1. The point P(-2, -5) lies on the curve with equation $y = f(x), x \in \mathbb{R}$

Find the point to which P is mapped, when the curve with equation y = f(x) is transformed to the curve with equation

(a)
$$y = f(x) + 2$$

(1)

(b)
$$y = |f(x)|$$

(1)

(c)
$$y = 3f(x-2) + 2$$

(2)

2
_

4. (a) Express $\lim_{\delta x \to 0} \sum_{3,1}^{6.3} \frac{2}{x} \delta x$ as an integral.

(1)

(b) Hence show that

$$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \ln k$$

where k is	is a	constant	to	be	found
--------------	------	----------	----	----	-------

(2)

6.

Figure 1

Figure 1 shows a sketch of a curve C with equation y = f(x) where f(x) is a cubic expression in x.

The curve

- passes through the origin
- has a maximum turning point at (2, 8)
- has a minimum turning point at (6, 0)
- (a) Write down the set of values of x for which

$$f'(x) < 0$$

(1)

The line with equation y = k, where k is a constant, intersects C at only one point.

(b) Find the set of values of k, giving your answer in set notation.

(2)

(c) Find the equation of C. You may leave your answer in factorised form.

(3)

Figure 3

Figure 3 shows a sketch of a parallelogram *PQRS*.

Given that

•
$$\overrightarrow{PQ} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$$

•
$$\overrightarrow{QR} = 5\mathbf{i} - 2\mathbf{k}$$

(a) show that parallelogram PQRS is a rhombus.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Find the exact area of the rhombus PQRS.

(4)

DO NOT WRITE IN THIS AREA

Figure 4

Figure 4 shows a sketch of part of the curve C_1 with equation

$$y = 2x^3 + 10 \qquad x > 0$$

and part of the curve C_2 with equation

$$y = 42x - 15x^2 - 7 \qquad x > 0$$

(a) Verify that the curves intersect at $x = \frac{1}{2}$

(2)

The curves intersect again at the point P

(b) Using algebra and showing all stages of working, find the exact x coordinate of P

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

12	. In this question you must show all stages of your working.	
	Solutions relying on calculator technology are not acceptable.	
	Show that	
	$\int_1^{e^2} x^3 \ln x \mathrm{d}x = a\mathrm{e}^8 + b$	
	where a and b are rational constants to be found.	(5)

14. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(a) Given that

$$2\sin(x-60^\circ) = \cos(x-30^\circ)$$

show that

$$\tan x = 3\sqrt{3}$$

(4)

(b) Hence or otherwise solve, for $0 \leqslant \theta < 180^{\circ}$

$$2\sin 2\theta = \cos(2\theta + 30^\circ)$$

giving your answers to one decimal place.

(4)

Figure 5

A company makes toys for children.

Figure 5 shows the design for a solid toy that looks like a piece of cheese.

The toy is modelled so that

- face ABC is a sector of a circle with radius rcm and centre A
- angle BAC = 0.8 radians
- faces ABC and DEF are congruent
- edges AD, CF and BE are perpendicular to faces ABC and DEF
- edges AD, CF and BE have length h cm

Given that the volume of the toy is 240 cm³

(a) show that the surface area of the toy, $S \text{ cm}^2$, is given by

$$S = 0.8r^2 + \frac{1680}{r}$$

making your method clear.

(4)

Using algebraic differentiation,

(b) find the value of r for which S has a stationary point.

(4)

(c) Prove, by further differentiation, that this value of r gives the minimum surface area of the toy.

(2)

$$x = 8\sin^2 t \qquad y = 2\sin 2t + 3\sin t \qquad 0 \leqslant t \leqslant \frac{\pi}{2}$$

The region R, shown shaded in Figure 6, is bounded by C, the x-axis and the line with equation x = 4

(a) Show that the area of R is given by

$$\int_0^a \left(8 - 8\cos 4t + 48\sin^2 t\cos t\right) \mathrm{d}t$$

where a is a constant to be found.

(5)

(b) Hence, using algebraic integration, find the exact area of R.

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA