Navn: Anders Kornerup Kok Larsen		Skole:	
Klasse: 20		Dato: 7. marts 2023	Fag: Matematik A

Opgave 007

$$f(x) = \frac{5 \cdot \ln(x)}{x} + \frac{x}{15}$$

Opgave A

Opgave B

Vi kan konkludere at x ikke kan være negativ, da de ike kan tage In af et negativt tal. Vi kan også sige at x ikke er 0, da In af 0 heller ikke fungerer.

$$Dm =]0; \infty[$$

Opgave C

Arealet mellem f og x-aksen kan vi kalde for A

$$A = \int_{2}^{10} \frac{5 \cdot \ln(x)}{x} + \frac{x}{15} dx$$
$$A = 15,25361$$

Opgave D

Funktionens monotoniforhold er i de intervaller hvor funktionen stiger eller falder. Disse intervaller starter/slutter de steder hvor funktionen hældning er 0, udover det sidste og første interval.

Derfor skal vi først differenciere f

Navn: Aı	Navn: Anders Kornerup Kok Larsen		Skole:	
Klasse: 20		Dato: 7. mart	s 2023	Fag: Matematik A

$$f'(x) = \frac{dx}{df}$$
$$f'(x) = \frac{5 \cdot \ln(x)}{x} + \frac{x}{15}$$

The expression is differentiated by WordMat.

$$\frac{d}{d^2x}(f(x)) = -0.06666667 \cdot x^{-2} \cdot (75 \cdot \ln(x) - x^2 - 75)$$
$$f'(x) = 0$$
$$-0.066666 \cdot x^{-2} \cdot (75 \cdot \ln(x) - x^2 - 75) = 0$$

The equation is solved numerically for x by WordMat.

$$x \approx 3,086426$$
 V $x \approx 9,811592$

Når vi ved hvornår funktionen har en hældning i 0, så kan vi beskrive monotoniforholdet

Funktionen stiger i] ∞ ; 3.086[Funktionen falder i]3.086; 9.811[Funktionen stiger i]9.811; ∞ [