Setores estratégicos para a UE

Setores estratégicos para a UE

Li-ion battery technology is rapidly being deployed for both e-mobility and energy storage for intermittent electricity generation. The technology is increasingly relevant for defence applications;

Fuel cells (FCs) are an important energy conversion technology, which together with hydrogen as fuel, will offer a high potential for decarbonisation of the energy system and e-mobility in the future, although large-scale deployment has not yet taken place;

Wind energy is already one of the most cost-effective renewable energy technologies for climate-change mitigation and will remain a growing sector in the EU industrial base:

Electric traction motors are central components in e-vehicles. Permanent magnet motors containing rare earth elements are particularly efficient and attractive for current and future e-mobility applications.

Photovoltaic (PV) technology together with wind energy will lead in the transformation of the global electricity sector; PV panels are also relevant for space applications;

Robotics is an emerging technology with an increasing role in future manufacturing, including defence and aerospace, as well as energy technologies and automotive applications:

Drones (Unmanned aerial vehicles or UAV) are increasingly deployed for both civil and various defence applications:

3D Printing (3DP, Additive manufacturing or AM) will rapidly reshape traditional supply chains and replace conventional manufacturing, in particular in defence and aerospace. It will lead to a significant shift in the amount and types of raw materials and processed materials consumed:

Digital technologies sustain the enormous digital sector enabling all technologies evaluated in this study.

Setores estratégicos para a UE

Estrangulamentos

Materiais críticos e não críticos

		4.	1718	+	. esh	<u></u>)mgo	~	\$	1777
Supply Risk	Material	=74-		1	, Eth				49	
	LREEs		•	•	•		•	•		•
	HREEs		•	•	•		•	•		
	Magnesium		•				•	•	•	•
	Niobium	•		•				•	•	
	Germanium					•		•		•
	Borates		•	•	•	•	•	•	•	•
	Scandium							•	•	
	Strontium		•				•	•		
	Cobalt	•	•	•			•	•	•	•
•	PGMs		•				•	•		•
•	Natural graphite	•	•				•	•		•
•	Indium					•	•	•		
•	Vanadium		•				•	•	•	•
•	Lithium	•	•				•	•		
•	Tungsten						•	•	•	
•	Titanium	•	•				•	•	•	•
•	Gallium					•	•	•		•
•	Silicon metal	•	•		•	•	•	•	•	•
•	Hafnium							•	•	
•	Manganese	•	•	•			•	•	•	•
•	Chromium		•	•			•	•	•	•
•	Zirconium		•				•	•	•	•
•	Silver		•			•	•	•		•
•	Tellurium					•	•	•		•
•	Nickel	•	•			•	•	•	•	
•	Copper	•	•	•	•	•	•	•	•	•

Baterias de lítio: elementos críticos

Baterias de lítio: riscos de estrangulamento

Baterias de lítio: perspetivas de procura

Mobilidade elétrica

Baterias de lítio: perspetivas de procura

Mobilidade elétrica

Baterias de lítio: perspetivas de procura

Mobilidade elétrica

Baterias de lítio: perspetivas de procura

Sistemas de armazenamento de energia

Turbinas eólicas: elementos críticos

Turbinas eólicas: riscos de estrangulamento

Turbinas eólicas: perspetivas de procura

Turbinas eólicas: perspetivas de procura

Painéis fotovoltaicos: elementos críticos

Painéis fotovoltaicos: riscos de estrangulamento

Painéis fotovoltaicos: perspetivas de procura

Painéis fotovoltaicos: elementos críticos

Additional material consumption for photovoltaics in **renewables only** in 2030/2050 compared to current EU consumption* of the material in **all applications**

Robótica: elementos críticos

Robótica: riscos de estrangulamento

Robótica: taxa de produção por país

Manufatura aditiva: elementos críticos

Manufatura aditiva: riscos de estrangulamento

Energias renováveis – desafios

A transição para uma sociedade de baixo carbono dependerá da implementação em larga escala de tecnologias renováveis. Até 2025, pretende-se que mais de 80% da eletricidade produzida na EU seja proveniente de fontes renováveis.

25

Energias renováveis – desafios

Energias renováveis – desafios

Figure 48. List of critical and non-critical raw materials used for renewables ranked by their 2020 supply risk

