

Internally Compensated, High Performance Operational Amplifier

The MC1741C was designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short Circuit Protection
- Offset Voltage Null Capability
- Wide Common Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch Up

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±18	Vdc
Input Differential Voltage	V _{ID}	±30	V
Input Common Mode Voltage (Note 1)	VICM	±15	V
Output Short Circuit Duration (Note 2)	tsc	Continuous	
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

NOTES: 1. For supply voltages less than +15 V, the absolute maximum input voltage is equal to the supply voltage.

^{2.} Supply voltage equal to or less than 15 $\mbox{\ensuremath{V}}.$

MC1741C

OPERATIONAL AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Alternate	Operating Temperature Range	Package
MC1741CD	_		SO-8
MC1741CP1	LM741CN μA741TC	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	Plastic DIP

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k)	VIO	_	2.0	6.0	mV
Input Offset Current	lio	-	20	200	nA
Input Bias Current	I _{IB}	-	80	500	nA
Input Resistance	rį	0.3	2.0	-	ΜΩ
Input Capacitance	Ci	-	1.4	-	pF
Offset Voltage Adjustment Range	VIOR	-	±15	_	mV
Common Mode Input Voltage Range	VICR	±12	±13	-	V
Large Signal Voltage Gain (V _O = ±10 V, R _L ≥ 2.0 k)	AVOL	20	200	_	V/mV
Output Resistance	ro	-	75	_	Ω
Common Mode Rejection (R _S ≤ 10 k)	CMR	70	90	-	dB
Supply Voltage Rejection (R _S ≤ 10 k)	PSR	75	-	-	dB
Output Voltage Swing $(R_L \ge 10 \text{ k})$ $(R_L \ge 2.0 \text{ k})$	Vo	±12 ±10	±14 ±13	- -	V
Output Short Circuit Current	Isc	-	20	_	mA
Supply Current	ΙD	_	1.7	2.8	mA
Power Consumption	PC	_	50	85	mW
Transient Response (Unity Gain, Noninverting) $ (V_I = 20 \text{ mV}, R_L \geq 2.0 \text{ k}, C_L \leq 100 \text{ pF}) \text{ Rise Time} $ $ (V_I = 20 \text{ mV}, R_L \geq 2.0 \text{ k}, C_L \leq 100 \text{ pF}) \text{ Overshoot} $ $ (V_I = 10 \text{ V}, R_L \geq 2.0 \text{ k}, C_L \leq 100 \text{ pF}) \text{ Slew Rate} $	^t TLH os SR	- - -	0.3 15 0.5	- - -	μs % V/μs

$\textbf{ELECTRICAL CHARACTERISTICS} \ \ (V_{CC} = +15 \ \text{V}, \ V_{EE} = -15 \ \text{V}, \ T_{A} = T_{low} \ \text{to} \ T_{high}, \ \text{unless otherwise noted.})^{\star}$

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (Rs \leq 10 k Ω)	VIO	-	-	7.5	mV
Input Offset Current (T _A = 0° to +70°C)	lιο	_	_	300	nA
Input Bias Current (T _A = 0° to +70°C)	I _{IB}	-	-	800	nA
Supply Voltage Rejection (R _S ≤ 10 k)	PSR	75	-	-	dB
Output Voltage Swing (R _L ≥ 2.0 k)	Vo	±10	±13	-	V
Large Signal Voltage Gain (R _L ≥ 2.0 k, V _O = ±10 V)	AVOL	15	-	_	V/mV

^{*} $T_{low} = 0$ °C $T_{high} = 70$ °C

Figure 1. Burst Noise versus Source Resistance

Figure 2. RMS Noise versus Source Resistance

Figure 3. Output Noise versus Source Resistance

Figure 4. Spectral Noise Density

Figure 5. Burst Noise Test Circuit

Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 sec and the 20 mV peak limit refers to the operational amplifier input thus eliminating errors in the closed loop gain factor of the operational amplifier.

Figure 6. Power Bandwidth (Large Signal Swing versus Frequency)

Figure 7. Open Loop Frequency Response

Figure 8. Positive Output Voltage Swing versus Load Resistance

Figure 9. Negative Output Voltage Swing versus Load Resistance

Figure 10. Output Voltage Swing versus Load Resistance (Single Supply Operation)

Figure 11. Single Supply Inverting Amplifier

Figure 12. Noninverting Pulse Response

Figure 13. Transient Response Test Circuit

Figure 14. Open Loop Voltage Gain versus Supply Voltage

OUTLINE DIMENSIONS

- NOTES:
 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
С	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100	BSC
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
M		10°		10°
N	0.76	1.01	0.030	0.040

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. DIMENSIONS ARE IN MILLIMETERS.

 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- MAXIMUM MULD PROTINGSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE MOLD
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
 OF THE B DIMENSION AT MAXIMUM MATERIAL
 CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.18	0.25		
D	4.80	5.00		
Е	3.80	4.00		
е	1.27	1.27 BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
θ	0.0	7°		

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 **INTERNET**: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

