Linear 1st -order homogeneous systems with nonreal eigenvalues

There are certain things we build on:

- Euler's Formula: Given a real number θ , and $i = \sqrt{-1}$, it says $e^{i\theta} = \cos\theta + i\sin\theta$. A corollary to it is that $e^{-i\theta} = \cos\theta i\sin\theta$, making $e^{i\theta}$ and $e^{-i\theta}$ complex conjugates. For an explanation of why this amazing formula holds, and secondarily to justify in part your study of Maclaurin series in MATH 172, watch https://drive.google.com/file/d/1a7x1QIdNYGis6np3V9rXkq8xYh0wE3yD/view?usp=sharing Here are the finished notes from the video.
- When a matrix **A** has real entries by a nonreal eigenvalue $\alpha + i\beta$, where α , β are real numbers, there will be at least one corresponding eigenvector $\mathbf{u} + i\mathbf{v}$, where \mathbf{u} , \mathbf{v} have real entries. Correspondingly, the complex conjugate $\alpha i\beta$ is also an eigenvalue of **A**, and has $\mathbf{u} i\mathbf{v}$ as an eigenvector. For example, if

$$-3 + 2i$$
 is an eigenvalue with eigenvector
$$\begin{bmatrix} 2 - 3i \\ 1 - i \\ 3i \end{bmatrix}$$
,

then we can identify

$$\alpha = -3, \ \beta = 2, \ \mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix},$$

and conclude that

$$\alpha - i\beta = -3 - 2i$$
 is also an eigenvalue with eigenvector $\mathbf{u} - i\mathbf{v} = \begin{bmatrix} 2 + 3i \\ 1 + i \\ -3i \end{bmatrix}$.

• We have demonstrated and made of the fact that, if the matrix **A** has eigenpair (λ, \mathbf{v}) , then $e^{\lambda t}\mathbf{v}$ is a solution of the homogeneous linear 1st-order system $\mathbf{x}' = \mathbf{A}\mathbf{x}$, But it is not possible to make physical sense of such a solution

$$e^{\alpha+i\beta t}(\mathbf{u}+i\mathbf{v})$$
 and its counterpart $e^{\alpha-i\beta t}(\mathbf{u}-i\mathbf{v})$,

when we are talking about nonreal eigenpairs of A. In

https://drive.google.com/file/d/1elJcAEDA807WxB6JigSH3NYf5YgcY9OC/view?usp=sharing I justify why it is reasonable and valid to trade out those nonreal solutions for these *real* substitutes:

$$e^{\alpha t} \left[\cos(\beta t) \mathbf{u} - \sin(\beta t) \mathbf{v} \right]$$
 and $e^{\alpha t} \left[\sin(\beta t) \mathbf{u} + \cos(\beta t) \mathbf{v} \right]$.

Here are the finished notes from that video.

Some examples:

1.
$$\frac{d}{dt}\mathbf{x} = \begin{bmatrix} -21 & -30 & -32 \\ -4 & -7 & -7 \\ 24 & 30 & 35 \end{bmatrix}$$

Videos will be played during class, but here are the three pages of end notes:

- page 1
- page 2
- page 3

2.
$$\frac{d}{dt}\mathbf{x} = \begin{bmatrix} -5 & -10 \\ 5 & 9 \end{bmatrix}$$

For end notes, consult page 3 above.