线性代数-期中考试

问题 1 (10 \hat{g} =3+3+4)

令 A 是一个秩为 r 的 $m \times n$ 矩阵.

- (1) 如果方程 $A\vec{x} = \vec{b}$ 对所有 \vec{b} 都有解, 那么 A 的列空间是什么? 这个时候 m, n, r 需 要满足什么条件?
- (2) 假定增广矩阵 $[A \vec{b}]$ 行等价于 $[C \vec{d}]$, 那么方程 $A\vec{x} = \vec{b}$ 和方程 $C\vec{x} = \vec{d}$ 是否有同样 的解?简要解释为什么。
- (3) 给出一个秩为 1 的 3×2 矩阵 A 使得它的第一行为 (2-5), 并写出 A 的列空间 和零空间。

问题 2 (16 % =4+4+4+4)

已知在矩阵加法和数乘下, 所有 $n \times n$ 实矩阵构成一个维数为 n^2 的实向量空间, 请回答下 列是非题,并简要清晰地解释为什么。

- (1) 所有 $n \times n$ 可逆矩阵是否构成一个子向量空间?
- (2) 一个矩阵称为是**奇异**的, 如果它不是可逆的。是否所有的 $n \times n$ 奇异矩阵构成一个 子向量空间?
- (3) 考虑所有零空间包含 $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ 的 $n \times n$ 矩阵。它们是否构成一个子向量空间? $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ 的 $n \times n$ 矩阵。它们是否构成一个子向量空间? $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

问题 3 (17 $\hat{\sigma}$ =4+8+5)

令 A 是一个 $m \times n$ 的实矩阵.

(1) 令
$$B = \begin{vmatrix} A & A \\ A & A \end{vmatrix}$$
。 等式 $\operatorname{rk}(A) = \operatorname{rk}(B)$ 是否成立? 为什么?

A 定一个 $m \times n$ 的 天 π 다. (1) 令 $B = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$ 。 等式 $\operatorname{rk}(A) = \operatorname{rk}(B)$ 是否成立? 为什么? (2) 令 A 是一个 $n \times n$ 的可逆矩阵, 令 $B = \begin{bmatrix} A & X \\ X^t & 1 \end{bmatrix}$, 其中 X 是一个 $n \times 1$ 矩阵。那么 X 必须满足什么条件 B 才能是一个可逆矩阵? 当 B 可逆时,计算 B^{-1} 。

(3) 令 A 是一个 3×5 矩阵, 假定方程 $A^t \vec{y} = 0$ 的解空间由以下向量张成

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix},$$

那么 A 的秩是多少?

问题 4 (12
$$\hat{\beta}$$
 =4+8)
 $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$

(1) 计算 A 的 LU-分解。

(2) 计算
$$A$$
 的逆 A^{-1} ,并用它求解方程 $AX = \begin{bmatrix} 1 & 3 \\ 2 & -5 \\ 0 & 1 \\ 4 & 2 \end{bmatrix}$ 。

问题 5 (20 分 =6+4+10)

(1) 令
$$A = \begin{bmatrix} 0 \\ 1 & 0 \\ & 1 & 0 \\ & & 1 & 0 \end{bmatrix}$$
, 证明 $A^4 = 0$ 并用它计算 $(I - A)(I + A + A^2 + A^3)$.

(2) 令 $B = \begin{bmatrix} 0 & & 1 \\ 1 & 0 & & \\ & 1 & 0 & \\ & & 1 & 0 \end{bmatrix}$, 证明 $B^4 = I$.

(2)
$$\Rightarrow B = \begin{bmatrix} 0 & & 1 \\ 1 & 0 & \\ & 1 & 0 \\ & & 1 & 0 \end{bmatrix}$$
, 证明 $B^4 = I$.

(3) 取
$$n \times n$$
 矩阵 $A_n = \begin{bmatrix} 0 \\ 1 & 0 \\ & \ddots & \ddots \\ & & 1 & 0 \end{bmatrix}$ 及 $B_n = \begin{bmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix}$, 证明 $(A_n)^n = 0$ 和 $(B_n)^n = I_n$.

问题 6 (25 分 =7+18)

- (1) 计算 A 的 LU-分解。
- (2) 分别计算 A 的行空间, 列空间和零空间的一组基。