Тема: проектирование реляционной БД на основе универсального отношения

ТабНом	Начк
125	Иванов
138	Петров
195	Петров
200	Иванов

ТабНом	Начк
125	Иванов
138	Петров
195	-
200	-

а

Дублирование данных, не являющихся избыточными

Избыточное дублирование данных

Дублирование информации о номере телефона

является избыточным

ТабНом	Начк	Нтел
125	Иванов	3051
138	Петров	2222
195	Петров	2222
200	Иванов	3051

ТабНом	Начк	Нтел
125	Иванов	3051
138	Петров	2222
195	Петров	-
200	Иванов	-

a

ТабНомНачк125Иванов138Петров195Петров200Иванов

Начк	Нтел
Иванов	3051
Петров	2222

Исключение избыточных данных

Универсальное отношение

Требуется разработать небольшую БД для учета успеваемости студентов, проживающих в общежитии

Первый шаг процесса проектирования состоит в определении как всех атрибутов, наличие которых обязательно в БД, так и связей между атрибутами.

Сном: Номер студента.

Сфам: Фамилия студента. *Каждый студент имеет только одну фамилию, но возможно, что одну фамилию носят несколько студентов.*

Кном: Номер комнаты в общежитии. В одной комнате может проживать более одного студента.

Тном: Номер телефона студента. Каждая комната общежития имеет один телефон и им пользуются все студенты, проживающие в этой комнате.

Дисц: Название дисциплины. В БД будут храниться данные о дисциплинах, по которым проведена итоговая аттестация студента.

Семестр: семестр, в котором данная дисциплина была завершена студентом.

Возможно, что студент изучал одну и ту же дисциплину в различных семестрах.

Оценка: Оценка за дисциплину. Оценка, полученная студентом за определенную дисциплину в данном семестре.

УСПЕВАЕМОСТЬ

Данные для размещения в БД

Сном	Сфам	Кном	Тном	Дисц.	Сем.	Оценка
111	Серов	120	2135	OC	3	2
				ПО	2	4
				Физика	3	5
222	Перов	211	3257	OC	3	4
				Химия	1	5
				AK	4	4
333	Иванов	120	2135	ПО	2	5
110	Поляков	211	3257	OC	1	4

Одна "строка" таблицы

111	Серов	120	2135	OC	3	2
				ПО	2	4
				Физика	3	5

Таблица УСПЕВАЕМОСТЬ Не является отношением

УСПЕВАЕМОСТЬ

Сном	Сфам	Кном	Тном	Дисц.	Сем.	Оценка
111	Серов	120	2135	OC	3	2
111	Серов	120	2135	ПО	2	4
111	Серов	120	2135	Физика	3	5
222	Перов	211	3257	OC	3	4
222	Перов	211	3257	Химия	1	5
222	Перов	211	3257	АК	4	4
333	Иванов	120	2135	ПО	2	5
110	Поляков	211	3257	OC	1	4

Таблица УСПЕВАЕМОСТЬ представляет собой экземпляр корректного отношения.

Его называют *универсальным отношением* проектируемой БД.

УНИВЕРСАЛЬНОЕ ОТНОШЕНИЕ - отношение, включающее все представляющие интерес атрибуты (может содержать все данные, которые предполагается размещать в БД)

Процесс разбиения **ОТНОШЕНИЯ** с целью уменьшения вероятности возникновения аномалий называется нормализацией (*декомпозицией*)

Функциональная зависимость (ФЗ)

определяется следующим образом:

Если даны два атрибута A и B, то говорят, что В функционально зависит от A, если для каждого значения A существует ровно одно связанное с ним значение B (в любой момент времени). А и В могут быть составными

A → **B** - математическая форма записи

УСПЕВАЕМОСТЬ

Сном	Сфам	Кном	Тном	Дисц.	Сем.	Оценка
111	Серов	120	2135	OC	3	2
111	Серов	120	2135	ПО	2	4
111	Серов	120	2135	Физика	3	5
222	Перов	211	3257	OC	3	4
222	Перов	211	3257	Химия	1	5
222	Перов	211	3257	AK	4	4
333	Иванов	120	2135	ПО	2	5
110	Поляков	211	3257	OC	1	4

Сном -> Сфам

Сном -> Кном

Khom -> Thom

Тном -> Кном

Chom -> Thom

Сном, Дисциплина, Семестр -> Оценка

Полная функциональная зависимость

Функциональная зависимость А → В является полной ФЗ, если удаление какого-либо атрибута из группы атрибутов А приводит к потере этой зависимости (Неключевой атрибут функционально полно зависит от составного ключа если он функционально зависит от всего ключа в целом, но не находится в функциональной зависимости от какого-либо из входящих в него атрибутов).

Частичная ФЗ (неполная)

Функциональная зависимость $A \to B$ является частичной Ф3, если в группе атрибутов A есть один или несколько атрибутов, при удалении которых эта зависимость сохраняется

При неполной функциональной зависимости возникают *аномалии*:

- . включения
- . удаления
- . обновления

Данные виды аномалий возникают при любой избыточной функциональной зависимости.

Многозначная зависимость

Один атрибут таблицы многозначно определяет другой атрибут той же таблицы, если для каждого значения первого атрибута существует хорошо определенное множество соответствующих значений второго атрибута.

Пример:

Дано отношение Книги(ISBN, Название, Автор, Область знаний). Книга имеет уникальный идентификатор ISBN, книга может быть написана коллективом авторов, книга может относиться к нескольким областям знаний Книга

	ISBN	Название	Автор	Область знаний
	5-123-12345-1	Информатика для экономистов	Иванов А.В.	Информатика
	5-123-12345-1	Информатика для экономистов	Иванов А.В.	Экономика
	5-123-12345-1	Информатика для экономистов	Петров С.М.	Информатика
Γ	5-123-12345-1	Информатика для экономистов	Петров С.М.	Экономика

Существуют следующие функциональные зависимости:

 $\mathsf{ISBN} \to \mathsf{Hasbahue}$

ISBN ->> Автор

ISBN ->> Область знаний

Транзитивная функциональная зависимость.

- Пусть A, B, Z три атрибута некоторого отношения.
- При этом A \rightarrow B и B \rightarrow Z, но обратное соответствие отсутствует, т.е. Z -/-> B и B -/-> A.
- Тогда Z транзитивно зависит от A.

Избыточная функциональная зависимость — это зависимость, заключающая в себе такую информацию, которая может быть получена на основе других зависимостей, имеющихся в базе

Пример:

Дано отношение

Группы(<u>Группа</u>, Специальность, Факультет) с первичным ключом **Группа**.

Группа однозначно определяет специальность, а специальность однозначно определяет факультет.

Т.е. существуют следующие функциональные зависимости:

Группа → Специальность

(и наоборот, Специальность -/-> Группа)

Специальность → Факультет

(Факультет -/-> Специальность)

Факультет транзитивно зависит от Группа

Первая нормальная форма (1НФ)^{1НФ}

Таблица (отношение) находится в 1НФ, если не содержит одинаковых строк и в любом допустимом значении этой таблицы каждая ее строка содержит только одно значение для каждого атрибута. (значения всех атрибутов атомарны).

(Универсальное отношение)

Первая нормальная форма является основой реляционной модели данных.

Пример

Персона(Номер, Фамилия, Имя, Отчество, ДатаРождения)

Очевидно, что существует функциональные зависимости атрибутов:

Homep \rightarrow Фамилия,

Hoмер \rightarrow Имя,

Hомер \rightarrow Отчество,

Номер → ДатаРождения

Полная функциональная зависимость: все атрибуты зависят от составного ключа и не зависят ни от какой его части.

2НФ

Таблица (отношение) находится во 2НФ, если она удовлетворяет определению 1НФ, и каждый неключевой атрибут функционально полно зависит от всего ключа.

Если какой-либо атрибут <u>зависит от части</u> составного первичного ключа, то необходимо:

- создать новое отношение, атрибутами которого будут:
 - часть составного ключа (первичный ключ нового отношения),
 - атрибут, зависящий от нового ключа;
- из исходного отношения исключить атрибут, включенный в новое отношение.

Пример

Имеется отношение **R(k1, k2, a1, a2),** находящееся в 1НФ, где k1, k2 — составной первичный ключ, a1 и a2 — неключевые атрибуты отношения R, Функциональные зависимости:

k1, **k2**→**a1**

(атрибут а1 функционально полно зависит от первичного ключа k1, k2),

$k1\rightarrow a2$

(атрибут а2 зависит от части первичного ключа k1, т.е. имеется неполная функциональная зависимость)

Для приведения отношения R к 2HФ, это отношение декомпозируется на два отношения:

R1(k1, a2) u R2(k1, k2, a1).

Отношения R1 и R2 будут иметь связь один-ко-многим по атрибуту k1.

Пример:

Дано отношение

Поставки(<u>КодПоставщика, КодПродукта</u>, ЕдиницаИзмерения)

Поставщик может поставлять различные продукты, один и тот же продукт может поставляться разными поставщиками. Тогда первичным ключом отношения будут атрибуты *КодПоставщика* и *КодПродукта*.

Значит, существует функциональная зависимость:

КодПоставщика, КодПродукта→ЕдиницаИзмерения

С другой стороны, какой бы поставщик не поставил продукт, единица измерения от этого не изменится (например, цельное молоко измеряется литрами независимо от поставщика, а соль — килограммами).

Т.е. существует еще одна функциональная зависимость (неключевой атрибут зависит от части первичного ключа):

КодПродукта→ЕдиницаИзмерения

После исключения неполной функциональной зависимости получим отношения:

Поставки(КодПоставщика, КодПродукта) Продукты(КодПродукта, ЕдиницаИзмерения)

Аномалии:

- . *включения* (пока поставщиком не будет поставлен продукт, нельзя указать единицу измерения)
- . удаления (исключение поставщика может привести к потере единицы измерения продукта)
- . *обновления* (при изменении единицы измерения продукта, приходится менять данные везде, где встречается данный продукт)

Пример

Кафедра(КодИнститута, КодКафедры, Название, Телефон, Адрес)

Составной ключ - «КодИнститута, КодКафедры» (поле «КодКафедры» идентифицирует кафедру внутри института).

Имеет место функциональная зависимость:

КодИнститута, КодКафедры — Название, Телефон, Адрес

Для каждой кафедры указывается адрес. Однако, адрес на самом деле зависит только от кода института (т.е. от части ключа).

Для исправления ситуации адрес должен стать атрибутом института.

Третья нормальная форма (ЗНФ):

Таблица (отношение) находится в ЗНФ, если она находится во 2НФ и ни один из её неключевых атрибутов не связан ФЗ с любым другим неключевым атрибутом.

(Каждый неключевой атрибут нетранзитивно зависит от первичного ключа).

3НФ

Имеется отношение **R(<u>k1</u>, a1, a2),** находящееся в 2НФ, где k1 — первичный ключ, а a1 и a2 — неключевые атрибуты отношения R, имеются функциональные зависимости:

k1→a1

a1→a2

тогда атрибут **a2** транзитивно зависит от **k1**.

Для приведения отношения R к 3HФ, это отношение декомпозируется на два отношения:

R1(k1, a1) u R2(a1, a2).

Отношения R1 и R2 будут иметь связь многие-к-одному по атрибуту a1.

Пример:

Дано отношение

Группы(Группа, Специальность, Факультет)

Группа однозначно определяет специальность, а специальность однозначно определяет факультет:

Группа→**Специальность**

(и наоборот, Специальность -/-> Группа)

Специальность — Факультет

(Факультет -/-> Специальность)

После исключения транзитивной функциональной зависимости получим отношения:

Группы(Группа, Специальность)

Специальности(Специальность, Факультет)

Пример

3НФ

Кафедра(<u>КодКафедры</u>, Название, Телефон, Корпус, Адрес)

Первичный ключ состоит только из одного атрибута. Следовательно, все неключевые атрибуты связаны с ним полной функциональной зависимостью (условие **2НФ соблюдено**).

Можно выделить Ф3:

КодКафедры → Название, Телефон, Корпус Корпус → Адрес

Адрес определяется корпусом, в котором размещается кафедра. Следовательно, имеет место *транзитивная зависимость:*

КодКафедры \rightarrow Корпус \rightarrow Адрес

После исключения транзитивной ФЗ получим отношения: Кафедра(КодКафедры, Название, Телефон, Корпус) Корпус(Корпус, Адрес) Таблица (отношение) находится в нормальной форме Бойса-Кодда (НФБК), если она удовлетворяет определению ЗНФ и любая ФЗ между ее атрибутами сводится к полной ФЗ от возможного первичного ключа.

Ситуация, когда отношение будет находиться в ЗНФ, но не в нормальной форме Бойса-Кодда (НФБК), возникает при условии, что отношение имеет два (или более) возможных ключа, которые являются составными и имеют общий атрибут.

Пример

Имеется отношение R(a1, a2, a3, a4), находящееся в ЗНФ, где **a1, a2** – возможный ключ, **a2, a3** — возможный ключ, **а4** – неключевой атрибут отношения R, Имеются функциональные зависимости:

a1→a3

a3→a1

a1, a2 \rightarrow a4

a2, a3 \rightarrow a4

Для приведения отношения R к НФБК, это отношение декомпозируется на два отношения:

R1(<u>a1</u>, a3) и R2(<u>a1</u>, a2, a4) или R1(a3, a1) и R2(a2, a3, a4)

Пример:

Дано отношение

Экзамен(№ зачетки, № паспорта, Дисциплина, Дата, Оценка)

Возможными ключами будут атрибуты:

<u>№ зачетки, Дисциплина, Дата</u> и <u>№ паспорта, Дисциплина, Дата.</u>

Имеются следующие функциональные зависимости:

№ зачетки, Дисциплина, Дата → Оценка

№ паспорта, Дисциплина, Дата → Оценка

№ зачетки → № паспорта

№ паспорта → № зачетки

После приведения отношения к НФБК могут быть получены отношения:

Студент(№ зачетки, № паспорта),

Экзамен(№ зачетки, Дисциплина, Дата, Оценка)

или Студент(№ паспорта, № зачетки),

Экзамен(№ паспорта, Дисциплина, Дата, Оценка)

Высшие нормальные формы

Четвертая нормальная форма (4НФ)
Пятая нормальная форма (5НФ)
(нормальная форма проекции-соединения)

Алгоритм декомпозиционного проектирования БД

- 1)Построение универсального отношения для БД.
- 2)Определение всех Ф3, существующих между атрибутами универсального отношения.
- 3) Удаление всех избыточных ФЗ из исходного набора ФЗ в соответствии с процедурой нормализации:

1НФ

2НФ

3НФ

НФ Бойса-Кодда

Коддом доказано, что большинство потенциальных аномалий в БД будет устранено в случае должной декомпозиции каждого отношения в нормальную форму Бойса-Кодда (НФБК

1 этап

Универсальное отношение R1(Сном, Дисц, Семестр, Оценка, Сфам, Кном, Thom)

2 этап

Определение всех ФЗ:

Сном -> Сфам

Сном -> Кном

Khom -> Thom

Тном -> Кном

Chom -> Thom

Сном, Дисциплина, Семестр -> Оценка

3 этап - процедура нормализации

1НФ

2НФ

R2(Сном, Дисц, Семестр, Оценка)

R3(Сном, Сфам, Кном, Тном)

3НФ

R2(Сном, Дисц, Семестр, Оценка)

R4(KHOM, THOM)

R5(Сном, Сфам, Кном)

R4

Сном	Дисц	Сем	Оценка		Кном	Тном
111	OC	3	2	_	120	2135
111	ПО	2	4	-	211	3257
222	АК	4	4		R5	5
333	ПО	2	5	Сном	Сфам	Кном
110	OC	1	4	111	Серов	120
				222	Перов	211
				333	Иванов	120
				110	Поляков	211
				444	Белов	401