Linghao Kong

linghao@mit.edu | linkedin.com/in/linghaokong | lin-k76.github.io

Education

*	Massachusetts Institute of Technology (MIT)	Cambridge, MA
	• PhD candidate in Electrical Engineering and Computer Science (GPA: 4.91/5.00)	Sep 2022 – Present
	 Being advised by Professor Nir N. Shavit 	
	 SM in Electrical Engineering and Computer Science (GPA: 4.91/5.00) Advised by Professor Nir N. Shavit 	Sep 2022 – May 2024
	Thesis: "Sparse Expansion and Neuronal Disentanglement"	
*	Columbia University in the City of New York (CU)	New York, NY
	 BA in Computer Science and in Neuroscience and Behavior (GPA: 3.97/4.00) 	Sep 2018 – May 2022
	 Honors: magna cum laude, Dean's List for all semesters 	

Research Experience

❖ PhD Candidate, *Shavit Lab*, MIT

Sep 2022 – Present

- Investigating the relationship between neuronal entanglement and sparsity in large language models to discover new techniques to induce sparsity in such models to vastly save computational power
- Analyzing the MICrONS anatomical and functional connectome of the mouse visual cortex to better characterize the border between visual areas and to model the degree of synchrony in neurons
- Modeling the octopus hippocampus and fruit fly anatomical connectomes as artificial neural networks to investigate the capacity and capabilities of biological neural networks
- * Research Assistant, Peter Sims Laboratory, CU

Jan 2019 – Aug 2022

- Leveraged machine learning model scGen to identify fates of multiple cancer cell types following perturbations
- Identified the cause of low efficiency in the novel SCOPE-Seq2 technique to be false hybridization
- Utilized various biochemical assays to demonstrate the inability of emetine-stalled puromycylated polypeptides to remain bound to ribosomes, despite widespread acceptance of their ability to do so in the field of active translation
- * Research Assistant, Laboratory for Fluorescence Dynamics, UC Irvine

Aug 2015 – Jul 2018

- Implemented skills accumulated over three years for independent research project on cancer cell metabolism
- Became adept in lab techniques such as passaging, transfecting, amplifying DNA, and generating stable cell lines
- Self-taught in the ImageJ Macro language to expedite batch analysis of images
- * Research Participant, COSMOS Summer Research Program, UC Irvine

Jul 2016 – Aug 2016

Studied effects of different drugs on the growth rate of tumor spheres and modeled such growth in MATLAB

Professional Experience

* Research Intern, Machine Learning Research Team, Neural Magic

Jun 2024 – Aug 2024

- Spearheaded initiative to quantize LLMs to new FP8 data format to maintain performance while reducing cost –
 primary contributor to top-8 trending, most extensive FP8 model collection on Hugging Face with over 2 million
 total downloads, work featured by NVIDIA and MarkTechPost
- Tested a variety of different approaches, such as knowledge distillation and speculative decoding, to create more performant compressed LLMs

Publications (* denotes equal contribution, † denotes co-correspondence)

- ❖ Sawmya, S.*, Kong, L.*, Markov, I., Alistarh, D., & Shavit, N. N. (2025). Wasserstein distances, neuronal entanglement, and sparsity. The 13th International Conference on Learning Representations (ICLR 2025, Spotlight Presentation). https://openreview.net/pdf?id=cnKhHxN3xj
- ❖ Tumma, N.*, Kong, L.*†, Sawmya, S., Wang, T. T., & Shavit, N. N.† (2024). A connectomics-driven analysis reveals novel characterization of border regions in mouse visual cortex. bioRxiv preprint. https://www.biorxiv.org/content/10.1101/2024.05.24.595837v1
- ❖ Hobson, B. D., Kong, L., Angelo, M. F., Lieberman, O. J., Mosharov, E. V., Herzog, E., Sulzer, D., & Sims, P. A. (2022). Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Reports, 38(2) (Cell Rep). https://doi.org/10.1016/j.celrep.2021.110208
- Hobson, B. D., Kong, L., Hartwick, E. W., Gonzalez, R. L., Jr., & Sims, P. A. (2020). Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes. eLife 9, e60048 (eLife). https://doi.org/10.7554/eLife.60048
- **★ Kong, L.***, Murata, M. M.*, & Digman, M. A. (2018). **Absence of REV3L promotes p53-regulated cancer cell metabolism in cisplatin-treated lung carcinoma cells**. *Biochemical and Biophysical Research Communications*, 496(1), 199-204 (**BBRC**). https://doi.org/10.1016/j.bbrc.2018.01.026

Conferences (* denotes equal contribution)

- **★ Kong, L.***, Durresi, H., Mi, L., & Shavit, N. N. (2025, March). **Presynaptic input synchrony at scale** [Poster presentation]. *Computational and Systems Neuroscience* (**COSYNE 2025**), Montreal, QC, Canada.
- ❖ Sawmya, S.*, Kong, L.*, Markov, I., Alistarh, D., & Shavit, N. N. (2024, August). Neuronal disentanglement and Sparse Expansion [Poster presentation]. New England Mechanistic Interpretability Workshop Series (NEMI 2024), Boston, MA, United States.
- Hobson, B. D., Kong, L., Angelo, M. F., Lieberman, O. J., Mosharov, E. V., Herzog, E., Sulzer, D., & Sims, P. A. (2021, October). Subcellular and regional localization of mRNA translation in midbrain dopamine neurons [Poster presentation]. 2021 Columbia University Undergraduate Research Symposium, New York, NY, United States.
- Hobson, B. D., Kong, L., Hartwick, E. W., Gonzalez, R. L., Jr., & Sims, P. A. (2020, October). Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes [Poster presentation]. 2020 Columbia University Undergraduate Research Symposium, New York, NY, United States.
- Kong, L., Hobson, B. D., & Sims, P. A. (2019, October). Toward visualization of active translation in dopaminergic neurons [Poster presentation]. 2019 Columbia University Undergraduate Research Symposium, New York, NY, United States
- **★ Kong, L.***, Murata, M. M.*, & Digman, M. A. (2017, October). **Fighting the (chemotherapeutic) resistance: restoring p53 function and silencing REV3L suppresses the cancerous metabolic phenotype in cisplatin treated human non-small lung carcinoma cells [Poster presentation]. 2nd World Congress on Cancer Research and Therapy (WCCRT 2017), San Diego, CA, United States.**

Honors and Achievements

*	Spotlight Presentation at ICLR – Top 5% of submissions	2025
*	COSYNE New Attendee Travel Grant – Awardee	2025
*	Cerebras Research Fellowship – Awardee	2024
*	NSF Graduate Research Fellowship Program – Honorable Mention	2024
*	Columbia University I.I. Rabi Scholar – One of 17 students in class awarded yearly research funding	2018 - 2022
*	American Invitational Mathematics Examination (AIME) qualifier – Top 5% nationally	2015 - 2018
*	USA Biology Olympiad (USABO) semifinalist – Top 10% nationally	2015

Teaching Experience

*	Research Mentor, <u>Department of Electrical Engineering and Computer Science</u> , MIT	Dec 2022 – Present
	 Heidi Durresi, now PhD candidate at MIT 	Sep 2023 – Sep 2024
	 Neehal Tumma, now PhD candidate at MIT 	<i>Dec 2022 – May 2024</i>
*	Course Assistant, Computer Science Department, CU	Jan 2021 – May 2022
	COMS W4701 Artificial Intelligence	Spring 2022
	 COMS W4733 Computational Aspects of Robotics 	Fall 2021
	COMS W4701 Artificial Intelligence	Summer 2021
	 COMS W3251 Computational Linear Algebra 	Spring 2021

 Guided students to implement the mathematical and theoretical principles taught in class in Python-based applications and problem sets through weekly office hours and biweekly lab sessions

❖ Vice President, <u>Orange County Math Circle</u> (OCMC), Orange County, CA

Nov 2013 – May 2018

- Oversaw logistics of all other math clubs within OCMC; resolved club issues in weekly diagnostic meetings
- Directed volunteers to serve 2800+ students yearly; trained others to better instruct students

Invited Talks

* Talk on Wasserstein Distances, Neuronal Entanglement, and Sparsity, Red Hat, Cambridge, MA, USA

Mar 2025

Extracurricular Activities

& Editor in Chief, *Columbia Science Review*, CU

Sep 2018 – May 2022

- Supervise over 40 writers and editors to ensure the smooth operation of an online and a biannual publication
- Coordinate between different teams, including illustrators and layout designers, to produce a cohesive product
- Vice President, <u>Columbia Synapse</u>, CU

Sep 2019 - May 2021

• Oversee the organization of events to help unite the community in support of those with traumatic brain injuries, including research panels, socials, as well as of a large conference held during March 13th and 14th, 2021

* RASC-AL Mission Member, *Columbia Space Initiative*, CU

Nov 2018 – May 2020

Semifinalist for NASA's RASC-AL competition to design a lunar lander, focused on thermal management