Exercice n°1:

- I) On considère dans \mathbb{C} l'équation (E): $z^2-2mz+m^2+4=0$ avec $m\in\mathbb{C}^*$
 - 1) Résoudre dans \mathbb{C} l'équation (E)
 - 2) On suppose que $m=2e^{i\theta}$ et $\theta\in\left]0,\frac{\pi}{2}\right[$ Donner les solutions $\left(E\right)$ de sous forme trigonométrique
 - 3) Soient A et B respectivement les image de m+2i et m-2i a- Déterminer chacun des ensembles suivants

$$(D) = \{M(m) \in P \mid OA = OB\} \text{ et } (C) = \{M(m) \in P \mid \overrightarrow{OA} \perp \overrightarrow{OB}\}$$

b-Quelles sont les valeurs possibles de $\it m$ pour que le triangle $\it OAB$ soit rectangle et isocèle en $\it O$

II) On considère les points $I(1.0), \Omega(1.1)$ et C(2,0)

Soient $M_1(z_1)$ l'image de M(z) par la symétrie centrale de centre I

et $M_2(z_2)$ l'image de M(z) par la rotation de centre Ω et d'angle $\frac{\pi}{2}$

- 1) Montrer que $z_1 = -z + 2$ et $z_2 = iz + 2$
- 2) Déterminer l'ensemble des points M pour que les points C, Ω, M_1 et M_2 soient cocycliques

Exercice n°2:

On considère le système (S): $\begin{cases} n \equiv 3[5] \\ n \equiv 9[17] \end{cases}$ et Dans \mathbb{Z}^2 l'équation (E): 5x - 17y = 6

- 1) a- Déterminer une solution particulière de (E)
 - b- résoudre l'équation (E)
- 2) a- Montrer que $(n \text{ solution de } (S) \Leftrightarrow n = 43[85])$
 - b- Résoudre le système (S)
- 3) Soit une solution de (S)
- a. Montrer que $n \wedge 17 = 1$ et $n \wedge 5 = 1$
- b- Montrer que $n^{16} \equiv 1[85]$
- c En déduire que $n^{2019} n^3$ est un multiple de 85
- 4) Existe-t-il un entier naturel m solution de (S) et vérifiant : $m = \overline{1aba}^{(5)}$