ЛАБОРАТОРНЫЕ РАБОТЫ

по теме "Обыкновенные дифференциальные уравнения"

Задание 1. Подготовить программу для численного решения задачи Коши вида

$$y' = f(x, y), \qquad y(0) = y_0$$

на отрезке [0,1] методом, указанным ниже. В программе предусмотреть сравнение значений y(x), полученных с шагом h и $\frac{h}{2}$.

1. Методом Рунге-Кутта третьей степени

$$u_{n+1} = u_n + \frac{h}{4} (k_{1,n} + 3k_{3,n}),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f \left(x_n + \frac{h}{3}, u_n + \frac{h}{3} k_{1,n} \right), \quad k_{3,n} = f \left(x_n + \frac{h}{3}, u_n + \frac{h}{3} k_{2,n} \right).$$

2. Методом Рунге-Кутта четвертой степени

$$u_{n+1} = u_n + \frac{h}{6} \left(k_{1,n} + 4k_{3,n} + k_{4,n} \right),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f \left(x_n + \frac{h}{4}, u_n + \frac{h}{4} k_{1,n} \right), \quad k_{3,n} = f \left(x_n + \frac{h}{2}, u_n + \frac{h}{2} k_{2,n} \right),$$

$$k_{4,n} = f(x_{n+1}, u_n + hk_{1,n} - 2hk_{2,n} + 2hk_{3,n}).$$

3. Методом Рунге-Кутта четвертой степени

$$u_{n+1} = u_n + \frac{h}{6} \left(k_{1,n} + 2k_{2,n} + 2k_{3,n} + k_{4,n} \right),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f \left(x_n + \frac{h}{2}, u_n + \frac{h}{2} k_{1,n} \right), \quad k_{3,n} = f \left(x_n + \frac{h}{2}, u_n + \frac{h}{2} k_{2,n} \right),$$

$$k_{4,n} = f \left(x_n + h, u_n + h k_{3,n} \right).$$

4. Усовершенствованным методом ломаных

$$u_{n+1} = u_n + hk_{2,n},$$

$$k_{1,n} = f_n, \quad k_{2,n} = f\left(x_n + \frac{h}{2}, u_n + \frac{h}{2}k_{1,n}\right).$$

5. Неявным методом Рунге-Кутта второй степени

$$u_{n+1} = u_n + \frac{h}{2} (k_{1,n+1} + k_{2,n+1}),$$

$$k_{1,n+1} = f_{n+1}, \quad k_{2,n+1} = f(x_{n+1}, u_{n+1} - hk_{1,n+1}).$$

В качестве экстраполяционного значения использовать полученное по явной формуле Эйлера

$$u_{n+1} = u_n + h f_n.$$

6. Методом Рунге-Кутта третьей степени

$$u_{n+1} = u_n + \frac{h}{9} (2k_{1,n} + 3k_{2,n} + 4k_{3,n}),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f\left(x_n + \frac{h}{2}, u_n + \frac{h}{2}k_{1,n}\right), \quad k_{3,n} = f\left(x_n + \frac{h}{4}, u_n + \frac{h}{4}k_{2,n}\right).$$

7. Методом Рунге-Кутта второй степени

$$u_{n+1} = u_n + hk_{2,n},$$

$$k_{1,n} = f_n, \quad k_{2,n} = f\left(x_n + \frac{h}{2}, u_n + \frac{h}{2}k_{1,n}\right).$$

8. С помощью неявной формулы трапеций

$$u_{n+1} = u_n + hf\left(x_n + \frac{h}{2}, \frac{u_n + u_{n+1}}{2}\right).$$

В качестве экстраполяционного значения использовать полученное по явной формуле

$$u_{n+1} = u_n + hf\left(x_n + \frac{h}{2}, u_n + \frac{h}{2}f_n\right).$$

9. Методом Рунге-Кутта третьей степени

$$u_{n+1} = u_n + \frac{h}{6} (k_{1,n} + 4k_{2,n} + k_{3,n}),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f\left(x_n + \frac{h}{2}, u_n + \frac{h}{2}k_{1,n}\right), k_{3,n} = f(x_n + h, u_n - hk_{1,n} + 2hk_{2,n}).$$

10. Методом Рунге-Кутта четвертой степени

$$u_{n+1} = u_n + \frac{h}{8} \left(k_{1,n} + 3k_{2,n} + 3k_{3,n} + k_{4,n} \right),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f \left(x_n + \frac{h}{3}, u_n + \frac{h}{3} k_{1,n} \right), \quad k_{3,n} = f \left(x_n + \frac{h}{3}, u_n + \frac{h}{3} k_{2,n} \right),$$

$$k_{4,n} = f(x_{n+1}, u_n + hk_{1,n} - hk_{2,n} + hk_{3,n}).$$

11. Неявным методом Рунге-Кутта третьей степени

$$u_{n+1} = u_n + \frac{h}{4}(r_{1,n+1} + 3r_{3,n+1}),$$

$$r_{1,n+1} = f_{n+1}, \quad r_{2,n+1} = f\left(x_n + \frac{2h}{3}, u_{n+1} - \frac{h}{3}r_{1,n+1}\right),$$

$$k_{3,n+1} = f\left(x_n + \frac{h}{3}, u_{n+1} - \frac{2h}{3}r_{2,n+1}\right).$$

В качестве экстраполяционного значения использовать полученное по явной формуле Рунге-Кутта третьей степени

$$u_{n+1} = u_n + \frac{h}{4} (k_{1,n} + 3k_{3,n}),$$

$$k_{1,n} = f_n, \quad k_{2,n} = f \left(x_n + \frac{h}{3}, u_n + \frac{h}{3} k_{1,n} \right), \quad k_{3,n} = f \left(x_n + \frac{h}{3}, u_n + \frac{h}{3} k_{2,n} \right).$$

12. Методом Адамса второй степени

$$u_{n+2} = u_{n+1} + \frac{h}{2}(3f_{n+1} - f_n).$$

Значение u_1 вычислить по формуле Эйлера-Коши

$$u_2 = u_1 + \frac{h}{2} (f_1 + f(x_2, u_1 + hf_1)).$$

13. Неявным методом Рунге-Кутта

$$u_{n+1} = u_n + hk_{2,n+1},$$

$$k_{1,n+1} = f_{n+1}, \quad k_{2,n+1} = f\left(x_{n+1} - \frac{h}{2}, u_{n+1} - \frac{h}{2}k_{1,n+1}\right).$$

В качестве экстраполяционного значения использовать полученное по явной формуле Эйлера

$$u_{n+1} = u_n + hk_{1,n}.$$

14. По схеме Куртиса-Хиршфельда второй степени

$$u_{n+2} = \frac{4}{3}u_{n+1} - \frac{1}{3}u_n + \frac{2}{3}hf_{n+2},$$

в качестве экстраполяционного значения использовать полученное по явной формуле Адамса второй степени

$$u_{n+2} = u_{n+1} + \frac{h}{2}(3f_{n+1} - f_n).$$

Значение u_1 вычислить по формуле Эйлера-Коши

$$u_1 = y_0 + \frac{h}{2} (f(x_0, y_0) + f(x_1, y_0 + hf(x_0, y_0))).$$

Задание 2. Решение конечно-разностным методом краевой задачи для обыкновенного дифференциального уравнения второго порядка.

Дано уравнение

$$\frac{d^2u}{dx^2} + p(x)\frac{du}{dx} + q(x)u = f(x),$$

с краевыми условиями

$$\alpha_0 u(0) + \beta_0 u'(0) = \gamma_0,$$
 $\alpha_0^2 + \beta_0^2 \neq 0,$
 $\alpha_1 u(1) + \beta_1 u'(1) = \gamma_1,$ $\alpha_1^2 + \beta_1^2 \neq 0.$

Коэффициенты уравнения, вид краевых условий, а также точное решение приведены в таблице 1.

Решить краевую задачу с помощью трёхточечной разностной схемы

$$a_i y_{i-1} + b_i y_i + c_i y_{i+1} = f_i, \quad i = 0, ..., N,$$
 (0.1)

$$a_0 = c_N = 0$$
, $b_i = q_i - a_i - c_i$, $i = 1, ..., N - 1$,

где
$$p_i = p(x_i), \ q_i = q(x_i), \ f_i = f(x_i), \ x_i = ih, \ h = \frac{1}{N}.$$

Коэффициенты a_i , c_i заданы в таблице 2.

Разностные уравнения при i=0 и i=N получаются при аппроксимации краевых условий.

Если $\beta_0 = 0$, то $c_0 = 0$, а b_0 определяется с помощью α_0 и γ_0 .

Если $\beta_0 \neq 0$, то при аппроксимации левого граничного условия можно воспользоваться соотношением

$$u'(0) \cong \frac{-y_2 + 4y_1 - 3y_0}{2h}.$$

Исключая в разностном уравнении с номером i=1 неизвестное y_0 , получаем новые выражения для b_1 и c_1 , при этом $a_1=0$. Таким образом, если $\beta_0 \neq 0$, нулевое уравнение системы нужно только для вычисления y_0 , и это уравнение в системе (0.1) не учитывается.

Аналогична методика рассмотрения правого граничного условия.

Если $\beta_2 \neq 0$, то для аппроксимации правого граничного условия можно воспользоваться соотношением

$$u'(1) \cong \frac{3y_N - 4y_{N-1} + y_{N-2}}{2h}.$$

Далее действуем так же, как и при рассмотрении левого граничного условия.

Исключая из N-1-ого уравнения y_N , получаем новые выражения для a_{N-1} и b_{N-1} , а $c_{N-1}=0$. N-ное уравнение системы (0.1) используется для вычисления y_N через y_{N-1} и y_{N-2} .

Таким образом, имеем систему вида (0.1) для i=l,l+1,...,m, где l=0 или 1 и m=N или N-1, в зависимости от вида граничных условий исходного дифференциального уравнения.

Систему (0.1) решать методом монотонной прогонки.

Ответить на следующие вопросы:

- 1. Каков порядок аппроксимации разностной схемы?
- 2. Что можно сказать об устойчивости разностной схемы?
- 3. Устойчив ли метод прогонки решения трехточечной системы?

Таблица 1. Варианты коэффициентов уравнения и краевых условий.

$N_{\overline{0}}$	p(x)	q(x)	f(x)	α_0	β_0	γ_0	α_1	β_1	γ_1	Точное решение
1	-x + 1	-1	$\frac{2}{(x+1)^3}$	1	0	1	1	0	0.5	$\frac{1}{x+1}$
2	$\frac{2}{x-2}$	x-2	1	1	0	-0.5	1	0	-1	$\frac{1}{x-2}$
3	$\frac{4x}{x^2+1}$	$-\frac{1}{x^2+1}$	$-\frac{3}{(x^2+1)^2}$	0	1	0	1	0	0.5	$\frac{1}{x^2+1}$
4	x + 1	-1	$\frac{x^2 + 2x + 2}{x + 1}$	1	0	0	1	0	1.38294	$(x+1)\ln(x+1)$
5	$-(x^2+1)$	-2x		1	-2	1	1	0	0.5	$\frac{1}{x^2 + 1}$
6	0	$-\frac{2}{(x+1)^2}$	$\frac{9}{2(x+1)^{\frac{3}{2}}}$	1	-2	0	0	1	$\frac{-\sqrt{2}}{2}$	$-2\sqrt{x+1}$
7	$\frac{3}{2(x+1)}$	0	$\frac{2}{\sqrt{x+1}}$	3	-1	1	0	1	$\sqrt{2}$	$\frac{2}{3}(x+1)^{\frac{3}{2}}$
8	$\frac{1}{2(x+1)}$	-1	$-\sqrt{x+1}$	0	1	0.5	1	0	$\sqrt{2}$	$\sqrt{x+1}$
9	0	$-\frac{3}{(x+1)^2}$	$-\frac{15}{\sqrt{x+1}}$	3	-1	1	0	1	$\sqrt{2}$	$\frac{2}{3}(x+1)^{\frac{3}{2}}$
10	$\frac{1}{2(x+1)}$	0	$\frac{1}{\sqrt{x+1}}$	3	-2	1	0	1	$\sqrt{2}$	$\frac{1}{3}((x+1)^{\frac{3}{2}}+1)$
11	$-(x+1)^2$	$-\frac{2}{(x+1)^2}$	1	1	-1	2	1	0	0.5	$\frac{1}{x+1}$
12	$\frac{3}{2}(x+1)$	-(x+1)	$-2\sqrt{x+1} + x + 1$	1	-1	2	0	1	$-2^{\frac{3}{2}}$	$\frac{2}{\sqrt{x+1}} - 1$
13	x+1	1	$-\frac{2}{(x+1)^3}$	0	1	1	1	0	0.5	$\frac{x}{x+1}$
14	-(x+1)	1	$-\frac{2x^3 + 4x^2 + 2x - 2}{(x+1)^3}$	1	0	0	0	1	$\frac{1}{3}$	$\frac{x^2}{x+1}$
15	$2\sqrt{x+1}$	$-\frac{1}{\sqrt{x+1}}$	$-\frac{\ln(x+1)}{\sqrt{x+1}} + 2$	1	0	0	1	0	0.98025	$\sqrt{x+1}\ln(x+1)$
16	0	$\frac{1}{(x+1)^2}$	$\frac{\sqrt{x+2}}{8(x+2)^3}$	$\frac{1}{\sqrt{2}}$	$-\sqrt{2}$	$\frac{1}{8}$	1	0	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{x+2}}{2(x+2)}$
17	-2	-1	$\frac{2}{(x+1)^3}e^x$	1	0	1	0	1	$\frac{e}{4}$.	$\frac{e^x}{x+1}$
18	$\frac{1}{x^2 + x + 1}$	0	$-2\frac{x^2 - 1}{(x^2 + x + 1)^2}$	1	0	0	0	1	1	$\ln(x^2 + x + 1)$
19	-1	0	$\frac{2\sin x}{\cos^3 x}$	0	1	1	0	1	$\frac{1}{\cos^2 1}$	tg x - 1
20	$-\sin x$	0	$-\frac{1}{2\sin 2x}$	1	0	0	-1	1	$\cos 1 - \sin 1$	$\sin x - x$
21	$\sqrt{x+1}$	$\frac{1}{4}$	$\sqrt{x+1} + \frac{1}{4}x + \frac{5}{4}$	1	0	4	1	0	$2(\sqrt{2}+1)$	$2\sqrt{x+1} + x + 1$
22	$-\frac{1}{\cos x}$	1	$\frac{2 - \sin x}{\cos^3 x} - 1$	0	1	0	1	0	$\frac{1}{\cos 1} - 1$	$\frac{1}{\cos x} - 1$

Таблица 2. Варианты разностных схем $\left(r = \frac{p_i}{2}h\right)$

N_2 a_i	c_i
$1 \left \frac{1}{h^2} \left(1 - r \right) \right $	$\frac{1}{h^2}(1+r)$ — классическая трёхточечная схема
$2 \left \frac{1}{h^2} \left(1 + r - r \right) \right $	$\left \frac{1}{h^2} \Big(1 + r + r \Big) - \right $ схема направленных разностей
$3 \frac{1}{h^2} \left(1 + \frac{r^2}{1 + r } - r \right)$	$\frac{1}{h^2} \left(1 + \frac{r^2}{1 + r } + r \right) - \text{схема Самарского}$
$4 \frac{1}{h^2} \left(1 + \frac{ r ^3}{1 + r + r^2} - r \right)$	$ \frac{1}{h^2} \Big(1 + \frac{ r ^3}{1 + r + r^2} + r \Big) $ — схема Булеева—Тимухина
	$\frac{1}{h^2}\Big(r +e^{- r }+r\Big)$ — экспоненциальная схема
$6 \frac{1}{h^2} \left(\operatorname{ch} r - r \right)$	$\frac{1}{h^2} \Big(r + r \Big)$
$7 \frac{1}{h^2} \Big(1 + r \ln(1 + r) - r \Big)$	$\frac{1}{h^2} \Big(1 + r \ln(1 + r) + r \Big)$ — логарифмическая схема
$8 \frac{1}{h^2} \left(\frac{\arctan r}{r} - r \right)$	$\frac{1}{h^2} \left(\frac{\arctan r}{r} + r \right)$
$9 \frac{1}{h^2} \left(1 + \frac{r^2}{1 + r + \sin^2 r} - r \right)$	$\frac{1}{h^2} \left(1 + \frac{r^2}{1 + r + \sin^2 r} + r \right)$
$10 \left \frac{1}{h^2} \left(1 + \frac{r^2}{2} - r \right) \right $	$\frac{1}{h^2}\left(1+\frac{r^2}{2}+r\right)$
$11 \left \frac{1}{h^2} \left(1 + 2 r - \sin 2 r - r \right) \right $	$\frac{1}{h^2}\Big(1+2 r -\sin 2 r +r\Big)$
$12 \frac{1}{h^2} \left(r + \frac{r^2 + 1}{ r + 1} - r \right)$	$\frac{1}{h^2} \Big(r + \frac{r^2 + 1}{ r + 1} + r \Big)$
$13 \frac{1}{h^2} \left(1 + r - \frac{\sin r }{\sin r + 1} - r \right)$	$\frac{1}{h^2} \left(1 + r - \frac{\sin r }{\sin r + 1} + r \right)$
$14 \frac{1}{h^2} \left(1 + r^2 - \frac{r^2}{\sin r + 1} - r \right)$	$\frac{1}{h^2} \left(1 + r^2 - \frac{r^2}{\sin r + 1} + r \right)$
$15 \frac{1}{h^2} \Big(1 + r \sin r - r \Big)$	$\frac{1}{h^2} \Big(1 + r \sin r + r \Big)$
$16 \frac{1}{h^2} \left(\operatorname{tg} r + \frac{1}{ r +1} - r \right)$	$\frac{1}{h^2} \left(\operatorname{tg} r + \frac{1}{ r +1} + r \right)$
$17 \frac{1}{h^2} \left(\frac{e^{ r }}{ r +1} - r \right)$	$\frac{1}{h^2} \left(\frac{e^ r }{ r +1} + r \right)$
$18 \frac{1}{h^2} \left(2 r + \frac{(2 - e^r - e^{-r})^2}{2 + e^r + e^{-r}} - r \right)$	$\frac{1}{h^2} \left(2 r + \frac{(2 - e^r - e^{-r})^2}{2 + e^r + e^{-r}} + r \right)$
$19 \frac{1}{h^2} \Big(1 + r - th r - r \Big)$	$\frac{1}{h^2}\Big(1+ r -\operatorname{th} r +r\Big)$
$20 \left \frac{1}{h^2} \left(r + \frac{\operatorname{ch} r}{\operatorname{sh} r + 1} - r \right) \right $	$\frac{1}{h^2} \left(r + \frac{\operatorname{ch} r}{\operatorname{sh} r + 1} + r \right)$

Таблица 2. Варианты разностных схем $\left(r=\frac{p_i}{2}h\right)$ (продолжение)

$N_{\overline{0}}$	a_i	c_i
21	$\frac{1}{h^2} \left(1 + \frac{r^2}{\sin^2 r + r + 1} - r \right)$	$\frac{1}{h^2} \left(1 + \frac{r^2}{\sin^2 r + r + 1} + r \right)$
22	$\frac{1}{h^2} \Big(a^{ r } - r \Big)$	$\frac{1}{h^2} (a^{ r } + r), \ a > 1$