

BRIAN M SCHILDER, PHD

Passionately pursuing transdisciplinary research to advance human health and knowledge.

Cold Spring Harbor Laboratory

Postdoctoral Research Scientist

Below are selected subsets of the full CV. -

EDUCATION

2024

Imperial College London / The Alan Turing Institute

PhD; Computational Genomics & Machine Learning

Q London, UK

Thesis: Multi-omic medicine: dissecting the cell type-specific and pleiotropic mechanisms underlying disease genomics at scale

2017

The George Washington University / Georgetown University

MPhil; Comparative Neuroscience & Genomics

Washington, DC, USA

Thesis: The evolution of the hippocampus and adult neurogenesis: novel insights into the origins of human memory

2011

Brown University / Princeton University

ScB; Neurological Diseases & Disorders

Providence, RI, USA

CORE SKILLS

Research

- 16+ years of deep expertise in genomics, AI, evolutionary biology and biomedicine. Strategically fuses concepts and methods across multiple
- Publication record: 23 publications, 8 preprints and 14 awarded grants.
- · Reproducibility: Global leader in promoting and enabling reproducible scientific practices. Writes 100% reproducible manuscripts programmatically.
- Bioinformatics: Created 45 Python and R packages to address key challenges in biological research.
- High-performance computing: Highly parallelised analyses and AI model training (CPUs and GPUs).
- Web development: 6+ websites, web apps, and interactive reports.

CONTACT

☑ brian_schilder [at] alumni.brown.edu

L US

+1 908-268-9859

UK

+44 073-0653-7736

in LinkedIn

(D) ORCID

G Google Scholar

G GitHub

y Twitter

YouTube

Personal Website

Lab Website

SUMMARY

11 16+ years of research

23 publications

8 preprints

№ 41 software packages

11 databases & apps

#□ 23 talks

 14+ years of teaching & team management

TABLE OF CONTENTS

Education

✓ Skills

Publications

Preprints

Experience

S Grants

Updated Feb-13-2025

Made with autoCV

AI & Machine Learning

Proficient in developing and deploying AI/ML models (PyTorch, tensorflow, Keras, sklearn and H2O) to solve complex biological problems. Applied examples include:

- predictions from DNA sequence models (DeepSEA, Basenji, IMPACT) to validate SNPs prioritised with Bayesian fine-mapping.
- Foundation models: Used transformer trained on >36M cells and protein sequence embeddings to uncover cell type-specific mechanisms of disease.
- LLM knowledge extraction: Developed framework to extract quantitative metrics of phenotype severity from GPT-4.
- · Causal variant effect prediction: Used functional impact · Disease genomics embeddings: Developed VAE/graph models to reveal joint latent representation of genomic signatures across all diseases and phenotypes.
 - NLP: Created a suite of proprietary Python packages for advanced topic modelling of the PubMed literature to provide business intelligence to the world's largest digital health, biotech, and pharma companies (as a consultant with 120/80 Group).
 - · Tensor decomposition: Applied multi-condition factorisation to efficiently discover neurodegenerationrelevant trans-eQTLs

Project Management

Efficient management strategies to define objectives, track progress and coordinate diverse teams.

- Documentation: Defines objectives and tracks progress with GitHub Projects. Includes useful documentation in Issues, inline code and shareable reports.
- · Version control: Extensive and daily use of GitHub, containers (Docker, Singularity, virtual machines),
- environments (conda) and pipelines (Nextflow).
- Team management: Led numerous collaborative research projects and supervised researchers at various career stages.

Soft Skills

Advances science through effective problem formulation, collaboration and communication.

- Problem formulation: Rapid hypothesis generation, project design, and creative problem solving.
- · Collaboration: Diverse and global collaborative networking.
- · Communication: Clear and concise distillation of complex results to a variety of audiences. Presented 25 conference posters.

PUBLICATIONS

rworkflows: automating reproducible practices for the R community

Nature Communications (2023) 15(149); https://doi.org/10.1038/s41467-023-44484-5

BM Schilder, AE Murphy, NG Skene I

■ News

- Featured in Nature Communications Editors' Highlights

Artificial intelligence for neurodegenerative experimental models

Alzheimer's & Dementia (2023) http://doi.org/10.1002/alz.13479

SJ Marzi, BM Schilder, A Nott, C Sala Frigerio, S Willaime-Morawek, M Bucholc, DP Hanger, C James, PA Lewis, I Lourida, W Noble, F Rodriguez-Algarra, JA Sharif, M Tsalenchuk, LM Winchester, U Yaman, Z Yao, DEMON Network, JM Ranson, DJ Llewellyn

Artificial intelligence for dementia genetics and omics

Alzheimer's & Dementia (2023) http://doi.org/10.1002/alz.13427

C Bettencourt, NG Skene, S Bandres-Ciga, E Anderson, LM Winchester, IF Foote, J Schwartzentruber, JA Botia, M Nalls, A Singleton, BM Schilder, J Humphrey, SJ Marzi, CE Toomey, A Al Kleifat, EL Harshfield, V Garfield, C Sandor, S Keat, S Tamburin, C Sala Frigerio, I Lourida, DEMON Network, JM Ranson, DJ Llewellyn

Artificial intelligence for dementia research methods optimization

Alzheimer's & Dementia (2023) http://doi.org/10.1002/alz.13441

M Bucholc, C James, A Al Khleifat, A Badhwar, N Clarke, A Dehsarvi, CR Madan, SJ Marzi, C Shand, BM Schilder, S Tamburin, HM Tantiangco, I Lourida, DJ Llewellyn, JM Ranson

EpiCompare: R package for the comparison and quality control of epigenomic peak files

Bioinformatics Advances (2023) 13(1):vbad049; https://doi.org/10.1093/bioadv/vbad049

S Choi, BM Schilder, L Abbasova, AE Murphy, NG Skene

2023

2023

2023

2023

2023

2022		Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors Biological Psychiatry (2022) 91(3):313-327; https://doi.org/10.1016/j.biopsych.2021.05.029
		N Mullins, J Kang, Al Campos, BM Schilder , et al.
2022		Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies
		Nature Genetics (2022) https://doi.org/10.1038/s41588-021-00976-y
		K de Paiva Lopes, G JL Snijders, J Humphrey, A Allan, M Sneeboer, E Navarro, BM Schilder T Raj B News
		 Microglial transcriptomics meets genetics: new disease leads (Nature Reviews Neurology, 2022) Mighty MiGA: Microglial Genomic Atlas Zeros in on Causal AD Risk Variants (ALZFORUM, 2022) Can a Human Microglial Atlas Guide Brain Disorder Research? (Mount Sinai Health System, 2022) Polygenic Scores Paint Microglia as Culprits in Alzheimer's (ALZFORUM, 2021)
2021	•	Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms
		Neurobiology of Disease (2021) 105580; https://doi.org/10.1016/j.nbd.2021.105580 BM Schilder, E Navarro, T Raj
2021		Fine-Mapping of Parkinson's Disease Susceptibility Loci Identifies Putative Causal Variants Human Molecular Genetics (2021) ddab294; https://doi.org/10.1093/hmg/ddab294 BM Schilder, T Raj
2021	•	echolocatoR: An Automated End-to-End Statistical and Functional Genomic Fine-Mapping
		Pipeline Pipeline
		Bioinformatics (2021) btab658; https://doi.org/10.1093/bioinformatics/btab658 BM Schilder, J Humphrey, T Raj
2021		MungeSumstats: A Bioconductor Package for the Standardisation and Quality Control of Many GWAS Summary Statistics
		Bioinformatics (2021) 37(23):4593-4596; https://doi.org/10.1093/bioinformatics/btab665 A Murphy, BM Schilder, NG Skene
2021		Dysregulation of mitochondrial and proteo-lysosomal genes in Parkinson's disease myeloid cells <i>Nature Genetics</i> (2021) https://doi.org/10.1101/2020.07.20.212407
		E Navarro, E Udine, K de Paiva Lopes, M Parks, G Riboldi, BM Schilder T Raj BNews
		- Mount Sinai: Fighting Neurodegenerative Disorders (Mount Sinai Health System, 2019)
2021		Phenome-wide and eQTL Associations of COVID-19 Genetic Risk Loci iScience (2021) https://doi.org/10.1016/j.isci.2021.102550
		C Moon, BM Schilder , T Raj, K-I Huang
2021		Genome-Wide Association Study of over 40,000 Bipolar Disorder Cases Provides Novel Biological Insights
		Nature Genetics (2021) 53:817-829; https://doi.org/10.1038/s41588-021-00857-4
		N Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI Coleman BM Schilder et al. B News
		 Researchers identify 64 regions of the genome that increase risk for bipolar disorder (EurekAlert, 2021) Largest Bipolar Disorder Genetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021)
2020		Tensor decomposition of stimulated monocyte and macrophage gene expression profiles
		identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1371/journal.pgen.1008549
		S Ramdhani, E Navarro, E Udine, AG Efthymiou, BM Schilder , M Parks, A Goate, T Raj

Evolutionary shifts dramatically reorganized the human hippocampal complex 2019

Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof

FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of 2019 **Research Digital Resources**

Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011

D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder...A Ma'ayan

News

2019

2018

2015

2014

2014

2025

2024

- Chosen as 'Featured Frontmatter' article in Cell Systems

Geneshot: search engine for ranking genes from arbitrary text queries

Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393

A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan

- Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019)
- The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020)

eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks

Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458

DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang

News

- Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018)

Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks

Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 F Subiaul, L Zimmerman, E Renner, BM Schilder, R Barr

2015 Take the monkey and run

Journal of Neuroscience Methods (2015) 248:28-31; http://doi.org/10.1016/j.jneumeth.2015.03.023 KA Phillips, MK Hambright, K Hewes, BM Schilder, CN Ross, SD Tardif I

■ News

- Monkeys on a Treadmill? A Conversation with Dr. Kimberley Phillips (Why Social Science?)

Becoming a high-fidelity - super - imitator: what are the contributions of social and individual learning?

Developmental Science (2014) 18(6):1025-1035; http://doi.org/10.1111/desc.12276 F Subiaul, EM Patterson, BM Schilder, E Renner, R Barr

Working memory constraints on imitation and emulation

Journal of Experimental Child Psychology (2014) 128:190-200; http://doi.org/10.1016/j.jecp.2014.07.005 F Subiaul, BM Schilder

PREPRINTS

Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk

bioRxiv (2025) https://www.biorxiv.org/content/10.1101/2025.01.18.633396v1

N Khouri-Farah, EW Winchester, BM Schilder, K Robinson, SW Curtis, NM Skene, E Leslie-Clarkson, J Cotney

Harnessing generative AI to annotate the severity of all phenotypic abnormalities within the **Human Phenotype Ontology**

medRxiv (2024) https://doi.org/10.1101/2024.06.10.24308475

KB Murphy, BM Schilder, NG Skene

Navigating the Phenomic Landscape: systematic characterisation of the latent genomic space 2024 underlying all traits and diseases bioRxiv (2024) http://dx.doi.org/10.13140/RG.2.2.12144.26880

BM Schilder, NG Skene

Chromatin interactions and active histone mark signatures underpin TBXT expression in 2024 metastatic lung cancer

SSRN (2024) https://ssrn.com/abstract=4965385

RM Yaa, BM Schilder, RD Acemel, FC Wardle

Integrative multi-omics analysis of glial signatures associated with accelerated cognitive decline in Alzheimer's disease

bioRxiv (2024)

E Schneegans, N Fancy, V Chau, TKD Cheung, E Adair, M Papageorgopoulou, BM Schilder, PM Matthews, JS Jackson

Fine-mapping genomic loci refines bipolar disorder risk genes

medRxiv (2023) https://www.medrxiv.org/content/10.1101/2024.02.12.24302716v1

M Koromina, A Ravi, G Panagiotaropoulou, BM Schilder, ... S Ripke, T Raj, JRI Coleman, N Mullins I

■ News

- Currently under journal review

Identification of cell type-specific gene targets underlying thousands of rare diseases and subtraits

medRxiv (2023) https://doi.org/10.1101/2023.02.13.23285820

KB Murphy, R Gordon-Smith, J Chapman, M Otani, BM Schilder, NG Skene

CUT&Tag recovers up to half of ENCODE ChIP-seg peaks

bioRxiv (2022) https://doi.org/10.1101/2022.03.30.486382

D Hu, L Abbasova, BM Schilder, A Nott, NG Skene, SJ Marzi

RESEARCH EXPERIENCE

Postdoctoral Research Scientist

Cold Spring Harbor Laboratory (Simons Center for Quantitative Biology)

• Cold Spring Harbor, NY, USA

- · Advancing deep learning applications in genomics and biomedicine in the laboratory of Dr. Peter Koo.
- · Developing a genomic foundation model to map complex genome-phenome relationships and make highly accurate, personalized disease risk predictions.

Lead Data Scientist

120/80 Group

New York, NY, USA

- · Offers data-driven consultation services to a wide portfolio of high-profile digital healthcare, pharmaceutical and biotech companies.
- Developed a suite of proprietary softwares to extract customised business intelligence from the published literature to generate customised and interpretable reports to clients.
- Provides clients guidance on strategic AI implementation, data analysis, publication and transparency.

Bioinformatician II

Icahn School of Medicine at Mount Sinai (Department of Neuroscience / Department of Neurology / Department of Genetics & Genomics / Ronald M. Loeb Center for Alzheimer's Disease)

New York, NY, USA

- Developed machine learning systems to integrate large-scale multi-omics datasets (e.g. whole-genome sequencing, bulk and single-cell RNA-seq, epigenomics, clinical data) to uncover the molecular mechanisms underlying neurodegenerative diseases (e.g. Alzheimer's, Parkinson's, ALS).
- · Computationally identified specific disease-causal variants, pathways and cell-types for subsequent functional wet lab validation (e.g. CRISPR-cas9 editing in patient-derived cell cultures, iPSCs and cerebral organoids).

2022

2024

2023

2023

П

2024

2019

2020

2018

2018 I 2017

Bioinformatician II

Icahn School of Medicine at Mount Sinai (Department of Pharmacological Sciences)

New York, NY, USA

- Conducted computational systems biology research. Integrated and analyzed large-scale genomic and biomedical data (e.g. Python, R, JavaScript).
- · Developed evolutionary algorithm to optimize gene network kinase regulator prediction (eXpression2Kinases).
- Developed and deployed computational tools, software, databases and web applications for basic and clinical research, resulting in 3 peer-reviewed publications.

2013 l 2011

Research Assistant

The George Washington University (Department of Anthropology)

♥ Washington, DC, USA

- · Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues.
- Trained junior and senior personnel on lab protocols.

2013 | 2011

Senior Lab Manager

The George Washington University (Department of Speech, Language & Hearing Sciences)

♥ Washington, DC, USA

 Organized and trained dozens of undergraduates to conduct weekly cognitive development research; designed and/or directly contributed to over 15 research projects in two years.

2010

Paid Research Intern

Princeton University (Princeton Neuroscience Institute)

Princeton, NJ, USA

- Investigated the neural basis of decision-making in humans.
- Recruited participants, recorded EEG and analyzed data in MATLAB.

\$

GRANTS

• Total (all grants): \$3,049,872

Total (as primary applicant): \$311,382