PATENT ABSTRACTS OF JAPAN

BP

(11)Publication number:

04-308586

(43)Date of publication of application: 30.10.1992

(51)Int.CI.

C07D311/04 A61K 31/35 A61K 31/35 // C07C271/22 C09K 15/22

(21)Application number: 03-100354

(71)Applicant: ONO PHARMACEUT CO LTD

(22)Date of filing:

05.04.1991

(72)Inventor: OUCHIDA SHUICHI

TODA MASAAKI

MIYAMOTO TSUMORU

(54) BENZOPYRANE DERIVATIVE

(57)Abstract:

PURPOSE: To provide a novel compound having a Maylard reaction—inhibiting action and an antioxidative action, haiving excellent solubility and oral absorbability and useful as a medicine etc.

CONSTITUTION: A compound of formula I [R1 is COR11, CO (CH2)mR12 (R11 is 1-4C alkyl; R12 is NH2, etc.; (m) is 1-5), R2 is H, 1-4C alkyl]. For example, N-methyl-N-[2-(6-acetoxy-2,5,7,8-tetramethyl-3,4-dihydro-2H-benzo[1,2-b]pyran-2-y1] ethyl]-4-guanidinocinnamic amid hydrochloride. The comound of formula I is obtained by reacting a component of formula II with an acid anhydride.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-308586

(43)公開日 平成4年(1992)10月30日

(51) Int.Cl. ³ C 0 7 D 311/04	識別記号	庁内整理番号 6701-4C	FI			技術表示箇所
A 6 1 K 31/35	ADN ADP	7475 – 4 C 7475 – 4 C				
# C 0 7 C 271/22 C 0 9 K 15/22		6917-4H 6917-4H				
<u></u>				審査請求	未請求	請求項の数1(全 13 頁)
(21)出願番号	特願平3-100354		(71)出願人		83 3工業株式	↑ <u></u>
(22)出願日	平成3年(1991)4	月5日				中区道修町2丁目1番5号
			(72)発明者	大阪府三	三島郡島四	
·			(72)発明者	大阪府三	三島郡島本	□ 下野
			(72)発明者	大阪府三	島郡島本	。 医町桜井3丁目1-1 小 会社水無瀬研究所内
			(74)代理人	弁理士	大家	B 久

(54) 【発明の名称】 ベンゾピラン誘導体

(57)【要約】

【構成】 一般式(I)

(式中、R¹ は i) -COR¹¹、

- ii)-CO (CH2) . R12,
- iii) -COORいまたは
- iv)-COO(CH:)。ORいを表わし、

 R^2 は水素原子または $C1\sim4$ のアルキル基を表わし、 R^{11} は $C1\sim4$ のアルキル基を表わし、 R^{12} は i) -COOR¹⁵、

- ii) NHz または
- iii) -OR16を表わし、

*【化1】

 R^{13} は $C1\sim4$ のアルキル基を表わし、 R^{14} は $C1\sim4$ のアルキル基を表わし、 R^{15} は $C1\sim4$ のアルキル基を表わし、 R^{16} は R^{16}

【効果】 本化合物はメイラード反応阻害作用および抗酸化作用があり、溶解性および/または経口吸収性に優れており、医薬として有用である。

* (化1)

【特許請求の範囲】

【請求項1】 一般式(I)

(式中、R' は i) -COR',

- ii) CO (CH2) . R12,
- iii) -COORいまたは
- iv)-COO(CH2) OR11を表わし、

 R^2 は水素原子または $C1\sim4$ のアルキル基を表わし、 R^{11} は $C1\sim4$ のアルキル基を表わし、

R12は i) -COOR13、

- ii)-NH2 または
- iii) -OR16を表わし、

RいはC1~4のアルキル基を表わし、RいはC1~4%

※のアルキル基を表わし、R¹⁵はC1~4のアルキル基を
 10 表わし、R¹⁵はC1~4のアルキル基を表わし、mは1~5の整数を表わし、nは1~5の整数を表わす。)で示されるペンゾピラン誘導体またはその酸付加塩。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は医薬として有用なペンゾ ピラン誘導体に関する。さらに詳しくは、本発明はi)ー 般式(I)

[化2]

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

(式中、すべての記号は後記と同じ意味を表わす。) 示されるペンゾピラン誘導体およびその酸付加塩、

- ii) それらの製造方法、
- iii) それらを有効成分として含有するメイラード反応阻 害剤および
- iv) それらを有効成分として含有する抗酸化剤に関する。

[0002]

【発明の背景および先行技術】ヨーロッパ特許公開公報 第387771号明細書で、以下に示す一般式(A)の化合物 が開示されており、それらの化合物がメイラード反応阻★

★書および抗酸化作用を有し、種々の糖尿病合併症および 老化により引き起こされる疾患、例えば冠動脈性心疾 患、末梢循環障害、脳血管障害、糖尿病性神経症、腎 症、動脈硬化、関節硬化症、白内障、網膜症、および癌 の治療および/または予防に、または種々の過酸化脂質 30 産生が原因となる疾患、例えば動脈硬化、糖尿病、心筋 梗塞、末梢循環障害、脳血管障害、癌、炎症、消化器疾 患および老化の治療および/または予防に有用であるこ とが記載されている。

【0003】一般式(A)

【化3】

$$(R^{1a})_{Ta} \xrightarrow{7}_{S} O \xrightarrow{R^{2a}} Y_{a} - X_{a} - X_{a} - W_{a} - W$$

(式中、Rいは水素原子、炭素数1~4のアルキル、炭素数1~4のアルコキシ、または7位と8位の炭素原子と一緒になって炭素数6の炭素環を表わし、R^{2*}は水素原子、炭素数1~4のアルキルまたは炭素数1~4のアルコキシを表わし、R^{3*}は水素原子、炭素数2~4のアルコキシを表わし、R^{3*}は水素原子、炭素数2~4のアシルまたはベンゾイルを表わし、naは1~3の整数を表わし、Y。は炭素数1~7のアルキレン、炭素数2~7のアルケニレンまたは炭素数2~7のアルキニレンを表わし、

M. は i) 単結合または

- ii) D. B. で示される基を表わし、
- D. は i) -O-または
- ii) -S-を表わし、
- B. は i) 炭素数1~4のアルキレン基または
- ii) 次式で示される基を表わし、

[化4]

50

Z. は i) 単結合、または

ii) 次式で示される結合を表わし、

[化5]

W. は $-W_1$, -A, $-W_2$, -で示される基を表わし、A, は i) 単結合または

ii) 次式で示される基を表わし、

[化6]

E. は i) 単結合、

- ii) -O-または
- iii) S-を表わし、

式

[化7]

で示される記号は、炭素数 $4\sim10$ の炭素環あるいは複素環、または 1 個から 3 個の炭素数 $1\sim4$ のアルキル、炭素数 $1\sim4$ のアルコキシ、ハロゲン、 $-COOR^{1}$ で示される基、トリハロメチルまたはアセトアミド基で置換されている炭素数 $4\sim10$ の炭素環あるいは複素環を表わし、 W_{1} と W_{2} , は同じでも異なっていてもよく、

- i) 単結合、
- ii) 炭素数1~4のアルキレン、
- iii) 炭素数2~4のアルケニレンまたは
- iv) 炭素数2~4のアルキニレンを表わし、

R*・は水素原子または炭素数1~4のアルキルを表わし、R*・は水素原子、炭素数1~4のアルキルまたはアミノ基を表わし、R*・は水素原子、炭素数1~4のアルキル、炭素数1~4のアルコキシ、ハロゲン、-COO

 R^{**} で示される基、トリハロメチルまたはアセトアミド基を表わし、 R^{7*} は水素原子または炭素数 $1\sim4$ のアルキルを表わし、 R^{8*} は水素原子または炭素数 $1\sim4$ のアルキルを表わし、 R^{8*} は水素原子、炭素数 $1\sim4$ のアルキルまたはペンジル基を表わす。

ただし、 i) D. はY. に結合し、B. はZ. に結合し、

ii) E. はW..に結合し、式 【化8】

10

で示される環はW2.に結合し、

iii) アルケニレンまたはアルキニレン中の二重結合または三重結合は直接酸素原子に結合せず、

iv) A. が式

[化9]

30 【0004】一般式(A)で示される化合物のうち、R 3・が水素原子を表わす化合物は、実施例として記載され、実際に合成されている。しかし、R3・が水素原子を表わす化合物は、溶解性および吸収性が十分とはいえない

【0005】そこで、本発明者らは、さらに液剤化しやすい、および/またはさらに経口投与で有効なメイラード反応阻害および抗酸化作用のあるペンゾピラン誘導体を見出すべく鋭意検討した。その結果、本発明者らは、一般式(A)中のR1・に相当する部分を水素原子からアシル基またはアシル基誘導体に置き換えた、一般式(I)の本発明化合物が溶解性および/または吸収性が著しく向上することを見出し、本発明を完成した。

[0006]

【発明の開示】従って、本発明は、i)一般式 【化10】

(式中、R¹ は i) -COR¹¹、

- ii) CO (CH2) . R12.
- iii) -COORロまたは
- iv) COO (CH2) OR11を表わし、

 R^2 は水素原子または $C1\sim4$ のアルキル基を表わし、 R^1 は $C1\sim4$ のアルキル基を表わし、

R12は i) -COOR15.

- ii)-NH2 または
- iii) -OR16を表わし、

 R^{13} は $C1\sim4$ のアルキル基を表わし、 R^{14} は $C1\sim4$ のアルキル基を表わし、 R^{15} は $C1\sim4$ のアルキル基を表わし、 R^{16} は $C1\sim4$ のアルキル基を表わし、 R^{16} は $C1\sim4$ のアルキル基を表わし、 R^{16} は $C1\sim4$ のアルキル基を表わし、 R^{16} は $C1\sim4$ のアルキル基を表わり、 R^{15} は R^{15}

- ii) それらの製造方法、
- iii)それらを有効成分として含有するメイラード反応阻 害剤および
- iv) それらを有効成分として含有する抗酸化剤に関する。

【0007】一般式(I)中、R²、R¹¹、R¹

【0008】本発明においては、特に指示しないかぎり*

*異性体はこれをすべて包含する。例えば、アルキル基に は直鎖のもの、分枝鎖のものが含まれ、また不斉炭素原 子の存在により生ずる異性体も含まれる。

10 [0009]

【酸付加塩】一般式(I)で示される本発明化合物は、公知の方法で相当する酸付加塩に変換される。塩は毒性のない、水溶性のものが好ましい。式(I)で示される化合物の非毒性酸付加塩としては、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩、硝酸塩のような無機酸塩、または酢酸塩、乳酸塩、酒石酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、クエン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、イセチオン酸塩、グルクロン酸塩、グルコン酸塩のような有機酸塩が挙げられる。好ましくは、塩酸塩である。

[0010]

【先行技術との比較】一般式(I)で示される本発明化 合物は、先行技術化合物からは予期できない程溶解性お よび/または経口吸収性がよい。

[0011]

【本発明化合物の製造方法】一般式(I)で示される本 発明化合物は、

i)一般式(II)

30 【化11】

(式中、 R^2 は前記と同じ意味を表わす。) で示される 化合物、またはその酸付加塩と、 Ω 酸無水物、

②一般式 RIICOCI (III)

(式中、Rいは前記と同じ意味を表わす。) で示される 化合物、

③一般式 R^{15} OCO (CH_2) 。 COCI (IV) (式中、 R^{15} は前記と同じ意味を表わす。) で示される

④一般式 R^いOCOCl (V)

化合物、

(式中、Rいは前記と同じ意味を表わす。) で示される

化合物、

⑤一般式 R¹¹O (CH₂) OCOC (VI)40 (式中、R¹¹は前記と同じ意味を表わす。)で示される 化合物、または

⑥一般式 R¹⁶O (CH₂)。COC1 (IX)

(式中、R¹⁵は前記と同じ意味を表わす。)で示される 化合物を塩基(ピリジン、トリエチルアミン等)の存在 下で反応させ、所望により塩交換を行なうか、

ii) 一般式 (VII)

【化12】

(式中、Bocはtert-ブトキシカルボニル基を表わし、R² は前記と同じ意味を表わす。)で示される化合物またはその酸付加塩から、酸(塩酸、メタンスルホン酸、トルエンスルホン酸等)を用いてBoc基を除去す 10ることにより製造することができる。

[0012]

【中間体の製造方法】一般式 (II) で示される化合物は、ヨーロッパ特許公開公報第387771号明細書に記載の方法で製造することができる。一般式 (VII)で示される化合物は、一般式 (II) で示される化合物と一般式 (VIII)

【化13】

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物を、ジシクロヘキシルカルボジイミドまたは1-xチルー3-(3-ジメチルアミノプロピル)カルボジイミド等の縮合剤の存在下で反応させることにより製造することができる。一般式(III)、(IV)、

(V)、(VI)、(VIII) および(IX) で示される化合物は、公知の試薬であるか、もしくは公知化合物より公知の方法で容易に製造することができる。

[0013]

【出発物質】本発明における出発物質および各試薬は、 それ自体公知であるか、または公知の方法により製造す ることができる。

[0014]

【本発明化合物の活性】一般式(I)で示される本発明化合物は、メイラード反応阻害作用および抗酸化作用を有している。従って、本発明化合物は前記のような種々の糖尿病合併症および過酸化脂質産生が原因となる疾患の治療、および/または予防に有用である。本発明化合物は、さらに溶解性および経口吸収性のよい化合物であり、これらのことは、以下の表1および表2に示されるデータにより確認された。

[0015]

【表1】

本発明化合物の25℃における武留水に対する溶解性 <u>妻1</u>

实施例番号	溶解性 (mg/ml)
1	> 10.0
1 (a)	> 10.0
1 (6)	> 10.0
1 (c)	> 10.0
1 (d)	> 10.0
1 (e)	> 10.0
1 (f)	> 10.0
1 (g)	> 10.0
1 (h)	6.82
1(1)	4.18
1())	8.39
1 (k)	> 10.0
1(1)	> 10.0
1 (m)	> 10.0
1 (n)	> 10.0
1 (0)	> 10.0
2	> 10.0
2 (a)	> 10.0

比较化合物棉造式	油解性 (mg/ml)
ヨーロッパ特許公開公報第387771号 実施例2 (e) の化合物 HO NC NC NH	0.92
ヨーロッパ特許公開公製第387771号 実施例24の化合物 CH ₃ CH ₃ NC NH ₃ NH ₃	2.53

本発明化合物をラット150ag/6al(水)/kg(ラット体重)の十二指腸内に投与後120分後までの 門豚血中濃度-時間曲線化面積(AUC)

表 2

実施例番号	AUC (μg·nin)
1 (b)	0.05以下
	9.39
1 (i)	1.43
	8.13

上段……実施例化合物のAUC値 下段……実施例化合物のエステル加水分解 代謝物のAUC値

比较化合物	AUC (μg·min ml
ヨーロッパ特許 公開公報第 387771号実施例 2 (e) の化合物	0.05以下

【0017】表1および表2から、本発明化合物は先行技術化合物からは予期できない程容解性および/または経口吸収性がよいことがわかる。

[0018]

【毒性】本発明化合物の毒性は十分に低いものであり、 医薬品として十分安全に使用でき、特にヒトにおけるメ イラード反応に起因する疾患の治療および/または予防 に有用であることが確認された。

[0019]

【医薬品への適用】一般式(I)で示される本発明化合物、およびその酸付加塩を上記の目的で用いるには、通常全身的あるいは局所的に、経口または非経口で投与される。投与量は年令、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常成人ひとり当り、一回につき1g~1000gの範囲で1日1回から数回経口投与されるか、あるいは成人ひとり当り、1回につき0. 401g~100gの範囲で1日1回から数回非経口投与(好ましくは静脈内投与)される。もちろん前記したように、投与量は種々の条件で変動するので、上記投与量範囲より少ない量で十分な場合もあるし、また範囲を越えて必要な場合もある。

【0020】本発明化合物を投与する際には、経口投与

ル剤には、ハードカプセルおよびソフトカプセルが含まれる。

【0021】このような固体組成物においては、ひとつまたはそれ以上の活性物質が、少なくともひとつの不活性な希釈剤、例えばヒドロキシプロピルセルロース、改タケイ酸アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤、ダルタミンではステアリン酸のような溶解補助剤を含有しているような溶解補助剤を含有しているような溶解補助剤を含すしているような溶解をしているようででは、ヒドロキシプロピルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルセルロースフタレートなどの胃溶性あるいは腸溶性物質のフィルムで被膜してもよいし、また2以上の層が質のカブセルも包含される。物質のカブセルも包含される。

公知の方法により処方されるスプレー剤が含まれる。この組成物は不活性な希釈剤以外に亜硫酸水素ナトリウムのような安定剤と等張性を与えるような緩衝剤、例えば塩化ナトリウム、クエン酸ナトリウムあるいはクエン酸を含有してもよい。スプレー剤の製造方法は、例えば米国特許第2868691 号および同第3095355 号明細書に詳しく記載されている。

【0024】本発明による非経口投与のための注射剤としては、無菌の水性または非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水および生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、オリーブ油のようなでは、例えばプロピレングリコール、オリーブ油のようなでは、がある。このような組成物は、さらに防腐剤、乳化剤、分散剤、安定化剤、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含んでもよい。これらは例えばパクテリア保留フィルターを通す濾過、殺菌剤の配合または照射によって無菌化される。これらはまた無菌の固体組成物を製造し、使用する。これらは無菌の注射用溶媒に溶解して使用する*

*こともできる。

【0025】非経口投与のためのその他の組成物としては、ひとつまたはそれ以上の活性物質を含み、常法により処方される外用液剤、軟コウのような塗布剤、直腸内投与のための坐剤および膣内投与のためのペッサリー等が含まれる。

[0026]

【参考例および実施例】以下、参考例および実施例によって本発明を詳述するが、本発明はこれらに限定されるものではない。クロマトグラフィーによる分離の箇所に記載されているカッコ内の溶媒は、使用した展開溶媒を示し、割合は体積比を表わす。また、IRはKBr錠剤法で測定し、NMRは重メタノール溶液で測定している。

【0027】参考例1

N-メチル-N-[2-[6-(2-tert-プトキシカルボニルアミノアセトキシ)-2, 5, 7, 8-テトラメチル-3, 4-ジヒドロ-2+-ベンゾ[1, 2-b] ピラン-2-イル] エチル]-4-グアニジノシンナムアミドハイドロクロライド

【化14】

N-メチル-N- [2-(6-ヒドロキシ-2.5,7,8-テトラメチル-3,4-ジヒドロ-2H-ベンソ[1.2-b] ピラン-2-イル] エチル] -4-グアニジノシンナムアミド ハイドロクロライド (1.0g)、N-tert-ブトキシカルボニルグリシン (395mg) および4-ジメチルアミノピリジン (156mg)をジメチルホルムアミド (5.0ml) に溶解させた。この溶液に塩化メチレン (10.0ml) を加え、次に氷冷下塩酸1-エチル-3-(3-ジメチルアミノブロピル)カルボジイミド (472mg) を加えた。混合物を0℃で30分間、次に室温で3時間撹拌した。反応混合物を塩化メチレン (100ml) で希釈した。混合物を水、次に食塩水で洗い、無水硫酸マグネシウムで乾燥した後、減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー※

※ (酢酸エチル:酢酸:水=15:2:1) で精製し、次の物性値を有する標題化合物(427 mg) を得た。

TLC (酢酸エチル:酢酸:水=6:1:1):Rf=0.35:

NMR: δ 7.73~7.05(m,6H), 4.10および4.07(各々s,2H), 3.77(m,2H), 3.17および 3.03(各々s,3H), 2.68 (t,2H), 2.10(s,3H), 2.01(s,6H), 1.46(s,9H), 1.32(s,3H),

【0028】実施例1

N-メチル-N-[2-(6-アセトキシ-2.5.7.8-テトラメチル-3.4-ジヒドロ-2H-ベンソ[1, 2-b] ピラン-2-イル] エチル] -4-グアニジノシンナムアミド ハイドロクロライド 【化15】

N-メチル-N- [2- (6-ヒドロキシ-2, 5, 7, 8-テトラメチル-3, 4-ジヒドロ-2H-ペン Y [1, 2-b] ピラン-2-7 μ] エチル] -4-7 μ 50

アニジノシンナムアミド ハイドロクロライド (1.0g) をジメチルホルムアミド (20ml) に溶解させた。 その溶液にピリジン (5.0ml)、次にアセチルクロライ

TLC (酢酸エチル:酢酸:水=6:1:1): R f = 0.24:

IR (cm⁻¹) : ν 3323, 2932, 1752, 1678, 1648, 160 * 表3

16

*0, 1515.1459, 1408, 1371, 1213, 1 080, 828, 615

【0029】実施例1(a)~1(o)

相当する適当なペンソ [1.2-b] ピラン誘導体・塩 酸塩と相当する適当な酸クロライドを用い、実施例1と 同様に操作して(塩酸塩以外の塩の場合、さらに塩交換 を行ない)、次表3に示す本発明化合物を得た。

[0030]

【表3】

実施例 番 号	接 造 式	TLC	1R (cm ⁻¹)
1 (=)	H ₂ CCO H ₁ NH ₂ NH ₂ NH ₃ NH ₂	R f - 0.30 (クロロホルム: メタノール: 酢酸 - 10:2:1)	3670~2500. \$318. 2932. 1752. 1682. 1624. 1600. 1569. 1515. 1455. 1370. 1219. 1109. 1079.
1 (b)	H ₂ C ₂ O H ₀ H ₀ H ₀ H ₁ H ₁ H ₂ H ₁ H ₂ H ₁ H ₁ H ₂ H ₃ H ₄ H ₃ H ₄ H ₄ H ₅ H ₄ H ₅ H ₆ H ₆ H ₇ H ₁ H ₁ H ₂ H ₁ H ₂ H ₃ H ₄ H ₅ H ₆ H ₆ H ₇ H ₈	Rf-0.39 (酢酸エチル: 酢酸:水 -6:1:1)	3310. 2933. 1736. 1672. 1625. 1570. 1515. 1459. 1412. 1376. 1229. 1150. 1109. 821. 515.
1 (c)	н ₂ со осо на мн ₂ мн ₃ мн ₃ мн ₄ мн ₄ мн	R f ~0.48 (酢酸エチル: 酢酸:水 ~6:1:1)	2 3317. 2932. 1758. 1672. 1826. 1800. 1570. 1515- 1458. 1372. 1340. 1230. 1104. 1040. 831. 515.

[0031]

【表4】

ä

17

₹	TLC	[R (ca ⁻¹)	7
HA O NE O N	R f = 0.52 (助数エチル: 酢酢:水 = 6:1:1)	5 3357, 2932, 1736, 1677, 1647, 1800, 1572, 1515, 1455, 1405, 1376, 1248, 1146, 1109, 828	
CH, CH, NH, NH, NH, NH, NH, NH, NH, NH, NH, N	Rf-0.24 (的数3チル: 前は:水 -12:2:1)	2 2402. 2135. 2932. 1770. 1689. 1646. 1526. 1596. 1568. 1515. 1453. 1403. 1376. 1309. 1248. 1184. 1109. 327. 532.	
CH ₃ NH ₂	R f = 0.25 (斯琳工手ル: 計様: 水 = 10:2:1)	2919. 1759. 1687. 1648. 1626. 1596. 1516. 1516. 1516. 1516. 1516.	

表3 (つづ者)

銴

実施例書

1 (d)

【0032】 表3 (つづき)

【表5】 🗓

1 (e)

実施例 香 号	排 遊 式	TLC	1 R (cm ⁻¹)
1 (g)	H ₂ CO OCO H NH ₂ NH ₂ NH ₃ NH ₂ NH ₃	R f = 0.46 (酢酸エチル: 酢酸:水 - 6:1:1)	3307. 2931. 1758. 1878. 1647. 1599. 1515. 1453. 1408. 1373. 1268. 1231. 1099. 1040. 828 a

[0033]

【表6】

表3(つづき)

英雄粥 香 号	排 遠 式		N	м	R	
1 (h)	H ₃ CCO → SO ₃ H	δ	7.70(d.2ii). 7.28(d.2ii). 3.50(a.2ii). 2.83(s.3ii). 1.97(s.3ii).	7.23(d. 2.87(t. 2.12(s.	211) -4 - 57 (c 217) -2 - 38 (c 311) -2 - 00 (s	1.110. s.310.
1 (1)	H ₂ CCO HC NH NH ₂ NH NH NH NH	ō	7.84(d.2H). 8.88(d.1II). 2.68(t.2H). 1.99(s.3H).	\$.50(=. 2.31(s	2H) . 2 . 71(3H) . 2 . 10(s.3U). s.3N).
1 (1)	H _E C ₂ O NC NC NH ₂ NH ₂ NH ₃ NH ₄ CH ₃ SO ₃ H	δ	7.85 (d. 2H) 8.58 (d. 1H) 2.95 (m. 2H) 1.98 (s. 3H) 1.24 (t. 3H)	4.15(q 2.72(s 1.97(s	-2H) -3.50(-7H) -2.10(3 . 2H) . 3 . 3H) .

[0034]

表3 (つづき)

【表7】

実施例 夢 号	精 造 式	N M R
1 (k)	H ₂ CCO CH ₃ SO ₃ H	5 7.72~7.05(a.SH).3.80(a.2H). 3.17(s.3H).3.03(s.3H).2.71(s.3H). 2.87(t.2H).2.32(s.3H).2.30(s.3H). 2.10(s.3H).2.00(s.3H).1.97(s.3H). 1.32(s.3H).
1 (1)	H ² C ² O H MH ²	7.72~7.05(m.6H).4.15(q.2H). 3.77(m.2H).3.19(s.3H).3.05(s.3H). 2.93(m.2H).2.75(m.7H).2.11(s.3H). 2.03(s.3H).1.98(s.3H).1.34(s.3H). 1.28(t.3H).
1 (m)	H ₅ C ₂ O O CH ₃ SO ₃ H	5 7.72-7.03(a.6H).4.43(s.2H). 4.41(s.2H).3.73(a.2H).3.44(q.2H). 3.18(s.3H).3.03(s.3H).2.73(s.3H). 2.64(t.2H).2.H(s.3H).2.02(s.3H). 1.98(s.3H).1.33(s.3H).1.25(t.3H).

[0035]

50 【表8】

表3 (つづき)

实施列 套 号	排 造 式	N M R
1 (n)	H ₅ C ₂ O ₀ 0	5 7.73~8.88(s.6H).4.29(q.2H). 3.77(s.2H).3.18(s.3H).3.04(s.3H). 2.73(s.3H).2.68(t.2H).2.11(s.3H). 2.03(s.3H).2.01(s.3H).1.32(s.6H).
1 (0)	H ₃ CO CH ₃ SO ₃ H	5 7.72~5.87(s.8H).4.37(s.2H). 3.78(s.2H).3.87(s.2H).3.40(s.3H). 3.17(s.3H).3.05(s.3H).2.75(s.3H). 2.88(t.2H).2.11(s.3H).2.03(s.3H). 2.00(s.3H).1.33(s.3H).

【0036】実施例2

N-メチル-N- [2-[6-(2-アミノアセトキ ロライド シ) -2, 5, 7, 8-テトラメチル-3, 4-ジヒド 20 【化16】 ロ-2H-ペンゾ [1, 2-b] ピラン-2-イル] エ*

参考例1で製造したペンゾピラン誘導体(760mg)を エタノール (10回1)に溶解させた。その溶液に塩酸の エタノール溶液 (2 ml) を加えて、溶液を 6 0 ℃に加温 30 した。反応混合物を減圧退縮した。残留物をシリカゲル カラムクロマトグラフィー(クロロホルム:メタノール = 20:1→10:1) で精製し、次の物性値を有する 標題の本発明化合物 (665 mg) を得た。

TLC (クロロホルム:メタノール:酢酸=6:1: 1) : R f = 0.10;

※IR (cm⁻¹): ν 3391, 2932, 1765, 1677, 1647, 159 9, 1515, 1459, 1401, 1207, 1109,

*チル] -4-グアニジノシンナムアミド ジハイドロク

【0037】実施例2(a)

7.8-テトラメチル-3.4-ジヒドロ-2H-ベン ゾ[1, 2-b] ピラン-2-イル] エチル] -4-グ アニジノシンナムアミド ジハイドロクロライド 【化17】

Ж

N - x + y - N - [2 - (6 - y + y - 2), 5]7, 8-テトラメチルー3, 4-ジヒドロー2H-ベン ゾ[1, 2-b] ピラン-2-イル] エチル] -4-グ アニジノシンナムアミド ハイドロクロライドのかわり に相当するペンゾ [1, 2-b] ピラン誘導体を用い て、参考例1と同様に操作して製造した化合物を用いて 50 0, 1515, 1459,1401, 1219, 1109, 1077, 823。

実施例2と同様に操作して、次の物性値を有する標題の 本発明化合物を得た。

TLC (酢酸エチル:酢酸:水=6:1:1):Rf= 0.13;

IR (cm^{-1}) : ν 3401, 1762, 1657, 1626, 1600, 157

【0038】実施例2(b)

N-メチル-N-[2-[6-(6-アミノヘキサノイル) オキシ-2.5.7.8-テトラメチル-3.4-ジヒドロ-2H-ペンゾ[1.2-b] ピラン-2-イ*

*ル] エチル] - 4 - グアニジノシンナムアミド ジハイ ドロクロライド 【化18】

N-tert-ブトキシカルボニルグリシンのかわりに6-tert-ブトキシカルボニルアミノヘキサン酸を用いて、参考例1と同様に操作して製造したベンゾピラン誘導体を用いて実施例2と同様に操作して、次の物性値を有する標題の本発明化合物を得た。

TLC (酢酸エチル:酢酸:水=5:2:1):Rf=0.25;

I R (cm^{-1}) : ν 3361, 2940, 1748, 1675, 1646, 159 9, 1515, 1456, 1412, 1379, 1253, 1162, 1120, 873, \times

※ 829. 615.

【0039】実施例2(c)

N-[2-[6-(6-アミノへキサノイル) オキシー2.5,7.8-テトラメチルー3,4-ジヒドロー2 Hーペンゾ [1.2-b] ピランー2-イル] エチル] -4-グアニジノシンナムアミド ジハイドロクロライド

【化19】

N-メチル-N-[2-(6-ヒドロキシ-2.5.7.8-テトラメチル-3.4-ジヒドロ-2H-ベンゾ[1,2-b] ピラン-2-イル] エチル] -4-グアニジノシンナムアミド ハイドロクロライドのかわりに相当するベンゾ[1.2-b] ピランを、N-tert-30ブトキシカルボニルグリシンのかわりに6-tert-プトキシカルボニルグリシンのがわりに6-tert-プトキシカルボニルアミノヘキサン酸を用いて、参考例1と同様に操作して製造したベンゾピラン誘導体を用いて、実施例2と同様に操作して、次の物性値を有する標題の本発明化合物を得た。

TLC(酢酸エチル:酢酸:水=3:1:1):Rf= 0.27;

I R (cm⁻¹): ν 3620 \sim 2500, 3392, 2937, 1742, 1 671, 1626, 1599, 1569, 1515, 14 58, 1246, 1162, 1107

【0040】製剤例

以下の各成分を常法により混合した後打錠して、一錠中 に50mmの活性成分を有する錠剤100錠を得た。

NーメチルーNー[2-(6-アセトキシー2, 5, 7, 8-テトラメチルー3, 4-ジヒドロー2Hーベンゾ[1, 2-b] ピランー2ーイル] エチル] ー4ーグアニジノシンナムアミド ハイドロクロライド……5g

・繊維素グリコール酸カルシウム (崩壊剤) …0.2 g

、ょ ・ステアリン酸マグネシウム (潤滑剤)

···0.1 g

・徴結晶セルロース

...4.7 g