01.04 rootfinding: newtons method

aka newton-raphson. newtons is a variant of FPI.

to find root of f(x)=0, start with guess x_0 . draw tangent line at $f(x_0)$. ie, where $f'(x_0)$ intersects x-axis is the next iteration x_1 . ie,

$$tan heta = rac{f(x_0)}{x_0 - x_1} = f'(x_0) \Rightarrow x_1 = x_0 - rac{f(x_0)}{f'(x_0)}.$$

code, visual: newtons

given
$$f(x)=-rac{1}{2}x^2+x+1.5$$
.

1 # requires prior execution of fpi_expanded()

2 # repurposed bisection animation for newtons method

4 if __name__ == "__main__": --

1 ani

₹

✓ algorithm

newtons method

$$x_{i+1} = x_i - rac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, 2, 3, \dots$$

$$=g(x_i),\quad g(x)=x-rac{f(x)}{f'(x)}.$$

function
$$g(x)$$

return $x - f(x)/df(x)$
function $fpi(g,x\theta,epsilon,imax)$

✓ example 11

solve $f(x) = x^3 + x - 1$ using newtons.

$$f'(x)=3x^2+1$$
 $\Rightarrow x_{i+1}=x_i-rac{x_i^3+x_i-1}{3x_i^2+1}$
 $=rac{2x_i^3+1}{3x_i^2+1}, \quad ext{which looks strangely familiar...}$
 $\psi \quad x_0=-0.7$
 $x_1=rac{2(-0.7)^3+1}{3(-0.7)^2+1}pprox 0.1271$
 $x_2=rac{2x_1^3+1}{3x_i^2+1}pprox 0.9577.$


```
1 # example 11 revisits example 01 # repurposed previous code
2
3 if __name__ == "__main__":
4
```

example 11 ~ example 01 w newtons. x0 = -0.7.

i	x[i]	e[i]	"/e[i-1]^2
000 001 002 003 004 005	-0.70000000 0.12712551 0.95767812 0.73482779 0.68459177 0.68233217 0.68232780	1.38232780 0.55520230 0.27535032 0.05249999 0.00226397 0.00000437	0.29055555 0.89327066 0.69244945 0.82139415 0.85266556 0.85407850


```
1 if __name__ == "__main__":
2
3    f = lambda x : pow(x,3) + x - 1
4    df = lambda x : 3*pow(x,2) + 1
5
6    g = lambda x : x - f(x)/df(x) # newtons method
7
8    ws = fpi_expanded(g,x=-0.7,tol=le-4,worksheet=True)
9    iterations,root = ws[len(ws)-1]
10    print(f"root {root} at {iterations} iterations.")
```

Froot 0.6823321742044841 at 5 iterations.

1 quadratic convergence

✓ definition 10

let e_i denote error after step i of iterative method. iteration is ${f quadratically\ convergent}$ if

$$M=\lim_{i o\infty}rac{e_{i+1}}{e_i^2}<\infty.$$

✓ theorem 11

let f be twice continuously differentiable and f(r)=0. if $f'(r)\neq 0$, then newtons is locally and quadratically convergent to r. error e_i at step i satisfies

$$\lim_{i o\infty}rac{e_{i+1}}{e_i^2}=M,\quad ext{where }M=rac{f''(r)}{2f'(r)}.$$

1. local convergence

note that newtons method is a particular form of FPI where

$$g(x) = x - rac{f(x)}{f'(x)},$$

$$g'(x) = 1 - rac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = rac{f(x)f''(x)}{f'(x)^2}.$$

g'(r)=0 so locally convergent by theorem 06. \checkmark

2. quadratic convergence

derive newtons method with taylors formula. at i steps,

$$f(r) = f(x_i) + (r - x_i)f'(x_i) + \frac{(r - x_i)^2}{2}f''(c_i)$$
 $\downarrow c_i ext{ between } x_i, r$
 $0 = f(x_i) + (r - x_i)f'(x_i) + \frac{(r - x_i)^2}{2}f''(c_i)$
 $\downarrow \downarrow$
 $-\frac{f(x_i)}{f'(x_i)} = r - x_i + \frac{(r - x_i)^2}{2}\frac{f''(c_i)}{f'(x_i)}, \quad f'(x_i) \neq 0$
 $\downarrow \downarrow$
 $x_i - \frac{f(x_i)}{f'(x_i)} - r = \frac{(r - x_i)^2}{2}\frac{f''(c_i)}{f'(x_i)}$
 $\downarrow \downarrow e_i = |x_i - r|$
 $x_{i+1} - r = e_i^2 \frac{f''(c_i)}{f'(x_i)}$
 $\downarrow \downarrow$
 $e_{i+1} = e_i^2 \frac{f''(c_i)}{f'(x_i)}$

bc c_i is between x_i, r , it converges to r as x_i converges to r and

$$\lim_{i o\infty}rac{e_{i+1}}{e_i^2}=\left|rac{f''(r)}{2f'(r)}
ight|,$$

$$e_{i+1}pprox Me_i^2, \quad M=\left|rac{f''(r)}{2f'(r)}
ight|, \ \ f'(r)
eq 0.$$

compare with linearly convergent methods with $e_{i+1} \approx Se_i$, where S = |g'(r)| for FPI and $S = \frac{1}{2}$ for bisection. while S is critical for linearly convergent methods, M is less critical bc of the division by the square of the previous error.

✓ example 11, revisited

f'''(x)=6x and at $x_cpprox 0.6823$, Mpprox 0.85 which agrees with error ratio of displayed with iteration.

example 6, revisited

let a be positive and consider roots of $f(x)=x^2-a$ using newtons method.

$$egin{aligned} x_{i+1} &= x_i - rac{f(x_i)}{f'(x_i)} = x_i - rac{x_i^2 - a}{2x_i} \ &= rac{x_i^2 + a}{2x_i} = rac{x_i + rac{a}{x_i}}{2}. \quad \checkmark \quad ext{babylonia!} \end{aligned}$$

wrt convergence,

$$f'(\sqrt{a}) = 2\sqrt{a}, \ f''(\sqrt{a}) = 2$$

 \Downarrow quadratically convergent bc $f'(\sqrt{a}) = 2\sqrt{a} \neq 0$

$$e_{i+}pprox Me_i^2, \quad M=rac{f''(r)}{2f'(r)}=rac{2}{2\cdot 2\sqrt{a}}=rac{1}{2\sqrt{a}}.$$

2 linear convergence

✓ example 12

find root of $f(x)=x^2$ using newtons method.

obviously r=0, but

$$egin{aligned} x_{i+1} &= x_i - rac{f(x_i)}{f'(x_i)} \ &= x_i - rac{x_i^2}{2x_i} \ &= rac{x_i}{2} \, . \end{aligned}$$

which gets you linear convergence of $S=\frac{1}{2}.$ \downarrow see?

✓ code, example 12

```
1 # example 12 # mod example 11
2
3 if __name__ == "__main__":
4
```

example 12. x0 = 1.

i	x[i]	e[i]	"/e[i-1]
000 001 002 003 004 005	1.00000000 0.50000000 0.25000000 0.12500000 0.06250000 0.03125000	1.00000000 0.50000000 0.25000000 0.12500000 0.06250000 0.03125000	0.50000000 0.50000000 0.50000000 0.50000000 0.50000000
022 023 024 025 026	0.00000024 0.00000012 0.00000006 0.00000003 0.00000001	0.00000024 0.00000012 0.00000006 0.00000003 0.00000001	0.50000000 0.50000000 0.50000000 0.50000000 0.50000000

✓ example 13

find root of $f(x) = x^m$ using newtons method.

again, only roor r=0 and

✓ theorem 12

assume (m+1)-times continuously differentiable function f on [a,b] has multiplicity m root at r. then newtons is locally convergent to r and error e_i at step i satisfies

$$\lim_{i o\infty}rac{e_{i+1}}{e_i}=S,\quad S=rac{m-1}{m}.$$

✓ example 14

find multiplicity of root r=0 of $f(x)=\sin x+x^2\cos x-x^2-x$ and estimate iterations required using newtons method with convergence of six decimal places beginning with $x_0=1$.

$$f(x) = \sin x + x^2 \cos x - x^2 - x$$
 $f'(x) = \cos x + 2x \cos x - x^2 \sin x - 2x - 1$
 $f''(x) = -\sin x + 2 \cos x - 4x \sin x - x^2 \cos x - 2$
 $f'''(x) = -\cos x - 6 \sin x - 6x \cos x + x^2 \sin x$

$$\psi \quad r = 0$$
 $f(r) = f'(r) = f''(r) = 0, \quad f'''(r) = -1 \quad \Rightarrow \quad m = 3 \text{ and}$

$$\psi \quad \text{by theorem 12, with linear convergence}$$
 $S = \frac{m-1}{m} = \frac{2}{3} \quad \Rightarrow \quad e_{i+1} \approx \frac{2}{3} e_i.$

$$x_0 = 1 \quad \Rightarrow \quad e_0 = 1$$

$$\psi$$

$$(\frac{2}{3})^n < 0.5 \times 10^{-6}$$

$$\psi$$

$$n > \frac{\log_{10}(0.5) - 6}{\log_{10}(\frac{2}{3})} \approx 35.78 \quad \Rightarrow \quad 36 \text{ iterations.}$$

v code, example 14

example 14. x0 = 1.

✓ theorem 13

if (m+1)-times continuously differentiable function f on [a,b] has multiplicity m>1 root at r, then **modified newtons method**

$$x_{i+1} = x_i - \frac{m\,f(x_i)}{f'(x_i)}$$

converges locally and quadratically to r.

ie, if multiplicity known, newtons can be improved.

- ✓ example 14, revisited

```
1 # example 14 with modified newtons
2
3 if __name__ == "__main__":
```

 \Rightarrow example 14. $\times 0 = 1$.

and then the conflict with machine precision wins bc its the machine. another reminder to mind the machine.

ie, backwards error is driven near ϵ_{mach} but forward error x_i is several orders of magnitude larger.

3 more fail

✓ example 15

apply newtons method to $f(x)=4x^4-6x^2-rac{11}{4}$ with $x_0=rac{1}{2}.$

the function has roots bc it is continuous and negative at x=0 and goes to $+\infty$ for large positive and negative x.

$$x_{i+1} = x_i - rac{4x_i^4 - 6x_i^2 - rac{11}{4}}{16x_i^3 - 12x_i}.$$

however, $x_1=-rac{1}{2} \;\; \mapsto \;\; x_2=-rac{1}{2} \;\; \mapsto \;\; ext{lol}.$

thats worth some code.

example 15 ~ newton fails. x0 = 0.5.

i	x[i]	e[i]	"/e[i-1]^2
000	0.50000000	0.86676040	
001	-0.50000000	1.86676040	2.48479439
j 002	0.50000000	0.86676040	0.24872641
003	-0.50000000	1.86676040	2.48479439
004	0.50000000	0.86676040	0.24872641
j 005	-0.50000000	1.86676040	2.48479439

in addition to examples 14 and 15, if $f'(x_i) = 0$. also, iterations unto infinity or mimicry of an rng. however, theorems 11 and 12 guarantee a neighborhood of initial guesses surrounding each root for which convergence to that root is assured.

resources

- ✓ code, fpi, from lecture 01_02
- 1 # algorithm. expanded for lecture 01 02