Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Model

(30 de nuncte)

Filiera teoretică, profilul real, specializarea științele naturii.

SURIECTIII. I

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

	IECTUL I (30 de p	uncte)
1.	$S_5 = \frac{\left(2a_1 + 4r\right) \cdot 5}{2}$	3 p
	$S_5 = 45$	2p
2.		1p
	$m^2 + 2m + 1 - 4m = 0$	2p
	m = 1	2 p
3.	$G_f \cap Ox : f(x) = 0 \Rightarrow x = -1$	2p
	A(-1,0)	1 p
	$G_f \cap Oy: f(0) = 1$	1p
	B(0,1)	1p
4.	$C_4^2 = 6$ $A_4^1 = 4$	2p
	$A_4^1 = 4$	2p
	$2C_4^2 - 3A_4^1 = 0$	1p
5.		2p
		2p
	$a^2 + 3a - 4 = 0 \Rightarrow a = 1$ sau $a = -4$ $a > 0 \Rightarrow a = 1$	-р 1р
6.	Aria $\triangle MNP = \frac{MN \cdot NP \cdot \sin N}{2}$	2p
		- P
	$\sin N = \frac{2 \cdot 16}{8 \cdot 8}$	2p
	$\sin N = \frac{1}{2}$	1p
SUB	IECTUL al II -lea (30 de p	uncte)
1.a)		2

SUBIECTUL al II -lea (30 de p		<u>puncte)</u>
1.a)	$A_{1}(0,3), A_{2}(1,4)$	2p
	$A_1 A_2 : \begin{vmatrix} x & y & 1 \\ 0 & 3 & 1 \end{vmatrix} = 0$	2p
	$\begin{vmatrix} 1 & 4 & 1 \\ A_1 A_2 : y = x + 3 \end{vmatrix}$	1p

Probă scrisă la Matematică

Model

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

b)	m-1 m+2 1	
	Justificarea faptului că $\begin{vmatrix} n-1 & n+2 & 1 \\ -1 & n+2 & 1 \end{vmatrix} = 0$	
	$\begin{vmatrix} p-1 & p+2 & 1 \\ p-1 & p+2 & 1 \end{vmatrix}$	3 p
	1* * 1	2p
	$\Rightarrow A_m, A_n, A_p$ coliniare	2 p
c)	$A_n A_{2011} \le 2$	1p
	$\sqrt{(n-2011)^2 + (n-2011)^2} \le 2$	1p
	$ n-2011 \le \sqrt{2}$	1p
	$M_{2011} = \big\{2010, 2011, 2012\big\}$	2p
2.a)	$m = 4 \Rightarrow f = X^3 + X^2 - 17X + 15$	1p
	$C = X^2 + 4X - 5$	3 p
	R = 0	1p
b)	$f:(X-1) \Leftrightarrow f(1)=0$	2p
	f(1) = 1 + m - 3 - 17 + 2m + 7 = 3m - 12	1p
	$3m - 12 = 0 \Longrightarrow m = 4$	2p
c)	Cu notația $3^x = y > 0 \Rightarrow y^3 + y^2 - 17y + 15 = 0 \Rightarrow (y-1)(y-3)(y+5) = 0$	2p
	y = -5 < 0	1p
	$y = 1 \Rightarrow x = 0$	1p
	$y = 3 \Rightarrow x = 1$	1p

1.a)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -4, \ \lim_{\substack{x \to 0 \\ x > 0}} f(x) = -4, \ f(0) = -4$	3 p
		2p
	f este continuă în punctul $x_0 = 0$	- P
b)	$\lim_{x \to 4} \frac{f(x)}{16 - x^2} = \lim_{x \to 4} \frac{x - 4}{(4 - x)(4 + x)} = \lim_{x \to 4} \frac{-1}{4 + x}$	3 p
	$\lim_{x \to 4} \frac{f(x)}{16 - x^2} = -\frac{1}{8}$	2p
c)	Ecuația tangentei este $y - f(-1) = f'(-1)(x+1)$	2p
	Pentru $x \le 0$, $f(x) = \frac{-4}{x^2 + 1} \Rightarrow f'(x) = \frac{8x}{\left(x^2 + 1\right)^2}$, oricare ar fi $x < 0$	2p
	Ecuația tangentei este $y = -2x - 4$	1p
2.a)	Mulțimea primitivelor este $\int 9dx =$	2p
	=9x+C	3 p
b)	$A = \int_{0}^{1} \left 3x^{2} + 6x + 9 \right dx = \int_{0}^{1} \left(3x^{2} + 6x + 9 \right) dx =$	2p
	$ \left = \left(x^3 + 3x^2 + 9x \right) \right _0^1 = $	2p

Probă scrisă la Matematică

SUBIECTUL al III-lea

Model

1p

30 de puncte

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

c)	$\int_{0}^{2} (12x+12)e^{x} dx = 12xe^{x}\Big _{1}^{2} =$	3 p
	$\begin{vmatrix} 1 \\ = 24e^2 - 12e \end{vmatrix}$	2p

Probă scrisă la Matematică

Model

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.