MI-SPOL-1

Teorie grup: Grupoidy, pologrupy, monoidy a grupy. Podgrupy, cyklické grupy a jejich generátory

M je neprázdná množina a \circ binární operace nad ní.

- ullet Grupoid: uspořádaná dvojice (M,\circ) , kde $\circ: M imes M o M$
- Pologrupa: grupoid, kde je asociativní
- ullet Monoid: pologrupa, kde \exists neutrální prvek e t.ž. $orall a \in M$ platí $a \circ e = e \circ a = a$
- ullet Grupa: monoid, kde \exists inverzní prvky: $orall a\in M\exists a^{-1}\in M$ t.ž. $a\circ a^{-1}=a^{-1}\circ a=e$
- Abelovská grupa: grupa, kde je komutativní

Grupoid \supset pologrupa \supset monoid \supset grupa \supset abelovská grupa

V monoidu existuje právě jeden neutrální prvek

ullet sporem, pokud $\exists e'
eq e$, pak $e' = e \circ e' = e$, což je spor s tím, že e
eq e'

V grupě má každý prvek právě jeden inverzní prvek

$$ullet$$
 sporem: $a\in G, a^{-1}=b\in G$ předpoklad, že $\exists c
eq b$ t.ž. $c=a^{-1}$ potom: $c=c\circ e=c\circ (a\circ b)=(c\circ a)\circ b=e\circ b\Rightarrow$ spor

Konečná množina jde zapsat do Cayleyho tabulky

- na osách prvky množiny, v tabulce výsledky operace
- lze z ni vyčíst:
 - o uzavřenost množiny (v tabulce se vyskytují pouze prvky množiny)
 - o neutrální prvek (v jeho řádku a sloupci se opakuje první řádek a sloupec tabulky)
 - o inverzní prvek -- nalezne se tak, že se v daném řádku najde neutrální prvek
 - o komutativita operace (tabulka symetrická po hlavní diagonále)
- tvoří latinský čtverec (každý řádek a sloupec obsahuje všechny prvky množiny)

V každé grupě lze **jednoznačně dělit**

- $a\circ x=b$ a $y\circ a=b$ mají pro každé a,b jediné řešení
- ullet každý prvek má jedinou inverzi a řešením rovnic je jsou prvky $a^{-1}\circ b$

13.05.2020 11:14

Konečná grupa jde zapsat i do Cayleyho orientovaného grafu

- ullet vrcholy jsou prvky M
- ullet orientovaná hrana (a,b) patří do E právě když $b=a\circ c$ pro jisté c

Podgrupa: Buď $G=(M,\circ)$ grupa. Podgrupou G nazveme libovolnou dvojici $H=(N,\circ)$ takovou, že $N\subset M$ a (N,\circ) je grupa.

V každé grupě existují aspoň 2 podgrupy (triviální):

- $(\{e\}, \circ)$
- $G = (M, \circ)$

Netriviální podgrupy jsou vlastní.

Pro každé $i\in I$ buď H_i podgrupa $G=(M,\circ)$. Potom platí, že $H'=igcap_{i\in I} H_i$ je také podgrupa G

 $G=(M,\circ)$ a $N\subset M$ neprázdná množina. Dvojice $H=(N,\circ)$ je podgrupa G právě když $orall a,b\in N$ platí $a\circ b^{-1}\in N$

Řád grupy $G=(M,\circ)$ (#G) je počet prvků množiny M. Pokud M nekončená, řád je též nekonečný.

Lagrangeova věta: Buď H podgrupa konečné grupy G. Potom řád H dělí řád G.

• důsledek: grupa s prvočíselným řádem má pouze triviální podgrupy

G grupa konečného řádu $n,\,p$ prvočíslo dělící n. Pokud p^k dělí n, pak grupa G obsahuje podgrupu řádu $p^k.$

 $G=(M,\circ)$ grupa a $N\subset M$ neprázdná množina. Množina $\langle N\rangle:=\bigcap\{H:H$ je podgrupa G obsahující $N\}$ je podgrupou G obsahující množinu N.

- ullet $\langle N
 angle$ je grupa podle věty o průniku grup
- ullet každá z H obsahuje N, takže i jejich průnik obsahuje N

2 z 4 13.05.2020 11:14

Podgrupa $\langle N \rangle$ grupy $G=(M,\circ)$, $N\subset M$ je podgrupa generovaná množinou N. N je generující množina grupy $\langle N \rangle$.

Pokud je $N=\{a\}$, pak a je **generátor** grupy $\langle a
angle$

Pokud $G=(M,\circ)grupa$ a $N\subset M$, všechny prvky patřící do $\langle N
angle$ lze získat pomocí grupového obalu $\langle N
angle=\{a_1^{k_1}\circ a_2^{k_2}\circ...\circ a_n^{k_n}:n\in\mathbb{N},k_i\in\mathbb{Z},a_i\in N\}$

ullet důsledek: $\langle a
angle = \{a^k : k \in Z\}$ -- k je i záporné a $g^{-n} = (g^{-1})^n$

Grupa \mathbb{Z}_n^+ je rovna $\langle k \rangle, k \in \mathbb{Z}_n^+$ právě když k a n jsou nesoudělná.

Grupa $G=(M,\circ)$ je **cyklická**, pokud existuje $a\in M$ t.ž. $\langle a\rangle=G$. Prvek a je **generátor** G.

 \mathbb{Z}_n^+ cyklické pro všechna n, jejich generátory jsou všechny kladná $k \leq n$ nesoudělná s n.

 $(\mathbb{Z},+)$ je cyklická -- generátory jsou 1 a -1 (**problematická státnicová otázka**)

- ullet $\langle 1
 angle = 1^k, k \in \mathbb{Z}$
 - \circ kladné k generuje kladná čísla: $1^n=1+1+1+\dots$ s n sčítanci
 - \circ záporné k generuje záporná čísla: $1^{-n}=(1^{-1})^n=1^{-1}+1^{-1}+1^{-1}+...=(-1)+(-1)+(-1)+...$ s n sčítanci
- ullet $\langle -1 \rangle = -1^k, k \in \mathbb{Z}$
 - \circ kladné k generuje záporná čísla: $-1^n = (-1) + (-1) + (-1) + ...$ s n sčítanci
 - \circ záporné k generuje kladná čísla: $-1^{-n}=(-1^{-1})^n=(-1)^{-1}+(-1)^{-1}+(-1)^{-1}+\dots=1+1+1+\dots$ s n sčítanci

Řád prvku $g \in G$ (ord(g)) je nejmenší takové m kde platí $g^m = e$. Pokud neexistuje, řád g je nekonečno.

•
$$ord(g) = \#\langle g \rangle$$

 $\mathbb{Z}_n^{ imes}$ je **cyklická právě když** n je $2,4,p^k$ nebo $2p^k$, kde p je liché prvočíslo a k kladné přorozené číslo.

Pokud G cyklická řádu n a a je její generátor, pak a^k je také generátor právě když k a n jsou nesoudělná.

3 z 4

Počet generátorů v cykloické grupě řádu n je $\varphi(n)$, kde φ je Eulerova funkce (počet přirozených čísel menších než n, která jsou s n nesoudělná)

- $ullet \ \mathbb{Z}_p^ imes$ je cyklická řádu p-1 a má arphi(p-1) generátorů
- ullet pro arphi není znám efektivní algoritmus

Libovolná podgrupa cyklické grupy je opět cyklická

V grupě řádu n platí pro všechny prvky a, že $a^n=e$

Malá Fermatova věta: Pro libovolné prvočíslo p a libovolné $1 \leq a < p$ platí $a^{p-1} \equiv 1 \pmod p$

Buďte $G=(M,\circ_G)$ a $H=(N,\circ_H)$ dva grupoidy. Zobrazení h:M o N je **homomorfismus** G **do** H, jestliže $\forall x,y\in M$ platí $h(x\circ_G y)=h(x)\circ_H h(y)$

Buď h izomorfismus $G=(M,\circ_G)$ do $H=(N,\circ_H)$. Potom $h(G)=(h(M),\circ_H)$ je grupa.

- důsledky:
 - o neutrální prvek jedné grupy se zobrazí vždy na neutrální prvek druhé
 - \circ inverze se zachovají: $h(x^{-1}) = h(x)^{-1}$

Dvě nekonečné grupy jsou izomorfní.

Pro každé $n \in \mathbb{N}$ jsou dvě **cyklické grupy řádu** n **izonorfní**.

4 z 4 13.05.2020 11:14