Introduction to Deep Learning

Ashish Mahabal
Center for Data-Driven Discovery, Caltech
LSST Transients and Variable Stars Co-chair
26 Jan 2017
LSST Data Science Fellowship Program

Schematic of a logistic regression classifier.

Real and artificial neurons

By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830 Quora: Sebastian Raschka

Softmax Regression

- This equation gives the probability of each classification
- Softmax regression first add up evidence of input being in a certain class and convert evidence into probabilities.
- There are 3 parts to this equation:
 - 1. Add weights (Wx)
 - 2. Add biases
 - 3. Softmax

Activation
Ashish Mahabal

SoftPlus, Sigmoid, ... Remapping/reshaping

Sample of cats & dogs images from Kaggle Dataset

Sample of cats & dogs images from Kaggle Dataset

Deep Learning

Neural Networks in a new garb (but it works)

Restricted Boltzman Machines (RBMs)

Hinton

Hidden layers can not interconnect

Simple FeedForward

Joint probability: p(x|a) and p(a|x) expressed as the shared weights

Sparse representation

conv + pool + conv + connected

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Enhancing angled edges

Here's an example of how to make a convolution layer with 3x3 filter. You run across the matrix to get convolved feature of 3x3.

This will be the resulting convolution layer once matrix is complete.
 In this example, the layer will detect edges.

Enhancing angled edges

Here's an example of how to make a convolution layer with 3x3 filter. You run across the matrix to get convolved feature of 3x3.

This will be the resulting convolution layer once matrix is complete.
 In this example, the layer will detect edges.

Convolution in Astronomy

Pooling Layers (max pool)

Pooling layers are applied after convolution layers. This is a subsample of your convolution layer.

- Fixed size output matrix
- Reduces output dimensionality with the most salient information

Hyperparameters

Our model has a depth of 3. Pooling blocks are 2x2, with stride of 1 and 0 padded for our model.

Three hyperparameters control the size of the output volume of the convolutional layer: the **depth**, **stride** and **zero-padding**.

- **Depth** of convolution layers. For example, if the first Convolutional Layer takes the raw image as input, then another may activate edges, or color.
- **Stride** When the stride is 1, a new depth column of neurons is allocated to spatial positions only 1 spatial unit apart.
- Zero padding provides control of the output volume spatial size.

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Final layers are fully connected

Several libraries available

- Caffe: http://caffe.berkeleyvision.org/
- Tensorflow: https://www.tensorflow.org/
- Theano: http://deeplearning.net/software/theano/

abstractions, instant gratification

Tensorflow example (notebook)

Mapping in order to linearly separate clusters

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Disentangling with multiple layers

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

What bird is that?

or: what features is my deep network using?

https://arxiv.org/pdf/1312.6199v4.pdf

MNIST digits significance map

https://arxiv.org/pdf/1312.6199v4.pdf

The images in the left most column are correctly classified examples. The middle column represents the distortion between the left and right images. The images in the right most column are predicted to be of the class ostrich! Even though the difference between the images on the left and right is imperceptible to humans, the ConvNet makes drastic errors in classification.

MNIST digits significance map

https://arxiv.org/pdf/1312.6199v4.pdf

The images in the left most column are correctly classified examples. The middle column represents the distortion between the left and right images. The images in the right most column are predicted to be of the class ostrich! Even though the difference between the images on the left and right is imperceptible to humans, the ConvNet makes drastic errors in classification.

MNIST digits significance map

https://arxiv.org/pdf/1312.6199v4.pdf

Pitfall: Overlearning

Generative Adversarial Networks

Zhang et al. 2016

Labels are everywhere

Laundry list for image archives

- Large sets
- Labelled data
- Metadata (CDEs!)
- Peripheral data
- Balanced datasets

Some GAN refs

- Denton et al. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks" (NIPS 2015)
 : https://scholar.google.com/citat...
- Radford et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" (ICLR 2015): https://scholar.google.com/ citat...
- Mathieu et al. "Deep multi-scale video prediction beyond mean square error": https://scholar.google.com/citat...

deconvnets

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations of the 16 different filters (on the left)

https://arxiv.org/pdf/1311.2901v3.pdf

New

Tic-Tac-Toe with Deep Learning?

Tic-Tac-Toe with Deep Learning?

Too shallow!

What about Mario? (Deep Mind)

GO: Even Harder

Chess: 20 options

GO: 200 options

9gag.com

Demis Hassabis, CEO Deep Mind

Lee Sedol, 18 World Titles

GO: Even Harder

9gag.com

http://deeplearningskysthelimit.blogspot.com/2016/04/part-2-alphago-under-magnifying-glass.html

http://deeplearningskysthelimit.blogspot.com/2016/04/part-2-alphago-under-magnifying-glass.html

IM ... GENET

Large Scale Visual Recognition Challenge

- 2012: Alexnet (error rate 15.4%)
- 2013: ZFnet (error rate 11.12%)

ZF Net Architecture

ILSVRC

• DeConvNets (Caffe)

Adit Deshpande

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html Ashish Mahabal

GoogLeNet (2014) 6.7%

ResNET (2015) error rate: 3.6%

2015 ILSVRC leaderboard

Team name	Entry description	Number of object categories won	mean AP
MSRA	An ensemble for detection.	194	0.620741
Qualcomm Research	NeoNet ensemble with bounding box regression. Validation mAP is 54.6	4	0.535745
CUlmage	Combined multiple models with the region proposals of cascaded RPN, 57.3% mAP on Val2.		0.527113
The University of Adelaide	9 models	0	0.514434
MCG-ICT-	2 models on 2 proposals without category information: (ISS+FRI+	C.	

Classification error: 0.03567

Yellow: Winner in category Yellow/White: Reveal code Gray: Won't reveal code

2016 ILSVRC leaderboard

Team name Entry description		Number of object categories won	mean AP	
CUlmage	Ensemble of 6 models using provided data	109	0.662751	
Hikvision	Ensemble A of 3 RPN and 6 FRCN models, mAP is 67 on val2	30	0.652704	
Hikvision	Ensemble B of 3 RPN and 5 FRCN models, mean AP is 66.9, median AP is 69.3 on val2	18	0.652003	
NUIST	submission_1	15	0.608752	
NUIST	submission_2		0.607124	
Trimps-Soushen	Ensemble 2	8	0.61816	
360+MCG-ICT- CAS_DET	9 models ensemble with validation and 2 iterations		0.615561	
360+MCG-ICT- CAS_DET Baseline: Faster R-CNN with Res200		4	0.590596	
Hikvision	vision Best single model, mAP is 65.1 on val2		0.634003	
CIL	Ensemble of 2 Models	1	0.553542	
360+MCG-ICT- CAS_DET 9 models ensemble		0	0.613045	

Classification error: 0.02991

In Astro what can you apply deep learning to?

- One speculative example
- One related to your work

Finding Streaks in astronomical images

Brian Bue, Umaa Rebrapragada (PTF, Deep Belief Networks)

Stacking Restricted Boltzmann Machines (RBM) → Deep Belief Network (DBN)

Train RBMs (unsupervised) and Fine-tune weights (supervised)

Asteroid Detection from Sky Survey Imagery

- Goal: automatically distinguish real vs. bogus asteroids from Palomar Transient Factory (PTF) imagery
- Current dataset: 240 confirmed asteroids, 1441 syntheticallygenerated asteroids, 20072 bogus

Confirmed Asteroids

Initial Machine Learning Approach

Extract intensity + morphology features from masked images

- Train/classify feature vectors using a Random Forest classifier
- Accurate (0.8% test error)...but required expert knowledge to design/extract/validate features

Deep Learning Approach: Deep Belief Network

- Approach: use a DBN to detect asteroids using the (raw) asteroid mask image pixels
- Consider downsampled images...
 30x30, 45x45, 50x50
 ...with RBM layer dims...

[1000,1000], [1600,1600], [1600], [2500]

- Experimental setup:
 - Pylearn2 DBN implementation
 - 2.8Ghz Intel Core i7, 16GB RAM
 - CPU only (no GPU optimization)

B Bue

RBM Weights, Samples for Asteroids DBN

Image Dims	RBM Dims	Test Error	Pretraining time (minutes)	Finetune time (minutes)
30x30	[900,900]	5.07%	86	900
45x45	[1600]	1.47%	74	358
45x45	[1600,1600]	1.21%	403	1042
50x50	[2500]	1.15%	416	?

F Gieseke, A Mahabal, B Bue, U Rebrapragada (Deep Belief -> Learning)

Sunspot drawings' handwritten character recognition (Zheng et al., 2016)

400 Year records

Applications

From Starck et al. AA Sup. 147, 139 (2000)

smoothness edge-on bar spiral bulge roundedness

Bump hunting in radio astronomical datacubes

Single-dish data

HI Parkes All-Sky Survey (HIPASS) 21-cm data cube showing nearby galaxies (dark spots) and the Galactic Plane (dark sheet). (Meyer et al. 2004). Understanding the noise properties is particularly important for finding the faintest sources.

Babu (Digging deeper, KISS, Dec 2011)

Galaxy images (Huertas-Company et al., 2015)

binary brokers

Ashish Mahabal

52

Periodic Binaries

Is what I am seeing a supernova?
Is it a blazar?
Is it a periodic variable?
Is the periodic variable an eclipsing binary?
Is it an eclipsing binary with low metallicity?

Combining with unstructured data

The "comments" or metadata become additional features (GoogLeNet)

https://research.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

Plans with Cancer datasets

Lung dataset:

https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics

DataType: non-small cell lung cancer (NSCLC)

modalities: CT, RSTRUCT

number of patients: 422

number of images: **51K**

pixel dimensions: 512x512

With and without cavity

Will use NLST

Details

- Train Tensorflow with labeled images
- Test survival predictive power with a test set
- Report accuracy of the model.

Further possibilities

- Incorporate unlabeled radiomics feature extractions for predictive modeling
- · Stratify Classifications into groups e.g. separate survival by progression/recurrence
- General classifications can include
 - predicting what organ(s) are in image,
 - identifying presence of a tumor,
 - biomarker signature discoveries, and more.
- Other cancer-specific classifications
 - cancer stage,
 - tumor stage,
 - gender

NLST 50000 Heavy smokers Followed over years

David Liu

Fully automatic

Hallmarks of cancer Hanahan and Wagner (2000; 2011)

Human Connectome

NIH

Resting state and task based fMRI MEG, EEG

390GB/person several hundred people

Voxels
4D NIfTI
Dicom

From galaxies to lesions

OpenFace

https://cmusatyalab.github.io/openface/

Another use for the face API

Faces masked in Streetview

Translate - on your phone

clarifai: MLaaS

What Deep Learning Can Not Do

There was a guy from Pansy
Who had a chest clinic very fancy
Said he with a hiss,
That M Tuberculosis

What Deep Learning Can Not Do

There was a guy from Pansy
Who had a chest clinic very fancy
Said he with a hiss,
That M Tuberculosis
Can cause anything except pregnancy

What Deep Learning Can Not Do

There was a guy from Pansy
Who had a chest clinic very fancy
Said he with a hiss,
That M Tuberculosis
Can cause anything except pregnancy

There was a guy from LSST

[xyz] he [lmn] rhyme-with-tea

Said he with a ...ing

That Deep Learning

Can solve anything except []

Summary

- CNNs are taking over, especially the image domain
- Can come up with features not thought of before
- Abstracted libraries and visualizations available
- Over-learning can be a problem:
 - augmentation
 - adversarial examples/generative networks
- Should ensure they do not become convoluted
- Deep and wide networks may prove to be a boon

Credits:

Developing the machinery for EDRN/MCL (JPL informatics)

David Liu Dan Crichton

Projects with Fabian Gieseke, Brian Bue, Umaa Rebrapragada

Copious dependance on blogs and other websites Adit Deshpande

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Christopher Olah

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Adil Moujahid

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

https://research.googleblog.com/2016/06/wide-deep-learning-better-together-with.html