Question Given an infinite collection $A_n, n = 1, 2, ...$ of intervals of the real line, their intersection is defined to be $\bigcap_{n=1}^{\infty} A_n = \{x | (\forall n) (x \in A_n)\}$ Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Prove that your example has the stated property.

Let $A_n = \{x | x \in \mathcal{R}, 0 < x \leq \frac{1}{n}\}, n \in \mathcal{N}$. We shall prove the following claims:

- 1. $A_{n+1} \subset A_n$.
- $2. \ \cap_{n=1}^{\infty} A_n = \emptyset.$

1 Proof of Claim 1

Proof by definition of proper subset.

Clearly, $\frac{1}{n+1} < \frac{1}{n}$. For all $x \in A_{n+1}$, the following inequality holds:

$$0 < x \le \frac{1}{n+1} < \frac{1}{n}$$

This shows that all members of A_{n+1} is contained in A_n by the definition of A_n and A_{n+1} . At the same time, due to the strict inequality, not all members of A_n is contained in A_{n+1} . In particular, for all y that satisfies:

$$\frac{1}{n+1} < y \le \frac{1}{n}$$

 $y \in A_n$ and $y \notin A_{n+1}$. Hence by definition of proper subset, $A_{n+1} \subset A_n$.

2 Lemma 1

For any natural number n,

$$\bigcap_{i=1}^{n} A_i = A_n \tag{1}$$

Proof By mathematical induction.

Initial Step For n = 1, identity (1) reduces to:

$$A_1 = \bigcap_{i=1}^1 A_i = A_1$$

which is true since both sides are equal to A_1 .

Inductive Step Assume identity (1) is true for n:

$$\bigcap_{i=1}^{n} A_i = A_n \tag{2}$$

Take intersection of A_{n+1} on both sides of (2),

$$A_{n+1} \cap (\bigcap_{i=1}^{n} A_i) = A_{n+1} \cap A_n$$

$$\bigcap_{i=1}^{n+1} A_i = A_{n+1} \cap A_n$$
(3)

From the proof of Claim 1, $A_{n+1} \subset A_n$. Since all members of A_{n+1} are contained in A_n , (3) reduces to:

$$\bigcap_{i=1}^{n+1} A_i = A_{n+1} \cap A_n = A_{n+1}$$

which is identity (1) with n+1 in place of n. Hence by the principle of mathematical induction, the identity holds for all $n \in \mathcal{N}$.

3 Lemma 2

$$|\cap_{i=1}^{n+1} A_i| < |\cap_{i=1}^n A_i|$$
 (4)

Proof By Claim 1 and Lemma 1.

From (1),

$$\bigcap_{i=1}^{n} A_i = A_n, \bigcap_{i=1}^{n+1} A_i = A_{n+1}$$

From Claim 1, $|A_{n+1}| < |A_n|$ since A_{n+1} is a proper subset of A_n . Hence,

$$|\cap_{i=1}^{n+1} A_i| = |A_{n+1}| < |A_n| = |\cap_{i=1}^n A_i|$$

4 Lemma 3

$$\lim_{n \to \infty} A_n = \emptyset \tag{5}$$

Proof By definition of limit.

By the definition of A_n , its greatest lower bound is 0 for any n. For any given n, the lowest upper bound of A_n is $\frac{1}{n}$. Clearly, $\lim_{n\to\infty}\frac{1}{n}=0$. Hence,

$$\lim_{n \to \infty} A_n = \{ x | 0 < x \le \lim_{n \to \infty} \frac{1}{n} \} = \{ x | 0 < x \le 0 \}$$

Since no $x \in \mathcal{R}$ can satisfy $0 < x \le 0$, $\lim_{n \to \infty} A_n = \emptyset$.

5 Proof of Claim 2

Proof by definition of limit.

From Lemma 2, since $\bigcap_{i=1}^{n} A_i$ is decreasing in sizes and bound as n increases, the limit for $\bigcap_{n=1}^{\infty} A_n$ exists. By definition of limit,

$$\bigcap_{n=1}^{\infty} A_n = \lim_{n \to \infty} \bigcap_{i=1}^n A_i \tag{6}$$

By Lemmas 1 and 3, (6) reduces to:

$$\bigcap_{n=1}^{\infty} A_n = \lim_{n \to \infty} \bigcap_{i=1}^n A_i = \lim_{n \to \infty} A_n = \emptyset$$
 (7)

In conclusion, $A_n=\{x|x\in\mathcal{R},0< x\leq \frac{1}{n}\}, \forall n\in\mathcal{N}$ have the following properties:

- 1. $A_{n+1} \subset A_n$.
- $2. \cap_{n=1}^{\infty} A_n = \emptyset.$