SIEMENS

5-V Low-Drop Voltage Regulator

TLE 4261

Bipolar IC

Features

- Very low-drop voltage
- Very low quiescent current
- Low starting-current consumption
- Proof against reverse polarity
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- External setting of reset delay
- Integrated watchdog circuit
- Wide temperature range
- Overtemperature protection
- Suitable for automotive use
- EMC proofed (100 V/m)

P-TO220-7-1	

Туре	Ordering Code	Package
▼ TLE 4261	Q67000-A9003	P-TO220-7-1
▼ TLE 4261 S	Q67000-A9109	P-TO220-7-2
▼TLE 4261 G	Q67000-A9059	P-DSO-20-6 (SMD)

▼ Please also refer to the new pin compatible device TLE 4271

Functional Description

TLE 4261 is a 5-V low-drop voltage regulator in a P-TO220-7 or in a P-DSO package. The maximum input voltage is 42 V (65 V/≤ 400 ms). The device can produce an output current of more than 500 mA. It is short-circuit proof and incorporates temperature protection that disables the circuit at impermissibly high temperatures.

Application Description

The IC regulates an input voltage $V_{\rm l}$ in the range $V_{\rm l}$ = 6 V to 40 V to $V_{\rm Qrated}$ = 5.0 V. A reset signal is generated for a maximum output voltage of $V_{\rm Q}$ less than 4.75 V. The reset delay can be set externally with a capacitor. A connected microprocessor is monitored by the integrated watchdog circuit. Connecting this input to the input voltage makes the watchdog function inactive. The presence of a voltage less than 2 V on inhibit input disables the regulator. The current consumption drops to max. 50 μ A.

Design Notes for External Components

The input capacitor C_1 causes a low-resistant powerline and limits the rise times of the input voltage. The IC is protected against rise times up to 100 V/ μ s. It is possible to damp the tuned circuit consisting of supply inductance and input capacitance with a resistor of approx. 1 Ω in series to C_1 .

The output capacitor maintains the stability of the regulating loop. Stability is guaranteed with a rating of 22 μ F at an ESR of 3 Ω max. in the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and controls the base of the series PNP transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage drops below 95.5 % of its typical value for more than 2 μ s, a reset signal is triggered on pin 3 and an external capacitor is discharged on pin 5. The reset signal is not cancelled until the voltage on the capacitor has exceeded the upper switching threshold $V_{\rm DT}$. A positive-edge-triggered watchdog circuit monitors the connected microprocessor and will likewise trigger a reset if pulses are missing. The IC can be disabled by a low level on the inhibit input and the current consumption drops to < 50 μ A.

The IC also incorporates a number of circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Pin Configuration

(top view)

Pin Definitions and Functions (TLE 4261; S)

Pin	Symbol	Function
1	V _I	Input voltage ; block a capacitor directly to ground on the IC. The capacitor rating will depend on the vehicle electrical system. Oscillation of the input voltage can be damped by a resistor of approx. 1 Ω in series with the input capacitor.
2	INH	Inhibit; switches off the IC when low.
3	QRES	Reset output; open-collector output controlled by the rese delay.
4	GND	Ground
5	DRES	Reset delay; wired to ground using a capacitor.
6	Watch	Watchdog; monitors the microprocessor when active.
7	V_{Q}	5-V output voltage; block to ground using a capacitor of \geq 22 μ F. ESR is \leq 3 Ω in the operating temperature range.

Pin Configuration

(top view)

Pin Definitions and Functions (TLE 4261 G)

Pin	Symbol	Function
18	V _I	Input voltage ; block a capacitor directly to ground on the IC. The capacitor rating will depend on the vehicle electrical system. Oscillation of the input voltage can be damped by a resistor of approx. 1 Ω in series with the input capacitor.
20	INH	Inhibit; switches off the IC when low.
3	QRES	Reset output; open-collector output controlled by the reset delay.
4 - 7 14 - 17	GND	Ground; internally connected with pins 14 to 17.
9	DRES	Reset delay; wired to ground using a capacitor.
11	Watch	Watchdog; monitors the microprocessor when active.
12	V_{Q}	5-V output voltage ; block to ground using a capacitor of \geq 22 μF. ESR is \leq 3 Ω in the operating temperature range.
1, 2, 8, 10, 13, 19	N.C.	Not connected

Block Diagram

SIEMENS

Absolute Maximum Ratings $T_{\rm j}$ = -40 to 150 °C

Parameter	Symbol	Limit	: Values	Unit	Remarks
		min.	max.		
Input					
Input voltage Input voltage Input current	$egin{array}{c} V_1 \ V_1 \ I_1 \end{array}$	- 42 - -	45 65 1.6	V V A	- t ≤ 400 ms -
Inhibit					
Voltage Current	$egin{array}{c} V_2 \ I_2 \end{array}$	- 0.3 -	42 5	V mA	- -
Reset Output					
Voltage Current	V_{R} I_{R}	- 0.3 -	42 -	V -	limited internally
Ground					
Current	I_{GND}	_	0.5	А	_
Reset Delay					
Voltage Current	V_{D} I_{D}	- 0.3 -	42 -	V -	limited internally
Watchdog					
Voltage	V_{W}	- 0.3	V_{I}	V	_
Output					
Differential voltage Current	$V_{I} - V_{Q}$ I_{Q}	- 5.25 -	V ₁ 1.4	V A	- -

Absolute Maximum Ratings (cont'd)

 $T_{\rm j}$ = - 40 to 150 °C

Parameter	Symbol	Symbol Limit Values			Remarks
		min.	max.		
Temperature					
Junction temperature Storage temperature	$T_{ m j} \ T_{ m stg}$	- - 50	150 150	°C °C	-
Operating Range	·		•		
Input voltage	V_{I}	_	32	V	see diagram
Junction temperature	T _j	- 40	150	°C	_
Thermal Resistances	•		•		
System-air	R_{thSA}		65 (70) ¹⁾		_
System-case	$R_{th\;SC}$	_	3 (15) ¹⁾	K/W	_

¹⁾ Figures in parenthesis refer to TLE 4261 G.

Characteristics

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = 25 °C; $V_{\rm 2}$ \geq 6 V; (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min. typ. max.				

Normal Operation

Output voltage	V_{Q}	4.75	5.00	5.25	V	25 mA $\leq I_{\rm Q} \leq$ 500 mA; 6 V $\leq V_{\rm I} \leq$ 28 V; - 40 °C $\leq T_{\rm J} \leq$ 125 °C
Output voltage	V_{Q}	4.85	5.00	5.15	V	25 mA $\leq I_{\rm Q} \leq$ 150 mA 6 V $\leq V_{\rm I} \leq$ 40 V
Output current	I_{Q}	_	_	50	μΑ	0 $\forall \le V_1 \le 2 \forall ; V_2 = V_1;$ - 40 °C $\le T_1 \le 125$ °C
Output current	I_{Q}	500	1000	-	mA	V _I = 17 V to 28 V
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	_	3.5	mA	$I_{\rm Q} = 0; \ V_{\rm W} > 6 \ {\rm V}$
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	5.0	10	mA	$6 \text{ V} \le V_1 \le 28 \text{ V}$ $I_Q = 150 \text{ mA}$
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	40	65	mA	$6 \text{ V} \le V_{\text{I}} \le 28 \text{ V}$ $I_{\text{Q}} = 500 \text{ mA}$
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	45	80	mA	$V_{\rm I}$ < 6 V; $I_{\rm Q}$ \leq 500 mA;
Drop voltage	V_{Dr}	_	0.35	0.5	٧	$V_{\rm I}$ = 4.5 V; $I_{\rm Q}$ = 0.5 A
Drop voltage	V_{Dr}	_	0.2	0.3	٧	$V_{\rm I}$ = 4.5 V; $I_{\rm Q}$ = 0.15 A
Load regulation	ΔV_{Q}	_	15	35	mV	$25 \text{ mA} \le I_{Q} \le 500 \text{ mA}$
Supply voltage regulation	ΔV_{Q}	_	15	50	mV	$6 \text{ V} \le V_1 \le 28 \text{ V}$ $I_Q = 100 \text{ mA}$
Supply voltage regulation	ΔV_{Q}	_	5	25	mV	$6 \text{ V} \le V_{\text{I}} \le 16 \text{ V}$ $I_{\text{Q}} = 100 \text{ mA}$

Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = 25 °C; $V_{\rm 2}$ \geq 6 V; (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Ripple rejection	SVR	_	54	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp
Temperature drift of output voltage	α_{VQ}	_	2 × 10 ⁻⁴	_	1/°C	$-40 ^{\circ}\text{C} \le T_{\text{j}} \le 150 ^{\circ}\text{C}$

Inhibit Operation

<u> </u>	7			50	^	
Current consumption	I_1	_	_	50	μΑ	$V_2 < 2 \text{ V}; I_Q = 0$
Current consumption	I_2	_	_	100	μΑ	V ₂ = 6 V
Switching threshold for inhibit	V_2	5.0	5.5	6.0	V	IC turned ON
Switching threshold for inhibit	V_2	2.0	2.7	3.7	V	IC turned OFF

Reset Generator

Switching threshold	V_{RT}	94	95.5	97	%	in % of $V_{\rm Q}$ $I_{\rm Q}$ > 500 mA; $V_{\rm I}$ = 6 V
Saturation voltage, reset output	V_{R}	1	0.25	0.40	V	$I_{\rm R}$ = 1 mA
Reverse current	I_{R}	1	_	1	μΑ	V_{R} = 5 V
Charge current	$I_{\sf d}$	18.75	25	31.25	μΑ	$V_{\rm C}$ = 1.5 V
Switching threshold	V_{ST}	0.9	1	1.1	V	_
Delay switching threshold	V_{DT}	2.25	2.50	2.75	V	_
Saturation voltage, delay output	V_{C}	_	_	100	mV	$V_{\rm I}$ = 4.5 V and $I_{\rm d}$

Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = 25 °C; $V_{\rm 2}$ \geq 6 V; (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Delay time	t_{D}	_	10	_	ms	$C_{\rm D}$ = 100 nF
Delay time	t_{t}	1	2	_	μs	ı

Watchdog

Turn-OFF voltage	V_{W}	5.2	5.6	6.0	V	_
Discharge current	I_{CD}	5.6	7.5	9.4	μΑ	V _C = 1.5 V
Switching voltage	V_{CD}	2.95	3.05	3.15	V	_
Pulse interval	T_{W}	-	35	-	ms	$C_{\rm D}$ = 100 nF

General Data

Turn-OFF voltage	V_{IOFF}	41	43	45	V	I _Q < 1 mA
Turn-OFF hysteresis	ΔV_{I}	_	6.5	_	V	_
Leakage current	$I_{ t QS}$	_	_	50	μΑ	$V_{\rm Q} = 0 \text{ V}; V_{\rm I} = 45 \text{ V}$
Reverse output current	I_{QR}	_	_	1.5	mA	$V_{\rm Q}$ = 5 V; $V_{\rm I}$ and $V_{\rm 2}$ open

Application Circuit

Test Circuit

Time Response in Watchdog Condition

Timing with Watchdog OFF

Drop Voltage versus Output Current

Current Consumption versus Output Current

Current Consumption versus Input Voltage

Output Voltage versus Input Voltage

Output Voltage versus Temperature

Output Current versus Input Voltage

Input Step Response

Load Step Response

Charge Current $I_{\rm D}$ and Discharge Current $I_{\rm CD}$ versus Temperature

Pulse Interval $T_{\rm W}$ versus Temperature

Switching Voltage $V_{\rm CD}$ and $V_{\rm ST}$ versus Temperature

Current Consumption of Inhibit at the Switching Point versus Temperature

Package Outlines

(Plastic Transistor Single Outline)

- 1) $0.75_{-0.15}$ at dam bar (max 1.8 from body)
- 1) 0.75 _{-0.15} im Dichtstegbereich (max 1.8 vom Körper) GPT05108

Weight approx. 2.1 g

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

Package Outlines (cont'd)

(Plastic Transistor Single Outline)

- 1) $0.75_{-0.15}$ at dam bar (max 1.8 from body)
- 1) 0.75 _{-0.15} im Dichtstegbereich (max 1.8 vom Körper)

Weight approx. 2.1 g

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

Package Outlines (cont'd)

P-DSO-20-6 (Plastic Dual Small Outline) 1.27 0.35 * 0.15 2) 1.27 0.35 * 0.15 2) 1.28 0.2 1) 1.28 0.2 1) 1.28 0.2 1) 1.29

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm