Financial Time Series Analysis Using Wavelet Transform

Juswanth T November 6, 2024

Introduction

- Financial time series data, like stock prices and interest rates, are complex and non-stationary. Traditional methods struggle to capture both time and frequency variations, but wavelets excel here.
- By providing a time-frequency representation, wavelets can detect trends, volatility, and anomalies across different time scales, making them ideal for financial analysis.
- This presentation explores how wavelets reveal insights in financial data that other techniques may miss.

Fourier Transforms

- Fourier Transform (FT) decomposes a signal into its constituent frequencies.
- It can be calculated using:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

Where $F(\omega)$ is the frequency domain representation, and f(t) is the time domain signal.

 Efficient computation (using FFT) enables applications in signal processing, audio, and image compression.

Fourier Transform Example

Figure 90

Short-Time Fourier Transforms (STFT)

- STFT applies Fourier Transform on small segments of a signal, capturing frequency information over short time windows.
- It can be calculated using:

$$STFT\{f(t)\}(t,\omega) = \int_{-\infty}^{\infty} f(\tau) \cdot w(t-\tau) \cdot e^{-j\omega\tau} d\tau$$

Where w(t) represents a window function that isolates a segment of the signal for localized frequency analysis.

 Useful for analyzing non-stationary signals where frequency content changes over time.

Short-Time Fourier Transforms (STFT)

- Dilemma of Resolution:
 - \circ Narrow Window (Good Time Resolution) \rightarrow Poor Frequency Resolution
 - \circ Wide Window (Poor Time Resolution) \rightarrow Good Frequency Resolution

Wavelet Theory

- Wavelets are functions that decompose signals into different scales and resolutions, capturing both time and frequency information.
- It can be calculated using:

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right), \quad a, b \in \mathbb{R}$$

Where \boldsymbol{a} and \boldsymbol{b} are the Dilation and Translation parameters respectively.

 Wavelets are used for multi-resolution analysis, allowing for efficient signal representation, compression, and noise reduction in various applications such as image processing, audio analysis, and time-frequency signal analysis.

Wavelet Theory

• Mother wavelets are the fundamental wavelet functions used to generate a family of wavelets through scaling and translation, serving as the basis for multi-resolution analysis in signal processing.

Continuous Wavelet Transforms

- The Continuous Wavelet Transform (CWT) analyzes signals by decomposing them into wavelets at various scales, providing a time-frequency representation.
- It is given by the equation:

$$CWT\{f(t)\}(\tau,s) = \int_{-\infty}^{\infty} f(t) \cdot \psi^* \left(\frac{t-\tau}{s}\right) dt$$

Where ψ^* is the complex conjugate of the mother wavelet.

• CWT provides detailed frequency information across different scales, making it suitable for non-stationary signals.

Continuous Wavelet Transforms

Continuous Wavelet Transforms Example

Continuous Wavelet Transforms Example

Discrete Wavelet Transforms

- The Discrete Wavelet Transform (DWT) decomposes a discrete signal into a set of wavelet coefficients, allowing for efficient multi-resolution analysis and signal representation.
- It is given by the equation:

$$DWT\{f[n]\} = \sum_{m} \sum_{k} f[m] \cdot \psi_{j,k}[n]$$

• DWT provides a hierarchical representation of signals at different resolutions, making it useful for various applications such as compression and noise reduction.

Discrete Wavelet Transform Example

Understanding the Market

Market Indicators

Indicator is a mathematical calculation or model applied to price, volume, or open interest data to provide insight into market trends, momentum, volatility, or other significant aspects of the market.

Some Famous Indicators:

- Moving Average Convergence
 Divergence (MACD)
- Relative Strength Index (RSI)
- Volume Weighted Average Price (VWAP)

We can use Wavelets as a potential Indicator!

Siemens closing price stock data

Threshold = 0 and wavelets from scale 1 to 14 were considered.

Ricker Wavelet - Used for our Analysis

- Also known as the "Mexican Hat" wavelet, it's effective for analyzing frequency content of the stock market data.
- It is given by:

$$\psi(t) = \frac{2}{\sqrt{3\sigma}\pi^{1/4}} \left(1 - \left(\frac{t}{\sigma}\right)^2 \right) e^{-\frac{t^2}{2\sigma^2}}$$

The Essence of Wavelet Transform

-> Smaller scale wavelets capture higher frequency component of the signal, which effectively gets **short term** trend in stock prices.

-> Larger scale wavelets capture low frequency component of the signal which gets captures <u>long term</u> trend in stock prices.

Intuition

- A higher value of CWT coefficient got using Ricker wavelet tends to show an upward tread relative to a lower CWT coefficient, but again that depends on the scale at which we are using it.
- *Show Animation*

Buy, sell signal and crossover

- Buy signal tells the extend to buy the stock and sell signal denotes the extend to sell the stock.
- When a buy signal crosses over sell signal we should change our position to buy and vice versa if sell signal cross-over buy signal.

How buy and sell signal is calculated?

Day	Close Price
1	100
2	102
3	101
4	103
5	105
6	104
7	106

Day	Scale = 2 Coefficient	Scale = 5 Coefficient	Buy Signal	Sell Signal
1	0	-4	0 + 0 = 0	0 + 4= 4
2	+1.0	-0.5	1.0 + 0 = 1.0	0 + 0.5 = 0.5
3	-1.5	-0.5	0 + 0 = 0	1.5 + 0.5 = 2
4	+1.2	+1.5	1.2 + 1.5 = 2.7	0 + 0 = 0
5	+1.0	-1.5	1.0 + 0 = 1	0 + 1.5 = 1.5
6	-0.5	+1.0	0 + 1.0 = 1.0	0.5 + 0 = 0.5
7	+1.0	+1.5	1.0 + 1.5 = 2.5	0 + 0 = 0

Hyper - parameters

Hyperparameters are tunable parameters that are adjusted to achieve the best model performance. In our case it includes :

- Type of wavelet to choose
- Threshold for calculating buy and sell signal
- Scales of the wavelets to consider
- Weightage to each of coefficients of different scales while calculating the buy/sell signal.

Challenges

- For different stocks we need to consider different hyperparameters and to find the best hyper parameter it is computationally intensive
- Financial time series are non-stationary, with statistical properties that change over time. Makes it difficult to select fixed parameters that are effective throughout the dataset.
- Edge Effects

THANK YOU