Juin	2012
GROUPE	;

EPITA	/	InfoSup
-------	---	---------

NOM:

Partiel Architecture des Systèmes

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. **Réponses exclusivement sur le sujet**

Exercice 1. Opérations et Conversion (2 points)

Effectuer les opérations suivantes en binaire et convertir le résultat en décimal selon qu'on travaille en nombres signés (sur 8 bits y compris le bit de signe) ou non (toujours sur 8 bits). S'il y a erreur de débordement, écrire "erreur" dans les cases "valeur décimale" à la place du résultat.

	Résultat binaire	valeur décimale		
		non signés	Signés	
00001101 - 00011110				
10010110 - 00011010				

Exercice 2. Simplification de fonction (1 points)

Simplifier au maximum l'équation suivante. (Détailler les étapes, le résultat seul ne sera pas accepté.)

$S = abc + ab\overline{c} + \overline{a}b\overline{c} + \overline{a}bc =$		

Exercice 3. Problème de logique combinatoire (6 points)

On veut réaliser un circuit qui multiplie par **2** un nombre N (= DCBA). Le résultat doit être obtenu <u>directement en code BCD</u> et donc sur 2 chiffres (H'G'F'E' pour le chiffre des dizaines et D'C'B'A' pour celui des unités, le poids fort étant toujours à gauche).

Compléter les tables de vérité et les tableaux de Karnaugh correspondant pour donner les équations simplifiées de chaque sortie (les "bulles" doivent être clairement repérées). 3 sorties sont évidentes et ne nécessitent pas de faire des tableaux de Karnaugh.

						Dizaines				uni	ités	
N	D	С	В	A	H,	G'	F'	E'	D,	C,	В'	A'
0	0	0	0	0					1			
1	0	0	0	1								
2	0	0	1	0								
3	0	0	1	1								
4	0	1	. 0	0								
5	0	1	0	1								
6	0	1	1	0								
7	0	1	1	1								
8	1	0	0	0								
9	1	0	0	1								
10	1	0	1	0								
11	1	0	1	1								
12	1	1	0	0								
13	1	1	0	1								
14	1	1	1	0								
15	1	1	1	1								

H'	G,	A'

	F'			В	À	
			00	01	11	10
1		00				
	DC	01				
		11				
		10				

E	,			В	A	
		00	01	11	10	
		00				
D C	01					
	11					
	10					

F' =

E'	=

D'	ВА				
		00	01	11	10
D C	00				
	01				
	11				
	10				

C,			В	Α	
DС		00	01	11	10
	00 01				
	01				
	11				
	10				

D' =

C' =

B'			В	Α	
		00	01	11	10
	00				
D C	01				
	11				
	10				

B'=

Exercice 4. Logique Séquentielle (3 points)

 On utilise une bascule RS synchrone à marche prioritaire.

Compléter les chronogrammes de la sortie Q (jusqu'après le dernier front descendant) selon que la bascule est synchronisée sur :

b)impulsion positive

(On admettra : Q = 0 à t = 0)

Rq: Sur un de ces chronogrammes, il existe un intervalle de temps où l'état de Q est indéterminé. Le faire apparaître clairement en hachurant la zone correspondante sur le bon chrono.

2. Compléter le chronogramme des sorties Q_A et Q_B du circuit suivant jusqu'à retrouver l'état initial (On admettra que $Q_A = Q_B = 0$ à t = 0)

Exercice 5. Comparateur et affichage (7 points)

a. On veut construire un circuit qui compare 2 bits

Il devra comporter : 2 entrées : A et B (bits à comparer)

3 sorties : S(upérieur), E(galité) et I(nférieur)

Ce comparateur fonctionne de la manière suivante :

• si A > B ⇒ S = 1; E = I = 0

• si A = B ⇒ E = 1; S = I = 0

• si A < B ⇒ I = 1; S = E = 0

Déterminer les équations simplifiées de 5, E et I.

- b. On veut afficher le résultat de la comparaison précédente avec un afficheur 7 segments, de façon à obtenir :
 - I si A < B
 - 5 si A > B
 - E si A = B

Les commandes >, = et < sont délivrées par le comparateur. Le schéma de l'afficheur est donné ci-dessous.

Attention: pour allumer un segment, il faut mettre l'entrée correspondante à 0.

Par exemple, pour afficher 2, il faut que a = b = g = e = d = 0 et f = c = 1

Rq: Le I doit d'afficher sur les segments les plus à droite (c'est-à-dire les segments b et c)

Complétez la table de vérité, les tableaux de Karnaugh et donnez les équations simplifiées du transcodeur permettant cet affichage.

Rq : Les "bulles" doivent apparaître clairement sur les tableaux de Karnaugh.

	I	S	E	a	b	С	ď	е	f	g
-										

a		SE			
		00	01	11	10
т т	0				
1	1				

e		S E			
		00	01	11	10
T	0				
1	1				

Ъ		S E			
		00	01	11	10
т т	0				
1	1				

11

10

b =

С		SE			
		00	01	11	10
ī	0				
1	1				

g			S	
		00	01	
	_			Г

c =

d		SE			
		00	01	11	10
т	0				
1	_ 1				

g =

e =

f =