# 応用数学特論Ⅱ (集中講義)

#### Day 3 Finite Geometries & Finite Fields

盧 暁南 (山梨大学) Xiao-Nan LU (University of Yamanashi)

> Aug. 27, 2021 Kobe University

### Two interesting books





### Outline

- 1 Affine planes
- 2 Finite fields
- 3 Projective planes



### Euclidean geometry

#### Axiom (公理) of Euclidean geometry

- 1 Any two points can be connected by a straight line.
- 2 A line segment can be extended continuously to a straight line.
- 3 A circle can be produced with given center and radius.
- 4 All right angles are equal to one another.
- (The parallel postulate; 平行線公準) If a straight line intersecting two lines made two interior angles on the same side less than two right angles, then the two lines will intersect on that side.
- The parallel postulate  $\iff$  Given a line  $\ell$  and a point P not lying on  $\ell$ , there exists a unique line passing through P that is parallel to  $\ell$ .
- The parallel postulate is independent of the first four!



### Non-Euclidean geometry

- (Traditional) non-Euclidean geometries by relaxing the parallel postulate:
  - hyperbolic geometry (双曲幾何学) (∃ infinite many parallel lines)
  - ▶ elliptic geometry (楕円幾何学) (∄ parallel line with Axiom 2 eliminated)



Parallel lines intersect at  $\infty$ 



Lines of longitude intersects at poles

#### Incidence structure

- ullet  $\mathcal{P}$ : set of points
- L: set of lines
- $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$ : incidence relation (結合関係)



- $(P,\ell) \in \mathcal{I}$  means  $P \in \mathcal{P}$  is incident with  $\ell \in \mathcal{L}$   $(P \text{ lying on } \ell)$
- $(\mathcal{P}, \mathcal{L}, \mathcal{I})$  is an incidence structure (結合構造)
- Two distinct  $\ell_1, \ell_2 \in \mathcal{L}$  are parallel iff they have no point incident with both of them.

Today, we consider geometries when  $|\mathcal{P}|$  (also  $|\mathcal{L}|$ ) is a finite set.

### Affine plane

#### Affine plane

An affine plane (アフィン平面) is an incidence structure  $(\mathcal{P},\mathcal{L},\mathcal{I})$  such that

- **1** For any two points  $p_1, p_2 \in \mathcal{P}$ , there exists a unique line  $\ell \in \mathcal{L}$  passing through both  $p_1$  and  $p_2$ , i.e.  $(p_1, \ell), (p_2, \ell) \in \mathcal{I}$ .
- 2 If  $p \in \mathcal{P}$  is not lying on  $\ell \in \mathcal{L}$ , i.e.  $(p,\ell) \notin \mathcal{I}$ , then there exists a unique line  $\ell_P$  passing through P, i.e.  $(P,\ell_P) \in \mathcal{I}$ , and  $\ell_P$  parallel to  $\ell$ .
- 3 There exists at least three non-collinear points.





### Basic propositions of an affine plane (1/4)

#### Proposition A

Any two lines intersect at either one point or do not intersect.

Proof: Assume two lines intersect at  $\geq 2$  points. A contradiction to Axiom 1.

#### Proposition B

Parallelism is an equivalence relation on the lines of an affine plane.

- ℓ//ℓ (Reflexivity; 反射律)
- If  $\ell_1/\!/\ell_2$  then  $\ell_2/\!/\ell_1$  (Symmetry; 対称律)
- If  $\ell_1/\!/\ell_2$  and  $\ell_2/\!/\ell_3$  then  $\ell_1/\!/\ell_3$  (Transitivity; 推移律)

Proof: The first two are trivial by the definition of parallelism.

For the third, assume  $\ell_1$  intersects  $\ell_3$  at P. By Axiom 2,  $\ell_1$  should be identical with  $\ell_3$ , as the unique parallel line of  $\ell_2$  passing through P.



### Basic propositions of an affine plane (2/4)

#### Proposition C

There are four points such that any three of them are not lying on a same line.

Proof: By Axiom 3, let P, Q, R be three non-collinear points. Let

- $\ell_P$ : the unique line passing P that is  $/\!/ \overline{QR}$
- $\ell_Q$ : the unique line passing Q that is  $/\!/\overline{PR}$
- $\ell_R$ : the unique line passing R that is  $/\!/\overline{PQ}$

By transitivity of parallelism,  $\ell_P$ ,  $\ell_Q$ ,  $\ell_R$  are not parallel to each other. Suppose  $\ell_P$  and  $\ell_Q$  intersect at S.



#### Quiz

Complete the above proof by showing that P, Q, R, S are the desired four points.

## Basic propositions of an affine plane (3/4)

#### Proposition D

Any point is incident with at least two lines.

Proof: Use the previously defined points P, Q, R, S.

- For  $A \in \{P, Q, R, S\}$ , done.
- $\overline{AP}$ ,  $\overline{AQ}$ ,  $\overline{AR}$  cannot coincide; otherwise, P, Q, R were collinear. done.



### Basic propositions of an affine plane (4/4)

#### Proposition E

Each line contains at least two points.

Proof: Suppose  $\ell$  contains at most one of the previously defined P, Q, R, S (w.l.o.g., suppose P, Q, R are not on  $\ell$ ). Then, at most one of  $\overline{PQ}$ ,  $\overline{PR}$ ,  $\overline{QR}$  is parallel to  $\ell$ .

Suppose  $\overline{PQ}$ ,  $\overline{PR}$  intersects  $\ell$  at A, B, respectively.

If A=B, then  $\overline{PQA}=\overline{PRB}$  by Axiom 1. However,  $\overline{PQ}\neq \overline{PR}$ . A contradiction.

This means  $\ell$  contains at least two different points A and B.



### The number of points and lines

#### Proposition F

In an affine plane, all the lines contain the same number of points.

• The order of the affine plane: # of points on a line

# Proposition G In on affine place of order n,

There are exactly n+1 lines passing through a given point.



### The number of lines in an affine plane of order n

Every parallel class has exactly n lines.

#### Theorem

There are  $n^2$  points.  $\iff$   $(n \text{ pts/line}) \times (n \text{ lines/para.class}) = h^2$ 

### Proposition I

There are n+1 parallel classes.

# Theorem #7C

There are  $n^2 + n$  lines.  $\Rightarrow$   $(\eta + 1) \cdot \eta$ 



Some parallel da

T# lines/PC

Affine plane of order n and n-1 MOLS of order n

Mutually orthogonal Latin Squere

#### Theorem

A complete set of n-1 MOLS of order  $n \iff$  an affine plane of order n.

### Outline

- Affine planes
- 2 Finite fields
- 3 Projective planes



### Group (revisit)

#### Group

A group (群) (G,+) is a set G with an operator + (addition) such that

- 1 If  $a, b \in G$  then  $a + b \in G$ ; (closure; basic property for any groupoid);
- 2 There exists  $0 \in G$  such that x + 0 = 0 + x = x for any  $x \in G$  (identity);
- **3** For any  $a \in G$  there exists  $b \in G$  such that a + b = b + a = 0 (inverse; Latin property);
- 4 For any  $a, b, c \in G$ , (a + b) + c = a + (b + c) (associative law).
- A group (G, +) is commutative (可換) if for any  $a, b \in G$ , a + b = b + a.

### Field



#### Field

A field (体)  $(\mathbb{F},+,\times)$  is a set  $\mathbb{F}$  with two operators + (addition) and  $\times$  (multiplication) such that

- $\bullet$  ( $\mathbb{F}$ , +) is a commutative group (with additive identity 0);
- $(\mathbb{F} \setminus \{0\}, \times)$  is a commutative group (with multiplicative identity 1);
- 3 For any  $a,b,c \in \mathbb{F}$ ,  $a \times (b+c) = a \times b + a \times c$  and  $(a+b) \times c = a \times c + b \times c$  (distributive property; 分配法則).
- For any  $a \in \mathbb{F}$ ,  $0 \times a = a \times 0 = 0$  (so that  $(\mathbb{F}, \times)$  is a groupoid).
- $1 \neq 0$  (for nontrivial fields).
- Examples:  $(\mathbb{C}, +, \times)$  (complex numbers),  $(\mathbb{R}, +, \times)$  (real numbers),  $(\mathbb{Q}, +, \times)$  (rational numbers),  $(\mathbb{Z}_p, +, \times)$  (finite field of prime order)

### Finite field $\mathbb{F}_p$ : examples

### Finite field $\mathbb{F}_2$

$$\begin{array}{c|c|c|c|c}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

# Finite field F5 (ayley table

| _+ | 0 | 1 | 2 | 3 | 4 |
|----|---|---|---|---|---|
| 0  | 0 | 1 | 2 | 3 | 4 |
| 1  | 1 | 2 | 3 | 4 | 0 |
| 2  | 2 | 3 | 4 | 0 | 1 |
| 3  | 3 | 4 | 0 | 1 | 2 |
| 4  | 4 | 0 | 1 | 2 | 3 |

| × | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 |
| 2 | 2 | 4 | 1 | 3 |
| 3 | 3 | 1 | 4 | 2 |
| 4 | 4 | 3 | 2 | 1 |

# Finite field $\mathbb{F}_p$

$$2/n = \{0, 1, ..., n-1\}$$

#### Theorem

 $\mathbb{Z}_n$  is a field iff n is a prime.

#### $\mathbb{Z}_4$ is not a field

| _+ | 0 | 1 | 2 | 3 |
|----|---|---|---|---|
| 0  | 0 | 1 | 2 | 3 |
| 1  | 1 | 2 | 3 | 0 |
| 2  | 2 | 3 | 0 | 1 |
| 3  | 3 | 0 | 1 | 2 |

• 2 does not have a multiplicative inverse.

| × | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 1 | 2 | 3 |
| 2 | 2 | 4 | 2 |
| 3 | 3 | 2 | 1 |

### Irreducible polynomials over prime fields

#### irreducible polynomial

An irreducible polynomial (既約多項式) f(x) is a polynomial that cannot be factorized into the product of two non-constant polynomials.

#### irreducible polynomial over $\mathbb{F}_2$

$$f(0) = 1$$
,  $f(1) = 1 + 1 + 1 = 1$ .

 $x^n + x + 1$  is irreducible over  $\mathbb{F}_2$  for any  $n \geq 2$ .

$$g(0) = 1, g(1) = 2.$$

irreducible polynomial over  $\mathbb{F}_3$ 

$$x^{2n} + 1$$
 is irreducible over  $\mathbb{F}_3$  for any  $n \ge 1$ .

$$g(2) = g(-1) = |+| = 2$$
.

- $x^2 + 1$  is irreducible over  $\mathbb{F}_3$  but not irreducible over  $\mathbb{F}_2$ .
- $x^2 + 1$  is irreducible over  $\mathbb{R}$  but not irreducible over  $\mathbb{C}$ .

$$\chi^2 t = (\chi + i)(\chi - i) \in \mathcal{C}(\chi^2)$$

### Finite field $\mathbb{F}_{2^m}$ : example

#### Construct $\mathbb{F}_4$

- Let  $\alpha$  be a "root" of an irreducible polynomial  $f(x) = x^2 + x + 1$  over  $\mathbb{F}_2$ .
- Clearly,  $\alpha \notin \mathbb{F}_2$ . Add  $\alpha$  into  $\mathbb{F}_2$  to obtain  $\mathbb{F}_2[\alpha]$ . = 素数がくのい ままない
- The arithmetic in  $\mathbb{F}_2[\alpha]$  is reduced by modulo polynomial  $\alpha^2 + \alpha + 1$ . In other words, since  $\alpha^2 + \alpha + 1 = 0$ , we can replace  $\alpha^2$  by  $-\alpha - 1 = \alpha + 1$ .

Rigorously, 
$$\mathbb{F}_{2}^{2} = \mathbb{F}_{2}[\alpha] / \langle f(\alpha) \rangle = \frac{\text{qnotient}}{\text{ring}}$$

# Finite field $\mathbb{F}_{2^m}$ : example

$$\begin{bmatrix} 1 = -1 \pmod{2} \\ d + d + 1 = 0 \end{bmatrix}$$

### Finite field $\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}$

| +            | 0            | 1            | $\alpha$     | $\alpha + 1$ |
|--------------|--------------|--------------|--------------|--------------|
| 0            | 0            | 1            | $\alpha$     | $\alpha + 1$ |
| 1            | 1            | 0            | $\alpha + 1$ | $\alpha$     |
| $\alpha$     | $\alpha$     | $\alpha + 1$ | 0            | 1            |
| $\alpha + 1$ | $\alpha + 1$ | $\alpha$     | 1            | 0            |

| ×            | 1            | $\alpha$     | $\alpha + 1$ |
|--------------|--------------|--------------|--------------|
| 1            | 1            | $\alpha$     | $\alpha + 1$ |
| $\alpha$     | α            | $\alpha + 1$ | 1            |
| $\alpha + 1$ | $\alpha + 1$ | 1            | $\alpha$     |

$$d+d=2d=0$$
(mod 2)

$$\alpha \cdot \alpha = \lambda^2 = \alpha + 1$$
  
 $\alpha (\alpha + 1) = \lambda^2 + \alpha = \alpha + 1 + \alpha = 1$ 

### Finite field $\mathbb{F}_{2^m}$ : example

### Finite field $\mathbb{F}_4 = \{0, 1, \alpha, \alpha^2\}$

| _+         | 0          | 1          | $\alpha$   | $\alpha^2$ |
|------------|------------|------------|------------|------------|
| 0          | 0          | 1          | $\alpha$   | $\alpha^2$ |
| 1          | 1          | 0          | $\alpha^2$ | $\alpha$   |
| $\alpha$   | $\alpha$   | $\alpha^2$ | 0          | 1          |
| $\alpha^2$ | $\alpha^2$ | $\alpha$   | 1          | 0          |

| ×          | 1          | $\alpha$   | $\alpha^2$ |
|------------|------------|------------|------------|
| 1          | 1          | $\alpha$   | $\alpha^2$ |
| $\alpha$   | $\alpha$   | $\alpha^2$ | 1          |
| $\alpha^2$ | $\alpha^2$ | 1          | $\alpha$   |

### Finite field $\mathbb{F}_{p^m}$ : construction

#### A non-rigorous description for finite field $\mathbb{F}_{p^m}$

- Let  $\alpha$  be a "root" of an irreducible polynomial f(x) over  $\mathbb{F}_p$ , where  $\deg f(x) = m$ .
- Clearly,  $\alpha \notin \mathbb{F}_p$ . Add  $\alpha$  into  $\mathbb{F}_p$  to obtain  $\mathbb{F}_p[\alpha]$ .
- The arithmetic in  $\mathbb{F}_p[\alpha]$  is reduced by modulo  $f(\alpha)$  (as a polynomial).

### Theorem (rigorous description for $\mathbb{F}_{p^m}$ using polynomial quotient rings)

Let f(x) be an irreducible polynomial of degree m in  $\mathbb{F}_p[x]$ . Then  $\mathbb{F}_p[x]/\langle f(x)\rangle$  is a field of order  $p^m$ .

- $\mathbb{F}_p[x]$ : polynomial ring (多項式環),  $\langle f(x) \rangle$ : ideal (イデアル) in  $\mathbb{F}_p[x]$ ,
- $\mathbb{F}_{p}[x]/\langle f(x)\rangle$ : quotient ring (商環, 剰余環)

### Example: finite field $\mathbb{F}_{3^2}$ (1/3)

#### Construct $\mathbb{F}_{3^2} = \{0, 1, 2, \alpha, \alpha + 1, \alpha + 2, 2\alpha, 2\alpha + 1, 2\alpha + 2\}$

- Let  $\alpha$  be a "root" of an irreducible polynomial  $f(x) = x^2 + 1$  over  $\mathbb{F}_3$ .
- The arithmetic in  $\mathbb{F}_3[\alpha]$  is reduced by modulo polynomial  $\alpha^2 + 1$ . In other words, since  $\alpha^2 + 1 = 0$ , we can replace  $\alpha^2$  by -1 = 2.

$$\chi^{2} + |= 0 \iff \chi^{2} = 2$$



## Example: finite field $\mathbb{F}_{3^2}$ (2/3)

• All the coefficients are reduced modulo 3. For example,  $3\alpha = 0\alpha = 0$ .

| +             | 0        | 1            | 2            | $\alpha$     | $\alpha + 1$  | $\alpha + 2$  | $2\alpha$     | $2\alpha + 1$ | $2\alpha + 2$ |
|---------------|----------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|
| 0             | 0        | 1            | 2            | $\alpha$     | $\alpha + 1$  | $\alpha + 2$  | $2\alpha$     | $2\alpha + 1$ | $2\alpha + 2$ |
| 1             | 1        | 2            | 0            | $\alpha + 1$ | $\alpha + 2$  | $\alpha$      | $2\alpha + 1$ | $2\alpha + 2$ | $2\alpha$     |
| 2             | 2        | 0            | 1            | $\alpha + 2$ | $\alpha$      | $\alpha + 1$  | $2\alpha + 2$ | $2\alpha$     | $2\alpha + 1$ |
| $\alpha$      | $\alpha$ | $\alpha + 1$ | $\alpha + 2$ | $2\alpha$    | $2\alpha + 1$ | $2\alpha + 2$ | 0             | 1             | 2             |
| $\alpha + 1$  |          |              |              |              |               |               |               |               |               |
| $\alpha + 2$  |          |              |              |              |               |               |               |               |               |
| $2\alpha$     |          |              |              |              |               |               |               |               |               |
| $2\alpha + 1$ |          |              |              |              |               |               |               |               |               |
| $2\alpha + 2$ |          |              |              |              |               |               |               |               |               |

### Example: finite field $\mathbb{F}_{3^2}$ (3/3)

- All the coefficients are reduced modulo 3. For example,  $2\alpha + 4 = 2\alpha + 1$ .
- Replace  $\alpha^2$  by 2, since  $\alpha^2 + 1 = 0$ .

| ×             | 1        | 2         | $\alpha$  | $\alpha + 1$  | $\alpha + 2$  | $2\alpha$ | $2\alpha + 1$ | $2\alpha + 2$ |
|---------------|----------|-----------|-----------|---------------|---------------|-----------|---------------|---------------|
| 1             | 1        | 2         | $\alpha$  | $\alpha + 1$  | $\alpha + 2$  | $2\alpha$ | $2\alpha + 1$ | $2\alpha + 2$ |
| 2             | 2        | 1         | $2\alpha$ | $2\alpha + 2$ | $2\alpha + 1$ | $\alpha$  | $\alpha + 2$  | $\alpha + 1$  |
| $\alpha$      | $\alpha$ | $2\alpha$ | 2         | $\alpha + 2$  | $2\alpha + 2$ | 1         | $\alpha+1$    | $2\alpha+1$   |
| $\alpha + 1$  |          |           |           |               |               |           |               |               |
| $\alpha + 2$  |          |           |           |               |               |           |               |               |
| $2\alpha$     |          |           |           |               |               |           |               |               |
| $2\alpha + 1$ |          |           |           |               |               |           |               |               |
| $2\alpha + 2$ |          |           |           |               |               |           |               |               |





### Finite field $\mathbb{F}_{p^m}$ : uniqueness

#### Theorem



Finite fields exist iff their order is of the form  $p^m$  where p is a prime.

#### Theorem



Any two finite fields of the same order are isomorphic (同型).



### Affine plane over $\mathbb{F}_q$

- Euclidean plane  $\mathbb{R}^2$ :
  - Points:  $(x,y) \in \mathbb{R}^2$ .
  - ▶ Lines: y = ax + b and x = c, where  $x, y \in \mathbb{R}$ .
- Affine plane over  $\mathbb{F}_q$  (of order q):
  - Points:  $(x,y) \in \mathbb{F}_q^2$ .
  - Lines: y = ax + b and x = c, where  $x, y \in \mathbb{F}_q$ .



### Affine plane over $\mathbb{F}_2$

Shines, 
$$y=0$$
  $x=0$   
 $y=1$   $x=1$   
 $y=x$ 



# Construction of q-1 MOLS(q)

#### Theorem

The set of polynomials  $f_a(x,y) = ax + y$  with  $a \neq 0$  gives a complete set of q - 1 MOLS(q).

azd

### 3 MOLS(4) over $\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}$

$$L_{2}(x,y) = f_{2}(x,y)$$

| 0            | 1            | $\alpha$     | $\alpha + 1$ |
|--------------|--------------|--------------|--------------|
| $\alpha$     | $\alpha + 1$ | 0            | 1            |
| $\alpha + 1$ | $\alpha$     | 1            | 0            |
| 1            | 0            | $\alpha + 1$ | $\alpha$     |

| λ= | 22 |  |
|----|----|--|
|    | •  |  |

| 0            | 1            | $\alpha$     | $\alpha + 1$ |
|--------------|--------------|--------------|--------------|
| $\alpha + 1$ | $\alpha$     | 1            | 0            |
| 1            | 0            | $\alpha + 1$ | $\alpha$     |
| $\alpha$     | $\alpha + 1$ | 0            | 1            |



### Outline

- Affine planes
- 2 Finite fields
- 3 Projective planes



### Projective plane

#### Projective plane

An projective plane (射影平面) is an incidence structure  $(\mathcal{P}, \mathcal{L}, \mathcal{I})$  such that

- **1** For any two points  $p_1, p_2 \in \mathcal{P}$ , there exists a unique line  $\ell \in \mathcal{L}$  passing through both  $p_1$ and  $p_2$ , i.e.  $(p_1,\ell), (p_2,\ell) \in \mathcal{I}$ .
- 2 Any two lines  $\ell_1, \ell_2 \in \mathcal{L}$  intersect in a unique point p, i.e.,  $(p, \ell_1), (p, \ell_2) \in \mathcal{I}$ .
- 3 There exists at least four points, no three of which are collinear. 2 ℓine → | pt
- On a projective plane, there are no parallel lines.
- The incidence structure  $(\mathcal{L}, \mathcal{P}, \mathcal{I})$  is called the dual plane of  $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ .
- A projective plane is said to have order n, if there are n+1 points on a line.





order n " n pts on a line





### Projective plane of order 2: Fano plane

$$\begin{array}{l} \left( \textbf{7,3,1} \right) - \beta 1 \beta D \\ \ell_0 \leftrightarrow \{p_0,p_1,p_3\} \\ \ell_1 \leftrightarrow \{p_1,p_2,p_4\} \\ \ell_2 \leftrightarrow \{p_2,p_3,p_5\} \\ \ell_3 \leftrightarrow \{p_3,p_4,p_6\} \\ \ell_4 \leftrightarrow \{p_4,p_5,p_0\} \\ \ell_5 \leftrightarrow \{p_5,p_6,p_1\} \\ \ell_6 \leftrightarrow \{p_6,p_0,p_2\} \end{array}$$

# incident matrix



# lines = #pts = 7 = 
$$n^2 + n + 1$$

### Propositions of projective plane of order n

#### Proposition

On a projective plane of order n there are n+1 points on each line and n+1 lines passing through each point.

#### Proposition

On a projective plane of order n there are totally  $n^2 + n + 1$  points and  $n^2 + n + 1$  lines.



### Projective plane obtained from affine plane

#### Theorem

- $\Pi_A = (\mathcal{P}_A, \mathcal{L}_A, \mathcal{I}_A)$ : an affine plane of order n
- $q_i$ : new point corresponding to the ith parallel class of  $\Pi_A$
- Let  $\mathcal{P} = \mathcal{P}_A \cup \{q_i : i \in [n+1]\}$
- Let  $\mathcal{L} = \{\ell_A \cup \{q_i\} : \ell_A \text{ in the } i \text{th parallel class in } \mathcal{L}_A\} \cup \{\ell_\infty\}$
- $\ell_{\infty}$  is incident with each  $q_i$ .
- $q_i$  is incident with each line in the ith parallel class in  $\mathcal{L}_A$ .

Then,  $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$  is a projective plane of order n.



### Affine plane obtained from projective plane

#### Theorem

- $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$  is a projective plane of order n.
- Removing any line  $\ell$ , i.e.,  $\mathcal{L}_A = \mathcal{L} \setminus \{\ell\}$ .
- Removing all the points incident with  $\ell$ , i.e.,  $\mathcal{P}_A = \mathcal{P} \setminus \{p : (p,\ell) \in \mathcal{I}\}.$
- $\mathcal{I}_A$  is induced by  $\mathcal{I}$ .

Then,  $\Pi_A = (\mathcal{P}_A, \mathcal{L}_A, \mathcal{I}_A)$  is an affine plane of order n.

Projective plane 
$$\iff$$
 Symmetric BIBD with  $\lambda=1$ 

#### **Theorem**

Let  $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$  be a projective plane of order n. Regarding  $\mathcal{P}$  and  $\mathcal{L}$  as point set and block set of designs, respectively,  $\Pi$  is a symmetric  $(n^2 + n + 1, n + 1, 1)$  BIBD.

#### Theorem

The residual design of a projective plane of order n is an  $\binom{n^2, n^2 + n, n + 1, n, 1}{n}$  BIBD, which is equivalent to an affine plane of order n.

· remove all pts on l

## Projective plane over $\mathbb{F}_q$ (1/3)

• Two points  $(a,b,c),(a',b',c')\in\mathbb{F}_q^3$  (3-dimensional vector space) are equivalent, say

$$(a,b,c)\sim (a',b',c')$$
 共初のべれいは ③値.

iff (a',b',c')=(ta,tb,tc) for some  $t\in\mathbb{F}_q^*$ , i.e., they are linear dependent (線型従属).

• We use [a:b:c] for the equivalent class of (a,b,c), which is essentially a 1-dimensional subspace of  $\mathbb{F}_a^3$ .

### Equivalent class of (1,2,3) in $\mathbb{F}_5^3$

$$[1:2:3] = \{(1,2,3), (2,4,1), (3,1,4), (4,3,2)\}$$



# Projective plane over $\mathbb{F}_q$ (2/3)

- Both point set  $\mathcal{P}$  and line set  $\mathcal{L}$  are  $\left(\mathbb{F}_q^3\setminus\{(0,0,0)\}\right)\Big/\sim$ : equivalent classes w.r.t.  $\sim$ .
- To distinguish points and lines, we use row vectors [a:b:c] for points and column

vectors 
$$\begin{bmatrix} d \\ e \\ f \end{bmatrix}$$
 for lines. The point  $[a:b:c]$  is incident to a line  $\begin{bmatrix} d \\ e \\ f \end{bmatrix}$  iff  $ad+be+cf=0$ .

#### Example

In affine space of order 3, the point [1,2,2] is incident to lines

$$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}.$$

# Projective plane over $\mathbb{F}_q$ (3/3)

#### Theorem

If  $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$  is defined by

$$\mathcal{P} = \mathcal{L} = \left(\mathbb{F}_q^3 \setminus \{(0,0,0)\}\right) / \sim$$

and the point [a:b:c] is incident to a line  $\begin{bmatrix} d \\ e \\ f \end{bmatrix}$  iff ad+be+cf=0, then  $\Pi$  is a projective plane.

### A brief summary for projective planes

- Finite field construction is one construction of finite projective planes.
- All the known finite projective planes have orders that are prime powers.
- Projective planes of orders 6, 14 do not exist. (by Bruck-Ryser theorem)
- Projective plane of order 10 does not exist. (by computer search)

Table: Number of finite projective planes of order n

| n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 13  | 14 | 15 | 16        | 17       | 18 | 19  | 20 |
|---|---|---|---|---|---|---|---|---|----|-----|----|-----|----|----|-----------|----------|----|-----|----|
| # | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 4 | 0  | ≥ 1 | ?? | ≥ 1 | 0  | ?? | $\geq 22$ | $\geq 1$ | ?? | ≥ 1 | ?? |

### Theorem (Bruck-Ryser theorem)

Let  $n \equiv 1, 2 \pmod{4}$ . If there exists a projective plane of order n then  $n = a^2 + b^2$  for some  $a, b \in \mathbb{Z}$ .

# Higher dimensional finite geometries

/ base field

- The affine plane over  $\mathbb{F}_q$  is denoted by  $AG(2, \mathbb{F}_q)$ .
- The projective plane over  $\mathbb{F}_q$  is denoted by  $PG(2, \mathbb{F}_q)$ .
- The affine geometry  $AG(n, \mathbb{F}_q)$ 
  - ightharpoonup points:  $\mathbb{F}_q^n$
  - ▶ lines (1-flats): 1-dim subspaces of  $\mathbb{F}_q^n$  and their cosets
  - ▶ planes (2-flats): 2-dim subspaces of  $\hat{\mathbb{F}}_q^n$  and their cosets
  - k-flats: k-dim subspaces of  $\mathbb{F}_q^n$  and their cosets
  - ▶ hyperplanes ((n-1)-flats): (n-1)-dim subspaces of  $\mathbb{F}_q^n$  and their cosets
- The projective geometry  $PG(n, \mathbb{F}_a)$ 
  - points: 1-dim subspaces of  $\mathbb{F}_q^{n+1}$  base space lines: 2-dim subspaces of  $\mathbb{F}_q^{n+1}$

  - planes: 3-dim subspaces of  $\mathbb{F}_q^{n+1}$
  - hyperplanes: n-dim subspaces of  $\mathbb{F}_q^{n+1}$

parallel class

# Homework assignments (レポート課題) for 3rd day

#### Exercise 1

Complete the addition and multiplication tables of  $\mathbb{F}_{3^2}$  by using irreducible polynomial  $x^2+1$ .

#### Exercise 2

List the points and lines in the affine plane of order 3.

- Deadline: 6th Sept., 23:59:59
- · No lectures in the afternoon,
- . Next lect: Next Mon. 9:00 ~
- · Happy weekend.

- Hint: there are many ways.
  - (i) by definition.
  - (ii) using F3
  - (iii) using 2 Mols(3)