

UNCLASSIFIED

A
D
O
0
7
1
8
8

Armed Services Technical Information Agency

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

AD No. 102138

ASIA FILE COPY

FC

MEMORANDUM REPORT No. 1020

JULY 1956

**Aerodynamic Properties
Of 60-MM Mortar Shell, T24**

EUGENE D. BOYER

DEPARTMENT OF THE ARMY PROJECT No. 5B03-03-001
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0108

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

BALLETIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1020

JULY 1956

AERODYNAMIC PROPERTIES OF 60-MM MORTAR SHELL, T24

Eugene D. Boyer

Department of the Army Project No. 5B03-03-001
Ordnance Research and Development Project No. TB3-0108

ABERDEEN PROVING GROUND, MARYLAND

TABLE OF CONTENTS

	Page
ABSTRACT.	3
TABLE OF SYMBOLS AND COEFFICIENTS	4
INTRODUCTION.	5
EXPERIMENTAL PROCEDURE	5
EXPERIMENTAL RESULTS.	6
A. Drag	6
B. Yawing Motion	6
C. Roll	7
APPENDICES.	9
APPENDIX A: Tables of Data	9
Table 1 - Aerodynamic Data	9
Table 2 - Roll Data.	10
APPENDIX B: Graphs and Photographs	11
APPENDIX C: References	21
DISTRIBUTION.	23

B A L L I S T I C R E S E A R C H L A B O R A T O R I E S

MEMORANDUM REPORT NO. 1020

EBoyer/rf
Aberdeen Proving Ground, Md.
July 1956

AERODYNAMIC PROPERTIES OF 60-MM MORTAR SHELL, T24

ABSTRACT

The spin histories, drag, and yaw properties of the 60-mm T24 mortar shell are presented. These data were obtained from Transonic Range firings.

TABLE OF SYMBOLS AND COEFFICIENTS

A	axial moment of inertia
B	transverse moment of inertia
cm	center of mass
d	diameter
M	Mach number
K_D	drag coefficient
K_M	moment coefficient
K_{MA}	moment coefficient due to cross acceleration (Reference 5)
K_L	lift coefficient
K_H	damping coefficient
$\dot{\phi}^i$	roll rate (deg./ft.)
$\lambda_{1,2}$	yaw damping rates
δ	sine of the angle of yaw
$\overline{\delta^2}$	mean squared yaw
δ_e^2	$\frac{{\dot{\phi}_1}^i K_{10}^2 + {\dot{\phi}_2}^i K_{20}^2}{{\dot{\phi}_1}^i - {\dot{\phi}_2}^i}$ effective squared yaw for K_M
$C_{L\delta}$	roll moment derivative due to canted surface
C_{Lp}	roll moment derivative due to rolling velocity
ρ	density of air
μ	total velocity

INTRODUCTION

In connection with a mortar project of the research division of the Budd Company, Picatinny Arsenal requested that the Ballistic Research Laboratories study the aerodynamic properties, particularly roll, of the 60-mm T24 mortar shell. The shell was tested with three different fin assemblies: non-canted fins, fins with two degrees of cant on the after section, and fins with four degrees of cant on the after section (Figure 7a). The firings were conducted in the Transonic Range. This report is a brief account of the firings and the results obtained.

EXPERIMENTAL PROCEDURE

The shell were launched from a trigger-fired 60-mm mortar tube mounted in a 105-mm howitzer field mount (Figure 7b). At normal velocities and the elevation angles necessary to fire through the Transonic Range instrumentation the mortar shell would hit within the range building. Hence it was necessary to fire the program from within the range building and forego some of the instrumentation. For the shell to enter the instrumentation, it was necessary to start its flight approximately nine feet above the range floor. To obtain this height, the field carriage was loaded in the rear of a 2-1/2 ton shop truck (Figure 8) and the program fired from a point between the first two groups of range stations⁶. As a result only twenty of the twenty-five spark photographic stations could be utilized. Timing cables were rearranged to permit thirteen time-of-flight measurements to be taken.

To determine the roll histories of the shell, sets of three yaw cards were placed at the beginning and end of the shadowgraphic instrumentation. The shell were equipped with two "pop-out" pins which remained within the shell's contour during launching and emerged when the projectile entered free flight. The pins extended beyond the major diameter and cut the yaw cards. From these cuts the roll history of the projectile was determined. To extend the roll measurements to longer ranges (1800 feet) it was necessary to fire a few rounds outdoors. The higher angle trajectories required for the longer ranges could not be fired from inside the range building.

Nineteen rounds were fired through the range and eleven outdoors. All of the rounds were fired at a nominal velocity of 500 fps. Twelve of the nineteen shell fired through the range had trajectories suitable for determining aerodynamic data. Roll data at 1800 feet were obtainable from only four of the eleven shell fired outside the range. A sketch of the shell and its physical measurements are given in Figure 6.

EXPERIMENTAL RESULTS

A. Drag

The drag coefficient does not appear to be noticeably affected by the presence of different fin cants. Any differences that may exist³ are well within the scatter of drag data expected from round to round variation with production shell. However, a definite variation of drag with yaw level is evident (Figure 1) and, fitting a least squares to

$$K_D = K_{D_0} + K_{D_0^2} \delta^2 \text{ yields:}$$

$$K_{D_0} = 0.0761 \pm 0.0008$$

$$K_{D_0^2} = 2.1 \pm 0.4$$

where δ is in radians. All errors are standard errors.

B. Yawing Motion

The values of the yaw properties for each round are given in Table 1. As seen in Figures 2 and 3 the moment coefficient, K_M , and the lift coefficient, K_L , are influenced by the magnitude of the yaw. These coefficients have been reduced to zero-yaw values by the relationships:

$$K_M = K_{M_0} + K_{M_0^2} \delta_e^2$$

$$K_L = K_{L_0} + K_{L_0^2} (K_{L0}^2 + K_{R0}^2)$$

where righting moment $= \rho d^3 \mu^2 \left[K_{M_0} + K_{M_0^2} \delta_e^2 \right] \delta$

$$\text{lift force} = \rho V^3 \mu^2 \left[K_{L_0} + K_{L_\delta} \delta^2 \right] \dot{\delta}$$

and δ_e^2 is a function of the amplitude of the two yaw components and the rates as defined in the Table of Symbols and Coefficients. In Reference 4 it is shown that if non-linearities in aerodynamic forces and moments are representable by cubics in yaw, then K_M vs. δ_e^2 and K_L vs. $K_{10}^2 + K_{20}^2$ form linear combinations.

Fitting by least squares gives: *

$$K_{M_0} = -0.84 \pm 0.02$$

$$K_{M_\delta}^2 = -10 \pm 2$$

$$K_{L_0} = 0.91 \pm 0.04$$

$$K_{L_\delta}^2 = 18 \pm 5$$

when yaw is expressed in radians.

The yaw damping coefficient, $K_H - K_{MA}$ was poorly determined due to the presence of small asymmetries in the shell and no correlation with yaw was apparent. A value of $K_H - K_{MA} = 8.0$ seems representative of this shell. The amplitude of yaw damps fifty per cent in approximately two cycles of yaw, a distance of 300 feet.

C. Röll

The roll data, as determined from yaw card measurements, are given in Table 2 and Figures 4 and 5. Slight inconsistencies in performance from round to round, as shown in Table 2, are probably due to minor fin misalignments and manufacturing variations in the cants of the trailing edges of the fins. Yaw card measurements for the shell with the uncanted fins indicated that the shell were not spinning significantly.

* Tricycle rounds were not included in fitting K_T .

The differential equation of motion of a rolling finned missile for a range trajectory is of the form¹:

$$\dot{\phi}'' + C_1 \dot{\phi}' = C_2$$

The constants were determined from fitting the yaw card measurements and are:

$$2^\circ \text{ cant} \quad C_1 = 0.0014 \text{ (1/ft)}$$

$$C_2 = 0.007 \text{ (1/ft}^2)$$

$$4^\circ \text{ cant} \quad C_1 = 0.0017 \text{ (1/ft)}$$

$$C_2 = 0.017 \text{ (1/ft}^2)$$

Nominally C_1 should be the same for missiles differing only in fin cant and C_2 should be proportional to the cant. The given C_1 's are essentially equal, within the significance of the determination, and in the same sense (on a per degree of cant basis) so are the C_2 's. Average values would be:

$$C_1 = 0.00155 \text{ (1/ft)}$$

$$C_2 = 0.004 \text{ (1/ft}^2) \text{ per degree of cant.}$$

If one assumes the canted area of the fins to be one-tenth of the total fin area, where the fin area is approximately 2.07 square inches, the aerodynamic coefficients¹ for the 4 degree canted fin are:

$$C_{L\delta} = .30$$

$$C_{L_p} = - .21.$$

Eugene D. Boyer

EUGENE D. BOYER

APPENDIX A

TABLE I
Aerodynamic Data

Round Number	Fin ₁	Fin ₂	K _D	K _X	K _Y	K _Z	$\frac{K_{\text{H}}}{(\text{ft})^{-1}}$	$\frac{\lambda_1 \times 10^3}{(\text{ft})^{-1}}$	$\frac{\lambda_2 \times 10^3}{(\text{ft})^{-1}}$	$\frac{8 \times 10^2}{(\text{ft})^2}$	$\frac{K_{10}}{(\text{rad})^2}$	$\frac{K_{20}}{(\text{rad})^2}$	$\frac{K_{30}}{(\text{rad})^2}$	$\frac{s_L}{(\text{ft})}$	$\frac{s_T}{(\text{ft})}$	$\frac{\epsilon_Y}{(\text{rad})}$	$\frac{\epsilon_S}{(\text{ft})}$	$\frac{\phi_1}{(\text{deg}/\text{ft})}$	$\frac{\phi_2}{(\text{deg}/\text{ft})}$		
3595	0°	.424	.0814				.24				.25	.13	.029	0	.039	.17	8	.005	-	2.21	
3630*	0°	.426	.0808	-.816							.25	.23	.035	.018	.017	.15	8	.02	.006	.015	-
3631*	0°	.426	.0789	-.819	.38	11.4	.53	4.22			.22	.49	.62	.040	.050	.007	18	8	.03	.010	.008
3632*	3°	.424	.0875	-.934	.98	7.0	1.12	2.05			.04	.06	.011	.016	.016	.13	7	.01	.005	.007	-
3633	0°	.429	.0794	-.894	.91	8.0	2.68	.80			.04									.007	-
3594	0°	.428	.0825	-.870	1.00	5.9	.32	2.47			.41	.55	.048	.057	.057	.15	9	.03	.008	.015	-
3597	2°	.427	.0818	-.858	.95	2.4	2.95	2.19			.24	.27	.050	.030	.030	.17	11	.02	.010	.014	-
3598	2°	.426	.0833	-.936	.96	7.6	.72	2.69			.47	.62	.059	.025	.025	.19	9	.03	.009	.021	-
3549	0°	.427	.0816								.16						12	6			
3591	4°	.434	.0840	-.924	.93	8.0	-.37	3.90			.43	.61	.057	.028	.028	16	9	.03	.005	.018	-
3592	4°	.425	.1064	-.1.071	1.12	7.4	1.32	2.14			1.38	2.14	.093	.375	.375	15	10	.05	.008	.019	-
3593	4°	.432	.0947	-.906	1.17	9.5	-.70	4.96			.92	1.24	.087	.026	.026	13	8	.05	.006	.011	-

F₁₀ size of nutational yaw arm at mid-rangeK₂₀ size of precessional yaw arm at mid-rangeY₂₀ size of tricyclic yaw arm at mid-range

N number of yaw stations

T_m number of timing stationsS_L radius of swerve at mid-rangeε_Y error in yaw fitε_S error in swerve fitφ₁* turning rate of nutational armφ₂* turning rate of precessional arm* Tricyclic yaw reductions were required on these rounds²

TABLE 2

Roll Data
(deg/ft)

<u>Distance Down Range (ft)</u>	<u>Roll Rate For Various Rounds</u>				
	3594	3595	3596	3597	3598
35	0	.1	.4	.1	
50	.4	.1	0	.1	
335	1.3	1.5	1.0	1.3	1.6
615	2.6	2.4	2.0	2.5	2.3
630	2.6	2.8	1.9	2.6	2.5
680	2.6	2.9	1.9	2.7	2.5
725	2.9	3.4	2.4	2.8	
740	3.0	3.1	2.3	3.0	
1775					
1790					5.2 6.6 5.6 7.2
<u>Fin Cant 2°</u>					
3588	3589	3590	3591	3593	Field Firings
35	.1	.6	.3	.2	0
50	.2	.3	.3	.5	.3
335	2.3	2.4	2.0	2.8	3.4
615	4.0	4.5	3.7	4.1	6.0
630	4.3	4.6	3.7	5.0	6.1
680	4.9	4.9	3.8	4.9	6.6
725	5.0	5.0	4.0	5.1	6.8
740	5.2	5.3	4.5	4.5	6.9
1775					12.8
1790					14.3 14.3

APPENDIX B

Graphs and Photographs

- Figure 1 - Drag Coefficient vs. Mean Squared Yaw
- Figure 2 - Moment Coefficient vs. δ_e^2
- Figure 3 - Lift Coefficient vs. $K_{10}^2 + K_{20}^2$
- Figure 4 - Roll Rate vs. Distance Down-Range, Fin-Cant 2°
- Figure 5 - Roll Rate vs. Distance Down-Range, Fin-Cant 4°
- Figure 6 - Sketch of Shell, 60-mm Mortar Shell T24
- Figure 7a - Shell with Non-Canted Fins, 2° Canted Fins, 4° Canted Fins
- Figure 7b - 60-mm Mortar Tube Mounted in a 105-mm Howitzer Recoil System
- Figure 8 - Gun Mount Loaded on a 2-1/2 Ton Shop Truck

DRAg COEFFICIENT
VS
MEAN SQUARED YAW

FIG. I

MOMENT COEFFICIENT
VS
 $\frac{\delta_e^2}{\delta_e}$

FIG. 2

LIFT COEFFICIENT
 $\frac{V_S}{K_{10}^2 + K_{20}^2}$

FIG. 3

ROLL RATE
vs
DISTANCE DOWN RANGE
FIN-CANT 2°

FIG. 4

FIG. 5

60 MM MORTAR SHELL T24

A = 2.734 LB-IN²
B = 43.20 LB-IN²
m = 4.05 LBS.

FIG. 6

FIGURE 7a: Shell With Non-Canted
Fins, 2° Canted Fins,
4° Canted Fins

FIGURE 7b: 60-mm Mortar Tube
Mounted in a 105-mm
Howitzer Recoil System

FIGURE 8: Gun Mount Loaded on a
2-1/2 Ton Shop Truck

APPENDIX C

REFERENCES

1. Bolz, R.E., Nicolaides, J.D., A Method of Determining Some Aerodynamic Coefficients from Supersonic Free Flight Tests of a Rolling Missile, BRL Report 711, November 1949.
2. MacAllister, L.C., Comments On the Preliminary Reduction of Symmetric and Asymmetric Yaw Motions of Free Flight Range Models, BRLM Report 781, May 1954.
3. MacAllister, L.C., Roschke, E.J., The Drag Properties of Several Winged and Finned Cone-Cylinder Models, BRLM Report 849, October 1954.
4. Murphy, C.H., The Measurement of Non-Linear Forces and Moments by Means of Free Flight Tests, BRL Report 974, 1956.
5. Murphy, C.H., Nicolaides, J.D., A Generalized Ballistic Force System, BRL Report 933, May 1955.
6. Rogers, W.K., The Transonic Free Flight Range, BRL Report 849, February 1953.

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
	Chief of Ordnance Department of the Army Washington 25, D. C. Attn: ORDTB - Bal Sec ORDTA ORDTX-AR	3	Commander Naval Ordnance Test Station China Lake, California Attn: Technical Library Aeroballistics Laboratory Code 5034
10	British Joint Services Mission 1800 K Street, NW Washington 6, D. C. Attn: Mr. John Izzard, Reports Officer	1	Commander Air Force Armament Center Eglin Air Force Base, Florida Attn: AGOTB
4	Canadian Army Staff 2450 Massachusetts Avenue, NW Washington 8, D. C.	5	Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio Attn: DSC-SD
3	Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: ReO	1	National Advisory Committee for Aeronautics Lewis Flight Propulsion Laboratory Cleveland Airport Cleveland, Ohio Attn: F. K. Moore
2	Commander Naval Proving Ground Dahlgren, Virginia	1	Commanding General Redstone Arsenal Huntsville, Alabama Attn: Technical Library
2	Commander Naval Ordnance Laboratory White Oak Silver Spring 19, Maryland Attn: Mr. Nestinger Dr. May	3	Commanding General Picatinny Arsenal Dover, New Jersey Attn: Samuel Feltman Ammunition Labs.
1	Superintendent Naval Postgraduate School Monterey, California	1	Commanding General Frankford Arsenal Philadelphia 37, Pennsylvania Attn: Reports Group
2	Commander Naval Air Missile Test Center Point Mugu, California		
1	Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory		

55

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>
1	Director, JPH Ord Corps Installation 4800 Oak Grove Drive Department of the Army Pasadena, California Attn: Mr. Irl E. Newlan, Reports Group
1	Commanding Officer Chemical Corps Chemical and Radiological Lab. Army Chemical Center, Maryland
1	Director Operations Research Office 7100 Connecticut Avenue Chevy Chase, Maryland Washington 15, D. C.
2	The Budd Company 2450 Hunting Park Avenue Philadelphia 30, Pennsylvania Attn: Mr. Earl A. Zettlemoyer Product Research Division