Theoretical Question 1 (vibrations of a linear crystal lattice)

A very large number N of movable identical point particles (N >> 1), each with mass m, are set in a straight chain with N+1 identical massless springs, each with stiffness (spring constant) S, linking them to each other and the ends attached to two additional immovable particles. See figure. This chain will serve as a model of the vibration modes of a one-dimensional crystal. When the chain is set in motion, the longitudinal vibrations of the chain can be looked upon as a superposition of simple oscillations (called modes) each with its own characteristic mode frequency.

- (a) Write down the equation of motion of the n^{th} particle. [0.7 marks]
- (b) To attempt to solve the equation of motion of part (a) use the trial solution

$$X_n(\omega) = A \sin nka \cos (\omega t + \alpha),$$

where $X_n(\omega)$ is the displacement of the n^{th} particle from equilibrium, ω the angular frequency of the vibration mode and A, k and ω are constants; k and ω are the wave numbers and mode frequencies respectively. For each k, there will be a corresponding frequency ω . Find the dependence of ω on k, the allowed values of k, and the maximum value of ω . The chain's vibration is thus a superposition of all these vibration modes. Useful formulas:

$$(d/dx)\cos\alpha x = -\alpha\sin\alpha x,$$
 $(d/dx)\sin\alpha x = \alpha\cos\alpha x, \alpha = constant.$

$$sin(A + B) = sin A cos B + cos A sin B,$$
 $cos(A + B) = cos A cos B - sin A sin B$ [2.2 marks]

According to Planck the energy of a photon with a frequency of ω is $\hbar\omega$, where \hbar is the Planck constant divided by 2π . Einstein made a leap from this by assuming that a given crystal vibration mode with frequency ω also has this energy. Note that a vibration mode is not a particle, but a simple oscillation configuration of the entire chain. This vibration mode is analogous to the photon and is called a *phonon*. We will follow up the consequences of this idea in the rest of the problem. Suppose a crystal is made up of a very large (~10²³) number of particles in a straight chain.

(c) For a given allowed ω (or k) there may be no phonons; or there may be one; or two; or any number of phonons. Hence it makes sense to try to calculate the average energy $\langle E(\omega) \rangle$ of a particular mode with a frequency ω . Let $P_{\nu}(\omega)$ represent the probability that there are p phonons with this frequency ω . Then the required average is

$$\langle E(\omega) \rangle = \frac{\sum_{p=0}^{\infty} p\hbar \, \omega \, P_p(\omega)}{\sum_{p=0}^{\infty} P_p(\omega)}.$$

Although the phonons are discrete, the fact that there are so many of them (and the P_p becomes tiny for large p) allows us to extend the sum to $p = \infty$, with negligible error. Now the probability P_p is given by Boltzmann's formula

$$P_p(\omega) \propto \exp(-p\hbar\omega/k_BT)$$
,

where $k_{\rm B}$ is Boltzmann's constant and T is the absolute temperature of the crystal, assumed constant. The constant of proportionality does not depend on p. Calculate the average energy for phonons of frequency ω . Possibly useful formula: $(d/dx) e^{f(x)} = (df/dx) e^{f(x)}$.

[2 marks]

(d) We would like next to compute the *total* energy E_T of the crystal. In part (c) we found the average energy $\langle E(\omega) \rangle$ for the vibration mode ω . To find E_T we must multiply $\langle E(\omega) \rangle$ by the number of modes of the crystal per unit of frequency ω and then sum up all these for the entire range from $\omega = 0$ to ω_{max} . Take an interval Δk in the range of wave numbers. For very large N and for Δk much larger than the spacing between successive (allowed) k values, how many modes can be

[1 mark]

found in the interval Δk ?

- (e) To make use of the results of (a) and (b), approximate Δk by $(dk/d\omega)d\omega$ and replace any sum by an integral over ω . (It is more convenient to use the variable ω in place of k at this point.) State the total number of modes of the crystal in this approximation. Also derive an expression $E_{\rm T}$ but do not evaluate it. The following integral may be useful: $\int_0^1 dx / \sqrt{1 - x^2} = \pi / 2$. [2.2 marks]
- (f) The molar heat capacity C_V of a crystal at constant volume is experimentally accessible: $C_V = dE_T/dT$ (T = absolute temperature). For the crystal under discussion determine the dependence of C_V on T for very large and very low temperatures (i.e., is it constant, linear or power dependent for an interval of the temperature?). Sketch a qualitative graph of C_V versus T, indicating the trends predicted for very low and very high T.

[1.9 marks]