Assignment 2

Due: 8:30 am, 29 September 2022 (Thursday)

Course: Quantum Mechanics - 1

Tata Institute of Fundamental Research Hyderabad, India

Instructor: ramakrishnan@tifrh.res.in

Problem 1

Determine the probability densities in the position representation, $|\psi_n(x)|^2 = |\langle x|n\rangle|^2$, and the joint uncertainty $\Delta x \Delta p$ for a onedimensional system in a state given by ket $|n\rangle$ having the following probability densities in the momentum representation, $|\phi_n(p)|^2 =$ $|\langle p|n\rangle|^2$. As the first step, normalize the probability densities appropriately.

a)
$$|\langle p|n\rangle|^2 = \exp\left(-Ap^2\right); \quad -\infty \le p \le \infty$$
 b) $|\langle p|n\rangle|^2 = \begin{cases} B; & |p| \le A \\ 0; & |p| > A \end{cases}$

b)
$$|\langle p|n\rangle|^2 = \begin{cases} B; & |p| \le A \\ 0; & |p| > A \end{cases}$$

Problem 2

Prove the following relations:

1.
$$\langle x|\hat{p}^n|a\rangle = (-i\hbar)^n \frac{\partial^n}{\partial x^n} \langle x|a\rangle$$

2.
$$\langle b|\hat{p}^n|a\rangle = \int_{-\infty}^{+\infty} dx \, \langle b|x\rangle \, (-i\hbar)^n \, \frac{\partial^n}{\partial x^n} \langle x|a\rangle$$

3.
$$\langle p|\hat{x}^n|a\rangle = (+i\hbar)^n \frac{\partial^n}{\partial p^n} \langle p|a\rangle$$

4.
$$\langle b|\hat{x}^n|a\rangle = \int_{-\infty}^{+\infty} dp \, \langle b|p\rangle \, (+i\hbar)^n \, \frac{\partial^n}{\partial p^n} \langle p|a\rangle$$

where *n* is a positive integer, $|x\rangle$ and $|p\rangle$ are position and momentum eigenkets, respectively, while $|a\rangle$ and $|b\rangle$ are kets of two arbitrary states.

Problem 3

For the particle-in-a-box in the *n*-th eigenstate, derive $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, and $\langle \hat{p}^2 \rangle$ in both position and momentum representations.

Problem 4

Suppose a system in the initial ket given as the linear combination of momentum eigenkets $|\alpha,0\rangle = |p_0 - \delta p\rangle + 2|p_0\rangle + |p_0 + \delta p\rangle$ evolves in time. What can you say about the normalization of this ket? Derive an expression for the time-evolved wavefunction in the position representation $\psi(x,t) = \langle x | \alpha, t \rangle$. Consult a book on Waves and Oscillations, and identify carrier wave, envelope, group velocity and phase velocity in $\psi(x, t)$.

Problem 5

An operator is defined in the position representation as

$$\hat{A} = A \frac{d^2}{dx^2} \delta(x - x') + Bx^2 \delta(x - x').$$

Express the same operator in the momentum representation.