Algorithmen und Wahrscheinlichkeit

Woche 9

Abschätzen von Wahrscheinlichkeiten

Markovs Ungleichung:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t} \qquad \forall t > 0, \ t \in \mathbb{R}$$

$$\forall X \geq 0$$

$$\forall t > 0, t \in \mathbb{R}$$

Chebyshevs Ungleichung:

$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\text{Var}[X]}{t^2} \qquad \forall t > 0, \ t \in \mathbb{R}$$

$$\forall X$$

$$\forall t > 0, t \in \mathbb{R}$$

Ist nun Markov oder Chebyshev besser?

$$\Pr[X \ge t]$$

$$\Pr[X - \mathbb{E}[X] \ge t - \mathbb{E}[X]$$

$$\Pr[X \ge t] \qquad \leq \qquad \Pr[X - \mathbb{E}[X] \ge t - \mathbb{E}[X]] \qquad \leq \qquad \Pr[|X - \mathbb{E}[X]| \ge t - \mathbb{E}[X]] \qquad \leq \qquad \frac{\operatorname{Var}[X]}{(t - \mathbb{E}[X])^2}$$

$$\frac{\operatorname{Var}[X]}{(t - \mathbb{E}[X])^2}$$

d.h.
$$t > \mathbb{E}[X]$$
, also WLOG sei $t = \mathbb{E}[X] + k \cdot \sqrt{\mathrm{Var}[X]}$ für $k > 0$

$$\operatorname{dann} \ \frac{\operatorname{Var}[X]}{(t-\mathbb{E}[X])^2} = \frac{\operatorname{Var}[X]}{k^2\operatorname{Var}[X]} = \frac{1}{k^2} \text{ , wenn also } k^2\mathbb{E}[X] > \mathbb{E}[X] + k\sqrt{\operatorname{Var}[X]} \text{ ist, dann ist Chebyshev besser}$$

Abschätzen von Wahrscheinlichkeiten

Chernoffs Ungleichung:

1.
$$\Pr[X \ge (1 + \delta)\mathbb{E}[X]] \le e^{-\frac{1}{3}\delta^2\mathbb{E}[X]}$$

$$\forall X \sim \text{Bin}(n, p)$$

2.
$$\Pr[X \le (1 - \delta) \mathbb{E}[X]] \le e^{-\frac{1}{2}\delta^2 \mathbb{E}[X]}$$

$$\forall 0 < \delta \le 1$$

Korollar:

1.
$$\Pr[X - \mathbb{E}[X] \ge \delta \mathbb{E}[X]] \le e^{-\frac{1}{3}\delta^2 \mathbb{E}[X]}$$

2.
$$\Pr[X - \mathbb{E}[X] \le -\delta \mathbb{E}[X]] \le e^{-\frac{1}{2}\delta^2 \mathbb{E}[X]}$$

3.
$$\Pr[|X - \mathbb{E}[X]| \ge \delta \mathbb{E}[X]] \le e^{-\frac{1}{3}\delta^2 \mathbb{E}[X]} + e^{-\frac{1}{2}\delta^2 \mathbb{E}[X]} \le 2e^{-\frac{1}{3}\delta^2 \mathbb{E}[X]}$$

Target Shooting

Gegeben: endliche Mengen S, U s.d. $S \subseteq U$,

$$I_S: U \to \{0,1\}: I_S(u) = 1 \iff u \in S$$

Gesucht: |S|/|U|

Algorithmus

1) wähle u_1, \ldots, u_N aus U zufällig unabhängig und gleichverteilt

2) return
$$Y := \frac{1}{N} \sum_{i=1}^{N} I_S(u_i)$$
 \Longrightarrow $\mathbb{E}[Y] = \frac{|S|}{|U|}$

Satz: (geeignetes N finden)

Für $\delta, \epsilon > 0$:

$$N \ge 3 \frac{|U|}{|S|} e^{-2} \ln \left(\frac{2}{\delta}\right) \qquad \Longrightarrow \qquad \Pr\left[\left|Y - \mathbb{E}[Y]\right| \ge e \cdot \mathbb{E}[Y]\right] \le \delta$$

(Kann man mit Chernoffs Ungleichungen i) und ii) zeigen)

Primzahltest

A. GGT

$$\gcd(a, n) > 1$$
 für $1 \le a \le n - 1$
 $\implies n$ nicht prim

- i) "nicht prim" immer richtig
- ii) $\Pr[\text{"prim"} | \text{nicht prim}] = \frac{|Z_n^*|}{n-1}$
- iii) $cost(gcd(m, n)) = \mathcal{O}((\log nm)^3)$

B. Fermat's little theorem

n ist prim $\implies \forall a \in [n-1]: a^{n-1} \equiv 1 \mod n$

- i) "nicht prim" immer richtig
- ii) $\Pr[\text{"prim"} | \text{nicht prim}] = \frac{|PB_n|}{n-1}$
- iii) $PB_n := \{a \in \mathbb{Z}_n^* \mid a^{n-1} \equiv 1 \bmod n\}$
- iv) Carmichael-Zahl n:
 - 1) *n* ist nicht prim

2)
$$PB_n = \mathbb{Z}_n^*$$

v) $\Pr[\text{"prim"} | \text{nicht prim}] < 0.5,$ falls n nicht Carmichael \implies Verbesserung durch Wiederholung

C. Miller-Rabin

Miller-Rabin-PrimeTest(n)

- 1) Wähle $1 \le a \le n-1$ gleichverteilt zufällig
- 2) $d, k \in \mathbb{N}$ s.d. $n 1 = 2^k d$, wobei d ungerade
- 3) if $a^d \mod n \neq 1$ && $\exists i < k : a^{2^i d} \mod n = n-1$ then return "nicht prim"
- 4) else return "prim"
- i) "nicht prim" immer richtig
- ii) $\Pr[\text{"prim"} | \text{nicht prim}] \le \frac{1}{4}$
 - ⇒ Verbesserung durch Wiederholung
- iii) Laufzeit: $\mathcal{O}(\text{poly}(\log n))$

Duplikate finden

Datenmenge: $S = (s_1, \ldots, s_n)$, ggf. so, dass jeder s_i sehr viel Speicherplatz braucht (viel mehr als Integer)

Duplikate: (i, j) wobei $1 \le i < j \le n$, falls $s_i = s_j$

A. Sortieren

- 1) Sortiere $((s_i, i))_{1 \le i \le n}$ nach s_i
- 2) Iteriere und finde Duplikate
- i) Sortieren: $\mathcal{O}(n \log n)$
- ii) Iterieren: $\mathcal{O}(n + | \mathsf{Dupl}(S) |)$

B. Hashing

- 1) Hashe S mit $h: S \rightarrow [m]$ $Pr[h(s) = i] = \frac{1}{m}$
- 2) Sortieren
- 3) Iterieren
- i) Hashen: $\mathcal{O}(n)$
- ii) Sortieren: $\mathcal{O}(n \log n)$
- iii) Iterieren: $\mathcal{O}(n + | \mathsf{Dupl}(S) | + \mathsf{\#Kollisionen})$

Kollisionen: (i, j), wobei $s_i \neq s_j \land h(s_i) = h(s_j)$

$$\mathbb{E}[\# \text{Kollisionen}] \le \binom{n}{2} \frac{1}{m}$$

C. Bloom Filter

- 1) Hashe S mit k Hashfunktionen $h_i: S \to [m]$
- 2) Wenn alle $h_i(s_j)$ Werte vorgekommen sind fügen wir s_i in L hinzu.
- i) Hashen: $\mathcal{O}(kn)$
- ii) Iteration: $\mathcal{O}(n + n \cdot |L|)$

 $\mathbb{E}[\text{\#falsche }L\text{-Einträge}]$

$$\leq n \left(1 - \left(1 - \frac{1}{m} \right)^{k(n-1)} \right)^k$$

Kahoot

Aufgaben