UNCLASSIFIED

AD 49/306

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Report 1251

1306

DAVID TRY OR MODEL BASIN

HYDROMECHANICS

AERODYNAMICS

0

STRUCTURAL MECHANICS

APPLIED MATHEMATICS

0

STATISTICAL PRESENTATION OF MOTIONS AND HULL BENDING MOMENTS OF ESSEX-CLASS AIRCRAFT CARRIERS

by

Norman H. Jasper, Dr. Eng., Roman L. Brooks, CPR, USN, and John T. Birmingham

STRUCTURAL MECHANICS LABORATORY
RESEARCH AND DEVELOPMENT REPORT
Revised Edition

June 1960

Report 1251

STATISTICAL PRESENTATION OF MOTIONS AND HULL BENDING MOMENTS OF ESSEX-CLASS AIRCRAFT CARRIERS

by

Norman H. Jasper, Dr. Eng., Roman L. Brooks, CDR, USN, and John T. Birmingham

Revised Edition

June 1960

Report 1251 S-F013 03 01

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	1
TEST INSTALLATION AND TEST RESULTS	2
STATISTICAL BACKGROUND	4
DISTRIBUTION PATTERNS OF SHIP MOTIONS AND LONGITUDINAL	
HULL BENDING MOMENTS	10
SHORT-TERM DISTRIBUTIONLONG-TERM DISTRIBUTION	11 11
DESIGN AND OPERATIONAL CONDITIONS FOR WARTIME SERVICE	17
LONG-TERM DISTRIBUTIONS	18
PREDICTION OF EXTREME VALUES	18
DESIGN MIDSHIP BENDING MOMENT	2 0
Method 1	21
Method 9	21
Method 8	21
DISCUSSION	21
ACKNOWLEDGMENTS	22
APPENDIX A - SAMPLE OSCILLOGRAMS	28
APPENDIX B — COMPARISON OF LONGITUDINAL AND TRANSVERSE BENDING STRESSES	27
APPENDIX C - COMPARISON OF STRAINS ON STRINGER PLATE AND ON LONGITUDINAL	29
APPENDIX D - ESTIMATION OF EXPECTED EXTREME BENDING MOMENT ON THE BASIS OF THE LONG TERM DISTRIBUTION OF THE CHARACTERISTIC PARAMETER E ¹⁵	3.
PEPEDENCES	- ·•

LIST OF ILLUSTRATIONS

		Page
Figure	1 - Location of Instruments on USS VALLEY FORGE (CVS 45)	8
Figure	2 - Sample of Rayleigh (Short-Term) Distributions	7
Figure	8 - Long-Term Cumulative Distribution of Longitudinal Stress and Bending Moment Amidship, for Wartime Service in North Atlantic Ocean	8
Figure	4 - Long-Term Distribution of Heave Acceleration for Wartime Service in North Atlantic Ocean	8
Figure	5 - Long-Term Cumulative Distribution of Pitch Angle for Wartime Service in North Atlantic Ocean	9
Figure	6 - Long-Term Cumulative Distribution of Roll Angle for Wartime Service in North Atlantic Ocean	9
Figure	7 - Oscillogram Showing Maximum Heave Acceleration on VALLEY FORGE	24
Figure	8 - Oscillogram Showing Maximum Pitch Angle on VALLEY FORGE	24
Figure	9 - Oscillogram Showing Maximum Roll Angle on VALLEY FORGE	. 25
Figure	10 - Oscillogram Showing Maximum Longitudinal Stress Amidships on VALLEY FORGE	. 25
Figure	11 - Sample Oscillogram	28
Figure	12 - Comparison of Longitudinal Stress Measured on Stringer Plate and on Longitudinal	29
Figure	13 - Long Term Cumulative Distribution of Longitudinal RMS Stress and RMS Bending Moment Amidship, for Wartime Service North Atlantic Ocean	32
	LIST OF TABLES	
Table :	1 - Basic Statistical Data for ESSEX-Class Carriers	5
Table ?	2 - Product of Weighting Factors $(f_1 f_2 f_3)$ Applicable to Different Sets of Operating Conditions	12
Table 8	3 - Derivation of Predicted Distribution for Variations in Stress for Wartime Duty in the Atlantic Ocean	. 18
Table 4	4 — Derivation of Predicted Distribution for Variations in Heave Acceleration for Wartime Duty in the Atlantic Ocean	. 14

	Page
Table 5 — Derivation of Predicted Distribution for Variations in Pitch Angle for Wartime Duty in the Atlantic Ocean	15
Table 6 — Derivation of Predicted Distribution for Variations in Roll Angle for Wartime Duty in the Atlantic Ocean	16
Table 7 — Maximum Values of Ship Motions and Longitudinal Bending Moments for ESSEX-Class Carriers	19
Table 8 — Comparison of Longitudinal and Transverse Bending Stresses for Occasions at Which Transverse Bending Was Appreciable	27

ABSTRACT

The motions and longitudinal hull bending moments which ships of the ESSEX Class may be expected to experience over a wide range of operating conditions are presented in statistical form. The data are based on extensive measurements made on USS VALLEY FORGE (CVS 45) and USS ESSEX (CVA 9).

From the test results, data are derived for this type of ship for use in design and operating problems involving bending moments and ship motions. Formulas are given for use in estimating probable extreme values of moments and motions.

INTRODUCTION

The David Taylor Model Basin is conducting a long-range investigation of the strains in ships at sea 1 for the purpose of evaluating and improving methods for the design of ship girders and structural components. Instruments have been developed and installed on various types of ships to collect information on the wave loads, stresses, and motions which ships experience in service. For more complete background and discussion of this program see References 2 and 3.

Motions and stresses measured on three essentially similar aircraft carriers are analyzed in this report.* USS ESSEX (CVA9) and USS ORISKANY (CVA 34) are conversions of the basic ESSEX Class (World War II variety); USS VALLEY FORGE (CVS 45) is an unconverted carrier of this same class. The salient characteristics of the conversion that affect hull form and weight distribution—those factors that have primary effect on bending moments—are the addition of blisters throughout the midportion of the ship and a modest (10-percent) increase in full-load displacement. Data were obtained on VALLEY FORGE** in the Atlantic Ocean from September 1955 to April 1957, on ESSEX during a passage around Cape Horn in July 1957, and on ORISKANY during a rough passage around Cape Horn in June 1952.

Oscillographic recordings were made of variations of roll and pitch angle, heave accelerations (at the center of gravity of the ship), and hull strains as the ship responded to wave-induced loads. From these the following information is specified for ESSEX-Class carriers:

¹References are listed on page 34.

^{*}No strains were measured on ORISKANY.

^{**}These data were obtained during joint operations with USS C.S. SPERRY (DD 697); the SPERRY tests will be reported at a later date.

- a. Average, mean square, and expected maximum values of hull stresses* and motions for various operating conditions (sea state, speed, and heading).
- b. The predicted extreme values of longitudinal bending moment and motions expected during the operating life of the ship.
 - c. The frequency distributions of stresses and ship motions.

TEST INSTALLATION AND TEST RESULTS

Most of the data utilized in this report were measured on VALLEY FORGE. However, the most severe hull stresses and motions experienced by ESSEX and ORISKANY are used whenever they are larger than those observed on VALLEY FORGE.

Hull stresses were measured by SR-4 strain gages installed at the main deck and keel amidship on VALLEY FORGE. The roll and pitch angles were measured by a stable element, and the heave acceleration was measured by a Schaevitz accelerometer located near the center of gravity. The locations of the gages are shown in Figure 1. The measurements were recorded on a TMB automatic statistical recorder. The five channels of this instrument were utilized as follows: Channel 1 recorded the heave acceleration; Channels 2 and 3 recorded the longitudinal strain from gages located on the keel and main deck, respectively; and Channels 4 and 5 recorded the pitch and roll angles, respectively. Typical oscillograms are shown in Appendix A. In order to observe the relative magnitude of the stresses induced by transverse and longitudinal bending, strains on the port and starboard side of the main deck were recorded on a Sanborn oscillograph.

All the data on VALLEY FORGE were obtained in the course of the normal assigned operations. Measurements were made whenever operating conditions were encountered for which data had not been obtained previously.

Wave heights and wave directions for the VALLEY FORGE tests were determined by two methods. Estimates made by trained observers from the ship's aerology unit were averaged, and stereophotographs of the sea surface taken by cameras mounted on the island structure were analyzed by the U.S. Hydrographic Office. Comparison of data from these two sources indicates that the observers made reliable estimates of characteristic wave heights. 5** During the ESSEX tests wave heights were measured with the wave height recorder developed by M.J. Tucker in Britain.

The sea conditions assumed in the calculations are those for the North Atlantic Ocean inasmuch as they probably represent the more severe continuous operating conditions that a

^{*}All stresses given in this report were computed from measured strains. The hull bending moments are deduced from the strain measurements and the calculated section modulus applicable to the strain-gage location.

^{**}The characteristic wave height is the average of the highest waves observed in each of a number of groups of waves.

Figure 1a - Inboard Profile

The characteristics of the ship are: Length between perpendiculars, 820 ft; Beam, 92 ft; Draft, 29 ft; Displacement (full load), 41,500 tons.

Figure 1b - Section Near Midship Looking Forward

The midship section moment of inertia is 3.96×10^6 ft²-in² according to BuShips (Code 442) calculations dated 2 Oct 56. This value applies to the unconverted CVS 45 hull.

Strain gages 2, 4 measure strain in the port and starboard outboard longitudinals at the neutral axis of the plate-stiffener combination. These gages are located 23.85 ft above the neutral axis-

Strain gage 1 measures the longitudinal stress in the deck plate (dyadic stress gage). This gage is located 23.97 ft above the neutral axis.

Strain gages 3, port and starboard, are arranged to read strains due to longitudinal hull bending. These gages are located 23.76 ft above the neutral axis.

Strain gage 5 measures the longitudinal strain at the approximate location of the neutral axis of the keel-inner bottom structure.

Figure 1 - Location of Instruments on USS VALLEY FORGE (CVS 45)

ship will experience. The probable speeds and headings at which these ships would be expected to operate under wartime conditions and the fraction of time the ships would spend at each of the various conditions were estimated by the commanding officers of a number of ships of the ESSEX Class. This information is given in Table 2 of Reference 6.

All recorded strain and motion data were classified according to appropriate ranges of ship speed, wave height, and ship's course relative to the wave direction.* Statistical methods were used to determine the ship's response in terms of mean square values and maximum measured values for a wide variety of operating conditions; see Table 1.

The relative magnitudes of the hull stresses induced by longitudinal and transverse bending are given in Appendix B. Stresses measured on the deck plating and on the adjacent longitudinal stiffener at the outboard edge of the main deck are compared in Appendix C. Local bending stresses were small in this area.

STATISTICAL BACKGROUND

Wave heights, ship motions, and hull bending moments experienced under a given set of conditions can be described in terms of their distribution functions. It has been shown that the applicable distribution functions are approximated by the Rayleigh distribution for a given set of steady operating conditions (sea state, ship speed, and heading) and by log-normal distributions if the operating conditions are allowed to vary over a wide range, such as would occur over a typical year.

The Rayleigh distribution of a variable x is defined by the single parameter E, the mean square value of x; i.e., $E = \overline{x^2}$. The log-normal distribution of x is defined by two parameters: the mean value of $\log x$ and the variance of $\log x$. The statistical methods utilized here are discussed in References 7 and 8.

For illustrative purposes, consider one of the variables; for example, pitch angle. All pitch angles (peak to peak) are considered to be members of a statistical "population." The distribution indicates the relative probability p(x) of encountering a pitch angle of the magnitude x. Figure 2 illustrates this distribution function. The area under the curve of Figure 2a up to a value x_i is the fraction P of all members of the population which have values less than x_i . Therefore the probability of exceeding the value x_i is 100 (1-P) percent. For the Rayleigh distribution $P(x) = 1 - e^{-\frac{x^2}{E}}$.

Both the Rayleigh (Figure 2) and log-normal distributions (Figures 8 through 6) can be represented by straight lines when plotted on special graph paper. Inasmuch as the Rayleigh distribution is applicable to a given combination of sea, speed, and heading, it will be called the "short-term" distribution whereas the log-normal distribution will be designated the "long-term" distribution.

^{*}It was often difficult to define the sea and the direction of the ship relative to the sea. The description given is the best that could be made.

TABLE 1

Basic Statistical Data for ESSEX-Class Carriers

All data are for VALLEY FORGE except where noted otherwise.

	nd Speed fication				Ch	Est practeris	imates tic Wav		t, ft		Wind and V	lave Dat	3		L
Wave Height	Ship Speed	Record Number	Stereo Photo	Ship Speed		Analysis earloto	of #		natysis e	Heading of Sea Relative	Heading of Swell Relative		, ft ² Square Height	Wind Velocity for 8 Hours	
ft	knots	Number	Number	knots	Average of Visual Estimates	From TMB Analysis of Stereo-Photo	Number of Visual Estimators	Average of Visual Estimates	From TMB Analysis of Stereo-Photo	to Ship deg	to Ship deg	From Stereo Data	From Wind Data	Preceding Test knots	
0-4	20-25	· 30	H-060	24		3.6	2	2.7	3.7	335-345	325-335	4.6	9.2	8-18	
4-6	10-15	25	G-113	10		5.7	4	5.9	5.1	015-025	355-25	10.4	20.0	12-30	
4-6	10-15	67	C-418	12		۱	3	6.0		355	355-345	12.5	24.0	14-21	
4-6	15-20	19	E-071	20 25	Į	6.5	6	6.0 6.1	5.9 6.9	040-060 009-013	000 316-319	9.3 15.8	18.0 16.0	10-31	l
4-6 6-8	20-25 5-10	18 34	E-064 H-201	10		6.5	6	6.9	6.3	015	005-015	11.9	32.0	9-20 16-33	
6-8	10-15	62	""	12		""	ľ	7.0	""	330-340	332-340		32.0	8-26	
6-8	10-15	61	ĺ	14	İ	ĺ	i i	7.0	i					8-26	ĺ
6-8	10-15	1	C-452	15		6.6	3	8.0	8.6	010-020		17.2	32.0	17-30	
6-8	10-15	2	C-466	15		8.1	3	7.7	8.2	355) J	17.7	24.0	24-30	
5-8	15-20	16	E-062	20		7.2	3	6.1	7:1	020	350-000	11.8	16.0	11-30	
-8	20-25	69a	1-014	25 8	12.0	6.4 17.9	3	7.5 12.1	7.9	338-358 340-000	318-358 350-000	22.0 58.8	30.0 48.0	14-20 30-40	
3-15 3-15	5-10 5-10	41	J-040	8	12.0	17.3	3	10.0		340-350	342-350	30.0	40.0	23-33	
8-15	5-10	46		8			3	9.0		355-357	346-354			23-33	
B-15	5-10	53	ļ	10	Ì		4	10.0	1	358-004†	353-001†			22-28	
3-15	5-10	38	J-003	8	10.5	7.3	4	9.9	9.3	007	020	21.5	24.0	22-53	ĺ
B-15	5-10	39	J-003	8	10.5	7.3	4	9.9	9.3	001	019	21.5	24.0	36-54	
8-15	5-10	69		8	12.0					359					
B-15	10-15	51	C-495	12 25	Ì	5.8	6	9.0 10.0	7.0	339-342	349-356 349-356	10.7	28.0	16-19 22-28	
8-15 > 15	20-25 5-10	72	1	10	14.0		,	18.0		358-359 014	345-330			22-20	ı
> 15	5-10	170	! !	10	20	<u> </u>	ļ.	10.0		005				<u> </u>	L
0-4	10-15	24	G-049	12		5.0	5	3.7	5.0	062	068	9.1	8.0	12-17	Γ
0-4	20-25	30 31	H-060 H-100	24 25	l	3.6 3.5	2	2.7	3.7	335-345	325-335	4.6	9.2	8-18	l
0-4 1-6	20-25	19	E-071	20	l	6.5	6	2.8 6.0	4.5 5.9	040-060	035-040 000	5.2 9.3	9.2 18.0	8-18 10-31	
1-6 1-6	20-25	18	E-064	25	l	6.9	3	6.1	6.9	009-013	316-319	15.8	16.0	9-20	ľ
6-8	5-10	60	- ***	10	1	"	i	7.0		334-341	333-340			8-24	
6-8	10-15	22	F-362	10	ĺ	9.2	4	5.6	6.3	304	333	15.9	20,0	15-32	ĺ
6-8	10-15	23	F-365	12	7.7	8.2	1		11.0	040	050-070	15.3	20.0	15-32	
6-8	10-15	9	D-085	14]	4.2	5	6.2	5.4	†	033-043†	6.1	10.4	2-29	ĺ
6-8 C 4	10-15 20-25	10 16	D-122 E-062	15 20	l	6.2 7.2	7	8.0 6.1	6.5 7.1	020	040-050 350-000	9.9 11.8	12.0 16.0	3-10 11-30	
6-8 8-15	5-10	40	J-035	1 4	12.5	16.5	3	12.7	12.2	317	334	29.4	40.0	24-54	
8-15	5-10	47	1		i	1	4	9.0		321-322	311-318		.5.0	23-29	
8-15	5-10	45		8	1	ŀ	2	9.0		349-355	347-354			23-33	
8-15	10-15	70		10	ļ			16.0		025]	
8-15	15-20	5	C-500	18	١,,	6.3	3	8.8	8.8	1	330†	14.3	32.0	18-19	
> 15	5-10 5-10	73 78*		10	14 20		1	15.0		260 300		1			
> 15 > 15	5-10	79A**	l	1 1	24	l		1	1	300		1		1 1	
> 15	5-10	7900			24	1			i I					1	

.

																	Deerse	of Chie 4- C
Wind and	Wave Data	1					1				· · · · · · · · · · · · · · · · · · ·			- Dook A	nidahina		n esponse	of Ship to Se
				 -		-	leave		<u> </u>			Γ	Strain, Ma	iin Deck Ar T	musnips	T	T	
Heading of Swell Relative to Ship deg		ft ² Square Height From Wind Data	Wind Velocity for 8 Hours Preceding Test knots	E, Value of Mean Square, 17 ²	N _A , Variations per Hour	Predicted Maximum Value in One Hour, a	Number of Variations in Sample	Maximum Reasured Variation in Sample, 9	Maximum Predicted Variation in Sample, g	R = Predicted Max Measured Max	E, Value of Mean Square Kips Squared	N _A , Variations ner Hour	Predicted Maximum Value in One Hour kips	Humber of Variations in Sample	Maximum Measured Variation in Sample, kips	Maximum Preficted Variation in Sample, kips	Predicted Max R = !Aeasured Max	F. Value of Mean Square Degrees Squared
										Head S	Sens		<u> </u>					
325-335 355-25 355-345 000 316-319 005-015 332-340 350-000 318-358 350-000 342-350 346-354 353-001† 020 019	4.6 10.4 12.5 9.3 15.8 11.9 17.2 17.7 11.8 22.0 58.8	9.2 20.0 24.0 18.0 16.0 32.0 24.0 16.0 30.0 48.0	8-18 12-30 14-21 10-31 9-20 16-33 8-26 8-26 17-30 24-30 11-30 14-20 30-40 23-33 22-28 22-53 36-54	0.00037†† 0.000023†† 0.000090†† 0.003. 0.0073 0.000041†† 0.00070 0.00060 0.00099 0.0012†† 0.0020†† 0.0020†† 0.000305†† 0.0013† 0.0014 0.0014 0.0019 0.00388†† 0.0019 0.00388†† 0.0075	480 530 480 474 600 480 564 565 529 515 510 600 404 406 479 488 418 416 408 413 600 400 338	0.057 0.0116 0.075 0.140 0.210 0.016 0.042 0.062 0.079 0.086 0.110 0.044 0.200 0.110 0.089 0.093 0.248 0.200 0.258 0.107 0.157	80 315 112 245 279 240 113 254 141 206 170 190 404 210 319 323 349 381 204 344 289 200 169	0.040 0.015 0.065 0.15 0.210 0.015 0.066 0.063 0.070 0.10 0.040 0.21 0.086 0.099 0.180 0.200 0.30 0.090	0.13 0.20 0.058 0.058 0.07 0.19 0.087 0.09 0.16 0.22 0.24 0.106	0.87 0.95 0.87 0.92 1.00 0.90 1.01 0.91 0.89 1.10 0.81 1.18	0.026†† 0.0265†† 0.73 0.69 4.38 0.060 0.57 0.48 0.53 0.67 2.31†† 0.101†† 3.72 2.05 1.10 1.33 10.87 16.55 0.60 4.98†† 28.18	360 720 420 463 696 602 566 600 491 515 750 780 444 445 483 488 389 362 290 650 360	0.42 0.425 2.10 2.06 5.31 0.62 1.90 1.75 1.81 2.05 3.91 0.82 4.76 3.62 2.61 2.90 8.03 9.88	60 420 98 239 325 301 113 260 131 206 250 250 444 230 322 326 324 332 49 315 180	0.40 0.40 2.00 2.03 4.70 0.54 2.00 1.65 1.85 2.30 3.65 0.75 4.50 3.68 2.75 2.65 7.50 9.80	1.83 1.94 5.04 0.58 1.65 1.63 1.61 1.89 4.76 3.34 2.51 2.78 7.90 9.80 1.82	0.92 0.96 1.07 1.08 0.83 0.98 0.87 0.82 1.05 0.91 0.92 1.05 1.05	0.0038†† 0.00032†† 0.22†† 0.16†† 0.39†† 0.0078†† 0.102 0.118 0.166†† 0.035†† 0.035†† 0.039†† 1.46 0.80 0.31 0.26 2.04 4.74. 0.50 0.48†† 9.72 8.132
<u> </u>	<u> </u>	<u> </u>		0.0130	330	0.234	1	0,22	<u> </u>		lead Seas	L	<u> </u>	1			<u> </u>	0.101
068 325-335 035-040 000 316-319 333-340 333 050-070 033-043† 040-050 350-000 334 311-318 347-354	9.1 4.6 5.2 9.3 15.8 15.9 15.3 6.1 9.9 11.8 29.4	8.0 9.2 9.2 18.0 16.0 20.0 20.0 10.4 12.0 40.0	12-17 8-18 8-18 10-31 9-20 8-24 15-32 15-32 2-29 3-10 11-30 24-54 23-29 23-33	0.00052†† 0.00037†† 0.00023†† 0.0033 0.0073 0.0012 0.0020†† 0.0015 0.0037 0.0047†† 0.0020†† 0.0066 0.0079†† 0.0035 0.0031 0.00695 0.0083††	510 480 384 474 600 499 495 497 368 483 510 384 457 465 514	0.057 0.057 0.015 0.140 0.210 0.086 0.110 0.097 0.140 0.170 0.200 0.210 0.150	340 80 83 245 279 208 403 331 276 387 170 404 61 203	0.055 0.040 0.010 0.15 0.210 0.089 0.110 0.086 0.140 0.170 0.180 0.180 0.130	0.13 0.20 0.08 0.093 0.14 0.20 0.14 0.12	0.87 0.95 0.90 1.08 1.00 1.11 1.08 0.86 0.92	0.22 0.0152†† 0.0514†† 0.69 4.38 0.65 1.17 1.21 1.31 1.62 2.31†† 5.58 1.250†† 1.680 14.75 0.60 9.586	612 360 500 463 696 475 495 746 388 484 750 396 465 460 358 262 390	1.19 0.295 0.560 2.06 5.31 2.01 2.66 2.68 2.80 3.17 3.91 5.77 2.78 3.20 9.45 1.60 7.60	306 60 109 239 325 198 403 373 291 387 250 415 62 199 178 70.	1.15 0.25 0.49 2.03 4.70 2.05 3.25 2.65 3.35 3.51 3.65 5.39 2.26 3.20 9.00 2.10 6.60	1.13 1.94 5.04 1.85 2.66 2.76 2.74 3.11 5.80 2.99 8.80 1.60 7.10	0.98 0.96 1.07 0.90 0.82 1.01 0.82 0.89 1.07 0.93 0.98 0.76 1.07	0.046†† 0.0038†† 0.160 0.390†† 0.173 0.230†† 0.031†† 0.610 0.380 0.035†† 1.618 1.470†† 0.698 0.270 4.022 7.628 12.8

.

se.

				Response	of Ship to Sea	1												
Strain, Ma	in Deck Am	nidships						Pitch			. :	:			Roll			
cimum Hour		sured	dicted	d Max	ared	Su	Kimum Hour, deg		sured	dicted ample, deg	ed Max	Mean es Squared	SE .	Kimum Hour, deg		sured Sample, deg	licted ample, deg	d Max
Predicted Maximum Value in One Hour kips	Yumber of Variations in Sample	Maximum Reasured Variation in Sample, kips	Maximum Predicted Variation in Sample, kips	$R = \frac{\text{Predicted Max}}{\text{Measured Max}}$	E, Value of Mean Square Degrees Squared	N _A , Variations per Hour	Predicted Maximum Value in One Hour, deg	Number of Variations in Sample	Maximum Measured Variation in Sample, deg	Maximum Predicted Variation in Sample,	R = Predicted Max	$oldsymbol{E}$, Value of Mean Square Degrees Squared	N _A , Variations per Hour	Predicted Maximum Value in One Hour,	Number of Variations in Sample	Maximum Measured Variation in Sample, deg	Maximum Predicted Variation in Sample,	R = Predicted Max Measured Max
-											i	L	·` I					
0.42 0.425	60 420	0.40 0.40			0.0038†† 0.00032††	360 240	0.150 0.042	60 140	0.125 0.040	,		0.340 0.0855††	227 240	1.35 0.68	34 140	1.40 0.65	1.09	- 0.78
2.10 2.06	98 239	2.00 2.03	1.83 1.94	0.92 0.96	0.22†† 0.16††	420 300	1.10 0.96	98 155 325	1.00 1.00 1.50			0.33†† 1.90 1.390††	300 240 194	1.40 3.30 2.70	70 124 90	1.20 3.3	3.00	0.92
5.31 0.62 1.90	325 301 113	4.70 0.54 2.00	5.04 0.58 1.65	1.07 1.08 0.83	0.39†† 0.0078†† 0.102	696 360 521	1.57 0.215 0.80	180 104	0.20 0.63	0.69	1.10	0.280 0.22	228 521	1.15 1.17	114 104	2.50 1.40 1.50	1.15 1.02	0.82 0.67
1.75 1.81 2.05	260 131 206	1.65 1.85 2.30	1.63 1.61 1.89	0.98 0.87 0.82	0.118 0.166†† 0.15††	508 491 515	0.86 1.00 0.98	229 131 206	0.75 0.90 0.90	0.80	1.07	0.49 0.25 0.35	402 341 339	1.71 1.21 1.46	174 91 136	1.90 0.90 1.60	1.60 1.06 1.31	0.84 1.18 0.82
3.91 0.82	250 250	3.65 0.75	·		0.035†† 0.019††	480 600	0.43 0.35	160 190	0.42 0.25	2.00		0.94†† 0.326††	210 388	2.24 1.30	70 123	2.00 1.25		
4.76 3.62 2.61	444 230 322	4.50 3.68 2.75	4.76 3.34 2.51	1.05 0.91 0.92	1.46 0.80 0.31	388 428 439	2.95 2.20 1.26	388 221 293	3.10 2.05 1.40	2.90 2.08 1.32	0.94 1.02 0.94	1.83 0.51 0.34	321 406 444	3.25 1.75 1.40	321 221 296	4.60 1.70 2.50	3.20 1.70 1.40	0.70 1.00 0.57
2.90 8.03 9.88	326 324 332	2.65 7.50 9.80	2.78 7.90 9.80	1.05 1.05 1.00	0.26 2.04 4.74	450 380 351	1.26 3.50 5.26	300 317 322	1.20 3.25 5.65	1.20 3.40 5.23	1.00 1.04 0.93	0.31 1.29 1.90	426 373 333	1.37 2.76 3.32	284 312 305	1.40 4.00 4.10	1.30 2.70 3.30	0.93 0.68 0.81
1.71	249	1.87	1.82	0.97	0.50	290	1.71 1.72	241 238	1.87 1.62	1.65	0.88	5.80 0.74††	225 210	5.60 1.99	196 102	5.80	5.52	0.96
5.68 12.92	315 180	5.35 12.20	12.10	0.99	0.48†† 9.72 8.132	493 326 328	7.50 6.90	163 164	6.90 5.40	7.04 6.40	1.01 1.20	3.18 18.52††	354 260	4.30 10.0	177 28	1.85 6.00 9.5	4.06	0.68
1				0.00	0.046††	275	0.509	240	0.50		<u> </u>	0.630	243	1.86	162	2.60	1.80	0.70
1.19 0.295 0.560	306 60 109	1.15 0.25 0.49	1.13	0.98	0.0038††	360 308	0.150 0.190	60 67	0.125 0.17			0.340 0.410	227 180	1.35 1.45	34 45	1.40 1.30	1.09 1.25	0.7 8 0.96
2.06 5.31 2.01	239 325 198	2.03 4.70 2.05	1.94 5.04 1.85	0.96 1.07 0.90	0.160 0.390†† 0.173	300 696 475	0.960 1.580 1.350	155 325 198	1.00 1.50 0.95	0.96	1.01	1.90 1.390†† 0.460	240 194 398	3.30 2.70 1.65	124 90 166	3.30 2.50 1.30	3.02 1.50	0.92 1.15
2.66 2.68	403 373	3.25 2.65	2.66 2.76	0.82 1.01	0.230†† 0.031††	495 495	1.200 0.430	403 373	1.20 0.42			0.350 0.400	234 404	1.38 1.55	191 202	1.40 1.40 2.30	1.35 1.40 2.03	0.97 1. 00
2.80 3.17 3.91	291 387 250	3.35 3.51 3.65	3.11	0.82 0.89	0.610 0.380 0.035††	335 280 480	1.88 1.45 0.43	244 223 160	2.08 1.60 0.42	1.83 1.43	0.88	0.760 0.710 0.940	303 309 210	2.08 1.98 2.24	227 191 70	2.00 2.00	1.93	0.88 0.97
5.77 2.78 3.20	415 62 199	5.39 2.26 3.20	5.80 2.99	0.93	1.61 0 1.470†† 0.690	418 450 440	3.12 2.98 2.05	370 60 190	3.50 2.45 2.25	3.09 1.92	0.89 0.85	3.920 0.550†† 0.400	295 450 465	4.70 1.83 1.57	310 60 200	4.60 1.50 1.70	4.70 1.50	1.04 0.88
9.45 1.60	178 70	9.00 2.10	8.80 1.60	0.98 0.76	0.270 4.022	372 370	1.25 4.86	99 185	1.40 5.30	1.12 4.59	0.80 0.87	2.500†† 1.780	185 314	3.60 3.18	37 157	3.00 3.80	3.00	0.79
7.60	195	6.60	7.10	1.07	7.62 8 12.8	314	6.60	157	6.00 9.50	6.20	1.03	61.00	244	18.8	122	19.0	17.30	0.90
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	12.8	296	8.5	148	7.50	8.00	1.07							

TABLE 1 (continued)

	nd Speed ification				С	E s haracteris	timates tic Wav		, ft		Wind and	Wave Da	ita		
				_		ea <u>.c.</u>	+++ s		vell . <u>s</u>			Ε‡‡,			
Wave Height	Ship Speed	Record Number	Stereo Photo	Ship Speed	of stimate	Analys hoto	r of timator	e of Estimates	Analys hoto	Heading of Sea Relative	Heading of Swell-Relative	Mean S Wave h	leight	Wind Velocity for 8 Hours	
ft .	knots		Number	knots	Average of Visual Estimates	From TMB Analysis of Stereo-Photo	Number of Visual Estimators	Average of Visual Estin	From TMB Analysis of Stereo-Photo	to Ship deg	to Ship deg	From Stereo Data	From Wind Data	Preceding Test knots	E, Value of
		· · ·			· · · · ·		•				1			1	
0-4	10-15	14	E-021	12	,	5.6	7	3.7	4.5		075-095	5.3	5.2	9-20	0.0004
0-4	15-20	29	H-087	20	il	2;9	1	2.7	3.7		C80-100	3.5	9.2	8-18	0.0001
0-4.	20-25	28	H-078	25		3.8	4	2.7	٠	100-110	080-100	3.0	9.2	8-18	0.0000
0-4 4-6	20-25 10-15	32 11	H-100 D-148	25 15	}	3.5 8.5	3 6	2.8 5.5	4.5 5.5	265 080-100	255-265 070	5.2 19.6	9.2 18.0	2-13 3-14	0.0003 0.0038
4-6	15-20	20	E-074	20		7.3	.3	5.9	6.5	160-180	080-098	11.3	18.0	6-30	0.0038
4-6	20-25	37	1-073	25		4.3	2	4.3	6.0	220-200	090-120	10.3	10.4	14-22	0.0026
6-8	10-15	27	G-150	12		4.2	2	6.5	7.1	082-085†	065-068†	8.1	18.4	15-21	0.003r
. 6-8	15-20	13	D-199	16		6.5	3.	6.9	6.3		072-083	8.9	16.0	15-26	0.003 i
6-8	15-20	3	C-470	20	1 1	9.1 6.9	3	7.8	7.5 6.9	225	095	8.9	24.0	20-28	0.0050
6-8	20-25 5-10	17	. E-064	25 10.		6.9	3 5	6.1 10.0	0.9	223	225-235 090	15.8	16.0	6-30 22-21	0.0067 0.0053
8-15 8-15	5-10	52	}	10.	9		. •	11.0	1		110			12.5	0.002;
8-15	15-20	5	· C-500	18		6.3	3	8.8	8.0	ŀ	330	14.3	32.0	18-19	0.003
		· · · · ·					·		·		•			<u> </u>	
0-4	10-15	15	E-034	15		5.0	7	2.3	١	115-125	135	8.9	5.2	8-12	0.000!
4-6	5-10	7	D-017	10	4.8	2.8 5.8	3	4.5	4.5 5.1		210 220-230†	5.1 11.6	9.2	8-20] [
4-6	10-15 10-15	21 63	F-344	12	7.0	3.6	li	6.0	. 3.1	153-158	152-158	11.0	13.6	19-31 8-26	0.0001
4-6	15-20	8	D-017	18		2.8	3	4.4	4.5		040-044	5.1	9.2	10-31	0.0001
4-6	15-20	6	0-017	18		2.8	3	4.5	4.4	ľ	206-226	5.1	9.2	9-17	0.000
6-8	5-10	35	1-014	10		6.4	3	7.5	7.9	213-273	223-233	22.0	30.0	19-30	0.0000
6-8	10-15	26	G-127	15		5.5	6	6.6	6.7	109-119	119	19.8	16.8	10-31	0.001!
6-8	15-20	68	C-500	17	1	6.3	3	8.8	8.0	255	244	14.3	32.0	12-19	0.0004
6-8 6-8	20-25	17 36	E-064 1-052	25 25		6.9 3.8	3 5	6.1 7.1	6.9	255 225	225-235 205-255	15.8 9.7	16.0 18.4	6-30 22-35	0.0067
8-15	15-20	71	""	16	12	""	"	′′′	"."	220		***		1	†
815	15-20	75		16	11		Ι΄	11.0		210	1		ĺ	1	0.002!
8-15	20-25	50	L	25	<u> </u>]	3	9.0		225	214-222	<u> </u>	<u> </u>	22-29	0.0007
0-4	20-25	33	H-155	25	Ī	6.0	6	3.6	5.3	160-170	180-190	12.0	9.2	16-20	0.000
4-6	10-15	12	D-159	12		7.1	5	5.0	6.7	160	160	13.6	9.2	3-21	0.0000
4-6	10-15	63		12	1	[1	6.0		153-158	152-158		-	8-26	0.0001
6-8	0-5	56		5			2	8.0		1	177		1	29-32	0.0001
6-8	10-15	57	ŀ	15	i		! !	8.0		167†	157-177†			29-32	0.0002
6-8 8-15	15-20 5-10	59 55		20 10	1	1	1 2	8.0 9.0		167	157-177 157-177			8-24 8-24	0.0001
8-15	10-15	42		12			4	10.0		167 175-185	185-175			28-31	0.0001
8-15	10-15	76		15	13		'	13.0		190	1		,	1 200.	0.0016
8-15	15-20	48		20			4	9.0	1	180-182	170-178		ļ	23-29	0.0004
8-15	20-25	49		25	1		4	9.0		186	176-186	1	1	23-26	0.0004
•Re	cords were	obtained	on ORISKAN	Ÿ.		†Thes	e sea c	ond itions	were we	ell defined and n	early unidirection	nal.	-	‡V alues	were neg

#For the method a

^{**}Records were obtained on ESSEX.

 $[\]dagger\dagger E$ is based on maximum measured value.

	*****																Re	SOONSA C	f Ship to
	Wind and	Wave Da	ita					Heave						Strain,	Main Deck	Amidships			T
of ive p	Heading of Swell Relative to Ship deg	E‡‡, Mean S Wave F From Stereo Data	quare	Wind Velocity for 8 Hours Preceding Test knots	F_{\star} , Value of Hean Square, g^2	V _A · Variations per Hour	Predicted Maximum Value in One Hour, g	Number of Variations In Sample	Maximum 'Aeasured Variation in Sample, g	Maximum Predicted Variation in Sample, g	$R = \frac{\text{Predicted Max}}{\text{Measured Max}}$	E, Value of Mean Square Kips Squared	N _A , Variations per Hour	Predicted Maximum Value in One Hour kips	Number of Variations in Sample	Maximum Measured Variation in Sample, kips	Maximum Predicted Variation in Sample, kips	R = Measured Max	E, Value of Mean Square
			,					<u> </u>	.		Beam	Seas							1
0 0 0 5 5	075-095 030-100 080-100 255-265 070 080-098 090-120 065-068† 072-083 095 225-235 090 110	5.3 3.5 3.0 5.2 19.6 11.3 10.3 8.1 8.9 8.9 15.8	5.2 9.2 9.2 9.2 18.0 10.4 18.4 16.0 24.0 16.0	9-20 8-18 8-18 2-13 3-14 6-30 14-22 15-21 15-26 20-28 6-30 22-11	0.0004†† 0.00016†† 0.00057†† 0.00038†† 0.0018 0.0017 0.0026†† 0.0030 0.0031†† 0.0050 0.0067 0.0053†† 0.0022 0.0031	444 600 610 540 420 524 540 447 450 422 484 436 398	0.051 0.032 0.019 0.049 0.150 0.130 0.128 0.109 0.138 0.170 0.210	370 250 225 595 350 253 225 373 375 218 242 73 199	0.50 0.030 0.018 0.05 0.15 0.120 0.120 0.150 0.140 0.170 0.190	0.098 0.13 0.17 0.19 0.11	0.75 0.87 1.00 1.00 0.87 0.86	0.330 0.072†† 0.0376†† 0.130†† 0.660 1.270†† 0.590 0.490 0.900 0.300 2.630 1.160†† 2.788 0.60	444 600 446 390 434 134 591 437 497 368 524 472 320 262	1.41 0.68 0.48 0.88 4.00 2.50 1.94 1.76 2.36 1.36 4.20 2.68 4.03	370 250 164 430 373 65 246 364 415 190 262 79 160 70	1.47 0.63 0.438 0.88 2.30 2.30 1.81 1.75 2.70 1.35 4.50 2.25 4.05 2.10	1.40 1.92 1.81 1.70 2.33 1.26 3.83 3.77 1.60	0.95 0.86 1.00 0.97 0.86 0.94 0.85	0.034 † 0.005! 0.060 0.180 0.005! 0.190 0.040 0.096 0.450 0.340 0.830
	330	14.5	32.0	10-13	0.0031	514	0.140	137	0.140	0.12	Quarter	<u> </u>		1.60	70	2.10	1.00	0.70	0.270
5 8 3 9	135 210 220-230 † 152-158 040-044 206-226 223-233 119 244 225-235 205-255	8.9 5.1 11.6 5.1 5.1 22.0 19.8 14.3 15.8 9.7	5.2 9.2 13.6 9.2 9.2 30.0 16.8 32.0 16.0 18.4	8-12 8-20 19-31 8-26 10-31 9-17 19-30 10-31 12-19 6-30 22-35	0.00052†† 0.00061†† 0.00012†† 0.00063†† 0.00017†† 0.000042†† 0.00150 0.00040†† 0.00067 † 0.00054	480 450 450 450 360 485 468 390 484	0.056 0.061 0.027 0.062 0.032 0.016 0.096 0.049 0.210 0.136 0.043	350 240 240 316 180 216 234 150 242	0.055 0.060 0.026 0.060 0.030 0.015 0.11 0.045 0.190 0.165 0.069	0.091 0.19 0.12 0.064	0.83 1.00 0.73 0.93	0.170 0.160 0.630 0.442†† 0.340†† 0.220 0.150 0.530 2.120†† 2.630 0.100	400 203 374 300 135 144 395 406 208 524 240 268 251	1.01 0.92 1.93 1.57 1.30 1.03 0.92 1.78 3.36 4.20 0.74	332 88 187 160 94 72 178 203 80 262 140	1.22 0.95 1.80 1.47 1.27 1.35 1.07 2.10 3.05 4.50 0.95	1.00. 0.86 1.80 0.97 0.89 1.68 3.83 0.70 5.64 2.60	0.82 0.91 1.00 0.72 0.83 0.80 0.85 0.74	0.043† 0.0068 0.117† 0.140† 0.0515 † 0.040 0.110† 0.390† † 10.08 2.724 0.260
											Follow	ing Seas							
5 2	180-190 160 152-158 177 157-177 † 157-177 185-195 170-178 176-186	12.0 13.6	9.2	16-20 3-21 8-26 29-32 29-32 8-24 8-24 28-31 23-29 23-26	0.000144†† 0.000039†† 0.00012†† 0.00012 0.00022†† \$ 0.00014†† 0.0009†† 0.00162 0.00047†† 0.00040	420 420 450 480 480 420 480 400 430 530	0.029 0.0155 0.027 0.028 0.037 0.029 0.023 0.138 0.053 0.047	189 350 240 240 240 153 256 200 100 256	0.028 0.015 0.026 0.030 0.038 0.026 0.022 0.138 0.046 0.050	0.026 0.092 0.047	0.87 0.67 0.94	0.043†† 0.550 0.442†† 0.590 0.380 0.270†† 0.430†† 1.290†† 11.347 0.930††	420 248 300 368 360 240 300 319 224 180 312	0.51 1.74 1.57 1.87 1.50 1.22 1.57 2.71 7.85 2.20 2.46	189 206 160 184 180 40 110 170 112 33	0.475 2.11 1.47 1.78 1.50 1.00 1.43 2.78 7.65 1.80 2.30	1.72 1.75 1.40 2.58 7.30	0.81 0.98 0.94 0.92 0.95	0.0188 0.017† 0.140† 0.170 0.070 0.054† 0.136† 0.130 4.52 0.190† 0.111

and nearly unidirectional.

Values were negligible.

 $\ensuremath{\dagger \dagger} For the method of computing \ensuremath{\mathcal{E}}$ see TMB Report 1091 (Reference 5).

In cases where conditions did not permit visual estimates, estimates of wave height were made by extrapolation from earlier and later visual estimates.

				Res	ponse of	Ship to Sea					•								
	Strain,	Main Deck	Amidships	·					Pitch			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Roll			
per Hour	Predicted Maximum Value in One Hour kips	Number of Variations in Sample	Maximum Measured Variation in Sample, kips	Maximum Predicted Variation in Sample, kips	$R = \frac{Predicted Max}{Measured Max}$	E, Value of Mean Square Degrees Squared	V _k , Variations per Hour	Predicted Maximum Value in One Hour, deg	Number of Variations in Sample	Maximum Measured Variation in Sample, deg	Maximum Predicted. Variation in Sample, deg	R = Reasured Max	E, Value of Mean Square Degrees Squared	N _k . Variations per Hour	Predicted Maximum Value in One Hour, deg	Number of Variations in Sample	Maximum Measured Variation in Sample, deg	Maximum Predicted Variation in Sample, deg	R = Predicted Max Measured Max
144 500 146 190 134 134 191 137 197 168 124 172 120 !62	1.41 0.68 0.48 0.88 4.00 2.50 1.94 1.76 2.36 1.36 4.20 2.68 4.03 1.60	370 250 164 430 373 65 246 364 415 190 262 79 160 70	1.47 0.63 0.438 0.88 2.30 2.30 1.81 1.75 2.70 1.35 4.50 2.25 4.05 2.10	1.40 1.92 1.81 1.70 2.33 1.26 3.83 3.77 1.60	0.95 0.86 1.00 0.97 0.86 0.94 0.85 0.93 0.76	0.034†† † 0.0055†† 0.060†† 0.180 0.0056†† 0.190†† 0.096†† 0.450†† 0.340†† 0.830†† 0.872 0.270	420 333 480 223 228 540 385 420 309 524 426 336 372	0.45 0.179 0.610 0.99 0.175 1.10 0.49 0.78 1.60 1.45 2.24 2.25 1.25	350 121 530 186 110 225 321 350 159 262 71 168 99	0.60 0.162 0.630 1.10 0.162 1.00 1.15 0.75 1.50 1.37 1.88 2.40	0.97 1.52 2.12 1.12	0.88 1.32 0.88 0.80	0.470 0.480 0.970 1.000 1.000 2.320 1.750 0.210 0.750 3.600 2.130 0.950†† 1.773 2.500††	314 233 204 152 179 241 264 392 225 246 216 426 370 185	1.64 1.60 2.28 2.25 2.28 3.56 3.10 1.12 2.20 4.45 3.40 2.40 3.22 3.60	262 97 85 186 149 116 110 327 188 127 108 71 135	1.70 1.65 2.50 2.40 1.90 4.10 3.10 1.40 1.75 4.20 3.20 2.35 3.40 3.00	1.62 1.48 2.02 2.30 2.20 3.30 2.86 1.11 1.99 4.18 3.16	0.96 0.90 0.81 0.96 1.16 0.81 0.92 0.79 1.14 0.99 0.99
100 103 174 100 135 144 395 106 208 324 240	1.01 0.92 1.93 1.57 1.30 1.03 0.92 1.78 3.36 4.20 0.74 6.05 2.85	332 88 187 160 94 72 178 203 80 262 140	1.22 0.95 1.80 1.47 1.27 1.35 1.07 2.10 3.05 4.50 0.95	0.97 0.89 1.68 3.83 0.70 5.64 2.60	0.82 0.91 1.00 0.72 0.83 0.80 0.85 0.74 0.82	0.043†† 0.0068†† 0.117†† 0.140†† 0.0515†† † 0.040 0.110†† 0.390†† 0.340†† † 10.08 2.724 0.260	400 203 374 240 186 320 406 208 524 334 276 365	0.50 0.195 0.83 0.87 0.518 0.49 0.81 1.43 1.45 7.70 3.92 1.16	332 88 187 128 130 144 203 80 262 167 138 158	0.50 0.175 0.78 0.82 0.50 0.45 0.75 1.30 1.37 8.00 3.70 1.25	7.20 3.68 1.15	0.90 0.99 0.99	0.500 0.900 1.400 10.100†† 3.710 2.740 2.900 3.370 15.290 2.130 0.740 61.00 4.800	183 202 250 240 186 168 278 244 217 216 161	1.60 2.18 2.78 7.40 4.43 3.75 4.13 4.30 9.0 3.40 1.94	154 87 125 128 130 84 125 122 105 108 94	1.50 2.10 2.60 7.00 4.60 4.20 4.35 5.00 9.80 3.20 2.00	1.59 2.00 2.60 4.20 3.48 3.75 4.03 8.40 3.16 1.85	1.06 0.95 1.00 0.92 0.83 0.86 0.81 0.86 0.99
120 248 300 168 160 240 100 119 224 180	0.51 1.74 1.57 1.87 1.50 1.22 1.57 2.71 7.85 2.20 2.46	189 206 160 184 180 40 110 170 112 33 156	0.475 2.11 1.47 1.78 1.50 1.00 1.43 2.78 7.65 1.80 2.30	1.72 1.75 1.40 2.58 7.30	0.81 0.98 0.94 0.92 0.95	0.0188†† 0.017†† 0.140†† 0.170 0.070 0.054†† 0.136†† 0.136† 0.190†† 0.111	415 248 240 383 336 424 300 448 218 300 348	0.33 0.31 0.87 1.01 0.63 0.57 0.88 0.88 4.93 1.03 0.81	187 206 128 192 168 106 110 239 109 55	0.31 0.25 0.82 1.00 0.63 0.50 0.80 0.88 5.10 0.88	0.94 0.61 0.85 4.62 0.76	0.94 0.97 0.97 0.91	0.77†† 2.90 10.100†† 0.590 11.16 3.80 2.950†† 14.140 54.77 10.300†† 8.10	193 196 240 358 226 195 330 286 202 180 176	2.05 3.95 7.40 1.86 7.80 4.35 4.13 8.85 16.80 7.30 6.50	87 162 128 1/9 113 48 102 153 101 33 88	1.85 3.80 7.00 2.00 7.50 6.10 3.70 9.90 19.0 6.00 7.50	3.80 1.75 7.30 3.85 8.50 15.90 6.03.	1.00 0.88 0.98 0.64 0.86 0.84

witions did not permit visual estimates, estimates of wave extrapolation from earlier and later visual estimates.

3

Figure 2a — Distribution of Variation in Pitch Angle

Figure 2b - Cumulative Distribution of Variation in Pitch Angle
Figure 2 - Sample of Rayleigh (Short-Term) Distributions

Note: To determine \boldsymbol{E} from a set of experimental data we need to

know two points on the line
$$\left(\frac{n_1}{N}, \nu_1^2\right)$$
 and $\left(\frac{n_2}{N}, \nu_2^2\right)$

where n_i denotes the number of variations exceeding π_i , and N is the total number of variations in the set of data. From the equation of the slope of the line we obtain:

$$E = \frac{x_1^2 - x_2^2}{\log_2 n_2 - \log_2 n_1}$$

Figure 8 - Long-Term Cumulative Distribution of Longitudinal Stress and Bending Moment Amidship, for Wartime Service in North Atlantic Ocean

Figure 4 - Long-Term Distribution of Heave Acceleration for Wartime Service in North Atlantic Ocean

Figure 5 - Long-Term Cumulative Distribution of Pitch Angle for Wartime Service in North Atlantic Ocean

Figure 6 - Long-Term Cumulative Distribution of Roll Angle for Wartime Service in North Atlantic Ocean

The distribution patterns give the probability of exceeding any given magnitude of motion or bending moment and can be utilized as a load spectrum in designing for endurance strength. For any set of operating conditions, characteristic and extreme values can be predicted from a knowledge of the corresponding value of E. Useful statistical estimates are made as follows: 9

- a. The most frequent magnitude of variations* is 0.707 \sqrt{E} .
- b. The average magnitude of the variations is 0.866 \sqrt{E} .
- c. The most probable extreme value x_m experienced in a sample of N variations is $x_m \sim k\sqrt{E}$. For large values of N, k is approximately equal to $\sqrt{\log_e N}$.

For design purposes we may make a statistical estimate of the extreme value of the various variables as follows:

Let the value of E corresponding to the most severe condition be E_m . If the ship is expected to experience N variations during the time it is exposed to this operating condition, then

$$x_{m_1}^2 = E_{m} (y + \log_e N)$$

where N is assumed large.

八五十 八五十

The value of y is a function of the risk** f (selected by the designer). Table 2 of Reference 10 gives y as a function of f. For example, if we take one chance in a thousand, f = 0.001 and y = 7.0. For f < 0.1, $y \approx \log_e (1/f)$.

The value x_{m_1} is then that magnitude of the variable which, on the average, is exceeded only by the fraction f of many similar ships operating under the most severe service conditions.

DISTRIBUTION PATTERNS OF SHIP MOTIONS AND LONGITUDINAL HULL BENDING MOMENTS

The motions and stresses (bending moments) given in this section are those associated with the rigid body motions of the ship (heaving, rolling, and pitching) and do not include vibratory motions and stresses induced by slamming.

^{*}The motion, stress, and bending moment will be given in terms of their variation, which is defined as the magnitude of the change from a maximum value to the succeeding minimum value.

^{**} f is the fraction of all samples of size N, belonging to a distribution specified by p(x), which will have at least one value of $x > x_{m_x}$.

SHORT-TERM DISTRIBUTION

The Rayleigh distribution corresponding to a particular set of operating conditions (sea state, speed, and course) is defined by the corresponding mean square value E. All Rayleigh distributions become identical if the probability P is plotted against $v^2 = x^2/E$ instead of against x directly. With this artifice it is necessary to know only the value of E corresponding to a particular sea condition, ship speed, and heading in order to obtain the probability of exceeding any value of x from a single graph (Figure 2b) which is equally applicable to wave heights, ship motions, and hull stresses. The previous section gives formulas which may be used to estimate characteristic and expected extreme values.

LONG-TERM DISTRIBUTION

The short-term distributions, each of which is characterized by a value E, will now be be used as building blocks to construct the long-term frequency distribution patterns of the ship responses to the sea applicable to wartime service in the North Atlantic Ocean.

Distribution patterns for other "missions" or operating areas can be readily computed from data given in this report. Each of the short-term distributions will be weighted in accordance with the relative fraction of time in which carriers of this class will operate in a given sea state f_2 , at a given heading to the waves f_3 , and at a given ship speed f_1 .

The fractions of time f_1 that the ship will make the given speeds for the specified range of characteristic wave heights, including all headings relative to the predominant wave direction, are:

Speed	Ct	naracteris	tic Wave	Height, fe	et
knots	0-4	4-6	4-8	8-15	> 15
5-10	0.051	0.053	0.079	0.188	0.503
10-15	0.288	0.369	0.425	0.537	0.368
15-20	0.353	0.376	0.346	0.201	0.099
20-25	0.175	0.139	0.119	0.052	0.035
25-30	0.112	0.057	0.026	0.021	0
> 30	0.021	0.006	0.005	0	0

The fractions of time f_2 that specified ranges of characteristic wave heights will be experienced in the North Atlantic Ocean are:

C	haracterist	ic Wave H	leights, fe	et
0-4	4-6	6-8	8-15	> 15
0.24	0.22	0.17	0.27	0.10

TABLE 2 ${\bf Product\ of\ Weighting\ Factors\ } (\it f_1\it f_2\it f_3\rm)\ Applicable\ to\ Different \\ {\bf Sets\ of\ Operating\ Conditions}$

Ship	Speed	Relative Direction	·	Character	istic Wave	Height, ft	
Knots	Class	of Sea deg	0-4	4-6	6-8	8-15	> 15
5-10	1	0 ± 45 ± 90 ± 135 180	0.00153 0.00306 0.00306 0.00306 0.00153	0.00146 0.00292 0.00292 0.00292 0.00146	0.00168 0.00336 0.00336 0.00336 0.00168	0.01270 0.01270 0.00635 0.01270 0.00635	0.01258 0.01258 0.00629 0.01258 0.00629
10-15	2	0 ± 45 ± 90 ± 135 180	0.00864 0.01728 0.01728 0.01728 0.00864	0.01015 0.02030 0.02030 0.02030 0.01015	0.00904 0.01808 0.01808 6.01808 0.00904	0.03626 0.03626 0.01813 0.03626 0.01813	0.00920 0.00920 0.00460 0.00920 0.00460
15-20	3	0 ± 45 ± 90 ± 135 180	0.01059 0.02118 0.02118 0.02118 0.01059	0.01034 0.02068 0.02068 0.02068 0.01034	0.00735 0.01470 0.01470 0.01470 0.00735	0.01358 0.01358 0.00679 0.01358 0.00679	0.0025 0.0025 0.0012 0.0025 0.0012
20-25	4	0 ± 45 ± 90 ± 135 180	0.00525 0.01050 0.01050 0.01050 0.00525	0.00383 0.00766 0.00766 0.00766 0.00383	0.00253 0.00506 0.00506 0.00506 0.00253	0.00350 0.00350 0.00175 0.00350 0.00175	0.00088 0.00088 0.00044 0.00088 0.00044
25-30	5	0 ± 45 ± 90 ± 135 180	0.00336 0.00672 0.00672 0.00672 0.00336	0.00156 0.00312 0.00312 0.00312 0.00156	0.00055 0.00110 0.00110 0.00110 0.00055	0.00142 0.00142 0.00071 0.00142 0.00071	
> 30	6	0 ± 45 ± 90 ± 135 180	0.00063 0.00126 0.00126 0.00126 0.00063	0.00016 0.00032 0.00032 0.00032 0.00016	0.00011 0.00022 0.00022 0.00022 0.00011		

TABLE 3

Derivation of Predicted Distribution for Variations in Stress for Wartime Duty in the Atlantic Ocean

Probability of Exceeding Given Hagnitude of Variation $(1-P)$ (Hagnitude in kps.)	0.125 0.239 0.300 1.0 1.5 2.0. 2.5 3.0 4.0 5.0 6.0 8.0 10.0 Variation	-	153 0.321 0.011					4-	980	0.598 0.407 0.240 0.122		6.462 0.240 0.128 0.026	0.043																			2.12			0.096 0.014 0.001 0.013
	0.250 0.500 1.0 1.5 2.0. 2.5 3.0 4.0 5.0 6.0		0.321					4-		0.407 0.740 0.178		0.240 0.128																				0.014			0.098 0.014 0.013
	0.250 0.500 1.0 1.5 2.0. 2.5 3.0 4.0 5.0 6.0		0.321					4-	9000	0.407 0.740 0.178		0.240 0.128					-															0.014			0.098 0.014 0.013
	0.250 0.500 1.0 1.5 2.0. 2.5 3.0 4.0 5.0		0.321					4-	9900	0.407 0.740 0.178		0.240 0.128	1,063															-				0.014	·		0.098 0.014 0.013
	0.239 0.500 1.0 1.5 2.0. 2.5 3.0 4.0		0.321					4-	9900	0.407 0.740 0.178		0.240 0.128																	_			0.033	•		0.036 0.014
	0.259 0.500 1.0 1.5 2.0. 2.5 3.0		0.321					4-	0.046	0.407 0.740 0.178		0.240 0.128							 										_			10.0	•		8 8
	0.250 0.500 1.0 1.5 2.0. 2.5		0.321					4-	0.046	0.402 0.240		0.240										8	i				~					25			\vdash
	0.239 0.500 1.0 1.5 2.0.		0.321					4-	0.046	0.402			1,043						1			_					9.02				_		_		
	0.259 0.500 1.0 1.5		0.321					4-	0.046		_	 	3						Ļ			-					96			0.033		0.052			90.0
	0.250 0.500 1.0		0.321					4-	30.0	2 3	2								_			-		0.033	0.037	8		5	7.0	0.093		0.152			0.342
	0.250 0.500		0.321					T	_		9	0.596	2 2	0.022	0.628	9.0		0.017		0.019	0.014	0.035		0.118	0.126	0.214	0.378	0.03		0.219	0.014	0.346			0.512
	0.259 0.				_			1	0.254	, X	0.234	96.2	3	0.184	0.204	9.10	<u>.</u>	0.162		0.174	5 52	5220		0.031	0.437	20.0) S	0.130	35.	0.425	0.152	0.625		0.072 0.025	25.70
	\vdash				. ē		0.230	\dagger	0.7.0	£ 3	969.0	Ŧ. 8	1 5	.655	5	3 5	Ē	0.63 0.54	╁								2 6		—			50.00			0.935
	\vdash	3						╁		_	_			_		_			 							_	—								-
	12	ما			_			₩	-			0.986	_		_	0.80			┼-		5.0		35	_		96.		0.80						2. S	0.963
	<u> </u>	0.55	- 6.53 5.53	6.3	9 9	9	15.5	0.55	6.97	9.9	0.97	6.9		0.97	5	596.9	6.32	1.965	6.3	0.973	0.975	7.6.0	0.857	0.9%	3.5	5		0.963	3 5	6.995	6.5	0.993	0.155	8 4	£ .
Average Number of Variations yet Hour Contributed by Each Operating Condition	N = N	2	a 70	2∶	; *	==	2 2	موا	و و	= m	ye	ye 5	-		, <u>se</u>	٠.		. .	_	•	•			• ~				-							
reage N riations ntributed erating (14444-	e.	7.5	5	2. Z.	7	24.000	7	2.43	3 7	20,37	7.7	2.7	36.5	5 8	3.6	77	3.48 4.175	3	27	33	9 7	2.48	3,25	2 3			9.36	2 2	3,34	7	3.058	97.0	2.52	2.0
	_	H			_			\vdash							-				-																_
Number of Variations Der Hom	×	8	3 3	8	8	¥ \$	\$ \$	82	2 9	3 5	ŝ	8	<u> </u>	<u>s</u> 8	ž		Ξ	2 8	29	¥ {	Ē	S 5	2	£ £	¥ #	3	£ 52	9	3	ž 2	\$	£ 75	92 5	340	3 3
	-71		3 2	2 :	, =	z z	_			, 12		2 2		2 2	2 22	<u>∽</u>	2 2	ъъ	F	. بور	مر ج								, <u>"</u>						~ ~
Jeighting Factor	.24444	2		6.619	10	0.00524	0.630	1.00	0.0058		2		5	0.01110	3			0.01375	0.0016	0.9822	0.0022	0.0022	0.0031	0.005	0.9065	0.0065	0.0063	0.0214	0.0073	0.0003	0.0	6.012 6.003 833	0.003	0.0105	0.06212
1		3, 5, 6)		_			8.0											s. s.			-								-						
Ship Spee		(1, 2, 3,	2(3) 4(3, 5, 6)	(3, 5, 6)	3	ج و و	20,3,4,30,2,4,	ε	€	(5, 6)	(i, 2)	ر اور	:	(3, 6)		G 5 5	6		1				(3, 6)	£	<u> </u>	6	G	£		G.			8. E	(4, 5, 6)	
1 :		-	~	7 .	- M		~ ~	7	~ ~	•	m .	- ^	· m	+-	. 2	~ ~	· m	2		~ :	· ~	7 6	<u> </u>	- 2	~ ~	~ .	. .	~ ~	<u>~</u>	- -	~ .	<u> </u>	===	3 8	
Relative Heading Letterns Wares and Ship	Ĭ		+1 +1	₽, !	R. SR H +1	# # + +	1 + 1 + 1 25 = 1	-		•	\$1:	2 S	3	# H	14	# # #	123	3 3	-		• •		•	+ + +	i i	\$ ¥	를 취 당 등 :	ŖŔ	3	a is	50	4 X	25 E		.
								L											_								<u>.</u>								
Characteristic Wave Height, ft Visual	¥	17	12	7.	2	7 7	2 %	3	33	3 3	3:	33	3	7	:	3 3	2	33	3	2.5	: 3	23	2:	:3	3	3	3	33	7:	3 %	3:	33	? 3	32	7. 9
3 1 3	3						·								3									:	:	"	:		_					1	
Ĭ,	-	Ţ					_	_						-		-			_															1	
18	-	I						\$											3																.

0.0720 0.0376 0.130 0.130 0.100	0.200 0.128 0.026	6.246 0.128 0.626		0.620	0.220
	0.039 0.598 0.402	0.596 0.462		90.0	0.017
	7,7,7			0.20 0.104 0.056	
0.146 0.230	0.71	5 5 5 E		0.573	12.0
5 LCB 7 LCB 3 LCB 6 LCB		7. 0.306. 0.306.			2 0.752
0.01 0.01 0.01 0.05	3555	86.	26.0	16.9	25.9
4.121 3.604 24.000 12.600	7 136 2 2 436 2 436 2 436 2 436	24.15 24.17 70.001	1	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	3,410
3	2532	3 8 9 9	4 S E	585	3 Z Z Z
0063"3 0096"0 12686"3 12686"3	0.0058 0.01034 0.00555	0.0116 0.0116 0.0222	0.01110	51015	0.01375 0.01375
5, 6) 5, 6) 1, 3, 4, 5, 6) 1, 2, 4, 5, 6)	6	5 6 E	(5, 6)		0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
200 + 400 m = 200 m =	~~~~	M 4 N 1	,		
	,	444		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
22222	3333	3333	333	3:	3335
				3	
	3				

TABLE 4

Derivation of Predicted Distribution for Variations in Heave Acceleration for Wartime Duty in the Atlantic Ocean

-	- Fe 3	Square		0.000370	0.000370	0.000230	0.000400	0.000160	0,00000	0.000520	0.000144	0.0000230	0.000300	0.00330	0.00730	0.00330	0.00	0.00170	0.00260	0.000610	0.000630	0.1000.0	0.0000390	0.000120	0.0000410	0.000700	0.6000	0.00120	0.00200	0.00120	0.00200	0.00150	0.00470	0.00150	0.00200	0.00300	0.00310	0.00670	0.0000420
			0.25									_					_			_																			
	(1-P)		0.2													8	3																						
	ariation (0.15												2	9.6	3 8	-														£	98.6						
	tude of V	gravity)	 											<u>\$</u>	0.252	5 5	767.0	0.003	0.021										900		0.00	2		0.00	0.00	0.036	9.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6	0.724	
	en Magni	ı un its of	6.05	0.001	8		0.002		į				20.0	97.0	0.710	8 :	97.70	0.230	0.382	0.017	600					0.028	0.00	0.124	0.286	0.124	0.288	0.190	0.587	0.18	0.288	0.434	0.443	3	_
	ding giv	(Magnitude in units of gravity)	0.025	0.184	181	990.0	0.210	0.0 85		0K 10	150		0.500	0.835	0.918	0.835	27.0	0.693	0.786	0.353	37.0	0.025		0.005		970	0.532	0.5%	0.732	0.594	0.732	3	2.57	0.659	0.731	0.814	9.5		;
	Probability of Exceeding given Magnitude of Variation $(1-P)$	Jegs)	10.0	0.760	95.0	0.EZ	67.73	0.535	7.7	0.77 0.876	0.500	0.015	0.830	0.970	0.986	0.970	926	0.943	0.962	25	354	0.555	0.068	0.435	0.068	0.866	90.0	0.920	0.951	0.520	0.951		5.5	_	.951	1967	96.	5	7
	obability		0.005	0.932 0	_			_		25.0		0.352 0		_								_	_	0.814 0	_	0.975		_	0.987		_			_	_		_	_	_
	ā		⊢			_		_	_			├	_	_				_						_	-		_					25.5		_	_	_	_		
ŀ			.0.003	0.976	976	0.962	0.978	0.945	0.154	0.9	0.9	0.0	0.99	£.	2.93	0.999		0.99	0.999	0.965	0.928	9.	0.977	0.928	0.978			0.99	6.9	0.99	0.93	£ ;		0.99	6.9	.99		986	6.97
A	Average Rumber of Variations per hour	Contributed by each Operating Condition	1, 12 13 14 N = R	14.400	9.5184	7.614	9.031	12.708	5.636	4.990	12.600	3.074	2.784	4.901	3.336	20.761	2.20	10.836	5.994	5.549	2,202	5.720	5.775	6.188	908'0	1.275	1.196	1.16	3.748	1.677	3.247	3.260	3.16	3.260	3.253	9.584	3.307	3.002	1.630
	Number of	Variations per Hour	₹	3	2 5	ž	\$	8	019	3 5	\$	23	\$	2	8	\$ 8	3 5	254	9 5	3 ;	3 5	5	8	450	08+	3 5	£ 55	515	8 8	ŧ	ŧ	\$	3 S	497	95	3	\$:	3 3	â
	Weishing	Factor	24,444	0.0300	0.01983	0.01963	0.02034	0.02118	0.00924	9.00324 0.0000	0.0300	0.00580	0.00580	0.01634	0.00555	0.04380	0.01110	0.02068	0.01110	9,01156	0.01156	0.01549	0.01375	0.01375	0.00168	0.00226	0.00226	0.00226	0.00735	0.00336	9.00656	0.00656	0.00656	0.00656	0.00638	0.02144	0.00735	2007	0.00336
		Ship Speed		4 (1, 2, 3, 5, 6)	4(3, 5, 6)	4 (3, 5, 6)	2(1)	; (7).	(5, 5)		3(1, 2, 4, 5, 6)	2(1)	2(3)	m	4 (5, 6)	3(1, 2)	9.5	3 (5)	1(5, 5)	6:3	2(1)	3 (4. 5. 6)	13,	, 5,	1	2 -	. ~	2	3 2 3		2(3)	66	9.6	7 (3)	4(5, 6)	(0)	m 1	£ (5. s)	
	Relative Heading	Batteress Waves and Ship	det	•	S	<u>+</u>	S	\$:		R 2	<u> </u>	•	•	•	-	¥:	0 S					+135	8 1	+ 100	•	~ •	• •	•	.	. 45	¥ +1	\$	F + +	\$	· + 1	8 1	R S	R 3 8	\$1
	Characteristic	Visual	Swell	2.7	7.7	2.2	3.7	2.8	77	7.7	12	3	3	3	3	3 :	3 5	3	7	•	3 3	\$	3	3	3	2:	: 2	7.7	; :	:2	3		13		3	3:	2 :	13	2
L	3,	_	ŝ	,																3												77		1.1			_		
	Tee Tee	Class	E	ı								1													3														سنب

_											for which the	and aldeliane	Airb as dals as	and chip canade for a	is column 4 masses		1	
		6.03	0.21	6.	33	24.8	51.3	61.9	*	3	rcent	100 percent	•	`. <u></u>	reartage of variations exceeding	Percentage of		
	0.00162	1	38.0	3	1 %	0.214	3 2	95.	58.5	6.5		400	0.01253	2 (1.3 1.3	istiaes per haur es	1		
	0.00234				0.02	0.368	0.72	0.961		. 9. 8.	19.618	22	0.02516		K 55 1			
	0.00695		0.003	0.039	23.0	0.69	0.914	0.986	6.33	6.9	10.75	22	0.02516	, e,	, ÷	3	3	?
	0.000400	1	500	361 4		0.002	0.210	6.73	0.939	25.	136	83	0.00246		**	2 2		7
	0.0000900					6.005	0.001	0.330	0.758	0.98 0.90	8.702 2.928	# £	0.01813 0.00679		33	32:		
	0.000/40					9.638	0.440	0.876	0.55	1387	2.667	2 2 2 2 3	0.0635	٧.	S = 1	22		
	0.00310		0.012	0.002	0.040	2.7	0.817	0.969		5	4.754	214	0.08925		R SR	<u> </u>	-	
	0.00310				0.0	9.4	0.817	96.	5	5	9.509	25	0.01850	3(4, 5, 6)	÷,	3;		
	0.00790		90.0	990.0	0.058	6.72	0.924	0.988	1 1	£ £	7.458	\$5 \$3	0.01G32 0.01G32	88		22		
	0.0066		0.002	0.033	0.220	3 55	35	. Se	. 35	965	6.266	3 %	0.01632	19:3:	* \$\$ *	177		
	0.001%			İ	0.005	0.268	2,2	656	2	5	26.91	28	0.03626		• •	3,		
	0.00010		0.00	5200		3 3	5	0.976			0.757	==			.	22		
	0.00140					6.15	3	0.932	0.93	6.5	0.883	\$ \$				3		
	0.00190				0.003	0.268	0.72	6969	î,	5	0.7348	§ !			•••	3:		
	0.0110		0.026	6.129	0.402	0.796	0.945	0.999	0.999	6.3	0.738	\$ 3	1.00161	-	0 (17.2		6-15
	0.00670		0.003	0.035	9.224	33.0	1.00	0.965	56.5	. S. S.	3.066	33	0.00C38 0.0Z126	4(5, 6) 2(1, 3, 4, 5, 6)	S = 1	33		
	0.00150				8 9		0.0 0.0 0.0 0.0	9.39	7 5	6.53	5.733	\$ 8	E.5126	~ ~	****** ******	33	.	
	0.00670				0.224		116.0	20.9	0.556	5.53	3.044	3 8	0.0636	4(5, 6)	\$ H	32		
	0.00500				2.5	. 6	S	36.0			3.102	35	6.00735	7 M	R #8	32		
	0.00300				0.03	0.434	0.814	0.967	66.	6	85.6 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	3	0.02144	3 (2)	2 3 ;	33		
	0.00150				0.00	9.5	0.659	0.936	20.0	56	3.260	49.	9.00656	23	\$! ! +!	;	1.7	
	0.00370			0.002	0.067	0.510	0.87	6.973	0.995	5 65	3.168	36	0.00556	66	1 +1 + \$ \$	32	ļ	
	0.00200				6.8	0.288	0.732 0.669	0.951	0.387	£ £	3.247	56.5	0.00656 0.00656	53	\$ ¥	9.	"	
	0.00120					9.124	0.594	0.920		6.99	1.677	3 8	0.0036	≆ ċ •	• \$÷	22		
	0.00200				9.00	0.286	0.732	0.95	7 26		3.748	288	0.00735			33		
	0.000990					0.080	0.532	2 2 3	2.6.3 2.6.3	66.0 66.0	%TT	\$ £	0.00226	~ ~ :		23		···········
	0.0000410					920.0	0.410	0.866	0.975	0.978	0.806	\$?	0.00168	1 2		32		3
	0.0000390						0.002	0.05	0.528	0.977	5.775 6.188	420 450	0.01375 0.01375	2 (1, 3, 4, 5, 6) 2 (1, 3, 4, 5, 6)	8 9 1 + 1	33		
	0.000630					0.019	0.025	0.554	0.96	0.986 0.949	7.150 5.720	28	0.01549	٠, ٠,	\$1 \$1 \$1	2 3		
	0.000610					0.017	0.085	0.435	0.96	0.985	5.549	Ž Ž	0.01156 0.01156	£	SE + 124	3	3	
	0.00260				0.02	0.230	0.786	0.962	0.986	0.93	10.836 5.994	7 95	0.62958 0.01110	43.6	S	33		
	0.00380			0.003	7.0	0.520	35	0.974		666.0	9.710	\$ 2	0.02312	. C. C.	2 SR +1 +1	23		
	0.00330		00.0	0.001	0.049	0.460	0.835	0.970	0.999	0.999	20.761	58	0.04380	30,0	***	3		
	0.00330		96.0	0.047	0.049	0.7.0	0.835	0.970		0.999	4.901	£ 8	0.01034		• •	33		
	0.0009230					9.00	0.500	0.015	0.352	3.5	3.074	S S	0.06580	3 3 3 3	••	33		1
1	0.000144					8	0.013	0.50	0.538	0.940	25.200 12.600	5 2 2	0.0600	3(1, 2, 4, 5, 6)	SS1+1 + 192	2 %		
	0.000380					0.00	9.1%	0.73	0.935	0.577	926.4	3 %	0.00524	G G	R 8 ++ +	7.7		
	0.000160						0.620	533	0.853	55	12.706	8	0.02118	3 (3	R S :	22		
	0.000230			<u> </u>	!	290.0	970	22,2	0.53	0.962	7.614	¥ 3	0.01963	6.5.5	1 +1 4 15 8	2:		
	0.000230					100.0	100	275	76.5	100	1916.6	3 ;	0.01963	6 (3, 5, 6)	g;∓ T	17	L	

"The numbers in paramiteras in column 4 represent ship speeds for which no data are available and for which the experimental data corresponding to the indicated speed class is assumed to apply for the purposes of the table.

"The factors $f_{11}f_{21}f_{3}$ are defined on pages 11 and 17. The factor $f_{41}f_{42}$ is a weighting factor used when several similar acts of their data are utilized. For example, if 4 acts of similar lest data were available and were utilized in the table, then $f_{41} = 0.25$.

TABLE 5

Derivation of Predicted Distribution for Variations in Pitch Angle for Wartime Duty in the Atlantic Ocean

<u> </u>	3.6	101	88 8		96 5			8	2 3	0.000320		9			_ 5	,	. 5	_		=	2		8	~			8	8	<u> </u>	, =		<u>-</u>	2 1	 2 S	3 3		-				g .	Ţ	=	
	Sheare Variation	•	0.00380	0.00380	0.00690	0.0340	0.00550	0.0430		2.5	091	0.390	0.150	0.39	1.180 0.00 0.00 0.00 0.00	9	3.0050	3.117	9.16	0.0515	0.0170	3.140	0.06780	J. 102	0 151	3.5	0.03	0.0190	5.5	0.03	0.510	0.3	0.0310	0.0350	60	0.45	0.34	8.5	30	0.340	0.0700	0.05	¥ 5	15
		9.9							1																			_														\perp		_
		8,																																										_
		3.00																																										
(·	Ī	2.00																																									20.0	į
ition (1		8								3100	8	6.077	9.002	0.07	ğ.	ž									0.000	700			0.003	6.013	0.140	0.72				6.109	0.056	43.50	0.077	0.056			25.5	1
of Varia		0.750							Ì	9.00		0.236	9.838	0.236	į	9 064	•	900				 		1		20.0			80.	3	0.332	0.228			0.003	0.286	0.192	38.	276	9.192			3 5	3 5
agnitude legrees)	Ī	0.500				7.00				2,	9 2 10	9.526	0.230	0.526	957	200		9.118	5			0.1GE	. ;	3	21.	. E			0.736	Š	0.612	0.518			0.078	0.574	0.480	- 5	0.526	3	0.028	0.0 0.0	_	
ceding given itagnitude (ttagnitude in degrees)	Ī	0.350	1	}			?	9.8680	Ī	23	7	0.730	75.	0.73 0.73	905.0	627		950	97.0			9.4	-		2	2 2 3 7			0.492		0.786	0.724	0.019		272	0.762	0.697	3	2	0.636	0.174	3		
ceeding (!!agn:	Ī	9.30	91.0	7		270.0	777	9.124	Ì	25	2.5	7.0	0.570			263.0	ì		0.526	_		9750		3			0.077	_		9	0.139	0,78		20.0			_	90.10		_	_	+	9 6	_
ty of Exc	Ì	0.200			_		_	75		72.8		_	£.73	_	_	623	_	0.710			503	-	_	0.676					_	274		908	_	0.316		_			-			+		
Probability of Exceeding given Lagnitude of Variation $(1-I)$ $\{1,2\}$	İ	0.150	-	_		975	_		+	-	_			_			_		0.854		0.266	_						_		7		_	_	526				6.578	_		_	-+	_	
•	-	0.100	2,074		_		231		+-		85	_	1.938) (S				_		1.556	- +	0.278		_	_				6.774				P. 1				0.78	_	_		+		2
	ŀ	0.05	0.518	_		_	707	_	┿	•	_	٠.	_	_	_				_			+		276		_	_		_		939				7/6		_	9 1	_	_		-+		
	}	0.025 0	0.840	_	_	79.			+-				_	_		_		666.0	_	-	1364	-+		_		_		_	6.59	_				28.0			-	<u> </u>	_	_		+		
r of four	<u>.</u>	_	0.0	. <u> </u>	<u>-</u>	<i>-</i>	-	6 6	1	<u> </u>			<u>.</u>	0	.	<i>.</i>	-	<u>.</u>	ď	-	6	9	<u>.</u>		3 -		<u> </u>	-		<i>•</i>	3	3	<u>.</u>	<u> </u>		•	0	6	•	8	3 .	3	o	=
Average Number of Variations per Hour Contributed by each	Operating Condition	4-17641	10.800	8	£.198			24,880		1.332 7.436	3,102	3.863	13.140	7.76	5.156	3	583	3.77	2	5.907	3.410		0.685			3	3.528	1,914	3	: 2	2	13	2	7.5	è	112	3	1.075	2	32	5 5	3	0.822 0.907	· =
Averag Variatio Contrib	Operation .	141	10.	•	. ک		. (2)	z :	7	٠,	i m	mi	E,	~ `	ń.		•	imi	7	'n.	ri i	۳ ا	.	-i		:	mi		i. _F	4 mi			ri i	~ ∈	i mi	7	m		· ~	i mi	mi -	•	o	•
Number of Variations	Per Hour	~	358	: 8	z :	2 2	. g	3 5	2 ,		2 2	×	2		2 5	2 2	. 2		2	2	9 :	•	8:	= =	. =	. 22	2	2	2 3	2 12	2	2	22 1	2 2	2 2	2	<u>.</u>	e y			92		2 2	-
			- ·	. ~	—	-		_	1		: M	_	M	_	- 4 5		_	· ·	_	=	~ 1	2	# i	# D			7	3	-	-	==	~	.	₹ ₽	-	×	- K	- F	7	- 22	# S	+	₩	-
deighting Factor	** 17777X	. 5.2	0.30	0.01943	0.01963		0.01963			1	0.01034	0.00555	0.04300	0.0110	71679.0	9 13 9	25.00	0.01010	0.010.0	0.03178	0.01375	0.01375	2	0.000 E	0.06726	0.90226	0.00735	0.00319	0.00336	0.00656	0.00656	0.00656	0.00656	0.00144	0.00735	0.00735	0.00638	9.0033	6.614.20	0.00638	0.01672	ecain.	0.00212	0.08717
		_							1	,		-	•	-	5 Q	_	_	_	_			4	-	-	-	-	<u>.</u>	<i>-</i>	oʻ c		_	<u>.</u>	<u> </u>	<i>•</i>		<u> </u>	d	oʻ •	_	-	-	<u> </u>	o	_
Ship Speed	Class*		2,3,5,6)	5.6	6.	8	5.6	2(1,3,4,5,6)					ان ا		_	6				5, 6)	3, 4, 5, 6)	3, 4, 5,						6						3			•			•	9	2.0		
	_		104	=	2 :		5	22		35		5	<u> </u>	25	-	5	_	2	~	3	<u>ت</u> :	z١		7 6	7 ~	~	_	4 (5		2.5	2 (3)	<u>@</u>	(E)	<u>.</u> €	-	•	÷.		m	4 (5,	23	1		_
Relative Heating between	S Sign		•	•	en e	ت د	•	± 135 + 186				•	47 1				32	32	×	33	2 :		•				_	•			. 10	.			_	_	:	c z	12	×	2 2			-
Relative He between	Yares and Ship	deg	7	1 71	7,7	4	14	7,7					¥;	-1	fl 4	-	7	7	7	7	71.	7							717	; T	+1	+l·	+1		1 +1	. +1	+1	+1 +	+	1	#1			
		Smell	2.7	77	77		2.7	2 2		33	3	3	9:	2 3	12	3	2		3	3	3:	2	2:	3 5	3 2	2	=	2.			2	2	-	::2	3	3	7:	3 13	=	3	3:	: :		=
Characteristic Vare Neight, ft	₹	Sea							Ť	_	_					_	_	-	_	_		7					_	,- -	_		_		_		_	•	_		_	_		+		
	_!	-				_			+									=				+								7.7			-				-					+		_
Class	~		I						1	,												1	I																			1	2	
	_								L		_			-												_							-	_						_		L		

		222	¥ # # #	4(3,5,6) 2(1) 4(3,5,6)	0.01983	# 5 3	6.18 8.543 9.518	2857 2857 21678				85 52 5 52 5 52 5 52 5 52 5 52 5 52 5 52	6.072	910'0							0.0340 0.0340 0.0600	
		ភភភ	*************************************	4(3,5,6) 2(1,3,4,5,6) 3(1,2,4,5,6)	£ 21363	# # #	24.000 12.450	Z 5 5	7 7 5	2 2 5	9 8 8 8 8 8		4.124	99							0.00550	
:		33				2.83	1.392	3.5		-	 					├	- 10				0.000320	
		33		4(5.9)	0.01634	R &	3.162	533	25.			5.73	538 6.79 6.79	0.464 0.210 0.730 0.526	0.838 26 0.236	8 0.00 5 0.077	2.0				0.39	
<u>-</u>		33	** **	30,23 65,53	8.119.0 6.4113.0	2 2	13.146	£ £	0.965 0.995				_				2 5				36.0	
		នន	\$ S	2(1)	0.02312	22	5.156		9,966				_				=				0.180	
		7:	3	4(5,6)	2	3	26.5		78.0	5	0.888	0.820	0.624 0.524	24 0.29	B 0.054	22	2				0.150	
	3	3 5	3 S S	- ~ -	0.010.0	3 2 3	1.11		223	18.0	523.0	0.730	0.464 0.3	0.350 0.116	20 20 20 20 20 20 20 20 20 20 20 20 20 2	=					3.117	
		33		3(4, 5, 6)	£.61375	3 2	3.410	33	25	529											0.0515	
		3	38T [‡]	(1, 3, 4, 5,	L01375	2	3.36	5	785	.53	-	+	925	91.0		=	+	+	\perp		3.140	-
3		32	• •	- 2	0.8275 0.8275	R 53	1.177	6.953	0.976	706		0.676									0.102	
		22		2 2	0.88226 0.00226	3 5	1,14	Ş	0.973	55		_	0.466 0.572	0.354 0.120 0.465 0.212	8000 8000 8000 8000 8000 8000 8000 800	20 SE	- 21				0.161	
		2:	•••		0.00226	:S 4	1,154	6	9.984	0.936		0.766			_						0.150	
		3:2		4(5,6)	0.00319	3 8	1.914	3 3	0.87	2 8			_				-	-			0.0190	
		23		2(3)	0.00336	£ £	1.596		. 5 . 5 . 5 . 5 . 5 . 5	0.944		0.734	0.594	0.492 0.546 0.3	0.236 0. 039 0.348 0.0	35 0.0 0.0 13	2 E				0.173	
	1.1		\$ \$ + 1	66	0.00656	£ ¥	3.247		0.923	0.724			8 5	984			3		.		0.0310	
		32	; ; ;	5.5	0.00656	. .	1.637	3	6	25	_				0.518 0.	0.228 0.72	. ~		_		0.380	
	1.7	-	\$ \$	2(3)	0.90638	£ \$	3.247	3 5 2 5 2 5 3 5 3 6	6.923 6.931	2 2				0.019							0.0310	
		3	2 33 :	200	0.02144	SE .	1.25	96.9	8	2						- ;					0.0400	
		3.5	# # +! +	m m	0.8735	2 £	2.271		5.97 5.99	5.5				0.762 0.9	0.574 0.3	0.286 0.1	8				0.0960	
		3:	S .	6.5	0.00038	ă	3.343	96.0	66.5	1.6						95 0.056	*				0.340	
		: 3	4 4 4 4 4 4	7	E.01808	3 \$	7.340			3	_	_					28				0.110	
		35	H H	3	0.01470	25	3.058	939	5 5	5.57				0.736		0.236 0.077 0.192 0.056	2 2				0.36	
		:2:	3 3	10.5	C.01072	ž	3.69.	5	350	35	0.725	9.564	0.276 0.		0.028						0.0700	
\$15		17.1		3 (4, 3, 0)	0.06212	ş #	0.822	6.39		5	+		_	_	9	8.0	0.084	3			1.46	_
:		3:			0.00212	55	6.90	6.99	5 5	9.0	0.972	0.951	0.693	0.858	0.732	162 0.040		-			0.310	
	_	33			0.96212	3 3	950	Š		25.					_			-			0.260	
		2 :	. ·		0.98212	R X	0.744	35		Ę			_	_		0.888 0.8	0.430	051.0	0 0.034			
		3	•		979079	2	10.515	5		8			_				z z				0.500	
		3:	6 57+	36.5.0	C. 1153	£ 3	7.344			, 5											2	
		7	1 2 1	8	0.01632	3:	22879	£ :		5 3		_			_	_	34 0.003	2 2			0.690	
		33	4 +	3(4.5.6)		372	C.882	6.3		35					_						0.270	
		3	(#)	13	1.024	52	10.428	5								_	8 7				0.270	
		33	+ I + ISS	4 (1.3.5.6)	99/29670	3 58	24,623	8		0.962	_							_			0.266	
		2	3 ,3		0.00635	8	2.0955	96.0		6,55		7367	200		_	0.010	9770	<u>}</u>			0.130	
		33	1 1	~ ~	0.00673	# #	2.037	5		5						2					0.15	
		2	= 1+1	4 (5, 6)	1	*	0.656	6.9		15.0		_	-+-		-	-	-+-	+	-	-	4	Т
\$1 >	3	3	• 4	1(2,3,4,5,6)		ž ž	8.202					£ £	0.939	0.999	0.961	0.957	0.925 0.732	32 0.496	36 3.284	9		
	•	=	2 3	1(2,3,4,5,6)		ä	4.210	5		3		_									. —	
	12.0	:	\$1 1	3(1,2,4,5,6)		8 :	4.201	£ .		£ £		_		_				30 0.037			2.72	
	33	3	F 5	2(1,3,4,5,6)	0.01253	. .	2.732	5		Ş					_		_		_		4.52	\neg
	1	ber of varia	Humber of variations per vour exceeding	conding gives level	Summer all co	peditions) 361.32	1.32	353.5	336.0	296.3	258.0	228.2	179.8	160.4	116.7 H	70.7 48.0	3.7.8	3.5 3.6	<u> </u>	0.7		
	2	radage of	ratiations raceoft	ng given magnitude) percent			3	-	-	-	┥.		┥.	-	⊣	\dashv			\top
"The numbers in passableses in colu	a si sa	residence	in column 4 represent ship	Ħ;	e data	are available and for	and for which the															
				3		forter mend	The factor / is a meightine factor med when county civily															
Charles And And and Anderson an	,i. i.	1	For example, if 4.3	•	data were available	the and were	and were utilized in the table															
Mas & WX 6445 AV MILLON.				ì																		— _I

TABLE 6

Derivation of Predicted Distribution for Variations in Roll Angle for Wartime Duty in the Atlantic Ocean

	Jest.	Variation	0.346	0.346	0.476	0.976	96.	6.56 6.73	0.0855	0.3% - 0.3%	3.5	06.1	5 2	2.2	2.73	9	ğ	3.71	2.74	2 7	0.780	6.23	2.52	0.35	0.140 6.325	0.660	96.0	0.760	0.40	0.940	0.210	3.66	2.13	3.37	15.3	0.76	3.53	1.83	0.340
	ļ	15.0														L																					,		
		9.0																																	ž 8				
		8.															0.002			0.00															0.015		0.063		
۶	ŀ	8.															0.02			970.0															2		95		
Probability of Exceeding Given Bagnitude of Variation $(1-P)$		8		•													9.20	9.03	3 8	20.0													3	3	S		0.233		
Y Variat		3.90	 -					-		1		50.0		129.0			0.406	8 6	9.03	9.40												3	0.00	3	6.555	-	0.445	0.00	_
Paitude .	egrees)	2.00	0.002			9107	9.016	500.0		133	.63	221.0	200		Ē :	200	_	_			_									9.014		_	25.52	-			0.358	-	
iven (Aa	(Magnitude in degrees)	1.500	920.0					- SS		_		_	_	_	9776	+-	_			-		-	-		Š	-		0.054	<u>.</u>	160.0	2	9.536	_					0.292	_
eeding	E (H)	1.00	0.052	98 25	= = =		_						_	_	0.566	┿	_	_		0.905					0.04	0.114	3	_	0.244			0.756			0.936			0.578	
ty of Exc		-					_		├-				_			+										-													
robabild		0.750	0.192	0.10	8.0°	3	0.5		-				_		0.726	╁	_		_						0.55	├					_	_					0.95	-	_
-		0.590	0.673	0.594	9.5		9.78	0.72		2 .	0.63	0.877	0.636	5	0.867	0.037	0.975	0.935	0.913	0.975	9.43	0.32	0.38	0.4	0.75	0.580	0.53	0.720	2 2	2.	<u>8</u> .	0.933	2 2	0.978	3 5	0.712	0.93	0.872	3
		0.300	0.768	0.76E	977	9	0.914		0.324	97.5	163	25.	7 6 6	0.962	9.30	0.938	0.93	0.976	3	5	9.775	3	0.69	0.774		0.624		9.		0.832	9.65	0.957	936	6.973	£ 3	0.86	0.93	0.952	7.5
		0.200	0.889	£ 8	518	3	136.	5 53	929.	3 5	1.972	23	¥ 5	3	5.6.	192	.3	963	S	2 5	798.	\$ 5	0.854	163.	0.959	116.0	5	949	ž ž	.95	25	3	<u> </u>	3	Ę	348	6,53	0.978	5
- I	5 S	щ	-			_	_		F	_				_			_	_			_			_		,-								_					_
Average Number of Variations per Hour	Contributed by Each Operating Condition	1, 12 13 14 N = N	6.810	5. 5. 5. 5.	200		2	9 F	332	9 5	6	1512	7 E I	3	86.3	525	1.424	.956	R.	300	38	<u> </u>		3.766	23 E3	133	3 3	986	25.23	338	3 3		1.37	715	8.5	514	2.423	0.681	<u> </u>
Avera	Contract Operate	144		-																									, .										
Rumber of	per Hour	N	243	23 98	ā	3 2	125	3 S	240	8 5	3	548	<u> </u>	5 41	Z §	52	2	¥	3	¥ \$	22	2	≆ ≅	33	210 368	338	*	8	£ 3	92	337	3 3	512 812	. ₹	12	=	23 24 24	321	# # # # # # # # # # # # # # # # # # #
Veighting	ĭ	±4,6,6,4°°	0.0300 0.0204		ğ	20	126	8 5	2	7 6		98 :	22	2	1	lei lei	1	5	E.0155	25.5	3516	9226	9220	9220	0.00735	1336	2 3	9656	9890	2	3,54	0.00735	36.38		0.01470	9319	0.01072	0.00212	212
- E	ž.	34.6	5.0	33	8	3 8	-	-	9.6	<u> </u>	3	3		-	6	9	2	3			3	5.0	5 6	3	9 5	3		-	3.5	3	8 6	5	3:	3	= = =	3	23	3:	
3			3, 5, 6)	66	,			. s. s.										6		 	;																G		
į	Class		4(1, 2, 2(1)	4 6 8 8	E.	5.5	1 (5, 6)	2(1, 3, 3(1, 2,	2(1)	Ξ.		3,2	6		6. 6.	,	. ~	3.4.5	÷.		•	~ .	~ ~	. ~	3 4 (5, 6)		() ()	6	<u>e</u> 6	4 (5, 6)	€,		4 (5, 6)	. ~		9	≘ಕ	 	-
Juje .	ā		_													1			_		_		_		-										· ·				
Relative Heading	Tames and S	Ŧ	39+	\$ +1 \$ +	第 1	R 35	*	551 + 1 = 1 +				\$	Ç 9	H #	3 , -		1 4	+1	*	+ +				_		\$45	2 5	\$	\$ ¥		*15	1 #1	3 .	2 1	7.5		3,5		
Characteristic Tave Height, ft		Smell	22	22	2:	3 2	77	22	3	3:	33	3;	3 3	13	3:		3	7	3	33	3	2:	: 3	~	32	≈:	2	3	3	3	33	7	3.2	3	3	12	23	12.1	2
Charge He	Visual	5		-		_							-			=	•					············					13	:	"	:									_
Spec Bridd	SE SE	*	I						3																	3												\$13	_

		-											_					-			_					_									-									_				-		-
0.476 0.976 1.00	0.30	0.7%	0.0855 0.330	<u> </u>	3 5	F. 25	27.3	0.900	0).1	 	2.74	5.30 - 51	0.286	0.220	0.430	0.35	0+C'n	6.3%	3.5	0.400	0.76	0.40	0.940	0.210	3.6	2.13	2	5.3	2.13	11.2	3.53	1.83	0.340	25.5	8:	2.50 2.46	3.92	0.550	2.53	3.50	3	2.95		6.10	3.18	55	8.18 8.48			
						•																																									9.025	10	Š	
																												0.0014														_	<u> </u>				3.	9	3	
									0 000			9	ğ.															0.015		0.003												;	0.012				0.350	! =	5.5	
,									960 0			2																0.03		0.040														0.012			0.554		156	
									707	0.0	0.00	8 5	5					Ī					-					220		233	0.015					30.0	10.0		0.00		7			6.139			0.770		3	
		1		Ē	8		0.621	<u> </u>	ž	80	0.03	20.0	<u> </u>					1							3	0.015	e a	0.555	0.015	0.446	0.034	6.8				6.211	0.100		9.028		£ 55		6.536	6.330	9.00		30.0	: 5	2.5	
910.0		6		0.122	721		9.16	0.012	75.0	3,00	0.232	97.5				•	10.0						100		132	6.151	į į	9.758	0.151		0.35	0.112		6.045	0,121	95.0	0.360		977	į	<u> </u>	CA 2	7	3	177	¥ ¥	18.5	2 2	3	
91.0	=	20.		X X	*	2 2	8		8 .5	3	0.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	8	ļ	1	0.010		9.0				20.00	Š	0.091	90	0.536	0.356	215	3	0.356		25.	0.292		0.174	0.366	59.0	35.0	0.018	0.486	0.096	92	0.258	Ş	3	0.492	77.	3	1 2	33.8	
95E 0	9.136	0.272	8.05	5.5	28	0.355	0.650	2 2	9.45	2,7		2.0	0.02	0.01	0.130	0.05	0.34	0.0	2 2	8	0.268	70.0	0.346	0.363	0.75	0.626	7	0.936	9.626	77.0	3	9.578	8.056	2 T	0.590	77.5	17.5	0.161	67	0.350	3	6.713	5	3	6.738	55.	į	1	45.5	
0.540 0.540	22	297.0	2917	7.4	2	2 2	784	0.726	0.670	0.860	0.814	9.124	0.134	0.07	9318	90.70	0.550	2	2. 5. 2. 5. 2. 5. 3. 5	0.244	2.5	244	0.550	696.0	0.855	0.765	27.0	3	97.0	3	0.865	0.736	0.152	3 3	0.744	3 3		0.360		554		8.826	7.36) E	9.03	2 2		ķ 9	55.3	1
¥ E 8		22.			16		_		0.03			-					_	+	2 S	0.535	2.73	535	2	¥ :	233	100	22.5	3	6.803	27.2	78	279	3	27.0	6.877	35.0	0.939	635	58.	9.76		0.919	5	1 E	0.975	9 9		18.2%	¥ 53	1
6315	8	2			3			-	\vdash					_		_		+	3, 2	_					0.957				_			255	35	2 2	3	S .	16	£ i	596	916	2 S	58	Ę		26.	<u> </u>		F	3.7	1
200		-	5 S	_		_		_	-		_	_	_	_	_		_	_		8						_			_	_		2 %	2	2 5	2	£ 3	. £	E 1	i i	55	- E	2	£ !		┿╾			╁		1
50	2	3	::	3:	2		-	2 5	2 :	3 3	3	2.3	33	-	-	-	_	3	0.91	-	-	3 6	-	3 3	-		-	-	3	e e	-		-	<i>-</i>		-	-	a	-	-	3	-	-	-	-	d e		* *	5. SR 	1
585.4 1.885	.	2	28.25	¥ :	215	25 E	3	8 8 8	S	726	2	563		111	6	1 9	3	238	E 5	3	3	ĝ.	ă	₹ 8		378	Ž.	2	5	51.5	5 S	18 9	Ī		9	2 ¥	į	¥.	227	2	E 9	S.	9,7	79	78.	9 5	2.132	77		
~ i ~i ~	· =	S		7 -	- 2	~ ~	• •	~ 0	2	7 7	7	2	m 0	-	•		_	_		- 7		~ ~	. –	_		_			_					_			_					_				_			Percent	
20.5	2 2	ä	2 S 30 S	9.2	X 2	<u> </u>	: Z	¥ %	2	240 186	3	196	248	25	402	339	210	388	386	.	363	£ §	219	392	8 ₹	216	22	£ 12	216	19.1	3 5	125	Ŧ	52	33	8:	ž	\$:	\$ ¥	426	2 €	88	9	8 ≤	2	¥ £	e e	282	conditions) 254.10 100 percent	
																		4			_																					_	_	_	-			1-		
12686'8 11129'8		0.030	0.0058 0.0058	A.016.0	0.0430	0.01110	0.629	0.0110	910	1010	0.01509	0.01375	0.01375	0.00226	0.00226	0.90226	0.00735	6.00319	0.0035	0.00656	8.00656	9.00656	0.000	0.02344	0.00735	0.00638	0.0036	0.01470	0.00319	0.90319	0.91054	0.00212	0.00212	0.00212	0.00212	6.03626	1.01622	22516.0		9,62448	25.00	0.000.5	6.01813	96286	9152970	91520.0	0.02516	10.0		
	-	5.0							-			5. 6)	'n																		_						_		_		9				5.6	6,0			ate fre	
201		(1, 2, 4,	E E	: 1	ತೆ ನ	ς; Θ	3	G			5		m					(2, 6)	. 5	30	6	6	S 5	€.		5.6	_		(5, 6)		3.5.5	:					. 6	8	(E) 1 (E) 1 (E)	8	3.5.5	1	~		1(2, 3, 4	1(2, 3, 4	32.2	_ 1		
			7		* "		~ ~	-	7	~ ~	· m		~ ~	- ~	-			-		- ~	~	-		-	-	_			_						_				- •						 				hour exceeding given	
3 3 1	# 14 1	1	• •	-	÷	\$ 1	R	3 1	ž.	55		=	:	•	•		• •	-	\$ 1	: :	\$	÷1		S	3 5	3	¥.	<u> </u>	1 1 20	£ ;		•	-	••	•	•	\$	\$	5 5	3 (1)	3 5	=	# !	===	-	÷.	K 22 2		rialisms per l Variations	
									╁						_						_									_		_	_	_		_		_	_	_		_	_	_	-				-	
22	3.2	3 25	33	3	33	3:	33	3:	+			3	33	2.2	_	3:	-	7.5	2:	3	2			3	3 ~	: 3	-	3 2		~ :		23	-	3:	-	-	- 2	7	7 2	₹.	2 2	_	2		╁				Percentage	
									=											-	-	_	: —									-									_	_			Ξ	₹:				
			T																I													\$15													2					
<u> </u>			L						\perp																							Щ.								_										L

*The numbers in parentheses in column 4 represent ship speeds for which he data are svaitable and for which the exactivemental data conveniencing to the indicated speed class is assumed to apply for the purposes of the table.

*The factors I₁, I₂, I₃ are defined on pages 11 and 17. The factor I₄ is a weighting factor used when soveral similar socks of lesst data are utilized. For example, if 4 sets of similar less data were available and were utilized in the table, then I₄. = 0.25.

2

ı **t**

The fractions of time f_3 that the ship will make a given heading* to the sea for all operating speeds and for all characteristic wave heights not exceeding 8 ft are:

Head Seas	Quarter Head Seas	Beam Seas	Quarter Following Seas	Following Seas
0.125	0.25	0.25	0.25	0.125

For characteristic heights greater than 8 ft, the values in the table are modified such that f_4 is taken 0.125 for beam seas and 0.25 for head seas.

The weighting factors f_1 and f_3 are based on estimates made by the commanding officers of a number of ships of the ESSEX Class, as reported in Table 2 of Reference 6. The factors f_2 have been taken from the frequency distribution of wave heights shown in Figure 18 of Reference 7 and are applicable to Ocean Station C in the North Atlantic Ocean. The products of the weighting factors used in the calculations are given in Table 2.

The distribution patterns are calculated in Tables 3 through 6, where the probabilities (1-P) of exceeding given values of the variable are tabulated. The last line in each table is obtained by summing up all environmental conditions and thus gives the derived values of (1-P) for the long-term distributions. The latter values are plotted on the cumulative probability charts in Figures 3 through 6.

The straight lines shown on these charts have been computed directly from the percentages represented by the plotted points, on the assumption that the long-term distribution is of the log-normal type. The rather good fit of the computed line to the plotted points indicates that this assumption is reasonable.

The wave-induced hull girder stresses have been converted to bending moment amidships by making use of the midship section modulus which is applicable to the gage location. On VALLEY FORGE the strain gage was located 54.8 ft above the baseline and 28.76 ft above the calculated location of the neutral axis. The section modulus applicable to this strain-gage location is 167,000 ft-in.²

DESIGN AND OPERATIONAL CONDITIONS FOR WARTIME SERVICE

It has been pointed out that the distribution patterns give the probability of exceeding any given magnitude of motion or stress and that the distribution pattern can also be used as a load spectrum for calculations of endurance strength. In this section, design and operational

^{*}In this report the heading ϕ of the ship relative to the wave direction is defined as follows: For head seas, $\phi=0$ deg; for quarter head seas, $\phi=\pm45$ deg; for beam seas, $\phi=\pm90$ deg; for quarter following seas, $\phi=\pm135$ deg; for following seas, $\phi=180$ deg.

conditions for wartime service will be determined on the basis of the following assumptions:

- 1. The vessel will generally be operating in the North Atlantic Ocean. The observations of sea conditions at Weather Station C (52 deg N 37 deg W), see Figure 13 of Reference 7, are considered typical of conditions in the North Atlantic and are assumed to represent the conditions the ships will encounter in service.
- 2. Operating speed patterns, corresponding to various sea conditions, are assumed to follow those reported in the last section.
- 3. All headings of the ship relative to the predominant wave direction are assumed equally probable, except that seas coming approximately off the beam are considered unlikely for combinations of high speeds and rough seas, as previously indicated.

LONG-TERM DISTRIBUTIONS

Figures 8 through 6 give the probability of exceeding and of not exceeding given values, if all the motions and stresses are considered to which the ship is subjected over a period of years. For example, only 3 percent of all variations in roll angle would, on the average, exceed a value of 4.5 deg port to starboard; see Figure 6. These distributions may be considered valid up to variations corresponding to a value of (1-P) equal to 1 percent.

PREDICTION OF EXTREME VALUES

In order to estimate the largest values of motions and bending moments for design purposes, the extreme value formula discussed on page 10 may be used:

$$x_{m_1}^2 = E_m (y + \log_e N)$$

It will be assumed that the worst combination of operating conditions is that which gives the largest value of E, E_m . The value of N may be estimated as follows: Assume that the ship will be subject to the worst operating conditions for a period, here taken as 4 hours, and will experience V variations during that time, and that this situation will be repeated n times during the service life of the ship. Therefore N = nV.

As an example of the prediction of an extreme, consider the maximum variation of longitudinal bending moment, excluding the effects of slamming. From Table 7

$$E_{\rm m} = 0.156 \times 10^{12} \, ({\rm ft}{-}{\rm ton})^2, \, V = 1440$$

If we take f = 0.001, then Reference 10 gives y = 7.0. Therefore, with n = 20,

$$x_{m_1} = [0.156 \times 10^{12} (7.0 + 10.27)]^{\frac{1}{12}}$$

= 1,640,000 ft-tons hog to sag

TABLE 7

Maximum Values of Ship Motions and Longitudinal Bending Moments for ESSEX-Class Carriers

All values given refer to peak-to-peak variation.

			Conditions Value	Conditions for "hich Extreme Value is Predicted (2	Extreme ed (2)		S	jo a	• əlü _s mıos2		(ε)	101
Quantity	qin2	to noitsoo.l senA teeT	Characteristic the self (1)	Direction of Seas Relative to Ship's Course	Ship Speed (from RPM's) knots	Mean Square Value of the Variation, E _m — also Equals Four Times the Area unde Power Spectrum	noiseis V so isdmull boise9 14-4 isq	3 znoistins of Varisting Lift Operating Division Spip Corresponding to	co19 teoM batsmite3 an0 ni aulaV mumixaM (noitatag0 14-h)	Maximum Expected Vs during Operating Lii of Ship [V = 0.001]	benusseM Assured) noifsinsV	noitsisV munixsM seoqu9 ngissO
Reil Angle 0	ORISKANY	Cape Horn	> 15	Quarter Head	10	61.0 deg ²	9 8	19,500	19.6 deg	32 deg	19 deg	32 deg
Pitch Angle	ESSEX	Cape Horn	1 2	Quarter Head	80	12.8 deg ²	1180	23,700	9.5 deg	14.9 deg	9.5 deg	15 deg
Heave Acceleration 0	ORISKANY	Cape Horn	02	Head	2	0.014 g ²	1350	27,000	0.32 gravity units	0.49 gravity units	0.3 g (USS VALLEY FORGE)	0.5 gravity units
Longitud'i (4) V Bending V Stress	VALLEY FORGE	North Atlantic	^ 18	Head	10	28.2 (kpsi) ^{2.}	1440	28,800	14.5 kpsi	22.3 kpsi	12.2 kpsi	22 kpsi
	VALLEY FORGE	North Atlantic	> 18	Head	01	0.156 × 10 ¹² ton ² ft ²	1440	28,800	1,070,000 ft-tons	1,640,000 ft-tons	910,000 ft-tons	1,600,000 ft-tons
Cading (5) Homent Due to Whipping (3)	ESSEX	Cape Horn	20	Quarter Head	Ų	ı	52 cycle: when whi	52 cycles per minute when whipping occurs	1		1,230,000 ft-lons	1,850,000 ft-tons

(1)This is the average height of the larger, well-defined waves, as determined by visual observations.

(2) These are the conditions under which the largest values recorded at any time were obtained (peak-to-peak variation).

(®) these are the largest values recorded throughout seaworthiness tests on carriers, and cover about 2 years operation at sea.

(4) Stross, c.l. main deck, an dships. This is the ordinary wave-induced stress free of whipping stresses. The applicable section modulus = 167,000 ft-in-2.

(S)This bending moment is superimposed on the ordinary bending moment. The bending moment's were computed from the stress by use of the design midship section moment of inertia, as calculated by Bureau of Ships.

These values are estimated on the assumption that all variations are independent. This assumption is not strictly valid and results in a slight overestimate of the extreme value.

Maximum values for the other variables considered herein have been estimated similarly by taking f = 0.001 and n = 20. They are listed in Table 7 together with the largest values measured at any time during the rough sea trails of ESSEX, VALLEY FORGE, and ORISKANY.

Predictions of extreme values should be used with caution because the method may break down by predicting too extreme a value. The extreme values listed in the last column of Table 7 are regarded as reasonable.

DESIGN MIDSHIP BENDING MOMENT

The midship bending moment just calculated must be augmented by the vibratory bending moment incident to slamming and by the still-water bending moment. It is, furthermore, desirable to estimate the parts of the total variation due to hogging and sagging. The still-water bending moment will vary with the ship's loading and can readily be computed by routine methods. Therefore, only the contributions of the vibratory and the ordinary wave-induced moments will be considered.

The most severe hull stresses experienced* by ESSEX occurred when the ship encountered a wave 26 ft high and 1028 ft in apparent length (821 ft real length) at a ship speed of 16 knots. The oscillogram, Figure 5a of Reference 4, indicates that the ordinary stress variation at the frequency of wave encounter was made up of approximately 60-percent sag and 40-percent hog relative to the still-water stress. A large, higher-frequency stress variation, corresponding to the two-noded mode of vertical whipping vibration, was superimposed on the ordinary wave stress.

The midship bending moment variations** corresponding to the most severe stresses measured during the passage of a single wave 26 ft high were: 515,000 ft-tons (60-percent sag, 40-percent hog) for the ordinary wave-induced stress, and 1,230,000 ft-tons for the whipping stresses. The stress may be expected to increase roughly as the wave height. If, for design purposes, a wave 39 ft high is assumed that the 26-ft wave actually experienced, the bending moment (corresponding to the ordinary wave-induced and to the whipping stresses) would be expected to be increased by 50 percent; i.e., the moments become 773,000 ft-tons and 1,850,000 ft-tons, respectively.

The midship design bending moment may then be calculated as follows, on the assumption that a 39-ft wave will be encountered.

^{*}Measured at the centerline of the hangar deck (Gage 3). The maximum stress value including ordinary waveinduced and vibratory whipping stresses was 13,500-psi sag and 10,000-psi hog.

^{**}Midship section modulus applicable to the location of Gage 3, 54.69 ft above the baseline, is 158,000 in. 2 ft.

Figure 2, Reference 11, indicates that, for waves of apparent length nearly equal to the ship's length, a height of 26 ft will certainly be encountered and a height of 43 ft will be experienced rarely or never. The assumed value of 39 ft is considered a conservative, realistic compromise.

Method 1 (Without Use of Statistical Methods)

Hogging Moment = 0.40 (773,000) + 0.50 (1,850,000) + still-water moment= 1.23×10^6 ft-tons + still-water moment

Sagging Moment = 0.60 (773,000) + 0.50 (1,850,000) + still-water moment= $1.39 + 10^6$ ft-tons + still-water moment

Method 2 (Statistical Prediction of Ordinary Wave-Induced Bending Moment)

Expected design extreme value of ordinary wave-induced bending moment variation is 1,600,000 ft-tons (from Table 7). The maximum variation in bending moment incident to whipping (for the 39-ft wave) is 1,850,000 ft-tons.

Hogging Moment = 0.40 (1,600,000) + 0.50 (1,850,000) + still-water moment= 1.57×10^6 ft-tons + still-water moment

Sagging Moment = 0.60 (1,600,000) + 0.50 (1,850,000) + still-water moment= 1.89×10^6 ft-tons + still-water moment

Method 3 (Alternative Statistical Prediction, See Appendix D)

It should be noted that the bending moment calculations are based on the midship section modulus which is computed on the assumption that the ship structure above the hangar deck does not contribute to the section modulus. It is suggested that the bending moments computed by Method 3 be used for hull structural design. It should not be necessary to apply a safety factor to these design values. For ships geometrically similar to ESSEX, the design bending moment may be assumed to vary roughly as the fourth power of the length.

DISCUSSION

The reader will readily appreciate that many operating difficulties make it impossible to obtain as complete and accurate data as desired. For example, the sea state is the most difficult variable to assess. Ship operations allowed test runs for only a few combinations of ship speed and heading for a continuous period of time when sea conditions were fairly constant. Consequently, it was necessary to take data for the missing combinations when approximately the same sea state was again encountered. These difficulties can be overcome by model testing rather than full-scale testing. Moreover, model testing can be accomplished more economically and for a wider variety of operating conditions. Furthermore, the general method of synthesis used in this report is equally applicable to model test data.

The statistical methods described in this report are sufficiently general that, together with the basic data in Table 1, they can be applied to predict motions and bending moments of ESSEX-Class carriers or geometrically similar ships for a wide variety of different missions or types of operations. For example, a high-speed, nuclear-powered carrier similar in form to ESSEX might be treated. For this ship, the weighting factors should be adjusted to allow much more time of operation at higher speeds than ESSEX.

ACKNOWLEDGMENTS

The cooperation received from the commanding officers and personnel of VALLEY FORGE and ESSEX was of the highest order and made it possible to obtain realistic operational data that have long been needed. Assistance in analysis of the great volume of data was given by Mr. R.J. Dominic. Installation of trial gear was greatly expedited by the expert assistance of engineers and technicians of the Instrumentation Division.

APPENDIX A

SAMPLE OSCILLOGRAMS

Samples of typical oscillograms, obtained by the TMB automatic statistical recorder on VALLEY FORGE, are given in Figures 7 through 10. Each oscillogram is identified by the record number which corresponds to that given in Table 1; Table 1 also gives the pertinent environmental and operating conditions. On these oscillograms Channel 1 measured heave acceleration at the ship's center of gravity, Channel 2 (Gage 5) measured longitudinal strain in the keel, Channel 3 (Gage 3) measured longitudinal strain in the hangar deck, and Channels 4 and 5 measured pitch and roll angle, respectively. Strain-gage locations are shown in Figure 1.

Figure 7 - Oscillogram Showing Maximum
Heave Acceleration Record Number 69
on VALLEY FORGE

Figure 8 - Oscillogram Showing Maximum
Pitch Angle Record Number 71
on VALLEY FORGE

Figure 10 – Oscillogram Showing Maximum Longitudinal Stress Amidships Record Number 72 on VALLEY FORGE

APPENDIX B

COMPARISON OF LONGITUDINAL AND TRANSVERSE BENDING STRESSES

Longitudinal and transverse hull bending stresses (hangar deck amidships) are compared in Table 8. Stress variations obtained during the passage of a single wave are given for those occasions on which transverse bending made an appreciable contribution to the stresses. Figure 11 shows a sample record in which the strains on the port and starboard sides differ appreciably due to transverse bending.

It is apparent that for some operational conditions transverse bending moments* are appreciable; viz., for beam seas. However, the most severe bending stresses are experienced in head seas when transverse bending is relatively small.

TABLE 8

Comparison of Longitudinal and Transverse Bending Stresses for Occasions at which Transverse Bending Was Appreciable

Measurements were obtained on USS VALLEY FORGE.

Date	Ship Speed knots	Cheracteristic Wave Height ft	Relative Heading Ship to Waves	Stress, kpsi				
				Gage 2	Gage 4	Longitudinal Bending	Transverse Bending	Transverse Stress Longitudinal Stress
9 Dec 55	10	10	Quarter Head	5	7.5	6.3	1.3	0.21
10 Dec 55	8	14	Quarter Head	6.7	3.1	4.9	1.8	0.37
9 Dec 55	10	-	-	4.0	6.7	5.4	1.4	0.26
9 Dec 55	10	-	l -	2.5	5.7	4.1	1.6	0.39
9 Dec 55	10	-	-	3.0	8.3	5.7	2.7	0.47
1 Oct 55	10	9	Beam	1.4	2.7	2.1	0.65	0.31
1 Oct 55	10	9	Beam	1.0	4.0	2,5	1.5	0.60*
1 Oct 55	10	9	Beam	4.2	9.0	6.6	2.4	0.36
1 Oct 55	10	9	Beam	5.0	10.0	7.5	2.5	0.33
1 Oct 55	10	9	Beam	בו	5.5	3.3	2.2	0.67**

^{**}See instant marked b in Figure 11.

[&]quot;It should be noted that, at the midship section, the effective area moment of inertia for transverse bending is much larger than the moment of inertia for longitudinal bending.

Figure 11 - USS VALLEY FORGE Sample Oscillogram

Date of test, 1 Oct 1955; zone time, 13:40-14:00; ship speed, 10 knots; beam sea; characteristic wave height, 9 ft.

Original chart scale: Smallest division equals 1 mm, chart speed is 0.25 mm/second.

APPENDIX C

COMPARISON OF STRAINS ON STRINGER PLATE AND ON LONGITUDINAL

On VALLEY FORGE a strain-gage bridge (Gage 1) was installed on the hangar deck 7% in. inboard of the shell, and a single gage (Gage 2) was installed on the longitudinal stiffener closest to Gage 1. Both gages were oriented to measure strains in the longitudinal direction. Gage 1 consisted of a series of gages connected so as to give a signal proportional to longitudinal stress.

The purpose of Gages 1 and 2 was to determine whether a strain gage mounted directly on the deck plate, close to the shell, will be free of *local* plate bending stresses. Gage 2, on the longitudinal, was free of these local stresses and was subject to longitudinal strains only.

Gage signals are compared in Figure 12 for various magnitudes of strain variations. The two stresses are proportional, but Channel 1 indicates a magnitude about 10 percent greater than Channel 2. This difference may be due in part to the contribution of transverse bending.

Figure 12 - Comparison of Longitudinal Stress Measured on Stringer Plate and on Longitudinal (USS VALLEY FORGE)

APPENDIX D*

ESTIMATION OF EXPECTED EXTREME BENDING MOMENT ON THE BASIS OF THE LONG TERM DISTRIBUTION OF THE CHARACTERISTIC PARAMETER E^{16}

In this report the expected extreme bending moment has been based on the assumption that the most severe operating condition (and the resultant ship response defined by the parameter E_s) actually experienced during the periods of sea trials is the worst to be expected during the ship's life.

Another more general approach would be to estimate the expected extreme value of $E^{\frac{1}{12}}$ (rms bending moment or stress) on the basis of a known distribution of this parameter. Thus far the distribution of $E^{\frac{1}{12}}$ for hull girder bending moment had not been studied. Extensive studies of the corresponding parameter for ocean waves $E^{\frac{1}{12}}$ (actually of significant wave height) were made in References 7 and 5 and this parameter was found to have a lognormal distribution. It would not be unreasonable to expect the rms value of ship response to wave action to follow the same type of distribution. Accordingly, an attempt was made to fit the log-normal distribution to the values of $E^{\frac{1}{12}}$ for hull bending moment (stress). The E values were taken from Table 8 and the corresponding probabilities from column 6 of Table 8. The resulting distribution, shown in Figure 18, approximates to a log-normal distribution. A similar study was made for a destroyer; the results are also shown in Figure 18.

Let us devise a method for prediction of expected extreme bending moment on the basis of:

- a. A known long term distribution of bending moment, Figure 13.
- b. A known long term distribution of sea conditions (in terms of characteristic wave heights and wave lengths or power spectra of the waves).

For each ship we postulate** an "Extreme Sea State" comprising all seas for which:

- a. The characteristic wave length \dagger L_w is less than $\sqrt{2}$ L_s and larger than $\frac{1}{\sqrt{2}}$ L_s where L_s is the LBP of the ship.
- b. The characteristic wave height H_w is equal to or greater than the most probable wave height for a wave of length equal to the length of the ship. This height may be read from Curve C, Figure 2, TMB Report C-555. For ships of length larger than 800 ft a characteristic wave height of 28 ft is correct with ± 3 ft.

The percent of time (1-P), that the ship will be exposed to the "Extreme Sea State" can be read from the statistical joint distribution of wave height and length such as prepared by Dr. Roll¹² corresponding to the particular values of L_w , H_w .

^{*}The method given here was proposed by Dr. N.H. Jasper.

^{**}A more refined definition of "Extreme Sea State" will eventually be developed in terms of power spectra of waves and ship response to waves.

[†]The wave length may be calculated from the wave period $T_{\rm sc}$ usually reported by shipboard observers by the relationship $L_{\rm sc}=3.4~T_{\rm sc}^{-2}$ (T is given in seconds and $L_{\rm sc}$ in feet).

Figure 18 - Long Term Cumulative Distribution of Longitudinal RMS Stress and RMS Bending Moment Amidship, for Wartime Service

North Atlantic Ocean

REFERENCES

- 1. Bureau of Ships letter S 29-7 (442-440-330) of 21 Jun 1948 to David Taylor Model Basin.
- 2. Jasper, N.H., "A Statistical Approach to the Longitudinal Strength Design of Ships," Journal American Society of Naval Engineers, Vol. 62, No. 3 (Aug 1950).
- 8. Jasper, N.H. and Brooks, R.L., "Sea Tests of the USCGC UNIMAK. Part 2-Statistical Presentation of the Motions, Hull Bending Moments, and Slamming Pressures for Ships of the AVP Type," David Taylor Model Basin Report 977 (Apr 1957).
- 4. Jasper, N.H. and Birmingham, J.T., "Strains and Motions of USS ESSEX (CVA 9) During Storms Near Cape Horn," David Taylor Model Basin Report 1216 (Aug 1958).
- 5. Brooks, R.L. and Jasper, N.H., "Statistics on Wave Heights and Periods for the North Atlantic Ocean," David Taylor Model Basin Report 1091 (Sep 1957).
- 6. Brooks, R.L., "Wartime Operating Speeds of Aircraft Carriers, Destroyers, and Seaplane Tenders," David Taylor Model Basin Report C-808 (Feb 1957) CONFIDENTIAL.
- 7. Jasper, N.H., "Statistical Distribution Patterns of Ocean Waves and of Wave-Induced Ship Stresses and Motions, with Engineering Applications," Transactions, Society of Naval Architects and Marine Engineers, Vol. 64 (1956).
- 8. Hald, A., "Statistical Theory with Engineering Applications," John Wiley and Sons, Inc., New York, N.Y. (1952).
- Longuet-Higgins, "On the Statistical Distribution of the Heights of Sea Waves,"
 Journal of Marine Research, Vol. 11, No. 3 1952).
- 10. "Probability Tables for the Analysis of Extreme-Value Data," National Bureau of Standards, Applied Mathematics Series No. 22 (1953).
- 11. St. Denis, M., "On the Structural Design of the Midship Section," David Taylor Model Basin Report C-555 (Oct 1954).
- 12. Roll, H.U., "Height, Length, and Steepness of Sea Waves in the North Atlantic," and "Dimensions of Sea Waves as Functions of Wind Force," Society of Naval Architects and Marine Engineers, Technical and Research Bulletin No. 1-19 (Dec 1958).

The RMS value $E^{\frac{1}{12}}$ corresponding to (1-P) determined as described above may then be read from the long term distribution of $E^{\frac{1}{12}}$, such as shown in Figure 13. The most probable extreme value of stress (or bending moment) corresponding to an exposure of (1-P) to the "Extreme Sea State" may then be calculated in the usual manner and is illustrated in the following example.

EXAMPLE: ESSEX CLASS CARRIER

1. LBP 820 ft

Extreme Sea State: 580 ft $< L_w < 1150$ ft $13.2 \ \sec < T_w < 18.4 \ \sec H_w > 28 \ \mathrm{ft}$

Midship Section Modulus (Main Deck) = $Z = 167,000 \text{ ft-iu}^2$

- 2. Percent Exposure to "EXTREME SEA CONDITION," (1-P) = 0.6 percent
 This value is obtained from Reference 12 corresponding to the "EXTREME SEA
 STATE."
- 8. RMS Bending Moment corresponding to (1-P) = 0.6 percent is $E_m^{\frac{1}{2}}$ = (5.6 KPSI)Z = 415,000 ft-tons, HOG TO SAG (from Figure 13).
- 4. Number of stress variations experienced during the exposure to the "EXTREME SEA STATE" = N. Assume a life of 20 years, 100 days at sea each year.

$$N = \frac{20 \times 100 \times 24 \times 3600 \times (1-P)}{T_{stress}}, \text{ where}$$

$$T_{stress} = T_{wave} = \frac{1}{2} (18.2 + 18.4) secs$$

N = 66,000 variations

5. The expected Extreme Bending Moment = $E_m^{\frac{1}{2}}$ (y + log_e N)^{$\frac{1}{2}$} = M_m Taking a 10 percent risk* (f = 0.1) that M_m may be exceeded y = 2.3 $M_m = 415,000 (2.8 + 11.1)^{\frac{1}{2}} = 1.52 \times 10^6$ ft-tons

The Design Bending Moment = Wave BM + Whipping BM + Still Water BM HOGGING MOMENT = $0.40 (1.52 \times 10^6) + 0.50 (1.85 \times 10^6)$

+ Still Water BM = 1.58 × 10⁶ ft-tons + Still Water Moment

SAGGING MOMENT = $0.60 (1.58 \times 10^6) + 0.50 (1.85 \times 10^6)$

+ Still Water BM = 1.84 × 106 ft-tons + Still Water Moment

^{*}For the method used here a higher risk may be taken than in the estimate made in Table 7, because we are now dealing with an extrapolated extreme operating condition.

REFERENCES

- 1. Bureau of Ships letter S29-7 (442-440-330) of 21 Jun 1948 to David Taylor Model Basin.
- 2. Jasper, N.H., "A Statistical Approach to the Longitudinal Strength Design of Ships," Journal American Society of Naval Engineers, Vol. 62, No. 3 (Aug 1950).
- 3. Jasper, N.H. and Brooks, R.L., "Sea Tests of the USCGC UNIMAK. Part 2-Statistical Presentation of the Motions, Hull Bending Moments, and Slamming Pressures for Ships of the AVP Type," David Taylor Model Basin Report 977 (Apr 1957).
- 4. Jasper, N.H. and Birmingham, J.T., "Strains and Motions of USS ESSEX (CVA 9) During Storms Near Cape Horn," David Taylor Model Basin Report 1216 (Aug 1958).
- 5. Brooks, R.L. and Jasper, N.H., "Statistics on Wave Heights and Periods for the North Atlantic Ocean," David Taylor Model Basin Report 1091 (Sep 1957).
- 6. Brooks, R.L., "Wartime Operating Speeds of Aircraft Carriers, Destroyers, and Seaplane Tenders," David Taylor Model Basin Report C-808 (Feb 1957) CONFIDENTIAL.
- 7. Jasper, N.H., "Statistical Distribution Patterns of Ocean Waves and of Wave-Induced Ship Stresses and Motions, with Engineering Applications," Transactions, Society of Naval Architects and Marine Engineers, Vol. 64 (1956).
- 8. Hald, A., "Statistical Theory with Engineering Applications," John Wiley and Sons, Inc., New York, N.Y. (1952).
- 9. Longuet-Higgins, "On the Statistical Distribution of the Heights of Sea Waves," Journal of Marine Research, Vol. 11, No. 3 1952).
- 10. "Probability Tables for the Analysis of Extreme-Value Data," National Bureau of Standards, Applied Mathematics Series No. 22 (1953).
- 11. St. Denis, M., "On the Structural Design of the Midship Section," David Taylor Model Basin Report C-555 (Oct 1954).
- 12. Roll, H.U., "Height, Length, and Steepness of Sea Waves in the North Atlantic," and "Dimensions of Sea Waves as Functions of Wind Force," Society of Naval Architects and Marine Engineers, Technical and Research Bulletin No. 1-19 (Dec 1958).

INITIAL DISTRIBUTION

Copies		Copies				
20	CHBUSHIPS	1	CO, USS KEARSARGE (CVS 33)			
	3 Tech info Br (Code 335) 1 Tech Asst (Code 106)		CO, USS ANTIETAM (CVS36)			
	1 Current Program Planning Br (Code 333E) 1 Applied Sci (Code 340)	1	CO, USS PRINCETON (CVS37)			
	1 Noise Reduction (Code 345)	1	CO, USS SHANGRI-LA (CVA 38)			
	1 Prelim Des Br (Code 420) 1 Prelim Des Sec (Code 421)	1	CO, USS LAKE CHAMPLAIN (CVS39)			
	1 Hull Des (Code 440)	1	CO, USS TARAWA (CVS 40)			
	2 Sci & Res (Code 442) 1. Structure (Code 443)	1	CO, USS VALLEY FORGE (CVS 45)			
	1 Aircraft Carrier & Seaplane Tdr (Code 52?) 1 Hull Angt, Struc, & Preserv (Code 633) 1 I.C., F.C., & Navigation (Code 665) 2 Radar Br (Code 684) 2 Electronic Warfare & Parts Br (Code 690) 1 Tech Standards (Code 694)		CO, USS PHILIPPINE SEA (CVS 47)			
			CO, USNROTC & NAVADMINU MIT			
			O in C, PGSCOL, Webb			
			COMDT USCG			
2	CHBUWEPS		10: Secy, Ship Struc Comm			
2	CHONR. 1 Dep Chief & Chief Sci (Code 102) 1 Struc Mech Br (Code 439)		ADMIN, Maritime Admin 1 Chief, Off of Ship Construc 1 Mr. R. Krack			
1	DIR, USNEES	1	DIR, Natl BuStand			
1	CDR, USNOL (Code 714)	2	Secy, SNAME, New York			
1	CO, USN Med Res Inst, Nati Nav Med Ctr	2	Univ of Michigan, Ann Arbor			
2	COMSTS		1 Prof. R.B. Couch, Dir, Exptl Nav Tank 1 Prof. J. Ormondroyd, Dept of Engin Mech			
1	NAVSHIPYD BSN (Code 240)		Tech Dir, DL, SIT, Hoboken			
2	NAVSHIPYD NYK		1 Prof. B.V. Korvin-Kroukovsky			
	1 Des Supt (Code 240) 1 Mati Lab (Code 912b)	1	Dir, Appl Physics Lab, Johns Hopkins Univ, Silver Spring			
1	NAVSHIPYD PHILA (Code 240)	1	Dr. L. Landweber, Iowa Inst of Hydrau Res.			
1	NAVSHIPYD NORVA (Code 240)	•	lowa City			
1	NAVSHIPYD PUG (Code 240)		Dean David E. Marlowe, Sch of Engin & Arch,			
1	NAVSHIPYD SFRAN (Code 240)		Catholic University Prof. W. Pierson, Dept of Oceanography, New York Univ, New York Prof. H.A. Schade, Dir, Inst of Engin Res, Univ of California, Berkeley			
· 1	NAVSHIPYD LBEACH (Code 240)	1				
1	NAVSHIPYD PEARL (Code 240)	1				
2	COMNAVAIRLANT					
2	COMNAVAIRPAC	1	Bethlehem Steel Co., Shipbidg Dir, Quincy, Mass. Attn: Mr. H.G. Acker			
1	CO, USS ESSEX (CVA9)	i	NNSB & DD Co, Newport News			
1	CO, USS YORKTOWN (CVS 10)		Attn. Mr. J.P. Comstock, Asst Nav Arch			
1	CO USS INTREPID (CVA 11)	1	NYSB Corp, Camden, Attn: CDR R.L. Brooks (USN)			
1	CO, USS HORNET (CVS 12)	2	American Bureau of Shipping 1 Mr. A.R. Gatewood, Chief Engr Surveyor			
1	CO, USS TICONDEROGA (CVA 14)	,	Prof. G. Schnadel, Dr. of Eng. Hamburg, Germany			
1	CO, USS RANDOLPH (CVA 15)	i	Dr. Yoshio Akita, Dir, Ship Struc Div, Transport Tech Res Inst, Tokyo, Japan			
1	CO, USS LEXINGTON (CVA 16)	•				
1	CO, USS WASP (CVS 18)	1	Dr. F.H. Todd, Dir, Ship Div, NPL. Teddington,			
1	CO, USS HANCOCK (CVA 19)		Middlesex, England Swedish Shipbldg Res Fdtn, Herkulesgatan 36, Goteborg H, Sweden			
1	CO, USS BENNINGTOR (CVA 20)	1				
1	CO, USS BOXER (CVS 21)	1	Dir of Res, BSRA, London, England			
1	CO, USS BON HOMME RICHARD (CVA31)	1	Dr. W.P.A. van Lammeren, Dir, Netherlands Ship.			
1	CO, USS LEYTE (CVS 32)		Model Basin, Wageningen, The Metherlands			

BENDING MOMENTS OF ESSEX-CLASS AIRCRAFT CARRIERS, by Norman H. Jasper, Roman L. Broots, and John T. Bremingham June 1960. Revised Edition. iv, 35p. illus., diagra., graphs, tables, refs.

UNCLASSEFIED avid Toylor Medel Besin. Report 1251. STATISTICAL PRESENTATION OF MOTIONS AND HULL David Taylor Model Besin.

The motions and longitudinal hall bending homests which ships of the ESEEX Class may be expected to experience over a wide range of operating cuiditions are presented in statistical form. The data are based on extensive measurements and on USE VALLEY FORIGE (CVS 45) and USE ESSEX (CVA 9). From the test results, data are derived for this type of ship for use in design and operating problems involving bending members, and ship motions. Formulas are given for use in

satimating probable extreme values of moments and motions.

port aircraft carrier CVS 45) 1. Attack aircraft carriers
- Motion - Trials
2. Attack aircraft carriers (U.S. antisubmarine sup-III. Birmingham, John T. IV. S-F013 03 01 aircraft carrier CVA 9) - Bending moments -4. ESSEX (U.S. attack I. Jasper, Norman II. II. Brooks, Roman L. 5. VALLEY FORGE 3. Ships - Design -Statistical analysis

David Taylor Model Basin. Report 1251.
STATISTICAL PRESENTATION OF MOTIONS AND HULL BENDING MOMENTS OF ESSEX-CLASS AIRCRAFT CARRIERS, by Norman II. Brooks, and John T. Birmingham. June 1960. Revised Edition. iv, 15p. illus., diagrs., graphs. UNCLASSIFIED

The motions and longitudinal hull beading homests which ships of the ESSEX Class may be expected to experience over wide range of operating conditions are presented in statistical

form. The data are based on extensive measurements made on USS VALLEY FORGE (CVS 45) and USS ESSEX (CVA 9). From the test results, data are derived for this type of ship for use in design and operating problems involving beading moments and ship motions. Formulas are given for use in estimating probable extreme values of moments and motions.

David Teylor Model Besia. Repert 1251. STATISTICAL PRESENTATION OF MOTIONS AND HULL BENDING MOMENTS OF ESSEX-CLASS AIRCRAFT CARRIERS, by Norman II. Strobts, and John T. Birmingham June 1960. Revised Edition. iv, 15p. illus., diagra., graphs, UNCLASSIFIED

1. Attack aircraft carriers - Motion - Trials 2. Attack aircraft carriers

Devid Teylor Model Besin. Report 1251.
STATISTICAL PRESENTATION OF MOTIONS AND HULL BENDERG LOMENTS OF ESSEX-CLASS AIRCRAFT CARRIERS, by Norman H. Jasper, Roman L. Brooks, and John T. Birmingham. June 1960. Revised Edition. iv, 35p. illus., diagra., graphs, tables, refs.

- Bending moments -

Trials

The motions and longitudinal hull bending homests which ships of the ESSEX Class may be expected to experience over wide range of operating conditions are presented in statistical form. The data are based on extensive measurements made on USS VALLEY FORGE (CVS 45) and USS ESSEX (CVA 9). From the test results, data are derived for this type of ship for use in design and operating problems involving bending moments and ship motions. Formulas are given for use in estimating probable extreme values of moments and motions. port aircraft carrier CVS 45)
I. Jaspor, Norman H.
II. Brooks, Roman I.
III. Briningham, John T.
IV. S-F018 05 01 8. Ships - Design -Statistical analysis 4. ESSEX (U.S. attack sircraft carrier CVA 9) (U.S. antisubmarine sup-5. VALLEY FORGE

The motions and longitudinal hall bending homests which ships of the ESGEX Class may be expected to experience over a wide range of operating conditions are presented in statistical form. The data are based on extensive measurements made on USS VALLEY FORGE (CVS 45) and USS ESSEX (CVA 9).

From the test results, data are derived for this type of ship for use in design and operating problems involving bending measures and ship motions. Formulas are given for use in certainting probable extreme values of moments and motions.

 Attack aircraft carriers
 Motion - Trials
 Attack aircraft carriers
 Beaching moments -Triels

(U.S. antisabancies support aircraft carrier CVS49)
L. Jasper, Norman H.
E. Brocks, Roman L.
HI. Birringhan, John T.
IV. S-F018 68 01

Statistical analysis
4. ESSEX (U.S. attack
aircraft carrier CVA 9)
5. VALLEY FORGE 2. Ships - Design

port aircraft carrier CVS 45) - Motion - Trials
2. Attack aircraft carriers
- Bending moments -1. Attack aircraft carriers I. Jasper, Norman H.
H. Brooks, Roman L.
HIL Birmingham, John T.
IV. S-F013 03 01 (U.S. antisubmarine supaircraft carrier CVA 9) 4. ESSEX (U.S. attack 5. VALLEY FORGE 3. Ships - Design -Statistical analysis Trials