Is the effect real, or due to chance?

observation = truth + error

- Sampling/measurement introduces an element of chance into our observations
 - Patients who receive cognitive therapy showed 10% greater improvement than patients in a control group.
 - ► For each 5 additional hrs spent playing video games per week, 1.3 more aggressive incidents toward peers.
 - In a psych experiment, people remembered twice as many words when the words appeared in a sentence as when they were presented in isolation.

Simulated data, population known

- $\mu = 100, \sigma = 20$
- 10 samples, each with 20 participants
 - ► arbitrarily assign 10 to A, 10 to B

Null hypotheses and *p*-values

Definition (p-value)

assuming H_0 to be true, the probability of obtaining a test statistic at least as extreme as the one obtained

Basic probability

The probability of an event X is denoted by:

$$P(X) = p$$
, where $0 \le p \le 1$.

$$P(\sim X) = 1 - p$$
.

Another way to think about probability is in terms of the ratio:

frequency of an event total number of possible outcomes

- Probability of rolling a 1 on a single six-side die: $\frac{1}{6}$ or .167.
- Probability that the number rolled is larger than 1: $\frac{5}{6}$ or .833.
- Probability that a card drawn from a deck of 52 is a 10: ⁴/₅₂ or .077.
- Probability that the card is NOT a 10 is 1-.077 or .923.

Joint probability

The probability of getting heads on a single coin flip is $\frac{1}{2}$ or .5. But what about getting X heads on four flips? (the criterion)

Empirical Strategy: Repeat the game N_R times, count no. of heads, and construct a distribution over all replications. Get *approximate* probability by dividing the number of games meeting the criterion by the total number of replications.

Analytical Strategy: Enumerate all of the possible outcomes of four coin flips, and then count the number of them that meet the criterion. The ratio of these two numbers is the *exact* probability.

NHoade

Gaine	Outcome	Mileaus
1	TTHT	1
-		•

Outcome

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3
5	TTHH	2

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3
5	TTHH	2
6	THTT	1

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3
5	TTHH	2
6	THTT	1
7	HTTH	2

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3
5	TTHH	2
6	THTT	1
7	HTTH	2
8	THTH	2

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3
5	TTHH	2
6	THTT	1
7	HTTH	2
8	THTH	2
9	TTTH	1

Number of Heads

Game	Outcome	NHeads
1	TTHT	1
2	HHTT	2
3	TTTT	0
4	THHH	3
5	TTHH	2
6	THTT	1
7	HTTH	2
8	THTH	2
9	TTTH	1
10	TTHH	2

Empirical strategy

$$P(X) = \frac{N_X}{N_R}$$

$$P(X \lor Y) = P(X) + P(Y) - P(X \land Y)$$

$$P(X) = \frac{N_X}{N_{tot}}; P(X \vee Y) = P(X) + P(Y) - P(X \wedge Y)$$

The binomial distribution

Binomial Distribution (p=.5)

A theoretical distribution for binary events that gives the probability of k "successes" in n trials, with the probability of "success" equal to p $Y \sim B(n, p)$

$$P(K = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$
Note: $n! = 1 \times 2 \times ... \times n$

Using the binomial distribution

$$P(K = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

• What is the probability of getting exactly 3 heads out of 7 coin flips?

$$P(K = 3) = \frac{7!}{3!(7-3)!}.5^{3}(.5^{7-3})$$

$$= \frac{7!}{3!4!}(.125)(.0625) = \frac{5040}{6(24)}(.0078)$$

$$= \frac{5040}{144}(.0078) = 35(.0078) = .2734$$

Using the binomial distribution

$$P(K = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

 What is the probability of rolling a 1 on a six sided die exactly 3 times in 5 rolls?

Note:
$$p = \frac{1}{6}$$
 or .167; $n = 5$; $k = 3$.

$$P(K = 3) = \frac{5!}{3!(5-3)!}.167^{3}(1 - .167)^{5-3}$$

$$= \frac{5!}{3!2!}.005(.694)$$

$$= \frac{120}{6(2)}.005(.694)$$

$$= \frac{120}{12}.005(.694) = 10(.005)(.694) = .032$$

Using the binomial distribution

$$P(K = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

What is the probability of getting 5 or more heads out of 7 coin flips?

$$P(K \ge 5) = P(K = 5) + P(K = 6) + P(K = 7)$$

= .164 + .055 + .008 = .227

The Standard Normal Distribution (SND)

 $Y \sim N(\mu, \sigma)$

- in SD units. Mean is at 0.
- symmetric about the mean
- mode = median = mean
- inflection points at $\pm \sigma$
- asymptotes to X axis (Y=0), range is $[-\infty, +\infty]$.
- total area under the curve = 1

Calculating probabilities from the SND

Use z-scores to calculate probabilities of individual scores.

$$Z=rac{X-ar{X}}{\hat{s}}$$

- Note: z is continuous, not discrete as in binomial distribution.
 Probability of any specific value of z (e.g., 1.000000001) is infinitesimally small.
- Therefore, need to calculate intervals over a {range} of values.
 - $P(z_L \le z \le z_U) = p$
- Probability = area under the curve for the given interval.

Consider the standard normal distribution.

