

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	CLAUDIA RODRIGUEZ ESPINO
Asignatura:	FUNDAMENTOS DE PROGRAMACION
Grupo:	1112
No de Práctica(s):	1
Integrante(s):	CARRASCO MENDOZA JENNIFER
Semestre:	2018-1
Fecha de entrega:	18/AGOSTO/2017
Obervaciones:	AL HACER LA PRACTICA EN GITHUB ME COSTO TRABAJO YA QUE NO ESTABA FAMILIARIZADA CON
	UN PROGRAMA ASI.
-	

CALIFICACIÓN:

Solución de problemas y Algoritmos

Objetivo:

Elaborar algoritmos correctos y eficientes en la solución de problemas siguiendo las etapas de Análisis y Diseño pertenecientes al Ciclo de vida del software.

Actividades:

- A partir del enunciado de un problema, identificar el conjunto de entrada y el conjunto de salida.
- Elaborar la prueba de escritorio de uno de los ejercicios en la guía de la practica.
- Realizar los algoritmos ya hechos en la libreta y hacerles una prueba de escritorio al igual que su algoritmo:
 - o Ejercio de la practica
 - o Formula cuadratica
 - Factorial
 - o 2>Y<2

Introducción:

• Ejercicio 1

PROBLEMA: Seguir el algoritmo para obtener una figura

ENTRADA: Hoja tamaño carta en limpio, regla y lápiz.

SALIDA: Figura correcta.

Algoritmo:

- 1. Dibuja una V invertida. Empieza desde el lado izquierdo, sube, y baja hacia el lado derecho, no levantes el lápiz.
- 2. Ahora dibuja una línea en ángulo ascendente hacia la izquierda. Debe cruzar la primera línea más o menos a 1/3 de la altura. Todavía no levantes el lápiz del papel.
- 3. Ahora, dibuja una línea horizontal hacia la derecha. Debe cruzar la V invertida más o menos a 2/3 de la altura total. Sigue sin levantar el lápiz.
- 4. Dibuja una línea en un ángulo descendente hasta el punto de inicio. Las líneas deben unirse.
- 5. Ahora ya puedes levantar el lápiz del papel. Has terminado la estrella de 5 puntas.

Prueba de escritorio:

• Ejercicio 2

PROBLEMA: calcular la factorial de los números 1-10

ENTRADA: m= 1=10

SALIDA: m! **Algoritmo:**

1°inicio

2°definir **contador**=1 y **factorial**=1

3°definir que **contador*contador≤m**

4°si **0<m<11** regresar al paso dos y mandar mensaje "no esta en el rango definido para proseguir con la operación" o si **1≥m≤10** pasar al paso 5

5°ingresar fact=fact*cont(1)

6° guardar resultados

7° repetir pasos 5 y 6 hasta que contador sea iguala m

8°imprimir resultado

9° fin

Prueba de escritorio:

M = 6!

1≥6≤10

Fact(1)*cont(1)=1

Fact(2)*cont(1)=2

Fact(3)*cont(2)=6

Fact(4)*cont(6)=24

Fact(5)*cont(24)=120

Fact(6)*cont(120)=720

6! = 720

• Ejercicio 3

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

PROBLEMA: resolver la ecuación de segundo grado

ENTRADA: a, b, c (reales)

SALIDA: $X_1 Y X_2$

Algoritmo:

- 1. Inicio
- 2. Pedir valor de "a"
- 3. De ser a≠0 regresar al paso dos y mandar mensaje "indeterminación", de no ser asi continuar al paso 4
- 4. Pedir valor de "b" y "C"
- 5. Realizar operación: d=b²-4ac
- 6. Si d>o sigue la operación: $Z = \sqrt{d}(-1)$

6.1 hacer la operación:
$$X_1 = \frac{-b}{2a} + \frac{Z}{2a}$$
, $X_2 = \frac{-b}{2a} + \frac{Z}{2a}$

7. Si d<0 se realiza la operación: $x = \frac{-b \pm \sqrt{d}}{2a}$

1.1 Hacer que:
$$x_1 = \frac{-b \pm \sqrt{d}}{2a}$$
 y $x_2 = \frac{-b \pm \sqrt{d}}{2a}$

- 8. Mostrar X₁ Y X₂
- 9. Imprimir resultados
- 10. fin

Prueba de escritorio:

$$a=2$$

$$C=2$$

$$D=5^2-4(2)(2)$$

$$d=9$$

$$X_1 = \frac{-5 + \sqrt{9}}{2(2)}$$

$$X_2 = \frac{-5 - \sqrt{9}}{2(2)}$$

$$X_1 = \frac{-5+3}{4}$$

$$X_2 = \frac{-5 - 3}{4}$$

$$X_1 = \frac{-2}{4}$$

$$X_2 = \frac{-8}{4}$$

• Ejercicio 4

PROBLEMA: Resolver una ecuación se y<2 o si y>2

ENTRADA: números reales

SALIDA: x₁ **Algoritmo:**

1°inicio

2° pedir un número real

3°en caso de ser =2 regresar al paso dos y mostrar mensaje "no se puede realizar operación"

Y=1

 4° si y<2 realizar: $x_1=y^2+4y-25$ de no ser asi seguir al paso 5

 5° si y>2 realizar: $x_1=4y^2-3y+0$

6° visualizar resultados de x1

9° imprimir

10° fin

Prueba de escritorio:

$$x_1=4y^2-3y+0$$
 $x_1=1^2+4(1)-25$

$$x_1=4(5)^2-3(5)+0$$
 $x_1=1+4-25$

$$x_1=4(25)-15$$
 $x_1=20$

$$x_1=85$$
 $x_1=20$