Projecto de Bases de Dados, Parte 1

Bruno Cardoso, Lídia Freitas e Rodrigo Bernardo Instituto Superior Técnico

25 horas de trabalho por aluno.

Conteúdo

1	Modelo Entidade-Associação	3
	1.1 O Modelo	3
	1.2 Restrições de Integridade do Modelo Entidade-Associação	
2	Modelo Relacional	6
	2.1 O Modelo	6
	2.2 Restrições de Integridade do Modelo Relacional	8
3	Álgebra Relacional	10
	3.1 Pergunta 1	10
	3.2 Pergunta 2	
	3.3 Pergunta 3	10
4	Linguagem SQL	10
	4.1 Pergunta 1	10
	4.2 Pergunta 2	
	4.3 Pergunta 3	

1 Modelo Entidade-Associação

1.1 O Modelo

1.2 Restrições de Integridade do Modelo Entidade-Associação

O Modelo Entidade-Associação não limita todas as ocorrências possíveis e por isso podem dar-se situações fora do domínio do problema.

Como por exemplo, não se consegue assegurar que a ordem das datas estejam coerentes. Isto é, não é possível garantir que o timestamp_nascimento seja inferior ao timestamp_registo, ou que o timestamp_login seja posterior ao timestamp_registo. Assim como não é possível assegurar que os números de tentativas de insucesso (num_insucessos_login) sejam positivos, ou o número de undo's já realizados pela pessoa (num_undos). Outro aspecto que não é explicável através do modelo é o número de perguntas a que a pessoa responde, ou a unicidade da associação entre os objectos mutáveis (Páginas, páginas_registos, Registos, Tipos_de_registos e Campos). De forma a impedir que tais situações não ocorram, o Modelo Entidade-Associação é completado com as seguintes restrições de integridade:

- RI1 Na entidade *Pessoa*, o atributo *timestamp_nascimento* é uma data anterior ao atributo *timestamp_registo*.
- RI2 Na entidade Pessoa, o atributo bloqueado é um valor lógico, verdadeiro ou falso.
- RI3 Na entidade *Pessoa*, o atributo *num_undos* é um número inteiro positivo.
- ${f RI4}\,$ Na entidade Pessoa, o atributo $num_insucessos_login$ 'e um número inteiro positivo menor ou igual a 3.
- RI5 Cada instância de Pessoa associa-se, em cada instante, a duas instâncias da entidade Perqunta.
- RI6 Na entidade Login, o atributo timestamp_login é uma data posterior ao atributo timestamp_registo de Pessoa.
- RI7 Na entidade Login, o atributo sucesso é um valor lógico, verdadeiro ou falso.
- **RI8** Cada instância da entidade *Versão* tem apenas uma associação activa a *Páginas, paginas_registos, Registos, Tipos de registos* e *Campos*.
- RI9 Na entidade Versão, o atributo deleted é um valor lógico, verdadeiro ou falso.

RI10 Na entidade Versão, o atributo changed é um valor lógico, verdadeiro ou falso.

RI11 Uma instância da entidade Versão está associada a uma ou duas instâncias da entidade Log.

RI12 Uma instância da entidade Log está associada a duas e só duas instâncias da entidade Versão.

 ${\bf RI13}\,$ Na entidade Log,o atributo log_id é um inteiro positivo.

2 Modelo Relacional

2.1 O Modelo

```
Pergunta(questão, email, resposta)
email: FK(Pessoa)
notnull(resposta)
Pessoa(email, bloqueado, nome, num insucessos login, password, timestamp nascimento, times-
    tamp_registo, num undos)
notnull(email)
notnull(bloqueado)
notnull(nome)
notnull(num insucessos login)
notnull(password)
notnull(timestamp nascimento)
notnull(timestamp registo)
notnull(num undos)
Login(timestamp login, email, sucesso)
email: FK(Pessoa)
notnull(sucesso)
Páginas(nome_p, email, id)
email: FK(Pessoa)
id: FK(Pessoa)
Páginas registos(nome p, email, nome r, nome t, id)
nome p, email: FK(Páginas)
nome r, nome t, email: FK(Registos)
id: FK(Versão)
Registos(nome r, nome t, email, id)
nome_t, email: FK(tipos_de_registos)
id: FK(Versão)
Tipo de registos(nome t, email, id)
email: FK(Pessoa)
id: FK(Versão)
```

```
Campos(nome_c, nome_t, email, id)
nome_t, email: FK(Tipo_de_registos)
id: FK(Versão)

Registo_Campos(nome_r, nome_t, nome_c, email, id)
nome_r, nome_t, email: FK(Registos)
nome_c, nome_t, email: FK(Campos)
id: FK(Versão)

Versão(id, changed, deleted)
notnull(changed)
notnull(deleted)

Log(log_id, email)
email: FK(Pessoa)

Log_versão(log_id, email, id)
log_id, email: FK(Log)
id: FK(Versão)
```

2.2 Restrições de Integridade do Modelo Relacional

Ao passar do Modelo Entidade-Associação para o Modelo Relacional é necessário acrescentar restrições de integridade que antes não eram necessárias. Às restrições de domínio já indicadas, adicionam-se agora as restrições de integridade referencial (sendo que de chave não temos nenhuma), as quais não eram antes necessárias considerar. Assim, as restrições RIn, com n > 13, são restrições novas, exclusivas do Modelo Relacional, para cobrir casos que não são possíveis modelar directamente neste modelo.

- RI1 Na entidade *Pessoa*, o atributo *timestamp_nascimento* é uma data anterior ao atributo *timestamp_registo*.
- RI2 Na entidade Pessoa, o atributo bloqueado é um valor lógico, verdadeiro ou falso.
- RI3 Na entidade Pessoa, o atributo num undos é um número inteiro positivo.
- **RI4** Na entidade *Pessoa*, o atributo $num_insucessos_login$ 'e um número inteiro positivo menor ou igual a 3.
- RI5 Cada instância de *Pessoa* associa-se, em cada instante, a duas instâncias da entidade *Pergunta*.
- RI6 Na entidade Login, o atributo timestamp_login é uma data posterior ao atributo timestamp_registo de Pessoa.
- RI7 Na entidade Login, o atributo sucesso é um valor lógico, verdadeiro ou falso.
- **RI8** Cada instância da entidade *Versão* tem apenas uma associação activa a *Páginas*, *paginas_registos*, *Registos*, *Tipos_de_registos* e *Campos*.
- RI9 Na entidade Versão, o atributo deleted é um valor lógico, verdadeiro ou falso.
- RI10 Na entidade Versão, o atributo changed é um valor lógico, verdadeiro ou falso.
- RI11 Uma instância da entidade Versão está associada a uma ou duas instâncias da entidade Log.

- RI12 Uma instância da entidade Log está associada a duas e só duas instâncias da entidade Versão.
- RI13 Na entidade Log, o atributo log_id é um inteiro positivo.
- RI14 Quando se elimina um tuplo da tabela *Pessoa*, devem ser eliminados os tuplos com igual valor para o atributo *email* nas tabelas *Pergunta*, *Paginas*, *Tipos_de_registos*, *Log* e *Login*, caso existam.
- **RI15** Quando se elimina um tuplo da tabela *Paginas*, devem ser eliminados os tuplos com valores idênticos para os atributos *nome_p* e *email* da tabela *Paginas_registos*, caso existam.
- RI16 Quando se elimina um tuplo da tabela Registos, devem ser eliminados os tuplos com valores idênticos para os atributos nome_r, nome_t e email das tabelas Paginas_registos e Registo_Campos, caso existam.
- RI17 Quando se elimina um tuplo da tabela $Vers\~ao$, devem ser eliminados os tuplos com igual valor para o atributo id nas tabelas Paginas, $Paginas_registos$, Registos, $Tipo_de_registos$, Campos, Registo Campos e Log_versao , caso existam.
- **RI18** Quando se elimina um tuplo da tabela $Tipos_de_registos$, devem ser eliminados os tuplos com valor idêntico para os atributos $nome_t$ e email nas tabelas Registos e Campos, caso existam.
- **RI19** Quando se elimina um tuplo da tabela *Campos*, devem ser eliminados os tuplos com valor idêntico para os atributos *nome* c, *nome* t e email nas tabelas *Registo Campos*.
- **RI20** Quando se elimina um tuplo da tabela *Log*, devem ser eliminados os tuplos com valor igual para os atributos *log_id* e *email* na tabela *Log_versao*.

3 Álgebra Relacional

3.1 Pergunta 1

 $\Pi_{nome\ t}(\sigma_{email='Manel@Notebook.pt'}(Tipo_de_registos))$

3.2 Pergunta 2

 Π_{email} (Pessoa $\bowtie \sigma_{sucesso=falso}(Login)$)

3.3 Pergunta 3

 $\Pi_{timestamp_nascimento}(\sigma_{nome_p='facebook' \land nome_r='facebook'} Pessoa \bowtie \rho(P, Paginas) \bowtie_{P.email=R.email} \rho(R, Registos))$

4 Linguagem SQL

4.1 Pergunta 1

SELECT DISTINCT nome_t FROM Tipo_de_registos WHERE email="Manel@notebook.pt";

4.2 Pergunta 2

SELECT DISTINCT Pessoa. email FROM Pessoa, Login WHERE Pessoa. email = Login. email AND sucesso = false;

4.3 Pergunta 3

SELECT timestamp_nascimento FROM Pessoa, Paginas, Registos WHERE Pessoa.email = Registos.email AND Pessoa.email = Paginas.email AND nome_p = "facebook" AND nome_r = "facebook";