# Musterlösung 01/09/2014

### 1 Quickies

- (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m=1t, v=100km/h) keine Rolle?
- (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von  $\lambda_1=500$  m,  $\lambda_2=500$ nm und  $\lambda_3=0.5$ nm?
- (c) Kann man den Aufenthaltsort eines quantenmechanischen Teilchens zu einem beliebigen Zeitpunkt vorherbestimmen? Begründen Sie Ihre Antwort.
- (d) Welche physikalische Bedeutung besitzt die Normierung der Schrödingergleichung?
- (e) Welche physikalischen Phänomene kennen Sie, die nicht klassisch aber quantenmechanisch erklärt werden können?

# Lösung:

(a) Gesucht ist die de-Broglie-Wellenlänge des PKWs:

$$\lambda = \frac{h}{mv} = 2 \cdot 10^{-38} \text{m}$$

 $\lambda$  ist zu klein, um quantenmechanische Beobachtungen wie Beugung und Interferenz machen zu können.

(b) Für die Energie eines Teilchens mit gegebener Wellenlänge gilt

$$E = \frac{hc}{\lambda}$$

was für die gefragten Werte folgende Ergebnisse liefert:

| $\lambda$ in nm | E in meV |
|-----------------|----------|
| 500000          | 2.5      |
| 500             | 2500     |
| 0.5             | 2.5 k    |

- (c) Nein. Die Schrödingergleichung, oder vielmehr ihr Absolutquadrat, liefert lediglich die Aufenthaltwahrscheinlichkeit ein Teilchen an einem bestimmten Ort zu finden.
- (d) Die Normierung der Wellenfunktion sagt, dass man das Teilchen in jedem Fall irgendwo antreffen kann. Das bedeutet die Integration über den gesamten Ortsraum liefert die Wahrscheinlichkeit 1 das Teilchen anzutreffen.
- (e) Tunneleffekt, diskrete Energiezustände in Atomen, etc.

#### 2 Welle-Teilchen-Dualismus

- (a) Betrachten Sie einen Körper der Masse 5g mit einer Geschwindigkeit  $v=100 \mathrm{m/s}$ . Welche Breite müsste ein Spalt haben um Beugungsmuster zu beobachten? Ist dies physikalisch realisierbar?
- (b) Ein Neutron werde an einem Atomkern der Größe  $9\cdot 10^{-15}$ m gestreut. Welche Energie besitzt das Neutron?

### Lösung:

(a) Wieder via de-Broglie-Beziehung:

$$\lambda = \frac{h}{p} = 1.325 \cdot 10^{-33} \mathrm{m}$$

Ein solcher Spalt ist technisch und physikalisch nicht realisierbar.

(b) Aus der de-Broglie-Beziehung lässt sich der Impuls und daraus die Geschwindigkeit des Neutrons ermitteln:

$$v = \frac{h}{\lambda \cdot m_n} = 4.37 \cdot 10^7 \text{m/s}$$

Für die Energie ergibt sich dann wie üblich  $E = 1/2mv^2 \approx 10 \text{MeV}$ .

# 3 Bragg-Winkel

Ein Strahl langsamer Neutronen ( $E_{kin} = 2\text{eV}$ ) fällt auf einen Kristall mit Gitterabstand  $d = 1.6 \cdot 10^{-10} m$ . Bestimmen Sie den Bragg-Winkel für das Intensitätsmaximum 1. Ordnung.

# Lösung:

Aus der de-Broglie-Beziehung

$$\lambda = \frac{h}{p}$$

und der Bragg-Bedingung

$$2 \cdot d \cdot \sin \theta = n \cdot \lambda$$

folgt für den Bragg-Winkel des Intensitätsmaximums 1. Ordnung

$$\sin \theta = \frac{\lambda}{2 \cdot d} \iff \theta = 3.6^{\circ}$$

#### 4 Unschärferelation

- (a) Angenommen der Impuls eines Teilchens wird mit der Genauigkeit 1: 1000 gemessen. Wie groß ist die minimale Ortsunschärfe, wenn es sich um ein makroskopisches Teilchen der Masse 5g mit der Geschwindigkeit 2m/s handelt? Wie groß ist die minimale Ortsunschärfe, wenn es sich um ein Elektron der Geschwindigkeit 10<sup>4</sup>km/s handelt?
- (b) Wie groß ist die minimale Energieunschärfe eines Wasserstoffatoms, das sich in einem angeregten Zustand mit der Lebensdauer  $10^{-8}$ s befindet?

# Lösung:

(a) Mit der Unschärferelation

$$\Delta x \Delta p \geq \hbar$$

und mittels der Angabe  $\Delta p = \epsilon p$  mit  $\epsilon = 0.001$  erhält man für die minimale Ortsunschärfe

$$\Delta x \ge 1.05 \cdot 10^{-29} \mathrm{m}$$

Für das Elektron mit angegebener Geschwindigkeit erhält man

$$\Delta x \ge 1.16 \cdot 10^{-8} \mathrm{m}$$

Diese Ortsunschärfe ist im Gegensatz zu der des makroskopischen Objekts nicht vernachlässigbar.

(b) Analog zum vorherigen Aufgabenteil wird nun die Energieunschärfe mittels der Unschärferelation für Energie und Zeit berechnet:

$$\Delta E \Delta t > \hbar$$

Einsetzen der entsprechenden Werte liefert

$$\Delta E = 6.59 \cdot 10^{-8} \text{eV}$$

### 5 Wellenpaket

- (a) Betrachten Sie ein Elektron mit dem Impuls  $p = \hbar k$  in x-Richtung. Wie lautet die zugehörige Wellenfunktion  $\psi(x,t)$ ?
- (b) Bestimmen Sie die Phasengeschwindigkeit der Elektronenwelle aus (a), indem Sie eine Stelle fester Phase im Laufe der Zeit durch den Raum verfolgen. Wie verhält sich die Phasengeschwindigkeit  $v_{ph}$  der Welle zur Geschwindigkeit  $v_T = p/m$  des Elektrons?

# Lösung:

(a) Die (nicht-normierte) Wellenfunktion zu einem eindeutig bestimmten Impuls p ist die ebene Welle

$$\psi(x) = \exp[ikx]$$

mit  $k = p/\hbar$ . Ihre freie zeitliche Entwicklung ist

$$\psi(x,t) = \exp\left[-\mathrm{i}(\omega(k)t - kx)\right]$$

mit  $\omega = E/\hbar$  und  $E = p^2/2m$  also  $\omega(k) = \hbar k^2/2m$ . Insgesamt erhält man:

$$\psi(x,t) = \exp\left[-i\left(\frac{\hbar k^2}{2m}t - kx\right)\right]$$

(b) Konstante Phase bedeutet

$$\frac{\hbar k^2}{2m}t - kx = \text{const.} \iff x = \frac{\hbar k}{2m}t + const.$$

Die Phasengeschwindigkeit erhält man durch die erste Ableitung nach der Zeit, wie gehabt:

$$v_{ph} = \frac{\partial x}{\partial t} = \frac{p}{2m} = \frac{1}{2}v_T$$

#### 6 Quantenmechanische Wellenfunktion

Betrachten Sie die quantenmechanische Wellenfunktion

$$\psi(x) = N \cdot \exp\left[-\frac{|x|}{a}\right], \quad a > 0 \tag{1}$$

(a) Bestimmen Sie den Normierungsfaktor N mit der Bedingung

$$\int_{-\infty}^{\infty} \mathrm{d}x |\psi|^2 = 1 \tag{2}$$

Welche Einheit hat die Wellenfunktion und warum ist die Normierung wichtig für die Interpretation in der Quantenmechanik?

(b) Wie groß ist die Wahrscheinlichkeit das Teilchen am Ort x = 0 zu finden? Wie groß ist die Wahrscheinlichkeit das Teilchen in einem Intervall [0, dx] zu finden? Wie groß ist die Wahrscheinlichkeit das Teilchen in einem Intervall [0, a] zu finden?

### Lösung:

(a) Einsetzen von Gleichung 1 in die Normierungsbedingung 2 unter Berücksichtigung der Betragsfunktion im Exponenten liefert:

$$\int_{-\infty}^{\infty} dx |\psi|^2 = |N|^2 \cdot 2 \cdot \int_{0}^{\infty} dx \exp\left[-\frac{2x}{a}\right] =$$

$$=2|N|^2 \cdot \left(\frac{a}{2}\right) \left[\exp\left[-\frac{2x}{a}\right]\right]_0^\infty = |N|^2 a = 1$$

Für den Normierungsfaktor ergibt sich also

$$N = \frac{1}{\sqrt{a}}$$

und damit für die Wellenfunktion

$$\psi(x) = \frac{1}{\sqrt{a}} \exp\left[-\frac{|x|}{a}\right]$$

Nur wenn die Wellenfunktion normiert ist, lässt sich das Absolutquadrat als Wahrscheinlichkeitsdichte interpretieren. Die Einheit der Wellenfunktion ist identisch mit der Einheit ihrer Amplitude, respektive ihres Normierungsfaktors, also gerade  $1/\sqrt{m}$ .

(b) Die Wahrscheinlichkeit das Teilchen exakt an einem Ort zu finden ist Null. Für das infinitesimale Intervall [0, dx] kann man die Wahrscheinlichkeitsdichte am Ort 0 mit dx multiplizieren:

$$w = |\psi(0)|^2 \mathrm{d}x = \frac{1}{a} \mathrm{d}x$$

Das ist eine gültige Näherung für dx << a. Für ein größeres Intervall muss entsprechend das Integral ausgewertet werden:

$$W = \int_0^a dx \left| \frac{1}{\sqrt{a}} \exp\left[ -\frac{|x|}{a} \right] \right|^2 = \frac{1}{a} \int_0^a dx \exp\left[ -\frac{2x}{a} \right] = \frac{1}{2} \left( 1 - \exp^{-2} \right) = 0.432$$

#### 7 Potentialkasten

Gegeben sei ein eindimensionales Potential der Form

$$V(x) = \begin{cases} 0, & \text{für } 0 < x < a \\ \infty, & \text{sonst} \end{cases}$$

in dem sich ein kräftefreies Teilchen befinde.

- (a) Bestimmen Sie die Wellenfunktion  $\psi_n$ .
- (b) Berechnen Sie die Energieeigenwerte  $E_n$ .
- (c) Berechnen Sie den Erwartungswert des Ortes x und des Impulsoperators  $\hat{p}$ .
- (d) Berechnen Sie die Energieunschärfe  $\Delta \hat{\mathcal{H}}$  und interpretieren Sie das Ergebnis.

Hinweis: Für die Energieunschärfe gilt:

$$\Delta \hat{\mathcal{H}} = \sqrt{\langle \hat{\mathcal{H}}^2 \rangle - \langle \hat{\mathcal{H}} \rangle^2}$$

# Lösung:

(a) Das Teilchen hält sich ausschließlich im Potentialkasten auf, weswegen sich die Schrödingergleichung wie folgt liest:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi = E\psi$$

Mit der Beziehung  $E=k^2\hbar^2/2m$  kann an die Gleichung zu

$$\frac{\partial^2}{\partial x^2}\psi - k^2\psi = 0$$

umschreiben. Mit dem Ansatz

$$\psi(x) = A \exp[ikx] + B \exp[-ikx]$$

und den Randbedingungen  $\psi(0)=0$  und  $\psi(a)=0$  erhält man schließlich

$$\psi(0) = A + B = 0 \iff \psi = A \left( \exp\left[ikx\right] - \exp\left[-ikx\right] \right) = 2iA \sin(kx)$$

und damit:

$$\psi(a) = 2iA\sin(ka) = 0$$

Der Ausdruck der zweiten Randbedingung verschwindet für Vielfache von  $\pi$  des Arguments im Sinus:

$$ka = n\pi$$
,  $n \in \mathbb{R}$ 

Das bedeutet die Wellenfunktion ist gegeben via

$$\psi_n = 2iA \sin\left(\frac{n\pi x}{a}\right)$$

Mit der Normierungsbedingung erhält man zusätzlich einen eingängigeren Ausdruck für *A*:

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$

(b) Einsetzen der in (a) erhaltenen Wellenfunktion in die Schrödingergleichung liefert die Energieeigenwerte

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$$

(c) Erwartungswert des Ortes ist

$$\langle x \rangle = \int_0^a \mathrm{d}x \; \psi_n^* x \psi_n = \int_0^a \mathrm{d}x \; x \; |\psi_n|^2 = \frac{a}{2}$$

und der des Impulsoperators:

$$\langle \hat{p} \rangle = \int \mathrm{d}x \; \psi_n^* \left( -i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \right) \psi_n = 0$$

(d) Zur Berechnung der Energieunschärfe benötigt man die Erwartungswerte von  $\langle \hat{\mathcal{H}} \rangle$  und  $\langle \hat{\mathcal{H}}^2 \rangle$ :

$$\langle \hat{\mathcal{H}} \rangle = \int_{\mathbb{R}} dx \; \psi_n^* \left( -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \right) \psi_n = \frac{\hbar^2 n^2 \pi^2}{2ma^2} = E_n$$

$$\langle \hat{\mathcal{H}}^2 \rangle = \int_{\mathbb{R}} dx \; \psi_n^* \left( \frac{\hbar^4}{4m^2} \frac{\partial^4}{\partial x^4} \right) \psi_n = \left( \frac{\hbar^2 n^2 \pi^2}{2ma^2} \right)^2 = E_n^2$$

Eingesetzt in die im Hinweis angegebene Gleichung erhält man insgesamt:

$$\Delta \hat{\mathcal{H}} = \sqrt{E_n^2 - E_n^2} = 0$$

Die Energie ist also scharf messbar.

#### 8 Potentialbarriere

Betrachten Sie die abgebildete stückweise konstante Potentiallandschaft in Abbildung 1. Ein von rechts einlaufendes Teilchen habe die Masse m und die Energie E mit  $0 < E < V_0$ .



Abbildung 1

- (a) Geben Sie die Ansätze für die Wellenfunktionen für die verschiedenen Regionen I-IV an und verwenden Sie dabei  $\hbar$ , m,  $V_0$ ,  $V_1$  und E. Die Schrödingergleichung muss nicht gelöst werden.
- (b) Stellen Sie die Anschlussbedingung für x = c auf.
- (c) Unter der Annahme, dass in Bereich III gebundene Zustände existieren, stellen Sie wie in Aufgabe (a) die Lösungen für die vier Regionen auf.

# Lösung

(a) Für die verschiedenen Regionen lassen sich folgende Ansätze aufstellen:

$$\psi(x) = \begin{cases} G \exp[\kappa x], & \text{Region I und } \frac{\hbar^2 \kappa^2}{2m} = V_0 - E \\ E \exp[ikx] + F \exp[-ikx], & \text{Region II und } \frac{\hbar^2 k^2}{2m} = E \\ C \exp[iqx] + D \exp[-iqx], & \text{Region III und } \frac{\hbar^2 q^2}{2m} = E + V_1 \\ A \exp[ikx] + B \exp[-ikx], & \text{Region I und } \frac{\hbar^2 k^2}{2m} = E \end{cases}$$

(b) Stetigkeit von  $\psi$  und der ersten Ableitung ergibt

$$C \exp[iqc] + D \exp[-iqc] = A \exp[ikc] + B \exp[-ikc]$$

$$iq(-C\exp[iqc] + D\exp[-iqc]) = ik(-A\exp[ikc] + B\exp[-ikc])$$

(c) Wenn gebundene Zustände in Region III existieren, muss die Energie des Teilchens  $V_1 < E_2 < 0$  sein. Die dazugehörigen Wellenfunktionen sind:

$$\psi(x) = \begin{cases} G \exp[\kappa' x], & \text{Region I und } \frac{\hbar^2 \kappa'^2}{2m} = V_0 - E_2 \\ E \exp[-\kappa x] + F \exp[\kappa x], & \text{Region II und } \frac{\hbar^2 \kappa^2}{2m} = E_2 \\ C \exp[\mathrm{i} q' x] + D \exp[-\mathrm{i} q' x], & \text{Region III und } \frac{\hbar^2 q'^2}{2m} = V_1 - E_2 \\ A \exp[-\kappa x], & \text{Region I und } \frac{\hbar^2 \kappa^2}{2m} = E_2 \end{cases}$$

#### 9 Eindimensionaler harmonischer Oszillator

Der Hamiltonoperator eines eindimensionalen harmonischen Oszillators ist gegeben durch

$$\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}^2}{2}$$

(a) Gegeben sei nun die Wellenfunktion

$$\psi_{\lambda}(x) = A \exp[-\lambda x^2]$$

Berechnen Sie hiermit den Erwartungswert des Hamiltonoperators. Verwenden Sie

$$\int \mathrm{d}x \, \sqrt{\frac{a}{\pi}} \exp\left[-ax^2\right] = 1$$

Betrachten Sie nun ein Teilchen, auf das die Kraft  $K=-kx+k_0$  mit  $k=m_0\omega^2$  wirkt.

- (b) Stellen Sie die dazugehörige Schrödingergleichung auf. Zeigen Sie, dass es sich um einen harmonischen Oszillator handelt.
- (c) Geben Sie die Energieeigenwerte des Teilchens an.

### Lösung

(a) Normierung der Wellenfunktion liefert zunächst

$$\int_{\mathcal{R}} dx \ |\psi_{\lambda}|^2 = \int dx \ |A|^2 \exp\left[-2\lambda x^2\right] = 1 \ \to \ A = \left(\frac{2\lambda}{\pi}\right)$$

Man kann nun den Erwartungswert  $\langle \hat{\mathbf{H}} \rangle = E_{\lambda}$  berechnen:

$$\begin{split} \langle \hat{\mathbf{H}} \rangle &= \left(\frac{2\lambda}{\pi}\right)^{0.5} \int_{\mathcal{R}} \mathrm{d}x \; \exp\left[-\lambda x^2\right] \; \left[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{1}{2} m \omega^2 x^2 \right] \; \exp\left[-\lambda x^2\right] = \\ &= \left(\frac{2\lambda}{\pi}\right)^{0.5} \int_{\mathcal{R}} \mathrm{d}x \; \exp\left[-\lambda x^2\right] \; \left[ -\frac{\hbar^2}{2m} (4\lambda^2 x^2 - 2\lambda) - \frac{1}{2} m \omega^2 x^2 \right] = \\ &\frac{1}{8} m \omega^2 \frac{1}{\lambda} + \frac{\hbar^2}{2m} 2\lambda \end{split}$$

(b) Das Potential erhält man durch einfache Integration, da  $V(x) = -\nabla K$ :

$$V(x) = -\int (-kx + k_0) dx = \frac{k}{2}x^2 - k_0x(+C)$$

Durch Umformen mit  $x_0 = \frac{k_0}{k}$  und  $\epsilon_0 = \frac{k_0^2}{2k}$  ergibt sich:

$$V(x) = \frac{1}{2}m\omega^2(x - x_0)^2 - \epsilon_0$$

Dieses Potential setzt man nun in die Schrödingergleichung ein:

$$\left[ -\frac{\hbar^2}{2m_0} \frac{\partial^2}{\partial x^2} + \frac{1}{2} m_0 \omega^2 (x - x_0)^2 - \epsilon_0 \right] \psi = E \psi$$

Um zu zeigen, dass es sich um einen harmonischen Oszillator handelt, ersetzt man  $y = x - x_0$  und  $\hat{E} = E + \epsilon_0$ :

$$\left[ -\frac{\hbar^2}{2m_0} \frac{\partial^2}{\partial y^2} + \frac{1}{2} m_0 \omega^2 y^2 \right] \psi = \hat{E} \psi$$

(c) Die Energieeigenwerte sind entsprechend verschoben:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{1}{2}\frac{k_0^2}{k}$$

10

# 10 Kommutatorrelation

Der Drehimpulsoperator ist

$$\mathbf{\hat{L}} = \mathbf{\hat{r}} \times \mathbf{\hat{p}}$$

Berechnen Sie folgende Kommutatoren:

- (a)  $[L_y, L_z]$
- (b)  $[L^2, L_z]$

# Lösung:

(a)

$$\left[L_{y},L_{z}\right]=\left(xi\hbar\partial_{z}-zi\hbar\partial_{x}\right)\cdot\left(-xi\hbar\partial_{z}+yi\hbar\partial_{x}\right)-\left(-xi\hbar\partial_{z}+yi\hbar\partial_{x}\right)\cdot\left(xi\hbar\partial_{z}-zi\hbar\partial_{x}\right)=i\hbar L_{x}$$

(b) Man nutzt Eigenschaften der Kommutatorrelation:

$$[\mathbf{L}^2, L_z] = [L_x^2 + L_y^2 + L_z^2, L_z] = 0$$