Chaper 5 - Distributions

Daxiang Na

2022 - 10 - 03

Contents

1.	General Knowledge	2
	1.1. Expectation - the population mean	2
	1.2. Variance - measure the dispersion of values from the expectation (mean) $\ \ldots$	2
	1.3. Probability Distribution	2
	1.4. Covariance	3
	1.5. Correlation	3
	1.6. Linear transformation	3
	1.7. General transformation	3
2.	Theoretical Distributions	3
	2.1. The following theoretical distributions will be considered in this class (D = discrete, C = continuous):	3
	2.2. Bernoulli Distribution	4
	2.3. Binomial Distribution	4
	2.4. Poisson Distribution	5
	2.5. Geometric Distribution	6
	2.6. Uniform Distribution (Continuous)	8
	2.7. Exponential Distribution (Continuous)	8
	2.8. Normal Distribution (Continuous)	8
	2.9. Central Limit Theorem(CLT) and Sampling Distribution	11
	2.10 Sampling Distribution of a Proportion	11
-	1: Seems that we can treat data as normal distribution as long as the n is large enougen what are other distribution type for?	gh,

Q2: Also, how do we determine the data distribution in the real world?

Q3: Why?? CDF $P(X \le x) = 1 - (1 - p)^x$ (1 minus the probability that the first x trials all failed?) - A possible way to get it?: probability that it takes more than x time to get success: $P(X > x) = (1 - p)^x$, then CDF = $P(X \le x) = 1 - (1 - p)^x$.

Q4: What is the definition of p-value? Not sure if I am understanding it correctly - If it is $Pr(X = \bar{x}|\mu = \mu_0)$, then it should be 0 if it follows normal distribution.

1. General Knowledge

1.1. Expectation - the population mean

Expected value of X, denoted E(X), represents a theoretical average of an infinitely large sample

for discrete variable $E(X) = \sum_{x \in S_X} x \cdot Pr(X = x)$

for continuous variable $\int_{-\infty}^{\infty} X f_X(X) \ dX$

1.2. Variance - measure the dispersion of values from the expectation(mean)

$$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - E(X)^2$$

for the case of continuous variable $\int_{-\infty}^{\infty} (X-\mu)^2 f_X(X) \ dX$

1.3. Probability Distribution

For any
$$E\subseteq S_X$$
, we can define $p_X(E)=Pr(X\in E)$, Then $\sum_{x\subseteq S_X}Pr(X=x)=1$

1.4. Covariance

$$\begin{split} &cov(X,Y) = E(XY) - E(X)E(Y) \\ &\text{how to get that (hint: } \mu_X = E(X) \text{ and } \mu_Y = E(Y), \text{ and they are considered as constant):} \\ &cov(X,Y) = E((X-\mu_X)(Y-\mu_Y)) \\ &= E((XY-Y\mu_X-X\mu_Y+\mu_X\cdot\mu_Y)) \\ &= E(XY) - \mu_X E(Y) - \mu_Y E(X) + E((\mu_X\mu_Y)) \end{split}$$

$$= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y) = E(XY) - E(X)E(Y)$$

1.5. Correlation

$$corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E(XY) - E(X)E(Y)}{\sigma_X \sigma_Y}$$

1.6. Linear transformation

Let
$$Z = aX + bY$$

Then the mean of Z is $\mu_Z = a\mu_X + b\mu_Y = aE(X) + bE(Y)$

The variance of Z is $\sigma_Z^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_X \sigma_Y$ it is the sqrt of cov() but not $\sigma X \sigma Y$

The standard deviation of Z is $\sigma_Y = \sqrt{a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_X \sigma_Y}$

1.7. General transformation

1. If
$$Y = g(X), \, f(X) = p_X$$
 then $E(Y) = E(g(X)) = \int g(X) \cdot f(X) \; dX$

2. if
$$Y = g(X)$$
, we don't necessarily get $E(g(X)) = g(E(X))$

2. Theoretical Distributions

Theoretical probability distributions describe what we expect to happen based on populations on a theoretical level

2.1. The following theoretical distributions will be considered in this class (D = discrete, C = continuous):

- Bernoulli distribution (D)
- Binomial distribution (D)
- Poisson distribution (D)
- Geometric distribution (D)

- Uniform distribution (C)
- Exponential distribution (C)
- Normal distribution (C)

2.2. Bernoulli Distribution

- 1. Let Y be a dichotomous random variable (takes one of two mutually exclusive values)
- 2. Successes (=1) occur with probability p and failures (=0) occur with probability 1-p, for constant $p \in [0,1]$
- 3. Notation: $Y \sim Bern(p)$
- 4. Let Y be a dichotomous random variable representing a coin flip
 - Y = 1: heads, success
 - Y = 0: tails, fail
 - If the coin has a 60% chance to get the head/success
 - $E(Y) = 1 \cdot p + 0 \cdot (1 p) = p$

 - $E(Y^2) = 1^2 \cdot (p) + 0^2 \cdot (1-p) = p$ $var(Y) = \sigma_Y^2 = E(Y^2) E(Y)^2 = p p^2 = p(1-p)$

2.3. Binomial Distribution

- 1. Definition: If we have a sequence of n Bernoulli variables, each with a probability of success p, then the total number of successes is a binomial random variable.
 - Assumptions: fixed number of trials, independent, constant p
- 2. Notation: $X \sim Bin(n, p)$
- 3. Note for Combination and Permutation
 - 1. Combination: C(n,k) or $\binom{n}{k}$
 - 2. Permutation: P(n,k)
- 4. Probability Mass Function:
 - 1. $Pr(X = x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}$ 2. $Pr(X = x) = C(n, k) \cdot p^x \cdot (1-p)^{n-x}$
- 5. Then if you flip coin for 100 times, n = 100, the probability to get head for k times is $Pr(X = x) = C(100, k) \cdot p^{k}(1-p)^{100-k}$
- 6. How do you calculate it in \mathbf{R} ?
 - 1. Calculate the probability of x successes Pr(X = x) using dbinom(x, n, p)
 - 2. Calculate $Pr(X \leq x)$ using pbinom(x, n, p)
 - 3. Calculate $Pr(X \ge x)$ using 1 pbinom(x 1, n, p)

- 7. Summary measures
 - 1. Expection E(X) = np
 - 2. Variance $var(X) = \sigma_X^2 = np(1-p)$ 3. Stdev $\sigma_X = \sqrt{np(1-p)}$
- 8. How do you get those above:
 - 1. Consider Binomial Distribution as the sum of n times of Bernoulli Experiments
 - 2. When $X \sim Bern(p)$
 - 1. E(X) = p
 - 2. $\sigma_X^2 = p(1-p)$
 - 3. Then let $Y \sim Bin(n, p)$

 - $1. \ E(Y) = np$ $2. \ \sigma_Y^2 = n\sigma_X^2 = np(1-p)$
- 9. Main take-away points from the binomial distribution:
 - 1. Fixed number of independent Bernoulli trials, n
 - 2. Constant probability of success, p (Bernoulli parameter)
 - 3. Interested in the total number of successes in n trials (not order)

 - 4. Mean: $\mu_X = np$ 5. Variance: $\sigma^2 = np(1-p)$

2.4. Poisson Distribution

- 1. Probability function is given by $P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$ 2. If $X \sim Pois(\lambda)$, then $\mu_X = \sigma_x^2 = \lambda$
- 3. Example problem in class slides
 - setup: on average, 1.95 people develop the disease per year
 - Q1: probability of no one developing the disease in the next year
 - $-\lambda = 1.95 = \mu_X = \sigma_X^2$

 - $\begin{array}{l} -\ x=0\\ -\ p=\frac{e^{-\lambda}\lambda^x}{x!}=(e^{-1.95}*(1.95)^0/0!)=e^{-1.95}\\ -\ \text{in}\ R:\exp(\text{-}1.95)=0.1422741 \end{array}$
 - Q2: probability of one person developing the disease in the next year

 - $p = \frac{e^{-\lambda}\lambda^x}{x!} = (e^{-1.95} \cdot (1.95)^1/1!) = e^{-1.95} \cdot (1.95)$
 - $\text{ in } R: \exp(-1.95) * (1.95) = 0.2774344$

2.5. Geometric Distribution

- 1. Suppose $Y_1, Y_2, ...$ is an infinite sequence of independent Bernoulli random variables with parameter p
- 2. Let X be the first index i for which $Y_i=1$ (location of first success)
- 3. PMF: $P(X = x) = p(1 p)^{x-1}$
- 4. plain English: what is the probability to take x times to get the first success, given that the Bernoulli parameter is p, or the success rate is p.
- 5. Notation: $X \sim Geom(p)$

6. if p=0.3, draw PMF for $x\in[0,40]$

7. Mean
$$E(X) = \frac{1}{p}$$

- 8. Variance $\sigma^2 = \frac{1-p}{p^2}$
- 9. Why?? CDF $P(X \le x) = 1 (1-p)^x$ (1 minus the probability that the first x trials all failed?)
 - A possible way to get it: probability that it takes more than x time to get success: $P(X > x) = (1 - p)^x$, then CDF = $P(X \le x) = 1 - (1 - p)^x$.

2.6. Uniform Distribution (Continuous)

1. PDF:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$

- 2. Why $f(x) = \frac{1}{b-a}$? Because only by that $\int_a^b f(x) dx = 1$ 3. Notation: $X \sim Unif(a,b)$
- 4. $\mu = \frac{a+b}{2}$, $\sigma = \frac{(b-a)^2}{12}$

2.7. Exponential Distribution (Continuous)

- 1. PDF: $f_X(x) = \lambda e^{-\lambda x}, \, \lambda > 0$
- 2. Notation: $X \sim Exp(\lambda)$
- 3. $\mu = 1/\lambda, \, \sigma^2 = 1/\lambda^2$
- 4. CDF: $F_X(x) = 1 e^{-\lambda x}$

2.8. Normal Distribution (Continuous)

1. The most common continuous distribution is the normal distribution (also called a Gaussian distribution or bell-shaped curve)

8

- Shape of the binomial distribution when p is constant but $n \to \infty$
- Shape of the Poisson distribution when $\lambda \to \infty$
- 2. **PDF**: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- 3. Notation: $X \sim N(\mu, \sigma^2)$, note that in R, use stdev instead of variance
- 4. Mean = median = mode = μ , variance = σ^2 , standard deviation = σ

PDF of normal distribution

5. When $\mu = 0$ and $\sigma^2 = 1$, we have the standard normal distribution.

7. Z score of X when $X \sim N(\mu, \sigma)$

6.

• definition of Z score: $z = \frac{x-\mu}{\sigma}$

- When X follows Normal distribution, always $Z \sim N(0,1)$
- Usage example: when μ and σ are known, how do we know the probability that $x \leq a$

$$-\ z=(a-\mu)/\sigma,\, Z\sim N(0,1)$$

$-P = pnorm((a - \mu)/\sigma)$

Empirical Rule

8.

- 9. Does empirical rule work well for Z score?
 - $Pr(-1 \le Z \le 1) = 0.683$
 - $Pr(-2 \le Z \le 2) = 0.954$
 - $Pr(-3 \le Z \le 3) = 0.997$

10.

Normal Distribution: Example

- Setup: Let X be a random variable that represents weights of patients in American hospital EDs; X is normally distributed with $\mu=160$ and $\sigma=15$
- Q1: Find the probability that a randomly selected patient in the ED weighs between 140 pounds and 210 pounds

Find z-scores:
$$z = \frac{x - \mu}{\sigma}$$
, so $z_1 = \frac{140 - 160}{15} = -4/3$ and $z_1 = \frac{190 - 160}{15} = 2$
pnorm(2) - pnorm(-4/3) = 0.886

• Q2: Find the value that cuts off the upper 10% of the curve in American ED patient weights

Find z-score:
$$z_{0.9} = \text{qnorm}(0.9) = 1.282 = \frac{x - 160}{15}$$

 $x = 160 + 1.282 \cdot 15 = 179.2$ pnorm(): give z score or value, calculate probability qnorm(): give percentile, calculate the corresponding z score (if you did not give it mean and sd)

11.

2.9. Central Limit Theorem(CLT) and Sampling Distribution

- 1. Sampling distribution: If $X \sim N(\mu, \sigma)$, then $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- 2. Central Limit Theorem(CLT): If the population we are sampling from is not normal, then the shape of the distribution of \overline{X} will be normal as long as n is sufficiently large (typically $n \geq 30$ suffices).
- 3. Therefore, when n is large enough, even X does not follow normal distribution, $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- 4. Then the Z score of sampling mean is $Z = \frac{\bar{X} \mu}{\frac{\sigma}{\sqrt{n}}}$, also, $Z \sim N(0, 1)$.

2.10 Sampling Distribution of a Proportion

- 1. Suppose we are interested in the proportion of the time that an event occurs
- 2. If we take a sample of size n and observe x successes, then we could estimate the population proportion p by $\hat{p} = x/n$.
- 3. When $np \ge 5$ or $n(1-p) \ge 5$, it is considered that $\hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$.

Sampling Distribution of a Proportion: Example

- Setup: Suppose 20% of Americans favor Advil as a pain reducer. A polling organization takes a sample of 100 Americans and asks if they prefer Advil or some other pain relief medicine.
- Q1: What is the mean of this sample proportion?
 \(u = 0.20 \)
- Q2: What is the standard error of this sample proportion? $\sqrt{\frac{0.2(1-0.2)}{100}}=0.04$
- Q3: What distribution does the sample proportion follow? np = 20 > 5, and n(1-p) = 80 > 5, so by CLT, $\hat{p} \sim N(0.2, 0.04)$
- Q4: What is the probability that the sample proportion is less than 18%? $Pr(\hat{p} < 0.18) = Pr(Z < (0.18 0.2)/0.04) = Pr(Z < -0.5) \approx 0.31$
- Q5: What is the 20th percentile of the distribution of the sample proportion? $z_{0.20} = \frac{x-\mu}{\sigma} \rightarrow x = 0.2 + (-0.84) \cdot 0.04 \approx 0.167$

4.