```
In [1]:
        import os
        os.getcwd()
Out[1]: 'C:\\Users\\chitt'
In [3]: import numpy as np
        import pandas as pd #excellent for dataset manupalation
        # for data visulization
        import matplotlib.pyplot as plt
        #stats visualization
        import seaborn as sns
        #Labelencoding to convert categorical data into lowlevel language
        from sklearn.preprocessing import LabelEncoder
        #scaling data
        from sklearn.preprocessing import StandardScaler
        #data partions
        from sklearn.model_selection import train_test_split
        #algorithams
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from xgboost import XGBClassifier
        #accuracy confusion matric and classification report
        from sklearn.metrics import accuracy_score,confusion_matrix,classification_repor
        import warnings
        # To ignore all warnings
        warnings.filterwarnings("ignore")
In [5]: df=pd.read csv(r"D:\NIT Daily Task\Oct\21st DIBETIC PREDICTION\DIBETIC PREDICTIO
In [7]: df.head()
```

Out[7]:		gender	age	hypertension	heart_disease	smoking_hist	tory bmi	HbA1c_level	blo
	0	Female	80.0	0	1	ne	ever 25.19	6.6	
	1	Female	54.0	0	0	No	Info 27.32	6.6	
	2	Male	28.0	0	0	ne	ever 27.32	5.7	
	3	Female	36.0	0	0	cur	rent 23.45	5.0	
	4	Male	76.0	1	1	cur	rent 20.14	4.8	
	4								•
In [9]:	df	.isna().	any()						
Out[9]:	ge	nder		Fals	e				
	ag hv	e pertensi	.on	Fals Fals					
	he	art_dise	ease	Fals	e				
	sm bm	oking_hi i	story	Fals Fals					
		A1c_leve		Fals					
		ood_gluc abetes	cose_1	evel Fals Fals					
	dt	ype: boo)1						
In [11]:	df	.corr(nu	meric_	_only= True)					
Out[11]:				age	hypertension	heart_disease	bmi	HbA1c_level	bloo
ouc[II].					nyper tension	mear t_disease	D 11111	TIDA IC_IEVEI	Dioo
ouclii].			a	ge 1.000000	0.251171	0.233354	0.337396	0.101354	
out[II].		hype					0.337396		
ouc[ii].			rtensio	ge 1.000000	0.251171	0.233354	0.337396	0.101354	BIOG
ouc[ii].			rtensio	ge 1.000000 on 0.251171	0.251171	0.233354 0.121262	0.337396 0.147666	0.101354 0.080939	
ouc[ii].		heart	rtensio	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396	0.251171 1.000000 0.121262	0.233354 0.121262 1.000000	0.337396 0.147666 0.061198 1.000000	0.101354 0.080939 0.067589	
ouc[ii].	blo	heart	rtensio t_disea bi	ge 1.000000 on 0.251171 se 0.233354 ni 0.337396 rel 0.101354	0.251171 1.000000 0.121262 0.147666	0.233354 0.121262 1.000000 0.061198 0.067589	0.337396 0.147666 0.061198 1.000000	0.101354 0.080939 0.067589 0.082997	
ouc[ii].	blo	heart Hb <i>E</i> pod_gluce	rtensid t_disea br \\1c_lev	ge 1.000000 on 0.251171 se 0.233354 ni 0.337396 rel 0.101354	0.251171 1.000000 0.121262 0.147666 0.080939	0.233354 0.121262 1.000000 0.061198 0.067589	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261	0.101354 0.080939 0.067589 0.082997 1.000000	
ouc[ii].	blo	heart Hb <i>E</i> pod_gluce	rtensid t_disea br \\1c_lev	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396 rel 0.101354 rel 0.110672	0.251171 1.000000 0.121262 0.147666 0.080939 0.084429	0.233354 0.121262 1.000000 0.061198 0.067589 0.070066	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261	0.101354 0.080939 0.067589 0.082997 1.000000 0.166733	>
In [15]:	4	heart Hb <i>E</i> pod_gluce	rtensid t_disea br \\1c_lev	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396 rel 0.101354 rel 0.110672	0.251171 1.000000 0.121262 0.147666 0.080939 0.084429	0.233354 0.121262 1.000000 0.061198 0.067589 0.070066	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261	0.101354 0.080939 0.067589 0.082997 1.000000 0.166733	•
	₫	heart Hb <i>A</i> pood_glucc	t_disea br A1c_lev ose_lev diabet	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396 rel 0.101354 rel 0.110672	0.251171 1.000000 0.121262 0.147666 0.080939 0.084429	0.233354 0.121262 1.000000 0.061198 0.067589 0.070066	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261	0.101354 0.080939 0.067589 0.082997 1.000000 0.166733	•
In [15]: Out[15]:	d f (1	heart HbA bod_gluco	t_disea bi A1c_lev cose_lev diabet	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396 rel 0.101354 rel 0.110672 es 0.258008	0.251171 1.000000 0.121262 0.147666 0.080939 0.084429 0.197823	0.233354 0.121262 1.000000 0.061198 0.067589 0.070066 0.171727	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261 0.214357	0.101354 0.080939 0.067589 0.082997 1.000000 0.166733 0.400660	•
In [15]: Out[15]:	d f (1	heart HbA bod_gluco	t_disea bi A1c_lev cose_lev diabet	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396 rel 0.101354 rel 0.110672 es 0.258008	0.251171 1.000000 0.121262 0.147666 0.080939 0.084429 0.197823	0.233354 0.121262 1.000000 0.061198 0.067589 0.070066 0.171727	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261 0.214357	0.101354 0.080939 0.067589 0.082997 1.000000 0.166733 0.400660	•
In [15]: Out[15]:	d f (1	heart HbA bood_gluco shape 00000, 9 r column unique #print	t_disea bu A1c_lev ose_lev diabet	ge 1.000000 on 0.251171 se 0.233354 mi 0.337396 rel 0.101354 rel 0.110672 es 0.258008 f.columns: # es = df[columns]	0.251171 1.000000 0.121262 0.147666 0.080939 0.084429 0.197823	0.233354 0.121262 1.000000 0.061198 0.067589 0.070066 0.171727	0.337396 0.147666 0.061198 1.000000 0.082997 0.091261 0.214357	0.101354 0.080939 0.067589 0.082997 1.000000 0.166733 0.400660	>

```
Column "gender" has unique values: ['Female' 'Male' 'Other']
        Column "age" has unique values: [80. 54.
                                                     28.
                                                           36.
                                                                 76.
                                                                       20.
                                                                            44.
                                                                                   79.
        42.
             32.
                    53.
                          78.
                          40.
         67.
              15.
                     37.
                                  5.
                                       69.
                                             72.
                                                   4.
                                                         30.
                                                               45.
                                                                     43.
                                                                           50.
         41.
              26.
                     34.
                           73.
                                 77.
                                       66.
                                             29.
                                                   60.
                                                         38.
                                                               3.
                                                                     57.
                                                                           74.
                                                         7.
         19.
              46.
                     21.
                           59.
                                 27.
                                       13.
                                             56.
                                                   2.
                                                               11.
                                                                     6.
                                                                           55.
                                       75.
                                             22.
                                                   58.
                                                               24.
                                                                           25.
          9
               62.
                    47.
                           12.
                                 68.
                                                         18.
                                                                     17.
          0.08 33.
                     16. 61.
                                 31.
                                       8.
                                             49.
                                                   39.
                                                         65.
                                                               14.
                                                                     70.
                                                                            0.56
                    71.
                           0.88 64.
                                             52.
                                                   0.16 10.
                                                               35.
                                                                     23.
                                                                            0.64
         48.
              51.
                                       63.
          1.16 1.64 0.72 1.88 1.32 0.8
                                             1.24 1.
                                                         1.8
                                                              0.48 1.56 1.08
          0.24 1.4
                           0.32 1.72 1.48]
                     0.4
        Column "hypertension" has unique values: [0 1]
        Column "heart_disease" has unique values: [1 0]
        Column "smoking_history" has unique values: ['never' 'No Info' 'current' 'former'
        'ever' 'not current']
        Column "bmi" has unique values: [25.19 27.32 23.45 ... 59.42 44.39 60.52]
        Column "HbA1c_level" has unique values: [6.6 5.7 5. 4.8 6.5 6.1 6. 5.8 3.5 6.2
        4. 4.5 9. 7. 8.8 8.2 7.5 6.8]
        Column "blood glucose level" has unique values: [140 80 158 155 85 200 145 100
        130 160 126 159 90 260 220 300 280 240]
        Column "diabetes" has unique values: [0 1]
In [19]: df["smoking_history"].value_counts() #Value count of smoking_history parameter
Out[19]: smoking history
         No Info
                        35816
                        35095
         never
                         9352
         former
                         9286
         current
         not current
                         6447
         ever
                         4004
         Name: count, dtype: int64
        df["smoking_history"].value_counts()/len(df) #finding the percentage
In [21]:
Out[21]:
         smoking history
         No Info
                        0.35816
         never
                        0.35095
         former
                        0.09352
         current
                        0.09286
                        0.06447
         not current
                        0.04004
         ever
         Name: count, dtype: float64
In [23]: # Replaceing No Info columns with pd.NA
         df['smoking_history'] = df['smoking_history'].replace('No Info', pd.NA)
         # Replace missing values with the mode it is string so we are using mode
         mode value = df['smoking history'].mode()[0]
         df['smoking history'] = df['smoking history'].fillna(mode value) #filling no inf
         # Printing the updated value counts
         print(df['smoking_history'].value_counts())
```

```
smoking_history
        never
                        70911
        former
                         9352
        current
                         9286
        not current
                         6447
        ever
                         4004
        Name: count, dtype: int64
In [25]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100000 entries, 0 to 99999
        Data columns (total 9 columns):
             Column
                                   Non-Null Count
                                                     Dtype
        ---
             -----
                                   _____
         0
             gender
                                   100000 non-null object
         1
                                   100000 non-null float64
             age
                                   100000 non-null int64
         2
             hypertension
             heart_disease
                                   100000 non-null int64
         4
             smoking_history
                                   100000 non-null object
         5
             bmi
                                   100000 non-null float64
             HbA1c_level
                                   100000 non-null float64
         6
         7
             blood_glucose_level 100000 non-null int64
                                   100000 non-null int64
             diabetes
        dtypes: float64(3), int64(4), object(2)
        memory usage: 6.9+ MB
         df.gender.value_counts()
In [31]:
Out[31]:
          gender
          Female
                    58552
          Male
                    41430
          Other
                        18
          Name: count, dtype: int64
          df.describe()
In [33]:
Out[33]:
                          age
                               hypertension
                                              heart_disease
                                                                     bmi
                                                                            HbA1c_level bloo
                100000.000000
                                100000.00000
                                             100000.000000
                                                            100000.000000
                                                                           100000.000000
          count
                     41.885856
                                     0.07485
                                                  0.039420
                                                                27.320767
                                                                                5.527507
          mean
            std
                     22.516840
                                     0.26315
                                                  0.194593
                                                                 6.636783
                                                                                1.070672
                      0.080000
                                     0.00000
                                                   0.000000
                                                                10.010000
                                                                                3.500000
            min
           25%
                     24.000000
                                     0.00000
                                                  0.000000
                                                                23.630000
                                                                                4.800000
           50%
                     43.000000
                                     0.00000
                                                   0.000000
                                                                27.320000
                                                                                5.800000
           75%
                     60.000000
                                     0.00000
                                                   0.000000
                                                                29.580000
                                                                                6.200000
                     80.000000
                                     1.00000
                                                   1.000000
                                                                95.690000
                                                                                9.000000
           max
In [35]:
          #removing , in bmi parameter
          df["bmi"] = [float(str(i).replace(",", "")) for i in df["bmi"]]
```

```
In [37]: #ploting value_counts of diabetes in graphical representation
    df['diabetes'].value_counts().plot(kind='barh')

#Xlabel name
    plt.xlabel('count')

#ylabel name
    plt.ylabel('diabetes')

#title of the plot
    plt.title('count of diabetes and Non diabetes')

#invert ylabes to no diabetes on top
    plt.gca().invert_yaxis()

#printing the plot
    plt.show()
```

count of diabetes and Non diabetes


```
In [39]: df['diabetes'].value_counts()/len(df) #percentage of 1--diabetes and 2--no diabe
Out[39]: diabetes
    0    0.915
    1    0.085
    Name: count, dtype: float64
In [41]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100000 entries, 0 to 99999
        Data columns (total 9 columns):
                                 Non-Null Count
            Column
                                                  Dtype
        --- -----
                                 _____
         0
             gender
                                 100000 non-null object
                                 100000 non-null float64
         1
            age
            hypertension
                                 100000 non-null int64
                                 100000 non-null int64
             heart_disease
         3
            smoking_history
                                 100000 non-null object
         5
                                 100000 non-null float64
            bmi
            HbA1c level
                                 100000 non-null float64
         6
             blood_glucose_level 100000 non-null int64
         7
             diabetes
                                 100000 non-null int64
        dtypes: float64(3), int64(4), object(2)
        memory usage: 6.9+ MB
In [45]: le=LabelEncoder()
         le
Out[45]:
             LabelEncoder
         LabelEncoder()
In [47]: Label encod columns=['gender', 'smoking history'] #selecting columns to apply to
         df[Label_encod_columns]=df[Label_encod_columns].apply(le.fit_transform) #applyin
In [49]:
        df.head(3)
Out[49]:
            gender
                    age hypertension heart_disease smoking_history
                                                                    bmi HbA1c level
         0
                 0.08
                                   0
                                                1
                                                                3 25.19
                                                                                 6.6
         1
                 0 54.0
                                   0
                                                0
                                                                3 27.32
                                                                                 6.6
         2
                 1 28.0
                                   0
                                                0
                                                                3 27.32
                                                                                 5.7
        sns.boxplot(data=df[['age','blood glucose level','bmi']])
In [51]:
Out[51]: <Axes: >
```


In [53]: sns.boxplot(data=df['HbA1c_level']) #checking outlayers using boxplot

In [55]: ''' it is always good to ignore outliers in medical data '''

Out[55]: ' it is always good to ignore outliers in medical data '

In [57]: sns.lmplot(data=df, x='blood_glucose_level', y='diabetes', fit_reg=False)#implot

Out[57]: <seaborn.axisgrid.FacetGrid at 0x24e8d3eb440>

In [61]:
 '''when age increase hypertension and hert disease ,blood_glucose_level and diab
 relationship between them
 *bmi
 *HbA1c_level
 *blood_glucose_level
 these four paramers have relationship between each other
 *gender and smokling history it doesnot effect on diabetes
 ...

Out[61]: 'when age increase hypertension and hert disease ,blood_glucose_level and diabe tes and age and also the is a \n relationship between them\n\n *bmi\n \n *HbA1c_level\n \n *blood_glucose_level\n \n these four parame rs have relationship between each other\n \n *gender and smokling history it doesnot effect on diabetes\n\n'

In [63]: df.corr()

Out[63]:		gender	age	hypertension	heart_disease	smoking_history		
	gender	1.000000	-0.030656	0.014203	0.077696	-0.044081		
	age	-0.030656	1.000000	0.251171	0.233354	-0.098969		
	hypertension	0.014203	0.251171	1.000000	0.121262	-0.048631		
	heart_disease	0.077696	0.233354	0.121262	1.000000	-0.048253		
	smoking_history	-0.044081	-0.098969	-0.048631	-0.048253	1.000000		
	bmi	-0.022994	0.337396	0.147666	0.061198	-0.087735		
	HbA1c_level	0.019957	0.101354	0.080939	0.067589	-0.017534		
	blood_glucose_level	0.017199	0.110672	0.084429	0.070066	-0.022985		
	diabetes	0.037411	0.258008	0.197823	0.171727	-0.049841		
	4					•		
In [65]:	plt.figure(figsize	=(20,8))						
	<pre>df.corr()['diabetes'].sort_values(ascending=False).plot(kind='bar')</pre>							
Out[65]:	<axes:></axes:>							
1.0	0							
0.8	3 -							
0.6	5-							
0.4	4 -							
0.2	2 -							

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 9 columns):
```

```
# Column
                     Non-Null Count Dtype
---
                     -----
                     100000 non-null int32
0
   gender
1 age
                    100000 non-null float64
                   100000 non-null int64
2 hypertension
                    100000 non-null int64
3 heart_disease
   smoking_history
                     100000 non-null int32
5
                     100000 non-null float64
   bmi
   HbA1c level
                    100000 non-null float64
7
   blood_glucose_level 100000 non-null int64
   diabetes
                     100000 non-null int64
8
```

dtypes: float64(3), int32(2), int64(4)

memory usage: 6.1 MB

```
In [69]: #selecting X variables
X = df.loc[:, 'age':'heart_disease'].join(df.loc[:, 'bmi':'blood_glucose_level']
X
```

Out[69]:		age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_level
	0	80.0	0	1	25.19	6.6	140
	1	54.0	0	0	27.32	6.6	80
	2	20.0	0	0	27 22	F 7	150

2	28.0	0	0	27.32	5.7	158
3	36.0	0	0	23.45	5.0	155
4	76.0	1	1	20.14	4.8	155
•••						
99995	80.0	0	0	27.32	6.2	90
99996	2.0	0	0	17.37	6.5	100
99997	66.0	0	0	27.83	5.7	155
99998	24.0	0	0	35.42	4.0	100

0 22.43

6.6

90

100000 rows × 6 columns

99999 57.0

0

```
In [71]: y=df.loc[:,'diabetes']
y
```

```
Out[71]: 0
                   0
          1
                   0
          2
                   0
          3
                   0
          4
          99995
          99996
                   0
          99997
          99998
                   0
          99999
          Name: diabetes, Length: 100000, dtype: int64
In [73]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
In [75]: X_train.head()
Out[75]:
                                                  bmi HbA1c_level blood_glucose_level
                 age hypertension heart_disease
                  2.0
          10382
                                 0
                                               0 16.45
                                                                6.2
                                                                                   159
          73171 55.0
                                               0 24.59
                                                                6.0
                                                                                   130
          30938 24.0
                                 0
                                                                4.5
                                                                                   130
                                               0 21.77
          99310 30.0
                                 0
                                               0 27.32
                                                                6.2
                                                                                   159
          58959 13.0
                                                                                   130
                                 0
                                               0 18.37
                                                                6.5
In [77]: print('Shape of Train data')
         print(X_train.shape)
         print(y_train.shape)
         print('Shape of Testing data')
         print(X test.shape)
         print(y_test.shape)
        Shape of Train data
        (80000, 6)
        (80000,)
        Shape of Testing data
        (20000, 6)
        (20000,)
In [79]: ss=StandardScaler() #activating StandardScaler()
         SS
Out[79]:
              StandardScaler
         StandardScaler()
         X_train_scaled=ss.fit_transform(X_train) #scaling X_train data
In [81]:
```

```
if len(X test.shape) == 1:
                                      #if x is 1d array
             X_test = X_test.values.reshape(-1, 1) #converting to 2d array
         X_test_scaled = ss.fit_transform(X_test) #scaling X_test data
In [85]: model_lr=LogisticRegression() #activating Logistic Regression
In [87]: model_lr.fit(X_train_scaled,y_train) #training Logistic regression model
Out[87]:
              LogisticRegression 4
         LogisticRegression()
In [89]:
         y_pred=model_lr.predict(X_test_scaled) #predecting y_test data
         y_pred[:10]
Out[89]: array([0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int64)
In [91]: y_test[:10] # actual y_test data
Out[91]: 3582
                   0
         60498
                   0
         53227
                   0
         21333
                  0
         3885
         51521
                  0
         84261
                  0
         10685
                  1
         59948
         41032
                   0
         Name: diabetes, dtype: int64
In [95]: accuracy_score(y_pred,y_test)
Out[95]: 0.95975
        print(classification_report(y_pred,y_test)) #classifiaction_report
                      precision
                                   recall f1-score
                                                      support
                                     0.97
                   0
                           0.99
                                               0.98
                                                        18736
                   1
                           0.63
                                     0.86
                                               0.73
                                                         1264
                                               0.96
                                                        20000
            accuracy
                                     0.91
                                               0.85
                                                        20000
           macro avg
                           0.81
        weighted avg
                           0.97
                                     0.96
                                               0.96
                                                        20000
In [99]:
         ''' As you can see that the accuracy is quite low, and as it's an imbalanced dat
         Hence, we need to check recall, precision & f1 score for the minority class, and
         Hence, moving ahead to call SMOTEENN (UpSampling + ENN)'''
         '''main advantage of using SMOTEENN is that it addresses both overfitting and un
```

Out[99]: 'main advantage of using SMOTEENN is that it addresses both overfitting and und erfitting issues that can arise from class imbalance. By generating synthetic s amples and removing noisy ones'

```
In [101...
          confusion_matrix(y_pred,y_test)
Out[101... array([[18114,
                           622],
                  [ 183, 1081]], dtype=int64)
In [103...
          y_train.value_counts()
Out[103...
           diabetes
                73203
                 6797
           Name: count, dtype: int64
In [105...
          value_counts=y_train.value_counts()
          plt.figure(figsize=(16, 8))
          plt.pie(value_counts, labels=value_counts.index, autopct='%1.2f%', startangle=1
          plt.title('Distribution of y_train')
          plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
          plt.show()
```



```
In [107... from imblearn.over_sampling import SMOTE # using smote function to balance our s
smote=SMOTE()

X_ovs,y_ovs=smote.fit_resample(X,y) #passing X and y variables to it to balance
fig, oversp = plt.subplots()
oversp.pie( y_ovs.value_counts(), autopct='%.2f')
oversp.set_title("Over-sampling")
plt.show()
```

Over-sampling


```
In [109...
          Xr_train,Xr_test,yr_train,yr_test=train_test_split(X_ovs,y_ovs,train_size=0.7,ra
In [111...
          print('train data shape')
          print(Xr_train.shape)
          print(yr_train.shape)
          print('test data shape')
          print(Xr_test.shape)
          print(yr_test.shape)
         train data shape
         (128099, 6)
         (128099,)
         test data shape
         (54901, 6)
         (54901,)
In [113...
         print('y_train and y_test value_count')
          print(yr_train.value_counts())
          print(yr_test.value_counts())
         y_train and y_test value_count
         diabetes
         0
              64131
              63968
         Name: count, dtype: int64
         diabetes
              27532
         1
              27369
         Name: count, dtype: int64
```

```
In [115...
          ss=StandardScaler()
          SS
Out[115...
               StandardScaler
          StandardScaler()
In [117...
          data=Xr_train,Xr_test
          xr_train_sc=ss.fit_transform(Xr_train) # scaling our resampling data xr train
          Xr_test_sc=ss.fit_transform(Xr_test) # scaling our resamplig xr_test data
In [119...
          Xr_train_scaled = pd.DataFrame(xr_train_sc) #Xr_train_scaled converting into the
          print(Xr_train_scaled.shape)
          Xr_train_scaled.head()
          print(yr_train.shape)
         (128099, 6)
         (128099,)
In [121...
          Xr_test_scaled=pd.DataFrame(Xr_test_sc) #Xr_test converting into the dataframe
          print(Xr_test_scaled.shape)
          Xr_test_scaled.head()
         (54901, 6)
Out[121...
                     0
                               1
                                         2
                                                   3
                                                                       5
              0.648387 -0.293492 -0.206627
                                             0.841287 -0.245012 -0.653366
             -1.095183 -0.293492 -0.206627 -0.404988
                                                       0.369655 -0.057241
             -1.466964 -0.293492 -0.206627 -0.288104
                                                      0.369655 -1.459888
             -0.769875
                       3.407246 -0.206627
                                             0.288161
                                                       0.369655 -1.372222
             -1.374018 -0.293492 -0.206627 -0.288104 -2.152519 -1.109226
In [123...
          model_lk=LogisticRegression()
          model_lk.fit(Xr_train_scaled,yr_train) #trining the model
Out[123...
               LogisticRegression
          LogisticRegression()
In [125...
          y_pred_lr=model_lk.predict(Xr_test_scaled) #predecting yr_test data
          y_pred_lr[:10]
```

```
Out[125... array([0, 0, 0, 0, 0, 1, 0, 0, 0, 1], dtype=int64)
In [127...
          yr_test[:10]
Out[127...
          180328
                     1
           573
           13494
                     0
           93981
                     0
           75389
                     0
           180973
                    1
           71021
                     0
           19293
           16393
                     0
           121419
                     1
           Name: diabetes, dtype: int64
In [129...
          #classification_report for predict value and orginal value
          print(classification_report(y_pred_lr,yr_test))
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.88
                                      0.88
                                                 0.88
                                                          27317
                                      0.88
                    1
                            0.89
                                                 0.88
                                                          27584
                                                 0.88
                                                          54901
             accuracy
                            0.88
                                      0.88
                                                 0.88
                                                          54901
            macro avg
         weighted avg
                            0.88
                                      0.88
                                                 0.88
                                                          54901
In [131...
          #confusion_matrix for predict value and orginal value
          confusion_matrix(y_pred_lr,yr_test)
Out[131... array([[24165, 3152],
                  [ 3204, 24380]], dtype=int64)
          Decision Tree Classifier
In [134...
          # activating DecisionTree Classifier
          model_dtc=DecisionTreeClassifier()
          # passing xr_train_scaled, yr_train to trining the model
          model dtc.fit(Xr train scaled,yr train)
          model dtc
Out[134...
              DecisionTreeClassifier
          DecisionTreeClassifier()
In [136...
          y_pred_dtc=model_dtc.predict(Xr_test_scaled) # predicting yr_test data
In [138...
          # classification report for decisionTreeclassifier
          print(classification_report(y_pred_dtc,yr_test))
```

```
precision recall f1-score
                                            support
          0
                  0.79
                            0.99
                                      0.88
                                               21954
          1
                  0.99
                            0.83
                                      0.90
                                               32947
                                      0.89
                                               54901
   accuracy
                  0.89
                            0.91
                                      0.89
                                               54901
  macro avg
weighted avg
                  0.91
                            0.89
                                      0.89
                                               54901
```

```
In [140... confusion_matrix(y_pred_dtc,yr_test)
```

```
Out[140... array([[21675, 279], [5694, 27253]], dtype=int64)
```

In [142... model_rfc=RandomForestClassifier() #activating the fuction
model_rfc.fit(Xr_train_scaled,yr_train)

Out[142... RandomForestClassifier RandomForestClassifier()

```
In [144... y_pred_rfc=model_rfc.predict(Xr_test_scaled)
```

In [146... print(classification_report(y_pred_rfc,yr_test))

	precision	recall	f1-score	support
0	0.92	0.99	0.95	25424
1	0.99	0.92	0.95	29477
accuracy			0.95	54901
macro avg	0.95	0.95	0.95	54901
weighted avg	0.95	0.95	0.95	54901

```
In [150... confusion_matrix(y_pred_rfc,yr_test)
```

Out[150... array([[25054, 370], [2315, 27162]], dtype=int64)

XGBOOST

```
In [154... model_xgb=XGBClassifier()
    model_xgb.fit(Xr_train_scaled,yr_train)
```

```
Out[154...
                                        XGBClassifier
          XGBClassifier(base_score=None, booster=None, callbacks=None,
                         colsample_bylevel=None, colsample_bynode=None,
                         colsample_bytree=None, device=None, early_stopping_rou
          nds=None,
                        enable_categorical=False, eval_metric=None, feature_ty
          pes=None,
                        gamma=None, grow_policy=None, importance_type=None,
                         interaction_constraints=None, learning_rate=None, max_
          bin=None,
In [156...
          y_pred_xgb=model_xgb.predict(Xr_test_scaled)
In [158...
          print(classification_report(y_pred_xgb,yr_test))
                      precision
                                   recall f1-score
                                                     support
                   0
                           0.76
                                     0.98
                                               0.86
                                                        21230
                   1
                           0.99
                                     0.81
                                               0.89
                                                        33671
                                               0.88
                                                        54901
            accuracy
            macro avg
                           0.88
                                     0.90
                                               0.87
                                                        54901
                                     0.88
                                               0.88
                                                        54901
         weighted avg
                           0.90
```

finding the hyperparameter tuning and best param grid

```
In [163...
          from sklearn.model selection import GridSearchCV, cross val score
          from sklearn.linear_model import LogisticRegression
          # Define the parameter grid to search over
          param grid = {
              'C': [0.001, 0.01, 0.1, 1, 10, 100], # Regularization parameter
               'penalty': ['l1', 'l2']
                                                     # Penalty type
          # Create a Logistic Regression model
          logistic = LogisticRegression()
          # Create a GridSearchCV object
          grid_search = GridSearchCV(estimator=logistic, param_grid=param_grid, cv=10)
          # Initialize an empty list to store the accuracy scores
          accuracy_scores = []
          # Perform cross-validation 10 times
          for _ in range(10):
```

```
# Fit the GridSearchCV object to the training data
                grid_search.fit(Xr_train_scaled, yr_train)
                # Get the best parameters
                best_params = grid_search.best_params_
                # Perform cross-validation with the best model
                cv_scores = cross_val_score(grid_search.best_estimator_, Xr_train_scaled, yr
                         # Store the mean accuracy score
                accuracy_scores.append(cv_scores.mean())
    # Print the accuracy scores obtained over 10 iterations
    #print("Accuracy scores over 10 iterations:", accuracy_scores)
    print("Accuracy scores over 10 iterations:", ["{:.2f}".format(score) for score i
    # Get the best parameters and best score
    best_params = grid_search.best_params_
    best_score = grid_search.best_score_
    print("Best parameters found:", best_params)
    print("Best cross-validation score:", best_score)
Accuracy scores over 10 iterations: ['0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '0.88', '
8', '0.88', '0.88', '0.88', '0.88']
Best parameters found: {'C': 0.001, 'penalty': '12'}
Best cross-validation score: 0.8848390832485136
```

Final Model

```
In [166...
          from sklearn.linear_model import LogisticRegression
          # Create a Logistic Regression model with the best parameters
          final model = LogisticRegression(C=0.001, penalty='12')
          # Fit the final model to the entire training dataset
          final_model.fit(Xr_train_scaled, yr_train)
Out[166...
              LogisticRegression
          LogisticRegression(C=0.001)
In [168...
          import pickle
          # Save the final model to a pickle file
          with open('final_model.pkl', 'wb') as file:
              pickle.dump(final_model, file)
In [170...
          import pickle
          import numpy as np
          # Load the model from the pickle file
          with open('final_model.pkl', 'rb') as file:
              loaded_model = pickle.load(file)
          # Define the mean and standard deviation of the training data
          mean_values = [41.885856, 0.07485, 0.03942, 27.320767, 5.527507, 138.058060]
```

```
std_values = [22.516840, 0.26315, 0.194593, 6.636783, 1.070672, 40.708136]
# Define the input features for prediction
age = 30
hypertension = 0
heart_disease = 0
bmi = 100.0
HbA1c_level = 5.0
blood_glucose_level = 90
# Scale the input features manually
scaled_features = [(x - mean) / std for x, mean, std in zip(
    [age, hypertension, heart_disease, bmi, HbA1c_level, blood_glucose_level],
   mean_values, std_values
)]
# Make predictions on the scaled data
prediction = loaded_model.predict([scaled_features])
# Print the prediction
if prediction[0] == 1:
   print("Diabetic")
else:
   print("Not Diabetic")
```

Diabetic

Comleted

In []: