Statistical Programming Languages (SPL): United States Oil Company Analysis

Marcus Goossens Tim Halbmann Antton Haramboure Fabian Salger

Group-project presentation at the Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

Outline

- 1. Introduction
- 2. Dataset Transformations
- 3. Exploratory Analysis: Plots & Graphics
- 4. Panel Data Regression & Results
- 5. Applications
 - Firm Types
 - Further Applications
- 6. Literature

Introduction — 1-1

Stock Returns: US Oil-Companies

Introduction — 1-2

Companies in the Sample

Company	Remark
Chevron	
Exxon Mobil	
Apache	
Hess Corp	
Occidental Petrolium	
Murphy Oil	
CPEnergy	(*)
PGE Corp	(*)
Williams Cos, Inc.	(**)

note: (*) utility sector; (**) EDA-Case

Table 1: Sample Companies

Introduction — 1-3

Model Environment

- □ Bianconi/Yoshino (2014), Boyer/Filion (2006)
 - framework adaptation
- - assumptions include frictionless (financial) markets & symmetric information
- Data source: Bloomberg

Data Source [raw]: Bloomberg

- □ Data source [raw]: Bloomberg
- Dataset issues addressed:
 - class of data variable-dependent (e.g. date, returns)
 - common data vary over time
 - specific data vary over both time & company

Transformations — 2-2

Transformations applied on Variables

Table 2: Variables by Transformation Mode

log return	z-score	log
Stock	NI	A.MCAP
Oil	BVE.MCAP	D.MCAP
Gas		
Market(*)		
EX(**)		

(*): Dow Jones Industrial Average (DJI)

(**): USD wrt. EUR, GBP, ...

Distress Case, Firm 9: Williams

Firm 9: Williams	μ	σ	Min	Max
Stock	23.39	12.05	1.85	58.21
A.MCAP	3.01	4.63	0.80	30.73
BVE.MCAP	0.66	0.70	0.13	4.96
D.MCAP [%]	151.40	58.77	85.06	337.28
NI	68.53	350.20	-1263.00	1678.00

Table 3: Exploratory data analysis - event detection

```
# Summary statistics of company-specific variables
SumSpecF = describeBy(data[,2:7], group = "Company",
mat = TRUE, digits = 2,
trim = 0, type = 1)
```


Distress Case, Firm 9: Williams

Panel Regression: Main Results

Table 4: Panel Data Regression: Random Effects Model

Variable	β	
(Intercept)	0.01	
NI	0.01	**
BVE.MCAP	-0.04	***
D.MCAP	0.00	
Oil	0.26	***
Gas	0.07	***
Market	0.72	***

note: *p<0.1; **p<0.05; ***p<0.01

 $\mathsf{adj.}\ \mathsf{R}^2 = 0.40$

Random Effects Model: Regression Output

- Oil and gas price have robust positive effect on stock prices
 - higher prices indicate presence of a profitable environment for oil companies
- Exposure of stock prices to the U.S. DJI market premium is robustly priced and positive
 - energy consumption is related to overall economic situation

Applications — 5-1

Application Result: By Company Type

- A comparison of the impact of common factors on:
 - ▶ Oil-/ Gas-producing
 - Electricity-producing

$$R_{it} = \beta_0^{oil} + O'_{it}\beta_1^{oil} + B'_{it}\beta_2^{oil} + M'_{it}\beta_3^{oil} + E'_{it}\beta_4^{oil} + \varepsilon_{it}$$
 (1)

$$R_{it} = \beta_0^{elec} + O'_{it}\beta_1^{elec} + B'_{it}\beta_2^{elec} + M'_{it}\beta_3^{elec} + E'_{it}\beta_4^{elec} + \varepsilon_{it}$$
 (2)

$$R_{it} = \beta_0 + O'_{it}\beta_1 + [...] + D^{elec}\beta_5 + D^{elec}O'_{it}\beta_6 + [...] + D^{elec}E'_{it}\beta_9 + \varepsilon_{it}$$
(3)

Random Effects Models: Company Types

Table 5: Random Effect Model depending on Company type

Variable	$\beta^{(1)}$		$\beta^{(2)}$	
(Intercept)	0.02	***	0.01	
Oil	0.31	***	-0.10	*
Gas	0.07	***	0.10	**
Market	0.68	***	0.60	***
EURUSD	0.03		-0.02	

adj.
$$R^2 = 0.32$$
 adj. $R^2 = 0.14$

note: p<0.1; p<0.05; p<0.01

Applications — 5-3

Further Applications

- Seasonality Effects
- Impact of the financial crisis around 2008
 - subsample and dummy test performed

Literature

Bibliography

Marcelo Bianconia, Joe A. Yoshinob Risk factors and value at risk in publicly traded companies of the nonrenewable energy sector available on www.sciencedirect.com, 2014

M. Martin Boyer, Didier Filion Common and fundamental factors in stock returns of Canadian oil and gas companies available on www.sciencedirect.com, 2007

