

Filter specifications

- ▶ When describing filters, we use the following definitions:
 - Cutoff frequency (one or more)
 - ▶ Bands: Pass band, stop band, transition band
 - Passband ripple
 - Stopband attenuation
 - Filter order
- ► TBD: definitions at whiteboard

Linear-phase FIR filter design using the window method

- Linear-phase FIR filter design using the window method
 - = A filter design method operating in time domain, based on truncating the impulse response h[n]
- Step 1: Determine the ideal impulse response
 - Consider the ideal transfer function $H_d(\omega)$, in modulus.
 - Initially, consider the ideal phase to be 0, $\angle H_d(\omega) = 0$.
 - Example: for a low-pass filter, ideal = rectangle
 - ► Note: also consider the negative frequency (left-side)
 - ▶ Use the inverse IDFT to compute the ideal $h_d[n]$
 - ▶ In general the obtained $h_d[n]$ is infinitely long and bilateral
 - For a low-pass filter:

$$h_i[n] = \frac{\sin(\omega_c n)}{\pi n}$$

FIR filter design using the window method

- ► Step 2: Truncate
 - Truncate the impulse response $h_d[n]$, by multiplying with a finite-length window function w[n]

The window must be bilateral and symmetrical.

The window length depends on the desired order.

$$h_{zp}[n] = h[i] \cdot w[n]$$

- ► All the consideration related to windowing of a signal apply (see lectures on DFT):
 - ▶ Windowing changes signal, every Dirac gets fatter ("spectral leakage"):
 - central lobe
 - secondary lobes
 - ▶ Different windows (recatangular, Hamming, Kaiser, etc) = different tradeoff between central lobe width and secondary lobes height

FIR filter design using the window method

- ► The resulting impulse response is:
 - ► finite-length (FIR) (good)
 - \triangleright zero-phase, non-causal (h[n] is bilateral and symmetrical)
- **Causal**: To make the filter causal, delay h[n] such that it starts at 0:
 - ▶ This implies a linear phase $\angle H(\omega) = -\frac{M}{2}\omega$

$$h[n] = h_{zf}[n - M/2]$$

$$h[n] = 0$$
 for $n \le 0$

FIR filter design using the window method

- ▶ Step 3: Compute obtained $H(\omega)$, check specifications
 - The resulting filter might not obey the required specs
 - ► Scaling: scale the coefficients (e.g. make 2 times larger) to ensure a certain gain, e.g.

$$H(0) = 1$$

▶ Using the obtained impulse response h[n], compute the obtained transfer function $H(\omega)$ using the DTFT

$$H(\omega) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

- lacktriangle Check $H(\omega)$ against specs, adjust and iterate the design process if needed
- ▶ The only parameters available for this method:
 - ▶ the length of the window
 - the type of the window
- Specs needed:

Example

 \blacktriangleright Use the window method to design a low-pass FIR of order 5, with cutoff frequency ω

FIR filter design using frequency sampling

- ► FIR filter design using frequency sampling method
 - = A filter design method operating in frequency domain, ensuring that the DFT of the filter is as desired
- Start from the DFT formula:

$$H[k] = \sum_{n=0}^{M} h[n] e^{-j2\pi \frac{k}{M}n}$$

Let the desired filter order be M-1, i.e. we want a filter having h[n] with M coefficients

FIR filter design using frequency sampling

▶ We impose certain desired values for H[k]:

$$H[k] = H_d[k]$$

- Example: at whiteboard
- Expanding the DFT, we have:

$$H[k] = \sum_{n=0}^{M} h[n]e^{-j2\pi \frac{k}{M}n} = H_d[k]$$

- \blacktriangleright Viewed with respect to h[n], this is a system of equations with:
 - ► M unknowns h[n]
 - M equations
- ▶ Solve and obtain the resulting h[n]

FIR filter design using frequency sampling

Discussion: TBD