Projekt 1, Zadanie 23

Wiktor Murawski, 333255, grupa 3, środa 12:15

Obliczanie całek $\iint\limits_D f(x,y)\,dxdy$ na obszarze $D=\{(x,y)\in\mathbb{R}^2:|x|+|y|\leq 1\}$ poprzez podział obszaru D na $4n^2$ trójkątów przystających oraz zastosowanie na każdym z nich kwadratury rzędu drugiego.

Podział obszaru D na $4n^2$ trójkątów przystających

TU MA BYĆ ALGORYTM

Formuła całkowa na trójkącie

Niech T będzie trójkątem o wierzchołkach $(x_1,y_1),(x_2,y_2),(x_3,y_3)\in\mathbb{R}^2$ Niech P oznacza pole trójkąta T oraz niech

$$A = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

Wtedy

$$P = \frac{1}{2}|\det A|$$

Niech $f:\mathbb{R}^2 \to \mathbb{R}$. Wówczas

$$S_S(f) = Pf\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$S_W(f) = \frac{P}{3} \Big(f(x_1, y_1) + f(x_2, y_2) + f(x_3, y_3) \Big)$$

Są kwadraturami rzędu 2-go.

Mając podział obszaru D na $4n^2$ trójkątów przystających oraz kwadraturę drugiego rzędu na dowolnym trójkącie, możemy obliczyć całkę

$$I(f) = \iint\limits_{D} f(x, y) \, dx dy$$

poprzez zastosowanie na każdym z kwadratów kwadratury rzędu drugiego. Zastosujemy kwadraturę S_S na każdym z trójkątów, sumę wyników oznaczymy przez $S_S^{[n]}(f)$.

Sprawdzanie poprawności

W celu sprawdzenia poprawności metody przetestujemy ją na wielomianach dwóch zmiennych stopnia pierwszego.

Obliczymy analitycznie

$$I = \iint\limits_{D} f(x, y) \, dx dy$$

gdzie

$$f(x,y) = ax + by + c$$
 $a,b,c \in \mathbb{R}$

Niech

$$D_1 = \{(x, y) \in D : x \le 0\}$$
$$D_2 = \{(x, y) \in D : x > 0\}$$

Oznaczmy

$$I_1 = \iint_{D_1} f(x, y) dxdy$$
$$I_2 = \iint f(x, y) dxdy$$

Wtedy $D = D_1 \cup D_2$ oraz $I = I_1 + I_2$.

Wyznaczenie analityczne całki z funkcji stopnia 1

$$I_{1} = \int_{-1}^{0} \int_{-x-1}^{x+1} ax + by + c \, dy dx$$

$$I_{2} = \int_{0}^{1} \int_{x-1}^{-x+1} ax + by + c \, dy dx$$

$$I_{1} = \int_{-1}^{0} \left[axy + \frac{by^{2}}{2} + cy \right]_{-x-1}^{x+1} dx$$

$$I_{2} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{1} = \int_{-1}^{0} 2ax^{2} + 2ax + 2cx + 2c \, dx$$

$$I_{2} = \int_{0}^{1} -2ax^{2} + 2ax - 2cx + 2c \, dx$$

$$I_{3} = 2 \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{-1}^{0}$$

$$I_{2} = \frac{a}{3} + c$$

$$I_{3} = \frac{a}{3} + c$$

Ostatecznie otrzymujemy $I = I_1 + I_2 = 2c$

funkcja	wynik	n	wynik	błąd	błąd
podcałkowa	dokładny		uzyskany	bezwzględny	względny
f(x,y) =	2.000	1	2.000	1.000×10^{-20}	
=1		5	2.000	1.332×10^{-15}	
		10	2.000	2.065×10^{-14}	
		50	2.000	1.876×10^{-13}	
		100	2.000	2.008×10^{-12}	
		500	2.000	1.584×10^{-11}	7.918×10^{-12}
f(x,y) =	2.000	1	2.000	0.000	0.000
= x + y + 0.5		5	2.000	8.882×10^{-16}	
		10	2.000	2.442×10^{-15}	
		50	2.000	4.663×10^{-15}	
		100	2.000	4.885×10^{-15}	
		500	2.000	7.594×10^{-14}	
f(x,y) =	6.000	1	6.000	8.882×10^{-16}	1.480×10^{-16}
=x+2y+3		5	6.000	0.000	0.000
		10	6.000	8.882×10^{-16}	
		50	6.000	8.882×10^{-16}	1.480×10^{-16}
		100	6.000	1.776×10^{-15}	2.961×10^{-16}
		500	6.000	2.665×10^{-14}	4.441×10^{-15}

TESTY NUMERYCZNE

TU MA BYĆ WYKRES