Reference Manual

Generated by Doxygen 1.6.1

Tue Oct 23 22:18:34 2012

Contents

1	Clas	s Index		1	
	1.1	Class l	List	1	
2	File	File Index			
	2.1	File Li	st	3	
3	Clas	s Docu	mentation	5	
	3.1	param	eters Class Reference	5	
		3.1.1	Member Function Documentation	6	
			3.1.1.1 load	6	
4	File	Docum	entation	7	
	4.1	ar1.cp	p File Reference	7	
		4.1.1	Detailed Description	7	
		4.1.2	Function Documentation	8	
			4.1.2.1 ar1	8	
	4.2	auxFu	ncs.h File Reference	9	
		4.2.1	Detailed Description	9	
		4.2.2	Function Documentation	9	
			4.2.2.1 printMatrix	9	
			4.2.2.2 printVector	10	
	4.3	global	h File Reference	11	
		4.3.1	Detailed Description	11	
		4.3.2	Function Documentation	12	
			4.3.2.1 ar1	12	
			4.3.2.2 curr_second	12	
			4.3.2.3 kGrid	12	
			4.3.2.4 vfInit	12	
	4.4	kGrid	cpp File Reference	14	

ii CONTENTS

	4.4.1	Detailed Description	14
	4.4.2	Function Documentation	14
		4.4.2.1 kGrid	14
4.5	param	eters.cpp File Reference	15
	4.5.1	Detailed Description	15
4.6	timer.c	pp File Reference	16
	4.6.1	Detailed Description	16
	4.6.2	Function Documentation	16
		4.6.2.1 curr_second	16
4.7	vfInit.	cpp File Reference	17
	4.7.1	Detailed Description	17
	4.7.2	Function Documentation	17
		4721 vfInit	17

Class Index

1	1	Class	I ict
•		C HASS	i Laisi

Here are the classes, structs, unions and interfaces with brief descriptions:	
parameters (Object to store parameter values for VFI problem)	5

2 Class Index

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

ar1.cpp (File containing AR1 function for the VFI problem)	- 7
auxFuncs.h (Simple auxiliary functions)	9
global.h (Global header file)	11
kGrid.cpp (File containing function to create capital grid)	14
parameters.cpp (File containing parameters class method for loading VFI parameter values)	15
timer.cpp (File containing basic timer function)	16
vfInit.cpp (File containing function to initialize the value function)	17

4 File Index

Class Documentation

3.1 parameters Class Reference

Object to store parameter values for VFI problem.

```
#include <global.h>
```

Public Member Functions

• void load (const char *)

Function to load VFI parameter values to parameters object.

Public Attributes

• REAL eta

Coefficient of relative risk aversion.

• REAL beta

Time discount factor.

• REAL alpha

 ${\it Share\ of\ capital\ in\ the\ production\ function.}$

• REAL delta

Rate of capital depreciation.

• REAL mu

TFP mean.

• REAL rho

TFP persistence.

• REAL sigma

TFP volatility.

6 Class Documentation

• REAL lambda

Number of standard deviations for AR1 approximation.

• int nk

Number of values in capital grid.

• int nz

Number of values in TFP grid.

• REAL tol

Tolerance for convergence.

• char maxtype

Maximization method - choices are 'g' (grid) and 'b' (binary search).

• int howard

Number of howard steps to perform between maximizations - set howard = 1 if max = 'b'.

3.1.1 Member Function Documentation

3.1.1.1 void parameters::load (const char * fileName)

This function is a parameters class method which loads parameter values from a text file for storage in the object. The input file must have 13 lines, each line beginning with a parameter value, followed by a comma and a character string describing the parameter. The order of the parameters must correspond to the order in the parameters class description.

Parameters:

← *fileName* Name of file storing parameter values.

Returns:

Void.

The documentation for this class was generated from the following files:

- global.h
- parameters.cpp

File Documentation

4.1 ar1.cpp File Reference

File containing AR1 function for the VFI problem. #include #global.h#

Functions

• void ar1 (const parameters ¶m, REAL *Z, REAL *P)

Function to compute discrete AR1 approximation values and transition matrix.

4.1.1 Detailed Description

Author:

Eric M. Aldrich ealdrich@ucsc.edu

Version:

1.0

Date:

23 Oct 2012

Copyright Eric M. Aldrich 2012

Distributed under the Boost Software License, Version 1.0 (See accompanying file LICENSE_1_0.txt or copy at

```
http://www.boost.org/LICENSE_1_0.txt)
```

4.1.2 Function Documentation

4.1.2.1 void ar1 (const parameters & param, REAL * Z, REAL * P)

This function that computes a discrete AR1 approximation and transition matrix using the method of Tauchen (1986).

Parameters:

- ← param Object of class parameters.
- \rightarrow **Z** Grid of AR1 values.
- \rightarrow **P** AR1 transition matrix values.

Returns:

4.2 auxFuncs.h File Reference

Simple auxiliary functions. #include <iostream>
#include <iomanip>

Functions

• template<class T > void printMatrix (const bool colMaj, const int M, const int N, const REAL *X, const int printRows, const int printCols, const int digits)

Function to print the elements of a matrix.

template < class T >
 void print Vector (const int N, const REAL *X, const int digits)
 Function to print the elements of a Thrust device vector.

4.2.1 Detailed Description

Author:

Eric M. Aldrich ealdrich@ucsc.edu

Version:

1.0

Date:

18 July 2012

Copyright Eric M. Aldrich 2012

Distributed under the Boost Software License, Version 1.0 (See accompanying file LICENSE_1_0.txt or copy at

http://www.boost.org/LICENSE_1_0.txt)

4.2.2 Function Documentation

4.2.2.1 template < class T > void printMatrix (const bool colMaj, const int M, const int N, const REAL * X, const int printRows, const int printCols, const int digits) [inline]

This functions prints a subset of the elements of a matrix to the screen.

Parameters:

- \leftarrow *colMaj* Boolean indicating if the matrix is stored in column-major format.
- $\leftarrow M$ Number of rows in the data matrix.
- $\leftarrow N$ Number of columns in the data matrix.
- $\leftarrow X$ Array of matrix values.

- ← *printRows* Number of rows to print.
- \leftarrow *printCols* Number of columns to print.
- ← *precision* Number of significant digits to print.

Returns:

Void.

4.2.2.2 template < class T > void printVector (const int N, const REAL * X, const int digits) [inline]

This functions prints a subset of the elements of a vector to the screen.

Parameters:

- $\leftarrow N$ Number of elements in the data matrix.
- $\leftarrow X$ Array of vector values.
- \leftarrow *precision* Number of significant digits to print.

Returns:

4.3 global.h File Reference

Global header file.

Classes

· class parameters

Object to store parameter values for VFI problem.

Typedefs

• typedef double **REAL**

Functions

- double curr_second (void)

 **Basic timer function.
- void ar1 (const parameters ¶m, REAL *Z, REAL *P)

 Function to compute discrete AR1 approximation values and transition matrix.
- void kGrid (const parameters ¶m, const REAL *Z, REAL *K)

 Function to compute the values of an equally spaced capital grid.
- void vfInit (const parameters ¶m, const REAL *Z, REAL *V) Function to initialize value function.

Variables

- const float singletype
- const double doubletype
- const REAL realtype

4.3.1 Detailed Description

Author:

Eric M. Aldrich ealdrich@ucsc.edu

Version:

1.0

Date:

23 Oct 2012

Copyright Eric M. Aldrich 2012

Distributed under the Boost Software License, Version 1.0 (See accompanying file LICENSE_1_0.txt or copy at

```
http://www.boost.org/LICENSE_1_0.txt)
```

4.3.2 Function Documentation

4.3.2.1 void ar1 (const parameters & param, REAL * Z, REAL * P)

This function that computes a discrete AR1 approximation and transition matrix using the method of Tauchen (1986).

Parameters:

- ← param Object of class parameters.
- \rightarrow **Z** Grid of AR1 values.
- \rightarrow **P** AR1 transition matrix values.

Returns:

Void.

4.3.2.2 curr_second (void)

Returns:

Double precision value representing time.

4.3.2.3 void kGrid (const parameters & param, const REAL * Z, REAL * K)

This function computes an equally spaced capital grid. The upper and lower bounds are the deterministic steady-state values of capital at the highest and lowest values of the TFP process (respectively), scaled by 0.95 and 1.05 (respectively).

Parameters:

- ← param Object of class parameters.
- \leftarrow **Z** Grid of TFP values.
- \rightarrow **K** Grid of capital values.

Returns:

Void.

4.3.2.4 void vfInit (const parameters & param, const REAL * Z, REAL * V)

This function initializes the value function at the deterministic steady state values for each level of TFP: conditional on a TFP level, the deterministic steady-state value of capital is computed, as well as the associated value function value.

Parameters:

- ← param Object of class parameters.
- \leftarrow **Z** Grid of TFP values.
- \rightarrow V Matrix of value function values.

Returns:

4.4 kGrid.cpp File Reference

```
File containing function to create capital grid. #include "global.h" #include <math.h>
```

Functions

• void kGrid (const parameters ¶m, const REAL *Z, REAL *K)

Function to compute the values of an equally spaced capital grid.

4.4.1 Detailed Description

Author:

```
Eric M. Aldrich ealdrich@ucsc.edu
```

Version:

1.0

Date:

23 Oct 2012

Copyright Eric M. Aldrich 2012

Distributed under the Boost Software License, Version 1.0 (See accompanying file LICENSE_1_0.txt or copy at

```
http://www.boost.org/LICENSE_1_0.txt)
```

4.4.2 Function Documentation

4.4.2.1 void kGrid (const parameters & param, const REAL * Z, REAL * K)

This function computes an equally spaced capital grid. The upper and lower bounds are the deterministic steady-state values of capital at the highest and lowest values of the TFP process (respectively), scaled by 0.95 and 1.05 (respectively).

Parameters:

- ← param Object of class parameters.
- \leftarrow **Z** Grid of TFP values.
- \rightarrow K Grid of capital values.

Returns:

4.5 parameters.cpp File Reference

File containing parameters class method for loading VFI parameter values. #include "global.h"

```
#include <stdlib.h>
#include <vector>
#include <fstream>
```

4.5.1 Detailed Description

Author:

```
Eric M. Aldrich ealdrich@ucsc.edu
```

Version:

1.0

Date:

23 Oct 2012

Copyright Eric M. Aldrich 2012

Distributed under the Boost Software License, Version 1.0 (See accompanying file LICENSE_1_0.txt or copy at

```
http://www.boost.org/LICENSE_1_0.txt)
```

4.6 timer.cpp File Reference

```
File containing basic timer function. #include <stddef.h>
#include <sys/time.h>
```

Functions

• double curr_second (void)

**Basic timer function.

4.6.1 Detailed Description

Author:

Kyle Spafford

Date:

19 November 2010

Public domain.

4.6.2 Function Documentation

4.6.2.1 double curr_second (void)

Returns:

Double precision value representing time.

4.7 vfInit.cpp File Reference

File containing function to initialize the value function. #include "global.h" #include <math.h>

Functions

• void vfInit (const parameters ¶m, const REAL *Z, REAL *V) Function to initialize value function.

4.7.1 Detailed Description

Author:

```
Eric M. Aldrich ealdrich@ucsc.edu
```

Version:

1.0

Date:

23 Oct 2012

Copyright Eric M. Aldrich 2012

Distributed under the Boost Software License, Version 1.0 (See accompanying file LICENSE_1_0.txt or copy at

```
http://www.boost.org/LICENSE_1_0.txt)
```

4.7.2 Function Documentation

4.7.2.1 void vfInit (const parameters & param, const REAL * Z, REAL * V)

This function initializes the value function at the deterministic steady state values for each level of TFP: conditional on a TFP level, the deterministic steady-state value of capital is computed, as well as the associated value function value.

Parameters:

- ← param Object of class parameters.
- \leftarrow **Z** Grid of TFP values.
- $\rightarrow V$ Matrix of value function values.

Returns: