Constructive Torelli Theorem for Regular Matroids

Alec Elhindi

University of Sydney

Joint Meeting of the New Zealand, Australian and American Mathematical Societies – 11th December 2024

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis is then a basis of the lattice of integer flows.

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis is then a basis of the lattice of integer flows.

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis is then a basis of the lattice of integer flows.

Graphs	Laplacians	Watkins (1990, 1994)
2-isomorphism	unimodular congruence	Watkins (1990, 1994)

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis is then a basis of the lattice of integer flows.

Graphs 2-isomorphism	Laplacians unimodular congruence	Watkins (1990, 1994)
Graphs 2-isomorphism	Albanese torus isomorphism	Caporaso and Viviani (2010)
Compact tropical curves tropical equivalence	Jacobian varieties isomorphism	

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis is then a basis of the lattice of integer flows.

Graphs 2-isomorphism	Laplacians unimodular congruence	Watkins (1990, 1994)
Graphs 2-isomorphism	Albanese torus isomorphism	Caporaso and Viviani (2010)
Compact tropical curves tropical equivalence	Jacobian varieties isomorphism	, ,
Regular matroids/coloops isomorphism	Lattice of integer flows isomorphism	Su and Wagner (2010)

$$\label{eq:c1} \textit{C}_1 = +\textit{e}_1 + \textit{e}_2 - \textit{e}_5, \quad \textit{C}_2 = +\textit{e}_3 + \textit{e}_4 + \textit{e}_5, \quad \textit{C}_1 + \textit{C}_2 = +\textit{e}_1 + \textit{e}_2 + \textit{e}_3 + \textit{e}_4.$$

The Lattice of Integer Flows – Regular Matroids

Given a regular matroid ${\mathcal M}$ with representing matrix M, the lattice of integer flows is

$$\mathcal{F}(\mathcal{M}) = \ker(M) \cap \mathbb{Z}^E$$
.

This coincides for the signed incidence matrix of a graph – the natural representing matrix for a graphical matroid.

Theorem: [Su–Wagner] Let \mathcal{M} and \mathcal{N} be matroids of cogirth ≥ 2 . Then $\mathcal{F}(\mathcal{M}) \cong \mathcal{F}(\mathcal{N})$ if and only if $\mathcal{M} \cong \mathcal{N}$.

Theorem: [Su–Wagner] Let \mathcal{M} and \mathcal{N} be matroids of cogirth ≥ 2 . Then $\mathcal{F}(\mathcal{M}) \cong \mathcal{F}(\mathcal{N})$ if and only if $\mathcal{M} \cong \mathcal{N}$.

We provide a constructive algorithm for recovering the matroid – a *constructive Torelli theorem*. The first step is the following strengthening of the discrete Torelli theorem for matroids.

Theorem: [Su–Wagner] Let \mathcal{M} and \mathcal{N} be matroids of cogirth ≥ 2 . Then $\mathcal{F}(\mathcal{M}) \cong \mathcal{F}(\mathcal{N})$ if and only if $\mathcal{M} \cong \mathcal{N}$.

We provide a constructive algorithm for recovering the matroid – a *constructive Torelli theorem*. The first step is the following strengthening of the discrete Torelli theorem for matroids.

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Theorem: [Su–Wagner] Let \mathcal{M} and \mathcal{N} be matroids of cogirth ≥ 2 . Then $\mathcal{F}(\mathcal{M}) \cong \mathcal{F}(\mathcal{N})$ if and only if $\mathcal{M} \cong \mathcal{N}$.

We provide a constructive algorithm for recovering the matroid – a *constructive Torelli theorem*. The first step is the following strengthening of the discrete Torelli theorem for matroids.

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Assume all matroids are of cogirth ≥ 2 . Note that a matroid has cogirth ≥ 2 if and only if it can be oriented totally cyclically.

Recovering $\mathcal M$ comes down to: detecting which elements in $\mathcal F(\mathcal M)$ are circuit elements, determining the base set of $\mathcal M$, and determining which elements are in each circuit.

Recovering \mathcal{M} comes down to: detecting which elements in $\mathcal{F}(\mathcal{M})$ are circuit elements, determining the base set of \mathcal{M} , and determining which elements are in each circuit

The key to the recovery is through analysing a polytope in the lattice, called the Voronoi cell.

Recovering \mathcal{M} comes down to: detecting which elements in $\mathcal{F}(\mathcal{M})$ are circuit elements, determining the base set of \mathcal{M} , and determining which elements are in each circuit

The key to the recovery is through analysing a polytope in the lattice, called the Voronoi cell.

The **Voronoi cell** $\mathcal{V}(\Lambda)$ of a lattice Λ is the collection of points in space (i.e. in $\Lambda \otimes \mathbb{R}$) closer to the origin than any other lattice point in Λ .

$$\label{eq:c1} \textit{C}_1 = +\textit{e}_1 + \textit{e}_2 - \textit{e}_5, \quad \textit{C}_2 = +\textit{e}_3 + \textit{e}_4 + \textit{e}_5, \quad \textit{C}_1 + \textit{C}_2 = +\textit{e}_1 + \textit{e}_2 + \textit{e}_3 + \textit{e}_4.$$

Faces of the Voronoi cell form a poset $\mathcal{FP}(\mathcal{F}(\mathcal{M}))$ with inclusion given by dimension.

Orientations on $\mathcal M$ and its submatroids which are totally cyclic form a poset $\mathcal{SC}(\mathcal M)$ where $(\mathcal N',\omega_{\mathcal N'})\leq (\mathcal N,\omega_{\mathcal N})$ if and only if $\mathcal N$ is a submatroid of $\mathcal N'$ and $\omega_{\mathcal N'}$ restricted to $\mathcal N$ is $\omega_{\mathcal N}$.

Faces of the Voronoi cell form a poset $\mathcal{FP}(\mathcal{F}(\mathcal{M}))$ with inclusion given by dimension.

Orientations on \mathcal{M} and its submatroids which are totally cyclic form a poset $\mathcal{SC}(\mathcal{M})$ where $(\mathcal{N}',\omega_{\mathcal{N}'}) \leq (\mathcal{N},\omega_{\mathcal{N}})$ if and only if \mathcal{N} is a submatroid of \mathcal{N}' and $\omega_{\mathcal{N}'}$ restricted to \mathcal{N} is $\omega_{\mathcal{N}}$.

Theorem: [Amini-Dancso-Lim] For a finite regular matroid \mathcal{M} , $\mathcal{FP}(\mathcal{F}(\mathcal{M}))\cong\mathcal{SC}(\mathcal{M})$ as graded posets.

Example: Codimension one faces of the Voronoi cell correspond to circuits in \mathcal{M} . Edges of the Voronoi cell correspond to maximal totally cyclical submatroids of \mathcal{M} .

Example: Codimension one faces of the Voronoi cell correspond to circuits in \mathcal{M} . Edges of the Voronoi cell correspond to maximal totally cyclical submatroids of \mathcal{M} .

The parallel faces of the Voronoi cell correspond to the different totally cyclic orientations of the same underlying matroid, so denote the **equivalence class** of faces that are parallel to F by [F].

For a subset $A \subseteq E(\mathcal{M})$ we denote $[F_A]$ to be the face(s) which corresponds to $\mathcal{M} \setminus A$ (provided it is totally cyclically orientable).

For all $e \in E(\mathcal{M})$, the submatroid $\mathcal{M} \setminus \{e\}$ has cogirth ≥ 2 , so can be totally cyclically oriented.

For all $e \in E(\mathcal{M})$, the submatroid $\mathcal{M} \setminus \{e\}$ has cogirth ≥ 2 , so can be totally cyclically oriented.

$$\bullet \ e \in E(\mathcal{M}) \stackrel{1:1}{\longleftrightarrow} [F_{\{e\}}] \text{ edges,}$$

For all $e \in E(\mathcal{M})$, the submatroid $\mathcal{M} \setminus \{e\}$ has cogirth ≥ 2 , so can be totally cyclically oriented.

For all $e \in E(\mathcal{M})$, the submatroid $\mathcal{M} \setminus \{e\}$ has cogirth ≥ 2 , so can be totally cyclically oriented.

- $C \in \mathcal{C}(\mathcal{M}) \stackrel{\text{1:1}}{\longleftrightarrow} [F_C]$ codimension one faces,

For all $e \in E(\mathcal{M})$, the submatroid $\mathcal{M} \setminus \{e\}$ has cogirth ≥ 2 , so can be totally cyclically oriented.

Theorem: [Dancso–E.–Garoufalidis] For matroids of cogirth ≥ 3 :

- $lack e \in E(\mathcal{M}) \stackrel{1:1}{\longleftrightarrow} [F_{\{e\}}]$ edges,

For general matroids of cogirth ≥ 2 steps (2) and (3) remain the same, but step (1) requires much more work, as maximal totally cyclic submatroids may be of the form $\mathcal{M}\setminus S$ for (possibly different sized) |S|>1.

They turn out to be what we call **2-cut blocks**. These are the equivalence classes of the equivalence relation $e \sim f$ if and only if e = f or $\{e, f\}$ is a cocircuit.

They turn out to be what we call **2-cut blocks**. These are the equivalence classes of the equivalence relation $e \sim f$ if and only if e = f or $\{e, f\}$ is a cocircuit.

Proposition: [Dancso–E.–Garoufalidis] Given a circuit C and a 2-cut block S, either $S \cap C = \emptyset$ or $S \subseteq C$.

Proposition: [Dancso–E.–Garoufalidis] Given a circuit C and a 2-cut block S, either $S \cap C = \emptyset$ or $S \subseteq C$.

So we can write a circuit as a disjoint union of 2-cut blocks.

Proposition: [Dancso–E.–Garoufalidis] Given a circuit C and a 2-cut block S, either $S \cap C = \emptyset$ or $S \subseteq C$.

So we can write a circuit as a disjoint union of 2-cut blocks.

Proposition: [Dancso–E.–Garoufalidis] $\mathcal{M} \setminus S$ is a maximal submatroid of \mathcal{M} with cogirth ≥ 2 if and only if S is a 2-cut block.

Proposition: [Dancso–E.–Garoufalidis] Given a circuit C and a 2-cut block S, either $S \cap C = \emptyset$ or $S \subseteq C$.

So we can write a circuit as a disjoint union of 2-cut blocks.

Proposition: [Dancso–E.–Garoufalidis] $\mathcal{M} \setminus S$ is a maximal submatroid of \mathcal{M} with cogirth ≥ 2 if and only if S is a 2-cut block.

For a parallel class of edges $[\epsilon]$, let $S_{[\epsilon]}$ be the corresponding 2-cut block. Then with Amini's theorem we can write,

$$C=\bigcup_{[\epsilon]\not\in [F_C]}S_{[\epsilon]}.$$

Proposition: [Dancso–E.–Garoufalidis] Given a circuit C and a 2-cut block S, either $S \cap C = \emptyset$ or $S \subseteq C$.

So we can write a circuit as a disjoint union of 2-cut blocks.

Proposition: [Dancso–E.–Garoufalidis] $\mathcal{M} \setminus S$ is a maximal submatroid of \mathcal{M} with cogirth ≥ 2 if and only if S is a 2-cut block.

For a parallel class of edges $[\epsilon]$, let $S_{[\epsilon]}$ be the corresponding 2-cut block. Then with Amini's theorem we can write,

$$C=\bigcup_{[\epsilon]\not\in [F_C]}S_{[\epsilon]}.$$

We need to detect the sizes of $S_{[\epsilon]}$ from the sizes of circuits. This can be done using the pairwise inner product of circuit basis elements, but we want to choose a clever basis.

Compatibly Oriented Bases

For any circuits C_i , C_j and their corresponding faces F_{C_i} , F_{C_j} , there are three possible options:

Compatibly Oriented Bases

For any circuits C_i , C_j and their corresponding faces F_{C_i} , F_{C_j} , there are three possible options:

① The orientations of C_i and C_j are compatible. This is the case if and only if F_{C_i} and F_{C_i} intersect.

Compatibly Oriented Bases

For any circuits C_i , C_j and their corresponding faces F_{C_i} , F_{C_j} , there are three possible options:

- **1** The orientations of C_i and C_j are compatible. This is the case if and only if F_{C_i} and F_{C_i} intersect.
- ② The orientations of C_i and $-C_j$ are compatible. This is the case if and only if F_{C_i} and F_{-C_i} intersect.

Compatibly Oriented Bases

For any circuits C_i , C_j and their corresponding faces F_{C_i} , F_{C_j} , there are three possible options:

- **①** The orientations of C_i and C_j are compatible. This is the case if and only if F_{C_i} and F_{C_i} intersect.
- **②** The orientations of C_i and $-C_j$ are compatible. This is the case if and only if F_{C_i} and F_{-C_i} intersect.
- **②** Neither of the above is true, that is, C_i and C_j cannot be compatibly oriented. This is the case if and only if the faces $\{F_{C_i}, F_{C_j}, F_{-C_i}, F_{-C_j}\}$ are pairwise disjoint.

Compatibly Oriented Bases

For any circuits C_i , C_j and their corresponding faces F_{C_i} , F_{C_j} , there are three possible options:

- **①** The orientations of C_i and C_j are compatible. This is the case if and only if F_{C_i} and F_{C_i} intersect.
- **②** The orientations of C_i and $-C_j$ are compatible. This is the case if and only if F_{C_i} and F_{-C_i} intersect.
- **1** Neither of the above is true, that is, C_i and C_j cannot be compatibly oriented. This is the case if and only if the faces $\{F_{C_i}, F_{C_j}, F_{-C_i}, F_{-C_j}\}$ are pairwise disjoint.

Amini's theorem tells us that vertices correspond to totally cyclic orientations. Take any vertex, then the codimension one faces that intersect at that vertex form a compatibly oriented basis.

Theorem: [Dancso-E.-Garoufalidis] For matroids of cogirth 2:

Theorem: [Dancso–E.–Garoufalidis] For matroids of cogirth 2:

① Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.

Theorem: [Dancso-E.-Garoufalidis] For matroids of cogirth 2:

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **③** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in $[F_C]$ for each $C \in B$.

Theorem: [Dancso-E.-Garoufalidis] For matroids of cogirth 2:

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- ② Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in $[F_C]$ for each $C \in B$.
- **3** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in [F_{C_i}]} |S_{[\epsilon]}| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\epsilon]\not\in [F_{C_i}], [F_{C_j}]} \left| S_{[\epsilon]} \right| = |\langle C_i, C_j \rangle|.$$

Theorem: [Dancso–E.–Garoufalidis] For matroids of cogirth 2:

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **②** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in $[F_C]$ for each $C \in \mathcal{B}$.
- **3** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in [F_{C_i}]} \left| S_{[\epsilon]} \right| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\epsilon] \not \in [F_{C_i}], [F_{C_i}]} \left| S_{[\epsilon]} \right| = |\langle C_i, C_j \rangle|.$$

• Find the unique positive integer solution $\{|S_{[\epsilon]}|\}$.

Theorem: [Dancso-E.-Garoufalidis] For matroids of cogirth 2:

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **②** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in $[F_C]$ for each $C \in \mathcal{B}$.
- **③** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon]\not\in [F_{C_i}]} \left| S_{[\epsilon]} \right| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\epsilon] \not \in [F_{C_i}], [F_{C_j}]} \left| S_{[\epsilon]} \right| = |\langle C_i, C_j \rangle|.$$

- Find the unique positive integer solution $\{|S_{[\epsilon]}|\}$.
- **3** $E(\mathcal{M})$ is the disjoint union of the sets $\{S_{[\epsilon]}\}$.

Theorem: [Dancso–E.–Garoufalidis] For matroids of cogirth 2:

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- ② Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in $[F_C]$ for each $C \in B$.
- **§** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in [F_{C_i}]} \left| S_{[\epsilon]} \right| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\epsilon] \not\in [F_{C_i}], [F_{C_j}]} \left| S_{[\epsilon]} \right| = |\langle C_i, C_j \rangle|.$$

- Find the unique positive integer solution $\{|S_{[\epsilon]}|\}$.
- **3** $E(\mathcal{M})$ is the disjoint union of the sets $\{S_{[\epsilon]}\}$.
- **3** Again, the element $e \in S_{[\epsilon]}$ belongs to a circuit C if and only if no member of the corresponding edge parallel class $[\epsilon]$ belongs to the face $[F_C]$.

Proposition: [Dancso–E.–Garoufalidis] There is a unique positive integer solution $\{|S_{lel}|\}$ to the system of equations in (3).

Proposition: [Dancso–E.–Garoufalidis] There is a unique positive integer solution $\{|S_{[\epsilon]}|\}$ to the system of equations in (3).

Proof:

• There is some solution given by the (oriented) matroid \mathcal{M} which exists by definition, call this $\{m_{[\epsilon]}\}$.

Proposition: [Dancso–E.–Garoufalidis] There is a unique positive integer solution $\{|S_{[\epsilon]}|\}$ to the system of equations in (3).

- There is some solution given by the (oriented) matroid \mathcal{M} which exists by definition, call this $\{m_{[\epsilon]}\}$.
- Suppose there exists another (oriented) matroid $\mathcal N$ with solution $\{n_{[\epsilon]}\}$.

Proposition: [Dancso–E.–Garoufalidis] There is a unique positive integer solution $\{|S_{[\epsilon]}|\}$ to the system of equations in (3).

- There is some solution given by the (oriented) matroid \mathcal{M} which exists by definition, call this $\{m_{[\epsilon]}\}$.
- ullet Suppose there exists another (oriented) matroid ${\mathcal N}$ with solution $\{n_{[\epsilon]}\}$.
- Contractions and subdivisions in a 2-cut block do not change circuits.

Proposition: [Dancso–E.–Garoufalidis] There is a unique positive integer solution $\{|S_{[\epsilon]}|\}$ to the system of equations in (3).

- There is some solution given by the (oriented) matroid M which exists by definition, call this {m_[e]}.
- Suppose there exists another (oriented) matroid $\mathcal N$ with solution $\{n_{[\epsilon]}\}$.
- Contractions and subdivisions in a 2-cut block do not change circuits.
- ullet Apply contractions and subdivisions to ${\mathcal M}$ until these integer solutions match.

Proposition: [Dancso–E.–Garoufalidis] There is a unique positive integer solution $\{|S_{[\epsilon]}|\}$ to the system of equations in (3).

- There is some solution given by the (oriented) matroid M which exists by definition, call this {m_[e]}.
- Suppose there exists another (oriented) matroid $\mathcal N$ with solution $\{n_{[\epsilon]}\}$.
- Contractions and subdivisions in a 2-cut block do not change circuits.
- \bullet Apply contractions and subdivisions to ${\cal M}$ until these integer solutions match.
- ullet The circuits are in correspondence, which is an isomorphism of lattices of integer flows, thus lifts to an isomorphism of euclidean lattices, inducing a matroid isomorphism of \mathcal{M} .

Reconstructing

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

Q Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{\mathcal{E}(\mathcal{M})} \to \mathbb{Z}^{\mathcal{E}(\mathcal{N})}$.

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).
- 3

$$\mathbb{Z}^{E(\mathcal{N})}$$
 \blacktriangleleft ---- $\mathbb{Z}^{E(\mathcal{M})}$

$$\mathcal{F}(\mathcal{N}) \longleftarrow_{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{\mathcal{E}(\mathcal{M})} \to \mathbb{Z}^{\mathcal{E}(\mathcal{N})}$.

Proof:

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).

$$\mathbb{Z}^{E(\mathcal{M})} \xrightarrow{\quad \Psi \quad} \mathbb{Z}^{E(\mathcal{N})} \xrightarrow{\quad \P \quad \dots \quad \Psi} \mathbb{Z}^{E(\mathcal{M})}$$

$$\mathcal{F}(\mathcal{N}) \longleftarrow_{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{\mathcal{E}(\mathcal{M})} \to \mathbb{Z}^{\mathcal{E}(\mathcal{N})}$.

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).
- 3

$$\mathbb{Z}^{E(\mathcal{M})} \stackrel{\Psi}{-\!-\!-\!-} \mathbb{Z}^{E(\mathcal{N})} \overset{\Phi}{-\!-\!-\!-\!-} \mathbb{Z}^{E(\mathcal{M})}$$

$$\mathcal{F}(\mathcal{M}) \xrightarrow{\psi} \mathcal{F}(\mathcal{N}) \longleftarrow_{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{\mathcal{E}(\mathcal{M})} \to \mathbb{Z}^{\mathcal{E}(\mathcal{N})}$.

Proof:

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).

$$\mathcal{F}(\mathcal{M}) \xrightarrow{\psi} \mathcal{F}(\mathcal{N}) \xleftarrow{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).

Proposition: [Dancso–E.–Garoufalidis] An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

- Lemma: [Dancso–E.–Garoufalidis] A matroid of cogirth ≥ 2 can be oriented totally cyclically and oriented s.t. it admits a positive circuit basis.
- ② Automorphisms of $\mathcal{F}(\mathcal{M})$ lift Greene's rigid embedding theorem and (1).

