# Chapter 4

Time Domain Analysis
of Control System
PART (1)



By
Dr. Ayman Yousef



# Typical Signals for the Time Response

## Some test signals



#### Impulse signal



$$r(t) = Rd(t)$$

$$R(s)^{\prime} = R$$

Step signal



$$r(t) = Ru(t)$$

$$R(s) = \frac{R}{s}$$

Ramp signal



$$r(t) = Rtu(t)$$

$$R(s) = \frac{R}{s^2}$$

Parabolic signal



Dr. Ayman Yousef

$$r(t) = \frac{Rt^2}{2}u(t) \qquad R(s) = \frac{R}{s^3}$$

$$R(s) = \frac{R}{s^3}$$

#### Relation between standard Test Signals



$$d(t) = \begin{cases} A & t = 0 \\ 0 & t \neq 0 \end{cases}$$

$$t = 0$$
$$t \neq 0$$

$$\frac{d}{dt}$$

$$\int$$

$$u(t) = \begin{cases} A & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$t \ge 0$$

$$t < 0$$

$$\frac{d}{dt}$$

$$r(t) = \begin{cases} At & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$t \ge 0$$

$$\frac{d}{d}$$

$$p(t) = \begin{cases} \frac{At^2}{2} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

**Automatic Control** Dr. Ayman Yousef



# Control Systems Classifications

# System Order



- The order of the system is the highest order of "s" in the denominator of the system T.F. C(s)/R(s). The procedure to determine the order of the system is:
- 1- Determine the equation which relates the system input and output.
- 2- Taking laplace transform of this equation and substituting zero initial conditions and calculate the T.F. of the system.
- 3- The highest order of s in the denominator of the system T.F. is the order of the system







Automatic Control Dr. Ayman Yousef

# System Type



- The type of the system is the highest order of pole at the origin of the loop T.F. G(s)H(s). The procedure to determine the type of the system is:
- 1- Determine the forward and feedback path transfer functions G(s) and H(s) of the system.
- 2- Calculate the open loop T.F. G(s)H(s) of the system.
- 3- Factorize and simplify the expression for G(s) H(s) by algebric manipulations.
- 4- The highest order of pole at the origin of the loop T.F. G(s)H(s) is the type of the system

$$G(s) = \frac{K}{s^2(s+12)} \quad H(s) = 1$$

$$type 1 \text{ system}$$

$$G(s) = \frac{5(s+1)}{(s+12)(s+5)} \quad H(s) = 1$$

$$type 2 \text{ system}$$

$$G(s) = \frac{K(s+3.15)}{s(s+1.5)(s+0.5)} \quad H(s) = 1$$

$$type 0 \text{ system}$$



# Transient and Steady State Responses

## System Response

We would like to analyze a system property by applying a test input r(t) and observing a time response y(t).



Time response can be divided as Y(t) = C(t) = Output

$$\mathbf{Y}(\mathbf{t}) = \mathbf{C}(\mathbf{t}) = \mathbf{Output}$$

$$C(t) = C_t(t) + C_{ss}(t)$$
Transient steady state

Steady state response is the part of the total response that remains after the transient has died out.

# System Response

Time Responses – Input and Output





Transient response is the part of time response that goes to zero  $t \longrightarrow \infty$ 

Steady state response is the part of the total response that remains after the transient has died out.

#### Poles and Zeros



- The output response of a system is the sum of two responses: the Steady-state response (forced response) and the transient response (natural response).
- The use of **poles** and **zeros** of the transfer function and their relationship to the time response of a system is such a technique.
- The concept of poles and zeros fundamental used in the analysis and design of control systems, to **simplifies** the evaluation of a system's response.

#### Poles, Zeros and S-plane



#### **Poles of a Transfer Function**

The poles of a transfer function are the roots of the characteristic polynomial in the denominator.

#### **Zeros of a Transfer Function**

The zeros of a transfer function are the roots of the characteristic

polynomial in the nominator.





Automatic Control Dr. Ayman Yousef

#### Poles and Zeros



#### **Poles and Zeros of a First-Order System**

For the T.F. and input signal of the system given by

$$\frac{C(S)}{R(S)} = \frac{S+2}{S+5}$$

$$R(S)=1/S$$

poles 
$$s = -5$$
  
Zeros  $s = -2$ 





The output response is given by:

$$C(s) = \frac{(s+2)}{s(s+5)} = \frac{A}{s} + \frac{B}{s+5}$$

$$A = \frac{(s+2)}{(s+5)}\Big|_{s\to 0} = \frac{2}{5}$$
  $B = \frac{(s+2)}{s}\Big|_{s\to -5} = \frac{3}{5}$ 

$$B = \frac{(s+2)}{s} \Big|_{s \to -5} = \frac{3}{5}$$

$$C(s) = \frac{2/5}{s} + \frac{3/5}{s+5}$$
  $c(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$ 

**Automatic Control** Dr. Ayman Yousef

#### Poles and Zeros

Poles and Zeros of a First-Order System





**Steady-state response** 

Transient response

#### Example 1

Given the system of Figure below, write the output, c(t), in general terms. Specify the forced and natural parts of the solution.





#### **Solution**

By inspection, each system pole generates an exponential as part of the natural response. The input's pole generates the forced response. Thus,

$$C(s) \equiv \underbrace{\frac{K_1}{s}}_{\text{Forced}} + \underbrace{\frac{K_2}{s+2} + \frac{K_3}{s+4} + \frac{K_4}{s+5}}_{\text{response}}$$
Ratural response

Taking the inverse Laplace transform, we get





# First Order Systems

#### First Order Systems



The first order system has only one pole.

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$

- Where K is the D.C gain and T is the time constant of the system.
- Time constant is a measure of how quickly a 1<sup>st</sup> order system responds to a unit step input.
- D.C Gain of the system is the ratio between the input signal and the steady state value of output.

## First Order Systems



I For the first order system given below

$$G(s) = \frac{10}{3s+1}$$

- D.C gain is 10 and time constant is 3 seconds.
- And for following system

$$G(s) = \frac{3}{s+5} = \frac{3/5}{1/5s+1}$$

• D.C Gain of the system is 3/5 and time constant is 1/5 seconds.

#### Impulse Response of 1st Order System



Consider the following 1st order system



$$R(s) = d(s) = 1$$

$$C(s) = \frac{K}{Ts + 1}$$

#### Impulse Response of 1st Order System



$$C(s) = \frac{K}{Ts+1}$$

Re-arrange above equation as

$$C(s) = \frac{K/T}{s+1/T}$$

• In order to represent the response of the system in time domain we need to compute inverse Laplace transform of the above equation.

$$L^{-1}\left(\frac{A}{s+a}\right) = Ae^{-at} \qquad \qquad c(t) = \frac{K}{T}e^{-t/T}$$

#### Impulse Response of 1st Order System



• If K=3 and T=2s then

$$c(t) = \frac{K}{T}e^{-t/T} = \frac{3}{2}e^{-t/2} = 1.5e$$



Automatic Control Dr. Ayman Yousef



Consider the following 1<sup>st</sup> order system



• In order to find out the inverse Laplace of the above equation, we need to break it into partial fraction expansion

Steady state Response C(s) = K Transient Response Automatic Control Dr. Ayman Yousef



$$C(s) = K_{\xi}^{\underbrace{a1}}_{e} - \frac{T}{Ts+1}_{\emptyset}^{\ddot{0}}$$

Taking Inverse Laplace of above equation

$$c(t) = K\left(u(t) - e^{-t/T}\right)$$

• Where u(t)=1

$$c(t) = K \left( 1 - e^{-t/T} \right)$$

• When t=T

$$c(t) = K(1 - e^{-1}) = 0.632K$$

• If K=10 and T=1.5s then  $c(t) = K(1 - e^{-t/T}) = 10(1 - e^{-2t/3})$ 





• If K=10 and T=1, 3, 5, 7  $c(t) = K(1 - e^{-t/T})$ 





• If K=1, 3, 5, 10 and T=1

$$c(t) = K \left( 1 - e^{-t/T} \right)$$





Automatic Control Dr. Ayman Yousef



I System takes five time constants to reach its final value.



Automatic Control Dr. Ayman Yousef

#### Example 2



I For the impulse response of a 1<sup>st</sup> order system is given below.

$$c(t) = 3e^{-0.5t}$$

- I Find out
  - Time constant T
  - D.C Gain K
  - **Transfer Function**
  - Step Response

Taking Laplace Transform of the impulse response to get the transfer function of the system.

ection of the system.
$$C(t) = 3e^{-0.5t}$$

$$C(s) = \frac{3}{S+0.5} \times \delta(s) = \frac{3}{S+0.5} \times 1$$

$$\frac{C(s)}{d(s)} = \frac{C(s)}{R(s)} = \frac{3}{S+0.5}$$

$$\frac{C(s)}{d(s)} = \frac{6}{2S+1}$$

Automatic Control Dr. Ayman Yousef



Then for the Impulse response of a 1st order system is given by:

$$c(t) = 3e^{-0.5t}$$

**Transfer Function** 

$$\frac{C(s)}{R(s)} = \frac{6}{2S+1} \qquad \qquad \frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$



- Time constant T=2
- D.C Gain K=6



I For step response integrate impulse response

$$c(t) = 3e^{-0.5t}$$
$$\int c(t)dt = 3\int e^{-0.5t}dt$$
$$c_s(t) = -6e^{-0.5t} + C$$

• We can find out C if initial condition is known e.g.  $c_s(0)=0$ 

$$0 = -6e^{-0.5\times0} + C$$

$$C = 6$$

$$c_s(t) = 6 - 6e^{-0.5t} \implies \text{Step Response}$$

Automatic Control Dr. Ayman Yousef

If initial Conditions are not known then partial fraction expansion is a better choice

$$\frac{C(s)}{R(s)} = \frac{6}{2S+1}$$

since R(s) is a step input,  $R(s) = \frac{1}{s}$ 

$$C(s) = \frac{6}{s(2S+1)}$$

$$\frac{6}{s(2S+1)} = \frac{A}{s} + \frac{B}{2s+1}$$

$$\frac{6}{s(2S+1)} = \frac{6}{s} - \frac{6}{s+0.5}$$

$$c(t) = 6 - 6e^{-0.5t}$$
 Step Response







- For the first-order system parameters (T, K) simply changes the speed and offset of the response.
- Whereas, changes in the parameters of a second-order system can change the **form** of the response.
- A second-order system can display characteristics much like a first-order system or, depending on component values, display **damped** or **pure oscillations** for its *transient response*.



A general second-order system (without zeros) is characterized by the following transfer function.



$$G(s) = \frac{W_n^2}{s(s+2zW_n)}$$

**Open-Loop Transfer Function** 

$$\frac{C(s)}{R(s)} = \frac{w_n^2}{s^2 + 2zw_n s + w_n^2}$$

**Closed-Loop Transfer Function** 



#### **Transient Response of second-order system**

The general form of the T.F. for second-order system is:

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

 $Z \longrightarrow damping ratio of the second order system, which is a measure of the degree of resistance to change in the system output.$ 

 $W_n \longrightarrow$  undamped natural frequency of the second order system, which is the frequency of oscillation of the system without damping.

#### Example 3

I Determine the undamped natural frequency and damping ratio of the following second order system.



#### **Solution**

$$\frac{C(s)}{R(s)} = \frac{4}{s^2 + 2s + 4}$$

• Compare the numerator and denominator of the given transfer function with the general 2<sup>nd</sup> order transfer function.

$$\frac{C(s)}{R(s)} = \frac{w_n^2}{s^2 + 2zw_n s + w_n^2}$$

$$w_n^2 = 4 \implies w_n = 2 \ rad / \sec$$

$$\Rightarrow 2zw_n s = 2s$$

$$\Rightarrow zw_n = 1$$

$$\Rightarrow z = 0.5$$



• For the 2<sup>nd</sup> order system

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• The closed-loop poles of the system are

$$P_1 = -w_n z + w_n \sqrt{z^2 - 1}$$
  
 $P_2 = -w_n z - w_n \sqrt{z^2 - 1}$ 

• Depending upon the value of Z, a second-order system can be set into one of the four categories

(Z > 1)



#### 1- Over damped system

Occurs when the system has two **Real distinct poles** 

$$P_1 = -w_n z + w_n \sqrt{z^2 - 1}$$

$$P_2 = -w_n z - w_n \sqrt{z^2 - 1}$$



#### 2- Under damped system

Occurs when the system has two Complex conjugate poles

$$P_1 = -w_n z + w_n \sqrt{z^2 - 1}$$

$$P_2 = -w_n z - w_n \sqrt{z^2 - 1}$$





#### 3- Undamped system (Z=0)

Occurs when the system has two **Imaginary poles** 

$$P_1 = -w_n z + w_n \sqrt{z^2 - 1}$$

$$P_2 = -w_n z - w_n \sqrt{z^2 - 1}$$



#### 4- Critically damped system (Z = 1)

Occurs when the system has two **Real but equal poles** 

$$P_1 = -w_n z + w_n \sqrt{z^2 - 1}$$

$$P_2 = -w_n z - w_n \sqrt{z^2 - 1}$$



Step response comparison for various roots locations in S-plane





#### **Step response**

$$W_n = 3$$
  $z = 1, 0.8, 0.6, 0.4, 0.2, 0$ 





#### **Step response**

$$z = 0.3$$
  $w_n = 1, 2, 3, 4, 6.28$ 







# Time-Domain Specification Of 2<sup>nd</sup> Order Systems

### Time-Domain Specification Of 2<sup>nd</sup> Order Systems



For 0 < Z < 1 and  $\omega_n > 0$ , the 2<sup>nd</sup> order system's response due to a unit step input as shown



**Performance Characteristics** 



#### Delay time $(t_d)$

• The delay time is the time required for the response to reach half the final value the very first time.





#### Rise time $(t_r)$

• The rise time is the time required for the response to rise from 0% to 100% of its final value (under damped second order systems), or from 10% to 90% of its final value (for the over damped systems).





#### Peak time $(t_p)$

• The peak time is the time required for the response to reach the first peak of the overshoot.





#### Settling time $(t_s)$

• The settling time is the time required for the response curve to reach and stay within a range usually 2% or 5% of the final value (steady-state value)





#### Maximum overshoot $(M_p)$

- •The maximum overshoot is the maximum peak value of the response curve measured from unity.
- •The amount of the maximum (percent) overshoot directly indicates the relative stability of the system.





#### Natural undamped frequency $(\omega_n)$

• Distance from the origin of s-plane to pole is natural undamped frequency  $\omega_n$  in rad/sec.





- Let us draw a circle of radius 3 in s-plane.
- If a pole is located anywhere on the circumference of the circle the natural undamped frequency would be *3 rad/sec*.



• Therefore the s-plane is divided into constant Natural undamped frequency  $(\omega_n)$  Circles.





- Damping ratio (z)
- Cosine of the angle between vector connecting origin and pole and –ve real axis yields damping ratio.

$$\zeta = \cos \theta$$





• For **Underdamped** system

$$0^{\circ} < q < 90^{\circ}$$

therefore,

$$\zeta = \cos \theta$$



$$0 < \zeta < 1$$





• For **Undamped** system

$$q = 90^{\circ}$$

therefore,

$$\zeta = \cos \theta$$



$$\zeta = 0$$



For over damped and critically damped systems

$$q = 0^{\mathbf{0}}$$

therefore,

$$\zeta = \cos \theta$$



$$\zeta \ge 1$$







#### **Damping factor** (α)

$$\alpha = \xi \omega_n$$

#### Damping natural frequency $(\omega_d)$

$$\omega_d = \sqrt{\omega_n^2 - \alpha^2} \qquad \alpha = \omega_n \zeta$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

 $\omega_n$ : undamping natural frequency

ξ: damping ratio



#### Rise time $(t_r)$

$$t_r = \frac{\pi - \theta}{\omega_d}$$

$$\theta = \cos^3 \zeta$$

#### Peak time (T<sub>p</sub>)

$$t_{p} = \frac{\pi}{\omega_{d}} \implies t_{p} = \frac{\pi}{\sqrt{\omega_{n}^{2} - \alpha^{2}}} \implies t_{p} = \frac{\pi}{\omega_{n}\sqrt{1 - \zeta^{2}}}$$

$$\omega_{d}: \text{ damping natural frequency}$$

$$\omega_{n}: \text{ undamping natural frequency}$$

$$\alpha = \xi \omega_{n}$$

 $\theta$ : phase angle

\$ : damping ratio



#### **Settling time** (t<sub>s</sub>)

$$t_s = 3T$$



$$t_S = \frac{4}{\zeta \omega_n}$$
 (2% Criterion)

$$t_s = 4T$$



$$t_S = \frac{3}{\zeta \omega_n}$$
 (5% Criterion)

#### Max Overshoot (M<sub>p</sub>)

$$M_p = e^{-\pi \zeta/\sqrt{1-\zeta^2}}$$

$$M_p = e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \times 100$$

 $\omega_n$ : undamping natural frequency

a : damping factor

**\xi** : damping ratio





Consider the system shown in following figure, where damping ratio is 0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise time  $t_r$ , peak time  $t_p$ , maximum overshoot  $M_p$ , and settling time 2% and 5% criterion  $t_s$  when the system is subjected to a unit-step input.



#### **Rise Time**

$$t_r = \frac{\pi - \theta}{\omega_d}$$

$$\theta = \cos^{3}\zeta$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

$$q = Cos^{-1}x = cos^{-1} 0.6 = 53.13$$

$$q = 53.13 \cdot \frac{p}{180} = 0.93 \text{ rad}$$

$$t_r = \frac{3.141 - q}{w_n \sqrt{1 - z^2}}$$



$$t_r = \frac{3.141 - q}{w_n \sqrt{1 - z^2}}$$

$$t_r = \frac{3.141 - 0.93}{5\sqrt{1 - 0.6^2}} = 0.55s$$



#### **Peak Time**

$$t_p = \frac{\pi}{\omega_d}$$

$$t_p = \frac{3.141}{4} = 0.785s$$

#### **Settling Time (4%)**

$$t_s = \frac{3}{\zeta \omega_n}$$

$$t_s = \frac{3}{0.6 \times 5} = 1s$$

#### **Settling Time (2%)**

$$t_s = \frac{4}{\zeta \omega_n}$$

$$t_s = \frac{4}{0.6 \times 5} = 1.33s$$



#### **Maximum Overshoot**

$$M_p = e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \times 100$$

$$M_p = e^{-\frac{3.141^{\circ}0.6}{\sqrt{1-0.6^2}}}$$
 100 = 9.5%

#### **Performance Characteristics**



