

Departamento de Teoría de la Señal, Telemática y Comunicaciones

FUNDAMENTOS DE REDES

- 3er curso del Grado en Ingeniería Informática (y dobles grados) -

Convocatoria extraordinaria (19 de febrero de 2021)

Apellidos y nombre:

Titulación / grupo:

INSTRUCCIONES

En la resolución indique su nombre, apellidos, DNI/pasaporte (que comprobaremos en su ficha de alumno) y los valores de X e Y.

Partiendo de su DNI/pasaporte, calcule X como el último dígito + 2. Calcule Y=5 si su último dígito vale 0, 1, 2 o 3, Y=6 si su último dígito vale 4, 5 o 6, e Y=7 si su último dígito vale 7, 8 o 9.

Ejemplo. Si DNI es 34.678.345-C entonces X = 5+2=7, Y = 6.

Cualquier error en sus datos implicará que el ejercicio no será evaluado.

ENTREGA

Haga la resolución de cada ejercicio en papel, escrito con bolígrafo de su puño y letra.

Después escanee o fotografíe los folios que desee que se evalúen, INCLUYENDO SU DNI FÍSICO EN TODAS LAS PÁGINAS. Preferiblemente todos juntos en un documento PDF.

Súbalo a la entrega en PRADO que se habrá habilitado durante la duración del examen, en los 10 minutos habilitados para la entrega.

EJERCICIO 1 (3 puntos sobre 10)

Dadas dos entidades TCP (A y B) conectadas por una red cuya velocidad de transmisión es X Mbps, calcule el tiempo total involucrado en transmitir 20 segmentos (incluyendo las confirmaciones correspondientes). Suponga que A y B no estaban conectadas inicialmente, y que se usan los siguientes datos:

- Los segmentos son de 2 KB.
- El Round Trip Time (RTT) es constante y vale 100 mseg.
- La ventana de congestión inicial (CWini) es igual a 2.
- El umbral para pasar a prevención de congestión es 8 segmentos.
- Suponga que el tiempo de transmisión de los mensajes ACK es despreciable.
- La ventana del control de flujo es igual a Y segmentos.

ULTIMO DIGITO = 9 -> X=11, 4=7 Velocidad = 11 Mbps -> Tt = 2000.8 = 0'00 145 s = 1'45ms RTT=100 ms - Tp = 50 ms ESTABLECIMIENTO 3 2 RTT = 370 TCP CW = CWini= 2 CW= 2+2=4 ZTE + ZTP CW=4+Z=6 CW=6+2=8 7,89,10,11,12,13 LIMITADOPOR 2T++ ZTp AMATASU OFERTADA = 7 - 1 PAQUETE SIN CONFIRMAR S COMIENZO A ESTERAR SOOMS AUNQUE EL SIBUBLITE 6 PAQUETES PAQUETE WEGARA 14,15,16,17,18,19 ANES. - 1 PAQUETE SIN CONFFRMAR 1 TE + 2TP NTiempo total \$3Tp+3x(2T+2Tp)+2(1T+2Tp)= = 13Tp + 10Te = 13 x 50 + 10 x 195 = G-BBYM3

FUNDAMENTOS DE REDES

- 3^{er} curso del Grado en Ingeniería Informática (y dobles grados) –
Convocatoria extraordinaria (19 de febrero de 2021)

Apellidos y nombre: Titulación / grupo:

INSTRUCCIONES

En la resolución indique su nombre, apellidos, DNI/Pasaporte (que comprobaremos en su ficha de estudiante) y la IP DE DNI DE ESTUDIANTE.

Partiendo de su DNI, construya una dirección IP de la siguiente forma:

- Cada par de dígitos serán uno de los números en formato decimal de la IP. Por ejemplo, si su DNI es 77330055-G, la dirección IP será 77.33.0.55.
- La máscara se le indicará en el ejercicio, a partir de la cual podrá calcular la dirección de red correspondiente a esa IP (tendrá todos los bits a 0 según indican los bits de la máscara).

Cualquier error en sus datos implicará que el ejercicio no será evaluado.

ENTREGA

Haga la resolución de cada ejercicio en papel, escrito con bolígrafo de su puño y letra.

Después escanee o fotografie los folios que desee que se evalúen, INCLUYENDO SU DNI FÍSICO EN TODAS LAS PÁGINAS. Preferiblemente todos juntos en un documento PDF.

Súbalo a la entrega en PRADO que se habrá habilitado durante la duración del examen, en los 10 minutos habilitados para la entrega.

EJERCICIO 2 (3 puntos sobre 10)

En una empresa con 4 departamentos se quiere asignar una subred para cada uno de ellos. El tamaño para cada departamento es:

Finanzas (F): 10 equiposMarketing (M): 30 equiposDesarrollo (D): 300 equipos

- Jefatura (J): 6 equipos

Disponemos de 4 routers (R1, R2, R3, R4) y del rango indicado por SU IP DE DNI DE ESTUDIANTE con máscara /16.

- a) Dibuje una topología conectando los routers como estime oportuno, considerando que cada uno conectará como mucho dos de las subredes indicadas. Además uno de los routers estará conectado a Internet (con una línea punto a punto con el router del ISP).
- b) Proponga un **esquema de asignación de direcciones** para todos los equipos y routers de todas las subredes de la Intranet.
- c) Asigne direcciones a cada una de las interfaces de los routers. Para el router conectado a Internet puede elegir una dirección IP pública cualquiera.
- d) Defina las tablas de encaminamiento de los cuatro routers, considerando el esquema de direccionamiento definido anteriormente, tal que sólo puedan acceder a Internet los usuarios de la red de JEFATURA. Minimice el número de entradas en las mismas haciendo agrupaciones.

^{**} Los estudiantes con pasaporte pueden construir la IP de la misma forma (usando los primeros 8 dígitos del mismo)

Dadas dos entidades TCP (A y B) conectadas por una red cuya velocidad de transmisión es X Mbps, calcule el tiempo total involucrado en transmitir 20 segmentos (incluyendo las confirmaciones correspondientes). Suponga que A y B no estaban conectadas inicialmente, y que se usan los siguientes datos:

- Los segmentos son de 2 KB.
- El Round Trip Time (RTT) es constante y vale 100 mseg.
- La ventana de congestión inicial (CWini) es igual a 2.
- El umbral para pasar a prevención de congestión es 8 segmentos.
- Suponga que el tiempo de transmisión de los mensajes ACK es despreciable.
- La ventana del control de flujo es igual a Y segmentos.

