

Description

The NCEP6020AS uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =60V,I_D =20A

 $R_{DS(ON)}$ =4.0m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =4.6m Ω (typical) @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N040-S8	VST06N040	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
		+	3//	
Drain-Source Voltage	V _D s	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I_D	20	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	14	А	
Pulsed Drain Current	I _{DM}	130	А	
Maximum Power Dissipation	P _D	3.5	W	
Single pulse avalanche energy (Note 5)	E _{AS}	320	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R o A	36	°C/W

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250 μ A	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μА
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250 μ A	1.0	1.7	2.4	V
Dunin Course On Chata Desintance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	4.0	4.5	mΩ
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =18A	-	4.6	5.4	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	35	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	.,	-	4000	-	PF
Output Capacitance	C _{oss}	$V_{DS}=30V, V_{GS}=0V,$	-	680	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	23	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =1.7 Ω V_{GS} =10V, R_G =3 Ω	-	5	-	nS
Turn-Off Delay Time	t _{d(off)}		-	56	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V 20VI 20A	-	67	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=20A,$	-	12	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	8.5	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	20	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	48	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/ μ s (Note3)	-	60	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $\rm t\,\leqslant\,10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 $^{\Omega}$

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)