Тема 5.1. Понятие алгоритма. Машина Тьюринга

План: Машины Тьюринга их применение к словам и конструирование машин Тьюринга.

Задачи с решением

Пример 1: Имеется машина Тьюринга с внешним алфавитом $A = \{a_0,1\}$, алфавитом внутренних состояний $Q = \{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7\}$ и с программой (функциональной схемой)

Q	q_1	q_2	q_3	q_4	q_5	q_6	q_7
a_0	$q_4 a_0 \Pi$	$q_6 a_0 \Pi$	$q_6 a_0 \Pi$	$q_0 1$	$q_4 a_0 \Pi$	$q_0 a_0$	$q_6 a_0 \Pi$
1	$q_2 1 \Lambda$	q_3 1 Λ	$q_1 1 \Lambda$	$q_{5}a_{0}$	$q_{5}a_{0}$	$q_{7}a_{0}$	$q_{7}a_{0}$

Изобразить получающиеся конфигурации на каждом такте работы машины и определить, в какое слово перерабатывает машина, исходя из начального стандартного начального положения, слово 111.

Решение:

Последовательность конфигураций при переработке машиной слова 111 из начального положения будет следующей:

Слово 111 из начального стандартного состояния переработано машиной в слово 1.

Пример 2: Для условий примера 1 записать программу машины Тьюринга в виде последовательности команд.

Решение:

Последовательность команд имеет следующий вид:

$$\begin{split} q_1 1 \to q_1 1 \Lambda \; ; \quad q_2 1 \to q_3 1 \Lambda \; ; \quad q_3 1 \to q_1 1 \Lambda \; ; \quad q_1 a_0 \to q_4 a_0 \Pi \; ; \quad q_4 1 \to q_5 a_0 \; ; \\ q_5 a_0 \to q_4 a_0 \Pi \; ; \quad q_4 1 \to q_5 a_0 \; ; \quad q_5 a_0 \to q_4 a_0 \Pi \; ; \quad q_4 1 \to q_5 a_0 \; ; \quad q_5 a_0 \to q_4 a_0 \Pi \; ; \\ q_4 a_0 \to q_0 1 \; . \end{split}$$

Договоримся представлять натуральные числа в единичном коде, тогда число x представляется словом $1....1=1^x$, состоящим из x единиц. В качестве разделителя слов примем символ *. Тогда сложить два числа a и b означает слово 1^a*1^b переработать в слово 1^{a+b} , т.е. удалить разделитель и сдвинуть одно из слагаемых к другому. Тогда числовая функция $f(x_i,...,x_n)$ вычислима по Тьюрингу, если существует машина Тьюринга, такая что $q_11^{x_1}*1^{x_2}*...*1^{x_n}$ в результате конечного числа шагов приходит в состояние q_01^y , когда $f(x_1,...,x_n)=y$.

Задачи для самостоятельного решения

- 1. Составить словесные алгоритмы для решения следующих задач:
 - 1.1.вычисление скалярного произведения двух векторов;
 - 1.2. умножение вектора на скаляр;
 - 1.3. сложение двух матриц;
 - 1.4. вычисление определителя второго порядка;
 - 1.5. умножение матрицы на матрицу;
 - 1.6.вычисление n!;
 - 1.7. транспортирование матрицы;
 - 1.8.
определение множества M , равного пересечению двух множеств
 $M_1 \ \text{и} \ M_2 \ (M = M_1 \cap M_2);$
 - 1.9. деление комплексных чисел (a+bi):(c+di)=x+yi.

1.10. вычисление значения
$$\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$
;

2. Имеется машина Тьюринга с внешним алфавитом $A = \{a_0, 1\}$, алфавитом внутренних состояний $Q = \{q_0, q_1\}$ и программой

Q A	q_0	q_1
a_0		q_0 1 Π
1	$q_2 a_0 \mathcal{J}$	q_1 1 Π

Определить, в какое слово перерабатывает машина каждое из следующих слов, если она находится в начальном состоянии q и обозревает указанную ячейку, считая слева:

- $2.1.11a_0111a_01$ (обозревается ячейка 2);
- $2.2.1a_0a_0111$ (обозревается ячейка 3);
- $2.3.1111a_011$ (обозревается ячейка 4);
- $2.4.11a_01111$ (обозревается ячейка 3);
- 2.5.1111111 (обозревается ячейка 4);
- 2.6.11111 (обозревается ячейка 5);
- 2.7.111...1 (k единиц, обозревается k-я ячейка);
- $2.8.11a_011$ (обозревается ячейка 3).

Изобразите схематически последовательность конфигураций, возникающих на ленте на каждом такте работы машины.

3. Машина Тьюринга задана следующей функциональной схемой:

Q A	q_0	q_1	q_3
a_0		q_3 1 Π	$q_1 a_0 \mathcal{I}$
1	$q_2 a_0 \mathcal{J}$	q_2 1 \mathcal{I}	q_3 1 Π
*	$q_{0}a_{0}$	q_2*J	$q_3 * \Pi$

Определить, в какое слово перерабатывает машина каждое из следующих слов, исходя из начального стандартного состояния:

- 3.1.111*111;
- 3.2.1111*11;
- 3.3.111*1;
- 3.4.1*11;
- 3.5.11*111;
- 3.6.11111*;
- 3.7.*1111.

4. Машина Тьюринга определяется следующей функциональной схемой

Q A	q_1	q_2	q_3	q_4
a_0	$q_4 a_0 \Pi$	$q_3 a_0 \Pi$	$q_1 a_0 \Pi$	$q_0 a_0 JI$
1	$q_2\alpha$	$q_1 \beta$	q_1 1 Π	$q_1 1 JI$
α	$q_1 \alpha I$	$q_2 \alpha \Pi$	$q_3 1 JI$	$q_4 a_0 \Pi$
β	$q_1 eta I$	$q_2 eta$ Π	$q_3 a_0 \mathcal{J}$	q_4 1 Π

Для следующих слов определить, в какое слово перерабатывается каждое из них машиной, исходя из начального положения, при котором машина находится в состоянии q_1 и обозревается указываемая ячейка, считая слева:

- 4.1.11111 (обозреваемая ячейка 2);
- 4.2.111 (обозреваемая ячейка 1);
- 4.3.1111111111 (обозреваемая ячейка 4);
- 4.4.111111 (обозреваемая ячейка 2);
- 4.5.111111111111111 (обозреваемая ячейка 6).
- 5. Постройте машину Тьюринга с внешним алфавитом $A = \{a_0,1\}$, которая каждое слово в алфавите $A_1 = \{1\}$ перерабатывает в пустое слово, исходя из стандартного начального положения.