v	Ascent Rate	m/s
F	Free Lift	N
F_g	Gross Lift	N
C_d	Drag Coefficient	
$ ho_a$	Air Density	$ m kg/m^3$
$ ho_g$	Gas Density	$ m kg/m^3$
r	Launch Radius	m
A	Launch Area	m^2
V_L	Launch Volume	m^3
m_p	Payload Mass	kg
m_b	Balloon Mass	kg
g	Gravitational Acceleration	m/s^2
·		•

$$v = \sqrt{\frac{F}{\frac{1}{2}C_d\rho_a A}} \tag{1}$$

$$A = \pi r^2 \tag{2}$$

$$F = F_g - (m_p + m_b)(g) \tag{3}$$

$$F_g = (\rho_a - \rho_g) \times V_L \tag{4}$$

$$V_L = \frac{4}{3}\pi r^3 \tag{5}$$

$$F_g = (\rho_a - \rho_g)(\frac{4}{3}\pi r^3) \tag{6}$$

$$F = (\rho_a - \rho_g)(\frac{4}{3}\pi r^3) - (m_p + m_b)(g)$$
(7)

$$v = \sqrt{\frac{(\rho_a - \rho_g)(\frac{4}{3}\pi r^3) - (m_p + m_b)(g)}{(\frac{1}{2}C_d\rho_a)(\pi r^2)}}$$
(8)

$$v^{2}(\frac{1}{2}C_{d}\rho_{a}\pi r^{2}) = ((\rho_{a} - \rho_{g})\frac{4}{3}\pi r^{3}) - (m_{p} + m_{b})(g)$$
(9)

$$[(\rho_a - \rho_g)\frac{4}{3}\pi]r^3 - [\frac{1}{2}v^2C_d\rho_a\pi]r^2 - [(m_p + m_b)g] = 0$$
 (10)

yuck! a cubic!