PDE_Chapter_2_Exercises

TAO XU

Section 2.1

- 1. Solve $u_{tt} = c^2 u_{xx}$ with $u(x,0) = e^x$, $u_t(x,0) = \sin x$.
- 2. Solve $u_{tt} = c^2 u_{xx}$ with $u(x,0) = \log(1+x^2)$, $u_t(x,0) = 4+x$.
- 3. A string of length l, tension T, and mass density ρ is struck at its midpoint by a hammer of diameter 2a. A flea sits at a point l/4 from one end.

If a < l/4, how long will it take the disturbance to reach the flea?

- 4. Show that every solution of the one-dimensional wave equation can be written as u(x,t) = f(x+ct) + g(x-ct).
- 5. Hammer Blow: Let $\phi \equiv 0$ and

$$\psi(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| \ge a \end{cases}$$

Sketch u(x,t) for t=a/2c, a/c, 3a/2c, 2a/c, 5a/c.

Use

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds = \frac{1}{2c} \{ \text{length of } (x-ct, x+ct) \cap (-a, a) \}$$

- 6. In Exercise 5, write an explicit formula for the maximum displacement $\max_{x} u(x,t)$ as a function of t.
- 7. Suppose both ϕ and ψ are **odd** functions of x. Show that u(x,t) remains odd in x for all t.
- 8. Spherical Waves. A spherically symmetric solution u(r,t) of the 3-D wave equation satisfies

$$u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right)$$

- (a) Show that for v = ru, the function v satisfies $v_{tt} = c^2 v_{rr}$.
- (b) Use the d'Alembert formula to find v and hence u.
- (c) For initial data $u(r,0) = \phi(r)$, $u_t(r,0) = \psi(r)$ (with ϕ, ψ even), express u(r,t) explicitly.

1

- 9. Solve $u_{xx} 3u_{xt} 4u_{tt} = 0$ with $u(x,0) = x^2$, $u_t(x,0) = e^x$.

 (Hint factor the operator as in the wave equation.)
- 10. Solve $u_{xx} + u_x 20u_{tt} = 0$, with $u(x,0) = \phi(x)$, $u_t(x,0) = \psi(x)$.
- 11. Find the general solution of $3u_{tt} + 10u_{xt} + 3u_{xx} = \sin(x+t)$.

Section 2.2

1. Use the energy conservation of the wave equation to prove that if the initial data are $\phi \equiv 0$ and $\psi \equiv 0$, then the only solution is $u \equiv 0$.

(Hint: use the first vanishing theorem in Appendix A.1.)

- 2. For a solution u(x,t) of the wave equation with $\rho = T = c = 1$, define the energy density $e = \frac{1}{2}(u_t^2 + u_x^2)$ and the momentum density $p = u_t u_x$.
 - (a) Show $\partial_t e = \partial_x p$ and $\partial_t p = \partial_x e$.
 - (b) Show that both e(x,t) and p(x,t) also satisfy the wave equation
- 3. Show that the wave equation has the following invariances:
 - (a) Any translate u(x y, t) (with y fixed) is also a solution.
 - (b) Any derivative of a solution, e.g. u_x , is also a solution.
 - (c) The dilated function u(ax, at) is also a solution for any constant a.
- 4. If u(x,t) satisfies $u_{tt} = u_{xx}$, prove the identity

$$u(x+h,t+k) + u(x-h,t-k) = u(x+k,t+h) + u(x-k,t-h)$$

for all x, t, h, k. Sketch the quadrilateral Q whose vertices are the four points in the identity.

- 5. For the damped string (equation (1.3.3)), show that the total energy decreases.
- 6. Prove that, among all spatial dimensions, **only in three dimensions** can one have distortionless spherical wave propagation with attenuation.

Specifically, for the n-dimensional spherical wave

$$u_{tt} = c^2 \left(u_{rr} + \frac{n-1}{r} u_r \right)$$

consider solutions of the form $u(r,t) = \alpha(r) f(t - \beta(r))$, where $\alpha(r)$ is the attenuation and $\beta(r)$ the delay.

Show:

- (a) Substituting the ansatz yields an ODE for f.
- (b) The coefficients of f'', f', and f must vanish.
- (c) Solving gives n = 1 or n = 3 (unless $u \equiv 0$).
- (d) If n = 1, then $\alpha(r)$ is constant (no attenuation).