		Page 1		
Name:				IIT Kanpur CS771 Intro to ML
Roll No	::	Dept.:		Mid-semester Examination Date: September 21, 2017
Instruc	tions:			Total: 80 marks
2. 3. 3.	This question paper contains a t Write your name, roll number, d Write final answers neatly with Do not give derivations/elaborat	epartment on every sid a pen . Pencil marks of	de of every she can get smudged	eet of this booklet. l and you may lose credit.
Problem	${f 1}$ (True or False: 8 X ${f 1}={f 8}$ mar	ks). For each of the foll	owing simply w	rite T or F in the box.
1.	The Bayesian predictive poster for $\mathbb{P}[y \mathbf{x}, \mathbf{w}]$ and a Gaussian		rm solution if we	e have a logistic likelihood
2.	Hard assignment alternating of soft assignment alternating of		are much more	expensive to execute than
3.	In ridge regression (arg min λ constant $\lambda > 0$ we set, we will			ow large a regularization
4.	When deriving MLE solutions likelihood terms directly.	s, working with log-likel	ihood terms is s	impler than working with
5.	It is okay to perform minor e it too many times.	valuations on the test se	et during training	ng so long as we don't do
6.	If S_1 and S_2 are two convex s	ets in \mathbb{R}^2 , then their uni	fon $S_1 \cup S_2$ is al	ways a convex set as well.
7.	It is not possible to execute t	the SGD algorithm if the	e objective fund	ction is not differentiable.
8.	Convex optimization problem (while carrying out optimizat			
Problem	2 (Ultra Short Answer: $6 \times 4 = 3$	24 marks). Give your an	nswers in the spa	ace provided only.
_	spose I have a coin with bias p en this coin is tossed n times, we		- 0 -	1 0
2. Giv	en a vector $\mathbf{a} \in \mathbb{R}^d$, what is the	trace of the matrix $A =$	$\mathbf{a}\mathbf{a}^{ op} \in \mathbb{R}^{d imes d}$?	

Page	2
1 05	_

Nam Roll	L	. . [Dept.:	IIT Kanpur CS771 Intro to ML Mid-semester Examination
1011	. 110	··· [Dept	Date: September 21, 2017
3.			the time complexity of predicting the label of a new point us classification problem with K classes with d -dimensional feat	~
4.			e given that $\mathbb{P}[\boldsymbol{\Theta}] = 0.1, \mathbb{P}[y \mid \mathbf{x}, \boldsymbol{\Theta}] = 0.4, \mathbb{P}[\mathbf{x} \mid y, \boldsymbol{\Theta}] = 0.5, \mathbb{E}[\boldsymbol{\Theta} \mid \mathbf{x}, y]$ and $\mathbb{P}[\mathbf{x} \mid \boldsymbol{\Theta}]$. Show your expressions for these terms	
5.			der a regression problem with covariates $\mathbf{x}^i \in \mathbb{R}^d$ and response $(\mathbf{x}^i, y^i)_{i=1,2,,n}$ as well as \mathbf{w} . Write down an estimator for	
6.	dat	ta p	$i \in [K]^n$ denote the cluster assignments made by the k-me point $i \in [n]$ gets assigned to the cluster $\mathbf{z}_i^t \in [K]$. Suppose $i \in [n]$ What must be happening if cluster assignments get representations.	we have $\mathbf{z}^t \neq \mathbf{z}^{t+1}$ but $\mathbf{z}^t = \mathbf{z}^{t'}$ for some

Page	3
1 450	0

		Page 3		
Name:				IIT Kanpur CS771 Intro to ML
Roll No.:		Dept.:		emester Examination e: September 21, 2017
Problem 3 (Shor	t Answer: $4 \times 8 = 32$ mark	ks). For each of the pro	blems, give your answe	er in space provided.
the circle price. $d(\mathbf{z}^1, \mathbf{z}^2)$ within the	perform binary classificate rototype $(1,0)$. Find the $\mathbf{z} = \ \mathbf{z}^1 - \mathbf{z}^2\ _1 = \ \mathbf{z}^1 - \mathbf{z}^2\ _2$ box $B := \{\mathbf{z} \in \mathbb{R}^2 : \mathbf{z}_1, \mathbf{z}_2\}$ in the figure. Note that yo	decision boundary when $\mathbf{z}_{1}^{2} + \mathbf{z}_{2}^{1}-\mathbf{z}_{2}^{2} $ for $\mathbf{z}^{1},\mathbf{z}^{2}$ $\mathbf{z}_{2}\in[0,1]\}\subset\mathbb{R}^{2}$ and wr	we use the L_1 metric $\in \mathbb{R}^2$. Calculate the dite its expression belo	to calculate distances ecision boundary only w. Draw the decision
			(0,1)	1
				(1,0)
	$\rightarrow \mathbb{R}$ be a differentiable $f(\mathbf{x}) \leq 0$ is always a conv			

Page 4		

IIT Kanpur
CS771 Intro to ML
Mid-semester Examination

Date: September 21, 2017

Name:		
Roll No.:	Dept.:	

3. Consider the following optimization problem for linear regression $\mathbf{x}^i \in \mathbb{R}^d, y^i \in \mathbb{R}$. In the box below, write down a likelihood distribution for $\mathbb{P}[y^i | \mathbf{x}^i, \mathbf{w}]$ and prior $\mathbb{P}[\mathbf{w}]$ such that $\hat{\mathbf{w}}_{\text{rnc}}$ is the MAP estimate for your model. Give explicit forms for the density functions but you need not calculate normalization constants.

$$\hat{\mathbf{w}}_{\text{rnc}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\min} \sum_{i=1}^n (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2 + \|\mathbf{w}\|_2^2$$
s.t. $\|\mathbf{w}\|_2 \le 1$.

setting the mixture proportions to $\boldsymbol{\pi}_k^t = \frac{1}{K}$ as well as the covariance matrices of the Gaussians to identity $\Sigma^{k,t} = I$. Suppose we instead set $\Sigma^{k,t} = \Sigma$ where $\Sigma \in \mathbb{R}^{d \times d}$ is a known positive definite matrix. How will the k-means algorithm change due to this? Give the final algorithm below (no derivations required).

Page 5 Name: Roll No.: Dept.:

IIT Kanpur CS771 Intro to ML **Mid-semester Examination**

	m 4 (Long Answer: 3+3+5+5=16 marks). In this question we will derive an MLE estimate for a multi-
	listribution. Consider a K-faced die with faces $k = 1, 2,, K$. Let the vector $\boldsymbol{\pi}^*$ denote the vector g the probabilities of the various faces turning up i.e. face k turns up with probability $\boldsymbol{\pi}_k^*$. Clearly
	and $\sum_{k=1}^{K} \pi_k^* = 1$. Now suppose I get n rolls of this die. Let $\mathbf{x} \in \mathbb{N}^K$ denote the vector that tells me how
many	times each face turned up i.e. the k-th face is found turning up $\mathbf{x}_k \geq 0$ times with $\sum_{k=1}^K \mathbf{x}_k = n$ (reca
$\mathbb{N} = \{0$	$\{1, 2, \ldots\}$ is the set of natural numbers). It turns out that we have $\mathbb{P}\left[\mathbf{x} \mid \boldsymbol{\pi}^*\right] = \frac{n!}{\prod_{k=1}^K (\mathbf{x}_k!)} \prod_{k=1}^K (\boldsymbol{\pi}_k^*)^{\mathbf{x}_k}$.
1. V	rite down the problem of finding the MLE estimate $\arg\max_{\pi} \mathbb{P}[\mathbf{x} \mid \pi]$ as an optimization problem. <i>Hin</i>
i	will be a constrained optimization problem.
2. V	rite down the Lagrangian for that optimization problem.

problem which should be only in terms of constants and the dual variable.

				Page 6			
Nam	ie:						IT Kanpur ntro to ML
Roll	l No.: Dept.:		Mid-semester Examinatio Date: September 21, 201				
4.			em and use it to one MLE estimate.	obtain the MLE	estimate. Only	give expressions for bo	th the dual

BLANK SPACE: Any answers written here will be left ungraded.

No exceptions.

You may use this space for rough work.

FOR ROUGH WORK ONLY