(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-109147

(43)公開日 平成7年(1995)4月25日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
0000	1/00				

C 0 3 C 4/08

B 6 0 J 1/00 Z 7447-3D

C 0 3 C 3/095

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号	特願平 5-258126	(71)出願人	000004008 日本板硝子株式会社
(22)出顧日	平成5年(1993)10月15日	(72)発明者	大阪府大阪市中央区道修町3丁目5番11号
		(72)発明者	
		(72)発明者	年清 義一 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内
		(74)代理人	弁理士 大野 精市

(54) 【発明の名称】 紫外線吸収灰色ガラス

(57)【要約】

【目的】 熱膨張率の小さい、紫外線吸収灰色ホウケイ酸ガラスを提供する。

【構成】 重量%で表示して、73.29%のSiO2、17.82%のB2O3、2.39%のA12O3、0.31%のBaO、0.92%のLi2O、1.51%のNa2O、2.75%のK2O、0.50%のCeO2、0.50%のEr2O3、0.006%のCoOから成り、C光源を用いて測定した主波長が、595.1nm、刺激純度が1.87%、太陽紫外線透過率が16.3%である紫外線吸収灰色ガラス。

【効果】 熱膨張率が小さく、化学的耐久性に優れた紫外線吸収灰色ガラスであるので、防火用窓ガラスに用いる板ガラスとして好適である。

【特許請求の範囲】

【請求項1】 重量%で表示して、71~83%のSi O_2 , $10\sim20\%$ O_3 , $1\sim4\%$ O_4 1 $_{2}$ O₃ 、 $0\sim0.6\%$ のMgO、 $0\sim0.6\%$ のCa $O, O \sim 2\% OBaO, O \sim 1\% OZnO, O \sim 2\% O$ $Li_2 O = 0.0 \sim 6\%$ $ONa_2 O = 0.0 \sim 5\%$ $OK_2 O = 0.00$ 0. $1\sim1$. $0\%\mathcal{O}CeO_2$, $0\sim0$. $4\%\mathcal{O}Fe_2$ O $3 \ \ 0\sim0.2\% \text{ OT i O}_2 \ \ 0\sim1.0\% \text{ OE r}_2 \ \text{O}_3$ $3, 0.001\sim0.02\%$ 0000,0 $\sim0.01\%$ のNiOから成ることを特徴とする紫外線吸収灰色ガラ 10 ス。

【請求項2】 5mm厚みに換算したガラスの、C光源 による主波長が570~615nm又は補色主波長が4 80~560nmであることを特徴とする請求項1に記 載された紫外線吸収灰色ガラス。

【請求項3】 5mm厚みに換算したガラスの、C光源 による刺激純度が3%以下であることを特徴とする請求 項1に記載された紫外線吸収灰色ガラス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は建築用、車両用ガラスに 関する。詳しくは紫外線吸収に優れた灰色の建築用、車 両用ガラスに関する。

[0002]

【従来の技術】従来から用いられてきた建築用、車両用 ガラスは、ほとんどが所謂ソーダ石灰シリカガラスであ り、本発明に係わるようなホウケイ酸ガラスは用いられ ていない。しかし近時、従来の網入りガラスに替わる建 築用防火ガラスとして、熱膨張率の小さい透明なホウケ イ酸ガラスが提案されている。例えば、ドイツ国のショ 30 ット社の考案になるpyran、本発明者らが提案した 低膨張ガラス(特開平1-93437号公報)等があ る。

【0003】建築物、あるいは車両の設計デザイン面か らは着色ガラスが望まれるが、本発明者らは特開平4-28034号公報、特開平4-285026号公報にお いて、熱膨張率の小さな着色ホウケイ酸ガラスを提案し た。

【0004】他に着色ホウケイ酸ガラスは、米国特許第 4116704号に開示されているが、そこに記載され 40 ているガラスは、透明な明るい灰褐色のガラスであり、 本発明のガラスとは異なる色調を有するものである。さ らに米国特許第4379851号に開示されている着色 ホウケイ酸ガラスも、透明な明るい灰褐色のガラスであ り、本発明のガラスとは異なる色調を有するものであ る。

[0005]

【発明が解決しようとする課題】さらに最近は、家具調 度品や展示品あるいは車両の内装品等を日焼けによる変 色、退色から守る、着色した紫外線吸収ガラスが望まれ 50 成分はガラスの熱膨張係数を大きくするので、その上限

2

ている。しかし、前述の着色ガラス(特開平4-280 34号公報、特開平4-285026号公報)は紫外線 吸収成分としてはFe2O3を含有するのみであり、紫 外線吸収能力は大きくはなかった。鉄分を増やして無理 に紫外線吸収を大きくすると、可視光線透過率が低下 し、刺激純度が上昇するという不都合があった。

【0006】本発明は、上記従来の問題点を解決し、従 来存在しなかった熱膨張率の小さい紫外線吸収灰色ホウ ケイ酸ガラスを提供することを目的とする。

【0007】

【課題を解決するための手段】請求項1の紫外線吸収灰 色ガラスは、重量%で表示して、71~83%のSiO $_{2}$ \ $10\sim20\%$ 0B₂ O₃ \ $1\sim4\%$ 0A l₂ O₃ \ $0 \sim 0.6\% \text{ oMgO}, 0 \sim 0.6\% \text{ oCaO}, 0 \sim 2$ %のBaO、0~1%のZnO、0~2%のLi₂O、 $0\sim6\%$ oN a₂ o, $0\sim5\%$ oK₂ o, 0. $1\sim1$. $0\%OCeO_2$, $0\sim0$. $4\%OFe_2O_3$, $0\sim0$. $2\%OTiO_2$, $0\sim1\%OEr_2O_3$, $0.001\sim$ O. O 2%のC o O、O~O. O 1%のN i Oから成る 20 ことを特徴とする。

【0008】ただし、ここでFe2 O3 はガラスに含有 される全ての酸化鉄をFe2 O3 に換算して示す。ま た、CeO2 はガラスに含有される全ての酸化セリウム をСеО2 に換算して示してある。

【0009】該紫外線吸収灰色ガラスは好ましくは、5 mm厚みに換算したガラスのC光源による主波長が、5 70~615nm又は補色主波長が480~560nm である。

【 0 0 1 0 】該紫外線吸収灰色ガラスは好ましくは、5 mm厚みに換算したガラスのC光源による刺激純度が3 %以下である。

[0011]

【作用】以下に本発明の紫外線吸収灰色ガラス組成限定 理由について説明する。

【0012】SiO2 はB2 O3、A12 O3 と共にガ ラスの骨格を形成する。SiO2が71%未満では熱膨 張係数が大きく成りすぎて、耐熱性が低下する。83% を越えるとガラスの溶解性が低下する。

【 0 0 1 3 】 B₂ O₃ はガラスの熱膨張係数を大きくす ることなく、ガラスの溶解性を向上させる。B2 O3 が 10%未満ではガラスの溶解性が低下する。B2 O3 が 20%を越えるとガラスの化学的耐久性が低下する。

【0014】A12 O3 はガラスの化学的耐久性を向上 させる。A 1 2 O 3 が 1 %未満ではガラスの化学的耐久 性が低下する。4%を越えるとガラスの溶解性が悪くな る。

【0015】MgO、CaO、BaO、ZnOは必須成 分ではないが、溶解性の向上、化学的耐久性の向上のた めに、必要に応じて用いることができる。但しこれらの

tMgO、CaOtto. 6%、BaOtt2%、ZnOtt 1%とする。又これら二価金属酸化物の合計は2%を越 えないことが望ましい。

【0016】Li2 Oはガラスの高温での粘度を下げて 溶解性を向上させる。Li2 〇が2%を越えても効果の 増大はなく、原料費が増加するので2%を上限とする。

【0017】Na2 Oもガラスの溶解性を向上させる が、6%を越えるとガラスの熱膨張係数が大きくなり好 ましくない。

【0018】K2 Oもガラスの溶解性を向上させるが、 同時にNa2 O、Li2 Oとの組み合わせによりガラス の化学的耐久性を向上させる。しかし5%を越えるとガ ラスの粘度が増大すると共に、ガラスの熱膨張係数を増 大させるので好ましくない。

【0019】СеО2 はガラスに存在する全ての酸化セ リウムを、CeOzに換算した数値として示している。 CeO2 は紫外線を吸収する成分であるが、O. 1%以 下では紫外線吸収の効果が低く、1.0%を越えるとガ ラスの着色が強くなりすぎて好ましくない。

鉄をFezO釒に換算した数値を示している。FezO 3 は紫外線を吸収する成分であるが、同時にガラスを着 色する。Fe2 O3 がO. 4%を越えると着色が強くな りすぎるので、0.4%を上限とする。

【0021】TiO2は紫外線吸収成分であるが、Ce O2 及び、或いはFe2 O3 と共存するとガラスを強く 着色するので0.2%を上限とする。

【0022】Er2 O3 はCeO2、Fe2 O3 による 着色に赤味を与えるのに用いる。Er2 O3 が1%を越 4

【0023】CoOはガラスを青くすると共に、CeO 2 、Fe2 O3 による着色の刺激純度を下げる作用があ るが、0.001%未満では効果が少なく、0.02% を越えるとガラスの可視光線透過率が低下して好ましく ない。

えるとガラスが赤くなりすぎるので好ましくない。

【0024】NiOはガラスにオレンジ色を与える効果 があるが、0.01%を越えるとオレンジ色が強くなり すぎて好ましくない。

10 【0025】以上の成分の他に、本発明の主旨を損なわ ない範囲で、清澄剤(例えばAs2O3、Sb2 O3、 SO₃、C1、F等)を含んでもよい。

[0026]

【実施例】以下に、本発明を表を参照して詳細に説明す

【0027】表1、表2、表3の組成となるようにガラ ス原料を調合し、容量が約250m1の90Pt-10 Rhの坩堝にバッチを投入して、電気炉中で1550℃ -20時間の溶融を行った。溶融したガラスを、予熱し 【0020】Fe゜O。はガラスに存在する全ての酸化 20 たステンレス鉄板上に流し出した後、700℃に保持さ れた電気炉に30分間保持して徐冷した。徐冷されたガ ラスを切断、研磨して光学特性測定用の試料とした。表 1に示す光学特性は、5mm厚みの試料をC光源を用い て測定した結果を示す。尚、太陽紫外線透過率は、エア マスが2の時の太陽放射エネルギーの分光透過率を用い て求めた。

[0028]

【表1】

表 1

		実	施	例	
(重量%)	1	2	3	4	5
S i O 2	73.29	71.98	73.48	74.35	74.05
В 2 О 3	17.82	18.85	17.62	17.70	17.82
A 1 2 O 3	2.39	3.40	2.39	2.40	2.39
МвО	0	0.31	0	0	0
CaO	0	0	0	0.31	0
ВаО	0.31	0	0	0	0
ZnO	0	0	0.31	0	0
L i 2 O	0.92	0.92	0.92	0.84	0.84
Na ₂ O	1.51	0.51	1.11	1.39	1.39
K ₂ O	2.75	3.52	3.15	2.50	2.50
C e O 2	0.50	0.50	0.50	0.50	0.50
Fe ₂ O ₃	0	0	0	0	0
T i O 2	0	0	0	0	0
E r 2 O 3	0.50	0	0.50	0	0.50
CoO	0.006	0.007	0.009	0.006	0.01
NiO	0	0,005	0.010	0	0
Y (%)	80.4	80.5	75.7	82.4	73.7
λ _d (nm)	595.1	572.0	588.2	570.9	
λ _c (nm)					553.0
P _e (%)	1.87	2.75	2.86	1.98	2.5
T _G (%)	84.7	84.1	81.9	85.3	82.2
Tuv (%)	16.3	17.1	15.7	17.5	16.2

[0029]

* *【表2】

	·				
		実	施	例	
(重量%)	6	7	8	9	1 0
S i O ₂	73.10	79.32	73.60	73.39	78.56
В 2 О 3	17.82	13.00	17.82	17.82	13.00
A 1 2 O 3	2.39	2.22	2.39	2.39	2.22
МвО	0	0	0	0	0
СаО	0	0	0	0	0
ВаО	0	0	0	0	0
ZnO	0	0	0	0	0
Li ₂ O	0.92	0	0.92	0.92	0
Na ₂ O	1.51	4.18	1.51	1.51	4.18
K ₂ O	2.75	0.02	2.75	2.75	0.02
C e O 2	0.50	0.48	0.80	0.80	0.80
Fe ₂ O ₃	0	0.16	0.20	0.20	0.20
T i O 2	0	0.16	0	0	0
Er ₂ O ₃	1.0	0.45	0	0.20	1.00
СоО	0.005	0.011	0.014	0.014	0.015
NiO	0	0	0	0.005	0
Y (%)	80.1	69.7	70.2	70.0	58.2
λ _d (nm)	608.3	577.5	575.1	581.2	
λ _c (nm)					493.5
P _e (%)	2.51	1.38	2.70	2.94	1.84
T _c (%)	84.6	79.5	80.1	80.1	74.6
Tuv (%)	15.4	18.8	14.5	14.1	12.1
		i			1

表 2

【0030】 * *【表3】

表 3

	実 施 例		例	例 比較	
(重量%)	1 1	1 2	13	1	2
SiO2	79.94	79.67	79.08	73.95	79.58
В 2 Оз	13.00	13.00	13.00	17.82	13.00
A 1 2 O 3	2.22	2.22	2.22	2.39	2.22
МвО	0	0	0	0	C
СаО	0	0	0	0	С
ВаО	0	0	0	0	0
ZnO	0	0	0	0	0
Li ₂ O	0	0	0	0.92	0
Na ₂ O	4.18	4.18	4.18	1.51	4.18
K ₂ O	0.02	0.02	0.02	2.75	0.02
C e O 2	0.63	0.80	0.80	0	0.80
F e 2 O 3	0	0.10	0.10	0.25	0.20
TiO2	0	0	0.10	0	0
E r 2 O 3	0	0	0.50	0.38	0
C o O	0.009	0.013	0.020	0.035	0
NiO	0	0	0	0	0
Y (%)	70.0	62.7	52.7	70.7	79.3
λ _d (nm)	573.4	570.2	581.3	591.4	
λ _c (nm)					576.6
P _a (%)	2.78	2.78	1.41	2.59	12.98
T _G (%)	79.4	75.9	71.2	76.8	83.5
Tuv (%)	15.3	12.1	7.3	28.5	13.0
	i	ì	l	I	

【0031】表1、表2、表3において、Yは可視光線 透過率を、λαは主波長を、λαは補色主波長を、Pe は刺激純度を、TG は太陽放射透過率を、TUVは太陽紫 外線透過率をそれぞれ表す。

【0032】本発明による実施例のガラスは、СеО2 の紫外線吸収能力が高いために、いずれも紫外線透過率 が20%以下である。これに対して比較例1は、紫外線*50 【発明の効果】本発明による紫外線吸収灰色ガラスは、

*吸収成分がFe2〇3であるため、紫外線透過率が28 %と大きく好ましくない。また、比較例2はCeO2が 含有されているため、紫外線透過率は13%と小さい が、СоОが含まれていないために、刺激純度が12. 98%と大きく、灰色ガラスとしては好ましくない。 【0033】

1 1

熱膨張係数が小さく、化学的耐久性に優れ、紫外線吸収 スとして好適である。 が大きいので、特に高層ビルの窓ガラスに用いる板ガラ