Welcome and Introduction

Philip Schulz

https://vitutorial.github.io

https://github.com/vitutorial/VITutorial

About me ...

Philip Schulz

- Applied Scientist in the Clay team
 - ▶ clay-interest@amazon.com
- ▶ VI, Machine Translation, Bayesian Models

What is a probabilistic model?

A probabilistic model predicts **possible** outcomes of an experiment. Most modern machine learning models are probabilistic.

What is a probabilistic model?

A probabilistic model predicts **possible** outcomes of an experiment. Most modern machine learning models are probabilistic.

Maximum Likelihood

$$\max_{\theta} p(x|\theta)$$

Two Machine Learning Paradigms

Supervised problems: "learn a distribution over observed data"

sentences in natural language, images, videos, . . .

Unsupervised problems: "learn a distribution over observed and unobserved data"

▶ sentences in natural language + parse trees, images + bounding boxes . . .

Probabilistic models allow to incorporate assumptions through:

- the choice of distribution
- the way that distribution uses side information
- stipulate unobserved data

Probabilistic models allow to incorporate assumptions through:

- the choice of distribution
- the way that distribution uses side information
- stipulate unobserved data

They return a distribution over outcomes.

Can generate data (generative models)

- Can generate data (generative models)
- Allows to model unobserved data
 - $\int p(x|z,y)p(z|y)dz$ can be easier than p(x|y)
 - Can reduce number of parameters
 - Provides explanation and can suggest improvements

- Can generate data (generative models)
- Allows to model unobserved data
 - $\int p(x|z,y)p(z|y)dz$ can be easier than p(x|y)
 - Can reduce number of parameters
 - Provides explanation and can suggest improvements
- Informative to decision makers
 - Provides uncertainty estimates

We can get uncertainty estimates.

Example: Binary classifier

$$\sigma\left(\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta}\right)$$

gives one distribution over outcomes.

A decision maker wants to know **how much** he can trust the classifier!

$$\sigma\left(\mathbf{x}^{\mathsf{T}}\mathbf{M}\boldsymbol{\theta}\right)p(\mathbf{M})$$

where M is some matrix that modifies the classifier weights.

$$\sigma\left(\mathbf{x}^{\mathsf{T}}\mathbf{M}\boldsymbol{\theta}\right)p(\mathbf{M})$$

where M is some matrix that modifies the classifier weights. This gives us many different distributions over outcomes!

$$\sigma\left(\mathbf{x}^{\mathsf{T}} \mathbf{M} \theta\right) p(\mathbf{M})$$

where M is some matrix that modifies the classifier weights. This gives us many different distributions over outcomes!

Rule of Thumb

If the different distributions are similar, the classifier can be trusted. If they are dissimilar, further context information is needed.

Deep Generative Models

Naturally, one would like to combine the advantages of probabilistic models and neural nets. So why not have a neural net with latent variables?

Short answer: backpropagation breaks!

Deep Generative Models

Supervised MLE

$$\max_{\phi} p(x|\phi, y) \implies \max_{\theta} p(x|\mathsf{NN}_{\theta}(y))$$

Deep Generative Models

Supervised MLE

$$\max_{\phi} p(x|\phi, y) \implies \max_{\theta} p(x|\mathsf{NN}_{\theta}(y))$$

Unsupervised MLE

$$\max_{\phi} p(x|\phi, y, z)p(z|y, \phi) \implies \max_{\theta} p(x|\mathsf{NN}_{\theta}(z, y)) p(z|\mathsf{NN}_{\theta}(y))$$

$$\nabla_{\theta} \log p(x|\theta)$$

$$\mathbf{\nabla}_{\theta} \log p(x|\theta) = \mathbf{\nabla}_{\theta} \log \int p(x,z|\theta) dz$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \int p(x,z|\theta) dz$$

$$= \underbrace{\frac{1}{\int p(x,z|\theta) dz} \int \nabla_{\theta} p(x,z|\theta) dz}_{\text{chain rule}}$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \int p(x, z|\theta) dz$$

$$= \underbrace{\frac{1}{\int p(x, z|\theta) dz} \int \nabla_{\theta} p(x, z|\theta) dz}_{\text{chain rule}}$$

$$= \underbrace{\frac{1}{p(x|\theta)} \int \underbrace{p(x, z|\theta) \nabla_{\theta} \log p(x, z|\theta)}_{\text{log-identity for derivatives}} dz$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \int p(x, z|\theta) dz$$

$$= \underbrace{\frac{1}{\int p(x, z|\theta) dz}}_{\text{chain rule}} \int \nabla_{\theta} p(x, z|\theta) dz$$

$$= \underbrace{\frac{1}{\int p(x|\theta)}}_{\text{chain rule}} \int \underbrace{\frac{1}{\int p(x|\theta)}}_{\text{log-identity for derivatives}} dz$$

$$= \int p(z|x, \theta) \nabla_{\theta} \log p(x, z|\theta) dz$$

$$\nabla_{\theta} \log p(x|\theta) = \nabla_{\theta} \log \int p(x, z|\theta) dz$$

$$= \underbrace{\frac{1}{\int p(x, z|\theta) dz} \int \nabla_{\theta} p(x, z|\theta) dz}_{\text{chain rule}}$$

$$= \underbrace{\frac{1}{p(x|\theta)} \int \underbrace{p(x, z|\theta) \nabla_{\theta} \log p(x, z|\theta)}_{\text{log-identity for derivatives}} dz$$

$$= \int \underbrace{p(z|x, \theta) \nabla_{\theta} \log p(x, z|\theta)}_{\text{log } p(x, z|\theta)} dz$$

$$= \mathbb{E}_{p(z|x, \theta)} [\nabla_{\theta} \log p(x, z|\theta)]$$

Variational Inference

Computing the posterior distribution $p(z|x,\theta)$ is hard. In VI we will optimize an auxiliary distribution $q(z|x,\lambda)$ to approximate the exact posterior.

What are you getting out of this today?

As we progress we will

- develop a shared vocabulary to talk about generative models powered by NNs
- derive crucial results step by step

What are you getting out of this today?

As we progress we will

- develop a shared vocabulary to talk about generative models powered by NNs
- derive crucial results step by step

Goal

- you should be able to navigate through fresh literature
- and start combining probabilistic models and NNs