

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Gold(III)

Equilibrium reactions	lgK at infinite dilution and $T = 298 K$
	Baes and Mesmer, 1976
$Au(OH)_3 +2 H^+ \rightleftharpoons AuOH^{2+} + 2 H_2O$	1.51
$Au(OH)_3 + H^+ \rightleftharpoons Au(OH)_2^+ + H_2O$	< 1.0
$Au(OH)_3 + H_2O \rightleftharpoons Au(OH)_4^- + H^+$	-11.77
$Au(OH)_3 + 2 H_2O \rightleftharpoons Au(OH)_5^{2-} + 2 H^+$	-25.13
$Au(OH)_5^{2-} + 3 H_2O \rightleftharpoons Au(OH)_6^{3-} + 3 H^+$	<-41.1
$Au(OH)_3(c) \rightleftharpoons Au(OH)_3$	-5.51

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 285.

Distribution diagrams

These diagrams have been computed at two Au(III) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above. Calculations assume T = 298 K for the limiting case of zero ionic strength (i.e., even neglecting plotted ions).

