Math 415 - Lecture 30 Eigenvectors and Eigenvalues

Friday November 6th 2015

Suggested practice exercises: 12, 20, 21, 22, 36

Suggested practice exercises: 12, 20, 21, 22, 36

Khan Academy video: Introduction to Eigenvalues and Eigenvectors, Proof of formula for determining

Eigenvalues, Finding Eigenvectors and Eigenspaces

example

Suggested practice exercises: 12, 20, 21, 22, 36

Khan Academy video: Introduction to Eigenvalues and

Eigenvectors, Proof of formula for determining

Eigenvalues, Finding Eigenvectors and Eigenspaces

example

Strang lecture: Lecture 21: Eigenvalues and eigenvectors

Review

The determinant is characterized by:

• the normalization det $I_{n \times n} = 1$,

- the normalization $\det I_{n\times n}=1$,
- and how it is affected by elementary row operations:

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.
 - (Interchange) Interchange two rows. Reverses the sign of the determinant.

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.
 - (Interchange) Interchange two rows. Reverses the sign of the determinant.
 - **(Scaling)** Multiply all entries in a row by s. *Multiplies* the determinant by s.

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.
 - (Interchange) Interchange two rows. Reverses the sign of the determinant.
 - **(Scaling)** Multiply all entries in a row by s. *Multiplies* the determinant by s.
- For triangular A the determinant is just product of the diagonal entries.

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.
 - (Interchange) Interchange two rows. Reverses the sign of the determinant.
 - **(Scaling)** Multiply all entries in a row by s. *Multiplies* the determinant by s.
- For triangular A the determinant is just product of the diagonal entries.

The determinant is characterized by:

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.
 - (Interchange) Interchange two rows. Reverses the sign of the determinant.
 - **(Scaling)** Multiply all entries in a row by s. *Multiplies* the determinant by s.
- For triangular A the determinant is just product of the diagonal entries.

This allows us to compute the determinant using just row operations!.

The determinant is characterized by:

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row.

 Does not change the determinant.
 - (Interchange) Interchange two rows.

 *Reverses the sign of the determinant.
 - **(Scaling)** Multiply all entries in a row by s. *Multiplies* the determinant by s.
- For triangular A the determinant is just product of the diagonal entries.

This allows us to compute the determinant using just row operations! Bring A into echelon form= triangular form, keeping track how the determinant changes under the row operations you are using.

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The correct calculation is:

$$\det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} =$$

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The correct calculation is:

$$\det\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}=\frac{1}{(ad-bc)^2}\det\begin{bmatrix}d&-b\\-c&a\end{bmatrix}=\frac{1}{ad-bc}$$

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The correct calculation is:

$$\det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{(ad - bc)^2} \det \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc}$$

Example

Suppose A is a 3×3 matrix with det(A) = 5. What is det(2A)?

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The correct calculation is:

$$\det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{(ad - bc)^2} \det \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc}$$

Example

Suppose A is a 3×3 matrix with det(A) = 5. What is det(2A)?

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The correct calculation is:

$$\det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{(ad - bc)^2} \det \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc}$$

Example

Suppose A is a 3×3 matrix with det(A) = 5. What is det(2A)?

Solution

A has three rows. Multiplying all 3 of them produces 2A. Hence, $det(2A) = 2^3 det(A) = 40$.

Eigenvectors and eigenvalues

Definition

Throughout, A will be an $n \times n$ matrix.

Throughout, A will be an $n \times n$ matrix.

Definition

An eigenvector of A is a nonzero x such that

 $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

The scalar λ is the corresponding **eigenvalue**.

Throughout, A will be an $n \times n$ matrix.

Definition

An **eigenvector** of A is a nonzero x such that

 $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

The scalar λ is the corresponding **eigenvalue**.

In words, eigenvectors are those \mathbf{x} , for which $A\mathbf{x}$ is parallel to \mathbf{x} .

Throughout, A will be an $n \times n$ matrix.

Definition

An **eigenvector** of A is a nonzero x such that

 $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

The scalar λ is the corresponding **eigenvalue**.

In words, eigenvectors are those \mathbf{x} , for which $A\mathbf{x}$ is parallel to \mathbf{x} .

Example

Verify that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$. Is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ an eigenvector?

Example

Verify that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$. Is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ an eigenvector?

Solution

$$A\mathbf{x} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2\mathbf{x}$$

Example

Verify that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$. Is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ an eigenvector?

Solution

$$A\mathbf{x} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2\mathbf{x}$$

Hence, \mathbf{x} is an eigenvector of A with eigenvalue -2.

Geometric interpretation

Geometric interpretation

Geometric interpretation

Example

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}0&1\\1&0\end{bmatrix}$.

Geometric interpretation

Example

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}0&1\\1&0\end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} =$$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}0&1\\1&0\end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix},$$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}0&1\\1&0\end{bmatrix}$.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
, i.e. multiplication with A is reflection through the line $y = x$.

00000000

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
, i.e. multiplication with A is reflection through the line $y = x$.

•
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. So $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

00000000

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
, i.e. multiplication with A is reflection through the line $y = x$.

•
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. So $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

0000000

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
, i.e. multiplication with A is reflection through the line $y = x$.

- $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.
- $A \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

00000000

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
, i.e. multiplication with A is reflection through the line $y = x$.

$$\bullet \ A \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

So
$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 is an eigenvector with eigenvalue $\lambda = -1$.

Geometric interpretation

Example

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$.

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e. multiplication with A is projection on the x -axis.

•
$$A\begin{bmatrix}1\\0\end{bmatrix}=$$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e. multiplication with A is projection on the x -axis.

$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e. multiplication with A is projection on the x -axis.

•
$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
. So $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e. multiplication with A is projection on the x -axis.

•
$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
. So $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$

•
$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} =$$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e. multiplication with A is projection on the x -axis.

•
$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
. So $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Use your geometric understanding to find the eigenvectors and the eigenvalues of $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$.

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e. multiplication with A is projection on the x -axis.

•
$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
. So $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

•
$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

So $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 0$.

Geometric interpretation

Summary

Geometric interpretation

Summary

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

* Eigenvectors **x CANNOT** be zero.

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

* Eigenvectors **x CANNOT** be zero.

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

* Eigenvectors **x CANNOT** be zero. Why?

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

* Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ .

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

* Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero.

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero.

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

Problems

* How to find possible eigenvalues for A?

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

Problems

* How to find possible eigenvalues for A?

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

Problems

* How to find possible eigenvalues for *A*? This uses determinants.

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

- * How to find possible eigenvalues for *A*? This uses determinants.
- * How to find eigenvectors?

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

- * How to find possible eigenvalues for *A*? This uses determinants.
- * How to find eigenvectors?

* Eigenvectors \mathbf{x} get stretched by eigenvalue λ under multiplication by A:

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- * Eigenvectors **x CANNOT** be zero. Why? $A\mathbf{0} = \lambda \mathbf{0}$ for any λ . Not useful!
- * Eigenvalues λ **CAN** be zero. See the projection example.

- * How to find possible eigenvalues for *A*? This uses determinants.
- * How to find eigenvectors? This uses null spaces.

Eigenspaces

Definition

The **eigenspace** of A corresponding to λ is the set of all ${\bf x}$ satisfying $A{\bf x}=\lambda{\bf x}$.

The **eigenspace** of A corresponding to λ is the set of all ${\bf x}$ satisfying $A{\bf x}=\lambda{\bf x}$.

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

Example

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

Example

We saw the projection matrix P of the projection onto a subspace V has two eigenvalues $\lambda=0,1$.

• The eigenspace of $\lambda = 1$ is

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

Example

We saw the projection matrix P of the projection onto a subspace V has two eigenvalues $\lambda=0,1$.

• The eigenspace of $\lambda = 1$ is

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

Example

- The eigenspace of $\lambda = 1$ is V.
- The eigenspace of $\lambda = 0$ is

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

Example

- The eigenspace of $\lambda = 1$ is V.
- The eigenspace of $\lambda = 0$ is

The **eigenspace** of A corresponding to λ is the set of all \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$. It consists of all the eigenvectors of A with eigenvalue λ , and also the zero vector.

Example

- The eigenspace of $\lambda = 1$ is V.
- The eigenspace of $\lambda = 0$ is V^{\perp} .

How to solve $A\mathbf{x} = \lambda \mathbf{x}$

Key observation:

$$\begin{aligned} A\mathbf{x} &= \lambda \mathbf{x} \\ \Longleftrightarrow A\mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \end{aligned}$$

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This x is a non trivial solution!

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This **x** is a non trivial solution! This can happen \iff the square matrix $A - \lambda I$ is not invertible

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This **x** is a non trivial solution! This can happen \iff the square matrix $A - \lambda I$ is not invertible \iff $\det(A - \lambda I) = 0$

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This **x** is a non trivial solution! This can happen \iff the square matrix $A - \lambda I$ is not invertible \iff $\det(A - \lambda I) = 0$

Recipe

To find the eigenvectors and eigenvalues of A:

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This **x** is a non trivial solution! This can happen \iff the square matrix $A - \lambda I$ is not invertible \iff $\det(A - \lambda I) = 0$

Recipe

To find the eigenvectors and eigenvalues of *A*:

• First, find the eigenvalues using λ is an eigenvalue \iff $\det(A - \lambda I) = 0$

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This **x** is a non trivial solution! This can happen \iff the square matrix $A - \lambda I$ is not invertible \iff $\det(A - \lambda I) = 0$

Recipe

To find the eigenvectors and eigenvalues of A:

- First, find the eigenvalues using λ is an eigenvalue \iff $\det(A \lambda I) = 0$
- Then, for each eigenvalue λ , find the corresponding eigenvectors by solving $(A \lambda I)\mathbf{x} = \mathbf{0}$.

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I)\mathbf{x} = \mathbf{0}$$

This **x** is a non trivial solution! This can happen \iff the square matrix $A - \lambda I$ is not invertible \iff $\det(A - \lambda I) = 0$

Recipe

To find the eigenvectors and eigenvalues of A:

- First, find the eigenvalues using λ is an eigenvalue \iff $\det(A \lambda I) = 0$
- Then, for each eigenvalue λ , find the corresponding eigenvectors by solving $(A \lambda I)\mathbf{x} = \mathbf{0}$. So you need to find the null space Nul $(A \lambda I)$.

The characteristic polynomial

The characteristic polynomial

The characteristic polynomial

Example

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution

•
$$A - \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution **Solution**

•
$$A - \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

•
$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1$$

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution

•
$$A - \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

•
$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1$$

$$= \lambda^2 - 6\lambda + 8 = 0$$

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution

•
$$A - \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

•
$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1$$

$$=\lambda^2-6\lambda+8=0 \implies \lambda_1=2, \lambda_2=4$$

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution

•
$$A - \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

•
$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1$$

$$=\lambda^2-6\lambda+8=0 \implies \lambda_1=2, \lambda_2=4$$

This is the **characteristic polynomial** of A.

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution

•
$$A - \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

•
$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1$$

$$=\lambda^2-6\lambda+8=0 \implies \lambda_1=2, \lambda_2=4$$

This is the **characteristic polynomial** of A. Its roots are the eigenvalues of A.

$$A - \lambda_1 I =$$

$$A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

$$A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

$$A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

So:
$$\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 is an eigenvector with eigenvalue $\lambda_1 = 2$.

• Next, find the eigenvectors with eigenvalue $\lambda_1 = 2$:

$$A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

So: $\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = 2$.

All other eigenvectors with eigenvalue $\lambda = 2$ are multiples of \mathbf{x}_1 .

• Next, find the eigenvectors with eigenvalue $\lambda_1 = 2$:

$$A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

So:
$$\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 is an eigenvector with eigenvalue $\lambda_1 = 2$.

All other eigenvectors with eigenvalue $\lambda = 2$ are multiples of \mathbf{x}_1 .

Span
$$\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
 is the **eigenspace** for the eigenvalue $\lambda=2$.

The characteristic polynomial

Solution (continued)

$$A - \lambda_2 I =$$

$$A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

$$A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

So:
$$\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is an eigenvector with eigenvalue $\lambda_2 = 4$.

• Find the eigenvectors with eigenvalue $\lambda_2 = 4$:

$$A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

So:
$$\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is an eigenvector with eigenvalue $\lambda_2 = 4$.

The eigenspace of $\lambda = 4$ is Span $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.

• Find the eigenvectors with eigenvalue $\lambda_2 = 4$:

$$A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \left(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \right)$$

Solutions to
$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 have basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

So:
$$\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is an eigenvector with eigenvalue $\lambda_2 = 4$.

The eigenspace of $\lambda = 4$ is Span $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.

Triangular matrices

Example

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$$

Example

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$$

Solution

• The characteristic polynomial is:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3 \\ 0 & 6 - \lambda & 10 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$$

Example

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$$

Solution

• The characteristic polynomial is:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3 \\ 0 & 6 - \lambda & 10 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$$

A has eigenvalues 2, 3, 6.

Example

Find the eigenvectors and eigenvalues of

$$A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$$

Solution

• The characteristic polynomial is:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3 \\ 0 & 6 - \lambda & 10 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$$

• A has eigenvalues 2, 3, 6.

The eigenvalues of a triangular matrix are its diagonal entries.

Solution (continued)

•
$$\lambda_1 = 2$$
:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

Solution (continued)

•
$$\lambda_1 = 2$$
:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$$

• $\lambda_1 = 2$:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$$

• $\lambda_2 = 3$:

$$(A - \lambda_2 I)\mathbf{x} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

• $\lambda_1 = 2$:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$$

• $\lambda_2 = 3$:

$$(A - \lambda_2 I)\mathbf{x} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• $\lambda_1 = 2$:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$$

• $\lambda_2 = 3$:

$$(A - \lambda_2 I)\mathbf{x} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• $\lambda_3 = 6$:

$$(A - \lambda_3 I)\mathbf{x} = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

•
$$\lambda_1 = 2$$
:

$$(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$$

• $\lambda_2 = 3$:

$$(A - \lambda_2 I)\mathbf{x} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• $\lambda_3 = 6$:

$$(A - \lambda_3 I)\mathbf{x} = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

Solution (continued)

• Each of those matrices had a one-dimensional null space.

Solution (continued)

 Each of those matrices had a one-dimensional null space. So our eigenvectors are not unique.

Solution (continued)

 Each of those matrices had a one-dimensional null space. So our eigenvectors are not unique. They are unique up to scaling.

Solution (continued)

 Each of those matrices had a one-dimensional null space. So our eigenvectors are not unique. They are unique up to scaling.

$$\bullet \ \ \text{In summary,} \ A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix} \ \text{has eigenvalues} \ 2,3,6$$

- Each of those matrices had a one-dimensional null space. So our eigenvectors are not unique. They are unique up to scaling.
- In summary, $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$ has eigenvalues 2, 3, 6 with corresponding eigenvectors

$$\begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2/3 \\ 1 \\ 0 \end{bmatrix}.$$

- Each of those matrices had a one-dimensional null space. So our eigenvectors are not unique. They are unique up to scaling.
- In summary, $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$ has eigenvalues 2, 3, 6 with corresponding eigenvectors

$$\begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2/3 \\ 1 \\ 0 \end{bmatrix}.$$

These three vectors are independent. By the next result, this is always so.

Independent eigenvectors

Independent eigenvectors

Independent eigenvectors

Theorem

If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Independent eigenvectors

Theorem

If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof.

Suppose, for contradiction, that $\mathbf{x}_1, \dots, \mathbf{x}_m$ are dependent.

Theorem

If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof.

Suppose, for contradiction, that $\mathbf{x}_1, \ldots, \mathbf{x}_m$ are dependent. By kicking out some vectors, we may assume that there is (up to multiples) only one linear relation: $c_1\mathbf{x}_1 + \ldots + c_m\mathbf{x}_m = \mathbf{0}$.

If x_1, \ldots, x_m are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof.

Suppose, for contradiction, that x_1, \ldots, x_m are dependent. By kicking out some vectors, we may assume that there is (up to multiples) only one linear relation: $c_1 \mathbf{x}_1 + \ldots + c_m \mathbf{x}_m = \mathbf{0}$. In other words, the matrix with columns $\mathbf{x}_1, \dots, \mathbf{x}_m$ has one-dimensional null space.

If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof.

Suppose, for contradiction, that $\mathbf{x}_1,\ldots,\mathbf{x}_m$ are dependent. By kicking out some vectors, we may assume that there is (up to multiples) only one linear relation: $c_1\mathbf{x}_1+\ldots+c_m\mathbf{x}_m=\mathbf{0}$. In other words, the matrix with columns $\mathbf{x}_1,\ldots,\mathbf{x}_m$ has one-dimensional null space. Now multiply this relation with A:

$$A(c_1\mathbf{x}_1+\ldots+c_m\mathbf{x}_m)=c_1\lambda_1\mathbf{x}_1+\ldots+c_m\lambda_m\mathbf{x}_m=\mathbf{0}$$

This is a second independent relation!

Theorem

If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof.

Suppose, for contradiction, that $\mathbf{x}_1,\ldots,\mathbf{x}_m$ are dependent. By kicking out some vectors, we may assume that there is (up to multiples) only one linear relation: $c_1\mathbf{x}_1+\ldots+c_m\mathbf{x}_m=\mathbf{0}$. In other words, the matrix with columns $\mathbf{x}_1,\ldots,\mathbf{x}_m$ has one-dimensional null space. Now multiply this relation with A:

$$A(c_1\mathbf{x}_1+\ldots+c_m\mathbf{x}_m)=c_1\lambda_1\mathbf{x}_1+\ldots+c_m\lambda_m\mathbf{x}_m=\mathbf{0}$$

This is a second independent relation! In other words, two independent vectors living in a one-dimensional vector space.

Theorem

If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Proof.

Suppose, for contradiction, that $\mathbf{x}_1,\ldots,\mathbf{x}_m$ are dependent. By kicking out some vectors, we may assume that there is (up to multiples) only one linear relation: $c_1\mathbf{x}_1+\ldots+c_m\mathbf{x}_m=\mathbf{0}$. In other words, the matrix with columns $\mathbf{x}_1,\ldots,\mathbf{x}_m$ has one-dimensional null space. Now multiply this relation with A:

$$A(c_1\mathbf{x}_1+\ldots+c_m\mathbf{x}_m)=c_1\lambda_1\mathbf{x}_1+\ldots+c_m\lambda_m\mathbf{x}_m=\mathbf{0}$$

This is a second independent relation! In other words, two independent vectors living in a one-dimensional vector space. Contradiction.

Relations between eigenvalues

Product of Eigenvalues

Product of Eigenvalues

Product of Eigenvalues

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

Product of Eigenvalues

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. How are these eigenvalues related?

Product of Eigenvalues

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. How are these eigenvalues related?

Theorem

The product of eigenvalues $\lambda_1 \lambda_2 \dots \lambda_n$ is equal to the determinant of A.

Product of Eigenvalues

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. How are these eigenvalues related?

Theorem

The product of eigenvalues $\lambda_1 \lambda_2 \dots \lambda_n$ is equal to the determinant of A.

Proof.

The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ has constant term $\det(A)$.

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. How are these eigenvalues related?

Theorem

The product of eigenvalues $\lambda_1 \lambda_2 \dots \lambda_n$ is equal to the determinant of A.

Proof.

The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ has constant term $\det(A)$. On the other hand $p(\lambda)$ factors, because the roots are the eigenvalues we get $p(\lambda) = (\pm 1)(\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$, which has constant term $\lambda_1 \lambda_2 \dots \lambda_n$.

If A is $n \times n$ get in principle n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. How are these eigenvalues related?

Theorem

The product of eigenvalues $\lambda_1 \lambda_2 \dots \lambda_n$ is equal to the determinant of A.

Proof.

The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ has constant term $\det(A)$. On the other hand $p(\lambda)$ factors, because the roots are the eigenvalues we get $p(\lambda) = (\pm 1)(\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$, which has constant term $\lambda_1 \lambda_2 \dots \lambda_n$.

Example

Let
$$A = \begin{bmatrix} \lambda_1 & b \\ 0 & \lambda_2 \end{bmatrix}$$
. Then the eigenvalues are λ_1, λ_2 and $\det(A) = \lambda_1 \lambda_2$.

Sum of Eigenvalues

Sum of Eigenvalues

Sum of Eigenvalues

What other relations are there between the eigenvalues?

What other relations are there between the eigenvalues?

Definition

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & a_{22} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
 be $n \times n$. Then the **TRACE** of A is the sum of the diagonal entries: $Tr(A) = a_{11} + a_{22} + \dots + a_{nn}$.

Definition

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & a_{22} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
 be $n \times n$. Then the **TRACE** of A is the

sum of the diagonal entries: $Tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$.

Theorem

Let A be $n \times n$. Then the trace of A is the **sum** of eigenvalues:

$$Tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$$

Sum of Eigenvalues

Example

Let
$$A = \begin{bmatrix} \lambda_1 & b \\ 0 & \lambda_2 \end{bmatrix}$$
. What are the eigenvalues and what is Tr(A)?

Sum of Eigenvalues

Example

Let
$$A = \begin{bmatrix} \lambda_1 & b \\ 0 & \lambda_2 \end{bmatrix}$$
. What are the eigenvalues and what is $Tr(A)$?

Solution

The eigenvalues are λ_1, λ_2 and $Tr(A) = \lambda_1 + \lambda_2$.

The Characteristic Polynomial for 2×2

The Characteristic Polynomial for 2×2

The Characteristic Polynomial for 2×2

 2×2 matrices are easy.

The Characteristic Polynomial for 2 \times 2

 2×2 matrices are easy.

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

The Characteristic Polynomial for 2×2

 2×2 matrices are easy.

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) =$$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$
, $det(A) =$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$
, $det(A) = 8$,

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$
, $det(A) = 8$, so $p(\lambda) =$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$
, $det(A) = 8$, so $p(\lambda) = \lambda^2 - 6\lambda + 8$.

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$
, $det(A) = 8$, so $p(\lambda) = \lambda^2 - 6\lambda + 8$. Also in terms of eigenvalues $Tr(A) =$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$\operatorname{Tr}(A)=6$$
, $\det(A)=8$, so $p(\lambda)=\lambda^2-6\lambda+8$. Also in terms of eigenvalues $\operatorname{Tr}(A)=\lambda_1+\lambda_2$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$\operatorname{Tr}(A)=6$$
, $\det(A)=8$, so $p(\lambda)=\lambda^2-6\lambda+8$. Also in terms of eigenvalues $\operatorname{Tr}(A)=\lambda_1+\lambda_2$ and $\det(A)=$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$Tr(A) = 6$$
, $det(A) = 8$, so $p(\lambda) = \lambda^2 - 6\lambda + 8$. Also in terms of eigenvalues $Tr(A) = \lambda_1 + \lambda_2$ and $det(A) = \lambda_1 \lambda_2$.

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then the characteristic polynomial is

$$p(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$

Example

Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. What are the eigenvalues and what is the characteristic polynomial?

$$\operatorname{Tr}(A)=6$$
, $\det(A)=8$, so $p(\lambda)=\lambda^2-6\lambda+8$. Also in terms of eigenvalues $\operatorname{Tr}(A)=\lambda_1+\lambda_2$ and $\det(A)=\lambda_1\lambda_2$. So $\lambda_1=2,\lambda_2=4$

Practice problems

Example

Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$.

Example

Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$.

Example

What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ -1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$
.

No calculations!