Data Structures

Binary Heaps

Yossi Azar & Rani Hod Fall 2023

Required ADT

Maintain items with keys subject to

- Insert(x,Q), Delete(x,Q)
- min(Q), Delete-min(Q)
- Decrease-key (x,Q,Δ)

Required ADT

• Decrease-key(x,Q, Δ): Can be simulated by Delete(x,Q), x.key \leftarrow x.key $-\Delta$, insert(x,Q)

We can use AVL trees to implement all operations in O(log n) time

We want to implement Decrease-key in O(1) (amortized) time

Motivation

 Dijkstra's algorithm for single source shortest path

 Prim's algorithm for minimum spanning trees

Motivation

 Want to find the shortest route from New York to San Francisco

Model the road-map with a graph

A Graph G=(V,E)

V is a set of vertices

E is a set of edges (pairs of vertices)

Model driving distances by weights on the edges

V is a set of vertices

E is a set of edges (pairs of vertices)

w is a weight function

Source and destination

V is a set of vertices

E is a set of edges (pairs of vertices)

w is a weight function

Dijkstra's algorithm

Assume all weights are non-negative

 Finds the shortest path from some fixed vertex s to every other vertex

Example

Example

Maintain an upper bound d(v) on the shortest path to v

Maintain an upper bound d(v) on the shortest path to v

A node is either scanned (in S) or labeled (in Q)

Initially $S = \emptyset$ and Q = V

Initially $S = \emptyset$ and Q = V

Initially $S = \emptyset$ and Q = V

Pick a vertex v in Q with minimum d(v) and add it to S

For every edge (v,u) where u in Q: relax(v,u)

Relax(v,u)

If
$$d(v) + w(v,u) < d(u)$$
 then $d(u) \leftarrow d(v) + w(v,u)$ $\pi(u) \leftarrow v$

For every edge (v,u) where u in Q: relax(v,u)

$$S = \{s\}$$

 $Relax(s,s_4)$

$$S = \{s\}$$

 $Relax(s,s_4)$

$$S = \{s\}$$

Relax(s,s_4) Relax(s,s_3)

Relax(s,s_4) Relax(s,s_3)

$$S = \{s\}$$

Relax(s,s_4) Relax(s,s_3) Relax(s,s_1)

$$S = \{s\}$$

Relax(s,s_4) Relax(s,s_3) Relax(s,s_1)

$$S = \{s\}$$

$$S = \{s, s_1\}$$

$$S = \{s, s_1\}$$

Relax(s_1, s_3)

$$S = \{s, s_1\}$$

Relax(s_1, s_3)

$$S = \{s, s_1\}$$

Relax(s_1,s_3) Relax(s_1,s_2)

$$S = \{s, s_1\}$$

Relax(s_1,s_3) Relax(s_1,s_2)

$$S = \{s, s_1\}$$

$$S = \{s, s_1, s_2\}$$

$$S = \{s, s_1, s_2\}$$

 $Relax(s_2,s_3)$

$$S = \{s, s_1, s_2\}$$

Relax(s_2 , s_3)

$$S = \{s, s_1, s_2\}$$

$$S = \{s, s_1, s_2, s_3\}$$

$$S = \{s, s_1, s_2, s_3, s_4\}$$

$$S = \{s, s_1, s_2, s_3, s_4\}$$

When $Q = \emptyset$ then the d() values are the distances from s

The π function gives the shortest path tree

$$S = \{s, s_1, s_2, s_3, s_4\}$$

When $Q = \emptyset$ then the d() values are the distances from s

The π function gives the shortest path tree

Implementation of Dijkstra's algorithm

- We need to find efficiently the vertex with minimum d() in Q
- We need to update d() values of vertices in Q

Required ADT

Maintain items with keys subject to

- Insert(x,Q)
- min(Q)
- Delete-min(Q)
- Decrease-key (x,Q,Δ)

How many times we do these operations?

- Insert(x,Q) n = |V|
- min(Q)
- Deletemin(Q)
- Decrease-key(x,Q, Δ): Can simulate by Delete(x,Q), insert(x- Δ ,Q) m = |E|

Total running time: $O(m \log n) \rightarrow O(m + n \log n)$

Heap

- Heap is
 - An almost complete binary tree
 - The keys at the children of v are greater than the key at v

Array Representation

- Representing a heap with an array
 - Get the elements from top to bottom, from left to right

Q 7 23 17 24 29 26 19 65 33 40 79

Array Representation

```
    Left(i): 2i

• Right(i): 2i+1
Parent(i): Li/2
                     9 (33)
                   5 6
                                        10
```

26

29

19

65

33

24

23

17

Heap Representation I

Store associated information directly in the array Should only be used only for succinct information

Heap Representation II

Store pointers to associated information

Heap Representation III

Find the minimum

Return Q[1]

Q 7 23 17 24 29 26 19 65 33 40 79 7

Q 23 17 24 29 26 19 65 33 40 79 8

Q | 79 | 23 | 17 | 24 | 29 | 26 | 19 | 65 | 33 | 40 | 49

Q 17 23 79 24 29 26 19 65 33 40 30

Q 17 23 19 24 29 26 79 65 33 40 1

 $Q[1] \leftarrow Q[size(Q)]$ $size(Q) \leftarrow size(Q)-1$ Heapify-down(Q,1)

Q 17 23 19 24 29 26 79 65 33 40

Heapify-down(Q,i)

- Heapify-down(Q, i)
- $1 \leftarrow left(i)$
- $r \leftarrow right(i)$
- smallest \leftarrow i
- if 1 < size(Q) and Q[1] < Q[smallest] then smallest ← 1
- if r < size(Q) and Q[r] < Q[smallest]then smallest ← r
- if smallest > i then

 Q[i] ↔ Q[smallest]

 Heapify-down(Q, smallest)

Inserting an item

Insert(15,Q)

Q 17 23 19 24 29 26 79 65 33 40 4

Inserting an item

```
Insert(k,Q):
size(Q) \leftarrow size(Q) + 1
Q[size(Q)] \leftarrow k
Heapify-up(Q,size(Q))
```

Q 17 23 19 24 29 26 79 65 33 40 15 s

Q 17 23 19 24 15 26 79 65 33 40 29 6

Q 17 15 19 24 23 26 79 65 33 40 29 3

Q 15 17 19 24 23 26 79 65 33 40 29 s

- Heapify-up(Q, i)
- while i > 1 and Q[i] < Q[parent(i)] do
- $Q[i] \leftrightarrow Q[parent(i)]$

Q 15 17 19 24 23 26 79 65 33 40 29 s

Other operations

- Decrease-key(x,Q,Δ)
- Delete(x,Q)

Can implement them easily using heapify

Binary heaps - Summary

Binary heaps perform all heap operations in O(log n) time

Binary heaps are very efficient in practice

They do not achieved our goal of implementing decrease-key in O(1) time

Heapsort (Williams, Floyd, 1964)

- Put the elements in an array
- Turn the array into a heap
- Do a delete-min and put the deleted element at the last position of the array
- Reverse the array, or use a max-heap

Heapify-down(Q,5)

Heapify-down(Q,5)

65

Heapify-down(Q,4)

66

Heapify-down(Q,4)

Heapify-down(Q,3)

68

Heapify-down(Q,3)

Heapify-down(Q,2)

Heapify-down(Q,2)

/ I

Heapify-down(Q,2)

/2

/3

Heapify-down(Q,1)

Heapify-down(Q,1)

15

Heapify-down(Q,1)

How much time does it take to build the heap this way?

At most n/2 nodes heapified at height 1 At most n/4 nodes heapified at height 2 At most n/8 nodes heapified at height 3

Total time =
$$\frac{n}{2} + 2\frac{n}{4} + 3\frac{n}{8} + \ldots + H = \sum_{h=1}^{H} h \frac{n}{2^h}$$

How much time does it take to build the heap this way?

At most n/2 nodes heapified at height 1
At most n/4 nodes heapified at height 2
At most n/8 nodes heapified at height 3

Total time =
$$\sum_{h=1}^{H} h \frac{n}{2^h} < n \sum_{h=1}^{\infty} \frac{h}{2^h} = O(n)$$

Heapsort

We can build the heap in linear time

 We still have to delete-min the elements one by one in order to sort. That will take O(n log n)

An example

 Given an array of length n, find the k smallest numbers.