Multiple Regression

Apply and extend the simple regression concepts to multiple regression. Evaluation of multivariate model.

Tomáš Oleš

Department of Economic Policy Faculty of Economics and Finance

February 1, 2025

Agenda

- Understand the reasoning behind multiple regression.
- Apply and extend simple regression concepts to multiple regression.
- Learn to evaluate the quality of a multiple regression model.
- Understand and interpret multiple linear regression analysis.
- Develop a multiple regression model and estimate it using STATA.

Suppose you're making a dish and someone asks, "What makes it taste good?

Suppose you're making a dish and someone asks, "What makes it taste good?

You might say "Salt!"—but salt alone isn't enough. You need spices, oil, and other ingredients to get the full flavor.

Can adding too many ingredients (predictors) sometimes make the dish (model) worse?

From Simple to Multiple Regression

Extending the Regression Model

• In **simple regression**, we used one independent variable to predict *Y*:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$$

• In **multiple regression**, we expand this to include multiple predictors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

 This allows us to better model complex relationships by considering multiple explanatory variables at once.

Key Question: Why might a single variable be insufficient to explain *Y*?

Mathematical Formulation

Expected Value of *Y*

• In expectation, we assume the systematic part of the model explains Y:

$$E[Y_i] = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_k X_{ki}$$

• The coefficients $\beta_1, \beta_2, \dots, \beta_k$ represent the effect of each predictor on Y, holding other variables constant.

Special Case:

- If $X_1 = X_2 = \cdots = X_k = 0$, then $E[Y_i] = \beta_0$ (the intercept).
- This is the predicted value of Y when all independent variables are zero.

Role of the Error Term

Why Do We Need an Error Term?

• The model does not explain all variation in Y, so we introduce an error term ε_i :

$$Y_i = E[Y_i] + \varepsilon_i$$

• Substituting for $E[Y_i]$:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

- The error term accounts for:
 - Omitted variables
 - Measurement errors
 - · Randomness in the data

The error term should be randomly distributed and uncorrelated with the explanatory variables for valid inference.

The Least-Squares Principle in Multiple Regression

Estimation in Multiple Regression

The Least-Squares Principle

- The Least Squares Method minimizes the sum of squared residuals to find the best-fitting regression plane.
- In a model with two independent variables:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i}$$

• The regression coefficients $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ are estimated by minimizing:

$$\min \sum \hat{arepsilon}_i^2, \quad ext{where } \hat{arepsilon}_i = Y_i - \hat{Y}_i$$

Key Insight:

- In simple regression, the least-squares method finds the best-fitting line.
- In multiple regression, it finds the best-fitting regression plane (for two predictors) or hyperplane (for more than two predictors).

Interpreting Regression Coefficients

How to Interpret β_k in Multiple Regression?

- Each coefficient β_k represents the effect of the corresponding variable X_k on Y, while keeping all other variables constant.
- Example Model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

- Interpretation:
 - β_1 : Change in Y for a one-unit increase in X_1 , holding X_2 and X_3 constant.
 - β_2 : Change in Y for a one-unit increase in X_2 , holding X_1 and X_3 constant.
 - β_3 : Change in Y for a one-unit increase in X_3 , holding X_1 and X_2 constant.

Why is it important to interpret coefficients in the context of holding other variables constant?

Goodness of Fit and the F-Test

Assessing Model Fit in Multiple Regression

- Residual Standard Deviation $(\hat{\sigma}_{\varepsilon})$
 - Measures how much the observed Y_i values deviate from predicted \hat{Y}_i .
 - Lower values indicate a better model fit.
- Coefficient of Determination (R²)

$$R^2 = 1 - \frac{\sum \hat{\varepsilon}_i^2}{\sum (Y_i - \bar{Y})^2}$$

- Measures the proportion of total variation in Y explained by the regression model.
- Higher values indicate a better fit, but adding more variables can artificially inflate R^2 .

The F-Test in Multiple Regression

Testing Overall Model Significance

- The F-test checks whether at least one independent variable significantly explains variation in *Y*.
- Null Hypothesis (H_0): $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ (None of the independent variables explain Y)
- Alternative Hypothesis (H_1): At least one $\beta_k \neq 0$ (At least one predictor explains Y)

F-statistic formula:

$$F = \frac{R^2/(K-1)}{(1-R^2)/(n-K)}$$

where:

- K-1 = degrees of freedom for the model
- n K = degrees of freedom for the residuals

Decision Rule:

• If the p-value from the F-test is less than 0.05, reject H_0 .

Adjusted R^2 : A More Reliable Measure of Fit

Why Adjust R^2 ?

- Issue with R^2 : Adding more independent variables **always** increases R^2 , even if the new variables are irrelevant.
- This can create an illusion of a better model when the added variables do not truly improve explanatory power.
- **Solution:** Adjusted R^2 penalizes unnecessary variables.

Formula for Adjusted R^2 :

$$R_{\mathrm{adj}}^2 = R^2 - \left(\frac{K-1}{n-K}\right)(1-R^2)$$

where:

- K = number of predictors (independent variables)
- n = number of observations

Key Properties:

Partial Slope Coefficients in Multiple Regression

Understanding Statistical Control

- In experimental research, we ensure comparability by keeping conditions the same (e.g., random assignment).
- In non-experimental settings, multiple regression helps achieve statistical control.
- This means estimating the effect of an independent variable while holding other variables constant.

Mathematical Representation:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i}$$

- $\hat{\beta}_1$ is the **partial slope coefficient** for X_1 —it represents the change in \hat{Y} for a one-unit increase in X_1 , controlling for X_2 .
- $\hat{\beta}_2$ is the partial effect of X_2 on Y, controlling for X_1 .

Example: Calculating Predicted Values

$$\hat{Y}_i = -90.3 + 16.8X_1 + 2.23X_2$$

- If X_1 increases from 14 to 15, while holding X_2 constant, the predicted \hat{Y}_i increases by 16.8 (which is $\hat{\beta}_1$).
- This confirms that the effect of X_1 remains the same at different values of X_2 .

Key Insight:

- Multiple regression removes confounding effects, making estimates less biased than simple regression.
- Same significance testing procedures apply as in simple regression, but with adjusted degrees of freedom.

Why is it important to control for other variables when estimating the effect of X_1 on Y?

Prediction in Multiple Regression

Extending Prediction from Simple to Multiple Regression

- In simple regression, we predict mean-Y for a single independent variable X_1 .
- In multiple regression, we predict mean-Y based on multiple independent variables X_1, X_2, \ldots, X_k .

Example: Predicting Mean-*Y*

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i}$$

Given the estimated regression equation:

$$\hat{Y}_i = 2,674,274+151,855X_1+100,000X_2$$

If $X_1 = 3$ and $X_2 = 5$, we compute:

$$\hat{Y} = 2,674,274 + (151,855 \times 3) + (100,000 \times 5)$$

= 3,629,839

Key Takeaways:

- We can predict \hat{Y} for any combination of X_1, X_2, \dots, X_k within the observed data range.
- The accuracy of predictions depends on how well the regression model fits the data.
- As in simple regression, we can construct confidence intervals for these predictions.

Why Standardize Regression Coefficients?

- In multiple regression, independent variables often have different measurement units.
- Directly comparing unstandardized coefficients can be misleading.
- Standardized coefficients (Beta Coefficients) allow direct comparisons by expressing effects in standard deviation units.

Standardization is useful when:

- Variables are measured on different scales (e.g., age in years vs. income in thousands).
- We want to compare the relative importance of predictors in explaining Y.

Why can't we directly compare raw regression coefficients when variables have different units?

Computing Standardized Coefficients

Standardizing Variables:

$$Z_{X_i} = \frac{X_i - X}{\hat{\sigma}_X}, \quad Z_Y = \frac{Y - Y}{\hat{\sigma}_Y}$$

- This converts raw values into z-scores (standard deviations from the mean).

Formula for Standardized Coefficients (Beta Coefficients):

$$\hat{b}_{k} = \hat{eta}_{k} imes \left(rac{\hat{\sigma}_{X_{k}}}{\hat{\sigma}_{Y}}
ight)$$

where:

- $\hat{\beta}_k = \text{unstandardized regression coefficient}$
- $\hat{\sigma}_{X_k}$, $\hat{\sigma}_Y=$ standard deviations of predictor and dependent variable

Key Interpretation: - \hat{b}_k represents the number of standard deviations Y changes for a one-standard-deviation increase in X_k .

Interpreting Standardized Coefficients

How Do We Interpret \hat{b}_k ?

- Standardized coefficients range between -1 and 1.
- Larger absolute values indicate stronger relationships.
- Interpretation: $\hat{b}_k = 0.5 \rightarrow A$ one standard deviation increase in X_k leads to a 0.5 standard deviation increase in Y.

Effect Size Guidelines:

- $\hat{b}_k < 0.09 \rightarrow \mathsf{Small}$ effect
- $0.1 \le \hat{b}_k \le 0.2 \to \mathsf{Moderate}$ effect
- $\hat{b}_k \geq 0.2
 ightarrow \mathsf{Large}$ effect

Key Question: How does standardization help us determine which predictor has the greatest impact on Y?

Excercise: Presents for a Partner

Making use of 'datasets/present.dta' data estimate the following model:

$$E[Present_Value_i] = \beta_0 + \beta_1 Attractiveness_i + \beta_2 Kindness_i + \beta_3 Age_i$$

How would you interpret the β_0 coefficient? What about the significance? Is this making any sense?

And what about β_1 , β_2 , and β_3 ? Are they statistically significant?

What is the explained variation in present value give the attractiveness and kindness of the partner?

	regress	Present_Value	Attractiveness	Kindness	Age	
--	---------	---------------	----------------	----------	-----	--

Source		SS		df	MS	Number	er of obs	=	20 14.39
Model Residual	2	98034.608 58623.592		3 16	232678.203 16163.9745	Prob R-sq	,	= =	0.0001 0.7297 0.6790
Total		956658.2		19	50350.4316	Root	-	=	127.14
Present_Value		Coef.		l. Eri		P> t	[95\%	Conf.	Interval]
Attractiveness Kindness Age _cons		49.48174 33.93441 5.595464 -66.95579	19. 14. 2.	. 41294 . 94049 . 58597 . 62477	2.55 2.27 2.16	0.021 0.037 0.046 0.440	8.328 2.26 .1134 -246.3	198 516	90.63532 65.60683 11.07748 112.4407

. regress Present_Value Attractiveness Kindness Age, beta *to estimate standardized coefficient add option 'beta'

Source		SS	df	MS	Number of obs	=	20
					F(3, 16)	=	14.39
Model	6	398034.608	3	232678.203	Prob > F	=	0.0001
Residual	2	258623.592	16	16163.9745	R-squared	=	0.7297
					Adj R-squared	=	0.6790
Total		956658.2	19	50350.4316	Root MSE	=	127.14
Present_Value				 r. t	P> t		Beta
Attractiveness	i	49.48174	19.4129	4 2.55	0.021		.3949602
Kindness	İ	33.93441	14.94049	9 2.27	0.037		.3534765
Age	1	5.595464	2.5859	7 2.16	0.046		.3236054
_cons	Ī	-66.95579	84.6247	7 -0.79	0.440		

How much variation is explained by our independent variables?

. pcorr Present_Value Attractiveness Kindness Age
(obs=20)

Partial and semipartial correlations of Present_Value with

Variable	I 	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
Attractiv~s		0.5374	0.3313	0.2888	0.1098	0.0215
Kindness		0.4938	0.2952	0.2438	0.0872	0.0373
Age		0.4758	0.2813	0.2264	0.0791	0.0460

Why these squared semi-partial correlations do not sum up to the R² value?

Prediction of the mean-Y values as specific X-values

```
. margins, at(Attractiveness = 7 Kindness = 7 Age = 30)
Adjusted predictions
                                        Number of obs
                                                                20
Model VCE : OLS
Expression : Linear prediction, predict()
  : Attractive~s =
аt
            Kindness =
                                   30
            Age
                     Delta-method
               Margin Std. Err. t P>|t| [95% Conf. Interval]
              684.8211 74.73415 9.16 0.000 526.3918
     cons
                                                           843.2504
```

Prediction of the mean-Y values as specific X_i -values

```
. margins. at(Attractiveness=(1(1)7))
                                                 Number of obs
Predictive margins
Model VCE
            : 01.S
            : Linear prediction, predict()
Expression
1. at
             : Attractive s
2. at
             : Attractive~s
            : Attractive~s
3. at
4. at
            · Attractive~e
5. at
            : Attractive~s
6._at
             : Attractive s
7. at
             : Attractive~s
                          Delta-method
                   Margin Std. Err.
                                                P>|t|
                                                           [95% Conf. Interval]
         _at |
                                                           177.1059
                                                                       419.1372
                 298.1216
                            57.08541
                                                 0.000
                 347.6033
                            41.39577
                                                 0.000
                                                           259.8482
                                                                       435.3584
                                                                       461,4618
                  397.085
                            30.36774
                                         13.08
                                                 0.000
                                                           332.7083
                 446.5668
                                         15.02
                                                           383.5192
                                                                       509.6144
                            29.74077
                                                 0.000
                                                           411.2377
                 496.0485
                            40.00689
                                         12.40
                                                 0.000
                                                                       580.8593
                 545.5303
                            55.41041
                                          9.85
                                                 0.000
                                                           428.0654
                                                                        662 9951
                  595.012
                             72.7585
                                                 0.000
                                                           440.7709
                                                                       749.2531
```

esttab to Export Your Results

```
reg Present_Value Attractiveness Kindness Age
estimates store my_regression
estadd beta
esttab my_regression, title (Regression Model) nonumber ///
    mlabel(Results) ///
    cells(b(star fmt(2)) ci(par) beta(par)) ///
    stats(N p r2 r2_a rmse, ///
    labels( Number of observations ///
        Model significance R - square ///
        Adjusted R- square Residual standard deviation)) ///
    varwidth(30) legend
```

Table: Regression Model

	Results			
	$eta/ci95/eta^{standardized}$			
Attractiveness	49.48*			
	[8.33,90.64]			
	(0.39)			
Kindness	33.93*			
	[2.26,65.61]			
	(0.35)			
Age	5.60*			
	[0.11, 11.08]			
	(0.32)			
Constant	-66.96			
	[-246.35,112.44]			
Number of observations	20.00			
Model significance	0.00			
R-square	0.73			
Adjusted R-square	0.68			
Residual standard deviation	127.14			
* - < 0.05 ** - < 0.01 *** - < 0.001				

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

References I

Laffers, L. (2021). Draft poznámok k predmetu Moderná Aplikovaná regresia 1. UMB Banská Bystrica.

Mehmetoglu, M. and Jakobsen, T. G. (2022). Applied Statistics using Stata: a Guide for the Social Sciences. Sage.