Adding Conditional Control to Text-to-Image Diffusion Models

Зайцев Федор БПМИ213

Проблема

- Диффузионным моделям удобно передавать на вход абстрактные текстовые описания
- Неудобно задавать конкретные позы, формы или сложные композиции таргетируемого изображения

Решение

• Файнтюним предобученную диффузионную text-to-image модель, добавив к ней пространственные входные условия

Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges (top), human pose (bottom), *etc.*, to control the image generation of large pretrained diffusion models. The default results use the prompt "a high-quality, detailed, and professional image". Users can optionally give prompts like the "chef in kitchen".

Файнтюнинг

• Обычный файнтюнинг на маленьком датасете может привести к катастрофическому забыванию или переобучению

• ControlNet копирует блок нейросети и добавляет дополнительные

• Нулевые свертки препятствуют зашумлению аутпута на ранних итерациях

 $y_{c} = \mathcal{F}(x;\Theta) + \mathcal{Z}(\mathcal{F}(x + \mathcal{Z}(c;\Theta_{z1});\Theta_{c});\Theta_{z2})$

Архитектура

- $oldsymbol{\cdot}$ Векторизуем картинку-условие $oldsymbol{c}_{
 m f} = \mathcal{E}(oldsymbol{c}_{
 m i})$
 - c_{i} имеет размерность 512x512
 - $c_{\rm f}$ имеет размерность 64х64 (как в SD)
- $\mathcal{E}(\cdot)$ 4 свертки с ядром 4х4 и страйдом 2х2, ReLU активация, каналов 16, 32, 64, 128

На шаге оптимизации мы не считаем градиенты у оригинального SD
 → вычислительная сложность сравнима с обычным SD (+23% GPU memory, +34%time)

Обучение

- z_0 исходное изображение
 - \boldsymbol{z}_t зашумленное изображение
 - $oldsymbol{t}$ количество итераций зашумления
 - $oldsymbol{c}_t$ текстовые признаки
 - $oldsymbol{c}_{\mathrm{f}}$ пространственные признаки
 - $\epsilon_{ heta}$ модель, предсказывающая добавленный шум

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{z}_0, \boldsymbol{t}, \boldsymbol{c}_t, \boldsymbol{c}_t, \boldsymbol{c}_t, \epsilon \sim \mathcal{N}(0, 1)} \Big[\|\epsilon - \epsilon_{\theta}(\boldsymbol{z}_t, \boldsymbol{t}, \boldsymbol{c}_t, \boldsymbol{c}_t))\|_2^2 \Big]$$

- При обучении рандомно выкидываем 50% текстовых промптов
- Модель резко «выучивает» заданное пространственное условие на одной из итераций (чаще всего до 10к)

Инференс: Classifier-free guidance

- SD использует CFG: $\epsilon_{\mathrm{prd}} = \epsilon_{\mathrm{uc}} + \beta_{\mathrm{cfg}} (\epsilon_{\mathrm{c}} \epsilon_{\mathrm{uc}})$
- Куда отнести пространственное условие?
- Добавим его в $\epsilon_{\rm c}$, но умножим все входы из CN в SD на вес, обратно пропорциональный разрешению блока

(a) Input Canny map

(b) W/o CFG

(c) W/o CFG-RW (d) Full (w/o prompt)

Инференс: комбинация условий

• Чтобы скомбинировать несколько условий просто складываем выходы всех соответствующих им ControlNet c SD вместо одного

Реализованные модели

Эксперименты

Результаты

Method	Result Quality ↑	Condition Fidelity ↑
PITI [89](sketch)	1.10 ± 0.05	1.02 ± 0.01
Sketch-Guided [88] ($\beta = 1.6$)	3.21 ± 0.62	2.31 ± 0.57
Sketch-Guided [88] ($\beta = 3.2$)	2.52 ± 0.44	3.28 ± 0.72
ControlNet-lite	3.93 ± 0.59	4.09 ± 0.46
ControlNet	$\textbf{4.22} \pm \textbf{0.43}$	$\textbf{4.28} \pm \textbf{0.45}$

ADE20K (GT)	VQGAN [19]	LDM [72]	PITI [89]	ControlNet-lite	ControlNet
0.58 ± 0.10	0.21 ± 0.15	0.31 ± 0.09	0.26 ± 0.16	0.32 ± 0.12	$\textbf{0.35} \pm \textbf{0.14}$

Method	$FID\downarrow$	CLIP-score ↑	CLIP-aes. ↑
Stable Diffusion	6.09	0.26	6.32
VQGAN [19](seg.)*	26.28	0.17	5.14
LDM [72](seg.)*	25.35	0.18	5.15
PITI [89](seg.)	19.74	0.20	5.77
ControlNet-lite	17.92	0.26	6.30
ControlNet	15.27	0.26	6.31

Input (sketch)

PITI

Ours (w/o prompts)

Input (seg.)

PITI

Ours (default)

"golden retriever"

Input (sketch)

Sketch-Guided

Ours ("electric fan")

Input (canny)

Taming Tran.

Ours (default)

"white helmet on table"

Результаты

Figure 10: The influence of different training dataset sizes.

Input

"a high-quality and extremely detailed image"

Figure 11: Interpreting contents. If the input is ambiguous and the user does not mention object contents in prompts, the results look like the model tries to interpret input shapes.

Figure 12: Transfer pretrained ControlNets to community models [16, 61] without training the neural networks again.

Заключение

- ControlNet архитектура, позволяющая добавлять к большим предобученным Stable Diffusion моделям пространственные условия
- ControlNet обучается в ходе файнтюнинга копий блоков SD модели, в то же время храня в себе замороженный оригинал и используя его в качестве основы для генерации изображений
- ControlNet дает устойчивый результат при обучении как на маленьких, так и на больших датасетах
- ControlNet достигает SOTA результатов среди аналогов, сохраняя при этом качество изображения SD

Спасибо за внимание!

• Источники - https://arxiv.org/abs/2302.05543

• Еще прикольные картинки - https://journal.tinkoff.ru/controlnet/