UMB CS 420 Unrecognizability Monday, April 24, 2023

????

Turing-recognizable

decidable

context-free

regular

Announcements

- HW 9 in
 - Due Sun 4/23 11:59pm EST

- HW 10 out
 - Due Sun 4/30 11:59pm EST

Quiz Preview

• If a language is undecidable, which of the following statements about its recognizability cannot be true?

Last Time: Showing Mapping Reducibility

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, fn f ... by creating a TM if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
. "if and only if"

Step 1:

Show there is computable

Step 2:

Prove the iff is true for *f*

The function f is called the **reduction** from A to B.

Step 2a: "forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Last Time: Using Mapping Reducibility

To prove decidability ...

• If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Be careful with the <u>direction</u> of the <u>reduction</u>, i.e., <u>what is known</u> and <u>what is unknown!</u>

Flashback:

EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

<u>Proof</u> by **contradiction**:

• Assume EQ_{TM} has decider R; use to create E_{TM} decider:

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

<u>Proof</u> by mapping reducibility: $E_{TM} \leq_{m} EQ_{TM}$

Step 1: create computable fn f, computed by TM S

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Construct: $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- **2.** Output: $\langle M, M_1 \rangle$

Step 2: show iff requirements of mapping reducibility

Do for HW 10!

And use theorem ...

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Flashback: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Proof, by **contradiction**:

• Assume E_{TM} has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M_1

2. Run R on input $\langle M_1 \rangle$.

1. If $x \neq w$, reject.
2. If x = w, run M on input w and accept if M does."

 $M_1 =$ "On input x:

3. If R accepts, reject; if R rejects, accept."

If *M* accepts *w*, then M_1 not in E_{TM} ! So do the opposite!

 M_1 :

- accepts w if M does
- rejects everything else

Alternate Proof: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

<u>Proof</u>, by mapping reducibility??: $A_{TM} \leq_{m} E_{TM}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M_1 \rangle$, computed by S

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1
- 2. Output: $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."

Step 2: show iff requirements of mapping reducibility:

Do for HW 10!

- This reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$!!
- It's good enough, if: undecidable langs are closed under complement

Turing Unrecognizable?

Proof: requires 2 lemmas

• Lemma 1: The set of all languages is uncountable (hw9)

• Lemma 2: The set of all TMs is countable

• Therefore, some language is not recognized by a TM (pigeonhole principle)

Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable (hw9)
 - Proof, by contradiction: Assume the set of all languages is countable
 - Then there is a bijection mapping natural numbers to languages (def of countable)

$$1 \rightarrow s_{11}, s_{12}, s_{13}, \dots$$

$$2 \rightarrow s_{21}, s_{22}, s_{23}, \dots$$

$$3 \rightarrow s_{31}, s_{32}, s_{33}, \dots$$
...

where strings in each language are ordered lexicographically (assumption from problem)

- But some language is always not mapped to: s_1 , s_2 , s_3 , ...
 - where $s_1 \neq s_{11}$, $s_2 \neq s_{22}$, $s_3 \neq s_{33}$, ... (diagonalization technique)
 - and s_1 , s_2 , s_3 , ... is alphabetically ordered
- Thus there is no bijection, which is a contradiction

Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable
 - Alternate Proof: Show a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences (from textbook)

Mapping a Language to a Binary Sequence

```
 \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \textbf{All Possible Strings} \\ \hline \textbf{Some Language} \\ (\text{subset of above}) \\ \hline \textbf{Its (unique)} \\ \hline \textbf{Binary Sequence} \\ \hline \end{array} \begin{array}{|c|c|c|c|c|c|c|} \hline \Sigma^* = \left\{ \begin{array}{c} \pmb{\varepsilon}, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \cdots \\ \hline 0, & & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & \\ \hline 0, & & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 1, & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 1, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 1, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 1, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, &
```

Each digit represents one possible string:

- 1 if lang has that string,
- 0 otherwise

Proof: requires 2 lemmas

This is an "existence" proof, but it's not "constructive", i.e., it doesn't give an example of an unrecognizable language

- Lemma 1: The set of all languages is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
 - > Now just prove set of infinite binary sequences is uncountable (diagonalization)
- Lemma 2: The set of all TMs is countable
 - Because every TM M can be encoded as a string $\langle M \rangle$
 - And set of all strings is countable
 - Order the strings <u>lexicographically</u> (length 0 strings, then length 1 strings, etc)
- Therefore, some language is not recognized by a TM

Co-Turing-Recognizability

- A language is co-Turing-recognizable if ...
- ... it is the <u>complement</u> of a Turing-recognizable language.

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- ⇒ If a language is decidable, then it is recognizable and co-recognizable
 - Decidable ⇒ Recognizable:
 - A decider is a recognizer (that always halts)
 - Decidable ⇒ Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- ⇒ If a language is decidable, then it is recognizable and co-recognizable
 - Decidable ⇒ Recognizable:
 - A decider is a recognizer (that always halts)
 - Decidable ⇒ Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above
- ← If a language is recognizable and co-recognizable, then it is decidable
 - Let M_1 = recognizer for the language,
 - and M_2 = recognizer for its complement
 - Decider M:
 - Run 1 step on M_1 ,
 - Run 1 step on M_2
 - Repeat, until one machine accepts. If it's M_1 , accept. If it's M_2 , reject

Termination Arg: Either M_1 or M_2 must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

Unrecognizability Proof Technique #1

• We know: recognizable & co-recognizable ⇒ decidable

<u>Contrapositive</u>: undecidable ⇒ can't be both recognizable & co-recognizable

Mapping Reducibility Can be Used to Prove ...

Decidability

Undecidability

Recognizability

Unrecognizability

More Helpful Theorems

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Same proofs as:

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Unrecognizability

Proof Technique #2: Mapping reducibility + this theorem

$\square \square \square : EQ_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

Mapping Reducibility implies Mapping Red. of Complements

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

$\square \square : EQ_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

Two Choices:

• Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$

• Or Computable fn:

$$A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$$

And use theorem ...

If $A \leq_{m} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Thm: EQ_{TM} is not Turing-recognizable

```
Step 1
Computable fn
```

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing

1. Reject."

$$M_2$$
 = "On any input: Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."

Step 2, iff:

- \Rightarrow If *M* accepts *w*, then $M_1 \neq M_2$
- \Leftarrow If M does not accept w, then $M_1 = M_2$

$\square \cap \square : EQ_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

- Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$

And use theorem ...

DONE!

If $A \leq_{m} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

(Definition of co-Turing-recognizable)

- 2. EQ_{TM} is not A -Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Previous: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

• Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$

Step 1 • $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 . M_1 = "On any input: Accepts nothing

1. Reject." M_2 = "On any input: Accepts nothing or everything

1. $Run\ M$ on w. If it accepts, accept."

2. Output $\langle M_1, M_2 \rangle$."

NOW: \overline{EQ}_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow \widehat{EQ_{TM}}$
- Step 1 $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

 $M_1 =$ "On any input: \leftarrow Accepts nothing everything

1. Accept."

 M_2 = "On any input: \frown Accepts nothing or everything

- **1.** Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."

Step 2, iff:

 \Rightarrow If *M* accepts *w*, then $M_1 = M_2$

 \Leftarrow If M does not accept w, then $M_1 \neq M_2$

Unrecognizable Languages?

Unrecognizable Languages

Thm: EQ_{CFG} is not Turing-recognizable

Recognizable & co-recognizable ⇒ decidable

Unrecognizability Proof Technique #1

<u>Contrapositive</u>: undecidable ⇒ can't be both recognizable & co-recognizable

- We didn't prove this yet (but it is true): EQ_{CFG} is undecidable
- We now prove: EQ_{CFG} is co-Turing recognizable
 - And conclude that:
 - *EQ*_{CFG} is not Turing recognizable

Thm: EQ_{CFG} is co-Turing-recognizable

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$

Recognizer for \overline{EQ}_{CFG} :

```
M = On input \langle G, H \rangle, where G \text{ and } H \text{ are CFGs}:
```

- **For** every possible string w: Accept if
 - $w \in L(G)$ and $w \notin L(H)$, or
 - $w \notin L(G)$ and $w \in L(G)$ \longrightarrow Use decider for: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
- Else reject

This is only a **recognizer** because it loops for ever when L(G) = L(H)

Unrecognizable Languages

Unrecognizable Languages

Thm: E_{TM} is not Turing-recognizable

Recognizable & co-recognizable ⇒ decidable

Unrecognizability Proof Technique #1

Contrapositive: undecidable ⇒ can't be both recognizable & co-recognizable

- We've proved:
 - E_{TM} is undecidable
- We now prove: E_{TM} is co-Turing recognizable
 - And then conclude that:
 - E_{TM} is not Turing recognizable

Thm: E_{TM} is co-Turing-recognizable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Recognizer for $\overline{E_{\mathsf{TM}}}$: Let s_1, s_2, \ldots be a list of all strings in Σ^*

"On input $\langle M \rangle$, where M is a TM:

- 1. Repeat the following for $i = 1, 2, 3, \ldots$
- 2. Run M for i steps on each input, s_1, s_2, \ldots, s_i .
- 3. If M has accepted any of these, accept. Otherwise, continue."

This is only a **recognizer** because it loops for ever when L(M) is empty

Unrecognizable Languages

Check-in Quiz 4/24

On gradescope