PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

1MAT33 ANÁLISIS FUNCIONAL

Cuarta práctica (tipo a) Primer semestre 2024

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: sin apuntes de clase.
- No está permitido el uso de ningún material de consulta o equipo electrónico.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 (5 puntos)

Sea E un espacio normado de dimensión infinita y $S = \{x \in E : ||x|| = 1\}$ la esfera unitaria. Pruebe que

$$\overline{\underline{\mathcal{S}}}^{\sigma(E,E')}_{\text{ clausura de }S \text{ en la topología } \sigma(E,E')} = \underbrace{\left\{x \in E: \ ||x|| \leq 1\right\}}_{=\mathbb{B}}.$$

Sea $x_0 \in E$ con $||x_0|| \le 1$. Queremos probar que $x_0 \in \overline{S}^{\sigma(E,E')}$. Esto es, dada una vecindad V_{x_0} de x_0 en $\sigma(E,E')$, $V_{x_0} \cap S \ne \emptyset$. Luego, podemos asumir que

$$V_{x_0} = \{x \in E : |\varphi_i(x) - \varphi_i(x_0)| < \varepsilon, \ i = 1, ..., k\}$$

con $\varepsilon > 0$, $\varphi_i \in E'$. Ahora, fijemos $y_0 \in E$ no nulo, tal que $\varphi_i(y_0) = 0$ para todo i. Dicho y_0 existe pues, caso contrario, $\Phi : E \to \mathbb{R}^k$ tal que $\Phi(x) = (\varphi_1(x), ..., \varphi_k(x))$ sería inyectiva y φ sería un isomorfismo con $\varphi(E)$, lo cual implica que $\dim(E) \le k$: contradicción pues E es infinito dimensional. Luego, definamos $\psi(t) = ||x_0 + ty_0||$. Esta función es continua y es tal que g(0) < 1 y $\lim_{t \to \infty} g(t) = +\infty$. Entonces, $\exists t_0 : ||x_0 + ty_0|| = 1$ (valor intermedio). Luego, $x_0 + t_0y_0 \in V_{x_0} \cap S$ y así, $S \subset \mathbb{B} \subset \overline{S}^{\sigma(E,E')}$. Basta probar que \mathbb{B} es cerrado para concluir:

$$\mathbb{B} = \bigcap_{\substack{\varphi \in E', \ ||\varphi|| \leq 1 \\ \text{intersección de cerrados pues } \varphi \in E'}} \{x \in E: \ \varphi(x) \leq 1\}.$$

Pregunta 2 (5 puntos)

- a) Sean E un espacio reflexivo y $\varphi \in E'$. Demuestre que existe $x \in E$ no nulo tal que $\varphi(x) = ||x|| \cdot ||\varphi||$.
- b) Sea E un espacio normado. Demuestre que si $(x_n)_{n\in\mathbb{N}}$ en E converge débilmente a $x\in E$, entonces la sucesión es limitada.
- a) En un espacio reflexivo, todo funcional alcanza su norma. Así,

$$\begin{aligned} ||\varphi|| &= \sup_{\psi \in B_{E''}} |\psi(\varphi)| = \sup_{||x|| \le 1} ||J_E(x)(\varphi)|| \\ &= \sup_{||x|| \le 1} ||\varphi(x)|| = \sup_{||x|| = 1} ||\varphi(x)|| = |\varphi(x_0)|. \end{aligned}$$

O sea, $||\varphi|| \cdot ||x_0|| = |\varphi(x_0)|$. Luego, usando una rotación (estamos en \mathbb{C})¹ concluimos.

b) Como $x_n \underbrace{\longrightarrow}_w x$, $\varphi(x_n) \to \varphi(x)$. Luego, $\{\varphi(x_n)\}_{n \in \mathbb{N}}$ es acotada (pues converge). Entonces, por Banach-Steinhauss², concluimos que $||x_n|| < \infty$, o sea $\{x_n : n \in \mathbb{N}\}$ es acotada.

Pregunta 3 (5 puntos)

Considere el espacio C[0,1] con la norma $||\cdot||_{\infty}$. Pruebe que el operador

$$T_2: C[0,1] \to C[0,1], \ T_2(f)(x) = \int_0^x f(s)ds$$

es compacto y no tiene autovalores.

El operador es compacto por Arzelá-Ascoli.

$$|T_2(f)(x) - T_2(f)(x_0)| = \left| \int_{x_0}^x f(s)ds \right| \le M|x - x_0| < \varepsilon$$

para $\delta = \frac{\varepsilon}{M}$. Por otro lado, $|T_2(f)(x)| < xM$.

Concluyamos que no posee autovalores. De tenerlos,

$$\int_0^x f(s)ds = \lambda f(x) \implies Ce^{x/\lambda} = f(x), \ C \neq 0.$$

Sin embargo, $T(f)(0) = 0 \neq C$.

Pregunta 4 (5 puntos)

Pruebe que todo conjunto no vacío y abierto de la topología débil de un espacio de dimensión infinita es ilimitado.

Un abierto de la topología débil es de la forma $V = \bigcap_{i=1}^n \varphi_i^{-1}(A_i)$. Luego, si $x \in V$, tenemos que $X = \bigcap_{i=1}^n \ker(\varphi_i) \neq \{0\}$ (caso contrario $T : E \to \mathbb{K}^n$, dada por $x \to (\varphi_1(x), ..., \varphi_n(x))$ sería inyectivo) y así, $x + tv \in V$ para todo $t \in \mathbb{R}$, con $v \in X$.

Profesor del curso: Percy Fernández.

San Miguel, 28 de junio del 2024.

 $^{^1\,\}mathrm{Nunca}$ se indica lo contrario.

 $^{^2}T:E'\to \ell_\infty,\, T(\varphi)=(\varphi(x_n))_{n\in\mathbb{N}}:\, \sup_{\varphi}||T\varphi||=\sup_{\varphi}||\varphi(x_n)||=\sup_n||x_n||<\infty$