Considerazioni

Daniele Zago

1 Poisson GICP

1) Consideriamo una carta di controllo C_t di tipo EWMA (o CUSUM o AEWMA) a limite fisso che suona un allarme per

$$C_t \leq -L$$
 oppure $C_t \geq L$.

2) Supponiamo che la stima del parametro sia pari a $\hat{\theta}$, mentre il vero parametro ha valore θ_0 . Allora, la ARL della carta di controllo C_t sarà quella di una carta di controllo con vero valore $\hat{\theta}$ che osserva uno shift al tempo $\tau = 1$ di ampiezza $\hat{\theta} - \theta_0$.

Combinando 1) e 2) si può disegnare una procedura GICP, ovvero tale per cui

$$\mathbb{P}(ARL_0 \le a) = \beta \tag{1}$$

per la carta di controllo C_t basata sul seguente procedimento:

- \rightarrow Sia $(\widehat{\theta}_{\text{low}}, \widehat{\theta}_{\text{up}})$ un intervallo di confidenza di livello 1β per θ . Se il parametro stimato è $\widehat{\theta}$, per un fissato $L = L_0$ la carta di controllo avrà la minima ARL₀ nell'intervallo di confidenza se il vero valore del parametro è $\widehat{\theta}_{\text{low}}$ oppure $\widehat{\theta}_{\text{up}}$.
- > Si applichi una procedura (es. saControlLimits) per trovare L_{low} e L_{up} , ovvero i limiti di controllo che forniscono $\text{ARL}_0 = a$ per la carta con valore stimato $\widehat{\theta}$ quando il vero valore del parametro è, rispettivamente, $\widehat{\theta}_{\text{low}}$ e $\widehat{\theta}_{\text{up}}$.
- > Il limite di controllo più conservativo, $L_{\beta} = \max\{L_{\text{low}}, L_{\text{up}}\}$, rende (1) valida poiché l'intervallo di confidenza ha probabilità β di non contenere il vero valore θ_0 .

Nota su sa ControlLimits. Siccome ci interessa in particolare che valga la (1), ho fatto una piccola modifica a sa ControlLimits. Dall'equazione (12) di (Capizzi and Masarotto, 2016), usando il parametro di precisione γ si ha che con alta probabilità

$$a \cdot (1 - \gamma) \le ARL \le a \cdot (1 + \gamma).$$

Quindi, ottimizzando per $ARL_0 = a/(1-\gamma)$ invece di $ARL_0 = a$ si ha che con alta probabilità

$$a < ARL < a \cdot (1 - \gamma)(1 + \gamma),$$

il che è più in accordo con la proprietà (1).

2 Cautious Learning

Con la stessa terminologia del paper, si disegna la cautious region $S_t = (-H, H)$ in modo che

$$ATS_0 = \mathbb{E}[TS|\tau = \infty] = s,$$

per un valore di s specificato, dove TS = $\inf\{n \geq 1 : C_t \in \mathcal{S}_t\}$ è il time to first stop dell'update dei parametri. Per disegnare \mathcal{S}_t basta osservare che H è il limite di controllo di una carta adaptive estimator tale per cui ARL₀ = ATS₀. Per cui, si può semplicemente applicare la procedura saControlLimits con adaptive estimator per trovare il limite H. Una volta fissato H, si può applicare la procedura in Sezione 1 per trovare il limite L_β che fornisce la proprietà GICP (1).

Idea. Volendo, si potrebbe disegnare anche la cautious region S_t usando la procedura GICP, in modo che $\mathbb{P}(ATS_0 \leq s) = \beta$.

REFERENCES

Capizzi, G. and Masarotto, G. (2016). "Efficient Control Chart Calibration by Simulated Stochastic Approximation". In: *IIE Transactions* 48.1, 57–65.