```
In [1]: ▶ import numpy as np
             import pandas as pd
             {\color{red}\textbf{import}} \ {\color{blue}\textbf{matplotlib.pyplot}} \ {\color{blue}\textbf{as}} \ {\color{blue}\textbf{plt}}
             {\it import} seaborn {\it as} sns
             import warnings
             warnings.filterwarnings('ignore')
             from matplotlib.pyplot import MultipleLocator
             from sklearn.preprocessing import LabelEncoder
In [3]:  M data2015_2016 = df.loc[~((df['Diastolic_Blood_Pressure'] == 0) |
                                        (df['Systolic_Blood_Pressure'] == 0) |
                                        (df['Body_Mass_Index'] == 0))]
In [4]: | data2015_2016 = data2015_2016.dropna()
In [5]: | data2015_2016.isnull().sum()
    Out[5]: SEQN
                                           0
             Body_Mass_Index
             Gender
             Physical_Activity
             {\tt Total\_Caffeine}
             Food_Security
                                           0
             Count_Meds
                                           0
             Section_I
             Section_H
                                           0
             Diabetes
                                           0
             Race_and_Ethnicity
                                           0
             Total_Sodium_Intake
                                           0
             Diastolic_Blood_Pressure
                                           0
             {\tt Systolic\_Blood\_Pressure}
                                           0
             dtype: int64
In [6]: M data2015_2016['Systolic'] = pd.cut(x = data2015_2016['Systolic_Blood_Pressure'],
                                   bins=[0,140,250],
labels=['Normal', 'Hypertension'])
In [7]: N data2015_2016['Diastolic'] = pd.cut(x = data2015_2016['Diastolic_Blood_Pressure'],
                                    bins=[1,90,200],
                                    labels=['Normal', 'Hypertension'])
```

Correlation & Heatmap

Normal & Hypertension Distribution

```
In [10]: N
    plt.figure(figsize=(10,5))
    sns.countplot(x='Systolic',data = data2015_2016,palette="BuPu")
    plt.xticks(fontsize=17)
    plt.yticks(fontsize=17)
    plt.xlabel("Systolic Blood Pressure Group",size = 20)
    plt.ylabel("Counts", size = 20)
    plt.title('Normal & Hypertension Distribution',size = 25)
    plt.show()
```


Blood Pressure With Age

Blood Pressure with Count of Medicine

The Distribution of Count of Medicine with Systolic Blood Pressure

The Distribution of Count of Medicine with Diastolic Blood Pressure

Blood Pressure across Age and Gender

```
bins=[-1,1,3],
labels=['Male', 'Female'])
col="gender",
height=10,
                    line_kws={'color': 'red'})
            plt.show()
                              gender = Male
                                                                        gender = Female
            225
            200
         Systolic_Blood_Pressure
            175
            150
            125
            100
            75
                 10
                      20
                           30
                                40
                                     50
                                          60
                                                70
                                                     80
                                                           10
                                                                20
                                                                      30
                                                                                50
                                                                                     60
                                                                                          70
                                                                                               80
                                 Age
                                                                            Age
col="gender",
height=10,
                    line_kws={'color': 'red'})
            plt.show()
                              gender = Male
                                                                        gender = Female
            120
            100
          Diastolic Blood Pressure
            80
            60
            40
            20
             0
```

Age

Age