- Error/noise in training data (e.g., 2nd training example wrongly labeled as -ve)?
 - Hypotheses inconsistent with 2nd example removed (including target concept *c*)
 - S and G reduced to \emptyset with sufficiently large data
- Insufficiently expressive hypothesis representation \rightarrow biased hypothesis space $\rightarrow c \notin H$? S and G also reduced to \emptyset with sufficiently large data

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Cool	Change	Yes
2	Cloudy	Warm	Normal	Strong	Cool	Change	Yes
3	Rainy	Warm	Normal	Strong	Cool	Change	No

- What input instance should an active learner query next for a training example?
 - Query input instance (e.g., \(Sunny, Warm, Normal, Light, Warm, Same \() \) that satisfies exactly half of hypotheses in version space (if possible)
 - Version space reduces by half with each training example, hence requiring at least $\lceil \log_2(VS_{H,D}) \rceil$ examples to find target concept c

- How to classify new unobserved input instance? What degree of confidence?
 - *(Sunny, Warm, Normal, Strong, Cool, Change)*

Proposition 3. An input instance x satisfies every hypothesis in $VS_{H,D}$ iff x satisfies every member of S.

Proof of Proposition 3

- \Leftarrow Every input instance x that satisfies every $s \in S$ also satisfies every $h \in VS_{H,D}$.
- 1. $\forall s \in S \ s(x) = 1 \text{ is given}$
- 2. $\forall h \in VS_{H,D} \exists s \in S \ h \geq_g s$, by VSRT (page 20)
- 3. $\forall h \in VS_{H,D} \exists s \in S \ (s(x) = 1) \rightarrow (h(x) = 1)$, by Def. of \geq_g
- 4. $\forall h \in VS_{H,D}$ h(x) = 1, by steps 1 and 3
- 5. x satisfies every $h \in VS_{H,D}$
- \Rightarrow Every input instance that satisfies every $h \in VS_{H,D}$ also satisfies every $s \in S$. DIY.

- How to classify new unobserved input instance? What degree of confidence?
 - $\langle Rainy, Cool, Normal, Light, Warm, Same \rangle$

Proposition 4. An input instance x satisfies none of the hypotheses in $VS_{H,D}$ iff x satisfies none of the members of G.

- How to classify new unobserved input instance? What degree of confidence?
 - *(Sunny, Warm, Normal, Light, Warm, Same)*
 - Optimal query (same input instance as that on page 29)

- How to classify new unobserved input instance? What degree of confidence?
 - *\langle Sunny, Cold, Normal, Strong, Warm, Same \rangle*
 - Majority vote is the most probable classification, assuming all hypotheses in *H* are equally probable *a priori*

An Unbiased Learner

Intuition. Choose *H* that can express every teachable concept (i.e., *H* is the power set of *X*)

- 1. Consider H' = disjunctions, conjunctions, negations of our earlier hypotheses in H for EnjoySport task:
 - e.g., $\langle x_1, 1 \rangle$, $\langle x_2, 1 \rangle$, $\langle x_3, 1 \rangle$, $\langle x_4, 0 \rangle$, $\langle x_5, 0 \rangle$
 - $S \leftarrow ?$
 - $G \leftarrow ?$
- 2. Need training examples for every input instance in *X* to converge to the target concept

Limitation. Cannot classify new unobserved input instances (aka generalize beyond observed training examples)

Inductive Bias

Given

- Concept learning algorithm L
- Input instances X, unknown target concept c
- Noise-free training examples $D_c = \{\langle x_k, c(x_k) \rangle\}_{k=1, ..., n}$

Let $L(x, D_c)$ denote the classification of input instance x by L after learning from training examples D_c .

Definition. The **inductive bias** of L is any minimal set of assertions B s.t. for any target concept c and corresponding training examples D_c ,

$$\forall x \in X \ (B \land D_c \land x) \vDash (c(x) = L(x, D_c)) \ .$$

Inductive Bias of Candidate-Elimination

Inductive bias of Candidate-Elimination. $B = \{c \in H\}$.

Assumption. Candidate-Elimination outputs a classification $L(x, D_c)$ of input instance x if this vote among hypotheses in VS_{H,D_c} is unanimously +ve or –ve, and does not output a classification otherwise.

- 1. If $c \in H$, then $c \in VS_{H,D_c}$ since c is consistent with D_c , by Def. of version space (page 17)
- 2. If L outputs $L(x, D_c)$, then $h(x) = L(x, D_c)$ for every $h \in VS_{H,D_c}$ due to the above assumption, including $c \in VS_{H,D_c}$, by step 1
- 3. $c(x) = L(x, D_c)$

Inductive vs. Deductive Inference

Comparing Learners with Different Inductive Biases

- Rote-Learner. Store examples & classify input instance *x* iff it matches that of previously observed example. No inductive bias
- Candidate-Elimination. Inductive bias: $c \in H$
- Find-S. Inductive bias: $c \in H$ and all instances are –ve unless the opposite is entailed by its other knowledge

Summary

- Concept learning as search through *H*
- General-to-specific ordering over *H*
- Candidate elimination algorithm
- Boundaries S and G characterize learner's uncertainty
- Active learner can generate informative queries
- Stronger inductive bias allows classification of greater proportion of unobserved input instances
- Inductive learner can be modeled by an equivalent deductive inference system