

Optimal binary search tree \square

lard Accuracy: 72.18%

Submissions: 5118

7:51-9:57

Given a sorted array **keys[0.. n-1]** of search keys and an array **freq[0.. n-1]** of frequency counts, where freq[i] is the number of searches to keys[i]. Construct a binary search tree of all keys such that the total cost of all the searches is as small as possible.

Points: 8

Let us first define the cost of a BST. The cost of a BST node is level of that node multiplied by its frequency. Level of root is 1.

Example 1:

New Section 1 Page 4

Proof inc exC Prouf andact Inc- eng V - 10, 20, 30, 70, 50 1 - 2 3 1 30,40,50 0 0 (20 304 05) 30

New Section 1 Page 5

316. Remove Duplicate Letters

Medium

O Add to List

Share

Given a string s, remove duplicate letters so that every letter appears once and only once. You must make sure your result is the smallest in lexicographical order among all possible results.

Example 1:

Input: s = "bcabc" Output: "abc"

Example 2:

Input: s = "cbacdcbc"

Output: "acdb"

Constraints:

إ فعللا

now ?

(acdb

f. p & ¿ d f. b f. C-148750

acdb

6-1 2/ KO

de 10

10 notonic = (acdb c c did life = cadb cb = d11:53-12:03 402. Remove K Digits **△** 6611 **♀** 277 Add to List Share

Given string num representing a non-negative integer $\ num$, and an integer $\ k$, return the smallest possible integer after removing $\ k$ digits from $\ num$.

Example 1:

Input: num = "1432219", k = 3

Output: "1219"

Explanation: Remove the three digits 4, 3, and 2 to form the new number 1219 which is

Input: num = "1432219", k = 3

Output: "1219"

Explanation: Remove the three digits 4, 3, and 2 to form the new number 1219 which is

the smallest.

Example 2:

123456

10456

6/5 Y O X

450

6540...

New Section 1 Page 11