MAT2440, Classwork22, Spring2025

ID:	Nome
11).	Name.

1. Use Horizontal Line Test to determine which of the following are the graphs of one-to-one

NOT a one-to-one function

Tes, it is one-to-one (more than one intersection per horizontal line) (at most one intersection point

2. The definition of an **Onto** Function:

A function f from A to B is called \underline{Onto} , or a $\underline{\qquad}$, if and only if for every element

 $b \in B$ there is an element $a \in A$ with f(a) = b and we say f is subjective. Hence,

$$\forall b \in B \exists a \in A(\underbrace{f(a) = b}).$$

3. Check if the given function (or mapping) an onto function.

This is NOT onto

4. Check if the given function an onto function. (a) $f(x) = x^2$ from \mathbb{R} to \mathbb{R} .

b) g(x) = 2x + 1 from \mathbb{R} to \mathbb{R} . (c) h(x) = 2x + 1 from \mathbb{Z} to \mathbb{Z} . To prove f is NOT onto: There exists an output without input. (b) g(x) = 2x + 1 from \mathbb{R} to \mathbb{R} .

- (a) NO, here is an counterexample. Let b=-1 GIR, we have $\chi^2 = -1$ which has no solution in 12. ⇒ NOT all output has an input ⇒ fox)=x² from IR to IR
- (c) NO, have is an counterexample, Let $b = 2 \in \mathbb{Z}$, we have $2X+1=2 \Rightarrow X=\frac{1}{2} \notin \mathbb{Z}$

→ NOT all output has an input → NOX)=2X+1 from Z to Z IS NOT ONTO

To prove f is onto: need to show that $fy \in B$, we can solve for $x \in A$, such that f(x) = y.

(b) To show "f(x) = 2x + 1 from IR to 1R". is onto, we have Given $y \in 1R$, 2x + 1 = y $\Rightarrow 2x = y - 1$ $\Rightarrow x = y - 1$

HYEIR, we can find $x = \frac{y-1}{z}$ which is also a real number. Therefore, g(x)=2x+1 from IR to IR is onto. 5. The definition of a **Bijective** Function:

If a function f is both <u>one-to-one</u> and <u>onto</u>, then f is bijective.

6. Check if the given function (or mapping) a bijective function.

8. The definition of an **Inverse** Function:

Let a function f be one-to-one from a set A to a set B. Then f is _____ and the ____ function of f, denoted ____, assigns $f^{-1}(\underline{\hspace{0.5cm}}) = \underline{\hspace{0.5cm}}$ if f(x) = y.

