Endogenous Growth

chumpteter

Competition and Innovation

Business Dynamism

ptimal R&D

Evaluating Endogenous Growth Models

Chad Jones and Dietrich Vollrath

Introduction to Economic Growth

How they are the same

Romer versus Schumpteter

novation

Business Dynamisn

The Romer and Schumpeter models share a lot of features:

- ► The long-run growth rate is $g_A = g_L \lambda/(1-\phi)$
- The allocation s_R does not influence the long-run growth rate
- Capital accumulation operates just like the Solow model
- The motive for innovation is capturing profits via monopolies

How they are different

The Romer and Schumpeter models have distinctions:

- ➤ The notion of technology is different: new products (Romer) versus better products (Schumpeter)
- Firms persist in Romer, they are replaced in Schumpeterian model
- lacktriangle Additional factor in s_R for Schumpeter, the probability of replacement
- If $g_A < r g_L$, then s_R is higher in Schumpeter: discount rate on future is "big"
- If $g_A > r g_L$, then s_R is higher in Romer: discount rate on future is "small"

Romer versus Schumpteter

novation and

Business Dynamism

Romer versus Schumpteter

ompetition and novation

Business Dynamism

Optimal R&D

Both kinds of innovation obviously happen:

- Klenow and Li (2020) estimate the importance of both
- 27% of growth via new varieties (Romer)
- 13% of growth via replacement by better versions (Schumpeter)
- ► The other 60% is via "own innovation": existing firms improving own products
- Our models don't allow for this. Why?

Own innovation

Why didn't we have "own innovation" in our models?

- Arrow replacement effect (Arrow, 1962). Existing firms destroy own profits by replacing varieties.
- Assumption of "drastic" innovation: older varieties assumed to be unprofitable

Can we think harder about this?

- The Arrow effect is present no matter what.
- But innovation isn't always drastic,
- Which means firms may persist and want to innovate to "take the lead" again
- Which leads to complicated strategic considerations as they compete

Romer versus Schumpteter

novation

Business Dynamism

Competition and Innovation

Business Dynamism

Optimal R&D

More nuance about how firms make choices. Will compare fixed cost of innovation to the *change* in firm value from innovation,

$$F = V_{new} - V_{old}. (1)$$

Our basic Schumpeterian and Romer models assumed V_{old} was zero. The comparison of V_{new} and V_{old} depends on the

level of competition between firms

Competitive market

Schumpteter

Competition and Innovation

Business Dynamism

Assume firms are "close" in product quality, and they are in a competitive market. Their products are close substitutes (e.g. gas) or easy to make close copies of (e.g. clothes).

- ▶ The value $V_{old} \approx 0$ because of the competition
- If they do innovation, V_{new} would be very big, they "escape competition"
- The gap is big and the incentive to innovate is high for both firms

Competition and Innovation

Business Dynamism

Assume firms are "far" in product quality, and there is a clear leader and follower. But this is still acompetitive market.

- ▶ The leader already has profits, so $V_{new} V_{old} \approx 0$ (the Arrow effect)
- ▶ The follower can catch up, but that just makes them competitive, so $V_{new} V_{old} \approx 0$.
- Neither has a big incentive to innovate

Competition and Innovation

Business Dynamism

Optimal R&D

In competitive markets:

- Lots of innovation when neck-and-neck
- Which means there is quickly a leader and a follower
- At which point innovation slows down
- So the industry tends to end up with a leader and follower
- And little innovation overall
- And more competition would not make this better

Competition and Innovation

Business Dynamism

Assume firms are "close" in product quality, but they are in a non-competitive market. Think of firms that collude or have distinct segmented markets (e.g. hospitals or airlines)

- ▶ They already earn profits, so V_{old} is big.
- ▶ The gain from innovation, $V_{new} V_{old} \approx 0$
- Neither firm has an incentive to innovate. They can just keep their existing profits.

Non-competitive markets

Schumptotor

Competition and Innovation

Business Dynamism

Assume there is a clear leader and follower, but they are still in a non-competitive market.

- The leader already has V_{old} that is big. There is little gain to innovation
- ▶ The follower can innovate and split profits with the leader, $V_{new} V_{old}$ is big
- Followers have a lot of incentive to innovate

Competition and Innovation

Business Dynamism

Optimal R&D

In non-competitive markets:

- Lots of innovation when there is a leader and follower
- Which means they are quickly even or equal
- At which point innovation slows down
- So the industry tends to end up with equal firms close in quality
- And little innovation overall
- ▶ And *more* competition *would* make this better

Competition and Innovation

Business Dynamism

Optimal R&D

Comparing these situations gives us no clear answer on competition and innovation

- When markets are competitive, more competition can lower innovation
- When markets are very uncompetitive, more competitive can raise innovation
- There is some middle ground of competition which maximizes innovation
- Firms need to fear being replaced
- But need to know they can hang onto some profits
- Perfect competition doesn't maximize growth

omer versus chumpteter

Competition and Innovation

Business Dynamism

Optimal R&D

The Schumpeterian model explicitly links firm entry and exit and economic growth

- We know the long-run growth rate doesn't depend on how fast firms turn over
- ..but the level of productivity depends on E[dN]
- ..which influences how fast firms replace one another

Declining rates of entry and exit

Endogenous Growth

Romer versus Schumpteter

> Competition and nnovation

Business Dynamism

Implications

If firm entry/exit is lower, this tracks to lower ${\cal E}[dN]$ in the model:

- Which could be indicative of lower s_R
- ▶ ..but measured s_R appears higher (see Chapter 4)
- ightharpoonup ..so either the measure of s_R is imperfect (possible)
- ..OR something else changed in the economy

Endogenous Growth

chumpteter

Competition and Innovation

Business Dynamism

Assume s_R did go up, but E[dN] did fall, how might that work?

$$\frac{s_R}{1-s_R} = \frac{\alpha(1-\alpha)}{(1-\alpha)} \frac{E[dN]}{r - g_A - g_L + E[dN]}.$$

One possibility is that α changed

- If $\alpha(1-\alpha)$ goes up, the profit share goes up
- ▶ While $(1 \alpha 0$ goes down, and the labor share falls
- ightharpoonup This would drive firms to raise s_R
- ▶ And could offset a drop in E[dN]

Indicative of rise in "winner-take-all" innovation?

Schumpteter

Competition and

Business Dynamism

Are we doing enough R&D?

There are several reasons s_R won't be the optimal value. A first is:

- Firms value profits of innovation, but do not take into account the effect of their innovation on others.
- If $\phi < 0$ raising A lowers the innovation rate. Firms could do too *much* innovation.
- Or if $\phi > 0$ raising A raises the innovation rate. Firms do too *little* innovation.

Schumpteter
Competition and

Business Dynamism

chumpteter

Innovation

Daoino o Dynami

Optimal R&D

A second reason s_R isn't optimal:

- If $\lambda < 1$, then doing R&D crowds others, lowering the rate of innovation
- In this sense firms do too *much* innovation
- R&D would be improved if more coordinated

Are we doing enough R&D?

A third reason s_R isn't optimal:

- ➤ To ensure economic profits we need to make ideas excludable
- ► That happens via patents, copyrights, etc.
- These rights give firms monopolies, or market power, over that idea
- Monpolists tend to under-produce while maximizing profits
- Consumers would like it if innovators produced more at a lower price
- There is too little innovation because firms only account for their profits

Schumpteter Competition and

Innovation

.

The social return to R&D

Jones and Summers (2020) try to calculate the social value of R&D. The PDV of GDP per capita given growth of g_A is

$$\frac{y_0}{r - g_A} \tag{2}$$

givn initial value of y_0 and a discount rate of r. If there was no innovation, the PDV would be

$$\frac{y_0}{r}$$
 (3)

so the benefit of R&D is

Benefits =
$$y_0 \left(\frac{1}{r - g_A} - \frac{1}{r} \right)$$
. (4)

Schumpteter

Competition and nnovation

Business Dynamism

The costs of R&D

The costs of R&D are the resources and workers we apply to R&D, who don't produce goods and services in the near term.

$$\mathsf{Costs} = \frac{w_0 s_R}{r - g_A}.$$

where w_0s_R are the wages of the fraction s_R of all workers who do R&D.

Schumpteter

Competition and

Business Dynamism
Optimal R&D

Benefit/Cost ratio

Calculate the ratio of benefits to costs as:

$$\rho = \frac{\text{Benefits}}{\text{Costs}}$$

$$= \frac{y_0 \left(\frac{1}{r - g_A} - \frac{1}{r}\right)}{\frac{w_0}{r - g_A}}$$

$$= \frac{y_0}{w_0 s_R} \frac{g_A}{r}$$

$$= \frac{g_A/r}{(1 - \alpha)s_R}$$

Benefits are high if g_A is high and/or s_R is low.

omer versus chumpteter

Competition and Innovation

Business Dynamism

Quantifying the benefits

Let $g_A=0.018,\,r=0.05,\,(1-\alpha)s_R=0.027,$ meaning R&D costs 2.7% of GDP.

$$\rho \approx \frac{0.018/0.05}{0.027} = 13.3.$$

One dollar of R&D returns about 13 dollars of present value. A huge return! Implication is that we should do a *lot* more R&D. Jones/Summers calculate that if R&D cost around 50% of GDP, it would still be worth it!

chumpteter

Competition and Innovation

Business Dynamism

Schumpteter
Competition and

Business Dynamism

Optimal R&D

What makes R&D and innovation so valuable?

- ► R&D uses rival inputs (workers, some capital) today
- But produces non-rival ideas that can be used by others
- And can be used forever (or at least a long time)