Retail Price Optimization - Project Report

Project Objective:

To optimize product pricing in retail by analyzing historical sales, cost, and demand using machine learning models. The goal is to maximize sales and maintain profitability.

Dataset Overview:

- Source: retail_price.csv

- Records: Product sales, cost, category, competition, lag prices

- Features: 30 total

- Target: unit_price

Data Preprocessing:

- Dropped null values
- Removed non-numeric identifiers: product_id, category, month_year
- Correlation matrix plotted
- Feature selection completed

Modeling Approach:

- Models Used:
 - Linear Regression
 - Random Forest Regressor
- Training/Test Split: 80/20
- Target Variable: unit_price

Feature Importance (Random Forest): - Most influential features: - lag_price - fp3 - qty - volume - total_price Visual Insights: - Correlation Heatmap - Actual vs Predicted Plot - Feature Importance Plot Conclusion: - Random Forest performed best with high accuracy - Pricing is influenced heavily by lag_price and volume - Model saved for deployment as rf_model.pkl Future Scope: - Deploy using Streamlit web app

Evaluation Metrics:

- RMSE (Linear): ~0.65

- R2 Score (Linear): ~0.72

- RMSE (Random Forest): ~0.31

- R2 Score (Random Forest): ~0.93

- Integrate real-time pricing APIs
- Extend to other product categories
- Add dynamic competitor price tracking