Validation and overfitting

Restaurant Revenue Prediction

Predict annual restaurant sales based on objective measurements

\$30,000 · 2,257 teams · 2 years ago

Public Leaderboard

Private Leaderboard

This leaderboard is calculated with approximately 30% of the test data.

The final results will be based on the other 70%, so the final standings may be different.

# △priv	Team Name	Kernel	Team Members	Score 2	Entries	Last
1 ▼19	BAYZ, M.D.		9 😂 9	0.00000	115	2у
2 ▼16	Will lam		-	710063.76	116	2у
3 ▼10	Scott Lowe		10	1462479.4	106	2у
4 ▼ 935	AMAR_PREM_AnandAkela_Teja			1464692.1	97	2у
5 ▼ 683	Analytic Bastard		9 9	1492787.0	115	2у

Next videos

- 1. We will understand the concept of validation and overfitting
- 2. We will identify the number of splits that should be done to establish stable validation
- 3. We will break down most frequent ways to repeat train test split
- 4. We will discuss most often validation problems

Validation: example

Lung Cancer is the most common type of cancer with...

225,000

\$12 billion
were accounted for in healthcare
costs in the U.S. every year²

Low-Dose CT scans help assess if a person is at risk of lung cancer or other pulmonary disease. Scientific research reports...

20%

of lung cancer deaths can be reduced with early detection³

However, the image assessments in use today are identifying lung lesions as potentially cancerous that later turn out to not be cancer.

High false positive rates

lead to unnecessary patient anxiety, additional follow-up imaging and interventional treatments 3.4

SOURCE

¹Siegel RL, Miller KD, Jemai A. "Cancer Statistics," 2016. CA: A Cancer Journal for Clinicians. 2016; 66:7-30.

*National Institutes of Health, "Cancer costs projected to reach at least \$150 billion in 2020, "https://www.nit.gov/news-events/news-releases/cancer-costs-projected-reach-least-\$50 billion-2020, (January 12, 2011).
*Aborte DR, Adama AH, Berg CD, et al. "Reduced lang-cancer mortality with low dose computed tomographic screening." New Feet J Med. 2011;36:539-409.
**Leve Owser CT has historially resulted in high face positive sets of oranged 25% facilities 4.0, New England J Med. 2011;36:539-409.

Validation: example

Validation: example

	TRAIN(past)	VALIDATION (past)	TEST(future)
X			
Υ			

Validation: competitions

	TRAIN	VALIDATION	TEST
X			
Υ			

Validation: competitions

			TEST	
			LEADERBOARD	
	TRAIN	VALIDATION	PUBLIC	PRIVATE
X				
Υ				

UNDERFITTING

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

(g = sigmoid function)

UNDERFITTING

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \qquad g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$(g = sigmoid function) \qquad +\theta_3 x_1^2 + \theta_4 x_2^2$$

$$+\theta_5 x_1 x_2)$$

 $+\theta_5 x_1 x_2$

 $+\theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2$

Overfitting in general != overfitting in competitions

Overfitting in general != overfitting in competitions

Conclusion

- 1. Validation helps us evaluate a quality of the model
- 2. Validation helps us select the model which will perform best on the unseen data
- 3. Underfitting refers to not capturing enough patterns in the data
- 4. Generally, overfitting refers to
 - a. capturing noize
 - b. capturing patterns which do not generalize to test data
- 5. In competitions, overfitting refers to
 - a. low model's quality on test data, which was unexpected due to validation scores