	category headline authors link short_description da CRIME There Were 2 Mass Shootings In Texas Last Week Jeltsen https://www.huffingtonpost.com/entry/texas-ama She left her husband. He killed their children 05- 1 ENTERTAINMENT Will Smith Joins Diplo And Nicky Jam For The 2 McDonald https://www.huffingtonpost.com/entry/will-smit Of course it has a song. 05- Livide Great Marries For The First Day https://www.huffingtonpost.com/entry/will-smit The actor and his song. 05-
	2 ENTERTAINMENT Hugh Grant Marries For The First Time At Age 57 Dicker https://www.huffingtonpost.com/entry/hugh-gran The actor and his longtime girlfriend Anna Ebe 3 ENTERTAINMENT Jim Carrey Blasts 'Castrato' Adam Schiff And D Dicker https://www.huffingtonpost.com/entry/jim-carre The actor gives Dems an ass-kicking for not fi 05-05-05-05-05-05-05-05-05-05-05-05-05-0
	quedarnos con las siguientes categorías: 1. WELLNESS 2. PARENTING 3. TRAVEL 4. BUSINESS 5. SPORTS
	<pre>data = df.copy() # Creando un subset unicamente con las variables indicadas data = data[(data.category == 'WELLNESS') </pre>
[6]: .[6]:	<pre>data["category"].value_counts() WELLNESS 17827 TRAVEL 9887 PARENTING 8677 BUSINESS 5937 SPORTS 4884 Name: category, dtype: int64</pre>
[7]: [8]:	Efectivamente podemos observar como nuestro dataset ahora solo cuenta con los factores indicados en la variable "category". Ahora bien, en esta práctica lo que se quiere es crear un modelo de Naive-Bayes que consiga clasificar artículos atendiendo a sus titues por ello que vamos a proceder a eliminar las otras columnas ya que no van a ser utilizadas en el modelo. # Creando subset solo con la variable "category" y "headline" data = data[['category', 'headline']] # Visualizando resultado data.head()
[8]:	category headline 80 SPORTS Jets Chairman Christopher Johnson Won't Fine P 87 BUSINESS U.S. Launches Auto Import Probe, China Vows To 101 SPORTS Trump Posthumously Pardons Boxer Jack Johnson 126 TRAVEL 14 Ways To Make Family Road Trips Easier, From 135 SPORTS Anna Kournikova Dancing With Her Bouncing Baby
[9]: [9]:	Podemos observar como efectivamente pudimos hacer el preprocesamiento requerido y ahora solo tenemos la variable a predecir jur con la variable explicativa. # Evaluando balanceo de clases round((data["category"].value_counts()/len(data))*100, 2) WELLNESS 37.76 TRAVEL 20.94 PARRIMENTAL 20.94
	PARENTING 18.38 BUSINESS 12.58 SPORTS 10.34 Name: category, dtype: float64 Podemos observar como las clases se encuetran desbalanceadas, ya que, el factor que tiene la mayor cantidad de registros es el de "Wellness" con un 37.76%, seguido de "travel" con un 20.94% y los otros dos tienen menos de 20%. Lo ideal sería poder tener un 20% de cada unas de las clases para que el modelo pueda tener la misma cantidad de registros, sin em vamos a ver cómo se comporta el modelo.
	<pre># Visualizando valores data["headline"].values array(["Jets Chairman Christopher Johnson Won't Fine Players For Anthem Protests",</pre>
11]:	'Dwight Howard Rips Teammates After Magic Loss To Hornets'], dtype=object) Aplicando TF-IDF-Vectorizer # Ahora vamos a descargar el vectorizador para los textos import nltk nltk.download('stopwords') [nltk_data] Downloading package stopwords to
	<pre>[nltk_data] /Users/hromerol/nltk_data [nltk_data] Package stopwords is already up-to-date! True # Importando todas aquellas palabras que son monosilabos o que no anaden informacion al modelo from nltk.corpus import stopwords len(stopwords.words('english'))</pre> 179
14]:	<pre># Importando la biblioteca especifica para vectorizar from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) vect = vectorizer.fit_transform(data["headline"].values) # Visualizando resultados vect.todense() matrix([[0., 0., 0.,, 0., 0., 0.],</pre>
15]:	<pre>[0., 0., 0.,, 0., 0.],, [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.]]) # Aplicando vectorizador a todos los textos vocab = np.sort(list(vectorizer.vocabularykeys())) df_tf = pd.DataFrame(vect.todense(), columns = vocab) print(df_tf.shape) df tf.head()</pre>
15]:	(47212, 26770)
16]: 16]:	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
4.5.1	3
17]:17]:	<pre>df_tf.idxmax(axis=1) 0</pre>
18]:	47209 improbable 47210 aldon 47211 hornets Length: 47212, dtype: object Creando split en train/test de los datos from sklearn.model_selection import train_test_split
	<pre>X = df_tf.values y = data["category"].values X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42, test_size=0. print (X_train.shape, y_train.shape) print (X_test.shape, y_test.shape) (37769, 26770) (37769,) (9443, 26770) (9443,)</pre>
	Creación del Modelo de Naibe Bayes Multinomial NB Seguidamente vamos a proceder a realizar el modelo, para ello vamos a apoyarnos en la biblioteca GridSearch, la que nos va a ayuda determinar cuáles son los mejores parámetros a utilizar en el hipertuneo, así podremos garantizar que nuestro algoritmo utilizará los mejores parámetros posibles. Al ser un proceso computacional costoso, vamos a hacerlo con solo aquellos paramétros que son más populares y no utilizaremos to de forma exhaustiva, ya que esto puede llevar a que se dure bastante determinando los mejores parámetros, por ello vamos a utilizar solamente:
	1. Alpha 2. Fit_prior # Importando biblioteca from sklearn.naive_bayes import MultinomialNB # Creando el modelo Naibe Bayes MultinomialNB para utilizar con GridSearch multi= MultinomialNB()
	<pre># Creando estimadores de parametros param_grid = { 'alpha':[1.0, 3.0, 5.0, 7.0, 10.0], 'fit_prior':[True, False] } # Realizando Cross Validation con 3 y probando parametros from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV CV_1 = GridSearchCV(estimator = multi, param_grid=param_grid, cv= 3)</pre>
23]:	<pre>CV_1 = GridSearchCV(estimator = multi, param_grid=param_grid, cv= 3) CV_1.fit(X_train, y_train) GridSearchCV(cv=3, estimator=MultinomialNB(),</pre>
	Aquí podemos observar que el GridSearch recomienda usar un alpha = 1 y un fit_prior = False, por ende vamos a utilizar dichos parámetros. # Construyendo modelo con parametros seleccionados mnb_model = MultinomialNB(alpha=1.0, fit_prior = False) mnb_model.fit(X_train, y_train) pred_train = mnb_model.predict(X_train) pred_test = mnb_model.predict(X_test) print("Precisión sobre los datos de entrenamiento: {:.2f}".format(100.0*mnb_model.score(X_train, y_n)))
25-	n))) print("Precisión sobre los datos de test: {:.2f}".format(100.0*mnb_model.score(X_test, y_test))) Precisión sobre los datos de entrenamiento: 88.69 Precisión sobre los datos de test: 81.51 Aquí podemos observar que el modelo sobre los datos de entrenamiento da un resultado de un 88.69% mientras que para los de test un 81.51% sin embargo es necesario calcular el recall, precision y el F1 score para ver si el modelo puede producir resultados decent # Creando visualizacion de la matriz de confusion
20].	<pre>import warnings warnings.filterwarnings("ignore", category=FutureWarning) from sklearn.metrics import confusion_matrix, plot_confusion_matrix from sklearn import metrics print(f"Confusion matrix:\n") fig, ax = plt.subplots(figsize=(10, 10)) metrics.plot_confusion_matrix(mnb_model, X_test, y_test, cmap=plt.cm.viridis, ax=ax) plt.show() print("\n")</pre>
	<pre>print(f"Confusion matrix:\n{confusion_matrix(y_test, pred_test)}") Confusion matrix:</pre>
	PARENTING - 37 1326 35 64 273 -2500 SPORTS - 25 45 836 28 43 -1500
	TRAVEL - 40 67 40 1729 102 - 1000
	WELLNESS - 104 255 66 147 2994 -500 BUSINESS PARENTING SPORTS TRAVEL WELLNESS Confusion matrix: [[812 63 49 65 198] [37 1326 35 64 273]
26]:	[25 45 836 28 43] [40 67 40 1729 102] [104 255 66 147 2994]] Análisis: podemos observar de forma rápida que en la categoría travel es en donde suceden la mayor cantidad de aciertos, seguido es sports y wellness, mientras que las predicciones más pobres son realizadas por business. # Imprimiendo resultados para ver el accuracy, precision y recall print (f"Classification report for classifier {mnb model}:\n"
	<pre>f"{metrics.classification_report(y_test, pred_test)}\n") Classification report for classifier MultinomialNB(fit_prior=False):</pre>
	accuracy 0.82 9443 macro avg 0.81 0.80 0.81 9443 weighted avg 0.81 0.82 0.81 9443 Análisis: gracias al resumen que se nos muestra podemos ver que la predicción a nivel de precisión, que recordemos que nos responsiguiente pregunta: ¿qué porcentaje de las categorías que identifiquemos estarán realmente correcto? (es decir, mide la calidad del
	modelo). En este caso podemos ver que la categoría que tiene el score más alto es travel, con un 85% de acierto, es decir, el 85% de veces el algoritmo será capaz de idenficar la categoría travel, por ende se equivocará en un 15% de las veces, mientras que la más ba la de parenting con un 76%, es decir, para el algoritmo es tarea fácil identificar la categoría travel, pero le cuesta un poco más predec parenting (tiende a cometer más error tipo I). A nivel del recall (esta nos informa sobre la cantidad que el modelo es capaz de identificar) que recordemos que este responde a la pregunta: ¿qué porcentaje de las categorías correctas somos capaces de identificar? Podemos ver que la categoría Travel con un 879 decir, se equicará con travel un 13% de las veces, mientras que la más baja es business con un 68%, es decir la categoría Business conlleva una mayor cantidad de FN que el algoritmo predice incorrectamente (error tipo II).
	Finalmente podemos ver como el F1 que, recordemos que hace más fácil el poder comparar el rendimiento combinado de la precisión exhaustividad entre varias soluciones, obtenemos que el que tiene mayores problemas idenficando es la categoría business 74%, misque el que idenfica de forma bastante aceptable es travel. Con esta evaluación podemos observar que en realidad nuestro modelo está dando resultados bastante decentes, excepto por la categoría business que es a la que más le cuesta identificar. En caso de que tuviesemos un dataset con solo dos clases podríamos calcular la Curva ROC y la curva de Precision y Recall, pero al
27]:	<pre>import requests import json import re from time import sleep</pre>
	<pre>from newspaper import Article from urllib.request import Request, urlopen from bs4 import BeautifulSoup as soup # Guardando codigo HTML por cada pagina store_pages=[] for page_number in range(1,5): base_url_huff='https://www.huffpost.com/life/healthy-living' r_huff = Request(base_url_huff, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(r_huff).read()</pre>
28]:	<pre>page_soup=soup(webpage,"html.parser") store_pages.append(page_soup) sleep(3)</pre>
2	<pre># Creando lista vacia para guardar links links_huff = [] i=0 for i in range(0, len(store_pages)): for link in store_pages[i].findAll("a", {"class": "card_headline card_headlinelong"}):</pre>
29]:	<pre>links_huff = [] i=0 for i in range(0, len(store_pages)): for link in store_pages[i].findAll("a", {"class": "card_headline card_headlinelong"}): links_huff.append(link.get('href')) from newspaper.article import ArticleException, ArticleDownloadState # Creando lista para alojar datos article_info_huff=[] df_huff=[] for i in range(0,len(links_huff)): article_huff = Article(links_huff[i])</pre>
∠9] :	<pre>links_huff = [] i=0 for i in range(0, len(store_pages)): for link in store_pages[i].findAll("a", {"class": "card_headline card_headlinelong"}): links_huff.append(link.get('href')) from newspaper.article import ArticleException, ArticleDownloadState # Creando lista para alojar datos article_info_huff=[] df_huff=[] for i in range(0,len(links_huff)): article_huff = Article(links_huff[i]) slept = 0 article_huff.download() while article_huff.download_state == ArticleDownloadState.NOT_STARTED: if slept > 9: raise ArticleException('Download never started') slept += 1 article_huff.parse() article_info_huff={'Titulo': article_huff.title,</pre>
	<pre>links_huff = [] i=0 for i in range(0, len(store_pages)); for link in store_pages[i].findAll("a", ("class": "card_headline card_headlinelong")): links_huff.append(link.gat('href')) from newspaper.article import ArticleException, ArticleDownloadState # Creando lista para alojar datos article_info_huff=[] df_huff=[] for i in range(0,len(links_huff)): article_huff = Article(links_huff[i]) slept = 0 article_huff.download() while article_huff.download_state == ArticleDownloadState.NOT_STARTED:</pre>
30]:	<pre>links, huff = [] for i in range(0, len(store_pages[1).findAll("a", ("class": "card_headline_card_headlinelong"}):</pre>
30]: 30]:	<pre>links_nutf = [] for in range(0, len(store_pages)): for link in store_pages[]:.thmdAll("s", ("class": "card_neadline_card_headline_links_huff.append(link.get('href')) from newspaper.article import ArticleException, ArticleDownloadState # Creands lists pure alojar datos article_info_huff=[] df_nuff=[] for i in range(0,len(links_huff)): article_huff.article(links_huff[]) article_huff.article(links_huff[]) alept = 0</pre>
30]: 31]:	<pre>inner</pre>
30]: 31]:	<pre>lanks buff = [] for i in ramp(0, lem(storm_pagent): for link in store pages(1).findall("e", ("class": "card bedding and bedding-load]): inha_buff.aggens(link.gg.('hee')) from newspaper.article import Armint@scoupium, ArticleDownloadStore f Creamon dista page alojar datos armint() inha_buff.[] ft in ramp(0, lem(links_huff)):</pre>
30]: 31]:	Interpretation
30]: 31]: 32]: 34]:	Limite_Nose = () Set is inspect(s, locateboor papers); Set is inspect(s, locateboor papers); Set is inspect(s, locateboor papers); From merepaper.article import A. Unitabumpiin, A "Whome"setBleiw * createboilers care alerse dates stitle inspect(s) and stitle inspect A. Unitabumpiin, A "Whome"setBleiw * createboilers care alerse dates stitle inspect(s) and stitle inspect A. Unitabumpiin, A "Whome"setBleiw * createboilers care alerse dates stitle inspect(s) and stitle inspect alerse stitle inspect(s) and stitle inspect alerse stitle inspect(s) and stitle inspect alerse stitle inspect commission; while stitle institle inspect alerse if stage > %; stitle institle institle inspect alerse dispect inspect inspect alerse dispect inspect inspect alerse dispect inspect inspect inspect inspect inspect dispect inspect inspect inspect inspect inspect dispect inspect inspect inspect inspect inspect dispect inspect inspect inspect inspect inspect inspect dispect inspect inspect inspect inspect inspect inspect inspect inspect dispect inspect ins
30]: 31]: 32]: 34]:	Final_paid = () Fig. 1st paper().lesition_page(): Fig. 1st paper().lesition_page(): Fig. 1st paper().lesition_page(): Fig. 1st paper().lesition_page(): Fig. 1st page (): Fig. 1st
30]: 31]: 32]: 34]:	Links Links Company Interferor property
30]: 31]: 32]: 34]:	Indiangles 1
30]: 31]: 32]: 34]:	The common property of
30]: 31]: 32]: 33]:	The Company of Schoolstone process of Schools
30]: 31]: 33]: 34]: 37]:	### 1 AB A MANUAL PLAN AND AND AND AND AND AND AND AND AND A
30]: 31]: 33]: 34]: 34]: 38]:	Section Company Comp
30]: 31]: 33]: 34]: 34]: 38]:	Control of the Contro
30]: 31]: 33]: 34]: 34]: 38]:	The content of the co
30]: 31]: 33]: 34]: 34]: 38]:	The part of the control of the contr
30]: 31]: 32]: 33]: 34]: 41]: 42]:	Compared of the compared of
30]: 31]: 32]: 33]: 34]: 42]: 42]:	See Note 1. 1 1 1 1 1 1 1 1 1
30]: 31]: 32]: 33]: 34]: 41]: 42]:	March Marc
30]: 31]: 32]: 33]: 34]: 44]: 42]: 42]:	Mark out of the control of properties of the control of th
30]: 31]: 32]: 33]: 34]: 44]: 42]: 42]:	The control of the co
30]: 31]: 32]: 33]: 44]: 42]: 43]: 43]:	Secretary of the content of the cont
30]: 31]: 32]: 33]: 43]: 44]: 45]: 46]: 41]:	The content of the
30]: 31]: 32]: 33]: 43]: 43]: 43]: 43]: 43]:	Martin M
30]: 31]: 32]: 33]: 43]: 43]: 43]: 43]: 43]: 43]:	The Content of the
30]: 31]: 32]: 33]: 43]: 43]: 43]: 43]: 43]: 43]:	March Marc
30]: 31]: 32]: 33]: 43]: 43]: 43]: 43]: 43]: 43]:	March Marc
30]: 31]: 32]: 34]: 35]: 41]: 42]: 43]: 43]:	March Marc
30]: 31]: 32]: 33]: 34]: 42]: 43]: 43]: 43]: 43]: 43]: 43]:	Section Process Proc
30]: 31]: 32]: 34]: 34]: 42]: 43]: 43]: 43]: 43]: 43]: 43]: 44]: 43]: 43	Section 1997 Propose
30]: 31]: 32]: 34]: 34]: 35]: 36]: 37]: 37]: 38]: 38]: 39]: 39]: 31]: 31]:	March Marc
30]: 31]: 32]: 34]: 34]: 35]: 36]: 37]: 37]: 38]: 38]: 39]: 39]: 31]: 31]:	March Marc

In [85]: Out[85]:	<pre># Extrayendo representacion por fila df_tf_1.idxmax(axis=1) 0</pre>
In [86]:	365 capitol 366 aliens 367 causes Length: 368, dtype: object Creando split en train/test de los datos from sklearn.model_selection import train_test_split X = df_tf_1.values y = df_1["Categoria"].values
	X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42, test_size=0.3) print (X_train.shape, y_train.shape) print (X_test.shape, y_test.shape) (257, 455) (257,) (111, 455) (111,) Creación del Modelo de Naibe Bayes Multinomial NB Nuevamente vamos a proceder a realizar el modelo, para ello vamos a apoyarnos en la biblioteca GridSearch, la que nos va a ayudar a determinar cuáles son los mejores parámetros a utilizar en el hipertuneo, así podremos garantizar que nuestro algoritmo utilizará los mejores parámetros posibles.
In [97]:	<pre># Creando el modelo Naibe Bayes MultinomialNB para utilizar con GridSearch Nai = MultinomialNB() # Creando estimadores de parametros param_grid = { 'alpha':[1.0, 3.0, 5.0, 7.0, 10.0], 'fit_prior':[True, False] } # Realizando Cross Validation con 5 y probando parametros</pre>
Out[98]:	<pre>import warnings warnings.filterwarnings('ignore') from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV CV_1 = GridSearchCV(estimator = Nai, param_grid=param_grid, cv= 5) CV_1.fit(X_train, y_train) GridSearchCV(cv=5, estimator=MultinomialNB(),</pre>
In [103]:	<pre>{'alpha': 1.0, 'fit_prior': False} Aquí podemos observar que el GridSearch recomienda usar un alpha = 1 y un fit_prior = False, por ende vamos a utilizar dichos parámetros. # Construyendo modelo con parametros seleccionados mnb_model_1 = MultinomialNB(alpha=1.0, fit_prior = False) mnb_model_1.fit(X_train, y_train) pred_train = mnb_model_1.predict(X_train) pred_test = mnb_model_1.predict(X_test)</pre>
	print("Precisión sobre los datos de entrenamiento: {:.2f}".format(100.0*mnb_model_1.score(X_train, y_train)) print("Precisión sobre los datos de test: {:.2f}".format(100.0*mnb_model_1.score(X_test, y_test))) Precisión sobre los datos de entrenamiento: 93.00 Precisión sobre los datos de test: 87.39 Aquí podemos observar que el modelo sobre los datos de entrenamiento da un resultado de un 93% mientras que para los de test de un 87.39%, sin embargo es necesario calcular el recall, precision y el F1 score para ver si el modelo puede producir resultados decentes. # Creando visualizacion de la matriz de confusion
	<pre>import warnings warnings.filterwarnings("ignore", category=FutureWarning) from sklearn.metrics import confusion_matrix, plot_confusion_matrix from sklearn import metrics print(f"Confusion matrix:\n") fig, ax = plt.subplots(figsize=(10, 10)) metrics.plot_confusion_matrix(mnb_model_1, X_test, y_test, cmap=plt.cm.viridis, ax=ax) plt.show() print("\n") print(f"Confusion matrix:\n{confusion_matrix(y_test, pred_test)}")</pre>
	Confusion matrix: Business - 13 0 4 0 0 0 -25
	Parenting - 0 14 0 0 0 4 - 20 Sports - 4 0 12 0 0 - 15
	Wellness - 0 2 0 0 32 Business Parenting Sports Predicted label Wellness - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Confusion matrix: [[13 0 4 0 0] [0 14 0 0 4] [4 0 12 0 0] [0 0 0 26 0] [0 2 0 0 32]] Análisis: podemos observar de forma rápida que en la categoría travel es en donde suceden la mayor cantidad de aciertos, seguido de wellness y parenting, mientras que las predicciones más pobres son realizadas por sports.
In [105]:	# Imprimiendo resultados para ver el accuracy, precision y recall print(f"Classification report for classifier {mnb_model_1}:\n" f"{metrics.classification_report(y_test, pred_test)}\n") Classification report for classifier MultinomialNB(fit_prior=False): precision recall f1-score support Business 0.76 0.76 0.76 17 Parenting 0.88 0.78 0.82 18 Sports 0.75 0.75 0.75 16
	Travel 1.00 1.00 1.00 26 Wellness 0.89 0.94 0.91 34 accuracy 0.87 111 macro avg 0.86 0.85 0.85 111 weighted avg 0.87 0.87 0.87 111 Análisis: gracias al resumen que se nos muestra podemos ver que la predicción a nivel de precisión, que recordemos que nos responde la siguiente pregunta: ¿qué porcentaje de las categorías que identifiquemos estarán realmente correcto? (es decir, mide la calidad del modelo). En este caso podemos ver que la categoría que tiene el score más alto es travel, con un 100% de acierto, es decir: nunca se
	equivoca, mientras que la más baja es la de sports con un 75%, es decir, para el algoritmo es tarea fácil identificar la categoría travel, pero le cuesta un poco más predecir Sports (tiende a cometer más error tipo I). A nivel del recall (esta nos informa sobre la cantidad que el modelo es capaz de identificar) que recordemos que este responde a la pregunta: ¿qué porcentaje de las categorías correctas somos capaces de identificar? Podemos ver que la categoría Travel con un 100%, es decir, nunca se equivocará, mientras que la más baja es Sports con un 75%, es decir la categoría Sports conlleva una mayor cantidad de FN que el algoritmo predice incorrectamente (error tipo II). Finalmente podemos ver como el F1 que, recordemos que hace más fácil el poder comparar el rendimiento combinado de la precisión y la exhaustividad entre varias soluciones, obtenemos que el que tiene mayores problemas idenficando es la categoría Sports con un 75%, mientras que el que idenfica de forma bastante aceptable es travel.
	Con esta evaluación podemos observar que en realidad nuestro modelo está dando resultados bastante decentes, excepto por la categoría business que es a la que más le cuesta identificar. En caso de que tuviesemos un dataset con solo dos clases podríamos calcular la Curva ROC y la curva de Precision y Recall, pero al ser más de dos categorías se debe analizar con las métricas antes presentadas. Conclusiones: Se puede observar como ambos modelos dan resultados bastante aceptables, incluso cuando hay desbalanceos de clases.
	Algo importante de mencionar es que este algoritmo trabaja bien en datasets pequeños como en el caso del segundo. Para el presente trabajo no se calculó la gráfica de accuracy y precision así como la curva ROC ya que contaba con más categorías que las dos estándar, sin embae