بسم الله الرحمن الرحيم

نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۰ - جلسه نوزدهم: سیستم اثبات تعاملی (۲) Theory of computation - 002 - S19 - IP (2)

Legend

Last time:

- Interactive Proof Systems
- The class IP
- Graph isomorphism problem, $\overline{ISO} \in IP$
- $-\#SAT \in IP \text{ (part 1)}$

Today: (Sipser §10.4)

- Arithmetization of Boolean formulas
- Finish $\#SAT \in IP$ and conclude that $coNP \subseteq IP$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM

Prover (P): Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V accepts or rejects.

Defn: $Pr[(V \leftrightarrow P) \text{ accepts } w] =$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM

Prover (D): Unlimited computational power

Prover (P): Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V accepts or rejects.

Defn: $Pr[(V \leftrightarrow P) \text{ accepts } w] = probability that V accepts when V interacts with P, given input <math>w$.

Defn: IP = $\{A \mid \text{for some V and P (This P is an "honest" prover)}$

$$w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \ge \frac{2}{3}$$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM

Prover (P): Unlimited computational power

Both P and V see input w.

They exchange a polynomial number of polynomial-size messages.

Then V accepts or rejects.

Defn: $\Pr[(V \leftrightarrow P) \text{ accepts } w] = \text{probability that V accepts when V interacts with P, given input } w.$

Defn: IP = $\{A \mid \text{ for some V and P (This P is an "honest" prover)}$ $w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \geq \frac{2}{3}$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM Prover (P): Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V accepts or rejects.

Think of \widetilde{P} as a "crooked" prover trying to make V accept when it shouldn't.

Defn: $\Pr[(V \leftrightarrow P) \text{ accepts } w] = \text{probability that V accepts when V interacts with P, given input } w.$

Defn: IP = $\{A \mid \text{for some V and P (This P is an "honest" prover)}$

$$w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \ge \frac{2}{3}$$

 $w \notin A \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } w] \leq \frac{1}{3} \}$

Equivalently: IP $= \{A \mid \text{for some V} \}$

$$w \in A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{2}{3}$$

$$w \notin A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{1}{3}$$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM **Prover (P):** Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V *accepts* or *rejects*.

Think of \widetilde{P} as a "crooked" prover trying to make V accept when it shouldn't.

Defn: $Pr[(V \leftrightarrow P) \text{ accepts } w] = probability that V accepts when V interacts with P, given input <math>w$.

Defn: IP = $\{A \mid \text{for some V and P (This P is an "honest" prover)}$

$$w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \ge \frac{2}{3}$$

 $w \notin A \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } w] \leq \frac{1}{3} \}$

Equivalently: IP $= \{A \mid \text{for some V}\}$

$$w \in A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{2}{3}$$

$$w \notin A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{1}{3}$$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM **Prover (P):** Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V accepts or rejects.

Think of \widetilde{P} as a "crooked" prover trying to make V accept when it shouldn't.

Here, we emphasize how P is similar to the certificate for NP-languages.

Defn: $\Pr[(V \leftrightarrow P) \text{ accepts } w] = \text{probability that V accepts when V interacts with P, given input } w.$

Defn: IP = $\{A \mid \text{ for some V and P (This P is an "honest" prover)}$ $w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \ge \frac{2}{3}$

 $w \notin A \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } w] \leq \frac{1}{3} \}$

Equivalently: IP = $\{A \mid \text{for some V}\}$

$$w \in A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{2}{3}$$

$$w \notin A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{1}{3}$$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM Prover (P): Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V accepts or rejects.

Think of \widetilde{P} as a "crooked" prover trying to make V accept when it shouldn't.

Here, we emphasize how P is similar to the certificate for NP-languages.

An amplification lemma can improve the error probability from
$$\frac{1}{3}$$
 to $\frac{1}{2^{\text{poly }(n)}}$

Defn: $\Pr[(V \leftrightarrow P) \text{ accepts } w] = \text{probability that V accepts when V interacts with P, given input } w.$

Defn: IP = $\{A \mid \text{for some V and P (This P is an "honest" prover)}$

$$w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \ge \frac{2}{3}$$

$$w \notin A \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } w] \leq \frac{1}{3} \}$$

Equivalently: IP $= \{A \mid \text{for some V} \}$

$$w \in A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{2}{3}$$

$$w \notin A \rightarrow \exists P \ Pr[(V \leftrightarrow P) \ accepts \ w] \ge \frac{1}{3}$$

Two interacting parties

Verifier (V): Probabilistic polynomial time TM **Prover (P):** Unlimited computational power

Both P and V see input w. They exchange a polynomial number of polynomial-size messages. Then V accepts or rejects.

Think of
$$\widetilde{P}$$
 as a "crooked" prover trying to make V accept when it shouldn't.

Here, we emphasize how P is similar to the certificate for NP-languages.

An amplification lemma can improve the error probability from
$$\frac{1}{3}$$
 to $\frac{1}{2^{\text{poly }(n)}}$

Surprising Theorem: IP = PSPACE

coNP ⊆ IP

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

 $coNP \subseteq IP$: weaker but similar, show $\#SAT \in IP \ (\#SAT \text{ is coNP-hard})$

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

 $coNP \subseteq IP$: weaker but similar, show $\#SAT \in IP$ (#SAT is coNP-hard)

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in IP$

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

 $coNP \subseteq IP$: weaker but similar, show $\#SAT \in IP \ (\#SAT)$ is coNP-hard)

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in IP$

Proof: First some notation. Assume ϕ has m variables $x_1, ..., x_m$.

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

 $coNP \subseteq IP$: weaker but similar, show $\#SAT \in IP \ (\#SAT)$ is coNP-hard)

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in \mathbb{P}$

Proof: First some notation. Assume ϕ has m variables $x_1, ..., x_m$.

Let $\phi(0)$ be ϕ with $x_1=0$ (0 substituted for x_1) 0 = False and 1 = True.

Let $\phi(a_1...a_i)$ be ϕ with $x_1=a_1$, ... , $x_i=a_i$ for $a_1,$... , $a_i\in\{0,1\}$.

Call a_1, \ldots, a_i presets. The remaining x_{i+1}, \ldots, x_m stay as unset variables.

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in IP$, we won't prove

coNP \subseteq IP: weaker but similar, show $\#SAT \in IP \ (\#SAT \text{ is coNP-hard})$

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in \mathbb{P}$

Proof: First some notation. Assume ϕ has m variables $x_1, ..., x_m$.

Let $\phi(0)$ be ϕ with $x_1=0$ (0 substituted for x_1) 0 = FALSE and 1 = TRUE.

Let $\phi(a_1...a_i)$ be ϕ with $x_1=a_1$, ... , $x_i=a_i$ for $a_1,$... , $a_i\in\{0,1\}$.

Call $a_1, ..., a_i$ presets. The remaining $x_{i+1}, ..., x_m$ stay as unset variables.

Let # ϕ = the number of satisfying assignments of ϕ .

Let $\#\phi(0)$ = the number of satisfying assignments of $\phi(0)$.

Let $\#\phi(a_1...a_i)$ = the number of satisfying assignments of $\phi(a_1...a_i)$

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in IP$, we won't prove

coNP \subseteq IP: weaker but similar, show $\#SAT \in IP \ (\#SAT \text{ is coNP-hard})$

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in \mathbb{P}$

Proof: First some notation. Assume ϕ has m variables $x_1, ..., x_m$.

Let $\phi(0)$ be ϕ with $x_1=0$ (0 substituted for x_1) 0 = FALSE and 1 = TRUE.

Let $\phi(a_1...a_i)$ be ϕ with $x_1=a_1$, ..., $x_i=a_i$ for $a_1,\ldots,\ a_i\in\{0,1\}$.

Call $a_1, ..., a_i$ presets. The remaining $x_{i+1}, ..., x_m$ stay as unset variables.

Two identities

Let $\#\phi$ = the number of satisfying assignments of ϕ .

Let $\#\phi(0)$ = the number of satisfying assignments of $\phi(0)$.

Let $\#\phi(a_1...a_i)$ = the number of satisfying assignments of $\phi(a_1...a_i)$

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

coNP \subseteq IP: weaker but similar, show $\#SAT \in IP \ (\#SAT \text{ is coNP-hard})$

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in IP$

Proof: First some notation. Assume ϕ has m variables $x_1, ..., x_m$.

Let $\phi(0)$ be ϕ with $x_1=0$ (0 substituted for x_1) 0 = FALSE and 1 = TRUE.

Let $\phi(a_1...a_i)$ be ϕ with $x_1=a_1$, ..., $x_i=a_i$ for $a_1,\ldots,\ a_i\in\{0,1\}.$

Call $a_1, ..., a_i$ presets. The remaining $x_{i+1}, ..., x_m$ stay as unset variable $1. \# \phi(a_1...a_i) = 1$

Let $\#\phi$ = the number of satisfying assignments of ϕ .

Let $\#\phi(0)$ = the number of satisfying assignments of $\phi(0)$.

Let $\#\phi(a_1...a_i)$ = the number of satisfying assignments of $\phi(a_1...a_i)$

Two identities

1.
$$\#\phi(a_1...a_i) =$$

 $\#\phi(a_1...a_i0) + \#\phi(a_1...a_i1)$

2.
$$\#\phi(a_1...a_m) = \phi(a_1...a_m)$$

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in IP$, we won't prove

coNP \subseteq IP: weaker but similar, show $\#SAT \in IP \ (\#SAT \text{ is coNP-hard})$

 $\#SAT = \{\langle \phi, k \rangle \mid \text{Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Theorem: $\#SAT \in IP$

Proof: First some notation. Assume ϕ has m variables $x_1, ..., x_m$.

Let $\phi(0)$ be ϕ with $x_1=0$ (0 substituted for x_1) 0 = FALSE and 1 = TRUE.

Let $\phi(a_1...a_i)$ be ϕ with $x_1=a_1$, ..., $x_i=a_i$ for $a_1,\ldots,\ a_i\in\{0,1\}$.

Call $a_1, ..., a_i$ presets. The remaining $x_{i+1}, ..., x_m$ stay as unset variable $1. \# \phi(a_1...a_i) = 1$

Let $\#\phi$ = the number of satisfying assignments of ϕ .

Let $\#\phi(0)$ = the number of satisfying assignments of $\phi(0)$.

Let $\#\phi(a_1...a_i)$ = the number of satisfying assignments of $\phi(a_1...a_i)$

Two identities

1.
$$\#\phi(a_1...a_i) =$$

 $\#\phi(a_1...a_i0) + \#\phi(a_1...a_i1)$

2.
$$\#\phi(a_1...a_m) = \phi(a_1...a_m)$$

Check-in 26.1

Surprising Theorem: IP = PSPACE

IP \subseteq PSPACE: standard simulation, similar to NP \subseteq PSPACE

PSPACE \subseteq IP: show $TQBF \in$ IP, we won't prove

coNP \subseteq IP: weaker but similar, show $\#SAT \in IP \ (\#SAT \text{ is co}_{Let} \phi = (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2})$

 $\#SAT = \{\langle \phi, k
angle \mid ext{ Boolean formula } \phi ext{ has exactly } k ext{ satisfying assign}$

Theorem: $\#SAT \in \mathbb{P}$

Proof: First some notation. Assume ϕ has m variables x_1, \ldots, x_m .

Let $\phi(0)$ be ϕ with $x_1 = 0$ (0 substituted for x_1) 0 = FALSE and 1 = TRUE.

Let $\phi(a_1...a_i)$ be ϕ with $x_1 = a_1$, ..., $x_i = a_i$ for $a_1, ..., a_i \in \{0,1\}$.

Call $a_1, ..., a_i$ presets. The remaining $x_{i+1}, ..., x_m$ stay as unset variable 1. $\#\phi(a_1...a_i) =$

Let # ϕ = the number of satisfying assignments of ϕ .

Let $\#\phi(0)$ = the number of satisfying assignments of $\phi(0)$.

Let $\#\phi(a_1...a_i)$ = the number of satisfying assignments of $\phi(a_1...a_i)$

Check-in 26.1

Let
$$\phi = (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2})$$

Check all that are true:

a) #
$$\phi=1$$

a)
$$\#\phi = 1$$
 b) $\#\phi = 2$

c)
$$\#\phi(0) = 1$$
 d) $\#\phi(0) = 2$

d)
$$\#\phi(0) = 2$$

e)
$$\#\phi(00) = 0$$
 f) $\#\phi(00) = 1$

f)
$$\#\phi(00) = 1$$

Two identities

1.
$$\#\phi(a_1...a_i) =$$

$$\#\phi(a_1...a_i0) + \#\phi(a_1...a_i1)$$

2.
$$\#\phi(a_1...a_m) = \phi(a_1...a_m)$$

Check-in 26.1

Theorem: $\#SAT \in IP$

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

Theorem: $\#SAT \in IP$

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

0) P sends $\#\phi$; V checks $k = \#\phi$

Theorem: $\#SAT \in IP$

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(0)$, $\#\phi(1)$; V checks $\#\phi = \#\phi(0) + \#\phi(1)$

Theorem: $\#SAT \in IP$

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(0)$, $\#\phi(1)$; V checks $\#\phi = \#\phi(0) + \#\phi(1)$
- 2) P sends $\#\phi(00)$, $\#\phi(01)$, $\#\phi(10)$, $\#\phi(11)$; V checks $\#\phi(0) = \#\phi(00) + \#\phi(01)$ $\#\phi(1) = \#\phi(10) + \#\phi(11)$

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                               \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\overline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0)=\phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                             \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(0\cdots 01)
                                                    V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                             \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(0\cdots 01)
                                                    V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0)=\phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                             \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(0\cdots 01)
                                                    V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                              \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 0}0) + \#\phi(\underline{0\cdots 0}1)
                                                     V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                 \#\phi(0\cdots0)
                                                                                                                                           \#\phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                              \#\phi(1) = \#\phi(10) + \#\phi(11)
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(0\cdots 01)
                                                     V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                        \#\phi(1\cdots 1)
                                                                                                               \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends \#\phi(0), \#\phi(1); V checks \#\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                         red =
                                                                              \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                       incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(0\cdots 01)
                                                     V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                        \#\phi(1\cdots 1)
                                                                                                               \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                            red =
                                                                                                                                        k \neq \# \phi
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                         incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                           \#\phi(1\cdots 1)
                                                                                                                 \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                            red =
                                                                                                                                        k \neq \# \phi
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                         incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                           \#\phi(1\cdots 1)
                                                                                                                 \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                            red =
                                                                                                                                        k \neq \# \phi
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                         incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                           \#\phi(1\cdots 1)
                                                                                                                 \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                          red =
                                                                                                                                     k \neq \# \phi
                                                                               \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                       incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(0\cdots 01)
                                                     V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                       \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                        \#\phi(1\cdots 1)
                                                                                                                \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                            red =
                                                                                                                                        k \neq \# \phi
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                         incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                                           \#\phi(1\cdots 1)
                                                                                                                 \#\phi(0\cdots 0)
           V accepts if all checks are correct. Otherwise V rejects.
```

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                            red =
                                                                                                                                        k \neq \# \phi
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                          incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                  \#\phi(0\cdots 0)
                                                                                                                                           \#\phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
                                                                                                                  \phi(0\cdots 0) ... \psi(1\cdots 1)
```

Problem: Exponential. Will fix.

```
Theorem: \#SAT \in IP
Proof: Protocol for V and (the honest) P on input \langle \phi, k \rangle
     P sends \#\phi; V checks k = \#\phi
     P sends #\phi(0), #\phi(1); V checks #\phi = \#\phi(0) + \#\phi(1)
     P sends \#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11); V checks \#\phi(0) = \#\phi(00) + \#\phi(01)
                                                                                                                            red =
                                                                                                                                        k \neq \# \phi
                                                                                \#\phi(1) = \#\phi(10) + \#\phi(11)
                                                                                                                          incorrect
m) P sends \#\phi(0\cdots 0), ..., \#\phi(1\cdots 1); V checks \#\phi(0\cdots 0) = \#\phi(\overline{0\cdots 00}) + \#\phi(\underline{0\cdots 01})
                                                      V checks \#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)
(m+1) V checks \#\phi(0\cdots 0) = \phi(0\cdots 0)
                        \#\phi(1\cdots 1) = \phi(1\cdots 1)
                                                                                                                  \#\phi(0\cdots 0)
                                                                                                                                           \#\phi(1\cdots 1)
           V accepts if all checks are correct. Otherwise V rejects.
                                                                                                                  \phi(0\cdots 0) ... \psi(1\cdots 1)
```

Problem: Exponential. Will fix.

$$a \wedge b \rightarrow a \times b = ab$$

 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

$$\begin{array}{ccc} a \wedge b & \rightarrow & a \times b = ab \\ \overline{a} & \rightarrow & (1-a) \\ a \vee b & \rightarrow & a+b-ab \\ \phi & \rightarrow & p_{\phi} \end{array}$$

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

```
\begin{array}{ll} a \wedge b & \rightarrow & a \times b = ab \\ \overline{a} & \rightarrow & (1-a) \\ a \vee b & \rightarrow & a+b-ab \\ \phi & \rightarrow & p_{\phi} \ \mathrm{degree}(p_{\phi}) \leq \left| \phi \right| \\ \\ \mathrm{Let} \ \mathbb{F}_{\!q} = \left\{ 0,\!1,\ldots,\,q-1 \right\} \ \mathrm{for} \ \mathrm{prime} \ q > 2^m \ \mathrm{be} \ \mathrm{a} \ \mathrm{finite} \ \mathrm{field} \ (+,\times \, \mathrm{mod} \ q) \ \mathrm{and} \ \mathrm{let} \ a_1,\ldots, \ a_i \in \mathbb{F}_{\!q} \end{array}
```

Simulate \land and \lor with + and ×

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

Let $\mathbb{F}_q = \left\{0,1,\ldots,\ q-1\right\}$ for prime $q>2^m$ be a finite field $(+,\times \mod q)$ and let $a_1,\ldots,\ a_i\in\mathbb{F}_q$. Let $\phi(a_1\ldots a_i)=p_\phi$ where $x_1\cdots x_i=a_1\cdots a_i$ and remaining $x_{i+1},\ldots,\ x_m$ stay as unset variables.

$$\begin{array}{ll} a \wedge b & \rightarrow & a \times b = ab \\ \overline{a} & \rightarrow & (1-a) \\ a \vee b & \rightarrow & a+b-ab \\ \phi & \rightarrow & p_{\phi} \ \mathrm{degree}(p_{\phi}) \leq \left|\phi\right| \\ \mathrm{Let} \ \mathbb{F}_q = \left\{0,1,\ldots,\ q-1\right\} \ \mathrm{for} \ \mathrm{prime} \ q > 2^m \ \mathrm{be} \ \mathrm{a} \ \mathrm{finite} \ \mathrm{field} \ (+,\times \ \mathrm{mod} \ q) \ \mathrm{and} \ \mathrm{let} \ a_1,\ldots,\ a_i \in \mathbb{F}_q \\ \mathrm{Let} \ \phi \left(a_1 \ldots a_i\right) = p_{\phi} \ \mathrm{where} \ x_1 \cdots x_i = a_1 \cdots a_i \ \mathrm{and} \ \mathrm{remaining} \ x_{i+1}, \ \ldots, \ x_m \ \mathrm{stay} \ \mathrm{as} \ \mathrm{unset} \ \mathrm{variables}. \\ \mathrm{Let} \ \theta \left(a_1 \ldots a_i\right) = \sum \ \phi (a_1 \ldots a_m) \\ \mathrm{Let} \ a_{i+1},\ldots,\ a_m \in \{0,1\} \end{array}$$

Simulate \land and \lor with + and ×

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

Let

Let
$$\mathbb{F}_q = \left\{0,1,...,\ q-1\right\}$$
 for prime $q>2^m$ be a finite field (+, × mod q) and let $a_1,...,\ a_i \in \mathbb{F}_q$

Let $\phi(a_1...a_i) = p_{\phi}$ where $x_1 \cdots x_i = a_1 \cdots a_i$ and remaining x_{i+1}, \ldots, x_m stay as unset variables.

$$\#\phi(a_1... a_i) = \sum_{i+1} \phi(a_1... a_m)$$

$$a_{i+1}, ..., a_m \in \{0,1\}$$

Important: For Boolean $a_1 \dots a_i$ the values of $\phi(a_1 \dots a_i)$ and $\#\phi(a_1 \dots a_i)$ are unchanged from the previous definition.

Simulate \land and \lor with + and ×

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

Let

Let
$$\mathbb{F}_q = \big\{0,1,\ldots,\ q-1\big\}$$
 for prime $q>2^m$ be a finite field (+, × mod q) and let $a_1,\ldots,\ a_i \in \mathbb{F}_q$

Let $\phi(a_1...a_i) = p_{\phi}$ where $x_1 \cdots x_i = a_1 \cdots a_i$ and remaining x_{i+1}, \ldots, x_m stay as unset variables.

$$\#\phi(a_1...a_i) = \sum_{i=1}^{n} \phi(a_1...a_m)$$

$$a_{i+1}, ..., a_m \in \{0,1\}$$

Important: For Boolean $a_1 \dots a_i$ the values of $\phi(a_1 \dots a_i)$ and $\#\phi(a_1 \dots a_i)$ are unchanged from the previous definition.

We have <u>extended</u> these functions to non-Boolean values

Simulate \land and \lor with + and ×

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

Let
$$\mathbb{F}_q = \big\{0,1,...,\ q-1\big\}$$
 for prime $q>2^m$ be a finite field (+, × mod q) and let $a_1,...,\ a_i \in \mathbb{F}_q$

Let $\phi(a_1...a_i) = p_{\phi}$ where $x_1 \cdots x_i = a_1 \cdots a_i$ and remaining x_{i+1}, \ldots, x_m stay as unset variables.

$$\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$$

Let

$$a_{i+1}, ..., a_m \in \{0,1\}$$

identities still true

1.
$$\#\phi(a_1...a_i) = \#\phi(a_1...a_i0) + \#\phi(a_1...a_i1)$$

2. $\#\phi(a_1...a_m) = \phi(a_1...a_m)$

Important: For Boolean $a_1 \dots a_i$ the values of $\phi(a_1 \dots a_i)$ and $\#\phi(a_1 \dots a_i)$ are unchanged from the previous definition.

We have <u>extended</u> these functions to non-Boolean values

Simulate \land and \lor with + and ×

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

Let
$$\mathbb{F}_q = \big\{0,1,...,\ q-1\big\}$$
 for prime $q>2^m$ be a finite field (+, × mod q) and let $a_1,...,\ a_i \in \mathbb{F}_q$

Let $\phi(a_1...a_i)=p_{\phi}$ where $x_1\cdots x_i=a_1\cdots a_i$ and remaining x_{i+1},\ldots,x_m stay as unset variables.

$$\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$$

Let

$$a_{i+1}, ..., a_m \in \{0,1\}$$

identities still true

1.
$$\#\phi(a_1...a_i) =$$
 $\#\phi(a_1...a_i0) + \#\phi(a_1...a_i1)$

2.
$$\#\phi(a_1...a_m) = \phi(a_1...a_m)$$

Important: For Boolean $a_1 \dots a_i$

the values of $\phi(a_1...a_i)$ and $\#\phi(a_1...a_i)$ are unchanged from the previous definition.

are arrenanged from the previous defini

We have <u>extended</u> these functions to non-Boolean values

Simulate \land and \lor with + and ×

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$
 $\phi \rightarrow p_{\phi} \operatorname{degree}(p_{\phi}) \leq |\phi|$

Let $\mathbb{F}_q = \big\{0,1,\ldots,\ q-1\big\}$ for prime $q>2^m$ be a finite field (+, × mod q) and let $a_1,\ldots,\ a_i \in \mathbb{F}_q$

Let $\phi(a_1...a_i)=p_{\phi}$ where $x_1\cdots x_i=a_1\cdots a_i$ and remaining x_{i+1},\ldots,x_m stay as unset variables.

Let

$$\#\phi(a_1... a_i) = \sum \phi(a_1... a_m)$$

$$a_{i+1}, ..., a_m \in \{0,1\}$$

identities still true

1.
$$\#\phi(a_1...a_i) = \\ \#\phi(a_1...a_i0) + \#\phi(a_1...a_i1)$$

2. $\#\phi(a_1...a_m) = \phi(a_1...a_m)$

Check-in 26.2

Let $\phi = (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2})$. Check all that are true:

a)

$$p_{\phi} = (x_1 + x_2 - x_1 x_2) \left((1 - x_1) + (1 - x_2) - (1 - x_1)(1 - x_2) \right)$$

b)
$$p_{\phi} = (x_1 + x_2)((1 - x_1) + (1 - x_2))$$

c)
$$p_{\phi} = (x_1 + x_2 - 2x_1x_2)$$

Theorem: $\#SAT \in IP$

Theorem: $\#SAT \in IP$

Theorem: $\#SAT \in IP$

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

O) P sends # ϕ ; V checks $k = \#\phi$

Theorem: $\#SAT \in IP$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(0)$, $\#\phi(1)$; V checks $\#\phi = \#\phi(0) + \#\phi(1)$

Theorem: $\#SAT \in IP$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$]

Theorem: $\#SAT \in IP$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$] V checks $\#\phi = \#\phi(0) + \#\phi(1)$ [by evaluating polynomial for $\#\phi(z)$]

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

Theorem: $\#SAT \in IP$

Recall

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$] V checks $\#\phi = \#\phi(0) + \#\phi(1)$ [by evaluating polynomial for $\#\phi(z)$]

$$\#\phi(a_1... a_i) = \sum \phi(a_1... a_m)$$

Recall

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

Theorem: $\#SAT \in \mathbb{P}$

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- P sends $\#\phi$; V checks $k = \#\phi$ 0)
- P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$] 1)

V checks $\#\phi = \#\phi(0) + \#\phi(1)$ [by evaluating polynomial for $\#\phi(z)$]

[P needs to show $\#\phi(z)$ is correct]

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

 $a_{i+1}, ..., a_m \in \{0,1\}$

Theorem: $\#SAT \in \mathbb{P}$

Recall

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$]

V checks $\#\phi = \#\phi(0) + \#\phi(1)$ [by evaluating polynomial for $\#\phi(z)$]

V sends random $r_1 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1)$ is correct]

 $\#\phi(a_1...a_i) = \sum_{i=1}^{n} \phi(a_1...a_m)$

 $a_{i+1}, ..., a_m \in \{0,1\}$

Theorem: $\#SAT \in \mathbb{P}$

Recall

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_\phi \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

Theorem: $\#SAT \in \mathbb{P}$

Recall

 $a_{i+1}, \dots, a_m \in \{0,1\}$

- **Proof:** Protocol for V and (the honest) P on input $\langle \phi, k \rangle$
- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_\phi \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1) = \#\phi(r_10) + \#\phi(r_11)$ [by evaluating polynomial for $\#\phi(r_1z)$]

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

Theorem: $\#SAT \in P$

Recall

 $a_{i+1}, ..., a_m \in \{0,1\}$

- **Proof:** Protocol for V and (the honest) P on input $\langle \phi, k \rangle$
- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_{\phi} \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1)=\#\phiig(r_10ig)+\#\phiig(r_11ig)$ [by evaluating polynomial for $\#\phiig(r_1zig)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

Theorem: $\#SAT \in \mathbb{P}$

Recall

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1) = \#\phi(r_10) + \#\phi(r_11)$ [by evaluating polynomial for $\#\phi(r_1z)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

•

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

Theorem: $\#SAT \in IP$

Recall

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

- **Proof:** Protocol for V and (the honest) P on input $\langle \phi, k \rangle$
- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z V checks $\#\phi(r_1)=\#\phi(r_10)+\#\phi(r_11)$ [by evaluating polynomial for $\#\phi(r_1z)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

m) P sends $\#\phi(r_1\cdots r_{m-1}z)$ as a polynomial in z

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

Theorem: $\#SAT \in IP$

Recall

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall deg $p_{\phi} \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1)=\#\phiig(r_10ig)+\#\phiig(r_11ig)$ [by evaluating polynomial for $\#\phiig(r_1zig)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

m) P sends $\#\phi(r_1\cdots r_{m-1}z)$ as a polynomial in z

V checks $\#\phi(r_1\cdots r_{m-1})=\#\phi(r_1\cdots r_{m-1}0)+\#\phi(r_1\cdots r_{m-1}1)$

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

Theorem: $\#SAT \in \mathbb{P}$

Recall

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_\phi \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1)=\#\phiig(r_10ig)+\#\phiig(r_11ig)$ [by evaluating polynomial for $\#\phiig(r_1zig)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

•

m) P sends $\#\phi(r_1\cdots r_{m-1}z)$ as a polynomial in z

V checks
$$\#\phi(r_1\cdots r_{m-1})=\#\phi(r_1\cdots r_{m-1}0)+\#\phi(r_1\cdots r_{m-1}1)$$

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

Theorem: $\#SAT \in IP$

Recall

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_\phi \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1)=\#\phiig(r_10ig)+\#\phiig(r_11ig)$ [by evaluating polynomial for $\#\phiig(r_1zig)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

•

 \overline{m}) P sends $\#\phi(\overline{r_1}\cdots\overline{r_{m-1}}z)$ as a polynomial in z

V checks
$$\#\phi(r_1\cdots r_{m-1})=\#\phi\bigl(r_1\cdots r_{m-1}0\bigr)+\#\phi\bigl(r_1\cdots r_{m-1}1\bigr)$$

$$m+1$$
) V checks $\#\phi(r_1\cdots r_m)=\phi(r_1\cdots r_m)$

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

Theorem: $\#SAT \in \mathbb{P}$

Recall

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

- **Proof:** Protocol for V and (the honest) P on input $\langle \phi, k \rangle$
- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_{\phi} \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1) = \#\phi(r_10) + \#\phi(r_11)$ [by evaluating polynomial for $\#\phi(r_1z)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

•

 \overline{m}) P sends $\#\phi(\overline{r_1}\cdots\overline{r_{m-1}}z)$ as a polynomial in z

V checks
$$\#\phi(r_1\cdots r_{m-1})=\#\phi\bigl(r_1\cdots r_{m-1}0\bigr)+\#\phi\bigl(r_1\cdots r_{m-1}1\bigr)$$

$$m+1$$
) V checks $\#\phi(r_1\cdots r_m)=\phi(r_1\cdots r_m)$
V accepts if all checks are correct. Otherwise V rejects.

 $\#\phi(a_1...a_i) = \sum \phi(a_1...a_m)$

 $a_{i+1}, \ldots, a_m \in \{0,1\}$

Theorem: $\#SAT \in \mathbb{P}$

Recall

Proof: Protocol for V and (the honest) P on input $\langle \phi, k \rangle$

- 0) P sends $\#\phi$; V checks $k = \#\phi$
- 1) P sends $\#\phi(z)$ as a polynomial in z [sends coefficients recall $\deg p_\phi \leq |\phi|$] $\text{V checks } \#\phi = \#\phi(0) + \#\phi(1) \text{ [by evaluating polynomial for } \#\phi(z) \text{]}$ $\text{V sends random } r_1 \in \mathbb{F}_q \text{ [P needs to show } \#\phi(r_1) \text{ is correct]}$
- 2) P sends $\#\phi(r_1z)$ as a polynomial in z

V checks $\#\phi(r_1)=\#\phiig(r_10ig)+\#\phiig(r_11ig)$ [by evaluating polynomial for $\#\phiig(r_1zig)$]

V sends random $r_2 \in \mathbb{F}_q$ [P needs to show $\#\phi(r_1r_2)$ is correct]

 \overline{m}) P sends $\#\phi(\overline{r_1}\cdots\overline{r_{m-1}}z)$ as a polynomial in z

V checks
$$\#\phi(r_1\cdots r_{m-1})=\#\phi\bigl(r_1\cdots r_{m-1}0\bigr)+\#\phi\bigl(r_1\cdots r_{m-1}1\bigr)$$

$$m+1$$
) V checks $\#\phi(r_1\cdots r_m)=\phi(r_1\cdots r_m)$
V accepts if all checks are correct. Otherwise V rejects.

Input $\langle \phi, k \rangle$

Input $\langle \phi, k \rangle$

Prover sends

Input $\langle \phi, k \rangle$

Prover sends

Input $\langle \phi, k \rangle$

Prover sends

Verifier sends

$$\#\phi = k$$

Input $\langle \phi, k \rangle$

Prover sends

Verifier sends

$$\#\phi = k$$

$$\#\phi$$

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

Input $\langle \phi, k \rangle$

Prover sends Verifier sends

Verifier checks

 $\#\phi = k$

 $\#\phi$ $\#\phi(z)$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

 $\#\phi(0)$ $\#\phi(1)$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$=3z^d - 5z^{d-1} + \dots + 7$$

Verifier sends

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

Verifier sends

Verifier checks

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

 r_1

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

Verifier sends

r

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1)$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

 $\#\phi(r_1z)=\cdots$

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1)$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$\begin{aligned}
\#\phi(z) \\
&= 3z^d - 5z^{d-1} + \dots + 7
\end{aligned}$$

$$\#\phi(r_1z)=\cdots$$

Verifier checks

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1)$$

$$\#\phi(r_10)$$

$$\#\phi(r_11)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

verifie

Verifier sends

 r_1

$$\#\phi = k$$

$$\#\phi(0) \qquad \#\phi(1)$$

$$\#\phi(r_1) \qquad \qquad +$$

 r_2

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$\#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

Verifier sends

 $\#\phi = k$ $\#\phi(0) + \#\phi(1)$ $\#\phi(r_1)$

#

 $\psi_1(0)$ # $\phi(r_1)$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

Verifier sends

 r_1

 r_2

$$\#\phi = k$$

$$\#\phi(0) \qquad \#\phi(1)$$

$$\#\phi(r_1) \qquad \qquad +$$

$$\phi(r_10) \qquad \#\phi(r_11)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

Verifier sends

 r_1

 r_2

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1) + \#\phi(r_1)$$

$$\#\phi(r_1) + \#\phi(r_1)$$

 r_2

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

Verifier checks

$$r_1$$

$$\#\phi = k$$

$$\#\phi(0) \qquad \#\phi(1)$$

$$\#\phi(r_1) \qquad \qquad +$$

$$\#\phi(r_10) \qquad \#\phi(r_11)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_20) \qquad \#\phi(r_1r_21)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

Verifier checks

Verifier sends

 r_1

 r_2

 $\#\phi = k$ $\#\phi(0) \qquad \#\phi(1)$ $\#\phi(r_1) \qquad \qquad +$ $\#\phi(r_10) \qquad \#\phi(r_11)$ $\#\phi(r_1r_2) \qquad \qquad +$

 $\#\phi(r_1r_20)$

 $\#\dot{\phi}(r_1r_21)$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

Verifier sends

 r_2

$$\#\phi = k$$

$$\#\phi(0) \#\phi(1)$$

$$\#\phi(r_1)$$

$$\#\phi(r_1)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_21)$$

$$\vdots$$

$$\#\phi(r_1\cdots r_{m-1})$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

Verifier sends

 r_2

$$\#\phi = k$$

$$\#\phi(0) \#\phi(1)$$

$$\#\phi(r_1)$$

$$\#\phi(r_1)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1) + \#\phi(r_1)$$

$$\#\phi(r_10) \qquad \#\phi(r_11)$$

$$\#\phi(r_1r_2) \qquad \qquad +$$

$$\#\phi(r_1r_20) \qquad \#\phi(r_1r_2)$$

$$\vdots$$

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0) \qquad \#\phi(r_1\cdots r_{m-1}1)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

$$r_1$$

$$r_2$$

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_{m-1}1)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

$$\#\phi(0)$$
 $\#\phi$

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_{m-1}1)$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi$$

$$#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

$$r_1$$

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1) + \#\phi(r_1)$$

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_20)$$

$$\#\phi(r_1r_21)$$

$$\vdots$$

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_m)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

$$r_1$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

 $\#\phi(1)$

Verifier sends

$$r_2$$

$$\#\phi(r_{1})$$

$$\#\phi(r_{1}0)$$

$$\#\phi(r_{1}r_{2})$$

$$\#\phi(r_{1}r_{2}0)$$

$$\#\phi(r_{1}r_{2}1)$$

$$\#\phi(r_1\cdots r_{m-1})\\ \#\phi(r_1\cdots r_{m-1}0)\\ \#\phi(r_1\cdots r_{m-1}1)\\ \#\phi(r_1\cdots r_m)\\ \phi(r_1\cdots r_m)$$

 $\#\phi(0)$

accept

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

$$r_1$$

$$r_2$$

$$\#\phi = k$$

$$\#\phi(0) + \#\phi(1)$$

$$\#\phi(r_1) + \#\phi(r_11)$$

If k is correct, V will accept.

$$\#\phi(r_1r_2)$$

$$\#\phi(r_1r_20) \qquad \#\phi(r_1r_21)$$

$$\vdots$$

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0) \qquad \#\phi(r_1\cdots r_{m-1}1)$$

$$\#\phi(r_1\cdots r_m)$$

$$\phi(r_1\cdots r_m)$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier sends

 $\#\phi(0)$

$$r_1$$

accept

$$\#\phi(r_{1})$$

$$\#\phi(r_{1}0)$$

$$\#\phi(r_{1}r_{2})$$

$$\#\phi(r_{1}r_{2}0)$$

$$\#\phi(r_{1}r_{2}1)$$

 $\#\phi = k$

 $\#\phi(1)$

If *k* is correct, V will accept.

If *k* is wrong, V probably will reject, whatever P does.

$$\#\phi(r_{1}\cdots r_{m-1})$$

$$\#\phi(r_{1}\cdots r_{m-1}0)$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\phi(r_{1}\cdots r_{m})$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

$$r_1$$

accept

#
$$\phi(0)$$
 # $\phi(1)$
$\phi(r_1)$
$\phi(r_10)$ # $\phi(r_11)$
$\phi(r_1r_2)$
$\phi(r_1r_20)$ # $\phi(r_1r_21)$

$$\#\phi(r_{1}\cdots r_{m-1})$$

$$\#\phi(r_{1}\cdots r_{m-1}0)$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\phi(r_{1}\cdots r_{m})$$

 $\#\phi = k$

If *k* is wrong, V probably will reject, whatever P does.

Input $\langle \phi, k \rangle$

Prover sends

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

accept

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_m)$$

$$\#\phi(r_1\cdots r_m)$$

$$\phi(r_1\cdots r_m)$$

$$\#\phi = k$$

$$\phi(0) = \phi(1)$$

$$\#\phi(r_1)$$

If *k* is correct, V will accept.

If *k* is wrong, V probably will reject, whatever P does.

Input $\langle \phi, k \rangle$

Prover sends

$\#\phi$

$$#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

Verifier sends

accept

 $\#\phi(0)$

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_m)$$

$$\#\phi(r_1\cdots r_m)$$

$$\phi(r_1\cdots r_m)$$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

Verifier sends

$$r_1$$

accept

$$\#\phi(0)$$
 $\#\phi(1)$
 $\#\phi(r_1)$
 $\#\phi(r_10)$ $\#\phi(r_1r_2)$
 $\#\phi(r_1r_20)$ $\#\phi(r_1r_21)$

$$\begin{array}{c} \vdots \\ \#\phi(r_1\cdots r_{m-1}) \\ \#\phi(r_1\cdots r_{m-1}0) & \#\phi(r_1\cdots r_{m-1}1) \\ \#\phi(r_1\cdots r_m) \\ \phi(r_1\overset{||}{\cdots}r_m) \end{array}$$

If *k* is wrong, V probably will reject, whatever P does.

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

 $\#\phi = k$

Verifier sends

$$r_1$$

accept

 $\#\phi(0)$

If *k* is correct, V will accept.

$$\#\phi(r_{1}\cdots r_{m-1})$$

$$\#\phi(r_{1}\cdots r_{m-1}0)$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\phi(r_{1}\cdots r_{m})$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$(\#\phi(z))$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

$$r_1$$

accept

$$\#\phi(r_1r_20) \qquad \#\phi(r_1r_21)$$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

$$r_1$$

$$r_2$$

accept

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

$$r_1$$

accept

#
$$\phi(0)$$
 # $\phi(1)$
$\phi(r_1)$
$\phi(r_10)$ # $\phi(r_11)$
$\phi(r_1r_2)$

 $\#\phi = k$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

Verifier sends

accept

 $\#\phi = k$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$\#\phi(z)$$

$$= 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

Verifier sends

$$r_1$$

$$r_2$$

accept

#
$$\phi(0)$$
 # $\phi(1)$
$\phi(r_1)$
$\phi(r_10)$ # $\phi(r_11)$
$\phi(r_1r_2)$

$$(r_1)$$

If *k* is wrong, V probably will reject, whatever P does.

If k is correct, V will accept.

$$\#\phi(r_{1}\cdots r_{m-1})$$

$$\#\phi(r_{1}\cdots r_{m-1}0)$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\phi(r_{1}\cdots r_{m})$$

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$-3z - 3z + \cdots +$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

 $\#\phi = k$

Verifier sends

$$r_1$$

$$r_2$$

accept

If k is correct, V will accept. If *k* is wrong, V probably will

reject, whatever P does.

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

Verifier sends

$$r_1$$

accept

#
$$\phi(0)$$
 # $\phi(1)$
$\phi(r_1)$
+
 $\phi(r_10)$ # $\phi(r_11)$
$\phi(r_1r_2)$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier sends

$$r_1$$

accept

 $\#\phi(0)$

 $\#\phi = k$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

$$#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

Verifier sends

$$r_1$$

accept

If k is correct, V will accept. If *k* is wrong, V probably will reject, whatever P does.

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_{m-1}1)$$

$$\#\phi(r_1\cdots r_m)$$

Input $\langle \phi, k \rangle$

Prover sends

$$#\phi(z) = 3z^d - 5z^{d-1} + \dots + 7$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier sends

$$r_1$$

accept

#
$$\phi(0)$$
 # $\phi(1)$
$\phi(r_1)$
$\phi(r_10)$ # $\phi(r_1r_2)$
$\phi(r_1r_20)$ # $\phi(r_1r_21)$

 $\#\phi = k$

If k is correct, V will accept.

Input $\langle \phi, k \rangle$

Prover sends

$$\#\phi(z)$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier sends

$$r_1$$

reject

 $\#\phi = k$

If k is correct, V will accept.

$$\#\phi(r_{1}\cdots r_{m-1})$$

$$\#\phi(r_{1}\cdots r_{m-1}0)$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\#\phi(r_{1}\cdots r_{m})$$

$$\phi(r_{1}\cdots r_{m})$$

Input $\langle \phi, k \rangle$

Prover sends

 $\#\phi$

$$\#\phi(z)$$

$$\#\phi(r_1z)=\cdots$$

$$\#\phi(r_1r_2z)=\cdots$$

$$\#\phi(r_1\cdots r_{m-1}z)=\cdots$$

Verifier checks

 $\#\phi = k$

Verifier sends

$$r_1$$

reject

If
$$k$$
 is correct, V will accept.

$$\#\phi(r_1\cdots r_{m-1})$$

$$\#\phi(r_1\cdots r_{m-1}0)$$

$$\#\phi(r_1\cdots r_m)$$

$$\#\phi(r_1\cdots r_m)$$

$SAT \in IP$ — correctness
Claim: (1) $\langle \phi, k \rangle \in \#SAT \rightarrow Pr[(V \leftrightarrow P) accepts \langle \phi, k \rangle] \ge \frac{2}{3}$

(2) $\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$

$SAT \in IP$ — correctness Claim: (1) $\langle \phi, k \rangle \in \#SAT \rightarrow Pr[(V \leftrightarrow P) accepts \langle \phi, k \rangle] \geq \frac{2}{3}$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

$$\#SAT \subset \mathsf{IP-correctness}$$
 Claim: (1) $\langle \phi, k \rangle \in \#SAT \to \mathsf{Pr} [(\mathsf{V} \leftrightarrow \mathsf{P}) \ \mathsf{accepts} \ \langle \phi, k \rangle] \geq \frac{2}{3}$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

(2) If V accepts then $\#\phi(r_1 \cdots r_m)$ is correct even though $\#\phi$ is wrong

- # $SAT \in IP$ correctness
 Claim: (1) $\langle \phi, k \rangle \in \#SAT \rightarrow Pr[(V \leftrightarrow P) accepts \langle \phi, k \rangle] \ge \frac{2}{3}$
 - (2) $\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$
- Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).
- (2) If V accepts then $\#\phi(r_1\cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

$$\#SAT \in \mathsf{IP-correctness}$$
 Claim: (1) $\langle \phi, k \rangle \in \#SAT \to \mathsf{Pr} [(\mathsf{V} \leftrightarrow \mathsf{P}) \ \mathsf{accepts} \ \langle \phi, k \rangle] \ge \frac{2}{3}$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

(2) If V accepts then
$$\#\phi(r_1\cdots r_m)$$
 is correct even though $\#\phi$ is wrong $\#\phi(r_1\cdots r_i)$ is correct at some first stage i .

#
$$SAT \in IP$$
 - correctness
Claim: (1) $\langle \phi, k \rangle \in \#SAT \rightarrow Pr[(V \leftrightarrow P) accepts \langle \phi, k \rangle] \ge \frac{2}{3}$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

(2) If V accepts then
$$\#\phi(r_1\cdots r_m)$$
 is correct even though $\#\phi$ is wrong $\#\phi(r_1\cdots r_i)$ is correct at some first stage i .

$$\#\phi(r_1\cdots r_i)$$
 \vdots

#
$$SAT \in IP$$
—correctness
Claim: (1) $\langle \phi, k \rangle \in \#SAT \rightarrow Pr[(V \leftrightarrow P) accepts \langle \phi, k \rangle] \ge \frac{2}{3}$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

(2) If V accepts then $\#\phi(r_1\cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

s wrong :
$$\#\phi(r_1\cdots r_{i-1})$$

$$\#\phi(r_1\cdots r_{i-1}0) \qquad \#\phi(r_1\cdots r_{i-1}1)$$

$$\#\phi(r_1\cdots r_i)$$
 :

#
$$SAT \in IP$$
—correctness
Claim: (1) $\langle \phi, k \rangle \in \#SAT \rightarrow Pr[(V \leftrightarrow P) accepts \langle \phi, k \rangle] \ge \frac{2}{3}$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then
$$\#\phi(r_1\cdots r_m)$$
 is correct even though $\#\phi$ is wrong
$$\#\phi(r_1\cdots r_i) \text{ is correct at some first stage } i.$$

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}1) \qquad \#\phi(r_1\cdots r_{i-1}1)$$

$$\#\phi(r_1\cdots r_i) \qquad \#\phi(r_1\cdots r_i)$$

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then $\#\phi(r_1\cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}z) \qquad - \qquad \#\phi(r_1\cdots r_{i-1}0) \qquad \#\phi(r_1\cdots r_{i-1}1)$$

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}1) \qquad \#\phi(r_1\cdots r_{i-1}1)$$

$$\vdots$$
 Pr [agree at random $r_i\in\mathbb{F}_q$] $\leq \frac{\deg{\operatorname{ree}}}{q}\leq \frac{|\phi|}{2^m} \qquad \vdots$

Pr [agree at random
$$r_i \in \mathbb{F}_q$$
] $\leq \frac{\text{degree}}{q} \leq \frac{\left|\phi\right|}{2^m}$

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then $\#\phi(r_1\cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

$$(r_1\cdots r_i) \text{ is correct at some first stage } i. \\ \#\phi(r_1\cdots r_{i-1}z) & \#\phi(r_1\cdots r_{i-1}z) & ---\#\phi(r_1\cdots r_{i-1}0) & \#\phi(r_1\cdots r_{i-1}1) \\ & \#\phi(r_1\cdots r_i) & \#\phi(r_1\cdots r_i) & \vdots \\ \text{Pr [agree at random } r_i \in \mathbb{F}_q] & \leq \frac{\deg{\operatorname{ree}}}{q} \leq \frac{|\phi|}{2^m} & \vdots \\ \text{Agree ment is present to the correct.}$$

$$\text{Pr [agree at random } r_i \in \mathbb{F}_q] \leq \frac{\text{degree}}{q} \leq \frac{\left|\phi\right|}{2^m}$$

Agreement is necessary for $\#\phi(r_1\cdots r_i)$ to be correct

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then $\#\phi(r_1 \cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}z) \qquad - \#\phi(r_1\cdots r_{i-1}0) \qquad \#\phi(r_1\cdots r_{i-1}1)$$

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}1)$$

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}z) \qquad \vdots$$

$$\text{Pr [agree at random } r_i \in \mathbb{F}_q] \leq \frac{\deg \operatorname{ree}}{q} \leq \frac{|\phi|}{2^m} \qquad \vdots$$

$$\text{Pr [agree at random } r_i \in \mathbb{F}_q] \leq \frac{\text{degree}}{q} \leq \frac{\left|\phi\right|}{2^m}$$

Agreement is necessary for $\#\phi(r_1\cdots r_i)$ to be correct So P is "lucky" at stage *i* if agreement occurs.

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then
$$\#\phi(r_1\cdots r_m)$$
 is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i .

$$(r_1\cdots r_i) \text{ is correct at some first stage } i.$$

$$\#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}z) \qquad \#\phi(r_1\cdots r_{i-1}1) \qquad \#\phi(r_1\cdots r_i)$$

$$\text{Pr [agree at random } r_i\in\mathbb{F}_q] \leq \frac{\deg{\operatorname{ree}}}{q} \leq \frac{|\phi|}{2^m} \qquad \vdots$$

Pr [agree at random
$$r_i \in \mathbb{F}_q$$
] $\leq \frac{\text{degree}}{q} \leq \frac{|\phi|}{2^m}$

Agreement is necessary for $\#\phi(r_1\cdots r_i)$ to be correct So P is "lucky" at stage *i* if agreement occurs.

Pr [agree at some stage
$$i$$
] $\leq \frac{m |\phi|}{2^m} \leq \frac{1}{m}$ for large m

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \to \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then $\#\phi(r_1\cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

$$\text{Pr [agree at random } r_i \in \mathbb{F}_q] \leq \frac{\text{degree}}{q} \leq \frac{\left|\phi\right|}{2^m}$$

Agreement is necessary for $\#\phi(r_1\cdots r_i)$ to be correct So P is "lucky" at stage *i* if agreement occurs.

Pr [agree at some stage
$$i$$
] $\leq \frac{m|\phi|}{2^m} \leq \frac{1}{m}$ for large m

Therefore, for any prover \tilde{P} Pr [(V \leftrightarrow \widetilde{P}) accepts $\langle \phi, k \rangle$] $\leq \frac{1}{2}$ }

Claim: (1)
$$\langle \phi, k \rangle \in \#SAT \to \Pr[(V \leftrightarrow P) \text{ accepts } \langle \phi, k \rangle] \ge \frac{2}{3}$$

(2)
$$\langle \phi, k \rangle \notin \#SAT \rightarrow \text{ for any prover } \widetilde{P} \text{ Pr } [(V \leftrightarrow \widetilde{P}) \text{ accepts } \langle \phi, k \rangle] \leq \frac{1}{3} \}$$

Proof: (1) All Verifier checks are correct (with the honest P) so V always accepts (Pr = 1).

(2) If V accepts then $\#\phi(r_1\cdots r_m)$ is correct even though $\#\phi$ is wrong So $\#\phi(r_1\cdots r_i)$ is correct at some first stage i.

$$\text{Pr [agree at random } r_i \in \mathbb{F}_q] \leq \frac{\text{degree}}{q} \leq \frac{\left|\phi\right|}{2^m}$$

Agreement is necessary for $\#\phi(r_1\cdots r_i)$ to be correct So P is "lucky" at stage *i* if agreement occurs.

Pr [agree at some stage
$$i$$
] $\leq \frac{m |\phi|}{2^m} \leq \frac{1}{m}$ for large m

Therefore, for any prover \tilde{P} Pr [(V \leftrightarrow \widetilde{P}) accepts $\langle \phi, k \rangle$] $\leq \frac{1}{2}$ }

Finished $\#SAT \in IP$ and $coNP \subseteq IP$

Finished $\#SAT \in IP$ and $coNP \subseteq IP$

Additional subjects:

18.405/6.841 Advanced complexity F2021

18.425/6.875 Cryptography F2021

6.842 Randomness and Computation?

Finished $\#SAT \in IP$ and $coNP \subseteq IP$

Additional subjects:

18.405/6.841 Advanced complexity F2021

18.425/6.875 Cryptography F2021

6.842 Randomness and Computation?