Teoria Sygnałów w zadaniach

$$\begin{split} f(t) = A \cdot \Pi \left(\frac{t}{2 \cdot t_0} \right) \cdot \cos \left(\frac{2\pi}{t_0} \cdot t \right) & F(\jmath \omega) = A \cdot t_0 \cdot \left[\begin{array}{c} Sa \left(\omega \cdot t_0 + 2\pi \right) \\ -Sa \left(\omega \cdot t_0 - 2\pi \right) \end{array} \right] \end{split}$$

Tomasz Grajek, Krzysztof Wegner

POLITECHNIKA POZNAŃSKA Wydział Informatyki i Telekomunikacji Instytut Telekomunikacji Multimedialnej

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

- 1.1 Podstawowe parametry i miary sygnałów ciągłych
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc i wartość skuteczna sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

2.1 Trygonometryczny szereg Fouriera

2.2 Zespolony szerego Fouriera

Zadanie 1. Wyznacz współczynniki zespolonego szeregu Fouriera dla okresowego sygnału f(t) przedstawionego na rysunku. Narysuj widmo amplitudowe i fazowe sygnału.

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.1)

Współczynnik F_0 wyznaczamy ze wzoru:

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

$$= \frac{A}{2}$$

$$(2.3)$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$.

Współczynniki F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.4)

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{k} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{1}{T} \int_{0}^{\frac{T}{2}} A \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \begin{cases} z = -j \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz = -j \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}} \end{cases} =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}} =$$

$$= -\frac{A}{T \cdot j \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} e^{z} \cdot dz =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}} =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - e^{0} \right) =$$

$$= -\frac{A}{\jmath \cdot k \cdot 2\pi} \left(e^{-\jmath \cdot k \cdot \pi} - 1 \right) =$$

$$= \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-\jmath \cdot k \cdot \pi} - 1 \right)$$

$$= \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Wartość współczynnika F_k wynosi $j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1\right)$

Ostatecznie współczynniki zespolonego szeregu Fouriera dla funkcji przedstawionej na rysunku przyjmują wartości.

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Podstawiając wyznaczone wartości współczynników F_k do wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$f(t) = \frac{A}{2} + \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \left[j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \right] \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$(2.5)$$

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	0	$j \cdot \frac{A}{\pi}$	$\frac{A}{2}$	$-\jmath\cdot\frac{A}{\pi}$	0	$-\jmath \cdot \frac{A}{3\pi}$	0	$-\jmath\cdot rac{A}{5\pi}$
$ F_k $	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{\pi}$	$\frac{A}{2}$	$\frac{A}{\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$
$Arg\{F_k\}$	$\frac{\pi}{2}$	0	$\frac{\pi}{2}$	0	$\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	0	$-\frac{\pi}{2}$

Na podstawie wyznaczonych współczynników F_k możemy narysować widmo amplitudowe $|F_k|$ sygnału f(t).

Widmo aplitudowe sygnału rzeczywistego jest zawsze parzyste.

Podobnie n podstawie wyznaczonych współczynników F_k możemy narysować widmo fazowe $\arg\{F_k\}$ sygnału f(t).

Widmo fazowe sygnału rzeczywistego jest zawsze nieparzyste.

W przypadku sumowania od $k_{\min}=-1$ do $k_{\max}=1$ otrzymujemy:

W przypadku sumowania od $k_{\min}=-3$ do $k_{\max}=3$ otrzymujemy:

W przypadku sumowania od $k_{min} = -5$ do $k_{max} = 5$ otrzymujemy:

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy:

W przypadku sumowania od $k_{\min}=-21$ do $k_{\max}=21$ otrzymujemy:

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 2. Wyznacz współczynniki zespolonego szeregu Fouriera dla okresowego sygnału g(t) przedstawionego na rysunku. Wykorzystaj własności szeregu Fouriera oraz współczynniki zespolonego szeregu Fouriera wyznaczone w zadaniu 1

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$g(x) = \begin{cases} 0 & t \in \left(0 + k \cdot T; \frac{1}{4}T + k \cdot T\right) \\ A & t \in \left(\frac{1}{4}T + k \cdot T; \frac{3}{4}T + k \cdot T\right) \land k \in C \\ 0 & t \in \left(\frac{3}{4}T + k \cdot T; T + k \cdot T\right) \end{cases}$$
(2.6)

Można zauważyć iż sygnał g(t) jest przesuniętą o $\frac{1}{4}T$ w czasie wersją sygnału f(t) z zadania 1

$$g(t) = f\left(t - \frac{1}{4}T\right)$$

Współczynniki zespolonego szeregu Fouriera F_k dla sygnału f(t) wyznaczone w zadaniu 1 wynoszą:

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Korzystając z twierdzenia o przesunięciu w dziedzinie czasu można wyznaczyć współczynniki G_k na podstawie współczynników F_k sygnału f(t) przesunętego w czasie o t_0 jako:

$$g(t) = f(t - t_0)$$
$$G_k = F_k \cdot e^{-j \cdot \frac{2\pi}{T} \cdot k \cdot t_0}$$

Wstawiajać wartości współczynników F_k otrzymujemy

$$G_k = F_k \cdot e^{-j \cdot \frac{2\pi}{T} \cdot k \cdot t_0} =$$

$$= \left\{ t_0 = \frac{1}{4}T \right\} =$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \cdot e^{-j \cdot \frac{2\pi}{T} \cdot k \cdot \frac{1}{4}T}$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \cdot e^{-j \cdot \pi \cdot k \cdot \frac{1}{2}}$$

$$= j \cdot \frac{A \cdot e^{-j \cdot \frac{\pi}{2} \cdot k}}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Podobnie dla G_0 podstawiając F_0 otrzymujemy

$$G_0 = F_0 \cdot e^{-j \cdot \frac{2\pi}{T} \cdot 0 \cdot t_0} =$$

$$= F_0 \cdot e^0 =$$

$$= F_0 \cdot 1 =$$

$$= F_0 =$$

$$= \frac{A}{2}$$

Wartość współczynnika jak k=0 nie ulega zmianie w wyniku przesunięcia sygnału w czasie $G_0=F_0$. Warto zauważyć iż wartość współczynnika dla k=0 jest utożsamiana z wartością średnią sygnału, a ta nie ulega zmianie w wyniku przesunięcia w dziedzinie czasu.

Ostatecznie współczynniki zespolonego szeregu Fouriera dla funkcji przedstawionej na rysunku przyjmują wartości.

$$G_0 = \frac{A}{2}$$

$$G_k = \jmath \cdot \frac{A \cdot e^{-\jmath \cdot \frac{\pi}{2} \cdot k}}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

Analiza sygnałów nieokresowych. Przekształcenie całkowe Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Transmisja sygnałów przez układy liniowe o stałych parametrach (LTI)

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

