Student Information

Full Name : Yaşar Cahit Yıldırım

 $Id\ Number:\ 2310647$

Answer 1

a.

(i) Let
$$S_1 \to aS_1a \mid bS_2 \qquad \text{in } G = \left(V = \{S_1, S_2, a, b\}, \Sigma = \{a, b\}, R, S_1\right)$$
$$S_2 \to aS_2a \mid b$$

(ii) Let
$$S_1 \to aS_2aS_2a \mid bS_2bS_2b$$
 in $G = (V = \{S_1, S_2, S_3, a, b\}, \Sigma = \{a, b\}, R, S_1)$
 $S_2 \to aS_2a \mid aS_2b \mid bS_2a \mid bS_2b \mid a$
 $S_3 \to aS_3a \mid aS_3b \mid bS_3a \mid bS_3b \mid b$

(iii) Let
$$S_1 \to S_2 C \mid S_3 C \mid AS_4 \mid AS_5$$
 in $G = \left(V = \{S_1, S_2, S_3, S_4, s_5, a, b, c\}, \Sigma = \{a, b, c\}, R, S_1\right)$
 $S_2 \to a \mid aS_2 \mid aS_2 b$
 $S_3 \to b \mid S_3 b \mid aS_3 b$
 $S_4 \to b \mid bS_4 \mid bS_4 c$
 $S_5 \to c \mid S_5 c \mid bS_5 c$

(iv) Let
$$S_1 \rightarrow S_2S_3 \qquad \text{in } G = \Big(V = \{S_1, S_2, S_3, S_4, a, b, c\}, \Sigma = \{a, b, c\}, R, S_1\Big)$$

$$S_2 \rightarrow S_2S_4 \mid \epsilon$$

$$S_3 \rightarrow aS_3a \mid bS_3b \mid acS_2ca \mid bcS_2cb$$

$$S_4 \rightarrow aS_4 \mid bS_4 \mid ac \mid bc$$

b.

We are dealing with sets so we can prove this by set equality. Let our language be L.

$$\mathcal{L}(G) \subseteq L$$
:

Let's examine our grammar a bit. If we ignore the transitions $A \to BAA$ and $B \to ABB$ we can easily see that A is a state which we come with one less a than there are b's from state S. And in this state we either finish the string with an a or add an a and return to the start state. B is the same as A with b's so these two are used to balance the number of a's and b's.

Now if we consider the $A \to BAA$ case with the help of above understandment, one B and two A's will in the long run result us with two extra a's and one extra b from the numbers we are on. Meaning that whatever depth the recursion will be, at the end we will get our two a and one b terminals in order for recursion to end. The same will apply to $B \to ABB$. We can conclude that whatever string our grammar create, it will be in the language, thus $\mathcal{L}(G) \subseteq L$.

$$L \subseteq \mathcal{L}(G)$$
:

We can use induction to show this is the case.

Base Case: Smallest nonempty strings in our language are ab and ba, these are in our grammar. **Inductive Hypothesis:** Let's assume all words w where $|w| \le n$ in the language can be created by our grammar.

Inductive Proof: Let's consider a word w with |w| = n + 2, w either starts with an a or b. If it starts with an a it can be split as aubv where $u, v \in L$ and $S \Rightarrow aB \Rightarrow aABB \Rightarrow aABbS$. v equals to S and $|v| \leq n$ so it can be created. We know A creates strings that has one more a and a strings that has a strings that has a strings that a strin

Since
$$\mathcal{L}(G) \subseteq L$$
 and $L \subseteq \mathcal{L}(G)$, $L = \mathcal{L}(G)$

Answer 2

a.

The string aab is an example. It's two leftmost derivations are:

b.

The B non-terminal is not necessary because it only leads to create the word aab but aab is already accepted by different derivations. So an equivalent unambiguous CFG is simply:

$$G' = \{V' = \{a, b, S, A\}, \Sigma, R' = \{S \to Ab, A \to a \ Aa\}, S\}$$

c.

Answer 3

a.

$$\{a^{2n}b^{3n} \mid n \ge 0\}$$

b.

In the PDA, * symbol is used as "any symbol from alphabet" and + symbol as "just an allocator".

 $\{w_1w_2 \in \{a,b\}^* \mid |w_1w_2| \text{ is odd or } (|w_1| = |w_2| \text{ and } w_1 \neq w_2)\}$

c.

(ii)	State	Input	Stack	Transition
	q_0	aabcc	е	-
	q_4	aabcc	\$	$e, e \rightarrow \$$
	q_4	abcc		$a, e \rightarrow e$
	q_4	bcc	\$	$a, e \rightarrow e$
	q_5	cc		$b, e \rightarrow b$
	q_6	\mathbf{c}	\$	$c, b \to e$
	q_8	e	\$	$c, e \rightarrow e$
	q_8	e	e	$e,\$ \rightarrow e$
				Accepts

State	Input	Stack	Transition
q_0	bac	e	-
q_4	bac	\$	$e, e \rightarrow \$$
q_5	ac	b\$	$b, e \rightarrow b$
			Rejects
State	Input	Stack	Transition
q_0	bac	е	-
$ q_1 $	bac	\$	$e, e \rightarrow \$$
			Rejects

Answer 4

a.

Let M be the PDA equivalent to the CFG G where $M = (\{p,q\}, \Sigma, V, \Delta, p, \{q\})$ with

$\Delta = \{((p, e, e), (q, E)),$	(T1)
((q, e, E), (q, E+T)),	(T2)
((q,e,E),(q,T)),	(T3)
((q,e,T),(q,TxF)),	(T4)
((q,e,T),(q,F)),	(T5)
((q, e, F), (q, (E))),	(T6)
((q, e, F), (q, a)),	(T7)
((q,a,a),(q,e)),	(T8)
((q, +, +), (q, e)),	(T9)
((q,x,x),(q,e)),	(T10)
((q,(,(),(q,e)),	(T11)
$((q,),)),(q,e))\}$	(T12).

b.

We know by Lemma 3.4.2 that we can convert a PDA M to M'' such that M=M'' and M'' is **simple**. So by not executing the last step of this lemma, we can acquire a PDA M'' which has $|\beta| \leq 1$ and $|\gamma| \leq 1$. After this, we can consider each Δ'' transition that in form $((q, x, \beta), (p, \gamma))$ where $|\beta|, |\gamma| \neq 0$ and replace it with $((q, x, \beta), (r, e))$ and $((r, e, e), (p, \gamma))$ where $x \in \Sigma$. Thus create Δ' and K' for PDA M' which has $|\beta| + |\gamma| \leq 1$.

Answer 5

a.

(i) Consider context-free grammar

$$G = \Big(V = \{S_1\}, \Sigma = \{a,b\}, R = \{S_1 \to aS_1b \mid e\}, S_1\Big) \text{ where } L(G) = \{a^nb^n : n \ge 0\}$$

Notice that $a^m b^{m+n} a^n$ is concatenation of $a^m b^m$ and $b^n a^n$ and both of these can be generated by G. Since context-free languages are closed under concatenation, $a^m b^{m+n} a^n$ is context-free.

(ii) Let
$$S_1 \to bS_2 \mid bS_3aa$$

$$S_2 \to AS_2a \mid b$$

$$S_3 \to aS_2A \mid b$$

$$S_4 \to aA \mid a$$

$$in G = \left(V = \{S_1, S_2, S_3, A\}, \Sigma = \{a, b\}, R, S_1\right).$$

 $\{a,b\}^* - L = \overline{L} = a\Sigma^* \cup \Sigma^* a \cup \Sigma^* bb\Sigma^* \cup G$ and since we know all these languages are context-free, $\{a,b\}^* - L$ is context-free.

b.

- (i) Assume given language be context-free. Then there exists a split uvxyz such that it is in the language. Let p be the pumping length and consider string $a^{p^2}b^p$.
 - Case 1, there are only a's in v and y: The string uv^2xy^2z has the property $p^2 + 2k \le p^2$ where $vxy \le p$ and 2k > 0 so it can not be in the language.
 - Case 2, there are only b's in v and y: The string uv^0xy^0z has the property $p^2 \le p^2 2k$ where $vxy \le p$ and 2k > 0 so it can not be in the language.
 - Case 3, there are both a's and b's in vxy: The string has the property $p^2 k \le (p j)^2$ where $vxy \le p$ and j + k > 0 with k is the number of a's j is the number of b's.

$$j+k \le p, \ j \le p-k, \ j>0, \ k>0$$

$$p^2-k \le p^2-2pj+j^2, \ p^2-k \le p^2-2p(p-k)+(p-k)^2$$

$$p^2-k \le k^2 \ \text{is false because} \ j^2+2jk+k^2 \le p^2$$

Since every case considered builds up to a contradiction, this language is not context-free.

- (ii) Let L be the given language and $L' = L \cap a^*ba^*ba^*b = \{a^nba^nba^n \in \{a,b\}^* \mid n \geq 0\}$. Not that if L is context-free, then L' must be too by closure properties. Assume L' is context free. Then there exists a split uvxyz such that it is in L'. Let p be the pumping length and consider string $a^pba^pba^pb$.
 - Case 1, there is a b in vxy: The string uv^2xy^2z has more than three b's so it can not be in the language.
 - Case 2, there are only a's in v and y: The string uv^2xy^2z has **at least** one group of a's not matching other(s) so it can not be in the language. This case is also valid when v and y consists different a groups divided with a b i.e. x = b. "at least" is emphasised for that purpose.

Since we found that L' is not a context-free language, we can conclude L is not also.

Answer 6

- (i) (T/F)? False.
- (ii) (T/F)? True.
- (iii) (T/F)? True.
- (iv) (T/F)? False.