OOVs in the Spotlight: How to Inflect them?

Tomáš Sourada, Jana Straková, Rudolf Rosa {sourada, strakova, rosa}@ufal.mff.cuni.cz

■ May 2024

Intro & motivation

Inflection: the task

	input	input	desired output		
	Lemma +	${\sf Morphological\ tag} \to {\sf Inflected\ form}$			
en	hug	V;PST	hugged		
	spark	V;V.PTCP;PRS	sparking		
es	liberar	V;IND;FUT;2;SG	liberarás		
	descomponer	V;NEG;IMP;2;PL	no descompongáis		
de	aufbauen	V;IND;PRS;2;SG	baust auf		
	Ärztin	N;DAT;PL	Ärztinnen		
cs	výsledek	N;DAT;SG	výsledku		
	analyzovat	V;COND;PRS;2;PL;NEUT	analyzovala byste		

Table 1: Example of the inflection task (adapted from Cotterell et al. (2017))

OOVs (out-of-vocabulary words)

- inflecting previously unseen lemma is difficult
- OOV conditions: test lemma not present in the training data
- true OOVs even more difficult: proper nouns, neologisms

Data

There are no OOV data - we need OOV data

- for training
- more importantly for evaluation, to see how well we are performing on OOVs

Czech OOV Inflection Dataset

- large train-dev-test split for standard OOV evaluation
 - auto-extracted from a large morphological dictionary MorfFlex
 - lemma-disjoint (no lemma overlap between the splits)
 - test-MorfFlex (the test set)
- test-neologisms:
 - true OOVs
 - manually annotated set of neologisms
 - evaluation of performance in real-world condition

Czech OOV Inflection Dataset - test-neologisms - example

lemma	tag	form
elektrořidič	S1	elektrořidič
elektrořidič	S2	elektrořidiče
elektrořidič	S3	elektrořidičovi
elektrořidič	S4	elektrořidiče
elektrořidič	S5	elektrořidiči
elektrořidič	S6	elektrořidičovi
elektrořidič	S7	elektrořidičem
elektrořidič	P1	elektrořidiči
elektrořidič	P2	elektrořidičů
elektrořidič	P3	elektrořidičům
elektrořidič	P4	elektrořidiče
elektrořidič	P5	elektrořidiči
elektrořidič	P6	elektrořidičích
elektrořidič	P7	elektrořidiči

Table 2: Example from the test-neologisms dataset: "elektrořidič" (driver of an electric car).

Approach

Our 3 approaches

- Retrograde (non-neural approach)
- Seq2seq (encoder-decoder) architecture trained from scratch
 - LSTM
 - Transformer (not a fine-tuned LLM)

Retrograde model

- non-neural approach
- not trained
- inspired in ASIMUT (Králíková and Panevová, 1990)

Retrograde model: how it works

• step 1:

• step 2:

seq2seq architecture

- LSTM: adapted from Kann and Schütze (2016)
- Transformer: adapted from MT setting
- input-output:

• Surprisingly high batch size needed in the final setup:

• LSTM: 256

• Transformer: 4096

Results

SIGMORPHON shared task 2022 results

	Submitted systems				Baselines		Ours		
Lang	CLUZH	Flexica	OSU	TüM	UBC	Neural	NonNeur	LSTM	Transformer
ang	76.6	64.4	73.7	71.9	74.1	73.4	68.7	76.3	75.5
ara	81.7	65.5	78.7	78.5	65.5	81.9	50.8	79.2	82.6
asm	83.3	75.0	75.0	91.7	83.3	83.3	83.3	83.3	83.3
got	92.9	41.4	94.1	91.7	91.7	93.5	87.6	92.3	92.3
hun	93.5	62.9	93.1	92.8	91.5	94.4	73.1	92.8	94.4
kat	96.7	95.7	96.7	96.7	96.7	97.3	96.7	97.3	97.8
khk	94.1	47.1	94.1	94.1	88.2	94.1	88.2	100.0	94.1
kor	71.1	55.4	50.6	56.6	60.2	62.7	59.0	49.4	62.7
krl	87.5	69.8	85.9	57.8	85.4	57.8	20.8	89.1	85.9
lud	87.3	92.0	92.9	93.4	88.2	94.3	93.4	89.2	92.0
non	85.2	77.0	85.2	80.3	90.2	88.5	80.3	83.6	88.5
pol	96.1	85.9	94.9	74.0	95.7	74.4	86.3	96.1	95.6
poma	76.1	54.5	70.1	69.4	73.3	74.1	47.8	75.2	76.3
slk	93.5	90.0	92.2	70.4	95.7	71.1	92.4	95.2	95.7
tur	93.7	57.9	95.2	80.2	92.9	79.4	66.7	95.2	92.9
vep	71.5	58.8	70.0	57.5	68.8	59.2	60.4	70.7	68.8
average	86.3	68.3	83.9	78.6	83.8	80.0	72.2	85.3	86.1

Results on Czech OOV Inflection Dataset

Standard OOV conditions

model	form accuracy	full paradigm accuracy	
RULE-BASED SKLONUJ.CZ	88.88	74.43	
SIGMORPHON NONNEURAL	94.78	88.15	
SIGMORPHON TRANSFORMER	95.47	87.29	
RETROGRADE	94.85	88.64	
LSTM	96.16	89.80	
TRM	96.18	90.44	
UPPER BOUND (ORACLE)	99.3	97.3	

Results on Czech OOV Inflection Dataset

True OOVs: neologisms

model	form accuracy	full paradigm accuracy
RULE-BASED SKLONUJ.CZ	86.22	55
SIGMORPHON NONNEURAL	89.49	71
SIGMORPHON TRANSFORMER	87.53	63
RETROGRADE	89.34	71
LSTM	86.95	58
TRM	87.24	61

OOVs in the Spotlight: How to Inflect them

Summary

- 1. Transformer works the best in standard OOV conditions
- 2. But on on true OOVs (neologisms), it is beaten by the retrograde model.
- 3. Release: Czech OOV Inflection Dataset, ready-to-use inflection library
- 4. Discussion challenge:
 - small test set: would it scale on a large one?
 - train data to inflect OOVs how?

See you @ LREC-COLING 2024

References I

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. CoNLL-SIGMORPHON 2017 shared task: Universal morphological reinflection in 52 languages. In Mans Hulden, editor, Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 1–30, Vancouver, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/k17-2001. URL https://aclanthology.org/k17-2001.

Katharina Kann and Hinrich Schütze. Single-model encoder-decoder with explicit morphological representation for reinflection. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 555–560, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://anthology.aclweb.org/P16-2090

Květoslava Králíková and Jarmila Panevová. ASIMUT - a method for automatic information retrieval from full texts. Explizite Beschreibung der Sprache und automatische Textbearbeitung. XVII. 1990.

Acknowledgements

Computational resources for this work were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports of the Czech Republic.

The work described herein uses resources hosted by the LINDAT/CLARIAH-CZ Research Infrastructure (projects LM2018101 and LM2023062, supported by the Ministry of Education, Youth and Sports of the Czech Republic).

This work has also been supported by the Grant Agency of the Czech Republic under the EXPRO program as project "LUSyD" (project No. GX20-16819X).

We thank the Bernard Bolzano Endowment Fund for the contribution for covering the travel expenses to present this work.

We also thank the anonymous reviewers for their valuable comments.