Notes on GTM251

Yuandong Li

September 11, 2023

Contents

1	Introduction															4	2								
	1.1	His	tory																						2
	1.2	CF	SG																						,
	1.3	Ap	p of	CFS	SG																			;	
2	2 The Alternating Groups															9									
	2.1	Int	rodu	ctio	n.																			,	٠

1 Introduction

1.1 History

1.2 CFSG

Every finite simple group is isomorphic to one of the followings:

- (i) a cyclic group C_p of prime order p;
- (ii) an alternating group A_n for $n \geq 5$;
- (iii) a classical group:
 - linear: $PSL_n(q)$, $n \ge 2$, except $PSL_2(2)$ and $PSL_2(3)$;
 - unitary: $PSU_n(q)$, $n \ge 3$, except $PSU_3(2)$;
 - symplectic: $PSp_{2n}(q)$, $n \ge 2$, except $PSp_4(2)$;
 - orthogonal: $P\Omega_{2n+1}(q)$, $n \geq 3$, q odd; $P\Omega_{2n}^+(q)$, $P\Omega_{2n}^-(q)$, $n \geq 4$;

where q is a power p^a of a prime p;

(iv) an exceptional group of Lie type:

$$G_2(q), q \ge 3$$
; $F_4(q)$; $E_6(q)$; ${}^2E_6(q)$; ${}^3D_4(q)$; $E_7(q)$; $E_8(q)$

with q a prime power, or

$$^{2}B_{2}(2^{2n+1}), \ ^{2}G_{2}(3^{2n+1}, \ ^{2}F_{4}(2^{2n+1}), \ n \ge 1;$$

or the Tits group ${}^2F_4(2)'$;

- (v) one of 26 sporadic simple groups:
 - the five Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} , M_{24} ;
 - the seven Leech lattice groups Co₁, Co₂, Co₃, McL, HS, Suz, J₂;
 - \bullet the three Fischer groups Fi_22 , Fi_23, Fi_24 ;
 - the five Monstrous groups M, B, Th, HN, He;
 - the six pariahs J_1 , J_3 , J_4 , O'N, Ly, Ru.

Conversely, every group in this list is simple, and the only repetitions in this list are:

$$PSL_{2}(4) \cong PSL_{2}(5) \cong A_{5};$$

$$PSL_{2}(7) \cong PSL_{3}(2);$$

$$PSL_{2}(9) \cong A_{6};$$

$$PSL_{4}(2) \cong A_{8};$$

$$PSU_{4}(2) \cong PSp_{4}(3).$$

introduce, construction, orders, simplicity, action (reveal subgroup structure) $\,$

1.3 App of CFSG

The symmetric difference set of almost simple subgroups and maximal subgroups of A_n is listed out, while listing their intersection is impossible.

2 The Alternating Groups

2.1 Introduction

 $\operatorname{Aut}(A_n) \cong S_n$ for $n \geq 7$ but for n = 6 there is an exceptional outer automorphism of S_6 .

subgroup structure (O'Nan-Scott Thm)