

ML/DL Study W04

- Convolutional Neural Network
- Layer : Conv, Pool, Fully connected
- Ensemble
- Data Augmentation

ookup.KeyValue

Convolutional Neural Network

Convolutional Neural Network

Convolution Layer : 이미지 및 다차원 데이터의 특징을 감지하고 추출

- Padding : output data size를 조절할 수 있음, padding = valid or same
- Stride: filter가 input data를 이동하는 간격, (input – filter) // stride + 1로 추측 가능

Padding = same

(0	0	0	0	0	0	0	0
(0	3	3	4	4	7	0	0
(0	9	7	6	5	8	2	0
	0	6	5	5	6	9	2	0
	0	7	1	3	2	7	8	0
	0	0	3	7	1	8	3	0
	0	4	0	4	3	2	2	0
	0	0	0	0	0	0	0	0

$$6 \times 6 \rightarrow 8 \times 8$$

	1	0	-1	
*	1	0	-1	
	1	0	-1	
	3	3 × 3		

-10	-13	1		
-9	3	0		

Pooling: 공간 차원(height, width) 줄이고 계산량을 감소시키면서 중요한 정보를 보존

Ensemble

Ensemble

Ensemble: CNN model 여러 개를 조합하여 보다 정확한 model을 만드는 것


```
models = []
num_models = 3
for m in range(num_models):
   models.append(MNISTModel())
```


Data Augmentation

Data Augmentation

Data Augmentation : origin data set에서 새롭게 training data를 생성해서 model의 성능을 향상시킴


```
def data_augmentation(images, labels):
   aug images = []; aug labels = []
  for x, y in zip(images, labels):
       aug_images.append(x)
       aug labels.append(y)
      bg value = np.median(x)
      for in range(4):
           angle = np.random.randint(-15, 15, 1)
           rot_img = ndimage.rotate(x, angle, reshape=False, cval=bg_value)
           shift = np.random.randint(-2, 2, 2)
           shift_img = ndimage.shift(rot_img, shift, cval=bg_value)
           aug_images.append(shift_img)
           aug_labels.append(y)
   aug_images = np.array(aug_images)
   aug_labels = np.array(aug_labels)
   return aug_images, aug_labels
```

