EXAM STRUCTURE

(preliminary version, the number of questions/problems/points may vary)

Exam consists of a theoretical part and a practical part.

THEORETICAL PART

Any auxiliaries (incl. notes and calculators) are prohibited!

Duration: 40 min.

Content:

I) 5 true/false questions; 1 point for each correct answer, 5 points in total.

Example question: Decide whether the following statements are true. Argument if yes, give a counterexample if not.

1. The product of two strictly decreasing functions is a strictly decreasing function.

Answer: False. Counterexample: $f_1:(-\infty;0)\to(-\infty;0), f_1(x)=\frac{1}{x}, f_2:(-\infty;0)\to(0,+\infty), f_2(x)=x^2.$ f_1,f_2 are strictly decreasing on $(-\infty;0), (f_1\cdot f_2)(x)=x$ is strictly increasing on $(-\infty;0).$

2. Any quadratic polynomial has two complex roots.

Answer: True. Justification: fundamental theorem of algebra.

II) 4 questions on formulating definitions and statements, giving examples; 3–5 points for each correct answer, 12–20 points in total.

Example questions:

1. Formulate the definition of a strictly increasing function.

<u>Answer</u>: Let $f: D \to \mathbb{R}$ be a function, $D \subseteq \mathbb{R}$, x_1 and x_2 be any two points in D. The function f is strictly increasing in D if $f(x_2) > f(x_1)$ whenever $x_1 < x_2$.

2. Formulate the Fundamental theorem of algebra.

<u>Answer</u>: Fundamental theorem of algebra: every single-variable polynomial with complex coefficients

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0, \quad a_0, a_1, \dots, a_{n-1} \in \mathbb{C}, n \ge 1,$$

has at least one complex root.

PRACTICAL PART

Notes are allowed, handwritten, max. 1 A4 sheet (two-sided). Calculators are prohibited! **Duration**: 70 min.

Content: 5 problems; 5–10 points for each correct answer (with justified solution). 25–40 points in total.

Example problems:

1. Consider the sequence $\{a_n\}_{n\in\mathbb{N}}$ with $a_n=\frac{1}{2}\left(a_{n-1}+\frac{c}{a_{n-1}}\right)$ for all $n\in\mathbb{N}$, where c>0 and $a_0=M>0$.

1

1.1) Prove that $a_n \geq \sqrt{c} \ \forall n \in \mathbb{N}$. (2 point)

Hint: use the fact that $t + \frac{1}{t} \ge 2 \ \forall t \ge 0$.

1.2) Using 1.2), prove that $\{a_n\}_{n\in\mathbb{N}}$ monotonically decreases. (2 points)

- 1.3) Determine whether the sequence $\{a_n\}_{n\in\mathbb{N}}$ is bounded or unbounded. (1 point)
- 1.4) Prove that $\{a_n\}_{n\in\mathbb{N}}$ has a finite limit. (1 point)
- 1.5) Prove that $\lim_{n\to\infty} a_n = \sqrt{c}$. (2 points).

Solution:

1.1) By mathematical induction, $a_n>0\ \forall n\in\mathbb{N}.$ Indeed, $a_0=M>0.$ For an arbitrary $k\in\mathbb{N},$ assume that $a_k>0.$ Then $a_{k+1}=\frac{1}{2}\left(a_k+\frac{c}{a_k}\right)>0$ because $a_k>0$ and c>0. By the principle of mathematical induction, $a_n>0\ \forall n\in\mathbb{N}.$

Applying the fact $t + \frac{1}{t} \ge 2 \ \forall t \ge 0$, we get

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{k}{a_n} \right) = \frac{\sqrt{k}}{2} \left(\frac{a_n}{\sqrt{k}} + \frac{\sqrt{k}}{a_n} \right) \ge \frac{\sqrt{k}}{2} 2 = \sqrt{k}, \forall n \in \mathbb{N}.$$

- 1.2) Since $a_n \geq \sqrt{k} \ \forall n \in \mathbb{N}, \ a_{n+1} = \frac{1}{2} \left(a_n + \frac{k}{a_n} \right) = \frac{a_n}{2} \left(1 + \frac{k}{a_n^2} \right) \leq \frac{a_n}{2} \left(1 + \frac{k}{k} \right) = a_n, \ \forall n \in \mathbb{N}.$ Thus, $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}, \ \text{so} \ \{a_n\}_{n \in \mathbb{N}} \ \text{monotonically decreases}.$
- 1.3) Since $\{a_n\}_{n\in\mathbb{N}}$ monotonically decreases, we have $a_n\leq a_0=M\ \forall n\in\mathbb{N}.$
- 1.4) The sequence $\{a_n\}_{n\in\mathbb{N}}$ is bounded from below and monotonically decreasing, therefore, it has a finite limit (by the Weierstrass theorem).
- 1.5) Denote $\lim_{n\to\infty} a_n = x$. Then $\lim_{n\to\infty} a_{n-1} = x$, and

$$x = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{2} \left(a_{n-1} + \frac{k}{a_{n-1}} \right) \right) = \frac{1}{2} \left(x + \frac{k}{x} \right).$$

Solving the above equation for $x \geq 0$ (because of $a_n \geq 0 \forall n \in \mathbb{N}$), we get $x = \sqrt{k}$.

2. Compute $\int_{0}^{1/2} e^x \sin(\pi x) dx$ (4 points).

Solution:

$$\int_{0}^{1/2} e^{x} \sin(\pi x) dx = \begin{cases} u = e^{x} & du = e^{x} dx \\ dv = \sin(\pi x) dx & v = -\frac{1}{\pi} \cos(\pi x) \end{cases} = -\frac{e^{x}}{\pi} \cos(\pi x) \Big|_{0}^{1/2} + \frac{1}{\pi} \int_{0}^{1/2} e^{x} \cos(\pi x) dx$$

$$= -\underbrace{\frac{e^{1/2}}{\pi} \cos(\pi/2)}_{=0} + \underbrace{\frac{e^{0}}{\pi} \cos(0)}_{=1/\pi} + \frac{1}{\pi} \int_{0}^{1/2} e^{x} \cos(\pi x) dx = \begin{cases} u = e^{x} & du = e^{x} dx \\ dv = \cos(\pi x) dx & v = \frac{1}{\pi} \sin(\pi x) \end{cases}$$

$$= \frac{1}{\pi} + \frac{e^{x}}{\pi^{2}} \sin(\pi x) \Big|_{0}^{1/2} - \frac{1}{\pi^{2}} \int_{0}^{1/2} e^{x} \sin(\pi x) dx = \frac{1}{\pi} + \frac{\sqrt{e}}{\pi^{2}} - \frac{1}{\pi^{2}} \int_{0}^{1/2} e^{x} \sin(\pi x) dx.$$

Denote $A:=\int\limits_0^{1/2}e^x\sin(\pi x)\mathrm{d}x.$ Then

$$A = \frac{1}{\pi} + \frac{\sqrt{e}}{\pi^2} - \frac{A}{\pi^2},$$

therefore,

$$A = \frac{\pi + \sqrt{e}}{\pi^2 + 1}.$$

Answer: $A = \frac{\pi + \sqrt{e}}{\pi^2 + 1}$.