Homework 5

Yutong Huang (yxh589)

Problem 1

To show that L is a context-free language, contruct a PDA that accepts L. A and B are regular languages \implies There exist DFAs M_A and M_B that accepts A and B respectively. Construct the following PDA:

```
Algorithm 1: PDA for L

Initialize M_A

while M_A is not in an accept state do

Simulate M_A

Push an X onto the stack

Initialize M_B

while M_B is not in an accept state do

Simulate M_B

if Stack is empty then

Reject

Pop an X from the stack

if Stack is empty then

Accept

Reject
```

This PDA correctly decides L.

Proof. Case 1: M_A pushes more X's than M_B pops \implies PDA rejects.

Case 2: M_A pushes fewer X's than M_B pops \implies PDA rejects.

Case 3: M_A pushes exactly the same number of X's as M_B pops \implies PDA accepts.

Therefore PDA correctly decides L.

Problem 2

Prove languages are not context free using the pumping lemma for context free languages

\mathbf{a}

Proof. Proof by contradiction: assume L is a context free language; $\implies \exists p \geq 1$ such that every string $s \in L$ with length larger than p can be written as:

$$s = uvwxy$$

where u, v, w, x, y are substrings of s such that:

- 1. $|vx| \ge 1$
- $2. |vwx| \leq p$
- 3. $\forall k \geq 0, uv^k wx^k y \in L$

For vwx there are following possible cases:

- 1. $vwx = a^i, i \le p$, then uv^kwx^ky has at least k more a's than $s \implies uv^kwx^ky \notin L$ if $k \ge 1$
- 2. $vwx = a^i b^j$, $i + j \le p$, then $uv^k wx^k y$ has at least k more a's and b's than s but no more c's $\implies uv^k wx^k y \notin L$ if $k \ge 1$
- 3. $vwx = b^i, \ i \leq p$, then uv^kwx^ky has at least k more b's than $s \implies uv^kwx^ky \notin L$ if $k \geq 1$
- 4. $vwx = b^i c^j$, $i+j \le p$, then $uv^k wx^k y$ has at least k more b's and c's than s but no more a's $\Longrightarrow uv^k wx^k y \notin L$ if $k \ge 1$

5. $vwx = c^i$, $i \leq p$, then uv^kwx^ky has at least k more c's than $s \implies uv^kwx^ky \notin L$ if $k \geq 1$

This contradicts the pumping lemma, therefore L is not a context free language.

b

Proof. Proof by contradiction: assume L is a context free language; $\implies \exists p \geq 1$ such that every string $s \in L$ with length larger than p can be written as:

$$s = uvwxy$$

where u, v, w, x, y are substrings of s such that:

- 1. $|vx| \ge 1$
- 2. |vwx| < p
- 3. $\forall k \geq 0, uv^k w x^k y \in L$

For vwx there are following possible cases:

- 1. $vwx = 0 \implies v^k wx^k y \notin L$ if $k \ge 1$ because it would have extra 0s
- 2. $vwx = 1 \implies v^k wx^k y \notin L$ if $k \ge 1$ because it would have extra 1s
- 3. $vwx = 0^i 10^j, i + j + 1 \le p \implies v^k wx^k y \notin L$ if $k \ge 1$ because of the extra 0s
- 4. $vwx=0^i, i \leq p \implies v^kwx^ky \notin L$ if $k \geq 1$ because of the extra 0s

This contradicts the pumping lemma, therefore L is not a context free language.

Problem 3

I do not know the answer to this question.