Benefits and complications

$$\Phi^{+}(s) = \Phi^{-}(s) \begin{bmatrix} 1 - |R(s)|^{2} & -\overline{R}(s)e^{-2i\theta(s)}, \\ R(s)e^{2i\theta(s)} & 1 \end{bmatrix}, \quad \Phi(\infty) = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

The (x, t) dependence is explicit via $\theta(s) = xs + 4ts$ — plug in (x, t) and solve numerically!

This is not free: $e^{2i\theta(s)}$ is highly oscillatory.

The current method to treat this involves contour deformations.

Steepest descent

To illustrate the complications that arise in solving this RH problem for all x and t, consider solving the linear equation

$$-iq_t + q_{xx} = 0$$
, $q(x,0) = q_0(x)$, $q(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{isx + is^2 t} \hat{q}_0(s) ds$.

$$e^{isx+is^2t}$$
 for $s \in \mathbb{R}$

$$z_0 = -\frac{x}{2t}$$

$$e^{isx+is^2t}$$
 for $s \in \Gamma$

