MAT257 PSET 13—Question 4

Jonah Chen

For convinence, we will sum over repeated multi-indices in the same term.

a) As the basis for V^* is already given, we can easily make a basis for $\Lambda^k(V)$ as $\{I \in \underline{n}_a^k : \varphi_I\}$, where \underline{n}_a^k is the set of ascending multi-index of length k.

We define $I' \in \underline{n}_{a}^{n-k}, I' := \underline{n} \setminus I$, where $\underline{n} = \{1, \dots, n\}$.

For
$$I = \{i_1, \dots, i_k\}, J = \{j_1, \dots, j_k\} \in \underline{n}_a^k$$
, define $I + J =: \{i_1, \dots, i_k, j_1, \dots, j_k\}$.

For $I \in \underline{n}^k$, and let $\tau_I \in S_n$ be the permutation where $\tau_I \underline{n} = I$, define $(-1)^I = (-1)^{\tau_I} = (-1)^{\tau_I^{-1}}$.

For any $\lambda, \eta \in \Lambda^k(V)$ written in the basis $\lambda = a_I \omega_I, \eta = b_J \omega_J$ and $a, b \in \mathbb{R}$, we define the hodge star operator to be linear, so

$$\star (a\lambda + b\eta) = a \star \lambda + b \star \eta.$$

Thus, defining this operator on the basis vectors is sufficient.

$$\star \omega_I = (-1)^{I+I'} \omega_{I'}.$$

Note that for another basis vector, $I \neq J$ i.e. $I \cap J' \neq \emptyset$

$$\implies \omega_I \wedge \star \omega_J = (-1)^{J+J'} \omega_I \wedge \omega_{J'} = 0$$

Also,

$$\omega_I \wedge \star \omega_I = (-1)^{I+I'} \omega_I \wedge \omega_{I'} = (-1)^{I+I'} \omega_{I+I'} = \omega_n$$

So, we know that $\omega_I \wedge \star \omega_J = \delta_{IJ}\omega_n$. Also, for $a_I,b_J \in \mathbb{R}$ then due to the bilinearity property of the inner product, $\langle a_I\omega_I,b_J\omega_J\rangle = a_Ib_J\delta_{IJ}$

Now, we show that the hodge star operator satisfies

$$\lambda \wedge (\star \eta) = a_I \omega_I \wedge b_J \omega_J$$
$$= a_I b_J (\omega_I \wedge \omega_J)$$
$$= a_I b_J \delta_{IJ} \omega_n$$
$$= \langle \lambda, \eta \rangle \omega_n.$$

As the operator is defined as linear, and both $\Lambda^k(V)$ and $\Lambda^{n-k}(V)$ have the same dimension because $\binom{n}{k} = \binom{n}{n-k}$.

Using the basis vectors $\{\omega_I\}_{I\in\underline{n}_a^k}$ for $\Lambda^k(V)$ and $\{\star\omega_I\}_{I\in\underline{n}_a^k}$ for $\Lambda^{n-k}(V)$. Then the matrix representing the hodge star operator is the identity matrix, which means it is invertiable. Hence, the hodge star operator is invertible.

b) Using the previous definition, for $n=3, k=1, \star \omega_1=\omega_{23}, \star \omega_2=-\omega_{13}, \star \omega_3=\omega_{12}.$

For
$$n=4, k=2, \star \omega_{12}=\omega_{34}, \star \omega_{13}=-\omega_{24}, \star \omega_{14}=\omega_{23}, \star \omega_{23}=\omega_{14}, \star \omega_{24}=-\omega_{13}, \star \omega_{34}=\omega_{12}$$
.

c) Given some alternating tensor $\lambda \in \Lambda^k(V)$ and $\lambda = a_I \omega_I$

$$\star(\star\lambda) = a_I \star (\star\omega_I)$$

$$= (-1)^{I+I'} a_I \star (\omega_{I'})$$

$$= (-1)^{I'+I} (-1)^{I+I'} a_I \omega_I$$

$$= (-1)^{I'+I} (-1)^{I+I'} \lambda.$$

Define the permutation $\tau_j \in S_n$ such that $\tau_j \{a_1, \dots, a_n\} = \{a_1, \dots, a_{j-1}, a_{j+1}, a_j, \dots, a_n\}$. It is obvious that $(-1)^{\tau_j} = -1$.

We can calculate the sign of I'+I in terms of the sign of I+I'. As I has length k and I' has length n-k, for element number $k+1,\ldots,k+n$, making k swaps between consecutive elements to position $1,\ldots,k$ will convert I+I' to I'+I. Performing the inverse operation require the same number of swaps.

This is done by the permutation $(\tau_k \tau_{k-1} \dots \tau_1)(\tau_{k+1} \tau_k \dots \tau_2) \dots (\tau_{n-1} \dots \tau_{n-k})$. The number of elements to swap is n-k, and k swaps per element hence k(n-k) swaps are required to swap I+I' to I'+I. Thus,

$$\star(\star\lambda) = (-1)^{I'+I}(-1)^{I+I'}\lambda = ((-1)^{I'+I})^2(-1)^{k(n-k)}(\lambda) = (-1)^{k(n-k)}(\lambda).$$

Hence, $\star \circ \star = (-1)^{k(n-k)} \mathbb{1}$.