Reproducibility, Privacy in Practice

A (slight) change of plans:

- Lecture 8 Reproducibility and Privacy in Practice
- Lecture 9 Evaluating Models, Scarcity and Abundance of Data

Reproducibility

What could make data science non-reproducible?

Key Challenges

- Changing the data
- Changing the model
- Changing the training

Changing the data

- As discussed last time, virtually all data is dynamic
 - Surveys, user preferences, time series, ...
- Underlines the importance of data engineering
- Many ways used to keep track of data
 - Write-only databases
 - Check-pointing
 - Finger-printing

Important: Need to keep track what data your model was trained on (as MLFlow does!)

Changing the model

- Lots of models use randomness
 - Random Forests
 - SDG
 - K-Means
 - Neural Networks (initialization, dropout, ++)

Need to set (and record) a random seed for reproducibility

Changing the training

- Many procedures use randomness
 - Train/test split
 - Cross-validation (minus leave-one-out)
 - Bootstrapping

Again, need to set (and record) a random seed for reproducibility

Privacy in Practice

The Industry Perspective

- With GDPR, few companies will touch 'anonymizing' data
 - Potential penalties are too high
 - Either data has been collected for given use, or it hasn't
 - More on that in the GDPR lecture
- However, for some e.g. governmental tasks this might be of interest

Randomization

- We'll cover only randomization
 - Laplace and similar methods are less interesting computationally
- We'll see the trade-off between anonymity and model performance

