Fuerzas externas en el enfoque Lagrangiano

1. Barra que pende de un carro

Obtenga las ecuaciones que describen la dinámica del sistema. El momento de inercia para una barra de masa m y longitud lpara una rotación desde uno de sus extremos es $\frac{m}{12}l^2$.

a) Las fuerzas no conservativas que actúan sobre el sistema son el forzado externo $\vec{F}(t)$, y la que hace ejerce amortiguador de constante b en función de la velocidad del carro, $-b\dot{x}\hat{x}$. Estas deben descomponerse en fuerzas generalizadas, pero primero obtenga las ecuaciones de Euler-Lagrange que correspondenderían a la dinámica si estas fuerzas no existieran.

c) Calcule las ecuaciones de Euler-Lagrange con las fuerzas generalizadas.

2. Péndulo de torsión desbalanceado

Dos pesos de masa idéntica m están unidos al extremo de brazos de masa despreciable. Uno de los brazos describe una inclinación fija con la horizontal de ϕ . Descartamos la fricción con los rodamientos que mantiene vertical el eje de donde parten los brazos. Este podría rotar libremente a cualquier ángulo θ si no fuera por un resorte de torsión de constante elástica K_t que opone un torque buscando alinear la pieza con el plano x-z cada vez que $\theta \neq 0$. Por tanto, se lo considera en la ecuación de Euler-Lagrange como una fuente de energía potencial elástica. Pero, adicionalmente, se ejerce sobre el sistema otro torque, que es externo y es además variable en el tiempo: $\vec{\tau} = \tau(t)\hat{z}$.

Pregunta conceptual: ¿Cuáles es la unidad de la fuerza generalizada?

b)
$$\frac{N}{m}$$
 c) N m

Despeje la aceleración angular de la ecuación de Euler-Lagrange. Resultado: $\ddot{\theta} = \frac{K_T \theta + \tau}{L^2 m \left(\sin^2 \left(\phi \right) - 2 \right)}$

3. Barriles soldados

Dos barriles cilíndricos homogéneos de respectivas masas y radios $m_1, m_2, \, R_1$ y R_2 están soldados. Este armado puede rotar en torno a su eje común que no le presenta fricción. Una cuerda de masa despreciable envuelve al cilindro externo y sus extremos conectan un resorte de constante elástica k y un amortiguador. Tal amortiguador ejerce una fuerza de resistencia al movimiento lineal con la velocidad,

$$\vec{F}_{\text{amortiguador}} = -b\dot{\vec{r}}.$$

Una correa de masa despreciable envuelve al cilindro de menor radio y de ella pende vertical un bloque de masa m_o .

Despeje la aceleración angular de la ecuación de la dinámica de Euler-

Lagrange. Resultado:
$$\ddot{\theta} = \frac{2\left(R_1gm_0 - R_2^2b\dot{\theta} - R_2^2k\theta\right)}{2R_1^2m_0 + R_1^2m_1 + R_2^2m_2}$$

Mecánica Analítica Computacional

4. Plano inclinado oscilante

Sobre la superficie inclinada en θ_0 del carro de masa m_0 rueda sin deslizar un disco de radio R y masa m. Este no se sale de la superficie a pesar de que al centro del mismo se aplica una fuerza $\vec{F} = F(t)\hat{x}$ gracias a un resorte de constante elástica K_1 que une este centro con el carro. Limita el alcance de este un resorte de constante elástica K_2 fijado a la pared y un amortiguador proporcional a la velocidad de constante proporcional b. Ambos resortes tienen originalmente su longitud de equilibrio l_{10} y l_{20} . Se descarta la fricción del carro con el suelo. Todo el sistema está sometido a la aceleración gravitatoria $\vec{g} = -g\hat{y}$.

Pregunta conceptual: ¿Qué es la fuerza generalizada asociada al desplazamiento virtual δx debida a \vec{F} ?

a)
$$F(t)\cos(\theta)$$

b)
$$F(t)$$

c)
$$F(t)\delta x$$

Obtenga la dinámica a partir de las ecuaciones de Euler-Lagrange, esto es, haga explícita las aceleraciones de ambos cuerpos. Resultado:

$$\ddot{x} = \frac{2K_1X_1\cos(\theta_0) - 3K_2x - 3b\dot{x} - gm\sin(2\theta_0) - F\cos(2\theta_0) + 2F}{2m\sin^2(\theta_0) + m + 3m_0}$$

$$\ddot{X}_{1} = \frac{2\left(-K_{1}mX_{1} - K_{1}m_{0}X_{1} + K_{2}mx\cos\left(\theta_{0}\right) + bm\cos\left(\theta_{0}\right)\dot{x} + gm^{2}\sin\left(\theta_{0}\right) + gmm_{0}\sin\left(\theta_{0}\right) + m_{0}F\cos\left(\theta_{0}\right)\right)}{m\left(2m\sin^{2}\left(\theta_{0}\right) + m + 3m_{0}\right)}$$