

SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

FISIESE WETENSKAPPE: CHEMIE (V2)

2023

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit NEGE vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en substitusies in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

(2)

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

- 1.1 Vir watter EEN van die volgende molekulêre formules is KETTING-isomere moontlik?
 - A C₄H₁₀
 - B C_3H_8
 - $C C_2H_6O$

$$D C_3H_8O$$
 (2)

1.2 Watter EEN van die volgende verbindings het die LAAGSTE dampdruk onder dieselfde toestande?

А	H H H H 	В	H H O
С	H H H 	D	H O—H H—C—C H O

- 1.3 Die tipe organiese verbinding wat vorm wanneer 'n haloalkaan in die teenwoordigheid van 'n gekonsentreerde sterk basis verhit word, is 'n ...
 - A alkaan.
 - B alkeen.
 - C alkyn.
 - D alkohol. (2)

1.4 'n OORMAAT HCl(aq) met 'n konsentrasie van 0,1 mol·dm⁻³ reageer met 2 g Mg onder verskillende toestande.

Watter EEN van die volgende kombinasies van toestande sal die grootste volume H₂(g) in die EERSTE MINUUT van die reaksie vorm?

	TOESTAND VAN VERDEELDHEID VAN Mg	TEMPERATUUR VAN HCℓ(aq) (°C)
Α	Poeier	20
В	Korrels	20
С	Poeier	50
D	Korrels	50

(2)

1.5 Die potensiële-energiediagram vir 'n chemiese reaksie word hieronder getoon.

Watter EEN van die volgende kombinasies is KORREK vir die VOORWAARTSE reaksie?

	ΔΗ	AKTIVERINGS- ENERGIE	POTENSIËLE ENERGIE VAN DIE GEAKTIVEERDE KOMPLEKS
Α	Y–X	Z+Y	Z
В	Y–X	Z–Y	Z+Y
С	X–Y	Z–Y	Z
D	X–Y	Z	Z–Y

(2)

1.6 Beskou die volgende reaksie wat ewewig in 'n beker bereik:

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(\ell)$$

'n Paar druppels gekonsentreerde NaOH(aq) word nou by die beker gevoeg.

Watter EEN van die volgende kombinasies identifiseer die VERSTEURING OP DIE SISTEEM en die SISTEEM SE REAKSIE op die versteuring korrek?

	VERSTEURING OP DIE SISTEEM	SISTEEM SE REAKSIE
Α	[H ⁺] neem af	Voorwaartse reaksie word bevoordeel
В	[H ⁺] neem af	Terugwaartse reaksie word bevoordeel
С	[CrO ₄ ²⁻] neem af	Terugwaartse reaksie word bevoordeel
D	[CrO ₄ ²⁻] neem toe	Voorwaartse reaksie word bevoordeel

(2)

- 1.7 Volgens die Lowry-Brønsted-teorie word 'n gekonjugeerde basis gevorm wanneer 'n ...
 - A proton by die suur gevoeg word.
 - B elektron by die suur gevoeg word.
 - C proton van die suur verwyder word.
 - D elektron van die suur verwyder word.

(2)

1.8 Beskou die stellings hieronder ten opsigte van 'n alkaliese stof.

'n Alkaliese stof:

- (i) Reageer met 'n suur om 'n neutrale oplossing vorm
- (ii) Verander rooi lakmoes na blou
- (iii) Vorm 'n sout wanneer dit met 'n suur reageer

Watter van die stellings hierbo is ALTYD WAAR?

- A (i), (ii) en (iii)
- B Slegs (i) en (ii)
- C Slegs (i) en (iii)
- D Slegs (ii) en (iii)

(2)

Kopiereg voorbehou

1.9 Beskou die selnotasie van 'n galvaniese sel.

$$Pt | H_2(g) | OH^-(aq) | H_2O(\ell) | Ag^+(aq) | Ag(s)$$

Watter EEN van die volgende vergelykings verteenwoordig die halfreaksie wat by die positiewe elektrode plaasvind?

A
$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

B Ag(s)
$$\rightarrow$$
 Ag⁺(aq) + e⁻

C
$$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

D
$$H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(\ell) + 2e^-$$
 (2)

1.10 'n Gekonsentreerde natriumchloriedoplossing, NaCl(aq), ondergaan elektrolise.

Watter EEN van die kombinasies toon die produkte wat by elke elektrode gevorm word, korrek?

	KATODE	ANODE
Α	Na	$C\ell_2$
В	H ₂	OH_
С	$C\ell_2$	H ₂ en OH ⁻
D	H ₂ en OH	Cl ₂

(2) **[20]**

Kopiereg voorbehou

VRAAG 2 (Begin op 'n nuwe bladsy.)

Bestudeer die tabel hieronder en beantwoord die vrae wat volg.

Α	H-C-H H-C-H H-C-H H-C-H H-C-H H-C-H	В	H H H H—C—C—O—H H H H
С	C ₄ H ₈ O	D	CH ₃ (CH ₂) ₄ CHCH ₂
Ε	$C_XH_YO_Z$		

- 2.1 Definieer die term *onversadigde* koolwaterstof.
- 2.2 Skryf neer die:
 - 2.2.1 Letter wat 'n ONVERSADIGDE koolwaterstof verteenwoordig (1)
 - 2.2.2 IUPAC-naam van verbinding **A** (3)
 - 2.2.3 IUPAC-naam van die POSISIE-isomeer van verbinding **B** (2)
 - 2.2.4 IUPAC-naam van verbinding **D** (2)
 - 2.2.5 Gebalanseerde vergelyking, deur MOLEKULÊRE FORMULES te gebruik, vir die volledige verbranding van verbinding **A** (3)
- 2.3 Die formule C₄H₈O verteenwoordig twee verbindings wat funksionele isomere van mekaar is.
 - 2.3.1 Definieer die term *funksionele isomeer.* (2)
 - 2.3.2 Skryf die STRUKTUURFORMULES van elk van hierdie twee FUNKSIONELE isomere neer. (4)
- 2.4 'n 2 g-monster van verbinding **E** bevat 1,09 g koolstof en 0,18 g waterstof. Die molekulêre massa van verbinding **E** is 88 g·mol⁻¹.

Bepaal die molekulêre formule van verbinding **E** deur middel van 'n berekening.

(6) **[25]**

(2)

VRAAG 3 (Begin op 'n nuwe bladsy.)

Leerders ondersoek die kookpunte van die vier organiese verbindings wat hieronder gegee word.

ORGANIESE VERBINDING	MOLEKULÊRE MASSA (g·mol ⁻¹)
Butanoon	72
Butan-1-ol	74
Propanoësuur	74
2-metielpropan-1-ol	74

3.1 Definieer die term kookpunt.

(2)

3.2 Watter verbinding, butan-1-ol of 2-metielpropan-1-ol, sal die hoogste kookpunt hê? Verduidelik die antwoord volledig.

(4)

Die kurwes **P**, **Q**, **R** en **S** hieronder is uit die resultate van die ondersoek verkry. **X** verteenwoordig 'n spesifieke temperatuur.

3.3 Watter fisiese eienskap word deur temperatuur **X** verteenwoordig? (1)

3.4 Watter kurwe (**P**, **Q**, **R** of **S**) verteenwoordig:

3.4.1 Butanoon (1)

3.4.2 Propanoësuur (1)

3.4.3 2-metielpropan-1-ol (1)

3.5 Gee 'n rede vir die antwoord op VRAAG 3.4.2. (1) [11]

33/1

VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Die vloeidiagram hieronder toon verskillende organiese reaksies.

P, Q en R is organiese verbindings.

Reaksie 1 is 'n addisiereaksie.

Skryf neer:

- 4.1.1 Die TIPE addisiereaksie (1)
- 4.1.2 EEN waarneembare verandering wat tydens die reaksie in die houer plaasvind (1)
- 4.1.3 Die STRUKTUURFORMULE van verbinding **Q** (2)

Beskou reaksie 2.

4.1.4 Skryf die IUPAC-naam van verbinding **R** neer.

Vir reaksie 3, skryf neer:

4.1.5 'n Gebalanseerde vergelyking deur STRUKTUURFORMULES vir die organiese verbindings te gebruik (6)

(2)

4.1.6 Die IUPAC-naam van alkohol **P** (2)

Reaksie 4 is 'n eliminasiereaksie.

- 4.1.7 Skryf die TIPE eliminasiereaksie neer. (1)
- 4.2 Butan-1-ol reageer met propanoësuur in die teenwoordigheid van 'n katalisator.

Skryf neer die:

- 4.2.1 TIPE reaksie wat plaasvind (1)
- 4.2.2 IUPAC-naam van die organiese produk wat gevorm word (2)

 [18]

(1)

VRAAG 5 (Begin op 'n nuwe bladsy.)

Beskou die volgende ontbindingsreaksie wat in 'n verseëlde 2 dm³-houer plaasvind:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

Die grafiek hieronder toon hoe die konsentrasies van $N_2O_5(g)$ en $NO_2(g)$ met tyd verander.

- Verwys na die grafiek hierbo en gee 'n rede waarom kurwe $\bf A$ die verandering in die konsentrasie van $NO_2(g)$ verteenwoordig.
- 5.2 Beskou die stelling hieronder:

Die ontbindingstempo van $N_2O_5(g)$ is die helfte van die vormingstempo van $NO_2(g)$.

Is hierdie stelling WAAR of ONWAAR? Gee 'n rede vir die antwoord. (2)

- 5.3 Bereken die:
 - 5.3.1 Massa $NO_2(g)$ wat in die houer by 400 s teenwoordig is (4)
 - 5.3.2 Gemiddelde produksietempo van $O_2(g)$ in mol·dm⁻³·s⁻¹ in 700 s (4)
- 5.4 Die Maxwell-Boltzmann-verspreidingskurwe vir die $N_2O_5(g)$ wat aanvanklik in die houer teenwoordig is, word hieronder getoon.

Die aanvanklike konsentrasie van die N₂O₅(g) word nou VERHOOG.

- 5.4.1 Teken die verspreidingskurwe hierbo in die ANTWOORDEBOEK oor en benoem hierdie kurwe as **P**.
 - Op dieselfde assestelsel, skets die kurwe wat vir die hoër konsentrasie $N_2O_5(g)$ verkry sal word. Benoem hierdie kurwe as **Q**.
- 5.4.2 Sal die ontbindingstempo van N₂O₅(g) by die hoër konsentrasie HOËR AS, LAER AS of GELYK AAN die oorspronklike ontbindingstempo wees? Verduidelik die antwoord deur die botsingsteorie te gebruik. (3)

(2)

VRAAG 6 (Begin op 'n nuwe bladsy.)

Een mol suiwer waterstofjodiedgas, HI(g), word in 'n 1 dm³-houer by 721 K verseël. Ewewig word volgens die volgende gebalanseerde vergelyking bereik:

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

Daar word gevind dat 0,11 mol I₂(g) by ewewig teenwoordig is.

- 6.1 Stel Le Chatelier se beginsel. (2)
- 6.2 Bepaal die hoeveelheid mol van ELK van die volgende by ewewig:
 - 6.2.1 $H_2(g)$ (1)
 - 6.2.2 HI(g) (1)
- 6.3 Die ewewigskonstante, K_c, by 721 K is 0,02.

Die temperatuur van die houer word nou na 850 K verhoog. Die ewewigskonstante, K_c, by 850 K is 0,09.

- 6.3.1 Is die voorwaartse reaksie EKSOTERMIES of ENDOTERMIES? (1)
- 6.3.2 Verduidelik die antwoord op VRAAG 6.3.1 volledig. (3)
- 6.3.3 Bereken die massa HI(g) wat by die nuwe ewewig by 850 K teenwoordig is. (8)

VRAAG 7 (Begin op 'n nuwe bladsy.)

7.1 Die geleidingsvermoë van drie suuroplossings, **A**, **B** en **C**, soos hieronder getoon, word by dieselfde temperatuur ondersoek.

Α	0,1 mol⋅dm ⁻³ H ₂ SO ₄ (aq)
В	0,1 mol·dm ⁻³ HNO₃(aq)
С	0,1 mol⋅dm ⁻³ CH ₃ COOH(aq)

Die helderheid van die gloeilamp wat in die apparaat hieronder getoon word, word as 'n maatstaf van die geleidingsvermoë van die oplossings gebruik.

Die suuroplossings is elektroliete.

7.1.1 Definieer die term *elektroliet*.

(2)

Die helderheid van die gloeilamp vir elk van die oplossings word vergelyk.

- 7.1.2 In watter oplossing, **A** of **B**, sal die gloeilamp die helderste wees? Gee 'n rede vir die antwoord deur na die tipes sure te verwys. (2)
- 7.1.3 In watter oplossing, **B** of **C**, sal die gloeilamp die helderste wees? Gee 'n rede vir die antwoord deur na die tipes sure te verwys. (2)

SS/NSS

'n Soutsuuroplossing, HCl(ag), word gestandaardiseer deur dit teen 7.2 25 cm³ van 'n 0,04 mol·dm⁻³ natriumkarbonaatoplossing, Na₂CO₃(aq), te titreer. By die eindpunt word gevind dat 19.5 cm³ HCl(ag) gereageer het.

Die gebalanseerde vergelyking vir die reaksie is:

$$Na_2CO_3(aq) + 2HC\ell(aq) \rightarrow 2NaC\ell(aq) + CO_2(g) + H_2O(\ell)$$

7.2.1 Bereken die konsentrasie van die HCl(ag). (3)

7.2.2 Veronderstel 'n paar druppels water was in die buret teenwoordig voordat dit met die soutsuuroplossing gevul is.

> Hoe sal die volume van die HCl-oplossing wat benodig word om die eindpunt te bereik, beïnvloed word?

Kies uit GROTER AS. KLEINER AS of BLY DIESELFDE. Gee 'n rede vir die antwoord. (2)

'n Gekonsentreerde huishoudelike produk, ChemClean, bevat ammoniak as die hoofskoonmaakmiddel. Om die hoeveelheid ammoniak teenwoordig in 1 dm³ ChemClean te bepaal, word die volgende prosedure gevolg:

20 cm³ ChemClean word in 'n 250 cm³-fles gevoeg. Die fles word dan met gedistilleerde water tot by die 250 cm³-merk gevul.

Die verdunde oplossing word getitreer teen die soutsuuroplossing met die konsentrasie soos in VRAAG 7.2.1 bereken.

Tydens die titrasie word 22 cm³ van die verdunde ChemClean-oplossing deur 18,7 cm³ van die HCl-oplossing geneutraliseer. Die gebalanseerde vergelyking vir die reaksie is:

$$NH_3(aq) + HCl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)$$

7.2.3 Bereken die massa ammoniak in 1 dm³ ChemClean. (7)

7.2.4 Sal die pH van die oplossing aan die einde van die titrasie GROTER AS 7, GELYK AAN 7 of KLEINER AS 7 wees?

Skryf die betrokke vergelyking neer om die antwoord te motiveer.

(3)[21]

VRAAG 8 (Begin op 'n nuwe bladsy.)

Leerders wil 'n onbekende metaal \mathbf{X} identifiseer deur 'n standaardhalfsel, $\mathbf{X} \mid \mathbf{X}^{2+}$, te gebruik.

Hulle stel 'n elektrochemiese sel onder standaardtoestande op deur twee halfselle te gebruik, soos in die diagram hieronder getoon.

Die aanvanklike emk van hierdie sel is 1,20 V.

- 8.1 Noem die standaardtoestande waaronder hierdie sel funksioneer. (3)
- 8.2 Noem EEN funksie van komponent **Y**.

Nadat die sel vir 'n rukkie in werking was, word daar gevind dat die massa van elektrode **X** toegeneem het.

- 8.3 Identifiseer **X** deur 'n gepaste berekening te gebruik. (5)
- 8.4 Skryf die oksidasiehalfreaksie neer wat in die sel plaasvind. (2)

Halfsel-X | X²⁺ word nou deur 'n Au | Au³⁺-halfsel vervang.

Die aanvanklike emk van die sel is nou 1,50 V. Soos wat die sel in werking is, neem die massa van die Au-elektrode toe.

8.5 Rangskik die oksideermiddels, X²⁺, Au³⁺ en H⁺, in volgorde van toenemende sterkte.

Verduidelik die antwoord volledig.

(3) **[14]**

(1)

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde elektrolitiese sel hieronder word gebruik om 'n metaalveer te elektroplateer. Sinknitraat, $Zn(NO_3)_2(aq)$, word as 'n elektroliet gebruik en **R** is 'n elektrode.

- 9.1 Definieer die term *elektrolitiese sel.* (2)
- 9.2 Watter elektrode (**R** of **METAALVEER**) is die ANODE? Gee 'n rede vir die antwoord. (2)

9.3 Skryf neer die:

- 9.3.1 Vergelyking vir die halfreaksie wat by die metaalveer plaasvind (2)
- 9.3.2 NAAM of FORMULE van 'n geskikte metaal wat as elektrode **R** gebruik kan word
- 9.4 Verduidelik die antwoord op VRAAG 9.3.2. (2)

19.4 Verduidelik die antwoord op VNAAG 9.5.2.

TOTAAL: 150

(1)

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$pH = -log[H_3O^+]$
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	3 K
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} -$	E^{θ}_{anode}
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksion}^\theta / E_{sel}^\theta / E$	$_{ m e}-{\sf E}_{ m oksidasie}^{ m heta}$
	$=E^{ heta}_{ ext{oksideermiddel}} - E^{ heta}_{ ext{reduseermiddel}}$
$I = \frac{Q}{\Delta t}$	$n = \frac{Q}{q_e}$ waar $n = aantal elektrone$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5		6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		7	(/								Α	tomic r	number				(,	(,	(-)	(/	(,	
	1							KEY/SL	EU1	EL		Atoom										2
2,1	Н											Ι	J									He
	1										Г											4
	3		4					Electr	one	aativ	/itv	29	Sv	mbol			5	6	7	8	9	10
1,0	Li	1,5	Be					Elektro				ਦੱ Cn		nbool			5,0 B	2,5 O	ဗို N	3,5	6, F	Ne
_		_							J.1.0	,	71071	63,	5 "	112001			1 ' '				-	
	7		9								L	•					11	12	14	16	19	20
	11	~	12								!		(13	14	15	16	17	18
6,0	Na	1,2	Mg										e atomi				÷ ∀ €		L,2	S ,5	°, C€	Ar
	23		24						В	enac	aerae re	eiatiew	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23		24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	1,0	Ca	٦,	Sc	1,5	Ti	7, V	1,6	Cr	υM τ	[∞] . Fe	² _∞ Co	[∞] Ni	್ಲ್ Cn	ို့ Zn	ို့ Ga	[∞] Ge	°, As	⁴ , Se	[∞] , Br	Kr
	39	,	40	`	45	`	48	51	`	52	55	56	59	59	63,5	1 -	70	73	75	79	80	84
	37		38		39		40	41		42	43	44	45	46	47	48	49	50	51	52	53	54
8,0	Rb	1,0	Sr	1,2	Y	4	Zr	Nb	2 ا					² Pd	್ಲ್ Ag		۲ In	∞ Sn	_			Xe
0		_	88	_		_	91	92		96	10	101			_	112			122		127	1
	86 55		 56		89 57		72	73			75	76	103 77	106 78	108 79	80	115 81	119 82	83	128 84	85	131 86
		0			_	(0				74	75	_		_	_		_					
0,7		6,0	Ba		La	1,6	Hf	Ta		W	Re	Os	Ir	Pt	Au	Hg		_		상 Po	St At	Rn
	133		137		139		179	181		184	186	190	192	195	197	201	204	207	209			
	87		88		89																	
0,7	Fr	6,0	Ra		Ac			58	F.	9	60	61	62	63	64	65	66	67	68	69	70	71
			226							or Pr		_				Tb			Er		Yb	_
L								Ce			Nd	Pm	Sm	Eu	Gd		Dy	Но		Tm		Lu
								140	1	41	144		150	152	157	159	163	165	167	169	173	175
								90	9)1	92	93	94	95	96	97	98	99	100	101	102	103
								Th	F	a	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232	•	~	238			/ ****								
								202			200											

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Half-reactions	-A aa		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	naii-reactions	Паі	ii eaksies	Ε ^θ (V)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\rightleftharpoons		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\rightleftharpoons		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O_2 + 2H^+ + 2e^-$	\Rightarrow		+1,77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\ell_2(g) + 2e^-$	=		+ 1,36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2(g) + 4H^+ + 4e^-$	=		+ 1,23
$Br_{2}(\ell) + 2e^{-} = 2Br^{-} \\ NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O \\ Hg^{2+} + 2e^{-} = Hg(\ell) \\ Ag^{+} + e^{-} = Ag \\ NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O \\ Fe^{3+} + e^{-} = Fe^{2+} \\ + 0,77 \\ O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} \\ L_{2} + 2e^{-} = 2l^{-} \\ Cu^{+} + e^{-} = Cu \\ Cu^{+} + e^{-} = Cu \\ Cu^{2+} + 2e^{-} = Cu \\ SO_{2} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O \\ Cu^{2+} + 2e^{-} = Cu \\ SO_{4}^{2} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O \\ Cu^{2+} + 2e^{-} = Cu^{+} \\ Sh^{4+} + 2e^{-} = Sh^{2+} \\ Sh^{4+} + 2e^{-$		=	$Mn^{2+} + 2H_2O$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07
$Ag^{+} + e^{-} = Ag $	$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96
$NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O$ $Fe^{3+} + e^{-} = Fe^{2+}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $1_{2} + 2e^{-} = 2I^{-}$ $Cu^{+} + e^{-} = Cu$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-}$ $Cu^{2+} + 2e^{-} = Cu$ $SO_{4}^{2} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $SO_{4}^{2} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + e^{-} = Cu^{+}$ $SO_{4}^{2} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + e^{-} = Cu^{+}$ $Sh^{2} + 2e^{-} = H_{2}S(g)$ $2H^{+} + 2e^{-} = H_{2}S(g)$ $Fe^{3+} + 3e^{-} = Fe$ $Pb^{2} + 2e^{-} = Ni$ $Sh^{2} + 2e^{-} = Ni$ $Ch^{2} + 2e^{-} = Ch$ $Ch^$	Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
$Fe^{3+} + e^{-} = Fe^{2+} \\ O_2(g) + 2H^{+} + 2e^{-} = H_2O_2 \\ I_2 + 2e^{-} = 2I^{-} \\ Cu^{+} + e^{-} = Cu \\ SO_2 + 4H^{+} + 4e^{-} = S + 2H_2O \\ 2H_2O + O_2 + 4e^{-} = 4OH^{-} \\ Cu^{2+} + 2e^{-} = Cu \\ + 0,40 \\ Cu^{2+} + 2e^{-} = Cu \\ + 0,17 \\ Cu^{2+} + 2e^{-} = Cu \\ + 0,17 \\ Cu^{2+} + 2e^{-} = SO_2(g) + 2H_2O \\ Cu^{2+} + 2e^{-} = Sn^{2+} \\ + 0,15 \\ S + 2H^{+} + 2e^{-} = H_2S(g) \\ Fe^{3+} + 3e^{-} = Fe \\ Pb^{2+} + 2e^{-} = Pb \\ Pb^{2+} + 2e^{-} = Sn \\ Co^{2+} + 2e^{-} = Cu \\ Ni \\ Ni^{2+} + 2e^{-} = Sn \\ Cd^{2+} + 2e^{-} = Co \\ Cd^{2+} + 2e^{-} = Cd \\ Cr^{3+} + e^{-} = Cr^{2+} \\ Cr^{3+} + 3e^{-} = Cr \\ 2H_2O + 2e^{-} = Fe \\ Cr \\ 2H_2O + 2e^{-} = A\ell \\ Cr^{3+} + 3e^{-} = Cr \\ 2H_2O + 2e^{-} = Mn \\ A\ell^{3+} + 3e^{-} = A\ell \\ Mg^{2+} + 2e^{-} = Mn \\ A\ell^{3+} + 3e^{-} = A\ell \\ Mg^{2+} + 2e^{-} = Sr \\ Sr^{2+} + 2e^{-} =$	$Ag^+ + e^-$	=	Ag	+ 0,80
$\begin{array}{rclrclclclclclclclclclclclclclclclclclc$	$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_2 + 2e^-$	=	2I ⁻	+ 0,54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cu^+ + e^-$	=	Cu	+ 0,52
$Cu^{2+} + 2e^{-} = Cu $	$SO_2 + 4H^+ + 4e^-$	\Rightarrow	S + 2H ₂ O	+ 0,45
$SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + e^{-} = Cu^{+}$ $Sn^{4+} + 2e^{-} = Sn^{2+}$ $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ $2H^{+} + 2e^{-} = H_{2}(g)$ $Fe^{3+} + 3e^{-} = Fe$ Pb $Pb^{2+} + 2e^{-} = Pb$ $Sn^{2+} + 2e^{-} = Ni$ $Sn^{2+} + 2e^{-} = Ni$ $Co^{2+} + 2e^{-} = Co$ $Cd^{2+} + 2e^{-} = Co$ $Cd^{2+} + 2e^{-} = Cd$ $Cr^{3+} + e^{-} = Cr^{2+}$ $Arrow Cr^{3+} + 3e^{-} = Cr$ $Arrow Cr^{3+} + 2e^{-} = A\ell$ $Cr^{2+} + 2e^{-} = Cr$ $2H_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $2H_{2}O + 2e^{-} = Mn$ $A\ell^{3+} + 3e^{-} = A\ell$ $Mg^{2+} + 2e^{-} = Mn$ $A\ell^{3+} + 3e^{-} = A\ell$ $Na^{+} + e^{-} = Na$ $-2,71$ $Ca^{2+} + 2e^{-} = Ca$ $Sr^{2+} + 2e^{-} = Ca$ $Sr^{2+} + 2e^{-} = Ca$ $-2,87$ $Sr^{2+} + 2e^{-} = Ca$ $-2,89$ $Ba^{2+} + 2e^{-} = Ba$ $-2,90$ $Cs^{+} + e^{-} = Cs$ $-2,93$	$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
$Sn^{4+} + 2e^{-} = Sn^{2+}$ + 0,15 $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ + 0,14 $2H^{+} + 2e^{-} = H_{2}(g)$ 0,00 $Fe^{3+} + 3e^{-} = Fe$ - 0,06 $Pb^{2+} + 2e^{-} = Pb$ - 0,13 $Sn^{2+} + 2e^{-} = Sn$ - 0,14 $Ni^{2+} + 2e^{-} = Ni$ - 0,27 $Co^{2+} + 2e^{-} = Co$ - 0,28 $Cd^{2+} + 2e^{-} = Cd$ - 0,40 $Cr^{3+} + e^{-} = Cr^{2+}$ - 0,41 $Fe^{2+} + 2e^{-} = Fe$ - 0,44 $Cr^{3+} + 3e^{-} = Cr$ - 0,74 $Zn^{2+} + 2e^{-} = Zn$ - 0,76 $ZH_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ - 0,83 $Cr^{2+} + 2e^{-} = Cr$ - 0,91 $Mn^{2+} + 2e^{-} = Mn$ - 1,18 $At^{3+} + 3e^{-} = At^{2}$ - 1,66 $Mg^{2+} + 2e^{-} = Mg$ - 2,36 $Na^{+} + e^{-} = Na$ - 2,71 $Ca^{2+} + 2e^{-} = Ca$ - 2,87 $Sr^{2+} + 2e^{-} = Sr$ - 2,89 $Ba^{2+} + 2e^{-} = Ba$ - 2,90 $Cs^{+} + e^{-} = Cs$ - 2,93	$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cu^{2+} + e^{-}$	=	Cu⁺	+ 0,16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
$\begin{array}{rclcrcl} Fe^{3+} + 3e^{-} & \rightleftharpoons & Fe \\ Pb^{2+} + 2e^{-} & \rightleftharpoons & Pb \\ Sn^{2+} + 2e^{-} & \rightleftharpoons & Sn \\ Ni^{2+} + 2e^{-} & \rightleftharpoons & Ni \\ Ni^{2+} + 2e^{-} & \rightleftharpoons & Co \\ Co^{2+} + 2e^{-} & \rightleftharpoons & Cd \\ Cd^{2+} + 2e^{-} & \rightleftharpoons & Cd \\ Cr^{3+} + e^{-} & \rightleftharpoons & Cr^{2+} \\ Cr^{3+} + 3e^{-} & \rightleftharpoons & Cr \\ 2H_2O + 2e^{-} & \rightleftharpoons & Cr \\ Mn^{2+} + 2e^{-} & \rightleftharpoons & Cr \\ 2H_2O + 2e^{-} & \rightleftharpoons & Mn \\ At^{3+} + 3e^{-} & \rightleftharpoons & At \\ Mg^{2+} + 2e^{-} & \rightleftharpoons & Mg \\ Na^{+} + e^{-} & \rightleftharpoons & Na \\ Ca^{2+} + 2e^{-} & \rightleftharpoons & Ca \\ Mg^{2+} + 2e^{-} & \rightleftharpoons & Ca \\ Sr^{2+} + 2e^{-} & $	S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H⁺ + 2e⁻	=	H ₂ (g)	0,00
$Sn^{2+} + 2e^- = Sn$ $-0,14$ $Ni^{2+} + 2e^- = Ni$ $-0,27$ $Co^{2+} + 2e^- = Co$ $-0,28$ $Cd^{2+} + 2e^- = Cd$ $-0,40$ $Cr^{3+} + e^- = Cr^{2+}$ $-0,41$ $Fe^{2+} + 2e^- = Fe$ $-0,44$ $Cr^{3+} + 3e^- = Cr$ $-0,74$ $Zn^{2+} + 2e^- = Zn$ $-0,76$ $2H_2O + 2e^- = H_2(g) + 2OH^ -0,83$ $Cr^{2+} + 2e^- = Cr$ $-0,91$ $Mn^{2+} + 2e^- = Mn$ $-1,18$ $At^{3+} + 3e^- = At$ $-1,66$ $Mg^{2+} + 2e^- = Mg$ $-2,36$ $Na^+ + e^- = Na$ $-2,71$ $Ca^{2+} + 2e^- = Ca$ $-2,87$ $Sr^{2+} + 2e^- = Ba$ $-2,90$ $Cs^+ + e^- = Cs$ $-2,92$ $K^+ + e^- = K$ $-2,93$	Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
$Ni^{2^{+}} + 2e^{-} = Ni$ $-0,27$ $Co^{2^{+}} + 2e^{-} = Co$ $-0,28$ $Cd^{2^{+}} + 2e^{-} = Cd$ $-0,40$ $Cr^{3^{+}} + e^{-} = Cr^{2^{+}}$ $-0,41$ $Fe^{2^{+}} + 2e^{-} = Fe$ $-0,44$ $Cr^{3^{+}} + 3e^{-} = Cr$ $-0,74$ $Zn^{2^{+}} + 2e^{-} = Zn$ $-0,76$ $2H_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $-0,83$ $Cr^{2^{+}} + 2e^{-} = Cr$ $-0,91$ $Mn^{2^{+}} + 2e^{-} = Mn$ $-1,18$ $At^{3^{+}} + 3e^{-} = At$ $-1,66$ $Mg^{2^{+}} + 2e^{-} = Mg$ $-2,36$ $Na^{+} + e^{-} = Na$ $-2,71$ $Ca^{2^{+}} + 2e^{-} = Ca$ $-2,87$ $Sr^{2^{+}} + 2e^{-} = Ba$ $-2,90$ $Cs^{+} + e^{-} = Cs$ $-2,93$	Pb ²⁺ + 2e ⁻	\Rightarrow	Pb	- 0,13
$Ni^{2^{+}} + 2e^{-} = Ni$ $-0,27$ $Co^{2^{+}} + 2e^{-} = Co$ $-0,28$ $Cd^{2^{+}} + 2e^{-} = Cd$ $-0,40$ $Cr^{3^{+}} + e^{-} = Cr^{2^{+}}$ $-0,41$ $Fe^{2^{+}} + 2e^{-} = Fe$ $-0,44$ $Cr^{3^{+}} + 3e^{-} = Cr$ $-0,74$ $Zn^{2^{+}} + 2e^{-} = Zn$ $-0,76$ $2H_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $-0,83$ $Cr^{2^{+}} + 2e^{-} = Cr$ $-0,91$ $Mn^{2^{+}} + 2e^{-} = Mn$ $-1,18$ $At^{3^{+}} + 3e^{-} = At$ $-1,66$ $Mg^{2^{+}} + 2e^{-} = Mg$ $-2,36$ $Na^{+} + e^{-} = Na$ $-2,71$ $Ca^{2^{+}} + 2e^{-} = Ca$ $-2,87$ $Sr^{2^{+}} + 2e^{-} = Ba$ $-2,90$ $Cs^{+} + e^{-} = Cs$ $-2,93$	Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ni	- 0,27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co ²⁺ + 2e ⁻	=	Co	- 0,28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
$\begin{array}{rclcrcl} Zn^{2+} + 2e^- & = & Zn & -0.76 \\ 2H_2O + 2e^- & = & H_2(g) + 2OH^- & -0.83 \\ Cr^{2+} + 2e^- & = & Cr & -0.91 \\ Mn^{2+} + 2e^- & = & Mn & -1.18 \\ A\ell^{3+} + 3e^- & = & A\ell & -1.66 \\ Mg^{2+} + 2e^- & = & Mg & -2.36 \\ Na^+ + e^- & = & Na & -2.71 \\ Ca^{2+} + 2e^- & = & Ca & -2.87 \\ Sr^{2+} + 2e^- & = & Sr & -2.89 \\ Ba^{2+} + 2e^- & = & Ba & -2.90 \\ Cs^+ + e^- & = & Cs & -2.92 \\ K^+ + e^- & = & K & -2.93 \\ \end{array}$	Fe ²⁺ + 2e ⁻	=	Fe	
$\begin{array}{rclcrcl} 2H_2O + 2e^- & = & H_2(g) + 2OH^- & -0.83 \\ Cr^{2^+} + 2e^- & = & Cr & -0.91 \\ Mn^{2^+} + 2e^- & = & Mn & -1.18 \\ A\ell^{3^+} + 3e^- & = & A\ell & -1.66 \\ Mg^{2^+} + 2e^- & = & Mg & -2.36 \\ Na^+ + e^- & = & Na & -2.71 \\ Ca^{2^+} + 2e^- & = & Ca & -2.87 \\ Sr^{2^+} + 2e^- & = & Sr & -2.89 \\ Ba^{2^+} + 2e^- & = & Ba & -2.90 \\ Cs^+ + e^- & = & Cs & -2.92 \\ K^+ + e^- & = & K & -2.93 \\ \end{array}$	Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
$Cr^{2+} + 2e^{-} = Cr$ -0.91 $Mn^{2+} + 2e^{-} = Mn$ -1.18 $A\ell^{3+} + 3e^{-} = A\ell$ -1.66 $Mg^{2+} + 2e^{-} = Mg$ -2.36 $Na^{+} + e^{-} = Na$ -2.71 $Ca^{2+} + 2e^{-} = Ca$ -2.87 $Sr^{2+} + 2e^{-} = Sr$ -2.89 $Ba^{2+} + 2e^{-} = Ba$ -2.90 $Cs^{+} + e^{-} = Cs$ -2.92 $K^{+} + e^{-} = K$ -2.93	Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
$Mn^{2+} + 2e^{-} = Mn$ - 1,18 $A\ell^{3+} + 3e^{-} = A\ell$ - 1,66 $Mg^{2+} + 2e^{-} = Mg$ - 2,36 $Na^{+} + e^{-} = Na$ - 2,71 $Ca^{2+} + 2e^{-} = Ca$ - 2,87 $Sr^{2+} + 2e^{-} = Sr$ - 2,89 $Ba^{2+} + 2e^{-} = Ba$ - 2,90 $Cs^{+} + e^{-} = Cs$ - 2,92 $K^{+} + e^{-} = K$ - 2,93	$2H_2O + 2e^-$	=	$H_2(g) + 2OH^-$	- 0,83
$A\ell^{3+} + 3e^{-} = A\ell$ - 1,66 $Mg^{2+} + 2e^{-} = Mg$ - 2,36 $Na^{+} + e^{-} = Na$ - 2,71 $Ca^{2+} + 2e^{-} = Ca$ - 2,87 $Sr^{2+} + 2e^{-} = Sr$ - 2,89 $Ba^{2+} + 2e^{-} = Ba$ - 2,90 $Cs^{+} + e^{-} = Cs$ - 2,92 $K^{+} + e^{-} = K$ - 2,93	$Cr^{2+} + 2e^{-}$	=	Cr	- 0,91
$Mg^{2+} + 2e^{-} = Mg$		=	Mn	- 1,18
$Na^{+} + e^{-} = Na$		=	Αℓ	- 1,66
$Ca^{2+} + 2e^{-} = Ca$	•	=	Mg	- 2,36
$Sr^{2+} + 2e^{-} \Rightarrow Sr$		=	Na	- 2,71
$Ba^{2+} + 2e^{-} = Ba$ - 2,90 $Cs^{+} + e^{-} = Cs$ - 2,92 $K^{+} + e^{-} = K$ - 2,93		=	Ca	- 2,87
$Cs^+ + e^- \rightleftharpoons Cs$ - 2,92 $K^+ + e^- \rightleftharpoons K$ - 2,93	Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
$K^+ + e^- = K$ - 2,93		=	Ва	- 2,90
		=	Cs	- 2,92
$Li^+ + e^- \Rightarrow Li - 3,05$		=	K	- 2,93
	Li ⁺ + e ⁻	=	Li	- 3,05

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

BEL 4B: STANDAARD-REDUKSIEPOTENSIA			
Half-reactions/Halfreaksies			Ε ^θ (V)
Li ⁺ + e⁻	=	Li	- 3,05
K ⁺ + e ⁻	=	K	- 2,93
Cs ⁺ + e ⁻	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	\Rightarrow	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na ⁺ + e ⁻	=	Na	- 2,71
$Mg^{2+} + 2e^{-}$	=	Mg	- 2,36
$Al^{3+} + 3e^{-}$	=	Al	- 1,66
$Mn^{2+} + 2e^{-}$	=	Mn	- 1,18
$Cr^{2+} + 2e^{-}$	=	Cr	- 0,91
2H ₂ O + 2e ⁻ Zn ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Zn + 2e Cr ³⁺ + 3e ⁻	=	Zn Cr	- 0,76
Fe ²⁺ + 2e ⁻	=	Fe	- 0,74 - 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0, 44 - 0,41
Cd ²⁺ + 2e ⁻	#	Cd	- 0,41 - 0,40
Co ²⁺ + 2e ⁻	=	Co	– 0, 4 8
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	≠	Fe	- 0,06
2H⁺ + 2e⁻	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45
Cu⁺ + e⁻	=	Cu	+ 0,52
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO ⁻ ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag ⁺ + e ⁻	=	Ag	+ 0,80
$Hg^{2+} + 2e^{-}$	=	$Hg(\ell)$	+ 0,85
$NO_3^- + 4H^+ + 3e^-$	=	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^{-\ell}$	=	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$Cl_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\Rightarrow	$Mn^{2+} + 4H_2O$	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels