Calcul Numeric – Tema #2

- **Ex. 1** Să se rezolve Ex. 3 (Tema #1) prin metoda secantei dacă $x_0 = 0, 5; x_1 = 1, 5$ cu aceeaşi eroare şi folosind criteriul de oprire $|x_k x_{k-1}| < \varepsilon$. Să se calculeze numărul de iterații necesar pentru obținerea erorii impuse.
- **Ex. 2** Să se rezolve Ex. 3 (Tema #1) prin metoda falsei poziții cu aceeași eroare și folosind criteriul de oprire $|x_k x_{k-1}| < \varepsilon$. Să se calculeze numărul de iterații necesar pentru obținerea erorii impuse.
- Ex. 3 Să se rezolve Ex. 1 (Tema #1) prin metodele Newton-Raphson, secantei și falsei poziții.
- Ex. 4 Să se construiască trei fişiere de tip function în Matlab având următoarele nume: **normavect1.m**, **normavectinf.m**, **normavect2.m** care admit ca parametru de intrare vectorul $v \in \mathbb{R}^n$ şi returnează norma vectorială 1, norma infinit şi respectiv norma 2. Să se construiască fişierul de tip function în Matlab cu numele **normamatrinf.m** care are ca parametru de intrare matricea $M \in \mathcal{M}_n(\mathbb{R})$ şi returnează norma infinit a matricei M.
- **Ex.** 5 * Să se demonstreze că norma matricială subordonată normei vectoriale $\|\cdot\|_1$ poate fi exprimată astfel: $\|A\|_1 = \max_{j=\overline{1,n}} \sum_{i=1}^n |a_{ij}|$.

Indicație: Vezi demonstrația Teoremei din curs privind norma infinit și propoziția 2.1.10 din Analiză Numerică de Daniel Stănică (pag. 17).