ROB311 Quiz 3

Hanhee Lee

March 30, 2025

Contents

1	$\mathbf{M}\mathbf{u}$	lti-Agent Problems	2
	1.1	Policy Equilibria	2
		Single Action Games	
		Actions (Deterministic)	
		Strategies (Probabilistic)	
		1.4.1 Simplifying Games	3
	1.5	Examples	4
		1.5.1 Finding Action Equilibria	4
		1.5.2 Optimal Action Profiles	
		1.5.3 Finding Strategy Equilibria	7

One-Shot Multi-Agent Decision Problems

1 Multi-Agent Problems

Summary: In a Multi-Agent problem, we assume that:

- ullet Set of states for environment is ${\mathcal S}$
- P agents within environment.
- For each state $s \in \mathcal{S}$:
 - possible actions for agent i is $A_i(s)$
- set of action profiles is $\mathcal{A}(s) = \prod_{i=1}^{P} \mathcal{A}_i(s)$ possible state-action pairs are $\mathcal{T} = \{(s, a) \text{ s.t. } s \in \mathcal{S}, a \in \mathcal{A}(s)\}$
- environment in some origin state, s_0
- ullet environment destroyed after N transitions
- agent j wants to find policy $\pi_j(a_j \mid s)$ so that $\mathbb{E}[r_j(p)]$ is maximized
- agents act independently given the environment's state: $\pi(a \mid s) = \prod_{i \in [n]} \pi_i(a_i \mid s)$

	$j \in [P]$
Name	Function:
State transition given state-action pair defined by $\operatorname{tr}:\mathcal{T}\to\mathcal{S}$	tr(s, a) = state transition from s under a
Reward to each agent, i defined by $r_i: \mathcal{Q} \times \mathcal{S} \to \mathbb{R}_+$	$r_i(s, a, \operatorname{tr}(s, a)) = \operatorname{rwd}$ to agent i for $(s, a, \operatorname{tr}(s, a))$
State evolution of environment after N transitions	$p = \langle (s_0, a^{(1)}, s_1), \dots, (s_{N-1}, a^{(N)}, s_N) \rangle$
• Given sequence of actions: $p.a = \langle a^{(1)}, \dots, a^{(n)} \rangle$ • $s_N = \tau(s_{n-1}, a^{(n)})$	
reward to agent i	$r_i(p) = \sum_{n=1}^{N} r_i(s_{n-1}, a^{(n)}, s_n)$
expected-reward (value) of playing a from s for agent j	$q_j(s, a) = r_j(s, a, \tau(s, a)) + \sum_{a' \in \mathcal{A}(\tau(s, a))} \pi(a' \mid \tau(s, a)) q_j(\tau(s, a), a')$
• $\mathcal{A}(s) = \emptyset$ if $s \in \mathcal{G}$	

1.1 Policy Equilibria

Notes:

- No Regret: π is no-regret if π_j maximizes q_j when π_{-j} is fixed.
- If all agents play perfectly, then we expect

$$\pi(a \mid s) = \begin{cases} 1 & \text{if } a = a^*(s) \\ 0 & \text{otherwise} \end{cases}$$

 $-\ a_j^*(s) = \arg\max_{a_j \in \mathcal{A}_j(s)} q_j(s, a_j, a_{-j}^*) \text{ is the best action for agent } j \text{ given the other agents' policies.}$

2

1.2 Single Action Games

Summary: In a Single Action Game, we assume that:

- N = 1 (one-shot game)
- Initial state is $s_0 \in \mathcal{S}$
- Agent j wants to find policy, $\pi_i(a_i \mid s_0)$ so $\mathbb{E}[r_i(p)]$ is maximized

1.3 Actions (Deterministic)

Summary:

Name	Function:
Action j for agent i	$[0\cdots 0\ 1\ 0\cdots 0]$

Hanhee Lee

• One-hot vector of M_i components, $\mathbf{e}_{i,j}$

Agent i's set of possible actions $\mathcal{A}_i = \{a_i \in \{0,1\}^{M_i} \mid \sum_{j \in [M_i]} a_{i,j} = 1\}$

• Agent i's chosen action with $a_i \in \mathcal{A}_i$

Action profile is a tuple of actions $a = (a_1, \dots, a_P)$

• Notational Convenience: $a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_P)$ so that $a = (a_i, a_{-i})$.

Optimal action profile a^+ s.t. $\forall a \exists i \text{ s.t. } r_i(a) < r_i(a^+)$

• An action profile w.r.t. which any other action profile leaves at least one player worse off.

Set of optimal action profiles	$aOpt = \{a^+ \mid \forall a \exists i : r_i(a) < r_i(a^+)\}$
Best-action mapping, ba _i : $A_{-i} \to A_i$	$ba_i(a_{-i}) = \arg\max_{a_i \in \mathcal{A}_i} r_i(a_i, a_{-i})$
	$= \{ a_i \in \mathcal{A}_i \mid r_i(a_i, a_{-i}) = \max_{a'_i \in \mathcal{A}_i} r_i(a'_i, a_{-i}) \}$
Agent i will not regret playing a_i^* when others play a_{-i}^* if	$r_i(a_i^*, a_{-i}^*) \ge r_i(a_i, a_{-i}^*) \ \forall a_i \in \mathcal{A}_i$ or $a_i^* \in \text{ba}_i(a_{-i}^*)$
Action equilibria is any action, a^* in which no agent regrets	$a_i^* \in \text{ba}_i(a_{-i}^*) \ \forall i \in [P]$
Existence of action equilibria	May not always exist, i.e., it may be that a Eq = \emptyset

1.4 Strategies (Probabilistic)

Summary:

1.4.1 Simplifying Games

Notes:

1.5 Examples

1.5.1 Finding Action Equilibria

Process: To find action equilibria:

- 1. For each i, compute $ba_i(a_{-i})$ for all a_{-i}
- 2. Define bap_i so that bap_i = $\{(a'_i, a_{-i}), \forall a'_i \in ba_i(a_{-i}), \forall a_{-i} \in A_{-i}\}$
- 3. Action equilibria are then a Eq = $\bigcap_{i \in [P]} \mathrm{bap}_i.$

Example:

1. **Given:** Suppose lion and cavemen both want meat. Each must decide whether to fight for the food or share it.

Figure 1

- 2. **Problem:** Find the action equilibria
- 3. Solution:
 - (a) Best Action Profiles:
 - Cavemen: $bap_{cavemen} = \{(Fight, Fight), (Fight, Share)\}$. Cavemen fights no matter what.
 - If lion fights, then cavemen fights to get maximum reward in this scenario of +1.
 - If lion shares, then caveman fights to get maximum reward in this scenario of +4.
 - Lion: $bap_{lion} = \{(Fight, Fight), (Share, Fight)\}$. Lion fights no matter what.
 - If caveman fights, then lion fights to get maximum reward in this scenario of +1.
 - If caveman shares, then lion fights to get maximum reward in this scenario of +4.
 - (b) Best Action Equilibria: Intersection of the best action profiles.
 - $\bullet \ aEq = bap_{cavemen} \cap bap_{lion} = \{(Fight, \, Fight)\}$

Example:

1. **Given:** Suppose lion and cavemen both want meat. Each must decide whether to fight for the food or share it.

Figure 2

- 2. **Problem:** Find the action equilibria
- 3. Solution:
 - (a) Best Action Profiles:
 - Cavemen: $bap_{cavemen} = \{(Fight, Fight), (Share, Share)\}$. Cavemen fights no matter what.
 - If lion fights, then cavemen fights to get maximum reward in this scenario of +3.
 - If lion shares, then caveman shares to get maximum reward in this scenario of +1.
 - Lion: bap_{lion} = {(Fight, Share), (Share, Fight)}. Lion fights no matter what.
 - If caveman fights, then lion shares to get maximum reward in this scenario of +3.
 - If caveman shares, then lion fights to get maximum reward in this scenario of +1.
 - (b) Best Action Equilibria: Intersection of the best action profiles.
 - $aEq = bap_{cavemen} \cap bap_{lion} = \emptyset$

1.5.2 Optimal Action Profiles

Example:

1. **Given:** Suppose lion and cavemen both want meat. Each must decide whether to fight for the food or share it.

Figure 3

- 2. **Problem:** Find the optimal action profiles:
- 3. Solution:
 - (a) $aOpt = \{(Share, Share), (Fight, Share), (Share, Fight)\}$
 - \bullet FINISH

1.5.3 Finding Strategy Equilibria

Example:

1. Given/Problem: Find all equilibria of the following one-shot game or state that none exist.

	B1 (y)	B2 (1-y)
A1 (x)	(5, 3)	(1, 0)
A2 (1-x)	(0, 1)	(2, 4)

• (#,#) is the payoff to P1 and P2 respectively for a given action profile.

2. Solution:

- (a) Define Probabilities:
 - Let y be the probability that B1 plays action B1 so 1-y is the probability that B1 plays action B2.
 - Let x be the probability that A1 plays action A1 so 1-x is the probability that A1 plays action A2.
- (b) Expected Rewards:
 - P1:

$$\begin{split} E[x] &= 5xy + 1x(1-y) + 0(1-x)y + 2(1-x)(1-y) = 5xy + x - xy + 2 - 2x - 2y + 2xy \\ &= 5xy - xy + 2xy + x - 2x - 2y + 2 \\ &= 6xy - x - 2y + 2 \quad \text{simplify} \\ &= \underbrace{(6y-1)}_{c} x + 2 - 2y \quad \text{linear in } x \end{split}$$

• P2:

$$E[y] = 3xy + 0x(1-y) + 1(1-x)y + 4(1-x)(1-y) = 3xy + 0 + y - xy + 4 - 4x - 4y + 4xy$$

$$= 3xy - xy + 4xy + y - 4x - 4y + 4$$

$$= 6xy - 4x - 3y + 4 \quad \text{simplify}$$

$$= \underbrace{(6x - 3)}_{c} y + 4 - 4x \quad \text{linear in } y$$

- Note: E[x] is linear in x and E[y] is linear in y.
- (c) Constrained Argmax Expected Rewards w.r.t $x \in [0,1]$ (since P1): If it was cost, then minimize. Also don't care about constant term in y since we are derivating w.r.t x.
 - P1:

$$x = \begin{cases} 1 & \text{if } y > \frac{1}{6} \text{ i.e. } c > 0 \text{ since positive want maximum positive} \\ \\ [0,1] & \text{if } y = \frac{1}{6} \text{ i.e. } c = 0 \text{ doesn't matter since } 0 \\ \\ 0 & \text{if } y < \frac{1}{6} \text{ i.e. } c < 0 \text{ since negative want maximum negative} \end{cases}$$

• P2:

$$y = \begin{cases} 1 & \text{if } x > \frac{3}{6} \text{ i.e. } c > 0 \text{ since positive want maximum positive} \\ [0,1] & \text{if } x = \frac{3}{6} \text{ i.e. } c = 0 \text{ doesn't matter since } 0 \\ 0 & \text{if } x < \frac{3}{6} \text{ i.e. } c < 0 \text{ since negative want maximum negative} \end{cases}$$

(d) Finding all equilibrium: Lines on the graph represents where your reward is maximized.

Figure 4

- Case 1: x = 0 and y = 0
 - -P(P1 chooses A1) = 0
 - P(P1 chooses A2) = 1
 - P(P2 chooses B1) = 0
 - P(P2 chooses B2) = 1
- Case 2: x = 1/2 and y = 1/6
- -P(P1 chooses A1) = 1/2
 - P(P1 chooses A2) = 1/2
 - -P(P2 chooses B1) = 1/6
 - -P(P2 chooses B2) = 5/6
- Case 3: x = 1 and y = 1
 - -P(P1 chooses A1) = 1
 - -P(P1 chooses A2) = 0
 - -P(P2 chooses B1) = 1
 - P(P2 chooses B2) = 0
- (e) **Unstable Equilibrium:** P1 moves left and right b/c x is associated with x-axis. P2 moves up and down b/c y is associated with y-axis.

Figure 5

- Stability means that in a radius disc around the equilibrium, if you move a little bit, you will still be in the equilibrium (have to check all relevant quadrants)
 - If one quadrant is unstable, then don't need to check the other quadrants as the equilibrium point is unstable.
 - Simulatenous (both players move at the same time) and sequential (one player moves first and the other player moves second)
- Case 1: x = 0 and y = 0 is stable
 - Q1: Always converges to (0,0) since P1 moves left to red and P2 moves down to turquoise.
- Case 2: x = 1/2 and y = 1/6 is unstable
 - Q1 (Top Left): P1 moves right to red and P2 moves up to turquoise \implies (1,1)
 - Q2 (Top Right): P1 moves right to red and P2 moves up to turquoise \implies (1,1)
 - Q3 (Bottom Left): P1 moves left to red and P2 moves down to turquoise \implies (0,0)

- Q4 (Bottom Right): P1 moves left to red and P2 moves down to turquoise $\implies (0,0)$
- Case 3: x = 1 and y = 1 is stable
 - Q1: Always converges to (1,1) since P1 moves left to red and P2 moves down to turquoise.