In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [3]: file\_path="C:\\Users\\Venkatesh\\TechnoHacks internship\\Data Files\\WA\_Fn-Use
 df=pd.read\_csv(file\_path)
 df

## Out[3]:

|      | Age | Attrition | BusinessTravel    | DailyRate | Department             | DistanceFromHome | Education | Ε |
|------|-----|-----------|-------------------|-----------|------------------------|------------------|-----------|---|
| 0    | 41  | Yes       | Travel_Rarely     | 1102      | Sales                  | 1                | 2         |   |
| 1    | 49  | No        | Travel_Frequently | 279       | Research & Development | 8                | 1         |   |
| 2    | 37  | Yes       | Travel_Rarely     | 1373      | Research & Development | 2                | 2         |   |
| 3    | 33  | No        | Travel_Frequently | 1392      | Research & Development | 3                | 4         |   |
| 4    | 27  | No        | Travel_Rarely     | 591       | Research & Development | 2                | 1         |   |
|      |     |           |                   |           |                        |                  |           |   |
| 1465 | 36  | No        | Travel_Frequently | 884       | Research & Development | 23               | 2         |   |
| 1466 | 39  | No        | Travel_Rarely     | 613       | Research & Development | 6                | 1         |   |
| 1467 | 27  | No        | Travel_Rarely     | 155       | Research & Development | 4                | 3         |   |
| 1468 | 49  | No        | Travel_Frequently | 1023      | Sales                  | 2                | 3         |   |
| 1469 | 34  | No        | Travel_Rarely     | 628       | Research & Development | 8                | 3         |   |

1470 rows × 35 columns

In [4]: # To get first 5 rows of the data

df.head()

## Out[4]:

| Ag         | e  | Attrition | BusinessTravel    | DailyRate | Department             | DistanceFromHome | Education | Educ |
|------------|----|-----------|-------------------|-----------|------------------------|------------------|-----------|------|
| 0 4        | .1 | Yes       | Travel_Rarely     | 1102      | Sales                  | 1                | 2         | Life |
| <b>1</b> 4 | .9 | No        | Travel_Frequently | 279       | Research & Development | 8                | 1         | Life |
| <b>2</b> 3 | 7  | Yes       | Travel_Rarely     | 1373      | Research & Development | 2                | 2         |      |
| <b>3</b> 3 | 3  | No        | Travel_Frequently | 1392      | Research & Development | 3                | 4         | Life |
| 4 2        | 27 | No        | Travel_Rarely     | 591       | Research & Development | 2                | 1         |      |

5 rows × 35 columns

 $local host: 8888/notebooks/Techno Hacks\ internship/Employee\ turnover\ prediction. ipynb$ 

```
In [5]: | df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
```

| #<br> | Columns (total 35 columns | Non-Null Count | Dtype     |
|-------|---------------------------|----------------|-----------|
| 0     | Age                       | 1470 non-null  | <br>int64 |
| 1     | Attrition                 | 1470 non-null  | object    |
| 2     | BusinessTravel            | 1470 non-null  | object    |
| 3     | DailyRate                 | 1470 non-null  | int64     |
| 4     | Department                | 1470 non-null  | object    |
| 5     | DistanceFromHome          | 1470 non-null  | int64     |
| 6     | Education                 | 1470 non-null  | int64     |
| 7     | EducationField            | 1470 non-null  | object    |
| 8     | EmployeeCount             | 1470 non-null  | int64     |
| 9     | EmployeeNumber            | 1470 non-null  | int64     |
| 10    | EnvironmentSatisfaction   | 1470 non-null  | int64     |
| 11    | Gender                    | 1470 non-null  | object    |
| 12    | HourlyRate                | 1470 non-null  | int64     |
| 13    | JobInvolvement            | 1470 non-null  | int64     |
| 14    | JobLevel                  | 1470 non-null  | int64     |
| 15    | JobRole                   | 1470 non-null  | object    |
| 16    | JobSatisfaction           | 1470 non-null  | int64     |
| 17    | MaritalStatus             | 1470 non-null  | object    |
| 18    | MonthlyIncome             | 1470 non-null  | int64     |
| 19    | MonthlyRate               | 1470 non-null  | int64     |
| 20    | NumCompaniesWorked        | 1470 non-null  | int64     |
| 21    | Over18                    | 1470 non-null  | object    |
| 22    | OverTime                  | 1470 non-null  | object    |
| 23    | PercentSalaryHike         | 1470 non-null  | int64     |
| 24    | PerformanceRating         | 1470 non-null  | int64     |
| 25    | RelationshipSatisfaction  | 1470 non-null  | int64     |
| 26    | StandardHours             | 1470 non-null  | int64     |
| 27    | StockOptionLevel          | 1470 non-null  | int64     |
| 28    | TotalWorkingYears         | 1470 non-null  | int64     |
| 29    | TrainingTimesLastYear     | 1470 non-null  | int64     |
| 30    | WorkLifeBalance           | 1470 non-null  | int64     |
| 31    | YearsAtCompany            | 1470 non-null  | int64     |
| 32    | YearsInCurrentRole        | 1470 non-null  | int64     |
| 33    | YearsSinceLastPromotion   | 1470 non-null  | int64     |
| 34    | YearsWithCurrManager      | 1470 non-null  | int64     |
| dtype | es: int64(26), object(9)  |                |           |
| momor | ov ucago: 402 1: KB       |                |           |

memory usage: 402.1+ KB

```
In [6]: # To get the number of rows and columns
        df.shape
```

```
Out[6]: (1470, 35)
```

# 

| Out[7]: | Age                      | int64  |
|---------|--------------------------|--------|
|         | Attrition                | object |
|         | BusinessTravel           | object |
|         | DailyRate                | int64  |
|         | Department               | object |
|         | DistanceFromHome         | int64  |
|         | Education                | int64  |
|         | EducationField           | object |
|         | EmployeeCount            | int64  |
|         | EmployeeNumber           | int64  |
|         | EnvironmentSatisfaction  | int64  |
|         | Gender                   | object |
|         | HourlyRate               | int64  |
|         | JobInvolvement           | int64  |
|         | JobLevel                 | int64  |
|         | JobRole                  | object |
|         | JobSatisfaction          | int64  |
|         | MaritalStatus            | object |
|         | MonthlyIncome            | int64  |
|         | MonthlyRate              | int64  |
|         | NumCompaniesWorked       | int64  |
|         | Over18                   | object |
|         | OverTime                 | object |
|         | PercentSalaryHike        | int64  |
|         | PerformanceRating        | int64  |
|         | RelationshipSatisfaction | int64  |
|         | StandardHours            | int64  |
|         | StockOptionLevel         | int64  |
|         | TotalWorkingYears        | int64  |
|         | TrainingTimesLastYear    | int64  |
|         | WorkLifeBalance          | int64  |
|         | YearsAtCompany           | int64  |
|         | YearsInCurrentRole       | int64  |
|         | YearsSinceLastPromotion  | int64  |
|         | YearsWithCurrManager     | int64  |
|         | dtype: object            |        |
|         | J. J                     |        |

In [9]: df.select\_dtypes('object')

Out[9]:

|        | Attrition  | BusinessTravel    | Department             | EducationField | Gender | JobRole                      | MaritalStat |
|--------|------------|-------------------|------------------------|----------------|--------|------------------------------|-------------|
| 0      | Yes        | Travel_Rarely     | Sales                  | Life Sciences  | Female | Sales<br>Executive           | Sin         |
| 1      | No         | Travel_Frequently | Research & Development | Life Sciences  | Male   | Research<br>Scientist        | Marri       |
| 2      | Yes        | Travel_Rarely     | Research & Development | Other          | Male   | Laboratory<br>Technician     | Sin         |
| 3      | No         | Travel_Frequently | Research & Development | Life Sciences  | Female | Research<br>Scientist        | Marri       |
| 4      | No         | Travel_Rarely     | Research & Development | Medical        | Male   | Laboratory<br>Technician     | Marri       |
|        |            |                   |                        | ***            |        | •••                          |             |
| 1465   | No         | Travel_Frequently | Research & Development | Medical        | Male   | Laboratory<br>Technician     | Marri       |
| 1466   | No         | Travel_Rarely     | Research & Development | Medical        | Male   | Healthcare<br>Representative | Marri       |
| 1467   | No         | Travel_Rarely     | Research & Development | Life Sciences  | Male   | Manufacturing<br>Director    | Marri       |
| 1468   | No         | Travel_Frequently | Sales                  | Medical        | Male   | Sales<br>Executive           | Marri       |
| 1469   | No         | Travel_Rarely     | Research & Development | Medical        | Male   | Laboratory<br>Technician     | Marri       |
| 1470 r | rows × 9 c | columns           |                        |                |        |                              |             |
| 4      |            |                   |                        |                |        |                              | <b>&gt;</b> |
|        |            |                   |                        |                |        |                              |             |

In [10]: df.select\_dtypes('int64')

Out[10]:

|      | Age | DailyRate | DistanceFromHome | Education | EmployeeCount | EmployeeNumber | Enviror |
|------|-----|-----------|------------------|-----------|---------------|----------------|---------|
| 0    | 41  | 1102      | 1                | 2         | 1             | 1              |         |
| 1    | 49  | 279       | 8                | 1         | 1             | 2              |         |
| 2    | 37  | 1373      | 2                | 2         | 1             | 4              |         |
| 3    | 33  | 1392      | 3                | 4         | 1             | 5              |         |
| 4    | 27  | 591       | 2                | 1         | 1             | 7              |         |
|      |     |           |                  |           |               |                |         |
| 1465 | 36  | 884       | 23               | 2         | 1             | 2061           |         |
| 1466 | 39  | 613       | 6                | 1         | 1             | 2062           |         |
| 1467 | 27  | 155       | 4                | 3         | 1             | 2064           |         |
| 1468 | 49  | 1023      | 2                | 3         | 1             | 2065           |         |
| 1469 | 34  | 628       | 8                | 3         | 1             | 2068           |         |
|      |     |           |                  |           |               |                |         |

1470 rows × 26 columns

```
# Get a count of the empty values for each column
In [18]:
         df.isna().sum()
Out[18]: Age
                                      0
         Attrition
                                      0
                                      0
         BusinessTravel
         DailyRate
                                      0
         Department
                                      0
```

DistanceFromHome 0 Education 0 EducationField 0 EmployeeCount 0 EmployeeNumber 0 EnvironmentSatisfaction 0 0 Gender HourlyRate 0 0 JobInvolvement 0 JobLevel JobRole 0 JobSatisfaction 0 0 MaritalStatus MonthlyIncome 0 MonthlyRate 0 NumCompaniesWorked 0 0 Over18 OverTime 0 PercentSalaryHike 0 PerformanceRating 0 RelationshipSatisfaction 0 StandardHours 0 StockOptionLevel 0 TotalWorkingYears 0 TrainingTimesLastYear 0 WorkLifeBalance 0 YearsAtCompany 0 YearsInCurrentRole 0 YearsSinceLastPromotion 0 YearsWithCurrManager 0 dtype: int64

```
In [9]: # check for any missing values in the data
        df.isnull().values.any()
```

Out[9]: False

In [10]: df.describe()

| Oi | ıt l | [1 | 0] | ١: |
|----|------|----|----|----|
| _  |      | _  | _  | ٠. |

|       | Age         | DailyRate   | DistanceFromHome | Education   | EmployeeCount | EmployeeNu <sub>1</sub> |
|-------|-------------|-------------|------------------|-------------|---------------|-------------------------|
| count | 1470.000000 | 1470.000000 | 1470.000000      | 1470.000000 | 1470.0        | 1470.00                 |
| mean  | 36.923810   | 802.485714  | 9.192517         | 2.912925    | 1.0           | 1024.86                 |
| std   | 9.135373    | 403.509100  | 8.106864         | 1.024165    | 0.0           | 602.02                  |
| min   | 18.000000   | 102.000000  | 1.000000         | 1.000000    | 1.0           | 1.00                    |
| 25%   | 30.000000   | 465.000000  | 2.000000         | 2.000000    | 1.0           | 491.25                  |
| 50%   | 36.000000   | 802.000000  | 7.000000         | 3.000000    | 1.0           | 1020.50                 |
| 75%   | 43.000000   | 1157.000000 | 14.000000        | 4.000000    | 1.0           | 1555.75                 |
| max   | 60.000000   | 1499.000000 | 29.000000        | 5.000000    | 1.0           | 2068.00                 |

8 rows × 26 columns

In [16]: df.select\_dtypes('object').describe()

# Out[16]:

|        | Attrition | BusinessTravel | Department             | EducationField | Gender | JobRole            | MaritalStatus |
|--------|-----------|----------------|------------------------|----------------|--------|--------------------|---------------|
| count  | 1470      | 1470           | 1470                   | 1470           | 1470   | 1470               | 1470          |
| unique | 2         | 3              | 3                      | 6              | 2      | 9                  | 3             |
| top    | No        | Travel_Rarely  | Research & Development | Life Sciences  | Male   | Sales<br>Executive | Married       |
| freq   | 1233      | 1043           | 961                    | 606            | 882    | 326                | 673           |
| 4      |           |                |                        |                |        |                    | <b>•</b>      |

In [14]: df.select\_dtypes('int64').describe()

## Out[14]:

|       | Age         | DailyRate   | DistanceFromHome | Education   | EmployeeCount | EmployeeNu |
|-------|-------------|-------------|------------------|-------------|---------------|------------|
| count | 1470.000000 | 1470.000000 | 1470.000000      | 1470.000000 | 1470.0        | 1470.00    |
| mean  | 36.923810   | 802.485714  | 9.192517         | 2.912925    | 1.0           | 1024.86    |
| std   | 9.135373    | 403.509100  | 8.106864         | 1.024165    | 0.0           | 602.02     |
| min   | 18.000000   | 102.000000  | 1.000000         | 1.000000    | 1.0           | 1.00       |
| 25%   | 30.000000   | 465.000000  | 2.000000         | 2.000000    | 1.0           | 491.25     |
| 50%   | 36.000000   | 802.000000  | 7.000000         | 3.000000    | 1.0           | 1020.50    |
| 75%   | 43.000000   | 1157.000000 | 14.000000        | 4.000000    | 1.0           | 1555.75    |
| max   | 60.000000   | 1499.000000 | 29.000000        | 5.000000    | 1.0           | 2068.00    |
|       |             |             |                  |             |               |            |

8 rows × 26 columns

```
In [48]: # Drop is used to remove
# axis : 1 means it will drop the column
# axis : 0 means it will drop the row
df1=df.drop(['Over18', 'EmployeeNumber','EmployeeCount','StandardHours'],axis=
df1
```

#### Out[48]:

|      | Age | Attrition | BusinessTravel    | DailyRate | Department             | DistanceFromHome | Education | Ε |
|------|-----|-----------|-------------------|-----------|------------------------|------------------|-----------|---|
| 0    | 41  | Yes       | Travel_Rarely     | 1102      | Sales                  | 1                | 2         |   |
| 1    | 49  | No        | Travel_Frequently | 279       | Research & Development | 8                | 1         |   |
| 2    | 37  | Yes       | Travel_Rarely     | 1373      | Research & Development | 2                | 2         |   |
| 3    | 33  | No        | Travel_Frequently | 1392      | Research & Development | 3                | 4         |   |
| 4    | 27  | No        | Travel_Rarely     | 591       | Research & Development | 2                | 1         |   |
|      |     |           |                   |           |                        |                  |           |   |
| 1465 | 36  | No        | Travel_Frequently | 884       | Research & Development | 23               | 2         |   |
| 1466 | 39  | No        | Travel_Rarely     | 613       | Research & Development | 6                | 1         |   |
| 1467 | 27  | No        | Travel_Rarely     | 155       | Research & Development | 4                | 3         |   |
| 1468 | 49  | No        | Travel_Frequently | 1023      | Sales                  | 2                | 3         |   |
| 1469 | 34  | No        | Travel_Rarely     | 628       | Research & Development | 8                | 3         |   |

1470 rows × 31 columns

```
In [22]: # To get all the columns in the data df.columns
```

```
# To get all the categorical column names in the data
In [25]:
          df.select dtypes('object').columns
Out[25]: Index(['Attrition', 'BusinessTravel', 'Department', 'EducationField', 'Gende
                  'JobRole', 'MaritalStatus', 'Over18', 'OverTime'],
                 dtype='object')
          # To get all the numerical column names in the data
          df.select dtypes('int64').columns
Out[26]: Index(['Age', 'DailyRate', 'DistanceFromHome', 'Education', 'EmployeeCount',
                  'EmployeeNumber', 'EnvironmentSatisfaction', 'HourlyRate',
'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome',
                  'MonthlyRate', 'NumCompaniesWorked', 'PercentSalaryHike',
                  'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours',
                  'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
                  'YearsSinceLastPromotion', 'YearsWithCurrManager'],
                 dtype='object')
In [27]: # get a count of the number of employees that stayed and left the company
          df['Attrition'].value counts()
Out[27]: Attrition
          No
                  1233
                   237
          Yes
          Name: count, dtype: int64
In [28]:
          count=df['Attrition'].value_counts().keys()
          values=df['Attrition'].value counts().to list()
          Attrition df=pd.DataFrame(zip(count,values),columns=['Attrition','count'])
          Attrition df
Out[28]:
              Attrition count
           0
                  No
                       1233
           1
                  Yes
                        237
```

```
In [29]:
        for i in df:
           if dict(df.dtypes)[i]=='object':
               count=df[i].value_counts().keys()
               values=df[i].value_counts().to_list()
               print(pd.DataFrame(zip(count, values), columns=[i, 'count']))
               print("----")
          Attrition count
        0
                No 1233
               Yes
                     237
        1
             BusinessTravel count
              Travel Rarely 1043
        1 Travel Frequently
                             277
               Non-Travel
                             150
                     Department count
          Research & Development
        1
                          Sales
                                 446
        2
                 Human Resources
                                  63
            EducationField count
        0
             Life Sciences
        1
                  Medical
                            464
                 Marketing 159
        2
        3
          Technical Degree 132
        4
                    Other 82
        5
           Human Resources
                            27
           Gender count
        0
            Male 882
                   588
        1 Female
                           JobRole count
                   Sales Executive 326
        1
                 Research Scientist
                                    292
        2
              Laboratory Technician
                                  259
        3
             Manufacturing Director
                                   145
        4 Healthcare Representative
                                  131
        5
                          Manager
                                  102
                                   83
        6
               Sales Representative
        7
                  Research Director
                                     80
                   Human Resources
                                     52
        _____
          MaritalStatus count
        0
              Married
                         673
        1
                Single
                         470
              Divorced
                         327
          Over18 count
            Y 1470
          OverTime count
              No 1054
                    416
              Yes
```

```
In [13]: plt.figure(figsize=(5,4))
    plt.title('Bar plot')
    plt.xlabel('Attrition')
    plt.ylabel('count')
    plt.bar('Attrition','count',data=Attrition_df)

plt.show()
```





```
In [15]: (1233 - 237) / 1233
```

Out[15]: 0.8077858880778589

```
In [30]: # show the number of employees that Left and stayed by age
plt.figure(figsize=(12,5))
sns.countplot(x='Age',hue='Attrition',data=df,palette='colorblind')
plt.show()
```





```
In [35]: plt.figure(figsize=(10,5))
    plt.title('EducationField w.r.t Attrition')
    sns.countplot(x='EducationField',hue='Attrition',data=df,palette='hot')
    plt.xticks(rotation=45)
    plt.show()
```



#### Out[186]:

|   | Education | EnvironmentSatisfaction | Joblnvolvement | JobSatisfaction | PerformanceRating | Rela |
|---|-----------|-------------------------|----------------|-----------------|-------------------|------|
| 0 | 2         | 2                       | 3              | 4               | 3                 |      |
| 1 | 1         | 3                       | 2              | 2               | 4                 |      |
| 2 | 2         | 4                       | 2              | 3               | 3                 |      |
| 3 | 4         | 4                       | 3              | 3               | 3                 |      |
| 4 | 1         | 1                       | 3              | 2               | 3                 |      |
| 4 |           |                         |                |                 |                   | •    |

```
In [50]: edu_map={1:'Below College',2:'College',3:'Bachelor',4:'Master',5:'Doctor'}
    plt.title('Education w.r.t Attrition')
    sns.countplot(x=df['Education'].map(edu_map),hue='Attrition',data=df,palette='
    plt.show()
```



C:\Users\Venkatesh\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserW
arning: The figure layout has changed to tight
 self.\_figure.tight\_layout(\*args, \*\*kwargs)



```
In [58]: n= sns.FacetGrid(df1, col='Attrition', height=4, aspect=2)
    n.map(plt.hist, 'JobLevel')
    plt.show()
```

C:\Users\Venkatesh\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserW
arning: The figure layout has changed to tight
 self.\_figure.tight\_layout(\*args, \*\*kwargs)



### percentile-quantile

```
In [81]: # you can find mean value using pandas
mean_rate=df['DailyRate'].mean()
round(mean_rate,2)
```

Out[81]: 802.49

```
In [99]: # you can also find mean by using numpy
    mean_rate=np.mean(df['DailyRate'])
    median_rate=np.median(df['DailyRate'])
    min_rate=np.min(df['DailyRate'])
    max_rate=np.max(df['DailyRate'])
    std_rate=np.std(df['DailyRate'])

list1=[mean_rate,median_rate,min_rate,max_rate,std_rate]
    index=['Mean','Median','Min','Max','Std']
    pd.DataFrame(list1,columns=['DailyRate'],index=index)
```

#### Out[99]:

|        | DailyRate   |
|--------|-------------|
| Mean   | 802.485714  |
| Median | 802.000000  |
| Min    | 102.000000  |
| Max    | 1499.000000 |
| Std    | 403.371829  |

DailyData

```
per_25=np.percentile(df['DailyRate'],25)
In [94]:
         per 50=np.percentile(df['DailyRate'],50)
         per_75=np.percentile(df['DailyRate'],75)
         print(per_25,per_50,per_75)
         465.0 802.0 1157.0
In [96]: round(np.quantile(df['DailyRate'],0.50),2)
Out[96]: 802.0
         mean rate=np.mean(df['DailyRate'])
In [98]:
         median rate=np.median(df['DailyRate'])
         min rate=np.min(df['DailyRate'])
         max rate=np.max(df['DailyRate'])
         std_rate=np.std(df['DailyRate'])
         list1=[mean_rate,median_rate,min_rate,max_rate,std_rate,per_25,per_50,per_75]
         index=['Mean','Median','Min','Max','Std','25%','50%','75%']
         pd.DataFrame(list1,columns=['DailyRate'],index=index)
```

### Out[98]:

|        | DailyRate   |  |  |  |
|--------|-------------|--|--|--|
| Mean   | 802.485714  |  |  |  |
| Median | 802.000000  |  |  |  |
| Min    | 102.000000  |  |  |  |
| Max    | 1499.000000 |  |  |  |
| Std    | 403.371829  |  |  |  |
| 25%    | 465.000000  |  |  |  |
| 50%    | 802.000000  |  |  |  |
| 75%    | 1157.000000 |  |  |  |

#### emperical rule

```
In [102]:
           df['DailyRate']
Out[102]: 0
                    1102
           1
                     279
           2
                    1373
           3
                    1392
           4
                     591
                    . . .
           1465
                     884
           1466
                     613
           1467
                     155
                    1023
           1468
           1469
                     628
           Name: DailyRate, Length: 1470, dtype: int64
In [103]: df['DailyRate']<465</pre>
Out[103]: 0
                    False
                     True
           2
                    False
           3
                    False
           4
                    False
                    . . .
           1465
                    False
           1466
                    False
           1467
                     True
           1468
                    False
           1469
                    False
           Name: DailyRate, Length: 1470, dtype: bool
```

In [105]: # if you want to get only data has DailyRate has 465
# i want to retrieve a true values
cond=df['DailyRate']<465
df[cond]</pre>

Out[105]:

|     | Age | Attrition | BusinessTravel    | DailyRate | Department             | DistanceFromHome | Education | Educ |
|-----|-----|-----------|-------------------|-----------|------------------------|------------------|-----------|------|
| 1   | 49  | No        | Travel_Frequently | 279       | Research & Development | 8                | 1         | Lif  |
| 8   | 38  | No        | Travel_Frequently | 216       | Research & Development | 23               | 3         | Lif  |
| 11  | 29  | No        | Travel_Rarely     | 153       | Research & Development | 15               | 2         | Lif  |
| 14  | 28  | Yes       | Travel_Rarely     | 103       | Research & Development | 24               | 3         | Lif  |
| 16  | 32  | No        | Travel_Rarely     | 334       | Research & Development | 5                | 2         | Lif  |
|     |     |           |                   |           |                        |                  |           |      |
| 454 | 45  | No        | Travel_Rarely     | 374       | Sales                  | 20               | 3         | Lif  |
| 458 | 35  | No        | Travel_Rarely     | 287       | Research & Development | 1                | 4         | Lif  |
| 461 | 50  | Yes       | Travel_Rarely     | 410       | Sales                  | 28               | 3         |      |
| 463 | 31  | No        | Non-Travel        | 325       | Research & Development | 5                | 3         |      |
| 467 | 27  | No        | Travel_Rarely     | 155       | Research & Development | 4                | 3         | Lif  |

35 rows × 35 columns

In [117]: val\_minus\_1\_sigma,val\_plus\_1\_sigma

Out[117]: (399.1138856848022, 1205.8575428866263)

In [110]: cond1=df['DailyRate']>val\_minus\_1\_sigma
 cond2=df['DailyRate']<val\_plus\_1\_sigma
 len(df[cond1&cond2])</pre>

Out[110]: 850

In [118]: val\_minus\_2\_sigma,val\_plus\_2\_sigma

Out[118]: (-4.257942916109869, 1609.2293714875384)

```
In [119]: val_minus_3_sigma,val_plus_3_sigma
```

```
Out[119]: (-407.62977151702194, 2012.6012000884505)
```

```
In [121]: cond1=df['DailyRate']>val_minus_3_sigma
    cond2=df['DailyRate']<val_plus_3_sigma
    len(df[cond1&cond2])</pre>
```

Out[121]: 1470

#### histogram

```
In [150]: data=df['Age']
plt.hist(data,bins=30)
```

```
Out[150]: (array([ 17., 11., 29., 14., 26., 65., 48., 116., 60., 69., 119., 77., 147., 50., 58., 99., 40., 78., 33., 41., 57., 19., 54., 19., 18., 37., 22., 18., 14., 15.]), array([18., 19.4, 20.8, 22.2, 23.6, 25., 26.4, 27.8, 29.2, 30.6, 32., 33.4, 34.8, 36.2, 37.6, 39., 40.4, 41.8, 43.2, 44.6, 46., 47.4, 48.8, 50.2, 51.6, 53., 54.4, 55.8, 57.2, 58.6, 60.]), <BarContainer object of 30 artists>)
```



```
In [151]: data=df['Age']
    plt.hist(data,bins=30)
    plt.title('Histogram')
    plt.xlabel('Intervals')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [152]: frequency,interval,n=plt.hist(data,bins=40)

# returning 3 values

# print(frequency)
# print(interval)
# print(n)
```



## pie-chart

```
In [178]: values=df['BusinessTravel'].value_counts().values.tolist()
    names=df['BusinessTravel'].value_counts().keys().tolist()
    values,names
```

Out[178]: ([1043, 277, 150], ['Travel\_Rarely', 'Travel\_Frequently', 'Non-Travel'])





```
In [185]: value=df['BusinessTravel'].value_counts()
    ax=value.plot(kind='bar')
    ax.bar_label(ax.containers[0])
    plt.title('bar chart')
    plt.ylabel('count')
    plt.show()
```



In [ ]: