

Figure 20.3: The undirected graph G_2 .

in \mathbb{R}^E . This point of view is often useful. For example, the incidence matrix B can be interpreted as a linear map from \mathbb{R}^E to \mathbb{R}^V , the boundary map, and B^{\top} can be interpreted as a linear map from \mathbb{R}^V to \mathbb{R}^E , the coboundary map.

Remark: Some authors adopt the opposite convention of sign in defining the incidence matrix, which means that their incidence matrix is -B.

Undirected graphs are obtained from directed graphs by forgetting the orientation of the edges.

Definition 20.5. A graph (or undirected graph) is a pair G = (V, E), where $V = \{v_1, \ldots, v_m\}$ is a set of nodes or vertices, and E is a set of two-element subsets of V (that is, subsets $\{u, v\}$, with $u, v \in V$ and $u \neq v$), called edges.

Remark: Since an edge is a set $\{u, v\}$, we have $u \neq v$, so self-loops are not allowed. Also, for every set of nodes $\{u, v\}$, there is at most one edge between u and v. As in the case of directed graphs, such graphs are sometimes called *simple graphs*.

An example of a graph is shown in Figure 20.3.

Definition 20.6. For every node $v \in V$, the degree d(v) of v is the number of edges incident to v:

$$d(v) = |\{u \in V \mid \{u,v\} \in E\}|.$$

The degree matrix D(G) (or simply, D) is defined as in Definition 20.2.

Definition 20.7. Given a (undirected) graph G = (V, E), for any two nodes $u, v \in V$, a path from u to v is a sequence of nodes (v_0, v_1, \ldots, v_k) such that $v_0 = u$, $v_k = v$, and $\{v_i, v_{i+1}\}$ is an edge in E for all i with $0 \le i \le k-1$. The integer k is the length of the path. A path is closed if u = v. The graph G is connected if for any two distinct nodes $u, v \in V$, there is a path from u to v.