Riassunto: macchina termica ideale (di Carnot)

La macchina di Carnot è formata da un ciclo in un gas perfetto, costituito da due trasformazioni isoterme (ab e dc in figura) e due adiabatiche (bc e da in figura).

E' il prototipo ideale della *macchina termica*, che trasforma cioè calore in lavoro. Le sue principali proprietà sono:

- è reversibile (le quattro trasformazioni lo sono)
- lavora fra due sole sorgenti a temperatura T_2 e $T_1 > T_2$
- per i calori scambiati vale $\frac{|Q_1|}{|Q_2|} = \frac{T_1}{T_2}$ (le temperature sono assolute)
- il lavoro prodotto in un ciclo è $L=|Q_1|-|Q_2|$
- il rendimento, definito come lavoro prodotto su calore assorbito, $\eta=\frac{L}{|Q_1|}$, vale $\eta=1-\frac{T_2}{T_1}$ ed è sempre $\eta<1$ ($\eta=1$ solo per $T_2=0$ o $T_1=\infty$).

Rendimento di macchine termiche ed enunciato di Kelvin

In una macchina termica viene fornito del calore Q_1 e prodotta energia meccanica come lavoro L. La qualità di tale trasformazione è misurata dal *rendimento* η definito come

$$\eta = \frac{\text{energia ottenuta}}{\text{energia assorbita}} = \frac{L}{|Q_1|}$$

 $\eta < 1$ sempre, anche per macchine ideali: parte del calore fornito alla macchina (Q_1) è sempre ceduto (Q_2) alla sorgente a temperatura più bassa; di conseguenza il lavoro prodotto L potrà al più essere pari alla differenza tra i due.

Si arriva quindi alla conclusione che non potrà *mai* essere realizzato il motore perfetto (vedi schema qui accanto), in cui il calore prelevato da *un'unica sorgente* è completamente trasformato in lavoro. Tale conclusione porta in modo naturale al seguente enunciato alternativo della seconda legge della termodinamica (*enunciato di Kelvin*):

Non esiste un ciclo termodinamico avente come unico risultato l'acquisizione di calore da un'unica sorgente termica e la sua totale trasformazione in lavoro

Entropia come funzione di stato ed enunciato di Kelvin

Consideriamo un ciclo S in cui si scambiano i calori $Q_i, i = 1, ..., n$ con n sorgenti a temperatura T_i . Dimostriamo la seguente disuguaglianza:

$$\sum_{i=1}^{n} \frac{Q_i}{T_i} \le 0,$$

dove l'uguaglianza vale se il ciclo è reversibile, la disuguaglianza altrimenti.

Introduciamo n cicli di Carnot C_i che lavorano fra ogni T_i e un T_0 arbitrario, scambiando calore $-Q_i$ con ogni sorgente a temperatura T_i . Il calore scambiato da ogni ciclo con la sorgente a $T=T_0$ sarà $Q_{0i}=\frac{T_0}{T_i}Q_i$.

Consideriamo il ciclo S e tutti i cicli C_i . La sorgente a $T=T_0$ scambia un calore $Q_0=\sum_{i=1}^n -Q_{0i}=-T_0\sum_{i=1}^n \frac{Q_i}{T_i}$. Le altre sorgenti scambiano in totale un calore nullo.

Se $Q_0 < 0$, l'unico risultato finale è che la sorgente a T_0 cede calore che è trasformato in lavoro, ma ciò non è possibile secondo l'enunciato di Kelvin. Necessariamente, $Q_0 \ge 0$, da cui la dimostrazione della disuguaglianza.

Se il ciclo è reversibile, basta farlo girare in senso opposto per trovare che $Q_0=0$.

Entropia ed enunciato di Kelvin

Se un ciclo è reversibile, le temperature del sistema e della sorgente di calore sono uguali. Su tale ciclo

$$\Delta S = \oint_{rev} \frac{dQ}{T} = 0.$$

Ciò equivale ad affermare che la S come l'abbiamo definita:

$$S_B - S_A = \int_{A.rev}^B \frac{dQ}{T}$$

è una funzione dello stato del sistema. Se il ciclo è irreversibile, si ha invece

$$0 = \Delta S > \oint_{irr} \frac{dQ}{T},$$

da cui, supponendo che il ciclo abbia una parte irreversibile da A a B e una parte reversibile da B ad A:

$$S_{AB} > \int_{A,irr}^{B} \frac{dQ}{T}.$$

Se dQ = 0, riotteniamo l'enunciato "entropico" del secondo principio.

Rendimento di altre macchine termiche I

Tutte le trasformazioni sono assunte reversibili e su di un gas ideale.

Ciclo di Stirling - costituito da due isoterme e due isocore. Il calore è scambiato in tutte e quattro le trasformazioni. Per le due isoterme,

$$Q_1 = nRT_1 \log \frac{V_b}{V_a}, \qquad Q_2 = nRT_2 \log \frac{V_a}{V_b}$$

Notare che $Q_1=-rac{T_2}{T_1}Q_2$ come per il ciclo di Carnot.

Per le due isocore, il calore scambiato è lo stesso in valore assoluto:

$$Q = nc_v(T_1 - T_2)$$

Il rendimento η_s di tale ciclo è inferiore a quello del ciclo di Carnot η_c :

$$\eta_s = \frac{|Q_1| - |Q_2|}{|Q_1| + |Q|} = \frac{(|Q_1| - |Q_2|)/|Q_1|}{(|Q_1| + |Q|)/|Q_1|} = \frac{\eta_c}{1 + |Q|/|Q_1|} < \eta_c$$

Rendimento di altre macchine termiche II

Ciclo Otto (motore a 4 tempi) – Non contiene isoterme ma due isocore e due adiabatiche. Il calore è assorbito nella trasformazione $1 \rightarrow 2$: $Q_{1,2} = \Delta E_{int,12} = nc_V(T_2 - T_1)$, ceduto nella trasformazione $3 \rightarrow 4$: $Q_{3,4} = nc_V(T_4 - T_3)$. Il lavoro è svolto nelle trasformazioni $2 \rightarrow 3$ e $4 \rightarrow 1$: $L = L_{23} + L_{41}$.

$$L = -(\Delta E_{int,23} + \Delta E_{int,41}) = -nc_V(T_3 - T_2) - nc_V(T_1 - T_4)$$

II rendimento è dunque
$$\eta_o=\frac{L}{|Q_{1,2}|}=\frac{nc_V(T_2-T_1+T_4-T_3)}{nc_V(T_2-T_1)}=1-\frac{T_3-T_4}{T_2-T_1}$$

Ricordando che per una trasformazione adiabatica $TV^{\gamma-1}=$ cost., si trova $T_1V_1^{\gamma-1}=T_4V_4^{\gamma-1}$, $T_2V_2^{\gamma-1}=T_3V_3^{\gamma-1}$, ma $V_1=V_2$, $V_3=V_4$, da cui $(T_1-T_2)V_2^{\gamma-1}=(T_4-T_3)V_3^{\gamma-1}$ e infine

$$\eta_o = 1 - \left(\frac{V_2}{V_3}\right)^{\gamma - 1} = 1 - \left(\frac{V_2}{V_3}\right)^{\frac{c_p}{c_V} - 1}$$

Il rapporto V_2/V_3 è detto rapporto di compressione.

Macchine frigorifere

Una macchina termica che trasferisce calore da una sorgente fredda ad una sorgente calda costituisce una macchina frigorifera (o frigorigena). Una macchina di Carnot che funziona "al contrario" è una macchina frigorifera. Lo schema a lato precisa le relazioni tra il lavoro che si deve fornire alla macchina frigorifera e i calori scambiati con le sorgenti termiche.

L'efficienza di una macchina frigorifera è misurata dal parametro

$$\varepsilon = \frac{\text{energia utile}}{\text{energia assorbita}} = \frac{|Q_2|}{L}$$

Per il frigorifero di Carnot abbiamo

$$\varepsilon_c = \frac{|Q_2|}{|Q_1| - |Q_2|} = \frac{T_2}{T_1 - T_2} = \frac{T_2/T_1}{1 - (T_2/T_1)} = \frac{1 - \eta_c}{\eta_c} = \frac{1}{\eta_c} - 1$$

dove η_c è il rendimento della macchina di Carnot quando funziona nel verso usuale. $\varepsilon_c > 0$ sempre. Notare che ε_c è tanto maggiore quanto minore è η_c .

Secondo principio, enunciato di Clausius

Così come il motore perfetto, anche il frigorifero perfetto (schematizzato qui a fianco) non esiste. Infatti, in tal caso la variazione di entropia complessiva del sistema (sorgenti termiche + gas) sarebbe pari a

$$\Delta S = -\frac{|Q|}{T_2} + \frac{|Q|}{T_1} < 0$$

in contrasto con la seconda legge della termodinamica (dato che il sistema è chiuso).

Questo porta al seguente enunciato alternativo (di Clausius) della seconda legge:

Non esiste una trasformazione il cui unico risultato è il trasferimento di calore da una sorgente a temperatura più bassa ad una a temperatura più alta

Gli enunciati di Clausius e di Kelvin sono equivalenti: è immediato dimostrare che l'uno implica l'altro.

Rendimento delle macchine reali

Tra tutte le macchine termiche *che operano tra due sole temperature* T_1 e T_2 (con $T_1 > T_2$), la macchina di Carnot è quella con il rendimento più elevato.

Supponiamo di avere una macchina di rendimento $\eta_x > \eta_c$. Accoppiamola a un frigorifero di Carnot operante tra le stesse temperature e che utilizza tutto il lavoro prodotto dalla nostra macchina. Otteniamo una macchina che: (1) non utilizza lavoro esterno e che, (2) scambia le quantità di calore $|Q_1'| - |Q_1|$ e $|Q_2'| - |Q_2|$ con le sorgenti alle temperature T_1 e T_2

Dato che il lavoro prodotto dalla macchina termica è pari a quello utilizzato dal frigorifero di Carnot, $|Q_1|-|Q_2|=|Q_1'|-|Q_2'|$, da cui $|Q_1|-|Q_1'|=|Q_2|-|Q_2'|=Q$.

Se $\eta_x > \eta_c$ abbiamo

$$\eta_x > \eta_c \quad \Rightarrow \quad \frac{|L|}{|Q_1'|} > \frac{|L|}{|Q_1|} \quad \to \quad Q = |Q_1| - |Q_1'| > 0$$

Ma in questo modo, avremmo costruito un frigorifero perfetto! Nessuna macchina termica reale che lavora fra due temperature può avere un rendimento superiore a quella di Carnot.

