COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

.........

How

Simulation types

Classical simulation

How to write a report

INTRODUCTION to the Computational Laboratory

Giuseppe Mallia

g.mallia@imperial.ac.uk

Imperial College London - Chemistry Department
Thomas Young Centre:
the London Centre for Theory and Simulation of Materials

AUTUM 2016/SPRING 2017

Outline

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

Simulatio types

Classical simulation

How to write a report

- 1 TIMETABLE and DEADLINE
- 2 AIMS and SYSTEMS
- **3** VIBRATIONS
- 4 HOW
- 5 SIMULATION TYPES
- **6** CLASSICAL SIMULATION
- 7 HOW TO WRITE A REPORT

TIMETABLE and DEADLINE

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibration

Simulatio

types

simulation

How to writ a report

Session	Start Date	End Date	Report Deadline	
1	10/10/2016	14 / 10 / 2016	21 / 10 / 2016	
2	24/10/2016	28 / 10 / 2016	04 / 11 / 2016	
3	07/11/2016	11 / 11 / 2016	18 / 11 / 2016	
4	21/11/2016	25 / 11 / 2016	02 / 12 / 2016	
5	05/12/2016	09 / 12 / 2016	16 / 12 / 2016	
6	16/01/2017	20 / 01 / 2017	27 / 01 / 2017	
7	30/01/2017	03 / 02 / 2017	10 / 02 / 2017	
8	13/02/2017	17 / 02 / 2017	24 / 02 / 2017	
9	27/02/2017	03 / 03 / 2017	10 / 03 / 2017	
10	13/03/2017	17 / 03 / 2017	24 / 03 / 2017	

TIMETABLE and DEADLINE

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibration

Simulatio types

Classical

How to write a report Demonstrator

	Mon	Tue	Thur	Fri
2:00-3:00	(i)	(3)	③	©

DEADLINE:

when? 12:00pm on next Friday

The Thermal Expansion of MgO

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

\/:|---+:---

Simulatio

types

Classical simulation

How to write a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient:

$$\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$$

The Thermal Expansion of MgO

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibration

Simulation

Classical simulation

How to write a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient: $\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$
- QUASI-HARMONIC APPROXIMATION (LD) to compute vibrational energy levels of MgO; to understand the phonon dispersion of a material and the vibrational density of state;

The Thermal Expansion of MgO

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibration

Simulatio types

Classical simulation

How to writ a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient: $\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$
- QUASI-HARMONIC APPROXIMATION (LD) to compute vibrational energy levels of MgO; to understand the phonon dispersion of a material and the vibrational density of state;
- MOLECULAR DYNAMICS (MD) to simulate the vibrations as random motions of atoms inside a cell;

The Thermal Expansion of MgO

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibration

...

Simulatio types

Classical simulation

How to writ a report

- to predict how the material expands when heated;
- to calculate the thermal expansion coefficient: $\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_P$
- QUASI-HARMONIC APPROXIMATION (LD) to compute vibrational energy levels of MgO; to understand the **phonon dispersion** of a material and the vibrational density of state;
- MOLECULAR DYNAMICS (MD) to simulate the vibrations as random motions of atoms inside a cell;
- to compare QUASI-HARMONIC APPROXIMATION with MOLECULAR DYNAMICS results.

SYSTEMS: MgO crystal (fcc)

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibration

Simulati

types

How to writ a report

IDEAL, NON DEFECTIVE, PERIODIC SYSTEM IN 3D

CONVENTIONAL CELL

$$\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$$

 N_c : number of atoms

V_c: volume

SYSTEMS: MgO crystal (fcc)

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

Simulation

Classical simulation

How to writ a report

IDEAL, NON DEFECTIVE, PERIODIC SYSTEM IN 3D

CONVENTIONAL CELL

$$\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$$

 N_c : number of atoms

V_c: volume

PRIMITIVE CELL

$$\mathbf{a}_{p} = \mathbf{b}_{p} = \mathbf{c}_{p}; \ \alpha_{p}, \ \beta_{p}, \ \gamma_{p}$$

 N_c : number of atoms

 V_p : volume

SYSTEMS: MgO crystal (fcc)

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibration

Simulatio types

Classical simulation

How to writ a report

IDEAL, NON DEFECTIVE, PERIODIC SYSTEM IN 3D

- CONVENTIONAL CELL
 - $\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$
 - N_c : number of atoms
 - V_c: volume
- PRIMITIVE CELL
 - $\mathbf{a}_{p} = \mathbf{b}_{p} = \mathbf{c}_{p}; \ \alpha_{p}, \ \beta_{p}, \ \gamma_{p}$
 - N_c : number of atoms
 - V_p : volume
- SUPERCELL
 - $\mathbf{a}_s = \mathbf{b}_s = \mathbf{c}_s = 2 \times \mathbf{a}_c$
 - $\alpha_{\rm s}$, $\beta_{\rm s}$, $\gamma_{\rm s}$
 - N_s: number of atoms
 - V_s: volume

SYSTEMS II: lattice parameter of MgO

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

...

Simulatio types

Classical simulation

How to write a report What is the lattice parameter of MgO?

SYSTEMS II: lattice parameter of MgO

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibration

Simulatio types

Classical simulation

How to write a report What is the lattice parameter of MgO?

CONVENTIONAL CELL

$$\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$$

SYSTEMS II: lattice parameter of MgO

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibration

Cimulatio

Simulatio types

Classical simulation

How to write a report

What is the lattice parameter of MgO?

CONVENTIONAL CELL

$$\mathbf{a}_c = \mathbf{b}_c = \mathbf{c}_c; \ \alpha_c, \ \beta_c, \ \gamma_c$$

SYSTEMS III

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

Simulatio types

Classical simulation

How to write a report Is it possible to move from the CONVENTIONAL CELL to the PRIMITIVE CELL?

SYSTEMS III

COMP LAB

G Mallia

Timetable Deadline

Aims Systems

Vibration

.....

types

Classical simulation

How to write a report Is it possible to move from the CONVENTIONAL CELL to the PRIMITIVE CELL?

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

....

Simulation

Classical

How to write a report

VIBRATIONS

VIBRATIONS: WHY ARE THEY IMPORTANT? 1

COMP LAB

G Mallia

Timetabl Deadline

Aims Systems

Vibrations

VIDIACIOII

Simulatio

Classical simulation

How to write a report Atoms vibrate around their equilibrium positions.

- thermal properties: heat capacity, expansion
- phase transitions, including melting
- transport: thermal conductivity, sound
- electrical properties, e.g., superconductivity
- dielectric phenomena at low frequencies

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: FROM A FINITE SYSTEM TO AN INFINITE SYSTEM 1

COMP LAB

Vibrations

infinite crystal: continuum of vibrational modes

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: WAVELENGTH - WAVEVECTOR ¹

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

Simulatio

Classical

How to write a report

$$k = \frac{2\pi}{\lambda}$$

In this case, as k increases, the energy of vibration increases and the frequency too.

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: PHONON DISPERSION ¹

COMP LAB

G Mallia

Timetabl Deadline

Aims Systems

Vibrations

* 151 41.011

Simulatio

Simulatio types

Classical simulation

How to write

VIBRATIONAL FREQUENCY ω AS A FUNCTION OF k

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: PHONON DISPERSION ¹

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

Simulation

Classical simulation

How to write a report

SIMILARLY, ELECTRONIC BAND STRUCTURE OF THE HYDROGEN POLYMER

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

VIDIACION.

Simulatio

Classical simulation

How to write a report electron: WAVE or PARTICLE

radiation: WAVE or PARTICLE

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

VIDIALIONS

Simulatio types

Classical simulation

How to write a report electron: WAVE or PARTICLE

radiation: WAVE or PARTICLE (photon)

COMP LAB

G. Malli

Timetabl Deadline

Aims Systems

Vibrations

Simulatio types

Classical simulation

How to write a report electron: WAVE or PARTICLE

radiation: WAVE or PARTICLE (photon)

vibration: WAVE or PARTICLE

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

VIDIALIONS

Simulatio types

Classical simulation

How to writ a report electron: WAVE or PARTICLE

radiation: WAVE or PARTICLE (photon)

vibration: WAVE or PARTICLE (phonon)

VIBRATIONS: 1D MONOATOMIC CHAIN (OR POLYMER) ¹

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

Simulation

Classical

How to write a report

INFINITE NUMBER OF VIBRATIONS → **BRANCH**

VIBRATIONS: 1D MONOATOMIC CHAIN (OR POLYMER) ¹

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

V.D. ac.o..

Simulatio

Classical simulation

How to write a report

INFINITE NUMBER OF VIBRATIONS → **BRANCH**

$$\omega_{\it k} = \sqrt{rac{4J}{M}} |sin(ka/2)|$$

VIBRATIONS: 1D MONOATOMIC CHAIN (OR POLYMER) ¹

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

Simulatio types

Classical simulation

How to write a report

INFINITE NUMBER OF VIBRATIONS → **BRANCH**

$$\omega_k = \sqrt{\frac{4J}{M}} |\sin(ka/2)|$$

VIBRATIONS: DIRECT AND RECIPROCAL SPACE

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

*1514110111

Simulatio

Classical simulation

How to write a report

1 PERIODIC DIRECTION IN THE DIRECT SPACE!

a

$$a^* = \frac{2}{3}$$

VIBRATIONS: 1D DIATOMIC CHAIN

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibrations

Simulation

Classical simulation

How to writ a report (SIMILARLY TO THE POLYMER WITH H₂ PER CELL)

FOLDING PROCESS!!!

VIBRATIONS: 1D HETERO DIATOMIC CHAIN ¹

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

VIDIALION

Simulation

Classical

How to write

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: OPTIC AND ACOUSTIC MODES

COMP LAB

G. Mallia

Timetabl Deadline

Systems

Vibrations

Simulatio

Classical simulation

How to write a report

OPTIC:

- 1) has a frequency that is in the vicinity of the optical region of the electromagnentic spectrum
- 2) the atomic motions associated are the same as the response to an oscillating electromagnentic field

ACOUSTIC:

1) has acoustic frequency

VIBRATIONS: LONGITUDINAL AND TRANSVERSE MODES ¹

COMP LAB

G Mallia

Timetable

Aims Systems

Vibrations

* 15.41.511.

Simulatio

Classical

How to write

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

VIBRATIONS: 3D HETERO DIATOMIC CRYSTAL ¹

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

VIDIALION

Simulatio

Classical

How to write

Neutron data for GaAs

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

HOW?

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrati

How

Simulation types

Classical simulation

How to writ a report

COMPUTATIONAL EXPERIMENT / SIMULATION

- program
- input

Environment:

the choice of the Operating System o linux

Interface:

DLV = package for the visualisation of materials structures and properties.

SIMULATION TYPES

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibration

Simulation

types

Classical simulation

How to write a report CLASSICAL SIMULATION

Newton law $\rightarrow GULP$

QUANTUM-MECHANICAL SIMULATION

 $\textbf{Schroedinger equation} \rightarrow CRYSTAL$

Systems under investigation

Properties

Accuracy

Computational time

Resources

COMP LAB

G Mallia

Timetable Deadline

Aims Systems

Vibrations

How

types

Classical simulation

How to write a report

CLASSICAL SIMULATION

INTERATOMIC POTENTIAL

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

V/:hunting

Simulatio

types

Classical simulation

How to write a report

- coulombic interaction
- short term repusilve contribution
- Morse-like potential

QUASI-HARMONIC APPROXIMATION 1

COMP LAB

G Mallia

Timetabl Deadline

Aims Systems

Vibration

Simulatio

types

Classical simulation

How to write a report

HELMHOLTZ FREE FNFRGY

$$F = E_0 + \frac{1}{2} \sum_{k,j} \hbar \omega_{j,k} + k_B T \sum_{k,j} \ln \left[1 - \exp(-\hbar \omega_{j,k} / k_B T) \right]$$

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

QUASI-HARMONIC APPROXIMATION I

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

...

Simulation types

Classical simulation

How to write a report

HELMHOLTZ FREE ENERGY

$$F = E - TS$$

$$F = F(T, V)$$

MOLECULAR DYNAMICS 1

COMP LAB

G. Mallia

Timetabl Deadline

Aims Systems

Vibration

Simulation types

Classical simulation

How to write a report Initial configuration and initial velocities: the initial configuration will be that of ideal MgO the velocities will be random but scaled to produce roughly the target temperature.

- Compute the forces on the atoms (F).
- Compute the accelerations a=F/m
- Update the velocities: Vnew = Vold + a * dt
- Update the positions of the atoms: Rnew = Rold + Vnew* dt
- Repeat until average properties like E and T settle down
- Once settled measure some properties.

¹From Prof N. M. Harrison's Lectrure Notes: Vibrations in crystals

GEOMETRY OPTIMIZATION I

COMP LAB

G Mallia

Timetable Deadline

Aims Systems

Vibrations

. . .

Simulatio types

Classical simulation

How to write a report

What does it mean?

GEOMETRY OPTIMIZATION I

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

...

Simulation types

Classical simulation

How to write a report

What does it mean? Minimization of the energy as a function of the atomic position $(x_i, y_i, z_i, \text{ with } i = 1, N,$ and N is the number of atoms) and of the lattice parameters $(a,b,c,\alpha,\beta,\gamma)$

GEOMETRY OPTIMIZATION II

COMP LAB

G Mallia

Timetable Deadline

Aims Systems

Vibrations

Simulatio

Classical

How to write a report How many variables for MgO?

HOW TO WRITE A REPORT I by Giulia C. De Fusco

COMP LAB

G. Mallia

Timetable Deadline

. ...

Vibration

Simulation types

Classical simulation

How to write a report

Introduction

- the system
- the methodology (theory in use)
 - the aims of the exercise
- the tools in use (programs)

Body of the text

- write it like a scientific paper (well-articulated sentences, NOT a list of two-word answers)
- analyse critically obtained data and given answers
- round numerical answers to a specific number of decimal places (i.e. 4)
- add literature/web citations whenever a comparison with experimental data is required
- add explicitely every formula used one to obtain results
 - check spelling

HOW TO WRITE A REPORT II by Giulia C. De Fusco

COMP LAB

G. Mallia

Timetable Deadline

Systems

Vibration

Simulatio

Classical

How to write a report

Pictures

- max 20
- reasonably sized (NOT one-page sized pictures, but still readable)
- white background (follow the instructions given on the website clicking on the link 'How to save a picture for your report')
- described in caption or in the text

Graphs

- add labels and units
- add a critical comment whenever required (NOT a merely descriptive comment)

HOW TO WRITE A REPORT III by Giulia C. De Fusco

COMP LAB

G. Mallia

Timetabl Deadline

Systems

Vibration

Simulatio

types

Classical simulatior

How to write a report

Tables

- add labels and units
- round numerical answers to a specific number of decimal places (i.e. 4)
- repeat heading if the table cannot fit in a single page

Conclusions

- give a general description of your calculations and your main findings
- outline the differences between the methods in use and the results obtained
- analyse critically these differences

COMP LAB

G. Mallia

Timetable Deadline

Aims Systems

Vibrations

* 151 4 21 511 5

11000

Simulation types

Classical simulation

How to write a report

THANK YOU!!!