MATRICES

DÉFINITION D'UNE MATRICE

Soient $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $(n, p) \in (\mathbb{N}^*)^2$.

1 Définition d'une matrice

Une **matrice** A est un tableau rectangulaire d'éléments de \mathbb{K} . Elle est dite de taille $n \times p$ si le tableau possède n lignes et p colonnes. On désigne par $M_{n,p}(\mathbb{K})$ l'ensemble des matrices à n lignes, p colonnes à coefficients dans \mathbb{K} .

Les nombres du tableau sont appelés coefficients de la matrice A. Le coefficient situé à la $i^{\rm ème}$ ligne et à la $j^{\rm ème}$ colonne est noté $a_{i,j}$.

Un élément A de $M_{n,p}(\mathbb{K})$ est représenté sous l'une des formes suivantes :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} \text{ ou } A = (a_{i,j})_{1 \le i \le n, 1 \le j \le p} \text{ ou } (a_{i,j}).$$

Remarque 1 Deux matrices sont égales lorsqu'elles ont la même taille et que les coefficients correspondants sont égaux.

2 Matrices particulières

Soit $A = (a_{i,j}) \in M_{n,p}(\mathbb{K})$.

- 1. Si n = 1, A est appelée **matrice ligne**.
- 2. Si p = 1, A est appelée matrice colonne.
- 3. Si $a_{i,j}=0$ pour tous i et j, A s'appelle matrice nulle et est notée $0_{n,p}$ ou plus simplement 0.
- 4. Lorsque n=p, on note $M_n(\mathbb{K})$ l'ensemble des matrices carrées à n lignes et n colonnes. Les éléments $a_{1,1},a_{2,2},...,a_{n,n}$ forment la **diagonale principale** de la matrice A, appelés **éléments diagonaux** de A.

3 Somme de matrices, produit d'une matrice par un scalaire, propriétés

Définition 1 1. Soient $A=(a_{i,j})$ et $B=(b_{i,j})$ deux éléments de $M_{n,p}(\mathbb{K})$. On définit la somme de A et B, notée A+B par $A+B=(a_{i,j}+b_{i,j})\in M_{n,p}(\mathbb{K})$.

2. Le produit d'une matrice $A \in M_{n,p}(\mathbb{K})$ par un scalaire $\lambda \in \mathbb{K}$ est la matrice formée en multipliant chaque coefficient de A par λ . Elle est notée λA (ou simplement λA).

Proposition 1 Soient A, B et C trois éléments de $M_{n,n}(\mathbb{K})$ et $(\lambda, \mu) \in \mathbb{K}^2$. Alors

1. La somme est commutative, c'est-à-dire A+B=B+A.

1 IONISX

MATRICES

DÉFINITION D'UNE MATRICE

- 2. La somme est associative, c'est-à-dire A+(B+C)=(A+B)+C.
- 3. La matrice nulle est l'élément neutre de l'addition, c'est-à-dire A+0=A.
- 4. $(\lambda + \mu)A = \lambda A + \mu A$.
- 5. $\lambda(A+B) = \lambda A + \lambda B$.

2 IONISX