Flow Matching for Generative Modeling

Pramook Khungurn

July 22, 2024

This note was written as I read the "Flow Matching for Generative Modeling" paper by Lipman et al. [5].

1 Background

- A data item is denoted by $x = (x^1, x^2, \dots, x^d) \in \mathbb{R}^d$.
- A **probability density path** is a function $p:[0,1]\times\mathbb{R}^d\to\mathbb{R}^+\cup\{0\}$ such that each $p(t,\cdot)$ is a probability density function on \mathbb{R}^d . In other words, it holds that

$$\int p(t,x) \, \mathrm{d}x = 1$$

for all $t \in [0, 1]$.

- For a time dependent function $f:[0,1]\times\mathbb{R}^d\to R$ for some range set R, we may write f(t,x) as $f_t(x)$ to emphasize time dependence. Moreover, we can refer to $f_t:\mathbb{R}^d\to R$ as a function in its own right.
 - With this, we may say that p_t is a probability distribution on \mathbb{R}^d .
- A time-dependent vector field is a function $v : [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$.
- Given a time dependent vector field v, its **flow** is another vector field $\phi:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ defined by the ordinary differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(x) = v_t(\phi_t(x))$$

and the initial condition $\phi_0(x) = x$.

- In other words, $\phi_t(x)$ is the position at time t of the particle that starts at x at time 0 and follows the trajectory defined by taking v as the time-dependent vector field.
- Chen et al. proposed the **neural ordinary differential equation** model [1]. The idea is to model the vector field v with a neural network $v_t(x;\theta)$. We then train it so that ϕ_1 has the property that we want.
 - If you want a refresher on neural ODE, then read my previous note on it [2].
- A neural ODE can be used to transform a probability distribution to another. Say, we start with a probability distribution p_0 on \mathbb{R}^d . Then, we do the following.
 - Sample $x \sim p_0$.
 - Compute $x' = \phi_t(x)$ by integrating the neural ODE from 0 up to t.

Let us denote the probability density of x' by p_t . It follows that

$$p_t(x') = p_0(\phi_t^{-1}(x')) \det \left[\frac{\partial \phi_t^{-1}}{\partial x}(x') \right]. \tag{1}$$

This is the standard formula for tranformation of probability distribution. You can find this in section 3.1 on my notes on the subject [4].

• The formula in Equation (1) is not that great because there is an issue with variable capture. The x in ∂x is not a variable but a shorthard the positional argument of a function. I previously have introduced a system to deal with this kind of problem [3]. So, let's write the equation using that notation.

First, we note that $\phi_t(x) = q(t, x)$ is a function that maps a (d+1)-dimensional space to a d-dimensional space. So, we can treat it in the same way as a function of signature $\mathbb{R}^{d+1} \to \mathbb{R}^d$. In other words, we can say that ϕ takes d+1 inputs. We can then divide the d+1 inputs into two blocks.

- The first block is the first argument alone. Using Python slice notation, it is "1 : 2.". Using my "chapter" notation, it can be abbreviated as §1.
- The second block is the rest of the arguments. Using Python slice notation, it is "2:d+2." Using my "chapter" notation, it can be abbreviate as $\S 2$.

Hence, using my notation for partial derivatives, we can rewrite the equation as:

$$p_t(x') = p_0(\phi_t^{-1}(x')) \det \nabla_{\S 2} \phi_t^{-1}(x')$$

or, to be even briefer

$$p_t(x') = p_0(\phi_t^{-1}(x')) |\nabla_{\S 2} \phi_t^{-1}(x')|$$

• Let $f : \mathbb{R}^d \to \mathbb{R}$ and let $v : \mathbb{R}^d \to \mathbb{R}^d$. A **push-foward** (or a change of variable) of f according to v is a function of $g : \mathbb{R}^d \to \mathbb{R}$ defined by

$$q(y) = f(v^{-1}(y)) |\nabla v^{-1}(y)|.$$

Here, ∇ denotes the derivative operator, which gets you the Jacobian matrix. We denote the push-forward of f according to v as $[v]_*f$.

- In the context of the discussion so far, we have that $p_t = [\phi_t]_* p_0$.
- When we use a neural ODE to transform a probability distribution from one to another (i.e., transforming p_0 from p_1), we call the resulting model a **continuous normalizing flow** model.

2 Flow Matching

2.1 Flow Matching Objective

- We want to use the above framework to transform a simple noise distribution $p_0 = p_{\text{noise}}$ to a data distribution $p_1 = p_{\text{data}}$.
 - p_{noise} is typically a Gaussian distribution $p_0 = \mathcal{N}(0, I)$.
 - As in most ML settings, we do not have access to the density function p_{data} , but we only have samples from the distribution.
- Suppose we know a probability path p_t and a time-dependent vector field u_t that has the following property:

- $-p_0$ is the desired noise distribution, and p_1 is the desired data distribution.
- u_t is the vector field such that $p_t = [u_t]_* p_0$.

Suppose again that we want to model u_t with a neural network $v_t(x;\theta)$. Then, we may do it my minimizing the flow matching objective:

$$\mathcal{L}_{\text{FM}}(\theta) = E_t \ \mathcal{U}([0,1]), x \sim p_t [\|u_t(x) - v_t(x;\theta)\|^2].$$

• The flow maching objective is usable if we know p_t and u_t before hand. However, in our settings, we do not know anything about u_t , and we only know $p_0 = p_{\text{noise}}$ and $p_1 = p_{\text{data}}$ but nothing in between.

2.2 Rewriting condtional paths and vector fields

- We still do not know what p_t exactly is, but let us engage in wishful thinking and try to dictate its form.
- Let $x_1 \sim p_{\text{data}}$ be a data item. We look at the conditional probability density $p_t(x|x_1)$. Let us require that
 - 1. $p_0(x|x_1) = p_{\text{noise}}(x)$, and
 - 2. $p_1(x|x_1) = \mathcal{N}(x; x_1, \sigma^2 I)$ where σ is a small number.
- Now, we have that

$$p_t(x) = \int p_t(x|x_1) p_{\text{data}}(x_1) \, \mathrm{d}x_1.$$

Moreover, if we choose σ to be small enough, we would have that

$$p_1(x) \approx p_{\text{data}}(x)$$
.

•

References

- [1] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. Neural ordinary differential equations, 2019.
- [2] KHUNGURN, P. Neural ordinary differential equations. https://pkhungurn.github.io/notes/notes/ml/neural-ode/neural-ode.pdf. Accessed: 2024-07-19.
- [3] KHUNGURN, P. Notation for multivariable derivatives. https://pkhungurn.github.io/notes/notes/math/multivar-deriv-notations/multivar-deriv-notations.pdf. Accessed: 2024-07-22.
- [4] KHUNGURN, P. Probability under transformation. https://pkhungurn.github.io/notes/notes/gfx/pdf-transform/pdf-transform.pdf. Accessed: 2024-07-22.
- [5] LIPMAN, Y., CHEN, R. T. Q., BEN-HAMU, H., NICKEL, M., AND LE, M. Flow matching for generative modeling, 2023.