In []: Name: Ishan Chaskar
 URK21CS1181

In []: Description:

Recommender systems are among the most popular applications of data science today. There are a lot of applications where websites collect data **from** their users and use that data to predict the likes and dislikes of their users. This allows them to recommend the content that they like.

A Recommender System is a software system that provides specific suggestions to users according to their preferences. These techniques may provide decision-making capabilities to the user. Items refer to any product that the recommender system suggests to its user like movies, music, news, travel packages, e-commerce products, etc.

Content-based recommenders suggest similar items based on a particular item. This system uses item metadata, such **as** genre, director, description, actors, etc. **for** movies, to make these recommendations.

And to recommend that, it will make use of the user& past item metadata. A good example could be YouTube, where based on the history, it suggests new videos that can be potentially watched.

Term Frequency(TF)=Number of times term t appears in document d/Total number of terms in document d

Inverse Document Frequency (IDF)=log(Total number of documents in the corpus D/Number of documents containing term t) $TF-IDF(t,d,D)=TF(t,d)\times IDF(t,D) \ \ Cosine \ \ similarity \ \ is \ \ a \ \ metric \ \ used \ \ to \ \ measure how similar two non-zero vector$

```
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
df = pd.read_csv('udemy_courses.csv')
df
```

Out[1]:		course_id	course_title	url	is_paid	price	num_subscribers
	0	1070968	Ultimate Investment Banking Course	https://www.udemy.com/ultimate- investment-bank	True	200	2147
	1	1113822	Complete GST Course & Certification - Grow You	https://www.udemy.com/goods- and-services-tax/	True	75	2792
	2	1006314	Financial Modeling for Business Analysts and C	https://www.udemy.com/financial- modeling-for-b	True	45	2174
	3	1210588	Beginner to Pro - Financial Analysis in Excel	https://www.udemy.com/complete- excel-finance-c	True	95	2451
	4	1011058	How To Maximize Your Profits Trading Options	https://www.udemy.com/how-to- maximize-your-pro	True	200	1276
	•••						
	3673	775618	Learn jQuery from Scratch - Master of JavaScri	https://www.udemy.com/easy- jquery-for-beginner	True	100	1040
	3674	1088178	How To Design A WordPress Website With No Codi	https://www.udemy.com/how-to- make-a-wordpress	True	25	306
	3675	635248	Learn and Build using Polymer	https://www.udemy.com/learn- and-build-using-po	True	40	513
	3676	905096	CSS Animations: Create Amazing Effects on Your	https://www.udemy.com/css- animations-create-am	True	50	300
	3677	297602	Using MODX CMS to Build Websites: A Beginner's	https://www.udemy.com/using- modx-cms-to-build	True	45	901
3678 rows × 12 columns							

```
In [ ]: 1. Develop a Udemy course recommender system with content-based recommendation
            using the scikit-learn
         a. Use the column: 'course_title'
In [2]: print('URK21CS1181')
         col = df[['course title']]
         col
         URK21CS1181
Out[2]:
                                                course_title
            0
                            Ultimate Investment Banking Course
                 Complete GST Course & Certification - Grow You...
            2
                   Financial Modeling for Business Analysts and C...
            3
                     Beginner to Pro - Financial Analysis in Excel ...
            4
                    How To Maximize Your Profits Trading Options
         3673
                   Learn ¡Query from Scratch - Master of JavaScri...
         3674 How To Design A WordPress Website With No Codi...
         3675
                                 Learn and Build using Polymer
         3676
                 CSS Animations: Create Amazing Effects on Your...
         3677
                Using MODX CMS to Build Websites: A Beginner's...
        3678 rows × 1 columns
         b. Remove the leading and trailing whitespaces in that column
         col['course_title'] = col['course_title'].str.strip()
In [3]:
         col['course title']
         /tmp/ipykernel_2062100/2318620746.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
         ble/user_guide/indexing.html#returning-a-view-versus-a-copy
           col['course_title'] = col['course_title'].str.strip()
Out[3]: 0
                                  Ultimate Investment Banking Course
         1
                  Complete GST Course & Certification - Grow You...
         2
                  Financial Modeling for Business Analysts and C...
         3
                  Beginner to Pro - Financial Analysis in Excel ...
         4
                       How To Maximize Your Profits Trading Options
         3673
                  Learn jQuery from Scratch - Master of JavaScri...
         3674
                 How To Design A WordPress Website With No Codi...
         3675
                                       Learn and Build using Polymer
         3676
                 CSS Animations: Create Amazing Effects on Your...
                 Using MODX CMS to Build Websites: A Beginner's...
         3677
         Name: course_title, Length: 3678, dtype: object
```

```
In [ ]: c. Perform feature extraction using Term Frequency Inverse Document Frequency
         (TF-IDF).
In [4]: print('URK21CS1181')
         tf = TfidfVectorizer()
         tfidf_matrix = tf.fit_transform(col['course_title'])
         print(tfidf_matrix.shape)
         URK21CS1181
         (3678, 3716)
In [ ]: d. Compute the cosine similarity.
In [5]: print('URK21CS1181')
         cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)
         print(cosine_sim.shape)
         URK21CS1181
         (3678, 3678)
In [ ]: e. Display the top 'n' suggestions with the similarity score for the given user
            input.
In [6]: print('URK21CS1181')
         titles = col['course_title']
         indices = pd.Series(col.index, index=col['course_title'])
         URK21CS1181
In [8]: print('URK21CS1181')
         title = input("Enter the columns to suggest: ")
         num = int(input("Number of suggestions: "))
         idx = indices[title]
         URK21CS1181
In [9]: print('URK21CS1181')
         sim scores = list(enumerate(cosine sim[idx]))
         sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
         sim_scores = sim_scores[1:num + 1]
         sim_scores
         URK21CS1181
Out[9]: [(220, 0.3880382676899578),
          (414, 0.3762140375317894),
          (43, 0.36346910833870283),
          (408, 0.3437200574400444)]
In [10]: col_indices = [i[0] for i in sim_scores]
         scores = [i[1] for i in sim_scores]
In [16]: print('URK21CS1181')
         print("Suggestions to " + title + "...")
         print("\n")
         for rec in range(num):
             print("Suggested:"+titles[col indices[rec]]+"(score:"+str(scores[rec])+")")
```

URK21CS1181

Suggestions to How To Maximize Your Profits Trading Options...

Suggested:Introduction to Options - Strategies For Consistent Profits(score:0.3 880382676899578)

Suggested: How to trade options(score:0.3762140375317894)

Suggested:Options Trading - How to Win with Weekly Options(score:0.363469108338 70283)

Suggested:Trading Options Basics(score:0.3437200574400444)

In []: Result:

Hence the aim to develop a Udemy course recommender system with content-based recommendation using the scikit-learn has been coded and executed successfully.