STAT 390 A Statistical Methods in Engineering and Science Week 8 Lectures - Part 1 - Spring 2023 Confidence Intervals

Alexander Giessing
Department of Statistics
University of Washington

May 15, 2023

- General Principle
- 2 Critical Values
- 3 Large Sample Confidence Intervals
- 4 Small Sample Confidence Intervals
- 6 One-Sided Confidence Intervals

Confidence Intervals

- So far, we have constructed (point) estimates for unknown parameters and have gauged their accuracy with the SE.
- Sometimes it is more desirable to give a range of plausible values (confidence interval, CI) for an unknown parameter than just a single estimate and the corresponding SE.
- When constructing a confidence interval it is up to us what level of confidence (aka the degree of plausibility of the interval) we'd like to have.
 - ▶ More fine-grained insights than just point estimates.
 - ▶ Typical confidence values 95%, 99% and 90%.
 - ▶ A confidence level of 95% means that 95% of all samples would give an interval that includes true parameter.

Example: Measuring the Speed of Light

- Suppose T is an unbiased estimate of the speed of light θ and T has SD $\sigma_T = 100$ km/sec.
- By Chebyshev's inequality we find

$$P(|T - \theta| < 2\sigma_T) \ge \frac{3}{4}.$$

In words: With probability at least 75% the estimator T is within $2\sigma_T = 200$ km/sec of the true speed of light θ .

• We can rephrase this as:

$$T \in (\theta - 200, \theta + 200)$$
 with probability $\geq 75\%$.

• This is equivalent to saying:

$$\theta \in (T - 200, T + 200)$$
 with probability $\geq 75\%$.

(If I'm near to Paris, then Paris is near to me...)

Example: Measuring the Speed of Light (Cont.)

$$T \in (\theta - 200, \theta + 200)$$
 with probability $\geq 75\%$ $\theta \in (T - 200, T + 200)$ with probability $\geq 75\%$.

- The first equation is a statement about a random variable T being in a fixed interval.
- In the second equation the *interval is random* and the statement is about the probability that the random interval covers the *fixed* but unknown θ .
- The interval (T 200, T + 200) is called an *interval estimator* and its realization is an *interval estimate*.
- Evaluating T using the Michelson data we find

$$\theta \in (299652.4, 300052.4).$$

Example: Measuring the Speed of Light (Cont.)

$$T \in (\theta - 200, \theta + 200)$$
 with probability $\geq 75\%$ $\theta \in (T - 200, T + 200)$ with probability $\geq 75\%$.

• Evaluating T using the Michelson data we find

$$\theta \in (299652.4, 300052.4).$$

Because we substituted the data for the random variables we can no longer say that this holds with probability at least 75%: Either the statement is true (θ lies in the interval) or false (θ does not lie in the interval).

 \bullet However, the procedure of construction guarantees that 75% of the times we are getting the "right" statement, hence we say

$$\theta \in (299652.4, 300052.4)$$
 with confidence $\geq 75\%$.

A General Definition

There are many ways of constructing CIs, therefore we give a very general definition.

Confidence Intervals

Let the data set x_1, \ldots, x_n be a realization of a random sample X_1, \ldots, X_n . Let θ be the parameter of interest, and $\alpha \in (0,1)$. If there exist sample statistics $L_n = g(X_1, \ldots, X_n)$ and $U_n = h(X_1, \ldots, X_n)$ such that

$$P(L_n < \theta < U_n) = 1 - \alpha$$

for every value of θ , then

$$(l_n, u_n),$$

where $l_n = g(x_1, ..., x_n)$ and $u_n = h(x_1, ..., x_n)$ is called a $100(1 - \alpha)\%$ confidence interval for θ . The number $1 - \alpha$ is called the confidence level.

A General Definition (Cont.)

- We do not know whether an individual confidence interval is correct, in the sense that it does cover θ .
 - ▶ The procedure only guarantees that each time we construct a confidence interval it will cover the true value θ with probability 1α .
 - ▶ If we construct 100 95%-confidence intervals for θ based on 100 realizations of the random sample X_1, \ldots, X_n , then we can expect that 95 of these confidence intervals contain θ while 5 do not contain θ .
- If the statistics L_n and U_n satisfy

$$P(L_n < \theta < U_n) \ge 1 - \alpha,$$

the resulting interval (l_n, u_n) is called a **conservative** $100(1 - \alpha)\%$ confidence interval for θ : the actual confidence level might be higher.

- General Principle
- 2 Critical Values
- 3 Large Sample Confidence Intervals
- 4 Small Sample Confidence Intervals
- 6 One-Sided Confidence Intervals

Critical values

Critical Value of a Distribution F

The critical value c_p of some distribution F is defined as the (1-p)th quantile of F, i.e. the value c_p satisfies

$$P(X \ge c_p) = p,$$
 where $X \sim F$.

- Equivalently, $F(c_p) = P(X \le c_p) = 1 p$.
- If the pdf of F is symmetric around 0, then

$$P(X \le -c_p) = P(X \ge c_p) = p,$$

so $P(X \ge -c_p) = 1 - p$ and hence

$$c_{1-p} = -c_p.$$

(See plot on next slide for a "graphical proof" when F is the standard normal distribution.)

Illustration: Critical values of N(0,1)

Left plot: pdf of N(0,1). Right plot: cdf of N(0,1).

Example: Calculations with critical values of N(0,1)

Let $Z \sim N(0,1)$ and $0 \le \alpha \le \beta < 1$.

• Compute $P(z_{\beta} < Z < z_{\alpha})$.

$$P(z_{\beta} < Z < z_{\alpha}) = \Phi(z_{\alpha}) - \Phi(z_{\beta})$$
$$= (1 - \alpha) - (1 - \beta)$$
$$= \beta - \alpha.$$

• Compute $P(-z_{\alpha/2} < Z < z_{\alpha/2})$.

$$\begin{split} P(-z_{\alpha/2} < Z < z_{\alpha/2}) &= \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2}) \\ &= \Phi(z_{\alpha/2}) - \Phi(z_{1-\alpha/2}) \\ &= \left(1 - \frac{\alpha}{2}\right) - \left(1 - \left(1 - \frac{\alpha}{2}\right)\right) \\ &= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} \\ &= 1 - \alpha. \end{split}$$

- General Principle
- 2 Critical Values
- 3 Large Sample Confidence Intervals
- 4 Small Sample Confidence Intervals
- 6 One-Sided Confidence Intervals

Large sample confidence intervals for the mean

Large sample CI for the mean (known variance)

Let $x_1, \ldots x_n$ be a realization of a random sample with unknown mean μ and known variance σ^2 . A large sample (asymptotic) $100(1-\alpha)\%$ confidence interval for the mean μ is

$$\left(\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),$$

where $z_{\alpha/2}$ is the critical value of the standard normal distribution N(0,1).

• Note: This is just one possible large sample (asymptotic) $100(1-\alpha)\%$ CI. Any interval of the form

$$\left(\bar{x}_n - z_u \frac{\sigma}{\sqrt{n}}, \ \bar{x}_n - z_l \frac{\sigma}{\sqrt{n}}\right),$$

with z_l, z_u such that $1 - \alpha = P(z_l < Z < z_u)$ for $Z \sim N(0, 1)$ is a large sample $100(1 - \alpha)\%$ CI. (The minus sign in front of z_l is not a typo. Verify!)

Large sample confidence intervals for the mean (Cont.)

Derivation.

• Let $z_{\alpha/2}$ be a critical value of N(0,1) such that

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha.$$

• Let $X_1, ..., X_n$ be a random sample with mean μ and variance σ^2 . By the CLT we know that the **standardized sample average**

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sqrt{\operatorname{Var}(\bar{X}_n)}} = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$$

has asymptotic distribution N(0,1). Hence,

$$1 - \alpha \approx P\left(-z_{\alpha/2} < \frac{X_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right)$$
$$= P\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right).$$

Large sample confidence intervals for the mean (Cont.)

Derivation (Cont.)

• Hence, we have found statistics

$$L_n = \bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 and $U_n = \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

which satisfy the general definition of a CI: The interval (L_n, U_n) covers the parameter μ with probability (approximately) $1 - \alpha$, i.e.

$$1 - \alpha \approx P(L_n < \mu < U_n).$$

Therefore,

$$\left(\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

is an <u>asymptotic</u> (or: large sample) $100(1-\alpha)\%$ CI for μ .

Large sample confidence intervals for the mean (Cont.)

Large sample CI for the mean (unknown variance)

Let $x_1, \ldots x_n$ be a realization of a random sample with unknown mean μ and unknown variance σ^2 . A large sample (asymptotic) $100(1-\alpha)\%$ confidence interval for the mean μ is

$$\left(\bar{x}_n - z_{\alpha/2} \frac{s_n}{\sqrt{n}}, \ \bar{x}_n + z_{\alpha/2} \frac{s_n}{\sqrt{n}}\right),\,$$

where $z_{\alpha/2}$ is the critical value of the standard normal distribution N(0,1) and s_n is the sample standard deviation, i.e.

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2.$$

- Note: This is just the CI for the mean with known variance σ^2 where we substitute σ with the "plug-in" estimate s_n .
- The justification is again based on the CLT and an application of the WLLN (to argue that S_n^2 is close to σ^2).

- General Principle
- 2 Critical Values
- 3 Large Sample Confidence Intervals
- 4 Small Sample Confidence Intervals
- 6 One-Sided Confidence Intervals

Small sample confidence intervals for the mean

SMALL SAMPLE CI FOR THE MEAN (KNOWN VARIANCE)

Let $x_1, \ldots x_n$ be a realization of a random sample from $N(\mu, \sigma^2)$ with unknown mean μ and known variance σ^2 . A small sample (exact) $100(1-\alpha)\%$ confidence interval for the mean μ is

$$\left(\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),$$

where $z_{\alpha/2}$ is the critical value of the standard normal distribution N(0,1).

- Note: This is just one possible small sample $100(1-\alpha)\%$ CI. For details, see remark on the slide with the definition of the large sample CI.
- The normality assumption crucial. "Small sample" means that we cannot invoke the CLT to justify the choice of the critical value.
- This interval is an exact $100(1-\alpha)\%$ CI because by the normality assumption

$$P\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Small sample confidence intervals for the mean (Cont.)

SMALL SAMPLE CI FOR THE MEAN (UNKNOWN VARIANCE)

Let $x_1, \ldots x_n$ be a realization of a random sample from $N(\mu, \sigma^2)$ with unknown mean μ and unknown variance σ^2 . A small sample (exact) $100(1-\alpha)\%$ confidence interval for the mean μ is

$$\left(\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \ \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right),\,$$

where $t_{n-1,\alpha/2}$ is the critical value of the t-distribution t(n-1) with n-1 degrees of freedom and s_n is the sample standard deviation, i.e.

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2.$$

Small sample confidence intervals for the mean (Cont.)

Derivation for the case of unknown variance.

• Let $t_{n-1,\alpha/2}$ be a critical value of t(n-1) such that

$$P(-t_{n-1,\alpha/2} < T < t_{n-1,\alpha/2}) = 1 - \alpha$$
, where $T \sim t(n-1)$.

• Let X_1, \ldots, X_n be a random sample with mean μ and variance σ^2 . One can show that the **studentized sample average**

$$\frac{\bar{X}_n - \mu}{S_n / \sqrt{n}}$$
, where $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

has a t(n-1) distribution regardless of the values of μ and σ^2 . Hence,

$$1 - \alpha = P\left(-t_{n-1,\alpha/2} < \frac{\bar{X}_n - \mu}{S_n/\sqrt{n}} < t_{n-1,\alpha/2}\right)$$
$$= P\left(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} < \mu < \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}\right).$$

Small sample confidence intervals for the mean (Cont.)

Derivation for the case of unknown variance.

• Hence, we have found statistics

$$L_n = \bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}$$
 and $U_n = \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}$.

which satisfy the general definition of a CI. Therefore,

$$\left(\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \ \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right)$$

is an exact $100(1-\alpha)\%$ CI for μ .

• The derivation/justification of the case of a known variance is very similar. *Verify this at home!*

- General Principle
- 2 Critical Values
- 3 Large Sample Confidence Intervals
- 4 Small Sample Confidence Intervals
- **5** One-Sided Confidence Intervals

One-sided confidence intervals

- Until now, we have discussed so-called **two-sided confidence intervals**, i.e. intervals that have finite lower and upper bounds.
- In some applications, we are only interested in so-called one-sided confidence intervals.
 - In reliability testing one typically cares only about a lower confidence bound on the true average life time of a component.
 - When constructing a dyke, one usually cares about an upper confidence bound on the height of future floods.
 - In financial risk management one cares about upper confidence bounds on potential losses.

One-sided confidence intervals (Cont.)

One-sided (Lower and Upper) Confidence Intervals

Let the data set x_1, \ldots, x_n be a realization of a random sample X_1, \ldots, X_n . Let θ be the parameter of interest, and $\alpha \in (0,1)$. If there exist sample statistics $L_n = g(X_1, \ldots, X_n)$ and $U_n = h(X_1, \ldots, X_n)$ such that

$$P(L_n < \theta) = 1 - \alpha$$
 and $P(\theta < U_n) = 1 - \alpha$

for every value of θ , then

$$(l_n, \infty)$$
 and $(-\infty, u_n)$

where $l_n = g(x_1, \ldots, x_n)$ and $u_n = h(x_1, \ldots, x_n)$ is called a $100(1 - \alpha)\%$ lower and upper confidence intervals for θ .

• Large-sample lower and upper $100(1-\alpha)\%$ CIs for the mean μ are

$$\left[\bar{x}_n - z_\alpha \frac{\sigma}{\sqrt{n}}, \infty\right)$$
 and $\left(-\infty, \bar{x}_n + z_\alpha \frac{\sigma}{\sqrt{n}}\right]$.

• Extends in the obvious way to small-sample and empirical bootstrap CIs.