9. Proponer un algoritmo de complejidad temporal O(ds) que, dados dos naturales d>0 y s>0, o bien encuentre el mínimo n divisible por d y cuyos dígitos sumen exactamente s o bien reporte que dicho n no existe. **Ayuda:** recuerde que n se puede decomponer en dígitos $n_1 \dots n_k$. Para cada i = 1, ..., k, el número con digitos $n_1 ... n_i$ tiene un resto d_i módulo d y una sumatoria s_i . Sabiendo que k debe ser mínimo, piense cómo cambian d_i y s_i al agregar el dígito n_{i+1} .

	Sabie	endo q	ue k	debe s	ser mí	nimo,	piense cómo cambiar				n d_i y s_i al agregar				el dígito n_{i+1} .				