Peak Finding In Arrays 1D:

Definition:

Let A be an array of size n.

Let $A_{i,l}$, A_i , and A_{i+l} , $(i \le n; (A_{i-1}, A_i, A_{i+1}) \in A)$ be any three subsequent items in A.

Let A_0 , A_1 be the first and the second items in the array, respectively.

Let A_{n-1} , A_n be the second to last, and the last items in the array, respectively.

An item A_i is a peak iff $A_i \ge A_{i-1} \land A_i \ge A_{i+1}$.

 A_0 is a peak if $A_0 \ge A_1$.

 A_n is a peak if $A_n \ge A_{n-1}$.

Corollary 1: The largest item in the array is always the peak.

Proof of Corollary 1:

By the definition of the peak, A_i is a peak iff $A_i \ge A_{i-1} \land A_i \ge A_{i+1}$.

Let A_{max} be the largest item in A; let A_i be any item in A, such that $max \neq j$.

 $\Rightarrow A_{max} \geqslant A_j, \forall j \in (1, 2, ..., n)$, where n is the size of A.

 $=> A_{max}$ is a peak.

Theorem 1: An array has at least one peak.

Very simple proof of Theorem 1: (I'm still leaving the first one below)

By *Corollary 1*, the largest item in the array is always the peak. Every array has at least one item such that $A_{max} \ge A_j$, $\forall j \in (1, 2, ..., n)$.

 $=> A_{max}$ has a peak.

Proof of Theorem1: (By induction)

Let P(n) = "an array of size n has at least one peek".

Base case: $P(1) \Rightarrow$ an array of size 1 has one element, which therefore is a peak. \Rightarrow Base case holds. Inductive step: Assume P(n) is true. \Rightarrow \exists A of size n that has a peak.

Assume P(n+1) by adding an element k into the array A creating a new array A'. There are three possibilities:

- a) an element is added to the end of the array A'
- b) an element is added to the beginning of the array A'
- c) an element is added somewhere in the array A' that is not beginning nor end.

Let's analyze each of the cases.

In the a) case, there are two possibilities. A'_{θ} was a peak, or A'_{θ} was not a peak.

- 1) If A'_{θ} was a peak and $A'_{0} \ge k$, then A'_{θ} is still a peak, since $A'_{0} \ge A'_{1} \wedge A'_{0} \ge k$; otherwise k will be the new peak.
- 2) If A'_0 was not a peak, then k will be a peak if $A'_0 \le k$. Otherwise k would not be the peak, but, by P(n), A' would have a peak of A.

In the b) case, there are two possibilities. A'_n was a peak, or A'_n was not a peak.

- 3) If A'_n was a peak and $A'_n \ge k$, then A'_n is still a peak, since $A'_n \ge A'_{n-1} \land A'_n \ge k$; otherwise k will be the new peak.
- 4) If A'_n was not a peak, then k will be a peak if $A'_n \le k$. Otherwise k would not be the peak,

but, by P(n), A' would have a peak of A.

The c) case is a little bit more complicated. Let's assume that k is inserted between A'_{i} , and A'_{i+1} . Then there are a couple of possibilities, but the rules from the previous two cases apply:

- 1) If $k \ge A'_i \land k \ge A'_{i+1}$, k will be a peak.
- 2) If $k \le A'_i$, and A'_i was a peak, it will remain a peak. If A'_i was not a peak, then, by P(n), A' would have a peak of A.
- \Rightarrow P(n+1) holds.

Algorithms' asymptotic complexity:

Greedy approach: Worst case, $T(n) = \Theta(n)$

Recursive approach:

Worst case, $T(n) = T(n/2) + \Theta(1)$.

Assuming the peak will be found on the last try, this yields: $T(n) = \sum_{1}^{\log_2(n)} \Theta(1) = \Theta(\log_2(n))$.