SEMINARUL 1

Algebră vectorială

Problema 1.1. Se dă un tetraedru ABCD. Găsiți sumele vectorilor:

- 1) $\overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC}$;
- 2) $\overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{DC}$;
- 3) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$.

Problema 1.2. Se dă o piramidă cu vârful în S şi baza un paralelogram ABCD ale cărui diagonale se intersectează în punctul O. Să se demonstreze egalitatea vectorială:

$$\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} = 4\overrightarrow{SO}.$$

Problema 1.3. Fie ABCD un tetraedru. Demonstrați că $\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{AC}$. Este adevărată această afirmație pentru orice patru puncte din spațiu?

Problema 1.4. Punctul O este centrul unui hexagon regulat ABCDEF. Determinați descompunerile vectorilor \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} , în funcție de vectorii $\mathbf{p} = \overrightarrow{OE}$ și $\mathbf{q} = \overrightarrow{OF}$.

Problema 1.5. Demonstrați că dacă M, N, P, Q sunt mijloacele laturilor unui patrulater ABCD, atunci $\overrightarrow{MN} + \overrightarrow{PQ} = 0$.

Problema 1.6. Punctele E și F sunt mijloacele diagonalelor unui patrulater ABCD. Demonstrați că

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD}) = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{CB}).$$

Problema 1.7. Fie E și F mijloacele laturilor AB și CD ale unui patrulater ABCD. Demonstrați că

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{AD})$$

și utilizați această proprietate pentru a demonstra teorema liniei mijlocii într-un trapez.

Problema 1.8. Se dă un hexagon regulat $C_1C_2C_3C_4C_5C_6$. Demonstrați că

$$\overrightarrow{C_1C_2} + \overrightarrow{C_1C_3} + \overrightarrow{C_1C_4} + \overrightarrow{C_1C_5} + \overrightarrow{C_1C_6} = 3\overrightarrow{C_1C_4}.$$

Problema 1.9. În triunghiul ABC se duce bisectoarea AD a unghiului A. Determinați descompunerea vectorului \overrightarrow{AD} în funcție de vectorii $\mathbf{c} = \overrightarrow{AB}$ și $\mathbf{b} = \overrightarrow{AC}$.

Problema 1.10. Coardele AB și CD ale unui cerc de centru O se intersectează ortogonal în punctul P. Să se demonstreze relația

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 2\overrightarrow{PO}.$$

Problema 1.11. Se dă un trapez ABCD în care baza AB este de k ori (k > 1) mai mare decât baza mică CD. Fie M și N mijloacele bazelor. Găsiți descompunerile vectorilor \overrightarrow{AC} , \overrightarrow{MN} și \overrightarrow{BC} în funcție de vectorii $\overrightarrow{AB} = \mathbf{a}$ și $\overrightarrow{AD} = \mathbf{b}$.

Problema 1.12. Fie A', B', C' mijloacele laturilor unui triunghi oarecare ABC și un punct oarecare O în planul triunghiului. Să se demonstreze relația

$$\overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}.$$

Problema 1.13. Punctele M, N, P sunt, respectiv, mijloacele laturilor AB, BC, CA ale triunghiului ABC. Să se determine vectorii $\overrightarrow{BP}, \overrightarrow{AN}, \overrightarrow{CM}$ în funcție de vectorii \overrightarrow{AB} și \overrightarrow{AC} .

Problema 1.14. În figura 1.1 este reprezentat paralelipipedul $\overrightarrow{ABCDEFGH}$. Fie $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{AD}$ şi $\mathbf{w} = \overrightarrow{AE}$. Să se exprime vectorii \overrightarrow{AG} , \overrightarrow{EC} , \overrightarrow{HB} şi \overrightarrow{DF} în funcție de vectorii \mathbf{u} , \mathbf{v} şi \mathbf{w} .

Figura 1.1

Problema 1.15. Să se demonstreze că medianele unui triunghi sunt concurente şi că suma vectorilor care au originile în punctul de intersecție al medianelor şi extremitățile în vârfurile triunghiului este vectorul nul.

Problema 1.16. Se cunosc coordonatele vârfurilor A, B, C ale paralelogramului ABCD, față de un reper oarecare. Să se determine coordonatele celui de-al patrulea vârf (D), în fiecare dintre situațiile următoare:

- 1) A(2,3), B(1,4), C(0,-2);
- 2) A(-2,-1), B(3,0), C(1,-2).

Problema 1.17. Se cunosc coordonatele vârfurilor A și B și coordonatele centrului de greutate G al triunghiului ABC. Determinați coordonatele vârfului C al triunghiului în fiecare dintre următoarele situații:

- 1) A(4,1), B(3,-2), G(0,2);
- 2) A(3,5), B(-1,-3), C(1,1).

Problema 1.18. Se dă trapezul ABCD, în care $\overrightarrow{DC} = k\overrightarrow{AB}$. Punctele M şi N sunt mijloacele bazelor AB şi DC, iar P este punctul de intersecție a diagonalelor, AC şi BD, ale trapezului.

- 1) Luând vectorii \overrightarrow{AB} și \overrightarrow{AD} ca bază, determinați componentele vectorilor \overrightarrow{CB} , \overrightarrow{MN} , \overrightarrow{AP} , \overrightarrow{PB} .
- 2) Luând vectorii \overrightarrow{PA} și \overrightarrow{PB} ca bază, determinați componentele vectorilor \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA} .

Problema 1.19. Se dau, în plan, trei vectori, prin componentele lor relativ la o bază oarecare: $\mathbf{a}(4, -2)$, $\mathbf{b}(3, 5)$, $\mathbf{c}(-2, -12)$. Exprimați vectorul \mathbf{c} ca o combinație liniară a vectorilor \mathbf{a} și \mathbf{b} .

Problema 1.20. Se dau vectorii necoliniari \mathbf{a} şi \mathbf{b} . Demonstrați că sistemul de vectori $\mathbf{m} = 3\mathbf{a} - \mathbf{b}$, $\mathbf{n} = 2\mathbf{a} + \mathbf{b}$, $\mathbf{p} = \mathbf{a} + 3\mathbf{b}$ este liniar dependent, iar vectorii \mathbf{n} , \mathbf{p} sunt necoliniari. Exprimați vectorul \mathbf{m} în funcție de vectorii \mathbf{n} , \mathbf{p} .

Problema 1.21. Punctul M este centrul de greutate al triunghiului ABC. Exprimați:

- 1) vectorul \overrightarrow{MA} în funcție de vectorii \overrightarrow{BC} , \overrightarrow{CA} ;
- 2) vectorul \overrightarrow{AB} în funcție de vectorii \overrightarrow{MB} , \overrightarrow{MC} ;
- 3) vectorul \overrightarrow{OA} în funcție de vectorii $\overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{OM}$, unde O este un punct oarecare din spațiu.