```
In [1]: #Assignment 7 (airquality.csv (Visualization))
#Name : Pallavi Rajendra Jadhav
#Roll No.: 3024
```

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random as rd

In [3]: ds_airquality=pd.read_csv("airquality.csv")

In [4]: ds_airquality

Out[4]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day
0	1	41.0	190.0	7.4	67	5	1
1	2	36.0	118.0	8.0	72	5	2
2	3	12.0	149.0	12.6	74	5	3
3	4	18.0	313.0	11.5	62	5	4
4	5	NaN	NaN	14.3	56	5	5
148	149	30.0	193.0	6.9	70	9	26
149	150	NaN	145.0	13.2	77	9	27
150	151	14.0	191.0	14.3	75	9	28
151	152	18.0	131.0	8.0	76	9	29
152	153	20.0	223.0	11.5	68	9	30

153 rows × 7 columns

In [5]: ds_airquality.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 153 entries, 0 to 152
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	153 non-null	int64
1	Ozone	116 non-null	float64
2	Solar.R	146 non-null	float64
3	Wind	153 non-null	float64
4	Temp	153 non-null	int64
5	Month	153 non-null	int64
6	Day	153 non-null	int64

dtypes: float64(3), int64(4)

memory usage: 8.5 KB

```
In [6]: import seaborn as sns
%matplotlib notebook
```

```
In [8]: plt.scatter(x='Ozone',y='Solar.R',data=ds_airquality,c='g')
   plt.scatter(x='Ozone',y='Solar.R',data=ds_airquality, c='r',marker='+')
   plt.ylabel('Ozone')
   plt.ylabel('Ozone and Solar.R')
   plt.legend(title='scatter_plot')
   plt.show()
```


DSBDA ass.7 (airquality.csv) - Jupyter Notebook In [9]: plt.figure() sns.lmplot(x='Ozone' , y='Solar.R', data=ds_airquality, fit_reg=False) Figure 2

Downloa

C:\ProgramData\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarni
ng: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[9]: <seaborn.axisgrid.FacetGrid at 0x13182642490>

In [10]: plt.figure() ds_airquality.plot(kind='hist') Figure 4

Downloa

Out[10]: <Axes: ylabel='Frequency'>

In [11]: plt.figure()
 sns.displot(ds_airquality.Wind)

C:\ProgramData\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarni
ng: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[11]: <seaborn.axisgrid.FacetGrid at 0x13181e79690>

```
In [12]: plt.figure()
   plt.xlabel('Month')
   plt.ylabel('count')
   plt.legend()
   ds_airquality.Month.value_counts().plot(kind='bar')
```


No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argumen to

Out[12]: <Axes: xlabel='Month', ylabel='count'>

In [18]: plt.figure()
 sns.countplot(ds_airquality.Month)

Out[18]: <Axes: ylabel='count'>

```
plt.figure()
In [19]:
         sns.lineplot(x='Temp', y='Month', data=ds_airquality)
```


Out[19]: <Axes: xlabel='Temp', ylabel='Month'>

In []: