Architettura Multilivello

Corso di Architettura degli Elaboratori 1

Fulvio Valenza

A.A. 2018-2019

Polo di Vercelli

Un può di definizioni (per iniziare)

- Con programma si intende una sequenza di istruzioni che il calcolatore può eseguire e che descrive come risolvere un problema computazionale.
- Il linguaggio macchina descrive l'insieme delle istruzioni primitive che il calcolatore può eseguire
 - Di solito il linguaggio macchina risulta difficile da utilizzare.
- Si definisce quindi una macchina virtuale che sfrutta la funzionalità del calcolatore, ma che può essere programmata in un linguaggio diverso, spesso più semplice da utilizzare.
- Il calcolatore può essere visto come una macchina a livelli: un insieme di macchine virtuali.

Architettura Multilivello

Figura 1-1 Una macchina a più livelli.

Traduzione e Interpretazione

- Chiamiamo M0 l'elaboratore che abbiamo a disposizione e L0 il relativo linguaggio.
- Possiamo pensare di costruire una macchina virtuale M1 con un relativo linguaggio macchina L1.
- Un modo per eseguire un programma scritto in L1 nella macchina M0 consiste nel tradurre ogni istruzione di L1 in una sequenza di istruzioni di L0 ad essa equivalente
- Un'altro modo per eseguire programmi scritti in L1 tramite le funzionalità di M0 consiste nello scrivere un programma in L0, detto interprete, che sia in grado di eseguire tutti i programmi in L1.
- ▶ Per rendere traduzione e interpretazione utilizzabili, i linguaggi L0 e L1 non devono essere troppo diversi tra loro.
- ▶ La stessa idea si può applicare a L2 e M2, L3 e M3, etc.

Un computer a sei livelli

Livello Logico Digitale

- Non ci interessiamo del livello dei dispositivi analogici.
- Gli oggetti in question sono le porte.
- Ogni porta è costituita da al più una manciata di transistor.
- Ogni porta calcola in output una semplice funzione dei valori in input.
- Un piccolo numero di porte possono essere combinate per formare una memoria a 1 bit.
- Combinando le memorie in gruppi di 16,32 o 64 unità si possono comporre i cosiddetti registri.

Livello Microarchitettura

- Vi è una memoria locale, formata da un gruppo di registri
- Vi è un circuito, chiamato ALU (Arithmetic Logic Unit), capace di effettuare semplici operazioni aritmetiche.
- I registri sono connessi alla ALU tramite un percorso dati.
- II percorso dati :
 - Può essere controllato da un programma che l'utente può modificare, detto microprogramma
 - Può essere controllato da circuiti che non sono modificabili dall'utente (ma anche in questo caso parleremo di microprogramma).

Livello ISA

- ▶ **ISA** significa *Instruction Set Architecture Level*.
- ► Il Livello ISA è il primo livello pubblico.
- Le istruzioni del Livello ISA vengono eseguite direttamente dal microprogramma.

Livello Sistema Operativo

- Il Livello del Sistema Operativo è un'estensione del Livello ISA, ottenuta aggiungendo alcuni nuovi servizi
- I nuovi servizi messi a disposizione nel Livello del Sistema Operativo vengono eseguiti (interpretati) da un programma del livello ISA, detto appunto Sistema Operativo.

Livello del Linguaggio Assemblativo

- Tutti i livelli inferiori non sono utilizzati dal programmatore medio.
- I livelli inferiori sono concepiti per eseguire interpreti e traduttori necessari ai livelli più alti. Tali programmi sono scritti dai cosiddetti programmatori di sistema.
- I programmi di questo livello e dei livelli superiori sono invece dei programmi che risolvono problemi applicativi
- I programmi in linguaggio assemblativo, a differenza di quelli dei livelli precedenti, sono sequenze di caratteri alfanumerici pensate per essere comprensibili.
- Il programma che traduce i programmi in linguaggio assemblativo in programmi del livello ISA è detto assemlatore.

Architettura Multilivell

Evoluzione delle Macchine Multilivello

- La distinzione tra hardware e software è diventata sempre meno importante.
- ▶ Nel 1951, Maurice Wilkes propone la microprogrammazione, che si inserisce tra il livello logico digitale e il livello ISA.
- ▶ A partire dagli anni '60, le operazioni (ripetitive) necessarie a far funzionare un calcolatore vengono automatizzate e ciò porta alla nascita del sistema operativo.
- ▶ Negli anni '60 e '70, un numero sempre maggiore di funzionalità che prima venivano implementate al livello ISA migrano verso il livello del microcodice.
- Più recentemente (dagli anni '80) si è capito che eliminando il microprogramma e riducendo il numero delle istruzioni a livello ISA si può ottenere un sensibile miglioramento delle prestazioni.

Unità metriche

Nome	Significato
Bit	cifra binaria
Byte	8 bit
KByte (KB)	$2^{10}~(\sim 10^3)$ byte
MByte (MB)	$2^{20}~(\sim 10^6)$ byte
GByte (GB)	$2^{30}~(\sim 10^9)$ byte
TByte (TB)	$2^{40}~(\sim 10^{12})$ byte

Spettro di tipologie di Computer

Tipo	Prezzo (dollari)
Esempio di applicazione	, ,
Computer usa e getta	0,5
Cartoline d'auguri	
Microcontrollore	5
Orologi, automobili, elettrodomestici	
Computer da gioco	50
Videogiochi	
Personal computer	500
Desktop o Notebook	
Server	5K
Server di rete	
Raggruppamento di workstation	50K-500K
Minisupercomputer dipartimentali	
Mainframe	5M
Elaborazione dati in una banca	