

[01]

TD n°4: Mathématiques

SG - S1 - 2023/2024 - Pr. Hamza El Mahjour

Calcul Intégral

Exercice 1 Primitives directes

Intégrer les fonctions suivantes sur le domaine demandé en trouvant la bonne primitive.

(a)
$$\int_{0}^{2} 4x^{3} dx$$

(a)
$$\int_0^2 4x^3 dx$$
 (b) $\int_0^0 4\cos(x) dx$ (c) $\int_0^1 \frac{1}{x+1} dx$

(c)
$$\int_0^1 \frac{1}{x+1} dx$$

(d) $\int_0^{-1} \frac{1}{1+z^2} dz$ (e) $\int_{-1}^1 e^{-y} dy$ (f) $\int_1^3 -\frac{3}{x^2} + x dx$

Exercice 2 Primitives et règles de dérivation

En se rappelant des règles de dérivation usuels : $(f/g) = (f'g - fg')/g^2$ ou bien $(g \circ f)' = f' \times g' \circ f$ etc., trouver la bonne primitive

(a)
$$\int 3x^2 \cos(x^3 + 1) dx$$
 (b) $\int \frac{2x \exp(-x) + \exp(-x)x^2}{\exp(-2x)} dx$ (c) $\int \frac{1}{t^2} \frac{t - 1}{\ln(t) + 1/t} dt$

Exercice 3 Intégration par parties

Calculer les intégrales ou primitives suivantes.

(a)
$$\int_{\pi/2}^{0} x^2 \cos(x)$$
 (b) $\int_{1}^{2} \ln(z) dz$ (c) $\int (t^3 - t) e^{2t} dt$ (d) $\int \sin^2(t) dt$

Exercice 4 Aires et intersections

On considère trois fonctions : $f(x) = x^3 - 2x + \frac{3}{2}$, $g(x) = \frac{3x^2}{4}$ et $h(x) = \frac{1}{x} - \frac{1}{2}$. Leurs courbes sur une partie de \mathbb{R} sont représentées ci-dessous. Sachant que A(0,75;0,42), B(0,9;0,6) et C(1;0,5). Calculer l'aire de la région colorée en orange.

1

Indication ▼ [04]

Indication pour l'exercice 4 \blacktriangle

- Pensez au différences entres les fonctions ainsi que le découpage en deux morceaux.