TCP/IP模型

• TCP/IP协议簇是由一组不同功能的协议组合在一起构成的协议簇

TCP/IP参考模型

应用层	对应于OSI参考模型的高层,为用户提供所需要的各种服务,例如:FTP、Telnet、DNS、SMTP等
主机到主机层	为应用层实体提供端到端的通信功能,保证了数据 包的顺序传送及数据的完整性
因特网层	定义逻辑地址 路由选择、将分组从源端传送到目的端
数据链路层	将分组数据封装成帧;提供节点到节点方式的传输
物理层	在媒介上传输比特;提供机械的和电气的规约

应用层
主机到主机层
因特网层
数据链路层
物理层

Telnet	FTP	TFTP	SNMP
HTTP	SMTP	NFS	DHCP

TCP	UDP	
ICMP	Routing Protocol	
	P	
A	RP	
Ethernet	Fast Eth	

应用层 主机到主机层 因特网层 数据链路层 物理层

- HTTP 80 超文本传输协议,提供浏览网页服务
- Telnet 23 远程登陆协议,提供远程管理服务
- FTP 20、21
 文件传输协议,提供互联网文件资源共享服务
- SMTP 25 简单邮件传输协议,提供互联网电子邮件服务
- POP3 110 邮局协议,提供互联网电子邮件服务
- TFTP 69 (UDP)
 简单文件传输协议,提供简单的文件传输服务

• 上层应用需根据自己需求选择4层协议

TCP与UDP

传输控制协议(TCP)

面向连接

可靠传输

流控及窗口机制

使用TCP的应用:

- Web浏览器;电子邮件;
- 文件传输程序

用户数据报协议(UDP)

无连接

不可靠传输

尽力而为的传输

使用UDP的应用:

- · 域名系统 (DNS); 视频流;
- IP语音(VoIP)

TCP报文格式

- 段=4层头+荷载
- 字长32位,20个字节表现形式
- 端口号1~65535之间,1~1024well-known端口号,1024以后自定义。访问时

IP地址:端口号

或者域名:端口号,通过DNS域名解析服务。

- 序列号和确认号是为了保证连接
- 6位控制位control bits
- 滑动窗口window
- 校验和checksum

1	Destination port (16)	Source port (16) Destination port (16)			
20	number (32)	Sequence number (32)			
Bytes	nt number (32)	Acknowledgement number (32)			
	Window (16)	Control bits (6)	Reserved (6)	Header length (4)	
1	Urgent (16)	Checksum (16)			
	Options (0 or 32 if any)				
	Data (varies)				

UDP报文格式

只有4个字段,与TCP相比缺少了序列号及确认号字段

TCP三次握手

• 序列号: 当前主机的第几个TCP的消息

• 确认号:用来确认收到消息,同时请求对方的下一个消息的序号

• SYN: 建立会话, 如果主机B判断端口未开通则忽略消息

ACK: 确认位

TCP连接断开 (四次握手)

- A请求断开:发送的消息是FIN和ACK置位
- 对方B回复ACK置位的消息
- B请求断开发送一个FIN和ACK置位的消息
- A回复ACK置位的消息

TCP滑动窗口机制

- 控制会话数
- 建立会话时WIN=3,一次性发三个不需要每一句都确认
- B需要每次都告知A窗口大小
- 没有窗口不回复

IPv4报文格式

- 最下面Data为TCP/UDP头+荷载
- 版本4
- 头长度,总长度
- Identification与Fragment做分片
- Flag3位标志
- TTL值防环的,TTL超时丢弃包,ICMP控制消息协议
- Protocol协议号:内包含TCP/UDP的协议头
- 检验和:检验数据完整
- 源IP地址和目的IP地址
- 可选字段

ARP协议 (Address Resolution Protocol)

因为在2层初始封装帧头时,开始并不知道目的MAC地址,需要广播目的IP地址,不匹配的忽略,匹配的会响应并回复目的MAC地址,形成ARP表项。

- 将ipv4地址解析位为MAC地址
- 维护arp映射的缓存

问题:

- 广播的危害
- 不可靠、不安全(以为完全不需要确认)

- 容易被欺骗
- ipv6取消了ARP

ARP消息:

源MAC+目的MAC+发送者IP+发送者MAC+目的IP+目的MAC

• 广播的时候广播的数据帧目的MAC为全F的形式

