Date of performance : Date of submission:

EXPERIMENT NO.5

Aim:

a) To study and simulate inverting comparator with positive & negative reference voltage & plot its input output waveforms. Observe the results & explain the working

b) To study & simulate a zero crossing detector and study the waveforms & explain working of zero crossing detector as per the results.

Software Used: LTSpice

Circuit Schematics:5A(Inverting Comparator)

1. Circuit diagram of inverting comparator with positive reference voltage +0.5 V

Output Waveform:

Date of performance : Date of submission:

2. Circuit diagram of inverting comparator with Negative reference voltage $-0.5\,\mathrm{V}$

Output Waveform:

Date of performance : Date of submission:

Part B: Circuit Schematics:5B(Zero Crossing Detector)

Output Waveform:

Date of performance : Date of submission:

OBSERVATION & RESULTS:

A) Inverting comparator

	Inverting comparator with Vref = +0.5V Vin = 2Vpeak to peak		Inverting comparator with Vref = -0.5V Vin = 2Vpeak to peak or	
	+Vsat	-Vsat	+Vsat	-Vsat
Theoretical	15V	-15V	15V	-15V
Practical	13.91V	-13.91V	13.91V	-13.91V

For inverting comparator: When Vin < Vref, comparator swings to +Vsat state and when Vin > Vref, the comparator swings to -Vsat state. Change of state occurs when input sine wave crosses Vref level either +ve vref or -vref

B) Zero crossing detector

	Zero crossing detector Vref = 0V Vin = 2Vpeak	
	+Vsat	-Vsat
Theoretical	15V	-15V
Practical	13.91V	-13.91V

For zero crossing detector: When Vin > 0, zero cross detector is in -Vsat state and when Vin < 0, the zero cross detector is in the +Vsat state. Change of state occurs when the input sine wave crosses zero level.

Conclusion:

- Hence we have studied and simulated an inverting comparator with positive and negative reference voltage and also plotted ints input-output waveforms.
 - a. A comparator is an electronic circuit which compares the two inputs applied at it's inverting and non-inverting terminals.
 - b. In an inverting comparator the input ac signal is applied at the inverting terminal and the reference voltage is applied at the non-inverting terminal.

Date of performance : Date of submission:

c. When Vin > Vref the output voltage Vo = -Vsat and when Vin < Vref then the o/p voltage Vo = +Vsat.

- 2. We have also simulated a zero crossing detector and plotted the waveforms for the same.
 - a. A Zero Crossing Detector(ZCD) is an electronic circuit whose o/p voltage Vo swings from +Vsat to -Vsat everytime the input crosses the zero crossing point.
 - b. In ac signals the zero crossing point is nothing but Vin=oV.
 - c. These circuits are also known as sine wave to square wave converters.