Financial Econometrics II

Homework #2 MATLAB for Markov & Dependent Data

Due in class on January 29

NOTE: The homework needs to be typped and only hard copies are accepted. Please keep a copy for yourself since HW won't be returned.

After HW1, you have implemented MLE for i.i.d. data. This HW is to extend your work to Markov and Dependent Data.

Problem 1. Suppose that we have Markov data $X_1, X_2, ..., X_n$, which has conditional density $f(X_{i+1} = y | X_i = x) = g(y, x, \theta)$ where θ is the unknown parameter and g function is given. Write a MATLAB program that implements the MLE estimation $\hat{\theta}$ defined by

$$\hat{\theta} = \arg\max_{\theta} L(\theta). \tag{1}$$

Here the likelihood function $L(\theta)$ is defined by

$$L(\theta) = \sum_{i=1}^{n} \log f(X_{i+1}|X_i, \theta) = \sum_{i=1}^{n} \log g(X_{i+1}, X_i, \theta).$$

Your program should be able to out put the MLE $\hat{\theta}$, $L(\hat{\theta})$, the condifence interval, and the p-value for testing $H_0: \theta = \theta_0$.

Note 1: Your program should cover the case where θ is K dimensional vector. See my lecture notes on how to construct confidence interval for each component of θ .

Note 2: You may want simulated data to test your program. This can be done as follows: Let

$$X_{i+1} = \alpha + \beta X_i + \varepsilon_{i+1}$$
, for ε_i i.i.d. standard normal random variable.

with intitial vlue

$$X_1 = 2$$

and parameter values

$$\alpha = 1, \beta = 0.6.$$

The above equation allows you to generate all X_i (you can choose sample size to be 1000). For this model conditional density is (Note the true model is for $\alpha_0 = 1$, $\beta_0 = 0.6$)

$$f(X_{i+1} = y | X_i = x) = g(y, x, \theta) = \text{Normal}(1 + 0.6x, 1) \text{ Density} = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{[y - (1 + 0.6x)]^2}{2}\right),$$

here $\theta = (\alpha, \beta)$