Dot Visa curve in Ro if it is a continuous map from an interval [ER into Rd.

A similar definition works for curves in a metric space or, more generally, in a topological space.

Defn an arc is a curve which is one-to-one.

Desh a loop in Rd is a continuous map from 5 = {zel: |z|=13 into Rd & or a more general space. = {(x,y) + R2 : x2+y2=1}

Defn A Jordan curve is a one-to-one loop.

A jordan cone of Aren > 0:

$$K_{o} = [0]^{2}$$

K = Uni'on of four disjoint congruent squares constructed in Side Ko as shown Wy total oven 3/4

K2 = union of 16 squares, total onea 7.

 $K_n = 0$ union of 4^n squares, total over $\frac{1}{2} + \left(\frac{1}{4}\right)^n$

$$K = \bigcap_{n=1}^{\infty} K_n$$
. Area $(K) = \frac{1}{2}$ "fat Cantor set

K is not a jordan curve but it is a subset of one.

there is a sequence (Y_n) of Jordan writs a.t. $\forall n, \forall z \in \mathbb{Z}$ $|Y_n(z) - Y_n(z)| < \frac{1}{2}n$ (see picture).

this is Uniformly Cavany (?)

So = 7: 51 - Rd S.t. In - Y uniformy, so Y is continuous.

Thus Visa loop. Also, Vis I-1 (think about it & check).

Clark: K = Range (8).

Let PEK. then Yn, PEKn, so Fine S.

So that $|P-\delta_n(z_n)| < \frac{1}{2^n}$.

Now $\forall z \in S'$, $|Y_n(z) - Y(z)| \leqslant \sum_{k=n}^{\infty} \frac{1}{2^k} = \frac{1}{2^{n-1}}$

50 $|P-\chi(z_n)| < \frac{1}{2^n} + \frac{1}{2^{n-1}} = \frac{3}{2^n} \longrightarrow 0$

Now 3 subsequence Zne which converges since [Zn] < 51 is bounded.

and since S^1 is closed, $Z_{n_k} \rightarrow Z_{\cdot} \in S^1$.

on one hand, $\chi(z_{n_j}) \to P$. also, $\chi(z_{n_j}) \to \chi(z_o)$ since χ its.

So $\chi(z_0) = P$. Thus $\kappa \in \chi(S^1)$. and so Area $(\chi(S^1)) \gg \frac{1}{2}$.

Defin let $L \in (0, \infty)$. An L-periodic curve in \mathbb{R}^d is a continuous map $Y: \mathbb{R} \to \mathbb{R}^d$ so that $\forall t \in \mathbb{R}$, Y(t+L) = Y(t).

(generalizes to medic/trapological spaces).

Remark. Let Y be a loop, let $L \in (0, \infty)$. define d on \mathbb{R} by $\alpha(t) = \gamma(e^{2\pi i t/L}) . \qquad \alpha \text{ is } L\text{-periodic}.$

Conversely, let α be an L-periodic curve. Then \exists a unique loop \forall s.t. $\forall t \in \mathbb{R}$, $\alpha(t) = \forall (e^{2\pi i t/L})$.

Check that & is continuous.

R $\stackrel{\leftarrow}{\longrightarrow}$ X

P | Weble:

If $p(t_1) = P(t_2)$ thun $\exists n \in \mathbb{Z}$ 5t. $t_2 = t_1 + nL$.

So $\alpha(t_1) = \alpha(t_2)$ This is why γ is well defined.

Defins let $K \in \mathbb{N}$.

(a) a C^{κ} curve in \mathbb{R}^d is a continuous $\alpha: I \longrightarrow \mathbb{R}^d$ So that the first κ derivatives of α ; $\frac{d\alpha}{dt}$, $\frac{d^{n_{\kappa}}}{dt}$; exist and one continuous in I.

(use approp 1-sized derivatives at any included endpoints of I).

(b) a C^* -Regular curve in \mathbb{R}^d is a C^* curve $\mathcal{L}: I \longrightarrow \mathbb{R}^d$ such that $\frac{d\kappa}{dt}$ is never O in I.

(a) a regular curve in Rd is a Cd-regular curve (unless o.w. stated).

Terminology let $\alpha: I \longrightarrow \mathbb{R}^l$ be a diffible wive.

- (a) YtofI, $\frac{d\alpha}{dt}$ (to) is called the velocity vector of α at to.
- (b) The ver-valo for dt is called the velocity vector field of a.
- (c) $\left|\frac{d\alpha}{dt}(t_0)\right|$ is the speed of α at t_0 .
- (d) if d is C1-regular curve, the tangent vector field 13

$$T(t_0) = \frac{\frac{d\alpha}{dt}(t_0)}{\left|\frac{d\alpha}{dt}(t_0)\right|}. This is well-defined Since α is regular.$$

- (e) if α is C^1 -regular and $t_0 \in I$ then the tangent line to d at t_0 is the Straight line parallel to $T(t_0)$ through $d(t_0)$ $l = \left\{\alpha(t_0) + \lambda T(t_0) : \lambda \in \mathbb{R}^{n}\right\}.$ $= \left\{\alpha(t_0) + \lambda \frac{d\alpha}{dt}(t_0) : \lambda \in \mathbb{R}^{n}\right\}.$

muge! $\{(t^3, t^2) : t \in \mathbb{R}\}$ $\{(x, x^{2/3}) : x \in \mathbb{R}^7\}$

Sup bruh

Suh dude.

Super Cool

Suh dude.

Sper letting me

Sum on this

Page 5