

88F6710, 88F6707, and 88F6W11

ARMADA® 370 SoC

Hardware Specifications

Doc. No. MV-S107978-00, Rev. G April 3, 2014, Preliminary

Document Classification: Proprietary Information

Docum	Document Conventions			
	Note: Provides related information or information of special importance.			
•	Caution: Indicates potential damage to hardware or software, or loss of data.			
Warning: Indicates a risk of personal injury.		injury.		
Docum	cument Status			
Doc Status:	Doc Status: Preliminary Technical Publication: 0.xx			

For more information, visit our website at: www.marvell.com

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.

Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

- 1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
- 2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are controlled for national security reasons by the EAR; and,
- 3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any such information.

Copyright © 2014. Marvell International Ltd. All rights reserved. Alaska, ARMADA, CarrierSpan, Kinoma, Link Street, LinkCrypt, Marvell logo, Marvell, Moving Forward Faster, PISC, Prestera, Odeo (for chips), QDEO logo (for chips), QuietVideo, Virtual Cable Tester, Xelerated, and Yukon are registered trademarks of Marvell or its affiliates. Avanta, Avastar, DragonFly, HyperDuo, Kirkwood, Marvell Smart, Qdeo, QDEO logo, The World as YOU See It, Vmeta and Wirespeed by Design are trademarks of Marvell or its affiliates.

Patent(s) Pending—Products identified in this document may be covered by one or more Marvell patents and/or patent applications.

Doc. No. MV-S107978-00 Rev. G

Page 2

Document Classification: Proprietary Information

April 3, 2014, Preliminary

Revision History

Table 1: Revision History

Revision	Date	Comments
Rev. G	April 3, 2014	Revised Release
New revision	for public release.	
Rev. F September 19, 2013		Revised Release
Rev. E	October 17, 2012	Revised Release
Rev. D	September 2, 2012	Revised Release
Rev. C	January 26, 2012	Revised Release
Rev. B	October 10, 2011	Revised Release
Rev. A	August 10, 2011	Initial Release

THIS PAGE IS INTENTIONALLY LEFT BLANK.

88F6710, 88F6707, and 88F6W11 ARMADA® 370 SoC Hardware Specifications

Marvell. Moving Forward Faster

PRODUCT OVERVIEW

The 88F6710, 88F6707, and 88F6W11 are complete system-on-chip (SoC) solutions based on the Marvell® Core Processor embedded CPU technology. By leveraging the successful Marvell system controllers and extensive expertise in ARM instruction-set-compliant CPUs, the 88F6710/6707/6W11 present a new level of performance, integration, and efficiency to raise the performance/power and performance/cost bars, and provide a simple system design.

The 88F6710/6707/6W11 integrate a single Superscalar processor with:

- ARMv7-compliant Marvell® Core Processor CPU that includes Marvell micro-architecture enhancements and a double precision IEEE-compliant Floating Point Unit (FPU)
- 256 KB Layer 2 (L2) cache
- Low-latency, high-bandwidth, tightly coupled DDR3 memory controller
- Four Integrated multi-speed SERDES lanes
- IPSec and Storage Acceleration Engines

The advanced I/O peripherals for these devices include:

- 88F6710: PCI Express (PCIe) Gen2.0, USB 2.0 with integrated PHY, SATA II ports, Ethernet, I²S, S/PDIF, TDM, and device bus interfaces
- 88F6707: PCI Express (PCIe) Gen2.0, USB 2.0 with integrated PHY, SATA II ports, Ethernet, and SDIO, and TDM interfaces
- 88F6W11: PCI Express (PCIe) Gen2.0, USB 2.0 with integrated PHY, I²S, S/PDIF, Ethernet, SDIO, TDM, and device bus interfaces

An SPI Flash interface and a parallel NAND Flash interface are also included in these devices.

For enhanced handshake and data flow, a full hardware I/O cache coherency interconnect is implemented between the CPU and the I/Os. There is also support for full software I/O cache coherency.

Optimized for low-power operation, and providing advanced power management capabilities, the 88F6710/6707/6W11 is ideally suited for a wide range of applications that require both high performance and minimal power consumption. The rich and diversified interface mix of the 88F6710/6707/6W11 allows it to be the perfect solution for different types of applications and systems in various fields, such as:

- Integrated Service Router
- Networking and Telecom line cards
- Control plane networking applications
- Wireless access point
- NAS and Media Server
- Switch controller
- Plug computing
- Thin clients

The innovative Coherency Fabric architecture provides a coherent interconnect between the CPU and the I/Os. The bus efficiency also enables a high-frequency, high-bandwidth, and low-latency access time throughout the CPU memory subsystem.

The on-chip Mbus architecture, a Marvell® proprietary crossbar interconnect for non-blocking any-to-any connectivity, enables concurrent transactions among multiple units. This design results in high system throughput, allowing system designers to create high-performance products.

88F6710 Block Diagram

88F6707 Block Diagram

88F6W11 Block Diagram

FEATURES

■ The 88F6710, 88F6707, and 88F6W11 include:

- High-performance, dual-issue, and out-of-order ARMv7 CPU with Floating Point Unit (FPU)
- 256 KB, 4-way L2 cache
- 16-bit SDRAM interface supporting DDR3-1333 memories
- · Advanced power management
- Two Ethernet networking controllers
- Four SERDES lanes with versatile muxing options for SGMII, PCIe, and SATA
- Two x1 PCI Express 2.0 interfaces
- SATA II ports (88F6710/88F6707 only)
- Two USB 2.0 Host/Device ports with integrated PHY
- · Security cryptographic engine
- Integrated DMA/Storage Accelerator engines (DMA, RAID parity or iSCSI CRC channels)
- Time Division Multiplexing TDM interface supporting up to two VoIP channels (88F6710/88F6W11 only)
- 8/16-bit Device bus (88F6710/88F6W11 only)
- 8/16-bit NAND Flash controller
- Two SPI interfaces
- Integrated Interchip Sound (I²S) audio in/out interface or S/PDIF (Sony/Philips Digital Interconnect Format) interface (88F6710/88F6W11 Only)
- SD/SDIO/MMC Host interface
- Two 16750 compatible UART ports
- Two I²C interfaces
- Programmable Timers and Watchdogs
- Internal Real Time Clock (RTC)
- Internal Thermal Sensor
- Internal Spread Spectrum Clock Generator (SSCG)
- · Interrupt controller with priority scheme
- Adaptive Voltage Scaling (AVS) mechanism
- Industrial grade devices for -40°C storage/junction temperature

■ Internal architecture

- High-bandwidth, low-latency Coherency Fabric interconnect between the Marvell[®] Core Processor CPU and CPU memory sub-system
- Support for full hardware or software cache coherency between the CPU and the I/Os
- Advanced Mbus (crossbar extension) architecture with any-to-any concurrent I/O connectivity

Dual-Issue and out-of-order ARMv7-compliant CPU

- Up to 1.2 GHz
- 2.6 DMIPS/MHz
- Superscalar RISC CPU issues two instructions per cycle
- Single/double precision Floating Point Unit (VFP3-16) IEEE 754 compliant
- Compliant with ARMv7 architecture, published in the ARM Architecture Reference Manual, Second Edition
- 32-bit instruction set for performance and flexibility
- Thumb-2 and Thumb-EE instruction set for code density
- Supports DSP instructions to boost performance for signal processing applications
- MMU-ARMv7 VMSA compliant
- 32-KB L1 Instruction cache four-way set-associative, physically indexed, physically tagged, parity protected
- 32-KB L1 Data cache, eight-way set-associative, physically indexed physically tagged, parity protected
- MESI cache coherency scheme
- Hit Under Miss (HUM) and multiple outstanding requests
- Advanced write coalescing support
- Variable stages pipeline—six to ten stages
- Out-of-order execution for increased performance
- In-order retire via a Reordering Buffer (ROB)
- Advanced branch prediction—32 Branch Target Buffer (BTB) and 1K entries Branch Prediction Unit (BPU) with GShare algorithm
- Branch Return Stack Point for subroutine call
- 64-bit internal data bus with 64-bit load/store instructions
- Endianness options—Little, Big, and Mixed Endianness
- JTAG/ARM-compatible ICE, and Embedded Trace Module (ETM) for enhanced realtime debug capabilities

256 KB Unified L2

- Four-way, write-back and write-through cache
- · Physically addressed
- Non-blocking pipeline supports multiple outstanding requests and HUM operation
- I/O direct access to/from L2 cache for all Mbus masters, allowing descriptors and data to be directly deposited into the L2 cache
- ECC protected

■ DDR3 SDRAM controller

- 16-bit interface
- Supports DDR3 1.35V and 1.5V
- DDR3 up to 667 MHz clock rate (DDR3-1333)
- Clock ratio of 1:N, 2:N, and 3:N between the DDR SDRAM and the CPU, respectively
- Auto calibration of I/Os output impedance
- Supports four SDRAM ranks
- Supports all DDR devices densities up to 4 Gb x8 or 8 Gb x16
- · DDR3 write and read leveling
- · DDR3 address mirroring support
- Supports DDR3 BL8
- Supports 2T and 3T modes to enable high-frequency operation even under heavy-load configuration
- Supports SDRAM bank interleaving
- · Supports up to 32 open pages
- Supports up to 128-byte burst per single memory access

Advanced Power Management

- CPU dynamic Wait-For-Interrupt mode (Idle)
- CPU dynamic Power-down mode (Deep Idle)
- SDRAM Self Refresh and Power Down modes
- Unused SERDES shutdown
- · Selectable clock gating of different interfaces

■ Two Ethernet Networking Controllers and MACs

- Supports 10/100/1000/2500 Mbps
- Supported interfaces include: RGMII, MII, GMII, and SGMII
- Supports link aggregation
- Priority queueing on receive based on DA or VLAN-Tag
- · Per queue and per port egress rate shaping
- Supports queuing based on Marvell[®] DSA Tag
- Layer 2/3/4 frame parsing
- Supports long frames (up to 10 KB)
- TCP/IP and UDP/IP acceleration on both receive and transmit
- 802.3az EEE (Energy Efficient Ethernet)
- WOL based on magic packet, ARP filter, user configurable waking packet

■ Four High Speed Integrated SERDES lanes

- Integrated low-power, high-speed SERDES PHYs, based on proven Marvell SERDES technology
- Diverse muxing options for the following interfaces:
 - 88F6707/88F6710: PCIe, SATA, and SGMII
 - 88F6W11: PCIe and SGMII

■ Two PCI Express 2.0 Interfaces

- PCI Express Gen 1.1 at 2.5 Gbps / Gen 2.0 at 5 Gbps
- Port 0 may be configured as Root Complex or Endpoint; Port 1 is Root Complex only
- x1 link width
- · Lane polarity inversion support
- Maximum payload size of 128 bytes
- Single Virtual Channel (VC-0)
- Replay buffer support
- Extended PCI Express configuration space
- Power management: L0s and L1 ASPM active power state support; software L1 and L2 support
- MSI support as Endpoint
- MSI/MSI-x support as Root Complex
- Error message support

■ PCI Express master specific features

- Supports DMA bursts between memory and PCI Express
- Supports up to four outstanding read transactions
- Maximum read request of up to 128 bytes
- Maximum write request of up to 128 bytes

■ PCI Express target specific features

- Supports reception of up to eight read requests
- · Maximum read request of up to 4 KB
- Maximum write request of up to 128 bytes
- Supports PCI Express access to all of the device's internal registers

■ Two USB 2.0 ports

- USB 2.0 compatible with integrated PHY
- Support for interface as a USB Host or Device (peripheral)
- Enhanced Host Controller interface (EHCI) compatible as a host
- As a host, supports direct connection to all peripheral types (LS, FS, HS)
- As a peripheral, connects to all host types (HS, FS) and hubs
- Six independent endpoints supporting control, interrupt, bulk, and isochronous data transfers
- Dedicated DMA for data movement between memory and port

Marvell[®] 3 Gbps (Gen2i) SATA II interfaces (88F6710/88F6707 only)

- 88F6707/88F6710: Two ports
- Compliant with SATA II Phase 1 specifications
 - Supports SATA II Native Command Queuing (NCQ), up to 32 outstanding commands
 - First party DMA (FPDMA) full support
 - Backwards compatible with SATA I devices

- Supports SATA II Phase 2 advanced features
 - 3 Gbps (Gen2i) SATA II speed
 - Port Multiplier (PM)—Performs FIS-based switching as defined in SATA working group PM definition
 - Port Selector (PS)—Issues the protocol-based Out-Of-Band (OOB) sequence to select the active host port
- Supports external SATA (eSATA)
- Supports device 48-bit addressing
- Supports ATA Tag Command Queuing
- Enhanced-DMA [EDMA] for the SATA port
 - Automatic command execution without host intervention
 - Command queuing support, for up to 32 outstanding commands
 - Separate SATA request/response queues
 - 64-bit addressing support for descriptors and data buffers in system memory
- · Read ahead
- · Advanced interrupt coalescing
- Advanced drive diagnostics via the ATA SMART command

Cryptographic engine

- Hardware implementation of the IPsec encryption and authentication protocols to boost packet processing speed
- Implements AES, DES, and 3DES encryption algorithms
- Implements SHA1, SHA2, and MD5 authentication algorithms
- Supports storage de-duplication acceleration

■ Two DMA/Storage Acceleration Engines

- Two channels per engine
- RAID parity calculation on up to eight source blocks
- iSCSI CRC-32 calculation
- Memory initialization

■ TDM interface (88F6710/88F6W11 only)

- Generic interface to standard SLIC/SLAC/DAA/codec devices
- · Compatible with standard PCM highway formats
- TDM protocol support for two VoIP channels, up to 128 time slots
- Two integrated DMA engines to transfer voice data to/from memory buffer

■ **Device Bus controller** (88F6710/88F6W11 only)

- 16-bit multiplexed address/data bus
- Supports different types of standard memory devices such as NOR Flash and ROM
- Five chip selects with programmable timing
- Optional external wait-state support

- 8/16-bit width device support
- Up to 128B burst per a single device bus access

■ NAND Flash controller

- 8/16-bit width device support
- Hardware ECC supporting SLC and MLC devices (up to 16-bit ECC per 512B)
- Supports small page (512B) and large page (2KB, 4KB, and 8KB)
- · Four chip selects

■ Two SPI ports

- General purpose SPI interface
- Up to four chip selects
- Configurable clock polarity and clock phase
- · Supports direct access to SPI slave
- Boot from serial flash in 24/32-bit address

■ SD/SDIO/MMC Host interface

- 1-bit/4-bit SD, SDIO, and MMC cards
- SD PHY 1.1 up to 50 MHz
- Supports SDHC cards (SD PHY 2.0)
- Hardware generate/check CRC on all command and data transaction on card bus

Two UART interfaces

- 16750 UART compatible
- Each port has two pins for transmit and receive operations, and two pins for modem control functions

Integrated programable 32-bit timers/counters and watchdog timers

Interrupt controller

Advanced interrupt controller with interrupt prioritization mechanism

■ Two I²C interfaces

- General purpose I²C master/slave
- EEPROM Serial initialization support

■ I²S, S/PDIF Audio In/Out interface (88F6710/88F6W11 only)

- Either I²S or S/PDIF inputs can be active at one time
- Both I²S and S/PDIF outputs can be simultaneously active, transferring the same PCM data
- I²S-specific features
 - Sample rates of 44.1/48/96 kHz
 - I²S input and I²S output operate at the same sample rate
 - I²S input and I²S output support independent bit depths (16/24-bit)
 - Supports plain I²S, right-justified and left-justified formats

- S/PDIF-specific features
 - Compliant with 60958-1, 60958-3, and IEC61937 specifications
 - Sample rates of 44.1/48/96 kHz
 - 16/20/24-bit depths
- Real Time Clock
- Integrated BootROM
 - Boot from SPI Flash, Parallel NOR Flash, SATA, NAND Flash, PCIe, and UART
- Multi-purpose pins dedicated for peripheral functions and General Purpose I/O (GPIO)
 - Each pin can be configured independently
 - GPIO inputs can be used to register interrupts from external devices, and generate maskable interrupts

■ Clock generation support

- Core PLL for internal generation of Core clock, PCIe clock, GbE clock, USB clock, and SATA clock from a single 25-MHz crystal reference clock
- CPU PLL for internal generation of CPU clock, L2 clock and SDRAM clock
- TDM PLL for internal generation of TDM clock
- Audio DCO for internal generation of audio clocks (88F6710 only)
- Supports internal generation of spread spectrum clocking on the CPU and SDRAM clocks
- 286-pin HSBGA 19 x 19 mm, 1 mm ball pitch, green compliant package

Table of Contents

Revis	sion History	3
Prod	luct Overview	5
Featu	ures	9
Prefa	ace	21
	About this Document	21
	Relevant Devices	21
	Related Documentation	21
	Document Conventions	22
1	Product Summary	23
2	Pin Information	25
2.1	Pin Logic	25
2.2	Pin Descriptions	29
2.3	Internal Pull-up and Pull-down Pins	63
3	Unused Interface Strapping	64
4	88F6710, 88F6707, and 88F6W11 Pin Maps and Pin Lists	66
5	Clocking	67
5.1	Clock Frequency Configuration Options	68
5.2	Spread Spectrum Clock Generator (SSCG)	68
6	Pin Multiplexing	69
6.1	Multi Purpose Pins Functional Summary	69
6.2	Multi Purpose Pins Power Segments	70
6.3	Multi Purpose Pins Functional Considerations	71
6.4	Gigabit Ethernet Pins Multiplexing on the MPP	71
6.5	High-Speed SERDES Multiplexing	
6.6	Device Bus/NAND Flash Multiplexing (88F6710/88F6W11 Only)	74
7	Reset and Initialization	76
7.1	Power Up/Down Sequence	76
7.2	Hardware Reset	78
7.3	PCI Express Reset	79
7.4	Power On Reset (POR)	80
7.5	Reset Configuration	80

7.6	Serial ROM Initialization	81
7.7	Boot Sequence	83
8	JTAG Interface	84
8.1	CoreSight™ Subsystem ARMv7 Mode	85
8.2	Instruction Register	85
8.3	Bypass Register	86
8.4	JTAG Scan Chain	86
8.5	ID Register	86
9	Electrical Specifications	87
9.1	Absolute Maximum Ratings	87
9.2	Recommended Operating Conditions	89
9.3	Thermal Power Dissipation	91
9.4	Current Consumption	93
9.5	DC Electrical Specifications	94
9.6	AC Electrical Specifications	103
9.7	Differential Interface Electrical Characteristics	137
10	Thermal Data	157
11	Package	158
12	Part Order Numbering/Package Marking	159
12.1	Part Order Numbering	159
122	Package Marking	161

List of Tables

Re	vision Histo	ory	3
	Table 1:	Revision History	3
Pre	eface		21
1	Product S	Summary	23
	Table 2:	88F6710, 88F6707, and 88F6W11 Similarities and Differences	23
2	Pin Inform	nation	25
	Table 3:	Interface Pin Prefixes	29
	Table 4:	Power Supply Pins Description	31
	Table 5:	Adaptive Voltage Scaling (AVS) Pin Description	32
	Table 6:	Reduced Gigabit Media Independent Interface (RGMII) Pin Description	33
	Table 7:	Gigabit Media Independent Interface (GMII) Pin Description	34
	Table 8:	Media Independent Interface (MII) Pin Description	35
	Table 9:	Serial Gigabit Media Independent Interface (SGMII) Pin Description	36
	Table 10:	General Purpose Pins (GPP) Pin Description	37
	Table 11:	Inter-IC Sound (I2S) Interface Pin Description	38
	Table 12:	JTAG Interface Pin Description	39
	Table 13:	Miscellaneous Pin Description	40
	Table 14:	Multi Purpose Pins (MPP) Pin Description	41
	Table 15:	Device Bus Pin Description	42
	Table 16:	NAND Flash Interface Pin Description	43
	Table 17:	PCI Express 0 (PCIe) Interface Pin Description	45
	Table 18:	PCI Express 1 (PCIe) Interface Pin Description	46
	Table 19:	Power Management Unit Pin Description	47
	Table 20:	Crystal Reference Clock Pin Description	48
	Table 21:	Real Time Clock (RTC) Interface Pin Description	49
	Table 22:	Serial-ATA (SATA) Interface Pin Description	50
	Table 23:	Secure Digital Input/Output (SDIO) Interface Pin Description	51
	Table 24:	SDRAM DDR3 Interface Pin Description	52
	Table 25:	Serial Management Interface (SMI) Pin Description	55
	Table 26:	Sony/Philips Digital Interface (S/PDIF) Pin Description	56
	Table 27:	Serial Peripheral Interface (SPI) Pin Description	57
	Table 28:	Time Division Multiplexing (TDM) Interface Pin Description	58
	Table 29:	I2C Interface Pin Description	59
	Table 30:	Universal Asynchronous Receiver Transmitter (UART) Interface Pin Description	60
	Table 31:	Universal Serial Bus (USB) 2.0 Interface Pin Description	61
	Table 32:	Reserved/Not Connected (NC) Pins Description	62
	Table 33:	Internal Pull-up Pins	63
	Table 34:	Internal Pull-down Pins	63

3	Unused I	nterface Strapping	64
	Table 35:	Unused Interface Strapping	64
4	88F6710,	88F6707, and 88F6W11 Pin Maps and Pin Lists	66
5	Clocking		67
	Table 36:	Clock Frequency Options	68
6	Pin Multi	plexing	69
	Table 37:	VDDO Voltage Configuration Options	
	Table 38:	Gigabit Ethernet Pins Multiplexing	72
	Table 39:	88F6710, 88F6707, and 88F6W11 SERDES Lanes Multiplex Options	
	Table 40:	Device Bus/NAND Flash Multiplexing	74
7	Reset and	d Initialization	76
	Table 41:	I/O and Core Voltages	76
	Table 42:	Power-Up Sequence Symbols	77
8	JTAG Int	erface	84
	Table 43:	Supported JTAG Instructions	85
	Table 44:	IDCODE Register Map	86
9	Electrica	I Specifications	87
	Table 45:	Absolute Maximum Ratings	87
	Table 46:	Recommended Operating Conditions	89
	Table 47:	Core and CPU Thermal Power Dissipation	91
	Table 48:	I/O Interface Thermal Power Dissipation	92
	Table 49:	Current Consumption	93
	Table 50:	General 3.3V Interface (CMOS) DC Electrical Specifications	94
	Table 51:	General 2.5V Interface (CMOS) DC Electrical Specifications	95
	Table 52:	General 1.8V Interface (CMOS) DC Electrical Specifications	96
	Table 53:	SDRAM DDR3 (1.5V) Interface DC Electrical Specifications	97
	Table 54:	SDRAM DDR3L (1.35V) Interface DC Electrical Specifications	98
	Table 55:	I2C Interface 3.3V DC Electrical Specifications	99
	Table 56:	SPI Interface 3.3V DC Electrical Specifications	99
	Table 57:	TDM Interface 3.3V DC Electrical Specifications	100
	Table 58:	NAND Flash 1.8V DC Electrical Specification	101
	Table 59:	NAND Flash 3.3V DC Electrical Specification	101
	Table 60:	AVS DC Electrical Specification	102
	Table 61:	Reference Clock and Reset AC Timing Specifications	103
	Table 62:	RGMII AC Timing Table	106
	Table 63:	GMII AC Timing Table	108
	Table 64:	MII MAC Mode AC Timing Table	110
	Table 65:	SMI Master Mode AC Timing Table	112
	Table 66:	SDRAM DDR3 Interface AC Timing Table	
	Table 67:	SDIO Host in High-Speed Mode AC Timing Table	
	Table 68:	MMC High Speed Host AC Timing Table	119

	Table 69:	Device Bus Interface AC Timing Table	121
	Table 70:	SPI (Master Mode) AC Timing Table	123
	Table 71:	I2C Master AC Timing Table	125
	Table 72:	I2C Slave AC Timing Table	125
	Table 73:	JTAG Interface AC Timing Table	127
	Table 74:	NAND Flash AC Timing Table	129
	Table 75:	TDM Interface AC Timing Table	131
	Table 76:	Inter-IC Sound (I2S) AC Timing Table	133
	Table 77:	S/PDIF AC Timing Table	135
	Table 78:	PCI Express Interface Differential Reference Clock Characteristics	138
	Table 79:	PCI Express Interface Spread Spectrum Requirements	138
	Table 80:	PCI Express 1.1 Interface Driver and Receiver Characteristics	139
	Table 81:	PCI Express 2.0 Interface Driver and Receiver Characteristics	140
	Table 82:	SATA I Interface Gen1i Mode Driver and Receiver Characteristics	142
	Table 83:	SATA II Interface Gen2i Mode Driver and Receiver Characteristics	144
	Table 84:	SATA II Interface Gen2m Mode Driver and Receiver Characteristics	145
	Table 85:	USB Low Speed Driver and Receiver Characteristics	146
	Table 86:	USB Full Speed Driver and Receiver Characteristics	147
	Table 87:	USB High Speed Driver and Receiver Characteristics	148
	Table 88:	SGMII Interface Driver and Receiver Characteristics (1000BASE-X)	150
	Table 89:	SGMII Interface Settings and Configuration (1000 BASE-X)	151
	Table 90:	DR-SGMII Driver and Receiver Characteristics	153
	Table 91:	DR-SGMII Settings and Configuration	154
10	Thermal I	Oata	157
	Table 92:	Thermal Data for the 88F6710, 88F6707, and 88F6W11 in HSBGA Package	157
11	Package		158
12	Part Orde	er Numbering/Package Marking	159
	Table 93:	88F6710, 88F6707, and 88F6W11 Commercial Grade Part Order Options	160
	Table 94:	88F6710, 88F6707, and 88F6W11 Industrial Grade Part Order Options	160

List of Figures

Re	vision Histo	ory	3
Pro	oduct Overv	view	5
	88F6710 B	Block Diagram	6
	88F6707 B	Block Diagram	7
	88F6W11 E	Block Diagram	8
Fea	atures		9
Pre	eface		21
1	Product S	Summary	23
2	Pin Inforr	mation	25
	Figure 1:	88F6710 Pin Logic Diagram	26
	Figure 2:	88F6707 Pin Logic Diagram	27
	Figure 3:	88F6W11 Pin Logic Diagram	28
3	Unused I	nterface Strapping	64
4	88F6710,	88F6707, and 88F6W11 Pin Maps and Pin Lists	66
5	Clocking		67
6	Pin Multip	plexing	69
7	Reset and	d Initialization	76
	Figure 4:	Power Up Sequence Example	77
	Figure 5:	Serial ROM Data Structure	82
	Figure 6:	Serial ROM Read Example	83
8		erface	
	Figure 7:	CoreSight Subsystem ARMv7 Mode	85
9		Specifications	
	Figure 8:	TCLK_OUT Reference Clock Test Circuit	
	Figure 9:	TCLK_OUT AC Timing Diagram	
	Figure 10:	RGMII Test Circuit	
	Figure 11:	RGMII AC Timing Diagram	107
	Figure 12:	GMII Test Circuit	
	Figure 13:	GMII Output AC Timing Diagram	
	Figure 14:	GMII Input AC Timing Diagram	
	Figure 15:	MII MAC Mode Test Circuit	
	Figure 16:	MII MAC Mode Output Delay AC Timing Diagram	110

Figure 17:	MII MAC Mode Input AC Timing Diagram	111
Figure 18:	MDIO Master Mode Test Circuit	
Figure 19:	MDC Master Mode Test Circuit	
Figure 20:	SMI Master Mode Output AC Timing Diagram	
Figure 21:	SMI Master Mode Input AC Timing Diagram	
Figure 22:	SDRAM DDR3 Interface Test Circuit	
Figure 23:	SDRAM DDR3 Interface Write AC Timing Diagram	115
Figure 24:	SDRAM DDR3 Interface Address and Control AC Timing Diagram	116
Figure 25:	SDRAM DDR3 Interface Read AC Timing Diagram	116
Figure 26:	Secure Digital Input/Output (SDIO) Test Circuit	117
Figure 27:	SDIO Host in High Speed Mode Output AC Timing Diagram	118
Figure 28:	SDIO Host in High Speed Mode Input AC Timing Diagram	118
Figure 29:	MMC Test Circuit	119
Figure 30:	MMC High-Speed Host Output AC Timing Diagram	120
Figure 31:	MMC High-Speed Host Input AC Timing Diagram	120
Figure 32:	Device Bus Interface Test Circuit	121
Figure 33:	Device Bus Interface Output Delay AC Timing Diagram	122
Figure 34:	Device Bus Interface Input AC Timing Diagram	122
Figure 35:	SPI (Master Mode) Test Circuit	123
Figure 36:	SPI (Master Mode) AC Timing Diagram	124
Figure 37:	I2C Test Circuit	126
Figure 38:	I2C Output Delay AC Timing Diagram	126
Figure 39:	I2C Input AC Timing Diagram	126
Figure 40:	JTAG Interface Test Circuit	127
Figure 41:	JTAG Interface Output Delay AC Timing Diagram	128
Figure 42:	JTAG Interface Input AC Timing Diagram	128
Figure 43:	NAND Flash Test Circuit	
Figure 44:	NAND Flash Input AC Timing Diagram	
Figure 45:	TDM Interface Test Circuit	132
Figure 46:	TDM Interface Output Delay AC Timing Diagram	
Figure 47:	TDM Interface Input Delay AC Timing Diagram	
Figure 48:	Inter-IC Sound (I2S) Test Circuit	
Figure 49:	Inter-IC Sound (I2S) Output Delay AC Timing Diagram	
Figure 50:	Inter-IC Sound (I2S) Input AC Timing Diagram	
Figure 51:	S/PDIF Test Circuit	
Figure 52:	PCI Express Interface 1.1 Test Circuit	
Figure 53:	PCI Express Interface 2.0 Test Circuit	
Figure 54:	Low/Full Speed Data Signal Rise and Fall Time	
Figure 55:	High Speed TX Eye Diagram Pattern Template	
Figure 56:	High Speed RX Eye Diagram Pattern Template	
Figure 57:	Tri-Speed Interface Driver Output Voltage Limits And Definitions	
Figure 58:	Driver Output Differential Amplitude and Eye Opening	152

	Figure 59:	DR-SGMII Driver Output Voltage Limits and Definitions	155
	Figure 60:	DR-SGMII Driver Output Differential Voltage under Pre-emphasis	156
	Figure 61:	DR-SGMII Driver Output Differential Amplitude and Eye Opening	156
10	Thermal D	Oata	157
11	Package		158
	Figure 62:	HSBGA 19x19 mm, 286-pin Package and Dimensions	158
12	Part Orde	r Numbering/Package Marking	159
	Figure 63:	Sample Part Number	159
	Figure 64:	Sample Package Marking and Pin 1 Location	161

Preface

About this Document

This datasheet provides the hardware specifications for the 88F6710, 88F6707, and 88F6W11. The hardware specifications include detailed pin information, configuration settings, electrical characteristics and physical specifications.

This datasheet is intended to be the basic source of information for designers of new systems.

All of the features and interfaces described in this document do not necessarily apply to all of the devices. It is noted in the document if a feature or interface only applies to specific device(s). Also, see Table 1, Product Summary, on page 23 for a list of features and interfaces relevant to each of the devices.

In this document, the 88F6710, 88F6707, and 88F6W11 are often referred to as "88F6710/6707/6W11" or the "device".

Relevant Devices

- 88F6707
- 88F6710
- 88F6W11

Related Documentation

The following documents contain additional information related to the 88F6710, 88F6707, and 88F6W11. For the latest revision, contact a Marvell representative.

- 88F6707, 88F6710, and 88F6W11 Functional Specifications, Doc No. MV-S107979-00
- 88F6707, 88F6710, and 88F6W11 Hardware Design Guide, Doc No. MV-S302079-00
- TB-300: Differences Between Revisions A0 and A1 of the ARMADA® 370 88F6707 and 88F6W11 Devices, Doc No. MV-S108325-00

See the Marvell Extranet website for the latest product documentation.

Document Conventions

The following conventions are used in this document:

Signal Range	A signal name followed by a range enclosed in brackets represents a range of logically related signals. The first number in the range indicates the most significant bit (MSb) and the last number indicates the least significant bit (LSb).
	Example: DB_Addr[12:0]
Active Low Signals #	An n letter at the end of a signal name indicates that the signal's active state occurs when voltage is low.
	Example: INTn
State Names	State names are indicated in <i>italic</i> font.
	Example: linkfail
Register Naming Conventions	Register field names are indicated by angle brackets. Example: <reginit></reginit>
	Register field bits are enclosed in brackets. Example: Field [1:0]
	Register addresses are represented in hexadecimal format. Example: 0x0
	Reserved: The contents of the register are reserved for internal use only or for future use.
	A lowercase <n> in angle brackets in a register indicates that there are multiple registers with this name.</n>
	Example: Multicast Configuration Register <n></n>
Reset Values	Reset values have the following meanings: 0 = Bit clear 1 = Bit set
Abbreviations	Kb: kilobit KB: kilobyte Mb: megabit MB: megabyte Gb: gigabit GB: gigabyte
Numbering Conventions	Unless otherwise indicated, all numbers in this document are decimal (base 10). An 0x prefix indicates a hexadecimal number. An 0b prefix indicates a binary number.

1 Product Summary

Table 2 summarizes the interface similarities and differences between the 88F6707 and 88F6W11 devices.

Table 2: 88F6710, 88F6707, and 88F6W11 Similarities and Differences

Feature	88F6710	88F6707	88F6W11	
Similarities				
Single Marvell [®] Core Processor ARMv7- compliant CPU, with a Floating Point Unit (FPU)	Up to 1.2 GHz			
Shared L2 cache	256 KB, 4-way L2 cache			
DDR3 SDRAM Interface	16-bit Width DDR3-1333 MHz			
Gigabit Ethernet Interface GMII/MII/RGMII/SGMII These options are multiplexed with other functionality	2 Ports			
SERDES Lanes Multiplex of: • SGMII • PCIe • SATA	4 Lanes			
PCI Express (PCIe) Gen2.0 Interface PCIe SERDES lanes are multiplexed with other functionality	2 x 1 PCIe Interfaces			
NAND Flash Controller	8/16-bit Width			
USB2.0 Interface	2 Host/Device Ports with integrated PHY			
Cryptographic Engine and Security Accelerator (CESA)	Integrated CESA for network security.			
XOR DMA Engine	2 XOR DMA Engines (4 Channels)			
Serial Peripheral Interface (SPI)	2 Interfaces			
SDIO/MMC Interface	Supports Host Interface			
16750-Compatible UART Interface	2 Interfaces			
Advanced Power Management Unit	Supported			
Advanced Interrupt Controller	Supported			
Adaptive Voltage Scaling (AVS)	Supported			
Integrated programable 32-bit timers/counters and watchdog timers	Supported			

Table 2: 88F6710, 88F6707, and 88F6W11 Similarities and Differences (Continued)

Feature	88F6710 88F6707 88F6W11				
Internal Real Time Clock (RTC)		Supported			
Internal Thermal Sensor		Supported			
Internal Spread Spectrum Clock Generator (SSCG)		Supported			
Interrupt controller with priority scheme	Supported				
Differences					
Integrated Interchip Sound (I ² S) audio in/out interface or S/PDIF (Sony/Philips Digital Interconnect Format) interface	Supported	Unsupported	Supported		
8/16-bit Width Device Bus	Supported	Unsupported	Supported		
Time Division Multiplexing Interface (TDM) (2 Channels)	2 Channels	Unsupported	2 Channels		
Serial ATA II (SATA II) Interface with Integrated PHY(s)	2 Ports	2 Ports	Unsupported		

2 Pin Information

This section provides the pin logic diagram for the device and a detailed description of the pin assignments and their functionality.

2.1 Pin Logic

This section provides the pin logic diagram for the 88F6710, 88F6707, and 88F6W11.

Figure 1: 88F6710 Pin Logic Diagram

Figure 2: 88F6707 Pin Logic Diagram

Figure 3: 88F6W11 Pin Logic Diagram

2.2 Pin Descriptions

This section details all the pins for the different interfaces providing a functional description of each pin and pin attributes.

The following list defines the abbreviations and acronyms used in the pin description tables.

Term	Definition
<n></n>	Represents port number when there are more than one ports
Analog	Analog Driver/Receiver or Power Supply
Calib	Calibration pad type
CML	Current Mode Logic
CMOS	Complementary Metal-Oxide-Semiconductor
DDR	Double Data Rate
GND	Ground Supply
HCSL	High-speed Current Steering Logic
I	Input
I/O	Input/Output
0	Output
OD	Open Drain pin
Power	Power Supply
SDR	Single Data Rate
SSTL	Stub Series Terminated Logic
t/s	Tri-State pin
TS	Tri-State Value
XXXn	n - Suffix represents an Active Low Signal

Table 3: Interface Pin Prefixes

Interface	Prefix
Audio Interface	AU_
Gigabit Ethernet	GE_
I ² C	I2C_
JTAG	JT_
SDRAM	M_
Misc	N/A

Table 3: Interface Pin Prefixes (Continued)

Interface	Prefix
MPP	N/A
PCI Express	PEX_ PCle_
Real Time Clock	RTC_
Serial-ATA	SATA_
Secure Digital Input/Output	SDIO_
Serial Gigabit Media Independent Interface	SGMII_
SERDES	SRD_
SPI	SPI_
TDM	TDM_
UART	UA_
USB	USB_

2.2.1 Power Supply Pins

Includes the analog power supplies for the PLLs or PHYS.

Table 4: Power Supply Pins Description

Pin Name	Pin Type	Description		
MISC_PLL_AVDD	Analog Power	1.8V Core and TDM PLLs quiet power supply NOTE: For the 88F6710 and 88F6W11, includes the Audio PLLs quiet power supply.		
MISC_PLL_AVSS	Analog Ground	Core and TDM PLLs quiet ground NOTE: For the 88F6710 and 88F6W11, includes the Audio PLLs quiet ground.		
CPU_PLL_AVDD	Analog Power	1.8V CPU PLL and Thermal Sensor quiet power supply		
CPU_PLL_AVSS	Analog Ground	CPU PLL and Thermal Sensor quiet ground		
RTC_AVDD	Analog Power	1.8V RTC interface voltage NOTE: 1.5V interface voltage when operating from battery power.		
SRD_AVDD	Analog Power	1.8V SERDES and PCI Express clock outputs quiet power supply		
USB_AVDD	Analog Power	3.3V USB 2.0 PHY quiet power supply		
USB_AVDDL	Analog Power	1.8V USB 2.0 PHY quiet power supply		
VDD	Power	0.9V core voltage		
VDDO_A	Power	3.3V I/O supply voltage for MPP[4:0]		
VDDO_B	Power	1.8/2.5/3.3V I/O supply voltage for the MPP[16:5]		
VDDO_C	Power	1.8/2.5/3.3V I/O supply voltage for the MPP[31:17]		
VDDO_D	Power	1.8V or 3.3V I/O supply voltage for MPP[65:63] and MPP[46:32]		
VDDO_E	Power	1.8V or 3.3V I/O supply voltage for MPP[52:47]		
VDDO_F	Power	1.8V or 3.3V I/O supply voltage for MPP[62:53]		
VDDO_M	Power	1.35/1.5V I/O supply voltage for the SDRAM interface		
VDD_CPU	Power	0.9/1.1V CPU voltage		
VDD_CPU_AON	Power	Always on VDD_CPU power supply input for AVS operation during VDD_CPU power down. NOTE: For VDD_CPU_AON connectivity information, see the device Design Guideline.		
VSS	Ground	Ground		
XTAL_AVDD	Analog Power	1.8V XTAL quiet power supply		
XTAL_AVSS	Analog Ground	XTAL quiet ground		
AVS_AVDD	Analog Power	1.8V Adaptive Voltage Scaling (AVS) quiet power supply NOTE: For further connectivity information, see the design guide. For additional details concerning unused pins, see the Section "Unused Interface Strapping".		
AVS_AVSS	Analog Ground	AVS quiet ground		

2.2.2 **Adaptive Voltage Scaling (AVS)**

For additional details concerning unused pins, see the Section 3, Unused Interface Strapping, on page 64.

Table 5: Adaptive Voltage Scaling (AVS) Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
AVS_FB	0	Analog	AVS_AVDD	AVS feedback to the external power regulator to adjust the voltage level.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 32 April 3, 2014, Preliminary

2.2.3 Reduced Gigabit Media Independent Interface (RGMII)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

For additional details concerning unused pins, see Section 3, Unused Interface Strapping, on page 64.

Table 6: Reduced Gigabit Media Independent Interface (RGMII) Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description		
Where <n> represents numbers 0 thru 1</n>						
GE <n>_RXCLK</n>	1	CMOS	GE0: VDDO_B GE1: VDDO_C	RGMII Receive Clock Receives 125 MHz for 1000 Mbps, 25 MHz for 100 Mbps, and 2.5 MHz for 10 Mbps. All RGMII input pins are referenced to GE <n>_RXCLK.</n>		
GE <n>_RXCTL</n>	1	CMOS DDR	GE0: VDDO_B GE1: VDDO_C	RGMII Receive Control A logical derivative of receive data valid (RXDV) on GE <n>_RXCLK rising edge, and data error (RXERR) on GE<n>_RXCLK falling edge.</n></n>		
GE <n>_RXD[3:0]</n>	I	CMOS DDR	GE0: VDDO_B GE1: VDDO_C	RGMII Receive Data Contains the receive data nibble inputs that run at double data rate. Bits [3:0] are presented on the rising edge of GE <n>_RXCLK.</n>		
GE <n>_TXCLKOUT</n>	0	CMOS	GE0: VDDO_B GE1: VDDO_C	RGMII Transmit Clock Provides 125 MHz for 1000 Mbps, 25 MHz for 100 Mbps, and 2.5 MHz for 10 Mbps. All RGMII output pins are referenced to GE <n>_TXCLKOUT.</n>		
GE <n>_TXCTL</n>	0	CMOS DDR	GE0: VDDO_B GE1: VDDO_C	RGMII Transmit Control A logical derivative of transmit data enable (TXEN) on GE <n>_TXCLKOUT rising edge, and data error (TXERR) on GE<n>_TXCLKOUT falling edge.</n></n>		
GE <n>_TXD[3:0]</n>	0	CMOS DDR	GE0: VDDO_B GE1: VDDO_C	RGMII Transmit Data Contains the transmit data nibble outputs that run at double data rate. Bits [3:0] are presented on the rising edge of GE <n>_TXCLKOUT.</n>		

2.2.4 Gigabit Media Independent Interface (GMII)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

For additional details concerning unused pins, see Section 3, Unused Interface Strapping, on page 64.

Table 7: Gigabit Media Independent Interface (GMII) Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
GE0_COL	I	CMOS	VDDO_C	GMII Collision Indication This signal is relevant for half-duplex mode only. This signal is asynchronous.
GE0_CRS	I	CMOS	VDDO_C	GMII Carrier Sense Indication This signal is relevant for half-duplex mode only. This signal is asynchronous.
GE0_TXCLKOUT	0	CMOS	VDDO_B	GMII Transmit Clock All GMII output pins are referenced to GE0_TXCLKOUT.
GE0_RXCLK	I	CMOS	VDDO_B	GMII Receive Clock RXD, RXDV, and RXERR pins are referenced to GE0_RXCLK.
GE0_RXD[3:0]	I	CMOS SDR	VDDO_B	GMII Receive Data This bus is referenced to GE0_RXCLK.
GE0_RXD[7:4]	I	CMOS SDR	VDDO_B	GMII Receive Data This bus is referenced to GE0_RXCLK.
GE0_RXDV	I	CMOS SDR	VDDO_B	GMII Receive Data Valid This pin is referenced to GE0_RXCLK.
GE0_RXERR	I	CMOS SDR	VDDO_C	GMII Receive Error This pin is referenced to GE0_RXCLK.
GE0_TXD[3:0]	0	CMOS SDR	VDDO_B	GMII Transmit Data This bus is referenced to GE0_TXCLKOUT.
GE0_TXD[7:4]	0	CMOS SDR	VDDO_C	GMII Transmit Data This bus is referenced to GE0_TXCLKOUT.
GE0_TXEN	0	CMOS SDR	VDDO_B	GMII Transmit Enable Indicates that the packet is being transmitted on the data lines. This pin is referenced to GE0_TXCLKOUT.

2.2.5 Media Independent Interface (MII)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

For additional details concerning unused pins, see Section 3, Unused Interface Strapping, on page 64.

Table 8: Media Independent Interface (MII) Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
GE0_COL	1	CMOS	VDDO_C	MII Collision Indication This signal is relevant for half-duplex mode only. This signal is asynchronous.
GE0_CRS	I	CMOS	VDDO_C	MII Carrier Sense Indication This signal is relevant for half-duplex mode only. This signal is asynchronous.
GE0_RXCLK	I	CMOS	VDDO_B	MII Receive Clock GE0_RXD[3:0], GE0_RXDV, and GE0_RXERR pins are referenced to GE0_RXCLK.
GE0_RXD[3:0]	I	CMOS SDR	VDDO_B	MII Receive Data This bus is referenced to GE0_RXCLK.
GE0_RXDV	I	CMOS SDR	VDDO_B	MII Receive Data Valid This pin is referenced to GE0_RXCLK.
GE0_RXERR	I	CMOS SDR	VDDO_C	MII Receive Error This pin is referenced to GE0_RXCLK.
GE0_TXCLK	I	CMOS	VDDO_C	MII Transmit Reference Clock This clock is provided by an external PHY device connected to the MAC. All MII output pins are referenced to GE0_TXCLK.
GE0_TXD[3:0]	0	CMOS SDR	VDDO_B	MII Transmit Data This bus is referenced to GE0_TXCLK.
GE0_TXEN	0	CMOS SDR	VDDO_B	MII Transmit Enable Indicates that the packet is being transmitted on the data lines. This pin is referenced to GE0_TXCLK.

2.2.6 Serial Gigabit Media Independent Interface (SGMII)

The Gigabit Ethernet ports support a direct connection to Gigabit PHYs for 10/100/1000/2500 Mbps using Auto-Negotiation capabilities.

In addition, this interface can be directly connected to SFP for 1000BASE-X.

For additional details concerning unused pins, see Section 3, Unused Interface Strapping, on page 64.

Table 9: Serial Gigabit Media Independent Interface (SGMII) Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
Where <n> represents numbers 0 thru 1</n>				
SGMII <n>_RX_P/N</n>	I	CML	SRD_AVDD	SGMII / 1000BASE-X interface input to the 1.25/3.125 Gbps SERDES.
SGMII <n>_TX_P/N</n>	0	CML	SRD_AVDD	SGMII / 1000BASE-X interface output from the 1.25/3.125 Gbps SERDES.

Doc. No. MV-S107978-00 Rev. G

Document Classification: Proprietary Information Copyright © 2014 Marvell April 3, 2014, Preliminary

2.2.7 General Purpose Pins (GPP)

Each individual pin can be defined as an input, output, or level interrupt input.

These pins can be used for indications retrieving or for peripherals control.

When not in use, program interface to GPIOs and set GPIOs as output.

Table 10: General Purpose Pins (GPP) Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
GPIO[4:0]	I/O	CMOS	VDDO_A	General Purpose Pin(s)
GPIO[16:5]	I/O	CMOS	VDDO_B	General Purpose Pin(s)
GPIO[31:17]	I/O	CMOS	VDDO_C	General Purpose Pin(s)
GPIO[46:32] GPIO[65:63]	I/O	CMOS	VDDO_D	General Purpose Pin(s)
GPIO[52:47]	I/O	CMOS	VDDO_E	General Purpose Pin(s)
GPIO[62:53]	I/O	CMOS	VDDO_F	General Purpose Pin(s)

2.2.8 Inter-IC Sound (I²S) Interface (88F6710/88F6W11 Only)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

For additional details concerning unused pins, see Section 3, Unused Interface Strapping, on page 64.

Table 11: Inter-IC Sound (I²S) Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
AU_I2SBCLK	0	CMOS	VDDO_B or VDDO_D or VDDO_F	I ² S Bit Clock (64 x Fs) AU_I2SDI and AU_I2SDO are referenced to this clock. NOTE: Fs is the audio sampling rate.
AU_I2SDI	I	CMOS SDR	VDDO_B or VDDO_F	I ² S Receiver Serial Data In This signal is referenced to AU_I2SBCLK.
AU_I2SDO	0	CMOS SDR	VDDO_B or VDDO_D or VDDO_F	I ² S Receiver Serial Data Out This signal is referenced to AU_I2SBCLK.
AU_EXTCLK	1	CMOS	VDDO_B or VDDO_F	I ² S External Master Clock When in use, AU_I2SBCLK, AU_I2SMCLK, and AU_I2SLRCLK are being generated from this signal.
AU_I2SLRCLK	0	CMOS	VDDO_B or VDDO_D or VDDO_F	I ² S Word Select Left/Right Clock (1 x Fs) NOTE: Fs is the audio sampling rate.
AU_I2SMCLK	0	CMOS	VDDO_B or VDDO_D or VDDO_F	I ² S Master Clock (256 x Fs) NOTE: Fs is the audio sampling rate.

Doc. No. MV-S107978-00 Rev. G Page 38

2.2.9 JTAG Interface

The device supports a JTAG interface and is compliant with the IEEE 1149.1 standard. It supports mandatory and optional boundary scan instructions.

For additional pull-up/down details, see Section 3, Unused Interface Strapping, on page 64.

Table 12: JTAG Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
JT_CLK	I	CMOS	VDDO_A	JTAG Test Clock JT_TDI, JT_TDO, JT_TMS_CORE and JT_TMS_CPU are referenced to this clock. NOTE: When unused, must be pulled down.
JT_TDI	I	CMOS SDR	VDDO_A	JTAG Test Data Input Sampled on JT_TCK rising edge. NOTE: When unused, must be pulled up to a power rail.
JT_TDO	0	CMOS SDR	VDDO_A	JTAG Test Data Output Driven on JT_TCK falling edge. NOTE: When unused, can be left unconnected.
JT_TMS_CORE	I	CMOS SDR	VDDO_A	JTAG Test Mode Select Sampled on JT_TCK rising edge. TMS signal for CORE. NOTE: When unused, must be pulled up to a power rail.
JT_TMS_CPU	I	CMOS SDR	VDDO_A	JTAG Test Mode Select Sampled on JT_TCK rising edge. TMS signal for CPU. NOTE: When unused, must be pulled up to a power rail.
JT_RSTn	I	CMOS	VDDO_A	JTAG Test Asynchronous Reset NOTE: This pin must be pulled down to GND.

2.2.10 Miscellaneous

The Miscellaneous signals list contains clocks, reset, and PLL related signals.

Table 13: Miscellaneous Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
CDRn	I	CMOS	VDDO_A	Active low, CPU Debugger Reset input. May be used by the debugger logic to reset the device. NOTE: CDRn does not reset the CPU and CORE PLLs, and the source of their control (the PMU and CoreSight debug system). This pin is internally pulled up.
MRn	1	CMOS	VDDO_A	Active-Low, Manual Reset Input SYSRST_OUTn is asserted low as long as the MRn input signal is asserted low, and for an additional 100 ms after MRn (manual reset) de-assertion NOTE: This pin is internally pulled up.
M_NCAL		Calib	VDDO_M	Memory SDRAM Interface Calibration. Calibrates output NMOS driver and ODT. Connect to VDDO_M through a 931 ohm +/- 1% resistor.
M_PCAL		Calib	VDDO_M	Memory SDRAM Interface Calibration. Calibrates output PMOS driver and ODT. Connect to VSS through a 931 ohm +/- 1% resistor.
SRD_ISET		Calib		Pull-down resistor for the SERDES and USB reference current. 6.04 kilohm pull-down to VSS with resistor accuracy of 1%.
SYSRST_OUTn	O OD	CMOS	VDDO_A	Reset request from the device to the board reset logic. NOTE: A pull-up resistor must be added for this pin.
SYSRSTn	I	CMOS	VDDO_A	System Reset Main reset signal of the device. Used to reset all units to their initial state. NOTE: For reset timing, see in the device Design Guide.
TCLK_OUT	0	CMOS	VDDO_C or VDDO_D	General Purpose Clock Output Core Clock (TCLK) divided by 2 to 7.
TP		Analog		Test Point

2.2.11 Multi Purpose Pins (MPP)

For more information about the interfaces implemented on the MPP pins, see Section 6, Pin Multiplexing, on page 69.

Table 14: Multi Purpose Pins (MPP) Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
MPP[4:0]	I/O	CMOS	VDDO_A	Multi Purpose Pins (MPP) Refer to Sheet "Multiplexed Pins" for additional information for available functionalities.
MPP[16:5]	I/O	CMOS	VDDO_B	Multi Purpose Pins (MPP) Refer to Sheet "Multiplexed Pins" for additional information for available functionalities.
MPP[31:17]	I/O	CMOS	VDDO_C	Multi Purpose Pins (MPP) Refer to Sheet "Multiplexed Pins" for additional information for available functionalities.
MPP[46:32] MPP[65:63]	I/O	CMOS	VDDO_D	Multi Purpose Pins (MPP) Refer to Sheet "Multiplexed Pins" for additional information for available functionalities.
MPP[52:47]	I/O	CMOS	VDDO_E	Multi Purpose Pins (MPP) Refer to Sheet "Multiplexed Pins" for additional information for available functionalities.
MPP[62:53]	I/O	CMOS	VDDO_F	Multi Purpose Pins (MPP) Refer to Sheet "Multiplexed Pins" for additional information for available functionalities.

2.2.12 Device Bus (88F6710/88F6W11 only)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 15: Device Bus Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
DEV_A[1:0]	0	CMOS	VDDO_D	Device Bus Address.
DEV_A[2]	0	CMOS	VDDO_F	Device Bus Address.
DEV_AD[7:0]	I/O	CMOS	VDDO_D	Device Bus Data Input/Output. Output command, address and data. Input data during read operations.
DEV_AD[13:8]	I/O	CMOS	VDDO_E	Device Bus Data Input/Output. Output command, address and data. Input data during read operations.
DEV_AD[15:14]	I/O	CMOS	VDDO_F	Device Bus Data Input/Output. Output command, address and data. Input data during read operations.
DEV_ALE[1:0]	0	CMOS	VDDO_F	Device Bus Address Latch Enable.
DEV_BOOTCSn	0	CMOS	VDDO_D	Device Bus Boot Chip Select. Corresponds to Boot Bank.
DEV_CSn[3:0]	0	CMOS	VDDO_F	Device Bus Chip Select.
DEV_OEn	0	CMOS	VDDO_D	Device Bus Output Enable
DEV_READYn	I	CMOS	VDDO_D	Device Bus Ready. Used as cycle extender when interfacing a slow device.
DEV_WEn[0]	0	CMOS	VDDO_D	Device Bus Byte Write Enable (bit per byte).
DEV_WEn[1]	0	CMOS	VDDO_F	Device Bus Byte Write Enable (bit per byte).

2.2.13 NAND Flash Interface

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 16: NAND Flash Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
NF_ALE	0	CMOS	VDDO_F	NAND Flash Address Latch Enable The Address Latch Enable signal is one of the signals used by the host to indicate the type of bus cycle (command, address, data). This pin is referenced to NF_WEn.
NF_CSn[0]	0	CMOS	VDDO_D	NAND Flash Chip Enable Controls the device selection. Referenced to NF_WEn during output command, address, and data. Referenced to NF_REn during read operations.
NF_CSn[3:1]	0	CMOS	VDDO_F	NAND Flash Chip Enable Controls the device selection. Referenced to NF_WEn during output command, address, and data. Referenced to NF_REn during read operations.
NF_CLE	0	CMOS	VDDO_D	NAND Flash Command Latch Enable The Command Latch Enable signal is one of the signals used by the host to indicate the type of bus cycle (command, address, data). This pin is referenced to NF_WEn.
NF_IO[7:0]	I/O	CMOS	VDDO_D	NAND Flash Data Input/Output Output command, address, and data referenced to NF_WEn. Input data during read operations referenced to NF_REn.
NF_IO[13:8]	I/O	CMOS	VDDO_E	NAND Flash Data Input/Output Output command, address, and data referenced to NF_WEn. Input data during read operations referenced to NF_REn.
NF_IO[15:14]	I/O	CMOS	VDDO_F	NAND Flash Data Input/Output Output command, address, and data referenced to NF_WEn. Input data during read operations referenced to NF_REn.
NF_RDY	I	CMOS	VDDO_D	NAND Flash Ready/Busy The Ready/Busy asynchronous signal indicates the target status. When low, the signal indicates that one or more operations are in progress.

Table 16: NAND Flash Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
NF_REn	0	CMOS	VDDO_D	NAND Flash Read Enable The NF_IO bus and NF_CEn are referenced to NF_REn during read operations. This pin may have a different source when using CE care or CE don't care flashes. For full details, refer to the Functional Specification.
NF_WEn	0	CMOS	VDDO_D	NAND Flash Write Enable The NF_IO bus, NF_CEn, NF_ALE, and NF_CLE are referenced to NF_WEn during write operations. This pin may have a different source when using CE care or CE don't care flashes. For full details, refer to the Functional Specification.

2.2.14 PCI Express 0 (PCIe) Interface

Table 17: PCI Express 0 (PCIe) Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
PEX0_CLK_P/N	I/O	HCSL	SRD_AVDD	PCI Express Reference Clock 100 MHz Differential pair. When functioning as output, each pin must be pulled down through a 49.9 ohm 1% resistor. NOTE: When the PCIe interface is unused, leave unconnected. If an external PCIe clock is used, the clock is internally ditributed to PEX0 and PEX1.
PCIe_CLKREQ0	I	CMOS	VDDO_B or VDDO_F	Relevant to PCIe Root Complex. Endpoint request to enable/disable the reference clock. NOTE: This pin is implemented on the Multi Purpose Pin Interface. See the Multi Purpose and General Purpose Pins Functionality section.
PCIe_RST_OUTn	0	CMOS	VDDO_F	Endpoint external triggered reset. For further details, refer to the RESET section. NOTE: This pin is implemented on the Multi Purpose Pin Interface. See the Multi Purpose and General Purpose Pins Functionality section.
PEX0_RX_P/N	I	CML	SRD_AVDD	Receive Lane Differential pair of PCI Express. NOTE: When the PCIe interface is not used, these pins can be left NC.
PEX0_TX_P/N	0	CML	SRD_AVDD	Transmit Lane Differential pair of PCI Express. NOTE: When the PCIe interface is not used, these pins can be left NC.

PCI Express 1 (PCIe) Interface 2.2.15

For additional details concerning unused pins, see Section 3, Unused Interface Strapping, on page 64.

Table 18: PCI Express 1 (PCIe) Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
PEX1_CLK_P/N	0	HCSL	SRD_AVDD	PCI Express Reference Clock 100 MHz Differential pair. Each pin must be pulled down through a 49.9 ohm 1% resistor. NOTE: When the PCIe interface is unused, leave unconnected. If an external PCIe clock is used on PEX0_CLK_P/N, the clock is internally distributed to PEX0 and PEX1.
PCIe_CLKREQ1	I	CMOS	VDDO_B or VDDO_E or VDDO_F	Relevant to PCIe Root Complex. Endpoint request to enable/disable the reference clock. NOTE: This pin is implemented on the Multi Purpose Pin Interface. See the Multi Purpose and General Purpose Pins Functionality section.
PEX1_RX_P/N	I	CML	SRD_AVDD	Receive Lane Differential pair of PCI Express. NOTE: When the PCIe interface is not used, these pins can be left NC.
PEX1_TX_P/N	0	CML	SRD_AVDD	Transmit Lane Differential pair of PCI Express. NOTE: When the PCIe interface is not used, these pins can be left NC.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 46 April 3, 2014, Preliminary

2.2.16 Power Management Unit

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 19: Power Management Unit Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
VDD_CPU_PD	0	CMOS	VDDO_A	Power Management Unit - Power Down Signal. Output to the external power regulator / power switch to stop or resume the power supply.

2.2.17 Crystal Reference Clock

Table 20: Crystal Reference Clock Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
REF_CLK_XIN	I	CMOS	XTAL_AVDD	Reference clock input from the external oscillator or input from the external crystal. Used as input to core and CPU PLLs, USB PLL, and SERDES PLL.
XOUT	0	Analog	XTAL_AVDD	Feedback signal to the external crystal.

2.2.18 Real Time Clock (RTC) Interface

Table 21: Real Time Clock (RTC) Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
RTC_XIN	I	Analog	RTC_AVDD	Crystal Clock Input
RTC_XOUT	0	Analog	RTC_AVDD	Crystal Clock Output (feedback)

2.2.19 Serial-ATA (SATA) Interface (88F6710/88F6707 only)

When unused, can be left unconnected.

Table 22: Serial-ATA (SATA) Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description			
Where <n> represents</n>	Where <n> represents numbers 0 thru 1</n>						
SATA0_PRESENT_A CTIVEn	0	CMOS	VDDO_B or VDDO_D or VDDO_F	Disk Present Indication.			
SATA1_PRESENT_A CTIVEn	0	CMOS	VDDO_B or VDDO_E or VDDO_F	Disk Present Indication.			
SATA <n>_RX_P/N</n>	I	CML	SRD_AVDD	Receive Lane Differential pair of SATA. NOTE: When unused, can be left unconnected.			
SATA <n>_TX_P/N</n>	0	CML	SRD_AVDD	Transmit Lane Differential pair of SATA. NOTE: When unused, can be left unconnected.			

2.2.20 Secure Digital Input/Output (SDIO)/Multi Media Card (MMC) Interface

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 23: Secure Digital Input/Output (SDIO) Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
SD_CLK	0	CMOS	VDDO_B or VDDO_E or VDDO_F	SDIO Clock Output SD_CMD and SD_DATA signals are referenced to this clock.
SD_CMD	I/O	CMOS SDR	VDDO_B or VDDO_E	SDIO Command/Response This signal is referenced to SD_CLK. NOTE: This pin must be pulled up to a power rail through 10 kilohm resistor.
SD_D[3:0]	I/O	CMOS SDR	VDDO_B or VDDO_E	SDIO Data Bus This bus is referenced to SD_CLK. NOTE: This bus must be pulled up to a power rail through 10 kilohm resistor.

2.2.21 SDRAM DDR3 Interface

Table 24: SDRAM DDR3 Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
M_A[15:0]	0	SSTL SDR	VDDO_M	DRAM Address Outputs Provides the row address for ACTIVE commands (M_RASn), the column address, Auto Precharge bit (A[10]) and Burst Chop (A[12]) information for READ/WRITE commands (M_CASn), to determine, with the bank address bits (M_BA), the DRAM address. These signals are referenced to M_CLKOUT and M_CLKOUTn. NOTE: When unused, can be left unconnected.
M_BA[2:0]	0	SSTL SDR	VDDO_M	DRAM Bank Address Outputs Selects one of the eight virtual banks during an ACTIVE (M_RASn), READ/WRITE (M_CASn), or PRECHARGE command. These signals are referenced to M_CLKOUT and M_CLKOUTn. NOTE: When unused, can be left unconnected.
M_CASn	0	SSTL SDR	VDDO_M	DRAM Column Address Strobe Asserted to indicate an active column address driven on the address lines. This signal is referenced to M_CLKOUT and M_CLKOUTn.
M_CKE[1:0]	0	SSTL SDR	VDDO_M	DRAM Clock Enable Control Driven high to enable DRAM clock. Driven low when setting the DRAM in self Refresh Mode or Power Down mode. All M_CKE pins are driven together (no separate self refresh or power down mode per each DRAM bank). These signals are referenced to M_CLKOUT and M_CLKOUTCKn. NOTE: When unused, can be left unconnected.

Table 24: SDRAM DDR3 Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
M_CLKOUT[1:0]/ M_CLKOUTn[1:0]	0	SSTL	VDDO_M	DRAM Differential Clock Output All address and control output signals are clocked on the crossing of the positive edge of M_CLKOUT and negative edge of M_CLKOUTn. The M_DQS/M_DQSn output (during the WRITE data phase) is referenced to the crossings of M_CLKOUT and M_CLKOUTn (Both directions of crossing). NOTE: When unused, can be left unconnected. For additional details, see also Unused Interface Strapping chapter.
M_CSn[3:0]	0	SSTL SDR	VDDO_M	DRAM Chip Select Control Asserted to select a specific DRAM physical bank. These signals are referenced to M_CLKOUT and M_CLKOUTn. NOTE: When unused, can be left unconnected.
M_DM[1:0]	0	SSTL DDR	VDDO_M	DRAM Data Mask Driven during writes to the DRAM to mask the corresponding group of M_DQ and M_DQS/M_DQSn pins. These signals are referenced to M_DQS and M_DQSn. NOTE: When unused, can be left unconnected.
M_DQ[15:0]	I/O	SSTL DDR	VDDO_M	DRAM Data Bus Driven during writes to the DRAM. Driven by the DRAM during reads. These signals are referenced to M_DQS and M_DQSn. NOTE: For additional details with unused pins, see the section "Unused Interface Strapping".
M_DQS[1:0]/ M_DQSn[1:0]	I/O	SSTL DDR	VDDO_M	DRAM Data Strobe Data strobe for input and output data. Driven during writes to the DRAM. Driven by the DRAM during reads. NOTE: For additional details with unused pins, see the section "Unused Interface Strapping".
M_ODT[3:0]	0	SSTL SDR	VDDO_M	DRAM On Die Termination Control Driven to the DRAM to turn on/off DRAM on die termination resistor. This signal is referenced to M_CLKOUT[1:0] and M_CLKOUTn[1:0]. NOTE: When unused, can be left unconnected.
M_RASn	0	SSTL SDR	VDDO_M	DRAM Row Address Strobe Asserted to indicate an active row address driven on the address lines. This signal is referenced to M_CLKOUT and M_CLKOUTn.

Table 24: SDRAM DDR3 Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
M_RESETn	0	CMOS	VDDO_M	DRAM active low asynchronous reset. NOTE: When unused, can be left unconnected.
M_WEn	0	SSTL SDR	VDDO_M	DRAM Write Enable Command Active low. Asserted to indicate a WRITE command to the DRAM. This signal is referenced to M_CLKOUT and M_CLKOUTn.

2.2.22 Serial Management Interface (SMI)

The Master SMI interface is used for CPU management and Auto-Negotiation with PHY devices connected to the device.

This interface complies with IEEE 802.3 Clause 22 standard.

Table 25: Serial Management Interface (SMI) Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
GE_MDC	0	CMOS	VDDO_C	Serial Management Interface Data Clock Provides the timing reference for the transfer of the GE_MDIO signal. NOTE: When not used, can be left NC.
GE_MDIO	I/O	CMOS SDR	VDDO_C	Serial Management Interface Data Input/Output Must be pulled up to a power rail using a 2.0 kilohm resistor. NOTE: When not used, must be pulled up to a power rail.

2.2.23 Sony/Philips Digital Interface (S/PDIF) (88F6710/88F6W11 only)

This interface is implemented on the Multi Purpose Pin interface. For more information, see the Pin Multiplexing section.

Table 26: Sony/Philips Digital Interface (S/PDIF) Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
AU_SPDIFI	I	CMOS	VDDO_B or VDDO_E	S/PDIF Receiver Data In
AU_SPDIFO	0	CMOS	VDDO_B or VDDO_D or VDDO_E	S/PDIF Transmitter Data Out
AU_SPDIFRMCLK	0	CMOS	VDDO_B or VDDO_E	S/PDIF Recovered Master Clock (256xFs) NOTE: Fs is the audio sampling rate.

2.2.24 Serial Peripheral Interface (SPI)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 27: Serial Peripheral Interface (SPI) Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
SPI0_CSn[0]	0	CMOS SDR	VDDO_D	SPI Chip-Select This signal is referenced to SPI0_SCK. NOTE: This pin must be pulled up to a power rail.
SPI0_CSn[1]	0	CMOS SDR	VDDO_B or VDDO_D or VDDO_E	SPI Chip-Select This signal is referenced to SPI0_SCK. NOTE: This pin must be pulled up to a power rail.
SPI0_CSn[2]	0	CMOS SDR	VDDO_B or VDDO_D or VDDO_F	SPI Chip-Select This signal is referenced to SPI0_SCK. NOTE: This pin must be pulled up to a power rail.
SPI0_CSn[3]	0	CMOS SDR	VDDO_B or VDDO_F	SPI Chip-Select This signal is referenced to SPI0_SCK. NOTE: This pin must be pulled up to a power rail.
SPI1_CSn[0]	0	CMOS SDR	VDDO_B or VDDO_C or VDDO_E	SPI Chip-Select This signal is referenced to SPI1_SCK. NOTE: This pin must be pulled up to a power rail.
SPI1_CSn[1]	0	CMOS SDR	VDDO_B or VDDO_F	SPI Chip-Select This signal is referenced to SPI1_SCK. NOTE: This pin must be pulled up to a power rail.
SPI0_MISO	I	CMOS SDR	VDDO_D	SPI Data In (Master In / Slave Out) This signal is referenced to SPI0_SCK.
SPI0_MOSI	0	CMOS SDR	VDDO_D	SPI Data Out (Master Out / Slave In) This signal is referenced to SPI0_SCK.
SPI0_SCK	0	CMOS	VDDO_D	SPI Clock Output All SPI signals are referenced to this clock.
SPI1_MISO	I	CMOS SDR	VDDO_B or VDDO_C or VDDO_E	SPI Data In (Master In / Slave Out) This signal is referenced to SPI1_SCK.
SPI1_MOSI	0	CMOS SDR	VDDO_B or VDDO_C or VDDO_E	SPI Data Out (Master Out / Slave In) This signal is referenced to SPI1_SCK.
SPI1_SCK	0	CMOS	VDDO_B or VDDO_E	SPI Clock Output All SPI signals are referenced to this clock.

2.2.25 Time Division Multiplexing (TDM) Interface (88F6710/88F6W11 only)

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 28: Time Division Multiplexing (TDM) Interface Pin Description

Pin Name	I/O	Pin Type	Power Rail	Description
TDM_INTn	I	CMOS	VDDO_B or VDDO_F	Interrupt input from the SLIC device.
TDM_RSTn	0	CMOS	VDDO_B or VDDO_F	SLIC Codec asynchronous reset signal.
TDM_DRX	I	CMOS SDR	VDDO_B or VDDO_F	Pulse Code Modulation (PCM) Input Data This signal is referenced to TDM_PCLK.
TDM_DTX	0	CMOS SDR	VDDO_B or VDDO_F	Pulse Code Modulation (PCM) Output Data This signal is referenced to TDM_PCLK.
TDM_FSYNC	I/O	CMOS SDR	VDDO_B or VDDO_F	Frame Synchronous Signal Driven by the device if configured as Frame master. Input to the device (driven by an external component) if configured as Frame slave. This signal is referenced to TDM_PCLK.
TDM_PCLK	I/O	CMOS	VDDO_B or VDDO_C or VDDO_F	Pulse Code Modulation (PCM) Bit Clock Driven by the device if configured as PCLK master. Input to the device (driven by an external component) if configured as PCLK slave. TDM_FSYNC, TDM_DTX, and TDM_DRX are referenced to this clock.

2.2.26 I²C Interface

Table 29: I²C Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
12C0_SCK	I/O OD	CMOS	VDDO_A	I ² C0 Serial Clock Serves as output when acting as a I ² C master. Serves as input when acting as a I ² C slave. NOTE: Must be pulled up to a power rail.
I2C0_SDA	I/O OD	CMOS SDR	VDDO_A	I ² C0 Serial Data/Address Address or write data driven by the I ² C master or read response data driven by the I ² C slave. NOTE: Must be pulled up to a power rail.
I2C1_SCK	I/O OD	CMOS	VDDO_B or VDDO_C or VDDO_E	I ² C1 Serial Clock Serves as output when acting as a I ² C master. Serves as input when acting as a I ² C slave. NOTE: Must be pulled up to a power rail.
I2C1_SDA	I/O OD	CMOS SDR	VDDO_B or VDDO_C or VDDO_E	I ² C1 Serial Data/Address Address or write data driven by the I ² C master or read response data driven by the I ² C slave. NOTE: Must be pulled up to a power rail.

2.2.27 Universal Asynchronous Receiver Transmitter (UART) Interface

This interface is implemented on the Multi Purpose Pin interface. For more information, see Section 6, Pin Multiplexing, on page 69.

Table 30: Universal Asynchronous Receiver Transmitter (UART) Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description
UA0_CTS	I	CMOS	VDDO_B or VDDO_C or VDDO_D or VDDO_E or VDDO_F	UART0 Clear To Send
UA0_RTS	0	CMOS	VDDO_B or VDDO_C or VDDO_D or VDDO_E or VDDO_F	UART0 Request To Send
UA0_RXD	1	CMOS	VDDO_A	UART0 Receive Data
UA0_TXD	0	CMOS	VDDO_A	UART0 Transmit Data
UA1_CTS	I	CMOS	VDDO_D or VDDO_F	UART1 Clear To Send
UA1_RTS	0	CMOS	VDDO_D or VDDO_F	UART1 Request To Send
UA1_RXD	I	CMOS	VDDO_B or VDDO_C or VDDO_D or VDDO_F	UART1 Receive Data
UA1_TXD	0	CMOS	VDDO_B or VDDO_C or VDDO_D or VDDO_F	UART1 Transmit Data

2.2.28 Universal Serial Bus (USB) 2.0 Interface

Table 31: Universal Serial Bus (USB) 2.0 Interface Pin Description

Pin Name	1/0	Pin Type	Power Rail	Description		
Where <n> represents</n>	Where <n> represents numbers 0 thru 1</n>					
USB <n>_DP/M</n>	I/O	CML	USB_AVDD	USB 2.0 Data Differential Pair.		

2.2.29 Reserved/Not Connected (NC) Pins

Table 32: Reserved/Not Connected (NC) Pins Description

Pin Name	Description
RSVD_VSS	Reserved Must be connected to VSS ground.
RSVD_VDD	Reserved. Must be connected to VDD power.
RSVD_18_AVDD	Reserved. Must be connected to 1.8V analog power.
RSVD_NC	Reserved Must be not connected.
NC	Not Connected.

2.3 Internal Pull-up and Pull-down Pins

Table 33 and Table 34 lists the pins of the device package that are connected to internal pull-up and pull-down resistors. When these pins are Not Connected (NC) on the system board, these resistors set the default value for input and sample at reset configuration pins.

The internal pull-up and pull-down resistor value is 50 k Ω . An external resistor with a lower value can override this internal resistor.

Table 33: Internal Pull-up Pins

Pin Name	Pin Name	Pin Name	Pin Name	Pin Name	Pin Name
CDRn	MPP[6]	MPP[17]	MPP[29]	MPP[44]	MPP[56]
JT_TDI	MPP[8]	MPP[18]	MPP[30]	MPP[47]	MPP[57]
JT_TMS_CORE	MPP[9]	MPP[19]	MPP[31]	MPP[48]	MPP[58]
JT_TMS_CPU	MPP[11]	MPP[22]	MPP[32]	MPP[49]	MPP[60]
MPP[0]	MPP[12]	MPP[23]	MPP[33]	MPP[50]	MPP[62]
MPP[2]	MPP[13]	MPP[25]	MPP[36]	MPP[51]	MPP[64]
MPP[3]	MPP[14]	MPP[26]	MPP[38]	MPP[52]	MPP[65]
MPP[4]	MPP[15]	MPP[27]	MPP[39]	MPP[53]	MRn
MPP[5]	MPP[16]	MPP[28]	MPP[41]	MPP[55]	

Table 34: Internal Pull-down Pins

Pin Name	Pin Name
JT_CLK	MPP[37]
JT_RSTn	MPP[40]
MPP[1]	MPP[42]
MPP[7]	MPP[43]
MPP[10]	MPP[45]
MPP[20]	MPP[46]
MPP[21]	MPP[54]
MPP[24]	MPP[59]
MPP[34]	MPP[61]
MPP[35]	MPP[63]

3 Unused Interface Strapping

Table 35 lists the unused interface signal strapping for systems in which some of the 88F6710, 88F6707, and 88F6W11 interfaces are unused.

Table 35: Unused Interface Strapping

Unused Interface	Strapping
Adaptive Voltage Scaling	If AVS is not used, AVS_FB can be left floating. The AVS power signal should be connected.
Device/NAND Flash	Connect VDDO_D, VDDO_E, and VDDO_F to 1.8V, 2.5V, or 3.3V. NOTE: For the 88F6710/88F6W11, the Device bus signals can be left unconnected.
l ² C	Unused I2C <n>_SDA and I2C<n>_SCK signals must be pulled up with a 1–4.7 kohm resistor to the relevant VDDO power domain.</n></n>
JTAG	See Table 12, JTAG Interface Pin Description, on page 39 for information on what to do with each pin when this interface is unused.
MPP	Configure unused signals as GPIO outputs. No external pullups are required. Connect the power rail driving the unused MPPs as follows: VDDO_A to 3.3V. VDDO_B to 1.8V or 2.5V or 3.3V. VDDO_C to 1.8V or 2.5V or 3.3V. VDDO_D to 1.8V or 3.3. VDDO_E to 1.8V or 3.3V. VDDO_F to 1.8V or 3.3V.
PCI Express Clocks	Unused signals can be left unconnected. To power down the PECL receiver, write 0 to the Ana Grp Config register (offset: 0x0001847C) <pu_clk> bit[10]. If the PCIe_CLKREQ pins are not required, the relevant MPP pins must be configured to a different mode. For further information, see Section 6.1, Multi Purpose Pins Functional Summary, on page 69.</pu_clk>
RTC	RTC_AVDD, RTC_XIN, and RTC_XOUT can be left unconnected.
SDRAM3	If there are unused clock pairs, use one of the following strapping configurations and register setting for the unused clock pair(s): • Leave the unused pair unconnected. In the DDR Controller Control (Low) register, set <clk1drv> to 0 (Hi-Z). NOTE: M_CLKOUT[0] and M_CLKOUTn[0] cannot be disabled and are always driven.</clk1drv>
SERDES	Unused SRD <n>_TX_P/N and SRD<n>_RX_P/N signals can be left unconnected. Power down any unused SERDES port. If all the SERDES ports are unused: Discard the power filter. Connect SRD_AVDD to VSS.</n></n>

Doc. No. MV-S107978-00 Rev. G

Copyright © 2014 Marvell April 3, 2014, Preliminary

Page 64

Table 35: Unused Interface Strapping (Continued)

Unused Interface	Strapping
UART	Unused UA <n>_RXD signals must be pulled up with a 1–4.7 kohm resistor to the relevant VDDO power domain. Unused UA<n>_TXD signals can be left unconnected.</n></n>
USB	Unused USB <n>_DP and USB<n>_DM signals can be left unconnected. Power down any unused USB ports. If all the USB ports are unused: Discard the power filter. Connect USB_AVDD to VSS. Connect USB_AVDDL to VSS.</n></n>

4

88F6710, 88F6707, and 88F6W11 Pin Maps and Pin Lists

The 88F6710, 88F6707, and 88F6W11 pin lists, trace lengths, MPP, and sample at reset information are provided as an Excel file attachment.

To open the attached Excel file, double-click the pin icons below:

File attachments are only supported by Adobe Reader 6.0 and above.

To download the latest version of free Adobe Reader go to http://www.adobe.com.

Doc. No. MV-S107978-00 Rev. G Page 66 Copyright © 2014 Marvell April 3, 2014, Preliminary

5 Clocking

The 88F6710/6707/6W11 has multiple clock domains:

- PCLK: Marvell[®] Core Processor CPU clock—up to 1.2 GHz
- NBCLK: The L2 cache clock—up to 667 MHz
- HCLK: The SDRAM controller internal clock—up to 400 MHz
- DRAMCLK: The SDRAM interface clock—up to 666 MHz
- TCLK: The device's core clock, also used as the reference clock for the device bus. Runs at 166 MHz or 200 MHz.
- NDCLK: The NAND flash clock frequency is generate by dividing an internal VCOb of 2 GHz by clock divider and dividing it again by 2.¹
- PCI Express internal clock:
 - Runs at 250 MHz when configured to Gen1.1
 - Runs at 500 MHz when configured to Gen2.0
- GbE ports clock:
 - 125 MHz for 1000 Mbps
 - 25 MHz for 100 Mbps
 - 2.5 MHz for 10 Mbps
 - 312.5 MHz for 2500 Mbps
- SMI clock: Up to 33 MHz
- SATA internal clock: Runs at 150 MHz
- USB clock: Runs up to 480 MHz (at High Speed mode)
- UART clock: Up to TCLK frequency divided by 16
- SPI clock: Up to 50 MHz
- I²C clock: Up to 100 kHz
- SDIO clock: Up to 50 MHz
- TDM clock: Up to 8.192 MHz

^{1.} To configure the NAND clock to 125 MHz or 200 MHz, set bits[13:8] in register address 0x00018748 as follows: 0x8 = 125 MHz 0x5 = 200 MHz

Clock Frequency Configuration Options 5.1

Table 36 lists the supported clock frequency combinations that can be configured via the reset strapping.

Table 36: Clock Frequency Options

NOTE: The Fabric Frequency Configuration column refers to the setting for the pins used to set the fabric frequency, see Section 7.5, Reset Configuration, on page 80.

CPU Clock Frequency (PCLK) [MHz]	L2 and Coherency Fabric Frequency (NBCLK) [MHz]	DRAM Controller Clock Frequency (HCLK) [MHz]	DDR Interface Clock Frequency (DCLK) [MHz]	Fabric Frequency Configuration	VDD_CPU [V]
533	533	266	533	0x13	0.9
667	333	333	333	0x1	0.9
800	533	266	533	0x14	1.1
1000	667	333	667	0x14	1.1
1200	600	300	600	0x5	1.0 ¹

^{1.} The AVS unit must be used. The power source must be set to 1.0V. The internal AVS mechanism will drive the power source to adjust the voltage to 1.1V.

The 0.9V VDD_CPU voltage can only be used if the CPU clock frequency is configured to 533 MHz or 667 MHz.

5.2 Spread Spectrum Clock Generator (SSCG)

The SSCG (Spread Spectrum Clock Generator) may be used to generate the spread spectrum clock for the PLL input.

The SSCG block operates in Down Spread mode.

The SSCG block can be configured to perform up spread, down spread and center spread.

The modulation frequency is configurable. The typical frequency is 30 kHz.

The spread percentage can also be configured up to 1%.

For additional details, see the SSCG Configuration Register description in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.

Copyright © 2014 Marvell April 3, 2014, Preliminary Page 68 Document Classification: Proprietary Information

6 Pin Multiplexing

6.1 Multi Purpose Pins Functional Summary

The device contains 66 Multi Purpose Pins (MPP).

Each pin can be assigned a different functionality through the configuration of the MPP Control register. These configuration options include:

- GPIO: General Purpose In/Out Port, each of the MPP pins may be configured as a GPIO signals—see the General Purpose I/O Port section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.
- DEV_A[2:0], DEV_AD[15:0], DEV_ALE[1:0], DEV_BOOTCSn, DEV_CSn[3:0], DEV_OEn, DEV_READYn, DEV_WEn[1:0]: Device Bus signals that are either used for NOR Flash (88F6W11 only) or NAND Flash interface connectivity—see Section 6.6, Device Bus/NAND Flash Multiplexing (88F6710/88F6W11 Only), on page 74.
- TDM_CODEC_INTn, TDM_CODEC_RSTn, TDM_PCLK, TDM_FS, TDM_DRX, TDM_DTX: TDM (Voice) interface signals—see the TDM section in the *88F6710*, *88F6707*, and *88F6W11 Functional Specifications*.
- SPI0_CSn[3:0], SPI1_CSn[1:0], SPI<n>_SCK, SPI<n>_MISO, SPI<n>_MOSI (n = 0 to 1): SPI (Serial Peripheral Interface) signals—see the SPI section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.
- I2C0/1_SDA, I2C0/1_SCK: I²C signals.
- UA<n>_CTS, UA<n>_RXD, UA<n>_TXD (n = 0 to 1): UART pins—see the UART section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.
- SD0_CLK, SD0_CMD, SD0_D[3:0]: SDIO interface—see the SDIO section in the *88F6710*, *88F6707*, and *88F6W11 Functional Specifications*.
- GE<n>_TXCLKOUT, GE<n>_TXD[3:0], GE<n>_TXCTL, GE<n>_RXD[3:0], GE<n>_RXCTL, GE<n>_RXCLK (n = 0 to 1): Ethernet RGMII signals for ports 0 and 1 —see the Gigabit Ethernet Controller section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.
- GE0_TXD[7:4], GE0_TXCLK, GE0_COL, GE0_RXERR, GE0_TXERR, GE0_CRS, GE0_RXD[7:4]: GbE port0 signals when configured to GMII interface—see the Gigabit Ethernet Controller section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications. Also, see Table 38, Gigabit Ethernet Pins Multiplexing for port mode selections.
- SATA<n>_PRESENT_ACTIVEn (n = 0 to 1): Combined SATA active and SATA present indications—see the Serial-ATA section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications. (The SATA interface only applies to the 88F6710 and 88F6707.)
- VDD_CPU_PD: Voltage enable/disable requests from the external power gating logic. Allows putting the device in "deep idle" power down mode. See the Power Management section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.
- PCIe_CLKREQ0, PCIe_CLKREQ1: When the port is configured as RC, endpoints may drive the clock request to high. This causes the PCI clock out to be gated. During normal operations, the clock out should be driven low, which means the PCI clock out is not held. For further information, see the PCI Express section in the device's Functional Specifications.

- PCIe_RST_OUTn: PCIe reset out indication. See the PCI Express section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.
- AU_SPDIFI, AU_SPDIFO, AU_SPDIFRMCLK, AU_I2SBCLK, AU_I2SDO, AU_I2SLRCLK, AU_I2SMCLK, AU_I2SDI, AU_EXTCLK: Audio Interface signals—see the Audio Interface section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications. (The Audio interface only applies to the 88F6710 and 88F6707.)

The Excel files attached to Section 4, 88F6710, 88F6707, and 88F6W11 Pin Maps and Pin Lists, on page 66 contain an MPP Table worksheet that lists the MPP pins for the 88F6710, 88F6707, and 88F6W11. For more information, refer to the Pins Multiplexing Interface Registers section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.

6.2 Multi Purpose Pins Power Segments

The different power segments for each of the MPP pins is listed in the Power Pins Description table in Table 4, Power Supply Pins Description, on page 31.

The voltage level of VDDO_D, VDDO_E, and VDDO_F is determined by reset strap SAR[7]. The voltage level of VDDO_B and VDDO_C is 3.3V by default, with a register configurable option to 1.8V or 2.5V.

- The VDDO_A voltage level is 3.3V and cannot be changed by a reset strap or a register configuration.
- The Excel files attached to Section 4, 88F6710, 88F6707, and 88F6W11 Pin Maps and Pin Lists, on page 66 contain a Sample at Reset worksheet with the pins that are sampled during SYSRSTn de-assertion.

To change the VDDO_D, VDDO_E, and VDDO_F voltage level after reset, it is possible to configure these signals to a different voltage level by configuring IO Configuration 0 register (offset: 0x000184E0) after the boot process is completed, see Table 37.

Table 37: VDDO Voltage Configuration Options

Pin	On-Board Voltage Connection	Reset Strap Setting	IO Configuration Register Fields [Bits]	IO Configuration Register Voltage Settings
VDDO_A	3.3V	NA	NA	NA
VDDO_B	1.8/2.5/3.3V	NA	VDDO B PADS Voltage [3:2]	1.8V, 0x0 2.5V, 0x1 3.3V, 0x2
VDDO_C	1.8/2.5/3.3V	NA	VDDO C PADS Voltage [5:4]	1.8V, 0x0 2.5V, 0x1 3.3V, 0x2
VDDO_D	3.3V	3.3V	VDDO D PADS Voltage [7:6]	1.8V, 0x0 2.5V, 0x1 3.3V, 0x2

Doc. No. MV-S107978-00 Rev. G

Page 70

Document Classification: Proprietary Information

Copyright © 2014 Marvell

April 3, 2014, Preliminary

Table 37: VI	DDO Voltage	Configuration O	ptions ((Continued)
--------------	-------------	-----------------	----------	-------------

Pin	On-Board Voltage Connection	Reset Strap Setting	IO Configuration Register Fields [Bits]	IO Configuration Register Voltage Settings
VDDO_E	1.8V	3.3V	VDDO E PADS Voltage [9:8]	1.8V, 0x0 2.5V, 0x1 3.3V, 0x2
VDDO_F	1.8V	3.3V	VDDO F PADS Voltage [11:10]	1.8V, 0x0 2.5V, 0x1 3.3V, 0x2

Refer to the System Considerations section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications for more information about voltage setting.

6.3 Multi Purpose Pins Functional Considerations

When configuring MPP pins note the following issues, also refer to the attached Multi Purpose Pin Functional Summary Table:

- For MPPs assigned as NOR or SPI flash, the wake-up mode after reset depends on the Boot mode.
- There are a few options for the boot device as listed in the attached reset configuration information (see Section 4, 88F6710, 88F6707, and 88F6W11 Pin Maps and Pin Lists, on page 66). The value set in field Boot Device Type Selection determines the type of the boot select during reset.
- UART0 and UART1 signals are duplicated on some MPP pins. The UART0 signals must not be configured to more than one MPP option.
- All other MPP interface pins wake up after reset in 0x0 mode (GPIO). By default, these pins are set to Data Output disabled (Tri-State). Therefore, these MPPs are in fact inputs.
- Some of the MPP pins are sampled during SYSRSTn de-assertion to set the device configuration. These pins must be driven to the correct value during reset.
- Pins that are left as GPIO and are not connected must be configured as outputs via the GPIO registers after SYSRSTn de-assertion (see General Purpose I/O section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications).

6.4 Gigabit Ethernet Pins Multiplexing on the MPP

There are two Gigabit Ethernet ports that are multiplexed on the MPP pins.

- Each of these Gigabit Ethernet ports can operate in RGMII mode.
- Port 0 also supports GMII/MII signaling.

The device also contains a SERDES interface that can be used as SGMII interfaces for port 0 and port 1. Once a port is configured as an SGMII port, it cannot be selected as an RGMII/GMII/MII port on the MPP pins. The SGMII interface may be selected on various SERDES options (see Section 6.5, High-Speed SERDES Multiplexing, on page 73. Do not select more than one SERDES option for the same GbE port.

Table 38 lists the Gigabit Ethernet multiplexing pin configuration options for Port0 and Port1, when the port is not used as SGMII.

Table 38: Gigabit Ethernet Pins Multiplexing

MPP Pin	GE0 GMII, GE1 is SGMII or N/A	GE0 MII, GE1 is SGMII or N/A	GE0 RGMII, GE1 either SGMII or N/A	GE1 RGMII, GE0 either SGMII or N/A	Both GE0 and GE1 are RGMII
MPP[5]	GE0_TXCLKOUT (out)	N/A	GE0_TXCLKOUT (out)	N/A	GE0_TXCLKOUT (out)
MPP[6]	GE0_TXD[0] (out)	GE0_TXD[0] (out)	GE0_TXD[0] (out)	N/A	GE0_TXD[0] (out)
MPP[7]	GE0_TXD[1] (out)	GE0_TXD[1] (out)	GE0_TXD[1] (out)	N/A	GE0_TXD[1] (out)
MPP[8]	GE0_TXD[2] (out)	GE0_TXD[2] (out)	GE0_TXD[2] (out)	N/A	GE0_TXD[2] (out)
MPP[9]	GE0_TXD[3] (out)	GE0_TXD[3] (out)	GE0_TXD[3] (out)	N/A	GE0_TXD[3] (out)
MPP[10]	GE0_TXEN (out)	GE0_TXEN (out)	GE0_TXCTL (out)	N/A	GE0_TXCTL (out)
MPP[11]	GE0_RXD[0] (in)	GE0_RXD[0] (in)	GE0_RXD[0] (in)	N/A	GE0_RXD[0] (in)
MPP[12]	GE0_RXD[1] (in)	GE0_RXD[1] (in)	GE0_RXD[1] (in)	N/A	GE0_RXD[1] (in)
MPP[13]	GE0_RXD[2] (in)	GE0_RXD[2] (in)	GE0_RXD[2] (in)	N/A	GE0_RXD[2] (in)
MPP[14]	GE0_RXD[3] (in)	GE0_RXD[3] (in)	GE0_RXD[3] (in)	N/A	GE0_RXD[3] (in)
MPP[15]	GE0_RXDV (in)	GE0_RXDV (in)	GE0_RXCTL (in)	N/A	GE0_RXCTL (in)
MPP[16}	GE0_RXCLK (in)	GE0_RXCLK (in)	GE0_RXCLK (in)	N/A	GE0_RXCLK (in)
MPP[19]	N/A	GE0_TXCLK (in)	N/A	GE1_TXCLKOUT (out)	GE1_TXCLKOUT (out)
MPP[20]	GE0_TXD[4] (out)	GE0_TXERR (out)	N/A	GE1_TXD[0] (out)	GE1_TXD[0] (out)
MPP[21]	GE0_TXD[5] (out)	N/A	N/A	GE1_TXD[1] (out)	GE1_TXD[1] (out)
MPP[22]	GE0_TXD[6] (out)	N/A	N/A	GE1_TXD[2] (out)	GE1_TXD[2] (out)
MPP[23]	GE0_TXD[7] (out)	N/A	N/A	GE1_TXD[3] (out)	GE1_TXD[3] (out)
MPP[24]	N/A	GE0_COL (in)	N/A	GE1_TXCTL (out)	GE1_TXCTL (out)
MPP[25]	GE0_RXERR (in)	GE0_RXERR (in)	N/A	GE1_RXD[0] (in)	GE1_RXD[0] (in)
MPP[26]	GE0_CRS (in)	GE0_CRS (in)	N/A	GE1_RXD[1] (in)	GE1_RXD[1] (in)
MPP[27]	GE0_RXD[4] (in)	N/A	N/A	GE1_RXD[2] (in)	GE1_RXD[2] (in)
MPP[28]	GE0_RXD[5] (in)	N/A	N/A	GE1_RXD[3] (in)	GE1_RXD[3] (in)
MPP[29]	GE0_RXD[6] (in)	N/A	N/A	GE1_RXCTL (in)	GE1_RXCTL (in)
MPP[30]	GE0_RXD[7] (in)	N/A	N/A	GE1_RXCLK (in)	GE1_RXCLK (in)

Table 38: Gigabit Ethernet Pins Multiplexing (Continued)

MPP Pin	GE0 GMII, GE1 is SGMII or N/A	GE0 MII, GE1 is SGMII or N/A	GE0 RGMII, GE1 either SGMII or N/A	GE1 RGMII, GE0 either SGMII or N/A	Both GE0 and GE1 are RGMII
MPP[31]	GE0_TXERR (out)	N/A	N/A	N/A	N/A

When using GbE signals on MPPs, all relevant GbE signals (except those marked as N/A) must be implemented. For example, if using MII, and the chosen PHY does not have an MII_RXERR out signal, the GE0_RXERR on the MPP pin must still be configured accordingly and must have a pull-down resistor.

6.5 High-Speed SERDES Multiplexing

The 88F6710/6707/6W11 integrates four high-speed SERDES lanes.

The SERDES lanes provide a physical SERDES link to the following interfaces:

- The following PCI Express operational modes:
 - Gen2.0 up to 5 Gbps
 - Gen1.1 up to 2.5 Gbps
- SGMII interface:
 - SGMII0 can operate at 1.25 Gbps or 3.125 Gbps.
 - SGMII1 operate at 1.25 Gbps.
- SATA Gen1 (1.5 Gbps) and SATA Gen2 (3 Gbps)

Table 39 lists the different modes available for each SERDES lane. Each lane can be configured independently for the required link type, according to the specified application. If a lane is unused, it can be turned off.

Table 39: 88F6710, 88F6707, and 88F6W11 SERDES Lanes Multiplex Options

88F6710, 88F6707, and 88F6W11 SERDES Lanes						
0	1	2	3			
PCIe port 0 (RC or EP ¹)	PCIe port 1 (RC)					
SATA0 ²		SATA0	SATA1			
SGMII1	SGMII0	SGMII0	SGMII1			

- 1. Root Complex (RC), EndPoint (EP)
- 2. Only the 88F6710 and 88F6707 supports the SATA interface.

6.6 Device Bus/NAND Flash Multiplexing (88F6710/88F6W11 Only)

If a NAND Flash interface is used, it is necessary to configure this interface through the Device Bus pins.

Table 40 lists the MPP pins used for the Device Bus and their corresponding NAND Flash pins.

Table 40: Device Bus/NAND Flash Multiplexing

MPP#	Device Bus (88F6710/88F6W11 only)	NAND Flash
MPP[33]	DEV_BOOTCSn (out)	NF_CSn[0] (out)
MPP[34]	DEV_WEn[0] (out)	NF_WEn (out)
MPP[35]	DEV_Oen (out)	NF_Ren (out)
MPP[36]	DEV_A[1] (out)	NF_ALE (out)
MPP[37]	DEV_A[0] (out)	NF_CLE (out)
MPP[38]	DEV_READYn (in)	NF_RDY (in)
MPP[39]	DEV_AD[0]	NF_IO[0]
MPP[40]	DEV_AD[1]	NF_IO[1]
MPP[41]	DEV_AD[2]	NF_IO[2]
MPP[42]	DEV_AD[3]	NF_IO[3]
MPP[43]	DEV_AD[4]	NF_IO[4]
MPP[44]	DEV_AD[5]	NF_IO[5]
MPP[45]	DEV_AD[6]	NF_IO[6]
MPP[46]	DEV_AD[7]	NF_IO[7]
MPP[47]	DEV_AD[8]	NF_IO[8]
MPP[48]	DEV_AD[9]	NF_IO[9]
MPP[49]	DEV_AD[10]	NF_IO[10]
MPP[50]	DEV_AD[11]	NF_IO[11]
MPP[51]	DEV_AD[12]	NF_IO[12]
MPP[52]	DEV_AD[13]	NF_IO[13]
MPP[53]	DEV_AD[14]	NF_IO[14]
MPP[54]	DEV_AD[15]	NF_IO[15]
MPP[55]	DEV_CSn[1] (out)	NF_CSn[1] (out)
MPP[56]	DEV_CSn[2] (out)	NF_CSn[2] (out)

Table 40: Device Bus/NAND Flash Multiplexing (Continued)

MPP#	Device Bus (88F6710/88F6W11 only)	NAND Flash
MPP[57]	DEV_CSn[3] (out)	NF_CSn[3] (out)
MPP[58]	DEV_CSn[0] (out)	NF_CSn[0] (out)

Reset and Initialization

This section details the device's reset sequence and initialization procedure.

7.1 **Power Up/Down Sequence**

Power-Up Sequence 7.1.1

These requirements must be applied to meet the device power-up sequence (see Figure 4):

- The Non-Core voltages (I/O and Analog) as listed in Table 41 must reach 70% of their voltage level before the Core voltages reach 70% of their voltage level.
 - The order of the power up sequence between the Non-Core voltages is unimportant.
- POR (Power On Reset) is triggered by VDD, when SYSRST_OUTn is de-asserted 20 ms after VDD starts power up.
 - When AVS is used: After VDD power up, VDD_CPU power good state must be reached within 5 ms.
 - · When AVS is not used: The VDD and VDD_CPU power must be in a power good state at least 5 ms before SYSRSTn is de-asserted. Therefore, VDD_CPU must reach power good up to 15 ms after VDD power up (20-5).
- Each input reference clock must be active for several cycles before reset de-assertion.

Table 41: I/O and Core Voltages

Non-Core	Core Voltages	
I/O Voltages	Analog Power Supplies	
VDDO_A VDDO_B VDDO_C VDDO_D VDDO_E VDDO_F VDDO_M	RTC_AVDD SRD_AVDD MISC_PLL_AVDD CPU_PLL_AVDD XTAL_AVDD USB_AVDD USB_AVDD AVS_AVDD	VDD VDD_CPU

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 76 April 3, 2014, Preliminary Document Classification: Proprietary Information

Figure 4: Power Up Sequence Example

Figure 4 does not apply if the CPU is configured to operate at 667 MHz. In this case, the CPU and Core can be implemented on the same 0.9V power rail.

Table 42: Power-Up Sequence Symbols

Symbols	Timing Values	Description
tVDDO	100 ms (maximum)	Maximum time between the first non-core voltage power-up and the last core voltage power-up.
tVDDPG ¹	5 ms (with AVS enabled and CPU frequency at 1.2 GHz) 15 ms (with AVS disabled)	Maximum time between VDD power-good and VDD_CPU power-good. (Power is within the recommended operating condition range.)
tSYSRST	20 ms (minimum)	Minimum time between VDD power-up and SYSRST de-assertion.

^{1.} Only relevant when SYSRST_OUTn is connected to SYSRSTn.

Note

It is the designer's responsibility to verify that the power sequencing requirements of other components are also met.

7.1.2 Power-Down Sequence

Allow a reasonable time limit (for example 100 ms) between the first and last voltage power-down.

When using the AVS, it is necessary to first power down the VDD_CPU power supply and then the VDD power supply, before powering down the AVDD analog power supplies listed in Table 41 on page 76.

Hardware Reset 7.2

The device has three reset inputs pin: SYSRSTn, CDRn, MRn. The following sections describe the functionality of these signals

7.2.1 Global System Reset (SYSRSTn)

When asserted, the entire chip is placed in its initial state. Most outputs are placed in High-Z.

The following output pins are still active during SYSRSTn assertion:

- M_CLKOUT[1:0], M_CLKOUTn[1:0]
- M_CKE[1:0]
- M_ODT[3:0]
- M_RESET
- SRD<n>_TX_P
- SRD<n> TX N
- USB<n> DM
- USB<n>_DP
- PEX<n> CLK P
- PEX<n> CLK N

The device has an optional SYSRST_OUTn open drain output signal, that is used as a reset request from the device to the board reset logic. This signal is set when one of the following maskable events occurs. In each of these cases, SYSRST_OUTn is asserted for a duration of 100 ms:

- Received a hot reset indication from the PCI Express Port 0 link, when used as a PCI Express endpoint, and bit <PexRstOutEn> is set to 1 in the RSTOUTn Mask Register (see the Miscellaneous Registers and Tables section of the 88F6710, 88F6707, and 88F6W11 Functional Specifications).
- PCI Express Port 0 link failure, when used as a PCI Express endpoint, and bit <PexRstOutEn> is set to 1 in the RSTOUTn Mask Register (see the Miscellaneous Registers and Tables section of the 88F6710, 88F6707, and 88F6W11 Functional Specifications).
- One of the Watchdog timers expires and bit <WDRstOutEn> of the relevant watchdog counter is set to 1 in the RSTOUTn Mask Register (see the Miscellaneous Registers and Tables section of the 88F6710, 88F6707, and 88F6W11 Functional Specifications).
- Bit <SystemSoftRst> is set to 1 in System Soft Reset Register and bit <SoftRstOutEn> is set to 1 in RSTOUTn Mask Register. (see the Miscellaneous Registers and Tables section of the 88F6710, 88F6707, and 88F6W11 Functional Specifications).
- An assertion of the internal power-on-reset (POR) circuit (see Section 7.4, Power On Reset (POR), on page 80 for further details). This assertion is not maskable. The duration of this assertion is for at least 100 ms.
- SYSRST OUTn is asserted as long as the MRn input signal is asserted low, and for an additional at least 100 ms after MRn de-assertion (This is useful for implementations that include a manual reset button).

SYSRSTn must be active for a minimum length of 100 ms. Core power, I/O power, and analog power must be stable (VDD +/- 5%) during that time and onward.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 78 Document Classification: Proprietary Information April 3, 2014, Preliminary

7.2.1.1 SYSRSTn Duration Counter

When SYSRSTn is asserted low, a SYSRSTn duration counter starts counting. It continues to count as long as the SYSRSTn signal remains asserted.

- The counter clock is the 25 MHz reference clock.
- It is a 29-bit counter, yielding a maximum counting duration of 2^29/25 MHz (21.4 seconds).
- The host software can read the counter value and reset the counter.
- When the counter reaches its maximum value, it remains at this value until the counter reset is triggered by software.

See the 88F6710, 88F6707, and 88F6W11 Functional Specifications for details on how to configure the SYSRSTn duration counter.

Note

The SYSRSTn duration counter is useful for implementing manufacturer/factory reset. Upon a long reset assertion, greater than a pre-configured threshold, the host software may reset all settings to the factory default values.

7.2.2 Manual Reset (MRn)

The Manual Reset pin (MRn) provide the user the ability to reset the device without powering down the device. This is useful for implementations that include a reset button. Once MRn pin is asserted low, the device's reset logic, that includes a bouncer circuit to avoid false reset spikes, will propagate a reset indication to the SYSRST_OUTn pin. The SYSRST_OUTn will be asserted as long as the MRn pin is kept asserted and for additional 100ms. The external (on board) logic may drive this indication back to the SYSRSTn pin to reset the device, and in addition use the SYSRST_OUTn pin to reset the entire board.

7.2.3 Marvell® Core Processor CPU Debugger Reset

Connect the CPU debugger reset to the CDRn pin.

When the CPU Debugger reset is asserted, the device returns to its default value. The device mechanisms related to the debugger are excluded from the reset event. This includes the PLLs, the SSCG, the XTAL, and the registers controlling those mechanisms.

In general, the CDRn is de-asserted after all processes on the TAP controller are completed (refer to the specific Debugger specifications).

CPU debugger reset should be fed into two separate circuits:

- The device's CDRn pin (the reset pin for the debugger).
- The board reset for all other devices (not including the device's SYSRSTn pin), since SYSRST_OUTn will not be forced by the CDR pin.

7.3 PCI Express Reset

As a Root Complex, the device can generate a Hot Reset to the PCI Express port. Upon CPU setting of the PCI Express Control register's <conf_mstr_hot_reset> bit, the PCI Express unit sends a Hot Reset indication to the Endpoint (see the PCI Express Interface section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications).

When the device works as an Endpoint, and a Hot Reset packet is received:

- A maskable interrupt is asserted.
- If the PCI Express Debug Control register's <dis_hot_rst_reg_rst> is cleared, the device also resets the PCI Express register file to its default values.

The device triggers an internal reset, if not masked by PCI Express Debug Control register's <ConfMskHotReset> bit.

Link failure is detected if the PCI Express link was up (LTTSSM L0 state) and dropped back to an inactive state (LTSSM Detect state). When Link failure is detected:

- A maskable interrupt is asserted
- If the PCI Express Debug Control register's <conf_dis_link_fail_reg_rst> is cleared, the device also resets the PCI Express register file to its default values.
- The device triggers an internal reset, if not masked by PCI Express Debug Control register's <ConfMskLinkFail> bit.

Whether initiated by a hot reset or link failure, this internal reset indication can be routed to the PCIe_RST_OUTn signal (multiplexed on MPP[60]) to reset components on the board without resetting the entire device (e.g reset only the endpoint card).

Only the PCle 0 port can act as a PCl Express endpoint, and only this port can generate the PCI Express internal reset indication.

Power On Reset (POR) 7.4

The device integrates a Power On Reset (POR) circuit. The circuit is triggered when VDD power up (digital core voltage) reaches a VDD threshold (with a threshold maximum value of 0.8V).

Hysteresis: Another trigger will only occur after the power first drops to 50 mV, and then a power up occurs.

Once the POR logic was triggered the SYSRST_OUTn output signal is asserted low for 100 ms.

The SYSRST_OUTn signal may be connected externally to the device's SYSRSTn input signal asserting the device's internal reset signal. In addition, the SYSRST_OUTn signal may be used in this case as the POR generator for the entire board.

7.5 **Reset Configuration**

The device uses certain pins as configuration inputs to set certain critical parameters following a reset. The definition of the sampled at reset configuration pins revert immediately after reset to their regular function.

The Excel files attached to Section 4, 88F6710, 88F6707, and 88F6W11 Pin Maps and Pin Lists, on page 66 contain a Sample at Reset worksheet with the pins that are sampled during SYSRSTn de-assertion.

Some of the device's pins integrate an internal pull-up/pull-down resistors to set a default mode. Smaller external pull-up/pull-down resistors are required to change the default mode of operation, if required. These signals must remain pulled up or down until SYSRSTn de-assertion (zero Hold time in respect to SYSRSTn de-assertion).

- If external logic is used instead of pull-up and pull-down resistors, the logic must drive all of these signals to the desired values during SYSRSTn assertion. To prevent bus contention on these pins, the external logic must float the bus no later than the third TCLK cycle after SYSRSTn de-assertion.
- All reset sampled values are registered in the Sample at Reset register (see the MPP Registers in the 88F6710, 88F6707, and 88F6W11 Functional Specifications). This is useful for board debug purposes and identification of board and system settings for the host software.
- If a signal is pulled up on the board for reset sampling, it must be pulled to the appropriate voltage level of the power domain that the signal is assigned to. For example, if MPP[X] should be pulled up for reset sampling, it should be pulled to the voltage level of the VDDO who is feeding MPP[X] according to the pin description table.
- If an external device is driving any of the pins that are used as sampled at reset signals, make sure to keep this external device in reset state (prevent it from driving) or use glue logic to disconnect it from the device as long as the device SYSRSTn input is asserted.

7.6 Serial ROM Initialization

The device supports initialization of ALL of its internal and configuration registers through the I²C master interface. If serial ROM initialization is enabled by pulling up I²C Serial ROM Initialization during SYSRSTn assertion, the device I²C master starts reading initialization data from serial ROM and writes it to the appropriate registers.

7.6.1 Serial ROM Data Structure

The Serial ROM data structure consists of a sequence of 32-bit address and 32-bit data pairs, as shown in Figure 5.

Figure 5: Serial ROM Data Structure

The serial ROM initialization logic reads eight bytes at a time. It performs address decoding on the 32-bit address being read, and based on address decoding result, writes the next four bytes to the

The Serial Initialization Last Data Register contains the expected value of last serial data item (default value is 0xFFFFFFF). When the device reaches last data, it stops the initialization sequence.

Users must not generate requests through the I²C0 auto-loader to addresses that are not 32-bit aligned.

7.6.2 **Serial ROM Initialization Operation**

On SYSRSTn de-assertion, the device starts the initialization process. It first performs a dummy write access to the serial ROM, with data byte(s) of 0x0, to set the ROM byte offset to 0x0. Then, it performs a sequence of reads, until it reaches last data item, as shown in Figure 6.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 82 April 3, 2014, Preliminary

Figure 6: Serial ROM Read Example

Implementation Notes:

- Initialization data must be programmed in the serial ROM starting at offset 0x0.
- The device assumes 7-bit serial ROM address of 'b1010000.
- After receiving the last data identifier (default value is 0xFFFFFFF), the device receives an additional byte of dummy data. It responds with no-ack, and then asserts the stop bit.

For a detailed description of I²C implementation, see the Two-Wire Serial Interface section in the 88F6710, 88F6707, and 88F6W11 Functional Specifications.

7.7 Boot Sequence

The device requires that SYSRSTn stay asserted for at least 100 ms after power and clocks are stable. The following procedure describes the boot sequence starting with SYSRSTn assertion:

- 1. While SYSRSTn is asserted, the CPU PLL and the core PLL are locked.
- Upon SYSRSTn de-assertion, the pad drive auto-calibration process starts and the DRAM PHY DLL starts to lock on the target frequency speed. It requires 3ms to gain lock indication and be ready for normal operation.
- 3. If Serial ROM initialization is enabled, an initialization sequence is started.

Upon completing the above sequence, the internal CPU reset is de-asserted, and the CPU starts executing boot code from the internal Boot ROM, according to sample at reset setting of Boot Device Type Selection.

For boot sequence details, see the BootROM Firmware section in the *device's Functional Specifications*.

8 JTAG Interface

The JTAG interface is used for chip boundary scan, as defined by the IEEE JTAG standard 1149.1, and for CPU CoreSight™ debugging and tracing.

The device supports the following test modes:

Boundary Scan The JT_TMS_CPU is kept high.

This state resets the CPU TAP and the CoreSight Debug Access Port (DAP) controllers, and multiplexes the boundary scan TDO signal on

the JT_TDO pin.

CPU debugger and trace The JT_TMS_CORE is kept high.

This state resets the device TAP controller, and multiplexes the

CPU TAP and the CoreSight Debug Access Port (DAP) controllers TDO

signal on the JT_TDO pin.

The device's TAP, CPU TAP, and the CoreSight DAP controllers have different JT_TMS signals.

- The JT_TMS_CPU signal is used for the CPU TAP and CoreSight DAP controllers.
- The JT_TMS_CORE is used for device's TAP controller.

However, all of the controllers share the JT_RSTn, JT_TCK, and JT_TDI JTAG signals. The JT_TDO signal is the output of the multiplexing between the CoreSight DAP and the device's TAP controllers' TDO pins.

Doc. No. MV-S107978-00 Rev. G

Page 84

Document Classification: Proprietary Information

April 3, 2014, Preliminary

8.1 CoreSight™ Subsystem ARMv7 Mode

The JTAG signals are only being used by the TAP and the CoreSight DAP controllers (see Figure 7).

Figure 7: CoreSight Subsystem ARMv7 Mode

8.2 Instruction Register

The Instruction register (IR) is a 4-bit, two-stage register. It contains the command that is shifted in when the TAP FSM is in the *Shift-IR* state. When the TAP FSM is in the *Capture-IR* state, the IR outputs all four bits in parallel.

Table 43 lists the instructions supported by the device.

Table 43: Supported JTAG Instructions

Instruction	Code	Description
HIGH-Z	00011	Select the single bit Bypass register between TDI and TDO. Sets the device output pins to high-impedance state.
IDCODE	00010	Selects the Identification register between TDI and TDO. This 32-bit register is used to identify the device.
EXTEST	00000	Selects the Boundary Scan register between TDI and TDO. Outputs the boundary scan register cells to drive the output pins of the device. Inputs the boundary scan register cell to sample the input pin of the device.

Table 43: Supported JTAG Instructions (Continued)

Instruction	Code	Description
SAMPLE/ PRELOAD	00001	Selects the Boundary Scan register between TDI and TDO. Samples input pins of the device to input boundary scan register cells. Preloads the output boundary scan register cells with the Boundary Scan register value.
BYPASS	11111	Selects the single bit Bypass register between TDI and TDO. This allows for rapid data movement through an untested device.

8.3 Bypass Register

The Bypass register (BR) is a single bit serial shift register that connects TDI to TDO, when the IR holds the Bypass command, and the TAP FSM is in *Shift-DR* state. Data that is driven on the TDI input pin is shifted out one cycle later on the TDO output pin. The Bypass register is loaded with 0 when the TAP FSM is in the *Capture-DR* state.

8.4 JTAG Scan Chain

The JTAG Scan Chain is a serial shift register used to sample and drive all of the device pins during the JTAG tests. It is a 2-bit per pin shift register in the device, thereby allowing the shift register to sequentially access all of the data pins both for driving and strobing data. For further details, refer to the BSDL Description file for the device.

8.5 ID Register

The ID register is a 32-bit deep serial shift register. The ID register is loaded with vendor and device information when the TAP FSM is in the *Capture-DR* state. The Identification code format of the ID register is shown in Table 44, which describes the various ID Code fields.

Table 44: IDCODE Register Map

Bits	Value	Description
31:28	0x0 (A0) 0x1 (A1)	Version
27:12	0x6710	Device ID
11:1	0x1AB	Manufacturer ID
0	1	Mandatory

9 Electrical Specifications

9.1 Absolute Maximum Ratings

Table 45: Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments
VDD	-0.5	1.4	V	Core voltage
VDD_CPU	-0.5	1.4	V	CPU voltage
VDD_CPU_AON	-0.5	1.4	V	Power supply input for AVS operation during VDD_CPU power down.
MISC_PLL_AVDD	-0.5	2.2	V	Analog supply for the internal PLL
CPU_PLL_AVDD	-0.5	2.2	V	Analog supply for the CPU PLL
VDDO_M	-0.5	2.2	V	I/O voltage for: SDRAM interface
VDDO_A VDDO_B VDDO_C VDDO_D VDDO_E VDDO_F	-0.5	4.0	V	I/O voltage for: JTAG interfaces and the following signals: SYSRSTn SYSRST_OUTn MRn CDRn MPP[65:0]
AVS_AVDD	-0.5	2.2	V	I/O voltage for: AVS
USB_AVDD	-0.5	4.0	V	Analog input voltage for: USB interface
USB_AVDDL	-0.5	2.2	V	Analog input voltage for: USB interface
SRD_AVDD	-0.5	2.2	V	Analog input voltage for: SERDES interface
RTC_AVDD	-0.5	2.2	V	Analog input voltage for: RTC interface
XTAL_AVDD	-0.5	2.2	V	Analog input voltage for: XTAL interface
T _C	-40	125	° C	Case temperature
T _{STG}	-40	125	° C	Storage temperature

- Exposure to conditions at or beyond the maximum rating can damage the device.
- Operation beyond the recommended operating conditions (Table 46) is neither recommended nor guaranteed.

Before designing a system, it is recommended that you read application note AN-63: *Thermal Management for Marvell® Technology Products*. This application note presents basic concepts of thermal management for Integrated Circuits (ICs) and includes guidelines to ensure optimal operating conditions for Marvell Technology's products.

9.2 Recommended Operating Conditions

Table 46: Recommended Operating Conditions

Parameter	Min	Тур	Max	Units	Comments
VDD	0.85	0.9	0.95	V	Core voltage
VDD_CPU	0.85	0.9	0.95	V	CPU voltage, up to 667 MHz
	1.05	1.1	1.15	V	CPU voltage, 800 MHz-1.0 GHz
		1.0		V	CPU voltage at 1.2 GHz
					NOTE: The AVS unit must be used if the CPU frequency is 1.2 GHz.
					The power source must be set to 1.0V ±5%. The AVS unit will drive the power source to adjust the voltage to 1.1V.
VDD_CPU_AON	0.85	0.9	0.95	V	CPU voltage, up to 667 MHz. Always on power supply input for AVS operation during VDD_CPU power down.
					NOTE: For VDD_CPU_AON connectivity information, see the device <i>Design Guideline</i> .
	1.05	1.1	1.15	V	CPU voltage, 800 MHz-1.0 GHz
		1.0		V	CPU voltage at 1.2 GHz
					NOTE: The AVS unit must be used if the CPU frequency is 1.2 GHz.
MISC_PLL_AVDD	1.7	1.8	1.9	V	Analog supply for the internal PLL
CPU_PLL_AVDD	1.7	1.8	1.9	V	Analog supply for the CPU PLL
VDDO_M	1.283	1.35	1.45	V	I/O voltage for:
	1.425	1.5	1.575	V	SDRAM DDR3 1.5 / DDR3L 1.35V
VDDO_A	3.15	3.3	3.45	V	I/O voltage for: JTAG interfaces and the following signals: SYSRSTn SYSRST_OUTn MRn CDRn MPP[4:0]

Table 46: Recommended Operating Conditions (Continued)

Parameter	Min	Тур	Max	Units	Comments
VDDO_B	1.7	1.8	1.9	V	I/O voltage for:
	2.375	2.5	2.625		MPP[16:5] pins
	3.15	3.3	3.45		
VDDO_C	1.7	1.8	1.9	V	I/O voltage for:
	2.375	2.5	2.625		MPP[31:17] pins
	3.15	3.3	3.45		
VDDO_D	1.7	1.8	1.9	V	I/O voltage for:
	3.15	3.3	3.45		for MPP[65:63] and MPP[46:32]
VDDO_E	1.7	1.8	1.9	V	I/O voltage for:
	3.15	3.3	3.45		for MPP[52:47]
VDDO_F	1.7	1.8	1.9	V	I/O voltage for:
	3.15	3.3	3.45		for MPP[62:53]
AVS_AVDD	1.7	1.8	1.9	V	I/O voltage for: AVS
USB_AVDD	3.15	3.3	3.45	V	Analog input voltage for: USB interface
USB_AVDDL	1.7	1.8	1.9	V	Analog input voltage for: USB interface
SRD_AVDD	1.7	1.8	1.9	V	Analog input voltage for: SERDES interface
RTC_AVDD	1.7	1.8	1.9	V	Analog input voltage for: RTC interface
XTAL_AVDD	1.7	1.8	1.9	V	Analog input voltage for: XTAL interface
T _J	0		105	° C	Junction Temperature
	-40		105	° C	Junction Temperature Temperature for the Industrial grade device

Operation beyond the recommended operating conditions is neither recommended nor guaranteed.

9.3 Thermal Power Dissipation

Before designing a system, it is recommended that you read application note AN-63: *Thermal Management for Marvell Technology Products*. This application note presents basic concepts of thermal management for integrated circuits (ICs) and includes guidelines to ensure optimal operating conditions for Marvell Technology's products.

The device was characterized and tested for production at 105°C. The 85°C and 65°C data points are for reference purposes only.

The purpose of the Thermal Power Dissipation table is to support system engineering in thermal design.

Table 47: Core and CPU Thermal Power Dissipation

Interface	Symbol	Parameter	Power	Units
Core (VDD 0.9V)	P _{VDD}	TCLK @ 200 MHz, 0.9V, 105°C	570	mW
		TCLK @ 200 MHz, 0.9V, 85°C	515	mW
		TCLK @ 200 MHz, 0.9V, 65°C	470	mW
CPU @ 105°C	P _{VDD_CPU}	CPU @ 1200 MHz, 1.1V	1650	mW
Active State (100% load), including L2 power		CPU @ 1000 MHz, 1.1V	1530	mW
		CPU @ 800 MHz, 1.1V	1380	mW
		CPU @ 667 MHz, 0.9V	710	mW
CPU @ 85°C		CPU @ 1200 MHz, 1.1V	1500	mW
Active State (100% load), including L2 power		CPU @ 1000 MHz, 1.1V	1400	mW
		CPU @ 800 MHz, 1.1V	1260	mW
		CPU @ 667 MHz, 0.9V	650	mW
CPU @ 65°C		CPU @ 1200 MHz, 1.1V	1400	mW
Active State (100% load), including L2 power		CPU @ 1000 MHz, 1.1V	1300	mW
		CPU @ 800 MHz, 1.1V	1150	mW
		CPU @ 667 MHz, 0.9V	600	mW
CPU, Idle State, includes L2 power	P _{VDD_CPU}		450	mW
CPU, Deep Idle State, includes L2 power	P _{VDD_CPU}		0	mW

Table 48: I/O Interface Thermal Power Dissipation

Interface	Symbol	Parameter	Power	Units
DDR3 SDRAM On Board	P _{DDR3_16C}	1.35V I/O	130	mW
16-bit up to 667 MHz		1.5V I/O	160	mW
Single Serial interfaces (USB/SATA/SGMII/PCIe)	P _{SER}	Per SERDES	100	mW
PCI Express Clock Out	P _{PCle}	Per PCIe clock	30	mW
XTAL	P _{PCle}		15	mW
2 x RGMII Interface	P _{RGMII}		60	mW
Miscellaneous (GMII/MII, I ² S, S/PDIF, JTAG, Device, NAND Flash, SDIO, SMI, SPI, TDM, I ² C, UART)	P _{MISC}		50	mW

Notes:

- 1. On-board DRAM (one chip select), two x8 devices with one differential clock pair.
- 2. P_{DDR3_16C}:
 - 2 x 8bit memory devices @ a 1 inch distance for data and 2 inches distance for Address/control
 - ODT on memory and on controller: 120 ohm
 - Drive strength of controller: 50 ohm
 - Drive strength of memory: 40 ohm

9.4 Current Consumption

Table 49: Current Consumption

Interface	Symbol	Test Conditions	Max	Units
Core	I _{VDD}	TCLK @ 200 MHz, 0.9V, 105°C	660	mA
CPU and L2 cache	I _{VDD_CPU}	CPU @ 1200 MHz, 1.1V, 105°C, 256 KB L2 @ 600 MHz	1930	mA
		CPU @ 1000 MHz, 1.1V, 105°C, 256 KB L2 @ 667 MHz	1780	mA
		CPU @ 800 MHz, 1.1V, 105°C, 256 KB L2 @ 400 MHz	1550	mA
		CPU @ 667 MHz, 0.9V, 105°C, 256 KB L2 @ 333 MHz,	900	mA
DDR3 interface	I _{VDDO_M}	16-bit, 600 MHz, 1.35V	500	mA
		16-bit, 600MHz, 1.5V	600	mA
RGMII 3.3V interface	I _{RGMII}	One Port, VDDO = 3.3V	60	mA
RGMII 2.5V interface		One Port, VDDO = 2.5V	50	mA
RGMII 1.8V interface		One Port, VDDO = 1.8V	40	mA
RTC interface	I _{RTC_AVDD}		10	uA
SERDES interface	I _{SRD_AVDD}	For a single Serdes port	60	mA
USB interface	I _{USB_AVDD}	For two USB ports	20	mA
	I _{USB_AVDDL}		60	mA
PLL	I _{PLL_AVDD}	For a single PLL	20	mA
AVS	I _{AVS_AVDD}		10	mA
	I _{VDD_CPU_AON}		5	mA
XTAL	I _{XTAL_AVDD}		10	mA
Miscellaneous (GMII/MII, I ² S, S/PDIF, JTAG, Device, NAND Flash, SDIO, SMI, SPI, TDM, I ² C, UART)	I _{MISC}		50	mA

Notes:

- 1. Trace is 3 inches, unless otherwise specified.
- Current in mA is calculated using maximum recommended voltage specification for each power rail.
- 3. All output clocks toggling at their specified rate.
- 4. Maximum drawn current from the power supply.

9.5 DC Electrical Specifications

See the Pin Description Section for internal pullup/pulldown information.

9.5.1 General 3.3V (CMOS) DC Electrical Specifications

The DC electrical specifications in Table 50 are applicable for the following interfaces and signals:

- GMII/RGMII/MI/SMI
- SDIO
- I²S
- S/PDIF
- SPI
- JTAG
- I²C
- UART
- MPP

VDDIO can refer to the VDDO_A/B/C/D/E/F pins, depending on the interface/pin (see Section 2.2, Pin Descriptions, on page 29).

Table 50: General 3.3V Interface (CMOS) DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.3		0.8	V	-
Input high level	VIH		2.0		VDDIO+0.3	V	-
Output low level	VOL	IOL = 8 mA	-		0.6	V	-
Output high level	VOH	IOH = -8 mA	2.2		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

Doc. No. MV-S107978-00 Rev. G Page 94

9.5.2 General 2.5V (CMOS) DC Electrical Specifications

The DC electrical specifications in Table 51 are applicable for the following interface and signals:

■ RGMII/SMI

VDDIO can refer to the VDDO_B/C pins, depending on the interface/pin (see Section 2.2, Pin Descriptions, on page 29).

Table 51: General 2.5V Interface (CMOS) DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.3		0.7	V	-
Input high level	VIH		1.7		VDDIO+0.3	V	-
Output low level	VOL	IOL = 8 mA	-		0.6	V	-
Output high level	VOH	IOH = -8 mA	1.8		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

9.5.3 General 1.8V (CMOS) DC Electrical Specifications

The DC electrical specifications in Table 52 are applicable for the following interfaces and signals:

- RGMII/SMI
- Device Bus
- SDIO/MMC

VDDIO can refer to the VDDO_B/C/D/E/F pins, depending on the interface/pin (see Section 2.2, Pin Descriptions, on page 29).

Table 52: General 1.8V Interface (CMOS) DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.3		0.35*VDDIO	V	-
Input high level	VIH		0.65*VDDIO		VDDIO+0.3	V	-
Output low level	VOL	IOL = 8 mA	-		0.45	V	-
Output high level	VOH	IOH = -8 mA	VDDIO-0.45		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

Doc. No. MV-S107978-00 Rev. G Page 96 Copyright © 2014 Marvell April 3, 2014, Preliminary

SDRAM DDR3 (1.5V) Interface DC Electrical Specifications 9.5.4

In this table, VDDIO refers to the VDDO_M pin.

Table 53: SDRAM DDR3 (1.5V) Interface DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	Notes
Single ended input low level	VIL		-0.3		VDDIO/2 -		
			VDDIO/2 +		0.100	V	-
Single ended input high level	VIH		0.100		VDDIO + 0.3	V	-
Differential input low level	VDIL		Note 6		-0.2	V	6
Differential input high level	VDIH		0.2		Note 6	V	6
Output low level	VOL	IOL = 8.8 mA			0.2*VDDIO	V	7
Output high level	VOH	IOH = -8.8 mA	0.8*VDDIO			V	7
Rtt effective impedance value	RTT	See note 2	50	60	70	ohm	1,2
Deviation of VM with respect to VDDIO/2	d∨m	See note 3	-5		5	%	3
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	4, 5
Pin capacitance	Cpin	-		5		pF	-

Notes:

- 1. See SDRAM functional description section for ODT configuration.
- 2. Measurement definition for RTT: Apply (VDDIO/2) +/- 0.15 to input pin separately,

then measure current I(VDDIO/2+0.15) and I(VDDIO/2-0.15) respectively.

$$RTT = \frac{0.30}{I_{(\frac{VDDIO}{2} + 0.15)} - I_{(\frac{VDDIO}{2} - 0.15)}}$$
 3. Measurement definition for VM: Measured voltage (VM) at input pin (midpoint) with no load.

$$dVM = \left(\frac{2 \times Vm}{VDDIO} - 1\right) \times 100\%$$

- 4. While I/O is in High-Z.
- 5. This current does not include the current flowing through the pullup/pulldown resistor.
- 6. Limitations are same as for single ended signals.
- 7. Defined when driver impedance is calibrated to 35 ohms.

9.5.5 SDRAM DDR3L (1.35V) Interface DC Electrical **Specifications**

In this table, VDDIO refers to the VDDO_M pin.

Table 54: SDRAM DDR3L (1.35V) Interface DC Electrical Specifications

Parameter	Sym bol	Test Condition	Min	Тур	Max	Units	Notes
Single ended input low level	VIL		-0.3		VDDIO/2 -	,,	
			VDDIO/2 +		0.09	V	-
Single ended input high level	VIH		0.09		VDDIO + 0.3	V	-
Differential input low level	VDIL		Note 6		-0.16	V	6
Differential input high level	VDIH		0.16		Note 6	V	6
Output low level	VOL	IOL = 8.8 mA			0.2*VDDIO	V	7
Output high level	VOH	IOH = -8.8 mA	0.8*VDDIO			V	7
Rtt effective impedance value	RTT	See note 2	50	60	70	ohm	1,2
Deviation of VM with respect to VDDIO/2	d∨m	See note 3	-5		5	%	3
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	4, 5
Pin capacitance	Cpin	-		5		pF	-

Notes:

- 1. See SDRAM functional description section for ODT configuration.
- 2. Measurement definition for RTT: Apply (VDDIO/2) +/- 0.15 to input pin separately, then measure current I(VDDIO/2+0.15) and I(VDDIO/2-0.15) respectively.

$$RTT = \frac{0.30}{I_{(\frac{VDDIO}{2} + 0.15)} - I_{(\frac{VDDIO}{2} - 0.15)}}$$

3. Measurement definition for VM: Measured voltage (VM) at input pin (midpoint) with no load.

$$dVM = \left(\frac{2 \times Vm}{VDDIO} - 1\right) \times 100\%$$

- 4. While I/O is in High-Z.
- 5. This current does not include the current flowing through the pullup/pulldown resistor.
- 6. Limitations are same as for single ended signals.
- 7. Defined when driver impedance is calibrated to 35 ohms.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 98 April 3, 2014, Preliminary

9.5.6 I²C Interface 3.3V DC Electrical Specifications

Note

VDDIO can refer to the VDDO_A/E pins, depending on the interface/pin (see Section 2.2, Pin Descriptions, on page 29).

Table 55: I²C Interface 3.3V DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.5		0.3*VDDIO	V	-
Input high level	VIH		0.7*VDDIO		VDDIO+0.5	V	-
Output low level	VOL	IOL = 3 mA	-		0.4	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

9.5.7 Serial Peripheral Interface (SPI) 3.3V DC Electrical Specifications

VDDIO can refer to the VDDO_B/C/D/E/F pins, depending on the interface/pin (see Section 2.2, Pin Descriptions, on page 29).

Table 56: SPI Interface 3.3V DC Electrical Specifications

Param et e r	Sym bol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.5		0.3*VDDIO	V	-
Input high level	VIH		0.7*VDDIO		VDDIO+0.5	V	-
Output low level	VOL	IOL = 4 mA	-		0.4	V	-
Output high level	VOH	IOH = -4 mA	VDDIO-0.6		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

9.5.8 Time Division Multiplexing (TDM) 3.3V DC Electrical Specifications (88F6710/88F6W11 Only)

Note

VDDIO can refer to the VDDO_B/C/F pins, depending on the interface/pin (see Section 2.2, Pin Descriptions, on page 29).

Table 57: TDM Interface 3.3V DC Electrical Specifications

Parameter	Sym bol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.5		0.3*VDDIO	V	-
Input high level	VIH		0.7*VDDIO		VDDIO+0.5	V	-
Output low level	VOL	IOL = 4 mA	-		0.4	V	-
Output high level	VOH	IOH = -4 mA	VDDIO-0.6		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

Doc. No. MV-S107978-00 Rev. G Page 100 Copyright © 2014 Marvell April 3, 2014, Preliminary

9.5.9 NAND Flash 1.8V DC Electrical Specification

In this table, VDDIO refers to the VDDO_D/E/F pin.

Table 58: NAND Flash 1.8V DC Electrical Specification

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.3		0.35*VDDIO	V	-
Input high level	VIH		0.65*VDDIO		VDDIO+0.3	V	-
Output low level	VOL	IOL = 2 mA	-		0.45	V	-
Output high level	VOH	IOH = -2 mA	0.85 * VDDIO		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

9.5.10 NAND Flash 3.3V DC Electrical Specification

In this table, VDDIO refers to the VDDO_D/E/F pin.

Table 59: NAND Flash 3.3V DC Electrical Specification

		-					
Parameter	Sym bol	Test Condition	Min	Тур	Max	Units	Notes
Input low level	VIL		-0.3		0.8	V	-
Input high level	VIH		2.0		VDDIO+0.3	V	-
Output low level	VOL	IOL = 2 mA	-		0.4	V	-
Output high level	VOH	IOH = -2 mA	0.85 * VDDIO		-	V	-
Input leakage current	IIL	0 < VIN < VDDIO	-10		10	uA	1, 2
Pin capacitance	Cpin			5		pF	-

Notes:

- 1. While I/O is in High-Z.
- 2. This current does not include the current flowing through the pullup/pulldown resistor.

9.5.11 Adaptive Voltage Scaling (AVS) DC Electrical Specification

Table 60: AVS DC Electrical Specification

Parameter	Symbol	Min	Max	Units	Notes
Output voltage level	VOUT	VDD - 200	VDD + 200	mV	1
Output current drive/sink	IOUT	-1	1	mA	2
Allow ed load capacitance	CLOAD		100	pF	3

Notes:

- 1. VDD is the actual voltage supplied to the device.
- 2. Actual current is determined by the external resistor (RAVS) and the output voltage.
- 3. This load includes board routing and regulator capacitance.

Doc. No. MV-S107978-00 Rev. G Page 102 Copyright © 2014 Marvell April 3, 2014, Preliminary

Document Classification: Proprietary Information

9.6 AC Electrical Specifications

See Section 9.7, Differential Interface Electrical Characteristics, on page 137 for differential interface specifications.

9.6.1 Reference Clock and Reset AC Timing Specifications

Table 61: Reference Clock and Reset AC Timing Specifications

Description	Symbol	Min	Max	Units	Notes
CPU and Core Reference Clock	'				
Frequency	F _{REF_CLK_XIN}	2.5	25	MHz	
Accuracy	PPM _{REF_CLK_XIN}	-50	50	PPM	
Duty cycle	DC _{REF_CLK_XIN}	40	60	%	
Claur mate	0.0	0.5		V/ns	1
Slew rate	SR _{REF_CLK_XIN}	0.7		V/ns	1, 2
Dir Dir iiwar	ID.		120	ps	2, 4
Pk-Pk jitter	JR _{REF_CLK_XIN}		200	ps	
Ethernet Interface (MII mode)	'	-			
Frequency	F _{GE0_TXCLK}	2.5	50	MHz	
	F _{GE0_RXCLK}				
Accuracy	PPM _{GE0_TXCLK}	-100	100	PPM	
	PPM _{GE0_RXCLK}				
Duty cycle	DC _{GE0_TXCLK}	35	65	%	
	DC _{GE0_RXCLK}				
Slew rate	SR _{GE0_TXCLK}	0.7		V/ns	1
	SR _{GE0_RXCLK}				
SMI Clock		'			'
SMI output MDC clock	F _{GE_MDC}	TCLK/128	TCLK/8	MHz	
I ² C Master Mode Clock	·	·			
SCK output clock	F _{I2C0_SCK}		100	kHz	
	F _{I2C1_SCK}				
SPI Output Clock	1			-	
SPI output clock	F _{SPI0_SCK} F _{SPI1_SCK}	TCLK/1920	TCLK/4	MHz	5

Table 61: Reference Clock and Reset AC Timing Specifications (Continued)

Description	Symbol	Min	Max	Units	Notes
TCLK_OUT Reference Clock	·				
Frequency	F _{TCLK_OUT}	TCLK/7	TCLK/2	MHz	
Duty cycle	DC _{TCLK_OUT}	40	60	%	3
RTC Reference Clock	·	·			
RTC_XIN crystal frequency	F _{RTC_XIN}	32	32.768		7
MMC Reference Clock		·			
Frequency	F _{SD_CLK}		50	MHz	
JTAG Reference Clock	·				
Frequency	F _{JT_CLK}		30	MHz	
I ² S Reference Clock (88F6710/88F6W	11 only)			·	
I ² S clock	F _{AU_I2SBCLK}	64	64 X F _s kHz		6
Audio External Reference Clock (88	F6710/88F6W11 only)			·	
Audio external reference clock	F _{AU_EXTCLK}	256	256 X F _s		6
S/PDIF Recovered Master Clock (88	F6710/88F6W11 only)			·	<u> </u>
S/PDIF recovered master clock	F _{AU_SPDIFRMCLK}	256	256 X F _s		6
Reset Specifications				,	
Refer to Section 7, Reset and Initialization, or	n page 76.				

Notes:

- 1. Slew rate is defined from 20% to 80% of the reference clock signal.
- 2. This value is required when using the internal PLL to drive the SERDES.
- 3. The load is CL = 15 pF.
- 4. This value is assumed to contain above 95% random components characterized by 1/f behavior, defined with a BER = 1e-12.
- 5. For additional information regarding configuring this clock, see the Serial Memory Interface Control Register in the *88F6710*, *88F6707*, and *88F6W11 Functional Specification*.
- 6. F_s is the audio sample rate, which can be configured to 44.1 kHz, 48 kHz, or 96 kHz (see the Audio (I²S / S/PDIF) Interface section in the device Functional Specifications).
- 7. The RTC design was optimized for a standard CL = 12.5 pF crystal. No passive components are provided internally. Connect the crystal and the passive network as recommended by the crystal manufacturer.

Figure 8: TCLK_OUT Reference Clock Test Circuit

Figure 9: TCLK_OUT AC Timing Diagram

9.6.2 Reduced Gigabit Media Independent Interface (RGMII) AC Timing

9.6.2.1 RGMII AC Timing Table

Table 62: RGMII AC Timing Table

Description	Symbol	Min	Max	Units	Notes
Clock frequency	fCK	125.0		MHz	-
Data to Clock output skew	Tskew T	-0.50	0.50	ns	2
Data to Clock input skew	Tskew R	1.00	2.60	ns	-
Clock cycle duration	Тсус	7.20	8.80	ns	1,2
Duty cycle for Gigabit	Duty_G	0.45	0.55	tCK	2
Duty cycle for 10/100 Megabit	Duty_T	0.40	0.60	tCK	2

Notes:

General comment: All values were measured from vddio/2 to vddio/2, unless otherwise specified. General comment: tCK = 1/fCK.

General comment: If the PHY does not support internal-delay mode, the PC board design requires

routing clocks so that an additional trace delay of greater than 1.5 ns and less

than 2.0 ns is added to the associated clock signal.

For 10/100 Mbps RGMII, the Max value is unspecified.

- 1. For RGMII at 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns +/-40 ns and 40 ns +/-4 ns, respectively.
- 2. For all signals, the load is CL = 5 pF.

9.6.2.2 RGMII Test Circuit

Figure 10: RGMII Test Circuit

9.6.2.3 RGMII AC Timing Diagram

Figure 11: RGMII AC Timing Diagram

9.6.3 Gigabit Media Independent Interface (GMII) AC Timing

9.6.3.1 GMII AC Timing Table

Table 63: GMII AC Timing Table

		125 MHz			
Description	Sym bol	Min	Max	Units	Notes
GTX_CLK cycle time	tCK	7.5	8.5	ns	-
RX_CLK cycle time	tCKrx	7.5	-	ns	-
GTX_CLK and RX_CLK high level w idth	tHIGH	2.5	-	ns	1
GTX_CLK and RX_CLK low level width	tLOW	2.5	-	ns	1
GTX_CLK and RX_CLK rise time	tR	-	1.0	ns	1, 2
GTX_CLK and RX_CLK fall time	tF	-	1.0	ns	1, 2
Data input setup time relative to RX_CLK rising edge	tSETUP	2.0	-	ns	-
Data input hold time relative to RX_CLK rising edge	tHOLD	0.0	-	ns	-
Data output valid before GTX_CLK rising edge	tOVB	2.5	-	ns	1
Data output valid after GTX_CLK rising edge	tOVA	0.5	-	ns	1

Notes:

General comment: All values were measured from VIL(max) to VIH(min), unless otherwise specified.

- 1. For all signals, the load is CL = 5 pF.
- 2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).

9.6.3.2 GMII Test Circuit

Figure 12: GMII Test Circuit

9.6.3.3 GMII AC Timing Diagrams

Figure 13: GMII Output AC Timing Diagram

Figure 14: GMII Input AC Timing Diagram

9.6.4 Media Independent Interface (MII) AC Timing

9.6.4.1 MII MAC Mode AC Timing Table

Table 64: MII MAC Mode AC Timing Table

Description	Symbol	Min	Max	Units	Notes
Data input setup relative to RX_CLK rising edge	tSU	3.5	-	ns	-
Data input hold relative to RX_CLK rising edge	tHD	2.0	-	ns	-
Data output delay relative to MII_TX_CLK rising edge	tOV	0.0	10.0	ns	1

Notes:

General comment: All values were measured from VIL(max) to VIH(min), unless otherwise specified.

1. For all signals, the load is CL = 5 pF.

9.6.4.2 MII MAC Mode Test Circuit

Figure 15: MII MAC Mode Test Circuit

9.6.4.3 MII MAC Mode AC Timing Diagrams

Figure 16: MII MAC Mode Output Delay AC Timing Diagram

Figure 17: MII MAC Mode Input AC Timing Diagram

9.6.5 Serial Management Interface (SMI) AC Timing

9.6.5.1 SMI Master Mode AC Timing Table

Table 65: SMI Master Mode AC Timing Table

Description	Symbol	Min	Max	Units	Notes
MDC clock frequency	fCK	See note 2		MHz	2
MDC clock duty cycle	tDC	0.4	0.6	tCK	-
MDIO input setup time relative to MDC rise time	tSU	12.0	-	ns	-
MDIO input hold time relative to MDC rise time	tHO	0.0	-	ns	3
MDIO output valid before MDC rise time	tOVB	12.0	-	ns	1
MDIO output valid after MDC rise time	tOVA	12.0	-	ns	1

Notes:

General comment: All timing values were measured from VIL(max) and VIH(min) levels, unless otherwise specified. General comment: tCK = 1/fCK.

- 1. For all signals, the load is CL = 10 pF.
- 2. See "Reference Clocks" table for more details.
- 3. For this parameter, the load is CL = 2 pF.

9.6.5.2 SMI Master Mode Test Circuit

Figure 18: MDIO Master Mode Test Circuit

Figure 19: MDC Master Mode Test Circuit

9.6.5.3 SMI Master Mode AC Timing Diagrams

Figure 20: SMI Master Mode Output AC Timing Diagram

Figure 21: SMI Master Mode Input AC Timing Diagram

88F6710, 88F6707, and 88F6W11 Hardware Specifications

9.6.6 SDRAM DDR3 Interface AC Timing

9.6.6.1 SDRAM DDR3 Interface Timing Tables

Table 66: SDRAM DDR3 Interface AC Timing Table

		667 MHz			
Description	Symbol	Min	Max	Units	Notes
Clock frequency	fCK	66	7.0	MHz	-
DQ and DM valid output time before DQS transition	tDOVB	190	-	ps	-
DQ and DM valid output time after DQS transition	tDOVA	170	-	ps	-
CLK-CLKn Period Jitter	tJIT(per)	-80	80	ps	1
DQS falling edge setup time to CLK-CLKn rising edge	tDSS	0.34	-	tCK(avg)	-
DQS falling edge hold time from CLK-CLKn rising edge	tDSH	0.34	-	tCK(avg)	-
DQS latching rising transitions to associated clock edges	tDQSS	-0.11	0.11	tCK(avg)	-
Address and Control valid output time before CLK-CLkn rising edge	tAOVB	440	-	ps	2
Address and Control valid output time after CLK-CLKn rising edge	tAOVA	340	-	ps	2
DQ input setup time relative to DQS in transition	tDSI	-150	-	ps	-
DQ input hold time relative to DQS in transition	tDHI	400	-	ps	-

Notes:

General comment: All timing values are defined from VREF to VREF, unless otherwise specified.

General comment: All input timing values assume minimum slew rate of 1 V/ns (slew rate defined from VREF +/-100 mV).

General comment: All timing parameters with DQS signal are defined on DQS-DQSn crossing point.

General comment: All timing parameters with CLK signal are defined on CLK-CLKn crossing point.

General comment: For all signals, the load is CL = 10 pF.

General comment: tCK = 1/fCK.

1. tJIT(per) = Min/max of $\{tCKi - tCK w here i = 1 to 200\}$.

2. This timing value is defined when Address and Control signals are output on CLK-CLKn falling edge.

Doc. No. MV-S107978-00 Rev. G Page 114 Copyright © 2014 Marvell April 3, 2014, Preliminary

Document Classification: Proprietary Information

9.6.6.2 SDRAM DDR3 Interface Test Circuit

Figure 22: SDRAM DDR3 Interface Test Circuit

9.6.6.3 SDRAM DDR3 Interface AC Timing Diagrams

Figure 23: SDRAM DDR3 Interface Write AC Timing Diagram

Figure 24: SDRAM DDR3 Interface Address and Control AC Timing Diagram

Figure 25: SDRAM DDR3 Interface Read AC Timing Diagram

9.6.7 Secure Digital Input/Output (SDIO) Interface AC Timing

9.6.7.1 Secure Digital Input/Output (SDIO) AC Timing Table

Table 67: SDIO Host in High-Speed Mode AC Timing Table

Description	Symbol	Min	Max	Units	Notes
Clock frequency in Data Transfer Mode	fCK	0	50	MHz	-
Clock high/low level pulse width	tWL/tWH	0.35	-	tCK	1, 3
Clock rise/fall time	tTLH/tTHL	-	3.0	ns	1, 3
CMD, DAT output valid before CLK rising edge	tDOVB	6.5	-	ns	2, 3
CMD, DAT output valid after CLK rising edge	tDOVA	2.5	-	ns	2, 3
CMD, DAT input setup relative to CLK rising edge	tISU	7.0	-	ns	2
CMD, DAT input hold relative to CLK rising edge	tIHD	0.0	-	ns	2, 4

Notes:

General comment: tCK = 1/fCK.

- 1. Defined on VIL(max) and VIH(min) levels.
- 2. Defined on VDDIO/2 for Clock signal, and VIL(max) / VIH(min) for CMD & DAT signals.
- 3. For all signals, the load is CL = 10 pF.
- 4. For this parameter, the load is CL = 2 pF.

9.6.7.2 Secure Digital Input/Output (SDIO) Test Circuit

Figure 26: Secure Digital Input/Output (SDIO) Test Circuit

9.6.7.3 Secure Digital Input/Output (SDIO) AC Timing Diagrams

Figure 27: SDIO Host in High Speed Mode Output AC Timing Diagram

Figure 28: SDIO Host in High Speed Mode Input AC Timing Diagram

9.6.8 Multimedia Card (MMC) Interface AC Timing

9.6.8.1 MMC AC Timing Table

Table 68: MMC High Speed Host AC Timing Table

Description	Symbol	Min	Max	Units	Notes
Clock frequency in Data Transfer mode	fCK	See i	note 5	MHz	5
Clock high/low level pulse width	tWL/tWH	0.34	-	tCK	1, 3
Clock rise/fall time	tTLH/tTHL	-	3.0	ns	1, 3
CMD, DAT output valid before CLK rising edge	tDOVB	3.5	-	ns	2, 3
CMD, DAT output valid after CLK rising edge	tDOVA	3.5	-	ns	2, 3
CMD, DAT input setup relative to CLK rising edge	tISU	6.5	-	ns	2
CMD, DAT input hold relative to CLK rising edge	tIHD	0.0	-	ns	2, 4

Notes:

General comment: tCK = 1/fCK.

- 1. Defined on VIL(max) and VIH(min) levels.
- 2. Defined on VDDIO/2 for Clock signal, and VIL(max) / VIH(min) for CMD and DAT signals.
- 3. For all signals, the load is CL = 10 pF.
- 4. For this parameter, the load is CL = 2 pF.
- 5. See "Reference Clocks" table for more details.

9.6.8.2 MMC Test Circuit

Figure 29: MMC Test Circuit

9.6.8.3 MMC AC Timing Diagrams

Figure 30: MMC High-Speed Host Output AC Timing Diagram

Figure 31: MMC High-Speed Host Input AC Timing Diagram

9.6.9 Device Bus Interface AC Timing (88F6710/88F6W11 only)

9.6.9.1 Device Bus Interface AC Timing Table

Table 69: Device Bus Interface AC Timing Table

Description	Symbol	Min	Max	Units	Notes
Data/READYn input setup relative to clock rising edge	tSU	5.0	-	ns	-
Data/READYn input hold relative to clock rising edge	tHD	1.0	-	ns	-
Address/Data output delay relative to clock rising edge	tOV	0.8	6.0	ns	1
Address output valid before ALE signal falling edge	tAOAB	9.0	-	ns	1,2
Address output valid after ALE signal falling edge	tAOAA	5.0	-	ns	1,2

Notes:

General comment: All timing values are for interfacing synchronous devices.

General comment: All values were measured from VIL(max) to VIH(min), unless otherwise specified.

- 1. For all signals, the load is CL = 10 pF.
- 2. The AD bus is normally loaded with high capacitance. Make sure to work according to HW design guidelines or simulations to meet the latch AC timing requirements.

9.6.9.2 Device Bus Interface Test Circuit

Figure 32: Device Bus Interface Test Circuit

9.6.9.3 Device Bus Interface AC Timing Diagram

Figure 33: Device Bus Interface Output Delay AC Timing Diagram

Figure 34: Device Bus Interface Input AC Timing Diagram

9.6.10 Serial Peripheral Interface (SPI) AC Timing

9.6.10.1 SPI (Master Mode) AC Timing Table

Table 70: SPI (Master Mode) AC Timing Table

		SPI			
Description	Symbol	Min	Max	Units	Notes
SCLK clock frequency	fCK	See N	Note 3	MHz	3
SCLK high time	tCH	0.46	-	tCK	1, 2
SCLK low time	tCL	0.46	-	tCK	1, 2
SCLK slew rate	tSR	0.5	-	V/ns	1
Data out valid relative to SCLK falling edge	tDOV	-2.5	2.5	ns	1
CS active before first SCLK rising edge	tCSB	0.4	-	tCK	1, 4
CS not active after SCLK rising edge	tCSA	0.4	-	tCK	1, 4
Data in setup time relative to SCLK rising edge	tSU	0.2	-	tCK	2
Data in hold time relative to SCLK rising edge	tHD	5.0	-	ns	2

Notes:

General comment: All values were measured from 0.3*vddio to 0.7*vddio, unless otherwise specified.

General comment: tCK = 1/fCK.

- 1. For all signals, the load is CL = 10 pF.
- 2. Defined from vddio/2 to vddio/2.
- 3. See "Reference Clocks" table for more details.
- 4. When w orking w ith CPOL=1 mode, the CS is relative to first SCLK falling edge.

9.6.10.2 SPI (Master Mode) Test Circuit

Figure 35: SPI (Master Mode) Test Circuit

9.6.10.3 SPI (Master Mode) Timing Diagrams

Figure 36: SPI (Master Mode) AC Timing Diagram

9.6.11 Inter-integrated Circuit Interface (I²C) AC Timing

9.6.11.1 I²C AC Timing Table

Table 71: I²C Master AC Timing Table

Description	Symbol	Min	Max	Units	Notes
SCK clock frequency	fCK	See note 1		kHz	1
SCK minimum low level w idth	tLOW	0.47	0.47 -		2
SCK minimum high level w idth	tHIGH	0.40	-	tCK	2
SDA input setup time relative to SCK rising edge	tSU	250.0	-	ns	-
SDA input hold time relative to SCK falling edge	tHD	0.0	-	ns	4
SDA and SCK rise time	tr	-	1000.0	ns	2, 3
SDA and SCK fall time	tf	-	300.0	ns	2, 3
SDA output delay relative to SCK falling edge	tOV	0.0	0.4	tCK	2

Notes:

General comment: All values referred to VIH(min) and VIL(max) levels, unless otherwise specified.

General comment: tCK = 1/fCK.

- 1. See "Reference Clocks" table for more details.
- 2. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm.
- 3. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).
- 4. For this parameter, the load is CL = 10 pF.

Table 72: I²C Slave AC Timing Table

		100 kHz (Max)			
Description	Symbol	Min	Max	Units	Notes
SCK minimum low level w idth	tLOW	4.7	-	us	1
SCK minimum high level w idth	tHIGH	4.0	-	us	1
SDA input setup time relative to SCK rising edge	tSU	250.0	-	ns	-
SDA input hold time relative to SCK falling edge	tHD	0.0	-	ns	-
SDA and SCK rise time	tr	-	1000.0	ns	1, 2
SDA and SCK fall time	tf	-	300.0	ns	1, 2
SDA output delay relative to SCK falling edge	tOV	0.0	4.0	us	1

Notes:

General comment: All values referred to VIH(min) and VIL(max) levels, unless otherwise specified.

- 1. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm.
- 2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).

9.6.11.2 I²C Test Circuit

Figure 37: I²C Test Circuit

9.6.11.3 I²C AC Timing Diagrams

Figure 38: I²C Output Delay AC Timing Diagram

Figure 39: I²C Input AC Timing Diagram

9.6.12 JTAG Interface AC Timing

9.6.12.1 JTAG Interface AC Timing Table

Table 73: JTAG Interface AC Timing Table

Description	Symbol	Min	Max	Units	Notes
JTClk frequency	fCK	See Note 3		MHz	-
JTClk minimum pulse w idth	Tpw	0.45	0.55	tCK	-
JTClk rise/fall slew rate	Sr/Sf	0.5	-	V/ns	2
JTRSTn active time	Trst	1.0	-	ms	-
TMS, TDI input setup relative to JTClk rising edge	Tsetup	0.2*tCK	-	ns	-
TMS, TDI input hold relative to JTClk rising edge	Thold	0.4*tCK	-	ns	-
JTClk falling edge to TDO output delay	Tprop	1.0	0.25*tCK	ns	1

Notes:

General comment: All values were measured from vddio/2 to vddio/2, unless otherwise specified.

General comment: tCK = 1/fCK.

- 1. For TDO signal, the load is CL = 10 pF.
- 2. Defined from VIL to VIH for rise time, and from VIH to VIL for fall time.
- 3. See "Reference Clocks" table for more details.

9.6.12.2 JTAG Interface Test Circuit

Figure 40: JTAG Interface Test Circuit

9.6.12.3 JTAG Interface AC Timing Diagrams

Figure 41: JTAG Interface Output Delay AC Timing Diagram

Figure 42: JTAG Interface Input AC Timing Diagram

9.6.13 NAND Flash Interface AC Timing

9.6.13.1 NAND Flash AC Timing Table

Table 74: NAND Flash AC Timing Table

Description	Symbol	Min	Max	Units	Notes
WEn cycle time	tWC	30	-	ns	1
WEn minimum low pulse width	tWP	10	-	ns	1, 2
WEn minimum high pulse w idth	tWH	15	-	ns	1, 2
ALE to WEn skew factor	tASK	-3	3	ns	2, 3
CLE to WEn skew factor	tCLSK	-3	3	ns	2, 3
CEn to WEn skew factor	tCSK	-3	3	ns	2, 3
Data output bus to WEn skew factor	tDSK	-3	3	ns	2, 3
REn cycle time	tRC	30	-	ns	1
REn minimum low pulse w idth	tRP	10	-	ns	1, 2
REn minimum high pulse w idth	tREH	15	-	ns	1, 2
Data input to REn rising edge skew factor	tISK	-3	3	ns	2, 3

Notes:

General comment: All values were measured from VIL(max) to VIH(min), unless otherwise specified.

- 1. See functional specifications for configuration options.
- 2. For all signals, the load is CL = 10 pF.
- ${\it 3. Skew factor should be taken into consideration as a timing degradation in addition to register settings.}\\$

Refer to functional specifications for more information about timing adjustment possibilities.

9.6.13.2 NAND Flash Test Circuit

Figure 43: NAND Flash Test Circuit

9.6.13.3 NAND Flash AC Timing Diagrams

Figure 44: NAND Flash Input AC Timing Diagram

9.6.14 Time Division Multiplexing (TDM) Interface AC Timing (88F6710/88F6W11 only)

9.6.14.1 TDM Interface AC Timing Table

Table 75: TDM Interface AC Timing Table

		8.192 MHz			
Description	Symbol	Min	Max	Units	Notes
PCLK frequency	1/tC	0.256	8.192	MHz	1, 3
PCLK accuracy	tPPM	-50	50	ppm	1
PCLK period jitter	tCJIT	-8	8	ns	1
PCLK duty cycle	tDTY	0.4	0.6	tC	1
PCLK rise/fall time	tR/tF	-	3	ns	1, 2, 8
FSYNC period	tFS	12	25	us	1
FSYNC period jitter	tFJIT	-120	120	ns	1
DTX and FSYNC valid after PCLK rising edge	tD	0	20	ns	1, 4, 6
DRX and FSYNC setup time relative to PCLK falling edge	tSU	10	-	ns	5, 7
DRX and FSYNC hold time relative to PCLK falling edge	tHD	10	-	ns	5, 7

Notes:

General comment: All values were measured from vddio/2 to vddio/2, unless otherwise specified.

- 1. For all signals, the load is CL = 20 pF.
- 2. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.
- PCLK can be configured to several frequency options. Refer to the Functional Specifications or to the Clock settings for details.
- 4. This parameter is relevant for the FSYNC signal in Master mode only.
- 5. This parameter is relevant for the FSYNC signal in Slave mode only.
- 6. In negative-mode, the DTX signal is relative to PCLK falling edge.
- 7. In negative-mode, the DRX signal is relative to PCLK rising edge.
- 8. This parameter is relevant when the PCLK pin is output.

9.6.14.2 TDM Interface Test Circuit

Figure 45: TDM Interface Test Circuit

9.6.14.3 TDM Interface Timing Diagrams

Figure 46: TDM Interface Output Delay AC Timing Diagram

Figure 47: TDM Interface Input Delay AC Timing Diagram

9.6.15 Inter-IC Sound Interface (I²S) AC Timing (88F6710/88F6W11 Only)

9.6.15.1 Inter-IC Sound (I²S) AC Timing Table

Table 76: Inter-IC Sound (I²S) AC Timing Table

Description	Symbol	Min	Max	Units	Notes
2SBCLK clock frequency	fCK	See i	note 2	MHz	2
I2SBCLK clock high/low level pulse width	tCH/tCL	0.37	-	tCK	1
2SDI input setup time relative to 2SBCLK rise time	tSU	0.10	-	tCK	-
I2SDI input hold time relative to I2SBCLK rise time	tHO	0.0	-	ns	3
I2SDO, I2SLRCLK output delay relative to I2SBCLK rise time	tOD	0.10	0.70	tCK	1

Notes:

General comment: All timing values were measured from VIL(max) and VIH(min) levels, unless otherwise specified. General comment: tCK = 1/fCK.

- 1. For all signals, the load is CL = 15 pF.
- 2. See "Reference Clocks" table for more details.
- 3. For this parameter, the load is CL = 2 pF.

9.6.15.2 Inter-IC Sound (I²S) Test Circuit

Figure 48: Inter-IC Sound (I²S) Test Circuit

9.6.15.3 Inter-IC Sound (I²S) AC Timing Diagrams

Figure 49: Inter-IC Sound (I²S) Output Delay AC Timing Diagram

Figure 50: Inter-IC Sound (I²S) Input AC Timing Diagram

9.6.16 Sony/Philips Digital Interface (S/PDIF) AC Timing (88F6710/88F6W11 Only)

9.6.16.1 S/PDIF AC Timing Table

Table 77: S/PDIF AC Timing Table

Description	Symbol	Min	Max	Units	Notes
Output frequency accuracy	Ftxtol	-50.0	50.0	ppm	1
Input frequency accuracy	Frxtol	-100.0	100.0	ppm	-
Output jitter (total peak-to-peak)	Txjit	-	0.05	UI	1, 2
Jitter transfer gain	Txjitgain	-	3.0	dB	3
		-	10.0	UI	4
Input jitter (total peak-to-peak)	Rxjit	-	0.25	UI	5
		-	0.2	UI	6

Notes:

General comment: All values were measured from VIL(max) to VIH(min), unless otherwise specified.

General comment: For more information, refer to the Digital Audio Interface - Part 3: Consumer Applications,

IEC 60958-3:2003(E), Chapter 7.3, January 2003.

- 1. For all signals, the load is CL = 10 pF.
- 2. Using intrinsic jitter filter.
- 3. Refer to Figure-8 in IEC 60958-3:2003(E), Chapter 7.3, January 2003.
- 4. Defined for up to 5 Hz.
- 5. Defined from 200 Hz to 400 kHz.
- 6. Defined for above 400 kHz.

For additional information about working with a coax connection, see the Hardware Design Guide.

88F6710, 88F6707, and 88F6W11 Hardware Specifications

9.6.16.2 S/PDIF Test Circuit

Figure 51: S/PDIF Test Circuit

9.7 Differential Interface Electrical Characteristics

This section provides the reference clock, AC, and DC characteristics for the following differential interfaces:

- PCI Express (PCIe) Interface Electrical Characteristics
- SATA Interface Electrical Characteristics (88F6710/88F6707 Only)
- USB Electrical Characteristics
- Serial Gigabit Media Independent Interface (SGMII) Interface Electrical Characteristics
- Double Rated-SGMII (DR-SGMII) Electrical Characteristics

The Tx and Rx timing parameters are defined with the relevant reference clock specifications as specified in the Hardware Specifications.

9.7.1 Differential Interface Reference Clock Characteristics

9.7.1.1 PCI Express Interface Differential Reference Clock Characteristics

Table 78 is relevant for PEX0_CLK_P/N and PEX1_CLK_P/N.

88F6710, 88F6707, and 88F6W11 **Hardware Specifications**

Table 78: PCI Express Interface Differential Reference Clock Characteristics

Description	Symbol	Min	Max	Units	Notes
Clock frequency	fCK	100		MHz	-
Clock duty cycle	DCrefclk	0.4	0.6	tCK	-
Differential rising/falling slew rate	SRrefclk	0.6	4	V/ns	3
Differential high voltage	VIHrefclk	150	-	mV	-
Differential low voltage	VILrefclk	-	-150	mV	-
Absolute crossing point voltage	Vcross	250	550	mV	1
Variation of Vcross over all rising clock edges	Vcrs_dlta	-	140	mV	1
Rise-Fall matching	dTRrefclk	-	20	%	1
Average differential clock period accuracy	Tperavg	-300	2800	ppm	-
Absolute differential clock period	Tperabs	9.8	10.2	ns	2
Differential clock cycle-to-cycle jitter	Tccjit	-	150	ps	-
Clock high frequency RMS jitter	Thfrms	-	3.1	ps RMS	4
Clock low frequency RMS jitter	Tlfrms	-	3	ps RMS	4

Notes:

General Comment: The reference clock timings are based on 100 ohm test circuit.

General Comment: Refer to the PCI Express Card Electromechanical Specification, Revision 2.0,

April 2007, section 2.1.3 for more information.

- 1. Defined on a single-ended signal.
- 2. Including jitter and spread spectrum.

Table 79: PCI Express Interface Spread Spectrum Requirements

Symbol	Min	Max	Units	Notes
Fmod	0.0	33.0	kHz	1
Fspread	-0.5	0.0	%	1

Notes:

1. Defined on linear sweep or "Hershey's Kiss" (US Patent 5,631,920) modulations.

Note

The PCIe Spread-Spectrum Clocking (SSC) only works with PEX0_CLK_P/N reference clock input, and the PCIe clock is supplied with an SSC effect. The PEX1_CLK_P/N pins are used for output only.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 138 April 3, 2014, Preliminary

9.7.2 PCI Express (PCIe) Interface Electrical Characteristics

9.7.2.1 PCI Express Interface Driver and Receiver Characteristics

Table 80: PCI Express 1.1 Interface Driver and Receiver Characteristics

Description	Symbol	Min	Max	Units	Notes
Baud rate	BR	2.5		Gbps	-
Unit interval	UI	400		ps	-
Baud rate tolerance	Bppm	-300	300	ppm	2
Driver para	meters				
Differential peak to peak output voltage	VTXpp	0.8	1.2	V	-
Minimum TX eye w idth	TTXeye	0.75	-	UI	-
Differential return loss	TRLdiff	10	-	dB	1
Common mode return loss	TRLcm	6	-	dB	1
DC differential TX impedance	ZTXdiff	80	120	Ohm	-
Receiver par	ameters				
Differential input peak to peak voltage	VRXpp	0.175	1.2	V	-
Minimum receiver eye w idth	TRXeye	0.4	-	UI	-
Differential return loss	RRLdiff	10	-	dB	1
Common mode return loss	RRLcm	6	-	dB	1
DC differential RX impedance	ZRXdiff	80	120	Ohm	-
DC single-ended input impedance	ZRXcm	40	60	Ohm	-

Notes:

General Comment: For more information, refer to the PCI Express Base Specification, Revision 1.1, March, 2005.

- 1. Defined from 50 MHz to 1.25 GHz.
 - Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the driver/receiver breakout.
- 2. Does not account for SSC dictated variations.

88F6710, 88F6707, and 88F6W11 Hardware Specifications

Table 81: PCI Express 2.0 Interface Driver and Receiver Characteristics

Description	Symbol	Min	Max	Units	Notes
Baud rate	BR	5		Gbps	-
Unit interval	UI	20	00	ps	-
Baud rate tolerance	Bppm	-300	300	ppm	1
Driver para	meters				
Differential peak to peak output voltage	VTXpp	0.8	1.2	V	-
Minimum TX eye w idth	TTXeye	0.75	-	UI	-
Differential return loss [50 MHz to 1.25 GHz]	TRLdiff	10	-	dB	-
Differential return loss [1.25 GHz to 2.5 GHz]	TRLdiff	8	-	dB	-
Common mode return loss	TRLcm	6	-	dB	2
DC differential TX impedance	ZTXdiff	-	120	Ohm	-
Receiver par	ameters				
Differential input peak to peak voltage	VRXpp	0.1	1.2	V	-
Minimum receiver eye w idth	TRXeye	0.4	-	UI	-
Differential return loss [50 MHz to 1.25 GHz]	RRLdiff	10	-	dB	-
Differential return loss [1.25 GHz to 2.5 GHz]	RRLdiff	8	-	dB	-
Common mode return loss	RRLcm	6	-	dB	2
DC single-ended input impedance	ZRXcm	40	60	Ohm	-

Notes:

General Comment: For more information, refer to the PCI Express Base Specification, Revision 2.0, December 2007.

- 1. Does not account for SSC dictated variations.
- 2. Defined from 50 MHz to 2.5 GHz.

Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the driver/receiver breakout.

Doc. No. MV-S107978-00 Rev. G Page 140 Copyright © 2014 Marvell April 3, 2014, Preliminary

9.7.2.2 PCI Express InterfaceTest Circuit

Figure 52: PCI Express Interface 1.1 Test Circuit

When measuring Transmitter output parameters, C_TX is an optional portion of the Test/Measurement load. When used, the value of C_TX must be in the range of 75 nF to 200 nF. C_TX must not be used when the Test/Measurement load is placed in the Receiver package reference plane.

Figure 53: PCI Express Interface 2.0 Test Circuit

When measuring Transmitter output parameters, C_TX is an optional portion of the Test/Measurement load. When used, the value of C_TX must be in the range of 75 nF to 200 nF. C_TX must not be used when the Test/Measurement load is placed in the Receiver package reference plane.

88F6710, 88F6707, and 88F6W11 Hardware Specifications

9.7.3 SATA Interface Electrical Characteristics (88F6710/88F6707 Only)

The tables below specify the SATA electrical characteristics at the SATA connector. Refer to the device design guide for connectivity and layout guidelines of the SATA interface.

9.7.3.1 SATA I Interface Gen1 Mode Driver and Receiver Characteristics

Table 82: SATA I Interface Gen1i Mode Driver and Receiver Characteristics

Description	Symbol	Min	Max	Units	Notes
Baud Rate	BR	1.	.5	Gbps	-
Baud rate tolerance	Bppm	-350.0	350.0	ppm	-
Spread spectrum modulation frequency	Fssc	30.0	33.0	kHz	-
Spread spectrum modulation Deviation	SSCtol	-5000.0	0.0	ppm	-
Unit Interval	UI	666	5.67	ps	-
Driver P	arameters				
Differential impedance	Zdifftx	85.0	115.0	Ohm	-
Single ended impedance	Zsetx	40.0	-	Ohm	-
Differential return loss (75 MHz-150 MHz)	RLOD	14.0	-	dB	-
Differential return loss (150 MHz-300 MHz)	RLOD	8.0	-	dB	-
Differential return loss (300 MHz-1.2 GHz)	RLOD	6.0	-	dB	-
Differential return loss (1.2 GHz-2.4 GHz)	RLOD	3.0	-	dB	-
Differential return loss (2.4 GHz-3.0 GHz)	RLOD	1.0	-	dB	-
Output differential voltage	Vdifftx	400.0	600.0	mV	2
Total jitter at connector data-data, 5UI	TJ5	-	0.355	UI	1, 3
Deterministic jitter at connector data-data, 5UI	DJ5	-	0.175	UI	3
Total jitter at connector data-data, 250Ul	TJ250	-	0.470	UI	1, 3
Deterministic jitter at connector data-data, 250Ul	DJ250	-	0.220	UI	3
Receiver	Parameters				
Differential impedance	Zdiffrx	85.0	115.0	Ohm	-
Single ended impedance	Zsetx	40.0	-	Ohm	-
Differential return loss (75 MHz-150 MHz)	RLID	18.0	-	dB	-
Differential return loss (150 MHz-300 MHz)	RLID	14.0	-	dB	-
Differential return loss (300 MHz-600 MHz)	RLID	10.0	-	dB	-
Differential return loss (600 MHz-1.2 GHz)	RLID	8.0	-	dB	-
Differential return loss (1.2 GHz-2.4 GHz)	RLID	3.0	-	dB	-
Differential return loss (2.4 GHz-3.0 GHz)	RLID	1.0	-	dB	-
Input differential voltage	Vdiffrx	325.0	600.0	mV	-
Total jitter at connector data-data, 5UI	TJ5	-	0.430	UI	1, 3
Deterministic jitter at connector data-data, 5UI	DJ5	-	0.250	UI	3
Total jitter at connector data-data, 250Ul	TJ250	-	0.600	UI	1, 3
Deterministic jitter at connector data-data, 250Ul	DJ250	-	0.350	UI	3

Notes:

General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

General Comment: To comply with the values presented in this table, refer to your local

Marvell representative for register settings.

- 1. Total jitter is defined as $TJ = (14 * RJ\sigma) + DJ$ where $Rj\sigma$ is random jitter.
- 2. Output Differential Amplitude and Pre-Emphasis are configurabile. See the functional register description for more details.
- The value is informative only, and it can be achieved by using a proper board layout.Refer to the hardware design guidelines for more information.

88F6710, 88F6707, and 88F6W11 **Hardware Specifications**

9.7.3.2 SATA II Interface Gen2 Mode Driver and Receiver Characteristics

Table 83: SATA II Interface Gen2i Mode Driver and Receiver Characteristics

Description	Sym bol	Min	Max	Units	Notes
Baud Rate	BR	3.0		Gbps	-
Baud rate tolerance	Bppm	-350.0	350.0	ppm	-
Spread spectrum modulation frequency	Fssc	30.0	33.0	kHz	-
Spread spectrum modulation deviation	SSCtol	-5000.0	0.0	ppm	-
Unit Interval	UI	333	3.33	ps	-
Drive	r Parameters				
Output differential voltage	Vdifftx	400.0	700.0	mV	1,2
Differential return loss (150 MHz-300 MHz)	RLOD	14.0	-	dB	-
Differential return loss (300 MHz-600 MHz)	RLOD	8.0	-	dB	-
Differential return loss (600 MHz-2.4 GHz)	RLOD	6.0	-	dB	-
Differential return loss (2.4 GHz-3.0 GHz)	RLOD	3.0	-	dB	-
Differential return loss (3.0 GHz-5.0 GHz)	RLOD	1.0	-	dB	-
Total jitter at connector clock-data	TJ	-	0.37	UI	4, 5
Deterministic jitter at connector clock-data	DJ	-	0.19	UI	5
Receive	er Parameters				
Input differential voltage	Vdiffrx	275.0	750.0	mV	3
Differential return loss (150 MHz-300 MHz)	RLID	18.0	-	dB	-
Differential return loss (300 MHz-600 MHz)	RLID	14.0	-	dB	-
Differential return loss (600 MHz-1.2 GHz)	RLID	10.0	-	dB	-
Differential return loss (1.2 GHz-2.4 GHz)	RLID	8.0	-	dB	-
Differential return loss (2.4 GHz-3.0 GHz)	RLID	3.0	-	dB	-
Differential return loss (3.0 GHz-5.0 GHz)	RLID	1.0	-	dB	-
Total jitter at connector clock-data	TJ	-	0.60	UI	4, 5
Deterministic jitter at connector clock-data	DJ	-	0.42	UI	5

Notes:

General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007. General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

General Comment: To comply with the values presented in this table, refer to your local

Marvell representative for register settings.

- 1. 0.45-0.55 UI is the range where the signal meets the minimum level.
- 2. Output Differential Amplitude and Pre-Emphasis are configurabile. See the functional register description for more details.
- 3. 0.5 Ul is the point where the signal meets the minimum level.
- 4. The jitter is defined using a recovered clock with characteristics that meet the desired Jitter Transfer Function (JTF). The JTF is the ratio between the jitter defined using the recovered clock and the jitter defined using an ideal clock. It should have a high pass function with the following characteristics:
 - The -3 dB corner frequency of the JTF shall be 2.1 MHz +/- 1 MHz.
 - The magnitude peaking of the JTF shall be 3.5 dB maximum.
 - The attenuation at 30 KHz +/- 1% shall be 72 dB +/- 3 dB.
- 5. The value is informative only, and it can be achieved by using a proper board layout.

Refer to the hardware design guidelines for more information.

Doc. No. MV-S107978-00 Rev. G Copyright © 2014 Marvell Page 144 April 3, 2014, Preliminary

Table 84: SATA II Interface Gen2m Mode Driver and Receiver Characteristics

Description	Symbol	Min	Max	Units	Notes
Baud Rate	BR	3.0		Gbps	-
Baud rate tolerance	Bppm	-350.0	350.0	ppm	-
Spread spectrum modulation frequency	Fssc	30.0	33.0	kHz	-
Spread spectrum modulation deviation	SSCtol	-5000.0	0.0	ppm	-
Unit Interval	UI	333	3.33	ps	-
Driver Parai	neters				
Output differential voltage	Vdifftx	400.0	700.0	mV	1,2
Differential return loss (150 MHz-300 MHz)	RLOD	14.0	-	dB	-
Differential return loss (300 MHz-600 MHz)	RLOD	8.0	-	dB	-
Differential return loss (600 MHz-2.4 GHz)		6.0	-	dB	-
Differential return loss (2.4 GHz-3.0 GHz)	RLOD	3.0	-	dB	-
Total jitter at connector clock-data	TJ	-	0.37	UI	4, 5
Deterministic jitter at connector clock-data	DJ	-	0.19	UI	5
Receiver Para	meters				
Input differential voltage	Vdiffrx	240.0	750.0	mV	3
Differential return loss (150 MHz-300 MHz)	RLID	18.0	-	dB	-
Differential return loss (300 MHz-600 MHz)	RLID	14.0	-	dB	-
Differential return loss (600 MHz-1.2 GHz)	RLID	10.0	-	dB	-
Differential return loss (1.2 GHz-2.4 GHz)	RLID	8.0	-	dB	-
Differential return loss (2.4 GHz-3.0 GHz)	RLID	3.0	-	dB	-
Total jitter at connector clock-data	TJ	-	0.60	UI	4, 5
Deterministic jitter at connector clock-data	DJ	-	0.42	UI	5

Notes:

General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

General Comment: To comply with the values presented in this table, refer to your local Marvell representative for register settings.

- 1. 0.45-0.55 UI is the range where the signal meets the minimum level.
- Output Differential Amplitude and Pre-Emphasis are configurabile. See the functional register description for more details.
- 3. 0.5 UI is the point where the signal meets the minimum level.
- 4. The jitter is defined using a recovered clock with characteristics that meet the desired Jitter Transfer Function (JTF). The JTF is the ratio between the jitter defined using the recovered clock and the jitter defined using an ideal clock. It should have a high pass function with the following characteristics:
 - The -3 dB corner frequency of the JTF shall be 2.1 MHz +/- 1 MHz.
 - The magnitude peaking of the JTF shall be 3.5 dB maximum.
 - The attenuation at 30 KHz +/- 1% shall be 72 dB +/- 3 dB.
- 5. The value is informative only, and it can be achieved by using a proper board layout.

Refer to the hardware design guidelines for more information.

9.7.4 USB Electrical Characteristics

9.7.4.1 **USB** Driver and Receiver Characteristics

Table 85: USB Low Speed Driver and Receiver Characteristics

	Low Speed				
Description	Symbol	Min	Max	Units	Notes
Baud Rate	BR	1.	.5	Mbps	-
Baud rate tolerance	Bppm	-15000.0	15000.0	ppm	-
Driver Parar	neters				
Ouput single ended high	VOH	2.8	3.6	V	1
Ouput single ended low	VOL	0.0	0.3	V	2
Output signal crossover voltage	VCRS	1.3	2.0	V	3
Data fall time	TLR	75.0	300.0	ns	3, 4
Data rise time	TLF	75.0	300.0	ns	3, 4
Rise and fall time matching	TLRFM	80.0	125.0	%	-
Source jitter total: to next transition	TUDJ1	-95.0	95.0	ns	5
Source jitter total: for paired transitions	TUDJ2	-150.0	150.0	ns	5
Receiver Para	meters				
Input single ended high	VIH	2.0	-	V	-
Input single ended low	VIL	-	0.8	V	-
Differential input sensitivity	VDI	0.2	-	V	-

Notes:

General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

General Comment: To comply with the values presented in this table, refer to your local

Marvell representative for register settings.

- 1. Defined with 1.425 kilohm pull-up resistor to 3.6V.
- 2. Defined with 14.25 kilohm pull-down resistor to ground.
- 3. See "Data Signal Rise and Fall Time" waveform.
- 4. Defined from 10% to 90% for rise time and 90% to 10% for fall time.
- 5. Including frequency tolerance. Timing difference between the differential data signals.

Defined at crossover point of differential data signals.

Doc. No. MV-S107978-00 Rev. G Page 146 Copyright © 2014 Marvell April 3, 2014, Preliminary

Table 86: USB Full Speed Driver and Receiver Characteristics

		Full S	peed		
Description	Symbol	Min	Max	Units	Notes
Baud Rate	BR	12	2.0	Mbps	-
Baud rate tolerance	Bppm	-2500.0	2500.0	ppm	-
Driver Para	meters				
Ouput single ended high	VOH	2.8	3.6	V	1
Ouput single ended low	VOL	0.0	0.3	V	2
Output signal crossover voltage	VCRS	1.3	2.0	V	4
Output rise time	TFR	4.0	20.0	ns	3, 4
Output fall time	TFL	4.0	20.0	ns	3, 4
Source jitter total: to next transition	TDJ1	-3.5	3.5	ns	5, 6
Source jitter total: for paired transitions	TDJ2	-4.0	4.0	ns	5, 6
Source jitter for differential transition to SE0 transition	TFDEOP	-2.0	5.0	ns	6
Receiver Para	meters				
Input single ended high	VIH	2.0	-	V	-
Input single ended low	VIL	-	0.8	V	-
Differential input sensitivity	VDI	0.2	-	V	-
Receiver jitter: to next transition	tJR1	-18.5	18.5	ns	6
Receiver jitter: for paired transitions	tJR2	-9.0	9.0	ns	6

Notes:

General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

 $\label{thm:comply} \textbf{General Comment: To comply with the values presented in this table, refer to your local}$

Marvell representative for register settings.

- 1.. Defined with 1.425 kilohm pull-up resistor to 3.6V.
- 2.. Defined with 14.25 kilohm pull-down resistor to ground.
- 3. Defined from 10% to 90% for rise time and 90% to 10% for fall time.
- 4. See "Data Signal Rise and Fall Time" waveform.
- 5. Including frequency tolerance. Timing difference between the differential data signals.
- 6. Defined at crossover point of differential data signals.

Table 87: USB High Speed Driver and Receiver Characteristics

		High Speed			
Description	Symbol	Min	Max	Units	Notes
Baud Rate	BR	48	0.0	Mbps	-
Baud rate tolerance	Bppm	-500.0	500.0	ppm	-
Driver Parai	neters				-
Data signaling high	VHSOH	360.0	440.0	mV	-
Data signaling low	VHSOL	-10.0	10.0	mV	-
Data rise time	THSR	500.0	-	ps	1
Data fall time	THSF	500.0	-	ps	1
Data source jitter		See n	ote 2		2
Receiver Para	meters				
Differential input signaling levels		See n	ote 3		3
Data signaling common mode voltage range		-50.0	500.0	mV	-
Receiver jitter tolerance		See n	ote 3		3

Notes:

General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

General Comment: To comply with the values presented in this table, refer to your local Marvell representative for register settings.

- 1. Defined from 10% to 90% for rise time and 90% to 10% for fall time.
- 2. Source jitter specified by the "TX eye diagram pattern template" figure.
- 3. Receiver jitter specified by the "RX eye diagram pattern template" figure.

9.7.4.2 **USB Interface Driver Waveforms**

Figure 54: Low/Full Speed Data Signal Rise and Fall Time

Figure 55: High Speed TX Eye Diagram Pattern Template

Figure 56: High Speed RX Eye Diagram Pattern Template

9.7.5 Serial Gigabit Media Independent Interface (SGMII) Interface Electrical Characteristics

9.7.5.1 SGMII Driver and Receiver Characteristics

Table 88: SGMII Interface Driver and Receiver Characteristics (1000BASE-X)

Description	Symbol	Min	Max	Units	Notes
Baud rate	BR	1.25		Gbps	-
Baud rate tolerance	Bppm	-100	100	ppm	1
Unit interval	UI	80	00	ps	-
Driver parameters for 1000BA	SE-X Back	kplane Mo	de		-
Output differential minimum eye opening	Vodppe	850	-	mV	-
Output differential maximum peak-to-peak	Vodpp	-	1350	mV	-
Absolute output limits	Vos	-0.4	1.6	V	-
Output differential skew		-	20	ps	2
Return loss differential output	RLOD	10	-	dB	3, 9
Output jitter - deterministic, peak-to-peak	Jttx	-	0.1	UI	4
Output jitter - total, peak-to-peak	Jttxpp	-	0.24	UI	6
Receiver parameters for 1000E	BASE-X Ba	ckplane M	ode		
Input differential sensitivity	Vidppe	180	-	mV	8
Input differential voltage	Vidpp	-	2000	mV	8
Input differential skew	Tisk	-	180	ps	5
Return loss differential input	RLID	10	-	dB	3, 9
Return loss common mode input	RLIC	6	-	dB	7, 9
Input jitter - deterministic, peak-to-peak	Jtrx	-	0.462	UI	4
Input jitter - total, peak-to-peak	Jtrxpp	-	0.749	UI	6

Notes:

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

- 1. Defines the allow able reference clock difference from nominal.
- 2. This is a single ended parameter and is defined at the 50% point on the signal swing.
- 3. Defined from 50 MHz to 625 MHz.

For 650 MHz - 1.25 GHz: -10dB+10log(Freq/625) (Freq defined in MHz).

- 4. Jitter specifications include all but 10^-12 of the jitter population.
- 5. This value assumes total eye jitter budget is still maintained.
- 6. Total jitter is composed of both deterministic and random components.

The allow ed random jitter equals the allow ed total jitter minus the actual deterministic at that point.

7. Defined from 50 MHz to 625 MHz.

For 650 MHz - 1.25 GHz: -6dB+10log(Freq/625) (Freq defined in MHz).

- 8. Vidppe refers to the internal eye opening while Vidpp refers to the peak-to-peak.
- Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the driver/receiver breakout.

Doc. No. MV-S107978-00 Rev. G Page 150

Table 89: SGMII Interface Settings and Configuration (1000 BASE-X)

Parameter	Setting/Configuration
Vods	The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value of 420 mV is achieved with txamp[4:0]= 0, and the maximum value of 1350 mV is achieved with txamp[4:0]=23. Differential amplitude accuracy is +/-50 mV.
Vodppe	The Vodppe is the output differential minimum eye opening. When driving a test load, these values are achieved with txamp[4:0]=18.
Vidpp	The Vidpp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V.

9.7.5.2 SGMII Interface Driver Waveforms

Figure 57: Tri-Speed Interface Driver Output Voltage Limits And Definitions

Figure 58: Driver Output Differential Amplitude and Eye Opening

9.7.6 Double Rated-SGMII (DR-SGMII) Electrical Characteristics

9.7.6.1 DR-SGMII Driver and Receiver Characteristics

Table 90: DR-SGMII Driver and Receiver Characteristics

Description	Symbol	Min	Max	Units	Notes
Baud Rate	BR	3.125		Gbps	-
Baud rate tolerance	Bppm	-100.0	100.0	ppm	1
Unit Interval	UI	32	0.0	ps	-
Drive	r parameters				
Output differential minimum eye opening	Vodppe	800.0	-	mV	-
Output differential maximum peak-to-peak	Vodpp	-	1600.0	mV	-
Absolute output limits	Vos	-0.4	2.3	V	-
Output differential skew	Tosk	-	15.0	ps	2
Output differential transition time	Tr/Tf	-	130.0	ps	3
Return loss differential output	RLOD	10.0	-	dB	4
Output jitter - Deterministic, peak-to-peak	Jttx	-	0.17	UI	-
Output jitter - Total, peak-to-peak	Jttxpp	-	0.35	UI	5, 8
Receiv	er parameters				
Input differential sensitivity	Vidpps	200.0	-	mV	9
Input differential voltage	Vidpp	-	1600.0	mV	9
Input differential skew	Tisk	-	75.0	ps	6
Return loss differential input	RLID	10.0	-	dB	7
Return loss common mode input	RLIC	6.0	-	dB	7
Input jitter - Deterministic, peak-to-peak	Jtrx	-	0.47	UI	10
Input jitter - Sinusoidal, low frequency	Jtrlsx	-	8.50	UI	11
Input jitter - Sinusoidal, high frequency	Jtrsx	-	0.10	UI	12
Input jitter - Total, peak-to-peak	Jtrxpp	-	0.65	UI	5, 8

Notes:

General Comment: The load is 100 ohm differential for these parameters, unless otherwise specified.

- 1. Defines the allow able reference clock difference from nominal.
- 2. This is a single ended parameter and is defined at the 50% point on the signal swing.
- 3. Defined from 20% to 80% of the signal's voltage levels.
- 4. Defined from 312.5 MHz to 625 MHz.
- 5. Defined with a BER of 10^-12.
- 6. This value assumes total eye jitter budget is still maintained.
- 7. Relative to 100 ohm differential and 25 ohm common mode. Defined from 100 MHz to 2.5 GHz. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the driver/receiver breakout.
- Total jitter is composed of both deterministic and random components.
 The allow ed random jitter equals the allow ed total jitter minus the actual deterministic at that point.
- 9. Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak.
- 10. Deterministic jitter includes sinusoidal, high frequency (Jtrsx), component.
- 11. Defined below 22.1 kHz.
- 12. Defined from 1.875 MHz to 20 MHz.

Table 91: DR-SGMII Settings and Configuration

Parameter	Setting/Configuration
Vods	The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value of 850 mV is achieved with txamp[4:0]= 11 and the maximum value of 1500 mV is achieved with txamp[4:0]=26. Differential amplitude accuracy is +/-75 mV. Output differential amplitude and pre-emphasis are configurable.
Vodppe	The Vodppe is the output differential minimum eye opening. When driving a test load, these values are achieved with txamp[4:0]= 22
PEr	The PEr is the pre-emphasis range. When driving a test load, the minimum is 0 and the maximum is -7.4 dB. Defined as PEr[dB] = 20*Log(Vodp/Vodd).
NOTE: For furth	er information, refer to the Functional Specifications.

Doc. No. MV-S107978-00 Rev. G

Page 154

Document Classification: Proprietary Information

April 3, 2014, Preliminary

9.7.6.2 DR-SGMII Driver Output Waveforms

Figure 59: DR-SGMII Driver Output Voltage Limits and Definitions

Figure 60: DR-SGMII Driver Output Differential Voltage under Pre-emphasis

Figure 61: DR-SGMII Driver Output Differential Amplitude and Eye Opening

10 Thermal Data

Table 92 provides the package thermal data for the 88F6710, 88F6707, and 88F6W11. This data is derived from simulations that were run according to the JEDEC standard.

The documents listed below provide a basic understanding of thermal management of integrated circuits (ICs) and guidelines to ensure optimal operating conditions for Marvell products. Before designing a system it is recommended to refer to these documents:

- Application Note, *AN-63 Thermal Management for Selected Marvell® Products*, Document Number MV-S300281-00
- White Paper, ThetaJC, ThetaJA, and Temperature Calculations, Document Number MV-S700019-00.

Table 92: Thermal Data for the 88F6710, 88F6707, and 88F6W11 in HSBGA Package

Symbol	Definition	Airfl	Airflow Value (°C/W)		
		0[m/s]	1[m/s]	2[m/s]	
θ_{JA}	Thermal resistance: junction to ambient	20.1 17.9		17.2	
Ψ_{JT}	Thermal characterization parameter: junction to top center	8.4			
Ψ_{JB}	Thermal characterization parameter: junction to board	11.8 11.4 1		11.3	
θ JC	Thermal resistance: junction to case (not air-flow dependent)	9.5			
θ_{JB}	Thermal resistance: junction to board (not air-flow dependent)	13.5			

11 Package

The 88F6710, 88F6707, and 88F6W11 uses a 286-pin 19mm x 19 mm HSBGA package with a 1.00 mm ball pitch.

Figure 62: HSBGA 19x19 mm, 286-pin Package and Dimensions

12 Part Order Numbering/Package Marking

12.1 Part Order Numbering

Figure 63 shows the part order numbering scheme for the 88F6710, 88F6707, and 88F6W11. Refer to Marvell Field Application Engineers (FAEs) or representatives for further information when ordering parts.

Figure 63: Sample Part Number

Table 93: 88F6710, 88F6707, and 88F6W11 Commercial Grade Part Order Options

Package Type	Part Order Number
88F6710	
286-pin 19 mm x 19 mm HSBGA	88F6710-xx-BMI2C120-xxxx (Green, RoHS 6/6 and Halogen-free package, 1.2 GHz)
88F6707	
286-pin 19 mm x 19 mm HSBGA	88F6707-xx-BMI2C080-xxxx (Green, RoHS 6/6 and Halogen-free package, 800 MHz)
286-pin 19 mm x 19 mm HSBGA	88F6707-xx-BMI2C100-xxxx (Green, RoHS 6/6 and Halogen-free package, 1 GHz)
286-pin 19 mm x 19 mm HSBGA	88F6707-xx-BMI2C120-xxxx (Green, RoHS 6/6 and Halogen-free package, 1.2 GHz)
88F6W11	
286-pin 19 mm x 19 mm HSBGA	88F6W11-xx-BMI2C080-xxxx (Green, RoHS 6/6 and Halogen-free package, 800 MHz)
286-pin 19 mm x 19 mm HSBGA	88F6W11-xx-BMI2C100-xxxx (Green, RoHS 6/6 and Halogen-free package, 1 GHz)
286-pin 19 mm x 19 mm HSBGA	88F6W11-xx-BMI2C120-xxxx (Green, RoHS 6/6 and Halogen-free package, 1.2 GHz)

Table 94: 88F6710, 88F6707, and 88F6W11 Industrial Grade Part Order Options

Package Type	Part Order Number
88F6710	
286-pin 19 mm x 19 mm HSBGA	88F6710-xx-BMI2I120-xxxx (Green, RoHS 6/6 and Halogen-free package, 1.2 GHz)
88F6707	
286-pin 19 mm x 19 mm HSBGA	88F6707-xx-BMI2I080-xxxx (Green, RoHS 6/6 and Halogen-free package, 800 MHz)
286-pin 19 mm x 19 mm HSBGA	88F6707-xx-BMI2I100-xxxx (Green, RoHS 6/6 and Halogen-free package, 1 GHz)
88F6W11	
286-pin 19 mm x 19 mm HSBGA	88F6W11-xx-BMI2I100-xxxx (Green, RoHS 6/6 and Halogen-free package, 1 GHz)
286-pin 19 mm x 19 mm HSBGA	88F6W11-xx-BMI2I120-xxxx (Green, RoHS 6/6 and Halogen-free package, 1.2 GHz)

12.2 Package Marking

Figure 64 shows a sample Commercial package marking and pin 1 location for the 88F6710, 88F6707, and 88F6W11.

Figure 64: Sample Package Marking and Pin 1 Location

Note: The above drawing is not drawn to scale. Location of markings is approximate.

Marvell Semiconductor, Inc. 5488 Marvell Lane Santa Clara, CA 95054, USA

> Tel: 1.408.222.2500 Fax: 1.408.988.8279

> > www.marvell.com

Marvell. Moving Forward Faster