

Lecture 2 — Binary numbers and representations

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Chapter 1 (second half)

Addition

- Octal number system
 - $(73)_8$ + $(157)_8$
 - $(57)_8$ + $(23)_8$
- Hexadecimal number system
 - $(AA)_{16} + (BB)_{16}$
 - $(BAD)_{16} + (DAD)_{16}$
- Binary number system
 - $(1101)_2$ + $(111)_2$
 - $(10101)_2$ + $(100)_2$

Subtraction

- Octal number system
 - (172)₈ (167)₈
 - (32)₈ (21)₈
- Hexadecimal number system
 - (BB)₁₆ (AA)₁₆
 - (DAD)₁₆ (BAD)₁₆
- Binary number system
 - (1101)₂ (111)₂
 - (10101)₂ (100)₂

Multiplication

Binary number system

- Examples:
 - $(111)_2*(110)_2$
 - $(1011)_2$ * $(1010)_2$

The "decimal" point

- The powers of radix decrease after the decimal point
- Binary to decimal:

•
$$(1.011)_2 = 1*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3}$$

= $1+0.25+0.125$
= 1.375

- $(0.1101)_2$
- Decimal to binary:

•
$$(0.75)_{10} = 0.75*2 = 1.50$$
 1
 $0.5*2 = 1.00$ 1
 $=(11)_2$

• (0.625)₁₀

Complements of numbers

- Complement operations are run on a single number in any given base
- Complements are used in digital computers to simplify the subtraction operation and for logical manipulation
- Simplifying operations leads to simpler, less expensive circuits to implement the operations
- There are two types of complements for each base-r system:
- 1. The radix complement [r's complement] called the 10's complement in decimal, 2's complement in binary and so on
- 2. The diminished radix complement [(r-1)'s complement] called the 9's complement in decimal, 1's complement in binary and so on

Diminished radix complement

- Given a number N in base r having n digits, the (r-1)'s complement of N, i.e., its diminished radix complement, is defined as $(r^n-1)-N$
- For decimal numbers, the 9's complement of N is $(10^n 1) N$
- In this case, $10^n 1$ is a number represented by n 9s
- For example, if n = 4, we have $10^4 = 10,000$ and $10^4 1 = 9999$
- It follows that the 9's complement of a decimal number is obtained by subtracting each digit from 9
- Examples:
 - 1242
 - 9981

Diminished radix complement

- For binary numbers, the 1's complement of N is $(2^n-1) N$.
- Again, $(2^n 1)$ is a binary number represented by n 1s
- For example, if n = 4, we have $2^4 = (10000)_2$ and $2^4 1 = (1111)_2$. Thus, the 1's complement of a binary number is obtained by subtracting each digit from 1
- However, when subtracting binary digits from 1, we can have either 1 0 = 1 or 1 1 = 0, which causes the bit to change from 0 to 1 or from 1 to 0, respectively
- Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and 0's to 1's.
- Examples:
 - 11100101
 - 10000