

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Aluno: Ernani de Souza Cubas Neto

Seed utilizado(CPF): 728078902

Trabalho Final

CLASSIFICAÇÃO

Veículo

Técnica	Parâmetro	Acurácia			Ma	atriz d	e Conf	fusão	
SVM – Melhor	C=100 Sigma=0.01	0.8235	١.						
modelo					bus	opel	saab	van	
				bus	37	1	0	1	
				opel	0	23	13	0	
				saab	0	14	31	0	
				van	1	0	0	49	
			L						
RNA – Melhor	size=11 decay=0.4	0.8118	١.		1	1	1		
modelo					bus	opel	saab	van	
				bus	38	0	0	1	
				opel	0	24	14	1	
				saab	0	14	30	2	
				van	0	0	0	46	
			Ľ						
SVM – CV	C=1	0.7647	[1	1		
	Sigma=0.0801345				bus	opel	saab	van	
				bus	37	0	0	1	

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

			opel	0	21	18	0	
			saab	0	16	23	0	
			van	1	1	3	49	
				•				'
SVM – Hold-out	C=1	0.7647						ı
	Sigma=0.0801345			bus	opel	saab	van	
			bus	37	0	0	1	
			opel	0	21	18	0	
			saab	0	16	23	0	
			van	1	1	3	49	
RF – Melhor	mtry=9	0.7471						
modelo	may-3	0.7471		bus	opel	saab	van	
			bus	37	3	1	1	
			opel	0	18	17	0	
			saab	0	15	23	0	
			van	1	2	3	49	
RF – CV	mtry=2	0.7412						
IVI CV	111ct y = 2	0.7412		bus	opel	saab	van	
			bus	37	2	0	1	
			opel	0	20	19	0	
			saab	0	15	20	0	
			van	1	1	5	49	
RF – Hold-out	mtry=2	0.7294						
Thomas out		3.,234		bus	opel	saab	van	
			bus	37	2	0	1	

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

			_						
				opel	0	18	20	0	
				saab	0	17	20	0	
			$\ [$	van	1	1	4	49	
KNN	k=1	0.6529	\vdash						
,		0.0323			bus	opel	saab	van	
				bus	30	2	4	1	
				opel	1	18	23	0	
				saab	7	16	16	2	
			$\ $	van	0	2	1	47	
RNA – Hold-out	sizo=E docay=0 1	0.6412	H						
NNA – Hold-out	size=5 decay=0.1	0.0412			bus	opel	saab	van	
				bus	34	3	3	1	
				opel	3	29	34	4	
				saab	0	0	1	0	
				van	1	6	6	45	
RNA – CV	sizo=E dosay=0.1	0.5882							
I KIVA – CV	size=5 decay=0.1	0.3002			bus	opel	saab	van	
			$\ \ $	bus	32	1	0	0	
				opel	3	19	24	0	
			$\ \ $	saab	1	7	8	9	
			$\ \ $	van	2	11	12	41	
			۱'						1

Melhor modelo: SVM C=100 Sigma=0.01

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Novos casos:

	Comp	Circ ÷	DCirc *	RadRa 🗦	PrAxisRa ÷	MaxLRa ÷	ScatRa ÷	Elong ÷	PrAxisRect •	MaxLRect ÷	ScVarMaxis =
1	100	48	83	178	72	10	162	42	20	159	176
2	91	40	84	141	57	9	149	45	18	143	170
3	92	50	106	209	66	10	207	32	23	160	223

ScVarmaxis +	RaGyr ÷	Ske wMaxis ÷	Ske wmaxis ÷	Kurtmaxis †	KurtMaxis ‡	HollRa 🗦	predict.melhor_modelo
400	184	70	6	16	187	197	van
330	70	72	9	14	189	199	van
635	220	73	14	9	188	230	saab

Código (em R):

```
library("caret")
library(mlbench)
library(mice)
##Maquina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado_maquina\\Bases_de_teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos_IA/pos_ia_aprendizado_maquina/Bases
_de_teste')
barra ="/"
dados <- read.csv(file = paste('veiculos','veiculos.csv',sep</pre>
=barra))
dados_novos <- read.csv(file =</pre>
paste('veiculos','veiculos_novos.csv',sep =barra))
### retira id
dados$a <- NULL
dados_novos$a <- NULL
###Cria arquivo de treino e teste
set.seed(728078902)
ran <- sample(1:nrow(dados), 0.8 * nrow(dados))</pre>
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
treino <- dados[ran,]</pre>
teste <- dados[-ran,]</pre>
########## KNN
set.seed(728078902)
tuneGrid \leftarrow expand.grid(k = c(1))
knn <- train(tipo ~ ., data = treino, method =
"knn",tuneGrid=tuneGrid)
knn
predict.knn <- predict(knn, teste)</pre>
confusionMatrix(predict.knn, as.factor(teste$tipo))
########## KNN
########## RNA
set.seed(728078902)
rna <- train(tipo~.,data=treino,method="nnet",trace=FALSE)</pre>
rna
predict.rna <-predict(rna,teste)</pre>
confusionMatrix(predict.rna,as.factor(teste$tipo))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
rna cv <-
train(tipo~.,data=treino,method="nnet",trace=FALSE,trControl=ctrl)
rna cv
predict.rna_cv <- predict(rna_cv,teste)</pre>
confusionMatrix(predict.rna cv,as.factor(teste$tipo))
###Parametrização
set.seed(728078902)
grid <-expand.grid(size=seq(from=1,to=45,by=10),decay=seq(from=0.1,</pre>
to=0.9, by=0.3)
rna_par <- train(form=tipo~., data=treino, method="nnet",</pre>
tuneGrid=grid, trControl=ctrl, maxit=2000, trace=FALSE)
rna par
predict.rna_par <- predict(rna_par,teste)</pre>
confusionMatrix(predict.rna_par,as.factor(teste$tipo))
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
############################ SVM
set.seed(728078902)
svm <- train(tipo~.,data=treino,method="svmRadial")</pre>
svm
predict.svm <- predict(svm,teste)</pre>
confusionMatrix(predict.svm,as.factor(teste$tipo))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv", number=10)</pre>
svm cv <-
train(tipo~.,data=treino,method="svmRadial",trControl=ctrl)
svm cv
predict.svm_cv <- predict(svm_cv,teste)</pre>
confusionMatrix(predict.svm_cv,as.factor(teste$tipo))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1,2,10,50,100), sigma=c(.01,.015,0.2))
svm par <-
train(tipo~.,data=treino,method="svmRadial",trControl=ctrl,tuneGrid=
tuneGrid)
svm par
predict.svm_par <- predict(svm_par,teste)</pre>
confusionMatrix(predict.svm par,as.factor(teste$tipo))
#################### Random Forest
set.seed(728078902)
rf <- train(tipo~.,data=treino,method="rf")</pre>
rf
predict.rf <- predict(rf,teste)</pre>
confusionMatrix(predict.rf,as.factor(teste$tipo))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv",number=10)</pre>
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
rf cv <- train(tipo~.,data=treino,method="rf",trControl=ctrl)</pre>
predict.rf_cv <- predict(rf_cv,teste)</pre>
confusionMatrix(predict.rf cv,as.factor(teste$tipo))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(2, 5, 7, 9))
rf par <-
train(tipo~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tuneGri
d)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
confusionMatrix(predict.rf_par,as.factor(teste$tipo))
########## Random Forest
######### Novos casos
dados_novos$tipo <-NULL</pre>
predict.melhor_modelo <- predict(svm_par,dados_novos)</pre>
dados_novos <-cbind(dados_novos,predict.melhor_modelo)</pre>
View(dados_novos)
########## Novos casos
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Imposto de Renda

Técnica	Parâmetro	Acurácia	M	atriz d	e Conf	usão
RNA – Hold-out	size=5 decay=0.1	1				
				sim	não	talvez
			sim	5	0	0
			não	0	2	0
			talvez	0	0	3
RNA – CV	size=5 decay=0.1	1				
				sim	não	talvez
			sim	5	0	0
			não	0	2	0
			talvez	0	0	3
RNA – Melhor modelo	size=11 decay=0.1	1				
				sim	não	talvez
			sim	5	0	0
			não	0	2	0
			talvez	0	0	3
KNN	k=1	1				
				sim	não	talvez
			sim	5	0	0
			não	0	2	0
			talvez	0	0	3

SVM – Hold-out	C=1	1					
	Sigma=0.8047658			sim	não	talvez	
			sim	5	0	0	
			não	0	2	0	
			talvez	0	0	3	
SVM – CV	C=0.5	1					
SVIVI CV	Sigma=0.8047658			sim	não	talvez	
			sim	5	0	0	
			não	0	2	0	
			talvez	0	0	3	
SVM – Melhor modelo	C=1 Sigma=0.2	1					
				sim	não	talvez	
			sim	5	0	0	
			não	0	2	0	
			talvez	0	0	3	
RF – Hold-out	mtry=4	1					
	,,			sim	não	talvez	
			sim	5	0	0	
			não	0	2	0	
			talvez	0	0	3	
RF – CV	mtry=2	1					
	IIILIY=2		-		sim	não	talvez
			sim	5	0	0	

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

			não	0	2	0	
			talvez	0	0	3	
RF – Melhor modelo	mtry=2	1					
				sim	não	talvez	
			sim	5	0	0	
			não	0	2	0	
			talvez	0	0	3	
			<u>-</u>				

Melhor modelo: Todos com mesmo resultado

Novos casos:

rest [‡]	ecivil [‡]	rendimento [‡]	predict.melhor_modelo
Sim	Solteiro	99000	Sim
Nao	Casado	9999	Talvez
Nao	Solteiro	73200	Talvez

Código (em R):

```
library("caret")
library(mlbench)
library(mice)

##Maquina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado_maquina\\Bases_de_teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos_IA/pos_ia_aprendizado_maquina/Bases_de_teste')
barra ="/"
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
dados <- read.csv(file = paste('IR','IR.csv',sep =barra))</pre>
dados_novos <- read.csv(file = paste('IR','IR_novos.csv',sep</pre>
=barra))
### Cria arquivos de treino e teste
set.seed(728078902)
ran <- sample(1:nrow(dados), 0.8 * nrow(dados))</pre>
treino <- dados[ran,]</pre>
teste <- dados[-ran,]</pre>
########### KNN
set.seed(728078902)
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(sonegador~., data = treino, method =</pre>
"knn",tuneGrid=tuneGrid)
predict.knn <- predict(knn, teste)</pre>
confusionMatrix(predict.knn, as.factor(teste$sonegador))
########### KNN
############# RNA
###Hold-out
set.seed(728078902)
rna <- train(sonegador~.,data=treino,method="nnet",trace=FALSE)</pre>
rna
predict.rna <-predict(rna,teste)</pre>
confusionMatrix(predict.rna,as.factor(teste$sonegador))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
rna cv <-
train(sonegador~.,data=treino,method="nnet",trace=FALSE,trControl=ct
rl)
rna cv
predict.rna_cv <- predict(rna_cv,teste)</pre>
confusionMatrix(predict.rna_cv,as.factor(teste$sonegador))
###Parametrização
```



```
set.seed(728078902)
grid <-expand.grid(size=seq(from=1,to=45,by=10),decay=seq(from=0.1,</pre>
to=0.9, by=0.3)
rna par <- train(form=sonegador~., data=treino, method="nnet",</pre>
tuneGrid=grid, trControl=ctrl, maxit=2000, trace=FALSE)
rna_par
predict.rna_par <- predict(rna_par,teste)</pre>
confusionMatrix(predict.rna par,as.factor(teste$sonegador))
############# RNA
############ SVM
###Hold-out
set.seed(728078902)
svm <- train(sonegador~.,data=treino,method="svmRadial")</pre>
svm
predict.svm <- predict(svm,teste)</pre>
confusionMatrix(predict.svm,as.factor(teste$sonegador))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv", number=10)</pre>
SVM CV <-
train(sonegador~.,data=treino,method="svmRadial",trControl=ctrl)
svm cv
predict.svm_cv <- predict(svm_cv,teste)</pre>
confusionMatrix(predict.svm_cv,as.factor(teste$sonegador))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1,2,10,50,100), sigma=c(.01,.015,0.2))
svm par <-
train(sonegador~.,data=treino,method="svmRadial",trControl=ctrl,tune
Grid=tuneGrid)
svm_par
predict.svm_par <- predict(svm_par,teste)</pre>
confusionMatrix(predict.svm_par,as.factor(teste$sonegador))
############## SVM
#################### Random Forest
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
set.seed(728078902)
rf <- train(sonegador~.,data=treino,method="rf")</pre>
rf
predict.rf <- predict(rf,teste)</pre>
confusionMatrix(predict.rf,as.factor(teste$sonegador))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv",number=10)</pre>
rf_cv <- train(sonegador~.,data=treino,method="rf",trControl=ctrl)</pre>
predict.rf cv <- predict(rf cv,teste)</pre>
confusionMatrix(predict.rf_cv,as.factor(teste$sonegador))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(2, 5, 7, 9))
rf par <-
train(sonegador~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tu
neGrid)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
confusionMatrix(predict.rf_par,as.factor(teste$sonegador))
################# Random Forest
########### Novos casos
dados_novos$sonegador <-NULL
predict.melhor modelo <- predict(rna,dados novos)</pre>
dados_novos <-cbind(dados_novos,predict.melhor_modelo)</pre>
View(dados_novos)
######### Novos casos
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Diabetes

Técnica	Parâmetro	Acurácia	Mat	riz de Conf	usão
SVM – Melhor	C=1 Sigma=0.015	0.7597		1	
modelo				neg	pos
			neg	85	25
			pos	12	32
DNA Malbor	si-s 11 dess. 0.4	0.7597			
RNA – Melhor modelo	size=11 decay=0.4	0.7597		nog	nos
				neg	pos
			neg	81	21
			pos	16	36
SVM – CV	C=0.25	0.7403			
30101 – CV	Sigma=0.163625	0.7403		neg	pos
			neg	86	29
			pos	11	28
SVM – Hold-out	C=0.5	0.7338			
JVW Hold out	Sigma=0.163625	0.7330		neg	pos
			neg	85	29
			pos	12	28
KNN	k=9	0.7273			
KININ	K-9	0.7273		neg	pos
			neg	83	28
			pos	14	29
				1	
RF – Hold-out	mtry=2	0.7208			
				neg	pos

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

			neg	84	30
			pos	13	27
RF – Melhor	mtry=2	0.7143			
modelo				neg	pos
			neg	83	30
			pos	14	27
RF – CV	mtry=2	0.7013			
				neg	pos
			neg	85	34
			pos	12	23
RNA – CV	size=3 decay=0.1	0.6494		I	
				neg	pos
			neg	66	23
			pos	31	34
RNA – Hold-out	size=3 decay=0.1	0.6429			
				neg	pos
			neg	75	33
			pos	22	24

Melhor modelo: SVM C=1 Sigma=0.015

Análise ROC:

	X	Υ	distancia
knn	0.3255814	0.7477477	0.4118670
rna	0.4782609	0.6944444	0.5675365
rna_cv	0.4769231	0.7415730	0.5424390
rna par	0.3076923	0.7941176	0.3702190

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA - Prof Jaime Wojciechowski

	X	Υ	distancia	
svm	0.3000000	0.7456140	0.3933347	
svm_cv	0.2820513	0.7478261	0.3783446	
svm_par	0.2727273	0.7727273	0.3550113	<- Menor distância
rf	0.3250000	0.7368421	0.4181831	
rf_cv	0.3428571	0.7142857	0.4463000	
rf_par	0.3414634	0.7345133	0.4325280	

Gráfico ROC:

Novos casos:

preg0nt [‡]	glucose [‡]	pressure [‡]	triceps [‡]	insulin [‡]	mass [‡]	pedigree [‡]	age 🗦	predict.melhor_modelo
7	130	72	37	0	33.6	0.980	50	pos
2	81	66	29	0	32.6	0.351	31	neg
5	23	64	0	0	23.3	0.672	15	neg

Código (em R):

```
library("caret")
library(mlbench)
library(mice)

##Maquina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
prendizado maquina\\Bases de teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos IA/pos ia aprendizado maguina/Bases
_de_teste')
barra ="/"
dados <- read.csv(file = paste('diabetes', 'diabetes.csv', sep</pre>
=barra))
dados_novos <- read.csv(file =</pre>
paste('diabetes','diabetes_novos.csv',sep =barra))
dados$num <- NULL</pre>
dados novos$num <-NULL
### Cria arquivos de treino e teste
set.seed(728078902)
ran <- sample(1:nrow(dados), 0.8 * nrow(dados))</pre>
treino <- dados[ran,]</pre>
teste <- dados[-ran,]</pre>
########## KNN
set.seed(728078902)
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(diabetes~., data = treino, method =</pre>
"knn",tuneGrid=tuneGrid)
knn
predict.knn <- predict(knn, teste)</pre>
confusionMatrix(predict.knn, as.factor(teste$diabetes))
########## KNN
############# RNA
###Hold-out
set.seed(728078902)
rna <- train(diabetes~., data=treino, method="nnet",trace=FALSE)</pre>
predict.rna <- predict(rna, teste)</pre>
confusionMatrix(predict.rna, as.factor(teste$diabetes))
###Cross-validation
```



```
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
rna_cv <- train(diabetes~., data=treino, method="nnet",trace=FALSE,</pre>
trControl=ctrl)
rna cv
predict.rna_cv <- predict(rna_cv, teste)</pre>
confusionMatrix(predict.rna_cv, as.factor(teste$diabetes))
######## Parametrização
set.seed(728078902)
grid \leftarrow expand.grid(size = seq(from = 1, to = 45, by = 10),decay =
seq(from = 0.1, to = 0.9, by = 0.3))
rna par <- train(form = diabetes~.,data = treino,method =</pre>
"nnet",tuneGrid = grid,trControl = ctrl,maxit = 2000,trace=FALSE)
rna par
predict.rna_par <- predict(rna_par, teste)</pre>
confusionMatrix(predict.rna_par, as.factor(teste$diabetes))
########### RNA
########### SVN
###Hold-out
set.seed(728078902)
svm <- train(diabetes~., data=treino, method="svmRadial")</pre>
svm
predict.svm <- predict(svm, teste)</pre>
confusionMatrix(predict.svm, as.factor(teste$diabetes))
#### Cross-validation
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
svm_cv <- train(diabetes~., data=treino, method="svmRadial",</pre>
trControl=ctrl)
svm cv
predict.svm_cv <- predict(svm_cv, teste)</pre>
confusionMatrix(predict.svm_cv, as.factor(teste$diabetes))
#### Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, .015)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
(0.2)
svm_par <- train(diabetes~., data=treino, method="svmRadial",</pre>
trControl=ctrl, tuneGrid=tuneGrid)
svm par
predict.svm_par <- predict(svm_par, teste)</pre>
confusionMatrix(predict.svm_par, as.factor(teste$diabetes))
################# Random Forest
set.seed(728078902)
rf <- train(diabetes~.,data=treino,method="rf")</pre>
predict.rf <- predict(rf,teste)</pre>
confusionMatrix(predict.rf,as.factor(teste$diabetes))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv",number=10)</pre>
rf_cv <- train(diabetes~.,data=treino,method="rf",trControl=ctrl)</pre>
rf cv
predict.rf_cv <- predict(rf_cv,teste)</pre>
confusionMatrix(predict.rf_cv,as.factor(teste$diabetes))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(2, 5, 7, 9))
train(diabetes~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tun
eGrid)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
confusionMatrix(predict.rf_par,as.factor(teste$diabetes))
################ Random Forest
########### Novos casos
dados_novos$diabetes <-NULL</pre>
predict.melhor_modelo <- predict(svm_par,dados_novos)</pre>
dados novos <-cbind(dados novos,predict.melhor modelo)</pre>
View(dados_novos)
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
########## Novos casos
########################## Analise ROC
cmknn <- confusionMatrix(predict.knn,as.factor(teste$diabetes))</pre>
cmrna <- confusionMatrix(predict.rna,as.factor(teste$diabetes))</pre>
cmrna_cv <-
confusionMatrix(predict.rna_cv,as.factor(teste$diabetes))
cmrna par <-
confusionMatrix(predict.rna_par,as.factor(teste$diabetes))
cmsvm <- confusionMatrix(predict.svm,as.factor(teste$diabetes))</pre>
cmsvm_cv <-
confusionMatrix(predict.svm cv,as.factor(teste$diabetes))
cmsvm par <-
confusionMatrix(predict.svm_par,as.factor(teste$diabetes))
cmrf <- confusionMatrix(predict.rf,as.factor(teste$diabetes))</pre>
cmrf_cv <- confusionMatrix(predict.rf_cv,as.factor(teste$diabetes))</pre>
cmrf par <-
confusionMatrix(predict.rf_par,as.factor(teste$diabetes))
####Funçao
df.ROC <- data.frame(</pre>
        modelo =
c('knn','rna','rna_cv','rna_par','svm','svm_cv','svm_par','rf','rf_c
v','rf_par'),
        X = c(rep(0,10)),
        Y = c(rep(0,10)),
        distancia = c(rep(0,10))
  )
func ROC <- function(df,cm,modelo) {</pre>
  VP \leftarrow cm[1,1]
  FP \leftarrow cm[2,1]
  VN \leftarrow cm[2,2]
  FN < -cm[1,2]
  X \leftarrow 1-(VN / (VN+FP))
  Y \leftarrow VP / (VP+FN)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
distancia \leftarrow sqrt(X^2 + (Y-1)^2)
  df[df$modelo==modelo,"X"] <- X</pre>
  df[df$modelo==modelo,"Y"] <- Y</pre>
  df[df$modelo==modelo,"distancia"] <- distancia</pre>
  return (df)
}
df.ROC <- func_ROC(df.ROC,cmknn$table,"knn")</pre>
df.ROC <- func_ROC(df.ROC,cmrna$table,"rna")</pre>
df.ROC <- func ROC(df.ROC,cmrna cv$table,"rna cv")</pre>
df.ROC <- func_ROC(df.ROC,cmrna_par$table,"rna_par")</pre>
df.ROC <- func_ROC(df.ROC,cmsvm$table,"svm")</pre>
df.ROC <- func ROC(df.ROC,cmsvm cv$table,"svm cv")</pre>
df.ROC <- func_ROC(df.ROC,cmsvm_par$table,"svm_par")</pre>
df.ROC <- func_ROC(df.ROC,cmrf$table,"rf")</pre>
df.ROC <- func_ROC(df.ROC,cmrf_cv$table,"rf_cv")</pre>
df.ROC <- func_ROC(df.ROC,cmrf_par$table,"rf_par")</pre>
ggplot(df.ROC, aes(x=X, y=Y, label=modelo)) +
  geom_point() +
  labs(x="X", y="Y", title="Gráfico ROC") + geom_text(hjust=0,
vjust=0)
######################### Analise ROC
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Banco

Técnica	Parâmetro	Acurácia	Matriz de Confusão			
RNA – Hold-out	size=1 decay=0	0.85				
				no	yes	
			no	51	9	
			yes	0	0	
RNA – CV	sizo=1 dosay=10.04	0.85				
KINA – CV	size=1 decay=1e-04	0.65				
				no	yes	
			no	51	9	
			yes	0	0	
RNA – Melhor modelo	size=1 decay=0.7	0.85				
KNA – Wellor Modelo	Size=1 decay=0.7	0.83		no	yes	
			no	51	9	
			yes	0	0	
IZAIAI	1. 0	0.05				
KNN	k=9	0.85		no	yes	
			no	51	9	
			yes	0	0	
			,			
SVM – Hold-out	C=0.25	0.85				
	Sigma=0.03609159			no	yes	
			no	51	9	
			yes	0	0	
SVM – CV	C=0.25	0.85				
	Sigma=0.03609159			no	yes	

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

			no	51	9
			yes	0	0
				'	
RF – Hold-out	mtry=2	0.85		1	
				no	yes
			no	51	9
			yes	0	0
RF – CV	mtry=2	0.85			
				no	yes
			no	51	9
			yes	0	0
SVM – Melhor modelo	C=1 Sigma=0.2	0.8333			
				no	yes
			no	50	9
			yes	1	0
RF – Melhor modelo	mtry=5	0.8333			
				no	yes
			no	50	9
			yes	1	0

Melhor modelo: Excetuando os modelos SVM e RF parametrizados, todos tiveram o mesmo resultado

Novos casos:

age ‡	job [‡]	marital ‡	education †	default ‡	balance ‡	housing ‡	loan ‡	predict.melhor_modelo +
60	unemployed	married	primary	no	2000	yes	yes	no
33	services	married	secondary	yes	3000	yes	no	no
15	management	single	tertiary	no	1350	yes	no	no

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Código (em R):

```
library("caret")
library(mlbench)
library(mice)
##Maquina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado_maquina\\Bases_de_teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos_IA/pos_ia_aprendizado_maquina/Bases
de teste')
barra ="/"
dados <- read.csv(file = paste('banco', 'banco.csv', sep =barra))</pre>
dados_novos <- read.csv(file = paste('banco', 'banco_novos.csv', sep</pre>
=barra))
### Cria arquivos de treino e teste
set.seed(728078902)
ran <- sample(1:nrow(dados), 0.8 * nrow(dados))</pre>
treino <- dados[ran,]</pre>
teste <- dados[-ran,]</pre>
########## KNN
set.seed(728078902)
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(y~., data = treino, method = "knn", tuneGrid=tuneGrid)</pre>
predict.knn <- predict(knn, teste)</pre>
confusionMatrix(predict.knn, as.factor(teste$y))
########## KNN
### Hold-out
set.seed(728078902)
rna <- train(y~., data=treino, method="nnet",trace=FALSE)</pre>
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
predict.rna <- predict(rna, teste)</pre>
confusionMatrix(predict.rna, as.factor(teste$y))
### Cross-validation
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
rna_cv <- train(y~., data=treino, method="nnet",trace=FALSE,</pre>
trControl=ctrl)
rna_cv
predict.rna_cv <- predict(rna_cv, teste)</pre>
confusionMatrix(predict.rna cv, as.factor(teste$y))
### Parametrização
set.seed(728078902)
grid <- expand.grid(size = seq(from = 1, to = 45, by = 10), decay =
seq(from = 0.1, to = 0.9, by = 0.3))
rna_par <- train(form = y~.,data = treino,method = "nnet",tuneGrid =</pre>
grid,trControl = ctrl,maxit = 2000,trace=FALSE)
predict.rna par <- predict(rna par, teste)</pre>
confusionMatrix(predict.rna_par, as.factor(teste$y))
############# RNA
############ SVN
set.seed(728078902)
svm <- train(y~., data=treino, method="svmRadial")</pre>
predict.svm <- predict(svm, teste)</pre>
confusionMatrix(predict.svm, as.factor(teste$y))
#### Cross-validation SVM
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
svm_cv <- train(y~., data=treino, method="svmRadial",</pre>
trControl=ctrl)
svm cv
predict.svm_cv <- predict(svm_cv, teste)</pre>
```

LIEDR

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
confusionMatrix(predict.svm cv, as.factor(teste$y))
#### Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 100)
0.2))
svm_par <- train(y~., data=treino, method="svmRadial",</pre>
trControl=ctrl, tuneGrid=tuneGrid)
svm_par
predict.svm_par <- predict(svm_par, teste)</pre>
confusionMatrix(predict.svm_par, as.factor(teste$y))
########################### SVN
########## Random Forest
set.seed(728078902)
rf <- train(y~.,data=treino,method="rf")</pre>
rf
predict.rf <-predict(rf,teste)</pre>
confusionMatrix(predict.rf,as.factor(teste$y))
##Cross Validation
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
rf_cv <- train(y~.,data=treino,method="rf",trControl=ctrl)</pre>
predict.rf_cv <-predict(rf_cv,teste)</pre>
confusionMatrix(predict.rf_cv,as.factor(teste$y))
##Parametrização
tuneGrid = expand.grid(mtry=c(2,5,7,9))
rf par <-
train(y~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tuneGrid)
rf_par
predict.rf_par <- predict(rf_par,teste)</pre>
confusionMatrix(predict.rf_par,as.factor(teste$y))
########################## Random Forest
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Previsão do Tempo

Técnica	Parâmetro	Acurácia	Matri	, de Co	nfusão
RNA – Hold-out	size=5 decay=0	1	iviatili	L UE CU	เกเนอสบ
NNA – Hold-out	Size-3 decay-0			NAO	SIM
			NAO	4	0
			SIM	0	4
RNA – CV	size=3	1			
MVA – CV	decay=1e-04	1		NAO	SIM
			NAO	4	0
			SIM	0	4
RNA – Melhor modelo	sizo=1 docay=0.01	1			
KIVA – IVIEIIIOI IIIOUEIO	size=1 decay=0.01	1		NAO	SIM
			NAO	4	0
			SIM	0	4
KNN	k=1	1			
KININ	K-1	1		NAO	SIM
			NAO	4	0
			SIM	0	4
		_			
SVM – Melhor modelo	C=2 Sigma=0.2	1		NAO	SIM
			NAO	4	0
			SIM	0	4
		_			
RF – Hold-out	mtry=6	1			
				NAO	SIM

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

			NAO	4	0
			SIM	0	4
RF – CV	mtry=6	1			
				NAO	SIM
			NAO	4	0
			SIM	0	4
RF – Melhor modelo	mtry=5	1			
Kr – Welliof Illodelo	ilitiy-5	1		NAO	SIM
			NAO	4	0
			SIM	0	4
SVM – CV	C=1	0.875			
SVIVI CV	Sigma=0.119708	0.075		NAO	SIM
			NAO	4	1
			SIM	0	3
SVM – Hold-out	C=1	0.875			
John Hold out	Sigma=0.119708	0.075		NAO	SIM
			NAO	4	1
			SIM	0	3

Melhor modelo: Excetuando SVM Hold-Out e com Cross Validation, todos com mesmo resultado

Novos casos:

Ceu [‡]	Temperatura ‡	Umidade ‡	Vento ‡	predict.melhor_modelo ‡
Ensolarado	Elevada	Alta	Sim	SIM
Chuvoso	Elevada	Normal	Sim	NAO
Coberto	Elevada	Alta	Nao	NAO

Disciplina: Laboratório de IA - Prof Jaime Wojciechowski

Código (em R):

```
library("caret")
library("mice")
library(mlbench)
##Maguina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado maquina\\Bases de teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos IA/pos ia aprendizado maquina/Bases
_de_teste')
barra ="/"
dados <- read.csv(file =</pre>
paste('previsao_tempo','previsao_tempo.csv',sep =barra))
dados_novos <- read.csv(file =</pre>
paste('previsao_tempo','previsao_tempo_novos.csv',sep =barra))
### Cria arquivos de treino e teste
set.seed(728078902)
ran <- sample(1:nrow(dados), 0.8 * nrow(dados))</pre>
treino <- dados[ran,]</pre>
teste <- dados[-ran,]</pre>
######### KNN
set.seed(728078902)
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(Chovera~., data = treino, method =</pre>
"knn",tuneGrid=tuneGrid)
knn
predict.knn <- predict(knn, teste)</pre>
confusionMatrix(predict.knn, as.factor(teste$Chovera))
########## KNN
```



```
set.seed(728078902)
rna <- train(Chovera~.,data=treino,method="nnet",trace=FALSE)</pre>
rna
predict.rna <-predict(rna,teste)</pre>
confusionMatrix(predict.rna,as.factor(teste$Chovera))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
rna_cv <-
train(Chovera~.,data=treino,method="nnet",trace=FALSE,trControl=ctrl
)
rna cv
predict.rna_cv <- predict(rna_cv,teste)</pre>
confusionMatrix(predict.rna cv,as.factor(teste$Chovera))
###Parametrização
set.seed(728078902)
grid <-expand.grid(size=seq(from=1,to=45,by=10),decay=seq(from=0.01,</pre>
to=0.9, by=0.3)
rna_par <- train(form=Chovera~., data=treino, method="nnet",</pre>
tuneGrid=grid, trControl=ctrl, maxit=2000, trace=FALSE)
rna par
predict.rna_par <- predict(rna_par,teste)</pre>
confusionMatrix(predict.rna_par,as.factor(teste$Chovera))
############# RNA
############# SVM
set.seed(728078902)
svm <- train(Chovera~.,data=treino,method="svmRadial")</pre>
predict.svm <- predict(svm,teste)</pre>
confusionMatrix(predict.svm,as.factor(teste$Chovera))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv",number=10)</pre>
svm_cv <-
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
train(Chovera~.,data=treino,method="svmRadial",trControl=ctrl)
predict.svm_cv <- predict(svm_cv,teste)</pre>
confusionMatrix(predict.svm cv,as.factor(teste$Chovera))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1,2,10,50,100), sigma=c(.01,.015,0.2))
svm par <-
train(Chovera~.,data=treino,method="svmRadial",trControl=ctrl,tuneGr
id=tuneGrid)
svm par
predict.svm par <- predict(svm par, teste)</pre>
confusionMatrix(predict.svm_par,as.factor(teste$Chovera))
############# SVM
##################### Random Forest
set.seed(728078902)
rf <- train(Chovera~.,data=treino,method="rf")</pre>
predict.rf <- predict(rf,teste)</pre>
confusionMatrix(predict.rf,as.factor(teste$Chovera))
###Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv",number=10)</pre>
rf_cv <- train(Chovera~.,data=treino,method="rf",trControl=ctrl)</pre>
rf_cv
predict.rf cv <- predict(rf cv,teste)</pre>
confusionMatrix(predict.rf_cv,as.factor(teste$Chovera))
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(2, 5, 7, 9))
rf par <-
train(Chovera~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tune
Grid)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

REGRESSÃO

Biomassa

Técnica	Parâmetro	R2	Syx	Pearson	Rmse	MAE
RNA – Melhor	size=9 decay=0.7	0.9711721	145.865	0.9874293	142.1716	63.3358
modelo						
RF – Hold-out	mtry=2	0.954812	200.7104	0.9774692	195.6283	72.58058
SVM – Melhor	C=100	0.9506294	224.3826	0.9802945	218.7012	90.73753
modelo	Sigma=0.01					
RF – Melhor	mtry=9	0.9360046	244.0757	0.9681312	237.8956	86.04137
modelo						
RF – CV	mtry=3	0.934733	249.9613	0.9680431	243.6322	87.5254
KNN	k=1	0.8080971	592.1916	0.9412175	577.197	145.7097
SVM – Hold-out	C=1	0.8076903	300.2824	0.9643472	292.6791	137.6448
	Sigma=0.7524557					
SVM – CV	C=1	0.8076903	300.2824	0.9643472	292.6791	137.6448
	Sigma=0.7524557					
RNA – Hold-out	size=3 decay=0.1	0.5981283	460.4957	0.867414	448.8357	198.1331
RNA – CV	size=3 decay=0.1	0.5981283	460.4957	0.867414	448.8357	198.1331

Melhor modelo: RNA size=9 decay=0.7

Novos casos:

dap [‡]	h	Me [‡]	predict.melhor_caso
6.4	7.0	1.04	44.91187
7.3	10.0	1.04	53.89512
7.8	5.5	1.04	45.05009
12.2	7.5	1.04	65.25170

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Gráfico de resíduos:

Código (em R):

```
library(mlbench)
library(caret)
library(mice)
library(Metrics)

##Maquina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado_maquina\\Bases_de_teste')
barra = "\\"
##Note
setwd('/Users/MPPR/Documents/Pos_IA/pos_ia_aprendizado_maquina/Bases_de_teste')
barra = "\"

dados <- read.csv(file = paste('biomassa', 'biomassa.csv', sep = barra))</pre>
```



```
dados novos <- read.csv(file =</pre>
paste('biomassa','biomassa_novos.csv',sep =barra))
### Cria arquivos de treino e teste
set.seed(728078902)
ind <- createDataPartition(dados$biomassa, p=0.80, list = FALSE)</pre>
treino <- dados[ind,]</pre>
teste <- dados[-ind,]</pre>
### Função R2
F_r2 <- function(observado, predito) {</pre>
  return (1 - (sum((predito-observado)^2) /
sum((predito-mean(observado))^2)))
### Função MAE
F_MAE <- function(observado, predito, base) {</pre>
  return(sum(abs(observado-predito)) / nrow(base))
}
### Função RMSE
F_RMSE <- function(observado, predito, base) {</pre>
  return( sqrt(sum((observado-predito)^2) / nrow(base)) )
}
### Função Syx
F_SYX <- function(observado, predito, base) {</pre>
  val1 = sum((observado-predito)^2)
  val2 = nrow(base) - (length(base)-1)
  return (sqrt(val1 / val2))
}
### Função Pearson
F_PEARSON <- function(observado, predito) {</pre>
  val1 = sum((observado-mean(observado)) * (predito-mean(predito)))
  val2 = sqrt(sum((observado-mean(observado))^2))
  val3 = sqrt(sum((predito-mean(predito))^2))
  return (val1 / (val2 * val3))
}
########### KNN
set.seed(728078902)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(biomassa ~ ., data = treino, method = "knn",
             tuneGrid=tuneGrid)
knn
predict.knn <- predict(knn, teste)</pre>
F r2(teste$biomassa,predict.knn)
F SYX(teste$biomassa,predict.knn,teste)
F_PEARSON(teste$biomassa,predict.knn)
F_RMSE(teste$biomassa,predict.knn,teste)
F_MAE(teste$biomassa,predict.knn,teste)
########## KNN
############# RNA
set.seed(728078902)
rna <- train(biomassa~., data=treino, method="nnet", linout=T,</pre>
trace=FALSE)
rna
predict.rna <- predict(rna, teste)</pre>
F r2(teste$biomassa,predict.rna)
F_SYX(teste$biomassa,predict.rna,teste)
F_PEARSON(teste$biomassa,predict.rna)
F RMSE(teste$biomassa,predict.rna,teste)
F_MAE(teste$biomassa,predict.rna,teste)
### CV
set.seed(728078902)
control <- trainControl(method = "cv", number = 10)</pre>
rna_cv <- train(biomassa~., data=treino, method="nnet",</pre>
trainControl=control, linout=T, trace=F)
predict.rna_cv <- predict(rna_cv, teste)</pre>
F_r2(teste$biomassa,predict.rna_cv)
F_SYX(teste$biomassa,predict.rna_cv,teste)
F_PEARSON(teste$biomassa,predict.rna_cv)
F RMSE(teste$biomassa,predict.rna cv,teste)
F_MAE(teste$biomassa,predict.rna_cv,teste)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
###Parametrização
set.seed(728078902)
tuneGrid \leftarrow expand.grid(size = seq(from = 1, to = 10, by = 1), decay
= seq(from = 0.1, to = 0.9, by = 0.3))
rna_par <- train(biomassa~., data=treino, method="nnet",</pre>
trainControl=control, tuneGrid=tuneGrid, linout=T, MaxNWts=10000,
maxit=2000, trace=F)
rna_par
predict.rna_par <- predict(rna_par, teste)</pre>
F r2(teste$biomassa,predict.rna par)
F_SYX(teste$biomassa,predict.rna_par,teste)
F_PEARSON(teste$biomassa,predict.rna_par)
F RMSE(teste$biomassa,predict.rna par,teste)
F MAE(teste$biomassa,predict.rna par,teste)
############# RNA
############ SVN
set.seed(728078902)
svm <- train(biomassa~., data=treino, method="svmRadial")</pre>
predict.svm <- predict(svm, teste)</pre>
F_r2(teste$biomassa,predict.svm)
F_SYX(teste$biomassa,predict.svm,teste)
F_PEARSON(teste$biomassa,predict.svm)
F RMSE(teste$biomassa,predict.svm,teste)
F_MAE(teste$biomassa,predict.svm,teste)
#### Cross-validation SVM
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
svm_cv <- train(biomassa~., data=treino, method="svmRadial",</pre>
trControl=ctrl)
svm cv
predict.svm_cv <- predict(svm_cv, teste)</pre>
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
F r2(teste$biomassa,predict.svm cv)
F_SYX(teste$biomassa,predict.svm_cv,teste)
F_PEARSON(teste$biomassa,predict.svm_cv)
F RMSE(teste$biomassa,predict.svm cv,teste)
F MAE(teste$biomassa,predict.svm cv,teste)
#### Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, .015)
0.2))
svm_par <- train(biomassa~., data=treino, method="svmRadial",</pre>
trControl=ctrl, tuneGrid=tuneGrid)
svm par
predict.svm_par <- predict(svm_par, teste)</pre>
F r2(teste$biomassa,predict.svm par)
F_SYX(teste$biomassa,predict.svm_par,teste)
F_PEARSON(teste$biomassa,predict.svm_par)
F RMSE(teste$biomassa,predict.svm par,teste)
F_MAE(teste$biomassa,predict.svm_par,teste)
############## SVN
########################## Random Forest
set.seed(728078902)
rf <- train(biomassa~.,data=treino,method="rf")</pre>
rf
predict.rf <- predict(rf,teste)</pre>
F_r2(teste$biomassa,predict.rf)
F_SYX(teste$biomassa,predict.rf,teste)
F PEARSON(teste$biomassa,predict.rf)
F RMSE(teste$biomassa,predict.rf,teste)
F_MAE(teste$biomassa,predict.rf,teste)
###Cross Validation
set.seed(728078902)
ctrl <-trainControl(method="cv", number=10)</pre>
rf_cv <- train(biomassa~.,data=treino,method="rf",trControl=ctrl)</pre>
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
rf cv
predict.rf_cv <- predict(rf_cv,teste)</pre>
F r2(teste$biomassa,predict.rf cv)
F SYX(teste$biomassa,predict.rf cv,teste)
F_PEARSON(teste$biomassa,predict.rf_cv)
F_RMSE(teste$biomassa,predict.rf_cv,teste)
F_MAE(teste$biomassa,predict.rf_cv,teste)
###Parametrização
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(2,5,7,9))
rf par <-
train(biomassa~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tun
eGrid)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
F_r2(teste$biomassa,predict.rf_par)
F_SYX(teste$biomassa,predict.rf_par,teste)
F PEARSON(teste$biomassa,predict.rf par)
F_RMSE(teste$biomassa,predict.rf_par,teste)
F_MAE(teste$biomassa,predict.rf_par,teste)
############# Random Forest
########## Novos Casos
dados novos$biomassa<-NULL
predict.melhor_caso<-predict(rna_par,dados_novos)</pre>
dados novos <-cbind(dados novos,predict.melhor caso)</pre>
View(dados novos)
############ Novos Casos
########################### Gráfico de Resíduos
resid = ((teste$biomassa - predict.rna_par)/teste$biomassa) * 100
plot(resid ~ predict.rna_par,
     xlab="Valor estimado",
     ylab="Residuos (%)",
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Admissão

Técnica	Parâmetro	R2	Syx	Pearson	Rmse	MAE
RF – CV	mtry=2	0.8241163	0.054816	0.94568	0.052531	0.038585
			91	85	86	72
RF – Melhor	mtry=2	0.8168844	0.055532	0.94458	0.053217	0.038692
modelo			85	69	95	55
RF – Hold-out	mtry=2	0.8164555	0.055671	0.94433	0.053351	0.039009
			93	51	23	82
RNA – Melhor	size=9	0.7875726	0.063586	0.91393	0.060935	0.045265
modelo	decay=0.1		05	89	45	97
SVM – Melhor	C=50	0.7839405	0.060646	0.93689	0.058118	0.042453
modelo	Sigma=0.01		41	63	35	89
SVM – CV	C=1	0.7660959	0.061645	0.93462	0.059076	0.043285
	Sigma=0.123556		9	71	18	04
	7					
RNA – CV	size=3	0.7275993	0.066232	0.91087	0.063471	0.048860
	decay=0.1		01	05	12	74
RNA – Hold-out	size=3	0.7275993	0.066232	0.91087	0.063471	0.048860
	decay=0.1		01	05	12	74
SVM – Hold-out	C=0.5	0.7189279	0.065703	0.92827	0.062964	0.045053
	Sigma=0.123556		13	32	29	94
	7					
KNN	k=7	0.40189	0.084602	0.85373	0.081076	0.063571
			98	46	29	43

Melhor modelo: Random Forest com Cross Validation

Novos casos:

Serial.No. ‡	GRE.Score ‡	TOEFL.Score ‡	University.Rating ‡	SOP ÷	LOR ‡	CGPA [‡]	Research ‡	predict.melhor_caso ‡
1	337	118	4	4.5	4.5	9.65	1	0.9257554
2	324	107	4	4.0	4.5	8.87	1	0.7510095
3	316	104	3	3.0	3.5	8.00	1	0.6772650

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Gráfico de resíduos:

Código (em R):

```
library(mlbench)
library(caret)
library(mice)
library(Metrics)
##Maquina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado_maquina\\Bases_de_teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos_IA/pos_ia_aprendizado_maquina/Bases
_de_teste')
barra ="/"
dados <- read.csv(file = paste('admissao', 'admissao.csv', sep</pre>
=barra))
dados_novos <- read.csv(file =</pre>
paste('admissao', 'admissao_novos.csv', sep =barra))
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
### Cria arquivos de treino e teste
set.seed(728078902)
ind <- createDataPartition(dados$ChanceOfAdmit, p=0.80, list =</pre>
FALSE)
treino <- dados[ind,]</pre>
teste <- dados[-ind,]</pre>
### Função R2
F_r2 <- function(observado, predito) {</pre>
  return (1 - (sum((predito-observado)^2) /
sum((predito-mean(observado))^2)))
}
### Função MAE
F MAE <- function(observado, predito, base) {</pre>
  return(sum(abs(observado-predito)) / nrow(base))
}
### Função RMSE
F_RMSE <- function(observado, predito, base) {</pre>
  return( sqrt(sum((observado-predito)^2) / nrow(base)) )
### Função Syx
F_SYX <- function(observado, predito, base) {</pre>
  val1 = sum((observado-predito)^2)
 val2 = nrow(base) - (length(base)-1)
  return (sqrt(val1 / val2))
### Função Pearson
F PEARSON <- function(observado, predito) {</pre>
  val1 = sum((observado-mean(observado)) * (predito-mean(predito)))
  val2 = sqrt(sum((observado-mean(observado))^2))
 val3 = sqrt(sum((predito-mean(predito))^2))
  return (val1 / (val2 * val3))
}
########## KNN
set.seed(728078902)
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(ChanceOfAdmit ~ ., data = treino, method =</pre>
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
"knn",tuneGrid=tuneGrid)
predict.knn <- predict(knn, teste)</pre>
F r2(teste$ChanceOfAdmit,predict.knn)
F_SYX(teste$ChanceOfAdmit,predict.knn,teste)
F PEARSON(teste$ChanceOfAdmit,predict.knn)
F RMSE(teste$ChanceOfAdmit,predict.knn,teste)
F_MAE(teste$ChanceOfAdmit,predict.knn,teste)
########## KNN
############## RNA
set.seed(728078902)
rna <- train(ChanceOfAdmit~., data=treino, method="nnet", linout=T,</pre>
trace=FALSE)
rna
predict.rna <- predict(rna, teste)</pre>
### Mostra as métricas
F_r2(teste$ChanceOfAdmit,predict.rna)
F SYX(teste$ChanceOfAdmit,predict.rna,teste)
F_PEARSON(teste$ChanceOfAdmit,predict.rna)
F_RMSE(teste$ChanceOfAdmit,predict.rna,teste)
F_MAE(teste$ChanceOfAdmit,predict.rna,teste)
### CV
set.seed(728078902)
control <- trainControl(method = "cv", number = 10)</pre>
rna cv <- train(ChanceOfAdmit~., data=treino, method="nnet",</pre>
trainControl=control, linout=T, trace=F)
rna_cv
predict.rna cv <- predict(rna cv, teste)</pre>
F r2(teste$ChanceOfAdmit,predict.rna cv)
F_SYX(teste$ChanceOfAdmit,predict.rna_cv,teste)
F_PEARSON(teste$ChanceOfAdmit,predict.rna_cv)
F_RMSE(teste$ChanceOfAdmit,predict.rna_cv,teste)
F_MAE(teste$ChanceOfAdmit,predict.rna_cv,teste)
###Parametrização
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
set.seed(728078902)
tuneGrid \leftarrow expand.grid(size = seq(from = 1, to = 10, by = 1), decay
= seq(from = 0.1, to = 0.9, by = 0.3))
rna par <- train(ChanceOfAdmit~., data=treino, method="nnet",</pre>
trainControl=control, tuneGrid=tuneGrid, linout=T, MaxNWts=10000,
maxit=2000, trace=F)
rna par
predict.rna_par <- predict(rna_par, teste)</pre>
F_r2(teste$ChanceOfAdmit,predict.rna_par)
F_SYX(teste$ChanceOfAdmit,predict.rna_par,teste)
F PEARSON(teste$ChanceOfAdmit,predict.rna par)
F RMSE(teste$ChanceOfAdmit,predict.rna par,teste)
F_MAE(teste$ChanceOfAdmit,predict.rna_par,teste)
############## RNA
############ SVN
set.seed(728078902)
svm <- train(ChanceOfAdmit~., data=treino, method="svmRadial")</pre>
svm
predict.svm <- predict(svm, teste)</pre>
F_r2(teste$ChanceOfAdmit,predict.svm)
F_SYX(teste$ChanceOfAdmit,predict.svm,teste)
F_PEARSON(teste$ChanceOfAdmit,predict.svm)
F RMSE(teste$ChanceOfAdmit,predict.svm,teste)
F_MAE(teste$ChanceOfAdmit,predict.svm,teste)
#### Cross-validation SVM
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
svm cv <- train(ChanceOfAdmit~., data=treino, method="svmRadial",</pre>
trControl=ctrl)
svm cv
predict.svm_cv<- predict(svm_cv, teste)</pre>
F_r2(teste$ChanceOfAdmit,predict.svm_cv)
F_SYX(teste$ChanceOfAdmit,predict.svm_cv,teste)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
F PEARSON(teste$ChanceOfAdmit,predict.svm cv)
F_RMSE(teste$ChanceOfAdmit,predict.svm_cv,teste)
F_MAE(teste$ChanceOfAdmit,predict.svm_cv,teste)
#### Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, .015)
svm_par <- train(ChanceOfAdmit~., data=treino, method="svmRadial",</pre>
trControl=ctrl, tuneGrid=tuneGrid)
svm_par
predict.svm_par <- predict(svm_par, teste)</pre>
F_r2(teste$ChanceOfAdmit,predict.svm_par)
F SYX(teste$ChanceOfAdmit,predict.svm par,teste)
F_PEARSON(teste$ChanceOfAdmit,predict.svm_par)
F_RMSE(teste$ChanceOfAdmit,predict.svm_par,teste)
F_MAE(teste$ChanceOfAdmit,predict.svm_par,teste)
########## SVN
########################## Random Forest
set.seed(728078902)
rf <- train(ChanceOfAdmit~.,data=treino,method="rf")</pre>
rf
predict.rf <- predict(rf,teste)</pre>
F_r2(teste$ChanceOfAdmit,predict.rf)
F_SYX(teste$ChanceOfAdmit,predict.rf,teste)
F PEARSON(teste$ChanceOfAdmit,predict.rf)
F_RMSE(teste$ChanceOfAdmit,predict.rf,teste)
F_MAE(teste$ChanceOfAdmit,predict.rf,teste)
##Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv", number = 10)</pre>
rf cv <-
train(ChanceOfAdmit~.,data=treino,method="rf",trControl=ctrl)
predict.rf_cv <- predict(rf_cv,teste)</pre>
```



```
F_r2(teste$ChanceOfAdmit,predict.rf_cv)
F_SYX(teste$ChanceOfAdmit,predict.rf_cv,teste)
F PEARSON(teste$ChanceOfAdmit,predict.rf cv)
F RMSE(teste$ChanceOfAdmit,predict.rf cv,teste)
F_MAE(teste$ChanceOfAdmit,predict.rf_cv,teste)
##parametrização
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(1,2,5,7,9,11))
rf par <-
train(ChanceOfAdmit~.,data=treino,method="rf",trControl=ctrl,tuneGri
d=tuneGrid)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
F_r2(teste$ChanceOfAdmit,predict.rf_par)
F_SYX(teste$ChanceOfAdmit,predict.rf_par,teste)
F_PEARSON(teste$ChanceOfAdmit,predict.rf_par)
F RMSE(teste$ChanceOfAdmit,predict.rf par,teste)
F_MAE(teste$ChanceOfAdmit,predict.rf_par,teste)
########################## Random Forest
############ Novos Casos
dados novos$Chance.ofAdmit <- NULL</pre>
predict.melhor_caso <- predict(rf_cv, dados_novos)</pre>
dados novos <- cbind(dados novos, predict.melhor caso)</pre>
View(dados novos)
############# Novos Casos
########################### Gráfico de Resíduos
resid = ((teste$ChanceOfAdmit - predict.rf_cv)/teste$ChanceOfAdmit)
* 100
plot(resid ~ predict.rf_cv,
     xlab="Valor estimado",
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Alunos do Ensino Médio

Técnica	Parâmetro	R2	Syx	Pearson	Rmse	MAE
RF – CV	mtry=41	0.8334	2.32628	0.92251	1.7783	1.0396
		009	8	78	79	68
RF – Melhor	mtry=31	0.8323	2.28531	0.92451	1.7470	1.0533
modelo		078	4	65	55	75
RF – Hold-out	mtry=21	0.8032	2.34501	0.92053	1.7926	1.1269
		457	7	41	97	71
KNN	k=9	0.7770	2.43299	0.91587	1.8599	1.2873
		519	8	4	56	76
RNA – Melhor	size=10	0.7746	2.73990	0.89548	2.0945	1.4420
modelo	decay=0.7	389	4	31	77	59
SVM – Melhor	C=2	0.6611	2.82201	0.88370	2.1573	1.3587
modelo	Sigma=0.01	407		92	44	75
SVM – Hold-out	C=1	0.6083	2.89608	0.88052	2.2139	1.4304
	Sigma=0.01366	002	4	19	72	68
	968					
SVM – CV	C=1	0.6083	2.89608	0.88052	2.2139	1.4304
	Sigma=0.01366	002	4	19	72	68
	968					
RNA – Hold-out	size=5	0.5494	3.83015	0.78875	2.9280	1.8768
	decay=0.1	744	7	67	43	
RNA – CV	size=5	0.5494	3.83015	0.78875	2.9280	1.8768
	decay=0.1	744	7	67	43	

Melhor modelo: Random Forest com Cross Validation

Novos casos:

^	school	÷	sex 💠	a	ge 🕀	address	÷	famsiz	e 🕀 Ps	tatus 🗦	Med	u Ů F	edu	[‡] Mjol	, ÷	Fjob 🗦	reason †	gua	ardian 🗦	travelti	me i
1	GP		2		16	R		GT3	Α			4		4 at_ho	me	teacher	course	mot	ther		2
2	GP		1		17	U		GT3	Т			1		1 at_ho	me	other	course	fath	ner		
3	GP		1		18	U		LE3	Т			1		1 at_ho	me	other	other	mot	ther		
stud	lytime	÷ f	failures	÷	schoo	olsup ‡	farr	sup ‡	paid	activit	ies ‡	nurse	ry ÷	higher	÷	internet	romanti	c ÷	famrel	† freeti	me
		1		0	no		no		no	no		yes		yes		no	no			4	;
	-	2		0	no		no		no	yes		no		yes		yes	yes			5	
		2		3	yes		yes		yes	yes		yes		yes		yes	no			4	3
go	out	÷	Dalc	:	÷	Walc	\$	heal	th ÷	abs	ence	25	G	1 [‡]	G	2 ‡	predict.	me	lhor_m	odelo	÷
		1			1		1		3			6	5	2		3				5.935	367
		3			1		1		3			4		15		15			:	15.256	133
		2			2		3		3			10		10		10				9.656	

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Gráfico de resíduos:

Código (em R):

```
library(mlbench)
library(caret)
library(mice)
library(Metrics)
##Maguina MP
setwd('C:\\Users\\escneto\\Documents\\Estudos\\Pos_IA_UFPR\\pos_ia_a
prendizado_maquina\\Bases_de_teste')
barra ="\\"
##Note
setwd('/Users/MPPR/Documents/Pos_IA/pos_ia_aprendizado_maquina/Bases
de teste')
barra ="/"
dados <- read.csv(file = paste('alunos', 'alunos.csv', sep =barra))</pre>
dados_novos <- read.csv(file = paste('alunos', 'alunos_novos.csv', sep</pre>
=barra))
### Cria arquivos de treino e teste
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
set.seed(728078902)
ind <- createDataPartition(dados$G3, p=0.80, list = FALSE)</pre>
treino <- dados[ind,]</pre>
teste <- dados[-ind,]</pre>
### Função R2
F_r2 <- function(observado,predito) {</pre>
  return (1 - (sum((predito-observado)^2) /
sum((predito-mean(observado))^2)))
}
### Função MAE
F MAE <- function(observado, predito, base) {</pre>
  return(sum(abs(observado-predito)) / nrow(base))
}
### Função RMSE
F RMSE <- function(observado, predito, base) {</pre>
  return( sqrt(sum((observado-predito)^2) / nrow(base)) )
}
### Função Syx
F_SYX <- function(observado, predito, base) {</pre>
  val1 = sum((observado-predito)^2)
  val2 = nrow(base) - (length(base)-1)
  return (sqrt(val1 / val2))
}
### Função Pearson
F_PEARSON <- function(observado, predito) {</pre>
  val1 = sum((observado-mean(observado)) * (predito-mean(predito)))
 val2 = sqrt(sum((observado-mean(observado))^2))
 val3 = sqrt(sum((predito-mean(predito))^2))
  return (val1 / (val2 * val3))
}
########## KNN
set.seed(728078902)
tuneGrid <- expand.grid(k = c(1,3,5,7,9))
knn <- train(G3 ~ ., data = treino, method = "knn",
             tuneGrid=tuneGrid)
knn
predict.knn <- predict(knn, teste)</pre>
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
### Mostra as métricas
F_r2(teste$G3,predict.knn)
F SYX(teste$G3,predict.knn,teste)
F PEARSON(teste$G3,predict.knn)
F_RMSE(teste$G3,predict.knn,teste)
F MAE(teste$G3,predict.knn,teste)
########## KNN
############## RNA
set.seed(728078902)
rna <- train(G3~., data=treino, method="nnet", linout=T,</pre>
trace=FALSE)
rna
predict.rna <- predict(rna, teste)</pre>
### Mostra as métricas
F_r2(teste$G3,predict.rna)
F_SYX(teste$G3,predict.rna,teste)
F_PEARSON(teste$G3,predict.rna)
F RMSE(teste$G3,predict.rna,teste)
F_MAE(teste$G3,predict.rna,teste)
### CV
set.seed(728078902)
control <- trainControl(method = "cv", number = 10)</pre>
rna_cv <- train(G3~., data=treino, method="nnet",</pre>
trainControl=control, linout=T, trace=F)
predict.rna_cv <- predict(rna_cv, teste)</pre>
F r2(teste$G3,predict.rna cv)
F SYX(teste$G3,predict.rna cv,teste)
F_PEARSON(teste$G3,predict.rna_cv)
F_RMSE(teste$G3,predict.rna_cv,teste)
F_MAE(teste$G3,predict.rna_cv,teste)
###Parametrização
set.seed(728078902)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
tuneGrid <- expand.grid(size = seq(from = 1, to = 10, by = 1), decay
= seq(from = 0.1, to = 0.9, by = 0.3))
rna_par <- train(G3~., data=treino, method="nnet",</pre>
trainControl=control, tuneGrid=tuneGrid, linout=T, MaxNWts=10000,
maxit=2000, trace=F)
rna_par
predict.rna_par <- predict(rna_par, teste)</pre>
F_r2(teste$G3,predict.rna_par)
F_SYX(teste$G3,predict.rna_par,teste)
F_PEARSON(teste$G3,predict.rna_par)
F RMSE(teste$G3,predict.rna par,teste)
F MAE(teste$G3,predict.rna par,teste)
############# SVN
set.seed(728078902)
svm <- train(G3~., data=treino, method="svmRadial")</pre>
predict.svm <- predict(svm, teste)</pre>
F_r2(teste$G3,predict.svm)
F_SYX(teste$G3,predict.svm,teste)
F_PEARSON(teste$G3,predict.svm)
F_RMSE(teste$G3,predict.svm,teste)
F_MAE(teste$G3,predict.svm,teste)
#### Cross-validation SVM
set.seed(728078902)
ctrl <- trainControl(method = "cv", number = 10)</pre>
svm_cv <- train(G3~., data=treino, method="svmRadial",</pre>
trControl=ctrl)
svm cv
predict.svm_cv <- predict(svm_cv, teste)</pre>
F_r2(teste$G3,predict.svm_cv)
F_SYX(teste$G3,predict.svm_cv,teste)
F PEARSON(teste$G3,predict.svm cv)
F_RMSE(teste$G3,predict.svm_cv,teste)
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
F MAE(teste$G3,predict.svm cv,teste)
#### Parametrização
set.seed(728078902)
tuneGrid = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 100)
0.2))
svm_par <- train(G3~., data=treino, method="svmRadial",</pre>
tuneGrid=tuneGrid)
svm_par
predict.svm_par <- predict(svm_par, teste)</pre>
F r2(teste$G3,predict.svm par)
F_SYX(teste$G3,predict.svm_par,teste)
F_PEARSON(teste$G3,predict.svm_par)
F RMSE(teste$G3,predict.svm par,teste)
F_MAE(teste$G3,predict.svm_par,teste)
########### SVN
################### Random Forest
set.seed(728078902)
rf <- train(G3~.,data=treino,method="rf")</pre>
predict.rf <- predict(rf,teste)</pre>
F_r2(teste$G3,predict.rf)
F_SYX(teste$G3,predict.rf,teste)
F_PEARSON(teste$G3,predict.rf)
F RMSE(teste$G3,predict.rf,teste)
F_MAE(teste$G3,predict.rf,teste)
##Cross Validation
set.seed(728078902)
ctrl <- trainControl(method="cv", number = 10)</pre>
rf_cv <- train(G3~.,data=treino,method="rf",trControl=ctrl)</pre>
rf cv
predict.rf_cv <- predict(rf_cv,teste)</pre>
F_r2(teste$G3,predict.rf_cv)
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022


```
F SYX(teste$G3,predict.rf cv,teste)
F_PEARSON(teste$G3,predict.rf_cv)
F_RMSE(teste$G3,predict.rf_cv,teste)
F MAE(teste$G3,predict.rf cv,teste)
##Varios mtry
set.seed(728078902)
tuneGrid = expand.grid(mtry=c(21,31,41,43,45))
rf par <-
train(G3~.,data=treino,method="rf",trControl=ctrl,tuneGrid=tuneGrid)
rf par
predict.rf_par <- predict(rf_par,teste)</pre>
F_r2(teste$G3,predict.rf_par)
F SYX(teste$G3,predict.rf par,teste)
F_PEARSON(teste$G3,predict.rf_par)
F_RMSE(teste$G3,predict.rf_par,teste)
F_MAE(teste$G3,predict.rf_par,teste)
predict.rf <- predict(rf, dados_novos)</pre>
dados novos <- cbind(dados novos, predict.rf)</pre>
predict.rf2 <- predict(rf2, dados_novos)</pre>
dados_novos <- cbind(dados_novos, predict.rf2)</pre>
predict.rf3 <- predict(rf3, dados_novos)</pre>
dados_novos <- cbind(dados_novos, predict.rf3)</pre>
################# Random Forest
########### Novos Casos
dados novos$G3 <- NULL
predict.melhor_modelo <- predict(rf_cv,dados_novos)</pre>
dados_novos <- cbind(dados_novos, predict.melhor_modelo)</pre>
View(dados novos)
########### Novos Casos
########################### Gráfico de Resíduos
resid = ((teste$G3 - predict.rf_cv)/teste$G3) * 100
```


UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

AGRUPAMENTO

Íris

Lista de Clusters gerados:

K-means clustering with 3 clusters of sizes 48, 50, 52

Cluster means:

Petal.Length Petal.Width

- 1 5.595833 2.037500
- 2 1.462000 0.246000
- 3 4.269231 1.342308

10 primeiras linhas do arquivo com o cluster correspondente:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	irisCluster\$cluster
1	5.1	3.5	1.4	0.2	setosa	2
2	4.9	3.0	1.4	0.2	setosa	2
3	4.7	3.2	1.3	0.2	setosa	2
4	4.6	3.1	1.5	0.2	setosa	2
5	5.0	3.6	1.4	0.2	setosa	2
6	5.4	3.9	1.7	0.4	setosa	2
7	4.6	3.4	1.4	0.3	setosa	2
8	5.0	3.4	1.5	0.2	setosa	2
9	4.4	2.9	1.4	0.2	setosa	2
10	0 4.9	3.1	1.5	0.1	setosa	2

```
data("iris")
dados <- iris
set.seed(728078902)
irisCluster <- kmeans(iris,3)
irisCluster
resultado <- cbind(dados,irisCluster$cluster)
resultado</pre>
```


Disciplina: Laboratório de IA - Prof Jaime Wojciechowski

Móveis

Lista de Clusters gerados:

7 moderno 8 tradicional 9 tradicional

moderno

10

K-modes clustering with 10 clusters of sizes 75, 48, 26, 80, 20, 13, 88, 25, 44, 35

```
Cluster modes:
                                                            categoria
                                                                                                       cor
1
                        Cozinha / Balcao / Balcao para pia em madeira
                                                                                             Nature/Branco
2
               Cozinha / Armario / Armario aereo de parede em madeira
                                                                                                  Carvalle
                        Sala de Estar / Racks para TV / Racks para TV
                                                                                           Capuccino/Preto
3
4
                                 Cozinha / Balcao / Balcao em madeira
                                                                                           Carvalle/Branco
                                                                                                    Tabaco
                                  Quarto Juvenil / Beliche e treliche
                                                                               Branco Linho Gelo/Rosa/Azul
   Quarto do Bebe / Guarda-roupas / Guarda-roupas com portas de bater
                                 Cozinha / Balcao / Balcao em madeira
                                                                                                    Nature
                    Sala de Estar / Mesas para sala / Mesas de centro Branco Linho Gelo/Azul/Branco Linho
8
9
                                   Cozinha / Armario / Armario em Aco
                                                                                                    Branco
10
                                          Quarto do Bebe / Mini-camas
                                                                                                    Branco
        estilo
1
       moderno
2
       moderno
3 tradicional
4
       moderno
5 tradicional
6
  tradicional
```

10 primeiras linhas do arquivo com o cluster correspondente:

```
estilo moveisCluster$cluster
1
              Branco Linho Gelo/Azul/Branco Linho tradicional
2
                      Branco Linho Gelo/Rosa/Azul tradicional
                                                                                   6
              Branco Linho Gelo/Azul/Branco Linho tradicional
3
                                                                                   8
4
                      Branco Linho Gelo/Rosa/Azul tradicional
              Branco Linho Gelo/Azul/Branco Linho tradicional
                                                                                   8
                      Branco Linho Gelo/Rosa/Azul tradicional
            Branco Linho Gelo/Rosa/Azul/Capuccino tradicional
                                                                                   3
8
            Branco Linho Gelo/Capuccino/Azul/Rosa tradicional
                                                                                   5
9
              Branco Linho Gelo/Azul/Branco Linho tradicional
                                                                                   8
                      Branco Linho Gelo/Rosa/Azul tradicional
```

```
library(klaR)
dados <- read.csv(file = 'moveis.csv')
set.seed(728078902)
moveisCluster <- kmodes(dados,10,iter.max = 10, weighted = FALSE)
moveisCluster
resultado <- cbind(dados,moveisCluster$cluster)
resultado</pre>
```


Disciplina: Laboratório de IA - Prof Jaime Wojciechowski

Câncer de Mama

Lista de Clusters gerados:

K-means clustering with 2 clusters of sizes 235, 464

Cluster means:

	Cl.thickness	Cell.size	Cell.shape	Marg.adhesion	Epith.c.size	Bare.nuclei	Bl.cromatin	Normal.nucleoli	Mitoses
1	7.153191	6.765957	6.706383	5.706383	5.442553	7.906383	6.093617	6.063830	2.536170
2	3.032328	1.295259	1.435345	1.338362	2.088362	1.321121	2.092672	1.247845	1.109914

10 primeiras linhas do arquivo com o cluster correspondente:

	Cl.thickness	Cell.size	Cell.shape	Marg.adhesion	Epith.c.size	Bare.nuclei	Bl.cromatin	Normal.nucleoli	Mitoses
1	5	1	1	1	2	1	3	1	1
2	5	4	4	5	7	10	3	2	1
3	3	1	1	1	2	2	3	1	1
4	6	8	8	1	3	4	3	7	1
5	4	1	1	3	2	1	3	1	1
6	8	10	10	8	7	10	9	7	1
7	1	1	1	1	2	10	3	1	1
8	2	1	2	1	2	1	3	1	1
9	2	1	1	1	2	1	1	1	5
10	4	2	1	1	2	1	2	1	1

```
Class cancerCluster$cluster
benign 2
benign 1
benign 2
benign 1
benign 2
```

```
library(klaR)
dados <- read.csv(file = 'cancer_mama.csv')
set.seed(728078902)
cancerCluster <- kmeans(dados[2:10],2)
cancerCluster
resultado <- cbind(dados,cancerCluster$cluster)
resultado[2:12]</pre>
```


Cluster means: Comp

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

176.3222

151.8402

Elong PrAxisRect MaxLRect ScVarMaxis

19.30833 143.8278

17.79290 133.1893

Disciplina: Laboratório de IA - Prof Jaime Wojciechowski

Veículo

RadRa PrAxisRa MaxLRa ScatRa

Lista de Clusters gerados:

Circ

```
K-means clustering with 4 clusters of sizes 129, 360, 169, 188
```

DCirc

```
98.13953 46.75194 93.37209 198.7907 64.09302 8.604651 187.7054 35.01550 21.91473 150.3101 207.7364
 89.22500 42.79444 75.72778 158.3833 62.92222 8.811111 153.6306 43.51667
3 87.86391 38.23077 63.94083 133.4497 57.27811 6.674556 130.3373 51.67456
4 104.37234 53.48404 102.84043 200.5798 61.66489 9.776596 219.6277 30.39362 24.61702 167.7128 232.1383
              RaGyr SkewMaxis Skewmaxis Kurtmaxis KurtMaxis
 ScVarmaxis
                                                            HollRa
```

1 532.1318 183.4109 68.27132 6.046512 13.51938 193.1318 200.0775 351.1694 165.8639 73.60278 6.022222 10.97500 188.3750 194.8972 252.0237 140.6686 72.42012 6.272189 11.62722 188.4852 193.6331 715.4628 216.2500 73.19149 7.377660 15.95213 187.5213 195.7872

10 primeiras linhas do arquivo com o cluster correspondente:

	Comp	Circ	DCirc	RadRa	PrAxisRa	MaxLRa	ScatRa	Elong	PrAxisRect	MaxLRect	ScVarMaxis	ScVarmaxis	RaGyr	SkewMaxis
1	95	48	83	178	72	10	162	42	20	159	176	379	184	70
2	91	41	84	141	57	9	149	45	19	143	170	330	158	72
3	104	50	106	209	66	10	207	32	23	158	223	635	220	73
4	93	41	82	159	63	9	144	46	19	143	160	309	127	63
5	85	44	70	205	103	52	149	45	19	144	241	325	188	127
6	107	57	106	172	50	6	255	26	28	169	280	957	264	85
7	97	43	73	173	65	6	153	42	19	143	176	361	172	66
8	90	43	66	157	65	9	137	48	18	146	162	281	164	67
9	86	34	62	140	61	7	122	54	17	127	141	223	112	64
10	93	44	98	197	62	11	183	36	22	146	202	505	152	64

```
Skewmaxis Kurtmaxis KurtMaxis HollRa Class veiculoCluster$cluster
          6
                   16
                            187
                                  197
                                         van
2
          9
                   14
                            189
                                   199
                                         van
3
         14
                    9
                            188
                                   196
                                       saab
          6
                   10
                            199
                                   207
                                         van
5
          9
                   11
                            180
                                   183
                                         bus
6
          5
                            181
                                   183
                                         bus
                            200
                                   204
         13
                                         bus
                            193
                                   202
8
          3
                                         van
          2
                            200
                                   208
                                         van
10
                            195
                                   204
                                       saab
```

```
dados <- read.csv(file = 'veiculos.csv')</pre>
set.seed(728078902)
veiculoCluster <- kmeans(dados[2:19],4)</pre>
veiculoCluster
resultado <- cbind(dados,veiculoCluster$cluster)</pre>
resultado[2:21]
```

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Banco

Lista de Clusters gerados:

K-modes clustering with 2 clusters of sizes 124, 176

Cluster modes:

	age	job	marital	education	default	balance	housing	loan
1	34	management	married	tertiary	no	0	no	no
2	32	bluecollar	married	secondary	no	0	yes	no

10 primeiras linhas do arquivo com o cluster correspondente:

```
job marital education default balance housing loan y bancoCluster$cluster
   30 unemployed married primary no 1787 no no no
1
                                                                       1
   33
       services married secondary
                                 no
                                       4789
                                                                       2
2
                                              yes yes no
                                 no
3
   35 management single tertiary
                                       1350
                                              yes no no
                                                                       1
                                      1350
1476
       management married tertiary
                                 no
   30
                                              yes yes no
  59 bluecollar married secondary
5
                                  no
                                        0
                                              yes
                                                  no no
                                                                       2
   35 management single tertiary
                                       747
                                                  no no
6
                                                                       1
                                  no
                                               no
  36 selfemployed married tertiary
                                 no 307
7
                                              yes no no
                                                                       1
  39 technician married secondary
                                 no 147
                                                                       2
                                              yes no no
  41 entrepreneur married tertiary no 221
                                              yes no no
10 43 services married primary no 88
                                              yes yes no
                                                                       2
```

```
library(klaR)
dados <- read.csv(file = 'banco.csv')
set.seed(728078902)
bancoCluster <- kmodes(dados[0:8],2,iter.max = 10, weighted = FALSE)
bancoCluster
resultado <- cbind(dados,bancoCluster$cluster)
resultado</pre>
```


Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

REGRAS DE ASSOCIAÇÃO

Lista de Compras

Confiança=0.7, Suporte=0.01

Regras = 21 1 regra com 1 item 6 regras com 2 itens 10 regras com 3 itens 4 regras com 4 itens

	1hs		rhs	support	confidence	coverage	lift	count
[1]	{}	=>	{leite}	0.75	0.75	1.00	1.0	3
[2]	{ovos}	=>	{leite}	0.25	1.00	0.25	1.3	1
[3]	{cafe}	=>	{pao}	0.25	1.00	0.25	2.0	1
[4]	{cafe}	=>	{bolacha}	0.25	1.00	0.25	2.0	1
[5]	{suco}	=>	{leite}	0.50	1.00	0.50	1.3	2
[6]	{pao}	=>	{bolacha}	0.50	1.00	0.50	2.0	2
[7]	{bolacha}	=>	{pao}	0.50	1.00	0.50	2.0	2
[8]	{cafe, pao}	=>	{bolacha}	0.25	1.00	0.25	2.0	1
[9]	{bolacha, cafe}	=>	{pao}	0.25	1.00	0.25	2.0	1
[10]	{pao, suco}	=>	{bolacha}	0.25	1.00	0.25	2.0	1

Confiança=0.1, Suporte=0.001

Regras = 43 6 regra com 1 item 18 regras com 2 itens 15 regras com 3 itens 4 regras com 4 itens

	£.							
	1hs		rhs	support	confidence	coverage	lift	count
[1]	{}	=>	{ovos}	0.25	0.25	1.00	1.00	1
[2]	{}	=>	{cafe}	0.25	0.25	1.00	1.00	1
[3]	{}	=>	{suco}	0.50	0.50	1.00	1.00	2
[4]	{}	=>	{pao}	0.50	0.50	1.00	1.00	2
[5]	{}	=>	{bolacha}	0.50	0.50	1.00	1.00	2
[6]	{}	=>	{leite}	0.75	0.75	1.00	1.00	3
[7]	{ovos}	=>	{leite}	0.25	1.00	0.25	1.33	1
[8]	{leite}	=>	{ovos}	0.25	0.33	0.75	1.33	1
[9]	{cafe}	=>	{pao}	0.25	1.00	0.25	2.00	1
[10]	{pao}	=>	{cafe}	0.25	0.50	0.50	2.00	1

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

Confiança=0.9, Suporte=0.5

```
Regras = 3
3 regra com 2 item
```

```
1hs
             rhs
                      support confidence coverage lift count
[1] {suco}
          => {leite} 0.5 1 0.5
                                             1.3 2
          => {bolacha} 0.5
                             1
                                      0.5
                                              2.0 2
[2] {pao}
[3] {bolacha} => {pao}
                      0.5
                            1
                                      0.5
                                              2.0 2
```

Lista de comandos:

```
dados <-
read.transactions(file="lista_compras.csv",format="basket",sep=";")
inspect(dados[1:4])
### Confiança=0.7, Suporte=0.01
set.seed(728078902)
rules<-apriori(dados,parameter =</pre>
list(supp=0.01,conf=0.7,target="rules"))
summary(rules)
inspect(rules)
### Confiança=0.1, Suporte=0.001
set.seed(728078902)
rules2<-apriori(dados,parameter =</pre>
list(supp=0.001,conf=0.1,target="rules"))
summary(rules2)
inspect(rules2)
### Confiança=0.9, Suporte=0.5
set.seed(728078902)
rules3<-apriori(dados,parameter =</pre>
list(supp=0.5,conf=0.9,target="rules"))
summary(rules3)
inspect(rules3)
```


Disciplina: Laboratório de IA - Prof Jaime Wojciechowski

Musculação

Confiança=0.7, Suporte=0.01

Regras = 156 1 regra com 1 item 23 regras com 2 itens 56 regras com 3 itens 55 regras com 4 itens 21 regras com 5 itens

Confiança=0.1, Suporte=0.001

Regras = 381 9 regra com 1 item 64 regras com 2 itens 140 regras com 3 itens 128 regras com 4 itens 40 regras com 5 itens

	1hs		rhs	support	confidence	coverage	lift	count
[1]	{}	=>	{Adutor}		0.12	1.000	1.00	
[2]	{}	=>	{Agachamento}	0.308	0.31	1.000	1.00	8
[3]	{}	=>	{Afundo}	0.346	0.35	1.000	1.00	9
[4]	{}	=>	{AgachamentoSmith}	0.385	0.38	1.000	1.00	10
[5]	{}	=>	{Esteira}	0.462	0.46	1.000	1.00	12
[6]	{}	=>	{Extensor}	0.500	0.50	1.000	1.00	13
[7]	{}	=>	{Bicicleta}	0.538	0.54	1.000	1.00	14
[8]	{}	=>	{Gemeos}	0.654	0.65	1.000	1.00	17
[9]	{}	=>	{LegPress}	0.808	0.81	1.000	1.00	21
[10]	{Crucifixo}	=>	{Afundo}	0.077	1.00	0.077	2.89	2

Confiança=0.9, Suporte=0.05

Regras = 79 14 regras com 2 itens 32 regras com 3 itens 27 regras com 4 itens 6 regras com 5 itens ____

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Turma 2022

Disciplina: Laboratório de IA – Prof Jaime Wojciechowski

```
        support
        confidence
        coverage

        0.077
        1.00
        0.077

        0.077
        1.00
        0.077

       1hs
                                                                               rhs
                                                                           => {Afundo}
       {Crucifixo}
[1]
[2]
[3]
[4]
       {Crucifixo}
                                                                               {Gemeos}
       {crucifixo}
                                                                           => {LegPress}
                                                                                                         0.077
                                                                                                                     1.00
                                                                                                                                    0.077
                                                                           => {Agachamento}
                                                                                                         0.115
       {Adutor}
                                                                                                                     1.00
                                                                                                                                    0.115
[5]
       {Adutor
                                                                           => {LegPress}
                                                                                                         0.115
                                                                                                                     1.00
                                                                                                                                    0.115
[6]
[7]
      {Flexor
                                                                                                         0.077
0.077
                                                                           => {Esteira}
                                                                                                                     1.00
                                                                                                                                    0.077
                                                                                                                                    0.077
                                                                           => {Extensor}
                                                                                                                     1.00
[8]
      {Flexor
                                                                           => {Bicicleta}
                                                                                                         0.077
                                                                                                                     1.00
                                                                                                                                    0.077
[9]
       {Flexor}
                                                                           => {LegPress}
                                                                                                         0.077
                                                                                                                     1.00
                                                                                                                                    0.077
[10]
[11]
      {Agachamento}
{Afundo}
                                                                                                                                    0.308
                                                                          => {LegPress}
                                                                                                         0.308
                                                                                                                     1.00
                                                                                                         0.346
                                                                                                                     1.00
                                                                                                                                    0.346
                                                                           => {Gemeos}
                                                                               {Extensor}
[12]
       {AgachamentoSmith}
                                                                                                         0.346
                                                                                                                     0.90
                                                                                                                                    0.385
      {Esteira}
[13]
                                                                          => {Extensor}
                                                                                                         0.423
                                                                                                                     0.92
                                                                                                                                    0.462
                                                                                                         0.462
                                                                                                                                    0.500
[14]
                                                                           => {Bicicleta}
                                                                                                                     0.92
      {Extensor}
[15] {Afundo, Crucifixo}
[16] {Crucifixo, Gemeos}
                                                                                                         0.077
0.077
                                                                                                                                    0.077
                                                                           => {Afundo}
                                                                                                                    1.00
```

Lista de comandos:

```
dados <-
read.transactions(file="musculacao.csv",format="basket",sep=";")
inspect(dados[1:4])
### Confiança=0.7, Suporte=0.01
set.seed(728078902)
rules<-apriori(dados,parameter =
list(supp=0.01,conf=0.7,target="rules"))
summary(rules)
inspect(rules)
### Confiança=0.1, Suporte=0.001
set.seed(728078902)
rules2<-apriori(dados,parameter =</pre>
list(supp=0.001,conf=0.1,target="rules"))
summary(rules2)
inspect(rules2)
### Confiança=0.9, Suporte=0.5
set.seed(728078902)
rules3<-apriori(dados,parameter =
list(supp=0.05,conf=0.9,target="rules"))
summary(rules3)
inspect(rules3)
```