

FUNCIONES DE VARIABLE REAL

Exponencial y Logaritmo

Coordinación de Cálculo I

Profesor:

Exponencial y Logaritmo

Coordinación de Cálculo I

Primera versión - Agosto 2020

Colaboradores:

Mery Choque Valdez Rodolfo Viera Julio Rincón Solange Aranzubia Aldo Zambrano Carolina Martínez

Pablo García

Manuel Galaz Karina Matamala

Daniel Saa

Profesor:

Patricio Cerda Loyola

Función Exponencial de base a

Definición

Sea a cualquier número real positivo distinto de uno. Entonces la función

$$f: \mathbb{R} \to \mathbb{R}^+$$

definida por

$$x \mapsto f(x) = a^x$$

la llamaremos función exponencial de base a.

Función Exponencial de base a

Definición

Sea a cualquier número real positivo distinto de uno. Entonces la función

$$f: \mathbb{R} \to \mathbb{R}^+$$

definida por

$$x \mapsto f(x) = a^x$$

la llamaremos función exponencial de base a.

Ejemplo:

- Función exponencial de base 3, definida por $f(x) = 3^x$.
- Función exponencial de base $\frac{1}{2}$, definida por $f(x) = \left(\frac{1}{2}\right)^x$.

Función Exponencial de base a

Definición

Sea a cualquier número real positivo distinto de uno. Entonces la función

$$f: \mathbb{R} \to \mathbb{R}^+$$

definida por

$$x \mapsto f(x) = a^x$$

la llamaremos función exponencial de base a.

Ejemplo:

- Función exponencial de base 3, definida por $f(x) = 3^x$.
- Función exponencial de base $\frac{1}{2}$, definida por $f(x) = \left(\frac{1}{2}\right)^x$.

Propiedades de la función exponencial

Sean $x_1, x_2 \in \mathbb{R}$, entonces:

•
$$a^0 = 1$$

$$a^{x_1-x_2}=\frac{a^{x_1}}{a^{x_2}}$$
.

$$a^{x_1+x_2}=a^{x_1}\cdot a^{x_2}.$$

• Si
$$a^{x_1} = a^{x_2} \Leftrightarrow x_1 = x_2$$
.

Observación

Para la función exponencial en base a, donde $a \in \mathbb{R}^+ - \{1\}$, se tiene

$$\{x \in \mathbb{R} : a^x = 0\} = \phi.$$

Es decir, la función exponencial en base a no tiene ceros, la función no intersecta del eje X.

Observación

Para la función exponencial en base a, donde a $\in \mathbb{R}^+ - \{1\}$, se tiene

$$\{x \in \mathbb{R} : a^x = 0\} = \phi.$$

Es decir, la función exponencial en base a no tiene ceros, la función no intersecta del eje X.

La gráfica de la función exponencial:

Figure: Si a > 1

Figure: Si 0 < a < 1

Propiedades

Notemos que la función exponencial de base a, para 0 < a < 1, satisface:

- i) El valor de a^x tiende a cero cuando x se hace más grande recorriendo los valores positivos. Se concluye que el eje X (recta y=0) es una asíntota horizontal de la función.
- ii) La función es decreciente, es decir, si $x_1 < x_2 \rightarrow a^{x_1} > a^{x_2}$

Notemos que la función exponencial de base a, para a > 1, satisface:

- i) El valor de a^x tiende a cero cuando x decrece recorriendo los valores negativos. Se concluye que el eje X (recta y=0) es una asíntota horizontal de la función.
- ii) La función es creciente, es decir, si $x_1 < x_2 \rightarrow a^{x_1} < a^{x_2}$.

Graficar la función $f(x) = 2^x + 1$.

Graficar la función $f(x)=2^x+1$. Para graficar la función f, notar que la función $y=2^x$ se traslada una unidad hacia arriba, como se muestra:

A partir de la gráfica se deduce que $Rec(f) = (1, +\infty)$ y que y = 1 es su asíntota horizontal. Además que es una función creciente.

Definición:

Para todo $x \in \mathbb{R}$, se define la función **exponencial natural**, como $e^x = exp(x)$. Donde la base corresponde al número irracional $e \approx 2.718$.

Definición:

Para todo $x \in \mathbb{R}$, se define la función **exponencial natural**, como $e^x = exp(x)$. Donde la base corresponde al número irracional $e \approx 2.718$.

Observación

Notar que

- i) La gráfica de la función exponencial natural es creciente, al ser e > 1.
- ii) La función $y = e^{-x}$ es decreciente. Su gráfico corresponde a la reflexión de la gráfica $y = e^{x}$ respecto al eje Y.

Para la función definida por $f(x) = \left(\frac{1}{3}\right)^{x+1} - 3$. Determine:

- a) El dominio y recorrido de la función.
- b) El conjunto $H = \{x \in Dom(f) : f(x) = 0\}.$
- c) El gráfico de la función.

Para la función definida por $f(x) = \left(\frac{1}{3}\right)^{x+1} - 3$. Determine:

- a) El dominio y recorrido de la función.
- b) El conjunto $H = \{x \in Dom(f) : f(x) = 0\}.$
- c) El gráfico de la función.

Solución.-

 a) Al ser f, una función exponencial, esta bien definida en todo el conjunto de los numeros reales.

Notar ademas que

$$\left(\frac{1}{3}\right)^{x+1} > 0 \to \left(\frac{1}{3}\right)^{x+1} - 3 > -3$$

Por lo que $Rec(f) = (-3, \infty)$.

b) f(x) = 0 si y solo si

$$\left(\frac{1}{3}\right)^{x+1} - 3 = 0 \iff \left(\frac{1}{3}\right)^{x+1} = 3 \iff x+1 = -1 \iff x = -2$$

continucación del ejemplo 2

c) La función corresponde a la traslación vertical de tres unidades hacia abajo y una unidad hacia la izquierda de $y=\left(\frac{1}{3}\right)^x$.

Figure: Traslación horizontal

Figure: Traslación vertical

Función Logaritmo

La función $f: \mathbb{R} \to \mathbb{R}^+$, definida por $f(x) = a^x$, con a > 0 y $a \ne 1$, es una función biyectiva, en consecuencia podemos definir su inversa, a la cual denominaremos función logaritmo de base a.

Función Logaritmo

La función $f: \mathbb{R} \to \mathbb{R}^+$, definida por $f(x) = a^x$, con a > 0 y $a \ne 1$, es una función biyectiva, en consecuencia podemos definir su inversa, a la cual denominaremos función logaritmo de base a.

Definición

Sea a>0, $a\neq 1$. La función $f:\mathbb{R}^+\to\mathbb{R}$, definida por $f(x)=\log_a(x)$ la llamaremos función logaritmo de base a. De modo que,

$$y = \log_a(x) \Leftrightarrow a^y = x.$$

Función Logaritmo

La función $f: \mathbb{R} \to \mathbb{R}^+$, definida por $f(x) = a^x$, con a > 0 y $a \ne 1$, es una función biyectiva, en consecuencia podemos definir su inversa, a la cual denominaremos función logaritmo de base a.

Definición

Sea a>0, $a\neq 1$. La función $f:\mathbb{R}^+\to\mathbb{R}$, definida por $f(x)=\log_a(x)$ la llamaremos función logaritmo de base a. De modo que,

$$y = \log_a(x) \Leftrightarrow a^y = x.$$

Definici<u>ón</u>

Llamaremos **logaritmo natural o neperiano** a la función inversa de e^x y la denotaremos por $\ln(x)$.

Graficamente

Figure: a > 1

Figure: 0 < a < 1

Graficamente

Figure: 0 < a < 1

Figure: a > 1

Ejemplos

- **9** Sea $f: \mathbb{R} \to (0, \infty)$, definida por $f(x) = 3^x$. Su inversa es la función $f^{-1}: (0, \infty) \to \mathbb{R}$, definida por $f^{-1}(x) = \log_3(x)$.
- **②** Sea $f: \mathbb{R} \to (9, \infty)$, definida por $f(x) = 3^{x+4} + 9$. La función inversa es $f^{-1}: (9, \infty) \to \mathbb{R}$, definida por $f^{-1}(x) = \log_3(x-9) 4$.

Propiedades de la función logaritmo

- ② $\log_a(a) = 1$ pues $a^1 = a$.
- \bullet Por la gráfica se se tiene que si a>1 la función es creciente y para 0< a<1 la función es decreciente.
- El eje Y (recta x = 0) corresponde a una asíntota horizontal.

Propiedades de la función logaritmo

- $\log_a(1) = 0$ pues $a^0 = 1$.
- ② $\log_a(a) = 1$ pues $a^1 = a$.
- \bullet Por la gráfica se se tiene que si a>1 la función es creciente y para 0< a<1 la función es decreciente.
- El eje Y (recta x = 0) corresponde a una asíntota horizontal.

Ejemplo

Para $g(x) = \log_2(x - 4)$, responder:

- Determine el dominio de g.
- 2 Determine los ceros de la función g.
- 3 Realizar la gráfica de g.

Propiedades de la función logaritmo

- ② $\log_a(a) = 1$ pues $a^1 = a$.
- ${\bf 0}$ Por la gráfica se se tiene que si a>1 la función es creciente y para 0< a<1 la función es decreciente.
- El eje Y (recta x = 0) corresponde a una asíntota horizontal.

Ejemplo

Para $g(x) = \log_2(x - 4)$, responder:

- ① Determine el dominio de g.
- Determine los ceros de la función g.
- Realizar la gráfica de g.

Solución

- **③** $Dom(g) = \{x \in \mathbb{R} : x 4 > 0\} = (4, \infty).$

gráfica

• La gráfica de la función g, corresponde al desplazar 4 unidades hacia la derecha a la función $y = \log_2(x)$.

Más propiedades de la función logaritmo

Sean $x_1, x_2 \in \mathbb{R}^+$, entonces

$$\bullet \ \log_a x_1 = \frac{\log_b(x_1)}{\log_b(a)} \ \text{donde } a,b \in \mathbb{R}^+ \ \text{y } a \neq b \neq 1.$$

Más propiedades de la función logaritmo

Sean $x_1, x_2 \in \mathbb{R}^+$, entonces

Ejemplo 1

Sea
$$f(x) = 3^{x-3}$$
 y $g(x) = \log_2(x+1)$. Para $x \in (-1, \infty)$, resolver la ecuación $(f \circ g)(x) = 9$.

Más propiedades de la función logaritmo

Sean $x_1, x_2 \in \mathbb{R}^+$, entonces

Ejemplo 1

Sea $f(x) = 3^{x-3}$ y $g(x) = \log_2(x+1)$. Para $x \in (-1, \infty)$, resolver la ecuación $(f \circ g)(x) = 9$. Solución Realizando la composición de las funciones

$$(f \circ g)(x) = f(\log_2(x+1)) = 3^{\log_2(x+1)-3}.$$

luego

$$3^{\log_2(x+1)-3} = 9 = 3^2 \implies \log_2(x+1) - 3 = 2 \implies \log_2(x+1) = 5$$

De la última igualdad se tiene que $x+1=2^5$, así x=31. Por tanto la solución de la ecuación es $x=31\in (-1,\infty)$.

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 36.$$

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 36.$$

Solución Usando propiedades de la función exponencial, se tiene

$$36 = 6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 5^x (6 \cdot 5^{-1} + 5 + 1) = 5^x \left(\frac{36}{5}\right)$$

De esta última igualda se tiene $5^x = 5$, así x = 1.

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 36.$$

Solución Usando propiedades de la función exponencial, se tiene

$$36 = 6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 5^x (6 \cdot 5^{-1} + 5 + 1) = 5^x \left(\frac{36}{5}\right)$$

De esta última igualda se tiene $5^x = 5$, así x = 1.

Ejemplo 3

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$3^{x} + 3^{1-x} = 4$$
.

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 36.$$

Solución Usando propiedades de la función exponencial, se tiene

$$36 = 6 \cdot 5^{x-1} + 5^{x+1} + 5^x = 5^x (6 \cdot 5^{-1} + 5 + 1) = 5^x \left(\frac{36}{5}\right)$$

De esta última igualda se tiene $5^x = 5$, así x = 1.

Ejemplo 3

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$3^{x} + 3^{1-x} = 4$$
.

Solución Usando propiedades de la función exponencial, se tiene

$$4 = 3^{x} + 3^{1-x} = 3^{x} + 3 \cdot \frac{1}{3^{x}} \implies (3^{x})^{2} - 4 \cdot 3^{x} + 3 = 0.$$

Haciendo $u=3^x$ en la ultima ecuación se tiene $u^2-4u+3=0$, esto es (u-3)(u-1)=0. De donde se obtiene que $3^x=3$ y $3^x=1$, y sus soluciones son x=1 y x=0.

Por tanto la solución de la ecuación dada, es x = 1 y x = 0.

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6^x \cdot 3^{2x} + 2 = 20.$$

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6^x \cdot 3^{2x} + 2 = 20.$$

Solución Usando propiedades de la función logaritmo se tiene:

$$6^{x} \cdot 3^{2x} + 2 = 20 \implies \ln(6^{x} \cdot 9^{x}) = \ln(18) \implies x \ln(6) + x \ln(9) = \ln(18)$$

Así $x = \frac{\ln(18)}{\ln(6) + \ln(9)}$, es la solución de la ecuación dada.

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6^x \cdot 3^{2x} + 2 = 20.$$

Solución Usando propiedades de la función logaritmo se tiene:

$$6^{x} \cdot 3^{2x} + 2 = 20 \implies \ln(6^{x} \cdot 9^{x}) = \ln(18) \implies x \ln(6) + x \ln(9) = \ln(18)$$

Así $x = \frac{\ln(18)}{\ln(6) + \ln(9)}$, es la solución de la ecuación dada.

Ejemplo 5

Para $x \in \mathbb{R}^+$, resolver la siguiente ecuación

$$2\log_{10}(x) = \log_{10}(4x + 12).$$

Para $x \in \mathbb{R}$, resolver la siguiente ecuación

$$6^x \cdot 3^{2x} + 2 = 20.$$

Solución Usando propiedades de la función logaritmo se tiene:

$$6^{x} \cdot 3^{2x} + 2 = 20 \implies \ln(6^{x} \cdot 9^{x}) = \ln(18) \implies x \ln(6) + x \ln(9) = \ln(18)$$

Así $x = \frac{\ln(18)}{\ln(6) + \ln(9)}$, es la solución de la ecuación dada.

Ejemplo 5

Para $x \in \mathbb{R}^+$, resolver la siguiente ecuación

$$2\log_{10}(x) = \log_{10}(4x + 12).$$

Solución Usando propiedades de logaritmo se tiene

$$2\log_{10}(x) = \log_{10}(4x + 12) \implies \log_{10}(x^2) = \log_{10}(4x + 12) \implies x^2 = 4x + 12$$

La soluciones de la ecuación cuadrática son x = 6 y x = -2, sin embargo la solución de la ecuación con logaritmo es x = 6. Pues x = -2, no pertenece a su dominio.

Un aislante de cerámica se saca de un horno y luego se enfría a una temperatura ambiente de $25^{\circ}\,C$. Si la temperatura después de t minutos está dada por

$$T(t) = 25 + 375e^{-0.2t}.$$

Cuánto tiempo debe transcurrir aproximadamente, para que la temperatura sea de $107^{\circ}\,\text{C}$.

Un aislante de cerámica se saca de un horno y luego se enfría a una temperatura ambiente de $25^{\circ}\,C$. Si la temperatura después de t minutos está dada por

$$T(t) = 25 + 375e^{-0.2t}$$
.

Cuánto tiempo debe transcurrir aproximadamente, para que la temperatura sea de 107° *C*. **Solución** El problema se resuelve, simplemente resolviendo la siguiente ecuación para $t_1 > 0$,

$$107 = 25 + 375e^{-0.2t_1} \implies \frac{82}{375} = e^{-0.2t_1}$$

Aplicando la función inversa de la función exponencial natural, se tiene $\ln\left(\frac{82}{375}\right) = -0.2t_1$, así $t_1 = -5 \cdot \ln\left(\frac{82}{375}\right)$. Por tanto, debe transcurrir un tiempo de $t_1 = -5 \cdot \ln\left(\frac{82}{375}\right) \approx 7.6$ minutos, para que la temperatura sea de $107^{\circ}C$.

4 D > 4 D > 4 E > 4 E > E = 400 C

FUNCIONES DE VARIABLE REAL

Exponencial y Logaritmo

Coordinación de Cálculo I

Primera versión - Agosto 2020

Profesor:

Patricio Cerda Loyola

