Corrigé du partiel du 17 Novembre 2011.

Exercice 1. a) On a pour toute fonction test g

$$E g(X) = g(t) \mathbb{P}(X = t) + E(g(X)\mathbf{1}_{X < t}).$$

Soit f une fonction bornée. Remarquons que sur l'événement $\{X < t\}$, on a Z = X donc

$$\begin{split} \mathbf{E}(Zf(X)) &= \mathbf{E}(Zf(X)\mathbf{1}_{X=t}) + \mathbf{E}(Zf(X)\mathbf{1}_{X< t}) \\ &= \mathbf{E}(Z\mathbf{1}_{X=t})f(t) + \mathbf{E}(Xf(X)\mathbf{1}_{X< t}) \\ &= \mathbf{E}(Z \mid X = t)f(t)\,\mathbb{P}(X = t) + \mathbf{E}(Xf(X)\mathbf{1}_{X< t}) = \mathbf{E}(h(X)f(X)). \end{split}$$

où h est la fonction définie sur [0, t] par h(x) = x si x < t et

$$h(t) = E(Z \mid X = t) = E(Z \mid Z > t) = \frac{\int_{t}^{+\infty} z e^{-z} dz}{\mathbb{P}(Z > t)} = t + 1.$$

Par définition de l'espérance conditionnelle on a alors

$$E(Z \mid X) = h(X) = X \mathbf{1}_{X < t} + (t+1) \mathbf{1}_{X=t}.$$

De même

$$E(Zf(Y)) = E(Zf(Y)\mathbf{1}_{Y=t}) + E(Zf(X)\mathbf{1}_{Y>t})$$

$$= E(Z\mathbf{1}_{Y=t})f(t) + E(Yf(Y)\mathbf{1}_{Y>t})$$

$$= E(Z \mid Y = t)f(t) \mathbb{P}(Y = t) + E(Yf(Y)\mathbf{1}_{Y>t}) = E(k(Y)f(Y)).$$

où k est la fonction définie sur $[t, +\infty]$ par h(x) = x si x > t et

$$k(t) = E(Z \mid Y = t) = E(Z \mid Z < t) = \frac{\int_0^t z e^{-z} dz}{\int_0^t e^{-z} dz} = 1 - \frac{t e^{-t}}{1 - e^{-t}}.$$

Du coup

$$E(Z \mid Y) = k(Y) = (1 - \frac{te^{-t}}{1 - e^{-t}})\mathbf{1}_{Y=t} + Y\mathbf{1}_{Y>t}.$$

b) Soit f une fonction test

$$E f(XY) = \int_0^1 \int_0^1 f(xy) \, dxdy = \int_0^1 \int_0^x f(z) \frac{1}{x} \, dzdx = \int_0^1 f(z)(-\ln(z)) \, dz.$$

Donc Z = XY a pour densité $z \mapsto -\ln(z)$ sur]0,1[. De plus

$$E(Xf(Z)) = \int_0^1 \int_0^x f(z) dz dx = \int_0^1 (1-z)f(z) dz = E(g(Z)f(Z))$$

où g est la fonction définie sur]0,1[par $g(z)=(z-1)/\ln(z).$ Par définition de l'espérance conditionnelle on a

$$E(X \mid Z) = g(Z) = \frac{Z - 1}{\ln(Z)}.$$

Le problème est symétrique en X, Y, donc $E(Y \mid Z) = E(X \mid Z)$.

Exercice 2. Voir cours.

Exercice 3. a) Pour $n \in \mathbb{N}$, on considère la variable $Z = X_{n-1} - E(X_n | \mathcal{F}_{n-1})$. Comme $(X_n)_{n \geq 0}$ est une surmartingale, $Z \geq 0$ p.s. Par ailleurs,

$$E(Z) = E(X_{n-1}) - E(E(X_n | \mathcal{F}_{n-1})) = E(X_{n-1}) - E(X_n) = 0$$

On a montré que Z est une variable positive p.s. d'espérance nulle donc Z est nulle p.s.

- b) C'est une conséquence de c)
- c) Comme $(M_n)_{n\geq 0}$ est une surmartingale, $(M_n)_{n\geq 0}$ est adapté et intégrable. De plus pour $n\geq 1$:

$$E(\Delta M_n | \mathcal{F}_{n-1}) = E(\Delta X Y_n - \Delta X_n \Delta Y_n | \mathcal{F}_{n-1})$$

= $-2X_{n-1}Y_{n-1} + E(X_{n-1}Y_n | \mathcal{F}_{n-1}) + E(Y_{n-1}X_n | \mathcal{F}_{n-1})$
= 0

- d) Voir cours.
- e) Puisque $(X_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale, $(X_n)_{n\geq 0}$ est adapté par rapport à $(\mathcal{F}_n)_{n\geq 0}$, on en déduit $\mathcal{G}_n \subset \mathcal{F}_n$ pour tout $n \in \mathbb{N}$. Le processus $(X_n)_{n\geq 0}$ est clairement intégrable et adapté par rapport à $(\mathcal{G}_n)_{n\geq 0}$. De plus pour tout $n\geq 0$ et tout $A\in \mathcal{G}_n$, A appartient aussi à \mathcal{F}_n et on a donc $E(X_n 1_A) = E(X_{n-1} 1_A)$ d'où $E(X_n | \mathcal{G}_{n-1}) = X_{n-1}$.

Soit T un temps d'arrêt pour $(\mathcal{G}_n)_{n\geq 0}$, et $n\in\mathbb{N}$ alors $\{T=n\}\in\mathcal{G}_n$ d'où $\{T=n\}\in\mathcal{F}_n$. On en déduit que T est aussi un temps d'arrêt pour $(\mathcal{F}_n)_{n\geq 0}$.

Exercice 4. 1. Comme X est adapté on a $Y_n = \max(X_1, \dots, X_n) \in \mathcal{F}_n$ pour tout n, et donc $\{X_n \geq Y_{n-1}\} \in \mathcal{F}_n$ pour tout $n \geq 1$. Par suite

$$\{T \le n\} = \{X_1 \ge Y_0\} \cup \dots \cup \{X_n \ge Y_{n-1}\}$$

est encore dans la tribu \mathcal{F}_n . Ceci montre que T est un temps d'arrêt. Si T = n alors $Y_{n-1} \leq X_n$ et donc $Y_n = \max(Y_{n-1}, X_n) = X_n$. Par conséquent

$$\mathbf{1}_{T<\infty}(X_T - Y_T) = \sum_{n=1}^{\infty} \mathbf{1}_{T=n}(X_n - Y_n) = 0,$$

ce qu'il fallait démontrer.

2. Pour k entre 0 et n on a $\{T = k\} \in \mathcal{F}_k \subset \mathcal{F}_n$ puisque T est un temps d'arrêt, et de même $\{S = n - k\} \in \mathcal{F}_{n-k} \subset \mathcal{F}_n$. Comme \mathcal{F}_n est stable par intersection et réunion (finies), on obtient

$${T + S = n} = \bigcup_{k=0}^{n} {T = k} \cap {S = n - k} \in \mathcal{F}_n$$

ce qui montre que T est un temps d'arrêt.

3. Par définition de l'infimum, on a

$$\{T \le n\} = \bigcup_{k>0} \{T_k \le n\},\,$$

et cet événement est dans \mathcal{F}_n puisque chacun des T_k est un temps d'arrêt. Donc T est un temps d'arrêt.

4. En utilisant $\{T=n\}\in\mathcal{F}_n$ et la propriété de sur-martingale on a

$$E(X_{T+k}\mathbf{1}_{T=n}) = E(E(X_{n+k} \mid \mathcal{F}_n)\mathbf{1}_{T=n}) \le E(X_n\mathbf{1}_{T=n}) = 0.$$

De plus $\mathbb{P}(T < +\infty) = 1$, donc

$$E(X_{T+k}) = \sum_{n=0}^{\infty} E(X_{T+k} \mathbf{1}_{T=n}) \le 0.$$

Comme X_{T+k} est une variable positive on obtient $X_{T+k} = 0$, presque sûrement.

Exercice 5. a) Le processus $(M_n)_{n\geq 0}$ est une martingale et $(H_n)_{n\geq 0}$ est prévisible dont $(X_n)_{n\geq 0} = ((H\cdot X)_n)_{n\geq 0}$ est une martingale (cf. cours). On vérifie ensuite facilement grâce aux hypothèses que pour tout $n\geq 0$, X_n est borné (mais attention, cette borne dépend de n!), et on en déduit que $(X_n)_{n\geq 0}$ est de carré intégrable.

b) On commence par remarquer que pour tout $k > l \ge 0$,

$$E(H_k \Delta M_k H_l \Delta M_l) = E(E(H_k \Delta M_k H_l \Delta M_l | \mathcal{F}_{k-1})).$$

Or $(H_k)_{k\geq 0}$ est prévisible donc H_k et H_l sont mesurables par rapport à \mathcal{F}_{k-1} (et ΔM_l aussi car $(M_n)_{n\geq 0}$ est adapté). On obtient donc,

$$E(H_k \Delta M_k H_l \Delta M_l) = E(H_k H_l \Delta M_l E(\Delta M_k | \mathcal{F}_{k-1})) = 0.$$

On en déduit que pour tout $n \in \mathbb{N}$

$$E(X_n^2) = \sum_{k=1}^n E(H_k^2 \Delta M_k^2) \le \sum_{k=1}^n \frac{1}{k^2} 4K^2 \le 12K^2.$$

On en déduit que $(X_n)_{n\geq 0}$ est une martingale bornée dans L^2 , elle converge donc p.s. et dans L^2 .