■ ■ série de livros didáticos informática ufrgs

Projeto de Banco de Dados

Carlos Alberto Heuser

Construindo modelos ER

Capítulo 3

Construindo modelos ER - Temário

1. Conselhos práticos

2. Heurísticas

3. Notações alternativas

4. Processo de modelagem e alternativas

Propriedades de modelos ER

Modelo ER é um modelo formal

Poder de expressão é limitado

• Equivalência entre modelos

Modelo ER é um modelo formal

- Modelo preciso, não ambíguo .
- Diferentes leitores de um mesmo modelo ER devem sempre entender exatamente o mesmo.
- DER pode ser usado como entrada a uma ferramenta CASE.
- Fundamental:
 - todos os envolvidos devem estar treinados na sua perfeita compreensão.
- Risco: sub-utilização .

Poder de expressão limitado

- Modelo ER apresenta apenas algumas propriedades de um banco de dados:
 - Foi concebido para o projeto da estrutura de um BD relacional.
- Poder de expressão limitado para expressar restrições de integridade genéricas (regras de negócio).

Poder de expressão limitado - exemplo

Poder de expressão limitado - exemplo

Equivalência entre modelos

- Dois modelos ER diferentes podem ser equivalentes.
- Modelos equivalentes:
 - expressam o mesmo,
 - modelam a mesma realidade.
- Para fins de projeto de BD, dois modelos ER são equivalentes quando:
 - geram o mesmo esquema de BD.
- Considerar um conjunto de regras de tradução de modelos ER para modelos lógicos de BD.

Exemplo de equivalência entre modelos

a) CONSULTA como relacionamento n:n

Modelo equivalente

b) CONSULTA como entidade

Transformação de relacionamento n:n em entidade (1)

- 1. O relacionamento n:n é representado como uma entidade.
- 2. A entidade criada é relacionada às entidades que originalmente participavam do relacionamento.
- 3. A entidade criada tem como identificador:
 - as entidades que originalmente participavam do relacionamento,
 - os atributos que eram identificadores do relacionamento original (caso o relacionamento original tivesse atributos identificadores).

Transformação de relacionamento n:n em entidade (2)

4. Nos relacionamentos de que participa, a cardinalidade da entidade criada é sempre (1,1).

5. As cardinalidades das entidades que eram originalmente associadas pelo relacionamento são transcritas ao novo modelo conforme mostrado na figura.

Modelo ER sem relacionamento n:n

- Relacionamento n:n pode ser transformado em entidade.
- É possível construir modelos sem relacionamentos n:n.
- Há variantes da abordagem ER, que
 - excluem o uso de relacionamentos n:n, ou
 - excluem apenas o uso de relacionamentos n:n com atributos
- Exemplo:
 - várias abordagens baseadas na Engenharia de Informações (ver adiante)

Identificando construções

 Determinação da construção da abordagem ER (entidade, relacionamento,...) que será usada para modelar um objeto de uma realidade:

Não pode ser feita através da observação do objeto isoladamente.

 É necessário conhecer o contexto (modelo dentro do qual o objeto aparece).

Identificando construções Recomendação geral

- Decisão por uma construção para a modelagem de um objeto está sujeita a alteração durante a modelagem.
- Não despender um tempo excessivo em longas discussões sobre como modelar um objeto.
- Desenvolvimento do modelo e o aprendizado sobre a realidade irão refinando e aperfeiçoando o modelo.

Atributo versus entidade relacionada

Como deve ser modelada a cor de um automóvel?

Atributo versus entidade relacionada

Atributo *versus* entidade relacionada critérios (1)

Objeto está relacionado com outros objetos:

- deve ser modelado como entidade.

- · Caso contrário:
 - pode ser modelado como atributo.

Atributo *versus* entidade relacionada critérios (2)

- Conjunto de valores de um determinado objeto é fixo (domínio fixo):
 - pode ser modelado como atributo.
- Existem transações no sistema que alteram o conjunto de valores do objeto (domínio variável):
 - não deve ser modelado como atributo.

- Questão:
 - modelar um determinado objeto
 (exemplo, a categoria funcional de cada empregado de uma empresa):
 - como atributo?
 (categoria funcional como atributo da entidade EMPREGADO)
 - ou como uma especialização?
 (cada categoria funcional corresponde a uma especialização da entidade empregado)

 Especialização deve ser usada quando as classes especializadas de entidades possuem propriedades particulares:

atributos

relacionamentos

generalizações/especializações

- Questão:
 - Deve-se modelar um determinado objeto como:

uma entidade relacionada a outra?

ou como uma especialização?

- Observar o identificador do objeto em questão:
 - Lembrar que uma entidade especializada herda o identificador de sua entidade genérica.

- Atributo opcional:
 - Pode indicar subconjunto de entidade, que pode ser modelado mais corretamente através de especialização.

Atributo multivalorado é indesejável

- SGBD relacional que segue o padrão SQL/2:
 - Atributo multivalorado não possui implementação direta.
- SGBD OO ou objeto/relacional:
 - Atributo multivalorado normalmente é modelado como classe separada.
- Atributos multivalorados podem induzir a um erro de modelagem
 - Ocultar entidades e relacionamentos em atributos multivalorados

Atributo multivalorado

Atributo multivalorado eliminação

Atributo multivalorado eliminação

Verificação do modelo

Modelo deve ser correto

Modelo deve ser completo

Modelo deve ser livre de redundâncias

Modelo deve ser correto

- Erros:
 - sintáticos
 - semânticos
- Erros semânticos mais difíceis de verificar.
- Regras de normalização auxiliam na validação.

Exemplos de erros semânticos

- Estabelecer associações incorretas:
 - associar a uma entidade um atributo que na realidade pertence a outra entidade.
- Usar uma entidade como atributo de outra entidade.
- Usar o número incorreto de entidades em um relacionamento.
 - fundir em um único relacionamento ternário dois relacionamentos binários independentes

Modelo deve ser completo

- Deve fixar todas propriedades desejáveis do banco de dados.
- Somente pode ser verificado por alguém que conhece profundamente o sistema a ser implementado:
 - Envolvimento de especialista no domínio da aplicação ("usuário").

Verificação de completitude

- Forma de verificar:
 - dados que devem ser obtidos do banco de dados estão presentes?
 - todas as transações de modificação do banco de dados podem ser executadas sobre o modelo?

 Requisito é aparentemente conflitante com a falta de poder de expressão de modelos ER.

Modelo deve ser livre de redundâncias

 Modelo deve ser mínimo, isto é não deve conter conceitos redundantes.

- Tipos de redundância:
 - Relacionamentos redundantes
 - Atributos redundantes

O que fazer com construções redundantes?

- Alternativas
 - não devem aparecer no modelo ou
 - devem aparecer indicadas como redundantes
- Implementação pode conter redundância controlada de dados (desempenho, tolerância a falhas)

Exemplo de modelo

OCarlos A. Heuser

Atributos redundantes ou deriváveis

Atributos redundantes ou deriváveis

Atributos redundantes ou deriváveis

Modelo deve refletir o aspecto temporal

- Dados temporais:
 - dados que mudam ao longo do tempo e
 - para as quais BD mantém histórico.
- Tipos de dados temporais:
 - Atributos cujos valores modificam ao longo do tempo;
 - Relacionamentos que modificam ao longo do tempo.

Atributos temporais

EMPREGADO

salário

cada empregado tem um único salário (salário atual)

Atributos temporais

EMPREGADO salário

(a)
Banco de dados contém apenas o salário atual

Banco de dados contém a história dos salários

(b)

Atributos temporais

(a)
Base de dados
contém apenas a
alocação atual

(a)
Base de dados
contém apenas a
alocação atual

(b)
Base de dados
contém a história
das alocações

(a)
Base de dados contém apenas a lotação atual

(a)

Base de dados contém apenas a inscrição atual

(a)

Base de dados contém apenas a inscrição atual

(b)

Base de dados contém a história das inscrições

Consultas a dados referentes ao passado

 Muitas vezes, informações referentes ao passado são eliminadas da base de dados (arquivamento).

- Podem ser necessárias no futuro:
 - por motivos legais
 - para realização de auditorias
 - para tomada de decisões

Dados referentes ao passado planejar arquivamento

- Solução que poderia ser considerada:
 - reincluir as informações no banco de dados, quando elas forem necessárias.
 - Problema: restrições de integridade referencial.
- Planejar informações estatísticas:
 - Quando informações antigas são necessárias apenas para tomada de decisões.
 - Pode ser conveniente manter no banco de dados informações compiladas e eliminar as informações usadas na compilação.

Entidade isolada

Entidade isolada

Entidade que não apresenta relacionamento com outras entidades.

Entidade isolada

- Analisar:
 - Caso raro, mas não incorreto.
- Caso típico:
 - Entidade que modela a organização na qual o sistema implementado pelo BD está embutida.

Entidade isolada exemplo

Exemplo: BD de uma universidade.

- A entidade UNIVERSIDADE pode ser necessária, caso se deseje
 manter no BD alguns atributos da universidade.
- O modelo n\(\tilde{a}\)o deveria conter o relacionamento desta entidade com outras, como ALUNO ou CURSO:
 - BD modela uma única universidade;
 - Não é necessário informar no BD em que universidade o aluno está inscrito ou a qual universidade o curso pertence.

Estabelecimento de padrões

- Modelos de dados são usados para comunicação:
 - com pessoas da organização,
 - com programas (ferramentas CASE, geradores de código,...).
- É necessário estabelecer padrões de confecção de modelos.
- Na prática e na literatura:
 - Muitas variantes de modelo ER.
 - Variantes em:
 - sintaxe,
 - · semântica.

Variantes de modelos ER

Peter Chen (acadêmica)

• Engenharia de Informações

UML

Merise (notação Européia)

Notação acadêmica (P. Chen)

Notação para cardinalidade máxima e mínima:

- Cardinalidade (mínima, máxima) 1
- Cardinalidade mínima 0
- Cardinalidade máxima n

Engenharia de informações especialização: subtipos de entidades

UML

- UML ("unified modeling language"):
 - Conjunto de modelos diagramáticos para modelagem de software.
- Diagrama de classes pode ser usado como modelo conceitual.
- Terminologia é diferente:

ER	UML
Entidade	Classe
Relacionamento	Associação
Cardinalidade	Multiplicidade
Generalização/especialização	Generalização

Carlos A. Heuser

10 10

OCarlos A. Heuser

B B

93

OCarlos A. Heuser

10 10

Notação Européia (MERISE, DBMain,...)

Notação Européia (MERISE, DBMain,...)

semântica participativa:
cardinalidade diz
quantas vezes uma instância
de entidade participa de um
relacionamento

DEPARTAMENTO 0,n LOTAÇÃO 1,1 EMPREGADO

Uso de ferramentas de modelagem

- Diagrama ER não deve ser confeccionado manualmente:
 - muito trabalhoso,
 - revisões são frequentes,
 - diagramas feitos à mão não são atualizados, quando de alterações do esquema.
- Recomendável que seja usada uma ferramenta em computador para apoio à modelagem.
- Alternativas:
 - Uso de uma ferramenta CASE.
 - Uso de programas de propósito geral.

Estratégias de modelagem

- Estratégia de modelagem ER:
 - uma sequência de passos (uma "receita-de-bolo") de transformação de modelos, desde o modelo inicial de modelagem, até o final.
- Diferentes estratégias:
 - Bottom-up
 - Top-down
 - Inside-out

Definição da estratégia de modelagem

- Na prática:
 - Nenhuma das estratégias propostas na literatura é universalmente aceita.
- Normal é:
 - Combinação das diversas estratégias de modelagem.
- Compreensível, pois:
 - Processo de modelagem é um processo de aprendizagem.

Definição da estratégia de modelagem

 Identificar qual a fonte de informações principal para o processo de modelagem:

- Descrições de dados existentes:
 - estratégia bottom-up.
- Conhecimento de pessoas sobre o sistema :
 - estratégia top-down (ou inside-out).

Estratégia "top-down"

Partir de conceitos mais abstratos ("de cima").

 Ir gradativamente refinando estes conceitos em conceitos mais detalhados.

Estratégia "top-down" processo (1)

1. Modelagem superficial:

- a) Enumeração das entidades.
- b) Identificação dos relacionamentos (cardinalidade máxima) e
 hierarquias de generalização/especialização entre as entidades.
- c) Determinação dos atributos de entidades e relacionamentos.
- d) Determinação dos identificadores de entidades e relacionamentos.
- e) O banco de dados é verificado quanto ao aspecto temporal.

Estratégia "top-down" processo (2)

- 2. Modelagem detalhada:
 - a) Domínios dos atributos
 - b) Cardinalidades mínimas
 - c) Demais restrições de integridade
- 3. Validação do modelo:
 - a) Construções redundantes ou deriváveis a partir de outras no modelo
 - b) Validação com o usuário

EMPREGADO

Carlos A. Heuser