Joint distributions I

Joint distribution of N random variables X_1, \ldots, X_N :

▶ Discrete: $f_{\mathbf{X}}(x_1, \dots, x_N) \ge 0, x_i \in R_{X_i}$, for $i = 1, \dots, N$.

$$\sum_{R_1,\ldots,R_N} f_{\mathbf{X}}(x_1,\ldots,x_N) = 1.$$

► Continuous: $f_{\mathbf{X}}(x_1,...,x_N) \ge 0, x_i \in \mathcal{R}, i = 1,...,N$.

$$\int_{\mathcal{R}^N} f_{\mathbf{X}}(x_1,\ldots,x_N) dx_1 \cdot dx_N = 1.$$

Joint distributions II

Marginals:

▶ Discrete example:

$$\begin{split} f_{X_2,X_4}(x_2^*,x_4^*) &= \\ \sum_{x_1 \in R_{X_1},x_3 \in R_{X_3},x_5 \in R_{X_5}...x_N \in R_{X_N}} f_{\mathbf{X}}(x_1,x_2^*,x_3,x_4^*,x_5,\ldots,x_N). \end{split}$$

Continuous example:
$$f_{X_2,X_4}(x_2^*,x_4^*) = \int_{x_1 \in \mathcal{R}, x_3 \in \mathcal{R}, x_5 \in \mathcal{R}, \dots, x_N \in \mathcal{R}} f_{\mathbf{X}}(x_1, x_2^*, x_3, x_4^*, x_5, \dots, x_N) dx_1 dx_3 dx_5 \cdots dx_N.$$

Joint distributions III

Conditionals:

- ▶ Discrete example $f_{X_2|X_4}(x_2|x_4) = \frac{f_{X_2,X_4}(x_2,x_4)}{f_{X_4}(x_4)}$. Discrete distribution on R_{X_2} for each value of x_4 .
- Continuous example: $f_{X_2|X_4}(x_2|x_4) = \frac{f_{X_2,X_4}(x_2,x_4)}{f_{X_4}(x_4)}.$ Continuous density on $\mathcal R$ for each value of x_4 .

Mutual independence of N variables:

$$f_{\mathbf{X}}(x_1,\ldots,x_N)=\prod_{i=1}^N f_{X_i}(x_i).$$

For all values x_1, \ldots, x_N .

Covariance of two random variables I

Covariance of two random variables X, Y with means μ_X, μ_Y .

Take
$$g(x, y) = (x - \mu_X) \cdot (y - \mu_Y)$$
.

$$Cov(X, Y) = Eg(X, Y)$$
 - A measure of how the variables 'covary'.

$$Cov(X, Y) > 0 \longrightarrow when X increases Y tends to increase.$$

$$Cov(X, Y) < 0 \longrightarrow when X increases Y tends to decrease.$$

Show that
$$Cov(aX, bY) = a \cdot bCov(X, Y)$$
.

Changing the units of a measurement will change covariance.

Correlation $\rho(X, Y)$ does not depend on units of measurement:

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Show that: $\rho(aX, bY) = \rho(X, Y)$.

Covariance of two random variables II

Independence:

Show that $Cov(X, Y) = EXY - \mu_X \mu_Y$. Conclude: If X, Y are independent Cov(X, Y) = 0. (Converse is not true.)

Variance of a sum of random variables I

$$Var(X + Y) = E[(X + Y)^{2}] - [E(X + Y)]^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - [E(X)]^{2} - 2E(X)E(Y) - [E(Y)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2} + E(Y^{2}) - [E(Y)]^{2}$$

$$+ 2E(XY) - 2E(X)E(Y)$$

$$= Var(X) + Var(Y) + 2Cov(X, Y)$$

Conclude: If X, Y independent: Var(X + Y) = Var(X) + Var(Y).

More generally, if X_1, \ldots, X_N are independent then

$$Var(\sum_{n=1}^{N} X_n) = \sum_{n=1}^{N} Var(X_n).$$

Properties of sample average I

We draw with replacement form a box N times and record the number on each draw as X_1, X_2, \ldots, X_N . Because we draw with replacement we can assume that the variables X_n are independent. Let μ_B be the average of the box and let σ_B^2 be the mean square deviation (MSD) of the box.

Recall that $EX_n = \mu_B$ and $VarX_n = \sigma_B^2$ for each n. Denote the sample average as $\overline{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$.

Properties of sample average II

$$E\overline{X} = \frac{1}{N}E\sum_{n=1}^{N}X_{n}$$
Why?
$$= \frac{1}{N}\sum_{n=1}^{N}EX_{n}$$
Why?
$$= \mu_{B}.$$

Properties of sample average III

The variance of the sample average

$$Var(\overline{X}) = Var(\frac{1}{N} \sum_{n=1}^{N} X_n) = \frac{1}{N^2} Var(\sum_{n=1}^{N} X_n)$$
Independence:
$$= \frac{1}{N^2} \sum_{n=1}^{N} Var(X_n) = \frac{\sigma_B^2}{N}$$

And
$$SD(\overline{X}) = \sqrt{Var(\overline{X})} = \sigma/\sqrt{N}$$
.

So the expected value of the average of the sample is the average of the box no matter how large the sample.

The variance of the sample average *decreases* as the sample size N increases \rightarrow The Law of Large Numbers.

Properties of sample average IV

Example: X_1, \ldots, X_N are draws from a box of 0's and 1's with replacement. Assume fraction of 1's in the box is p.

Each
$$X_n$$
 is Ber(p), i.e. $EX_n = p$, $Var(X_n) = p(1 - p)$.

Since the draws are with replacement we can assume they are independent and so writing $S = \sum_{n=1}^{N} X_n$ we have that S is Binomial(N,p).

$$f_{S}(n) = \binom{N}{n} p^{n} (1-p)^{N-n}.$$

We can compute ES using the definition $\sum_{n=0}^{N} n \binom{N}{n} p^n (1-p)^{N-n}$ but that requires some complicated algebra.

Properties of sample average V

Instead we use the rules for mean and variance of a sum:

$$E(S) = \sum_{n=1}^{N} EX_n = Np.$$

And since X_n are independent:

$$Var(S) = \sum_{n=1}^{N} Var(X_n) = Np(1-p)$$

And for the sample average:

$$E\overline{X} = E\frac{S}{N} = \frac{1}{N}ES = p.$$

$$Var(\overline{X}) = Var(\frac{S}{N}) = \frac{1}{N^2}Np(1-p) = \frac{p(1-p)}{N}.$$

 $SD(\overline{X}) = \frac{\sqrt{p(1-p)}}{\sqrt{N}}.$

The expected value of the sample average is p - the proportion of 1's in the box: it is centered in the 'right' place.

The variance of the sample average decreases with sample size.

Central limit theorem visual I

0/1 box with six 0's and two 1's. Get 5000 samples of size 16 with replacement. For each draw X we have P(X=1)=1/4. We show 5 of the samples. They are not identical - the sample is random.

```
ll=c(0,0,0,0,0,0,1,1)
P=sum(ll)/8
aa16=replicate(5000,sample(ll,16,replace=TRUE))
```


Central limit theorem visual II

Now draw 5000 samples of size 100, and of size 10000. Compute the sums of the samples

```
aa100=replicate(5000,sample(11,100,replace=TRUE))
aa10000=replicate(5000,sample(11,10000,replace=TRUE))
sumaa16=colSums(aa16)
sumaa100=colSums(aa100)
sumaa10000=colSums(aa10000)
```

Same as sampling 5000 times from binomial distributions Bin(16, 1/4), Bin(100, 1/4), Bin(10000, 1/4) respectively:

```
b16=rbinom(5000,16,P)
b100=rbinom(5000,100,P)
b10000=rbinom(5000,10000,P)
```

Central limit theorem visual III

Show the histograms of sample averages: divide the sums by (16,100,10000) - top row, and divide the binomials by (16,100,10000) - bottom row. They look the same *because they* are draws from the same distribution.

Notice how the spread of the histograms gets smaller and smaller but they are all centered very close to 1/4. Law of Large Numbers.

Central limit theorem visual IV

Now, instead standardize the lists of averages: substract the expected value of the average p=1/4 and divide by SDs of the average $\sqrt{(3/16)/16}, \sqrt{(3/16)/100}, \sqrt{(3/16)/10000}$

Now the histograms all have the same spread and are centered at zero, but they are looking more and more like the normal distribution.

The normal density I

Standard Normal density:

$$f(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}.$$

A random variable X with standard normal density has:

$$EX = \int x f(x) dx = 0$$
, $Var(X) = \int (x - \mu_X)^2 f(x) = 1$.

The normal density II ys 0.2

0.0

The normal density III

Normal density with mean μ and variance σ^2

$$f(x; \mu, \sigma) = \frac{e^{[-(x-\mu)^2/(2\sigma^2)]}}{\sqrt{2\pi\sigma^2}}.$$

A random variable X with normal density $f(x; \mu, \sigma)$ has:

$$\mu_X = EX = \mu, \quad \sigma_X^2 = Var(X) = \sigma^2.$$

The normal density IV

The 68-95-99.7 rule for the normal distribution.

The normal density V

Compare historgram of **standardized** sample averages to normal density

Check if sample is normal I

How do data compare to normal distribution.

First standardize data: $z_i = (x_i - \bar{x})/sd(x)$.

Then compare quantiles: what percentage of z_i 's are below -1 vs percentage of standard normal below -1 which is about .16.

What percentage of standardized data are below 1 vs percentage of normal below -1 which is about .84.

We can do that for multiple quantiles and create pairs. If Φ is CDF of normal:

$$x(q) = \Phi^{-1}(q), z(q) = q$$
'th quantile of data.

Check if sample is normal II

Data on height of males in a class and amount spent on haircuts. \tilde{a}

Check if sample is normal III

First standardize:

```
stdHaircut = (haircut - mhair) / shair
stdheight = (height-mht)/sht
```

Then compare quantiles:

```
r = c(0.0015, 0.025, 0.16, 0.25, 0.50, 0.75, 0.84, 0.975, 0.9985
modelQuantile = qnorm(r)
dataQuantile = quantile(stdHaircut, r, na.rm=TRUE)
rbind(dataQuantile, modelQuantile)

0.15% 2.5% 16% 25% 50% 75%
dataQuantile -1.290 -1.29 -0.9205 -0.7355 -0.1805 0.5594
modelQuantile -2.968 -1.96 -0.9945 -0.6745 0.0000 0.6745
84% 97.5% 99.85%
dataQuantile 0.9294 2.271 3.094
modelQuantile 0.9945 1.960 2.968
```

Check if sample is normal IV

Or let R do it for you: qqnorm(stdHaircut)

Page 24 of 1

Check if sample is normal V

