PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-233072 ·

(43)Date of publication of application: 29.08.2000

(51)Int.CI.

A63F 13/00

(21)Application number: 11-035636

(71)Applicant: SEGA ENTERP LTD

(22)Date of filing:

15.02.1999

(72)Inventor: YOSHIDA SHIGERU

MASUDA TAKUJI

(54) GAME MACHINE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a driving game providing the entertaining play to the players of various operation technique levels from a beginner to an expert with both of game function and simulation function.

SOLUTION: A vehicle is moved on the basis of the operation by a player in the virtual three-dimensional space, and an image of the driving state of the vehicle is reproduced in a game machine. The game machine comprises a means for providing the player with a plurality of different operation modes for driving the vehicle along a travelling line, a means for selecting the desired moving mode from a plurality of operation modes by the player, and a means for executing a vehicle driving game with the operation mode selected by the player. A plurality of operation modes includes an assist mode for auto brake control and a training mode for giving various instructions such as a brake point and the like.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2000-233072 (P2000-233072A)

(43)公開日 平成12年8月29日(2000.8.29)

(51) Int.Cl.7

A63F 13/00

識別記号

FΙ A63F 9/22

テーマコート*(参考) H 2C001

Р

審査請求 未請求 請求項の数19 OL (全 23 頁)

(21)出廣番号

特願平11-35636

(22)出顧日

平成11年2月15日(1999.2.15)

(71)出願人 000132471

株式会社セガ・エンタープライセス

東京都大田区羽田1丁目2番12号

(72)発明者 吉田 茂

東京都大田区羽田1丁目2番12号 株式会

社セガ・エンタープライゼス内

(72)発明者 増田 拓二

東京都大田区羽田1丁目2番12号 株式会

社セガ・エンタープライゼス内

(74)代理人 100079108

弁理士 稲葉 良幸 (外2名)

Fターム(参考) 20001 AA00 AA09 BA00 BA06 BA07

BB00 BB04 BB06 BB08 BC00

BC01 BC03 CA05 CB01 CC02

(54) 【発明の名称】 ゲーム装置

(57)【要約】

【課題】初心者から上級者まで様々な運転技術レベルの 遊戯者がゲーム性とシミュレーション性を両立させなが ら楽しむことができるドライビングゲームを提供する。

【解決手段】仮想3次元空間で車両を遊戯者からの操作 に応じて移動させ、車両の移動状態の画像を生成するゲ ーム装置。車両を走行ラインに沿って移動させるときの 複数の異なる運転モードを遊戯者に提供する手段と、こ の複数の運転モードから遊戯者が好みの移動モードを選 択する手段と、遊戯者により選択された運転モードで車 両走行のゲームを実行する手段とを備える。複数の運転 モードには、オートブレーキ制御がなされるアシストモ ードおよびプレーキポイントなどの各種の指示がなされ るトレーニングモードが含まれる。

20

【特許請求の範囲】

【請求項1】 仮想3次元空間でオブジェクトを遊戯者からの操作に応じて移動させ、このオブジェクトの移動状態の画像を生成するゲーム装置において、

前記オブジェクトを移動させるときの移動操作特性が相 互に異なる複数の(異なる)移動モードを遊戯者に提供 するモード提供手段と、この複数の異なる移動モードか ら遊戯者が好みの移動モードを選択する選択手段と、前 記遊戯者により選択された移動モードで前記オブジェク トの移動に関するゲームを実行するゲーム実行手段とを 備えたことを特徴とするゲーム装置。

【請求項2】 前記オブジェクトは、前記仮想3次元空間内に設けた走行ライン上を移動させる車両であり、前記モード提供手段は、前記複数の移動モードとして、前記車両の複数の運転モードを遊戯者に提供する手段であり、前記移動操作特性は前記車両の運転特性である請求項1記載のゲーム装置。

【請求項3】 前記複数の運転モードは、前記車両のブレーキ力を自動的にアシストするオートブレーキ機能を有するアシストモードを含む請求項2記載のゲーム装置。

【請求項4】 前記複数の運転モードは、前記車両を前 記遊戯者が仮想的に運転するときの運転状態を指示する 指示機能を有するトレーニングモードを含む請求項2記 載のゲーム装置。

【請求項5】 前記指示機能は、前記運転状態を画像および音声の少なくとも一方で遊戯者に指示する機能である請求項4記載のゲーム装置。

【請求項6】 前記指示機能は、前記走行ライン上に参考走行ラインを表示して遊戯者に指示する第1の指示機 30 能、前記参考走行ラインの表示態様を変更してプレーキングを指示する第2の指示機能、前記走行ラインのコーナーの存在を前記遊戯者に指示する第3の指示機能、および前記走行ラインのコーナーでのシフトレバーの位置を前記遊戯者に指示する第4の指示機能の内の少なくとも1つから成る請求項4記載のゲーム装置。

【請求項7】 前記ゲーム実行手段は、熟練者が運転したときに得られた、前記走行ラインに沿ったブロック毎の速度データとブレーキデータを含む理想的な参考データを参照して前記第1の指示機能乃至第4の指示機能の 40内の少なくとも1つを発揮させて前記ゲームを実行する手段である請求項6記載のゲーム装置。

【請求項8】 前記ゲーム実行手段は、前記参考データの速度データと前記遊戯者が運転する前記車両の速度を比較し、その比較結果が前記速度データ>前記車両速度となるときにはその車両速度が前記速度データを上回るまで続く車両前方のブロックの前記プレーキデータを零に修正する手段と、このブロックデータの修正結果に応じて前記走行ラインの表示態様を変更する手段とを備え、これにより、前記第2の指示機能を発揮させる請求 50

項7記載のゲーム装置。

【請求項9】 仮想3次元空間でオブジェクトを遊戯者からの操作に応じて移動させ、このオブジェクトの移動 状態の画像を生成するゲーム装置において、

前記オブジェクトの理想状態での移動を表現した参考データを予め記憶させている記憶手段と、前記遊戯者が実際に前記オブジェクトを移動させたときの移動状態を示す実際データを演算する演算手段と、前記参考データと実際データとを比較して前記遊戯者が移動させる前記オブジェクトの移動状態を自動的にアシストするアシスト手段とを備えたことを特徴とするゲーム装置。

【請求項10】 前記オブジェクトは、前記仮想3次元空間内に設けた走行ライン上を移動させる車両であり、前記オブジェクトの移動は、前記車両の前記走行ライン上の走行で表現される請求項9記載のゲーム装置。

【請求項11】 前記参考データは、現実空間で運転に 熟練したドライバが現実の車両を走行路に沿って走行さ せたときに得られた運転状態から作成した運転データで あり、前記仮想3次元空間における前記走行ラインはそ の現実空間における前記走行路を模したラインである請 求項10記載のゲーム装置。

【請求項12】 前記運転データは、前記走行ラインに 沿って所定長さのブロック毎に作成された、前記熟練ド ライバの運転による速度データ、ブレーキデータ、およ び走行ラインデータを含む請求項11記載のゲーム装 置。

【請求項13】 前記アシスト手段は、前記参考データと実際データとを比較して前記遊戯者が移動させる前記 車両のプレーキ状態を自動的にアシストする手段である 請求項12記載のゲーム装置。

【請求項14】 前記アシスト手段は、前記車両が位置するブロックよりも前方のブロックの前記参考データの前記速度データと前記遊戯者による前記車両の速度とから目標加速度を求める手段と、前記遊戯者の操作状態からその車両の加速度を予測する手段と、前記目標加速度と前記予測加速度を未したときにブレーキの踏込みを判断する手段と、この手段によりブレーキの踏込みが不要と判断されたときにアクセル開度を自動的にアシスト制御する一方で、当該手段によりブレーキの踏込みが必要と判断されたときにアクセル開度をよびブレーキ踏込み量をアシスト制御する手段とを備えた請求項13記載のゲーム装置。

【請求項15】 仮想3次元空間でオブジェクトを遊戯者からの操作に応じて移動させ、このオブジェクトの移動状態の画像を生成するゲーム装置において、

前記オブジェクトの移動に伴う痕跡体をカメラ視点から モデリング変換してその変換マトリクスを演算する演算 手段と、この変換マトリクスを記憶する記憶手段と、前 記痕跡体を表示する必要があるか否かを判断する判断手

2

段と、この判断手段による前記痕跡体を表示する必要があると判断されたときには、前記記憶手段から前記変換マトリクスを読み出して表示する表示手段とを備えたことを特徴とするゲーム装置。

【請求項16】 仮想3次元空間でオブジェクトを操作者からの操作に応じて移動させ、このオブジェクトの移動状態の画面を生成するゲーム装置であって、

前記オブジェクトのブレーキ操作タイミングを前記操作者に報知するブレーキタイミング報知モードを含む複数の移動モードを提供する移動モード提供手段と、前記操 10 作者の選択により前記移動モードを選択する選択手段とを備え、

前記ブレーキタイミング報知モードを実現する前記移動モード提供手段は、前記操作者が操作する前記オブジェクトの速度および位置に基づいてブレーキ操作が必要か否かを判断する判断手段と、この判断手段でブレーキ操作が必要であると判断された場合、前記操作者が操作する前記オブジェクトの速度および位置に基づいてブレーキタイミングを算出する算出手段と、この算出手段により算出されたブレーキタイミングに基づいて前記ブレー20キ操作タイミングを前記操作者に報知する報知手段とを備えたことを特徴とするゲーム装置。

【請求項17】 前記判断手段および算出手段は、前記操作者が操作する前記オブジェクトの速度および位置と、その位置に対応する参考データとに基づいてそれぞれ判断および算出する手段であることを特徴とする請求項16記載のゲーム装置。

【請求項18】 請求項16または17記載のゲーム装置において、前記報知手段は、前記オブジェクトの速度が大きいときは、その速度が小さいときに比べて、前記 30ブレーキ操作タイミングを早めに報知する手段であることを特徴とするゲーム装置。

【請求項19】 実空間の路面を走行する車両のブレーキ力を制御する車両制動制御装置において、

前記車両が走行する走行路のブレーキングに関するデータを予め記憶させた記憶手段と、前記車両の前記走行路上の位置を検出する車両位置検出手段と、前記記憶手段が記憶しているデータと前記車両位置検出手段が検出した位置とに基づいて前記車両の走行時のブレーキング状態を自動的に制御する制御手段とを備えたことを特徴と 40 する車両制動制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ゲーム装置に係わり、特に、仮想3次元空間において自動車などのオブジェクトを遊戯者の操作に応答して移動させる状態を画像表示するゲーム装置に関する。

[0002]

【従来の技術】近年のコンピュータグラフィックス技術 の発達に伴い、業務用、家庭用を問わず、シミュレーシ 50 ョン装置やゲーム装置が広く一般に普及するようになっている。これらの装置の一つのジャンルとして、仮想3次元空間(ゲーム空間)に設定したコース上をオブジェクトとしての自動車を移動させて周回時間を競うドライビング(カーレース)ゲームがあり、根強い人気を得ている。

【0003】このゲームを行なうシミュレーション装置 又はゲーム装置(以下、ゲーム装置という)は、通常、 予め記憶したゲームプログラムを実行するコンピュータ 装置を内蔵した装置本体と、ゲームで表現させるオブジェクトの移動を指令する操作信号をコンピュータ装置に 与える操作器と、コンピュータ装置でゲームプログラム が実行されることによるゲーム展開に伴う画像を表示するディスプレイと、ゲーム展開に伴う音響を発生させる 音響装置とを備える。

【0004】このゲーム装置にあっては、遊戯者をドライバにみたてた自動車(オブジェクト)などがディスプレイに表示される。遊戯者は、操作器を操作して走行路、走行速度などの情報をコンピュータ装置に与える。コンピュータ装置は、この操作情報に応じて自動車の挙動をリアルタイムに計算して走行状態の画像データを求め、この画像データをディスプレイに表示させる。

【0005】このゲームの運転モードは、以下のようである。ディスプレイに表示させる画像には、遊戯者の自動車のみならず、道路標識なども背景とともに表示される。遊戯者は、ディスプレイに表示された走行路の曲がり具合、カーブなどを示す標識の内容、周りの景色の移動具合などから走行状態を読み取り、加速や減速を操作器(アクセルペダル、レバー、シフトレバーなど)を介して制御する。

[0006] .

【発明が解決しようとする課題】しかしながら、従来のドライビングゲームにあっては、運転モードが1つであり、遊戯者は、表示される背景や道路標識などを見ながら走行状態を判断するのみであるから、熟練者にとってはその熟練度に応じて好成績が残せるからよいものの、初心者や運転が苦手や遊戯者にとってはなかなか成績が上がらず、その間にゲームへの興味が薄れてしまうという問題があった。

【0007】反対に、初心者でも容易に楽しめるようにゲーム内容、例えばコース(走行路)の難易度を下げておくこともできるが、それでは上級者や熟練者には物足りない走りとなる。このため、どうしてもコース設定など、ゲームの難易度は高くなりがちで、髙い運転技術が要求され、上述のように初心者にはしきいの高いゲームとなっていた。運転技術の難しさだけではゲーム装置としての娯楽性に乏しく、この面への配慮も必要であった。

【0008】本発明は、このような従来技術が直面している状況に鑑みてなされたもので、初心者から上級者ま

で様々な運転技術レベルの遊戯者がゲーム性とシミュレーション性を両立させながら楽しむことができるドライビングゲームなどのゲームを提供することを、その目的とする。

[0009]

【課題を解決するための手段】上記各目的を達成させる ため、本発明にゲーム装置は下記のように構成されてい る。

【0010】第1の発明は、仮想3次元空間でオブジェクトを遊戯者からの操作に応じて移動させ、このオブジェクトの移動状態の画像を生成するゲーム装置において、前記オブジェクトを移動させるときの複数の異なる移動モードを遊戯者に提供するモード提供手段と、この複数の異なる移動モードから遊戯者が好みの移動モードを選択する選択手段と、前記遊戯者により選択された移動モードで前記オブジェクトの移動に関するゲームを実行するゲーム実行手段とを備えたことを特徴とする。

【0011】この構成において、例えば、前記オブジェ クトは、前記仮想3次元空間内に設けた走行ライン上を 移動させる車両であり、前記モード提供手段は、前記複 20 数の移動モードとして、前記車両の複数の運転モードを 遊戯者に提供する手段である。また例えば、前記複数の 運転モードは、前記車両のブレーキ力を自動的にアシス トするオートプレーキ機能を有するアシストモードを含 む。好適な一例によれば、前記複数の運転モードは、前 記車両を前記遊戯者が仮想的に運転するときの運転状態 を指示する指示機能を有するトレーニングモードを含 む。また好適には、前記指示機能は、前記運転状態を画 像および音声の少なくとも一方で遊戯者に指示する機能 である。さらに、前記指示機能は、前記走行ライン上に 参考走行ラインを表示して遊戯者に指示する第1の指示 機能、前記参考走行ラインの表示態様を変更してブレー キングを指示する第2の指示機能、前記走行ラインのコ ーナーの存在を前記遊戯者に指示する第3の指示機能、 および前記走行ラインのコーナーでのシフトレバーの位 置を前記遊戯者に指示する第4の指示機能の内の少なく とも1つから成ることが望ましい。

【0012】この場合、例えば、前記ゲーム実行手段は、熟練者が運転したときに得られた、前記走行ラインに沿ったブロック毎の速度データとブレーキデータを含む理想的な参考データを参照して前記第1の指示機能乃至第4の指示機能の内の少なくとも1つを発揮させて前記ゲームを実行する手段である。また好適には、前記ゲーム実行手段は、前記参考データの速度データと前記遊戯者が運転する前記車両の速度を比較し、その比較結果が前記速度データ>前記車両速度となるときにはその車両速度が前記速度データを上回るまで続く車両前方のブロックの前記ブレーキデータを零に修正する手段と、このブロックデータの修正結果に応じて前記走行ラインの表示態様を変更する手段とを備え、これにより、前記第50

2の指示機能を発揮させることである。

【0013】第2の発明は、仮想3次元空間でオブジェクトを遊戯者からの操作に応じて移動させ、このオブジェクトの移動状態の画像を生成するゲーム装置において、前記オブジェクトの理想状態での移動を表現した参考データを予め記憶させている記憶手段と、前記遊戯者が実際に前記オブジェクトを移動させたときの移動状態を示す実際データを演算する演算手段と、前記参考データと実際データとを比較して前記遊戯者が移動させる前記オブジェクトの移動状態を自動的にアシストするアシスト手段とを備えたことを特徴とする。

【0014】この構成において、好適な一例として、前 記オブジェクトは、前記仮想3次元空間内に設けた走行 ライン上を移動させる車両であり、前記オブジェクトの 移動は、前記車両の前記走行ライン上の走行で表現され ることである。例えば、前記参考データは、現実空間で 運転に熟練したドライバが現実の車両を走行路に沿って 走行させたときに得られた運転状態から作成した運転デ 一夕であり、前記仮想3次元空間における前記走行ライ ンはその現実空間における前記走行路を模したラインで ある。また、前記運転データは、一例として、前記走行 ラインに沿って所定長さのブロック毎に作成された、前 記熟練ドライバの運転による速度データ、ブレーキデー タ、および走行ラインデータを含む。この場合、前記ア シスト手段は、前記参考データと実際データとを比較し て前記遊戯者が移動させる前記車両のブレーキ状態を自 動的にアシストする手段である。

【0015】また好適な具体的構成によれば、前記アシスト手段は、前記車両が位置するブロックよりも前方のブロックの前記参考データの前記速度データと前記遊戯者による前記車両の速度とから目標加速度を求める手段と、前記遊戯者の操作状態からその車両の加速度を予測する手段と、前記目標加速度と前記予測加速度をも比較結果が前記目標加速度く前記予測加速度を示したときにブレーキの踏込みを判断する手段と、この手段によりブレーキの踏込みが不要と判断されたときにアクセル開度を自動的にアシスト制御する手段によりブレーキの踏込みが必要と判断されたときにアクセル開度を自動的にアシスト制御するチンスト制御する手段とを備えられる。

【0016】さらに本願の第3の発明によれば、仮想3次元空間でオブジェクトを遊戯者からの操作に応じて移動させ、このオブジェクトの移動状態の画像を生成するが一ム装置において、前記オブジェクトの移動に伴う痕跡体をカメラ視点からモデリング変換してその変換マトリクスを演算する演算手段と、この変換マトリクスを記憶する記憶手段と、前記痕跡体を表示する必要があると判断されたときには、前記跡体を表示する必要があると判断されたときには、前記記憶手段から前記変換マトリクスを読み出して表示する

表示手段とを備えたことを特徴とする。

【0017】さらに本願の第4の発明によれば、仮想3 次元空間でオブジェクトを操作者からの操作に応じて移 動させ、このオブジェクトの移動状態の画面を生成する ゲーム装置であって、前記オブジェクトのブレーキ操作 タイミングを前記操作者に報知するブレーキタイミング 報知モードを含む複数の移動モードを提供する移動モー ド提供手段と、前記操作者の選択により前記移動モード を選択する選択手段とを備え、前記プレーキタイミング 報知モードを実現する前記移動モード提供手段は、前記 10 操作者が操作する前記オブジェクトの速度および位置に 基づいてブレーキ操作が必要か否かを判断する判断手段 と、この判断手段でブレーキ操作が必要であると判断さ れた場合、前記操作者が操作する前記オブジェクトの速 度および位置に基づいてブレーキタイミングを算出する 算出手段と、この算出手段により算出されたブレーキタ イミングに基づいて前記プレーキ操作タイミングを前記 操作者に報知する報知手段とを備えたことを特徴とす

【0018】この場合、例えば、前記判断手段および算 20 出手段は、前記操作者が操作する前記オブジェクトの速度および位置と、その位置に対応する参考データとに基づいてそれぞれ判断および算出する手段である。また例えば、前記報知手段は、前記オブジェクトの速度が大きいときは、その速度が小さいときに比べて、前記ブレーキ操作タイミングを早めに報知する手段である。

【0019】さらに本願の第5の発明によれば、実空間の路面を走行する車両のプレーキ力を制御する車両制動制御装置において、前記車両が走行する走行路のプレーキングに関するデータを予め記憶させた記憶手段と、前30記車両の前記走行路上の位置を検出する車両位置検出手段と、前記記憶手段が記憶しているデータと前記車両位置検出手段が検出した位置とに基づいて前記車両の走行時のプレーキング状態を自動的に制御する制御手段とを備えたことを特徴とする。

[0020]

【発明の実施の形態】以下、本発明に係る実施の形態を 添付図面に基づき説明する。

【0021】 (第1の実施の形態) 第1の実施形態を、図1~図23を参照して説明する。

【0022】この実施形態で実施するゲーム装置は、周回コース(走行ライン)を走行してラップタイムを競うドライビングゲームを提供する。

【0023】図1に、このゲーム装置の電気的な概略プロック図を示す。同図に示すように、ゲーム装置はゲーム処理ボード10を備える。このゲーム処理ボード10には、操作装置11、ディスプレイ12、スピーカ13、外部拡張コネクタ14などの装置が電気的に接続されている。遊戯者はディスプレイ12に表示されるゲーム画面を見ながら、操作装置11の各種デバイスを操作50

してドライビングゲームを行うことができる。

【0024】ゲーム処理ボード10は、図示しないカウンタのほか、CPU(中央処理装置)21、ジオメトリプロセッサ22、システムメモリ23、プログラムデータ用ROM24、ブートメモリ25、バスコントローラ用のバスアービタ26、レンダリングプロセッサ27、グラフィックメモリ28、ビデオDAC29、オーディオプロセッサ30、オーディオメモリ31、オーディオDAC32を備え、これらの要素の一部同士がバスライン33により互いに接続されている。

【0025】この内、CPU21は、バスライン33を介してジオメトリプロセッサ22およびシステムメモリ23に接続されるとともに、バスアービタ26およびバスライン33を介して、その第1の系統はプログラムデータ用ROM24、ブートROM25に、その第2の系統は1/034を経由して操作装置11に、その第3の系統は外部拡張コネクタ14に、その第3の系統はレンダリンがプロセッサ30に、その第4の系統はレンダリングプロセッサ27はグラフィックメモリ28およびプロセッサ27はグラフィックメモリ28およびビデオDAC29に接続されている。オーディオプロセッサ30はオーディオメモリ31およびオーディオDAC32に接続されている。

【0026】システムメモリ23は、この装置の所定プログラムや画像処理プログラムを予め記憶している。またブートROM25はシステム立ち上げ用のプログラムを予め記憶している。

【0027】CPU21は、電源投入後、ブートROM 25に記憶されている立ち上げ用プログラムを読み込んでシステムを起動し、その後はシステムメモリROM22に内蔵させたプログラムに基づいて各種の演算および制御に関わる処理を実行する。その処理には、予め設定した複数の運転モードから所望の運転モードを選択する処理、各運転モードに特有の処理、車両の挙動計算(シミュレーション)処理、および特殊効果の計算処理が含まれる。

【0028】挙動計算は、仮想3次元空間(ゲーム空間)での車両の動きをシミュレートするものである。これを実行するには、仮想3次元空間における車両のポリゴンの座標値が決定された後、この座標値を2次元視野座標系に変換するための変換マトリクスと形状データ(ポリゴンデータ)とがジオメトリプロセッサ23に集合からなるポリゴン(多角形:主に3角形、4角形)の各頂点の相対ないしは絶対座標の座標データ群を言う。【0029】プログラムデータ用ROM24には、複数のポリゴンから成る形状データ(各頂点から成るキャれている。この形状データはジオメトリプロセッサ22に渡される。ジオメトリプロセッサ22はCPU21から

40

送られてくる変換マトリクスで、指定された形状データ の透視変換を行い、3次元仮想空間での座標系から視野 座標系に変換した形状データを得る。この形状データは レンダリングプロセッサ27に送られる。

【0030】レンダリングプロセッサ27は、グラフィ ックメモリ28からテクスチャデータを読み出し、変換 された視野座標系の形状データにこのテクスチャを貼り 付け、ビデオDAC29内のフレームバッファに出力す る。フレームバッファに一時記憶された車両、地形(背 景) などのポリゴン画面 (シミュレーション結果) と文 10 字情報などのスクロール画面とが指定プライオリティに したがって合成され、最終的なフレーム画像データが一 定タイミング毎に生成される。このフレーム画像データ はD/A変換されてディスプレイ12に送られ、ゲーム 画面としてリアルタイムに表示される。

【0031】オーディオプロセッサ30はCPU21か らの指令に基づき音響データを生成し、このデータをオ ーディオDAC32を介してスピーカ13に出力する。 これにより、音響データが電力増幅され、スピーカ13 から音響として出力される。

【0032】さらに操作装置11には、遊戯者が操作す る運転モード選択スイッチ11a、ハンドル11b、ア クセルペダル11c、プレーキペダル11d、シフトレ バー11e、ビューチャンジスイッチ11fなどが装備 されている。これにより、遊戯者はディスプレイ12の 表示画面を見ながら、運転モード選択情報、操舵角情 報、加速情報、減速情報、変速機シフト位置情報、仮想 3次元空間に置くカメラ視点の位置情報などのドライビ ング情報をI/F34を介してCPU21に与えること ができる。

【0033】続いて、本実施形態のゲーム装置によるド ライビングゲームの画像生成処理を説明する。CPU2 1は、ゲーム装置を起動させた後の定常状態として所定 のメインプログラムを実行するとともに、その実行過程 において、タイマ割込み処理として図2および図3の処 理を実行する。

【0034】 [運転モード選択処理] 図2の処理は、C PU21により一定時間 Δt'毎に実行される、車両 (自車) の運転モードを遊戯者が予め用意されている複 数の運転モードから選択するための処理ルーチンであ る。この一定時間 Δ t ' は、後述する図3の処理に対す る割込み時間 Δ t とは必ずしも同じでなくてもよい。 【0035】CPU21は、運転モード選択スイッチ1 1 a のスイッチ情報を運転モード選択情報として読み込 み(図2、ステップS1)、その情報に応じて4種類の 運転モードの内の何れかを設定する (ステップS2)。 【0036】運転モードとして、本実施形態ではアシス トモード、セミ・アシストモード、トレーニングモー ド、およびシミュレーションモードの4種類が用意され ている。この4種類の運転モードは、車両を走行させる 50 走行ラインはいずれも同じでありながら、遊戯者が仮想 車両を走行させるための運転特性(ここでは、走行ライ ンと車両との間の物理的な運動関係に起因した運転操作 のし易さをいう) を互いに違えたことに特徴を有する。 車両の運転特性に影響する制御ファクタ (ABS, TR C. オートブレーキ制御など)をどの程度取り入れるか で、個々の運転特性を差別化し、その独自性を発揮させ ている。

【0037】アシストモードは、初心者向きのモード で、理想的な運転状態として採用した熟練者の運転状態 (これを理想状態と仮定する) を示す参考データDAT Aref を基にしてその運転をアシストするモードであ る。アシスト内容としては、ブレーキングを自動的にア シストするためのアクセルペダル11cの開度とブレー キペダル11 dの踏み込み量の制御(以下、必要に応じ てオートプレーキ制御という) が中心となる。また、こ のアシストモードでは、ABS (アンチスキッド) 制 御、TRC (トラクションコントロール) などの制御も 車両挙動演算の一つとして実行され、この結果、その運 転特性も初心者向きに優しいものに自動制御される。

【0038】また、セミアシストモードは、運転に多少 慣れた初心者に好適なモードで、上述したアシストモー ドからオートブレーキ制御の機能を外したモードであ る。運転特性は、オートブレーキ制御を外した分、運転 者の技量が運転状態に反映し易くなっている。

【0039】さらに、トレーニングモードは上述したア シストモードと共に、本発明の要旨の1つを成すモード であり、これも初心者に好適な運転モードを提供する。 とくに、初めてゲームをする遊戯者やドライビングゲー ムに不慣れな遊戯者を対象に熟練者の運転に関するデー タ(参考データDATAref)を基に、ゲーム中に音声 および/または表示により運転操作の要所を指示(アド バイス)するモードである。このモードの運転特性それ 自体は、セミアシストモードと同じであるが、運転操作 に対する指示によって、遊戯者はセミアシストモードよ りも運転は優しいという印象を持ち易くなっている。

【0040】さらにまた、シミュレーションモードは上 級者や熟練者に適したモードであり、装置側から自動的 に遊戯者の運転状態をアシストする機能や装置側から運 転を指示する機能を一切、搭載せず、遊戯者(運転者) の生の運転技量をそのままシミュレートするモードであ り、運転特性も一番、難しく設定される。

【0041】そこで、CPU21は、遊戯者の運転モー ド選択情報がアシストモードを選択しているときには、 その選択状態を示す変数MD=0に設定し、セミアシス トモードを選択しているときには、変数MD=1に設定 する。また、トレーニングモードを選択しているときに は、変数MD=2に設定する一方、シミュレーションモ ードを選択しているときには、変数MD=3に設定する **(ステップS2)。**

【0042】以上の運転モード選択処理は、一定時間△ t'毎に実行されるため、遊戯者が別の運転モードを選 択したときには、その後のメインルーチンは更新した運 転モードで処理がなされる。

【0043】 [画像生成処理] 一方、図3は画像生成処 理のメインルーチンを示す。このメインルーチンは例え ば表示インターラプトに同期した1フィールド (Δt= 1/60秒) 毎にCPU21により繰り返し実行され

【0044】具体的には、上述した運転モード選択処理 10 (図2) により現在設定されている変数MDの値をチェ ックして運転モードを判断する (ステップS11~S1 3)。この結果、変数MD=0であり、アシストモード と判定されたときには、ステップS14~S17の処理 に移行する。変数MD=1であり、セミアシストモード と判定されたときには、ステップS18~S20の処理 に移行する。さらに変数MD=2であり、トレーニング モードと判定されたときには、ステップS21~S24 の処理に移行する。 さらにまた、変数MD=3であり、 シミュレーションモードと判定されたときには、ステッ 20 プS25~S27の処理に移行する。

【0045】この運転モード別の処理を更に詳細に説明 する。

【0046】1. アシストモード

まず、アシストモードの場合、操作器11のハンドル1 1b, アクセルペダル11c, ブレーキペダル11d, およびシフトレバー11eに対する現在の操作状態の情 報(操舵角、アクセル開度、ブレーキ踏み込み量、シフ トレバー位置)を読み込む(ステップS14)。次い で、オートブレーキ制御の処理を行なう(ステップS1 30 5)。

【0047】このオートブレーキ制御の処理は、図4に 示すサブルーチンとして実行される。このオートブレー キ機能を作動開始させる基準は予め決められている。つ まり、ゲームの運転に熟練した熟練者(上級者)が理想 的な走りをしたときの速度データ、ブレーキデータ(ブ レーキングの度合いを示すデータ)、走行ライン(位 置)などの運転データ(これは、このゲーム装置で取り 扱うコースにとって理想的な走りを表すデータであり、 以下、「参考データDATAref 」と呼ぶ)をサンプリ ングして、これをデータテーブルの形でROM14に予 め記憶させてある。この参考データDATAref は、各 コースを所定間隔(例えば4m~8m)で区切った区間 (以下、ブロック) 単位で与えられている(後述する図 6 (a) 参照)。

【0048】 参考データDATAref は、予め、参考デ ータ作成ツールで作成される。参考データDATAref の全てを机上計算により作成可能であるが、これは非常 に手間が掛かるし、また走行ラインを机上で想像して計 算するのはリアリティに欠けるなどの問題がある。そこ 50 者が操作した踏込み量をこの逆算値で置き換える (ステ

で、本実施形態では、熟練者がゲームで実際に走行した 速度データ、ブレーキデータ、および走行ラインデータ を含む参考データDATArer をバイナリーセーブして おいて、これを参考データ作成ツールでロードし、この データを修正することにより参考データDATAref が 作成される。

【0049】そこで、CPU21は、現在の車両速度と 参考データDATAref を参照して得たサンプリングデ ータとから現在必要とする目標加速度を演算する(ステ ップS21)。詳しくは、車両が現在、位置するブロッ クよりも1つ先のブロックの参考データDATAref を サンプリングした参考速度データSPref と現在の車両 速度Vと、それに、その1つ先のブロックまでの距離を 用いて目標加速度を演算が演算される。

【0050】次いで、アクセルペダル11cおよびブレ ーキペダル11 dの操作読み取り値から遊戯者が運転し ている車両(プレーヤカー)の次のブロックにおける加 速度を予測する(ステップS22)。次いで、CPU2 1は、目標加速度≧予測加速度か否かを判断する (ステ ップS23)。

【0051】このステップS23の比較判断でYES (目標加速度≧予測加速度)となるときは、強制的なブ レーキ制御は必要がないと判断し、アクセルペダル11 c およびブレーキペダル11 d の操作量として、遊戯者 が操作したままの値を設定する(ステップS24、S2 5)。これにより、後述する車両(プレーヤカー)の挙 動計算およびゲーム処理には遊戯者の操作がそのまま反 映される。

【0052】これに対して、ステップS23の比較判断 においてNO(目標加速度<予測加速度)となる場合、 アクセル全閉時のエンジンプレーキとブレーキペダル1 1 d の現在の踏み込み量とから試算した加速度と目標加 速度とを比較することで、ブレーキペダル11 dを更に 踏み込む必要があるか否かを判断する (ステップS2 6)。

【0053】この判断により更なるブレーキ踏み込みが 不要なときは、目標加速度とブレーキ踏み込み量とから アクセル開度を逆算し、遊戯者が操作したアクセル開度 をその逆算値で置き換える(ステップS27)。しか し、CPU21は、ブレーキ踏み込み情報としては、遊 戯者が操作した踏込み量をそのままにして車両挙動計算 処理に使用させる(ステップS28)。

【0054】上述のステップS26において、YES (更なるブレーキ踏込みが必要) の比較判断が出たとき には、CPU21はアクセル開度およびブレーキ踏込み の強制的な制御を行なう。すなわち、遊戯者が操作した アクセル開度をアクセル開度の全閉(開度=0) で置き 換える(ステップS29)。さらに、目標加速度とエン ジンプレーキとからブレーキ踏込み量を逆算して、遊戯 ップS30)。

【0055】このようにして遊戯者が運転している運転 状態から予測した加速度を理想加速度(熟練者が運転し たときの加速度)と比較する。この比較結果によりプレ ーキングが必要であることが示されたときには、自動的 に、アクセル開度か、又は、アクセル開度及びプレーキ 踏込み量のいずれかが理想値で強制的に制御される(つ まりアシストされる)。

【0056】したがって、このオートブレーキ制御を行なうと、車両(自動車)のアクセルコントロールとブレ 10 ーキングの操作を自動的に行なうことができる。遊戯者はアクセルペダル11cを踏み込んだままハンドル11bの操作のみでコースを周回することができ、また制限速度以下の速度で走行している場合、遊戯者はアクセルペダル11cおよびブレーキペダル11dを操作して自在に速度をコントロールすることができる。つまり、ドライビングコースを上級者向けとは別のものにすることなく、ゲームの難易度を下げて、初心者向けに調整することができる。

【0057】以上のようにオートブレーキ制御に関わる 20 アクセル開度およびブレーキ踏込み量の設定が終わると、図3に戻って、CPU21は車両挙動を演算する (ステップS16)。これにより、操作情報から車両 (プレーヤカー)のヨーイング、ローリング、ピッチングなどに伴う車両姿勢が演算される。このとき、ピッチング演算に際しては、TRCやABSが加味される。

【0058】次いで、CPU21は、仮想3次元空間の 座標系から2次元視野座標系に変換するための変換マト リクスを演算し、この変換マトリクスと形状データとを ジオメトリプロセッサ23に渡す。

【0059】この結果、更新した車両挙動を反映したポリゴン画像がディスプレイ12に表示される。この表示を表示インターラプト毎に繰り返すことで、操作情報に反映し且つ必要に応じてアシストされた運転状態の画像がほぼリアルタイムに提供される。

【0060】2. セミアシストモード

図3に示すセミアシストモードの場合は、上述したオートブレーキ制御を行なわずに、操作情報に基づいた、同様の車両挙動計算および表示がなされる。

【0061】3. トレーニングモード また、図3に示すトレーニングモードについて詳述す る。このモードは、運転のトレーニングを目的としてい るので、運転中において事前に各種の指示(アドバイ ス)が表示および/または音声によりなされることを特 徴とする。

【0062】つまり、CPU21により、現在の遊戯者の操作情報が読み込まれ(ステップS21)、次いで指示処理ルーチンがCPU21により以下のように実行される(ステップS22)。

【0063】この指示処理ルーチンの概要を図5に示

す。CPU21は、操作情報から、車両が位置する現在 のブロックを判定し(ステップS41)、さらに現在の 車両速度Vを演算する(ステップS42)。

14

【0064】次いで、CPU21は車両が現在、位置す るブロックの参考データDATAref から参考速度デー タSPref を読み出し(ステップS43)、その参考速 度データS Pref と実際の現在の車両速度Vとについ て、SPref > Vか否かを比較判断する(ステップS4 4)。この比較結果においてYES、すなわちSPrer >Vとなるときには、参考データDATAref のプレー キデータDBを修正する処理が後述する如く実行され、 反対にNO、すなわちSPref ≦Vのときには、ブレー キデータの修正処理は実行されない (ステップS4 5)。次いで、CPU21はこの修正処理が所定数のブ ロック(例えば周回コースの半周分のブロック(例えば 300~400個))について既に完了したか否かを判 断し(ステップS46)、未だ残っているブロックがあ る場合、このブロックを1個進めて(ステップS4 7)、上述した同様の処理を繰り返す。車両前方の設定 数分のプロック全部について、この処理が表示フレーム 毎に実行される。

【0065】上述したステップS41~S46の繰り返 しによって達成されるこの修正処理の一例を図6に模式 的に示す。いま同図(a)に示す如く、ゲーム中の車両 がある時刻においてブロック 0 に位置し(現在位置のブ ロックを基準0として表す)、このときの車両前方に位 置するプロック 0, 1, 2, …の参考データDATA ref が同図に示すようになっているものとする。 車両が プロック〇に居るときの速度をVとする。ブロック〇の 参考速度データS Pref = 263 (単位は任意) である ので、現在の車両速度V>263か否かの判断が行われ (ステップS44参照)、YESの場合はブレーキデー タDBの修正処理は実行されない。すなわち、参考デー タDATAref として与えられているブレーキデータD Bがそのまま使用される。反対に、現在の車両速度∨≤ 263の場合、ブレーキデータDB=0に設定(修正) する。この修正処理はフレーム毎に、所定数のブロック について実行される。

【0066】このため、例えば、あるフレームにおいて、現在の車両速度 V = 245であるとすると、ブロック0,1,2,3,…と順次検索され、V = 245 < S Pref = 263(ブロック0において)の条件が満たされるブロックについてはブレーキデータDB=0に修正される。図6(a)の場合、ブロック0~7までの8ブロックについてかかる条件が満たされるので、ブレーキデータDB=0に修正される。ただし、かかる条件が満たされなくなったブロック8とのデータの繋ぎの滑らかさを考慮し、ステップS45の修正処理において、ブロック8よりも1個手前のブロック7については、ブロック8のブレーキデータDB=255の1/2(=12

7) の値に修正し、また2個手前のブロック6については、そのブレーキデータDB=255の1/3(=85) の値に修正するようになっている。したがって、ブロック0に位置する車両がその速度V=245の場合、図6(b)に示す如く、ブレーキデータDBが修正される。なお、この場合、ブロック8以降のブロックのブレーキデータDBは、参考データの値255に修正される。

【0067】このようにしてブレーキデータDBが修正されると、次いで、CPU21は、修正済みのブレーキ 10 データDBに基づき、ブレーキデータDBが繋でないブロックにある参考走行ラインの形状を変更する(ステップS48)。そして、この変更したライン部分を含む参考走行ラインLNrefが表示される(ステップS49)。

【0068】つまり、現在の車両速度Vと現在位置よりも所定数分、前方に在るブロックの参考速度データSPref とが比較され、車両速度Vが参考速度データSPref を上回っているブロックによるコース範囲(繋ぎめの2個のブロックを除く)についてはブレーキデータDBが変更されていない。したがって、このコース範囲に属するブロックの参考データDATArefの参考走行ラインLNrefがその形状などの変更の対象となる。これに対し、車両速度Vが参考速度データSPref以下であるブロックのブレーキデータDBは零に強制的に修正されているので、ブレーキデータDB=0を呈するブロックの参考走行ラインLNrefは、その形状などの変更の対象とはならない。

【0069】すなわち、このように修正(調整)後のブレーキデータDBが零でないブロックの範囲では、遊戯 30者はブレーキペダル11dを踏込むことが望ましいため、参考走行ラインLNrefに沿ったブレーキデータDB≠0に相当するブロック部分の形状などが変更され、かつ表示される。

【0070】この参考走行ラインLNref は、参考データDATAref の走行ラインデータ(熟練者の走行経路データ)をポリゴンで表示することにより、遊戯者に提示される。これにより、理想的なライン取りが指示(アドバイス)される。具体的には、ポリゴンで参考走行ラインLNref を表示するため、熟練者のブロック単位の車両位置データが参考データ作成ツールに掛けられ、幅3mの左右2点のx、y、z位置が予め算出されている。このとき、左右の2点のy位置は走行コースのポリゴン(平面)とy軸との交点として算出される。これらの計算は参考データ作成ツール上で予め済んでいるので、実際のゲームにおいて参考走行ラインLNref をポリゴン表示するときのポリゴン頂点位置の演算に伴う演算負荷が軽減される。

【0071】ゲームにおいて、実際に参考走行ラインL Nref のポリゴンを表示する場合、このポリゴンが走行 コースのポリゴンと重ならないように配慮されている。 つまり、一例として、参考走行ラインLNref のポリゴンのy位置をコース面から50cm浮かせせる演算(y 位置+50cm)を行ない、このポリゴンを浮かせた状態で表示する。

【0072】参考走行ラインLNref の具体的なライン 形状の変更・表示は、図7~24に示すように種々の態 様で実施できる。図7の参考走行ラインLNref によれ ば、ブレーキングの指示領域BKがラインと同一色(黄 色) のかすれた塵状の集合体で表示される。図8の参走 行ラインLNref によれば、ブレーキ指示領域BKがラ インと同一色(黄色)の湾曲線で表示される。図9の参 走行ラインLNref によれば、ブレーキ指示領域BKが ラインとは異なる色 (赤色) の湾曲線で表示される。図 10の参走行ラインLNref によれば、ブレーキ指示領 域BKがラインとは異なる色(赤色)の丸マークの連続 で表示される。図11の参走行ラインLNref では、ブ レーキ指示領域BKがラインとは異なる色(赤色)のラ インで表示される。さらに、図12の参走行ラインLN ref は、カーブ手前から段階的に色を分けて表示され、 ブレーキ指示領域BKがラインとは異なる色(黄色)の ラインで表示される。

【0073】さらに、図13ではブレーキ指示領域BKがラインとは別の色(黄色)の幅広のラインを付して表示され、図14では矢印頭部記号の連続で表示される。図15のそれは三角マークの連続で表示される。図16のそれはライン上に別の色(黄色)のラインを付して表示される。図17のそれはライン上に立体的な箱を所定間隔で置いて表示される。図18のブレーキ指示領域BKはライン途中に描画した文字で示される。図19のそれは三角マークで示される。

【0074】さらに、図20(a)、(b)のブレーキ 指示領域BKは色変化(同図(a)では赤、同図(b) では橙色に点滅)で表示される。図21(a)、(b) のブレーキ指示領域BKは色変化(同図(a)では緑、 同図(b)では赤色に点滅)で表示される。

【0075】さらにまた、図22のブレーキ指示領域B Kは別の色(赤色)の路面一杯の幅広の帯体をライン両 横に付して表示される。図23ではその帯体がオレンジ 40 色である。

【0076】上述の如く適宜な態様で参考走行ラインL Nref の表示が終わると、CPU21はブレーキポイン トの音声指示に入る(ステップS50~52)。

【0077】すなわち、車両の現在の速度Vに関して、ブロック数X=(V/50)+1を演算して、その値を求める(ステップS50)。例えば、速度V=245の場合、ブロック数X=5となる。つまり、このブロック数Xは現在の車両速度Vを反映させた値になる。なお、このブロック数Xの演算式は適宜に変更してもよい。

【0078】次いで、車両が現在居るブロックからブロ

ック数=X個分、前方のブロックまでをブレーキデータ ≠0か否かについてサーチする(ステップS51)。次 いで、X個分全てのブロックについてブレーキデータD B≠0が成立するか否かを判断する(ステップS5 2)。この判断でYESとなるときには(すなわち、前 方にX個だけブロックを進めてもブレーキデータDB≠ 0)、必ずブレーキを踏込む必要があるコース部分が目 前に在ると認識される。そこで、CPU21は音声で 「ブレーキングポイントである」旨の音声発生を指示す る(ステップS53)。

【0079】しかし、このブレーキデータDB≠0が成立しないときには、かかる音声指示はなされない。このため、例えば、遊戯者が理想状態を示す熟練者の走行速度よりも低速で自車を走行させており、ブレーキを踏まずともコーナーを曲がれるときには、かかる音声指示は発生されることなく、遊戯者の運転に任される。

【0080】この後さらに、周回コースのコーナーの音声指示がなされる(ステップS54、S55)。 CPU 21は、参考データDATAref を基にして、遊戯者の車両がコーナー入口よりも所定数ブロック手前の所定ブロックに到達したか否かを判断する(ステップS55)。この判断がYESとなるときには、CPU21はスピーカ13を介して「次はカーブです」といった音声メッセージを発生させる(ステップ56)。 なお、このコーナー到達を示す所定ブロックの位置は、その時点の車両速度Vに応じて変更してもよい。このコーナーの音声指示によって、遊戯者は適正なタイミングでハンドルを切り出すことができるようになる。

【0081】さらに、コーナーリングシフトの指示を行なう(ステップS56、S57)。 CPU21は、参考 30 データDATAref を基にして、遊戯者の車両が所定のブロックに到達したかどうかを判断し(ステップS56)、「このカーブは1速で」というように、予め設定してあるコーナーリングに最適なシフト位置(すなわち、熟練者が運転したときの理想状態でのシフト位置)をスピーカ13を介して音声で指示する。これにより、遊戯者はシフトレバー11eの位置を音声指示された位置に操作可能になる。

【0082】このようにして、図5のステップS22に関わる、トレーニングモードでの種々の指示(アドバイス)が音声や画像によりなされる。このトレーニングモードでは、この後、CPU21により、操作状態や走行状態に応じた車両挙動を表すデータが演算され、さらに、車両や走行ライン(参考走行ラインを含む)のポリゴン表示ための透視変換処理や背景画像の処理などのゲーム処理が行われる(図5、ステップS23、S24)。この後、処理は次の表示インターラプトまでメインプログラムに戻される。

【0083】一方、図5のメインルーチンの処理において、ステップS13でNO、すなわち、選択された運転 50

モードがシミュレーションモードであると判定されたときには、遊戯者による操作情報の読み込み、車両の挙動演算、およびゲーム処理が前述した如く順次実行される(ステップS25~S27)。すなわち、このシミュレーションモードの場合には、トレーニングモードで行なった指示(アドバイス)は一切与えられない。つまり、ゲーム性が最小限に抑えられ、遊戯者の生の運転技量が試される、シミュレーション要素の度合いが一段と高いドライビングゲームが提供される。このシミュレーションモードはしたがって、運転に慣れている上級者に好適なものとなる。

【0084】本実施形態で提供されるゲーム装置では、以上のように、初心者から上級者まで楽しむことができるように、その運転技量に合わせて設定した複数の運転モードが用意されている。このため、1種類の走行コースでありながら様々な運転レベルの遊戯者が楽しめるので、コース難易度が異なる複数の走行コースを用意する必要がないから、トータルとして、走行コースのデータ量が抑えられ、メモリ領域の占有量が少なくて済む。

【0085】初心者はアシストモードを選択すれば、オートプレーキ制御に拠って、シミュレーション性よりもゲーム性を高めたドライビングゲームを行なうことができる。そして、上級者と同一の走行コースでありながら、相当なゲーム結果を残すことができ、仲間同士の競争という点でゲーム参加への興味感を維持できる。アシストモードで慣れた初心者はセミ・アシストモードを選択して、その上達度を試すことができる。

【0086】上級者は、トレーニングモードまたはシミ ュレーションモードを選択すればよい。これにより、シ ミュレーション性をより重視した、難易度の高いゲーム にチャレンジすることができ、ゲームへの意欲を掻き立 てることができる。上級者であっても、その運転レベル によっては、トレーニングモードを選択してトレーニン グをしてからシミュレーションモードにチャレンジする ことができる。トレーニングモードにあっては、理想的 な走行ライン、ブレーキングポイント、コーナー、およ びコーナーリングシフトが音声および/画像を通して指 示されるので、その指示を取り入れながら運転技量を上 げることができる。この場合、アシストモードのよう に、装置側からの走行状態への自動的な関与は全く無い ので、それなりに自前の運転レベルの確認をすることが でき、相当に高いシミュレーション性も確保され、ゲー ムへの興味感、期待感も維持される。

【0087】したがって、初心者から上級者まで様々な 運転技術レベルの遊戯者がゲーム性とシミュレーション 性を両立させながら楽しむことができるドライビングゲ ームを提供することができる。

【0088】(第2の実施の形態)本発明の第2の実施 形態に係るゲーム装置を図24~図27に基づき説明す る。なお、この実施形態に係るゲーム装置のハード的構 成は、第1の実施形態と同一または同等に構成されている。

【0089】このゲーム装置は、前述した複数の運転モードによる運転に加えて、周回コース(走行ライン)上にタイヤのスピンやロックに伴うスリップ痕(またはタイヤマーク)を表示する処理(痕跡表示処理)を加えたことを特徴とする。

【0090】実空間の路面走行においては、一度路面に付いたスリップ痕跡は相当期間残っている。とくに、サーキットなどのコースでは、同じカーブで似たような走 10 行状態になるから、スリップ痕も殆ど消えることなく残っている。このため、周回してきた車両はそのスリップ痕を参考にしてコース取りやブレーキングポイントを判断することができる。とくに、シミュレーションゲームの場合、リアリティを追求するため、ドライバの目線位置にカメラ視点を置くので、スリップ痕はゲームを進行させる上で貴重なシグナルとなる。そこで、このスリップ痕を、ゲーム処理にむやみな負荷を書けることなく表示させることが望ましていた。

【0091】このスリップ痕の表示処理は、CPU21 20 が以下のようにソフトウエア処理を行なう。

【0092】CPU21はメインプログラムを実行する中で、各フレーム毎に、適宜なタイミングで図24に示すスリップ痕を表すポリゴン(オブジェクト)の演算および保存処理を行なう。

【0093】最初に、スリップ痕(タイヤマーク)を発生させる走行状態か否かを判断する(ステップ61)。これは車両の走行状態を表す加速度、減速度、ヨーイングなどのパラメータが一定条件を満たすか否かで判断される。この判断がYESとなるときには、次いで、車両のタイヤの各位置からグローバル座標を演算し、これに方向、スケールを掛けたオブジェクト(スリップ痕を表すポリゴン)のマトリクスを演算する(ステップ62,63)。

【0094】 具体的には、オブジェクトのマトリクス [A] は、モデリング変換式である

[A] = [コースの基本行列] × [ポリゴンの位置行列] × [ポリゴンの回転行列] × [ポリゴンの拡縮行列]

に基づき演算される。ポリゴンの位置行列は、配置され 40 るポリゴンの絶対座標系における位置 x、y、z の行列 である。ポリゴンの回転行列は、配置されるポリゴンの回転成分を車体の傾きまたは路面の傾き α により求める ための行列である。さらに、ポリゴンの拡縮行列は、車 速、1フレーム間の車両の移動量、2クイヤの幅によって 決まるポリゴンのスケールを決める行列である。

【0095】さらに、この後、車両のパラメータからスリップ痕を表すポリゴンの表示上の濃さを演算する(ステップ64)。

【0096】次いで、演算したマトリクス [A] がオブ 50

ジェクト (ポリゴン) と共にシステムメモリ23内のSRAM (図示せず)に保存される (ステップ65)。なお、SRAMに格納されるデータ (オブジェクトおよびそのマトリクス)が一定数に達してしまうと、それ以降のデータ保存時には、時系列上で最も古いデータが消去され、その代わりに最新のデータが保存される。この消去は、1マーク単位 (1回のスピン、スリップなどで発生した一連の痕跡 (マーク)の起端から終端まで)でなされる。この1マーク長さは予め決められている。

【0097】なお、ステップ61でNO、すなわちスリップ痕を表示しないとする判断のときは、上述したステップ62~65の処理はスキップされる。

【0098】また、CPU21はメインプログラムを実行していく中で、ゲーム結果の表示処理に加えて、図25の処理に基づきスリップ痕の表示をフレーム毎に且つ各タイヤ毎に指令する。

【0099】具体的には、システムメモリ23内のSRAMから、指定された1つのタイヤに対するオブジェクト(スリップ痕を表すポリゴン)とそのマトリクスを読み出す(ステップ71)。次いで、図26の如く仮想的に設定されるカメラ視点からのz距離とその視点の視野角により、読み出したオブジェクトが視野内(表示エリア)に位置するか否を判断する。オブジェクトが視野内に位置するときは表示対象となり、視野外に位置するときはクリッピングされる(ステップ72、73)。

【0100】次いで、表示エリア内に位置するポリゴンに対して表示が指令される(ステップ74)。 具体的には、図27に示す如く、1フレーム間に動いたポリゴンの前端点(x2, y2, z2)と前回のその前端点(x1, y1, z1)から現在のフレーム前端と後端とを決め、各ポリゴンをフレーム毎に空間的に続けて表示する。これにより、遊戯者にはタイヤからスリップ痕を表すポリゴンが伸長して見える。ただし、前述したように、1マーク単位の保存ポリゴン数は一定値に限定されているので、スリップ痕の伸長長さも所定距離内に制限される。

【0101】次いで、CPU21は、未だ保存しているオブジェクトが在るか否かを判断し、ある場合にはステップ71に戻り、上述した表示指令処理を繰り返す一方で、1フレーム分の保存データの表示指令が済んだ場合は、メインプログラムに処理を戻して次のフレームまで待機する(ステップ75)。これにより、車両の4輪全てに対して且つ所定数内の周回走行に対して、スリップ痕の表示指令がフレーム毎に試みられる。

【0102】つまり、4輪ともスリップしたり、ドリフトしている場合、4輪全部についてスリップ痕が表示されるし、4輪の内の前輪だけがそのような走行状態の場合、前輪の2輪についてスリップ痕が表示される。また、現在の走行を含めて所定数内の走行分についてスリップ痕が表示される。

【0103】いま、例えば1周目にカメラ視点が車両斜 め後方にあって、遊戯者の車両を斜め上空から追いかけ ているとする。そして、あるカーブでスリップさせる運 転を遊戯者が行なったとすると、このスリップに伴うス リップ痕が演算され、ポリゴン表示される。すなわち、 各輪についてスリップ痕のポリゴンが一定の長さ範囲内 で演算され且つその濃度がスリップ状態の程度に応じて 求められ、表示される。遊戯者は、これを画面を見なが ら運転しているので、当然に、このスリップ痕を目視で きる。この表示と共に、このスリップ痕を表すポリゴン 10 およびそのマトリクスはシステムメモリ23内のSRA Mに保存される。

【0104】そして、2周目の周回走行において、カメ ラ視点を例えば車両内の運転者の目線位置に変更してい たとする。このとき、前述したカーブに差し掛かると、 前述した1回目のスリップ痕(各輪の1マーク単位のス リップ痕)が、既に1回目で演算されて記憶していたマ トリクスを読み出して表示する。したがって、カメラ目 線と同化している遊戯者は、1回目でのスリップ痕をコ ースの前方に見ることができるので、このスリップ痕を 20 視覚的に参照してブレーキングのタイミングを計ること ができる。これにより、よりリアリティの高い画面を提 供でき、シミュレーション性およびゲーム性を向上させ るとともに、遊戯者の運転技術の向上にも寄与できる。 【0105】この2周目の走行でも、同一のカーブにお いてスリップ走行させたとすると、この走行に伴うスリ ップ痕が演算され、同様に保存されている。したがっ て、3周目においてもカメラ視点を運転者目線位置に置 いていたとすると、1周目および2周目のスリップ痕が 共にクリッピング処理において表示対象に組み込まれ る。つまり、3周目で、かかるカーブに接近すると、1 周目および2周目のスリップ痕が部分的に重ったスリッ プ痕として、または、完全に分離したスリップ痕として 表示される。したがって、過去の走行状態を的確に把握 して、今度のカーブ走行にそれを活かすことが可能にな

【0106】同様にして、この過去走行のスリップ痕の 表示は、SRAMに記憶させ得るマーク単位数の制限値 一杯まで可能となる。

【0107】このように走行時に計算したスリップ痕の 40 マトリクスを保存し、その跡の周回走行では、改めて演 算することなく、単に読み出して表示するだけで済む。 したがって、過去のスリップ痕の表示させる場合でも、 スリップ痕を表すポリゴンの演算および表示の処理を高 速に行なうことができる。逆に言えば、CPUの演算負 荷を増大させずに、過去のスリップ痕を長期間、画面上 に残すというリアリティの高い画像を提供できる。ま た、保存するスリップ痕のポリゴンは、テクスチャが貼 られた描画直前のデータ群(ポリゴンの位置、スケー

常の背景データと変わることなく、描画できるととも に、この保存に必要なメモリ容量も少なくて済む。

【0108】従来では、スリップ痕を表示する場合、予 定したメモリ容量を超えないように、最初に生成したポ リゴンから順次、半透明処理されて、消失させていた。 これに対して、本実施形態では、従来と比較して、メモ リ容量をそれほど増大させずに、且つその他のゲーム処 理に影響を与えずに(髙速に)、コース上に残存するス リップ痕というシミュレーション性の高い画像を提供で きる。この画像は、第1の実施形態で説明した種々の運 転モードでそれぞれ提供でき、遊戯者には益々、ゲーム への興味を沸き立てるものとなる。

【0109】なお、本発明は上述した実施形態のゲーム 装置に限定されることなく、本発明のゲーム装置は、特 許請求の範囲に記載の要旨の範囲内で種々に変形、変更 できるものである。例えば、本発明のゲーム装置で実施 できるゲーム内容は前述したように周回コースを走行し てラップタイムを競うドライビングゲームに限定されな い。複数の車両がタイムを競うカーレースであってもよ い。また、車両に関係したオブジェクト以外にも、例え ば水上スキー、雪上スキー、バイクレースなどであって もよい。

【0110】また、前述した第1の実施形態は、本願発 明の1つとしての仮想空間上を走行するドライビングゲ ーム装置を説明したが、本願発明ではまた、実空間にお ける実際の路面を走行する車両(実車)に適用できる車 両制動制御装置を提供することができる。この車両制動 制御装置は、図28に概念的に示す如く、GPS受信装 置101、ROM102、コントローラ103、および 制動装置104を車両に搭載する。ROM102には、 第1の実施形態で説明した車両位置(ブロック) 毎の速 度データおよびブレーキデータを参考データとして予め 記憶させておく。この参考データはゲーム装置の場合と 同じように、目的とする走行路を走行するときのブレー キングのモデルデータとなる。コントローラ103は、 GPS受信装置101からの位置データを受け、この位 置データとこれに対応する参考データとを参照して前述 のアシストモードにおけるオートブレーキ制御の指令を 制動装置104に与える。これにより、実際の車両にお いても、実際の運転をブレーキ制御の観点からアシスト することができ、とくに運転にそれほど慣れきっていな いドライバにとって多大な助力となることが期待され る。この場合、上記参考データはDVDやCDなどの記 憶媒体に記憶させて、例えば国道 4 号線用、国道 6 号線 用など、目的とする走行路毎に提供することが望まし い。また、参考データとして記憶させるデータはまた、 位置毎の速度データおよびブレーキデータの組み合わせ に限定されることなく、データ量を抑えるには、最低限 のデータとして走行路の曲率(R)データだけでもよ ル、傾きが全て演算された後のデータ)であるので、通 50 い。これにより、コントローラは、車両の位置毎にその 速度を検出し、コーナでの限界速度をその曲率から演算 し、その演算速度に応じて適宜なブレーキ 最を制動装置 に指令することでも、実際の車両に対するオートブレー キ制御を実行できる。

[0111]

【発明の効果】以上説明したように、本発明にかかるゲーム装置によれば、第1に、遊戯者の運転技量(オブジェクトの移動技量)に合わせて設定した複数の運転モード(オブジェクトの移動モード)が用意されているので、初心者から上級者まで同一のコース上(移動路)で 10 ゲームを楽しむことができる。とくに、かかる運転モードの内、アシストモードではオートブレーキ機能が自動的に得られるので、初心者に適した運転状態となる。

【0112】また、第2に、熟練者の参考データを基に 運転の適切な指示が与えられるから、初心者から運転に 相当に慣れた遊戯者まで、シミュレーション性をより重 視した、難易度の高いゲームにチャレンジすることがで き、ゲームへの意欲を掻き立てることができる。

【0113】さらに、第3に、車両のスリップ痕など、オブジェクトの移動に伴う痕跡体がメモリ容量を大幅に 20 増やすことなく、且つ、高速処理を維持して表示されるので、現実空間での車両走行などにマッチしたリアリティの高いオブジェクトの移動状態または移動した後の様子を表現でき、シミュレーション性を大幅にアップさせた画像を提供できる。

【0114】さらに、第4に、上述したアシストモードでのオートブレーキ機能を実空間で走行する実際の車両に持たせることができ、運転にそれほど精通していない段階のドライバに適した運転状態を提供できる。

【図面の簡単な説明】

【図1】本発明の実施形態に係るゲーム装置のブロックである。

【図2】第1の実施形態における運転モードの選択処理 を示す概略フローチャートである。

【図3】運転モード別の処理の流れを示す概略フローチャートである。

【図4】アシストモードにおけるオートブレーキ制御を示す概略フローチャートである。

【図5】トレーニングモードにおける指示制御を示す概略フローチャートである。

【図6】トレーニングモードにおけるブレーキデータの 修正を説明する図である。

【図7】ブレーキポイントを指示する表示画面の一例である。

【図8】ブレーキポイントを指示する表示画面の一例で ある。

【図9】ブレーキポイントを指示する表示画面の一例である。

【図10】プレーキポイントを指示する表示画面の一例である。

【図11】ブレーキポイントを指示する表示画面の一例 である。

【図12】ブレーキポイントを指示する表示画面の一例である。

【図13】ブレーキポイントを指示する表示画面の一例である。

【図14】ブレーキポイントを指示する表示画面の一例である。

【図15】ブレーキポイントを指示する表示画面の一例である。

【図16】ブレーキポイントを指示する表示画面の一例である。

【図17】ブレーキポイントを指示する表示画面の一例である。

【図18】ブレーキポイントを指示する表示画面の一例である。

【図19】ブレーキポイントを指示する表示画面の一例である。

【図20】ブレーキポイントを指示する表示画面の一例である。

【図21】ブレーキポイントを指示する表示画面の一例である。

【図22】ブレーキポイントを指示する表示画面の一例である。

【図23】ブレーキポイントを指示する表示画面の一例である。

【図24】第2の実施形態に係るスリップ痕 (痕跡体) の処理を示す概略フローチャートである。

【図25】スリップ痕(痕跡体)の表示を示す概略フローチャートである。

【図26】スリップ痕のクリッピングを説明する図である。

【図27】スリップ痕の表示を説明する図である。

【図28】本発明の車両制動制御装置を概念的に表した構成図である。

【符号の説明】

10 ゲーム処理ボード

11 操作装置

12 ディスプレイ

0 13 スピーカ

21 CPU

22 ジオメトリプロセッサ

23 システムメモリ

24 ROM

26 バスアービタ

27 レンダリングプロセッサ

28 グラフィックメモリ

29 ビデオDAC

30 オーディオプロセッサ

50 31 オーディオメモリ

25

32 オーディオDAC 101 GPS受信装置 102 ROM

103 コントローラ104 制動装置

26

【図1】 【図2】 運転モード 選択ルーチンスタート 26 CPU パスアーピタ Video DAC (CPU-Δt'每) ディスプレイ 33 -33 S1 سر ジオメトリ 運転モード 選択情報の入力 32 11a オーディオ Audio 裏転モード設定 S2 ~ MD=0, MD=1, MD=2, X/12 MD=3 11b プログラム・データ用 ROM(外部記憶装置) アクセル 11d **BOOT ROM** シフトレバー 118 リターン I/F 外部拡張コネクタ

【図10】

【図11】

[図12]

【図13】

【図14】

【図15】

【図16】

【図17】

[図18]

【図19】

【図20】

[図21]

[図22]

【図23】

