Data Preparation & Visualisation

Process of acquiring raw data

First of all I searched dataset related to agriculture. As my task is related to Ireland so I searched datasets on Ireland official website I found many datasets but I choose crop production.

I get two detests related to Ireland because both detests are same. But here problem is that these datasets cannot be used for country comparisons as it contains the data of only Ireland so I got another dataset which is crop production international dataset.

So there are three datasets which I got from internet sources

Positive and negative aspects of the research and acquisition

Positive aspects:

- We know about what is going what are trends in countries.
- We can analyse that a country on which position by exploring data.
- We can make good decisions

Negative aspects:

- It is very time consuming process to acquire datasets.
- data may be incomplete or inconsistent so we have to structure it .
- it can be used for wrong purposes.

Importing libraries:

The first step is to import all required libraries.so here I am importing four Major Libraries which are here:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
pd.options.mode.chained_assignment = None # default='warn'
```

1)pandas:

pandas is used for data crunching.

2)numpy:

It is used for scientific computing it provides some mathematics and statistics like functions.

3) Matplotlib:

It is used for data Visualization For example to make Charts and graphs.

4)Seaborn:

It is also used for data Visualization For example to make Charts and graphs.

Importing first dataset

Now here I am loading data. As data is in excel file so I am importing Excel File with .csv file format. t

data1=pd.read_csv('AQA04.Crop Yield and Production.csv')
data1

	STATISTIC	Statistic	TLIST(A1)	Year	C02039V02469	Type of Crop	UNIT	VALUE
0	AQA04C1	Area under Crops	2008	2008	1	Total wheat, oats and barley	000 Hectares	320.7
1	AQA04C1	Area under Crops	2008	2008	11	Total wheat	000 Hectares	110.7
2	AQA04C1	Area under Crops	2008	2008	111	Winter wheat	000 Hectares	87.5
3	AQA04C1	Area under Crops	2008	2008	112	Spring wheat	000 Hectares	23.2
4	AQA04C1	Area under Crops	2008	2008	12	Total oats	000 Hectares	22.9
·	842	(22)	22.5	122	1000	022		222
541	AQA04C3	Crop Production	2021	2021	131	Winter barley	000 Tonnes	638.8
542	AQA04C3	Crop Production	2021	2021	132	Spring barley	000 Tonnes	917.6
543	AQA04C3	Crop Production	2021	2021	2	Beans and peas	000 Tonnes	54.4
544	AQA04C3	Crop Production	2021	2021	3	Oilseed rape	000 Tonnes	52.2
545	AQA04C3	Crop Production	2021	2021	4	Potatoes	000 Tonnes	407.5

Importing second dataset

data2=pd.read_csv('AQA03_Crop Yield (1985 - 2007).csv')
data2

	STATISTIC	Statistic	TLIST(A1)	Year	C02039V02469	Type of Crop	UNIT	VALUE
0	AQA03C1	Area under Crops	1985	1985	1	Total wheat, oats and barley	000 Hectares	386.2
1	AQA03C1	Area under Crops	1985	1985	11	Total wheat	000 Hectares	77.7
2	AQA03C1	Area under Crops	1985	1985	111	Winter wheat	000 Hectares	60.3
3	AQA03C1	Area under Crops	1985	1985	112	Spring wheat	000 Hectares	17.4
4	AQA03C1	Area under Crops	1985	1985	12	Total oats	000 Hectares	24.9
•••	575	9575			955	250	5350	558
1168	AQA03C3	Crop Yield	2007	2007	4	Potatoes	000 Tonnes	399.0
1169	AQA03C3	Crop Yield	2007	2007	5	Turnips	000 Tonnes	NaN
1170	AQA03C3	Crop Yield	2007	2007	61	Sugar beet	000 Tonnes	NaN
1171	AQA03C3	Crop Yield	2007	2007	62	Fodder beet	000 Tonnes	NaN
1172	AQA03C3	Crop Yield	2007	2007	7	Kale and field cabbage	000 Tonnes	NaN

EDA

Checking for any missing values

```
data1.isnull().sum()
STATISTIC
                 0
                 0
Statistic
TLIST(A1)
                 0
Year
                 0
C02039V02469
                 0
Type of Crop
                 0
UNIT
                 0
VALUE
                 0
dtype: int64
```

As shown above there are no null or missing values in data.

Description of data1

```
data1['VALUE'].describe()
count
          546.000000
          214.459341
mean
std
          457.556839
min
            2.500000
25%
            8.400000
50%
           23.750000
75%
          165.550000
         2633.600000
max
Name: VALUE, dtype: float64
```

As by looking on mean and median it is clear that there is huge difference is observed so this show that data is inconsistent.

So it is needed to structure data.

Exploring unit and Statistic feature

As analysing above there are three units and three types of measurements. It is must that unit must be same. Here above the huge difference in mean and median is observed due to this reason.

But here problem is that every unit belongs to different quantity not same quantity.

Checking every unit based on every measure

```
data1[data1['Statistic']=='Area under Crops']['UNIT'].unique()
array(['000 Hectares'], dtype=object)

data1[data1['Statistic']=='Crop Yield per Hectare']['UNIT'].unique()
array(['Tonnes'], dtype=object)

data1[data1['Statistic']=='Crop Production']['UNIT'].unique()
array(['000 Tonnes'], dtype=object)
```

As looking above following is concluded:

Area under crop has unit of hectares

Crop yield per Hectare has unit of Tonnes

Crop production also has unit of Tonnes but there is difference of some characters

So three measures representing three units

Checking Length of every measure

```
len(data1[data1['Statistic']=='Area under Crops'])
182
len(data1[data1['Statistic']=='Crop Yield per Hectare'])
182
len(data1[data1['Statistic']=='Crop Production'])
182
As observing above it is cleared that every measure have 182 records
Exploring Year
data1['Year'].min()
2008
data1['Year'].max()
2021
data1['Year'].max()-data1['Year'].min()
13
 data1['Year'].value_counts()
 2008
          39
 2009
          39
 2010
          39
 2011
          39
 2012
          39
 2013
          39
 2014
          39
 2015
          39
 2016
          39
 2017
          39
 2018
          39
 2019
          39
 2020
          39
 2021
          39
 Name: Year, dtype: int64
```

This is agriculture record from 2008 to 2021

So this is record contains 13 years

Every year having same number of records as 39

Exploring type of crop feature

```
len(data1['Type of Crop'].unique())
13
```

data1['Type of Crop'].value_counts()

Total oats 42
Oilseed rape 42

42 Beans and peas Winter wheat 42 Winter barley 42 Total wheat 42 Potatoes 42 Total barley 42 Total wheat, oats and barley 42 Spring wheat 42 42 Winter oats 42 Spring barley Spring oats 42

Name: Type of Crop, dtype: int64

There are 13 types of crops are mentioned in dataset

Every crop having same number of records as 42

Exploring 2nd dataset

Checking for null values

0	
0	
0	
0	
0	
0	
0	
69	
	0 0

There are 69 null values present in 2nd dataset

Description of data2

```
data2['VALUE'].describe()
        1104.000000
count
          204.333062
mean
          411.534975
std
            0.000000
min
            7.100000
25%
50%
           31.050000
          158.425000
75%
         2500.900000
max
Name: VALUE, dtype: float64
```

As by looking on mean and median it is clear that there is huge difference is observed so this show that data is inconsistent.

So it is needed to structure data.

Exploring unit and Statistic feature

As analysing above there are three units and three types of measurements. It is must that unit must be same. Here above the huge difference in mean and median is observed due to this reason.

But here problem is that every unit belongs to different quantity not same quantity.

Checking every unit based on every measure

```
data2[data2['Statistic']=='Area under Crops']['UNIT'].unique()
array(['000 Hectares'], dtype=object)

data2[data2['Statistic']=='Crop Yield per Hectare']['UNIT'].unique()
array(['Tonnes'], dtype=object)

data2[data2['Statistic']=='Crop Yield']['UNIT'].unique()
array(['000 Tonnes'], dtype=object)
```

As looking above following is concluded:

Area under crop has unit of hectares

Crop yield per Hectare has unit of Tonnes

Crop Yield also has unit of Tonnes but there is difference of some characters

So three measures representing three units

Exploring Year

```
data2['Year'].min()

1985

data2['Year'].max()

data2['Year'].max()-data2['Year'].min()

22

data2['Year'].value_counts()

1985    51
1997    51
```

```
2006
         51
2005
         51
2004
         51
2003
         51
2002
         51
2001
         51
2000
         51
1999
         51
1998
1996
         51
1986
         51
1995
         51
1994
         51
1993
1992
         51
1991
         51
1990
         51
1989
         51
1988
         51
1987
         51
2007
         51
```

This is agriculture record from 1985 to 2007

So this is record contains 22 years

Every year has 51 records.

Exploring type of crop feature

```
len(data2['Type of Crop'].unique())
```

17

Total oats	69	
Spring barley	69	
Winter oats	69	
Sugar beet	69	
Turnips	69	
Winter wheat	69	
Oilseed rape	69	
Spring oats	69	
Spring wheat	69	
Beans and peas	69	
Total wheat, oats and barley	69	
Total barley	69	
Potatoes	69	
Total wheat	69	
Winter barley	69	
Fodder beet	69	
Kale and field cabbage	69	

There are 17 types of crops are mentioned in dataset

Every crop having same number of records as 69

Checking Length of every measure

```
len(data2[data2['Statistic']=='Area under Crops'])
391
len(data2[data2['Statistic']=='Crop Yield per Hectare'])
391
len(data2[data2['Statistic']=='Crop Yield'])
391
```

As observing above it is cleared that every measure have 391 records

Comparing 1st five records first dataset of every measure

data1[data1['Statistic']=='Area under Crops'].head() STATISTIC Statistic TLIST(A1) Year C02039V02469 Type of Crop UNIT VALUE 0 AQA04C1 Area under Crops 2008 2008 1 Total wheat, oats and barley 000 Hectares 320.7 AQA04C1 Area under Crops 110.7 2008 2008 11 Total wheat 000 Hectares AQA04C1 Area under Crops 2008 2008 111 Winter wheat 000 Hectares 87.5 AQA04C1 Area under Crops 2008 2008 112 Spring wheat 000 Hectares 23.2 AQA04C1 Area under Crops 2008 2008 12 Total oats 000 Hectares 22.9 data1[data1['Statistic']=='Crop Yield per Hectare'].head() STATISTIC Statistic TLIST(A1) Year C02039V02469 Type of Crop UNIT VALUE AQA04C2 Crop Yield per Hectare 2008 7.7 182 2008 1 Total wheat, oats and barley Tonnes 183 AQA04C2 Crop Yield per Hectare 2008 2008 11 Total wheat Tonnes 9.0 184 AQA04C2 Crop Yield per Hectare 2008 2008 111 Winter wheat Tonnes 9.6 AQA04C2 Crop Yield per Hectare 2008 2008 185 112 Spring wheat Tonnes 6.6 AQA04C2 Crop Yield per Hectare 7.6 2008 2008 12 186 Total oats Tonnes data1[data1['Statistic'] == 'Crop Production'].head() STATISTIC Statistic TLIST(A1) Year C02039V02469 Type of Crop VALUE UNIT 2461.3 364 AQA04C3 Crop Production 000 Tonnes 2008 2008 Total wheat, oats and barley AQA04C3 Crop Production 2008 2008 11 Total wheat 000 Tonnes 992.8 365 AQA04C3 Crop Production 2008 2008 111 Winter wheat 000 Tonnes 839.9 366 367 AQA04C3 Crop Production 2008 2008 112 Spring wheat 000 Tonnes 153.0 2008 2008 AQA04C3 Crop Production 174.3 368 12 Total oats 000 Tonnes

As by comparing first five records of three measures it concluded that:

Features of year, Co2039VO2469 and type of crop are same for all three measures.

There is difference of value and unit in every measure

Comparing 1st five records first dataset of every measure

	STATISTIC	Statistic	TLIST(A1) Year	C0203	39V02469		Type of Crop		UNIT	VALUE
0	AQA03C1	Area under Crops	198	5 1985		1	Total whea	at, oats and barley	000 H	ectares	386.2
1	AQA03C1	Area under Crops	198	5 1985		11		Total wheat	000 H	ectares	77.7
2	AQA03C1	Area under Crops	198	5 1985		111		Winter wheat	000 H	ectares	60.3
3	AQA03C1	Area under Crops	198	5 1985		112		Spring wheat	000 H	ectares	17.4
4	AQA03C1	Area under Crops	198	5 1985		12		Total oats	000 H	ectares	24.9
lat	a2[data2['Statistic']=	'Crop Y	ield p	er Hec	tare'].	head()				
	STATISTIC	C St	atistic TL	IST(A1	Year	C02039	/02469	Туре о	f Crop	UNIT	VALUE
391	AQA03C	2 Crop Yield per H	lectare	1985	1985		1 To	tal wheat, oats and	barley	Tonnes	5.1
392	AQA03C	2 Crop Yield per H	lectare	1985	1985		11	Tota	wheat	Tonnes	6.4
393	AQA03C	2 Crop Yield per H	lectare	1985	1985		111	Winter	wheat	Tonnes	6.5
394	AQA03C	2 Crop Yield per H	lectare	1985	1985		112	Spring	wheat	Tonnes	5.8
395	AQA03C	2 Crop Yield per H	lectare	1985	1985		12	Tot	tal oats	Tonnes	5.1
dat	a2[data2	['Statistic']	=='Crop	Yield	'].hea	ad()					
	STATIST	IC Statistic T	LIST(A1)	Year	C02039	V02469		Type of Crop		UNIT	VALUE
782	AQA030	C3 Crop Yield	1985	1985		1	Total wheat	t, oats and barley	000 To	onnes	1986.0
	AQA030	C3 Crop Yield	1985	1985		11		Total wheat	000 Te	onnes	495.0
783		00 0 10 11	1985	1985		111		Winter wheat	000 To	onnes	395.0
783 784	AQA030	C3 Crop Yield	1905	1505							
		Crop Yield	15,777.7	1985		112		Spring wheat	000 To	onnes	100.0

As by comparing first five records of three measures it concluded that:

Features of year, Co2039VO2469 and type of crop are same for all three measures.

There is difference of value and unit in every measure

Final conclusion of EDA

By exploring 1st and 2nd dataset it is concluded that:

Both datasets having same columns so we can combine both to make dataset efficient

Both datasets has three measures represented by three units respectively so this thing makes dataset inconsistent

Year and type of crop column is same for all measures

Every measure have same number of records

Feature Engineering

Combining two datasets by concatenation

As two datasets has same features so two datasets can be combined in such a way that rows of 2nd dataset are added where rows of 1st dataset terminating

data=pd.concat([data1,data2],axis=0).reset_index(drop=True)
data

	AQA04C1	A						
94.0		Area under Crops	2008	2008	1	Total wheat, oats and barley	000 Hectares	320.7
1 /	AQA04C1	Area under Crops	2008	2008	11	Total wheat	000 Hectares	110.7
2 /	AQA04C1	Area under Crops	2008	2008	111	Winter wheat	000 Hectares	87.5
3 /	AQA04C1	Area under Crops	2008	2008	112	Spring wheat	000 Hectares	23.2
4 A	AQA04C1	Area under Crops	2008	2008	12	Total oats	000 Hectares	22.9
-	202	<u> </u>	63	922	752		822	7.1
1714 <i>A</i>	AQA03C3	Crop Yield	2007	2007	4	Potatoes	000 Tonnes	399.0
1715	AQA03C3	Crop Yield	2007	2007	5	Turnips	000 Tonnes	NaN
1716 A	AQA03C3	Crop Yield	2007	2007	61	Sugar beet	000 Tonnes	NaN
1717	AQA03C3	Crop Yield	2007	2007	62	Fodder beet	000 Tonnes	NaN
1718 /	AQA03C3	Crop Yield	2007	2007	7	Kale and field cabbage	000 Tonnes	NaN

: data.shape

: (1719, 8)

So after concatenation the total records in concatenated data is 1719

Separating data related to measurement of area

Area=data[data['Statistic']=='Area under Crops']
Area

STATISTIC	Statistic	TLIST(A1)	Year	C02039V02469	Type of Crop	UNIT	VALUE
AQA04C1	Area under Crops	2008	2008	1	Total wheat, oats and barley	000 Hectares	320.7
AQA04C1	Area under Crops	2008	2008	11	Total wheat	000 Hectares	110.7
AQA04C1	Area under Crops	2008	2008	111	Winter wheat	000 Hectares	87.5
AQA04C1	Area under Crops	2008	2008	112	Spring wheat	000 Hectares	23.2
AQA04C1	Area under Crops	2008	2008	12	Total oats	000 Hectares	22.9
557.0	STE	7070	(550	8355	955	102.02	
AQA03C1	Area under Crops	2007	2007	4	Potatoes	000 Hectares	11.7
AQA03C1	Area under Crops	2007	2007	5	Turnips	000 Hectares	NaN
AQA03C1	Area under Crops	2007	2007	61	Sugar beet	000 Hectares	NaN
AQA03C1	Area under Crops	2007	2007	62	Fodder beet	000 Hectares	NaN
AQA03C1	Area under Crops	2007	2007	7	Kale and field cabbage	000 Hectares	NaN
	AQA04C1 AQA04C1 AQA04C1 AQA04C1 AQA04C1 AQA03C1 AQA03C1 AQA03C1 AQA03C1	AQA04C1 Area under Crops AQA03C1 Area under Crops	AQA04C1 Area under Crops 2008 AQA03C1 Area under Crops 2007 AQA03C1 Area under Crops 2007	AQA04C1 Area under Crops 2008 2008 AQA03C1 Area under Crops 2007 2007 AQA03C1 Area under Crops 2007 2007	AQA04C1 Area under Crops 2008 2008 1 AQA04C1 Area under Crops 2008 2008 11 AQA04C1 Area under Crops 2008 2008 111 AQA04C1 Area under Crops 2008 2008 112 AQA04C1 Area under Crops 2008 2008 12 AQA03C1 Area under Crops 2007 2007 4 AQA03C1 Area under Crops 2007 2007 5 AQA03C1 Area under Crops 2007 2007 61 AQA03C1 Area under Crops 2007 2007 62	AQA04C1 Area under Crops 2008 2008 1 Total wheat, oats and barley AQA04C1 Area under Crops 2008 2008 11 Total wheat AQA04C1 Area under Crops 2008 2008 111 Winter wheat AQA04C1 Area under Crops 2008 2008 112 Spring wheat AQA04C1 Area under Crops 2008 2008 12 Total oats AQA03C1 Area under Crops 2007 2007 4 Potatoes AQA03C1 Area under Crops 2007 2007 5 Turnips AQA03C1 Area under Crops 2007 2007 61 Sugar beet AQA03C1 Area under Crops 2007 2007 62 Fodder beet	AQA04C1 Area under Crops 2008 2008 1 Total wheat, oats and barley 000 Hectares AQA04C1 Area under Crops 2008 2008 11 Total wheat 000 Hectares AQA04C1 Area under Crops 2008 2008 111 Winter wheat 000 Hectares AQA04C1 Area under Crops 2008 2008 112 Spring wheat 000 Hectares AQA04C1 Area under Crops 2008 2008 12 Total oats 000 Hectares AQA03C1 Area under Crops 2007 2007 4 Potatoes 000 Hectares AQA03C1 Area under Crops 2007 2007 5 Turnips 000 Hectares AQA03C1 Area under Crops 2007 2007 61 Sugar beet 000 Hectares AQA03C1 Area under Crops 2007 2007 62 Fodder beet 000 Hectares

573 rows x 8 columns

Separating data related to measurement of crop yield per Hectare

Crop_Yield_per_Hectare=data[data['Statistic']=='Crop Yield per Hectare']
Crop_Yield_per_Hectare

	STATISTIC	Statistic	TLIST(A1)	Year	C02039V02469	Type of Crop	UNIT	VALUE
182	AQA04C2	Crop Yield per Hectare	2008	2008	1	Total wheat, oats and barley	Tonnes	7.7
183	AQA04C2	Crop Yield per Hectare	2008	2008	11	Total wheat	Tonnes	9.0
184	AQA04C2	Crop Yield per Hectare	2008	2008	111	Winter wheat	Tonnes	9.6
185	AQA04C2	Crop Yield per Hectare	2008	2008	112	Spring wheat	Tonnes	6.6
186	AQA04C2	Crop Yield per Hectare	2008	2008	12	Total oats	Tonnes	7.6
	544	17694	9/71	7442	944	444		447
1323	AQA03C2	Crop Yield per Hectare	2007	2007	4	Potatoes	Tonnes	34.0
1324	AQA03C2	Crop Yield per Hectare	2007	2007	5	Turnips	Tonnes	NaN
1325	AQA03C2	Crop Yield per Hectare	2007	2007	61	Sugar beet	Tonnes	NaN
1326	AQA03C2	Crop Yield per Hectare	2007	2007	62	Fodder beet	Tonnes	NaN
1327	AQA03C2	Crop Yield per Hectare	2007	2007	7	Kale and field cabbage	Tonnes	NaN

Replacing crop yield with crop production

As in resultant data there are four measurements but Crop production and Crop Yield is same.

So crop yield is replaced by crop production

Separating data related to measurement of production

crop_production=data[data['Statistic']=='Crop Production'] crop_production	

	STATISTIC	Statistic	TLIST(A1)	Year	C02039V02469	Type of Crop	UNIT	VALUE
364	AQA04C3	Crop Production	2008	2008	1	Total wheat, oats and barley	000 Tonnes	2461.3
365	AQA04C3	Crop Production	2008	2008	11	Total wheat	000 Tonnes	992.8
366	AQA04C3	Crop Production	2008	2008	111	Winter wheat	000 Tonnes	839.9
367	AQA04C3	Crop Production	2008	2008	112	Spring wheat	000 Tonnes	153.0
368	AQA04C3	Crop Production	2008	2008	12	Total oats	000 Tonnes	174.3
	0.22	923	522	222	123	117	411	7520
1714	AQA03C3	Crop Production	2007	2007	4	Potatoes	000 Tonnes	399.0
1715	AQA03C3	Crop Production	2007	2007	5	Turnips	000 Tonnes	NaN
1716	AQA03C3	Crop Production	2007	2007	61	Sugar beet	000 Tonnes	NaN
1717	AQA03C3	Crop Production	2007	2007	62	Fodder beet	000 Tonnes	NaN
1718	AQA03C3	Crop Production	2007	2007	7	Kale and field cabbage	000 Tonnes	NaN

Preparing data frame with year and type of crop feature

As year and type of crop is same for all measurements and number of records in all measurements are same three columns are derived from area

```
df=Area[['Year','C02039V02469','Type of Crop']]
df
```

	Year	C02039V02469	Type of Crop
0	2008	1	Total wheat, oats and barley
1	2008	11	Total wheat
2	2008	111	Winter wheat
3	2008	112	Spring wheat
4	2008	12	Total oats
	527	22	1995
932	2007	4	Potatoes
933	2007	5	Turnips
934	2007	61	Sugar beet
935	2007	62	Fodder beet
936	2007	7	Kale and field cabbage

Adding three new columns to data frame

```
df['Area_under_Crops_Hectares']=list(Area['VALUE'])
df['Crop_Yield_per_Hectare_in_Tonnes']=list(Crop_Yield_per_Hectare['VALUE'])
df['crop_production_in_Tonnes']=list(crop_production['VALUE'])
```

df

	Year	C02039V02469	Type of Crop	Area_under_Crops_Hectares	Crop_Yield_per_Hectare_in_Tonnes	crop_production_in_Tonnes
0	2008	1	Total wheat, oats and barley	320.7	7.7	2461.3
1	2008	11	Total wheat	110.7	9.0	992.8
2	2008	111	Winter wheat	87.5	9.6	839.9
3	2008	112	Spring wheat	23.2	6.6	153.0
4	2008	12	Total oats	22.9	7.6	174.3
	ioi.	1600	700	***	044	
932	2007	4	Potatoes	11.7	34.0	399.0
933	2007	5	Turnips	NaN	NaN	NaN
934	2007	61	Sugar beet	NaN	NaN	NaN
935	2007	62	Fodder beet	NaN	NaN	NaN
936	2007	7	Kale and field cabbage	NaN	NaN	NaN

As three new columns are added which are derived from area under crop, crop yield per hectare and crop production

Checking missing values

```
      df.isnull().sum()

      Year
      0

      C02039V02469
      0

      Type of Crop
      0

      Area_under_Crops_Hectares
      23

      Crop_Yield_per_Hectare_in_Tonnes
      23

      crop_production_in_Tonnes
      23

      dtype: int64
```

In three newly added columns total 69 null values are found

Removing null values

```
df=df.dropna()
df.shape
(550, 6)
```

As null values are removed so remaining rows are 550

Saving dataset

As now dataset is structured and cleaned it can be used for analysis and machine learning

```
df.to_csv('crop_production_modified.csv', index=None)
```

One hot encoding

One hot encoding is used to convent categorical feature into numerical feature.

As type of crop is a categorical feature so it is converted into numerical to apply machine learning on it.

After applying one hot encoding there are 21 features total.

Logical justification based on the reasoning for the specific choice of machine learning approaches:

Why Supervised Machine Learning is used rather than Unsupervised Machine Learning?

Here Supervised Machine Learning is used because with the help of supervised learning, the model can predict the output on the basis of training data.

Unsupervised Machine Learning is used to view patterns or clusters

As here the task is to prepare a Machine Learning Model which predicts the value of crop production so Supervised Machine Learning Techniques are solution here.

Why Regression is used here rather than classification?

Regression is used where dependant feature or target feature is continues and classification is used Where dependant feature or target feature is categorical

As here target variable crop production contains continues values so regression is used here.

Import dataset for Machine Learning

Here below structured dataset is imported for building machine learning models.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
pd.options.mode.chained assignment = None # default='warn'
df=pd.read_csv('crop_production_predictionML.csv')
df
                                                                                                           crop_Fodder
     Year C02039V02469 Area_under_Crops_Hectares Crop_Yield_per_Hectare_in_Tonnes crop_production_in_Tonnes
  0 2008
                                            320.7
                                                                             7.7
                                                                                                    2461.3
                                                                                                                     0
                      1
  1 2008
                     11
                                            110.7
                                                                                                     992.8
                                                                                                                     0
  2 2008
                    111
                                             87.5
                                                                              9.6
                                                                                                     839.9
                                                                                                                     0
  3 2008
                    112
                                             23.2
                                                                              6.6
                                                                                                     153.0
                                                                                                                     0
  4 2008
                     12
                                             22 9
                                                                              7.6
                                                                                                     174.3
                                                                                                                     0
545 2007
                    131
                                             18.7
                                                                              7.6
                                                                                                     142.4
```

Splitting dataset into dependant and independent

Here data is divided into dependent and Independent features. Dependant features are inputs for training process and Independent features is output for machine learning process.

```
X=df.drop(['crop_production_in_Tonnes'],axis=1)
X.shape
(550, 20)

y=df['crop_production_in_Tonnes']
```

As crop production is targeted variable so it is removed from inputs and added on outputs

Feature Scaling

Standardization is scaling technique where the values are centered around the mean with a unit standard deviation. This means that the mean of the attribute becomes zero and the resultant distribution has a unit standard deviation.

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X scaled
array([[ 0.58211472, -1.00907364, 3.02939687, ..., -0.26856053,
        -0.26856053, -0.26856053],
       [ 0.58211472, -0.82827142, 0.55963168, ..., -0.26856053,
        -0.26856053, -0.26856053],
       [ 0.58211472, 0.97975081, 0.28678143, ..., -0.26856053,
        -0.26856053, 3.72355541],
       [0.48822525, -0.99099342, -0.70818111, ..., -0.26856053,
        -0.26856053, -0.26856053],
       [ 0.48822525, -0.9729132 , -0.64584894, ..., -0.26856053,
        -0.26856053, -0.26856053],
       [ 0.48822525, -0.95483297, -0.60468619, ..., -0.26856053,
        -0.26856053, -0.26856053]])
```

Dimensional reduction:

Dimensionality reduction refers to techniques for reducing the number of input variables in training data. When dealing with high dimensional data, it is often useful to reduce the dimensionality by reducing features.

It has two main techniques:

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)

Principal Component Analysis (PCA)

Principal Component Analysis, or PCA, is a dimensionality-reduction method to find lower-dimensional space by preserving the variance as measured in the high dimensional input space. It is an unsupervised method for dimensionality reduction.

```
from sklearn.decomposition import PCA

pca = PCA(0.95)
X_pca = pca.fit_transform(X_scaled)
X_pca.shape

(550, 16)

pca.explained_variance_ratio_

array([0.1175678 , 0.11047456, 0.08033868, 0.05692333, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05360624, 0.05192557, 0.05157712, 0.04107943])
```

Here above number of features are reduced to 16 .which makes 95 % importance to Model.

Train test splitting

The train-test split procedure is used to estimate the performance of machine learning algorithms when they are used to make predictions on data not used to train the model.

```
from sklearn.model_selection import train_test_split
X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=30)
```

Here above size of test data is 20% so size of training dataset is 80%.

Model building

This is Machine Learning Model building stage in which threetypes of regression algorithms are used along with parameters.

In this stage training data is given to model so in this stage classification models learns from training data.

```
from sklearn.linear_model import LinearRegression
LR= LinearRegression()
LR.fit(X_train_pca, y_train)

LinearRegression()

from sklearn.tree import DecisionTreeRegressor
DTR= DecisionTreeRegressor()
DTR.fit(X_train_pca, y_train)

DecisionTreeRegressor()

from sklearn.ensemble import RandomForestRegressor
RFR= RandomForestRegressor()
RFR.fit(X_train_pca, y_train)

RandomForestRegressor()
```

Comparison between the chosen modelling approaches:

Here below performance of regression models are compared using Accuracy Score.

Accuracy of classification model:

```
LR.score(X_test_pca, y_test)

0.9501566595154014

DTR.score(X_test_pca, y_test)

0.9571615588315115

RFR.score(X_test_pca, y_test)

0.974447322614494
```

As observed accuracy of linear regression model is 95%,

Accuracy of decision Tree Regression is 95% and accuracy of Random Forest Regression is 97%

So Random Forest Regression is best performing model here

But it is not finalized that this is best performing model

So other Evaluation techniques are also used.

K Fold Cross validation

Here K Fold Cross validation is performed on Machine Learning Models to to find which model is performing best by giving highest accuracy.

```
from sklearn.model_selection import cross_val_score
model_scoring={}
def all_model_scores(model,X,y):
        scores=cross_val_score(model,X,y,cv=10)
        mean_score=scores.mean()
        model_scoring.update({model:mean_score})
        return model_scoring

Model_list=[LinearRegression(),DecisionTreeRegressor(),RandomForestRegressor()]
for model in Model_list:
        score_dict=all_model_scores(model,X_pca,y)
df_Models_scores=pd.DataFrame(score_dict,index=[0])
df_Models_scores
```

LinearRegression() DecisionTreeRegressor() RandomForestRegressor() 0 0.934236 0.966176 0.976309

Result:

Random Forest Regression is regression model here with highest score of accuracy so Random Forest Regression is best performing model

Evaluation techniques:

R2 score

The R2 score is a very important metric that is used to evaluate the performance of a regression-based machine learning model. It is pronounced as R squared and is also known as the coefficient of determination. It works by measuring the amount of variance in the predictions explained by the dataset

Mean Absolute Error

Mean absolute error refers to the magnitude of difference between the prediction of an observation and the true value of that observation. MAE takes the average of absolute errors for a group of predictions and observations as a measurement of the magnitude of errors for the entire group.

Root Mean Square Error:

Random Forest Regressor

Root mean squared error (RMSE) is the square root of the mean of the square of all of the **error**. The use of RMSE is very common

Table of accuracy scores, Mean Absolute Error and Root Mean Square error:

```
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean squared error
Models_names=['Linear Regresser', 'Decision Tree Regressor', 'Random Forest Regressor']
Model_list=[LinearRegression(),DecisionTreeRegressor(),RandomForestRegressor()]
Accuracy_Scores=[]
MAE Scores=[]
RMSE Scores=[]
for model in Model_list:
   model.fit(X_train_pca,y_train)
   y pred=model.predict(X test pca)
   Accuracy_Scores.append(model.score(X_test_pca, y_test))
   MAE_Scores.append(mean_absolute_error(y_test,y_pred))
   RMSE_Scores.append(np.sqrt(mean_squared_error(y_test,y_pred)))
Table=pd.DataFrame(list(zip(Models_names,Accuracy_Scores,MAE_Scores,RMSE_Scores)),columns =['Machine Learning Models','Accuracy
Table
    Machine Learning Models Accuracy Scores Mean_Absolute_Error root_mean_squared_error
 0
                                           0.950157
                                                                   110 016822
                                                                                                 148.049836
               Linear Regresser
 1
       Decision Tree Regressor
                                           0.962281
                                                                    74.646364
                                                                                                 128.790875
```

This table shows similarities and difference of Accuracy Scores, Mean Absolute Error and Root Mean squared error.

64.697618

105.020630

0.974919

So random Forest Regression is best performing machine learning model as it gives largest accuracy scores but gives smallest Mean Absolute Error and Root Mean Square Error.

Importing dataset for stats:

Here a dataset is loaded for statistical analysis and comparisons. It is international data because it is used to compare the results of Ireland with rest of countries in world.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()|

df=pd.read_csv('crop_production.csv')
df
```

	LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value	Flag Codes
0	AUS	CROPYIELD	RICE	TONNE_HA	A	1990	8.314607	NaN
1	AUS	CROPYIELD	RICE	TONNE_HA	Α	1991	8.394737	NaN
2	AUS	CROPYIELD	RICE	TONNE_HA	А	1992	8.094340	NaN
3	AUS	CROPYIELD	RICE	TONNE_HA	Α	1993	8.336000	NaN
4	AUS	CROPYIELD	RICE	TONNE_HA	A	1994	8.537815	NaN
575	100.00	em	5251	9255	9555	2028	92	500
20561	OECD	CROPYIELD	SOYBEAN	THND_HA	A	2021	37010.208830	NaN
20562	OECD	CROPYIELD	SOYBEAN	THND_HA	А	2022	37069.214850	NaN

Importing Ireland dataset

This is structured dataset of Ireland so these two datasets are imported to do statistical analysis

Overview of features:

This is mean, median and mode value of features

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20566 entries, 0 to 20565
Data columns (total 8 columns):
               Non-Null Count Dtype
    Column
                -----
 0
    LOCATION
                20566 non-null object
    INDICATOR
 1
                20566 non-null object
 2
    SUBJECT
                20566 non-null object
 3
    MEASURE
                20566 non-null object
   FREQUENCY
 4
               20566 non-null object
 5
    TIME
                20566 non-null int64
 6
    Value
               20566 non-null float64
 7
    Flag Codes 0 non-null
                               float64
dtypes: float64(2), int64(1), object(5)
memory usage: 1.3+ MB
```

Removing FLAG Codes feature

Flag Codes feature is removed as it contains all null values

```
df=df.drop(['Flag Codes'],axis=1)
df.shape
(20566, 7)
```

As there are 20566 records and 7 features

Exploring Measure

```
df['MEASURE'].unique()
array(['TONNE_HA', 'THND_TONNE', 'THND_HA'], dtype=object)

df['INDICATOR'].unique()
array(['CROPYIELD'], dtype=object)
```

There are three types of measurements are here:

- Tonne per hectare :this is unit of crop production per area
- Thousand Tonne: this is unit of Crop production
- Thousand Hectare: This is unit of Land area
 So this data representing three different types of quantities

Due to which this data is inconsistent so we have to make it structured

Exploring Measure Deeply

df[df['MEASURE']=='TONNE_HA']

	LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value
0	AUS	CROPYIELD	RICE	TONNE_HA	A	1990	8.314607
1	AUS	CROPYIELD	RICE	TONNE_HA	A	1991	8.394737
2	AUS	CROPYIELD	RICE	TONNE_HA	A	1992	8.094340
3	AUS	CROPYIELD	RICE	TONNE_HA	Α	1993	8.336000
4	AUS	CROPYIELD	RICE	TONNE_HA	A	1994	8.537815
	3005	din	900	2999	920	***	500.33
20497	OECD	CROPYIELD	SOYBEAN	TONNE_HA	А	2021	3.254959
20498	OECD	CROPYIELD	SOYBEAN	TONNE_HA	Α	2022	3.291244
20499	OECD	CROPYIELD	SOYBEAN	TONNE_HA	A	2023	3.323189
20500	OECD	CROPYIELD	SOYBEAN	TONNE_HA	A	2024	3.350868
20501	OECD	CROPYIELD	SOYBEAN	TONNE_HA	А	2025	3.378216

6826 rows × 7 columns

df[df['MEASURE']=='THND_TONNE']

	LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value
3284	WLD	CROPYIELD	RICE	THND_TONNE	A	1994	361820.7121
3285	WLD	CROPYIELD	RICE	THND_TONNE	A	1995	369091.1804
3286	WLD	CROPYIELD	RICE	THND_TONNE	А	1996	384153.4470
3287	WLD	CROPYIELD	RICE	THND_TONNE	Α	1997	387716.7782
3288	WLD	CROPYIELD	RICE	THND_TONNE	A	1998	389939.8791
	***	244)	***		746	***	944
20434	OECD	CROPYIELD	SOYBEAN	THND_TONNE	A	2021	120466.7257
20435	OECD	CROPYIELD	SOYBEAN	THND_TONNE	A	2022	122003.8408
20436	OECD	CROPYIELD	SOYBEAN	THND_TONNE	A	2023	123434.7370
20437	OECD	CROPYIELD	SOYBEAN	THND_TONNE	A	2024	124027.8756
20438	OECD	CROPYIELD	SOYBEAN	THND_TONNE	Α	2025	125133.8397

6877 rows × 7 columns

df[df['MEASURE']=='THND_HA']

	LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value
3316	IRN	CROPYIELD	WHEAT	THND_HA	А	1990	6278.000260
3317	IRN	CROPYIELD	WHEAT	THND_HA	А	1991	6557.999758
3318	IRN	CROPYIELD	WHEAT	THND_HA	А	1992	6929.999940
3319	IRN	CROPYIELD	WHEAT	THND_HA	А	1993	7189.999794
3320	IRN	CROPYIELD	WHEAT	THND_HA	А	1994	6782.000195
	199	55.50	1997	C***	255	3350	(30)
20561	OECD	CROPYIELD	SOYBEAN	THND_HA	Α	2021	37010.208830
20562	OECD	CROPYIELD	SOYBEAN	THND_HA	Α	2022	37069.214850
20563	OECD	CROPYIELD	SOYBEAN	THND_HA	Α	2023	37143.459750
20564	OECD	CROPYIELD	SOYBEAN	THND_HA	Α	2024	37013.651900
20565	OECD	CROPYIELD	SOYBEAN	THND_HA	Α	2025	37041.401580

6863 rows × 7 columns

As by looking above three quantities it is clear that there is huge difference between Values of three quantities

Finding maximum of Tonne per hectare

```
df[df['MEASURE']=='TONNE_HA']['Value'].max()
15.0
```

Making a new data frame

Here a new dataset is developed by using measurement of Tonne per hectare so it can be compared with crop production per hectare feature of Ireland dataset

```
df_TONNE_HA=df[df['MEASURE']=='TONNE_HA']
df_TONNE_HA
```

	LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value
0	AUS	CROPYIELD	RICE	TONNE_HA	А	1990	8.314607
1	AUS	CROPYIELD	RICE	TONNE_HA	Α	1991	8.394737
2	AUS	CROPYIELD	RICE	TONNE_HA	Α	1992	8.094340
3	AUS	CROPYIELD	RICE	TONNE_HA	Α	1993	8.336000
4	AUS	CROPYIELD	RICE	TONNE_HA	Α	1994	8.537815
	0.2.	222	172	1.00	1/225		153
20497	OECD	CROPYIELD	SOYBEAN	TONNE_HA	А	2021	3.254959
20498	OECD	CROPYIELD	SOYBEAN	TONNE_HA	Α	2022	3.291244
20499	OECD	CROPYIELD	SOYBEAN	TONNE_HA	Α	2023	3.323189
20500	OECD	CROPYIELD	SOYBEAN	TONNE_HA	А	2024	3.350868
20501	OECD	CROPYIELD	SOYBEAN	TONNE_HA	А	2025	3.378216

Exploring Time feature

As here a problem is detected that year data shows years of 2025, 2024, 2023. These are feature years so these years are eliminated from original dataset.

Exploring Location

```
df TONNE_HA['LOCATION'].unique()
array(['AUS', 'CAN', 'JPN', 'KOR', 'MEX', 'NZL', 'TUR', 'USA', 'DZA',
            'ARG', 'BGD', 'BRA', 'CHL', 'CHN', 'COL', 'EGY', 'ETH', 'GHA', 'IND', 'IDN', 'IRN', 'KAZ', 'MYS', 'MOZ', 'NGA', 'PAK', 'PRY', 'PER', 'PHL', 'RUS', 'SAU', 'ZAF', 'SDN', 'TZA', 'THA', 'UKR', 'URY', 'VNM', 'ZMB', 'WLD', 'SSA', 'OECD', 'BRICS', 'NOR', 'CHE',
            'EU28', 'ISR', 'HTI'], dtype=object)
len(df_TONNE_HA['LOCATION'].unique())
48
```

Here location shows names of countries in world so there are 48 countries In data

Showing Mean values of crop production of every country

```
df TONNE HA.groupby('LOCATION')['Value'].mean().sort values(ascending=False)
LOCATION
         5.666778
EGY
FU28
         5.284387
         4.991947
USA
CHL
         4.879347
OECD
         4.811134
AUS
         4.565987
         4.515404
NZL
CHE
         4.501183
TUR
         3.961190
CHN
         3.955179
ARG
         3.640061
KOR
         3.637315
URY
         3.449577
CAN
         3.370863
WID
         3.298083
         3.205045
MEX
TPN
         3.172529
         3.094354
```

Here above are mean values of crop production of countries

Mean Value on the basis of types of crops:

```
df_TONNE_HA.groupby('SUBJECT')['Value'].mean().sort_values(ascending=False)
SUBJECT
MAIZE
           4.166053
RICE
           2.638179
           2.534300
WHEAT
SOYBEAN
           1.573560
Name: Value, dtype: float64
```

Mean of crop production value in Ireland:

```
df2['Crop Yield per Hectare in Tonnes'].mean()
```

14.127272727272727

Here 14.12 Tonnes per hectare is Average Value of crop production per hectare

Comparison of Ireland with other:

As looking above Ireland average crop production is 14 tonnes per hectare it is highest value as comparing with other countries has less mean value of crop production

Descriptive stats

```
df2['Crop Yield per Hectare in Tonnes'].max()
73.7
df2['Crop Yield per Hectare in Tonnes'].min()
0.0
df2['Crop_Yield_per_Hectare_in_Tonnes'].std()
16.21486033381029
df2['Crop_Yield_per_Hectare_in_Tonnes'].describe()
         550.000000
count
          14.127273
mean
std
          16.214860
min
           0.000000
25%
           6.100000
50%
           7.600000
75%
           9.100000
max
          73.700000
```

Here crop yield of Ireland is explored as this data has huge variance is observed between mean and median

This show that this data is very skewed and not normally distributed

An huge evidence of greater variance is that seventy five percentile is 9 and maximum (100 percentile) is 73 so this shows that 73 is outlier

```
df2['Crop_Yield_per_Hectare_in_Tonnes'].quantile(0.80)

10.520000000000005

df2['Crop_Yield_per_Hectare_in_Tonnes'].quantile(0.05)
```

3.545000000000000004

Inferential statistics

Inferential statistics use measurements from the sample of subjects in the experiment to compare the treatment groups and make generalizations about the larger population of subjects.

Why inferential statistics is used?

While descriptive statistics summarize the characteristics of a data set, inferential statistics help our come to conclusions and make predictions based on your data. When we have collected data from a sample, we can use inferential statistics to understand the larger population from which the sample is taken.

Hypothesis testing:

Hypothesis testing is a form of statistical inference that uses data from a sample to draw conclusions about a population parameter or a population probability distribution.

Chi-square test

A chi-square test is a statistical test used to compare observed results with expected results. The purpose of this test is to determine if a difference between observed data and expected data is due to chance, or if it is due to a relationship between the variables you are studying.

We use the chi-square test to compare categorical variables

Here chi-square is used to show that is there is a relationship between two categorical features

H₀: relation exist between two categorical features Location and Subjuct

H1:there is no relationship between Location and Type of crop

```
import scipy.stats as stats
dataset_table=pd.crosstab(df_TONNE_HA['LOCATION'],df_TONNE_HA['SUBJECT'])
print(dataset table)
SUBJECT MAIZE RICE SOYBEAN WHEAT
LOCATION
           32 32
                       32
                             32
AUS
          32 32
                       32
                             32
          32
               32
                        32
BGD
                              32
          32
BRA
                32
                        32
                              32
BRICS
          32
                32
                        32
                              32
CAN
          32
               32
                        32
                              32
CHE
          32
               32
                        32
CHL
           32
               32
                        32
                             32
          32
               32
CHN
                        32
                              32
COL
           32
                32
                        32
                              32
DZA
           32
                32
                        32
                              32
           32
                32
                        32
                              32
EGY
           32
                32
                        32
                              32
ETH
EU28
           28
               28
                        0
                              27
GHA
           32
                32
                        32
                              32
```

```
dataset_table.values
array([[32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [28, 28, 0, 27],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32, 32, 32, 32],
       [32
           32 32 321
#Observed Values
Observed_Values = dataset_table.values
print("Observed Values :-\n", Observed_Values)
Observed Values :-
 [[32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
 [28 28 0 27]
 [32 32 32 32]
 [32 32 32 32]
 [32 32 32 32]
```

```
val=stats.chi2_contingency(dataset_table)
val
(27.646639164611248,
 1.0,
 141,
 array([[32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [32.17947872, 32.15836358, 31.54602441, 32.11613329],
        [31 47047071 31 40036300 34 64603444 31 44643310]
Expected Values=val[3]
no_of_rows=len(dataset_table.iloc[0:2,0])
no_of_columns=len(dataset_table.iloc[0,0:2])
ddof=(no_of_rows-1)*(no_of_columns-1)
print("Degree of Freedom:-",ddof)
alpha = 0.05
Degree of Freedom: - 1
from scipy.stats import chi2
chi_square=sum([(o-e)**2./e for o,e in zip(Observed_Values,Expected_Values)])
chi_square_statistic=chi_square[0]+chi_square[1]
print("chi-square statistic:-",chi_square_statistic)
```

chi-square statistic: - 5.011079995341223

```
from scipy.stats import chi2
chi square=sum([(o-e)**2./e for o,e in zip(Observed Values,Expected Values)])
chi_square_statistic=chi_square[0]+chi_square[1]
print("chi-square statistic:-",chi_square_statistic)
chi-square statistic: - 5.011079995341223
critical_value=chi2.ppf(q=1-alpha,df=ddof)
print('critical_value:',critical_value)
critical_value: 3.841458820694124
#p-value
p_value=1-chi2.cdf(x=chi_square_statistic,df=ddof)
print('p-value:',p_value)
print('Significance level: ',alpha)
print('Degree of Freedom: ',ddof)
print('p-value:',p_value)
#p-value
p_value=1-chi2.cdf(x=chi_square_statistic,df=ddof)
print('p-value:',p_value)
print('Significance level: ',alpha)
print('Degree of Freedom: ',ddof)
print('p-value:',p_value)
p-value: 0.025185590452726503
Significance level: 0.05
Degree of Freedom: 1
p-value: 0.025185590452726503
if chi_square_statistic>=critical_value:
    print("Reject H0, There is a relationship between 2 categorical variables")
    print("Retain H0, There is no relationship between 2 categorical variables")
if p_value<=alpha:</pre>
    print("Reject H0, There is a relationship between 2 categorical variables")
else:
    print("Retain H0, There is no relationship between 2 categorical variables")
Reject H0, There is a relationship between 2 categorical variables
Reject H0, There is a relationship between 2 categorical variables
```

As there is relationship between two categorical features so null hypothesis is rejected

Because value of p value is less than 0.025

Taking sample of 10 randomly chosen data points

T_test:

A t-test is a statistical test that is used to **compare the means of two groups**. It is often used in hypothesis testing to determine whether a process or treatment actually has an effect on the population of interest, or whether two groups are different from one another.

The **t test** tells us how significant the differences between group means are. It lets our know if those differences in means could have happened by chance.

H0

```
from scipy.stats import ttest_1samp

ttest,p_value=ttest_1samp(sample,30)

print(p_value)|
7.000029584407508e-15

if p_value < 0.05:  # alpha value is 0.05 or 5%
    print(" we are rejecting null hypothesis")

else:
    print("we are accepting null hypothesis")

we are rejecting null hypothesis")</pre>
```

As p_value is less than 0.05 so null hypothesis is rejected so this show that mean of sample and mean of overall population is not same

T Test for two samples:

H0: Mean is same as sample as population

H1: mean is different in sample and their parent population

Taking two samples

Here two samples are randomly chosen for T test to make comparisons

First sample from value of Tonnes from first dataset and 2nd sample is taken from 2nd dataset so this is used to make comparison

```
t_value,p_value=stats.ttest_ind(sample1,sample2)
print('Test statistic is %f'%float("{:.6f}".format(t_value)))
print('p-value for two tailed test is %f'%p_value)

if p_value <=0.05:  # alpha value is 0.05 or 5%
    print(" we are rejecting null hypothesis")
else:
    print("we are accepting null hypothesis")

Test statistic is -2.351262
p-value for two tailed test is 0.030302
we are rejecting null hypothesis</pre>
```

Here null hypothesis is rejected because p value is less than 0.05 so mean of two quantities are very different

Correlation

df2.corr()									
	Year	C02039V02469	Area_under_Crops_Hectares	Crop_Yield_per_Hectare_in_Tonnes	crop_production_in_Tonnes				
Year	1.000000	0.045495	0.030966	-0.192102	0.029505				
C02039V02469	0.045495	1.000000	-0.154555	-0.181995	-0.202705				
Area_under_Crops_Hectares	0.030966	-0.154555	1.000000	-0.251131	0.881368				
Crop_Yield_per_Hectare_in_Tonnes	-0.192102	-0.181995	-0.251131	1.000000	0.073780				
crop_production_in_Tonnes	0.029505	-0.202705	0.881368	0.073780	1.000000				

The correlation shows positive or negative relationship

Correlation is an indication about the changes between two variables.

It shown that area, year and crop production has direct relation as as area increased crop production also increases

Z test

A z-test is a statistical test to determine whether two population means are different when the variances are known and the sample size is large. A z-test is a hypothesis test in which the z-statistic follows a normal distribution. A z-statistic, or z-score, is a number representing the result from the z-test.

Here H1 is null hypothesis and H1 is alternative hypothesis.

H0: NO difference of mean in two samples

H1: Difference of Mean in two samples

from statsmodels.stats.weightstats import ztest as ztest

```
z_test,p_value=ztest(sample1,sample2, value=0)
z_test,p_value

(-2.3512620746732367, 0.01870985083570661)

if p_value < 0.05:  # alpha value is 0.05 or 5%
    print(" we are rejecting null hypothesis")

else:
    print("we are accepting null hypothesis")

we are rejecting null hypothesis")</pre>
```

Are null hypothesis is rejected as there are difference between means.

Outcome of my analysis

Here two detests are used Ireland Crop production data and international crop production data of 48 countries as Ireland is not mentioned here so it is needed to import data of Ireland.

By comparing mean value with other countries it is cleared that Ireland crop production capability is more than other countries as Ireland has highest average production per hectare

As z test is used for comparison of two samples which shows mean value is different.

Here chie square test shows that there is relationship between categorical variables of subject and location.

Challenges:

There are many problems which I faced which are following:

- to find a good dataset.
- To arrange dataset.
- To find pattern of dataset
- Measurement problems
 So these are problems which I faced

Datasets Finding:

• Ireland Crop production 1985-2007

This data is can be found on official website of Ireland datasets IRELAND'S OPEN DATA PORTAL. This is data from 1985 to 2007.

Link:

https://data.gov.ie/dataset/aqa03-crop-yield-1985-2007?package_type=dataset

Ireland crop production 2008-2021

This data is found on official website of Ireland datasets IRELAND'S OPEN DATA PORTAL .this data contains record from 2008 to 2021 Link:

https://data.gov.ie/dataset/aqa04-crop-yield-and-production?package type=dataset

International crop production data:

This data is found on data. World. It contains data of 48 countries. Link:

https://data.world/oecd/crop-production

Reference:

Hypothesis testing in Machine learning using Python posted by <u>Yogesh Agrawal</u> on Towards data science portal

Link:

https://towardsdatascience.com/hypothesis-testing-in-machine-learning-using-python-a0dc89e169ce

Statistical Inference Using Python **posted by <u>ELLURU PAVAN KUMAR REDDY</u> on analyticsvidhya.com**

Link: https://www.analyticsvidhya.com/blog/2022/02/statistical-inference-using-python/