Automatique — Système commandé

Chapitre 1: Introduction à la théorie des systèmes

Olivier Cots (rédigé avec Joseph Gergaud)

21 septembre 2023

- 1.1. Introduction historique
- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simple
- 1.2.2. Exemples industriels1.3. Définitions, objectifs
 - 1.3.1. Système commandé
 - 1.3.2. Questions mathématiques
- 1.4. Plan général du cours

1.1. Introduction historique

- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simpl
 - 1.2.2. Exemples industrie
 - 1.3. Définitions, objectifs
 - 1.3.1. Système commande
 - 1.3.2. Questions mathématique
- 1.4. Plan général du cours

Figure 1 - Clepsydre (Ctésibios d'Alexandrie en -270).

- Régulateur à flotteur pour des horloges à eau;
- La pompe aspirante à double effet automatique;
- ...
- Livre de la connaissance des procédés mécaniques vers 1205. Des copies se trouvent
 - à Topkapi à Istanbul
 - au Musée des Beaux-Arts à Boston
 - au musée du Louvre à Paris
 - à la Bibliothèque d'Oxford

Figure 2 – Manuscrit d'Al-Jazari, vers 1205.

- Régulation de la température;
- Moulin à vent ;
- Soupape de sécurité de Papin ;
- Régulateur à boules de James Watt pour réguler la vitesse de rotation d'une machine à vapeur.

Figure 3 – Boulton & Watt engine of 1788.

^{1.} https://commons.wikimedia.org/wiki/File:Steam_engine_in_action.gif

- Équations différentielles ordinaires;
- Équations aux dérivées partielles;
- Analyse stochastique (Kolmogorov, Wiener...), théorie des processus stochastiques;
- Stabilité;
- Contre réaction (feedback);
- . . .

- Théorie de la commande non linéaire;
- Théorie de la commande optimale (Bellman, Kalman, Pontryagin...);
- Contrôlabilié, observabilité;
- Commande robuste;
- ...

- 1.1. Introduction historique
- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simple
 - 1.2.2. Exemples industrie
 - 1.3. Définitions, objectifs
 - 1.3.1. Système commandé
 - 1.3.2. Questions mathématique
- 1.4. Plan général du cours

Si $\ddot{\alpha}(t)$ désigne la dérivée seconde de l'angle α par rapport au temps t, l'évolution du mouvement est

$$ml^2\ddot{\alpha}(t) + mlg\sin(\alpha(t)) = u(t),$$

Figure 4 - Pendule simple contrôlé.

On pose $x(t) = (\alpha(t), \dot{\alpha}(t))$

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{g}{l}\sin(x_1(t)) + \frac{u(t)}{ml^2} \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0 \end{cases}$$

Cette équation s'écrit

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ x(0) = x_0, \end{cases}$$

avec

$$f: \mathbb{R}^2 \times \mathbb{R} \longrightarrow \mathbb{R}^2$$

$$(z, v) \longmapsto f(z, v) = \begin{pmatrix} z_2 \\ -\frac{g}{l} \sin(z_1) + \frac{v}{ml^2} \end{pmatrix}.$$

• Ceci est une équation dont l'inconnue est la fonction $x(\cdot)$:

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ x(0) = x_0. \end{cases}$$

Pour une commande $u(\cdot)$ et un point initial x_0 donnés, on cherche une fonction du temps t que l'on peut noter $x(\cdot)$, ou $\varphi(\cdot)$ par exemple, qui vérifie $\varphi(0) = x_0$ et à tout instant $t: \dot{\varphi}(t) = f(\varphi(t), u(t))$.

• Le second membre f de l'équation est une fonction de $\mathbb{R}^n \times \mathbb{R}^m$ dans \mathbb{R}^n , où n est la dimension de x(t) et m est la dimension de u(t).

On peut en pratique avoir accès à différentes variables de sortie (mesurées) :

- $y(t) = \alpha(t) = x_1(t);$
- $y(t) = x(t) = (\alpha(t), \dot{\alpha}(t));$
- $y(t) = l \sin(\alpha(t)) = la$ distance entre la masse et l'axe des ordonnées.

On écrira ces variables de sortie sous la forme y(t) = g(x(t), u(t)).

En pratique il y a des frottements. Une meilleure modélisation du système est donc

$$ml^2\ddot{\alpha}(t) + \frac{k}{m}\dot{\alpha}(t) + mlg\sin(\alpha(t)) = u(t).$$

Le système s'écrit alors

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{k}{m}x_2(t) - \frac{g}{l}\sin(x_1(t)) + \frac{u(t)}{ml^2} \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0 \end{cases}$$

L'application f s'écrit alors

$$f: \mathbb{R}^2 \times \mathbb{R} \longrightarrow \mathbb{R}^2$$

$$(x, u) \longmapsto f(x, u) = \begin{pmatrix} x_2 \\ -\frac{k}{m}x_2 - \frac{g}{l}\sin(x_1) + \frac{u}{ml^2} \end{pmatrix}.$$

Figure 5 – Pendule inversé contrôlé, version 3.

Les équations qui régissent le système sont alors

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = \frac{g}{l} \sin(x_1(t)) - \frac{u(t)}{l^2} \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0 \end{cases}$$

Nous décrivons ici le modèle du Robot Lego qui sera utilisé en TP.

Figure 6 - Robot Lego segway (vidéo).

- 1.1. Introduction historique
- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simple
 - 1.2.2. Exemples industriels
- 1.3. Définitions, objectifs
 - 1.3.1. Système commandé
 - 1.3.2. Questions mathématique
- 1.4. Plan général du cours

Voici d'autres exemples plus complexes :

- pilote automatique d'un avion;
- contrôle des gouvernes d'un avion;
- contrôle de freinage ABS;
- contrôle de vol d'un drone;
- contrôle de vol d'un flyboard;
- pompe à insuline.
- ..

- 1.1. Introduction historique
- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simple
 - 1.2.2. Exemples industriel
- 1.3. Définitions, objectifs
 - 1.3.1. Système commandé
 - 1.3.2. Questions mathématiques
- 1.4. Plan général du cours

Figure 7 – Schéma fonctionnel simple d'un système en boucle ouverte.

Figure 8 – Schéma fonctionnel simple d'un système en boucle fermée.

Dan ce schéma, d(t) est une perturbation extérieure du système.

Figure 9 – Schéma fonctionnel complet d'un système en boucle fermée.

- État x(t) ∈ ℝⁿ
- Commande ou contrôle ou variable d'entrée $u(t) \in \mathbb{R}^m$
- Variable de sortie ou mesurée $y(t) \in \mathbb{R}^p$
- Consigne $w(t) \in \mathbb{R}$
- Système = Équation d'état : $\dot{x}(t) = f(t, x(t), u(t))$
- Équation de sortie y(t) = g(t, x(t), u(t)).

- 1.1. Introduction historique
- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simple
 - 1.2.2. Exemples industriels
- 1.3. Définitions, objectifs
 - 1.3.1. Système commande
 - 1.3.2. Questions mathématiques
- 1.4. Plan général du cours

Définition 1.3.1 – Point de fonctionnement, point d'équilibre

On appelle point de fonctionnement d'un système un point (x_e, u_e) tel que $f(x_e, u_e) = 0$. On dit que x_e est un point d'équilibre (pour le contrôle u_e).

Exemple 1.3.1. Pour le pendule simple on a pour $u_e = 0$ deux points d'équilibre : $x_0 = (0,0)$ et $x_e = (\pi,0)$.

Une fois le modèle bien défini, plusieurs questions se posent :

- Sur l'analyse et le comportement dynamique du système
 - Commandabilité ou contrôlabilité du système. Existe-t-il un contrôle $u(\cdot)$ qui amène le système d'un état initial donné x_0 à un état final x_f en un temps $t=t_f$ fixé?
 - **Observabilité**. Connaissant la variable de sortie y(t) et le contrôle u(t) pour tout $t \in [0, \tau_u[$, peut-on déterminer l'état x(t) pour tout $t \in [0, \tau_u[$, ou de manière équivalente x(0).

- Sur la synthèse des lois de contrôle
 - **Planification de trajectoires**. Si le système est contrôlable, comment trouver un contrôle qui amène l'état de x_0 à x_f en un temps t_f fixé?
 - Stabilisation. Comment construire un contrôle qui stabilise asympotiquement le système autour d'un point d'équilibre x_e, c'est-à-dire tel que, pour toute condition initiale, on ait

$$\lim_{t\to +\infty} x(t) = x_e ?$$

- **Synthèse d'observateurs**. En cas de réponse positive à la question de l'observabilité, comment déterminer l'état $x(\cdot)$ à partir de la connaissance de $y(\cdot)$ et de $u(\cdot)$?
- Contrôle optimal. Trouver le meilleur contrôle qui amène l'état de x_0 à x_f en un temps t_f fixé ou libre.

- 1.1. Introduction historique
- 1.2. Théorie du contrôle
 - 1.2.1. Exemples simple
 - 1.2.2. Exemples industrie
 - .3. Définitions, objectifs
 - 1.3.1. Système commandé
 - 1.3.2. Questions mathématique
- 1.4. Plan général du cours

- Étude mathématique du système contrôlé
 - Étude du système non contrôlé : point d'équilibre d'une edo (rappels pour certains)
 - Contrôlabilité, observabilité
 - Calcul du contrôle
- Simulation numérique
 - Matlab
 - Simulink \rightarrow code C
- Capteurs
- Code embarqué sur le robot
- Gestion du temps réel

- Introduction
- Chapitre 1 : Introduction à la théorie des systèmes, définitions
 - Introduction historique
 - Théorie du contrôle : Exemples simples, Robot...
 - Définitions, objectifs
- Chapitre 2 : Stabilité des systèmes dynamiques
 - Introduction
 - Cas des équations différentielles linéaires homogènes et autonomes
 - Équations différentielles linéaires avec second membre
 - Équation différentielle ordinaire non linéaire
 - Stabilité
 - Intégration numérique : Runge-Kutta explicite (Euler. . .)
- Chapitre 3 : Commande des systèmes
 - Cas linéaires : contrôlabilité, observabilité, stabilisation par retour d'état
 - Cas non-linéaire : stabilisation par retour d'état