Modular Auditory, Tactile clock

Tahseen Arefeen, Jacob Choi

Creativity & Innovation

Two solution approach

Auditory: air raid siren

Tactile: morse code

Design must accommodate both designs

Fixture Design

Air Raid Siren Design

Morse Window Design

Electrical Design | Engineering Reasoning

ESP32 PWM \rightarrow H-bridge \rightarrow DC motor speed control

Jacob Choi

Power line #1: 5V for ESP32, DC encoder

Power line #2: 12V for DC motor, H-bridge (separate power supplies for microcontrollers and peripherals vs. noisy motors)

Software Design | Engineering Reasoning

Overview:

- 1. Initialize current time
- 2. Update time based on desired interval
- 3. Translate current time to Morse code
- 4. Actuate based on dot vs. dash
- 5. Obtain encoder positional feedback
- 6. Adjust for error based on threshold

ENCODER_THRESHOLD: max. allowable encoder delta before more than 1 section appears in window view

Divot to indicate "origin", i.e, encoder value = 0

Math:

360 rotation° = ~1100 delta encoder reading

Each section is ⅓ = ~367 delta

Origin is halfway \therefore 367/2 = 183.5 delta

ENCODER_THRESHOLD = 183.5

In reality, threshold must be more controlled due to motor overshoot ($100 \sim 150$)

#define ENCODER_THRESHOLD 150

Software Design | Engineering Reasoning

lacob Choi

Demo Video

Notes:

- Correct morse code (....- .----) is shown!
- The positional feedback system can be seen working at 0:19 and 0:22 (see serial output and the motor attempting to restabilize to origin)

Thank You!