Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

Matt Wytock, Zico Kolter School of Computer Science Carnegie Mellon University

December 10, 2013

Outline

- 1. Probabilistic forecasting problem
- 2. Fast algorithm for large-scale problems
- 3. Copula transform for non-Gaussian distributions
- 4. Wind power forecasting results

Output: $y \in \mathbb{R}^p$, Input: $x \in \mathbb{R}^n$

Example output: Future wind power

Example input: Past wind power, weather forecasts, etc.

Output: $y \in \mathbb{R}^p$, Input: $x \in \mathbb{R}^n$

$$p(y|x) \propto \exp\left(-y^T y - 2x^T \Theta y\right)$$

 $\Theta \in \mathbb{R}^{n \times p}$ models dependence of output on input, multivariate linear regression

Output: $y \in \mathbb{R}^p$, Input: $x \in \mathbb{R}^n$

 $\Lambda \in \mathbb{R}^{p \times p}$ models dependencies in output, sparse inverse covariance estimation problem (e.g. Meinshausen and Bühlmann, 2006)

Output: $y \in \mathbb{R}^p$, Input: $x \in \mathbb{R}^n$

$$p(y|x) \propto \exp\left(-y^T \Lambda y - 2x^T \Theta y\right)$$

Conditional Gaussian distribution with parameterization that allows for sparse Λ and Θ which is critical to scaling to large problems

Outline

- 1. Probabilistic forecasting problem
- 2. Fast algorithm for large-scale problems
- 3. Copula transform for non-Gaussian distributions
- 4. Wind power forecasting results

Optimization problem

$$p(y|x) \propto \exp\left(-y^T \Lambda y - 2x^T \Theta y\right)$$

ullet Maximum likelihood estimation with ℓ_1 regularization

$$\begin{split} \underset{\Lambda,\Theta}{\text{minimize}} - \log |\Lambda| + \operatorname{tr} \Lambda S_{yy} + 2 \operatorname{tr} \Theta S_{yx} + \operatorname{tr} \Lambda^{-1} \Theta^T S_{xx} \Theta \\ + \lambda \|\Lambda\|_1 + \lambda \|\Theta\|_1 \end{split}$$

Optimization problem

$$p(y|x) \propto \exp\left(-y^T \Lambda y - 2x^T \Theta y\right)$$

• Maximum likelihood estimation with ℓ_1 regularization

$$\begin{aligned} & \underset{\Lambda,\Theta}{\text{minimize}} - \log |\Lambda| + \operatorname{tr} \Lambda S_{yy} + 2 \operatorname{tr} \Theta S_{yx} + \underset{\Lambda}{\text{tr}} \Lambda^{-1} \Theta^T S_{xx} \Theta \\ & + \lambda \|\Lambda\|_1 + \lambda \|\Theta\|_1 \end{aligned}$$

• Convex but difficult to optimize due to matrix fractional term

Optimization: Newton coordinate descent

 State-of-the-art approach for sparse inverse covariance estimation, QUIC algorithm (Hsieh et al. 2011), see also Tseng and Yun, 2009

Optimization: Newton coordinate descent

- State-of-the-art approach for sparse inverse covariance estimation, QUIC algorithm (Hsieh et al. 2011), see also Tseng and Yun, 2009
- Basic proximal Newton for minimizing $f(x) + \lambda ||x||_1$, repeat
 - 1. Form the second-order Taylor expansion

$$\hat{f}(x+\Delta) = f(x) + \nabla_x f(x)^T \Delta + \frac{1}{2} \Delta^T \nabla_x^2 f(x) \Delta$$

2. Solve for the regularized Newton step

$$d = \arg\min_{\Delta} \hat{f}(x + \Delta) + \lambda ||x + \Delta||_1$$

3. Update x using backtracking line search

Optimization: Newton coordinate descent

- State-of-the-art approach for sparse inverse covariance estimation, QUIC algorithm (Hsieh et al. 2011), see also Tseng and Yun, 2009
- Basic proximal Newton for minimizing $f(x) + \lambda ||x||_1$, repeat
 - 1. Form the second-order Taylor expansion

$$\hat{f}(x+\Delta) = f(x) + \nabla_x f(x)^T \Delta + \frac{1}{2} \Delta^T \nabla_x^2 f(x) \Delta$$

2. Solve for the regularized Newton step

$$d = \arg\min_{\Delta} \hat{f}(x + \Delta) + \lambda ||x + \Delta||_1$$

- 3. Update x using backtracking line search
- Newton CD method solves step 2 using coordinate descent

Newton CD details

Actual second-order approximation for sparse Gaussian CRF

$$\hat{f}(\Lambda + \Delta_{\Lambda}, \Theta + \Delta_{\Theta}) = f(\Lambda, \Theta) + \operatorname{tr} S_{yy} \Delta_{\Lambda} + 2 \operatorname{tr} S_{yx} \Delta_{\Theta}$$
$$- \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} + 2 \operatorname{tr} \Lambda^{-1} \Theta^{T} S_{xx} \Delta_{\Theta} - \operatorname{tr} \Lambda^{-1} \Theta^{T} S_{xx} \Theta \Lambda^{-1} \Delta_{\Lambda}$$
$$+ \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} \Lambda^{-1} \Theta^{T} S_{xx} \Theta \Lambda^{-1} \Delta_{\Lambda} - \frac{1}{2} \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} \Lambda^{-1} \Delta_{\Lambda}$$
$$+ \operatorname{tr} \Lambda^{-1} \Delta_{\Theta}^{T} S_{xx} \Delta_{\Theta} - 2 \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} \Lambda^{-1} \Theta^{T} S_{xx} \Delta_{\Theta}$$

Newton CD details

Actual second-order approximation for sparse Gaussian CRF

$$\hat{f}(\Lambda + \Delta_{\Lambda}, \Theta + \Delta_{\Theta}) = f(\Lambda, \Theta) + \operatorname{tr} S_{yy} \Delta_{\Lambda} + 2 \operatorname{tr} S_{yx} \Delta_{\Theta}$$
$$- \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} + 2 \operatorname{tr} \Lambda^{-1} \Theta^{T} S_{xx} \Delta_{\Theta} - \operatorname{tr} \Lambda^{-1} \Theta^{T} S_{xx} \Theta \Lambda^{-1} \Delta_{\Lambda}$$
$$+ \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} \Lambda^{-1} \Theta^{T} S_{xx} \Theta \Lambda^{-1} \Delta_{\Lambda} - \frac{1}{2} \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} \Lambda^{-1} \Delta_{\Lambda}$$
$$+ \operatorname{tr} \Lambda^{-1} \Delta_{\Theta}^{T} S_{xx} \Delta_{\Theta} - 2 \operatorname{tr} \Lambda^{-1} \Delta_{\Lambda} \Lambda^{-1} \Theta^{T} S_{xx} \Delta_{\Theta}$$

- Key to implementation is storing/updating products $\Delta_{\Lambda}\Lambda^{-1}$ and $\Delta_{\Theta}\Lambda^{-1}$ so that each coordinate descent step is O(n+p)
- \bullet Restrict minimization to active set of current nonzero coordinates plus those with gradient $>\lambda$

Optimization performance

Synthetic data n = 4000, p = 1000

Optimization performance

Synthetic data n = 4000, p = 1000

Optimization performance

Synthetic data n = 4000, p = 1000

Outline

- 1. Probabilistic forecasting problem
- 2. Fast algorithm for large-scale problems
- 3. Copula transform for non-Gaussian distributions
- 4. Wind power forecasting results

Empirical distribution of wind power

Copulas for non-Gaussian distributions

• Simple way to model arbitrary univariate distributions

 For high-dimensional data we transform the marginals and model the dependence as multivariate Gaussian

Fitting the model with copulas

To fit the model given training examples (x_i, y_i) , i = 1, ..., m

1. Apply the copula transform to the elements of each y_i

$$(\tilde{y_i})_j = \Phi^{-1}(F_j((y_i)_j))$$

2. Estimate Λ , Θ in the sparse Gaussian CRF with (x_i, \tilde{y}_i)

Predicting and sampling with copulas

Given a trained model, for a new input x we can:

1. Compute the most likely scenario

$$\tilde{y} = -\Lambda^{-1}\Theta^T x$$

or, sample from possible scenarios

$$\tilde{y} \sim \mathcal{N}(-\Lambda^{-1}\Theta^T x, \Lambda^{-1})$$

2. Apply inverse copula transform to the elements of \tilde{y}

$$\hat{y}_j = F^{-1}(\Phi(\tilde{y}_j))$$

Outline

- 1. Probabilistic forecasting problem
- 2. Fast algorithm for large-scale problems
- 3. Copula transform for non-Gaussian distributions
- 4. Wind power forecasting results

- Data from competition on Kaggle that ran in October 2012
- Outputs: wind power at 7 wind farms over 48 hours, p=336
- Inputs: past 8 hours of wind power and 10 RBF features over wind forecasts, n=3417
- Heavily optimized features for competition, resulting in a 5th place finish using ordinary least squares

Comparison on mean-squared error

Algorithm	RMSE	
Least squares	0.1560	
Least squares + copula	0.1636	
ARMAX	0.1714	
SGCRF	0.1488	
SGCRF + copula	0.1584	

Significant improvement over least squares, larger than the difference between 5th and 1st place Kaggle finish

Comparison of distributions

Real advantage comes from modeling the accurately modeling the *distribution* over future possible scenarios

Comparison of samples

Sparse Gaussian CRF

Confidence interval coverage

We can use samples to construct confidence intervals and evaluate empirically how often this captures the true outcome

Algorithm	90%	95%	99%
LS	0.1944	0.2500	0.3333
LS + copula	0.2176	0.2639	0.3380
ARMAX	0.2454	0.3102	0.4213
SGCRF	0.4306	0.5370	0.6389
SGCRF + copula	0.8796	0.9259	0.9676

Summary

- Sparse Gaussian CRFs provide an appealing framework for probabilistic forecasting
- Fast algorithm allows us to scale to large examples
- Copulas extend modeling to non-Gaussian distributions
- State-of-the art results in wind power forecasting