OLS Return Predictability Analysis

In this notebook we will analyze some of the more popular variables used to predict equity market returns.

The packages I will use are mostly the same as before. Regressions are done with statsmodels.api. This is slightly different from statsmodels.formula.api. They each have an OLS regression function, but they are used in different ways. Both are useful in certain situations.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf

The data we're going to read in comes from Amit Goyal's website. It includes a number of variables that are useful in predicting future returns. It also includes the returns themselves.

predictors = pd.read_excel('PredictorData2023.xlsx',sheet_name='Monthly',index_col=[0])
predictors.head()

C:\Users\shaneshe\Anaconda3\lib\site-packages\openpyxl\worksheet\header_footer.py:48: UserWarning: Cannot parse header or fo warn("""Cannot parse header or footer so it will be ignored""")

	price	d12	e12	ret	retx	AAA	BAA	lty	ltr	corpr	 ygap	rdsp	rsvix	gpce	gip	tchi	house	avgcor	shtint	d
yyyymm																				
187101	4.44	0.26	0.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
187102	4.50	0.26	0.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
187103	4.61	0.26	0.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
187104	4.74	0.26	0.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
187105	4.86	0.26	0.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

5 rows \times 56 columns

The data go back a long way! Let's focus on a more modern sample to try to make this more relevant.

predictors = predictors.loc[195001:]
predictors.head()

5 rows × 56 columns

The predictors dataset represents my entire sample. If I am running a backtest, I want to pretend that today is sometime during that sample and perform the data analysis that would have been feasible at that time.

Before we get into a full analysis, let's look at an example. Suppose it is the very end of 2012. I will create a data frame pred2012 that includes this data. NOte that this includes everything from 1950 up until 2012. We could also use a rolling window -- say, the last 10 years. In that case we would select the data from [200212:201212].

pred2012 = predictors.loc[:201212]

Next, I will add a few variables that might be interesting. One is the ratio of earnings to prices. The other is the 12-month MA of inflation:

```
pred2012['ep']
                  = pred2012['e12']/pred2012['price']
pred2012['infl12'] = pred2012['infl'].rolling(12).mean()
```

<ipython-input-7-614a8ee66560>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view pred2012['ep'] = pred2012['e12']/pred2012['price']

<ipython-input-7-614a8ee66560>:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view pred2012['infl12'] = pred2012['infl'].rolling(12).mean()

Now I will just keep the data that I care about, which includes these columns, a few other predictors, and the market return:

```
pred2012 = pred2012[['ep','infl12','lty','ntis','ret']]
```

Predictive regressions are of the form

$$R_{t+1} = \alpha + \beta X_t + \epsilon_{t+1}$$

It is important that the dependent variable is later than the independent variable. We are trying to predict returns with X, so we need to be able to see X before the investment is made.

I can either lag the X variables or lead the returns. Either way is fine. I usually do the former, but this time I'll do the latter, which is accomplished with shift(-1):

```
pred2012['ret']=predictors['ret'].shift(-1)
```

Since shift(-1) will create some missing values, I will use dropna:

pred2012.dropna(inplace=True)

Let's run a regression. I'll use statsmodels.formula.api, which allows you to specify your regression equation. Also, smf.ols automatically adds a constant to the regression, which is usually convenient.

In my regression, I will regress future returns on the current E/P ratio:

results = smf.ols('ret ~ ep + infl12', data=pred2012).fit() print(results.summary())

	_

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		S Adj. R s F-stat 4 Prob (3 Log-Li 5 AIC: 2 BIC: 2	red: A-squared: distic: F-statistic kelihood:):	0.029 0.027 11.17 1.66e-05 1312.8 -2620. -2606.
Covariance Type:	nonrobus	τ 			
COE	f std err	t	P> t	[0.025	0.975]
Intercept -0.002 ep 0.345 infl12 -3.720	3 0.076	-0.605 4.517 -4.093	0.545 0.000 0.000	-0.011 0.195 -5.505	0.006 0.495 -1.936

Intercept	-0.0025	0.004	-0.005	0.545	-0.011	0.000
ер	0.3453	0.076	4.517	0.000	0.195	0.495
infl12	-3.7207	0.909	-4.093	0.000	-5.505	-1.936
==========						
Omnibus:		36.	967 Dur	bin-Watson:		1.916
<pre>Prob(Omnibus):</pre>		0.	000 Jar	que-Bera (JB):	75.296
Skew:		-0.	305 Pro	b(JB):		4.46e-17
Kurtosis:		4.	433 Con	d. No.		598.
=========						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The t-stats indicate strong statistical significance, but the R-square is not super high. The predictability here is not huge.

Maybe we will find more predictability using the other two predictors, lty (long-term bond yield) and ntis (net share issuance).

results = $smf.ols('ret \sim ep + infl12 + lty + ntis', data=pred2012).fit() print(results.summary())$

	OLS Regression Results								
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	Tu ions:	Least Squar e, 29 Oct 20 23:39:	res F-sta 224 Prob 229 Log-L 745 AIC: 740 BIC:	ared: R-squared: tistic: (F-statistic ikelihood:	:):	0.032 0.026 6.018 9.08e-05 1313.7 -2617. -2594.			
========	coef	std err	t	P> t	[0.025	0.975]			
Intercept ep infl12 lty ntis	0.3516 -4.2485 0.0701	0.077 1.041	4.573 -4.082 0.974		0.201 -6.292	0.503 -2.205 0.211			
Omnibus: Prob(Omnibus Skew: Kurtosis:	:):	0.0 -0.3	389 Durbi 300 Jarqu 323 Prob(483 Cond.	e-Bera (JB): JB):	:	1.919 81.257 2.27e-18 686.			

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The same OLS regression can also be run using sm.OLS. (The capitalization in "sm.OLS" is required.) This time, we give the function our dependent variable and our independent variables as separate arguments. In addition, the function does not automatically assume that we want to include a constant. Instead, we have to use the sm.add_constant function to add a constant to our predictors.

```
Y = pred2012['ret']
X = pred2012[['ep','infl12','lty','ntis']]
X.head()
```

→ *		ер	infl12	lty	ntis
	yyyymm				
	195012	0.139147	0.004825	0.0224	0.031358
	195101	0.130964	0.006512	0.0221	0.030045
	195102	0.129969	0.007496	0.0228	0.031120
	195103	0.132243	0.007465	0.0241	0.032687
	195104	0.124535	0.007465	0.0248	0.032092

 $sm.add_constant(X).head()$

₹		const	ер	infl12	lty	ntis
	yyyymm					
	195012	1.0	0.139147	0.004825	0.0224	0.031358
	195101	1.0	0.130964	0.006512	0.0221	0.030045
	195102	1.0	0.129969	0.007496	0.0228	0.031120
	195103	1.0	0.132243	0.007465	0.0241	0.032687
	195104	1.0	0.124535	0.007465	0.0248	0.032092

We can run the regression using sm.OLS as follows:

81.257

686.

2.27e-18

```
results2 = sm.OLS(Y, sm.add_constant(X)).fit()
print(results2.summary())
```

		OLS Regression Results						
Dep. Variab	 le:	ret OLS		R-squared:			0.032	
Model:				Adj.	R-squared:		0.026	
Method: Date: Time:		Least Squares Tue, 29 Oct 2024 23:39:44		F–sta	tistic:		6.018	
				<pre>Prob (F-statistic):</pre>			9.08e-05	
				Log-L	ikelihood:		1313.7	
No. Observa	tions:	•	745	AIC:			-2617.	
Df Residual	s:		740	BIC:			-2594	
Df Model:			4					
Covariance	Type:	nonrob	ust					
	coef	std err		t	P> t	[0.025	0.975]	
const	-0.0049	0.005	-0.9	 922	0.357	-0.015	0.005	
ер	0.3516	0.077	4.	573	0.000	0.201	0.503	
infl12	-4.2485	1.041	-4.	082	0.000	-6.292	-2.205	
lty	0.0701	0.072	0.	974	0.330	-0.071	0.213	
ntis	-0.0581	0.085	-0.	680	0.496	-0.226	0.109	

0.000

-0.323

4.483

Notes

Skew:

Kurtosis:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

Jarque-Bera (JB):

The results turn out to be the same, of course.

Let's now consider briefly how you would run a regression on a subset of the variables in the dataframe, for example those that have a higher correlation with the dependent variable. This is in line with what Hull and Qiao recommend.

We can compute the correlation between Y and each column of X with

```
rho=X.corrwith(Y)
print(rho)
```

```
ep 0.085510
infl12 -0.050415
lty 0.001298
ntis -0.016634
dtype: float64
```

Note that rho is a series:

type(rho)

```
→ pandas.core.series.Series
```

We can therefore use the loc property to subset the rows of rho, for example to find rows that have a high enough absolute correlation. (I'm using .05 here instead of .1 since there aren't any correlations above .1 in absolute value.)

```
rhokeep = rho.loc[np.abs(rho)>.05]
print(rhokeep)
```

```
ep 0.085510
infl12 −0.050415
dtype: float64
```

If we want to know what the indexes are of the high correlation variables, we can see them by typing

rhokeep.index

```
Index(['ep', 'infl12'], dtype='object')
```

It looks like we might want to drop lty and ntis. We can pull out the desired columns out of the X dataframe using the standard method:

Xsub=X[rhokeep.index]
Xsub.head()

With the subset of predictors that we want to keep, we can come up with a slightly more parsimonious regression.

The nice thing about sm.OLS, as opposed to smf.ols, is that we can just give it the entire Xsub dataframe without having to write out the model describing which independent variables we want it to include:

results4 = sm.OLS(Y, sm.add_constant(Xsub)).fit()
print(results4.summary())

OLS Regression Results							
Dep. Variable	 e:	ret	R-squ	ıared:		0.029	
Model:		0LS	Adj.	R-squared:		0.027	
Method:		Least Squares	F-sta	ntistic:		11.17	
Date:	Tu	e, 29 Oct 2024	Prob	(F-statistic):	1.66e-05	
Time:		23:40:53	Log-Likelihood:			1312.8	
No. Observat:	ions:	745	AIC:			-2620.	
Df Residuals:	:	742	BIC:			-2606.	
Df Model:		2	!				
Covariance Ty	/pe:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0025	0.004	-0.605	0.545	-0.011	0.006	
ер	0.3453	0.076	4.517	0.000	0.195	0.495	
infl12	-3.7207	0.909	-4.093	0.000	-5.505	-1.936	
Omnibus:		36.967	 Durbi	in-Watson:		1.916	
Prob(Omnibus)):	0.000	Jarqu	ue-Bera (JB):		75.296	
Skew:		-0.305	Prob(JB):		4.46e-17	
Kurtosis:		4.433	Cond.	No.		598.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Now let's Look at the larger set of predictors. We won't do anything too fancy but will consider a "kitchen sink" approach.

I'll pull the data through 2014 and drop the fields where there are no monthly values.

<ipython-input-72-92fe26c2d59b>:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view pred2014['infl12'] = pred2014['infl1'].rolling(12).mean()

<ipython-input-72-92fe26c2d59b>:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view pred2014['ret']=predictors['ret'].shift(-1)

<ipython-input-72-92fe26c2d59b>:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view pred2014.dropna(inplace=True)

Y=pred2014['ret']
X=pred2014.drop(['retx','ret','price'],axis=1)

Y.head()

This gives us a pretty good r-squared. But we have some problems still. First, this is not a true walk-forward analysis. This is using data all the way through 2014 to estimate the coefficients, and the r-squared applies those coefficients to predictions made at every month along the way. But we don't know the information used to estimate the coefficients yet. A true walk-forward analysis will reestimate the coefficients every month along the way.

results5 = sm.OLS(Y, sm.add_constant(X)).fit()
print(results5.summary())

_	_	÷
	7	
۰	_	_

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.771
Model:	0LS	Adj. R-squared:	0.569
Method:	Least Squares	F-statistic:	3.805
Date:	Wed, 30 Oct 2024	<pre>Prob (F-statistic):</pre>	1.43e-05
Time:	00:08:41	Log-Likelihood:	192.87
No. Observations:	84	AIC:	-305.7
Df Residuals:	44	BIC:	-208.5
Df Model:	39		
Covariance Type:	nonrobust		

======================================			us c 			
	coef	std err	t	P> t	[0.025	0.975]
const	-1.1658	3.516	-0.332	0.742	-8.252	5.920
d12	0.1126	0.054	2.077	0.044	0.003	0.222
e12	-0.0221	0.012	-1.925	0.061	-0.045	0.001
AAA	-3.6836	3.697	-0.996	0.324	-11.134	3.766
BAA	4.6432	3.302	1.406	0.167	-2.012	11.299
lty	-2.9300	3.381	-0.867	0.391	-9.744	3.884
ltr	-0.1457	0.203	-0.718	0.476	-0.555	0.263
corpr	0.1774	0.368	0.482	0.632	-0.565	0.920
tbl	-3.6251	2.801	-1.294	0.202	-9.270	2.020
Rfree	-6.7424	18.897	-0.357	0.723	-44.826	31.341
d/p	-8.8914	41.725	-0.213	0.832	-92.983	75.200
d/y	13.0454	11.088	1.177	0.246	-9.300	35.391
e/p	21.3598	17.831	1.198	0.237	-14.577	57.297
d/e	-1.4401	0.996	-1.446	0.155	-3.447	0.566
b/m	-0.3362	0.321	-1.048	0.300	-0.982	0.310
tms	0.6951	1.657	0.419	0.677	-2.645	4.035
dfy	8.3267	4.764	1.748	0.087	-1.275	17.929
dfr	0.3231	0.463	0.697	0.489	-0.611	1.257
infl	1.2797	2.551	0.502	0.618	-3.861	6.420
ntis	-2.4468	1.619	-1.511	0.138	-5.710	0.816
svar	-9.8715	6.929	-1.425	0.161	-23.836	4.093
csp	56.9846	12.208	4.668	0.000	32.382	81.587
vp	-0.0017	0.001	-1.189	0.241	-0.004	0.001
impvar	4.1172	4.450	0.925	0.360	-4.851	13.086
vrp	-0.0010	0.001	-0.961	0.342	-0.003	0.001
lzrt	0.0651	0.105	0.623	0.537	-0.146	0.276
ogap	1.7825	1.105	1.614	0.114	-0.444	4.009

wtexas	-0.0048	0.054	-0.088	0.930	-0.114	0.104
sntm	0.0232	0.056	0.418	0.678	-0.089	0.135
ndrbl	-0.3293	0.225	-1.460	0.151	-0.784	0.125
skvw	-0.1136	0.160	-0.712	0.480	-0.435	0.208
tail	0.1452	0.510	0.285	0.777	-0.882	1.173
fbm	0.0515	0.129	0.399	0.692	-0.208	0.311
dtoy	-2.4401	0.925	-2.639	0.011	-4.303	-0.577
dtoat	1.7198	1.000	1.720	0.092	-0.296	3.735
ygap	-0.3177	0.868	-0.366	0.716	-2.068	1.433
rdsp	0.0744	0.441	0.169	0.867	-0.814	0.963
rsvix	1.3226	1.328	0.996	0.325	-1.354	3.999
tchi	-0.0062	0.011	-0.547	0.587	-0.029	0.017
avgcor	-0.0923	0.126	-0.735	0.466	-0.345	0.161
shtint	0.0375	0.057	0.664	0.510	-0.076	0.151
disag	-0.0330	0.034	-0.983	0.331	-0.101	0.035
infl12	-7.3446	28.083	-0.262	0.795	-63.943	49.253

Also note that there is strong multicollinarity problems – we have a bunch of redundant regressors in here. That's shown through the correlation of the x-variables with one another.

First let's thin down the list of regressors a little bit more

rho=X.corrwith(Y)
print(rho)

```
→ d12
             -0.107335
    e12
               0.062273
    AAA
               0.023921
    \mathsf{BAA}
              -0.081108
    lty
              0.134196
              -0.067603
    ltr
             -0.114048
    corpr
               0.158413
    Rfree
               0.144447
               0.218231
    d/p
    d/y
               0.205059
    e/p
               0.283114
    d/e
             -0.143479
    b/m
              0.040495
    tms
             -0.121085
    dfy
             -0.183962
             -0.047609
    dfr
    infl
             -0.041661
    ntis
              0.151262
               0.074783
    svar
               0.292732
    csp
               0.218441
    vρ
    impvar
               0.326652
    vrp
               0.230221
    lzrt
              0.064488
    ogap
              -0.090766
    wtexas
             -0.137603
    sntm
              0.305761
    ndrbl
              0.047307
    skvw
              -0.213490
              0.044648
    tail
              0.070604
    fbm
    dtoy
              -0.074653
              0.020276
    dtoat
    ygap
               0.289543
    rdsp
              -0.040399
    rsvix
              0.198180
               0.205758
    tchi
    avgcor
               0.188565
    shtint
               0.017044
              -0.156096
    disag
    infl12
             -0.070773
    dtype: float64
```

rhokeep = rho.loc[np.abs(rho)>.15]
Xsub=X[rhokeep.index]

Xsub.head()

results6 = sm.OLS(Y, sm.add_constant(Xsub)).fit() print(results6.summary())

		OLS Reg	gression Re	sults		
Dep. Varia	 able:		ret R-squ	ared:		0.42
Model:				R-squared:		0.27
Method:		Least Squar		tistic:		2.84
Date:	We	d, 30 Oct 20		(F-statistic	c):	0.0012
Time:		00:26:		ikelihood:		153.9
No. Observ			84 AIC:			-271.
Df Residua	als:		66 BIC:			-228.
Df Model:	_		17			
Covariance	e Type: ========	nonrobu	ıst 			
	coef	std err	t	P> t	[0.025	0.975
const	0.9465	1.288	0.735	0.465	-1.625	3.51
tbl	-2.4692	2.007	-1.230	0.223	-6.477	1.53
d/p	-4.8623	12.920	-0.376	0.708	-30.657	20.93
d/y	-5.5342	9.120	-0.607	0.546	-23.742	12.67
e/p	-0.2822	9.155	-0.031	0.976	-18.561	17.99
dfy	10.6841	5.340	2.001	0.050	0.023	21.34
ntis	-0.0433	1.079	-0.040	0.968	-2.197	2.11
csp	49.6890	11.196	4.438	0.000	27.336	72.04
vp	0.0009	0.001	0.675	0.502	-0.002	0.00
impvar	6.1648	4.424	1.393	0.168	-2.669	14.99
vrp	-1.779e-05	0.001	-0.026	0.979	-0.001	0.00
sntm	0.0350	0.041	0.861	0.392	-0.046	0.11
skvw	-0.2356	0.176	-1.339	0.185	-0.587	0.11
ygap	0.1946	0.289	0.672	0.504	-0.383	0.77
rsvix	-0.4904	0.666	-0.737	0.464	-1.819	0.83
tchi	-0.0087	0.010	-0.897	0.373	-0.028	0.01
avgcor	0.0511	0.103	0.495	0.622	-0.155	0.25
disag	-0.0251	0.026	-0.985	0.328	-0.076	0.02
Omnibus:				n-Watson:		1.89
Prob(Omnil	bus):	0.4	160 Jarqu	e-Bera (JB)	:	0.99
Skew:		-0.2	226 Prob(JB):		0.60
Kurtosis:		3.2	282 Cond.	No.		1.34e+0

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Xsub.corr()

^[2] The condition number is large, 1.34e+05. This might indicate that there are strong multicollinearity or other numerical problems.

	tbl	d/p	d/y	e/p	dfy	ntis	csp	vp	impvar	vrp	sntm	skvw	yga
tbl	1.000000	-0.080460	-0.038278	0.590961	-0.843705	-0.161503	0.755480	-0.241114	0.296421	-0.068618	0.331612	0.097674	0.64143
d/p	-0.080460	1.000000	0.972416	0.733903	-0.102859	0.518388	-0.019255	-0.084143	-0.163573	0.004912	0.590043	-0.173147	0.67111
d/y	-0.038278	0.972416	1.000000	0.739394	-0.145176	0.502968	0.046338	-0.136974	-0.216103	-0.070829	0.630698	-0.081861	0.67719
e/p	0.590961	0.733903	0.739394	1.000000	-0.626858	0.230568	0.461814	-0.240550	0.038001	-0.078795	0.641248	-0.067955	0.98924
dfy	-0.843705	-0.102859	-0.145176	-0.626858	1.000000	0.069354	-0.697828	0.114044	-0.257314	-0.106860	-0.544701	-0.024202	-0.66319
ntis	-0.161503	0.518388	0.502968	0.230568	0.069354	1.000000	-0.058960	0.110921	0.103933	0.149049	0.580857	-0.037260	0.20353
csp	0.755480	-0.019255	0.046338	0.461814	-0.697828	-0.058960	1.000000	-0.397064	0.033457	-0.199712	0.288028	0.239324	0.45239
vp	-0.241114	-0.084143	-0.136974	-0.240550	0.114044	0.110921	-0.397064	1.000000	0.711592	0.825376	0.054688	-0.514328	-0.18629
impvar	0.296421	-0.163573	-0.216103	0.038001	-0.257314	0.103933	0.033457	0.711592	1.000000	0.622557	0.201547	-0.381874	0.11844
vrp	-0.068618	0.004912	-0.070829	-0.078795	-0.106860	0.149049	-0.199712	0.825376	0.622557	1.000000	0.197748	-0.609329	-0.05010
sntm	0.331612	0.590043	0.630698	0.641248	-0.544701	0.580857	0.288028	0.054688	0.201547	0.197748	1.000000	-0.028057	0.64880
skvw	0.097674	-0.173147	-0.081861	-0.067955	-0.024202	-0.037260	0.239324	-0.514328	-0.381874	-0.609329	-0.028057	1.000000	-0.06372
ygap	0.641430	0.671119	0.677199	0.989249	-0.663197	0.203536	0.452391	-0.186297	0.118444	-0.050100	0.648800	-0.063729	1.00000
rsvix	-0.279658	-0.091430	-0.195913	-0.252469	0.218963	0.109682	-0.459774	0.892326	0.724563	0.697528	-0.053685	-0.544357	-0.19247
tchi	0.615944	0.270018	0.340885	0.557505	-0.660371	0.401921	0.631220	-0.248314	0.098662	0.024245	0.768039	0.088223	0.55391
avgcor	-0.534876	0.306679	0.292811	-0.100326	0.329597	0.372811	-0.505751	0.532261	0.217109	0.330822	0.267868	-0.246655	-0.08388
disag	0.116341	-0.830206	-0.830116	-0.553597	0.168047	-0.413365	0.086957	0.071716	0.196712	-0.084189	-0.684709	0.124599	-0.50170