Introduction

There are some problems that algebra alone cannot solve. A new principle is needed in order to solve these harder problems.

Arbitrarily Large

Infinity (∞) is not an actual number, but instead is indicative of a process:

- 1. Select a positive number.
- 2. Now select a next number that is larger than the previous number.
- 3. Go to 2.

This is possible because the real numbers are unbounded: for every $y \in \mathbb{R}$ there exists some $x \in \mathbb{R}$ such that x > y.

Definition: Arbitrarily Large

To say that a value $x \in \mathbb{R}$ is *arbitrarily large*, denoted by $x \to \infty$, means that for every $y \in \mathbb{R}$, x > y.

This also works in the negative direction. For $x \to -\infty$, select a negative number and then continually select numbers that are less than the previous number. In other words, for every $y \in \mathbb{R}, x < y$.

Arbitrarily Small

A number can also be said to be arbitrarily small. Like infinity, this is not an actual number, but is indicative of a process:

- 1. Select a positive number.
- 2. Now select a next positive number that is smaller than the previous number.
- 3. Go to 2.

This is possible because between any two real numbers there are an infinite number of real numbers. Thus, for any value y > 0 there exists some x such that 0 < x < y.

Definition: Arbitrarily Small

To say that a value $x \in \mathbb{R}^+$ is arbitrarily small, denoted by $x \to 0^+$, means that for every $y \in \mathbb{R}^+, 0 < x < y$.

The Greek letters epsilon (ϵ) and delta (δ) are typically used to represent arbitrarily small values.

Arbitrarily Close

Definition: Arbitrarily Close

To say that a value $x \in \mathbb{R}$ is *arbitrarily close* to another value $c \in \mathbb{R}$, denoted by $x \to c$, means that for all $\epsilon > 0$, $|x - c| < \epsilon$. In other words: $c - \epsilon < x < c + \epsilon$.

Problems

Slope

Area

Sequences and Series