"...we are suffering from a plethora of surmise, conjecture, and hypothesis. The difficulty is to detach the framework of fact – of absolute undeniable fact – from the embellishments of theorists and reporters."

Sherlock Holmes

Silver Blaze

COHEN CHAP 11. MATCHED T TEST

For EDUC/PSY 6600

MOTIVATING EXAMPES

Dr. Filburn wishes to assess the effectiveness of a leadership workshop for 60 middle managers. The 60 managers are rated by their immediate supervisors on the Leadership Rating Form (LRF), before and after the workshop.

Dr. Clarke is interested in determining if workers are more concerned with job security or pay. He gains the cooperation of 30 individuals who work in different settings and asks each employee to rate his or her concern about 1) salary level and 2) job security on a scale from 1 to 10.

Dr. Gale questions whether husbands or wives with infertility problems feel equally anxious. She recruits 24 infertile couples and then administers the Infertility Anxiety Measure (IAM) to both the husbands and the wives.

PAIRED-SAMPLES DESIGNS

Comparing means of 2 groups

- Assumption of independence has been violated resulting in a dependency across groups
- Variance of DV smaller as groups consist of same or closely matched cases

Paired -samples t-test also known as...

- Matched-, Related-, Correlated-, Dependent-, or Non-independent samples t-test
- Repeated-measures t-test
 - E.g., Members of same family, class, group, litter, twinship

Experimental

Matching groups on some variable(s)

E.g., sex, age, education

↓ potential confounds on IV-DV relationship

or when cases cannot receive both conditions

Naturalistic

Samples naturally related, correlated, dependent

REPEATED-MEASURES DESIGNS

Successive designs:

2 measurements, conditions, or sets of stimuli are applied to cases sequentially

- Before-and-after (or longitudinal) designs
 - Pre- / post-test, time 1 / time 2
- Cross-over designs
 - Order effects? Need to <u>counterbalance</u> order
 - Random subset of cases → A then B
 - Another random subset of cases \rightarrow B then A
 - Counterbalancing may not eliminate carry-over effects
 - Wash-out period

Simultaneous designs:

2 varying conditions or sets of stimuli inter-mixed w/in study and all cases receive both

No concern for order effects or temporality Order is generally random

HYPOTHESES

Same as Independent-samples t-test

• H_0 : $\mu_1 = \mu_2$ or $\mu_1 - \mu_2 = 0$ or $\mu_1 - \mu_2 = \underline{15}$ • H_1 : $\mu_1 \neq \mu_2$ or $\mu_1 > \mu_2$ or $\mu_1 < \mu_2$

$$H_0: \mu_1 - \mu_2 = 0 \rightarrow H_0: \mu_D = 0$$

- Compute difference score for each subject
 - $X_{i1} X_{i2} = D$
 - ${}^{\blacksquare}H_0$: $\mu_D=0$ and H_1 : $\mu_D\neq 0$
- Now equivalent to 1-sample *t*-test
 - •Mean of difference scores compared w/ H_0 : $\mu_D = 0$

CALCULATIONS

M of sample difference scores minus <u>hypothesized</u> population M of difference scores (formula similar to 1-sample t-test)

Divided by sample SE of difference scores

- $s_D = SD$ of difference scores
- N = # of difference scores (pairs)

Critical value: df = N - 1

- Number of difference scores (pairs) 1
- Calculated 1 variance or SD
- df are half those of independent-samples t-test \rightarrow larger t_{crit}

Some software programs will not conduct paired-samples t-test

• Must 1^{st} transform problem into a 1-sample t-test

$$t = \frac{\overline{D} - \mu_D}{S_{\overline{D}}} = \frac{\overline{D} - 0}{\frac{S_D}{\sqrt{N}}}$$

$$s_D = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{N - 1}}$$

ASSUMPTIONS

1. Independence of pairs of observations

2. Normality of sampling distribution of <u>difference scores</u> in population

- 3. Equal ns
 - Pair deleted when 1 member missing data

PAIRED-SAMPLES T-TEST AND CORRELATION

Paired-samples *t*-test <u>almost</u> <u>always</u> more powerful than independent-samples *t*-test

- More likely to reject H_0 when false
- Requires fewer subjects

Degree of correlation (r) between scores on 2 groups related to size of difference between paired- and independent-samples <u>t-statistics</u>

 Larger correlation → larger difference

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right) - \frac{2rs_1s_2}{n}}}$$

Paired-samples t-test calculated as a function of r

- When r = 0,
 - \bullet equation reduces to independent-samples t-test
- When r > 0
 - denominator reduces, leading to larger t-statistic
- When *r* < 0
 - denominator increases, leading to smaller t-statistic

(Rare to have a negative correlation with paired-data)

EXAMPLE

Group 1 - Drug	Group 2 - Placebo
11	11
1	11
0	5
2	8
0	4

Same example from independent-samples t-test lecture

But suppose participants were carefully matched into pairs based on their level of depression prior to initiation of study

One member of each pair was randomly assigned to drug group, other to placebo group

After 6 months, level of depression was measured by a psychiatrist

Need to conduct paired-samples t-test due to matching

CONFIDENCE INTERVALS

95% CI around μ_D

Rewrite:
$$t = \frac{D - \mu_D}{\frac{S_D}{\sqrt{N}}}$$

$$G_{1-\alpha} = \overline{D} + t_{\alpha/2} * \frac{S_D}{\sqrt{N}}$$

Are paired sample means significantly different?

Yes: H_0 value <u>not</u> w/in CI

No: H_0 value within CI

In-class example:

EFFECT SIZE

*Cohen's d (same as in 1-sample t-test)

$$d = \frac{\overline{D}}{S_D} \text{ or } \frac{t}{\sqrt{N}}$$

Eta squared (η^2)

•
$$\eta^2 = \frac{N * \overline{D}^2}{N * \overline{D}^2 + (N-1) * s_{\overline{D}}^2}$$
 or $\frac{t^2}{t^2 + N - 1}$

In-class example:

POWER ANALYSIS

Post hoc

With Cohen's d estimate and # pairs, compute delta to obtain power of study

$$\delta = \mathrm{d}\sqrt{\frac{N}{2}}$$

A Priori

With desired power, compute delta and combine with estimated Cohen's d to obtain # pairs (N)

$$N = \left(\frac{\delta}{d}\right)^2$$

	ONE-TAILED TEST (α)					
	.05	.025	.01	.005		
		Two-Tailed Test (α)				
δ	.10	.05	.02	.01		
0.5	.14	.08	.03	.02		
0.6	.16	.09	.04	.02		
0.7	.18	.11	.05	.03		
0.8	.21	.13	.06	.04		
0.9	.23	.15	.08	.05		
1.0	.26	.17	.09	.06		
1.1	.29	.20	.11	.07		
1.2	.33	.22	.13	.08		
1.3	.37	.26	.15	.10		
1.4	.40	.29	.18	.12		
1.5	.44	.32	.20	.14		
1.6	.48	.36	.23	.16		
1.7	.52	.40	.27	.19		
1.8	.56	.44	.30	.22		
1.9	.60	.48	.33	.25		
2.0	.64	.52	.37	.28		
2.1	.68	.56	.41	.32		
2.2	.71	.60	.45	.35		
2.3	.74	.63	.49	.39		
2.4	.77	.67	.53	.43		
2.5	.80	.71	.57	.47		
2.6	.83	.74	.61	.51		
2.7	.85	.77	.65	.55		
2.8	.88	.80	.68	.59		
2.9	.90	.83	.72	.63		

WEAKNESSES

Reduction in df for critical value

Lack of a control group (sometimes)

If samples are not truly matched, results will be spurious

ALTERNATIVES

Violation of normality

Matched-pairs Wilcoxon Test

Binomial Sign Test for Two Dependent Samples

Sample Re-use methods

- Exact tests
- Randomization and permutation tests