

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO III ETAP WOJEWÓDZKI 16 lutego 2015 roku

Grupa "A"

Ważne informacje:

- 1. Masz 120 minut na rozwiązanie wszystkich zadań.
- 2. Zapisuj szczegółowe obliczenia i komentarze do rozwiązań zadań prezentujące sposób twojego rozumowania. Możesz korzystać z kalkulatora.
- 3. Pisz długopisem lub piórem, nie używaj korektora. Jeżeli się pomylisz, przekreśl błąd i napisz ponownie. Wykonuj staranne rysunki, korzystając z przyborów geometrycznych.
- 4. Rozwiązując zadania, korzystaj z zamieszczonych na końcu arkusza tablic: układu okresowego pierwiastków oraz rozpuszczalności soli i wodorotlenków w wodzie.
- 5. Przyjmij wartości: liczba Avogadro $N_A = 6 \cdot 10^{23} \frac{1}{mol}$, objętość molowa gazów w warunkach normalnych $V_0 = 22,4 \frac{dm^3}{mol}$. Wykonując obliczenia, pamiętaj o zasadach zaokrąglania wartości liczbowych.
- 6. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu na to przeznaczonym. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Zadanie:	1 -10	11	12	13	14	Razem	%
Maksymalna liczba punktów	10	8	4	9	4	35	100%
Uzyskana liczba punktów							%
Podpis osoby sprawdzającej							

⊃ Informacja do zadań 1. i 2.

W celu zidentyfikowania substancji o znaczeniu biologicznym przeprowadzono doświadczenie przedstawione poniższym schematem.

Zadanie 1. (1pkt)

Na podstawie obserwacji z przeprowadzonego doświadczenia wskaż poprawną informację o zawartości badanych próbek umieszczonych w probówkach 1 i 2. **Zaznacz właściwy wiersz tabeli**.

	Próbka 1	Próbka 2			
	Obser	rwacje			
	wytrącił się ceglastopomarańczowy osad	mieszanina zabarwiła się na kolor fioletoworóżowy			
A.	białko jaja kurzego	glukoza			
B.	tristearynian glicerolu	glukoza			
C.	glukoza	białko jaja kurzego			
D.	glukoza	skrobia			

Zadanie 2. (1pkt)

Zaznacz właściwy wiersz tabeli, w którym podano nazwy reakcji przeprowadzonych w trakcie doświadczenia.

	Próbka 1	Próbka 2
A.	reakcja ksantoproteinowa	próba Tollensa
B.	próba Trommera	reakcja biuretowa
C.	reakcja biuretowa	próba Trommera
D.	próba Trommera	reakcja ksantoproteinowa

Zadanie 3. (1pkt)

Wybierz zestaw zawierający jedynie odczynniki powodujące denaturację białka. Zaznacz właściwą odpowiedź A, B, C lub D.

- A. Kwas siarkowy(VI), alkohol etylowy, octan ołowiu(II)
- B. Kwas solny, zasada sodowa, chlorek sodu
- C. Kwas octowy, wodorotlenek glinu, chlorek sodu
- D. Woda bromowa, siarczan(VI) miedzi(II), siarczan(VI) sodu

Zadanie 4. (*1pkt*)

Wybierz zestaw wzorów poprawnie przyporządkowanych substancjom X, Y, Z i W – produktom reakcji przedstawionych chemografem. **Zaznacz właściwą odpowiedź A, B, C lub D.**

$$\begin{array}{ccc} X \xleftarrow{H_2O} & & \xrightarrow{HCl} Y \\ Z \xleftarrow{Cl_2} & & \xrightarrow{H_2} W \end{array}$$

- $A. \ \ X-CH_3CHOHCH_2CH_3; \ Y-CH_3CHCICH_2CH_3 \ ; \ Z-CH_2CICHCICH_2CH_3; \\$
 - W CH₃CH₂CH₂CH₃
- $B. \ \ X-CH_3CH_2CHOHCH_3; \ Y-CH_3CH_2CHCICH_3 \ ; \ Z-CH_3CHCICHCICH_3;$
 - $W CH_3(CH_2)_2CH_3$
- $C. \ \ X CH_2OH(CH_2)_2CH_3 \, ; \, Y CH_2Cl(CH_2)_2CH_3 \, ; \, Z CH_2ClCHClCH_2CH_3 \, ;$
 - W $CH_3CHCHCH_3$
- D. $X CH_3CH_2CHOHCH_3$; $Y CH_3CH_2CH_2CH_2CI$; $Z CH_3CH_2CHCICH_2CI$;
 - W CH₃(CHCl)₂CH₃

Zadanie 5. (1pkt)

Wskaż poprawną systematyczną nazwę glicerolu. Zaznacz właściwą odpowiedź A, B, C lub D.

- A. propano-1,2,3-triol
- C. propano-1,3-diol
- B. etano-1,2-diol
- D. gliceryna

Zadanie 6. (1pkt)

Spośród poniżej wymienionych nazw związków organicznych wybierz izomer / izomery butanianu metylu. **Zaznacz właściwą odpowiedź A, B, C lub D.**

- A. metanian butylu
- C. propanian etylu
- B. etanian propylu
- D. wszystkie wymienione w punktach A, B i C

Zadanie 7. (1pkt)

Podczas badania zachowania się magnezu i miedzi w obecności rozcieńczonego roztworu kwasu octowego zaobserwowano objawy reakcji jedynie w probówce z magnezem. Jaki wniosek należy wyciągnąć z tego doświadczenia? **Zaznacz właściwą odpowiedź A, B, C lub D.**

- A. Miedź, jako metal mało aktywny nie reaguje z kwasami.
- B. Miedź jest metalem zbyt aktywnym, by wypierać wodór z roztworów kwasów, magnez, jako metal mniej aktywny wypiera wodór z roztworów kwasów.
- C. Miedź jest metalem zbyt mało aktywnym, by wypierać wodór z roztworów kwasów, magnez, jako metal bardziej aktywny wypiera wodór z roztworów kwasów.
- D. Kwas octowy jest stosunkowo słabym elektrolitem i reaguje tylko z nieaktywnymi metalami.

Zadanie 8. (1pkt)

Przeanalizuj poniższe równanie reakcji.

$$2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5O_2 + 8H_2O$$

Zaznacz właściwe dokończenie zdania:

Celem eksperymentu, podczas którego przebiegła reakcja zilustrowana podanym równaniem reakcji, było wykazanie, że ...

- A. Manganian(VII) potasu rozkłada się pod wpływem wysokiej temperatury z wydzieleniem tlenu.
- B. Manganian(VII) potasu jest silniejszym utleniaczem niż nadtlenek wodoru.
- C. Manganian(VII) potasu jest silniejszym reduktorem niż nadtlenek wodoru.
- D. Manganian(VII) potasu jest sola mocnej zasady i słabego kwasu.

⊃ Informacja do zadania 9.

Woda destylowana (gęstość $\rho=1$ g/cm³) w niewielkim stopniu ulega dysocjacji elektrolitycznej zgodnie z równaniem:

$$H_20 \leftrightarrows H^+ + OH^-$$

W temperaturze pokojowej iloczyn stężeń molowych kationów H⁺i anionów OH⁻

$$C_{mH^+} \cdot C_{mOH^-} = 10^{-14} \frac{mol^2}{dm^6}$$

Zadanie 9. (1pkt)

Korzystając z zamieszczonych powyżej informacji, oblicz liczbę kationów wodorowych obecnych w 1 cm³ wody destylowanej. **Zaznacz właściwą odpowiedź A, B, C lub D.**

- A. 6.10^{23}
- B. $0.006 \cdot 10^{23}$
- C. 6.10^{13}
- D. 6.10^6

⊃ Informacja do zadania 10.

Miarą aktywności próbki izotopu promieniotwórczego jest liczba zachodzących w niej rozpadów jąder atomowych w jednostce czasu.

Czasy połowicznego rozpadu wynoszą odpowiednio: dla izotopu $^{226}_{88}$ Ra $T_{\frac{1}{2}}=1600~lat$, a dla izotopu $^{210}_{84}$ Po $T_{\frac{1}{2}}=138~dni$.

Zadanie 10. (*1pkt*)

W laboratorium radiochemicznym znajdują się dwa zamknięte źródła promieniowania. Pierwsze zawiera wyłącznie 0,1 milimola atomów ²²⁶₈₈Ra, a drugie wyłącznie 0,1 milimola atomów ²¹⁰₈₄Po. Korzystając z zamieszczonych powyżej informacji, postaraj się porównać aktywność obu źródeł i sformułuj odpowiedni wniosek. **Zaznacz właściwą odpowiedź A, B, C lub D.**

- A. Źródło radowe jest aktywniejsze od źródła zawierającego polon.
- B. Źródło zawierające polon jest aktywniejsze od źródła zawierającego rad.
- C. Oba źródła są tak samo aktywne, ponieważ zawierają tyle samo atomów substancji promieniotwórczej.
- D. Podano zbyt mało danych, aby porównać aktywność obu źródeł.

⊃ Informacja do zadania 11.

Do żywności dodaje się obecnie wiele dodatków: słodzących, spulchniających, konserwujących, zagęszczających, barwników i innych oznaczanych międzynarodowymi symbolami, np.

Oznaczenie wg standardów UE	Nazwa substancji
E 211	benzoesan sodu
E 252	azotan(V) potasu
E 290	tlenek węgla(IV)
E 500 b	wodorowęglan sodu
E 501 a	węglan potasu
E 503 a	węglan amonu
E 503 b	wodorowęglan amonu

Zadanie 11. (8pkt)

(A)
Zapisz (w formie cząsteczkowej) równanie reakcji zachodzącej podczas pieczenia ciasta
z dodatkiem proszku do pieczenia, który zawiera E503b (substancja ta pełni rolę środka spulchniającego).
(B)
Określ odczyn wodnego roztworu E501a. Odpowiedź uzasadnij zapisując równanie odpowiedniej reakcji chemicznej w formie jonowej.
Odczyn roztworu:
Równanie reakcii:

(C)

Sporządź wykres ilustrujący zależność rozpuszczalności E252 w wodzie od temperatury. Skorzystaj z danych zawartych w tabeli, która zawiera wartości mas E252 rozpuszczonych w 100 g wody we wskazanych temperaturach dla roztworów nasyconych.

Masa soli	25	55	95	120	135	170
[g]						
T [K]	283	308	328	338	343	353

(D)			
250 g nasyconego wod 60°C. Oblicz masę wy		temperaturze 75°C ochło	odzono do temperatury
Zadanie 12. (4pkt)			
stężeniach molowych) Po zmieszaniu jednak natomiast po zmieszan o pH<7. Gdy do roztworu otrzy 3, nie obserwowano zmieszaniu roztworów charakterystycznej, prz (A)	następujących substantowych objętości roztwoniu jednakowych objętożymanego po zmieszaniu żadnych objawów rezy z butli 2 i 3 dolazykrej woni.	cji: amoniak, bromowo orów z butli 1 i 2 otrzy ości roztworów z butli 2 n roztworów z butli 1 i akcji, ale gdy do roz ano roztwór z butli	oztwory (o jednakowych dór, wodorotlenek sodu. ymano roztwór o pH=7, 2 i 3 otrzymano roztwór 2 dolano roztwór z butli ztworu otrzymanego po 1 wydzielał się gaz o
Numer butli	1	2	3
<u>Nazwa</u> roztworu			
zmieszaniu roztworów (C) Porównaj właściwoś dokonanych w trakci	z butli 2 i 3 dolano roz ci wodnych roztworó	twór z butli 1. ow z butli 1 i 3 na doświadczeń oraz zapi	oztworu otrzymanego po n podstawie obserwacji isanego w punkcie (B)

_		10	10 1 1	
Zad	anie	1.3.	(9pkt))

(A)

Uzupełnij tabelę, wpisując wzory sumaryczne tlenków pierwiastków o przedstawionej konfiguracji elektronowej, gdy pierwiastki te przyjmują taki sam, <u>najniższy</u> stopień utlenienia.

Konfiguracja elektronowa	$K^2L^8M^8N^2$	$K^2L^8M^{14}N^2$	$K^2L^8M^{18}N^2$
Wzór tlenku			

(B)
Jeden z występujących w tabeli w części "A" zadania tlenków reaguje z wodą. Oblic (w procentach masowych) stężenie roztworu otrzymanego po wprowadzeniu 100 mg teg tlenku do 99,90 g wody.
(C)
Do 3,78 g mieszaniny tlenków pierwiastków niereagujących z wodą (wybranych z tabel dolano 100 g kwasu solnego o stężeniu 3,65% masowych. Tlenki całkowicie roztworzyły si
w kwasie. Następnie roztwór odparowano. Masa odparowanej wody miała wartość 97,25 g Ustal masowy skład procentowy mieszaniny tlenków.
1 1 1
Ustal masowy skład procentowy mieszaniny tlenków.

⊃ Informacja do zadania 14.

Liczbą zmydlania nazywa się liczbę miligramów KOH potrzebną do przeprowadzenia w sole potasowe kwasów tłuszczowych zawartych w 1 g tłuszczu w postaci glicerydów oraz w stanie wolnym.

Chemia. Słownik encyklopedyczny Wydawnictwo Europa. Wydanie I 1999.

Zadanie 14. (4pkt)

Reakcja zmydlania pewnego tłuszczu przebiega zgodnie z następującym równaniem:

(A)

dla	•	a nasycone zmydlania	-		-	-		
		 		 			 	• • • • •
(B)								
zmy		nych oblic , że w cząst						

(C)

Zapisz równanie reakcji (w formie cząsteczkowej), która będzie zachodzić podczas
rozpuszczania mydła (o ustalonym wzorze) w wodzie zawierającej jony wapniowe i jony chlorkowe.
•••••••••••••••••••••••••••••••••••
<u>Brudnopis</u>

UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH

masy atomowe pierwiastków podano w atomowych jednostkach masy [u] (dolna liczba, wydrukowana większą czcionką pod symbolem w krateczce pierwiastka)

₁ H 1																			₂ He 4
₃ Li 7	₄ Be 9													₅ B 11	₆ C 12	₇ N 14	₈ O 16	₉ F 19	10Ne 20
11Na 23	12Mg 24													13Al 27	14Si 28	₁₅ P 31	16S 32	17Cl 35,5	18Ar 40
₁₉ K 39	₂₀ Ca 40	21S 45		₂₂ Ti 48	₂₃ \ 51			₂₅ Mn 55	₂₆ Fe 56	₂₇ Co 59	₂₈ Ni 59	₂₉ Cu 64	₃₀ Zn 65	31Ga 70	₃₂ Ge 73	33As 75	34Se 79	35Br 80	36Kr 84
37Rb 85	₃₈ Sr 88	₃₉ Y 89				93 42Mo		43Tc 97	44Ru 101	45Rh 103	46Pd 106	₄₇ Ag 108	48Cd 112	₄₉ In 115	₅₀ Sn 119	51Sb 122	₅₂ Te 128	₅₃ I 127	₅₄ Xe 131
55Cs 133	₅₆ Ba 137			₇₂ Hf 178		73Ta 74W 181 184		75Re 186	₇₆ Os 190	77Ir 192	₇₈ Pt 195	₇₉ Au 197	₈₀ Hg 201	81Tl 204	₈₂ Pb 207	₈₃ Bi 209	84Po 209	85At 210	86Rn 222
₈₇ Fr 223	₈₈ Ra 226	89A 22' (**	7	₁₀₄ Rf 261	105D 262			₁₀₇ Bh 272	₁₀₈ Hs 277	109Mt 276	110Ds 281	111Rg 280	112Cn 285	113 284	114 289	115 288	116 292		118 294
(*) lantanowce			58Ce 59Pr 140 141		₆₀ Nd 144			₅₂ Sm 150	₆₃ Eu 152	₆₄ Gd 157	₆₅ Tb 159	66Dy	₆₇ Ho 165	₆₈ Er 167	₆₉ T		70Yb 173	71Lu 175	
(**) aktynowce			₉₀ T		Pa 231	₉₂ U 238	93N 23		₉₄ Pu 244	₉₅ Am 243	₉₆ Cm 251	₉₇ Bk 247	₉₈ Cf 251	₉₉ Es 252	₁₀₀ Fm 257	1 ₁₀₁ N 25		₀₂ No 259	₁₀₃ Lr 262

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

	Na ⁺	\mathbf{K}^{+}	NH ₄ ⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	\mathbf{Ag}^{+}	Cu ²⁺	Zn ²⁺	Al ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
OH.	r	r	r	S	S	S	r	n	n	n	n	n	n	n	n	S	n	n
F-	S	r	r	S	S	S	S	r	0	S	S	S	S	S	S	S	r	r
CI.	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
I.	r	r	r	r	r	r	r	n	0	r	0	0	0	S	0	S	S	r
S ²⁻	r	r	r	О	0	0	0	n	n	n	0	n	0	n	n	n	n	n
SO ₃ ²⁻	r	r	r	S	S	S	S	S	S	S	0	S	0	S	0	S	0	0
SO ₄ ² -	r	r	r	r	S	S	n	S	r	r	r	r	r	r	0	n	r	r
NO ₃	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
ClO ₃	r	r	r	r	r	r	r	r	r	X	X	X	X	X	X	r	X	X
PO ₄ ³ -	r	r	r	S	n	n	n	n	S	S	S	S	S	S	S	n	0	r
CO ₃ ² -	r	r	r	S	n	n	n	n	S	S	0	S	О	S	0	n	0	0
HCO ₃	S	r	r	S	S	S	О	0	0	0	0	S	О	S	0	0	X	X
SiO ₃ ²⁻	r	r	0	n	n	0	n	n	n	n	n	n	n	n	n	n	0	0
CrO ₄ ²	r	r	r	r	S	S	n	n	S	S	0	S	0	0	S	n	0	0

- r substancja dobrze rozpuszczalna
- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje
- x związek nie istnieje