Math 114, Problem Set 4 (due Monday, October 7)

September 29, 2013

- (1) Let $E \subseteq \mathbb{R}^n$ be a measurable set and let $f: E \to \mathbb{R}$ be a nonnegative measurable function. Show that the set $\{x \in E: f(x) \neq 0\}$ has measure zero if and only if $\int_E f = 0$.
- (2) Let $E \subseteq \mathbb{R}^n$ be a measurable set, and let f_1, f_2, \ldots be a sequence of measurable functions on E which converges pointwise to another function $f: E \to \mathbb{R}^n$. Show that there exists a sequence of subsets

$$E_0 \subseteq E_1 \subseteq E_2 \subseteq \cdots \subseteq E$$

such that $\mu(E - \bigcup E_i) = 0$ and the sequence $\{f_i|_{E_j}\}$ converges uniformly to $f|_{E_j}$ for each j.

- (3) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function. Show that for each $\epsilon > 0$, there exists a continuous function $g: \mathbb{R}^n \to \mathbb{R}$ such that the set $\{x \in \mathbb{R}^n : f(x) \neq g(x)\}$ has measure $< \epsilon$.
- (4) Let $E \subseteq \mathbb{R}^m$ and $E' \subseteq \mathbb{R}^n$ be measurable sets. Show that $E \times E'$ is a measurable subset of \mathbb{R}^{m+n} , and that $\mu_{\mathbb{R}^{m+n}}(E \times E') = \mu_{\mathbb{R}^m}(E)\mu_{\mathbb{R}^n}(E')$. Here $\mu_{\mathbb{R}^k}$ denotes Lebesgue measure on \mathbb{R}^k (hint: reduce to the case where $\mu_{\mathbb{R}^m}(E) < \infty$ and study the function $S \mapsto \mu_{\mathbb{R}^{m+n}}(E \times S)$).

(1)	Let $E \subseteq \mathbb{R}^n$ be a measurable set and let $f: E \to \mathbb{R}$ be a nonnegative measurable function.	Show	that
	the set $\{x \in E : f(x) \neq 0\}$ has measure zero if and only if $\int_E f = 0$.		

$$(\Rightarrow)$$
 $f=0$ a.e. on E.

let ∀E'CE. m(E') < ∞

$$g: E' \rightarrow IR$$
 (bounded. measurable) with $0 \le g \le f$.

$$\Rightarrow$$
 9=0 a.e. on $E' \Rightarrow m(E'-S) = 0$.

$$\therefore \int_{E} f = \sup_{g} \left\{ \int_{E'} g \right\}$$

$$= \sup \left\{ \int_{S} g + \int_{E \setminus S} g \right\} = \sup \left\{ o + \int_{E \setminus S} g \right\}$$

$$\leq \sup_{g} \left\{ m(E'-s) \cdot \left(\sup_{E'-s} g \right) \right\} = 0$$

M

$$(\Leftarrow) \int_{\mathbb{R}} f = 0 . \quad (\lambda > 0)$$

by Chebyshev's inequality.
$$m(E_X) \leq \frac{1}{\lambda} \int_{E} f$$

$$T = \Omega_{\lambda} E_{\lambda}$$
 . Choose $\lambda = \frac{1}{n}$ $(n \in \mathbb{N})$

$$\exists m(T) \leq \frac{1}{n} \int_{F} f = 0$$
 for any $n \in \mathbb{N}$.

$$m(\tau) = 0$$

(2) Let $E \subseteq \mathbb{R}^n$ be a measurable set, and let f_1, f_2, \ldots be a sequence of measurable functions on E which converges pointwise to another function $f: E \to \mathbb{R}^n$. Show that there exists a sequence of subsets

$$E_0 \subseteq E_1 \subseteq E_2 \subseteq \cdots \subseteq E$$

such that $\mu(E - \bigcup E_i) = 0$ and the sequence $\{f_i|_{E_j}\}$ converges uniformly to $f|_{E_j}$ for each j.

Egoroff's Theorem Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\epsilon > 0$, there is a closed set F contained in E for which

 $\{f_n\} \rightarrow f$ uniformly on F and $m(E \sim F) < \epsilon$.

Fix 270. Applying Egoroff to (fj) jew restricted to the domain Bm(0) 1 E. = Am CBm(0) 1 E

s.t. $m((Bn(0) \cap E) - Am) \subset \frac{\mathcal{E}}{2^m} \& f_j|_{Am} \longrightarrow f|_{Am} \quad uniformly \quad as j \to \infty$.

=) fi \rightarrow f uniformly when restricted to the domain $E_M = \bigcup_{m=1}^{M} A_m$

=) To CEI C- CE with unif. conv on each Em.

(Claim) $M(E-\stackrel{\circ}{N}_{=1}E_m)=0$

 $E - \bigcup_{M=1}^{\infty} E_M = E \cap \left(\bigcup_{M=1}^{\infty} E_M\right)^C = E \cap \left(\bigcup_{M=1}^{\infty} A_M\right)^C$

= En (Am C)

 $= E \cap \bigcap_{m=1}^{\infty} \left(\left(B_m(0) \right)^C \cup \left(\left(B_m(0) \cap E \right) - A_m \right) \right]$

= lim (Bm(o) (E) - Am)

 $0 \le M(E - \bigcup_{m \ge 1} E_m) \le \lim_{m \to \infty} m((Bn(0) \cap E) - A_m) \to 0$

: M(E-0 Em) = 0

7/1

(3) Let $f:\mathbb{R}^n\to\mathbb{R}$ be a measurable function. Show that for each $\epsilon>0$, there exists a continuous function
$g:\mathbb{R}^n\to\mathbb{R}$ such that the set $\{x\in\mathbb{R}^n:f(x)\neq g(x)\}$ has measure $<\epsilon$.

This is a problem extending the case of Lusin's Theorem for $\mu(E) < \infty$ to the case where $E = IR^n$ Let E > 0.

& partition R" into countably many disjoint unit boxes Ei. Since measure of the closure of Ei: finite

= by Lusin's Theorem,

 \exists closed set $K_i \subseteq \overline{E_i}$. conti fth $g_i : |R^n \rightarrow R|$ s.t. $f = g_i$ on K_i & $\mu(\overline{E_i} - K_i) < \frac{\mathcal{E}}{2^{n+1}}$

Take $F_i \subseteq E_i$ where $\mu(E_i - F_i) < \frac{2}{2^{i+1}}$ define a continuous bump function $\beta_i : E_i \rightarrow \mathbb{R}$. s.t. precisely one on $E_i - F_i$ and goes to 0 on the boundaries of E_i .

⇒ gißi: Ei → IR conti (: product of two conti ftns.)

let $S_i := \{x \in \overline{E_i} : f(x) \neq g_i(x) | f_i(x) \}$

 $M(S_i) < M(\overline{E_i} - K_i) + M(\overline{E_i} - \overline{F_i}) = \frac{\varepsilon}{z_i}$

Since each $g:\beta:$ is zero at the boundaries of the box, $g:|R^n \to R:$ $g(x) = g:(x) \beta:(x)$ for $x \in E:$.

9: continuous function	
$f(x) \neq g(x)$ when $x \in US_i$	
$=) M(\bigcup_{i > 0} S_i) \leq \sum_{i > 0} M(S_i) \langle \sum_{i > 0} \frac{\mathcal{E}}{2^i} = \mathcal{E}$	
g: our desired function.	