Egalisation Par Maximum de Vraisemblance

C. Poulliat

5 novembre 2023

Plan

Structures d'égalisation non linéaire

Modèle discret équivalent bande de base

$$y[n] = \sum_{k \in \mathbb{Z}} s_k h_{n-k} + b[n]$$

$$= \sum_{k=0}^{L_h - 1} h[k] s[n-k] + b[n]$$

$$= h_0 s[n] + \sum_{k=1}^{L_h - 1} h[k] s[n-k] + b[n]$$
(2)

Modèle discret bande de base

Modèle discret équivalent bande de base

Décodage d'une Séquence par Maximum de Vraisemblance (MLSE)

$$\hat{\mathbf{s}} = \arg \max_{\mathbf{s}'} p(\mathbf{y}|\mathbf{s}') \tag{3}$$

•
$$\mathbf{s} = [s_1 s_2 \dots s_N],$$

•
$$\mathbf{y} = [y_1 y_2 \dots y_N],$$

•
$$y[n] \sim \mathcal{N}(\sum_k h_k s_{n-k}, N_0)$$

Modèle à états finis

Modèle convolutif et Représentation d'état

$$y[n] = z[n] + b[n]$$

= $\mathbf{h}^T \begin{bmatrix} s_n \\ \sigma_{n-1} \end{bmatrix} + b[n]$

Modèle à états finis

Représentation en treillis

- Représentation fonctionnelle associée :
 - Equation d'évolution : passage d'un état à σ_{n-1} à σ_n .

$$\sigma_n = F_1(\sigma_{n-1}, s_n)$$

• Equation d'observation : génération des sorties observables $z_n = \sum_{k=0}^{L-1} h_k s_{n-k}$.

$$z_n = F_2(\sigma_{n-1}, s_n) = F_3(\sigma_{n-1}, \sigma_n)$$

Critère de décodage MLSE

$$\hat{\mathbf{s}} = \arg \max_{\mathbf{s}'} p(\mathbf{y}|\mathbf{s}')$$

$$= \arg \max_{\mathbf{s}'} \prod_{n} p(y_n|\mathbf{s}')$$

$$= \arg \min_{\{s_n\}} \sum_{n} |y_n - \sum_{k=0}^{L-1} h_k s_{n-k}|^2$$

- $\mathbf{s} = [s_1 s_2 \dots s_N], \, \mathbf{y} = [y_1 y_2 \dots y_N], \, y[n] \sim \mathcal{N}(\sum_k h_k s_{n-k}, N_0),$
- la séquence optimale est celle qui minimise la distance euclidienne la plus faible.
- utilisation de la structure markovienne du canal pour réaliser un décodage MLSE avec complexité raisonable.

Représentation en treillis

propriétés

 Chaque chemin sur le treillis représente une séquence de symboles émis possibles :

```
chemin le plus problable, ie

séquence MLSE ⇔ de plus petite distance euclidienne

cumulée sur le treillis
```

- Idée de Viterbi : utiliser la structure du treillis pour énumérer et sélectionner "intelligemment" les candidats.
- Ceci est possible en remarquant que

$$\{s[n]|n=1\cdots N\} \qquad \iff \quad \{\sigma[n]|n=0\cdots N\}$$

Espace des séquences

Espaces des Etats

Algorithme de Viterbi : MLSE revisité

$$\hat{\mathbf{s}} = \arg\min_{\{\mathbf{s}_n\}} \sum_{n} |y_n - \sum_{k=0}^{L-1} h_k \mathbf{s}_{n-k}|^2$$

$$\hat{\mathbf{s}} = \arg\min_{\{\sigma_n\}} \sum_{n} |y_n - \mathbf{z}_n(\sigma_{n-1}, \sigma_n)|^2$$

Algorithme de Viterbi

Algorithme de Viterbi

- Pour chaque section n ($n = 1 \cdots N$), pour chaque état $\sigma_n = s$ ($s = 0 \cdots |S|$):
 - \bigcirc calculer Λ_n tel que

$$\Lambda_n(\sigma_n) = \min_{\left\{\sigma_{n-1} \to \sigma_n\right\}} \left\{\Lambda_{n-1}(\sigma_{n-1}) + \lambda_n(\sigma_{n-1}, \sigma_n)\right\}$$

- ② stocker l'état précédent σ_{n-1} : pour chaque état σ_n , on peut donc associer une séquence *survivante* $\{\sigma_0, \dots, \sigma_n\}$ de distance euclidienne cumulée associée $\Lambda_n(\sigma_n)$)
- A la fin du treillis, il ne reste plus que |S| chemins possibles, alors par parcours arrière des états du treillis

$$\hat{\boldsymbol{s}} = \left\{ \sigma_0, \sigma_1, \cdots, \sigma_{N-1}, \sigma_N | \operatorname*{argmin}_{\sigma_N} \left\{ \Lambda_N(\sigma_N) \right\} \right\}$$

Algorithme de Viterbi : performance

Bibliographie

- B. P. Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University Press, 2009.
- John Barry, Edward Lee, David Mersserschnitt, Digital Communications, Kluwer Academic Publisher, Third edition.
- Andreas F. Molisch, Wireless Communications, 2nd Edition, IEEE Press-Wiley, 2010.
- Digital Communications, 4th edition, John G. Proakis, Mc Graw -Hill.
- J. Choi, Adaptive and Iterative Signal Processing in Communications, Cambridge University Press, 2006.
- Zhi Ding and Ye Li, Blind Equalization and Identification, Marcel Dekker, New York, 2001.