Métodos Numéricos - 2024

Dado un conjunto de pares ordenados de valores (x_i, y_i) para i = 0, ..., n, buscamos una función f(x) tal que interpole a los datos:

$$f(x_i) = y_i \quad \forall i = 0, \ldots, n$$

En particular, nos restringimos a polinomios. Buscamos P(x) polinomio de grado $\leq n$ tal que $P(x_i) = y_i \quad \forall i = 0, ..., n$

- ¿existe?
- ¿es único?

Definimos
$$L_{nk} = \prod_{i=0, i \neq k}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

Definimos
$$L_{nk} = \prod_{i=0, i \neq k}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

- $L_{nk}(x)$ es polinomio de grado n
- $L_{nk}(x_i) = 0 \quad \forall i = 0, \dots, n \ i \neq k$
- $L_{nk}(x_k) = 1$

Definimos
$$L_{nk} = \prod_{i=0, i \neq k}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

- $L_{nk}(x)$ es polinomio de grado n
- $L_{nk}(x_i) = 0 \quad \forall i = 0, \dots, n \ i \neq k$
- $L_{nk}(x_k) = 1$

Definimos
$$P(x) = \sum_{k=0}^{n} y_k L_{nk}(x)$$
 polinomio de grado $\leq n$

$$P(x_i) = y_i \quad \forall i = 0, \ldots, n$$

P(x) es polinomio interpolante

Ejemplo

×	у
1	3
4	2
-1	6
-2	-5
3	1

$$L_{40} = \frac{(x-4)(x-(-1))(x-(-2))(x-3)}{(1-4)(1-(-1))(1-(-2))(1-3)}$$

$$L_{41} = \frac{(x-1)(x-(-1))(x-(-2))(x-3)}{(4-1)(4-(-1))(4-(-2))(4-3)}$$

$$L_{42} = \frac{(x-1)(x-4)(x-(-2))(x-3)}{(-1-1)(-1-4)(-1-(-2))(-1-3)}$$

$$L_{43} = \frac{(x-1)(x-4)(x-(-1))(x-3)}{(-2-1)(-2-4)(-2-(-1))(-2-3)}$$

$$L_{44} = \frac{(x-1)(x-4)(x-(-1))(x-(-2))}{(3-1)(3-4)(3-(-1))(3-(-2))}$$

$$P(x) = 3L_{40} + 2L_{41} + 6L_{42} + (-5)L_{43} + 3L_{44}$$

Error

Sea $f(x) \in C^{n+1}[a, b]$, $(x_i, f(x_i))$, $x_i \in [a, b]$ para i = 0, ..., n. Consideremos P(x) el polinomio interpolante de grado $\leq n$ y $\bar{x} \in [a, b]$. Existe $\xi(\bar{x})$ tal que

$$f(\bar{x}) = P(\bar{x}) + \frac{f^{n+1}(\xi(\bar{x}))}{(n+1)!}(\bar{x} - x_0)(\bar{x} - x_1) \dots (\bar{x} - x_n)$$

Error

Sea $f(x) \in C^{n+1}[a, b]$, $(x_i, f(x_i))$, $x_i \in [a, b]$ para i = 0, ..., n. Consideremos P(x) el polinomio interpolante de grado $\leq n$ y $\bar{x} \in [a, b]$. Existe $\xi(\bar{x})$ tal que

$$f(\bar{x}) = P(\bar{x}) + \frac{f^{n+1}(\xi(\bar{x}))}{(n+1)!}(\bar{x} - x_0)(\bar{x} - x_1) \dots (\bar{x} - x_n)$$

Unicidad

Dados (x_i, y_i) para i = 0, ..., n, el polinomio interpolante de grado $\leq n$ es único.

Diferencias divididas

Dados $(x_i, f(x_i))$ para $i = 0, \ldots, n$

- Orden 1 : $f[x_i, x_{i+1}] = \frac{f[x_{i+1}] f[x_i]}{x_{i+1} x_i}$
- Orden k: $f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] f[x_i, \dots x_{i+k-1}]}{x_{i+k} x_i}$

Diferencias divididas

Dados $(x_i, f(x_i))$ para $i = 0, \ldots, n$

- Orden 1 : $f[x_i, x_{i+1}] = \frac{f[x_{i+1}] f[x_i]}{x_{i+1} x_i}$
- Orden k: $f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] f[x_i, \dots x_{i+k-1}]}{x_{i+k} x_i}$

Polinomio interpolante

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \vdots + f[x_0, \dots, x_k](x - x_0) \dots (x - x_{k-1}) + \vdots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

$$x_{0} \quad f(x_{0})$$

$$x_{1} \quad f(x_{1}) \quad f[x_{0}, x_{1}]$$

$$x_{2} \quad f(x_{2}) \quad f[x_{1}, x_{2}] \quad f[x_{1}, x_{2}, x_{3}]$$

$$x_{3} \quad f(x_{3}) \quad f[x_{2}, x_{3}] \quad f[x_{2}, x_{3}, x_{4}]$$

$$x_{4} \quad f(x_{4})$$

$$F(x) = f(x_{0}) + f[x_{0}, x_{1}] (x - x_{0}) + f[x_{0}, x_{1}, x_{2}] (x - x_{0}) (x - x_{1})$$

$$+ f[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}] (x - x_{0}) (x - x_{1}) (x - x_{2})$$

$$+ f[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}] (x - x_{0}) (x - x_{1}) (x - x_{2})$$

$$P(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$
$$+ f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

 $+f[x_0,x_1,x_2,x_3,x_4](x-x_0)(x-x_1)(x-x_2)(x-x_3)$

$$x_{0} \qquad f(x_{0})$$

$$x_{1} \qquad f(x_{1}) \qquad f[x_{0}, x_{1}]$$

$$x_{2} \qquad f(x_{2}) \qquad f[x_{1}, x_{2}] \qquad f[x_{1}, x_{2}, x_{3}]$$

$$x_{3} \qquad f(x_{3}) \qquad f[x_{2}, x_{3}] \qquad f[x_{2}, x_{3}, x_{4}]$$

$$x_{4} \qquad f(x_{4})$$

$$f(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}]$$

Ejemplo

1 3
$$\frac{2-3}{4-1} = \frac{-1}{3}$$
4 2
$$\frac{\frac{-4}{5} + \frac{1}{3}}{-1-1} = \frac{7}{30}$$

$$\frac{6-2}{-1-4} = \frac{-4}{5}$$

$$-1 6 \frac{\frac{11+\frac{4}{5}}{5}}{-2-4} = \frac{-59}{30}$$

$$\frac{\frac{-5-6}{-2+1}}{-2-4} = \frac{11}{1}$$

$$-2 -5$$

$$\frac{\frac{1+5}{3+2}}{3+2} = \frac{6}{5}$$

$$\frac{\frac{1+5}{3+2}}{3+1} = \frac{6}{5}$$

$$P(x) = 3 + \frac{-1}{3}(x-1) + \frac{7}{30}(x-1)(x-4) + \frac{66}{90}(x-1)(x-4)(x+1) + \frac{-45}{60}(x-1)(x-4)(x+1)(x+2)$$

Notación

 $P_{m_1m_2...m_k}$ polinomio interpolador en los puntos $x_{m_1}, x_{m_2}, \dots x_{m_k}$

Notación

 $P_{m_1m_2...m_k}$ polinomio interpolador en los puntos $x_{m_1}, x_{m_2}, \dots x_{m_k}$

Propiedad

Dados $x_0, x_2, \dots x_k$, el polinomio interpolante $P_{01\dots k}$ puede expresarse como:

$$P_{01...k} = \frac{(x - x_j)P_{01...,j-1,j+1,...k} - (x - x_i)P_{01...,i-1,i+1,...k}}{(x_i - x_j)}$$

Notación

 Q_{ij} polinomio interpolador de grado $\leq j$ en los puntos

$$X_{i-j}, X_{i-j+1}, \ldots X_i$$

$$Q_{ij} = P_{i-j...i}$$

$$Q_{ij} = \frac{(x - x_{i-j})Q_{ij-1} - (x - x_i)Q_{i-1j-1}}{(x_i - x_{i-j})}$$

Interpolación lineal segmentaria

Sean (x_i, y_i) con $x_i < x_{i+1}$ para i = 0, ..., n. Por cada par de puntos (x_i, y_i) y (x_{i+1}, y_{i+1}) para i = 0, ..., n-1, realizamos una interpolación lineal.

$$L_i(x) = a_i + b_i(x - x_i)$$

- 2 incógnitas para cada $i = 0, \dots, n-1$
- 2 ecuaciones para cada i = 0, ..., n-1 $L_i(x_i) = a_i + b_i(x_i - x_i) = y_i$ $L_i(x_{i+1}) = a_i + b_i(x_i - x_{i+1}) = y_{i+1}$

2n incógnitas, 2n ecuaciones. Cada $L_i(x)$ queda unívocamente determinado.

Interpolación cuadrática segmentaria

Sean (x_i, y_i) con $x_i < x_{i+1}$ para i = 0, ..., n. Por cada par de puntos (x_i, y_i) y (x_{i+1}, y_{i+1}) para i = 0, ..., n-1, realizamos una interpolación cuadrática.

$$Q_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

- 3 incógnitas por cada $i = 0, \ldots, n-1$
- 2 ecuaciones por cada i = 0, ..., n-1 $Q_i(x_i) = a_i + b_i(x_i - x_i) + c_i(x_i - x_i)^2 = y_i$ $Q_i(x_{i+1}) = a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = y_{i+1}$
- Podemos pedir más... $Q'_i(x_{i+1}) = Q'_{i+1}(x_{i+1})$, para i=0,...,n-2.

Tenemos 3n incógnitas, 2n + n - 1 ecuaciones. Falta una condición...

Interpolación cúbica segmentaria

Sean (x_i, y_i) con $x_i < x_{i+1}$ para $i = 0, \ldots, n$. Por cada par de puntos (x_i, y_i) y (x_{i+1}, y_{i+1}) para $i = 0, \ldots, n-1$, realizamos una interpolación cúbica.

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

- 4 incógnitas por cada $i = 0, \dots, n-1$
- interpolante, 2n condiciones $S_i(x_i) = y_i S_i(x_{i+1}) = y_{i+1}$
- derivada primera, n-1 condiciones $S_i'(x_{i+1}) = S_{i+1}'(x_{i+1})$
- ullet derivada segunda, n-1 condiciones $S_i''(x_{i+1}) = S_{i+1}''(x_{i+1})$

Tenemos 4n incógnitas, 2n+n-1+n-1 ecuaciones. Faltan dos condiciones

Alternativa 1:
$$S_0''(x_0) = S_{n-1}''(x_n) = 0$$

Alternativa 2: $S_0'(x_0) = f(x_0) S_{n-1}'(x_n) = f(x_n)$

Interpolación cúbica segmentaria

Siempre existe y es única!

Interpolación: bibliografía

Recomendamos consultar la numerosa bibliografía existente sobre el tema. Algunas sugerencias:

- Análisis numérico, Richard L. Burden, J. Douglas Faires, International Thomson Editores, 2002.
- Numerical Methods, Germund Dahlquist and Ake Bjorck, Dover, 2003.
- Analysis of Numerical Methods, Eugene Isaacson and Herbert Keller, Dover Publications, 1994.
- Numerical Analysis, Timohty Sauer, Pearson, 3rd Edition, 2017.
- Análisis numérico, W. Smith, Prentice Hall, 1988.
- An Introduction to Numerical Analysis, Endre Süli, David F. Mayers, Cambridge University Press, 2003.