

Bulanık Mantık

(MÜH 425 – Bilgisayar Müh. Böl.)

Prof.Dr. Yaşar BECERİKLİ

Hafta-11 Bulanık Çıkartım-Örnek2

<u>iÇERİK</u>

- Teorinin mucidi: Lutfi Asker Zadeh
- Bulanık Mantığa Giriş
- Bulanık Kümeler
- Temel İşlemler
- Kural Tabanı
- Bulandırma, Durulama
- Üyelik Fonksiyonları
- Çıkartım Sistemleri
- FAM tablosu,
- Uygulamalar

ÖRNEK 2

bir lokanta zinciri**Servis kalitesi**ve**Yemek**

kalitesinegöre müşterinin

verebileceği*bahşişmiktarı*için bir Öneri Sistemi geliştirmeye karar verdi.

Müşteri memnuniyeti geri bildirimleri değerlendirildiğinde Servis kalitesi için Kötü, İyi, Mükemmel; Yemek kalitesi için de Berbat ve Lezzetli olmak üzere gruplandığıbelirlenmiştir.

Bu bilgilerden faydalanarak BahşişMiktarıÖnerisi için en uygun metot olarak Bulanık Mantık kullanılmıştır:

Verilenler ve Örnek GirişDeğerleri :

Girişdeğişkenlerimiz 2 tane :Servis Kalitesi (Kalite Puanı) = 7.83 (10 üzerinden değerlendirme puanı) Yemek Kalitesi (Kalite Puanı) = 7.32 (10 üzerinden değerlendirme puanı)

Çıkışdeğişkenimiz 1 tane :BahşişMiktarı(£)

= { Kötü,İyi, Mükemmel } Bulanık Kümeler

:Fuzzy Set Servis
Fuzzy SetYemek = { Berbat, Lezzetli } = { Düşük, Orta, Yüksek } Fuzzy Set_{Bahşiş}

SORU: Servis kalite puanı7.83 ve Yemek kalitesi puanı7.32 ise Bahşişmiktarıne olmalıdır?

Kullanılan Üyelik Fonksiyonları:

Üyelik Fonksiyonların Analitik Formülasyonu :

Servis Kalitesi (Kalite Puanı):

ÖRNEK UYGULAMA.2

<u>Üyelik Fonksiyonların Analitik Formülasyonu</u>:

Yemek Kalitesi (Kalite Puanı):

Berbat (t)	= 1	t <= 1
	= (2-†)/2	1<†
		<= 3
	= 0	3 < t

<u>Üyelik Fonksiyonların Analitik Formülasyonu</u>:

BahşişMiktarı(£):

Düşük (†)	= 0 = t / 5 = (10 - t) / 5 = 0	t <= 0 0 < t <= 5 5 < t <= 10 10 < t
Orta (t)	= 0 = (t - 10) / 5 = (20 - t) / 5 = 0	t <= 10 10 < t <= 15 15 < t <= 20 20 < t
Yüksek (†)	= 0 = (t - 20) / 5 = (30 - t) / 5 = 0	t <= 20 20 < t <= 25 25 < t <= 30 30 < t

Bu formüllerin nasıl çıkartılacağı Bölüm 1'de Üyelik Fonksiyonları bölümünde anlatılmıştır.

1.ADIM: FUZZIFICATION (BULANIKLAŞTIRMA)

Kötü (S.Kalitesi) ,İyi(S.Kalitesi) , Mükemmel (S.Kalitesi) VerilenServis KalitesiveYemek Kalitesiiçin Berbat(Y.Kalitesi), Lezzetli (Y.Kalitesi) hesaplanır. (10 üzerinden değerlendirme puanı) Servis Kalitesi (Kalite Puanı) = 7.83 Yemek Kalitesi (Kalite Puanı) (10 üzerinden değerlendirme puanı) = 7.32 Servis Kalitesi (Kalite Puanı): Kötü (7.83) = 0İyi (7.83) $= \exp(-(7.83 - 5)^2/(2x4))$ = 0.37Mükemmel (7.83) = 1-2 x $|(7.83-5)/5|^2$ = 0.36Yemek Kalitesi (Kalite Puanı): Berbat (7.32) = 0

Lezzetli (7.32) = (7.32 – 7) / 2

= 0.16

2.ADIM: CREATE RULE BASE

Burada herÇıkışiçin bir kural tanımlanmıştır.

3.ADIM: INFERENCE Servis Kalitesi = 7.83 Kalite Puanı
Yemek Kalitesi = 7.32 Kalite Puanı

KÖTÜ 1. Rule: IFServis **OR**Yemek **Berbat THEN**Bahşiş Düşük Bahşiş (Düşük) = $max (K\"ot\"u_{Servis} (7.83), Berbat_{Yemek} (7.32))$ = max(0,0) = 0(Düşük-Bahşiş üyelik fonksiyonunu 0 da kesmekte) 2. Rule: IFServis İyi **THEN**Bahşiş Orta $= iyi_{Servis}(7.83)$ Bahşiş (Orta) = 0.37(Orta-Bahşişüyelik fonksiyonunu 0.37 de kesmekte)

3. Rule: IFServis Mükemmel ORYemek Lezzetli THENBahşiş Yüksek

Bahşiş (Yüksek) = max (Mükemmel_{Servis}(7.83), Lezzetli_{Yemek}(7.32))

= max (0.36, 0.16) = 0.36 (Yüksek-Bahşiş üyelik fonksiyonunu 0.36 da kesmekte)

OROperatöründen dolayı**MAX**kullanılmıştır.

5.ADIM: DEFUZZİFİCATİON (DURULAŞTIRMA) (Weighted Average Method-WAM)

Durulaştırma için (Verilen girişdeğerleri ve kurallara göre *Bahşiş Miktarını* bulmak için) ağırlıklı ortalama yöntemini kullanacağız: Öncelikle her bir kuraldan gelen çıkışdeğeri için üyelik fonksiyonlarını kestiği *minimum* ve *maksimum* çıkışdeğerlerini ve sonrasında bu değerlerin ortalamasını hesaplayalım:

Orta (t) =
$$(t - 10) / 5$$
 Bu üyelik fonksiyonundan t'yi çekersek:
 $t = Orta(t) \times 5 + 10 = 0.37 \times 5 + 10 = 11.85$

Orta (t) =
$$(20 - t) / 5$$
 Bu üyelik fonksiyonundan t'yi çekersek:
 $t = 20 - Orta(t) \times 5 = 20 - 0.37 \times 5 = 18.15$

Üçgen simetrik olduğundan bu hesaplamaları yapmadan doğrudan ortalama değer (10+20)/2=15 yazılabilir.

5.ADIM: DEFUZZİFİCATİON (DURULAŞTIRMA) (Weighted Average Method-WAM)

Yüksek (t) =
$$(t - 20) / 5$$
 Bu üyelik fonksiyonundan t'yi çekersek:
 $t = Y$ üksek $(t) \times 5 + 20 = 0.36 \times 5 + 20 = 21.8$

Yüksek (t) =
$$(30 - t) / 5$$
 Bu üyelik fonksiyonundan t'yi çekersek:
 $t = 30 - Y$ üksek(t) x 5 = $30 - 0.36$ x 5 = 28.2

Ortalama =
$$(21.8 + 28.2)/2 = 25$$

Üçgen simetrik olduğundan bu hesaplamaları yapmadan doğrudan ortalama değer (20+30)/2=25 yazılabilir.

5.ADIM: DEFUZZİFİCATİON (DURULAŞTIRMA) (Weighted Average Method-WAM)

Alan Merkezi =
$$\frac{\displaystyle\sum_{i=1}^{n}\mu(t_{i})\times\overline{t_{i}}}{\displaystyle\sum_{i=1}^{n}\mu(t_{i})}$$

n : Kuralların sayısı (i : kural sıra numarası)

t : Üyelik derecesine karşılık gelen min ve max değerlerin ortalaması

Alan Merkezi =
$$\frac{D \ddot{v} \ddot{v} \dot{v}_{Ortalama} \times \mu (t_1) + Orta_{Ortalama} \times \mu (t_2) + Y \ddot{v} \dot{v} \dot{v}_{Ortalama} \times \mu (t_3)}{\mu (t_1) + \mu (t_2) + \mu (t_3)}$$
Alan Merkezi =
$$\frac{0 \times 0 + 15 \times 0.37 + 25 \times 0.36}{0.00 + 0.37 + 0.36} = 19.93 \approx 20 \text{ £ Bahşiş Miktarı}$$

7.83'lük Servis memnuniyet puanıve**7.32**'lik Yemek memnuniyet puanıiçin, tasarlanan bulanık sistemin önerdiği Bahşiş Miktarıyaklaşık**20£**dur. Kullanılan durulaştırma yöntemine göre, farklısonuçlar ortaya çıkabileceğini de unutmamak gerekli.

Özet

Tom Mrs. December 18, 2009

JÖ-mglsin0=7	J	8101=30° 6101=30°/sn
-1, Ed=2, Ep=1, m=1	7	T 01

Pr.1: Verilen analitte kontrol i ik ters sarlage simile et. Ve veri tablosum bul.

	***	L.	
1	BCY	16(4)	1716
1	38	30	7
Ĩ.	0	0	1

\(\text{\theta} = \times_1 \)
\(\delta = \times_2 \)

Faz diagram

