Preguel to Hawkes Processes: An Overview of Temporal and

Spatio-Temporal Point Processes and Some Simulations

Frances Lin

June 2021

Major Professor: James Molyneux

Committee Members: Lisa Madsen & Charlotte Wickham

Abstract

1 Introduction

Real-world data are often spatial, temporal, or spatio-temporal in nature. Spatial data (e.g. soil properties,

housing prices) often involve locations such as points and areas. Temporal data (e.g. sensor readings, stock

prices) often involve times such as moments and intervals. Spatio-temporal data are data that relates to

both locations and times. Examples of spatio-temoral data include forest inventories, remotely sensed images,

earthquake epicenters, disease cases, map services and travel times, to name a few. CITATIONS

There are various statistical models and methods suitable for modeling spatial, temporal, or spatio-temporal

data, and which models to use depend on questions of interest. For this project, we focus primarily on

the point process models. Point process models are useful for describing phenomena that occurs at random

locations, times, or locations and times, and the questions of interests typically are: Does the rate for the

occurrence of events vary with locations, times, or locations and times? Do events appear clustered? Do

events trigger subsequent events?

Spatial data can be broadly categoried into three types: geostatistical (point process) data, areal data, and

point pattern data. **CITATIONS** We focus on the third category in which point pattern data are realizations

1

of spatial point processes, and questions about point pattern data typically are: Is there clustering of events? Can we define a point process that captures the events? CITATIONS Examples of such models include Cox and cluster processes. On the other hand, when dealing with temporal data, (marked) point processes are sometimes used interchangeable with time series, and vice versa. CITATIONS One major distinction, though, is that in point processes, time intervals are treated as continuous, whereas in time series, they are treated as discrete. Examples of such models include (temporal) Poisson and Hawkes processes.

Hawkes processes are also known as self-exciting point process. More specifically, the original Hawkes processes are temporal, whereas the more recently developed self-exciting point processes have been extended from temporal Hawkes processes to account for both the spatial and temporal aspects of the data.

The defining characteristic of Hawkes processes is that it self-excites. In other words, the occurrence of an event increases the occurrence of future events nearby in space or time, but the events don't self-excite in perpetuity. In addition, more recent events exert more influence on the rate at which events occur given the history of such events, as compared to older events. For example, in seismology, an event can be an earthquake occurrence that causes aftershocks. In criminology, an event can be a gang rivalry that triggers retaliations following the gang crime. **CITATIONS** In both cases, the initial event can continue to spawn 'offspring' events and the 'offspring' events can spawn 'offspring' events of their own, but the spawns die out eventually.

In addition to modeling earthquake epicenters in seismology and crime patterns in criminology, Hawkes processes have also been used in modeling events such as forest wildfires, insurance claims, financial transcations, social network events, neuron activities, and disease spread or transmission. CITATIONS Thus, it can be found in a wide variety of fields such as emergency and disaster management, insurance, finance, social network, neuroscience, and epidemiology. Recent work has extended the use of self-exciting point processes to novel applications such as mass shootings and...... CITATIONS. However, there is still much work to be done, which include computational advances to ease the burden of applying such models to bigger data sets, residual and model diagnostics, and methods that make the models more flexible and applicable.

CITATIONS: Souchard, Mohler's COVID-19, and Park's gang violence papers

Given the flexibility and applicability of Hawkess processes, it is surprising to see that Hawkess processes have not gained much attention from the machine learning communities, which would find their predictive capabilities beneficial. In addition, understanding Hawkes processes would benefit from knowing some of the relevant point processes (e.g. nonhomogeneous Poisson, Cox and cluster processes) which are often left out from graduate-level, introductory spatial statistics and stochastic processes courses. The objective of this project is to give an overview of various types of point processes so that readers of interest have

the necessary background knowledge to understand Hawkes and self-exciting processes. The outline of this project is as follows: In Section 2, we introduce, define and discuss properties of counting processes, homogeneous and nonhomogeneous Poisson processes, Cox processes, cluster processes, Hawkes processes, and spatio-temporal self-exciting process. In Section 3, we discuss in particular the thinning algorithms (acceptance-rejection method) and the spatstat package of R that are used to simulate selected processes in 1D and 2D, respectively. In Section 4, we discuss recent and future work of Hawkes and self-exciting processes.

2 Introductions, Definitions and Properties

2.1 Counting Process

A counting process counts the occurrences (or numbers) of events over time, space, space-time or, in the most general sense, any metric space in which events occur and can be counted. CITATIONS: Other or Daley and VereJones's An Introduction to the Theory of Point Processes

If we were to denote the time of arrival for customers at a super market, we would have a set of points in time in which we could count the number customers over some interval of time. On the other hand, if we consider the location of trees to occur at a point in space, then in some bounded region of the space, we could count the number of trees. An earthquake's epicenter would be the point in space but we also capture when the point appears in time.

Let us restrict ourselves to the temporal domain so that interpretations are easier to follow. The counting process requires that the total number of events N(t) up to some time t to be greater than zero, the total number of events must be an integer, the counts always increase, and the number of events in specific time interval can be obtained by subtracting the number of events in previous interval from that in current interval. In addition, counting processes are independent, stationary, and homogeneous. In other words, the numbers of events N(t) occurring in disjoint interval t are independent, the distribution of the numbers of events depends only on the length of the interval t, and the transition probability between any two states at two times depends only on the difference between the states. **Reframe the transition probabilities** part in non-stats language

Before formally defining a counting process, first we need to define stochastic processes and point processes. A stochastic process is a collection of random variables indexed by time, t, space, s or space-time, $t \times s$, but we restrict ourselves to the time domain, again. We follow with..... to define a stochastic process and a point process

Definition 2.1.1 (Stochastic Process) A stochastic process is a family of random variables indexed by time t and is defined as

$$\{X_t\}_{t\in T}$$

Definition 2.1.2 (Point Process) Let $\{T_i\}_{i\in\mathbb{N}}$ be a sequence of non-negative random variables such that $T_i < T_{i+1} \ \forall i \in \mathbb{N}$, a point process on R^+ is defined as

$$\{T_i\}_{i\in\mathbb{N}}$$

A point process relies on the occurrence of an event occurring at a specific point in time. Stochastic processes, on the other hand, are more general. It can be related to a time interval, a waiting time, a state (e.g. blue or red) that changes over time, etc.

A counting process is then defined as follows,

Definition 2.1.3 (Counting Process) Let N(t) be the total number of events up to some time t such that the values are nonnegative, integer valued, and nondecreasing, a stochastic process is said to be a counting process and is defined as

$${N(t), t \ge 0}.$$

Let us look at a more explicit example, which we show in Figure 1. Suppose that N(t) counts the numbers of events up to some time t and events occur at times t = 0.1, 1, 1.5, 3, 5, etc, then N(2) = 3 since events occuring at 0.01, 1, and 1.5 all occur in the time interval (0, 2]. Similarly, N(4) = 4 since 4 events occur in the time interval (0, 4].

An alternative definition of a counting process is

Definition 2.1.4 (Counting Process) Let $\{T_i\}_{i\in\mathbb{N}}$ be a point process, a counting process associated with $\{T_i\}_{i\in\mathbb{N}}$ is defined as

$$N(t) = \sum_{i \in \mathbb{N}} I_{\{T_i \le t\}}$$

This equivalent definition may be more beneficial as we get into Poisson, cluster, etc. processes in later sections because it is easier to see that for $i \in \mathbb{N}$, if $T_i \leq t$, the indicator function $I_{\{T_i \leq t\}}$ is equal to 1. Then, we sum up all the 1s for events which have occurred.

Figure 1: Counting Process

A useful corollary of counting process, which describes more formally some of the properties we stated above and will be helpful to understand as we move into Poisson processes and then beyond is

Corollary 2.1.1 A counting process satisfies that

- 1. $N(t) \ge 0$
- 2. N(t) is an integer
- 3. If $t \le t + h$, then $N(t) \le N(t + h)$
- 4. If t < t + h, then N(t + h) N(t) is the number of events occur in the interval (t, t + h)

In other words, 1. An event has to occur for it to be counted. 2. We either count an event or we don't. There is no event that sort of occurs that results in decimal value. 3. Counts always increase because events don't disappear. Once we observe an event and count it, it remains in the counts. 4. The number of events in specific time interval can be obtained by subtracting the number of events in previous interval from that in the current interval.

2.2 Poisson Process

The homogeneous Poisson process (HPP) is one of the simplest yet most-widely used point processes. CI-TATIONS: Baddeley? HPPs can be used to model the number of events such as bus arrivals at a bus stop, car accidents at a site, or the document requests on a web server over time. As we alluded to previously with counting processes, HPPs can also be considered over a space which is often taken to be a two-dimensional plane, such as the surface of Earth, or a three-dimensional volume, such as the interior of Earth.

Like counting processes, HPPs are also independent, stationary, and homogeneous. In addition, we assume that the numbers of events N(t) follows a Poisson distribution with a constant rate, λ , and the interarrival times between events, W, are exponentially distributed. HPPs can then be formally defined as

Definition 2.2.1 (Poisson Process) If the following conditions hold, a counting process $\{N(t), t \geq 0\}$ is said to be a Poisson Process with constant rate (or intensity) $\lambda > 0$

- 1. N(0) = 0
- 2. N(t) has independent increments

3.
$$P(N(t+h)) - N(t) = 1) = \lambda h + o(h)$$

4.
$$P(N(t+h)) - N(t) > 1) = o(h)$$

where the function of little o o(h) is given as

$$\lim_{h \to 0^+} \frac{o(h)}{h} = 0.$$

In other words, 1. An event has to occur for it to be counted. 2. For any disjoint time intervals, the occurrence of an event does not affect the probability of the occurrence of one another event. 3. λ is the rate (events over time) at which points occur and is constant. 4. No more than 1 event can occur at the same location.

An alternative way to think of HPP is that it is a uniformly random process. If we were to take a realization of a HPP over some time interval (0, T] and "bin" the number of events occurring in some set of equal intervals, then the histogram for the realization would resemble a realization of a uniform distribution over time 0 to T.

Let us look at a realization of a HPP in time, which we show in Figure 2. First, we note that the cumulative number of points is growing at a constant linear rate. In addition, we can see that the histogram of rate appears roughly uniform; the rates are roughly constant at $\lambda = 10$. The algorithm used for simulating this HPP can be found in the Appendix section.

Figure 2: Homogeneous Poisson process

For an HPP, the number of events in any time interval N(t) are Poisson distributed. More formally, we can say that the number of events in any time interval (t, t+h], N((t, t+h]), $\sim Pos(\lambda \cdot h)$. That is, for all $t, h \geq 0$ and n = 0, 1, ...,

$$P(N(t+h) - N(t) = n) = \frac{(\lambda h)^n e^{-\lambda h}}{n!}.$$

Additionally, let us denote the total number of events as N(t) and the interarrival times between events as W. For example, let T_0 denote the starting time of the process while T_1 is the time of the first occurrence of event and T_2 is the time of the second occurrence of event. The elapsed time between the start of the process and first event is W_1 and the elapsed time between the first event and second event is W_2 . The interarrival times W are exponentially distributed. More formally, the interarrival times W, $\sim exp(\frac{1}{\lambda})$. That is, for rate $\lambda > 0$, the interarrival time W_i i = 1, 2, ...,

$$P(W_1 > h) = P(N(h) = 0) = e^{-\lambda h}.$$

This is because the probability of the first point arriving after time h can be thought of as the probability that the first point does *not* arrive in the time interval (0, h]. Similarly, W_2 is also $\sim exp(\frac{1}{\lambda})$ since

$$P(W_2 > h|W_1 = t) = P(N(t+h) - N(t)|N(t) - N(t^-) = 1) = P(N(t+h) - N(t) = 0) = P(N(h) = 0) = e^{-\lambda h}.$$

2.3 Nonhomogeneous Poisson Process

Assuming that the rate in which points occur is constant is often not realistic in practice. We may want a model that allows for more flexibility. Nonhomogeneous Poisson processes (NPPs) are a generalization of homogeneous Poisson processes that allow for the rate (or intensity) λ to vary as function of time t or space s.

We assumed previously that for the HPP the intensity λ is constant. If we have reasons to believe that the intensity is not constant, we should use a NPP instead. This would be the case if, as in the supermarket example, we have reasons to believe that the arrival rate of customers is higher during lunch time as compared to say, 2am, or, as in the trees in a forest example, we speculate that environmental factors such as temperature, rainfall and light affect the spatial distribution of the trees.

Contrary then to the HPP, NPPs are independent but not stationary nor homogeneous. HPP has stationary increments since the distribution of the numbers of events N(t) that occur in any interval of time t depends only on the length of the interval t but not the location of the interval t. In contrast, NPP does not have stationary increments since the distribution of N(t) can change when shifted in t. Since stationary implies homogeneity, NPP is nonhomogeneous.

Recall that for HPP, we assume that the numbers of events in any time interval N(t) follows a Poisson distribution with a constant intensity λ , for NPP, we assume that N(t) follows a Poisson distribution too but with an intensity function $\lambda(t)$ such that the intensity now varies with a function of time. This then leads to the following definition of a NPP

Definition 2.3.1 (Nonhomogeneous Poisson Process) If the following conditions hold, a counting process $\{N(t), t \geq 0\}$ is said to be a nonhomogeneous Poisson Process with intensity function of time $\lambda(t), t > 0$

- 1. N(0) = 0
- 2. N(t) has independent increments
- 3. $P(N(t+h)) N(t) = 1) = \lambda(t)h + o(h)$
- 4. P(N(t+h)) N(t) > 1) = o(h)

Nonhomogeneous Poisson processes have additional properties such as if the number of events in any time interval (t, t+h], denoted as N((t, t+h]), $\sim Pos(\Lambda(t) = \int_t^{t+h} \lambda(v) dv)$. That is, for all $v, t, h \geq 0$ and n = 0, 1, ...,

$$P(N(t+h) - N(t) = n) = \frac{\left(\int_{t}^{t+h} \lambda(v)dv\right)^{n} e^{-\int_{t}^{t+h} \lambda(v)dv}}{n!}.$$

where again, $\lambda(v)$ denotes a non-constant rate function.

Further, occurrence for the next point can be determined by utilizing the exponential distribution with

$$P(N(t,t+h)=0) = e^{-\int_t^{t+h} \lambda(v)dv}.$$

A Motivating Example

Before we delve further into other point processes, let us look at a motivating example, which we show in Figure 3. We demonstrate the processes in space so that visualizations are easier to look at and comprehend.

Let us look at HPP and NPP in space first. HPP in space is also called complete spatial randomness (CSR). **CITATION** For HPP in space, the number of events in u, denoted as N(u), in area |u|, $\sim Pos(\lambda |u|)$. The left figure of Figure 3 is a realization of HPP with constant rate = 100. We can see that HPP points appear uniformly distributed in u.

For NPP in space, the number of events in u, denoted as N(u), $\sim Pos(\int_u \lambda(v)dv)$. The middle 1 figure is a realization of NPP with intensity function = 400xy. NPP points are not uniformly distributed; they are distributed according to the intensity function of the process. In this example, the points appear to concentrate at the upper-right corner.

Figure 3: Left: HPP (rate = 100) Middle 1: NPP (intensity = 400xy) Middle 2: Cox (intensity = exp(n = 1, rate = 1/100)) Right: Matern (kappa = 20, r = 0.05, mu = 5)

As a preview, the middle 2 and the right figure is a realization of Cox process with intensity function = exp(1, 1/100) and Matern cluster process with kappa = 20, r = 0.05, mu = 5, respectively. Both Cox process and Matern cluster process points appear clustered, but the way the points cluster differ. Points in Cox

process cluster accordingly to some specified distribution, whereas points in cluster process cluster in some defined area. We elaborate more and discuss in details Cox and cluster process in the next section.

2.4 Cox and Cluster Process

Even more flexible models than NPP are Cox and cluster processes. Whereas, previously assumed independence between events which occur at a constant rate λ for the HPP or were independent but depend on an intensity function $\lambda(t)$ for the NPP, we now discuss models that allows for the relaxation of this independence assumption.

The differences between Cox process and cluster process are such that points occur due to some set of random variables, for the Cox process, or they appear as clusters where the clusters we observe are derived from some common "parent" which we do not observe. Examples that can be modeled using Cox and cluster processes include seedlings and saplings of California redwood, locations of emergent plants, and locations of trees. CITATION

We can think of Cox process as a hierarchical model with two levels and cluster process as a hierarchical model with three levels. In Cox processes, the first level is a Poisson process and the second level can be a non-negative random variable. In cluster process, the first level is to generate 'parent' (or 'center') points, which can be a Poisson process or any other process. The second level is to generate counts, which is a non-negative interger-valued random variable, and the third level is to generate 'offspring' points for each 'parent' point and the corresponding count. **CITATION**

For the intensity of the Cox process (which is sometimes also referred to as a doubly stochastic Poisson process), randomness arises from two parts. Not only does the randomness occur at different locations as in the case of a NPP, but also in the intensity function. Instead of governing by a determinist function $\lambda(t)$ the intensity function, now denoted as $\Lambda(u)$, is also random.

While Cox processes can sometimes appear to exhibit "clustering" of points due to the underlying random field, cluster processes tend to make the clustering of points more explicit. When thinking about a cluster process, we first imagine some set of 'parent' points \mathbf{Y} being generated by the process and often times we think of these parent points as being unobserved. Next, each 'parent' point $y_i \in \mathbf{Y}$ gives rise to a random number of 'offspring' points z_{ij} . These 'offspring' points Z_{ij} then form a cluster process \mathbf{X} around the set of parents \mathbf{Y} of which only the offspring points are observed.

Matern cluster processes, for one example, involves generating homogeneous Poisson parents and each parent gives rise to Poisson number of offspring uniformmly distributed in a disc of radius r centered around the

parent. Other examples of cluster processes include Neyman-Scott process and Thomas cluster process.

Having given some background on both the Cox and cluster processes, we follow now with their more formal definitions.

Definition 2.4.1 (Cox Process) Let $\Lambda = (\Lambda(u))_{u \in S \subseteq \mathbb{R}^d}$ be a non-negative random field such that $\Lambda(u)$ is a locally integrable function. If $X \mid \Lambda \sim Pos(\Lambda)$, then X is said to be a Cox process driven by Λ with intensity function $\lambda(u) = E(\Lambda(u))$. That is,

$$P(N(u) = n) = \frac{(\lambda(u))^n e^{-\lambda(u)}}{n!} = \frac{(E(\Lambda(u)))^n e^{-E(\Lambda(u))}}{n!} =$$

where

$$\Lambda(u) \stackrel{a.s.}{=} \int_{u} \lambda(x) dx = \int_{0}^{\infty} \frac{x^{n} e^{-x} F_{u}(dx)}{n!}$$

Note. Λ is a random field means that $\Lambda(u)$ is a random variable $\forall u \in S$.

Note. $\Lambda(u)$ is a locally integrable function means that $E(\Lambda(u))$ exists and is locally integrable with probability 1.

ZZQ: Sort of felt like the info below, while interesting, wasn't worth the "page space". Feel free to disagree though and, if so, try to layout the properties into a single paragraph.

Definition 2.4.2 (Cluster Process) Let x be points in a point process N and replacing every x with a cluster of points N_x , then the union of all the clusters forms a cluster process N_c . That is,

$$N_c = \bigcup_{x \in N} N_x$$

Note. Each N_x is a finite point process 'centered' at x and it is assumed that each N_x is independent of one another.

In addition, condition on..... , the cluster process has the intensity function.....

As mentioned previously, there are a variety of different cluster processes which depend on the set of underlying assumptions used within the model. A set of model assumptions is given below followed by a set of different cluster processes based on these assumptions:

- 1. 'Parent' points follow a Poisson distribution.
- 2. Clusters are independent of one another.

- 3. Clusters are identically distributed, which means that clusters, when shifted, have the same distributions.
- 4. The locations of 'offspring' points of each parent point are independently and identically distributed.
- 5. The number of 'offspring' points of each parent point follows a Poisson distribution.
- 6. Clusters are isotropic, which means that the distribution of 'offspring' points for each parent point depends only on the distance between the 'parent' and the 'offspring'. **CITATION**

Under assumption 1 - 4, we have a Neyman-Scott process. Under assumption 1 - 5, the cluster process is a Cox process. And finally, under assumption 1 - 6, we have a Matern or Thomas cluster process.

2.5 Hawkes Process

The final class of point process models we present are the Hawkes processes, also commonly known as self-exciting point processes. Like Cox and cluster process, the Hawkes process model allows for dependence between events; however, their dependence differs. In Hawkes processes, the occurrence rate of the events depends not only on time t but also past events \mathcal{H}_t^N up to some time t. This is the distinguishing feature of the Hawkes process as neither Cox nor cluster processes depends on the past history of events. It can be noted, however, that we can think of the Hawkes process as a model that incorporates the cluster process but through a and conditional intensity function.

As previously mentioned, examples of applications for Hawkes processes include locations of earthquake epicenters, locations of crimes, and locations of patients with a communicable disease. The major commonality in each of these examples is the fact that an occurrence of an event leads to an increase in the occurrence of subsequent events.

Since the intensity, or the expected rate in which points occur, of the process is now as a function of past history, we refer to the expected rate as a conditional intensity. And a defining characteristic of Hawkes processes is that it self-excites because of its conditional intensity. Another characteristic is that more recent events exert more influence on the intensity, as compared to older events. **HOW?** These characteristics are captured by the triggering part $\phi(\cdot)$ of the intensity function $\lambda(t|\mathcal{H}_t)$.

A Hawkes process can be uniquely identified through its conditional intensity function (**Citation** Daley and VereJones), the definition of which we give below:

Definition 2.5.0 (Conditional Intensity Function) Let N(t) be the numbers of events N(t) that occur in any interval of time t, the conditional intensity function $\lambda(t)$ with respect to the history of the process up

to time t, \mathcal{H}_t , is defined as

$$\lambda(t|\mathcal{H}_t) = \lim_{h \to 0^+} \frac{P(N(t, t+h] > 0|\mathcal{H}_t)}{h} = \lim_{h \to 0^+} \frac{E(N(t, t+h)|\mathcal{H}_t)}{h}$$

Having defined the conditional intensity function, we next more formally define the Hawkes process:

Definition 2.5.1 (Hawkes Process) A counting process $\{N(t), t \geq 0\}$ associated with past events $\{\mathcal{H}_t^N, t > 0\}$ is said to be a Hawkes process with conditional intensity function $\lambda(t|\mathcal{H}_t^N), t > 0$ and takes the form

$$\lambda(t|\mathcal{H}_t^N) = \lambda_0(t) + \sum_{i:T_i < t} \phi(t - T_i)$$

where

- $\lambda_0(t)$ is the base intensity function (or μ the constant background rate)
- $T_i < t$ are the events time occur before current time t
- $\phi(\cdot)$ is the triggering function) through which which describes the amount of extra intensity caused by events occurring prior to time t
- \mathcal{H}_t^N is the natural filtration (or simply \mathcal{H}_t the past history) which represents the internal history of N up to time t

Corollary 2.5.1 Hawkes process satisfies that

- 1. N(t) = 0
- 2. $\lambda(t|\mathcal{H}_t^N) = \lambda_0(t) + \int_{-\infty}^t \phi(t T_i) dN(s) = \lambda_0(t) + \sum_{i:T_i < t} \phi(t T_i)$
- 3. $P(N(t+h)) N(t) = 1|\mathcal{H}_t^N| = \lambda(t)h + o(h)$
- 4. $P(N(t+h)) N(t) > 1|\mathcal{H}_{t}^{N}| = o(h)$

Choices of $\phi(\cdot)$ include, for example, exponentially decaying function and power-law kernel, and they take the form of

$$\phi(x) = \alpha e^{-\beta x}$$

$$\phi(x) = \frac{\alpha}{(x+\beta)^{\eta+1}}.$$

Figure 4: Hawkes Process

There are two ways to view Hawkes processes

1. Intensity-based Hawkes Process

Here, Hawkes process is defined through conditional intensity process.

In Section 3.5, we discuss algorithm for simulating intensity-based Hawkes process in details.

2. Cluster-based Hawkes Process

Alternatively, Hawkes process can also be defined through marked Poisson cluster process.

2.6 Spatio-Temporal Hawkes Process

Spatio-temporal Hawkes processes is an extention of temporal Hawkes processes. Recall that temporal Hawkes processes take the form of

$$\lambda(t|\mathcal{H}_t) = \mu + \sum_{i:T_i < t} g(t - t_i).$$

Spatio-temporal Hawkes processes take the form of

$$\lambda(t|\mathcal{H}_t) = \mu(s) + \sum_{i:T_i < t} g(s - s_i, t - t_i).$$

where

- $s_i, i = 1, 2, ...$ are the sequence of locations of events
- $t_i, i = 1, 2, \dots$ are the times of events.

3 Algorithms and Simulations

Please refer to the Appendix section for the algorithms that are used to simulate some of the aforementioned point processes in 1D and the **spatstat** package of R that are used to simulate the processes in 2D.

4 Conclusions and Discussion

Acknowledgments

Reference

Chen, Y. (2016). Thinning algorithms for simulating point processes. Florida State University, Tallahassee,

FL.

Obral, K. (2016). Simulation, estimation and applications of hawkes processes. (Master's thesis, University

of Minnesota, Twin Cities, United States).

Rizoiu, M. A., Lee, Y., Mishra, S., & Xie, L. (2017). A tutorial on hawkes processes for events in social

media. arXiv preprint arXiv:1708.06401.

Krishna, R. (2015). Simulation of Non-Homogeneous Poisson Processes.

Pasupathy, R. (2010). Generating homogeneous poisson processes. Wiley encyclopedia of operations research

and management science.

Terminology

Stochastic Process

Counting Processes

Poisson Process

Nonhomogeneous Poisson Process

Cox Process

17

Appendix

Algorithm 1: HPP

Algorithm 1

Algorithm 2: NPP

Algorithm 2: NPP is omitted. Instead, we discuss the thinning algorithm (or acceptance-rejection method)

in details and show Algorithm 3 next.

Algorithm 3: Hawkes

In this example, we use the thinning algorithm to simulate a (temporal) Hawkes process since it is one of

the most popular choices for simulating both temporal and spatio-temporal NPP.

Broadly put, thinning algorithm involves randomly deleting points from a point pattern. **ELABORATE**

MORE.

Algorithm 3

Figure 4 as shown previously is a realization of a Hawkes process with the exponentially decaying triggering

function ($\mu = 0.5, \alpha = 0.7, \beta = 0.5$).

Simulations of HPP, NPP, Cox and Matern Cluster Process in 2D using the

spatstat package in R

All of the corresponding plots in 2D are created using the **spatstat** package in R.

HPP

NPP

Cox Process

Matern Cluster Process

Simulations of Matern cluster process are generated using the rMatClust function. Specifically, the process

involves generating homogeneous Poisson parents and each parent gives rise to Poisson number of offspring

18

uniformly distributed in a disc of radius r centered around the parent. kappa controls the intensity of the cluster centers and allows us to specify the number of clusters. \mathbf{r} specifies how far away cluster is from one another in radius, and \mathbf{mu} gives the mean number of points per cluster.