CS 722 Fall 2016 Homework Assignment #2 Due: in class on 10/18/16, Tuesday

Only hard copies will be accepted. Late submissions and email submissions will not be accepted. If you have not been able to solve a problem completely, you may show the work you have done for partial points. Observe course policies in solving assignment problems.

- 1. Consider the NTM in <u>Question 3 here</u>. Derive the exact formula of the worst-case time complexity function, $W_M(n)$, of this NTM. Justify your answer.
- 2. This question concerns Theorem VtoN applied to the NTM in <u>Question 3 here</u>. Consider the following verifier V for the language $L = \{ wab^i : i \ge 0 \} \cup \{ wac^j : j \ge 0 \}$ where $\Sigma = \{ a, b, c \}, w \in \Sigma^*$. A proposed certificate encodes a pair of integers $< n_1, n_2 >$.
 - step 1: Read n_1 . Move the head back to the leftmost cell on tape. Scan the initial n_1 symbols on tape (skip w).
 - step 2: Check if the current tape symbol is "a"; if it is not, reject.
 - step 3: Read n₂.
 - If $n_2 = 0$, check if "a" is followed by b^i , $i \ge 0$; if so, accept, o.w. reject.
 - If $n_2 = 1$, check if "a" is followed by c^j , $j \ge 0$; if so, accept, o.w. reject.
 - (a) Prove that V verifies L.
 - (b) Describe the operation of an NTM simulating V.
- 3. This question concerns two examples of the access-path encoding of computation trees' branches used in Theorem NtoV. Consider the NTM in <u>Question 2 here</u>, and the following computation trees of this NTM on the input strings "abcab" and "ccc":

In this NTM, $\delta(q_0, c) = \{(q_0, c, R), (q_1, c, R), (q_3, c, L)\}$. Sequentially number these three nondeterministic transitions by 1, 2, 3.

- a. Give the access-path strings that encode the branches of the above computation trees.
- b. Which of these strings are the certificates for "abcab", if any?
- c. Which of these strings are the certificates for "ccc", if any?
- 4. Show that the following problems are in NP. You don't have to show they are NP-complete.
 - a. LPATH in Problem 7.21 on page 324 (Problem 7.20 in the 2nd edition).
 - b. DOUBLE-SAT in Problem 7.22 on page 324 (Problem 7.21 in the 2nd edition).
 - c. ≠SAT in Problem 7.26 on page 324 (Problem 7.24 in the 2nd edition).
 - d. MAX-CUT in Problem 7.27 on page 325 (Problem 7.25 in the 2nd edition).
 - e. SET-SPLITTING in Problem 7.30 on page 326 (Problem 7.28 in the 2nd edition).

5. Prove each of the following:

a. If
$$A, B \in NP$$
, then $A \cup B \in NP$.
b. If $A, B \in NP$, then $A \cdot B \in NP$, where $A \cdot B = \{ xy \mid x \in A \text{ and } y \in B \}$.

6. Consider the polynomial-time reduction used to prove 3SAT \leq_p CLIQUE. Let:

$$\varphi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_2)$$

Here, $\neg x_i$ is the negation of x_i .

- a. Give (G_{φ},k) constructed from φ by the reduction.
- b. Give one satisfying assignment A for φ , and a corresponding k-clique in G_{φ} produced by the proof.
- c. Give one k-clique in G_{φ} that is distinct from the one you gave in (b), and give a corresponding assignment for φ produced by the proof.