TEST DE MATHS 1S2

JUIN 2020

Prénom	Nom:
Prenom	NOM:

Répondre par vrai ou faux.

<u>Barème</u>:

- 1 point par réponse juste ;
- - 0,5 point par réponse fausse ou absence de réponse.

1 sin (a+b) = cos(a)sin(b) + sin(a)cos(b). 2 La limite de −2x² − 64x + 14 en −∞ est égale à +∞ 3 L'ensemble de définition de f définie par $f(x) = x - 1$ est IR − {1} 4 L'ensemble de définition de f définie par $f(x) = \frac{x-2}{x^2-1}$ est IR − {1; −1} 5 Si $f(x) = x^2 - 3x + 2$ alors $f'(x) = 2x - 5$ 6 Si $f(x) = \frac{x-2}{x^2-1}$ alors $f'(x) = \frac{-x^2+4x-1}{(x^2-1)^2}$ 7 cos (x) = $\cos \frac{\pi}{3}$ donc x = $\frac{\pi}{3} + 2k\pi$ ou x = $\frac{2\pi}{3} + 2k\pi$ 8 L'équation cos (x) = $\frac{2}{3}$ n'admet pas de solution dans IR 9 sin (x) = $\sin \frac{\pi}{3}$ donc x = $\frac{\pi}{3} + 2k\pi$ ou x = $\frac{2\pi}{3} + 2k\pi$ 10 cos (x) = $\frac{-1}{2}$ donc x = $\frac{-1}{2} + 2k\pi$ ou x = $\pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : y = f'(1)(x − 1) − f(1) 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 sin (a+b) = sin(b) cos(a) + sin(a)cos(b) 15 cos (a+b) = cos(a)cos(b) − sin(a)sin(b) 16 sin (x) = $\frac{-1}{2}$ donc x = $\frac{-\pi}{6}$ + 2kπ ou x = $\frac{7\pi}{6}$ + 2kπ 17 cos²(2x) = 2sin²(x) − 1 18 cos²(4x) = 4cos²(x) − 1 19 sin(2x) = 2cos(x)sin(2x)	N°	Items	Réponses	Score
3 L'ensemble de définition de f définie par $f(x) = x - 1$ est IR $-\{1\}$ 4 L'ensemble de définition de f définie par $f(x) = \frac{x-2}{x^2-1}$ est IR $-\{1; -1\}$ 5 Si $f(x) = x^2 - 3x + 2$ alors $f'(x) = 2x - 5$ 6 Si $f(x) = \frac{x-2}{x^2-1}$ alors $f'(x) = \frac{-x^2+4x-1}{(x^2-1)^2}$ 7 $\cos(x) = \cos\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 8 L'équation $\cos(x) = \frac{2}{3}$ n'admet pas de solution dans IR 9 $\sin(x) = \sin\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}$ donc $x = \frac{-1}{2} + 2k\pi$ ou $x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x - 1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(x) = \frac{-1}{2}$ donc $x = \frac{-\pi}{6} + 2k\pi$ ou $x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	1	sin (a+b) = cos(a)sin(b) + sin(a)cos(b).		
4 L'ensemble de définition de f définie par $f(x) = \frac{x-2}{x^2-1}$ est IR $-\{1;-1\}$ 5 Si $f(x) = x^2 - 3x + 2$ alors $f'(x) = 2x - 5$ 6 Si $f(x) = \frac{x-2}{x^2-1}$ alors $f'(x) = \frac{-x^2+4x-1}{(x^2-1)^2}$ 7 $\cos(x) = \cos\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 8 L'équation $\cos(x) = \frac{2}{3}$ n'admet pas de solution dans IR 9 $\sin(x) = \sin\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}$ donc $x = \frac{-1}{2} + 2k\pi$ ou $x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x - 1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}$ donc $x = \frac{-\pi}{6} + 2k\pi$ ou $x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	2	La limite de $-2x^2 - 64x + 14$ en $-\infty$ est égale à $+\infty$		
5 Si $f(x) = x^2 - 3x + 2$ alors $f'(x) = 2x - 5$ 6 Si $f(x) = \frac{x-2}{x^2-1}$ alors $f'(x) = \frac{-x^2+4x-1}{(x^2-1)^2}$ 7 $\cos(x) = \cos\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 8 L'équation $\cos(x) = \frac{2}{3}$ n'admet pas de solution dans IR 9 $\sin(x) = \sin\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}$ donc $x = \frac{-1}{2} + 2k\pi$ ou $x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x-1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}$ donc $x = \frac{-\pi}{6} + 2k\pi$ ou $x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	3	L'ensemble de définition de f définie par $f(x) = x - 1$ est $IR - \{1\}$		
6 Si $f(x) = \frac{x-2}{x^2-1}$ alors $f'(x) = \frac{-x^2+4x-1}{(x^2-1)^2}$ 7 $\cos(x) = \cos\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 8 L'équation $\cos(x) = \frac{2}{3}$ n'admet pas de solution dans IR 9 $\sin(x) = \sin\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}$ donc $x = \frac{-1}{2} + 2k\pi$ ou $x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x-1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b)\cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}$ donc $x = \frac{-\pi}{6} + 2k\pi$ ou $x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	4	L'ensemble de définition de f définie par $f(x) = \frac{x-2}{x^2-1}$ est IR – $\{1; -1\}$		
7 $\cos(x) = \cos\frac{\pi}{3}\operatorname{donc} x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{2\pi}{3} + 2k\pi$ 8 $L'\operatorname{\acute{e}quation} \cos(x) = \frac{2}{3}\operatorname{n'admet} \operatorname{pas} \operatorname{de} \operatorname{solution} \operatorname{dans} \operatorname{IR}$ 9 $\sin(x) = \sin\frac{\pi}{3}\operatorname{donc} x = \frac{\pi}{3} + 2k\pi \operatorname{ou} x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-1}{2} + 2k\pi \operatorname{ou} x = \pi - \frac{1}{2} + 2k\pi$ 11 $L'\operatorname{\acute{e}quation} \operatorname{de} \operatorname{la} \operatorname{tangente} \operatorname{en} 1 \operatorname{de} \operatorname{la} \operatorname{courbe} \operatorname{d'une} \operatorname{fonction} \operatorname{f} \operatorname{est} \operatorname{donn\acute{e}e} \operatorname{par} : y = f'(1)(x - 1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	5	Si $f(x) = x^2 - 3x + 2$ alors $f'(x) = 2x - 5$		
8 L'équation $\cos(x) = \frac{2}{3}$ n'admet pas de solution dans IR 9 $\sin(x) = \sin\frac{\pi}{3}$ donc $x = \frac{\pi}{3} + 2k\pi$ ou $x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}$ donc $x = \frac{-1}{2} + 2k\pi$ ou $x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction fest donnée par : $y = f'(1)(x - 1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b)\cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}$ donc $x = \frac{-\pi}{6} + 2k\pi$ ou $x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	6	Si f(x) = $\frac{x-2}{x^2-1}$ alors f '(x) = $\frac{-x^2+4x-1}{(x^2-1)^2}$		
9 $\sin(x) = \sin\frac{\pi}{3}\operatorname{donc} x = \frac{\pi}{3} + 2k\pi \operatorname{ou} x = \frac{2\pi}{3} + 2k\pi$ 10 $\cos(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-1}{2} + 2k\pi \operatorname{ou} x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x - 1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b)\cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	7	$\cos(x) = \cos\frac{\pi}{3} \operatorname{donc} x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{2\pi}{3} + 2k\pi$		
10 $\cos(x) = \frac{-1}{2} \operatorname{donc} x = \frac{-1}{2} + 2k\pi \operatorname{ou} x = \pi - \frac{1}{2} + 2k\pi$ 11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x - 1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2} \operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	8	L'équation cos (x) = $\frac{2}{3}$ n'admet pas de solution dans IR		
11 L'équation de la tangente en 1 de la courbe d'une fonction f est donnée par : $y = f'(1)(x-1) - f(1)$ 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2} \operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	9	$\sin(x) = \sin\frac{\pi}{3} \operatorname{donc} x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{2\pi}{3} + 2k\pi$		
est donnée par : y = f '(1)(x - 1) - f(1) 12 Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	10	$cos(x) = \frac{-1}{2} donc x = \frac{-1}{2} + 2k\pi ou x = \pi - \frac{1}{2} + 2k\pi$		
Toute fonction continue est dérivable 13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2} \operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	11	L'équation de la tangente en 1 de la courbe d'une fonction f		
13 Toute fonction dérivable est continue 14 $\sin(a+b) = \sin(b) \cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$		est donnée par : $y = f'(1)(x - 1) - f(1)$		
14 $\sin(a+b) = \sin(b)\cos(a) + \sin(a)\cos(b)$ 15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	12	Toute fonction continue est dérivable		
15 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ 16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \operatorname{ou} x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	13	Toute fonction dérivable est continue		
16 $\sin(x) = \frac{-1}{2}\operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \text{ ou } x = \frac{7\pi}{6} + 2k\pi$ 17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	14	sin(a+b) = sin(b) cos(a) + sin(a)cos(b)		
17 $\cos^2(2x) = 2\sin^2(x) - 1$ 18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	15	cos(a+b) = cos(a)cos(b) - sin(a)sin(b)		
18 $\cos^2(4x) = 4\cos^2(x) - 1$ 19 $\sin(2x) = 2\cos(x)\sin(x)$	16	$\sin(x) = \frac{-1}{2} \operatorname{donc} x = \frac{-\pi}{6} + 2k\pi \text{ ou } x = \frac{7\pi}{6} + 2k\pi$		
$19 \sin(2x) = 2\cos(x)\sin(x)$	17	$\cos^2(2x) = 2\sin^2(x) - 1$		
	18	$\cos^2(4x) = 4\cos^2(x) - 1$		
$20 \sin(4x) = 2\cos(2x)\sin(2x)$	19	$\sin(2x) = 2\cos(x)\sin(x)$		
	20	$\sin(4x) = 2\cos(2x)\sin(2x)$		

TOTAL	