

Robust Median Reversion Strategy

Group Name: Alpha

Members: HO Ngok Chao, FENG Tiantian,

HU Mingyue, ZHU Haolin, SU Yulu

Content

- Portfolio Selection
- Median Reversion
- Robust Median Reversion ('RMR')
- RMR Algorithm
- Four other models
- Experiment-1
- Experiment-2
- Conclusion

Challenges

Portfolio Selection

- Efficiently allocate wealth among a set of assets so as to achieve certain financial objectives in the long run.
- A financial market with d assets for n trading periods to be invested.
 - Close price :On the t_{th} period, the asset prices are represented by a close price.
 - Relative price: The change ratio of asset prices.
 - Portfolio strategy: self-financed and no margin/short is allowed, allocate the capital among the d assets.
 - Portfolio cumulative wealth: the wealth increases multiplicatively by the product of relative price and portfolio strategy.

11/10/2018 5

Portfolio Selection

- Close price vector :
 - On the t_{th} period, the close price vector $P_t \in \mathbb{R}^d_+$, and each element p_t^i represents the close price of asset i.
- Relative price vector :
 - $\mathbf{x}_t = (x_t^1, ..., x_t^d) \in R_+^d$ where x_t^i expresses the ratio of close price to last close price of asset j at the t_{th} period, i.e., $x_t^i = p_t^i/p_{t-1}^i$.
- Portfolio Vector :
 - $b_t = (b_t^1, ..., b_t^d)$ where b_t^i represents the proportion of wealth invested in the j_{th} asset.
- Portfolio cumulative wealth :
 - Our initial wealth is S_0 , after n trading period, the portfolio cumulative wealth $S_n(b_1^n, x_1^n) = S_0 \prod_t^T (b_t^T x_t)$.

Mean Reversion

- Estimate the next price relative by a single value prediction based on mean reversion or moving average reversion.
- From the price perspective, they implicitly assume that next price revert to last price.

• $\tilde{x}_{t+1} = \frac{1}{x_t} \Rightarrow \frac{\tilde{P}_{t+1}}{P_t} = \frac{P_{t-1}}{P_t} \Rightarrow \tilde{P}_{t+1} = P_{t-1}$

- Weakness:
 - Single-period mean reversion assumption is not always satisfied in the real world.
 - Data contain a lot of noise and outliers and thus substantially influences the effectiveness of the algorithm and even the final cumulative wealth.

Robust Mean Reversion ('RMR')

- 1st Optimization Problem
 - Considering noise and outliers in the real market data, price distribution has a long tail.
 - Price vector and relative price vector
 - The next price by Robust L_1 -Median Estimator at the end of t^{th} period is $\tilde{P}_{t+1} = L_1 med_{t+1}(\omega) = \mu$, where ω is the window size, μ denotes the L_1 -Median Estimator optimal value of Optimization problems below:
 - $\tilde{\chi}_{t+1}(\omega) = \frac{L_1 \operatorname{med}_{t+1}(\omega)}{P_t} = \frac{\mu}{P_t}$
 - $\mu = argmin_{\mu} \sum_{i=0}^{k-1} ||P_{t-i} \mu||$, where || . || denotes the Euclidean norm.

Robust Mean Reversion ('RMR')

- 2nd Optimization Problem
 - Portfolio Vector

•
$$b_{t+1} = argmin_{b \in \Delta d} \frac{1}{2} ||b - b_t||^2 s.t. b^T \tilde{x}_{t+1} \ge \varepsilon.$$

• The above formulation attempts to find an optimal portfolio by minimizing the deviation from last portfolio b_t under the condition of $b^T \tilde{x}_{t+1} \geq \varepsilon$.

RMR Algorithm

1. Optimization problem $1 \mu = argmin_{\mu} \sum_{i=0}^{k-1} ||P_{t-i} - \mu||$, where $|| \cdot ||$ denotes the Euclidean norm.

Proposition 1. The solution of L_1 -median-MAADM optimization problem 1 is calculated through iteration, and the iteration process is described as:

$$\mu \to T(\mu) = \left(1 - \frac{\eta(\mu)}{\gamma(\mu)}\right)^{+} \tilde{T}(\mu) + \min\left(1, \frac{\eta(\mu)}{\gamma(\mu)}\right) \mu,$$

where

$$\eta(\mu) = \begin{cases} 1 & if \ \mu = \mathbf{p}_{t-i}, \quad i = 0, \dots, k-1 \\ 0 & otherwise \end{cases},$$
$$\gamma(\mu) = \|\tilde{R}(\mu)\|, \quad \tilde{R}(\mu) = \sum_{\mathbf{p}_{t-i} \neq \mu} \frac{\mathbf{p}_{t-i} - \mu}{\|\mathbf{p}_{t-i} - \mu\|},$$
$$\tilde{T}(\mu) = \left\{ \sum_{\mathbf{p}_{t-i} \neq \mu} \frac{1}{\|\mathbf{p}_{t-i} - \mu\|} \right\}^{-1} \sum_{\mathbf{p}_{t-i} \neq \mu} \frac{\mathbf{p}_{t-i}}{\|\mathbf{p}_{t-i} - \mu\|}.$$

- 1: **Input:** data $\mathbf{p}_t, \mathbf{p}_{t-1}, \dots, \mathbf{p}_{t-w+1}$; iteration maximum m; toleration level τ
- 2: **Output:** estimated $\hat{\mathbf{x}}_{t+1}$
- 3: **Procedure:**
- 4: Initialize $\mu_1 = median(\mathbf{p}_t, \mathbf{p}_{t-1}, \dots, \mathbf{p}_{t-w+1})$.
- 5: **for** i = 2 **to** m **do**
- 6: $\mu_i = T(\mu_{i-1})$
- 7: if $\|\mu_{i-1} \mu_i\|_1 \le \tau \|\mu_i\|_1$ then
- 8: break
- 9: end if
- 10: **end for**
- 11: $\hat{\mathbf{p}}_{t+1} = \boldsymbol{\mu}_i$
- 12: $\hat{\mathbf{x}}_{t+1} = \hat{\mathbf{p}}_{t+1}/\mathbf{p}_t$

RMR Algorithm

2. Optimization problem 2 $b_{t+1} = argmin_{b \in \Delta d} \frac{1}{2} ||b - b_t||^2 s.t. b^T \tilde{x}_{t+1} \ge \varepsilon.$

If $\hat{\mathbf{x}}_{t+1}^T \mathbf{b}_t - \varepsilon \geq 0$, then $\mathbf{b} = \mathbf{b}_t$. If $\hat{\mathbf{x}}_{t+1}^T \mathbf{b}_t - \varepsilon < 0$, then

$$L(\mathbf{b}, \alpha, \lambda) = \frac{1}{2} \|\mathbf{b} - \mathbf{b}_t\|^2 + \alpha (\hat{\mathbf{x}}_{t+1}^T \mathbf{b}_t - \varepsilon) + \lambda (\mathbf{b}^T \mathbf{1} - 1)$$
(9)

Solution:

$$\mathbf{b}_{t+1} = \mathbf{b}_t - \alpha_{t+1} (\hat{\mathbf{x}}_{t+1} - \overline{x}_{t+1} \cdot \mathbf{1}),$$

where $\overline{x}_{t+1} = \frac{1}{d} (\mathbf{1} \cdot \hat{\mathbf{x}}_{t+1})$ denotes the average predicted price relative and α_{t+1} is the Lagrangian multiplier calculated as,

$$\alpha_{t+1} = \min \left\{ 0, \frac{\hat{\mathbf{x}}_{t+1}^T \mathbf{b}_t - \epsilon}{\|\hat{\mathbf{x}}_{t+1} - \overline{x}_{t+1} \cdot \mathbf{1}\|^2} \right\}.$$

- 1: **Input:** reversion threshold $\epsilon > 1$; predicted the next price relative vector $\hat{\mathbf{x}}_{t+1}$; current portfolio \mathbf{b}_t ;
- 2: **Output:** next portfolio \mathbf{b}_{t+1}
- 3: Procedure:
- 4: Calculate the following variable:

$$\alpha_{t+1} = \min \left\{ 0, \frac{\hat{\mathbf{x}}_{t+1}^T \mathbf{b}_t - \epsilon}{\|\hat{\mathbf{x}}_{t+1} - \overline{x}_{t+1} \cdot \mathbf{1}\|^2} \right\}$$

5: Update the portfolio:

$$\mathbf{b}_{t+1} = \mathbf{b}_t - \alpha_{t+1} (\hat{\mathbf{x}}_{t+1} - \overline{x}_{t+1} \cdot \mathbf{1})$$

6: Normalize \mathbf{b}_{t+1} : $\mathbf{b}_{t+1} = argmin_{\mathbf{b} \in \Delta_d} \|\mathbf{b} - \mathbf{b}_{t+1}\|^2$

RMR Algorithm

3. Summary

- 1: **Input:** reversion threshold $\epsilon > 1$; iteration maximum m; window size $w \geq 2$; toleration level τ ; market sequence \mathbf{x}_1^n
- 2: **Output:** S_n : Cumulative wealth after nth periods
- 3: Procedure:
- 4: Initialization: $b_1 = \frac{1}{d} \mathbf{1}, S_0 = 1, \mathbf{p}_0 = \mathbf{1}$
- 5: **for** t = 1, 2, ..., n **do**
- 6: Receive stock price: x_t
- 7: Update cumulative return: $S_t = S_{t-1} \times (\mathbf{b}_t \cdot \mathbf{x}_t)$
- 8: Predict the next price relative vector:

$$\hat{\mathbf{x}}_{t+1} = \begin{cases} \frac{L_1 median MAAD M_{t+1}(w)}{\mathsf{p}_t} & \text{MR} \\ \frac{L_1 median HLFB M_{t+1}(w)}{\mathsf{p}_t} & \text{MR-Variant} \end{cases}$$

9: Update the portfolio:

$$\mathbf{b}_{t+1} = RMR(\epsilon, \hat{\mathbf{x}}_{t+1}, \mathbf{b}_t)$$

Four other models

- Best-stock ('BEST')
 - Buys the best stock over the period.
 - Obviously, a hindsight strategy.
- Passive aggressive mean reversion ('PAMR')
 - Estimate the next price relative as the inverse of last price relative
 - Adopt the single-period mean reversion assumption, not satisfied with reality
 - Cannot exempt from the influence of noise and outliers

Four other models

- Online Moving Average Reversion ('OLMAR')
 - Predicts the next price relative using moving averages and explores the multiperiod mean reversion
 - Cannot exempt from the influence of noise and outliers
- Market
 - Buys assets according to a pre-defined weight and holds until the end.
 - In the experiment, we used equal weight.

Assumptions

- 1) Transaction cost:
 - We assume no transaction cost or taxes in this PS model;
- 2) Market liquidity:
 - We assume that one can buy and sell required quantities at last closing price of any given trading period;
- 3) Impact cost:
 - We assume that market behavior is not affected by a PS strategy.

- Parameter Settings for RMR
 - two key parameters
 - ω represents the length of the window, ϵ is about sensitivity parameter.
 - Roughly speaking, the best values for these parameters are often dataset dependent.
 - In the experiments, we simply set these parameters empirically without tuning for each dataset separately.
 - Specifically, for all datasets and experiments, we set ω to 5 and ϵ to 5.

11/10/2018 16

Datasets

Data set	Region	Time Frame	#days	#assets
DJIA	US	14/01/2001 - 14/01-2003	507	30
SP500	US	02/01/1998 - 31/01/2003	1276	25
TSE	CA	04/01/1994 - 31/12/1998	1259	88
MSCI	Global	01/04/2006 - 31/03/2010	1043	24
NYSE(O)	US	03/04-1962 - 31/12/1984	5651	36
NYSE(N)	US	01/01/1985 - 30/06/2010	6431	23

- Performance Measure
 - Portfolio Cumulative Wealth
 - The initial wealth $S_0 = 1$
 - S_n denotes portfolio cumulative wealth at the end of the n_{th} trading day
 - Annualized Percentage Yield (APY)
 - Takes the compounding effect into account
 - $APY = \sqrt[y]{S_n}$ where y is the number of years corresponding to n trading days
 - Winning Ratio (WT)
 - Percentage of cases when the proposed strategy beats the BAH strategy

- Performance Measure
 - Sharpe Ratio
 - Evaluates the risk-adjusted return
 - SR = $(APY-R_f)/\sigma_p$
 - Maximum Drawdown (MDD)
 - Measures the down side risk of different strategies.
 - Calmar Ratios(CR)
 - Indicates performance of a trading strategy concerning the drawdown risk
 - CR = APY/MDD

• The Comparison of APY, WT, Sharpe Ratio, MDD and CR among BEST, OLMAR, PAMR, and RMR strategy.

Experiment 1							
Dataset	Criteria	BEST	OLMAR	PAMR	RMR		
DJIA	APY	0.0901	0.0776	-0.1753	0.6334		
	WT	0.5049	0.5207	0.5187	0.5503		
	SR	0.1174	0.0728	-0.4637	1.1597		
	MDD	0.4187	0.5762	0.7646	0.3469		
	CR	0.2152	0.1346	-0.2293	1.8258		
MSCI	APY	0.1074	1.1783	0.9756	1.0234		
	WT	0.5197	0.6002	0.5916	0.5916		
	SR	0.3391	2.8418	2.5647	2.5128		
	MDD	0.3935	0.4203	0.5528	0.4933		
	CR	0.2730	2.8035	1.7648	2.0747		

- Conclusion
 - RMR strategy is promising and reliable PS technique to achieve high return
 - 1. RMR strategy works very well on almost all the datasets.
 - Compared with the existing mean reversion strategies (PAMR and OLMAR), RMR strategies obtained higher cumulative wealth on the datasets NYSE(O), NYSE(N) and DJA.
 - 3. RMR in combination with ARMA did good job in the original.

Datasets

Data set	Region	Time Frame	#days	#assets
BE500	UK	09/01/1995 - 01/01-2018	5993	435
IBOV	BR	04/01/1995 - 28/12/2017	5988	56
NDX	US	04/01/1995 – 29/12/2017	5995	85
NKY	JP	04/01/1995 – 29/12/2017	5990	213
TWSE	TW	06/01/1995 – 29/12/2017	5992	733

- We divided the time series into four parts deliberately.
- 1995-2000/2001-2006/2007-2009/2010-2017

Total Wealth of Different Strategies in NDX

Total Wealth of Different Strategies in BE500

• The Comparison of APY, WT, Sharpe Ratio, MDD and CR among BEST, OLMAR, PAMR, and RMR strategy.

Experiment 2						
Dataset	Criteria	BEST	OLMAR	PAMR	RMR	
	APY	1.3091	12.0080	8.7290	13.9750	
NDV	WT	0.5013	0.5730	0.5973	0.5775	
NDX (1995-2000)	Sharpe Ratio	1.6342	12.7110	12.1172	15.3026	
(1993-2000)	MDD	0.6651	0.4944	0.3706	0.4133	
	CR	1.9682	24.2886	23.5520	33.8171	
	APY	1.1019	2.6569	1.6890	2.0003	
DEFOO	WT	0.5677	0.5469	0.6094	0.5729	
BE500 (1995-2000)	Sharpe Ratio	2.3713	3.9008	5.2323	3.5157	
(1995-2000)	MDD	0.1994	0.3302	0.1033	0.2134	
	CR	5.5265	8.0456	16.3451	9.3727	

- Improvement:
 - Add transaction cost to observe the performance of RMR.

Experiments-2 (add tc)

- Result Analysis:
 - 1. Because BEST strategy has the lowest turn-over rate, which means the lowest transaction cost, BEST has very good performance.
 - 2. RMR's performance is largely affected by transaction cost and it's suitable for market with low tc, like US.

- Exception BE500 P3
 - Performances during 2017-2018 financial crisis

- Exception IBOV P2
 - Performances in emerging market

Total Wealth of Different Strategies in IBOV

• The Comparison of APY, WT, Sharpe Ratio, MDD and CR among BEST, OLMAR, PAMR, and RMR strategy.

Experiment 2						
Dataset	Criteria	BEST	OLMAR	PAMR	RMR	
	APY	0.7329	0.5293	0.0404	0.4526	
DEFOO	WT	0.5156	0.5075	0.5168	0.5098	
BE500 (2007-2009)	Sharpe Ratio	1.5068	0.4879	0.0007	0.4589	
(2007-2009)	MDD	0.5174	0.8853	0.8016	0.8322	
	CR	1.4167	0.5978	0.0504	0.5439	
	APY	0.7882	0.4424	0.1764	0.3963	
IDOV/	WT	0.4987	0.5160	0.4859	0.5064	
IBOV (2001-2006)	Sharpe Ratio	1.7534	0.8126	0.3260	0.7485	
(2001-2000)	MDD	0.6475	0.5152	0.5903	0.4528	
	CR	1.2173	0.8587	0.2988	0.8753	

- Conclusion
 - 1. RMR's performance is highly impacted by transaction cost.
 - 2. RMR perform well in most markets but there're some exceptions.
 - a) During financial crisis, momentum strategy has better performance.
 - b) Mean reversion strategy did not perform best in emerging market, which lacks market efficiency.

Reference

- D. Huang, J. Zhou, B. Li, S. Hoi, and S. Zhou, "Robust Median Reversion Strategy for Online Portfolio Selection," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2016.
- B. Li and S. C. H. Ho, "On-line portfolio selection with moving average reversion," in Proc. Int. Conf. Mach. Learning, 2012, pp. 273–228.
- B. Li, P. Zhao, S. C. Hoi, and V. Gopalkrishnan, "PAMR: Passive aggressive mean reversion strategy for portfolio selection," Mach. Learn., vol. 87, no. 2, pp. 221–258, May 2012.

Q&A