	Utech
Name:	
Roll No.:	To Street (1) Exercising 2nd Excitors
Invigilator's Signature :	

CS/B.TECH (CE)/SEM-8/CE-801/4/2012 2012

ADVANCED FOUNDATION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) A raft of 6 m \times 9 m is founded at a depth of 3 m in a cohesive soil having C = 120 kN/m². The ultimate net bearing capacity of the soil using Terzaghi's theory will be nearly
 - a) 820 kN/m^2
 - b) 920 kN/m^2
 - c) 1036 kN/m^2
 - d) 1067 kN/m^2 .

8027 [Turn over

CS/B.TECH (CE)/SEM-8/CE-801/4/2012

ii)	Given, that	damping	ratio =	0.10	o and damping
					critical damping
	coefficient in kN sec/m will be				

a) 22.5

b) 225

c) 2250

d) 22500.

iii) Degree of freedom of a block type machine foundation is

a) 2

b) 3

c) 4

d) 6.

iv) No tension should develop at the base of rectangular well foundation or at any horizontal section within the well. For no tension at the base, the resultant of P_a (total active thrust) and W (weight of soil and well above the base) must pass through middle

- a) half of the base
- b) third of the base
- c) quarter of the base
- d) of the base.

v) A retaining wall retains a sand strata with $\phi=30^\circ$ up to its top. If a uniform surcharge of 12 t/m 2 is subsequently put on the sand strata, then the increase in the lateral earth pressure intensity on the retaining wall will be

- a) 1 t/m^2
- b) 2 t/m^2
- c) 4 t/m^2
- d) 8 t/m^2 .

8027

- vi) The minimum allowable factor of safety against sliding in the case of a cantilever retaining wall is
 - a) 2.0

b) 3.0

c) 1.50

- d) 2.5.
- vii) In the case of fixed earth support of a bulk head the stability is provided by
 - a) the passive resistance of the soil
 - b) the force in the anchor
 - c) both (a) and (b)
 - d) neither (a) nor (b).
- viii) A 30 cm diameter friction pile is embedded 10 m into a homogeneous consolidated deposit. Unit adhesion developed between clay and pile shaft is $\frac{4t}{m^2}$ and adhesion factor 0·7. The safe load for factor of safety 2·5 will be
 - a) 21.50 t
- b) 11.57 t
- c) 10.55 t
- d) 6.35 t.
- ix) A rectangular footing 1 m \times 2 m is placed at a depth of 2 m in a saturated clay behaving as an unconfined compressive strength of 100 kN/m 2 . According to Skempton, the net ultimate bearing capacity is
 - a) 420 kN/m^2
- b) 412.5 kN/m^2
- c) 385 kN/m^2
- d) 350.0 kN/m^2 .

CS/B.TECH (CE)/SEM-8/CE-801/4/2012

- x) A fully compensated raft foundation for a building is
 - a) designed as a very rigid raft
 - b) designed as a completely flexible raft
 - c) such that the weight of the excavated soil is equal to the load due to the building
 - d) supported by piles of short length.
- xi) For a damped vibrating system with single degree of freedom, resonance occurs at a frequency ratio of
 - a) 1
 - b) 0
 - c) less than 1
 - d) greater than 1.
- xii) At a site having a deposit of dry sandy soil, an average soil of standard penetration resistance *N* equal to 6 was recorded. The compactness of the soil deposit can be described as
 - a) very loose
- b) dense
- c) medium
- d) loose.

8027 4

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Write short notes on any one of the following:
 - Stabilisation of bore holes a)
 - b) Advantage of using steel sheet piles.
- A footing of size $3.50 \text{ m} \times 3.50 \text{ m}$ is to be constructed at a 3. site at a depth of 1.50 m below the ground surface. The water table is at the base of the foundation. The average static cone penetration resistance obtained at one site is 20 kg/cm². The soil is cohesive. Determine the safe bearing pressure for settlement of 40 mm.
- Elaborate the advantages and disadvantages of pneumatic 4. caissons over open caissons.
- 5. A pile group consisting of 16 piles is subjected to a load of 5000 kN with eccentricity $e_x = 0.30$ m, $e_y = 0.40$ m. The piles are arranged in 4 (four) rows, 4 (four) nos. of piles in each row at a 1.0 m centre to centre. Determine the maximum load in an individual pile.
- 6. What is a 'Bore log'? Sketch a typical 'Bore log'.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 7. Determine force in the tie rod of anchored sheet pile, anchored at a point 1.0 m below the top, supporting sides of an excavation 6.0 m deep in dry sandy soil having $\phi = 30^{\circ}$, G = 2.6 and e = 1.0 in back and water to a height of 4 m in front from dredge level. Assuming free earth support, also calculate the depth of penetration of the sheet pile. Detailed solution of cubical equation, if any should be given.
- 8. a) A straight shaft drilled pier 1.5 m diameter, is constructed in a deposit consisting of loose sand of thickness 8.0 m (tan $\delta = 0.58$, k = 0.50, $\phi = 30^{\circ}$, $\gamma = 17 \text{ kN/m}^3$) overlaying dense sand of thickness 4.0 m (tan $\delta = 0.84$, k = 0.40, $\phi = 40^{\circ}$, $\gamma = 21 \text{ kN/m}^3$). Determine the allowable load.

F.S. = 3, $N_q = 0.140$ for $\phi = 40^{\circ}$.

b) Determine the natural frequency of a machine foundation having a base area 2 m x 2 m and a mass of 15 MT, including the mass of the machine.

Take
$$C_u = 4 \times 10^{-4} \text{ kN/m}^{-3}$$
. $9 + 6$

Describe with neat sketches how the depth of exploration 9. and lateral extent of exploration for different kinds of foundation are considered and finalised for execution.

10 + 5

8027 6

- 10. Discuss standard penetration test. What are the various corrections? What is the importance of the test in geotechnical engineering? 6+6+3
- 11. a) State the limitations of Terzaghi's theory in predicting the bearing capacity of a shallow foundation footing on a cohesive deposit.
 - b) A concrete pile 30 cm diameter is driven into a medium dense sand ($\phi = 35^{\circ}$, $\gamma = 21$ kN/m ³, k = 1.0, tan $\delta = 0.70$) for a depth of 8 m. Estimate the safe load, taking a factor of safety of 2.50.

8027 7 [Turn over