Proteínas são biomoléculas compostas de uma ou mais cadeias de aminoácidos. Cada proteína tem a sua própria sequência de aminoácidos que é especificada por uma sequência de nucleotídeos. O DNA é quem armazena essa sequência e mantém as instruções de como fazer as proteínas para manter o funcionamento das células, tecidos e organismos. Cada nucleotídeo do DNA contém uma das bases nitrogenadas: adenina (A), guanina (G), citosina (C) e timina (T).

Uma área promissora da bioinformática é a sintetização de genes artificiais, sendo possível a "impressão" de uma fita de DNA completamente nova, permitindo a criação de bactérias que sintetizam ou fazem decomposição de certos materiais, sendo as aplicações as mais diversas possíveis. Você está estudando métodos de sintetização de DNA e inventou algumas proteínas, e ficou curioso pra saber se seria possível obter a sua proteína através de pequenas modificações de um DNA já existente.

Assim, com a descrição de uma fita de DNA e a descrição de uma proteína, você quer verificar se partes da sua proteína existem no DNA. Para tal, você quer saber quantas vezes determinadas substrings da proteína dada aparecem no DNA.

Entrada

A primeira linha é composta de dois inteiros \mathbf{N} e \mathbf{M} ($1 \le \mathbf{M} \le \mathbf{N} \le 105$), o tamanho da fita de DNA e o tamanho da sua proteína respectivamente. A segunda linha é composta da fita de DNA de \mathbf{N} nucleotídeos e a terceira é a proteína composta de \mathbf{M} nucleotídeos. Um nucleotídeo é representado por um caractere que pode ser A, G, C ou T.

Em seguida segue o inteiro \mathbf{Q} (1 $\leq \mathbf{Q} \leq$ 105), e seguem \mathbf{Q} linhas, cada uma com uma consulta, onde cada consulta é composta de dois inteiros \mathbf{A} e \mathbf{B} (1 $\leq \mathbf{A} \leq \mathbf{B} \leq \mathbf{M}$), que delimitam a substring $[\mathbf{A}, \mathbf{B}]$ da proteína.

Saída

Para cada consulta, imprima quantas vezes a substring [A, B] da proteína aparece na fita de DNA, na mesma ordem da entrada.

Exemplo de Entrada	Exemplo de Saída
--------------------	------------------

Untitled 1

10 7 AAACAACTGA CGGACAA 6 11 2 7 5 7	2 0 1 3 2
6 7 4 5	
6 6	

Untitled 2