スズエ6部61-63課

P. 03

R-062

U-622

:0426917510

83- 9-30:11:41AM;オリンパス光学工業(株)知的財産部

Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-236332

(43)Date of publication of application: 23.08.2002

(51)Int.Cl.

G03B 35/08 G03B 15/03 G03B 15/05 G03B 17/56

(21)Application number : 2001-034392

(71)Applicant:

OLYMPUS OPTICAL CO LTD

(22)Date of filing:

09.02.2001

(72)Inventor:

MIYOSHI TAKASHI

(54) STEREOSCOPIC ADAPTER, PATTERN PROJECTION ADAPTER AND ADAPTER FOR LIGHT EMITTING MEMBER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a stereoscopic adapter making it possible to take an excellent parallactic picture by using a general camera. SOLUTION: This stereoscopic adapter attached to the front of the image pickup optical system 5 of a camera 11 in order to take the parallactic picture is equipped with optical systems (4-1 and 4-2) receiving light beams from the same subject by two parts (mirrors 3-1 and 3-2) separated by a specified distance and guiding the respective received light beams to the optical system 5 of the camera 11, and a light emitting part (light source) 2 capable of emitting light illuminating the subject.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-236332 (P2002-236332A)

(43)公開日 平成14年8月23日(2002.8.23)

(51) Int.Cl. ⁷		饑別記号	F I			テーマコード(参考)		
G03B	35/08 15/03 15/05 17/56		G 0 3 B 35/08		2H053			
			1	15/03 15/05		P 2	H059	
			1			2H105		
			1	17/56	:	Z		
			審査請求	未請求	請求項の数11	OL	(全 9 頁)	
(21)出願番号 特願2001-34392(P2001-34392)		(71)出願人	1)出願人 000000376 オリンパス光学工業株式会社					
(22)出願日		平成13年2月9日(2001.2.9)		東京都沿	渋谷区幡ヶ谷2	丁目43	番2号	
			(72)発明者	三由	史			
				東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業株式会社内				
			(74)代理人	1000584	179			
				弁理士	鈴江 武彦	(外4:	名)	
			Fターム(を	Fターム(参考) 2H053 CA12				
				2H0	159 AA08 AA12			
				2H1	05 CC09 EE32			

(54) 【発明の名称】 ステレオアダプタ、パターン投影アダプタ、発光部材用アダプタ

(57)【要約】

【課題】一般のカメラを用いて良好な視差画像を撮影可 能なステレオアダプタを提供する。

【解決手段】視差画像を撮影するため、カメラ11の撮 像光学系5の前方に取付けるステレオアダプタであり、 同一被写体からの光を所定距離離間した2つの部位(ミ ラー3-1,3-2)で受光し、受光した各々の光をカ メラ11の撮像光学系5に導く光学系(4-1, 4-2) と、被写体を照明する光を発光可能な発光部(光 源) 2とを具備する。

【特許請求の範囲】

【請求項1】 視差画像を撮影するため、カメラの撮像 光学系の前方に取付けるステレオアダプタであり、

同一被写体からの光を所定距離離間した2つの部位で受 光し、上記受光した各々の光を上記カメラの撮像光学系 に導く光学系と、

上記被写体を照明する光を発光可能な発光部とを具備することを特徴とするステレオアダプタ。

【請求項2】 上記発光部は上記2つの受光部位の中間に位置することを特徴とする請求項1記載のステレオアダプタ。

【請求項3】 上記発光部からの光を、上記受光部位と 被写体間の光路に重畳させる光線重畳手段をさらに有す ることを特徴とする請求項1記載のステレオアダプタ。

【請求項4】 視差画像を撮影するため、カメラの撮像 光学系の前方に取付けるステレオアダプタであり、

同一被写体からの光を所定距離離間した2つの部位で受 光し、上記受光した各々の光を上記カメラの撮像光学系 に導く光学系と、

上記被写体に所定のパターンを投影するパターン投影部 とを具備することを特徴とするステレオアダプタ。

【請求項5】 上記パターン投影部は上記2つの受光部位の中間に位置することを特徴とする請求項4記載のステレオアダプタ。

【請求項6】 上記パターン投影部からのパターン投影に関わる光を、上記受光部位と被写体間の光路に重畳させる光線重畳手段をさらに有することを特徴とする請求項4記載のステレオアダプタ。

【請求項7】 視差画像を撮影するため、カメラの撮像 光学系の前方に取付けるステレオアダプタであり、

同一被写体からの光を所定距離離間した2つの部位で受 光し、上記受光した各々の光を上記カメラの撮像光学系 に導く光学系と、

上記被写体を照明する光を発光可能な発光部と、

上記被写体に所定のパターンを投影するパターン投影部と、

カメラよりの撮影タイミング信号を入力する部位とを具備し、

上記撮影タイミング信号の入力に応じて、上記発光部の 発光と上記パターン投影部によるパターン投影が、択一 的に交互に行われることを特徴とするステレオアダプ タ。

【請求項8】 被写体に所定のパターンを投影するため、カメラに関連して用いられる発光装置の前面に取付けるアダプタであり、

上記発光装置に取付けられた状態で、上記発光装置の発 光面に近接して位置し、上記発光部材からの光が透過す る領域に所定のパターンをもつパターン部材と、

上記パターン部材を経由した光が進入する、上記パターンを投影する投影光学系と、

本アダプタを上記カメラの発光装置に着脱自在に取付ける取付け部材とを具備することを特徴とするパターン投 影アダプタ。

【請求項9】 上記パターン部材を透過した光を2つの 光束に分割し、各々の光束を同一被写体に対して異なる 位置より投影可能としたことを特徴とする請求項8記載 のパターン投影アダプタ。

【請求項10】 カメラの発光部材の前面に取付けられる発光部材用アダプタであり、

上記発光装置からの光を2つの光束に分ける光束分割手 段と、

上記各々の光束の進行方向を同一被写体に向くように偏向可能な偏向手段とを具備することを特徴とする発光部 材用アダプタ。

【請求項11】 上記発光部ならびにパターン投影部を 基線垂直方向に対して順序、位置を可変に支持可能な位 置変更機構を有することを特徴とする請求項7記載のス テレオアダプタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ステレオアダプタ、パターン投影アダプタならびに発光部材用アダプタに関する。

[0002]

【従来の技術】視差画像の撮影における改良は種々の技術が提案されている。

【0003】特公平4-25758号公報には、2つのカメラで被写体の視差画像を撮影するにあたり、撮影した左右の視差画像間の対応が十分に取れない場合には、被写体に特定の模様パターンを照射して再度被写体を撮影することにより、左右の視差画像間の対応を取りやすくする技術が開示されている。この技術によれば、被写体の表面が単純であり、左右の視差画像間の対応をとるための画像的特徴部分が不足していても、被写体の表面に特定の模様パターンが投影されるので、被写体の表面に画像的特徴が現出し、視差画像間の対応が取り易くなる。

【0004】特開平9-281614号公報には、一般カメラの撮影レンズの前面にとりつけ、ミラーによる光線分割により視差画像を撮影可能するステレオアダプタが開示されている。この技術によれば、視差画像撮影用でない一般のカメラを用いて、簡便に視差画像を撮影することができる。

[0005]

【発明が解決しようとする課題】しかし、上述した特公 平4-25758号公報に開示された技術では、カメラ が2台にパターン投影機が1台必要であり、装置が大型 になってしまい、専用のスタジオ以外での応用は困難で あった。また、カメラ2台のシャッタータイミングの同 期をとるのが容易でなく、さらにこの同期のタイミング でパターン投影やフラッシュ照明をする必要があったので、高速シンクロは困難であった。さらには、視差画像間の対応付けの容易さを判断する処理が煩雑であった。

【0006】また、特開平9-281614号公報で は、撮影装置の前面にアダプタが配設されるので、フラ ッシュ等を用いる場合、アダプタによる影ができないよ う、アダプタより十分離間した位置でフラッシュを発光 させる必要がある。しかし、フラッシュ位置がアダプタ より離れると、撮影の光軸とフラッシュの方向が大きく 解離して、フラッシュ光により被写体に生じた影が大き くなってしまい、画像上で影が邪魔であった。特にアダ プタで基線距離を十分に長くとって視差画像に基づく距 離認識の性能を上げようとしたり、より広い画角での撮 影を実施しようとすると、必然的にアダプタは大型にな るので、上記影の問題が大きくなっていた。さらに、こ のアダプタを装着したカメラに、上記特公平4-257 58号公報に記載された模様パターンを投影する技術を 用いようとすると、フラッシュ光の影と同じ現象が模様 パターンについても生じ、模様パターンが投影されない 領域が被写体側に生じる。

【0007】本発明はこのような課題に着目してなされたものであり、その目的とするところは、一般のカメラを用いて良好な視差画像を撮影可能なステレオアダプタ、パターン投影アダプタ、発光部材用アダプタを提供することにある。

[0008]

【課題を解決するための手段】上記の目的を達成するために、第1の発明は、視差画像を撮影するため、カメラの撮像光学系の前方に取付けるステレオアダプタであり、同一被写体からの光を所定距離離間した2つの部位で受光し、上記受光した各々の光を上記カメラの撮像光学系に導く光学系と、上記被写体を照明する光を発光可能な発光部とを具備する。

【0009】また、第2の発明は、第1の発明に係るステレオアダプタにおいて、上記発光部は上記2つの受光部位の中間に位置する。

【0010】また、第3の発明は、第1の発明に係るステレオアダプタにおいて、上記発光部からの光を、上記受光部位と被写体間の光路に重畳させる光線重畳手段をさらに有する。

【0011】また、第4の発明は、視差画像を撮影するため、カメラの撮像光学系の前方に取付けるステレオアダプタであり、同一被写体からの光を所定距離離間した2つの部位で受光し、上記受光した各々の光を上記カメラの撮像光学系に導く光学系と、上記被写体に所定のパターンを投影するパターン投影部とを具備する。

【0012】また、第5の発明は、第4の発明に係るステレオアダプタにおいて、上記パターン投影部は上記2つの受光部位の中間に位置する。

【0013】また、第6の発明は、第4の発明に係るス

テレオアダプタにおいて、上記パターン投影部からのパターン投影に関わる光を、上記受光部位と被写体間の光路に重畳させる光線重畳手段をさらに有する。

【0014】また、第7の発明は、視差画像を撮影するため、カメラの撮像光学系の前方に取付けるステレオアダプタであり、同一被写体からの光を所定距離離間した2つの部位で受光し、上記受光した各々の光を上記カメラの撮像光学系に導く光学系と、上記被写体を照明する光を発光可能な発光部と、上記被写体に所定のパターンを投影するパターン投影部と、カメラよりの撮影タイミング信号を入力する部位とを具備し、上記撮影タイミング信号の入力に応じて、上記発光部の発光と上記パターン投影部によるパターン投影が、択一的に交互に行われる。

【0015】また、第8の発明は、被写体に所定のパターンを投影するため、カメラに関連して用いられる発光装置の前面に取付けるアダプタであり、上記発光装置に取付けられた状態で、上記発光装置の発光面に近接して位置し、上記発光部材からの光が透過する領域に所定のパターンをもつパターン部材と、上記パターン部材を経由した光が進入する、上記パターンを投影する投影光学系と、本アダプタを上記カメラの発光装置に着脱自在に取付ける取付け部材とを具備する。

【0016】また、第9の発明は、第8の発明に係るパターン投影アダプタにおいて、上記パターン部材を透過した光を2つの光束に分割し、各々の光束を同一被写体に対して異なる位置より投影可能とする。

【0017】また、第10の発明は、カメラの発光部材の前面に取付けられる発光部材用アダプタであり、上記発光装置からの光を2つの光束に分ける光束分割手段と、上記各々の光束の進行方向を同一被写体に向くように偏向可能な偏向手段とを具備する。

【0018】また、第11の発明は、第10の発明に係るステレオアダプタにおいて、上記発光部ならびにパターン投影部を基線垂直方向に対して順序、位置を可変に 支持可能な位置変更機構を有する。

[0019]

【発明の実施の形態】以下、図面を参照して本発明の実施形態を詳細に説明する。以下の説明においては、前面に2つの受光部と1つの発光部と1つのパターン投影部を有するステレオアダプタが説明される。このうち発光部は被写体を撮影するため被写体を照明するものである。また、パターン投影部は被写体表面に特徴的部分が無いと左右の視差画像を比較して距離情報を得る段階で左右の画像同士を対応づけ難いため、被写体表面に特徴的模様を現出させて上記対応を容易にすることを目的として、被写体にランダムパターン等の所定のパターンを投影するものである。

【0020】本発明では、発光部及びパターン投影部の 位置に応じて発生する影(光やパターンが被写体等に遮 られ、画像上に生じる光やパターンが照射されない部分)の状態が変化する点が一つのポイントになっている。これを図1以下で説明してゆくが、受光部に対する位置関係による影の状態変化は、発光部もパターン投影部も同じなので、以下では光源により発光部とパターン投影部を代表させて説明する。即ち、光源の位置についての説明は、発光部の位置についての説明でもあり、パターン投影部の位置についての説明でもある。

【0021】まず本発明の第1実施形態について説明する。第1実施形態のステレオアダプタは視差画像を撮影するために、カメラの撮像光学系の前方に取り付けられるステレオアダプタに関している。

【0022】図1(A)、(B)は本発明の第1実施形態の第1の構成に係るステレオアダプタ10の説明図である。図1(A)に示すように、ステレオアダプタ10は、カメラ11の撮像光学系5の前方に取り付けられてフィルム6に図1(B)に示すような視差画像7-1、7-2を形成するために用いられるものであり、被写体1を照明するための光を発光可能な発光部としてのフラッシュ等の単一の光源2と、同一被写体1からの光を所定距離離間した2つの受光部位(ミラー3-1,3-2)で受光し、この受光した各々の光をカメラ11の撮像光学系5に導く光学系(ミラー4-1,4-2)とが設けられている。

【0023】このように、ステレオアダプタ10の内部に光源2を付けたので、視点位置と光源2の位置を近づけることが可能になり、被写体1の影の問題が改善される。さらにステレオアダプタ10自体の影の問題をなくすことができる。また、カメラは1台で良いので2つのカメラの同期をとる必要がない。

【0024】特に単一の光源2を2つの受光部位(2視点)の間に配置した場合には、濃い影(図の黒い影部分)を視差によるオクルージョン領域内に形成することができる。

【0025】図2(A)、(B)は本発明の第1実施形態の第2の構成に係るステレオアダプタ20の説明図である。図2(A)に示すように第2実施形態では一対の光源2-1,2-2を用いて被写体1を照明する。このとき、光源2-1,2-2から被写体1までの光路と、被写体1から受光部位としてのハーフミラー13-1,13-2までの光路が重畳されるように光源2-1,2-2をハーフミラー13-1,13-2の背後に配置している。

【0026】このように2視点の構成の場合には、2視点と同軸に光源を配置することにより、図2(B)に示すようにオクルージョン領域と同一範囲内に半影(図のハッチング部分)を形成することができる。

【0027】図3(A)、(B)は本発明の第1実施形態の第3の構成に係るステレオアダプタ30の説明図である。

【0028】図3(A)に示すように第3実施形態では、一対の光源2-1,2-2を被写体1から受光部位としてのミラー3-1,3-2までの光路の外側に配置している。このように2視点の外側に一対の光源2-1,2-2を配置した場合には図3(B)に示すように、オクルージョン領域の外にまで半影(図のハッチング部分)ができる。

【0029】上記した第1~第3の構成のうち、ランダムドットなどによるテクスチャ投影では、オクルージョン領域以外の見える範囲すべてにテクスチャパターンが投影されるため第2の構成の同軸照明が最も効率的である。

【0030】図4~図6は図1で説明した第1の構成における単一光源において、光源2の上下方向のさまざまな位置での視差画像の影の形成について説明するための図である。図4(A)に示すように光源2を基線同軸上に配置した場合には基線長方向のオクルージョン領域だけに影(図4(B)の黒い影部分)ができる。単一光源の場合に最も好ましい構成である。

【0031】また図5(A)に示すように光源2を基線よりも上方に配置した場合にはオクルージョン領域からはみ出した下方に影(図5(B)の黒い影部分)ができる。

【0032】また図6(A)に示すように光源2を基線よりも下方に配置した場合にはオクルージョン領域からはみ出した上方に影(図6(B)の黒い影部分)ができる。

【0033】単一光源の場合、影領域がオクルージョン 領域外に出ない基線上からの照射を行う図4の構成が望 ましい。ただし、被写体照明とテクスチャ投影を行う場 合、切り替え装置などを用いて切り替えるなどしないと どちらも同じ位置から照射することができないが、これ は機器を複雑に大きくする要因となる。被写体像の自然 さを重視するならば、照明用の光源は基線上もしくは基 線上方に配置することが望ましい。より多種のパターン の投影が必要な場合には切り替え装置を用いても良い。

【0034】図7は本発明の第2実施形態を説明するための図である。カメラ50は、レリーズボタン50-1、撮影レンズ50-2、内蔵フラッシュ50-3、シンクロ接点50-4を備えている。また、第2実施形態のステレオアダプタはパターン投影装置60の上部に照明装置40を取り付けた構成となっている。パターン投影装置60は、シンクロコード41を介してカメラ50のシンクロ接点50-4に接続可能なシンクロ入力60-2を有する。また、所定のパターンを投影するための発光部及びパターン投影部を内部に備え、投影結像レンズ60-1を介して被写体39に所定のパターンが投影される。さらに、照明装置40及びパターン投影装置60の電源や制御回路が内部に設けられている。

【0035】また、照明装置40は、被写体39を照明

する光を発光可能な発光部としての内蔵フラッシュ40-1と、同一被写体39からの光を所定距離離間した2つの受光部位40-2A、40-2Bで受光し、上記受光した各々の光をカメラの撮像レンズ50-2に導く光学系とを有する。

【0036】上記した構成において、図8(A)に示すようにカメラ50のレリーズボタン50-1が押されることに応答してカメラ50側からパターン投影装置60に撮影タイミング信号を入力する。処理回路102は撮影タイミング信号が入力されるごとに照明用ドライバ100とパターンドライバ101を交互に駆動して照明装置40の内蔵フラッシュ40-1の発光と、パターン投影装置60の発光部材60-3を発光させることによるパターン投影とを択一的に交互に行なう。

【0037】例えば図8(B)に示すように、まず照明装置40の発光(A-1)で被写体39の視差画像を撮影した後、パターン投影(B-1)により被写体39の視差画像を撮影して距離情報を得る。パターン投影すると画像中にパターンが現出するので、まず、パターンの無い通常の撮影をして被写体自体の色調や明暗情報を得ておく。パターン投影を先に行い、次に照明装置40を発光させるようにしてもよい。

【0038】なお、図7に示す構成は、パターン投影部の上部に被写体照明用の発光部(内蔵フラッシュ40-1)を設けた構成を示しているが、このような構成に限定されず、位置変更機構により基線垂直方向に対して順序、位置を変更することが可能である。

【0039】図9(A)~(G)は受光部位200,201間における、パターン投影部(図で○で示す部分)と発光部(図で△で示す部分)の配置に関する種々の変形例を示す図である。図9(A),(B)はパターン投影部と照明用発光部とを上下に配置した例、図9

(C), (D) はパターン投影部と照明用発光部とを左右に配置した例、図9(E)はパターン投影部と照明用発光部とが上下に移動可能であることを示す例、図9(F), (G) はパターン投影部と照明用発光部とを離

して配置した例を示している。

【0040】図10(A)、(B)は、図9に示す種々の変形例を実現するための位置変更機構の一例を示しており、第1のレール302に固定された回転ピボット300に取り付けられて360度回転可能な第2のレール301には、パターン投影装置60と照明装置40とが配置されている。さらにパターン投影装置60と照明装置40とは第2のレール301上を滑動可能であり、両者間の距離を自由に調整できる。

【0041】図10(B)は、図10(A)に示す第2のレール301を90度回転させた状態を示している。

【0042】上記した位置変更機構を用いることにより、被写体の像に上方から照明することで自然な影をつける場合と、基線上から照射することで被写体に無影照

明に近い照明を行う(例えば、三次元データとして構築 した後に、影情報を付加する場合などに適する)といっ たことを選択的に実施できる。この場合、パターンの投 影は基線上から行ったほうがよい。

【0043】また、タンデムに照明と投影を並べる場合には、上記の観点から、被写体上方から照明、正面から 投影という構成も望ましい。

【0044】図11は本発明の第3実施形態を説明するための図である。第3実施形態のアダプタは、被写体に所定のパターンを投影するため、カメラに関して用いられる発光装置の前面に取付けるパターン投影アダプタに関している。ここで発光装置はカメラあるいはアダプタに内蔵されているか、あるいはこれらとは別体で設けられていてもよい。

【0045】図11に示すように、発光部材としての発 光管20-1の発光面に近接して位置され、発光管20 - 1 からの光が透過する領域に所定のパターンをもつパ ターン部材(パターンフィルタ20-5)と、このパタ ーンフィルタ20-5を経由した光が進入する、上記パ ターンを投影する投影光学系(投影レンズ20-4) と、本アダプタ20を上記カメラの発光装置に着脱自在 に取付ける取付け部材(取付け冶具20-6)とを有す る。発光管20-1と、発光管20-1からの光を反射 するリフレクタ20-2と、光出力窓としてのフレネル 板20-3とは外付けストロボ20-7を構成してい る。このような構成を用いることにより、通常市販され ているカメラを用いて容易にパターン投影を行うことが できる。また、パターンフィルタ20-5と発光管20 - 1の間に熱カットフィルタを設けても良く、この場 合、熱に弱いが安価なスライド用フィルムなどでパター ンを構成できる。この場合、パターンフィルタはガラス 等で挟み込み平面性を確保することが好ましい。

【0046】図12(A)、(B)は本発明の第4実施 形態を説明するための図である。図12(A)は従来の 構成であり、カメラ151の前方にはステレオアダプタ 152が取り付けられるとともに、カメラ151及びス テレオアダプタ152の上方にはストロボ150が取り 付けられている。

【0047】図12(B)は本実施形態の構成を示しており、カメラ151の前方には視差画像をとるためのステレオアダプタ155が、その下部にはパターン投影用ステレオアダプタ154が取り付けられている。また、発光部材としてのストロボ150の前方には照明用ステレオアダプタ153が取り付けられている。ストロボ150はカメラ151の上方に、パターン投影用ステレオアダプタ154は視差画像用ステレオアダプタ155を挟み照明用ステレオアダプタ153の下方に配置されている。

【0048】ここでパターン投影用アダプタ154は、 所定のパターンをもつパターン部材(パターンフィル タ)と、このパターン部材を透過した光束を2つの光束に分割する分割手段とを備え、分割された各々の光束を同一被写体に対して異なる位置から投影可能としている。

【0049】また、照明用ステレオアダプタ153は、ストロボ150からの光を2つの光束に分ける光束分割手段と、分割された各々の光束の進行方向を同一被写体に向くように偏向可能な偏向手段(ミラー)とを有する。本実施形態では各々のステレオアダプタは別々のミラーを用いたが、ミラーを大型のものとし、照明、視差画像パターン投影でミラー部を共用してもよい。

【0050】以上の実施形態すべてにおいて、パターンフィルタが発生するパターンとして周期的に繰返しのあるパターンを採用すると、異なった周期のパターンどうしを同じ周期のパターンと誤認して対応づけする可能性がある。このため、パターンは周期性の無いパターンがよい。例えば、ランダムパターンが好ましい。ただし、撮影距離が限定されている場合は、その距離によって決まる視差幅分のランダム性を持ったパターンのユニットが基線方向に繰り返されたパターン群でもよい。

【0051】なお、上記した各実施形態における照明用発光部を配置する位置は、図13(C)に示すように2つの受光部位の中間位置が最も望ましいが、これに限定されない。例えば図13(A)に示すように、2つの受光部位300,301の中央部を通る基線垂直方向の直線L1,L2により規定される内側の空間(ハッチングで示す部分)の任意の位置、あるいは、図13(B)に示すように、2つの受光部位300,301により規定される内側の空間(ハッチングで示す部分)の任意の位置に配置することが可能である。また、図13(A)~(C)に示す位置は照明用発光部を配置する上で望まがしたとえ図13(A),(B),(C)以外の位置に配置される限りにおいて本実施形態の効果が得られる。

【0052】なお、パターン投影部の配置についても照明用発光部と同様のことが言える。

【0053】又、これらの実施形態はフィルムを用いた カメラについて述べたが、撮像素子を用いたデジタルス チルカメラや動画用のビデオカメラ等でもよい。

[0054]

【発明の効果】本発明によれば、一般のカメラを用いて 良好な視差画像を撮影可能なステレオアダプタ、パター ン投影アダプタ、発光部材用アダプタを提供することが できる。

【図面の簡単な説明】

【図1】本発明の第1実施形態の第1の構成に係るステレオアダプタ10の説明図である。

【図2】本発明の第1実施形態の第2の構成に係るステレオアダプタ20の説明図である。

【図3】本発明の第1実施形態の第3の構成に係るステレオアダプタ30の説明図である。

【図4】光源2の上下方向のさまざまな位置での視差画像の影の形成について説明するための図であり、第1の例を示している。

【図5】光源2の上下方向のさまざまな位置での視差画像の影の形成について説明するための図であり、第2の例を示している。

【図6】光源2の上下方向のさまざまな位置での視差画像の影の形成について説明するための図であり、第3の例を示している。

【図7】本発明の第2実施形態を説明するための図である。

【図8】第2実施形態の作用を説明するための図である。

【図9】受光部位200,201間における、パターン 投影部と発光部の配置に関する種々の変形例を示す図で なる

【図10】図9に示す種々の変形例を実現するための位置変更機構の一例を示す図である。

【図11】本発明の第3実施形態を説明するための図である

【図12】本発明の第4実施形態を説明するための図で * *

【図13】照明用発光部あるいはパターン投影部の配置 可能な位置について説明するための図である。

【符号の説明】

1 被写体

2, 2-1, 2-2 光源

3-1, 3-2 ミラー

4-1, 4-2 ミラー

5 撮像光学系

6 フィルム

7-1, 7-2 視差画像

10 ステレオアダプタ

11 カメラ

13-1, 13-2 ハーフミラー

20 ステレオアダプタ

30 ステレオアダプタ

[図13]

