Notations

This document contains the notations used throughout the project.

General Notations

- A lowercase letter represents a scalar. eg. a
- A lowercase bold letter represents a vector. eg. a
- An uppercase letter represents a matrix. eg. A

Numpy Implementation Specific Notations

Numpy use row first notation, this means that the first index of a matrix is the row index and the second index is the column index. For example, $A_{i,j}$ is the element at row i and column j of matrix A.

This also means that a row vector is a matrix with shape (1, n) and a column vector is a matrix with shape (n, 1). See the notebook Preliminaries.ipynb for more details.

- A vector **a** has a shape of (n,) or (n,1) depending on situtaion (I'll prefer the first one if not needed otherwise.). I'm not going to use (1,n) as the shape of a vector.
- A matrix A has a shape of (m, n), where m is the number of rows and n is the number of columns.
- In numpy, counting starts from 0 however, in the following notations, I'll use 1-based indexing.

Indexing

- I'll use a_i to represent the *i*th element of vector **a**. For example, a_1 is the first element of vector **a**.
- I'll use $a_{i,j}$ to represent the element at row i and column j of matrix A. For example, $a_{1,2}$ is the element at row 1 and column 2 of matrix A.
- $\mathbf{a}^{[i]}$ is the *i*th column of matrix A.
- $\mathbf{a_i}$ is the jth row of matrix A.

Neural Network Specific Notations

The notation is borrowed from the course Neural Networks and Deep Learning by Andrew Ng with some modifications.

General

Super script [l] represents the lth layer while superscript (i) represents the ith training example.

Sizes

- m is the number of training examples.
- n_x is the number of features. (input size)
- n_y is the number of classes. (output size)
- $n^{[l]}$ is the number of neurons in layer l.
- L is the number of layers in the network. (Excluding input layer)

Objects

- $X \in \mathbb{R}^{n_x \times m}$ is the input matrix, where each column is a training example. So, X is a matrix with shape (n_x, m) .
- $x^{(i)} \in \mathbb{R}^{n_x}$ is the ith training example. So, $x^{(i)}$ is a column vector with shape $(n_x, 1)$.
- $Y \in \mathbb{R}^{n_y \times m}$ is the output matrix, where each column is a training example. So, Y is a matrix with shape (n_y, m) .
- y⁽ⁱ⁾ ∈ ℝ^{ny} is the output label for ith example.
 W^[l] ∈ ℝ<sup>n^[l]×n^[l-1] is the weight matrix of layer l. This means that W^[l] is
 </sup> a matrix with shape $(n^{[l]}, n^{[l-1]})$.
- $b^{[l]} \in \mathbb{R}^{n^{[l]}}$ is the bias vector of layer l. This means that $b^{[l]}$ is a column vector with shape $(n^{[l]},)$.
- $\hat{y} \in \mathbb{R}^m$ is the predicted output label. This is an exception where I'll use lowercase, normal font for a vector.
- $\hat{Y} \in \mathbb{R}^{n_y \times m}$ is the predicted output matrix. This is the one hot encoded version of \hat{y} .

Forward Propagation and Activation Functions

- $Z^{[l]} \in \mathbb{R}^{n^{[l]} \times m}$ is the linear output of layer l. This means that $Z^{[l]}$ is a matrix with shape $(n^{[l]}, m)$.
- $A^{[l]} \in \mathbb{R}^{n^{[l]} \times m}$ is the activation output of layer l. Its shape is the same as
- $g^{[l]}$ is the activation function of layer l.
- $\mathbf{a}^{[l](i)} \in \mathbb{R}^{n^{[l]}}$ is the i^{th} training example's output of layer l. This means that $\mathbf{a}^{[\mathbf{l}](\mathbf{i})}$ is a column vector with shape $(n^{[l]}, 1)$.
- $\mathbf{a}_{i}^{[l]}$ is the output of the i^{th} neuron of layer l.

Backward Propagation

- $\mathcal{J}(X, W, \mathbf{b}, \mathbf{y}) \in \mathbb{R}^1$ or $\mathcal{J}(\hat{y}, \mathbf{y}) \in \mathbb{R}^1$ is the cost function. This is another exception where I've use uppercase letter to denote a scalar.
- $dW^{[l]}$ is the partial derivative of \mathcal{J} with respect to W, $\frac{\partial \mathcal{J}}{\partial W^{[1]}}$.
- $db^{[l]}$ is the partial derivative of \mathcal{J} with respect to b, $\frac{\partial \mathcal{J}}{\partial b}$.