AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1-9 (Canceled).
- 10. (Canceled)
- 11. (Currently Amended) <u>A method for localizing one or more sources, each source (emitters) being in motion relative to a network of sensors, the method comprising the steps of:</u>

separating the sources in order to identify the direction vectors associated with the response of the sensors to a source at a given incidence, said incidence angles varying depending on the position of the sensors network relative to said sources;

associating direction vectors $\mathbf{a}_{1m}...\mathbf{a}_{Km}$ obtained for the \mathbf{m}^{th} transmitter and respectively at the instants $\mathbf{t}_1...\mathbf{t}_{K}$, are associated during a period Dt in order to separate different sources for each instant $\mathbf{t}_1...\mathbf{t}_{K}$, said incidence angles varying depending on the position of the sensors network relative to said sources;

wherein the direction vectors $\underline{a}_{1m}...a_{Km}$ obtained for the mobile sources and respectively for the instants $\underline{t}_1...\underline{t}_K$ are associated during the period Dt in order to separate the different sources for each instant $\underline{t}_1...\underline{t}_K$ the position $(\underline{x}_m, \underline{y}_m, \underline{z}_m)$ of the mobile emitter is directly localized from the direction vectors $\underline{a}_{1m}...\underline{a}_{Km}$ associated to a same emitter, one emitter being obtained from the different instants \underline{t}_K ;

The method according to claim 10, wherein the associating step comprises:

Step ASE -1: Initialization of the process at k=2.

Docket No.: 4590-519

Step ASE – 2: For 1 < m < M determining the indices i(m) in using the relationship $d(a_{km}, b_{i(m)}) = \min_{1 \le i \le M} [d(a_{km}, b_i)]$, the <u>direction</u> vector $a_{k,m}$ and the vectors b_i identified at the instant t_{k+1} for (1 < i < M), setting up a function $\beta_m(t_k) = d(a_{km}, a_{om})$, wherein $d(\boldsymbol{u}, \boldsymbol{v}) = 1 - |\boldsymbol{u}^H \boldsymbol{v}|^2$

$$\frac{\left|u^{\mathrm{H}}v\right|^{2}}{\left(u^{\mathrm{H}}u\right)\left(v^{\mathrm{H}}v\right)}$$

Step ASE – 3: For 1 < m < M performing the operation $a_{k+1} = b_{i(m)}$,

Step ASE – 4: Incrementing $k \leftarrow k+1$ and if k < K returning to the step ASE-1,

Step ASE – 5 : Starting from the family of instants $\Phi = \{t_1 < ... < t_K\}$ thus obtained, extracting the instants t_i which do not belong to a zone defined by the curve $\beta_m(t_k)$ and a zone of tolerance;

where M is the number of transmitters.

12. (**Currently Amended**) The method according to claim [[10]] <u>11</u>, wherein the localizing step comprises:

a normalized vector correlation $L_K(x,y,z)$ maximizing in the space (x,y,z) of the position of a transmitter with

$$L_{K}(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{\left|\mathbf{b}_{K}^{H}\mathbf{v}_{K}(x,y,z)\right|^{2}}{\left(\mathbf{b}_{K}^{H}\mathbf{b}_{K}\right)\left(\mathbf{v}_{K}(x,y,z)^{H}\mathbf{v}_{K}(x,y,z)\right)}$$

with

$$\mathbf{b}_{K} = \begin{bmatrix} \mathbf{b}_{1m} \\ \vdots \\ \mathbf{b}_{Km} \end{bmatrix} = \mathbf{v}_{K}(\mathbf{x}_{m}, \mathbf{y}_{m}, \mathbf{z}_{m}) + \mathbf{w}_{K} , \quad \mathbf{v}_{K}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \begin{bmatrix} \mathbf{b}(t_{1}, x, y, z) \\ \vdots \\ \mathbf{b}(t_{K}, x, y, z) \end{bmatrix}$$

and
$$\mathbf{w}_K = \begin{bmatrix} \mathbf{w}_{1m} \\ \vdots \\ \mathbf{w}_{Km} \end{bmatrix}$$

where W_K is the noise vector for all the positions (x, y, z) of a transmitter; and wherein the vector b_K comprises a vector representing the noise, the components of which are functions of the components of the <u>direction</u> vectors $a_{1m} \dots a_{Km}$.

13. (Canceled)

14. (Previously Presented) The method according to claim 12, wherein comprising:

a step in which the matrix of covariance $R=E[w_K\ w_K^{\ H}]$ of the noise vector is determined and in that the following criterion is maximized :

$$L_{K}'(x,y,z) = \frac{\left|\mathbf{b}_{K}^{H} \mathbf{R}^{-1} \mathbf{v}_{K}(x,y,z)\right|^{2}}{\left(\mathbf{b}_{K}^{H} \mathbf{R}^{-1} \mathbf{b}_{K}\right)\left(\mathbf{v}_{K}(x,y,z)^{H} \mathbf{R}^{-1} \mathbf{v}_{K}(x,y,z)\right)}$$

Where v_x is a speed vector and b_k is vector for source separation and source identification.

- 15. (Previously Presented) Method according to claim 14, wherein the evaluation of the criterion $L_K(x,y,z)$ and/or of the criterion $L_K(x,y,z)$ is recursive.
- 16. (Previously Presented) The method according to claim 14, wherein it comprises a step of comparison of the maximum values with a threshold value.
- 17. (Previously Presented) The method according to claim 11, wherein the value of K is initially fixed at K_0 .
- 18. (Currently Amended) The method according to claim [[10]]11, wherein the transmitters to be localized are mobile and in that the <u>direction</u> vector considered is parameterized by the position of the transmitter to be localized and the speed vector.