Assignment 2 MAT 457

Q2a: Let $\{B_n\}$ be an disjoint sequence of sets in \mathcal{A} . We define

$$A_n = \bigcup_{i=1}^n B_i$$

We have that the A_i 's are an increasing sequence by construction. It is clear that each A_i belongs to \mathcal{A} , since each is the union of sets in \mathcal{A} . It is given that μ is a finitely additive measure, so

$$\mu(\bigcup_{j=1}^{n} B_j) = \sum_{j=1}^{n} \mu(B_j)$$

By the construction of $\{A_n\}$ it is also true that

$$\mu(A_n) = \mu(\bigcup_{j=1}^n B_n)$$

Taking the limit we see that

$$\lim_{n \to \infty} \sum_{j=1}^{n} \mu(B_j) = \lim_{n \to \infty} \mu(\bigcup_{j=1}^{n} B_j)$$

$$= \lim_{n \to \infty} \mu(A_n) \qquad \text{(by construction of } A_n)$$

$$= \mu(\lim_{n \to \infty} \bigcup_{j=1}^{n} A_n) \qquad \text{(by given measure continuity)}$$

$$= \mu(\lim_{n \to \infty} \bigcup_{j=1}^{n} B_n) \qquad \text{(by definition of } B_n)$$

We get the desired equality and conclude that μ is a premeasure.

Q2b: Let $\{B_n\}$ be a sequence of disjoint sets in \mathcal{A} . Since μ is finite, we have that downward measure continuity holds. We define a decreasing sequence of sets $\{A_n\}$ by $A_n = \bigcup_{i=n} B_i$. Note that this sequence is contained in \mathcal{A} since it is the union of elements of \mathcal{A} . We note that by finiteness of μ we have that

$$\sum_{i=1}^{n} \mu(B_i) = \mu(\bigcup_{i=1}^{n} B_i)$$

But also by the construction of $\{A_n\}$ we get that

$$\sum_{i=1}^{n} \mu(B_i) = \sum_{i=1}^{n} \mu(A_i) - \mu(A_{i+1}) = \mu(A_1) - \mu(A_{n+1})$$

Taking the limit as $n \to \infty$, we get that

$$\sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i)$$

$$= \mu(A_1) - \lim_{n \to \infty} \mu(A_{n+1})$$

$$= \mu(A_1)$$
 (by assumption of measure of nested sets)
$$= \mu(\bigcup_{i=1}^{\infty} B_i)$$

We get the desired result and conclude that μ is a premeasure on \mathcal{A}