## Deep Structured Semantic Model (DSSM) for Web Search using Clickthrough Data

#### Overview of Task

- Task: Ranking documents with respect a query using clickthrough information
- Input: {Query (Q), set of clickthrough documents for that query}
- Output: Documents ranked in order of their relevance with respect to a query.

## Why Semantic Representation?

- In modern search engines, web document retrieval is mainly done by lexical matching between query and the web documents.
- Fact and concepts often expressed using different vocabularies and language styles.

I like playing cricket
I enjoy playing cricket

#### **DSSM Model**



### Word Hashing

Words are represented using letter n-grams(tri-grams).

E.g. good.

Add delimiters(#good#).

Break into letter tri- grams (#go,goo,ood,od#)

Drawback of letter n-gram representation: Collision

## How to identify Collision?

The hash codes need to be stored in an array.

The hash code of the 3kth n-gram in the document is stored at array index k. Then, the array need to be scanned for recurring hash codes.

A recurring code could indicate a collision, if the two occurrences of the code derived from different n-grams, or a non-collision, if the two occurrences derived from different occurrences of the same n-gram.

# Properties and Observations of Word Hashing

- It maps morphological variations of same word to the point that are close to each other in letter n-gram space.
- It overcomes the problem of representation of unseen words.

| Word<br>Size | Letter-Bigram |           | Letter-Trigram |           |
|--------------|---------------|-----------|----------------|-----------|
|              | Token<br>Size | Collision | Token<br>Size  | Collision |
| 40k          | 1107          | 18        | 10306          | 2         |
| 500k         | 1607          | 1192      | 30621          | 22        |

**Table 1:** Word hashing token size and collision numbers as a function of the vocabulary size and the type of letter ngrams.

### Learning The DSSM

#### **Clickthrough logs contain:**

- List of queries
- Corresponding clicked documents

**Aim**:To maximize the conditional likelihood of the clicked documents given the queries

## Learning The DSSM

Compute posterior probability of a document given a query.

$$P(D|Q) = \frac{\exp\bigl(\gamma R(Q,D)\bigr)}{\sum_{D' \in \mathcal{D}} \exp\bigl(\gamma R(Q,D')\bigr)}$$

Where  $\gamma$  is smoothing factor of softmax function.

D:set of candidate documents, D+ = clicked doc, D- = Unclicked Doc

## Learning The DSSM

Minimize loss function:

$$L(\Lambda) = -\log \prod_{(Q,D^+)} P(D^+|Q)$$

Where  $\Lambda$  denotes parameter set of DNN.

Model is trained using gradient based numerical optimization algorithms.

## Implementation details

#### 3 hidden layers

- Hashing layer of about 30k nodes.
- Two layers with 300 nodes.
- Output layer of 120 dimensions.

#### Dataset

- o 16510 english queries.
- Each query has 15 documents, with relevance score for each document.

#### Evaluation

For evaluation, NDCG is used.

$$ext{nDCG}_p = rac{DCG_p}{IDCG_p}$$
, Where  $ext{DCG}_p = \sum_{i=1}^p rac{2^{rel_i}-1}{\log_2(i+1)}$  and  $ext{IDCG}_p = \sum_{i=1}^{|REL|} rac{2^{rel_i}-1}{\log_2(i+1)}$ 

rel; is available on a 0-4 scale.

Note: Only query-title pairs are used.

#### Results

#### Comparison against various models

| • | TF-IDF       | 0.462 |
|---|--------------|-------|
| • | BM25         | 0.455 |
| • | WTM          | 0.478 |
| • | LSA          | 0.455 |
| • | PLSA         | 0.456 |
| • | DAE          | 0.459 |
| • | BLTM-PR      | 0.480 |
| • | DPM          | 0.479 |
| • | DNN          | 0.486 |
| • | L-WH linear  | 0.495 |
| • | L-WH Non-lin | 0.494 |
| • | L-WH DNN     | 0.498 |

#### Few related points

- C-DSSM: An extension using convolutional neural networks.
- Became popular as Sent2Vec and did not just limit to web search.