'													
Course	Evalvations 4/20	! (5g x.											
Close	4/20		,										
Optional	Suggested :4, 14, 16 :4,6	Problems	5										
181	4. 14. 16	,											
Ø 2.	4 /												
<i>" " " " " " " " " " " " " " " " " " " </i>	7,6												
OlD:	Hours y 11a-12p 20 12:30p- 22 12:30p- 15 12:30p-												
7/1	11. 12												_
166	1 119-129												
Wel 41	20 12:30p -	1:30 p											
tri 4/	12:30p -	1:300											
Mon 4/2	5 12:30p -	Z:30p											
Final	9/26	1:30p-3:30	P										
Here	9/26 (EH 1068)	$) \mid ' \mid \ \mid \ $											
		'											
					_	-							

9. (10 pts) Let
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
. Find an orthogonal-matrix S and a diagonal matrix B such that $S_{N} = S_{N} = S_{N}$

- 6. Let $A = \begin{pmatrix} 9 & k \\ k & 1 \end{pmatrix}$ for $k \in \mathbb{R}$.
 - (a) (3 pts) For which values of k is A invertible? For any values of k where A is not invertible, give a basis for the kernel of A.

Let
$$A \neq 0$$

$$9 - \beta^{2} \neq 0$$

$$= 7 (3-k)(3+k) \neq 0$$

$$= 7 k + \frac{1}{2} = 0$$

$$\frac{k=3}{k=-3} \quad |er(\frac{9}{3})| = 5pan \left\{ \begin{pmatrix} 1\\ -3 \end{pmatrix} \right\}$$

$$\frac{k=-3}{2} \quad |er(\frac{9}{3})| = 5pan \left\{ \begin{pmatrix} 1\\ 3 \end{pmatrix} \right\}$$

$$\left| \operatorname{zer} \left(\frac{9-3}{-3} \right) \right| = \operatorname{span} \left\{ \left(\frac{1}{3} \right) \right\}$$

(b) (2 pts) For which values of k does A have 2 real eigenvalues? (Explain why.)

Symmetric metrix

=>> A always has Z

real evals has Z

counted with algorith.

(c) (2 pts) For which values of k is A diagonalizable? (Explain why.)

All le ble A is symmetric so diagnalitale by spectral theorem.

(d) (3 pts) What is the quadratic form q associated to A? For which values of k is q positive definite?