Integral Transforms and Vector Calculus_SY_DIV_A_C_24-25

Started on Saturday, 21 September 2024, 7:30 PM

State Finished

Completed on Saturday, 21 September 2024, 8:20 PM

Time taken 50 mins

Grade 20.00 out of 20.00 (**100**%)

Question 1

Correct

Mark 3.00 out of 3.00

$$L^{-1}\left\{\frac{1}{(s^{2}+9)(s^{2}+4)}\right\}$$
(a) $\frac{\sin(2t)}{10} - \frac{\sin(3t)}{15}$ (b) $\frac{\sin(2t)}{2} - \frac{\sin(3t)}{3}$ (c) $\frac{\sin(3t)}{15} - \frac{\sin(2t)}{10}$ (d) $\frac{\sin(3t)}{3} - \frac{\sin(2t)}{2}$

Select one:

- d
- \bigcirc b
- O C
- a

The correct answer is: a

Question 2

Correct

Mark 3.00 out of 3.00

Find
$$L\left\{\int_0^t u \cosh 2u \ du\right\}$$

(a)
$$\frac{-(s^2+4)}{(s^2-4)^2}$$
 (b) $\frac{(s^2+4)}{(s^2-4)^2}$ (c) $\frac{(s^2+4)}{s(s^2-4)^2}$ (d) $\frac{-(s^2+4)}{s(s^2-4)^2}$

Select one:

- C
- d
- b
- a

The correct answer is: c

Question 3

Correct

Mark 7.00 out of 7.00

In Half range Sine Series for

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

(i)Formula used for f(x) is

$$(a)f(x) = a_0 + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx]$$

(b)
$$f(x) = \sum_{n=1}^{\infty} [a_n \cos nx]$$

$$(c)f(x) = a_0 + \sum_{n=1}^{\infty} [a_n \cos nx]$$
 $(d)f(x) = \sum_{n=1}^{\infty} b_n \sin nx$

 \bigcirc b

- - The correct answer is: d

(ii) Formula used for b_n is

(a)
$$\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$$
 (b) $\frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$

(c)
$$\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$
 (d) $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$

- Oa Od Ob Oc
 - The correct answer is: c

(iii) Value of b_n is

(a)
$$\frac{4\sin\left(\frac{n\pi}{2}\right)}{\pi n^2}$$
 (b) $\frac{4\sin\left(\frac{n\pi}{2}\right)}{n^2}$ (c) $\frac{\sin\left(\frac{n\pi}{2}\right)}{\pi n^2}$ (d) $\frac{2\sin\left(\frac{n\pi}{2}\right)}{\pi n^2}$

c \bigcirc d \bigcirc b \bigcirc a

The correct answer is: a

. .

(iv)

Value of $b_3 =$

(a)
$$\frac{-4}{9\pi}$$
 (b) $\frac{-4}{9}$ (c) $\frac{-1}{\pi}$ (d) $\frac{1}{\pi}$

 \bigcirc d \bigcirc a \bigcirc c \bigcirc b

The correct answer is: a

Question 4

Correct

Mark 2.00 out of 2.00

For $f(x) = 4 - x^2$ in the interval (0, 2), the value of Fourier coefficient b_8 is

Select one:

 $\frac{1}{\pi}$

<u>2</u> π

 $\frac{1}{2\pi}$

The correct answer is:

 $\frac{1}{2\pi}$

Question **5**

Correct

Mark 2.00 out of 2.00

For the given periodic function

$$f(t) = \begin{cases} 2t \text{ for } 0 \le t \le 2\\ 4 \text{ for } 2 \le t \le 6 \ (=T) \end{cases}$$
 the coefficient a_1 of the

continuous Fourier series associated with the given function f(t) can be computed as

Select one:

- 0.9119
- -9.2642
- -8.1275
- -0.5116

The correct answer is: -0.9119

Question **6**

Correct

Mark 3.00 out of 3.00

$L^{-1}\left\{\frac{s-5}{s^2-10s}\right\}$	
(a) $e^{5t} \cosh(5t)$	(b) $e^{5t} \sinh(5t)$ (c) $e^{-5t} \cosh(5t)$ (d) $e^{-5t} \sinh(5t)$

Select one:

- d
- <u></u> с
- b
- a

The correct answer is: a

IA-2 Marks distribution ▶