Premessa

D'ora in poi si denoterà con u' il simbolo \dot{u} , inteso come derivata nel senso di funzioni di variabile reale.

Proposizione 26.1: Norma su $C^1([a;b],X)$ e completezza dello spazio normato risultante

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Si definisca la funzione $\|\cdot\|_{C^1([a;b],X)}:C^1ig([a;b],Xig) o\mathbb{R}$ ponendo

$$f\mapsto \|f\|_{C^1([a;b],X)}:=\|f\|_{C^0([a;b],X)}+\|f'\|_{C^0([a;b],X)}.$$

Si hanno i seguenti fatti:

- $\|\cdot\|_{C^1([a;b],X)}$ è una norma su $C^1([a;b],X)$;
- Lo spazio $\Big(C^1ig([a;b],Xig),\|\cdot\|_{C^1ig([a;b],Xig)}\Big)$ è di Banach.

Dimostrazione

Che $\|\cdot\|_{C^1([a;b],X)}$ sia una norma su $C^1([a;b],X)$ segue direttamente dal fatto che $\|\cdot\|_{C^0([a;b],X)}$ è una norma.

Si provi la completezza di $\Big(C^1ig([a;b],Xig),\|\cdot\|_{C^1ig([a;b],Xig)}\Big)$.

Sia dunque $\{f_n\}_{n\in\mathbb{N}}\subseteq C^1ig([a;b],Xig)$ una successione di Cauchy, e si provi che essa converge.

Fissato $\varepsilon>0$, per ipotesi esiste $\nu\in\mathbb{N}$ tale che $\|f_m-f_n\|_{C^1\left([a;b],X\right)}<arepsilon$ per ogni $m,n\geq
u$;

Si osserva che, dalla definizione di $\|\cdot\|_{C^1([a;b],X)}$, seguono

$$\|f_m-f_n\|_{C^1\left([a;b],X\right)}\geq \|f_m-f_n\|_{C^0\left([a;b],X\right)} \ \mathrm{e} \ \|f_m-f_n\|_{C^1\left([a;b],X\right)}\geq \|f_m'-f_n'\|_{C^0\left([a;b],X\right)} \ ;$$

ciò significa allora che le successioni $\{f_n\}_{n\in\mathbb{N}}$ e $\{f'_n\}_{n\in\mathbb{N}}$ sono di Cauchy in $\Big(C^0\big([a;b],X\big),\|\cdot\|_{C^0\big([a;b],X\big)}\Big)$, che è completo.

Siano allora $ilde{f} = \lim_n f_n$ e $ilde{g} = \lim_n f'_n$, dove tali limiti sono da intendere in $\Big(C^0\big([a;b],X\big), \|\cdot\|_{C^0\big([a;b],X\big)}\Big)$.

Ciò significa che $\{f_n\}_{n\in\mathbb{N}}$ e $\{g_n\}_{n\in\mathbb{N}}$ convergono uniformemente, a \tilde{f} e \tilde{g} rispettivamente.

Allora, dal teorema di scambio tra limiti e derivate segue che \tilde{f} è derivabile in [a;b], e si ha $\tilde{f}'=\tilde{g}$.

Ne viene allora che

$$\begin{split} &\lim_n \|f_n - \tilde{f}\|_{C^1([a;b],X)} \\ &= \lim_n \|f_n - \tilde{f}\|_{C^0([a;b],X)} + \|f'_n - \tilde{f}'\|_{C^0([a;b],X)} \quad \text{Per definizione di } \|\cdot\|_{C^1([a;b],X)} \\ &= \lim_n \|f_n - \tilde{f}\|_{C^0([a;b],X)} + \|f'_n - \tilde{g}\|_{C^0([a;b],X)} \quad \text{Per quanto osservato prima} \\ &= 0 \quad \qquad \qquad \text{Per definizione di } \tilde{f} \in \tilde{g} \end{split}$$

Dunque, $\{f_n\}$ converge a ilde f in $\Big(C^1ig([a;b],Xig),\|\cdot\|_{C^1ig([a;b],Xig)}\Big).$

\mathbb{H} Notazione: Lo spazio c_0 .

Si denota con c_0 lo spazio vettoriale delle successioni $\{x_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ infinitesime, con le usuali operazioni definite sulle successioni a valori in uno spazio vettoriale.

Proposizione 26.2: Norma su c_0 e completezza dello spazio normato risultante

Si definisca la funzione $\|\cdot\|_{c_0}:c_0 o\mathbb{R}$ ponendo $\{x_n\}_{n\in\mathbb{N}}\mapsto \|\{x_n\}_{n\in\mathbb{N}}\|_{c_0}:=\sup_{n\in\mathbb{N}}|x_n|.$

Si hanno i seguenti fatti:

- $\|\cdot\|_{c_0}$ è una norma su c_0 ;
- Lo spazio $(c_0, \|\cdot\|_{c_0})$ è di Banach.

Dimostrazione

Che $\|\cdot\|_{c_0}$ sia una norma su c_0 segue direttamente dalle proprietà del valore assoluto e dell'estremo superiore.

Si provi la completezza di $(c_0, \|\cdot\|_{c_0})$.

Si osserva che $c_0 \subseteq \mathcal{B}(\mathbb{N}, \mathbb{R})$ (si ricordi che $\mathcal{B}(\mathbb{N}, \mathbb{R})$ è lo spazio delle funzioni limitate da \mathbb{N} in \mathbb{R} , cioè lo spazio delle successioni a valori reali e limitate), e $\|\cdot\|_{c_0} = (\|\cdot\|_{\mathcal{B}(\mathbb{N},\mathbb{R})})_{|c_0}$.

Dunque, $(c_0, \|\cdot\|_{c_0})$ è un sottospazio normato di $(\mathcal{B}(\mathbb{N}, \mathbb{R}), \|\cdot\|_{\mathcal{B}(\mathbb{N}, \mathbb{R})})$;

Essendo questo completo, per acquisire la completezza di $(c_0, \|\cdot\|_{c_0})$, basta allora mostrare che c_0 è chiuso in $(\mathcal{B}(\mathbb{N}, \mathbb{R}), \|\cdot\|_{\mathcal{B}(\mathbb{N}, \mathbb{R})})$

Sia dunque $\tilde{s} \in \mathcal{B}(\mathbb{N}, \mathbb{R})$, e sia $\{s_n\}_{n \in \mathbb{N}} \subseteq c_0$ una successione convergente a \tilde{s} ; si provi che $\tilde{s} \in c_0$, ossia $\lim_k \tilde{s}(k) = 0$.

Si osserva intanto che, per ogni $n, k \in \mathbb{N}$, si ha

$$| ilde{oldsymbol{s}}(k)| = | ilde{oldsymbol{s}}(k) - oldsymbol{s}_n(k) + oldsymbol{s}_n(k)|$$

$$\leq | ilde{oldsymbol{s}}(k) - oldsymbol{s}_{n_0}(k)| + |oldsymbol{s}_n(k)|$$

Per la seconda disuguaglianza triangolare

$$\leq \sup_{k \in \mathbb{N}} | ilde{s}(k) - s_n(k)| + |s_n(k)|$$

Dalle proprietà dell'estremo superiore

$$=\| ilde{oldsymbol{s}}-oldsymbol{s}_n\|_{\mathcal{B}(\mathbb{N},\mathbb{R})}+|oldsymbol{s}_n(k)|$$

Per definizione di $\|\cdot\|_{\mathcal{B}(\mathbb{N},\mathbb{R})}$

Sia ora $\varepsilon > 0$.

Essendo $\lim_n \|\tilde{s} - s_n\|_{\mathcal{B}(\mathbb{N},\mathbb{R})} = 0$ per ipotesi, esiste $n_0 \in \mathbb{N}$ tale che $\|\tilde{s} - s_n\|_{\mathcal{B}(\mathbb{N},\mathbb{R})} < \frac{\varepsilon}{2}$ per ogni $n \geq n_0$.

Essendo $\lim_k s_n(k) = 0$ per ogni $n \in \mathbb{N}$ per ipotesi, sia $\nu \in \mathbb{N}$ tale che $|s_{n_0}(k)| < \frac{\varepsilon}{2}$ per ogni $k \ge \nu$.

Per la catena di disuguaglianze ottenuta prima, si ha allora che, per ogni $k \ge \nu$, vale

$$| ilde{oldsymbol{s}}(k)| \leq \| ilde{oldsymbol{s}} - oldsymbol{s}_{n_0}\|_{\mathcal{B}(\mathbb{N},\mathbb{R})} + |oldsymbol{s}_{n_0}(k)|$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Dunque, $\lim_{k} \tilde{s}(k) = 0$.

₩ Definizione: Equi-derivabilità

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $\mathcal{F} = \{f_i : A \to \mathbb{R} \mid i \in \mathcal{I}\}$ una famiglia di funzioni derivabili.

Sia $t_0 \in I$.

Le funzioni in \mathcal{F} si dicono **equi-derivabili** in t_0 quando

$$\lim_{\lambda o 0}\sup_{i\in\mathcal{I}}\left|rac{f_i(t_0+\lambda)-f_i(t_0)}{\lambda}-f_i'(t_0)
ight|=0.$$

Le funzioni in \mathcal{F} si dicono **equi-derivabili** su I quando sono equi-derivabili in ogni punto di I.

Proposizione 26.3.1: Caratterizzazione dello spazio $C^1([a;b],c_0)$, prima parte

Sia $[a;b] \subseteq \mathbb{R}$.

Sia
$$u=\{u_n(\cdot)\}_{n\in\mathbb{N}}\in C^1ig([a;b],c_0ig).$$

Allora, $\{u_n\}_{n\in\mathbb{N}}$ è una successione di funzioni equi-derivabili, e si ha:

- $ullet \lim_n u_n(t) = \lim_n u_n'(t) = 0 ext{ per ogni } t \in [a;b];$
- La successione $\{u'_n\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-continue ed equi-limitate;
- $u' = \{u'_n(\cdot)\}.$

Dimostrazione

Essendo per ipotesi $u(t) \in c_0$ per ogni $t \in [a;b]$, si ha $\lim_n u_n(t) = 0$ per definizione di c_0 .

Essendo per ipotesi u di classe C^1 , risulta ben definita la derivata u' e si ha

$$\lim_{\lambda o 0} \left\| rac{u(t+\lambda) - u(t)}{\lambda} - u'(t)
ight\|_{C_0} = 0;$$

posto $u' = \{v_n(\cdot)\}_{n \in \mathbb{N}}$, si ha cioè

$$\lim_{\lambda o 0} \sup_{n \in \mathbb{N}} \left| rac{u_n(t+\lambda) - u_n(t)}{\lambda} - v_n(t)
ight| = 0$$
, per definizione di $\|\cdot\|_{\mathcal{C}_0}$.

Ne segue che $\{u_n\}_{n\in\mathbb{N}}$ è una successione di funzioni equi-derivabili, e si ha $u_n'=v_n$ per ogni $n\in\mathbb{N}$; dunque, $u'=\{u_n'(\cdot)\}_{n\in\mathbb{N}}$.

Anche $u'(t) \in c_0$ per ogni $t \in [a;b]$ ne viene che $\lim_n u'_n(t) = 0$, essendo derivata (nel senso delle funzioni di variabile reale) di una funzione a valori in c_0 ;

avendo acquisito che $u'=\{u'_n(\cdot)\}_{n\in\mathbb{N}}$, ne segue che $\lim_n u'_n(t)=0$ per definizione di c_0 .

Essendo per ipotesi u di classe C^1 , u' continua su [a;b] compatto, dunque è limitata e uniformemente continua.

Dalla limitatezza di u' segue l'esistenza di M>0 tale che $\|u'(t)\|_{c_0}\leq M$ per ogni $t\in[a;b];$ dalla definizione di $\|\cdot\|_{c_0}$ e dal fatto che $u'=\{u'_n(\cdot)\}_{n\in\mathbb{N}}$, si ha allora che $\sup_{n\in\mathbb{N}}|u'_n(t)|\leq M$ per ogni $t\in[a;b].$

Ne viene che la successione $\{u_n'\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-limitate.

Dall'uniforme continuità di u' si ha che

per ogni $\varepsilon > 0$, esiste $\delta > 0$ tale che, per ogni $t, s \in [a; b]$ con $|t - s| < \delta$, si abbia $\|u'(t) - u'(s)\|_{c_0} < \varepsilon$, ossia $\sup_{n \in \mathbb{N}} |u'_n(t) - u'_n(t)| < \varepsilon$ per definizione di c_0 .

Ne viene che la successione $\{u'_n\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-uniformemente continue, dunque equi-continue.

La tesi è allora acquisita.

Proposizione 26.3.2: Caratterizzazione di $C^1([a;b],c_0)$, seconda parte

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $\{u_n:[a;b] o\mathbb{R}\}_{n\in\mathbb{N}}$ una successione di funzioni equi-derivabili, tale che:

- $ullet \lim_n u_n(t) = \lim_n u_n'(t) = 0 ext{ per ogni } t \in [a;b];$
- La successione $\{u'_n\}_{n\in\mathbb{N}}$ sia costituita da funzioni equi-continue.

Sia
$$u:=\{u_n(\cdot)\}_{n\in\mathbb{N}}$$
.

Si ha
$$u\in C^1ig([a;b],c_0ig).$$

Dimostrazione

Si osserva intanto che $uig([a;b]ig)\subseteq c_0$ in quanto $\lim_n u_n(t)=0$ per ogni $t\in [a;b]$ per ipotesi.

Sia $\mathbf{v}=\{u_n'(\cdot)\}_{n\in\mathbb{N}}:[a;b]\to\mathbb{R}^\mathbb{N}$ ($\mathbb{R}^\mathbb{N}$ denota l'insieme delle successioni a valori reali);

Si osserva che $vig([a;b]ig)\subseteq c_0$ in quanto $\lim_n u'_n(t)=0$ per ogni $t\in [a;b]$ per ipotesi.

Per ipotesi di equi-derivabilità di $\{u_n\}_{n\in\mathbb{N}}$, si ha che $\limsup_{\lambda\to 0}\left|\frac{u_n(t+\lambda)-u_n(t)}{\lambda}-u_n'(t)\right|=0$;

cioè, si ha $\lim_{\lambda \to 0} \left\| \frac{u(t+\lambda) - u(t)}{\lambda} - v(t) \right\|_{c_0} = 0$, per definizione di $\|\cdot\|_{c_0}$.

Dunque, u è derivabile in [a;b], e si ha u'(t) = v(t) per ogni $t \in [a;b]$.

Per ipotesi, la successione $\{u'_n\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-continue su [a;b] compatto; allora, esse sono anche equi-uniformemente continue per la [Proposizione 5.1].

Dunque, per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che, per ogni $t, s \in [a; b]$ con $|t - s| < \delta$, si abbia $|u_n'(t) - u_n'(t)| < \frac{\varepsilon}{2}$ per ogni $n \in \mathbb{N}$;

ne segue allora che $\sup_{n\in\mathbb{N}}|u_n'(t)-u_n'(t)|\leq \frac{\varepsilon}{2}<\varepsilon$ per ogni $t,s\in[a;b]$ con $|t-s|<\delta$, dunque $\|u'(t)-u'(s)\|_{c_0}<\varepsilon$ per definizione di $\|\cdot\|_{c_0}$ e avendo acquisito che $u'(t)=\{u_n'(\cdot)\}_{n\in\mathbb{N}}$.

Ciò significa allora che u' è uniformemente continua su [a;b], dunque u è di classe C^1 .

La tesi è allora acquisita.

₩ Definizione: Equazione differenziale ordinaria del primo ordine in forma implicita

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq \mathbb{R} \times X \times X$.

Sia $(Y, \|\cdot\|_Y)$ uno spazio normato.

Sia $f: A \to Y$.

Si denota con f(t, u, u') = 0 l'equazione differenziale ordinaria del primo ordine in forma implicita, associata a f;

essa consiste nella ricerca di intervalli $I\subseteq\mathbb{R}$ e di funzioni $u:I\to X$ di classe C^1 , tali che $\big(t,u(t),u'(t)\big)\in A$ e $f\big(t,u(t),u'(t)\big)=\mathbf{0}_Y$, per ogni $t\in I$.

Se f ha una legge del tipo $(t, \mathbf{x}, \mathbf{y}) \mapsto \mathbf{y} - g(t, \mathbf{x})$ per qualche funzione g, l'equazione differenziale si scrive allora come $u' - g(t, u) = \mathbf{0}$ oppure u' = g(t, u); un'equazione di questo tipo si dice in forma normale.

₩ Definizione: Problema di Cauchy

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq \mathbb{R} \times X \times X$.

Sia $(Y, \|\cdot\|_Y)$ uno spazio normato.

Sia $f: A \to Y$.

Sia $(t_0,\mathbf{x}_0)\in\mathbb{R} imes X$ tale che $f(t_0,\mathbf{x}_0,\mathbf{y}_0)=\mathbf{0}.$

Sia $I \subseteq \mathbb{R}$ un intervallo tale che $t_0 \in I$.

Si denota con
$$\begin{cases} f(t,u,u') = \mathbf{0} & \forall t \in I \\ u(t_0) = \mathbf{x}_0 & \text{il problema di Cauchy associato a } f \in (t_0,\mathbf{x}_0,\mathbf{y}_0); \\ u'(t_0) = \mathbf{y}_0 & \end{cases}$$

esso consiste nella ricerca di funzioni u:I o X di classe C^1 , tali che:

- $ig(t,u(t),u'(t)ig)\in A$ e fig(t,u(t),u'(t)ig)=0, per ogni $t\in I$;
- $u(t_0) = \mathbf{x}_0$;
- $u'(t_0) = \mathbf{y}_0$.

Teorema 26.1: Esistenza e unicità della soluzione al problema di Cauchy in forma normale

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $f: I \times X \rightarrow X$ una funzione continua;

si supponga che esista una funzione $L:I o \mathbb{R}^+_0$ continua, tale che

 $\|f(t,\mathbf{x}) - f(t,\mathbf{y})\| \le L(t) \cdot \|\mathbf{x} - \mathbf{y}\|$, per ogni $t \in I$ e per ogni $\mathbf{x}, \mathbf{y} \in X$.

Sia $(t_0, \mathbf{x}_0) \in I \times X$.

Il problema $egin{cases} u' = f(t,u) = \mathbf{0} \ \ orall t \in I \ u(t_0) = \mathbf{x}_0 \end{cases}$ ammette un'unica soluzione.

Dimostrazione

Si supponga dapprima I compatto, ossia del tipo [a;b], con $a,b \in \mathbb{R}$.

Si definisca l'operatore $\Phi: C^0ig([a;b],Xig) o C^0ig([a;b],Xig)$ ponendo

 $\Phi(u)(t)=\mathbf{x}_0+\int_{t_0}^t fig(s,u(s)ig)\,ds$ per ogni $u\in C^0ig([a;b],Xig)$ e per ogni $t\in [a;b];$

esso è ben definito, cioè $\Phi(u)$ è continuo per ogni $u \in C^0([a;b],X)$, essendo la funzione integrale $t \mapsto \int_{t_0}^t f(s,u(s)) ds$ di classe C^1 per il teorema fondamentale del calcolo integrale ([Teorema 21.9]).

Sempre per tramite di tale teorema, si osserva che u è soluzione del problema $\begin{cases} u'=f(t,u)=\mathbf{0} & \forall t\in I, \\ u(t_0)=\mathbf{x}_0 \end{cases}$, se e solo se $\Phi(u)=u$.

Per acquisire la tesi, si provi dunque che Φ ammette un unico punto fisso, facendo uso del teorema di Banach-Caccioppoli.

Poiché la funzione L è continua su I compatto, essa ammette massimo; sia dunque $L^* = \max_{t \in [a;b]} L(t)$ (che si nota essere nonnegativo in quanto L è nonnegativa) e sia $M > L^*$.

Si definisca la funzione $\|\cdot\|_{C^0([a;b],X)}^*: C^0([a;b],X) \to \mathbb{R}$, ponendo $u \mapsto \|u\|_{C^0([a;b],X)}^*:= \sup_{t \in [a;b]} e^{-M|t-t_0|} \cdot \|u(t)\|$ per ogni $u \in C^0([a;b],X)$;

essa è una norma su $C^0([a;b],X)$, e si osserva che

 $e^{-M(b-a)}\|u\|_{C^0([a;b],X)} \leq \|u\|_{C^0([a;b],X)}^* \leq \|u\|_{C^0([a;b],X)}$ per ogni $u \in C^0([a;b],X)$, dove $\|\cdot\|_{C^0([a;b],X)}$ è la norma usuale su $C^0([a;b],X)$.

Allora, le due norme $\|\cdot\|_{C^0([a;b],X)}^*$ e $\|\cdot\|_{C^0([a;b],X)}$ sono equivalenti; essendo $\left(C^0\left([a;b],X\right),\|\cdot\|_{C^0([a;b],X)}\right)$ completo, ne viene allora che anche $\left(C^0\left([a;b],X\right),\|\cdot\|_{C^0([a;b],X)}^*\right)$ è completo.

Resta da mostrare che Φ è una contrazione (rispetto alla norma $\|\cdot\|_{C^0([a;b],X)}^*$).

Siano $u,v\in C^0ig([a;b],Xig);$ per ogni $t\in [a;b],$ si ha

 $egin{aligned} &\|\Phi(u)(t)-\Phi(u)(t)\|=\left\|\int_{t_0}^t f(s,u(s))-f(s,v(s))\,ds
ight\| \ &\leq \left|\int_{t_0}^t \|f(s,u(s))-f(s,v(s))\|\,ds
ight| \end{aligned}$

Per maggiorazione della norma di un integrale di Riemann (il valore assoluto va scritto, per ovviare al caso in cui $t_0>t$)

Per definizione di Φ e per linearità dell'integrale di Riemann

$$\leq \left| \int_{t_0}^t L(s) \cdot \left\| u(s) - v(s)
ight\| ds
ight|$$

Per ipotesi su L

$$\leq \left| \int_{t_0}^t L^* \cdot \left\| u(s) - v(s)
ight\| ds
ight|$$

Per definizione di L^* e per monotonia dell'integrale di Riemann per funzioni a valori reali

$$0 \leq L^* \cdot \left| \int_{t_0}^t \left\| u(s) - v(s)
ight\| ds
ight|$$

Per linearità dell'integrale di Riemann, ed essendo
$$L^* \geq 0$$

$$=L^*\cdot\left|\int_{t_0}^t e^{M|s-t_0|}\cdot e^{-M|s-t_0|}\|u(s)-v(s)\|\,ds
ight|$$

Per definizione di
$$\|\cdot\|_{C^0([a;b],X)}^*$$
 e per monotonia dell'integrale di Riemann per funzioni a valori reali

$$0 \leq L^* \cdot \left| \int_{t_0}^t e^{M|s-t_0|} \cdot \left\| u - v
ight\|_{C^0\left([a;b],X
ight)}^* ds
ight|^2$$

$$\| = L^* \| u - v \|_{C^0([a;b],X)}^* \cdot \left| \int_{t_0}^t e^{M|s-t_0|} \, ds
ight|$$

In quanto
$$\left|\int_{t_0}^t e^{M|s-t_0|}\,ds
ight|=rac{1}{M}e^{M|t-t_0|}$$

$$=L^*\|u-v\|_{C^0([a;b],X)}^*\cdot rac{1}{M}e^{M|t-t_0|}$$

Si ha dunque che

$$e^{-M|t-t_0|}\cdot\|\Phi(u)(t)-\Phi(u)(t)\|\leq rac{L^*}{M}\|u-v\|^*_{C^0([a;b],X)}$$
 per ogni $t\in[a;b]$, da cui segue che

$$\|\Phi(u) - \Phi(u)\|_{C^0([a;b],X)}^* \le \frac{L^*}{M} \|u - v\|_{C^0([a;b],X)}^*$$
, per definizione di $\|\cdot\|_{C^0([a;b],X)}^*$.

Dunque, rispetto a $\|\cdot\|_{C^0([a;b],X)}^*$ la funzione Φ è Lipschitziana di costante $\frac{L^*}{M}$; allora, essa è una contrazione, essendo $\frac{L^*}{M} \in [0;1[$ in quanto $0 \le L^* < M$ per definizione di L^* e per costruzione di M.

Pertanto, Φ ammette un unico punto fisso per il teorema di Banach-Caccioppoli.

Si supponga ora che I non sia un intervallo compatto.

Allora, è comunque possibile costruire una successione non decrescente di intervalli compatti $\{I_n\}_{n\in\mathbb{N}}$, dimodoché $t_0\in I_1$ e $\bigcup_{n\in\mathbb{N}}I_n=I.$

Per ogni $n \in \mathbb{N}$ sia allora u_n la soluzione del problema $\begin{cases} u' = f(t, u) = \mathbf{0} & \forall t \in I_n \\ u(t_0) = \mathbf{x}_0 \end{cases}$, che esiste ed è unica in quanto questo problema rientra nel caso precedente per costruzione di $\{I_n\}_{n \in \mathbb{N}}$.

Si osserva che, per ogni $n \in \mathbb{N}$, la funzione u_{n+1} estende u_n , in quanto $I_{n+1} \supseteq I_n$ per costruzione di $\{I_n\}_{n \in \mathbb{N}}$, e $(u_{n+1})_{|I_n} = u_n$ per definizione di u_n .

Allora, risulta ben definita la funzione u:I o X in cui si pone $u(t)=u_n(t)$ per ogni $t\in I$, con $n\in\mathbb{N}$ tale che $t\in I_n$.

Essa è soluzione al problema $\begin{cases} u' = f(t, u) = \mathbf{0} & \forall t \in I, \text{ ed è l'unica per unicità degli } u_n. \\ u(t_0) = \mathbf{x}_0 \end{cases}$