

Model Selection

Azercell DataMinds Bootcamp

Content

- Introduction
 - Model selection
- Linear Models
 - Logistic regression
 - Linear regression
- Metrics
 - Classification metrics
 - Acc/Precision/Recall
 - ROC AUC curve
 - Regression Metrics

- Regularization
 - L1 regularization
 - L2 regularization
- Model selection technique
 - Strategy
 - Kfold
 - Hypothesis testing
- Ensemble Methods
 - Bagging
 - Stacking
 - Boosting

Introduction

Model Selection Train/Test

Key important features

- Bias/Variance tradeoff
- Efficiency
- Evaluation and comparison

Model Model selection is a **critical step in machine learning** because not all models perform equally well on a given dataset.

Reason	Explanation
Better performance	Different models fit different data well
Generalization	Avoid underfitting and overfitting
Computational cost	Choose efficient models for production
Task-specific needs	Match model to data and problem type
Evaluation rigor	Use metrics and validation to choose reliably

Production pipeline

Data Gathering

EDA

Feature Engineering advanced techniques

Model selection: Train/Test

Develop production code

Deploy and monitor

Linear Models

Introduction to Linear and Logistic Regression

Overview

- •Both are **supervised learning** algorithms.
- •They differ in **output type** and **use case**.

Feature	Linear Regression	Logistic Regression
Target Variable	Continuous	Categorical (binary/multiclass)
Output	Any real number	Probability (0 to 1)
Used For	Regression tasks	Classification tasks

Common Use Cases:

- •Linear Regression: Predicting housing prices, stock trends.
- •Logistic Regression: Spam detection, disease prediction.

Linear Regression – Formula & Intuition

Model Equation:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

- \hat{y} : Predicted value
- β_i : Coefficients/weights
- x_i : Feature variables

Loss Function (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

Objective: Minimize MSE by adjusting weights using **Gradient Descent** or **Closed-form solution**.

Gradient Descent – Pseudocode.

```
Initialize weights \beta_0, \beta_1, ..., \beta_n randomly Repeat until convergence:

Predict: y_hat = X \cdot \beta

Compute gradients: \nabla = -2/n * X^t \cdot (y - y_hat)

Update weights: \beta = \beta - \alpha * \nabla
```

- α : Learning rate
- X: Input matrix
- y: Target vector
- Convergence = when loss stops decreasing significantly.

```
from sklearn.linear model import LinearRegression
from sklearn.datasets import make regression
from sklearn.model selection import train test split
# Generate sample data
X, y = make regression(
 n samples=100,
 n features=1,
 noise=10)
X train, X test, y train, y test = train test split(
 test size=0.2)
# Fit linear regression model
model = LinearRegression()
model.fit(X train, y train)
# Coefficients
print("Coefficient:", model.coef )
print("Intercept:", model.intercept )
# Predict
y pred = model.predict(X test)
```

Interpretation:

The coefficient tells how much y changes for one unit increase in X. The intercept is the expected y when all features are 0.

Logistic Regression – Formula & Intuition

Model Equation (Sigmoid Function):

$$\hat{p} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

where

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

- \hat{p} : Predicted probability of class 1
- $\sigma(z)$ Sigmoid function maps z to [0,1]

Decision Rule:

- •If p > 0.5: predict class 1 (by default)
- •Else: predict class 0

Loss Function (Binary Cross-Entropy):

$$\mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\widehat{p}_i) + (1 - y_i) \log(1 - \widehat{p}_i)]$$

```
Initialize weights \beta_0, \beta_1, ..., \beta_n randomly Repeat until convergence:

Predict: p_hat = sigmoid(X \cdot \beta)

Compute error: error = p_hat - y

Compute gradients: \nabla = (1/n) * X^t \cdot error

Update weights: \beta = \beta - \alpha * \nabla
```

- Gradient is from the derivative of the log-loss with respect to weights.
- Learning rate α must be tuned to ensure convergence.

```
0.5
```

```
from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report
```

```
# Generate binary classification data
X, y = make_classification(
    n_samples=100,
    n_features=2,
    n_classes=2)

X_train, X_test, y_train, y_test = train_test_split(
    X,
    y,
    test_size=0.2)

# Fit logistic regression model
```

```
# Fit logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)
```

Predict

```
y_pred = model.predict(X_test)
print(classification report(y test, y pred))
```

Interpretation:

- model.predict_proba(X_test) gives class probabilities.
- Useful for threshold tuning, ROC/AUC analysis.

Linear vs Logistic – Summary & Tips

Aspect	Linear Regression	Logistic Regression
Output	Continuous	Probabilistic (0–1)
Loss Function	MSE	Cross-Entropy
Output Function	Identity	Sigmoid
Gradient Formula	$\nabla = -2X^T(y - \hat{y})$	$\nabla = X^T(\sigma(z) - \hat{y})$

Best Practices:

- •Normalize features (important for GD convergence).
- •Monitor learning curves during training.
- •Use learning_rate, max_iter, and tol to control GD in custom implementations.

Metrics

Classification Metrics Overview

Metrics

Goal: Evaluate how well the model distinguishes between classes (binary or multiclass).

Key Metrics:

- •**Precision** How many selected items are relevant?
- •Recall How many relevant items are selected?
- •F1 Score Harmonic mean of precision and recall.
- •Confusion Matrix Summarizes predictions vs actuals.
- •ROC Curve & AUC Probability-based discrimination measure.

 $from \ sklearn.metrics \ import \ precision_score, \ recall_score, \ f1_score$

```
y_true = [0, 1, 1, 1, 0, 1, 0, 0, 1]
y_pred = [0, 1, 0, 1, 0, 1, 1, 0, 1]

print("Precision:", precision_score(y_true, y_pred))
print("Recall:", recall_score(y_true, y_pred))
print("F1 Score:", f1_score(y_true, y_pred))
```

Precision: 0.8 Recall: 0.8 F1 Score: 0.8 TP (True Positive) – Correctly predicted positive.

FP (False Positive) – Incorrectly predicted positive.

TN (True Negative) – Correctly predicted negative.

FN (False Negative) – Incorrectly predicted negative.

from sklearn.metrics import (confusion_matrix, ConfusionMatrixDisplay) import matplotlib.pyplot as plt

cm = confusion_matrix(y_true, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
plt.show()

Classification Metrics definition

Metrics

Metric	Formula	Meaning
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$	Overall correctness
Precision	$\frac{TP}{TP + FP}$	Correctly predicted positives
Recall	$\frac{TP}{TP + FN}$	Found all actual positives

High Accuracy is misleading on imbalanced data. **Precision** is crucial when **FP is costly** (e.g., spam filters). **Recall** is vital when **FN is dangerous** (e.g., cancer screening).

TP (True Positive) – Correctly predicted positive.

FP (False Positive) – Incorrectly predicted positive.

TN (True Negative) – Correctly predicted negative.

FN (False Negative) – Incorrectly predicted negative.

ROC Curve & AUC — Threshold-Free Performance

Metrics

TPR (Recall): $\frac{TP}{TP+F}$

• **FPR:** $\frac{FP}{FP+TN}$

• **ROC Curve:** TPR vs FPR at different thresholds

- AUC (Area Under Curve): Scalar summary of classifier's discrimination ability
 - **AUC** = **0.5** → Random guessing
 - **AUC = 1.0** → Perfect classifier

Why Use ROC AUC?

- Unaffected by class imbalanceEvaluates
- performance across

all thresholds


```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import roc_curve, roc_auc_score
# Logistic Regression
model = LogisticRegression()
model.fit(X train, y train)
# Predict probabilities
y_scores = model.predict_proba(X_test)[:, 1]
# ROC and AUC
fpr, tpr, = roc curve(y test, y scores)
auc score = roc auc score(y test, y scores)
plt.figure(figsize=(6, 4))
plt.plot(fpr, tpr, label=f"AUC = {auc_score:.2f}")
plt.plot([0, 1], [0, 1], linestyle="--", color="gray")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve - Titanic Dataset")
plt.legend()
plt.grid(True)
plt.tight layout()
plt.show()
```


Regression Metrics

Metrics

Metric	Formula	Description & Use Case
MAE	$MAE = \frac{1}{n} \Sigma$	$y_i - \hat{y}$
MSE	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_t - \hat{y}_i)$	Penalizes large errors more than MAE. Use when large deviations are critical.
RMSE	$RMSE = \sqrt{MSE}$	Same units as the target variable. Useful for interpretability.
R ² Score	$R^2 = 1 - \frac{\sum (y_i - \widehat{y}_i)^2}{\sum (y_i - \widehat{y}_i)}$	Proportion of variance in target explained by model. Use to assess goodness of fit. $R^2 = 1$: perfect fit, $R = 0$, $R^2 = 0$: no explanatory power.

from sklearn.metrics import (
 mean_absolute_error,
 mean_squared_error,
 r2_score)

MAE: Simple interpretation, less sensitive to outliers

MSE: Heavier penalty on large errors

RMSE: Useful for expressing error in original units

R²: Good for comparing model fits, but can be misleading with non-linear data

Regularization

Why do we need Regularization?

Regularization

Problem: Overfitting in Machine Learning

- •Overfitting: The model performs well on training data but poorly on unseen data.
- •Happens when:
 - Too complex model (e.g., high-degree polynomial)
 - Too many parameters or not enough data

Solution: Regularization

 Idea: Penalize large model parameters to reduce complexity and prevent overfitting.

Cost Function (Basic) =
$$Loss(y, \hat{y}) = \sum (y_i - \hat{y}_i)^2$$

•Regularization adds a **penalty** term to this cost function.

Types of Regularization (L1 & L2)

L2 Regularization (Ridge Regression)

$$J(\theta) = \sum (y_i - \hat{y}_i)^2 + \lambda \sum (\theta_i^2)$$

- Penalizes squared weights
- Shrinks weights smoothly toward zero

L1 Regularization (Lasso Regression)

$$J(\theta) = \sum (y_i - \hat{y}_i)^2 + \lambda \sum |\theta_j|$$

Can shrink some weights **exactly to zero** → feature selection

λ (lambda) controls penalty strength:

- $\lambda = 0 \rightarrow \text{no regularization}$
- $\lambda \to \infty \to \text{all weights shrink heavily}$

Regularization example

Regularization

```
from sklearn.linear model import Ridge, Lasso
from sklearn.datasets import make_regression
from sklearn.model_selection import train test split
X, y = make_regression(n_samples=100, n_features=20, noise=15)
X train, X test, y train, y test = train test split(X, y)
# Ridge (L2)
ridge = Ridge(alpha=1.0)
ridge.fit(X train, y train)
print("Ridge R^2:", ridge.score(X test, y test))
# Lasso (L1)
lasso = Lasso(alpha=0.1)
lasso.fit(X_train, y_train)
print("Lasso R^2:", lasso.score(X test, y test))
```

Ridge R^2: 0.9873922504549839 Lasso R^2: 0.9877459836451575

Model selection

Starting with a Baseline Model

Establishing the Baseline in Model Selection

Purpose of Baseline:

- •A baseline model serves as a reference point to compare the performance of more complex models.
- •It is simple, fast to train, and interpretable.

Examples of Baseline Models:

- •DummyClassifier (e.g., always predicts the most frequent class).
- •Linear Regression without feature scaling or regularization.
- •Mean or median predictor for regression.

Why Start with a Baseline?

- •Sanity check: Ensures your data pipeline is working correctly.
- •Benchmark: Helps understand whether complex models actually add value.
- •Interpretability: Provides initial insights into the task difficulty.

A good model should outperform the baseline significantly. If it doesn't, either the model is underfitting, or the data is not informative enough.

Model Comparison

Classical ML Models and Performance Estimation

Exploring Classical Machine Learning Models

Candidate Models:

- •Logistic Regression linear decision boundaries, interpretable, good for linearly separable data.
- •K-Nearest Neighbors (KNN) non-parametric, sensitive to feature scaling.
- •Decision Trees interpretable, but prone to overfitting.
- •Random Forest ensemble of trees, reduces overfitting, less interpretable.
- •Support Vector Machines (SVM) effective in high-dimensional spaces, uses kernel tricks.

Model Training and Evaluation:

- •Cross-validation (e.g., k-fold) ensures robust performance estimation.
- •Evaluate with metrics:
 - Classification: accuracy, precision, recall, F1-score, AUC-ROC.
 - Regression: MSE, RMSE, MAE, R².

Bias-variance tradeoff guides model choice. Simpler models may underfit (high bias), complex ones may overfit (high variance). Regularization can help balance this.

Iterative Model Refinement and Selection

Refining, Tuning, and Selecting the Optimal Model

Model Tuning:

- •**GridSearchCV / RandomizedSearchCV** to optimize hyperparameters.
- •Use validation performance to avoid overfitting to training data.
- •Apply **feature scaling**, **encoding**, or **dimensionality reduction** as needed.

Model Comparison:

- •Compare performance using **statistical tests** (e.g., paired t-test) over cross-validation folds.
- Consider interpretability vs. performance tradeoff.

Final Selection Criteria:

- •Best generalization performance on unseen test data.
- •Meets application-specific constraints (e.g., inference speed, memory usage).
- •Model stability and explainability.

[•]The no free lunch theorem tells us that no model is best for all tasks — model selection is inherently data-dependent.

Model selection example

Model selection

```
from sklearn.datasets import load breast cancer
from sklearn.model selection import cross val score, StratifiedKFold
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from scipy.stats import ttest rel
import numpy as np
# Load data
X, y = load breast cancer(return X y=True)
# Define models
model1 = LogisticRegression(max iter=1000, solver='liblinear') # Simpler linear model
model2 = RandomForestClassifier(random state=42) # More complex ensemble
# Stratified K-Folds
cv = StratifiedKFold(n splits=10, shuffle=True, random state=1)
# Evaluate both models
scores1 = cross val score(model1, X, y, cv=cv, scoring='accuracy')
scores2 = cross val score(model2, X, y, cv=cv, scoring='accuracy')
print("Logistic Regression Accuracies:", scores1)
print("Random Forest Accuracies:", scores2)
```

- Logistic Regression Accuracies: [0.94736842 0.94736842 0.92982456 0.94736842 0.92982456 0.96491228 0.96491228 0.96491228 0.96428571]
- Random Forest Accuracies: [0.94736842 0.94736842 1. 0.98245614 0.9122807 0.94736842 1. 0.94736842 0.94736842 0.92857143]

- Paired t-test offers a statistically principled way to compare models.
- **Cross-validation** ensures fair and robust performance estimation.
- Use scientific significance (p-value)
 alongside practical significance
 (accuracy improvement) when
 choosing the best model.

```
# Paired t-test
t_stat, p_value = ttest_rel(scores2, scores1)
print(f"t-statistic: {t_stat:.4f}")
print(f"p-value: {p_value:.4f}")
t-statistic: 0.1697
p-value: 0.8690
```

- p-value < 0.05 → We reject the null hypothesis: there's a statistically significant difference between models.
- t-statistic > 0 → RandomForestClassifier has significantly higher accuracy than LogisticRegression.

Why Random Forest Might Perform Better

Aspect	Logistic Regression	Random Forest
Model type	Linear classifier	Non-linear ensemble
Assumptions	Assumes linear decision boundaries	Captures complex interactions
Interpretability	High	Moderate to low
Overfitting risk	Low	Moderate (but mitigated via bagging)
Feature importance	Coefficients	Tree-based impurity scores

Model selection Full pipeline

Model selection

```
from sklearn.datasets import load breast cancer
from sklearn.model selection import KFold, cross validate
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear model import LogisticRegression
from sklearn.compose import ColumnTransformer
import pandas as pd
import numpy as np
# Load dataset
X raw, y = load breast cancer(return X y=True)
X = pd.DataFrame(X raw, columns=load breast cancer().feature names)
# Introduce missing values to simulate real-world data
X.iloc[::50, 0] = np.nan
# Preprocessing pipeline for numeric features
numeric features = X.columns.tolist()
numeric transformer = Pipeline([
 ('imputer', SimpleImputer(strategy='mean')),
 ('scaler', StandardScaler())
# ColumnTransformer to apply to all features
preprocessor = ColumnTransformer([
('num', numeric transformer, numeric features)
# Full pipeline: preprocessing + model
pipeline = Pipeline([
 ('preprocessor', preprocessor),
 ('classifier', LogisticRegression(max iter=1000))
```

```
# Scoring metrics
                 scoring = [
                  'accuracy'.
                  'precision',
                  'recall',
                  'f1',
                  'roc auc']
                 # KFold definition
                 kf = KFold(n splits=5, shuffle=True, random state=42)
                 # Evaluate multiple metrics
                 cv results = cross validate(
                 pipeline,
                  Χ,
                  у,
                  cv=kf,
                  scoring=scoring,
                  return train score=False)
                 # Print results
                 for metric in scoring:
                 test scores = cv results[f'test {metric}']
                 print(f"{metric.capitalize()} scores: {test scores}")
                 print(f"Mean {metric}: {test scores.mean():.4f}\n")
Accuracy scores: [0.97368421 0.98245614 0.96491228 0.99122807 0.97345133] Mean accuracy: 0.9771
Precision scores: [0.97222222 1. 0.95890411 0.98611111 0.97058824] Mean precision: 0.9776
Recall scores: [0.98591549 0.97402597 0.98591549 1. 0.98507463] Mean recall: 0.9862
F1 scores: [0.97902098 0.98684211 0.97222222 0.99300699 0.97777778] Mean f1: 0.9818
Roc auc scores: [0.99737963 1. 0.98427776 0.99770717 0.99415964] Mean roc auc: 0.9947
```


Ensemble methods

Introduction to Ensemble Learning

Ensemble methods

What is Ensemble Learning?

- •Ensemble learning combines multiple models (often called **weak learners**) to build a more robust and accurate model.
- •It leverages the **wisdom of the crowd**: aggregating multiple predictions typically outperforms a single model.

Types of Ensembles:

- 1.Bagging (Bootstrap Aggregating)
- 2.Boosting
- 3.Stacking

Why Use Ensembles?

- •Reduce variance (Bagging)
- •Reduce bias (Boosting)
- Leverage model diversity (Stacking)

Classifiers on feature subsets of the Iris dataset

Bagging (Bootstrap Aggregating)

Ensemble methods

Concept:

- •Train multiple models on **bootstrapped samples** of data.
- •Combine predictions using **voting (classification)** or **averaging (regression)**.

Pros:

- Reduces variance
- •Handles overfitting well

Cons:

Limited bias reduction

Popular Algorithm: RandomForestClassifier

Bagging pipeline

Ensemble methods

```
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
accuracy = make scorer(accuracy score)
cv = KFold(5, shuffle=True, random state=0)
model = BaggingClassifier(
 estimator=DecisionTreeClassifier(),
 n estimators=300,
 bootstrap=True,
 max_samples=1.0,
 max features=1.0,
 random state=0)
column transform = ColumnTransformer([
 ('categories', categorical_onehot_encoding, low_card_categorical),
 ('numeric', numeric passthrough, continuous)
 remainder='drop',
 verbose feature names out=False,
 sparse threshold=0.0)
model pipeline = Pipeline([
 ('processing', column transform),
 ('modeling', model)
```

```
cv_scores = cross_validate(
  estimator=model_pipeline,
  X=data,
  y=target_median,
  scoring=accuracy,
  cv=cv,
  return_train_score=True,
  return_estimator=True
)

mean_cv = np.mean(cv_scores['test_score'])
std_cv = np.std(cv_scores['test_score'])
fit_time = np.mean(cv_scores['fit_time'])
score_time = np.mean(cv_scores['score_time'])

print(f"{mean_cv:0.3f} ({std_cv:0.3f})",
    f"fit: {fit_time:0.2f}",
    f"secs pred: {score_time:0.2f} secs")
```


Boosting

Ensemble methods

Concept:

- •Train models **sequentially**. Each new model focuses on **correcting th errors** of the previous one.
- •Models are **weighted** in the final prediction.

Pros:

- •Reduces both bias and variance
- High accuracy

Cons:

- Can overfit if not properly regularized
- Training is sequential (slower)

Popular Algorithms:

- AdaBoost,
- GradientBoosting,
- XGBoost,
- LightGBM
- Catboost

from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier

```
# Updated keyword: use 'estimator' instead of 'base_estimator'
model = AdaBoostClassifier(
    estimator=DecisionTreeClassifier(max_depth=1),
    n_estimators=50,
    learning_rate=1.0,
    random_state=42
)
model.fit(X_train, y_train)
print(model.score(X_test, y_test))
```

0.9473684210526315

Boosting algorithm

Ensemble methods

```
from sklearn.tree import DecisionTreeRegressor
import numpy as np
class GradientBoosting():
 def __init__(self, learning_rate=0.1, n_estimators=10, **params):
  self.learning rate = learning rate
  self.n estimators = n estimators
  self.params = params
  self.trees = list()
 def sigmoid(self, x):
  x = np.clip(x, -100, 100)
  return 1/(1 + np.exp(-x))
 def logit(self, x, eps=1e-6):
  xp = np.clip(x, eps, 1-eps)
  return np.log(xp / (1 - xp))
 def gradient(self, y true, y pred):
  gradient = y_pred - y_true
  return gradient
 def fit(self, X, y):
  self.init = self.logit(np.mean(y))
  y_pred = self.init * np.ones((X.shape[0],))
  for k in range(self.n_estimators):
   gradient = self.gradient(self.logit(y), y pred)
   tree = DecisionTreeRegressor(**self.params)
   tree.fit(X, -gradient)
   self.trees.append(tree)
   y pred += (self.learning rate * tree.predict(X))
```

```
def predict_proba(self, X):
    y_pred = self.init * np.ones((X.shape[0],))
    for tree in self.trees:
        y_pred += (self.learning_rate * tree.predict(X))
    return self.sigmoid(y_pred)

def predict(self, X, threshold=0.5):
    proba = self.predict_proba(X)
    return np.where(proba >= threshold, 1, 0)
```


Stacking

Ensemble methods

Concept:

- Combine predictions of multiple base models using a meta-model (often logistic regression or linear regression).
- Base models learn the data, the meta-model learns from their predictions.

Pros:

- Can combine diverse models (tree + SVM + neural net)
- Captures both low and high bias/variance patterns

Cons:

More complex, prone to overfitting if improperly validated

Algorithm 19.7 Stacking

```
Input: Training data \mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^m (\mathbf{x}_i \in \mathbb{R}^n, y_i \in \mathcal{Y})
Output: An ensemble classifier H
 1: Step 1: Learn first-level classifiers
  2: for t \leftarrow 1 to T do
           Learn a base classifier h_t based on \mathcal{D}
 4: end for
 5: Step 2: Construct new data sets from \mathcal{D}
 6: for i \leftarrow 1 to m do
           Construct a new data set that contains \{\mathbf{x}_i', y_i\}, where \mathbf{x}_i' = \{h_1(\mathbf{x}_i), h_2(\mathbf{x}_i), \dots, h_T(\mathbf{x}_i)\}
 8: end for
 9: Step 3: Learn a second-level classifier
10: Learn a new classifier h' based on the newly constructed data set
11: return H(\mathbf{x}) = h'(h_1(\mathbf{x}), h_2(\mathbf{x}), \dots, h_T(\mathbf{x}))
```

```
from sklearn.ensemble import StackingClassifier
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive bayes import GaussianNB
estimators = [
 ('svc', SVC(probability=True)),
 ('nb', GaussianNB())
model = StackingClassifier(
 estimators=estimators,
 final_estimator=LogisticRegression()
model.fit(X train, y train)
print(model.score(X test, y test))
```


When to Use Which?

Ensemble methods

Strategy	Use When	Key Focus
T DACICIIICI	High variance models (e.g., decision trees)	Variance
	High bias models, need higher accuracy	Bias + Errors
Stacking	Need to combine diverse models	Diversity

Bagging → Parallel training (good for speed)

Boosting → Sensitive to outliers (careful with noise)

Stacking → Needs good validation to avoid overfitting

Hyperparameters tuning

Grid Search – Exhaustive Hyperparameter Tuning

Hyperparameters tuning

Definition:

Grid Search tests **all possible combinations** of predefined hyperparameter values.

How it works:

- You define a parameter grid (e.g., {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}).
- For each combination, the model is trained and evaluated using cross-validation.
- The best combination is selected based on a **scoring metric** (e.g., accuracy, F1).

Pros:

- Simple and deterministic.
- Good for small search spaces.

Cons:

- Computationally expensive for large grids.
- Doesn't prioritize promising areas of search space.

```
from sklearn.model selection import GridSearchCV
from sklearn.svm import SVC
param grid = {
 'C': [0.1, 1, 10],
 'kernel': ['linear', 'rbf']
grid = GridSearchCV(
 SVC(),
 param grid,
 scoring='accuracy',
 cv=5)
grid.fit(X train, y train)
print(grid.best params )
{'C': 1, 'kernel': 'linear'}
```


Random Search – Efficient Exploration

Hyperparameters tuning

Definition:

Random Search randomly samples hyperparameter combinations from given distributions.

How it works:

- You define ranges or distributions (e.g., uniform, loguniform).
- Random combinations are sampled for a fixed number of iterations.

Pros:

- More efficient than Grid Search when some hyperparameters are more important.
- Useful when there are many parameters.

Cons:

- Still requires many evaluations.
- No feedback from previous trials (i.e., no learning from past evaluations).

```
from sklearn.model selection import RandomizedSearchCV
from scipy.stats import uniform
from sklearn.ensemble import RandomForestClassifier
from scipy.stats import randint
param dist = {
 'n estimators': [50, 100, 200],
 'max_depth': randint(1, 10)
rand search = RandomizedSearchCV(
 RandomForestClassifier(),
 param dist,
 n iter=10,
 scoring='accuracy',
 cv=5)
rand_search.fit(X_train, y_train)
print(rand search.best params )
{'max depth': 9,
 'n estimators': 200}
```


Optuna – Intelligent Optimization

Hyperparameters tuning

Optuna is a **state-of-the-art automatic hyperparameter optimization** framework using **Bayesian optimization and pruning**.

Key concepts:

- Uses TPE (Tree-structured Parzen Estimator) for smarter search.
- Learns from past trials to focus on promising regions.
- Supports **early stopping (pruning)** to skip unpromising trials. **Basic flow**:
- Define an objective(trial) function.
- 2. Use Optuna to minimize or maximize the objective.

pip install optuna


```
import optuna
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import cross val score
def objective(trial):
 n estimators = trial.suggest int('n estimators', 50, 200)
 max depth = trial.suggest int('max depth', 2, 32)
 clf = RandomForestClassifier(
  n estimators=n estimators,
  max depth=max depth)
return -cross val score(
clf,
 X train,
 y train,
 cv=3,
 scoring='accuracy').mean()
study = optuna.create study(direction='minimize')
study.optimize(objective, n trials=50)
print(study.best params)
```

Why do we use negative cross_val_score?

- •cross_val_score() returns **positive values** for metrics like accuracy.
- •But Optuna requires you to **minimize** or **maximize** your objective explicitly.
- •If you want to **maximize accuracy**, you either:
 - maximize the score directly, or
 - minimize the negative of the score.

Optuna advanced features

Hyperparameters tuning

Advanced capabilities:

- **Pruning**: Stops poor trials early to save time.
- Visualization: Provides importance plots, optimization history, and parameter correlation plots.
- Parallel execution: Easily run multiple trials in parallel.
- Sampler customization: Use TPE, CMA-ES, or random sampling.

!pip install nbformat

Visualization example:

optuna.visualization.plot_optimization_history(study).show() optuna.visualization.plot_param_importances(study).show()

Optimization History Plot

Hyperparameter Importances

Literature and links

Ensemble Methods for Machine Learning by Gautam Kunapuli

Hands-On Machine Learning with Scikit-Learn by Aurélien Géron

Machine Learning for Tabular Data: XGBoost, Deep Learning, and AI by Mark Ryan Luca Massaron

Kfold

https://scikit-learn.org/stable/modules/cross validation.html

Hyperparameters tune

https://optuna.org/

Ensemble methods

stacking:

https://medium.com/@brijesh_soni/stacking-to-improve-model-performance-a-comprehensive-guide-on-ensemble-learning-in-python-9ed53c93ce28

https://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/.

bagging

https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples

Thank you for your attention