Question number	Scheme	Marks
5		
	$A = \pi (3r)^{2} = 9\pi r^{2} \Rightarrow \frac{dA}{dr} = 18\pi r$ $\delta A \approx \frac{dA}{dr} \times \delta r = 18\pi r (\delta r)$	M1
	$\delta A \approx \frac{\mathrm{d}A}{\mathrm{d}r} \times \delta r = 18\pi r \left(\delta r\right)$	B1
	$\frac{\delta A}{A} \approx \frac{18\pi r}{A} \delta r = \frac{18\pi r}{9\pi r^2} \delta r = 2\frac{\delta r}{r}$	M1
	So when $\frac{\delta r}{r} = 0.05\% \Rightarrow \frac{\delta A}{A} \approx 0.1\%$ so the area increases by about 0.1%	M1A1
	ALT	
	Radius (after increase) = $3r \times \left(1 + \frac{0.05}{100}\right)$	{M1}
	= 3.0015r	{B1}
	Area before increase = $\pi (3r)^2 = 9\pi r^2$ Area after increase =	
	$A = \pi (3.0015r)^2 = 9.00900225\pi r^2$	{M1}
	Percentage increase = $\frac{9.00900225\pi r^2 - 9\pi r^2}{9\pi r^2} \times 100 = 0.100025 \approx 0.1\%$	{M1} {A1}
	so the area increases by about 0.1%	
Total 5 marks		
M1	Differentiate A wrt r	
B1	Use of $\delta A \approx \frac{dA}{dr} \times \delta r$	
M1	Use of $\frac{\delta A}{A}$	
M1	Use of $\frac{\delta r}{r} = 0.05\%$	
A1	Area increases by about 0.1%	
ALT:		
M1	Finding the radius after the increase (may be implied by $3.0015r$)	
B1	3.0015r (may be implied by a correct area after the increase)	
M1	Finding the area after the increase	
M1	Use of $\frac{\text{Area (new)-Area (original)}}{\text{Area (original)}} \times 100$	
A1	Area increases by about 0.1%	