Formal Languages, Grammars, and Parsing

CHAPTER 2 OF PROGRAMMING LANGUAGES PRAGMATICS

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

Languages

- Syntax vs Semantics
 - Syntax form, internal structure
 - Semantics meaning
- Language Generation vs Language Recognition
 - Regular expressions and grammars
 - Scanner and parsers

Formal Languages

- Basis for the design and implementation of programming languages
- Alphabet: finite set Σ of symbols
- String: finite sequence of symbols
 - lacksquare : the empty string, a sequence of length 0
 - Σ^* : the set of all strings over Σ , including ϵ
 - Σ^+ : the set of all non-empty strings over Σ
- Language: a set of strings $L \subseteq \Sigma^*$
 - For example in Java, Σ is Unicode, a program is a string, and L is defined by a grammar in the language specification

Formal Grammars

- A grammar $G = (N, \Sigma, P, S)$ is a 4-tuple with
 - Finite set of non-terminal symbols *N*
 - Finite set of terminal symbols/an alphabet Σ
 - Finite set of productions P
 - The starting non-terminal symbol $S \in N$
- The grammar describes a language $L \subseteq \Sigma^*$
 - Sometimes say that a grammar generates a language
- Productions are "rules" of the form $x \rightarrow y$
 - x is a non-empty sequence of terminals and non-terminals
 - y is a sequence of terminals and non-terminals

Example: A grammar for non-negative integers

Writing out the grammar seems pretty tedious, right?

Grammar notation in practice

- This is how the same grammar would typically be presented:
- $\begin{array}{c|c}
 I \to D \mid DI \\
 D \to 0 \mid 1 \mid 2 \mid \dots \mid 9
 \end{array}$
- Here *I* has two production alternatives, *D* has 10
- We can infer the rest of the grammar from this
 - Our terminals/alphabet are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Our non-terminals are I and D
 - Our starting non-terminal is I

Grammar for non-negative integers

- We generate the strings in the language from the starting non-terminal by applying the production rules
 - Match the left-hand side of a rule to a substring and replacing with the right-hand side
- Example:
 - Grammar: $I \rightarrow D \mid DI$ $D \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9$
 - $I \Rightarrow DI$ $DI \Rightarrow DDI$ $DDI \Rightarrow D6I$ $D6I \Rightarrow D6D$ $D6D \Rightarrow 36D$ $36D \Rightarrow 361$

Languages and Grammars

- String derivation (let w_i be a string)
 - $w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$ is a derivation sequence
 - We can indicate that there is a derivation sequence from w_1 to w_n by writing $w_1 \Rightarrow^* w_n$
 - If we want to be clear that n > 1 we can write $w_1 \Rightarrow^+ w_n$
- We want to talk about the language generated by grammar G
 - $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^+ w \}$
- Fundamental theoretical characterization of languages: Chomsky Hierarchy
 - Regular languages
 ⊂ Context-free languages
 ⊂ Context-sensitive languages
 ⊂ Unrestricted languages
- Our interest as computer scientists:
 - Regular languages for lexical analysis
 - Context free languages for syntax analysis

Recall the overview of compilation

Regular languages in compilers & interpreters

stream of characters

w,h,i,l,e,(,a,1,5,>,b,b,),d,o,...

Scanner (uses a regular grammar to perform lexical analysis)

stream of **tokens**

keyword[while], leftparen, id[a15], op[>],
id[bb], rightparen, keyword[do], ...

Parser (uses a context-free grammar to perform syntax analysis)

parse tree

each token is a leaf in the parse tree

... more compiler/interpreter components

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

Regular languages

- Regular languages languages that can be recognized by a read-only Turing machine
- Operations on languages that preserve regularity
 - Union: $L \cup M$ = all strings in L or M
 - Concatenation: LM = all strings ab where $a \in L$ and $b \in M$
 - lacktriangle Closure and positive closure: Let $L^0=\{\,\epsilon\,\}$ and $L^i=L^{i-1}L$
 - Closure: $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$
 - Positive Closure: $L^+ = L^1 \cup L^2 \cup \cdots$
- Regular expressions: notation to express languages constructed with the help of these operations
 - Example: (0|1|2|3|4|5|6|7|8|9)+

Regular languages

- Given some alphabet, a regular expression is
 - The empty string ϵ
 - Any symbol from the alphabet
 - If r and s are regular expressions, then so are r|s, rs, r*, r+, r?, and (r)
 - r|s accepts strings accepted by r or accepted by s (set union)
 - rs accepts strings that are the concatenation of a string accepted by r and a string accepted by s (set concatenation)
 - r^* accepts ϵ or more strings accepted by r, all concatenated together (set closure)
 - r+ accepts 1 or more strings accepted by r, all concatenated together (positive closure)
 - r? accepts ∈ or 1 string accepted by r
 - */+/? have higher precedence than concatenation, and concatenation has higher precedence than |
 - All operations are left associative

Regular expressions

- Each regular expression r defines a language L(r)
 - $L(\epsilon) = \{ \epsilon \}$
 - $L(a) = \{ a \}$ for alphabet symbol a
 - $L(r|s) = L(r) \cup L(s)$ for regular expressions r, s
 - L(rs) = L(r)L(s)
 - $L(r^*) = (L(r))^*$
 - $L(r^+) = (L(r))^+$
 - $L(r?) = \{ \epsilon \} \cup L(r)$
 - -L((r)) = L(r)
- Example: What is the language defined by this regular expression? 0(x|X)(0|1|2|3|4|5|6|7|8|9|a|b|c|d|e|f|A|B|C|D|E|F)+

- L(gray | grey) = ?
- L(gr(a|e)y) = ?
- **L**(colou?r) = ?
- L(go*gle) = ?
- Try these on your own (answers on the next slide)

- L(gray | grey) = {gray, grey}
- L(gr(a|e)y) = {gray, grey}
- L(colou?r) = {color, colour}
- L(go*gle) = {ggle, gogle, google, gooogle, ...}

- Which of the following languages over the alphabet {0, 1} is described by the regular expression (0+1)*0(0+1)*0(0+1)*
 - Set of all strings containing 00
 - Set of all strings containing at most two 0's
 - Set of all strings containing at least two 0's
 - Set of all strings that begin and end with either 0 or 1
 - None of these
- Try this out, answer on next slide.
 - I suggest trying to come up with strings that will eliminate answers, i.e. if you find a string that contains 00 but is not accepted by the regular expression that would eliminate the first option

- Which of the following languages over the alphabet {0, 1} is described be the regular expression (0+1)*0(0+1)*
 - Set of all strings containing 00
 - 001 is in this set, not accepted by the RE
 - Set of all strings containing at most two 0's
 - 001 is in this set, not accepted by the RE
 - Set of all strings containing at least two 0's
 - 001 is in this set, not accepted by the RE
 - Set of all strings that begin and end with either 0 or 1
 - 0 is in this set, not accepted by the RE
 - None of these

- The regular expression 0*(10*)* is equivalent to
 - **(1*0)*1**
 - **0**+(0+10)*
 - **(**0+1)*10(0+1)*
 - None of these
- Answer on the next slide

- The regular expression 0*(10*)* is equivalent to
 - **(1*0)*1**
 - **0**+(0+10)*
 - **(**0+1)*10(0+1)*
 - None of these

Regular languages

- Let G be a grammar
- We say G is a regular grammar if
 - Either all productions are of the form $A \to wB$ and $A \to w$, where
 - A, B are non-terminals in G
 - w is a sequence of terminals or the empty string
 - Or all productions are of the form $A \to Bw$ and $A \to w$, where
 - A, B are non-terminals in G
 - w is a sequence of terminals or the empty string
- In addition, in the first case we say G is **right-regular**, and in the second case we say G is **left-regular**
- If a language is generated by a regular grammar, then we say the language is regular

Regular grammars

- Example: $L = \{ a^n b \mid n > 0 \}$ is a regular language
 - Grammar to prove this:

$$S \to Ab$$
$$A \to Aa \mid a$$

this is a left-regular grammar

■ What about our grammar from before for non-negative integers?

$$I \rightarrow D \mid DI$$

$$D \rightarrow 0 \mid 1 \mid 2 \mid \dots \mid 9$$

Regular grammars

- $I \rightarrow D \mid DI$ $D \rightarrow 0 \mid 1 \mid 2 \mid \dots \mid 9$
- Can we modify this grammar so it is regular? And while we are at it, can we eliminate the leading 0's the grammar currently allows?
 - I.e. 509 is allowed, but 059 is not

Regular Languages

- Equivalaent formalisms for regular languages
 - Regular expressions
 - Regular grammars
 - Nondeterministic finite automata
 - Deterministic finite automota
 - Additional details: Sections 2.2, 2.4 (or Wikipedia)
- Our interest?
 - Regular languages are the foundation for the lexical analysis done by a scanner
 - Your first project will be to implement a scanner

Regular languages in compilers & interpreters

stream of characters

w,h,i,l,e,(,a,1,5,>,b,b,),d,o,...

Scanner (uses a regular grammar to perform lexical analysis)

stream of **tokens**

keyword[while], leftparen, id[a15], op[>],
id[bb], rightparen, keyword[do], ...

Parser (uses a context-free grammar to perform syntax analysis)

parse tree

each token is a leaf in the parse tree

... more compiler/interpreter components

Outline of a simple scanner

- The parser asks the scanner for the next token
- The scanner reads the next character x from the character stream
- If x is a special character like; , + * () the scanner returns the corresponding token
 - If x is =, peek at the next character y
 - If y is not =, return the token for = (ASSIGN)
 - If y is =, read the characer and return the token for == (EQUAL)

Outline of a simple scanner

- Some tokens have additional information attached
- When parsing we will want the type and the specific value (i.e. identifier token and identifier string, or constant token and constant value)
- If x is a letter, keep reading characters and stop before the first non-letter or non-digit character (assuming our language requires identifiers to start with a letter and then have only letters or digits)
 - If the string is a keyword, return the token for that keyword
 - If the string is a not a keyword, return the id token with the string
- If x is a digit, keep reading characters and stop before the first non-digit character
 - Return the token const with the numeric value

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

Context-free languages

- They subsume regular languages
 - Every regular language is CF
 - Not every CF language is regular
 - Is $L = \{ a^n b^n | n > 0 \}$ regular?
- CF languages are generated by a context-free grammar (CFG)
 - Each production must be of the form $A \rightarrow w$, where
 - A is a nonterminal
 - w is a sequence of terminals and non-terminals

CFG notation

- For CFGs, we traditionally use Backus-Naur form (BNF)
 - John Backus and Peter Naur, for Algol-58 and Algol 60
- ::= is read as "defined as"
- < > encloses a nonterminal name
- Example, a grammar fragment:

$$E \rightarrow T \mid E + T$$

$$T \rightarrow i \mid c \mid (E)$$

Becomes:

```
<expr> ::= <term> | <expr> + <term>
<term> ::= id | const | (<expr>)
```

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

Derivation sequence for a string

- Describes a particular way to derive a string based on a CFG
 - A derivation is a sequence of replacement operations that show how to derive a string from the starting symbol
 - A sentential form is each string of symbols in the derivation
 - The yield of the derivation is the string of terminals at the end of the derivation

Example of a derivation sequence

```
<expr> ::= <term> | <expr> + <term>
<term> ::= id | (<expr>)

Derivation sequence for (x+y)+z
<expr> \Rightarrow <expr>+<term> \Rightarrow <expr>+z \Rightarrow <term>+z \Rightarrow (<expr>)+z
\Rightarrow (<expr>+<term>)+z \Rightarrow (<expr>+y)+z
\Rightarrow (x+y)+z
```

Derivation tree for a string

- Also called a parse tree or a concrete syntax tree
 - Leaf nodes: terminals
 - Inner nodes: non-terminals
 - Root: starting non-terminal of the grammar
- Describes a particular way to derive a string based on a CFG
 - Leaf nodes read from left to right are the string
 - To get this string: depth first traversal of the tree, always visiting the leftmost unexplored branch

Example of a derivation tree

```
<expr> ::= <term> | <expr> + <term>
```

<term> ::= id | (<expr>)

Parse tree for (x+y)+z

Equivalent derivation sequences

Two derivation sequences are equivalent if they have the same parse tree

One derivation:

```
<expr> \Rightarrow <expr>+<term> \Rightarrow <expr>+z \Rightarrow <term>+z \Rightarrow (<expr>)+z \Rightarrow (<expr>+z \Rightarrow (<expr>+z
```

Another derivation:

```
<expr> \Rightarrow <expr> + <term> \Rightarrow <(<expr> + <term> \Rightarrow (<expr> + <term> \Rightarrow (<term> + <term> ) + <term> \Rightarrow (x+<term> ) + <term> \Rightarrow (x+y)+<
```

And there are many more

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

The Core grammar

Parser vs scanner projects

- id and const are terminal symbols for the grammar of the Core language
 - In the scanner they were non-terminals
- Consider 9-5+5 in the Core grammar
 - What is the parse tree? Is this a problem?
 - If we wanted to fix this, how could we?

Recursive descent

- Several uses
 - Parsing technique
 - Call the scanner to obtain tokens, build the parse tree from the root down
 - Traversal of a given parse tree
 - Parse tree represents a program, traverse it to
 - Print the program (check we have the correct parse tree)
 - Code generation
 - Interprete the program
- Basic idea: Use a separate procedure for each non-terminal of the grammar
 - The body of the procedure "applies" some production for that non-terminal
 - Start by calling the procedure for the starting non-terminal

Example: Simple expressions

Ignore error checking for now...

Example: Simple expressions

```
<expr> ::= <term> | <term> + <expr>
<term> ::= id | const | (<expr>)

procedure Term() {
    if (currentToken() == ID) nextToken();
    else if (currentToken() == CONST) nextToken();
    else if (currentToken == LPAREN) {
        nextToken(); // consume left parenthesis
        Expr();
        nextToken(); // consume right parenthesis
    }
}
```

Error checking

- What checks of currentToken() do we need to make in Term()?
 - For example, how to catch malform strings like "+a" and "(a+b"
- Unexpected leftover tokens: add "metatokens" to facilitate communication between scanner and parser
 - Parser should check for EOS token

Which alternative to use?

- The key issue for recursive descent parsing, how to pick which production alternative from the grammar to follow?
 - Predictive parsing: predict correctly (without backtracking) what we need to do, by looking ahead a few tokens
 - Ideally, look at just one token (the current one)
- For each production alternative, find the FIRST set: what is the set of all terminals that can be at the very beginning of strings derived from that alternative?
- If the FIRST sets are all disjoint, we can decide exactly which alternative we should use

FIRST set

Parser code

```
procedure DeclSeq() {
    ...
    Decl();
    DeclRest();
    ...}
procedure DeclRest() {
    ...
    if (currentToken() == BEGIN) return;
    if (currentToken() == INT) { ... DeclSeq(); ... }
}
```

Parser code simplified

```
You may have realized that was unnecessary, can do this instead:

procedure DeclSeq() {

Decl();

if (currentToken() == BEGIN) return;
if (currentToken() == INT) {

DeclSeq();

...

PeclSeq();

...
}
```

Practice with FIRST sets

For each of these, find the FIRST set for all production alternatives

```
<id-list> ::= id | id, <id-list>
```

```
<stmt> ::= <assign> | <if> | <loop> | <in> | <out> | <decl>
```

```
<stmt-seq> ::= <stmt> | <stmt><stmt-seq>
```

```
-<cond> ::= <cmpr | !(<cond>) | <cmpr> or <cond>
        <cmpr> ::= <expr> == <expr> | <expr> < <expr> | <expr> <= <expr>
```

```
<expr> ::= <term> | <term> + <expr> | <term> - <expr>
<term> ::= <factor> | <factor> * <term>
<factor> ::= const | id | (<expr>)
```

The Core grammar

Practice with FIRST sets answers

For each of these, find the FIRST set for all production alternatives

- <id-list> ::= id | id, <id-list>
 - {id} and {id}
- <stmt> ::= <assign> | <if> | <loop> | <in> | <out> | <decl>
 - {id}, {IF}, {WHILE}, {INPUT}, {OUTPUT}, {INT}
- <stmt-seq> ::= <stmt> | <stmt><stmt-seq>
 - {id, if, while, input, output, int} and {id, if, while, input, output, int}
- <cond> ::= <cmpr> | !(<cond>) | <cmpr> or <cond>
 <cmpr> ::= <expr> == <expr> | <expr> < <expr> | <expr> <= <expr>
 - For <cond>: { const, id, LPAREN }, { NEGATION }, { const, id, LPAREN }
 - For <cmpr>: { const, id, LPAREN }, { const, id, LPAREN }, { const, id, LPAREN }
- <expr> ::= <term> | <term> + <expr> | <term> <expr> <term> ::= <factor> | <factor> * <term> <factor> ::= const | id | (<expr>)
 - For <expr>: { const, id, LPAREN }, { const, id, LPAREN }, { const, id, LPAREN }
 - For <term>: { const, id, LPAREN }, { const, id, LPAREN }
 - For <factor>: {const}, {id}, {LPAREN}

More general parsing

- We have
 - <expr> ::= <term> | <term> + <expr> | <term> <expr>
- Why not instead use

```
<expr> ::= <term> | <expr> + <term> | <expr> - <term>
```

- Left recursive grammars are not suitable for predictive, recursive descent parsing
- What is used in real parsers?
 - Traditionally, bottom-up parsing with LR(k) grammars?
 - Several modern compilers with recursive descent parsing

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

Ambiguous grammars

- A grammar is ambiguous ⇔ There is some string with multiple (different) parse trees
- An ambiguous grammar gives more freedom to the compiler writer
 - For example, ambiguity can allow optimizations for better performance
 - This also creates difficulty, how to choose between alternatives
- For real work programming languages, we typically have non-ambiguous grammar
 - We need a deterministic specification for the parser so the user knows what their code will do
- We can remove ambiguity by adding more non-terminals

- Consider this grammar:
 - <expr> ::= <expr> + <expr> | <expr> * <expr> | id | (<expr>)
- How many parse trees are there for the string "a + b * c"?

- Consider this grammar: <expr> ::= <expr> + <expr> | <expr> * <expr> | id | (<expr>)
- How many parse trees are there for the string "a + b * c"?
 - One is equivalent to (a + b) * c
 - The other is equivalent to a + (b * c)
- Operator precedence:
 - When several operators are without parentheses, which is an operand of what?
 - Is a+b and operand of *, or is b*c and operand of +?
- Operator associativity:
 - For multiple operators with the same precedence, are they evaluated left-to-right or right-to-left?
 - Is a-b-c equivalent to (a-b)-c or a-(b-c)?

- In most languages, * has higher precedence than +, and both are left-associative
- Exercise: Change
 <expr> ::= <expr> + <expr> | <expr> * <expr> | id | (<expr>)
 So that
 - It is unambiguous
 - It has the correct precedence
 - It has the correct associativity

- In most languages, * has higher precedence than +, and both are leftassociative
- Exercise: Change
 <expr> ::= <expr> + <expr> | <expr> * <expr> | id | (<expr>)
 So that
 - It is unambiguous
 - It has the correct precedence
 - It has the correct associativity
- Solution: add new non-terminals
 <expr> ::= <expr> + <term> | <term>
 <term> ::= <term> * <factor> | <factor>
 <factor> ::= id | (<expr>)

- Is this a reasonable grammar for including if/then and if/then/else statements in our language?
- if a then if b then c=1 else c=2

- Is this a reasonable grammar for including if/then and if/then/else statements in our language?
- if a then if b then c=1 else c=2
 - Two possible parse trees
- Traditional solution: match the else with the last unmatched then
 - This is an example of a disambiguation rule, something external to the grammar

- Is this a reasonable grammar for including if/then and if/then/else statements in our language?
- if a then if b then c=1 else c=2
 - Two possible parse trees, very different meanings
- Traditional solution: match the else with the last unmatched then
 - This is an example of a disambiguation rule, something external to the grammar

- Is this version non-ambiguous?
- Is this version easy to understand?
- if a then if b then c=1 else c=2

Outline

- Languages and Grammars
- Regular Languages (Scanning)
- Context Free Languages (Parsing)
 - Derivation/Parse Trees
 - Recursive Descent Parsing
 - Ambiguity
 - LL and LR Grammars

Regular languages in compilers & interpreters

stream of characters

w,h,i,l,e,(,a,1,5,>,b,b,),d,o,...

Scanner (uses a regular grammar to perform lexical analysis)

stream of **tokens**

keyword[while], leftparen, id[a15], op[>],
id[bb], rightparen, keyword[do], ...

Parser (uses a context-free grammar to perform syntax analysis)

parse tree

each token is a leaf in the parse tree

... more compiler/interpreter components

Parsing

- A CFG is a CF language generator; a **parser** is a language recognizer
- For CFLs, it is proven that we can create a parser that runs in time $O(n^3)$, where n is the length of the program
- For CFLs that admit an unambiguous grammar, $O(n^2)$
 - An example of a language with no unambiguous grammar is $\{a^nb^mc^md^n:n,m>0\}\cup\{a^nb^nc^md^m:n,m>0\}$
- For CFLs that admit an LL or LR grammar, O(n)
 - LL/LR grammars are unambiguous grammars

LL and LR grammars

Class	Direction of scanning	Derivation discovered	Parse tree construction	Algorithm
LL	Left-to-right	Leftmost	Top-down	Predictive/ Recursive descent
LR	Left-to-right	Rightmost	Bottom-up	Shift-reduce

LL/Top-down example

```
<id_list> ::= <id><id_list_tail> 
  <id_list_tail> ::= , <id><id_list_tail> | ;
  <id> ::= A | B | C
```

■ Parse the string "A, B, C;"

LR/Bottom-up example

- Parse the string "A, B, C;"

LL/LR grammars

- LL/LR grammars are further classified based on how much look ahead is needed for parsing
 - LL(k)/LR(k) indicates a look ahead of at most k tokens is needed to parse
- Working with LL(1) would be particularly nice, but it is difficult to write LL(1) grammars for our languages
 - Common difficulties:
 - Left recursion: <sub> ::= <sub> <id>
 - Common prefixes: <stmt> ::= <matched> | <unmatched>
- We can get close to LL(1)
 - Handle left-associativity as a special case instead of through left-recursion
 - Use disambiguation rules, or change the language to avoid common prefixes