Diagnostic meta-analysis

Paolo Eusebi

16/09/2021

Recap

Important points from previous sessions

Perfect Reference Test

- There is an increasing interest in meta-analyzing data from diagnostic accuracy studies
- The data from the primary studies are summarized in a 2-by-2 cross-tabulation of the dichotomized test result against the true disease status (assuming we have a perfect reference test)

	D+	D-
T+	TP	FP
T-	FN	TN

 Serological tests for covid-19 from 5 studies (but 6 observations) on evaluation of ELISA assay for covid-19 (Bastos et al 2020).

Study	TP	FN	TN	FP
Liu W	186	28	100	0
Adams	34	6	50	0
Whitman [commercial]	98	32	140	20
Whitman [in-house]	94	36	152	8
Liu L	127	26	116	4
Freeman	95	4	515	4

Forest plot of sensitivity

Warning: Unknown or uninitialised column: 'names'.

Sensitivity

Forest plot of specificity

Warning: Unknown or uninitialised column: 'names'.

Specificity

Data points with confidence ellipses on a ROC space

7

Two main frameworks:

- Hierarchical Summary ROC (Rutter and Gatsonis 2001)
- Bivariate analysis of sensitivity and specificity (Reitsma et al. 2005)

DTA-MA: hierarchical summary ROC (HSROC)

Some notation/definitions (no covariates)

$$(\mu_{A_i}\mu_{B_i}) \sim N((\mu_A\mu_B), \Sigma_{AB})$$

with

$$\Sigma_{AB} = \begin{pmatrix} \sigma_A^2 & \sigma_{AB}^2 \\ \sigma_{AB}^2 & \sigma_B^2 \end{pmatrix}$$

 μ_{A_i} is the logit-transformed sensitivity in study i μ_{B_i} is the logit-transformed specificity in study i

DTA-MA: hierarchical summary ROC (HSROC)

Some notation/definitions (no covariates)

level I (within study)

$$logit(\pi_{ij}) = (\theta_i + \alpha_i D_{ij}) \cdot exp(-\beta \cdot D_{ij})$$

level II (between studies)

$$\theta_i \sim N(\Theta, \sigma_{\theta}^2)$$

$$\alpha_i \sim N(\Lambda, \sigma_\alpha^2)$$

 θ_i are cutpoint parameters (or positivity criteria)

 α_i are accuracy parameters

 β is a shape parameter, allowing true-positive and false-positive fractions to increase at different rates as θ_i increases

Let's run the model with reitsma function (mada R package)

```
fit.reitsma <- reitsma(d)</pre>
```

##		Estimate	95%ci.lb	95%ci.ub
##	<pre>tsens.(Intercept)</pre>	1.63	1.13	2.13
##	tfpr.(Intercept)	-3.41	-4.37	-2.46
##	sensitivity	0.84	0.76	0.89
##	false pos. rate	0.03	0.01	0.08

- Where is the summary measure of heterogeneity?
- There is I^2 for DTA-MA?

The function returns also HSROC parameters

Passf bansafairmsOslabs

```
## $coef_hsroc
## $coef_hsroc$Theta
## [1] -0.14
##
## $coef hsroc$Lambda
## [1] 4.7
##
## $coef hsroc$beta
## [1] 0.62
##
## $coef_hsroc$sigma2theta
## [1] 0.02
##
```

This is because Bivariate and HSROC approaches are equivalent when covariates are not included (Harbord et al. 2007)

- Parameter estimates from either model can be used to produce a summary operating point, an SROC curve, confidence regions, or prediction regions.
- The choice between these parameterizations depends partly on the degrees of and reasons for between-study heterogeneity and the treshold effect.

Imperfect Reference Test

Why?

 Ignoring the imperfect nature of the reference may result in biased estimates of pooled sensitivity and specificity of the test under evaluation

How?

- Multivariate generalized linear mixed model (MGLMM)
- Hierarchical summary receiver operating characteristic (HSROC)
- Exact relations between the parameters of these models can be provided.
- But some submodels of the MGLMM do not have corresponding equivalent submodels of the HSROC model, and vice versa.

DTA-MA: HSROC for imperfect reference test(s)

Dendukuri et al. Biometrics. 2012

 The data from the primary studies are summarized in a 2-by-2 cross-tabulation of the index test (T₁) result against the imperfect reference (T₂)

	T2+	T2-
T1+	TP	FP
T1-	FN	TN

The sensitivity and the specificity of the reference test are defined as:

•
$$S_2 = P(T_2 = +|D+)$$

•
$$C_2 = P(T_2 = -|D-)$$

DTA-MA: discussion

- Comments?
- Questions?
- Ideas?

DTA-MA: hierarchical summary ROC (HSROC)

Let's do it with rjags

DTA-MA with JAGS: Likelihood

```
## model {
##
##
                        for(i in 1:1) {
##
                                                # Likelihood
##
                                                 # se, sp are accuracy of CI
##
                                                 # s2, c2 are accuracy of LU
##
                                                 # pi is the prevalence
##
                                                 cell[i,1:4] ~ dmulti(prob[i,1:4],n[i])
##
##
                                                 prob[i,1] <- pi[i]*se[i]*s2+(1-pi[i])*(1-sp[i])*(1-
##
                                                 prob[i,2] <- pi[i]*se[i]*(1-s2)+(1-pi[i])*(1-sp[i])</pre>
##
##
                                                 prob[i,3] <- pi[i]*(1-se[i])*s2+(1-pi[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*(1-se[i])*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp[i]*sp
                                                 prob[i,4] <- pi[i]*(1-se[i])*(1-s2)+(1-pi[i])*sp[i]
##
```

```
##
##
##
        # Expressing accuracy in terms of HSROC parameters
##
##
        b[i] \leftarrow exp((beta)/2)
##
        logit(se[i]) \leftarrow (theta[i] + 0.5*alpha[i])/b[i]
##
        logit(sp[i]) <- -(theta[i] - 0.5*alpha[i])*b[i]
##
##
        # Priors for CI accuracy
##
        theta[i] ~ dnorm(THETA,prec[1])
        alpha[i] ~ dnorm(LAMBDA,prec[2])
##
```

```
##
## # Priors for prevalence parameters
## pi[i] ~ dbeta(1,1)
## }
##
```

```
##
##
##
    # CI accuracy
    Se overall <- 1/(1+exp((-THETA-0.5*LAMBDA)/exp(beta/2))
##
    Sp_overall <- 1/(1+exp((THETA-0.5*LAMBDA)*exp(beta/2))</pre>
##
##
    theta new ~ dnorm(THETA, prec[1])
##
    alpha_new ~ dnorm(LAMBDA,prec[2])
##
##
```

##

```
##
## # Predicted values for CI in a new study
## Se_new <- 1/(1+exp(-(theta_new+0.5*alpha_new)/exp(beta,
## Sp_new <- 1/(1+exp((theta_new-0.5*alpha_new)*exp(beta/2)</pre>
```

```
##
##
##
    # Priors over the accuracy parameters of CI
##
    THETA \sim dunif(-2.6,2.6)
##
    LAMBDA ~ dunif(-5.2,5.2)
    beta \sim dunif(-1.3, 1.3)
##
##
   for(j in 1:2) {
##
##
             prec[j] <- pow(sigma[j],-2)</pre>
##
##
             sigma[j] ~ dgamma(4,2)
## }
```

Exercise

Use Timsit paper data (Prev Vet Med 2016)

StudyID	TP	FP	FN	TN
Gardner	49	53	38	64
Buhman	37	1	90	18
Thompson	265	196	606	969
Schneider	121	42	910	592
Leach	195	60	1395	373
Tennant	157	29	1344	806
Rezac	127	157	4591	8316

- 1. Fit a bivariate model assuming perfect reference with reitsma() in mada
- Fit a HSROC model assuming imperfect reference with HSROC() in HSROC
- 3. Fit a HSROC model assuming imperfect reference with model definitions in rjags