

Introduction aux problèmes d'ordonnancement

Mohamed Ali ALOULOU

LAMSADE
Université Paris Dauphine
E-mail : aloulou@lamsade.dauphine.fr

28 novembre 2005

28 novembre 2005

Plan

Plan du cours

- 1 Définition et formulation du problème d'odonnancement
- 2 Ordonnancement de projet : rappels et extensions
- 3 Ordonnancement d'ateliers : contexte et classification
- 4 Ordonnancement d'ateliers : méthodes de résolution

C'est quoi l'ordonnancement?

Domaines

Ordonnancement en GdP

Contraintes en

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Partie 1 : Définition et formulation du problème d'odonnancement

- 1 C'est quoi l'ordonnancement?
- 2 Quelques domaines concernés par la fonction ordonnancement
- 3 La fonction ordonnancement dans la gestion de la prodution
- 4 Contraintes rencontrées en ordonnancement
 - Contraintes de potentiel
 - Contraintes disjonctives
 - Contraintes cumulatives
- 5 Formulation mathématique

28 novembre 2005

Plai

C'est quoi l'ordonnancement?

Domaine

Ordonnancement en GdP

Contraintes en

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Ordonnancer?

Définition

Le problème d'ordonnancement consiste à organiser dans le temps la réalisation d'un ensemble de tâches, compte tenu de contraintes temporelles (délais, contraintes d'enchaînements, ...) et de contraintes portant sur l'utilisation et la disponibilité des ressources requises.

- Un ensemble de tâches
- Un environnement de ressources pour effectuer les tâches
- Des contraintes sur les tâches et les ressources
- Un critère d'optimisation
- ⇒ Déterminer les dates d'execution des tâches

C'est quoi l'ordonnancement?

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Domaines concernés

Plai

C'est quoi l'ordonnancement?

Domaine

Ordonnancement en GdP

Contraintes en ordonnancemen

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

La gestion de la production [Giard 2003]

La gestion de production a pour objet la recherche d'une organisation efficace de la production des biens et des services

3 catégories pour classer les décisions en gestion de la production :

- les décisions stratégiques : politique long terme de l'entreprise
- les décisions tactiques : décisions à moyen terme
 - planification de la production
 - plan de transport
- les décisions opérationnelles : court terme
 - gestion des stocks
 - ordonnancement
 - pilotage informatique en temps réel

C'est quoi

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes rencontrées en ordonnancement

- technologiques : une tâche ne peut débuter que lorsque d'autres sont achevées
- commerciales : certaines dates doivent être achevées pour une date fixée
- matérielles : une machine ne peut traiter qu'une machine à la fois
- de main d'oeuvre :effectif limité
- financières : budget limité

C'est quoi l'ordonnancement?

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes rencontrées en ordonnancement

- technologiques : une tâche ne peut débuter que lorsque d'autres sont achevées
- commerciales : certaines dates doivent être achevées pour une date fixée
- matérielles : une machine ne peut traiter qu'une machine à la fois
- de main d'oeuvre :effectif limité
- financières : budget limité

C'est quoi

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes rencontrées en ordonnancement

- technologiques : une tâche ne peut débuter que lorsque d'autres sont achevées
- commerciales : certaines dates doivent être achevées pour une date fixée
- matérielles : une machine ne peut traiter qu'une machine à la fois
- de main d'oeuvre :effectif limité
- financières : budget limité

C'est quoi l'ordonnancement?

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes rencontrées en ordonnancement

- technologiques : une tâche ne peut débuter que lorsque d'autres sont achevées
- commerciales : certaines dates doivent être achevées pour une date fixée
- matérielles : une machine ne peut traiter qu'une machine à la fois
- de main d'oeuvre :effectif limité
- financières : budget limité

C'est quoi l'ordonnancement?

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes rencontrées en ordonnancement

- technologiques : une tâche ne peut débuter que lorsque d'autres sont achevées
- commerciales : certaines dates doivent être achevées pour une date fixée
- matérielles : une machine ne peut traiter qu'une machine à la fois
- de main d'oeuvre :effectif limité
- financières : budget limité

C'est quoi l'ordonnancement?

omaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Formalisation des contraintes

- Contraintes potentielles (ou de potentiels)
- 2 Contraintes disjonctives
- 3 Contraintes cumulaives

.

C'est quoi l'ordonnancement?

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes potentielles

Notation : t_j : date de début de la tâche j, p_j sa durée

Forme générale : $t_i - t_i \ge a_{ij}$

- Localisation temporelle : *j* ne peut débuter avant une certaine date (livraison de matière première, conditions climatiques,...)
- Contrainte de délai : j doit être terminée avant une certaine date
- Contrainte de succession

C'est quoi l'ordonnancement?

Domaine

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes potentielles

Notation : t_i : date de début de la tâche j, p_i sa durée

Forme générale : $t_j - t_i \ge a_{ij}$

- Localisation temporelle : *j* ne peut débuter avant une certaine date (livraison de matière première, conditions climatiques,...)
- Contrainte de délai : j doit être terminée avant une certaine date
- Contrainte de succession
 - succession simple
 - succession avec attente
 - succession avec chevauchement
 - succesion immédiate

C'est quoi l'ordonnancement?

Domaine:

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes potentielles

Notation : t_j : date de début de la tâche j, p_j sa durée

Forme générale : $t_j - t_i \ge a_{ij}$

- Localisation temporelle : *j* ne peut débuter avant une certaine date (livraison de matière première, conditions climatiques,...)
- Contrainte de délai : j doit être terminée avant une certaine date
- Contrainte de succession
 - succession simple
 - succession avec attente
 - succession avec chevauchement
 - succesion immédiate

C'est quoi l'ordonnancement?

Domaine

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes potentielles

Notation : t_j : date de début de la tâche j, p_j sa durée

Forme générale : $t_j - t_i \ge a_{ij}$

- Localisation temporelle : *j* ne peut débuter avant une certaine date (livraison de matière première, conditions climatiques,...)
- Contrainte de délai : j doit être terminée avant une certaine date
- Contrainte de succession
 - succession simple
 - succession avec attente
 - succession avec chevauchement
 - succesion immédiate

C'est quoi

Domaines

Ordonnancement en GdP

Contraintes en ordonnancement

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Contraintes disjonctives

Deux tâches i et j sont en disjonction si elles ne peuvent être exécutées simultanément

 \Longrightarrow Les intervalles d'exécution des tâches disjonctives sont disjoints : $]t_i,t_i+p_i[\cap]t_j,t_j+p_j[=\emptyset$

Disjonction d'inégalités de potentiels

$$t_j - t_i \ge p_i$$
 ou $t_i - t_j \ge p_j$

C'est quoi l'ordonnancement?

Ordonnancement en

Contraintes en

Contraintes de potentiel Contraintes cumulatives

mathématique

Contraintes cumulatives

C'est une généralisation des contraintes disjonctives

Exemple: On a deux grues et 5 tâches nécessitant une grue sont candidates au même moment Soit

- $\blacksquare w_k(t)$ la quantité de moyen k disponible à t.
- \blacksquare $w_{ik}(t)$ la quantité de moyen k nécessaire pour exécuter i à t.

Si

$$\sum_{i \in S} w_{ik}(t) \le w_k(t)$$

alors les tâches de S peuvent être exécutées simultanément à t**sinon** les tâches de S sont en disjonction

C'est quoi l'ordonnancement ?

Domaines

Ordonnancement en GdP

Contraintes en ordonnancemen

Contraintes de potentiel Contraintes disjonctives Contraintes cumulatives

Formulation mathématique

Formulation mathématique

n tâches à exécuter $+\ 2$ tâches fictives 0 et n+1 de durées nulles.

Déterminer $(t_0,t_1,\ldots,t_n,t_{n+1})$ de façon à Minimiser $f(t_0,t_1,\ldots,t_n,t_{n+1})$ s.c.

- **1** Contraintes de potentiel : $t_j t_i \ge a_{ij}$
- **2** Contraintes disjonctives : $t_j t_i \ge p_i$ ou $t_i t_j \ge p_j$
- 3 Contraintes cumulatives (idem)
- 4 Contraintes de non négativité : $t_0, t_1, \ldots, t_n, t_{n+1} \geq 0$

f est fonction des dates de début (ou de fin des tâches), par exemple, $f(t_0,t_1,\ldots,t_n,t_{n+1})=t_{n+1}-t_0$

Problème central de l'ordonnancement : ressources illimitées

Cas général : ressources limitées

Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Partie 2 : Ordonnancement de projet – rappels et extensions

- 6 Problème central de l'ordonnancement : ressources illimitées
 - Définition
 - Modélisation avec un graphe potentiels-tâches
 - Recherche d'ordonnancement admissible
- 7 Cas général : ressources limitées
 - Problématique
 - Résolution exacte
 - Approche simple de résolution : alogrithme de liste
- 8 Cas de ressources financières
 - Problématique
 - L'offre et la demande
 - Algorithme de décalage

Problème central de l'ordonnancement : ressources illimitées

Définition

Résolution

Cas général : ressources limitées

Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique

L'offre et la demande Algorithme de décalage

Contexte

Un projet consiste en un ensemble de n tâches liées par des contraintes de succession ou de précédence

Objectif

- Calculer la durée minimale du projet, les ressources étant supposées illimitées
 - \implies Minimiser $(t_{n+1}-t_0)$ sous les contraintes de potentiels
- Déterminer les dates de début au plus tôt et au plus tard des tâches
- Déterminer les tâches critiques

28 novembre 2005

Plan

Problème central de l'ordonnancement : ressources illimitées

Définition

Résolution

Cas général : ressources limitées Problématique

Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Formulation mathématique

Déterminer $(t_0,t_1,\ldots,t_n,t_{n+1})$ de façon à Minimiser $(t_{n+1}-t_0)$ s.c.

- **1** Contraintes de potentiel : $t_j t_i \ge a_{ij}$
- 2 Contraintes de non négativité : $t_0, t_1, \ldots, t_n, t_{n+1} \ge 0$

Problème central de l'ordonnancement : ressources illimitées

Définition

Résolution

Cas général : ressources limitées

Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

L'offre et la demande Algorithme de décalage

Formulation mathématique

Déterminer $(t_0,t_1,\ldots,t_n,t_{n+1})$ de façon à Minimiser $(t_{n+1}-t_0)$ s.c.

- f 1 Contraintes de potentiel : $t_j t_i \geq a_{ij}$
- 2 Contraintes de non négativité : $t_0, t_1, \ldots, t_n, t_{n+1} \ge 0$

C'est un PL

MAIS, IL Y A PLUS SIMPLE!

→ Méthode potentiels-tâches et méthode PERT

Problème central de l'ordonnancement : ressources illimitées

Définition Modélisation

Résolution

Cas général : ressources limitées

Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Modélisation avec un graphe potentiels-tâches

On utilise un graphe orienté G = (X, U)

- $\blacksquare X$: ensemble des sommets : tâches
- lacktriangleq U : ensemble des arcs : contraintes de potentiels

$$U = \{(i, j) \in X \times X, \exists \text{ contrainte } t_j - t_i \ge a_{ij}\}$$

La valuation d'un arc (i,j) est $v_{ij}=a_{ij}$

E,J

 $C_{i}F_{i}I_{i}N_{i}O$

0

Plan

Problème central de l'ordonnancement : ressources illimitées Définition

Modélisation

Cas général :

ressources limitées Résolution exacte Algorithme de liste

Cas de ressources financières

L'offre et la demande Algorithme de décalage

Evennela illustratif

0

Fin

Exemple illustratif				
Rubrique	Tâche	Description	Durée	Tâches préc.
	Début	Lancement du projet	0	-
Sols	Α	Dépose ancien carrelage	6	J
	В	Pose carrelage	4	A
	C	Joints carrelage	2	В
Murs	D	Décollage ancien papier	8	J
	E	Pose faïence	6	D
	F	Pose nouveau papier	4	E
Plomberie	G	Dépose ancien évier	1	Début
	H	déplacement arriv. et évac.	6	G
	l	Pose et raccordement Evier	2	M
Mobilier	J	Dépose ancien éléments	4	G
	K	Assemb. caissons et tiroirs	8	Début
	L	Pose éléments bas	6	B,J,H,K
	М	Pose plan de travail	4	L
	N	Etanchéité plan de travail	1	E,M

Pose éléments hauts

Fin du projet

Problème central de l'ordonnancement : ressources illimitées Définition

Modélisation Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Graphe correspondant

28 novembre 2005

Plan

Problème central de l'ordonnancement : ressources illimitées

Définition

Résolution

Cas général : ressources limitées Problématique

Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Recherche d'un ordonnancement réalisable

Théorème

Il existe un ordonnancement réalisable ssi \nexists de circuit de valeur strictement positive dans G

28 novembre 2005

Pla

Problème central de l'ordonnancement : ressources illimitées

Modélisati

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Recherche d'un ordonnancement réalisable

Théorème

Il existe un ordonnancement réalisable ssi \nexists de circuit de valeur strictement positive dans G

Si la condistion d'existence est vérifiée alors, il existe en général plusieurs ordonnancements réalisables de durée minimale.

On distinguera deux cas particuliers :

- 1 Ordonnancement au plus tôt
- 2 Ordonnancement au plus tard (avec une date limite d'achévement du projet imposée)

Problème central de l'ordonnancement : ressources illimitées

Définition Modélisation

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Dates de début au plus tôt (1)

Définition

La date de début au plus tôt \underline{t}_i d'une tâche i est égale à la longueur du plus long chemin de la tâche Début (ou 0) à i.

20 de 117

Plan

Problème central de l'ordonnancement : ressources illimitées

Résolution

Cas général :

ressources limitées
Problématique
Résolution exacte
Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Dates de début au plus tôt (1)

Définition

La date de début au plus tôt \underline{t}_i d'une tâche i est égale à la longueur du plus long chemin de la tâche Début (ou 0) à i.

Théorème

Dans le cas d'un graphe sans circuit, on a

$$\underline{t}_0 = 0$$

$$\underline{t}_i = \max_{j \in \Gamma^{-1}(i)} (\underline{t}_j + v_{j,i})$$

 $v_{j,i}$ est la valuation de l'arc (j,i) (par exemple la durée de j) $\Gamma^{-1}(i)$ est l'ensemble des prédécesseurs de i.

Problème central de l'ordonnancement : ressources illimitées

Définition Modélisation

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique

Problématique L'offre et la demande Algorithme de décalage

Dates de début au plus tôt (2)

Problème central de l'ordonnancement : ressources illimitées Définition

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Dates de début au plus tard (1)

On souhaite terminer le projet au plus tard à une date $D \geq \underline{t}_{n+1}$

Définition

La date de début au plus tard \bar{t}_i de i est la date maximum à laquelle on peut exécuter i sans retarder le chantier (date D).

Théorème

$$\bar{t}_{n+1} = D$$

 $\bar{t}_i = \bar{t}_{n+1}$ - valeur d'un plus long chemin entre i et n+1

Problème central de

l'ordonnancement : ressources illimitées

Modálicati

Résolution

Cas général : ressources limitées

Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Dates de début au plus tard (2)

Théorème

Dans le cas d'un graphe sans circuit, on a

$$\bar{t}_* = D$$

$$\overline{t}_i = \min_{j \in \Gamma(i)} \{ \overline{t}_j - v_{i,j} \}$$

 $v_{i,j}$ est la valuation de l'arc (i,j) (par exemple la durée de i) $\Gamma(i)$ est l'ensemble des successeurs de i.

28 novembre 2005

Plan

Problème central de l'ordonnancement : ressources illimitées

Définition Modélisation

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique

L'offre et la demande Algorithme de décalage

Dates de début au plus tard (3)

Problème central de l'ordonnancement : ressources illimitées

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Marges totales et chemin critique (1)

Définition

La marge totale d'une tâche i est le retard total qu'on peut se permettre sur i sans remettre en cause la date de fin du projet.

$$MT_i = \overline{t}_i - \underline{t}_i$$

Définition

Les tâches critiques ont une marge nulle (par extension si $MT_i = MT_{n+1}$)

⇒ Tout retard sur leur exécution entraîne un retard global sur le projet.

Un chemin est critique s'il relie Début à Fin et s'il ne contient que des tâches critiques.

Problème central de l'ordonnancement : ressources illimitées

Modélisation

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique

L'offre et la demande Algorithme de décalage

Marges totales et chemin critique (2)

Problème central de l'ordonnancement : ressources illimitées

Modélisation

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique

Problématique L'offre et la demande Algorithme de décalage

Marges totales et chemin critique (3)

Problème central de l'ordonnancement : ressources illimitées

Modélisati

Résolution

Cas général : ressources limitées Problématique

Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Marges libres

Définition

La marge libre d'une tâche i est le retard total qu'on peut se permettre sur i sans retarder l'exécution d'une autre tâche (par rapport aux dates de début au plus tôt).

Problème central de l'ordonnancement : ressources illimitées Définition

Résolution

Cas général : ressources limitées

Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Marges libres

Définition

La marge libre d'une tâche i est le retard total qu'on peut se permettre sur i sans retarder l'exécution d'une autre tâche (par rapport aux dates de début au plus tôt).

Théorème

$$ML_i = \min_{j \in \Gamma(i)} \{ \underline{t}_j - \underline{t}_i - v_{i,j} \}$$

 $v_{i,j}$ est la valuation de l'arc (i,j) (par exemple la durée de i) $\Gamma(i)$ est l'ensemble des successeurs de i.

28 novembre 2005

Plan

Problème central de l'ordonnancement : ressources illimitées

Définition

Résolution

Cas général : ressources limitées Problématique

Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Marges libres (1)

Définition

La marge libre d'une tâche i est le retard total qu'on peut se permettre sur i sans retarder l'exécution d'une autre tâche (par rapport aux dates de début au plus tôt).

Problème central de l'ordonnancement : ressources illimitées

Modélisat

Résolution

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Marges libres (1)

Définition

La marge libre d'une tâche i est le retard total qu'on peut se permettre sur i sans retarder l'exécution d'une autre tâche (par rapport aux dates de début au plus tôt).

Théorème

$$ML_i = \min_{i \in \Gamma(i)} \{ \underline{t}_j - \underline{t}_i - v_{i,j} \}$$

 $v_{i,j}$ est la valuation de l'arc (i,j) (par exemple la durée de i) $\Gamma(i)$ est l'ensemble des successeurs de i.

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées

Problématique

Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Problématique

La tâches ${\cal D}$ et ${\cal A}$ doivent être effectuées par la même personne.

⇒ On doit choisir d'effectuer D avant A ou bien A avant D

Problème central de l'ordonnancement : ressources illimitées

Modélisation Résolution

Cas général : ressources limitées Problématique

Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Schéma général

- 1 Enumérer les différentes possibilités :
 - Si A est avant D alors on rajoute un arc de A vers D valué par la durée de A,
 - \blacksquare Si D est avant A alors on rajoute un arc de D vers A valué par la durée de D
- 2 Résoudre les problèmes correspondants
- 3 Choisir la meilleure décision

Problème central de l'ordonnancement : ressources illimitées

Modélisation Résolution

Cas général : ressources limitées Problématique

Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Schéma général

- 1 Enumérer les différentes possibilités :
 - Si A est avant D alors on rajoute un arc de A vers D valué par la durée de A,
 - \blacksquare Si D est avant A alors on rajoute un arc de D vers A valué par la durée de D
- 2 Résoudre les problèmes correspondants
- 3 Choisir la meilleure décision

Lorsque le nombre de tâches partageant les mêmes ressources est trop important le problème devient très difficile à résoudre car le nombre de possibilités devient énorme!

Problème central de l'ordonnancement : ressources illimitées

Cas général : ressources limitées Algorithme de liste

Cas de ressources

Algorithme de décalage

Approche simple de résolution

Algorithme de liste

- Les conflits entre les tâches utilisant la même ressource sont résolus par des règles de priorité statiques ou dynamiques
- Exemples de règles de priorité
 - Plus petite date de début au plus tard d'abord
 - Plus petite date de fin au plus tard d'abord
 - Plus petite durée d'abord
- Les tâches sont ordonnancées en incrémentant le temps à partir de 0.

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique L'offre et la demande Algorithme de décalage

Autre exemple

	Α	В	С	D	E	F	G	Н	I	J	Disponibilit
Ressource R1	3	3	1	1	1	2	3	2	1	2	5
Ressource R2	0	0	0	1	1	1	0	1	0	0	1

Appliquer l'algorithme de liste en donnant la priorité à la tâche qui possède la plus petite date de début au plus tard.

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique

Problématique L'offre et la demande Algorithme de décalage

Diagramme de Gantt

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Solution trouvée vs solution optimale

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique

L'offre et la demande Algorithme de décalage

Problématique

- \blacksquare Les tâches $\{1,2,\ldots,n\}$ ont besoin d'une seule ressource : l'argent
 - \blacksquare La ressource est alimentée à des dates u_1,\dots,u_q et selon des quantités b_1,\dots,b_q
 - lacktriangle Une tâche i requiert, à sa date de début d'exécution, une quantité a_i de la ressource
- Ordonnancement de durée minimale en respectant les
 - contraintes de ressource
 - contraintes de précédence entre tâches

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières

Problématique

L'offre et la demande Algorithme de décalage

Exemple

- Demande: $\forall i \in \{J1, J2, J3, J4, J5\}, a_i = 5$
- Offre

u_i	b_i			
0	15			
10	5			
16	10			

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

L'offre et la demande

L'offre et la demande pour l'ordonnancement au plus tôt

L'offre et la demande pour l'ordonnancement au plus tard

Aucun des ordonnancements n'est admissible

Problème central de l'ordonnancement : ressources illimitées Définition Modélisation

Cas général : ressources limitées Problématique Résolution exacte Algorithme de liste

Cas de ressources financières Problématique L'offre et la demande Algorithme de décalage

Algorithme de décalage

 On peut montrer que si un ordonnancement est admissible, tout ordonnancement au plus tard de même durée l'est aussi

■ Algorithme de décalage

- Calculer un ordonnancement au plus tard
- lacksquare S'il n'est pas admissible, calculer la quantité minimale δ^* dont il faut décaler l'ordonnancement au plus tard pour que l'ordonnancement résultant soit admissible

 \Longrightarrow L'algorithme de décalage permet d'obtenir un ordonnancement optimal

28 novembre 2005

Plan

Contexte

Classification

Schémas de classification Les environnements machines Caractéristiques de tâches

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Partie 3 : Ordonnancement d'ateliers – contexte et classification

- 9 Contexte
- 10 Classification des problèmes d'ordonnancement
 - Schémas de classification
 - Les environnements machines
 - Les tâches et leurs caractéristiques
 - Les critères d'optimisation
- 11 Les différentes classes d'ordonnancement
- 12 Quelques notions de la théorie de la complexité
 - Complexité des algorithmes
 - Complexité des problèmes

Contexte

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Contexte

- lacksquare On a un ensemble ${\mathcal J}$ de tâches ou de travaux (ou jobs) à exécuter
- Les ressources sont des machines et ne peuvent exécuter qu'une tâche à la fois
- Les critères font intervenir les dates de fin d'exécution, les dates de livraison, les stocks d'en cours ... et les ordres de fabrication peuvent avoir des poids (importance) différents

Contexte

Classificatio Schémas de

classification
Les environnements
machines
Caractéristiques de
tâches
Les critères

Les différentes classes d'ordonnancement

Complexité ...

- ... des algorithmes
- ... des argoritimes

Schémas de classification

Nous suivons les schémas de classification proposés par (Graham et al, 1979).

Classification à trois champs $\alpha |\beta| \gamma$

- $\blacksquare \alpha$: environnement machine
- \blacksquare β : les caractéristiques des tâches
- $\blacksquare \gamma$: le (ou les) critère(s) à optimiser

CONTEXT

Classificatio

Schémas de classification

Les environnements machines

Caractéristiques de tâches Les critères

Les différentes classes d'ordonnancemen

Complexité ...

... des algorithmes ... des problèmes

D'une façon générale ...

On doit exécuter n tâches ou n travaux (jobs).

Le champ α est décomposé en deux sous-champs α_1 et α_2 .

Selon les valeurs prises par α_1 , on distingue :

- Les problèmes à une machine
- Les problèmes à machines parallèles
- Les problèmes d'ateliers
 - Ateliers à cheminement unique (flowshop)
 - Ateliers à cheminements multiples (*jobshop*)
 - Ateliers à cheminements libres (openshop)
 - ı ...
- L'ordonnancement de projet sous contraintes de ressources

Context

Classification

Schémas de classification

Les environnements machines

Caractéristiques de tâches Les critères d'ontimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Problèmes à une machine

Toute tâche $J_j, j \in \{1, \ldots, n\}$ de durée p_j (processing time) s'exécute sur une machine qui ne peut traiter plus qu'une tâche à la fois.

Le champ α_1 est absent et $\alpha_2 = 1$.

Contexte

${\sf Classification}$

Schémas de classification

Les environnements machines

Caractéristiques de tâches Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Problèmes à machines parallèles (1)

Toute tâche $J_j, j \in \{1, \dots, n\}$ peut être exécutée indifféremment sur une des m machines mises en parallèle.

Context

Classification Schémas de

classification Les environnements machines

Caractéristiques de tâches Les critères d'antimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Problèmes à machines parallèles (2)

 $p_{i,j}$ est la durée d'exécution de J_j sur la machine $M_i, i=1,\ldots,m$.

- lacktriangle si $lpha_1=P$ alors machines identiques $\Rightarrow \forall i, p_{i,j}=p_j$
- si $\alpha_1 = Q$ alors machines uniformes $\Rightarrow \forall i, p_{i,j} = p_j/s_i$ où s_i est la vitesse de traitement M_i
- si $\alpha_1=R$ alors machines indépendantes \Rightarrow $\forall i, p_{i,j}=p_j/s_{i,j}$ où $s_{i,j}$ est la vitesse de traitement de la tâche J_j par la machine M_i
- lacksquare si $lpha_2$ est un entier positif, le nombre de machines est supposé constant. Si $lpha_2$ est absent alors ce nombre est supposé arbitraire.

Context

Classification

Schémas de

Les environnements machines

Caractéristiques de tâches Les critères d'optimisation

Les différentes classes

Complexité ...

... des algorithmes ... des problèmes

Problèmes d'ateliers

- \blacksquare m machines différentes $M_i, i \in \{1, \dots, m\}$
- \blacksquare n travaux (jobs) $J_j, j \in \{1, \ldots, n\}$.
 - Chaque job J_j est décrit par n_j tâches ou opérations $O_{i,j}, i \in \{1, \dots, n_j\}$
 - La durée d'une opération $O_{i,j}$ est $p_{i,j}$
 - La machine qui exécute l'opération $O_{i,j}$ du job est notée $M(O_{i,j})$ ou $M_{i,j}$.
 - Les opérations d'un même job ne peuvent pas être exécutées simultanément
- \blacksquare α_2 (voir machines parallèles)

Contexte

Schémas de classification

Les environnements machines

Caractéristiques de

Les différentes classes d'ordonnancement

Complexité ...

- ... des algorithmes
- ... des problèmes

Ateliers à cheminement unique : Flowshop

- Chaque Job est constitué de m opérations et l'ordre de passage sur les différentes machines est le même pour tous les jobs $J_i: O_{1,i} \to O_{2,i} \to , \ldots, \to O_{m,i}$ et $M_{i,j} = M_i$
- \bullet $\alpha_1 = F$

28 novembre 2005

Plan

Contexte

Schémas de classification

Les environnements machines

Caractéristiques de

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Ateliers à cheminements quelconques : Jobshop

- Le nombre d'opérations n'est pas forcément le même pour tous les jobs
- Chaque job a son propre ordre de passage sur les machines
- \bullet $\alpha_1 = J$
- Exemple

J_j		J_1			J_2	J_3		
$O_{i,j}$	$O_{1,1}$	$O_{2,1}$	$O_{3,1}$	$O_{1,2}$	$O_{2,2}$	$O_{3,2}$	$O_{1,3}$	$O_{2,3}$
$M_{i,j}$	M_1	M_2	M_3	M_2	M_1	M_3	M_3	M_2
$p_{i,j}$	3	2	5	4	2	2	2	3

Contexte

Classification

Schémas de

Les environnements machines

Caractéristiques de tâches Les critères d'ontimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Ateliers à cheminements libres : Openshop

- Le nombre d'opérations n'est pas forcément le même pour tous les jobs
- L'ordre de passage sur les machines est totalement libre

28 novembre 2005

Plan

Contexte

${\sf Classification}$

Schémas de classification

Les environnements machines Caractéristiques de

tâches Les critères

Les différentes classes

d'ordonnancement

Complexité ...

- ... des algorithmes
- ... des problèmes

Autres ateliers : Flowshop hybride

Context

Classificatio

Schémas de classification Les environnement

Caractéristiques de tâches Les critères

Les différentes classes

Complexité ...

... des algorithmes ... des problèmes

Les tâches et leurs caractéristiques

Chaque tâche J_i ou chaque job J_i peut être caractérisé par

- \blacksquare une date de début au plus tôt r_i (release date)
- une durée p_j , pour la tâche, ou $p_{i,j}$, pour l'opération i du job (processing time)
- une date de fin souhaitée d_j (due date)
- \blacksquare une date de fin obligatoire \tilde{d}_j (deadline)
- un poids relatif w_j (weight) \Rightarrow importance ou poids
- Il peut y avoir des contraintes de précédence entre les tâches. Ces contraintes sont représentées par un graphe $G = (\mathcal{J}, A)$.

Context

Classification Schémas de

classification Les environnemen machines

Caractéristiques de tâches

es critères l'optimisation

Les différentes classes d'ordonnancemen

Complexité ...

... des algorithmes ... des problèmes

Les tâches et leurs caractéristiques

$$\beta = \beta_1 \beta_2 \beta_3 \beta_4 \dots$$
 dans $\alpha |\beta| \gamma$

- $\beta_1 = pmtn$ si la préemption des tâches est autorisée, sinon β_1 est absent
- S'il y a des contraintes de précédence entre les tâches $\beta_2 \in \{prec, chain, in-tree, out-tree\}$, sinon β_2 est vide
- $\beta_3 = r_j$ si les dates de début au plus tôt r_j (ou dates de disponibilité) des tâches ne sont pas forcément identiques, sinon $(\forall j, r_j = 0)$ β_3 est absent
- $m m eta_4 = ilde d_j$ si la tâche ou le job possède une date de fin obligatoire

Classification

Schémas de classification Les environnements machines Caractéristiques de

Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Quelques mesures

Les critères d'optimisation s'expriment en fonction des dates de fin des tâches (ou jobs) C_j (completion times). Les critères sont généralement exprimés en fonction des mesures suivantes

- le retard algébrique $L_j = C_j d_j$ (lateness)
- le retard absolu $T_j = \max(0, C_j d_j)$ (tardiness)
- l'avance $E_j = \max(0, C_j d_j)$ (earliness)
- le pénalité unitaire de retard $U_j = 0$ si $C_j \le d_j$, $U_j = 1$ sinon
- lacksquare le durée de séjour dans l'atelier $F_j=C_j-r_j$
- lacksquare une fonction générique $f_j(t)$ donnant le coût induit si on termine J_j à t

Contexte

Classification

Schémas de classification Les environnements machines Caractéristiques de tâches

Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Illustration

Classification
Schémas de
classification
Les environnements
machines
Caractéristiques de

Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Les critères d'optimisation

On cherche alors à minimiser un ou plusieurs critères $F(C_1, \ldots, C_n)$

- une fonction générique de coût maximum $f_{\text{max}} = \max_{i} \{ f_i(C_i) \}$
 - lacksquare la durée totale de l'ordonnancement $C_{\max} = \max_j \{C_j\}$
 - lacksquare le retard algébrique maximum $L_{\max} = \max_j L_j$
 - le retard maximum $T_{\text{max}} = \max_j T_j$
- \blacksquare une fonction générique de coût total $f_{\sum} = \sum_j \{f_j(C_j)\}$
 - lacksquare la somme (pondérée) des dates de fin $\sum_{j} (w_{j}) C_{j}$
 - \blacksquare la somme (pondérée) des retards $\sum_{j} (w_j) T_j$
 - le nombre (pondéré) des tâches (ou jobs) en retard $\sum_{j} (w_{j})U_{j}$
 - \blacksquare la durée moyenne de séjour $\sum_i F_i$
 - la somme (pondérée) des avances et des retards $\sum_i \alpha_i E_i + \beta_i T_i$

Context

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches

Les critères d'optimisation

Les différentes classes d'ordonnancemen

Complexité ...

... des algorithmes ... des problèmes

Critères réguliers

Définition

Un critère $F(C_1, \ldots, C_n)$ est dit est dit régulier si et seulement si F est une fonction croissante des dates de fin des tâches (ou jobs)

Corollaire

- Les critères C_{\max} , L_{\max} , T_{\max} , $\sum_j (w_j) C_j$, $\sum_j (w_j) T_j$, $\sum_j (w_j) U_j$, $\sum_j (w_j) F_j$ sont réguliers
- Le critère $\sum_{j} \alpha_{j} E_{j} + \beta_{j} T_{j}$ n'est pas régulier

Contexte

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches

Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Les différentes classes d'ordonnancement

Quatre catégories ou classes (par ordre d'inclusion)

- les ordonnancements quelconques
- les ordonnancements semi-actifs
- les ordonnancements actifs
- les ordonnancements sans délai

Contexte

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Les différentes classes d'ordonnancement

Définitions

- Un ordonnancement est dit semi-actif si aucune tâche ne peut être exécutée plus tôt sans changer l'ordre d'exécution sur les ressources ou violer de contrainte (de précédence, date de début au plus tôt, ...)
- Un ordonnancement est dit actif si aucune tâche ne peut être exécutée plus tôt sans retarder une autre tâche ou violer de contrainte
- Un ordonnancement sans délai est un ordonnancement pour lequel aucune machine n'est laissée inactive alors qu'elle pourrait commencer une tâche disponible

Contexte

Classification

Schémas de

classification Les environnements machines

machines Caractéristiques de

Les critères

Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

- ... des algorithmes
- ... des problèmes

Les différentes classes d'ordonnancement

Exemple: 4 tâches, à exécuter sur une machine, telles que $r_1 = r_3 = 0$, $r_2 = 1$, $r_4 = 9$; $p_1 = p_2 = 3$, $p_3 = 2$, $p_4 = 2$

Contexte

Classification

Schémas de classification Les environnements machines Caractéristiques de tâches

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Les différentes classes d'ordonnancement

Exemple: 3 tâches, à exécuter sur deux machines en parallèle, telles que $r_2 = r_3 = 0$, $r_1 = 1$; $p_1 = p_2 = 2$, $p_3 = 4$

Contexte

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Complexité des algorithmes

- Un même problème peut généralement être résolu par plusieurs algorithmes
 - \Longrightarrow il faut comprarer entre ces algorithmes
- La comparaison se base sur le temps de calcul et sur l'espace mémoire requis par l'algorithme

Définition

On appelle complexité en temps d'un algorithme dans le pire cas, la fonction f(n) qui donne une borne supérieure du nombre d'opérations élémentaires effectuées par l'algorithme lorsque la taille de l'entrée est n.

Context

Classification

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères d'optimisation

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Complexité des algorithmes

Définition

On dit que $f(n) \in \mathcal{O}(g(n))$, s'il existe une constante c > 0 et un entier n_0 tels que $\forall n \geq n_0, |f(n)| \leq c|g(n)|$

Définition

Un algorithme est de complexité polynomiale lorsque $f(n) \in \mathcal{O}(p(n))$ et p est un polynôme en n, c'est-à-dire, il existe une constante k telle que $f(n) \in \mathcal{O}(n^k)$

Définition

Un algorithme dont la fonction complexité f(n) ne peut pas être majorée par un polynôme en n est dit exponentiel

Contexte

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Complexité des problèmes

Distinction entre problème de décision et problème d'optimisation

- Un problème de décision est un problème pour lequel une solution est soit "oui" soit "non"
- Un problème d'optimisation est un problème pour lequel on doit chercher à déterminer une solution qui optimise un critère
- A chaque problème d'optimisation on peut associer un problème de décision

Définition

Un problème de décision appartient à la classe \mathcal{P} , s'il peut être résolu par un algorithme polynomial en n

Contexte

Classification

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères

Les différentes classes d'ordonnancement

Complexité ...

... des algorithmes ... des problèmes

Complexité des problèmes

Définition

Un problème de décision appartient à la classe \mathcal{NP} s'il peut être résolu par un algorithme non déterministe polynomial.

Définition

On considère deux problèmes de décisions Q et R. On dit que Q se réduit polynomialement à R, et on note $Q \propto R$, s'il existe une fonction polynomiale g qui transforme toute instance de Q en une instance de R telle que x est une réponse "oui" de Q si et seulement si g(x) est une réponse "oui" de R.

Définition

Un problème R est \mathcal{NP} -complet ssi $R \in \mathcal{NP}$ et $\forall Q \in \mathcal{NP}, \exists \propto \text{telle que } Q \propto R.$

Contexte

Classificatio

Schémas de classification Les environnements machines Caractéristiques de tâches Les critères d'optimisation

Les différentes classes d'ordonnanceme

Complexité ...

... des algorithmes ... des problèmes

Complexité des problèmes

- Un problème d'optimisation est dit \mathcal{NP} —difficile si le problème de décision associé est \mathcal{NP} —complet
- Il existe un certain nombre de résultats dans la littérature qui montrent les liens, sous forme d'arbres de réduction, entre différents problèmes d'ordonnancement.
- Arbre de réduction en fonction des critères d'optimisation

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Méthodes constructives

Résolution des problèmes d'odonnancement

- 13 Algorithmes à base de règles de priorité
 - Problèmes à une machine
 - Problèmes de type flowshop
 - Problèmes à machines parallèles
 - Limitation des règles de priorité
- 14 Algorithmes plus "élabrés"
- 15 Approches pour résoudre les problèmes NP-difficiles
 - Méthodes constructives
 - Heuristiques par voisinage
 - Procédures par évaluation et séparation
 - lacksquare Résolution du problème $1|r_j|L_{
 m max}$
 - Problème $J||C_{\max}|$

Algorithmes à base de règles de priorité

Problèmes à une

Problèmes de type Limitation des règles de

priorité

Algorithmes plus " élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Procédures par

évaluation et séparation Résolution du problème

Problème J||Cmax

Ensembles dominants

Definition

Un ensemble d'ordonnancements est dit dominant pour un problème d'ordonnancement donné si et seulement si quelques soient les données du problème, une solution optimale est contenue dans cet ensemble

Theorem

L'ensemble des ordonnancements actifs est dominant pour les critères réguliers

Corollaire

L'ensemble des ordonnancements semi-actifs est dominant pour les critères réguliers

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_i|L_{\max}$

Problème J||Cmax

Méthodes constructives

Ensembles dominants

Corollaire

Un ordonnancement est complétement déterminé par la séquence des tâches au niveau de chaque machine

Attention

Un ensemble de séquences (au niveau des machines) ne représente pas forcément un ordonnancement admissible

Algorithmes à base de règles de priorité

Problèmes à une

Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j||$

- Toutes les tâches sont disponibles à l'instant t = 0 $(\forall j, r_j = 0)$)
- w_i est le poids de la tâche J_i (ou tout simplement j)
- \blacksquare C_i la date de fin de j (c'est une inconnue)
- Un ordonnancement est complétement déterminé par une séquence des tâches
- Minimiser $\sum w_j C_j$ revient à minimiser les encours totaux (pondérés)

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Problème $1||\sum w_j C_j|$

Tâche j	1	2	3	4	5
$\overline{}_{p_j}$	2	3	6	5	1
w_i	1	3	2	1	2

Exemple de séquence : $\pi_1 = (1, 2, 3, 4, 5)$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j||$

Tâche j	1	2	3	4	5
p_{j}	2	3	6	5	1
w_{i}	1	3	2	1	2

Exemple de séquence : $\pi_1 = (1, 2, 3, 4, 5)$

$$\sum w_j C_j(\pi_1) = 1 * 2 + 3 * 5 + 2 * 11 + 1 * 16 + 2 * 17 = 89$$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Flowshop
Problèmes à machines
parallèles
Limitation des règles de
priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j|$

$T\hat{a}che\;j$	1	2	3	4	5
p_{j}	2	3	6	5	1
w_{j}	1	3	2	1	2

Exemple de séquence : $\pi_1 = (1, 2, 3, 4, 5)$

$$\sum w_j C_j(\pi_1) = 1 * 2 + 3 * 5 + 2 * 11 + 1 * 16 + 2 * 17 = 89$$

Question: Peut-on faire mieux?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j|$

Tâche j	1	2	3	4	5
$\overline{p_j}$	2	3	6	5	1
w_{j}	1	3	2	1	2

Exemple de séquence : $\pi_1 = (1, 2, 3, 4, 5)$

$$\sum w_j C_j(\pi_1) = 1 * 2 + 3 * 5 + 2 * 11 + 1 * 16 + 2 * 17 = 89$$

Question: Peut-on faire mieux?

Réponse : oui!!

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j||$

Theorem

Règle de Smith : Ordonnancer les tâches dans l'ordre croissant des p_j/w_j minimise le stock d'encours (i.e. $\sum w_j C_j$)

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j||$

Theorem

Règle de Smith : Ordonnancer les tâches dans l'ordre croissant des p_j/w_j minimise le stock d'encours (i.e. $\sum w_j C_j$)

Tâche j	1	2	3	4	5
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	2	3	6	5	1
w_{j}	1	3	2	1	2
p_j/w_j	2	1	3	5	0.5

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j||$

Theorem

Règle de Smith : Ordonnancer les tâches dans l'ordre croissant des p_j/w_j minimise le stock d'encours (i.e. $\sum w_j C_j$)

Tâche j	1	2	3	4	5
p_j	2	3	6	5	1
w_{j}	1	3	2	1	2
p_j/w_j	2	1	3	5	0.5

La séquence optimale pour le problème avec poids est $\pi_w^* = (5,2,1,3,4)$

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum w_j C_j||$

Theorem

Règle de Smith : Ordonnancer les tâches dans l'ordre croissant des p_j/w_j minimise le stock d'encours (i.e. $\sum w_j C_j$)

Tâche j	1	2	3	4	5
p_j	2	3	6	5	1
w_{j}	1	3	2	1	2
p_j/w_j	2	1	3	5	0.5

La séquence optimale pour le problème avec poids est $\pi_w^* = (5,2,1,3,4)$

La séquence optimale pour le problème sans poids est $\pi_1^* = (5,1,2,4,3)$

Algorithmes à base de règles de priorité Problèmes à une

machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problèmes $1|r_j|\sum w_jC_j$ et $1|r_j,pmtn|\sum w_jC_j$

On associe une date de disponibilité r_j à une tâche j

Theorem

Le problème $1|r_j|\sum w_jC_j$ est NP-difficile

Theorem

Le problème $1|r_i, pmtn| \sum w_i C_i$ est NP-difficile

Theorem

Le problème $1|r_j,pmtn|\sum C_j$ peut être résolu en temps polynomial :

machine

priorité

Algorithmes à base de règles de priorité Problèmes à une

Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{\max}$

Problèmes $1|r_j|\sum w_jC_j$ et $1|r_j,pmtn|\sum w_jC_j$

On associe une date de disponibilité r_j à une tâche j

Theorem

Le problème $1|r_j|\sum w_jC_j$ est NP-difficile

Theorem

Le problème $1|r_i, pmtn| \sum w_i C_i$ est NP-difficile

Theorem

Le problème $1|r_j,pmtn|\sum C_j$ peut être résolu en temps polynomial : Affecter la machine à la tâche de plus courte durée sous la condition suivante : quand une tâche arrive, elle préempte la machine si sa durée est plus petite que la durée résiduelle de la tâche en cours.

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Problèmes $1||L_{\max}|$ et $1|r_i, pmtn|L_{\max}|$

Règle

La règle de Jackson consiste à donner la priorité la plus élevée à la tâche disponible de plus petite date échue.

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

ase

Problèmes $1||L_{\max}|$ et $1|r_i, pmtn|L_{\max}$

Règle

La règle de Jackson consiste à donner la priorité la plus élevée à la tâche disponible de plus petite date échue.

Definition

On désignera par ordonnancement de Jackson l'ordonnancement de liste obtenu en appliquant la règle de Jackson

Si $\forall j, r_j = 0$, on parle également d'ordre EDD : Earliest Due Date.

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème 1 | r = | Lympa y

Problème J | Cmax

Problèmes $1||L_{\max}|$ et $1|r_j,pmtn|L_{\max}|$

EXEMPLE	j	1	2	3 13 6 22	4	5	6	7
	$\overline{r_j}$	0	9	13	11	20	30	30
	p_{j}	6	7	6	7	4	3	5
	d_j	31	41	22	24	27	40	48

Ordonnancement de Jackson préemptif

Ordonnancement de Jackson non-préemptif

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop

parallèles
Limitation des règles de

Algorithmes plus

Approches pour résoudre les problèmes

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Problèmes $1||L_{\max}|$ et $1|r_j, pmtn|L_{\max}|$

D	j	1	2	3	4	5	6	7
	r_{j}	0	9	13	11	20	30	30
EXEMPLE	p_{j}	6	7	13 6 22	7	4	3	5
	d_i	31	41	22	24	27	40	48

Ordonnancement de Jackson préemptif

Ordonnancement de Jackson non-préemptif

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Almostilian

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problèmes $1||L_{\max}|$ et $1|r_j, pmtn|L_{\max}$

Ordonnancement de Jackson préemptif

Ordonnancement de Jackson non-préemptif

machine

Algorithmes à base de règles de priorité

de règles de priorit Problèmes à une

Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problèmes $1||L_{\max}|$ et $1|r_j, pmtn|L_{\max}|$

- \blacksquare Montrer que la règle EDD est optimale pour $1||L_{\max}$
- Montrer que l'ordonnancement de Jackson est optimal pour $1|r_j, p_j = 1, pmtn|L_{max}$
- lacksquare Montrer que l'ordonnancement de Jackson est optimal pour $1|r_j,pmtn|L_{\max}$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1|r_j|L_{\max}$

Theorem

Le problème $1|r_i|L_{\max}$ est NP-diffcile au sens fort

Réduction à partir du problème $3\text{-}\mathrm{PARTITION}$ qui est NP-complet au sens fort

Definition

Etant donnés n+1=3m+1 entiers positifs a_1,\ldots,a_{3m} et A tels que $A/4 < a_j < A/2, \ j=1,\ldots,3m,$ et $\sum_{j=1}^{3m} a_j = mA,$ existe-t-il une partition de l'ensemble $\{1,\ldots,3m\}$ en m sous-ensembles $X_1,\ldots,X_m,$ tel que $\sum_{j\in X_l} a_j = A,$ $l=1,\ldots,m$?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Flowshop
Problèmes à machines
parallèles
Limitation des règles de
priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1|r_j|L_{\max}$

A toute instance du problème 3-Partition, on peut associer une instance du problème $1|r_j|L_{\rm max}$ à n+m-1 tâches telles que

- $r_j = 0$, $p_j = a_j$ et $d_j = \sum_{j=1}^n a_j + m 1$, pour $j \in \{1, \dots, n\}$
- $r_{n+k} = kA + k 1$, $p_{n+k} = 1$ et $d_{n+k} = kA + k$ pour $k \in \{1, \dots, m-1\}$

On montre que 3-Partition a une solution si, et seulement si, la valeur de la solution optimale, de l'instance construite du problème $1|r_i|L_{\rm max}$, est égale à 0.

Algorithmes à base de règles de priorité

Problèmes à une

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $F2||C_{\max}|$

- n tâches $J_j, j = 1, ..., n$, à exécuter sur deux machines M_1 et M_2
- Cheminement unique : M_1 puis M_2
- a_j et b_j sont les durées de la tâche $J_j, j = 1, \ldots, n$ sur les machines M_1 et M_2 , respectivement.
- Intuitivement
 - lacktriangle avoir des tâches exécutées le plus rapidement possible su M_1 pour pouvoir les exécuter M_2 (M_2 reste inactive le minimum de temps possible)
 - \Longrightarrow Règle SPT sur M_1
 - Sur M_2 , on essaie d'exécuter les tâches dans l'ordre LPT pour que M_2 n'attende pas trop que M_1 lui fournisse des tâches

Algorithmes à base de règles de priorité

Problèmes à une

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $F2||C_{\max}|$

Règle

Règle de Johnson

■ Partitionner l'ensemble des tâches en 2 sous-ensembles

$$\blacksquare A = \{ j \in \mathcal{J}, a_i \leq b_i \}$$

$$\blacksquare B = \{j \in \mathcal{J}, a_j > b_j\}$$

- lacktriangle Séquencer les tâches de A dans l'ordre croissant des a_j
 - \Rightarrow séquence π_A
- Séquencer les tâches de B dans l'ordre décroissant des b_j ⇒ séquence π_B
- Fusionner les deux séquences $\Rightarrow \pi = \{\pi_A, \pi_B\}$
- On utilise le même ordre de passage sur les 2 machines

Algorithmes à base de règles de priorité

Problèmes à une

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Problème $F2||C_{\max}|$

Definition

Un ordonnancement pour lequel toutes les tâches sont exécutées dans un même ordre (sur les machines) est appelé ordonnancement de permutation

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $F2||C_{\max}|$

Definition

Un ordonnancement pour lequel toutes les tâches sont exécutées dans un même ordre (sur les machines) est appelé ordonnancement de permutation

Lemme

Une instance du problème $F2||C_{\max}|$ a toujours une solution optimale qui est un ordonnancement de permutation

Algorithmes à base

de règles de priorité Problèmes à une

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par voisinage
Procédures par évaluation et séparation
Résolution du problème

Problème J | Cmax

Méthodes constructives

Problème $F2||C_{\max}|$

Definition

Un ordonnancement pour lequel toutes les tâches sont exécutées dans un même ordre (sur les machines) est appelé ordonnancement de permutation

Lemme

Une instance du problème $F2||C_{\max}$ a toujours une solution optimale qui est un ordonnancement de permutation

Theorem

La règle de Johnson est optimale pour $F2||C_{\max}$

Problème $F2||C_{\max}|$

Algorithmes à base de règles de priorité Problèmes à une machine

Problèmes de type flowshop

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Exemple

j	M_1	M_2
1	6	8
2	4	5
3	4	1
4	8	4

Algorithmes à base de règles de priorité Problèmes à une

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Problème $F2||C_{\max}|$

Exemple

j	M_1	M_2
1	6	8
2	4	5
3	4	1
4	8	4

$$A = \{1, 2\}$$
 et $B = \{3, 4\}$

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $F2||C_{\max}|$

Exemple

j	M_1	M_2
1	6	8
2	4	5
3	4	1
4	8	4

$$A = \{1, 2\}$$
 et $B = \{3, 4\}$

Séquence optimale $\pi^* = (2, 1, 4, 3)$

Dessiner le digramme de Gantt de l'ordonnancement optimal

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problèmes à machines parallèles

Deux types de décision à prendre

- affectation des tâches aux machines
- 2 séquencement de chaque machine
 - d'une façon indépendante s'il n'y a pas de contraintes de précédence entre les tâches
 - d'une "façon dépendante" sinon

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

voisinage Procédures par évaluation et séparatio Résolution du problèm $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $P||C_{\max}$

Theorem

Le problème $P||C_{\max}$ est NP-difficile

- lacktriangle On note C^*_{\max} la valeur de la solution optimale
- Montrer que
 - $C_{\max}^* \geq (1/m) * \sum_j p_j$
 - $C_{\max}^* \ge p_j, \forall j = 1, \dots n$

Algorithmes à base

de règles de priorité

machine Problèmes de type

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème J||Cmax

- \blacksquare Montrer que la durée d'un ordonnancement optimal est supérieure ou égale à $B=\max(\max_j p_j, (1/m)*\sum_j p_j))$
- Proposer un algorithme qui construit un ordonnancement dont la durée est exactement B
- Calculer le nombre d'opérations nécessaires
- Conclure quant la complexité de l'algorithme

Algorithmes à base

de règles de priorité

Problèmes de type

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives
Heuristiques par
voisinage
Procédures par
évaluation et séparation
Résolution du problème

Problème J | Cmax

- Montrer que la durée d'un ordonnancement optimal est supérieure ou égale à $B=\max(\max_j p_j, (1/m)*\sum_j p_j))$
- Proposer un algorithme qui construit un ordonnancement dont la durée est exactement *B*
- Calculer le nombre d'opérations nécessaires
- Conclure quant la complexité de l'algorithme

Algorithmes à base de règles de priorité

de règles de priorité

Problèmes de type

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

évaluation et séparation Résolution du problèm $1|r_j|L_{\max}$ Problème $J||C_{\max}$

- Montrer que la durée d'un ordonnancement optimal est supérieure ou égale à $B=\max(\max_j p_j, (1/m)*\sum_j p_j))$
- Proposer un algorithme qui construit un ordonnancement dont la durée est exactement *B*
- Calculer le nombre d'opérations nécessaires
- Conclure quant la complexité de l'algorithme

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème J||Cmax

- \blacksquare Montrer que la durée d'un ordonnancement optimal est supérieure ou égale à $B=\max(\max_j p_j, (1/m)*\sum_j p_j))$
- lacktriangle Proposer un algorithme qui construit un ordonnancement dont la durée est exactement B
- Calculer le nombre d'opérations nécessaires
- Conclure quant la complexité de l'algorithme

Algorithmes à base de règles de priorité

Problèmes à une Problèmes de type

Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus " élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par Procédures par évaluation et séparation

Résolution du problème

Problème J | Cmax

Problème $P||C_{\max}|$

Theorem

Un algorithme de liste est un "2-approximation algorithm" pour $P||C_{\max}|$

$\mathsf{Theorem}$

LPT est un "4/3-approximation algorithm" pour $P||C_{\text{max}}|$

de règles de priorité Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes à base

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

UNIVERSITE PARIS DAUPHINE

Voir exemple du livre

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Problèmes à machines parallèles

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r:|L_{max}|$

Problème J||Cmax

- On note $P = p_1 + p_2 + \cdots + p_n$
- J_k la tâche telle que $f_k(P) = \min\{f_j(P), j = 1, \dots, n\}$
- lacktriangle Montrons qu'il \exists un ordonnancement optimal tel que J_k soit la dernière tâche exécutée
- $f_{\max}^*(S)$ la valeur optimale de la fonction objectif si on n'ordonnance que les tâches de $S \subseteq \mathcal{J}$
- $f_{\max}^*(\mathcal{J}) \ge \min\{f_j(P), j = 1, \dots, n\}$
- $f_{\max}^*(\mathcal{J}) \ge f_{\max}^*(\mathcal{J} \{J_j\})$
- lacksquare La procédure "Least-Cost-Last" est optimale pour $1||f_{
 m max}|$
 - Le problème $1|prec|f_{max}$ est-t-il polynomial?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Problèmes à machines parallèles

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

- On note $P = p_1 + p_2 + \cdots + p_n$
- J_k la tâche telle que $f_k(P) = \min\{f_j(P), j = 1, \dots, n\}$
- lacktriangle Montrons qu'il \exists un ordonnancement optimal tel que J_k soit la dernière tâche exécutée
- $f_{\max}^*(S)$ la valeur optimale de la fonction objectif si on n'ordonnance que les tâches de $S \subseteq \mathcal{J}$
- $f_{\max}^*(\mathcal{J}) \ge \min\{f_j(P), j = 1, \dots, n\}$
- $f_{\max}^*(\mathcal{J}) \ge f_{\max}^*(\mathcal{J} \{J_j\})$
- lacksquare La procédure "Least-Cost-Last" est optimale pour $1||f_{
 m max}|$
 - Le problème $1|prec|f_{max}$ est-t-il polynomial?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machine

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{\max}$

Frobleme 5 | Cm

- On note $P = p_1 + p_2 + \cdots + p_n$
- J_k la tâche telle que $f_k(P) = \min\{f_j(P), j = 1, \dots, n\}$
- lacktriangle Montrons qu'il \exists un ordonnancement optimal tel que J_k soit la dernière tâche exécutée
- $f_{\max}^*(S)$ la valeur optimale de la fonction objectif si on n'ordonnance que les tâches de $S \subseteq \mathcal{J}$
- $f_{\max}^*(\mathcal{J}) \ge \min\{f_j(P), j = 1, \dots, n\}$
- $f_{\max}^*(\mathcal{J}) \ge f_{\max}^*(\mathcal{J} \{J_j\})$
- lacksquare La procédure "Least-Cost-Last" est optimale pour $1||f_{\max}|$
 - lacksquare Le problème $1|prec|f_{
 m max}$ est-t-il polynomial?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Problèmes à machine parallèles

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives
Heuristiques par
voisinage
Procédures par
évaluation et séparation
Résolution du problème

Problème J||Cmax

- On note $P = p_1 + p_2 + \cdots + p_n$
- J_k la tâche telle que $f_k(P) = \min\{f_j(P), j = 1, \dots, n\}$
- \blacksquare Montrons qu'il \exists un ordonnancement optimal tel que J_k soit la dernière tâche exécutée
- $f_{\max}^*(S)$ la valeur optimale de la fonction objectif si on n'ordonnance que les tâches de $S \subseteq \mathcal{J}$
- $f_{\max}^*(\mathcal{J}) \ge \min\{f_j(P), j = 1, \dots, n\}$
- $\bullet f_{\max}^*(\mathcal{J}) \ge f_{\max}^*(\mathcal{J} \{J_j\})$
- lacksquare La procédure "Least-Cost-Last" est optimale pour $1||f_{\max}|$
- Le problème $1|prec|f_{\max}$ est-t-il polynomial?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||f_{\text{max}}|$

- On note $P = p_1 + p_2 + \cdots + p_n$
- J_k la tâche telle que $f_k(P) = \min\{f_j(P), j = 1, \dots, n\}$
- lacktriangle Montrons qu'il \exists un ordonnancement optimal tel que J_k soit la dernière tâche exécutée
- $f_{\max}^*(S)$ la valeur optimale de la fonction objectif si on n'ordonnance que les tâches de $S \subseteq \mathcal{J}$
- $f_{\max}^*(\mathcal{J}) \ge \min\{f_j(P), j = 1, \dots, n\}$
- $f_{\max}^*(\mathcal{J}) \ge f_{\max}^*(\mathcal{J} \{J_j\})$
- \blacksquare La procédure "Least-Cost-Last" est optimale pour $1||f_{\max}$
- Le problème $1|prec|f_{max}$ est-t-il polynomial?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machine

parallèles
Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

- On note $P = p_1 + p_2 + \cdots + p_n$
- J_k la tâche telle que $f_k(P) = \min\{f_j(P), j = 1, \dots, n\}$
- lacktriangle Montrons qu'il \exists un ordonnancement optimal tel que J_k soit la dernière tâche exécutée
- $f_{\max}^*(S)$ la valeur optimale de la fonction objectif si on n'ordonnance que les tâches de $S \subseteq \mathcal{J}$
- $f_{\max}^*(\mathcal{J}) \ge \min\{f_j(P), j = 1, \dots, n\}$
- $f_{\max}^*(\mathcal{J}) \ge f_{\max}^*(\mathcal{J} \{J_j\})$
- lacksquare La procédure "Least-Cost-Last" est optimale pour $1||f_{\max}|$
- Le problème $1|prec|f_{max}$ est-t-il polynomial?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

"élabrés"

Approches pour

résoudre les problèmes NP-difficiles Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|\tau_j|L_{\max}$

Problème $1||\sum U_j||$

n tâches à ordonnancer telles que $d_1 \leq d_2 \leq \ldots \leq d_n$

Algorithme de Hogdson

 $1: C = 0, \mathcal{O} \leftarrow \emptyset, \mathcal{L} \leftarrow \emptyset$

2: for j=1 to n do

3: $C \leftarrow C + p_j$

 $4: \quad \mathcal{O} = \mathcal{O} \cup \{J_j\}$

5: if $C > d_i$ then

6 : Soit J_i le job de \mathcal{O} de plus grande durée

7: $\mathcal{O} = \mathcal{O} - \{J_i\}$, $\mathcal{L} = \mathcal{L} \cup \{J_i\}$

 $8: \quad C = C - pj$

9 : **end if** 10 : **end for**

11 : Ordonnancer les jobs de $\mathcal O$ dans l'ordre naturel puis les jobs de $\mathcal L$ dans n'importe quel ordre.

Algorithmes à base

de règles de priorité

machine Problèmes de type

flowshop Problèmes à machine

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Problème $1||\sum U_j||$

Theorem

L'algorithme de Hogdson est optimal pour $1||\sum U_j|$

	J_j	J_1	J_2	J_3	J_4	J_5	J_6
Exemple :	p_j	6	4	7	8	3	5
	d_{j}	8	9	15	20	21	22

L'algorithme de Hogdson n'est pas optimal pour $1 || \sum w_j U_j$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives

Heuristiques par voisinage Procédures par évaluation et séparation R Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Méthodes constructives

■ Comment peut résoudre rapidement un problème d'ordonnancement NP-difficile ?

- Algorithmes à base de règle(s) de priorité
- 2 Algorithmes par décomposition spatiale
- 3 Algorithmes par décompostion temporelle
- 4 Algorithmes par décomposition spatiale et temporelle

Algorithmes à base de règles de priorité

Problèmes à une Problèmes de type Limitation des règles de

Algorithmes plus " élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives

Procédures par évaluation et séparation Résolution du problème Problème J | Cmax

$F||C_{max}|$

Heuristique de Campbell, Dudek, et Smith (CDS)

- Construire des ordonnancements de permutation
- Utiliser l'algorithme de johnson sur m-1 problèmes $F2||C_{max}||$
 - ⇒ une séquence pour chaque problème
- **Evaluer** les séquences trouvées pour le problème $F||C_{max}||$
- Sélectionner la meilleure séquence

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machine

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

$P|r_j|L_{max}$

Heuristiques étudiants ID (2004-2005)

- Affecter les tâches aux machines
- Utiliser l'algorithme de Carlier pour résoudre m problèmes $1|r_j|L_{max}$ pour le séquencement sur chaque machine
- une métaheuristique pour améliorer l'affectation

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles

Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}|$

Problèmes d'optimisation discrète

Definition

Problèmes d'optimisation discrète

- \blacksquare Etant donné un ensemble S de solutions réalisables
- Etant donnée une fonction cout $c: S \rightarrow IR$
- Trouver une solution $s^* \in S$ telle que $c(s^*) \le c(s)$ pour tout $s \in S$.
- Les problèmes d'ordonnancement non préemptifs sont des problèmes d'optimisation discrète.

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1 | r_j | L_{\max}$ Problème $J | C_{\max}$

Méthodes de recherche par voisinage

- lacktriangle Démarrer avec une solution initiale s_0
- Passer d'une solution courante s à une autre solution voisine s' (meilleure ou non) tant que le test d'arrêt n'est pas vérifié.
- Le voisinage N(s) d'une solution s est l'ensemble des solutions s' qui peuvent être obtenues à partir de s à travers une modification bien définie.
- lacktriangle Faire une recherche dans le voisinage de s
- Evaluer les solutions $s' \in F(s) \subseteq N(s)$
- \blacksquare Accepter ou rejeter de passer à s' dans l'itération suivante.

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème J | Cmax

Méthodes de recherche par voisinage

Ce qui différencie les méthodes de recherche locale

- La représentation d'une solution
- La conception du voisinage
- La procédure de recherche dans le voisinage
- Le critère d'acceptation ou de rejet d'une solution rencontrée

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

DAUPHINE

Principe des méthodes B&B

Enoncé du problème

- \blacksquare Soit S l'ensemble des solutions admissibles d'un problème combinatoire $\mathcal P$
- $\ \blacksquare \ f(s)$ le critère considéré pour évaluer une solution $s \in S$
- On cherche une solution $s^* \in S$ telle que $f(s^*) = \min_{s \in S} f(s)$

- On suppose qu'il existe une heuristique permettant de calculer une borne supérieure B du minimum recherché $f(s^*) < B$
- On suppose qu'on peut effectuer une partition $\{S_1, S_2, \ldots, S_k\}$ de S telle que $S_1 \cup S_2 \cup \ldots \cup S_k = S$
 - $lacksymbol{\mathbb{Z}} S_i \cap S_j = \emptyset$ pour tout $i,j \in \{1,\ldots,k\}$ et $i \neq j$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

UNIVERSITE PARIS DAUPHINE

Principe des méthodes B&B

Enoncé du problème

- \blacksquare Soit S l'ensemble des solutions admissibles d'un problème combinatoire $\mathcal P$
- $\ \blacksquare \ f(s)$ le critère considéré pour évaluer une solution $s \in S$
- On cherche une solution $s^* \in S$ telle que $f(s^*) = \min_{s \in S} f(s)$

- On suppose qu'il existe une heuristique permettant de calculer une borne supérieure B du minimum recherché : $f(s^*) < B$
- On suppose qu'on peut effectuer une partition $\{S_1, S_2, \ldots, S_k\}$ de S telle que
 - $S_1 \cup S_2 \cup \ldots \cup S_k = S$
 - $\blacksquare S_i \cap S_j = \emptyset$ pour tout $i, j \in \{1, \dots, k\}$ et $i \neq j$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Principe des méthodes B&B

Enoncé du problème

- \blacksquare Soit S l'ensemble des solutions admissibles d'un problème combinatoire $\mathcal P$
- lacksquare f(s) le critère considéré pour évaluer une solution $s \in S$
- On cherche une solution $s^* \in S$ telle que $f(s^*) = \min_{s \in S} f(s)$

- On suppose qu'il existe une heuristique permettant de calculer une borne supérieure B du minimum recherché : $f(s^*) \leq B$
- On suppose qu'on peut effectuer une partition $\{S_1, S_2, \dots, S_k\}$ de S telle que
 - $S_1 \cup S_2 \cup \ldots \cup S_k = S$
 - $lacksymbol{S}_i \cap S_i = \emptyset$ pour tout $i,j \in \{1,\ldots,k\}$ et $i \neq j$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Principe des méthodes B&B

Enoncé du problème

- \blacksquare Soit S l'ensemble des solutions admissibles d'un problème combinatoire $\mathcal P$
- lacksquare f(s) le critère considéré pour évaluer une solution $s \in S$
- On cherche une solution $s^* \in S$ telle que $f(s^*) = \min_{s \in S} f(s)$

- On suppose qu'il existe une heuristique permettant de calculer une borne supérieure B du minimum recherché : $f(s^*) \leq B$
- On suppose qu'on peut effectuer une partition $\{S_1, S_2, \dots, S_k\}$ de S telle que
 - $S_1 \cup S_2 \cup \ldots \cup S_k = S$
 - $lacksymbol{S}_i \cap S_i = \emptyset$ pour tout $i,j \in \{1,\ldots,k\}$ et $i \neq j$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop

parallèles
Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Hypothèses (suite)

■ On suppose qu'il est possible, pour tout $i=1,\ldots,k$, de calculer une borne inférieure b_i de f(s) sur S_i : $\forall s \in S_i, b_i \leq f(s)$

- Si $b_i > B$ alors S_i ne peut contenir une solution optimale \rightarrow Abandonner la recherche dans S_i
- Si $b_i \leq B$ alors S_i peut contenir une solution optimale \Rightarrow Continuer la recherche dans S_i
- \blacksquare Si $b_i = B$ alors optimum local

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1 | r_j | L_{\max}$ Problème $J | C_{\max}$

Principe des méthodes B&B

Hypothèses (suite)

■ On suppose qu'il est possible, pour tout $i=1,\ldots,k$, de calculer une borne inférieure b_i de f(s) sur S_i : $\forall s \in S_i, b_i \leq f(s)$

Quelles conclusions peut-on avoir?

- Si $b_i > B$ alors S_i ne peut contenir une solution optimale \Rightarrow Abandonner la recherche dans S_i
- Si $b_i \leq B$ alors S_i peut contenir une solution optimale \Rightarrow Continuer la recherche dans S_i
- Si $b_i = B$ alors optimum local

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Hypothèses (suite)

■ On suppose qu'il est possible, pour tout $i=1,\ldots,k$, de calculer une borne inférieure b_i de f(s) sur S_i : $\forall s \in S_i, b_i \leq f(s)$

Quelles conclusions peut-on avoir?

Pour tout $i = 1, \ldots, k$

- Si $b_i > B$ alors S_i ne peut contenir une solution optimale \Rightarrow Abandonner la recherche dans S_i
- Si $b_i \leq B$ alors S_i peut contenir une solution optimale \Rightarrow Continuer la recherche dans S_i
- Si $b_i = B$ alors optimum local

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Hypothèses (suite)

■ On suppose qu'il est possible, pour tout $i=1,\ldots,k$, de calculer une borne inférieure b_i de f(s) sur S_i : $\forall s \in S_i, b_i \leq f(s)$

Quelles conclusions peut-on avoir?

Pour tout $i = 1, \ldots, k$

- Si $b_i > B$ alors S_i ne peut contenir une solution optimale \Rightarrow Abandonner la recherche dans S_i
- Si $b_i \leq B$ alors S_i peut contenir une solution optimale \Rightarrow Continuer la recherche dans S_i
- Si $b_i = B$ alors optimum local

Algorithmes à base de règles de priorité Problèmes à une

machine
Problèmes de type
flowshop
Problèmes à machines
parallèles
Limitation des règles de
priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Hypothèses (suite)

■ On suppose qu'il est possible, pour tout $i=1,\ldots,k$, de calculer une borne inférieure b_i de f(s) sur S_i : $\forall s \in S_i, b_i < f(s)$

Quelles conclusions peut-on avoir?

Pour tout $i = 1, \ldots, k$

- Si $b_i > B$ alors S_i ne peut contenir une solution optimale \Rightarrow Abandonner la recherche dans S_i
- Si $b_i \leq B$ alors S_i peut contenir une solution optimale \Rightarrow Continuer la recherche dans S_i
- Si $b_i = B$ alors optimum local

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Continuer la recherche dans S_i veut dire qu'on effectue une partition de S_i en k_i sous-ensemble $S_{i,1}, S_{i,2}, \ldots, S_{i,k_i}$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Principe des méthodes B&B

Continuer la recherche dans S_i veut dire qu'on effectue une partition de S_i en k_i sous-ensemble $S_{i,1}, S_{i,2}, \ldots, S_{i,k_i}$

Pour tout $j = 1, \ldots, k_i$

- lacksquare Si $b_{i,j}>B$ alors $S_{i,j}$ ne peut contenir une solution optimale
 - \Rightarrow Abandonner la recherche dans $S_{i,j}$
- Si $b_{i,j} \leq B$ alors $S_{i,j}$ peut contenir une solution optimale
 - \Rightarrow Continuer la recherche dans $S_{i,j}$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles

Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

voisinage $\begin{array}{ll} & \text{Procédures par} \\ & \text{évaluation et séparation} \\ & \text{Résolution du problème} \\ & 1 | r_j | L_{\max} \\ & \text{Problème } J | | C_{\max} \end{array}$

Principe des méthodes B&B

Continuer la recherche dans S_i veut dire qu'on effectue une partition de S_i en k_i sous-ensemble $S_{i,1}, S_{i,2}, \ldots, S_{i,k_i}$

Pour tout $j = 1, \ldots, k_i$

- lacksquare Si $b_{i,j}>B$ alors $S_{i,j}$ ne peut contenir une solution optimale
 - \Rightarrow Abandonner la recherche dans $S_{i,j}$
- Si $b_{i,j} \leq B$ alors $S_{i,j}$ peut contenir une solution optimale
 - \Rightarrow Continuer la recherche dans $S_{i,j}$

Si pour tout $j=1,\dots,k_i$, on a abondonné la recherche dans $S_{i,j}$, alors ceci veut dire qu'on abandonne la recherche dans S_i

Principe des méthodes B&B

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de

priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Algorithmes à base

de règles de priorité

Problèmes à une machine Problèmes de type flowshop

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Schémas d'évolution de l'exploration

- En largeur d'abord
- En profondeur d'abord
- Meilleur noeud d'abord (ex : borne inférieure minimale)

- Si on trouve dans un noeud donné une borne supérieure B' < B, on remplace B par B' dans la suite des calculs
- Le calcul de nouvelles bornes est généralement fait au niveau des feuilles de l'arbre de décision

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J|C_{\max}$

Méthodes constructives

Principe des méthodes B&B

Schémas d'évolution de l'exploration

- En largeur d'abord
- En profondeur d'abord
- Meilleur noeud d'abord (ex : borne inférieure minimale)

- Si on trouve dans un noeud donné une borne supérieure B' < B, on remplace B par B' dans la suite des calculs
- Le calcul de nouvelles bornes est généralement fait au niveau des feuilles de l'arbre de décision

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Schémas d'évolution de l'exploration

- En largeur d'abord
- En profondeur d'abord
- Meilleur noeud d'abord (ex : borne inférieure minimale)

- Si on trouve dans un noeud donné une borne supérieure B' < B, on remplace B par B' dans la suite des calculs
- Le calcul de nouvelles bornes est généralement fait au niveau des feuilles de l'arbre de décision

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Principe des méthodes B&B

Schémas d'évolution de l'exploration

- En largeur d'abord
- En profondeur d'abord
- Meilleur noeud d'abord (ex : borne inférieure minimale)

- Si on trouve dans un noeud donné une borne supérieure B' < B, on remplace B par B' dans la suite des calculs
- Le calcul de nouvelles bornes est généralement fait au niveau des feuilles de l'arbre de décision
 - \Rightarrow la borne est la valeur du critère de l'ordonnancement correspondant à la feuille

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par

Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

... En résumé

Ce qui différencie les approches par évaluation et séparation est :

- \blacksquare le schéma de séparation (comment partionner S)
- le schéma d'évolution de l'exploration de l'arbre de décision
- les méthodes de calcul des bornes supérieures et inférieures
- la fréquence de calcul des bornes supérieures
- **...**

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

DAUPHINE

Première méthode

- Schema de séparation :
 - lacksquare S_i est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième
 -
- Schéma d'évolution de l'exploration de l'arbre de décision largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à jour à chaque niveau)
- Borne inférieure donnée par l'algorithme de Jackson préemptif
- On construit des ordonnancements actifs!!

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

Paramètres de la méthode

- Schema de séparation :
 - S_i est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième

. . . .

- Schéma d'évolution de l'exploration de l'arbre de décision : largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à iour à chaque niveau)
- Borne inférieure donnée par l'algorithme de Jacksonnée préemptif
- On construit des ordonnancements actifs!!!

28 novembre 2005

Plan

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

- Schema de séparation :
 - lacksquare S_i est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième
 -
- Schéma d'évolution de l'exploration de l'arbre de décision : largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à jour à chaque niveau)
 - Borne inférieure donnée par l'algorithme de Jackson préemptif
 - On construit des ordonnancements actifs!!

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

Paramètres de la méthode

- Schema de séparation :
 - lacksquare S_i est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième

. . . .

- Schéma d'évolution de l'exploration de l'arbre de décision : largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à jour à chaque niveau)
- Borne inférieure donnée par l'algorithme de Jackson préemptif
- On construit des ordonnancements actifs!!

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

- Schema de séparation :
 - lacksquare Si est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième
 -
- Schéma d'évolution de l'exploration de l'arbre de décision : largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à jour à chaque niveau)
- Borne inférieure donnée par l'algorithme de Jackson préemptif
- On construit des ordonnancements actifs!!

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

- Schema de séparation :
 - S_i est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième
 -
- Schéma d'évolution de l'exploration de l'arbre de décision : largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à jour à chaque niveau)
- Borne inférieure donnée par l'algorithme de Jackson préemptif
- On construit des ordonnancements actifs!!

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

- Schema de séparation :
 - lacksquare S_i est l'ensemble des ordonnancements pour lesquels la tâche i est placée en premier
 - $S_{i,j}$ est l'ensemble des ordonnancements pour lesquels i est première position et j en deuxième
 -
- Schéma d'évolution de l'exploration de l'arbre de décision : largeur d'abord (par exemple)
- Borne supérieure donnée par l'algorithme de Jackson non-préemptif (on la met à jour à chaque niveau)
- Borne inférieure donnée par l'algorithme de Jackson préemptif
- On construit des ordonnancements actifs!!

28 novembre 2005

Plan

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$

Problème $J||C_{\max}$

Première méthode

Exemple

j	1	2	3	4	5	6	7
r_j	0	9	13	11	20	30	30
p_{j}	6	7	13 6 22	7	4	3	5
d_{j}	31	41	22	24	27	40	48

Ordonnancement de Jackson préemptif

Ordonnancement de Jackson non-préemptif

Algorithmes à base de règles de priorité Problèmes à une

Problèmes de type flowshop

parallèles Limitation des règles de

Algorithmes plus

priorité

"élabrés"

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_i|L_{\max}$

Méthodes constructives

Problème $J | | C_{\text{max}}$

Première méthode

Initialisation

- $\blacksquare t_0 \leftarrow 0$
- $\blacksquare B_0 = 6 \text{ et } b_0 = 1$

■ Tâches candidates pour la première place :

Première méthode

Initialisation

- \bullet $t_0 \leftarrow 0$
- $B_0 = 6$ et $b_0 = 1$

1^{ère} itération

■ Tâches candidates pour la première place :

 $b_1 = b_0 = 1$ et $B_1 = B_0 = 6 \Rightarrow$ on poursuit la recherche

 $t_1 \leftarrow \max(r_1, t_0) + p_1 = 6$

Algorithmes plus

parallèles

Algorithmes à base de règles de priorité Problèmes à une

Problèmes de type flowshop

Limitation des règles de priorité

- Approches pour résoudre les problèmes NP-difficiles
- Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème
- $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Algorithmes à base de règles de priorité

Problèmes à une Problèmes de type parallèles

Limitation des règles de

priorité

Algorithmes plus " élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par Procédures par évaluation et séparation

Résolution du problème $1|r_i|L_{\max}$

Problème $J || C_{\max}$

Première méthode

Initialisation

- $\blacksquare t_0 \leftarrow 0$
- $\blacksquare B_0 = 6 \text{ et } b_0 = 1$

1ère itération

■ Tâches candidates pour la première place :

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machine

parallèles Limitation des règles de priorité

.

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1 \mid r_j \mid L_{\max}$

Problème $J||C_{max}$

Première méthode

Initialisation

- $t_0 \leftarrow 0$
- $B_0 = 6$ et $b_0 = 1$

- lacktriangle Tâches candidates pour la première place : J_1 seulement parce qu'on construit des ordonnancements actifs
- $b_1 = b_0 = 1$ et $B_1 = B_0 = 6 \Rightarrow$ on poursuit la recherche
- $t_1 \leftarrow \max(r_1, t_0) + p_1 = 6$

Algorithmes à base de règles de priorité Problèmes à une

machine Problèmes de type

flowshop Problèmes à machine

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

Initialisation

- $t_0 \leftarrow 0$
- $B_0 = 6$ et $b_0 = 1$

- Tâches candidates pour la première place : J_1 seulement parce qu'on construit des ordonnancements actifs $\Rightarrow S_1 = S$: on place J_1 en première position
- $b_1 = b_0 = 1$ et $B_1 = B_0 = 6$ \Rightarrow on poursuit la recherche
- $t_1 \leftarrow \max(r_1, t_0) + p_1 = 6$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machine

Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1 \mid r_j \mid L_{\max}$

Problème $J||C_{max}$

Première méthode

Initialisation

- \bullet $t_0 \leftarrow 0$
- $B_0 = 6$ et $b_0 = 1$

- Tâches candidates pour la première place : J_1 seulement parce qu'on construit des ordonnancements actifs $\Rightarrow S_1 = S$: on place J_1 en première position
- $b_1 = b_0 = 1$ et $B_1 = B_0 = 6$ \Rightarrow on poursuit la recherche
- $t_1 \leftarrow \max(r_1, t_0) + p_1 = 6$

Algorithmes à base de règles de priorité

Problèmes à une Problèmes de type

Limitation des règles de priorité

Algorithmes plus " élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par Procédures par évaluation et séparation Résolution du problème $1|r_i|L_{\max}$

Problème J||Cmax

Première méthode

Initialisation

- $\blacksquare t_0 \leftarrow 0$
- $\blacksquare B_0 = 6 \text{ et } b_0 = 1$

- \blacksquare Tâches candidates pour la première place : J_1 seulement parce qu'on construit des ordonnancements actifs $\Rightarrow S_1 = S$: on place J_1 en première position
- \bullet $b_1 = b_0 = 1$ et $B_1 = B_0 = 6 \Rightarrow$ on poursuit la recherche
- $t_1 \leftarrow \max(r_1, t_0) + p_1 = 6$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus

Approches pour résoudre les problèmes NP-difficiles Méthodes constructives

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

2ème itération

■ Tâches candidates pour la deuxième place :

 $b_{1,2} = 6$; $b_{1,3} = 3$; $b_{1,4} = 2$

 $\blacksquare B_{1,2} = B_1 = 6; B_{1,3} = 3; B_{1,4} = 2$

Algorithmes à base de règles de priorité Problèmes à une

machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1 | r_j | L_{\max}$

Méthodes constructives

Problème $J||C_{\max}$

Première méthode

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- $b_{1,2} = 6 ; b_{1,3} = 3 ; b_{1,4} = 2$
- $B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- $b_{1,2} = 6 ; b_{1,3} = 3 ; b_{1,4} = 2$
- $\blacksquare B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- $b_{1,2} = 6$; $b_{1,3} = 3$; $b_{1,4} = 2$
- $B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$
 - $\pi^* = (1, 4, \pi)$
 - π est la séquence donnée par l'algorithme de Jackson non-préemptif appliqué sur l'instance composée des tâches $\{J_2, J_3, J_5, J_6, J_7\}$ à partir de l'instant
 - $t = \max(t_1, r_4) + p_4 = 18$
 - $\pi^* = (1, 4, 3, 5, 6, 2, 7)$

106 de 117

Plan

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Première méthode

2ème itération

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- $b_{1,2} = 6$; $b_{1,3} = 3$; $b_{1,4} = 2$
- $B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$

- $\pi^* = (1, 4, \pi)$
- \blacksquare π est la séquence donnée par l'algorithme de Jackson non-préemptif appliqué sur l'instance composée des tâche $\{J_2, J_3, J_5, J_6, J_7\}$ à partir de l'instant
- $t = \max(t_1, r_4) + p_4 = 18$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$

Problème $J || C_{\max}$

Première méthode

2ème itération

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- $\mathbf{b}_{1,2} = 6$; $b_{1,3} = 3$; $b_{1,4} = 2$
- $B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$

- $\pi^* = (1, 4, \pi)$
- π est la séquence donnée par l'algorithme de Jackson non-préemptif appliqué sur l'instance composée des tâches $\{J_2,J_3,J_5,J_6,J_7\}$ à partir de l'instant
- $t = \max(t_1, r_4) + p_4 = 18$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1 \mid r_j \mid L_{max}$

Problème $J||C_{\max}$

Première méthode

2ème itération

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- $b_{1,2} = 6 ; b_{1,3} = 3 ; b_{1,4} = 2$
- $B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$

- $\pi^* = (1, 4, \pi)$
- π est la séquence donnée par l'algorithme de Jackson non-préemptif appliqué sur l'instance composée des tâches $\{J_2,J_3,J_5,J_6,J_7\}$ à partir de l'instant $t=\max(t_1,r_4)+p_4=18$
- $\pi^* = (1, 4, 3, 5, 6, 2, 7)$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

Probleme J||Cmax

Première méthode

2ème itération

- Tâches candidates pour la deuxième place : J_2 , J_3 et J_4 (respect du fait qu'on construit des ordonnancements actifs)
- \mathbf{b} $b_{1,2} = 6$; $b_{1,3} = 3$; $b_{1,4} = 2$
- $B_{1,2} = B_1 = 6$; $B_{1,3} = 3$; $B_{1,4} = 2$

- $\pi^* = (1, 4, \pi)$
- π est la séquence donnée par l'algorithme de Jackson non-préemptif appliqué sur l'instance composée des tâches $\{J_2,J_3,J_5,J_6,J_7\}$ à partir de l'instant $t=\max(t_1,r_4)+p_4=18$
- $\pi^* = (1, 4, 3, 5, 6, 2, 7)$

28 novembre 2005

Plan

Algorithmes à base de règles de priorité Problèmes à une

Problèmes de type parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Heuristiques par Procédures par évaluation et séparation Résolution du problème $1|r_i|L_{\max}$

Méthodes constructives

Problème $J | | C_{\text{max}}$

Première méthode

Arbre de décision

Deuxième méthode

Algorithmes à base de règles de priorité Problèmes à une

Problèmes de type flowshop

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation

Résolution du problème $1|r_j|L_{\max}$

Problème $J||C_{\max}$

Voir feuilles jointes

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop

parallèles Limitation des règles de priorité

priorite

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{\max}$

J_j	J_1				J_2	J_3		
$O_{i,j}$	$O_{1,1}$	$O_{2,1}$	$O_{3,1}$	$O_{1,2}$	$O_{2,2}$	$O_{3,2}$	$O_{1,3}$	$O_{2,3}$
$M_{i,j}$	M_1	M_2	M_3	M_2	M_1	M_3	M_3	M_2
$p_{i,j}$	3	2	5	4	2	2	2	3

Algorithmes à base

de règles de priorité
Problèmes à une

machine
Problèmes de type
flowshop
Problèmes à machines
parallèles
Limitation des règles de
priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème 1 | r · | Lympa y

Problème $J||C_{max}$

- Modélisation avec un graphe disjonctif G = (V, C, D)
 - $lue{V}$ ensemble des sommets : les opérations
 - lacktriangleright C ensemble des arcs conjonctifs : contraintes de précédence entre opérations d'un même job + arcs dûs aux sommets source (0) et puits (*)
 - D ensemble des "arcs" disjonctifs : conflits entre les opérations utilisant la même machine
- Résoudre le problème de jobshop consiste à orienter les arcs disjonctifs sans créer de circuit
- Le plus long chemin dans le graphe résultant détermine la durée totale de l'ordonnancement

Algorithmes à base de règles de priorité Problèmes à une

machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|\tau_s|L_{\max}$

Problème $J||C_{max}$

- Modélisation avec un graphe disjonctif G = (V, C, D)
 - $lue{\hspace{0.1in}}V$ ensemble des sommets : les opérations
 - lue C ensemble des arcs conjonctifs : contraintes de précédence entre opérations d'un même job + arcs dûs aux sommets source (0) et puits (*)
 - *D* ensemble des "arcs" disjonctifs : conflits entre les opérations utilisant la même machine
- Résoudre le problème de jobshop consiste à orienter les arcs disjonctifs sans créer de circuit
 - ⇒ ordre de passage des tâches sur une même ressource
- Le plus long chemin dans le graphe résultant détermine la durée totale de l'ordonnancement

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r_j|L_{\max}$ Problème $J||C_{\max}$

- Modélisation avec un graphe disjonctif G = (V, C, D)
 - lacktriangleq V ensemble des sommets : les opérations
 - lacktriangleright C ensemble des arcs conjonctifs : contraintes de précédence entre opérations d'un même job + arcs dûs aux sommets source (0) et puits (*)
 - D ensemble des "arcs" disjonctifs : conflits entre les opérations utilisant la même machine
- Résoudre le problème de jobshop consiste à orienter les arcs disjonctifs sans créer de circuit
 - ⇒ ordre de passage des tâches sur une même ressource
- Le plus long chemin dans le graphe résultant détermine la durée totale de l'ordonnancement

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

- \blacksquare A un ordonnancement partiel (ou complet) S est associé un graphe $G_S=(V,C_S,D_S)$
 - $C_S = C \cup CD(S)$, CD(S) est l'ensemble des arcs qui remplacent certains arcs de D (selon S)
 - $D_S = D DC(S)$, DC(S) est l'ensemble des arcs qui ont été arbitrés (remplacés par les arcs conjonctifs CD(S))

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles Méthodes constructives

Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

- \blacksquare A un ordonnancement partiel (ou complet) S est associé un graphe $G_S=(V,C_S,D_S)$
 - $C_S = C \cup CD(S)$, CD(S) est l'ensemble des arcs qui remplacent certains arcs de D (selon S)
 - $D_S = D DC(S)$, DC(S) est l'ensemble des arcs qui ont été arbitrés (remplacés par les arcs conjonctifs CD(S))

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- \blacksquare A un ordonnancement partiel (ou complet) S est associé un graphe $G_S=(V,C_S,D_S)$
 - $C_S = C \cup CD(S)$, CD(S) est l'ensemble des arcs qui remplacent certains arcs de D (selon S)
 - $D_S = D DC(S)$, DC(S) est l'ensemble des arcs qui ont été arbitrés (remplacés par les arcs conjonctifs CD(S))

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- Supposons que les ordres de passage ont été décidés sur un sous ensemble de machines $\mathcal{M} \subseteq \{M_1, M_2, \dots, M_m\}$
 - On note D(k) l'ensemble des arcs disjonctifs dûes à la machine $M_k: D = \bigcup_{k=1}^m D(k)$
 - lacktriangle On note C(k) l'ensemble des arcs conjonctifs qui remplacent les arcs disjonctifs D(k) de la machine M_k (pour la solution partielle courante)
 - Le graphe disjonctif correspondant est noté $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$ avec

$$C(\mathcal{M}) = \bigcup_{k \in \mathcal{M}} C(k) \text{ et } D(\mathcal{M}) = \bigcup_{k \notin \mathcal{M}} D(k)$$

Algorithmes à base de règles de priorité Problèmes à une

machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- Supposons que les ordres de passage ont été décidés sur un sous ensemble de machines $\mathcal{M} \subseteq \{M_1, M_2, \dots, M_m\}$
 - On note D(k) l'ensemble des arcs disjonctifs dûes à la machine $M_k: D = \bigcup_{k=1}^m D(k)$
 - On note C(k) l'ensemble des arcs conjonctifs qui remplacent les arcs disjonctifs D(k) de la machine M_k (pour la solution partielle courante)
 - Le graphe disjonctif correspondant est noté $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$ avec

$$C(\mathcal{M}) = \bigcup_{k \in \mathcal{M}} C(k) \text{ et } D(\mathcal{M}) = \bigcup_{k \notin \mathcal{M}} D(k)$$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- Supposons que les ordres de passage ont été décidés sur un sous ensemble de machines $\mathcal{M} \subseteq \{M_1, M_2, \dots, M_m\}$
 - On note D(k) l'ensemble des arcs disjonctifs dûes à la machine $M_k: D = \bigcup_{k=1}^m D(k)$
 - On note C(k) l'ensemble des arcs conjonctifs qui remplacent les arcs disjonctifs D(k) de la machine M_k (pour la solution partielle courante)
 - Le graphe disjonctif correspondant est noté $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$ avec

$$C(\mathcal{M}) = \bigcup_{k \in \mathcal{M}} C(k) \text{ et } D(\mathcal{M}) = \bigcup_{k \notin \mathcal{M}} D(k)$$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- Supposons que les ordres de passage ont été décidés sur un sous ensemble de machines $\mathcal{M} \subseteq \{M_1, M_2, \dots, M_m\}$
 - On note D(k) l'ensemble des arcs disjonctifs dûes à la machine $M_k: D = \bigcup_{k=1}^m D(k)$
 - On note C(k) l'ensemble des arcs conjonctifs qui remplacent les arcs disjonctifs D(k) de la machine M_k (pour la solution partielle courante)
 - Le graphe disjonctif correspondant est noté $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$ avec

$$C(\mathcal{M}) = \bigcup_{k \in \mathcal{M}} C(k) \text{ et } D(\mathcal{M}) = \bigcup_{k \notin \mathcal{M}} D(k)$$

Algorithmes à base de règles de priorité

Problèmes à une machine

Problèmes de type flowshop

parallèles
Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Principe : La Méthode de *shifting bottelneck* consiste à augmenter l'ensemble $\mathcal M$ progréssivement jusqu'à ordonnancer toutes les machines

- \blacksquare Dans quel ordre les machines sont introduites dans \mathcal{M} ?
- 2 Comment ordonnancer une machine sélectionnée ? Quel problème d'ordonnancement considérer sur une machine sélectionnée ?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop Problèmes à machine

parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Principe : La Méthode de *shifting bottelneck* consiste à augmenter l'ensemble ${\mathcal M}$ progréssivement jusqu'à ordonnancer toutes les machines

- \blacksquare Dans quel ordre les machines sont introduites dans \mathcal{M} ?
- Comment ordonnancer une machine sélectionnée?
 Quel problème d'ordonnancement considérer sur une machine sélectionnée?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop

Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{\max}$

Méthode de shifting bottelneck

Principe : La Méthode de *shifting bottelneck* consiste à augmenter l'ensemble $\mathcal M$ progréssivement jusqu'à ordonnancer toutes les machines

- lacktriangle Dans quel ordre les machines sont introduites dans \mathcal{M} ?
- 2 Comment ordonnancer une machine sélectionnée? Quel problème d'ordonnancement considérer sur une machine sélectionnée?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{\mathbf{max}}$

Méthode de shifting bottelneck

\blacksquare Dans quel ordre les machines sont introduites dans \mathcal{M} ?

- On suppose qu'un certain nombre de décisions ont été prises, i.e., \mathcal{M} fixé
- On construit un problème d'ordonnancement $P(k, \mathcal{M})$ pour chaque machine $M_k \notin \mathcal{M}$
- On résout chaque problème de façon à optimiser une fonction objectif f(k, M)
- lacksquare On choisit la machine M_{k^*} telle que

$$f(k^*, \mathcal{M}) = \max_{M_k \notin \mathcal{M}} f(k, \mathcal{M})$$

■ L'ordonnancement partiel correspond au graphe

$$G(\mathcal{M}) = (V, C(\mathcal{M}) \cup C(k^*), D(\mathcal{M}) - D(k^*))$$

 $C(k^*)$ est l'ensemble des arcs dûs à la solution optimale des arcs dûs à la solution optimale de machine $M_{\ell-1}$

Algorithmes à base de règles de priorité

Problèmes à une Problèmes de type Limitation des règles de priorité

Algorithmes plus " élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- **1** Dans quel ordre les machines sont introduites dans \mathcal{M} ?
 - On suppose qu'un certain nombre de décisions ont été prises, i.e., M fixé
 - On construit un problème d'ordonnancement $P(k, \mathcal{M})$
 - On résout chaque problème de façon à optimiser une

$$f(k^*, \mathcal{M}) = \max_{M_k \notin \mathcal{M}} f(k, \mathcal{M})$$

$$G(\mathcal{M}) = (V, C(\mathcal{M}) \cup C(k^*), D(\mathcal{M}) - D(k^*))$$

Algorithmes à base de règles de priorité Problèmes à une

machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

- **1** Dans quel ordre les machines sont introduites dans \mathcal{M} ?
 - On suppose qu'un certain nombre de décisions ont été prises, i.e., \mathcal{M} fixé
 - On construit un problème d'ordonnancement $P(k, \mathcal{M})$ pour chaque machine $M_k \notin \mathcal{M}$
 - On résout chaque problème de façon à optimiser une fonction objectif $f(k, \mathcal{M})$
 - lacksquare On choisit la machine M_{k^*} telle que

$$f(k^*, \mathcal{M}) = \max_{M_k \notin \mathcal{M}} f(k, \mathcal{M})$$

■ L'ordonnancement partiel correspond au graphe

$$G(\mathcal{M}) = (V, C(\mathcal{M}) \cup C(k^*), D(\mathcal{M}) - D(k^*))$$

 $C(k^*)$ est l'ensemble des arcs dûs à la solution optimale de la machine M_{k^*}

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

- **1** Dans quel ordre les machines sont introduites dans \mathcal{M} ?
 - On suppose qu'un certain nombre de décisions ont été prises, i.e., \mathcal{M} fixé
 - On construit un problème d'ordonnancement $P(k, \mathcal{M})$ pour chaque machine $M_k \notin \mathcal{M}$
 - On résout chaque problème de façon à optimiser une fonction objectif $f(k, \mathcal{M})$
 - lacksquare On choisit la machine M_{k^*} telle que

$$f(k^*, \mathcal{M}) = \max_{M_k \notin \mathcal{M}} f(k, \mathcal{M})$$

■ L'ordonnancement partiel correspond au graphe

$$G(\mathcal{M}) = (V, C(\mathcal{M}) \cup C(k^*), D(\mathcal{M}) - D(k^*))$$

 $C(k^*)$ est l'ensemble des arcs dûs à la solution optimale de la machine M_{k^*}

Algorithmes à base de règles de priorité Problèmes à une

machine
Problèmes de type
flowshop
Problèmes à machines
parallèles
Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

- **1** Dans quel ordre les machines sont introduites dans \mathcal{M} ?
 - On suppose qu'un certain nombre de décisions ont été prises, i.e., \mathcal{M} fixé
 - On construit un problème d'ordonnancement $P(k, \mathcal{M})$ pour chaque machine $M_k \notin \mathcal{M}$
 - On résout chaque problème de façon à optimiser une fonction objectif $f(k, \mathcal{M})$
 - \blacksquare On choisit la machine M_{k^*} telle que

$$f(k^*, \mathcal{M}) = \max_{M_k \notin \mathcal{M}} f(k, \mathcal{M})$$

■ L'ordonnancement partiel correspond au graphe

$$G(\mathcal{M}) = (V, C(\mathcal{M}) \cup C(k^*), D(\mathcal{M}) - D(k^*))$$

 $C(k^*)$ est l'ensemble des arcs dûs à la solution optimale de la machine M_{ℓ^*}

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

- **1** Dans quel ordre les machines sont introduites dans \mathcal{M} ?
 - On suppose qu'un certain nombre de décisions ont été prises, i.e., \mathcal{M} fixé
 - On construit un problème d'ordonnancement $P(k, \mathcal{M})$ pour chaque machine $M_k \notin \mathcal{M}$
 - On résout chaque problème de façon à optimiser une fonction objectif $f(k, \mathcal{M})$
 - lacksquare On choisit la machine M_{k^*} telle que

$$f(k^*, \mathcal{M}) = \max_{M_k \notin \mathcal{M}} f(k, \mathcal{M})$$

■ L'ordonnancement partiel correspond au graphe

$$G(\mathcal{M}) = (V, C(\mathcal{M}) \cup C(k^*), D(\mathcal{M}) - D(k^*))$$

 $C(k^{\ast})$ est l'ensemble des arcs dûs à la solution optimale de la machine $M_{k^{\ast}}$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- 1 Dans quel ordre les machines ...?
- 2 Quel problème d'ordonnancement $P(k,\mathcal{M})$?
 - L(i,j) plus long chemin du sommet i au sommet j dans le graphe $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$
 - $\mathbf{r}_i = L(0,i)$ date de début au plus tôt de l'opération représentée par le sommet i (qui s'exécute sur la machine M_k)
 - d_i = L(0,*) L(i,*) + p_i est la date de fin au plus tard de l'opération représentée par i
 - Critère : minimiser le retard algébrique L_{\max} pour la machine M_k sachant que les machines appartenant à $\mathcal M$ ont été déjà ordonnancées

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type

flowshop
Problèmes à machines
parallèles
Limitation des règles de

Algorithmes plus

priorité

"élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

- 1 Dans quel ordre les machines ...?
- **2** Quel problème d'ordonnancement $P(k, \mathcal{M})$?
 - L(i,j) plus long chemin du sommet i au sommet j dans le graphe $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$
 - $\mathbf{r}_i = L(0,i)$ date de début au plus tôt de l'opération représentée par le sommet i (qui s'exécute sur la machine M_k)
 - $d_i = L(0, *) L(i, *) + p_i$ est la date de fin au plus tard de l'opération représentée par i
 - Critère : minimiser le retard algébrique L_{\max} pour la machine M_k sachant que les machines appartenant à \mathcal{N} ont été déjà ordonnancées

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives
Heuristiques par
voisinage
Procédures par
évaluation et séparation
Résolution du problème

Problème $J||C_{\max}$

- 1 Dans quel ordre les machines ...?
- **2** Quel problème d'ordonnancement $P(k, \mathcal{M})$?
 - L(i,j) plus long chemin du sommet i au sommet j dans le graphe $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$
 - $lackbr{1}$ $r_i=L(0,i)$ date de début au plus tôt de l'opération représentée par le sommet i (qui s'exécute sur la machine M_k)
 - $d_i = L(0,*) L(i,*) + p_i$ est la date de fin au plus tard de l'opération représentée par i
 - Critère : minimiser le retard algébrique L_{\max} pour la machine M_k sachant que les machines appartenant à $\mathcal N$ ont été déjà ordonnancées

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives
Heuristiques par
voisinage
Procédures par
évaluation et séparation
Résolution du problème

Problème $J||C_{max}$

- 1 Dans quel ordre les machines ...?
- **2** Quel problème d'ordonnancement $P(k, \mathcal{M})$?
 - L(i,j) plus long chemin du sommet i au sommet j dans le graphe $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$
 - $r_i = L(0,i)$ date de début au plus tôt de l'opération représentée par le sommet i (qui s'exécute sur la machine M_k)
 - $d_i = L(0,*) L(i,*) + p_i$ est la date de fin au plus tard de l'opération représentée par i
 - Critère : minimiser le retard algébrique L_{\max} pour la machine M_k sachant que les machines appartenant à \mathcal{M} ont été déjà ordonnancées

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème $1|r:|L_{max}|$

Problème $J||C_{max}$

- 1 Dans quel ordre les machines ...?
- **2** Quel problème d'ordonnancement $P(k, \mathcal{M})$?
 - L(i,j) plus long chemin du sommet i au sommet j dans le graphe $G(\mathcal{M}) = (V, C(\mathcal{M}), D(\mathcal{M}))$
 - $lackbr{1}$ $r_i=L(0,i)$ date de début au plus tôt de l'opération représentée par le sommet i (qui s'exécute sur la machine M_k)
 - $d_i = L(0,*) L(i,*) + p_i$ est la date de fin au plus tard de l'opération représentée par i
 - Critère : minimiser le retard algébrique L_{\max} pour la machine M_k sachant que les machines appartenant à $\mathcal M$ ont été déjà ordonnancées

Algorithmes à base de règles de priorité

machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Problèmes à une

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Pourquoi ce problème?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Pourquoi ce problème?

lacktriangle Si les machines n'appartenant pas à $\mathcal M$ pouvaient exécuter une infinité d'opérations à la fois, L(0,*) serait le makespan, étant donné l'ordre de passage des opérations sur les machines apparatenant à $\mathcal M$

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation

Problème $J||C_{max}$

Méthode de shifting bottelneck

Pourquoi ce problème?

■ Si les machines n'appartenant pas à $\mathcal M$ pouvaient exécuter une infinité d'opérations à la fois, L(0,*) serait le makespan, étant donné l'ordre de passage des opérations sur les machines apparatenant à $\mathcal M$

 $\Rightarrow L(0,i)$ est bien la date de début au plus tôt de i

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Pourquoi ce problème?

- lacktriangle Si les machines n'appartenant pas à $\mathcal M$ pouvaient exécuter une infinité d'opérations à la fois, L(0,*) serait le makespan, étant donné l'ordre de passage des opérations sur les machines apparatenant à $\mathcal M$
 - $\Rightarrow L(0,i)$ est bien la date de début au plus tôt de i
 - $\Rightarrow L(i,*) p_i$ est bien le temps nécessaire pour atteindre
 - * lorsque i est terminée

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de priorité

Algorithmes plus "élabrés"

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Pourquoi ce problème?

- lacktriangle Si les machines n'appartenant pas à $\mathcal M$ pouvaient exécuter une infinité d'opérations à la fois, L(0,*) serait le makespan, étant donné l'ordre de passage des opérations sur les machines apparatenant à $\mathcal M$
 - $\Rightarrow L(0,i)$ est bien la date de début au plus tôt de i
 - $\Rightarrow L(i,*) p_i$ est bien le temps nécessaire pour atteindre
 - st lorsque i est terminée
 - \Rightarrow pour ne pas augmenter le makespan, il faut finir i avant $L(0,*)-L(i,*)+p_i$, sinon le makespan augmente au moins d'une quantité égale au retard dû à l'introduction de la machine M_k

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus "élabrés"

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation

Problème $J||C_{max}$

Méthode de shifting bottelneck

Raffinement

A chaque fois qu'on introduit une nouvelle machine k^* dans \mathcal{M} , on résout les problèmes $P(k,\mathcal{M}-\{k\})$ pour effectuer une optimisation locale

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Raffinement

A chaque fois qu'on introduit une nouvelle machine k^* dans \mathcal{M} , on résout les problèmes $P(k,\mathcal{M}-\{k\})$ pour effectuer une optimisation locale

Pourquoi?

Algorithmes à base de règles de priorité

Problèmes à une machine Problèmes de type flowshop Problèmes à machines parallèles Limitation des règles de

Algorithmes plus

priorité

Approches pour résoudre les problèmes NP-difficiles

Méthodes constructives Heuristiques par voisinage Procédures par évaluation et séparation Résolution du problème

Problème $J||C_{max}$

Méthode de shifting bottelneck

Raffinement

A chaque fois qu'on introduit une nouvelle machine k^* dans \mathcal{M} , on résout les problèmes $P(k,\mathcal{M}-\{k\})$ pour effectuer une optimisation locale

Pourquoi?

Le problème $P(k,\mathcal{M}-\{k\})$ est différent du problème $P(k,\mathcal{M}\cup\{k^*\}-\{k\})$

