SEQUENCE LISTING

<110>	Bristol-	Myers Sq	uibb Co	mpany								
<120>	POLYNUCLI	EOTIDE E	NCODING	A NC	VEL I	META:	LOPR	OTEA	SE,	MP-1		
<130>	D0073 CN	T										
<150> <151>	US 60/266 2001-02-0											
<150> <151>	US 10/067	•										
<150> <151>	US 60/282 2001-04-3	- ·										
<160>	71											
<170>	PatentIn	version	3.2									
<210><211><212><213>		iens										
<220> <221> <222>	CDS (231)(1	1472)										
<400> cgacag	l tott tagta	agggaa a	ggagaca	ag tg	ctag	ctac	tgc	cgcc	caa	gtgga	aaggtg	60
ggtgaa	attg ctcad	ctcttc a	ccccact	ga cg	cttt	tgcg	cac	ctgga	aaa .	agcg	gttcca	120
gtttgc	gccc gtcgo	cegeet t	acageco	ac ag	gaga	ccag	cgc	tacc	caa	gtca	cgtggg	180
ttcagc	ctgc agctt	ttcttg g	cccgaaa	gg ga	atta	tcta	taga	agta	1	atg d Met 1		236
	g act aag 1 Thr Lys 5			l Phe								284
	t gaa ttt r Glu Phe	_	_									332
	t aaa ata s Lys Ile											380
	gtg gtg a Val Val											428

					cat His											476
_		_			aga Arg	_				_		_		_	_	524
		_	_		gtc Val			_	_			_		~		572
acc Thr 115	ata Ile	aaa Lys	cca Pro	gga Gly	ctt Leu 120	gct Ala	tta Leu	agc Ser	ctg Leu	gga Gly 125	gtg Val	ggc Gly	tta Leu	tca Ser	ttt Phe 130	620
-		_	_	-	gga Gly	_			_							668
					gca Ala											716
					ctt Leu											764
					tca Ser											812
					atg Met 200			_				_				860
					tgc Cys											908
					gga Gly											956
					aat Asn											1004
					ata Ile											1052
					tct Ser 280											1100

cac His	aca Thr	atg Met	gca Ala	tgt Cys 295	cat His	ctt Leu	gtg Val	aaa Lys	aga Arg 300	aca Thr	cat His	cgg Arg	gct Ala	att Ile 305	ctg Leu	1148
ttt Phe	tgt Cys	aag Lys	cag Gln 310	aga Arg	gac Asp	ttg Leu	tta Leu	cct Pro 315	caa Gln	aat Asn	aat Asn	gca Ala	gta Val 320	ctg Leu	gtt Val	1196
gca Ala	tct Ser	ggt Gly 325	ggt Gly	gtc Val	gca Ala	agt Ser	aac Asn 330	ttc Phe	tat Tyr	atc Ile	cgc Arg	aga Arg 335	gct Ala	ctg Leu	gaa Glu	1244
att Ile	tta Leu 340	aca Thr	aac Asn	gca Ala	aca Thr	cag Gln 345	tgc Cys	act Thr	ttg Leu	ttg Leu	tgt Cys 350	cct Pro	cct Pro	ccc Pro	aga Arg	1292
cta Leu 355	tgc Cys	act Thr	gat Asp	aat Asn	ggc Gly 360	att Ile	atg Met	att Ile	gca Ala	tgg Trp 365	aat Asn	ggt Gly	att Ile	gaa Glu	aga Arg 370	1340
cta Leu	cgt Arg	gct Ala	ggc Gly	ttg Leu 375	ggc Gly	att Ile	tta Leu	cat His	gac Asp 380	ata Ile	gaa Glu	ggc Gly	atc Ile	cgc Arg 385	tat Tyr	1388
gaa Glu	cca Pro	aaa Lys	tgt Cys 390	cct Pro	ctt Leu	gga Gly	gta Val	gac Asp 395	ata Ile	tca Ser	aaa Lys	gaa Glu	gtt Val 400	gga Gly	gaa Glu	1436
gct Ala	tcc Ser	ata Ile 405	aaa Lys	gta Val	cca Pro	caa Gln	tta Leu 410	aaa Lys	atg Met	gag Glu	ata Ile	tgat	ttc	tgc		1482
tgtt	caaa	aa a	gtco	ctaa	ıa gg	gtct	cact	cto	tgac	ctc	agct	ggag	ıta d	cagta	.gccag	1542
atca	caac	tc a	ctgo	aacc	c tg	actt	cctg	aac	tcaa	.gaa	atco	tcct	gc (cttag	cctct	1602
tgaa	tago	cg g	gact	acag	ıg tg	tgca	tgtc	cat	gccc	agc	caac	ttta	tt t	ctat	ttttt	1662
gtag	agac	ag g	gatat	tgcc	a tg	ttgc	ccgg	gct	ggtc	ctg	aact	gctg	aa t	tcaa	gtgat	1722
cctc	ccac	ct t	ggcc	tcca	g aa	gtgc	tggg	att	atgg	gtg	tgag	ccac	ca t	gcct	agcca	1782
aaat	gttt	ct t	aagg	tata	c at	tttg	ggtc	tta	gaag	act	tata	catt	tg t	aata	tttat	1842
tact	aaat	at c	tcaa	agta	t ta	caat	aaat	gtt	acca	tgt	gagc	tact	tt ç	gaatc	aggct	1902
tctt	gcac	ac c	aatt	taaa	a at	gtta	actc	ttg	atat	ata	cact	agtt	at a	ccac	tcatg	1962
tcag	tcaa	ta a	attt	taag	g tt	taag	tgca	ggc	cttt	gtt	taca	gaaa	tc c	taat	ttttt	2022
gaaa	ccat	aa c	tctg	acct	g ac	acta	aatt	cct	gtag	aca	tgct	aagg	aa a	atct	gctta	2082
gtat	cgag	at c	aaga	actt	c ca	ttca	aaaa	gat	tatt	cag	ttat	gtta	tt t	gcat	attac	2142
catt	gtta	aa a	ataa	aaaa	a tt	tttaa	aaag	atg	aaaa	aaa	aaaa	aaaa	aa a	.aaaa		2197

<210> 2

<211> 414

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Ile Leu Thr Lys Thr Ala Gly Val Phe Phe Lys Pro Ser Lys 1 5 10 15

Arg Lys Val Tyr Glu Phe Leu Arg Ser Phe Asn Phe His Pro Gly Thr 20 25 30

Leu Phe Leu His Lys Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp 35 40 45

Thr Ala Ala Ala Val Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala 50 55 60

Ile His Ser Gln Thr Glu Val His Leu Lys Thr Gly Gly Ile Val Pro 65 70 75 80

Pro Ala Ala Gln Gln Leu His Arg Glu Asn Ile Gln Arg Ile Val Gln 85 90 95

Glu Ala Leu Ser Ala Ser Gly Val Ser Pro Ser Asp Leu Ser Ala Ile 100 105 110

Ala Thr Thr Ile Lys Pro Gly Leu Ala Leu Ser Leu Gly Val Gly Leu
115 120 125

Ser Phe Ser Leu Gln Leu Val Gly Gln Leu Lys Lys Pro Phe Ile Pro 130 135 140

Ile His His Met Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys
145 150 155 160

Val Glu Phe Pro Phe Leu Val Leu Leu Ile Ser Gly Gly His Cys Leu 165 170 175

Leu Ala Leu Val Gln Gly Val Ser Asp Phe Leu Leu Leu Gly Lys Ser 180 185 190

Leu Asp Ile Ala Pro Gly Asp Met Leu Asp Lys Val Ala Arg Arg Leu 195 200 205

Ser Leu Ile Lys His Pro Glu Cys Ser Thr Met Ser Gly Gly Lys Ala 210 215 220

Ile Glu His Leu Ala Lys Gln Gly Asn Arg Phe His Phe Asp Ile Lys 225 230 235 240

Pro Pro Leu His His Ala Lys Asn Cys Asp Phe Ser Phe Thr Gly Leu 245 250 255

Gln His Val Thr Asp Lys Ile Ile Met Lys Lys Glu Lys Glu Glu Gly 260 265 270

Ile Glu Lys Gly Gln Ile Leu Ser Ser Ala Ala Asp Ile Ala Ala Thr 275 280 285

Val Gln His Thr Met Ala Cys His Leu Val Lys Arg Thr His Arg Ala 290 295 300

Ile Leu Phe Cys Lys Gln Arg Asp Leu Leu Pro Gln Asn Asn Ala Val 305 310 315 320

Leu Val Ala Ser Gly Gly Val Ala Ser Asn Phe Tyr Ile Arg Arg Ala 325 330 335

Leu Glu Ile Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys Pro Pro 340 345 350

Pro Arg Leu Cys Thr Asp Asn Gly Ile Met Ile Ala Trp Asn Gly Ile 355 360 365

Glu Arg Leu Arg Ala Gly Leu Gly Ile Leu His Asp Ile Glu Gly Ile 370 \$375\$

Arg Tyr Glu Pro Lys Cys Pro Leu Gly Val Asp Ile Ser Lys Glu Val 385 390 395 400

Gly Glu Ala Ser Ile Lys Val Pro Gln Leu Lys Met Glu Ile 405 410

<210> 3

<211> 463

<212> PRT

<213> Arabidopsis thaliana

<400> 3

Met Val Arg Leu Phe Leu Thr Leu Ser Pro Ala Ile Ser Arg Phe Asn 1 5 10 15

Leu Tyr Pro Gly Ile Ser Ile Leu Ala Arg Asn Asn Asn Ser Leu Arg 20 25 30

Leu Gln Lys His His Lys Leu Lys Thr Lys Thr Pro Thr Phe Ser Leu 35 40 45

Ile Ser Pro Ser Ser Ser Pro Asn Phe Gln Arg Thr Arg Phe Tyr Ser 50 55 60

Thr Glu Thr Arg Ile Ser Ser Leu Pro Tyr Ser Glu Asn Pro Asn Phe 65 70 75 80

Asp Asp Asn Leu Val Val Leu Gly Ile Glu Thr Ser Cys Asp Asp Thr 85 90 95

Ala Ala Val Val Ser Pro Phe Asn His Leu Ser Ser Ser Cys Arg

Ala Glu Leu Leu Val Gln Tyr Gly Gly Val Ala Pro Lys Gln Ala Glu 115 120 125

Glu Ala His Ser Arg Val Ile Asp Lys Val Val Gln Asp Ala Leu Asp 130 135 140

Lys Ala Asn Leu Thr Glu Lys Asp Leu Ser Ala Val Ala Val Thr Ile 145 150 155 160

Gly Pro Gly Leu Ser Leu Cys Leu Arg Val Gly Val Arg Lys Ala Arg 165 170 175

Arg Val Ala Gly Asn Phe Ser Leu Pro Ile Val Gly Val His His Met 180 185 190

Glu Ala His Ala Leu Val Ala Arg Leu Val Glu Gln Glu Leu Ser Phe 195 200 205

Pro Phe Met Ala Leu Leu Ile Ser Gly Gly His Asn Leu Leu Val Leu

215 220

210

Ala His Lys Leu Gly Gln Tyr Thr Gln Leu Gly Thr Thr Val Asp Asp 225 230 235 240

- Ala Ile Gly Glu Ala Phe Asp Lys Thr Ala Lys Trp Leu Gly Leu Asp 245 250 255
- Met His Arg Ser Gly Gly Pro Ala Val Glu Glu Leu Ala Leu Glu Gly 260 265 270
- Asp Ala Lys Ser Val Lys Phe Asn Val Pro Met Lys Tyr His Lys Asp 275 280 285
- Cys Asn Phe Ser Tyr Ala Gly Leu Lys Thr Gln Val Arg Leu Ala Ile 290 295 300
- Glu Ala Lys Glu Ile Arg Asn Arg Ala Asp Ile Ala Ala Ser Phe Gln 305 310 315 320
- Arg Val Ala Val Leu His Leu Glu Glu Lys Cys Glu Arg Ala Ile Asp 325 330 335
- Trp Ala Leu Glu Leu Glu Pro Ser Ile Lys His Met Val Ile Ser Gly 340 345 350
- Gly Val Ala Ser Asn Lys Tyr Val Arg Leu Arg Leu Asn Asn Ile Val 355 360 365
- Glu Asn Lys Asn Leu Lys Leu Val Cys Pro Pro Pro Ser Leu Cys Thr 370 375 380
- Asp Asn Gly Val Met Val Ala Trp Thr Gly Leu Glu His Phe Arg Val 385 390 395 400
- Gly Arg Tyr Asp Pro Pro Pro Pro Ala Thr Glu Pro Glu Asp Tyr Val 405 410 415
- Tyr Asp Leu Arg Pro Arg Trp Pro Leu Gly Glu Glu Tyr Ala Lys Gly
 420 425 430
- Arg Ser Glu Ala Arg Ser Met Arg Thr Ala Arg Ile His Pro Ser Leu 435 440 445

Thr Ser Ile Ile Arg Ala Asp Ser Leu Gln Gln Gln Thr Gln Thr 450 455 460

<210> 4

<211> 421

<212> PRT

<213> Caenorhabditis elegans

<400> 4

Met Asn Ile Pro Lys Ile Leu Asn Asn Asn Leu Val Leu Lys Arg Ile
1 5 10 15

Phe Cys Arg Asn Tyr Ser Val Lys Val Leu Gly Ile Glu Thr Ser Cys 20 25 30

Asp Asp Thr Ala Val Ala Ile Val Asn Glu Lys Arg Glu Ile Leu Ser 35 40 45

Ser Glu Arg Tyr Thr Glu Arg Ala Ile Gln Arg Gln Gln Gly Gly Ile 50 55 60

Asn Pro Ser Val Cys Ala Leu Gln His Arg Glu Asn Leu Pro Arg Leu 65 70 75 80

Ile Glu Lys Cys Leu Asn Asp Ala Gly Thr Ser Pro Lys Asp Leu Asp

Ala Val Ala Val Thr Val Thr Pro Gly Leu Val Ile Ala Leu Lys Glu 100 105 110

Gly Ile Ser Ala Ala Ile Gly Phe Ala Lys Lys His Arg Leu Pro Leu 115 120 125

Ile Pro Val His His Met Arg Ala His Ala Leu Ser Ile Leu Leu Val 130 135 140

Asp Asp Ser Val Arg Phe Pro Phe Ser Ala Val Leu Leu Ser Gly Gly 145 150 155 160

His Ala Leu Ile Ser Val Ala Glu Asp Val Glu Lys Phe Lys Leu Tyr 165 170 175

- Gly Gln Ser Val Ser Gly Ser Pro Gly Glu Cys Ile Asp Lys Val Ala 180 185 190
- Arg Gln Leu Gly Asp Leu Gly Ser Glu Phe Asp Gly Ile His Val Gly 195 200 205
- Ala Ala Val Glu Ile Leu Ala Ser Arg Ala Ser Ala Asp Gly His Leu 210 215 220
- Arg Tyr Pro Ile Phe Leu Pro Asn Val Pro Lys Ala Asn Met Asn Phe 225 230 235 240
- Asp Gln Ile Lys Gly Ser Tyr Leu Asn Leu Leu Glu Arg Leu Arg Lys 245 250 255
- Asn Ser Glu Thr Ser Ile Asp Ile Pro Asp Phe Cys Ala Ser Leu Gln 260 265 270
- Asn Thr Val Ala Arg His Ile Ser Ser Lys Leu His Ile Phe Phe Glu 275 280 280
- Ser Leu Ser Glu Gln Glu Lys Leu Pro Lys Gln Leu Val Ile Gly Gly 290 295 300
- Gly Val Ala Ala Asn Gln Tyr Ile Phe Gly Ala Ile Ser Lys Leu Ser 305 310 315 320
- Ala Ala His Asn Val Thr Thr Ile Lys Val Leu Leu Ser Leu Cys Thr 325 330 335
- Asp Asn Ala Glu Met Ile Ala Tyr Ser Gly Leu Leu Met Leu Val Asn 340 345 350
- Arg Ser Glu Ala Ile Trp Trp Arg Pro Asn Asp Ile Pro Asp Thr Ile 355 360 365
- Tyr Ala His Ala Arg Ser Asp Ile Gly Thr Asp Ala Ser Ser Glu Ile 370 380
- Ile Asp Thr Pro Arg Arg Lys Leu Val Thr Ser Thr Ile His Gly Thr 385 390 395 400
- Glu Arg Ile Arg Phe Arg Asn Leu Asp Asp Phe Lys Lys Pro Lys Ser

405 410 415

Pro Lys Thr Thr Glu 420

<210> 5

<211> 327

<212> PRT

<213> Thermotoga maritima

<400> 5

Met Arg Val Leu Gly Ile Glu Thr Ser Cys Asp Glu Thr Ala Val Ala 1 5 10 15

Val Leu Asp Asp Gly Lys Asn Val Val Val Asn Phe Thr Val Ser Gln 20 25 30

Ile Glu Val His Gln Lys Phe Gly Gly Val Val Pro Glu Val Ala Ala 35 40 45

Arg His His Leu Lys Asn Leu Pro Ile Leu Leu Lys Lys Ala Phe Glu 50 55 60

Lys Val Pro Pro Glu Thr Val Asp Val Val Ala Ala Thr Tyr Gly Pro 65 70 75 80

Gly Leu Ile Gly Ala Leu Leu Val Gly Leu Ser Ala Ala Lys Gly Leu 85 90 95

Ala Ile Ser Leu Glu Lys Pro Phe Val Gly Val Asn His Val Glu Ala 100 105 110

His Val Gln Ala Val Phe Leu Ala Asn Pro Asp Leu Lys Pro Pro Leu 115 120 125

Val Val Leu Met Val Ser Gly Gly His Thr Gln Leu Met Lys Val Asp 130 135 140

Glu Asp Tyr Ser Met Glu Val Leu Gly Glu Thr Leu Asp Asp Ser Ala 145 150 155 160

Gly Glu Ala Phe Asp Lys Val Ala Arg Leu Leu Gly Leu Gly Tyr Pro 165 170 175 Gly Gly Pro Val Ile Asp Arg Val Ala Lys Lys Gly Asp Pro Glu Lys 180 185 190

Tyr Ser Phe Pro Arg Pro Met Leu Asp Asp Asp Ser Tyr Asn Phe Ser 195 200 205

Phe Ala Gly Leu Lys Thr Ser Val Leu Tyr Phe Leu Gln Arg Glu Lys 210 215 220

Gly Tyr Lys Val Glu Asp Val Ala Ala Ser Phe Gln Lys Ala Val Val 225 230 235 240

Asp Ile Leu Val Glu Lys Thr Phe Arg Leu Ala Arg Asn Leu Gly Ile 245 250 255

Arg Lys Ile Ala Phe Val Gly Gly Val Ala Ala Asn Ser Met Leu Arg 260 265 270

Glu Glu Val Arg Lys Arg Ala Glu Arg Trp Asn Tyr Glu Val Phe Phe 275 280 285

Pro Pro Leu Glu Leu Cys Thr Asp Asn Ala Leu Met Val Ala Lys Ala 290 295 300

Gly Tyr Glu Lys Ala Lys Arg Gly Met Phe Ser Pro Leu Ser Leu Asn 305 310 315 320

Ala Asp Pro Asn Leu Asn Val 325

<210> 6

<211> 340

<212> PRT

<213> Helicobacter pylori

<400> 6

Met Ile Leu Ser Ile Glu Ser Ser Cys Asp Asp Ser Ser Leu Ala Leu 1 5 10 15

Thr Arg Ile Glu Asp Ala Gln Leu Ile Ala His Phe Lys Ile Ser Gln 20 25 30

Glu Lys His His Ser Ser Tyr Gly Gly Val Val Pro Glu Leu Ala Ser

40 45

- Arg Leu His Ala Glu Asn Leu Pro Leu Leu Leu Glu Arg Ile Lys Ile 50 55 60
- Ser Leu Asn Lys Asp Phe Ser Lys Ile Lys Ala Ile Ala Ile Thr Asn 65 70 75 80
- Gln Pro Gly Leu Ser Val Thr Leu Ile Glu Gly Leu Met Met Ala Lys 85 90 95
- Ala Leu Ser Leu Ser Leu Asn Leu Pro Leu Ile Leu Glu Asp His Leu 100 105 110
- Arg Gly His Val Tyr Ser Leu Phe Ile Asn Glu Lys Gln Thr Cys Met 115 120 125
- Pro Leu Ser Val Leu Leu Val Ser Gly Gly His Ser Leu Ile Leu Glu 130 135 140
- Ala Arg Asp Tyr Glu Asn Ile Lys Ile Val Ala Thr Ser Leu Asp Asp 145 150 155 160
- Ser Phe Gly Glu Ser Phe Asp Lys Val Ser Lys Met Leu Asp Leu Gly 165 170 175
- Tyr Pro Gly Gly Pro Ile Val Glu Lys Leu Ala Leu Asp Tyr Arg His 180 185 190
- Pro Asn Glu Pro Leu Met Phe Pro Ile Pro Leu Lys Asn Ser Pro Asn 195 200 205
- Leu Ala Phe Ser Phe Ser Gly Leu Lys Asn Ala Val Arg Leu Glu Val 210 215 220
- Glu Lys Asn Ala Pro Asn Leu Asn Glu Ala Ile Lys Gln Lys Ile Gly 225 230 235 240
- Tyr His Phe Gln Ser Ala Ala Ile Glu His Leu Ile Gln Gln Thr Lys 245 250 255
- Arg Tyr Phe Lys Ile Lys Arg Pro Lys Ile Phe Gly Ile Val Gly Gly 260 265 270

```
Ala Ser Gln Asn Leu Ala Leu Arg Lys Ala Phe Glu Asn Leu Cys Asp
        275
                             280
                                                 285
Ala Phe Asp Cys Lys Leu Val Leu Ala Pro Leu Glu Phe Cys Ser Asp
    290
                         295
                                             300
Asn Ala Ala Met Ile Gly Arg Ser Ser Leu Glu Ala Tyr Gln Lys Lys
305
                    310
Arg Phe Val Pro Leu Glu Lys Ala Asn Ile Ser Pro Arg Thr Leu Leu
                325
Lys Ser Phe Glu
            340
<210>
<211> 14
<212> PRT
<213> Homo sapiens
<400> 7
Leu Glu Ile Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys
<210> 8
<211> 13
<212> PRT
<213> Homo sapiens
<400> 8
Val Phe Phe Lys Pro Ser Lys Arg Lys Val Tyr Glu Phe
<210> 9
<211> 13
<212> PRT
<213> Homo sapiens
<400> 9
Ser Ala Ile Ala Thr Thr Ile Lys Pro Gly Leu Ala Leu
                5
                                    10
<210> 10
```

<211> 13

```
<212> PRT
<213> Homo sapiens
<400> 10
Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys Val
<210> 11
<211> 13
<212> PRT
<213> Homo sapiens
<400> 11
Leu Thr Ile Arg Leu Thr Asn Lys Val Glu Phe Pro Phe
         5
<210> 12
<211> 13
<212> PRT
<213> Homo sapiens
<400> 12
Gly Leu Gln His Val Thr Asp Lys Ile Ile Met Lys Lys
<210> 13
<211> 13
<212> PRT
<213> Homo sapiens
<400> 13
His Leu Val Lys Arg Thr His Arg Ala Ile Leu Phe Cys
<210> 14
<211> 13
<212> PRT
<213> Homo sapiens
<400> 14
Glu Val Gly Glu Ala Ser Ile Lys Val Pro Gln Leu Lys
                5
<210> 15
<211> 80
<212> DNA
<213> artificial
```

<22 <22		Synt	hesi	zed	Olig	onuc	leot	ide	With	Bic	tin	At 5	s' Er	nd			
<40 ttt		15 tag	ttga	aatt	gc t	gaga	.ggtc	a ct	tgga	ıqaqa	cto	cact	age	aqaa	.agago	ct	60
				ıttga					-	5 5			33.	. .			80
<21:		16 20															
<213		DNA homo	sap	iens													
<40	0 >	16															
ctg	ctgt	ggt	ggat	gaaa	ct												20
<210	0 >	17															
<21	1>	20															
<212 <213		DNA homo	sap	iens													
<400		17	_														
			tcca	tatg	at												20
<210 <211		18 162															
<212	2 >	PRT		•													
<213		homo	sap	ıens													
<400)>	18															
Met 1	Arg	Ile	Leu	Val 5	Leu	Gly	Val	Gly	Asn 10	Ile	Leu	Leu	Thr	Asp 15	Glu		
														13			
Ala	Ile	Gly		Arg	Ile	Val	Glu		Leu	Glu	Gln	Arg		Ile	Leu		
			20					25					30				
Pro	Asp	Tyr	۷al	Glu	Ile	Leu	Asp	Gly	Gly	Thr	Ala	Gly	Met	Glu	Leu		
		35					40	_	_			45					
Leu	Glv	Asn	Met	Δla	Δan	Ara	Aen	uic	Leu	Tla	Tle	Ala	7	71 a	T7.0		
	50	·p	1100	7114	71011	55	nsp	1115	Leu	116	60	Ala	Asp	АТА	TTE		
Val 65	Ser	Lys	Lys	Asn	Ala 70	Pro	Gly	Thr	Met	Met 75	Ile	Leu	Arg	Asp	Glu 80		
Glu	Val	Pro	Ala	Leu 85	Phe	Thr	Asn	Lys	Ile 90	Ser	Pro	His	Gln	Leu 95	Gly		
				-													

Leu Ala Asp Val Leu Ser Ala Leu Arg Phe Thr Gly Glu Phe Pro Lys
100 105 110

Lys Leu Thr Leu Val Gly Val Ile Pro Glu Ser Leu Glu Pro His Ile 115 120 125

Gly Leu Thr Pro Thr Val Glu Ala Met Ile Glu Pro Ala Leu Glu Gln 130 135 140

Val Leu Ala Ala Leu Arg Glu Ser Gly Val Glu Ala Ile Pro Arg Ser 145 150 155 160

Asp Ser

<210> 19

<211> 439

<212> PRT

<213> homo sapiens

<400> 19

Met Leu Ile Leu Thr Lys Thr Ala Gly Val Phe Phe Lys Pro Ser Lys

1 10 15

Arg Lys Val Tyr Glu Phe Leu Arg Ser Phe Asn Phe His Pro Glu Thr 20 25 30

Leu Phe Leu His Lys Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp 35 40 45

Thr Ala Ala Ala Val Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala 50 55 60

Ile His Ser Gln Thr Glu Val His Leu Lys Thr Gly Gly Ile Val Pro
65 70 75 80

Pro Ala Ala Gln Gln Leu His Arg Glu Asn Ile Gln Arg Ile Val Gln 85 90 95

Glu Ala Leu Ser Ala Ser Gly Val Ser Pro Ser Asp Leu Ser Ala Ile 100 105 110

Ala Thr Thr Ile Lys Pro Gly Leu Ala Leu Ser Leu Gly Val Gly Leu Ser Phe Ser Leu Gln Leu Val Gly Gln Leu Lys Lys Pro Phe Ile Pro Ile His His Met Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys Val Glu Phe Pro Phe Leu Val Leu Leu Ile Ser Gly Gly His Cys Leu Leu Ala Leu Val Gln Gly Val Ser Asp Phe Leu Leu Gly Lys Ser Leu Asp Ile Ala Pro Gly Asp Met Leu Asp Lys Val Ala Arg Arg Leu Ser Leu Ile Lys His Pro Glu Cys Ser Thr Met Ser Gly Gly Lys Ala Ile Glu His Leu Ala Lys Gln Gly Asn Arg Phe His Phe Asp Ile Lys Pro Pro Leu His His Ala Lys Asn Cys Asp Phe Ser Phe Thr Gly Leu Gln His Val Thr Asp Lys Ile Ile Met Lys Lys Glu Lys Glu Glu Gly Ile Phe Leu Ile Ser Lys Val Glu Gln Ile Asn Ile Pro Gly Leu Cys Leu Lys Ile Ala Ala His Phe Cys Arg Tyr Glu Lys Gly Gln Ile Leu Ser Ser Ala Ala Asp Ile Ala Ala Thr Val Gln His Thr Met Ala Cys His Leu Val Lys Arg Thr His Arg Ala Ile Leu Phe Cys Lys Gln Arg Asp Leu Leu Pro Gln Asn Asn Ala Val Leu Val Ala Ser Gly Gly Val

340	345	250
340	347	350

Ala Ser Asn Phe Tyr Ile Arg Arg Ala Leu Glu Ile Leu Thr Asn Ala 355 360 365

Thr Gln Cys Thr Leu Leu Cys Pro Pro Pro Arg Leu Cys Thr Asp Asn 370 375 380

Gly Ile Met Ile Ala Trp Asn Gly Ile Glu Arg Leu Arg Gly Gly Leu 385 390 395 400

Gly Ile Leu His Asp Ile Glu Gly Ile Arg Tyr Glu Pro Lys Cys Pro 405 410 415

Leu Gly Val Asp Ile Ser Lys Glu Val Gly Glu Ala Ser Ile Lys Val
420 425 430

Pro Gln Leu Lys Met Glu Ile 435

<210> 20

<211> 14364

<212> DNA

<213> homo sapiens

<400> 20

actagaggat cccccacatc aagagatact ggtcagcaaa gaaaatttaa gaggagaaag 60 gatgggctgg gcgtggtggc tcacgcatgt aatcccagca ctttgggagg ccgaggcagg 120 tggatcacga ggtcaagaga tggagaccat cctggccaac atggtgaaac cccqtctcta 180 ctaaaaatac aaaaattagc tgggcgtggt ggcgtgcacc tgtagtccca gctactcagg 240 aggetgggge aggagaateg ettgaaceeg ggaggeagag gttgtagtga gecaacetea 300 360 aatggcaatg tatttttagc actagccaag tcaaagaatg taagacaatg tgactcaagt 420 ggaaagggct gcatcaggct tgaaatacta gccattaaaa gcaccacaca catttctatt 480 gtttctgttc tgtgtttacc aagcaatctt ctgattataa tttggattta gccttcattg 540 taatttggtc aatacaagga agataatgac cagcaaactc aactatccta gcttccccat 600 aattgtgttt ctcataaata atacattagt attaatggct tttacacagc attttattag 660 cagtttgtgg tgggtaactc agtactccag agtccagtca cttccagacc tgataaacca 720

atttcaagcc	tataaaagaa	tcagatattg	aaactcaagt	aatcacacta	tgggcctgcc	780
gggctggcat	acatctgtgg	cacgccaatg	tggcttttcc	caagcaatac	ccctctctga	840
atacagtttc	cattcacatt	tccataattc	tgtactgcat	tttgtcttct	gcctgtagac	900
tcagattctt	gagaacagag	aatggacctt	atctgtatcc	ttatactaat	aaagttccta	960
gcataaagga	aataacccaa	taaatatgta	acaaatgaaa	ataaaaccta	acctagtagg	1020
acataattag	gaaataaata	ttgaaaaata	ggatttgccc	caggcgtggt	ggctcatgcc	1080
tgtaatccca	gcactttggg	aagctgaggc	aggtggatca	cgaggtcagg	agttcaaaac	1140
cagcctggcc	aacatagtga	aatgtcatct	ctactaaaaa	tacaaaaatt	aactgggaat	1200
ggtggcaggc	acctgtagtc	ccagctactc	ggaaggctga	ggcaggagaa	tcgcttgagc	1260
cccggaggtg	gaggttgtag	tgagctgaga	tggcaccact	gcactccagc	ctggcaacag	1320
agtgagactc	catctaaaaa	aaaaaagaaa	gattcttata	tgttttaata	tataatatgt	1380
attaataata	aaattttcct	ctgaaggcta	caaatggaaa	gctagacaca	caatatctga	1440
gaccaaataa	gcatatctag	attcagctgg	aactctcgat	ttatgttgaa	cttacatagg	1500
ccatatttt	tgagaatgcc	catgagtggc	attctaacta	tctgcataaa	agtacagaca	1560
ggcctcagag	agcatacatg	cctttccccc	aataaccctc	tcctatgtta	caatagagaa	1620
cataaaaaat	gtatatcttt	gctaaataca	tgggacttgt	ataagtgcca	ctttacatat	1680
attcggtcaa	gggaaagata	aaattccata	ctaatgtgcc	ctagagttct	cctgtttcac	1740
ataataacag	cattcggact	caacactggc	caagagtgcc	tagacgagga	atctaccaat	1800
gatagcacac	acaataggat	cttgcttgtc	ttgacagcac	agaagagcat	tgggatatac	1860
ttgctgaaca	taagtggaat	tgtaagaaaa	ataatacctg	atgtgaaagg	ttttatgttc	1920
aaactggatt	ccagtgtata	acagaaataa	gctctgacct	ctctaaccgt	atgactaatt	1980
tttcttaact	tttaggtttt	aatttttctt	ttttcccttg	tttaggccaa	cagtgcaccc	2040
tagagaaaat	gtgagttatt	ttctcttcta	gcagttaaga	aaacagactc	cagtgccaga	2100
tggcctgact	tctaatccta	gctttgcttt	tcctagttgt	gtgacctcca	aagcacccaa	2160
actctgtggc	ccagttgcct	gtaaaatgag	gacagaaact	atttcatggg	attttgaaag	2220
aaattaatct	acagcaggtg	cctggtacat	agtgccactt	tatcattatt	gttacacata	2280
aatgaaattt	ttgaaaaaca	taagttccaa	ataaaaaacc	tcaaccatat	tctggtaatt	2340
atttacttat	ttatctgtat	ccacctctag	actgtactct	gtggcttccc	aacatgttgt	2400
tatgggattt	actcatcttt	tatacccaga	gcttcacaac	gtgcaaagtg	caggtatata	2460

2520 tgccagccct gtacaacagt ggattctaag gtccttgctt actaaaatct taaataccag caggggaaaa gcctgactct tggaataaat ctgtccaatg ttcaaaacaa agttcacaaa 2580 ccaataaaag aaaaaaaaa aaaaaagcag gtgcaagact ttgaaaacat accatgctga 2640 2700 atttcatgta catagtaagg aaggacaaca taatgcatta tggaaatagg atggtttaag gcaactgaat atttaccaca gccttttttt ttttttttt ttttttttt agacagagtc 2760 tegetetgta geteaggetg gagtgeagtg gegegatete ggeteactge taceteegee 2820 tcccgggtcc cagttcaage agttctcctg cctcagtctc ccgatttttt tttttttaa 2880 ttgtaaaaat aagccagccc ctttcttcct agtgaagtgg gagaaacggt ttacactgtc 2940 cgatgagaaa cacttccgtt ctttggtaac cctgctaggg ggcgccgcta gattccatcc 3000 tatttctccg atgaaagtat caggtacctc acccctacgt ttagatttga tgatagttcc 3060 cttaaaaatg aatgacgaat aatctacccc atccttttct cacagtagca accaaattcc 3120 agccaagggc aaaaaaaaa tttcttttta atgtagctta gtgtttggaa cttgatgttg 3180 tgtagtcaga caaacctgta ttcggcctcc gctggatcag tcactagctg tgtaatttta 3240 cagaactctc atcacctgca aatctggggg aaatgcaggt gcgcacagag agcgttttgg 3300 gcaaagacgg cctttaagct tttcttcact aagcatgccg ctcgctagcg gaacagcagc 3360 cagetetgga egggaeettg caeagtteeg atgacateae tteegggege eaggtteggg 3420 ctttctcctg cagcgataag ggcagtcgac agtctttagt agggaaagga gacaagtgct 3480 3540 agetactgcc geccaagtgg aaggtgggtg aaattgetea etetteacee caetgaeget tttgcgcacc tggaaaagcg gttccagttt gcgcccgtcg ccgccttaca gccgacagga 3600 gaccageget acceaagtea egtgggttea geetgeaget ttettggeee gaaagggtag 3660 tgcttcgtac aatcctcctt gtccagattt tgttaatgca aatctaattc ctctaggttg 3720 tgtctgtctg ggctgcactg cccgcaactg ccttctgcaa ataggtcgct catctctaat 3780 ccctgggatg ccgtgtccct ttagtgtggt ggagaaaggc cctgctttaa cacccagaaa 3840 gttttagaac ggatgatctg ggggcataaa attaggtgct tcgcagtgtg aaaatactag 3900 tgtgctttag tgatgggctg ctattatttt gggggaaaag gatttgggaa gatccttgtt 3960 4020 atgacaaaac ctgtagcaaa aagtggagat ttaattccaa agattgcaat taaggataaa ataggtgtta ggttgcagtt ggcgtgtgtg tgtttatgtt aactcttgtt tttgaaccaa 4080 atgatccagt tttattttga aagatgtttt taggagatgg aatacattaa cagtattttt 4140

4200 atctgttcca tctgcctttg ttgtttgatt ctttttagaa aatccacatt ttgtcttaat tttagctgtc aaaaaataaa tagcactttt cagaggactc tatcaattat tgtactttat 4260 attagctgtc ttaatagtaa gtcttttggt aggaacagca tgcaagtaat aataatacta 4320 4380 aaaaatttta tatctgaccc ctgttttccc ccttggagaa cattatattc attcataata ttatttatat tcccatgttg ctatagcctt tacaaacttt tggtgacttt tacaaacttt 4440 cctgtaattc tgtaaaacta tatattgaaa aataagctgg ctaatgtcag ttgcaaataa 4500 taagttgttt ctgtaattct ttttcaggaa ttatctatag agtaagtatg ctaatcttga 4560 ctaagactgc aggagttttt tttaaaccat caaaaaggaa agtttatgaa tttttaagaa 4620 gttttaattt tcatcctgga acactatttc ttcataaaat agtattggga attgaaacta 4680 4740 gttgtgatga tacagcagct gctgtggtgg atgaaactgg aaatgtgttg ggagaagcaa tacattecca aactgaagtt catttaaagt aagtagacat tatettagte atttecaett 4800 ttttggaaaa agtaaaatca ttcttttgta tttgtcatat ataaaagttt tcaggagcta 4860 ctgtcttatt cctttttgca aacactttta ataactgcta tagaaaacct caaacacttc 4920 atcctggctt ttaagggtct tcacaataag gtcccaacct taactaatcc tgttgccaaa 4980 agaaactgag ctcattccca gcttccgtat ttattgattt tccttcagta atgcattcct 5040 5100 tettttetee aettetatgt tteatggtet eagetgaagt eetaggaaaa etgttagtea 5160 ttgaaaaaaa aaatcctatt catatttata catataactt gtattagtac ttaaataaat 5220 aataatacac tgttgtatta aagcatagaa tggtgcaagg attataaact gtgatgttta tagaggacta ccaggcaggt tacctaaata aatggacaag ataaaaagtg gaaaatgtct 5280 ggaggaggtc actactcagc tctagccagt tgtcatgtgg gaatgcagga cctgtgttat 5340 tagattatta taattttcaa gggaaaatgg aaatccagat tttttttttc ttttttttg 5400 gtgagacaga gtctcactct gtcaccaggc tggagtgcag tggcatgatc tcggctcact 5460 gcaatctccg cctctcgagt tcaaacgatt cccctgtctc agcctcccaa gtagctggga 5520 ttacaggcac gtgccaccac gcccagctga ttttttgcat tttggtagag acggggtttc 5580 accatgttgg ccaggatggt ctcaatctcc tgacctcttg atccacctac ctcggcctcc 5640 caaagtgcag ggattacagg cgtgagacac cgcgccgggc tggaaatcca gattgttaat 5700 gtatttgcag attttttaca ttagtagcta atttagaata tattaaaata ctcttgggag 5760 gtggggggc cccgcccagc agccgcccg tctgggaggt gggggggcct ctgcccgcag 5820 cegeceegte ttaggggtgg gggeceetee geetggeege cacetetggg aagtgaggag 5880

cccctctgcc cggctgccac cccgtctggg aggtgtaccc aacagttcat tgagaacggg 5940 ccatgatgac aatggcggtt ttgtcgaata gaaaaggggg aaatgtgggg aaaagaaaga 6000 gagatcagat tgttaatgtg tctgtgtaga aagaagtaga cataggagac tccattttgt 6060 tctatactaa gaaaaatcct tctgccttgg gatgctgttg atctataacc ttacccccaa 6120 ccccgtgctc tctgaaacat gtgctgtgtc aactcagggt taaatggatt aagggcggtg 6180 caagatgtgc tttgttagac agatgcttga aggcagcata ctcgttaaga gtcatcacca 6240 etecetaate teaagtaeee agggacaeaa acaetgeaga aggeegeaga gteetetgee 6300 taggaaaacc agagaccttt gttcacatgt ttatctgctg accttctctc cactattgtc 6360 ctatggccct gccaaatccc cctctccgag aaacacccaa gaatgatcaa taaatactaa 6420 aaaaataaat aaataaataa gaataaaata ctctacagat gagtatacct ttaagctatc 6480 aatttacaac atctgaatag tgaaaaagcc tggtattttg gaatcacagt cctgtatttg 6540 aatcctgaat taagcacttg gtattggctc tgtaactgta ggcaagttcc atatcctctc 6600 tgattetgtt tteacateag taaaatagga aaattggetg ggegetgtgg eteaegeetg 6660 taategeate aetttgggag geegaggega gtggaeeatg aggteaggag attgagaeea 6720 teetggetaa eatggtgaaa eeccatetet aetaaaaata eaaaaaaaat tageeaggeg 6780 tggtggcgga cgcctgtagt cgcagctact tgggaggctg aggcaggaga atggcgtgaa 6840 cccgggaggc ggagcttgca gtgagcagag atcgcgccat tggactccag cccgggcgac 6900 agagtgagag tetgteteaa aaaaaaaaaa aggaaaatta acatetgeet catagaatta 6960 cgggagggtg gcattagaaa taatgtatgt aaagaggcag attgagcctc aaacaataac 7020 tatgtgaaag ggactgtgtt ggatattagt aaggcactgt gaagtactgc aaagtccttg 7080 gtttaaggaa gcttaacttg attatggaga catgatgtct agacctacaa ggagaattaa 7140 tagtgcaagg cagcatagca taaggaaaaa caagtggtgc agacagtaac tattattacc 7200 gtgcctcagc ttcacagtcc tttcagtttt tcctgagtgc actgaacttt tgaacatgta 7260 aaagttaatg gcacagaaag gactaccctg accactttat ctaaattagg tactcccatc 7320 ctatttattc tgtatcatca taccctgcat attttctttg taatactttc acaatttata 7380 catttgcttg tgtatgtata atctctctca gtagagtcta agtgccaagg tgacaggggc 7440 catgtctata ttaatcacta tgctatgcct agtgcctaac acaatgtttg acacatcaca 7500 ggtgttcagt ggcctttcgt taggccttca gtgaatggag atggaaagaa tattataacc 7560

7620 tgtgttagtt cattcttgca ctgctataac gaaatacctg agactgggta atttataaag aaaagaggtt taattggttc gtgtttccac aggctgtgta ggaagcgtgg cagcatctgc 7680 7740 ttctggggag gcccagggag cttttactca tggcggaagg caaattggga gtaggcgtct 7800 tacatggcag gagcaggacc gagagagggg gggtgaggtg ctacacactt ttttttttct tttgagatgg agttttgctc ttgttgccca gaccagagtg caatggtgca atcttggctc 7860 atcacaacct ccgcctcccg ggttcaagcg attctccccc ctcagccttc agaatagctg 7920 ggattatagg catgcgccac catgcccagc taattttgta tttttagtag agatggggtt 7980 8040 tetecatgtt ggteaggetg tetegaacte eegaceteaa gtgateeace caeeteggee 8100 tcccaaagtg atgggattac aggcgtgaac caccactccc ggcccacact tttaaacaac 8160 aagatotoat gagaactoat tgactatogo gacacagtao caaggggaaa ataogoooco atgatgtagt catctcccac caggccccat cttcaacatt gggaattacc attctacatg 8220 8280 agatttgggc agggacacag atccaaacca tatcactaag tgagcattgt cagcaaagac 8340 aaagaagtga gaaagtacta gacattcagt ttagctagag cataggtcac ttgaggagac tactgggcaa acaggettea gtgataceat ceacetgget cateteagea ttttttgaat 8400 8460 acctatagct gccaggcaat acttagggca tttgggatac aaatataaat gagacatatg 8520 actettgeet ttgaacaget caccatataa gtgggttaga gtgtaggett atattetggt 8580 tcagccattt actaggctta tattctggtt caaccattta ctacatttga tactgtgcac 8640 agttttttgt gcctcagttt ccttatctgt aaaatgataa taatgaccac taactcaaat taatgttgtg aatattaagt gtgaatteet ttaaagettt tagggeatte ttettgaata 8700 gcaagggctg aatacaagct agctcttagt aacaatagta gttctactac taccatcagt 8760 8820 aaaaatgaag aagacagtaa gcagatcatt gtgaaacagc atggaaaatg caataataga ggattacttg gcaggaggag tcccttcttc caagccagaa acctgaagga cacccttgac 8880 8940 ttctccctca ccattccaca tccaaatcag tcatccattc atagtaaatc catctcccaa 9000 atattttttg caactttcct ctcccttctc actgactgag ttcaatccct tattgtcttt tgcacagact cttggctata gcttcaagcc tcagtggttt ccctgcctct ttgttagctt 9060 9120 tgttccataa tccacactcc atactgtcta caaatcatag acaaaaatac attgttatta ttaattettt gagaataaag ceatgttett atttggeeet agtgtttage ataateeetg 9180 gaagataaaa tacacagaaa aggcatagaa aggaaaggag ggaggcaaga cagagaagga 9240 9300 agaaatgagt tgcagggaga gaatttggat ttgatgtctc ccaaattcca tgaaactaaa

ggttttgagt aggggaataa ctggtagcat gtgctttaga gtattctctg gcagcaatat 9360 9420 aggatgggct ctaaggatca aaggacagag ttaggaaagt acaattagaa gactgttgaa 9480 cagactgaga tgagggcttt tgagacttgg cagtgggagt ggtgataaac ttaaatgcgg 9540 agagtgaggg agagaaagga agtaaagatg aactttgaaa cccaagggtt atttgatgcc 9600 actaacaaag atgaggaata taagagaaaa agtagctttg aagaattaag gaaaattata ttacaatgtg gatgtgttga aatcagatca tttcatttat atccccctca ttgcctgaaa 9660 caatatttta attactcagc aaatattcat tgaatgcact tactgaggat tttcatttct 9720 acacatagaa ctagtagatc ttgcaacatc aaatattgga agatgatttt tttttgaaac 9780 9840 tagcagtgcg ttttgcagac tctattttat tgctccagtt ctcatattgt aaatcaatca 9900 catggtagca aatttgttgc tagcaaattt gtctcttagt tctttacact tgatatttgg 9960 agtggccatc caccatccta catggaccaa aaatccaaat tacaaactct gagcaccaga 10020 ttcccaaact gtatttcagg attgcaagct atctgctatc ctgctgtgac ctcaagtgga atgtgtttta aaataaactc gtcgtcttta taaaactgtc ttcatgtttc tcttttagaa 10080 10140 tttcttttct cccggtcatt ccagctgaat agctgaacaa actttgatgc cttagtcccc 10200 ctgtcccttt atattcagtt agttattata gttcttaagg ttctctgtcc ctttctttcc atteccacaa tegeceagtt taagatataa teattttaca caaataettt egeagtaate 10260 10320 tctcttaaaa tcttctgtca gcaaggaaat taattttcct taaatacaat tttttcctgt 10380 cetteceatg etcaaaactt gtatggaatg etttacaaga ttattttggt gattteattt 10440 gtcaacaaac aaatccatgg gagtctgttg tgcataaatt gaaaaagtca gaaacattat 10500 ccccttaatt actgcttact gagttttaac catagtgtgc tatgttagaa ggcacacaat 10560 tagaaaatac ttgacttact cagctatata atgattaact tgaagacatg cttttagctg 10620 taatatcatt tttcttcatt tttacaatct taaaactaca aaatgctgtc tttctttctt 10680 tcagaacagg tgggattgtt cctccagcag ctcaacagct tcacagagaa aatattcaac gaatagtaca agaagctett tetgecagtg gagtetetee aagtgacete teageaattg 10740 caactaccat aaaaccagga cttgctttaa gcctgggagt gggcttatca tttagcttac 10800 10860 agctggtagg acagttaaaa aagccattca ttcccattca tcatatggag gctcatgcac ttactattag gttgaccaat aaagtagaat ttcctttttt agttcttttg atttctggag 10920 gtcactgtct gttggcatta gttcaaggag tttcagattt tctgcttcat ggaaagtctt 10980

tggacatage accaggtgac atgettgaca aggtaattaa gaattaattt etecattett 11040 ttttgttatg ttgtccattt caactaagta gcaatagatg tgctaccacc attcacctaa 11100 11160 atatttctga attttatctt agtaaactga aaaaaattca catatggtga gaaaaaatag aaagagtagt acacaatttt ataattetta geetttetta ataaaatggt aagaggttea 11220 tatctgtaca taaaggctga aatagtttgc agatacagtt atgtattttg ccaaataatg 11280 11340 tatgtgaaag aacgtgcttc gtaaactaac atactgcaaa aaaggtaaaa taagagaata 11400 tatatagatt aacataagga cattaaagat gcaatgcaca gaattaaatc acacaattac ttacaccaca gacagggtcc cccccaccc ccctttgttt tagaatacta cagaggctac 11460 11520 ataggaagta taggacaagt tettattatt gaegtteate attaageagt tattgteaae 11580 11640 ttcaagccca ttttccaacc aatagaagag caaacataga caggggcagt gattggcctc ttattgttcg ggtcatcata aggaacaggg ttgtctgctt acctgaatat cagctatagt 11700 ctatatttgc caaagtatag catgttttat tcattcaggg gttttttgtt ttgttagtaa 11760 11820 ttttcaattt atttcctttg catcttttcg tttcacagta tttaatttta tgactctaaa aaatatgttt ctttgatagg tggcaagaag actttcttta ataaaacatc cagagtgctc 11880 caccatgagt ggtgggaaag ccatagaaca tttggccaaa caaggaaata gatttcattt 11940 tgacatcaaa cctcccttgc atcatgctaa aaattgtgat ttttctttta ctggacttca 12000 acacgttact gataaaataa taatgaaaaa ggaaaaaagag gaaggtatat ttctaattag 12060 taaagttgaa cagataaata ttcctggatt gtgcctaaaa atagctgctc atttctgcag 12120 12180 gtattgagaa ggggcaaatc ctgtcttcag cagcagacat tgctgccaca gtacagcaca caatggcatg tcatcttgtg aaaagaacac atcgggctat tctgttttgt aagcagagag 12240 acttgttacc tcaaaataat gcagtactgg taagttttat ctcattttat agtaatagtt 12300 12360 acactttgca atatgttact tttttcccaa gaccttgacc ttgtgtttag gatgaacaga 12420 tetttatgee ttatgetage eetgacagta tgaaattatg caggatagga aagaetaaca 12480 gccatttctt gtactagttt ggtagcttta tgggacagct gtatagcttc tatggcacat aagtctaatt ttgcatcttc ttgttggatt taaaagaggg cttacaataa agaaagtaaa 12540 12600 tgcagtaact gctatcacta tttttagaaa aataggtgga tttccttcat cctttgatga aatccctttg tttgtttgtt tttttaataa gccagtcaaa tttagcagtg ggaggtggta 12660 ttccaacttt cgtgacacta atgttgataa agttctgata atccactata ttgtaccagc

caaaatccct	ttaattgtgc	ttaaaagcct	tgacaaacat	cctgtttaac	tgtatcttaa	12780
actttattca	tttaaaaatt	ataaactaaa	gtgggaaaat	gtttaaatgg	tagtaattca	12840
tagatggaat	tttacatgga	tatcaaagaa	taatttttc	agagttatgt	agtaaaatgc	12900
acaaaataat	aaaaatttca	gggtctaaaa	tagtgtacta	tgattgaaat	tatattaaat	12960
aaatatttag	atgaaaggtt	ggaagaaaat	atacaaaaat	gctagtaatg	tttgtatgct	13020
attagaatta	ttagtaattt	ttttctttcc	aaattttat	tacatagata	tgtcatctgc	13080
ccattaccca	tctcaaaatg	ggatagttta	ttattgttta	atgctgatat	ttttctccag	13140
gtttaattag	cagcttggtt	catatccata	tatgatagtt	attttggttt	tctcaattcc	13200
ttcaggttgc	atctggtggt	gtcgcaagta	acttctatat	ccgcagagct	ctggaaattt	13260
taacaaacgc	aacacagtgc	actttgttgt	gtcctcctcc	cagactatgc	actgataatg	13320
gcattatgat	tgcatggtaa	gccacaggat	atacgtgctt	cactcataac	tatgtaaata	13380
ttaattgcca	ttttatcata	ctaagccttc	ttccttcaga	tcttggagct	attgatttta	13440
ttttaatgct	tcttatttag	gaatggtatt	gaaagactac	gtgctggctt	gggcatttta	13500
catgacatag	aaggcatccg	ctatgaacca	aagtatgtgg	tatcattcat	gatctttatg	13560
caagttacat	tacttaagac	aaagcctgga	ttttgccttt	atatatgagg	ttttcattga	13620
cattctggtg	gtacttgaag	gaaagttaca	taaatttctt	tcatgaacct	agttaaggtt	13680
gataccatat	gagaaatatt	tttgctacag	tatcaaatta	taaaaatctt	ggcaagttta	13740
ggtgagttag	aaacaggtca	tgagtaaggg	tgatgaattc	cctcctttgg	aactagaatg	13800
taaactatgt	ccatgacctg	gacttttgca	atgtcaagaa	catctcagaa	ccagcaagta	13860
tgctgggaaa	tttaaggaaa	acatgcagaa	agcattcagg	tgtgagagtg	ggttgtgatt	13920
atgctcttac	acaggcagtt	gagaattgga	cgaaagatag	ctgtttcctg	caagccttat	13980
ttcctctccc	aaatcaaagt	tccagtgaat	agcacagttt	tttctttact	tttttcttt	14040
tttttttag	agtcttagtg	tcacccaggc	tagagtgcag	tggcgcattc	tcggctcact	14100
gcaacctctg	cttcccatat	tcaagtgatt	gtcatgcctc	agcctcctga	gtagctggaa	14160
ttacaggttc	acacagetgt	gcccagctca	ttttttgtat	ttttagctca	tgggttttgc	14220
cacattggcc	aggctggtct	cgaactccag	gcctcaagtg	atccacccac	ctcggcctcc	14280
caaagtgctg	ggatgacagg	tgtgagccac	cacacctggc	tggtttttca	aattactatc	14340
aaatctgtgt	gttaagttaa	ttca				14364

<210> 21 <211> 1387 <212> DNA

<213> homo sapiens

<400> 21 caggaattat ctatagagta agtatgctaa tcttgactaa gactgcagga gtttttttta 60 aaccatcaaa aaggaaagtt tatgaatttt taagaagttt taattttcat cctgaaacac 120 tatttcttca taaaatagta ttgggaattg aaactagttg tgatgataca gcagctgctg 180 tggtggatga aactggaaat gtgttgggag aagcaataca ttcccaaact gaagttcatt 240 taaaaacagg tgggattgtt cctccagcag ctcaacagct tcacagagaa aatattcaac 300 gaatagtaca agaagctett tetgecagtg gagtetetee aagtgacete teagcaattg 360 caactaccat aaaaccagga cttgctttaa gcctgggagt gggcttatca tttagcttac 420 agctggtagg acagttaaaa aagccattca ttcccattca tcatatggag gctcatgcac 480 ttactattag gttgaccaat aaagtagaat ttcctttttt agttcttttg atttctggag 540 gtcactgtct gttggcatta gttcaaggag tttcagattt tctgcttctt ggaaagtctt 600 tggacatagc accaggtgac atgettgaca aggtggcaag aagactttet ttaataaaac 660 atccagagtg ctccaccatg agtggtggga aagccataga gcatttggcc aaacaaggaa 720 atagatttca ttttgacatc aaacctccct tgcatcatgc taaaaattgt gatttttctt 780 ttactggact tcaacacgtt actgataaaa taataatgaa aaaggaaaaa gaggaaggta 840 900 tatttctaat tagtaaagtt gaacagataa atattcctgg attgtgccta aaaatagctg 960 ctcatttctg caggtatgag aaggggcaaa tcctgtcttc agcagcagac attgctgcca cagtacagca cacaatggca tgtcatcttg tgaaaagaac acatcgggct attctgtttt 1020 1080 gtaagcagag agacttgtta cctcaaaata atgcagtact ggttgcatct ggtggtgtcg caagtaactt ctatatccgc agagctctgg aaattttaac aaacgcaaca cagtgcactt 1140 1200 tgttgtgtcc tcctcccaga ctatgcactg ataatggcat tatgattgca tggaatggta 1260 ttgaaagact acgtggtggc ttgggcattt tacatgacat agaaggcatc cgctatgaac caaaatgtcc tcttggagta gacatatcaa aagaagttgg agaagcttcc ataaaagtac 1320 cacaattaaa aatggagata tgatttctgc tgttcaaaaa agtccctaaa ggtagtatta 1380

<210> 22

aggttaa

1387

<211> 267

<212> PRT

<213> homo sapiens

<400> 22

Met Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys Val Glu Phe 1 5 10 15

Pro Phe Leu Val Leu Leu Ile Ser Gly Gly His Cys Leu Leu Ala Leu 20 25 30

Val Gln Gly Val Ser Asp Phe Leu Leu Leu Gly Lys Ser Leu Asp Ile 35 40 45

Ala Pro Gly Asp Met Leu Asp Lys Val Ala Arg Arg Leu Ser Leu Ile 50 55 60

Lys His Pro Glu Cys Ser Thr Met Ser Gly Gly Lys Ala Ile Glu His 65 70 75 80

Leu Ala Lys Gln Gly Asn Arg Phe His Phe Asp Ile Lys Pro Pro Leu 85 90 95

His His Ala Lys Asn Cys Asp Phe Ser Phe Thr Gly Leu Gln His Val

Thr Asp Lys Ile Ile Met Lys Lys Glu Lys Glu Glu Gly Ile Glu Lys 115 120 125

Gly Gln Ile Leu Ser Ser Ala Ala Asp Ile Ala Ala Thr Val Gln His 130 135 140

Thr Met Ala Cys His Leu Val Lys Arg Thr His Arg Ala Ile Leu Phe 145 150 155 160

Cys Lys Gln Arg Asp Leu Leu Pro Gln Asn Asn Ala Val Leu Val Ala 165 170 175

Ser Gly Gly Val Ala Ser Asn Phe Tyr Ile Arg Arg Ala Leu Glu Ile 180 185 190

Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys Pro Pro Pro Arg Leu 195 200 205

Cys Thr Asp Asn Gly Ile Met Ile Ala Trp Asn Gly Ile Glu Arg Leu 210 215 220

Arg Ala Gly Leu Gly Ile Leu His Asp Ile Glu Gly Ile Arg Tyr Glu 225 230 235 240

Pro Lys Cys Pro Leu Gly Val Asp Ile Ser Lys Glu Val Gly Glu Ala 245 250 255

Ser Ile Lys Val Pro Gln Leu Lys Met Glu Ile 260 265

<210> 23

<211> 1526

<212> DNA

<213> homo sapiens

<400> 23 atggaggete atgeacttae tattaggttg accaataaag tagaatttee ttttttagtt 60 cttttgattt ctggaggtca ctgtctgttg gcattagttc aaggagtttc agattttctg 120 cttcttggaa agtctttgga catagcacca ggtgacatgc ttgacaaggt ggcaagaaga 180 ctttctttaa taaaacatcc agagtgctcc accatgagtg gtgggaaagc catagaacat 240 ttggccaaac aaggaaatag atttcatttt gacatcaaac ctcccttgca tcatgctaaa 300 aattgtgatt tttcttttac tggacttcaa cacgttactg ataaaataat aatgaaaaag 360 gaaaaagagg aaggtattga gaaggggcaa atcctgtctt cagcagcaga cattgctgcc 420 acagtacagc acacaatggc atgtcatctt gtgaaaagaa cacatcgggc tattctgttt 480 tgtaagcaga gagacttgtt acctcaaaat aatgcagtac tggttgcatc tggtggtgtc 540 gcaagtaact tctatatccg cagagctctg gaaattttaa caaacgcaac acagtgcact 600 ttgttgtgtc ctcctcccag actatgcact gataatggca ttatgattgc atggaatggt 660 attgaaagac tacgtgctgg cttgggcatt ttacatgaca tagaaggcat ccgctatgaa 720 ccaaaatgtc ctcttggagt agacatatca aaagaagttg gagaagcttc cataaaagta 780 ccacaattaa aaatggagat atgatttctg ctgttcaaaa aagtccctaa agggtctcac 840 tetetgaeet cagetggagt acagtageea gateacaact caetgeaace etgaetteet 900 gaactcaaga aatcctcctg ccttagcctc ttgaatagcc gggactacag gtgtgcatgt 960 ccatgcccag ccaactttat ttctatttt tgtagagaca ggctcttgcc atgttgcccg 1020

ggctggtcct gaactgctga attcaagtga tcctcccacc ttggcctcca gaagtgctgg 1080 gattatgggt gtgagccacc atgcctagcc aaaatgtttc ttaaggtata cattttgggt 1140 cttagaagac ttatacattt gtaatattta ttactaaata tctcaaagta ttacaataaa 1200 tgttaccatg tgagctactt tgaatcaggc ttcttgcaca ccaatttaaa aatgttaact 1260 cttgatatat acactagtta taccactcat gtcagtcaat aaattttaag gtttaagtgc 1320 aggeettigt tiacagaaat eetaattitt tgaaaceata aetetgaeet gacactaaat 1380 tcctgtagac atgctaagga aaatctgctt agtatcgaga tcaagaactt ccattcaaaa 1440 agattattca gttatgttat ttgcatatta ccattgttaa aaataaaaa atttttaaaa 1500 gatgaaaaaa aaaaaaaaa aaaaaa 1526

<210> 24

<211> 6

<212> PRT

<213> homo sapiens

<400> 24

His His Met Glu Ala His
1 5

<210> 25

<211> 179

<212> PRT

<213> homo sapiens

<400> 25

Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp Thr Ala Ala Val 1 5 10 15

Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala Ile His Ser Gln Thr 20 25 30

Glu Val His Leu Lys Thr Gly Gly Ile Val Pro Pro Ala Ala Gln Gln 35 40 45

Leu His Arg Glu Asn Ile Gln Arg Ile Val Gln Glu Ala Leu Ser Ala 50 55 60

Ser Gly Val Ser Pro Ser Asp Leu Ser Ala Ile Ala Thr Thr Ile Lys 65 70 75 80

Pro Gly Leu Ala Leu Ser Leu Gly Val Gly Leu Ser Phe Ser Leu Gln Leu Val Gly Gln Leu Lys Lys Pro Phe Ile Pro Cys Cys Ala Thr Thr Cys Ala Thr Cys Ala Thr Ala Thr Gly Gly Ala Gly Cys Thr Cys 120 Ala Thr Gly Cys Ala Cys Thr Thr Ala Cys Thr Ala Thr Thr Ala Gly 135 Gly Thr Thr Gly Ala Cys Cys Ala Ala Thr Ala Ala Ala Gly Thr Ala 150 155 Gly Ala Ala Thr Thr Cys Ile His His Met Glu Ala His Ala Leu 165 170 Thr Ile Arg <210> 26 <211> 8 <212> PRT <213> bacteriophage T7 <400> 26 Asp Tyr Lys Asp Asp Asp Lys <210> 27 <211> 733 <212> DNA <213> homo sapiens <400> 27 gggatccgga gcccaaatct tctgacaaaa ctcacacatg cccaccgtgc ccagcacctg 60 aattogaggg tgcaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 120 teteceggae teetgaggte acatgegtgg tggtggaegt aageeacgaa gaeeetgagg 180 tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg 240 aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 300 ggctgaatgg caaggagtac aagtgcaagg tctccaacaa agccctccca acccccatcg 360

agaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	420
catcccggga	tgagctgacc	aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	480
atccaagcga	catcgccgtg	gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgctggac	tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcagcag	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 28

<211> 421

<212> PRT

<213> Caenorhabditis elegans

<400> 28

Met Asn Ile Pro Lys Ile Leu Asn Asn Leu Val Leu Lys Arg Ile
1 5 10 15

Phe Cys Arg Asn Tyr Ser Val Lys Val Leu Gly Ile Glu Thr Ser Cys 20 25 30

Asp Asp Thr Ala Val Ala Ile Val Asn Glu Lys Arg Glu Ile Leu Ser 35 40 45

Ser Glu Arg Tyr Thr Glu Arg Ala Ile Gln Arg Gln Gln Gly Gly Ile 50 55 60

Asn Pro Ser Val Cys Ala Leu Gln His Arg Glu Asn Leu Pro Arg Leu 65 70 75 80

Ile Glu Lys Cys Leu Asn Asp Ala Gly Thr Ser Pro Lys Asp Leu Asp 85 90 95

Ala Val Ala Val Thr Val Thr Pro Gly Leu Val Ile Ala Leu Lys Glu 100 105 110

Gly Ile Ser Ala Ala Ile Gly Phe Ala Lys Lys His Arg Leu Pro Leu 115 120 125

Ile Pro Val His His Met Arg Ala His Ala Leu Ser Ile Leu Leu Val 130 135 140

Asp Asp Ser Val Arg Phe Pro Phe Ser Ala Val Leu Leu Ser Gly Gly His Ala Leu Ile Ser Val Ala Glu Asp Val Glu Lys Phe Lys Leu Tyr Gly Gln Ser Val Ser Gly Ser Pro Gly Glu Cys Ile Asp Lys Val Ala Arg Gln Leu Gly Asp Leu Gly Ser Glu Phe Asp Gly Ile His Val Gly Ala Ala Val Glu Ile Leu Ala Ser Arg Ala Ser Ala Asp Gly His Leu Arg Tyr Pro Ile Phe Leu Pro Asn Val Pro Lys Ala Asn Met Asn Phe Asp Gln Ile Lys Gly Ser Tyr Leu Asn Leu Leu Glu Arg Leu Arg Lys Asn Ser Glu Thr Ser Ile Asp Ile Pro Asp Phe Cys Ala Ser Leu Gln Asn Thr Val Ala Arg His Ile Ser Ser Lys Leu His Ile Phe Phe Glu Ser Leu Ser Glu Gln Glu Lys Leu Pro Lys Gln Leu Val Ile Gly Gly Gly Val Ala Ala Asn Gln Tyr Ile Phe Gly Ala Ile Ser Lys Leu Ser Ala Ala His Asn Val Thr Thr Ile Lys Val Leu Leu Ser Leu Cys Thr Asp Asn Ala Glu Met Ile Ala Tyr Ser Gly Leu Leu Met Leu Val Asn Arg Ser Glu Ala Ile Trp Trp Arg Pro Asn Asp Ile Pro Asp Thr Ile

Tyr Al		Ala	Arg	Ser	375	Ile	Gly	Thr	Asp	Ala 380	Ser	Ser	Glu	Ile	
Ile As	p Thr	Pro	Arg	Arg 390	Lys	Leu	Val	Thr	Ser 395	Thr	Ile	His	Gly	Thr 400	
Glu Ar	g Ile	Arg	Phe 405	Arg	Asn	Leu	Asp	Asp 410	Phe	Lys	Lys	Pro	Lys 415	Ser	
Pro Ly	s Thr	Thr 420	Glu												
<210><211><211><212><213>	DNA	sap:	iens												
<400> gcagca	29 gcgg (ceget	tttc	tt ca	ataaa	aataq	g tai	ttgg	3						37
<210><211><211><212><213>	30 36 DNA Homo	sap	iens												
<400> gcagca	30 gtcg a	actat	cete	ca tt	ittta	aatto	g tg	gtac							36
<210><211><212><212><213>	31 39 DNA Homo	sap	iens												
<400> gcagca	31 gcgg (cegea	atgei	ca at	cttg	gacta	a aga	actgo	cag						39
<210><211><211><212><213>	32 36 DNA Homo	sapi	iens												
<400>	32														
gcagca	gtcg a	accca	atgca	aa to	cataa	atgco	c att	tatc							36
<210><211><212><212><213>	33 23 DNA Homo	sapi	iens												

<400>	33		22
caggtgo	age tggtgcagte	tgg	23
.010.	24		
<210>	34		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
400	2.4		
<400>	34		
caggtca	act taagggagtc	tgg	23
<210>	35		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
<400>	35		
	cago tggtggagto	taa	23
3~33~3	,	~53	
<210>	36		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
\Z1J/	nomo sapiens		
<400>	36		
caggtg	cagc tgcaggagtc	ada	23
00 0	0 0 00 0		
<210>	37		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
<400>	37		
gaggtgo	cage tgttgcagte	tgc	23
<210>	38		
<211>	23		
<212>			
<213>	Homo sapiens		
<400>	38		
	agc tgcagcagtc	agg	23
2-59040	and opendender		
<210>	39		
<211>			
<212>			
	Homo sapiens		
<400>	39		
	aca ataaccaaaa	tacc	24

<210>	40		
<211>	24		
	DNA		
<213>	Homo sapiens		
<400>	40		
tgaaga	gacg gtgaccattg	tece	24
•5~~5~	5405 5054004005		
<210>	41		
<211>	24		
<212>			
<213>	Homo sapiens		
<400>	41		
tgagga	gacg gtgaccaggg	ttcc	24
5 55 .	2 2 2 3 333		
<210>			
<211>	24		
<212>	DNA		
	Homo sapiens		
\Z1J/	nomo saprens		
	42		
tgaggag	gacg gtgaccgtgg	tccc	24
010	4.3		
	43		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
-100-	4.2		
<400>	43		
gacatc	caga tgacccagtc	tcc	23
<210>	44		
	23		
	DNA		
<213>	Homo sapiens		
<400>	44		
	gtga tgactcagtc	† a a	23
garger	giga igadicagic	LCC .	23
<210>	45		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
<400>	45		
	gtga tgactcagtc	tcc	23
	J-Ja Jaccougee	•	
<210>	46		
-011.	2.2		

<212> <213>	DNA Homo sapiens	
<400>	46	
gaaatt	gtgt tgacgcagtc tcc	23
<210>	47	
<211>	23	
<212> <213>		
(213)	Homo sapiens	
<400>	47	
gacatco	gtga tgacccagtc tcc	23
<210>	48	
<211>	23	
	DNA	
<213>	Homo sapiens	
<400>	48	
gaaacga	acac tcacgcagtc tcc	23
<210>	49	
	23	
	DNA Uma contant	
<213>	Homo sapiens	
<400>	49	
gaaatt	gtgc tgactcagtc tcc	23
<210>	50	
<211>	50 23	
<212>		
<213>		
-100-		
<400>	50 grat tagagagag aga	23
cageeeg	gtgt tgacgcagcc gcc	23
<210>	51	
<211>	23	
<212>	DNA	
<213>	Homo sapiens	
<400>	51	
cagtcto	gece tgaeteagee tge	23
<210>	52	
<211>	23	
<212>	DNA Home conjunc	
<213>	Homo sapiens	

<400> tcctate	52 gtgc tgactcagcc	acc	23
<210> <211>	53 23		
	DNA Homo sapiens		
<400>	53		22
tettet	gagc tgactcagga	ecc	23
<210> <211>	54 23		
	DNA		
	Homo sapiens		
<400>	54 atac tgactcaacc	acc	23
2409000		3	
<210>	55		
<211>	23		
<212>	DNA		
<213>	Homo sapiens		
<400>	55		
caggct	gtgc tcactcagcc	gtc	23
<210>	56		
<211>	23		
	DNA		
<213>	Homo sapiens		
<400>	56		
aatttta	atgc tgactcagcc	CCA	23
<210>	57		
<211><212>	24		
	Homo sapiens		
<400>	57 gatt tecacettgg	tege	24
acguit	gatt tecacettyg	tecc	24
<210>	58		
<211> <212>			
	Homo sapiens		
<400>	58		<u></u>
acgtttc	atc tccaqcttqq	taca	24

<210><211>	59 24			
<212>				
<213>				
(413)	Homo sapiens			
<400>	59			
		togg	24	
acgeet	gata tecaetttgg		47	
<210>	60			
<211>	24			
<211>				
<213>	Homo sapiens			
400-	60			
<400>	60	h-a-a-	2 4	
acguing	gate tecacettgg	teee	24	
-270-	<i>C</i> 1			
	61			
<211>	24			
	DNA			
<213>	Homo sapiens			
400	<i>c</i> 1			
<400>	61		~ <i>4</i>	
acgttta	aatc tccagtcgtg	tccc	24	
.010	63			
	62			
<211>	23			
<212>				
<213>	Homo sapiens			
400	60			
<400>	62		2 2	
cagters	gtgt tgacgcagcc	gec	23	
<210>	63			
<211>				
	DNA			
<213>	Homo sapiens			
.400-	63			
<400>	63	h ann	~ ~	
cagtete	gccc tgactcagcc	tgc	23	
010	C.4			
<210>	64			
<211>	23			
<212>	DNA			
<213>	Homo sapiens			
400	~ A			
<400> 64				
tcctatgtgc tgactcagcc acc 23				
010	6			
<210>	65			
<211>	23			

<212> <213>					
<400>					
tcttcts	tottotgago tgaotoagga coo 23				
<210>					
<211> <212>					
	Homo sapiens				
<400>	66				
cacgtta	tatac tgactcaacc gcc	23			
<210>	67				
<211>					
<212>	DNA Homo sapiens				
(21)/	nome suprems				
<400>					
cagget	tgtgc tcactcagcc gtc	23			
<210>	68				
<211>					
<212>	DNA				
<213>	Homo sapiens				
<400>	68				
aattttatgc tgactcagcc cca 23					
<210>	69				
<211>					
<212>					
<213>	Homo sapiens				
<400>	69				
tggcattatg attgcatgga a 21					
.010	70				
<210> <211>					
<211>					
<213>					
<400>	70	·			
	tgcct tctatgtcat gt	22			
<210>					
<211>					
<212>					
<213>	Homo sapiens				