Statistical Functions

SQL statistical functions are essential tools for extracting meaningful insights from databases. These functions, such as AVG(), SUM(), COUNT(), MIN(), MAX(), STDDEV(), and VAR(), enable users to perform statistical calculations on numeric data. Whether determining averages, sums, counts, or measures of variability, these functions empower efficient data analysis within the SQL environment.

What is Statistics?

So, **Statistics** is a branch of mathematics that deals with data collection, analysis, interpretation, presentation, and organization. It involves the use of mathematical techniques to extract meaningful information from data. Statistics is widely used in various fields such as business, economics, social science, medicine, and engineering.

Where do We Use Stats?

let's define Statistical Function, A Statistical function is a mathematical function that helps us to process and analyze data to provide meaningful information about the dataset. For example mean, sum, min, max, standard deviation, etc.

Statistical Functions in SQL

Here are Some Common Statistical Functions in SQL:

Function	Output	
AVG()	Calculates the average value of a numeric column.	
SUM()	Calculates the sum of values in a numeric column.	
COUNT()	Counts the number of rows in a result set or the number of non-null values in a column.	
MIN()	Returns the minimum value in a column.	
MAX()	Returns the maximum value in a column.	
VAR() / VARIANCE()	Calculates the population variance of a numeric column.	
CORR()	Calculates the correlation coefficient between two numeric columns.	
COVAR_POP()	Calculates the population covariance between two numeric columns.	
PERCENTILE_CONT()	Calculates a specified percentile value for a numeric column.	

Statistical Functions With Exmaple

We have four tables in our database: 'studentDetails,' 'employees,' 'sales_data,' and 'financial_data.' (The pictures are displayed below.)

	studentID	studentName	subjectName	marks	Phone
•	1	abcd	Maths	95	111111111
	2	defg	Maths	97	111111111
	3	ghi	Maths	46	333333333
	4	jkl	Maths	36	333333333
	5	mno	Maths	48	777777777
	NULL	NULL	NULL	NULL	NULL

Table: StudentDetails

employees Table

	employee_id	employee_name	salary
•	1	John Doe	50000.00
	2	Jane Smith	60000.00
	3	Bob Johnson	75000.00
	4	Alice Brown	80000.00
	5	Charlie Wilson	55000.00
	NULL	NULL	NULL

Table:Employees

sales_data

	transaction_id	sales	profit
•	101	100000.00	25000.00
	102	150000.00	30000.00
	103	80000.00	20000.00
	104	120000.00	35000.00
	105	90000.00	18000.00
	NULL	NULL	NULL

Table:Sales_data

financial_data

Table: financial data

1. AVG() Function

Calculate the average or arithmetic mean for a group of numbers or a numeric column.

Syntax

```
SELECT AVG(column_name) FROM table_name;
```

Example Query

SELECT AVG(marks) **AS** average marks **FROM** studentDetails;

Output

AVG MARKS

2. SUM() Function

The total of all numeric values in a group i.e. Calculates the total sum of values in a numeric column.

Syntax

SELECT SUM(column_name) FROM table_name;

Example Query

SELECT SUM(marks) **AS** total marks **FROM** studentDetails;

Output

Sum of marks

3. Count() Function

The number of cell locations in a range that contain a numeric character i.e Counts the number of rows in a result set or the number of non-null values in a column.

Syntax

```
SELECT COUNT(*) FROM table_name;
SELECT COUNT(column_name) FROM table_name;
```

Example Query

SELECT COUNT(studentID) **AS** total_students **FROM** studentDetails;

Output

Count of Student

Example Query

SELECT COUNT(*) FROM studentdetails;

Output

Return the count of rows that meet a specified condition.

count all rows

4. Max() Function

Returns the highest numeric value in a group of numbers.

SELECT MAX(column name) **FROM** table name;

Example Query

SELECT MAX(marks) **AS** highest_marks **FROM** studentDetails;

Output

Maximum marks

5. MIN() Function

Returns the lowest numeric value in a group of numbers.

Syntax

SELECT MIN(column_name) **FROM** table_name;

Example Query

SELECT MIN(marks) **AS** lowest_marks **FROM** studentDetails;

Output

Minimum marks

6. VAR() / VARIANCE() Function

Calculates the population variance of a numeric column.

Syntax

SELECT VAR(column_name) FROM table_name;

Example Query

SELECT VARIANCE(marks) **AS** variance_marks **FROM** studentDetails;

Output

Variance marks

7. STDDEV() / STDDEV POP() Function

The standard deviation for a group of numbers based on a sample.

Syntax

SELECT STDDEV(column_name) **FROM** table_name;

Example Query

SELECT STDDEV(marks) **AS** stddev marks **FROM** studentDetails;

Output

Standrad deviation for marks

8. PERCENTILE_CONT() Function

Calculates a specified percentile value for a numeric column.

Syntax

```
SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY column_name) FROM table_name;
```

Example Query

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary) AS median_salary FROM employees;

Output

Median salary of employee's

9. CORR() Function

Calculates the correlation coefficient between two numeric columns.

Syntax

SELECT CORR(column1, column2) **FROM** table name;

Example Query

SELECT CORR(sales, profit) **AS** correlation_coefficient **FROM** sales_data;

Output

correlation coefficient between 'sales' and 'profit'

10 .COVAR POP() Function

Calculates the population covariance between two numeric columns.

Syntax

SELECT COVAR_POP(column1, column2) **FROM** table_name;

Example Query

Output

Population Covariance between revenue and expenses

Conclusion

In SQL, **statistical functions** help to analyze and summarise data in the database. These functions assist in extracting meaningful information from the given datasets. For determining the number of occurrences, calculating totals, finding averages or calculating the variance in the dataset statistical functions plays a vital role. Overall, the integration of Statistical Functions elevates SQL's capabilities, making it an invaluable asset for businesses and analysts seeking actionable intelligence from their relational databases.