

Essential Pre-Uni Chemistry M1.1 <u>Home</u> Chemistry Physical Kinetics

Essential Pre-Uni Chemistry M1.1

 $\mathbf{A} \longrightarrow \mathbf{B}$ Equation 1:

Equation 2: $A+B \longrightarrow C$

 $A+B {\:\longrightarrow\:} C+D$ Equation 3:

Equation 4: $2\,A+B \longrightarrow C+D$

Rate law 1: rate = k

Rate law 2: $\mathsf{rate} = k[A]$

 $\mathsf{rate} = k[\mathsf{A}]^2$ Rate law 3:

Rate law 4: $\mathsf{rate} = k[A][B]$

Rate law 6:

 $\mathsf{rate} = k[\mathbf{A}][\mathbf{B}]^2$ Rate law 5: $\mathsf{rate} = k[A][B][\mathsf{cat}]$

Equation 1: order of reaction Part A

A reaction described by equation 1 gets three times faster when the concentration of A is tripled. Give the order of reaction with respect to A.

Give the overall order of the reaction.

Part B Equation 2: rate law

If equation 2 proceeds as a single step, which rate law will it follow?

Part	C Se	econd order rate laws
	Which	rate law(s) is/are second order overall?
		3 and 5
		3 and 4
		1 and 2
		4 and 6
Part	D Uı	nits of k
		th rate law(s) is/are the units of the rate constant, k , $\mathrm{mol}\mathrm{dm}^{-3}\mathrm{s}^{-1}$? If your answer includes more than te law, please list them as one number in ascending order: to answer rates laws 2, 4 and 6, type 246.
Part	E La	w 6: power of ${ m dm}$
	In rate	law 6, the rate constant, k , has units which include dm raised to which power?
Part	F La	w 5: reaction order of B
	What i	s the order of reaction with respect to B in rate law 5?
Part	G C	onstant half-life
rure	u C.	instant had the
	include	rate law(s) describe a reaction in which reactant A always has constant half-life? If your answer is more than one rate law, please list them as one number in ascending order: to answer rates laws 2, 4 type 246.

Part H Law 2: rate constant

In rate law 2, if $[A]=0.020\,\mathrm{mol\,dm^{-3}}$, and the rate of $\mathrm{reaction}=1.2\times10^{-3}\,\mathrm{mol\,dm^{-3}\,s^{-1}}$, find the value of k.

Part I Law 2: rate of reaction

In rate law 2, if k has a value of 150, find the rate of reaction when $[A] = 0.80 \, \mathrm{mol} \, \mathrm{dm}^{-3}$.

Part J Law 3: [A]

In rate law 3, find [A] at which the reaction rate $= 0.025 \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{s}^{-1}$ if $k = 0.0040 \, \mathrm{dm}^3 \, \mathrm{mol}^{-1} \, \mathrm{s}^{-1}$.

Home Chemistry Physical Kinetics Essential Pre-Uni Chemistry M1.10

Essential Pre-Uni Chemistry M1.10

Equation 2: $A + B \longrightarrow C$

Rate law 4: rate = k[A][B]

A reaction described by equation 2 and obeying rate law 4 gave the following initial rates for different initial concentrations of A without varying the initial concentration of B:

Estimate the initial concentration of B if the rate constant is $140\,\mathrm{dm^3\ mol^{-1}\ s^{-1}}$. Give your answer to 2 significant figures.

Home (

Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M1.5

Essential Pre-Uni Chemistry M1.5

Use the data in the table below to find the order of reaction with respect to A, B and the catalyst, X, the overall order of reaction, and the value and units of the rate constant, k.

$[\mathrm{A}]/\mathrm{moldm}^{-3}$	$[\mathrm{B}]/\mathrm{moldm^{-3}}$	$[\mathrm{X}]/\mathrm{mol}\mathrm{dm}^{-3}$	$\rm Rate/moldm^{-3}\;s^{-1}$
0.50	0.080	0.0020	$3.2 imes 10^{-3}$
0.50	0.080	0.0010	$8.0 imes 10^{-4}$
0.75	0.080	0.0010	$1.2 imes 10^{-3}$
0.75	0.040	0.0010	$6.0 imes10^{-4}$

Part A Order with respect to A

Order with respect to A:

Part B Order with respect to B

Order with respect to B:

Part C Order with respect to X

Order with respect to X:

Part D Overall order

Overall order:

Part E	k
--------	---

Value of k:

Home Chemistry Physical Kinetics Essential Pre-Uni Chemistry M1.7

Essential Pre-Uni Chemistry M1.7

Equation 1: $A \longrightarrow B$

Rate law 5: $rate = k[A][B]^2$ Rate law 6: rate = k[A][B][cat]

Part A Rate vs [A]

A reaction described by equation 1 shows the behaviour of the graph in Figure 1.

Which rate law does it follow?

Part B [A] vs time

A reaction described by equation 1 shows the behaviour of the graph in Figure 2.

Which rate law does it follow?

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

Home Chemistry Physical Kinetics Essential Pre-Uni Chemistry M1.9

Essential Pre-Uni Chemistry M1.9

Equation 1: $A \longrightarrow B$

Rate law 3: $rate = k[A]^2$

A reaction described by equation 1 and following rate law 3 is investigated and the following graph is produced from the data obtained:

Estimate the rate constant, k. Give your answer to 2 significant figures.

<u>Home</u>

Chemistry

Physical

Kinetics

Rate Equations and Mechanisms

Rate Equations and Mechanisms

The two steps in the gas phase reaction $X+2\,Y \longrightarrow XY_2$ are given below:

$$X + Y \xrightarrow{slow} XY$$

$$XY + Y \xrightarrow{fast} XY_2$$

What is the rate equation for the overall reaction?

- $\bigcirc \quad \text{rate = } k[X]^0[Y]^2$
- $\bigcirc \quad \text{rate = } k[X]^1[Y]^1$

Adapted with permission from UCLES, A Level, November 1989, Paper 3, Question 9

Home Chemistry Physical Kinetics Acetone

Acetone

In an acid medium, ketones react with iodine by the following equation:

$$RCOCH_3 + I_2 \longrightarrow RCOCH_2I + H^+ + I^-$$

Experiments were run to determine the partial orders of this reaction with respect to $RCOCH_3$, I_2 and H^+ , using the isolation method. Two reagents were added in great excess to the third, so their concentrations stay approximately constant over the course of the reaction. Compare the different experiments to answer the questions below.

Experiment 1: Using $0.10\,\mathrm{mol\,dm^{-3}}$ ketone, $0.10\,\mathrm{mol\,dm^{-3}}$ acid and $1.0\times10^{-3}\,\mathrm{mol\,dm^{-3}}$ iodine:

Time/ s	$[\mathrm{I_2}]/\mathrm{moldm^{-3}}$
0	$1.0 imes 10^{-3}$
5	$7.5 imes10^{-4}$
10	$5.0 imes 10^{-4}$
15	$2.5 imes10^{-4}$

Experiment 2: Using $0.10\,\mathrm{mol\,dm^{-3}}$ ketone, $1.0\times10^{-3}\,\mathrm{mol\,dm^{-3}}$ acid and $0.10\,\mathrm{mol\,dm^{-3}}$ iodine:

Time/ s	$[\mathrm{H^+}]/\mathrm{moldm^{-3}}$
0	$1.0 imes10^{-3}$
100	$9.5 imes10^{-4}$
200	$9.0 imes 10^{-4}$
400	$8.2 imes 10^{-4}$
1000	$6.1 imes10^{-4}$

Experiment 3: Using $1.0 \times 10^{-3}~\mathrm{mol\,dm^{-3}}$ ketone, $0.10~\mathrm{mol\,dm^{-3}}$ acid and $0.10~\mathrm{mol\,dm^{-3}}$ iodine:

Time/ s	[ketone]/ $ m moldm^{-3}$
0	$1.0 imes 10^{-3}$
100	$9.5 imes10^{-4}$
300	$8.6 imes10^{-4}$

500	$7.8 imes10^{-4}$
700	$7.0 imes10^{-4}$

Part A Order of reaction

What are the reaction orders with respect to the ketone, iodine and acid? Give your answer in the form abc with no spaces.

Part B	Apparent rate constant
W	hat is the value of the apparent rate constant in experiment 2?
Part C	Actual rate constant
W	hat is the value of the actual rate constant?
dapted wit	h permission from UCLES, A Level Chemistry, June 1983, Special Paper, Question 1.
	All materials on this site are licensed under the <u>Creative Commons license</u> , unless stated otherwise.

<u>Home</u>

Chemistry

Physical

Kinetics

Mushroom Kinetics

Mushroom Kinetics

Vitamin D is essential for healthy bone structure. Mushrooms are a rich source of ergosterol, a precursor of vitamin D_2 . Cultivated mushrooms grown in the dark have little vitamin D_2 , but when exposed to UV light, ergosterol is converted into vitamin D_2 .

In a kinetics experiment, different mushroom varieties were irradiated with UV light for varying periods of time and then analysed for their concentrations of ergosterol and vitamin D_2 .

The kinetics of production of vitamin D_2 from ergosterol were expected to be of the form:

rate of production of vitamin $D_2 = k[\text{ergosterol}]^a$

where k is the rate constant for the particular mushroom, [ergosterol] is the concentration of the reactant ergosterol, and a is the order of reaction with respect to the concentration of ergosterol.

The following data shows the quantity of D_2 produced over $40 \, \mathrm{minutes}$ of irradiation, measured in micrograms per gram of dry mushroom.

Time of the inc	Overton much recome D. J	Detter much ream D. L
Time / min	Oyster mushroom D_2 / μg per g of dry mushroom	Button mushroom D_2 / μ g per g of dry mushroom
0	7	3
5	12	4
10	17	5
15	21	7
20	25	8
25	29	9
30	33	11
35	37	12
40	42	14

Part A Determining the order

By examining this data, what is the value of a, the observed order of reaction with respect to [ergosterol]? If you are struggling, graph the data.

Part B Determining the rate constant

Using the data, determine the rate constant for the production of vitamin D_2 from oyster mushrooms in units of $(\mu g \operatorname{per} g \operatorname{dry} \operatorname{mushroom} s^{-1})$.

Part C Amount of D_2

Estimate the amount of vitamin D_2 in $10 \,\mathrm{g}$ of dried button mushrooms that have been irradiated for $1 \,\mathrm{hour}$.

Part D Effect of temperature

The rate constant for the production of vitamin D_2 is found to vary with temperature according to the Arrhenius equation:

$$k=A imes e^{rac{-E_a}{RT}}$$

where k is the rate constant at temperature T;

A is an unknown constant, called the pre-exponential factor;

 E_a is the activation energy for the reaction;

T is the temperature in K;

R is the gas constant $(8.314\,\mathrm{J\,mol^{-1}\,K^{-1}})$.

Given that the rate constant for the production of vitamin D_2 from shiitake mushrooms at $35\,^{\circ}\mathrm{C}$ is twice that at $25\,^{\circ}\mathrm{C}$, calculate the activation energy for the reaction.

Adapted from RSC, Chemistry Olympiad, 2008, Question 2

Home Chemistry Physical Energetics Reaction Profiling

Reaction Profiling

An energy profile and an overall reaction equation for a reaction is shown below. This is called an E1 reaction, and is similar to the S_N 1 substitution, but it is an elimination reaction.

$$I \xrightarrow{CH_3} CH_3 + H_2O \longrightarrow H_3C \xrightarrow{CH_2} + \Gamma + H_3O^*$$

$$A \qquad B$$

Figure 2: E1 reaction profile

B

Part D Enthalpy change

What is the overall enthalpy change of the reaction?

- $\bigcap D-C$
- \bigcirc -C
- \bigcirc E+D
- \bigcirc A
- $\bigcirc E-C+D$

Part E Reaction yield

Now consider the reaction as a reversible reaction. What would happen to the yield of the reaction if the temperature at which it occurs was raised?

- Something Else
- Increase
- Decrease
- Stay the same

Why do	es the yield change in the way it does?
	Le Chatelier's Principle
	Hess' Law
	Avogadro's Law
	Markovnikov's Rule
	Snell's Law

Created for isaacphysics.org by Maria-Andreea Filip and Richard Simon

Part F

Yield change

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

Home Chemistry

Physical

Kinetics

General Rate Constant

General Rate Constant

Part A General expression for rate constant

Think about what a generalised expression for the rate constant, k, of a reaction with two reactants would look like.

Perhaps consider the following general equation to help with your expression.

$$a\, {
m A} + b\, {
m B} \longrightarrow c\, {
m C} + d\, {
m D}$$

The lower case letters denote the stoichiometric coefficients.

Part B Units of the rate constant

Hence, or otherwise, determine the generalised form of the units of the rate constant.

- $\qquad mol^{1+(a+b)} \, dm^{-3(a+b)+3} \, s^{-1} \\$
- $\mod^{1-(a+b)} dm^{3(a+b)-3} s^{-1}$
- $\qquad \quad mol^{1-(a+b)}\,dm^{3(ab)}\,s^{-1} \\$
- $\mod^{1-a+b} dm^{a+b-3} s^{-1}$
- $mol^{1-(ab)} dm^{-3+(ab)} s^{-1}$
- $\ \ \, \mod^{-(a+b)} dm^{(a+b)}\,s^{-1}$

Part C Special case

In which special case are the units of the rate constant simply s^{-1} ? Write down the equation which must be satisfied for this to occur (it should include a and b).

-					
ıne	tollowing	symbols	mav be	useful: a.	b

Part D Zeroth order

If both a=0 and b=0, what are the units of the rate constant?

 s^{-1}

 $\mathrm{mol^0\,dm^0\,s^0}$

ightarrow mol dm $^{-3}$ s $^{-1}$

 \bigcirc mol dm⁻³

 $\mathrm{mol^2\,dm^{-6}\,s^{-1}}$

 $\ \ \, \mod^{-1} dm^3\,s^{-1}$

Created for isaacphysics.org by Sebastian Hickman