

### **EXAMPLES**

- Diapers and beer (legend?)
- Target pregnant teenager





## **EXAMPLES**

Netflix Prize 2009



Amazon Recommendation Engine





# **EXAMPLES**

Missing sensor data



### COLLABORATIVE FILTERING

- 400,000 users17,000 moviesBut only a few ratings (1%)
- User amovie iRating  $Y_{ai} \in \mathbb{R}$  (e.g. 1-5)
- Goal is to predict unobserved ratings

m movies

n users





# COLLABORATIVE FILTERING

- Collaborative: cross-users
  Filtering: prediction
- Matrix or tensor completion problems

A tensor is a multidimensional array. e.g.  $n \times m$  2-tensor e.g.  $p \times q \times r$  3-tensor (2-tensor = matrix)

#### m movies

n users

| 5 | 5 |   |   |   |   |   | 5   |   |   |          |
|---|---|---|---|---|---|---|-----|---|---|----------|
|   |   | 3 | 5 | 1 | 3 | 4 | 4   |   | 4 |          |
|   | 4 | 2 |   |   | 2 |   |     |   |   |          |
|   |   | 5 |   |   |   |   |     |   | 5 |          |
| 4 | 5 |   |   |   |   |   |     | 4 |   | $Y_{ai}$ |
| 4 |   |   |   |   |   |   | 4   |   |   | Iai      |
| 5 |   | 4 | 5 | 1 | ( | 4 | ) 🗸 |   |   |          |
|   | 4 |   |   |   |   |   |     |   |   |          |
| 5 |   |   |   | 4 |   |   |     |   |   |          |
| 5 |   |   |   |   |   | 4 |     |   |   |          |
|   |   | 5 |   |   |   | 5 |     | 3 |   |          |







### K-NEAREST NEIGHBORS

#### Basic Idea.

- Find a few users  $b_1, \dots, b_k$  (neighbors) that are similar to user a
- Use information from users  $b_1$ , ...,  $b_k$  to predict ratings of user a



# DISTANCE METRIC

Measure statistical correlation between users a and b

$$\sin(a,b) = \cot(a,b) = \frac{\sum_{j \in CR(a,b)} (Y_{aj} - \tilde{Y}_a)(Y_{bj} - \tilde{Y}_b)}{\sqrt{\sum_{j \in CR(a,b)} (Y_{aj} - \tilde{Y}_a)^2} \sqrt{\sum_{j \in CR(a,b)} (Y_{bj} - \tilde{Y}_b)^2}} \in [-1,1]$$

#### where

- 1. CR(a, b) is the set of movies rated by both a and b (common ratings)
- 2.  $\tilde{Y}_a = \frac{1}{|CR(a,b)|} \sum_{j \in CR(a,b)} Y_{aj}$  (average rating for user a among common ratings)



#### **PREDICTION**

$$\hat{Y}_{ai} = \bar{Y}_a + \frac{\sum_{b \in kNN(a,i)} \sin(a,b) (Y_{bi} - \bar{Y}_b)}{\sum_{b \in kNN(a,i)} |\sin(a,b)|}$$

#### where

- 1.  $\bar{Y}_a$  is the mean rating for user a
- 2. kNN(a, i) are the k nearest neighbors of user a that also rated movie i



### **DISCUSSION**

$$\hat{Y}_{ai} = \bar{Y}_a + \frac{\sum_{b \in kNN(a,i)} \sin(a,b) (Y_{bi} - \bar{Y}_b)}{\sum_{b \in kNN(a,i)} |\sin(a,b)|}$$

- Weighted sum (could be negative weights). Should we consider anti-correlated neighbors?
- Good to account for bias (mean) of each user, but sensitive to the spread (variance) of each user.
- How do we choose the optimal k?
  - Minimize validation error
  - Problem statement
  - Computational resources





### LOW-RANK APPROXIMATIONS

#### Idea.

Assume fully observed  $\hat{Y}$  lie in a small class  $\mathcal{H}$  of matrices.

Find matrix in  $\mathcal{H}$  that is closest to partially observed Y.

#### Low-rank matrices.

$$\hat{Y} = UV^{\mathsf{T}}$$
, where  $U \in \mathbb{R}^{n \times d}$ ,  $V \in \mathbb{R}^{m \times d}$ ,  $d \ll \min(m, n)$ 



### WHY LOW-RANK?

Suppose there are d pure types of users, with rating preferences

$$V_{*1}, V_{*2}, \dots, V_{*d} \in \mathbb{R}^m$$
.

Assume every user's rating can be expressed as a weighted sum of these pure ratings:

$$Y_{a*} = U_{a1} V_{*1} + U_{a2} V_{*2} + ... + U_{ad} V_{*d}.$$

Then,  $Y = UV^{\top}$  where  $V_{*1}, V_{*2}, ..., V_{*d}$  are the columns of V.

**Question.** What happens when  $d = \min(m, n)$ ?



### ALGORITHM

#### Coordinate Descent.

$$\mathcal{L}(U,V) = \sum_{(a,i)\in D} \frac{1}{2} (Y_{ai} - (UV^{\mathsf{T}})_{ai})^2 + \frac{\lambda}{2} ||U||^2 + \frac{\lambda}{2} ||V||^2$$
$$= \sum_{(a,i)\in D} \frac{1}{2} (Y_{ai} - u^{(a)} \cdot v^{(i)})^2 + \frac{\lambda}{2} \sum_{a} ||u^{(a)}||^2 + \frac{\lambda}{2} \sum_{i} ||v^{(i)}||^2$$

where  $u^{(a)}$  is the a-th row of U and  $v^{(i)}$  is the i-th row of V.

#### Repeat until convergence:

- 1. Fix V and minimize  $\mathcal{L}(U,V)$  over U.
- 2. Fix U and minimize  $\mathcal{L}(U,V)$  over V.

# **ALGORITHM**

- 1. Randomly initialize  $v^{(1)}, v^{(2)}, \dots, v^{(m)}$ .
- 2. Repeat until convergence:
  - a. For each user a, find  $u^{(a)}$  that minimizes

$$\sum_{i: (a,i) \in D} \frac{1}{2} (Y_{ai} - u^{(a)} \cdot v^{(i)})^2 + \frac{\lambda}{2} ||u^{(a)}||^2$$

b. For each movie i, find  $v^{(i)}$  that minimizes

$$\sum_{a: (a,i) \in D} \frac{1}{2} (Y_{ai} - u^{(a)} \cdot v^{(i)})^2 + \frac{\lambda}{2} ||v^{(i)}||^2$$

These are standard linear regression problems.



### **DISCUSSION**

#### Optimization.

- 1. Like k-means, the algorithm converges to a local minimum.
- 2. Perform multiple initializations, and pick best result.

#### Generalization.

- 1. Use validation to pick right hyperparameters d and  $\lambda$ .
  - a. Split data set into Training Data and Validation Data.
  - b. For each d and  $\lambda$ , train a predictor using Training Data.
  - Choose predictor that minimizes Validation Error.