

Machine Learning Project Document

Student Name	Srikanth G	
Batch	Al Elite 17	
Project Name	Dry Been Classification	
Project Domain	Consumer Products	
Type of Machine Learning	Supervised	
Type of Problem	Classification/Regression	
Project Methodology	MLDL-C	
Stages Involved	Problem statement,,Data collection, EDA, preprocessing, EDA, Training, Evaluation.	

Problem Statement:

Business Understanding: Problem statement: Classification of Dry beans. Thanks to their high nutritional value and ability to be used in a variety of culinary preparations, dry beans are a staple meal that is widely consumed worldwide. However, because dry beans vary in size, colour, and appearance, it can be difficult to ensure their quality and classification.

The main goal of the problem statement is to create a reliable system for classifying dry beans according to different characteristics. With the help of this categorization method, various kinds of dry beans should be precisely categorised, offering useful information to distributors, customers, and farmers alike.

Business constraints: Accuracy Requirements: To identify various types of dry beans, the classification model needs to meet quality standards, which include a certain level of accuracy. Maintaining product quality and obtaining trustworthy classification results require doing this

Stage 1: Data Collection and Understanding

a) Data Collection: Data has been collected from Kaggle website.

https://www.kaggle.com/datasets/muratkokludataset/dry-bean-dataset

Apart from this there are other means of Data collection like API, Web scraping or Manual collection of data.

b) Data Understanding: Dry bean dataset has 13611 data points with 16 feature variables and one class variable. The features are giving the specifications of the bean based on which we are going to classify the class of bean. The various class labels of bean provided in the data set are, Dermason, Sira, Seker, Horoz, Cali, Barbunya, Bombay.

	Feature Name	Data Type
S N O		
1	Area	int
2	Perimeter	Float
3	MajorAxisLength	Float
4	MinorAxisLength	Float
5	AspectRation	Float
6	Eccentricity	Float
7	ConvexArea	int
8	EquivDiameter	Float
9	Extent	Float
10	Solidity	Float
11	Roundness	Float
12	Compactness	Float
13	ShapeFactor1	Float
14	ShapeFactor2	Float

15	ShapeFactor3	Float
16	ShapeFactor4	Float

The dataset doesn't contain any Nan values or duplicates but there are outliers in each feature.

Stage 2: Data Preparation

a) Exploratory Data Analysis: The dataset doesn't contain any Nan values or duplicates but there are outliers in each feature.

S No	Туре	Feature Names	Observation
1	Missing Values	-	
2	Duplicates	-	
3	Outliers	All features	
4	Distributions	-	

b) Data Cleaning/wrangling:

Each feature's outliers are eliminated using the IQR method's clipping procedure. Every outlier exceeding the upper boundary is substituted with the upper

boundary's value, and every outlier falling below the lower boundary is substituted with the lower boundary's value.

c) Feature Selection:

I have determined how many informative features are needed to categorise the dry beans by displaying a table that shows the relationship between each feature and the class variable.

	Area	Perimeter	MajorAxisLength	MinorAxisLength	AspectRation	Eccentricity	ConvexArea	EquivDiameter	ShapeFactor1	ShapeFactor2	Shap
7926	40674	748.346	275.777468	188.399378	1.463792	0.730271	41111.0	227.569210	0.006780	0.001939	
13111	37783	725.097	276.567189	174.202492	1.587619	0.776697	38182.0	219.332646	0.007320	0.001786	
8063	41489	797.126	307.077572	173.107997	1.773907	0.825961	42189.0	229.837846	0.007401	0.001433	
1125	39859	724.609	255.684610	198.752850	1.286445	0.629086	40202.0	225.277729	0.006415	0.002385	
803	38145	762.943	256.113302	190.105434	1.347217	0.670100	38876.0	220.380858	0.006714	0.002271	
13531	41221	752.069	280.157423	187.594468	1.493420	0.742719	41590.0	229.094320	0.006796	0.001875	
477	36186	685.681	236.999293	194.915156	1.215910	0.574120	36484.0	214.647260	0.006549	0.002718	
2086	52104	906.358	316.915111	209.604091	1.511970	0.750043	53108.0	257.567221	0.006082	0.001637	
6279	52107	1038.993	393.245196	169.439521	2.119312	0.902412	53645.0	257.574636	0.007547	0.000857	
2869	72837	1052.169	371.910382	250.023336	1.487503	0.740308	73876.0	304.530702	0.005106	0.001416	
10888 rd	10888 rows × 11 columns										

10000 TOWS × 11 COIUITIIIS

S NO	Removed Feature Name	Reason	Test Performed
1	Extent	Almost all the classes are similar.	Table
2	Solidity	Almost all the	Table

		classes are similar.	
3	ShapeFactor4	Almost all the classes are similar.	Table
4	roundness	Almost all the classes are similar.	Table
5	Compactness	Almost all the classes are similar.	Table

Stage 3: Model Building:

I utilised the distance-based K closest neighbour algorithm to categorise dry beans. I separated the dataset into test and training data first. After that, I uniformized the scale of every feature by using MinMaxScaler. Next, using the StratifiedKFold method, I divided the train data into five folds by dividing it into train and cross-validation datasets. I trained the model using the K closest Neighbours technique for classification.

S NO	Type of Problem	Approach	Algorithm Name	
1	Classification	Distance Based	KNN	

Stage 4: Model Training:

Using K=1 to 40 values, I attempted to determine the optimal range of K values without overfitting or underfitting by graphing the train and test data against K. By predicting the class label for cross validation data, I was able to determine the model's performance within the range of K values that I had collected.

S No	Algorithm Name	Hyper-parameter tuning	Metric used for Evaluation	
1	KNN	1-10	Accuracy	

Stage 5: Model Evaluation:

To evaluate the performance of the model, I used accuracy as my performance metric because there is a high variation in accuracy value for each K value. The rest of performance metrics are producing almost similar values but there is a small difference for each value of K. Hence I used accuracy as my performance metric.

S NO	Algorithm Name	Hyper parameter	accuracy	
1	KNN	211	0.890561880279 1039	
2	KNN	7	0.908556738890 9291	

Conclusion:

Upon building numerous KNN models and adjusting the hyperparameter, the model exhibits good performance at K=7. When compared to other K values, the accuracy is good and the accuracy is incredibly low at K=7, which is the model's performance indicator