

Simulink Game Day with Drone Simulation

Agenda

- Quadcopters
- Simulink
- Planning the Path
- Perception
- Follow a Blue Line using Camera

Say Hello to Quadcopter!

- A quadcopter is a drone with 4 propellers.
- The rotors connected to the propellers are used to generate lift and perform motion.
- Surveying, medicines, sports.

Sensors on a Quadcopter Parrot Mambo

- Ultrasonic Sensor
 - To calculate altitude
- Camera
 - To capture the view
 - To calculate horizontal velocities
- Pressure Sensor
 - To calculate altitude
- Inertial Measurement Unit (IMU)
 - 3-axis accelerometer
 - 3-axis gyroscope

Ultrasonic

Actuators on a Parrot Mambo

- 4 motors to control the propellers
- Provide motor commands
 - Command drone to move in specific directions
 - Decide which motor to send command to and what value to send

Drone motions

- 6 ways of motion
 - 1. Up-down
 - 2. Left-right
 - 3. Forward-backward
 - Rotation around X-axis: Roll
 - 5. Rotation around Y-axis: Pitch
 - 6. Rotation around Z-axis: Yaw
- What will we control?
 - Thrust, Pitch, Roll, Yaw

The role of a controller

Parameters controlled independently:

- 1. Altitude
- 2. Pitch
- 3. Roll
- 4. Yaw

Commands

Drone

Controller

Modelling a drone

SIMULINK®

Modeling, simulation, and embedded systems

- Platform for Model-Based Design
 - Block diagram modeling
 - Simulation of physical systems
 - Automatic code generation
- Applications in:
 - Control systems
 - Signal processing
 - Communications systems

The leading environment for modeling, simulating and implementing dynamic and embedded systems

Modelling a drone Simulink

What do we have in the model?

- Model of a Parrot Mambo Minidrone
 - Plant
 - Sensors
- Visualization environment
- Design of a controller that hovers a drone

Let's have a look at the Simulink model

Add-Ons

Model & Simulation

In the command line: parrotMinidroneCompetitionStart

Image Processing Section

Path Planning

What is a State Machine?

Understanding State Machines

Let's start with a simple example

- Represent reactive systems that have states or modes
- States change based on defined conditions and events

Understanding State Machines

Modeling States and Transitions

- Rules to transition between states
- State transition diagram
- Current state depends on variables and previous state

Understanding State Machines Modeling States and Transitions

Using State Machines in Simulink

Simulink

Simulink is used to respond to **continuous** changes in dynamic systems.

State Machines

Stateflow is a tool used to respond to **instantaneous** changes in dynamic systems.

Real-world systems have to respond to both continuous and instantaneous changes.

Let's have a look at the Stateflow model of the traffic light system

Hands on: Track Builder

Click on 'Open Track Builder' and generate waypoints in the app

Hands on: Add Stateflow chart and states Stateflow

Hands on: Tracking the first line segment Stateflow

Time to design your own autonomous line follower!

Track 1

Track Coordinates: (1,1),(1,3),(3,3)

Straight & Right

Track 2

Track Coordinates: (3,1),(3,3),(1,3)

Straight & Left

Results (optional: use this slide if you want to showcase any completed/good submissions)