DOCKET NO.: ISIS0049-103 (ISIS-4976)

PATENT

In the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Please cancel claims 1-7.

Please add new claims 14-26 as indicated below.

Claims 1-7 (cancelled)

- 8. (Original) A method for inhibiting the division of a malignant mammalian cell comprising contacting said malignant mammalian cell with a chemically modified oligonucleotide having no more than about 27 nucleic acid base units, said oligonucleotide having the sequence $(N_xG_{3-4})_QN_X$ wherein X is 1 to 8 and Q is 1 to 6, wherein said oligonucleotide modulates mammalian telomere length.
- 9. (Original) The method of claim 8 which is carried out in vitro.
- 10. (Original) The method of claim 8 which is carried out in vivo.
- 11. (Original) A method for modulating the effects of aging of a mammalian cell comprising contacting said mammalian cell with a chemically modified oligonucleotide having no more than about 27 nucleic acid base units, said oligonucleotide having the sequence (N_xG_3 . $_4)_QN_X$ wherein X is 1 to 8 and Q is 1 to 6, wherein said oligonucleotide modulates mammalian telomere length.
- 12. (Original) The method of claim 11 which is carried out in vitro.
- 13. (Original) The method of claim 11 which is carried out in vivo.
- 14. (new) A chemically modified oligonucleotide having no more than about 27 nucleic

DOCKET NO.: ISIS0049-103 (ISIS-4976)

PATENT

acid base units, said oligonucleotide having the sequence $(N_xG_4)_QN_X$ wherein X is 1 to 8 and Q is 1 to 6.

- 15. (new) The oligonucleotide of claim 14 which has at least one phosphorothioate linkage.
- 16. (new) The oligonucleotide of claim 14 which has at least one 2' modification of a sugar of said oligonucleotide.
- 17. (new) The oligonucleotide of claim 14 which is a chimeric oligonucleotide.
- 18. (new) The oligonucleotide of claim 14 wherein said chemical modification is:

 a backbone modification selected from the group consisting of chiral phosphorothioate,
 phosphorodithioate, phosphotriester, aminoalkylphosphotriester, methyl phosphonate, 3'alkylene phosphonate, 5'-alkylene phosphonate, chiral phosphonate, phosphinate,
 phosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate,
 boranophosphate, morpholino, siloxane, sulfide, sulfoxide, sulfone, formacetyl, thioformacetyl,
 methylene formacetyl, thioformacetyl, riboacetyl, alkene containing backbone, sulfamate,
 methyleneimino, methylenehydrazino, sulfonate, sulfonamide, and amide; or

a modified 2' sugar moiety selected from the group consisting of F, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, O-alkynyl, N-alkynyl, O-alkyl-O-alkyl, C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkyl, aminoalkylamino, polyalkylamino, and substituted silyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C₁ to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl; or

a modified nucleobases selected from the group consisting of 5-methylcytosine, 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl adenine, 6-methyl guanine, 2-propyl adenine, 2-propyl guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5-holocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine,

6-azo thymine, 5-uracil, 4-thiouracil, 8-halo guanine, 8-amino guanine, 8-thiol guanine, 8-thiolalkyl guanine, 8-hydroxyl guanine, 8-halo adenine, 8-amino adenine, 8-thiol adenine, 8-thiolalkyl adenine, 8-hydroxyl adenine, 5-halo uracil, 5-bromo uracil, 5-trifluoromethyl uracil, 5-halo cytosine, 5-bromo cytosine, 5-trifluoromethyl cytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine, 8-azaguanine, 7-deazaguanine, 7-deazaguanine, 3-deazaguanine, phenoxazine cytidine(1H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido(5,4-b)(1,4)benzothiazin-2(3H)-one), substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido(4,5-b)indol-2-one), pyridoindole cytidine (H-pyrido(3',2':4,5)pyrrolo(2,3-d)pyrimidin-2-one), 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine, and 2-pyridone.

- 19. (New) The oligonucleotide of claim 18 wherein the 2' sugar modification is -O-CH₂CH₂OCH₃, -O(CH₂)₂ON(CH₃)₂, -O-CH₂-O-CH₂-N(CH₂)₂, -O-CH₃, -OCH₂CH₂CH₂CH₂NH₂, -CH₂-CH=CH₂), -F, -O((CH₂)_nO)_mCH₃, -O(CH₂)_nOCH₃, -O(CH₂)_nNH₂, -O(CH₂)_nCH₃, -O(CH₂)_nONH₂, or -O(CH₂)_nON((CH₂)_nCH₃))₂, where n and m are from 1 to about 10.
- 20. (new) The oligonucleotide of claim 14 wherein said oligonucleotide modulates mammalian telomere length.
- 21. (new) A chemically modified oligonucleotide having no more than about 27 nucleic acid base units, said oligonucleotide having the sequence $(N_xG_4N_y)_Q$ or $(G_4N_xG_4)_Q$ wherein X is 1 to 8, Y is 1 to 8, and Q is 1 to 4, wherein said oligonucleotide modulates mammalian telomere length.
- 22. (new) The oligonucleotide of claim 21 which has at least one phosphorothioate linkage.
- 23. (new) The oligonucleotide of claim 21 which has at least one 2' modification of a sugar of said oligonucleotide.

DOCKET NO.: ISIS0049-103 (ISIS-4976)

PATENT

- 24. (new) The oligonucleotide of claim 21 which is a chimeric oligonucleotide.
- 25. (new) The oligonucleotide of claim 21 wherein said chemical modification is:

 a backbone modification selected from the group consisting of chiral phosphorothioate,
 phosphorodithioate, phosphotriester, aminoalkylphosphotriester, methyl phosphonate, 3'alkylene phosphonate, 5'-alkylene phosphonate, chiral phosphonate, phosphinate,
 phosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate,
 boranophosphate, morpholino, siloxane, sulfide, sulfoxide, sulfone, formacetyl, thioformacetyl,
 methylene formacetyl, thioformacetyl, riboacetyl, alkene containing backbone, sulfamate,
 methyleneimino, methylenehydrazino, sulfonate, sulfonamide, and amide; or

a modified 2' sugar moiety selected from the group consisting of F, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, O-alkynyl, N-alkynyl, O-alkyl-O-alkyl, C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, NO₃, NH₂, heterocycloalkyl, heterocycloalkyl, aminoalkylamino, polyalkylamino, and substituted silyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C₁ to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl; or

a modified nucleobases selected from the group consisting of 5-methylcytosine, 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl adenine, 6-methyl guanine, 2-propyl adenine, 2-propyl guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5-halouracil, 5-holocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil, 4-thiouracil, 8-halo guanine, 8-amino guanine, 8-thiol guanine, 8-thioalkyl guanine, 8-hydroxyl guanine, 8-halo adenine, 8-amino adenine, 8-thiol adenine, 8-thioalkyl adenine, 8-hydroxyl adenine, 5-halo uracil, 5-bromo uracil, 5-trifluoromethyl uracil, 5-halo cytosine, 5-bromo cytosine, 5-trifluoromethyl cytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine, 8-azaguanine, 7-deazaguanine, 7-deazaguanine, 3-deazaguanine, phenoxazine cytidine(1H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido(5,4-b)(1,4)benzothiazin-2(3H)-one), substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido(5,4-b)(1,4)benzoxazin-

Sep-17-2004 19:40

DOCKET NO.: ISIS0049-103 (ISIS-4976)

PATENT

2(3H)-one), carbazole cytidine (2H-pyrimido(4,5-b)indol-2-one), pyridoindole cytidine (Hpyrido(3',2':4,5)pyrrolo(2,3-d)pyrimidin-2-one), 7-deaza-adenine, 7-deazaguanosine, 2aminopyridine, and 2-pyridone.

(new) The oligonucleotide of claim 25 wherein the 2' sugar modification is -O-26. CH2CH2OCH3, -O(CH2)2ON(CH3)2, -O-CH2-O-CH2-N(CH2)2, -O-CH3, -OCH2CH2CH2NH2, $-CH_2-CH=CH_2$), -F, $-O((CH_2)_nO)_mCH_3$, $-O(CH_2)_nOCH_3$, $-O(CH_2)_nNH_2$, $-O(CH_2)_nCH_3$, $-O(CH_2)_nONH_2$, or $-O(CH_2)_nON((CH_2)_nCH_3))_2$, where n and m are from 1 to about 10.