

# Lec12: Causal Machine Learning I

Isidoro Garcia Urquieta

2021



## Agenda

- ► Omitted Variable Bias
- ► Double Selections LASSO
- ► Balancing Scores: e(x), IPW, AIPW
- ▶ Double Debiased ML
- ► Residual Balancing
- Causal Trees
- ► Double Debiased ML for HTE
- Causal forests
- ► Generalized Random Forests



## Set up

Para poder hablar de Causal Machine Learning tenemos que volver brevemente a los basics de inferencia causal

Queremos estimar au de manera insesgada:

$$Y_i = X\beta + \tau T_i + \epsilon_i$$

Donde: -  $Y_i$  es la variable sobre la que queremos evaluar el impacto

- ► X es una matriz (de alta dimensionalidad) de controles
- T<sub>i</sub> es el tratamiento sobre el que nos gustaría evaluar el impacto sobre Y<sub>i</sub> ceteris paribus
  - ▶ Noten como *T<sub>i</sub>* puede ser dicotómico, categórico o continuo.
- $ightharpoonup \epsilon_i$  es ruido blanco



# Como combinar Inferencia Causal con Machine Learning?

De manera general, la inferencia causal trata de **inferir** sobre **derivadas** o cambios en la métrica  $Y_i$  en lugar de la  $Y_i$  misma (el nivel)

$$\tau_i = \frac{\partial Y_i}{\partial T_i}$$

Por otro lado, los modelos de Machine Learning que vimos buscan **predecir**  $Y_i$  fuera de la muestra:

$$\hat{Y}_i = f(\hat{X}_i) + \epsilon_i$$

Son problemas fundamentalmente distintos!

Un grupo de autores: (Christian Hansen, Susan Athey, Guido Imbens, Stephan Wager, Belloni, Victor Chernozshukov, Matt Taddy, Esther Duflo, Robert Tibshirani) se pusieron a pensar cómo aprovechar ML y aplicarlo a **predecir e inferir impactos causales (derivadas)** 



## Omitted Variable Bias

Recuerden lo que origina el sesgo en la estimación de au. Imaginen que tenemos lo siguiente:

- ► Modelo real:  $Y_i = \beta_0 + \beta_1 X_{1i} + \tau T_i + \epsilon_i$
- ► Modelo estimado:  $Y_i = \beta_0 + \tau T_i + \psi_i$

Veamos la  $\hat{\tau}$  del modelo estimado:

$$\hat{\tau} = \frac{\sum_{i}^{N} (T_{i} - \bar{T})(Y_{i})}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}}$$

Sustituyo  $Y_i$ 

$$\hat{\tau} = \frac{\sum_{i}^{N} (T_{i} - \bar{T})(\beta_{0} + \tau T_{i} + \psi_{i})}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}}$$



### Omitted Variable Bias II

Distribuyo los términos:

$$\hat{\tau} = \frac{\sum_{i}^{N} (T_{i} - T)\beta_{0}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}} + \frac{\sum_{i}^{N} (T_{i} - T)\tau T_{i}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}} + \frac{\sum_{i}^{N} (T_{i} - T)\psi_{i}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}}$$

$$\hat{\tau} = \beta_{0} \frac{\sum_{i}^{N} (T_{i} - \bar{T})^{2}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}} + \tau \frac{\sum_{i}^{N} (T_{i} - \bar{T})\tau_{i}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}} + \frac{\sum_{i}^{N} (T_{i} - \bar{T})\psi_{i}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}}$$

$$\hat{\tau} = \tau + \frac{\sum_{i}^{N} (T_{i} - \bar{T})\psi_{i}}{\sum_{i}^{N} (T_{i} - \bar{T})^{2}}$$

Sustiyo  $\psi_i = \beta_1 X_{1i} + \epsilon_i$ 

$$\hat{\tau} = \tau + \frac{\sum_{i}^{N} (T_{i} - \overline{T})(\beta_{1}X_{1i})}{\sum_{i}^{N} (T_{i} - \overline{T})^{2}} = \tau + \beta_{1} \frac{\sum_{i}^{N} (T_{i} - \overline{T})(X_{1i})}{\sum_{i}^{N} (T_{i} - \overline{T})^{2}}$$

Noten como  $\frac{\sum_{i}^{N}(T_{i}-\bar{T})(X_{1i})}{\sum_{i}^{N}(T_{i}-\bar{T})^{2}}$  es el coeficiente de la regresión  $X_{1i}=\delta_{o}+\delta_{1}T_{i}$ .



## Omitted Variable Bias III

Por lo tanto:

$$\hat{\tau} = \tau + \beta_1 \delta_1$$

El omitted variable bias es el producto de:

- $\triangleright$   $\beta_1$ : La relevancia de la variable omitida  $X_{1i}$  sobre  $Y_i$
- $lackbox{}{\delta_1}$ : La relevancia de la variable omitida  $X_{1i}$  sobre  $T_i$

Si la variable omitida  $X_{1i}$  no tiene relación con el tratamiento  $T_i$  ( $\delta_1$ =0), el sesgo es cero y el estimador es causal.

De igual manera, si la variable omitida  $X_{1i}$  no tiene relación con  $Y_i$ , el sesgo es cero y el estimador es causal



Los primeros intentos de usar Machine Learning en inferencia causal involucraron LASSO. Veamos cómo:

▶ Si usamos LASSO sobre  $Y_i = X\beta + \tau T_i + \epsilon_i$  vamos a, en principio, a dejar sólo variables que tengan  $\beta \neq 0$ .



Los primeros intentos de usar Machine Learning en inferencia causal involucraron LASSO. Veamos cómo:

- ▶ Si usamos LASSO sobre  $Y_i = X\beta + \tau T_i + \epsilon_i$  vamos a, en principio, a dejar sólo variables que tengan  $\beta \neq 0$ .
- ▶ El problema es que si usamos este LASSO para hacer inferencia causal seguimos con  $\delta_1$  grande.



Los primeros intentos de usar Machine Learning en inferencia causal involucraron LASSO. Veamos cómo:

- ▶ Si usamos LASSO sobre  $Y_i = X\beta + \tau T_i + \epsilon_i$  vamos a, en principio, a dejar sólo variables que tengan  $\beta \neq 0$ .
- ▶ El problema es que si usamos este LASSO para hacer inferencia causal seguimos con  $\delta_1$  grande.
- ▶ Belloni, Chernoszhukov y Hansen (2014) argumentaron lo siguiente:



Los primeros intentos de usar Machine Learning en inferencia causal involucraron LASSO. Veamos cómo:

- ▶ Si usamos LASSO sobre  $Y_i = X\beta + \tau T_i + \epsilon_i$  vamos a, en principio, a dejar sólo variables que tengan  $\beta \neq 0$ .
- ▶ El problema es que si usamos este LASSO para hacer inferencia causal seguimos con  $\delta_1$  grande.
- ▶ Belloni, Chernoszhukov y Hansen (2014) argumentaron lo siguiente:
- ▶ X puede ser una matriz de alta dimensionalidad por dos razones: 1) Ahora tenemos mucha información (Big data!) y 2) Para hacer inferencia causal, el investigador *necesita* estimar la forma funcional perfectamente f(X)