

Topics to be covered

- O Bosic calculation
- Trigonometry

A P we find next term by adding some fixed numbs.

to the previous term. a, a+d, a+2d, a+3d, a+4d, a+5d,.... (common diff) d (common difference) = n term - (n-1)th term 1st term Sum = $\frac{\pi}{2}$ (2st term + π^{th} term) - of π -torm = $\frac{\pi}{2}$ (α + α +(π -1)d) N" term = Q+(N-1) d $= \frac{n}{2} \left(2a + (n-1)d \right) + \kappa$

Find 10th term and sum of 1st 10 term.

Sum of
$$=\frac{\pi}{2}(1^{4}+er+\pi^{14}+r^{2})$$

 $=\frac{10}{2}(1+43)$
 $=\frac{5\times50}{2}=\frac{250}{2}$

$$\frac{AP}{A}$$

$$\frac{1}{2^{5+4n}}$$

$$\frac{1}{2^{5+$$

Sum of
$$n$$
-term = $\frac{n}{2} \left(2^{st} + term + n^{th} + term \right) = \frac{n}{2} \left(2a + (n-1)d \right)$

Sum of 1st *n*-natural number 1 + 2 + 3 + 4.4.5.... *n*.

$$\frac{n^2}{2}$$

$$\frac{n(n+1)}{2}$$

$$\frac{n(n-1)}{2}$$

$$\frac{n^{2}(n+1)}{6} = \frac{1095 \text{ m} = 2}{54m = 3}$$

14 method

Sum =
$$\frac{\eta}{2}$$
 (1st term + nth tem)

$$Sum = \frac{\eta}{2} \left(1 + \eta \right)$$

$$\int_{Mn.}^{\infty} \frac{m(nt1)}{2}$$

2nd method

$$\frac{3}{2} \int \frac{3um}{2} \left(\frac{2a}{2} + \frac{(n-1)4}{2} \right) \\
= \frac{\pi}{2} \left(\frac{2}{2} + \frac{1}{2} - \frac{\pi}{2} + \frac{1}{2} \right) \\
= \frac{\pi}{2} \left(\frac{2}{2} + \frac{1}{2} - \frac{\pi}{2} + \frac{1}{2} \right) \\
= \frac{\pi}{2} \left(\frac{2}{2} + \frac{1}{2} - \frac{\pi}{2} + \frac{1}{2} \right) \\
= \frac{\pi}{2} \left(\frac{2}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$$

Which term of AP 27, 24, 21, is zero.

$$a = 27$$
 $d = 21 - 24$
 $= -3$

Value of nth tem =
$$a + (n-1)d$$

$$0 = 27 + (n-1)(-3)$$

$$+2/7 = +3(n-1)$$

$$9 = n-1$$

$$m = 10^{+1}$$

28, 22, *x*, *y*, 4 is an AP then value of *x* and *y* is :

Value of 3rd tesm =
$$a + (3-1)d$$

$$= 28 + 2(-6)$$

$$= 28 - 12$$

$$= 28 - 12$$

$$= 28 - 12$$

25 tuning fork are arranged in increasing order of frequency. Frequency difference is 10 then find frequency of 1st tuning fork if frequency of 25th is 400 Hz.

$$\frac{\int_{1} = \int_{0}^{\infty} (1e^{i\theta})^{n}$$

Value of
$$25^{th}$$
 tes = $400 \text{ Mz} = 0 + (n-1) \text{ d}$
 $400 = f_0 + (25-1) \times 10$

$$=\frac{5+240}{5=16042}$$

2,
$$4, \frac{8}{12}, \frac{12}{24}, \frac{48}{48}$$

$$c.8 = \frac{12}{8} = \frac{3}{2}$$

$$c.8 = \frac{4}{2} = 2$$

1
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$ \longrightarrow G. P Seris $\alpha=1$

Sum of = 1-2 Sinfr 1 - 2 = - 2 - 2

$$1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, ---$$

$$C.7 = \frac{1}{16}$$
 $C.7 = \frac{164}{16} = \frac{164}{644} = \frac{1}{4}$

Sum of all term =
$$\frac{1}{1-\frac{1}{y}} = \frac{1}{\frac{y-1}{y}} = \frac{(\frac{y}{3})}{\frac{y-1}{y}}$$
Ang

$$+1, -\frac{1}{2}, +\frac{1}{4}, -\frac{1}{8}, +\frac{1}{16}, -\frac{1}{32}, +\frac{1}{64}$$

Common rafio =
$$\frac{+\frac{1}{16}}{-\frac{1}{8}} = \frac{+8}{-16} = -\frac{1}{2}$$

Sym of
$$=\frac{a}{1-c.8}$$

$$(.8) = -\frac{1}{8} = -\frac{1}{8}$$

$$Sym = \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32}\right) = \frac{1}{1 - \left(-\frac{1}{2}\right)} = \frac{1}{1 + \frac{1}{2}} = \frac{1}{\frac{3}{2}} = \frac{3}{2}$$

Find potential at origin?

	+q	+q	+q	+q	+ q	+ q
(0,0)	(1, 0)	(2, 0)	(4, 0)	(8, 0)	(16, 0)	(32, 0)

$$= K2\left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots\right) = K2\left(\frac{1}{1 - \frac{1}{2}}\right) = K2\left(\frac{1}{1 - \frac{1}{2}}\right) = K2\left(\frac{1}{1 - \frac{1}{2}}\right) = K2\left(\frac{1}{1 - \frac{1}{2}}\right) = 2K2R$$

$$= 2K2R$$

Find potential at origin?

0	+q	-q	+q	-q	+q	- q
(0, 0)	(1, 0)	(2, 0)	(4, 0)	(8, 0)	(16, 0)	(32, 0)

5-resistance connected in series, resistance of each resistor is half of previous resistance if 1^{st} resistance of value 10Ω then value of 5^{th} resistance.

Charge q is placed on x-axis of co-ordinate (1, 0), (2, 0), (4, 0), (8, 0) and so on then find force on charge q_0 which is at origin.

$$\frac{f_{2} = f_{2}}{f_{1}} = \frac{f_{2}}{f_{1}} = \frac{f_{2}}{f_{1}} = \frac{f_{2}}{f_{1}} = \frac{f_{2}}{f_{1}} = \frac{f_{2}}{f_{2}} = \frac{f_{2}}{f_{1}} = \frac{f_{2}}{f_{2}} = \frac$$

Co-ordinate Geometry

Graph of straight line [linear relation between two physical quantity]:

Find $(slope)_I/(slope)_{II} =$

Comment on slope and intercept.

