Support de cours Ar	chitecture d	es ordinateurs Dr. ASSIE Brou Ida, UFHB.
		Di. ASSIL BIOU IUA, OFTIB.

Table des matières

tre 1 : Historique de l'ordinateur	3
Qu'est-ce qu'un ordinateur ?	3
Systèmes à puce et mémoires	11
Historique de l'ordinateur	16
tre 2 : Système de numération	18
Système de numération	18
Conversion ou changement de base	20
Représentation des nombres	22
tre 3 : Opérations arithmétiques et logiques	26
Opérations arithmétiques	26
Exercices: Opérations arithmétiques en binaire	28
tre 4 : Algèbre de Boole et Tableau de Karnaugh	30
Algèbre de Boole	30
Méthodes de simplifications	34
Exercice	37
i	Qu'est-ce qu'un ordinateur ? Systèmes à puce et mémoires Historique de l'ordinateur itre 2 : Système de numération Système de numération Conversion ou changement de base Représentation des nombres itre 3 : Opérations arithmétiques et logiques Opérations arithmétiques Exercices : Opérations arithmétiques en binaire itre 4 : Algèbre de Boole et Tableau de Karnaugh Algèbre de Boole Méthodes de simplifications

Chapitre 1 : Historique de l'ordinateur

Aujourd'hui, l'ordinateur s'accapare nos modes de travail, envahit nos maisons, s'intègre dans les objets les plus quotidiens ; et, il est à l'origine de nouveaux modes de sociabilité et de l'informatique. Pourtant, l'ordinateur lui-même demeure pour beaucoup une énigme.

Ce cours se veut en partie, une réponse à ceux qui se demandent quels sont les fondements de l'informatique. L'informatique dont il sera question ici est une discipline scientifique qui, en tant que telle, a ses propres questions, ses propres problèmes, et dispose pour les aborder d'outils et de méthodes spécifiques. De cette discipline, on abordera les fondements théoriques ainsi que quelques réalisations pratiques.

I- Qu'est-ce qu'un ordinateur ?

A la demande d'IBM en 1955, l'ordinateur fut créé. Il se définit comme une instance matérielle, concrète, d'une machine de Turing universelle. Il est donc capable, dans la limite de ses capacités en espace mémoire et en vitesse de calcul, d'exécuter n'importe quel algorithme qu'on lui fournit sous forme de programme, sur n'importe quelle donnée discrète, qu'on lui fournit également. Il se distingue ainsi fondamentalement d'une simple machine à calculer par sa capacité à enchaîner plusieurs opérations en suivant des instructions.

Autrement, l'ordinateur est une machine électronique programmable capable de réaliser des calculs logiques sur des nombres binaires.

Un ordinateur se compose de (02) deux parties :

- Une partie matérielle ou hardware: Le fonctionnement d'un ordinateur est basé sur une architecture matérielle (processeur, support de stockage, interfaces utilisateurs, connexion, . . .) dont le fonctionnement est soumis aux lois de la physique.
- Une partie logicielle ou software : L'ordinateur est capable de remplir des tâches différentes selon les instructions qui lui sont adressées. Ces instructions, rédigées sous forme de programmes par les informaticiens, sont traitées en fin de course par le matériel de l'ordinateur.

• Remarque: La plupart du temps, l'informaticien n'a pas à interagir directement avec le matériel. Pour traiter avec les composants, tous les ordinateurs disposent d'une couche logicielle appelée système d'exploitation. Cette couche est en charge de faire la passerelle entre l'informaticien, ses outils, les programmes qu'il développe et, les composants et leur fonctionnement.

1- Notion de bit

Tout le monde a entendu dire que les ordinateurs « ne fonctionnent qu'avec des 0 et des 1». Qu'est-ce que cela signifie exactement et où, dans l'ordinateur, sont-ils cachés? Pour le comprendre, il faut cette fois partir des composants matériels qui constituent un ordinateur et aborder quelques notions élémentaires de la théorie de l'information.

✓ Définition

L'unité de base de la théorie de l'information est le bit, contraction de binary digit, qui signifie en anglais nombre binaire. Un bit, par définition, est un composant quelconque ne pouvant se trouver que dans deux états possibles, exclusifs l'un de l'autre. Par convention, pour s'abstraire de toutes contingences matérielles, on appelle l'un des deux états possibles d'un tel composant 0, et l'autre 1.

✓ Tableau de conversion

Nom	Symbole	
1 kilooctet	1 ko	2 ¹⁰ =1 024 octets
1 mégaoctet	1 Mo	2 ²⁰ =1 048 576 octets
1 gigaoctet	1 Go	2 ³⁰ =1 073 741 824 octets
1 téraoctet	1 To	2 ⁴⁰ = 1 099 511 627 776 octets
1 pétaoctet	1 Po	2 ⁵⁰ =1 125 899 906 842 624 octets
1 exaoctet	1 Eo	2 ⁶⁰ =1 152 921 504 606 846 976 octets
1 zettaoctet	1 Zo	2 ⁷⁰ =1 180 591 620 717 411 303 424 octets

1 yottaoctet	1 Yo	2 ⁸⁰ =1 208 925 819 614 629 174 706 octets

2- Principaux composants d'un ordinateur

La figure ci-dessous présente l'environnement d'un ordinateur :

Fig1. Environnement d'un ordinateur

Cependant, il est important de distinguer un ordinateur de ses périphériques qui ne sont que des constituants connexes. Le cœur de l'ordinateur se compose d'une unité centrale, d'un microprocesseur, de mémoires de différents types, parmi lesquelles on distingue plusieurs types :

- ➤ la mémoire ROM ou « mémoire morte» (Read Only Memory : mémoire à accès en lecture seule). Elle sert à stocker des informations permanentes (procédures de démarrage...);
- ➤ la mémoire RAM ou « mémoire vive» (Random Access Memory : mémoire à accès aléatoire). Cette mémoire est volatile, c'est-à-dire qu'elle ne conserve les données tant que la machine est sous tension. La mémoire vive des meilleurs ordinateurs actuels atteint lGiga-octet.
- les mémoires secondaires ou auxiliaires : ce sont des dispositifs permettant de stocker des bits de façon stable (qui reste fixée même si on éteint la machine) tout en étant généralement modifiable. On peut inclure parmi elles les disques durs, les disquettes, les bandes magnétiques, les clés USB... La capacité des disques durs actuels se compte en Giga-octets.

Les autres composants sont donc :

- o des périphériques d'entrée, c'est-à-dire permettant à un utilisateur extérieur de fournir des informations (données/programmes) à la machine sous forme numérique : souris, clavier, scanner, appareil photo numérique, caméscope numérique... Ces dispositifs peuvent tous être conçus comme des numériseurs puisqu'ils transforment un comportement en une suite de bits.
- o des périphériques de sortie, c'est-à-dire permettant de visualiser ou de transmettre des données internes à l'extérieur : écran, imprimante, IPod, vidéoprojecteur... A l'inverse des numériseurs, ces dispositifs traduisent des suites de bits en information interprétable par les humains.

3- Architecture d'un ordinateur

L'architecture nous permet de décrire l'organisation interne de l'ordinateur. Si Turing peut être considère comme le père de l'informatique théorique, l'homme à l'origine de la conception des ordinateurs actuels est John Von Neumann.

En 1945, il a écrit les principes de la réalisation d'une machine universelle (ordinateur). Ces principes sont depuis connus sous le nom «d'architecture de Von Neumann», et sont ceux encore utilisés pour la conception des ordinateurs actuels. Le schéma général de l'architecture de Von Neumann est :

Fig2. Architecture de Von Neumann

Les deux innovations majeures introduites par Von Neumann par rapports aux calculateurs sont l'intégration :

- o d'une «unité de commande» qui donne les ordres et synchronise les opérations ;
- d'une mémoire centrale interne permettant de stocker aussi bien des données que des programmes.

Pour bien comprendre comment fonctionne un ordinateur, il nous faut comprendre chaque composant de cette architecture.

✓ La mémoire centrale

La mémoire centrale est l'endroit où toutes les informations et programmes sont stockés pour être utilisées par l'ordinateur. Elle se compose de deux parties :

- la mémoire ROM (Read Only Memory) ou mémoire morte est une mémoire permanente contenant les premières instructions nécessaires au fonctionnement de l'ordinateur. Elle ne se vide pas lorsque le courant est coupé.
- la mémoire RAM (Random Access Memory) ou mémoire vive est une mémoire effaçable mise à la disposition de l'utilisateur et totalement vide lorsque le courant est coupé.

Une particularité fondamentale de la mémoire centrale, dans l'architecture de Von Neumann, c'est qu'elle sert à stocker aussi bien des bits codant des données que des bits codant des traitements, des instructions (nous y reviendrons). Cette capacité à coder avec des 0 ou des 1 aussi bien des données que des traitements, est le fondement de l'informatique.

 Exercice: Faire un travail de recherche sur les différentes technologies des mémoires RAM et ROM.

✓ L'unité de commande

L'unité de commandes ou de contrôle est chargée de commander et de gérer tous les différents constituants de l'ordinateur (contrôler les échanges, gérer l'enchaînement des différentes instructions, etc. ...). Elle est composée de registres (petite unité de mémoire vive d'accès rapide). Un schéma simplifié de l'unité de commandes est donné par la figure suivante :

Fig 3. Schéma général de l'UC

- le registre d'instruction (ou RI) sert à stocker en permanence l'instruction en cours d'exécution (instruction courante»).
- le compteur ordinal (ou CO) sert à stocker en permanence l'adresse où se trouve en mémoire centrale interne, l'instruction en cours d'exécution (instruction courante»).
- le registre adresse contient l'adresse de la prochaine instruction à exécuter.
- le décodeur de fonction associé au registre instruction, analyse l'instruction à exécuter et entreprend les actions appropriées dans l'UAL ou dans la mémoire centrale.

✓ L'horloge

L'horloge est un métronome électronique qui lance des signaux à intervalles de temps réguliers. Ces signaux d'horloge donnent la cadence à laquelle travaille l'ordinateur et permettent à l'ensemble des composants de l'unité centrale de se synchroniser. Plus les signaux sont rapprochés, plus l'ordinateur est rapide.

La fréquence de l'horloge se compte en nombre de signaux par seconde. L'unité de mesure est le Hertz ou le Mega-Hertz MH (avec 1MH = 10⁶ Hertz). Voici l'ordre de grandeur de la vitesse des ordinateurs ces dernières années :

o en 1985 : de 5 à 8 Mega-Hertz

o en 1990 : environ 20 Mega-Hertz

o en 1995 : environ 200 Mega-Hertz

o en 2001 sont sorties les premières puces cadencées à 1 Giga-Hertz (soit 10⁹ Hetz)

✓ L'unité de traitement

L'unité de traitement est chargée d'effectuer les traitements des opérations de types arithmétiques ou booléennes. Elle est composée :

- d'un registre de données qui contient les données transitant entre l'unité de traitement et l'extérieur.
- d'une unité arithmétique et logique qui effectue en binaire les traitements des opérations qui lui sont soumises .
- d'un accumulateur qui contient les opérandes ou les résultats des opérations de l'UAL.

Description de l'unité de traitement

L'UAL est simplement constituée de circuits électroniques câblés une fois pour toute pour transformer des 1 en 0 ou des 0 en 1 (c'est-à-dire en fait pour actionner des interrupteurs faisant passer ou non du courant) de façon à ce que les bits du registre résultat correspondent bien au codage du résultat du calcul qui lui est demandé.

Dans l'exemple qui avec une des 4 opérations arithmétiques de base, nous allons expliquer le fonctionnement de l'UAL dans l'unité de traitement.

Les codes des opérations arithmétiques de base sont indiqués (0000 addition, 0001 multiplication, 0010 soustraction et 0011 division).

On souhaite effectuer une division entre le nombre (donnée 1) stocké dans le mot mémoire d'adresse 9 (code 1001) et celui (donnée 2) stocké à l'adresse 3 (code 0011). Le résultat de cette opération est stocké le résultat dans le mot mémoire d'adresse 1 (code 0001).

Si nous considérons l'instruction suivante, l'UAL va :

- Premièrement, entrer code instr., qui est le code de l'opération à effectuer. Dans notre exemple, nous nous contenterons du code 0011 de la division.
- O Deuxièmement et troisièmement, aux codes notés ad. donnée 1 et ad. donnée 2 qui contiennent l'adresse en mémoire où se trouvent stockées respectivement la donnée 1 et donnée 2 (dans cet ordre) sur lesquelles l'opération arithmétique doit être effectuée :
- Quatrièmement, au code noté ad. Résultat correspondant à l'adresse en mémoire où doit être stocké le résultat de l'opération.

Ainsi, on obtient « 0011 1001 0011 0001 » qui est l'instruction d'effectuer une division (code 0011) entre le nombre stocké dans le mot mémoire d'adresse 9 (code 1001) et celui stocké à l'adresse 3 (code 0011) et de stocker le résultat dans le mot mémoire d'adresse 1 (code 0001).

✓ Les bus

Les flèches reliant les composants entre eux sont des ensembles de fils permettant de transporter plusieurs bits en parallèle. On les appelle des bus.

Dans le schéma de la figure 2, figurent (03) trois bus dont les noms désignent le type de données qu'ils transportent. Le bus «*ordres*» sert à transmettre les demandes d'exécution d'opérations de l'unité de commande vers l'unité de traitement. Le bus «*instructions*» fait transiter les instructions élémentaires des mots mémoire vers le registre d'instruction de l'unité de commande, et le bus «*données/résultats*» fait circuler (dans les deux sens) le contenu des mots mémoires entre la mémoire et les différents registres de l'unité de traitement.

Ces différents bus peuvent contenir un nombre de fils différent. Le nombre de fils du bus de données/résultats détermine la capacité du microprocesseur. Par exemple, un

«microprocesseur 32 bits» (ordre de grandeur des puces actuelles) contient donc un bus données/résultats composé de 32 fils.

II- Systèmes à puce et mémoires

Dans un ordinateur, un système à puce désigné dans la littérature scientifique par le terme anglais « system on a chip » en abrégé SoC, est un système complet embarqué sur une seule puce, c'est-à-dire un circuit intégré, pouvant comprendre de la mémoire, un ou plusieurs microprocesseurs, des périphériques d'interface, ou tout autre composant nécessaire à la réalisation de la fonction attendue. On peut intégrer de la logique, de la mémoire (statique, dynamique, flash, ROM, PROM, EPROM, EEPROM), des dispositifs (capteurs) mécaniques, chimiques ou biologiques ou des circuits radio.

Nous nous intéressons ici aux mémoires, aux disques durs et aux microprocesseurs dans l'ordinateur.

1- Le microprocesseur

Un microprocesseur est un circuit intégré complexe. Il résulte de l'intégration sur une puce de fonctions logiques combinatoires (logiques et/ou arithmétique) et séquentielles (registres, compteur, etc...). Il est capable d'interpréter et d'exécuter les instructions d'un programme.

Le concept de microprocesseur a été créé par la Société Intel spécialisée dans la conception et la fabrication de puces mémoire depuis sa création en 1968. À la demande de deux de ses clients, fabricants de calculatrices et de terminaux, Intel étudia une unité de calcul implémentée sur une seule puce. Ceci donna naissance, en 1971, au premier microprocesseur, le 4004, qui était une unité de calcul 4 bits fonctionnant à 10⁸ kHz. Il résultait de l'intégration d'environ 2300 transistors.

Fig4. Premier microprocesseur, le 4004

• Remarque: Les informations traitées par un microprocesseur sont de différents types (nombres, instructions, images, vidéo, etc...) mais elles sont toujours représentées sous un format binaire. Seul le codage changera suivant les différents types de données à traiter.

2- Le disque dur

Le disque dur est indispensable au fonctionnement de l'ordinateur et se présente sous la forme d'un boîtier en alliage d'aluminium d'environ 1.5 cm d'épaisseur, 10 cm de large et 15 cm de long. Il est généralement fixé dans un berceau placé sur la partie antérieure du châssis de l'ordinateur. Il est relié à la carte mère par un large ruban de connexion et reçoit son alimentation électrique par une fiche à fils. Ce boitier ne doit jamais être ouvert : qu'une simple poussière microscopique pénètre à l'intérieur et c'est la mort du disque dur. Dans le vocabulaire anglo-saxon, il est appelé Hard Disk Drive.

✓ Structure d'un disque dur

Un disque dur est constitué de plusieurs disques rigides (ou plateaux) en aluminium, verre ou céramique. Ces disques sont entraînés en rotation à une vitesse fixe. Les vitesses les plus courantes sont 5400 tr/mn, 7200 tr/mn, 10000 tr/mn et 15000 tr/mn. Des têtes de lecture situées de chaque côté d'un plateau, à quelques nanomètres de sa surface, viennent lire ou écrire les données. Toutes les têtes de tous les plateaux se déplacent en même temps.

Fig5. Le disque dur

Les surfaces des disques sont divisées en pistes concentriques et en secteurs. L'ensemble des données situées sur une même piste de plateaux différents (c'est-à-dire à la verticale les unes des autres) est appelé cylindre. Le nombre de cylindres est égal au nombre de pistes sur une face d'un disque.

Fig6. Schéma d'un cylindre de disque dur

Remarque : Le constructeur fournit généralement les caractéristiques CHS (Cylinders Heads Sectors). La taille d'un secteur étant de 512 octets, on peut alors calculer la capacité du disque dur :

$$CAPACITE (octets) = Nbre_{t\hat{e}tes} \times Nbre_{cylindres} \times Nbre_{secteurs} \times Taille_{Secteurs}$$

3- Les mémoires

Une mémoire est un circuit à semi-conducteur permettant d'enregistrer, de conserver et de restituer des informations (instructions et variables). C'est cette capacité de mémorisation qui explique la polyvalence des systèmes numériques et leur adaptabilité à de nombreuses situations. Les informations peuvent être écrites ou lues.

Il y a écriture lorsqu'on enregistre des informations en mémoire, et lecture lorsqu'on récupère des informations précédemment enregistrées.

✓ Organisation d'une mémoire

Adresse	Case mémoire
7 = 111	
6 = 110	
5 = 101	
4 = 100	
3 = 011	
2 = 010	
1 = 001	
0 = 000	0001 1010
4 = 100 3 = 011 2 = 010 1 = 001	0001 1010

Une mémoire peut être représentée comme une armoire de rangement constituée de différents tiroirs. Chaque tiroir représente une case mémoire qui peut contenir un seul élément (des données). Le nombre de cases mémoires pouvant être très élevé, celles-ci sont identifiées par un numéro. Ce numéro est appelé adresse. Chaque donnée devient alors accessible grâce à son adresse. Avec une adresse de n bits, on peut alors référencer 2ⁿ cases mémoires. Chaque case est remplie par un mot de données (sa longueur m est toujours une puissance de 2).

On peut donc schématiser un circuit mémoire par la figure suivante où l'on peut distinguer :

- Les entrées d'adresses
- Les entrées de données
- Les sorties de données
- Les entrées de commandes :
 - o une entrée de sélection de lecture ou d'écriture (R/W)
 - o une entrée de sélection du circuit (CS)
- Remarque : Une opération de lecture ou d'écriture de la mémoire suit toujours le même cycle :
 - 1. sélection de l'adresse
 - 2. choix de l'opération à effectuer (R/W)
 - 3. sélection de la mémoire (CS = 0)
 - 4. lecture ou écriture la donnée

Les mémoires des tous premiers ordinateurs étaient magnétiques. Les mémoires sont maintenant des composants électroniques à base de transistors. Il existe deux types de mémoires qui se distinguent par leur technique de fabrication : les mémoires dynamiques et les mémoires statiques. Il s'agit dans les deux cas de mémoires volatiles qui nécessitent une alimentation pour conserver leur contenu. Nous pouvons citer :

- EPROM, EEPROM, les mémoires flash, DRAM, SRAM,....

Mémoire dynamique	Mémoire statique
Grande densité d'intégration	Petite densité d'intégration
Bon marché	Chère
Lente	Rapide
Mécanisme de rafraîchissent	

✓ Caractéristiques d'une mémoire

- La capacité : c'est le nombre total de bits que contient la mémoire. Elle s'exprime aussi souvent en octet.
- Le format des données : c'est le nombre de bits que l'on peut mémoriser par case mémoire. On dit aussi que c'est la largeur du mot mémorisable.
- Le temps d'accès : c'est le temps qui s'écoule entre l'instant où a été lancée une opération de lecture/écriture en mémoire et l'instant où la première information est disponible sur le bus de données.
- Le temps de cycle : il représente l'intervalle minimum qui doit séparer deux demandes successives de lecture ou d'écriture.
- Le débit : c'est le nombre maximum d'informations lues ou écrites par seconde.
- La volatilité : elle caractérise la permanence des informations dans la mémoire. L'information stockée est volatile si elle risque d'être altérée par un défaut d'alimentation électrique et non volatile dans le cas contraire.

✓ Notion de hiérarchie mémoire

Une mémoire idéale serait une mémoire de grande capacité, capable de stocker un maximum d'informations et possédant un temps d'accès très faible afin de pouvoir travailler rapidement sur ces informations. Mais il se trouve que les mémoires de grande capacité sont souvent très lente et que les mémoires rapides sont très chères. Et pourtant, la vitesse d'accès à la mémoire conditionne dans une large mesure les performances d'un système. Afin d'obtenir le meilleur compromis coût-performance, on définit donc une hiérarchie mémoire. On utilise des mémoires de faible capacité mais très rapide pour stocker les informations dont le microprocesseur se sert le plus et on utilise des mémoires de capacité importante mais beaucoup plus lente pour stocker les informations dont le microprocesseur se sert le moins. Ainsi, plus on

s'éloigne du microprocesseur et plus la capacité et le temps d'accès des mémoires vont augmenter.

- Les registres sont les éléments de mémoire les plus rapides. Ils sont situés au niveau du processeur et servent au stockage des opérandes et des résultats intermédiaires.
- La mémoire cache est une mémoire rapide de faible capacité destinée à accélérer
 l'accès à la mémoire centrale en stockant les données les plus utilisées.
- La mémoire principale est l'organe principal de rangement des informations. Elle contient les programmes (instructions et données) et est plus lente que les deux mémoires précédentes.
- La mémoire d'appui sert de mémoire intermédiaire entre la mémoire centrale et les mémoires de masse. Elle joue le même rôle que la mémoire cache.
- La mémoire de masse est une mémoire périphérique de grande capacité utilisée pour le stockage permanent ou la sauvegarde des informations. Elle utilise pour cela des supports magnétiques (disque dur, ZIP) ou optiques (CDROM, DVDROM).

III- Historique de l'ordinateur

L'homme a toujours eu besoin de compter, c'est qui est à l'origine de l'ordinateur qui est une machine automatique de traitement de l'information, obéissant à des programmes formés par des suites d'opérations arithmétiques et logiques.

Le **bouclier**: Tout commence avec le bouclier (un type d'abaque). Cette invention, la machine à calculer, très utilisée par les chinois en 500 av. J.-C. était déjà utilisée par les babyloniens en 3000 av. J.-C. Il permettait de réaliser des additions, soustraction, multiplications et divisions.

- La règle à calcul: Les logarithmes, inventés en 1614 par l'écossais John Neper (1550-1617) permirent, en 1620, l'invention de la règle à calcul par William Oughtred (1574-1660). Cette règle permet, de manière analogique, d'effectuer des multiplications, des divisions, et des opérations plus complexes telle que les racines (carrées et cubiques), les calculs trigonométriques... Cette règle a été utilisée jusque dans les années 70 par les scientifiques.
- ➤ L'horloge à calculer : Wilhelm Schickard (1592-1635) inventa la première machine à calculer en 1623. L'horloge à calculer permettait les additions et les soustractions. Elle fut détruite dans un incendie.
- ➤ La **Pascaline**: Blaise Pascal (1623-1662), pour aider son père percepteur des impôts, invente en 1642, la Pascaline, une machine permettant les additions et les soustractions.

L'évolution remarquable que les mathématiques connurent jusqu'à la Seconde Guerre Mondiale ainsi que l'invention du premier tube à vide (la diode) par John Fleming en 1904, permirent de faire naître rapidement l'ordinateur électronique.

- ➤ Le **Z1**: Le Z1, premier ordinateur mécanique programmable, est créé en 1938 par Konrad Zuse (1910-1995). Sa conception fût réalisée dans le salon des parents de Zuse.
- L'ABC: John Atanasoof et Clifford Berry construisirent l'ABC (Atanasoff-Berry Computer), le premier calculateur binaire à lampes. Cet ordinateur est le premier à utiliser l'algèbre de Boole (nous y reviendrons au chapitre 4).
- ➤ L'ENIAC : John William Mauchly (1907-1980) et John Eckert (1919-1995) mirent au point l'ENIAC en 1946, le premier calculateur électronique. Cadencé à 100 kHz, il permettait de faire 330 multiplications par seconde. Il servit à la conception de la bombe H.

Chapitre 2 : Système de numération

La création de la numération est un des faits les plus marquants de l'histoire de l'humanité. Si la plupart des civilisations ont adopté le système décimal, c'est qu'il a toujours été naturel de compter sur ses doigts. L'utilisation des phalanges et des articulations permit également d'améliorer ce simple procédé connu de tous. On utilise les " systèmes de numération" pour compter des objets et les représenter par des nombres.

I- Système de numération

Trois notions interviennent dans un système de numération :

- la base B du système, c'est un nombre entier quelconque.
- les **digits** du système sont des caractères tous différents et représentent chacun un élément de la base; il y en a donc **B** au total.
- le **poids** du digit selon son rang.

Exemple d'écriture d'un nombre A à 4 chiffres dans la base B :

$$(A)_B = a_3 a_2 a_1 a_0$$

$$\forall i, a_i \in B, (A)_B = a_0 B^0 + a_1 B^1 + a_2 B^2 + a_3 B^3;$$

Le poids du digit a_i est Bⁱ.

Généralisation :

Soit un nombre
$$N = (a_{n-1} a_{n-2} a_{n-3} ... a_1 a_0)_b$$

Pour avoir une représentation du nombre N dans la base b, il suffit d'effectuer le calcul suivant :

$$(N)_b = a_{n-1} * b^{n-1} + ... + a_1 * b^1 + a_0 * b^0$$

La formule générale est donnée par l'expression suivante :

$$\begin{array}{l}
\mathbf{n-1} \\
\mathbf{(N)_b} = \sum_{i=0}^{n-1} \mathbf{ai} * \mathbf{b}^i
\end{array}$$

Elle est souvent appelée la forme polynomiale.

1. Système décimal

Dans ce système, la base vaut 10 et il y a 10 digits allant de 0 à 9 appelés chiffre.

Soit le nombre 1234 représenté dans la base 10, on a :

$$(1234)_{10} = 4x10^0 + 3x10^1 + 2x10^2 + 1x10^3$$
$$= 4 + 30 + 200 + 1000$$

La base B est 10 et le poids :

- du premier digit est $10^0 = 1$ (Unité)
- du deuxième digit est 10¹ =10 (Dizaine)
- du troisième digit est10² =100 (Centaine)
- du quatrième digit est $10^3 = 1000$ (Milliers)

2. Système binaire

Dans ce système, la base vaut 2, et il y a donc 2 digits 0 et 1 appelés dans ce cas « BIT » (Binary digIT).

Par exemple, le nombre 1011 exprimé en binaire signifie :

$$(1011)2 = 1x20 + 1x21 + 0x22 + 1x23$$

= 1 + 2 + 8

3. Système octal

Dans ce système, la base vaut 8 et il y a 8 digits allant de 0 à 7.

Par exemple, le nombre 275 exprimé en octal :

$$(275)_8 = 5x8^0 + 7x8^1 + 2x8^2$$
$$= 5 + 56 + 128$$

4. Système hexadécimal

Dans ce système, la base vaut 16 et il y a 16 digits : 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E et F. Les dix premiers digits de 0 à 9 sont les chiffres du système décimal et les digits de 10 à 15 sont les premières lettres majuscules de l'alphabet.

Exemple, le nombre BAC exprimé en hexadécimal :

$$(BAC)_{16} = Cx16^{0} + Ax16^{1} + Bx16^{2}$$
$$= 12 + 10x16 + 11x256$$
$$= 12 + 160 + 2816$$

II- Conversion ou changement de base

1. Conversion octal \rightarrow binaire (binaire \rightarrow octal)

La base octale correspond à la base 8 et on sait aussi que $8 = 2^3$. Pour une conversion **octale** vers une base binaire, il faut faire correspondre à chaque digit d'un nombre exprimé en octal un ensemble de 3 bits du même nombre exprimé en binaire.

Par exemple, la conversion de (763)₈ en base 2 donne :

$$(763)_8 = (111) (110) (011)$$

= $(111110011)_2$

• **Remarque** : Chaque digit de la base octale a été éclaté sur 3 bits.

La conversion inverse de **binaire vers octal**, se fait de la même façon, en regroupant le nombre binaire par des ensembles de 3 bits à partir de la droite.

Par exemple:

$$(0\frac{10111011}{101})_2 = (2735)_8$$

2. Conversion hexadécimal → binaire (binaire → hexadécimal)

La base hexadécimale correspond à la base 16 et on remarque que $16 = 2^4$. On fera donc correspondre à chaque digit d'un nombre hexadécimal, 4 bits du nombre binaire correspondant.

Par exemple:

$$(A28)_{16} = (1010) (0010) (1000)_2$$

= $(101000101000)_2$

La conversion inverse de binaire à hexadécimal, se fait en regroupant le nombre binaire par des ensembles de 4 bits à partir de la droite.

Par exemple:

$$(101110011101001)_2 = (0101) (1100) (1110) (1001)$$

= $(5CE9)_{16}$

■ Remarque : L'expression hexadécimale d'un nombre binaire est très utilisée pour interpréter des résultats fournis par un "microprocesseur".

3. Conversion décimale vers binaire, décimal vers octal ou décimal vers hexadécimal

La conversion de l'expression décimale d'un nombre en son expression binaire, octale ou hexadécimale repose sur la recherche des multiples des puissances successives de la base (2,8 ou 16 selon le cas) que contient ce nombre.

La méthode pratique consiste à effectuer des divisions successives du nombre par la base, puis du quotient obtenu par la base, puis du nouveau quotient par la base, ... jusqu'à ce que le quotient devienne nul. L'expression cherchée est constituée par l'ensemble des restes successifs des divisions, lu à l'envers.

Soit le nombre 229 écrit en base 10 à convertir en binaire. On a :

$$(229)_{10} = (11100101)_2$$

La même méthode sera applicable pour les conversions :

- décimal → octal (des divisions successives par 8)
- décimal → hexadécimal (des divisions successives par 16).

4. Conversion d'une base X vers base Y

Si $X = B^m$ et $Y = B^n$, alors convertir le nombre de la base X (B^m) vers B puis de la base B vers la base Y (B^n). Sinon, convertir de la base X vers la base Y0 puis de la base Y0 vers la base Y1.

5. Tableau de correspondance

A partir des techniques présentées plus haut, nous pouvons établir le tableau de correspondance d'une même quantité dans différentes bases :

Décimal	Binaire	Hexadécimal	Décimal	Binaire	Hexadécimal	
0	0000	0	8	1000	8	
1	0001	1	9	1001	9	
2	0010	2	10	1010	A	
3	0011	3	11	1011	В	
4	0100	4	12	1100	С	
5	0101	5	13	1101	D	
6	0110	6	14	1110	Е	
7	0111	7	15	1111	F	

III- Représentation des nombres

On distingue deux catégories de codes : les "codes numériques" qui permettent seulement le codage des nombres, et les "codes alphanumériques" qui permettent le codage d'une information quelconque (ensembles de lettres, de chiffres et de symboles).

1. Entiers non signés

Tous les bits du nombre représentent un poids binaire. La valeur résultante est donc forcément entière et positive ou nulle.

Sur n bits, on distingue 2ⁿ valeurs distinctes et on peut alors coder les valeurs 0 à 2ⁿ⁻¹.

Poids	The second second		A Company of the			- -		· -
	b7	b6	b5	b4	b3	b2	b1	b0

Exemple: Supposons qu'on code sur 8 bits, le nombre 3. On obtiendra:

$$3 = 0000011$$

2. Entiers signés

La représentation en entier signé est utilisée pour représenter aussi bien les entiers positifs que les entiers négatifs. Il s'agit de réserver un bit (celui de gauche) pour coder le signe.

Le bit le plus à gauche est réquisitionné pour représenter le bit de signe :

0 : nombre positif, 1 : nombre négatif.

Supposons qu'on code sur 8 bits, le nombre 3 et -3. On a :

$$-3 = 10000011$$

Remarque: Ce codage comporte de nombreux inconvénients. D'abord, la présence de deux valeurs pour 0 (00000000) et -0 (10000000). Ensuite, l'addition est compliquée: il faut examiner les signes, et faire une addition ou une soustraction selon les cas. Ce sont ces problèmes de calcul qui ont conduits à la représentation en mode « complément à 2 » sur une taille (nombre de bits) dépendant du processeur utilisé (8 bits, 16 bits, 32 bits, ...).

1. Complément à 1

Le complément à 1 (C_1) est une méthode de représentation de nombres en binaire qui consiste à un échange des bits les 0 deviennent des 1 et les 1 remplacent les 0.

Exemple: Sur un octet, 6 s'écrit en binaire comme suit :

En C₁, si on échange les 0 et les 1, on obtient :

$$6 = 1111 \ 1001 \ c_1$$

2. Complément à 2

Pour avoir la représentation d'un nombre négatif en complément à 2 (C_2), on ajoute 1 au complément à 1.

Exemple : Soit le nombre (-6), la représentation de ce nombre en C₂ donne :

- La valeur absolue de (-6) donne 6.
- En reprenant, l'exemple précédent du C₁ de 6, on a 6=1111 1001 _{C1}.
- En faisant le C_2 , on obtient :

$$(-6) = 1111\ 1001\ _{C1} + 1$$

= 1111\ 1010\ _{C2}

3. Nombres fractionnaires

Soit une base b associée à b symboles $\{S_0, S_1, S_2, ..., S_{b-1}\}$. Un nombre positif N dans un système de base b s'écrit sous la forme polynomiale :

$$N = a_{n-1} \cdot b^{n-1} + a_{n-2} \cdot b^{n-2} + \dots + a_1 \cdot b^1 + a_0 \cdot b^0 + a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + \dots + a_{-m+1} \cdot b^{-m+1} + a_{-m} \cdot b^{-m}$$

La représentation simple de position est la suivante:

$$\left(a_{{\scriptscriptstyle n-1}}a_{{\scriptscriptstyle n-2}}a_{{\scriptscriptstyle 1}}a_{{\scriptscriptstyle 0}},a_{{\scriptscriptstyle -1}}a_{{\scriptscriptstyle -2}}a_{{\scriptscriptstyle -m+1}}a_{{\scriptscriptstyle -m}}\right)$$

 a_i est le chiffre de rang i (a_i appartient à un ensemble de b symboles) a_{n-1} est le chiffre le plus significatif a_{-m} est le chiffre le moins significatif $(a_{n-1}a_{n-2}...a_0)$ partie entière

 $(a_{-1}a_{-2}...a_{-m})$ partie fractionnaire (<1)

✓ Méthode

On multiplie la partie fractionnaire par la base en répétant l'opération sur la partie fractionnaire du produit jusqu'à ce qu'elle soit nulle (ou que la précision voulue soit atteinte).

Pour la partie entière, on procède par divisions comme pour un entier.

Exemple: conversion de $(54,25)_{10}$ en base 2

• Partie entière : $(54)_{10} = (110110)_2$ par divisions.

Partie fractionnaire :

$$0.25 \times 2 = 0.50 \Rightarrow a_{-1} = 0$$

 $0.50 \times 2 = 1.00 \Rightarrow a_{-2} = 1$
 $0.00 \times 2 = 0.00 \Rightarrow a_{-3} = 0$

$$(54,25)_{10} = (110110,01)_2$$

4. Représentation des nombres réels

Le codage en complément à deux sur n bits ne permet de représenter qu'un intervalle de 2^n valeurs. Pour un grand nombre d'applications, cet intervalle de valeurs est trop restreint. La représentation à virgule flottante (*floating-point*) a été introduite pour répondre à ce besoin.

Pour des mots de 32 bits,

- \gt la représentation en *complément à deux* permet de coder un intervalle de 2^{32} valeurs
- \succ tandis que la représentation à *virgule flottante* permet de coder un intervalle d'environ 2^{255} *valeurs*.

La représentation en virgule flottante a été normalisée (norme IEEE 754)

Signe	Exposant	Fraction	
S	e	f	

Nombre de bits	Taille de s	Taille de f	Taille de e	Emin	Emax
32(simple précision)	1	23	8	- 126	127
64 (double précision)	1	52	11	-1022	1023

Représentation des nombres à virgule flottante dans la norme IEEE 754

Dans cette représentation, la valeur d'un nombre sur **32 bits** est donnée par l'expression :

$$(-1)^{s} \times \left(1 + \sum_{i=1}^{23} f_i 2^{-i}\right) \times 2^{e-\mathbf{E}_{ma}}$$

Où, fi correspond au $i^{\text{ème}}$ bit de la fraction f.

Exemple: n = 32 bits

Chapitre 3 : Opérations arithmétiques

Les quatre opérations arithmétiques fondamentales (addition, soustraction, multiplication et division) peuvent évidemment s'effectuer non seulement dans le système décimal mais aussi dans les autres systèmes numériques et en particulier dans le système binaire; les règles du système décimal seront valables pour ces opérations.

I- Opérations arithmétiques

1- Addition en binaire

o Règles d'addition

```
0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 avec retenue de 1
```

$\circ \quad Exemple$

o Applications

• Faire en binaire l'addition des nombres suivants :

$$101001 + 101$$
; $11101010 + 10101$; $1101011 + 10111 + 101$

2- Soustraction en binaire

o Règles de la soustraction

$$0 - 0 = 0$$

 $0 - 1 = 1$ et on retient 1
 $1 - 0 = 1$
 $1 - 1 = 0$

o 1ère Méthode: Complément à 1 et addition

Le complément à 1 d'un nombre binaire est la valeur obtenue en inversant tous les bits de ce nombre (en permutant les 0 par des 1 et inversement). La soustraction consiste à ajouter au nombre binaire (le diminuende) le complément à 1 de l'autre nombre (le diminueur, nombre à soustraire).

Exemple : Soustrayons les nombres 1101011101 et 1011100111
 Le complément à 1 de 1011100111 est 0100011000

o 2^{eme} Méthode : Complément à 2

Le complément à 2 d'un nombre binaire est la valeur obtenue en faisant le complément à 1 + (1).

La soustraction par complément à 2 consiste à complémenter le diminuteur ensuite à additionner les deux nombres (diminuende + diminuteur complémenté à 2).

➤ <u>NB</u>: Les deux nombres doivent avoir le même nombre de bits. S'il y a un bit de dépassement, il faut l'ignorer.

Il est à noter également que lorsque le résultat d'une soustraction est négatif, le nombre résultant est le complément à 2 de la valeur positive.

Le premier bit est le bit de signe. Il est à 0 pour les nombres positifs et à 1 pour les nombres négatifs.

3- Multiplication binaire

o Règles de la multiplication

$$0 * 0 = 0$$

$$0 * 1 = 0$$

$$1 * 0 = 0$$

➤ <u>NB</u>: L'opération s'effectue comme en base 10

o Exemple:

4- Division binaire

La division s'effectue de la même manière qu'en base 10.

II- Exercices : Opérations arithmétiques en binaire

a- Effectuer les additions suivantes :

b- Effectuer les soustractions suivantes:

c- Multiplier les nombres suivants par 2, 6, 8 :

00001100, 00010101, 10101000

d- Diviser les nombres suivants par 2,4, 8 :

11000000, 01010000, 11001100

Chapitre 4 : Algèbre de Boole et Tableau de Karnaugh

Les machines numériques sont constituées d'un ensemble de circuits électroniques.

Chaque circuit fournit une fonction logique bien déterminée (addition, comparaison,...). Pour

concevoir et réaliser ce circuit on doit avoir un modèle mathématique de la fonction réalisée

par ce circuit. Ce modèle doit prendre en considération le système binaire et le modèle

mathématique utilisé est celui de Boole.

I-Algèbre de Boole

L'algèbre de Boole ou calcul booléen est un ensemble de règles utilisées pour simplifier

les expressions logiques sans pour autant changer leur fonctionnalité. Elle fut lancée en 1854

par le mathématicien britannique George Boole. Elle utilise des techniques algébriques pour

traiter les expressions à deux, trois ou quatre variables du calcul.

Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans

la conception des circuits électroniques.

1. Variable logique (booléenne)

Une variable logique est une variable qui peut prendre soit la valeur 0 ou 1. Généralement,

elle est exprimée par un seul caractère alphabétique en majuscule (A, B, S, ...).

Exemple: Une lampe : allumée L = 1, éteinte L = 0.

2. Fonction logique

C'est une fonction qui relie N variables logiques avec un ensemble d'opérateurs logiques

de base. Dans l'Algèbre de Boole, il existe trois opérateurs de base :

NON, ET, OU.

La valeur d'une fonction logique est égale à 1 ou 0 selon les valeurs des variables logiques.

Si une fonction logique possède N variables logiques, on a :

30

- 2ⁿ combinaisons
- la fonction possède 2 ⁿ valeurs.
- les 2ⁿ combinaisons sont représentées dans une table qui s'appelle table de vérité.

• Exemple: Fonction logique
$$F(A,B,C) = \overline{A.B.C} + \overline{A.B.C} + \overline{A.B.C} + A.B.C$$

La fonction possède 3 variables, on a 2 ³ combinaisons. Ce qui donne :

$$F(0,0,0) = \overline{0.0.0} + \overline{0.0.0} + 0.\overline{0.0} + 0.0.0 = 0$$

$$F(0,0,1) = \overline{0.0.1} + \overline{0.0.1} + 0.\overline{0.1} + 0.0.1 = 1$$

$$F(0,1,0) = \overline{0.1.0} + \overline{0.1.0} + 0.\overline{1.0} + 0.1.0 = 0$$

$$F(0,1,1) = \overline{0.1.1} + \overline{0.1.1} + 0.\overline{1.1} + 0.1.1 = 1$$

$$F(1,0,0) = \overline{1.0.0} + \overline{1.0.0} + 1.\overline{0.0} + 1.0.0 = 0$$

$$F(1,0,1) = \overline{1.0.1} + \overline{1.0.1} + 1.\overline{0.1} + 1.0.1 = 1$$

$$F(1,1,0) = \overline{1.1.0} + \overline{1.1.0} + 1.\overline{1.0} + 1.1.0 = 0$$

$$F(1,1,1) = \overline{1.1.1} + \overline{1.1.1} + 1.\overline{1.1} + 1.1.1 = 1$$

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Table de vérité

3. Opérateurs logiques de base

 NON (négation) est un opérateur unaire (une seule variable) qui a pour rôle d'inverser la valeur d'une variable.

• ET (AND) est un opérateur binaire (deux variables), a pour rôle de réaliser le produit logique entre deux variables booléennes.

	Le ET	est	défini	par	٠F	(A,B))= A		Е
--	-------	-----	--------	-----	----	-------	------	--	---

Α	В	A.B 0 0	
0	0		
0	1		
81	0	0	
1	1	1	

• OU (OR) est un opérateur binaire (deux variables), a pour rôle de réaliser la somme logique entre deux variables logiques.

Le \overline{OU} est défini par F(A,B)=A+B (il ne faut pas confondre avec la somme arithmétique)

Α	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

• Remarque:

- Dans la définition des opérateurs ET, OU, nous avons juste donné la définition de base avec deux variables logiques.
- L'opérateur ET peut réaliser le produit de plusieurs variables logique.
 L'opérateur OU peut aussi réaliser la somme logique de plusieurs variables logiques.
- Dans une expression on peut aussi utiliser les parenthèses.
- Pour évaluer une expression logique (fonction logique), il faut :
 - o commencer par évaluer les sous expressions entre les parenthèses.
 - Puis le complément (NON), ensuite le produit logique (ET) et enfin la somme logique (OU).

4. Lois fondamentales de l'Algèbre de Boole

$$(AB).C = A.(B.C) = A.B.C$$
 Associativité $(A+B)+C = A+(B+C) = A+B+C$ Associativité $A.B = B.A$ Commutativité $A+B=B+A$ Commutativité $A+A=A$ Idempotence $A+A=A$ Idempotence $A+A=A$ Elément neutre $A+0=A$ Elément absorbant $A+1=1$ Elément absorbant

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$
 Distributivité du ET sur le OU
 $A + (B \cdot C) = (A+B) \cdot (A+C)$ Distributivité du OU sur le ET

$$\frac{\overline{A}}{A} = A$$

$$\frac{\overline{A}}{A} + A = 1$$

·Autres relations utiles

$$A + (A \cdot B) = A$$
 $A \cdot (A + B) = A$
 $(A + B) \cdot (A + \overline{B}) = A$
 $A + \overline{A} \cdot B = A + B$

Théorème de DE-MORGANE

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

OU exclusif (XOR)

$$A \oplus B = \overline{A.B} + A.\overline{B}$$

5. Portes logiques

Une porte logique est un circuit électronique élémentaire qui permet de réaliser la fonction d'un opérateur logique de base. Différentes normes ont été définies pour représenter les portes logiques.

Symboles des portes logiques.

Schéma d'un circuit logique

C'est la traduction de la fonction logique en un schéma électronique. Le principe consiste à remplacer chaque opérateur logique par la porte logique qui lui correspond.

Les fonctions et les circuits logiques sont souvent définis à partir d'expressions algébriques. Afin de réduire la complexité de ces circuits et fonctions, il est important de les simplifier. Plusieurs méthodes existent pour la simplification :

- la méthode algébrique,
- les méthodes graphiques (Ex : table de Karnaugh)

II- Méthodes de simplifications

1. Méthode algébrique

Le principe consiste à appliquer les règles de l'algèbre de Boole afin d'éliminer des variables ou des termes.

O Exemple:
$$ABC + AB\overline{C} + A\overline{B}CD = AB(C + \overline{C}) + A\overline{B}CD$$
$$= AB + A\overline{B}CD$$
$$= A(B + \overline{B}(CD))$$
$$= A(B + CD)$$
$$= AB + ACD$$

o Exercice:

1- Démontrer la proposition suivante :

$$A.B+B.C+A.C+A.\overline{B.C}+\overline{A.B.C}+\overline{A.B.C}+\overline{A.B.C}=A+B+C$$

```
= AC+ ABC+ AB+ABC+BC+ABC

= A(C+BC) +B(A+AC)+ C(B+AB)

=A(C+B)+ B(A+C)+ C(B+A)

=AC+AB+BA+BC+CB+CA

=AC+ CA+AB+BA+BC+CB

= C(A+A) + A(B+B) + B(C+C)

= C+A+B
```

2- Donner la forme simplifiée de la fonction suivante :

$$F(A, B, C, D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

=ABCD+ ABCD+ ABCD+ ABCD+ ABCD

= ABCD+ ABCD+ ABCD+ ABC(D+ D)

= ABCD+ ABCD+ ABCD+ ABC

= ABCD+ ABC+ ABCD+ ABCD

=BC(AD+A) + ABCD+ ABCD

=BC(D+A)+ ABCD+ ABCD

=BCD+ABC+ ABCD+ ABCD

= BCD+ ABCD+ABC+ ABCD

=CD(B+AB)+AB(C+CD)

=CD(B+A)+AB(C+D)

Ou bien, on a:

=ABCD+ ABCD+ ABCD+ ABCD+ ABCD

=CD(AB+AB)+ AB(CD+CD)+ ABCD

 $= CD(A \oplus B) + AB(C \oplus D) + ABCD$

2. Simplification par la table de Karnaugh

1- Les termes adjacents

Soit l'expression suivante :

$$A.B+A.\overline{B}$$

Les deux termes possèdent les mêmes variables, seul l'état de la variable B qui change. Si on applique les règles de simplification, on obtient :

$$AB + A\overline{B} = A(B + \overline{B}) = A$$

Ces termes sont alors dites adjacents.

2- Description de la table de Karnaugh

La méthode de Karnaugh se base sur la règle précédente des termes adjacents. Elle consiste à mettre en évidence par une méthode graphique (un tableau) tous les termes qui sont adjacents.

La méthode peut s'appliquer aux fonctions logiques de 2, 3, 4, 5 et 6 variables.

Un tableau de Karnaugh comportent 2ⁿ cases (N est le nombre de variables).

o Exemple de représentation graphique

3- Méthode de simplification

L'idée de base est d'essayer de regrouper les cases adjacentes qui comportent des 1, c'està-dire rassembler les termes adjacents.

Essayer de faire des regroupements avec le maximum de cases (16, 8, 4 ou 2).

o Application:

Soit la fonction à 3 variables suivante à simplifier : $AB\overline{C} + ABC = AB$

Puisqu'il existe encore des cases qui sont en dehors d'un regroupement, on refait la même procédure pour former des regroupements.

Il est important de rappeler qu'une case peut appartenir à plusieurs regroupements.

F(A,B,C) = AB + AC + BC

Exemple 1:3 variables

Exemple 2: 4 variables

Exemple 3: 4 variables

 $F(A,B,C,D) = A\overline{B} + \overline{BD} + B\overline{C}D$

III- Exercice

Trouver la forme simplifiée des fonctions à partir des deux tableaux?

CD				40
00	1	01	11	10 1
01	9 11 13			8 7 6
11	9 3	k 10		
10	1	1	1	1