Problems Completed: All.

Exercise 1 (§22, #2). a. $p: X \to Y$ continuous. If there is a continuous $f: Y \to X$ such that $p \circ f = 1_Y$, then p is a quotient map.

b. Show that a retraction r of X onto A is a quotient map.

Collaborators: None.

- a. Let $p:X\to Y$ be continuous, and suppose there is some other continuous $f:Y\to X$ such that $p\circ f=1_Y.$
 - Let $y \in Y$ be arbitrary. Then $(p \circ f)(y) = y$, so p(f(y)) = y, so p is surjective.
 - Suppose U is open in Y, then since p is continuous $p^{-1}(U)$ is open in X. Conversely, suppose $p^{-1}(U)$ is open in X, then

$$f^{-1}(p^{-1}(U)) = (p \circ f)^{-1}(U) = 1_Y^{-1}(U) = U.$$

Since f is continuous, this means U is open.

Thus p is a quotient map.

b. Suppose $r: X \to A$ is a retraction onto A, then it is continuous and fixes A. We can define $\iota: A \to X$ to be the usual inclusion map, which we know to be continuous. Then $r \circ \iota = 1_A$, so by part (a), r is a quotient map.

Exercise 2 (§22, #3). $A \subset \mathbb{R}^2$ is all points for which either $x \geq 0$ or y = 0. Let $q = \pi_1 | A$. Show that q is a quotient map that is neither open nor closed.

Collaborators: None. q is a quotient map: Define a continuous map $f: \mathbb{R} \to A$ by f(x) = (x,0), then $q \circ f = 1_{\mathbb{R}}$, so by Exercise 1 part a, q is a quotient map onto \mathbb{R} .

q is not open: Let U be the open rectangle $\{(x,y) -1 < x < 1, 1 < y < 2\}$ in \mathbb{R}^2 . Then $U \cap A = \{(x,y) \mid 0 \le x < 1, 1 < y < 2\}$ is open in A. Its projection onto \mathbb{R} is the interval [0,1), which is not open in \mathbb{R} , so q is not an open map.

q is not closed: As proved in Homework 6 Exercise 4, the graph of a continuous function whose codomain is Hausdorff must be closed. Thus the graph G_f of f(x) = 1/x for x > 0 is closed in A. But $q(G_f) = (0, \infty)$ is not closed in \mathbb{R} , so q is not a closed map.

Exercise 3 (§22, #4). a. Let $X = \mathbb{R}^2$. Define $(x_0, y_0) \sim (x_1, y_1) \iff x_0 + y_0^2 = x_1 + y_1^2$. What is X^* homeomorphic to?

b. Repeat (a) for $(x_0, y_0) \sim (x_1, y_1) \iff x_0^2 + y_1^2 = x_1^2 + y_1^2$.

Collaborators: None.

- a. Let $g(x,y)=x+y^2$, then g is a continuous map that induces \sim , so $g(X)\cong X^*$ if and only if g is a quotient map. Define a continuous map $f:\mathbb{R}\to X$ by f(x)=(x,0), then $g\circ f=1_\mathbb{R}$, so by Exercise 1 part (a), g is a quotient map onto \mathbb{R} . Thus $X^*\cong g(X)=\mathbb{R}$.
- b. Let $g(x,y)=x^2+y^2$, then just as in part (a), $g(X)\cong X^*$ if and only if g is a quotient map. Define a continuous map $f:\mathbb{R}_{\geq 0}\to X$ by $f(x)=(\sqrt{x},0)$. Then $g\circ f=1_{\mathbb{R}_{\geq 0}}$, so g is a quotient map onto $\mathbb{R}_{\geq 0}$. Thus $X^*\cong g(X)=\mathbb{R}_{\geq 0}$.

Exercise 4. Define $(x, y, z) \sim (-x, -y, -z)$ and denote the resulting quotient space by \mathbb{RP}^2 . Consider

$$g: S^2 \to \mathbb{R}^4$$
$$(x, y, z) \mapsto (x^2 - y^2, xy, xz, yz).$$

- a. Prove $g: S^2 \to g(S^2)$ is a quotient map.
- b. Prove that $\mathbb{RP}^2 \cong g(S^2)$ with the subspace topology.

Collaborators: Saloni Bulchandani.

- a. The function $g: S^2 \to g(S^2)$ is surjective because it's onto its image, and it's continuous since each of its components are continuous. Then since S^2 is compact (it's closed and bounded in \mathbb{R}^n) and $g(S^2)$ is Hausdorff (it's a subspace of \mathbb{R}^4 , which is Hausdorff), g is a closed map. Since it's closed and continuous, it is a quotient map.
- b. Now to show $\mathbb{RP}^2 \cong g(S^2)$, we can show that g induces the same partition of S^2 that \sim does. Suppose $\mathbf{x} := (x, y, z) \sim (\tilde{x}, \tilde{y}, \tilde{z}) =: \mathbf{y}$, then we manually check that $f(\mathbf{x}) = f(\mathbf{y})$.

Conversely, given $f(\mathbf{x}) = (a, b, c, d) = f(\mathbf{y})$, we wish to find all possible values of \mathbf{y} . We have the system

$$x^{2} - y^{2} = a$$
, $xy = b$, $xz = c$, $yz = d$.

In the case that x=0, the first equation gives $-y^2=a$, which forces both to be 0. This then makes b=c=d=0. Since we're on S^2 , we know $x^2+y^2+z^2=0+0+z^2=1$, so $z=\pm 1$. Then the only possible values for ${\bf y}$ are $\pm (0,0,1)=\pm (x,y,z)$.

In the case that $x \neq 0$, the second equation gives y = b/x, and substituting into the first and multiplying both sides by x^2 gives the polynomial

$$(x^2)^2 - ax^2 - b^2 = 0.$$

By the quadratic formula, this has solutions

$$x^2 = \frac{a \pm \sqrt{a^2 + 4b^2}}{2}.$$

Substituting our expressions for a and b from our system of equations into this expression yields

$$x^2 = \frac{x^2 - y^2 \pm (x^2 + y^2)}{2}.$$

If we use $-(x^2 + y^2)$, then this becomes $x^2 = -y^2$, which is impossible since one side is always positive and the other side is always negative. Thus x^2 can only satisfy

$$x^2 = \frac{a + \sqrt{a^2 + 4b^2}}{2},$$

and similarly, $y^2 = (-a + \sqrt{a^2 + 4b^2})/2$, which means that \tilde{x} and \tilde{y} are determined up to their sign by the first equation in our system. Then by our second equation xy = b, we have two possibilities: $(\tilde{x}, \tilde{y}) = \pm (x, y)$.

Then by our last two equations xz = c, yz = d, we know that \tilde{z} must match the sign of \tilde{x} and \tilde{y} , i.e $\mathbf{x} = \pm \mathbf{y}$.

Thus g induces \sim , so $g(S^2) \sim \mathbb{RP}^2$.