19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(à n'utiliser que pour les commandes de reproduction)

2 748 850

21) N° d'enregistrement national :

96 06085

(51) Int Cl6: H 01 L 21/265, H 01 L 21/324

(2) DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 15.05.96.

(30) Priorité :

71 Demandeur(s): COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISS DE CARACT SCIENT TECH ET INDUST — FR.

(72) Inventeur(s): BRUEL MICHEL et ASPAR BERNARD.

Date de la mise à disposition du public de la demande : 21.11.97 Bulletin 97/47.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.

Références à d'autres documents nationaux apparentés :

(73) Titulaire(s) : .

(74) Mandataire : BREVATOME.

54) PROCEDE DE REALISATION D'UN FILM MINCE DE MATERIAU SOLIDE ET APPLICATIONS DE CE PROCEDE.

(57) L'invention concerne un procédé de réalisation d'un film mince de matériau solide, cristallin ou non, choisi parmi un matériau diélectrique, un matériau conducteur, un matériau semi-isolant, un matériau semi-conducteur non ordonné. Le procédé consiste à soumettre un substrat dudit matériau solide aux étapes suivantes:

 une étape d'implantation ionique au cours de laquelle une face du substrat est bombardée par des ions choisis parmi les ions de gaz rares et de gaz hydrogène, afin de créer, dans le volume du substrat et à une profondeur voisine de la profondeur moyenne de pénétration des ions, une couche de microcavités séparant le substrat en deux régions.

régions,
- une étape de traitement thermique destinée à porter la couche de microcavités à une température suffisante pour provoquer une séparation entre les deux régions du substrat soit naturellement, soit avec l'aide d'une contrainte appliquée.

Application à la réalisation de mémoires à condensateurs ferroélectriques.

PROCEDE DE REALISATION D'UN FILM MINCE DE MATERIAU SOLIDE ET APPLICATIONS DE CE PROCEDE

La présente invention concerne un de réalisation d'un film mince de matériau solide, ce matériau pouvant être un diélectrique, un conducteur ou un semi-isolant. Il peut être cristallin ou non. peut s'agir d'un semiconducteur amorphe polycristallin dont les plans cristallographiques sont d'orientation quelconque. Ce matériau peut posséder des propriétés ferroélectriques, piézoélectriques, magnétiques, électro-optiques, etc.

10

25

35

Une application particulièrement intéressante du procédé selon l'invention concerne la réalisation de mémoires à condensateurs ferroélectriques.

On connaît de nombreux procédés de réalisation 15 films minces de matériau solide. Ces procédés dépendent de la nature du matériau et de l'épaisseur , du film désiré. On peut ainsi déposer des films minces d'un matériau solide sur la surface d'une pièce par projection, pulvérisation, électrodéposition, 20 peut aussi obtenir un film mince en amincissant plaquette du matériau désiré par mécanochimique ou chimique, le film mince obtenu étant ensuite collé ou fixé sur une pièce servant de support.

Généralement, la fixation d'un film mince sur la surface d'une pièce est destinée à modifier superficiellement les propriétés de la pièce.

Dans le domaine des semiconducteurs, on est aussi quelquefois amené à réaliser des films minces semiconducteurs, par exemple pour fabriquer des substrats dits "Silicium Sur Isolant". Différentes méthodes de réalisation de films minces semiconducteurs ont été développées. L'une des méthodes récentes est basée sur le fait que l'implantation d'ions d'un gaz rare ou d'hydrogène dans un matériau semiconducteur induit la formation de zones fragilisées à une profondeur voisine de la profondeur moyenne de pénétration des ions. Le document FR-A-2 681 472 divulgue un procédé qui utilise cette propriété pour obtenir un film mince de matériau semiconducteur. Ce procédé consiste à soumettre une plaquette du matériau semiconducteur désiré et comportant une face plane aux étapes suivantes :

- une première étape d'implantation par bombardement de la face plane de la plaquette au moyen d'ions créant, dans le volume de la plaquette et à une profondeur voisine de la profondeur de pénétration des ions, une couche de "microbulle gazeuse" séparant la plaquette en une région inférieure constituant la masse du substrat et une région supérieure constituant le film mince, les ions étant choisis parmi les ions de gaz rares ou de gaz hydrogène;

- une deuxième étape de mise en contact intime de la face plane de la plaquette avec un support constitué au moins d'une couche de matériau rigide. Ce contact intime pouvant être réalisé par exemple à l'aide d'une substance adhésive ou par l'effet d'une préparation préalable des surfaces et éventuellement d'un traitement thermique ou/et électrostatique pour favoriser les liaisons interatomiques entre le support et la plaquette;

- une troisième étape de traitement thermique de l'ensemble plaquette et support à une température supérieure à la température durant laquelle l'implantation a été effectuée et suffisante pour créer une séparation entre le film mince et la masse du substrat. Cette température est supérieure ou égale à environ 400°C pour le silicium.

Jusqu'à présent on pensait que le procédé 35 divulgué par le document FR-A-2 681 472 ne pouvait

s'appliquer qu'à la réalisation d'un film mince à partir substrat de matériau semiconducteur. Dans l'explication suivante aux document, on propose différents phénomènes constatés par l'expérience. Tout d'abord, la première étape d'implantation ionique est menée en présentant à un faisceau d'ions une face plane d'une plaquette de matériau semiconducteur, de cette face plane étant soit sensiblement parallèle à un plan cristallographique principal dans semiconducteur est parfaitement οù le matériau 10 monocristallin, soit faiblement incliné par rapport à un plan cristallographique principal de mêmes indices pour tous les grains dans le cas où le matériau est polycristallin. On crée ainsi dans le volume de la plaquette, à une profondeur voisine de la profondeur 15 couche pénétration des ions, une moyenne de "microbulles gazeuses" correspondant à des zones de fragilisation et délimitant, dans le volume plaquette deux régions séparées par cette couche : une région destinée à constituer le film mince et une 2υ région formant le reste du substrat. Par l'expression entend toute cavité "microbulles gazeuses" on microcavité générée par l'implantation d'ions de gaz hydrogène ou de gaz rares dans le matériau. Les cavités aplatie, présenter sous forme très 25 peuvent se c'est-à-dire de faible hauteur, par exemple de l'ordre de quelques distances inter-atomiques, aussi bien que sous forme sensiblement sphérique ou sous tout autre forme différente des deux formes précédentes. cavités peuvent ou non contenir une phase gazeuse libre 30 et/ou des atomes de gaz issus des ions implantés fixés sur des atomes du matériau formant les parois des Ces cavités sont généralement appelées en cavités. terminologie anglo-saxonne "platelets", "microblisters" ou même "bubbles". Au cours de la troisième étape, 35

le traitement thermique est réalisé à une température suffisante pour créer la séparation entre les deux régions.

Le procédé décrit dans le document FR-A-2 681 472 se rapporte à la réalisation d'un film mince à partir d'un substrat en matériau semiconducteur de structure cristalline. Le déroulement des différentes étapes du procédé a été expliqué comme résultant de l'interaction entre des ions implantés et la maille cristalline du matériau semiconducteur.

10

15

20

25

Cependant, les inventeurs de la présente invention ont eu la surprise de constater que ce procédé pouvait s'appliquer à tous les types de matériaux solides, cristallins ou non. Il est possible d'appliquer ce procédé à des matériaux diélectriques, conducteurs, semi-isolants, ainsi qu'à des matériaux semiconducteurs amorphes et même aux semiconducteurs polycristallins dont les grains n'ont pas de plans cristallographiques principaux sensiblement parallèles à la face plane plaquette. Ces derniers, ainsi que semiconducteurs amorphes seront désignés dans la suite description par l'expression semiconducteurs non ordonnés. En outre, ce procédé ne modifie pas fondamentalement les propriétés du matériau auquel il s'applique.

Les inventeurs de la présente invention ont eu la surprise de constater que l'implantation d'ions de gaz hydrogène ou de gaz rares peut aussi provoquer la formation de microcavités dans des matériaux solides autres qu'un matériau semiconducteur cristallin, et qu'un traitement thermique subséquent peut provoquer la séparation, au niveau des microcavités, de la masse du matériau en deux parties. En effet, le traitement thermique conduit, quel que soit le type de matériau solide, à la coalescence des microcavités qui amènent

une fragilisation de la structure au niveau de la couche de microcavités. Cette fragilisation permet la séparation du matériau sous l'effet de contraintes internes et/ou de pression dans les microcavités, cette 5 séparation pouvant être naturelle ou assistée par application de contraintes externes.

On entend par couche de microcavités une zone contenant des microcavités pouvant être situées à différentes profondeurs et pouvant être adjacentes ou non entre elles.

10

25

L'invention a donc pour objet un procédé de réalisation d'un film mince de matériau solide, cristallin ou non, choisi parmi un matériau diélectrique, un matériau conducteur, un matériau semi-isolant, un matériau semiconducteur non ordonné, caractérisé en ce qu'il consiste à soumettre un substrat dudit matériau solide aux étapes suivantes :

- une étape d'implantation ionique au cours de laquelle une face du substrat est bombardée par 20 des ions choisis parmi les ions de gaz rares et de gaz hydrogène, afin de créer, dans le volume du substrat et à une profondeur voisine de la profondeur moyenne de pénétration des ions, une couche de microcavités séparant le substrat en deux régions,

- une étape de traitement thermique destinée à porter la couche de microcavités à une température suffisante pour provoquer une séparation entre les deux régions du substrat soit naturellement, soit avec l'aide d'une contrainte appliquée.

1'étape entre prévu, Ιl peut être 30 et traitement l'étape de d'implantation ionique thermique, une étape de fixation de ladite face du peut Cette étape substrat sur support. un couche mince n'est οù nécessaire au cas la suffisamment rigide par elle-même. Elle peut être désirée puisque, généralement, la couche mince est destinée à être placée sur un support. Dans ce cas, le support doit pouvoir supporter l'étape de traitement thermique finale.

La fixation de ladite face du substrat sur le support peut se faire au moyen d'une substance adhésive ou au moyen d'un traitement favorisant les liaisons interatomiques.

5

15

2υ

30

Ce procédé selon l'invention s'applique 10 notamment à l'obtention d'un film mince de matériau ferroélectrique, à partir d'un substrat en matériau ferroélectrique, et à sa fixation sur un support.

Avantageusement, le support étant en matériau semiconducteur, au moins un circuit de commande électronique est élaboré sur une face de ce support, le film mince de matériau ferroélectrique est fixé sur le support de façon à servir de diélectrique à une capacité mémoire commandée par ledit circuit de commande électronique pour constituer ainsi un point mémoire.

De préférence, le circuit de commande électronique est du type à transistor MOS.

Le procédé selon l'invention peut aussi être appliqué pour obtenir un film mince de saphir sur un support, un film mince de métal résistant à la corrosion sur un support ou un film mince de matériau magnétique sur un support.

L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :

 la figure l est une vue partielle en coupe transversale d'un circuit intégré réalisé sur une face
 d'un substrat semiconducteur,

- la figure 2 illustre l'étape d'implantation ionique effectuée au travers d'une face d'un substrat en matériau ferroélectrique, selon la présente invention,
- la figure 3 illustre l'étape de fixation selon la présente invention, consistant à faire adhérer la face du substrat semiconducteur où le circuit intégré a été réalisé sur la face du substrat en matériau ferroélectrique ayant été bombardée par les ions,
- 10 la figure 4 illustre l'étape du procédé selon l'invention conduisant à la séparation du film mince du reste du substrat en matériau ferroélectrique,
 - la figure 5 est une vue partielle en coupe d'un point mémoire à condensateur ferroélectrique réalisé selon la présente invention.

Le procédé selon l'invention s'applique aux matériaux solides, cristallins ou non, suivants :

- les matériaux isolants ou diélectriques,
- les matériaux conducteurs,

15

20

30

35

- les matériaux semiconducteurs non ordonnés,
 - les matériaux semi-isolants, principalement ceux dont la résistivité à température ambiante est supérieure à environ $10^7 \Omega$.cm,
- les métaux monocristallins et les supraconducteurs de façon générale.

Il est ainsi possible selon l'invention de réaliser des films minces de quartz monocristallin à partir de quartz monocristallin massif. On peut également obtenir des films minces de matériaux piézoélectriques, magnétiques, ferroélectriques, pyroélectriques, des matériaux présentant des propriétés d'optique non linéaire ou des effets électro-optiques, acousto-optiques.

On va décrire maintenant un exemple particulier : la réalisation de mémoires à

condensateurs ferroélectriques sur un circuit intégré.

Le circuit électronique représenté en coupe figure l a été réalisé selon les techniques actuelles de la micro-électronique. On a mis en oeuvre la technique dite "plug", la technique de planarisation la technique mécanochimique des oxydes et "Damascene" permettant de réaliser des connexions enterrées dans un oxyde mais affleurant à la surface de celui-ci.

Le circuit a été élaboré sur une face 2 d'un 10 substrat l en silicium de type P. A partir de la face 2 on a réalisé des caissons, seuls les caissons 31, 32 et 33 de type N+ étant représentés sur cette figure, et on a fait croître de l'oxyde de champ pour obtenir des zones d'isolation 41 et 42 à gauche du caisson 15 31 et à droite du caisson 33. Les caissons 31 et 33 de destinés à constituer les drains transistors de type MOS, le caisson 32 constituant leur source commune. Sur la face 2, des lignes de mots 51 et 52 en silicium polycristallin ont été déposées, . 20 avec interposition de couches d'oxyde mince 61 et 62. Les lignes de mots 51 et 52 ont été recouvertes de couches de matériau isolant 65 et 66. Ce matériau isolant recouvre aussi les zones 41 et 42 sous forme de couches 63 et 64. Une ligne de bits 8 en aluminium 25 assure le contact électrique avec la source 32. Une couche d'oxyde 7 a été déposée pour recouvrir l'ensemble éléments décrits précédemment. Dans d'oxyde 7 sont déposées des électrodes affleurantes 91 et 92 en platine et pourvues de sous-couches barrière 30 Les électrodes 91 et 92 sont connectées par aux drains 31 et des "plugs" 11 et 12 enterrées, le circuit sont transistors. Elles présentant alors une face plane externe 15.

On va maintenant décrire la réalisation d'un film mince en matériau ferroélectrique selon le procédé

35

de la présente invention, ce film mince étant destiné à former le diélectrique de condensateurs.

figure 2 représente, vu latéralement. un substrat 100 en matériau ferroélectrique, par exemple en PbZrTiO3 (PZT). La face plane 101 du substrat 100 est bombardée par des ions, par exemple des ions hydrogène d'énergie 200 keV et selon une dose égale \dot{a} 10¹⁷ cm⁻². Le bombardement ionique est figuré par des flèches sur la figure 2. Les ions implantés 10 induisent des microcavités qui se répartissent dans une couche 102 au voisinage d'un plan parallèle à la face plane 101, ce plan étant situé à une distance de la face plane 101 correspondant à la profondeur moyenne de pénétration des ions. La couche 102 15 matériau implanté à une épaisseur très faible, l'ordre de quelques dizaines de nm, par exemple de 100 nm. Elle sépare le substrat 100 régions : une première région 103, située du côté de la face plane 101 et destinée à former le film mince, 20 et une seconde région 104 formant le reste du substrat. L'épaisseur de la région 103 est d'environ 800 nm. La couche 102 est formée d'une couche de microcavités.

La face plane 101 du substrat en matériau ferroélectrique 100 et la face plane 15 du circuit 25 électronique réalisé sur le substrat semiconducteur l sont traitées par exemple par voie chimique de façon à les rendre adhérentes entre elles par simple mise en contact. La figure 3 représente les deux substrats l associés, la face plane 15 du substrat semiconducteur l adhérant à la face plane 101 du substrat 100 en matériau ferroélectrique.

30

35

L'ensemble est alors traité thermiquement à environ 500°C, ce qui a pour conséquence d'induire une séparation des deux régions 103 et 104 du substrat 100 en matériau ferroélectrique au niveau de la couche 102 comme le montre la figure 4. On obtient un substrat semiconducteur pourvu d'un circuit électronique auquel est fixé un film mince en matériau ferroélectrique.

La face externe 105 du film mince 103 est éventuellement polie finement.

On obtient le dispositif représenté à la figure 5 où un point mémoire à deux condensateurs est constitué par le dépôt sur la face plane 105 du film mince 103 d'une électrode commune 16.

Une encapsulation finale peut être ajoutée 10 pour protéger l'ensemble du circuit.

5

15

Un tel film mince ferroélectrique peut également être utilisé pour constituer une couche de matériau ferroélectrique déposée directement sur le silicium pour réaliser des transistors MOS où la grille de commande est remplacée par cette couche ferroélectrique dont l'état de polarisation détermine l'état bloqué ou passant du transistor.

L'application du procédé selon l'invention aux matériaux diélectriques permet notamment de réaliser des couches anti-usure en saphir (\$\beta\$-alumine) sur des supports en verre ou en silice. Une telle couche mince d'alumine permet de protéger le verre ou la silice servant de support par exemple à des composants optiques de l'usure et des rayures. Une implantation d'ions hydrogène d'environ 8.10¹⁶ atomes/cm² et de 110 keV d'énergie permet d'obtenir une couche mince ou saphir d'environ l \mum d'épaisseur. Cette faible épaisseur est compatible avec une mise en forme ultérieure éventuelle du verre ou de la silice servant de support pour réaliser des optiques par exemple.

Le procédé selon l'invention s'applique aussi aux matériaux métalliques. Il permet de réaliser des couches anti-corrosion et des barrières de diffusion. La possibilité de réaliser des couches monocristallines métalliques au lieu de couches polycristallines apporte un avantage significatif en termes d'efficacité comme barrière de diffusion aux agressions chimiques et à la corrosion en particulier. En effet, l'existence de phénomènes de diffusions importantes aux joints de grains, dans les matériaux polycristallins, limite l'efficacité des couches minces réalisées en ces matériaux. A titre d'exemple, on peut citer le dépôt d'un film mince de niobium monocristallin de 500 nm d'épaisseur sur un substrat d'acier pour la réalisation d'objets devant résister à des températures élevées en milieu corrosif. Pour obtenir ce film mince, on peut mettre en oeuvre une implantation d'ions H⁺ d'environ 2.10¹⁷ atomes/cm² à 200 keV d'énergie.

10

Un autre exemple d'application concerne la réalisation de mémoires utilisant, pour le stockage de l'information, des domaines magnétiques (bulles) 15 et les parois de domaines magnétiques (parois de Bloch). Pour cela, on peut partir d'un substrat massif de grenat non magnétique sur lequel on a fait croître par épitaxie une couche de grenat ferrimagnétique. Le procédé selon l'invention permet de reporter une couche mince de un substrat en grenat ferrimagnétique sur silicium servant de support et comportant des intégrés. Ces circuits intégrés circuits des dispositifs électroniques, logiques et analogiques, des microbobinages intégrés aptes à générer des champs 25 magnétiques localisés de façon à piloter, détecter les domaines magnétiques ou les parois mince grenat couche de dans la domaines des ferrimagnétique.

REVENDICATIONS

- 1. Procédé de réalisation d'un film mince de matériau solide (103), cristallin ou non, choisi parmi un matériau diélectrique, un matériau conducteur, un matériau semi-isolant, un matériau semiconducteur non ordonné, caractérisé en ce qu'il consiste à soumettre un substrat (100) dudit matériau solide aux étapes suivantes :
- une étape d'implantation ionique au cours

 de laquelle une face (101) du substrat (100) est
 bombardée par des ions choisis parmi les ions de gaz
 rares et de gaz hydrogène, afin de créer, dans le volume
 du substrat (100) et à une profondeur voisine de la
 profondeur moyenne de pénétration des ions, une couche

 de microcavités (102) séparant le substrat en deux
 régions (103, 104),
 - une étape de traitement thermique destinée à porter la couche de microcavités (102) à une température suffisante pour provoquer une séparation entre les deux régions (103, 104) du substrat soit naturellement, soit avec l'aide d'une contrainte appliquée.

20

25

35

- 2. Procédé selon la revendication 1, caractérisé en ce que, entre l'étape d'implantation ionique et l'étape de traitement thermique, il est prévu une étape de fixation de ladite face (101) du substrat (100) sur un support (1).
- 3. Procédé selon la revendication 2, caractérisé en ce que ladite face (101) du substrat (100) est fixée sur le support (1) au moyen d'une substance adhésive.
 - 4. Procédé selon la revendication 2, caractérisé en ce que ladite face (101) du substrat (100) est fixée sur le support (1) par un traitement favorisant les liaisons interatomiques.

- 5.Application du procédé selon l'une quelconque des revendications l à 4 pour obtenir un film mince (103) de matériau ferroélectrique, à partir d'un substrat (100) en matériau ferroélectrique, et 5 sa fixation sur un support (1).
- 6. Application selon la revendication 5, caractérisée en ce que, le support (1) étant en matériau semiconducteur, au moins un circuit de commande électronique est élaboré sur une face (15) de ce support (1), le film mince (103) de matériau ferroélectrique est fixé sur le support (1) de façon à servir de diélectrique à une capacité mémoire commandée par ledit circuit de commande électronique pour constituer ainsi un point mémoire.
- 7. Application selon la revendication 6, caractérisée en ce que le circuit de commande électronique est du type à transistor MOS.
- 8. Application du procédé selon l'une quelconque des revendications l à 4 pour obtenir un 20 film mince de saphir sur un support.
 - 9. Application du procédé selon l'une quelconque des revendications l à 4 pour obtenir un film mince de métal résistant à la corrosion sur un support.
 - 25 l0. Application du procédé selon l'une quelconque des revendications l à 4 pour obtenir un film mince de matériau magnétique sur un support.

FIG. 4

REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL

the second of the second

RAPPORT DE RECHERCHE **PRELIMINAIRE**

2748850 No Cenregistrement national

de la PROPRIETE INDUSTRIELLE établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 531157 FR 9606085

DOCE	JMENTS CONSIDERES COMME P Citation du document avec indication, en cas de	de la des	nande
atégorie	des parties pertinentes	examinė	•
D,Y	FR 2 681 472 A (COMMISSARIAT EN ATOMIQUE) 19 Mars 1993 * le document en entier *	ERGIE 1-4,	8
Υ	JOURNAL OF ELECTRON MICROSCOPY, vol. 40, no. 3, 1 Juin 1991, pages 157-161, XP000265613 KIICHI HOJOU ET AL: "IN-SITU O OF STRUCTURAL DAMAGE IN SIC CRY INDUCED BY HYDROGEN ION IRRADIA SUCCESSIVE ELECTRON IRRADIATION * le document en entier *	BSERVATION STALS TION AND	8
A	ELECTRONICS LETTERS, vol. 31, no. 14, 6 Juillet 1995 page 1201/1202 XP000525349 BRUEL M: "SILICON ON INSULATOR TECHNOLOGY" * le document en entier *		8
A	EP 0 563 667 A (RAMTRON INTERNACORP) 6 Octobre 1993 * colonne 7, ligne 13 - ligne 47,8 *		DOMAINES TECHNIQUES RECHERCHES (Ibs.CL.6) C23C H01L
	Date of achieves	sent de la recherche	Examination
		lanvier 1997	Albrecht, C
Y:	CATEGORIE DES DOCUMENTS CITES particulièrement pertinent à lui seul particulièrement pertinent en combinaison avec un autre document de la même catégorie pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général	T: théorie ou principe à la E: document de brevet bén à la date de dépôt et qu de dépôt ou qu'à une di D: cité dans la demande L: cité pour d'autres raiso	ericant a une arte anterese ii n'a été publié qu'à cette date ate postèrieure.

1