Fachrichtung Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übungen 14.11. bis 18.11.

Analysis I

6. Übungsblatt: Folgen reeller Zahlen

Aufgabe 6.1

Zeigen Sie mit der Definition des Grenzwertes (ohne Verwendung von Grenzwertsätzen), dass $\lim_{n\to\infty}\frac{n^3+2n}{3n^3-6}=\frac{1}{3}$ ist.

Aufgabe 6.2

Untersuchen Sie, ob die Folgen

(a)
$$\left(\frac{4n^2+1}{9n^2-n+3}\right)_{n\in\mathbb{N}}$$
 (b) $\left(\frac{1-(1-1/n)^5}{1-(1-1/n)^2}\right)_{n\in\mathbb{N}_{\geq 1}}$ (c) $\left(\frac{2+1/n}{(1+1/n)/n}\right)_{n\in\mathbb{N}_{\geq 1}}$ (d) $\left(\prod_{k=2}^n (1-\frac{1}{k^2})\right)_{n\in\mathbb{N}_{\geq 2}}$

konvergent sind, und bestimmen Sie gegebenenfalls den Grenzwert.

Aufgabe 6.3

Für eine Folge (a_n) in \mathbb{R} wird die Folge der arithmetischen Mittel (b_n) definiert durch

$$b_n := \frac{1}{n} \sum_{k=1}^n a_k \quad (n \in \mathbb{N}_{\geq 1}).$$

- (a) Zeigen Sie: Aus $a_n \to a$ folgt $b_n \to a$.
- (b) Geben Sie eine divergente Folge (a_n) an, für welche die Folge (b_n) konvergiert.

Aufgabe 6.4

(a) Beweisen Sie den "Sandwich-Satz": Seien (a_n) , (b_n) , (x_n) Folgen in \mathbb{R} so, dass für alle $n \in \mathbb{N}$ gilt

$$a_n \le x_n \le b_n$$
,

und sei $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n =: x$. Dann ist auch $\lim_{n\to\infty} x_n = x$.

(b) Ermitteln Sie $\lim_{n\to\infty} \sqrt[n]{n}$ mit Hilfe von (a).

Aufgabe 6.5 (H)

Untersuchen Sie, ob die Folgen

(a)
$$[1] \left(\frac{2n+1}{3n} + \frac{3n}{2n-1}\right)_{n \in \mathbb{N}_{>1}}$$

(b)
$$[3]$$
 $\binom{2n}{n}_{n \in \mathbb{N}_{>1}}$

konvergent sind, und berechnen Sie gegebenenfalls den Grenzwert.

Aufgabe 6.6 (H)

Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{R} . Beweisen oder widerlegen Sie (mittels Gegenbeispiel):

(a) [2]
$$\left(((a_n)_{n \in \mathbb{N}} \text{ ist konvergent }) \land (\forall n \in \mathbb{N}: b_n \neq 0) \land \left(\left(\frac{a_n}{b_n} \right)_{n \in \mathbb{N}} \text{ ist Nullfolge } \right) \right)$$

 $\Longrightarrow \left((b_n)_{n \in \mathbb{N}} \text{ ist keine Nullfolge} \right).$

(b) [2]
$$\left(\left((b_n)_{n\in\mathbb{N}} \text{ ist Nullfolge }\right) \land \left(\forall n \in \mathbb{N} \colon b_n \neq 0\right)\right)$$

 $\Longrightarrow \left(\left(\frac{1}{b_n}\right)_{n\in\mathbb{N}} \text{ ist nicht konvergent }\right).$

(c) [2]
$$\left(((a_n)_{n \in \mathbb{N}} \text{ ist konvergent }) \wedge ((a_n \cdot b_n)_{n \in \mathbb{N}} \text{ ist konvergent }) \right)$$

 $\Longrightarrow \left((b_n)_{n \in \mathbb{N}} \text{ ist konvergent } \right).$

Griechische Buchstaben:

A	α	Alpha	I	ι	Iota	Р	ρ	Rho
В	β	Beta	K	κ	Kappa	Σ	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	Т	τ	Tau
Δ	δ	Delta	M	μ	My	Υ	v	Ypsilon
E	ϵ	Epsilon	N	ν	Ny	Φ	φ	Phi
Z	ζ	Zeta	Ξ	ξ	Xi	X	χ	Chi
Н	η	Eta	О	О	Omikron	Ψ	ψ	Psi
Θ	θ	Theta	П	π	Pi	Ω	ω	Omega