이상위험도 분석기법에 관한 기술지침

2021. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 권 혁 면
- ㅇ 개정자
- 이수희
- 안전보건공단 정용재
- 제·개정 경과
 - 1996년 4월 화학안전분야 기준제정위원회 심의
 - 1996년 4월 총괄기준제정위원회에서 심의
 - 2002년 11월 화학안전분야 기준제정위원회 심의
 - 2002년 12월 총괄기준제정위원회 심의
 - 2012년 1월 총괄 제정위원회 심의(개정)
 - 2021년 11월 화학안전분야 기준제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - 미국 Military standard
 - 미국 CCPS 위험성 평가 Guide
- o 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2021년 12월

제 정 자 : 한국산업안전보건공단 이사장

이상위험도 분석기법

1. 목 적

이 지침은 공정위험성평가서를 작성하기 위한 이상위험도 분석기법에 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용대상

이상위험도 분석기법은 부품, 장치, 설비 및 시스템의 설계, 운전, 검사, 보수와 개선에 적용될 수 있다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음 각호와 같다.
 - (가) "이상위험도 분석 (FMECA, Failure modes, effects and criticality analysis)" 이라 함은 부품, 장치, 설비 및 시스템의 고장 또는 기능상실에 따른 원인과 영향을 분석하여 치명도에 따라 분류하고, 각각의 잠재된 고장형태에 따른 피해 결과를 분석하여 이에 대한 적절한 개선조치를 도출하는 절차를 말한다.
 - (나) "고장형태에 따른 영향분석 (FMEA, Failure modes and effects analysis)" 이라 함은 부품, 장치, 설비 및 시스템의 고장 또는 기능상실의 형태에 따른 원인과 영향을 체계적으로 분류하고 필요한 조치를 수립하는 절차를 말한다.
 - (다) "치명도 분석 (CA, Criticality analysis)"이라 함은 고장형태에 따른 영향을 분석한 후 중요한 고장에 대해 그 피해의 크기와 고장발생율을 이용하여 치명도를 분석하는 절차를 말한다.

P - 85 - 2021

(2) 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 동법시행령, 동법시행규칙, 산업안전보건기준에 관한규칙 및 노동부 고시에서 정한 바에 따른다.

4. 분석준비

4.1 분석팀의 구성

이상위험도 분석에 필요한 인원은 설비 또는 시스템의 크기와 복잡성에 비례하나 최소한 해당 설비 또는 시스템에 경험이 있는 다음과 같은 전문가로 구성하여야 한다.

- (1) 팀장
- (2) 공정운전 기술자
- (3) 공정설계 기술자
- (4) 계장설계 또는 계장운전 기술자
- (5) 정비 기술자
- (6) 안전관리 기술자

4.2 자료의 준비

이상위험도 분석을 실시하기 위하여 필요한 자료는 다음과 같다.

- (1) 공정설명서(화학반응, 에너지 및 물질수지 등)
- (2) 설계자료(장치 및 공정, 압력방출시스템, 안전시스템의 설계 및 설계 기준 등)
- (3) 제조 공정도면(공정흐름도, 공정배관계장도 등)
- (4) 물질안전보건자료
- (5) 안전운전지침서
- (6) 점검, 정비, 유지관리 지침서
- (7) 신뢰도 자료(부품의 신뢰도자료, 고장 및 사고기록 관련자료 등)
- (8) 기타 이상위험도 분석에 필요한 서류

P - 85 - 2021

4.3 이상위험도 분석단계

이상위험도 분석은 다음의 2단계로 수행되어야 한다.

(1) 제 1단계: 고장형태에 따른 영향분석 각각의 잠재된 고장형태에 따른 영향을 확인하여 체계적으로 분류한다.

(2) 제 2단계 : 치명도 분석

고장형태에 따른 영향분석에 따라 확인된 주요 고장에 대하여 피해와 고장발생율을 적용하여 치명도를 분석한다.

4.4 이상위험도 분석대상 시스템의 구성

분석대상 시스템 구성은 <별지그림 1>과 같이 시스템의 내부 또는 외부기능, 접속기능, 시스템의 제한조건 그리고 고장 형태를 포함한다.

4.5 전개도의 작성

시스템의 운전과 사용단계에서 외부와의 접속관계를 포함한 기능전개도를 작성하여야 한다. <별지그림 2>와 같은 기능전개도 작성시 기능출력표 <별표 1>, 기능전개의 순서 <별지그림 3> 및 신뢰성 전개도 <별지그림 4>를 참고한다.

5. 분석절차

5.1 일반사항

- (1) 이상위험도 분석은 설비의 부품으로부터 전체 시스템에 이르기까지 체계적으로 수행되어야 한다.
- (2) 이상위험도 분석기법은 고장 또는 사고발생시 취하여야 할 조치사항의 우선순위를 결정하여 설계시에 반영하여야 한다.

P - 85 - 2021

5.2 고장의 형태에 따른 영향분석

5.2.1 목적

고장의 형태에 따른 영향분석은 시스템 운전시 부품 및 장치의 발생가능한 각각의 고장형태를 분석하고 고장에 따른 영향 또는 결과를 분석하는데 있다.

5.2.2 분석방법

설계의 복잡성과 활용가능한 자료의 중요도에 따라 분석방법이 결정된다.

(1) 하드웨어 분석법

- (가) 각각의 하드웨어의 목록을 작성하여 발생가능한 고장 및 영향을 분석하는 방법을 말한다.
- (나) 하드웨어 품목을 도면과 설계자료를 이용하여 하위단계에서 상위단계 로 분석을 전개하여 전체 시스템을 분석한다.
- (다) 확인된 고장형태에 따라 피해의 크기 등급을 결정하고 설계자료를 참 고하여 필요한 개선 권고사항을 도출한다.

(2) 기능 분석법

- (가) 각각의 부품 및 시스템의 기능을 목록화 하고 기능을 수행하지 못하는 고장 및 영향을 분석하는 방법을 말한다.
- (나) 기능분석방법은 시스템이 복잡하여 하드웨어 품목으로 단계 설정이 어려워 각각의 부품 및 시스템의 기능을 이용하여 분석한다.
- (다) 피해의 크기 등급 설정 등의 분석방법은 하드웨어 분석방법과 동일 하다.

(3) 복합 분석법

(가) 하드웨어 분석방법과 기능 분석방법을 복합적으로 사용해서 분석하는 방법을 말한다.

5.2.3 고장의 형태에 따른 영향분석표 작성

고장의 형태에 따른 영향분석표는 다음의 내용이 포함되어야 하며 <별표 2>를 참조하여 작성한다.

- (1) 식별번호 및 품명 또는 기능명 분석하고자 하는 부품, 장치 또는 시스템의 식별번호 및 명칭을 기재한다.
- (2) 기능 기능 및 출력표를 참조하여 분석하고자 하는 부품, 장치 또는 시스템의 기능을 기재한다.
- (3) 고장형태 및 원인 분석대상품목의 기능을 고려하여 발생 가능한 모든 잠재적 고장을 작성 하며 고장형태는 <별표 3>을 참조한다.
- (4) 고장형태에 따른 영향의 분석 각각의 고장형태에 따른 영향을 최초 영향 그리고 최종 영향으로 나누어 기술한다.
- (5) 고장의 검지방법 고장발생시 고장을 검지할 수 있는 방법을 기재한다.
- (6) 조치방법 고장을 수리하거나 또는 위험관리를 위하여 필요한 권고 및 조치방법을 상세히 기재한다.
- (7) 피해의 크기 각각의 고장형태에 따른 피해의 크기를 <별표 4>를 참조하여 기재한다.

P - 85 - 2021

5.3 치명도 분석

5.3.1 목적

고장형태에 따른 영향분석에 의해 확인된 중요한 고장에 대한 치명도를 분석하여 고장을 사전에 예방하며, 고장을 피할 수 없는 경우에는 그 피해를 최소화하는 대책을 수립하는데 있다.

5.3.2 분석방법

부품의 구조 및 고장율 자료의 확보여부에 따라서 분석 방법이 선택되어야 한다. 고장율 데이터가 확보되지 않았을 경우에는 정성적 분석방법이 적합하다.

(1) 정성적 분석방법

특정 부품의 구조 및 고장율 데이터가 없을 때는 고장율을 고장빈도에 의하여 결정하는데 일반적으로 고장빈도는 다음과 같이 결정한다.

- (가) 등급 A 매우 높다 고장발생확률이 20% 이상
- (나) 등급 B 높다 고장발생확률이 10% 이상 20% 미만
- (다) 등급 C 보통이다.고장발생확률이 1% 이상 10% 미만
- (라) 등급 D 낮다. 고장발생확률이 1% 미만

(2) 정량적 분석방법

특정 부품의 구조 및 고장율 자료를 치명도분석표에 입력하여야 한다.

P - 85 - 2021

5.3.3 치명도분석표

치명도 분석시 <별표 5>를 참고하여 다음 내용을 포함하여야 한다.

- (1) 식별번호
- (2) 명칭
- (3) 기능
- (4) 고장형태 및 원인
- (5) 운전단계
- (6) 고장율
- (7) 고장파급확률
- (8) 고장형태비율
- (9) 부속품 고장율
- (10) 운전시간
- (11) 고장형태별 치명도
- (12) 시스템의 치명도
- (13) 위험등급

5.3.4 치명도 분석절차

- (1) 치명도 분석표를 작성할 때 아래 항목은 고장에 따른 영향분석표의 내용을 활용한다.
- (가) 식별번호
- (나) 명칭
- (다) 기능
- (라) 고장형태 및 원인
- (2) 고장형태별 고장율고장형태에 따른 고장율은 고장의 발생율을 기재한다.
- (3) 고장파급확률(β)
- (가) 고장에 의하여 고장영향을 파급시킬 확률을 기재한다.
- (나) β 값에 의한 상대적 고장파급확률은 <표 1>과 같다.

<표 1> 고장파급확률

확 률
β = 1.00
0.1 〈 β 〈1.00
0 〈β 〈0.10
0

(4) 고장형태 비율(a)

고장형태 비율은 특정 부품 또는 요소가 특정한 형태의 고장을 일으킬 확률을 말한다.

만일 특정 부품 또는 요소에 대한 잠재적 고장형태가 모두 기록된다면 a 값의 합계는 1이 된다.

(5) 부속품 고장율(λp)

부속품 고장율(λp)을 기재한다.

(6) 운전시간(t)

운전시간은 시간 또는 운전횟수로 기재한다.

(7) 고장형태별 치명도(Cm)는 고장파급 확률(β), 고장형태 비율(α), 부속품 고장율(λp), 운전시간(t)을 곱하여 구한다.

$$Cm = \beta \cdot \alpha \cdot \lambda p \cdot t$$

(8) 시스템의 치명도(Cr)

시스템의 특정한 고장형태는 시스템을 구성하는 부품의 고장형태에 따라 발생한다.

설비 전체 시스템의 치명도(Cr)는 부품의 고장형태별 치명도(Cm)의 합으로 표시한다.

(9) 위험등급

시스템의 고장발생 빈도와 치명도를 조합하여 위험등급을 결정하며 <별표 6>을 참고하여 작성한다.

6. 이상위험도 분석보고서

- (1) 이상위험도 분석보고서는 다음 사항을 포함하여야 한다.
 - (가) 분석 단계
 - (나) 분석결과의 요약
 - (다) 사용된 분석기법
 - (라) 분석에 사용된 자료출처
 - (마) 시스템의 정의 및 설명
 - (바) 이상위험분석에 사용된 표
 - (사) 부품별 고장형태, 영향 및 방지대책 등을 표기한 치명품목 일람표 (<별표 7> 참조)
- (2) 보고서 요약에는 이상위험 분석결과에 대한 분석자의 결론과 권고 및 조치사항을 반드시 포함하여야 한다.
- (3) 신뢰도가 중요한 영향을 미치는 부품의 목록을 보고서 요약에 포함시켜야 하며, 목록에 포함되는 항목은 다음과 같다.
 - (가) 식별번호 및 명칭
 - (나) 고장발생품 목록에 대하여 고장을 최소화 하기 위한 설계사양
 - (다) 하드웨어가 설계사양대로 제작되었는지 여부를 확인하는 정기검사
 - (라) 운전자가 고장을 검지할 수 있는 방법

< 별표1 >

기능 출력표(예)

1. 제 1 단계(시스템)

공기압축기

2. 제 2 단계(보조시스템)

전개도상 설계	기능・출력	설 계 치	중	요	도
전계조경 결계 	기장·물덕 	결제 시	상	중	하
#10 모터	압축기(#50) 윤활(#40) 및 냉각(#30) 시스템 동작	60마력, 3510 rpm	0		
#20 계장 및 모니터	온도 및 압력의 표시 자동정지신호 공기압 방출	설계자료 참조	0	0	0
#30 냉각 및 습기 분리	냉유, 건조공기 냉각된 기름	''		0	
#40 윤활	압축기의 윤활유	"		0	
#50 압축기	고압공기	306.1atm 199∼218℃			

3. 제 3 단계(부품)

전개도상 설계	기능・출력	설 계 치
# 21 압력계 21.1 21.2	공기압 표시 제1단 공기토출압 표시 제2단 공기토출압 표시	2.86atm 14.3atm

K	OS	НА	G	UIDE
Р	_	85	_	2021

< 별표2 >

고장형태에 따른 영향분석표(예)

시 스 턴		년 월 일
단 계		SHEET ——OF—
참고도면	<u> </u>	작 성 자
기 능	-	확 인 자

식별			고장	고장	고장	영향	고장	조치	피해의	
번호	품명	기능	형태 (별표3)	원인	최초영향	최종영향	검지 방법	방법	크기 (별표4)	비고

P - 85 - 2021

< 별표3 >

고장형태(예)

- 1. 기본고장형태
 - (1) 동작중의 고장
 - (2) 조기작동
 - (3) 규정된 시간에 작동하지 않는다.
 - (4) 규정된 시간에 정지하지 않는다.
- 2. 일반적 고장의 형태
 - (1) 구조적 고장(예:파괴)
 - (2) 물리적 고장(예:맞물림)
 - (3) 진동
 - (4) 정위치에 있지 않음.
 - (5) 밸브가 닫히지 않음.
 - (6) 밸브가 열리지 않음.
 - (7) 내부누출
 - (8) 외부누출
 - (9) 허용외 미끄러짐
 - (10) 반대방향으로 작동
 - (11) 오동작
 - (12) 오지시
 - (13) 작동불량
 - (14) 정지하지 않음.
 - (15) 시동되지 않음.
 - (16) 조기작동 또는 조작
 - (17) 작동(조작) 지연
 - (18) 입력 이상
 - (19) 출력 이상
 - (20) 전기적 단락
 - (21) 전기적 개방
 - (22) 전기누전
 - (23) 기타
- 3. 외부의 스트레스
- 4. 작업자 실수
- 5. 환경조건

< 별표4 >

피해의 크기 구분(예)

구 분	내용
(1) 치 명 적	사망, 다수 부상, 설비파손 10억원 이상, 설비 운전 정지 기간 10일 이상
(2) 보 통	부상 1명, 설비파손 1억원 이상 10억원 미만, 설비운전 정지기간 1일 이상 10일 미만
(3) 경 미	부상자 없음, 설비파손 1억원 미만, 설비운전 정지기간 1일 미만
(4) 운 전 상	안전설계, 운전성 향상을 위한 변경

< 별표5 >

치명도분석표(예)

시 스 템	 년 월 일	
단 계	 SHEET	—-OF
참고도면	 작 성 자	
기 능	 확 인 자	

식별 번호	명칭	기능	고장 형태 및 원인	운전 단계	고장율 고장율 자료원	고장 파급 확률 (β)	고장 형태 비율 (a)	부속 품고 장율 (λp)	운전 시간 (t)	고장형태별 치명도 Cm=β· α·λp·t	시스템의 치명도	위험 등급 (별표6)	

< 별표6 >

위험등급대조표(예)

위험 등급 대조표						
빈 도(고장율)	(1)	(2)	(3)			
피해크기	상	중	하-			
(1) 치 명 적	1	1	3			
(2) 보 통	2	2	4			
(3) 경 미	3	4	4			
(4) 운 전 상	5	5	5			

< 별표7 >

치명품목 일람표(예)

	가열 시스템								
품 명	고장형태	영 향	피해크기 (별표4)	방 지 대 책					
수동밸브 V-1 Ⅱ-1-1-1	폐쇄되어 고장	작동지연	3	발생확률이 적다. 시스템에 서는 미터측에 밸브 설치가 가능					
제어밸브 P/N 298V021	외부에 누출	기능정지, 인명 손실 가능	1	설치 및 보수작업서에서는 이와 같은 고장이 발생되지 않도록 전면적 점검실시					
안전밸브 V-2	폐쇄된 고장	기능상실	2	밸브를 수동으로 작동한다					
P/N 362V129	개방된 고장	기능상실	2	상 동					
	외부에 누출	기능상실, 인명손실	1	설치 및 보수작업서에서는 이와 같은 고장이 발생되지 않도록 전면적 점검실시					
	개방되지 않는다.	기능상실	2	발생확률이 적다					

< 별지 그림1 > 이상위험도 분석을 위한 시스템의 구성(예)

< 별지 그림 2 > 기능전개도(예)

순수(FRESH WATER)

냉각 및 수분분리

윤활

냉각 및 건조

오일

< 별지 그림 3 > 기능전개의 순서(예)

< 별지 그림 4 > 신뢰성 전개도(예)

P - 85 - 2002

지침 개정 이력

□ 개정일 : 2021. 12.

○ 개정자 : 안전보건공단 정용재

○ 개정사유 : 최신 양식에 부합하도록 지침 보완

○ 주요 개정내용

- 1. 목적 : 문구 수정

- 기타 자구 수정 등