4.2平衡二叉树

什么是平衡二叉树

〖例〗搜索树结点不同插入次序,将导致不同的深度和平均查找长度ASL

衡量查找效率 (找一个值平均找几次)

(a) 自然月份序列

ASL(a)= $(1+2\times2+3\times3+4\times3+5\times2+6\times1)/12 = 3.5$

1层的找1次,第二层找2次

(b) 按July, Feb, May, Mar, Aug, Jan, Apr, Jun, Oct, Sept, Nov, Dec 人为指定顺序

ASL(b)=3.0

(c)月份字符串 大小顺序

ASL(c)=6.5

什么是平衡二叉树

"平衡因子(Balance Factor,简称BF): BF(T) = h_L-h_R, 其中h_L和h_R分别为T的左、右子树的高度。

平衡是为了让树的高度更低一点

平衡二叉树(Balanced Binary Tree)(AVL树)

空树,或者

任一结点左、右子树高度差的绝对值不超过1,即|BF(T)|≤1

平衡二叉树的高度能达到log₂n吗?

设 n_h 高度为h的平衡二叉树的最少结点数。结点数最少时:

斐波那契序列:

$$F_0 = 1$$
, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2}$ for $i > 1$

设 n_n 是高度为h的平衡二叉树的最小结点数。

$$h$$
 n_h F_h $\Rightarrow n_h = n_{h-1} + n_{h-2} + 1$ 0 1 1 $\Rightarrow n_h = F_{h+2} - 1$, $($ 対 $h \ge 0$ $) 1 2 1 $F_i \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^i$ 2 3 7 3 $\Rightarrow n_h \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{h+2} -1$ 5 20 8 $\Rightarrow h = O(\log_2 n)$ 平衡二叉树 54 21 8 88 34 9 □ 给定结点数为 n 的AVL树的最大高度为 $O(\log_2 n)$?$

平衡二叉树的调整

平衡二叉树的调整 Mar May Nov find the state of the

● 不平衡的"发现者"是Mar, "麻烦结点"Nov 在发现者右子树的右边, 因而叫 RR 插入,需要RR 旋转(右单旋)

"发现者"是Mar, "麻烦结点"Apr 在发现者左子树的左边, 因而叫 LL 插入, 需要LL 旋转(左单旋)

"发现者"是May, "麻烦结点"Jan在左子树的右边,

