W-Assignment 2

Klaus Møllnitz nhg665

December 8, 2013

1 Writing Context-Free Grammars

In the following subquestions, we are working with the alphabet:

$$\sum = \{a, b, c\} \tag{1}$$

1.1 a

Words have to match this regular expression a^*b^* and have to match more a's than b's.

$$S = aS \tag{2}$$

$$S = aT (3)$$

$$T = aTb (4)$$

$$T = \epsilon \tag{5}$$

(6)

1.2 b

Words that are palindromes.

$$S = \epsilon$$
 (7)
 $S = a$ (8)
 $S = b$ (9)
 $S = c$ (10)
 $S = aSa$ (11)
 $S = bSb$ (12)
 $S = cSc$ (13)

(14)

A conflict free grammar for palindromes does not exist, since it belongs to a class of grammars which is not LR(1).

2 LL(1)-Parser Construction

We have the following grammar:

$$Z \to b|XYZ$$
 (15)

$$Y \to \epsilon | c$$
 (16)

$$X \to Y|a$$
 (17)

2.1 a. Calculating Nullable

I need to calculate *Nullable* of all the nonterminals. I assume that all the equations in 18 is false, as a starting point. Then I use the algorithm 2.4 in Springer 2011, [1].

$$Nullable(Z)$$
 $Nullable(Y)$
 $Nullable(X)$
(18)

I then write down the expressions of Nullable for all nonterminals and terminals.

$$Nullable(Z) = Nullable(b) \lor Nullable(XYZ)$$

 $Nullable(Y) = Nullable(\epsilon) \lor Nullable(c)$
 $Nullable(X) = Nullable(Y) \lor Nullable(a)$

$$Nullable(b) = Nullable(b) = false$$

$$Nullable(XYZ) = Nullable(X) \land Nullable(Y) \land Nullable(Z)$$

$$Nullable(c) = Nullable(c) = false$$

$$Nullable(\epsilon) = true$$

$$Nullable(Y) = Nullable(Y)$$

$$Nullable(a) = Nullable(a) = false$$

$$(19)$$

Then I use fixed point iterations to solve the equations.

Right-hand side	Init	It. 1	It. 2	It. 3	It. 4	It. 5	
b	false	false	false	false	false	false	
XYZ	false	false	false	false	false	false	
ϵ	false	true	true	true	true	true	
c	false	false	false	false	false	false	
Y	false	false	false	true	true	true	(20
a	false	false	false	false	false	false	,
Nonterminal							•
\overline{Z}	false	false	false	false	false	false	•
Y	false	false	true	true	true	true	
X	false	false	false	false	true	true	

The result is then (21).

$$Nullable(Z) = False$$

 $Nullable(Y) = True$
 $Nullable(X) = True$ (21)

2.2 a. Calculating FIRST

To calculate the FIRST set, I am uing the algorithm 2.5 in Springer 2011, [1].

$$FIRST(Z) = FIRST(b) \cup FIRST(XYZ)$$

$$FIRST(Y) = FIRST(\epsilon) \cup FIRST(c)$$

$$FIRST(X) = FIRST(Y) \cup FIRST(a)$$

$$FIRST(b) = \{b\}$$

$$FIRST(XYZ) = FIRST(X) \cup FIRST(Y) \cup FIRST(Z)$$

$$FIRST(c) = \{c\}$$

$$FIRST(\epsilon) = \emptyset$$

$$FIRST(a) = \{a\}$$

Then I use fixed point iterations to solve the equations.

Right-hand side	Init	It. 1	It. 2	It. 3	It. 4	It. 5	
b	Ø	{b}	{b}	<i>{b}</i>	$\{b\}$	$\{b\}$	
XYZ	Ø	Ø	Ø	$\{a, b, c\}$	$\{a, b, c\}$	$\{a, b, c\}$	
ϵ	Ø	Ø	Ø	Ø	Ø	Ø	
c	Ø	$\{c\}$	$\{c\}$	$\{c\}$	$\{c\}$	$\{c\}$	
Y	Ø	Ø	Ø	$\{c\}$	$\{c\}$	$\{c\}$	(23)
a	Ø	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$,
Nonterminal							
\overline{Z}	Ø	Ø	{b}	<i>{b}</i>	$\{a,b,c\}$	$\{a,b,c\}$	
Y	Ø	Ø	$\{c\}$	$\{c\}$	$\{c\}$	$\{c\}$	
X	Ø	Ø	$\{a\}$	$\{a\}$	$\{a,c\}$	$\{a,c\}$	

The final FIRST set is gonna be as shown in (24).

$$FIRST(b) = \{b\}$$

$$FIRST(XYZ) = \{a, b, c\}$$

$$FIRST(\epsilon) = \emptyset$$

$$FIRST(c) = \{c\}$$

$$FIRST(Y) = \{c\}$$

$$FIRST(a) = \{a\}$$
(24)

2.3 b. Calculating FOLLOW

I'm calculating the FOLLOW set according to the algorithm in the book page 59. To calculate the FOLLOW set, we first have to add an extra start production:

$$S = Z\$ \tag{25}$$

For each nonterminals, X, Y and Z, I locate all occurrences on the right hand side of the productions, which leads me to following tables of constraints. First I calculate constraints for the nonterminal Z:

Production Constraints
$$S \to Z\$ \qquad FIRST(\{\$\}) = \{\$\} \subseteq FOLLOW(Z) \\ Z \to XYZ \qquad FOLLOW(Z) \subseteq FOLLOW(Z) (\beta = \epsilon, \text{ this can be omitted since Z=Z)}$$
(26)

Then I proceed calculating Y:

Lastly I calculate X:

Since Y is nullable, I can write

$$FIRST(YZ) = FIRST(Y) \cup FIRST(Z) = \{a, b, c\}$$
(29)

The constraints table with FIRST set derived is then:

2.4 c. Look ahead and parser table

I calculate the lookahead set for alle productions by using the information provided in the handed out slides about Syntax Analysis (slide 19).

Production	Lookahead set	
$Z \to b$	FIRST(b)	
Z o XYZ	FIRST(XYZ)	
$Y o \epsilon$	$FIRST(\epsilon) \cup FOLLOW(Y)$	(32)
$Y \to c$	FIRST(c)	
$X \to Y$	$FIRST(Y) \cup FOLLOW(X)$	
$X \to a$	FIRST(a)	

$$la(Z \to b) = \{b\} \tag{33}$$

$$la(Z \to XYZ) = \{a, b, c\} \tag{34}$$

$$la(Y \to \epsilon) = \{a, b, c\} \tag{35}$$

$$la(Y \to c) = \{c\} \tag{36}$$

$$la(X \to Y) = \{a, b, c\} \tag{37}$$

$$la(X \to a) = \{a\} \tag{38}$$

2.4.1 Parse table

Stack	a	b	c	\$
\overline{Z}	XYZ, 2	XYZ, 2; b, 1	XYZ, 2	error
Y	$\epsilon, 3$	$\epsilon, 3$	$\epsilon, 3; c, 4$	error
X	Y, 5; a, 6	Y, 5	Y, 5	error
a	pop	error	error	error
b	error	pop	error	error
c	error	error	pop	error
\$	error	error	error	accept

3 SLR Parser Construction

3.1 Left-recursion

I made up the following grammar with left-recursion.

$$S \to Sa S \to \epsilon$$
 (40)

I have made the parse table by using mosmlyac, with the -v flag. This introduce a new terminal as starting symbol, and a nonterminal called entry:

3.2 Parse table of grammar with right-recursion

The equivalent right-recursive grammar of (40) is as shown in (42).

$$S \to aS S \to \epsilon$$
 (42)

The parse table of this grammar generated with mosmlyac can be seen below.

	\001	a	ϵ	end	S	% entry%	
$\overline{S_0}$	S_1					Go S_2	
S_1		S_3		red. 2	$Go S_4$		
S_2				accept			(43)
S_3		S_3		red. 2	Go S_5		
S_{0} S_{1} S_{2} S_{3} S_{4} S_{5}			red. 3				
S_5			red. 1				

From these two parse tables, it can be shown that the *right-recursive* equivalent parser would build up a stack before doing the reduce actions, whereas the *left-recursive*, would simply reduce imediately.

References

[1] Torben Ægidius Mogensen, Introduction to Compiler Design. Springer London, 2011.