Multi-criteria hierarchical clustering

N.A.V. Doan, J. Rosenfeld, Y. De Smet

1 Definitions

- A: the set of n alternatives $A = \{a_1, a_2, \dots, a_n\}$ (notation: a_i or $a_j, i, j = 1, 2, \dots, n$)
- \mathcal{F} : the set of m criteria $\mathcal{F} = \{f_1, f_2, \dots, f_m\}$ (notation: $f_k, k = 1, 2, \dots, m$)
- \mathcal{R} : the set of l clusters $\mathcal{R} = \{r_1, r_2, \dots, r_l\}$ (notation: $r_h, h = 1, 2, \dots, l$)

2 Input data

- W: the set of m weights for the criteria: $W = \{w_1, w_2, \dots, w_m\}$ (notation: $w_k, k = 1, 2, \dots, m$)
- Big M (large value, see Note 2)

3 Decision variables

- $c_{ih} = \begin{cases} 1 & \text{if } a_i \in r_h \\ 0 & \text{otherwise} \end{cases}$, $c_{ih} \in \{0, 1\}$
- r_{kh} : position of the cluster h on the criterion k

4 Equations

$$\max z = \pi - \pi \tag{1}$$

$$s.t.$$
 (2)

$$\phi(a_i) = \phi^+(a_i) - \phi^-(a_i) \tag{netflow}$$

$$\phi^{+}(a_{i}) = \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} \sum_{k=1}^{m} w_{k} \beta_{ijk}$$
 (positive flow) (4)

$$\phi^{-}(a_{i}) = \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} \sum_{k=1}^{m} w_{k} \beta_{jik}$$
 (negative flow) (5)

$$\beta_{ijk} \ge \frac{f_k(a_i) - f_k(a_j)}{M} \quad \forall i, j = 1, 2, \dots, n; \ k = 1, 2, \dots, m$$
 (linearization, see Note 1) (6)

$$\beta_{ijk} < \frac{f_k(a_i) - f_k(a_j)}{M} + 1 \quad \forall i, j = 1, 2, \dots, n; \ k = 1, 2, \dots, m$$
 (7)

$$\beta_{ijk} \in \{0,1\} \quad \forall i,j=1,2,\ldots,n; \ k=1,2,\ldots,m$$
 (8)

$$c_{ih} \in \{0, 1\} \quad \forall i = 1, 2, \dots, n; \ h = 1, 2, \dots, l$$
 (decision variables) (9)

5 Notes

1.
$$\beta_{ijk} = \begin{cases} 1 & \text{if } f_k(a_i) > f_k(a_j) \\ 0 & otherwise \end{cases}$$
, $\beta_{ijk} \in \{0, 1\}$

2. Big
$$M$$
 chosen so that $\frac{f_k(a_i) - f_k(a_j)}{M} \in]-1;1[$