Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos

TEXTO 2

Expressões Regulares e Gramáticas Regulares

Prof. Luiz A M Palazzo Março de 2007

Definição de Expressão Regular

Uma expressão regular (ER) sobre um alfabeto Σ é indutivamente definida como se segue:

- a) Ø é uma ER que denota a linguagem vazia.
- b) ε é uma ER que denota a linguagem contendo exclusivamente a palavra vazia, ou seja $\{\varepsilon\}$.
- c) Qualquer símbolo x pertencente ao alfabeto Σ é uma ER e denota a linguagem contendo a palavra unitária x, ou seja $\{x\}$.
- d) Se r e s são ERs e denotam respectivamente as linguagens R e S, respectivamente, então:
 - 1. (r+s) é ER e denota a linguagem R \cup S
 - 2. (rs) é ER e denota a linguagem $\{uv \mid u \in R \text{ e } v \in S\}$
 - 3. (r*) é ER e denota a linguagem R*

Observações:

- 1. Os parênteses podem ser omitidos, respeitando-se as seguintes proridades de operações:
 - A concatenação sucessiva tem precedência sobre a concatenação e a união, e
 - A concatenação tem precedência sobre a união.
- 2. Uma linguagem gerada por um expressão regular r é representada por L(r) ou GERA(r).

Exemplos:

Expressão Regular	Linguagem Representada
aa	Somente a palavra aa.
ba*	Todas as palavras que iniciam por b, seguido de zero ou mais a.
(a+b)*	Todas as palavras sobre o alfabeto {a, b}
(a+b)*aa(a+b)*	Todas as palavras contendo aa como subpalavra.
a*ba*ba*	Todas as palavras contendo exatamente dois b
(a+b)*(aa+bb)	Todas as palavras que terminam com aa ou bb.
(a+ε)(b+ba)*	Todas as palavras que não possuem dois a consecutivos

Exercícios:

Desenvolva expressões regulares que gerem as seguintes linguagens sobre $\Sigma = \{a, b\}$:

- a. {w | w tem no máximo um par de a como subpalavra e no máximo um par de b como subpalavra.
- b. {w | qualquer par de a antecede qualquer par de b}
- c. {w | w não possui aba como subpalavra}

Expressões Regulares, Autômatos e Linguagens Regulares

Teoremas:

A classe das expressões regulares denota exatamente a classe das linguagens regulares, o que se demonstra a partir dos seguintes teoremas:

Expressão Regular → Linguagem Regular:

Se r é uma expressão regular, então GERA(r) é uma linguagem regular

Linguagem Regular → Expressão Regular

Se L é uma linguagem regular, então existe uma expressão regular r tal que GERA(r) = L.

Prova:

- Por indução sobre o número de operadores.
- Uma linguagem é regular, se e somente se é possível construir um AF (D, N ou ε) que reconheça a linguagem.
- É necessário mostrar que dada uma expressão regular r qualquer, é possível construir um autômato finito M tal que ACEITA(M) = GERA(r).

a) Base da Indução:

Seja r uma ER com ZERO operadores, então r só pode ser da forma:

```
r = \emptyset;

r = \varepsilon;
```

$$r = x, (x \in \Sigma)$$

Os autômatos

M1 =
$$(\emptyset, \{q0\}, \delta1, q0, \emptyset)$$

M2 = $(\emptyset, \{qf\}, \delta2, qf, \{qf\})$

Qf

M3 = $(\{x\}, \{q0, qf\}, \delta3, q0, \{qf\})$

Qf

qf

aceitam as linguagens dadas na base de indução.

b) Hipótese de Indução

Seja r uma ER com até n>0 operadores. Suponha que é possível definir um autômato finito que aceita a linguagem gerada por r, GERA(r).

c) Passo de Indução

Seja r uma ER com n+1 operadores, então r pode ser representada por um dos seguintes casos, onde r1 e r2 possuem conjuntamente no máximo n operadores.

Portanto, por hipótese de indução, é possível construir os autômatos:

M1 =
$$(\Sigma 1, Q1, \delta 1, q01, \{qf1\})$$
, tal que ACEITA(M1) = GERA(r1)
M2 = $(\Sigma 2, Q2, \delta 2, q02, \{qf2\})$, tal que ACEITA(M2) = GERA(r2)

Para cada caso há um autômato finito com movimento vazio, cujo diagrama é dado no quadro acima, que aceita a correspondente linguagem GERA(r). As definições de tais autômatos são:

ER	Autômato Finito Correspondente
r = r1 + r2	$M = (\Sigma 1 \cup \Sigma 2, Q 1 \cup Q 2 \cup \{q 0, q f\}, \delta, q 0, \{q f\})$
r = r1r2	$M = (\Sigma 1 \cup \Sigma 2, Q1 \cup Q2, \delta, q01, \{qf2\})$
r = r1*	$M = (\Sigma 1, Q1 \cup \{q0, qf\}, \delta, q0, \{qf\})$

A construção dos módulos do AF ϵ que reconhece a linguagem gerada pela ER $\,a^*(aa+bb)\,\acute{e}\,$ dada a seguir:

Gramáticas Regulares

Definição:

Seja G = {V, T, P, S} uma gramática e sejam A e B elementos de V e w uma palavra de T*. Então G é uma:

a) GLD: Se todas as regras de produção são da forma A→ wB ou A→ w.
b) GLE: Se todas as regras de produção são da forma A→ Bw ou A→ w.
c) GLUD: Se todas as regras de produção são como na GLD e além disso |w| =< 1.
d) GLUE: Se todas as regras de produção são como na GLE e além disso |w| =< 1.

Note-se que nas gramáticas lineares o lado direito das produções apresentam no máximo uma variável, que se existir irá sempre anteceder (LE) ou suceder (LD) qualquer subpalavra de terminais.

Teorema:

Seja L uma linguagem, então:

L é gerada por uma GLD sss

L é gerada por uma GLE sss

L é gerada por uma GLUD sss

L é gerada por uma GLUE.

Ou seja, as diversas formas de gramáticas lineares são formalismos equivalentes.

Gramática Regular:

Uma gramática regular é qualquer gramática linear.

Uma linguagem gerada por uma gramática regular G é representada por L(G) ou GERA(G).

Exemplo 1:

A linguagem a(ba)* é gerada pelas seguintes gramáticas:

```
a) GLD: G = (\{S, A\}, \{a, b\}, \{S \rightarrow aA, A \rightarrow baA \mid \&\}, S).
```

b) GLE: $G = (\{S\}, \{a, b\}, \{S \rightarrow Sba \mid a\}, S).$

c) GLUD: $G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow aA, A \rightarrow bB \mid \&, B \rightarrow aA\}, S).$

d) GLUE: $G = (\{S, A\}, \{a, b\}, \{S \rightarrow Aa \mid a, A \rightarrow Sb\}, S).$

Exemplo 2:

A linguagem (a+b)*(aa + bb) é gerada pelas seguintes gramáticas:

```
a) GLD: G = (\{S, A\}, \{a, b\}, \{S \rightarrow aS \mid bS \mid A, A \rightarrow aa \mid bb\}, S).
b) GLE: G = (\{S, A\}, \{a, b\}, \{S \rightarrow Aaa \mid Abb, A \rightarrow Aa \mid Ab \mid \&\}, S).
```

Teorema:

Se L é uma linguagem gerada por uma gramática regular, então L é uma linguagem regular.

Teorema: Construção de um AFε a partir de uma Gramática Regular:

Seja G = (V, T, P, S) uma GLUD, então o AF ϵ M = (Σ , Q, δ , q0, F) construído abaixo simula as derivações de G, ou seja, ACEITA(M) = GERA(G).

$$\Sigma = T$$
 $Q = V \cup \{qf\}$
 $F = \{qf\}$
 $q0 = S$

δ é construída como se segue, supondo A e B variaveis e a terminal.

Tipo da Produção	Transição Gerada
A → ε	$\delta(A, \varepsilon) = qf$
A → a	$\delta(A, a) = qf$
A → B	$\delta(A, \varepsilon) = B$
A→ aB	$\delta(A, a) = B$

Exemplo: Construção de um AF ϵ a partir de uma Gramática Regular

Considere a GLUD G = ($\{S, A, B\}, \{a, b\}, \{S \rightarrow aA, A \rightarrow bB \mid \varepsilon, B \rightarrow aA\}, S$).

O AF ϵ M que reconhece GERA(G) é: M = ({a, b}, {S, A, B, qf}, δ , S, {qf}), onde δ é construída como se segue:

Produção	Transição
S→aA	$\delta(S, a) = A$
A→bB	$\delta(A, b) = B$
A→ε	$\delta(A, \varepsilon) = qf$
B→aA	$\delta(B, a) = A$

Teorema:

Seja L uma linguagem regular, então existe G, uma gramática regular, que gera L

Exemplo: Construção de uma Gramática Regular a Partir de um AFD

Considere o AFD M = $({a,b,c}, {q0,q1,q2}, \delta, q0, {q0,q1,q2})$ dado pelo diagrama:

A Gramática Regular construída a partir deste AFD é

 $G = (\{q0,q1,q2,S\}, \{a,b,c\}, S P),$

Onde P é dado por:

Transição	Produção
$\delta(q0, a) = q0$ $\delta(q0, b) = q1$ $\delta(q1, b) = q1$ $\delta(q1, c) = q2$ $\delta(q2, c) = q2$	$S \rightarrow q0$ $q0 \rightarrow \epsilon$ $q1 \rightarrow \epsilon$ $q2 \rightarrow \epsilon$ $q0 \rightarrow aq0$ $q0 \rightarrow bq1$ $q1 \rightarrow bq1$ $q1 \rightarrow cq2$ $q2 \rightarrow cq2$

Tradução dos Formalismos das Linguagens Regulares:

