SIMULATION OF LINK STATE ROUTING PROTOCOL

Link state routing is a technique in which each router shares the knowledge of its neighbourhood with every other router in the internetwork.

Link State Routing has two phases:

Reliable Flooding

- o Initial state: Each node knows the cost of its neighbours.
- o Final state: Each node knows the entire graph

Route Calculation

Each node uses Dijkstra's algorithm on the graph to calculate the optimal routes to all nodes.

```
set val(stop) 10.0 ;
set ns [new Simulator]
set tracefile [open ques2.tr w]
$ns trace-all $tracefile
set namfile [open ques2.nam w]
$ns namtrace-all $namfile
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
$ns duplex-link $n4 $n1 100MB 10ms DropTail
$ns queue-limit $n4 $n1 50
$ns duplex-link $n0 $n2 100MB 10ms DropTail
$ns queue-limit $n0 $n2 50
$ns duplex-link $n4 $n3 100MB 10ms DropTail
$ns queue-limit $n4 $n3 50
$ns duplex-link $n1 $n2 100MB 10ms DropTail
$ns queue-limit $n1 $n2 50
```

\$ns duplex-link \$n1 \$n3 100MB 10ms DropTail \$ns queue-limit \$n1 \$n3 50

\$ns duplex-link \$n2 \$n3 100MB 10ms DropTail \$ns queue-limit \$n2 \$n3 50

\$ns cost \$n4 \$n1 1

\$ns cost \$n1 \$n4 1

\$ns cost \$n0 \$n2 5

\$ns cost \$n2 \$n0 5

\$ns cost \$n4 \$n3 5

\$ns cost \$n3 \$n4 5

\$ns cost \$n1 \$n2 7

\$ns cost \$n2 \$n1 7

\$ns cost \$n1 \$n3 3

\$ns cost \$n3 \$n1 3

\$ns cost \$n2 \$n3 8

\$ns cost \$n3 \$n2 8

set udp0 [new Agent/UDP] \$ns attach-agent \$n0 \$udp0 set null1 [new Agent/Null] \$ns attach-agent \$n4 \$null1

\$ns connect \$udp0 \$null1 \$udp0 set packetSize_ 3000

set cbr0 [new Application/Traffic/CBR] \$cbr0 attach-agent \$udp0 \$cbr0 set packetSize_ 2000 \$cbr0 set rate_ 1Mb \$cbr0 set random_ null \$ns at 0.0 "\$cbr0 start" \$ns at 5.0 "\$cbr0 stop"

define protocol \$ns rtproto LS

define 'finish' procedure
proc finish {} {
 global ns tracefile namfile

```
$ns flush-trace
close $tracefile
close $namfile
exec nam ques2.nam &
exit 0
}

# to run the NAM
$ns at $val(stop) "$ns nam-end-wireless $val(stop)"
$ns at $val(stop) "finish"
$ns run
```

Case 1:

Consider a network having 5 nodes – n0, n1, n2, n3, n4

Weights are associated to the links between each node.

Source: Node n0
 Destination: Node n4

Source Node	Destination Node	Cost
n0	n2	5
n1	n2	7
n1	n3	3
n1	n4	1
n2	n3	8
n3	n4	5

3. Cost Assignment

1. Possible Paths between the source and the destination are

a. n0->>n2->>n4 cost:18

b. n0->>n2->>n4 cost:13

c. n0->>n2->>n1->>n4 cost:20

d. n0->>n2->>n3->>n4 cost:17

Note quest John

| Cost | Co

2. Shortest Path according to Link State Algorithm would be n0->>n2->>n1->>n4 having cost:13

3. The packets therefore flow from n0 to n2 to n1 to n4 as shown in these diagrams.

4. Thus, the Link state algorithm always choses the optimal path.

Case 2: Consider the same network as shown previously. Now the costs have been updated. We need to check if Link State Algorithm works well after updating the costs.

	1		
Source Node	Destination Node	Cost	
n0	n2	5	
n1	n2	7	
n1	n3	3	
n1	n4	1	
n2	n3	2	Modified costs
n3	n4	1	

1. Cost Assignment

1. Possible Paths between the source and the destination are

a.	n0->>n2->>n3->>n4	cost:8
b.	n0->>n2->>n1->>n4	cost:13
c.	n0->>n2->>n1->>n3->>n4	cost:16
d.	n0->>n2->>n3->>n1->>n4	cost:11

2. Shortest Path according to Link State Algorithm would be n0->>n2->>n3->>n4 having cost:8

3. The packets therefore flow from n0 to n2 to n3 to n4 as shown in these diagrams.

4. Thus, the Link state algorithm always choses the optimal path.

