IR Assignment III

1. Consider a query and a document collection consisting of three documents. Rank the documents using vector space model. Assume tf-idf weighing scheme.

Query: "gold silver truck"

Document Collection:

d1: "Shipment of gold arrived in a truck."

d2: "Shipment of gold damaged in a fire."

d3: "Delivery of silver arrived in a silver truck."

term freq								tf-idf			
term	Q	D1	D2	D3	df	idf = log (N/df)	Q	D1	D2	D3	
а	0	1	1	1	3	0	0	0	0	0	
arrived	0	1	0	1	2	0.18	0	0.18	0	0.18	
damaged	0	0	1	0	1	0.48	0	0	0.48	0	
delivery	0	0	0	1	1	0.48	0	0	0	0.48	
fire	0	0	1	0	1	0.48	0	0	0.48	0	
gold	1	1	1	0	2	0.18	0.18	0.18	0.18	0	
in	0	1	1	1	3	0	0	0	0	0	
of	0	1	1	1	3	0	0	0	0	0	
shipment	1	1	1	0	2	0.18	0	0.18	0.18	0	
silver	0	0	0	1	1	0.48	0.48	0	0	0.96	
truck	1	1	0	1	2	0.18	0	0.18	0	0.18	

$$S(Q, D1) = (Q \cdot D1) / (|Q| * |D1|) = 0.33$$

 $S(Q, D2) = 0.08$
 $S(Q, D3) = 0.83$

Ranking: D3, D1, D2

2. γ Codes are relatively inefficient for large numbers as they encode the length of the offset in inefficient unary code. δ codes δ codes differ from γ codes in that they encode the first part of the code (*length*) in γ code instead of unary code. The encoding of *offset* is the same. For example, the δ code of 7 is 10,0,11 (again, we add commas for readability). 10,0 is the γ code for *length* (2 in this case) and the encoding of *offset* (11) is unchanged. (i) Compute the δ codes for the numbers 511 and 1025.

```
511: 1000, 0, 1111 1111
1025: 1010, 0, 0000 0000 01
```

3. From the following sequence of γ -coded gaps, reconstruct first the gap sequence and then the postings sequence: 111000111010101111101101111011.

<u>111</u> 0 <u>001</u> <u>11</u> 0 <u>107</u> 0 <u>1</u> <u>111111</u> 0 <u>11011</u> <u>11011</u>

Gaps sequence: 9, 6, 3, 59, 7

Postings sequence: 9, 15, 18, 77, 84

- 4. We have defined unary codes as being "10": sequences of 1s terminated by a 0. Interchanging the roles of 0s and 1s yields an equivalent "01" unary code. When this 01 unary code is used, the construction of a γ code can be stated as follows:
 - 1. Write G down in binary using $b = \lfloor \log_2 j \rfloor + 1$ bits.
 - 2. Prepend (b 1) 0s.

Encode the numbers 511 and 1025 in this alternative y code.

```
511: 0000 0000 1, 1111 1111
1025: 0000 0000 001, 00 0000 0001
```

- 5. Consider the postings list <4, 10, 11, 12, 15, 62, 63, 265, 268, 270, 400> with a corresponding list of gaps <4, 6, 1, 1, 3, 47, 1, 202, 3, 2, 130>. Using variable byte encoding:
 - i. What is the largest gap you can encode in 1 byte?

ii. What is the largest gap you can encode in 2 bytes?

```
In 2 bytes, 2^{14} - 1 = 16383
```

iii. How many bytes will the above postings list require under this encoding?

13