Lecture 13. Support Vector Machines

COMP90051 Statistical Machine Learning

Semester 1, 2021 Trevor Cohn

This lecture

- Support vector machines (SVMs) as maximummargin classifiers
- The hard-margin SVM objective
- SVM objective as regularised loss function
- The soft-margin SVM

Maximum-Margin Classifier: Motivation

A new twist to binary linear classification

Beginning: linear SVMs

- In the first part, we will consider a basic setup of SVMs, something called linear hard-margin SVM.
- Keep in mind: SVMs are more powerful than they may initially appear
- For now, we model the data as linearly separable, i.e., there exists a hyperplane perfectly separating the classes

SVM is a linear binary classifier

Predict class A if $s \ge 0$ Predict class B if s < 0where $s = b + \sum_{i=1}^{m} x_i w_i$

SVM is a <u>linear classifier</u>: *s* is a linear function of inputs, and the separating boundary is linear

SVM vs. perceptron, log. regression

- Exact same formulation as perceptron
- Same formulation for log-odds as log. regression
- How SVM is different: way parameters are learned.
 - Perceptron: min perceptron loss as studied earlier
 - * Log. reg.: min binary cross-entropy loss
 - SVMs: different criterion for choosing parameters

Choosing separation boundary

- An SVM is a linear binary classifier: choosing parameters means choosing a separating boundary (hyperplane)
- In 2D:

Which boundary would you choose?

A (Green)

B (Purple)

C (Orange)

Which boundary should we use?

 Provided the dataset is linearly separable, the perceptron will find a boundary that separates classes perfectly. This can be any such boundary, e.g., A or B

For the perceptron, they are equally good, because the perceptron loss is 0.

Which boundary should we use?

 Provided the dataset is linearly separable, the perceptron will find a boundary that separates classes perfectly. This can be any such boundary, e.g., A or B

But... line A seems more reliable. When new data point arrives, line B is likely to misclassify it

Aiming for the safest boundary

 Intuitively, the most reliable boundary would be the one that is between the classes and as far away from both classes as possible

SVM objective captures this observation

SVMs aim to find the separation boundary that maximises the margin between the classes

Maximum-margin classifier

- An SVM is a linear binary classifier. SVM training aims to find the separating boundary that maximises margin
- For this reason, SVMs a.k.a maximum-margin classifiers
- The training data is fixed, so the margin is defined by the location and orientation of the separating boundary
- Our next step is to formalise our objective by expressing margin width as a function of parameters (and data)

Maximum-Margin Classifier: Derivation

A geometric derivation of the SVM's objective

Margin width

 While the margin can be thought as the space between two dashed lines, it is more convenient to define margin width as the distance between the separating boundary and the nearest data point(s)

Point(s) on margin boundaries called *support vectors*

We want to maximise the distance to support vectors

Distance from point to hyperplane

- Consider an arbitrary point X (from either of the classes, and not necessarily the closest one to the boundary), and let X_p denote the projection of X onto the separating boundary
- Now, let r be a vector $X_p X$. Note that r is perpendicular to the boundary, and also that ||r|| is the required distance

Distance from point to hyperplane

• Distance is $\|r\| = -\frac{w'x+b}{\|w\|}$, or more generally $\|r\| = \pm \frac{w'x+b}{\|w\|}$

$$X_{p} = X + \frac{\|r\| \frac{V}{\|w\|}}{\|w\|}$$

$$W = X_{p} + b = 0$$

$$W = X_{p} + \frac{\|r\| \frac{V}{\|w\|}}{\|w\|}$$

$$W = W + \frac{\|r\| \frac{V}{\|w\|}}{\|w\|}$$

$$\||v\|| = -\frac{(w'Y + b)}{\|w\|}$$

$$0$$

Encoding the side using labels

- Training data is a collection $\{x_i, y_i\}$, i=1, ..., n, where each x_i is an m-dimensional instance and y_i is the corresponding binary label encoded as -1 or 1
- Given a **perfect** separation boundary, y_i will encode the side of the boundary each x_i is on
- Thus the distance from the i-th point to a perfect boundary can be encoded as

$$\|\boldsymbol{r}_i\| = \frac{y_i(\boldsymbol{w}'\boldsymbol{x}_i + b)}{\|\boldsymbol{w}\|}$$

Maximum margin objective

- The distance from the i-th point to a perfect boundary can be encoded as $\| {m r}_i \| = \frac{y_i(w'x_i+b)}{\|w\|}$
- The margin width is the distance to the closest point
- Thus SVMs aim to maximise $\left(\min_{i=1,\dots,n} \frac{y_i(w'x_i+b)}{\|w\|}\right)$ as a function of w and b

Do you see any problems with this objective?

Constraining the objective

- SVMs aim to maximise $\left(\min_{i=1,...,n} \frac{y_i(w'x_i+b)}{\|w\|}\right)$
- Introduce (arbitrary) extra requirement $\frac{y_{i^*}(w'x_{i^*}+b)}{\|w\|} = \frac{1}{\|w\|}$
 - * i* denotes index of a closest example to boundary
- SVM aims to find

$$\underset{w}{\operatorname{argmin}} \|w\|$$
s.t. $y_i(w'x_i + b) \ge 1$ for $i = 1, ..., n$

Hard margin SVM objective

We now have a major result: SVMs aim to find $\operatorname{argmin} \| \boldsymbol{w} \|$

s.t.
$$y_i(w'x_i + b) \ge 1$$
 for $i = 1, ..., n$

Note 1: parameter b is optimised indirectly by influencing constraints

Note 2: all points are enforced to be on or outside the margin

Therefore, this version of SVM is called *hard-margin SVM*

Recap: hard-margin SVM

- SVM is a linear binary classifier
- Max margin: aim for boundary robust to noise
- Trick to resolve ambiguity $\frac{y_{i^*}(w'x_{i^*}+b)}{\|w\|} = \frac{1}{\|w\|}$
- Hard-margin program:

$$\underset{w,b}{\operatorname{argmin}} \| \mathbf{w} \| \text{ s.t. } y_i(\mathbf{w}' \mathbf{x}_i + b) \ge 1 \text{ for } i = 1, ..., n$$

SVM Objective as Regularised Loss

Relating the resulting objective function to that of other machine learning methods

Previously in COMP90051 ...

- Choose/design a model
- 2. Choose/design loss function
- Find parameter values that minimise discrepancy on training data

How do SVMs fit this pattern?

SVM as Regularised ERM

Recall ridge regression objective

minimise
$$(\sum_{i=1}^{n} (y_i - w'x_i)^2 + \lambda ||w||^2)$$

Hard margin SVM objective

training error

data-dependent $\|w\|$ data-independent regularisation term

s.t.
$$y_i(w'x_i + b) \ge 1$$
 for $i = 1, ..., n$

The constraints can be interpreted as loss

$$l_{\infty} = \begin{cases} 0 & 1 - y_i(\mathbf{w}'\mathbf{x}_i + b) \le 0 \\ \infty & 1 - y_i(\mathbf{w}'\mathbf{x}_i + b) > 0 \end{cases}$$

Hard margin SVM loss

The constraints can be interpreted as loss

$$l_{\infty} = \begin{cases} 0 & 1 - y_i(\mathbf{w}'\mathbf{x}_i + b) \le 0 \\ \infty & 1 - y_i(\mathbf{w}'\mathbf{x}_i + b) > 0 \end{cases}$$

- In other words, for each point:
 - * If it's on the right side of the boundary and at least $\frac{1}{\|w\|}$ units away from the boundary, we're OK, the loss is 0
 - If the point is on the wrong side, or too close to the boundary, we immediately give infinite loss thus prohibiting such a solution altogether

Soft-Margin SVMs

Addressing linear inseparability

When data is not linearly separable

- Hard-margin loss is too stringent (hard!)
- Real data is unlikely to be linearly separable
- If the data is not separable, hard-margin SVMs are in trouble

SVMs offer 3 approaches to address this problem:

- Still use hard-margin SVM, but transform the data (next lecture)
- Relax the constraints (next slide)
- 3. The combination of 1 and 2 arphi

Soft-margin SVM

 Relax constraints to allow points to be inside the margin or even on the wrong side of the boundary

However, we penalise boundaries by the extent of "violation"

In the figure, the objective penalty will take into account the orange distances

Hinge loss: soft-margin SVM loss

Hard-margin SVM loss

$$l_{\infty} = \begin{cases} 0 & 1 - y(\mathbf{w}'\mathbf{x} + b) \le 0\\ \infty & otherwise \end{cases}$$

Soft-margin SVM loss (hinge loss)

$$1 - y(\mathbf{w}'\mathbf{x} + b) \le 0$$

$$otherwise$$

perceptron loss

Soft-margin SVM objective

Soft-margin SVM objective

$$\operatorname{argmin}_{\boldsymbol{w},b} \left(\sum_{i=1}^{n} l_h(\boldsymbol{x}_i, y_i, \boldsymbol{w}, b) + \lambda \|\boldsymbol{w}\|^2 \right)$$

- Reminiscent of ridge regression
- * Hinge loss $l_h = \max(0.1 y_i(\mathbf{w}'\mathbf{x}_i + b))$
- We are going to re-formulate this objective to make it more amenable to analysis

Re-formulating soft-margin objective

Define slack variables as an upper bound on loss

$$\xi_i \ge l_h = \max(0.1 - y_i(\mathbf{w}'\mathbf{x}_i + b))$$

or equivalently
$$\xi_i \geq 1 - y_i(\mathbf{w}'\mathbf{x}_i + b)$$
 and $\xi_i \geq 0$

Re-write the soft-margin SVM objective as:

$$\underset{\boldsymbol{w},b,\boldsymbol{\xi}}{\operatorname{argmin}} \left(\frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \xi_i \right)$$

s.t.
$$\xi_i \ge 1 - y_i(\mathbf{w}'\mathbf{x}_i + b)$$
 for $i = 1, ..., n$ $\xi_i \ge 0$ for $i = 1, ..., n$

Side-by-side: Two variations of SVM

Hard-margin SVM objective*:

$$\underset{\pmb{w},b}{\operatorname{argmin}} \frac{1}{2} \|\pmb{w}\|^2$$
 s.t. $y_i(\pmb{w}'\pmb{x}_i+b) \geq 1$ for $i=1,\ldots,n$

Soft-margin SVM objective:

$$\underset{\boldsymbol{w},b,\boldsymbol{\xi}}{\operatorname{argmin}} \left(\frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \xi_i \right)$$
s.t. $y_i(\boldsymbol{w}'\boldsymbol{x}_i + b) \ge 1 - \xi_i$ for $i = 1, ..., n$

$$\xi_i \ge 0 \text{ for } i = 1, ..., n$$

• In the second case, the constraints are relaxed ("softened") by allowing violations by ξ_i . Hence the name "soft margin"

^{*}Changed ||w|| to $0.5||w||^2$ - monotonic increasing transform. Modified objective yields same solution.

This lecture

- Support vector machines (SVMs) as maximum margin classifiers
- Deriving hard margin SVM objective
- SVM as regularised ERM
- Soft-margin SVM