MTH 327h Honors Analysis I, Fall 2023 Homework 2

Problem 1 Which of the following formulas define the **distance** on \mathbb{R}^1 :

- (a) $d(x,y) = (x-y)^2$;
- (b) $d(x,y) = |x-y|^{1/2}$;
- (c) $d(x,y) = e^{|x-y|} 1$.

Problem 2 Consider the set C^1 —the unit circle. We parameterize points $x(\varphi)$ on the circle by the angle $\varphi \in [0, 2\pi]$ with $x(\varphi + 2\pi) = x(\varphi)$. Define the distance d(x, y) between two points x and y on the circle C^1 as the length of the shortest path along the circle between these two points. Draw the graph of the distance depending on the angle φ between points on the circle

Problem 3 Construct a bounded set having exactly three limit points.

Problem 4 Prove that any point of an open subset $e \subset \mathbb{R}$ is a limit point of E.

Problem 5 Let the **boundary** ∂E of a subset $E \subset \mathbb{R}$ be $\partial E = \overline{E} \backslash E^o$.

- (a) Prove that ∂E is closed. [You may want to use that $A \setminus B = A \cap B^c$.]
- (b) Construct a subset E with $\partial E = \{1/n, n \in \mathbb{N}\} \cup \{0\}$.
- (c) Can a boundary of a subset E be $\partial E = \{1/n, n \in \mathbb{N}\}$? Explain.

Problem 6 Is it true that $\overline{(\overline{E})^c} = (E^o)^c$? If so, prove it, if not, provide a counterexample.

Problem 7

(a) Prove that, for any set I of indices α , if $\bigcup_{\alpha \in I} A_{\alpha}$ is bounded above, then

$$\sup \left(\bigcup_{\alpha \in I} A_{\alpha} \right) = \sup \left\{ \sup A_{\alpha}, \ \alpha \in I \right\}$$

(b) Is it true that if A_n are bounded, ... $A_n \subseteq A_{n-1} \subseteq \cdots \subseteq A_2 \subseteq A_1$, and $\bigcap_{n=1}^{\infty} A_n$ is nonempty then $\sup \left(\bigcap_{n=1}^{\infty} A_{\alpha}\right) = \inf \{\sup A_n, n \in \mathbb{N}\}$? If true, prove it, if not, provide a counterexample.

Problem 8* Prove that **any** subset of \mathbb{R} containing only isolated points is at most countable.

1

[Hint: use the Lindelöf theorem on countable covering and construct a "clever" covering.]