Package 'rrr'

October 14, 2022

October 14, 2022
Title Reduced-Rank Regression
Version 1.0.0
<pre>URL http://github.com/chrisaddy/rrr</pre>
Description Reduced-rank regression, diagnostics and graphics.
Depends R (>= $3.2.0$)
Imports Rcpp, MASS, magrittr, dplyr, ggplot2, plotly, GGally
Suggests testthat, knitr, rmarkdown, readr
Collate utility_functions.R reduce_rank_regression.R pca.R cva.R lda.R rrr.R data.R
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 5.0.1
VignetteBuilder knitr
NeedsCompilation no
Author Chris Addy [aut, cre]
Maintainer Chris Addy <chris.william.addy@gmail.com></chris.william.addy@gmail.com>
Repository CRAN
Date/Publication 2016-12-09 15:15:55
R topics documented:
COMBO17
pairwise_plot
pendigits
residuals
rrr
scores
threewise_plot

2 pairwise_plot

Index 11

COMBO17

MMST COMBO17 DATA

Description

COMBO-17 galaxy photometric catalogue, 216, 219, 235

Usage

COMBO17

Format

A data frame with 3462 observations on 65 numeric variables.

References

A. Izenman (2008). Modern Multivariate Statistical Techniques. Springer.

Wolf, C. Meisenheimer, M., Kleinheinrich, M., Borch, A., Dye, S., Gray, M., Wisotski, L., Bell, E.F., Rix, H., W. Cimatti, A., Hasinger, G., and Szokoly, G. (2004). A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17, Astronomy & Astrophysics. https://arxiv.org/pdf/astro-ph/0403666.pdf

pairwise_plot

Pairwise Plots

Description

Pairwise Plots

Usage

```
pairwise_plot(x, y, type = "pca", pair_x = 1, pair_y = 2, rank = "full",
  k = 0, interactive = FALSE, point_size = 2.5)
```

Arguments

x data frame or matrix of predictor variables

y data frame or matrix of response variables

type type of reduced-rank regression model to fit. type = "identity", the default,

uses $\Gamma=I$ to fit a reduced-rank regression. type = "pca" fits a principal component analysis model as a special case of reduced-rank regression. type = "cva" fits a canonical variate analysis model as a special case of reduced-rank regression. type = "lda" fits a linear discriminant analysis model as a special

case of reduced-rank regression.

pendigits 3

pair_x variable to be plotted on the X-axis

pair_y variable to be plotted on the Y-axis

rank rank of coefficient matrix.

k small constant added to diagonal of covariance matrices to make inversion easier.

interactive logical. If interactive = FALSE, the default, plots a static pairwise plot. If interactive = FALSE plots an interactive pairwise plot.

point_size size of points in scatter plot.

Value

ggplot2 object if interactive = FALSE; plotly object if interactive = TRUE.

References

Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer.

Examples

```
data(pendigits)
digits_features <- pendigits[,1:34]</pre>
digits_class <- pendigits[,35]</pre>
pairwise_plot(digits_features, digits_class, type = "pca", pair_x = 1, pair_y = 3)
library(dplyr)
data(COMB017)
galaxy <- as_data_frame(COMB017)</pre>
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)</pre>
galaxy <- na.omit(galaxy)</pre>
galaxy_x <- select(galaxy, -Rmag:-chi2red)</pre>
galaxy_y <- select(galaxy, Rmag:chi2red)</pre>
pairwise_plot(galaxy_x, galaxy_y, type = "cva")
data(iris)
iris_x <- iris[,1:4]</pre>
iris_y <- iris[5]</pre>
pairwise_plot(iris_x, iris_y, type = "lda")
```

pendigits

MMST PENDIGITS DATA

Description

pen-based handwritten digit recognition, 211, 234, 274, 348, 391, 631

Usage

pendigits

rank_trace

Format

a data frame with 10992 observations on 36 unnamed variables

Source

```
http://archive.ics.uci.edu/ml/datasets.html
```

References

A. Izenman (2008) Modern Multivariate Statistical Techniques. Springer.

rank_trace

Rank Trace Plot

Description

rank_trace is a plot used to determine the effective dimensionality, i.e., $t = \operatorname{rank}(\mathbf{C})$, of the reduced-rank regression equation.

Usage

```
rank_trace(x, y, type = "identity", k = 0, plot = TRUE,
  interactive = FALSE)
```

Arguments

X	data frame or matrix of predictor variables
у	data frame or matrix of response variables
type	type of reduced-rank regression model to fit. type = "identity", the default,

uses $\Gamma=I$ to fit a reduced-rank regression. type = "pca" fits a principal component analysis model as a special case of reduced-rank regression. type = "cva" fits a canonical variate analysis model as a special case of reduced-rank regression. type = "lda" fits a linear discriminant analysis model as a special

case of reduced-rank regression.

k small constant added to diagonal of covariance matrices to make inversion eas-

ier.

plot if FALSE, returns data frame of rank trace coordinates.

interactive if TRUE, creates an interactive plotly graphic.

Value

plot of rank trace coordinates if plot = TRUE, the default, or data frame of rank trace coordinates if plot = FALSE.

References

Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer.

residuals 5

Examples

```
data(tobacco)
tobacco_x <- tobacco[,4:9]</pre>
tobacco_y <- tobacco[,1:3]</pre>
gamma <- diag(1, dim(tobacco_y)[2])</pre>
rank_trace(tobacco_x, tobacco_y)
rank_trace(tobacco_x, tobacco_y, plot = FALSE)
rank_trace(tobacco_x, tobacco_y, type = "cva")
data(pendigits)
digits_features <- pendigits[, -35:-36]</pre>
rank_trace(digits_features, digits_features, type = "pca")
library(dplyr)
data(COMB017)
galaxy <- as_data_frame(COMB017)</pre>
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)</pre>
galaxy <- na.omit(galaxy)</pre>
galaxy_x <- select(galaxy, -Rmag:-chi2red)</pre>
galaxy_y <- select(galaxy, Rmag:chi2red)</pre>
rank_trace(galaxy_x, galaxy_y, type = "cva")
```

residuals

Reduced-Rank Regression Residuals

Description

residuals calculates the regression residuals for reduced-rank regression and canonical variate analysis.

Usage

```
residuals(x, y, type = "identity", rank = "full", k = 0, plot = TRUE)
```

Arguments

X	data frame or matrix of predictor variables
У	data frame or matrix of response variables
type	type of reduced-rank regression model to fit. type = "identity", the default, uses $\Gamma = I$ to fit a reduced-rank regression. type = "pca" fits a principal component analysis model as a special case of reduced-rank regression. type = "cva" fits a canonical variate analysis model as a special case of reduced-rank regression. type = "lda" fits a linear discriminant analysis model as a special case of reduced-rank regression.
rank	rank of coefficient matrix.
k	small constant added to diagonal of covariance matrices to make inversion easier.
plot	if FALSE, returns data frame of rank trace coordinates.

6 rrr

Value

scatterplot matrix of residuals if plot = TRUE, the default, or a data frame of residuals if plot = FALSE.

References

Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer.

Examples

```
data(tobacco)
tobacco_x <- tobacco[,4:9]
tobacco_y <- tobacco[,1:3]
tobacco_rrr <- rrr(tobacco_x, tobacco_y, rank = 1)
residuals(tobacco_x, tobacco_y, rank = 1, plot = FALSE)
residuals(tobacco_x, tobacco_y, rank = 1)

library(dplyr)
data(COMB017)
galaxy <- as_data_frame(COMB017)
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)
galaxy <- na.omit(galaxy)
galaxy_x <- select(galaxy, -Rmag:-chi2red)
galaxy_y <- select(galaxy, Rmag:chi2red)
residuals(galaxy_x, galaxy_y, type = "cva", rank = 2, k = 0.001)</pre>
```

Fit Reduced-Rank Regression Model

Description

rrr fits a reduced-rank regression model.

Usage

```
rrr(x, y, type = "identity", rank = "full", k = 0)
```

Arguments

x data frame or matrix of predictor variablesy data frame or matrix of response variables

type type of reduced-rank regression model to fit. type = "identity", the default,

uses $\Gamma = I$ to fit a reduced-rank regression. type = "pca" fits a principal component analysis model as a special case of reduced-rank regression. type = "cva" fits a canonical variate analysis model as a special case of reduced-rank regression. type = "lda" fits a linear discriminant analysis model as a special case of reduced-rank regression.

rrr

scores 7

rank rank of coefficient matrix.

k small constant added to diagonal of covariance matrices to make inversion eas-

ier.

Value

list containing estimates of coefficients and means, and eigenvalue-based diagnostics.

References

Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer.

Examples

```
data(tobacco)
tobacco_x <- tobacco[,4:9]</pre>
tobacco_y <- tobacco[,1:3]</pre>
rrr(tobacco_x, tobacco_y, rank = 1)
data(pendigits)
digits_features <- pendigits[, -35:-36]</pre>
rrr(digits_features, digits_features, type = "pca", rank = 3)
library(dplyr)
data(COMB017)
galaxy <- as_data_frame(COMB017)</pre>
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)</pre>
galaxy <- na.omit(galaxy)</pre>
galaxy_x <- select(galaxy, -Rmag:-chi2red)</pre>
galaxy_y <- select(galaxy, Rmag:chi2red)</pre>
rrr(galaxy_x, galaxy_y, type = "cva", rank = 2)
data(iris)
iris_x <- iris[,1:4]</pre>
iris_y <- iris[5]</pre>
rrr(iris_x, iris_y, type = "lda")
```

scores

Compute Latent Variable Scores

Description

Compute Latent Variable Scores

Usage

```
scores(x, y, type = "pca", rank = "full", k = 0)
```

8 threewise_plot

Arguments

rank of coefficient matrix.

k small constant added to diagonal of covariance matrices to make inversion eas-

ier.

References

Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer.

Examples

```
data(pendigits)
digits_features <- pendigits[, -35:-36]
scores(digits_features, digits_features, type = "pca", rank = 3)

library(dplyr)
data(COMB017)
galaxy <- as_data_frame(COMB017)
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)
galaxy <- na.omit(galaxy)
galaxy_x <- select(galaxy, -Rmag:-chi2red)
galaxy_y <- select(galaxy, Rmag:chi2red)
scores(galaxy_x, galaxy_y, type = "cva", rank = 4)

data(iris)
iris_x <- iris[,1:4]
iris_y <- iris[5]
scores(iris_x, iris_y, type = "lda")</pre>
```

threewise_plot

3-D Reduced Rank Regression Plots

Description

Create three-dimensional, interactive plotly graphics for exploration and diagnostics.

threewise_plot 9

Usage

```
threewise_plot(x, y, type = "pca", pair_x = 1, pair_y = 2, pair_z = 3,
  rank = "full", k = 0, point_size = 2.5)
```

Arguments

x	data frame or matrix of predictor variables
у	data frame or matrix of response variables
type	type of reduced-rank regression model to fit. type = "identity", the default, uses $\Gamma = I$ to fit a reduced-rank regression. type = "pca" fits a principal component analysis model as a special case of reduced-rank regression. type = "cva" fits a canonical variate analysis model as a special case of reduced-rank regression. type = "lda" fits a linear discriminant analysis model as a special case of reduced-rank regression.
pair_x	variable to be plotted on the X -axis
pair_y	variable to be plotted on the Y -axis
pair_z	variable to be plotted on the Z -axis
rank	rank of coefficient matrix.
k	small constant added to diagonal of covariance matrices to make inversion easier.
point_size	size of points in scatter plot.

Value

three-dimensional plot. If type = "pca" returns three principal components scores - defaulted to the first three - against each other. If type = "cva" returns three-dimensional plot of residuals. If type = "lda" returns three-dimensional plot of three linear discriminant scores plotted against each other.

Examples

```
## Not run:
data(pendigits)
digits_features <- pendigits[, -35:-36]
threewise_plot(digits_features, digits_class, type = "pca", k = 0.0001)
library(dplyr)
data(COMB017)
galaxy <- as_data_frame(COMB017)
galaxy <- select(galaxy, -starts_with("e."), -Nr, -UFS:-IFD)
galaxy <- na.omit(galaxy)
galaxy_x <- select(galaxy, -Rmag:-chi2red)
galaxy_y <- select(galaxy, Rmag:chi2red)
threewise_plot(galaxy_x, galaxy_y, type = "cva")

data(iris)
iris_x <- iris[,1:4]
iris_y <- iris[5]</pre>
```

10 tobacco

```
threewise_plot(iris_x, iris_y, type = "lda")
## End(Not run)
```

tobacco

MMST TOBACCO DATA

Description

chemical composition of tobacco, 183, 187

Usage

tobacco

Format

a data frame with 25 observations on the following 9 variables.

- 'Y1.BurnRate' a numeric vector
- 'Y2.PercentSugar' a numeric vector
- 'Y3.PercentNicotine' a numeric vector
- 'X1.PercentNitrogen' a numeric vector
- 'X2.PercentChlorine' a numeric vector
- 'X3.PercentPotassium' a numeric vector
- 'X4.PercentPhosphorus' a numeric vector
- 'X5.PercentCalcium' a numeric vector
- 'X6.PercentMagnesium' a numeric vector

References

A. Izenman (2008). Modern Multivariate Statistical Techniques. Springer.

Anderson, R.L. and Bancroft, T.A. (1952). Statistical Theory in Research. New York: Mcgraw-Hill.

Index