Лабораторная 4. Метод k-ближайших соседей

Импорт библиотек

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import random
import math
```

1. Выбор датасетов: Студенты с **нечетным** порядковым номером в группе должны использовать датасет про **диабет**.

<pre>data = pd.read_csv('data/diabetes.csv') data</pre>							
	Pregnanci	es G	Slucose	BloodPressure	SkinThickness	Insulin	BMI
0		6	148	72	35	0	33.6
1		1	85	66	29	0	26.6
2		8	183	64	0	0	23.3
3		1	89	66	23	94	28.1
4		0	137	40	35	168	43.1
763		10	101	76	48	180	32.9
764		2	122	70	27	Θ	36.8
765		5	121	72	23	112	26.2
766		1	126	60	0	0	30.1
767		1	93	70	31	0	30.4
0 1 2	Pedigree 0.627 0.351 0.672	Age 50 31 32		e 1 9 1			

3 4 763 764 765 766 767	0.167 2.288 0.171 0.340 0.245 0.349 0.315	21 33 63 27 30 47 23	0 1 0 0 0 1			
[768 r	ows x 9 d	colum	ns]			
data.d	escribe())				
Taculd	Pregnand	cies	Glucose	BloodPress	ure	SkinThickness
Insuli count	768.000	0000	768.000000	768.000	000	768.00000
768.00 mean	3.845	5052	120.894531	69.105	469	20.536458
79.799 std	3.369	9578	31.972618	19.355	807	15.952218
115.24 min	0.000	9000	0.000000	0.000	000	0.00000
0.0000 25%	1.000	0000	99.000000	62.000	000	0.00000
0.0000 50%	00 3.000	0000	117.000000	72.000	000	23.00000
30.500 75%	000 6.000	0000	140.250000	80.000	000	32.00000
127.25 max 846.00	17.000	9000	199.000000	122.000	000	99.00000
count mean	768.0006 31.9925		Pedigree 768.000000 0.471876	Age 768.000000 33.240885	768	Outcome .000000 .348958

	BMI	Pedigree	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64

```
1
     Glucose
                    768 non-null
                                     int64
 2
     BloodPressure 768 non-null
                                     int64
3
     SkinThickness 768 non-null
                                     int64
 4
     Insulin
                    768 non-null
                                     int64
 5
                                     float64
     BMI
                    768 non-null
6
     Pedigree
                    768 non-null
                                     float64
 7
                    768 non-null
                                     int64
     Age
 8
     Outcome
                    768 non-null
                                     int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

Визуализация


```
data.isnull().sum()
Pregnancies    0
Glucose    0
```

```
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
Pedigree 0
Age 0
Outcome 0
dtype: int64
```

Все значения не являются пустыми, нужно исключить нулевые значения

Outcome - категориальный признак.

--> He все признаки обладают нормальным распределением, подлежат нормализации. Исключим записи с нулевыми значениями.

```
# data = data[~data[['Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI']].isin([0]).any(axis=1)]
```

Избавимся от выбросов.

--> Колонка возраста не будет иметь выбросов, так как не имеет погрешности измерения.

Построим матрицу корреляции.

```
corr = data.corr()
plt.matshow(corr)
plt.yticks(range(len(data.columns)), data.columns)
plt.xticks(range(len(data.columns)), data.columns, rotation=90)
plt.colorbar()
for (i, j), val in np.ndenumerate(corr):
    plt.text(j, i, f'{val:.2f}', ha='center', va='center',
color='white' if abs(val) > 0.5 else 'black')
plt.show()
```


Признаки Age и Pregnancies имеют высокую корреляцию.

--> Использование матрицы корреляции позволяет оценить степень взаимосвязи между признаками в выборке. Если два или более признака сильно коррелируют друг с другом, это может привести к мультиколлинеарности, что может искажать результаты анализа и делать модель менее точной и надежной. Уберем второй признак.

```
# data.drop('Pregnancies', axis=1, inplace=True)
```

Снова посмотрим на данные

Нормализация

Заметим, что записей Outcome с отрицательным результатом больше остальных.

--> Балансирование датасета до равенства исходов категориального признака может быть необходимо в случае, если в исходных данных присутствует значительный дисбаланс между классами этого признака. Например, если у нас есть классификационная задача, и один класс встречается гораздо чаще других, модель может быть склонна к предсказыванию этого класса, игнорируя менее часто встречающиеся классы. Сбалансируем датасет до равенства исходов Outcome путем случайной выборки строк из основного класса.

```
# desired_samples = data['Outcome'].value_counts().min()
# data = data.groupby('Outcome').apply(lambda x:
x.sample(desired_samples)).reset_index(drop=True)
```

Используем min-max нормализацию.

```
def min_max_standardize_data(data, columns=[]):
    standardized_data = data.copy()
    for column in columns:
        # x' = (x - min(x)) / (max(x) - min(x))
        standardized_data[column] = (data[column] -
np.min(data[column])) / (np.max(data[column]) - np.min(data[column]))
    return standardized_data

data = min_max_standardize_data(data, data.columns)
data.hist(bins=100, figsize=(20, 10))
```


Метод К-ближайших соседей

Разделение данных на обучающий и тестовый наборы

```
X = data.drop('Outcome', axis=1)
Y = data['Outcome']

def train_test_split(X, Y, seed, test_percent=0.2):
    random.seed(seed)
    random.shuffle(list(range(len(X))))

    test_size = int(len(X) * test_percent)

x_train = X[test_size:]
    x_test = X[:test_size]
    y_train = Y[test_size:]
    y_test = Y[:test_size]
    return x_train, x_test, y_train, y_test
```

```
class KNN:
    def __init__(self, k=3):
        self.k = k

    def fit(self, x_train, y_train):
        self.x_train = x_train
        self.y_train = y_train

    def predict(self, x_test):
        return np.array([self.predict_test(x) for x in x_test])

    def predict_test(self, x):
        dists = [np.sqrt(np.sum((x - x_train_idx)**2)) for x_train_idx in self.x_train]

        k_idx = np.argsort(dists)[:self.k]
        k_nearest_labels = [self.y_train[i] for i in k_idx]

        most_common = np.bincount(k_nearest_labels).argmax()
        return most_common
```

Определение оценки модели

```
def accuracy_score(y_test, y_pred):
    correct predictions = np.sum(y test == y pred)
    total predictions = len(y test)
    return correct_predictions / total_predictions
def error matrix(pred y, true y, n):
    res = np.zeros((n, n))
    for pred, true in zip(pred_y, true_y):
        res[int(pred), int(true)] += 1
    return res
def show_matrix(ax, pred_y, true_y, n):
    res = error matrix(pred y, true y, n)
    ax.matshow(res)
    ax.set xlabel('True class')
    ax.set_ylabel('Predicted class')
    for (i, j), z in np.ndenumerate(res):
        ax.text(j, i, str(int(z)), ha='center', va='center')
```

Модель 1 (Модель с случайным набором признаков)

```
def random_features_knn(X, Y, k, subplot_i):
    selected_features = random.sample(list(X.columns),
random.randint(2, len(X.columns)))
    new_data = X[selected_features]
```

```
display(new data.head())
   x train, x_test, y_train, y_test =
train test split(np.array(new data), np.array(Y), 42, 0.2)
   print(f"Train size: {len(x_train)}")
   print(pd.DataFrame(y_train).value_counts())
   print(f"Test size: {len(x test)}")
   print(pd.DataFrame(y test).value counts())
    knn = KNN(k=k)
    knn.fit(x train, y train)
   y pred = knn.predict(x test)
   print("Оценка модели: ", accuracy_score(y_test, y_pred))
   ax = plt.subplot(1, 3, i)
   ax.set title('K = %d' %k)
    show_matrix(ax, y_pred, y_test, 2)
for i, k in enumerate([3, 5, 10], 1):
    random features knn(X, Y, k, i)
       BMI
            Pregnancies Pedigree
                                   BloodPressure
                                                       Age
                                                           Insulin
0 0.500745
                                                  0.483333
                                                            0.000000
               0.352941
                         0.234415
                                        0.590164
1 0.396423
               0.058824 0.116567
                                        0.540984
                                                  0.166667
                                                            0.000000
2 0.347243
               0.470588 0.253629
                                        0.524590
                                                  0.183333
                                                            0.000000
3 0.418778
               0.058824 0.038002
                                        0.540984
                                                  0.000000
                                                            0.111111
               0.000000 0.943638
4 0.642325
                                        0.327869
                                                 0.200000 0.198582
Train size: 615
0.0
      401
1.0
      214
dtype: int64
Test size: 153
0.0
      99
1.0
      54
dtype: int64
Оценка модели: 0.7058823529411765
   BloodPressure SkinThickness Glucose
                                           Insulin
                                                         Age
Pedigree \
                      0.353535 0.743719 0.000000
       0.590164
                                                    0.483333
0.234415
       0.540984
                      0.292929 0.427136 0.000000
                                                    0.166667
0.116567
                      0.000000 0.919598
       0.524590
                                          0.000000
                                                    0.183333
0.253629
       0.540984
                      0.232323 0.447236 0.111111
                                                    0.000000
```

```
0.038002
       0.943638
       BMI
0 0.500745
1 0.396423
2 0.347243
3 0.418778
4 0.642325
Train size: 615
0.0
      401
1.0
      214
dtype: int64
Test size: 153
0.0 99
1.0
      54
dtype: int64
Оценка модели: 0.7581699346405228
  BloodPressure SkinThickness Glucose Insulin
                                                      Age
Pedigree \
       0.590164
                     0.353535 0.743719 0.000000 0.483333
0.234415
                     0.292929 0.427136 0.000000
       0.540984
                                                  0.166667
0.116567
       0.524590
                     0.000000 \quad 0.919598 \quad 0.000000 \quad 0.183333
0.253629
                     0.232323 \quad 0.447236 \quad 0.111111 \quad 0.000000
       0.540984
0.038002
                     0.353535  0.688442  0.198582  0.200000
       0.327869
0.943638
       BMI
0 0.500745
1 0.396423
2 0.347243
3 0.418778
4 0.642325
Train size: 615
0.0
     401
1.0
      214
dtype: int64
Test size: 153
0.0
      99
1.0
      54
```

dtype: int64

Оценка модели: 0.7712418300653595

Модель 2 (Фиксированный набор признаков, который выбирается заранее)

```
import itertools

x_train, x_test, y_train, y_test = train_test_split(X, Y, 42, 0.2)
columns = list(x_train.columns)
combinations = itertools.combinations(columns, 2)

for i_column_name, j_column_name in combinations:
    data.plot.scatter(x=i_column_name, y=j_column_name, c='Outcome',
colormap='rainbow', edgecolor='black');

C:\Data\Programming\Python310\lib\site-packages\pandas\plotting\
    matplotlib\core.py:512: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface
('matplotlib.pyplot.figure') are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam 'figure.max_open_warning'). Consider using 'matplotlib.pyplot.close()'.
    fig = self.plt.figure(figsize=self.figsize)
```



```
from itertools import combinations
def fix features knn(X, Y, k, i):
    x_train, x_test, y_train, y_test = train_test_split(X, Y, 42, 0.2)
    best accuracy = 0
    best feature subset = []
    best matrix=[]
    print(len(combinations(X.columns, 3)))
    for subset in combinations(X.columns, 3):
        selected features = list(subset)
        X train subset = np.array(x train[selected features].values)
        X test subset = np.array(x test[selected features].values)
        knn = KNN(k=k)
        knn.fit(X train_subset, np.array(y_train))
        y pred = knn.predict(X test subset)
        accuracy = accuracy_score(np.array(y_test), y_pred)
        if accuracy > best accuracy:
            best accuracy = accuracy
            best_feature_subset = selected features
            best matrix=error matrix(np.array(y test), y pred, 2)
    print(f"Лучший набор признаков: {best_feature subset}")
    print(f"Точность: {best accuracy}")
    ax = plt.subplot(1, 3, i)
    ax.set title('K = %d' %k)
    show_matrix(ax, y_pred, y_test, 2)
for i, k in enumerate([3, 5, 10], 1):
    print("K =", k)
    fix features knn(X, Y, k, i)
K = 3
Лучший набор признаков: ['Pregnancies', 'Glucose', 'Age']
Точность: 0.7647058823529411
K = 5
Лучший набор признаков: ['Pregnancies', 'BMI', 'Age']
Точность: 0.7712418300653595
K = 10
Лучший набор признаков: ['Pregnancies', 'Glucose', 'BMI']
Точность: 0.7843137254901961
```



```
from mpl toolkits.mplot3d import Axes3D
def plot 3d(X, y, features indices):
    fig = plt.figure(figsize=(8, 6))
    ax = fig.add subplot(111, projection="3d")
    ax.scatter([x[0] for x in X], [x[1] for x in X], [x[2] for x in X]
X], c=y, cmap="viridis")
    ax.set xlabel("Признак 1: " + features indices[0])
    ax.set_ylabel("Признак 2: " + features_indices[1])
    ax.set zlabel("Признак 3: " + features indices[2])
    plt.show()
fixed_features_list = {
    3: ['Pregnancies', 'Glucose', 'Age'],
5: ['Pregnancies', 'BMI', 'Age'],
10: ['Pregnancies', 'Glucose', 'BMI']
for k in [3, 5, 10]:
    fixed_features = fixed_features_list[k]
    print(f"K = {k}, Fixed features: {fixed features}")
    x_train, x_test, y_train, y_test = train_test_split(X, Y, 42, 0.2)
    x_train_subset = np.array(x_train[fixed_features].values)
    plot 3d(x train subset, np.array(y train), fixed features)
K = 3, Fixed features: ['Pregnancies', 'Glucose', 'Age']
```


K = 5, Fixed features: ['Pregnancies', 'BMI', 'Age']

K = 10, Fixed features: ['Pregnancies', 'Glucose', 'BMI']

