Лабораторно-практическая работа.

Тема работы: Составление уравнений баланса мощностей.

Цель работы: Сформировать умения по расчету мощности в цепях постоянного тока, используя закон баланса мощностей.

Оборудование:

- 1. Вольтметр магнитоэлектрической системы;
- 2. Амперметр магнитоэлектрической системы;
- 3. Набор резисторов;
- 4. Источник постоянного тока.

Методические рекомендации.

Работа электрического тока определяется по формуле:

Работа, произведенная в единицу времени, называется мощностью и обозначается Р:

$$P=A/t=U*I [BT]$$

$$1KBT = 103 BT$$

Электрическая мощность измеряется ваттметром. Для измерения мощности в цепях постоянного тока достаточно амперметра и вольтметра.

Рис. 1. Схема для измерения мощности параллельном соединении приёмников.

Рис. 2. Схема для измерения мощности при последовательном соединении приёмников.

Для электрических цепей постоянного тока соблюдается закон баланса мощностей:

$$P=P_1+P_2+P_3$$

где Р- мощность всей цепи;

 P_1, P_2, P_3 — мощность на отдельных участках цепи.

Для цепи на рис.1

$$P_1=I_1*U$$
; $P_2=I_2*U$; $P_3=I_3*U$; $P=I*U$

Для схемы на рис.2

$$P_1=IU_1$$
; $P_2=IU_2$; $P_3=I*U_3$; $P=I*U$

Отчёт

- 1. Изучить методичесике рекомендации.
- 2. Изобразить схемы для измерения мощностей при последовательном и параллельном соединениях приёмников.
 - 3. Ответить на вопросы:
- 3.1 Что называется электрической мощностью и в каких единицах она измеряется?
 - 3.2 Как определить мощность не имея ваттметра?
 - 3.3 Что называется балансом электрических мощностей и как он определяется?
- 3.4 Для составления электрической гирлянды последовательно соединены 10 ламп, каждая из которых при напряжении 24В потребляет 0,2А. Определите мощность всей цепи?
- 3.5 Определите мощность 20 ламп, соединенных параллельно, если каждая потребляет ток 2A при напряжении 220В
- 4. Заполните таблицу, вычислив значение мощности всей цепи и на отдельных участков цепи.

Задано						Вычислено			
Соединение	U, B	I, A	I ₁ , A	I ₂ , A	I ₃ , A	P_1 , B_T	P ₂ , B _T	P ₃ , B _T	P, BT
Параллельное									

	Вычислено								
Соединение	U, B	I, A	U_1, B	U_2 , B	U_3, B	P_1 , B_T	P ₂ , B _T	P ₃ , B _T	P, BT
Последовательное									

5. Выводы.