République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2022 Session Normale Epreuve de MATHEMATIQUES

Série : Sciences Naturelles (Classes Expérimentales) Coefficient : 6 Durée : 4h

Exercice 1: (3 points)

Le tableau ci-contre, représente la répartition de 1000 élèves bacheliers selon le genre et la spécialité. On choisit un élève au hasard et on considère les événements suivants : G « l'élève choisi est un garçon » et S « l'élève choisi est scientifique »

	Scientifiques	Littéraires	Total
Garçons	340	240	580
Filles	260	160	420
Total	600	400	1000

Pour chacune des questions suivantes, une et une seule des réponses proposées est correcte.

N°	Questions	Réponse A	Réponse B	Réponse C	
1	La probabilité P(G) est	0,24	0,34	0,58	0,5pt
2	La probabilité $P(\overline{S})$ est	0,3	0,4	0,6	0,5pt
3	La probabilité $P_G(S)$ est	$\frac{17}{29}$	$\frac{21}{29}$	$\frac{23}{29}$	0,5pt
4	La probabilité P(G∪S) est	0,82	0,84	0,85	0,5pt

Les statistiques précédentes sont tirées d'un fichier enregistré sur un ordinateur. Soit T la variable aléatoire égale à la durée d'attente pour télécharger ce fichier, exprimée en seconde. On suppose que T suit une loi exponentielle de paramètre 0,1.

5	La probabilité P(T≤30) est	e ⁻³	$1-10e^{-0.3}$	$1 - e^{-3}$	0,5pt
6	La probabilité $P_{T>10}(T \ge 30)$ est	e ⁻²	$1-10e^{-0.2}$	$1 - e^{-2}$	0,5pt

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée

Question n•	1	2	3	4	5	6
Réponse						

Exercice 2: (4 points)

On considère le polynôme P défini pour tout nombre complexe z par :

$$P(z) = z^3 - (2+2i)z^2 - (2-8i)z + 8 + 4i$$

$P(Z) = Z - (Z + 2I)Z - (Z - \delta I)Z + \delta + 4I$.	
1° a) Ecrire sous forme algébrique le nombre complexe $(4-2i)^2$	0,25pt
b) Calculer P(2i) et déterminer les complexes a et b tels que $\forall z \in \mathbb{C}$, P(z) = $(z-2i)(z^2+az+b)$	0,5pt
c) Résoudre, dans \mathbb{C} , l'équation $P(z) = 0$.	0,5pt
2° Le plan complexe est rapporté à un repère orthonormé $\left(\mathbf{O}; \vec{\mathbf{u}}, \vec{\mathbf{v}}\right)$.	
a) Placer les points A, B et C d'affixes respectives : $z_A = -1 + i$, $z_B = 2i$ et $z_C = 3 - i$	0,75pt
b) Déterminer l'affixe du point D tel que ABCD soit un parallélogramme.	0,25pt
c) Ecrire sous forme exponentielle les affixes des nombres z_A et z_B .	0,5pt
d) Ecrire sous forme trigonométrique le nombre $\frac{z_{\rm C}-2i}{z_{\rm A}-2i}$, et en déduire la nature de ABC	0,5pt
3° a) Déterminer et construire l'ensemble E des points M, d'affixe z, tel que $ z-3+i = z+1-i $	0.5pt

Baccalauréat 2022

b) Déterminer l'ensemble F des points M, d'affixe z, tel que $\arg(z-3+i) - \arg(z+1-i) = \frac{\pi}{2} [\pi]$

Exercice 3: (3 points)

On administre à un patient un médicament par injection intraveineuse à l'aide d'une machine.

La machine injecte 10 millilitres (ml) à l'instant 0 et à chaque minute elle injecte 1 ml.

On estime que 20% du médicament présent dans le sang est éliminé par minute.

Pour tout entier naturel n, on note u_n la quantité de médicament, en ml, présente dans le sang du patient au bout de n minutes.

- 1° Quelle serait la quantité de médicament présente dans le sang du patient au bout de 2 mn ?
- 2° Justifier que pour tout entier naturel n, $u_{n+1} = 0.8u_n + 1$.

1pt 0,5pt

- 3° Pour tout entier naturel n, on pose $v_n = u_n 5$.
- a) Démontrer que (v_n) est une suite géométrique et la caractériser.
- b) Exprimer v_n puis u_n en fonction de n. 0,5pt
- c) Calculer $\lim_{n\to +\infty} u_n$. Quelle interprétation peut-on en donner ?

0,5pt

0,5pt

Exercice 4: (4 points)

- I. 1° Déterminer la solution générale de l'équation différentielle (E) y'' + 2y' + y = 0.
- 2° Déterminer la solution h de l'équation (E) qui vérifie h(0) = -1 et h(-1) = 0.

- 0,25pt 0,25pt
- II. Soit f la fonction définie sur \mathbb{R} par $f(x) = -(x+1)e^{-x} 1$. On note Γ sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.
- 1° a) Calculer $\lim_{x \to -\infty} f(x)$ et vérifier que $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$. Interpréter graphiquement.
- 0,75pt
- b) Montrer que la droite (Δ) d'équation y=-1 est une asymptote horizontale à Γ et étudier leur position relative.
 - 0, 5pt

 2° a) Montrer que $\forall x \in \mathbb{R}$, $f'(x) = xe^{-x}$ puis en déduire son signe sur \mathbb{R} .

0,5pt

b) Dresser le tableau de variations de f.

- 0,5pt
- 3° a) Montrer que la courbe Γ coupe (Ox) en un unique point d'abscisse α avec $-1,3\!<\!\alpha\!<\!-1,2$
- 0,5pt 0,25pt
- b) Montrer que la courbe Γ admet un point d'inflexion A et préciser ses coordonnées. c) Construire (Δ), Γ dans le repère précédent.
- 0,25pt 0,5pt

Exercice 5: (6 points)

Soit f la fonction définie sur $]0;+\infty[$ par $f(x)=x^2(2\ln x-1)+1$ et soit (C) sa courbe représentative dans un repère orthonormé $(O;\vec{i},\vec{j})$.

1°a) Montrer que $\lim_{x\to 0^+} f(x) = 1$ puis interpréter le résultat.

0,75pt

b) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$, puis interpréter graphiquement ce résultat.

1,25pt

 2° a) Montrer que $f'(x) = 4x \ln x$.

1pt 0,5pt

b) Dresser le tableau de variation de f. 3° Soit g la restriction de f sur l'intervalle $I = [1, +\infty]$.

a) Montrer que g est une bijection de I sur un intervalle J à déterminer.

0,5pt 0,5pt

b) Dresser le tableau de variation de g⁻¹.

droites d'équations respectives x=1 et x=e.

0,5pt

4° Construire (C) et (C') dans le repère (O; \vec{i} , \vec{j}), ((C') étant la courbe de g^{-1}).

- 0,5pt
- 5° a) Utiliser une intégration par parties pour calculer l'intégrale K = ∫₁^e x² ln xdx.
 b) En déduire l'aire A du domaine plan délimité par la courbe (C), l'axe des abscisses et les
- 0,5pt

Fin.