Minimiere

$$J = \int_{0}^{T} \sum_{k=1}^{p} |y(t) - h(x(t))|^{2} dt + \frac{\alpha_{2}}{2} \int_{0}^{T} \sum_{k=1}^{n} D_{kk} |w_{k}(t)|^{2} dt$$
 (1)

unter

$$\dot{x}(t) = \tilde{f}(x(t)) + Dw(t) \quad . \tag{2}$$

Dabei ist D eine Diagonalmatrix aus 0 und 1 (um bestimmte ws zu unterdrücken). Die Hamiltonfunktion lautet

$$H(x, w, \lambda, t) = \sum_{k=1}^{p} |y(t) - h(x(t))|^2 + \frac{\alpha_2}{2} \sum_{k=1}^{n} D_{kk} |w_k(t)|^2 + \sum_{k=1}^{n} \lambda_k (\tilde{f}_k(x(t) + D_{kk} w_k(t)))$$
(3)

mit den kanonischen Gleichungen

$$\frac{\partial H}{\partial x_i} = -\dot{\lambda}_i \\
\frac{\partial H}{\partial \lambda_i} = \dot{x}_i$$
Hamilton Gleichungen
(4)

$$\frac{\partial H}{\partial w_i} = 0$$
 Extremale Lösung . (5)

Gegeben seien Anfangswerte $x_i(0) = x_{0,i}$. Falls $x_i(T)$ frei gelassen werden, folgt $\lambda_i(T) = 0$ und aus (5) für alle i mit $D_{ii} = 1$

$$\alpha_2 w_i(t) + \lambda_i(t) = 0 \quad \forall t \in [0, T]$$

und daher $w_i(T) = 0$. Werden aber $x_i(T)$ vorgegeben, dann gibt es keine Bedingung an $\lambda_i(T)$. Problem: $x_i(T)$ sind unbekannt bzw. müssen erst ermittelt werden. Die Endwerte $\tilde{x}_i(T)$ des nominalen Modells sind im ersten Iterationsschritt sinnvoll, danach müssten die Endwerte aber mit angepasst werden. Möglicherweise (weiß ich aber nicht sicher) würden sich die Randwerte $x_i(T)$ aber auch beim Iterieren nicht ändern, weil der Startwert dann wieder festgepinnt ist. Alternativ kann man (mit zwei zugedrückten Augen) folgende Rechnung anstellen (vektoriell geschrieben, \cong ist Gleicheit für $\epsilon \to 0$): (Du kannst auch direkt zum Ergebnis springen)

Sei h^{\dagger} die Inverse (falls existent) bzw. Pseudoinverse (wie man die definiert muss ich mir noch überlegen) von h. Die Messwerte sind y(t). Als Endbedingung nehmen wir h(x(T)) = y(T) bzw. $x(T) = h^{\dagger}(y(T))$ (ähnlich wie im DEN paper). Sei $\epsilon > 0$ klein, möglichst so, dass $y(T - \epsilon)$ ein Messwert ist.

$$x(T - \epsilon) \cong x(T) - \dot{x}(T)\epsilon = h^{\dagger}(y(T)) - \epsilon \left[\tilde{f}(h^{\dagger}(y(T))) - \frac{1}{\alpha_2} \lambda(T) \right]$$
 (7)

außerdem

$$h^{\dagger}(y(T-\epsilon)) \cong h^{\dagger}(y(T)) - \mathrm{d}h^{\dagger}_{y(T)}\dot{y}(T)\epsilon$$
 (8)

dabei ist (glaube ich) d $h_{y(T)}^\dagger$ die Jacobimatrix bzw. das Differenzial von h^\dagger ausgewertet an y(T). Zusammenbauen und nach λ umstellen liefert

$$\lambda(T) = \alpha_2 \left\{ \tilde{f} \left(h^{\dagger}(y(T)) \right) - dh_{y(T)}^{\dagger} \dot{y}(T) \right\} \quad . \tag{9}$$

Wenn man annimmt, dass y(t) prinzipiell differenzierbar ist, kann man $\dot{y}(T)$ numerisch ermittelt, die Inverse bzw. Pseudoinverse sollte kein größeres Problem sein, da man für kleine ϵ zur Not noch h linearisieren kann und dann die Moore-Penrose Inverse nimmt.