Contents

1	Cla	sses	
	1.1	lattice	e – Lattice
		1.1.1	Lattice – lattice
			1.1.1.1 createElement – create element
			1.1.1.2 bilinearForm – bilinear form
			1.1.1.3 isCyclic – Check whether cyclic lattice or not
			1.1.1.4 isIdeal – Check whether ideal lattice or not
		1.1.2	LatticeElement – element of lattice
			1.1.2.1 getLattice – Find lattice belongs to
		1.1.3	LLL(function) - LLL reduction

Chapter 1

Classes

1.1 lattice – Lattice

- Classes
 - Lattice
 - LatticeElement
- Functions
 - LLL

1.1.1 Lattice – lattice

Initialize (Constructor)

Create Lattice object.

Attribute

basis: The basis of self lattice.

quadraticForm: The quadratic form corresponding the inner product.

Methods

1.1.1.1 createElement - create element

```
createElement(self, compo: list) \rightarrow LatticeElement
```

Create the element which has coefficients with given compo.

1.1.1.2 bilinearForm – bilinear form

$$bilinearForm(self, v_1: \textcolor{red}{\textbf{Vector}}, v_2: \textcolor{red}{\textbf{Vector}}) \rightarrow \textit{integer}$$

Return the inner product of v_1 and v_2 with quadraticForm.

1.1.1.3 isCyclic - Check whether cyclic lattice or not

Check whether self lattice is a cyclic lattice or not.

1.1.1.4 isIdeal - Check whether ideal lattice or not

 $\operatorname{signature}(\operatorname{ exttt{self}}) o bool$

Check whether self lattice is an ideal lattice or not.

1.1.2 LatticeElement – element of lattice

Initialize (Constructor)

LatticeElement(lattice: Lattice, compo: list,)
ightarrow LatticeElement

Create LatticeElement object.

Elements of lattices are represented as linear combinations of basis. The class inherits **Matrix**. Then, intances are regarded as $n \times 1$ matrix whose coefficients consist of compo, where n is the dimension of lattice.

lattice is an instance of Lattice object. compo is coeeficients list of basis.

Attribute

lattice: the lattice which includes self

Methods

1.1.2.1 getLattice – Find lattice belongs to

 $\mathtt{getLattice}(\mathtt{self}) o \mathbf{Lattice}$

Obtain the Lattice object corresponding to self.

1.1.3 LLL(function) – LLL reduction

$LLL(\texttt{M:}\ \frac{\textbf{RingSquareMatrix}}{}) \rightarrow \texttt{L:}\ \text{RingSquareMatrix},\ \texttt{T:}\ \text{RingSquareMatrix}$

Return LLL-reduced basis for the given basis M.

The output L is the LLL-reduced basis. T is the transportation matrix from the original basis to the LLL-reduced basis.

Examples

```
>>> M=mat.Matrix(3,3,[1,0,12,0,1,26,0,0,13]);
>>> lat.LLL(M);
([1, 0, 0]+[0, 1, 0]+[0, 0, 13], [1L, 0L, -12L]+[0L, 1L, -26L]+[0L, 0L, 1L])
```