АЛЮМИНИЙ И ЕГО СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

электролит + электролит (р-р) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

- 1) NaOH + HCl = NaCl + H,O
- 2) KCl + AgNO, = KNO, + ÁgI

АЛЮМИНИЙ ОБЩИЕ СВЕДЕНИЯ

Нахождение: IIIA-группа ПС Электронная формула: 3s²3p¹ Степени окисления: 0, +3

НАХОЖДЕНИЕ В ПРИРОДЕ:

только в составе соединений!

Al₂O₃ - корунд

 $Na_{_3}[AlF_{_6}]$ - криолит

 $Al_2O_3*2SiO_2*2H_2O$ - каолинит

 $Al_2O_3*nH_2O$ - боксит

К₂O*Al₂O₃*6SiO₂ - полевой шпат

ФИЗИЧЕСКИЕ СВОЙСТВА:

серебристо-белый металл

пластичный

лёгкий

электропроводный

теплопроводный

быстро окисляется

на воздухе покрыт

оксидной плёнкой

химические свойства

Очень активен при снятии оксидной плёнки!!!
Получают: 1) электролизом расправа $AlCl_3$: $2AlCl_3$ (эл.ток) = $2Al + 3Cl_2$;
2) электролизом расплава Al_2O_3 в криолите $Na_3[AlF_6]$: $2Al_2O_3$ (эл.ток) = $4Al + 3O_3$

Al + неМе = бинарное соединение

Al + O₂ = _____, Al + F₂ = ____

Al + Cl₂ = _____, Al + N₂ = ____

Al + S = ____, Al + C = ____

Al + P = ____, Al + H₂ = ____

Al + NaOH = средняя соль/комплекс + H₂

Al + NaOH + H₂O = ____

Al + NaOH (t) = ____

Al + H₂O - только при снятии окс. плёнки!

Al + H₂O = ____

Al + кислота

Al + HCl = ____

Al + HNO₃(конц) = ____

Al + соль/оксид Ме (вытеснение)

Al + CuSO₄ (t) = ____

На воздухе алюминий покрыт оксидной плёнкой, которая его от всех защищает.

Поэтому, чтобы алюминий вступил в ту или иную реакцию, нам нужно снять эту самую оксидную плёнку/нарушить её целостность:

- погрузить в р-р щёлочи

- нарушить целостность наждаком

- обработать поверхность металла ртутью (амальгировать)

"Необычная" реакция из ЕГЭ: Al + KOH + KNO₃ + H₂O = _____

ОКСИД АЛЮМИНИЯ АІ,О,

твёрдое тугоплавкое вещество

амфотерный оксид

не растворяется в воде

обладает амфотерными свойствами: реагирует с щелочами, с основными оксидами Щ/Щ3 металлов, с кислотами, с кислотными оксидами (только с высшими!); НЕ РЕАГИРУЕТ С ВОДОЙ; способен вытеснять летучие оксиды из солей

При взаимодействии с оксидами и гидроксидами Щ или ЩЗ металлов образует среднюю соль (в расплаве) или комплексную (в растворе).

Два комплекса: [Al(OH),] и [Al(OH),] з

Al₂O₃ + H₂O =
Al₂O₃ + NaOH (t) =
Al₂O₃ + NaOH + H₂O =
Al₂O₃ + SO₂ =
Al₂O₃ + SO₃ =
Al₂O₃ + HCl =
Al₂O₃ + H₂SO₄ =
Al₂O₃ + K₂O (t) =
Rb₂O + Al₂O₃ + H₂O =
Al₂O₃ + ZnO =
Al₂O₃ + FeO =
Al₂O₃ + Na₂CO₃ (t) =
Al₂O₃ + K₂SO₃ (t) =
Al₂O₃ + CO + Cl₂ =
Al₂O₃ + C (t) =

ГИДРОКСИД АЛЮМИНИЯ AL(OH),

твёрдое вещество

амфотерный гидроксид

нерастворим в воде

твёрдое вещество

амфотерный гидроксид

нерастворим в воде

обладает амфотерными свойствами: реагирует со щелочами, с основными оксидами Щ и Щ3 металлов, с кислотами и некоторыми кислотными оксидами (высшими!); разлагается!

Образует комплексы, которые:

- + разрушаются кислотами
 - + разрушаются CO, и SO,
 - + разрушаются AlCl,
 - + разлагаются при t

Образует средние соли, к-е:

- + реагируют с кислотами
 - + реагируют с водой

 $Al(OH)_{3} + KOH(t) =$

Al(OH), + K,O (t) =

Al(OH)₃ + Cl₂ =

Al,S, + H,O =

Al, C, + H, O =

AlCl, + Na,CO, + H,O =

Na[Al(OH)] + HCl(изб) =

 $Na[Al(OH)_{i}] + HCl(нед) =$

Na[Al(OH)](t) =

 $Na[Al(OH)_{L}] + CO_{T}(Heg) =$

 $Na[Al(OH)_4] + CO_2(изб) =$

Al(OH)₃ + H₂O + лакмус =

NaAlO, + H,O =

Na[Al(OH),] + AlCl, =

NaAlO₂ + HCl(изб) =

NaAlO, + HCl(нед) =

ПРИМЕНЕНИЕ АЛЮМИНИЯ И ЕГО СОЕДИНЕНИЙ

