Задача об оптимальном расписании

Batyr Ishanov

26 ноября 2022 г.

1 Постановка задачи

Имеется множество работ J и множество машин M. Также задана функция $p: J \times M \to R_+$. Значение p_{ij} означает время выполнение i-й работы на j-й машине.

Требуется построить распределение работ по машинам так, чтобы все работы были выполнены и чтобы конечное время выполнения всех работ было минимально.

Рассмотрим частный случай задачи, когда производительности всех машин одинаковы, то есть $p_{ij}=p_i$.

Язык $\{(J,m,k)|$ на m одинаковых машинах выполнятся все задачи из J за время $\leq k\}$ будем называть PARALLEL-SCHEDULING.

2 NР-полнота

Доказательство \mathbf{NP} -полноты состоит из двух пунктов: док-ва принадлежности к \mathbf{NP} и док-ва \mathbf{NP} -сложности.

2.1 Принадлежность к NP

<u>Утв.</u> PARALLEL- $SCHEDULING \in \mathbf{NP}$

<u>Док-во.</u> Сертификат - распределение задач по машинам, его проверка выполняется не более чем за полиномиальное время (суммируем время задач для каждой машины и проверяем, что оно $\leq k$).

2.2 NP-сложность

SUBSET-SUM= $\{(n_1,...,n_l,N) \mid \exists \alpha \in \{0,1\}^l \sum \alpha_i n_i = N\}$ Доказывать **NP**-сложность будем через сведение SUBSET-SUM к нашему языку.

Утв. SUBSET-SUM - NP-полный

Док-во. Доказательство возьмем отсюда.

<u>**Утв.**</u> SUBSET-SUM \leq_p PARALLEL-SCHEDULING

<u>Док-во.</u> Приведем функцию сводимости f. Пользоваться будем идеей, что SUBSET-SUM является частным случаем PARALLEL-SCHEDULING для 2 машин. Опишем f для 3x случаев:

1. $\sum_{i} n_i = 2N$

Тогда $(n_1,...,n_l,N) \longmapsto ((n_1,...,n_l),2,N)$. Если у нас есть подмножество $\{n_{i_1},...,n_{i_m}\}$ такое, что $\sum_{j=1}^m n_{i_j} = N$, то мы может дать эти задачи одной машине, а все остальные - другой. Каждая машина справится за N времени, значит, и суммарное время будет N. Если же такого подмножества нет, то какой-то машине достанется задач на $\geq N+1$ времени, а значит, и суммарное время будет $\geq N+1$.

2. $\sum_{i} n_{i} < 2N$

Тогда $(n_1,...,n_l,N) \longmapsto ((n_1,...,n_l,2N-\sum_i n_i),2,N)$. Заметим, что сумма длительностей всех задач все так же 2N, поэтому рассуждение работает точно так же, как в предыдущем пункте.

3. $\sum_{i} n_i > 2N$

Тогда $(n_1,...,n_l,N) \longmapsto ((n_1,...,n_l,\sum_i n_i-2N),2,\sum_i n_i-N)$. Если у нас есть подмножество $\{n_{i_1},...,n_{i_m}\}$ такое, что $\sum_{j=1}^m n_{i_j}=N$, то мы может дать задачи $\{n_{i_1},...,n_{i_m},\sum_i n_i-2N)\}$ одной машине, а все остальные - другой. Если же такого подмножества нет, то какой-то машине достанется задач на $\geq \sum_i n_i-N+1$ времени, а значит, и суммарное время будет $\geq \sum_i n_i-N+1$.

3 Алгоритм вычисления

Список литературы

[Gra69] L.R. Graham. Bounds on multiprocessing timing anomalies. pages 423–425, 1969.

[IFM] Neerc IFMO. NP-полнота задачи о сумме подмножества.

[WS11] David P. Williamson and David B. Shmoys. The design of approximation Algorithms. pages 39–43, 2011.