1 Remedial Curve Theory

1.1 Geometric Irreducibility of Generic Fibers

Lemma 1.1.1 (Tag 0553). Let $f: X \to Y$ be a morphism of schemes. Assume,

- (a) Y is irreducible with generic point η ,
- (b) X_{η} is geometrically irreducible
- (c) f is of finite type

then there exists a nonempty open subscheme $V \subset Y$ such that $X_V \to V$ has geometrically irreducible fibers.

Lemma 1.1.2. Let $f: X \to Y$ be a morphism of schemes. Suppose that,

- (a) X and Y are integral
- (b) X is normal
- (c) the fibers of f are geometrically connected (e.g. $f_*\mathcal{O}_X = \mathcal{O}_Y$)

then the generic fiber $X_{\eta} \to \operatorname{Spec}(\kappa(\eta))$ is geometrically irreducible.

Proof. $X_{\eta}/\kappa(\eta)$ is geometrically irreducible iff $\kappa(\eta)$ is separable closed in $\kappa(\xi)$. This follows from Tag 054Q and Tag 0G33. Let $\alpha \in \kappa(\xi)$ be separably algebraic over $\kappa(\eta)$ i.e. a root of a separable polynomial $p \in \kappa(\eta)[x]$. There is a coordinate ring A of Y where all the denominators of p are invertible. We claim that $A[\alpha] \subset B$ where B is any coordinate ring of X containing A. Indeed, α is integral over A and hence over B so by normality $\alpha \in B$ so we get morphisms,

$$X_A \to \operatorname{Spec}(A[\alpha]) \to \operatorname{Spec}(A)$$

but the fibers of $X_A \to \operatorname{Spec}(A)$ are geometrically connected so we must have $\alpha \in A$ since otherwise the fibers of $\operatorname{Spec}(A[\alpha]) \to \operatorname{Spec}(A)$ and hence $X_A \to \operatorname{Spec}(A)$ are not geometrically irreducible.

Remark. If we only assumed that X/k is geometrically irreducible (which is weaker than X being normal) the result would not follow. Indeed, consider,

$$X = \operatorname{Proj}\left(k[t][X, Y, Z]/(X^2 - tY^2)\right) \to \operatorname{Spec}\left(k[t]\right) = Y$$

where k is algebraically closed. Then X and Y are geometrically integral since they are integral. Indeed, we need to check that the polynomials on the charts,

$$\left(\frac{X}{Z}\right)^2 - t\left(\frac{X}{Y}\right)^2 \qquad \left(\frac{X}{Y}\right)^2 - t \qquad 1 - t\left(\frac{Y}{X}\right)^2$$

are irreducible. They are since t does not admit a square root. However, the generic fiber is,

$$X = \operatorname{Proj}\left(k(t)[X, Y, Z]/(X^2 - tY^2)\right) \to \operatorname{Spec}\left(k(t)\right)$$

is not geometrically irreducible since after the extension $k(t^{\frac{1}{2}})/k(t)$ we can split the polynomial. However, X is not normal since $t^{\frac{1}{2}}$ is in the fraction ield (look at the second chart) but not in every chart since $H^0(X, \mathcal{O}_X) = k[t]$ and this does not contain $t^{\frac{1}{2}}$. The normalization of X is $\mathbb{P}^1 \times \operatorname{Spec}\left(k[t^{\frac{1}{2}}]\right)$ with the map,

$$[T_0:T_1] \to [t^{\frac{1}{2}}T_0:T_0:T_1]$$

This "hits both branches" since $t^{\frac{1}{2}}$ "remembers which branch of the suqare root it is on" while still making \widetilde{X} an integral scheme as it must be since it is the normalization of an integral schemes.

Remark. When the base has $\dim Y = 1$ and is over a perfect field then we can also ensure that the generic fiber is geometrically integral.

Proposition 1.1.3. Let $f: X \to Y$ be a proper morphism of schemes. Let X, Y be integral and finite type over a perfect field k. If X is normal and dim Y = 1 then the following are equivalent,

- (a) $X_{\eta} \to \operatorname{Spec}(\kappa(\eta))$ is geometrically integral
- (b) $\kappa(\eta)$ is algebraically closed in $\kappa(\xi)$
- (c) $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is an isomorphism.

Proof. Lemma 7.2 of Badescu.

Example 1.1.4. If the base has dimension > 1 this is false. For example,

$$X = \operatorname{Proj}\left(\mathbb{F}_p[s,t][X,Y,Z]/(X^p + sY^p + tZ^p)\right) \to \operatorname{Spec}\left(\mathbb{F}_p[s,t]\right) = Y$$

satisfies $f_*\mathcal{O}_X = \mathcal{O}_Y$ and X is normal but the generic fiber,

$$X = \operatorname{Proj} (\mathbb{F}_p(s,t)[X,Y,Z]/(X^p + sY^p + tZ^p)) \to \operatorname{Spec} (\mathbb{F}_p(s,t))$$

is not geometrically reduced. Indeed, allough $\mathbb{F}_p(s,t)$ is algebraically closed in,

Frac
$$(\mathbb{F}_p(s,t)[x,y]/(x^p+sy^p+t))$$

it is not separable since separability implies reducedness fo the base change by the field extension $\mathbb{F}_p(s^{\frac{1}{p}},t^{\frac{1}{p}})$.

Remark. Note that if X is any of,

- (a) reduced
- (b) integral
- (c) normal
- (d) regular

then the same is true of X_{η} for any map $f: X \to Y$ by localization. However, unlike the case for irreducibility above, the corresponding geometric versions do *not* hold as the following and previous examples show.

Example 1.1.5. Quasi-elliptic fibrations $Bl\mathbb{P}^2 \to \mathbb{P}^1$ have fibers which are not geometrically normal or regular.

Theorem 1.1.6 (Fujita, 1982). Let $f: X \to Y$ be a proper dominant morphism of integral locally noetherian schemes. Consider the following properties,

- (a) $\kappa(\xi_Y)$ is algebraically closed in $\kappa(\xi_X)$
- (b) $\operatorname{rank}_Y(f_*\mathcal{O}_X) = 1$
- (c) the general fiber satisfies $h^0(X_y, \mathcal{O}_{X_y}) = 1$
- (d) $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ is an isomorphism.

Then the following implications hold,

$$(a) \xrightarrow{X \text{ normal}} (b) \xleftarrow{Y \text{ normal}} (d)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Proof. DO IT!!! \Box

Example 1.1.7. Consider,

$$X = \operatorname{Proj}(k[t][X, Y, Z]/(X^p + cY^p + tZ^p)) \to \operatorname{Spec}(k[t])$$

where $c \in k$ is not a p^{th} -power. Then X_{η} is a smooth genus $\frac{(p-1)(p-2)}{2}$ curve but X_0 is integral and $H^0(X_0, \mathcal{O}_{X_0}) = k$ but X_0 is not geometrically reduced. The arithmetic genus is still constant but the geometric genus drops to zero.

1.2 Genera of Curves

Definition 1.2.1. A curve C over k is a separated finite type scheme over k of pure dimension 1.

Definition 1.2.2. Let X be a proper curve over k. The arithmetic genus of X is,

$$p_a(X/k) := \dim_k H^1(X, \mathcal{O}_X)$$

If $H^0(X, \mathcal{O}_X) = K$ is a field then we write,

$$p_a(X) := \dim_K H^1(X, \mathcal{O}_X)$$

Remark. The arithmetic genus is stable under field extension by flat base change. However, if X admits $X \to \operatorname{Spec}(k') \to \operatorname{Spec}(k)$ then the arithmetic genus of X viewed over k is [k':k] times the arithmetic genus of X viewed over k'. The point of the second definition is that when it it applies the base field is unambigious.

Definition 1.2.3. Let X be a curve which is a disjoint union of finitely many smooth curves over an algebraically closed field k. Then the *geometric genus* (or just *genus*) of X is,

$$g(X) := p_a(X/k) = \sum_{i=1}^{n} p_a(C_i/k)$$

Definition 1.2.4. Let X be a curve over a field k. Consider \widetilde{X} which is the normalization of $(X_{\bar{k}})_{\text{red}}$. This is a disjoint union of finitely many smooth curves C_i over \bar{k} . Thus we can define,

$$g(X/k) := g(\widetilde{X})$$

If $H^0(X, \mathcal{O}_X) = K$ is a field then we set,

$$g(X) := g(X/k)$$

Remark. The geometric genus is stable under field extension by definition. However, notice that g(X/k) does depend on the base field. If X admits $X \to \operatorname{Spec}(k') \to \operatorname{Spec}(k)$ then the geometric genus of X viewed over k is [k':k] times the geometric genus of X viewed over k'. The point of the second definition is that when it it applies the base field is unambigious.

PUT IN THE RELATIONSHIP BETWEEN THE TWO

Lemma 1.2.5. Let $f: X \to Y$ be a nonconstant map of proper regular curves over an algebraially closed field k. Then $g(X) \ge g(Y)$.

Proof. Riemann-Hurwitz and Frobenius tricks CITE [H]

Proposition 1.2.6. Let $f: X \to Y$ be a dominant map of proper curves over a field k. Then $g(X/k) \ge g(Y/k)$.

Proof. By definition, we set \widetilde{X} to be the normalization of $(X_{\bar{k}})_{\text{red}}$ and then $g(X/k) = g(\widetilde{X})$. Then the induced map $f: \widetilde{X} \to \widetilde{Y}$ is also surjective since it is dominant (because this is preserved by base change and reduction and normalization) and proper. Therefore, each component of \widetilde{Y} is hit by some component of \widetilde{X} so we reduce to the previous lemma and conclude,

$$g(X/k) \ge g(Y/k)$$

Example 1.2.7. Say $E = \text{Proj}(\mathbb{R}[X,Y,Z]/(Y^2Z - X^3 - xZ^2))$ is an elliptic curve over \mathbb{R} . It is important that we consider the genus of $E_{\mathbb{C}}$ as a curve over \mathbb{R} as 2 and not 1 because,

$$X = \text{Proj}\left(\mathbb{R}[X, Y, Z]/((Y^2Z - X^3)^2 + (XZ^2)^2)\right)$$

has normalization $E_{\mathbb{C}}$. However, X has genus 2 since $H^0(X, \mathcal{O}_X) = \mathbb{R}$ so we must view it over \mathbb{R} and to compute its genus we base change to $X_{\mathbb{C}}$ then our definition will give genus 2. If we want the map $E_{\mathbb{C}} \to X$ to satisfy the above lemma we must have $g(E_{\mathbb{C}}/\mathbb{R}) = 2$.

Proposition 1.2.8. Let $f: X \to Y$ be a dominant map of proper curves over k with,

$$k \to H^0(Y, \mathcal{O}_Y) \to H(X, \mathcal{O}_X)$$

. Then $g(X) \ge g(Y)$.

1.3 Degenerations of Curves

Definition 1.3.1. A degeneration of curves is a proper flat family $X \to S = \operatorname{Spec}(R)$ over a DVR R where X_{η} is an integral normal projective curve over $K = \operatorname{Frac}(R)$. If X is normal we say that X is a model of X_{η} over R.

Lemma 1.3.2. The total space X of a degeneration of curves is integral.

Proof. We need to show that every affine open Spec $(A) = U \subset X$ has A a domain. Indeed, $R \to A$ is flat so $A \hookrightarrow A_K$ is injective but A_K is an affine open of X_K which in integral so A_K and hence A is a domain.

Lemma 1.3.3. Let $f: X \to S$ be a proper flat map of integral schemes with S normal. Then the following are equivalent,

- (a) $f_*\mathcal{O}_X = \mathcal{O}_S$
- (b) $H^0(X_n, \mathcal{O}_{X_n}) = K$

Proof. Indeed, $f_*\mathcal{O}_X$ is a finite \mathcal{O}_S -algebra and since X is integral it is a sheaf of domains. We need to show that $\mathcal{O}_S \to f_*\mathcal{O}_X$ is an isomorphism which is a local question so we reduce to $\operatorname{Spec}(A) \subset S$ and $\operatorname{Spec}(B) \subset X$ such that $A \to B$. Then we have maps $A \to (f_*\mathcal{O}_X)(A) \to B$ and $A \to B$ is flat hence injective since they are domains. Hence $\mathcal{O}_S \to f_*\mathcal{O}_X$ is injective. Furthermore, by flat base change,

$$H^0(X_n, \mathcal{O}_{X_n}) = (f_*\mathcal{O}_X)_n$$

so if (b) holds then $(f_*\mathcal{O}_X)_{\eta} = \kappa(\eta)$. Since \mathcal{O}_S is normal and $f_*\mathcal{O}_X$ is integral over \mathcal{O}_S we see that $\mathcal{O}_S \to f_*\mathcal{O}_X$ is an isomorphism since it is contained in the fraction field.

Proposition 1.3.4. Let $X \to S$ be a degeneration of curves. Consider the following properties,

- (a) $X_{\eta} \to \operatorname{Spec}(\kappa(\eta))$ is geometrically integral
- (b) $X_{\eta} \to \operatorname{Spec}(\kappa(\eta))$ is geometrically irreducible
- (c) $X_{\eta} \to \operatorname{Spec}(\kappa(\eta))$ is geometrically connected
- (d) $H^0(X_\eta, \mathcal{O}_{X_\eta}) = \kappa(\eta)$
- (e) $f_*\mathcal{O}_X = \mathcal{O}_S$

then the following implications hold,

In particular, if X is normal and X_{η} is geometrically reduced all the properties are equivalent.

Proof. The only nontrivial implications are:

- $(a) \implies (d)$ is Tag 0BUG (8)
- $(d) \implies (e)$ is exactly Lemma 1.3.3
- $(c) \implies (b)$ is Lemma 1.1.2 and the fact that geometric connectedness of fibers can be checked generically in universally open (e.g. flat finitely presented) families [EGA IV, Cor. 15.5.4].

Remark. Even if $f_*\mathcal{O}_X = \mathcal{O}_S$ we don't necessarily have that X_η is geometrically reduced e.g. Example 1.1.7.

1.4 Examples

Suppose that we have a flat proper family $f: X \to S$ with $f_*\mathcal{O}_X = \mathcal{O}_S$. Formation of this pushforward my fail to be compatible with basechange (this is failure of cohomological flatness in degree zero). When this happens we can have jumping up of $h^0(X_s, \mathcal{O}_{X_s})$. Consider the finite $\kappa(s)$ -algebra,

$$A = H^0(X_s, \mathcal{O}_{X_s})$$

There are three ways we could imagine A jumping up:

- (a) A is a finite separable extension of $\kappa(s)$
- (b) A is a finite purely-inseparable extension of $\kappa(s)$
- (c) A is nonreduced.

The first cannot happen because $f: X \to S$ has geometrically connected fibers but if there is a factorization $X \to \operatorname{Spec}(k') \to \operatorname{Spec}(k)$ with k' separable then it is geometrically disconnected. Therefore, any field inside A must be purely inseparable over k. However both (b) and (c) can happen as we will now see.

DEGENERATE GENUS 1 TO PURELY INSEP EXTN CAN