Fazele motoarelor sistemelor bazate pe reguli Algoritmul RETE (Forgy, 1982)

Cursurile 9-10

Fazele unui motor de Sisteme Expert

Fapte și reguli

```
f1: [alpha a 3 a]
f2: [alpha a 4 a]
f3: [alpha a 3 b]
f4: [beta 3 a 3]
f5: [beta 3 a 4]
f6: [beta 4 a 4]
f7: [gamma a 3]
f8: [gamma b 4]
```

```
Regula R1:
dacă [alpha X Y X]
[beta Y X Y]
[gamma X Y]
atunci șterge [gamma X Y]
adaugă [gamma X 4]
```

```
Regula R2:
dacă [alpha Z U Z]
[beta U Z U]
[gamma Z 4]
atunci ...
```

Potriviri simple

Fapte

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

f8: [gamma b 4]

Şabloane

Regula R1:

dacă [alpha X Y X]

[beta Y X Y]

[gamma X Y]

atunci

Potriviri simple:

f1; $X \rightarrow a, Y \rightarrow 3$

f2; $X \rightarrow a, Y \rightarrow 4$

Potriviri simple

Fapte

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

f8: [gamma b 4]

Şabloane

Regula R1:

dacă [alpha X Y X]

[beta Y X Y]

[gamma X Y]

atunci

Potriviri simple:

f4; Y \rightarrow 3, X \rightarrow a

f6; $Y \rightarrow 4$, $X \rightarrow a$

Potriviri simple

Fapte

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

f8: [gamma b 4]

Şabloane

Regula R1:

dacă [alpha X Y X]

[beta Y X Y]

[gamma X Y]

atunci

Potriviri simple:

f7; $X \rightarrow a, Y \rightarrow 3$

f8; $X \rightarrow b$, $Y \rightarrow 4$

Potriviri parțiale

Fapte

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

f8: [gamma b 4]

Şabloane

Regula R1:

dacă [alpha X Y X]

[beta Y X Y]

[gamma X Y]

atunci

Potriviri parțiale:

 $f1,f4; X \rightarrow a, Y \rightarrow 3$

 $f2,f6; X \rightarrow a, Y \rightarrow 4$

Potriviri totale

Fapte

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

f8: [gamma b 4]

Şabloane

Regula R1:

dacă [alpha X Y X]

[beta Y X Y]

[gamma X Y]

atunci

Potriviri parțiale:

 $f1,f4,f7; X \rightarrow a, Y \rightarrow 3$

Activarea:

 $\langle R1; f1, f4, f7; X \rightarrow a, Y \rightarrow 3 \rangle$

Rețeaua Rete

Regula R1:

dacă [alpha X Y X]

[beta Y X Y]

[gamma X Y]

atunci ...

Regula R2:

dacă [alpha Z U Z]

[beta U Z U]

[gamma Z 4]

atunci ...

Corelații inter-șabloane pentru R1

Propagarea modificărilor

- Fiecare nod are atașată o memorie a potrivirilor
 - Nodul rădăcină
 - Modificare plus: adăugarea unui fapt <index-fapt, +>
 - Modificare minus: ștergerea unui fapt <index-fapt, ->
 - Celelalte noduri
 - Index fapte și legările variabilelor

Rețeaua după $< f_1, +>, < f_2, +>, < f_3, +>$

fl: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

Rețeaua după $< f_4$, +>, $< f_5$, +>, $< f_6$, +>

fl: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

Propagarea $\langle f_4, + \rangle$, $\langle f_5, + \rangle$, $\langle f_6, + \rangle$ în rețeaua inter-șabloane

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

Rețeaua după <f $_7$, +>, <f $_8$, +>

Propagarea <f₇, +>, <f₈, +> în rețeaua inter-șabloane

R1 activată => se execută <f₇, ->

f1: [alpha a 3 a]

f2: [alpha a 4 a]

f3: [alpha a 3 b]

f4: [beta 3 a 3]

f5: [beta 3 a 4]

f6: [beta 4 a 4]

f7: [gamma a 3]

R1 activată => se execută $< f_9$, +> cu f_9 = [gamma a 4]

Importanța ordinii șabloanelor

La nivelul rețelei inter-șablon:

- primele poziții din regulă corespund nodurilor aflate sus
- ultimele poziții din regulă corespund nodurilor aflate jos
- pentru fiecare nod se verifică memoria atașată intrării stângi în combinație cu cea atașată intrării drepte => volumul calculelor e proporțional cu produsul dimensiunilor celor 2 memorii

=> Recomandare:

șabloanele cărora le corespund cele mai puține apariții de fapte în bază trebuie să apară pe primele poziții în părțile stângi ale regulilor.

Importanța ordinii șabloanelor

• Recomandări:

- şabloanele cărora le corespund cele mai puţine apariţii de fapte în bază trebuie să apară pe primele poziţii în părţile stîngi ale regulilor.
- şabloanele mai specifice trebuie să le preceadă pe cele mai generale.
- şabloanele corespunzătoare faptelor celor mai volatile (retrase şi asertate des) trebuie plasate la urmă.
- nu trebuie exagerată folosirea variabilelor multicîmp şi cu precădere a celor anonime