第十五章 其它编程经验

15.1 使用 const 提高函数的健壮性

看到 const 关键字,C++程序员首先想到的可能是 const 常量。这可不是良好的条件 反射。如果只知道用 const 定义常量,那么相当于把火药仅用于制作鞭炮。 const 更大的 魅力是它可以修饰函数的参数、返回值,甚至函数的定义体。

const 是 constant 的缩写,"恒定不变"的意思。被 const 修饰的东西都受到强制保护,可以预防意外的变动,能提高程序的健壮性。所以很多 C++程序设计书籍建议:"Use const whenever you need"。

15.1.1 用 const 修饰函数的参数

如果参数作输出用,不论它是什么数据类型,也不论它采用"指针传递"还是"引用传递",都不能加 const 修饰,否则该参数将失去输出功能。

const 只能修饰输入参数:

◆ 如果输入参数采用"指针传递",那么加 const 修饰可以防止意外地改动该指针,起 到保护作用。

例如 StringCopy 函数:

void StringCopy(char *strDestination, const char *strSource); 其中 strSource 是输入参数, strDestination 是输出参数。给 strSource 加上 const 修饰后,如果函数体内的语句试图改动 strSource 的内容,编译器将指出错误。

◆ 如果输入参数采用"值传递",由于函数将自动产生临时变量用于复制该参数,该输入参数本来就无需保护,所以不要加 const 修饰。

例如不要将函数 void Func1(int x) 写成 void Func1(const int x)。同理不要将函数 void Func2(A a) 写成 void Func2(const A a)。其中 A 为用户自定义的数据类型。

◆ 对于非内部数据类型的参数而言,象 void Func (A a) 这样声明的函数注定效率比较底。因为函数体内将产生 A 类型的临时对象用于复制参数 a,而临时对象的构造、复制、析构过程都将消耗时间。

为了提高效率,可以将函数声明改为 void Func (A &a),因为"引用传递"仅借用一下参数的别名而已,不需要产生临时对象。但是函数 void Func (A &a) 存在一个缺点: "引用传递"有可能改变参数 a,这是我们不期望的。解决这个问题很容易,加 const 修饰即可,因此函数最终成为 void Func (const A &a)。

以此类推,是否应将 void Func(int x) 改写为 void Func(const int &x),以便提

高效率?完全没有必要,因为内部数据类型的参数不存在构造、析构的过程,而复制也非常快,"值传递"和"引用传递"的效率几乎相当。

问题是如此的缠绵,我只好将"const &"修饰输入参数的用法总结一下,如表 15-1-1 所示。

对于非内部数据类型的输入参数,应该将"值传递"的方式改为"const 引用传递",目的是提高效率。例如将 void Func(A a) 改为 void Func(const A &a)。

对于内部数据类型的输入参数,不要将"值传递"的方式改为"const 引用传递"。 否则既达不到提高效率的目的,又降低了函数的可理解性。例如 void Func(int x) 不应该改为 void Func(const int &x)。

表 15-1-1 "const &"修饰输入参数的规则

15.1.2 用 const 修饰函数的返回值

◆ 如果给以"指针传递"方式的函数返回值加 const 修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加 const 修饰的同类型指针。 例如函数

const char * GetString(void);

如下语句将出现编译错误:

char *str = GetString();

正确的用法是

const char *str = GetString();

◆ 如果函数返回值采用"值传递方式",由于函数会把返回值复制到外部临时的存储单元中,加 const 修饰没有任何价值。

例如不要把函数 int GetInt(void) 写成 const int GetInt(void)。

同理不要把函数 A GetA(void) 写成 const A GetA(void), 其中 A 为用户自定义的数据类型。

如果返回值不是内部数据类型,将函数 A GetA(void) 改写为 const A & GetA(void)的确能提高效率。但此时千万千万要小心,一定要搞清楚函数究竟是想返回一个对象的"拷贝"还是仅返回"别名"就可以了,否则程序会出错。见 15.2 节"返回值的规则"。

◆ 函数返回值采用"引用传递"的场合并不多,这种方式一般只出现在类的赋值函数中,目的是为了实现链式表达。

例如

class A

如果将赋值函数的返回值加 const 修饰,那么该返回值的内容不允许被改动。上例中,语句 a = b = c 仍然正确,但是语句 (a = b) = c 则是非法的。

15.1.3 const 成员函数

任何不会修改数据成员的函数都应该声明为 const 类型。如果在编写 const 成员函数时,不慎修改了数据成员,或者调用了其它非 const 成员函数,编译器将指出错误,这无疑会提高程序的健壮性。

以下程序中,类 stack 的成员函数 GetCount 仅用于计数,从逻辑上讲 GetCount 应当为 const 函数。编译器将指出 GetCount 函数中的错误。

```
class Stack
 public:
   void Push(int elem);
   int Pop(void);
         GetCount(void) const; // const 成员函数
   int
 private:
   int
         m num;
   int
         m_data[100];
};
int Stack::GetCount(void) const
   ++ m num; // 编译错误,企图修改数据成员 m num
   Pop(); // 编译错误, 企图调用非 const 函数
   return m_num;
```

const 成员函数的声明看起来怪怪的: const 关键字只能放在函数声明的尾部,大概是因为其它地方都已经被占用了。

15.2 提高程序的效率

程序的时间效率是指运行速度,空间效率是指程序占用内存或者外存的状况。 全局效率是指站在整个系统的角度上考虑的效率,局部效率是指站在模块或函数角度上考虑的效率。

- **【规则 15-2-1**】不要一味地追求程序的效率,应当在满足正确性、可靠性、健壮性、可读性等质量因素的前提下,设法提高程序的效率。
- 【规则 15-2-2】以提高程序的全局效率为主,提高局部效率为辅。
- 【规则 15-2-3】在优化程序的效率时,应当先找出限制效率的"瓶颈",不要在无关 紧要之处优化。
- **【规则 15-2-4**】先优化数据结构和算法,再优化执行代码。
- 【规则 15-2-5】有时候时间效率和空间效率可能对立,此时应当分析那个更重要, 作出适当的折衷。例如多花费一些内存来提高性能。
- 【规则 **15-2-6**】不要追求紧凑的代码,因为紧凑的代码并不能产生高效的机器码。

15.3 一些有益的建议

- ◆ 【建议 15-3-1】当心那些视觉上不易分辨的操作符发生书写错误。 我们经常会把"=="误写成"=",象"∥"、"&&"、"<="、">="这类符号也很容易发生"丢 1"失误。然而编译器却不一定能自动指出这类错误。
- ◆ 【建议 15-3-2】变量(指针、数组)被创建之后应当及时把它们初始化,以防止把 未被初始化的变量当成右值使用。
- ◆ 【建议 15-3-3】当心变量的初值、缺省值错误,或者精度不够。
- ◆ 【**建议 15-3-4**】当心数据类型转换发生错误。尽量使用显式的数据类型转换(让人们知道发生了什么事),避免让编译器轻悄悄地进行隐式的数据类型转换。
- ◆ 【建议 15-3-5】当心变量发生上溢或下溢,数组的下标越界。
- ◆ 【建议 15-3-6】当心忘记编写错误处理程序,当心错误处理程序本身有误。

- ◆ 【建议 15-3-7】当心文件 I/O 有错误。
- ◆ 【建议 15-3-8】避免编写技巧性很高代码。
- ◆ 【建议 15-3-9】不要设计面面俱到、非常灵活的数据结构。
- ◆ **【建议 15-3-10】**如果原有的代码质量比较好,尽量复用它。但是不要修补很差劲的 代码,应当重新编写。
- ◆ 【建议 15-3-11】尽量使用标准库函数,不要"发明"已经存在的库函数。
- ◆ 【建议 15-3-12】尽量不要使用与具体硬件或软件环境关系密切的变量。
- ◆ 【建议 15-3-13】把编译器的选择项设置为最严格状态。
- ◆ 【建议 15-3-14】如果可能的话,使用 PC-Lint、LogiScope 等工具进行代码审查。