# Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

May 30, 2023

Lehrstuhl Informatik 2 Fakultät für Informatik



## Worum geht es?

- Bäume sind eine wichtige Klasse von Graphen
- einige Probleme, die auf allgemeinen Graphen "schwer" sind, sind auf Bäumen "leicht"
- Zusammenhang ist eine fundamentale Grapheigenschaft
- jeder zusammenhängende Graph enthält einen spannenden Baum



# Definition [Wege, Pfade]

Betrachte einen Graphen G = (V, E).

■ ein Weg in *G* ist eine Folge

$$V_1, \ldots, V_\ell$$

von Knoten, so dass  $v_i v_{i+1} \in E$  für  $i = 1, ..., \ell - 1$ .

- dieser Weg hat Länge  $\ell 1$ .
- wir sprechen von einem Weg von  $v_1$  nach  $v_\ell$ .
- $\blacksquare$  ein *Pfad* in *G* ist ein Weg  $v_1, \ldots, v_\ell$ , dessen Knoten alle verschieden sind.





# **Beispiel**

- die Knotenfolge 1, 2, 3, 5, 2, 3 ist ein Weg aber kein Pfad, weil 2 und 3 zweimal vorkommen.
- die Folge 1, 2, 3, 5, 4 ist ein Pfad



## **Definition**

# [Zusammenhangskomponenten]

- für einen Graphen G = (V, E) und  $u, v \in V$  schreibe  $u \sim_G v$ , falls es einen Weg von u nach v gibt.
- die Relation  $\sim_G$  ist eine Äquivalenzrelation, d.h.

$$u \sim_G u$$
 für alle  $u \in V$   
 $u \sim_G v \Leftrightarrow v \sim_G u$  für alle  $u, v \in V$   
 $u \sim_G v$  und  $v \sim_G w \Rightarrow u \sim_G w$  für alle  $u, v, w \in V$ 

- die Äquivalenzklassen nennen wir Zusammenhangskomponenten von *G*
- zwei Knoten liegen also genau dann in derselben Zusammenhangskomponente, wenn es einen Weg vom einen zum anderen gibt







## Zusammenhangskomponenten

- ein Graph ist zusammenhängend, wenn er nur eine Zusammenhangskomponente hat
- der linke Graph ist also zusammenhängend
- der rechte Graph ist unzusammenhängend
- der rechte Graph besteht aus drei Zusammenhangskomponenten





## Zusammenhangskomponenten

- ein isolierter Knoten in einem Graphen ist eine Zusammenhangskomponente, die nur aus einem Knoten besteht
- eine isolierte Kante ist eine Zusammenhangskomponente, die nur eine Kante enthält







## **Kreise in Graphen**

- ein Kreis in einem Graphen G ist eine Kopie eines Kreises  $C_{\ell}$ ,  $\ell \geq 3$ , die in G enthalten ist
- der linke Graph enthält also drei Kreise der Längen 3,4,5
- ein Graph ist kreisfrei, wenn er keine Kreise enthält
- der rechte Graph ist kreisfrei







## **Definition**

- ein kreisfreier Graph ist ein Wald
- ein zusammenhänender Wald ist ein Baum



## **Bemerkungen**

- der kleinste Wald besteht nur aus einem Knoten
- der Graph, der nur aus einer Kante besteht, ist ebenfalls ein Baum
- jeder Pfad ist ein Baum
- ein Blatt in einem Wald ist ein Knoten vom Grad 1





#### Lemma

Jeder Baum G = (V, E) mit  $E \neq \emptyset$  enthält mindestens zwei Blätter.





- betrachte einen längsten Pfad  $p = v_1, ..., v_\ell$ .
- alle Nachbarn von  $v_1$  und  $v_\ell$  liegen auf p, weil man den Pfad sonst verlängern könnte.
- wenn v₁ zwei Nachbarn hätte, würden beide auf dem Pfad liegen; aber dann enthielte G einen Kreis





# **Beweis (fortgesetzt)**

- lacksquare genauso für  $v_\ell$
- $\blacksquare$  also sind  $v_1$  und  $v_\ell$  Blätter



## **Proposition**

Die folgenden Aussagen sind äquivalent.

- **1.** der Graph G = (V, E) ist ein Baum
- **2.** *G* ist zusammenhängend und |E| = |V| 1
- 3. G ist kreisfrei und |E| = |V| 1
- 4. *G* ist kantenmaximal kreisfrei
- 5. G ist kantenminimal zusammenhängend
- 6. in G gibt es zu je zwei Knoten v, w genau einen Pfad von v nach w

## **Beweis**

[1 **⇒** 2]

- Induktion nach n = |V|
- für n = 1, 2 ist nichts zu zeigen
- für n > 2 finde ein Blatt v in G
- der Graph  $G \{v\}$  ist ein Baum
- nach Induktion gilt

$$|E|-1=|E(G-\{v\})|=|V(G-\{v\})|-1=|V|-2$$

- folglich |E| = |V| 1
- per Definition ist G zusammenhängend



## **Beweis**

[2 **⇒** 3]

- Induktion nach n = |V|
- für n = 1, 2 ist nichts zu zeigen
- weil

$$\sum_{v \in V} d_G(V) = 2|E| = 2(n-1),$$

gibt es einen Knoten  $v \in V$  vom Grad 1

- der Graph  $G' = G \{v\}$  ist zusammenhängend und |E(G')| = |V(G')| 1
- also ist G' nach Induktion kreisfrei
- folglich ist auch G kreisfrei
- nach Annahme gilt |V(G)| = |E(G)| 1



Beweis  $[3 \Rightarrow 4]$ 

- Induktion nach n = |V|; für n = 1, 2 ist nichts zu zeigen
- weil G kreisfrei ist, sind Anfangs- und Endknoten eines längsten Pfades Blätter
- G enthält also ein Blatt v
- der Graph  $G' = G \{v\}$  ist kreisfrei und |E(G')| = |V(G')| 1
- also ist G' nach Induktion maximal kreisfrei
- somit ist *G'* zusammenhängend; denn sonst könnte man eine Kante zwischen zwei Komponenten von *G'* hinzufügen
- daher kann man keine mit *v* inzidente Kante hinzufügen, ohne einen Kreis zu schließen



Beweis  $[4 \Rightarrow 5]$ 

- weil G kantenmaximal kreisfrei ist, ist G zusammenhängend
- **a** angenommen man könnte eine Kante e = vw löschen, ohne den Zusammenhang zu zerstören
- dann liegen v, w in derselben Komponente von  $G' = G \{e\}$
- also schließt *e* einen Kreis, Widerspruch



Beweis  $[5 \Rightarrow 6]$ 

- weil G zusammenhängend ist, gibt es für alle  $v, w \in V$  es einen Pfad von v nach w
- **a** angenommen zu v, w gibt es zwei verschiedene Pfade  $p \neq p'$
- **a** dann gibt es eine Kante e auf p, die nicht auf p' vorkommt
- $\blacksquare$  also ist  $G \{e\}$  zusammenhängend
- Widerspruch zur Annahme, G sei kantenminimal zusammenhängend

 $[6 \Rightarrow 1]$ 



## Bäume, Wälder, Breiten- und Tiefensuche

- Induktion nach n = |V|
- für n = 1, 2 ist nichts zu zeigen; sei also  $n \ge 3$
- betrachte einen längsten Pfad  $p = v_1 \cdots v_\ell$  in G
- alle Nachbarn von  $v_1$  und  $v_\ell$  liegen auf p
- weil p der einzige Pfad von  $v_1$  nach  $v_\ell$  ist, folgt, daß  $v_1, v_\ell$  Blätter sind
- weil in  $G' = G \{v_1\}$  je zwei Knoten durch genau einen Pfad verbunden sind, ist G' ein Baum
- also ist auch G ein Baum



## **Definition**

Ein spannender Baum eines Graphen G = (V, E) ist ein Untergraph G' = (V, E') von G mit derselben Knotenmenge wie G, der ein Baum ist.



#### Lemma

Jeder zusammenhängende Graph enthält einen spannenden Baum.

- Induktion nach der Kantenzahl von G = (V, E)
- wenn G kantenminimal zusammenhängend ist, ist G bereits selbst ein Baum
- sonst gibt es eine Kante  $e \in E$ , so daß  $G' = G \{e\}$  zusammenhängend ist
- nach Induktion besitzt *G'* einen spannenden Baum



#### **Breiten- und Tiefensuche**

- wir lernen zwei Algorithmen kennen, die in einem zusammenhängenden Graphen spannende Bäume bestimmen
- darüber hinaus bestimmen diese Algorithmen die Zusammenhangskomponenten des Eingabegraphen
- die Eingabe ist jeweils ein Graph, der als Adjazenzliste gegeben ist



#### **Breiten- und Tiefensuche**

■ in einem Graphen G definieren wir den Abstand von  $v, w \in V(G)$  als

$$\operatorname{dist}_G(v, w) = \min_{\ell \geq 0} \exists \operatorname{Weg} \operatorname{der} \operatorname{Länge} \ell \operatorname{von} v \operatorname{nach} w$$

■ falls *v*, *w* in verschiedenen Zusammenhangskomponenten liegen, verwenden wir die Konvention

$$\mathsf{dist}_G(v,w) = \infty$$

## BFS(G, s)

- **1.** Färbe alle Knoten  $v \in V(G) \setminus \{s\}$  grün und färbe s gelb.
- **2.** Setze  $d(v) = \infty$  für alle  $v \in V(G) \setminus \{s\}$  und setze d(s) = 0.
- **3.** Setze  $p(v) = \emptyset$  für alle  $v \in V$ .
- 4. Lege eine Warteschlange Q an und füge s in Q ein.
- 5. Solange Q nicht leer ist,
- 6. entnehme *v* aus *Q*
- **7.** färbe *v* rot
- **8.** für alle  $u \in \partial v$  mit Farbe grün
- 9. färbe u gelb, setze p(u) = v, d(u) = d(v) + 1 und füge u in Q ein



#### **Satz**

BFS hat Laufzeit O(|V(G)| + |E(G)|). Bei Beendigung des Algorithmus' gilt folgendes.

- (i) Die Zusammehangskomponente des Startknotens s besteht aus genau den Knoten v, für die  $d(v) < \infty$ .
- (ii) Für alle  $v \in V(G)$  gilt  $d(v) = \text{dist}_G(s, v)$ .
- (iii) Der Untergraph

$$(\{v \in V(G) : d(v) < \infty\}, \{\{v, p(v)\} : v \in V(G), p(v) \neq \emptyset\})$$

ist ein spannender Baum der Zusammehangskomponente von s in G.



## Handschlaglemma

Für jeden Graphen G gilt

$$\sum_{v\in V(G)}d_v(G)=2|E(G)|.$$



#### Lemma 1

BFS hat Laufzeit O(|V(G)| + |E(G)|).

- Laufzeit der Schritte (1)–(4) beträgt O(|V(G)|).
- Jeder Knoten wechselt höchstens zweimal seine Farbe, und zwar von grün auf gelb auf rot.
- Deshalb wird kein Knoten mehrmals in Q eingefügt, und folglich auch nicht wieder entnommen.
- Aus diesem Grund ist die Laufzeit der Hauptschleife (5)–(9) beschränkt durch  $O(|V(G)|) + \sum_{v \in V(G)} d_G(v) = O(|V(G)|) + O(|E(G)|)$



#### Lemma 2

Während der gesamten Ausführung von BFS gilt

 $d(v) \ge \operatorname{dist}_G(s, v)$  für alle Knoten v.



- Wir führen Induktion nach der Zahl der Iterationen der Hauptschleife (5)–(9).
- Anfangs gilt  $d(v) = \infty$  für alle  $v \in V(G) \setminus \{s\}$ , weshalb die Behauptung trivial erfüllt ist.
- Betrachte nun den nächsten Knoten *v*, der aus *Q* entnommen wird, sowie einen grünen Nachbarn *u* von *v*
- Dann gilt d(u) = d(v) + 1.
- Andererseits gilt offensichtlich  $\operatorname{dist}_G(s, u) \leq \operatorname{dist}_G(s, v) + 1$ , weil ein Pfad von s nach v um eine Kante nach u verlängert werden kann.
- Weil  $d(v) \ge \operatorname{dist}_G(s, v)$  nach Induktionsvoraussetzung, schließen wir, daß  $d(u) \ge \operatorname{dist}_G(s, u)$  für alle grünen  $u \in \partial_G v$ .



#### Lemma 3

Angenommen die Warteschlange Q enthält die Knoten  $q_1, \ldots, q_\ell$ . Dann gilt

$$d(q_1) \leq \cdots \leq d(q_\ell) \leq d(q_1) + 1.$$

Wird ferner ein Knoten u vor einem anderen Knoten u' in Q eingefügt, so gilt

$$d(u) \leq d(u')$$
.



- Wir führen Induktion nach der Zahl der Iterationen der Hauptschleife.
- Zu Beginn enthält *Q* nur den Knoten *s*, so daß nichts zu zeigen ist.
- Es ist klar, daß die Ungleichung nach einer Ausführung von Schritt (6) erhalten bleibt.
- Betrachte ferner eine Ausführung von Schritt (9).
- Dann gilt nach Induktionsvoraussetzung für den neu eingefügten Knoten v, daß  $d(v) = d(v_1) + 1 \ge d(v_2)$ .
- Also bleibt die Ungleichung erhalten.
- Die zweite Behauptung folgt unmittelbar aus der Ungleichung.



- Die behauptete Laufzeit ergibt sich unmittelbar aus Lemma 1
- Wir zeigen (ii), woraus (i) direkt folgt
- Nach Lemma 2 genügt zu zeigen, daß  $d(u) \leq \operatorname{dist}_G(s, u)$  für alle u bei Beendigung von BFS
- Beweis durch Widerspruch: nimm an, es gäbe ein u mit

$$d(u) > \operatorname{dist}_G(s, u)$$



- Wähle  $u \neq s$  so, daß dist<sub>G</sub>(s, u) kleinstmöglich
- Da  $d(u) > \operatorname{dist}_G(s, u)$  gilt  $\operatorname{dist}_G(s, u) < \infty$
- Also gibt es einen kürzesten Pfad P von s nach u
- Sei v der letzte vor u auf P; dann  $dist_G(u) = dist_G(v) + 1$
- Da  $dist_G(s, v) < dist_G(s, u)$ , folgt  $d(v) = dist_G(v)$
- In Schritten (8)–(12) bei Entnahme von v muß u gelb oder rot gefärbt sein
- Daher zeigt Lemma 3, daß  $d(u) \le d(v) + 1 \le \operatorname{dist}_{G}(u)$
- Dies ist ein Widerspruch, also ist (ii) bewiesen
- Aussage (iii) ergibt sich direkt aus (i) und (ii)

## DFS(G)

- **1.** Färbe alle Knoten  $v \in V(G)$  grün.
- **2.** Setze c(v) = 0 und  $p(v) = \emptyset$  für alle  $v \in V$ .
- **3.** Setze j = 1
- **4.** Für alle  $v \in V(G)$
- 5. falls *v* grün gefärbt ist
- 6. führe DFSLoop(G, v, j) aus.
- **7.** Erhöhe *j* um 1.



DFSLoop(G, v, j)

- **1.** Färbe v gelb und setze c(v) = j.
- **2.** Für alle  $u \in \partial_G v$
- **3.** Falls *u* grün ist
- **4.** Setze p(u) = v.
- 5. Führe DFSLoop(G, u, j) aus.
- 6. Färbe *v* rot.



#### **Satz**

- DFS hat Laufzeit O(|V(G)| + |E(G)|).
- Die Mengen  $c^{-1}(j)$  für  $j \ge 1$  bilden genau die Zusammehangskomponenten von G.



## Zusammenfassung

- der Zusammenhangsbegriff
- Bäume und Wälder
- Breitensuche
- Tiefensuche