15.7 **EXERCISES**

- **I–2** Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
- 1. (a) $(2, \pi/4, 1)$
- (b) $(4, -\pi/3, 5)$
- **2.** (a) $(1, \pi, e)$
- (b) $(1, 3\pi/2, 2)$
- 3-4 Change from rectangular to cylindrical coordinates.
- $\boxed{3.}$ (a) (1, -1, 4)
- (b) $(-1, -\sqrt{3}, 2)$
- **4.** (a) $(2\sqrt{3}, 2, -1)$
- (b) (4, -3, 2)
- **5–6** Describe in words the surface whose equation is given.
- 5. $\theta = \pi/4$
- **6.** r = 5
- **7–8** Identify the surface whose equation is given.
- 7. $z = 4 r^2$
- 8. $2r^2 + z^2 = 1$
- **9–10** Write the equations in cylindrical coordinates.
- **9.** (a) $z = x^2 + v^2$
- (b) $x^2 + v^2 = 2v$
- **10.** (a) 3x + 2y + z = 6
- (b) $-x^2 y^2 + z^2 = 1$
- II-I2 Sketch the solid described by the given inequalities.
- **II.** $0 \le r \le 2$, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 1$
- 12. $0 \le \theta \le \pi/2$, $r \le z \le 2$
- 13. A cylindrical shell is 20 cm long, with inner radius 6 cm and outer radius 7 cm. Write inequalities that describe the shell in an appropriate coordinate system. Explain how you have positioned the coordinate system with respect to the shell.
- **14.** Use a graphing device to draw the solid enclosed by the paraboloids $z = x^2 + y^2$ and $z = 5 - x^2 - y^2$.
 - 15-16 Sketch the solid whose volume is given by the integral and evaluate the integral.

 - **15.** $\int_0^4 \int_0^{2\pi} \int_r^4 r \, dz \, d\theta \, dr$ **16.** $\int_0^{\pi/2} \int_0^2 \int_0^{9-r^2} r \, dz \, dr \, d\theta$
 - 17-26 Use cylindrical coordinates.
 - **17.** Evaluate $\iiint_E \sqrt{x^2 + y^2} \ dV$, where *E* is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.
 - **18.** Evaluate $\iiint_E (x^3 + xy^2) dV$, where E is the solid in the first octant that lies beneath the paraboloid $z = 1 - x^2 - y^2$.
 - **19.** Evaluate $\iiint_E e^z dV$, where *E* is enclosed by the paraboloid $z = 1 + x^2 + y^2$, the cylinder $x^2 + y^2 = 5$, and the xy-plane.

- **20.** Evaluate $\iiint_E x \, dV$, where *E* is enclosed by the planes z = 0and z = x + y + 5 and by the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.
- **21.** Evaluate $\iiint_E x^2 dV$, where *E* is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4x^2 + 4y^2$.
- 22. Find the volume of the solid that lies within both the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$.
- **23.** (a) Find the volume of the region E bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 - 3x^2 - 3y^2$.
 - (b) Find the centroid of E (the center of mass in the case where the density is constant).
- **24.** (a) Find the volume of the solid that the cylinder $r = a \cos \theta$ cuts out of the sphere of radius a centered at the origin.
 - (b) Illustrate the solid of part (a) by graphing the sphere and the cylinder on the same screen.
- **25.** Find the mass and center of mass of the solid S bounded by the paraboloid $z = 4x^2 + 4y^2$ and the plane z = a (a > 0) if S has constant density K.
- **26.** Find the mass of a ball *B* given by $x^2 + y^2 + z^2 \le a^2$ if the density at any point is proportional to its distance from the z-axis.
- **27–28** Evaluate the integral by changing to cylindrical coordinates.
- **27.** $\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \ dz \ dx \ dy$

M

- **28.** $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \ dz \ dy \ dx$
- 29. When studying the formation of mountain ranges, geologists estimate the amount of work required to lift a mountain from sea level. Consider a mountain that is essentially in the shape of a right circular cone. Suppose that the weight density of the material in the vicinity of a point P is g(P) and the height is h(P).
 - (a) Find a definite integral that represents the total work done in forming the mountain.
 - (b) Assume that Mount Fuji in Japan is in the shape of a right circular cone with radius 62,000 ft, height 12,400 ft, and density a constant 200 lb/ft3. How much work was done in forming Mount Fuji if the land was initially at sea level?

