M622, Feb. 1: Part A is about Eisenstein's Criterion, as discussed in class 01.31. Read Part A carefully. Part B consists of some quiz 1 like problems. Quiz 1 is Feb. 14.

- 1. **Eisenstein's Criterion.** Let R be an integral domain having a prime ideal P, let $b(x) = b_m x^m + \dots b_1 x + b_0 \in R[x]$ with $\{a_0, \dots, a_{m-1}\} \subseteq P$, and $a_0 \notin P^2$. Then b(x) is irreducible over R[x].
 - **Proof.** Suppose R is an integral domain having a prime ideal P, $b(x) = b_m x^m + \ldots b_1 x + b_0 \in R[x]$, with $\{a_0, \ldots, a_{m-1}\} \subseteq P$, and $a_0 \notin P^2$. Assume for contradiction that b(x) is reducible. Since $\gcd(b_0, \ldots, b_m) = 1$, b(x) is reducible implies there exists a factorization b(x) = c(x)e(x) satisfying $\deg(b(x)) > \max(\deg(c(x)), \deg(e(x)))$.

Let $c(x) = c_j x^j + \ldots + c_0$, and let $e(x) = e_k x^k + \ldots + e_0$, both polynomials in R[x]. We have $b_0 = c_0 e_0$. That $b_0 \in P$, a prime ideal of R, implies that either c_0 or e_0 is contained in P, and that $b_0 \notin P^2$ implies that exactly one of c_0, e_0 is in P. Without loss of generality, assume $c_0 \in P$ and $e_0 \notin P$. Now consider e_0 . We have $e_0 \in P$ and $e_0 \in P$ and $e_0 \in P$ and $e_0 \in P$ is an ideal, it follows that $e_0 \in P$ implies that $e_0 \in P$.

(*) Now (you) prove by induction that c_0, c_1, \ldots, c_j are all in P. But if all coefficients of c(x) are in P, b(x) = c(x)e(x) implies that b(x) is not monic, a contradiction...

Your proof by induction of the statement given in (*):

2. Use Eisenstein to prove that if p is a prime number, then $\Phi(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$ is irreducible in $\mathbb{Z}[x]$.

We'll use three basic mathematical facts:

- (a) For $n \in \mathbb{N}$, $x^n 1/x 1 = x^{n-1} + \ldots + x + 1$.
- (b) If p is a prime number, $k \in \mathbb{N}$, and p > k > 0, then $p | \binom{p}{k}$.
- (c) If F is a field, $b(x) \in F[x]$, and $c \in F$, then b(x) is irreducible if and only if b(x-c) is irreducible.

Proof. We'll show $\Phi(x+1)$ is irreducible, and apply the second fact above: We have $\Phi(x) = x^p - 1/x - 1$. So $\Phi(x+1) = \frac{(x+1)^p - 1}{(x+1)-1} = \frac{x^p + pc(x) + 1 - 1}{x}$, $c(x) \in \mathbb{Z}[x]$, and c(x) has at least one. Thus, $\Phi(x+1) = x^{p-1} + pe(x) + p$, where e(x) has degree one or more. Now it follows from Eisenstein that $\Phi(x+1)$ is irreducible in $\mathbb{Z}[x]$. The third fact above gives us that $\Phi(x)$ is irreducible in $\mathbb{Z}[x]$, completing the proof. \square

Question. Is $\Phi(x)$ above irreducible over \mathbb{Q} ? Justify your answer.

Part B: Some quiz 1 like problems. Quiz 1 is Feb. 14

R is always a ring. If R is a ring with 1, $1 \neq 0$.

- 1. Let R be a ring, and let I and J be two ideals of R. Let IJ be the subset of R consisting of all sums of the form $i_1j_1 + \ldots i_mj_m$, where $\{i_1, \ldots, i_m\} \subseteq I, \{j_1, \ldots, j_m\} \subseteq J$, and $m \in \mathbb{N}$. Show that IJ is an ideal of R, and IJ is contained in $I \cap J$. Provide an example of a ring R and two ideals I and J such that IJ is properly contained in $I \cap J$.
- 2. Suppose R is a commutative ring with 1, and I and J are two ideals satisfying I + J = R. Show that $IJ = I \cap J$.
- 3. Prove that if R is a commutative ring with 1, R is a field if and only if R has no proper, non-trivial ideal.
- 4. If R is an integral domain and R[x] is a UFD, prove that R is a UFD.
- 5. Prove that if R is an integral domain, and $b \in R$ is prime in R, then b is irreducible in R.
- 6. In $\mathbb{Z}[i]$, 2 = (i+1)(i-1). Use this fact to show that 2 is reducible in $\mathbb{Z}[i]$. To do so, remind yourself of the definition of the following: unit, irreducible, associate.
- 7. In $\mathbb{Z}[\sqrt{-5}]$, $6 = (1 + \sqrt{-5})(1 \sqrt{-5}) = 2(3)$. Use these equations, and the definitions of unit, irreducible, associate, and Unique Factorization Domain (UFD) to explain why $\mathbb{Z}[1 + \sqrt{-5}]$ is not a UFD.
- 8. Let R be an ED with Euclidean norm N. Prove that $b \in R$ with N(r) = 0, then either r = 0 or r is a unit.
- 9. Prove that if R is an Euclidean domain, then R is a PID.
- 10. Suppose R is a Euclidean Domain with a Euclidean norm N, and each $m \in \mathbb{N}$, $|\{r \in R : N(r) = m\}|$ is a finite set. Explain why if I is a non-trivial ideal of R, then R/I is finite.
- 11. Let F be a field.
 - (a) $p(x) \in F[x]$ is divisible by a linear polynomial of F[x] if and only if p(x) has a root (= a zero) in F.
 - (b) Provide a short but completely convincing proof that if p(x) has degree $n \in \mathbb{N}$, then p(x) has no more than n roots. Do a proof by induction on deg(p(x)).
- 12. Let R be an integral domain. State Eisenstein's Criterion, and then **prove** it. Then use Eisenstein's Criterion to show that if p is a prime number, then $\Phi(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$ is irreducible in $\mathbb{Z}[x]$.
- 13. Prove that $\mathbb{Z}[i]/(1+i)$ is a two-element field, and prove that if q is a prime integer with $p \equiv 3 \mod 4$, then $\mathbb{Z}[x]/(q)$ is a field with q^2 elements.

- 14. True or false? Provide a specific counterexample.
 - (a) If R is a field, then every subring of R is a subfield of R.
 - (b) If R is an integral domain, then every homomorphic image of R is an integral domain.
 - (c) If R is an integral domain, then every subring of R containing 1 is an integral domain.
 - (d) If R is a ring, I is an ideal of R, and $\phi: R \to S$ is a homomorphism, then $\phi(I)$ is an ideal of S.
 - (e) If R is a commutative ring with 1, and $b \in R$ is irreducible, then b is prime.
 - (f) If R is a commutative ring with 1, and $b \in R$ is prime, then b is irreducible.
 - (g) If p is a prime integer, then (p) is a prime ideal in $\mathbb{Z}[i]$.
 - (h) Let F be a field, and let $n \in \mathbb{N}$. Then $I_n = \{f(x) \in F[x] : deg(f(x)) \geq n\}$ is an ideal of F[x], and if n is prime, then I_n is a prime ideal of F[x].
 - (i) $\mathbb{Z}[x]$ is a PID.
 - (j) In an integral domain R, every prime ideal is a maximal ideal.
 - (k) $\mathbb{Z}[x]$ is a UFD.
 - (l) If R is a commutative ring with 1, with elements b and c, then (b)(c) = (bc).
 - (m) If F is a field, then F[x] is a Euclidean Domain.