MAU22C00 - TUTORIAL 4 SOLUTIONS

1) Let A be a set, and let $\mathcal{A} = \{A_{\alpha} \mid \alpha \in I\}$, where I is an indexing set, be any partition of the set A. Define a relation R on A as follows: $x, y \in A$ satisfy xRy iff $x, y \in A_{\alpha}$ for some $\alpha \in I$. In other words, xRy iff x and y belong to the same set of the partition. Prove that R is an equivalence relation and that the partition R defines on A is precisely the given partition A.

(Hint: Recall we discussed in lecture the one-to-one correspondence between partitions and equivalence relations, and this is the proof direction I sketched in lecture without providing the details.)

Solution: First, let us prove R is an equivalence relation:

Reflexivity: For any $x \in A$, since $A = \{A_{\alpha} \mid \alpha \in I\}$ is a partition of A, there exists $\alpha \in I$ such that $x \in A_{\alpha}$. The element x is in the same set A_{α} as itself, so xRx.

Symmetry: If xRy, then by definition $x, y \in A_{\alpha}$ for some $\alpha \in I$, i.e. x and y belong to the same set of the partition. Therefore, yRx holds as well.

Transitivity: If xRy, then by definition $x, y \in A_{\alpha}$ for some $\alpha \in I$. If yRz, then z belongs to the same set of the partition as y, namely $z \in A_{\alpha}$ for the same α . Thus, $x, y, z \in A_{\alpha}$, which means xRz holds as well.

The partition determined by R is exactly \mathcal{A} : If $x \in A_{\alpha}$, then the equivalence class of x given by $[x]_R = A_{\alpha}$ by the very definition of R. Since \mathcal{A} is a partition of A and it consists of the set of equivalence classes determined by the relation R, we conclude that R determines the partition \mathcal{A} as needed.

2) (From the 2016-2017 Annual Exam) Let $f: [-2,2] \to [-15,1]$ be the function defined by $f(x) = x^2 + 3x - 10$ for all $x \in [-2,2]$. Determine whether or not this function is injective and whether or not it is surjective. Justify your answers.

Injectivity: $f(x) = x^2 + 3x - 10 = (x - 2)(x - 5)$ This function is not injective on the interval [-2, 2]. Acceptable justifications: drawing the graph, providing two values $x_1, x_2 \in [-2, 2], x_1 \neq x_2$ such that

 $f(x_1) = f(x_2)$, applying Rolle's theorem (noticing that f'(x) = 2x + 3 so $f'\left(-\frac{3}{2}\right) = 0$, and $\frac{3}{2} \in [-2, 2]$), etc.

Surjectivity: $f(x) = x^2 + 3x - 10$ is not surjective on the interval [-2, 2]. Acceptable justifications: drawing the graph, providing a value in [-15, 1] that f(x) does not assume, showing the minimum value occurs at $\frac{3}{2}$, where $f\left(\frac{3}{2}\right) = -12.25 > -15$, etc.