

PH-103: Physics-I

Dr. Manas Kumar Sarangi

Office Hours: Block-IV (Room 223)

Mon & Tue: 16:00-18:00

Email: mksarangi@iitp.ac.in

1

Introduction

- 1. Co-ordinate System
- 2. Mathematical Formulation
- 3. Work-Energy Theorem
- 4. Rotation about fixed axis
- 5. Rigid body motion
- 6. Oscillation
- 7. Introductory Wave Theory
- 8. Failure of Classical Mechanics
- 9. Introductory Quantum Mechanics

Textbooks and Reference

Textbooks:

- > D. Kleppner and R. J. Kolenkow, An introduction to Mechanics
- > David Morin, Introduction to Classical Mechanics
- > Eyvind H. Wichmann, Berkeley Physics Course Vol 4: Quantum physics

References:

- > R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lecture in Physics, Vol I
- > R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lecture in Physics, Vol III,
- > R. Eisberg and R. Resnick, Quantum Physics of atoms, molecules, solids, nuclei and particles
- > J. Dekker, Solid State Physics
- > David J. Griffith, Introduction to Quantum Mechanics.
- > B.H. Bransden & C.J. Joachain, Quantum Mechanics.

Evaluation

Total: 100

Mid Term: 30

End Term: 40

Quiz (2) + Tutorial: 20 + 10

Class Home Work Problem

Course Instructor:

Dr Neha Shah (nehashah@iitp.ac.in)

Dr Manas K Sarangi (<u>mksarangi@iitp.ac.in</u>)

Tutorial Instructor:

Dr. Jobin Jose

Dr. Raghavan K Eshwaran

Office Hours:

Block-IV (Room 223 & 222)

Mon & Tue: 16:00-18:00

Choice of Co-ordinate systems

Cartesian Co-ordinates: Line, area and volume element

Plane-Polar Co-ordinates: Unit vectors, transformations, Rate of change, area element and volume element

Cylindrical Co-ordinates: Unit vectors and its transformations, Rate of change, line, area and volume element

Spherical Polar Co-ordinates: Unit vectors and its transformations, Rate of change, line, area and volume element

Why do we need different coordinate system?

starting in November and lasting through about May.

Why do we need different coordinate system?

Buckyball C₆₀

Carbon nanotubes

Orthogonal Coordinate Systems:

1. Cartesian Coordinates

Or

Rectangular Coordinates

P(x, y, z)

2. Cylindrical Coordinates

P (r, Φ, z)

X=r cos Φ, Y=r sin Φ, Z=z

3. Spherical Coordinates

P (r, θ, Φ)

X=r sin θ cos Φ, Y=r sin θ sin Φ, Z=z cos θ

Why do we need different coordinate system?

Cartesian Co-ordinates

A coordinate system consists of four basic elements:

- 1) Choice of origin
- 2) Choice of axes
- 3) Choice of positive direction for each axis
- 4) Choice of unit vectors for each axis

$$\vec{r} = r_x \hat{e}_x + r_y \hat{e}_y + r_z \hat{e}_z$$

Cartesian Co-ordinates

$$d\vec{s} = dx\hat{e}_x + dy\hat{e}_y + dz\hat{e}_z$$

Cartesian Co-ordinates

Infinitesimal Area element

$$\vec{dA} = dxdz\hat{e}_y$$

Cartesian Coordinates

Infinitesimal Volume element

$$dV = dxdydz$$

Plane Polar Coordinates

$$x = r\cos(\theta)$$

$$y = r \sin(\theta)$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \left(\frac{y}{x}\right)$$

What is \hat{e}_r and \hat{e}_{θ} in terms of \hat{e}_x and \hat{e}_y ?

$$\hat{e}_r = \hat{e}_x \cos(\theta) + \hat{e}_y \sin(\theta)$$

$$\hat{e}_{\theta} = -\hat{e}_{x} \sin(\theta) + \hat{e}_{y} \cos(\theta)$$

What is \hat{e}_x and \hat{e}_v in terms of \hat{e}_r and \hat{e}_θ ?

$$\hat{e}_x = \hat{e}_r \cos(\theta) - \hat{e}_\theta \sin(\theta)$$

$$\hat{e}_{v} = \hat{e}_{r} \sin(\theta) + \hat{e}_{\theta} \cos(\theta)$$

HW: Verify
$$\hat{e}_{\theta}$$
. $\hat{e}_{r} = 0$

Above vector in Polar Co-ordinates is represented as

$$\vec{r} = r\hat{e}_r$$

Motion in Plane Polar Coordinates

Cartesian coordinate system: Constant unit vectors

Plane polar coordinate system: Varying unit vectors

$\frac{d\hat{e}_r}{dt}$ through a geometrical consideration

$$\Delta \hat{e}_r = \Delta \theta \hat{e}_\theta$$

$$\frac{d\hat{e}_r}{d\theta} = \hat{e}_\theta$$

$$\frac{d\hat{e}_r}{d\theta} \approx \lim_{\Delta\theta \to 0} \frac{\Delta\hat{e}_r}{\Delta\theta}$$

Change in unit vectors in Plane Polar Coordinates

$$\Delta \hat{e}_r = \Delta \theta \hat{e}_\theta$$

$$\frac{d\hat{e}_r}{d\theta} = \hat{e}_\theta$$

What about
$$\frac{d\hat{e}_r}{dr}$$

$$\frac{d\hat{e}_r}{d\theta} = \hat{e}_\theta$$

$$\frac{d\hat{e}_r}{dr} = 0$$

Change in unit vectors in Plane Polar Coordinates

$$\frac{d\hat{e}_{\boldsymbol{\theta}}}{d\boldsymbol{\theta}}$$

$$\frac{d\hat{e}_{\theta}}{dr} = 0$$

HW: Use the geometrical consideration to get relation for \hat{e}_{θ} .

$$\hat{e}_r = \hat{e}_x \cos(\theta) + \hat{e}_y \sin(\theta)$$
$$\hat{e}_\theta = -\hat{e}_x \sin(\theta) + \hat{e}_y \cos(\theta)$$

Change in unit vectors

$$\frac{d\hat{e}_r}{d\theta} = \hat{e}_\theta$$

$$\frac{d\hat{e}_r}{dr} = 0$$

$$\frac{d\hat{e}_{\theta}}{d\theta} = -\hat{e}_{r}$$

$$\frac{d\hat{e}_{\theta}}{dr} = 0$$

Elemental area in plane polar coordinates

Cylindrical Coordinate System

Transformation of coordinates and unit vectors

$$x = \rho \cos(\phi)$$
$$y = \rho \sin(\phi)$$
$$z = z$$

$$\rho = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1} \left(\frac{y}{x}\right)$$

$$z = z$$

$$\hat{e}_{\rho} = \hat{e}_{x} \cos(\phi) + \hat{e}_{y} \sin(\phi) + 0\hat{e}_{z}$$

$$\hat{e}_{\phi} = -\hat{e}_{x} \sin(\phi) + \hat{e}_{y} \cos(\phi) + 0\hat{e}_{z}$$

$$\hat{e}_{z} = \hat{e}_{z}$$

$$\frac{d\hat{e}_{\rho}}{d\phi} = \hat{e}_{\phi}$$

$$\frac{d\hat{e}_{\rho}}{dr} = 0$$

$$\frac{d\hat{e}_{\rho}}{dz} = 0$$

$$\frac{d\hat{e}_{\phi}}{d\phi} = -\hat{e}_{\rho}$$

$$\frac{d\hat{e}_{\phi}}{d\rho} = 0$$

$$\frac{d\hat{e}_{\phi}}{d\rho} = 0$$

Derivatives of unit vectors

Infinitesimal line element

Infinitesimal area element

Infinitesimal Volume element

Domain of integration

Spherical Polar Coordinate System

Transformation of Coordinates

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$$

$$\phi = \tan^{-1} \left(\frac{y}{x} \right)$$

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

Transformation of Unit Vectors

