Integración semántica de los recursos de información en una memoria corporativa

Erik Alarcón Zamora

Enero 2014. México, D.F.

Asesores:

Dra. Reyna Carolina Medina Ramírez
Dr. Héctor Pérez Urbina

Contenido I

- Marco Introductorio
 - Contexto y Motivación
 - Descripción del Problema

- Integración Semántica de una Memoria Corporativa
 - Marco de Referencia
 - Arquitectura de la Integración Semántica
 - Casos de Uso
 - Representación el Conocimiento

3 Referencias

Memoria Corporativa I

Definición

La representación explícita, tácita, consistente y persistente del conocimiento de una organización. [Gandon, 2002]

Finalidad

Una memoria corporativa conserva y mantiene el conocimiento de una organización [Dieng et al., 1998], para facilitar el acceso, intercambio y difusión de éste.

Caso de Estudio

El grupo de investigación del área de Redes y Telecomunicaciones (RyT) de la Universidad Autónoma Metropolitana Unidad Iztapalapa (UAM-I).

Memoria Corporativa II

Recurso de Información

Un elemento que representa y encapsula una parte del conocimiento de una organización (investigaciones, colaboraciones, proyectos, cursos, temas de interés, objetos e ideas).

(b) Memoria Corporativa del área de RyT

Memoria Corporativa III

Homonimia

radio ---> Química, Comunicación, Anatomía o Geometría

Sinonimia

herramienta = aparato = instrumento = mecanismo = artilugio

Tecnologías Semánticas I

Definición

Un conjunto de metodologías, lenguajes, aplicaciones, herramientas y estándares para suministrar u obtener el significado de las palabras, información y las relaciones entre éstos. [Alfred et al., 2010]

Tecnologías Semánticas II

Resource Description Framework (RDF)

Marco genérico para describir el conocimiento e información explícita de los recursos mediante sus características y relaciones. [Bouzid et al., 2012]

Recurso

Puede ser cualquier cosa (persona, lugar, documento, entidades del mundo real o conceptos abstractos) que tiene un identificador único de recursos (URI).

Propiedad

Un aspecto significativo, característica, o relación que se describe de un recurso (relación binarias).

Tecnologías Semánticas III

Clase

Una colección de objetos que comparten características comunes.

Literal

Un valor de datos como cadenas o enteros particulares.

Declaración

Una afirmación de un hecho explícito sobre un recurso, en términos de una propiedad y el valor asignado a ésta.

- Juan se llama "Juan López Martíez".
- Juan estudia en la UAM.
- Juan es un estudiante.

Tecnologías Semánticas IV

Tripleta RDF

La forma básica para representa una declaración en un modelo semántico.

Tecnologías Semánticas V

Grafo RDF

Un grafo estructurado y dirigido compuesto por nodos, aristas y etiquetas para representar las tripletas.

Tecnologías Semánticas VI

SPARQL

Lenguaje de consulta y protocolo de acceso a RDF, para la búsqueda y recuperación de la información en un grafo RDF.

Motor de Búsqueda SPARQL

Programa que interpreta una consulta SPARQL, la compara con el grafo RDF y recupera los valores de la misma.

```
###Lista de prefijos
PREFIX exp: <ntbr/>thp://www.mi-ejemplo.com/>
PREFIX rdf: <ntbr/>http://www.w3.org/1999/02/22-rdf-syntax-ns#>
### Variables a recuperar
SELECT ?x
WHERE {
    ### Patrones tripletas
    ?x exp:estudia-en exp:UAM.
    ?x rdf:type exp:Estudiante. }
```

Tecnologías Semánticas VII

Ontología

Una definición formal, explícita y compartida de los conceptos, así como las relaciones de un determinado dominio. [Gruber, 1993]

Componente Asertivo (ABox)

Este componente está constituido por las declaraciones (descripciones o hechos verdaderos) que afirman que los individuos son instancias de una clase o propiedad.

Componente Terminológico (TBox)

Este componente describe las clases y propiedades relevantes, así como las reglas de inferencia que permiten aprovechar la manera en que las instancias se relacionan entre sí.

Tecnologías Semánticas VIII

Reglas de inferencia o Axiomas

Los axiomas o reglas de inferencia [Gruber, 1993] son expresiones para enriquecer el conocimiento explícito en un grafo RDF.

Funcionalidad Axiomas

Describir relaciones entre clases, definir propiedades en términos de otras, definir relaciones entre conceptos, definir restricciones de cómo las propiedades se relacionan, por mencionar algunos.

Razonador

Un programa que deduce declaraciones a partir de los axiomas y declaraciones explícitas en la ontología.

Tecnologías Semánticas IX

@prefix exp: <http://www.mi-ejemplo.com/>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdf: http://www.w3.org/2000/01/rdf-schema#

Integración Semántica

Definición

La búsqueda y recuperación significativa de información existente en los recursos de información para responder una consulta dada por un usuario.

Etapas

- Representar el conocimiento de los recursos de información en un modelo semántico.
- 2 Buscar y recuperar información existente en la memoria corporativa mediante la interrogación del modelo semántico.

Pregunta Investigación

¿Las **tecnologías semánticas** son viables para solucionar la **integración semántica** de los **recursos de información** de una **memoria corporativa**?

Objetivos

Objetivo Principal

Contribuir a la integración semántica de los recursos de información en una memoria corporativa, mediante el uso de las tecnologías semánticas.

Objetivos Particulares

- Desarrollar una marco de referencia para la integración semántica de los recursos de información existentes en una memoria corporativa.
- ② Implementar un *modelo semántico* que representa el *conocimiento explícito* e *implícito* de los *recursos* de *información*.
- Implementar un prototipo de interfaz gráfica de usuario que permita a los usuarios una interacción amigable para la integración semántica de los recursos de información.
- Evaluar los resultados devueltos y tiempos de procesamiento en la integración semántica para el dominio de redes y telecomunicaciones.

Marco de Referencia

- Identificar los casos de uso para encontrar los principales recursos de información existentes en la memoria, así como los criterios de búsqueda asociados a éstos.
- 2 Construir el diagrama de casos de uso.
- Evaluar herramientas semánticas para: edición de descripciones semánticas, edición de reglas de inferencia, gestión de modelos semánticos.
- Recopilar los recursos de información de acuerdo a los casos de uso.
- Adquirir el conocimiento o información de los recursos de información con base en las características y relaciones de los mismos.
- Onstruir el diagrama de clases.

Marco de Referencia

Modelo Semántico

- O Describir el conocimiento explícito de los recursos de información recopilados en un modelo semántico.
- Identificar las reglas de inferencia a introducir en el modelo, con base en el diagrama de clases.
- Escribir las reglas de inferencia para enriquecer el modelo semántico con conocimiento implícito, mediante el uso del editor de reglas de inferencia.
- Identificar las preguntas en lenguaje natural a partir de los casos de uso.
- Diseñar las consultas en el lenguaje estándar de búsqueda que correspondan a las preguntas en lenguaje natural.

Marco de Referencia

- Emplear un proceso que permita hacer explícito el conocimiento implícito.
- Buscar y recuperar información en la memoria corporativa, interrogando el modelo semántico.

Prototipo de interfaz gráfica de usuario

- Diseñar un prototipo para interacción (búsqueda y navegación) amigable y trasparente de los usuarios de la memoria con el modelo semántico.
- Proponer funcionalidades básicas del prototipo.
- Indicar cuáles son las interfaces para los usuarios (pantallas).
- O Describir las especificaciones de estas interfaces.
- Implementar el prototipo y realizar pruebas del mismo.

Evaluar los resultados devueltos

- Evaluar la calidad de los resultados (recursos relevantes recuperados) con y sin inferencia, mediante el uso de métricas que se emplean en la recuperación de la información: exhaustividad y precisión.
- Identificar aquellos recursos (total de recursos relevantes) que responden las preguntas del paso 10 de este listado.
- Consultar al modelo semántico y comparar los recursos relevantes recuperados con los recursos relevantes que se identificaron en el paso 20 de este listado.
- Calcular la exhaustividad y precisión.

Evaluar los tiempos de procesamiento

- Evaluar los tiempos promedios que toma la herramienta electa de gestión de los modelos semánticos, para consultar los modelos con/sin inferencia.
- Elaborar un script que calcule 'n' veces el tiempo de procesamiento al consultar un modelo semántico (con o sin inferencia). Las consultas se hacen a las preguntas identificadas del paso 10 de este listado.

Hipótesis

¿Las **tecnologías semánticas** son viables para solucionar la **integración** de los **recursos de información** de una **memoria corporativa**?

Aportaciones

- Un marco de referencia para lograr la integración semántica de recursos de información.
- Un modelo semántico que representa el conocimiento de una memoria corporativa, el cual tiene tres ramas principales (Personas, Recursos Digitales y Conceptos del Redes y Telecomunicaciones).
- Un prototipo (interfaz gráfica de usuario) para la interacción amigable (búsqueda y consulta de información) de los usuarios al modelo semántico.
- Los resultados de nuestra evaluación experimental.
- Un par de scripts para la generación automática y controlada de descripciones (conocimiento explícito) de los recursos de información, con el fin de poblar la base de conocimiento.

Marco de Referencia

Etapas

- Representación del conocimiento explicito de los recursos consiste en identificar los recursos de información de la memoria corporativa, así como representar las características y relaciones (conocimiento explícito) de estos recursos en un modelo semántico.
- ② Enriquecimiento del conocimiento en el modelo consiste en introducir reglas de inferencia (axiomas) para completar y enriquecer el modelo semántico con conocimiento implícito del dominio de la memoria corporativa.
- Búsqueda y recuperación de la información en el modelo consisten en identificar las principales consultas de los usuarios, así como interrogar el modelo semántico para recuperar la información que responda a estas consultas.

Arquitectura de la Integración Semántica

Casos de Uso

- Cartografía de Competencias consiste en la búsqueda y recuperación de información significativa de las personas a partir de las características personales y profesionales de las mismas.
- Búsqueda de Recursos Digitales consiste en la búsqueda y recuperación de información significativa de los documentos y archivos multimedia a partir del contenido de los mismos.

Identificar los principales recursos de información

Memoria Corporativa del área de RyT

Adquirir y expresar el conocimiento de los recursos de información

Marco de Referencia Arquitectura de la Integración Semántica Casos de Uso Representación el Conocimiento

Representar el conocimiento e información mediante el estándar RDF I

Actividades en la representación del conocimiento

- Asignar un identificador único de recursos para cada recurso de información en la memoria corporativa.
- Asignar los identificadores únicos de recursos a las propiedades.
- 3 Reconocer los valores de las propiedades: otro recurso o literal.
- Generar las tripletas RDF asociadas a las descripciones de los recursos de información.

- @prefix sirp: http://arte.izt.uam.mx/ontologies/personRyT.owl#>
- @prefix sird: mx/ontologies/digiResourceRyT.owl#
- @prefix redes: <http://mcyti.izt.uam.mx/arios/odaryt.owl#>

Marco de Referencia Arquitectura de la Integración Semánti Casos de Uso Representación el Conocimiento

Representar el conocimiento e información mediante el estándar RDF II

@prefix sirp: http://www.w3.org/2001/XMLSchema# .
@prefix xsd: http://www.w3.org/2001/XMLSchema# .
@prefix redes: http://mcyti.izt.uam.mx/arios/odaryt.owl# .

sirp:RicardoMarcelinJimenez

a sirp:Teacher:

sirp:has-name "Ricardo Marcelin Jiménez"^^xsd:string;

sirp:has-email "calu@xanum.uam.mx"^^xsd:anyURI;

sirp:has-webSite "http://cbi.izt.uam.mx/electrica/profs/ricardo_marcelin.html"^^xsd:anyURI; sirp:has-gender sirp:Male;

sirp:worksIn sirp:UAM:

sirp:researchesOn "El almacenamiento distribuido, las redes inalámbricas de sensores y la simulación de

eventos discretos."^^xsd:string;

sirp:expertiseIn redes:Distributed_Systems, redes:Distributed_Storage, redes:MDS_Codes,

redes:Performance_evaluation, redes:Semantic_Annotations, redes:Image_compression, redes:Routing_Protocols, redes:Distributed_Algorithms, redes:Wireless_Sensor_Networks, redes:N and ST:

sirp:competentIn sirp:Article_Reviewing_Skills, sirp:Thesis_Supervision_Skills,

sirp:Oral_And_Written_Communication_Skills, sirp:Area_Expert, sirp:Analysis_Skills,

sirp:Decision_Making_Skills, sirp:Research_Skills, sirp:Problem_Solving_Skills, sirp:Synthesis_Skills, sirp:Abstraction_Skills, sirp:Counseling_Skills for Social Service.

sirp:IT And Communication Skills:

sirp:has-colleague sirp:MiguelLopez, sirp:CarolinaMedinaRamirez;

sirp:reads sirp:Spanish, sirp:English;

sirp:writes sirp:Spanish, sirp:English;

sirp:speaks sirp:Spanish, sirp:English.

Marco de Referencia Arquitectura de la Integración Semánti Casos de Uso Representación el Conocimiento

Representar el conocimiento e información mediante el estándar RDF III

@prefix sird: http://arte.izt.uam.mx/ontologies/digiResourceRyT.owl#">http://arte.izt.uam.mx/ontologies/personRyT.owl#">http://arte.izt.uam.mx/ontologies/personRyT.owl#">http://arte.izt.uam.mx/ontologies/personRyT.owl#">http://arte.izt.uam.mx/ontologies/personRyT.owl#">http://ontologies/digiResourceRyT.owl#>

sird:What-isLinkedData-2012-flv

a sird:Video; sird:has-title "What is Linked Data?"^^xsd:string;

sird:has-author "Manu Sporny"^^xsd:string ;

sird:has-filePath "http://www.youtube.com/watch?v=4x_xzT5eF5Q"^^xsd:anyURI sird:has-fileExtension sird:flv;

sird:has-languageSource sirp:English;

sird:has-topic redes:Linked_data, redes:Data, redes:Web, redes:Semantic, redes:Knowledge_graph:

sird:has-synopsis "A short non-technical introduction to Linked Data, Google's Knowledge Graph, and Facebook's Open Graph Protocol" ^\systisting :

sird:has-yearOfCreation "2012"^^xsd:int

Referencias I

- [Alfred et al., 2010] Alfred, S., Arpah, A., Lim, L. H. S., and Sarinder, K. K. S. (2010). Semantic technology: An efficient approach to monogenean information retrieval. In Computer and Network Technology (ICCNT), 2010 Second International Conference on, pages 591–594.
- [Bouzid et al., 2012] Bouzid, S., Cauvet, C., and Pinaton, J. (2012).

 A survey of semantic web standards to representing knowledge in problem solving situations
 - In Information Retrieval Knowledge Management (CAMP), 2012 International Conference on, pages 121–125.
- [Dieng et al., 1998] Dieng, R., Corby, O., Giboin, A., and Ribière, M. (1998). Methods and Tools for Corporate Knowledge Management. Technical Report RR-3485, INRIA.
- [Fujino and Fukuta, 2012] Fujino, T. and Fukuta, N. (2012).
 - A sparql query rewriting approach on heterogeneous ontologies with mapping reliability. In *Advanced Applied Informatics (IIAIAAI)*, 2012 IIAI International Conference on, pages 230–235.
- [Gandon, 2002] Gandon, Fabien, L. (2002).
 Ontology Engineering: a Survey and a Return on Experience.
 Technical Report RR-4396, INRIA.

Referencias II

```
[Gruber, 1993] Gruber, T. R. (1993).A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220.
```