```
<!--Lógica de programación-->
```

Juego tradicional piedra, papel o tijera

```
<Por="Edison Paucar"/>
}
```

Contenidos

01 Introducción
02 Objetivo
03 Diagrama de flujo
04 Cronología
05 Conclusiones

Introducción {

El juego de piedra, papel o tijera es un juego tradicional. En el presente trabajo se va a realizar un código para simular el juego. El trabajo consta de pseudocódigo, un diagrama de flujo y el código el cual esta programado en python.

Objetivos {

Realizar la codificación del juego tradicional piedra, pael o tijera. con el apoyo del lenguaje de programación python.

Implementar al código los temarios aprendidos durante la materia de lógica de programación.

Diagrama de flujo

El diagrama de flujo es una representación gráfica del algoritmo del juego. El cual empieza con

Empieza con el ingresos de las opciones del juego (piedra, papel o tijera)

Si la elección del usuario es igual a la de computadora, el juesgo es un empate.

si la elección es diferente gana o pierde. El usuario gana si:

usuario=piedra computadora=tijera usuario=papel computadora=piedra usuario=tijera computadora=papel Caso contario pierde el usuario

Muestra fragmento de código de la exportación de datos.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut a enim nec nisl ullamcorper eleifend.

Cronología de realización del código

Se implementó, los siguiente en el codigo, operaciones de comparación. Para determinar si el usuario pierde o gana la partida.

Además, se adicionaron operadores lógicos para determinar si cumple con las reglas del juego.

Se adicionaron condicionales, los cuales dividen en 3 diferentes posibles casos de juego.

Se implementaron bucles, en este caso se utilizó el bucle while.

Por último, se colocaron listas para almacenar las opciones de elección.

- Realizar el pseudocódigo y algoritmo.
- Realizar el código, implementando operaciones básicas.
- Se implementaron condicionales.
- Se adicionaron bucles y listas.

Código en python

```
# Generar la elección aleatoria de la computadora
  eleccion computadora = random.choice(opciones)
  print(f"La computadora eligió: {eleccion computadora}")
 # Determinar el resultado del juego
  if eleccion usuario == eleccion computadora:
      print(";Es un empate!")
  elif (eleccion_usuario == "Piedra" and eleccion_computadora == "Tijera") or \
       (eleccion_usuario == "Papel" and eleccion_computadora == "Piedra") or \
       (eleccion usuario == "Tijera" and eleccion computadora == "Papel"):
      print(";Ganaste esta ronda!")
      puntaje usuario += 1 # Incrementar el puntaje del usuario
  else:
     print(";Perdiste esta ronda!")
      puntaje computadora += 1 # Incrementar el puntaje de la computadora
```

Conclusiones {

Se ejecutó el juego con el aprendizaje adquirido en lógica de programación.

Se realizaron cambios, cada semana, de acuerdo a el aprendizaje adquirido. Esto permitió obtener un programa funcional.

<!--Estudio Shonos-->

Gracias {

```
<Por="Edison Paucar"/>
```

