MATH 738 HW 1 Due 9/15

(1) Let $\phi: X \to X'$ be an isomorphism in a category \mathcal{C} . Show that

$$\operatorname{Hom}(X',Y) \to \operatorname{Hom}(X,Y)$$

 $\psi \mapsto \psi \circ \phi$

is a bijection. Show that it induces an isomorphism $h_X \cong h_{X'}$.

- (2) In the proof that a fully-faithful and essential surjective functor is an equivalence, we constructed what we claimed was the inverse. Show that it is well-defined and indeed the inverse functor.
- (3) Prove that $F \vdash G$ if and only if there exists $\eta: \mathrm{Id} \to GF$ and $\eta: FG \to \mathrm{Id}$ satisfying

$$F \xrightarrow{F} F \xrightarrow{F} F$$

and

$$G \xrightarrow{\eta_G} GFG \xrightarrow{G(\epsilon)} G$$

(4) Complete the proof of tensor-hom adjunction. Show that the claimed inverse natural transformation is well-defined and indeed the inverse.