Movie_Recommendation_System

March 15, 2025

1 Movie Recommendation System - Capstone Project

The goal of this project is to design and build 3 types of movie recommendation system.

- 1. Understanding the Data
- 2. Exploratory Data Analysis (EDA)
 - 2.1 Checking for missing Data
 - 2.2 Data Description
 - 2.3 WordClouds for Genres and Titles
 - 2.4 Distribution of Ratings
 - 2.5 Number of Ratings per Movie
 - 2.6 Average Rating and Total Movies at Genre Level
 - 2.7 Distribution of Rated Movies by Genre
- 3. Movie Recommendation System
 - 3.1 Popularity-based Recommender at Genre Level
 - 3.2 Content-Based Recommender based on similar movie genres
 - 3.3 Collaborative Filtering Approaches
- 4. Conclusion and Future Improvements

1.0.1 1. Understanding the Data

We have two datasets:

- movies.csv contains:
 - movieId: Unique identifier for a movie
 - title: Name of the movie
 - genres: Pipe-separated list of genres for the movie
- ratings.csv contains:
 - userId: Unique identifier for a user
 - movieId: Unique identifier for a movie
 - rating: The rating given by the user
 - timestamp: Time when the rating was given

1.0.2 2. Exploratory Data Analysis (EDA)

Let's first analyze the data to get insights.

Loading and Exploring the Dataset We'll load both datasets and check for missing values and basic statistics.

```
[26]: import pandas as pd
     import matplotlib.pyplot as plt
     import warnings
     warnings.filterwarnings('ignore')
 [2]: movies=pd.read csv('movies.csv')
     ratings=pd.read_csv('ratings.csv')
 [3]: movies.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10329 entries, 0 to 10328
     Data columns (total 3 columns):
                 Non-Null Count Dtype
         Column
     --- ----- ------
         movieId 10329 non-null int64
         title 10329 non-null object
         genres 10329 non-null object
     dtypes: int64(1), object(2)
     memory usage: 242.2+ KB
 [4]: ratings.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 105339 entries, 0 to 105338
     Data columns (total 4 columns):
         Column
                    Non-Null Count
                                     Dtype
     --- ----
                    -----
                                     ----
      0
         userId
                   105339 non-null int64
         movieId 105339 non-null int64
      1
      2
         rating
                    105339 non-null float64
         timestamp 105339 non-null int64
     dtypes: float64(1), int64(3)
     memory usage: 3.2 MB
           2.1 Checking for Missing Data
     We will explicitly check for missing values in both movies and ratings datasets.
 [5]: # Check for missing values
     print("Missing values in movies dataset:")
     print(movies.isnull().sum())
     print("\nMissing values in ratings dataset:")
     print(ratings.isnull().sum())
```

2

Missing values in movies dataset:

movieId

```
title 0
genres 0
dtype: int64

Missing values in ratings dataset:
userId 0
movieId 0
rating 0
timestamp 0
dtype: int64
```

1.0.4 2.2 Data Description

Summary of the dataset to highlight its key characteristics.

```
[6]: # Merge with movie titles
     df=pd.merge(ratings,movies, how='left',on='movieId')
     # print(df.head())
     # Count unique users and movies
     unique_users = df['userId'].nunique()
     unique_movies = df['movieId'].nunique()
     # Dataset Summary
     num_ratings = ratings.shape[0] # Total ratings
     num_movies = movies.shape[0] # Total movies
     num_users = ratings['userId'].nunique() # Unique users
     avg_rating = ratings['rating'].mean() # Average rating
     min_rating = ratings['rating'].min() # Minimum rating
     max_rating = ratings['rating'].max() # Maximum rating
     # Extract genres, split and count unique ones
     unique genres = set()
     df['genres'].str.split('|').dropna().apply(unique_genres.update)
     unique_genres_count = len(unique_genres)
     print(f"Total Ratings: {num_ratings}")
     print(f"Total Movies: {num_movies}")
     print(f"Total Unique Users: {num_users}")
     print(f"Average Rating: {avg_rating:.2f}")
     print(f"Rating Range: {min_rating} to {max_rating}")
     print(f"Total Unique Genres: {unique_genres_count}")
     print(f"Genres ==> {unique_genres}")
```

Total Ratings: 105339 Total Movies: 10329 Total Unique Users: 668 Average Rating: 3.52

```
Rating Range: 0.5 to 5.0
Total Unique Genres: 20
Genres ==> {'Horror', 'War', 'Romance', 'Action', 'Fantasy', 'Animation',
'Mystery', 'Children', 'Thriller', 'Documentary', 'Adventure', 'Comedy', 'Film-Noir', 'Musical', '(no genres listed)', 'IMAX', 'Drama', 'Sci-Fi', 'Crime',
'Western'}
```

1.0.5 Data Description

- The data consists of 105339 ratings applied to over 10329 movies.
- The average rating is 3.5 and minimum and maximum rating is 0.5 and 5 respectively.
- There are 668 users who have given their ratings for 10329 movies.
- There are 20 Genres of Films.

1.0.6 2.3 WordClouds for Genres and Titles

To visualize the most common movie genres and titles, we use WordCloud.

```
[27]: from wordcloud import WordCloud
      # Extract unique genres
      genres_list = []
      for genre in movies['genres']:
          genres_list.extend(genre.split('|'))
      genres_text = ' '.join(genres_list)
      # Generate WordCloud for Genres
      wordcloud_genre = WordCloud(width=1500, height=800, background_color='black',__
       →min_font_size=2).generate(genres_text)
      # Generate WordCloud for Movie Titles
      movie_titles_text = ' '.join(movies['title'])
      wordcloud title = WordCloud(width=1500, height=800, background color='cyan', |
       →min_font_size=2).generate(movie_titles_text)
      # Plot the WordClouds
      plt.figure(figsize=(12, 5))
      plt.title("WordCloud for Movie Genres")
      plt.imshow(wordcloud genre, interpolation='bilinear')
      plt.axis("off")
      plt.figure(figsize=(12, 5))
      plt.title("WordCloud for Movie Titles")
      plt.imshow(wordcloud_title, interpolation='bilinear')
      plt.axis("off")
      plt.show()
```

WordCloud for Movie Genres

WordCloud for Movie Titles

1.0.7 2.4 Distribution of Ratings

```
[8]: # Distribution of Ratings
plt.figure(figsize=(10, 5))
plt.hist(ratings['rating'], bins=10, edgecolor='black', alpha=0.7)
plt.xlabel('Rating')
plt.ylabel('Count')
plt.title('Distribution of Ratings')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


1.0.8 2.5 Number of Ratings per Movie

```
[9]: # Number of Ratings per Movie
ratings_per_movie = ratings.groupby('movieId').size()
print(ratings_per_movie)

plt.figure(figsize=(10, 5))
plt.hist(ratings_per_movie, bins=50, edgecolor='black', alpha=0.7, log=True)
plt.xlabel('Number of Ratings per Movie')
plt.ylabel('Count (Log Scale)')
plt.title('Number of Ratings per Movie')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```

movieId 1 232 2 92

```
3
            58
            11
5
            62
146684
             1
146878
148238
             1
148626
             3
149532
             1
Length: 10325, dtype: int64
```



```
[10]: # Calculate average rating and total movies at genre level
      genre_ratings = []
      for genre in unique genres:
          genre_df = df[df['genres'].str.contains(genre, na=False)]
          avg_rating = genre_df['rating'].mean()
          total_movies = genre_df['movieId'].nunique()
          print(f"Searching for ratings with genre: {genre} ==> {len(genre_df)}_{\sqcup}
       oratings, total unique movies: {total_movies} and avg-rating: {avg_rating}.")
          genre_ratings.append([genre, avg_rating, total_movies])
      genre_ratings_df = pd.DataFrame(genre_ratings, columns=['Genre', 'Average_
       →Rating', 'Total Movies'])
      # Display results
      print("\nGenre Ratings: \n", genre_ratings_df)
```

Searching for ratings with genre: Horror ==> 7983 ratings, total unique movies: 1001 and avg-rating: 3.281097331830139.

Searching for ratings with genre: War ==>5828 ratings, total unique movies: 503 and avg-rating: 3.7832017844886754.

Searching for ratings with genre: Romance ==> 19094 ratings, total unique movies: 1788 and avg-rating: 3.544254739708809.

Searching for ratings with genre: Action ==> 31205 ratings, total unique movies: 1737 and avg-rating: 3.4514500881269026.

Searching for ratings with genre: Fantasy ==> 10889 ratings, total unique movies: 670 and avg-rating: 3.5004591789879695.

Searching for ratings with genre: Animation ==> 5966 ratings, total unique movies: 400 and avg-rating: 3.6353503184713376.

Searching for ratings with genre: Mystery ==> 8320 ratings, total unique movies: 675 and avg-rating: 3.652043269230769.

Searching for ratings with genre: Children ==> 8098 ratings, total unique movies: 540 and avg-rating: 3.4394294887626575.

Searching for ratings with genre: Thriller ==> 29288 ratings, total unique movies: 2187 and avg-rating: 3.4955613220431574.

Searching for ratings with genre: Documentary ==> 1206 ratings, total unique movies: 415 and avg-rating: 3.6430348258706466.

Searching for ratings with genre: Adventure ==> 23076 ratings, total unique movies: 1164 and avg-rating: 3.518027387762177.

Searching for ratings with genre: Comedy ==> 38055 ratings, total unique movies: 3513 and avg-rating: 3.4209959269478385.

Searching for ratings with genre: Film-Noir ==> 1210 ratings, total unique movies: 195 and avg-rating: 3.9136363636363636.

Searching for ratings with genre: Musical ==> 4287 ratings, total unique movies: 409 and avg-rating: 3.57196174480989.

Searching for ratings with genre: (no genres listed) ==> 7 ratings, total unique movies: 7 and avg-rating: 3.0714285714285716.

Searching for ratings with genre: IMAX ==> 3032 ratings, total unique movies: 152 and avg-rating: 3.641820580474934.

Searching for ratings with genre: Drama ==> 46960 ratings, total unique movies: 5218 and avg-rating: 3.6502661839863713.

Searching for ratings with genre: Sci-Fi ==> 16795 ratings, total unique movies: 859 and avg-rating: 3.4544805001488537.

Searching for ratings with genre: Crime \implies 18291 ratings, total unique movies: 1440 and avg-rating: 3.6423924334372098.

Searching for ratings with genre: Western ==> 2314 ratings, total unique movies: 235 and avg-rating: 3.565687121866897.

Genre Ratings:

	Genre	Average Rating	Total Movies
0	Horror	3.281097	1001
1	War	3.783202	503
2	Romance	3.544255	1788
3	Action	3.451450	1737
4	Fantasy	3.500459	670

5	Animation	3.635350	400
6	Mystery	3.652043	675
7	Children	3.439429	540
8	Thriller	3.495561	2187
9	Documentary	3.643035	415
10	Adventure	3.518027	1164
11	Comedy	3.420996	3513
12	Film-Noir	3.913636	195
13	Musical	3.571962	409
14	(no genres listed)	3.071429	7
15	IMAX	3.641821	152
16	Drama	3.650266	5218
17	Sci-Fi	3.454481	859
18	Crime	3.642392	1440
19	Western	3.565687	235

1.0.9 2.6 Average Rating and Total Movies at Genre Level

```
[11]: # Plot Average Rating and Total Movies at Genre Level
                  # Sort by Total Movies (Descending)
                 genre_ratings_total_sorted = genre_ratings_df.sort_values(by="Total Movies", __
                     ⇔ascending=False)
                 # Sort by Average Rating (Descending)
                 genre_ratings_avg_sorted = genre_ratings_df.sort_values(by="Average Rating",__
                     ⇔ascending=False)
                 # Create figure for Total Movies
                 plt.figure(figsize=(12, 6))
                 plt.bar(genre_ratings_total_sorted['Genre'], genre_ratings_total_sorted['Total_
                    plt.xlabel("Genre")
                 plt.ylabel("Total Movies")
                 plt.title("Total Movies by Genre (Descending Order)")
                 plt.xticks(rotation=90)
                 plt.show()
                 # Create figure for Average Rating
                 plt.figure(figsize=(12, 6))
                 \#plt.plot(genre\_ratings\_avg\_sorted['Genre'], genre\_ratings\_avg\_sorted['Average_\subseteq] = for the proof of the proof o
                    →Rating'], color="green", alpha=0.7)
                 plt.plot(genre_ratings_avg_sorted['Genre'], genre_ratings_avg_sorted['Average_u
                    →Rating'], color="green", marker="o", label="Average Rating")
                 plt.xlabel("Genre")
                 plt.ylabel("Average Rating")
```

```
plt.title("Average Rating by Genre (Descending Order)")
plt.xticks(rotation=90)
plt.show()
# Sort genre_ratings_df by 'Total Movies' in descending order
genre_ratings_df = genre_ratings_df.sort_values(by="Total Movies",_
 ⇔ascending=False)
# Create a figure with two subplots
fig, ax1 = plt.subplots(figsize=(12, 6))
# Bar chart for total movies
ax1.bar(genre ratings_df['Genre'], genre_ratings_df['Total Movies'], alpha=0.6, __
 ⇔label="Total Movies")
ax1.set xlabel("Genre")
ax1.set_ylabel("Total Movies", color="blue")
ax1.tick_params(axis="y", labelcolor="blue")
plt.xticks(rotation=90)
# Create a second y-axis for average ratings
ax2 = ax1.twinx()
ax2.plot(genre_ratings_df['Genre'], genre_ratings_df['Average Rating'], __
⇔color="green", marker="o", label="Average Rating")
ax2.set_ylabel("Average Rating", color="green")
ax2.tick_params(axis="y", labelcolor="green")
# Title and legend
plt.title("Average Rating and Total Movies at Genre Level")
fig.tight_layout()
plt.show()
```


1.0.10 3. Movie Recommendation System

1.0.11 3.1 Popularity-Based Recommendation System at Genre Level

In this approach, movies are ranked based on their average rating and total number of reviews.

Finding the Top 5 Highest Rated Movies * Filters movies by the given genre * Ensures each movie meets the minimum number of reviews (t) * Sorts by average rating in descending order * Returns top (N) most popular movies in the genre

```
Num_Reviews=('rating', 'count')
    ).reset_index()
    #print(movie_stats.head())
    # Filter movies that meet the minimum review threshold
    movie_stats = movie_stats[movie_stats['Num_Reviews'] >= min_reviews]
    print(movie_stats.head())
    # Sort movies by Average Rating in descending order
    top_movies = movie_stats.sort_values(by="Average_Rating", ascending=False).
  →head(top n)
    return top_movies
# Example Usage
genre_input = "Comedy" # User-inputted Genre
min_reviews_threshold = 100  # Minimum number of reviews required
num_recommendations = 5  # Number of recommendations to return
# Get top N movies in the given genre
top_movies = popularity_based_recommender(df, genre_input,_
 min_reviews_threshold, num_recommendations)
# Display results
print(f"Top Popular Movies in Genre: {genre_input}\n", top_movies)
# Plot top-rated movies
plt.figure(figsize=(12, 6))
colors=['red','yellow','orange','green','magenta','cyan','blue','lightgreen','skyblue','purple
plt.barh(top_movies.title, top_movies['Average_Rating']_
 ⇔,linewidth=3,edgecolor='black' , color=colors)
plt.xlabel("Average Rating", fontsize=20)
plt.ylabel("Movie Title", fontsize=20)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.title(f"Top Movies in Genre {genre_input} with Highest Ratings", __
 ⇔fontsize=20)
plt.gca().invert_yaxis() # Invert y-axis to show highest rating on top
plt.show()
                                                 title Average_Rating \
57
                     Ace Ventura: Pet Detective (1994)
                                                              2.849711
102
                                        Aladdin (1992)
                                                              3.602094
130
    Amelie (Fabuleux destin d'Amélie Poulain, Le) ...
                                                            4.075630
                                   American Pie (1999)
137
                                                              3.266355
228
                                                            3.415842
    Austin Powers: International Man of Mystery (1...
     Num_Reviews
57
             173
```

102	191
130	119
137	107
228	101

Top Popular Movies in Genre: Comedy

		title	Average_Rating	Num_Reviews
2093	Monty Python and the Holy Grail	(1975)	4.301948	154
995	Fargo	(1996)	4.271144	201
2498	Princess Bride, The	(1987)	4.163743	171
2523	Pulp Fiction	(1994)	4.160000	325
1069	Forrest Gump	(1994)	4.138264	311

1.0.12 3.2 Content-based recommender system

Based on similar movie genres In this approach, we recommend movies that are most similar to a given movie based on genre similarity.

1 Feature Extraction using TF-IDF

• Converts movie genres into numerical vectors using TF-IDF (Term Frequency - Inverse Document Frequency).

2 Computing Similarity Scores

• Uses Cosine Similarity to calculate how close movies are based on their genre representation.

3 Finding Similar Movies

- Retrieves similarity scores for the input movie.
- Sorts movies in descending order of similarity.
- Returns the top N most similar movies (excluding the input movie itself).

Summary

- Analyzes movie genres to find similar movies.
- Does not require user ratings, making it suitable for new or less-rated movies.
- Relies only on genre similarity, without considering user preferences.

```
[13]: from sklearn.feature_extraction.text import TfidfVectorizer
      from sklearn.metrics.pairwise import linear_kernel
      # Feature Extraction: TF-IDF (Text Vectorization)
      cv=TfidfVectorizer()
      # Used to convert text data (genres) into numerical features.
      tfidf_matrix=cv.fit_transform(movies['genres'])
      #print(movies['genres'])
      #print(tfidf_matrix)
      movie_user = df.pivot_table(index='userId',columns='title',values='rating')
      #print(movie_user.head())
      # Similarity Calculation: Cosine Similarity
      # Cosine Similarity is used to measure how similar two movies are based on
       ⇔their genre vectors.
      cosine sim = linear kernel(tfidf matrix, tfidf matrix)
      #print(cosine sim)
      # Dutput: A similarity matrix where each movie is compared with every other.
       ∽movie
      # Indexing: Creating a Quick Lookup for Movie Titles
      # We create a mapping of movie titles to their indices to make retrieval \sqcup
       ⇔efficient
      indices=pd.Series(movies.index,index=movies['title'])
      titles=movies['title']
      #print(); print("Indices: \n", indices)
      \#print(); print("Titles: \n", titles)
      # Suppose a user wants to watch a movie similar to Toy Story (1995) then we can
       ⇔recommend the user by calculating the cosine similarity
      # between Toy Story and other movies. So we have to first find the cosine
       ⇔similarity betw
      # Recommendation Function
      def recommend_movies(title, num_recommendations=5):
          # 1 Find the index of the input movie
          idx = indices[title]
          # 2 Retrieve similarity scores for all movies
          sim scores = list(enumerate(cosine sim[idx]))
          #print(sim scores)
```

```
[14]: # Example: Recommend movies similar to "Toy Story" recommend_movies('Toy Story (1995)', 10)

#recommend_movies('Space Jam (1996)', 30)
```

```
[14]: 1815
                                                      Antz (1998)
      2496
                                               Toy Story 2 (1999)
                 Adventures of Rocky and Bullwinkle, The (2000)
      2967
      3166
                                Emperor's New Groove, The (2000)
      3811
                                            Monsters, Inc. (2001)
      6617
              DuckTales: The Movie - Treasure of the Lost La...
                                                 Wild, The (2006)
      6997
      7382
                                          Shrek the Third (2007)
      7987
                                  Tale of Despereaux, The (2008)
      9215
              Asterix and the Vikings (Astérix et les Viking...
      Name: title, dtype: object
```

1.0.13 Strengths & Limitations (Content-based recommender based on similar movie genres)

Strengths

- Uses movie content (genres) instead of relying on user behavior.
- No user data needed (unlike collaborative filtering).
- Can recommend movies even if they have few ratings.

Limitations

• Does not consider user preferences (only finds "similar" movies, not necessarily "liked" ones).

- Limited to genre-based similarity (doesn't consider cast, director, or plot).
- Cannot handle new genres well (since it relies on existing genre patterns).

1.0.14 3.3 Collaborative Filtering-Based Recommender System

Based on Similar Users' Preferences In this approach, we recommend movies based on the preferences of users with similar tastes. Unlike the content-based method, which only looks at genres, collaborative filtering leverages actual user ratings to identify patterns.

1 Building a User-Movie Interaction Matrix

- Converts the ratings dataset into a matrix where rows represent users and columns represent movies.
- Each cell contains the rating given by a user to a movie.

2 Finding Similar Users (User-Based Collaborative Filtering)

- Computes similarity between users using cosine similarity or Pearson correlation.
- Identifies K users most similar to the target user (u).

3 Generating Movie Recommendations

- Analyzes the top K similar users' preferences.
- Recommends movies highly rated by these similar users but not yet watched by the target user.

Summary

- Personalized recommendations based on user behavior.
- Does not require metadata (e.g., genres, actors, etc.).
- Effective for users with sufficient rating history but struggles with new users ("cold start problem").

```
[15]: from sklearn.metrics.pairwise import cosine_similarity
    from scipy.sparse import csr_matrix

# Build the User-Movie Interaction Matrix

# Create a User-Movie matrix (pivot table)
    user_movie_matrix = df.pivot_table(index='userId', columns='title', user_walues='rating')

# print(user_movie_matrix)

# Fill NaN values with 0 (indicating no rating given)
    user_movie_matrix = user_movie_matrix.fillna(0)
    #print(user_movie_matrix)

# Convert to sparse matrix for efficient computation
    sparse_matrix = csr_matrix(user_movie_matrix)
```

```
#print(sparse_matrix)
[16]: # Compute User Similarity Matrix
      # Compute cosine similarity between users
      user_similarity = cosine_similarity(sparse_matrix)
      #print(user_similarity)
      # Convert similarity scores into a DataFrame
      user_similarity_df = pd.DataFrame(user_similarity, index=user_movie_matrix.
       ⇒index, columns=user movie matrix.index)
      #print(user_similarity_df)
[17]: # Define the Recommendation Function
      def collaborative_recommender(user_id, num_recommendations=5,_
       ⇒k_similar_users=100):
          n n n
          Recommends top N movies for a user based on K similar users' preferences.
          Parameters:
          user_id (int): Target user ID for whom recommendations are made.
          num_recommendations (int): Number of movie recommendations to return.
          k_similar_users (int): Number of similar users to consider.
          DataFrame: Recommended movies with predicted ratings.
          # Get the similarity scores for the target user
          similar_users = user_similarity_df[user_id].sort_values(ascending=False)[1:
       →k similar users+1] # Skip self (index 0)
          #print(similar_users)
          # Get movies rated by similar users
          similar users movies = user movie matrix.loc[similar users.index]
          #print(similar_users_movies)
          #print("\nSum: ", similar_users.sum())
          #print(similar_users_movies)
          # Compute weighted average ratings (ignoring zero ratings)
          weighted_ratings = similar_users_movies.T.dot(similar_users) /__
       ⇒similar_users.sum()
          #print("\nweighted_ratings: \n", weighted_ratings)
```

Filter out movies already rated by the target user
user_rated_movies = user_movie_matrix.loc[user_id]

```
#print("\n user_rated_movies \n", user_rated_movies)
unwatched_movies = weighted_ratings[user_rated_movies == 0].

sort_values(ascending=False)
#print("\n unwatched_movies \n", unwatched_movies)

# Return top N recommended movies
return unwatched_movies.head(num_recommendations).reset_index().
srename(columns={0: 'Predicted Rating'})
```

```
# Get Recommendations for a User

# Example usage
user_id = 1  # Target user
num_recommendations = 5  # Number of recommendations
k_similar_users = 100  # Threshold for similar users

# Get movie recommendations
recommended_movies = collaborative_recommender(user_id, num_recommendations, user)

# Display recommendations
print("\nTop Collaborative Filtering Recommendations: \n", recommended_movies)
```

Top Collaborative Filtering Recommendations:

							title	Predicted Rating
0	Indiana	Jones	and	the	Last	Crusade	(1989)	2.585230
1					To	oy Story	(1995)	2.458336
2						Memento	(2000)	2.404927
3					I	Die Hard	(1988)	2.399464
4						Aliens	(1986)	2.352151

1.0.15 4 Conclusion and Future Improvements

Summary of What Has Been Done In this project, we have built a Movie Recommendation System using three different approaches, each catering to different user needs and use cases.

3.1 Popularity-Based Recommendation System

- Recommended top-rated movies within a specific genre.
- Ranked movies based on average rating and review count.
- Strengths: Simple, fast, and effective for general recommendations.
- Weaknesses: Lacks personalization; only considers highly rated movies, not individual user preferences.

3.2 Content-Based Filtering (Genre Similarity)

- Recommended movies based on genre similarity.
- Used TF-IDF Vectorization and Cosine Similarity to find similar movies.

- Strengths: Works well for suggesting movies with similar themes even for new users.
- Weaknesses: Limited to genre-based similarity; does not consider user preferences or viewing history.

3.3 Collaborative Filtering (User-Based)

- Recommended movies based on similar users' preferences.
- Built a user-movie interaction matrix, computed cosine similarity, and used matrix multiplication to generate recommendations.
- Strengths: Highly personalized recommendations based on real user behavior.
- Weaknesses: Suffers from the cold start problem, meaning recommendations may not be accurate for new users with no rating history.

Challenges Encountered

- Sparse Data Problem: Many users rate only a small subset of movies, making it difficult to provide personalized recommendations.
- Cold Start Problem: New users and new movies lack sufficient data, making it difficult to recommend relevant content.
- Computational Complexity: Collaborative filtering with large datasets can be computationally expensive.
- Genre Limitations in Content-Based Filtering: Only uses genre similarity, which may not fully capture user preferences.

Future Improvements & Next Steps

1. Hybrid Recommendation System

- Combine content-based filtering and collaborative filtering to improve recommendation accuracy.
- Example: Recommend movies based on both similar users and similar genres.

2. Matrix Factorization (SVD for Collaborative Filtering)

- Implement Singular Value Decomposition (SVD) to handle sparse user-movie matrices.
- This approach will improve recommendations by capturing latent user preferences.

3.Incorporating More Features

- Use additional metadata such as cast, director, plot summaries, and movie reviews to enhance recommendations.
- Apply deep learning techniques (e.g., embeddings, neural networks) for more accurate results.

4. Handling the Cold Start Problem

- Implement a hybrid approach that suggests popular movies for new users until enough data is collected.
- Ask new users for initial preferences (e.g., selecting favorite genres or movies) to provide better initial recommendations.

5. Building a Web-Based Interface

- Develop an interactive UI using Streamlit, Flask, or Django.
- Allow users to input preferences and receive recommendations instantly.
- Enhance user experience by integrating user feedback into the system for continuous improvement.

Final Thoughts This project successfully implemented three major recommendation techniques, providing valuable insights into their strengths and limitations. While these approaches perform well individually, combining them into a hybrid model and incorporating advanced techniques such as deep learning, embeddings, and improved collaborative filtering methods will further enhance recommendation accuracy and user experience.

Next Steps: Implement a hybrid recommender system, optimize performance, and develop a user-friendly web-based application to deploy the system for real-world usage.