

Advance topics

Agenda

- Advance code generation options
- Migrating STM32CubeMX project
- Power Consumption Calculator

Advanced code generation options 3

Driver Selector*

Allows customer to select HAL(default) or LL APIs for generating initialization code

Generated Function Call

Allows customization of initialization code

- Re-ordering of initialization code default sequence
- Disable generation of initialization code
- Allows generation of function definition without "static" keyword

Low-Layer API (LL API)

- LL APIs enable expert developer to optimize their code down to register level
- Combination of LL APIs and HAL gives developer complete flexibility in developing their application
 - Ease of use and portability of HAL APIs
 - Optimize performance, code footprint and power consumption
- LL peripheral initialization service are functionality equivalent to STM32 SPL and provide easy migration path from older SPL to STM32Cube ecosystem
- LL only support simple peripheral. Complex peripherals are not supported
 - Simple peripheral such as RCC, ADC, GPIO, I2C, SPI, TIM, USART, etc.
 - Complex peripherals not supported by LL include USB, SDMMC, FSMC, etc.

Agenda

- Advance code generation options
- Migrating STM32CubeMX project
- Power Consumption Calculator

Migrating existing STM32CubeMX project to another STM32 MCU

- STM32CubeMX provides 2 methods for migrating
 - "Import Project" feature
 - "List Pinout Compatible MCU" feature
- Customer have selected device and want to migrate existing design to selected device
 - "Import Project" feature
- Customer have existing design and looking for pin compatible MCU
 - "List Pinout Compatible MCU" feature

"Import Project" feature

STM32CubeMX

- Create "New project..."
- Select MCU you want to port into
- Select File > Import Project ...
- The following setting will be imported
 - Pin out, Clock Configuration, Configuration

"Import Project" dialog box

- Select STM32CubeMX project file that you want to import into new MCU
- Inspect import status message
- Select OK

"List Pinout Compatible MCU" feature

STM32CubeMX

- Select Pinout tab
- Select "Pinout > List Pinout Compatible MCUs"

Pinout Compatible Dialog

- Result
 - Bright green exact match
 - Light green partial match with hardware compatibility. Hardware compatibility can be ensured but some pin names could not be preserved.
 - Yellow partial match without hardware compatibility. Not all signals can be assigned to the exact same pin location
- Select "OK, Import"

Additional software component selection

- 3rd party software packages can be added into repository via "Managed embedded software packages"
- Once added, 3rd party code can be added to STM32CubeMX project
- Feature is based on ARM KEIL CMSIS-Pack standard

Agenda

- Advance code generation options
- Migrating STM32CubeMX project
- Power Consumption Calculator

Introduction 11

- The Power Consumption Calculator (PCC) uses a database of typical values to estimate power consumption, DMIPS, and battery life of STM32 MCUs.
- GUI tool integrated into the STM32CubeMX.
- Highly configurable scenarios with validity check.
- Battery selector, or define a custom battery.
- Facilitates comparison with other MCUs or other power options.
- Import, export and generate reports.

Usage 12

General PCC configuration panel.

pcc slides.ioc: STM32L151C6Tx

Sequence configuration.

> Result overview.

General PCC parameters

- MCU selection inherited from STM32CubeMX
 - Use the direct link to the datasheet to get more detailed information.
- Parameter selection
 - Temperature and voltage choice may be limited, depending on the selected MCU.
- Battery selection select typical or define your own
 - Battery is defined by capacity, voltage, self discharge and current limitations.
- Information notes
 - Purpose is to warn about estimation limitations.

Building a sequence

A sequence is a set of ordered steps.

Power consumption step definition 1/2 -15

- Power mode selection determines availability of peripherals.
- Regulator setting balances performance and consumption.
- Select the memory from which the code is executed, as well as prefetch and bus options.
- Vdd the choice in PCC is limited compared to actual possibilities.
- This option is present for battery life calculation purposes.

Power consumption step definition 2/2 16

- Clock
 - Frequency choice is limited by power consumption range
 - Available clock configurations depend on available data and other settings
- Peripherals
 - Choose clock gating to peripherals.
 - Import selection from pinout tab.
- Optional settings
 - Additional consumption is represented by estimated pin load

Sequence consumption profile display

- Possible to detach the charts to external display for presentation purposes
- Several different views selectable
 - Plot current vs time
 - Pie chart
 - Consumption of peripherals

Output and generating report -18

2. Power Plugin report

2.1 Microcontroller Selection

Serie	STM32L1		
Line	STM32L151/152		
мси	STM32L151C6Tx		
Datasheet	17659 Rev11		

2.2. Parameter Selection

Temperature	25
Vdd	3.6

2.3. Sequence

Step	STEP1	STEP2	STEP3	STEP4	STEP5
Mode	RUN	LOWPOWE R_RUN	STOP	WU_FROM STOP	RUN
Range	Range1- High	NoRange	NoRange	NoRange	Range1- High
Fetch type	FLASH	FLASH	n/a	n/a	FLASH
Clock Config.	HSEBYP PLL	MSI AHBDIV1	LSI RTC	MSI	HSEBYP
Clock Source Freq.	16.0 MHz	131.0 kHz	37.0 kHz	65.0 kHz	8.0 MHz
CPU Freq.	32.0 MHz	131.0 kHz	0 Hz	65.0 kHz	8.0 MHz
Periph.	ADC COMP1 DAC DMA GPIOA GPIOH IWDG RTC				

Page 2

- An optional step is to generate a PDF report.
- The PDF report is also available without PCC.
- Complete project includes these files :
 - Project.ioc
 - Project.pcs
 - Project.pdf
 - Project.txt
 - Project.jpg
 - ... and the generated project for a supported development environment.

