妮可代数结构答案

En 土土 2023 年 3 月 8 日

目录

1	集合	2
	1.1	2
	1.2	2
	1.3	2
	1.4	2
	1.5	3
	1.6	4
	1.7	4
2	数论初步	5
3	映射	6
4	二元关系	7
5	群论初步	8
6	商群	9
7	环和域	10
8	格和布尔代数	11

1 集合

1.1

- (1) 不相等.
- (2) 相等.
- (3) 相等.

1.2

证明.

$$\left\{ \begin{array}{l} A\subseteq B \Rightarrow \ \forall \ x\in A, \ x\in B. \\ \\ B\subset C \Rightarrow \left\{ \begin{array}{l} \forall \ x\in B, \ x\in C \\ \\ \exists \ x\in C, \ x\notin B \end{array} \right. \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \forall \ x\in A, \ x\in C \\ \\ \exists \ x\in C, \ x\notin A \end{array} \right. \Rightarrow A\subset C.$$

1.3

- (1) 不成立.
- (2) 不成立.
- (3) 不成立.
- (4) 成立.
- (5) 成立.
- (6) 不成立.

1.4

- (1) 不成立.
- (2) 成立.
- (3) 成立.

En 土土 代数结构答案 妮可

1.5

证明.

(1)
$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B) = \emptyset \cup (A \cap B) = A \cap B.$$

(2)
$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B) = A \cap (A \cup B).$$

$$\begin{cases} A \subseteq A \cup (A \cap B) \\ A \supseteq A \cap (A \cup B) \end{cases} \Rightarrow A \cup (A \cap B) = A.$$

(3) (a)

$$\forall \ x \in \bigcap_{i} \overline{A_{i}} \ \Rightarrow x \notin \bigcap_{i} A_{i}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \notin A_{k}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \notin \overline{A_{k}}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \notin \overline{A_{k}}$$

$$\Rightarrow x \notin \bigcap_{i} A_{i}$$

$$\Rightarrow x \in \bigcup_{i} \overline{A_{i}}$$

$$\Rightarrow x \in \bigcap_{i} A_{i}$$

$$\Rightarrow \overline{\bigcap_{i} A_{i}} \subseteq \bigcup_{i} \overline{A_{i}}$$

$$\Rightarrow \overline{\bigcap_{i} A_{i}} \subseteq \overline{\bigcap_{i} A_{i}}$$

$$\Rightarrow \overline{\bigcap_{i} A_{i}} \subseteq \overline{\bigcap_{i} A_{i}}$$

即证 $\overline{\bigcap_i A_i} = \bigcup_i \overline{A_i}$.

(b)

$$\forall \ x \in \overline{\bigcup_{i} A_{i}} \ \Rightarrow x \notin \bigcup_{i} A_{i} \qquad \forall \ x \in \bigcap_{i} \overline{A_{i}} \ \Rightarrow \forall 1 \leq k \leq n, x \in \overline{A_{k}}$$

$$\Rightarrow \forall 1 \leq k \leq n, x \notin A_{k} \qquad \Rightarrow \forall 1 \leq k \leq n, x \notin A_{k}$$

$$\Rightarrow \forall 1 \leq k \leq n, x \notin \overline{A_{k}} \qquad \Rightarrow x \notin \bigcup_{i} A_{i}$$

$$\Rightarrow x \in \bigcap_{i} \overline{A_{i}} \qquad \Rightarrow x \in \overline{\bigcup_{i} A_{i}}$$

$$\Rightarrow \overline{\bigcup_{i} A_{i}} \subseteq \bigcap_{i} \overline{A_{i}} \qquad \Rightarrow \bigcap_{i} \overline{A_{i}} \subseteq \overline{\bigcup_{i} A_{i}}$$

即证 $\overline{\bigcup_i A_i} = \bigcap_i \overline{A_i}$.

1.6

证明.

(1) $B \subseteq C \Rightarrow \forall x \in B, x \in C$.

$$\forall x \in (A \cap B), x \in A \perp x \in B \implies x \in A \perp x \in C \implies x \in (A \cap C)$$

(2)

$$\begin{split} A \subseteq C, \ B \subseteq \ C \ \Leftrightarrow A \cup C = C, \ B \cup C = C \\ \Leftrightarrow \ (A \cup B) \cup C = A \cup (B \cup C) = A \cup C = C \\ \Leftrightarrow \ (A \cup B) \subseteq C. \end{split}$$

1.7

- (1) 设所求集合为 E.
 - 1. (基础语句) 令 $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, 若 $x \in D$, 则 $x \in E$.
 - 2. (归纳语句) 若 $x, y \in E$, 则 x 与 y 的连接 $\overline{xy} \in E$.
 - 3. (终结语句) $x \in E$,当且仅当 x 是由有限次 1,2 得到的.
- (2) 设所求集合为 E.
 - 1. (基础语句) 令 $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, 若 $x \in D$, 则 $x \in E$, $x \in E$.
 - 2. (归纳语句) 若 x = a.b, $y = c.d \in E$, 则 $\overline{ac}.\overline{bd} \in E$.
 - 3. (终结语句) $x \in E$, 当且仅当 x 是由有限次 1,2 得到的.
- (3) 设所求集合为 E.
 - 1. (基础语句) 0 ∈ E.
 - 2. (归纳语句) 若 $x \in E$, 则 $x + 10 \in E$.
 - 3. (终结语句) $x \in E$, 当且仅当 x 是由有限次 1,2 得到的.

2 数论初步

3 映射

4 二元关系

5 群论初步

6 商群

7 环和域

8 格和布尔代数