Topología Algebraica

Ejercicios para Entregar - Práctica 1 Guido Arnone

Sobre los Ejercicios

Elegí resolver los ejercicios (3), (), y (). Por completitud, incluyo el ejercicio (4) al comienzo ya que lo ulilizaré en la resolución de (3). Con la intención de aumentar la legibilidad de las resoluciones, algunos argumentos están escritos en forma de lemas que preceden a cada ejercicio.

Lema 1. Sea K un complejo simplicial y $v \in V_K$. Entonces $st(v)^o \cap V_K = \{v\}$

Demostración. Si $v \in V_K$, luego $\{v\} \ni v$ es un símplex y $\{v\}^o = \{v\}$ así que $v \in st(v)^o$. Recíprocamente si $w \in st(v)^o \cap V_k$, existe $\sigma \ni v$ con $w \in \sigma^o \subset \sigma$. Por lo tanto, al w ser un vértice $\{w\}$ debe ser una cara de σ . Por otro lado, como $\{w\} \subset \sigma^o$ y éste último es justamente quitar las caras propias de σ , necesariamente $\{w\} = \sigma$. Como $\sigma \ni v$ y el único tal símplex de dimensión 0 es $\sigma = \{v\}$, luego w = v. □

Lema 2. Sea K un complejo simplicial y sean $\sigma_1, \ldots, \sigma_k$ símplices de K. Si $\bigcap_{i=1}^k \sigma_i^o \neq \emptyset$, entonces $\sigma_1 = \cdots = \sigma_k$.

Demostración. Hacemos inducción en k. Tomamos el caso base k=2, pues de ser k=1 esto es claro. Por el absurdo, sean $\sigma \neq \tau \in K$ tales que $\sigma^o \cap \tau^o \neq \emptyset$. Luego $\sigma \cap \tau \supset \sigma^o \cap \tau^o \neq \emptyset$ y es así que $\sigma \cap \tau < \sigma, \tau$, pues al ser los símplices distintos la intersección es una cara propia. Por definición de σ^o es $\sigma \cap \tau \subset (\sigma^o)^c$, y pasando al complemento la contención $\sigma^o \cap \tau^o \subset \sigma^o$ obtenemos $\sigma^o \cap \tau^o \subset \sigma \cap \tau \subset (\sigma^o)^c \subset (\sigma^o \cap \tau^o)^c$, lo que es una contradicción. Ahora, supongamos que el resultado es válido para $2 \le k-1$. Como $\bigcap_{i=1}^k \sigma_i^o \neq \emptyset$, en particular sabemos que $\bigcap_{i=1}^{k-1} \sigma_i^o \neq \emptyset$. Por inducción, $\sigma_1 = \sigma_j$ si $j \in [k-1]$. Podemos ahora reescribir la intersección inicial como $\sigma_1^o \cap \sigma_k^o \neq \emptyset$, y usando el paso inicial vemos por último que $\sigma_1 = \sigma_k$. □

Ejercicio 4. Sea K un complejo simplicial y $\mathcal{U} = \{st(v)^o, v \in V_K\}$ el cubrimiento por stars abiertos de los vértices. Probar que $N(\mathcal{U})$ es isomorfo a K.

Demostración. Consideremos la función entre vértices dada por

$$\iota : V_K \to N(\mathcal{U})$$
$$\nu \longmapsto st(\nu)^o$$

Observemos que ι es un morfismo simplicial: sea $\sigma = \{\nu_0, \ldots, \nu_n\} \in K$ y veamos que $\{\iota(\nu_0), \ldots, \iota(\nu_n)\} = \{st(\nu_0)^o, \ldots, st(\nu_n)^o\} \in N(\mathcal{U})$. Como $\sigma \ni \nu_i$ para cada $i \in [\![n]\!]_0$, en cada caso es $\sigma^o \subset st(\nu_i)^o$ y por lo tanto,

$$\sigma^{o} \subset \bigcap_{i=0}^{n} st(v_{i})^{o} \neq \emptyset.$$

Esto último dice que, en efecto, $\{st(v_0)^o, \ldots, st(v_n)^o\} \in N(\mathcal{U})$. Afirmamos ahora que ι es biyectiva: la suryectividad se deduce de que los vértices del nervio son precisamente los stars abiertos de algún $v \in K$, así que alcanza con mostrar la inyectividad. En efecto, si $v, w \in K$ son tales que $st(v)^o = st(w)^o$, por el Lema 1 luego $\{v\} = st(v)^o \cap V_K = st(w)^o \cap V_k = \{w\}$. Tenemos entonces la inversa de ι ,

$$j: st(\nu)^o \in N(\mathcal{U}) \mapsto \nu \in K.$$

Veamos que j también es simplicial: sea $\mathfrak{S}=\{st(\nu_0)^o,\ldots,st(\nu_n)^o\}\in N(\mathcal{U})$ un símplex. Por definición es $\bigcap_{i=0}^n st(\nu_i)^o\neq\emptyset$. En particular, tenemos un punto $x\in st(\nu_i)^o$ para cada $i\in [\![n]\!]_0$ y entonces existen símplices $\sigma_i\ni\nu_i$ con $x\in\sigma_i$ de forma que $\bigcap_{i=0}^n\sigma_i^o\ni x$. Luego como esta última intersección es no vacía, el Lema 2 nos asegura que $\sigma:=\sigma_0=\cdots=\sigma_n$. Como para cada $i\in [\![n]\!]_0$ es $\nu_i\in\sigma_i=\sigma$, luego $\{\nu_0,\ldots,\nu_n\}\subseteq\sigma$. Como K es un complejo simplicial y cada ν_i es un vértice, necesariamente éstos forman una cara de σ que en particular es un símplex:

$$\{j(st(v_0)^o), \dots, j(st(v_n)^o)\} = \{v_0, \dots, v_n\} \in K.$$

Habiendo visto que tanto ι como j son simpliciales y tanto $j\iota=1_K$ como $\iota j=1_{N(\mathcal{U})}$, concluimos entonces que en efecto K y $N(\mathcal{U})$ son isomorfos.

Lema 3. Sea K un complejo simplicial finito, de forma que su realización geométrica resulta un espacio métrico. Sean ahora $v \in K$ y $\sigma = \{v_0, \dots, v_k\} \in K$. Entonces,

- a) $\operatorname{diam}(|\sigma|) \leq \max_{0 \leq i,j \leq k} d(\nu_i, \nu_j)$
- b) $\operatorname{diam}(\operatorname{st}(v)^{\circ}) \leq 2 \max_{\sigma \in K} \operatorname{diam}(|\sigma|)$
- c) Existe $0 < \eta < 1$ que sólo depende de la dimensión de K tal que

$$\max_{\sigma \in K'} diam(|\sigma|) \leq \eta \max_{\sigma \in K} diam(|\sigma|).$$

d) Si definimos $\Gamma_n := \max_{\nu \in K^{(n)}} diam(st(\nu)^o)$, entonces $\Gamma_n \xrightarrow{n \to \infty} 0$.

Demostración. Hacemos cada inciso por separado,

a) Sean $x=\sum_{i=0}^k t_i \nu_i$, $y=\sum_{j=0}^k s_j \nu_j \in |\sigma|$ combinaciones convexas de los vértices de σ . Luego,

$$\begin{split} d(x,y) &= \left\| \sum_{i=0}^k t_i \nu_i - \sum_{j=0}^k s_j \nu_j \right\| = \left\| \sum_{i=0}^k t_i \nu_i - \sum_{i=0}^k t_i \sum_{j=0}^k s_j \nu_j \right\| = \left\| \sum_{i=0}^k t_i \left(\nu_i - \sum_{j=0}^k s_j \nu_j \right) \right\| \\ &\leq \sum_{i=0}^k t_i \left\| \nu_i - \sum_{j=0}^k s_j \nu_j \right\| = \sum_{i=0}^k t_i \left\| \sum_{j=0}^k s_j \nu_i - \sum_{j=0}^k s_j \nu_j \right\| = \sum_{i=0}^k t_i \left\| \sum_{j=0}^k s_j (\nu_i - \nu_j) \right\| \\ &\leq \sum_{i=0}^k t_i \sum_{j=0}^k s_j \| \nu_i - \nu_j \| \leq \sum_{i=0}^k t_i \sum_{j=0}^k s_j \max_{0 \leq r,s \leq k} d(\nu_r,\nu_s) \\ &= \max_{0 \leq r,s \leq k} d(\nu_r,\nu_s) \sum_{i=0}^k t_i \sum_{j=0}^k s_j = \max_{0 \leq r,s \leq k} d(\nu_r,\nu_s). \end{split}$$

b) Sean $x,y \in st(v)^o$. Luego existen $\sigma_1, \sigma_2 \ni v$ tales que $x \in \sigma_1^o \subset \sigma_1$ e $y \in \sigma_2^o \subset \sigma_2$. Por lo tanto,

$$d(x,y) \leq d(x,\nu) + d(\nu,y) \leq diam(\sigma_1) + diam(\sigma_2) \leq 2 \max_{\sigma \in K} diam(\sigma).$$

c) Sea $\tilde{\sigma}=\{\widehat{\sigma_0},\ldots,\widehat{\sigma_k}\}\in K'.$ Por definición de la subdivisión baricéntrica, sabemos que $\sigma_i<\sigma_{i+1}$ para cada $i\in [k-1]_0$ y si $0\leq i< j\leq k$, entonces $\sigma_i=\{\nu_1,\ldots,\nu_r\}$ y $\sigma_j=\{\nu_1,\ldots,\nu_r,\nu_{r+1},\ldots,\nu_{r+s}\}$. Ahora, notemos que si $\nu_k\in\sigma_i$ luego es $0\leq k\leq r+s$ y entonces

$$\begin{split} \|\nu_k - \widehat{\sigma_j}\| &= \|\nu_k - \frac{1}{1+r+s} \sum_{l=0}^{r+s} \nu_l\| = \|\frac{1}{1+r+s} \sum_{l=0}^{r+s} (\nu_k - \nu_l)\| \\ &= \|\frac{1}{1+r+s} \sum_{l=0,l \neq k}^{r+s} (\nu_k - \nu_l)\| \leq \frac{1}{1+r+s} \sum_{l=0,l \neq k}^{r+s} \|(\nu_k - \nu_l)\| \\ &\leq \frac{r+s}{1+r+s} \operatorname{diam}(\sigma_j) \leq \frac{r+s}{1+r+s} \max_{\sigma \in K} \operatorname{diam}(|\sigma|), \end{split}$$

ya que el k-ésimo término de la sumatoria resulta $0 = v_k - v_k$. Por lo tanto,

$$\begin{split} d(\widehat{\sigma_j},\widehat{\sigma_i}) &= \left\| \frac{1}{r+1} \sum_{j=0}^r \nu_i - \widehat{\sigma_j} \right\| = \left\| \frac{1}{r+1} \sum_{j=0}^r (\nu_i - \widehat{\sigma_j}) \right\| \\ &\leq \frac{1}{r+1} \sum_{i=0}^r \|\nu_i - \widehat{\sigma_j}\| \leq \frac{r+s}{1+r+s} \max_{\sigma \in K} diam(|\sigma|). \end{split}$$

Ahora, como K tiene dimensión n, necesariamente es $r+s \le n$, y luego $\frac{r+s}{1+r+s} \le \frac{n}{1+n} < 1$. Por lo tanto, dado cualquier símplex $\tilde{\sigma}$ es

$$diam(\tilde{\sigma}) \leq \max_{0 \leq i,j \leq k} d(\widehat{\sigma_i},\widehat{\sigma_j}) \leq \frac{n}{1+n} \max_{\sigma \in K} diam(|\sigma|).$$

Tomando máximo en $\tilde{\sigma}$, vemos que alcanza con tomar $\eta=\frac{n}{1+n}\in(0,1)$ y que este último depende únicamente de dim K.

d) Como para todo n>1 sabemos que dim $K^{(n)}=\dim K^{(n-1)}$, luego existe $0<\eta<1$ por el ítem (c) tal que

$$0 \leq \max_{\sigma \in K^{(n)}} diam(|\sigma|) \leq \eta \max_{\sigma \in K^{(n-1)}} diam(|\sigma|) \leq \dots \leq \eta^n \max_{\sigma \in K} diam(|\sigma|).$$

Finalmente usando (b), obtenemos:

$$0 \leq \Gamma_n \leq 2 \max_{\sigma \in K^{(n)}} diam(|\sigma|) \leq 2 \eta^n \max_{\sigma \in K} diam(|\sigma|) \rightarrow 0.$$

Ejercicio 3. Sea X un espacio topológico y $U = \{U_i\}_{i \in I}$ un cubrimiento por abiertos de X. El nervio de U es el complejo simplicial N(U) cuyos vértices son los abiertos del cubrimiento y los símplices son los subconjuntos finitos no vacíos de U, $s = \{U_{i_0}, \ldots, U_{i_n}\}$ tales que $\bigcap U_{i_k} \neq \emptyset$. Notar que efectivamente N(U) es un complejo simplicial. Se dice que un espacio topológico X tiene dimensión $\leq n$ si todo cubrimiento abierto de X admite un refinamiento abierto cuyo nervio es un complejo simplicial de dimensión $\leq n$. Decimos que dim X = n si dim $X \leq n$ y dim $X \not\leq n-1$. Probar que:

- a) Si $A \subseteq X$ es cerrado entonces dim $A \le \dim X$.
- b) Los espacios discretos tienen dimensión 0.
- c) El intervalo I tiene dimensión 1.
- d) Si K complejo simplicial finito y dim K = n entonces dim $|K| \le n$. (En realidad vale la igualdad, se verá más adelante).

Demostración. Probamos cada inciso por separado.

a) Sea $A\subseteq X$ cerrado, $n:=\dim X$ y $\mathcal{U}=\{U_i\}_{i\in I}$ un cubrimiento por abiertos de A. Existe entonces para cada $i\in I$ un abierto V_i de X tal que $U_i=V_i\cap A$, y es entonces que la colección $\mathcal{O}=\{V_i\}_{i\in I}\cup \{A^c\}$ cubre X por abiertos, ya que A es cerrado. Por hipótesis, tenemos entonces un refinamiento $\tilde{\mathcal{O}}=\{O_j\}_{j\in J}$ de \mathcal{O} tal que $N(\tilde{\mathcal{O}})$ es un complejo simplicial de dimensión menor o igual que n. Afirmamos ahora que $\tilde{\mathcal{U}}=\{O_j\cap A\}_{j\in J}$ es refinamiento de \mathcal{U} : tenemos que

$$\bigcup_{j\in J} O_j\cap A=A\cap \bigcup_{j\in J} O_j=A\cap X=A,$$

y dado $j \in J$ luego $O_j \cap A$ es abierto en A pues O_j es abierto en X. Por úlimo, si $O_j \cap A \neq \emptyset$ luego $O_j \not\subset A^c$ y existe $i_j \in I$ con $O_j \subset V_{i_j}$ y entonces $O_j \cap A \subset V_{i_j} \cap A = U_{i_j} \in \mathcal{U}$. En cualquier caso, $O_j \cap A$ es subconjunto de algún elemento de \mathcal{U} . Para terminar, veamos que dim $N(\tilde{\mathcal{U}}) \leq n$. Sea $\sigma = \{O_{j_0} \cap A, \ldots, O_{j_k} \cap A\}$ un símplex del nervio de $\tilde{\mathcal{U}}$. Luego,

$$\emptyset \neq \bigcap_{i=0}^k A \cap O_{j_i} \subset \bigcap_{i=0}^k O_{j_i}$$

y entonces $\{O_{j_0},\ldots,O_{j_k}\}$ es un símplex de $N(\tilde{\mathcal{O}})$. Como este último tiene dimensión a lo sumo n, es

$$\dim \sigma = k \le \dim N(\tilde{\mathcal{O}}) \le n$$

y en consecuencia, dim $N(\tilde{\mathcal{U}}) \le n$.

- b) Sea $X = \{x_{\alpha}\}_{{\alpha} \in \Lambda}$ discreto y $\mathcal U$ un cubrimiento de X por abiertos. Afirmamos que el conjunto $\mathcal O := \{\{x\} : x \in X\}$ es un refinamiento de $\mathcal U$. Los elementos de $\mathcal O$ son abiertos pues X es discreto. Por otro lado si $\{x\} \in \mathcal O$, entonces como $\mathcal U$ es cubrimiento de X existe $U \in \mathcal U$ tal que $x \in U$. Equivalentemente es $\{x\} \subset U$, y así probamos que el primero es subconjunto de algún abierto de $\mathcal U$. Basta entonces probar que el nervio de $\mathcal O$ es de dimensión 0. Como los simplices de $N(\mathcal O)$ consisten de abiertos de $\mathcal O$ cuya intersección sea no vacía, alcanza con ver que cualesquiera dos abiertos de $\mathcal O$ son disjuntos. Esto es claro: si $\{x\} \neq \{y\} \in \mathcal O$, entonces $x \neq y$ y $\{x\} \cap \{y\} = \mathcal O$.
- c) Veamos en primer lugar que dim I \leq 0. Sea $\mathcal{U} = \{[0, \frac{2}{3}), (\frac{1}{3}, 0]\}$ cubrimiento de I. Cualquier refinamiento de \mathcal{U} tiene entonces al menos 2 elementos. Si I tuviese dimensión cero, existiría un refinamiento \mathcal{O} de \mathcal{U} cuyo nervio es de dimensión cero. Esto diría que los abiertos de \mathcal{O} son disjuntos y por conexión conluiríamos entonces que $1 = \#\mathcal{O} \geq 2$, lo que es absurdo.

Probemos ahora que dim $I \le 1$. Notemos que esto es una conclusión inmediata del siguiente ítem pues I es la realización geométrica de un complejo simplicial de dimensión 1. Además, el ítem (d) no utiliza este ítem y por lo tanto no hay peligro de un argumento circular. De todas maneras, a continuación proponemos otro argumento que sólo utiliza la caracterización de los abiertos de \mathbb{R} .

Sea $\mathcal{U}=\{U_i\}_{i\in I}$ un cubrimiento por abiertos de I. Como los abiertos de \mathbb{R} son unión numerable de intervalos abiertos y disjuntos, luego para cada $i\in I$ existen conjuntos $J_i\subset \mathbb{N}$ e intervalos $\{I_j^i\}_{j\in J_i}$ abiertos (en I) y disjuntos tales que $U_i=\bigcup_{j\in J_i}I_j^i$. Por compacidad tenemos luego intervalos $I_1,\ldots,I_n\in\{I_j^i\}_{i\in I,j\in J_i}$ tales que $\bigcup_{i=1}^N I_i=I$ y, por construcción, cada intervalo es subconjunto de algún abierto U_i . Obtuvimos así un refinamiento $\mathcal{O}_0=\{I_1,\ldots,I_n\}$ de \mathcal{U} . Construimos a continuación un refinamiento \mathcal{O} de \mathcal{U} de la siguiente forma: tomamos primero los intevalos de \mathcal{O}_0 . A los que no sean abiertos (como intervalos) les quitamos los extremos: estos seguirán siendo abiertos en I, pues sólo pueden provenir de alguno de la forma [0,1], $(\mathfrak{a},1]$ o $[0,\mathfrak{b})$. Luego, dados J_0 , $J_1\in\mathcal{O}_0$ con $s\in J_s$ para $s\in\{0,1\}$, agregamos entornos $E_0:=[0,\epsilon)$, $E_1:=(1-\epsilon,1]$ a \mathcal{O} con $0<\epsilon\ll 1$ tal que estos sean disjuntos y estén contenidos en I_0 y I_1 respectivamente. Esto garantiza que \mathcal{O} cubre a I_0 y que volvemos a cubrir sus extremos. Finalmente, de existir algún intervalo que esté contenido en la unión de otros, seleccionamos alguno de ellos y lo quitamos. Repetimos el proceso hasta que no haya más intervalos de este tipo, lo cual es posible pues hay finitos intervalos en total. Como removemos intervalos de uno, \mathcal{O} sigue siendo refinamiento pues sigue cubriendo a I.

Afirmamos ahora que $N(\mathcal{O})$ es de dimensión a lo sumo 1, o equivalentemente, que no hay tres intervalos de \mathcal{O} cuya intersección sea no vacía. Supongamos que sí y sean $\{J_i\}_{1\leq i\leq 3}\subset \mathcal{O}$ de intersección no vacía y tales que el interior de J_i en \mathbb{R} es $(\mathfrak{a}_i,\mathfrak{b}_i)^1$. Como los intervalos no se contienen entre sí, existen dos de ellos distintos con el menor extremo izquierdo y mayor extremo derecho, que suponemos son J_1 y J_3 respectivamente. Así, $J_1\cap J_3=(\mathfrak{a}_3,\mathfrak{b}_1)$. Como

¹Esto evita tratar por separado la posible elección de E₀ o E₁, ya que al ser los únicos dos intervalos semiabiertos, el argumento que sigue funciona aún si $a_1 \in J_1$ o $b_3 \in J_3$. Siempre tenemos que tanto J_2 como $J_1 \cap J_3$ son intervalos abiertos, y no hace falta que las desigualdades entre a_1 y a_2 o b_2 y b_3 sean estrictas.

 $J_2 \not\subseteq J_1$ debe ser $b_2 > b_1$, y similarmente como $J_2 \not\subseteq J_3$ tenemos que $a_2 < a_3$. Si ahora $s \in J_2$, entonces $a_1 \le a_2 < s < b_2 \le b_3$. Si $s \not\in J_1$, luego $s > b_1 > a_3$ y consecuentemente $s \in J_3$. En cualquier caso, $s \in J_1 \cup J_3$. Esto implica que $J_2 \subset J_1 \cap J_3$, lo que es absurdo: no hay entonces tres intervalos cuya intersección sea no vacía. Dado un cubrimiento arbitrario encontramos un refinamiento cuyo nervio es de dimensión a lo sumo 1, lo que completa la demostración.

d) Sea K un complejo simplicial de dimensión n y $\mathcal U$ un cubrimiento por abiertos de K. Como K es finito, es compacto, y por lo tanto existe un número de Lebesgue $\mu > 0$ para el cubrimiento. Por el Lema 3, existe $\mathfrak m \in \mathbb N$ tal que la $\mathfrak m$ -ésima subdivisión baricéntrica $K^{(\mathfrak m)}$ de K verifica $\mathrm{diam}(st(\nu)^o) < \mu$ para cada $\nu \in K^{(\mathfrak m)}$. Como éstos cubren a $|K^{(\mathfrak m)}| = |K|$ por abiertos y tienen diámetro menor a μ , cada star abierto está contenido en algún abierto de $\mathcal U$. Es decir, $\mathcal S = \{st(\nu)^o\}_{\nu \in K^{(\mathfrak m)}}$ refina a $\mathcal U$. Por otro lado, el ejercicio (4) asegura que $N(\mathcal S) \simeq K^{(\mathfrak m)}$ como complejos simpliciales y en particular, $\dim N(\mathcal S) = \dim K^{(\mathfrak m)} = \dim K = \mathfrak n$. Esto prueba que todo cubrimiento de K tiene un refinamiento cuyo nervio es de dimensión a lo sumo $\mathfrak n$, lo que completa la demostración.

Lema 4. Sea X un espacio topológico, R una relación en X y X/R el espacio cociente. Notamos $q: X \to X/R$ a la proyección. Si U, V son abiertos saturados disjuntos en X, entonces q(U) y q(V) son abiertos disjuntos en X/R. En particular, si $[x] \neq [y] \in X/R$ y existen $U \ni x, V \ni y$ abiertos saturados disjuntos, los abiertos q(U) y q(V) separan a [x] de [y].

Demostración. Ya sabemos que los abiertos de X/R son precisamente las imágenes por q de abiertos saturados, resta ver entonces que $q(U) \cap q(V) = \emptyset$. Si no fuera así existirían $z \in U$ y $w \in V$ con q(z) = q(w). En particular, tendríamos que $z \sim w$ y como U es saturado, luego $w \in U$. Sin embargo esto contradice que U y V son disjuntos. □

Ejercicio 5. Sea $A \subset X$ subespacio cerrado y $f: A \to B$ continua. Denotemos con $B \cup_f X$ al espacio de adjunción. Probar que si

- B y X son Hausdorff,
- Para todo $x \in X \setminus A$, existe un entorno cerrado de x en X que no interseca a A y
- $A \subset X$ es retracto de entorno,

entonces $B \cup_f X$ es Hausdorff.

Demostración. Recordemos que B ∪_f X = B ⊔ X/ ~, con ~ la relación generada por la identificación $\alpha \sim f(\alpha)$ para cada $\alpha \in A$. Sea ahora $\alpha : X \sqcup B \to X \cup_f B$ la proyección al cociente. Notemos además que por construcción, si $\alpha \in X \setminus A$ e $\alpha \in A \setminus A$ e y ∈ B \ f(A) entonces $\alpha \in A$. Es decir, en el cociente sólo se identifican puntos de A y f(A). Más aún, los elementos de f(A) no se relacionan entre sí, y cada $\alpha \in A$ está relacionado a su imagen por f. Esto dice que $\alpha \in A \setminus A \cup B$ es un sistema de representantes para esta relación y

$$q^{-1}([x]) = \begin{cases} \{x\} \operatorname{si} x \in X \setminus A \text{ ó } x \in B \setminus f(A) \\ \{x\} \sqcup f^{-1}(x) \operatorname{si} x \in f(A) \end{cases}$$

Ahora, sean [x] e [y] puntos del espacio de adjunción con $x,y \in X \setminus A \sqcup B$. Queremos ver que siempre existen abiertos disjuntos $\mathcal{U} \ni [x]$ y $\mathcal{V} \ni [y]$. Para esto, podemos separar en casos según a que espacio pertenecen los representantes, y por el Lema 4, alcanza con ver que en cada caso tenemos abiertos saturados disjuntos $U \ni x, V \ni y$.

• Caso 1: $x, y \in X \setminus A$. Como tanto x como y están en el complemento de A en X, tenemos entornos cerrados de cada punto que no intersecan a A. Es decir, existen abiertos O_x, O_y y cerrados F_x, F_y tales que $x \in O_x \subset F_x \subset X \setminus A$ e $y \in O_y \subset F_y \subset X \setminus A$. Por otro lado, como X es T_2 , existen abiertos $U_x \ni x$ y $V_y \ni y$ tales que $U_x \cap V_y = \emptyset$. Definimos luego los abiertos $U := U_x \cap O_x$ e $V := V_y \cap O_y$ que contienen a x e y respectivamente. Éstos son saturados pues están contenidos en $X \setminus A$ donde no hay identificaciones no triviales y finalmente son disjuntos pues $U \cap V \subset U_x \cap V_y = \emptyset$.

- Caso 2: $x \in X \setminus A$, $y \in B$. Como en el caso anterior, tenemos $x \in O_x \subset F_x \subset X \setminus A$ con O_x abierto $y \in F_x$ cerrado en X. Luego, $x \in O_x$ $y \in F_x \cup B$ y son abiertos disjuntos en $X \cup B$. Veamos que éstos son saturados. Rara $O_x \subset X \setminus A$ podemos utilizar el argumento del Caso 1. Por último, si $z \in F^c \cup B$ $y \in Z \cap W$ con $w \neq z$ entonces o bien $w \in A$ y $y \in X \cap W$ o $y \in X \cap W$ bien $y \in X \cap W$ pues en $y \in X \cap W$ pues en $y \in X \cap W$ pues en $y \in X \cap W$ por lo tanto éste último es saturado. Por simetría, obviamos el caso en que $y \in X \cap W$ el $y \in X \cap W$.
- - ► $f(w) = f(z) con w \in A, z \in A \cap (fr)^{-1}(U)$. Aquí es

$$fr(w) = f(w) = f(z) = fr(z) \in fr((fr)^{-1}(U)) \subset U,$$

y entonces $w \in (fr)^{-1}(U)$.

- ▶ $f(w) = z \operatorname{con} w \in A, z \in U$. Como $\operatorname{fr}(w) = f(w) = z \in U$, tenemos que $w \in (\operatorname{fr})^{-1}(U)$.
- $\blacktriangleright w = f(z) \operatorname{con} w \in f(A), z \in A \cap (\operatorname{fr})^{-1}(U). \operatorname{Luego} w = f(z) = \operatorname{fr}(z) \in \operatorname{fr}((\operatorname{fr})^{-1}(U)) \subset U.$

En todo momento w es un elemento de $(fr)^{-1}(U) \sqcup U$ y por lo tanto éste es saturado.

Habiendo encontrado en cada caso abiertos saturados y disjuntos de $X \sqcup B$ que contienen a x e y respectivamente, concluimos entonces que $X \cup_f B$ es Hausdorff.