Versuch O6

Date: 2023-04-23

Tags: O6

Versuchsprotokoll O6 Newtonsche Ringe - 626758

	Matrikelnummer
Person 1: Samuel Brinkmann	624568
Person 2: Levin Schulz	626758

O. Rohdaten und Auswertung

Tab.1: Messergebnisse der grüne Hg-Linie

Unsicherheit der Positionsbestimmung: $u_{PL} = u_{Pr} = 0.05$ mm (halbe Breite der dunklen Ringe)

k	<i>P</i> _{L,k} (mm)	P _{R,k} (mm)	<i>r</i> _k (mm)	<i>u</i> _{rk} (mm)	$y = r_k^2$ (mm ²)	u _y (mm²)
1	27,43	26,31	0,560	0,03535533905932738	0,3136	0,0395979797464467
2	27,69	26,02	0,835	0,03535533905932738	0,697225	0,05904341622907679
3	27,87	25,84	1,015	0,03535533905932738	1,03023	0,07177133829043462
4	28,02	25,64	1,190	0,03535533905932738	1,4161	0,08414570696119913
5	28,18	25,50	1,340	0,03535533905932738	1,7956	0,09475230867899738
6	28,29	25,37	1,460	0,03535533905932738	2,1316	0,1032375900532359
7	28,40	25,25	1,575	0,03535533905932738	2,48062	0,1113693180368812
8	28,51	25,14	1,685	0,03535533905932738	2,83923	0,1191474926299333
9	28,61	25,04	1,785	0,03535533905932738	3,18623	0,1262185604417988

10	28,69	24,94	1,875	0,03535533905932738	3,51563	0,1325825214724777
11	28,79	24,85	1,970	0,03535533905932738	3,8809	0,1393000358937498
12	28,87	24,77	2,050	0,03535533905932738	4,2025	0,1449568901432423
13	29,00	24,68	2,160	0,03535533905932738	4,6656	0,1527350647362943
14	29,02	24,61	2,205	0,03535533905932738	4,86203	0,1559170452516338
15	29,09	24,54	2,275	0,03535533905932738	5,17563	0,1608667927199396
16	29,16	24,45	2,355	0,03535533905932738	5,54603	0,166523646969432
17	29,23	24,38	2,425	0,03535533905932738	5,88063	0,1714733944377378

Tab.2: Messergebnisse der blaue Hg-Linie

Unsicherheit der Positionsbestimmung: $u_{\rm PL}$ = $u_{\rm Pr}$ = 0,06 mm (halbe Breite der dunklen Ringe)

k	<i>P</i> _{L,k} (mm)	<i>P</i> _{R,k} (mm)	<i>r</i> _k (mm)	u _{rk} (mm)	$y = r_k^2$ (mm ²)	u _y (mm²)
1	27,44	26,27	0,585	0,04242640687119285	0,342225	0,04963889603929564
2	27,66	26,04	0,81	0,04242640687119285	0,6561	0,06873077913133242
3	27,82	25,87	0,975	0,04242640687119285	0,950625	0,08273149339882606
4	28,00	25,72	1,14	0,04242640687119285	1,2996	0,09673220766631969
5	28,08	25,59	1,245	0,04242640687119285	1,55003	0,1056417531092702
6	28,18	25,47	1,355	0,04242640687119285	1,83603	0,1149755626209326
7	28,28	25,38	1,45	0,04242640687119285	2,1025	0,1230365799264593
8	28,37	25,28	1,545	0,04242640687119285	2,38702	0,1310975972319859
9	28,47	25,18	1,645	0,04242640687119285	2,70602	0,1395828786062245
10	28,54	25,10	1,72	0,04242640687119285	2,9584	0,1459468396369034
11	28,61	25,01	1,8	0,04242640687119285	3,24	0,1527350647362943
12	28,69	24,94	1,875	0,04242640687119285	3,51563	0,1590990257669732

13	28,75	24,87	1,94	0,04242640687119285	3,7636	0,1646144586602283
14	28,83	24,79	2,02	0,04242640687119285	4,0804	0,1714026837596191

Tab.3: Messergebnisse der Na-Linie

Unsicherheit der Positionsbestimmung: $u_{\rm PL}$ = $u_{\rm Pr}$ = 0,06 mm (halbe Breite der dunklen Ringe)

k	<i>P</i> _{L,k} (mm)	<i>P</i> _{R,k} (mm)	<i>r</i> _k (mm)	<i>u</i> _{rk} (mm)	$y = r_k^2$ (mm ²)	u _v (mm²)
1	27,46	26,25	0,605	0,04242640687119285	0,366025	0,05133595231414334
2	27,72	25,97	0,875	0,04242640687119285	0,765625	0,07424621202458748
3	27,91	25,74	1,085	0,04242640687119285	1,17722	0,09206530291048848
4	28,07	25,58	1,245	0,04242640687119285	1,55003	0,1056417531092702
5	28,22	25,43	1,395	0,04242640687119285	1,94603	0,118369675170628
6	28,34	25,29	1,525	0,04242640687119285	2,32562	0,1294005409571382
7	28,45	25,17	1,64	0,04242640687119285	2,6896	0,1391586145375125
8	28,57	25,05	1,76	0,04242640687119285	3,0976	0,1493409521865988
9	28,68	24,99	1,845	0,04242640687119285	3,40402	0,1565534413547016
10	28,79	24,85	1,97	0,04242640687119285	3,8809	0,1671600430724998
11	28,87	24,76	2,055	0,04242640687119285	4,22303	0,1743725322406026
12	29,02	24,66	2,18	0,04242640687119285	4,7524	0,1849791339584008
13	29,20	24,58	2,31	0,04242640687119285	5,3361	0,196009999744911

Auswertung

1. Was sind die Ziele des Versuchs?

1	Nachweis der Welleneigenschaften des Lichts
2	Bestimmung des Krümmungsradius R einer Plankonvexlinse mit dem grünen Licht einer Hg-Spektrallampe (I_G = 546,074 nm)
3	Bestimmung der Wellenlänge der blauen g- Spektrallinie des Hg-Spektrums und der Na- D-Linie

2. Theorie

Licht hat Wellen- und Teilcheneigenschaften, was mit Wellen-Teilchen-Dualismus bezeichnet wird.

Unter monochromatischem Licht versteht man elektromagnetische Strahlung im sichtbaren Spektrum mit einer exakt definierten Frequenz und einer konstanten Wellenlänge im Vakuum.

In diesem Versuch wird dies erzeugt durch den Einsatz geeigneter Spektralfilter und günstig gewählter Spektrallampen.

Hierbei wird das diskrete Energiespektrum von Natrium- bzw. Quecksilberatomen zur Emission entsprechend

$$\Delta E = rac{h*c}{\lambda}$$
 Gl.(1)

 ΔE - Energiedifferenz zwischen angeregtem Zustand und Grundzustand des Elektrons im jeweiligen Atom

h - Plancksches Wirkungsquantum

c - Lichtgeschwindigkeit im Vakuum

genutzt um monochromatischem Licht zu emittieren. In einer Spektrallampe werden die Atome durch energetische Elektronenstöße angeregt; die darauffolgende Abregung geschieht unter Emission eines Photons.

Eine Welle ist mathematisch beschreibbar durch

$$y(ec{r},t)=y_0e^{i(ec{k}ec{r}-\omega t+\phi)}$$
Gl.(2)

wobei \vec{r} den Ort, t die Zeit, \vec{k} der Wellenvektor (bzw. Wellenzahl), \mathbb{I} die Kreisfrequenz und \mathbb{I} die Phasendifferenz ist.

Mittels I kann ein Gangunterschied zwischen zwei kohärenter Wellenpaketen eingestellt werden.

Abbildung 1 zeigt den Strahlenverlauf

Abb.1: Darstellung des Strahlenverlaufs durch Linse und Glasplatte

aus dem sich eine Phasenverschiebung von

$$\phi=2\pirac{2d}{\lambda}+\pi$$
 GI.(3)

ableiten lässt. Hierbei ist d der Abstand zwischen der Linse und der Glasplatte an der betrachteten Stelle und 🛭 ist die Wellenlänge des Lichtes. Der Phasensprung von 🗈 ergibt sich aus der Reflexion an der Glasplatte.

Bei Betrachtung des Systems von oben ergeben sich ringförmig Interferenzeffekte.

Mit der Näherung d < R ergibt sich hieraus der Radius r_k des k-ten ringförmigen Minimums

$$r_k = \sqrt{R\lambda k}$$
 Gl.(4)

wobei R der Krümmungsradius der Linse und II die Wellenlänge des monochromatischen Lichts ist.

2. Versuchsaufbau

Ausgehend von GI.(4) wurden in diesem Versuch mittel des in Abb. 2 dargestellten Versuchsaufbaus die Radien r_k experimentell bestimmt.

Abb.2: Beschreibung des Versuchsaufbaus

Mit einer Messunsicherheit von jeweils $0.05 \, mm$ für die grüne Hg-Linie und $0.06 \, mm$ für die blaue Hg-, sowie Na-D-Linie wurden die Positionen $P_{L,k}$ und $P_{R,k}$ mittels des Fadenkreuzes im Mikroskop gemessen.

3. Auswertung

Aus den Positionen $P_{L,k}$ und $P_{R,k}$ ergeben sich mit

$$r_k=rac{|P_{L,k}-P_{R,k}|}{2}$$
 GI.(5)

die Radien r_k der ringförmigen Minima, die Tab. (1) bis (3) aufgeführt sind.

Quadrieren von Gl. (4) ergibt eine theoretisch vorhergesagte lineare Abhängigkeit

$$r_k^2=R\lambda k$$
 GI.(6)

Entsprechend werden die r_k -Messergebnisse quadriert; das Ergebnis ist Tab. (1) bis (3) zu entnehmen.

3.1. Bestimmung des Linsenradius R

Abbildung 3 zeigt die r_k^2 -Messergebnisse (inklusive der Residuen Abb. 4) in Abhängigkeit von k der grünen e-Spektrallinie der Hg-Dampflampe.

Abb.3: Berechnete y aufgetragen über die Ordnung k der gemessenen dunklen Ringe

der grünen Hg-Linie und gegebenen Unsicherheiten (Rot), sowie zugehörige

gefittete Ausgleichsgerade (Grün)

Abb.4: Abstände der gegebenen Werte aus Abb. 3 (Rot) zur gefitteten Ausgleichsgeraden (Grün)

Aus der grünen Ausgleichsgerade in Abb. 3 ergibt sich, mittels der Fit-Daten eine Steigung $m = 0.352117149205782 \text{ } mm^2 \text{ mit einer}$ Unsicherheit von $u_m =$ 0,00496951760850802 mm², sowie ein y-Achsenabschnitt $y_0 =$ -0.0157040365274785 mm² mit Unsicherheit u_{v0} = 0,0326142834077072 mm². Dabei lässt sich aus Gl. (6) der Zusammenhang $m=R\lambda$ GI.(7) herleiten. Mit $D_G = 546,074 \, nm$ kann man nun den Krümmungsradius R der Linse mittels $R = \frac{m}{\lambda}$ GI.(8) mit zugehöriger Unsicherheit $u_R = \frac{u_m}{\lambda}$ GI.(9) bestimmen. Es ergibt sich somit als Krümmungsradius der Linse $R = 645 \text{ mm} \pm 10 \text{ mm}.$ Auf Basis der gemessenen Werte und deren Auswertung konnte ein Krümmungsradius ermittelt werden, welcher plausibel erscheint.

3.2. Bestimmung von 🛘 der blauen Spektrallinie von der Hg-Dampflampe

Abbildung 5 zeigt die $r_{\rm k}^2$ -Messergebnisse (inklusive der Residuen Abb. 6) in Abhängigkeit von k der blauen g-Spektrallinie der Hg-Dampflampe

Abb.5: Berechnete y aufgetragen über die Ordnung k der gemessenen dunklen Ringe

der blauen Hg-Linie und gegebenen Unsicherheiten (Rot), sowie zugehörige

gefittete Ausgleichsgerade (Grün)

Abb.6: Abstände der gegebenen Werte aus Abb. 5 (Rot) zur gefitteten Ausgleichsgeraden (Grün)

Aus der grünen Ausgleichsgerade in Abb. 5 ergibt sich, mittels der Fit-Daten eine Steigung $m = 0,288382337074885 \text{ } mm^2 \text{ mit einer}$ Unsicherheit von $u_m = 0,00703609528682633$ mm^2 , sowie ein y-Achsenabschnitt y_0 = 0,0785524298473657 mm² mit Unsicherheit $u_{vo} = 0,0413861673233519 \text{ mm}^2$.

Es lässt sich aus Gl. (7) nun eine Gleichung für die Wellenlänge $\lambda = \frac{m}{R}$ Gl.(10),

sowie deren Unsicherheit

$$u_{\lambda}=\sqrt{(rac{u_m}{R})^2+(rac{m}{R^2}u_R)^2}$$
 Gl.(11) ermitteln.

Mit Hilfe von Gl.(10) und dem Krümmungsradius R aus 3.1. lässt sich jetzt die Wellenlänge λ_b der blauen Hg-Linie berechnen.

Es ergibt sich

 $\lambda_b = 0.000447 \text{ mm} \pm 0.000013 \text{ mm},$ was in etwa

 λ_b = 447 nm ± 13 nm entspricht.

Anhand des Referenzwerts¹ liegt die Wellenlänge der blauen Hg-Linie bei etwa $\lambda_{b,Ref}$ = 435,835 nm und somit in der Unsicherheit der sich hier ergebenden blauen Hg-Wellenlänge λ_b .

Dabei liegt der Referenzwert in negative Richtung verschoben am Rand des Unsicherheitsbereichs der sich hier ergebenden Wellenlänge. Was unter anderem auf Verunreinigungen auf dem Strahlteiler zurückzuführen wäre, welche die Aufnahme von Ringen höherer Ordnungen als den hier aufgeführten für alle aufgenommenen Messungen verhinderte

3.3. Bestimmung von 🏻 der Na-D-Spektrallinie von der Na-Dampflampe

Abbildung 7 zeigt die r_k^2 -Messergebnisse (inklusive der Residuen Abb. 8) in Abhängigkeit von k der Na-D-Spektrallinie.

Abb. 7: Berechnete y aufgetragen über die Ordnung k der gemessenen dunklen Ringe

der Na-Linie und gegebenen Unsicherheiten (Rot), sowie zugehörige

gefittete Ausgleichsgerade (Grün)

Abb.8: Abstände der gegebenen Werte aus Abb. 3 (Rot) zur gefitteten Ausgleichsgeraden (Grün)

Aus der grünen Ausgleichsgerade in Abb. 7 ergibt sich, mittels der Fit-Daten eine Steigung $m=0.394233203629547~mm^2$ mit einer Unsicherheit von $u_{\rm m}=0.00855944844439675~mm^2$, sowie ein y-Achsenabschnitt $y_0=-0.0292047535403686~mm^2$ mit Unsicherheit $u_{\rm y0}=0.0452256230546241~mm^2$.

Wir können nun analog zu 3.2. die Gleichungen (10) und (11) in Abhängigkeit von R verwenden um die Wellenlänge λ_{na} der Na-D-Spektallinie zu berechnen.

Es ergibt sich λ_{na} = 0,000611 mm ± 0,000016 mm, das entspricht in etwa

 $\lambda_{na} = 611 \text{ nm} \pm 16 \text{ nm}.$

Der Referenzwert¹ der Wellenlänge der Na-D-Linie liegt bei $\lambda_{na,Ref}$ = 589,6 nm (es wurde der Wert der Doppellinie gewählt, welcher näher am Messergebnis liegt). Er liegt damit nicht im Unsicherheitsbereich der hier ermittelten Wellenlänge der Na-D-Linie.

Unter der Annahme, dass der herangezogene Referenzwert näher am wahren Wert der Na-D-Linie liegt, ist von einer Fehlmessung auszugehen.

Dabei können mehrere Faktoren einen Einfluss gespielt haben.

Eine mögliche Unsicherheit bildet die geringe Zahl an gemessenen k Ordnungen der dunklen Ringe, welche mögliche Fehler in der Steigung der Ausgleichsgeraden durch eine höhere Anzahl an gemessenen Ordnungen hätten unterbinden können.

Die Tatsache, dass die $P_{L,k}$ und $P_{R,k}$ lediglich einmal gemessen wurden führt zu einem höheren Einfluss möglicher Messfehler einzelner Messwerte und einer wegfallenden Berücksichtigung einer statistischen Unsicherheit.

Hierbei sei vermerkt, dass in Abb. 8 in der Ordnung k = 13 ein solcher "Ausreißer" mit einer Abweichung von mehr als 0,2 mm² zu einer erheblichen Beeinträchtigung des Messergebnisses beigetragen haben könnte.

Hierbei müsste im weiteren Verlauf, der ermittelte Wert der Wellenlänge der Na-D-Linie im Bezug auf diese und sicher auch weitere Fehlerquellen durch Einbeziehung einer größeren Unsicherheit angepasst werden.

4. Fazit

Die beobachteten Effekte konnten durch Welleneigenschaften des Lichts erfolgreich beschrieben werden.

Die experimentell bestimmte Wellenlänge der blauen Hg-Linie enthielt den zugehörigen Referenzwert in ihrem Fehlerbereich, wohingegen die Wellenlänge der Na-D-Linie um mehr als 22 nm von dem Referenzwerten in positive Richtung verschoben war, was auf einen möglichen systematischen Fehler bedingt durch Verunreinigungen auf dem Strahlteiler hindeutet.

5. Anhang

Referenzen:

¹George State University(2016), HyperPhysics.

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/atspect2.html#c2

Anmerkungen:

Zur Berechnung der gegebenen Werte und zur Erstellung der Abbildungen wurde SciDAVis verwendet.

Die weiteren Unsicherheiten der Tabellen 1, 2 und 3 wurden mit folgenden Formeln, nach Gaußscher Fehlerfortpflanzung berechnet.

$$u_{rk}=\sqrt{(rac{u_{PL}}{2})^2+(rac{u_{Pr}}{2})^2}$$

$$u_y = 2r_k u_{rk}$$

Die nicht gerundeten Ausgabewerte sind:

 $R = 644,8158110545128 \text{ mm} \pm 9,100447207719137 \text{ mm}$

 $\lambda_b = 0,0004472321120713107 \text{ mm} \pm 0,00001260584183154293 \text{ mm}$

 λ_{na} = 0,0006113888599983764 mm ± 0,00001583224539840906 mm

Mit diesen Werten wurden sofern benötigt weitere Berechnungen durchgeführt.

Steps

Messungen abgeschlossen

Attached files

grafik.png

sha256: df6d1c801f95e4828d2eff63d7aa60df2ebf580e810c970dc92700da3d0551e2

unknown.png

sha256: 5a00a7dd5efcece5275cb8a8cafee01dd3f1092a1612644a8b3ca932135c030b

grafik.png

sha256: f25a3107fd849e61587c896abda9521bbf809ee6daab41a758813b40e59091d0

unknown.png

sha256: db5195c296d74d8dde2c8390d42cedc79ef2a6c0f32811c2761baa89fd1406e8

unknown.png

sha256: ddc42053ef3dd525666d52255fc3fa484efa42be2c26b1f3443eb62d4c16968d

grafik.png

sha256: 9f06dc1fbe5a3988ef64a005142a177c3acb50f9b62aafaef1c1414e774ca8e4

unknown.png

sha256: ddc42053ef3dd525666d52255fc3fa484efa42be2c26b1f3443eb62d4c16968d

unknown.png

sha256: 0c6e608707ec361d0373d9ef3674fff9cbb2a9484d90360d56dfa1ab3716afc0

grafik.png

sha256: 0d180aa9b8e8978d340c9e3d19cab272c4bcb7888f39fe3778f5e0a5cf7ed88b

Unique eLabID: 20230423-12b3e6dc8f3623e4c03f3dd81aac7da6bcc47f1a Link: https://elabftw.physik.hu-berlin.de/experiments.php?mode=view&id=559