

Utilising unlabelled data to enhance prediction, study case of gesture prediction.

HEDROUG Amine

Objectives

Objectives

Objectives

- IP PARIS
 - To try to use other learning mechanisms to use unlabelled data to enhance
 - gesture based analysis:
 - Multiple Instance Learning (MIL)
 - Self-Supervised Learning
 - Semi-Supervised Learning
 - The targeted task is gesture classification, but can be extended to other task, such as gesture generations etc.

Methods

Baseline methodes (CNN - Graph)

- Two baseline methods are conceived:
 - CNN-based: takes a grayscale image (rasterised table of joint sequences) as input, processes it with convolutions, and outputs class scores.
 - Graph-based: takes joint coordinates as a spatio-temporal graph, processes them with graph cnn, and outputs class scores via fully connected layers.
- The CNN based method is simpler, but can't consider the joint information.

Semi-Supervised

Train a model on labeled data, then use it to predict labels for unlabeled data.
 High confidence predictions are added to the training set, and the process repeats iteratively.

Self-Supervised - Upstream Model

Siamese contrastive learning

Contrastive learning is a self-supervised approach where a model learns to distinguish between similar and dissimilar data by bringing positive pairs closer and pushing negative

Negative

Positive

pairs apart in the feature space.

Self-Supervised - Upstream Model

Multiple instance learning

Institut Mines-Télécon

Current State

Current State

Datasets

NTU RGB+D 60 dataset:

o Joints: 25x2

Class: 60 different actions

56000 samples

• Mocaplab dataset:

Joints: 37

Class: face, torso, hands, other

718 samples

Current State

Dataset

- Data splitting :
 - NTU RGB+D dataset (X-sub benchmark), focusing on low-label regimes with 1%, 5%, and 10% of the training set labeled.
 - Mocaplab: internally split the data into 50% labelled, 45% unlabelled, and 5% as test. All data split is fixed.

Institut Mines-Télécom

Current State

Results

- Results on the mocaplab shows the improvements of standard supervised method upon introductions of our three methods, exploiting unlabeled data.
- For NTU dataset, the effect for semi-supervised method is seen, but for other two, are still in progressed.

NTU RGBD

	1%		5%		10%	
	TRAIN (train+val)	TEST	TRAIN	TEST	TRAIN	TEST
Supervised	8,59%	7,61%	38,48%	34,31%	55,31%	51,77%
Semi-supervised	10,53%	9,49%	43,86%	40,09%	63,03%	57,91%
percentage of unlabeled data used	5.63%		18.01%		55,55%	
MIL	in progress		in progress		2,19%	1,70%
Self-Supervised	in progress		in progress		4,84%	4,66%

Mocaplab

Model	Accuracy	Relabelling accuracy
Supervised	56%	•
Semi-supervised	62%	69%

Model	Accuracy	Loss
Supervised	56%	3.9
Supervised + Contrastive (labelled)	58%	2.9
Constrastive (unlabeled) + Supervised	58%	2.7

Model	Accuracy	f1-score
Supervised	68%	0.69
weakly-supervised	70%	0.63

Observations

Observations

Observations

Semi-Supervised - NTU

- We see that the semi-supervised learning allows to use the unlabeled data, that it introduces
 pseudo-classified samples as new information as training progress (for each phase).
- Here, 29.24% unlabeled data is now used as additional training samples, with 85.23% confidence level (i.e. out of 29.24% new samples, 85.23% are properly labeled we have the true label)

```
Phase 1

percentage of labeled data from the initial unlabeled set: 18.75%

newly labelled: 89.67% (6068/6767 correct)

unlabeled: 0.00% (0/0 correctly unlabeled)

total labeled data: 89.67% (6068/6767 correct)

Phase 2

percentage of labeled data from the initial unlabeled set: 25.70%

newly labelled: 77.98% (2511/3220 correct)

unlabeled: 25.21% (180/714 correctly unlabeled)

total labeled data: 86.76% (8045/9273 correct)

Phase 3

percentage of labeled data from the initial unlabeled set: 29.49%

newly labelled: 73.44% (1850/2519 correct)

unlabeled: 28.24% (325/1151 correctly unlabeled)

total labeled data: 85.23% (9069/10641 correct)
```


Observations

Self-Supervised - NTU

• There is still challenge on the contrastive learning part, that the method still struggles to properly cluster the samples. Picture belows show visualisation of fc_256 layer responsible for the embedding during triplet loss.

IP PARIS

Observations

Multiple instance learning

- In bagging, it is easier to classify certain class than the other ,which can be useful during this phase of training.
- Here, classifying two-person interaction agains others (daily action, medical condition) is easier, than distinguishing of daily actions with others (two-person, medical condition) - distinguising pattern is two or one person.

Positive: two-person + medical conditions

Negative : daily actions

Positive: two-person

Negative : daily actions + medical conditions

Conclusion

 We show that it is possible to leverage unlabelled data to arrive on more accurate classification results, as opposed to only use available data.

On NTU RGB+D:

- Weakly-Supervised :
 - \rightarrow Binary expert too weak \rightarrow introduces label noise \rightarrow hurts multiclass performance.
- Self-Supervised:
 - ightarrow Contrastive model fails to form clusters ightarrow poor feature representation.
- Semi-Supervised:
 - → **Best performance**, especially in low-label regimes.
 - → Scales with **training time** and **label confidence** threshold.

On MocapLab:

- All methods outperform supervised baseline.
- Semi-Supervised:
 - → Strong improvement, but **sensitive to initial seed** and label quality.
- Self-Supervised:
 - → Better clustering with contrastive methods.
- Weakly-Supervised:
 - → Performance depends on **number of epochs** and model used.

REFERENCES

LITERATURE AND SOURCE CODES

- [1] https://medium.com/swlh/multiple-instance-learning-c49bd21f5620
- [2] https://medium.com/@aromalma/semi-supervised-learning-self-training-934a0c4f8
- [3] https://challengeenthusiast.com/self-supervised-learning-demonstratedg-f44ab8f2b45a

ANY QUESTIONS?

THANK YOU

HEDROUG Amine

E-mail : amine.hedroug@telecom-sudparis.eu

Phone : 0665113444

