### PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-156357

(43)Date of publication of application: 08.06.2001

(51)Int.CI.

H01L 43/08 GO1R 33/09

G11B 5/39 G11C 11/15 H01F 10/16 H01L 43/12

(21)Application number: 2000-265663

(71)Applicant:

**TOSHIBA CORP** 

(22)Date of filing:

01.09.2000

(72)Inventor:

SAITO YOSHIAKI

**NAKAJIMA KENTARO** INOMATA KOICHIRO SUNAI MASAYUKI

KISHI TATSUYA

(30)Priority

Priority number: 11262327

Priority date: 16.09.1999

Priority country: JP

### (54) MAGNETO-RESISTANCE EFFECT ELEMENT AND MAGNETIC RECORDING ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a magneto-resistance effect element wherein the increase of an applied voltage for a desired output voltage value causes less decrease in magneto-resistance change ratio, no writing rotates the magnetic moment of a part of the magnetization adhesion layer for gradual drop of an output, and an inversion magnetic field is designed at will.

SOLUTION: A magneto-resistance effect element having a ferromagnetic double tunnel joint is provided where first anti-ferromagnetic layer 11/first ferromagnetic layer 12/first dielectrics layer 13/second ferromagnetic layer 14/second dielectrics layer 15/third ferromagnetic layer 16/second antiferromagnetic layer 17 are laminated. Here, the second ferromagnetic layer 14 of a free layer comprises a Co base alloy or a 3-layer film comprising Co base alloy/Ni-Fe alloy/Co base alloy, with first or third ferromagnetic layer applied with a tunnel current.



### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

公 概(A) # 华 噩 4 . 2

**特開2001-156357** (11) 特許出置公開每中

(P2001-156357A)

(43) 小曜日 牙供13年6月8日(2001 6.8)

|              |                                        | CINCL DENT (CE)             | (6.0.1002) H & H (2001: 0: 0) |
|--------------|----------------------------------------|-----------------------------|-------------------------------|
| (51) Int.Cl. | 40000000000000000000000000000000000000 | I da                        | デーマコート"(参考)                   |
| H01L 43/08   |                                        | H01L 43/08                  | 2                             |
| G01R 33/09   |                                        | G11B 5/39                   |                               |
| G11B 5/39    |                                        | G11C 11/15                  |                               |
| G11C 11/15   |                                        | H01F 10/16                  |                               |
| H01F 10/16   |                                        | H01L 43/12                  |                               |
|              |                                        | 審査請求 未耐水 請求項の数11 OL (全26 頁) | 3 頁) 最終頁に続く                   |

000003078

神奈川県川崎市幸区小向東芝町 1 番炮 神奈川県川崎市幸区堀川町72番地 式会社東芝研究開発センター内 休式会社東芝 **水平型 中田** (11) 田間( (72) 発明者 **俸間2000-265663(P2000-285663)** 平成11年9月16日(1999.9.16) 平成12年9月1日(2000.9.1) 特爾平11-262327 (31)優先権主選番号 (21) 田野麻中 (22) 出版日 (32)優先日

中來川環川嘅市森区小向東芝町1#地 株 式会社東芝研究開発センター内 **井理士 龄江 政部** 100058479 (74) 代理人

子島 數大郎

(72)発明者

日本(JP)

(33)優先権主張国

(子6年)

最低四口版人

(54) 【発明の名称】 磁気抵抗効果素子および磁気配縁素子

[鼎却] 所望の出力電圧値を得るために印加電圧を増 やしても磁気抵抗変化率があまり減少せず、費き込みに よって磁化固落局の一部の磁気モーメントが回転して出 力が徐々に低下する問題がなく、さらに反転磁場を自由 に設計できる磁気抵抗効果素子を提供する。

金またはCo装合金/Ni−Fe合金/Co装合金の三 [解決手段] 第1の反動磁性層(11)/第1の強磁 性弱 (12) / 第1の誘電体弱 (13) / 第2の強磁性 て、フリー扇である第2の強磁性層(14)がCo基合 唇膜からなり、第1ないし第3の強磁性層にトンネル電 際 (14) /第2の誘電体層 (15) /第3の強磁性層 (16) / 第2の反強磁性層 (17) が積層された強磁 性二氏トンネル接合を有する磁気抵抗効果紫子であっ

第2の反強磁性層 第1の反強磁性層 /第2の誘電体層 第2の強磁性層 /第1の誘電体層 第3の強磁性層 第1の強磁性層

### 磁気抵抗効果素子も び磁気配録素子

5 7

体開2001-1563

[学歴記状の徳歴]

Fe合金/Co装合金の三層版からなり、前配第1ない [副求項1] 第1の反強磁性層/第1の強磁性層/第 1の該領体層/将2の強磁性層/第2の誘電体層/第3 の強磁性層/第2の反強磁性層が積層された強磁性二重 トンネル接合を有する磁気抵抗効果素子であって、前配 第2の強磁性層がCo基合金またはCo基合金/Ni-し第3の強磁性層にトンネル電流を流すことを特徴とす 5.磁気抵抗効果器子。

[請求項2] 第1の強磁性層/第1の誘電体層/第2 の移電体層/第4の強磁性層が積層された強磁性二重ト ンネル接合を有する磁気抵抗効果器子であって、前配筋 1および第4の強磁性層がCo 基合金またはCo 基合金 /Ni-Fe合金/Co基合金の三層膜からなり、前記 **第1ないし第4の強磁性層にトンネル電流を流すことを** の遠磁性層/第1の反動磁性層/第3の強磁性層/第2 特徴とする磁気抵抗効果素子。

【群求項3】 第1の反強磁性陽/第1の強磁性隔/第 1の誘孔体局/第2の強磁性局/第2の反強磁性層/第 3の強磁性層/第2の誘電体層/第4の強磁性層/第3 の反強磁性層が積層された強磁性二重トンネル接合を有 する磁気抵抗効果素子であって、前配第1および第4の 強磁性層または前配第2 および第3の強磁性層がCo基 合金またはCo基合金/Ni-Fe合金/Co基合金の 三層膜からなり、前記第1ないし第4の強磁性層にトン ネル電流を流すことを特徴とする磁気抵抗効果素子。

の演磁性層/第1の非磁性層/第3の強磁性層/第2の **単性層が積層された強磁性二瓜トンネル接合を有する磁** 第4の強磁性附が非磁性弱を介して反強磁性結合してお なり、前記第1ないし第5の強磁性層にトンネル電流を [耐水項4] 第1の強磁性扇/第1の誘電体駒/第2 非磁性層/第4の強磁性層/第2の誘電体層/第5の強 り、前記第1および第5の強磁性障がCo基合金または Co基合金/NiーFe合金/Co基合金の三層版から 気低抗効果素子であって、互いに隣り合う第2、第3、 流すことを特徴とする磁気抵抗効果素子。

-Fe合金/Co 指合金の三層版の版厚が、1~5 n m であることを特徴とする請求項1ないし4のいずれかに 【静水項5】 前記Co基合金またはCo基合金/Ni

**項1ないし4のいずれかに記載の磁気抵抗効果素子とを** 【閻水項6】 トランジスタまたはダイオードと、閻水 記載の磁気抵抗効果素子。

具備したことを特徴とする磁気記録案子。

項1または3に記載の磁気抵抗効果素子とを具備した磁 【樹水項7】 トランジスタまたはダイオードと、 藺求 気配録素子において、前記磁気抵抗効果素子の少なくと 6 段上層の反強磁性層がピットラインの一部を構成して いることを特徴とする磁気記録紫子。

と、第1の誘電体隔と、磁化方向が反転可能な磁気配録 【請求項8】 磁化方向が固着された第1の磁化固着層

る2つの磁性層が反強磁性結合しており、前記2つの磁 化固着局の誘電体局に接する領域の磁化が実質的に反平 **局と、第2の誘電体障と、磁化方向が固着された第2の** 磁化固着層とを有し、前配磁気配録層が、磁性層、非磁 性層、および磁性層の三層膜を含み、散三層膜を構成す 行であることを特徴とする磁気記録紫子。 [請求項9] 磁化方向が固着された第1の磁化固着隔 と、第1の誘電体層と、磁化方向が反転可能な磁気記録 **船と、第2の誘電体器と、磁化方向が固着された第2の** 磁化固着層とを有し、前配磁気配録隔が、磁性層、非磁 る2つの磁性層が反強磁性結合しており、前記第2の磁 化固着局が、磁性層、非磁性層、および磁性層の三層膜 を含み、該三層膜を構成する2つの磁性層が反強磁性精 の磁化固着層および前配磁気配線層の長さよりも長く形 る領域の磁化が実質的に反平行であることを特徴とする 性局、および磁性局の三層膜を含み、散三層膜を構成す 合しており、前記第1の磁化固着層の長さが、前記第2 成されており、前記2つの磁化固着層の誘電体層に接す 2

る前記第1または第2の磁化固着粉を通して前記磁気記 録層にスピン電流を供給するとともに、售き込み用の配 **級に電流を流して前記磁気記録層に電流磁界を印加する** 【構水項10】 請水項8記載の磁気記録案子を構成す ことを特徴とする磁気記録素子への酢き込み方法。 20

【精水項11】 精水項1ないし4のいずれかに記載の 磁気抵抗紫子を具備したことを特徴とする磁気センサー または磁気ヘッド。 22

[発明の詳細な説明]

[0001]

[発明の属する技術分野] 本発明は強磁性二重トンネル 接合を有する磁気抵抗効果素子、およびそれを用いた磁 気配録紫子に関する。

[0002]

れ、使用温度範囲が広いという特徴があるため、磁気へ ッドや磁気センサーなどに用いられ、最近では磁気記録 寮子(磁気抵抗効果メモリ、MRAM)なども試作され 【従来の技術】 磁気抵抗効果は強磁性体に磁場を印加す ると電気抵抗が変化する現象である。この効果を利用し た磁気抵抗効果素子(MR素子)は、温度安定性に優 32

は、外部磁界に対する癌度が大きいこと、および応答ス るようになってきている。これらの磁気抵抗効果素子 ピードが湛いことが野求される。 【0003】近年、2つの強磁性層の間に誘電体層を挿 ネル電流を利用する磁気抵抗効果紫子、いわゆる強磁性 入したサンドイッチ膜を有し、膜面に垂直に流れるトン 20%以上の磁気抵抗変化率を示す(J. Appl. P TMR)が見出されている。強磁性トンネル接合案子は hys. 19, 4124 (1996)) ため、磁気ヘッ トンネル接合素子(トンネル接合型磁気抵抗効果素子、 45

ドや磁気抵抗効果メモリへの応用の可能性が高まってき

20

<u>'</u>

た。しかし、この強磁性一重トンネル接合素子では、所 習の出力電圧値を得るために印加電圧を増やすと、磁気 氐抗変化率がかなり減少するという問題がある(P h y s. Rev. Lett. 74, 3273 (199

一方の強磁性層に接して反強磁性層を設け、この強磁性 帝を磁化固着層とした構造を有する強磁性一重トンネル 所景の出力電圧値を得るために印加電圧を増やすと、磁 **豊気抵抗効果素子においては、スピン偏極共鳴トンネル** [0004]また、強磁性一重トンネル接合を構成する 接合素子が提案されている(特閒平10-4227)。 [0005] — 1. Fe/Ge/Fe/Ge/Feとい う情層構造を形成した強磁性二重トンネル接合を有する **効果により大きなMR変化率が得られることが理論的に** 子想されている (Phys. Rev. B56, 5484 (1997))。しかし、これらは低温 (8K) での粘 **乳であり、窒温で上記のような現象が起こることは予想** AINなどの誘電体を用いていない。また、上記構造の が回転する結果、出力が徐々に低下するという問題があ しかし、この勤磁性一重トンネル接合素子でも同様に、 強磁性二重トンネル接合素子は、反強磁性局でピンされ た強磁性層がないため、MRAM等に使用すると何度か の作き込みによって磁化固着層の一部の磁気モーメント されていない。なお、この例ではA1<sub>2</sub>03、Si0g 気頂抗変化率がかなり減少するという問題がある。

ドや磁気抵抗効果メモリへの応用が明待されている。特 込みによって磁化固発層の一部の磁気モーメントが回転 ため、電流磁界によって磁気モーメントを反転させるた [0006] さらに、磁性粒子を分散させた誘電体層を 含む強磁性多重トンネル接合素子が提案されている(P hys. Rev. B56 (10), R5747 (199 7));応用磁気学会誌23,4-2,(1999); 9 (1998))。これらの紫子でも20%以上の磁気 に、強磁性二重トンネル接合落子は、印加電圧を増やし しかし、これらの素子でも、反強磁性層でピンした強磁 する結果、出力が徐々に低下するという問題がある。ま 9), 2829 (1998)) では、誘電体層に挟まれ Appl. Phys. Lett. 73 (19), 282 抵抗変化率が得られるようになったことから、磁気ヘッ 性層がないため、MRAM等に使用すると何度かの售き た、連続版からなる強磁性層を用いた強磁性二重トンネ ル接合器子 (Appl. Phys. Lett. 73 (1 めの反転磁場を自由に設制できないという問題があるう えに、磁証の大きいCo等を加工すると保磁力が大きく ても磁気低抗変化率の減少が小さいという利点がある。 た強磁性層がCo. 'NissFeaなどの単層膜からなる

[0012]

応用する場合、配線(ビット線またはワード線)に配流 【0007】 幼磁性トンネル接合素子をMRAMなどに なるという問題もあった。

(フリー層、磁気記録層) に外部磁界 (電流磁界) を印 加して磁気記録局の磁化を反転させる。しかし、メモリ セルの縮小とともに磁気記録局の磁化の反転に要する磁 界(スイッチング磁界)が増加し、普き込みのために配 粮に大電流を流す必要がある。このため、MRAMの記 は、電流磁界による書き込み時に配線に流す電流密度が 憶容畳の増大とともに、俳き込み時の消費電力が増加す を流すことにより、磁化が固定されていない強磁性層 る。例えば、1Gb以上の高密度MRAMデバイスで 8

増大し、配線が溶験するという問題が生じるおそれもあ 【0008】このような問題に対処する1つの方法とし て、スピン偏極したスピン電流を注入し、磁化反転を行

Mat., 202 (1999) 157) 。 しかし、スピ ン電流を注入して磁化反転を行う方法では、TMR素子 を流れる電流密度が大きくなり、トンネル絶縁層が破壊 されるおそれがある。しかも、スピン注入に適した紫子 15 t., 159 (1996) L1; J. Mag. Mag. う試みがなされている(J. Mag. Mag. Ma 構造は未だ提案されていない。

【発明が解決しようとする課題】本発明の目的は、所望 の出力電圧値を得るために印加電圧を増やしても磁気抵 抗変化率があまり減少せず、費き込みによって磁化固著 **樹の一部の磁気モーメントが回転して出力が徐々に低下** する問題がなく、さらに強磁性層のモーメントを反転さ せるための反転磁場を自由に設計できるトンネル接合型 の磁気抵抗効果素子および磁気記録素子を提供すること 23

【0010】本発明の他の目的は、メモリセルの縮小に 伴う磁気記録房の磁化を反転させるための反転磁場の増 加を抑制できるトンネル接合型の磁気抵抗効果素子およ び磁気記録素子を提供することにある。 ಜ

[0011] 本発明のさらに他の目的は、スピン注入に 密度を抑えることができる磁気記録素子およびこの磁気 適した構造を有し、配線およびTMR素子に流れる電流 記録素子への哲き込み方法を提供することにある。 [騾題を解決するための手段] 本発明の第1の磁気抵抗 の誘乳体局/第2の強磁性層/第2の誘乳体局/第3の ンネル接合を有する磁気抵抗効果素子であって、前記第 2の強磁性層がC。基合金またはC。基合金/NiーF e 合金/C o 装合金の三層膜からなり、前記第1ないし 効果素子は、第1の反強磁性層/第1の強磁性層/第1 **幼磁性弱/第2の反強磁性弱が積弱された強磁性三重ト** 第3の強磁性層にトンネル電流を流すことを特徴とす

50 反強磁性層/第3の強磁性層/第2の誘電体層/第4の の強磁性隔/第1の誘電体局/第2の強磁性層/第1の [0013] 本発明の第2の磁気抵抗効果素子は、第1

Co基合金の三層版からなり、前配第1ないし第4の強 **強磁性層が積層された強磁性二重トンネル接合を有する 磁気抵抗効果素子であって、前配第1および第4の勤磁** 性層がCo基合金またはCo基合金/Ni-Fe合金/ 磁性層にトンネル電流を流すことを特徴とする。

された強磁性二重トンネル接合を有する磁気抵抗効果素 第2 および第3の強磁性弱がC。基合金またはC。基合 金/Ni-Fe合金/Co場合金の三層版からなり、前 記券1ないし第4の遺磁作器にトンネル電流を流すこと [0014] 本発明の第3の磁気抵抗効果素子は、第1 の反強磁性層/第1の強磁性層/第1の誘電体層/第2 の強磁性層/第2の反強磁性層/第3の強磁性層/第2 の該電体層/並4の強磁性層/第3の反強磁性層が積層 汗であって、前配第1および第4の強磁性層または前配

強磁性二重トンネル接合を有する磁気抵抗効果素子であ **歴性層を介して反強磁性結合しており、前記第1および** [0015] 本発明の第4の磁気抵抗効果素子は、第1 の油磁性層/第1の誘電体層/第2の油磁性層/第1の 非磁性層/第3の強磁性層/第2の非磁性層/第4の強 **磁性層/第2の誘電体層/第5の強磁性層が積層された** って、互いに降り合う第2、第3、第4の強磁性層が非 Fe合金/Co碁合金の三層版からなり、前配第1ない し第5の強磁性層にトンネル電流を流すことを特徴とす 第5の強磁性層がCo基合金またはCo基合金/Ni-

[0016] 本発明の磁気抵抗効果素子においては、前 記Co場合金またはCo場合金/Ni-Fe合金/Co 基合金の三層版の膜厚が、1~5mmであることが好ま

たはダイオードと、 第1ないし第4のいずれかの磁気抵 【0017】本発明の磁気配線紫子は、トランジスタま 坑効果素子とを具備したことを特徴とする。

たはダイオードと、第1または第3の磁気抵抗効果装子 紫子の少なくとも最上層の反強磁性層がビットラインの とを具備した磁気配録器子において、前配磁気抵抗効果 【0018】本発明の磁気配録索子は、トランジスタま -- 都を構成していることを特徴とする。

同済された第1の磁化固着層と、第1の誘電体層と、磁 【0019】 本発明の他の磁気記録器子は、磁化方向が 磁化方向が周滑された第2の磁化周滑層とを有し、前配 磁気配料層が、磁性層、非磁性層、および磁性層の三層 **指合しており、前記2つの磁化固発層の誘電体層に接す** 版を含み、該三層版を構成する2つの磁性層が反強磁性 化力向が反転可能な磁気記錄粉と、第2の誘電体器と、 る領域の磁化が実質的に反平行であることを特徴とす

と、磁化方向が反転可能な磁気配線隔と、第2の誘電体 [0020] 本発明のさらに他の磁気記録紫子は、磁化 方向が園剤された第1の磁化園着層と、第1の誘電体層

5 7

特開2001-1563

磁気抵抗効果素子4. び磁気記録素子

し、前記磁気記錄局が、磁性層、非磁性層、および磁性 图の三層版を含み、骸三層脱を構成する2つの磁性層が 反強磁性結合しており、前記第2の磁化固着層が、磁性 **昂、非磁性層、および磁性層の三層膜を含み、該三層膜** を構成する2つの磁性層が反強磁性結合しており、前記 第1の磁化固着層の長さが、前配第2の磁化固着層およ **隔と、磁化方向が固落された第2の磁化固落隔とを有** 

び前配磁気配録局の長さよりも長く形成されており、前 記2つの磁化固着層の誘電体層に接する領域の磁化が実

は、磁気配録素子を構成する前配第1または第2の磁化 固着層を通して前配磁気配線局にスピン電流を供給する とともに、也き込み用の配線に電流を流して前記磁気記 【0021】これらの磁気記録紫子への售き込み方法 録層に電流磁界を印加することを特徴とする。 質的に反平行であることを特徴とする。

|発明の実施の形態||以下、本発明に係る磁気抵抗効果 紫子の拈木構造を、図1~図4を参照して説明する。

[0023] 図1に本発明の第1の磁気抵抗効果紫子を 恩11/第1の強磁性陽12/第1の誘電体層13/第 示す。この磁気抵抗効果素子10では、第1の反強磁性 2の強磁性層.14/第2の誘電体層 15/第3の強磁性 **뭔16/第2の反強磁性唇17を積屑して強磁性二重ト** ンネル接合を形成している。この紫子では、第1ないし 第3の強磁性層にトンネル電流を流す。この素子では、

着層)、第2の強磁性層14がフリー層 (MRAMの場 合には磁気記録局)である。第1の磁気抵抗効果素子で 第1および第3の強磁性隔12、16がピン層(磁化固 は、フリー뤔である第2の強磁性隔14がCo基合金

(たとえばCo-Fe、Co-Fe-Niなど) または Co基合金/NiーFe合金/Co基合金の三層膜から

[0024] 図2に木発明の第2の磁気抵抗効果紫子を の反強磁性隔24/第3の強磁性隔25/第2の誘電体 び第4の強磁性層21、27がフリー層 (MRAMの場 示す。この磁気抵抗効果素子20では、第1の強磁性層 21/第1の誘電体局22/第2の強磁性局23/第1 問26/第4の強磁性局27を積局して強磁性二重トン ネル接合を形成している。この紫子では、第1ないし第 4の強磁性層にトンネル電流を流す。この素子では、第 合には磁気配録局)である。第2の磁気抵抗効果素子に 2および第3の強磁性隔23、25がピン層、第1およ おいては、フリー局である第1および第4の強磁性層2 1、27がCo基合金(たとえばCoーFe、CoーF e-Niなど)またはCo基合金/Ni-Fe合金/C 9 32

示す。この磁気抵抗効果素子30では、第1の反強磁性 啜31/第1の強磁性層32/第1の誘電体層33/第 50 2の強磁性層34/第2の反強磁性層35/第3の強磁 【0025】図3に本発明の第3の磁気抵抗効果素子を 0 基合金の三層膜からなる。

が第3の強強性限34、36をピン局として設計した場 一層(MRAMの場合には磁気配線器)になる。第3の 生婦 3 6 / 第 2 の該電体圏 3 7 / 第 4 の強磁性層 3 8 / 第3の反動磁性隔39を積層して強磁性二重トンネル接 合を形成している。この紫子では、第1ないし第4の強 磁性層にトンネル電流を流す。この素子では、第2およ 合には第1および第4の強磁性層32、38がフリー層 および第4の強磁性局32、38をピン層として設計し た場合には第2および第3の強磁性뤔34、36がフリ る、第1および第4の強磁性隔32、38、または第2 (MRAMの場合には磁気記録層)になる。一方、第1 磁気抵抗効果素子においては、フリー層として用いられ および第3の強磁性層34、36のいずれかの組がCo またはCo場合金/Ni-Fe合金/Co基合金の三層 場合金 (たとえばCo-Fe、Co-Fe-Niなど)

の非磁性的 4 4 / 第3 の強磁性隔 4 5 / 第2 の非磁性圏 の強磁性層49を積層して強磁性二重トンネル接合を形 にトンネル電流を流す。また、互いに降り合う第2、第 示す。この磁気抵抗効果素子40では、第1の強磁性層 41/第1の該領体局42/第2の強磁性局43/第1 46/第4の強磁性器47/第2の誘電体隔48/第5 成している。この紫子では、第1ないし第5の前磁性層 46を介して反強磁性結合している。この素子では、第 2 ないし第4の強磁性層43、45、47がピン層、第 1および第5の強磁性層41、49がフリー層 (MRA Mの場合には磁気記録層)である。第4の磁気抵抗効果 素子では、フリー層である第1および第5の強磁性層4 [0026] 図4に本発明の第4の磁気抵抗効果素子を 1、49がCo装合金 (たとえばCoーFe、CoーF e-Niなど)またはCo基合金/Ni-Fe合金/C 3、第4の強磁性層43、45、47は非磁性層44、 0 基合金の三階版からなる。

示す。図5の磁気低抗効果素子では、図4の第3の強磁 を設けた構造すなわち強磁性層45a/反強磁性層50 [0027] 図5に第4の磁気抵抗効果素子の変形例を 性層45の代わりに、その強磁性層の中間に反強磁性層 /強磁性層456の三層膜を形成している。

**第2および第4の強磁性图43、47の少なくとも一方** [0028]なお、第4の磁気抵抗効果素子を構成する に接触させて反強磁性層を散けてもよい。

【0029】 本発明に係る強磁性二重トンネル接合を有 電圧が小さい。このため、磁気抵抗変化率の電圧依存性 する磁気抵抗効果素子は、少なくとも2層の誘電体層を **省するので、1つのトンネル接合に実効的に印加される** が顕著ではなく、所望の出力電圧値を得るために印加電 圧を増やしても磁気抵抗変化率の低下が少ないというメ

する磁気抵抗効果素子は、上配の4つの基本構造のいず [0030] 本発明に係る強磁性二重トンネル接合を有

れも、磁化固着層(ピン層)のスピンが反強磁性層また は反強磁性結合により固定されているので、書き込みを 繰り返しても磁化固着層の磁気モーメントが回転するこ とがなく、出力が徐々に低下するという問題を防止でき

は、フリー層(磁気記録局)に磁歪が小さいCo基合金 (CoーFe, CoーFe-Ni等)またはCo 独合金 フリー層は、図1における第2の強磁性層14、図2に おける第1および第4の強磁性層21、27、圏3にお 9 である。このため、反転磁場が小さく抑えられ、電流 磁界を印加するために配線に流す電流を小さくすること ができる。フリー恐にCo装合金/NiーFe合金/C o 基合金の三層膜を用いた場合、各層の膜厚比を変える ける第1および第4の強磁性層32、38、または第2 および第3の強磁性隔34、36のいずれかの組、図4 および図5における第1および第5の強磁性菌41、4 ことによって、反転磁場の大きさを自由に設計できる。 /Ni-Fe合金/Co基合金の三層版を用いている。 [0031]また、水発明に係る磁気抵抗効果紫子で 15

【0032】特に、図3の構造を有する磁気抵抗効果紫 子では、反転磁場は磁性体の保磁力ではなく磁性体/反 **強磁性体の界面に生じている交換磁場で決定される。そ** 合金組成を変えることによって自由に散計できるという 1、39ならびに第2の反強磁性隔35の種類、膜障、 して、この交換磁場は第1および第3の反強磁性局3 ຂ

つの基本構造のうちでも好ましい特性を示す。また、図 3の構造は、加工寸法がサブミクロンになり、接合而積 ち、加工寸法がサブミクロンになった場合には、밥き込 磁場のばらつきを回避できる。このため、紫子の歩留り 利点がある。このため、図3の基本構造は、上述した4 み磁場が加工ダメージやフリー層 (磁気配線層) のドメ て、図3の構造のようにフリー層(磁気配縁層)に接し て反強磁性層が設けられている場合、밤き込み磁場を交 換磁場に基づいて設計することができるため、皆き込み が非常に小さくなった場合に特に有効である。すなわ インの影響によってばらつきやすくなる。これに対し も著しく向上することができる。

[0033] 一方、本発明の磁気抵抗効果素子を微細加 エする際に、加工物度を上げるためには金体の戦厚が蒋 いことが好ましい。この点では、図2、図4または図5 [0034] 次に、本発明の磁気抵抗効果紫子を構成す ーFe, Co−Fe−Ni等)またはCo括合金/Ni r, Ir, W, Mo, Nbなどの非磁性元素を多少添加 50 してもよい。本発明の磁気抵抗効果素子は、磁気抵抗効 (磁気配録器) には、上述したようにCo 抜合金 (Co のように反強磁性層がなるべく少ない構造が好ましい。 −Fe合金/Co基合金の三階膜が用いられる。また、 これらの合金にAg, Cu, Au, Al, Mg, Si, る各層に用いられる材料について説明する。フリー層 Bi, Ta, B, C, O, N, Si, Pd, Pt, Z 45

果型磁気ヘッド、磁気記録素子、磁界センサー等に適用 することができ、これらの用途ではフリー層に一軸異方 性を付与することが好ましい。

豊間したときに、反転磁場が1000eを超えるため配 mが好ましく、0.5~50nmがより好ましく、1~ 5 nmが股も好ましい。フリー唇の厚さが1 nm未満に なると、フリー弱が連結膜にならず、誘電体層中に強磁 生粒子が分散した、いわゆるグラニュラー構造となるお それがある。この結果、接合特性の制御が困難になりス イッチング磁場がばらつくおそれがあるうえに、微粒子 の大きさによっては室温で超常磁性となりMR変化率が 極端に低下するという問題も生じる。一方、フリー層の 原さがSnmを超えると、磁気抵抗効果紫子をMRAM が5nmを超えると、M.R 変化率がパイアス電圧の上昇 る。フリー塔の厚さが1~5mmの種間であれば、敷細 化に伴う反応磁場の増大およびMR変化率のパイアス依 【0035】フリー扇の厚さは、0. 1nm~100n に応川するにあたり例えば 0. 25μmルールで紫子を **版に大電流を流す必要が生じる。また、フリー層の厚き** とともに低下する、いわゆるパイアス依存性が顕著にな **仔性が抑制される。また、フリー層の厚さがこの範囲で** あれば、加工精度も良好になる。

[0036] ピン局の材料は特に制限されず、Fe, C PtMnSbなどのホイスラー合金などを用いることが できる。ピン局は超常磁性にならない程度の厚さが必要 o, Niまたはこれらの合金、スピン分極率の大きいマ N. Si, Pd, Pt, Zr, Ir, W, Mo, Nb 強磁性を失わないかぎり、これら磁性体にAg, Cu, であり、0.4mm以上であることが好ましい。また、 X:Ca,Ba,Sr)などの佼化物、NiMnSb, Au, Al, Mg, Si, Bi, Ta, B, C, O, グネタイト、CrO<sub>2</sub>、RXMnO<sub>3\*</sub>(R;希土類、

定したい場合、ピン層として強磁性層/非磁性層/強磁 とによって、磁性層間に反強磁性結合が生じる。非磁性 【0037】なお、反動磁性隔によってピン局を強く固 性層の三層版を用い、非磁性層を介して稍勝された2層 の強磁性層を反強磁性指合させてもよい。非磁性層の材 料は特に限定されず、R u, I r, C r, C uなどの金 耐熱性および反強磁性結合の強さなどを考慮すると、非 磁性層の腹厚は 0. 7~1. 3mmであることがより好 ましい。具体的には、Co(またはCoーFe)/Ru e) /Iェ/Co(またはCo-Fe)などの三層版が **属を用いることができる。非磁性層の膜厚を調整するこ** 弱の膜原は0.5~2.5 n m であることが好ましい。 /Co (またはCo-Fe), Co (またはCo-F

Pt-Mn, Pt-Cr-Mn, Ni-Mn, Ir-M [0038] 反強磁性層の材料としては、Fe-Mn, n, NiO, Fe<sub>2</sub>O3などを川いることができる。

[0039] 誘電体層の材料としては、A1<sub>2</sub>0<sub>3</sub>, Si

特開2001—156357

磁気抵抗効果素子4. 50磁気配線素子

誘電体層は、酸紫、窒素またはフッ紫の欠損が生じてい てもよい。誘咒体局の厚さは特に限定されないが、薄い 方が好ましく、10m叫以下、さらに5m叫以下である SrTiO2, AlLaO3などを用いることができる。 O2, MgO, AIN, Bi2O3, MgF2, CaF2, ことが好ましい。

子を積層してもよく、また磁気抵抗効果紫子の上部に保 【0040】本発明の磁気抵抗効果素子が形成される基 ネル,AINなど各種基板を用いることができる。本発 明においては、基板上に下地層を介して磁気抵抗効果素 ✓Pt、Ta∕Pt、Ti∕Pd、Ta∕Pd、または **馥局を設けてもよい。これらの下地局および保護層の材** 料としては、Ta、Ti、W、Pt、Pd、Au、Ti 板は特に限定されず、Si, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, スピ TiNxなどの窒化物などを用いることが好ましい。

の成膜方法を用いて各層を形成することにより製造する [0041] 本発明に係る磁気抵抗効果素子は、各種ス パッタ法、蒸着法、分子模エピタキシャル法などの通常 ことができる。

た磁気記録素子 (MRAM) について説明する。本発明 [0042]次に、本発明の磁気抵抗効果素子を適用し の磁気抵抗効果紫子を適用するMRAMは、非破壊腱み 出しおよび破壊読み出しのいずれの場合でも、上述した 配流磁界を印加するために配線に流す電流を小さくでき

【0043】具体的なMRAMの形態としては、トラン ジスタ上に強磁性二重トンネル接合素子を積層した構 るという効果を得ることができる。

造、またはダイオードと勁磁性二重トンネル接合紫子と を積層した構造が考えられている。以下で説明するよう トンネル接合紫子を適用し、少なくとも最上層の反強磁 に、これらの構造では特に第1または第3の強磁性二重 性層をビットラインの一部として用いることが好まし

どの非磁性元素を多少添加してもよい。

【0044】図6および図7を参照して、MOSトラン 図6は3×3セルのMRAMの特価回路図、図1は1七 (図1)を積層した構造を有するMRAMを説明する。 ジスタ上に例えば第1の強磁性二重トンネル接合紫子 ルのMRAMの断面図を示す。 32

【0045】図6の等価回路図に示すように、トランジ 出し用のワードライン (WL1) 62と、 哲き込み用の R) 1 0 とからなる記録セルはマトリックス状に配列さ れている。トランジスタ60のゲート電極からなる競み る。また、TMR10の他端(上部)と接続されたビッ スタ60と図1の強磁性二重トンネル接合素子(TM ワードライン (WL2) 71とは平行に配置されてい 40

トライン (BL) 74は、ワードライン (WL1) 62 およびワードライン (WL2) 71と直交して配置され

[0046] 図7に示すように、シリコン基板61、ゲ

**ート范極62、ソース、ドレイン領域63、64からな** るトランジスタ60が形成されている。ケート間極62 る。ゲート電極62上には絶縁層を介して書き込み用の ワードライン (WL2) 71が形成されている。トラン ン層)16a、16b/第2の反強磁性隔17が積層さ ジスタ60のドレイン領域64にはコンタクトメタル7 2が接続され、さらにコンタクトメタル72には下地隔 13が接続されている。この下地隔13上のむき込み用 (TMR) 10が形成されている。すなわち、下地隔7 層) 12/第1の該電体層13/第2の強磁性層(プリ れている。この例では、ピン悶を16a、16bの二昂 3上に、第1の反強磁性層11/第1の強磁性層 (ピン - 母) 14/第2の誘電体層 15/第3の強磁性層 (ビ で構成している。このTMR10の第2の反強磁性隔1 7 上にビットライン(BL)74の金属唇が形成されて は読み出し用のワードライン(WL1)を構成してい のワードライン (WL2) 71の上方に対応する位配 に、図1に示したような強磁性二重トンネル接合素子

[0047] 図7に示すように、フリー層である第2の /反節磁性層17/金属層の積層体からなっている。な 7 およびピン暦 1 6 b はピットライン 7 4 の一部を構成 している。すなわち、ピットライン14はピン暦16b お、反強磁性関17の下に反強磁性隔17と同一面積の ピン局16bを散けずに、ピットライン74を反勤磁性 **強磁性層14の面積と上部の反強磁性層17およびピン 南166の面積とは異なっており、上部の反動磁性圏1** 原17/金属原で構成してもよい。

性隔17によりピン層16も、16aのスピンをより安 【0048】この構造では、大きな面積を有する反強磁 **啜16b、16aの磁気モーメントが回転することがな** 定に固着することができ、書き込みを繰り返してもピン く、出力の低下を有効に防止できる。 工権度を向上できる。

形成される。従来は、TMR 10のフリー暦14より上 [0049] また、TMR10のフリー局14より上部 の構造は、フリー隔14/第2の誘電体隔15/ピン層 比較的版厚の厚い反強磁性局 17のパターニング工程が 別工程に分離されるので、上記の最初のパターニングで 16 aの成版およびパターニングと、ピン暦16 b/反 強磁性層17/金属層の成膜およびパターニングにより ビットライン金属層の成膜およびパターニングにより形 部の構造は、フリー因14/第2の誘電体局15/ピン **凱磁性トンネル接合部の加工ゲメージを少なくできると** 母16/反殖磁性層17の成膜およびパターニングと、 成されていた。したがって、図7の構造を採用すれば、 は一度に数細加工すべき膜厚を薄くできる。このため、 ともに、加工精度を向上できる。

した構造を有するMRAMを説明する。図8は3×3セ 例えば第1の強磁性トンネル接合素子 (図1) とを積層 【0050】 関8および図9を参照して、タイオードと

ය

ルのMRAMの等価回路図、図9はMRAMの斜視図で

【0051】図8の等価回路図に示すように、ダイオー ド80とTMR10との積層体からなる記録セルはマト リックス状に配列されている。ダイオード80とTMR 10との積層体はワードライン (WL) 91上に形成さ れ、ダイオード80の一端とワードライン (WL) 91 とが接続されている。TMR 1 0 の他端には、ワードラ イン (WL) 91と直交して配置されたピットライン (BL) 92が接続されている。 9 2

その上に下地隔81が形成されている。原子拡散を防ぐ ために金属層とシリコンダイオードとの間にTiNxな どの窒化脱を散けてもよい。この下地層 8 1 上に、図1 [0052] 図9に示すように、ワードライン (WL) 9 1 の金属層上にシリコンダイオード 8 0 が形成され、

10が形成されている。すなわち、下地閉81上に、第 第1の誘電体層13/第2の強磁性層(フリー層)14 / 第2の誘電体图15/第3の強磁性图 (ピン層) 16 この例では、ピン磨を16a、16bの二殆で構成して いる。このTMR10の第2の反強磁性階17上にビッ 1の反強磁性層11/第1の強磁性層(ピン層)12/ に示したような強磁性二重トンネル接合素子 (TMR) a、16b/第2の反強磁性隔11が指房されている。 トライン(BL)92の金属層が形成されている。

【0053】このような構造のMRAMでも、図7を参 **酢き込みを繰り返してもピン励16b、16aの磁気モ** ケーニング工程が別工程に分離されるので、効磁性トン **ーメントが回転することがなく、出力の低下を有効に防** 止できる。また、比較的版厚の厚い反強磁性層 1 7 のバ ネル接合部の加工ゲメージを少なくできるとともに、加 照して説明したのと同様な効果が得られる。すなわち、 b、16aのスピンをより安定に固着することができ、 大きな面積を有する反強磁性周17によりピン局16 22

磁性層/非磁性層/強磁性層の三層版を使用し、非磁性 【0054】なお、MRAMの用途では、フリー層に強 **뤕を介して強磁性層を反強磁性結合させてもよい。この** ような構成では、磁束が三層膜内で閉じているため、電 きに、ピン磨への節磁磁の影響がなくなるとともに、記 録層からの漏れ磁束を小さくできるため、スイッチング 磁界を小さくできる。このため、你き込みによって磁化 因着局の一部の磁気モーメントが回転して出力が徐々に 低下するという問題がなくなる。この構成では、強磁性 層/非磁性層/強磁性層のうち、電流磁界を印加するた めのワード線に近い方の強磁性層を、よりソフトな強磁 い。三層膜を構成する2つの強磁性層の膜原を異ならせ る場合、膜厚の差を 0. 5~5mmの範囲にすることが 流磁界によりフリー層の磁気モーメントを反転させたと 性体で形成するか、膜厚をより厚くすることが好まし

固着層と、第1の誘電体層と、磁化方向が反転可能な磁 る。このMRAMは、磁化方向が固落された第1の磁化 気配鉢粉と、第2の誘電体粉と、磁化方向が固着された 筑2の磁化周許局とを有する強磁性二重トンネル接合器 **つの磁性母が反強磁性結合している。このように2つの** るので、スイッチング磁界を低減でき、配線に流す電流 アップスピン電流またはダウンスピン電流を供給するか および低性層の三層版を含み、この三層膜を構成する2 磁性層が反強磁性結合して磁気配録層で磁束が閉じてい **帯度を低減できる。また、2つの磁化固着層の誘電体層** め、2つの磁化固落層のうちどちらを通して磁気記録隔 に電流を流すかを選択することによって、磁気配録圏に を選択できる。このため、スピン電流の供給方向を変化 このMRAMは、磁気配録扇にスピン間流を供給すると り、配級およびTMR紫子に流す電流密度を抑えること 子を含む。そして、磁気配録内は、磁性層、非磁性層、 き、TMR茶子に流す電流を低減できる。このように、 に接する領域の磁化が実質的に反平行である。このた させて磁気記録腎の磁化を容易に反転させることがで ともに電流磁界を印加するのに適した構造を有してお

強磁性層からなる三層膜を用いてもよい。特に、強磁性 -Fe合金局がfcc (111)配向であり、その上の 【0056】上記の効磁性二重トンネル接合素子を構成 する反馈磁性結合した磁気配録層は強磁性層と非磁性金 に微細加工できるため、強磁性層/非磁性金属層/強磁 性層からなる三層膜であることが好ましい。また、反強 る。反強磁性結合した磁気配線層は腹厚が確い方が容易 金からなる薄いソフト磁性層を挿入すれば、スイッチン 磁性結合した強磁性層として強磁性層/ソフト磁性層/ 粉としてCo,Fe<sub>1-1</sub> (0.5≤x<1.0)を用いた 場合、2つのCo.Fel.紹の側に例えばNiーFe合 グ磁界を格段に小さくすることができる。これは、Ni び強磁性層のトータルの磁化の値が小さくなることによ 属格とを交近に指除することによって容易に作毀でき Co.Fe.<sub>2</sub>層もfcc (111) 配向となり、Co. Fell自体のスイッチング磁界が低減すること、およ

**覧)などが挙げられる。この場合、反強磁性結合の強さ** (b) (強磁性層/シフト磁性層/強磁性層)/非磁性 粉/始磁性層、(c) (強磁性層/ソフト磁性層/強磁 住屋) /非磁性層/(強磁性層/シント磁体層/強磁性 ましい。磁化固着膜も、磁気配線隔と同様な積層構造と は0. 5erg/cm²以上とある程度大きいことが好 の例としては、(a)強磁性層/非磁性層/強磁性層、

### 特開2001-156357

磁気抵抗効果素子も、び磁気配録素子

[0055] 本発明に係る他のMRAMについて説明す

[0057] したがって、反強磁性結合した磁気配線局 し、反強磁性結合させてもよい。

[0058] 図10~図12を参照して、このMRAM

下地層101/炸1の反強磁性隔102/炸1の磁化固 着層103/第1の誘電体層104/強磁性層105 【0059】図10の勤磁性二重トンネル接合素子は、

a、非磁性層105bおよび強磁性層105cの三層膜 からなる磁気記録階105/第2の誘電体唇106/第 2の磁化固着隔101/第2の反強磁性層108/保護 局109を積局した構造を有する。

び強磁性層105cは反強磁性結合している。第1の誘 電休局104に接する第1の磁化固着骨103と、第2 [0060] 磁気記録图105の強磁性图105aおよ の誘題休隔106に接する第2の磁化固着層101は、 それぞれの磁化が反平行になっている。

a、非磁性隔115bおよび強磁性隔115cの三層膜 からなる磁気記録扇115/第2の誘電体局116/強 7 cの三層膜からなる第2の磁化固着路117/第2の 下地層111/第1の反強磁性層112/第1の磁化固 磁性隔117a、非磁性層117bおよび強磁性層11 反強磁性局118/保護魯119を積磨した構造を有す 【0061】図11の強磁性二低トンネル接合紫子は、 着局113/第1の誘電体圏114/強磁性層115

び強磁性隔115cは反強磁性結合している。第2の磁 7 c は反強磁性結合している。第1の誘電体局114に 6に接する第2の磁化固着層117を構成する強磁性層 [0062] 磁気記録图115の強磁性图115aおよ 化固着層 1 1 7 の強磁性層 1 1 7 a および強磁性層 1 1 接する第1の磁化固膏層113と、第2の誘電体層11 117aは、それぞれの磁化が反平行になっている。

を、第2の磁化固着隔117および磁気配線隔115の かも長く形成された第1の磁化固着層 113からの漏れ 【0063】この場合、第1の磁化固着隔113の長き とが好ましい。このような構成では、第2の磁化固着扇 磁束はほとんど影響がないので、隣接する記録圏への静 長さよりも長く形成して金属配線を兼ねるようにするこ 117でも磁気配錄隔115でも磁束が閉じており、し

【0064】図12の強磁性二重トンネル接合素子は、 磁場の影響を低減できる。

24/強磁性層125a、非磁性層125bおよび強磁 3 a、非磁性图123bおよび強磁性图123cの三層 の反強磁性隔128/保護磨129を積磨した構造を有 下地局121/第1の反強磁性層122/強磁性層12 版からなる第1の磁化固着層123/第1の誘電体層1 性局125cの三層膜からなる磁気記録局125/第2 の誘電体局126/強磁性局127a、非磁性局127 b、強磁性層127c、非磁性層127d、強磁性層1 276の五局膜からなる第2の磁化固着粉127/第2 \$

に用いられる歯磁性二爪トンネル接合素子の例を説明す 50 び歯磁性隔125cは反歯磁性結合している。第1の磁 【0065】磁気記録局125の強磁性層125aおよ

4に接する第1の磁化固着層123を構成する強磁性層 の磁化が反平行になっている。この場合も、図11と同 **着層117および磁気配線層115の長さよりも長く形** 化周存塔123の強磁性塔123aおよび強磁性塔12 123cと、第2の誘循体層126に接する第2の磁化 周着母127を構成する強磁性骨127gは、それぞれ 単に、第1の磁化固着隔123の長さを、第2の磁化固 3 c は反強磁性結合している。 第2の磁化固着層 127 の演磁性時127a、強磁性隔127cおよび強磁性隔 127 e は反強磁性結合している。第1の誘電体局11

込まれた金属からなるワードライン152が形成されて 作屋112/第1の磁化固着圏113/第1の誘電体層 [0066] 図13に、図11の強磁性二重トンネル接 合張子を川いたMRAMの断面図を示す。Si装板15 され、その上に金属配線153と強磁性二重トンネル接 含素子 (TMR素子) が形成されている。このTMR素 Fは、図11に示すように下地局111/第1の反動磁 114/強磁性附115a、非磁性隔115bおよび強 磁性層 1.1.5 cの三路膜からなる磁気記録暦 1.1.5/第 7 b および強磁性隔 1 1 7 c の三層膜からなる第2の磁 化岡清陽117/第2の反強磁性層118/保護層11 9を積弱した構造を有する。このTMR紫子は所定の接 合面値となるように加工されており、その周囲には層間 絶縁膜が破膜されている。この層間絶縁膜上には、TM R 落子の保護粉119と接続するピットライン154が 2の該電休層116/強磁性層117a、非磁性層11 1上のSiO2絶線層には清が形成され、この清に埋め いる。ワードライン152.上にはSi0.絶糅局が形成

入するか、または金属配額153から各層を通して磁気 [0067] COMRAMTH, 7-151521 電流を流して磁気記録图 1.1.5 に電流磁界(例えば困難 葡方向)を印加するとともに、ピットライン154から 各層を通して磁気配録層115ヘダウンスピン電流を注 り、磁気配録樹115の磁化を反転させて書き込みを行 MR紫子に流すスピン電流を低減するとともに配線(ワ う。このように、磁気記録層115にスピン電流を注入 するとともに電流磁界を印加して售き込みを行えば、T したがって、1Gb以上のMRAMでも、配線の溶機ま たはTMR 紫子のトンネルバリア唇 (誘電体層)の破壊 ードライン)に流す電流密度を低減することができる。 記録母115ヘアップスピン電流を注入することによ を抑制することができ、僧頼性を向上できる。

[0068] なお、図13のMRAMでは、ピットライ イン152からの電流磁界とは方向の異なる (例えば容 易柚方向の) 電流磁界を印加するように作用する。この こ、一方で磁気配録器 1.15~注入するスピン電流をよ >154を流れる電流は磁気記録磨115に、ワードラ 方向の犯流磁界を増強するとともにその制御性を向上

り低減するために、図14に示すように、ピットライン 154上に絶縁関155、およびピットライン154と 平行に延びる第2ワードライン156を形成してもよ

い。図14のMRAMでは、TMR紫子に流す電流の向 の変化を併用して、より小さい電流で磁気記録局115 きの変化と、第2ワードライン156に流す電流の向き の磁化の反転を繰り返すことができる。

【0069】次に、本発明の磁気抵抗効果紫子を適用し た磁気抵抗効果ヘッドについて説明する。

01は、磁気ディスク装置内の固定軸に固定されるため 【0070】図15は本発明に係る強磁性二重トンネル の穴が散けられ、図示しない駆動コイルを保持するポビ ン部等を有する。アクチュエータアーム201の一端に 接合素子を含む磁気抵抗効果ヘッドを搭載した磁気ヘッ ドアセンブリの斜視図である。アクチュエータアーム2 2

ドスライダ203が取り付けられている。また、サスペ ンション202には信号の합き込みおよび競み取り用の はサスペンション202が固定されている。 サスペンシ ョン202の先端には上述した各形態の効磁性二瓜トン ネル接合素子を含む磁気抵抗効果ヘッドを搭載したヘッ リード級204が配線され、このリード線204の一端 はヘッドスライダ203に組み込まれた磁気抵抗効果へ ッドの各電優に接続され、リード線204の他端は電極 パッド205に接続されている。

ペンション202およびその先端のヘッドスライダ20 【0071】図16は図15に示す磁気ヘッドアセンブ りを搭載した磁気ディスク装置の内部構造を示す斜視図 である。磁気ディスク211はスピンドル212に装剤 され、図示しない駆動装置制御部からの制御信号に応答 する図示しないモータにより回転する。図15のアクチ ュエータアーム201は固定軸213に固定され、サス ヘッドスライダ203の媒体対向面は磁気ディスク21 3を支持している。磁気ディスク211が回転すると、

**形成されている。** 

1の表面から所定量得上した状態で保持され、情報の記 録再生を行う。アクチュエータアーム201の基端には リニアモータの1種であるポイスコイルモータ214が 散けられている。ポイスコイルモータ214はアクチュ エータアーム201のポピン部に巻き上げられた図示し ない駆動コイルとこのコイルを挟み込むように対向して 配置された永久磁石および対向ヨークからなる磁気回路 とから構成される。アクチュエータアーム201は固定 軸213の上下2個所に設けられた図示しないポールベ アリングによって保持され、ポイスコイルモータ214 により回転摺動が自在にできるようになっている。

2および第4の強磁性二低トンネル接合素子 (図1, 図 2および図4)を用いることが好ましく、第1の前磁性 磁場中熱処理により、隣り合うピン扇とフリー扇のスピ 【0072】磁気抵抗効果ヘッドの用途では、第1、第 二重トンネル接合素子を用いることがより好ましい。ま た、磁気抵抗効果ヘッドの用途では、磁場中成膜または 22 45

ば、磁気ディスクからの涸れ磁場に対して積形応答が得 ンをほぼ直交させることが好ましい。このようにすれ られ、どのようなヘッド構造でも使用できる。 [0073]

Si/SiO<sub>2</sub>排板またはSiO<sub>2</sub>搭板上に図1に示すよ うな構造を有する2種の強磁性二重トンネル接合素子 [実施例] 以下、本発明の実施例について説明する。 (試料Aおよび試料B)を作製した例を説明する。

【0074】 飲料Aは、Ta下地隔、Fe−Mn/Ni ーFeの二帰版からなる第1の反強磁性層、CoFeか 腎、Ni−Fe/Fe−Mnの二層版からなる第2の反 らなる第1の強磁性層、A 1<sub>2</sub>O<sub>3</sub>からなる第1の誘電体 層、Co₀Feからなる第2の強磁性層、A 1₂O₃から なる第2の誘電体層、CoFeからなる第3の強磁性 強磁性層、Ta保護層を順次積層した構造を有する。

[0075] 試料Bは、Ta下地層、IrーMnからな -Fe/CoFeの三路版からなる第2の遺磁性層、A る第1の反勁磁性層、Co-Feからなる第1の強磁性 の頒磁性層、IrーMnからなる第2の反強磁性層、T 層、A 1₂O₃からなる第1の誘電体層、C o F e ∕ N i 1,0,からなる第2の誘電体層、CoFeからなる第3 a 保護原を肌次積層した構造を有する。

[0076] 獣朴Aは以下のようにして作襲した。 基板 をスパック装置に入れ、初期真空度を1×10-Tor た。 堤板上に、Ta Snm/FeyMn46 20nm CoFe 3nm/Ni,Fe2 5nm/Fe34Mn. r に設定した後、A r を導入して所定の圧力に設定し 1.7 nm/Co,Fe 3 nm/A120, 2 nm/ /Ni,Fe, 5nm/CoFe 3nm/Al203

成膜した後、真空を破ることなく酸器を導入しプラズマ ojは、絶Arガス中でA1ターゲットを用いてA1を 20nm/Ta 5nmを順次積層した。なお、Al 酸紫に味すことによって形成した。

[0077] 上記積層版を成脱した後、フォトリングラ フィ技術により段上部のTa保護層上に100μm幅の F部配線形状を規定する第1のレジストバターンを形成 し、イオンミリング技術を用いて加工した。

後、フォトリングラフィ技術により段上部のTa保護層 【0078】次に、第1のレジストバターンを除去した **上に接合す法を規定する第2のレジストバターンを形成** e-Mn/Taを加工した。第2のレジストバターンを 処したまま、電子ビーム蒸消により厚き300nmのA し、イオンミリング技術を用いて第1のA1,0,より上 1,0,を堆積した後、第2のレジストパターンおよびそ の上のAi203をリフトオフし、接合部以外の部分に弱 띙のCooFe/Al₂Oo/CoFe/Ni−Fe/F 間絶縁膜を形成した。

買う第3のレジストパターンを形成した後、表面を逆ス 50 抵抗変化率の値が半分になる電圧V<sub>10</sub>が大きく、電圧 [0079] 次いで、電極配線の形成領域以外の領域を

トオフして、AI電極配粮を形成した。その後、磁場中 後、第3のレジストバターンおよびその上のA1をリフ 熱処理炉に導入し、ピン層に一方向異方性を導入した。 バックしてクリーニングした。全面にAIを堆積した

特開2001-156357

磁気抵抗効果素子も、び磁気配線素子

【0080】 試料Bは以下のようにして作製した。 装板 をスパッタ装置に入れ、初期真空度を1×10-7Tor た。 基板上に、Ta 5nm/IraMna 20nm 10 1nm/NigFe2 t (t=1, 2 # td3 nm)/ r に散定した後、A r を導入して所定の圧力に設定し /CoFe 3nm/Al2O31.5nm/CoFe 92

技術により最上部のTa保護層上に接合寸法を規定する 第2のレジストパターンを形成し、イオンミリング技術 【0081】上記積層膜を成膜した後、フォトリングラ フィ技術により最上部のTa保護層上に100μm幅の 下部配積形状を規定する第1のレジストバターンを形成 し、イオンミリング技術を用いて加工した。次に、第1 のレジストパターンを除去した後、フォトリングラフィ 3 nm/lr2Mnn20nm/Ta 5nmを順次積 層した。A1203は上記と同様な方法により形成した。 CoFe 1nm/Al2O3 1.8nm/CoFe

Taを加工した。次いで、上記と同様にして、AL<sub>2</sub>O<sub>3</sub> 鬲間絶縁膜の形成、AⅠ電極配線の形成、ピン屠への− を用いて第1のA12Oaより上部のCoFe/NigF e<sub>2</sub>/CoFe/A.1<sub>2</sub>O<sub>3</sub>/CoFe/Ir<sub>22</sub>Mn<sub>13</sub>/ 方向異方性の導入を行った。 [0082]また、比較のために、以下のような試料C および試料Dを作製した。試料Cは強磁性一重トンネル 接合素子であり、Ta/Ir-Mn/CoFe/A12 O<sub>3</sub>/CoFe/Ni-Fe/Taという積層構造を有 【0083】試料Dは反強磁性局を含まない強磁性二重 トンネル接合であり、Ta 5nm/CoPt 20n m/CoPt 20nm/Ta 5nmという積層構造 m/Al<sub>2</sub>O<sub>3</sub> 1.5nm/CoFe 1nm/Nis Fe23nm/CoFe 1nm/A1203 1.8n 33 [0084] 図17に試料AおよびBの磁気抵抗効果曲 えることで反転磁場を制御できることがわかる。すなわ 粮を示す。試料Aは250eという小さな磁場でMR変 化率27%が得られている。 試料Bではフリー層(磁気 40 記録码) におけるNigFe<sub>2</sub>とCoFeとの膜厚比を変 な磁場で抵抗が大きく変化し、26%以上の大きなMR き、それぞれ160e、360e、520eという小さ ち、NisFe2の販庫が1nm、2nm、3nmのと

[0085] 図18に試料A、BおよびCについてMR 変化率の印加電圧依存性を示す。なお、この図ではMR この図から、試料AおよびBは、試料Cに比較して磁気 変化率を電圧 0 V のときの値で規格化して示している。 変化率が得られている。

イル中に置き、バガス磁界100m中で磁化固整器の磁 よびDについて、バルス磁場の反転回数と出力循圧との [0086] 次に、試存A、BおよびDをソレノイドコ 式記錄状態の被労散験を行った。図19に試料A、Bお 関係を示す。この図では、出力電圧を初期の出力電圧値 で規格化している。この図から明らかなように、試料D ではバルス磁場の反転回数の増加に伴って出力化圧が著 しく低下している。これに対して、訳料AおよびBは磁 単大に伴うMR変化率の減少が小さいことがわかる。 化固着層の磁気配録状態の疲労は見られない。

重トンネル接合素子は、磁気記録素子、磁気ヘッドに適 [0087] 以上のように図1の構造を有する強磁性二 **川した場合に好適な特性を示すことがわかる。** 

MgO, LaAlOjまたはCaFzを用いた場合にも上 [0088] なお、誘性体層としてSiO2, AIN, 配と同様の傾向が見られた。

[0089] 实施例2

粉、ⅠrーMnからなる反強磁性層、CoFeからなる [0090] 耿朴A2は、Ta下地層、Ni−Fe/C oFeの二層版からなる第1の強磁性層、A 1203から 第3の強磁性層、A 1,O,からなる第2の誘電体層、C Si/Si0<sub>2</sub>塔板またはSi0<sub>2</sub>基板上に図2に示すよ (飲料A2および試料B2)を作製した例を説明する。 なる第1の誘電体層、CoFeからなる第2の強磁性 oFe/Ni-Feの二層版からなる第4の動磁性層、 うな構造を有する2種の強磁性二重トンネル接合装子 Ta保護路を順次積層した構造を有する。

[0091] 耿朴B2は、Ta下地層、Ni−Fe/R 二層版からなる第2の強磁性層、FeーMnからなる第 1の反演磁性層、Ni-Fe/CoFeの二層版からな u/CoFeの三層版からなる第1の強磁性層、Ali Ojからなる第1の誘電体層、CoFe/NiーFeの る第3の強磁性層、A 1<sub>2</sub>0<sub>3</sub>からなる第2の誘電体層、 CoFe/Ru/Ni-Feからなる第4の強磁性層。 Ta保護局を順次債降した構造を有する。

【0092】 試料A2は以下のようにして作製した。 基 r r に設定した後、A r を導入して所定の圧力に設定し 脱した後、真空を破ることなく酸素を導入しプラズマ酸 仮をスパッタ装置に入れ、初期真空度を1×10-7To m/CoFe lnm/Al203 1. 6nm/CoF た。 塔板上に、Ta 3 nm/NigFe19 t (t= 1. 2nm/CoFe inm/Ir2Mnn 17n e lnm/Ni<sub>81</sub>Fe<sub>19</sub> t (t=3,5±td8n jは、絶Aェガス中でA1ターゲットを用いてA1を成 3.5#ttt8nm)/CoFe 1nm/Al203 m) /Ta 5 n m を 肌 氷 積層 した。 なお、 A 1,0 器に曝すことによって形成した。

下部配線形状を規定する第1のレジストバターンを形成 フィ技術により役上部の丁a保護局上に100μm幅の 【0093】上記佰層版を成膜した後、フォトリングラ

し、イオンミリング技術を用いて加工した。

【0094】次に、第1のレジストバターンを除去した 上に接合寸法を規定する第2のレジストバターンを形成 Fe/Ni-Fe/Taを加工した。第2のレジストバ ターンを残したまま、電子ビーム蒸消により厚さ300 後、フォトリングラフィ技術により最上部のTa保護局 し、イオンミリング技術を用いて第1のAi203より上 部のCoFe/Ir-Mn/CoFe/A1203/Co およびその上のA 1<sub>2</sub>O<sub>3</sub>をリフトオフし、接合部以外の nmのA 1,0,を堆積した後、第2のレジストパターン 部分に帰間絶縁敗を形成した。 ŝ

【0095】次いで、電極配線の形成領域以外の領域を 覆う第3のレジストパターンを形成した後、表面を遊ス パッタしてクリーニングした。金面にAlを堆積した

- 後、第3のレジストバターンおよびその上のAIをリフ トオフして、AI電極配板を形成した。その後、磁場中 【0096】駄料B2は以下のようにして作製した。 歩 rrに散定した後、Arを導入して所定の圧力に設定し 板をスパッタ装置に入れ、初削真空度を1×10-7To 熱処理炉に導入し、ピン局に一方向異方性を導入した。 12
  - a 5 n mを肌次積磨した。A 1,0,は上記と同様な方 1. 5nm/CoFe lnm/NigFe19 lnm た。 基板上に、Ta 2 nm/NigFeg 6 nm/ 3 nm/Ru 0.7 nm/NisiFe19 6 nm/T /FeyMn46 20nm/NigFey 1nm/C oFe lnm/A1,03 1.7nm/Co4Fe Ru 0.7nm/Co, Fe, 3nm/Al203

法により形成した。

フィ技術により最上部のTa保護層上に100μm幅の **第2のレジストパターンを形成し、イオンミリング技術** 【0097】上紀積層膜を成版した後、フォトリングラ 下部配線形状を規定する第1のレジストバターンを形成 し、イオンミリング技術を用いて加工した。次に、第1 のレジストパターンを除去した後、フォトリングラフィ 技術により促上部のTa保護隔上に接合寸法を規定する 形成、A1電極配線の形成、ビン層への一方向異方性の た。次いで、上記と同様にして、A 1,0, B 間絶縁膜の を用いて第1のA12O3より上部のCoFe/NigF O3/Co4Fe6/Ru/NigFe19/Taを加工し e19/FestMn46/Ni81Fe19/CoFe/Al2

[0098] また、比較のために、以下のような試料C 2および試料D2を作製した。試料C2は強磁性一重ト nm/CoFe 1nm/A120, 1. 2nm/Co ンネル接合素子であり、Ta 3nm/NigFelg5 Fe lnm/Ir2Mn 17nm/CoFe 1

[0099] 試料D2は反動磁性局を含まない強磁性二 50 5 nm/CoFe 1 nm/A1203 1. 2 nm/C 低トンネル接合であり、Ta 3nm/NigFelg nm/Ta 5nmという積層構造を有する。

oFe 1nm/A1203 1. 6nm/CoFe 1 nm/Ni<sub>si</sub>Fe<sub>19</sub> 5nm/Ta 5nmという積層

[0100] 図20に試料A2およびB2の磁気抵抗効 果曲線を示す。武科A2ではフリー層(磁気配線層)に **抗が大きく変化し、26%以上の大きなMR変化率が得** れ150e、260e、380eという小さな磁場で抵 られている。試杆B2は390eという小さな磁場でM おけるNisFezとCoFeとの版写比を変えることで 反転磁場を制御できることがわかる。すなわち、Nis Fe<sub>2</sub>の版序が3nm、5nm、8nmのとき、それぞ R変化率26%が得られている。

はMR 変化率を電圧 0 Vのときの値で規格化して示して いる。この図から、試料A2およびB2は、試料C2に [0101] 図21に駄料A2、B2およびC2につい てMR変化率の印加電圧依存性を示す。なお、この図で **大きく、電圧増大に伴うMR変化率の減少が小さいこと** 比較して磁気抵抗変化率の値が半分になる電圧リっか

川力電圧との関係を示す。この図では、出力電圧を初期 [0102] 次に、訳枠A2、B2およびD2をソレノ イドコイル中に置き、パルス磁界700e 中で磁化固着 **層の磁気記録状態の疲労軟験を行った。図22に飲料A** 2、B2およびD2について、パルス磁場の反転回数と

て出力電圧が著しく低下している。これに対して、試料 重トンネル接合素子は、磁気配除素子、磁気ヘッドに適 の出力電圧値で規格化している。この図から明らかなよ A2およびB2は磁化固套隔の磁気配録状態の疲労は見 うに、試料D2ではパルス磁場の反転回数の増加に伴っ 【0103】以上のように関2の構造を有する強磁性二 られない。また、駄朴A2とB2との比較では、フリー 際に反強磁性結合したCo.Fe。/Ru/NinFei の三層構造を用いた試料B2の方が疲労が少ない。

MgO, LaA10jまたはCaFzを用いた場合にも上 [0104] なお、誘電体粉としてSiO2, AIN, 記と同様の傾向が見られた。

用した場合に好適な特性を示すことがわかる。

[0105] 実施例3

に示すような構造を有する2種の強磁性二重トンネル接 **合案子(駄料A3および試料B3)を作製した例を説明** 

の反動磁性層、Co-Fe-Niからなる第3の動磁性 なる第4の強磁性層、Ir-Mnからなる第3の反動磁 Niからなる第2の強磁性層、Fe-Mnからなる第2 [0106] 試料A3は、Ta下地層、Ir-Mnから なる第1の反強磁性層、Co-Feからなる第1の強磁 粉、A 1<sub>2</sub>0<sub>3</sub>からなる第2の誘循体層、CoーFeから 性層、A 1,0,からなる第1の誘電体層、CoーFeー 性層、Ta保護屬を順次稍隔した構造を有する。

榻、NiーFe/CoFeの二階版からなる筑3の強磁 なる第1の反強磁性層、Co-Fe/Ru/Co-Fe 1 の誘電体層、CoFe/Ni-Feの二層膜からなる [0107] 試杆B3は、Ta下地層、IrーMnから の三層膜からなる第1の強磁性層、A 1,O,からなる第 第2の強磁性層、Fe-Mnからなる第2の反強磁性

特開2001-156357

磁気抵抗効果素子も、び磁気配録素子

【0108】 試料A3は以下のようにして作製した。 基 r-Mnからなる筑3の反強磁性層、Ta保護層を順次 Ru/Co-Feの三層膜からなる第4の強磁性層、1 性層、A 1,03からなる第2の誘電体層、C o ーFe/ 積層した構造を有する。

rrに散定した後、Arを導入して所定の圧力に設定し を用いてA1を成膜した後、真空を破ることなく酸素を 板をスパッタ装置に入れ、初期真空度を1×10-7To た。 装板上に、Ta 5nm/IraMnn 18nm /IrzMnna 18nm/Ta 5nmを順次積層し た。なお、A 1<sub>2</sub>O3は、純A r ガス中でA 1 ターゲット e,Ni, 2nm/Fe,Mn, 17nm/CosFe, Ni, 2nm/Al203 2nm/CoFe 2nm /CoFe 2nm/A1203 1. 7nm/CosF 導入しプラズマ酸紫に曝すことによって形成した。

フィ技術により最上部のTa保護層上に100μ m幅の 【0109】上記積層膜を成膜した後、フォトリングラ 下部配頼形状を規定する第1のレジストバターンを形成 し、イオンミリング技術を用いて加工した。 【0110】次に、第1のレジストバターンを除去した 後、フォトリングラフィ技術により最上部のTa保護局 上に接合寸法を規定する第2のレジストバターンを形成 し、イオンミリング技術を用いて第1のA1,0,より上 部のCosFe,Ni,/Fe,Mn,/CosFe,Ni,/

第2のレジストパターンを残したまま、電子ピーム蒸着 により厚さ350nmのA1<sub>2</sub>O<sub>3</sub>を堆積した後、第2の レジストバターンおよびその上のA 1,0,をリフトオフ Al2O3/CoFe/Ir2Mnn3/Taを加工した。

【0112】 財料B3は以下のようにして作製した。基 後、第3のレジストバターンおよびその上のAIをリフ トオフして、A1電極配線を形成した。その後、磁場中 【0111】次いで、間極配線の形成領域以外の領域を 置う第3のレジストパターンを形成した後、我面を逆ス r r に設定した後、A r を導入して所定の圧力に設定し Co-Fe 1. 5nm/Ru 0. 7nm/Co-F 熱処理炉に幕入し、ピン層に一方向異方性を薄入した。 板をスパック装置に入れ、初期真空度を1×10<sup>-1</sup>T o た。基板上に、Ta 3nm/Ir-Mn 14nm/ e 1.5nm/A1203 1.7nm/CoFeln バッタしてクリーニングした。全面にAIを堆積した m/Ni81Fe<sub>19</sub> 2nm/Fe<sub>45</sub>Mn<sub>35</sub> 19nm/ NigFeg 2nm/CoFe 1nm/Al2O3 し、接合部以外の部分に層間絶縁膜を形成した。 45

2. 1nm/Co<sub>9</sub>Fe 2nm/Ru 0.8nm/

n mを順次群層した。A 1,0,は上記と同様な方法によ CooFe 2nm/Ir-Mn 14nm/Ta

フィ技術により最上部のTa保護層上に100μm幅の **F部配報形状を規定する第1のレジストパターンを形成** 第2のレジストパターンを形成し、イオンミリング技術 [0113] 上記積層膜を成膜した後、フォトリングラ し、イオンミリング技術を用いて加工した。次に、第1 のレジストバターンを除去した後、フォトリングラフィ 技術により最上部のTa保護層上に接合寸法を規定する 絶様膜の形成、AI電極配線の形成、ピン層への一方向 を加工した。次いで、上記と同様にして、A1203殆叫 を**川いて第1のA1203より上部のCoFe/NigF** O1/Co,Fe/Ru/Co,Fe/Ir-Mn/Ta e19/Fe15Mnss/Nis1Fe19/CoFe/Al2 異方性の第入を行った。

3 および試付D3を作製した。試料C3は強磁性一重ト nm/Co-Fe 1.5nm/Ru 0.7nm/C [0114] また、比較のために、以下のような試料C ンネル接合素子であり、Ta 3nm/Ir-Mn14 o-Fe 1. 5nm/Al20, 1. 7nm/CoF 【0115】 試料D3は反強磁性層を含まない強磁性二 近トンネル接合であり、Ta 5 n m / CogPt2 1 5nm/CoFe 2nm/A1203 1. 7nm/C 2 nm/CosPt, 15 nm/Ta 5 nm 2 w 3 e Inm/Ni<sub>81</sub>Fe<sub>19</sub> 2nm/Fe<sub>45</sub>Mn<sub>55</sub> 1 osFe,Ni, 2nm/Al2O3 2nm/CoFe 9nm/Ta 5nmという税路構造を有する。 間段構造を有する。

[0116] 図23に試料A3およびB3の磁気抵抗効 MR変化率26%が得られている。 賦料B3は630e てMR変化隼の印加電圧依存性を示す。なお、この図で いる。この図から、試料A3およびB3は、試料C3に 界曲報を示す。 試料A3は570eという小さな磁場で [0117] 図24に駄料A3、B3およびC3につい 大きく、電圧増大に伴うMR変化率の減少が小さいこと という小さな磁場でMR変化率27%が得られている。 はMR変化率を電圧0Vのときの値で規格化して示して 比較して磁気抵抗変化率の値が半分になる電圧V<sub>io</sub>が

られない。また、試料A3とB3との比較では、フリー 出力電圧との関係を示す。この図では、出力電圧を初期 うに、試料D3ではバルス磁場の反転回数の増加に伴っ て出力電圧が著しく低下している。これに対して、耿朴 イドコイル中に置き、パルス磁界150e中で磁化固幹 A3およびB3は磁化固着層の磁気記録状態の疲労は見 **嵒の磁気記録状態の疲労試験を行った。図25に試料A** の出力電圧値で規格化している。この図から明らかなよ [0118] 次に、試料A3、B3およびD3をソレノ 3、B3およびD3について、パルス磁場の反転回数と

**層に反強磁性結合したCooFe/Ru/CooFeの三 層構造を用いた試料B3の方が疲労が少ない。** 

【0119】以上のように図3の構造を有する頒磁性二 **重トンネル接合紫子は、磁気記録素子、磁気ヘッドに適** 用した場合に好適な特性を示すことがわかる。

MgO, LaA10jまたはCaFzを用いた場合にも上 [0120] なお、誘電体層としてSiO2, AIN, 記と同様の傾向が見られた。

たは図5に示すような構造を有する2種の強磁性二重ト ンネル接合素子(試料A4および試料B4)を作戦した Si/SiOa数板またはSi/AlN基板上に関4ま 【0121】 実施例4

[0122] 試料A4は、Ta下地隔、NiーFe/C o-Feの二扇膜からなる第1の歯磁性隔、Al<sub>2</sub>O<sub>3</sub>か らなる第1の誘剤体層、CoーFeからなる第2の強磁 性層、Ruからなる第1の非磁性層、CoーFeからな る第3の崩磁性層、Ruからなる第2の非磁性層、Co の誘電体層、CoーFe/NiーFeの二層版からなる 第5の強磁性層、Ta保護層を順次積層した構造を有す ーFeからなる第4の強磁性層、A 1,0,からなる第2

[0123] 畝料B4は、Ta下地層、NiーFe/C o-Feの二層膜からなる第1の強磁性層、A 1,O3か らなる第1の誘冗体層、Co-Feからなる第2の強磁 性層、Ruからなる第1の非磁性層、Co-Fe強磁性 層/Ir-Mn反強磁性層/Co-Fe強磁性層、Rn からなる第2の非磁性層、Co-Feからなる第4の強 /Ni-Feの二層版からなる第5の油磁性層、Ta保 磁性層、A 1,0,からなる第2の誘電体層、Co-Fe 護母を順大積層した構造を有する。

[0124] 試料A4は以下のようにして作製した。 港 rrに設定した後、Arを導入して所定の圧力に設定し e 2nm/Ru 0.7nm/CoFe 2nm/R u 0.7 nm/CoFe 2 nm/Al<sub>2</sub>O<sub>3</sub> 2 nm ス中でAIターゲットを用いてAIを成版した後、真空 を破ることなく酸素を導入しプラズマ酸素に曝すことに 板をスパック装置に入れ、初期真空度を1×10ºTo 5 n m を 順 次 稍 隔 し た。 なお、 A 1,0 it、 純 A r ガ た。 恭仮上に、Ta 5nm/NigFe19 16nm /Co,Fe, 3nm/A120, 1. 7nm/CoF /Co,Fe, 3nm/NigFe, 16nm/Ta

【0125】上記積隔版を成版した後、フォトリングラ フィ技術により段上部のTa保護層上に100μm幅の 下部配線形状を規定する第1のレジストバターンを形成 し、イオンミリング技術を用いて加工した。 【0126】次に、第1のレジストバターンを除去した 後、フォトリングラフィ技術により设上部のTa保護場 上に接合寸法を規定する第2のレジストバターンを形成

2のレジストパターンを残したまま、電子ピーム蒸煮に し、イオンミリング技術を用いて第1のA 1,0,より上 より厚さ300mmのA1,0,を堆積した後、第2のレ 恋のCoFe/Ru/CoFe/Ru/CoFe/Al 103/ColFe/NimFelg/Taを加工した。第 ジストパターンおよびその上のAI<sub>2</sub>O<sub>3</sub>をリフトオフ

【0128】 戯科B4は以下のようにして作戦した。 基 トオフして、AI電極配板を形成した。その後、磁場中 覧う第3のレジストパターンを形成した後、装面を迎ス 後、第3のレジストバターンおよびその上のA1をリフ e 1.5nm/Ru 0.7nm/CoFe 1.5 [0127] 次いで、電極配線の形成領域以外の領域を 版をスパック装置に入れ、初期真空度を1×10-7To rrに設定した後、Arを導入して所定の圧力に設定し nm/lr-Mn 14nm/CoFe 1.5nm/ Ta 5nmを順次積層した。Al2Oiは上記と同様な た。基板上に、Ta 5nm/NigFeg 15nm 熱処理炉に導入し、ピン層に一方向異方性を導入した。 パックしてクリーニングした。全面にAIを堆積した /Co,Fe 2 nm/A1203 1. 5 nm/Co F Ru 0.7 nm/CoFe 1.5 nm/Al203 2 nm/CogFe 2 nm/NigFeg15nm/ し、接合部以外の部分に層間絶縁膜を形成した。 方法により形成した。、

【0129】上記枡局版を成版した後、フォトリングラ フィ技術により最上部のTa保護腎上に100μ m幅の 下部配線形状を規定する第1のレジストバターンを形成 技術により低上部のTa保護層上に接合寸法を規定する 第2のレジストパターンを形成し、イオンミリング技術 Al電極配線の形成、ピン塔への一方向異方性の導入を し、イオンミリング技術を用いて加工した。次に、第1 のレジストバターンを除去した後、フォトリングラフィ を川いて祭1のAlgO3より上部のCoFe/Ru/C oFe/Ir-Mn/CoFe/Ru/CoFe/Al いで、上記と同様にして、A 1,0,層間絶縁膜の形成、 103/CogFe/NinFeg/Taを加工した。次

[0130] また、比較のために、以下のような批料C 4および試料D4を作製した。試料C4は強磁性一重ト CoFe 2 nm/Ru 0.7 nm/CoFe 2 n m/Ru 0.7nm/CoFe 2nm/Ta 5n ンネル接合案子であり、Ta 5 n m / N i s F e 19 l 6nm/Co,Fe, 3nm/A1203 1.7nm/ mという積層構造を有する。

[0131] 款料D4は反強磁性結合のない強磁性二重 トンネル接合であり、Ta 5nm/NigFelg 1 nm/Ni<sub>81</sub>Fe<sub>19</sub> 16nm/Ta 5nmという税 CoFe 6nm/Al2O3 2nm/Co4Fe, 3 6 n m/Co, Fe, 3 n m/A 1,0, 1, 7 n m/ **層構造を有する。** 

特開2001—156357

少磁気配線素子

磁気抵抗効果素子も

てMR変化率の印加電圧依存性を示す。なお、この図で 果曲線を示す。試料A4は330eという小さな磁場で MR変化率28%が得られている。試料B4は180e [0133] 図27に試存A4、B4およびC4につい はMR変化率を配圧OVのときの値で規格化して示して いる。この図から、試料A4およびB4は、試料C4に [0132] 図26に試料A4およびB4の磁気抵抗効 大きく、電圧増大に伴うMR変化率の減少が小さいこと という小さな磁場でMR変化率26%が得られている。 比較して磁気抵抗変化率の値が半分になる電圧V<sub>12</sub>が 9

イドコイル中に置き、パルス磁界400 e 中で磁化固着 うに、試料D4ではバルス磁場の反転回数の増加に伴っ られない。また、試料A4とB4との比較では、磁化固 着層に反強磁性層を挿入したCoFe/Ir/CoFe **扇の磁気配録状態の疲労試験を行った。図28に試料A** 4、B4およびD4について、パルス磁場の反転回数と 出力電圧との関係を示す。この図では、出力電圧を初期 の出力電圧値で規格化している。この図から明らかなよ A4およびB4は硫化固着唇の磁気記録状態の疲労は見 [0134] 次に、試料A4、B4およびD4をソレノ て出力電圧が落しく低下している。これに対して、飲料 /Ir-Mn/CoFe/Ir/CoFeの7扇構造を 用いた試料B4の方が疲労が少ない。

重トンネル接合素子は、磁気記録素子、磁気ヘッドに適 【0135】以上のように図4の構造を有する強磁性二 用した場合に好適な特性を示すことがわかる。

MgO, LaAIOsまたはCaFsを用いた場合にも上 [0136] なお、誘電体層としてSiO2, AIN, 記と同様の傾向が見られた。

[0137] 実施例5

図7または図9に示したMRAMを想定して、Si/S 有する弥磁性二重トンネル接合紫子(試料A5および試 i OyまたはSiOy基板上に図29に示すような構造を 科B5)を作製した例を説明する。

[0138] 駄料A5は、Ta下地層、FeーMnから なる第1の反強磁性層、NiーFe/CoーFeの二層 版からなる第1の強磁性層、A12O3からなる第1の誘 間体層、CogFeからなる第2の強磁性層、A 1,03

からなる第2の誘電体局、Co-Feからなる第3の強 磁性層、ピットライン(NiーFeからなる類3の強磁 性層、Fe-Mnからなる第2の反強磁性層、Alから なる金属局)を順次積層した構造を有する。 40

【0139】 試料B 5 は、T a からなる下地層、I r ー Mnからなる第1の反強磁性層、CoーFeからなる第 1の強磁性層、A 1<sub>2</sub>O<sub>3</sub>からなる第1の誘電体層、C o -Fe/Ni-Fe/Co-Feの三路販からなる第2 Feからなる第3の強磁性層、ビットライン(Coから 50 なる第3の強磁性層、1r-Mnからなる第2の反強磁 の強磁性層、A 1,0,からなる第2の誘電体層、C o -45

S

住母、AIからなる金属粉)を順次債層した構造を有す

[0140] 図29に示されるように、駄杯A5および B5のいずれも、接合面積に比較して第2の反強磁性膜 の面間が大きい。 [0141] 試料A5は以下のようにして作製した。基 r r に散定した後、A r を導入して所定の圧力に設定し てAIを成脱した後、真空を破ることなく酸素を導入し 仮をスパック装置に入れ、初期真空度を1×10-7To た。排板上に、Ta 5nm/FegMnus 18nm お、AlgOjは、絶Arガス中でAIターゲットを用い CoFe 2nm/Ta 5nmを順次積弱した。な 1.7nm/Co,Fe 3nm/A120, 2nm/ /NigFe2 5nm/CoFe 2nm/Al2O3 プラズマ検索に曝すことによって形成した。

フィ技術により最上部のTa層上に50μm幅の下部配 **報形状を規定する第1のレジストパターンを形成し、イ** [0142] 上記積掃版を成版した後、フォトリングラ オンミリング技術を用いて加工した。

作製した。電子板レジストパターンを残したまま、電子 [0143] 次に、第1のレジストパターンを除去した 後、最上部のTa層上に電子報レジストを塗布し、EB 間両装置を用いて第1のAl₂O3より上部の各層の機細 リフトオフし、接合部以外の部分に層間絶縁膜を形成し ビーム蒸着により厚さ300nmのA1,0,を堆積した 後、電子板レジストパターンおよびその上のA1203を m², 0. 15×0. 15 m²の強磁性トンネル接合を 加工を行い、接合面積1×1μm², 0.5×0.5μ

[0144] 次いで、電極配線の形成領域以外の領域を **覧う第3のレジストパターンを形成した後、表面を逆ス** バッタしてクリーニングし、さらにTa唇を除去した。 その後、ピットラインの電極配線としてNisFe<sub>2</sub>5 nm/FesiMn4s 18nm/Al 5nmを順次積 限をリフトオフした。その後、磁場中熱処理炉に導入 し、ピン帝に一方向男方性を導入した。

[0145] 試料B5は以下のようにして作製した。 携 rrに散定した後、Arを導入して所定の圧力に設定し を順次稍勞した。A 1,0 jは上記と同様な方法により形 仮をスパック装置に入れ、初期真空度を1×10-7To た。 恭仮上に、Ta 5nm/Ir2Mnn 18nm /CoFe 3nm/A120, 1. 5nm/CoFe 1nm/Ni,Fe, 3nm/CoFe 1nm/A 1203 1.8nm/CoFe 3nm/Ta·5nm

フィ技術により位上部のTa屑上に50μm幅の下部配 [0146] 上記積層膜を成膜した後、フォトリングラ 報形状を規定する第1のレジストパターンを形成し、イ **tンミリング技術を用いて加工した。** 

【0147】次に、第1のレジストバターンを除去した 後、最上部のTa唇上に電子線レジストを塗布し、EB 福画装置を用いて第1のA12O3より上部の各層の微細 作製した。電子報レジストバターンを残したまま、電子 リフトオフし、接合部以外の部分に弱間絶縁膜を形成し m², 0. 15×0. 15 μm²の強磁性トンネル接合を ビーム蒸着により厚さ300nmのA1,0,を堆積した 後、配子板レジストパターンおよびその上のA1,0,を 加工を行い、接合面積1×1μm², 0.5×0.5μ 9

[0148] 次いで、間極配線の形成領域以外の領域を 関う第3のレジストパターンを形成した後、表面を逆ス n<sub>18</sub> 18 n m/A l 5 n m を 順次報題 した。 第3 の レジストパターンおよびその上の配極配線をリフトオフ した。その後、磁場中熱処理炉に導入し、ビン扇に一方 その後、ピットラインの間極配板としてCo/IraM パッタしてクリーニングし、さらにTa唇を除去した。 向異方性を導入した。 22

[0149]また、比較のために、以下のような飲料C 5、就料D5および飲料B5を作製した。飲料C5は頭 磁性一重トンネル接合素子であり、Ta 5nm/Ir 5nm/CoFe 1nm/NigFe, 3nm/Co 22Mn 13 1 8 n m / C o F e 3 n m / A 12 O 3 1. 8

Fe 3nm/A1203 1. 5nm/CoFe 1n Fe Inm/Ta 5nmという積層構造を有する。 【0150】飲料D5は、試料B5と同様の積層構造、 すなわち丁a 5nm/Ir2Mnn 18nm/Co m/NisFe, 3nm/CoFe 1nm/Al2O3 22

図29の構造とは異なり、上部のIrMnからなる第2 の反強磁性層(およびTa保護層)の面積も接合面積と 同一になるように加工されたている。また、ピットライ 1. 8 n m / C o F e 3 n m / I r 2 M n 3 1 8 nm/Ta 5nmという積層構造を有する。しかし、 ンはAI唇のみからなっている。 8

【0151】 試科E5は反強磁性局を含まない強磁性二 1. 8nm/CoFePt 13nm/Ta 5nm2 13nm/A1203 1. 5nm/CoFe 1nm/ 低トンネル接合であり、Ta 5nm/CoFePt NisFe, 3nm/CoFe 1nm/Al2O3 33

いう積層構造を有する。

[0152] 図30に試料A5およびB5の磁気低抗効 県曲線を示す。試料A5は290eという小さな磁場で MR 変化率28%が得られている。 散科B5は390e [0153] 図31に就料A5、B5およびC5につい てMR変化率の印加電圧依存性を示す。なお、この図で はMR変化率を電圧0Vのときの値で規格化して示して いる。この図から、試料A5およびB5は、試料C5に 大きく、電圧増大に伴うMR変化率の減少が小さいこと という小さな磁場でMR変化率27%が得られている。 比較して磁気抵抗変化率の値が半分になる電圧V<sub>10</sub>が 45

の磁気配線素子 磁気抵抗効果素子。 [0154] 次に、試料A5、B5、D5およびE5を ソレノイドコイル中に置き、パルス磁界100m中で磁 化固着層の磁気配録状態の疲労試験を行った。図32に 紋科A5、B5、D5およびE5について、バルス磁場 の反転回数と出力電圧との関係を示す。この図では、出 力電圧を初期の出力電圧値で規格化している。この図か

[0157] 实施例6

特開2001-156357

有する強磁性二重トンネル接合素子を作製した。これら の素子の積層構造を表1に示す。なお、下地層および保 Pd、Ta/Pt、Ta/Pd、TiNxのいずれかを 実施例1~4と同様な方法により、Si/SiO<sub>2</sub>基板 籔層としては、Ta、Ti、Ti/Pt、Pt、Ti/ またはSi〇<sub>2</sub>装板上に、図1~図4に示す基本構造を 用いている。 [0158] これら試料について、MR変化率が1/2 に減少する電圧値V<sub>12</sub>、100000回のフリー圏

ら明らかなように、 試料E5ではパルス磁場の反転回数 以科D5は、接合面積が小さいほど、疲労が激しくなる

の増加に伴って出力電圧が寄しく低下している。また、

ジ等で上部磁化固着層が劣化したためであると考えられ る。これに対して、試料A5およびB5は磁化固着層の 9 に示したように、上部の反馈磁性格をピットラインの 【0155】以上のように図29の構造を有する強磁性 二重トンネル接合素子は、特に磁気配録素子に適用した

磁気記録状態の被労は見られない。このことから、図2

一部として構成することが有利であることがわかる。

傾向を示した。これは、接合面積が小さいと加工ダメー

(磁気記録局) 反転時の出力値と初期出力値との比を表 れており、電圧依存のMR変化率の減少度合いも強磁性 1 に示した。いずれの試料でも大きなMR変化率が得ら **一爪トンネル接合紫子に比べて小さい。また、フリー扇** (磁気記録局) の磁化反転を繰り返しても、出力電圧の

[0159] したがって、これらの素子は磁気抵抗効果 型ヘッド、センサー、磁気記憶器子として用いた場合に 低下はほとんどなく、疲労が小さい。 有効であることが分かる。

[0160]

2

MgO, LaAIOjまたはCaFjを用いた場合にも上

肌と同様の傾向が見られた。

【0156】なお、誘電体局としてSiO, AIN,

場合に好適な特性を示すことがわかる。

8 0.99 96'0 69 55 0.94 96.0 69 16.0 8 16.0 16.0 0.98 86.0 2.0 2.0 97.0 5 0.75 17.0 50 0.7B 180 2 0,78 :SemX2emX1.amX0.7umX1.tumX0.1umX1.tumX2.amX1.1rm) af-eNi>S102yTe=Co/Thu/FeCo/Th22μM1pg/CoFe/Ru/CoFe/SiO2/CoFeNi -tumX12cmX1.1rmX0.8emX1.8emX1.1rmX1.8emX0.8emX1.1rmX2.1nmX1.1nmX1 is/ir/feCo/PUMn/CoFe/Ir/CoFe/AiN/CoFe
IrmX0.9nmXInmX17nmXInmX0.9nmXInmX2.1nmX15nm) (15nm) (1.6nm) (2.2nm) (2nm) (20nn εΓεΝίζειος/Γευσ/πυ/Γευσ/πυ/Οσ/Σίος/Οσ-επι Εππίζεισιχι, Εππίχυ, Ιοπιχυ, Εππίχυ, Τοπιχι, Εππίχουπχι, Τοπιλ (3nm) (2nm) (1.5nm) (1.5nm) (1.5nm) (2nm)

時間にも低存するが、熱処理でも同様の原子拡散が生じ 50 Si/SiOa基板またはSiOa基板上に図1に示すよ 基合金層、またはこれらと非磁性層や反強磁性層との **圳での原子の拡散が生じると考えられる。また、温度や** 、混合が生じることがあり得る。例えば、スパックリン グ時にスパッタ強度を強くすれば、NiFe合金層、C

[0161]なお、本発明において、各段間の原子拡散 45 ると考えられる。こうした原子拡散が発生しても、各層 を構成する材料が本発明において要求される磁気特性を 示し、明示した材料の範囲内に含まれる限り、本発明の

[0162] 実施例7 範疇に入る。

二重トンネル接合案子(飲料T1,T2およびT3)を うな構造を有し、フリー層の厚さが異なる3種の強磁性 作裂した例を説明する。

[0163] 軟杆T1は、Ta下地層、Fe−Mn/N i - Feの二層版からなる第1の反強磁性層、CoFe らなる筑2の誘電体層、CoFeからなる第3の強磁性 腎、Ni−Fe/Fe−Mnの二層膜からなる第2の反 強磁性層、Ta保護層を順次積層した構造を有し、フリ からなる第1の強磁性層、A 1<sub>2</sub>O<sub>3</sub>からなる第1の誘電 一層であるCooFeからなる第2の強磁性層の膜厚が 2. 5 nmに設定されている。

[0164] 試料丁1は以下のようにして作製した。 独 r r に散定した後、A r を導入して所定の圧力に散定し を成版した後、真空を破ることなく酸素を導入しプラズ 版をスパック装置に入れ、初期真空度を1×10-To t。 據板上に、Ta 5nm/FesyMn46 20nm m/CoFe 3nm/NisFe2 5nm/Fe3M ng 20nm/Ta5nmを順次積層した。なお、A 1<sub>2</sub>O<sub>3</sub>は、純Arガス中でA1ターゲットを用いてA1 1. 7 nm/Co,Fe 2. 5 nm/A120, 2 n /NisFe2 5nm/CoFe 3nm/Al2O3 7般装に味すことによって形成した。

フィ技術により 位上部のTa保護局上に100μm幅の 下部配扱形状を規定するレジストパターンを形成し、イ [0165] 上記積層版を成版した後、フォトリングラ オンミリング技術を用いて加工した。

よびRIEにより最上部のTa保護骨上に接合寸法を規 た。この工程により接合幅を様々に変化させた。接合幅 が1 μ m以下の素子を形成する場合には電子報リングラ + トリングラフィ技術または電子線リングラフィ技術お [016.6] 次に、レジストパターンを除去した後、フ 定するTiハードマスクを形成し、イオンミリング技術 フィ技術を用いた。接合部上にレジストパターンを形成 し、スパッタ法またはプラズマCVD法により厚き30 びその上のSi0~をリフトオフし、接合部以外の部分 を川いて第1のA1,03より上部のCo9Fe/A1,0 3/CoFe/Ni-Fe/Fe-Mn/Taを加工し 0 n m の S i O,を 堆積した後、 レジストパターンおよ に層間絶縁膜を形成した。

してクリーニングした。全面にAIを堆積した後、レジ 1 電極配線を形成した。その後、磁場中熱処理炉に導入 **覧うレジストパターンを形成した後、表面を逆スパッタ** [0167] 次いで、間梗配線の形成領域以外の領域を ストバターンおよびその上のA1をリフトオフして、A し、ピン塔に一方向異方性を導入した。

なる第2の強磁性層の駿原を7mmとした以外は、鉄料 [0168] 試料T2はフリー層であるCooFeから T1と同様にして作製した。

[0169] 試料T3はフリー局であるCogFeから

なる第2の強磁性層の腹厚を17mmとした以外は、試 料T1と同様にして作製した。 [0170] 図33に、試料T1、T2およびT3につ いる。図33に示されるように、いずれの試料でも接合 幅を紹介するに従って反転磁場が増大している。このこ 小さく、接合幅の縮小に伴う反転磁場の増大が抑制され ている。一方、フリー唇の腹厚が比較的厚い試料T2お が客しく増大するおそれがある。ここで、現状の加工技 が1000eより小さく、今後のさらなる微細化に対応 00eを超えており、MRAM応用において作き込み時 いて、茶子の接合幅とフリー層の反転磁場との関係を示 **す。この図では楢軸を接合幅Wの遊数(1 /W)として** とは、MRAM応用においては接合幅を縮小するに従っ て指き込み時の消費電力が増大することを意味する。し 10 かし、フリー隔の膜厚が薄い試料T1では直椒の頻きが よびT3では、接合幅の縮小に伴う反転磁場の増大が顕 者であり、MRAM応用において雪き込み時の消費電力 術で得られる接合幅 0.25 /r m (1 / W = 4)の素子 に着目して反転磁場を比較する。試料T1では反転磁場 できる。一方、飲料T2およびT3では反転磁場が10 の消費電力がすでに高く、さらなる機組化に対応するこ 12

てMR変化率の印加電圧依存性を示す。なお、この図で はMR変化率を電圧 0 Vのときの値で規格化して示して いる。フリー局の膜厚が薄い試料T1ではMR変化率の **虹トンネル接合紫子に比べればパイアス依存性が小さい 【0171】図34に試料下1、T2およびT3につい** おり、パイアス依存性が抑制されている。一方、フリー 唇の膜厚が比較的厚い試料T2およびT3は、強磁性ー 値が半分になるパイアス電圧V<sub>IA</sub>が0、9Vを超えて が、V<sub>10</sub>は0. 8 V未満であり、試料T1に比べて明 らかに劣っている。

[0172] 図33および図34から、フリー扇の厚き フリー扇の厚さが5 n m 以下であれば、0.25 μ m ル ールの紫子で反転磁場が1000e以下に抑えられ、か が薄いほど、接合の微細化に伴う反転磁場の増大が抑え フリー樹の厚さが1 n m未満になると、フリー뭠が連続 版にならず、誘電体層中に強磁性粒子が分散した、いわ られ、かつバイアス依存性も改善されることがわかる。 つMR変化率のバイアス依存性も改善される。しかし、 ゆるグラニュラー構造となるおそれがある。この結果、 は窒温で超常磁性となりMR変化率が極端に低下すると いう問題も生じる。したがって、フリー層の厚さは1~ 5nmであることが好ましい。 [0173] 实施例8

接合特性の制御が困難になり、微粒子の大きさによって

ジストを強布しフォトリングラフィーによりレジストバ の後、プラズマCVDにより、ワードライン152.上に メッキ社を用いて部内にCuを埋め込んだ後、CMPに より平坦化を行い、ワードライン152を形成した。そ ターンを形成し、RIEによりSiOが清を加工し、 厚さ250nmのSiO<sub>2</sub>砕間絶縁散を形成した。

後、真空を破ることなく酸素を導入しプラズマ酸素に購 [0174] この試料をスパック装置に入れ、初期真空 純Arガス中でAIターゲットを用いてA1を成版した 度を3×10⁴Torrに散症した後、Arを導入して 所定の圧力に設定した。SiO<sub>2</sub>層間絶縁膜上に、Ta F地图/Cu (50nm)/NigFelg (5nm)/ A 1203 (1 n m) / ComFen (2 n m) / Nig (0. 9 nm) / ComFen (2 nm) / NimFe nm) /Cos,Fes (3nm) /Ru (0.9nm) e i (5 n m) / A u 保護版を指路した。 A 1,0,は、 19 (1 n m) / ComFen (2 n m) / Al<sub>2</sub>O<sub>3</sub> (1 /CossFess/Ir22Mnrs (12nm) /Nis1F Ir<sub>22</sub>Mn<sub>13</sub> (12nm) /Co<sub>50</sub>Fe<sub>59</sub> (3nm) / Fe<sub>19</sub> (1 n m) / Co<sub>10</sub> Fe<sub>10</sub> (2 n m) / R u すことによって形成した。

師の積層版を加工してTMR紫子を形成した。TMR紫 ードマスクを形成した後、イオンミリングを行い、稍悶 フィにより接合す法を規定するレジストバターンを形成 ンを形成し、RIEにより余属配線153を規定するハ 【0176】次に、レジストを強布してフォトリングラ [0175] 上記程層版上にSijNを成版し、レジス トを資布してフォトリングラフィによりレジストバター **賞を加工した。その後、レジストバターンを除去した。** し、イオンミリング技術を用いて第1のA 1,O,より上 子のセルサイズは全て0、 $4 \times 0$ 、 $4 \mu m^2 とした。そ$ の後、レジストパターンを除去した。

们って平坦化した。金面にCu、絶縁膜、およびCuを 155、および第2ワードライン156を形成した。そ 間絶縁膜を破骸し、CMPにより250mmの厚さまで を強布してフォトリングラフィによりレジストバターン オンミリングを行い、ピットライン154、뤔川純椽局 積層した。この積層膜上にSi₃N,を破膜し、レジスト を形成し、RIEによりハードマスクを形成した後、イ の後、試料を磁場中熱処理炉に導入し、磁気配録層に一 **[0178] 得られたMRAMに対して以下の3つの方** [0177] 次いで、プラズマCVDによりSiO<sub>2</sub>間 軸異方性を、磁化固着層に一方向異方性を導入した。 **広で書き込みを行った。** 

イン156に10nsecの沿流バルスを流して磁気配 [0179] (1) TMR※子に1mAのスピン化流を 法人しながら、ワードライン152および第2ワードラ 鉢塔1.1.5の容易軸方向および困嫌軸方向に電流磁場を 印加する方法。

【0180】(2)TMR紫干へのスピン電流の注入の 50 果型ヘッド、磁界センサー、磁気配憶素子などに好適に

### みを行う方法。

特開2001-156357

磁気抵抗効果素子 人 医放气配缝素子

ドライン156に10nsecの間流パルスを流して磁 気記録界 1 1 5 の容易軸方向および困難軸方向に電流磁 【0181】 (3) ワードライン152および第2ワー 場を印加する方法。 【0182】なお、磁気記録隔115の困雑制方向に電 流磁場を印加するための電流パルスは10nsec、3

を行った後、TMRセルに直流電流を流し、出力電圧が 【0183】磁気記録图115の磁化反転は、 甘き込み 変化したかどうかにより判断した。

いうサイズのTMR紫子に対しては、(2)のTMR紫 子へのスピン電流の注入のみを行う方法では、電流値を 【0184】 水実施例における0. 4×0. 4 m²と

5の磁化反転を起こすためには、磁気記録图115の容 10mAまで増加させても、磁化反転は観測されなかっ た。(3)の磁気記録層115の容易軸方向および困難 軸方向に電流磁場を印加する方法では、磁気配録器 1.1 易軸方向に電流磁場を印加するための電流を4.3mA まで増加させる必要があった。

[0185] これに対して、(1)の方法で、1mAの スピン電流を流しながら、磁気記録層115の容易軸方 ろ、2. 6 m A の電流値で磁気配線層 1 1 5 の磁化反転 向に電流磁場を印加するための電流を増加させたとこ

子に流すスピン間流の向きを変えることによって、上記 が確認された。また、磁気記録图115の容易軸方向に 電流磁場を印加するための電流の向き、およびTMR業 のような小さい電流値のままで磁気記録層115の磁化 反転を繰り返すことができることがわかった。 [0186] このように、本実施例のMRAMの構造お 造を有し、電流磁界を印加するための配線に流す電流お よび書き込み方法を採用すれば、スピン注入に適した構 よびTMR素子に流す電流を小さくできる。したがっ

て、MRAMの高密度化に伴って配線幅およびTMR紫 子サイズが小さくなっても、配線の溶験またはトンネル パリア局の破壊を抑制することができ、信頼性を向上で

[0187]

血トンネル接合を有する磁気抵抗効果素子では、所望の [発明の効果] 以上酢池したように、本発明の強磁性二 出力電圧値を得るため印加電圧値を増やしても磁気抵抗 変化率があまり減少せず、售き込みによって磁化固着層 る。また、MRAMの高密度化に伴って配線幅およびT 向上できる。したがって、大きな出力電圧が安定して得 の一部の磁気モーメントが回転して出力が徐々に低下す るという問題もなく、しかも反転磁場を自由に設計でき MR紫子サイズが小さくなっても、配線の溶融またはト ンネルバリア隣の破壊を抑制することができ、偶類性を られる微細な磁気抵抗効果素子を提供でき、磁気抵抗効 42

50 を用いてワードライン152を形成した。すなわち、レ

RAMを作製した例を示す。Si 装板151上にプラズ

Si/SiO2 指板上に図14のような構造を有するM マCVDによりSiO,を成敗した。 タマシンプロセス

### 特開200 - -156357

[図1] 木徒明の第1の磁気抵抗効果素子の基本構造を

川いることができる。 [図面の簡単な説明] 5.す 断 順図。

**京す断面图** 

|図3| 木発明の第3の磁気抵抗効果素子の基本構造を

[図4] 本発明の第4の磁気抵抗効果素子の基本構造を

[図5] 木発明の第4の磁気抵抗効果素子の変形例の基

|図6| MOSトランジスタと強磁性二瓜トンネル接合 **ド格造を示す断面図** 

[図7] 強磁性二重トンネル接合素子のビン層がピット 将子とを組み合わせたMRAMの等価回路図。

[図8] ダイオードと強磁性二低トンネル接合素子とを i インの┄部を構成する、図6のMRAMの断面図。 flみ合わせたMRAMの等価回路図 [149] 強磁性二重トンネル接合素子のピン関がピット ラインの一部を構成する、図8のMRAMの断面図。

[位10] 本発明の他のMRAMに用いられる強磁位二

食トンネル接合素子の断面図。

|図11] 本発明の他のMRAMに用いられる強磁性二 氏トンネル接合器子の断面図。

|図12| 本発明の他のMRAMに用いられる強磁性二 爪トンネル接合素子の断面図。

[図13]本発明に係るMRAMの例を示す断面図。

[図14] 本発明に係るMRAMの他の倒を示す断面

[図15] 本発明に係るトンネル接合型磁気抵抗効果業 子を含む磁気抵抗効果ヘッドを搭載した磁気ヘッドアセ

[図16] 図15に示す磁気ヘッドアセンブリを搭載し 7 プリの斜視図

[図17] 実施例1の試料AおよびBの磁気抵抗効果曲 **た磁気ディスク装置の内部構造を示す斜視図。** 散を示す図。 [図18] 実施例1の試料A、BおよびCについて磁気 [図19] 実施例1の試料A、BおよびDについて、バ 抵抗変化率の印加電圧依存性を示す図。

|図20| 実施例2の試料A2およびB2の磁気抵抗効 レス磁場の反転回数と出力電圧との関係を示す図。 児曲税を示す図。

[内22] 実施例2の試料A2、B2およびD2につい て、パルス磁場の反転回数と出力電圧との関係を示す 「磁気抵抗変化率の印加電圧依存性を示す図。

[図23] 実施例3の試料A3およびB3の磁気抵抗効

[図25] 実施例3の試料A3、B3およびD3につい て、バルス磁場の反転回数と出力電圧との関係を示す て磁気抵抗変化率の印加電圧依存性を示す図。

[図26] 実施例4の試料A4およびB4の磁気抵抗効 [図27] 実施例4の試料A4、B4およびC4につい 果曲線を示す図。

[図28] 実施例4の試料A4、B4およびD4につい て磁気抵抗変化率の印加電圧依存性を示す図。

て、パルス磁場の反転回数と出力電圧との関係を示す

[図30] 実施例5の試料A5およびB5の磁気低抗効 [図29] 実施例5におけるピン悶がピットラインの一 部を構成する磁気抵抗効果素子の断面図。

果曲線を示す図。

12

[図31] 実施例5の試料A5、B5およびC5につい て磁気抵抗変化率の印加電圧依存性を示す図。

[図32] 実施例5の試料A5、B5、D5およびE5 について、バルス磁場の反転回数と出力電圧との関係を

**【図33】 実施例7の試料T1、T2およびT3につい** 示す図。

[図34] 実施例7の試料T1、T2およびT3につい て、磁気抵抗変化率の印加電圧依存性を示す図。 て、接合幅と磁気抵抗変化率との関係を示す図。

[作号の説明] 22

10…磁気抵抗効果素子 11…第1の反強磁性層

12…第1の強磁性層

| 3…第1の誘電体層 14…第2の強磁性隔

17…第2の反強磁性限 15…第2の誘電体層 | 6…第3の強磁性層 ೫

2 0 …磁気抵抗効果紫子 2 1…第1の強磁性層

24…第1の反強磁性限 2 2…第1の誘電体層 2 3…第2の強磁性隔

25…第3の強磁性層

30…磁気抵抗効果器子 3 1…第1の反強磁性限 26…第2の誘電体層 27…第4の強磁性局 [例21] 実施例2の試料A2、B2およびC2につい

3 5…第2の反強磁性層 33…第1の誘電体閥 45

36…第3の強磁性圏 37…第2の誘電体局 [内24] 実施例3の試料A3、B3およびC3につい 50 38…第4の強磁性層

61 -

# 磁気抵抗効果素子も、び磁気配録素子

特開2001-156357

| 111…下地隔     | 112…第1の反強磁性層  | 113…第1の磁化固着層 | 114…第1の誘電体局 | 05 1 1 5 …磁気記録器  | 116…第2の誘電体層      | 117…第2の磁化固着層  | 118…第2の反強磁性層     | 1 |
|-------------|---------------|--------------|-------------|------------------|------------------|---------------|------------------|---|
| 39…作3の反動磁体層 | 4 0 …磁気模抗効果素子 | 41…第1の遊磁性層   | 42…第1の誘電体圏  | 4 3 … 第 2 の 強磁性層 | 4 4 … 第 1 の 非磁性層 | 4 5… 第3 の海磁性層 | 4 6 … 第 2 の 非磁性層 |   |

122…第1の反強磁性層 123…第1の磁化固着層 10 121…下地層 4.7…第4の強磁性層 4 9 …第5の強硬性層 48…第2の誘電体層

60…トランジスタ 50…反強磁性的

6 2…ゲート電極(読み出し川ワードライン) 6 1…シリコン恭仮

62、63…ソース、ドレイン領域 7 1 …밥き込み川ワードライン

128…第2の反強磁性層

127…第2の磁化固結局

15 126…第2の誘電体層

124…第1の誘電体層

72…コンタクトメタル 7 3 …下地層

74…ビットライン 80... ダイオード

8 1 … 下地松

92…ビットライン 91…リードライン

101…下地桥

201...797222-97-4

22

202…サスペンション、 203…ヘッドスライダ

156…称2ワードライン

154…ピットライン

55…絶縁層

20 152 ... 7 - ドライン

151…Si 基板 153…金属配線

129…保護層

102…第1の反動磁性層

103…第1の磁化周着層

104…第1の誘進体層 105…磁気記錄層 | 0 6…第2の誘電体層

107…第2の磁化固溶層

108…第2の反強磁性層

[図]

214…ポイスコイルモータ

211…磁気ディスク 2 0 5…配極パッド

ಜ

204…リード線

212…スピンドル

[図2]

[図3]

/馬2の以他体制/ /第1の数量は第/ 第1の反響磁体制 第2の反替接位属 第2の登録技術 第3の孫田住瀬 第1の協語性機

報1の常理和名画 /第2の数量体庫/ | 第1の日曜体理 第1の反訴服性層 あるのは現代が 第2の強縮性層



-156357

**特開206** 

磁気抵抗効果素子および磁気配録素子

[9屋]

[图5]

[2]4]

新多の採田性体質

/ 第2の日電体層

4 \* B

第3の協田性体展 第1の非磁性体度 第2の指磁性体度

第1の当面存存員

反響曲和

第1の整理和存職

[3]



[図10]

[图]



- 21 -











[333]



磁気抵抗効果素子1、び磁気配鉛素子

特開2001-156357

フロントページの税き

| F 1            | G 0 1 R 33/06 |
|----------------|---------------|
| 織別記号           |               |
|                | 43/12         |
| (51) Int. Cl.? | H 0 1 L       |

テーマコード(参考)

| ٠             | 神奈川県川崎市拳区小向東芝町1番地 株 | 式会札斯芝研発開発センター内 |
|---------------|---------------------|----------------|
| 岩             |                     | 3              |
| <b>络侯 语一郎</b> | 多公司                 | 光公司            |
| (72) 発明者      |                     |                |

|             |         | 祩                 | ٠              |            |
|-------------|---------|-------------------|----------------|------------|
|             |         | 東芝町1番地            | 9-内            |            |
| 4           | 正之      | 神奈川県川崎市幸区小向東芝町1番地 | 式会社東芝研究開発センター内 | <b>a</b> ) |
|             |         | 1                 | 景              | 漢          |
| 9           | 砂井      | 華                 | 九公             | 逊          |
| 99/66 11.05 | 72) 発明者 |                   |                | 72) 発明者    |

| 岸 流也     | 神奈川県川崎市幸区小向東芝町1番地 | 式会社東芝研究開発センター内 |
|----------|-------------------|----------------|
| 717      | 44                | 114            |
| (72) 発明者 |                   |                |
|          | _                 |                |
|          | =                 |                |

- 26 -

- 22 -