

Dask

Distributed

Dask ML

Examples

Ecosystem

Comm

### Dask DataFrame

### Contents

- Examples
- Design
- Dask DataFrame copies the pandas DataFrame API
- Common Uses and Anti-Uses
- Scope
- Execution

A Dask DataFrame is a large parallel DataFrame composed of many smaller pandas DataFrames, split along the index. These pandas DataFrames may live on disk for larger-than-memory computing on a single machine, or on many different machines in a cluster. One Dask DataFrame operation triggers many operations on the constituent pandas DataFrames.



# Examples

Visit https://examples.dask.org/dataframe.html to see and run examples using Dask DataFrame.

# Design

Dask DataFrames coordinate many pandas DataFrames/Series arranged along the index. A Dask DataFrame is partitioned *row-wise*, grouping rows by index value for efficiency. These pandas objects may live on disk or on other machines.

# Dask DataFrame copies the pandas DataFrame API

Because the dask.DataFrame application programming interface (API) is a subset of the pd.DataFrame API, it should be familiar to pandas users. There are some slight alterations due to the parallel nature of Dask:





Dask Distributed

Dask ML

Examples

Ecosystem

Comm

As with all Dask collections, you trigger computation by calling the .compute() method.

#### Common Uses and Anti-Uses

Dask DataFrame is used in situations where pandas is commonly needed, usually when pandas fails due to data size or computation speed:

- Manipulating large datasets, even when those datasets don't fit in memory
- Accelerating long computations by using many cores
- Distributed computing on large datasets with standard pandas operations like groupby, join, and time series computations

Dask DataFrame may not be the best choice in the following situations:

- If your dataset fits comfortably into RAM on your laptop, then you may be better off just using pandas. There may be simpler ways to improve performance than through parallelism
- If your dataset doesn't fit neatly into the pandas tabular model, then you might find more use in dask.bag or dask.array
- If you need functions that are not implemented in Dask DataFrame, then you might want to look at <u>dask.delayed</u> which offers more flexibility
- If you need a proper database with all that databases offer you might prefer something like Postgres

# Scope

Dask DataFrame covers a well-used portion of the pandas API. The following class of computations works well:

- Trivially parallelizable operations (fast):
  - Element-wise operations: df.x + df.y, df \* df
  - Row-wise selections: df[df.x > 0]
  - Loc: df.loc[4.0:10.5]
  - Common aggregations: df.x.max(), df.max()
  - Is in: df[df.x.isin([1, 2, 3])]
  - Date time/string accessors: df.timestamp.month
- Cleverly parallelizable operations (fast):
  - groupby-aggregate (with common aggregations): df.groupby(df.x).y.max(), df.groupby('x').min() (see <u>Aggregate</u>)
  - groupby-apply on index: df.groupby(['idx', 'x']).apply(myfunc), where idx is the index level name
  - o value\_counts: df.x.value\_counts()
  - Drop duplicates: df.x.drop\_duplicates()
  - Join on index: dd.merge(df1, df2, left\_index=True, right\_index=True) or dd.merge(df1, df2, on=['idx', 'x']) where
    idx is the index name for both df1 and df2
  - Join with pandas DataFrames: dd.merge(df1, df2, on='id')



Dask

Distributed

Dask ML

Examples

Ecosystem

Comm

- Rolling averages: df.rolling(...)
- Pearson's correlation: df[['col1', 'col2']].corr()
- Operations requiring a shuffle (slow-ish, unless on index, see Shuffling for GroupBy and Join)
  - Set index: df.set\_index(df.x)
  - groupby-apply not on index (with anything): df.groupby(df.x).apply(myfunc)
  - Join not on the index: dd.merge(df1, df2, on='name')

However, Dask DataFrame does not implement the entire pandas interface. Users expecting this will be disappointed. Notably, Dask DataFrame has the following limitations:

- 1. Setting a new index from an unsorted column is expensive
- 2. Many operations like groupby-apply and join on unsorted columns require setting the index, which as mentioned above, is expensive
- 3. The pandas API is very large. Dask DataFrame does not attempt to implement many pandas features or any of the more exotic data structures like NDFrames
- 4. Operations that were slow on pandas, like iterating through row-by-row, remain slow on Dask DataFrame

See the DataFrame API documentation for a more extensive list.

### Execution

By default, Dask DataFrame uses the <u>multi-threaded scheduler</u>. This exposes some parallelism when pandas or the underlying NumPy operations release the global interpreter lock (GIL). Generally, pandas is more GIL bound than NumPy, so multi-core speedups are not as pronounced for Dask DataFrame as they are for Dask Array. This is particularly true for string-heavy Python DataFrames, as Python strings are GIL bound.

There has been recent work on changing the underlying representation of pandas string data types to be backed by <u>PyArrow</u> Buffers, which should release the GIL, however, this work is still considered experimental.

When dealing with text data, you may see speedups by switching to the distributed scheduler either on a cluster or single machine.

© Copyright 2014-2018, Anaconda, Inc. and contributors.