МФТИ ФРКТ

Отчёт о выполнении лабораторной работы 4.5.2

Интерференция лазерного излучения.

Добровольская Ксения Б01-101 Гаврилин Илья Б01-101

1 Аннотация

В данной лабораторной работе мы исследовали видность интерференционной картины излучения гелий-неонового лазера и определили длину когерентности излучения. Также мы исследовали поляризацию используемного в установке лазера, сравнивая теоретические зависимости с экспериментальными, получили линейную поляризацию.

В работе использовались: гелий-неоновый лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф, поляроид, линейка.

2 Измерение видности.

Рис. 1: Осциллограмма сигналов с фотодиода.

В работе требуется измерять видность следующим способом.

При перемещении поперек интерференционной картины разность фаз изменяется, и мы переходим от одного максимума к другому. При этом интенсивность в максимуме Imax = $(Am+Bm)^2$, а в минумуме $Imin=(Am-Bm)^2$. Поэтому видность

$$\nu_1 = \frac{2\sqrt{\delta}}{1+\delta}$$

где введен параметр $\delta = \frac{(B_m)^2}{A_m)^2}$. На рис.2. можно найти следующие величины

- 0 фоновая засветка (во всех измерениях принимает значение 1)
- 1 перекрыт пучок 2
- 2 перекрыт пучок 1
- 3,4 открыты оба пучка

При этом параметр $\delta = \frac{h_1}{h_2}$.

Видность интерференционной картины рассчитывается по формуле

$$\nu = \frac{h_4 - h_3}{h_4 + h_3}$$

Затем можно определить видность при данной разности хода l для угла между плоскостями поляризации пучков $\beta = 0(\nu_3 = 1)$.

$$\nu_2(l) = \frac{\nu}{\nu_1}$$

или при $l=0, (\nu_2=1)$ для известного угла β :

$$\nu_3(\beta) = \frac{\nu}{\nu_1}$$

3 Экспериментальная установка.

Для получения интерференционной картины используется интерферометр Майкельсона, смонтированный на вертикально стоящей массивной металлической плите. Схема установки приведена на pac.1.

Рис. 2: Схема экспериментальной установки

Пучок гелий-неонового лазерного излучения со средней длиной волны 633 нм отражается от зеркала З и проходит призму полного внутреннего отражения РФ(ромб Френеля), которая превращает линейную поляризацию излучения в круговую. Далее излучение кубиком ДГ делится на два луча, один из которых проходит черер поляроид и отражаясь от зеркала З3 попадает на фотодиод, а другой проходит через линзу и поляроид П2 и отразившись от зеркаа З2 и затем зеркала З3 также попадает на фотодиод ФД.

Таким образом, на фотодиод приходят два пучка, прошедшие разные плечи интерферометра. Они интерферируют и создают интерференционные полосы. Сферическое зеркало 33 с небольшим фокусным расстоянием увеличивает картину интерференционных полос и позволяет наблюдать ее на экране Э.

4 Измерение видности в зависимости от угла β .

В работе мы измеряем зависимость видности интерференционной картины от угла между плоскостями поляризации интерферирующих волн при нулевой разности хода. По результатам из-

мерений оцениваем спектральные характеристики лазерного излучения: .

- 1. Поворачиваем поляроид и с помощью шкалы измеряем угол поворота $\beta(\nu_2=1)$.
- 2. Измеряем величины h_1, h_2, h_3, h_4 на экране осциллографа:

β	180	170	160	150	140	130	120	110	100	90
h_1	4.0	4.5	4.2	4.5	4.4	4.5	4.5	4.5	4.5	4.5
h_2	5.5	5.0	5.8	3.9	2.5	2.0	2.0	1.5	1.2	1.1
h_3	2.0	2.0	2.1	2.0	2.5	3.0	3.1	3.9	4.0	5.0
h_4	16.0	15.0	16.9	13.0	9.5	8.1	8.0	5.5	5.7	5.0
ν	0.78	0.76	0.74	0.73	0.58	0.46	0.44	0.17	0.16	0
δ	0.73	0.9	0.72	1.15	1.76	2.3	2.3	3.0	3.8	4.1
ν_3	0.79	0.76	0.75	0.73	0.60	0.50	0.48	0.20	0.18	0

Строим график $\nu_3(\beta)$.

Рис. 3: График зависимости видности интерференционной картины от угла между плоскостями поляризации интерферирующих волн при нулевой разности хода.

3. Сравнивая полученные значения с теоретическими зависимостями $\nu_3 = \cos\beta, \nu_3 = (\cos\beta)^2$ можем видеть, что первая ближе к измеренным данным, значит на основании этого наблюдения можно сказать о линейной поляризации излучения используемного в установке лазера.

Рис. 4: Сравнение экспериментальной зависимости с теоретическими.

5 Измерение видности в зависимости от положения каретки x.

Теперь установим α на максимальную видность и будем перемещать блок $_2$, тем самым изменяя дальность хода x. Аналогично предыдущему пункту измерим величины h_1,h_2,h_3 h_4 на экране осциллографа. Результаты занесем в таблицу и построим график согласно формуле для V_2 . Значения для δ,V,V_1 получим из формул выше.

x, cm	<i>h</i> ₁ , дел.	h_2 , дел.	h_3 , дел.	h_4 , дел.	V	δ	V_1	V_2
16	4	11	5	23	0.643	0.364	0.884	0.727
18	7.5	2.8	3.8	15	0.596	2.679	0.890	0.670
20	1.1	6.8	5	9	0.286	0.162	0.692	0.413
22	2.2	6.2	4	11.5	0.484	0.355	0.879	0.550
24	6	4.4	4	12	0.500	1.364	0.988	0.506
26	5	9	8	13	0.238	0.556	0.958	0.248
28	2	7	5.5	10	0.290	0.286	0.831	0.349
30	10	5	10	16	0.231	2.000	0.943	0.245
32	8	6	11	15	0.154	1.333	0.990	0.155
42	6.3	6.8	11	13	0.083	0.926	0.999	0.083
44	1.8	5.2	5.5	6.5	0.083	0.346	0.874	0.095
54	5	1	5.8	6.2	0.033	5.000	0.745	0.045
56	4.8	1	5.5	6	0.043	4.800	0.755	0.058
58	5.5	1	6.2	6.4	0.016	5.500	0.722	0.022
60	4.5	2.4	6.5	7.4	0.065	1.875	0.953	0.068
62	2.8	2.3	4.2	5.6	0.143	1.217	0.995	0.144
64	1	2	2.8	4	0.176	0.500	0.943	0.187
66	4	2	4.3	8	0.301	2.000	0.943	0.319
68	0.5	2	1.8	4.8	0.455	0.250	0.800	0.568
70	2.5	2	3	7.6	0.434	1.250	0.994	0.437
72	2.8	2	2.4	7.2	0.500	1.400	0.986	0.507
74	2.2	1.3	1.8	5.5	0.507	1.692	0.966	0.524
76	2.2	2.5	2	7.2	0.565	0.880	0.998	0.566
78	1.8	2.8	2.4	6.6	0.467	0.643	0.976	0.478
80	1.2	2.8	2.3	5.3	0.395	0.429	0.917	0.431

Таблица 1: Видность в зависимости от положения каретки x

Рис. 5: Видность в зависимости от положения каретки \boldsymbol{x}

Видно, что у нас наблюдается 2 максимума по краям области измерения и некоторые колебания в промежуточной области. А именно, максимумы в области $x_1 \approx (15 \pm 2)\,$ и в области $x_2 \approx (75 \pm 2)\,$, откуда получаем следующий результат:

$$L = \frac{1}{2}(x_2 - x_1) = (30, 0 \pm 1, 4)$$

Отсюда нетрудно получить и значение $\Delta \nu$:

$$\Delta \nu = \frac{c}{2L} \approx (4, 4 \pm 0, 2) \cdot 10^8$$

Оценим $l_{1/2} \approx 18 - 10 = 8 \pm 2$

$$2\Delta F = 2 \cdot \frac{0,26c}{l_{1/2}} \approx (19,2 \pm 4,6) \cdot 10^8$$

Тогда для числа одновременно генерируемых лазером продольных волн можно провести оценку:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} \approx 5 \pm 1$$

6 Обсуждение результатов и выводы

В данной лабораторной работе мы:

- 1. Исследовали зависимость видности интерференционной картины излучения гелий-неонового лазера от угла между плоскостями поляризации интерферирующих волн при нулевой разности хода. Сравнивая теоретические зависимости с экспериментальными, получили линейную поляризацию.
- 2. Исследовали зависимость видности интерференционной картины излучения гелий-неонового лазера от разности хода интерферирующих пучков для нулевого угла между плоскостями поляризации.
- 3. По результатам измерений оценили спектральные характеристики лазерного излучения: ширину спектра генерации и число генерируемых мод.