## CSCI 4100 Fall 2018 Assignment 7 Answers

Damin Xu 661679187

October 22, 2018

## Classifying Handwritten Digits: 1 vs. 5

(a)





- (b)  $E_{in} = 0.00512 = 0.512\%$  $E_{test} = 0.0165 = 1.65\%$
- (c) Bound based on  $E_{in} = 0.0594$ Bound based on  $E_{test} = 0.114$

(d)  $E_{in} = 0.00448 = 0.448\%$ 



 $E_{test} = 0.0212 = 2.12\%$ Bound based on  $E_{in} = 0.0601$ Bound based on  $E_{test} = 0.115$ 

(e) I will choose the linear model without the  $3^{rd}$  order polynomial transform linear, because the linear transformation will cause overfitting which leads to a larger  $E_{out}$ 

## Gradient Descent on a "Simple" Function

(a) The left one is when learning rate = 0.01 and the right one is when learning rate = 0.1 When



learning rate = 0.1, the value of function jumps up and down.

| (b) |            |                    |                    |                   |
|-----|------------|--------------------|--------------------|-------------------|
|     |            | X                  | У                  | f(x,y)            |
|     | (0.1,0.1)  | 0.243804968878158  | -0.237925821319047 | -1.82007854154716 |
|     | (1,1)      | 1.21807030090520   | 0.712811950338754  | 0.593269374325836 |
|     | (0.5, 0.5) | -0.731377459870107 | -0.237855362955527 | -1.33248106233098 |
|     | (-1,-1)    | -1.21807030090520  | -0.712811950338754 | 0.593269374325836 |

## Problem 3.16

(a) 
$$cost(accept) = P[y = 1|x] \times 0 + P[y = -1|x] \times c_a = (1 - g(x))c_a$$
  
 $cost(reject) = P[y = 1|x] \times c_a + P[y = -1|x] \times 0 = g(x)c_a$ 

(b) Here we only want  $cost(accept) \leq cost(reject)$ , so

$$(1 - g(x))c_a \le g(x)c_a$$

$$c_a - g(x)c_a \le g(x)c_a$$

$$c_a \le g(x)(c_a + c_r)$$

$$g(x) \ge \frac{c_a}{c_a + c_r}$$

Therefore, when  $g(x) \ge \frac{c_a}{c_a + c_r}$ , we will accept, so  $k = \frac{c_a}{c_a + c_r}$ 

(c) 
$$k_{supermarket} = \frac{1}{1+10} = \frac{1}{11}$$
 
$$l_{CIA} = \frac{1000}{1000+1} = \frac{1000}{1001}$$

CIA accept the fingerprint only when g(x) is large.