Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference

Jiaming Tang^{1,2*}, Yilong Zhao^{1,3*}, Kan Zhu³, Guangxuan Xiao², Baris Kasikci³, Song Han^{2,4}

¹SJTU, ²MIT, ³UW, ⁴NVIDIA <u>https://github.com/mit-han-lab/Quest</u>

Introduction

- Long-context text-generation has gained popular applications.
- However, it poses great **memory pressure** to the inference system.
- In this work, we prose Quest, which exploits query-aware sparsity in self-attention operator to boost inference efficiency, with negligible accuracy loss.

Attention in Decode Phase is Costly

• **Decode phase** consumes great portion of time compared to prefill phase, due to the auto-regressive inference of LLMs.

Time ratio under 1K prefill length with various decode length

• Attention operator needs read entire KV-Cache at each iteration, which increases linearly with the context length.

Inference Time Breakdown

Finding 1: Attention is Sparse

 During attention calculation, only small portion of tokens has much larger magnitude of attention scores than others.

 Therefore, attention output can be effectively approximated by only a small portion of critical tokens, which is called sparsity.

Sparsity of maintaining PG19 Perplexity

Finding 2: Sparsity Depends on Query

- We argue that critical tokens depend on the input query. For e.g., summary task will attend on different paragraphs, sequentially.
- Therefore, query-agnostic sparsity (like H2O) will prune tokens which will be critical in future.

Sampled Attention Map

Top-10 Recall Rate with Various Token Budgets (10K Context Len)

Overview of Quest

- Instead of prune, Quest **dynamically selects critical tokens** via criticality estimation for each query, at the page granularity which is compatible with PageAttention.
- Quest applies sparse attention only on the selected tokens, which saves greatly memory movement.

Evaluation & Implementation

- We implemented specialized operators (criticality estimation, Top-K, sparse attention), based on kernel libraries, RAFT and FlashInfer.
- For efficiency evaluation, we run experiments on Ada 6000 with CUDA 12.3.
- For accuracy evaluation, we evaluate on Pass-Key retrieval and common sense tasks from LongBench.

Pass-Key Retrieval

• 10K context length tested on LongChat-7b-v1.5-32k

Method / Budget	256	512	1024	2048	409
H2O	2%	2%	2%	2%	49
TOVA	2%	2%	2%	2%	109
StreamingLLM	1%	1%	1%	2%	49
Quest (ours)	88%	92%	96%	100%	100

100K context length tested on Yarn-Llama2-7b-128k

0% 1%	1% 1%	1% 1%	3%	5%
J%	1 %	1 %	370	070
001	1%	1%	3%	8%
0%	1%	1%	1%	3%
	,,,)% 1%	0% 1% 1%	0% 1% 1% 1%

LongBench Tasks

- Quest consistently outperforms all baselines.
- Note that Quest achieves full accuracy with 2K budgets in most cases.

LongChat- 7b-v1.5-32k with various token budgets

End-to-end Efficiency

• Breakdown of Quest's attention operator under various context length.

End-to-end speedup compared to FlashInfer version.

