10.12 3) Побудувати скорочену ДНФ за допомогою методу Блейка:

$$x_{1} + \overline{x_{1}}x_{2} + \overline{x_{1}}\overline{x_{2}}x_{3} + \overline{x_{1}}\overline{x_{2}}\overline{x_{3}}x_{4} =$$

$$= x_{1} + \overline{x_{1}}x_{2} + \overline{x_{1}}\overline{x_{2}}x_{3} + \overline{x_{1}}\overline{x_{2}}x_{3}x_{4} + x_{2} + \overline{x_{2}}x_{3} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{1}}x_{3} + \overline{x_{1}}\overline{x_{3}}x_{4} =$$

$$= x_{1} + x_{2} + \overline{x_{2}}x_{3} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{1}}x_{3} + \overline{x_{1}}\overline{x_{3}}x_{4} + x_{3} + \overline{x_{3}}x_{4} + x_{3} + \overline{x_{3}}x_{4} =$$

$$= x_{1} + x_{2} + \overline{x_{2}}x_{3} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{1}}x_{3} + \overline{x_{1}}\overline{x_{3}}x_{4} + x_{3} + \overline{x_{3}}x_{4} + x_{3} + \overline{x_{3}}x_{4} =$$

$$= x_{1} + x_{2} + x_{3} + \overline{x_{3}}x_{4} = x_{1} + x_{2} + x_{3} + x_{4}$$

10.13 4) Побудувати скорочену ДНФ методом Нельсона:

$$= (x_1 + \overline{x_2})(x_2 + \overline{x_3})(x_3 + \overline{x_4})(x_4 + x_1) =$$

$$= \frac{\text{Розкриемо дужки та застосуемо поглинання}}{(x_1 + x_1\overline{x_2} + x_1x_4 + \overline{x_2}x_4)(x_2x_3 + 0 + x_2\overline{x_4} + \overline{x_3}\overline{x_4} + x_2\overline{x_4})} =$$

$$x_1x_2x_3 + x_1x_2\overline{x_4} + x_1\overline{x_3}\overline{x_4} + x_1x_2\overline{x_4} + 0 + 0 + x_1\overline{x_2}\overline{x_3}\overline{x_4} + x_1x_2x_3x_4 + 0 + 0 + 0 + 0 + 0 =$$

$$= x_1x_2x_3 + x_1x_2\overline{x_4} + x_1\overline{x_3}\overline{x_4}$$

10.14 5) Задана функція від 3х змінних: $f(x_1, x_2, x_3) = (1110 0110)$ Випишемо відповідні кон'юнкти\диз'юнкти у вигляді таблиці:

$ x_1 $	$ x_2 $	$ x_3 $	$ f(x_1, x_2, x_3) $	кон'юнкт\диз'юнкт
0	0	0	1 1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$
0	0	1	1	$\overline{x_1} \wedge \overline{x_2} \wedge x_3$
0	1	0	1	$\overline{x_1} \wedge x_2 \wedge \overline{x_3}$
0	1	1	0	$x_1 \vee \overline{x_2} \vee \overline{x_3}$
1	0	0	0	$\overline{x_1} \lor x_2 \lor x_3$
1	0	1	1	$x_1 \wedge \overline{x_2} \wedge x_3$
1	1	0	1	$x_1 \wedge x_2 \wedge \overline{x_3}$
1	1	1	0	$\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}$

В результаті можемо представити задану функцію у вигляді ДДНФ, виписавши відповідні кон'юнкти:

ДДНФ:
$$(\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3})$$

Далі, знайдемо всі тупикові ДНФ за допомогою методу карт Карно:

	$\mathbf{x}_1\mathbf{x}_2$	$\overline{\mathbf{X}}_{1}\mathbf{X}_{2}$	$\overline{X}_1\overline{X}_2$	$x_1\overline{x}_2$
X_3	0	0	1	1
$\overline{\mathbf{x}}_{3}$	1	1	1	0

	x_1x_2	$\overline{\mathbf{X}}_{1}\mathbf{X}_{2}$	$\overline{X}_1\overline{X}_2$	$X_1\overline{X}_2$
X ₃	0	0	1	1
$\overline{\mathbf{X}}_{3}$	1	1	1	0

	x_1x_2	$\overline{\mathbf{X}}_{1}\mathbf{X}_{2}$	$\overline{\mathbf{X}}_{1}\overline{\mathbf{X}}_{2}$	$X_1\overline{X}_2$	
X_3	0	0	1	1	
\overline{X}_3	1	[1]	1	0	

Тож, ядерні кон'юнкти: $(\overline{x_2} \wedge x_3)$, $(x_2 \wedge \overline{x_3})$. Отримали 2 тупикові ДНФ:

- 1. $(\overline{x_2} \wedge x_3) \vee (x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2})$
- 2. $(\overline{x_2} \wedge x_3) \vee (x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_3})$

Знайдемо скорочену ДНФ за методом Квайна. Скористуємося спрощенною процедурою пошуку пар для застосування склеювання та поглинання. Випишемо кон'юкти ДДНФ:

$$\begin{array}{c} 1.000 \\ 2.001 \\ 3.010 \Longrightarrow \begin{array}{c} 6.0\text{-}0(1,3) \\ 7.00\text{-}(1,2) \\ 8.\text{-}01(2,4) \\ 9.\text{-}10(3,5) \end{array} \end{array}$$
 За законом поглинання, викреслимо кон'юнкти 1-5.

Далі, зведемо отримані кон'юкти у таблицю за методом Квайна - Мак-Класкі та скористаємося методом Петрика.

	000	001	010	101	110
00-	*	*			
0-0	*		*		
-01		*		*	
-10			*		*

Тож, ядерні кон'юнкти: $(\overline{x_2} \wedge x_3)$, $(x_2 \wedge \overline{x_3})$.

Викреслимо відповідні рядки та стовбці. Отримаємо спрощену таблицю:

A 00- * * *
B 0-0 * *

Скоротивши імпліканти, випишемо тупикові ДНФ:

- 1. $(\overline{x_2} \wedge x_3) \vee (x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2})$
- 2. $(\overline{x_2} \wedge x_3) \vee (x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_3})$

Результат співпадає з тупиковими ДНФ, отриманими за методом карт Карно.

10.14 6) Задана функція від 3х аргументів: $f(x_1, x_2, x_3) = (1101 1011)$ Випишемо відповідні кон'юнкти\диз'юнкти у вигляді таблиці:

$ x_1 $	$ x_2 $	$ x_3 $	$ f(x_1, x_2, x_3) $	кон'юнкт\диз'юнкт
0	0	0	1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$
0	0	1	1	$\overline{x_1} \wedge \overline{x_2} \wedge x_3$
0	1	0	0	$x_1 \vee \overline{x_2} \vee x_3$
0	1	1	1	$\overline{x_1} \wedge x_2 \wedge x_3$
1	0	0	1 1	$x_1 \wedge \overline{x_2} \wedge \overline{x_3}$
1	0	1	0	$\overline{x_1} \lor x_2 \lor \overline{x_3}$
1	1	0	1	$x_1 \wedge x_2 \wedge \overline{x_3}$
1	1	1	1	$x_1 \wedge x_2 \wedge x_3$

В результаті можемо представити задану функцію у вигляді ДДН Φ , виписавши відповідні кон'юнкти:

 \square Д**НФ:** $(\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3)$ Далі, знайдемо всі тупикові ДНФ за допомогою методу карт Карно:

			X_1X_2	$_{2} \mid \overline{X}_{1}X$	$\mathbb{Z}_2 \mid \Sigma$	$\overline{x}_1\overline{x}_2$	$X_1\overline{X}_2$	_		
		X	(3 1	1		1	0	_		
	V	-	₹ 3 1	0		1	1			Y
	x_1x_2	\overline{X}_1X_2	$\overline{X}_1\overline{X}_2$	$X_1\overline{X}_2$		X_1X_2	$_{2} \mid \overline{X}_{1}$	K 2	$\overline{X}_1\overline{X}_2$	$X_1\overline{X}_2$
X ₃	1	1	1	0	X_3	1	1		1	0
\overline{X}_3	1	0	1	1	\overline{X}_3	1	0		1	1

Тож, ядерних імплікант немає. Отримали 5 тупикових ДНФ:

$$T_1 = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_1} \wedge \overline{x_2})$$

$$T_2 = (x_1 \wedge x_2) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_2} \wedge \overline{x_3})$$

$$T_3 = (x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2})$$

$$T_4 = (x_2 \wedge x_3) \vee (x_1 \wedge x_2) \vee (\overline{x_1} \wedge \overline{x_2}) \vee (\overline{x_2} \wedge \overline{x_3})$$

$$T_5 = (x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_2} \wedge \overline{x_3})$$

Знайдемо скорочену ДНФ за методом Квайна. Скористуємося спрощенною процедурою пошуку пар для застосування склеювання та поглинання. Випишемо кон'юкти ДДНФ:

$$1.000$$
 $7.00 - (1, 2)$ $8. - 00(1, 4)$ За законом поглинання, викреслимо кон'юнкти 1-6. $3.011 \Longrightarrow 9.0 - 1(2, 3)$ Далі зведемо імпліканти у таблицю за методом $4.100 \Longrightarrow 10. - 11(3, 6)$ Квайна - Мак-Класкі та скористаємося $11.1 - 0(4, 5)$ методом Петрика. $12.11 - (5, 6)$

	000	001	011	100	110	111
00-	*	*				
-00	*			*		
0-1		*	*			
-11			*			*
1-0				*	*	
11-					*	*

Тож, ядерних імплікант немає. Пронумеруємо відповідні кон'юнкти. Запишемо та спростимо вираз за таблицею:

		000	001	011	100	110	111
Α	00-	*	*				
В	-00	*			*		
С	0-1		*	*			
D	-11			*			*
Ε	1-0				*	*	
F	11-					*	*

$$(A + B)(A + C)(C + D)(B + E)(F + E)(F + D) =$$

= $(A + BC)(+ D)(B + E)(F + ED) =$
= $(A + BC)(CB + CE + BD + DE)(F + DE) =$

$$= (ACB + ACE + ADB + ADE + BC + BCE + BCD + BCDE)(F + DE) =$$

$$= ACEF + ADBF + ADEF + BCF + ACED + ADE + BCDE + ADBE =$$

$$=ACEF + ADBF + BCF + ADE + BCDE$$

Отримали, 5 тупикових ДНФ. Скоротивши імпліканти, підставивши замість літер знайдені кон'юнкти, випишемо тупикові ДНФ:

$$T_1 = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_1} \wedge \overline{x_2})$$

$$T_2 = (x_1 \wedge x_2) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_2} \wedge \overline{x_3})$$

$$T_3 = (x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge \overline{x_2})$$

$$T_4 = (x_2 \wedge x_3) \vee (x_1 \wedge x_2) \vee (\overline{x_1} \wedge \overline{x_2}) \vee (\overline{x_2} \wedge \overline{x_3})$$

$$T_5 = (x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_2} \wedge \overline{x_3})$$

Результат співпадає з тупиковими ДНФ, отриманими за методом карт Карно.

12.14 10)
$$f(x_1, x_2, x_3, x_4) = (0001011110101110)$$

Відповідно, отримали такі ядерні імпліканти:

$$1.(x_1 \wedge \overline{x_4})$$

$$2.(\overline{x_1} \wedge x_3 \wedge x_4)$$

Отримали прості імпліканти, тож випишемо їх, позначивши літерами, розкриємо дужки, та скористаємося законом поглиннання. Отримали вираз:

$$(A+B)(C+D)(B+E) = (B+AE)(C+D) =$$
$$= BC + BD + AEC + AED$$

Отримали 4 тупикових ДНФ:

$$T_1 = (x_2 \wedge \overline{x_3} \wedge x_4) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_4}) \vee (\overline{x_1} \wedge x_3 \wedge x_4)$$

$$T_2 = (x_1 \wedge \overline{x_4}) \vee (\overline{x_1} \wedge x_3 \wedge x_4) \vee (x_2 \wedge \overline{x_3} \wedge x_4) \vee (x_2 \wedge x_3 \wedge \overline{x_4})$$

$$T_3 = (x_1 \wedge \overline{x_4}) \vee (\overline{x_1} \wedge x_3 \wedge x_4) \vee (\overline{x_1} \wedge x_2 \wedge x_4) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge x_3)$$

$$T_4 = (x_1 \wedge \overline{x_4}) \vee (\overline{x_1} \wedge x_3 \wedge x_4) \vee (\overline{x_1} \wedge x_2 \wedge x_4) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_2 \wedge x_3 \wedge \overline{x_4})$$

Результат співпадає з тупиковими ДНФ, отриманими за методом карт Карно.