7- Cinética Química

Estudo das velocidades das reacções químicas, ou seja, a variação temporal de um reagente ou produto.

7.1- Velocidade de reacção

Para a reacção A -> B

pode seguir-se a evolução da reacção medindo:

- a diminuição de concentração do reagente A

velocidade =
$$-\frac{\Delta[A]}{\Delta t}$$

- o aumento de concentração do produto B

velocidade =
$$\frac{\Delta[B]}{\Delta t}$$

Exemplo: reacção do bromo com ácido fórmico

$$Br_2 + HCOOH \rightarrow 2Br^2 + 2H^+ + CO_2$$

A alteração de concentração num dado intervalo de tempo define-se como velocidade média.

$$\begin{array}{c} \textit{velocidade} = - \begin{array}{c} [Br_2]_{final} - [Br_2]_{inicial} \\ \textit{m\'edia} \end{array} = - \begin{array}{c} \Delta \ [Br_2] \\ \hline \\ \Delta \ t \end{array}$$

Sendo Δ Br₂ uma quantidade negativa pois a concentração de Br₂ vai diminuindo.

Considerando os dados para esta reacção, que constam da tabela anterior, pode calcular-se a velocidade média:

- nos primeiros 50 segundos

$$v_{m\acute{e}dia} = -\frac{\Delta \text{ [Br_2]}}{\Delta \text{ t}} = -\frac{(0.0101 - 0.0120)}{50.0} = 3.80 \text{ x } 10^{-5} \text{ M/s}$$

ou M s⁻¹

- nos 50 segundos seguintes

$$v_{m\acute{e}dia} = -\frac{\Delta [Br_2]}{\Delta t} = -\frac{(0.0846 - 0.0101)}{(100.0 - 50.0)} = 3.28 \times 10^{-5} \text{ M/s}$$

ou M s⁻¹

A velocidade de reacção não é constante ao longo do tempo, dependendo da concentração do reagente => a velocidade de reacção vai diminuindo progressivamente.

Se calcularmos a velocidade média em intervalos de tempo mais pequenos, podemos determinar a **velocidade instantânea**.

13.1	Velocidades da Reacção entre o Bromo Molecular e o Ácido Fórmico a 25ºC					
TABELA	Tempo (s)	[Br ₂] (<i>M</i>)	Velocidade (M/s)	$k = \frac{\text{velocidade}}{[Br_2]} (s^{-1})$		
≱	00,0	0,01200	$4,20 \times 10^{-5}$	$3,50 \times 10^{-3}$		
	050,0	0,0101	$3,52 \times 10^{-5}$	$3,49 \times 10^{-3}$		
	100,0	0,00846	$2,96 \times 10^{-5}$	$3,50 \times 10^{-3}$		
	150,0	0,00710	$2,49 \times 10^{-5}$	$3,51 \times 10^{-3}$		
	200,0	0,00596	$2,09 \times 10^{-5}$	$3,51 \times 10^{-3}$		
	250,0	0,00500	$1,75 \times 10^{-5}$	$3,50 \times 10^{-3}$		
	300,0	0,00420	$1,48 \times 10^{-5}$	$3,52 \times 10^{-3}$		
	350,0	0,00353	$1,23 \times 10^{-5}$	$3,48 \times 10^{-3}$		
	400,0	0,00296	$1,04 \times 10^{-5}$	$3,51 \times 10^{-3}$		

Se representarmos num gráfico a velocidade em função da concentração de Br₂, obtém-se uma linha recta que indica que a velocidade de reacção é directamente proporcional à concentração.

velocidade
$$\propto$$
 [Br₂] =>

velocidade
$$\propto$$
 [Br₂] => velocidade = k [Br₂] =>

$$k = \frac{\text{velocidade}}{[Br_2]}$$

Pode calcular-se o k usando os dados para qualquer t:

$$\begin{array}{lll} t = 0 & k = 4.2 \text{ x } 10^{-5} / \ 0.012 => & k = 3.5 \text{ x } 10^{-3} \text{ s}^{-1} \\ t = 150 & k = 2.49 \text{ x } 10^{-5} / \ 0.0071 => & k = 3.5 \text{ x } 10^{-3} \text{ s}^{-1} \end{array}$$

7.2 - Estequiometria e velocidade de reacção

Considere a reacção

$$2 A \rightarrow B$$

São consumidas 2 moles de A por cada mole que se forma de B, logo a velocidade com que A se consome é o dobro da velocidade de formação do B.

A equação da velocidade vai ser:

velocidade =
$$-\frac{1}{2} \frac{\Delta[A]}{\Delta t}$$
 velocidade = $\frac{\Delta[B]}{\Delta t}$

Para a reacção geral

$$a A + b B \rightarrow c C + d D$$

a velocidade é dada pela expressão

velocidade =
$$-\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$$

7.3- Equações cinéticas

Permitem o estudo do efeito da concentração do reagente sobre a velocidade de reacção, determinando a forma como a velocidade inicial depende das concentrações iniciais.

Consideremos a seguinte reacção e a tabela com os dados de concentração e velocidade inicial.

$$F_2(g) + 2 ClO_2(g) \rightarrow 2 FClO_2(g)$$

$\overline{\left[F_{2}\right] \left(M\right) }$	[ClO ₂] (M)	velocidade inicial	
		$(M s^{-1})$	
0.10	0.010	1.2×10^{-3}	
0.10	0.040	4.8×10^{-3}	
0.20	0.010	2.4×10^{-3}	

Analisando os dados da tabela, verifica-se que a velocidade é directamente proporcional a [F₂] e também a [ClO₂], logo

velocidade =
$$k [F_2]^x [ClO_2]^y$$
 equação cinética

Ordem de reacção: soma dos valores das potências das concentrações na equação cinética da reacção.

Para uma reacção geral a
$$A + b B \rightarrow c C + d D$$

se velocidade = $k [A]^x [B]^y$ ordem global de reacção = x+y

Exercício:

No exemplo anterior qual a ordem de reacção relativamente a F₂, ClO₂ e a ordem global?

Resolução:

- Para determinar a ordem relativamente a F_2 , consideram-se a 1^a e 3^a linhas da tabela. Verifica-se que duplicando $[F_2]$, mas mantendo constante $[ClO_2]$, a velocidade da reacção duplica \Rightarrow 1^a ordem relativamente a F_2 .

- Para determinar a ordem relativamente a ClO_2 , consideram-se a 1^a e 2^a linhas da tabela. Verifica-se que quadruplicando $[ClO_2]$, mas mantendo constante $[F_2]$, a velocidade da reacção quadruplica => 1^a ordem relativamente a ClO_2 .

Ordem global de reacção = ordem
$$F_2$$
 + ordem ClO_2 = 1 + 1 = 2

- A equação cinética será: velocidade =
$$k [F_2] [ClO_2]$$

Exercícios:

1- Para uma dada reacção velocidade= $k [A] [B]^2$

O que acontecerá à velocidade se:

- duplicarmos [A]
- duplicarmos [B]
- triplicarmos [B]
- **2-** Para uma dada reacção velocidade= $k [A]^0 [B]$

O que acontecerá à velocidade se:

- duplicarmos [A]
- duplicarmos [B]
- triplicarmos [B]

Determinação experimental da equação cinética

Método do isolamento: mantêm-se constantes as concentrações de todos os reagentes à excepção de um e mede-se a velocidade da reacção em função desse reagente, ficando a saber-se a ordem de reacção relativamente a esse reagente. Aplica-se a seguir o mesmo procedimento para todos os outros reagentes.

Atenção: não existe nenhuma relação entre os coeficientes estequiométricos a, b, c ... da equação estequiométrica e os expoentes x e y da equação cinética. <u>A ordem da reacção tem de ser determinada experimentalmente, não se podendo deduzir a partir da equação estequiométrica acertada.</u>

Exercício:

Mediu-se a velocidade da reacção

$$A + 2B \rightarrow C$$

a 25°C. A partir dos resultados obtidos, determine:

- a) equação cinética
- **b)** constante de velocidade

Exp.	[A] (M)	[B] (M)	velocidade inicial
			$(\mathbf{M} \mathbf{s}^{-1})$
1	0.10	0.10	5.5 x 10 ⁻⁶
2	0.20	0.10	2.2 x 10 ⁻⁵
3	0.40	0.10	8.8 x 10 ⁻⁵
4	0.10	0.30	1.65 x 10 ⁻⁵
5	0.10	0.60	3.30×10^{-5}

Resolução:

a) equação cinética $v = k [A]^x [B]^y$

ordem relativamente a A

$$\frac{5.50 \times 10^{-6}}{2.20 \times 10^{-5}} = \frac{k (0.10)^{x} (0.10)^{y}}{k (0.20)^{x} (0.10)^{y}} = > \frac{1}{4} = \left(\frac{0.10}{0.20}\right)^{x} = >$$

$$= > \frac{1}{4} = \left(\frac{1}{2}\right)^{x} = > x = 2$$

ordem relativamente a B

$$\frac{1.65 \times 10^{-5}}{3.30 \times 10^{-5}} = \frac{k (0.10)^{x} (0.30)^{y}}{k (0.10)^{x} (0.60)^{y}} \implies \frac{1}{2} = \left(\frac{0.30}{0.60}\right)^{y} \implies$$

$$\implies \frac{1}{2} = \left(\frac{1}{2}\right)^{y} \implies y = 1$$

A equação cinética é $v = k [A]^2 [B]$

$$v = k [A]^2 [B]$$

b) Basta substituir pelos valores obtidos numa das experiências, por exemplo a 1^a.

$$5.50 \times 10^{-6} = k (0.10)^2 (0.10)$$
 => $k = 5.50 \times 10^{-3} M^{-2} s^{-1}$

Atenção às unidades de k: varia consoante a ordem de reacção!

7.4- Relação entre as concentrações de reagentes e o tempo

As equações cinéticas:

- permitem calcular a velocidade de uma reacção a partir da constante de velocidade k e das concentrações de reagente;
- podem ser transformadas em expressões que permitam calcular a concentração de reagentes em qualquer instante no decorrer da reacção.

Reacção de 1ª ordem

$$A \rightarrow produtos$$

velocidade =
$$-\frac{\Delta [A]}{\Delta t}$$
 velocidade = k [A]

então

$$-\frac{\Delta[A]}{\Delta t} = k[A] \qquad \Longrightarrow \quad k = -\frac{\Delta[A]}{[A]} \frac{1}{\Delta t}$$

E as unidades são:

$$M/M \times 1/s = s^{-1}$$

Integrando a equação, obtém-se

$$\ln \frac{[A]_0}{[A]} = k \cdot t$$

que pode ser reescrita na forma

$$\ln [A]_0 - \ln [A] = k t$$
 => $\ln [A] = -k t + \ln [A]_0$
 $(y = ax + b)$

Traçando o gráfico de ln[A] em função de t, dá uma recta com declive -k

$$[A] = [A]_0 \exp(-kt)$$

$$\ln[A] = -kt + \ln[A]_0$$

Exercício:

Considere a seguinte reacção de 1^a ordem com $k = 5.1 \times 10^{-4} \text{ s}^{-1}$ a 45° C.

$$2 \text{ N}_2\text{O}_5 (g) \rightarrow 4 \text{ NO}_2 (g) + \text{O}_2 (g)$$

- a) se $[N_2O_5]$ = 0.25 M, qual será a concentração após 3.2 min?
- **b)** qual o tempo necessário para que a [N₂O₅] diminua de 0.25 para 0.15 M?
- c) qual o tempo necessário à conversão de 62% do material de partida?

Resolução:

a)
$$[N_2O_5]_0 = 0.25 \text{ M}$$

 $[N_2O_5]_t = ?$ $t = 3.2 \text{ min} = 192 \text{ s}$

Aplicando a equação cinética de 1ª ordem

$$\ln \frac{[A]_0}{[A]} = k \cdot t \implies \ln \frac{0.25}{[A]} = 5.1 \times 10^{-4} \times 192 = 0.098 \implies$$

$$\implies \frac{0.25}{[A]} = e^{0.098} \implies [A] = 0.23 \text{ M}$$

b)
$$[N_2O_5]_0 = 0.25 \text{ M}$$

 $[N_2O_5]_t = 0.15 \text{ M}$ $t = ?$

$$\ln \frac{0.25}{0.15} = 5.1 \times 10^{-4} \times ts => t = 1005 \text{ s}$$

c) não se sabe a concentração inicial e também não é necessário sabê-la, pois no instante t sabemos que resta 100-62= 38% de material de partida. Assim sendo:

Tempo de meia-vida

Tempo necessário para que a concentração de um reagente diminua para metade do seu valor inicial.

$$\ln \frac{[A]_0}{[A]} = k \cdot t$$
 e como $[A] = [A]_0 / 2$

$$\ln \frac{[A]_0}{[A]_0/2} = k \cdot t_{1/2} \implies \ln 2 = k \cdot t_{1/2} \implies t_{1/2} = 0.693/ k$$

O tempo de meia-vida de uma reacção de 1ª ordem é independente da concentração inicial do reagente.

Exercício:

A conversão em fase gasosa do ciclopropano em propeno é uma reacção de 1^a ordem com $k=6.7 \times 10^{-4} \, s^{-1}$ a 500°C. Calcule o tempo de meia-vida.

Resolução:

$$t_{1/2} = 0.693 / k \implies t_{1/2} = 0.693 / 6.7 \times 10^{-4} \implies t_{1/2} = 1034 \text{ s}$$

Exercício:

O tempo de meia-vida de uma reacção de 1ª ordem é 84.1 min. Calcule a constante de velocidade.

Resolução:

$$t_{1/2}$$
 = 84.1 min= 5046 s

$$t_{1/2} = 0.693/ k \implies 5046 = 0.693/ k \implies k = 1.37 \times 10^{-4} \text{ s}^{-1}$$

Reacções em fase gasosa

Pode substituir-se as concentrações pelas pressões parciais dos reagentes gasosos.

pela lei dos gases perfeitos

$$PV = nRT$$

P- pressão

V- volume

R- constante dos gases perfeitos

T- temperatura

n- nº moles

temos que

$$n_a/V = [A] = P/RT$$

Substituindo na equação cinética

$$\ln \frac{[A]_0}{[A]_t} = \ln \frac{P_0/RT}{P_t/RT} = \ln \frac{P_0}{P_t} = k \cdot t$$

Reacção de 2ª ordem

A velocidade depende da concentração do reagente elevada ao quadrado, ou da concentração de dois reagentes, cada um deles elevado a 1.

Para um só reagente:

$$A \rightarrow produtos$$

velocidade =
$$-\frac{\Delta [A]}{\Delta t}$$
 velocidade = $k [A]^2$

então:

$$-\frac{\Delta [A]}{\Delta t} = k [A]^{2} \implies k = -\frac{\Delta [A]}{[A]^{2}} \frac{1}{\Delta t} (M^{-1} s^{-1})$$

Se se integrar a equação, obtém-se:

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

$$(y=mx+b)$$

Traçando o gráfico de 1/[A] em função de t, dá uma recta com declive k.

O tempo de semi-vida de uma reacção de 2ª ordem depende da concentração inicial do reagente.

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$
 e como $[A] = [A]_0/2$

$$\frac{1}{[A]_0/2} = \frac{1}{[A]_0} + k t_{1/2} = t_{1/2} = \frac{1}{k [A]_0}$$

Exercício:

Considere a seguinte reacção de 2^a ordem com k= 7.0 x 10⁹ M⁻¹ s⁻¹ a 23°C.

$$I(g) + I(g) \rightarrow I_2(g)$$

- a) Se [I] = 0.086 M, calcule [I] após 2 min.
- b) Calcule o tempo de meia-vida para $[I]_0 = 0.6 \text{ M}$ e $[I]_0 = 0.42 \text{ M}$

Resolução:

a)
$$[I]_0 = 0.086 \text{ M}$$

 $[I]_t = ?$ $t = 2 \text{ min} = 120 \text{ s}$

Aplicando a equação cinética de 2ª ordem

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt \implies \frac{1}{[A]} = \frac{1}{0.086} + 7.0 \times 10^9 \times 120 =>$$
$$=> [A] = 1.2 \times 10^{-12} \text{ M}$$

b) Se [I]₀= 0.6 M

$$t_{1/2} = \frac{1}{k [A]_0} \implies t_{1/2} = \frac{1}{7 \times 10^9 \times 0.60} = 2.4 \times 10^{-10} \text{ s}$$

Se [I]₀= 0.42 M

$$t_{1/2} = \frac{1}{k [A]_0} \implies t_{1/2} = \frac{1}{7 \times 10^9 \times 0.42} = 3.4 \times 10^{-10} \text{ s}$$

Reacção de ordem 0

São reacções em que a velocidade é independente da concentração dos reagentes e tem um valor constante.

velocidade =
$$k [A]^0 = k$$

Resumo das equações cinéticas para reacções A > produtos

Ordem	Equação cinética	Equação concentração-tempo	Tempo meia-vida
0	v= k	$[\mathbf{A}] = [\mathbf{A}]_0 - \mathbf{k}t$	$t_{1/2} = [A]_0/2k$
1	v= k [A]	$ \ln \frac{[A]_0}{[A]} = k \cdot t $	$t_{1/2} = \frac{0.693}{k}$
2	$v=k [A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	$t_{1/2} = \frac{1}{k [A]_0}$

7.5- Dependência da constante de velocidade relativamente à temperatura: energia de activação

As reacções químicas ocorrem como resultado de colisões entre as moléculas dos reagentes => quando se aumenta a temperatura, aumenta o nº de colisões => aumentando a temperatura, aumenta a velocidade da reacção (para a maioria das reacções).

A teoria das colisões assume que há sempre reacção química quando há colisões, mas na prática verifica-se que nem todas as colisões levam a que ocorra reacção.

Para que as moléculas que colidem possam reagir, elas têm de ter uma energia cinética total maior ou igual do que a energia de activação.

Energia de activação: energia mínima necessária para que se inicie uma dada reacção.

A espécie formada transitoriamente como resultado da colisão, antes da formação dos produtos, chama-se **complexo activado**.

$$A + B \longrightarrow \begin{bmatrix} A & B \end{bmatrix} \longrightarrow C + D$$
reagentes
complexo activado
reagentes

Na reacção anterior, podem ocorrer 2 cenários:

- Se os produtos forem mais estáveis que os reagentes, a reacção é exotérmica (libertação de energia)

- Se os produtos forem menos estáveis que os reagentes, a reacção é endotérmica (absorção de energia)

A energia de activação é como uma barreira que evita que as moléculas de menor energia reajam.

Equação de Arrhenius

Mostra a dependência da constante de velocidade duma reacção relativamente à temperatura.

$$k=A e^{-Ea/RT}$$

onde E_a-energia de activação (kJ mol⁻¹)

R - constante dos gases perfeitos (8.314 J K^{-1} mol $^{-1}$)

T- temperatura absoluta (K)

A- factor de frequência colisional entre moléculas

O sinal negativo em Ea/RT implica uma diminuição da constante de velocidade com um aumento da energia de activação e um aumento da constante de velocidade com um aumento de temperatura.

Se aplicarmos o logaritmo à equação anterior:

$$\ln k = \ln A e^{-Ea/RT}$$
$$= \ln A - \frac{Ea}{RT}$$

e rearranjarmos a equação, obtemos:

$$\ln k = \left(-\frac{Ea}{RT}\right)\left(\frac{1}{T}\right) + \ln A$$

$$(y = m \quad x + b)$$

A representação gráfica de ln k em função de 1/T permite obter uma recta cujo declive é –Ea/R.

Relação entre constantes de velocidades a diferentes temperaturas

Uma equação que relacione as contantes de velocidade, obtidas a temperaturas diferentes, permite calcular a energia de activação ou então, sabendo a energia de activação e a constante de velocidade a uma dada temperatura, pode calcular-se a constante a outra temperatura.

$$\ln \frac{k_1}{k_2} = \frac{Ea}{R} \left(\frac{T_1 - T_2}{T_1 T_2} \right)$$

Atenção: a temperatura vem expressa na escala Kelvin

Temperatura em K = temperatura em $^{\circ}$ C + 273

Exercício:

A constante de velocidade de uma reacção de 1ª ordem é 3.46 x 10⁻² s⁻¹ a 298 K. Qual será a constante de velocidade a 350 K se a energia de activação da reacção for 50.2 kJ mol⁻¹?

Resolução:

$$k_1 = 3.36 \times 10^{-2} \text{ s}^{-1}$$
 $k_2 = ? \implies k_2 = 0.702 \text{ s}^{-1}$ $K_2 = 298 \text{ K}$ $K_2 = 350 \text{ K}$

Usando a equação

$$\ln \frac{k_1}{k_2} = \frac{Ea}{R} \left(\frac{T_1 - T_2}{T_1 T_2} \right)$$

$$\ln \frac{3.46 \times 10^{-2}}{k_2} = \frac{50.2 \times 10^3}{8.314} \left(\frac{298 - 350}{298 \times 350} \right) \implies k_2 = 0.702 \text{ s}^{-1}$$

7.6- Catálise

Um catalisador é uma substância que aumenta a velocidade duma reacção química sem ser consumida durante essa reacção.

Exemplos:

- platina conversor catalítico nos automóveis (transforma CO e hidrocarbonetos que não sofreram combustão em CO₂ e H₂O e o NO e NO₂ em N₂ e O₂)
- aditivos alimentares ácido ascórbico (vitamina C) impede a oxidação dos alimentos

Em muitos casos, o catalisador actua diminuindo a energia de activação de uma reacção (no caso de ser um catalisador "positivo"). O contrário acontece no caso de ser um catalisador "negativo": a velocidade de reacção diminui porque a energia de activação aumenta.

Tipos de catálise

- heterogénea: os reagentes, os produtos e o catalisador encontram-se em fases diferentes (normalmente o catalisador é sólido e os reagentes e produtos gases ou líquidos). Este é o processo mais vulgar na indústria química.

Exemplo: síntese de amoníaco

Fe/Al₂O₃/K₂O $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ catalisador

- homogénea: os reagentes, os produtos e o catalisador encontram-se na mesma fase (normalmente líquida ou gasosa)
- enzimática: as enzimas são catalisadores biológicos, que além de aumentarem a velocidade das reacções, são bastante específicos.

