Observaciones y conclusiones parte 1 del laboratorio

Mayo, 2025

Teoría Aplicada

$$V = \frac{v_R + v_L}{2}$$
 (velocidad lineal)
$$\omega = \frac{v_R - v_L}{L}$$
 (velocidad angular)

Las velocidades v_L y v_R se estiman como proporcionales al PWM.

Estructura del Código

- Variables globales: robot_x, robot_y, robot_theta, PWM actual, tiempo de última actualización.
- setMotorSpeed(motor, speed_pwm): controla dirección y velocidad, y actualiza el PWM actual.
- setup(): inicializa pines, comunicación serie y realiza un retardo inicial de 15 s.
- loop(): calcula dt, actualiza velocidad lineal y angular, posición y orientación, normaliza θ , y muestra los datos por el Monitor Serie.

Comportamiento del Robot en la Prueba

- 0-3 s: avance recto con PWM 150 en ambas ruedas.
- 3–5 s: giro en el lugar (PWM 150 izquierda, -150 derecha).
- 5 s en adelante: parada total (PWM 0 ambos).

Ejecución de Prueba y Observaciones

- El robot se conectó al notebook mediante un cable USB de 60 cm.
- Se observó gran influencia de la superficie del suelo.
- Las pruebas exitosas se realizaron sobre la misma superficie que la calibración de MAX_MOTOR_SPEED_MPS, lo cual permitió coherencia en los resultados.

1 Resultados Finales y Comparación

Estimación del Arduino

- $X_{\text{est}} \approx 1.159 \text{ m} (115.9 \text{ cm})$
- $Y_{\rm est} \approx 0.00 \text{ m}$
- $\theta_{\rm est} \approx +39.1^{\circ}$

Medición Real

- $X_{\text{real}} = 1.43 \text{ m} (143 \text{ cm})$
- $Y_{\text{real}} = -0.35 \text{ m } (-35 \text{ cm})$
- $\theta_{\rm real} = -13.6^{\circ}$

Comparación y Análisis de Errores

Parámetro	Estimado	Real	Error (Real - Estimado)
X	$1.159~\mathrm{m}$	1.43 m	+0.271 m (+27.1 cm)
Y	$0.00 \mathrm{\ m}$	-0.35 m	-0.35 m (-35 cm)
θ	$+39.1^{\circ}$	-13.6°	\approx -52.7 $^{\circ}$

- Error en X (+27.1 cm): El robot avanzó más de lo estimado. Posible subestimación de MAX_MOTOR_SPEED_MPS o mejores condiciones de prueba.
- Error en Y (-35 cm): Indica desviación lateral no prevista, causada por movimiento o giro imperfecto.
- Error en θ (52.7°): Puede ser debido a una rotación mucho menor a la estimada, o desviación en el giro.

Conclusiones Generales

La odometría basada en cinemática diferencial y PWM es útil para comprender localización en robótica móvil, pero es susceptible a errores acumulativos (drift).

Principales fuentes de error y análisis de mejora

- Suposición de linealidad entre PWM y velocidad real.
- Deslizamiento de ruedas, especialmente en giros.
- Variaciones en el voltaje de la batería.

- Diferencias entre superficie de calibración y prueba.
- Asimetrías mecánicas entre motores o estructura del robot.

Estos experimentos que realizamos, resaltó la importancia de una calibración precisa y un entorno de prueba consistente. Asimismo, evidenció la necesidad de sensores de retroalimentación más precisos (como *encoders*) y/o la fusión de sensores (por ejemplo, combinando una IMU) para mejorar la estimación de posición en robótica móvil.