Stock Market Prediction Using Deep Reinforcement learning:

Ensemble strategy

2.1. Install all the packages through FinRL library

```
## install finrl library
!pip install FinRL

from finrl import config
from finrl import config_tickers
import os
if not os.path.exists("./" + config.DATA_SAVE_DIR):
    os.makedirs("./" + config.DATA_SAVE_DIR)
if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
    os.makedirs("./" + config.TRAINED_MODEL_DIR)
if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
    os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
if not os.path.exists("./" + config.RESULTS_DIR):
    os.makedirs("./" + config.RESULTS_DIR)
```

2.2. Import Packages

```
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# matplotlib.use('Agg')
import datetime
%matplotlib inline
from finrl.finrl meta.preprocessor.yahoodownloader import YahooDownloader
from finrl.finrl_meta.preprocessor.preprocessors import FeatureEngineer, data_split
from finrl.finrl meta.env stock trading.env stocktrading import StockTradingEnv
from finrl.agents.stablebaselines3.models import DRLAgent
from finrl.finrl_meta.data_processor import DataProcessor
from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline
from pprint import pprint
import sys
sys.path.append("../FinRL-Library")
```

```
import itertools
```

/usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied'

Part 3. Download Data

```
# from config.py TRAIN_START_DATE is a string
config.TRAIN_START_DATE
# from config.py TRAIN_END_DATE is a string
config.TRAIN_END_DATE
df = YahooDownloader(start_date = '2009-01-01',
        end_date = '2021-10-31',
        ticker_list = config_tickers.DOW_30_TICKER).fetch_data()
  1 of 1 completed
  1 of 1 completed
  [*****************100%**************
                        1 of 1 completed
                        1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  1 of 1 completed
  ******************100%**************
                        1 of 1 completed
  ******************100%**************
                        1 of 1 completed
  1 of 1 completed
                        1 of 1 completed
  ******************100%**************
  1 of 1 completed
  Shape of DataFrame: (94331, 8)
```

```
print(config_tickers.DOW_30_TICKER)
     ['AXP', 'AMGN', 'AAPL', 'BA', 'CAT', 'CSCO', 'CVX', 'GS', 'HD', 'HON', 'IBM', 'INTC', 'I
df.shape
     (94331, 8)
df.sort_values(['date','tic'],ignore_index=True).head()
```

	date	open	high	low	close	volume	tic	day
0	2009-01-02	3.067143	3.251429	3.041429	2.771174	746015200	AAPL	4
1	2009-01-02	58.590000	59.080002	57.750000	44.867592	6547900	AMGN	4
2	2009-01-02	18.570000	19.520000	18.400000	15.535348	10955700	AXP	4
3	2009-01-02	42.799999	45.560001	42.779999	33.941101	7010200	ВА	4
4	2009-01-02	44.910000	46.980000	44.709999	32.164726	7117200	CAT	4

→ Part 4: Preprocess Data

```
fe = FeatureEngineer(
                  use technical indicator=True,
                  tech_indicator_list = config.INDICATORS,
                  use vix=True,
                  use turbulence=True,
                  user_defined_feature = False)
processed = fe.preprocess_data(df)
    Successfully added technical indicators
    [********* 100%********* 1 of 1 completed
    Shape of DataFrame: (3229, 8)
    Successfully added vix
    Successfully added turbulence index
    Successfully added technical indicators
    [********* 100%********* 1 of 1 completed
    Shape of DataFrame: (3229, 8)
    Successfully added vix
    Successfully added turbulence index
list_ticker = processed["tic"].unique().tolist()
list_date = list(pd.date_range(processed['date'].min(),processed['date'].max()).astype(str))
```

```
combination = list(itertools.product(list_date,list_ticker))

processed_full = pd.DataFrame(combination,columns=["date","tic"]).merge(processed,on=["date", processed_full = processed_full[processed_full['date'].isin(processed['date'])]
processed_full = processed_full.sort_values(['date','tic'])

processed_full = processed_full.fillna(0)
```

processed_full.sort_values(['date','tic'],ignore_index=True).head(10)

	date	tic	open	high	low	close	volume	day	macd	boll_
0	2009- 01-02	AAPL	3.067143	3.251429	3.041429	2.771174	746015200.0	4.0	0.0	2.99
1	2009- 01-02	AMGN	58.590000	59.080002	57.750000	44.867592	6547900.0	4.0	0.0	2.99
2	2009- 01-02	AXP	18.570000	19.520000	18.400000	15.535348	10955700.0	4.0	0.0	2.99{
3	2009- 01-02	ВА	42.799999	45.560001	42.779999	33.941101	7010200.0	4.0	0.0	2.99{
4	2009- 01-02	CAT	44.910000	46.980000	44.709999	32.164726	7117200.0	4.0	0.0	2.99{
5	2009- 01-02	CRM	8.025000	8.550000	7.912500	8.505000	4069200.0	4.0	0.0	2.99{
4										>

→ Part 5. Design Environment

	date	tic	open	high	low	close	volume	day	mi
2892	2020- 06-30	UNH	288.570007	296.450012	287.660004	287.776794	2932900.0	1.0	-0.0194
2892	2020- 06-30	V	191.490005	193.750000	190.160004	190.737213	9040100.0	1.0	1.0487
2892	2020- 06-30	VZ	54.919998	55.290001	54.360001	50.376743	17414800.0	1.0	-0.437
2892	2020- 06-30	WBA	42.119999	42.580002	41.759998	39.035736	4782100.0	1.0	-0.083
2892	2020- 06-30	WMT	119.220001	120.129997	118.540001	116.121773	6836400.0	1.0	-0.886

trade.head()

	date	tic	open	high	low	close	volume	day	mac
0	2020- 07-01	AAPL	91.279999	91.839996	90.977501	89.904602	110737200.0	2.0	3.01460
0	2020- 07-01	AMGN	235.520004	256.230011	232.580002	240.153961	6575800.0	2.0	3.63639
0	2020- 07-01	AXP	95.250000	96.959999	93.639999	92.086372	3301000.0	2.0	-0.38916
0	2020- 07-01	ВА	185.880005	190.610001	180.039993	180.320007	49036700.0	2.0	5.44319
0	2020- 07-01	CAT	129.380005	129.399994	125.879997	120.651642	2807800.0	2.0	1.27262
4									•

config.INDICATORS

```
['macd',
  'boll_ub',
  'boll_lb',
  'rsi_30',
  'cci_30',
  'dx_30',
  'close_30_sma',
  'close_60_sma']
```

```
stock_dimension = len(train.tic.unique())
state_space = 1 + 2*stock_dimension + len(config.INDICATORS)*stock_dimension
```

```
print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}")
     Stock Dimension: 29, State Space: 291
buy_cost_list = sell_cost_list = [0.001] * stock_dimension
num_stock_shares = [0] * stock_dimension
env_kwargs = {
   "hmax": 100,
    "initial_amount": 1000000,
    "num_stock_shares": num_stock_shares,
    "buy_cost_pct": buy_cost_list,
    "sell_cost_pct": sell_cost_list,
    "state_space": state_space,
    "stock_dim": stock_dimension,
    "tech_indicator_list": config.INDICATORS,
    "action space": stock dimension,
   "reward_scaling": 1e-4
}
e_train_gym = StockTradingEnv(df = train, **env_kwargs)
```

Environment for Training

```
env_train, _ = e_train_gym.get_sb_env()
print(type(env train))
     <class 'stable baselines3.common.vec env.dummy vec env.DummyVecEnv'>
```

→ Part 6: Implement DRL Algorithms

```
agent = DRLAgent(env = env train)
```

Model Training: 3 models, A2C DDPG, PPO

▼ Model 1: A2C

```
agent = DRLAgent(env = env_train)
model_a2c = agent.get_model("a2c")
```

```
{'n_steps': 5, 'ent_coef': 0.01, 'learning_rate': 0.0007}
Using cuda device
```

time/	
fps	97
iterations	100
time_elapsed	5
total_timesteps	500
train/	
entropy_loss	-41.3
explained_variance	0.461
learning_rate	0.0007
n_updates	99
policy_loss	-19.4
reward	0.18487218
std	1
value_loss	0.456

time/	
fps	100
iterations	200
time_elapsed	9
total_timesteps	1000
train/	
entropy_loss	-41.3
explained_variance	-0.0554
learning_rate	0.0007
n_updates	199
policy_loss	-61.1
reward	-0.18095054
std	1.01
value_loss	2.58

time/	
fps	100
iterations	300
time_elapsed	14
total_timesteps	1500
train/	
entropy_loss	-41.3
explained_variance	0
learning_rate	0.0007
n_updates	299
policy_loss	-238
reward	4.376703
std	1.01
value_loss	31.3

_			_
	time/		
	fps	100	
	iterations	400	
	time_elapsed	19	
	total_timesteps	2000	
	train/		
	entropy_loss	-41.3	
	explained_variance	-1.19e-07	
١	learning_rate	0.0007	l

▼ Model 2: DDPG

```
agent = DRLAgent(env = env_train)
model_ddpg = agent.get_model("ddpg")
    {'batch_size': 128, 'buffer_size': 50000, 'learning_rate': 0.001}
    Using cuda device
trained_ddpg = agent.train_model(model=model_ddpg,
                            tb_log_name='ddpg',
                            total timesteps=50000)
    day: 2892, episode: 20
    begin_total_asset: 1000000.00
    end_total_asset: 4774133.37
    total reward: 3774133.37
    total cost: 5470.92
    total_trades: 47732
    Sharpe: 0.868
      time/
         episodes
                         71
         fps
         time_elapsed
                         162
         total_timesteps | 11572
      train/
         actor_loss
                         96.6
         critic_loss
                         1.47e+03
         learning_rate
                         0.001
         n_updates
                         8679
                         2.8689466
      time/
         episodes
                         8
         fps
                         66
         time_elapsed
                         347
         total_timesteps | 23144
      train/
         actor_loss
                          24.9
```

14.5

critic_loss

```
learning_rate
                  0.001
    n_updates
                  20251
    reward
                  2.8689466
day: 2892, episode: 30
begin_total_asset: 1000000.00
end_total_asset: 4390924.34
total_reward: 3390924.34
total_cost: 999.00
total_trades: 40488
Sharpe: 0.730
_____
 time/
    episodes
                  12
    fps
                  65
    time_elapsed
                  532
    total_timesteps | 34716
 train/
    actor_loss
                  6.26
    critic_loss
                  3.49
    learning_rate
                  0.001
    n_updates
                  31823
                  2.8689466
    reward
 time/
    episodes
                  16
```

▼ Model 3: PPO

```
agent = DRLAgent(env = env_train)
PPO_PARAMS = {
   "n_steps": 2048,
   "ent coef": 0.01,
    "learning_rate": 0.00025,
    "batch_size": 128,
}
model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS)
     {'n_steps': 2048, 'ent_coef': 0.01, 'learning_rate': 0.00025, 'batch_size': 128}
     Using cuda device
trained_ppo = agent.train_model(model=model_ppo,
                             tb_log_name='ppo',
                             total timesteps=50000)
       time/
          fps
                            115
```

1

| 17

iterations

time_elapsed

total_timesteps	2048
train/	
reward	0.10877045

time/	
fps	112
iterations	2
time_elapsed	36
total_timesteps	4096
train/	
approx_kl	0.015766323
clip_fraction	0.226
clip_range	0.2
entropy_loss	-41.2
explained_variance	-0.0621
learning_rate	0.00025
loss	2.75
n_updates	10
<pre>policy_gradient_loss</pre>	-0.0268
reward	0.44184494
std	1
value_loss	9.5

day: 2892, episode: 40

begin_total_asset: 1000000.00
end_total_asset: 2858099.69
total_reward: 1858099.69
total_cost: 335985.43
total_trades: 80095

Sharpe: 0.673

time/						
fps	111					
iterations	3					
time_elapsed	55					
total_timesteps	6144					
train/						
approx_kl	0.014054896					
clip_fraction	0.127					
clip_range	0.2					
entropy_loss	-41.2					
explained_variance	-0.000786					
learning_rate	0.00025					
loss	30.3					
n_updates	20					
policy_gradient_loss	-0.0177					
reward	-1.5774492					
std	1					
value_loss	54.6					

Trading

```
Assume that we have $1,000,000 initial capital at 2020-07-01. We use the DDPG model to trade
data_risk_indicator = processed_full[(processed_full.date<'2020-07-01') & (processed_full.dat
insample_risk_indicator = data_risk_indicator.drop_duplicates(subset=['date'])
insample_risk_indicator.vix.describe()
     count
              2893.000000
     mean
                18.824245
     std
                 8.489311
     min
                 9.140000
     25%
                13.330000
     50%
                16.139999
     75%
                21.309999
                82.690002
     max
     Name: vix, dtype: float64
insample risk indicator.vix.quantile(0.996)
     57,40400183105453
insample_risk_indicator.turbulence.describe()
     count
              2893.000000
     mean
                34.567961
                43.790810
     std
     min
                 0.000000
     25%
                14.962718
     50%
                24.124747
```

75% 39.162552 max 652.506566

Name: turbulence, dtype: float64

insample_risk_indicator.turbulence.quantile(0.996)

276.45175727554096

▼ Trade

```
#trade = data_split(processed_full, '2020-07-01','2021-10-31')
e trade gym = StockTradingEnv(df = trade, turbulence threshold = 70, risk indicator col='vix',
trade.head()
```

	date	tic	open	high	low	close	volume	day	mac
0	2020- 07-01	AAPL	91.279999	91.839996	90.977501	89.904602	110737200.0	2.0	3.01460
0	2020- 07-01	AMGN	235.520004	256.230011	232.580002	240.153961	6575800.0	2.0	3.63639
0	2020- 07-01	AXP	95.250000	96.959999	93.639999	92.086372	3301000.0	2.0	-0.38916
0	2020- 07-01	ВА	185.880005	190.610001	180.039993	180.320007	49036700.0	2.0	5.44319
0	2020- 07-01	CAT	129.380005	129.399994	125.879997	120.651642	2807800.0	2.0	1.27262
4									+

```
df_account_value, df_actions = DRLAgent.DRL_prediction(
    model=trained_ddpg,
    environment = e_trade_gym)
    hit end!
```

df_account_value.tail()

	date	account_value
331	2021-10-22	1.424764e+06
332	2021-10-25	1.433647e+06
333	2021-10-26	1.427543e+06
334	2021-10-27	1.426441e+06
335	2021-10-28	1.440410e+06

df_actions.head()

	AAPL	AMGN	AXP	BA	CAI	CKM	CSCO	CVX	DI2	GS	• • •	MKK	MSFI	NKE	PG	IKV	'
date																	
2020- 07-01	0	0	0	98	99	0	0	0	0	77		0	95	0	0	0	
2020																	

→ Part 7: Backtest Our Strategy

-- --

7.1 BackTestStats

```
print("========Get Backtest Results=======")
now = datetime.datetime.now().strftime('%Y%m%d-%Hh%M')
perf_stats_all = backtest_stats(account_value=df_account_value)
perf stats all = pd.DataFrame(perf stats all)
perf_stats_all.to_csv("./"+config.RESULTS_DIR+"/perf_stats_all_"+now+'.csv')
    =======Get Backtest Results======
    Annual return
                          0.314815
    Cumulative returns
                          0.440410
    Annual volatility
                          0.135542
    Sharpe ratio
                          2.094102
    Calmar ratio
                        4.162814
    Stability
                         0.952226
    Max drawdown
                        -0.075625
    Omega ratio
                         1.407491
    Sortino ratio
                         3.063127
    Skew
                              NaN
    Kurtosis
                              NaN
    Tail ratio
                          1.091429
    Daily value at risk
                         -0.015950
    dtype: float64
#baseline stats
print("========Get Baseline Stats=======")
baseline_df = get_baseline(
       ticker="^DJI",
       start = df_account_value.loc[0,'date'],
       end = df_account_value.loc[len(df_account_value)-1,'date'])
stats = backtest_stats(baseline_df, value_col_name = 'close')
    =========Get Baseline Stats=======
    [******** 100%*********** 1 of 1 completed
    Shape of DataFrame: (335, 8)
```

```
Annual return
                           0.273520
    Cumulative returns
                           0.379084
    Annual volatility
                           0.139248
    Sharpe ratio
                           1.811893
    Calmar ratio
                          3.062662
    Stability
                           0.918651
    Max drawdown
                         -0.089308
    Omega ratio
                           1.351851
    Sortino ratio
                           2.684720
    Skew
                                NaN
    Kurtosis
                                NaN
    Tail ratio
                          1.051856
    Daily value at risk -0.016542
    dtype: float64
df_account_value.loc[0,'date']
     "2020-07-01"
df_account_value.loc[len(df_account_value)-1,'date']
     "2021-10-28"
```

▼ 7.2 BackTestPlot

```
======Compare to DJIA=======
[******** 100%********* 1 of 1 completed
Shape of DataFrame: (335, 8)
       Start date 2020-07-01
         End date 2021-10-28
     Total months
                          16
                    Backtest
   Annual return
                     31.481%
 Cumulative returns
                     44.041%
  Annual volatility
                     13.554%
   Sharpe ratio
                         2.09
   Calmar ratio
                         4.16
     Stability
                         0.95
  Max drawdown
                     -7.563%
   Omega ratio
                         1.41
   Sortino ratio
                         3.06
      Skew
                         NaN
     Kurtosis
                         NaN
     Tail ratio
                         1.09
 Daily value at risk
                     -1.595%
      Alpha
                         0.07
       Beta
                         0.86
 Worst drawdown periods Net drawdown in % Peak date Valley date Recovery date Durat
```

7.56 2020-09-02 2020-09-23 2020-10-13

Part 6: Implement DRL Algorithms

```
rebalance_window = 63
validation_window = 63
train_start = '2000-01-01'
train_end = '2019-01-01'
val_test_start = '2019-01-01'
val_test_end = '2021-01-18'
ensemble_agent = DRLEnsembleAgent(df=processed_full,
                 train_period=(train_start,train_end),
```

```
val_test_period=(val_test_start,val_test_end),
                rebalance_window=rebalance_window,
                validation_window=validation_window,
                **env_kwargs)
A2C_model_kwargs = {
                   'n steps': 5,
                   'ent_coef': 0.01,
                   'learning_rate': 0.0005
PPO model_kwargs = {
                   "ent_coef":0.01,
                   "n_steps": 2048,
                   "learning rate": 0.00025,
                   "batch_size": 128
DDPG_model_kwargs = {
                     "action_noise": "ornstein_uhlenbeck",
                     "buffer_size": 50_000,
                     "learning_rate": 0.000005,
                     "batch_size": 128
                   }
timesteps_dict = {'a2c' : 100_000,
                'ppo' : 100 000,
                'ddpg' : 50_000
df_summary = ensemble_agent.run_ensemble_strategy(A2C_model_kwargs,
                                               PPO model kwargs,
                                               DDPG model kwargs,
                                               timesteps dict)
    =======Start Ensemble Strategy========
    nan
    turbulence threshold: 5625265.115256409
    =====Model training from: 2000-01-01 to 2019-01-02
    =====A2C Training======
    {'n_steps': 5, 'ent_coef': 0.01, 'learning_rate': 0.0005}
    Using cpu device
    Logging to tensorboard_log/a2c/a2c_126_1
      time/
         fps
                              99
         iterations
                             100
         time elapsed
                            5
         total timesteps
                             500
      train/
         entropy_loss
                            -35.6
```

09 AM	R	L_Team_15_Utopia.ipynb - Colaboratory
explained_variance learning_rate n_updates policy_loss std value_loss	0.229 0.0005 99 -77 1 4.79	
<pre> time/ fps iterations time_elapsed total_timesteps train/ entropy_loss explained_variance learning_rate n_updates policy_loss std value_loss</pre>	99 200 10 1000 -35.6 -1.19e-07 0.0005 199 -40.5 1.01 2.02	
<pre> time/ fps iterations time_elapsed total_timesteps train/ entropy_loss explained_variance learning_rate n_updates policy_loss std value_loss</pre>	99 300 15 1500 -35.6 0.188 0.0005 299 250 1.01 59.4	
time/ fns	99	_

df_summary

	Iter	Val Start	Val End	Model Used	A2C Sharpe	PPO Sharpe	DDPG Sharpe
0	126	2019-01-02	2019-04-01	DDPG	-0.230842	-0.0926179	0.320516

Part 7: Backtest Our Strategy

Sharpe Ratio: 0.17377457928215234

df account value.head()

	account_value	date	daily_return	datadate
C	500000.000000	2019-04-01	NaN	2019-04-01
1	498557.292308	2019-04-02	-0.002885	2019-04-02
2	497280.859251	2019-04-03	-0.002560	2019-04-03
3	515844.876585	2019-04-04	0.037331	2019-04-04
4	496792.628660	2019-04-05	-0.036934	2019-04-05

▼ 7.1 BackTestPlot

Start date	2016-01-04
End date	2020-05-12
Total months	52

	Backtest
Annual return	13.162%
Cumulative returns	71.305%
Annual volatility	7.868%
Sharpe ratio	1.61
Calmar ratio	2.28
Stability	0.90
Max drawdown	-5.772%
Omega ratio	1.46
Sortino ratio	2.63
Skew	NaN
Kurtosis	NaN
Tail ratio	1.47
Daily value at risk	-0.941%
Alpha	0.11
Beta	0.14

Duration	Recovery date	Valley date	Peak date	Net drawdown in %	Worst drawdown periods
19	2016-02-25	2016-02-11	2016-02- 01	5.77	0
86	2016-11-10	2016-10-17	2016-07- 14	5.00	1
156	2017-10-04	2017-04-13	2017-03- 01	4.96	2
170	2019-02-04	2018-06-28	2018-06- 12	4.34	3
6	2016-06-30	2016-06-27	2016-06- 23	3.85	4

/Users/hongyangyang/anaconda3/lib/python3.6/site-packages/pyfolio/tears.py:907: UserWarr 'interesting times.', UserWarning)

Cumulative returns

