Семинар 1

Задачи:

- 1. Сколько способов пройти из (0,0,0) в (n,2n,3n), если можно делать шаги на +1 по любой из осей?
- 2. Найдите определитель матрицы $A = (a_{ij})$, где $a_{ij} = C_{i+j-2}^{i-1}$.
- 3. За время обучения в ШАД Михаил 20 раз решал задачи классификации. В каждой задаче он использовал ансамбль из пяти различных классификаторов, причем никакую пару классификаторов он не применял более одного раза. Каково минимально возможное число известных Михаилу классификаторов?
- 4. В школе ученики писали контрольную. Учитель заметил следующую закономерность: с вероятностью 0, 36 ученики зевают на контрольной, с вероятностью 0, 3 пишут ее на отлично. Другое любопытное наблюдение: зевающие ученики пишут контрольную на отлично всего лишь с вероятностью 0, 22. Найдите
 - (а) С какой вероятностью ученик одновременно зевал и написал контрольную на отлично.
 - (b) С какой вероятностью среди написавших контрольную на отлично ученики зевали.

	<i>Решение.</i> Ответ: (a) 0,0792, (b) 0,264	
5.	Василий решил покрасоваться перед Василисой и утверждает, что бросив два кубика, у него обязател	ьно

5. Василий решил покрасоваться перед Василисой и утверждает, что бросив два кубика, у него обязательно выпадет шестерка. Василиса со своей стороны решила поддаться Василию и будет игнорировать все его броски, если на кубиках выпали одинаковые числа. Найдите вероятность того, что Василий произведет впечатление на Василису в этих условиях.

Peшeние. Oтвет:
$$\frac{1}{3}$$

6. В некотором прекрасном городе «Икс» население выросло аж до 10 человек. По этому прекрасному случаю в нем открылся парк аттракционов, где можно попрыгать на батуте. Оказалось, что батут обязательно рвется, если на нем находится 5 человек, в случае 4 человек он рвется с вероятностью 0, 8, в случае 3 человек с вероятностью 0, 6, в случае 2 человек с вероятностью 0, 4, в случае 1 человека с вероятностью 0, 2 и производитель гарантирует, что их надежные и качественные батуты сами по себе не рвутся. Несмотря на праздничное событие, жители города «Икс» очень заняты, каждый из них может прийти в парк с вероятностью 0, 5. Узнайте, какова вероятность того, что уже в первый день бизнес с батутом накроется.

Peшeние. Oтвет:
$$\frac{898}{1024}$$

7. Хитрый Дмитрий и Василий Упрямый решили участвовать в телешоу. Во время передачи игроку даются 3 шкатулки и в одной из них лежит супер-приз. Сначала игрок выбирает одну из шкатулок, но не открывает ее. После этого ведущий открывает из оставшихся одну пустую. В этот момент игроку разрешается изменить свой выбор. После чего выбранная шкатулка открывается. Василий Упрямый принял решение, что несмотря ни на что, не поменяет свой первоначальный выбор, а Хитрый Дмитрий наоборот решил, что обязательно поменяет свой изначальный выбор. Выясните, у кого из участников больше шансов выиграть в телешоу и такой уж ли Дмитрий хитрый.

Peшение. Ответ: У Василия вероятность выигрыша составляет $\frac{1}{3}$, а у Дмитрия – $\frac{2}{3}$

8. Улоф Пальме и Рави Шанкар подбрасывают правильную монетку (вероятность выпадения орла 0,5). Улоф подбрасывает ее n раз, а Рави -n+1. Найдите вероятность того, что у Рави будет больше орлов, чем у Улофа.

Peшeние. Oтвет:
$$\frac{1}{2}$$

9. Рассмотрим случайную перестановку на n элементах. Докажите, что данные k элементов окажутся в одном цикле с вероятностью $\frac{1}{k}$.

10.	Черный куб покрасили снаружи белой краской, затем разрезали на 27 одинаковых маленьких кубиков и как попало сложили из них большой куб. С какой вероятностью все грани этого куба будут белыми?	I
	Решение. Ответ: $\frac{8! \cdot 3^8 \cdot 12! \cdot 2^{12} \cdot 6! \cdot 4^6 \cdot 24}{27! \cdot 24^{27}}$]
11.	Дано множество $A=\{1,2,\ldots,n\}$. Среди всех его подмножеств рановероятно выбирается k его подмножеств. Найдите вероятность того, что $A_1\cap A_2\cap\ldots\cap A_k=\varnothing$.	-
	Решение. Ответ: $(1 - \frac{1}{2^k})^n$]
12.	У вас имеется неограниченное число костей в форме всех возможных правильных многогранников. Можно ли, однократно бросив некоторый набор таких костей, симулировать бросок (а) правильной семигранной кости? (б) правильной 15-гранной кости?	
	Решение. Ответ: (а) нельзя, (б) можно]
13.	Игра состоит из одинаковых и независимых конов, в каждом из которых выигрыш происходит с веро- ятностью p . Когда игрок выигрывает, он получает 1 доллар, а когда проигрывает — платит 1 доллар. Как только его капитал достигает величины N долларов, он объявляется победителем и удаляется из ка- зино. Найдите вероятность того, что игрок рано или поздно проиграет все деньги, в зависимости от его стартового капитала K .	-
	P ешение. Ответ: P («проиграть при стартовом капитале k ») = $1 - \frac{1-q^k}{1-q^N}$, где $q = \frac{1-p}{p}$, при $0 \leqslant k \leqslant N$.]
14.	Вероятность попадания одной пули в бочку с бензином равна p . При одном попадании бочка взрывается с вероятностью p_1 , при двух и более - взрывается наверняка. Найти вероятность того, что бочка рванет при n выстрелах.	
	Решение. Ответ: $1 - (1-p)^n - np(1-p)^{n-1}(1-p_1)$]
15.	Завод выпускает изделия с вероятностью брака 0,04. Первый контролер находит брак из брака с вероятностью 0,92, второй – 0,98. Найти вероятность, с которой признанное годным изделие будет бракованным.	
	<i>Решение</i> . Здесь есть неоднозначность в задаче. Можно ее понимать так, что контролеры проверяют друг за другом (каждую деталь сначала проверяет первый, потом второй и деталь признается годным, если оба признали годным), либо можно понимать так, что половину деталей проверяет один контролер, а другую половину проверяет второй контролер.	ı
	Ответ: Если считать, что контролеры проверяют друг за другом, то $P($ «деталь бракованная» $ $ «деталь при $\frac{1}{15001}$. Если считать, что каждый контролер проверяет половину всех деталей, то $P($ «деталь бракованная» «деталь признана годной» $)=\frac{1}{481}$	[
16.	На отрезок $[0,L]$ бросают три точки. Найти вероятность того, что третья окажется между первыми двумя.	
	Peшeние. Ответ: $\frac{1}{3}$]
17.	Показать, что события A и B независимы тогда и только тогда, когда \overline{A} и B независимы.	
	Решение.]
18.	Привести примеры, показывающие, что, вообще говоря, равенства	
	$P(B \mid A) + P(B \mid \overline{A}) = 1$ и $P(B \mid A) + P(\overline{B} \mid \overline{A}) = 1$	
	неверны.	

Решение.

	Решение.	
19.	Пусть A_1, \ldots, A_n – независимые события с $P(A_i) = p_i$.	
	(а) Показать, что $P\left(\bigcup_{i=1}^n A_i\right) = 1 - \prod_{i=1}^n P(\overline{A}_i).$	
	(b) Пусть P_0 – вероятность того, что ни одно из событий A_1,\dots,A_n не произойдет. Показать, что	
	$P_0 = \prod_{i=1}^n (1 - p_i)$	
	Решение.	
20.	Пусть A и B – независимые события. В терминах $P(A)$ и $P(B)$ выразить вероятность событий	
	(a) Не произойдет ни одно из событий A, B . (b) Произойдет в точности одно из событий A, B . (c) Одновременно произойдут оба события A, B .	
	Решение.	
21.	Пусть событие A таково, что оно не зависит от самого себя, т.е. A и \overline{A} независимы.	
	(a) Показать, что тогда $P(A)$ равна 0 или 1. (b) Показать, что если события A и B независимы и $A\subseteq B$, то или $P(A)=0$, или $P(B)=1$. (c) Пусть событие A таково, что $P(A)$ равно 0 или 1. Показать, что A и любое событие B независими	οI.
	Решение.	
22.	Показать, что если $P(A \mid C) > P(B \mid C)$ и $P(A \mid \overline{C}) > P(B \mid \overline{C})$, то $P(A) > P(B)$.	
23.	Показать, что $P(A\mid B) = P(A\mid BC)P(C\mid B) + P(A\mid B\overline{C})P(\overline{C}\mid B).$	
	Здесь предполагается, что $BC = B \cap C$.	
	Решение.	

24. Пусть событие A не зависит от событий $B_n, n \geqslant 1$, при этом $B_i \cap B_j = \varnothing, i \neq j$. Убедиться в том, что события A и $\bigcup_{n=1}^{\infty} B_n$ являются независимыми.

Решение.

25. Пусть A, B, C – попарно независимые равновероятные события, причем $A \cap B \cap C = \emptyset$. Найти максимальное возможное значение для вероятности P(A).

Peшeние. Oтвет: $\frac{1}{2}$

26. На единичной окружности $x^2+y^2=1$ выбирается случайная точка P (из равномерного распределения). В единичном круге $x^2+y^2\leqslant 1$ выбирается случайная точка Q (также из равномерного распределения). Пусть R – прямоугольник со сторонами, параллельными осям координат и диагональю PQ. Какова вероятность того, что весь прямоугольник лежит в единичном круге?

 $^{^{1}}$ Имеется в виду попарная независимость.

Peшение. Ответ: $\frac{4}{\pi^2}$

27. На плоскости зафиксированы две точки A и B на расстоянии 2. Пусть C – случайно выбранная точка круга радиуса R с центром в середине отрезка AB. С какой вероятностью треугольник ABC будет тупоугольным?

Решение. **Ответ:** При $R \le 1$ вероятность равна 1. При $R \geqslant 1$ вероятность равна

$$\frac{2}{\pi}\arccos\frac{1}{R} - \frac{2}{\pi}\frac{1}{R}\sqrt{1 - \frac{1}{R^2}} + \frac{1}{R^2}$$

28. На плоскости, однородно покрытой прямоугольниками со сторонами 10 и 20, рисуют случайную окружность радиуса 4. Найдите вероятность того, что окружность имеет общие точки ровно с тремя прямоугольниками.

Peшeнue. Ответ: $\frac{8-2\pi}{25}$

29. На отрезке [0,1] в точках x, y, независимо выбранных из равномерного распределения, находится два детектора элементарных частиц. Детектор засекает частицу, если она пролетает на расстоянии не более 1/3 от него. Известно, что поля восприятия детекторов покрывают весь отрезок. С какой вероятностью y > 5/6?

Peшeнue. Ответ: $\frac{1}{8}$