k-HARMONIC MAPS INTO A RIEMANNIAN MANIFOLD WITH CONSTANT SECTIONAL CURVATURE

SHUN MAETA

ABSTRACT. J. Eells and L. Lemaire introduced k-harmonic maps, and Wang Shaobo showed the first variational formula. When, k=2, it is called biharmonic maps (2-harmonic maps). There have been extensive studies in the area. In this paper, we consider the relationship between biharmonic maps and k-harmonic maps, and show non-existence theorem of 3-harmonic maps. We also give the definition of k-harmonic submanifolds of Euclidean spaces, and study k-harmonic curve in Euclidean spaces. Futhermore, we give a conjecture for k-harmonic submanifolds of Euclidean spaces.

Introduction

Theory of harmonic maps has been applied into various fields in differential geometry. The harmonic maps between two Riemannian manifolds are critical maps of the energy functional $E(\phi) = \frac{1}{2} \int_{M} \|d\phi\|^{2} v_{g}$, for smooth maps $\phi: M \to N$.

On the other hand, in 1981, J. Eells and L. Lemaire [6] proposed the problem to consider the *k-harmonic maps*: they are critical maps of the functional

$$E_k(\phi) = \int_M e_k(\phi) v_g, \ (k = 1, 2, \cdots),$$

where $e_k(\phi) = \frac{1}{2} ||(d+d^*)^k \phi||^2$ for smooth maps $\phi : M \to N$. G.Y. Jiang [3] studied the first and second variational formulas of the bi-energy E_2 , and critical maps of E_2 are called *biharmonic maps* (2-harmonic maps). There have been extensive studies on biharmonic maps.

In 1989, Wang Shaobo [9] studied the first variational formula of the k-energy E_k , whose critical maps are called k-harmonic maps. Harmonic maps are always k-harmonic maps by definition. But, the author [7] showed biharmonic is not always k-harmonic ($k \ge 3$). More generally, s-harmonic is not always k-harmonic (s < k). Furthermore, the author [7] showed the second variational formula of the k-energy.

In this paper, we study k-harmonic maps into a Riemannian manifold with constant sectional curvature K.

In §1, we introduce notation and fundamental formulas of the tension field.

In $\S 2$, we recall k-harmonic maps.

In $\S 3$, we give the relationship between biharmonic maps and k-harmonic maps.

In §4, we study 3-harmonic maps into a non positive sectional curvature and obtain non-existence theorem.

Finally, in $\S 5$, we define k-harmonic submanifolds of Euclidean spaces. And we show k-harmonic curve is a straight line. Furthermore, we give a conjecture for k-harmonic submanifolds in Euclidean spaces.

1. Preliminaries

Let (M,g) be an m dimensional Riemannian manifold, (N,h) an n dimensional one, and $\phi: M \to N$, a smooth map. We use the following notation. The second fundamental form $B(\phi)$ of ϕ is a covariant differentiation $\nabla d\phi$ of 1-form $d\phi$, which is a section of $\odot^2 T^*M \otimes \phi^{-1}TN$. For every $X, Y \in \Gamma(TM)$, let

(1)
$$B(X,Y) = (\widetilde{\nabla} d\phi)(X,Y) = (\widetilde{\nabla}_X d\phi)(Y) \\ = \overline{\nabla}_X d\phi(Y) - d\phi(\nabla_X Y) = \nabla^N_{d\phi(X)} d\phi(Y) - d\phi(\nabla_X Y).$$

Here, $\nabla, \nabla^N, \overline{\nabla}, \widetilde{\nabla}$ are the induced connections on the bundles $TM, TN, \phi^{-1}TN$ and $T^*M \otimes \phi^{-1}TN$, respectively.

If M is compact, we consider critical maps of the energy functional

(2)
$$E(\phi) = \int_{M} e(\phi)v_{g},$$

where $e(\phi) = \frac{1}{2} ||d\phi||^2 = \sum_{i=1}^m \frac{1}{2} \langle d\phi(e_i), d\phi(e_i) \rangle$ which is called the *enegy density* of ϕ , the inner product $\langle \cdot, \cdot \rangle$ is a Riemannian metric h, and $\{e_i\}_{i=1}^m$ is a locally defined orthonormal frame field on (M,g). The tension field $\tau(\phi)$ of ϕ is defined by

(3)
$$\tau(\phi) = \sum_{i=1}^{m} (\widetilde{\nabla} d\phi)(e_i, e_i) = \sum_{i=1}^{m} (\widetilde{\nabla}_{e_i} d\phi)(e_i).$$

Then, ϕ is a harmonic map if $\tau(\phi) = 0$.

The curvature tensor field $R^N(\cdot,\cdot)$ of the Riemannian metric on the bundle TN is defined as follows:

$$(4) \hspace{1cm} R^N(X,Y) = \nabla^N_X \nabla^N_Y - \nabla^N_Y \nabla^N_X - \nabla^N_{[X,Y]}, \hspace{1cm} (X,Y \in \Gamma(TN)).$$

$$\overline{\triangle} = \overline{\nabla}^* \overline{\nabla} = -\sum_{k=1}^m (\overline{\nabla}_{e_k} \overline{\nabla}_{e_k} - \overline{\nabla}_{\nabla_{e_k} e_k})$$
, is the rough Laplacian.
And G.Y.Jiang [3] showed that $\phi: (M, g) \to (N, h)$ is a biharmonic (2-harmonic)

if and only if

$$\overline{\triangle}\tau(\phi) - R^N(\tau(\phi), d\phi(e_i))d\phi(e_i) = 0.$$

2. k-Harmonic maps

J. Eells and L. Lemaire [6] proposed the notation of k-harmonic maps. The Euler-Lagrange equation for the k-harmonic maps was shown by Wang Shaobo [9]. In this section, we recall k-harmonic maps.

We consider a smooth variation $\{\phi_t\}_{t\in I_{\epsilon}}(I_{\epsilon}=(-\epsilon,\epsilon))$ of ϕ with parameter t, i.e., we consider the smooth map F given by

$$F: I_{\epsilon} \times M \to N, F(t, p) = \phi_t(p),$$

where $F(0,p) = \phi_0(p) = \phi(p)$, for all $p \in M$.

The corresponding variational vector field V is given by

$$V(p) = \left. \frac{d}{dt} \right|_{t=0} \phi_t(p) \in T_{\phi(p)}N,$$

V are section of $\phi^{-1}TN$, i.e., $V \in \Gamma(\phi^{-1}TN)$.

Definition 2.1 ([6]). For $k = 1, 2, \cdots$ the k-energy functional is defined by

$$E_k(\phi) = \frac{1}{2} \int_M \|(d+d^*)^k \phi\|^2 v_g, \quad \phi \in C^{\infty}(M,N).$$

Then, ϕ is k-harmonic if it is a critical point of E_k , i.e., for all smooth variation $\{\phi_t\}$ of ϕ with $\phi_0 = \phi$,

$$\left. \frac{d}{dt} \right|_{t=0} E_k(\phi_t) = 0.$$

We say for a k-harmonic map to be *proper* if it is not harmonic.

Theorem 2.2 ([9]). Let k = 2s ($s = 1, 2, \dots$),

$$\frac{d}{dt}\Big|_{t=0} E_{2s}(\phi_t) = -\int_M \langle \tau_{2s}(\phi), V \rangle v_g,$$

where.

$$\tau_{2s}(\phi) = \overline{\triangle}^{2s-1} \tau(\phi) - R^N(\overline{\triangle}^{2s-2} \tau(\phi), d\phi(e_j)) e\phi(e_j)$$

$$- \sum_{l=1}^{s-1} \{ R^N(\overline{\nabla}_{e_j} \overline{\triangle}^{s+l-2} \tau(\phi), \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_j)$$

$$- R^N(\overline{\triangle}^{s+l-2} \tau(\phi), \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_j) \},$$

where, $\overline{\triangle}^{-1} = 0$, $\{e_i\}_{i=1}^m$ is a locally defined orthonormal frame field on (M, g).

Theorem 2.3 ([9]). Let k = 2s + 1 $(s = 0, 1, 2, \dots),$

$$\frac{d}{dt}\Big|_{t=0} E_{2s+1}(\phi_t) = -\int_M \langle \tau_{2s+1}(\phi), V \rangle v_g,$$

where,

$$\begin{split} \tau_{2s+1}(\phi) = & \overline{\triangle}^{2s} \tau(\phi) - R^N(\overline{\triangle}^{2s-1} \tau(\phi), d\phi(e_j)) d\phi(e_j) \\ & - \sum_{l=1}^{s-1} \{ R^N(\overline{\nabla}_{e_j} \overline{\triangle}^{s+l-1} \tau(\phi), \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_j) \\ & - R^N(\overline{\triangle}^{s+l-1} \tau(\phi), \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_j) \} \\ & - R^N(\overline{\nabla}_{e_i} \overline{\triangle}^{s-1} \tau(\phi), \overline{\triangle}^{s-1} \tau(\phi)) d\phi(e_i), \end{split}$$

where, $\overline{\Delta}^{-1} = 0$, $\{e_i\}_{i=1}^m$ is a locally defined orthonormal frame field on (M, g).

3. The relationship between biharmonic and k-harmonic

In [7], the auther showed s-harmonic is not always k-harmonic (s < k). Especially, biharmonic is not always k-harmonic $(k \ge 3)$. So we study the relationship between biharmonic and k-harmonic (2 < k). We obtain some results.

Proposition 3.1. Let $\phi:(M,g)\to (N,h)$ be an isometric immersion into a Riemannian manifold with constant sectional curvature K. Then, ϕ is biharmonic if and only if

$$\overline{\triangle}\tau(\phi) = Km\tau(\phi).$$

Proof. ϕ is biharmonic if and only if

$$0 = \overline{\Delta}\tau(\phi) - R^{N}(\tau(\phi), d\phi(e_{i}))d\phi(e_{i})$$

$$= \overline{\Delta}\tau(\phi) - K\{\langle d\phi(e_{i}), d\phi(e_{i})\rangle\tau(\phi) - \langle d\phi(e_{i}), \tau(\phi)\rangle d\phi(e_{i})\}$$

$$= \overline{\Delta}\tau(\phi) - Km\tau(\phi).$$

Thus, we have the proposition.

Lemma 3.2. Let $\phi:(M,g)\to (N,h)$ be an isometric immersion into a Riemannian manifold with constant sectional curvature K. If ϕ is biharmonic,

(5)
$$\langle d\phi(e_i), \overline{\triangle}^l \tau(\phi) \rangle = 0. \quad (l = 0, 1, \cdots)$$

Proof. By using Proposition 3.1, we have

$$\langle d\phi(e_i), \overline{\triangle}^l \tau(\phi) \rangle = mK \langle d\phi(e_i), \overline{\triangle}^{l-1} \tau(\phi) \rangle$$

$$\cdots$$

$$= (mK)^l \langle d\phi(e_i), \tau(\phi) \rangle$$

$$= 0.$$

Lemma 3.3. Let $\phi:(M,g)\to (N,h)$ be an isometric immersion into a Riemannian manifold with constant sectional curvature K. If ϕ is biharmonic,

(6)
$$\langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^l \tau(\phi) \rangle = -(mK)^l ||\tau(\phi)||^2.$$

Proof. By using Proposition 3.1, we have

$$\langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^l \tau(\phi) \rangle = mK \langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^{l-1} \tau(\phi) \rangle$$

$$\cdots$$

$$= (mK)^l \langle d\phi(e_i), \overline{\nabla}_{e_i} \tau(\phi) \rangle$$

$$= - (mK)^l ||\tau(\phi)||^2,$$

where, in the last equation, we only notice that

$$0 = e_i \langle d\phi(e_i), \tau(\phi) \rangle = \langle \overline{\nabla}_{e_i} d\phi(e_i), \tau(\phi) \rangle + \langle d\phi(e_i), \overline{\nabla}_{e_i} \tau(\phi) \rangle.$$

Using these lammas, we show the following two theorems.

Theorem 3.4. Let $\phi:(M,g)\to (N,h)$ be a biharmonic isometric immersion into a Riemannian manifold with constant sectional curvature $K(\neq 0)$. If ϕ is 2s-harmonic $(s\geq 2)$, ϕ is harmonic.

Proof. By Theorem 2.2, ϕ is 2s-harmonic if and only if

$$\begin{split} \overline{\triangle}^{2s-1}\tau(\phi) - K\{m\overline{\triangle}^{2s-2}\tau(\phi) - \langle d\phi(e_j), \overline{\triangle}^{2s-2}\tau(\phi)\rangle d\phi(e_j)\} \\ - \sum_{l=1}^{s-1}\{K(\langle \overline{\triangle}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\nabla}_{e_j} \overline{\triangle}^{s+l-2}\tau(\phi) \\ - \langle d\phi(e_j), \overline{\nabla}_{e_j} \overline{\triangle}^{s+l-2}\tau(\phi)\rangle \overline{\triangle}^{s-l-1}\tau(\phi) \\ - \langle \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\triangle}^{s+l-2}\tau(\phi) \\ + \langle d\phi(e_j), \overline{\triangle}^{s+l-2}\tau(\phi)\rangle \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi))\} = 0. \end{split}$$

By Proposition 3.1, Lemma 3.2 and 3.3, we have

$$0 = (mK)^{2s-1}\tau(\phi) - (mK)^{2s-1}\tau(\phi)$$
$$-\sum_{l=1}^{s-1} \{K((mK)^{2s-3}||\tau(\phi)||^2\tau(\phi) + (mK)^{2s-3}||\tau(\phi)||^2\tau(\phi))\}$$
$$= -2(s-1)K(mK)^{2s-3}||\tau(\phi)||^2\tau(\phi).$$

Thus, we have the theorem.

Theorem 3.5. Let $\phi:(M,g) \to (N,h)$ be a biharmonic isometric immersion into a Riemannian manifold with constant sectional curvature $K(\neq 0)$. If ϕ is (2s+1)-harmonic $(s \geq 1)$, ϕ is harmonic.

Proof. By Theorem 2.3, ϕ is (2s+1)-harmonic if and only if

$$\begin{split} \overline{\Delta}^{2s} \tau(\phi) - K\{m\overline{\Delta}^{2s-1}\tau(\phi) - \langle d\phi(e_j), \overline{\Delta}^{2s-1}\tau(\phi)\rangle d\phi(e_j)\} \\ - \sum_{l=1}^{s-1} \{K(\langle \overline{\Delta}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\nabla}_{e_j} \overline{\Delta}^{s+l-1}\tau(\phi) \\ - \langle d\phi(e_j), \overline{\nabla}_{e_j} \overline{\Delta}^{s+l-1}\tau(\phi)\rangle \overline{\Delta}^{s-l-1}\tau(\phi) \\ - \langle \overline{\nabla}_{e_j} \overline{\Delta}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\Delta}^{s+l-1}\tau(\phi) \\ + \langle d\phi(e_j), \overline{\Delta}^{s+l-1}\tau(\phi)\rangle \overline{\nabla}_{e_j} \overline{\Delta}^{s-l-1}\tau(\phi))\} \\ - K\{\langle \overline{\Delta}^{s-1}\tau(\phi), d\phi(e_i) \overline{\nabla}_{e_i} \overline{\Delta}^{s-1}\tau(\phi) \\ - \langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\Delta}^{s-1}\tau(\phi)\rangle \overline{\Delta}^{s-1}\tau(\phi)\} = 0. \end{split}$$

By Proposition 3.1, Lemma 3.2 and 3.3, we have

$$0 = (mK)^{2s}\tau(\phi) - (mK)^{2s}\tau(\phi)$$

$$-\sum_{l=1}^{s-1} \{K((mK)^{2s-2}||\tau(\phi)||^2\tau(\phi) + (mK)^{2s-2}||\tau(\phi)||^2\tau(\phi)\}$$

$$-K(mK)^{2s-2}||\tau(\phi)||^2\tau(\phi)$$

$$= -(2s-1)K(mK)^{2s-2}||\tau(\phi)||^2\tau(\phi).$$

Thus, we have the theorem.

4. 3-HARMONIC MAPS INTO NON-POSITIVE CURVATURE

In this section we show non-existence theorem of 3-harmonic maps. G. Y. Jiang showed the follows.

Theorem 4.1 ([3]). Assume that M is compact and N is non positive curvature, i.e., Riemannian curvature of N, $K \leq 0$. Then, every biharmonic map $\phi: M \to N$ is harmonic.

We consider this theorem for 3-harmonic maps. First, we recall following theorem.

Theorem 4.2 ([7]). Let $l = 1, 2, \dots$. If $\overline{\triangle}^l \tau(\phi) = 0$ or $\overline{\nabla}_{e_i} \overline{\triangle}^{(l-1)} \tau(\phi) = 0$, $(i = 1, 2, \dots, m)$, then $\phi : M \to N$ from a compact Riemannian manifold into a Riemannian manifold is a harmonic map.

Using this theorem, we obtain the next result.

Proposition 4.3. Let $\phi:(M,g)\to (N,h)$ be a isometric immersion from a compact Riemannian manifold into a Riemannian manifold with non positive constant sectional curvature $K\leq 0$. Then, 3-harmonic is harmonic.

Proof. Indeed, by computing the Laplacian of the 4-energy density $e_4(\phi)$, we have

(7)
$$\triangle e_{4}(\phi) = ||\overline{\nabla}_{e_{i}}\overline{\triangle}\tau(\phi)||^{2} - \langle\overline{\triangle}^{2}\tau(\phi), \overline{\triangle}\tau(\phi)\rangle$$

$$= ||\overline{\nabla}_{e_{i}}\overline{\triangle}\tau(\phi)||^{2}$$

$$- \langle R^{N}(\overline{\triangle}\tau(\phi), d\phi(e_{i}))d\phi(e_{i}), \overline{\triangle}\tau(\phi)\rangle$$

$$- \langle R^{N}(\overline{\nabla}_{e_{i}}, \tau(\phi), \tau(\phi))d\phi(e_{i}), \overline{\triangle}\tau(\phi)\rangle,$$

due to ϕ is 3-harmonic. Here, we consider the right hand side of (7).

$$\langle R^{N}(\overline{\nabla}_{e_{i}}, \tau(\phi), \tau(\phi)) d\phi(e_{i}), \overline{\triangle}\tau(\phi) \rangle = \langle K\{\langle \tau(\phi), d\phi(e_{i}) \rangle \overline{\nabla}_{e_{i}}\tau(\phi) - \langle d\phi(e_{i}), \overline{\nabla}_{e_{i}}\tau(\phi) \rangle \tau(\phi), \overline{\triangle}\tau(\phi) \} \rangle$$
$$= K\{||\tau(\phi)||^{2} \langle \tau(\phi), \overline{\triangle}\tau(\phi) \rangle \}.$$

Using Green's theorem, we have

(8)
$$0 = \int_{M} \triangle e_{4}(\phi) = \int_{M} ||\overline{\nabla}_{e_{i}} \overline{\triangle} \tau(\phi)||^{2} - \langle R^{N}(\overline{\triangle} \tau(\phi), d\phi(e_{i})) d\phi(e_{i}), \overline{\triangle} \tau(\phi) \rangle - K||\tau(\phi)||^{2} ||\overline{\nabla}_{e_{j}} \tau(\phi)||^{2} v_{g}.$$

Then, the both terms of (8) are non-negative, so we have

(9)
$$0 = \triangle e_4(\phi) = ||\overline{\nabla}_{e_i} \overline{\triangle} \tau(\phi)||^2 \\ - \langle R^N(\overline{\triangle} \tau(\phi), d\phi(e_i)) d\phi(e_i), \overline{\triangle} \tau(\phi) \rangle \\ - K||\tau(\phi)||^2 ||\overline{\nabla}_{e_j} \tau(\phi)||^2.$$

Especially, we have

$$\overline{\nabla}_{e_i} \overline{\triangle} \tau(\phi) = 0.$$

Using Theorem 4.2, we obtain the proposition.

5. k-harmonic curves into Euclidean space

In this section, we consider k-harmonic curves into a Euclidean space \mathbb{E}^n and we give a conjecture. B. Y. Chen [1] define biharmonic submanifolds of Euclidean spaces.

Definition 5.1 ([1]). Let $x: M \to \mathbb{E}^n$ be an isometric immersion into a Euclidean space. $x: M \to \mathbb{E}^n$ is called biharmonic submanifold if

(10)
$$\triangle^2 x = 0, \text{ that is, } \triangle H = 0,$$

where, $H = -\frac{1}{m} \triangle x$ is the mean curvature vetor of the isometric immersion x and \triangle the Laplacian of M.

B. Y. Chen and S. Ishikawa [2] proved that any biharmonic surface in \mathbb{E}^3 is minimal. And Chen [1] gave a conjecture.

Conjecture 5.2 ([1]). The only biharmonic submanifolds in Euclidean spaces are the minimal ones.

There are several results for this conjecture ([8], [5] and [10] etc). However, the conjecture is still open. I. Dimitric [5] considered a cureve case (n = 1), and obtained following theorem.

Theorem 5.3 ([5]). Let $x: C \to \mathbb{E}^n$ be a smooth curve parametrized by arc length, with the mean curvature vector H satisfying $\triangle H = 0$, then the curve is a straight line, i.e., totally geodesic in \mathbb{E}^n .

We generalize this throrem. First, we define k-harmonic submanifolds in Euclidean spaces.

Definition **5.4.** Let $x: M \to \mathbb{E}^n$ be an isometric immersion into a Euclidean space. $x: M \to \mathbb{E}^n$ is called k-harmonic submanifold if

(11)
$$\triangle^k x = 0$$
, that is, $\triangle^{k-1} H = 0$ $(k = 1, 2, \dots)$,

where, $H = -\frac{1}{m} \triangle x$ is the mean curvature vetor of the isometric immersion x and \triangle the Laplacian of M.

We also consider a curve case (n = 1), and obtain following theorem.

Theorem 5.5. Let $x: C \to \mathbb{E}^n$ be a smooth curve parametrized by arc length, with the mean curvature vector H satisfying $\triangle^{k-1}H = 0$, $(k = 1, 2, \cdots)$, then the curve is a straight line, i.e., totally geodesic in \mathbb{E}^n .

Proof. We have $0 = \triangle^{k-1}H = -\triangle^k x = (-1)^{k+1} \frac{d^{2k}}{ds^{2k}} x$, $k = 1, 2, \cdots$. Hence x has to be a (2k-1)-th power polynomial in s,

$$x = \frac{1}{2k-1}a_{2k-1}s^{2k-1} + \frac{1}{2k-2}a_{2k-2}s^{2k-2} + \dots + a_1s + a_0,$$

where a_i $(i = 0, 1, \dots, 2k-1)$ are constant vectors. Since s is the natural parameter we have

$$1 = \langle \frac{dx}{ds}, \frac{dx}{ds} \rangle = \langle \sum_{i=1}^{2k-1} a_i s^{i-1}, \sum_{i=1}^{2k-1} a_i s^{i-1} \rangle$$

$$= |a_{2k-1}|^2 s^{4k-4} + 2\langle a_{2k-1}, a_{2k-2} \rangle s^{4k-5} + \{2\langle a_{2k-1}, a_{2k-3} \rangle + |a_{2k-2}|^2\} s^{4k-6}$$

$$\dots$$

+
$$\{2\langle a_1, a_3\rangle + |a_2|^2\}s^2 + 2\langle a_1, a_2\rangle s + |a_1|^2$$

On the right hand side we have a polynomial in s, so we must have

$$a_{2k-1} = a_{2k-2} = a_{2k-3} = a_{2k-4} = \dots = a_3 = a_2 = 0, |a_1|^2 = 1.$$

In other words, $x(s) = a_1 s + a_0$ with $|a_1|^2 = 1$, and therefore the curve is a straight line.

Conjecture **5.6.** The only k-harmonic submanifolds in Euclidean spaces are the minimal ones.

Especially, when k=2, it is B. Y. Chen conjecture.

References

- B. Y. Chen Some open problems and conjectures on submanfolds of finite type Soochow J. Math., 17, (1991), 169-188.
- [2] B. Y. Chen S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 (1998), no. 1-3, 101-108.
- [3] G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math., 7A (1986), 388-402; the English translation, Note di Matematica, 28, (2009), 209-232.
- [4] H. Urakawa, Calculus of variation and harmonic maps, Transl. Math. Monograph. 132, Amer. Math. Soc.
- [5] I. Dimitric Submanifolds of Eⁿ with harmonic mean curvature vector Bull. Inst. Math. Acad. Sinica 20 (1992), 53-65.
- [6] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc, 1983.
- [7] Sh. Maeta The second variational formula of the k-energy and k-harmonic curves arXiv:1008.3700v1 [math.DG] 22 Aug 2010.
- [8] T. Ichiyama, J. Inoguchi and H. Urakawa, Bi-harmonic map and bi-Yang-Mills fields, Note di Matematica, 28 (2009), 233-275.
- [9] Wang Shaobo, The First Variation Formula For K-harmonic mapping, Journal of jiangxi university, 13, No 1, 1989.
- [10] Y.-L. Ou, Some constructions of biharmonic maps and Chen's conjecture on biharmonic hypersurfaces, arXiv:0912.1141v1 [math.DG] 6 Dec 2009.

Current address: Nakakuki 3-10-9 Oyama-shi Tochigi Japan

E-mail address: shun.maeta@gmail.com