Notes of "Determinant: Construction and Basic Properties"

Jinxin Wang

1 Geometric Background

2 Combination-Analytic Method

Definition 1 (Determinant). The determinant of a matrix A of order n is a number decided by the matrix that is

$$\det A = \sum_{\sigma \in S_n} \epsilon_{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \tag{1}$$

Remark 1. For a matrix of order n, its determinant is a sum with n! terms, since S_n has n! elements.

3 Basic Properties of Determinants

For the convenience of description, some conventions of notations:

- The *i*-th row of a matrix A is denoted by $A_{(i)}$.
- The j-th column of a matrix A is denoted by $A^{(j)}$.
- A matrix of order n can be represented as a column of row vectors: $A = [A_{(1)}, A_{(2)}, \dots, A_{(n)}]$
- A matrix of order n can be represented as a row of column vectors: $A = (A^{(1)}, A^{(2)}, \dots, A^{(n)})$

According to the definition of a determinant, det is a mapping from a square matrix A to a number |A|. Our mission is to study how the mapping changes when we change rows or columns of a matrix.

Definition 2 (多重线性函数).

Definition 3 (斜对称函数).

Theorem 1 (Determinants of a Square Matrix and its Transpose).

$$\det A = \det A^T$$

证明. Suppose $A = (a_{ij})_{n \times n}$ and $A^T = (a'_{ij})_{n \times n}$, then $a_{ij} = a'_{ji}$.

$$\det A = \sum_{\sigma \in S_n} \epsilon_{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

If we rearrange the order of factors in each term of det A by its column index, then

$$\det A = \sum_{\sigma \in S_n} \epsilon_{\sigma} a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \cdots a_{\sigma^{-1}(n)n}$$

Recall that $\epsilon_{\sigma} = \epsilon_{\sigma^{-1}}$. Besides, since $S_n \to S_n : \sigma \mapsto \sigma^{-1}$ is a bijection,

$$\{\sigma \mid \sigma \in S_n\} = \{\sigma^{-1} \mid \sigma \in S_n\}$$

Therefore,

$$\det A = \sum_{\sigma \in S_n} \epsilon_{\sigma^{-1}} a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \cdots a_{\sigma^{-1}(n)n}$$

$$= \sum_{\sigma \in S_n} \epsilon_{\sigma^{-1}} a'_{1\sigma^{-1}(1)} a'_{2\sigma^{-1}(2)} \cdots a'_{n\sigma^{-1}(n)}$$

$$= \sum_{\sigma^{-1} \in S_n} \epsilon_{\sigma^{-1}} a'_{1\sigma^{-1}(1)} a'_{2\sigma^{-1}(2)} \cdots a'_{n\sigma^{-1}(n)}$$

$$= \det A^T$$

Remark 2. The above property of determinants shows a kind of symmetry between the rows and columns of a determinant. More specifically, if there is a property of determinant with regards of rows, it also holds for columns, and vice versa.

Remark 3. The symmetry between rows and columns of a determinant is sometimes used to calculate the value of the determinant.

Theorem 2 (行列式的多重线性和反对称性). The function defined on the set $M_n(\mathbb{R})$ det : $A \mapsto \det A$ has the following properties:

D1 det is skew-symmetric with regards of the rows of a square matrix.

D2 det is multilinear with regards of the rows of a square matrix.

D3 det E = 1

证明.

The function $\det : A \mapsto \det A$ has some more properties that can be derived from the above theorem, but we want to show that they holds for any function $D : M_n(\mathbb{R}) \to \mathbb{R}$ that is skew-symmetric and multilinear with regards of rows of a square matrix (in other words, satisfying the above property **D1** and **D2**).