1. Problem Statement

To create a model to predict Chronic Kidney Disease.

2. Basic Info About the Dataset

The dataset has 399 rows and 25 columns. It has the complete details about a patient to predict the Chronic Kidney Disease occurrence in future.

3. Pre-Processing Method

The dataset has string data, so to convert the nominal data to ordinal data, **one-hot encoding** has been used in the dataset.

4. Algorithms used:

- Decision Tree
- Random Forest Classifier
- SVC
- Logistic Regression
- KNNeighbors
- Naive Bayes
- GaussianNB
 - MultinomialNB
 - ComplementNB
 - o BernoulliNB

5. Algorithm values:

Algorithm Name	confusion_ma trix		classif	Best Parameter			
Decision Tree	[[44 1] [0 75]]	0 1 accuracy macro avg weighted avg	precision 1.00 0.99 0.99	recall 0.98 1.00 0.99 0.99	f1-score 0.99 0.99 0.99 0.99	support 45 75 120 120 120	{'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 200}

Random Forest Classifier SVC	[[44 1] [1 74]] [[44 1] [4 71]]	0 1 accuracy macro avg weighted avg 0 1 accuracy macro avg weighted avg	precision 0.98 0.99 0.98 0.98 precision 0.92 0.99 0.95 0.96	recall f	1-score si 0.98 0.99 0.98 0.98 0.98 0.98 f1-score 0.95 0.97 0.96 0.96	upport 45 75 120 120 120 120 support 45 75 120 120 120 120	{'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 500} kernel= 'linear', gamma ='scale',C = 10
Logistic Regression	[[43 2] [0 75]]	0 1 accuracy macro avg weighted avg	precision 1.00 0.97 0.99 0.98	recall 0.96 1.00 0.98 0.98	f1-score 0.98 0.99 0.98 0.98	support 45 75 120 120 120	{'penalty': 'l2', 'solver': 'liblinear'}
KNNeighbors	[[41 4] [26 49]]	0 1 accuracy macro avg weighted avg	precision 0.61 0.92 0.77 0.81	recall 0.91 0.65 0.78 0.75	f1-score 0.73 0.77 0.75 0.75 0.75	support 45 75 120 120 120	n_neighbors=5,metric= 'minkowski', p=2
			Naive B	ayes			
GaussianNB	[[45 0] [2 73]]	0 1 accuracy macro avg weighted avg	precision 0.96 1.00 0.98 0.98	recall 1.00 0.97 0.99 0.98	f1-score 0.98 0.99 0.98 0.98	support 45 75 120 120 120	
MultinomialNB	[[44 1] [22 53]]	0 1 accuracy macro avg weighted avg	precision 0.67 0.98 0.82 0.86	recall 0.98 0.71 0.84 0.81	f1-score 0.79 0.82 0.81 0.81	support 45 75 120 120 120	

			precision	recall	f1-score	support
		0	0.67	0.98	0.79	45
	[[44 1]	1	0.98	0.71	0.82	75
ComplementNB	[22 53]]	accuracy			0.81	120
		macro avg	0.82	0.84	0.81	120
		weighted avg	0.86	0.81	0.81	120
			precision	recall	f1-score	support
		0	0.85	1.00	0.92	45
D	[[45 0]	1	1.00	0.89	0.94	75
BernoulliNB	[8 67]]	accuracy			0.93	120
	- -	macro avg	0.92	0.95	0.93	120
		weighted avg	0.94	0.93	0.93	120

6. Final Model & Values

Algorithm	Decision Tree							
Confusion Matrix	[[44 1] [0 75]]							
Classification Report		precision	recall	f1-score	support			
	0	1.00	0.98	0.99	45			
	1	0.99	1.00	0.99	75			
	accuracy			0.99	120			
	macro avg	0.99	0.99	0.99	120			
	weighted avg	0.99	0.99	0.99	120			
Best Parameter	{'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 200}							