		50% Median	135000
Loc	ation	Variabilit	у	25% Q1	95000
Mean	137570.4	Std Deviation	63056	10%	59303
Median	135000.0	Variance	3976011879	5%	40038
Mode	100000.0	Range	444868	1%	12767
		Interquartile Range	80000	0% Min	5132

Table 3: Statistics for distribution of dependent variable Salary (USD) before transformation.

Basic Statistical Measures												
Loc	ation	Variability										
Mean	359.8718	Std Deviation	89.80430									
Median	367.4235	Variance	8065									
Mode	316.2278	Range	599.18241									
		Interquartile Range	110.10931									

Figure 2: Distribution of dependent variable Salary (USD) after square root transformation with statistics.

Figure 3: Distribution of Work Year attribute relationship with dependent variable Salary (USD).

Figure 4: Distribution of Experience Level attribute relationship with dependent variable Salary (USD).

Figure 5: Distribution of Employee Residence and Company Location attributes.

Figure 6: Distribution of Salary Currency attribute.

Figure 7: Distribution Remote Ratio attribute relationship with dependent variable Salary (USD).

Figure 8: Distribution Company Size and Employment Type attributes.

Figure 9: Correlation between dependent variable Salary (USD) and continuous predictor Salary (original currency).

Appendix A – Final Dataset

					Final Salary Data 10	observation				
Obs	work_year	salary	sqrtSalary_in_usd	numEmployee_residence	numCompany_location	experience_New	employment_FT	size_M	remote_ratioNone	salary_currencyUSD
1	2020	15000	122.474	0	0	0	1	1	1	1
2	2020	95000	308.221	1	1	1	1	1	1	1
3	2020	43200	221.964	0	0	1	1	0	1	0
4	2020	20000	141.421	0	0	1	1	0	1	1
5	2020	450000	670.820	1	1	1	1	1	1	1
6	2020	44000	224.009	0	0	1	1	1	1	0
7	2020	450000	77.923	0	0	1	1	0	1	0
8	2020	720000	183.060	0	0	0	1	0	1	0
9	2020	115000	339.116	0	0	1	1	0	1	1
10	2020	260000	509.902	0	0	0	1	0	1	1

Table 4: The first 10 observations of the final dataset with transformation.

1	Descriptive	Statistics -	Final Datas	set									
The MEANS Procedure													
Variable	Minimum	Maximum	Median	25th Pctl	75th Pctl								
sqrtSalary_in_usd	71.6379788	670.8203932	367.4234614	308.2207001	418.3300133								
work_year	2020.00	2023.00	2022.00	2022.00	2023.00								
salary	6000.00	30400000.00	138000.00	100000.00	180000.00								
numEmployee_residence	0	1.0000000	1.0000000	1.0000000	1.0000000								
numCompany location	0	1.0000000	1.0000000	1.0000000	1.0000000								
experience New	0	1.0000000	0	0	1.0000000								
employment FT	0	1.0000000	1.0000000	1.0000000	1.0000000								
size_M	0	1.0000000	1.0000000	1.0000000	1.0000000								
remote ratioNone	0	1.0000000	1.0000000	0	1.0000000								
salary_currencyUSD	0	1.0000000	1.0000000	1.0000000	1.0000000								

Table 5: Descriptive statistics of the final dataset with transformation.

					relation Coefficients, N = 0 > r under H0: Rho=0	3755				
	sqrtSalary_in_usd	work_year	salary	numEmployee_residence	numCompany_location	experience_New	employment_FT	size_M	remote_ratioNone	salary_currencyUSD
sqrtSalary_in_usd	1.00000	0.25858 <.0001	-0.04909 0.0026	0.55093 <.0001	0.53007 <.0001	-0.44903 <.0001	0.15393 <.0001	0.24813 <.0001	0.12865 <.0001	0.51605 <.0001
work_year	0.25858 <.0001	1.00000	-0.09472 <.0001	0.29141 <.0001	0.26700 <.0001	-0.20126 <.0001	0.11631 <.0001	0.42197 <.0001	0.29091 <.0001	0.26908 <.0001
salary	-0.04909 0.0026	-0.09472 <.0001	1.00000	-0.11279 <.0001	-0.10141 <.0001	0.03943 0.0157	0.00673 0.6801	-0.13625 <.0001	-0.05539 0.0007	-0.15163 <.0001
numEmployee_residence	0.55093 <.0001	0.29141 <.0001	-0.11279 <.0001	1.00000	0.96146 <.0001	-0.35754 <.0001	0.14559 <.0001	0.34223 <.0001	0.17129 <.0001	0.81167 <.0001
numCompany_location	0.53007 <.0001	0.26700 <.0001	-0.10141 <.0001	0.96146 <.0001	1.00000	-0.34172 <.0001	0.08209 <.0001	0.31496 <.0001	0.15220 <.0001	0.82125 <.0001
experience_New	-0.44903 <.0001	-0.20126 <.0001	0.03943 0.0157	-0.35754 <.0001	-0.34172 <.0001	1.00000	-0.11721 <.0001	-0.24186 <.0001	-0.08040 <.0001	-0.33855 <.0001
employment_FT	0.15393 <.0001	0.11631 <.0001	0.00673 0.6801	0.14559 <.0001	0.08209 <.0001	-0.11721 <.0001	1.00000	0.12542 <.0001	0.09681 <.0001	0.05237 0.0013
size_M	0.24813 <.0001	0.42197 <.0001	-0.13625 <.0001	0.34223 <.0001	0.31496 <.0001	-0.24186 <.0001	0.12542 <.0001	1.00000	0.23131 <.0001	0.29136 <.0001
remote_ratioNone	0.12865 <.0001	0.29091 <.0001	-0.05539 0.0007	0.17129 <.0001	0.15220 <.0001	-0.08040 <.0001	0.09681 <.0001	0.23131 <.0001	1.00000	0.12069 <.0001
salary_currencyUSD	0.51605 <.0001	0.26908 <.0001	-0.15163 <.0001	0.81167 <.0001	0.82125 <.0001	-0.33855 <.0001	0.05237 0.0013	0.29136 <.0001	0.12069 <.0001	1.00000

Table 6: Correlation table of the final dataset with transformation.

Appendix B. Regression Models

Appendix B – First Model Regression Result

Regression Result: Full model The REG Procedure Model: MODEL1 Dependent Variable: sqrtSalary_in_usd												
Number of Observations Read 3755												
Number of Observations Used 3755												
Analysis of Variance												
Source	DF		Sum of quares		Mean Square	'	Value	Pr > F				
Model	9	11	1953237		1328137		271.47	<.0001				
Error	3745	18	322069	489	92.40838							
Corrected To	tal 3754	30	275307									
Root I			69.94575		R-Squa		0.3948					
Deper	359.87182 Ad 19.43630		Adj R-S	Sq	0.3934							

			Parameter	Estimate	s			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Tolerance	Variance Inflation
Intercept	1	-17026	3840.57515	-4.43	<.0001	0		0
work_year	1	8.53171	1.90003	4.49	<.0001	0.06569	0.75507	1.32438
salary	1	0.00000362	0.00000173	2.09	0.0366	0.02711	0.96187	1.03964
numEmployee_residence	1	69.34802	10.96048	6.33	<.0001	0.30893	0.06779	14.75251
numCompany_location	1	-5.99898	11.17682	-0.54	0.5915	-0.02623	0.06766	14.78031
experience_New	1	-52.32075	2.71579	-19.27	<.0001	-0.26692	0.84184	1.18787
employment_FT	1	55.86772	12.06950	4.63	<.0001	0.06146	0.91673	1.09083
size_M	1	-0.15854	3.60566	-0.04	0.9649	-0.00064782	0.74446	1.34325
remote_ratioNone	1	2.39562	2.41707	0.99	0.3217	0.01334	0.89258	1.12034
salary_currencyUSD	1	45.94042	5.89240	7.80	<.0001	0.17828	0.30907	3.23550

Table 1: First model regression result.

Figure 1: First model regression result – studentized residuals.

Appendix B – Second Model Regression Result

Regression Result: 2nd model The REG Procedure Model: MODEL1 Dependent Variable: sqrtSalary_in_usd												
Number of Observations Read 3755												
Number of Observations Used 3755												
		Α	nal	ysis of \	/ari	ance						
Source		DF	Sum of Squares			Mear Square		Value	Pr > F			
Model		8	11	951828		1493978	3	305.42	<.0001			
Error		3746	18	323479	489	4891.47859						
Correct	ed Total	3754	30	275307								
	Root MS	E		69.939	911	R-Squa	are	0.3948				
	Depende	an	359.871	182	Adj R-	Sq	0.3935					
	Coeff Va		19.43445									

			Parameter	Estimate	s			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Tolerance	Variance Inflation
Intercept	1	-17095	3838.04014	-4.45	<.0001	0	-	0
work_year	1	8.56535	1.89881	4.51	<.0001	0.06595	0.75590	1.32293
salary	1	0.00000358	0.00000173	2.07	0.0388	0.02675	0.96448	1.03683
numEmployee_residence	1	64.13893	5.09284	12.59	<.0001	0.28572	0.31390	3.18574
experience_New	1	-52.33491	2.71541	-19.27	<.0001	-0.26699	0.84192	1.18776
employment_FT	1	57.06262	11.86128	4.81	<.0001	0.06277	0.94902	1.05372
size_M	1	-0.11110	3.60424	-0.03	0.9754	-0.00045395	0.74491	1.34245
remote_ratioNone	1	2.40818	2.41673	1.00	0.3191	0.01341	0.89267	1.12024
salary_currencyUSD	1	45.16984	5.71428	7.90	<.0001	0.17528	0.32858	3.04343

 Table 2: Second model regression result.

Appendix B – Stepwise Selection Method

Regression Result: Model Selection Stepwise The REG Procedure Model: MODEL1 Dependent Variable: sqrtSalary_in_usd Number of Observations Read 3755 Number of Observations Used 3755

	Variable salary	Stepwise Selection: Step 6 ariable salary Entered: R-Square = 0.3946 and C(p) = 5.9980										
		Analysis of Variance										
	Source	urce DF Squares Square F Value Pr > F										
	Model	odel 6 11946946 1991158 407.18 <.0001										
	Error	3748	3748 1832836		4890.17091							
	Corrected Total	3754 302753		307	07							
Variable)		ameter stimate	5	Standard Error	Ту	pe II SS	F Value	Pr > F			
Intercep	ot		-17974	35	30.66178		126732	25.92	<.0001			
work_ye	ear	8	3.99995		1.74652		129854	26.55	<.0001			
salary		0.00	000353	0.0	00000172		20584	4.21	0.0403			
numEm	ployee_residence	yee_residence 64.55885 5.03422 804214 164.46										
experie	nce_New	_New -52.30854 2.70028 1835062 375.20										
employ	ment_FT	t_FT 57.65161 11.83070 116125 23.7										
salary o	currencyUSD	44	.92033		5.70801		302859	61.93	<.0001			

		Summa	ry of Step	wise Select	ion			
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	numEmployee_residence		1	0.3035	0.3035	559.736	1635.59	<.0001
2	experience_New		2	0.0728	0.3764	110.885	438.25	<.0001
3	salary_currencyUSD		3	0.0089	0.3853	57.7792	54.33	<.0001
4	work_year		4	0.0048	0.3900	30.2717	29.31	<.0001
5	employment_FT		5	0.0039	0.3939	8.2062	24.05	<.0001
6	salary		6	0.0007	0.3946	5.9980	4.21	0.0403

Table 3: Stepwise selection method result.

Appendix B – Third Model Regression Result

			Parameter	Estimate	s			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Tolerance	Variance Inflation
Intercept	1	-17974	3530.66178	-5.09	<.0001	0	-	0
work_year	1	8.99995	1.74652	5.15	<.0001	0.06930	0.89323	1.11953
salary	1	0.00000353	0.00000172	2.05	0.0403	0.02644	0.97273	1.02803
numEmployee_residence	1	64.55885	5.03422	12.82	<.0001	0.28759	0.32117	3.11365
experience_New	1	-52.30854	2.70028	-19.37	<.0001	-0.26686	0.85115	1.17488
employment_FT	1	57.65161	11.83070	4.87	<.0001	0.06342	0.95368	1.04857
salary_currencyUSD	1	44.92033	5.70801	7.87	<.0001	0.17432	0.32921	3.03756

Table 4: Third model regression result.

НЗ		• : X	\checkmark f_X	=IF(COUN	ITIF(E3:F3, "Yes")>0, "Rer	nove", "Keep")		
	Α	В	С	D	Е	F	G	Н
1	Ob	Student Residual 🔻	Cook's I ▼	~	StudentResi Outliers 🔻	Cook's D influential	~	Removing point 🔻
2	1	-2.676	0.008		No	Yes		Remove
3	2	-0.188	0		No	No		Keep
4	3	0.147	0		No	No		Keep
5	4	-1.653	0.003		No	Yes		Remove
6	5	4.991	0.017		Yes	Yes		Remove
7	6	0.176	0		No	No		Keep
8	7	-1.938	0.002		No	No		Keep
9	8	-1.195	0.001		No	No		Keep

Figure 2: Outlier and Influential points extraction through Excel.

Appendix B – Final Model Regression Result

	R	egress	ioi	n Resu	lt: I	Final m	od	lel	
	De	·	M	REG Prodel: Mo ariable:	DDE	L1	in_u	usd	
	N	umber o	of C)bservat	ion	Read	366	62	
	N	umber o	of C	bservat	ion	SUsed	366	52	
		А	nal	lysis of \	/ari	ance			
Source)	DF		Sum of quares		Mear Square	•	Value	Pr > F
Model		6	11	1063745		1843958		440.04	<.0001
Error		3655	15	316051	419	90.43803	3		
Correc	ted Tota	3661	26	379796					
	Root M	SE		64.733	359	R-Squa	аге	0.4194	
	Depend	lent Me	an	360.775	92	Adj R-S	Sq	0.4184	
	Coeff V	ar		17.942	288				

			Parameter	Estimate	S			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Tolerance	Variance Inflation
Intercept	1	-18141	3374.55573	-5.38	<.0001	0	-	0
work_year	1	9.07530	1.66943	5.44	<.0001	0.07221	0.90019	1.11087
salary	1	0.00001202	0.00000295	4.08	<.0001	0.05235	0.96508	1.03619
numEmployee_residence	1	61.18466	5.31927	11.50	<.0001	0.27984	0.26837	3.72615
experience_New	1	-49.15343	2.53667	-19.38	<.0001	-0.26323	0.86081	1.16169
employment_FT	1	66.57913	17.49172	3.81	0.0001	0.04841	0.98204	1.01829
salary_currencyUSD	1	51.81486	5.94047	8.72	<.0001	0.21258	0.26744	3.73916

 Table 5: Fourth (final) model regression result.

Figure 3: Final model regression result – studentized residuals.

Appendix C. Prediction

							Predi	ction data						
			Obs	work_year	salary	numEmp	oloyee_residence	experience_New	em	nployment_FT	salary_currencyUSD			
			1	2024	100000		1	1		1	1			
			2	2024	100000		0	1		1	0			
							Predi	ction data						
Obs	work_year	salary	numEmployee	_residence	experier	nce_New	employment_FT	salary_currencyU	SD	sqrtSalary_in_	usd numCompany_lo	ocation	size_M	remote_ratioNone
1	2024	100000		1		1	1		1					-
2	2024	100000		0		1	1		0					
3	2020	95000		1		1	1		1	308.	221	1	1	1
4	2020	43200		0		1	1		0	221.	964	0	0	1
5	2020	44000		0		1	1		0	224.	009	0	1	1

 Table 1: Prediction dataset created and merged with final dataset.

		Depe	M endent Va	REG Proc odel: MOD ariable: sq	EL1 rtSalary_i	n_usd		
			Std	utput Stati	STICS			
Obs	Dependent Variable	Predicted Value	Error Mean Predict	95% CI	_ Mean	95% CL	Predict	Residual
1	_	358.5587	3.5537	351.5912	365.5261	231.4500	485.6673	
2	-	245.5592	4.6302	236.4812	254.6371	118.3174	372.8009	-
3	308.2	322.1974	4.5975	313.1834	331.2114	194.9601	449.4346	-13.9767
4	222.0	208.5753	4.4438	199.8627	217.2880	81.3591	335.7916	13.3886
5	224.0	208.5850	4.4433	199.8734	217.2965	81.3688	335.8011	15.4240

Table 2: Prediction results.

Appendix D. Validation

Appendix D – Split Dataset

					т	he SURVEYSELEC	T Procedure					
					Selection	on Method Simple	Random Samplin	ng				
					Input	Data Set	FINALSALARY2					
					Rando	om Number Seed	1997					
					Samp	oling Rate	0.8	:				
					Samp	ole Size	2930	1				
					Selec	tion Probability	0.800109					
					Samp	oling Weight	0					
					Outpu	ıt Data Set	XVALSALARY					
Obs	Selected	work_year	salary	sqrtSalary_in_usd	Test numEmployee_residence	and Train Set fo	-		employment_FT	size_M	remote_ratioNone	salary_currencyUS
Obs 1	Selected	work_year 2020	salary 43200	sqrtSalary_in_usd 221.964			-		employment_FT	size_M	remote_ratioNone	salary_currencyUS
	Selected 1		43200		numEmployee_residence		-		employment_FT 1	-	remote_ratioNone	
1	Selected 1 1	2020	43200	221.964	numEmployee_residence		cation experien		employment_FT 1 1 1	0	remote_ratioNone 1 1 1	
1 2	Selected 1 1 1 0	2020	43200 450000	221.964 77.923	numEmployee_residence 0 0		cation experies		employment_FT 1 1 1	0	remote_ratioNone 1 1 1	
1 2	1 1	2020 2020 2020	43200 450000 45000	221.964 77.923 226.541	numEmployee_residence 0 0 0		cation experies 0 0 0		employment_FT 1 1 1 1	0	remote_ratioNone 1 1 1 1 1 1	
1 2 3 4	1 1 1 0	2020 2020 2020 2020 2020	43200 450000 45000 35000	221.964 77.923 226.541 199.790	numEmployee_residence 0 0 0		cation experies 0 0 0		employment_FT	0 0 0 1	remote_ratioNone 1 1 1 1 1 1	salary_currencyUSI
1 2 3 4 5	1 1 1 0	2020 2020 2020 2020 2020 2021	43200 450000 45000 35000 100000	221.964 77.923 226.541 199.790 316.228	numEmployee_residence 0 0 0 0 1		cation experies		employment_FT 1 1 1 1 1 1 1 1 1 1	0 0 0 1	remote_ratioNone 1 1 1 1 1 1 1 1 1 1 1	

Table 1: The first 10 observations of the split train – test data (80/20).

					Creat	e predicted value for	cross validation	1				
Obs	Selected	work_year	salary	sqrtSalary_in_usd	numEmployee_residence	numCompany_location	experience_New	employment_FT	size_M	remote_ratioNone	salary_currencyUSD	new_y
1	1	2020	43200	221.964	0	0	1	1	0	1	0	221.964
2	1	2020	450000	77.923	0	0	1	1	0	1	0	77.923
3	1	2020	45000	226.541	0	0	1	1	0	1	0	226.541
4	0	2020	35000	199.790	0	0	1	1	1	1	0	
5	0	2021	100000	316.228	1	1	1	1	0	1	1	
6	0	2021	80000	331.718	0	0	1	1	0	1	0	
7	1	2021	100000	316.228	0	0	1	1	0	1	1	316.228
8	1	2021	65000	277.188	0	0	1	1	0	1	0	277.188
9	1	2021	435000	76.694	0	0	1	1	0	1	0	76.694
10	1	2022	85000	291.548	1	1	1	1	1	1	1	291.548

Table 2: The first 10 observations after creating new dependent variable.

Appendix D – Stepwise Selection Method

Full model regression with stepwise selection me	ethod	: Train set
The REG Procedure Model: MODEL1 Dependent Variable: new_y		
Number of Observations Read	3662	
Number of Observations Used	2930	
Number of Observations with Missing Values	732	

	Variable salary	Enter	ed: R-So	qua			and C(p) =	6.4290		
		Analysis of Variance Sum of Mean								
	Source	DF				F Value	Pr > F			
	Model	6	89012	1483543		43	353.74	<.0001		
	Error	2923	122588	368	4193.933	376				
	Corrected Total	2929	211601	129						
Varial	ble		ameter stimate	5	Standard Error	Ту	pe II SS	F Value	Pr >	
Interc	ept		-19635	37	56.83995		114566	27.32	<.00	
work_	year	9	9.81216		1.85865		116884	27.87	<.00	
salary	1	0.00	001137	0.0	00000312		55813	13.31	0.00	
numE	mployee_residence	57	7.75484		6.11103		374601	89.32	<.00	
exper	ience_New	-48	3.83849		2.84691		1234238	294.29	<.00	
emplo	oyment_FT	70	0.26382		18.91676		57862	13.80	0.00	
salary	_currencyUSD	54	1.56832		6.76818		272621	65.00	<.00	

	Summary of Stepwise Selection												
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F					
1	numEmployee_residence		1	0.3271	0.3271	468.462	1423.23	<.0001					
2	experience_New		2	0.0700	0.3971	117.467	339.71	<.0001					
3	salary_currencyUSD		3	0.0124	0.4095	56.7726	61.58	<.0001					
4	work_year		4	0.0058	0.4153	29.5528	28.98	<.0001					
5	employment_FT		5	0.0027	0.4180	17.7344	13.76	0.0002					
6	salary		6	0.0026	0.4207	6.4290	13.31	0.0003					

 Table 3: Stepwise selection method on training data.

Appendix D – Regression Results

			Me	REG Prodel: MC ent Vari	DDE					
	Number of	Obser	va	tions Re	ad			366	2	
	Number of	Obser	va	tions Us	ed			293	0	
	Number of	Obse	va	tions wi	th N	lissing Va	alues	732		
		А	nal	ysis of \	/ari	ance				
Source		DF		Sum of quares		Mean Square	F Va	lue	Pr > F	
Model		6	8901260		1483543		353	3.74	<.0001	
Erro	r	2923	12258868		4193.93376					
Corr	ected Total	2929	21	160129						
	Root MSE			64.760)59	R-Squar	e 0.4207			
	Dependent Mean			360.092		Adj R-S	q 0.4	195		
	Coeff Var			17.98442						

Parameter Estimates										
Variable		Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation			
Intercept	1	-19635	3756.83995	-5.23	<.0001	0	0			
work_year	1	9.81216	1.85865	5.28	<.0001	0.07830	1.11000			
salary	1	0.00001137	0.00000312	3.65	0.0003	0.05233	1.03829			
numEmployee_residence	1	57.75484	6.11103	9.45	<.0001	0.26388	3.93345			
experience_New	1	-48.83849	2.84691	-17.15	<.0001	-0.26125	1.17015			
employment_FT	1	70.26382	18.91676	3.71	0.0002	0.05280	1.01970			
salary_currencyUSD	1	54.56832	6.76818	8.06	<.0001	0.22524	3.93765			

 Table 4: Train set regression result.

	Validation - Test Set													
bs	Selected	work_year	salary	sqrtSalary_in_usd	numEmployee_residence	numCompany_location	experience_New	employment_FT	size_M	remote_ratioNone	salary_currencyUSD	new_y	yhat	
1	0	2020	35000	199.790	0	0	1	1	1	1	0		206.945	
2	0	2021	100000	316.228	1	1	1	1	0	1	1		329.820	
3	0	2021	80000	331.718	0	0	1	1	0	1	0		217.269	
4	0	2022	6000	79.398	0	0	1	1	0	1	0		226.240	
5	0	2022	130000	360.555	1	1	1	1	1	1	1		339.973	
6	0	2022	160000	400.000	1	1	1	1	1	1	1		340.314	
7	0	2022	160000	400.000	1	1	1	1	1	1	1		340.314	
8	0	2022	189750	435.603	1	1	1	1	1	1	1		340.653	
9	0	2022	160000	400.000	1	1	1	1	1	1	1		340.314	
10	0	2022	108000	328.634	1	1	1	1	0	1	1		339.723	

Table 5: The first 10 observations after generating predicted values.

Table 6: Test set descriptive statistics.