Analysis of NYPD Shooting Incident Data

Giri Kunche

5/18/2021

Project Description

This is an R Markdown document for the Analysis of NYC Shooting Incident data. The shooting incident data was downloaded from https://data.cityofnewyork.us

Load Libraries

Load tidyverse and lubridate libraries.

Downloading Data

Download data from https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType=DO WNLOAD and assign this url to *url_in* variable. Read the data to *raw_data* variable using function $read_csv(url_in)$.

Data Analysis

There are total 19 columns and 23568 rows in the dataset. Data set consist of columns INCIDENT_KEY, OCCUR_DATE, OCCUR_TIME, BORO, PRECINCT, JURISDICTION_CODE, LOCATION_DESC, STATISTICAL_MURDER_FLAG, PERP_AGE_GROUP, PERP_SEX, PERP_RACE, VIC_AGE_GROUP, VIC_SEX, VIC_RACE, X_COORD_CD, Y_COORD_CD, Latitude, Longitude, Lon_Lat.

Remove INCIDENT_KEY, X_COORD_CD, Y_COORD_CD, Latitude, Longitude and Lon_Lat columns as they are not needed for data analysis.

OCCUR_DATA has date of shootings and is in character format. We will convert this column to date format.

Following is the output of NYC data removing above columns.

OCCU	JR <u>O</u> CIOAJIBBORIO/IEPRECINVI	RISDI		C KSONAN H DSC S	CAPERPU	BAROHERR	POPROPARED RAICE	EAGVEIC	GENERACE
2019-	22:10:0@UEENS103	0	NA	FALSE	NA	NA	NA 25-44	4 M	BLACK
08- 23									
2019-	15:54:0 B RONX 40	0	NA	FALSE	<18	M	BLACK 25-44	1 F	BLACK
11- 27									
2019-	19:40:00MANHAT 23 AN	0	NA	FALSE	18-24	M	WHITE 18-24	4 M	BLACK
02-							HIS-		HIS-
02 2019-	00:52:0 % TATEN121	0	PVT	TRUE	25-44	M	PANIC BLACK 25-44	1 F	PANIC BLACK
10-	IS-	Ü	HOUSE		- 0 11		BB11011 2 0 1		DDIT
24	LAND								

OCCU	ROCIOATIBORIONE	PREC INURI S	SDI	CHOONI	TESONA HOSTSIC	APERFU	B HOEER I	POPRIBACE RAICE A	GVEICO	RACE RACE
2019- 08- 22	18:03:0 B RONX	46	0	NA	FALSE	25-44	M	BLACK 18-24 HIS- PANIC	M	BLACK

Summarizing Data

We have summarized data into five groups:

- 1. group_by_boro Groups the data by Boro , Year and Number of Shootings.
- 2. nyc_data_year Mutates OCCUR_DATE and created new column called Year. Also created column Murder, which is based on STATISTICAL_MURDER_FLAG.
- 3. shootings_by_year Summarize shootings and murders by Year.
- 4. shootings_by_boro Summarize shootings by Boro
- 5. murders_by_boro Summarize murders by Boro

Visualization

Lets visualize the shooting and murder data by Boro's. Below bar plot shows the number of shootings in several boroughs. Brooklyn has the highest shootings recorded followed by Bronx. Shooting and Murder trend is shown in next chart. There is decreasing trend in both shootings and murders since 2006. However, there is a spike in both in 2020.

Further drill down of trend by Boro's shows Murder trend by Boro's as well as comparison of Number of Shootings and Murders since 2006.

Below chart shows the number of shootings by Boro's and Victim Age Group. Age group 25-44 are in high proportion compared to other age groups. Most of the victims are males.

Modelling

Lets consider how the number of murders are related to number of shootings. To examine this relationship, we will first summarize shooting and murder data from nyc_data_year.

Below is the Shootings and Murders summarized by Year.

Year	Murder	Shootings
2006	445	2055
2007	373	1887
2008	362	1958
2009	348	1828
2010	403	1910
2011	373	1939
2012	287	1717
2013	223	1339
2014	248	1464
2015	283	1434
2016	223	1208
2017	174	969
2018	202	951
2019	183	967
2020	361	1942

Next step is to create a linear regressing model and find the relationship between Murders and Shootings. Following is the output of linear regression model.

```
##
## Call:
## lm(formula = shooting_murder_analysis$Murder ~ shooting_murder_analysis$Shootings,
##
       data = shooting_murder_analysis)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
   -42.364 -16.069
                    -1.058
                            10.493
                                     45.708
##
## Coefficients:
```

We will add the murder prediction (Murder_Predicted) from linear model to a new data set murder_pred.

Year	Murder	Shootings	$\operatorname{Murder}_{-}$	Predicted
2006	445	2055		399.2923
2007	373	1887		364.5351
2008	362	1958		379.2242
2009	348	1828		352.3288
2010	403	1910		369.2936
2011	373	1939		375.2933
2012	287	1717		329.3642
2013	223	1339		251.1607
2014	248	1464		277.0216
2015	283	1434		270.8150
2016	223	1208		224.0584
2017	174	969		174.6122
2018	202	951		170.8882
2019	183	967		174.1984
2020	361	1942		375.9140

We will now plot between the actual murders vs predicted murders and check how will the model fits. The blue dots are the actual murders and the red dots are the predicted murders.

The model does well when there is cluster of data nearby. Overall the model prediction is closer to the actual values.

Bias

Only Number of Shootings and Murders are considered to predict the murders. We have left out Perperator Race, Sex, Age as well as location of the shooting. These variables may have influence on the murder or shootings.