Остатки

- **Факт.** На сторонах AB и BC выбраны точки C_0 и A_0 от соответственно. Докажите, что $AC_0 = CA_0$ тогда и только тогда, когда точки A_0, C_0, B, B_1 лежат на одной окружности, где B_1 середина дуги CBA описанной окружности $\triangle ABC$.
- **Факт.** На сторонах AB и BC выбраны точки C_0 и A_0 соответственно. Докажите, что $AC_0 + CA_0 = AC$ тогда и только тогда, когда точки A_0, C_0, B, I лежат на одной окружности, где I центр вписанной окружности $\triangle ABC$.
- 1. Пусть на сторонах BA и BC треугольника ABC выбраны точки C_0 и A_0 соответственно, а точки M и M_0 середины отрезков AC и A_0C_0 . Докажите, что если $AC_0 = CA_0$, то прямая MM_0 параллельна биссектрисе угла ABC.
- **2.** Точки A_1, B_1, C_1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что $AB_1 AC_1 = CA_1 CB_1 = BC_1 BA_1$.
- а) Пусть I_A , I_B и I_C центры окружностей, вписанных в треугольники AB_1C_1 , A_1BC_1 и A_1B_1C , соответственно. Докажите, что центр окружности, описанной около треугольника $I_AI_BI_C$, совпадает с центром окружности, вписанной в треугольник ABC.
- б) Пусть O_A, O_B и O_C центры окружностей, описанных около треугольников AB_1C_1, A_1BC_1 и A_1B_1C , соответственно. Докажите, что центр окружности, вписанной в треугольник $O_AO_BO_C$, совпадает с центром окружности, вписанной в треугольник ABC.
- 3. Тругольник ABC(AB > BC) вписан в окружность Ω . На сторонах AB и BC выбраны точи M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P центр вписанной окружности треугольника AMK, а Q центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
- **4.** Многочлен P(x) степени n удовлетворяет равенствам:а) P(k)=1; б) $P(k)=(-1)^k k;$ в) $P(k)=\frac{k}{k+1},$ где $k=0,1,\ldots,n.$ Найти P(n+1).
- **5.** Какое максимальное количество ладей можно поставить на квадратную доску 9×9 , чтобы каждая била не более двух других.