Софийски университет "Св. Климент Охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

ПРОЕКТ

ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ И ПРИЛОЖЕНИЯ

спец. Информатика, II курс, зимен семестър учебна година 2021/2022

Изготвил:

Теодор Христов

фак. номер 45799

група: 4

Дата:

20. 01. 2022r.

София

Тема №53

Съдържание

1	Зад	ание на проекта	2		
2 Реп		пение на задача 1			
	2.1	Теоретична обосновка	3		
	2.2	MATLAB код	3		
	2.3	Резултати	5		

1 Задание на проекта

1. Да се начертаят, с червен цвят, графиките на първите 5 последователни приближения на решението на задачата на Коши

$$xdy = -2ydx, \quad y(2) = 1$$

в интервала [1, 10], получени по метода на Пикар. В същата фигура да се начертае със син цвят графиката на точното решение на задачата на Коши, което да се извежда в командния прозорец. Да се опишат в легенда съответните линии на чертежа.

2 Решение на задача 1

2.1 Теоретична обосновка

Задача на Коши за диференциално уравнение от вида y' = f(x,y) се нарича задачата за намиране на решение на уравнението, което удовлетворява условието $y(x_0) = y_0$ (начално условие), където точката (x_0, y_0) е от дефиниционното множество на функцията f. При определени условия за функцията f, задачата на Коши има единствено решение, дефинирано в околност на x_0 , което може да се определи по различни начини. Един от тях е метода на Пикар (Picard). Накрадко метода се свежда до намиране на нови функции, които се получават по следния начин:

Нека за целта на примера $y(t) = \tan(t)$, решението на уравнението $y'(t) = 1 + y(t)^2$ с начално условие $y(t_0) = y_0 = 0$. Започвайки от $\phi_0(t) = 0$ итерираме и получаваме:

$$\phi_1(t) = \int_0^t (1+0^2) \, ds = t$$

$$\phi_2(t) = \int_0^t (1+s^2) \, ds = t + \frac{t^3}{3}$$

$$\phi_3(t) = \int_0^t (1+(s+\frac{s^3}{3})^2 \, ds = t + \frac{t^3}{3} + \frac{2t^5}{15} + \frac{t^7}{63}$$

И така получаваме $\phi_n(t) \to y(t)$.

По същество в задачата се иска да се начертаят графиките на няколко функции, които се извеждат по метода на Пикар.

2.2 MATLAB код

Описание на програмната реализация. Задаваме наименования на осите, след това задаваме интервала, в който трябва да работим. Използваме dsolve за да сметнем диференциалното уравнение след което изчертаваме точното решение на задачата на Коши дадена в условието Приближенията на функцията дадена в условието получаваме, като задаваме началните условия от условието и броя приближения които искаме да направим, след това по дефиницията на метода на Пикар итерираме и получаваме приближенията.

```
1 function Task1 45799
2 xlabel('x')
3 ylabel(',y')
4
5 drawCauchyTask();
6 Picard();
7 end
8 function drawCauchyTask()
9 \times S \times t = 1;
10 xStop = 10;
11 y S t a r t = -10;
12 yStop = 10;
13
14 axis ([xStart, xStop, yStart, yStop]);
15
16 hold on;
17 grid on;
19 y=dsolve('x*Dy=(-2)*y', 'y(2)=1', 'x');
20 x = x S tart : 1 / 1000 : x Stop;
21
22 plot(x, eval(y), 'b');
23 y
24 end
25
26 function Picard
27 \text{ xmin} = 1;
28 \text{ xmax} = 10;
29 x0=2;
30 y 0 = 1;
31
32 N = 15;
33
34 \text{ x=x0} : (\text{xmin-x0}) / 100 : \text{xmin};
35 xx=x0:(xmax-x0)/100:xmax;
36
37 \text{ y}_0 = y0 * ones (1, length(x));
38 yy 0=y0*ones(1, length(xx));
```

```
39
40 z=y 0;
41 zz=yy 0;
42
43 for k=1:N %Iterate
45 v k=v0+cumtrapz(x, f(x, z));
46 yy_k=y0+cumtrapz(xx, f(xx, zz));
48 plot(x,z,'g',xx,zz,'g');
49
50 \text{ z=y } \text{k};
51 zz=yy_k;
52 end
53 function z = f(x,y)
54 z = ((-2) * y) . / x;
55 end
56 legend ('Real solution', '1st iteration', '2nd iteration',
      '3th iteration', '4th iteration', '5th iteration', '
      Location', 'SouthWest');
57 end
```

2.3 Резултати

На фигурата са изобразени с различни цветове точното решение, както и 5 приближения на решението на задачата получени по метода на Пикар. Формула за точното решение се извежда на екрана в командния прозорец. От графиките на фигурата виждаме, че с всяко следващо приближение, разликата между точното решение и съответното приближено решение става все по-малка.

Фигура 1: Точното решение и приближенията му

Фигура 2: Точното решение и 50 приближения