

Homework 10 Solutions

via Gradescope

- Failure to submit homework correctly will result in zeroes.
- Handwritten homework is OK. You do not have to type up your work.
- Problems assigned from the textbook are from the 5th edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
- 1. (6 points) Section 7.2 #25.

Solution: #25. Do you notice the typo in the print edition of the textbook?

Yes, C is injective. No, C is not surjective.

Let's first prove C is injective.

Proof. Let s_1, s_2 be strings in S. Suppose $C(s_1) = C(s_2)$. Then $as_1 = as_2$. Note that strings are ordered tuples of elements. Aside from λ , a string in S of length $n \in \mathbb{Z}^+$ is denoted as an n-tuple (x_1, x_2, \ldots, x_n) where x_i is a or b for all $i \in \{1, \ldots, n\}$. Two n-tuples (x_1, x_2, \ldots, x_n) , (y_1, y_2, \ldots, y_n) are equal if and only if $x_i = y_i$ for all $i \in \{1, \ldots, n\}$. So $s_1 = s_2$. Therefore C is injective.

Let's disprove that C is surjective.

Disproof. Recall that

$$C(S) = \{ t \in S : \exists s \in S (C(s) = t) \}.$$

Choose $t = b \in S$. Suppose $b \in C(S)$. There exists $s \in S$ such that b = C(s) = as. However $b \neq as$ since the first characters $b \neq a$ and b is a string of length 1 while as is a string of length 2. So $b \notin C(S)$. $b \in S$ but $b \notin C(S) \subseteq S$, so $C(S) \subseteq S$ and $C(S) \neq S$. Therefore C is not surjective.

2. (9 points) Section 7.2 #29, 34.

Solution: #29. Yes, H is injective and surjective.

Proof of One-to-one. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ such that $\mathbf{a} = (a_1, a_2)$ and $\mathbf{b} = (b_1, b_2)$ and $a_1, a_2, b_1, b_2 \in \mathbb{R}$. Suppose $H(\mathbf{a}) = H(\mathbf{b})$, i.e. $H(a_1, a_2) = H(b_1, b_2)$. Then

$$(a_1 + 1, 2 - a_2) = (b_1 + 1, 2 - b_2).$$

So

$$a_1 + 1 = b_1 + 1$$
$$a_1 = b_1$$

and

$$2 - a_2 = 2 - b_2$$
$$-a_2 = -b_2$$
$$a_2 = b_2.$$

Thus $\mathbf{a} = (a_1, a_2) = (b_1, b_2) = \mathbf{b}$ and H is injective.

Proof of Onto. Let $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$. Choose $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ such that $x_1 = y_1 - 1$ and $x_2 = 2 - y_2$.

$$H(\mathbf{x}) = H(x_1, x_2) = (x_1 + 1, 2 - x_2) = (y_1 - 1 + 1, 2 - (2 - y_2)) = (y_1, y_2) = \mathbf{y}$$

so H is surjective.

#34.

Proof. Let $x, y \in (0, \infty)$ and $b \in (0, 1) \cup (1, \infty)$. $\log_b : (0, \infty) \to \mathbb{R}$ is well-defined, so

$$\log_b(x) =: z_1 \Longleftrightarrow b^{z_1} = x$$

 $\log_b(y) =: z_2 \Longleftrightarrow b^{z_2} = y$

for some $z_1, z_2 \in \mathbb{R}$ and

$$xy = b^{z_1}b^{z_2} = b^{z_1+z_2} \Longleftrightarrow \log_b(xy) = z_1 + z_2 = \log_b(x) + \log_b(y).$$

3. (6 points) Section 7.2 #40.

Solution: #40. Let $F: X \to Y$ be injective. For any $x_1, x_2 \in X$, $F(x_1) = F(x_2)$ implies $x_1 = x_2$.

(a) Proof. Let $A \subset X$.

$$F(A) = \{ y \in Y : \exists a \in A (F(a) = y) \}$$

$$F^{-1}(F(A)) = \{ x \in X : F(x) \in F(A) \}$$

Case 1: Let $x \in F^{-1}(F(A))$. So $F(x) \in F(A)$. There exists some $a \in A$ such that F(x) = y = F(a). x = a since F is injective. Thus $x \in A$.

Case 2: Let $x \in A$. Since $F: X \to Y$ is well-defined and $A \subset X$, there exists a unique $y \in Y$ such that F(x) = y. Since $x \in A$, $y \in F(A)$, i.e. $F(x) \in F(A)$. Thus $x \in F^{-1}(F(A))$.

(b) Proof. Let $A_1, A_2 \subset X$.

$$F(A_1) = \{ y \in Y : \exists a_1 \in A (F(a_1) = y) \}$$

$$F(A_2) = \{ y \in Y : \exists a_2 \in A (F(a_2) = y) \}$$

$$F(A_1 \cap A_2) = \{ y \in Y : \exists a \in A_1 \cap A_2 (F(a) = y) \}$$

Case 1: Let $y \in F(A_1 \cap A_2)$. F(a) = y for some $a \in A_1 \cap A_2$. $a \in A_1$ and $a \in A_2$. $a \in A_1$ by specialization, so $F(a) \in F(A_1)$. $a \in A_2$ by specialization, so $F(a) \in F(A_2)$. $F(a) \in F(A_1)$ and $F(a) \in F(A_2)$ so $F(a) \in F(A_1) \cap F(A_2)$

Case 2: Let $y \in F(A_1) \cap F(A_2)$. $y \in F(A_1)$ and $y \in F(A_2)$. $F(a_1) = y$ for some $a_1 \in A_1$ and $F(a_2) = y$ for some $a_2 \in A_2$. $F(a_1) = y = F(a_2)$ so $a := a_1 = a_2$ since F is injective. Therefore F(a) = y for some $a \in A_1$ and $a \in A_2$, i.e. there exists $a \in A_1 \cap A_2$ such that F(a) = y and $y \in F(A_1 \cap A_2)$.

4. (3 points) Section 7.2 #41.

Solution: #41. Let $F: X \to Y$ be surjective. For any $y \in Y$, there exists $x \in X$ such that F(x) = y.

Proof. Let $B \subset Y$.

$$F^{-1}(B) = \{ x \in X : F(x) \in B \}$$

$$F(F^{-1}(B)) = \{ y \in Y : \exists x \in F^{-1}(B) (F(x) = y) \}$$

Case 1: Let $b \in F(F^{-1}(B))$. There exists $x \in F^{-1}(B)$ such that F(x) = b. Since $x \in F^{-1}(B)$ this implies that $F(x) \in B$, i.e. $b \in B$.

Case 2: Let $b \in B$. Since F is surjective, there exists $x \in X$ such that F(x) = b. $F(x) \in B$ so $x \in F^{-1}(B)$. F(x) = b for some $x \in F^{-1}(B)$. Thus $b \in F(F^{-1}(B))$. \square

5. (15 points) Section 7.3 #8, 10.

Solution: #8.

(a)
$$T(4) = 1$$
.

(b)
$$T(5) = 2$$
.

(c)
$$T(3) = 0$$
.

Solution: #10.

- (a) $(F \circ G)(8) = (G \circ F)(8) = 8$ and $(F \circ G)(3) = (G \circ F)(3) = 3$.
- (b) No, $F \circ G \neq G \circ F$. Choose x = 1/2 such that

$$(G \circ F)(x) = (G \circ F)(1/2) = 1 \neq 0 = (F \circ G)(1/2) = (F \circ G)(x).$$

6. (6 points) Section 7.3 #15.

Solution: #15. Let $b \in (0, 1) \cup (1, \infty)$.

- (a) Proof. Let $x \in \mathbb{R}$. Since $\log_b \colon \mathbb{R}^+ \to \mathbb{R}$ is a bijection, $\log_b(b^x) = y$ for some $y \in \mathbb{R}$ if and only if $b^y = b^x$. Since the exponential function $\exp_b \colon \mathbb{R} \to \mathbb{R}^+$ is injective, $\log_b(b^x) = y = x$.
- (b) Proof. Let $x \in \mathbb{R}^+$. Since $\exp_b \colon \mathbb{R} \to \mathbb{R}^+$ is a bijection, $b^{\log_b(x)} = y$ for some $y \in \mathbb{R}$ if and only if $\log_b(y) = \log_b(x)$. Since the logarithmic function $\log_b \colon \mathbb{R}^+ \to \mathbb{R}$ is injective, $b^{\log_b(x)} = y = x$.
- 7. (3 points) Section 7.3 #20.

Solution: #20. Let $f: X \to Y$ and $g: Y \to Z$ be any functions and $g \circ f$ be surjective. f is not surjective in general:

Proof. Choose $X := Z := \{1\} \subseteq \{1, 2\} =: Y \text{ and } f := \{(1, 1)\} \text{ and } g := \{(1, 1), (2, 1)\}.$ So $g \circ f = \{(1, 1)\}$ is surjective, since $1 \in X$ such that $(g \circ f)(1) = 1$ and $(g \circ f)(X) = (g \circ f)(\{1\}) = \{1\} = Z$. Choose $2 \in Y$ such that, for any $x \in X$, $f(x) \neq 2$, since $X = \{1\}$ and $f(1) = 1 \neq 2$. So f is not surjective. □

- 8. (6 points) Let f and g be functions such that
 - (i) $f: X \to Y$ and $g: Y \to X$.
 - (ii) $f \circ q = \mathrm{id}_Y$ and $q \circ f = \mathrm{id}_X$.

Prove that

- (a) f is injective and surjective.
- (b) $f^{-1} = g$.

Solution:

Proof. Let f and g be functions such that

- (i) $f: X \to Y$ and $g: Y \to X$.
- (ii) $f \circ q = id_Y$ and $q \circ f = id_X$.

(a) Let $x_1, x_2 \in X$. Suppose $f(x_1) = f(x_2)$. Since $g: Y \to X$ is well-defined,

$$g(f(x_1)) = g(f(x_2))$$

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

$$id_X(x_1) = id_X(x_2)$$

$$x_1 = x_2.$$

So f is injective.

Let $y \in Y$. Since $g: Y \to X$ is well-defined, there exists $x \in X$ such that g(y) = x.

$$y = id_Y(y) = (f \circ g)(y) = f(g(y)) = f(x).$$

So f is surjective.

Since f is injective and surjective, f is bijective, so $f^{-1}: Y \to X$ is a function.

(b) Let $y \in Y$. Since $f^{-1}: Y \to X$ is a function, $f^{-1}(y) = x$ for some $x \in X$ and

$$f^{-1}(y) = x \Longleftrightarrow y = f(x).$$

So

$$f^{-1}(y) = x = \mathrm{id}_X(x) = (g \circ f)(x) = g(f(x)) = g(y).$$

Therefore $f^{-1} = g$.