

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Edexcel A Level Further Maths:Core Pure

9.1 Proof by Induction

Contents

- * 9.1.1 Intro to Proof by Induction
- * 9.1.2 Common Cases of Proof by Induction

Head to www.savemyexams.com for more awesome resources

9.1.1 Intro to Proof by Induction

Your notes

Intro to Proof by Induction

What is proof by induction?

- Proof by induction is a way of proving a result is true for a set of integers by showing that if it is true for one integer then it is true for the next integer
- It can be thought of as dominoes:
 - All dominoes will fall down if:
 - The first domino falls down
 - Each domino falling down causes the next domino to fall down

What are the steps for proof by induction?

- STEP 1: The basic step
 - Show the result is true for the base case
 - This is **normally n = 1 or 0** but it could be any integer
 - In the dominoes analogy this is showing that the first domino falls down
- STEP 2: The assumption step
 - Assume the result is true for n = k for some integer k
 - In the dominoes analogy this is assuming that a random domino falls down
 - There is nothing to do for this step apart from writing down the assumption
- STEP 3: The inductive step
 - Using the assumption show the result is true for n = k + 1
 - The assumption from STEP 2 will be needed at some point
 - In the dominoes analogy this is showing that the random domino that we assumed falls down will cause the next one to fall down
- STEP 4: The conclusion step
 - State the result is true
 - Explain in words why the result is true
 - It must include:
 - If true for n = k then it is true for n = k+1
 - Since true for n = 1 the statement is true for all $n \in \mathbb{Z}$, $n \ge 1$ by mathematical induction
 - The sentence will be the same for each proof just change the base case from n = 1 if necessary

What type of statements might I be asked to prove by induction?

- There are 4 main applications that you could be asked
 - Formulae for sums of series
 - Formulae for recursive sequences
 - Expression for the power of a matrix
 - Showing an expression is always divisible by a specific value
- Induction is always used to prove de Moivre's theorem

$Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

- It is unlikely that you will be asked unfamiliar applications in your exam but induction is used in other areas of maths
 - Proving formulae for nth derivative of functions
 - Proving formulae involving factorials

Proving de Moivre's Theorem by Induction

How is de Moivre's Theorem proved?

- When written in Euler's form the proof of de Moivre's theorem is easy to see:
 - Using the index law of brackets: $(re^{i\theta})^n = r^n e^{in\theta}$
- However Euler's form cannot be used to prove de Moivre's Theorem when it is in modulus-argument (polar) form
- **Proof by induction** can be used to prove de Moivre's Theorem for positive integers:
 - To prove de Moivre's Theorem for all positive integers, n
 - $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$
- STEP 1: Prove it is true for n=1
 - $[r(\cos\theta + i\sin\theta)]^1 = r^1(\cos\theta + i\sin\theta) = r(\cos\theta + i\sin\theta)$
 - So de Moivre's Theorem is true for n = 1
- STEP 2: Assume it is true for n = k
 - $[r(\cos\theta + i\sin\theta)]^k = r^k(\cos k\theta + i\sin k\theta)$
- STEP 3: Show it is true for n = k + 1
 - $[r(\cos\theta + i\sin\theta)]^{k+1} = ([r(\cos\theta + i\sin\theta)]^k)([r(\cos\theta + i\sin\theta)]^1)$
 - According to the assumption this is equal to
 - $(r^k(\cos k\theta + i\sin k\theta)) (r(\cos \theta + i\sin \theta))$
 - Using laws of indices and multiplying out the brackets:
 - $= r^{k+1} [\cos k\theta \cos \theta + i\cos k\theta \sin \theta + i\sin k\theta \cos \theta + i^2 \sin k\theta \sin \theta]$
 - Letting $i^2 = -1$ and collecting the real and imaginary parts gives:
 - $= r^{k+1} [\cos k\theta \cos \theta \sin k\theta \sin \theta + i(\cos k\theta \sin \theta + \sin k\theta \cos \theta)]$
 - Recognising that the real part is equivalent to $cos(k\theta + \theta)$ and the imaginary part is equivalent to $sin(k\theta + \theta)$ gives
 - $r^{k+1}[\cos(k+1)\theta + i\sin(k+1)\theta]$
 - So de Moivre's Theorem is true for n = k + 1
- STEP 4: Write a conclusion to complete the proof
 - The statement is true for n = 1, and if it is true for n = k it is also true for n = k + 1
 - Therefore, by the principle of mathematical induction, the result is true for all positive integers, n
- De Moivre's Theorem works for all real values of n
 - However you could only be asked to prove it is true for positive integers

Worked example

Show, using proof by mathematical induction, that for a complex number $z = r(\cos\theta + i\sin\theta)$ and for all positive integers, n,

$$z^n = [r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$

Step 1: Prove it is true for
$$n=1$$
 $Z' = [r(\cos\theta + i\sin\theta)]^{T} = r'(\cos 1\theta + i\sin 1\theta) = r(\cos\theta + i\sin\theta)$

Step 2: Assume it is true for $n=k$
 $Z^{K} = [r(\cos\theta + i\sin\theta)]^{K} = r^{K}(\cos k\theta + i\sin k\theta)$

Step 3: Show it is true for $n=k+1$
 $Z^{K+1} = [r(\cos\theta + i\sin\theta)]^{K+1} + \text{Addition Low of indices: } d^{K}d^{T} = d^{K+1}$
 $= ([r(\cos\theta + i\sin\theta)]^{K})([r(\cos\theta + i\sin\theta)]^{T}) + (\cos\theta + i\sin\theta)]^{T}$
 $= [r^{K}(\cos k\theta + i\sin k\theta)]^{T}(\cos\theta + i\sin\theta)$
 $= r^{K+1}(\cos k\theta + i\sin k\theta)[r(\cos\theta + i\sin\theta)]$
 $= r^{K+1}[\cos k\theta \cos\theta + \cos k\theta (i\sin\theta) + \cos\theta (i\sin k\theta) + i^{2}\sin k\theta \sin\theta]$
 $= r^{K+1}[\cos k\theta \cos\theta + i(\cos k\theta \sin\theta + \cos\theta \sin k\theta) - \sin k\theta \sin\theta]$
 $= r^{K+1}[\cos k\theta \cos\theta - \sin k\theta \sin\theta + i(\cos k\theta \sin\theta + \sin k\theta \cos\theta)]$
 $= r^{K+1}[\cos k\theta \cos\theta - \sin k\theta \sin\theta + i(\cos k\theta \sin\theta + \sin k\theta \cos\theta)]$
 $= r^{K+1}[\cos k\theta \cos\theta - \sin k\theta \sin\theta + i(\cos k\theta \sin\theta + \sin k\theta \cos\theta)]$
 $= r^{K+1}[\cos(k\theta + \theta) + i\sin(k\theta + \theta)]$
 $= r^{K+1}[\cos(k\theta + \theta) + i\sin(k\theta + \theta)]$

De Moivre's theorem is true for n=1, and if it is true

for n=k it is also true for n=k+1.

Therefore it is true for all n & Z+

Your notes

9.1.2 Common Cases of Proof by Induction

Your notes

Proof by Induction - Sequences

What are the steps for proof by induction with sequences?

- STEP 1: The basic step
 - Show the result is true for the base case
 - If the recursive relation formula for the next term involves the previous two terms then you need to show the position-to-term formula works the first two given terms which will be given as part of the definition of the sequence
 - This is **normally n** = **1 or 0** but it could be any integer
 - For example: To prove $u_n = 3^n 2$ is the position-to-term formula for the recursive sequence $u_{n+1} = 3u_n + 4$, $u_1 = 1$:
 - $u_1 = 3^1 2 = 1$
- STEP 2: The assumption step
 - Assume the result is true for n = k for some integer k
 - For example: Assume $u_k = 3^k 2$ is true
 - There is nothing to do for this step apart from writing down the assumption
- STEP 3: The inductive step
 - Using the assumption show the result is true for n = k + 1
 - It can be helpful to write down what you want to show
 - The assumption from STEP 2 will be needed at some point
 - For example: Want to show $u_{k+1} = 3^{k+1} 2$
 - The trick to this step is to use the recursive relation formula:
 - $u_{k+1} = 3u_k + 4$
- STEP 4: The conclusion step
 - State the result is true
 - **Explain in words** why the result is true
 - It must include:
 - If true for n = k then it is true for n = k + 1
 - Since true for n = 1 the statement is true for all $n \in \mathbb{Z}$, $n \ge 1$ by mathematical induction
 - The sentence will be the same for each proof just change the base case from n = 1 if necessary

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Worked example

A sequence is defined by $u_{n+1} = 5u_n - 4$, $u_1 = 2$ for $n \ge 1$.

Prove by mathematical induction that $u_n = 5^{n-1} + 1$ for $n \ge 1$.

Your notes

Want to prove
$$u_n = 5^{n-1} + 1$$

Show true for
$$n=1$$
 $u_1=5^{1-1}+1=2$ \checkmark ... true for $n=1$

Assume true for
$$n=k$$
 Assume $u_k = 5^{k-1} + 1$

Inductive step

Show true for
$$n=k+1$$
 Want to show $u_{k+1} = 5^{(k+1)-1} + 1 = 5^k + 1$

$$u_{k+1} = 5u_k - 4 \qquad \text{using definition of sequence}$$

$$= 5(5^{k-1} + 1) - 4 \qquad \text{using assumption}$$

$$= 5^k + 5 - 4$$

$$= 5^k + 1$$

Conclusion step Explain

If true for n=k then true for n=k+1. Since it is true for n=1, the statement is true for all ne Z+ $u_{k} = 5^{k-1} + 1$

Proof by Induction - Series

What are the steps for proof by induction with series?

- Show the result is true for the base case
- This is **normally n = 1 or 0** but it could be any integer
 - For example: To prove $\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$ is true for all integers $n \ge 1$ you would

first need to show it is true for n = 1:

$$\sum_{r=1}^{1} r^2 = \frac{1}{6} (1)((1) + 1)(2(1) + 1)$$

- STEP 2: The assumption step
 - Assume the result is true for n = k for some integer k

For example: Assume
$$\sum_{r=1}^{k} r^2 = \frac{1}{6} k(k+1)(2k+1) \text{ is true}$$

- There is nothing to do for this step apart from writing down the assumption
- STEP 3: The inductive step
 - Using the assumption show the result is true for n = k + 1
 - It can be helpful to simplify LHS & RHS separately and show they are identical
 - The assumption from STEP 2 will be needed at some point

For example:
$$LHS = \sum_{r=1}^{k+1} r^2$$
 and $RHS = \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$

• The trick to this step is to use

$$\sum_{r=1}^{k+1} f(r) = f(k+1) + \sum_{r=1}^{k} f(r)$$

- STEP 4: The conclusion step
 - State the result is true
 - Explain in words why the result is true
 - It must include:
 - If true for n = k then it is true for n = k + 1
 - Since true for n = 1 the statement is true for all $n \in \mathbb{Z}$, $n \ge 1$ by mathematical induction
 - The sentence will be the same for each proof just change the base case from n = 1 if necessary

Worked example

Want to prove
$$\sum_{r=1}^{n} r(r-3) = \frac{1}{3} n(n-4)(n+1)$$

Basic step
Show true for
$$n=1$$

LHS = $\sum_{r=1}^{1} r(r-3) = (1)(1-3) = -2$

RHS =
$$\frac{1}{3}$$
 (1)(1-4)(1+1) = -2 ... LHS = RHS so true for n=1

Assumption step

Assume true for n=k

Assume
$$\sum_{r=1}^{k} r(r-3) = \frac{1}{3} k(k-4)(k+1)$$

Inductive step Show true for n= k+1

$$RHS = \frac{1}{3}(k+1)((k+1)-4)((k+1)+1) = \frac{1}{3}(k+1)(k-3)(k+2)$$

LHS =
$$\sum_{r=1}^{k+1} \Gamma(r-3) = (k+1)((k+1)-3) + \sum_{r=1}^{k} \Gamma(r-3)$$

= $(k+1)(k-2) + \frac{1}{3}k(k-4)(k+1)$ Using assumption
= $\frac{1}{3}(k+1)[3(k-2)+k(k-4)]$ Factorise $\frac{1}{3}(k+1)$
= $\frac{1}{3}(k+1)[k^2-k-6]$
= $\frac{1}{3}(k+1)(k-3)(k+2)$

Conclusion step Explain

If true for n=k then true for n=k+1.
Since it is true for n=1, the statement is true for all
$$n \in \mathbb{Z}^+$$

$$\sum_{r=1}^{n} r(r-3) = \frac{1}{3} n(n-4)(n+1)$$

Proof by Induction - Divisibility

What are the steps for proof by induction with series?

- Show the result is true for the base case
- This is **normally n** = **1 or 0** but it could be any integer
 - For example: To prove $f(n) = 4^n 1$ is divisible by 3 for all integers $n \ge 1$ you would first need to show it is true for n = 1:
 - f(1) = 4 1 = 3 = 3(1)

STEP 2: The assumption step

- Assume the result is true for n = k for some integer k
 - For example: Assume f(k) = 4 1 is divisible by 3
- There is nothing to do for this step apart from writing down the assumption
- The trick for this step is to write the expression as a multiple of the number
 - For example: $4^k 1 = 3p$ for some integer p

STEP 3: The inductive step

- Using the assumption show the result is true for n = k + 1
- The assumption from STEP 2 will be needed at some point
 - For example: Show that $f(k+1) = 4^{k+1} 1$ is divisible by 3
- The trick to this step is to use:

$$a^{k+1} = a \times a^k$$

- For example: $f(k+1) = 4(4^k) 1 = 4(1+3p) 1 = 3(p+1)$
- Another trick is to show that f(k+1) f(k) is divisible by the number
- Be careful with numbers like 6 as for these you can instead show it is divisible by both 3 and 2

STEP 4: The conclusion step

- State the result is true
- Explain in words why the result is true
- It must include:
 - If true for n = k then it is true for n = k + 1
 - Since true for n = 1 the statement is true for all $n \in \mathbb{Z}$, $n \ge 1$ by mathematical induction
- The sentence will be the same for each proof just change the base case from n = 1 if necessary

Worked example

Prove by induction that $f(n) = 6^n + 13^{n+1}$ is divisible by 7 for all integers $n \ge 0$.

Want to prove
$$f(n) = 6^n + 13^{n+1}$$
 is divisible by 7 for $n \ge 0$

Show true for
$$n=0$$
 $f(0)=6^{\circ}+13^{\circ}=14=7(2)$... true for $n=0$

Assume
$$f(k) = 6^k + 13^{k+1} = 7p$$
 for some $p \in \mathbb{Z}$

Inductive step
Show true for
$$n=k+1$$
 $f(k+1) = 6^{k+1} + 13^{k+2}$

$$= 6(6^k) + 13(13^{k+1}) \qquad \text{Rearrange assumption}$$

$$= 6(7p - 13^{k+1}) + 13(13^{k+1}) \qquad 6^k + 13^{k+1} = 7p$$

$$= 7(6p) - 6(13^{k+1}) + 13(13^{k+1})$$

$$= 7(6p) + 7(13^{k+1})$$

$$= 7(6p + 13^{k+1})$$

Conclusion step Explain

If true for
$$n=k$$
 then true for $n=k+1$.
Since it is true for $n=0$, the statement is true for all $n \in \mathbb{Z}_0^+$
 $6^n + 13^{n+1}$ is divisible by 7

i. f(k+1) is divisible by 7

Proof by Induction - Matrices

What are the steps for proof by induction with matrices?

- Show the result is true for the base case
- This is **normally n = 1** but it could be any integer

For example: To prove
$$\mathbf{M}^n = \begin{pmatrix} 2^n & 0 \\ 1 - 2^n & 1 \end{pmatrix}$$
 where $\mathbf{M} = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$ for $n \ge 1$:

- STEP 2: The assumption step
 - Assume the result is true for n = k for some integer k

For example: Assume
$$\mathbf{M}^k = \begin{pmatrix} 2^k & 0 \\ 1 - 2^k & 1 \end{pmatrix}$$
 is true

- There is nothing to do for this step apart from writing down the assumption
- STEP 3: The inductive step
 - Using the assumption show the result is true for n = k + 1
 - It can be helpful to write down what you want to show
 - The assumption from STEP 2 will be needed at some point

For example: Want to show
$$\mathbf{M}^k = \begin{pmatrix} 2^{k+1} & 0 \\ 1 - 2^{k+1} & 1 \end{pmatrix}$$

- The trick to this step is to use write:
 - $M^{k+1} = MM^k$
 - The entries in the matrix can get messy so it can be clearer to write $\mathbf{M}^{k+1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and

then find expressions for a, b, c, d on separate lines

STEP 4: The conclusion step

- State the result is true
- **Explain in words** why the result is true
- It must include:
 - If true for n = k then it is true for n = k+1
 - Since true for n = 1 the statement is true for all $n \in \mathbb{Z}$, $n \ge 1$ by mathematical induction
- The sentence will be the same for each proof just change the base case from n = 1 if necessary

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Worked example

Prove, using mathematical induction, that
$$\mathbf{M}^n = \begin{pmatrix} 2^n & 2(2^n - 1) \\ 0 & 1 \end{pmatrix}$$
.

Your notes

Want to prove
$$M^n = \begin{pmatrix} 2^n & 2(2^n-1) \\ 0 & 1 \end{pmatrix}$$

Basic step

Show true for $n=1$
 $M^1 = \begin{pmatrix} 2^1 & 2(2^1-1) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$

Assumption step

Assume true for $n=k$

Assume $M^k = \begin{pmatrix} 2^k & 2(2^k-1) \\ 0 & 1 \end{pmatrix}$

Inductive step

Show true for n=k+1

Mk+1 = MMk

$$M^{k+1} = MM^{k} \qquad \text{using assumption}$$

$$= \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2^{k} & 2(2^{k}-1) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$$

$$a = 2(\lambda^{k}) + 2(0) = \lambda^{k+1}$$

$$b = 2(2(\lambda^{k}-1)) + 2(1) = 2(2^{k+1}) - 4 + 2 = 2(2^{k+1}-1)$$

$$c = 0(\lambda^{k}) + 1(0) = 0$$

$$d = 0(2(\lambda^{k}-1)) + 1(1) = 1$$

$$\therefore M^{k+1} = \begin{pmatrix} 2^{k+1} & 2(2^{k+1}-1) \\ 0 & 1 \end{pmatrix} \quad \text{true for } n=k+1$$

Conclusion step Explain

If true for n=k then true for n=k+1. Since it is true for n=1, the statement is true for all $n \in \mathbb{Z}^+$ $M^n = \begin{pmatrix} 2^n & 2(2^n-1) \\ 0 & 1 \end{pmatrix}$