

Become a SSD expert in minutes!

SAMSUNG

Ryan Smith ryan.smith@ssi.samsung.com 408-205-8889

What is a SSD?

- SSD = Solid State Drive
- RAM-based introduced in 1970's
- Flash-based version in 1990's
- Today, it typically uses NAND Flash
- 2012 is a big year for SSDs
- Don't complicate it.. it's just a really fast drive!

of SSDs sold

Source: Samsung

Why an SSD?

- Three things that dictate the speed of your PC/Server:
 - CPU, DRAM, and HDD
- **Everything is speeding up.. Except the HDD**

Why an SSD?

- Lower response times (latency)
- Higher IOPS and Throughput
- Lower Power
- No RVI Issues, More reliable

Source: Samsung

So what's there to know about an SSD?

SSD Key Characteristics

SSD Components
NAND Characteristics
P/E Cycles
WAF
TBW
SMART
Host Interface

Sustained vs. Peak Performance

TRIM
Over-provisioning
Changing Workload

Benchmarking

SSD Key Characteristics

SSD Components

NAND

- Host/NAND Controller
- Firmware
- NAND Flash
- DRAM
- Capacitors (optional)

All components work closely together

NAND Characteristics

- Types of NAND
 - TLC
 - MLC
 - E-MLC
 - SLC

- Geometry / Lithography
 - 4xnm, 3xnm, 2xnm
 - Smaller = Less Cost

- NAND Hierarchy
 - Pages: Smallest unit that can be read/written (e.g., 8KB)
- Erase block: Groups of pages (e.g., 64 pages @ 8KB = 512KB)

P/E Cycles

Program / Erase Cycles

The # of times a given NAND cell can be programmed & erased

- As geometries shrink, error correction must get better
- It's like a car warranty!
 - 3 years or 50,000 miles
 - 3 years or 3,000 P/E Cycles
- Not a useful characteristic by itself

Write Amplification Factor (WAF)

Write Amplification Factor

Bytes written to NAND versus bytes written from PC/Server

- WAF 1 means 1MB from host writes 1MB to NAND
- WAF 5 means 1MB from host writes 5MB to NAND
- Factors that can affect WAF:

	Flash Translation Layer (FTL)	
Controller	Wear Leveling	
	Over-provisioning	
	Garbage Collection	
Host Application	Write Profile (Ran vs. Seq)	
	Free user space / TRIM	

Write Amplification (WAF) Example

• Below example illustrates WAF of 6

TeraBytes Written

of terabytes you can write to the drive over it's useful life

Examples:

```
((128GB / 1000) * 3000) / 5 = 76.8 TBW
((128GB / 1000) * 3000) / 2.5 = 153.6 TBW
((256GB / 1000) * 3000) / 5 = 153.6 TBW
((128GB / 1000) * 30000) / 5 = 768 TBW
```


SMART

- Look at health and various statistics
- Allows for predictable maintenance windows
- Calculate WAF, TBW
- Host GB written = [ID241] / (2/1024/1024)
- NAND GB written = [ID177] * Capacity GB
- WAF = NAND GB / Host GB
- Expected Life (yrs) = Warranty PE * ([ID9]/24/365) / [ID177]

ID	Attribute Name
5	Reallocated Sector Count
9	Power-on Hours
12	Power-on Count
177	Wear Leveling Count
179	Used Reserved Block Count
180	Unused Reserved Block Count
181	Program Fail Count
182	Erase Fail Count
187	Uncorrectable Error Count
195	ECC Error Count
199	CRC Error Count
241	Total LBA Written

Host Interface

- This is how you communicate to the SSD
- So many choices..
 - SATA
 - · SAS
 - PCIe (NVMe, SCSIe, SATAe, Proprietary)
- Which is right for you?

PC	Server	External Storage
SATA PCIe	SATA SAS PCIe	SATA + SAS bridge SAS

Sustained vs. Peak Performance

- There can be significant differences in sustained vs. peak
- Run enterprise benchmark (e.g., SNIA RTP 2.0)
- Or even better, run your own workload (or simulated)

There is a BIG difference between "Value" and "Mainstream/Enterprise" SSDs when you have any degree of writes in your workload

Samsung PM830 vs Vendor "X" 11x Sustained Random Writes

Samsung PM830 vs Vendor "X" 2x Sustained Sequential Writes

Source: Samsung / SNIA RTP2.0 Benchmark

Benchmarking

Synthetic or actual workload & take measurements

Benchmark	URL
SNIA RTP 2.0	http://www.snia.org/tech_activities/standards/curr_standards/pts
Iometer	http://sourceforge.net/projects/iometer/
ATTO Disk	http://www.attotech.com/products/product.php?sku=Disk_Benchmark
CrystalDiskMark	http://crystalmark.info/software/CrystalDiskMark/index-e.html
HD Tune Pro	http://www.hdtune.com/
AS SSD (SSD)	http://alex-is.de/PHP/fusion/downloads.php?download_id=9
Anvil (SSD)	http://thessdreview.com/latest-buzz/anvil-storage-utilities-releases-new-storage-and-ssd-benchmark/
Scripts	Have multiple "dd" running with best guess workload, capturing timing/speeds
Real Workload	Capture trace during real workload and playback (ioapps, blktrace/btereplay)
	SUMPOND.

SSD Reviewers

Good SSD Review sites available...

SSD Influencers

TRIM

- Helps the SSD know which blocks aren't used
- Widely supported standard: Windows, Mac OS X, Linux, hdparm
- Better sustained performance and extends TBW
- Without TRIM, SSD only knows block isn't used once the same LBA is written to

Over-Provisioning

- Helps a few things:
 - Improves Write Performance
 - Reduces WAF, Increases TBW

Sample 128GB SSD	120GB	100GB
Over-Provisioning	7%	28%
Random Read (8K) IOPS	80K	80K
Random Write (8K) IOPS	1,800	6,300
Sequential Read (64K) MB/s	500	500
Sequential Write (64K) MB/s	400	400
4KB Random WAF	5 -73	1.35
4KB Random TBW	15 3	45

Change Write Workload

- Write sequentially instead of random to reduce WAF
 - If you have control of the I/O to the disk, this will pay off

	Random	Sequential
MLC 512GB SSD	60 TBW	1250 TBW

Align your writes with the page boundaries (e.g., 8KB)

If alignment is too hard to implement, just increase your IO size

Applications of SSDs

HDD Replacement

- Replace boot drive or main storage
- Fastest and easiest way to experience SSDs

Caching Appliance

- Read and/or Write Cache
- Sits between servers and storage, typically in a SAN
- Used to speed up legacy or slower storage

Tiered Storage

- An external storage device (NAS, SAN)
- Only puts "hot" or "critical" data on SSD
- Most of the storage is still on HDD

All Flash Storage

- External storage based on 100% SSD/Flash
- Typically uses MLC and de-duplication/compression to achieve better pricing
- Designers of these systems are Flash experts

Thank You!

Introducing...
SAMSUNG
Green Memory
web site

www.samsung.com/greenmemory

New Green Memory App Available

