.....

Graph Theory Exam Notes

hcentner@umich.edu

Harry Centner Professor Terrence George

GRAPH BASICS

Definitions

Simple Graph

A simple graph is one with no multiple edges or loops.

Walk

A walk is an ordered set of vertices in which any two contiguous vertices are adjacent.

Path

A path is a walk with no repeated vertices. $\{\text{paths of } G\} \subseteq \{\text{walks of } G\}.$

Clique

A clique is a subset of vertices in which any two vertices are non-adjacent. Equivalently, a clique is a K_n subgraph of G. The clique number $\omega(G)$ is the largest clique size in G.

Independent Set

An independent set is a subset of vertices such that no two vertices are adjacent. The largest cardinality of an independent set in G is denoted $\alpha(G)$

Vertex Cover

A vertex cover is a subset of vertices that contains at least one endpoint of every edge. The minimum size of a vertex cover is

$$|V| - \alpha(G)$$

For any connected graph let $\rho(G)$ be the size of a minimum edge cover. Then

$$\rho(G) + \alpha(G) = |V|$$

The First Theorem of Graph Theory

Binomial Definitions

Let G = (V, E) be a graph. Then,

$$\sum_{v \in V} \deg(v) = 2|E|$$

.....

PLANARITY

Graph Characteristics

Zeroth Betti Number

denoted $b_0 = b_0(G)$ is the number of connected components of a graph.

First Betti Number

denoted $b_1 = b_1(G)$ is equivalent to any of the following:

- the maximal number of edges whose removal does not increase b_0
- the number of edge deletions required to make G a tree
- the number of independent cycles in a graph

Other Betti Numbers

All other Betti Numbers of a graph are zero. $b_i(G) = 0 \quad \forall i \in \mathbb{N} \setminus \{0, 1\}$

Euler Characteristic

The Euler Characteristic of G = (V, E) is given by

$$|V| - |E| = b_0 - b_1$$

It follows that any three of the following imply the remaining statement:

$$(ii)$$
 G is acyclic

(iii)
$$G$$
 has n vertices

(iv)
$$G$$
 has $n-1$ edges

$$b_0 = 1$$

$$b_1 = 0$$
$$|V| = n$$

$$|E| = n - 1$$

Famous Theorems

Euler's Formula

The Euler Characteristic of G = (V, E) is given by

$$|V| - |E| + |F| = b_0 + 1$$
 (Planar Graph)

$$|V| - |E| + |F| = 2$$
 (Planar, Connected Graph)

Corollaries

The following inequality is true for all connected planar graphs:

$$|E| \le 3|V| - 6$$

The following inequality is true for all connected, triangle free planar graphs with $|V| \geq 3$:

$$|E| \le 2|V| - 4$$

The following inequality is true for the 1-skeleton of any polyhedra:

$$2|E| \ge 3|F|$$

Kuratowski's Theorem

Let G = (V, E) be a simple graph, then

G is planar is and only if G contains no subgraph—or can be subdivided to be— isomorphic to K_5 or $K_{3,3}$.

SPECIAL WALKS

Hamiltonicity

Definition

Let G = (V, E) be a graph. Then,

$$K_n$$
 has $\frac{(n-1)!}{2}$ Hamiltonian cycles

A Hamiltonian graph has at least $\binom{n-1}{2} + 1$ edges.

Grinberg's Theorem

Let G = (V, E) be a planar graph. Let C be a Hamiltonian cycle in G. Let F_1 denote the set of faces inside C, and F_2 outside. For a face $f \in F = F_1 \cup F_2$, let b(f) denote the number of edges bounding f. Then,

$$\sum_{f \in F_1} (b(f) - 2) = \sum_{f \in F_2} (b(f) - 2) = |V| - 2$$

Gray Codes

A k-digit Gray Code is a Hamiltonian cycle in Q_k the hypercube graph. This corresponds to all k-digit binary strings listed cyclically such that contiguous strings differ by only one bit.

Eulerian Walks

Necessary Conditions for Graphs

A connected graph G has an Eulerian walk if and only if:

every vertex in G has even degree OR.

G has at most two vertices of odd degree

A connected graph G is Eulerian (has a closed trail) if and only if: every vertex in G has even degree

Necessary Conditions for Digraphs

A digraph G = (V, E) without isolated vertices the following are equivalent:

- \bullet G has a closed Eulerian walk (Each directed edge can be traversed exactly once)
- G is connected (disregarding orientation) and indeg(v) = outdeg(v) for all $v \in V$
- For any vertices $u, v \in V$ there is a walk that starts at u and ends at v and indeg(v) = outdeg(v) for all $v \in V$

COLORINGS

Definitions

Proper Coloring

A proper coloring (coloring) of G is a labelling of its vertices such that all adjacent vertices have distinct labels. It follows that for any graph G(V, E),

$$|E| \ge {\mathcal{X}(G) \choose 2}$$

Chromatic Number

The chromatic number of a graph $\mathcal{X}(G)$ is the least number of colors needed to color G.

Bounds on the Chromatic Number

Lower Bounds

Let G = (V, E) be a simple graph, let $\omega(G)$ be the clique number of G, and let $\alpha(G)$ be the independence number of G. Then,

$$\mathcal{X}(G) \ge \omega(G)$$

$$\mathcal{X}(G) \ge \frac{|V|}{\alpha(G)}$$

Upper Bounds

Let G = (V, E) be a graph which is neither complete nor an odd cycle. Then,

$$\mathcal{X}(G) \leq \max_{v \in V} \deg(v)$$

Chromatic Polynomials

Definition

Let G be a graph. Then $p_G: \mathbb{Z}_{>} \to \mathbb{Z}$ is defined by:

 $p_G(k)$ = the number of colorings of G with k colors

Consequences

- (i) The coefficient of k^{n-1} in $p_G(k)$ is -|E|.
- (ii) $p_G(1) = 0$ if and only if G has no edges.
- (iii) $\mathcal{X}(G) = \min\{k \mid p_G(k) \neq 0\}$

Examples

If G is a forest with c connected components, then

 $p_G(k) = k^c (k-1)^{n-c}$

If $G = C_4$, then

 $p_{C_4}(k) = k(k-1)Jk^2 - 3k + 3$ $p_{C_4}(k) = k^n$

If G has no edges, then

Recursive Formulas

Let G = (V, E) be a simple graph and $e \in E$ an edge. Then,

G - e is the graph obtained from G by deleting e.

G/e is the graph obtained from G by contracting e.

$$p_G(k) = p_{G-e}(k) - p_{G/e}(k)$$

Let $G \sqcup H$ be the disjoint union of two graphs H and G. Then,

$$p_{G \sqcup H}(k) = p_G(k) \cdot p_H(k)$$

Let G + H be the join of two graphs H and G. Then,

$$p_{G+H}(k) = \sum_{a} \sum_{b} \hat{p}_{G}(a) \hat{p}_{H}(b) \binom{a+b}{a} \binom{k}{a+b}$$

Using Exactly k Colors

Let G = (V, E) be a simple graph and let $\hat{p}_G(k)$ denote the number of proper colorings of G using exactly k colors.

$$p_G(k) = \sum_{a=0}^{|V|} \hat{p}_G(k) \binom{k}{a}$$
 note that $\hat{p}_G(k) \neq 0 \implies \mathcal{X}(G) \leq a \leq |V|$

Note that $\hat{p}_G(k)$ is the leftmost entry in the a-th row of the difference table for the sequence $b = p_G(0), p_G(1), \ldots$

DIGRAPHS & FLOWS

Definitions

Transportation Network

Let G = (V, E) be a graph. Then,

Flow

A flow in a transportation network is a function $f: E \to \mathbb{R}$ that satisfies two conditions,

1. feasibility:

$$0 \le f(e) \le c(e) \quad \forall e \in E$$

2. conservatiton law:

$$\sum_{\stackrel{e}{\bullet} v} f(e) = \sum_{\stackrel{e}{v} \to \bullet} f(e) \quad \forall v \in V \setminus \{s, t\}$$

Max-Flow Min-Cut Theorem

The maximum value of a flow in a transportation network is equal to the minimum capacity of a cut:

$$\max_{f} |F| = \min_{(X,Y)} c(X,Y)$$

Matchings

SPICY EXTRAS

Pigeon Hole Principle

Statement

If |A| > |B|, there are no injections $f: A \to B$.

Corollaries

- (i) Congruence classes
- (ii)

Posets

Definition

A partially ordered set (or poset) P is a set endowed with a binary relation denoted \leq , that satisfies three conditions:

(i) reflexivity:

$$\forall x \in P, \quad x \le x$$

(ii) antisymmetricity:

$$x \le y \land y \le x \implies x = y$$

(iii) transitivity:

$$x \le y \land y \le z \implies x \le z$$

Combinatorial Reciprocity Theorems

Acyclic Orientations

The number of directed graphs obtained by orienting the edges of G = (V, E) without creating a directed cycle is

$$ao(G) = (-1)^{|V|} \cdot p_G(-1)$$

And defined by the recursion

$$ao(G) = ao(G - e) + ao(G/e)$$

Note that if G is a tree, then $ao(G) = 2^{|E|}$

If $G = C_n$ is a cycle, then $ao(G) = 2^n - 2$

If $G = K_n$, then ao(G) = n!

Automorphisms