一元函数积分学

不定积分

定义

- $\forall x\in I$,对于可导函数 F(x),均有 F'(x)=f(x),我们称 F(x) 是 f(x) 的一个原函数,记为 $\int f(x)dx=F(x)+C$ 是 f(x) 的原函数
- 原函数存在定理(充分条件): 连续函数 f(x) 必存在原函数 F(x)
 - \circ 1. 构造函数 $F(x) = \int_a^x f(t) dt$, 证明 F'(x) = f(x)

$$\circ \quad ext{ 2. } orall x \in (a,b), F'(x) = \lim_{\Delta x o 0} rac{F(x+\Delta x) - F(x)}{\Delta x} = \lim_{\Delta x o 0} rac{\int_x^{x+\Delta x} f(t) dt}{\Delta x} = \lim_{\xi o x} f(\xi) = f(x)$$

- 达布定理(必要性): 导函数存在, 必有介值性(无第一类间断点)
 - \circ 1. f(x) 在 [a,b] 上有原函数 F(x),则 f(x) 在 [a,b] 上必有介值性
 - \circ 2. f(x) 在 [a,b] 上有原函数 F(x),则 f(x) 在 [a,b] 上必无第一类间断点
 - \circ 3. f(x) 在 [a,b] 上有原函数 F(x), 则 f(x) 在 [a,b] 上必无无穷间断点

不定积分计算

基本积分公式

• 幂、指、对

$$\circ \int x^k dx = \frac{x^{k+1}}{k+1} + C, k \neq -1,$$
两个常用公式:
$$\begin{cases} \int \frac{1}{x^2} dx = -\frac{1}{x} + C \\ \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C \end{cases}$$

$$\circ \begin{cases} \int e^x dx = e^x + C \\ \int a^x dx = \frac{a^x}{\ln a} + C \\ \int \frac{1}{x} dx = \ln|x| + C \end{cases}$$

$$\circ \begin{cases} \int \frac{1}{x^2 - a^2} = \frac{1}{2a} \ln|\frac{x + a}{x - a}| + C \\ \int \frac{1}{a^2 - x^2} = \frac{1}{2a} \ln|\frac{x + a}{x - a}| + C \end{cases}$$

• 三角函数

$$\begin{cases} \int \sin x dx = -\cos x + C \\ \int \cos x dx = \sin x + C \\ \int \tan x dx = -\ln|\cos x| + C \\ \int \cot x dx = \ln|\sin x| + C \\ \int \sec x dx = \int \frac{1}{\cos x} dx = \ln|\sec x + \tan x| + C \\ \int \csc x dx = \int \frac{1}{\sin x} dx = \ln|\csc x - \cot x| + C \\ \begin{cases} \int \sin^2 x dx = \frac{x}{2} - \frac{\sin 2x}{4} + C \\ \int \cos^2 x dx = \frac{x}{2} + \frac{\sin 2x}{4} + C \\ \int \sec^2 x dx = -\tan x + C \\ \int \csc^2 x dx = \cot x + C \\ \int \cot^2 x dx = \int (\sec^2 x - 1) dx = \tan x - x + C \\ \int \cot^2 x dx = \int (\csc^2 x - 1) dx = -\cot x - x + C \end{cases}$$

$$\circ \begin{cases} \int \sec x \tan x = \sec x + C \\ \int \csc x \cot x = \csc x + C \end{cases}$$

• 反三角函数

$$\begin{cases} \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \\ \int \frac{1}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C \\ \int \frac{1}{1+x^2} dx = \arctan x + C \\ \int \frac{1}{a^2+x^2} = \frac{1}{a}\arctan \frac{x}{a} + C \\ \int \frac{1}{\sqrt{x^2\pm a^2}} dx = \ln|x + \sqrt{x^2 \pm a^2}| + C \end{cases}$$

• 根式积分(分部积分或三角换元)

$$\circ \begin{cases} \int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C \\ \int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln|x + \sqrt{x^2 + a^2}| + C \end{cases}$$

凑微分

•
$$\int f[g(x)]g'(x)dx = \int f[g(x)]dg(x) = \int f(u)du$$

换元法

• 一般换元法

$$\circ \int f(x)dx \stackrel{x=g(t)}{=} \int f(g(t)) \cdot g'(t)dt$$

• 三角换元法 (多项式根式)

$$\circ x = \sin t, x = \cos t, x = \tan t$$

。 万能公式:

$$f(x) = R(\sin x, \cos x) \Rightarrow x = \tan \frac{t}{2} \Rightarrow \begin{cases} \sin x = \frac{2t}{1+t^2} \\ \cos x = \frac{1-t^2}{1+t^2} \end{cases} \Rightarrow \int R(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}) \frac{2}{1+t^2} dt$$

$$\circ R(\sin x, \cos x) = R(\sin x, -\cos x) \Rightarrow t = \sin x$$

$$\circ \ R(\sin x, \cos x) = -R(-\sin x, \cos x) \Rightarrow t = \cos x$$

$$\circ R(\sin x, \cos x) = R(-\sin x, -\cos x) \Rightarrow t = \tan x$$

• 根式代换

$$\circ \ t = \sqrt{x+a}$$

• 倒代换

$$\circ$$
 $t = \frac{1}{x}$

分部积分

•
$$\int u dv = uv - \int v du$$

• 递归法:
$$I_n = I_{n-1} + f(x)$$

• 组合积分法

有理函数积分

$$egin{aligned} iglet egin{aligned} p(x) &= a_0 + a_1 x + \cdots + a_n x^n, a_n
eq 0 \ p(x) &= b_0 + b_1 x + \cdots + b_m x^n, b_m
eq 0 \end{aligned}$$

$$ullet rac{p(x)}{q(x)} = \sum\limits_{i=1}^k \sum\limits_{j_i=1}^{r_i} rac{A_{i,j_1}}{(x-a_i)^{j_i}} + \sum\limits_{m=1}^l \sum\limits_{n_m=1}^{s_m} rac{M_{m,n_m}x + N_{m,n_m}}{(x^2 - b_m x + c_m)^{s_m}}$$

定积分

定义

- f(x) 在 [a,b] 上有界,在 (a,b) 上任取 n-1 个分点 $x_i (i=1,2,3,\cdots,n-1)$,定义 $x_0=a,x_n=b$,且满足 $a=x_0< x_1< x_2<\cdots< x_n=b$,记 $\Delta x_k=x_k-x_{k-1},k=1,2,\cdots,n$,任取一点 $\xi_k\in [x_{k-1},x_k]$,记 $\lambda=\max\{\Delta x_k\}$,当 $\lambda\to 0$ 时,极限 $\lim_{\lambda\to 0}\sum_{k=1}^n f(\xi_k)\Delta x_k$ 存在且与分点 x_i 和 ξ_k 的取 法无关,则称函数 f(x) 在 [a,b] 上可积,记 $\int_a^b f(x)dx=\lim_{\lambda\to 0}\sum_{k=1}^n f(\xi_k)\Delta x_k$ 为 f(x) 在 [a,b] 上的定积分
- 任取 x_i : 变为将区间 [a,b] 分为 n 个小区间,且每个小区间的长度为 Δx_k ,且 $\Delta x_k \to 0$,且 ξ_k 为每个小区间的右端点, $\int_a^b f(x)dx = \lim_{n \to +\infty} \sum_{i=1}^n f(a+\frac{b-a}{n}i)\frac{b-a}{n}$
- 定积分存在(必要条件): 区间有界, 函数有界
 - \circ f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上可积 (充分条件)
 - $\circ f(x)$ 在 [a,b] 上有界,且只有有限个间断点,则 f(x) 在 [a,b] 上可积 (充分条件)
 - $\circ f(x)$ 在 [a,b] 上单调(有界),则 f(x) 在 [a,b] 上可积 (充分条件)

定积分计算

- 基本公式
 - \circ 牛顿-莱布尼茨公式: f(x) 是 [a,b] 上连续函数, $\int_a^b f(x) dx = F(x)|_a^b = F(b) F(a)$
- 对称函数积分
 - $\circ f(x)$ 是奇函数,则 $\int_{-l}^{l} f(x) dx = 0$
 - $\circ f(x)$ 是偶函数,则 $\int_{-l}^{l} f(x) dx = 2 \int_{0}^{l} f(x) dx$
 - $\circ \ f(a+b-x) = -f(x)$,称 f(x) 关于 $x = rac{a+b}{2}$ 奇对称, $\int_a^b f(x) dx = 0$
 - $\circ \ f(a+b-x)=f(x)$,称 f(x) 关于 $x=rac{a+b}{2}$ 偶对称, $\int_a^b f(x)dx=2\int_a^{rac{a+b}{2}} f(x)dx=2\int_{rac{a+b}{2}}^b f(x)dx$
 - 。 f(a+b-x)=f(x), f(x) 关于 $\dfrac{a+b}{2}$ 对称, g(a+b-x)+g(x)=A, A 为常数, 我们有: $\int_a^b f(x)g(x)dx=\dfrac{A}{2}\int_a^b f(x)dx=A\int_a^{\frac{a+b}{2}}f(x)dx=A\int_{\frac{a+b}{2}}^b f(x)dx$
- 华里士公式

$$\circ \int_0^{rac{\pi}{2}} \sin^n x dx = \int_0^{rac{\pi}{2}} \cos^n x dx = egin{cases} rac{n-1}{n} \cdot rac{n-3}{n-2} \cdots rac{2}{3} \cdot 1, n \in \{2k+1 | k \in \mathbb{N}\} \ rac{n-1}{n} \cdot rac{n-3}{n-2} \cdots rac{1}{2} \cdot rac{\pi}{2}, n \in \{2k+2 | k \in \mathbb{N}\} \end{cases}$$

变限积分

定义

• $x\in[a,b], \forall x\in[a,b]$, 积分 $\int_a^x f(t)dt$ 都有一个确定的值,我们将这个关于 x 的函数 $\int_a^x f(t)dt$ 称作变限积分

性质

- f(x) 可积, $F(x) = \int_a^x f(t)dt$ 一定连续
- f(x) 连续, $F(x)=\int_a^x f(t)dt$ 一定可导, 且 F'(x)=f(x)
- f(x) 在 [a,b] 上有唯一跳跃间断点 x_0 ,则 $F(x)=\int_a^x f(t)dt$ 在 $x=x_0$ 处不可导
- f(x) 在 [a,b] 上有唯一可去间断点 x_0 ,则 $F(x)=\int_a^x f(t)dt$ 在 $x=x_0$ 处可导,且 $F'(x_0)=\lim_{x o x_0}f(x)$

变限积分求导

• f(x) 是连续函数,则 $\left[\int_{\phi(x)}^{\varphi(x)}f(t)dt
ight]'=f[arphi(x)]arphi'(x)-f[\phi(x)]\phi'(x)$

反常积分(广义积分)

- 定义
 - 积分区间无界 (无穷区间: 奇点)
 - 积分函数无界 (无界函数: 瑕点)
- 敛散性判别
 - 比较判别法 (无穷区间)
 - \blacksquare 函数 f(x), g(x) 连续, 且 $0 \le f(x) \le g(x)$
 - \blacksquare (1). $\int_a^{+\infty} g(x)dx$ 收敛, 则 $\int_a^{+\infty} f(x)dx$ 收敛
 - \blacksquare (2). $\int_a^{+\infty} f(x) dx$ 发散, 则 $\int_a^{+\infty} g(x) dx$ 发散
 - 比较判别法极限形式 (无穷区间)
 - 函数 f(x),g(x) 连续,且 $g(x)>0,f(x)\geq0,\lim_{x o+\infty}rac{f(x)}{g(x)}=\lambda$
 - ullet (1). $\lambda \neq 0$ 且 $\lambda \neq \infty$, 则 $\int_a^{+\infty} f(x) dx$ 与 $\int_a^{+\infty} g(x) dx$ 同敛散
 - ullet (2). $\lambda=0$, 则 $\int_a^{+\infty}g(x)dx$ 收敛 $\Rightarrow\int_a^{+\infty}f(x)dx$ 收敛
 - lacksquare (3). $\lambda=\infty$, 则 $\int_a^{+\infty}g(x)dx$ 发散 $\Rightarrow\int_a^{+\infty}f(x)dx$ 发散
 - 比较判别法 (无界函数)
 - ullet 函数 f(x),g(x) 在 (a,b] 连续,瑕点为 x=a,且 $0\leq f(x)\leq g(x)$
 - ullet (1). $\int_a^b g(x) dx$ 收敛, 则 $\int_a^b f(x) dx$ 收敛
 - (2). $\int_a^b f(x)dx$ 发散,则 $\int_a^b g(x)dx$ 发散
 - 比较判别法极限形式 (无界函数)
 - lacksquare 函数 f(x),g(x) 在 (a,b] 连续,瑕点为 x=a,且 $g(x)>0,f(x)\geq0,\lim_{x o a^+}rac{f(x)}{g(x)}=\lambda$

$$\blacksquare$$
 (1). $\lambda \neq 0$ 且 $\lambda \neq \infty$, 则 $\int_a^b f(x) dx$ 与 $\int_a^b g(x) dx$ 同敛散

$$ullet$$
 (2). $\lambda=0$, 则 $\int_a^b g(x)dx$ 收敛 $\Rightarrow \int_a^b f(x)dx$ 收敛

$$ullet$$
 (3). $\lambda=\infty$, 则 $\int_a^b g(x)dx$ 发散 $\Rightarrow \int_a^b f(x)dx$ 发散

○ p 反常积分

•
$$\int_0^1 rac{1}{x^p} dx$$
 收敛 \Rightarrow 0

•
$$\int_0^1 rac{1}{x^p} dx$$
 发散 \Rightarrow $p \geq 1 \Leftarrow \int_0^1 rac{\ln x}{x^p} dx$

$$ullet$$
 $\int_1^{+\infty} rac{1}{x^p} dx$ 收敛 \Rightarrow $p>1$ \Leftarrow $\int_1^{+\infty} rac{\ln x}{x^p} dx$

$$ullet$$
 $\int_1^{+\infty} rac{1}{x^p} dx$ 发散 \Rightarrow $p \leq 1 \Leftarrow \int_1^{+\infty} rac{\ln x}{x^p} dx$

一元函数积分学应用

面积

- 直角坐标 y=f(x) $S=\int_a^b f(x)dx$ S 表示的是由 y=0,y=f(x) 和 x=a,x=b 四条直线围成的平面图形的面积
- 极坐标 $r=r_1(\theta)$ 与 $r=r_2(\theta)$ $S=\frac{1}{2}\int_{\theta_1}^{\theta_2}\left|[r_1(\theta)]^2-[r_2(\theta)]^2\right|d\theta$ S 表示的是由 $\theta=\theta_1,\theta=\theta_2$ 和 $r=r_1(\theta), r=r_2\theta$ 四条曲线围成的平面图形的面积.
- 参数方程

$$\left\{egin{aligned} x &= x(t) \ y &= y(t) \end{aligned}
ight. S = \int_a^b f(x) dx = \int_lpha^eta y(t) x'(t) dt$$

S 表示的是由 t=lpha, t=eta 和 x=x(t), y=y(t) 四条曲线围成的平面图形的面积.

弧长

• 直角坐标
$$y=f(x)$$

$$s=\int_a^b\sqrt{1+[y'(x)]^2}dx$$

・ 极坐标
$$r=r(heta)$$
 $s=\int_{lpha}^{eta}\sqrt{[r(heta)]^2+[r'(heta)]^2}d heta$

• 参数方程
$$egin{cases} x=x(t) \ y=y(t) \end{cases} s = \int_{lpha}^{eta} \sqrt{[x'(t)]^2+[y'(t)]^2} dt$$

旋转体体积

- 绕 x 轴旋转 y=f(x)与 x=a, x=b 围成的几何图形绕x 轴旋转得到的几何体体积 V : $V=\pi\int_a^b f^2(x)dx$
- 绕 y 轴旋转 y=f(x)与 x=a, x=b 围成的几何图形绕y轴旋转得到的几何体体积 V : $V=2\pi\int_a^bx|f(x)|dx$

• 绕任意直线 $L_0:Ax+By+C=0$ 旋转

$$egin{cases} V = \pi \int_{l_1}^{l_2} r^2 dl \ r = rac{|Ax + Bf(x) + C|}{\sqrt{A^2 + B^2}} \ dl = rac{ec{n} \cdot ec{l}}{|ec{l}|} \ ec{n} = (dx, dy) \ ec{l} = (B, -A) \end{cases} \Rightarrow V = rac{\pi}{(A^2 + B^2)^{rac{3}{2}}} \int_a^b \left[Ax + Bf(x) + C
ight]^2 \left| Af'(x) - B
ight| dx$$

• 平面区域 D 绕直线 $L_0:Ax+By+C=0$

$$V=2\pi \iint\limits_{(x,y)\in D} rd\sigma = 2\pi \iint\limits_{(x,y)\in D} rac{|Ax+By+C|}{\sqrt{A^2+B^2}}d\sigma$$

旋转体表面积

• 直角坐标
$$S=2\pi\int_a^b|y(x)|\sqrt{1+[y'(x)]^2}dx$$

参数方程

$$egin{cases} x=x(t)\ y=y(t) \end{cases} S=2\pi \int_{lpha}^{eta} |y(t)| \sqrt{[x'(t)]^2+[y'(t)]^2} dt$$

・ 极坐标
$$S=2\pi\int_{\alpha}^{\beta}|r\sin\theta|\sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta$$

平均值

•
$$\overline{y} = \frac{1}{b-a} \int_a^b f(x) dx$$

形心

$$\begin{cases}
\overline{x} = \frac{\iint x d\sigma}{\iint d\sigma} = \frac{\int_a^b x f(x) dx}{\int_a^b f(x) dx} \\
\overline{y} = \frac{\iint y d\sigma}{\iint d\sigma} = \frac{\frac{1}{2} \int_a^b f^2(x) dx}{\int_a^b f(x) dx}
\end{cases}$$

物理应用

• 变力做功

$$\circ W = \int_a^b F ds$$

• 抽水做功

$$\circ W = \rho g \int_a^b x A(x) dx$$

• 水压力

$$\circ F = \rho g \int_a^b x (f(x) - h(x)) dx$$