Suyi Zhang

sz321@cam.ac.uk | syzhang.github.io

Experience	
2019-present	Research Associate at University of Cambridge
	Computational and Biological Learning Lab, Department of Engineering
	 Translate PhD research to develop prototype device for pain therapeutics
	 Develop software for real-time EEG signal analysis and neurofeedback training
	 Create assessments for treatment effects based on human pain neuroscience
2018	Machine Learning Intern at Cambridge Cancer Genomics, Cambridge
	 Built machine learning pipeline for cancer detection with DNA sequencing data
2018	Data Science Intern at HSBC, Global Markets, London
	 Analysed past currency trading data to build predictive pricing model
2013-2014	Research Assistant at Center for Information and Neural Networks, Osaka, Japan
	 Wrote code to execute experiment and control equipment
	 Managed lab equipment and participant recruitment
Education	
2014-2018	PhD in Engineering (Computational Neuroscience)
	University of Cambridge, Computational and Biological Learning Lab & Peterhouse
	Thesis: Encoding and decoding of pain relief in the human brain
	• For my PhD, I studied how humans learn and adapt to pain and relief. I modelled
	brain imaging and physiological data with learning algorithms, and demonstrated:
	1) Uncertainty has an important role in the control of learning during pain, it
	can flexibly modulate pain to maximise the impact of learning,
	2) The brain region pgACC is essential in both processes, suggesting its potential
	as a therapeutic target for pain in approaches such as neurofeedback.
	 Part IIB courses: Computational Neuroscience (85%), Machine Learning (78%)
2011-2012	MSc in Biomedical Engineering [Distinction]
	University of Oxford, St John's College
	• Project: Developing automatic classifier of pain scores from human LFP recordings
2008-2011	BEng (Hons) in Biomedical Engineering [First Class]
	University of Sheffield
2008	International Foundation Year, Guangzhou, China
	A Level equivalents: 3 A* (Maths, Further Maths, Physics)
Grants and Awards	s
2019	Symposium International Travel Award [3 in total] TRIBS, Fudan University

2019	Symposium International Travel Award [3 in total]	TRIBS, Fudan University
	Industry Engagement Fund [£5k grant]	University of Cambridge
	Impulse Tech Entrepreneurship Program scholarship	EPOC Cambridge
2018	Wellcome Trust Developing Concept Fund [£30k grant]	Wellcome Trust
	Judge Business School EnterpriseTECH bursary	Cambridge JBS
	Open Data Science Conference Scholarship	ODSC
2016	Trainee Financial Aid Award [top 5%]	World Congress on Pain
2014-2018	W. D. Armstrong Studentship [2 per year]	University of Cambridge
	Cambridge Trust Scholarship	
2012	Sloane Robinson Scholarship [1 in class of 20]	University of Oxford
2011	Sheffield Graduate Award	University of Sheffield
2008-2011	Sheffield Undergraduate International Merit Scholarship [3	3 per year]

Publications	
2019	Zhang S, Yoshida W, Mano H, Yanagisawa T, Shibata K, Kawato M, & Seymour B.
	Cognitive Control of Brain-Machine Interfaces for pain. (currently in revision)
2018	Harries L, Zhang S, Shawe J, Sinai J, Patel N, Cassidy JW, Taylor B & Clifford HW.
	Interlacing Personal and Reference Genomes for Machine Learning Disease-Variant
	Detection. NeurIPS Machine Learning for Health Workshop
2018	Zhang S, Mano H, Lee M, Yoshida W, Robbins T, Kawato M & Seymour B.
	The Control of Tonic Pain by Active Relief Learning. eLife 7, e31949.
2016	Zhang S, Mano H, Ganesh G, Robbins T & Seymour B.
	Dissociable Learning Processes Underlie Human Pain Conditioning.
	Current Biology, 26:52–8.
2014	Zhang S, Seymour B.
	Technology for Chronic Pain. Current Biology 2014;24:R930–5.
2013	Zhang S, Green A, Smith PP.
	An automatic classifier of pain scores in chronic pain patients from local field
	potentials recordings. 6th International IEEE/EMBS Conference on Neural
	Engineering (NER), pp 1194-1197

Relevant Experience	ce / Skills
Programming	 Python (data science: pandas, numpy, scipy; machine learning: sklearn, pytorch, fastai; visualisation: matplotlib, seaborn; web application: Dash, plotly) MATLAB (model fitting/comparison, data acquisition, machine learning) Project management: Git, Jupyter notebook, Anaconda, Sphinx Cloud computing: AWS, Microsoft Azure, Linux shell, PowerShell, Docker Typesetting & design: Latex, Microsoft Office, Inkscape
Entrepreneurship	 Had business training at Impulse (Maxwell Centre) and EnterpriseTECH (Cambridge Judge Business School) with full program scholarships Participated in pitch events at multiple start-up competitions Wrote and edited for Cambridge University science magazine <i>BlueSci</i>
Human brain	 Human physiological/behavioural data collection, cleaning, and modelling
imaging	 Designed fMRI / EEG experiments to study human learning and decision making
experiments	 Programmed experimental tasks (OpenCV, Psychtoolbox, Cogent)
	 Pain stimulation systems scripting (Medoc Pathway, Digitimer)
	 Image processing and modelling (SPM, MNE, BIDS format, fmriprep, Nilearn)
	 Real-time activation/connectivity-based decoding of fMRI images and EEG signals

for decoded neurofeedback Cantonese, Mandarin, English (Fluent); Japanese, Norwegian (Basics)

Talks and conferences

Languages

2019	International Symposium on Translational Research in Brain Stimulation (TRIBS) Invited talk: BMI for pain enhances endogenous modulation of experienced pain Pain in Europe congress (EFIC) The European Pain Federation Invited talk: The Reinforcement Learning Model of Pain
2018	Open Data Science Conference Europe, BioMedEng2018 (Neurotechnology)
2017	Annual meeting of Society for Neuroscience (SfN)
2016	World Congress on Pain (IASP)
2015	Pain in Europe congress (EFIC) The European Pain Federation
2013	Computational Neuroscience Summer Course OIST, Japan

Journal reviewer Human Brain Mapping, IEEE Access