BEST MOVIL C.A

GSM Mobile Phone

Model: T6

18 July, 2011 **Report No.: 1107008-FCC(BT)** (This report supersedes NONE)

Modifications made to the product: None This Test Report is Issued Under the Authority of: **Peter Cai Spring Zhou Test Engineer Technical Manager**

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 2 of 60 www.siemic.com.c

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC , RF/Wireless , Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom , Safety
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom
Australia	NATA, NIST	EMC, RF, Telecom , Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom , Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom
EU	NB	EMC & R&TTE Directive

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 3 of 60 www.siemic.com.cn

This page has been left blank intentionally.

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 4 of 60 www.siemic.com.cn

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
	TECHNICAL DETAILS	
	MODIFICATION	
	TEST SUMMARY	
	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	
ANN	EX A. TEST INSTRUMENT & METHOD	40
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	4 4
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	53
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	57
ANN	EX E. SIEMIC ACCREDITATION CERTIFICATES	58

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 5 of 60

 www.siemic.com.ci
 www.siemic.com.ci

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the BEST MOVIL C.A, GSM Mobile Phone, and model: T6 against the current Stipulated Standards. The GSM Mobile Phone has demonstrated compliance with the FCC 15.247:2010.

EUT Information

EUT : **GSM Mobile Phone**

Description

Model No : T6
Serial No : N/A

Input Power : 3.6-4.2VDC 950mAh

Classification

Per Stipulated : Spread Spectrum System/Device

Test Standard

GPRS Multi-slot class

Number of Channels :

FCC ID:

Serial#: 1107008-FCC(BT Issue Date: 18 July, 2011 Page: 6 of 60

8/10

79

ZQYTUBIT6

	2 TECHNICAL DETAILS
Purpose	Compliance testing of GSM Mobile Phone with stipulated standard
Applicant / Client	BEST MOVIL C.A Ave. Principal de Lecheria C. C. Guaica Center, 6016, Lecherias, Venezuela
Manufacturer	Shenzhen Phone-Talk Technology Co.,Ltd 1805,Tower A , Phase 1,Tian'an High-Tech Plaza , Futian District, Shenzhen, China
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email:info@siemic.com
Test report reference number	1107008-FCC(BT)
Date EUT received	20 June, 2011
Standard applied	FCC 15.247:2010
Dates of test (from – to)	25 June to 15 July, 2011
No of Units:	#1
Equipment Category :	DSS
Trade Name :	TUBI
Model :	T6
RF Operating Frequency (ies)	GSM850 : 824.2 ~ 848.8 MHz(TX) / 869.2 ~ 893.8 MHz(RX) GSM1900 : 1850.2 ~ 1909.8 MHz(TX) / 1930.2 ~ 1989.8 MHz(RX) Bluetooth: 2402-2480MHz
Modulation :	GMSK(GSM/GPRS/EGPRS), GFSK (Bluetooth)

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 7 of 60 www.siemic.com.cn

3 MODIFICATION

NONE

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 8 of 60

TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Spread Spectrum System/Device

Test Results Summary

Test Standard	Description	Pass / Fail
CFR 47 Part 15.247: 2010		
15.203	Antenna Requirement	Pass
15.205	Restricted Band of Operation	Pass
15.207(a)	Conducted Emissions Voltage	Pass
15.247(a)(1)	Channel Separation	N/A
15.247(a)(1)	Occupied Bandwidth	Pass
15.247(a)(2)	6dB Bandwidth	Pass
15.247(a)(1)	Number of Hopping Channels	N/A
15.247(a)(1)	Time of Occupancy	N/A
15.247(b)	Output Power	Pass
15.247(c)	Antenna Gain > 6 dBi	Pass
15.247(d)	Conducted Spurious Emissions	Pass
15.209; 15.247(d)	Radiated Spurious Emissions	Pass
15.247(e)	Power Spectral Density	Pass
15.247(f)	Hybrid System Requirement	N/A
15.247(g)	Hopping Capability	N/A
15.247(h)	Hopping Coordination Requirement	N/A
15.247(i)	RF Exposure requirement	Pass

ANSI C63.4: 2009

PS: All measurement uncertainties are not taken into consideration for all presented test result.

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is integral antenna. The antenna gain is -1dBi.

| Serial#: 1107008-FCC(BT | Issue Date: 18 July, 2011 | Page: 10 of 60 | www.siemic.com.c

<u>5.2</u> Conducted Emissions Voltage

Requirement:

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

^{*}Decreases with the logarithm of the frequency.

Procedures:

- All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz 30MHz (Average & Quasi-peak) is ±3.5dB.

4. Environmental Conditions Temperature 25°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

5. Test date: 8 July, 2011 Tested By: Peter Cai

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 11 of 60

Test Data

Line

Frequency (MHz)	Quasi Peak (dBuV)	Limit (dBuV)	Margin (dB)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Factors (dB)
0.41	44.18	57.59	-13.42	28.02	47.59	-19.57	10.17
0.45	42.81	56.81	-14.00	26.77	46.81	-20.05	10.17
0.33	42.16	59.51	-17.35	35.67	49.51	-13.84	10.18
0.54	34.18	56.00	-21.82	23.69	46.00	-22.31	10.16
2.11	36.81	56.00	-19.19	30.68	46.00	-15.32	10.20
0.65	34.89	56.00	-21.11	24.98	46.00	-21.02	10.13

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 12 of 60

Test Data

Neutral

Frequency (MHz)	Quasi Peak (dBuV)	Limit (dBuV)	Margin (dB)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Factors (dB)
0.41	42.84	57.59	-14.75	31.21	47.59	-16.38	10.17
0.44	42.65	57.12	-14.47	26.77	47.12	-20.34	10.17
0.22	46.54	63.02	-16.49	25.78	53.02	-27.24	10.27
0.32	39.54	59.72	-20.18	31.38	49.72	-18.34	10.19
0.55	38.30	56.00	-17.70	29.56	46.00	-16.44	10.16
24.23	41.20	60.00	-18.80	28.63	50.00	-21.37	10.89

5.3 Channel Separation

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Environmental Conditions Temperature 25°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date: 15 July, 2011

Tested By: Peter Cai

Requirement(s): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

Procedures: The Channel Separation was measured conducted using a spectrum analyzer at low, mid, and hi channels.

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	20 dB Channel Bandwidth (MHz)	Limit (MHz)
Low	2402	1.010	1.105	0.737
Mid	2441	1.000	1.134	0.756
High	2480	1.003	1.115	0.743

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 14 of 60 www.siemic.com.cr

Channel Separation - Low Channel

Channel Separation – Mid Channel

| Serial#: 1107008-FCC(BT) | Issue Date: 18 July, 2011 | Page: 15 of 60 | www.siemic.com.cn

Channel Separation – High Channel

5.4 20dB Bandwidth

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Environmental Conditions Temperature 25°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date : 15 July, 2011 Tested By : Peter Cai

Requirement(s): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

Procedures: The 20dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels.

	Channel	20 dB Channel
Channel	Frequency	Bandwidth
	(MHz)	(MHz)
Low	2402	1.105
Mid	2441	1.134
High	2480	1.115

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 17 of 60

 www.siemic.com.cr

Refer to the attached plots.

20 dB Bandwidth - Low Channel

20 dB Bandwidth - Mid Channel

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 18 of 60 www.siemic.com.cn

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 19 of 60

 www.siemic.com.c

5.5 Number of Hopping Channel

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal) with a coverage factor of 2 in the range 30MHz = 40GHz is +1.5dB

normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$. 3. Environmental Conditions Temperature $25^{\circ}C$

Relative Humidity 50%

Atmospheric Pressure 1019mbar

4. Test date: 15 July, 2011 Tested By: Peter Cai

Standard Requirement:

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Procedures: The Number of Hopping Channel measurement was taken conducted using a spectrum analyzer.

RBW=100 KHz, VBW > RBW

Test Result: Pass

Total Channel: 79 Channels

| Serial#: 1107008-FCC(BT) | Issue Date: 18 July, 2011 | Page: 20 of 60 | www.siemic.com.cn

Number of Hopping Channel

5.6 Time of Occupancy

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal) with a coverage factor of 2 in the range 30MHz = 40GHz is ±1.5dB

normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$. 3. Environmental Conditions Temperature $25^{\circ}C$

> Relative Humidity 50% Atmospheric Pressure 1019mbar

4. Test date: 15 July, 2011 Tested By: Peter Cai

Standard Requirement:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used

Procedures: The Time of Occupancy measurement was taken conducted using a spectrum analyzer.

Test Result: Pass

Channel	Channel Frequency (MHz)	Dwell Time (sec)	Limit (sec)
Low	2402	80*4*0.0005=0.16	0.4
Mid	2441	80*4*0.0005=0.16	0.4
High	2480	80*4*0.0005=0.16	0.4

Note: *Dwell Time* = On-time * number of times the specific channel on during 31.6sec sweep.

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 22 of 60 www.siemic.com.cr

Low Channel (Sweep in 7.9sec)

Low Channel (Sweep in 30msec)

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 23 of 60 www.siemic.com.cr

Mid Channel (Sweep in 7.9sec)

Mid Channel (Sweep in 30msec)

| Serial#: 1107008-FCC(BT) |
| Issue Date: 18 July, 2011 |
| Page: 24 of 60 |
| www.siemic.com.cn

High Channel (Sweep in 7.9sec)

High Channel (Sweep in 30msec)

1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 25 of 60

5.7 Peak Output Power

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

Conducted Emissions Measurement Uncertainty 2.

> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

Environmental Conditions Temperature Relative Humidity 50%

> Atmospheric Pressure 1019mbar

Test date: 15 July, 2011 4. Tested By: Peter Cai

Standard Requirement:

3.

For frequency hopping systems in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.For all other frequency hopping systems in the 2400-2483.5MHz band: 0.125 watts.

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid,

and hi channels. Peak detector was set to measure the power output. The power is

converted from watt to dBm, therefore, 1 watt = 30 dBm.

Test Result: Pass

Channel	Channel Frequency (MHz)	Measured Output Power (dBm)	Peak Output Power Limit (dBm)
Low	2402	1.17	20.97
Mid	2441	1.33	20.97
High	2480	1.17	20.97

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 26 of 60 www.siemic.com.cr

Output Power Low Channel

Output Power Mid Channel

Output Power High Channel

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 28 of 60

 www.siemic.com.c

5.8 Antenna Port Emission

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB.

3. Environmental Conditions Temperature 25°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

4. Test date : 15 July, 2011 Tested By : Peter Cai

Standard Requirement: Radiated emission limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

Test Result: Pass

Antenna Port Emission Low-1

Antenna Port Emission Low-2

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 30 of 60

www.siemic.com.cn

Antenna Port Emission Low-3

Antenna Port Emission Low-4

Antenna Port Emission Mid-1

Antenna Port Emission Mid-2

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 32 of 60 www.siemic.com.cr

Antenna Port Emission Mid-3

Antenna Port Emission Mid-4

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 33 of 60 www.siemic.com.cr

Antenna Port Emission High-1

Antenna Port Emission High-2

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 34 of 60 www.siemic.com.cr

Antenna Port Emission High-3

Antenna Port Emission High-4

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 35 of 60

 www.siemic.com.ci
 www.siemic.com.ci

5.9 Radiated Spurious Emission < 1GHz

- 1. <u>All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported.</u> All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz & 1GHz above (3m & 10m) is +/-6dB.

4. Environmental Conditions Temperature 25°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

5. Test date: 8 July, 2011 Tested By: Peter Cai

Standard Requirement: The emissions from the Low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges.

Test Result: Pass

| Serial#: 1107008-FCC(B1 | Issue Date: 18 July, 2011 | Page: 36 of 60 | www.siemic.com.

Test Data

Frequency (MHz)	Quasi Peak (dBuV/m)	Azimuth	Polarity(H /V)	Height (cm)	Factors (dB)	Limit (dBuV/m)	Margin (dB)
46.05	34.48	360.00	V	101.00	-33.46	40.00	-5.52
49.47	33.07	360.00	V	106.00	-34.92	40.00	-6.93
31.53	28.18	0.00	V	108.00	-23.47	40.00	-11.82
83.48	26.67	214.00	V	114.00	-38.19	40.00	-13.33
89.15	24.12	277.00	V	101.00	-37.14	43.50	-19.38
792.08	22.36	235.00	Н	365.00	-20.02	46.00	-23.64

Remark: All modes have been investigated, only the worst case test result is presented in the report.

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 37 of 60

 www.siemic.com.c

5.10 Radiated Spurious Emissions > 1GHz & Band Edge

- 1. <u>All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.</u>
- 2. <u>A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.</u>
- 3. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 1GHz & 1GHz above (3m & 10m) is

4. Environmental Conditions Temperature 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar

5. Test date: 8 July, 2011 Tested By: Peter Cai

Standard Requirement: The emissions from the Low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges.

Test Result: Pass

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 38 of 60

@ 2402MHz @ 3 Meter

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.804	2	1.02	٧	5.15	55.00	61.98	74.00	-12.02	Peak
4.804	10	1.10	h	5.15	55.00	62.59	74.00	-11.41	Peak
4.804	16	1.02	٧	5.15	55.00	47.95	54.00	-6.05	Ave
4.804	21	1.10	h	5.15	55.00	49.85	54.00	-4.15	Ave

Emission was scanned up to 25GHz.

@ 2441MHz @ 3Meter

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.882	5	1.10	٧	5.16	55.00	63.64	74.00	-10.36	Peak
4.882	30	1.24	h	5.16	55.00	65.44	74.00	-8.56	Peak
4.882	5	1.10	٧	5.16	55.00	49.61	54.00	-4.39	Ave
4.882	30	1.24	h	5.16	55.00	50.24	54.00	-3.76	Ave

Emission was scanned up to 25GHz.

@ 2480MHz @ 3Meter

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.960	26	1.11	٧	5.17	55.00	63.44	74.00	-10.56	Peak
4.960	7	1.42	h	5.17	55.00	64.78	74.00	-9.22	Peak
4.960	26	1.11	٧	5.17	55.00	50.21	54.00	-3.79	Ave
4.960	7	1.42	h	5.17	55.00	50.63	54.00	-3.37	Ave

Emission was scanned up to 25GHz.

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 39 of 60 www.siemic.com.cn

Band Edge

Channel	Polarity	Detector	Frequency	Result	Limit	Margin
Low Channel	V	Peak	2400	36.77	74	-37.23
Low Channel	Н	Peak	2400	32.12	74	-41.88
Low Channel	V	Avg	2400	26.44	54	-27.56
Low Channel	Н	Avg	2400	24.59	54	-29.41

Channel	Polarity	Detector	Frequency	Result	Limit	Margin
High Channel	V	Peak	2483.5	33.23	74	-40.77
High Channel	Н	Peak	2483.5	35.67	74	-38.33
High Channel	V	Avg	2483.5	24.33	54	-29.67
High Channel	Н	Avg	2483.5	26.75	54	-27.25

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 40 of 60 www.siemic.com.cn

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564 E	2012.05.25
EMI Receiver	Rohde & Schwarz	ESPI 3	2012.05.25
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	2011.10.04
Horn Antenna (1~18GHz)	A-INFOMW	JXTXLB-10180	2012.06.24
Horn Antenna (1~18GHz)	ETS-Lindgren	3115	2012.06.24
Pre-Amplifier(0.01 ~ 1.3GHz)	HP	8447F	2012.05.25
Pre-Amplifier(0.1 ~ 18GHz)	MITEQ	AMF-7D-00101800-30-	2012.05.25
		10P	
Horn Antenna (18~40GHz)	Com Power	AH-840	2012.05.21
Microwave Pre-Amp	Com Power	PA-840	2012.05.21
(18~40GHz)			
Pro.Temp.&Humi. Chamber	MENTEK	MHP-150-1C	2012.05.25
R&S Wireless Communication Test Set	Rohde & Schwarz	CMU 200	2012.02.12

| Serial#: 1107008-FCC(BT) | Issue Date: 18 July, 2011 | Page: 41 of 60 | www.siemic.com.c

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$ (Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96 i.e. **7.96 dB below limit**

Annex A. iii. RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ 100$ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz. VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 44 of 60

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph: EUT External Photo

Front View of EUT

Rear View of EUT

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 45 of 60

Left View of EUT

Right View of EUT

Top View of EUT

Bottom View of EUT

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 47 of 60

Front View of Power Adapter

Front View of PSU Label

Serial#: 1107008-FCC(B1 Issue Date: 18 July, 2011 Page: 48 of 60 www.siemic.com

Annex B.ii. Photograph: EUT Internal Photo

Front View of Main PCB Board

Rear View of Main PCB Board

Serial#: 1107008-FCC(E Issue Date: 18 July, 2011 Page: 49 of 60

Front View of Power Supply PCB Board

Rear View of Power Supply PCB Board

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 50 of 60

Front View of Battery

Rear View of Battery

Serial#: 1107008-FCC(BT Issue Date: 18 July, 2011 Page: 51 of 60

Annex B.iii. Photograph: Test Setup Photo

Front View of Radiated Emission Test Setup below 1GHz

Front View of Radiated Emission Test Setup above 1GHz

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 52 of 60

 www.siemic.com.c

Front View of Conducted Emission Test Setup

Side View of Conducted Emission Test Setup

| Serial#: 1107008-FCC(BT) | Issue Date: 18 July, 2011 | Page: 53 of 60 | www.siemic.com.cr

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A

Block Configuration Diagram for Conducted Emissions

Block Configuration Diagram for Radiated Emissions

Serial#: 1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 56 of 60 www.siemic.com.cc

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was continuous transmitting to stimulate the worst case.

 Serial#:
 1107008-FCC(BT)

 Issue Date:
 18 July, 2011

 Page:
 57 of 60

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

1107008-FCC(BT) Issue Date: 18 July, 2011 Page: 58 of 60

Annex E. SIEMIC ACCREDITATION CERTIFICATES

SIEMIC ACCREDITATION DETAILS: FCC Registration NO:986914

| Serial#: 1107008-FCC(BT) | Issue Date: 18 July, 2011 | Page: 59 of 60 | www.siemic.com.cr

SIEMIC ACCREDITATION DETAILS: FCC Listing, Registration NO:986914

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

April 19, 2011

Registration Number: 986914

SIEMIC Nanjing (China) Laboratories
2-1 Longcang Avenue,
Yuhua Economic and Technology Development Park,
Nanjing, 210039
China

Attention: Leslie Bai.

Re: Measurement facility located at 2-1 Longcang Avenue, Nanjing, China

Anechoic chamber (3 meters) and 3&10 meter OATS

Date of Renewal: April 19, 2011

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

1107008-FCC(BT) Serial#: Issue Date: 18 July, 2011 Page: 60 of 60

SIEMIC ACCREDITATION DETAILS: Industry of Canada Registration No. 4842

Industry Industrie
Canada Canada

January 25, 2011

OUR FILE: 46405-4842 Submission No: 145222

Siemic Nanjing (China) Laboratories

2-1 Longcang Avenue

Yuhua Economic & Technology Dev. Park, Nanjing

China

Attention: Leslie Bai

Dear Sir/Madame:

The Bureau has received your application for the registration of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 4842B-2). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 4842B

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca Please reference our file and submission number above for all correspondence.

Yours sincerely

Dalwinder Gill

For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ave., Building 94 P.O. Box 11490. Station "H Ottawa, Outario K2H 8S2

Email: dalwinder.gill@ic.gc.ca Tel. No. (613) 998-8363 Fax. No. (613) 990-4752