Niveau : Master 1 - Maths Année : 2020-2021, Semestre 1 Matière : Intro. au traitement d'images

Série d'exercices 2

Traitement spatial

Janvier 2021

Exercice 1

Les fonctions exponentielles sont utilisées souvent pour transformer les intensités d'une image. Déterminer des fonctions simples pouvant être associées aux graphes suivants :

Exercice 2

Soit I une image de taille 4×4 , codée sur 4 bits/pixel image

$$I = \begin{array}{|c|c|c|c|c|c|} \hline 7 & 3 & 4 & 1 \\ \hline 1 & 2 & 0 & 3 \\ \hline 4 & 2 & 2 & 1 \\ \hline 0 & 3 & 5 & 1 \\ \hline \end{array}$$

1. Calculer le résultat de l'application des deux transformations suivantes :

$$s = T_1(r) = 5\sqrt{r}, \quad s = T_2(r) = 15 - 2r$$

2. Calculer les critères suivants : MAE, MSE et PSNR.

Exercice 3

Une image a un histogramme normalisé pour lequel on est arrivé à trouver la forme analytique suivante :

$$h(r) = 6(r - r^2), r \in [0, 1]$$

On suppose donc ici que r correspond à un niveau de gris (1 correspond au blanc et 0 au noir).

— Tracer grossièrement cet histogramme et préciser quelle est la moyenne des niveaux de gris de cette image qualitativement et par calcul.

- Pourquoi $\frac{1}{2}h(r)$ ne pourrait pas être une courbe d'histogramme normalisé?
- Déterminer la transformation s = T(r) qui permettrait d'égaliser h(r).
- Perd t-on de l'information quand on fait une égalisation d'histogramme sur une image numérique?

Exercice 4

- 1. Il existe trois classes de transformations d'intensité en fonction de leur support. Lesquelles ? Citer un exemple de chaque classe.
- 2. Un nombre important de techniques de transformation d'intensités reposent sur l'histogramme.
 - (a) Donner un algorithme simple permettant de calculer l'histogramme d'une image
 - (b) Exprimer en termes de probabilités les notions d'histogramme, histogramme normalisé et histogramme cumulé.
 - (c) Comment calculer la moyenne, la variance et l'entropie à partir de l'histogramme? On rappelle que l'entropie est définie par :

$$b = -\sum_{i=0}^{255} p_i log_2(p_i)$$

où p_i est la probabilité de présence du niveau de gris i.

Exercice 5 Transformation d'intensité

1. Appliquer une égalisation de l'histogramme à l'image suivante (donner tous les détails nécessaires).

	10	12	11	9	12
	15	11	9	10	6
I =	13	15	8	12	6
	9	6	7	11	8
	7	2	1	1	0

- 2. Tracer les histogrammes de l'image originale et de l'image égalisée.
- 3. Calculer la norme de l'image de différence entre l'image originale et l'image égalisée.

Exercice 6

Appliquer le filtre de moyenne à l'image suivante (en précisant la stratégie de gestion du bord) :

	10	12	2	1
1	10	14	5	2
	13	12	13	4
	10	12	14	3

2

Exercice 7

On applique différents filtres spatiaux à une image A de taille 4×4 codée sur 4 bits.

- 1. Calculer l'image 1 en utilisant le zéro padding, et sans arrondir le résultat en entiers.
- 2. Calculer l'image 2 en utilisant le zéro padding, et sans arrondir le résultat en entiers.
- 3. En utilisant les résultats 1 et 2, calculer l'image 3 en utilisant le zéro padding, et sans arrondir le résultat en entiers.
- 4. Calculer le résultat de l'application du filtre de moyenne à l'image A, en utilisant le zéro padding pour traiter les pixels du bord.
- 5. Calculer le résultat de l'application du filtre du maximum et le filtre médian à l'image A, en utilisant le zéro padding.

Exercice 8

On dispose d'une image I représentée par le tableau suivant :

	175	150	114	86	79
	156	119	91	80	113
I =	132	93	80	96	174
	96	85	87	165	193
	87	82	153	192	194

- 1. Appliquer le filtre du maximum (3×3) à l'image I (la stratégie de gestion des bords doit être expliquée).
- 2. Calculer le Laplacien de l'image $I: \Delta I$.
- 3. Appliquer le filtre suivant à l'image I (préciser la stratégie de gestion des bords).

0	-1	0
-1	5	-1
0	-1	0

- 4. Quelle est la quantité approchée par ce filtre?
- 5. Donner, **en le démontrant**, des filtres permettant de calculer le Gradient et le Laplacien d'une image.

Corrections

Correction 1 — Il y a $2^8 = 256$ niveaux de gris possibles.

Correction 2 — Il y a $2^8 = 256$ niveaux de gris possibles.

Correction 3 — Il y a $2^8 = 256$ niveaux de gris possibles.

- Correction 4 1. Il existe trois classes de transformations d'intensité en fonction de leur support :
 - (a) Transformations ponctuelles : par exp. l'inversion des intensités (négatif d'une image).
 - (b) Transformations locales : par exp. la convolution avec une gaussienne.
 - (c) Transformations globales : par exp. l'égalisation de l'histogramme.
 - 2. Un nombre important de techniques de transformation d'intensités reposent sur l'histogramme.
 - (a) Voici un algorithme simple permettant de calculer l'histogramme d'une image

```
I : image de taille (N, M);
H : tableau de taille 256, initialisé à 0;

Pour i de 1 à N faire

Pour j de 1 à M faire

|H(I(i,j)+1) \leftarrow H(I(i,j)+1)+1

Fin Pour

Fin Pour
```

Algorithme 1: Calcul de l'histogramme H d'une image I

Pour avoir l'histogramme normalisé, il suffit de diviser H par $N \times M$.

- (b) Exprimer en termes de probabilités les notions suivantes :
 - i. histogramme = une fonction proportionnelle à la densité de probabilité.
 - ii. histogramme normalisé = densité de probabilité.
 - iii. histogramme cumulé = Fonction de répartition.

Correction 5 sss

Correction 6 1. En utilisant la technique du zero-padding pour la gestion des pixels du bord, on obtient l'image suivante comme résultat de l'application du filtre de moyenne

5	6	4	1
8	10	7	3
8	11	9	5
5	8	6	4

Correction 7 ss

Correction 8 On dispose d'une image I représentée par le tableau suivant :

	175	150	114	86	79
	156	119	91	80	113
I =	132	93	80	96	174
	96	85	87	165	193
	87	82	153	192	194

1. On applique le filtre du maximum (3×3) à l'image I. Les pixels du bord ne sont pas traités. On obtient l'image suivante :

	175	150	114	86	79
	156	175	150	174	113
I =	132	156	165	193	174
	96	153	192	194	193
	87	82	153	192	194

2. Pour calculer le Laplacien ΔI , on utilise le filtre suivant : $h1 = \begin{bmatrix} 0 & 1 & 0 \\ \hline 1 & -4 & 1 \\ \hline 0 & 1 & 0 \end{bmatrix}$. Alors, on obtient le résultat suivant (même stratégie de gestion des bords) :

$$\Delta I = \begin{bmatrix} 175 & 150 & 114 & 86 & 79 \\ 156 & 14 & 29 & 66 & 113 \\ 132 & 44 & 47 & 115 & 174 \\ 96 & 18 & 135 & -92 & 193 \\ 87 & 82 & 153 & 192 & 194 \end{bmatrix}$$

$$-f(x+h,y) - f(x-h,y) - f(x,y+h) - f(x,y-h) + 5f(x,y) = f(x,y) - \Delta f(x,y) + o(h^2)$$

Alors : $I * h = I - \Delta I$.

4. En utilisant le résultat de la question 2 :

$$I* = I - \Delta I = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 105 & 62 & 14 & 0 \\ 0 & 49 & 33 & -19 & 0 \\ 0 & 67 & -48 & 257 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$