MATH 345 Exam 1

T.J. Liggett

March 2021

1 Problems

Consider the set of integers \mathbb{Z} with the digital line topology. Prove that the topological space is not Hausdorff and that there exists a singleton set that is not closed.

Proof. Consider the set of integers \mathbb{Z} with the digital line topology T_{DL} . By way of contradiction, assume the topological space is Hausdorff. Then $\forall x, y \in \mathbb{Z}$, there exist disjoint neighborhoods $x \in X$, $y \in Y$. Consider the case where x = 0, y = 1. Note that 0 is an element of only one basis element in the digital line topology,

$$B(0) = \{-1, 0, 1\}$$

Since the neighborhood X is an open set in the digital line topology and $0 \in X$, it is either a basis element, B(0), or a union of basis elements

$$X = B(0) \cup B(x_1), ..., B(x_n)$$

where $0 \le n < \infty$. In either case, it follows that $1 \in X$. However, X and Y are disjoint, but $1 \in X$ and $1 \in Y$, which is a contradiction.

Therefore, this topological space is NOT Hausdorff.

Similarly, by way of contradiction assume the singleton set $S = \{1\} \in T_{DL}$ is closed. Then the complement of this set is $S' = \mathbb{Z} - \{1\}$ is open. Since $0 \in S'$, and 0 is an element of only one basis element in the digital line topology, it follows that $B(0) = \{-1, 0, 1\} \subset S'$. But then $1 \in S'$, which is a contradiction. Thus, the singleton set containing 1 is not closed.

Therefore, for the set of integers \mathbb{Z} with the digital line topology, the topological space is not Hausdorff and there exists a singleton set that is not closed.