### What is Artificial Intelligence?

### What is Artificial Intelligence?

- We have a good intuitive idea of what "intelligence" is. (If I see it I recognise it)
- "Intelligence" is difficult to define rigorously:
  - Just clever behaviour is not enough.
  - Perhaps we also need some ingenuity/creativity.
  - Insight into problems, rather than mere mechanical application of rules.
- One important attempt to "solve" this is the Turing Test.

### The Turing Test for Artificial Intelligence

- Involves 3 participants, a human interrogator and two entities answering questions:
  - Another human
  - A computer
- The interrogator asks questions and gets answers via a keyboard and screen, without knowing if the answer was given by the other human or by the computer
  - Computer can give wrong answers to deceive interrogator
- The human interrogator has to figure out who is the other human and who is the computer, based on the answers.

### The Turing Test for Artificial Intelligence

Can a machine pass a behavioural test of intelligence?



How to program a machine to pass the test? One possibility: the machine could learn...

### Eliza – a psychoterapist program

- Written by Weizenbaum several decades ago
- Simulates a psychoterapist who encourages the patient to talk more about her/his problems
- The program uses a pattern matching technique
  - It scans the human user's sentence to detect some keyword(s)
  - It uses ready-made responses to detected keywords/patterns
  - E.g., keyword "everybody" is associated with a response such as "you have a specific person in mind, don't you"?
  - It is also capable of transforming the user's input sentence, using a list of transformations associated with patterns
  - As a last resource uses generic responses such as "tell me more about this"

### Example of conversation between Eliza and a teenager (1)

Teenager: Men are all like.

Eliza: In what way?

Teenager: They're always bugging us about something.

Eliza: Can you think of a specific example?

Teenager: Well, my boyfriend made me come here.

Eliza: Your boyfriend made you come here.

Teenager: He says I am depressed much of the time.

Eliza: I am sorry to hear that you are depressed.

Teenager: It's true that I am unhappy.

Eliza: Do you think coming here will help you not to be unhappy?

### Example of conversation between Eliza and a teenager (2)

Teenager: I need some help, that much seems certain.

Eliza: What would it mean to you if you got some help?

Teenager: Perhaps I could learn to get along with my mother.

Eliza: Tell me more about your family.

Teenager: My mother takes care of me.

Eliza: Who else in your family takes care of you?

Teenager: My father.

Eliza: Your father.

Teenager: You are like my father in some ways.

Eliza: What resemblance do you see?

. . . . .

### **Evaluating Eliza**

- Eliza was used for several years, with many users
- Many users formed an "emotional bond" with Eliza (some people told their intimate secrets to the program), something that Weizenbaum found terribly wrong
- It was difficult to convince some people that Eliza was just a program, not a human psychiatrist.
- If you want to try it: https://www.masswerk.at/elizabot/
- A report on the Journal of Nervous and Mental Disease suggested that the program could be a therapeutic tool for hospitals and psychiatric centres with a shortage of therapists
- Weizenbaum wrote a book called "Computer Power and Human Reason", criticizing AI and its goals, alerting to the danger of delegating human welfare decisions to computers

### Has Eliza passed the Turing test?

- Despite these impressive results, Eliza has not passed the Turing test
  - Users were not trying to distinguish between a computer and a human, they simply assumed they were talking to a human
  - There were only two participants, rather than 3 (putting a human competing with the computer in the answers to the interrogator makes the test more challenging)
  - Eliza simulates only a psychiatric interview, not a general conversation. Weizenbaum chose this scenario because it is 'one of the few examples of . . . natural language communication in which one of the participating pair is free to assume the pose of knowing almost nothing of the real world'

# Four Possible Objections to the Turing Test (1)

- The chimpanzee objection
  - Chimpanzees can think, but they would not pass the test
  - So, the test is too conservative and biased towards human intelligence
  - This objection shows a limitation, rather than flaw, of the test: Failing the test is inconclusive, but passing it shows intelligence

# Four Possible Objections to the Turing Test (2)

- The sense organs objection
  - Test does not measure the computer's understanding of the words it is using in relation to real-world objects
    - So, passing the test is not proof of intelligence
  - Test should be strengthened by equipping the computer with artificial sense organs (e.g., cameras, arms, etc.)
  - However, many concepts are abstract and can be the subject of an interrogation to test intelligence without sense organs

## Four Possible Objections to the Turing Test (3)

#### The simulation objection

- passing the test only shows that the computer is good at simulating thinking, not that it is thinking.
- Assumes all simulations lack an essential feature of the thing being simulated – prejudiced answer to the test
- This argument does not consider the possibility of a simulation having all essential features of the thing being simulated.
- E.g., a simulated (artificial) voice is essentially a voice...
- Raises the question: is it possible that a computer passes the test by using a simulation that does not have all the essential features of intelligence?

## Four Possible Objections to the Turing Test (4)

- The black box objection
  - In the test, the computer is treated as a black box, the interrogator evaluates only the outward behaviour of the computer
    - Ignores how the computer program was designed and works
  - We evaluate the intelligence of people based on their outward behaviour, but we believe all people have similar brains (from a biochemical point of view)
  - Based on our analysis of the way that Eliza works, we can naturally conclude that Eliza does not "think"; so it seems important to consider the internal design of the program, not just its external behaviour

Here is a *very hypothetical* way for a program that does not think to pass the Turing test:

- Compute all meaningful English sentences having at most 100 words (a huge but finite number of sentences)
- Associate with each of these sentences a ready-made meaningful response
- The computer would pass the test, unless user questions have > 100 words

# Four Possible Objections to the Turing Test (5)

- The black box objection (cont.)
  - The Turing test is based just on the output of the program
  - Should we use both an output criterion and a design criterion?
  - Possibilities for a design criterion
    - Program should do things it does in a way broadly similar to the way those things are done in the human brain
      - "strengthens" the test, and it is anthropocentric
    - Program should be modular capable of being incorporated, as a building block, onto more complex programs
    - E.g., it should be possible to incorporate a conversation program that passed the test into the programs that control a robot, giving the robot an ability to talk about what it is doing

### Summary

- The Turing Test is a behavioural test of computational intelligence
  - It considers only the output of a program, not its internal design
  - There are arguments to consider the internal design too…
- The usefulness of the test is controversial
  - Heavily criticized as "inadequate", but no clearly better test for "computational intelligence" has been proposed yet
  - We don't even have a good definition of human intelligence!

### New Artificial Intelligence

- Nowadays there is less focus on modelling "intelligence" as such.
- Much of AI is about data-driven
  - Prediction
  - analysis
  - Pattern extraction
  - (also) neuroscience/understanding how the brain works.
- The philosophical idea of "intelligence" has for now receded to the background.

### Statistical Machine learning

- Consider images of cats.
- There is something similar shared by all the cats (which makes it possible for us to recognise them).
- This similarity can be captured statistically.



### Statistical Machine Learning

- In each image the cats look different
- The background is different (guns, sofas, etc...).
- There may be more than one cat.
- Indeed, most of the information in each image is not relevant for "cats".
- The challenge is to extract from many images some "cat essence", while neglecting all the accidental detail.
- This is sometimes called the Information bottleneck.

# Statistical Machine Learning (Applications)

- There are many applications of statistical machine learning, including:
- Self-driving cars (extract relevant information from large amounts of environmental data).
- Unsupervised data-analysis (novelty detection, recommendation systems, feature detection)
- Image recognition

### Statistical Machine learning models

- The general approach of statistical machine learning is as follows:
  - Establish a general model that can be adjusted to many different problems.
  - These models usually have a large number of tuning parameters.
  - Learn the relevant relationship. This equates to tuning the parameters of the model.
  - Test the model on real data.
  - Apply the model once you are satisfied that it works well

#### Reasons for the recent success of AI

- Availability of lots of data from:
  - Ability to record and share data
  - Cheap storage
  - Measurement devices
- Fast computers and cheap RAM
  - Makes it possible to deal with the large amount of data.
  - AI models are often extremely large with billions (!) of adjustable parameters. Training is only feasible in large server farms.
- Breakthrough algorithms
  - Backpropagation
  - Contrastive divergence

\_ ...

### Impact of statAI

#### Social impact:

- Better treatment, more efficient services, better entertainment
- A higher ability to quantify individuals, monitor their behaviour and know about them.
- Automated surveillance of individuals. New tools for the state to check on its citizens.
- Quantifying everything and make automated decisions.
- Expertise in AI is concentrating in large corporations. What does this mean for the power of the state/democracy?

#### Environmental Impact:

- Server farms require vast amounts of energy for computing and cooling.
- AI enables more efficient production methods, which leads to more consumption, which is not sustainable.

### Seeing the larger picture

- Al has profound potential to automate tasks that at present require considerable human intervention.
- As such it could lead to huge productivity gains and increase economic growth.
- Productivity gain could be used in two ways:
  - Go home earlier and watch TV.
  - Stay in the office and do more.
- Is economic growth a good thing?

#### Reference

- J. Copeland. Artificial Intelligence: a philosophical introduction. Blackwell, 1993. Sections 2.3, 3.2–3.5
- Strand, Kovac, Volker: The Circular Economy in Europe, Critical Perspectives on Policies and Imaginaries; see ch 7; https://www.taylorfrancis.com/books/9780429061028