ME 360 System Oynamic SP07 Fine!

$$3 t \approx 6 \text{ sec}$$
 $7 = 2 \text{ sec}$

Note that $y(t) \approx 1 - e^{\frac{t}{2}}$
 $y_{1} = \frac{t}{2} y_{2} + y_{3}$
 $y_{2} = \frac{t}{2} e^{-t/2}$
 $y_{3} = \frac{t}{2} e^{-t/2}$
 $y_{4} = \frac{t}{2} e^{-t/2}$
 $y_{5} = \frac{t}{2} e^{-t/2}$

y(t)= 5++ 35 + 27 et/5

 $C_{\lambda} = 1 - C_{1} = \frac{27}{2}$

b)
$$y(t) = \frac{5}{2} + Ce^{-t/s}$$
 (reasing the time constant)

 $y(0) = 1 = \frac{5}{2} + C$
 $C = \frac{3}{2}$
 $y(t) = \frac{5}{2} - \frac{3}{2}e^{-t/s}$
 $y(t) = \frac{5}{2}e^{-t/s}$
 $y(t) = \frac$

3)
$$sgs = tf(E1 17, E10 0.1 14007)$$
 $bode(sgs)$

a) 0.0617 (abs((11+1+1)/(10+(11))-2+0.1×111+1400))

b) $-24.2 dR$, 84.5° (1.4748 rod)

c) $0.617 \sin(11t + \frac{\pi}{4} + 1.4748)$

d) See top (see print at end

 $therefore PAh = general end = general en$

$$eAh = \frac{-Pg}{R}h + gmi + \frac{Ps}{R}$$

$$Tn state space$$

$$h = \begin{bmatrix} -g \\ AR \end{bmatrix} A + \begin{bmatrix} -g \\ AR \end{bmatrix} A + \begin{bmatrix} -g \\ AR \end{bmatrix} A$$

$$Ps$$

$$V_a = R_a i + L_a \frac{di}{dt} + K_b \dot{o}$$

$$iV_{-} = (T_a) \dot{o} + C_b \dot{o} + C$$

$$iK_T = (I_{eff}) \ddot{o} + CR^2 \dot{o} + KR^2 O$$

$$I_{eff} = I_{m+} I_{p+m} R^2$$

$$I_n state space$$

