AKENTEN APPIAH-MENKA UNIVERSITY OF SKILLS TRAINING AND ENTREPRENEURIAL DEVELOPMENT

DEPARTMENT OF MATHEMATICS EDUCATION END OF SEMESTER EXAMINATION – AUGUST, 2021

COURSE CODE	ITC 126
COURSE TITLE	CALCULUS
DURATION	2 HOURS
LECTURER	DR. EBENEZER BONYAH
INSTRUCTION(S)	 The paper consist of two sections, section A and section B. Provide answers to questions in section A by writing the letter (A-D) that corresponds to the correct option on the first page of the ANSWER BOOKLET provided. There are three questions in section B, answer QUESTION ONE and any other one in the ANSWER BOOKLET provided.

SECTION A(30 marks)

- 1. Which of the following statements truly represents $\lim_{x \to n} f(x) = b$?
- A. The limit of f(x) as x approaches b is n
- B. The limit of f(x) as n approaches x is b
- C. The limit of f(x) as n approaches b is x
- D. The limit of f(x) as x approaches n is b
- 2. Find $\frac{ds}{dt}$ if $s = (1+t)\sqrt{2}$.
- A. $\frac{1+3t}{2\sqrt{t}}$
- $B. \frac{2\sqrt{t}}{1+3t}$
- $C. \frac{\sqrt{2t}}{2+3t}$
- D. $\frac{\sqrt{t}}{2+3t}$

- 3. Evaluate $\int_{1}^{3} e^{x} dx$
- A. e^2
- B. 2e
- C. $e^3 e$
- D. $3e e^2$
- 4. Given a function $g(x) = x^3 4x^2 + 9x + 4$ at which interval is it continuous?
- A. $(-\infty, \infty)$
- B. [4,9]
- C. [-4,9]
- D. [1,4]
- 5. Find $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1}$
- A. Undefined
- B. 2
- C. 0
- D. None of these

6. If
$$f(x) = \frac{729x^9}{4} - 21x^5 + 1$$
; then $\int f(x)dx$

gives ____

A.
$$\frac{729x^8}{4} - 21x^6 + 1 + C$$

B.
$$\frac{729x^8}{4} - 21x^6 + C$$

C.
$$\frac{729x^{10}}{40} + \frac{7}{2}x^6 + C$$

D.
$$\frac{729x^{10}}{40} - \frac{7x^6}{2} + x + C$$

7. At which value of x is the function

$$g(x) = \frac{x-1}{x-2}$$
 not continuous?

- A. 2
- B. 1
- C. 0
- D. None of these
- 8. Find an equation for the tangent line to the curve $y = \frac{2}{x}$ at the point (2, 1) on this curve.

A.
$$y = \frac{1}{2}x - 2$$

B.
$$y = -\frac{1}{2}x + 2$$

C.
$$y = x - 4$$

D.
$$y = 4x - 1$$

9. Find $\int dx$

- A...1 + C
- B. *C*
- C. x+C

D.
$$-1+C$$

Given the function

$$h(x) = \begin{cases} \frac{x^2 - 3x + 10}{22 - 7x}, & \text{if } x \le 4\\ 11x^2 + 19, & \text{if } x > 4 \end{cases}$$

Use it to answer questions 10 and 11

10. Find
$$h\left(\frac{1}{2}\right)$$

- A. $\frac{74}{35}$
- B. $\frac{47}{102}$
- C. $\frac{102}{47}$
- D. $\frac{35}{74}$

11. Solve for x if h(-10) = 3x.

- A. $\frac{69}{35}$
- B. 35
- C. $\frac{35}{69}$
- D. 69

12. Find the domain of g, if $g(x) = \frac{3}{x^2 - 81}$

- A. $\{x : x \in R, x \neq 9\}$
- B. $\{x : x \in R, x \neq 3\}$
- C. $\{x : x \in R, x \neq -3 \text{ or } 3\}$
- D. $\{x : x \in R, x \neq -9 \text{ or } 9\}$
- 13. Differentiate the function

$$g(x) = (3x^2 - 2x + 7)(4 - x)$$

A.
$$-9x^2 + 28x - 15$$

B.
$$9x^2 - 28x + 15$$

C.
$$3x^2 - 2x + 7$$

D.
$$-3x^2 + 2x - 7$$

14. Find the slope of the tangent line to $y = \sqrt{x}$ at x = 9.

- A. 3
- B. $\frac{1}{3}$
- C. 6
- D. $\frac{1}{6}$

15. Given px^q , where p and q are constants, the derivative with respect to x

is____

- A. qpx^{p-1}
- B. pqx^{q-1}
- C. px^{q-1}
- D. qx^{p-1}

16. The derivative of a constant and a function is illustrated as

A.
$$\frac{d}{dx}[cf(x)] = \frac{d}{dx}[f(x)]$$

B.
$$\frac{d}{dx}[cf(x)] = \frac{d}{dx}[f(x)^c]$$

C.
$$\frac{d}{dx}[cf(x)] = \frac{dc}{dx}[f(x)]$$

D.
$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$$

The curve $y^2 - x + 1 = 0$ has a tangent line at point (0, 1). Use it to answer questions 17 and 18

17. Find the gradient of the tangent line.

- A. 0
- B. $\frac{1}{2}$
- C. 1
- D. 2

18. Find the equation of the tangent line.

- A. 2x y = 1
- B. 2y x = -1
- C. 2x = y + 1
- D. 2y = x + 1

19. The result for $\int x^7 + 4x^{-6} dx$ gives ____

A.
$$\frac{1}{8}x^8 + \frac{4}{5x^5} + C$$

- B. $\frac{1}{8}x^8 + \frac{4}{5}x^5 + C$
- C. $\frac{1}{8}x^8 \frac{4}{5}x^5 + C$
- D. $\frac{1}{8}x^8 \frac{4}{5x^5} + C$

20. Which of the following best answers

$$\int_{-1}^{1} n^8 - n^5 dn?$$

- A. 0.2
- B. $\frac{1}{50}$
- C. $\frac{4}{18}$
- D. 0

21. If $\int_{a}^{1} x^2 = 0$, find the value of a.

- A. 0
- B. 1
- C. 2
- D. 3

22. If $f(x) = x^2 - 1$ and g(x) = 7x + 2 then find f'(x)g'(x).

A. 14*x*

B. 2x(7x+2)

C. 7x + 2

D. 2*x*

A function is defined as $f(x) = \frac{x^2 - 3x + 2}{x - 1}$

Answer questions 23- 26 using this information.

23. At which of the following values of x will the function be discontinuous?

A. -1

B. 0

C. 1

D. 2

24. The limit of f(x) as $x \to 1$

is____

A. -1

B. 0

C. 1

D. ∞

25. Find f(2).

A. -1

B. 0

C. 1

D. None of these

26. Which of the following is not true?

A. $\lim_{x \to -1} f(x) = -3$

B. $\lim_{x\to 0} f(x) = -2$

C. $\lim_{x \to 1} f(x) =$ undefined

D. All the above are true

27. Which of the following expressions truly

represents $\int_{a}^{b} f(t)dt$?

A. F(b) - F(a)

B. F(a) - F(t)

C. F(a) - F(b)

D. F(t) - F(a)

28. In integration, $\int \cos x dx$ gives _____.

 $A. -\cos x$

B. $\sin x$

C. $\cos x$

D. $-\sin x$

29. Solve $\frac{d}{dx} \left(\frac{1}{x} \right)$

A. $\ln x$

B. x^2

C. 1

D. $-\frac{1}{x^2}$

30. If $\int_{4}^{m} dx = 7$, find the value of m.

A. 3

B. 7

C. 9

D. 11

SECTION B (30 marks)

Answer QUESTION ONE and any other one in this section

- 1. (a) Sketch the graph of the function $f(x) = x^3 3x^2 + 1$ indicating the turning point(s), y-intercept (s) and x-intercept (s).
 - (b) Use implicit differentiation to find $\frac{d^2y}{dx^2}$ if $4x^2 2y^2 = 9$.
- 2. (a) Find y'(x) if $y = \frac{x^3 + 2x^2 1}{x + 5}$
 - (b) Given that

$$h(x) = \begin{cases} \sqrt{4+x}, & \text{if } x > -4\\ 8+2x, & \text{if } x < -4 \end{cases}$$

Determine whether the limit exists

- 3.(a) Evaluate $\int_0^1 (3-5x)^3 dx$
 - (b) Solve $\lim_{x \to \infty} \frac{22x^2 9x 1}{8x^2 + 13x + 40}$