Entropy of a discrete random variable

Discrete Random Variable

A random variable X that can achieve one of K possible values x_k for k=0,1,...K-1 each with probability p_k is said to be discrete.

Examples:

A random bit (K = 2)Pick a number from 1 to 10 (K = 10)Throw a 6 sided die (K = 6)

Entropy

The entropy of a discrete random variable that has K possible values each with probability p_k is

$$H = -\sum_{k=0}^{K-1} p_k \log_2(p_k)$$

Note that H is independent of the possible values. It depends only upon the probabilities.

If
$$K = 2$$
, $H = -\sum_{k=0}^{1} p_k \log_2(p_k) = -p_0 \log_2(p_0) - p_1 \log_2(p_1)$

Uniform Distribution

If all outcomes equally likely: $p_k = \frac{1}{K}$ for all k

The entropy is
$$H = -\sum_{k=0}^{K-1} p_k \log_2(p_k) = -\frac{1}{K} \sum_{k=0}^{K-1} \log_2(\frac{1}{K}) = \log_2 K$$

Examples

- K = 2, $H = log_2 2 = 1 bit$
- K = 4, $H = log_2 4 = 2 bits$
- K = 6, $H = log_2 6 \approx 2.6$ bits
- K = 8, $H = log_2 8 = 3 bit$

Non-Uniform Distribution

k	$\boldsymbol{X_k}$	p_k	$-\log_2(p_k)$
0	Blue	1/2	1 bit
1	Yellow	1/4	2 bits
2	Green	1/8	3 bits
3	Red	1/8	3 bits

Entropy:
$$H = -\sum_{k=0}^{K-1} p_k \log_2(p_k) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

If all choices were equally likely $H = log_2(4) = 2$ bits