I.P.A.D.S

Innovative Precision Agriculture Decision-support System

Group 2: Yue Li, Mingxuan Li, Xingdi Li

Agenda

Problem Definition

Design

Implementation

Demo

Why Agriculture?

- Sustainable pressure
 - Population increase
 - Climate change
 - Economic change
- Precision-Ag motivation
 - Cost of human labor growth
 - Quick response to climate
 - ► Tech is the king in modern Agriculture

Challenge of getting information

Volume

- Historical data
- Missing and inaccurate is common

Speed

- Up to date
- Responsive

Integration

- Various source
- Different aspect for same data

Presentation

- Visual
- Interactive

Our solution

- Real-time, comprehensive data integration
- Advanced analytic algorithm
- Unified access portal
- Interactive and customizable Data Visualization

Design

Goal - U2U

Use Case

Climate in my location?

- Query climate data by location
- Show historical and prediction data

Agriculture Yield in my state?

- Query crop yield by state of station
- Show crop yield and market index

Other location with similar climate?

- List location with similar climate
- Query Anything with these location

Data Flow

Analysis

- NASS Quickstat
- ERS ARMSNASS
- NWS Climate Service
- WeatherMap

- Climate Prediction
- Climate Locality
- Yield Aggregation

- Visual Chart
- Interactive Map

Ingestion (1/2)

- Historical Data
 - Query API
 - ► Batch Reduce
 - Bulk store
- Real-time Data
 - Crawler
 - Streaming process
 - Incremental update

Ingestion (2/2)

Analysis (1/2)

- Aggregation
 - Map reduce
- Locality
 - K-means
 - DBSCAN
- Prediction
 - ARIMA
- Distributed Algorithm: reason

Analysis (2/2)

Presentation (1/2)

- Visual
 - User: everyone, not only data scientist
 - Intuitive
- Interactive
 - Data up to date
 - Present content on demand

Presentation (2/2)

Full stack

Implementation

Data Cleaning

Batch API call / FTP Download

Substitute missing value

• Same date -> same month -> average value

Evict invalid record

• Too many missing value beyond fixing

Persist into Memsql

• Maintain Index & shard key

Real-time Weather Data

Crawler

- •5s / call
- ~2h update per station

Spark Dstream

- Direct Kafka connection
- Map / Reduce

- Single node
- No replication

Memsql

- Spark connector
- Persist RDD directly

Analysis Algorithm

ARIMA

- Distributed version by Cloudera
- Unfortunately it's non-seasonal, we implemented seasonal version
- Final model: ARIMA(2,0,0) * (0,1,1) [365]

DBSCAN

- Open sourced package, but with serious performance issue
- Clustering result align with Kmeans
- Some location marked as "noise", does not fit domain knowledge

Kmeans

- Spark MLLIB Implementation, fast and robust
- Ensure every location to be categorized
- We choose to use Kmeans

Data Storage

Lvl3: Outsourced

- Too large for storage
- JSON received from API call
- API level aggregation

Lvl2: Persisted

- Memsql snapshot
- Transaction log
- Provide same durability as SQLDB
- Better scalability than SQLDB

Lvl1: Cached

- Fully cached in memory
- High data locality
- Design for high throughput

Data Presentation

Back-end: Spring framework

- Full MVC structure, with MySQL JDBC driver (compatibly with Memsql)
- Run on Tomcat, WAR deployment

Front-end: jQuery, Google Map API, Google Chart

- Single page application, fully utilized AJAX, asynchronized update from multiple data source
- Dynamic and device-independent UI build on Bootstrap CSS

DEMO

Thank you!