Dokumentacja kalkulatora dużych liczb

Jan Kaszycki

Listopad 2024

1 Podstawowe informacje dotyczące programu

1.1 Opis działania

Program wykonuje operacje arytmetyczne na nieujemnych liczbach całkowitych dowolnej wielkości w różnych systemach liczbowych ($2 \le \text{podstawa} \le 16$) przy użyciu dynamicznej struktury danych - wektora. Obsługiwane operacje obejmują dodawanie, mnożenie, dzielenie całkowite, resztę z dzielenia oraz potęgowanie. Kod pozwala także na zmianę systemu liczbowego liczby.

1.2 Uruchomienie

Program powinien zostać uruchomiony z dwoma argumentami wywołania, czyli odpowiednio plikiem wejściowym i wyjściowym. Jeżeli nie podamy pliku wyjściowego, program utworzy plik wyjściowy dopisując out_ na początku nazwy pliku wejściowego. Jeżeli nie podamy ani pliku wejściowego ani wyjściowego, program będzie wczytywał ze standardowego wejścia i będzie wypisywał na standardowe wyjście.

1.3 Wejście

Na wejściu (czyli w pliku podanym jako argument lub w standardowym wejściu w przypadku braku pliku wejściowego) powinny znaleźć się operacje arytmetyczne do wykonania. Kolejne działania powinny być oddzielone trzema pustymi liniami. Tak powinno wyglądać działanie na wejściu:

Dla zmiany systemu:

<podstawa systemu liczby> <podstawa systemu docelowego>

czba>

Dla innych działań:

```
<znak działania> <podstawa systemu liczb>
<liczba 1>
<liczba 2>
<liczba 3>
```

1.4 Działania

Dostępne działania arytmetyczne powinny być opisywane odpowiednim znakiem:

```
dodawanie +
mnożenie *
dzielenie całkowite /
reszta z dzielenia %
potęgowanie ^
```

1.5 Wyjście

Na wyjście program zwróci wejście uzupełnione o wyniki odpowiednich działań (lub o odpowiednie kody błędów).

2 Struktury i funkcje

1. Struktura danych - wektor

Wektor służy do przechowywania liczb. Składa się z pól:

- data wskaźnik na tablicę
- size ilość przechowywanych elementów
- \bullet capacity pojemność wektora

2. Funkcje operujące na wektorze

- vector_init(Vector *vec)
 - inicjalizuje wektor.
- vector_free(Vector *vec)
 - zwalnia pamięć zajmowaną przez wektor.

- vector_resize(Vector *vec, size_t new_capacity)
 - zmienia pojemność wektora.
- vector_push_back(Vector *vec, int value)
 - dodaje element na końcu wektora.
- vector_size(Vector *vec)
 - zwraca liczbę elementów w wektorze.
- vector_reverse(Vector *vec)
 - odwraca kolejność elementów w wektorze.
- vector_copy(Vector *vec1, const Vector *vec2)
 - kopiuje jeden wektor do drugiego (wraz z elementami, zawartością i rozmiarem)
- ustawrozm(Vector *vec, size_t size)
 - ustawia rozmiar wektora i wypełnia go zerami.
- vector_copy_range
 - kopiuje wycinek danych z jednego wektora do drugiego.

3. Operacje arytmetyczne - funkcje

- dodaj
 - Dodawanie pisemne liczb w dowolnym systemie
- karacuba
 - Mnożenie liczb za pomocą algorytmu Karacuby
- podziel
 - Dzielenie pisemne (poprzez odejmowanie z przesunięciem) liczb w dowolnym systemie
- szybkie_potegowanie
 - Potęgowanie szybkie wykorzystujące funkcję karacuba do mnożenia

4. Zmiana systemu liczbowego - funkcja

- ullet zmien_podstawe(Vector *vec1, int sys1, int sys2)
 - Zmienia podstawę liczby z sys1 na sys2

5. Funkcje pomocnicze

- odejmij
 - Odejmowanie poprzez odwrócenie bitów liczby odejmowanej, dodanie liczb i odjęcie jedynki na odpowiedniej pozycji
- usunzera
 - Usuwa zera wiodące

• rozszerz

- Zwiększa rozmiar liczby poprzez dopisanie zer wiodących
- porownaj
 - Porównuje dwie liczby o równej liczbie cyfr
- porbezzer
 - Porównuje dwie liczby nieposiadające zer wiodących
- odejmij_na_poz
 - Odejmowanie z przesunięciem (korzysta z funkcji odejmij i jest używane w funkcji podziel)
- dzialanie
 - Na podstawie wejścia decyduje, jakie funkcje wywołać

6. Funkcje służące do wczytywania i wypisywania danych

- czyt_liczbe
 - Wczytuje liczbę z wejścia i zapisuje ją do wektora
- dopiszout
 - Tworzy plik wyjściowy na podstawie pliku wejściowego
- wypisz
 - Wypisuje liczbę zapisaną w wektorze na wyjście

3 Obsługa błędów

Błędy, po których wystąpieniu program kończy pracę:

- Nie udało się otworzyć pliku wejściowego
- Nie udało się otworzyć pliku wyjściowego

Błędy, po których program kontynuuje pracę od następnego działania :

- Dzielenie przez 0
- Niepoprawny znak działania
- Niepoprawna podstawa
- Liczba niezgodna z podstawą

Błędy w wejściu, pomimo których program wykona działanie:

• Zły odstęp między argumentami (ale mniejszy niż 3 puste linie)

4 Podsumowanie

Program można rozszerzyć o działania na liczbach ujemnych.

Program powinien działać zarówno w systemach Linux jak i na Windowsie

5 Wyjaśnienie: algorytm Karacuby

Algorytm Karacuby to działający rekurencyjnie algorytm szybkiego mnożenia dużych liczb całkowitych Jego złożoność wynosi $\Theta(n^{\log_2(3)})$, przy mnożeniu dwóch n-cyfrowych liczb Dokładne działanie oraz dowód złożoności można znaleźć w internecie np. na stronie wikipedii