Linear Algebra Standards

Module E: How can we solve systems of linear equations?	
□ □ E1.	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.
□ □ E2.	Row reduction. I can put a matrix in reduced row echelon form.
□ □ E3.	Systems of linear equations. I can compute the solution set for a system of linear equations.
Module	V: What is a vector space?
□ □ V 1.	Vector spaces. I can explain why a given set with defined addition and scalar multiplication does satisfy a given vector space property, but nonetheless isn't a vector space.
\square \square $\mathbf{V2}$.	Linear combinations. I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
□ □ V3.	Spanning sets. I can determine if a set of Euclidean vectors spans \mathbb{R}^n .
\square \square V4.	Subspaces. I can determine if a subset of \mathbb{R}^n is a subspace or not.
	Linear independence. I can determine if a set of Euclidean vectors is linearly dependent or independent. Basis verification. I can determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .
□ □ V7.	Basis computation. I can compute a basis for the subspace spanned by a given set of Euclidean vectors.
	Dimension. I can compute the dimension of a subspace of \mathbb{R}^n .
□ □ V 9.	Polynomial basis computation. I can compute a basis for the subspace spanned by a given set of polynomials or matrices.
□ V10.	Basis of solution space. I can find a basis for the solution set of a homogeneous system of equations.
Module A: How can we understand linear maps algebraically?	
□ □ A1 .	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not.
□ □ A2 .	Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
□ □ A3.	Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map.
□ □ A4.	Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective.
Module	M: What algebraic structure do matrices have?
\square \square M1.	Matrix Multiplication. I can multiply matrices.
$\square \square \mathbf{M2}$	Invertible Matrices. I can determine if a square matrix is invertible or not.
□ □ M3.	Matrix inverses. I can compute the inverse matrix of an invertible matrix.
Module G: How can we understand linear maps geometrically?	
□ □ G 1.	Row operations. I can describe how a row operation affects the determinant of a matrix, including composing two row operations.
$\square \square \mathbf{G2}.$	Determinants. I can compute the determinant of a 4×4 matrix.
□ □ G3 .	Eigenvalues. I can find the eigenvalues of a 2×2 matrix.
\square \square G4.	Eigenvectors. I can find a basis for the eigenspace of a 4×4 matrix associated with a given eigenvalue.