

Mass Spectrometer

- Six processes occur in a mass spectrometer:
- 1. Vapourisation chamber: If not already a gas, the compound is **vaporised in an oven**.
- 2. Ionisation chamber: Electrons are fired at the gaseous molecules. These knock off other electrons from some of the molecules.

$$M + e^- \longrightarrow M^+ + 2e^-$$

Mass Spectrometer

- 3. Acceleration chamber: The gaseous ions are accelerated by passing through an electric field.
- 4. Electrostatic analyser: select ions of kinetic energy within a narrow range by using an electric field.
- 5. Deflection chamber: The fast-moving ions now pass through the poles of an electromagnet, where **they are deflected.**
- 6. The deflected ions pass through a narrow slit and are collected on a metallic plate connected to an amplifier.

Determination Using Mass Spectrometry

- Is used to identify unknown or new compounds.
- When a molecule is ionised it forms a MOLECULAR ION which can also undergo FRAGMENTATION or RE-ARRANGEMENT to produce particles of smaller mass.
- Only particles with a positive charge will be deflected and detected.
- The resulting spectrum has many peaks.
- The peak at **highest m/e ratio** is caused by **molecular ion** and indicates the **molecular mass**.
- The rest of the spectrum provides information about the structure.

Mass spectrum

- A mass spectrum is produced, which plots **relative abundance against mass/charge** (*m/e*) **ratio.**
- Most ions that are formed in a mass spectrometer have a charge of +1 → x-axis is a measure of the mass.
- The base peak → from particularly stable fragment (most abundant) of the molecule.

Uses of Mass Spectrometry

Determination of the structures of organic compounds:

- Measuring the relative heights of the molecular ion (M) peak
 and the (M+1) peak → can determine the number of
 carbon atoms in a molecule.
- 2. Using the (M+2) and (M+4) peaks \rightarrow can identify halogencontaining (Cl or Br) compounds.
- 3. By measuring the **accurate mass** of a molecular ion → can determine its **molecular formula**.
- 4. By identifying the **fragments** produced when an ion breaks up inside a mass spectrometer → can often piece together the **structure** of the parent molecule.

Use of (M + 1) Peak

- Use to determine number of carbon atoms in molecule.
- Naturally-occurring carbon is composed of 98.9% 12 C and 1.1% 13 C (along with extremely small, and variable, amount of 14 C).
- The formula relating the (M+1)/(M) ratio the number of carbon atoms is:

$$\Pi = \frac{100}{1.1} \left(\frac{A_{M+1}}{A_M} \right) \quad \text{where n = number of carbon atoms} \\ A_{M+1} = \text{the abundance of the M+1 peak} \\ A_{M} = \text{the abundance of the molecular ion, M, peak.}$$

Example 1(pg 58)

Compound A has a molecular ion at an m/e value of 120, and relative abundance 23%, and a peak at m/e 121 with a relative abundance of 2%. How many carbon atoms are in a molecule of A?

SAQ 1. pg 58

• Compound B contains carbon, hydrogen and oxygen only. Its mass spectrum contains a molecular ion peak at m/e = 102 (relative abundance 35%) and an M+1 peak at m/e 103 (1.5%).

Calculate the number of carbon atoms in the molecule, and hence deduce the number of oxygen atoms it contains, and its molecular formula.

Fragmentation patterns

- In ionisation chamber, bombardment by high speed *electrons* produces positive ions.
- The molecular ions formed undergo bond (homolytic) fission to produce molecular fragments:
 - 1 fragment is positive,
 - 1 is a radical.
- $M \rightarrow M^+ \rightarrow B \bullet + A^+$

A⁺ appear as further peaks.

B• does not appear as peaks in the spectrum.

e.g. Propanone

cleavage at (a) gives:

m/e = 43

m/e = 15

Fragmentation patterns

- Can be used to identify the structural formulae of compounds especially those with the same molecular formula.
- E.g. Propanone CH₃COCH₃ and Propanal CH₃CH₂CHO
- Molecular of C_3H_6O with m/e = 58

Mass Spectrum of propanone

- Highest m/e = 58due to $CH_3COCH_3^+$ (whole molecule)
- m/e = 43 (base peak) due to $(M - 15 = M - CH_3)$ i.e. CH_3CO^+
- m/e = 15 due to CH_3^+

(M), (M+2) and (M+4) peaks

- (M+2) and (M+4) peak occurs when compound contains Cl or Br atom.
- Both Cl & Br naturally occur as mixtures of 2 isotopes, with the relative abundances shown below:

element	isotope	relative abundance	approximate ratio
chlorine	³⁵ C1	75.8%	3:1
	³⁷ C1	24.2%	J. I
bromine	^{∕9} Br	50.5%	1:1
	⁸¹ Br	49.5%	1:1

- The first MS is of 2-chloropropane.
- \bullet Note the isotope pattern at 78 and 80 that represent the M and M+2 in a 3:1 ratio.
- Loss of ³⁵Cl from 78 or ³⁷Cl from 80 gives the base peak a m/z = 43, corresponding to the secondary propyl cation.
- Note that the peaks at m/z = 63 and 65 still contain Cl and therefore also show the 3:1 isotope pattern.

M+4 peaks

- If the molecule contains two chlorine atoms, (or two bromine atoms, or one of each) we should expect to see three molecular ions, at m/e values of M, M+2 and M+4.
- E.g. $M(^{79}Br_2^+)$, $M+2(^{79}Br^{81}Br^+)$ and $M+4(^{81}Br_2^+)$.
- The abundance ratio of Br₂ is 1:2:1
- The abundance ratio of Cl₂ is 9:6:1

Example (pg 58)

- dibromomethane, CH₂Br₂,
- three molecular ion peaks at m/e 172, 174 and 176 in the ratio 1:2:1,

Example (pg 58)

- dichloromethane, CH₂Cl₂,
- ratio 9:6:1,
- due to the greater natural abundance of the ^{35}Cl isotope.

SAQ 2 (pg 58)

• Calculate the M: M+2: M+4 ratio for CH_2BrCl

High resolution mass spectra

• Can distinguish between ions that have same mass on low-resolution mass spectrum.

E.g :

name	structure	molecular
		formula
pentene	$CH_3CH_2CH_2CH=CH_2$	C_5H_{10}
aminopropanonitril	e CH ₃ CH(NH ₂)CN	$C_3H_6N_2$
but-1-ene-3-one	CH ₂ -CHCOCH ₃	C_4H_6O

• All have an approximate *M*r of 70:

Molecular formulae from accurate masses

element	accurate relative atomic mass
Н	1.0078
С	12.000
N	14.003
0	15.995

 These accurate isotopic mass can accurately measure the mass of molecular ion → only correspond to one molecula formula.

Accurate Masses

•
$$C_5H_{10} = 5 \times 12.000 + 10 \times 1.0078$$

= **70.078**

•
$$C_3H_6N_2$$
 = 3 x 12.000 + 6 x 1.0078
+ 2 x 14.003 = **70.053**

•
$$C_4H_6O$$
 = 4 x 12.000 + 6 x 1.0078
+ 15.995 = **70.042**

• The last two differ by about 0.13%. This is well within the capabilities of a high-resolution mass spectrometer.

SAQ3 (pg 59)

• Explain whether a molecule having an accurate mass of 60.0574 is 1,2-diaminoethane, $C_2H_8N_2$, or propan-1-ol, C_3H_8O .

SAQ 4 (pg 61)

- Use the values of accurate relative atomic masses in the table to see whether it would be possible to decide whether the peak at m/e = 29 is due to $CH_3CH_2^+$ or CHO^+ .
- $CH_3CH_2^+ = (2x12.000) + (5x1.0078) = 29.039$
- $CHO^+ = 12.000 + 1.0078 + 15.995 = 29.003$

Compound B

- M:M+1 ratio of 11.5:1 suggests that it contains 8 carbon atoms,
- Accurate determination of its relative atomic mass suggests its molecular formula is $C_8H_8O_2$.
- B could be phenyl ethanoate, methyl benzoate or methyl benzoic acid

Compound B

• phenyl ethanoate

$$CH_3$$
- CO - O - C_0H_5][†] - OC_0H_5 \longrightarrow CH_3 - CO][†] $m/e = 43$

• methyl benzoate

• methyl benzoic

$$CH_3-C_0H_4-COOH$$
[†] - OH \longrightarrow $CH_3-C_0H_4CO$ [†]
 $m/e=136$ $m/e=119$

Ease of formation of carbonium ion fragments

•
$$CH_3^+ < RCH_2^+ < R_2CH^+ < R_3C^+$$

$$CH_2 = CH - CH_2^+ < C_6H_5 - CH_2^+$$

Common Small Ions		Common Neutral Fra	Common Neutral Fragments	
n/z	composition	mass loss	composition	
15 amu	CH ₃	1 amu	н	
17	ОН	15	CH ₃	
18	H ₂ O	17	ОН	
19	H₃O, F	18	H ₂ O	
26	C ₂ H ₂ , CN	19	F	
27	C ₂ H ₃	20	HF	
28	C ₂ H ₄ , CO, H ₂ CN	27	C ₂ H ₃ , HCN	
29	C ₂ H ₅ , CHO	28	C ₂ H ₄ , CO	
30	CH ₂ NH ₂	30	CH ₂ O	
31	CH ₃ O	31	CH ₃ O	
33	SH, CH ₂ F	32	CH ₄ O, S	
34	H ₂ S	33	CH ₃ + H ₂ O, HS	
35(37)	CI	33	H ₂ S	
36(38)	нсі	35(37)	CI	
39	C ₃ H ₃	36(38)	HCI	
41	C ₃ H ₅ , C ₂ H ₃ N	42	C ₃ H ₆ , C ₂ H ₂ O, C ₂ H ₄ N	
42	C ₃ H ₆ , C ₂ H ₂ O, C ₂ H ₄ N	43	C ₃ H ₇ , CH ₃ CO	
43	C ₃ H ₇ , CH ₃ CO	44	CO ₂ O, CONH ₂	
44	C ₂ H ₄ O	45	C ₂ H ₅ O	
46	NO ₂	55	C ₄ H ₇	
56	C ₄ H ₈	57	C ₄ H ₉	
57	C ₄ H ₉	59	C ₂ H ₃ O ₂	
60	CH ₄ CO ₂	60	C ₂ H ₄ O ₂	
79(81)	Br	64	SO ₂	
80(82)	HBr	79(81)	Br	
91	C ₇ H ₇	80(82)	HBr	
127	1	127	1	
128	н	128	н	

APPLICATIONS

- By coupling a GLC in conjunction with a mass spectrometer, rapid analysis of complex mixtures is possible.
- This is particularly useful for determining the products and relative yields from organic reactions and for monitoring industrial processes.

- Mass spec. are suitable for analyzing volatile compounds.
- ◆ It can also be used to analyze proteins and polypeptides. This is achieved by methylating the -N-H groups which disrupts the HB, hence more volatile.
- ◆ This allows a very rapid method of determining the a. a sequence in the molecules.
- This technique is usually computer-linked and has the advantage that very small quantities are required and sequences of amino acids may be rapidly established.