Chapter 1

Logan Rosentreter

August 30, 2021

Probability

Intro

Probability is a measure of one's belief in the occurrence of future events

e.g.

a policy holder making a claim in the next year

How to assign probabilities?

- 1. subjectively
- 2. relative frequency
 - repeat the study condition (identical) for M times
 - record times event occurred (m)
 - probability = relative frequency = m / M where $\lim_{M\to\infty} m/M = P(A)$
- 3. Axiomatic Model Based
 - use mathematical theory to assign probabilities (what we will learn)

Notation

Def: A random experiment is an experiment that produces outcomes that can't be predicted w/ certainty

Def: A performance of such experiment: trial

Def: A result: Outcome

Def: Sample Space: set of all possible outcomes of an experiment

• Denote *S*

Ex: Toss a coin 3 times.

$$S = \begin{cases} HHH HHT HTH HTT \\ THH THT TTH TTT \end{cases}$$

Ex : number of positive tests during a week. $S = \{0, 1, 2, ...\}$

Ex : highest temp. on labor day. $S = \{40 < \omega < 120\}$

Ex : An event is a subset of sample space, S, as $(A, B, C...) \subseteq S$

Def : ω : "omega" an outcome occurs

- if A contains ω , we say A occurred
- if A does not contain ω , A did not occur

i.e. $\omega \in A$, A occurred, $\omega \notin A$, A did not occur

e.g. Toss coin 3 times. A = getting @ least 2 heads

 $A = \{HHH, HHT, HTH, THH\}$. If I toss the coin 3 times and get HTH, then A occurred if I get TTH, A did not occur

Set Theory

- *A* is a subset of *S* if $\omega \in A \implies \omega \in S$
- Union : $A \cup B = \{\omega : \omega \in A \text{ or } \omega \in B\}$
- intersection : $A \cap B = \{\omega : \omega \in A \text{ and } \omega \in B\}$
- complement : $\overline{A} = \{ \omega \in S : \omega \notin A \}$

Notate : $A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$

Notate : $A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$

Notate : \emptyset = null event (empty set)

Notate : S = sure event (always occur)

Def : An event is called elementary (simple) event if it contains only 1 outcome

Def: mutually exclusive (disjoint)

• $A \cap B = \emptyset \implies$ no common outcome

 A_1, A_2, \dots, A_k are all mutually exclusive if they are pairwise mutually exclusive i.e.

$$A_i \cap A_j = \emptyset$$
 for all $i \neq j$

Ex: Toss a coin 3 times

A: at least 2 heads

$$A = \{HHH, HHT, HTH, THH\}$$

B: 1st toss = tails

$$B = \{THH, THT, TTH, TTT\}$$

$$A \cap B = \{THH\} \implies$$
 not mutually exclusive $A \cup B = \{HHH, HHT, HTH, THH, THT, TTH, TTT\}$ $\overline{A \cup B} = \{HTT\}$ $\overline{A} = \{HTT\}$ $\overline{B} = \{HTT, HHH, HHT, HTH\}$

DeMorgan's Law

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A\cap B}=\overline{A}\cup\overline{B}$$