

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2007.

Nome:		
Assinatura:		

Observações:

- 1. A prova é acompanhada de uma tabela da distribuição Normal;
- 2. É permitido o uso de máquina de calcular;
- 3. Todos os cálculos têm que ser mostrados passo a passo para a questão ser considerada;
- 4. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas;
- 5. Você pode usar lápis para responder as questões;
- 6. Ao final da prova devolva as folhas de questões e as de respostas;
- 7. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões serão ignoradas.

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

Primeira questão (2,5 pontos)

Uma densidade de probabilidade é dada por P(x) = C f(x), onde f(x) é dada pela figura abaixo (onde não houver indicação a função vale zero) e C é uma constante.

a) Escreva a expressão da função f(x); (0,5 pontos) Solução:

$$f(x) = \begin{cases} \frac{x}{2} + \frac{1}{2}, se(0 \le X < 1) \\ 1, se(1 \le X < 2) \\ -x + 3, se(2 \le X \le 3) \end{cases}$$

b) Calcule C de tal forma que P(x) satisfaça as condições de P(x) ser uma densidade de probabilidade. (1,0 ponto)

Solução:

Integrando cada parte da função, obtemos

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{x}{2} + \frac{1}{2} \right) dx = \left(\frac{x^{2}}{4} + \frac{x}{2} \right) |_{0}^{1} = \left(\frac{1}{4} + \frac{1}{2} \right) = \frac{3}{4}$$

$$\int_{0}^{1} f(x) dx = \int_{0}^{2} 1 dx = |x||_{1}^{2} = 2 - 1 = 1$$

$$\int_{0}^{3} f(x) dx = \int_{0}^{3} (-x + 3) dx = \left(-\frac{x^{2}}{2} + 3x \right) |_{0}^{3} = -\frac{9}{2} + 9 - \left(-\frac{4}{2} + 6 \right) = \frac{1}{2}$$

Para P(x) seja distribuição de probabilidades, teremos que fazer com que C seja tal que a soma das integrais acima seja 1. Assim temos que C = 4/9. Este valor deverá ser usado nos cálculos abaixo.

Usando o valor achado para C:

c) Calcule o valor médio;

(0,5 pontos)

Por definição, a média será igual a

$$\int_{0}^{3} x P(x) dx = \int_{0}^{3} \frac{4}{9} x f(x) dx = \frac{4}{9} \left[\int_{0}^{1} \left(\frac{x^{2}}{2} + \frac{x}{2} \right) dx + \int_{1}^{2} x dx + \int_{2}^{3} \left(-x^{2} + 3x \right) dx \right]$$

ou seja,

$$\mu = \frac{4}{9} \left[\left(\frac{x^3}{6} + \frac{x^2}{4} \right) \Big|_0^1 + \left(\frac{x^2}{2} \right) \Big|_1^2 + \left(-\frac{x^3}{3} + 3\frac{x^2}{2} \right) \Big|_2^3 \right] = \frac{4}{9} \frac{37}{12} = 1,3703$$

d) Calcule a moda.

(0,5 pontos)

Como o valor mais frequente é 4/9 (lembre-se 4/9 f(x)) e P(x) toma este valor entre 1 e 2, qualquer valor neste intervalo é o valor da moda.

Segunda questão (2,5 pontos)

Um conjunto de dados foi modelado segundo a distribuição Normal. A média dos dados é 10,3 e a variância 8,23.

Calcule:

- a) P(X > 11) (1,0 ponto)
- b) P(X < 11) (0.5 ponto)
- c) P(11 < X < 12) (0,5 ponto)
- d) P(X > 12) (0,5 ponto)

Solução:

Partindo dos valores de média e variância apresentados, basta usar as propriedades de simetria da distribuição Normal e fazer a mudança de variáveis para utilizar a tabela ao final da prova.

$$P(X>11)=P(\frac{X-\mu}{\sigma}>\frac{11-10.3}{\sqrt{8.23}})=P(Z>0,2440)$$
 a)
$$P(Z>0,2440)=0,5-P(0\leq Z<0,2440)=0,5-0,0948=0,4052$$

b) Aqui temos é o resultado é o complemento do resultado anterior, ou seja, P(X<11)=1-P(x>11)=1-0.4052=0.5948

c)
$$P(11 < X < 12) = P(\frac{11 - 10, 3}{\sqrt{8, 23}} \le \frac{X - \mu}{\sigma} \le \frac{12 - 10, 3}{\sqrt{8, 23}}) = P(0, 2440 \le Z \le 0, 5925)$$
$$= P(Z \le 0, 5925) - P(Z \le 0.2440) = 0, 2224 - 0, 0948 = 0.1277$$

d)
$$P(X>12)=1-P(X\le12)=1-P(\frac{X-\mu}{\sigma}\le\frac{12-10,3}{\sqrt{8,23}})$$

=0,5- $P(Z\le0,5925)=0,5-0,2224=0,2776$

Terceira questão (2,5 pontos)

Um fabricante de sabonetes estava sob investigação devido à denúncias que os seus produtos declarados com 90g estavam abaixo do peso. Pelas normas, para um produto declarado de peso 90g a variância deve ser 9g². Foi colhida uma amostra de 100 sabonetes em vários pontos de venda e se constatou que os pesos estavam entre 87,4g e 92,3g. Calcule a probabilidade da amostra estudada estar dentro das normas.

$$\begin{array}{l} \mu = 90\,g \\ \sigma^2 = 9g^2 \\ Amostra = 100 \\ P(87,4 \leq X \leq 92,3) = P(\frac{87,4 - 90}{\sqrt{\frac{9}{100}}} \leq \frac{X - \mu}{\sqrt{\frac{\sigma^2}{n}}} \leq \frac{92,3 - 90}{\sqrt{\frac{9}{100}}}) \\ P(87,4 \leq X \leq 92,3) = P(\frac{-2,6}{0,3} \leq \frac{X - \mu}{\sqrt{\frac{\sigma^2}{n}}} \leq \frac{2,3}{0,3}) \\ P(87,4 \leq X \leq 92,3) = P(-8,67 \leq Z \leq 7,67) = 1 \end{array}$$

Ou seja, a amostra estudada está dentro das normas.

Quarta questão (2,5 pontos)

Vários hospitais estavam sendo avaliados para uma possível ampliação. Para isto colheram-se dados quanto ao tempo de ocupação de leitos. Suponha que o modelo Normal é adequado à análise assim como, devido à experiências anteriores, há indícios de uma variância igual a 8,1 (dias)². Num determinado hospital os dados colhidos indicavam

uma média de 6,4 dias para 80 internações. Estime a média de dias de internação deste hospital com coeficiente de confiança de 95%.

$$ar{X}=6,4$$
 $\sigma^2=81$
 $Amostra=80$
 $\gamma=95$
 $Z\gamma_1=-1,96$
 $Z\gamma_2=1,96$
 $IC(\mu,95)=\left[6,4-1,96\sqrt{\frac{8,1}{80}};6,4+1,96\sqrt{\frac{8,1}{80}}\right]$
 $IC(\mu,95)=[5,776;7,023]$

Tabela da distribuição Normal $N(0,\!1)$

Z _c	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,035
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,075
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,114
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,151
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,187
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,222
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,254
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,285
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,313
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,338
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,362
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,383
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,401
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,417
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,431
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,444
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,454
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,463
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,470
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,476
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,481
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,485
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,489
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,491
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,493
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,495
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,496
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,497
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,498
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,498
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,499
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,499
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,499
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,499

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.