Gewöhnliche Differentialgleichungen Hausaufgaben Blatt 5

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 18, 2024)

Problem 1. Wir betrachten das Anfangswertproblem

$$\dot{x} = \begin{cases} +1 & \text{für } x < 0, \\ 0 & \text{für } x = 0, \\ -1 & \text{für } x > 0, \end{cases} \quad x(0) = x_0.$$

Für welche Startwerte $x_0 \in \mathbb{R}$ ist dieses Anfangswertproblem auf einem offenen Intervall um t=0 eindeutig lösbar? Geben Sie für diese Fälle die eindeutige Lösung und das maximale Existenzintervall I an. Begründen Sie dabei, dass I wirklich das maximale Existenzintervall ist. (Das heißt, es ist zu zeigen, dass es kein größeres maximales Existenzintervall \tilde{I} gibt.)

Proof. Das Anfangswertproblem ist immer eindeutig lösbar. Für $x_0 > 0$ ist die Lösung

$$\varphi_{x_0}: (-\infty, x_0) \to \mathbb{R}, t \mapsto -t + x_0,$$

für $x_0 = 0$ ist die Lösung

$$\varphi_0: \mathbb{R} \to \mathbb{R}, t \mapsto 0,$$

und für $x_0 < 0$ ist die Lösung

$$\varphi_{x_0}:(-\infty,-x_0)\to\mathbb{R},t\mapsto t+x_0.$$

Die Lösung für $x_0 > 0$ sowie $x_0 < 0$ sind auf diesem Interval eindeutig: Die Funktion

$$f(x) = \begin{cases} +1 & \text{für } x < 0, \\ 0 & \text{für } x = 0, \\ -1 & \text{für } x > 0, \end{cases}$$

ist bezüglich x in $(-\infty, 0)$ sowie in $(0, \infty)$ lokal Lipschitz stetig. Es gibt kein größeres Existenzintervall: Klar kann die Intervälle nicht beim unteren Grenze erweitert werden, da

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

die untere Grenze schon $-\infty$ ist. Daher befassen uns mit der oberen Grenze. Wir betrachten den Fall $x_0 > 0$, wobei die obere Grenze auch x_0 ist, der andere Fall folgt analog..

Angenommen es gäbe eine Lösung $\psi(t)$ auf $(-\infty, x_0 + \epsilon)$. Wir betrachten die Ableitung im x_0 . Wegen Stetigkeit muss die Lösung $\psi(x_0) = \lim_{x \nearrow x_0} \psi(x) = 0$ sein, und damit muss auch $\dot{\varphi}(x_0) = f(0) = 0$ gelten.

Andererseits können wir die Ableitung durch der Definition berechnen

$$\dot{\varphi}(x_0) = \lim_{t \nearrow x_0} \frac{\varphi(t) - \varphi(x_0)}{t - x_0} = \lim_{t \nearrow x_0} \frac{-t + x_0}{t - x_0} = -1,$$

ein Widerspruch.

Im Fall $x_0 = 0$ muss keine Maximalität gezeigt werden. Stattdessen ist Eindeutigkeit zu zeigen. Angenommen es gibt eine L"osung $\varphi : \mathbb{R} \to \mathbb{R}$ mit $\varphi(t_0) \neq 0$ für eine $t_0 > 0$. Dann ergibt sich ein ähnliches Widerspruch, wobei die Lösung in mindestens einem Punkt nicht differenzierbar sein kann.

Problem 2. Gegeben seien die Anfangswertprobleme

(a)
$$\dot{x} = \frac{1}{1+x}$$
, $x(0) = 0$ und

(b)
$$\dot{x} = x^2 \cos t$$
, $x(0) = -2$.

Bestimmen Sie jeweils die Lösung des Anfangswertproblems und geben Sie jeweils das maximale Existenzintervall der Lösung an. Begründen Sie bei beiden Teilaufgaben auch, warum es das maximale Existenzintervall ist.

Proof. (a) Lösung durch TDV

$$\int_0^x (1+s) \, ds = \int_0^t dr$$
$$x + \frac{x^2}{2} = t$$
$$x^2 + 2x - 2t = 0$$
$$x = -1 \pm \sqrt{1+t}$$

Da x(0) = 0, wählen wir die + Lösung:

$$x(t) = -1 + \sqrt{1+t}$$

Problem 3. Gegeben sei das Anfangswertproblem

$$\dot{x} = \frac{x^2}{1+t^2}, \qquad x(0) = c, \qquad c \in \mathbb{R}^+ = (0, \infty)$$
 (1)

- (a) Zeigen Sie: Ist I ein offenes Intervall mit $0 \in I$ und $\phi : I \to \mathbb{R}$ eine Lösung von (1), so hat ϕ keine Nullstelle.
- (b) Bestimmen Sie eine Lösung $\phi_c: I \to \mathbb{R}$ von (1) und begründen Sie, dass es ein derartiges Intervall I mit $0 \in I$ gibt.
- (c) Ermitteln Sie das maximale Existenzintervall $I_{\max,c}=(t_c^-,t_+^c)$ von φ_c . Wie verhält sich φ_c für $t\to t_c^-$ und $t\to t_c^+$?