Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Тестирование программного обеспечения»

Отчёт По лабораторной работе №2

Вариант: 5157

Студент:

Барсуков М. А.

группа *Р3315*

Преподаватель:

Цопа Е. А.

Описание задания

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом).

Введите вариант:
$$\begin{cases} \left(\left(\left(\left(\left(\tan(x) - \sec(x) \right) - \csc(x) \right)^2 \right) - \tan(x) \right) \cdot \left(\left(\frac{\sin(x)}{\tan(x)} \right) - \left(\frac{\tan(x)}{\cos(x)} \right) \right) \right) & \text{if} \quad x \leq 0 \\ \left(\left(\left(\frac{\frac{\log_2(x)^2}{\ln(x)}}{\log_3(x)} \right)^3 \right) \cdot \left(\frac{\ln(x)}{\frac{\log_3(x)}{\log_2(x)}} \right) \right) & \text{if} \quad x > 0 \end{cases}$$

 $x <= 0: ((((((tan(x) - sec(x)) - csc(x)) ^ 2) - tan(x)) * ((sin(x) / tan(x)) - (tan(x) / cos(x)))) \\ x > 0: (((((log_2(x) ^ 2) / ln(x)) / log_3(x)) ^ 3) * (ln(x) / (log_3(x) / (log_10(x) / log_2(x))))) \\$

$$x \le 0 : (((((tan(x) - sec(x)) - csc(x)) ^ 2) - tan(x)) * ((sin(x) / tan(x)) - (tan(x) / cos(x))))$$

$$x > 0$$
: (((((log_2(x) ^ 2) / ln(x)) / log_3(x)) ^ 3) * (ln(x) / (log_3(x) / (log_10(x) / log_2(x)))))

Выполнение

Исходный код

https://github.com/maxbarsukov-itmo/tpo-2

UML

Описание тестового покрытия с обоснованием его выбора

Тригонометрические функции

При тестировании тригонометрических функций необходимо учитывать их свойства, периодичность, симметрию и особенности поведения в особых точках. Выделим основные классы входных значений:

• Обычные значения: проверка произвольных точек внутри периода, например:

$$\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, 0, \pi$$

• Переодичнось:

 $\cos x$, $\sin x$, $\csc x$, $\sec x$ — период 2π ;

- Особые точки (сингулярности):
 - \circ sec x не определён при $x = \frac{\pi}{2} + k\pi$;
 - \circ csc x не определён при x= k π ;

Логарифмические функции

При тестировании логарифмических функций необходимо учитывать их свойства, область определения, особенности поведения в предельных точках числовую шкалу логарифмирования. Выделим основные классы входных значений:

- Обычные значения: проверка произвольных точек внутри области определения.
- Границы области определения:
 - \circ Логарифмические функции определены для x > 0;
 - \circ Проверяем отрицательные значения или 0.

Система

В рамках тестирования функциональности класса EquationSystem были разработаны следующие тестовые сценарии:

- Обычные значения: проверка произвольных точек внутри области определения, как позитивные, так и негативные.
- Особые точки: функция не определена, например, $x = -\pi$, x = 1

Также анализ функции показал, что часть системы для x > 0 постоянна (упрощается до константного значения), и поэтому может целиком представляться одной областью.

Общее покрытие

Также были добавлены тесты, проверяющие, некорректные аргументы, точность, и использование модулей (соs использует sin, согласно заданию).

Тестовое покрытие

Как мы можем видеть, все работает корректно:

9

Test Summary

0

0

0.279s

100%

Generated by Gradle 8.8 at 16 anp. 2025 r., 00:35:39

ru.itmo.qa.lab2.util

Тесты успешно проходятся.

Итоговое тестовое покрытие.

Графики

Выводы

В ходе выполнения лабораторной работы была реализована система функций, основанная на разложении в ряд. Проведено модульное и интеграционное тестирование с использованием JUnit 5 и Mockito, включая анализ граничных значений классов эквивалентности. Кроме того я научился тестировать приложения, работающие с дисплеем, получил базовые навыки СІ. Выгрузка данных в CSV построенные графики подтвердили корректность вычислений. Работа позволила закрепить навыки интеграционного тестирования, работы с численными методами и проектирования модульных приложений.