Конспект по линейной алгебре

Подготовка к экзамену. 4 модуль by $A \kappa E \delta$ (feat. Qwen3)

24 июня 2025 г.

Содержание

1	Двойственность между подпространствами и двойственным простран-	•
	СТВОМ	3
2	Билинейные отображения и формы	3
3	Вычисление формы через матрицу Грама	4
4	Симметрические билинейные формы и квадратичные формы	4
5	Невырожденные формы	4
6	Аксиомы евклидова и унитарного пространства, КБШ, длины и углы, ортогональность/нормированность	5
7	Процесс ортогонализации Грама–Шмидта. Изометрия евклидовых пространств	6
8	Свойства координат в ортонормированном базисе, теорема Пифагора	6
9	Ортогональное дополнение к подпространству: основная теорема	6
10	Расстояние от точки до подпространства	7
11	Полуторалинейные формы, унитарное пространство, эрмитовость	7
12	Необходимое условие положительной определенности квадратичных форм	л 8
13	Критерий Сильвестра. Разложение Холецкого	8
14	Теорема Лагранжа о диагонализации квадратичных форм	8
15	Закон инерции квадратичных форм	9
16	Двойственность как функтор, дуальный оператор	9
17	Определение сопряженного оператора через дуальный, простейшие свойства	9
18	Сопряженный оператор, определение формулой и явное вычисление	10

19	нах. Собственные числа ССО	10
20	Теорема о канонической форме самосопряжённого оператора (с леммой)	11
21	Оценка квадратичной формы	11
22	Ортогональные и унитарные операторы, равносильные матричные и геометрические переформулировки	12
23	Ортогональная/унитарная группа, примеры	12
24	Собственные числа и каноническая форма унитарного оператора	13
2 5	Канонический вид ортогонального оператора — геометрический смысл и маломерные примеры	13
26	Переход от жорданова базиса унитарного оператора к вещественному	14
27	Превращение вещественного базиса для унитарного вещественного оператора в канонический вид ортогонального оператора	14
28	Матричные переформулировки теорем о каноническом виде для ортогональных, унитарных и самосопряжённых операторов	15
2 9	Приведение квадратичной формы к каноническому виду	15
30	Положительный самосопряженный оператор – переформулировка через собственные числа, извлечение квадратного корня	16
31	Полярное разложение матрицы, геометрический смысл	17
32	SVD-разложение	17
33	Группы, порожденные набором элементов, два описания	17
34	Группы как множества слов в абелевом и неабелевом случае, графы Кэли, примеры	18
35	Теорема Кэли	18
36	Левые и правые смежные классы, теорема Лагранжа	18
37	Индекс, биекция между левыми и правыми классами, примеры их несов- падения	19
38	Нормальность, равносильные определения, примеры	19
39	Факторгруппа, примеры	20
40	Простые группы, гомоморфизмы, ядро и образ	20
41	Теорема о гомоморфизме и её применения	20

42 Действия групп: определения, примеры, орбиты и стабилизаторы

24

- 43 Лемма Бернсайда, подсчёт ожерелий, центр р-группы и прочая группамагия
- 44 Примеры групп порядка p^3 , теоремы о группах порядка pq, теоремы Силова
- 45 Несостоятельность "размерности" в теории групп, подгруппы в S_n , лемма Шрайера и алгоритм Шрайера-Симса 27

1 Двойственность между подпространствами и двойственным пространством

Определение 1 (Двойственное пространство). Пусть V- векторное пространство над полем \mathbb{F} . Тогда двойственным пространством V^* называется множество всех линейных функционалов на V, то есть отображений $f:V\to\mathbb{F}$, удовлетворяющих:

$$f(\alpha v + \beta w) = \alpha f(v) + \beta f(w), \quad \forall v, w \in V, \ \alpha, \beta \in \mathbb{F}.$$

Пример 1. Если $V = \mathbb{R}^n$, то любой линейный функционал можно записать как $f(x_1, ..., x_n) = a_1x_1 + ... + a_nx_n$ для некоторых $a_i \in \mathbb{R}$.

Определение 2 (Аннулятор подпространства). Пусть $U \subseteq V - nodnpocmpaнство$. Тогда его аннулятор определяется как:

$$U^0 := \{ f \in V^* \mid f(u) = 0 \ \forall u \in U \}.$$

Свойство 1 (Основная двойственность). *Если* dim $V < \infty$, *mo*:

$$\dim U^0 = \dim V - \dim U.$$

Замечание 1. Таким образом, каждому подпространству $U \subseteq V$ соответствует подпространство $U^0 \subseteq V^*$, и эта связь взаимна: если мы возьмём аннулятор U^0 в V^* , то получим исходное U при подходящих условиях.

2 Билинейные отображения и формы

Определение 3 (Билинейное отображение). Отображение $B: V \times W \to \mathbb{F}$ называется билинейным, если оно линейно по каждой переменной при фиксированной другой:

$$B(\alpha v_1 + \beta v_2, w) = \alpha B(v_1, w) + \beta B(v_2, w),$$

$$B(v, \alpha w_1 + \beta w_2) = \alpha B(v, w_1) + \beta B(v, w_2).$$

Определение 4 (Билинейная форма). *Если* V = W, то $B: V \times V \to \mathbb{F}$ называется билинейной формой.

Пример 2. Стандартный пример билинейной формы — скалярное произведение:

$$B(v, w) = v \cdot w = \sum_{i=1}^{n} v_i w_i.$$

Определение 5 (Матрица Грама). Пусть B — билинейная форма на V, $\{e_1, ..., e_n\}$ — базис V. Тогда матрицей Грама формы B в этом базисе называется матрица $G = (g_{ij})$, где:

$$g_{ij} = B(e_i, e_j).$$

3 Вычисление формы через матрицу Грама

Предложение 1 (Формула вычисления). Пусть $v = \sum_{i=1}^{n} v_i e_i$, $w = \sum_{j=1}^{n} w_j e_j$. Тогда:

$$B(v, w) = \sum_{i,j=1}^{n} g_{ij} v_i w_j = [v]^T G[w],$$

 $z \partial e [v], [w] - c m o n b u u k o o p d u h a m b e k m o p o b v, w в d a h h o m b a s u c e.$

Замечание 2. То есть формулу можно читать так: "умножь транспонированный вектор слева на матрицу Грама, а потом справа на второй вектор".

Предложение 2 (Изменение матрицы Грама при замене базиса). Пусть P- матрица перехода от старого базиса к новому. Тогда новая матрица Грама:

$$G' = P^T G P$$
.

4 Симметрические билинейные формы и квадратичные формы

Определение 6 (Симметрическая билинейная форма). *Форма В называется симметрической, если:*

$$B(v, w) = B(w, v) \quad \forall v, w \in V.$$

Определение 7 (Квадратичная форма). Функция $Q: V \to \mathbb{F}$ называется квадратичной формой, если существует симметричная билинейная форма B, такая что:

$$Q(v) = B(v, v).$$

Предложение 3 (Биекция между симметричными билинейными и квадратичными формами). Если char $\mathbb{F} \neq 2$, то между симметричными билинейными формами и квадратичными формами существует взаимно однозначное соответствие:

$$B(v, w) = \frac{1}{2}(Q(v + w) - Q(v) - Q(w)).$$

5 Невырожденные формы

Определение 8 (Невырожденная билинейная форма). Форма B называется невыроженной, если из равенства B(v,w) = 0 для всех $w \in V$ следует v = 0.

Или другими словами: ядро отображения $v \mapsto B(v,\cdot)$ тривиально.

Предложение 4 (Равносильные условия невырожденности). *Следующие утверждения равносильны:*

- (1) Форма В невырожденна.
- (2) Отображение $\varphi_B: V \to V^*$, заданное как $\varphi_B(v)(w) = B(v, w)$, является изоморфизмом.
- (3) Матрица Грама G невырожденна (m.e. $\det G \neq 0$).

Замечание 3. Таким образом, невырожденная форма позволяет нам «перепрыгивать» между пространством и двойственным к нему без потерь информации.

6 Аксиомы евклидова и унитарного пространства, КБШ, длины и углы, ортогональность/нормированность

Определение 9 (Евклидово пространство). Евклидовым пространством называется вещественное векторное пространство V, на котором задано скалярное произведение — симметричная положительно определённая билинейная форма $(\cdot,\cdot): V \times V \to \mathbb{R}$, удовлетворяющая следующим аксиомам:

- 1. (x + y, z) = (x, z) + (y, z),
- 2. $(\alpha x, y) = \alpha(x, y)$ для любого $\alpha \in \mathbb{R}$,
- 3. (x,y) = (y,x),
- 4. $(x,x) > 0 \text{ npu } x \neq 0$.

Такое пространство обозначается $(V, (\cdot, \cdot))$.

Определение 10 (Унитарное пространство). Унитарным пространством называется комплексное векторное пространство V, на котором задана эрмитова форма, то есть отображение $(\cdot,\cdot): V \times V \to \mathbb{C}$, удовлетворяющее следующим аксиомам:

- 1. (x + y, z) = (x, z) + (y, z),
- 2. $(\alpha x, y) = \alpha(x, y)$ для любого $\alpha \in \mathbb{C}$,
- $\beta. (x,y) = \overline{(y,x)},$
- 4. $(x, x) > 0 \text{ npu } x \neq 0.$

[Неравенство Коши–Буняковского–Шварца (КБШ)] Для любых $x, y \in V$:

$$|(x,y)| < ||x|| \cdot ||y||$$
.

Равенство достигается тогда и только тогда, когда x и y линейно зависимы.

Определение 11 (Длина (норма), угол между векторами). Длина (или норма) вектораx:

$$||x|| = \sqrt{(x,x)}.$$

Угол θ межеду двумя ненулевыми векторами x и y определяется как:

$$\cos \theta = \frac{(x,y)}{\|x\| \cdot \|y\|}.$$

Определение 12 (Ортогональность). Два вектора x, y в евклидовом или унитарном пространстве называются ортогональными, если (x,y) = 0. Обозначение: $x \perp y$.

Вектор x называется нормированным, если ||x|| = 1.

Определение 13 (Нормированное пространство). Пространство V называется нормированным, если на нём задана функция $\|\cdot\|:V\to\mathbb{R}_{\geq 0}$, удовлетворяющая аксиомам:

- 1. $||x|| = 0 \iff x = 0$,
- 2. $\|\alpha x\| = |\alpha| \cdot \|x\|$,
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).

7 Процесс ортогонализации Грама—Шмидта. Изометрия евклидовых пространств

Предложение 5 (Метод Грама–Шмидта). Любой базис $\{e_1, ..., e_n\}$ евклидова пространства можно преобразовать в ортонормированный базис $\{f_1, ..., f_n\}$ следующим образом:

$$u_{1} = e_{1},$$

$$u_{2} = e_{2} - \frac{(e_{2}, u_{1})}{(u_{1}, u_{1})} u_{1},$$

$$u_{3} = e_{3} - \frac{(e_{3}, u_{1})}{(u_{1}, u_{1})} u_{1} - \frac{(e_{3}, u_{2})}{(u_{2}, u_{2})} u_{2},$$

$$\vdots$$

$$f_{i} = \frac{u_{i}}{\|u_{i}\|}.$$

Определение 14 (Изометрия евклидовых пространств). Отображение $T:V\to W$ межеду евклидовыми пространствами называется изометрией, если оно сохраняет скалярное произведение:

$$(Tx, Ty)_W = (x, y)_V \quad \forall x, y \in V.$$

Замечание 4. Изометрия сохраняет длины, углы и ортогональность.

8 Свойства координат в ортонормированном базисе, теорема Пифагора

Предложение 6 (Координаты в ОНБ). *Если* $\{e_1, ..., e_n\}$ — *ортонормированный базис* (ОНБ), то для любого $x \in V$:

$$x = \sum_{i=1}^{n} (x, e_i)e_i.$$

Kоэффициенты разложения — это просто проекции x на базисные векторы.

[Теорема Пифагора] Если $x \perp y$, то:

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Если $x_1, ..., x_k$ попарно ортогональны, то:

$$\left\| \sum_{i=1}^k x_i \right\|^2 = \sum_{i=1}^k \|x_i\|^2.$$

9 Ортогональное дополнение к подпространству: основная теорема

Определение 15 (Ортогональное дополнение). Пусть $U \subseteq V$ — подпространство евклидова пространства. Тогда его ортогональным дополнением называется множество:

$$U^{\perp} := \{ v \in V \mid (v, u) = 0 \ \forall u \in U \}.$$

[Основная теорема об ортогональном разложении] Для любого подпространства $U\subseteq V$ имеет место ортогональное разложение:

$$V = U \oplus U^{\perp}$$
.

То есть любой вектор $v \in V$ можно единственным образом представить в виде v = u + w, где $u \in U$, $w \in U^{\perp}$.

10 Расстояние от точки до подпространства

Определение 16 (Расстояние от точки до подпространства). Пусть $U \subseteq V - nodnpo-$ странство евклидова пространства, $v \in V$. Тогда расстоянием от v до U называется:

$$\operatorname{dist}(v, U) = \min_{u \in U} \|v - u\|.$$

[Формула расстояния через ортогональную проекцию] Если $p_U(v)$ — ортогональная проекция v на U, то:

$$dist(v, U) = ||v - p_U(v)||.$$

Пример 3. Пусть $U = \text{span}\{e_1, e_2\} \subset \mathbb{R}^3$, v = (1, 2, 3). Тогда $p_U(v) = (1, 2, 0)$, $u \operatorname{dist}(v, U) = \|v - p_U(v)\| = \|(0, 0, 3)\| = 3$.

11 Полуторалинейные формы, унитарное пространство, эрмитовость

Определение 17 (Полуторалинейная форма). *Отображение* $\alpha: V \times V \to \mathbb{C}$ называется полуторалинейной формой, если оно:

1. линейно по второму аргументу:

$$\alpha(v, w + w') = \alpha(v, w) + \alpha(v, w'), \quad \alpha(v, \lambda w) = \lambda \alpha(v, w),$$

2. полулинейно (сопряжённо-линейно) по первому аргументу:

$$\alpha(v + v', w) = \alpha(v, w) + \alpha(v', w), \quad \alpha(\lambda v, w) = \overline{\lambda}\alpha(v, w).$$

Определение 18 (Эрмитова форма). Полуторалинейная форма α называется эрмитовой, если она удовлетворяет условию симметрии:

$$\alpha(v, w) = \overline{\alpha(w, v)}.$$

Определение 19 (Унитарное пространство). Комплексное векторное пространство V, на котором задана положительно определённая эрмитова форма, называется унитарным пространством. Формально, это значит:

$$(v,v) > 0$$
 для всех $v \neq 0$.

12 Необходимое условие положительной определенности квадратичных форм

Определение 20 (Квадратичная форма). Функция $Q: V \to \mathbb{R}$ называется квадратичной формой, если существует симметричная билинейная форма B, такая что:

$$Q(v) = B(v, v).$$

Определение 21 (Положительно определённая квадратичная форма). Kвадратичная форма Q называется положительно определённой, если:

$$Q(v) > 0$$
 для всех $v \neq 0$.

Предложение 7 (Необходимое условие положительной определённости). Если матрица A соответствует квадратичной форме $Q(x) = x^T A x$, то необходимым условием положительной определённости является положительность всех главных миноров матрицы A.

13 Критерий Сильвестра. Разложение Холецкого

[Критерий Сильвестра] Симметричная матрица $A \in \mathbb{R}^{n \times n}$ положительно определена тогда и только тогда, когда все её угловые миноры положительны:

$$\Delta_1 = a_{11} > 0, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \quad ..., \quad \Delta_n = \det A > 0.$$

[Разложение Холецкого] Если A — симметричная положительно определённая матрица, то её можно представить в виде:

$$A = LL^T$$
,

где L — нижняя треугольная матрица с положительными диагональными элементами.

14 Теорема Лагранжа о диагонализации квадратичных форм

[Лагранжа] Любую квадратичную форму $Q(x_1,...,x_n)$ можно привести к сумме квадратов новых переменных с помощью невырожденной замены координат:

$$Q(x) = \sum_{i=1}^{r} \lambda_i y_i^2,$$

где $r = \operatorname{rk}(Q), \lambda_i \in \mathbb{R} \setminus \{0\}.$

Замечание 5. Это утверждение часто называют диагонализацией квадратичной формы. Оно работает над любыми полями характеристики не 2.

15 Закон инерции квадратичных форм

[Закон инерции квадратичных форм] Число положительных и отрицательных коэффициентов при квадратах в нормальном виде квадратичной формы не зависит от способа приведения к этому виду.

Другими словами, *число положительных и отрицательных собственных значений* матрицы формы инвариантно.

Определение 22 (Индекс инерции). Число положительных (соответственно, отрицательных) слагаемых в нормальном виде квадратичной формы называется положительным (отрицательным) индексом инерции.

[Следствие из закона инерции] Для любой квадратичной формы:

rk(Q) = положительный индекс + отрицательный индекс.

16 Двойственность как функтор, дуальный оператор

Определение 23 (Двойственное пространство). Пусть V — векторное пространство над полем \mathbb{F} . Тогда двойственным пространством κ нему называется множество всех линейных отображений из V в \mathbb{F} , то есть:

$$V^* = \operatorname{Lin}(V, \mathbb{F}).$$

Элементы этого пространства называются линейными функционалами.

Замечание 6. *Ecлu* dim $V < \infty$, mo dim $V^* = \dim V$.

Определение 24 (Дуальный оператор). Пусть $f: V \to W$ — линейный оператор между конечномерными векторными пространствами. Тогда ему соответствует дуальный оператор $f^{\circ}: W^* \to V^*$, определённый правилом:

$$f^{\circ}(\varphi)(v) = \varphi(f(v)), \quad \forall \varphi \in W^*, \ v \in V.$$

Замечание 7. То есть если φ «берёт» элемент из W и возвращает число, то $f^*(\varphi)$ «берёт» элемент из V, отправляет его через f в W, а потом применяет φ .

Предложение 8 (Функториальность двойственности). *Если* $f: V \to W, g: W \to U$ — линейные отображения, то:

$$(g \circ f)^{\circ} = f^{\circ} \circ g^{\circ}.$$

 $Taк > ce (id_V)^\circ = id_{V^*}.$

Замечание 8. Это означает, что переход κ двойственному пространству — это контравариантный функтор на категории векторных пространств.

17 Определение сопряженного оператора через дуальный, простейшие свойства

Определение 25 (Сопряжённый оператор). Пусть V и W — евклидовы пространства (или унитарные). Тогда для любого линейного оператора $f:V\to W$ можно определить сопряжённый оператор $f^*:W\to V$, удовлетворяющий соотношению:

$$(f(v), w)_W = (v, f^*(w))_V \quad \forall v \in V, \ w \in W.$$

Замечание 9. Сопряжённый оператор — это аналог дуального оператора, но действующий между исходными пространствами, а не их двойственными.

Предложение 9 (Простейшие свойства сопряжённого оператора). 1. Если $f:V \to W, g:W \to U, mo (g \circ f)^* = f^* \circ g^*,$

2.
$$(\alpha f + \beta g)^* = \overline{\alpha} f^* + \overline{\beta} g^*$$
,

3.
$$(f^*)^* = f$$
.

18 Сопряженный оператор, определение формулой и явное вычисление

Предложение 10 (Вычисление сопряжённого оператора в координатах). Пусть $V = \mathbb{R}^n$ или \mathbb{C}^n , и пусть A — матрица линейного оператора f в некотором ортонормированном базисе. Тогда матрицей сопряжённого оператора f^* будет:

- A^T — транспонированная матрица, если $V=\mathbb{R}^n$, - $A^*=\overline{A^T}$ — эрмитово сопряжённая матрица, если $V=\mathbb{C}^n$.

Пример 4. Пусть $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$. Тогда:

$$A^* = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}^* = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}^T = \begin{pmatrix} 1 & -i \\ i & 2 \end{pmatrix}.$$

Замечание 10. В унитарном случае сопряжённый оператор играет роль аналога комплексносопряжённого числа.

19 Самосопряженные операторы, самосопряженность в матричных терминах. Собственные числа ССО

Определение 26 (Самосопряжённый оператор). Линейный оператор $f:V\to V$ на евклидовом или унитарном пространстве называется самосопряжённым, если:

$$f^* = f$$
.

Предложение 11 (Матричная форма самосопряжённого оператора). *Если* f — *самосо-пряжённый оператор*, u A — *его матрица в ортонормированном базисе*, mo:

$$A^* = A$$
.

B вещественном случае это значит, что A- симметричная матрица; в комплексном - эрмитова.

[Собственные числа самосопряжённого оператора] Все собственные значения самосопряжённого оператора вещественны.

Идея доказательства. Если $f(v) = \lambda v$, то:

$$(f(v), v) = (\lambda v, v) = \lambda(v, v),$$

но также:

$$(f(v), v) = (v, f(v)) = (v, \lambda v) = \overline{\lambda}(v, v).$$

Значит, $\lambda = \overline{\lambda}$, то есть $\lambda \in \mathbb{R}$.

20 Теорема о канонической форме самосопряжённого оператора (с леммой)

 $[O\ cyществовании\ coбственного\ вектора]\ Всякий\ самосопряжённый\ оператор\ f$ на ненулевом евклидовом или унитарном пространстве имеет хотя бы один собственный вектор.

Идея доказательства. Рассмотрим функцию Q(x) = (f(x), x) при условии ||x|| = 1. Эта функция достигает максимума, и в точке максимума можно показать, что $f(x) = \lambda x$. \square

[Каноническая форма самосопряжённого оператора] В любом конечномерном евклидовом или унитарном пространстве существует ортонормированный базис, в котором матрица самосопряжённого оператора диагональна, и на диагонали стоят его собственные значения:

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Замечание 11. Это означает, что самосопряжённый оператор всегда приводится к диагональному виду в подходящем ортонормированном базисе.

Если f — самосопряжённый оператор, то он диагонализируем.

21 Оценка квадратичной формы

Определение 27 (Квадратичная форма). Пусть V — векторное пространство над \mathbb{R} . Функция $Q:V\to\mathbb{R}$ называется квадратичной формой, если она задаётся однородным многочленом второй степени от координат вектора $x\in V$.

Можно также записать:

$$Q(x) = x^T A x,$$

 $r\partial e A - c$ имметричная матрица.

Определение 28 (Оценка квадратичной формы на единичной сфере). *Часто нас интересует*, какую максимальную или минимальную величину может принимать Q(x) при условии ||x|| = 1. Это помогает понять поведение формы в целом.

Формально:

$$\max_{\|x\|=1} Q(x), \quad \min_{\|x\|=1} Q(x).$$

Предложение 12 (Экстремальные значения квадратичной формы). *Если* $Q(x) = x^T A x$, *то*:

- Максимальное значение Q(x) на единичной сфере равно наибольшему собственному значению матрицы A, - Минимальное значение Q(x) на единичной сфере равно наименьшему собственному значению матрицы A.

Пример 5. Рассмотрим $Q(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 3x_2^2$. Тогда её матрица:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}.$$

Собственные значения: $\lambda_1 = 4, \ \lambda_2 = 2.$ Значит:

$$\max_{\|x\|=1} Q(x) = 4, \quad \min_{\|x\|=1} Q(x) = 2.$$

22 Ортогональные и унитарные операторы, равносильные матричные и геометрические переформулировки

Определение 29 (Ортогональный оператор). Линейный оператор $f: V \to V$ на евклидовом пространстве V называется ортогональным, если он сохраняет скалярное произведение:

$$(f(v), f(w)) = (v, w) \quad \forall v, w \in V.$$

Определение 30 (Унитарный оператор). Аналогично, линейный оператор $f: V \to V$ на унитарном пространстве V называется унитарным, если:

$$(f(v), f(w)) = (v, w) \quad \forall v, w \in V.$$

Предложение 13 (Равносильные условия). Для линейного оператора f следующие условия равносильны:

- 1. f ортогонален (унитарен),
- 2. $f^* = f^{-1}$,
- 3. f сохраняет длину любого вектора: ||f(v)|| = ||v||,
- 4. f переводит ортонормированный базис в ортонормированный.

Замечание 12. Ортогональные операторы — это изометрии евклидова пространства; унитарные — аналог для комплексного случая.

23 Ортогональная/унитарная группа, примеры

Определение 31 (Ортогональная группа). *Множество всех ортогональных операторов* на \mathbb{R}^n образует группу относительно композиции, обозначаемую O(n).

Аналогично, множество всех унитарных операторов на \mathbb{C}^n образует группу U(n).

- 2. $U(n) \subset GL(n,\mathbb{C}) no\partial pynna$,
- 3. Для любой матрицы $A \in O(n)$ выполняется $A^{T}A = I$,
- 4. Для $A \in U(n)$ выполняется $A^*A = I$.

Пример 6. *Матрица поворота на угол* θ $\in \mathbb{R}^2$:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

является элементом O(2).

24 Собственные числа и каноническая форма унитарного оператора

[Собственные числа унитарного оператора] Все собственные значения унитарного оператора имеют модуль 1, то есть являются комплексными числами вида $e^{i\theta}$.

То есть если λ — собственное значение, то $|\lambda|=1$.

Идея доказательства. Если $f(v) = \lambda v$, то:

$$||v||^2 = (v, v) = (f(v), f(v)) = (\lambda v, \lambda v) = |\lambda|^2 (v, v) = |\lambda|^2 ||v||^2.$$

Отсюда
$$|\lambda|^2 = 1$$
.

[Канонический вид унитарного оператора] В подходящем ортонормированном базисе матрица унитарного оператора имеет вид:

$$\begin{pmatrix} e^{i\theta_1} & 0 & \cdots & 0 \\ 0 & e^{i\theta_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\theta_n} \end{pmatrix}.$$

То есть диагональная матрица с комплексными числами модуля 1 на диагонали.

Замечание 13. Это аналог жордановой формы для унитарных операторов.

25 Канонический вид ортогонального оператора — геометрический смысл и маломерные примеры

[Канонический вид ортогонального оператора] В подходящем ортонормированном базисе матрица ортогонального оператора в \mathbb{R}^n имеет блочно-диагональный вид, где каждый блок размера 1×1 или 2×2 :

- ± 1 — для собственных значений ± 1 , - $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ — для пар комплексно-сопряжённых собственных значений $e^{\pm i\theta}$.

Замечание 14. Геометрически это означает, что ортогональный оператор можно представить как комбинацию отражений и поворотов.

Пример 7 (Пример в \mathbb{R}^2). *Матрица поворота:*

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

соответствует повороту плоскости на угол θ , и является ортогональной матрицей.

Пример 8 (Пример в \mathbb{R}^3). Матрица вращения вокруг оси z:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

сохраняет ориентацию и является элементом $SO(3) \subset O(3)$.

26 Переход от жорданова базиса унитарного оператора к вещественному

Определение 32 (Жорданов базис). Пусть $f: V \to V$ — линейный оператор на комплексном пространстве V. Тогда существует базис (не обязательно ортонормированный), в котором матрица f имеет экорданову нормальную форму:

$$J = \begin{pmatrix} \lambda_1 & * & & \\ & \lambda_2 & * & \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix},$$

где звёздочки обозначают либо 0, либо 1 (на первой наддиагонали).

Замечание 15. Для унитарных операторов собственные значения имеют модуль 1, то есть они имеют вид $e^{i\theta}$.

Предложение 14 (Переход к вещественному представлению). Если f — унитарный оператор на комплексном пространстве V, и его матрица в некотором базисе имеет жорданову форму, то при переходе к вещественному представлению комплексные собственные значения $e^{i\theta}$ заменяются на блоки вида:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Эти блоки соответствуют поворотам на угол θ в двумерных вещественных подпространствах.

Пример 9. Пусть $\lambda = i$ — собственное значение унитарного оператора. Тогда в вещественном виде ему соответствует блок:

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
,

что соответствует повороту на 90° .

27 Превращение вещественного базиса для унитарного вещественного оператора в канонический вид ортогонального оператора

Определение 33 (Унитарный вещественный оператор). Оператор $f:V\to V$ на вещественном евклидовом пространстве называется унитарным вещественным, если он сохраняет скалярное произведение:

$$(f(v), f(w)) = (v, w) \quad \forall v, w \in V,$$

то есть является ортогональным оператором.

[Канонический вид ортогонального оператора] В подходящем ортонормированном базисе матрица ортогонального оператора имеет блочно-диагональный вид, где каждый блок— это либо ± 1 , либо поворотная матрица:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Такой вид достигается путём перехода от комплексных собственных значений к их вещественным представлениям.

Пример 10. Рассмотрим унитарный оператор с собственными значениями $e^{\pm i\theta}$. В вещественном базисе он представляется как:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Это элемент группы SO(2), то есть поворот плоскости на угол θ .

28 Матричные переформулировки теорем о каноническом виде для ортогональных, унитарных и самосопряжённых операторов

[Каноническая форма самосопряжённого оператора] Любая эрмитова матрица A приводится к диагональному виду через унитарное преобразование:

$$A = UDU^*, \quad D = \operatorname{diag}(\lambda_1, ..., \lambda_n),$$

где $\lambda_i \in \mathbb{R}$ — собственные значения $A,\,U \in U(n)$ — унитарная матрица.

[Каноническая форма унитарного оператора] Любая унитарная матрица A приводится к диагональному виду через унитарное преобразование:

$$A = UDU^*, \quad D = \operatorname{diag}(e^{i\theta_1}, ..., e^{i\theta_n}).$$

[Каноническая форма ортогонального оператора] Любая ортогональная матрица $A \in O(n)$ приводится к блочно-диагональному виду:

$$A = QBQ^{T}, \quad B = \bigoplus_{j=1}^{k} \begin{cases} \pm 1, \\ \cos \theta_{j} & -\sin \theta_{j} \\ \sin \theta_{j} & \cos \theta_{j} \end{cases}$$

с помощью ортогональной матрицы Q.

Замечание 16. Таким образом, все три типа операторов допускают диагонализацию или блочную диагонализацию с помощью унитарных/ортогональных преобразований.

29 Приведение квадратичной формы к каноническому виду

Определение 34 (Канонический вид квадратичной формы). *Квадратичная форма* $Q(x) = x^T A x$ называется приведённой к каноническому виду, если она записана как сумма квадратов новых переменных:

$$Q(y) = \sum_{i=1}^{n} \lambda_i y_i^2.$$

[Метод Лагранжа] Любую квадратичную форму можно привести к каноническому виду с помощью невырожденной замены переменных:

$$x = Cy, \quad C \in GL(n, \mathbb{R}),$$

после чего матрица формы становится диагональной.

Пример 11. Рассмотрим $Q(x_1, x_2) = 3x_1^2 + 4x_1x_2 + 2x_2^2$. После замены:

$$y_1 = x_1 + \frac{2}{3}x_2, \quad y_2 = x_2,$$

форма принимает вид:

$$Q(y_1, y_2) = 3y_1^2 - \frac{2}{3}y_2^2.$$

Замечание 17. Приведение Канонический вид не единственен, но количество положительных и отрицательных коэффициентов (знакопеременная часть) определяется законом инерции.

30 Положительный самосопряженный оператор – переформулировка через собственные числа, извлечение квадратного корня

Определение 35 (Положительный самосопряжённый оператор). Самосопряжённый оператор A на евклидовом или унитарном пространстве называется положительным, если для любого ненулевого вектора v выполняется:

Eсли вместо строгого неравенства стоит нестрогое (≥ 0), то оператор называется неотрицательным.

Предложение 15 (Через собственные значения). *Самосопряжённый оператор положителен тогда и только тогда, когда все его собственные значения положительны.*

Пример 12. Рассмотрим матрицу:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

 $E\ddot{e}$ собственные значения: $\lambda_1=3,\ \lambda_2=1.$ Оба положительны A — положительный самосопряженный оператор.

[Извлечение квадратного корня] Для любого положительного самосопряжённого оператора A существует единственный положительный самосопряжённый оператор B, такой что:

$$B^2 = A$$
.

Такой B обозначают \sqrt{A} или $A^{1/2}$.

 $\mathit{Идея}\ \mathit{доказательства}.\$ В ортонормированном базисе, где A диагональна, достаточно взять квадратные корни из собственных значений. Полученная диагональная матрица будет искомым B.

Пример 13. Для матрицы:

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}, \quad \sqrt{A} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

31 Полярное разложение матрицы, геометрический смысл

[Полярное разложение] Любую невырожденную матрицу $A \in GL(n, \mathbb{R})$ можно представить в виде:

$$A = UP$$
,

где $U \in O(n)$ — ортогональная матрица («поворот»), а P — положительно определённая симметричная матрица («растяжение»).

Замечание 18. Можно также записать A = QV, где $V \in O(n)$, Q — положительно определённая.

Пример 14. Пусть:

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}.$$

Тогда можно найти U и P, такие что A=UP, где $P=\sqrt{A^TA}$, а $U=AP^{-1}$.

Замечание 19 (Геометрический смысл). Полярное разложение показывает, что любое линейное преобразование можно представить как «сначала растяжение», потом «поворот» (или наоборот). Это полезно в компьютерной графике, физике и анализе данных.

32 SVD-разложение

[Singular Value Decomposition, SVD] Любая матрица $A \in \mathbb{R}^{m \times n}$ допускает разложение вида:

$$A = U\Sigma V^T$$
.

где:

- $U \in \mathbb{R}^{m \times m}$ — ортогональная матрица, - $V \in \mathbb{R}^{n \times n}$ — ортогональная матрица, - $\Sigma \in \mathbb{R}^{m \times n}$ — прямоугольная диагональная матрица с сингулярными числами $\sigma_i \geq 0$ на диагонали.

Замечание 20. Сингулярные числа — это квадратные корни из собственных значений матрицы A^TA (или AA^T).

Пример 15. Пусть:

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$

Тогда:

$$U = I, \quad \Sigma = A, \quad V = I.$$

Замечание 21. SVD используется в машинном обучении, компрессии данных, рекомендательных системах и многом другом.

33 Группы, порожденные набором элементов, два описания

Определение 36 (Группа, порожденная множеством). Пусть G — группа, $S \subseteq G$. Тогда подгруппа $\langle S \rangle$, порожденная множеством S, состоит из всех элементов группы G, которые можно получить, применяя конечное число операций умножения и взятия обратного элемента κ элементам S.

 Φ ормально:

$$\langle S \rangle = \bigcap_{\substack{H \leq G \\ S \subseteq H}} H.$$

Замечание 22. Это наименьшая подгруппа, содержащая S.

Пример 16. $\langle 2 \rangle$ в аддитивной группе $(\mathbb{Z}, +)$ — это множество всех чётных чисел.

Предложение 16 (Альтернативное описание). *Множество* $\langle S \rangle$ *состоит из всевозможеных произведений:*

 $s_1^{\pm 1} s_2^{\pm 1} \cdots s_k^{\pm 1}, \quad k \in \mathbb{N}, \ s_i \in S.$

34 Группы как множества слов в абелевом и неабелевом случае, графы Кэли, примеры

Определение 37 (Свободная группа). Пусть S — некоторый алфавит. Свободная группа F(S) состоит из всех конечных слов в алфавите $S \cup S^{-1}$, таких что рядом не стоят символы вида aa^{-1} или $a^{-1}a$.

Операция — приписывание одного слова к другому, с последующим сокращением.

Пример 17. Слово $ab^{-1}ba^{-1}c$ после сокращений превратится в ac.

Определение 38 (Граф Кэли). Пусть G — группа, $S \subseteq G$ — порождающее множество. Граф Кэли $\Gamma(G,S)$ имеет вершины, соответствующие элементам G, и ребро из g в gs помеченное символом $s \in S$.

Пример 18. Граф Кэли $\Gamma(\mathbb{Z}, \{1\})$ — бесконечная цепочка: $\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots$

Замечание 23. Графы Кэли помогают визуализировать группу и понять её структуру.

35 Теорема Кэли

[Кэли] Любая конечная группа G изоморфна подгруппе группы перестановок S_n для некоторого n.

Идея доказательства. Каждому элементу $g \in G$ сопоставим перестановку $\varphi_g : G \to G$, заданную правилом $\varphi_g(x) = gx$. Отображение $g \mapsto \varphi_g$ является инъективным гомоморфизмом.

Пример 19. Группа $\mathbb{Z}_3 = \{0, 1, 2\}$ изоморфна циклической подгруппе $\langle (1\ 2\ 3) \rangle \subset S_3$.

Замечание 24. Теорема Кэли позволяет рассматривать любую группу как группу перестановок, что даёт мощный аппарат для анализа.

36 Левые и правые смежные классы, теорема Лагранжа

Определение 39 (Смежный класс). Пусть $G - \epsilon pynna$, $H \subseteq G - \epsilon e nod \epsilon pynna$, $a \in G$. Тогда:

- Левым смежным классом элемента a по подгруппе H называется множество:

$$aH = \{ah \mid h \in H\}.$$

- Правым смежным классом элемента а по подгруппе Н называется множество:

$$Ha = \{ ha \mid h \in H \}.$$

Замечание 25. Левые и правые смежные классы могут не совпадать, если группа не абелева.

[Теорема Лагранжа] Если G — конечная группа, $H \leq G$, то порядок H делит порядок G, и число левых (или правых) смежных классов равно:

$$[G:H] = \frac{|G|}{|H|}.$$

Это число называется undercom подгруппы H в группе G.

Пример 20. Рассмотрим группу S_3 перестановок трёх элементов ($|S_3| = 6$), и пусть $H = \{e, (12)\}$. Тогда:

$$[G:H] = \frac{6}{2} = 3.$$

Имеем три левых смежных класса: H, (13)H, (23)H.

37 Индекс, биекция между левыми и правыми классами, примеры их несовпадения

Определение 40 (Индекс подгруппы). Число левых смежных классов группы G по подгруппе H обозначается [G:H] и называется индексом подгруппы H в группе G.

Предложение 17 (Биекция между левыми и правыми классами). *Между множеством* левых смежных классов G/H и множеством правых смежных классов $H\backslash G$ существует естественная биекция:

$$aH \mapsto Ha^{-1}$$
.

Поэтому число левых и правых смежных классов всегда совпадает.

Пример 21 (Несовпадение левых и правых классов). *Рассмотрим группу* S_3 и подгруппу $H = \{e, (12)\}$. Возьмём a = (13). Тогда:

$$aH = \{(13), (13)(12) = (123)\}, \quad Ha = \{(13), (12)(13) = (132)\}.$$

Очевидно, $aH \neq Ha$, хотя мощность у них одинаковая.

38 Нормальность, равносильные определения, примеры

Определение 41 (Нормальная подгруппа). Подгруппа $H \leq G$ называется нормальной, если для любого $g \in G$ выполняется:

$$gHg^{-1} = H.$$

Обозначение: $H \triangleleft G$.

Предложение 18 (Равносильные условия нормальности). Для подгруппы $H \leq G$ следующие условия равносильны:

- 1. $gHg^{-1} = H$ для всех $g \in G$,
- 2. gH = Hg для всех $g \in G$,
- 3. Разбиения на левые и правые смежные классы совпадают.

Пример 22. В любой абелевой группе любая подгруппа нормальна, так как gh = hg gH = Hg.

Пример 23. В группе S_3 подгруппа A_3 чётных перестановок нормальна, поскольку имеет индекс 2, и разбиения на левые и правые классы совпадают.

39 Факторгруппа, примеры

Определение 42 (Факторгруппа). Пусть $H \triangleleft G$. Тогда множество левых смежных классов G/H можно превратить в группу относительно операции:

$$(aH)(bH) = (ab)H.$$

Эта группа называется факторгруппой G по H.

Предложение 19. Факторгруппа G/H является группой тогда и только тогда, когда $H \triangleleft G$.

Пример 24. Пусть $G = \mathbb{Z}$, $H = 2\mathbb{Z}$. Тогда $G/H = \{2\mathbb{Z}, 1+2\mathbb{Z}\}$ — это циклическая группа из двух элементов, изоморфная \mathbb{Z}_2 .

Пример 25. $G = S_3$, $H = A_3$. Тогда $G/H = \{A_3, (12)A_3\}$ — также группа из двух элементов, изоморфная \mathbb{Z}_2 .

40 Простые группы, гомоморфизмы, ядро и образ

Определение 43 (Простая группа). Группа G называется простой, если она неабелева u не имеет нетривиальных нормальных подгрупп, то есть единственными нормальными подгруппами являются $\{e\}$ u G.

Пример 26. Группа A_5 — простая. Это первая нетривиальная простая группа.

Определение 44 (Гомоморфизм групп). *Отображение* $f: G \to H$ называется гомоморфизмом, если:

$$f(ab) = f(a)f(b) \quad \forall a, b \in G.$$

Определение 45 (Ядро и образ). Для гомоморфизма $f: G \to H$:

- Ядро: $\ker f = \{g \in G \mid f(g) = e_H\}$, - Образ: $\operatorname{Im} f = \{f(g) \mid g \in G\}$.

Предложение 20. $\ker f \triangleleft G$, $u \operatorname{Im} f \leq H$.

Пример 27. Рассмотрим гомоморфизм $f: \mathbb{Z} \to \mathbb{Z}_n$, заданный как $f(k) = k \mod n$. Тогда:

$$\ker f = n\mathbb{Z}, \quad \operatorname{Im} f = \mathbb{Z}_n.$$

[Первая теорема о гомоморфизмах] Для любого гомоморфизма $f: G \to H$:

$$G/\ker f \cong \operatorname{Im} f$$
.

41 Теорема о гомоморфизме и её применения

На самом деле это билеты 41-45...

Определение 46 (Гомоморфизм групп). Отображение $f: G \to H$ между группами называется гомоморфизмом, если оно сохраняет операцию:

$$f(ab) = f(a)f(b) \quad \forall a, b \in G.$$

Если f также биективно, то он называется изоморфизмом.

Определение 47 (Ядро и образ гомоморфизма). Для гомоморфизма $f: G \to H$:

- Ядро — это множество $\ker f = \{g \in G \mid f(g) = e_H\}$, - Образ — это множество $\operatorname{Im} f = \{f(g) \mid g \in G\}$.

Предложение 21. $\ker f \triangleleft G$ — нормальная подгруппа, а $\operatorname{Im} f \leq H$ — подгруппа.

[Основная теорема о гомоморфизме] Пусть $f:G\to H$ — гомоморфизм. Тогда имеет место изоморфизм:

$$G/\ker f \cong \operatorname{Im} f$$
.

Этот изоморфизм задаётся правилом:

$$\varphi(g \ker f) = f(g).$$

Пример 28 (Примеры применения теоремы о гомоморфизме). *Рассмотрим несколько* важных случаев:

1. Вещественные числа и положительные числа: Рассмотрим гомоморфизм $f:(\mathbb{R},+) \to (\mathbb{R}_{>0},\cdot)$, заданный как $f(x)=e^x$. Тогда:

$$\ker f = \{0\}, \quad \operatorname{Im} f = \mathbb{R}_{>0}, \Rightarrow \mathbb{R}/\{0\} \cong \mathbb{R}_{>0}.$$

2. Симметрическая группа и знакопеременная группа: Пусть $f: S_n \to \{\pm 1\}$ — гомоморфизм, сопоставляющий перестановке её знак. Тогда:

$$\ker f = A_n$$
, $\operatorname{Im} f = \{\pm 1\}, \Rightarrow S_n/A_n \cong \{\pm 1\}.$

3. **Плоскость и прямая**: Рассмотрим проекцию $f: \mathbb{R}^2 \to \mathbb{R}$, заданную как f(x,y) = x. Тогда:

$$\ker f = \{(0, y) \mid y \in \mathbb{R}\}, \quad \operatorname{Im} f = \mathbb{R}, \Rightarrow \mathbb{R}^2 / \ker f \cong \mathbb{R}.$$

4. Полная и специальная линейная группы: Рассмотрим гомоморфизм $f:GL(n,\mathbb{R})\to\mathbb{R}^*$, заданный как $f(A)=\det A$. Тогда:

$$\ker f = SL(n, \mathbb{R}), \quad \operatorname{Im} f = \mathbb{R}^*, \Rightarrow GL(n, \mathbb{R})/SL(n, \mathbb{R}) \cong \mathbb{R}^*.$$

5. **Целые числа и корни из единицы**: Рассмотрим гомоморфизм $f: \mathbb{Z} \to \mathbb{C}^*$, за-данный как $f(k) = e^{2\pi i k/n}$. Тогда:

$$\ker f = n\mathbb{Z}, \quad \operatorname{Im} f = \{z \in \mathbb{C} \mid z^n = 1\}, \Rightarrow \mathbb{Z}/n\mathbb{Z} \cong \mu_n,$$

где μ_n — группа корней из единицы порядка n.

Замечание 26. Таким образом, теорема о гомоморфизме позволяет находить структуру факторгрупп и упрощать вычисления с группами.

Определение 48 (Прямое произведение групп). Пусть G_1, G_2 — группы. Их прямым произведением называется множество всех пар (g_1, g_2) с покомпонентной операцией:

$$(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2).$$

Обозначается $G_1 \times G_2$.

Предложение 22 (Критерий разложимости группы). Группа G разлагается в прямое произведение $G = H \times K$, если:

- 1. $H, K \triangleleft G$,
- 2. $H \cap K = \{e\},\$
- 3. HK = G.

Пример 29. Группа \mathbb{Z}_6 разлагается как $\mathbb{Z}_2 \times \mathbb{Z}_3$, так как эти подгруппы нормальны, их пересечение тривиально, и их произведение совпадает со всей группой.

Пример 30. Факторгруппа $\mathbb{Z}_6/\mathbb{Z}_2 \cong \mathbb{Z}_3$, что соответствует разложению $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$.

Определение 49 (Циклы в группе перестановок). Перестановка $\sigma \in S_n$ называется циклом длины k, если существуют такие элементы $i_1, ..., i_k \in \{1, ..., n\}$, что:

$$\sigma(i_1) = i_2, \ \sigma(i_2) = i_3, \ ..., \ \sigma(i_k) = i_1,$$

а все остальные элементы остаются на месте.

Пример 31. Перестановка $(1\ 2\ 3) \in S_4$ действует так: $1\mapsto 2,\ 2\mapsto 3,\ 3\mapsto 1,\ 4\mapsto 4.$

Определение 50 (Независимые циклы). *Циклы* $c_1, ..., c_m$ называются независимыми, если множества их перемещаемых точек не пересекаются.

Любую перестановку можно однозначно представить как произведение независимых циклов.

Пример 32. Перестановка $\sigma \in S_6$, заданная как:

$$\sigma(1) = 3$$
, $\sigma(3) = 5$, $\sigma(5) = 1$, $\sigma(2) = 4$, $\sigma(4) = 2$, $\sigma(6) = 6$,

записывается как $\sigma = (1\ 3\ 5)(2\ 4)$.

Определение 51 (Цикловой тип). *Цикловой тип перестановки* — это набор длин её ииклов, записанный в порядке возрастания.

Например, для $\sigma = (1\ 3\ 5)(2\ 4) \in S_6$ цикловой тип равен (2,3).

Предложение 23. Две перестановки в S_n сопряжены тогда и только тогда, когда они имеют одинаковый цикловой тип.

Определение 52 (Транспозиция). Транспозицией называется цикл длины 2. Например, $(1\ 2)\ -\ 2$ это транспозиция, меняющая местами $1\ u\ 2$.

Любая перестановка может быть представлена как произведение транспозиций.

Пример 33. Перестановка $(1\ 2\ 3) \in S_3$ раскладывается как $(1\ 3)(1\ 2)$.

Предложение 24. Четность числа транспозиций, необходимого для записи перестановки, инвариантна. Это определяет понятие чётности перестановки.

Определение 53 (Четные перестановки). Перестановка называется чётной, если она представляется чётным числом транспозиций. Множество чётных перестановок образует подгруппу $A_n \subset S_n$.

Любая чётная перестановка может быть представлена как произведение 3-циклов.

Пример 34. Чётная перестановка $(1\ 2\ 3)(4\ 5\ 6)\in S_6$ может быть представлена как произведение 3-циклов:

$$(1\ 2\ 3)(4\ 5\ 6).$$

42 Действия групп: определения, примеры, орбиты и стабилизаторы

На самом деле это билеты 46-50...

Группы часто «работают» не только сами по себе, но и на других множествах. Это называется действием группы на множестве. Давайте разберёмся, что это значит.

Определение 54 (Действие группы). Пусть G — группа, X — некоторое множество. Действием группы G на множество X называется отображение:

$$G \times X \to X$$
, $(g, x) \mapsto g \cdot x$,

удовлетворяющее двум условиям:

1. $e \cdot x = x$ для любого $x \in X$, где e - eдиница группы G; 2. $(gh) \cdot x = g \cdot (h \cdot x)$ для любых $g, h \in G$ и $x \in X$.

То есть: единичный элемент ничего не меняет, и порядок действий важен.

Определение 55 (Гомоморфизм в группу перестановок). Другой способ задать действие группы — через гомоморфизм:

$$\varphi: G \to S(X),$$

где S(X) — группа всех перестановок множества X. Для каждого $g \in G$, $\varphi(g)$ — правило, по которому g перемешивает элементы из X.

Эти два определения равносильны: каждое действие можно превратить в такой гомоморфизм, и наоборот.

Пример 35 (Примеры действия групп). Вот несколько важных примеров:

- Группа S_n (все перестановки чисел от 1 до n) естественно действует на множестве $\{1, 2, ..., n\}$: если $\sigma \in S_n$ и $i \in \{1, ..., n\}$, то $\sigma \cdot i = \sigma(i)$.
 - Группа G может действовать на себе самой. Например:
 - Левое умножение: $g \cdot h = gh$,
 - Сопряжение: $g \cdot h = ghg^{-1}$.

Это даёт нам понимание того, как группа "видит" саму себя.

Теперь давай посмотрим, что происходит с конкретными элементами множества при действии группы.

Определение 56 (Орбита элемента). Пусть группа G действует на множество X. Орбитой элемента $x \in X$ называется множество всех тех элементов, куда он может попасть под действием группы:

$$Orb(x) = \{g \cdot x \mid g \in G\}.$$

Определение 57 (Стабилизатор элемента). Стабилизатор элемента $x \in X$ — это те элементы группы G, которые «оставляют x на месте», то есть:

$$\operatorname{Stab}(x) = \{ g \in G \mid g \cdot x = x \}.$$

Можно проверить, что Stab(x) — это всегда подгруппа в G.

Пример 36. Рассмотрим группу $G = S_3$, действующую на $X = \{1, 2, 3\}$. Возьмём x = 1. - Орбита $Orb(1) = \{1, 2, 3\}$, потому что перестановками можно перевести 1 в любой номер. - Стабилизатор Stab(1) — это те перестановки, которые не двигают 1, то есть $\{(1), (23)\}$.

 $Ta\kappa \ varphimode |{
m Orb}(1)| = 3, \ |{
m Stab}(1)| = 2, \ a \ pasмep \ всей группы \ |S_3| = 6.$

Теперь расскажем про важную связь между орбитами и стабилизаторами.

Предложение 25 (Биекция между орбитой и смежными классами). Для любого $x \in X$ существует биекция между элементами орбиты Orb(x) и левыми смежными классами группы G по подгруппе Stab(x).

 Φ ормально:

$$Orb(x) \leftrightarrow G/Stab(x)$$
.

Поэтому длина орбиты равна индексу стабилизатора:

$$|\operatorname{Orb}(x)| = [G : \operatorname{Stab}(x)].$$

Если группа G конечна, то:

$$|\operatorname{Orb}(x)| = \frac{|G|}{|\operatorname{Stab}(x)|}.$$

Пример 37. В предыдущем примере |G| = 6, |Stab(1)| = 2 длина орбиты:

$$|\operatorname{Orb}(1)| = \frac{6}{2} = 3.$$

Что совпадает с реальностью: орбита состоит из трёх элементов $\{1,2,3\}$.

И наконец, поговорим о важной теореме Коши, связанной с порядками элементов в группе.

[Теорема Коши] Пусть G — конечная группа, и пусть p — простое число, делящее порядок группы |G|. Тогда в G существует элемент порядка p.

Замечание 27. Это очень полезный факт: если размер группы делится на какое-то простое число, то в группе обязательно есть циклическая подгруппа этого порядка.

Пример 38. Рассмотрим группу S_3 , её порядок равен 6. Простые числа, делящие 6 — это 2 и 3. В S_3 есть элементы порядков 2 (например, (12)) и 3 (например, (123)). Теорема Коши работает!

43 Лемма Бернсайда, подсчёт ожерелий, центр р-группы и прочая группа-магия

Это типа билеты 51-55

Определение 58 (Лемма Бернсайда). Пусть группа G действует на множество X. Тогда число орбит действия равно:

$$\#$$
 орбит $= \frac{1}{|G|} \sum_{g \in G}$ число неподвижных точек элемента g .

То есть:

$$opform = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|,$$

 $ede \operatorname{Fix}(g) = \{x \in X \mid g \cdot x = x\}.$

Замечание 28. Эта лемма часто используется для подсчёта объектов с точностью до симметрии. Например, чтобы понять, сколько всего существует уникальных ожерелий из бусинок, если можно поворачивать и переворачивать ожерелье.

Чтобы найти число неэквивалентных ожерелий, применим лемму Бернсайда: посчитаем, сколько раскрасок остаются неизменными при каждом элементе группы. Например: - Поворот на 0° (единичный элемент): все 64 раскраски неподвижны. - Поворот на 60°: только те раскраски, где все бусины одинаковые — их 2. - Отражения: каждое фиксирует несколько раскрасок — обычно по 8 на одно отражение. И так далее... В конце сложим всё, поделим на 12 и получим число уникальных ожерелий. Это работает, честно! Пример из жизни математиков: таких ожерелий будет ровно 13. Не веришь? Считай сам

Теперь переходим к более серьёзной теме — к центру группы.

Определение 59 (Центр группы). Пусть $G-\mathit{группa}$. Её центром называется множество:

$$Z(G) = \{z \in G \mid zg = gz \ \forall g \in G\}.$$

То есть это те элементы, которые коммутируют со всеми остальными.

Предложение 26. Центр группы всегда является нормальной абелевой подгруппой.

Пример 40. Рассмотрим группу $GL(n,\mathbb{R})$ — невырожденные матрицы размера $n \times n$. Центр этой группы состоит из скалярных матриц:

$$Z(GL(n,\mathbb{R})) = \{\lambda I \mid \lambda \in \mathbb{R}^{\times}\}.$$

Все они коммутируют с любой матрицей, потому что просто умножают на число.

А теперь давайте перейдём к чему-то действительно красивому — к *p*-группам.

Определение 60 (*p*-группа). Группа G называется p-группой, если её порядок равен p^n , где p-npocmoe число, $n \ge 1$.

[Центр p-группы нетривиален] Если G-p-группа ($|G|=p^n$), то её центр содержит хотя бы два элемента:

$$|Z(G)| \ge 2.$$

Более того, Z(G) делится на p, то есть $p \mid |Z(G)|$.

Идея доказательства. Рассматривается действие группы на себе через сопряжение. Используется классовое уравнение:

$$|G| = |Z(G)| + \sum_{x \notin Z(G)} |\operatorname{Orb}(x)|.$$

Каждая орбита имеет размер, делящийся на p, поэтому правая часть минус |Z(G)| делится на p, значит, и |Z(G)| делится на p Z(G) не тривиален.

Пример 41. Рассмотрим группу G порядка p^2 . Тогда G либо циклическая, либо изоморфна $\mathbb{Z}_p \times \mathbb{Z}_p$, и в любом случае абелева.

Действительно: если G не абелева, то $Z(G)\subsetneq G$, но тогда |Z(G)|=p, и фактор G/Z(G) циклический G абелева — противоречие!

Предложение 27 (Башня подгрупп в p-группе). В каждой p-группе G существует цепочка подгрупп:

$$\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = G,$$

где $|G_i|=p^i$, и каждый фактор G_i/G_{i-1} имеет порядок p и абелев.

Такие цепочки называются нормальными рядами, и они показывают, что p-группы «почти абелевы».

Замечание 29. Это говорит нам, что р-группы имеют хорошую внутреннюю структуру — они разрешимы и даже нильпотентны.

44 Примеры групп порядка p^3 , теоремы о группах порядка pq, теоремы Силова

Это билеты 56-60

Начнём с примеров групп порядка p^3 . Эти группы не всегда абелевы — это важный факт, который показывает, что даже в мире p-групп может быть интересная структура.

Пример 42 (Группа верхних унитреугольных матриц). *Рассмотрим множество матриц* $eu\partial a$:

 $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix},$

где $a, b, c \in \mathbb{F}_p$. Такие матрицы образуют группу относительно умножения. Эта группа имеет порядок p^3 , **но не является абелевой** — можно проверить, что две такие матрицы не обязательно коммутируют.

Замечание 30. Этот пример показывает, что не любая группа порядка p^3 абелева. Однако, если группа порядка p^2 , то она всегда абелева.

Теперь перейдём к группам порядка pq, где p и q — простые числа.

[О группе порядка pq] Пусть G — группа порядка pq, где p < q — простые числа и $p \nmid q-1$. Тогда G циклическая, то есть $G \cong \mathbb{Z}_{pq}$.

Hабросок доказательства. По теореме Коши, в G существуют элементы порядков p и q. Пусть H — подгруппа порядка q. Она нормальна, потому что число Силовых q-подгрупп равно 1 (по теореме Силова). Пусть K — подгруппа порядка p. Тогда HK — вся группа, $H \cap K = \{e\}$, и $G \cong H \rtimes K$. Если $p \nmid q-1$, то этот полупрямой продукт тривиален $G \cong H \times K \cong \mathbb{Z}_q \times \mathbb{Z}_p \cong \mathbb{Z}_{pq}$.

Теперь переходим к важнейшим результатам теории групп — теоремам Силова.

[Существование Силовских подгрупп] Пусть $|G| = p^n m$, где p — простое, $p \nmid m$. Тогда:

- В G существует подгруппа порядка p^n (она называется Cиловской p-подгруппой), - Любая подгруппа порядка p^k , $k \le n$, содержится в некоторой Силовской p-подгруппе.

Замечание 31. Другими словами, для любого «разумного» р-порядка внутри группы найдётся подходящая подгруппа.

[Сопряженность Силовских подгрупп] Все Силовские p-подгруппы группы G сопряжены между собой, то есть для любых двух Силовских p-подгрупп P и Q найдётся такой элемент $g \in G$, что:

$$Q = gPg^{-1}.$$

Если в группе только одна Силовская p-подгруппа, то она нормальна в G.

[Число Силовских подгрупп] Пусть n_p — число Силовских p-подгрупп в G. Тогда выполняются условия:

- $n_p \equiv 1 \mod p$, - $n_p \mid m$, где $|G| = p^n m, p \nmid m$.

Пример 43. Рассмотрим группу S_3 , её порядок равен $6=2\cdot 3$. Число Силовских 3-подгрупп n_3 делит 2 и сравнимо с 1 по модулю 3 $n_3=1$ или 2. Но $2\not\equiv 1 \mod 3$, значит $n_3=1$: есть единственная Силовская 3-подгруппа, и она нормальна.

 $A \ som \ n_2 \equiv 1 \mod 2 \ u \ dелит \ 3 \ n_2 = 1 \ uлu \ 3. \ M \ dействительно: есть три подгруппы порядка 2 в <math>S_3$, и они не нормальны.

Замечание 32. Теоремы Силова дают мощный инструмент для анализа внутренней структуры конечных групп. Они часто используются для классификации групп заданного порядка.

45 Несостоятельность "размерности" в теории групп, подгруппы в S_n , лемма Шрайера и алгоритм Шрайера-Симса

Это оставшиеся 61-66

Если ты думаешь, что в теории групп есть что-то вроде «размерности», как в линейной алгебре — то ты ошибаешься

Замечание 33 (О несостоятельности аналогии "размерности"). В линейной алгебре размерность — это очень важная вещь: любые два базиса имеют одинаковую длину, и размерность говорит нам почти всё о структуре пространства.

Но в теории групп такой аналогии нет. Например, в группе перестановок S_n можно найти разные системы образующих, и их количество может быть разным!

То есть: в теории групп не существует чего-то вроде "размерности которая бы однозначно определяла число образующих. Это важно помнить.

Пример 44. Рассмотрим группу S_3 . Её можно породить:

- двумя элементами: например, (12) и (123), - или тремя: (12), (13), (23).

Число образующих зависит от выбора системы. Нет "размерности как в линейной алгебре.

Переходим к более серьёзным вещам: системам образующих для подгрупп симметрической группы.

[О подгруппах в S_n] Любая подгруппа $H \leq S_n$ имеет систему образующих, состоящую не более чем из n-1 элементов.

Это слабая форма теоремы, но она уже даёт полезную информацию: мы можем надеяться на то, что работать с подгруппами S_n будет не слишком сложно, если использовать правильный подход.

 $Идея доказательства: дерево образующих. Можно построить дерево, где вершины соответствуют элементам множества <math>\{1,...,n\}$, а рёбра — действиям перестановок. Тогда, двигаясь от корня к листьям, строим последовательность образующих, по одному на каждый уровень дерева.

Получаем не более n-1 образующих. Это работает, потому что группа действует на множестве, и мы используем стабилизаторы точек.

Пример 45. Допустим, у нас есть подгруппа $H \leq S_4$, действующая на множестве $\{1,2,3,4\}$. Мы выбираем точку 1, находим её стабилизатор H_1 , потом переходим к точке, которую 1 переводится, и так далее. Всего нужно не больше трёх шагов система образующих содержит максимум три элемента.

Хорошо, теперь давай научимся вычислять порядок подгруппы $H \leq S_n$, зная, как она действует.

Предложение 28 (Вычисление порядка подгруппы через стабилизаторы). Пусть $H \leq S_n$, и пусть H действует на $X = \{1, ..., n\}$. Возьмём точку $x_1 \in X$, найдём её стабилизатор H_{x_1} . Тогда:

$$|H| = |\operatorname{Orb}(x_1)| \cdot |H_{x_1}|.$$

Применяем это рекурсивно: для H_{x_1} берём следующую точку x_2 вне её орбиты и повторяем процесс.

Пример 46. Пусть $H \leq S_4$, и H содержит перестановки, которые фиксируют 1 и действуют на $\{2,3,4\}$. Тогда $H \cong S_3$, и |H| = 6. Действительно:

$$|Orb(1)| = 1, \quad |H_1| = 6.$$

А теперь поговорим о том, как строить образующие подгруппы, зная образующие исходной группы. Для этого нам нужна...

[Лемма Шрайера] Пусть G — группа, $H \leq G$ — подгруппа, R — система представителей смежных классов G/H. Тогда множество:

$$\{rgs^{-1} \mid r, s \in R, g \in G, rgH = sH\}$$

образует систему образующих подгруппы H.

Замечание 34. По сути, эта лемма позволяет строить образующие подгруппы, зная образующие всей группы и представителей смежных классов.

Пример 47. Пусть $G = S_3$, $H = A_3$. Возьмём систему представителей $R = \{e, (12)\}$. Тогда, применяя правило rgs^{-1} , получаем образующие H — например, $(12)(123)(12)^{-1} = (132)$.

[Лемма Шрайера в общем случае] Лемма Шрайера работает не только для симметрических групп, но и вообще для любой группы G и её подгруппы H, если задана система представителей смежных классов R.

Это мощный инструмент для построения систем образующих подгрупп.

Замечание 35. Если хочешь, это как "генератор кода": ты знаешь, как работает вся группа, и как выбраны представители классов — и автоматически получаешь систему образующих подгруппы.

Теперь переходим к самому интересному — к алгоритму, который делает всю эту красоту практической.

Определение 61 (Сильная система образующих). Пусть $H \leq S_n$. Сильной системой образующих для H называется набор образующих, построенный относительно цепочки стабилизаторов:

$$H = H^{(0)} \ge H^{(1)} \ge H^{(2)} \ge \dots \ge H^{(n)} = \{e\},\$$

 $ede\ H^{(i)}-cmaбuлизатор\ точки\ i+1\ e\ H^{(i-1)}.$

Cильная система образующих — это набор генераторов для каждого уровня этой цепочки.

[Алгоритм Шрайера—Симса] Цель: построить сильную систему образующих для подгруппы $H \leq S_n$ и проверить, принадлежит ли перестановка $\sigma \in S_n$ группе H. Шаги:

1. Начинаем с произвольного набора образующих H. 2. Строим цепочку стабилизаторов $H^{(0)} \geq H^{(1)} \geq \cdots \geq H^{(n)} = \{e\}$. 3. Используем лемму Шрайера, чтобы находить новые образующие для каждого стабилизатора. 4. Применяем технику перебора смежных классов, чтобы проверить принадлежность $\sigma \in H$ — это и есть membership test.

Пример 48 (membership test). Представь, что ты пришёл в клуб перестановок, и тебя спрашивают: «ты свой?» Ты достаешь своё слово в образующих и показываешь, что ты действительно из H. Это и есть membership test

Пример 49. Пусть $H = \langle (123), (12) \rangle \leq S_3$. Цепочка стабилизаторов:

$$H^{(0)} = H$$
, $H^{(1)} = \operatorname{Stab}_{H}(1)$, $H^{(2)} = \operatorname{Stab}_{H^{(1)}}(2)$.

На каждом уровне находим образующие, и в конце проверяем, принадлежит ли, скажем, $(23) \in H$. Ответ: да, потому что (23) = (12)(123)(12).

Замечание 36. Алгоритм Шрайера—Симса — один из самых популярных в компьютерной алгебре. Он используется во многих системах компьютерной алгебры, таких как GAP и Magma.