$\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Fall 2018} & \text{Discussion 12B} \end{array}$

1. Least Squares: A Toy Example

Let's start off by solving a little example of least squares.

We're given the following system of equations:

$$\begin{bmatrix} 1 & 4 \\ 3 & 8 \\ 5 & 16 \end{bmatrix} \vec{x} = \begin{bmatrix} 3 \\ 1 \\ 9 \end{bmatrix},$$

where
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
.

- (a) Why can we not solve for \vec{x} exactly?
- (b) Find \vec{x} , the *least squares estimate* of \vec{x} , using the formula we derived in lecture.

Reminder:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

2. Polynomial Fitting

Least squares can only be applied to linear systems. Suppose that we have a vector \vec{x} and a vector \vec{y} , and $\vec{y}[n] = f(\vec{x}[n])$. We would like to approximate f using least squares, where f is not necessarily a linear function.

(a) Suppose that y = ax + b. Set this up as a least squares problem. What are the elements in the matrix A?

Let's try an example. Say we know that the output, y, is a quartic polynomial in x. This means that we know that y and x are related as follows:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

We're also given the following observations:

X	у
0.0	24.0
0.5	6.61
1.0	0.0
1.5	-0.95
2.0	0.07
2.5	0.73
3.0	-0.12
3.5	-0.83
4.0	-0.04
4.5	6.42

- (b) What are the unknowns in this question? What are we trying to solve for?
- (c) Can you write an equation corresponding to the first observation (x_0, y_0) , in terms of a_0, a_1, a_2, a_3 , and a_4 ? What does this equation look like? Is it linear?
- (d) Now, write a system of equations in terms of a_0 , a_1 , a_2 , a_3 , and a_4 using all of the observations.
- (e) Finally, solve for a_0 , a_1 , a_2 , a_3 , and a_4 using IPython. You have now found the quartic polynomial that best fits the data!