F4: public key cryptography (PKC)

tkkwon@snu.ac.kr

PKC – General Characteristics

- public-key/two-key/asymmetric cryptography
- uses 2 keys
 - public-key
 - may be known by anybody, and can be used to encrypt messages, and verify signatures
 - private-key (secret key)
 - known only to the recipient, used to decrypt messages, and sign (create) signatures
- keys are related to each other but it is not feasible to find out private key from the public one
 - Modular arithmetic

PKC – General Characteristics

- It is computationally easy to encrypt/decrypt messages when the relevant keys are known
 - RSA, ElGamal
- Trapdoor one-way function
 - ku (K⁺ or k_p): public-key,
 - kr (K⁻ or k_s): private key or secret key

```
Y=f<sub>ku</sub>(X) easy, if ku and X are known
X=f<sub>kr</sub><sup>-1</sup>(Y) easy, if kr and Y are known,
but infeasible if kr is not known
```

a one-way function

- before discussing trapdoor one-way function, let's talk about a one way function
- a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input.

Some examples of one way functions

Cryptographic hash function:

- Converts an arbitrary size message x into a tag of fixed length y
- f: $x \rightarrow y$, |y| = constant
- multiplying two prime numbers vs Factoring:
 - $f(p,q) \rightarrow p^*q$
 - If p and q are prime it is hard to recover them from p*q
- exponentiation vs Discrete Log:
 - $f: x \rightarrow g^x \mod p$

where p is prime and g is a "generator" (*i.e.*, g¹, g², g³, ... generates all values < p)

One-way functions in PKC

- y = ciphertext x = plaintext k = <u>public</u> key
- Consider: $y = f_k(x)$ or f(k,x)
- Everyone knows k and f
 - computing f(x) should be easy
 - f⁻¹(y) should be hard
- Otherwise an eavesdropper could decrypt y
- But what about the intended recipient, who should be able to decrypt y?

Trapdoor One-Way Functions

Easy:
$$x \xrightarrow{f} y$$

Hard:
$$x \leftarrow f^{-1}$$

Easy:
$$x \leftarrow \frac{f^{-1}}{\text{trapdoor}} y$$

- A one-way function with a "trapdoor"
- The <u>trapdoor</u> is a private key that makes it easy to invert the function y = f(x)
- Example: RSA

```
y = x^e \mod n
where n = pq (p, q: prime, and p, q, e: random)
(p & q) or d (where ed = 1 mod (p-1)(q-1)) can be used as trapdoors
```

In public-key algorithms
 f(x) is easy with public key (e.g.

f(x) is easy with public key (e.g., e and n in RSA) $f^{-1}(y)$ is easy only with trapdoor (e.g., d in RSA)

Public-Key Cryptography: Encryption

Alice Bob

Source: NetworkWorld

Math Expression of PKC

- Bob has a public key, k_p , and a secret key, k_s
- Bob's public key is known to Alice
- Everybody knows encryption and decryption fns.
- Asymmetric Cipher: $f^{-1}(k_s, f(k_p, m)) = m$

Alice Bob 1. Construct m2. Compute $c = f(k_p, m)$ 3. Send c to Bob 4. Receive c from Alice 5. Compute $m = f^{-1}(k_s, c)$ 6. Deliver m

Public-Key Cryptography - Authentication

Using public and private keys is Commutative!

Source: NetworkWorld

Why PKC?

- Initially developed to address two challenging issues:
 - key distribution
 - symmetric crypto requires how to securely share the key
 - With PKC, the public key can be known to everyone
 - Public Key Infrastructure (PKI) distributes public keys
 - But we still need trusted third parties in PKI
 - digital signatures (non-repudiation)
 - not possible with symmetric crypto

PKC applications

- encryption and decryption
 - confidentiality
- digital signatures
 - authentication and non-repudiation
- key exchange
 - to agree on a session key (for symmetric cipher)
 - why not use PKC for encryption and decryption?

PKC ciphers and issues

- two PKC ciphers
 - RSA
 - ElGamal
- Performance issues
 - too slow compared to symmetric cryptography
 - when two parties communicate, it is better to derive a symmetric key by PKC
 - then the derived key is used for encryption/decryption

how to make a shared key btw. two parties

- two remote points
 - send a message?
 - ask a trusted third party?
- Diffie-Hellman (DH) algorithm
 - based on discrete logarithm

background of DH algorithm

- modulo operation
- By Fermat's little theorem: a^(p-1) = 1 (mod p)
- Example of Z_7 (actually Z_7^*)

	X	X ²	x ³	x ⁴	x ⁵	X ⁶
	1	1	1	1	1	1
Generators	2	4	1	2	4	1
	<u>3</u>	2	6	4	5	1
	4	2	1	4	2	1
	<u>5</u>	4	6	2	3	1
	6	1	6	1	6	1

DH Algorithm

- DH model's primary contribution:
 - Take a prime p and a primitive element g
 - Cyclic group in finite field
 - Publicize both g and p

 - Alice chooses some x ∈ Z_p^* and sends (g^x mod p) to Bob
 Bob chooses some y ∈ Z_p^* and sends (g^y mod p) to Alice
 - Eve can see both (g^x mod p) and (g^y mod p) but she cannot calculate x or y
 - Discrete logarithm problem (DLP)

D-H Algorithm

- Alice calculates the key; k = (g^y)^x mod p
- Bob calculates the same key; k = (g^x)^y mod p
- Since Eve does not know x or y, she cannot calculate the key k
- Diffie and Hellman developed this method to share a key using some publicly available information

MESSAGE INTEGRITY

Message Digest

- Function H() that takes as input an arbitrary length message and outputs a fixed-length string: message digest, tag, fingerprint, hash
- Note that H() can be a many-to-1 function
- H() is called a "hash function"
 - MD5, SHA-1, SHA-2, SHA-3

- Desirable properties:
 - Easy to calculate
 - Irreversibility: Can't determine m from H(m)
 - Collision resistance:
 Computationally difficult to find m and m' such that H(m) = H(m')
 - Seemingly random output

Message Authentication Code (MAC)

- Authenticates sender
- Verifies message integrity
- No encryption!
- Also called "keyed hash"
- Notation: t = H(s||m); send m||t

s = shared secret

||: concatenation

20

MAC properties

Symmetric

- MACs are based on secret symmetric keys
- The generating and verifying parties must share a secret key.

Arbitrary message size

MACs accept messages of arbitrary length.

Fixed output length

MACs generate fixed-size authentication tags.

Message integrity

 MACs provide message integrity: Any manipulations of a message in transit will be detected by the receiver since its MAC does not match with the modified message.

Message authentication

The receiving party is assured of the origin of the message.

No non-repudiation

 Since MACs are based on symmetric principles, they do not provide non-repudiation.

Digital Signatures

- data integrity, non-repudiation, authentication
- Basic idea: leveraging PKC
 - use your private key on the message to generate a piece of information that can be generated only by yourself
 - because you are the only one who knows your private key
 - public key can be used to verify the signature
 - so everybody can verify
- Generally signatures are created and verified over the hash of the message
 - Not over the original message. Why?

Digital Signature – PKC approach

Sender Alice

Receiver

Source: W. Stallings "Cryptography and Network Security"

M : message to be signed

F: RSA Private Key Operation

D: RSA Public Key Operation

: Hash Hunction

KR_a: Sender's Private Key

KU_a: Sender's Public Key

 $\overline{E_{KR}}_{\alpha}$ [H(M)]: Signature of sender Alice over hash of M