This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) Compound of the general formula I

$$R^{11}$$
 A_a Z^{11} W B_b D_d Y^{11} I

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or a halgenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH2 groups in this radical may each be replaced, independently of one another, by-C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow .

a is 0, 1 or 2;

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-CF₂-, -CH₂-CF₂-, -CH₂-, -CH₂-

W denotes >CH- or >C=;

b and d, independently of one another, are 0 or 1;

- denotes =O, =C(SR¹²)(SR¹³), =CF₂, -H, -F, -Cl, -Br, -I, -CN, -OH, -SH, -CO-R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(-SR¹³)X̄, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺,
 -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which, in addition, one or more CH₂ groups may each be replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;
- Y¹² and Y¹³, independently of one another, denote H or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atom, in which, in addition, one or more CH₂ groups may each be replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

L¹, L² and L³, independently of one another, denote H or F;

- R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH½ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;
- R¹⁴ denotes OH, O-aryl, O-aralkyl, O-alkyl, Cl, Br, aryl, aralkyl or alkyl;
- R¹⁵ denotes aryl, aralkyl or a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH₂ groups in this alkyl radical may each be replaced, independently of one another, by-C≡C-,

-CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

 R^{16} and R^{17} denote H or an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a- $(CH_2)_p$ - unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH2 groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

R¹⁸, R¹⁹ and R²⁰, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms;

Cat⁺ is an alkali metal cation or a quaternary ammonium cation;

and

X is a weakly coordinating anion;

with the proviso

that W denotes >CH if $b+d \neq 0$;

that Y^{11} does not denote =0, =C(SR¹²)(SR¹³) or =CF₂ if Y^{11} is connected to B or D =

$$- \underbrace{ \begin{bmatrix} L^1 \\ L^2 \end{bmatrix}}$$

that Y¹¹ denotes -H, -I, -OH, -SH, -CO₂R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(SR¹³)X⁻, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH₂ groups have each been replaced, independently of one another, by-C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another and alkyl does not stand for alkoxy, if W is connected directly

that B does not stand for if d = 1; and

that A can adopt identical or different meanings if a is 2.

2. (Original) Compound according to Claim 1, characterised in that

A stands for

- (Original) Compound according to Claim 1, characterised in thata is 0.
- (Currently Amended) Compound according to any one of Claims 1 to 3 Claim 1, characterised in that
 Y¹² and Y¹³ denote H.
- (Currently Amended) Compound according to any one of Claims 1 to 4 Claim 1, characterised in that
 Z¹¹ represents a single bond, -CF₂O- or -OCF₂-.
- 6. (Currently Amended) Compound according to any one of Claims 1 to 5 Claim 1, characterised in that

R¹¹ denotes an unbranched halogenated or unsubstituted alkyl radial having 1 to 7 carbon atoms.

7. (Currently Amended) Compound according to any one of Claims 1 to 6 Claim 1, characterised in that

 Y^{11} denotes =O, =C(SR¹²)(SR¹³) or =CF₂.

8. (Currently Amended) Compound according to any one of Claims 1 to 6 Claim 1, characterised in that

Y¹¹ denotes -H, -F, -Cl, -Br, -I, -OH, -CO₂H, -C(=S⁺R¹²)(-SR¹³)X, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺ or -Si(OR¹⁸)(OR¹⁹)(OR²⁰).

9. (Currently Amended) Compound according to any one of Claims 1 to 6 and 8 Claim 1, characterised in that

denotes BF₄, CF₃SO₃, C₄F₉SO₃, PF₆, SbF₆ or AsF₆.

- (Currently Amended) Compound according to any one of Claims 1 to 9 Claim 1, characterised in that
 b is 0 and d is 0.
- (Currently Amended) Compound according to any one of Claims 1 to 9 Claim 1, characterised in that
 b is 1 and d is 0.
- 12. (Currently Amended) Compound according to any one of Claims 1 to 9 Claim 1, characterised in that b is 1 and d is 1.
- 13. (Original) Process for the preparation of a compound of the formula IA

$$R^{11} - A_a - Z^{11} - O W - Y^{11}$$
IA

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl σ alkyl;

- a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;
- z¹¹ represents a single bond, $-CH_2-CH_2-$, $-CF_2-CF_2-$, $-CF_2-CH_2-$, $-CH_2-CF_2-$, $-CH_2-$ CH₂-, $-CF_2-CH_2-$, $-CF_2-CH_2-$, -
- W denotes >C=;
- Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and
R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl
radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p
= 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be
substituted by at least one unbranched or branched alkyl radical having 1 to 8
carbon atoms;

characterised in that

a compound of the formula II

$$R^{11}$$
 A_a Z^{11} CHO

in which R^{11} , A, a and Z^{11} are as defined above for the formula IA, is reacted in a reaction step (A1)

(A1) in the presence of a base with a compound of the formula III

$$R^{31}O$$
 V^{12}
 V^{13}
III

in which Y^{12} and Y^{13} are as defined above for the formula IA, and R^{1} denotes an alkyl radical having 1 to 15 carbon atoms, to give a compound of the formula IV

$$R^{11}$$
 A_a Z^{11} $COOR^{31}$ V^{12} V^{13}

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IA, and R^{31} is as defined above for the formula III; and subsequently, in a reaction step (A2),

(A2) the compound of the formula IV is converted into the compound IA1

$$R^{11} - A_a - Z^{11} - O$$
IA1

and optionally, in a reaction step (A3),

(A3) the compound of the formula IA1 is converted into the compound IA2

$$R^{11} - A_a - Z^{11} - O = CF_2$$
IA2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, denote an alkyl radical having 1 to 15 carbon atoms; or optionally, in a reaction step (A3'),

(A3') the compound of the formula IA1 is converted into the compound IA3

$$R^{11}$$
 A_a Z_a^{11} A_a $A_$

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where R²³ is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or Si(CH₃)₃ or Si(CH₂CH₃)₃, and R¹² and R¹³ are as defined above for the formula IA, in the presence of a strong base.

14. (Original) Process for the preparation of a compound of the formula IB

$$R^{11}$$
 A_a Z^{11} A_a A_a

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow .

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

-8-

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

Y¹¹ denotes -H, -F, -Cl, -Br, -I, -CN, -OH or -B(OR¹⁶)(OR¹⁷);

Y¹² and Y¹³, independently of one another, denote H or alkyl;

L¹, L² and L³, independently of one another, denote H or F; and

R¹⁶ and R¹⁷, independently of one another, denote H or an urbranched or branched alkyl radical having 1 to 15 carbon atomsor together form a-(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH½ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

characterised in that,

in a reaction step (B1),

(B1) a compound of the formula IA1

$$R^{11} - A_a - Z^{11} - O$$
IA1

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IB, is reacted with a compound of the formula V

$$M \longrightarrow \begin{array}{c} L^1 \\ Q \\ L^3 \end{array}$$

in which L¹, L² and L³ are as defined above for the formula IB, M denotes Li, ClMg, Br-Mg or I-Mg, and Q denotes H, F, Cl, Br, I or CN, with formation of the compound of the formula IB1

$$R^{11}$$
 A_a Z^{11} Q IB1

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the formula IB, and Q is as defined for the formula V; and optionally, in a reaction step (B2),

(B2) the compound of the formula IB1 in which Q denotes Br is reacted with $B(OR^{16})(OR^{17})(OR^{24})$, where R^{16} , R^{17} and R^{24} are an unbranched or branched alkyl radical having 1 to 15 carbon atoms, or with $HB(OR^{16})(OR^{17})$, where R^{16} and R^{17} denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a- $(CH_2)_p$ - unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH_2 groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms, in the presence of an alkyllithium base, to give the compound of the formula IB2

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

and optionally, in a reaction step (B3),

(B3) the compound IB2 is converted into the compound IB3

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with an aqueous acid; and/or optionally, in a reaction step (B4),

(B4) the compound IB2 or the compound IB3 is converted into the compound IB4

$$R^{11}$$
 A_a Z_{12} A_a A_a

by reaction with hydrogen peroxide in alkaline or acidic solution.

15. (Original) Process for the preparation of a compound of the general formula IC

$$R^{11} - A_a - Z^{11}$$
 Y^{12} Y^{13} Y^{11} Y^{12} Y^{13}

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-, -CH₂-

 Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and

R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH½ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

characterised in that, in a reaction step (C1),

(C1) the compound of the formula IB4

$$R^{11}$$
 A_a Z^{11} A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IC, and L^1 , L^2 and L^3 denote H,

is converted into the compound IC1

$$R^{11} - A_a - Z_{12}^{11}$$
 O IC1

using hydrogen in the presence of a transitionmetal catalyst; and optionally, in a reaction step (C2),

(C2) the compound IC1 is converted into the compound IC2

$$R^{11}$$
 A_a Z^{11} O CF_2 $IC2$

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, are an alkyl radical having 1 to 15 carbon atoms; or optionally, in a reaction step (C2'),

(C2') the compound of the formula IC1 is converted into he compound IC3

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where R²³ is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or Si(CH₂O)₃ or Si(CH₂CH₃)₃, and R¹² and R¹³ are as defined above for the formula IC, in the presence of a strong base.

16. (Original) Process for the preparation of a compound of the formula ID

$$R^{11}$$
 A_a Z^{11} Y^{12} Y^{13} Y^{13} Y^{14} ID

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow .

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, $-CH_2$ - $-CH_2$ -, $-CF_2$ - $-CF_2$ -, $-CF_2$ - $-CH_2$ -, $-CH_2$ -, $-CH_2$ -, $-CH_2$ -, $-CF_2$ -O or -O- $-CF_2$ -;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

L¹, L² and L³, independently of one another, denote H or F;

R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion; characterised in that, in a reaction step (D1),

(D1) a compound of the formula IB1

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the formula ID, and Q denotes H or Br,

is reacted with an organometallic base and CQ to give the compound ID1

$$R^{11} - A_a - Z^{11}$$

$$V^{12}$$

$$V^{13} L^3$$

$$V^{13} L^2$$

$$V^{13} L^3$$

$$V^{13} L^3$$

$$V^{13} L^3$$

$$V^{13} L^3$$

$$V^{13} L^3$$

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the formula ID; and optionally, in a reaction step (D2),

(D2) the compound ID1 is converted into the compound ID2

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in the presence of an acid HX using HSR¹² and HSR¹³ or using HSR¹²R¹³SH.

17. (Original) Process for the preparation of a compound of the formula IE

$$R^{11}$$
 A_a Z^{11} Y^{12} Y^{13} Y^{11} Y^{11}

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-CF₂-, -CH₂-CF₂-, -CF₂-CH₂-, -CF₂-CF₂-, -CF₂-CF₂-, -CH₂-CF₂-, -CF₂-CF₂-, -CF₂-, -CF

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion;

characterised in that, in a reaction step (E1),

(E1) the compound of the formula ID1

$$R^{11}$$
 A_a $Z_{Y^{12}}$ A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IE, and L^1 , L^2 and L^3 denote H,

is converted into the compound IE1

$$R^{11}$$
 A_a Z_{12}^{11} CO_2H $IE1$

using hydrogen in the presence of a transitionmetal catalyst; and optionally, in a reaction step (E2),

(E2) the compound of the formula IE1 is converted into the compound IE2

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

in the presence of an acid HX using HSR¹² and HSR¹³ or using HSR¹²R¹³SH.