Advanced Algorithms

Freie Universitat Berlin Winter 2023-24 László Kozma & Michaela Krüger

Exercise Sheet 1

Jatin Kansal, Sandip Sah

This homework answers the problem set sequentially.

Exercise 1

Solution (a)

A general polynomial of degree k can be written in the form of a sum. So, we will use $f(n) = \sum_{i=0}^{k} a_i n^i$ everywhere for this problem $(a_i \text{ are constants})$.

1. For the relation $f(n) \in \theta(n^k)$ to hold, it is sufficient to show that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ holds, where c is some constant. Here $g(n) = bn^k$ is a function representing the family of functions in $\theta(n^k)$. We can calculate this ratio:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\sum_{i=0}^k a_i n^i}{bn^k} = \lim_{n \to \infty} \frac{n^k \sum_{i=0}^k a_i n^{k-i}}{bn^k} = c$$

Since the extended relation holds, this implies $f(n) \in \theta(n^k)$

2. For the relation $f(n) \in o(n^l)$; l > k to hold, it is sufficient to show that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ holds. Here $g(n) = bn^l$ is a function representing the family of functions in $o(n^l)$. We can calculate this ratio:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\sum_{i=0}^{k} a_i n^i}{bn^l} = \lim_{n \to \infty} \frac{\sum_{i=0}^{k} a_i n^{k-i}}{bn^{l-k}} = 0$$

Since the extended relation holds, this implies $f(n) \in o(n^l)$

3. For the relation $f(n) \in \omega(n^l)$; l < k to hold, it is sufficient to show that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$ holds. Here $g(n) = bn^l$ is a function representing the family of functions in $\omega(n^l)$. We can calculate this ratio:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\sum_{i=0}^{k} a_i n^i}{b n^l} = \lim_{n \to \infty} b^{-1} n^{k-l} \sum_{i=0}^{k} a_i n^{k-i} = \infty$$

Since the extended relation holds, this implies $f(n) \in \omega(n^l)$

Solution (b)

Consider the following piece-wise function

$$f(n) = \begin{cases} n^5 & \text{if n is odd} \\ n^3 & \text{if n is even} \end{cases}$$

Also consider $o(n^4)$. In this case $f(n) \notin o(n^4)$ as for odd values of n when n is sufficiently large, $f(n) > cn^4$ irrespective of the constant chosen. But, at the same time, $f(n) \notin \Omega(n^4)$ as for even values of n when n is sufficiently large, $f(n) < cn^4$ irrespective of the constant chosen. From this example, it is clear that $f(n) \notin o(g)$ does not imply $f(n) \in \Omega(g)$. The simple reason for this is that numbers cannot be discontinuous but functions can be.

Solution (c)

Function	Asymptotic function	Explanation
$n^{(1-\epsilon)}$	$O(n^{(1-\epsilon)})$	Since ϵ cannot be smaller than 0 or larger than 1, $n^{(1-\epsilon)}$ is a decaying function as the power is less
- / 		than 1.
$3^{\sqrt{\log n}}$	$O(n^c); c < 1$	$3^{\sqrt{\log n}} = \frac{3^{\log n}}{3^{\sqrt{\log n}}} = \frac{n^k}{3^{\sqrt{\log n}}} < O(n^c); k < 1$
		The above expression implies the function $3^{\sqrt{\log n}}$
		is a decay function but the power is hard to
	0/ m	determine.
$\frac{n}{\log(\log n)}$	$\theta(\frac{n}{\log(\log n)})$	We can't simplify this any further but given
	or $O(n^c)$; $c < 1$	that for sufficiently large n, the denominator is
		greater than 1, this function is smaller than
		O(n) functions.
ϵn	$\theta(n)$	Self evident, ignore constant
$n^{\frac{3}{2}}\log n$	$\theta(n^{\frac{3}{2}}\log n)$	This function definitely grows faster than $O(n)$ as there is another multiplication factor alongside
		it. But, comparing this to $n^{8/5}$, we get that
		the growth rate of $\log(n)$ must equal growth
		rate of $n^{1/10}$ for those two functions to
		have the same asymptotic. But $\log(n)$ grows
		lower than $n^{1/10}$. That's why we placed
<u>8</u>	0(8)	$n^{\frac{3}{2}} \log n$ before $n^{\frac{8}{5}}$.
$n^{rac{8}{5}}$	$ heta(n^{rac{8}{5}})$	Same reasoning as above, but additionally, $n^{8/5}$ is clearly below n^2 .
n^2	$\theta(n^2)$	The power of n stays constant whereas in the
		later functions, the power keeps increasing,
		no matter how slowly. For a large enough n,
		they will overtake n^2 .
$n^{\log(\log n)}, (\log n)^{\log n}$	$\theta(n^{\log(\log n)})$	These two functions are mathematically equivalent
		that's why we put them together. Additionally,
		$\log(\log(n))$ will always be smaller than $0.5\log(n)$
		for sufficiently large n. Thus, the functions
		in this row will have a lower asymptotic bound than $n^{0.5 \log(n)}$
$n^{\frac{1}{2}\log n}$	$\theta(n^{\frac{1}{2}\log n})$	Even though both $n^{\frac{1}{2}\log n}$ and $n^{\sqrt{n}}$
		are exponential functions, the power $\frac{1}{2} \log n$
		will always grow slower than \sqrt{n} . As n grows
		sufficiently large, the $n^{\sqrt{n}}$ will take over.
$n^{\sqrt{n}}$	$\theta(n^{\sqrt{n}})$	Same reason as above. As n grows sufficiently
		large, $(1+\epsilon)^n$ will take over irrespective of the
		fact that the base of $n^{\sqrt{n}}$ also grows in value.
$(1+\epsilon)^n$	$\theta((1+\epsilon)^n)$	See reasons above.

Exercise 2

Probability of success on each experiment $=\frac{1}{\ln n}$ Probability of failure on each experiment $=1-\frac{1}{\ln n}$

Let's imagine doing two successive independent experiments.

Total probability of success $=\frac{1}{\ln n} + \left(1 - \frac{1}{\ln n}\right) \frac{1}{\ln n}$

Total probability of failure = $\left(1 - \frac{1}{\ln n}\right)^2$

This means, we could also write the total probability of success as $1 - \left(1 - \frac{1}{\ln n}\right)^2$

Similarly, for k successive independent experiments, our total probability of success can be written as $1 - \left(1 - \frac{1}{\ln n}\right)^k$

We want this probability to be at least $1 - \frac{1}{n^2}$, i.e., we want to find the value of k that satisfies the following inequality:

$$1 - \frac{1}{n^2} \le 1 - \left(1 - \frac{1}{\ln n}\right)^k$$

So, lets solve this inequality. First, let's remove the constants and flip the signs:

$$\left(1 - \frac{1}{\ln n}\right)^k \le \frac{1}{n^2}$$

Next, we use the binomial expansion of the left hand side to write the inequality $1 - \frac{k}{\ln n} \le \left(1 - \frac{1}{\ln n}\right)^k$. We can only write this because $\frac{1}{\ln n} \le 1$. We use this inequality in the above inequality.

$$1 - \frac{k}{\ln n} \le \frac{1}{n^2}$$

We can further simplify this to write:

$$k \ge \ln n \left(1 - \frac{1}{n^2} \right)$$

This is the best we could do to simplify the required value of k.

Exercise 3

(a)

Consider the following algorithm:

$$\begin{array}{c} i \leftarrow 2 \\ A_1 \leftarrow A \\ \textbf{while } i \leq \lceil \frac{N}{2} \rceil \textbf{ do:} \\ A_i \leftarrow A_{i/2}^2 \\ i \leftarrow 2i \end{array}$$

```
\begin{array}{l} \mathbf{end} \ \mathbf{while} \\ A^N \leftarrow \Pi_i A_i^{x_{\log(i)}} \end{array}
```

Here, the $x_{\log(i)}$ is either 1 or 0 and denotes the $\log(i)$ th bit in the binary representation of N. What we are doing here constructing a binary basis using powers of A. We only need $\log(N)$ terms in this basis to then combine them to form A^N in a way that no term is needed more than once. For such an algorithm, it only requires $\log(N) + 2$ elementary steps because we can access the binary representation of N in our model without any additional computation. Hence, we can compute A^N in $O(\log(N))$ time.

(c)

We assume the result of part (b) that we can compute the binomial factor $\binom{N}{K}$ in $O(\log N)$ time. Assume the function to do this process be called ComputeBinom(N, K). Then, consider the following algorithm:

```
\begin{aligned} & \textbf{function} \ \ \text{ComputeFactorial}(\mathbf{N}) \\ & N_{1/2} \leftarrow \frac{N}{2} \\ & N_K \leftarrow ComputeBinom(N, N_{1/2}) \\ & N_{1/2,fac} \leftarrow ComputeFactorial(N_{1/2}) \\ & N_{fac} \leftarrow N_K \times N_{1/2,fac}^2 \\ & \textbf{return} \ N_{fac} \\ & \textbf{end function} \end{aligned}
```

The recurrence function for the above algorithm can be written as:

$$T(N) = 2T(N/2) + O(\log N)$$

To solve this recurrence, let's think of constructing a binary tree. At each level of the tree, we incur the cost $O(\log N)$ (in reality this is a very loose bound, but sufficient for us). The tree will have $\log N$ levels because we split the problem in half at each level. So, the total run time complexity is $\log N \times O(\log N) = O(\log^2 N)$

(d)

If N is a prime number, then the only factors it has are N and 1. This means that none of the numbers from 2 to N-1 can divide N. Conversely, if we multiply all the numbers from 2 to N-1, then N cannot divide the resulting number. We just showed in part (c) that we can compute N! for any given N in $O(\log^2 N)$ time. So, we can also compute (N-1)! in $O(\log^2 N)$ time. Lastly, we divide (N-1)! by N. If we get a whole number, then we conclude N is not prime but otherwise it is prime. And since division is an elementary process, our total running time is still denoted by $O(\log^2 N)$.

(e)

For any number K, if N divides K!, then all the prime factors of N can be found in K! but if doesn't divide K!, then not all factors can be found in K!. So, consider the following algorithm:

```
function ComputeFactors(N) i \leftarrow \frac{N}{2} while 1 do
```

```
\begin{split} i_{fac} \leftarrow ComputeFactorial(i) \\ \textbf{if } N \mid i_{fac} \textbf{ then} \\ i \leftarrow i/2 \\ \textbf{else} \\ div \leftarrow ComputeFactorial(2i)/i_{fac} \\ factor \leftarrow GCD(div, N) \\ \text{break} \\ \textbf{end if} \\ \textbf{end while} \\ \textbf{return } factor \\ \textbf{end function} \end{split}
```

For this algorithm, each loop requires $O(\log^2 N)$ running time in the worst case scenario. Moreover, the algorithm would only loop through at most $\log N$ times in the worst case scenario. Hence, the total runtime for such an algorithm is $\log N \times O(\log^2 N) = O(\log^3 N)$.