TD 7. Logique du premier ordre : sémantique, renommages et substitutions, formes normales

Exercice 1. Un graphe orienté vu comme interprétation

Considérons le graphe orienté ci-contre. On peut voir ce graphe comme interprétation I d'une signature avec une relation binaire, E. Le domaine de I est $D_I = \{a, b, c, d\}$, et $E^I = \{(a, b), (b, a), (b, c), (c, c), (b, d)\}$. Pour chacune des formules suivantes, (a) donner une valuation ρ telle que la formule est satisfaite par (I, ρ) , ou montrer que la formule n'est pas satisfiable dans I; et (b) montrer que I est un modèle de la formule, ou donner une valuation qui montre que I n'est pas un modèle de la formule.

1. E(x, x)

4. $\exists x. E(x,y)$

2. $E(x,y) \wedge E(y,x)$

5. $\forall x. \neg E(x, y)$

3. $\exists y.(E(x,y) \land E(y,z))$

6. $\exists y. E(x, y)$

Exercice 2. Équivalences logiques

1.

Considérons deux formules φ et ψ telles que $x \notin \text{fv}(\varphi)$. Montrer les équivalences logiques suivantes

- (a) $(\forall x.\psi) \land \varphi \Leftrightarrow \forall x.(\psi \land \varphi)$
- (b) $(\exists x.\psi) \lor \varphi \Leftrightarrow \exists x.(\psi \lor \varphi)$
- 2. Les formules $(\forall x.P(x)) \lor \neg P(x)$ et $\forall x.(P(x) \lor \neg P(x))$ sont-elles logiquement équivalentes?

Rappel:

Applicabilité: Une substitution σ est *applicable* à une formule φ si aucune variable liée de φ n'apparaît parmi les variables du domaine et image de σ .

α-renommage: Considérons une formule où une variable x apparaît de façon liée, comme par exemple $\varphi = \exists x.\psi$. Soit x' une variable qui n'apparaît pas dans ψ (en particulier, la substitution [x'/x] est applicable à ψ). L'α-renommage $x \mapsto x'$ de φ est la formule $\exists x'.\psi[x'/x]$.

Exercice 3. Substitutions et α -renommage

On considère la signature suivante :

$$\mathcal{F} \stackrel{\text{\tiny def}}{=} \{f^{(1)}, g^{(2)}\} \text{ et } \mathcal{P} \stackrel{\text{\tiny def}}{=} \{R^{(2)}\}.$$

et la substitution σ donnée par [f(z)/x,g(x,y)/y]. Pour chacune des formules suivantes, donner un α -renommage de la formule à laquelle la substitution σ est applicable, et appliquer σ à la formule renommée.

1. $R(x,y) \wedge \exists x. R(x,x)$

3. $\exists z.R(f(x),z)$

 $2. \exists x.R(f(x),y)$

4. $\forall x \exists y . R(x, y)$

Exercice 4. Sensibilité du langage naturel

On s'intéresse à la formule du buveur vue en cours $\varphi \stackrel{\text{def}}{=} \exists x. (B(x) \Rightarrow \forall y. B(y)).$

- 1. Énoncez la formule φ en français. Vous paraît-elle valide?
- 2. Réécrivez la formule φ en éliminant le symbole de l'implication (utilisez la négation et la disjonction).
- 3. Expliquez pourquoi on peut appliquer la règle (b) de l'exercice 2 pour obtenir une formule φ' logiquement équivalent à φ . Que vaut φ' ?
- 4. Expliquez pourquoi on peut appliquer l' α -renommage $y \mapsto x$ à la formule φ' . Qu'obtient-on?
- 5. Énoncez la formule ainsi obtenue en français. Vous paraît-elle valide?

Rappel : Une formule du premier ordre est en forme normale négative si elle respecte la syntaxe abstraite

(littéraux)
$$\ell ::= \alpha \mid \neg \alpha$$
 (formules en forme normale négative)
$$\varphi ::= \ell \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \exists x. \varphi \mid \forall x. \varphi$$

où α est une formule atomique et $x \in X$. En d'autres termes, les négations ne peuvent apparaître que devant des formules atomiques.

Pour une formule φ , sa forme normale négative $\mathrm{nnf}(\varphi)$ est obtenue inductivement par

$$\begin{aligned} & \operatorname{nnf}(\alpha) \stackrel{\operatorname{def}}{=} \alpha \;, & \operatorname{nnf}(\neg \alpha) \stackrel{\operatorname{def}}{=} \neg \alpha \;, \\ & \operatorname{nnf}(\varphi \lor \psi) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\varphi) \lor \operatorname{nnf}(\psi) \;, & \operatorname{nnf}(\varphi \land \psi) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\varphi) \land \operatorname{nnf}(\psi) \;, \\ & \operatorname{nnf}(\neg (\varphi \lor \psi)) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\neg \varphi) \land \operatorname{nnf}(\neg \psi) \;, & \operatorname{nnf}(\neg (\varphi \land \psi)) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\neg \varphi) \lor \operatorname{nnf}(\neg \psi) \;, \\ & \operatorname{nnf}(\neg \exists x. \varphi) \stackrel{\operatorname{def}}{=} \exists x. \operatorname{nnf}(\varphi) \;, & \operatorname{nnf}(\neg \forall x. \varphi) \stackrel{\operatorname{def}}{=} \exists x. \operatorname{nnf}(\neg \varphi) \;, \\ & \operatorname{nnf}(\neg \neg \varphi) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\varphi) \;. & \operatorname{nnf}(\neg \forall x. \varphi) \stackrel{\operatorname{def}}{=} \exists x. \operatorname{nnf}(\neg \varphi) \;, \end{aligned}$$

Exercice 5. Forme normale négative

Mettre sous forme normale négative les formules suivantes :

- (a) $\exists x.(B(x) \Rightarrow \forall y.B(y))$
- (b) $\neg \forall x. \exists y. \forall z. (\neg R(x,z) \lor B(y))$
- (c) $(\exists x.(B(x) \land \neg R(x,y))) \Rightarrow \neg \forall y.R(y,y)$

Rappel : Une formule est sous *forme prénexe* si elle est de la forme $Q_1x_1 \dots Q_nx_n.\psi$ où $Q_i \in \{\forall, \exists\}$ pour tout $1 \le i \le n$ et ψ est sans quantificateur, c'est-à-dire ψ respecte la syntaxe abstraite

(formules sans quantificateur)

$$\psi ::= \ell \mid \psi \lor \psi \mid \psi \land \psi$$
.

Exercice 6. Forme prénexe

Pour chaque formule donnée dans l'Exercice 5, trouver une formule équivalente sous forme normale prénexe. N'oubliez pas d'utiliser $l'\alpha$ -renommage si nécessaire.