A Book of Abstract Algebra (2nd Edition)

•	Chapter 27, Problem 3EJ	Bookmark	Show all steps: ON	K .
	Pro	blem		
	Suppose $a(x) = F[x]$, and K is an extension of F . An element $c \in K$ is called a multiple root of $a(x)$ if $(x - c)^m a(x)$ for some $m > 1$. It is often important to know if all the roots of a polynomial are different, or not.			>
	We now consider a method for determining who multiple roots in any extension of <i>F</i> .	ether an arbitrary polyn	nomial $a(x) \cong F[x]$ has	
	Let K be any field containing all the roots of $a(x)$. Suppose $a(x)$ has a multiple root c . Show that $x - c$ is a common factor of $a(x)$ and $a'(x)$. Use Exercise hi to conclude that $a(x)$ and $a'(x)$ have a common factor of degree >1 in $F[x]$.			
	Thus, if $a(x)$ has a multiple root, then $a(x)$ and a converse, suppose $a(x)$ has no multiple roots. T c_n) where c_1, \ldots, c_n are all different.			
	Step-by-s	tep solution		
	Step ·	1 of 4 🗥		
	Consider that K is any field that contains all the Assume that $a(x)$ has a multiple root c . Then p	,		
	$a(x) = (x - c)^2 q(x) \in K[x]$. Objective is to prove that $x - c$ is a common factor.	otor of $a(x)$ and $a'(x)$. Also conclude that $a(x)$	
	and $a'(x)$ have a common factor of degree > 1 in Consider the following result:	n $F[x]$.		
	If $a(x)$, $b(x) \in F[x]$ have a common root c in so factor of positive degree in $F[x]$.	ome extension of F , the	ey may have a common	
	Comment			
	Step 2 of 4 A			
	Use the following formula: for some $a(x), b(x) \in F[x],$			
	[a(x)b(x)]' = a'(x)b(x) + a(x)b'(x) The derivative $a'(x)$ will be:			
	$a'(x) = [(x-c)^2] q(x) + (x-c)^2 q'(x)$ $= 2(x-c)q(x) + (x-c)^2 q'(x)$ $= (x-c)[2q(x) + (x-c)q'(x)].$			
	Thus, $x-c$ is a common factor of $a(x)$ and a'	(x).		
	Comment			
	Step 3 of 4 ^			
	Suppose that $a(x)$ and $a'(x)$ have no common factor in $F[x]$, that is, both are relatively prime. Then there exist some $f(x)$, $g(x) \in F[x]$ such that $f(x)a(x) + g(x)a'(x) = 1$.			
	Since $x-c$ is a common factor of $a(x)$ and a' $1 \in K[x]$. This cannot be possible.	(x), therefore $x-c$ is	a common factor of	
	Comment			
	Step 4	4 of 4		
	Hence, $a(x)$ and $a'(x)$ have a common factor of	of degree > 1 in $F[x]$.		
	Comment			