Problem Set 1

Gus Lipkin

CAP 4763 Time Series Modelling and Forecasting

Table of Contents

Section
3 Static Model
<u>3a</u>
<u>3b</u>
<u>3c</u>
<u>3d</u>
<u>3e</u>
4 Finite Distributed Lag Model
<u>4a</u>
<u>4b</u>
<u>4d</u>
<u>4e</u>
Appendix A
Appendix B

3 Static Model

3a

Explain why the size of Florida's labor force, the prime age employment to population ratio, and Florida building permits, might be closely related to the number of nonfarm jobs in Florida in a static long run sense. You might want to make some time series plots to give your data context. (Perhaps where one variable is employment and the other, on the other axis, is one of the other variables.)

The size of Florida's labor force can only increase for a few reasons. People either grow up and get a job or people move into the state for one reason or another. These would increase the prime age employment to population ratio but those people need places to work. They could either work in construction or any affiliated field which handles building permits or they could work in a building being constructed by the people handling those permits. In the meantime, as farming becomes more efficient and reliant on technology, not as many people are needed to farm the same parcels of land. This leads to more people employed in non-farm jobs.

3b

Estimate the static model relating monthly nonfarm employment in Florida to the other three variables (all in logs) without controlling for seasonal impacts or a time trend.

Source	SS	df	MS Number of obs =	396
	F(3, 392) =	5972.65		
Model	10.5356085	3	3.51186951 Prob > F =	0.0000
Residual	.230492978	392	.000587992 R-squared =	0.9786
	Adj R-squared =	0.9784		
Total	10.7661015	395	.027255953 Root MSE =	.02425
In_fl_nonf~m	Coef.	Std. Err.	t P>t [95% Conf.	Interval]
ln_fl_lf	1.110504	.0092305	120.31 0.000 1.092356	1.128651
ln_us_epr	.6006702	.047797	12.57 0.000 .5066997	.6946407
ln_fl_bp	.0516831	.0028713	18.00 0.000 .0460379	.0573282
_cons	-11.78364	.2925244	-40.28 0.000 -12.35875	-11.20852

3c

Estimate the static model with month indicators and a time trend.

Source	SS	df	MS Number of obs =	396
	F(15, 380) =	2935.69		
Model	10.6739911	15	.711599408 Prob > F =	0.0000
Residual	.092110398	380	.000242396 R-squared =	0.9914
	Adj R-squared =	0.9911		
Total	10.7661015	395	.027255953 Root MSE =	.01557
In_fl_nonf~m	Coef.	Std. Err.	t P>t [95% Conf.	Interval]
In_fl_If	.9282631	.0413265	22.46 0.000 .8470059	1.00952
ln_us_epr	.9105558	.0514333	17.70 0.000 .8094263	1.011685
ln_fl_bp	.0466812	.0021579	21.63 0.000 .0424382	.0509242
month				
2	.0045623	.0038378	1.19 0.2350029837	.0121084
3	001379	.003839	-0.36 0.7200089274	.0061694
4	0029373	.0038393	-0.77 0.4450104863	.0046116
5	0142748	.0038468	-3.71 0.0000218384	0067112
6	0356123	.0038709	-9.20 0.0000432234	0280012
7	0519102	.0038917	-13.34 0.0000595622	0442582
8	0380965	.0038668	-9.85 0.0000456995	0304936
9	026004	.0038581	-6.74 0.0000335899	0184181
10	0215894	.0038763	-5.57 0.000029211	0139678
11	0014672	.0039082	-0.38 0.7080091517	.0062173
12	.0054514	.0038735	1.41 0.1600021648	.0130675
date	.0003124	.0000637	4.90 0.000 .000187	.0004377
_cons	-10.26323	.498888	-20.57 0.000 -11.24416	-9.282304

3d

Compare your results from b and c and interpret any differences. What do the seasonal and time trend variables contribute?

Adding the seasonal and time trend variables transform the data into true time series data and give context to the changes. From both you can see that there is a general increase in nonfarm employment. However, by adding the month indicators, you can see that nonfarm employment decreases ever so slightly from March to November, presumably due to prime farming season.

3e

Why should you be cautious using the results of these models for testing any hypotheses about the underlying relationships?

In time series data, the past affects the future and observations are not independent. Standard error and p-value assume that your data is independent which we just established time series data is not.

4 Finite Distributed Lag Model

4a

Estimate the distributed lag model relating monthly nonfarm employment to lags 0 to 12 of the three predictor variables without month indicators and a time trend.

Source	ss	df	MS Number of obs =	384
	F(39, 344) =	1506.36		
Model	9.45063897	39	.242324076 Prob > F =	0.0000
Residual	.055338456	344	.000160868 R-squared =	0.9942
	Adj R-squared =	0.9935		
Total	9.50597742	383	.024819784 Root MSE =	.01268
ln_fl_nonf~m	Coef.	Std. Err.	t P>t [95% Conf.	Interval]
ln_fl_lf				
	3180953	.2192272	-1.45 0.1487492898	.1130992
L1.	4936055	.2780395	-1.78 0.077 -1.040477	.0532661

L2.	.3085466	.27846	1.11 0.269239152	.8562452
L3.	1.173922	.2948363	3.98 0.000 .5940134	1.753831
L4.	2346487	.2905929	-0.81 0.4208062113	.3369138
L5.	.2808166	.2958343	0.95 0.3433010552	.8626884
L6.	2076341	.3372426	-0.62 0.5398709511	.4556829
L7.	.428488	.3391507	1.26 0.2072385821	1.095558
L8.	.4803611	.3332665	1.44 0.1501751354	1.135858
L9.	.2977526	.3112925	0.96 0.3393145235	.9100288
L10.	00028	.3217814	-0.00 0.9996331867	.6326267
L11.	5860114	.3256137	-1.80 0.073 -1.226456	.0544331
L12.	.0176351	.2499574	0.07 0.9444740021	.5092724
ln_us_epr				
	1.180441	.1573579	7.50 0.000 .8709364	1.489946
L1.	.2435207	.202013	1.21 0.2291538155	.6408569
L2.	1519264	.2015081	-0.75 0.4515482695	.2444166
L3.	719111	.2119425	-3.39 0.001 -1.135977	3022447
L4.	.1877102	.2014654	0.93 0.3522085489	.5839692
L5.	1596306	.206881	-0.77 0.4415665414	.2472803
L6.	.4937537	.2396216	2.06 0.040 .0224458	.9650615
L7.	3031484	.236988	-1.28 0.2027692764	.1629796
L8.	2995254	.2312056	-1.30 0.1967542801	.1552293
L9.	.5953076	.2915942	2.04 0.042 .0217756	1.16884
L10.	1656984	.352639	-0.47 0.6398592984	.5279015
L11.	.5326939	.3523697	1.51 0.1321603764	1.225764
L12.	4280274	.2543508	-1.68 0.093928306	.0722511
ln_fl_bp				

	.0177815	.0051888	3.43 0.001 .0075758	.0279872
L1.	.0056999	.0054688	1.04 0.2980050566	.0164565
L2.	.0123023	.0056879	2.16 0.031 .0011149	.0234898
L3.	0005041	.0058381	-0.09 0.9310119871	.0109788
L4.	0040248	.0058282	-0.69 0.4900154881	.0074385
L5.	.0053648	.0058106	0.92 0.357006064	.0167937
L6.	.0122019	.0057914	2.11 0.036 .0008108	.0235929
L7.	.0146252	.0057698	2.53 0.012 .0032766	.0259737
L8.	.0114715	.0057663	1.99 0.047 .0001299	.0228131
L9.	.0100892	.0057895	1.74 0.0820012981	.0214765
L10.	0077443	.0056515	-1.37 0.1710188601	.0033715
L11.	0129284	.0055227	-2.34 0.0200237908	002066
L12.	0156324	.0052843	-2.96 0.0030260261	0052388
_cons	-14.00483	.220126	-63.62 0.000 -14.43779	-13.57187

4b

Estimate the model in (a) but add month indicators and a time trend.

Source	SS	df	MS Number of obs =	384
	F(51, 332) =	1880.48		
Model	9.47318331	51	.185748692 Prob > F =	0.0000
Residual	.03279411	332	.000098777 R-squared =	0.9966
	Adj R-squared =	0.9960		
Total	9.50597742	383	.024819784 Root MSE =	.00994
In_fl_nonf~m	Coef.	Std. Err.	t P>t [95% Conf.	Interval]
ln_fl_lf				

	.1395258	.2167149	0.64 0.5202867817	.565833
L1.	0728475	.2909974	-0.25 0.8026452787	.499583
L2.	0401378	.2914261	-0.14 0.8916134123	.533136
L3.	.4941867	.3004728	1.64 0.101096884	1.08525
L4.	.0243743	.3032608	0.08 0.9365721806	.620929
L5.	0515457	.3007867	-0.17 0.8646432337	.540142
L6.	.2645611	.3042172	0.87 0.3853338753	.862997
L7.	.3032209	.3064496	0.99 0.3232996069	.906048
L8.	.0945934	.3058001	0.31 0.7575069567	.696143
L9.	1097755	.3559336	-0.31 0.7588099451	.590394
L10.	.1539543	.375505	0.41 0.6825847148	.892623
L11.	2776778	.3787638	-0.73 0.464 -1.022757	.467401
L12.	0112724	.279864	-0.04 0.9685618026	.539257
In_us_epr				
	.8902343	.1499136	5.94 0.000 .595334	1.18513
L1.	.0725186	.1976025	0.37 0.7143161923	.461229
L2.	.0146862	.1973291	0.07 0.9413734868	.402859
L3.	3099001	.2109421	-1.47 0.1437248517	.105051
L4.	.137028	.215249	0.64 0.5252863958	.560451
L5.	0073661	.2142714	-0.03 0.9734288668	.414134
L6.	.0293898	.2200462	0.13 0.8944034709	.462250
L7.	1397223	.2227059	-0.63 0.5315778149	.298370
L8.	0598893	.2228997	-0.27 0.7884983631	.378584
L9.	.4823653	.4060878	1.19 0.2363164642	1.28119
L10.	.0335197	.4684115	0.07 0.943887909	.954948
L11.	.4443457	.4733678	0.94 0.3494868327	1.37552
L12.	3652099	.3457533	-1.06 0.292 -1.045353	.314933

ln_fl_bp				
-,	.0174185	.0043812	3.98 0.000 .0088	.0260369
L1.	.0097915	.0047176	2.08 0.039 .0005113	.0190717
L2.	.005989	.0048174	1.24 0.2150034873	.0154654
L3.	.0067099	.0049382	1.36 0.1750030042	.016424
L4.	.0015463	.0049663	0.31 0.7560082232	.0113157
L5.	.0025978	.0049914	0.52 0.603007221	.0124166
L6.	.006001	.0049798	1.21 0.2290037949	.0157968
L7.	.0066017	.0049157	1.34 0.180003068	.0162715
L8.	0015491	.0049371	-0.31 0.754011261	.0081628
L9.	.0010036	.0048898	0.21 0.8380086153	.0106225
L10.	0004773	.0047767	-0.10 0.9200098737	.008919
L11.	0083937	.0046846	-1.79 0.074017609	.0008216
L12.	0041455	.0044702	-0.93 0.3540129391	.004648
month				
2	.0077995	.0048077	1.62 0.106001658	.017257
3	.0052085	.0041637	1.25 0.2120029821	.0133991
4	0010198	.0053356	-0.19 0.8490115156	.009476
5	0012298	.0047478	-0.26 0.7960105694	.0081098
6	0122415	.0055844	-2.19 0.0290232267	0012563
7	0240128	.0047031	-5.11 0.0000332644	0147612
8	0152756	.0052483	-2.91 0.0040255997	0049514
9	0111308	.0045365	-2.45 0.0150200548	0022068
10	0046899	.006722	-0.70 0.4860179129	.0085332
11	.0076979	.0057763	1.33 0.1840036649	.0190607
12	.0151789	.0059337	2.56 0.011 .0035065	.0268514

date	.0003695	.000047	7.86 0.000 .000277	.0004619
_cons	-11.28083	.391293	-28.83 0.000 -12.05055	-10.5111

4d

Compare your results from a and c and interpret any differences. What do the seasonal and time trend variables contribute?

The model in 4a is accurate to the data it was given but does not make sense and has no practical application because the data is not organized in any way and does not account for the data being time series data.

4e

Estimate two alternative models that contain month indicators and a time trend but that impose a more parsimonious lag structure for the predictor variables. Explain your choices.

4e Sampling each quarter

Source	SS	df	MS Number of obs =	384
	F(24, 359) =	3636.67		
Model	9.46703767	24	.394459903 Prob > F =	0.0000
Residual	.038939751	359	.000108467 R-squared =	0.9959
	Adj R-squared =	0.9956		
Total	9.50597742	383	.024819784 Root MSE =	.01041
In_fl_nonf~m	Coef.	Std. Err.	t P>t [95% Conf.	Interval]
In_fl_If				
-,	.2198644	.118892	1.85 0.0650139479	.4536767
L4.	.3640379	.1628088	2.24 0.026 .0438591	.6842168
L8.	.6241057	.1697337	3.68 0.000 .2903084	.957903
L12.	3365352	.1300465	-2.59 0.010592284	0807864

ln_us_epr				
-,	.8706823	.0862833	10.09 0.000 .7009981	1.040367
L4.	.0186581	.1180743	0.16 0.875213546	.2508623
L8.	1364675	.1363531	-1.00 0.3184046187	.1316838
L12.	.4492816	.1055542	4.26 0.000 .2416993	.6568639
In_fl_bp				
	.0288326	.0033225	8.68 0.000 .0222986	.0353666
L4.	.014784	.0040692	3.63 0.000 .0067816	.0227864
L8.	.0053046	.0040599	1.31 0.1920026795	.0132888
L12.	0040886	.0034865	-1.17 0.2420109452	.002768
month				
2	.003724	.0027268	1.37 0.1730016384	.0090864
3	.003428	.0030747	1.11 0.2660026188	.0094747
4	0013812	.0030302	-0.46 0.6490073404	.0045779
5	0050709	.003101	-1.64 0.1030111693	.0010275
6	0215379	.0030889	-6.97 0.0000276125	0154633
7	0356678	.0033321	-10.70 0.0000422208	0291149
8	0202856	.0032905	-6.16 0.0000267567	0138145
9	0118143	.0031977	-3.69 0.0000181028	0055257
10	0142884	.0031129	-4.59 0.0000204102	0081666
11	0033333	.0030634	-1.09 0.2770093578	.0026912
12	.0070509	.0028963	2.43 0.015 .001355	.0127468
date	.0004262	.0000476	8.96 0.000 .0003326	.0005197
_cons	-10.60852	.3857432	-27.50 0.000 -11.36712	-9.849916

4e True Quarters

Source	SS	df	MS Number of obs =	392
	F(27, 364) =	2505.01		
Model	10.2740552	27	.380520563 Prob > F =	0.0000
Residual	.055292923	364	.000151904 R-squared =	0.9946
	Adj R-squared =	0.9942		
Total	10.3293481	391	.02641777 Root MSE =	.01232
ln_fl_nonf~m	Coef.	Std. Err.	t P>t [95% Conf.	Interval]
ln_fl_lf				
-,	.2790757	.2536131	1.10 0.2722196552	.7778065
L1.	.2956093	.3348151	0.88 0.3783628055	.9540241
L2.	2641756	.3153608	-0.84 0.4038843334	.3559822
L3.	.2832334	.3167687	0.89 0.372339693	.9061598
L4.	.3220421	.2469667	1.30 0.1931636186	.8077029
ln_us_epr				
-,	.869919	.1763402	4.93 0.000 .5231456	1.216693
L1.	1508318	.2303364	-0.65 0.5136037889	.3021253
L2.	.1899043	.2170821	0.87 0.3822369882	.6167968
L3.	2262386	.2208671	-1.02 0.3066605744	.2080971
L4.	.3389032	.1751932	1.93 0.0540056147	.6834212
ln_fl_bp				
-,	.0204443	.0051347	3.98 0.000 .010347	.0305417
L1.	.0107528	.0054657	1.97 0.050 4.39e-06	.0215012
L2.	.0026867	.0054899	0.49 0.6250081091	.0134826

L3.	.0070439	.0054993	1.28 0.2010037706	.0178583
L4.	.0071123	.0051692	1.38 0.170003053	.0172777
month				
2	.0052225	.0038186	1.37 0.1720022868	.0127318
3	.0086375	.0041006	2.11 0.036 .0005735	.0167014
4	.0012736	.0046541	0.27 0.7850078787	.0104258
5	.0022027	.0038771	0.57 0.5700054216	.0098269
6	0193223	.0040672	-4.75 0.0000273206	0113241
7	0362039	.0038883	-9.31 0.0000438502	0285575
8	0245188	.0043528	-5.63 0.0000330787	015959
9	0171602	.0037189	-4.61 0.0000244733	0098471
10	0193132	.0044175	-4.37 0.0000280001	0106262
11	004866	.0041178	-1.18 0.2380129637	.0032317
12	.0058531	.0039007	1.50 0.1340018177	.0135238
dateQ	.0010375	.0001584	6.55 0.000 .0007259	.001349
_cons	-10.55687	.4171884	-25.30 0.000 -11.37727	-9.736468

4e Explanation

I was curious to know how sampling lag for a single month from each quarter for a year would compare to generating a new quarter date variable and using that for lag. Unfortunately, I don't think I did it right and I don't know how to get what I want. Instead, what I have for the second chart is quarterly dates but the lagged variables are now only lagged for the first four months of the year.

Based on the MSE of each model, the first one is a little bit better but I don't think either is great.

Appendix A

```
clear
 2
    set more off
    cd "/Users/guslipkin/Documents/Spring2020/CAP 4763 ~ Time Series/Problem
    Sets/Problem Set 1"
    *2b Load the data
    import delimited "Assignment 1 Monthly.txt"
9
    rename lnu02300000 us_epr
10
   rename flnan fl_nonfarm
    rename fllfn fl lf
11
    rename flbppriv fl bp
12
    rename date datestring
13
14
    *2c Turn on a log file
15
    log using "Problem Set 1", replace
16
17
18
    *2d Generate a monthly date variable (make its display format monthly time,
19
    gen datec=date(datestring, "YMD")
    gen date=mofd(datec)
20
    format date %tm
21
22
23
    *2e tsset your data
24
    tsset date
25
26
    *2f
27
    gen ln_us_epr=log(us_epr)
    gen ln fl nonfarm=log(fl nonfarm)
28
29
    gen ln_fl_lf=log(fl_lf)
    gen ln_fl_bp=log(fl_bp)
30
31
    *3b Estimate the static model relating monthly nonfarm employment in Florida
32
    to the other three variables (all in logs) without controlling for seasonal
    impacts or a time trend.
    regress ln_fl_nonfarm ln_fl_lf ln_us_epr ln_fl_bp
33
34
35
    *3c Estimate the static model with month indicators and a time trend.
    gen month=month(datec)
36
    reg ln_fl_nonfarm ln_fl_lf ln_us_epr ln_fl_bp i.month date
37
```

```
*4a Estimate the distributed lag model relating monthly nonfarm employment to
    lags 0 to 12 of the three predictor variables without month indicators and a
    time trend.
40
    regress ln_fl_nonfarm 1(0/12).ln_fl_lf 1(0/12).ln_us_epr 1(0/12).ln_fl_bp
41
    *4b Estimate the model in (a) but add month indicators and a time trend.
42
    regress ln_fl_nonfarm 1(0/12).ln_fl_lf 1(0/12).ln_us_epr 1(0/12).ln_fl_bp
43
    i.month date
    *4e Estimate two alternative models that contain month indicators and a time
45
    trend but that impose a more parsimonious lag structure for the predictor
    variables. Explain your choices.
    regress ln_fl_nonfarm 1(0,4,8,12).ln_fl_lf 1(0,4,8,12).ln_us_epr
    1(0,4,8,12).ln fl bp i.month date
    gen dateQ = gofd(datec)
47
48
    format dateQ %tq
    regress ln_fl_nonfarm 1(0/4).ln_fl_lf 1(0/4).ln_us_epr 1(0/4).ln_fl_bp
    i.month dateO
50
51
    log close
```

Appendix B

```
name: <unnamed>
       log: /Users/guslipkin/Documents/Spring2020/CAP 4763 ~ Time Series/Problem Sets/P
> roblem Set 1/Problem Set 1.smcl
  log type: smcl
opened on: 11 Feb 2021, 19:36:36
. *2d Generate a monthly date variable (make its display format monthly time, %tm)
. gen datec=date(datestring, "YMD")
. gen date=mofd(datec)
. format date %tm
. *2e tsset your data
. tsset date
        time variable: date, 1939m1 to 2020m12
                delta: 1 month
. *2f
. gen ln_us_epr=log(us_epr)
(108 missing values generated)
. gen ln_fl_nonfarm=log(fl_nonfarm)
```

. gen ln_fl_lf=log(fl_lf)

(444 missing values generated)

. gen ln_fl_bp=log(fl_bp)

(588 missing values generated)

- . *3b Estimate the static model relating monthly nonfarm employment in Florida to the ot > her three variables (all in logs) without controlling for seasonal impacts or a time t
- . regress ln_fl_nonfarm ln_fl_lf ln_us_epr ln_fl_bp

Source	SS	df	MS	Number	of obs =	
Model Residual	10.5356085 .230492978	3 392	3.51186951 .000587992	Prob > R-squa	F =	0.0000 0.9786
Total	10.7661015	395	.027255953	Root M	SE =	.02425
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>ln_fl_lf ln_us_epr ln_fl_bp _cons</pre>	1.110504 .6006702 .0516831 -11.78364	.0092305 .047797 .0028713 .2925244	12.57 18.00	0.000 0.000 0.000 0.000	1.092356 .5066997 .0460379 -12.35875	1.128651 .6946407 .0573282 -11.20852

- . *3c Estimate the static model with month indicators and a time trend.
- . gen month=month(datec)
- . reg ln_fl_nonfarm ln_fl_lf ln_us_epr ln_fl_bp i.month date

	Source	SS	df	MS	Number of obs	=	396
					F(15, 380)	=	2935.69
	Model	10.6739911	15	.711599408	Prob > F	=	0.0000
	Residual	.092110398	380	.000242396	R-squared	=	0.9914
_					Adj R-squared	=	0.9911
	Total	10.7661015	395	.027255953	Root MSE	=	.01557
_							

ln_fl_nonf~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_lf	.9282631	.0413265	22.46	0.000	.8470059	1.00952
ln_us_epr	.9105558	.0514333	17.70	0.000	.8094263	1.011685
ln_fl_bp	.0466812	.0021579	21.63	0.000	.0424382	.0509242
month						
2	.0045623	.0038378	1.19	0.235	0029837	.0121084
3	001379	.003839	-0.36	0.720	0089274	.0061694
4	0029373	.0038393	-0.77	0.445	0104863	.0046116
5	0142748	.0038468	-3.71	0.000	0218384	0067112
6	0356123	.0038709	-9.20	0.000	0432234	0280012
7	0519102	.0038917	-13.34	0.000	0595622	0442582
8	0380965	.0038668	-9.85	0.000	0456995	0304936
9	026004	.0038581	-6.74	0.000	0335899	0184181

10	0215894	.0038763	-5.57	0.000	029211	0139678
11	0014672	.0039082	-0.38	0.708	0091517	.0062173
12	.0054514	.0038735	1.41	0.160	0021648	.0130675
date	.0003124	.0000637	4.90	0.000	.000187	.0004377
_cons	-10.26323	.498888	-20.57	0.000	-11.24416	-9.282304

. *4a Estimate the distributed lag model relating monthly nonfarm employment to lags 0 t

. regress ln_fl_nonfarm l(0/12).ln_fl_lf l(0/12).ln_us_epr l(0/12).ln_fl_bp \$(0/12)\$

Source	SS	df	MS		er of obs = , 344) =	
Model	9.45063897	39	.242324076		> F =	
Residual	.055338456	344	.000160868			= 0.0000
Residuat	. 055555450	344	.00010000			= 0.9935
Total	9.50597742	383	.024819784		MSE =	
Totat	9.30397742	303	.024019704	KOOC	HJL -	01200
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_lf						
	3180953	.2192272	-1.45	0.148	7492898	.1130992
L1.	4936055	.2780395	-1.78	0.077	-1.040477	.0532661
L2.	.3085466	.27846	1.11	0.269	239152	.8562452
L3.	1.173922	.2948363	3.98	0.000	.5940134	1.753831
L4.	2346487	.2905929	-0.81	0.420	8062113	.3369138
L5.	.2808166	.2958343	0.95	0.343	3010552	.8626884
L6.	2076341	.3372426	-0.62	0.539	8709511	.4556829
L7.	.428488	.3391507	1.26	0.207	2385821	1.095558
L8.	.4803611	.3332665	1.44	0.150	1751354	1.135858
L9.	.2977526	.3112925	0.96	0.339	3145235	.9100288
L10.	00028	.3217814	-0.00	0.999	6331867	.6326267
L11.	5860114	.3256137	-1.80	0.073	-1.226456	.0544331
L12.	.0176351	.2499574	0.07	0.944	4740021	.5092724
ln_us_epr						
	1.180441	.1573579	7.50	0.000	.8709364	1.489946
L1.	.2435207	.202013	1.21	0.229	1538155	.6408569
L2.	1519264	.2015081	-0.75	0.451	5482695	.2444166
L3.	719111	.2119425	-3.39	0.001	-1.135977	3022447
L4.	.1877102	.2014654	0.93	0.352	2085489	.5839692
L5.	1596306	.206881	-0.77	0.441	5665414	.2472803
L6.	. 4937537	.2396216	2.06	0.040	.0224458	.9650615
L7.	3031484	.236988	-1.28	0.202	7692764	.1629796
L8.	2995254	.2312056	-1.30	0.196	7542801	.1552293
L9.	.5953076	.2915942	2.04	0.042	.0217756	1.16884
L10.	1656984	.352639	-0.47	0.639	8592984	.5279015
L11.	.5326939	.3523697	1.51	0.132	1603764	1.225764
L12.	4280274	.2543508	-1.68	0.093	928306	.0722511
ln_fl_bp						
	.0177815	.0051888	3.43	0.001	.0075758	.0279872
L1.	.0056999	.0054688	1.04	0.298	0050566	.0164565
L2.	.0123023	.0056879	2.16	0.031	.0011149	.0234898

> o 12 of the three predictor variables without month indicators and a time trend.

L3.	0005041	.0058381	-0.09	0.931	0119871	.0109788
L4.	0040248	.0058282	-0.69	0.490	0154881	.0074385
L5.	.0053648	.0058106	0.92	0.357	006064	.0167937
L6.	.0122019	.0057914	2.11	0.036	.0008108	.0235929
L7.	.0146252	.0057698	2.53	0.012	.0032766	.0259737
L8.	.0114715	.0057663	1.99	0.047	.0001299	.0228131
L9.	.0100892	.0057895	1.74	0.082	0012981	.0214765
L10.	0077443	.0056515	-1.37	0.171	0188601	.0033715
L11.	0129284	.0055227	-2.34	0.020	0237908	002066
L12.	0156324	.0052843	-2.96	0.003	0260261	0052388
_cons	-14.00483	.220126	-63.62	0.000	-14.43779	-13.57187

. *4b Estimate the model in (a) but add month indicators and a time trend.

. regress ln_fl_nonfarm l(0/12).ln_fl_lf l(0/12).ln_us_epr l(0/12).ln_fl_bp i.month date

Source	SS	df	MS		er of obs	=	384 1880.48
Model	9.47318331	51	.185748692		, 332) > F	=	0.0000
Residual	.03279411	332	.000098777		uared	_	0.9966
Residuat	.03279411	332	.000030777		R-squared	_	0.9960
Total	9.50597742	383	.024819784	_	MSE	_	.00994
Totat	3.30337742	303	.024015704	11000	1132		.00354
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ln_fl_lf							
	.1395258	.2167149	0.64	0.520	286781	L 7	.5658333
L1.	0728475	.2909974	-0.25	0.802	645278	37	. 4995837
L2.	0401378	.2914261	-0.14	0.891	613412	23	.5331367
L3.	.4941867	.3004728	1.64	0.101	09688	34	1.085257
L4.	.0243743	.3032608	0.08	0.936	572186	6	.6209291
L5.	0515457	.3007867	-0.17	0.864	643233	37	.5401424
L6.	.2645611	.3042172	0.87	0.385	333875	3	.8629975
L7.	.3032209	.3064496	0.99	0.323	299606	69	.9060486
L8.	.0945934	.3058001	0.31	0.757	506956	57	.6961435
L9.	1097755	.3559336	-0.31	0.758	809945	51	.590394
L10.	.1539543	.375505	0.41	0.682	584714	18	.8926234
L11.	2776778	.3787638	-0.73	0.464	-1.02275	57	.4674017
L12.	0112724	.279864	-0.04	0.968	561802	26	.5392579
ln_us_epr							
	.8902343	.1499136	5.94	0.000	. 59533	34	1.185135
L1.	.0725186	.1976025	0.37	0.714	316192	23	.4612294
L2.	.0146862	.1973291	0.07	0.941	373486	8	.4028593
L3.	3099001	.2109421	-1.47	0.143	724851	L 7	.1050514
L4.	.137028	.215249	0.64	0.525	286395	8	.5604519
L5.	0073661	.2142714	-0.03	0.973	428866	8	.4141346
L6.	.0293898	.2200462	0.13	0.894	403476	9	.4622504
L7.	1397223	.2227059	-0.63	0.531	577814	19	.2983702
L8.	0598893	.2228997	-0.27	0.788	498363	31	.3785844
L9.	.4823653	.4060878	1.19	0.236	316464	12	1.281195
L10.	.0335197	.4684115	0.07	0.943	88790	9	.9549485
L11.	. 4443457	.4733678	0.94	0.349	486832	27	1.375524
L12.	3652099	.3457533	-1.06	0.292	-1.04535	3	.3149335

ln_fl_bp						
	.0174185	.0043812	3.98	0.000	.0088	.0260369
L1.	.0097915	.0047176	2.08	0.039	.0005113	.0190717
L2.	.005989	.0048174	1.24	0.215	0034873	.0154654
L3.	.0067099	.0049382	1.36	0.175	0030042	.016424
L4.	.0015463	.0049663	0.31	0.756	0082232	.0113157
L5.	.0025978	.0049914	0.52	0.603	007221	.0124166
L6.	.006001	.0049798	1.21	0.229	0037949	.0157968
L7.	.0066017	.0049157	1.34	0.180	003068	.0162715
L8.	0015491	.0049371	-0.31	0.754	011261	.0081628
L9.	.0010036	.0048898	0.21	0.838	0086153	.0106225
L10.	0004773	.0047767	-0.10	0.920	0098737	.008919
L11.	0083937	.0046846	-1.79	0.074	017609	.0008216
L12.	0041455	.0044702	-0.93	0.354	0129391	.004648
month						
2	.0077995	.0048077	1.62	0.106	001658	.017257
3	.0052085	.0041637	1.25	0.212	0029821	.0133991
4	0010198	.0053356	-0.19	0.849	0115156	.009476
5	0012298	.0047478	-0.26	0.796	0105694	.0081098
6	0122415	.0055844	-2.19	0.029	0232267	0012563
7	0240128	.0047031	-5.11	0.000	0332644	0147612
8	0152756	.0052483	-2.91	0.004	0255997	0049514
9	0111308	.0045365	-2.45	0.015	0200548	0022068
10	0046899	.006722	-0.70	0.486	0179129	.0085332
11	.0076979	.0057763	1.33	0.184	0036649	.0190607
12	.0151789	.0059337	2.56	0.011	.0035065	.0268514
date	.0003695	.000047	7.86	0.000	.000277	.0004619
_cons	-11.28083	.391293	-28.83	0.000	-12.05055	-10.5111

 ^{*4}e Estimate two alternative models that contain month indicators and a time trend but
 that impose a more parsimonious lag structure for the predictor variables. Explain yo
 ur choices.

[.] regress $ln_fl_nonfarm\ l(0,4,8,12).ln_fl_lf\ l(0,4,8,12).ln_us_epr\ l(0,4,8,12).ln_fl_bp > i.month\ date$

Source	SS	df	MS	Number of	obs =	384
-				F(24, 359)	=	3636.67
Model	9.46703767	24	.394459903	Prob > F	=	0.0000
Residual	.038939751	359	.000108467	R-squared	=	0.9959
				Adj R-squa	red =	0.9956
Total	9.50597742	383	.024819784	Root MSE	=	.01041
ln_fl_nonf~m	Coef.	Std. Err.	t I	P> t [95	% Conf.	Interval]
ln_fl_lf L4.	.2198644 .3640379	.118892 .1628088			39479 38591	.4536767 .6842168
L8.	.6241057	.1697337	3.68	0.000 .29	03084	.957903
L12.	3365352	.1300465	-2.59	0.0105	92284	0807864

ln_us_epr

	.8706823	.0862833	10.09	0.000	.7009981	1.040367
L4.	.0186581	.1180743	0.16	0.875	213546	.2508623
L8.	1364675	.1363531	-1.00	0.318	4046187	.1316838
L12.	.4492816	.1055542	4.26	0.000	.2416993	.6568639
ln_fl_bp						
	.0288326	.0033225	8.68	0.000	.0222986	.0353666
L4.	.014784	.0040692	3.63	0.000	.0067816	.0227864
L8.	.0053046	.0040599	1.31	0.192	0026795	.0132888
L12.	0040886	.0034865	-1.17	0.242	0109452	.002768
month						
2	.003724	.0027268	1.37	0.173	0016384	.0090864
3	.003428	.0030747	1.11	0.266	0026188	.0094747
4	0013812	.0030302	-0.46	0.649	0073404	.0045779
5	0050709	.003101	-1.64	0.103	0111693	.0010275
6	0215379	.0030889	-6.97	0.000	0276125	0154633
7	0356678	.0033321	-10.70	0.000	0422208	0291149
8	0202856	.0032905	-6.16	0.000	0267567	0138145
9	0118143	.0031977	-3.69	0.000	0181028	0055257
10	0142884	.0031129	-4.59	0.000	0204102	0081666
11	0033333	.0030634	-1.09	0.277	0093578	.0026912
12	.0070509	.0028963	2.43	0.015	.001355	.0127468
date	.0004262	.0000476	8.96	0.000	.0003326	.0005197
_cons	-10.60852	.3857432	-27.50	0.000	-11.36712	-9.849916

- . gen dateQ = qofd(datec)
- . format dateQ %tq

Source

. regress $ln_fl_nonfarm\ l(0/4).ln_fl_lf\ l(0/4).ln_us_epr\ l(0/4).ln_fl_bp\ i.month\ dateQ$

MS

Number of obs =

F(27, 364) =

392

2505.01

Model Residual	10.2740552 .055292923	27 364	.380520563 .000151904		= = ed =	0.0000 0.9946 0.9942
Total	10.3293481	391	.02641777	Root MSE	=	.01232
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
ln_fl_lf						
	.2790757	.2536131	1.10	0.272219	6552	.7778065
L1.	.2956093	.3348151	0.88	0.378362	8055	.9540241
L2.	2641756	.3153608	-0.84	0.403884	3334	.3559822
L3.	.2832334	.3167687	0.89	0.37233	9693	.9061598
L4.	.3220421	.2469667	1.30	0.193163	6186	.8077029
ln_us_epr						
	.869919	.1763402	4.93	0.000 .523	1456	1.216693
L1.	1508318	.2303364	-0.65	0.513603	7889	.3021253
L2.	.1899043	.2170821	0.87	0.382236	9882	.6167968
L3.	2262386	.2208671	-1.02	0.306660	5744	.2080971
L4.	.3389032	.1751932	1.93	0.054005	6147	.6834212

ln_fl_bp						
	.0204443	.0051347	3.98	0.000	.010347	.0305417
L1.	.0107528	.0054657	1.97	0.050	4.39e-06	.0215012
L2.	.0026867	.0054899	0.49	0.625	0081091	.0134826
L3.	.0070439	.0054993	1.28	0.201	0037706	.0178583
L4.	.0071123	.0051692	1.38	0.170	003053	.0172777
month						
2	.0052225	.0038186	1.37	0.172	0022868	.0127318
3	.0086375	.0041006	2.11	0.036	.0005735	.0167014
4	.0012736	.0046541	0.27	0.785	0078787	.0104258
5	.0022027	.0038771	0.57	0.570	0054216	.0098269
6	0193223	.0040672	-4.75	0.000	0273206	0113241
7	0362039	.0038883	-9.31	0.000	0438502	0285575
8	0245188	.0043528	-5.63	0.000	0330787	015959
9	0171602	.0037189	-4.61	0.000	0244733	0098471
10	0193132	.0044175	-4.37	0.000	0280001	0106262
11	004866	.0041178	-1.18	0.238	0129637	.0032317
12	.0058531	.0039007	1.50	0.134	0018177	.0135238
dateQ	.0010375	.0001584	6.55	0.000	.0007259	.001349
_cons	-10.55687	.4171884	-25.30	0.000	-11.37727	-9.736468

•

. log close

name: <unnamed>

log: /Users/guslipkin/Documents/Spring2020/CAP 4763 ~ Time Series/Problem Sets/P

> roblem Set 1/Problem Set 1.smcl

log type: smcl

closed on: 11 Feb 2021, 19:36:37