Problem Skipping Limits the Accuracy of Ability Estimates in Online Learning

Annie Johansson, Alexander Savi, Abe Hofman Psychological Methods, University of Amsterdam

Background & Methods.

When using online learning platforms, students are often faced with the option to skip a problem. Traditional IRT models treat this behavior the same as incorrect responses, assuming that the tendency of a student to problem-skip is the same as their tendency to give an incorrect response. 1,2

We used an item response tree model to test:

- Should problem-skipping be estimated separately from accuracy in online learning systems?
- 2. How are item difficulties and user ability related to problem-skipping?

on children (N = 4110) practicing mathematical number sequences in Math Garden³.

Results.

Item difficulties and user ability estimates are best captured by an IRTree model separately accounting for problem-skipping and accuracy.

Students who skip more have lower ability estimates, but are not always answering incorrectly.

Model	Random parameters	AIC	BIC	$cor(\theta^{(1)}, \theta^{(2)})$	$cor(\beta^{(1)}, \beta^{(2)})$
Fully Estimated IRTree multidimensional; response is predicted by a random node effect of items and a random node effect of users.	$\theta_p, \theta_i, \beta_p, \beta_i$	1559132	1559220	0.44	0.77
Item-Constrained IRTree multidimensional; response is predicted by a random intercept for items, and a random node effect of users.	$\theta_n, \beta_n, \theta_i = \beta_i$	1574386	1574449	0.37	-
User-Constrained IRTree multidimensional; response is predicted by a random intercept for users, and a random node effect of items.	$\theta_{i}, \beta_{i}, \theta_{i} = \beta_{i}$	1591531	1591594	_	0.72
Fully Constrained IRTree unidimensional; both item- and user-level effects are modeled with random intercepts.		1619044	1619081	_	-

Problem-skipping and accuracy stem from distinct processes.

Educational measurement models that rely on one latent ability measure may not be sufficient to capture ability.

Suggestions for learning analytics:

- Measure both latent traits ad-hoc and report them.
- On-the-fly problem-skipping estimation. Teacher dashboards can give insights on problem-skipping in real time.
- Restrict problem-skipping behavior.

Scan for full reference list and preprint

Little & Rubin (2019) 3. De Boeck & Partchev (2012) Klinkenberg et. al. (2011)

Based on the project: Johansson, A.M., Savi, A.O., & Hofman, A.D. A problem that shouldn't be skipped: Problem skipping limits the accuracy of ability estimates in online learning. (Preprint, 2024)

> Funded by the Ministry of Education, Culture and Science (Netherlands) and the Dutch Research Council.

