Regras Derivadas e Equivalências Populares

Douglas O. Cardoso douglas.cardoso@cefet-rj.br docardoso.github.io

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Roteiro

1 Regras Derivadas

2 Equivalências Populares

Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).

- Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).
- São "atalhos" na descrição de provas, evitando repetições de passos.

- Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).
- São "atalhos" na descrição de provas, evitando repetições de passos.
- Não há impedimentos para o uso ou mesmo criação de regras derivadas, mas é necessário prová-las.

- Regras derivadas são sequências "auto-contidas" de aplicações das regras básicas de inferência (DN).
- São "atalhos" na descrição de provas, evitando repetições de passos.
- Não há impedimentos para o uso ou mesmo criação de regras derivadas, mas é necessário prová-las.
- Algumas regras derivadas são tão conhecidas quanto as regras básicas.

Modus Tollens (mt):

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

1. $p \rightarrow q$

premissa

Modus Tollens (mt):

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

1.
$$p \rightarrow q$$

$$2. \neg q$$

Modus Tollens (mt):

1.
$$p \rightarrow q$$

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

Modus Tollens (mt):

1.
$$p \rightarrow q$$

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

$$e
ightarrow$$
 1, 3

CEFET-RJ Petrópolis

Modus Tollens (mt):

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

1.
$$p \rightarrow q$$

$$e
ightarrow$$
 1, 3

Modus Tollens (mt):

1.
$$p \rightarrow q$$

$$4. \neg p$$

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi}$$

$$e
ightarrow$$
 1, 3

$$\frac{\varnothing}{\lor \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

$$\frac{\varnothing}{\lor \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

$$\frac{\varnothing}{\delta \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.1.
$$p \vee \neg p$$

$$i$$
 \vee 1.1

$$\frac{\varnothing}{\vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.
$$[p]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

$$i$$
 \vee 1.1

$$\frac{\varnothing}{\lor \lor \lnot \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

$$i \vee 1.1$$

$$\frac{\varnothing}{\phi \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

1.3.
$$p \vee \neg p$$

$$i$$
 \vee 1.1

$$i \vee 1.2$$

$$\frac{\varnothing}{\phi \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

1.3.
$$p \vee \neg p$$

$$i \vee 1.1$$

$$i \vee 1.2$$

Princípio do Terceiro Excluído (pte):

$$\frac{\varnothing}{\phi \vee \neg \phi}$$

1.
$$[\neg(p \lor \neg p)]$$

1.1.1.
$$p \vee \neg p$$

$$1.1.2. \perp$$

1.2.
$$\neg p$$

1.3.
$$p \vee \neg p$$

2.
$$p \vee \neg p$$

$$i$$
 \vee 1.1

$$i \vee 1.2$$

Regra de Resolução 1
$$(res_1)$$
:

1.
$$p \vee q$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

premissa

1.
$$p \vee q$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

- 1. $p \lor q$
- **2**. ¬*p*
- 3. $[\neg q]$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

- premissa
- premissa
- suposição

Regra de Resolução 1 (res_1) :

1.
$$p \lor q$$

3.
$$[\neg q]$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

premissa

premissa

suposição

Regra de Resolução 1 (res_1) :

1.
$$p \vee q$$

3.
$$[\neg q]$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

7/16

1.
$$p \vee q$$

3.
$$[\neg q]$$

$$3.1.1. \perp$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

1.
$$p \lor q$$

3.
$$[\neg q]$$

$$3.1.1. \perp$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

1.
$$p \vee q$$

$$2. \neg p$$

3.
$$[\neg q]$$

$$3.1.1. \perp$$

3.2.
$$[q]$$

$$e \lor 1, 3.1, 3.1.1, 3.2, 3.2.1$$

Regra de Resolução 1 (res_1) :

$$\frac{\phi \vee \psi \qquad \neg \phi}{\psi}$$

premissa

premissa

suposição

suposição

abs 2, 3.1

1.
$$p \vee q$$

3.
$$[\neg q]$$

3.2.
$$[q]$$

$$e \lor 1$$
, 3.1, 3.1.1, 3.2, 3.2.1

Regra de Resolução 2
$$(res_2)$$
:

1.
$$p \vee q$$

$$\frac{\phi \vee \psi \quad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

Regra de Resolução 2 (res_2) :

1.
$$p \lor q$$

2.
$$\neg p \lor r$$

$$\frac{\phi \vee \psi \quad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

Regra de Resolução 2 (res_2) :

1.
$$p \lor q$$

2.
$$\neg p \lor r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

Regra de Resolução 2 (res_2) :

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

$$res_1$$
 2, 3

Regra de Resolução 2 (res_2) :

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

3.2.
$$q \vee r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

$$i \lor 3.1$$

Regra de Resolução 2 (res_2) :

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

3.2.
$$q \vee r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

suposição

$$res_1$$
 2, 3

$$i \lor 3.1$$

Regra de Resolução 2

Regra de Resolução 2 (res_2) :

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

3.2.
$$q \vee r$$

4.1.
$$q \vee r$$

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

premissa

premissa

suposição

$$res_1$$
 2, 3

$$i \lor 3.1$$

$$i \vee 4$$

Regra de Resolução 2

Regra de Resolução 2 (res_2) :

$$\frac{\phi \vee \psi \qquad \neg \phi \vee \chi}{\psi \vee \chi}$$

1.
$$p \vee q$$

2.
$$\neg p \lor r$$

3.2.
$$q \vee r$$

4.1.
$$q \vee r$$

5.
$$q \vee r$$

$$res_1$$
 2, 3

$$i \lor 3.1$$

$$i \vee 4$$

$$e \lor 1$$
, 3, 3.2, 4, 4.1

Roteiro

1 Regras Derivadas

2 Equivalências Populares

■ Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).

- Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).
- Para provar uma equivalência $\phi \dashv \vdash \psi$ é necessário provar tanto a "ida" $\phi \vdash \psi$ quanto a "volta" $\psi \vdash \phi$.

- Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).
- Para provar uma equivalência $\phi \dashv \vdash \psi$ é necessário provar tanto a "ida" $\phi \vdash \psi$ quanto a "volta" $\psi \vdash \phi$.
- Assim como as regras derivadas, algumas equivalências são populares pelo seu uso frequente em provas.

- Duas fórmulas ϕ e ψ para as quais vale $\phi \vdash \psi$ assim como $\psi \vdash \phi$ são ditas equivalentes (segundo prova).
- Para provar uma equivalência $\phi \dashv \vdash \psi$ é necessário provar tanto a "ida" $\phi \vdash \psi$ quanto a "volta" $\psi \vdash \phi$.
- Assim como as regras derivadas, algumas equivalências são populares pelo seu uso frequente em provas.
- São apresentadas a seguir algumas dessas equivalências, e a prova da ida de cada uma delas. É sugerido como exercício provar cada volta.

10/16

Contraposição
$$(cp)$$
: $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1.
$$p \rightarrow q$$

premissa

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1. $p \rightarrow q$

premissa

2. $[\neg q]$

suposição

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1. $p \rightarrow q$ premissa

2. $[\neg q]$ suposição

 $2.1. \ [p]$ suposição

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1. $p \rightarrow q$

premissa

2. $[\neg q]$

suposição

2.1. [*p*]

suposição

2.1.1. *q*

 $e \rightarrow 1$, 2.1

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1. $p \rightarrow q$

premissa

2. $[\neg q]$

suposição

2.1. [*p*]

suposição

2.1.1. q

e
ightarrow 1, 2.1

2.1.2. ⊥

abs 2, 2.1.1

Contraposição (cp): $\phi \rightarrow \psi + \neg \psi \rightarrow \neg \phi$

1. $p \rightarrow q$

premissa

2. $\lceil \neg q \rceil$

suposição

2.1. [p]

suposição

2.1.1. *q*

e
ightarrow 1, 2.1

2.1.2. ⊥

abs 2, 2.1.1

2.2. $\neg p$

rra 2.1, 2.1.2

Contraposição (cp): $\phi \rightarrow \psi \dashv \vdash \neg \psi \rightarrow \neg \phi$

1.
$$p \rightarrow q$$

premissa

2.
$$[\neg q]$$

suposição

suposição

e
ightarrow 1, 2.1

abs 2, 2.1.1

2.2.
$$\neg p$$

rra 2.1, 2.1.2

3.
$$\neg q \rightarrow \neg p$$

i
ightarrow 2, 2.2

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1.
$$p \rightarrow q$$

premissa

2.
$$[\neg q]$$

suposição

suposição

 $e \rightarrow 1$, 2.1

abs 2, 2.1.1

2.2.
$$\neg p$$

rra 2.1, 2.1.2

3.
$$\neg q \rightarrow \neg p$$

i
ightarrow 2, 2.2

* Usando *modus tollens*

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1. $p \rightarrow q$

premissa

2. $[\neg q]$

suposição

2.1. [p]

suposição

2.1.1. q

e
ightarrow 1, 2.1

2.1.2. ⊥

abs 2, 2.1.1

2.2. $\neg p$

rra 2.1, 2.1.2

3. $\neg q \rightarrow \neg p$

i
ightarrow 2, 2.2

- * Usando *modus tollens*
- 1. $p \rightarrow q$

premissa

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1.
$$p \rightarrow q$$

2.
$$[\neg q]$$

suposição

2.1. [*p*]

suposição

2.1.1. q

e
ightarrow 1, 2.1

 $2.1.2.\ \bot$

abs 2, 2.1.1

2.2. ¬*p*

rra 2.1, 2.1.2

3. $\neg q \rightarrow \neg p$

i
ightarrow 2, 2.2

1.
$$p \rightarrow q$$

premissa

2.
$$[\neg q]$$

suposição

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1.
$$p \rightarrow q$$

2.
$$[\neg q]$$

2.2.
$$\neg p$$

3.
$$\neg q \rightarrow \neg p$$

premissa

suposição suposição

 $e \rightarrow 1, 2.1$

$$i \rightarrow 2$$
, 2.2

* Usando modus tollens

1.
$$p \rightarrow q$$

2.
$$[\neg q]$$

2.1.
$$\neg p$$

Contraposição (cp): $\phi \to \psi \dashv \vdash \neg \psi \to \neg \phi$

1.
$$p \rightarrow q$$

2.
$$[\neg q]$$
 suposição

2.2.
$$\neg p$$

3.
$$\neg q \rightarrow \neg p$$

premissa

suposição

 $e \rightarrow 1$, 2.1

$$i \rightarrow 2$$
, 2.2

* Usando modus tollens

1.
$$p \rightarrow q$$

premissa

2.
$$[\neg q]$$

suposição

2.1.
$$\neg p$$

3.
$$\neg q \rightarrow \neg p$$

$$i \to 3.1, 2.1$$

De Morgan
$$(dm)$$
: $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$

De Morgan
$$(dm)$$
: $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$

$$\mathbf{2.}\ [p\wedge q]$$

1.
$$\neg p \lor \neg q$$

2.
$$[p \land q]$$

2.1.
$$[\neg p]$$

1.
$$\neg p \lor \neg q$$

2.
$$[p \land q]$$

2.1.
$$[\neg p]$$

$$e \wedge 2$$

1.
$$\neg p \lor \neg q$$

2.
$$[p \land q]$$

2.1.
$$[\neg p]$$

$$e \wedge 2$$

De Morgan (dm): $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$

2.
$$[p \land q]$$

2.1.
$$[\neg p]$$

2.2.
$$[\neg q]$$

premissa

suposição suposição

 $e \wedge 2$

abs 2.1, 2.1.1

suposição

1.
$$\neg p \lor \neg q$$

2.
$$[p \wedge q]$$

2.1.
$$[\neg p]$$

2.2.
$$[\neg q]$$

$$e \wedge 2$$

$$e \wedge 2$$

1.
$$\neg p \lor \neg q$$

2.
$$[p \wedge q]$$

2.1.
$$[\neg p]$$

2.2.
$$[\neg q]$$

$$e \wedge 2$$

$$e \wedge 2$$

1.
$$\neg p \lor \neg q$$
 premissa

 2. $[p \land q]$
 suposição

 2.1. $[\neg p]$
 suposição

 2.1.1. p
 $e \land 2$

 2.1.2. \bot
 abs 2.1, 2.1.1

 2.2. $[\neg q]$
 suposição

 2.2.1. q
 $e \land 2$

 2.2.2. \bot
 abs 2.2, 2.2.1

 2.3. \bot
 $e \lor 1, 2.1, 2.1.2, 2.2, 2.2, 2.2.2$

De Morgan (dm): $\neg p \lor \neg q \dashv \vdash \neg (p \land q)$

1.
$$\neg p \lor \neg q$$
 premissa

 2. $[p \land q]$
 suposição

 2.1. $[\neg p]$
 suposição

 2.1.1. p
 $e \land 2$

 2.1.2. \bot
 abs 2.1, 2.1.1

 2.2. $[\neg q]$
 suposição

 2.2.1. q
 $e \land 2$

 2.2.2. \bot
 abs 2.2, 2.2.1

 2.3. \bot
 $e \lor 1$, 2.1, 2.1.2, 2.2, 2.2.2

 3. $\neg (p \land q)$
 rra 2, 2.3

12/16

De Morgan
$$(dm)$$
: $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$

De Morgan
$$(dm)$$
: $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$

2.
$$[p \lor q]$$

1.
$$\neg p \land \neg q$$

2.
$$[p \lor q]$$

1.
$$\neg p \land \neg q$$

$$2. [p \lor q]$$

2.1.1.
$$\neg p$$

$$e \wedge 1$$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$

$$2. \ [p \lor q]$$

2.1.1.
$$\neg p$$

$$2.1.2. \perp$$

$$e \wedge 1$$

13/16

1.
$$\neg p \land \neg q$$

$$2. \ [p \lor q]$$

2.1.1.
$$\neg p$$

$$2.1.2. \perp$$

2.2.
$$[q]$$

$$e \wedge 1$$

$$abs \ 2.1, \ 2.1.1$$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$

$$2. \ [p \lor q]$$

2.1.1.
$$\neg p$$

$$2.1.2. \perp$$

2.2.
$$[q]$$

2.2.1.
$$\neg q$$

$$e \wedge 1$$

$$e \wedge 1$$

13/16

Leis de (Augustus) De Morgan: $\neg \phi \land \neg \psi \dashv \vdash \neg (\phi \lor \psi)$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$

2. $[p \lor q]$

2.1.1.
$$\neg p$$

2.2.
$$[q]$$

2.2.1.
$$\neg q$$

$$e \wedge 1$$

$$e \wedge 1$$

Leis de (Augustus) De Morgan: $\neg \phi \land \neg \psi \dashv \vdash \neg (\phi \lor \psi)$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$
 premissa

 2. $[p \lor q]$
 suposição

 2.1. $[p]$
 suposição

 2.1.1. $\neg p$
 $e \land 1$

 2.1.2. \bot
 abs 2.1, 2.1.1

 2.2. $[q]$
 suposição

 2.2.1. $\neg q$
 $e \land 1$

 2.2.2. \bot
 abs 2.2, 2.2.1

 2.3. \bot
 $e \lor 1$, 2.1, 2.1.2, 2.2, 2.2, 2.2.2

Leis de (Augustus) De Morgan: $\neg \phi \land \neg \psi \dashv \vdash \neg (\phi \lor \psi)$

De Morgan (dm): $\neg p \land \neg q \dashv \vdash \neg (p \lor q)$

1.
$$\neg p \land \neg q$$
 premissa

 2. $[p \lor q]$
 suposição

 2.1. $[p]$
 suposição

 2.1.1. $\neg p$
 $e \land 1$

 2.1.2. \bot
 $abs \ 2.1, \ 2.1.1$

 2.2. $[q]$
 suposição

 2.2.1. $\neg q$
 $e \land 1$

 2.2.2. \bot
 $abs \ 2.2, \ 2.2.1$

 2.3. \bot
 $e \lor 1, 2.1, 2.1.2, 2.2, 2.2.2$

 3. $\neg (p \lor q)$
 $rra \ 2, \ 2.3$

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

premissa

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

premissa

suposição

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

$$res_1$$
 1, 2

Equivalência implicação-disjunção (eid): $\neg p \lor q \dashv \vdash p \to q$

1.
$$\neg p \lor q$$

premissa

suposição

 res_1 1, 2

3.
$$p \rightarrow q$$

$$i \rightarrow 2, 2.1$$

Distribuição de conjução sobre disjunção:
$$p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$$
1. $p \land (q \lor r)$ premissa

Distribuição de conjução sobre disjunção: $p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$

1.
$$p \wedge (q \vee r)$$

$$\begin{array}{ccc} 1. & p \wedge (q \vee r) \\ 2. & p \end{array}$$

$$e \wedge 1$$

- 1. $p \wedge (q \vee r)$
- 2. p
- 3. $(q \lor r)$

- premissa
 - $e \wedge 1$
 - $e \wedge 1$

- 1. $p \wedge (q \vee r)$
- 2. p
- 3. $(q \lor r)$
- **4**. [q]

- premissa
 - $e \wedge 1$
 - $e \wedge 1$
 - suposição

- 1. $p \wedge (q \vee r)$
- **2**. *p*
- 3. $(q \lor r)$
- **4**. [q]
- **4.1**. $p \wedge q$

- premissa
 - $e \wedge 1$
 - $e \wedge 1$
- suposição
 - $i \wedge 2, 4$

1.	$p \wedge$	(q	V	r)
----	------------	----	---	----

3.
$$(q \lor r)$$

4.1.
$$p \wedge q$$

4.2. $(p \wedge q) \vee (p \wedge r)$

$$e \wedge 1$$

 $e \wedge 1$

$$i \wedge 2, 4$$

$$i \vee 4.1$$

1.
$$p \wedge (q \vee r)$$

3.
$$(q \lor r)$$

4.1.
$$p \wedge q$$

4.2.
$$(p \wedge q) \vee (p \wedge r)$$

$$e \wedge 1$$

$$e \wedge 1$$

$$i \wedge 2, 4$$

$$i \vee 4.1$$

- 1. $p \wedge (q \vee r)$
- **2**. *p*
- 3. $(q \vee r)$
- **4**. [q]
- **4**.1. $p \wedge q$
- **4.2.** $(p \wedge q) \vee (p \wedge r)$
- **5**. [r]
- 5.1. $p \wedge r$

- premissa
 - $e \wedge 1$
 - $e \wedge 1$
- suposição
 - $i \wedge 2, 4$ $i \vee 4.1$
- 0 V 1.1
- suposição
 - $i \wedge 2, 5$

1.
$$p \land (q \lor r)$$
 premissa

2.
$$p$$
 $e \wedge 1$

3.
$$(q \lor r)$$
 $e \land 1$

4.
$$[q]$$
 suposição

4.1.
$$p \wedge q$$
 $i \wedge 2, 4$

4.2.
$$(p \wedge q) \vee (p \wedge r)$$
 $i \vee 4.1$

5.
$$[r]$$
 suposição

5.1.
$$p \wedge r$$
 $i \wedge 2, 5$

5.2.
$$(p \land q) \lor (p \land r)$$
 $i \lor 5.1$

Distribuição de conjução sobre disjunção: $p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$

1.
$$p \land (q \lor r)$$
 premissa

2.
$$p$$
 $e \wedge 1$

3.
$$(q \lor r)$$
 $e \land 1$

4.
$$[q]$$
 suposição

4.1.
$$p \wedge q$$
 $i \wedge 2, 4$

4.2.
$$(p \land q) \lor (p \land r)$$
 $i \lor 4.1$

5.
$$[r]$$
 suposição

5.1.
$$p \wedge r$$
 $i \wedge 2, 5$

5.2.
$$(p \land q) \lor (p \land r)$$
 $i \lor 5.1$

6.
$$(p \land q) \lor (p \land r)$$
 $e \lor 3, 4, 4.2, 5, 5.2$

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$ 1. $p \lor (q \land r)$ premissa

- 1. $p \vee (q \wedge r)$
- **2**. [p]

- premissa
- suposição

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$

1. $p \lor (q \land r)$

premissa

2. [p]

suposição

2.1. $p \vee q$

 $i \lor 2$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1 . $p \lor q$	$i \lor 2$
2.2. $p \vee r$	$i \lor 2$

1. $p \vee (q \wedge r)$	premiss
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \vee i$
2.2. $p \lor r$	$i \vee i$

2.3.
$$(p \lor q) \land (p \lor r)$$
 $i \land 2.1, 2.2$

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \vee q$	$i \vee 2$
2.2. $p \vee r$	$i \vee 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição

suposição

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \lor 2$
2.2. $p \lor r$	$i \vee 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição
3.1. <i>q</i>	$e \wedge 3$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \vee 2$
2.2. $p \vee r$	$i \lor 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição
3.1. <i>q</i>	$e \wedge 3$
3.2. <i>r</i>	$e \wedge 3$

Distribuição de disjunção sobre conjunção: $p \lor (q \land r) \dashv \vdash (p \lor q) \land (p \lor r)$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \lor 2$
2.2. $p \lor r$	$i \vee 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição
3.1. <i>q</i>	$e \wedge 3$
3.2. <i>r</i>	$e \wedge 3$
3.3. $p \vee q$	$i \vee 3.1$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \vee 2$
2.2. $p \vee r$	$i \vee 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição
3.1. <i>q</i>	$e \wedge 3$
3.2. <i>r</i>	$e \wedge 3$
3.3. $p \vee q$	$i \vee 3.1$
3.4. $p \vee r$	$i \vee 3.2$

1. $p \lor (q \land r)$	premissa
2. [<i>p</i>]	suposição
2.1. $p \lor q$	$i \vee 2$
2.2. $p \vee r$	$i \lor 2$
2.3. $(p \lor q) \land (p \lor r)$	$i \wedge 2.1, 2.2$
3. $[q \wedge r]$	suposição
3.1. <i>q</i>	$e \wedge 3$
3.2. <i>r</i>	$e \wedge 3$
3.3. $p \lor q$	$i \vee 3.1$
3.4. $p \vee r$	$i \vee 3.2$
3.5. $(p \lor q) \land (p \lor r)$	$i \wedge 3.3, 3.4$

1.
$$p \lor (q \land r)$$
 premissa
2. $[p]$ suposição

2.3.
$$(p \lor q) \land (p \lor r)$$
 $i \land 2.1, 2.2$

3.
$$[q \wedge r]$$
 suposição

3.1.
$$q$$
 $e \wedge 3$

3.2.
$$r$$
 $e \wedge 3$

3.4.
$$p \lor r$$
 $i \lor 3.2$

3.5.
$$(p \lor q) \land (p \lor r)$$
 $i \land 3.3, 3.4$

4.
$$(p \lor q) \land (p \lor r)$$
 $e \lor 1, 2, 2.3, 3, 3.5$