# Genome and Transcriptome Assembly

FAS Informatics April 3, 2014

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

## Sanger Sequencing



## Sanger Sequencing

- 500–1000 nt reads
- Adjacent reads usually overlap by a couple of hundred base pairs
- Coverage needed for assembly: 6-8x
- Error rate < 2%
- "Gold standard" of genome sequencing

- Overlap
  - Find pairs of reads sharing k-mers (k = ~24)
  - Try to extend the alignment with dynamic programming
- Layout
  - Create local multiple alignments from pairwise overlaps
- Consensus
  - Derive consensus sequence via weighted voting of aligning segments



Cummins et al. (2009) Bio Proc Online. PMID: 19495914

- Requires computation of all pair-wise alignments O(n²)
  - Ameliorated by kmer sorting  $(k = ^224)$
- No efficient algorithm to find Hamiltonian path (all vertices) through overlap
- OLC is sensitive to kmer size and minimum percent identify required for an overlap

#### **OLC Assemblers:**

- ARACHNE
  - Used to assemble Drosophila genome from Sanger reads in 2000
- CELERA
  - Used to assemble human genome from Sanger reads in 2001
- Phrap
- CAP
- TIGR

- Genome assembly
  - <u>Traditional (Sanger)</u>
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

## **Next-Gen Sequencing**

- Shorter reads: 35–150 nt from fragments 200-500 nt in length
- Per-base cost is 1/100<sup>th</sup> to 1/1000<sup>th</sup> of Sanger sequencing
- As many as 100M reads per sample
- Quantitative
- Error rate < 2%</li>
- Capability to sequence both ends of library fragment

#### Next-Gen Sequencing (Illumina)

- 1. Adaptor-ligated fragments fixed to surface
- 2. Fragments amplified



#### Next-Gen Sequencing (Illumina)

- 3. Adaptor-ligated fragments fixed to surface
- 4. Fragments amplified
- Fluorescent, reversibly terminated bases added
- 6. Surface imaged



## Genome Assembly for NGS

- Computing pair-wise overlaps for OLC assembly too computationally intensive for millions of reads
- Need alternative algorithm

### Assembly for NGS: de Bruijn Graphs



### Assembly for NGS: de Bruijn Graphs



## Genome Assembly for NGS: de Bruijn Graphs

- Advantages
  - No need for pairwise alignment calculation
  - Efficient algorithm exists to find Eulerian (all edges) path
- Disadvantages
  - Sequence information is lost when reads are split into kmers
    - Heuristic: thread reads through graph
  - Algorithm itself not robust to sequencing errors
    - Heuristic: preprocessing and error correction
  - Sensitive to value of k

## Genome Assembly for NGS: de Bruijn Graphs

De Bruijn graph short-read assemblers:

- ABySS
  - Allows distributed computing across nodes
- Allpaths-LG
  - Requires mix of short and "jump" reads
- Velvet
  - User can specify range of k values
- SOAPdenovo
  - Built on SOAP OLC assembler

- GAGE: 2012 study comparing assembly performance on 4 species
- 3 species (S. aureus, R. sphaeroides and human) had finished genomes for comparison

| Species                    | S. aureus | R. sphaeroides | Human Chr14 | B. impatiens |
|----------------------------|-----------|----------------|-------------|--------------|
| Size (Mb)                  | 2.90      | 4.60           | 88.29       | 250 (est.)   |
| Read length                | 101, 37   | 101            | 101         | 124          |
| Fragment size, Library 1   | 180       | 180            | 155         | 400          |
| Number of reads, Library 1 | 1,294,104 | 2,050,868      | 36,504,800  | 303,118,594  |
| Fragment size, Library 2   | 3500      | 3500           | 2280-2800   | 3000-4000    |
| Number of reads, Library 2 | 3,494,070 | 2,050,868      | 22,669,408  | 129,118,270  |
| Fragment size, Library 3   | , , ,     | , ,            | 35 kb       | 8 kb         |
| Number of reads, Library 3 |           |                | 2,405,064   | 65,081,280   |

- Assembly with highest N50 (SOAPdenovo) also had highest number of errors
- N50's dropped considerably when contigs were broken at errors

Table 3. Assemblies of R. sphaeroides (genome size 4,603,060)

| Assembler   | Contigs |          |        |                | Scaffolds |          |        |                |
|-------------|---------|----------|--------|----------------|-----------|----------|--------|----------------|
|             | Num     | N50 (kb) | Errors | N50 corr. (kb) | Num       | N50 (kb) | Errors | N50 corr. (kb) |
| ABySS       | 1915    | 5.9      | 76     | 4.2            | 1701      | 9        | 3      | 5              |
| ALLPATHS-LG | 204     | 42.5     | 49     | 34.4           | 34        | 3192     | ō      | 3192           |
| Bambus2     | 177     | 93.2     | 373    | 12.8           | 92        | 2439     | 2      | 2419           |
| CABOG       | 322     | 20.2     | 44     | 17.9           | 130       | 66       | 5      | 55             |
| MSR-CA      | 395     | 22.1     | 52     | 19.1           | 43        | 2,976    | 5      | 2966           |
| SGA         | 3067    | 4.5      | 12     | 2.9            | 2096      | 51       | 0      | 51             |
| SOAPdenovo  | 204     | 131.7    | 422    | 14.3           | 166       | 660      | 3      | 658            |
| Velvet      | 583     | 15.7     | 43     | 14.5           | 178       | 353      | 6      | 270            |

- In human, ALLPATHS-LG had the highest corrected N50, but ABySS had fewer errors
- ALLPATHS-LG outperformed other assemblers, but note that the sequencing read sizes and insert lengths were chosen to be optimal for this assembler

Table 4. Assemblies of human chromosome 14 (ungapped size 88,289,540)

| Assembler   | Contigs |          |        |                | Scaffolds |          |        |                |
|-------------|---------|----------|--------|----------------|-----------|----------|--------|----------------|
|             | Num     | N50 (kb) | Errors | N50 corr. (kb) | Num       | N50 (kb) | Errors | N50 corr. (kb) |
| ABySS       | 51,924  | 2.0      | 704    | 2.0            | 51,301    | 2.1      | 9      | 2              |
| ALLPATHS-LG | 4529    | 36.5     | 2760   | 21.0           | 225       | 81,647   | 45     | 4702           |
| Bambus2     | 13,592  | 5.9      | 11,943 | 4.3            | 1792      | 324      | 143    | 161            |
| CABOG       | 3361    | 45.3     | 3181   | 23.7           | 479       | 393      | 597    | 26             |
| MSR-CA      | 30,103  | 4.9      | 5550   | 4.3            | 1425      | 893      | 1068   | 94             |
| SGA         | 56,939  | 2.7      | 981    | 2.7            | 30,975    | 83       | 19     | 79             |
| SOAPdenovo  | 22,689  | 14.7     | 6424   | 7.4            | 13,502    | 455      | 268    | 214            |
| Velvet      | 45,564  | 2.3      | 4910   | 2.1            | 3,565     | 1190     | 9156   | 27             |





## Other Assembler Comparisons

- Assemblathon 1 (2011)
  - Simulated genome and NGS reads
  - Teams submit assemblies using assembler and parameter settings of choice
- Assemblathon 2 (2012)
  - Real reads provided for three previously unsequenced species (a bird, fish and snake)
  - Assemblies assessed from optical data, fosmid sequences and statistical measures

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

## "Hybrid" Assembly

Use additional information in NGS assembly:

- Hi-C / interaction frequency
- Optical mapping
- Genome from closely-related species

#### Hybrid Assembly: Hi-C + NGS

Hi-C library preparation:



#### Hybrid Assembly: Hi-C + NGS

- Hi-C read count reflective of physical proximity
- Segments from different chromosomes will have fewer reads than pairs from same chromosome
- Number of reads spanning two contigs defines proximity
- Contigs can then be hierarchically clustered into chromosomes
- Reads then used to order and orient contigs in chromosome



Hi-C read counts along Chr 14

#### Hybrid Assembly: Optical map + NGS

- DNA is stretched along a channel, cut by a restriction enzyme, and dyed
- Order and length of segments is measured



#### Hybrid Assembly: Optical map + NGS

- Restriction sites on contigs are identified by alignment
- Sites in contigs are matched to restriction sites in optical map:



#### Hybrid Assembly: Use of Reference Genome

- "Comparative assembly"
- Reads are aligned to reference genome
- Given enough contradictory reads, assembly departs from reference and assembles new regions
- Fraction of runtime of de novo assemblers
- ABBA
  - Uses amino acid sequences as reference as they are more conserved than nucleotides
- AMOScmp
  - Alignment-layout-consensus

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

#### Example Genome Assembly: Arthrobacter bacteria

• 8.5M paired-end, 100 nt reads from Illumina



#### Arthrobacter Genome Assembly

#### Preprocessing

Example script to preprocess reads with Trimmomatic:

```
#!/bin/bash
                             # Number of nodes
#SBATCH —N 1
#SBATCH —n 6
                             # Number of cores
#SBATCH -t 100
                             # Runtime in minutes
#SBATCH -p serial requeue # Partition to submit to
#SBATCH --mem-per-cpu=1000
                             # Memory per cpu in MB
module load centos6/Trimmomatic-0.30
java -jar $TRIMMOMATIC/trimmomatic-0.30.jar PE \
        -phred33 -threads 6 R1.fq R2.fq \
        out.R1.paired.fq out.R1.unpaired.fq \
        out.R2.paired.fg out.R2.unpaired.fastg \
ILLUMINACLIP:$TRIMMOMATIC/adapters/TruSeq3-PE.fa:2:30:10 \
SLIDINGWINDOW: 40:30 MINLEN: 30 LEADING: 3 TRAILING: 3
```

Save to file preprocess.sh, and launch job with:

```
sbatch preprocess.sh
```

## Arthrobacter Genome Assembly Build contigs with Velvet

Run Velvet (try range of k values) to assemble contigs:

```
#!/bin/bash
#SBATCH --nodes=1  # Number of nodes
#SBATCH --ntasks=1  # Number of cores
#SBATCH --time=3:00:00  # Runtime HH:MM:SS
#SBATCH --partition=serial_requeue  # Partition to submit to
#SBATCH -mem=10000  # Memory in MB

module load centos6/velvet-1.2.10_gcc-4.8.0

velveth velvet 31 -fastq -short allOrphans.fastq \
    -shortPaired -separate R1.paired.fastq R2.paired.fastq
velvetg velvet_31 -cov_cutoff auto
```

Save to file runVelvet.sh, and launch job with: sbatch runVelvet.sh

## Arthrobacter Genome Assembly Compare results to assembled genome

|                         | match           | mis-       | rep.         | N's          | Q gap        | Q gap          | Tgap       | Tgap                                 |
|-------------------------|-----------------|------------|--------------|--------------|--------------|----------------|------------|--------------------------------------|
|                         |                 | match      | match        |              | count        | bases          | count      | bases                                |
|                         |                 |            |              |              |              |                |            |                                      |
|                         | 52              | 2          | 0            | 0            | 1            | 1              | 1          | 1                                    |
|                         | 34              | 1          | 0            | 0            | 0            | 0              | 0          | 0                                    |
|                         | 34              | 1          | 0            | 0            | 0            | 0              | 0          | 0                                    |
|                         | 33              | 1          | 0            | 0            | 0            | 0              | 0          | 0                                    |
|                         | 41464           | 123        | 0            | 0            | 2            | 13             | 3          | 1516                                 |
|                         | 34              | 0          | 0            | 0            | 0            | 0              | 0          | 0                                    |
|                         | 34              | 1          | 0            | 0            | 0            | 0              | 0          | 0                                    |
|                         | 10858           | 125        | 0            | 0            | 1            | 55             | 2          | 12134                                |
|                         | 7572            | 745        | 0            | 0            |              | 244            | 12         | 244                                  |
| Arthrobacter_arilate \$ | gi 307743277 e  | mb FQ31187 | 5.1  ‡ Q3    | 11875.1 :1,9 | 26,436-1,927 | 7,140 Go j     | <b>1</b>   |                                      |
| 111                     |                 |            |              |              |              |                |            | - 0                                  |
|                         |                 |            |              |              |              |                |            |                                      |
|                         |                 |            |              |              |              |                |            | 35                                   |
|                         |                 |            |              |              |              |                |            |                                      |
|                         |                 |            |              | -            |              |                |            | 35                                   |
|                         |                 |            |              | — 703 bp —   |              |                |            | 35<br>0                              |
| -                       | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp | - 703 bp     | 1,926,900    | op 1,927,0     | 00 bp 1,92 | 35<br>0<br>4                         |
| -                       | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900    | op 1,927,0<br> | 00 bp 1,92 | 35<br>0<br>4<br>4                    |
| Gans                    | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900 l  | op 1,927,0     | 00 bp 1,92 | 35<br>0<br>4<br>4<br>4,7,100 bp 1219 |
| Gans Sequence           | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900    | bp 1,927,0<br> | 00 bp 1,92 | 35<br>0<br>4<br>4<br>4,7,100 bp 1219 |
|                         | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900 l  | op 1,927,0     | 00 bp 1,92 | 35<br>0<br>4<br>4<br>4,7,100 bp 1219 |
|                         | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900    | bp 1,927,0     | 00 bp 1,92 | 35<br>0<br>4<br>4<br>4,7,100 bp 1219 |
|                         | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900    | bp 1,927,0     | 00 bp 1,92 | 35<br>0<br>4<br>4<br>4,7,100 bp 1219 |
|                         | 1,926,500 bp 1, | 926,600 bp | 1,926,700 bp |              | 1,926,900    | bp 1,927,0     | 00 bp 1,92 | 35<br>0<br>4<br>4<br>4,7,100 bp 1219 |

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

## Transcriptome Assembly

- Variation in read counts can be due to high expression or repeated sequences
- Need to differentiate between isoforms via differences in read counts across gene
- Lowly-expressed genes can be hard to detect



## Transcriptome Assembly

- De Novo
  - Assemble transcripts with no knowledge of genome
- Reference-based
  - Assemble transcripts with no knowledge of genome
- Reference-guided
  - Aid assembly with a genome of a closelyrelated species

## Read set Extend in k-mer space and break ties >a121:len = 5,845 >a122:len = 2,560 >a123:len = 4,443 >a124:len = 48

>a126:len = 66

### Assembly algorithm (Trinity)



## Transcriptome Assembly

- Other assemblers:
  - Oases
    - Built on Velvet genome assembler
  - Trans-ABySS
    - Based on ABySS genome assembler
  - SOAPdenovo-Trans
    - Based on SOAPdenovo assembler

## Transcriptome Assembly

Assembler performance on simulated data:



Clarke et al (2013) Sci China PMID: 23393031

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

#### Example Transcriptome Assembly: Zebra finch

- 20M paired-end, 100nt reads from Illumina
- Preprocess to improve dataset quality



## Zebra Finch Transcriptome Assembly Assemble transcripts with Trinity

Script to run Trinity to assemble transcriptome:

```
#!/bin/bash
#SBATCH --nodes=1
                                    # Number of nodes
#SBATCH --ntasks=6
                                    # Number of cores
#SBATCH --time=4-0
                                    # Runtime in days
                                    # Partition to submit to
#SBATCH --partition=general
#SBATCH --mem=256000
                                    # Memory in MB
module load centos6/samtools-0.1.19
module load centos6/bowtie2-2.1.0
module load centos6/trinityrnaseg r20131110
module load centos6/perl-5.8.8
Trinity.pl --seqType fq --JM 20G --CPU 6 \
           --left R1.paired.and orphans.fastg \
           --right R2.paired.fastq
```

#### Zebra Finch Transcriptome Assembly



## Zebra Finch Transcriptome Assembly Compare to reference transcriptome

Script to find overlap with reference genome exons:

```
#!/bin/bash
#SBATCH --nodes=1
                                    # Number of nodes
#SBATCH --ntasks=6
                                    # Number of cores
#SBATCH --time=8:00:00
                                     # Runtime HH:MM:SS
#SBATCH --partition=serial requeue # Partition to submit to
#SBATCH --mem=256000
                                    # Memory in MB
module load centos6/bedops-2.3.0
module load centos6/bedtools2-2.18.1
module load centos6/samtools-0.1.19
module load centos6/qmap-2013-10-04
qmap -d taeGut3.2.4.73 -f samse Trinity.fasta > aligned.sam
samtools view -b -S $TRINITY SAM > aligned.bam
bamToBed -i aligned.bam > aligned.bed
intersectBed -a ZF.bed -b aligned.bed -f 0.90 -u > 90perc overlap.bed
```

# Zebra Finch Transcriptome Assembly Compare to reference transcriptome



- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

- Genome assembly
  - Traditional (Sanger)
  - Next-Gen Sequencing
  - Hybrid approaches
  - Example: Arthrobacter bacteria
- Transcriptome assembly
  - Algorithms and assemblers
  - Example: Zebra finch
- New methods

#### **New Methods**

- Single-cell
- Mixed population (metagenomics)
- VLRs: Very Long Reads

#### **New Methods:**

#### Single-cell assembly

- Good for microorganisms that cannot grow in lab
- After extraction, DNA is amplified using multiple displacement amplification (MDA)
- Coverage varies by orders of magnitude
- Traditional assemblers must be altered so they do not filter out low read-count assemblies as spurious



## New Methods: Mixed population assembly

- Good for biologically diverse samples taken directly from the environment
- DNA extraction efficiency and kmer frequency is species-dependent
- Validation with essential single-copy genes (e.g., ribosomal genes)
- Validation with cultures mixed in vitro

#### New Methods:

#### Assembly with Very Long Reads

- PacBio SMRT mean read length:
  - ~2500 bp
- Error rate: ~15%
- Use short NGS reads to "correct" SMRT reads before assembly
- Long reads facilitate contig placement



#### Hybrid Assembly: Long + Short reads

- Use short reads to build contigs
- Use paired-end reads of long fragments (2-10 kb) to join contigs
- Assemblers:
  - SOAPdenovo
  - AllPaths
  - Velvet

