Specialized MCMC

Adaptive McMC

Ex: Wueral Networks

data:) (yi , x;) ? x; ERP

model: Y:= f= (xi)+ E: C=1,...,n

E. ~ N(0,02)

where $f_{\theta}(x) = \sum_{i=1}^{K} b_{i} \times (a_{0i} + \langle a_{i}, x \rangle)$

 $\Theta = \left((a_{0,1}, a_{1}, b_{1}), \ldots, (a_{0,K}, a_{K,K}) \right)$ K(p+1)

S() activation function

 $\frac{2}{2} = s \left(\frac{1}{2} + \frac{1}{2} +$

Class of nonlinear regression functions

Bayesian: Prior on Θ $P(G) = \prod_{k=1}^{K} P(a_{oh}, a_{k}b_{k})$ $= \prod_{k=1}^{K} P(a_{oh}) P(a_{k}) P(b_{h})$ K = 1 $N(0, \sigma_{oh}^{2}) N(0, \sigma_{aTpi}^{2}) N(0, \sigma_{oh}^{2})$

Therefore

 $T(6)y_{1:n}) 2p(6)(\frac{1}{0^2}) exp[-\frac{1}{20^2} \sum_{i=1}^{n} (y_i - f_6(x_i))^2]$

a time.

bx (6/bx) <p(b) exp (-1/202 i=1 (y,-f(xi))))

This is intractable so we do a Mitropolis to update &.

Choose a proposal: o.g. a R.W. Metropolis.

Alg: airon & (+) & R K(p+1)

Randonly choose je[1,..,17(p+1)]

Simple $J = N(\Theta_j^{(4)}, V_j^2)$

Sut. $\Theta_{j}^{(4+1)} = \int \int With probAt$

Set $\Theta_{\ell}^{(++1)} = \Theta_{\ell}^{(+)}$ $\ell \neq j$

when $A = \min \left\{ 1, \frac{\pi (8/16\%)}{\pi (9/16\%)} \right\}$

Kmh: $V := (V_1, ..., V_{j_1}, ..., V_{K(p+1)})$ H the vector of Step SiZes.

G: Can we adaptively update Step

Sizes So that we achieve the

Sweet Spot of acceptance?

Θ(0) ~π(| y :: n) Θ(1) | 6(0) ~P_V(6(0))

Y(V) := E[| 6(0) - Θ(0) | 2²]

Goal: Vopt = max 4(v)

explore most area in 1

Hep.

Update the step size

((£+1) = ((+) +) (++1) \(\forall \psi \) (((+1))

Ex: Suppose TT: (0,00) then the kernel is given by

 $P_{o}(x,A) = \int_{A} m_{in}(x) \varphi_{\sigma}(x,y) dy +$ $(1 - A +) 1_{A}(x)$ $Y(\sigma) := \mathbb{E} \left[||x_{i} - x_{o}||_{1}^{2} \right]$

$$=\int t_{0}(x)\int M_{0}(x)\left(y-x^{2}\right) \varphi_{0}(x)dydx$$

$$\frac{d}{d\sigma^2} \Psi(\sigma^2) = \int \int M_{in}(\Psi) (y-x)^2$$

$$\left(\frac{1}{2\sigma^4} (y-x)^2 - \frac{1}{2} \frac{1}{\sigma^2}\right)$$

$$\times \mathcal{P}_{\sigma}(x,y) \pi(x) dy dx$$

$$=\frac{1}{2\sigma^2} \left[\left(\frac{(Y-X)^2}{\sigma} - 1 \right) Min \left(\frac{\pi(Y)}{\pi(x)} \right) \right]$$

Thenfor we can plugin (J,X)
into this expression and use the NR.
update

$$V_{j}^{(t+1)} = V_{j}^{(t)} + \frac{\gamma^{(t+1)}}{2\sigma^{2}} \left\{ \left(\int_{-\sigma_{j}}^{(t+1)} (\xi) - \sigma_{j}^{(t+1)} (\xi) \right)^{2} \right\}$$

Normally require

Alternoting: