

planetmath.org

Math for the people, by the people.

Radon-Nikodym theorem

Canonical name RadonNikodymTheorem

Date of creation 2013-03-22 13:26:15 Last modified on 2013-03-22 13:26:15

Owner Koro (127) Last modified by Koro (127)

Numerical id 9

Author Koro (127) Entry type Theorem Classification msc 28A15

Related topic Absolutely Continuous

Related topic BoundedLinearFunctionalsOnLpmu

Related topic MartingaleProofOfTheRadonNikodymTheorem

Related topic BoundedLinearFunctionalsOnLinftymu

Defines Radon-Nikodym derivative

Let μ and ν be two σ -finite measures on the same measurable space (Ω, \mathscr{S}) , such that $\nu \ll \mu$ (i.e. ν is absolutely continuous with respect to μ .) Then there exists a measurable function f, which is nonnegative and finite, such that for each $A \in \mathscr{S}$,

$$\nu(A) = \int_A f d\mu.$$

This function is unique (any other function satisfying these conditions is equal to f μ -almost everywhere,) and it is called the $Radon-Nikodym\ derivative$ of ν with respect to μ , denoted by $f=\frac{d\nu}{d\mu}$.

Remark. The theorem also holds if ν is a signed measure. Even if ν is not σ -finite the theorem holds, with the exception that f is not necessarely finite.

Some properties of the Radon-Nikodym derivative

Let ν , μ , and λ be σ -finite measures in (Ω, \mathcal{S}) .

1. If $\nu \ll \lambda$ and $\mu \ll \lambda$, then

$$\frac{d(\nu + \mu)}{d\lambda} = \frac{d\nu}{d\lambda} + \frac{d\mu}{d\lambda}$$
 μ -almost everywhere;

2. If $\nu \ll \mu \ll \lambda$, then

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \quad \mu\text{-almost everywhere;}$$

3. If $\mu \ll \lambda$ and g is a μ -integrable function, then

$$\int_{\Omega} g d\mu = \int_{\Omega} g \frac{d\mu}{d\lambda} d\lambda;$$

4. If $\mu \ll \nu$ and $\nu \ll \mu$, then

$$\frac{d\mu}{d\nu} = \left(\frac{d\nu}{d\mu}\right)^{-1}.$$