CSCI 570 - Fall 2022 - HW 10

Due: November 16, 2022

Problem 1 (25pts)

Consider the partial satisfiability problem, denoted as $3\text{-Sat}(\alpha)$. We are given a collection of k clauses, each of which contains exactly three literals, and we are asked to determine whether there is an assignment of true/false values to the literals such that at least αk clauses will be true. Note that 3-Sat(1) is exactly the 3-SAT problem from lecture.

Prove that 3-Sat(15/16) is **NP**-complete.

Hint: If x, y, and z are literals, there are eight possible clauses containing them: $(x \lor y \lor z), (!x \lor y \lor z), (x \lor !y \lor z), (x \lor !y \lor !z), (!x \lor !y \lor !z), (!x \lor !y \lor !z), (!x \lor !y \lor !z)$

Problem 2 (25 pts)

Given a graph G=(V,E) and two integers k,m, the Dense Subgraph Problem is to find a subset V' of V, whose size is at most k and are connected by at least m edges. Prove that the Dense Subgraph Problem is NP-Complete.

Problem 3 (25 pts)

Consider a modified SAT problem, SAT' in which given a CNF formula having m clauses and n variables x_1, x_2, \ldots, x_n , the output is YES if there is an assignment to the variables such that exactly m-2 clauses are satisfied, and NO otherwise. Prove that SAT' is NP-Complete.

Problem 4 (25 pts)

Show that Vertex Cover is still NP-complete even when all vertices in the graph are restricted to have even degree.

Practice Problems

Problem 5 (25 pts)

(Kleinberg and Tardos, Chapter 8, Exercise 5)

Consider a set $A = \{a_1, \ldots, a_n\}$ and a collection B_1, B_2, \ldots, B_m of subsets of A (i.e., $B_i \subseteq A$ for each i).

We say that a set $H \subseteq A$ is a *hitting set* for the collection B_1, B_2, \ldots, B_m if H contains at least one element from each B_i —that is, if $H \cap B_i$ is not empty for each i (so H "hits" all the sets B_i).

We now define the *Hitting Set Problem* as follows. We are given a set $A = \{a_1, \ldots, a_n\}$, a collection B_1, B_2, \ldots, B_m of subsets of A, and a number k. We are asked: Is there a hitting set $H \subseteq A$ for B_1, B_2, \ldots, B_m so that the size of H is at most k?

Prove that Hitting Set is NP-complete.