RF Fundamentals

Signals

Outline

- Analog & Digital Signals
- Complex Numbers
- Frequency Domain Representation
- Fast Fourier Transform FFT
- FFT Leakage
- GNU Radio Introduction
- Q&A

What is a signal?

A signal is any measurable quantity that varies with time

It carries or conveys information

- Speech
- GPS
- ECG
- Stock prices
- Earthquake

Continuous-Time vs Discrete-Time

- Continuous
 - Defined at every point
- Discrete
 - Only defined at discrete points in time

Basic Signals

- Unit impulse
- Unit step
- Even/Odd
- Periodic/Nonperiodic

Shift in Time

Time vs Frequency Domain

• The real world happens in the time domain

 Signals can be represented by frequency components

Time vs Frequency Measurements

Complex Numbers

- Pair of real numbers
- I and Q parts
- Magnitude
- Phase

$$V_I = |V| \cos \angle V$$
$$V_Q = |V| \sin \angle V$$

$$|V| = \sqrt{V_I^2 + V_Q^2}$$

Complex Sinusoid

Positive/Negative Frequencies

Set of Complex Sinusoids

k cycles per *NT*s seconds

Discrete Fourier Transform

- DFT finds amplitude and phase contributions in a signal from each of the N discrete-time complex sinusoids
- These reference sinusoids are called analysis frequencies

Orthogonality

Orthogonality is the basis for OFDM

Discrete Frequencies

Suppose Fs = 100 and N = 10

- k=0 corresponds to 0Hz
- k=1 corresponds to 10Hz
- k=-2 corresponds to -20Hz

Making Up a Signal

- Every signal is composed of sinusoids with different frequencies
- A better approximation is achieved with more sinusoids

Spectral Analysis

- DFT can be used to obtain the frequency representation of discrete-time waveforms
- **FFT** is not an approximation of the DFT; rather, it is the DFT and is effective when reducing computational complexity. We established that the FFT technique could only be used with DFT sizes that are a power of two.

125Hz sine wave sampled at 1kHz

Spectral Leakage

Now have a look at a discrete sine wave with a frequency of 80Hz sampled at 1kHz.

Windowing

- We can reduce the effect of spectral leakage by applying particular windows to a discrete waveform before using the DFT
 - o Hamming,
 - Hann,
 - Blackman-Harris and
 - o Bartlett.

A Hann window applied to a discrete sine wave of 80Hz

A Hann window applied to a discrete sine wave of 80Hz

- Tapered windows can reduce spectral leakage in the DFT.
- However, there are some caveats.
 - Windowing has the effect of widening the main lobe of the peak frequency.
 - However, the side lobes that cause spectral leakage are reduced.

Zero Padding

- Zero padding is a technique that involves inserting zero-valued samples at the end of a discrete waveform to improve the frequency resolution of the DFT plot.
- The effect of zero padding is essentially an interpolation of the frequency sample points in the DFT and as such no extra 'information' is created on the signal

250 Hz Sine wave sampled at 2k Hz

Squarewave

