

LICENCIATURA EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO

ÁLGEBRA - 2006/2007

5 de Fevereiro de 2007

4º Mini-teste de avaliação

Duração: 60 minutos

NOTAS:

- 1 Apresente e justifique todos os cálculos necessários para a resolução dos exercícios.
- 2 Resolva os problemas em folhas separadas.
- 1. Seja T: $\mathbb{R}^4 \to M_{1\times 3}(\mathbb{R})$ a transformação linear tal que $T(x, y, z, w) = \begin{bmatrix} y x & 0 & w \end{bmatrix}$.
 - a. Comprove o teorema da dimensão.
 - b. Seja $\beta = \{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$ a base canónica de \mathbb{R}^4 e $\alpha = \{[1 \ 0 \ 0],[1 \ 1 \ 0],[1 \ 1 \ 1]\}$ uma base para $M_{1\times 3}(\mathbb{R})$. Use a representação da transformação linear T nas bases β e α , $[T]_{\beta}^{\alpha}$, para determinar a imagem de (3,-1,0,1).
- 2. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, cuja representação na base canónica do espaço vectorial \mathbb{R}^3 é a matriz $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & k & -1 \end{bmatrix}$.
 - a. Prove que os valores próprios distintos do operador linear são 1 e −1, e determine o subespaço próprio associado ao valor próprio −1.
 - b. Determine para que valores do parâmetro k o operador T é diagonalizável. Nestas circunstâncias, apresente matrizes D e Q, tais que $D = Q^{-1}AQ$, isto é, tal que D seja uma matriz diagonal semelhante à matriz A.
- 3. Seja $\mathbf{r_1}$ a recta definida pelas equações x-3=y+4=z e seja $\mathbf{r_2}$ a recta que passa na origem com vector de direcção $\mathbf{v}(-1,0,1)$. Considere ainda o plano cujo vector normal é $\mathbf{n}(-1,2,2)$ e que contém o ponto $P_1(2,-1,4)$.
 - a. Determine a posição relativa das duas rectas.
 - b. Determine a equação do plano indicado e calcule o ângulo entre este plano e a recta ${f r}_2$.