1. Silnia

Zadanie

Napisz program, który dla danej liczby całkowitej, n, wylicza i drukuje wartość jej silni, n!

 $\mathbf{Uwaga:}$ Należy założyć, że wartość n! nie mieści się w żadnym z dostępnych w języku typów całkowitych.

Wejście

Pierwszy i jedyny wiersz standardowego wejścia zawiera liczbę całkowitą $1 \le n \le 100$.

Wyjście

Standardowe wyjście powinno zawierać jedną liczbę całkowitą: wartość n!.

Przykład

Dla danych wejściowych:

5

poprawną odpowiedzią jest:

120

2. Merge

Zadanie

Dana jest tablica int $\mathtt{t1}[N][N]$. W każdym wierszu tablicy $\mathtt{t1}$ znajdują się uporządkowane rosnąco (w obrębie wiersza) liczby naturalne. Proszę napisać program, który łączy wiersze tablicy $\mathtt{t1}$ i buduje liniową tablicę $\mathtt{t2}[N*N]$ tak, aby liczby w tablicy $\mathtt{t2}$ były unikalne (nie powtarzały się) i były uporządkowane rosnąco.

Uwaga: Ponieważ elementy w tablicy t1 mogą sie powtarzać, faktyczna długość tablicy t2 może być mniejsza niż N*N.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna liczba całkowite $2 \le N \le 100$: wymiar tablicy t1. Każdy z kolejnych N wierszy zawiera po N liczb całkowitych: wiersze tablicy t1.

Wyjście

Standardowe wyjście powinno zawierać jedną linię składającą się z maksymalnie N*N liczb całkowitych: wartości tablicy ${\tt t2}.$

Przykład

Dla danych wejściowych:

3

5 10 19

8 15 22

3 10 13

poprawną odpowiedzią jest:

3 5 8 10 13 15 19 22

3. Sąsiedzi

Zadanie

Dana jest macierz kwadratowa F[n][n] wypełniona liczbami całkowitymi ze zbioru $\{0, 1\}$. Odległość między dwoma elementami tej macierzy definiujemy jako:

$$d(F[i][j], F[i'][j']) = \max(|i - i'|, |j - j'|).$$

Proszę napisać program, który:

- 1. Wczyta ze standardowego wejścia liczby n, r, oraz macierz F,
- 2. Obliczy macierz W taką, że W[i][j] jest sumą wszystkich elementów F[i'][j'] macierzy F leżących w odległości co najwyżej r (r < n) od F[i][j], czyli takich, że $d(F[i][j], F[i'][j']) \leq r$.
- 3. Wypisze macierz W na standardowe wyjście.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie dodatnie liczby całkowite: $2 \le n \le 100$ i r < n. Każdy z kolejnych n wierszy zawiera po n liczb całkowitych ze zbioru $\{0, 1\}$ stanowiących kolejny wiersz macierzy F.

Wyjście

Standardowe wyjście powinno zawierać dokładnie n wierszy, stanowiących wiersze macierzy W. Każdy z wierszy składa się z n liczb całkowitych oddzielonych znakiem spacji.

Przykład

Dla danych wejściowych:

0 1 0 0 0

poprawną odpowiedzią jest: