<PartB-1: Covid-19 사망자 예측>

1) 2020.3.7 ~ 2020.8.31 영국의 일별 Covid-19 사망자 수(rolling 7-day average)

4	-	2	3	4	2	9	7	
date 💠	2020-03-07	2020-03-08	2020-03-09	2020-03-10	2020-03-11	2020-03-12	7 2020-03-13	
St	0.286	0.286	0.429	1.000	1.000	1.286	1.286	

(a) 일별 신규 Covid-19 사망자 수(St), 누적 사망자 수(Yt) 시계열도표

그림 1 영국 일일 신규 Covid-19 사망자 수 시계열 도표 (St, Yt)

2020년 3월 7일 영국에서 코로나 19로 인한 사망자가 발생한 후 2020년 4월 13일까지 일일 신규 사망자가 급격하게 증가하다가 이후 천천히 감소하며 오른쪽 꼬리가 긴 분포를 보이고 있다. 또한 누적 사망자 수도 시간이 지남에 따라 수렴하는 양상을 보인다.

(b) 영국 내 총 사망자 수 추정

OLS 추정법

적절하지 않다. 이로 인해 상대 오차가 Gumbel에 비해 크다. 따라서 꼬리가 긴 분포를 누적 사망자 수(m=41569)와 비교한 상대 오차를 구한 결과이다. Covid-19 사망자 수는 각각 n=20, 30, 50 일 때 Bass, Logistic, Gumbel model을 가정하여 OLS 추정법을 통해 분포의 모양을 가지는 Bass 와 Logistic model 은 고려하지 못하므로 해당 데이터에는 모수(m,p,q)를 추정하였다. 아래 표는 모수 추정 결과와 영국의 2020 년 8월 31일의 때문이다. 영국의 신규 코로나 사망자 수가 2020 년 4월 중순에 정점을 찍는다. n 이 혁신 계수(p)보다 모방 계수(q)가 더 크다. Covid-19 감염은 접촉에 의해 발생하기 코로나 사망자 수는 정점 전후의 증가세(감소세)가 다르다. 이러한 분포를 normal 작을 경우 학습자료에 정점을 포함하지 못하므로 m 이 작게 추정된다. 또한 신규

가지며 정점을 학습자료에 포함하는 n=50 이고 Gumbel model을 이용한 모형을 최적으로 선택한다.

		# T	표 1. OLS 추정 결	결과	
u	model	р	d	E	상대 오기
	bass	0	0.284	-47098.6	-213.30
20	logistic	0	0.312	5014.32	-87.937

c	model	р	Ь	E	상대 오차
	bass	0	0.284	-47098.6	-213.302
20	logistic	0	0.312	5014.32	-87.937
	gumbel		0.024	49433347	118818.8
	bass	0	0.276	9694.136	-76.679
30	logistic	0	0.281	9354.834	-77.496
	gumbel		0.052	122390.9	194.428
	bass	0.002	0.157	25462.15	-38.747
20	logistic	0	0.166	25013.73	-39.826
	dnmpe	•	0.078	32854.69	-20.963

Q-Q plot 추정법 ≔ਂ

OLS 추정법에서 선택한 모형인 n=50, Gumbel 모형을 고려하여 m=30000, 30500, 31000, 31500, ..., 70000 일 이용하여 Q-Q plot 추정법으로 모수를 추정하였다. 때 r 번째 사망자의 사망시간을 X(r)을 종속변수로 OLS 추정법에서 m=32854.69 으로 추정된 것을

적합시켰다. 그 결과 R²를 극대화시키는 m 값은 (m+1))을 독립변수로 하여 선형회귀모형을

 $G^{-1}(U_r) =$

58500 이다. 그 때의 $\mu = 49.151, \, \sigma = 19.027$ 이다. 그림 3 Q-Q plot

NLSE

NLSE 를 구하였다. 모형 1로 추정한 결과는 m=32854.69,q=0.0780기고 모형 2의 경우 n=50, Gumbel 모형을 기반으로 OLS 추정치와 Q-Q plot 추정치를 초기값으로 하여 m = 58486.77, $\mu = 49.147$, $\sigma = 19.0250|\Box$.

모형 1:
$$S_t = aY_{t-1} + bY_{t-1} \cdot hnY_{t-1} + e_t, \quad a = q \cdot \ln(m), b = -q$$
 모형 2: $X_{(r)} = \mu + \sigma(-\ln(-\ln(U_r)) + e_r, \quad U_r = \frac{r}{m+1}$

MΕ

.≥

n=50, Gumbel 모형의 log-likelihood 를 구하여 optim 함수를 통해 이를 maximize 하는 모수 MLE를 추정하였다. 그 결과 $m=58459.011,~\mu=49.945,~\sigma=20.007이다.$

>

작으므로 정확도는 더 높았다. 또한 같은 모형을 이용할 때 추정 방법 간의 차이는 크게 사망자 수를 적게 추정하였고 후자의 경우 더 많게 추정하였다. 절대값은 전자가 더 기반으로 추정한 Q-Q plot, NLSE, MLE 상대 오차가 약 41% 이다. 전자의 경우 전체 모형 1을 기반으로 추정한 OLS 와 NLSE 는 상대 오차는 약 -21%이고 모형 2 를

2) 2020.02.21 ~ 2020.08.31 이탈리아의 일별 Covid-19 사망자 수

(a) 이탈리아 내 총 사망자 수 추정

이탈리아의 Covid-19 사망자 수 분포도 영국과 동일하다. Covid-19 일일 사망자 수는 급격하게 증가하다가 2020 년 4월 중순에 정점을 찍고 비교적 완만하게 감소한다. 따라서 오른쪽 꼬리가 긴 분포로 gumbel 모형이 적절할 것이다. n=20, 30, 50 일 때 Bass, Logistic, Gumbel 모형을 이용하여 OLS 추정법으로 모수를 추정하였다. 2020 년 8월 31 일의이탈리아의 누적 사망자 수(m=35461.29)과 비교하였을 때 상대 오차는 n이 커질수록절대값이 작아졌고 gumbel 모형이 가장 작았다. 영국과 이탈리아의 코로나 사망자 수의분포는 거의 동일한 양상을 보이기에 이러한 결과가 나왔을 것이다.

N=50 까지를 학습데이터로, gumbel 모형을 이용하여 Q-Q plot, NLSE, MLE를 구하였다. 그 결과 m 은 각각 48000 (Q-Q plot), 26636.6 (NLSE-모형 1), 48037.7 (NLSE-모형 2), 47752.096 (MLE)이다. 상대 오차는 OLS, NLSE-모형 1의 경우 약 -25%, Q-Q plot, NLSE-모형 2, MLE 의 경우 약 35%이다. 영국과 동일하게 전자의 경우 총 사망자 수를 점계 추정하나 상대 오차는 적고, 후자의 경우 상대 오차는 크나 총 사망자 수를 많게 추정한다.