

Evatovnitá

Super-élément fini perforé non-linéaire pour la modélisation des assemblages dans les calculs de structures

Phuc Viet Khoa NGUYEN, Doctorant 2A département DMAS/CRD, phuc_viet_khoa.nguyen@onera.fr

Directeur(s) de thèse : Nicolas LECONTE 1

Encadrant(s): Bertrand LANGRAND 1, Franck MASSA 2, Cédric HUBERT 2

Financement(s): 50% ONERA - 50% Région Hauts de France

¹ DMAS/ONERA, Lille, ²LAMIH UMR CNRS 8201, UPHF

Sommaire

- 1 Introduction
- 2 Super-élément perforé
- 3 Méthodes multi-échelles
- 4 Conclusion et perspectives

1. Introduction

Domaine aéronautique / Sécurité (passive) des usagers

2. Super-élément perforé

Principe

Une formulation de super-élément perforé a été proposée

Problème aux limites en élasticité linéaire

$$-\frac{\partial \sigma_{ij}}{\partial x_j} - b_i = 0 \quad \text{dans } V$$

$$\sigma_{ij} n_j + \widehat{T}_i = 0 \quad \text{sur } S_t$$

$$u_i = \widehat{u}_i \quad \text{sur } S_u$$

En utilisant le principe de l'Energie Potentielle Totale

$$\Pi_{TPE}(u_i) = \frac{1}{2} \int_{S} T_i u_i \, dS + \frac{1}{2} \int_{V} \left(-\frac{\partial \sigma_{ij}}{\partial x_j} - b_i \right) \, dV$$
$$-\frac{1}{2} \int_{V} b_i u_i \, dV - \int_{S_t} \widehat{T}_i u_i \, dS$$

Méthode hybride-Trefftz déplacement*

Méthode de Trefftz:

Equation d'équilibre a priori satisfaite

Hybridation:

Compatibilité des déplacements aux frontières

En LINEAIRE, il existe une solution analytique (Solution de Kolosov-Muskhelishvili) qui satisfait le problème aux limites

*Leconte, N. et al. (2010). Finite Elements in Analysis and Design 46, 819-828.

2. Super-élément perforé

Evaluation de la précision et de l'efficacité

Plaque perforée de rayon a=2mm élasticité linéaire

(E=74000MPa, ν =0,3) en traction uni-axiale (u_x =0,117mm)

(par un maillage fin et par un super-élément (SE))

Fig 1 : Contrainte de von Mises dans la zone perforée modélisée par maillage MEF et SE

Fig 2 : Evolution des contraintes sur le bord de la perforation

C	Calcul	ma× (σ ∨ _М) МРа	$\frac{Ecart\%}{\frac{\ \sigma_{VM}^{MEF} - \sigma_{VM}^{calcul}\ }{\ \sigma_{VM}^{MEF}\ }}*100\%$	Temps de calcul (s)
	MEF	450	-	10
	Tybride- Trefftz	442	1,8	0,15

Efficacité et précision!

2. Super-élément perforé

Limitations

Super-élément limité à l'élasticité linéaire

En non linéaire, il n'existe pas de solution analytique analogue à celle de Kolosov!

$$\begin{aligned} u_X\left(R,\theta\right) &= \frac{1}{2\mu} \sum_{j=-N}^{M} \alpha_j \left[\left(kR^j + R^{-j} \right) \cos j\theta - j \left(R^j - R^{j-2} \right) \cos \left(j - 2 \right) \theta \right] \\ &+ \beta_j \left[- \left(kR^j + R^{-j} \right) \sin j\theta + j \left(R^j - R^{j-2} \right) \sin \left(j - 2 \right) \theta \right] \\ &= \sum_{j=-N}^{M} \left(\alpha_j N \alpha_j + \beta_j N \beta_j \right) \end{aligned}$$

Objectif

Formuler un «super-élément» capable de traiter les problèmes avec non-linéarités géométriques et matérielles

Méthodes multi-échelles

Pistes investiguées (pour la non-linéarité)

Méthodes d'homogénéisation

- Analytique : Modèles de Voigt, Reus ou Hashin-Shtrikman, etc.
- Semi-analytique (basée sur le problème d'Eshelby) : Mori-Tanaka, self-consistent, etc.
- Numérique : Eléments finis au carré (EF²). Transformation Field Analysis (TFA)

Méthodes d'homogénéisation - Transformation Field Analysis

Equations fondamentales*:

Relations de localisation (macro → micro) :

$$\boldsymbol{\varepsilon}_{r}(x) = \mathbf{A}_{r} : \mathbf{E}(X) + \sum_{s=1}^{n} \mathbf{D}_{rs} : \boldsymbol{\varepsilon}_{s}^{in}(x)$$
Linéaire
$$\boldsymbol{\sigma}_{r}(x) = \mathbf{B}_{r} : \boldsymbol{\Sigma}(X) - \sum_{s=1}^{n} \mathbf{F}_{rs} : \mathbf{L}_{s} : \boldsymbol{\varepsilon}_{s}^{in}(x)$$

- Relations d'homogénéisation (micro \rightarrow macro) :

$$\mathbf{E}(X) = \sum_{r=1}^{n} c_r \boldsymbol{\varepsilon}_r(x) \; ; \; \boldsymbol{\Sigma}(X) = \sum_{r=1}^{n} c_r \boldsymbol{\sigma}_r(x)$$

- Ar, Br : tenseurs de localisation, Drs, Frs : tenseurs d'influence.
- L_s : tenseur d'élasticité, ε_{s}^{in} : tenseur de déformation inélastique,
- (\cdot) signifie le champ de chaque sous-volume (V_r) à l'échelle micro.

Les tenseurs ne dépendent QUE de la géométrie du VER et des propriétés du matériau élastique

⇒ A calculer une seule fois (étape « offline »)

*Dvorak, G.J. (1992), Proc. B. Soc. Lond. A 437, 311-327.

Les champs à l'échelle locale sont reconstruits

en utilisant les relations de localisation

Méthodes d'homogénéisation - Mori-Tanaka combinée à TFA

Méthode TFA:

- Approche séquencée : Perte de valeurs locales $(\varepsilon_r, \sigma_r)$. La loi homogénéisée est souvent trop complexe pour implémenter dans un code de calcul
- Approche intégrée : Nécessite un grand nombre de sous-volumes → trop chère

Méthode proposée : Mori-Tanaka* combinée à TFA

Méthodologie:

• **Etape 1** : Définir de dimension à l'échelle microscopique

$$H$$
étérogénéité(a) $< V(\ell) < S$ tructure(L) $\Rightarrow \ell \geq 5$ a**

- Etape 2 : Calculer les tenseurs de TFA (pour la relocalisation)
- Etape 3 : Homogénéiser $(E \to \Sigma)$: Par Mori-Tanaka intégrée
- Etape 4 : Post-traiter : Relocaliser des champs locaux $(\varepsilon_r, \sigma_r)$ en utilisant les tenseurs de l'étape 2 (tenseurs TFA numériques)

^{*}Chaboche, J.L. et al. (2001). International Journal of Plasticity 17, 411-439.

^{**}Leconte, N. et al. (2023). International Journal of Solids and Structures 285, 112559.

Méthodes d'homogénéisation - Résultats numériques

Même cas de calcul <u>linéaire</u> (dans un premier temps) que dans la partie précédente réutilisée pour évaluer la méthode TFA.

Fig 3 : Contrainte de von Mises dans la zone perforée modélisée par la MEF, l'analytique et la Mori-Tanaka combinée à TFA

Calcul	$egin{array}{c} max\left(oldsymbol{\sigma}_{VM} ight) \ \mathbf{MPa} \end{array}$	$\frac{Ecart\%}{\frac{\ \sigma_{VM}^{MEF} - \sigma_{VM}^{calcul}\ }{\ \sigma_{VM}^{MEF}\ }}*100\%$	Temps de calcul (s)
MEF	450	-	10
Hybride- Trefftz	442	1,8	0.15
Mori- Tanaka+TFA	426	5,6	0,10
TFA	426	5,6	1200

Fig 4 : Evolution des contraintes sur le bord de la perforation

 \Rightarrow aussi efficace que le super-élément

4. Conclusion et perspectives

Conclusion

- Une approche TFA intégrée et une approche Mori-Tanaka intégrée combinée à TFA ont été proposées.
- Ces deux approches ont fourni des résultats acceptables dans le problème de la plaque perforée linéaire.
- L'approche combinée est efficace en terme de temps de calcul et l'approche TFA pure n'est pas retenue pour la suite des travaux.

(→) Homogénéiser par Mori-Tanaka intégrée

 (\Rightarrow) Accéder aux champs locaux en utilisant les tenseurs TFA numériques

4. Conclusion et perspectives

Perspectives

Méthodes d'homogénéisation

- Analytique : Modèles de Voigt, Reus ou Hashin-Shtrikman, etc.
- **Semi-analytique** (basée sur le problème d'Eshelby) : Mori-Tanaka, self-consistent, etc.
- **Numérique** : Eléments finis au carré (*EF*²), Transformation Field Analysis (*TFA*)

⇒ Evaluation non linéaire à venir

Réduction de modèles

Proper Orthogonal Decomposition (POD)

$$\mathbf{u} = \sum_{i=1}^{N} \boldsymbol{\phi}_i \boldsymbol{\alpha}_i$$

Apprentissage automatique

- Artificial Neural Networks (ANNs)
- Physics-Guided Neural Networks (PGNNs)
- Physics-Informed Neural Networks (PINNs)

Merci de votre attention!

www.onera.fr

Références

Rapports techniques:

- P.V.K. Nguyen, Matlab implementation of a linear membrane hybrid-Trefftz displacement perforated plate super-element, Technical Report No. RT 3/35057 DMAS. ONERA-DMAS, Lille, France (novembre 2024).
- P.V.K. Nguyen, *Homogenization of a linear perforated plate using multimat Z-set*, Technical Report No. RT 2/35057 DMAS. ONERA-DMAS, Lille, France (novembre 2024).
- P.V.K. Nguyen, *Perforated plate analytical and numerical linear reference solutions*, Technical Report No. RT 1/35057 DMAS. ONERA-DMAS. Lille, France (octobre 2024).

Communications:

- Congrès Français de Mécanique (CFM), 25-29 aout 2025, Metz, France (prévue)
- Computational Modeling of Complex Materials Across the scales (CMCS), 13-16 mai 2025, Champs-sur-Marne. France (prévue)
- Congrès des Jeunes Chercheurs en Mécanique (MECA-J), 28-30 aout 2024, En ligne, France (présentation orale)

Formations

Ecole doctorale: 42 crédits obtenus / 60 crédits requis

- Ethique Intégrité Scientifique Éthique et recherche durable
- Atelier : prise de parole en public lors de séminaire scientifique
- · Worshop: how to write a scientific paper
- Diffuser ses travaux scientifiques : édition et autres formes de communication scientifique
- MOOC Doctorat et Poursuite de carrière
- Séminaire : le mois des GT Mécamat
- Modules d'insertion professionnelle
- · etc.

ONERA:

Machine Learning dans un contexte aéronautique

