Es. 1

- 1. Apply the Nearest Neighbor (NN) and Savings (S) heuristic, using A as starting node.
- 2. Apply a steepest descent local search using as starting solution the one obtained with S. Use the neighborhood defined as «swap of adjacent cities in the solution».

$$C = \begin{bmatrix} 0 & 12 & 10 & 19 & 8 \\ 12 & 0 & 3 & 7 & 2 \\ 10 & 3 & 0 & 6 & 20 \\ 19 & 7 & 6 & 0 & 4 \\ 8 & 2 & 20 & 4 & 0 \end{bmatrix}$$

Es. 2

Consider this starting solution for a symmetric TSP:

$$S = 1-2-3-4-(1)$$
.

Apply a "First Improvement" local search, until the local minima. Repeat the exercise two times using as neighborhoods:

- 1) Swap adjacent nodes.
- 2) 2-opt.

	1	2	3	4
1	0	4	2	4
2	4	0	4	3
3	2	4	0	3
4	4	3	3	0

Es. 3

- 1) Apply Nearest Neighbor and Savings.
- 2) Starting from the best sequence obtained among the two, apply a steepest descent local search, using a «swap adjacent cities» neighborhood.

	1	2	3	4	5
1	0	3	7	1	5
	3	0	2	5	4
	7	2	0	8	3
	1	5	8	0	6
5	5	4	3	6	0

Solutions

Initial Node: A

Current Node	Nodes to be visited	Selected Arc	
А	B,C,D,E	(A,E) with cost 8	
E	B,C,D	(E,B) with cost 2	
В	C,D	(B,C) with cost 3	
С	D	(C,B) with cost 6	
To close the cycle:		(D,A) with cost 19	

Total Cost: 38

$$s(i,j) = c(k,i) + c(j,k) - c(i,j)$$

$$s_{BC} = c_{AB} + c_{AC} - c_{BC} = 12 + 10 - 3 = 19$$

$$s_{BD} = c_{AB} + c_{AD} - c_{BD} = 12 + 19 - 7 = 24$$

$$s_{BE} = c_{AB} + c_{AE} - c_{BE} = 12 + 8 - 2 = 18$$

$$s_{CD} = c_{AC} + c_{AD} - c_{CD} = 10 + 19 - 6 = 23$$

$$s_{CE} = c_{AC} + c_{AE} - c_{CE} = 10 + 8 - 20 = -2$$

$$s_{DE} = c_{AD} + c_{AE} - c_{DE} = 19 + 8 - 4 = 23$$

Ordered:

BD CD

DE

ВС

BE

10

3

20

19

7

0

4

8]

2

20

4

0]

BD: Can be added

CD

DE

ВС

BE

19

6

0

4

8

2

20

4

0]

BD : Can be added

CD: Can be added

DE

BC

BE

BD : Can be added

CD: Can be added

DE: NO (D already have input and output arc)

BC

BE

BD : Can be added CD : Can be added

DE: NO

BC: NO (it would create a cycle without all cities)

BE CE

$$C = \begin{bmatrix} 0 & 12 & 10 & 19 & 8 \\ 12 & 0 & 3 & 7 & 2 \\ 10 & 3 & 0 & 6 & 20 \\ 19 & 7 & 6 & 0 & 4 \\ 8 & 2 & 20 & 4 & 0 \end{bmatrix}$$

Initial Node = A

BD : Can be added

CD: Can be added

DE: NO

BC: NO

BE: Can be added

CE:

Objective Function = 10+6+7+2+8=33

Starting sequence: ACDBE (cost 33)

Neighbors:

CADBE

A**DC**BE

ACBDE

ACDEB

ECDB**A**

Starting sequence: ACDBE (cost 33)

Neighbors:

CADBE: cost 58

A**DC**BE

ACBDE

ACDEB

ECDB**A**

Starting sequence: ACDBE (cost 33)

Neighbors:

CADBE : cost 58 ADCBE : cost 38

ACBDE ACDEB ECDBA

Starting sequence: ACDBE (cost 33)

Neighbors:

CADBE: cost 58 ADCBE: cost 38

ACBDE: cost 32 (improving!!!!)

ACDEB ECDBA

Starting sequence: ACDBE (cost 33)

Neighbors:

CADBE: cost 58 ADCBE: cost 38 ACBDE: cost 32

ACDEB: cost 34

ECDB**A**

Sequenza originale: ACDBE (costo 33)

Vicini:

CADBE: cost 58
ACBDE: cost 38
ACBDE: cost 32
ACDEB: cost 34
ECDBA: cost 53

Starting sequence: ACDBE (cost 33)

The best neighbor is

ACBDE with objective function = 32

This solution become the new current solution.

A new iteration (left as exercise) will not produce any improvement.

Solution 2

$$F(1,2,3,4) = 15 =$$
Current sol

$$F(2,1,3,4) =$$

$$F(1,3,2,4) =$$

$$F(1,2,4,3) =$$

$$F(4,2,3,1) =$$

	1	2	3	4
1	0	<mark>4</mark>	2	4
2	4	0	<mark>4</mark>	3
3	2	4	0	3
4	4	3	3	0

$$F(1,2,3,4) = 15 = \text{Current sol.}$$
 $F(2,1,3,4) = \frac{12 \text{ (improving!)}}{12 \text{ (improving!)}}$
 $F(1,3,2,4) = F(1,2,4,3) = F(4,2,3,1) = F(4,2,3,1)$

	1	2	3	4
1	0	4	2	4
2	<mark>4</mark>	0	4	3
3	2	4	0	3
4	4	3	3	0

The first solution of the neighborhood improves the current one. In a "First Improvement" local search, it becomes the new current solution (we do not explore the remaining neighbors)

$$F(2,1,3,4) = 12 = Current sol.$$

$$F(1,2,3,4) = 15$$

$$F(2, 3, 1, 4) = 13$$

$$F(2,1,4,3) = 15$$

$$F(4,1,3,2) = 13$$

No improving solutions. The algorithm stops.

	1	2	3	4
1	0	4	2	4
2	4	0	4	3
3	2	4	0	3
4	4	3	3	0

$$F(1,2,3,4) = 15 = Current sol.$$

2-opt neighbors are n*(n-3)/2 With n=4, we have 2 neighbors only:

$$(1,3) F(3,2,1,4) = 15$$

 $(2,4) F(1,4,3,2) = 15$

No improvements, the local search stops.

Solution 3

- 1) NN solution = 1-4-2-3-5-(1) with cost 16
- 2) SAVINGS solution = 1-2-3-5-4-(1) with cost 15
- 3) No improving solutions already at the first iteration. The local minima solution is 1-2-3-5-4-(1) with cost 15

		2	3		5
1	0	3	7	1	5
2	3	0	2	5	4
3	7	2	0	8	3
4	1	5	8	0	6
5	5	4	3	6	0