POLYNOMIAL REGRESSION MODELS

A. Studi Kasus

Table 7.1 The Hardwood Data

Hardwood Concentration, x_i (%)	Tensile Strength, (psi) y, (psi)
1	6.3
1.5	11.1
2	20.0
2 3	24.0
4	26.1
4.5	30.0
5	33.8
5.5	34.0
6	38.1
6.5	39.9
7	42.0
8	46.1
9	53.1
10	52.0
11	52.5
12	48.0
13	42.8
14	27.8
15	21.9

Pada Tabel 7.1 menunjukkan konsentrasi hardwood dalam pulp dan kekuatan tarik kertas kraft. Data ini terdiri dari dua variabel, yaitu konsentrasi hardwood (x_i) dalam persen dan kekuatan tarik (y) dalam pound per square inch (psi). Rentang nilai konsentrasi hardwood berkisar dari 1 hingga 15 persen, sedangkan kekuatan tarik berkisar dari 6.3 hingga 52.5 psi. Melalui pemahaman terhadap proses produksi, terdapat indikasi bahwa model kuadratik mungkin dapat secara memadai menjelaskan hubungan antara kekuatan tarik dan konsentrasi kayu keras. Di mana data-data tersebut akan diproses untuk dilakukan perhitungan data yang menerapkan materi "*Polynomial Regression Models*".

B. Pembahasan

Untuk melakukan proses perhitungan data pada *Polynomial Regression Models* secara manual, Excel merupakaan salah satu *tools* yang tepat untuk melakukan proses

analisis regresi polinomial. Di mana pada pembahasan dari studi kasus "The Hardwood Data" ini memiliki proses *Polynomial Regression* dengan *first order* dan *second order*. Untuk penerapan perhitungan *first order* dan *second order polynomial regression* pada "The Hardwood Data" akan di jelaskan lebih lanjut sebagai berikut.

1. Polynomial Regression

Langkah awal untuk melakukan perhitungan *polynomial regression* adalah membangun model regresi dengan menggunakan estimasi beta, di lanjutkan dengan melakukan proses perhitungan estimasi sigma, uji F, *R-Square*, uji T. Di mana nilai-nilai yang telah di peroleh dari proses perhitungan tersebut akan di bandingkan dengan hasil perhitungan dari tabel yang terdapat di buku 7.2 apakah memiliki hasil perbandingan yang sama atau tidak.

1.1 Membangun Model Regresi Dengan Menggunakan Estimasi Beta

Dengan menggunakan estimasi beta, di lakukan proses membangun model regresi polinomial. Di mana untuk membangun model regresi tersebut, di perlukan pembuatan tabel yang menunjukkan nilai presentase konsentrasi kayu keras yang di lambangkan dengan variabel x_i dan kekuatan tarik yang di lambangkan dengan variabel y.

	Hardwood Concetration	Tensile Strength		Х	
	Xi (%)	Y (psi)	С	$X - \bar{X}$	$(X - \bar{X})^2$
	1	6.3	1	-6.26315789	39.22714681
	1.5	11.1	1	-5.76315789	33.21398892
	2	20	1	-5.26315789	27.70083102
	3	24	1	-4.26315789	18.17451524
	4	26.1	1	-3.26315789	10.64819945
	4.5	30	1	-2.76315789	7.635041551
	5	33.8	1	-2.26315789	5.121883657
	5.5	34	1	-1.76315789	3.108725762
	6	38.1	1	-1.26315789	1.595567867
	6.5	39.9	1	-0.76315789	0.582409972
	7	42	1	-0.26315789	0.069252078
	8	46.1	1	0.736842105	0.542936288
	9	53.1	1	1.736842105	3.016620499
	10	52	1	2.736842105	7.490304709
	11	52.5	1	3.736842105	13.96398892
	12	48	1	4.736842105	22.43767313
	13	42.8	1	5.736842105	32.91135734
	14	27.8	1	6.736842105	45.38504155
	15	21.9	1	7.736842105	59.85872576
Jumlah	138	649.5			
Rata-rata	7.263157895	34.18421053			

Untuk mendapatkan model regresi dari untuk regresi polynomial ini di perlukan 3 kolom X, yakni, kolom C dengan inisiasi nilai X sebesar 1 sebanyak data, kolom $(X - \bar{X})$ yang berisi hasil perhitungan antara nilai X di kurang dengan nilai rata-rata X, dan kolom $(X - \bar{X})^2$. Kemudian nilai-nilai tersebut akan di proses untuk mendapatkan nilai model regresi polinomial.

	Х																	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-6.263157895	-5.763157895	-5.263157895	-4.263158	-3.263157895	-2.763158	-2.26316	-1.76316	-1.26316	-0.76316	-0.26316	0.736842	1.736842	2.736842	3.736842	4.736842	5.736842	6.736842	7.736842
39.22714681	33.21398892	27.70083102	18.17452	10.64819945	7.635042	5.121884	3.108726	1.595568	0.58241	0.069252	0.542936	3.01662	7.490305	13.96399	22.43767	32.91136	45.38504	59.85873

	X'X		Χ'Y
19	-7.10543E-15	332.6842105	649.5
-7.10543E-15	332.6842105	406.5083102	589.1789474
332.6842105	406.5083102	11440.02096	8844.776593

	X'X INVERS		Hasil Beta	
0.112534469	0.00418029	-0.003421127	45.29497313	Beta 0
0.00418029	0.003297573	-0.000238741	2.546344044	Beta 1
-0.003421127	-0.000238741	0.000195385	-0.63454917	Beta 2

Lalu, langkah selanjutnya di lakukan proses transformasi dari ke nilai *X* yang terdapat di kolom tersebut, di lanjutkan dengan proses perkalian nilai transformasi *X* di kali nilai *X* kemudian di lakukan proses perhitungan *inverse* dari nilai tersebut, dan di lakukan proses perkalian *X'* dengan *Y*.

Untuk nilai-nilai dari beta tersebut, di peroleh dari proses perhitungan perkalian dari nilai *inverse* X'X di kali X'Y. Sehingga, di peroleh nilai $\widehat{\beta_0} = 45,295$, $\widehat{\beta_1} = 3,546$, dan $\widehat{\beta_2} = -0,634$. Dan, di peroleh model prediksi :

$$\hat{y} = 45,295 + 2,546 (x - 7,2632) - 0,635 (x - 7,2632)^2$$

Interpretasi:

Model tersebut menggambarkan hubungan antara variabel input (x) dan variabel output (\hat{y}) dalam bentuk fungsi kuadrat. Model ini memiliki tiga parameter utama, yaitu 45.295, 2.456, dan -0.635. Jadi, model tersebut dapat memperkirakan nilai \hat{y} berdasarkan nilai x yang di berikan.

1.2 Scatter Plot Of Data

Pada visualisasi "Scatter Plot Of Data" di atas menunjukkan hubungan antara konsentrasi kayu keras dengan kekuatan tarik, di mana data di plot sebagai titik dan garis tren dari regresi polinomial yang di hasilkan di visualisasikan melalui titik-titik tersebut. Dalam visualisasi di atas dapat di perlihatkan bahwa terdapat garis tren polinomial dengan kurva yang melengkung. Hal ini menunjukkan bahwa hubungan antara konsentrasi kayu keras dengan kekuatan tarik adalah **non-linier**.

Pada visualisasi "*Plot Of Residuals EI, Versus Fitted Values Y Hat*" di atas menunjukkan selisih antara nilai prediksi oleh model dengan nilai actual. Nilai residual di plot sebagai titik-titik dan garis 0 di gambar melalui titik-titik tersebut. Dalam visualisasi di atas dapat di perlihatkan bahwa terdapat residual yang berada di dekat garis 0. Hal ini menunjukkan bahwa model memiliki nilai akurasi yang baik dalam memprediksi nilai kekuatan tarik.

Pada visualisasi "Normal Probability Plot of the Residuals" menunjukkan nilai residual pada sumbu horizontal dan nilai normal yang diharapkan pada sumbu vertikal., titik-titik pada plot mengikuti garis lurus dengan cukup baik. Hal ini menunjukkan bahwa residu terdistribusi secara normal. Namun, ada satu titik yang terletak di luar garis lurus. Titik ini dapat dianggap sebagai outlier. Berdasarkan

interpretasi tersebut, dapat disimpulkan bahwa nilai residual yang diamati pada gambar tersebut terdistribusi secara normal.

Berdasarkan ketiga visualisasi *scatter plot* tersebut dapat diambil kesimpulan bahwa model regresi polinomial yang di hasilkan dapat digunakan untuk memprediksi kekuatan tarik kayu keras dengan konsentrasi yang diketahui. Model tersebut menunjukkan bahwa adanya hubungan non-linier antara konsentrasi kayu keras dengan kekuatan tarik, tetapi memiliki model akurasi yang baik dalam meprediksi nilai kekuatan tarik.

1.3 Melakukan Perhitungan SSRes, MSRes, DFRes Dengan Menggunakan Estimasi Sigma

Dengan menggunakan estimasi sigma, di lakukan proses perhitungan nilai y prediksi, error, *sum of squares* residual, *mean square* redisual, *degrees of reedom* residual, dan *standar error* estimasi beta.

	Estimasi Sigma						
	Hardwood Concetration	Tensile Strength		x		Y Topi	Error
	Xi (%)	Y (psi)	С	X - X	$(X-X)^2$	1	
	1	6.3	1	-6.2631579	39.22714681	4.4552649	1.84474
	1.5	11.1	1	-5.7631579	33.21398892	9.5440813	1.55592
	2	20	1	-5.2631579	27.70083102	14.315623	5.68438
	3	24	1	-4.2631579	18.17451524	22.906883	1.09312
	4	26.1	1	-3.2631579	10.64819945	30.229044	-4.12904
	4.5	30	1	-2.7631579	7.635041551	33.414213	-3.41421
	5	33.8	1	-2.2631579	5.121883657	36.282107	-2.48211
	5.5	34	1	-1.7631579	3.108725762	38.832727	-4.83273
	6	38.1	1	-1.2631579	1.595567867	41.066072	-2.96607
	6.5	39.9	1	-0.7631579	0.582409972	42.982143	-3.08214
	7	42	1	-0.2631579	0.069252078	44.580939	-2.58094
	8	46.1	1	0.73684211	0.542936288	46.826707	-0.72671
	9	53.1	1	1.73684211	3.016620499	47.803377	5.29662
	10	52	1	2.73684211	7.490304709	47.510948	4.48905
	11	52.5	1	3.73684211	13.96398892	45.949421	6.55058
	12	48	1	4.73684211	22.43767313	43.118796	4.8812
	13	42.8	1	5.73684211	32.91135734	39.019072	3.78093
	14	27.8	1	6.73684211	45.38504155	33.65025	-5.85025
	15	21.9	1	7.73684211	59.85872576	27.01233	-5.11233
Jumlah	138	649.5					
Rata-rata	7.263157895	34.18421053					

Untuk mendapatkan nilai prediksi y atau Y topi, di pergunakan rumus dan melakukan subtitusi ke persamaan yang di peroleh pada model prediksi. Kemudian di lakukan perhitungan error dengan menggunakan rumus $e = yi - \hat{y}$. Lalu, di lanjutkan dengan melakukan transformasi dari nilai error, Y, dan beta topi.

Error										Error'										
	1.0147			5.684376952		4 4 2 2 2 2 4	2 44 424 2200	2 402402402	-4.832727179		2 2224 4224	2 5 6 0 0 4	0.73474	C 20000	4 40005		40043	2 70002	E 05035	1
1.84473511	1.8447.	5511 1	1.55591874	5.684376952	1.0931171	-4.12904	-3.414213209	-2.482107487	-4.832727179	-2.96607	-3.08214281	-2.58094	-0.72671	5.29662	4.48905	6.55058	4.8812	3.78093	-5.85025	-5.1
1.555918738																				_
5.684376952										Υ										
1.093117133	6.3		11.1	20	24	26.1	30	33.8	34	38.1	39.9	42	46.1	53.1	52	52.5	48	42.8	27.8	2
-4.129044347																				
-3.414213209			BetaTopi'		1															
-2.482107487	45.2949	9731 2	2.54634404	-0.63454917																
-4.832727179																				
-2.966072287																				
-3.08214281																				
-2.580938748																				
-0.72670687																				
5.296623347																				
4.489051904																				
6.550578801																				
4.881204036																				
3.780927611																				
-5.850250474																				
-5.11233022																				

Di mana nilai-nilai tersebut akan di pergunakan untuk menghitung *sum of squares* residual, *mean square* redisual, dan *degrees of reedom* residual. Sebelumnya perlu di lakukan inisiasi nilai n (jumlah data) sebesar 19, k (variabel prediktor) sebesar 2, dan p (variabel prediktor + 1) sebesar 3.

	Inisiasi Nilai Dan Perhitungan	
n	19	
k	2	
р	3	
SSRes	312.6382884	
MSRes	19.53989303	
DFRes	16	

Kemudian dari, nilai-nilai tersebut di lakukan beberapa perhitungan, yakni :

• Sum Squares Residual

$$SSR_{es} = \sum_{i=1}^{n} e_i^2 = e'.e = 312,63829.$$

• Mean Square Residual

$$MSR_{es} = \frac{SSR_{es}}{n-p} = \frac{312,63829}{19-3} = 19,53989.$$

• Degrees Of Reedom Residual

$$DFR_{es} = n - k - 1 = 19 - 2 - 1 = 16$$

	Inisiasi Nilai Dan Perhitungan					
n	19					
k	2					
р	3					
SSRes	312.6382884					
MSRes	19.53989303					
DFRes	16					
	X'X Invers		Star	ndar Error Estimasi B	eta	
0.112534469	0.00418029	-0.003421127	1.482872712			
0.00418029	0.003297573	-0.000238741		0.253838962		
-0.003421127	-0.000238741	0.000195385		0.06178832		

Setelah mendapatkan nilai-nilai tersebut selanjutnya adalah melakukan perhitungan nilai $standar\ error$ estimasi beta dengan menggunakan nilai MSR_{es} di kali dengan diagonal nilai pada matriks $inverse\ X'X$. Dengan perhitungan :

• $SE(\widehat{\beta_0})$

$$SE(\widehat{\beta_0}) = \sqrt{\frac{19,539893}{0,11253}} = 1,48287.$$

• $SE(\widehat{\beta_1})$

$$SE(\widehat{\beta_1}) = \sqrt{\frac{19,539893}{0,003297}} = 0,25384.$$

• $SE(\widehat{\beta_2})$

$$SE(\widehat{\beta_2}) = \sqrt{\frac{19,539893}{0,00019}} = 0,06179.$$

1.4 Melakukan Perhitungan SSReg, MSReg, DFReg, F-Hitung, F-Tabel Dengan Menggunakan Uji F

Dengan menggunakan uji-F, di lakukan proses perhitungan nilai SSR_{eg} , MSR_{eg} , DFR_{eg} , F-hitung, dan F-Tabel.

	UJI F																	
	BetaTopi*																	
45.29497313	2.546344044	-0.63454917																
								X'										
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-6.263157895	-5.763157895	-5.263157895	-4.2631579	-3.26315789	-2.763157895	-2.263158	-1.76316	-1.263157895	-0.763157895	-0.263157895	0.736842	1.736842105	2.736842	3.736842	4.736842	5.736842	6.736842	7.736842
39.22714681	33.21398892	27.70083102	18.1745152	10.6481994	7.635041551	5.1218837	3.108726	1.595567867	0.582409972	0.069252078	0.542936	3.016620499	7.490305	13.96399	22.43767	32.91136	45.38504	59.85873
							В	etaTopi'X'										
4.45526489	9.544081262	14.31562305	22.9068829	30.2290443	33.41421321	36.282107	38.83273	41.06607229	42.98214281	44.58093875	46.82671	47.80337665	47.51095	45.94942	43.1188	39.01907	33.65025	27.01233

Di lakukan proses transformasi dari nilai-nilai beta topi dan *X*. Kemudian, hasil nilai transofrmasi tersebut di lakukan proses perkalian.

	Tensile Strength
	Y (psi)
	6.3
	11.1
	20
	24
	26.1
	30
	33.8
	34
	38.1
	39.9
	42
	46.1
	53.1
	52
	52.5
	48
	42.8
	27.8
	21.9
Jumlah	649.5
Kuadrat/n	22202.64474
BetaTopi'X'Y	25306.89171

Selanjutnya, di lakukan proses perhitungan jumlah dari nilai y dan di peroleh hasil sebesar 649,5, perhitungan nilai kuadrat/n dengan $\frac{649,5^2}{n}$ dan di peroleh hasil sebesar 22202,63374. Kemudian di lanjutkan melakukan proses perkalian dari betatopi'X' di kali dengan Y dan di peroleh hasil sebesar 25306,89171.

	Inisiasi Nilai Dan Perhitungan		
k	2	MSRes	19.539893
SSReg(B1,B2 B0)	3104.246975	SSRes	312.638288
MSReg	1552.123487		
DFReg	2		
F-Hitung	79.43357138		
F-Tabel	3.633723468		

Untuk melakukan proses perhitungan SSR_{eg} , MSR_{eg} , dan DFR_{eg} di perlukan inisiasi nilai k sebesar 2. Kemudian, dari nilai-nilai tersebut dapat di lakukan beberapa perhitungan, yakni :

Sum Squares Regression

$$SSR_{eg} = \hat{\beta}' X' y - \frac{(\sum_{i=1}^{n} yi)^2}{n} = 3104,24697.$$

• Mean Square Regression

$$MSR_{eg} = \frac{SSR_{eg}}{k} = \frac{3104,24697}{2} = 1552,123487.$$

• Degrees Of Reedom Regression

$$DFR_{eg} = k = 2.$$

Kemudian, di lanjutkan dengan melakukan proses perhitungan F-Hitung dan F-Tabel.

F-Hitung

$$F - Hitung = \frac{MSR_{eg}}{MSR_{es}} = \frac{1552123487}{19,53989303} = 79,43357.$$

• F-Tabel

$$F-Tabel = f(\propto, k, (n-p)) = f(0.05, 2(19-3)) = 3.63372.$$

Interpretasi Uji-F:

Dari uji-F yang telah di lakukan, dapat di tarik kesimpulkan bahwa H0 di tolak. H0 ditolak jika F-Hitung > F-Tabel, pada hasil analisis di atas, diperoleh F-Hitung = 79,43357 > F-tabel = 3,63372 maka dapat disimpulkan bahwa H0 ditolak yang artinya bahwa ada minimal satu variabel independen yang berpengaruh terhadap variabel dependen.

1.5 Melakukan Perhitungan *R-Square*, SST, DFT Dengan Menggunakan *R-Square*

Dengan menggunakan perhitungan R-SquaredR di lakukan proses perhitungan SST. DFT, R-Square dan R^2 _{Adj}.

SS gambar sst

Di lakukan proses perhitungan SST dan DFT.

• Sum Squares Total

$$SST = \sum_{i=1}^{n} (yi - \bar{y})^2 = 3416,88526.$$

• Degrees Of Reedom Total

$$DFT = n - 1 = 19 - 1 = 18$$
.

Lalu, di lanjutkan dengan proses perhitungan R-Squared dan R^2_{Adj} beserta sisa masing-masing perhitungan.

• R-Squared

$$R^2 = \frac{SSR_{eg}}{SST_{otal}} = \frac{3104,246975}{3416,88526} = 0,90850 = 90,85 \%.$$

Sisa R-Squared

$$Sisa = 1 - R^2 = 1 - 0.90850 = 0.09149 = 9.15\%.$$

• R^2_{Adj}

$$R^{2}_{Adj} = 1 - \frac{\frac{SSR_{es}}{n-p}}{\frac{SST}{n-1}} = 1 - \frac{\frac{312,63829}{19-3}}{\frac{3416,88526}{19-1}} = 0,89706 = 89,71\%.$$

• Sisa R²_{Adj}

$$Sisa = 1 - R^2_{Adj} = 1 - 0.89706 = 0.10293 = 1029.35\%.$$

Interpretasi R-Squared:

Nilai *R-Squared* sebesar 0.90850, artinya sekitar 90,85% dari total variasi dalam variabel dependen dapat dijelaskan oleh variabel independen dalam model, dan sisanya sekitar 9,15% dari total variasi dalam variabel dependen tidak dapat dijelaskan dalam model

1.6 Melakukan Perhitungan T-Hitung Dan T-Tabel Dengan Menggunakan Uji T

Dengan menggunakan uji T, di lakukan proses perhitungan T-Hitung untuk $\widehat{\beta_1}$ dan $\widehat{\beta_2}$. Sebelumnya, di perlukan inisiasi nilai beta dan *standar error* estimasi beta.

	UJI T		
Hasil dari Beta		Standar Erro	r Estimasi
45.29497313		Beta 0	1.48287271
2.546344044		Beta 1	0.25383896
-0.63454917		Beta 2	0.06178832

• Uji T Untuk Beta Topi 1 $(\widehat{\beta_1})$

Uji T u	ıntuk Beta Topi 1				
T-Hitung	10.03133649				
T-Tabel	4.30265273				
Kesimpulan	H0 ditolak				
Intornuctori	Variabel X1 berpengaruh				
Interpretasi	terhadap variabel Y-nya				

Di lakukan proses perhitungan T-Hitung dan T-Tabel.

$$T - Hitung = \frac{\widehat{\beta_1}}{SE(\widehat{\beta_1})} = \frac{2,54634}{0,02538} = 10,03134.$$

$$T - Tabel = t \frac{\alpha}{2}, k = t \frac{0,05}{2}, 2 = 4,30265.$$

Interpretasi Uji T Untuk Beta Topi 1 $(\widehat{\beta_1})$:

H0 di tolak, artinya variabel X1 berpengaruh terhadap variabel Y-nya.

• Uji T Untuk Beta Topi 2 $(\widehat{\beta_2})$

Uji T u	ntuk Beta Topi 2					
T-Hitung	10,26972681					
T-Tabel	4,30265273					
Kesimpulan	H0 ditolak					
Intonounte d	Variabel X1 berpengaruh					
Interpretasi	terhadap variabel Y-nya					

Di lakukan proses perhitungan T-Hitung dan T-Tabel.

$$T - Hitung = \frac{\widehat{\beta_2}}{SE(\widehat{\beta_2})} = \frac{-0,63455}{0,06179} = -10,26972 = 10,26972.$$

$$T - Tabel = t \frac{\alpha}{2}, k = t \frac{0,05}{2}, 2 = 4,30265.$$

Interpretasi Uji T Untuk Beta Topi 1 $(\widehat{\beta_2})$:

H0 di tolak, artinya variabel X1 berpengaruh terhadap variabel Y-nya.

Interpretasi Uji-T:

Dengan menolak H0, pada kedua uji-T tersebut menunjukkan bahwa kedua variabel independen (X1) memiliki pengaruh yang signifikan terhadap variabel dependen (Y).

1.7 Interpretasi Dan Perbandingan Tabel Perhitungan

															_
PERBANDINGAN TABEL															
	Tabel Analisis	Secara Manual				Tabel Analisis Sesuai Tabel 7.2									
Source of	Sum of	Degrees of	Mean				Source of		Sum o		Degrees of				
Variation	Squares	Freedom	Square	FO			Variation	n	Square	es Freedom		Me	an Squar	e	
Regression	3104.246975	2	1552.123487	79.43357138			Regressi		3104.24		2	1	552.123		
Residual	312.6382884	16	19.53989303				Residua		312.63		6		19.540		
Total	3416.885263	18					Total		3416.88	85 1	8				

Di mana di setelah melakukan serangkaian perhitungan di atas, nilai-nilai SSReg, SSRes, SST, MSReg, MSRes, DFReg, DFRes, DFT, dan F0. Di masukkan kedalam tabel anova "Tabel Analisis Secara Manual". Kemudian, di lakukan perbandingan antara "Tabel Analisis Secara Manual" dengan "Tabel Analisis Sesuai Tabel 7.2". Dapat di perlihatkan bahwa tidak terdapat perbedaan signifikan antar hasil kedua perhitungan tersebut, hanya saja untuk di "Tabel Analisis Secara Manual" menggunakan 5-6 angka di belakang koma, sedangkan di Tabel Analisis Sesuai Tabel 7.2" menggunakan 3 angka di belakang koma. Ini berarti bahwa kedua tabel tersebut memiliki nilai yang sama.

Interpretasi:

Regression	Residual	Total
Model regresi secara		
keseluruhan berhasil	Terdapat variasi yang tidak	
menjelaskan variasi sebesar	dapat dijelaskan oleh model	Total variasi dalam data
3104,25 dengan	(sisa) sebesar 312,64. Rata-	adalah 3416,89, yang
menggunakan dua variabel	rata kuadrat sisa adalah	merupakan gabungan dari
independen. Rata-rata kuadrat	19,54, yang mencerminkan	variasi yang dijelaskan oleh
regresi adalah 1552,12, yang	seberapa besar variasi yang	model dan variasi yang tidak
mencerminkan seberapa baik	tidak dijelaskan oleh model.	dijelaskan.
model mampu menjelaskan		
variasi.		

2. Quadratic Model / Second Order Model

Langkah awal untuk melakukan perhitungan Quadratic Second Order adalah dengan membangun model regresi dengan menggunakan estimasi beta yang kemudian dilanjutkan dengamn perhitungan estimasi sigma, Uji F,R-Square, dan Uji T.

2.1.Membangun Model Regresi Dengan Menggunakan Estimasi Beta

Dengan menggunakan estimasi beta, di lakukan proses membangun model regresi polinomial. Di mana untuk membangun model regresi tersebut, di perlukan pembuatan tabel yang menunjukkan nilai presentase konsentrasi kayu keras yang di lambangkan dengan variabel variabel X dan kekuatan tarik kayu tersebut yang dilambangkan dengan variabel Y. X yang dipakai disini adalah nilai X baru yang ada dalam perhitungan Polymonial First Order yang diperoleh dari perhitungan $\bar{x} - x_i$.

	Hardwood Concetration	Tensile Strength	Х		Ү Торі	Error	
	Xi (%)	Y (psi)	С	X-2X			
	1	6,3	1	-6,263157895	23,0922481	-16,79224806	
	1,5	11,1	1	-5,763157895	23,9777409	-12,87774086	
	2	20	1	-5,263157895	24,8632337	-4,863233666	
	3	24	1	-4,263157895	26,6342193	-2,634219269	
	4	26,1	1	-3,263157895	28,4052049	-2,305204873	
	4,5	30	1	-2,763157895	29,2906977	0,709302326	
	5	33,8	1	-2,263157895	30,1761905	3,623809524	
	5,5	34	1	-1,763157895	31,0616833	2,938316722	
	6	38,1	1	-1,263157895	31,9471761	6,15282392	
	6,5	39,9	1	-0,763157895	32,8326689	7,067331118	
	7	42	1	-0,263157895	33,7181617	8,281838317	
	8	46,1	1	0,736842105	35,4891473	10,61085271	
	9	53,1	1	1,736842105	37,2601329	15,83986711	
	10	52	1	2,736842105	39,0311185	12,96888151	
	11	52,5	1	3,736842105	40,8021041	11,6978959	
	12	48	1	4,736842105	42,5730897	5,426910299	
	13	42,8	1	5,736842105	44,3440753	-1,544075305	
	14	27,8	1	6,736842105	46,1150609	-18,31506091	
	15	21,9	1	7,736842105	47,8860465	-25,98604651	
umlah	138	649,5					
lata-rata	7,263157895	34,18421053					

Langkah pertama yang dilakukan adalah menghitung X'X, X'Y, dan X'X Invers yang kemudian digunakan untuk menghitung hasil dari beta untuk membuat model regresi Quadratic Second Order.

								X'
1	1	1	1	1	1	1	1	1
-6,263157895	-5,7631579	-5,263157895	-4,263157895	-3,26316	-2,76316	-2,26316	-1,76316	-1,26316
Χ'>	(X'Y					
19	-7,105E-15		649,5					
-7,10543E-15	332,684211		589,1789474					
X'X IN\	/ERS		Hasil dari Beta					
0,052631579	1,1241E-18		34,18421053	Beta 0				
1,1241E-18	0,00300585		1,770985604	Beta 1				

Dari perhitungan tersebut kemudian dihitunglah nilai beta pada variabel tersebut dan membuat model regresi quadratic data dengan menggunakan rumus:

$$\hat{y} = \beta_0 + \beta_0 (x - \bar{x}) + \varepsilon$$

dari perhitungan yang telah dilakukan kita dapatkan model prediksi data

$$\hat{y} = 34.184 + 1,711(x - 7,632)$$

Model Prediksi

 $y = 34.184 + 1,771(x - 7,2632)$

Kesimpulan dan Interpretasi

Angka 34.184 adalah intercept yang mewakili nilai prediksi \hat{y} saat x = 0, dengan koefisien 1.711 menunjukkan laju perubahan \hat{y} seiring dengan perubahan satu unit dalam x. Nilai 7.632 di dalam persamaan (x-7.632) menandakan transformasi atau penyesuaian pada variabel x. Kesimpulannya, model ini mencerminkan hubungan kuadratik antara variabel predictor x dan variabel respons \hat{y} .

2.2.Melakukan Perhitungan SSRes, MSRes, DFRes, dan SE Dengan Menggunakan Estimasi Sigma

Inisialisasikan table-tabel yang digunadkan dalsm estimasi sigma, antara lain nilai eeror, error', y' dan hasil dari beta topi'

Error									Errror'
24806	-16,79224806	-12,87774086	-4,8632337	-2,634219269	-2,305204873	0,709302	3,62381	2,938317	6,1528
774086									
33666									Y'
9269	6,3	11,1	20	24	26,1	30	33,8	34	38,1
73									
2326	Hasil da	ri Beta'							
09524	34,18421053	1,770985604							
16722									
2392									
31118									
8317									
85271									
986711									
88151									
8959									
10299									
75305									
1506091									
8604651									

Setelah melakukan Langkah diatas kemudian dilakukannya perhitungan SSRes Msres DFRes dengan menggunakan estimasi sigma, perhitungan tersebut sebagai berikut:

	Inisiasi Nilai Dan Perhitur	ngan			
n	19		X'X IN		
k	1		0,052631579	1,1241E-18	
р	2		1,1241E-18	0,003005854	
SSRes	2373,457829		Standar Error Estimasi		
MSRes	139,6151664		2,710750201		Beta 0
DFRes	17		0,647813814		Beta 1

SSRes

$$SSRes = \sum_{i=1}^{n} e_i^2 = e'e$$

$$SSRes = 2373,4578$$

MSRes

$$MSRes = \frac{SSRes}{n-p}$$

$$MSRes = \frac{2373,4578}{19-3}$$

MSRes = 139,6151

DFRes

$$DFRes = n - k - 1$$

$$DFRes = 19 - 1 - 1$$

$$DFRes = 17$$

•
$$SE(\hat{\beta}_0)$$

$$SE(\hat{\beta}_0) = \sqrt{\frac{139,61516}{0,05263}} = 2,71075$$

•
$$SE(\hat{\beta}_1)$$

$$SE(\hat{\beta}_0) = \sqrt{\frac{139,61516}{0,00300}} = 0,64781$$

2.3.Melakukan Perhitungan SSReg, MSReg, DFReg, F-Hitung, F-Tabel Dengan Menggunakan Uji F

Selanjutnya inisialisasi table yang diperlukan untuk melakukan perhitungan dan Uji-F antara lain, hasil dari bet', x' betatopi'x' dan nilai y

Has	il dari Beta'								
34,18421053	1,770985604								
							Χ'		
1	1	1	1	1	1	1	1	1	1
-6,263157895	-5,763157895	-5,263157895	-4,263157895	-3,263157895	-2,7631579	-2,263157895	-1,763157895	-1,26316	-0,76316
							Beta Topi'X'		
23,09224806	23,97774086	24,86323367	26,63421927	28,40520487	29,2906977	30,17619048	31,06168328	31,94718	32,83267
	Toncilo Strongth								
	Tensile Strength Y (psi)								
	6,3								
	11,1								
	20								
	24								
	26,1								
	30								
	33,8								
	34								
	38,1								
	39,9								
	42								
	46,1								
	53,1								
	52								
	52,5								
	48								
	42,8								
	27,8 21,9								
Jumlah	649,5								
Kuadrat/n	22202,64474								
BetaTopi'(X')Y	23246,07217								
beta lopi (X)Y	23240,07217								

Setelah melakukan perhitungan SSRes, MSRes, DFRes dicarilah nilai SSReg, MSReg, DFReg, F-Hitung dan F-Tabel untuk menghitung Uji F. Perhitungan tersebut sebagai berikut:

In	। isiasi Nilai Dan Perhitunga	in						
n	19	S	SSRes	2373,457829		MSRes(1st Order)	19,53989303	
k	1	N	MSRes(2nd orde			,		
SSReg(B1 B0)	1043,427434		•					
MSReg	1043,427434	E	SS/SSR(B2 B1,	2060,819541	$SS_{R}(\beta_{2} \beta_{2})$	$S_1, \beta_0 = SS_R(\beta_1, \beta_2)$	$S_2 \beta_0) - SS_R(\beta_1)$	$ \beta_0 $
DFReg	1							
F0	105,4672888		F-Tabel	8,530965286				

SSReg

$$SSReg = \sum_{i=1}^{n} (\hat{y}i - \bar{y})^{2}$$

$$SSReg = 23246,07217 - 22202,64474$$

$$SSReg = 1043,42743$$

MSReg

$$MSReg = \frac{SSReg}{k}$$

$$MSReg = \frac{1043,42743}{1}$$

$$MSReg = 1043,42743$$

DFReg

$$DFReg = k = 1$$

• SSR

$$SSR(\beta_2|\beta_1,\beta_0) = SSR(\beta_1,\beta_2|\beta_0) - SSR(\beta_1|\beta_0)$$
$$SSR(\beta_2|\beta_1,\beta_0) = 3104,24697 - 1043,42743$$
$$SSR(\beta_2|\beta_1,\beta_0) = 2060,81954$$

- F-Tabel
- F-Hitung

$$Fhit = \frac{SSR}{MSRes(1st\ order)}$$

$$Fhit = \frac{2060,81954}{19,53989}$$

Kesimpulan dan Interpretasi:

H0 ditolak jika F-hitung > F-tabel, pada analisis di atas, diperoleh F-hitung = 7,4735 > F-tabel = 4,4513 maka dapat disimpulkan bahwa H0 ditolak yang artinya bahwa ada minimal satu variabel independen yang berpengaruh terhadap variabel dependen.

Kesimpulan dan Interpretasi

H0 ditolak jika F-hitung > F-tabel, pada analisis di atas, diperoleh F-hitung = 105,46728 > F-tabel = 8,530 maka dapat disimpulkan bahwa H0 ditolak yang artinya bahwa ada minimal satu variabel independen yang berpengaruh terhadap variabel dependen.

2.4. Melakukan Perhitungan R-Square, SST, DFT Dengan Menggunakan R-Square

Kemudian dihitunglah R-Squared dengan menggunakan R-Square, perhitungan tersebut sebagai berikut:

	R-Square	<u> </u>		
SSRes	2373,457829		SST	3416,885263
SSReg	1043,427434		DFT	18
k	1			
р	2			
n	19			
SSRes/(n-p)	139,6151664			
SST/(n-1)	189,8269591			
R-squared	0,305373858	R-Squared %	30,54%	
Sisa	0,694626142	Sisa(%)	69,46%	
R-^2(Adj)	0,264513496	R-^2(Adj) (%)	26,45%	
Sisa	0,735486504	Sisa (%)	73,55%	

SST

$$SST = SSRes + SSReg$$

 $SST = 2373,45782 + 1043,42743$
 $SST = 3416,88526$

DFT

$$DFT = n - 1$$
$$DFT = 19 - 1 = 18$$

R-Squared

$$R-Squared = rac{SSReg}{SST}$$
 $R-Squared = rac{1043,42743}{3416,88526}$
 $R-Squared = 0,30537 (30,54\%)$

Sisa R-Squared = 0,69462 (69,46%)

• R-Squared(adj)

$$R^{2}(adj) = 1 - \frac{\frac{SSRes}{(n-p)}}{\frac{SST}{(n-1)}}$$

$$R^{2}(adj) = 1 - \frac{\frac{2373,45782}{(19-2)}}{\frac{3416,88526}{(19-1)}}$$

$$R^{2}(adj) = 1 - \frac{\frac{2373,45782}{17}}{\frac{3416,88526}{18}}$$

$$R^{2}(adj) = 1 - \frac{139,61516}{189,82695}$$

$$R^{2}(adj) = 0,26451(26,45\%)$$

Sisa $R^2(adj)=0,73548(73,55\%)$

Kesimpulan dan Interpretasi:

Nilai R-squared adalah 0.305, artinya sekitar 30,5% dari total variasi dalam variabel dependen dapat dijelaskan oleh variabel independen dalam model, dan sisanya sekitar 69,5% dari total variasi dalam variabel dependen tidak dapat dijelaskan.

Kesimpulan dan Interpretasi
Nilai R-squared adalah 0.305, artinya sekitar 30,5% dari total variasi dalam variabel dependen dapat dijelaskan oleh variabel independen dalam model, dan sisanya sekitar 69,5% dari total variasi dalam variabel dependen tidak dapat dijelaskan.

2.5.Melakukan Perhitungan T-Hitung Dan T-Tabel Dengan Menggunakan Uji T

Kemudian dilakukannya Uji T pada masing-masing beta, perhitungan tersebut sebagai berikut:

	UJI T			
Hasil dari Beta		Standar Error Estimasi		
34,18421053		2652,688162		
1,770985604		46447,76142		
Uji T untuk Beta Topi 1				
T-Hitung	3,81285E-05			
T-Tabel	4,30265273			
Kesimpulan	H0 ditolak			
	berpengaruh			
Interpretasi	terhadap variabel Y-nya			
Uii T ur	ntuk Beta Topi 2			
T-Hitung	-10,26972681			
T-Tabel	4,30265273			
Kesimpulan	H0 ditolak			
Interpretasi	berpengaruh			
	terhadap variabel Y-nya			

➤ Uji T Beta Topi 1

• T-Hitung

$$T-Hitung = rac{\hat{eta}_1}{SE\hat{eta}_1}$$
 $T-Hitung = rac{34,18421}{2652,68816}$
 $T-Hitung = 3,81285$

• T-Tabel

$$T-Tabel = t\frac{\alpha}{2}, k$$

$$T-Tabel = t\frac{0.05}{2}, 2$$

$$T-Tabel = 4.30265$$

- Uji T Beta Topi 2
 - T-Hitung

$$T - Hitung = \frac{\hat{\beta}_2}{SE\hat{\beta}_2}$$

$$T - Hitung = \frac{1,77098}{46447,76142}$$

$$T - Hitung = -10,26972$$

• T-Tabel

$$T-Tabel=t\frac{\alpha}{2}$$
, k

$$T - Tabel = t \frac{0,05}{2}, 2$$

 $T - Tabel = 4.30265$

Kesimpulan dan Interpretasi:

Kedua uji T menunjukkan bahwa kedua variabel independen (X1 dan X2) memiliki pengaruh yang signifikan terhadap variabel dependen (Y). Oleh karena itu, model kuadratik (yang melibatkan kedua variabel independen ini) dapat dianggap signifikan dan berkontribusi secara signifikan terhadap variasi dalam variabel dependen.

Interpretasi Akhir	Kedua uji T menunjukkan b yang signifikan terhadap va melibatkan kedua variabel i signifikan terhadap variasi o	ariabel dependen independen ini) d	(Y). Oleh karena it apat dianggap sig	u, model kuadrati	k (yang

2.6. Kesimpulan dan Hasil Tabel ANOVA

Tabel Analisis Secara Manual (ANOVA)							
Source of	Sum of	Degrees of	Mean				
Variation	Squares	Freedom	Square	F0			
Regression	1043,427434	1	1043,427434	105,4672888			
Residual	2373,457829	17	139,6151664				
Total	3416,885263	18					

Pada tabel ANOVA di atas, sumber variasi antar kelompok ditunjukkan oleh kolom Source of Variation,Sum of Squares (SS),Degrees of Freedom, Mean Square dengan nama kelompok Regression dan Ressidual, dan f0 sebagai perhitungan f. Sum of squares (SS) antar kelompok adalah 1043,427434 dan 2373,457829 tengan total sebesar 3416,885263. Degrees of Freedom antar kelompok adalah 1 dan 17 tengan total sebesar 8. Mean Square antar kelompok adalah 1043,427434 dan 139,6151664.

Untuk menguji perbedaan rata-rata antar kelompok, digunakan Uji F-test yang membandingkan variasi antar kelompok dengan variasi dalam kelompok. Nilai F-test dihitung sebagai rasio MS antar kelompok dan MS dalam kelompok. Dalam contoh ini, F-Hitung memiliki nilai 105,46728, melebihi nilai kritis F-tabel untuk tingkat signifikansi 0,05 dan derajat kebebasan 1 dan 17, yang adalah 8,53. Oleh karena itu, hipotesis nol ditolak, menunjukkan adanya perbedaan rata-rata antar kelompok dan dapat disimpulkan bahwa quadratic term berkontribusi secara signifikan terhadap model.

2.7.Interpretasi Akhir

Pada analisis yang telah kami lakukan, diperoleh SSR(B2|B1,B0) memiliki nilai sebesar 2060,8195, F-Hitung memiliki nilai sebesar 105,47, F-Tabel memiliki nilai 8,53. Jika F-Hitung > F-Tabel, maka B2 tidak sama dengan 0. Pada analisis di atas, diperoleh F-Hitung = 105.47 > F-Tabel = 8.53, sehingga dapat disimpulkan bahwa quadratic term berkontribusi secara signifikan terhadap model.