NJM78L00EA

(SOP8)

(5V, 9V, 12V Version Only)

3-TERMINAL POSITIVE VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

The **NJM78L00** series of 3-Terminal Positive Voltage Regulators are constructed using the New JRC Planar epitaxial process.

These regulators employ internal current limiting and thermal shut down, making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to 100mA output current. They are intended as fixed voltage regulators in a wide range of applications including local or on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power pass elements to make high-current voltage regulators.

The NJM78L00 series used as a Zener diode/resistor combination replacement, offers an effective output impedance improvement of typically two orders of magnitude, along with lower quiescent current and lower noise.

■ FEATURES

- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Excellent Ripple Rejection
- Guaranteed 100mA Output Current
- Package Outline

SOT-89. SOP8 JEDEC 150mil

Bipolar Technology

■ PIN CONFIGURATION

NJM78L00UA

PIN CONFIGURATION

1. OUT 2 GND 3. IN

NJM78L00EA

PIN CONFIGURATION

1. OUT 2. GND 3. GND 4. NC 5. NC 6. GND 7. GND

■ PACKAGE OUTLINE

NJM78L00UA

(SOT-89)

8. IN

Ш 8

□ 7

□ 6

□ 5

■ EQUIVALENT CIRCUIT

- 1 -

■ ABSOLUTE MAXIMUM RATINGS

(T_a=25°C)

PARAMETER	SYMBOL	MAXIMUM RATINGS	UNIT
Input Voltage	V _{IN}	(78L02A to 78L09A) 30 (78L12A to 78L15A) 35 (78L18A to 78L24A) 40	V
Power Dissipation	P_D	(SOT-89) 350 (SOP8) 700(*1)	mW
Operating Temperature Range	T _{opr}	-40 to +85	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

^(*1) Mounted on glass epoxy board

■ ELECTRICAL CHARACTERISTICS

(C_{IN}=0.33 μ F, C_O=0.1 μ F, T_j=25°C) Measurement is to be conducted is pulse testing.

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM78L02UA						
Output Voltage	Vo	V _{IN} =9V, I _O =40mA	2.47	2.6	2.73	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =4.75V to 20V, I_{O} =40mA	-	-	125	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V _{IN} =5V to 20V, I _O =40mA	-	-	100	mV
Load Regulation 1	ΔV_O - I_O 1	V _{IN} =9V, I _O =1 to 40mA	-	-	25	mV
Load Regulation 2	ΔV_O - I_O 2	V _{IN} =9V, I _O =1 to 100mA	-	-	50	mV
Quiescent Current	IQ	V _{IN} =9V, I _O =0mA	-	2.0	6	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =9V, I _O =1mA	-	0.2	-	mV/°C
Ripple Rejection	RR	6V< V _{IN} <16V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	43	73	-	dB
Output Noise Voltage	V_{NO}	V_{IN} =9V, BW=10Hz to 100kHz, I_{O} =40mA	-	35	-	μV
NJM78L03UA						
Output Voltage	Vo	V _{IN} =9V, I _O =40mA	2.85	3.0	3.15	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =5V to 20V, I_{O} =40mA	-	-	125	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V_{IN} =6V to 20V, I_{O} =40mA	-	-	100	mV
Load Regulation 1	ΔV_{O} - $I_{O}1$	V _{IN} =9V, I _O =1 to 40mA	-	-	25	mV
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =9V, I _O =1 to 100mA	-	-	50	mV
Quiescent Current	lQ	V _{IN} =9V, I _O =0mA	-	2.0	6	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V_{IN} =9V, I_O =1mA	-	0.2	-	mV/°C
Ripple Rejection	RR	6V< V _{IN} <16V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	43	72	-	dB
Output Noise Voltage	V_{NO}	V_{IN} =9V, BW=10Hz to 100kHz, I_{O} =40mA	-	40	-	μV
NJM78L05UA/EA						
Output Voltage	Vo	V _{IN} =10V, I _O =40mA	4.75	5.0	5.25	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =7V to 20V, I_{O} =40mA	-	-	200	mV
Line Regulation 2	ΔV_{O} - V_{IN} 2	V_{IN} =8V to 20V, I_{O} =40mA	-	-	150	mV
Load Regulation 1	ΔV_{O} - $I_{O}1$	V_{IN} =10V, I_{O} =1 to 40mA	-	-	30	mV
Load Regulation 2	ΔV_{O} - $I_{O}2$	V _{IN} =10V, I _O =1 to 100mA	-	-	60	mV
Quiescent Current	lα	V _{IN} =10V, I _O =0mA	-	2.0	6	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =10V, I _O =1mA	-	0.4	-	mV/°C
Ripple Rejection	RR	$8V < V_{IN} < 18V$, $I_O = 40$ mA, $e_{in} = 1V_{P-P}$, $f = 120$ Hz	40	69	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =10V, BW=10Hz to 100kHz, I ₀ =40mA	-	70	-	μV

■ ELECTRICAL CHARACTERISTICS

 $(C_{IN}$ =0.33 μ F, C_{O} =0.1 μ F, T_{j} =25 $^{\circ}$ C) Measurement is to be conducted is pulse testing.

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM78L06UA						
Output Voltage	Vo	V _{IN} =12V, I _O =40mA	5.7	6.0	6.3	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V _{IN} =8.5V to 20V, I _O =40mA	-	-	200	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V _{IN} =9V to 20V, I _O =40mA	-	-	150	mV
Load Regulation 1	ΔV_{O} - I_{O} 1	V _{IN} =12V, I _O =1 to 40mA	-	-	40	mV
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =12V, I _O =1 to 100mA	-	-	80	mV
Quiescent Current	lQ	V _{IN} =12V, I _O =0mA	-	2.0	6	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =12V, I _O =1mA	-	0.5	-	mV/°C
Ripple Rejection	RR	9V< V _{IN} <20V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	40	67	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =12V, BW=10Hz to 100kHz, I ₀ =40mA	-	80	-	μV
NJM78L07UA						
Output Voltage	V_{O}	V _{IN} =13V, I _O =40mA	6.65	7.0	7.35	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =9.5V to 22V, I_{O} =40mA	-		210	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V_{IN} =10V to 22V, I_{O} =40mA	-	-	160	mV
Load Regulation 1	ΔV_O - I_O 1	V _{IN} =13V, I _O =1 to 40mA	-	-	45	mV
Load Regulation 2	ΔV_O - I_O 2	V _{IN} =13V, I _O =1 to 100mA	-	-	90	mV
Quiescent Current	lQ	V _{IN} =13V, I _O =0mA	-	2.1	6	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =13V, I _O =1mA	-	0.55	-	mV/°C
Ripple Rejection	RR	$10V < V_{IN} < 20V, I_O = 40mA, e_{in} = 1V_{P-P}, f = 120Hz$	39	66	-	dB
Output Noise Voltage	V_{NO}	V_{IN} =13V, BW=10Hz to 100kHz, I_{O} =40mA	-	100	-	μV
NJM78L08UA						
Output Voltage	Vo	V _{IN} =14V, I _O =40mA	7.6	8.0	8.4	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V _{IN} =10.5V to 23V, I _O =40mA	-	-	225	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V _{IN} =11V to 23V, I _O =40mA	-	-	175	mV
Load Regulation 1	ΔV_O - I_O 1	V _{IN} =14V, I _O =1 to 40mA	-	-	50	mV
Load Regulation 2	ΔV_O - I_O 2	V _{IN} =14V, I _O =1 to 100mA	-	-	100	mV
Quiescent Current	IQ	V _{IN} =14V, I _O =0mA	-	2.1	6	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =14V, I _O =1mA	-	0.6	-	mV/°C
Ripple Rejection	RR	11V< V _{IN} <20V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	39	66	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =14V, BW=10Hz to 100kHz, I _O =40mA	-	115	-	μV

NJM78L00

■ ELECTRICAL CHARACTERISTICS

(C_{IN}=0.33 μ F, C_O=0.1 μ F, T_j=25°C) Measurement is to be conducted is pulse testing.

$(C_{IN}=0.33\mu F, C_{O}=0.1\mu F, T_{J}=25^{\circ}C)$ We as urement is to be conducted is pulse testing.							
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
NJM78L09UA/EA							
Output Voltage	Vo	V _{IN} =15V, I _O =40mA	8.55	9.0	9.45	V	
Line Regulation 1	$\Delta V_{O}-V_{IN}1$	V_{IN} =11.5V to 23V, I_{O} =40mA	-	-	250	mV	
Line Regulation 2	ΔV_0 - $V_{IN}2$	V _{IN} =12V to 23V, I _O =40mA	-	-	200	mV	
Load Regulation 1	ΔV_0 - I_0 1	V _{IN} =15V, I _O =1 to 40mA	-	-	50	mV	
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =15V, I _O =1 to 100mA	-	-	100	mV	
Quiescent Current	ΙQ	V _{IN} =15V, I _O =0mA	-	2.1	6	mA	
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =15V, I _O =1mA	-	0.65	-	mV/°C	
Ripple Rejection	RR	$12V < V_{IN} < 21V$, $I_O = 40$ mA, $e_{in} = 1V_{P-P}$, $f = 120$ Hz	38	65	-	dB	
Output Noise Voltage	V_{NO}	V _{IN} =15V, BW=10Hz to 100kHz, I ₀ =40mA	-	125	-	μV	
NJM78L10UA							
Output Voltage	Vo	V _{IN} =16V, I _O =40mA	9.5	10.0	10.5	V	
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =13V to 25V, I_{O} =40mA	-	-	250	mV	
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V_{IN} =14V to 25V, I_{O} =40mA	-	-	200	mV	
Load Regulation 1	ΔV_{O} - I_{O} 1	V _{IN} =16V, I _O =1 to 40mA	-	-	50	mV	
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =16V, I _O =1 to 100mA	-	-	100	mV	
Quiescent Current	IQ	V _{IN} =16V, I _O =0mA	-	2.1	6	mA	
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =16V, I _O =1mA	-	0.7	-	mV/°C	
Ripple Rejection	RR	13V< V _{IN} <22V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	37	64	-	dB	
Output Noise Voltage	V_{NO}	V _{IN} =16V, BW=10Hz to 100kHz, I _O =40mA	-	135	-	μV	
NJM78L12UA/EA							
Output Voltage	Vo	V _{IN} =19V, I _O =40mA	11.4	12.0	12.6	V	
Line Regulation 1	$\Delta V_{O}-V_{IN}1$	V _{IN} =14.5V to 27V, I _O =40mA	-	-	250	mV	
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V _{IN} =16V to 27V, I _O =40mA	-	-	200	mV	
Load Regulation 1	ΔV_0 - I_0 1	V _{IN} =19V, I _O =1 to 40mA	-	-	50	mV	
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =19V, I _O =1 to 100mA	-	-	100	mV	
Quiescent Current	lQ	V _{IN} =19V, I _O =0mA	-	2.1	6.5	mA	
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =19V, I _O =1mA	-	0.9	-	mV/°C	
Ripple Rejection	RR	15V< V _{IN} <25V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	37	62	-	dB	
Output Noise Voltage	V_{NO}	V _{IN} =19V, BW=10Hz to 100kHz, I _O =40mA	-	160	-	μV	
NJM78L15UA							
Output Voltage	Vo	V _{IN} =23V, I _O =40mA	14.3	15.0	15.7	V	
Line Regulation 1	ΔV_{O} - V_{IN} 1	V _{IN} =17.5V to 30V, I _O =40mA	-	-	300	mV	
Line Regulation 2	ΔV_0 - $V_{IN}2$	V _{IN} =20V to 30V, I _O =40mA	-	-	250	mV	
Load Regulation 1	ΔV_0 -I ₀ 1	V _{IN} =23V, I _O =1 to 40mA	-	-	75	mV	
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =23V, I _O =1 to 100mA	-	-	150	mV	
Quiescent Current	IQ	V _{IN} =23V, I _O =0mA	-	2.2	6.5	mA	
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =23V, I _O =1mA	-	1.0	-	mV/°C	
Ripple Rejection	RR	18.5V< V _{IN} <28.5V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	34	60	-	dB	
Output Noise Voltage	V _{NO}	V _{IN} =23V, BW=10Hz to 100kHz, I ₀ =40mA	-	190	-	μV	
	L				·		

■ ELECTRICAL CHARACTERISTICS

 $(C_{IN}$ =0.33 μ F, C_{O} =0.1 μ F, T_{j} =25 $^{\circ}$ C) Measurement is to be conducted is pulse testing.

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM78L18UA						
Output Voltage	Vo	V _{IN} =27V, I _O =40mA	17.1	18.0	18.9	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V _{IN} =22V to 33V, I _O =40mA	-	-	320	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V _{IN} =22V to 33V, I _O =40mA	-	-	270	mV
Load Regulation 1	ΔV_{O} - I_{O} 1	V _{IN} =27V, I _O =1 to 40mA	-	-	80	mV
Load Regulation 2	ΔV_0 - I_0 2	V _{IN} =27V, I _O =1 to 100mA	-	-	160	mV
Quiescent Current	lQ	V _{IN} =27V, I _O =0mA	-	2.2	6.5	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =27V, I _O =1mA	-	1.1	-	mV/°C
Ripple Rejection	RR	23V< V _{IN} <33V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	33	59	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =27V, BW=10Hz to 100kHz, I ₀ =40mA	-	230	-	μV
NJM78L20UA						
Output Voltage	V_{O}	V _{IN} =29V, I _O =40mA	19.0	20.0	21.0	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =23V to 34V, I_{O} =40mA	-		330	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V_{IN} =24V to 34V, I_{O} =40mA	-	-	280	mV
Load Regulation 1	ΔV_O - I_O 1	V _{IN} =29V, I _O =1 to 40mA	-	-	90	mV
Load Regulation 2	ΔV_O - I_O 2	V _{IN} =29V, I _O =1 to 100mA	-	-	180	mV
Quiescent Current	lQ	V _{IN} =29V, I _O =0mA	-	2.3	7	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =29V, I _O =1mA	-	1.2	-	mV/°C
Ripple Rejection	RR	24V< V _{IN} <34V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	32	58	-	dB
Output Noise Voltage	V_{NO}	V_{IN} =29V, BW=10Hz to 100kHz, I_{O} =40mA	-	250	-	μV
NJM78L24UA						
Output Voltage	Vo	V _{IN} =33V, I _O =40mA	22.8	24	25.2	V
Line Regulation 1	ΔV_{O} - V_{IN} 1	V_{IN} =27V to 38V, I_{O} =40mA	-	-	350	mV
Line Regulation 2	ΔV_{O} - $V_{IN}2$	V _{IN} =28V to 38V, I _O =40mA	-	-	300	mV
Load Regulation 1	ΔV_O - I_O 1	V _{IN} =33V, I _O =1 to 40mA	-	-	100	mV
Load Regulation 2	ΔV_O - I_O 2	V _{IN} =33V, I _O =1 to 100mA	-	-	200	mV
Quiescent Current	IQ	V _{IN} =33V, I _O =0mA	-	2.3	7	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔΤ	V _{IN} =33V, I _O =1mA	-	1.4	-	mV/°C
Ripple Rejection	RR	27.5V< V _{IN} <37.5V, I _O =40mA, e _{in} =1V _{P-P} , f=120Hz	32	57	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =33V, BW=10Hz to 100kHz, I _O =40mA	-	280	-	μV

NJM78L00

■ TEST CIRCUIT

 Output Voltage Line Regulation, Load Regulation, Quiescent Current, Average Temperature Coefficient of Output Voltage, Output Noise Voltage, Peak Output/Short-Circuit Current

O Measurement is to be conducted in pulse testing. O $1_{Q}=1_{1}-1_{0}$

2. Ripple Rejection

■ AMBIENT TEMPERATURE VS.POWER DISSIPATION

Power Dissipation vs. Ambient Temperature (Topr = -
$$40^{\circ}$$
C \sim + 85° C, Tj = \sim + 150° C)

■ Input Capacitor C_{IN}

Input Capacitor C_{IN} is required to prevent oscillation and reduce power supply ripple for applications when high power supply impedance or a long power supply line.

Therefore, use the recommended C_{IN} value (refer to conditions of ELECTRIC CHARACTERISTIC) or larger and should connect between GND and V_{IN} as shortest path as possible to avoid the problem.

■Output Capacitor Co

Output capacitor (C_O) will be required for a phase compensation of the internal error amplifier.

The capacitance and the equivalent series resistance (ESR) influence to stable operation of the regulator. Use of a smaller C_0 may cause excess output noise or oscillation of the regulator due to lack of the phase compensation.

On the other hand, Use of a larger C_O reduces output noise and ripple output, and also improves output transient response when rapid load change.

Therefore, use the recommended C_O value (refer to conditions of ELECTRIC CHARACTERISTIC) or larger and should connect between GND and V_{OUT} as shortest path as possible for stable operation

In addition, you should consider varied characteristics of capacitor (a frequency characteristic, a temperature characteristic, a DC bias characteristic and so on) and unevenness peculiar to a capacitor supplier enough.

When selecting C_{O} , recommend that have withstand voltage margin against output voltage and superior temperature characteristic though this product is designed stability works with wide range ESR of capacitor including low ESR products.

■ TYPICAL CHARACTERISTICS

NJM78L05 / L12 / L24 Output Characteristics

NJM78L05 Dropout Characteristics

NJM78L00 Series Short Circuit Output Current

NJM78L02 / L24 Quiescent Current vs. Output Current

NJM78L05 Quiescent Current vs. Input Voltage

NJM78L00 Equivalent Series Resistance vs. Output Current

■ TYPICAL CHARACTERISTICS

NJM78L05 / L12 / L24 Thermal Shutdown Characteristics

Ambient Temperature Ta (°C)

NJM78L05 / L12 / L24 Load Characteristics

NJM78L02 / L24 Ripple Rejection

NJM78L05 Output Voltage

NJM78L12 Output Voltage vs. Temperature

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

NJM78L06UA-TE1 NJM78L24UA-TE1 NJM78L20UA-TE1 NJM78L05UA-TE1 NJM78L07UA-TE1 NJM78L03UA-TE1 NJM78L12UA-TE1 NJM78L02UA-TE1 NJM78L10UA-TE1 NJM78L15UA-TE1 NJM78L05EA-TE1

NJM78L09UA-TE1 NJM78L08UA-TE1 NJM78L18UA-TE1 NJM78L62UA-TE1 NJM78L12EA-TE1 NJM78L09EA-TE1