Genetic Algorithms & Evolutionary Computation Autonomous Systems

Dr. Matthia Sabatelli

September 29th, 2023

Today's Agenda

- 1 Motivation & General Principles
- 2 Genetic Algorithms
- **3** Genetic Programming
- **4** Practical Applications

Some History about Genetic Algorithms

- Genetic Algorithms (GAs) started to be developed in the early 1960s by **John Holland**, who is considered to be the father of Algorithmic Evolution.
- However, only in the early mid-1980s GAs started to find successful applications
- In the 1990s the ideas of GAs evolved and resulted in Genetic Programming
- While still powerful for certain classes of problems, GAs are not very popular nowadays

Genetic Algorithms provide an approach to **learning** that is based on **simulated evolution**

- They fall within the category of search techniques
- More specifically they are categorized as Global Search Heuristics, meaning they do not search for general → specific hypothesis
- Instead they repeatedly mutate and recombine parts of the best currently known solutions

How do GAs intuitively work?

- \Rightarrow We typically start with a problem we wish to solve and make a guess of potential solutions that can solve it
 - 1. These solutions get evaluated and ranked based on how well they perform on our initial problem
 - 2. Once evaluated, the solutions can interact across each other and produce a new set of solutions
 - 3. This process repeats itself until we find a solution that satisfies our initial problem or a stopping criteria is met

The aforementioned steps mimic biological evolution

The **popularity** of GAs in the 80s and 90s was motivated by the following factors

- 1. Evolution is known to be successful in nature, why not use its ideas within Al as well?
- 2. Back then they could search very complex hypothesis spaces
- 3. They can be easily parallelized, therefore they can take advantage of powerful computer hardware

The **components** of a Genetic Algorithm are:

i) A learning problem we wish to solve

which allows us to define ii) a fitness function f(x)

The **components** of a Genetic Algorithm are:

iii) An initial pool of solutions e.g. programs that can play chess

The **components** of a Genetic Algorithm are:

iv) An evolution strategy

That tells us how we should modify our initial pool of solutions based on how bad/well they perform on our aforementioned evaluation function f(x)

A **Practical Example**: the MAXONE Problem

⇒ We have a string of 10 binary digits e.g. 1011010110 and want to **maximize** the number of ones in a string. Our objective, therefore, becomes writing a program that automatically finds:

11111111111

A Practical Example: the MAXONE Problem

Let's start with a **randomly generated pool** of solutions s which we call G_1 where G stays for Generation:

$$G_1 = \begin{cases} s_0 = 0101100001 \\ s_1 = 1100010001 \\ s_2 = 1111110000 \\ s_3 = 1010101111 \\ s_4 = 0000000010 \end{cases}$$

A **Practical Example**: the MAXONE Problem

Let's now **evaluate** based on $f(x)^1$ how good/bad these solutions are

$$G_1 = \begin{cases} s_0 = 0101100001 \\ s_1 = 1100010001 \\ s_2 = 1111110000 \\ s_3 = 1010101111 \\ s_4 = 0000000010 \end{cases}$$

¹We simply count how many ones appear in the string

A Practical Example: the MAXONE Problem

Let's now **evaluate** based on $f(x)^2$ how good/bad these solutions are

$$G_1 = \begin{cases} s_0 = 0010100001 \rightarrow \mathbf{3} \\ s_1 = 1100010001 \rightarrow \mathbf{4} \\ s_2 = 1111110000 \rightarrow \mathbf{6} \\ s_3 = 1110101111 \rightarrow \mathbf{8} \\ s_4 = 00000000010 \rightarrow \mathbf{1} \end{cases}$$

²We simply count how many ones appear in the string

A Practical Example: the MAXONE Problem

Let's now create a **new generation** G_2 where we start by only keeping the fittest solutions

$$G_2 = \begin{cases} s_0 = 1110101111 \rightarrow \mathbf{8} \\ s_1 = 1111110000 \rightarrow \mathbf{6} \\ s_2 = 1100010001 \rightarrow \mathbf{4} \\ s_3 = \underline{0010100001} \rightarrow \mathbf{3} \\ s_4 = \underline{00000000010} \rightarrow \mathbf{1} \end{cases}$$

A Practical Example: the MAXONE Problem

What to do with the spots which were taken by the worst solutions?

$$G_2 = \begin{cases} s_0 = 110101111 \rightarrow \mathbf{8} \\ s_1 = 1111110000 \rightarrow \mathbf{6} \\ s_2 = 1100010001 \rightarrow \mathbf{4} \\ s_3 = ?????????? \rightarrow \mathbf{?} \\ s_4 = ?????????? \rightarrow \mathbf{?} \end{cases}$$

A **Practical Example**: the MAXONE Problem

What to do with the spots which were taken by the worst solutions?

 \Rightarrow We can create two new solutions which take advantage of the two fittest solutions in G_1 . We call them c_1 and c_2 were c stays for child

A **Practical Example**: the MAXONE Problem

What to do with the spots which were taken by the worst solutions?

 \Rightarrow We can create two new solutions which take advantage of the two fittest solutions in G_1 . We call them c_1 and c_2 were c stays for child

```
c_1 = 111010444T + 1144T10000 = 11101 10000

c_2 = 1140T01111 + 11111110000 = 01111 111111
```

A **Practical Example**: the MAXONE Problem

Let's evaluate the two new solutions ...

$$G_2 = \begin{cases} s_0 = 1110101111 \rightarrow \mathbf{8} \\ s_1 = 1111110000 \rightarrow \mathbf{6} \\ s_2 = 1100010001 \rightarrow \mathbf{4} \\ s_3 = 1110110000 \rightarrow \mathbf{?} \\ s_4 = 01111111111 \rightarrow \mathbf{?} \end{cases}$$

A Practical Example: the MAXONE Problem

We have found a new best solution!

$$G_2 = \begin{cases} s_0 = 1110101111 \rightarrow \mathbf{8} \\ s_1 = 1111110000 \rightarrow \mathbf{6} \\ s_2 = 1100010001 \rightarrow \mathbf{4} \\ s_3 = 1110110000 \rightarrow \mathbf{5} \\ s_4 = 01111111111 \rightarrow \mathbf{9} \end{cases}$$

A Practical Example: the MAXONE Problem

We have found a new best solution!

$$G_2 = \begin{cases} s_0 = 1110101111 \rightarrow \mathbf{8} \\ s_1 = 1111110000 \rightarrow \mathbf{6} \\ s_2 = 1100010001 \rightarrow \mathbf{4} \\ s_3 = 1110110000 \rightarrow \mathbf{5} \\ s_4 = \boxed{01111111111} \rightarrow \mathbf{9} \end{cases}$$

 \Rightarrow If we keep performing this iterative process, therefore creating many generations G, we will eventually find a solution that satisfies the MAXONE problem.

 \Rightarrow If we keep performing this iterative process, therefore creating many generations G, we will eventually find a solution that satisfies the MAXONE problem.

Elitism

We ensure that the solution quality obtained by the GA will not decrease from one generation to the next, and that the best solutions of a generation will carry over to the next.

For many real world problems this can take prohibitively long ©

In our MAXONE problem, we have simply removed the solutions within G_1 by ranking all the different solutions and discarding the last two ones. This was rather a simple heuristic.

⇒ Typically, in Genetic Algorithms a probabilistic approach decides whether to keep/discard a solution.

$$\Pr(s_i) = \frac{f(s_i)}{\sum_{j=1}^p f(s_j)}$$

⇒ Next to the process that incrementally comes up with better and better *solutions* and that, therefore, resembles natural selection, there's one more important component in Genetic Algorithms that mimics biological evolution

 \Rightarrow The operations that recombine and mutate selected members of one specific generation G. We call these operations **Genetic Operators**

There are two operators which are the most common ones:

- Crossover
- Mutation

 \Rightarrow Every *Crossover* operator produces two new children c_1 and c_2 from two strings by copying selected bits from each parent p

Single-Point Crossover

 $p_1 = 11101001000$

 $p_2 = 00001010101$

 \Rightarrow Every *Crossover* operator produces two new children c_1 and c_2 from two strings by copying selected bits from each parent p

Single-Point Crossover

 $p_1 = 11101001000$

 $p_2 = 00001010101$

 \Rightarrow Every *Crossover* operator produces two new children c_1 and c_2 from two strings by copying selected bits from each parent p

Single-Point Crossover

 $p_1 = 11101001000$

 $p_2 = 00001010101$

 $c_1 = 11101010101$

 \Rightarrow Every *Crossover* operator produces two new children c_1 and c_2 from two strings by copying selected bits from each parent p

Single-Point Crossover

 $p_1 = 11101001000$

 $p_2 = 00001010101$

 $c_2 = 00001001000$

Two-Point Crossover

 $p_1 = 11101001000$

 $p_2 = 00001010101$

Two-Point Crossover

 $p_1 = 11101001000$ $p_2 = 00001010101$

Two-Point Crossover

 $p_1 = 11101001000$ $p_2 = 00001010101$

 $c_1 = 00101000101$

Two-Point Crossover

$$p_1 = 11101001000$$
$$p_2 = 00001010101$$

$$c_2 = 11001011000$$

As you can imagine there are plenty of crossover combinations one can choose from. One could even design its own crossover operator but the *single-point* and *double-point* operators are typically good enough.

A special case of crossover which only requires a single parent is:

Point Mutation

 $p_1 = 11101001000$

As you can imagine there are plenty of crossover combinations one can choose from. One could even design its own crossover operator but the *single-point* and *double-point* operators are typically good enough.

A special case of crossover which only requires a single parent is:

Point Mutation

 $p_1 = 11101$ **0**1000

As you can imagine there are plenty of crossover combinations one can choose from. One could even design its own crossover operator but the *single-point* and *double-point* operators are typically good enough.

A special case of crossover which only requires a single parent is:

Point Mutation

 $p_1 = 11101$ **1**1000

As you can imagine there are plenty of crossover combinations one can choose from. One could even design its own crossover operator but the *single-point* and *double-point* operators are typically good enough.

A special case of crossover which only requires a single parent is:

Point Mutation

 $\mathbf{c}_1 = 1110111000$

Genetic Programming is a form of evolutionary computation in which the individuals in the evolving population are full computer programs rather than binary strings!

- It is an extension of Genetic Algorithms
- Has demonstrated to produce intriguing results:
 - 1. Design of electronic filter circuits
 - 2. Classification of segments of protein molecules
- \Rightarrow How does it work?

We need to find a way of representing a computer program. This is done via a **tree**:

- Each function call is represented by a node in the tree
- The arguments of the function are given by the descendant nodes

We would like to find a tree representation for the function

$$\sin(\mathbf{x}) + \sqrt{\mathbf{x}^2 + \mathbf{y}}$$

⇒ Which should look like:

$$\sin(\mathbf{x}) + \sqrt{\mathbf{x}^2 + \mathbf{y}}$$

Let's consider the following two trees as candidate solutions:

Let's consider the following two trees as candidate solutions:

⇒ After performing a *crossover* operation they will result in the following two new solutions:

In Genetic Programming:

- 1. We use the same genetic operators that define Genetic Algorithms
- 2. However, we need to define the set of primitive functions e.g. +, $\sqrt{\ }$, sin... which is not trivial
- 3. A solution is represented by an entire program tree, which can make their evaluation expensive

https://www.youtube.com/watch?v=Gl3EjiVlz_4

https://www.youtube.com/watch?v=qv6UVOQ0F44

https://www.youtube.com/watch?v=czhhzKrBJfM

Pros & Cons of Genetic Algorithms

Among the main benefits we have that:

- The underlying concept is easy to understand
- Can be used for multi-objective optimization <
- Support distributed learning
- Same cooking recipe can be used across large variety of tasks
- Work well when the problem is not differentiable

However there are some significant limitations as well ...

Pros & Cons of Genetic Algorithms

- ⇒ Among such limitations we have:
 - No convergence guarantees X
 - Computing the evaluation function f(x) can be expensive
 - Lots of implementation parameters need to be defined X
 - Termination Criteria? X

Final References

- Mitchell, Tom M., and Tom M. Mitchell. Machine learning. Vol. 1.
 No. 9. New York: McGraw-hill, 1997. Chapter 9.
- Holland, John H. "Genetic algorithms." Scientific american 267.1 (1992): 66-73.
- Koza, John R., and Riccardo Poli. "Genetic programming." Search methodologies. Springer, Boston, MA, 2005. 127-164.
- B, Thomas, and Hans-Paul Schwefel. "An overview of evolutionary algorithms for parameter optimization." Evolutionary computation 1.1 (1993): 1-23.

The GECCO Conference

