

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 4: Boolean Algebra (2.2-2.3)

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: <u>ramahto@fullerton.edu</u> **Phone No**: 657-278-7274

Boolean Functions/Expressions and Boolean Algebra

Boolean Functions/Expressions

Boolean functions are used to specify logic or digital circuits (yes-no, true-false, 0-1, salt-pepper, High-Low, ...). Specify a "state".

Different ways to express Boolean Functions.

- 1. Boolean Algebra is a mathematical form used to represent Boolean functions.
- 2. Gates are a graphical form to represent Boolean functions.
- VHDL (Very High Speed Integrated Circuit Hardware Description Language) is a textual form to represent Boolean functions.

(Three more: K-MAPS, Truth Tables, Timing Diagrams)

One more? 7 total ways

Examples of Digital Circuits: ???

Basic mathematics needed for the study of the logic design of Digital Systems. Has many other applications including Set Theory and Mathematical Logic. Two-valued Boolean Algebra is also referred to as Switching Algebra, all variables assume only two values.

We will use a Boolean variable such as X or Y to represent the input or output of a switching element. Each variable can only take two different values. The symbols "1" or "0" are used to represent these two values.

Also known as Binary Logic: deals with variables that take on two discrete values, and with operations that assume logical meaning.

The symbols "0" and "1" in Boolean Algebra do not have a numeric value; instead they represent two different states in a logical circuit and are the two values of a switching variable.

"High/Low", "True/False","On/Off

In a logic gate, 0 (usually) represents a range of low voltages, and 1 represents a range of high voltages. In a switch, 0 (usually) represents an open switch, and 1 represents a closed circuit.

Logic gates are blocks of hardware (digital circuits) that produce a logic-1 or a logic-0 output if input logic is valid.

Digital circuit = switching circuit = logic circuit = gate.

Well suited for the analysis and design of Digital Systems (collection of digital circuits).

Elements, Operators and Postulates (Laws – unproven axioms)

Algebra is defined on a set of elements {0,1}, a set of operators (AND, OR, NOT), and a number of postulates (laws) (unproven axioms).

Postulates are the building blocks from which it is possible to deduce the

- rules,
- theorems, and
- properties of the algebraic system.

The symbols "0" and "1" in Boolean Algebra do not have a numeric value; instead they represent two different states in a logical circuit and are the two values of a switching variable.

"High/Low", "True/False","On/Off

In a logic gate, 0 (usually) represents a range of low voltages, and 1 represents a range of high voltages. In a switch, 0 (usually) represents an open switch, and 1 represents a closed circuit.

Logic gates are blocks of hardware (digital circuits) that produce a logic-1 or a logic-0 output if input logic is valid.

Digital circuit = switching circuit = logic circuit = gate.

Well suited for the analysis and design of Digital Systems (collection of digital circuits).

Boolean Algebra Postulates

Boolean Algebra Postulates: List of Huntington's first set of postulates

Each postulate or rule has a dual: interchange the identity elements (0,1) and the binary operators (AND, OR)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

200	D . 1	D 1	1 1	1.1	11	1 71	0)	C 1	. 11
	Postulates for	Boolean	algebra	with t	wo distinct	values ()	or (0)	tor each	variable

Tobaliaces for Boolean algebra with two distiller values (1 of 6) for each variable						
Variable dominant rule	P1a:	$X \cdot 1 = X$ Identities				
	P1b:	X + 0 = X				
Commutative rule	P2a:	$X \cdot Y = Y \cdot X$				
	P2b:	X + Y = Y + X				
Distributive rule	P3a:	$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$				
	P3b:	$X + Y \cdot Z = (X + Y) \cdot (X + Z)$				
Complement rule	P4a:	$X \cdot \overline{X} = 0$ Fallacy				
	P4b:	$X + \overline{X} = 1$ Tautology				

Basic Logic Symbols

Boolean algebra expression	Name of expression	Distinctive-shape logic symbol	Logic name
\overline{A}	NOT or Complement operation	$A \longrightarrow \overline{A}$	Inverter or NOT Gate
$A \cdot B \cdot C \cdot$	AND operation	$ \begin{array}{c} A \\ B \\ C \end{array} $ $ \begin{array}{c} A \cdot B \cdot C \cdot \dots \\ \end{array} $	AND Gate
A+B+C+	. OR operation	$ \begin{array}{c} A \\ B \\ C \end{array} $ $ \begin{array}{c} A + B + C + C \end{array} $	OR Gate

Truth Tables for the NOT, AND, and OR operator definitions

Definitions								
NOT op	eration	AND or	eration	OR operation				
X	\overline{X}	XY	$X \cdot Y$	XY	X + Y			
0	1	0 0	0	0 0	0			
1	0	0 1	0	0 1	1			
		10	0	10	1			
		11	1	11	1			

Definition of binary operators NOT, AND, and OR

Definition of NOT operator (for 1 identity element)	Definition of AND operator (for 2 identity elements)	Definition of AND operator (for 3 identity elements)	Definition of AND operator (for 4 identity elements)	Definition of OR operator (for 2 identity elements)	Definition of OR operator (for 3 identity elements)	Definition of OR operator (for 4 identity elements)
$\overline{1} = 0$	0.0 = 0	0.0.0 = 0	$0 \cdot 0 \cdot 0 \cdot 0 = 0$	0 + 0 = 0	0 + 0 + 0 = 0	0 + 0 + 0 + 0 = 0
$\overline{0} = 1$	0.1 = 0	0.0.1 = 0	0.0.0.1 = 0	0 + 1 = 1	0 + 0 + 1 = 1	0 + 0 + 1 + 0 = 1
	1.0 = 0	$0 \cdot 1 \cdot 0 = 0$	$0 \cdot 0 \cdot 1 \cdot 0 = 0$	1 + 0 = 1	0 + 1 + 0 = 1	0 + 0 + 1 + 0 = 1
	$1 \cdot 1 = 1$	0.1.1 = 0	•	1 + 1 = 1	0 + 1 + 1 = 1	•
		$1 \cdot 0 \cdot 0 = 0$	•		1 + 0 + 0 = 1	
		$1 \cdot 0 \cdot 1 = 0$			1 + 0 + 1 = 1	
		$1 \cdot 1 \cdot 0 = 0$	$1 \cdot 1 \cdot 1 \cdot 0 = 0$		1 + 1 + 0 = 1	1 + 1 + 1 + 0 = 1
		$1 \cdot 1 \cdot 1 = 1$	$1 \cdot 1 \cdot 1 \cdot 1 = 1$		1 + 1 + 1 = 1	1 + 1 + 1 + 1 = 1

Boolean Algebra Theorems

Absorption Theorem	T1a: $X \cdot (X + Y) = X$	Double Complementation or Double Negation Theorem	
	T1b: $X + X \cdot Y = X$	Double (vegation Theorem	
Adjacency Theorem	T2a: $X \cdot Y + X \cdot \overline{Y} = X$	Idempotency Theorem	T8a: $X \cdot X = X$
	T2b: $(X + Y) \cdot (X + \overline{Y}) = X$		T8b: $X + X = X$
Associative Theorem	T3a: $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$	Identity Element Theorem	T9a: $X \cdot 0 = 0$
	T3b: $X + (Y + Z) = (X + Y) + Z$	4/.	T9b: $X + 1 = 1$
Consensus Theorem	T4a: $X \cdot Y + \overline{X} \cdot Z + Y \cdot Z = X \cdot Y + \overline{X} \cdot Z$	Simplification Theorem	T10a: $X \cdot (\overline{X} + Y) = X \cdot Y$
	T4b: $(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z) = (X + Y) \cdot (\overline{X} + Z)$		T10b: $X + \overline{X} \cdot Y = X + Y$

DeMorgan's Theorem (with two variables)	T5a:	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$
two variables)	T5b:	$\overline{X + Y} = \overline{X} \cdot \overline{Y}$
DeMorgan's Theorem (with	Т6а:	$\overline{X \cdot Y \cdot Z \dots} = \overline{X} + \overline{Y} + \overline{Z} + \dots$
multiple variables)	T6b:	$\overline{X + Y + Z + \ldots} = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \ldots$

Comparing circuit complexity for the Boolean functions F1 and F2

In general, it is better to use fewer logic gates to minimize complexity, cost, and power requirements.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Application of T2a

Adjacency T2a:
$$X \cdot Y + X \cdot \overline{Y} = X$$

Theorem T2b: $(X + Y) \cdot (X + \overline{Y}) = X$

Proving Boolean Algebra Theorems

Simplification Theorem T10b: $X + \overline{X} \cdot Y = X + Y$								
Proof by perfect induction method		Proof by mathematical manipulation method (proving that EOR = EOL)						
Step 1: Make the truth table $X \ Y \mid \overline{X} \overline{X} \cdot Y X + \overline{X} \cdot Y X + Y$		Substitute postulates and/or theorems to show that EOR = EOL, which can be tricky because it involves trial and error						
0 0	X + Y	Jsing the following postulat	es and/or theorems:					
0 1	$X + Y \cdot 1$	Variable dominate rule	P1a: $X \cdot 1 = X$					
1 0	$X + Y \cdot (X + \overline{X})$	Complement rule	P4b: $X + \overline{X} = 1$					
1 1	$X + Y \cdot X + Y \cdot \overline{X}$	Distributive rule	P3a: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$					
Step 2: Fill in each column in the table	$X \cdot 1 + Y \cdot X + Y \cdot \overline{X}$	Variable dominate rule	P1a: $X \cdot 1 = X$					
using the operator definitions	$X \cdot 1 + X \cdot Y + \overline{X} \cdot Y$	Commutative rule	P2a: $X \cdot Y = Y \cdot X$					
$X \ Y \ \ \overline{X} $ $\overline{X} \cdot Y $ $X + \overline{X} \cdot Y $ $X + Y$	$X \cdot (1 + Y) + \overline{X} \cdot Y$	Distributive rule	P3a: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$					
000000 (000 0000000 0000000 000000 000000	$X \cdot 1 + \overline{X} \cdot Y$	Identity element theorem	T9b: $X + 1 = 1$					
0 0 1 0 0 0	$X + \overline{X} \cdot Y$	Variable dominate rule	P1a: $X \cdot 1 = X$					
0 1 1 1 1 1	Note that $EOR = EOL$							
1 0 0 0 1 1								
1 1 0 0 1 1								
EOL = EOR								
Step 3: Verify that $EOL = EOR$								

Proof of Adjacency Theorem

	Adjacency Theorem T2a: $X \cdot Y + X \cdot \overline{Y} = X$									
Proof by perfect induction method										
X Y	\overline{Y}	$X \cdot Y$	$X \cdot \overline{Y}$	$X \cdot Y + X \cdot \overline{Y}$	$X \cdot Y + X \cdot \overline{Y}$	Using the following postula	ates and/or theorems:			
0 0	1	0	0	0	$X \cdot (Y + Y)$	Distributive rule	P3a: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$			
0 1	0	0	0	0	<i>X</i> ·1	Complement rule	P4b: $X + X = 1$			
1 0	1	0	1	1	X	Variable dominate rule	P1a: $X \cdot 1 = X$			
1 1	0	1	0	1	Note that $EOL = E$	EOR				
EOR = EOL										

Step #1 – Check for obvious identities (direct applications of postulates)

Step #2 – Expand the function Multiply terms out if necessary

$$((Z'+Y)+(X.Z')).(Y'.Z') = (Z'+Y).(Y'.Z') +(X.Z').(Y'.Z')$$

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.Z'+Y.Y'.Z'+X.Y'.Z'.Z'$$

Step #3 – Check for obvious identities (direct applications of postulates)

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.Z'+Y.Y'.Z'+X.Y'.Z'.Z'$$
 $Z' = 0$
 Z'

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'+0.Z'+X.Y'.Z'$$

$$((Z'+Y)+(X.Z')).(Y'.Z') = \underbrace{Y'.Z'+0}_{Y'.Z'} + X.Y'.Z'$$

Practice Problem #1 (Continued)

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'+0 + X.Y'.Z'$$
 $Y'.Z'$
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z' + X.Y'.Z'$
Factor
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.(1 + X)$
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.(1)$
 $Y'.Z'$
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'$

Step #1 – Check for obvious identities (direct applications of postulates)

Step #2 – Expand the function Multiply terms out if necessary

$$((Z'+Y)+(X.Z')).(Y'.Z') = (Z'+Y).(Y'.Z') +(X.Z').(Y'.Z')$$

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.Z'+Y.Y'.Z'+X.Y'.Z'.Z'$$

Step #3 – Check for obvious identities (direct applications of postulates)

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.Z'+Y.Y'.Z'+X.Y'.Z'.Z'$$
 $Z' = 0$
 Z'

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'+0.Z'+X.Y'.Z'$$

$$((Z'+Y)+(X.Z')).(Y'.Z') = \underbrace{Y'.Z'+0}_{Y'.Z'} + X.Y'.Z'$$

Practice Problem #2 (Continued)

$$((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'+0 + X.Y'.Z'$$
 $Y'.Z'$
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z' + X.Y'.Z'$
Factor
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.(1 + X)$
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'.(1)$
 $Y'.Z'$
 $((Z'+Y)+(X.Z')).(Y'.Z') = Y'.Z'$

Simplify ((X'+X).(Y.X'))+(Z.X') if possible

Step #1 – Check for obvious identities (direct applications of postulates)

$$((X'+X).(Y.X'))+(Z.X') = ((X'+X).(Y.X'))+(Z.X')$$

$$((X'+X).(Y.X'))+(Z.X') = (1.(Y.X'))+(Z.X')$$

$$((X'+X).(Y.X'))+(Z.X') = (Y.X')+(Z.X')$$

Step #2 – Expand the function Multiply terms out if necessary

$$((X'+X).(Y.X'))+(Z.X') = Y.X'+Z.X'$$

Step #3 – Check for obvious identities (direct applications of postulates)

$$((X'+X).(Y.X'))+(Z.X') = \underbrace{Y.X'+Z.X'}_{Factor}$$

 $((X'+X).(Y.X'))+(Z.X') = \underbrace{(Y'+Z).X'}$

Simplify ((X'+Z').(Y'+Y))+(X'+Z') if possible

Step #1 – Check for obvious identities (direct applications of postulates)

$$((X'+Z').(Y'+Y))+(X'+Z') = ((X'+Z').(Y'+Y))+(X'+Z')$$

$$((X'+Z').(Y'+Y))+(X'+Z') = ((X'+Z').1)+(X'+Z')$$

$$((X'+Z').(Y'+Y))+(X'+Z') = (X'+Z')+(X'+Z')$$

$$X'+Z'$$

$$((X'+Z').(Y'+Y))+(X'+Z') = X'+Z'$$

Simplify ((Z+Y')+(Y.Z)).(Y'.Z) if possible

Step #1 – Check for obvious identities (direct applications of postulates)

Step #2 – Expand the function Multiply terms out if necessary

$$((Z+Y')+(Y.Z)).(Y'.Z) = (Z+Y').(Y'.Z) + (Y.Z).(Y'.Z)$$

Expand

Step #3 – Check for obvious identities (direct applications of postulates)

$$((Z+Y')+(Y.Z)).(Y'.Z) = (Z+Y').(Y'.Z) + Y. Y'.Z.Z$$

$$0 Z$$

$$((Z+Y')+(Y.Z)).(Y'.Z) = (Z+Y').(Y'.Z) + 0.Z$$

$$0$$

Practice Problem #4 (Concluded)

$$((Z+Y')+(Y.Z)).(Y'.Z) = (Z+Y').(Y'.Z) + 0$$

$$(Z+Y')+(Y.Z)).(Y'.Z) = (Z+Y').(Y'.Z)$$
Expand
$$((Z+Y')+(Y.Z)).(Y'.Z) = Y'.Z.Z + Y'.Y'.Z$$

$$Z Y'$$

$$((Z+Y')+(Y.Z)).(Y'.Z) = Y'.Z + Y'.Z$$

$$Y'.Z$$

$$((Z+Y')+(Y.Z)).(Y'.Z) = Y'.Z$$

Truth Table

We can use a Truth Table to specify the output values of a circuit of logic gates in terms of the values of the input variables.

If an expression has n variables and each variable can have the value 0 or 1, the number of different combinations of values of the variables is 2ⁿ.

Thus, a Truth Table for an n-variable expression will have n columns and 2ⁿ rows.

Two expressions are equal if they have the same value for every possible combination of the variables.

Truth Table for 3 variables

Since the expression (A + C)(B' + C) has the same value as AB' + C for all eight combinations of values of the variables A, B, and C, we conclude that:

$$AB' + C = (A + C)(B' + C)$$

ABC	B'	AB'	AB'+C	A+C	B'+C	(A+C)(B'+C)
000	1	0.1=0	0+0=0	0+0=0	1+0=1	0.1=0
001	1	0.1=0	0+1=1	0+1=1	1+1=1	1.1=1
010	0	0.0=0	0+0=0	0+0=0	0+0=0	0.0=0
011	0	0.0=0	0+1=1	0+1=1	0+1=1	1.1=1
100	1	1.1=1	0+1=1	1+0=1	0+1=1	1.1=1
101	1	1.1=1	1+1=1	1+1=1	1+1=1	1.1=1
110	0	1.0=0	0+0=0	1+0=1	0+0=0	1.0=0
111	0	1.0=0	1+0=1	1+1=1	0+1=1	1.1=1

Q&A

