Определение 1. Функция $f:(a,b)\to\mathbb{R}$ называется *выпуклой вниз* на (a;b), если для каждого отрезка $[x_1;x_2]\subseteq (a;b)$ выполнено условие: график функции f лежит не выше графика прямой L, соединяющей точки $(x_1;f(x_1))$ и $(x_2;f(x_2))$, то есть $f(x)\leqslant L(x)$ при любом $x\in [x_1;x_2]$.

Задача 1. Пусть функция f определена и два раза дифференцируема на интервале (a, b). Выясните, какие из следующих условий эквивалентны тому, что f выпукла вниз на (a, b):

- а) $\alpha \cdot f(x) + (1-\alpha) \cdot f(y) \geqslant f(\alpha \cdot x + (1-\alpha) \cdot y)$ для любых $x,y \in (a,b)$ и любого $\alpha \in [0,1]$;
- **б)** надграфик f на (a;b), то есть $\{(x,y) \in \mathbb{R}^2 \mid x \in (a,b), y \geqslant f(x)\}$ выпуклое множество;
- в) f' монотонно неубывает на интервале (a, b);
- **г)** $f''(x) \ge 0$ для любого $x \in (a, b)$;
- д) любая касательная l к графику f расположена не выше его: $f(x) \geqslant l(x)$ при всех $x \in (a,b)$;
- **e)** (*неравенство Йенсена*) для любых чисел $x_1, \ldots, x_n \in (a, b)$ и любых положительных чисел $\alpha_1, \ldots, \alpha_n$ выполнено неравенство:

$$\frac{\alpha_1 f(x_1) + \dots + \alpha_n f(x_n)}{\alpha_1 + \dots + \alpha_n} \geqslant f\left(\frac{\alpha_1 x_1 + \dots + \alpha_n x_n}{\alpha_1 + \dots + \alpha_n}\right)$$

Задача 2. Дайте эквивалентные определения функции, выпуклой вверх на (a, b) (можно устно).

Задача 3. Найдите промежутки выпуклости вверх и выпуклости вниз следующих функций:

а)
$$\sin x$$
; б) x^3 ; в) $\sqrt{|x|}$; г) $(x(x-1))^{-1}$; д) $x^2 + \frac{1}{x}$.

Задача 4. Что больше: $\sqrt[3]{60}$ или $2 + \sqrt[3]{7}$?

Задача 5. Докажите неравенства:

а)
$$\left(\frac{x_1 + \dots + x_n}{n}\right)^2 \leqslant \frac{x_1^2 + \dots + x_n^2}{n}$$
 для любых чисел x_1, \dots, x_n ;

- **б)** (неравенство Коши-Буняковского) $(x_1y_1 + \dots + x_ny_n)^2 \leqslant (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2);$
- в)* $\sin \alpha \sin \beta \sin \gamma \leqslant 3\sqrt{3}/8$, если α, β, γ углы некоторого треугольника.

Определение 2. Точка x_0 называется *точкой перегиба* функции f, если существует $\varepsilon > 0$ такое, что f выпукла вниз на $(x_0 - \varepsilon, x_0)$ и выпукла вверх на $(x_0, x_0 + \varepsilon)$ (или наоборот).

Задача 6. Пусть функция f дважды дифференцируема в некоторой окрестности точки x_0 .

- а) Пусть x_0 точка перегиба функции f. Верно ли, что $f''(x_0) = 0$? Верно ли обратное?
- **б)** Докажите, что x_0 точка перегиба f если и только если f'' меняет знак в точке x_0 .

Задача 7. Нарисуйте графики функций из задачи 3 и найдите точки перегиба этих функций.

Задача 8. Пусть f дважды дифференцируема в некоторой окрестности точки x_0 , причём $f'(x_0) = 0$ и **a)** $f''(x_0) > 0$; **б)** $f''(x_0) < 0$. Имеет ли f в x_0 локальный экстремум, и если да, то какого типа?

Определение 3. Прямая y = kx + b называется асимптотой графика функции y = f(x) при $x \to +\infty$, если $f(x) - (kx + b) \to 0$ при $x \to +\infty$. Прямая $x = x_0$ называется вертикальной асимптотой графика функции y = f(x) при x, стремящемся к x_0 слева, если $\lim_{x \to x_0 = 0} f(x) = \infty$.

Задача 9. Дайте определение асимптот графика функции y = f(x) при $x \to -\infty$ и при $x \to x_0 + 0$.

Задача 10. Верно ли, что график функции y=f(x) имеет асимптоту y=kx+b при $x\to +\infty$ тогда и только тогда, когда существуют пределы $\lim_{x\to +\infty} \frac{f(x)}{x}=k$ и $\lim_{x\to +\infty} (f(x)-kx)=b$?

Задача 11. Найдите асимптоты следующих функций:

a)
$$x + \frac{1}{x}$$
; 6) $\frac{x+3}{2-x}$; B) $\sqrt{x(1+x)}$;

1 a	1 6	1 B	1 Г	1 д	1 e	2	3 a	3 6	3 B	3 Г	3 Д	4	5 a	5 6	5 B	6 a	6 6	7	8 a	8 6	9	10	11 a	11 б	11 B