Laid-Open Number : 63-67109

1. Title of the Invention

Method of dispersing and kneading short fibers

- 2. Scope of the Claim for Patent
- (1) A method of dispersing and kneading short fibers, which comprises adding a thickener when adding short fibers into a hydraulic matrix so as to control the viscosity of the water hardening matrix to 40 poise or more.

(Problems to be Solved by the Invention)

The present invention concerns a method of mixing and kneading short fibers in a hydraulic matrix without using any dispersing apparatus or kneaders such as rocking-type specific mixers with high performance or fiber dispersing and supplying apparatus, for example, it relates to a dispersing and kneading method by which short fibers can be dispersed and kneaded uniformly in a matrix even by kneading with hands or by widely used mixers.

⑲ 日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-67109

@Int_Cl_4

. . .

識別記号

庁内整理番号

母公開 昭和63年(1988) 3月25日

B 28 C 5/40

7508-4G

審査請求 未請求 発明の数 1 (全6頁)

図発明の名称 短繊維を分散、混練する方法

②特 願 昭61-210583

②出 願 昭61(1986)9月9日

技術研究所内

⑫発 明 者 田 所 正 昭 神奈川県川崎市中原区井田1618 新日本製鎌株式会社第一

技術研究所内

技術研究所内

⑪出 願 人 新日本製鐵株式会社

切出 願 人 新日鐵化学株式会社

砂代 理 人 弁理士 茶野木 立夫

東京都千代田区大手町2丁目6番3号

東京都中央区銀座5丁目13番16号

明 細 章

1. 発明の名称

短繊維を分散、混練する方法

- 2. 特許請求の範囲
 - 水硬性マトリックス中へ短繊維を添加する際に、増粘剤を添加して、水硬性マトリックスの粘度を少なくとも40ポアズ以上に調整することを特徴とする短繊維を分散、混練する方法。
 - 2 水硬性マトリックスの粘度を 7 0 ポアズ以上に調整することを特徴とする特許請求の範囲第 1 項記載の短線雑を分散、混練する方法。
- 3. 発明の詳細な説明

(産業上の利用分野)

この発明は、建築、土木材料等に使用される 繊維補強無機成形体を製造するに当たって、混入する短繊維を均一に分散、混練する方法に関するものである。

〔従来の技術〕

耐アルカリガラス繊維、炭素繊維、アラミド機

雑等の繊維を 3 ~ 3 0 mm 程度に切断し、セメントマトリックス中に 3 次元ランダムに配向させたセメント系複合材料が製造されている。

しかし、この様な短繊維は径が8~18μmで、 比重が1.2~2.8程度と軽く、高弾性のため、切断時の加圧、運搬時の振動等により、繊維同志が絡み合い凝集して塊状状態となってしまう。そのため、この状態のままでは、セメントマトリックス中に添加しても良好な分散が出来ず、効率の良い補強が行えなくなり、殆どの場合、この塊状繊維が欠陥となって強度の低下をもたらす。

セメントマトリックス中に短繊維を混入するための実用的方法として、揺動型の高性能特殊ミキサーを用い、セメント、骨材、水、短繊維、分散剂、減水剤等を同時に投入し混練を行なう湿式混練方法が行われている。

また、他の方法として、特開昭 5 9 - 1 0 0 7 2 0 号、特開昭 5 9 - 1 3 0 3 5 5 号公報等にみられる様な、繊維の分散供給機を使用することが考えられる。 しかし、この様な方法では、特殊な分散、混錬機器を使用しないと、短繊維をセメントマトリックス中に均一に分散、混練することが不可能である。

(発明が解決しようとする問題点)

本発明は、 1 送の様 格 揺動型の高性能特殊ミキサー、 繊維の分散供給機等の分散、 混練機器を使用せずに水硬性マトリックス中に 短繊維を均一に分散、 混練する方法であり、 例えば、 手練りによる混練、 汎用のミキサーでも、 短繊維がマトリックス中に均一に分散、 混練が行える分散、 混練方法に関するものである。

(問題点を解決するための手段)

本発明は、この様な事情に鑑み、水硬性マトリックスの粘度を増粘剤を添加して、少なくとも40ポアズ以上にあらかじめ調整してから、混入すべき短繊維を添加し混練することによって、短繊維を水硬性マトリックス中に均一に分散する方法である。

ここでいう水硬性マトリックスとは、ポルトン

— з —

この水硬性マトリックスペーストの粘度を 4 0 ポアズ以上に調整する手段としては、 増粘剤を添加する。 本発明で使用する増粘剤としては、ヒドロキシ・プロピル・メチルセルロース等のセルロース類、ポリアクリル・アミド、ポリエチレンクリコール等の水溶性高分子類、 シリカゾル、アルミナゾル、水ガラス等が用いられる。

増粘剤の添加量は、マトリックス粉体の粒度分布、粉体の種類、さらに、添加する水の量等によっても影響されるが、所定の粘度になるように添加すれば良い。

また、マトリックスペースト粘度の調整、及び 短繊維の分散、混練に不都合な骨材(例えば、1 m以上)がマトリックスの配合成分に含まれる場合は、骨材を除いたマトリックス粉体だけで40 ポアズ以上のペーストを調整し、繊維を添加後、 分散、混練が行なえたところで、骨材を投入すれば均一な混練物が得られる。

例えば、セメント (C) 、骨材 (S) 、水 (W) 、増粘剤 (M C) として、ヒドロキシ・プロピ

ドセメント、アルミナセメント、高炉セメント等の通常のセメント類、石灰質と珪酸質よりなる珪酸カルシウム系化合物、石膏(半水石膏、無水石膏)、高炉スラグおよび水砕スラグ粉砕物と石膏の混合物等の水砕スラグ系水硬性物質等を主体として、必要に応じて、骨材、砂等を混ぜ、水を添加して混雑したもので、実質的に無機成形体を構成する材料である。

水硬性マトリックスペーストの粘度を、少なくとも40ポアズ以上、より好ましくは70ポアズ以上、以上2万ポアズ以下に調整することによって、ペースト自体が持つ、繊維をペースト中に取り込む最適なペースト状態と剪断力によって、単繊維状態に分散ができる。

さらに、繊維の種類、形状、添加量によっては、40ポアズより高粘度に調整することによって、分散、混練が可能である。これは、短繊維の材質、形状、添加量によって分散状態に影響を与えるためであり、予備的な混練実験を行うことにより、最適の粘度を選定することは容易である。

__4 __

ル・メチルセルローズを、S/C=0.5、W/C
=0.5~0.7、MC/C=0.2~2.0wt%、脱泡性を考慮すると0.2~0.4wt%といった配合比のものを同時にミキサー中に投入して、40ポアズ以上のセメントマトリックスペーストを調整する。この場合の粘度測定は、B型粘度計等の簡便な装置で行える。

投入する繊維の長さは、マトリックスとの接着力によるが通常用いられる2~1000 == のものであり、繊維の種類としては、炭素繊維、アラミド繊維、ガラス繊維など通常用いられるものを用いることが出来る。また、混練方法としては、揺動型の高性能特殊ミキサーに限らず汎用のミキサーでも良い。

この様にして得られた混練物は、塊状の繊維、短繊維の偏った分散等はみられず、均一に分散していた。

また、この様に短繊維が均一に分散した混練物は、プレス、押出しなどによって余剰水を取除く ことも可能であり、さらに、混和剤等を添加して、 流し込み、ポンプ圧送による成形が可能な粘度まで調整ができる。この様な操作を行なっても、いったん分散した短繊維は再び塊状、または短繊維の偏った分散等の状態にはならない。

この様にして得られた繊維補強セメント系複合材料は、理想的な分散、補強により、強度、靱性の向上が期待される。

以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例のみに拘束されるものではない。

尚本実施例において、繊維の分散性の良否の評価は次の方法により行った。

例えば、CFをセメントモルタル中に分散させた場合について、CFがセメント硬化体中に均一に分散しているか否かの評価は、X線断層法(CT;Computed Tomography)により行った。即ち、物質のX線吸収係数より計算されるCT値の半値幅で評価を行った。さらに、写真により繊維分散性の良否を判定し、CT値との相関をとり、分散性の良否の判定は写真により行った。

-- 7 ---

揺動型の特殊ミキサーを用いずに汎用ミキサー(
JIS R5201 に準じたモルタルミキサー)により混 練した。 増粘剤の量を変えることにより分散可能 なセメントマトリックスペーストを調整し、その 中に炭素繊維(CF)長さ3~9 m、直径約 1 6 μm、を添加して、CF混入セメントモルタル 混練物を得た。

配合条件: S / C = 0.5

W / C = 0.6

M C / C = 0 ~ 2.0 Ht %

CF/(C+S+MC) = 4 Ht %

使用増粘剤: ヒドロキシ・プロピル・メチルセルロース (信越化学製) ①90SH-30,000 、②90SH-15,000 、③90SH-4,000の 3 種類

得られたCF混入セメントモルタル混練物のCF分散結果を第1図に示した。

これより、 ①、 ②、 ③ のどの増粘剂を使用しても、セメントマトリックスペーストの粘度が 7 0 ポアズ以上であれば、 C F が均一に分散することがわかる。すなわち、 C F が均一に分散するには、

得られた C T 値のヒストグラフより、半値幅を 計算すると、第 1 表の様になる。つまり、 C T 値 が 7 4 以下のものが C F の均一な分 股 がえられた ものとし、第 1 図~第 4 図中のプロットに□、△、 ○印 (C F の分股不良は、■、▲、●印) で示し た。

第1表

写真による分散状況	不良	不良	良	良	良	良	良
MC/C (Ht%)	0.0	0.1	0.2	0.4	0.6	0.8	1.0
セメントモルタル ペースト粘度 (P)	15	27	80	280	400	800	4000
半値幅 (CT値)	141	96	74	52	52	50	50

但し、MC:ヒドロキシ・プロピル・メチルセルロース (信越化学製、90 sH-4,000) 、セメントモルタルベーストの水 (W) /セメント (C) 比は、0.6、CF添加量 = 4 Ht %

(実施例)

実施例 1

普通ポルトランドセメント (C)、骨材 (S)、水 (W)、増粘剤 (MC)を、以下の配合条件で、

--- 8 ----

増粘剤の重合度によらす、セメントマトリックス の粘度に依存していることがいえる。

実施例2

実施例1と同様にして、普通ボルトランドセメント(C)、骨材(S)、水(W)、増粘剤(MC)を、以下の配合条件で、特殊ミキサーを用いずに汎用ミキサーにより混練し、CFの分散状況を調べた。

配合条件: S / C = 0.5

W / C = 0.6

 $M C / C = 0 \sim 2.0 \text{ H t } \%$

CF/(C+S+MC) = 4 Ht %

得られたCF混入セメントモルタル混練物のC F分散結果を第2図に示した。

これより、①、②のどの増粘剤を使用しても、セメントマトリックスペーストの粘度が70ポアズ以上であれば、CFが均一に分散することがわ

かる。すなわち、CFが均一に分散するには、増 、粘剤の表面官能基によらず、セメントマトリック スの粘度に依存していることがいえる。 実施例 3

普通ボルトランドセメント(C)、骨材(S)、水(W)、増粘剤(MC)を、以下の配合条件で、特殊ミキサーを用いずに汎用ミキサーにより混類する。増粘剤の量を一定とし、水の添加量を変えることにより分散可能なセメントマトリックスベーストを調整して、その中に炭素繊維(CF)を添加してCFの分散状況を調べた。

配合条件: S / C = 0.5

 $W / C = 0.5 \sim 1.0$

M C / C = 0.6 Ht %

C F / (C + S + M C.) = 4 Wt %

使用増粘剤:ヒドロキシ・プロピル・メチルセルロース (信越化学製) 90SH-4,000

得られたCF混入セメントモルタル混壊物の C F分散結果を第3図に示した。

これより、W/Cの割り合いを変化させても、

F分散結果を第4図に示した。

これより、 ①、 ②のどの増粘剂を使用しても、セメントマトリックスペーストの粘度が 2 0 0 ポアズ以上であれば、 C F が均一に分散することがわかる。すなわち、 C F が均一に分散するには、増粘剤の分子構造によらず、セメントマトリック

の粘度に依存していることがいえる。

実施例 5

実施例1と同様にして、普通ポルトランドセメント(C)、骨材(S)、水(W)、増粘剤(MC)を、以下の配合条件で、特殊ミキサーを用いずに汎用ミキサーにより混練し、アラミド繊維(AF)を添加して、分散状況を調べた。

配合条件: S / C = 0.5

W / C = 0.6

M C / C = 0 ~ 0 . 6 W t %

CF/(C+S+MC) = 1 H1%

使用増粘剤:ヒドロキシ・エチル・メチルセルロース、SEM-04T (信越化学製)

得られたAF混入セメントモルタル混練物のA

セメントマトリックスペーストの粘度が70ポア ズ以上であれば、CFが均一に分散することがわ かる。すなわち、CFが均一に分散するには、セ メントマトリクスが十分な粘度であればよいこと がわかる。

実施例 4

実施例1と同様にして、普通ボルトランドセメント(C)、骨材(S)、水(W)、増粘剤(MC)を、以下の配合条件で、特殊ミキサーを用いずに汎用ミキサーにより混練し、CFの分散状況を調べた。

配合条件: S / C = 0.5

W / C = 0.6

 $M C / C = 0 \sim 2.0 Wt \%$

CF/(C+S+MC) = 4 Wt%

使用増粘剤: ① アクリルアミド・ポリマー 1 0 % 溶液

②ポリエチレングリコール約45%溶液

得られた C F 混入セメントモルタル混 練 物 の C --- 1 2 ---

F 分 股 状 況 を 第 2 表 に 示 し た。

第2表

写真による分似状況	不良	不良	良	良	良
MC/C	0.0	0.2	0.3	0.5	0.6
セメントモルタル ペースト粘度(P)	15	80	90	360	400

これより、セメントマトリックス粘度が90ポアズ以上であれば、AF1wt%が分散、混練が可能なことがいえる。すなわち、繊維の種類によらず、セメントマトリックスペーストの粘度を調整後、繊維を添加することによって、繊維が均一に分散した混練物が得られる。

実施例 6

アルミナセメントを基本組成としたものに、人工黒鉛、分散材、バインダー等を添加した不定形耐火物川のマトリックス粉体100里量部に、シリカゾルを10 cc 水を2 cc 添加して、マトリックスペーストを調整後、炭素繊維14t %を添加しての分散状況を調べた。

このようにして調整されたマトリックスペース

トの粘度は、 4 0 ボアズであった。 そのベースト 中に、 C F = 1 Wt % 添加したものは良好な分散、 混練が行なえた。

すなわち、マトリックス組成が変わっても、添加する繊維量によってマトリックスペーストの粘度を調整後、繊維を添加すれば繊維が均一に分散した混練物が得られることがいえる。

以上、実施例により、補強材となる繊維の種類、およびマトリックスによらず、添加する繊維量によって、マトリックスペーストの粘度を予備調整後、繊維を添加することによって、繊維を均一に分散した混練物が得られることが可能であることがわかる。

(発明の効果)

水硬性マトリックスの粘度を、少なくとも40ポアズ以上に調整することにより、特殊なミキサーを使用しなくとも、短繊維をマトリックス中に均一に分散、混練が行なえ、効率の良い補強が行なえる。そのため、各種繊維強化無機成形体の製造に際して本発明を適用することによって、短繊

— i 5 —

雑の分散、混練が容易となり、施工が簡単になって質献するところが大きい。

4. 図面の簡単な説明

第1~4図は、セメントマトリックスの粘度を 増粘剤を添加して調整して、短繊維の分散性の良、 不良の評価を行なった結果を示す図表である。

代理人 弁理士 茶 野 木 立 夫

