Workshop 3 – Series of real numbers and some questions on functions

- 1. True or false? (Give reasons.)
 - (i) the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence (a_n) is convergent;

 - (ii) the series $\sum_{n=1}^{\infty} a_n$ converges if and only if $a_n \to 0$ as $n \to \infty$; (iii) the series $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} |a_n|$ converges.
- 2. $\sum_{n=1}^{\infty} 1/n^p$ converges if and only if p satisfies ...?
- 3. State the **ratio test** and explain how it is related to geometric series.
- 4. Suppose that $\sum_{n=1}^{\infty} a_n$ converges absolutely. Prove that $\sum_{n=1}^{\infty} |a_n|^p$ converges for all $p \geq 1$.
- 5. Suppose that $\sum_{n=1}^{\infty} a_n$ converges conditionally. Prove that $\sum_{n=1}^{\infty} n^p a_n$ diverges for all p > 1.
- 6. Let $f(x) = x^2$ when x is rational and f(x) = 0 when x is irrational. Discuss the continuity and differentiability of f.
- 7. Decide which of the following statements are true and which are false. Prove the true one and find counterexamples for the false ones.
 - (i) If f is continuous on [a,b] and J=f([a,b]) then J is a closed bounded interval.
 - (ii) If f, g is continuous on [a, b] and f(a) < g(a), f(b) > g(b) then $\exists c \in (a, b) \text{ such that } f(c) = g(c).$
 - (iii) Suppose that f, g are defined and finite valued on an open interval I containing a point a. Assume also that f is continuous at a and that $f(a) \neq 0$. Then g is continuous at a if and only if fg is continuous at a.
- 8. State carefully the mean value theorem for a function $f:[0,1]\to\mathbb{R}$. Why is it called the "mean value" theorem?

9. Let $f:(0,1)\to\mathbb{R}$ be a function and let $a\in(0,1)$. Match each statement in Group A with a statement from Group B which means the same thing.

Group A:

- (i) $\forall \epsilon > 0, \exists \delta > 0$ such that $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$.
- (ii) $\forall \epsilon > 0, \forall \delta > 0, |x a| < \delta \text{ implies } |f(x) f(a)| < \epsilon.$
- (iii) $\exists \epsilon > 0$ such that $\forall \delta > 0$, $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$.
- (iv) $\exists \epsilon > 0$ and $\exists \delta > 0$ such that $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$.
- (v) $\forall \delta > 0, \exists \epsilon > 0$ such that $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$.
- (vi) $\exists \delta > 0$ such that $\forall \epsilon > 0$, $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$.

Group B:

- (a) f is continuous at a.
- (b) f is bounded on (0,1).
- (c) f is constant on (0,1)
- (d) There is some neighbourhood of a on which f is bounded.
- (e) There is some neighbourhood of a on which f is constant.

Assessment task to be handed in on Thursday 12/10/2023 at noon): Questions 4 and 9.