# Learning Agent:

Naïve Bayes, Neural Network, Support Vector Machines

IF-3054
Teknik Informatika ITB

# Overview: Learning Agent

- Tujuan learning
- Teknik Learning: kNN, ID3, NaiveBayes, NN, SVM
- Perbedaan antar teknik learning
  - Proses utama learning
  - Proses klasifikasi (inferensi)
  - Representasi model hasil learning
  - Representasi keputusan

**NAÏVE BAYES** 

# Naïve Bayes

$$v_{\text{NB}} = \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) \prod_i P(a_i|v_j)$$

- P(v<sub>j</sub>): probabilitas kelas v<sub>j</sub>
- P(a<sub>i</sub>|v<sub>j</sub>): probabilitas atribut a<sub>i</sub> pada v<sub>j</sub>

MLK/IF-ITB/2006

# Contoh Data set: Play Tennis





MLK/IF-ITB/2006

5

# Frekuensi setiap nilai atribut

| OU       | outlook |    | te   | temperature |    |        | humidity |    |       | windy |    |     | play |  |
|----------|---------|----|------|-------------|----|--------|----------|----|-------|-------|----|-----|------|--|
|          | yes     | no |      | yes         | no |        | yes      | no |       | yes   | no | yes | no   |  |
| sunny    | 2       | 3  | hot  | 2           | 2  | high   | 3        | 4  | false | 6     | 2  | 9   | 5    |  |
| overcast | 4       | 0  | mild | 4           | 2  | normal | 6        | 1  | true  | 3     | 3  |     |      |  |
| rainy    | 3       | 2  | cool | 3           | 1  |        |          |    |       |       |    |     |      |  |

MLK/IF-ITB/2006

6

## **Model Probabilitas**

| outlook  |     | temperature |      | humidity |     |        | windy |     |       | р   | play |      |      |
|----------|-----|-------------|------|----------|-----|--------|-------|-----|-------|-----|------|------|------|
|          | yes | no          |      | yes      | no  |        | yes   | no  |       | yes | no   | yes  | no   |
| sunny    | 2/9 | 3/5         | hot  | 2/9      | 2/5 | high   | 3/9   | 4/5 | false | 6/9 | 2/5  | 9/14 | 5/14 |
| overcast | 4/9 | 0/5         | mild | 4/9      | 2/5 | normal | 6/9   | 1/5 | true  | 3/9 | 3/5  |      |      |
| rainy    | 3/9 | 2/5         | cool | 3/9      | 1/5 |        |       |     |       |     |      |      |      |

MLK/IF-ITB/2006

7

# Klasifikasi Unseen Example

outlook temp. humidity windy play sunny cool high true ?

$$\begin{split} v_{\text{NB}} &= \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) \prod_i P(a_i | v_j) \\ &= \underset{v_j \in \{\text{yes,no}\}}{\text{max}} P(v_j) P(\text{outlook} = \text{sunny} | v_j) P(\text{temp} = \text{cool} | v_j) \\ &P(\text{humidity} = \text{high} | v_i) P(\text{windy} = \text{true} | v_j) \end{split}$$

- 1. Kalikan probabilitas semua atribut untuk setiap kelas
- 2. Hasil 1 dikalikan dengan probabilitas setiap kelas
- 3. Klasifikasi: kelas dengan probabilitas maksimum

MLK/IF-ITB/2006

8

## Proses Klasifikasi

$$P(play = yes) = 9/14$$
  $P(play = no) = 5/14$ 

$$\begin{split} &P(\text{yes})P(\text{sunny}|\text{yes})P(\text{cool}|\text{yes})P(\text{high}|\text{yes})P(\text{true}|\text{yes}) \\ &= 9/14 \cdot 2/9 \cdot 3/9 \cdot 3/9 \cdot 3/9 = 0.0053 \\ &P(\text{no})P(\text{sunny}|\text{no})P(\text{cool}|\text{no})P(\text{high}|\text{no})P(\text{true}|\text{no}) \\ &= 5/14 \cdot 3/5 \cdot 1/5 \cdot 4/5 \cdot 3/5 = 0.0206 \end{split}$$

$$v_{\text{NB}} = \underset{v_j \in \{\text{yes,no}\}}{\max} P(v_j) P(\text{sunny}|v_j) P(\text{cool}|v_j) P(\text{high}|v_j) P(\text{true}|v_j)$$

$$= \text{no}$$

MLK/IF-ITB/2006

#### **NEURAL NETWORK**

# **Biological Neuron**



http://www.chemistry.ucsc.edu/~lokey/108A\_10/images/neuron.png

- A neuron has
  - A branching input (dendrites)
  - A branching output (the axon)
- The information circulates from the dendrites to the axon via the cell body
- Axon connects to dendrites via synapses
  - Synapses vary in strength
  - Synapses may be excitatory or inhibitory



#### What is an artificial neuron?

- Parameterized function with restricted output range
- Example: simple/single unit perceptron



Tutorial on Neural Networks Prévotet Jean-Christophe, University of Paris VI, FRANCE

#### Neural network mathematics



$$\begin{aligned} y_1^1 &= f(x_1, w_1^1) \\ y_2^1 &= f(x_2, w_2^1) \\ y_3^1 &= f(x_3, w_3^1) \\ y_4^1 &= f(x_4, w_4^1) \end{aligned} y_1^1 = \begin{pmatrix} y_1^1 \\ y_2^1 \\ y_3^1 \\ y_4^1 \end{pmatrix} y_2^2 = f(y^1, w_2^2) y^2 = \begin{pmatrix} y_1^2 \\ y_2^2 \\ y_3^2 \\ y_3^2 &= f(y^1, w_3^2) \end{pmatrix} y_{Out} = f(y^2, w_1^3) \\ y_2^2 &= f(y^1, w_2^2) y^2 = \begin{pmatrix} y_1^2 \\ y_2^2 \\ y_3^2 \\ y_3^2 &= f(y^1, w_3^2) \end{pmatrix} \text{Artificial Neural Networks} \\ &\text{Introduction - Peter Andrea Peres and the parts of the$$

## Neural network mathematics

Neural network: input / output transformation

$$y_{out} = F(x, W)$$

W is the matrix of all weight vectors.

Artificial Neural Networks
- Introduction Peter Andras
peter.andras@ncl.ac.uk

# **Neural Network Learning**

- Data: set of value pairs: (x<sup>t</sup>, y<sub>t</sub>), y<sub>t</sub>=g(x<sup>t</sup>) + z<sub>t</sub>;
   z<sub>t</sub> is random measurement noise.
- Objective: find a neural network that represents the input / output transformation (a function) F(x,W) such that F(x,W) approximates g(x) for every x

# **Learning Process**

Error measure:

$$E = \frac{1}{N} \sum_{t=1}^{N} (F(x_t; W) - y_t)^2$$

Rule for changing the synaptic weights:

$$\Delta w_i^j = -c \cdot \frac{\partial E}{\partial w_i^j}(W)$$

$$\Delta w_i = \eta * (D-Y).I_i$$
Actual output

Actual output

$$w_i^{j,new} = w_i^j + \Delta w_i^j$$

c is the learning parameter (usually a constant)

# Learning with a perceptron

Perceptron: 
$$y_{out} = w^T x$$

Data: 
$$(x^1, y_1), (x^2, y_2), ..., (x^N, y_N)$$

Error: 
$$E(t) = (y(t)_{out} - y_t)^2 = (w(t)^T x^t - y_t)^2$$

Learning:

$$w_i(t+1) = w_i(t) - c \cdot \frac{\partial E(t)}{\partial w_i} = w_i(t) - c \cdot \frac{\partial (w(t)^T x^t - y_t)^2}{\partial w_i}$$

$$w_i(t+1) = w_i(t) - c \cdot (w(t)^T x^t - y_t) \cdot x_i^t$$

$$w(t)^{T} x = \sum_{j=1}^{m} w_{j}(t) \cdot x_{j}^{t}$$

# Learning with MLP neural networks

MLP neural network:

with p layers



$$y_{k}^{1} = \frac{1}{1 + e^{-w^{1kT}x - a_{k}^{1}}}, k = 1,..., M_{1}$$

$$y^{1} = (y_{1}^{1},..., y_{M_{1}}^{1})^{T}$$

$$y_{k}^{2} = \frac{1}{1 + e^{-w^{2kT}y^{1} - a_{k}^{2}}}, k = 1,..., M_{2}$$

$$y^{2} = (y_{1}^{2},..., y_{M_{2}}^{2})^{T}$$
...
$$y_{out} = F(x; W) = w^{pT}y^{p-1}$$

Data: 
$$(x^1, y_1), (x^2, y_2), ..., (x^N, y_N)$$

Error: 
$$E(t) = (y(t)_{out} - y_t)^2 = (F(x^t; W) - y_t)^2$$

It is very complicated to calculate the weight changes.

# Learning with backpropagation

Solution of the complicated learning:

- calculate first the changes for the synaptic weights of the output neuron;
- calculate the changes backward starting from layer p-1, and propagate backward the local error terms.



The method is still relatively complicated but it is much simpler than the original optimisation problem.

#### **Artificial Neural Network**

- ANN: most effective learning methods for complex real world sensor data
  - ALVINN, face recognition, handwritten recognition
  - Financial prediction
- Well suited to problems in which the training data corresponds to noisy, complex sensor data (cameras, microphones)
  - Input/output: discrete, real value, vector of value
  - Human readability of result is not important

# ALVINN: 70 mph Shap Starp Starp Starp Units 4 Hidden Units 30,32 Seasor Imput Retian 960 unit input → 30 output unit

#### **SUPPORT VECTOR MACHINE**

# **Support Vector Machine**

- Diperkenalkan tahun 1992 oleh Vapnik, Boser dan Guyon
- Relatif baru tetapi memiliki performansi yang lebih baik di berbagai aplikasi seperti bioinformatics, klasifikasi teks dan pengenalan tulisan tangan dan lain sebagainya

# SVM pada Linearly Separable Data



- Bidang pemisah terbaik dengan margin terbesar memiliki generalisasi yang lebih baik
- 2 kelas dapat dipisahkan oleh sepasang bidang pembatas yang sejajar. Bidang pembatas pertama membatasi kelas pertama sedangkan bidang pembatas kedua membatasi kelas kedua

#### Bidang pemisah terbaik (2)

• Pencarian bidang pemisah terbaik dapat dirumuskan menjadi:

$$\min \frac{1}{2} |w|^2$$

$$s.t \ y_i(x_i.w+b) - 1 \ge 0$$

• Supaya lebih mudah diselesaikan ubah ke formula lagrangian

• Minimumkan Lp terhadap b dan w, diperoleh:

$$\frac{\partial}{\partial b} L_p(w, b, \alpha) = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

$$\frac{\partial}{\partial w} L_p(w, b, \alpha) = 0 \qquad w = \sum_{i=1}^n \alpha_i y_i x_i$$

26 02/10/2007

## Bidang Pemisah Terbaik (3)

Substitusi ke dalam Lp diperoleh dual problem Ld yang memiliki konstrain berbeda

$$L_{\scriptscriptstyle D}(\alpha) \equiv \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j x_i.x_j \quad , \alpha_i > 0$$
 Karena merupakan dual problem maka

$$\min L_p = \max L_D$$

- Selesaikan Ld dan Cari nilai  $\alpha_i$
- Data ke-i dengan nilai  $\alpha_i > 0$ merupakan support vector
- Fungsi keputusan (persamaan bidang pemisah terbaik):

$$f(x_d) = \sum_{i=1}^{ns} \alpha_i y_i x_i . x_d + b$$

Xd → data yang akan diklasifikasikan

if 
$$f(x) \ge +1$$
 then  $y_i = +1$ , Kelas 2  
if  $f(x) \le -1$  then  $y_i = -1$ , Kelas 1

Persamaan bidang pemisah hanya dipengaruhi oleh data support vector

02/10/2007

#### SVM pada non linearly separable data

Bagaimana jika data tidak dapat dipisahkan secara linier? Tambahkan variabel  $\xi_i$  (error dalam klasifikasi) Parameter C ditentukan pengguna menyatakan besar penalti terhadap error



Pembelajaran:

$$\min \frac{1}{2} |w|^2 + C \left( \sum_{i=1}^n \xi_i \right)$$

$$s.t \ x_i.w + b \le -1 + \xi_i$$

x<sub>i</sub>, w<sub>b</sub> = -1 Transformasikan data sehingga *linearly separable* di *feature space* 



02/10/2007

#### SVM pada non linearly separable data (2)

- Contoh:
- Misalkan dataset
  - Data kelas positif  $\{(2,2),(2,-2),(-2,2),(-2,-2)\}$
  - $\quad \text{Data kelas negatif} \quad \{\!(1,1),(1,-1),(-1,1),(-1,-1)\!\}$



$$\phi(x_1, x_2) = \begin{cases} \sqrt{x_1^2 + x_2^2} > 2 \rightarrow (4 - x_2 + |x_1 - x_2|, 4 - x_1 + |x_1 - x_2|) \\ \sqrt{x_1^2 + x_2^2} \le 2 \rightarrow (x_1, x_2) \end{cases}$$

- Dengan transformasi diperoleh
  - Data kelas positif  $\{(2,2),(6,2),(6,6),(2,6)\}$
  - Data kelas negatif {(1,1),(1,-1),(-1,1),(-1,-1)}

02/10/2007 29

#### SVM pada non linearly separable data (3)

Klasifikasi:  $f(x) = \sum_{i=1}^{ns} \alpha_i y_i x_i . x + b$   $\Rightarrow$   $f(x) = \sum_{i=1}^{ns} \alpha_i y_i \phi(x_i) \phi(x) + b$ 

- Sulit untuk mengetahui  $\phi(x)$  dan feature space biasanya memiliki dimensi yang lebih besar
- Solusinya "kernel trick", yang perlu diketahui adalah  $K(x_i, x) = \phi(x_i)\phi(x)$
- Dengan fungsi K (fungsi Kernel), maka fungsi  $\phi(x)$ tidak perlu diketahui

Klasifikasi:

 $f(x) = \sum_{i=1}^{ns} \alpha_i y_i K(x_i, x) + b$ 

Fungsi Kernel yang umum digunakan:

 $\rightarrow K(x_i, x_j) = x_i^T x_i$ Linear Kernel

Polynomial kernel  $\rightarrow K(x_i, x_j) = (\gamma . x_i^T x_j + r)^p, \gamma > 0$ 

RBF kernel

Sigmoid kernel  $\rightarrow K(x_i, x_i) = \tanh(yx_i^T x_i + r)$ 

02/10/2007 30

#### Multi Class SVM

- SVM yang dijelaskan diatas hanya dapat mengklasifikasikan data ke dalam dua kelas → SVM biner
- Untuk klasfikasi multiclass gabungkan beberapa SVM biner.
- Ada 3 metode umum:
  - One-against-all
  - One-against-one
  - DAGSVM

31 02/10/2007

## Multi Class SVM→one-against-all

- Dibangun k model klasifikasi (k adalah jumlah kelas)
- Setiap pelatihan model menggunakan data dari semua kelas
- Prediksi kelas data umumnya seperti gambar sebelah kanan atau berdasarkan nilai maksimum f(X)

#### Pembelajaran: Klasifikasi: $f^{1}(x)$ $y_i = -1$ Hipotesis Bukan kelas 1 Kelas 1 Kelasi $f^2(x)$ $f^{1}(x) = (w^{1})x + b^{1}$ Kelas 2 Bukan kelas 2 $f^{2}(x) = (w^{2})x + b^{2}$ Bukan kelas 3 $f^3(x) = (w^3)x + b^3$ Kelas 2 $f^3(x)$ Kelas 4 Bukan kelas 4 $f^{4}(x) = (w^{4})x + b^{4}$ Kelas3 $f^4(x)$ 32 02/10/2007

## *Multi Class* SVM → one-against-one

- Dibangun  $\frac{k(k-1)}{2}$  model klasifikasi (k adalah jumlah kelas)
- Setiap pelatihan model menggunakan data dari dua kelas
- Prediksi Kelas data dengan metode voting



#### Multi Class SVM→DAG (Directed Acyclic Graph) SVM

Proses pembelajaran sama dengan One-Against-One

Pembelajaran:

| $y_i = 1$     | $y_i = -1$    | Hipotesis                        |  |  |  |  |
|---------------|---------------|----------------------------------|--|--|--|--|
| Bukan Kelas 2 | Bukan Kelas 1 | $f^{12}(x) = (w^{12})x + b^{12}$ |  |  |  |  |
| Bukan Kelas 3 | Bukan Kelas 1 | $f^{13}(x) = (w^{13})x + b^{13}$ |  |  |  |  |
| Bukan Kelas 4 | Bukan Kelas 1 | $f^{14}(x) = (w^{14})x + b^{14}$ |  |  |  |  |
| Bukan Kelas 3 | Bukan Kelas 2 | $f^{23}(x) = (w^{23})x + b^{23}$ |  |  |  |  |
| Bukan Kelas 4 | Bukan Kelas 2 | $f^{24}(x) = (w^{24})x + b^{24}$ |  |  |  |  |
| Bukan Kelas 4 | Bukan Kelas 3 | $f^{34}(x) = (w^{34})x + b^{34}$ |  |  |  |  |

Klasifikasi:



4 02/10/2007

#### **SVM Software**

#### LibSVM

- Umum, dapat digunakan untuk berbagai aplikasi, tidak dioptimasi untuk SVM Linier (fungsi kernel linier)
- Mendukung Multi Class SVM One-Against-One, One Class SVM dan Support Vector Regression
- C++, Java, Phyton, C#, Matlab

#### LibLinear

- versi LibSVM yang dioptimasi untuk kernel linier
- Mendukung Multi Class SVM One-Against-All
- C++

#### SVMLight

- C++, populer dalam aplikasi klasifikasi teks
- Info tambahan tentang SVM:
  - http://www.kernel-machines.org
  - www.svms.org
  - http://agbs.kyb.tuebingen.mpg.de
  - http://support-vector-machines.org

35 02/10/2007

# Performansi Hipotesis

- Performansi hipotesis pada data training bukan indikator performansinya pada data baru
- Estimasi performansi hipotesis: performansi pada data tes
- Learning curve = % correct on test set as a function of training set size



MLK/IF-ITB/2006

# Review: Learning Agent

- Teknik Learning: kNN, ID3, NaiveBayes, NN, SVM
- Perbedaan antar teknik learning
  - Proses utama learning
  - Proses klasifikasi (inferensi)
  - Representasi model hasil learning
  - Representasi keputusan





