Visión Computacional

Tema 1: Fundamentos e Imágenes Digitales

Jose Laruta

Diplomado en Sistemas Robóticos avanzados -Unifranz - Octubre 2021

Agenda

- 1. Introducción a la visión computacional
- 2. Enfoques de la visión artificial
- 3. Cámaras digitales y sensores de visión
- 4. Espacios de color y representaciones

Visión Artificial

Desde el punto de vista ingenieril, el campo de la Visión Artificial intenta emular tareas realizadas por el sistema visual humano.

El objetivo es lograr **entender** el contenido de una imagen digital en base a distintos algoritmos computacionales.

Historia: Hubel y Wiesel (1959)

Realizaron aportes para entender el sistema de visión en mamíferos. Los estímulos visuales provenientes de la retina viajan a la corteza visual y son procesados de forma jerárquica.

Historia: Block World (1963)

Larry Roberts describió cómo los **bordes** de los bloques son suficientes para entener la **forma** en 3 dimensiones, independientemente de la orientación.

(b) Computer display of picture (reflected by mistake).

Historia: MIT Summer Vision Project (1966)

El concepto de *Visión Artificial* fue introducido como un **proyecto de verano** en el MIT. Se inición con la definición abstracta de un sistema para el *reconocimiento de patrones*.

Historia: Convnets (1989)

Yann LeCun introduce una Red neuronal convolucional usada exitosamente para el reconocimiento de dígitos manucritos. Este trabajo fue el precursor de los avances en convnets.

Historia: Imagenet (2009)

Fei-Fei Li y sus colegas construyen una masiva base de datos abierta con más de **14 millones de imágenes**. En conjunto, se lanza un concurso anual.

Historia: Alexnet (2012)

Alex Krizhevsky, parte del grupo de Geoffrey Hinton en la U. de Toronto, logró entrenar una convnet sobre ImageNet obteniendo un rendimiento ampliamente superior a cualquier otro enfoque hasta entonces.

Enfoques de la Visión Artificial

Existen principalmente dos enfoques en los sistemas de visión artificial modernos:

- **Enfoque clásico**: Orientado a la ingeniería de características y desarrollo especializado de distintas etapas en un "pipeline".
- **Enfoque Moderno**: Basado mayormente en el uso de redes neuronales convolucionales para extracción de características y otro tipo de redes neuronales para procesamiento de alto nivel. Orientado a gran cantidad de datos.

Aplicaciones

- Detección y seguimiento de objetos
- Odometría Visual
- Navegación
- Inspección y control de calidad
- Fotogrametría
- Monitoreo y control
- Registro y segumiento
- Interacción humano-máquina
- OCR, digitalización
- Fotografía digital
- Industria del entretenimiento
- Industria militar

Cámaras digitales y sensores de visión

Un sensor de visión o imager convierte la atenuación de las ondas de luz que inciden sobre el mismo en señales eléctricas. Este tipo de sensores se usan en cámaras digitales, webcams, mouse óptico y otros.

Cámaras digitales y sensores de visión

- **CCD**: Basado en arreglos de capacitores, usados en cámaras de alta calidad.
- CMOS: Basados en fotodetectores y transistores, usados en cámaras más baratas y comunes, celulares, webcams.

Separación de color

- **Bayer filter**: Usa un arreglo de filtros de color.
- Foveon X3: Usa un arreglo de sensores en capas
- **3CCD**: Usa tres sensores independientes, el color se separa con un prisma.

Sensores especializados

- Sensores térmicos
- Sensores hiperespectrales
- Sensores gamma
- Sensores de rayos X
- Sensores de alta sensibilidad

Espacios y modelos de color

Es una representación de la organización de los colores. Se basa en distintos tipos de representaciones y se basa en el uso de un modelo de color para representar el color de forma matemática en forma de tuplas de números.

RGB

Usa una mezcla aditiva de los tres colores primarios Rojo, Verde y Azul, *Red, Green, Blue*.

CMYK

Usa una mezcla sustractiva, describe el tipo de *tinta* que se necesita aplicar para que el reflejo sobre una superficie blanca genere un color específico.

HSV

Representa una manera más natural de representar un color en términos del valor de hue y saturación que en términos aditivos o sustractivos. Es una transformación del espacio RGB.

