F. Marchewkowe pole

Dostępna pamięć: 64 MB

Królik zamierza posadzić N marchewek i w tym celu musi kupić kawałek ziemi składający się z co najwyżej 3N pól. Następnie musi zasadzić marchewki tak, żeby na każdym polu rosła co najwyżej jedna marchewka.

Królik ma wpływ na to, jak będzie wyglądac jego kawałek ziemi: może określić liczbę grządek m (grządki numerowane są od 0 do m-1) oraz długości poszczególnych grządek, tj. liczby $y_0, y_1, y_2, \ldots, y_{m-2}, y_{m-1}$. Pola na grządce i są numerowane od 0 do y_i-1 . Przykładowy kawałek ziemi składający się z siedmiu grządek o długościach 1, 3, 2, 2, 3, 2, 1 został przedstawiony na rysunku poniżej.

Marchewki posiadane przez królika mają numery seryjne: marchewka $j \in \{1, \dots, N\}$ ma numer seryjny ℓ_j . Królik jest bardzo skrupulatnym ogrodnikiem i musi wiedzieć, gdzie zasadził każdą z marchewki. W tym celu wybiera liczbę A i ciąg liczb $a_0, a_1, a_2, \dots, a_{m-2}, a_{m-1}$. Pole posadzenia marchewki j jest wybierane w następujący sposób:

- 1. Marchewka j jest sadzona na grządce o numerze $k_j := ((A \cdot \ell_j) \mod P) \mod m$, gdzie P = 9 999 991 (jest to ulubiona liczba Królika).
- 2. Na wybranej grządce k_j marchewka j sadzona jest na polu $((a_{k_j} \cdot \ell_j) \mod P) \mod y_{k_j}$.

Po paru nieudanych próbach dobrania wielkości kawałka ziemi i liczb $A, a_0, a_1, \ldots, a_{m-1}$ Królik poprosił Cię o pomoc.

Na poniższym rysunku zostało przedstawione jedno z rozwiązań przykładu A.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się liczba naturalna $N \in [1, 2 \cdot 10^5]$. W drugim wierszu znajduje się N parami różnych liczb całkowitych dodatnich $\ell_1, \ell_2, \ldots, \ell_N$ nie większych od $5 \cdot 10^6$, oddzielonych pojedynczymi spacjami i będącymi numerami seryjnymi kolejnych marchewek Królika.

Specyfikacja danych wyjściowych

Twój program powinien wypisać następujące 4 wiersze. W pierwszym wierszu powinna znaleźć się liczba grządek m, będąca dodatnią liczbą całkowitą. W drugim wierszu powinien znaleźć się ciąg długości poszczególnych grządek $y_0, y_1, \ldots, y_{m-1}$ oddzielonych pojedynczymi spacjami. Powyższe liczby powinny być dodatnimi liczbami całkowitymi spełniającymi $\sum_{i=0}^{m-1} y_i \leq 3 \cdot N$.

W trzecim wierszu powinna znaleźć się liczba A, a w czwartym opisany wyżej ciąg liczb $a_0, a_1, \ldots, a_{m-1}$ oddzielonych pojedynczymi spacjami, gwarantujący, że na każdym polu zostanie posadzona co najwyżej jedna marchewka. Jeśli istnieje więcej niż jedno poprawne rozwiązanie, Twój program ma wypisać dowolne z nich. Liczby $A, a_0, a_1, \ldots, a_{m-1}$ powinny być nieujemnymi liczbami całkowitymi, nie większymi niż $5 \cdot 10^7$.

Przykład A

Wejście:	Wyjście:
8	7
3 4 10 1 6 9 7 8	1 3 2 2 3 2 1
	1
	1 10 1 13 0 1 1

Przykład B

Wejście:	Wyjście:
2	2
4 5	1 1
	1
	0 0

Przykład C

Wejście:	Wyjście:
2	1
4 5	2
	1
	1