國立中正大學電機工程研究所

博士論文

(初稿)

國立中正大學碩博士畢業論文模版
National Chung Cheng University (CCU)
Thesis/Dissertation Template in LATEX

鄭庭安

指導教授: 余松年 博士 中華民國 一百一十三年 七月

致謝

常到外國朋友家吃飯。當蠟燭燃起,菜肴布好,客主就位,總是主人家的 小男孩或小女孩舉起小手,低頭感謝上天的賜予,並歡迎客人的到來。

我剛到美國時,常鬧得尷尬。因為在國內養成的習慣,還沒有坐好,就開動了。

以後凡到朋友家吃飯時,總是先囑咐自己;今天不要忘了,可別太快開動啊!幾年來,我已變得很習慣了。但我一直認為只是一種不同的風俗儀式,在 我這方面看來,忘或不忘,也沒有太大的關係。

前年有一次,我又是到一家去吃飯。而這次卻是由主人家的祖母謝飯。她 雪白的頭髮,顫抖的聲音,在搖曳的燭光下,使我想起兒時的祖母。那天晚上, 我忽然覺得我平靜如水的情感翻起滔天巨浪來。

./figures//watermark.pmg

在小時候,每當冬夜,我們一大家人圍著個大圓桌吃飯。我總是坐在祖母身旁。祖母總是摸著我的頭說:「老天爺賞我們家飽飯吃,記住,飯碗裡一粒米都不許剩,要是蹧蹋糧食,老天爺就不給咱們飯了。」

剛上小學的我,正在念打倒偶像及破除迷信等為內容的課文,我的學校就 是從前的關帝廟,我的書桌就是供桌,我曾給周倉畫上眼鏡,給關平戴上鬍子, 祖母的話,老天爺也者,我覺得是既多餘,又落伍的。

不過,我卻很尊敬我的祖父母,因為這飯確實是他們掙的,這家確實是他 們立的。我感謝面前的祖父母,不必感謝渺茫的老天爺。

這種想法並未因為年紀長大而有任何改變。多少年,就在這種哲學中過去 了。

摘要

關鍵字:LaTeX、中文/fiagur模板//watermark.png

Abstract

Abstract Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,

vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada

fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus

vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.

Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo

ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at,

mollis ac, nulla. Curabitur asstor semper hulla. Bonec varius pei eget risus. Duis

nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci

dignissim rutrum.

Keywords: LaTeX, CJK, Thesis, Template

iii

目錄

致謝																				i
摘要																				ii
Abstra	ct																			iii
目錄																				iv
圖目錄																				vi
表目錄																				vii
符號列	表																			viii
第一章	•	緒論																		1
	1.1	中文源	則試							•					. .					1
	1.2	英文源	則試							•		•			. .					2
第二章	•	文獻探討	./1	ig	ur	es	//	wa	ιtε	er	ma	ar	k	. r	\mathbf{n}	ō.				3
	2.1	小標是								•		•			. [.					4
	2.	.1.1 小小	小標題												$\cdot \cdot$					4
	2.2	列點筆	範例												$\cdot \cdot$					5
	2.3	子圖筆	範例							•		•			<u>.</u>].					5
第三章	•	研究方法	-																	8
	3.1	流程圖	 .																	10
	3.2	小標是	題 .							•										10
	3.3	程式码	馬 .																•	10
第四章	•	研究結果	與討	論																11
	4.1	相關コ	文獻比	.較						•										11
第五章	•	結論與未	來展	星																15
	5.1	結論																		15
	5.2	未來原	展望																	15

7	^	. איזע
	7	考文

16

附錄 A — 附錄名稱

17

./figures//watermark.png

圖目錄

圖 2-1	範例圖片	. 4
圖 2-2	範例白底圖片	. 4
圖 2-3	三子圖範例	. 5
圖 2-4	四子圖範例	. 6
圖 2-5	無間格四子圖範例	. 6
圖 2-6	無子圖標題範例	. 7
圖 3-1	範例流程圖	. 10
圖 3-2	範例化學結構式	. 10
圖 3-3	範例電路圖	. 10
	./figures//watermark.pmg	

表目錄

表 4-1	範例表格1	11
表 4-2	調整表格行間距	11
表 4-3	水平線可以不畫全	11
表 4-4	儲存格可以合併。表格線可以自訂	12
表 4-5	可以用\;縮排。可以用\addlinespace 空格。可以加註解	12
表 4-6	可以用\midrule 做出雙線	12
表 4-7	垂直翻轉表格	13
表 4-8	Fancy Table	14

./figures//watermark.png

符號列表

HPC 高性能計算 (High Performance Computing)

cluster 集群

Itanium 安騰

對稱多處理 **SMP**

應用程序編程接口 API

聚酰亞胺 PΙ

聚酰亞胺模型化合物,N-苯基鄰苯酰亞胺 MPI

./figures//watermark.png 活化自由能(Activation Free Energy)

 ΔG

傳輸系數 (Transmission Coefficient) χ

E能量

質量 m

光速

P概率

第一章 緒論

1.1 中文測試

項籍者,下相人也,字羽。初起時,年二十四。其季父項梁,梁父即楚將項燕,為秦將王翦所戮者也。項氏世世為楚將,封於項,故姓項氏。

項籍少時,學書不成,去學劍,又不成。項梁恕之。籍曰:「書足以記名姓而已。劍一人敵,不足學,學萬人敵。」於是項梁乃教籍兵法,籍大喜,略知其意,又不肯竟學。項梁嘗有櫟陽逮,乃請蕲獄掾曹咎書抵櫟陽獄掾司馬欣,以故事得已。項梁殺人,與籍避仇於吳中。吳中賢士大夫皆出項梁下。每吳中有大繇役及喪,項梁常為主辦,陰以兵法部勒賓客及子弟,以是知其能。秦始皇帝游會稽,渡浙江,梁與籍俱觀。籍曰:「彼可取而代也。」梁掩其口,曰:「毋妄言,族矣!」梁以此奇籍。籍長八尺餘,力能扛鼎,才氣過人,雖吳中子弟皆已憚籍矣。
./figures//watermark.png

秦二世元年七月,陳涉等起大澤中。其九月,會稽守趙謂梁曰:「江西皆反,此亦天亡秦之時也。吾聞先即制人,後則為人所制。吾欲發兵,使公及桓楚將。」是時桓楚亡在澤中。梁曰:「桓楚亡,人莫知其處,獨籍知之耳。」梁乃出,誠籍持劍居外待。梁復入,與守坐,曰:「請召籍,使受命召桓楚。」守曰:「諾。」梁召籍入。須臾,梁詢籍曰:「可行矣!」於是籍遂拔劍斬守頭。項梁持守頭,佩其印綬。門下大驚,擾亂,籍所擊殺數十百人。一府中皆慴伏,莫敢起。梁乃召故所知豪吏,諭以所為起大事,遂舉吳中兵。使人收下縣,得精兵八千人。梁部署吳中豪傑為校尉、候、司馬。有一人不得用,自言於梁。梁曰:「前時某喪使公主某事,不能辦,以此不任用公。」眾乃皆伏。於是梁為會稽守,籍為裨將,徇下縣。

1.2 英文測試

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsar nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

第二章 文獻探討

\textbf{要加粗的字}使字體加粗,\underline{要加底線的字}加上底線,\textit{要斜體的字} 為斜體字,只是中文並不明顯, english is italic better。

在內文中打\\為強制 換行。

空一行可以

換段(換段會縮排,換行不會)。僅用 enter 鍵到下一行不會換段也不會換 行。(搭配 sections/\(\psi \)2related_work.tex 來看會更清楚)

可以用\footnote{註解寫在這裡}在頁面底部加入註解1,2。

\clearpage 可以強制

./figures//watermark.pmg

¹這是一個註解。 ²註解會自動編號。

換頁。

2.1 小標題

論文引用使用\cite{這裡填論文在.bib 中的 label} [1];可以一次引用多篇論文 [1,2]。

使用下方格式來插入圖片,使用\ref{label}來引用圖 2-1。

如果是使用 1.docker 環境或是 2.local 環境且有按造教學設定 LaTeX Utilities 的使用者,可以複製圖片的路徑,並在要插入圖片的位置按下 Ctrl+Shift+V,即可自動產生插入圖片的程式碼。

如果發現圖片內容會被浮水印影響,可以使用\colorbox{white} 加上白底,如圖 2-2。

2.1.1 小小標題

圖 2-1: 範例圖片

figures/gambar.png

圖 2-2: 範例白底圖片

2.2 列點範例

- 個別項目以黑點表示,稱為項目符號。
- 項目中的文字可以是任意長度。
- 1. 這是清單中的第一個項目。
- 2. 隨著每個新增的項目,清單編號會增加。

第一章: 可以自訂清單標籤。

第二章: 這是一個自訂清單標籤的範例。

2.3 子圖範例

三子圖範例,如圖 2-3;四子圖範例,如圖 2-4;子圖之間可以無間格,如圖 2-5;子圖可以不單獨寫標題,如圖 2-6。

圖 2-5: 無間格四子圖範例

圖 2-6: 無子圖標題範例

第三章 研究方法

行內方程式 $(E = mc^2)$ 有三種方式可以實現,

- 1. \begin{math}E=mc^2\end{math}
- 2. \$E=mc^2\$ % 推薦使用這個格式
- 3. $\langle E=mc^2 \rangle$

編號方程式測試,方程式(3-1);條件方程式測試,方程式(3-2);多行方程式等號對齊測試,方程式(3-3)。(搭配 sections/03method)tex 來看會更清楚)

$$\hat{n} = \underset{n \in \{1,\dots,M\}}{\operatorname{arg\,max}} \left(\mathbf{X}_n \right) \tag{3-1}$$

./figures//watermark.pmg

$$S(t) = P(T > t), \ t \ge 0$$

$$\begin{cases} if \ t = 0, \ S(t) = 1 \\ if \ t = \infty, \ S(t) = 0 \end{cases}$$

$$\frac{\int_0^t h(u)du = -\int_0^t \frac{d}{du} \log[S(u)]du}{\int_0^t h(u)du = -\int_0^t \frac{d}{du} \log[S(u)]du}$$

$$(3-2)$$

$$\int_0^t h(u)du = -\int_0^t \frac{d}{du} \log[S(u)]du$$

$$= -\log[S(t)] + \log[S(0)]$$

$$= -\log[S(t)]$$

$$\Rightarrow S(t) = \exp\{-\int_0^t h(u)du\}$$
(3-3)

無編號方程式測試,方程式:

$$\frac{P\left(\left(t \leq T < t + \Delta t\right) \cap \left(T \geq t\right)\right)}{P(T \geq t)} = \frac{P(t \leq T < t + \Delta t)}{P(T \geq t)}$$

在方程式環境中,若要使用粗體請用\bm{},文字請用\text{},左右括號希

望越外層越大請使用\left(以及\right),如下:

$$m{h}_u^{(k)} = \sigma \left(m{W}_{ ext{self}}^{(k)}m{h}_u^{(k-1)} + m{W}_{ ext{neigh}}^{(k)}\sum_{v \in \mathcal{N}(u)}m{h}_v^{(k-1)} + b^{(k)}
ight)$$

演算法測試,演算法 1。Require 和 Ensure 可以改成 Input 和 Output,如演算法 2。

Algorithm 1 範例演算法

Require: The set of positive samples for current batch, P_n ; The set of unlabelled samples for current batch, U_n ; Ensemble of classifiers on former batches, E_{n-1} ;

Ensure: Ensemble of classifiers on the current batch, E_n ;

- 1: Extracting the set of reliable negative and/or positive samples T_n from U_n with help of P_n ;
- 2: Training ensemble of classifiers E on $T_n \cup P_n$, with help of data in former batches;
- $3: E_n = E_{n-1} cup E;$
- 4: Classifying samples in $U_n T_n$ by E_n ;
- 5: Deleting some weak classifiers in E_n so as to keep the capacity of E_n ; return E_n ;

Algorithm 2 範例演算法 2

Input: Somthing ./figures//watermark.pmg

- 1: for each Somthing do
- 2: **if** Somthing area is less than 90% **then**
- 3: Discard
- 4: else
- 5: Extract Somthing
- 6: end if
- 7: end for

Output: Somthing Cool

3.1 流程圖

圖 3-1: 範例流程圖

3.2 小標題

圖 3-2: 範例化學結構式

圖 3-3: 範例電路圖

3.3 程式碼

程式碼測試,程式碼 1。支援的程式語言可以參考 Source Code Listings。

Listing 1: 範例程式碼

第四章 研究結果與討論

置中表格測試,表 4-1。表格行距可以調整,表格內容可以置右或置左,如表 4-2。

表 4-1: 範例表格 1

硬體	軟體
Intel(R) Core(TM) i7-8700 CPU	Ubuntu 26.04.3 LTS
NVIDIA GeForce GTX 1080 Ti	CUDA 10.1
DDR4 32GB	PyTorch 1.3.1
SSD 1TB	-

表 4-2: 調整表格行間距

	硬體	軟體	
Intel(R) Core(TM) i7-8700 CPU	Ubuntu 26.04.	3 LTS
NVII	DIA GeForce GTX 1080 Ti	CUDA 10.1	
	./figures//wat	ePMark:³þr	ıg
	SSD 1TB	-	

4.1 相關文獻比較

表格水平線可以不畫全,表 4-3。儲存格可以合併,表格線可以自訂,4-4。可以縮排,可以加註解,4-5。可以做出雙線,4-6。整頁垂直翻轉表格,奇數頁向左翻轉,偶數頁向右翻轉,表 4-7。可以用\gradient 在表格中加入漸層色,表 4-8。

表 4-3: 水平線可以不畫全

		Pr	edictio	n
		N	S	V
	N	48455	205	99
Reference	\mathbf{S}	798	1464	26
	\mathbf{V}	158	34	3029

0.00.0 0.50.5 1.01.0

表 4-4: 儲存格可以合併。表格線可以自訂

	В		multi col		multi row
A		(2,3)	(2,4)	(2,5)	mun 10w
	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
multi row	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)

表 4-5: 可以用\;縮排。可以用\addlinespace 空格。可以加註解

訓練集	(20%))	測試集	(80%		<i>p</i> -value
ean ± Std	N	%	Mean \pm Std	N	%	p-value
-	13	72.75	-	65	69.09	0.637
-/fi	011r	27.75/1	watermar	k ¹⁷ nr	30.31	0.037
• / + +	gui		wattimar	к. рі	16	
			60.00 1 0.00			0.600
98 ± 15.01	-	-	69.29 ± 9.52	-	-	0.623
$)4 \pm 19.16$	-	-	86.82 ± 7.65	-	-	0.853
	ean ± Std - /fi 98 ± 15.01	ean \pm Std N	- 13 72.75 /figures//	ean \pm Std N % Mean \pm Std - 13 72.75 - /figures//watermar. 98 \pm 15.01 - 69.29 \pm 9.52	ean \pm Std N % Mean \pm Std N - 13 72.75 - 65 /figures//watermark.pr 98 \pm 15.01 - 69.29 \pm 9.52 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

表 4-6: 可以用\midrule 做出雙線

	λ	$A \uparrow$	$\mathrm{B}\downarrow$	$C\downarrow$
ABC	1	0.5648	0.0426	0.1361
	0.7	0.6841	0.0341	0.1840
CBA	0.5	0.4845	0.0369	0.1385
	0.3	0.5032	0.0314	0.9761
BCA	0	0.8496	0.0346	0.1971
CAB	S	0.6987	0.0369	0.1849
Proposed	ABC	0.6597	0.0296	0.1072

表 4-7: 垂直翻轉表格

				Without JK	ut JK					With JK	JK		
m	u		A			В			A			В	
		15	17	19	15	17	19	15	17	19	15	17	19
$\mathbf{A} \uparrow$													
210	15	0.4167	0.8484	0.5227	0.2652	0.2273	0.3270	0.6974	0.5909	0.8484	0.2955	0.2955	0.4015
710	25	0.4844	0.6667	0.4545	0.2727	0.2903	0.3258	0.6452	-0.5303	0.5909	0.3106	0.2500	0.2727
375	15	0.4015	0.7979	0.6969	0.3485	0.3797	0.2903	0.6826	0.5000	0.5303	0.3409	0.2694	0.2903
C77	25	0.9770	0.5682	0.5833	0.2652	0.2694	0. 29 .79	0.6826^{\dagger}	0.7097	0.7098	0.2979	0.2955	0.2500
330	15	0.5173	0.4844	0.5000	0.3270	0.2348	0.4327	0.3797	0.4091	0.6974	0.3030	0.2197	0.3258
220	25	0.7979	0.5833	6929.0	0.2979	0.2348	0.3370	0.6826	0.5379	0.6974	0.2979	0.3106	0.2694
$egin{array}{c} oldsymbol{ iny} & oldsymbol{lpha} & oldsymbo$							s/						
210	15	8900.0	6900'0	0.0029	0.0097	0.0097	0.	0.0037	0.0029	0.0041	8900.0	0.0097	0.0097
710	25	0.0097	0.0079	0.0040	0.0069	6900.0	0.0 2001	0.0041	0.0035	0.0029	6900.0	6900.0	0.0068
375	15	0.0057	0.0040	0.0079	0.0068	0.0024	0. 9 68	0.0097	0.0033	0.0084	0.0045	6900.0	0.0068
677	25	0.0067	0.0051	0.0051	0.0069	6900.0	0.0	0.0021^{\dagger}	0.0029^{\dagger}	0.0034	6900.0	0.0068	0.0097
330	15	0.0084	0.0033	0.0035	0.0068	6900.0	69 12]	0.0046	0.0040	0.0051	8900.0	6900.0	6900.0
000	25	0.0060	0.0030	0.0037	0.0068	0.0069	0.0069	0.0072	0.0038	0.0032	0.0069	0.0069	0.0069
$\stackrel{ ightarrow}{\sim}$							onį						
210	15	0.0503	0.0503	0.0373	0.0569	0.0581	0.0340	0.0681	0.0379	0.0617	0.0548	0.0554	0.0668
710	25	0.0617	0.0346	0.0468	0.0555	0.0551	0.0569	0.0977	0.0408	0.034I	0.0537	0.0558	0.0559
375	15	0.0584	0.0505	0.0453	0.0532	0.0646	0.0558	0.0501	0.0407	0.0680	0.0569	0.0565	0.0559
244	25	0.0650	0.0450	0.0974	0.0554	0.0563	0.0552	0.0368^{\dagger}	$\boldsymbol{0.0331}^{\dagger}$	0.0355	0.0551	0.0561	0.0574
330	15	0.0450	0.0681	0.0426	0.0541	0.0565	0.0555	0.0540	0.0487	0.0611	0.0550	0.0574	0.0533
000	25	0.0706	0.0352	0.0346	0.0555	0.0566	0.0535	0.0669	0.0416	0.0402	0.0561	0.0538	0.0563

		表	4-8: Fan	cy Table		
	A	В	С	D	Е	F
1	1.00	0.80	0.60	0.40	0.20	0.00
2	0.80	0.60	0.40	0.20	0.00	0.20
3	0.60	0.40	0.20	0.00	0.20	0.40
4	0.40	0.20	0.00	0.20	0.40	0.60
5	0.20	0.00	0.20	0.40	0.60	0.80
6	0.00	0.20	0.40	0.60	0.80	1.00

第五章 結論與未來展望

5.1 結論

跨檔案引用測試,圖2-1,表4-1,公式3-1,演算法1。

5.2 未來展望

./figures//watermark.png

參考文獻

- [1] L. A. Rowe and R. Jain, "Acm sigmm retreat report on future directions in multimedia research," <u>ACM Transactions on Multimedia Computing, Communications</u>, and Applications, vol. 1, no. 1, pp. 3–13, 2005.
- [2] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, "Universal features of the equation of state of solids," <u>Journal of Physics: Condensed Matter</u>, vol. 1, no. 11, p. 1941, 1989.

./figures//watermark.png

附錄 A — 附錄名稱

./figures//gambar.png

附錄圖片

附錄表格

	更體		軟體
Intel(R) Core(TM) i	7-8700 CPU	Ubuntu 18.04.3 LT	TS .
NVIDIA GeForce C	TX 1080 Ti	CUDA 10.1	
DDR4 32GB		PyTorch 1.3.1	
SSD 1TB			
	./figures//watermark.pm		ng