

Outline

- Revisiting Projects and Team Formation Process
- Design vs. other stuff
- Industry Trends and PDPs
- Course Overview

Projects

- Project <u>Listing</u>
- Project Preference Survey
 - Due by Friday midnight
 - Expectations for team formation

First, terminology:

Design

Research

Product Development

Technology Development

Business Development

What is the relationship of these terms? Are these terms inclusive/exclusive of each other? Are they sequential or dependant? \underline{D}

Design: A meta-discipline

"Engineers are not the only professional designers." Everyone designs who devises courses of action aimed at changing existing situations into preferred ones. The intellectual activity that produces material artifacts is no different fundamentally from the one that prescribes remedies for a sick patient or the one that devises a new sales plan for a company or a social welfare policy for a state. Design, so construed, is the core of all professional training; it is the principal mark that distinguishes the professions from the sciences. Schools of engineering, as well as schools of architecture, business, education, law, and medicine, are all centrally concerned with the process of design."

Herbert A. Simon

Engineering Design

"Engineering design is the process of devising a system, component, or process to meet desired needs."

ABET

Design Thinking

Divergent Thinking:

Asks: What is possible?
Looks for Possibilities
The more ideas the better!

Convergent Thinking:

Asks: What is?
Looks for Fact
Most Common in Education

Design Thinking

Divergent Thinking:

Asks: What is possible?
Looks for Possibilities
The more ideas the better!

Convergent Thinking:

Asks: What is?
Looks for Fact
Most Common in Education

Design Thinking may be uncomfortable!

Common struggles/complaints:

- There is no single correct answer in design
- People feel they lack the background knowledge or skills to design
- Design thinking often does not fit neatly into one discipline

Do you have the skills of a designer? Six Skills of Design Thinking

Thinking about system dynamics

Making estimates

Reasoning about uncertainty

Conducting experiments

Reverse Engineering Making design decisions

Do you have the skills of a designer? Six Skills of Design Thinking

Thinking about system dynamics

Making estimates

Reasoning about uncertainty

Conducting experiments

Reverse Engineering Making design decisions

Estimation practice

How many restaurants are there in Durham?

Reasoning about uncertainty

With what certainty can one predict the complete outcome of an NCAA basketball tournament bracket?

Rev. Engineering Practice

Option 1: Reverse engineer your pen by careful observation (and disassembly if you dare!). How do you think it's components were made? Why was it designed this way?

Option 2: Reverse engineer your chair by careful observation (no disassembly). How do you think it's components were made? Why was it designed this way?

Design is need-driven, not technology driven.

Major Industry Trends

Innovation to lower healthcare costs Clinical Data
to prove the
economic
value of
therapies

Globalization and focus on emerging markets

- 1. www.emergogroup.com/files/2012-medical-device-industry-survey.pdf
- 2. http://annualreport.medtronic.com/2013/index.htm
- 3. Ernst and Young Pulse of the Industry: Medtech 2012

The Continuum of Care

Industry Trends

Increased Cost of intervention

The Convergence of Industries

Biomedical Informatics and IT

Medical Devices and Diagnostics

Drugs and Biologics

Needs are put into a Product Development Process (PDP)

- Why is a PDP needed?
 - Establishes a language for a "highly complex process"
 - Sets up a process that can be optimized
 - Captures and distributes tribal knowledge
 - It's required! (FDA, ISO, etc.)

ENGINEERING

ANSI/AAMI/ISO 14971:2000 uke

PRATT SCHOOL of ENGINEERING

PRATT SCHOOL of ENGINEERING

Why so many models?

	Şe	Cycle 1 - PREP/ID		Cycle 2- DESIGN	ak	Cycle 3 - PROTOTYPE	Break	Cycle 4 - TESTING	Se
Lecture Topics	of Course	Disease State Analysis, Patient Flow	reak	Functional Decomposition and System- level Design	ter Break	DFM, LBM	ing Bre	Design Poster Presentations	End of Course
	Start o	Competitive Options, including IP landscape	Fall Break	Concept Generation	Winter	Quality: DOE, Statistics, FMEA	Spring	Oral Presentation Tips & Tricks	End o
		Market Analysis		Concept Selection		Clin/Reg Strategy and IRB		Final Presentation Dry-runs	
		Customer Needs		Testing strategies		IP Disclosure and Strategy			
		Specifications, Constraints (including Standards/reg)		Two "concept feedback" lectures					
Written Delieverables		Design Foundation Document, which includes DSA, Patient Flow, IP, Market Analysis (Basically the intro section to the final report)		Functional Decomposition (Appendix 1 of Final Report)		Final design desciption (both form and function, including CAD/photos of prototype)		Final Report, which includes: 1) DFD 2) HOQ 3) Final Design Document	
		HOQ (Customer needs mapped to preliminary specifications and constraints)		Sketches/CAD of top designs (Appendix 2 of Final Report)		Testing proposal (essentially the methods section of final report)		Test Methods and Results Implementation Strategies Appendices	
				Pugh Matrices (Appendix 3 of Final Report)		Implementation Strategies (LBM, FMEA, Clin/reg strategy and IRB proposal (if needed))			
				Updated HOQ/specs		Updated, Final HOQ/specs		Competition Submission	
				Testing Strategy (rough proposal)		Rev 2 of Appendices		IP Disclosure (if applicable)	
				Rev 2 of DFD		Competition Submission Plan		IRB documentation (if applicable)	
Presentation Deliverables		Project Intro slides (content of DFD, up to specs), 10 slides		Intro slides, plus five slides showing top 3 concepts/prototypes/subfunctions (Video/photos/CAD encouraged)		Intro slides, final design slides (3-4 slides showing final prototype), and implementation slides (3-4 slides showing LBM, FMEA, Clin/reg strategy)		Final Presentation (Intro slides, final design slides, tesing results, implementation slides, conclusion slides - polished)	
								Poster Presentation (leveraging their existing slide deck and final report)	
Presentation Format		10 minutes in-class presentation		30 minute time slot, with mentors and part of class (four other teams?)		15-20 minute in-class presentation		30 minute time slot, with mentors and part of class (four other teams?)	
Prototyping		Prototyping skills introduced		Initial prototyping; low to medium fidelity prototype and/or working subfunctions completed by winter break		Prototype refinement; functional, integrated prototype ready by spring break		Prototype tested against all specs in a statistically-driven approach	

Review

- Definitions (Design, Research, etc)
- Design Thinking
- PDPs
- For next time:
 - Fill out preferences by Friday night!
 - Topic for Tuesday: Teams announced, Design foundations part 1

