Assignment-2

Source Code:

```
#Donut Chart
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read\_csv("C:\\\\\)vogap\\\)bownloads\\\)supermarket\_sales - Sheet1.csv")
df = pd.DataFrame(data)
# Grouping data by branch and gender and summing up gross income
grouped_data = df.groupby(['Branch', 'Gender'])['gross income'].sum().reset_index()
# Plotting the donut chart
plt.figure(figsize=(8, 6))
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99']
total_income = grouped_data['gross income'].sum()
plt.pie(grouped_data['gross income'], labels=grouped_data.apply(lambda x: f"{x['Branch']} - {x['Gender']}", axis=1),
autopct=lambda p: '{:.0f}'.format(p * total_income / 100), startangle=90, colors=colors)
plt.title('Gross Income Distribution by Branch and Gender')
plt.gca().add_artist(plt.Circle((0,0),0.70,fc='white'))
plt.axis('equal')
plt.show()
```

OUTPUT:

Gross Income Distribution by Branch and Gender

Source Code:

#Area Chart

import pandas as pd

import matplotlib.pyplot as plt

 $data = pd.read_csv("C:\\\\\)vogap\\\)Downloads\\\)supermarket_sales - Sheet1.csv")$

df = pd.DataFrame(data)

Grouping data by branch and product line and summing up gross income

grouped_data = df.groupby(['Payment', 'Product line'])['gross income'].sum().reset_index()

Pivot the data for visualization

pivot_data = grouped_data.pivot(index='Payment', columns='Product line', values='gross income').fillna(0)

Plotting the area chart

plt.figure(figsize=(10, 6))

```
pivot_data.plot.area(stacked=True, cmap='tab10')

plt.title('Historical Sales Data by Payment and Product Line')

plt.xlabel('Payment')

plt.ylabel('Product Line')

plt.xticks(rotation=0)

plt.legend(title='Product line', bbox_to_anchor=(1.05, 1), loc='upper left')

plt.tight_layout()

plt.show()
```

OUTPUT:

Source Code:

#Text Table

import pandas as pd

import matplotlib.pyplot as plt

 $data = pd.read_csv("C:\Users\\vogap\\Downloads\\supermarket_sales - Sheet2.csv")$

```
df = pd.DataFrame(data)

# Convert DataFrame to tabular format with pipe format
table = tabulate(df, headers='keys', tablefmt='plain', showindex=False)
```

Print the table

print(table)

OUTPUT:

Branch	City	Customer type	Gender	Product line	Date	Total	Payment	Rating	Quanti
ty									
A	Yangon	Member	Female	Health and beauty	1/5/2019	548.971	Ewallet	9.1	
7									
C	Naypyitaw	Normal	Female	Electronic accessories	3/8/2019	80.22	Cash	9.6	
5									
A	Yangon	Normal	Male	Home and lifestyle	3/3/2019	340.526	Credit card	7.4	
7									
A	Yangon	Member	Male	Health and beauty	1/27/2019	489.048	Ewallet	8.4	
8									
A	Yangon	Normal	Male	Sports and travel	2/8/2019	634.379	Ewallet	5.3	
7									
C	Naypyitaw	Normal	Male	Electronic accessories	3/25/2019	627.616	Ewallet	4.1	
7									
A	Yangon	Member	Female	Electronic accessories	2/25/2019	433.692	Ewallet	5.8	
6									
C	Naypyitaw	Normal	Female	Home and lifestyle	2/24/2019	772.38	Ewallet	8	
10									
A	Yangon	Member	Female	Health and beauty	1/10/2019	76.146	Credit card	7.2	

Source Code:

#Highlighted table

import pandas as pd

Sample data

 $data = pd.read_csv("C:\\\\\)vogap\\\)Downloads\\\)supermarket_sales - Sheet2.csv")$

Convert data to DataFrame

df = pd.DataFrame(data)

Define function to highlight maximum value in each column

def highlight_max(s):

```
is_max = s == s.max()
```

return ['background-color: yellow' if v else " for v in is_max]

Apply highlight function to the DataFrame

highlighted_df = df.style.apply(highlight_max)

Display the highlighted table

highlighted_df

OUTPUT:

Out[28]:	E	Branch	City	Customer type	Gender	Product line	Date	Total	Payment	Rating	Quantity
	0	А	Yangon	Member	Female	Health and beauty	1/5/2019	548.971500	Ewallet	9.100000	7
	1	С	Naypyitaw	Normal	Female	Electronic accessories	3/8/2019	80.220000	Cash	9.600000	5
	2	Α	Yangon	Normal	Male	Home and lifestyle	3/3/2019	340.525500	Credit card	7.400000	7
	3	Α	Yangon	Member	Male	Health and beauty	1/27/2019	489.048000	Ewallet	8.400000	8
	4	Α	Yangon	Normal	Male	Sports and travel	2/8/2019	634.378500	Ewallet	5.300000	7
	5	С	Naypyitaw	Normal	Male	Electronic accessories	3/25/2019	627.616500	Ewallet	4.100000	7
	6	Α	Yangon	Member	Female	Electronic accessories	2/25/2019	433.692000	Ewallet	5.800000	6
	7	С	Naypyitaw	Normal	Female	Home and lifestyle	2/24/2019	772.380000	Ewallet	8.000000	10
	8	А	Yangon	Member	Female	Health and beauty	1/10/2019	76.146000	Credit card	7.200000	2
	9	В	Mandalay	Member	Female	Food and beverages	2/20/2019	172.746000	Credit card	5.900000	3
	10	В	Mandalay	Member	Female	Fashion accessories	2/6/2019	60.816000	Ewallet	4.500000	4

Source Code:

#WordCloud

```
from wordcloud import WordCloud
```

import matplotlib.pyplot as plt

Description

description = "The growth of supermarkets in most populated cities is increasing and market competitions are also high."

```
# Sample data with updated 'City' data
```

```
data = {

'Branch': ['Branch A', 'Branch B', 'Branch C'],

'Gender': ['Male', 'Female', 'Male'],

'City': ['Yangon', 'Mandalay', 'Naypyitaw'], # Updated 'City' data

'Product line': ['Health and beauty', 'Sports and travel', 'Home and lifestyle']

}

# Combine text from description and columns into a single string

text = description + ' ' + ' '.join(' '.join(str(value) for value in row) for row in zip(*data.values()))

# Generate word cloud

wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
```

```
# Plot word cloud
plt.figure(figsize=(10, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud of Branch And product Line')
plt.show()
```

OUTPUT:

Source Code:

#Funnel Chart

```
import matplotlib.pyplot as plt
# Provided sample data
data = pd.read_csv("C:\\Users\\yogap\\Downloads\\supermarket_sales - Sheet1.csv")
df = pd.DataFrame(data)
# Plotting the funnel chart
plt.figure(figsize=(8, 6))
plt.barh(data['Product line'], data['Total'], color='skyblue')
plt.xlabel('Total Sales')
plt.ylabel('Product line')
```

plt.title('Funnel Chart of Total Sales by product Line')
plt.gca().invert_yaxis() # Invert y-axis to show the top-down funnel shape
plt.show()

OUTPUT:

Source Code:

#Waterfall Chart

```
import matplotlib.pyplot as plt
```

Sample data

```
data = {
```

}

'Product line': ['Health and beauty', 'Sports and travel', 'Home and lifestyle', 'Fashion accessories', 'Electronic accessories', 'Total Costs', 'Net Profit'],

```
'Amount': [100000, 60000, 30000, 90000, -20000, -50000, 40000]
```

Calculate cumulative sum

data['Cumulative'] = [sum(data['Amount'][:i+1]) for i in range(len(data['Amount']))]

```
# Plot waterfall chart

plt.figure(figsize=(10, 6))

plt.bar(data['Product line'], data['Amount'], color='b', alpha=0.5, align='center')

plt.plot(data['Product line'], data['Cumulative'], color='orange', marker='o')

plt.title('Waterfall Chart of Product Line and Costs')

plt.xlabel('Product line')

plt.ylabel('Amount')

plt.xticks(rotation=45)

plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.tight_layout()

plt.show()
```

OUTPUT:

