

CMPT441/711 Bioinformatics Algorithms

Project D Understanding Metabolic Network Models

Members: Hooman Zabeti(301348564), Yiji Wang(301286922) Peiyu Cui(301345033), Haihong Tang(301268397)

Supervised by: Prof. Leonid Chindelevitch

Outline

- Introduction to metabolic network
- Analysis of the models
- Conclusion
- Q&A

Introduction

- Metabolic network
- Constraint-based models
- Flux Balance Analysis
- Blocked reactions

Metabolic Network

Representation of the biochemical reactions within the cell:

- Metabolite: an organic substance
- Biochemical reaction: the process in which two or more molecules (reactants) interact

Modelling the network:

- Kinetic models
- Approximated kinetic models
- Constraint-base models
- Conventional models
- Topological analysis

Figure 1: Simplified model for the central metabolic network of E. coli metabolism. [1]

Constraint-based Models

Mathematically encoding a metabolic network reconstruction

Stoichiometric Matrix:

- Rows = represents a unique **Metabolite**
- Columns = represents a **Biochemical reactions**
- Entries = **Stoichiometric coefficients**

Flux Balance Analysis

- Mathematical approach for analyzing the flow of metabolites through a metabolic network
- Predict the growth rate of an organism
- Stoichiometric matrix S is a linear transformation of flux vector v to derivatives of concentration vector x
- dx/dt = Sv
- Steady-state assumption: Sv=0

Figure 4: The conceptual basis of constraint-based modelling. [4]

Flux Balance Analysis

• Flux Optimization:

Max (Min):

$$c^T v$$

Subject to:

$$Sv = 0$$

$$\alpha_i \le v_i \le \beta_i$$

C =vector of weights

 α_i = lower bound of v_i

 β_i = upper bound of v_i

Formula 1: Flux Optimization functions [5]

Formulation of FBA

a Curate metabolic reactions

b Formulate **S** matrix

- c Apply mass balance constraints
- **d** Define objective function *Z*

e Optimize Z using linear progamming

Blocked Reactions

• Reaction i is called **blocked reaction** if:

Formula2: Blocked reaction definition [6][7]

- Type of blocked reactions (Mongoose):
 - Topologically blocked
 - Stoichiometrically blocked
 - Irreversibility blocked

Analysis

Toolbox	Fullname	Platform	Year	Homepage
Cobra	COnstraint-Based Reconstruction and Analysis Toolbox	Matlab	2007	https://opencobra.github.io/ cobratoolbox/stable/
Mongoose	MetabOlic Network GrOwth Optimization Solved Exactly Toolbox	Python	2014	http://cb.csail.mit.edu/cb/mongoose/

Cobra VS Mongoose

Use Yeast Model (iMM904 & iND750) as gold standard data for comparison

http://gcrg.ucsd.edu/InSilicoOrganisms/Yeast

- Less "Bias" for different tools
- Reliable and Stable
- Many studies on yeast models
- Moderate size for analysis

Yeast Model	# Metabolites	# Reactions	# Genes	
iMM904	1266	1577	905	
iND750	1059	1266	750	

Figure 6: # of blocked reactions for yeast models

Figure 7: Analysis time for yeast models

Cobra VS Mongoose

An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models.

Leonid Chindelevitch, Jason Trigg, Aviv Regev, Bonnie Berger. Nature Communications, 5:4893 (2014).

Keywords: Exact Arithmetic VS Floating Arithmetic

Mongoose > Cobra?

Models

(€ (€ 1 to 84 (84) (9) (9)					
BiGG ID	Organism	♦ Metabolites	♦ Reactions		
e_coli_core	Escherichia coli str. K-12 substr. MG1655	72	95	137	
iAB_RBC_283	Homo sapiens	342	469	346	
iAF1260	Escherichia coli str. K-12 substr. MG1655	1668	2382	1261	
iAF1260b	Escherichia coli str. K-12 substr. MG1655	1668	2388	1261	
iAF692	Methanosarcina barkeri str. Fusaro	628	690	692	
iAF987	Geobacter metallireducens GS-15	1109	1285	987	
iAPECO1_1312	Escherichia coli APEC O1	1942	2735	1313	
iAT_PLT_636	Homo sapiens	738	1008	636	
iB21_1397	Escherichia coli BL21(DE3)	1943	2741	1337	
iBWG_1329	Escherichia coli BW2952	1949	2741	1329	
ic_1306	Escherichia coli CFT073	1936	2726	1307	

Figure 8: BIGG models (http://bigg.ucsd.edu/models)

Figure 9: # of blocked reactions for 18 small models

Figure 11: # of blocked reactions for all models

Figure 10: Analysis time for 18 small models

Figure 12: Analysis time for all models

Figure 13: Time cost differences between Cobra and Mongoose

Conclusion

Easy Goal:

- Obtained basic knowledge of metabolic network models
- Went through Cobra tutorial: https://bioinformatics.ca/workshops/2008/systems-network-biology#outline

Hard Goal:

- Installed and learned how to analyze models using Mongoose
- Observed different results provided by Cobra and Mongoose using Yeast Model as gold standard

Stretch Goal:

- Compared Cobra and Mongoose based on results from all 80 BIGG models
- Analyzed the differences between Cobra and Mongoose in terms of accuracy and efficiency

Cobra	 Offers various functions for data integration, model design, analysis, reconstruction and visualization Provides flexibility in choosing solvers for analysis (solver type: 'LP', 'MILP', 'QP', 'MIQP', for each solver type, provides different solvers e.g 'CPLEX', 'GLPK', 'DQQ') Supports parallel computing in MATLAB (e.g. fluxVariability) Has many documentations and supports
Mongoose	 Identifies novel structural features (3 kinds of blocked reactions & 2 kinds of semi-blocked reactions) Gives better consistency and reproducibility Diagnoses blockages and proposes ways to remedy them Significantly reduces the size of the networks Identifies small reaction cut-sets and minimal media.

To be continued...

References

- [1] Castaño-Cerezo, Sara & Pastor, José & Renilla, Sergio & Bernal, Vicente & Iborra, Jose & Cánovas, Manuel. (2009). "An insight into the role of phosphotransacetylase (PTA) and the acetate/acetyl-CoA node in Escherichia coli. Microbial cell factories." 8. 54. 10.1186/1475-2859-8-54.
- [2] R. Mahadevan. (2008). "Constraint-based Models of Metabolism." Canadian Bioinformatics Workshops. Module 4: Metabolic modelling. https://bioinformatics.ca/systemsday1-module4pdf
- [3] Becker, S. A., A. M. Feist, et al. (2007). "Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox." Nature protocols 2(3): 727-738.
- [4] Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). "What is flux balance analysis?" Nature Biotechnology, 28(3), 245–248. http://doi.org/10.1038/nbt.1614
- [5] H. Scott Hinton. (2015). "Flux Balance Analysis Overview." https://systemsbiology.usu.edu/documents/5
 Flux%20Balance%20Analysis%20Overview.pdf
- [6] Leonid Chindelevitch, Jason Trigg, Aviv Regev & Bonnie Berger. (2014). "An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models." Nature Communications, 5:4893
- [7] Leonid Chindelevitch. (2006). "Extracting Information from Biological Networks". DSpace@MIT. https://dspace.mit.edu/handle/1721.1/64607

Thank you! Q&A