

Stability

Prof. Seungchul Lee Industrial AI Lab.

Stability of Open Loop System

- In order for a system $G(s) = \frac{N(s)}{D(s)}$ to be stable all of the roots of the characteristic polynomial need to lie in the left-half plane (LHP).
 - The characteristic equation is the denominator of the transfer function.
 - The roots of the characteristic equation are the exact same as the poles of the transfer function.
 - The eigenvalues of matrix A in the equivalent state space representation are the same as the roots of the characteristic polynomial.
 - In order to have a stable system, roots of G(s) must be in LHP.

$$G(s) = \frac{1}{s+a}$$

$$\mathcal{L}^{-1}(G(s)) = e^{-at}u(t)$$

Stability of Open Loop System

- When a pole is negative
 - This root exists in the left half plane
 - Transfer function will ultimately die out
 - The system will eventually be at rest (stable)
- When a pole is positive
 - This root exists in the right half plane
 - Transfer function will blow up into infinity
 - The system is unstable
- Transfer function of multiple poles
 - The last one blows up to infinity to make the whole transfer function unstable
 - Conclusion: a single root in the right half plane makes the whole system unstable

$$G(s) = rac{1}{s+1} \cdot rac{1}{s+3} \cdot rac{1}{s-2}$$

$$G(s) = \frac{A}{s+1} + \frac{B}{s+3} + \frac{C}{s-2}$$

$$\mathcal{L}^{-1}(G(s)) = Ae^{-t} + Be^{-3t} + Ce^{2t}$$

Routh-Hurwitz Criterion

Routh-Hurwitz Criterion

- Calculating the roots of the system for larger than the second-order polynomial becomes timeconsuming and possibly even impossible in a closed-form
- How can we determine the stability of a higher order polynomial without solving for the roots directly?
 - The great thing about the Routh-Hurwitz criterion is that you do not have to solve for the roots of the characteristic equation

$$G(s) = rac{1}{s^4 + 3s^3 - 5s^2 + s + 2}$$

- If all of the signs are not the same, the system is unstable
- If you build up a transfer function with a series of poles, then the only way to get a negative coefficient is to have at least one pole exists in right-half plane

Routh-Hurwitz Criterion

• However, we cannot claim that all positive coefficients are still either stable or unstable

$$G(s) = rac{1}{s^4 + 2s^3 + 3s^2 + 10s + 8}$$

$$= rac{1}{s^2 - s + 4} \cdot rac{1}{s + 2} \cdot rac{1}{s + 1}$$

Normal Case (1/2)

- Routh array is a table that can be populated with the coefficients of the polynomial with a few simple rules
 - The number of RHP roots of D(s) is equal to the number of sign changes in the left column of the Routh array

$$As^6 + Bs^5 + Cs^4 + Ds^3 + Es^2 + Fs + G$$

Normal Case (2/2)

- Determine the number of roots in RHP by counting the number of sign changes
 - We can determine the number of roots in the right-half plane by looking at this first column
 - It changes sign twice which means that there are two roots in the right half plane

$$G(s) = \frac{1}{s^4 + 2s^3 + 3s^2 + 10s + 8}$$

s^4	1	3	8
s^3	2	10	0
s^2	-2	8	0
s^1	18	0	
s^0	8		

Special Case 1 (1/2)

- A zero in a row with at least one non-zero appearing later in that same row
 - If you are attempting to access stability of the system, you do not need to complete the rest of the table at this
 point
 - The system is always unstable because completing Routh array will always result in a sign change of the first column

Unstable

Special Case 1 (2/2)

- If you are interested in the number of roots located in the right half plane, you can complete the table like below
 - You replace that zero with the Greek symbol epsilon $\epsilon>0$
 - When you finish completing the table, you can take the limit as epsilon ϵ goes to zero

 You can see that we still have two unstable roots or two roots in the right half plane

	1		5	s^4	1	2	5
s^3	2	4		s^3	2	4	
	$ ot\!\!/ \epsilon $			s^2	0^+	5	
s^1	$\frac{4\epsilon-10}{\epsilon}$			s^1	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
s^0	5			s^0	5		

Special Case 2 (1/2)

 The second special case is when there is an entire row of zeros, not just a single zero in the row

$$D(s) = s^5 + 2s^4 + 6s^3 + 10s^2 + 8s + 12$$

• Auxiliary polynomial P(s): the row directly above the row of zeros

$$6s^2+12s^0 \implies P(s)=s^2+2$$

s^5	1	6	8
s^4	2	10	12
s^3	1	2	0
s^2	6	12	0
s^1	0	0	0
s^0			

Special Case 2 (2/2)

• Then P(s) is a factor of the original polynomial D(s)

$$D(s) = P(s) \cdot R(s)$$

$$s^5 + 2s^4 + 6s^3 + 10s^2 + 8s + 12 = \underbrace{(s^2 + 2)}_{ ext{marginally stable}} \underbrace{(s^3 + 2s^2 + 4s + 6)}_{ ext{stable}}$$

• Apply the Routh-Hurwitz criterion again to R(s)

s^3	1	4	
s^2	2	6	
s^1	1	0	
s^0	6		

Stability with State Space Representation

Stability with State Space Representation

• It is useful to start with scalar systems to get some intuition about what is going on

$$\dot{x} = ax \implies x(t) = e^{at}x(0)$$

$$\left\{ egin{aligned} a>0 : ext{unstable} \ a<0 : ext{asymptotically stable} \ a=0 : ext{marginally stable} \end{aligned}
ight.$$

From scalars to matrices?

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

• We cannot say that A > 0, but we can do the next best thing - eigenvalues!

Stability with State Space Representation

• The eigenvalues tell us how the matrix A 'acts' in different directions (eigenvectors)

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$Av = \lambda v$$

 $\begin{cases} \operatorname{Re}(\lambda) > 0 : \text{unstable} \\ \operatorname{Re}(\lambda) < 0 : \text{asymptotically stable} \\ \operatorname{Re}(\lambda) \leq 0 : \text{critically stable} \end{cases}$

Stability of Closed Loop System

Root Locus (Stability in Time)

• We are interested in the stability of a closed loop system from an open loop system.

The closed-loop system is

$$H(s) = rac{KG}{1+KG}$$

• A pole exists when the characteristic polynomial in the denominator becomes zero.

$$1+KG(s)=0 \implies KG(s)=-1=1\angle(2k+1)\pi, \quad k=0,\pm 1,\pm 2,\cdots$$

Root Locus (Stability in Time)

$$1+KG(s)=0 \implies KG(s)=-1=1\angle(2k+1)\pi, \quad k=0,\pm 1,\pm 2,\cdots$$

• A value of s^* is a closed loop pole if

$$\left\{egin{array}{ll} |KG(s^*)|=1 &\Longrightarrow K=rac{1}{|G(s^*)|} \ igtriangleup |KG(s^*)=(2k+1)\pi \end{array}
ight.$$

- Closed-loop poles in the LHP indicate stability
 - The closeness of the poles to the RHP indicate how near to instability the system is

Relative Stability (Stability in Frequency)

• Suppose the Bode plot of the open-loop transfer function is given.

Question:

 tell the stability of a closed-loop system from the open-loop frequency response

Relative Stability (Stability in Frequency)

- At 180° of phase lag of the loop, the reference and feedback signal are added.
 - If the magnitude of the loop is greater than 1 the error grows exponentially (unstable)

Relative Stability

- Relative stability is indicated by how close the open-loop frequency response is to the point of 180° of phase lag and a magnitude of 1
- More specifically,
 - Gain margin is the distance from a magnitude of 1 (0 dB) at the frequency where $\phi=180^o$ (phase crossover frequency)
 - Phase margin is the distance from a phase of -180° at the frequency where M=0 dB (gain crossover frequency)

Relative Stability

- In order to be stable, both gain and phase margin must be positive
- Gain and phase margins tell how stable the system would be in closed-loop
 - These quantities can be read from the open-loop data

Relative Stability (Stability in Frequency)

• What if *K* proportional controller is implemented?

- More intuitively,
 - Gain margin indicates how much you can increase the loop gain K before the system goes unstable
 - Phase margin indicates the amount of phase lag (time delay) you can add before the system goes unstable

Relative Stability in MATLAB

$$G(s) = rac{1}{s^3 + 2s^2 + s} = rac{1}{s(s+1)^2}$$

margin(G)
[Gm,Pm,Wcg,Wcp] = margin(G)

Gm =

2

Pm =

21.3877

Relative Stability in MATLAB

$$G(s) = rac{1}{s^3 + 2s^2 + s} = rac{1}{s(s+1)^2}$$

```
margin(G)
[Gm,Pm,Wcg,Wcp] = margin(G)

Gm =
    2

Pm =
    21.3877
```

• Is stable the closed-loop system with a unity negative feedback?

```
step(feedback(G,1,-1))
```


Gain Margin

$$CG(s) = 2 imes rac{1}{s^3 + 2s^2 + s}$$

step(feedback(GmG,1,-1))
xlim([0,50])

Gain Margin

$$CG(s) = 4 imes rac{1}{s^3 + 2s^2 + s}$$

step(feedback(GmG,1,-1))
xlim([0,50])

Phase Margin

Add more delay

$$CG(s) = e^{-j\Phi} imes rac{1}{s^3 + 2s^2 + s}$$

PmG = exp(-j*Pm/180*pi)*G
margin(PmG)

Phase Margin

```
FG = feedback(PmG,1,-1);

t = linspace(0,100,1000);
u = ones(size(t));

[y, tout] = lsim(FG,u,t,0);
plot(tout, abs(y))
```


Phase Margin

```
PmG2 = exp(-j*25/180*pi)*G
FG = feedback(PmG2,1,-1);

t = linspace(0,100,1000);
u = ones(size(t));

[y, tout] = lsim(FG,u,t,0);
plot(tout, abs(y))
```


Stability in Nyquist Plot

Stability in Nyquist Plot

- The gain margin, $K_m = \frac{1}{|G(j\omega)|}$ when $\angle G(j\omega) = 180^o$
 - $-K_m$ is the maximum stable gain in closed loop
 - It is easy to find the maximum stable gain from the Nyquist plot
- The phase margin, Φ_m is the uniform phase change required to destabilize the system under unitary feedback

Stability in Nyquist Plot

- What if *K* proportional controller is implemented?
 - Gain margin indicates how much you can increase the loop gain K before the system goes unstable
 - Phase margin indicates the amount of phase lag (time delay) you can add before the system goes unstable

$$G(s) = \frac{20}{(s+1)(s+2)(s+3)}$$

margin(G)
[Gm,Pm,Wcg,Wcp] = margin(G)

Gm =

3.0000

Pm =

44.4630

nyquist(G)

nyquist(Gm*G)

% expect instability for large Km
rlocus(G)

nyquist(G)

nyquist(PmG)

