

Intro. Comp. for Data Science (FMI08)

Dr. Nono Saha

May 19, 2023

Max Planck Institute for Mathematics in the Sciences University of Leipzig/ScaDS.AI

Spring 2023

Course plan

- 1. Introduction to SciPy
- 2. Example 1 k-means clustering
- 3. Example 2 Numerical integration
- 4. (Very) Basic optimization
- 5. Example 4 Spatial Tools
- 6. Example 5 stats

Introduction to SciPy

What is SciPy

Fundamental algorithms for scientific computing in Python.

Subpackage	Description
cluster	Clustering algorithms
odr	Orthogonal distance regression
constants	Physical and mathematical constants
optimize	Optimization and root-finding routines
fftpack	Fast Fourier Transform routines
signal	Signal processing
integrate	Integration and ordinary differential equation solvers
sparse	Sparse matrices and associated routines
interpolate	Interpolation and smoothing spline
spatial	Spatial data structures and algorithms

You can also find alternative subpackage to **NumPy** such as: **io**, **linalg**.

Example 1 - k-means clustering

Example 1 - k-means clustering: data

Example 1 - k-means clustering: example

```
from scipy.cluster.vq import kmeans
ctr, dist = kmeans(pts, 3)
3 ctr
5 ## array([[ 2.85409537, 1.94511779],
6 ## [ 0.89789235, -0.20527898],
           [-2.03956666, -1.85662027]])
7 ##
o dist
10 ## 1,2206927437557962
cl1.mean(axis=0)
## array([-2.00474615, -1.87275596])
16 cl2.mean(axis=0)
 ## array([1.03849018, 0.01417119])
18
 cl3.mean(axis=0)
## array([2.94641907, 2.02514165])
```

Example 1 - k-means clustering: algorithm

k-means clustering is a method for finding clusters and cluster centres in a set of unlabeled data. Given an initial set of *k* centers, the *k*-means algorithm alternates the two steps:

1. For each centre, we identify the subset of training points (its cluster) that is closer to it than any other centre.

$$S_i^{(t)} = \{x_p : ||x_p - m_i^{(t)}||^2 \le ||x_p - m_j^{(t)}||^2 \forall j, 1 \le j \le k\}$$
 where each x_p is assigned to exactly one $S^{(t)}$, even if it could be assigned to two or more of them.

2. Recalculate the means (or centroids):

$$m_i^{t+1} = \frac{1}{|S^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

Homework 6: Implement your version of k-means and comment on the complexity.

Example 2 - Numerical integration

Example 2 - Numerical integrations: basic functions

For general numeric integration in 1D we use scipy.integrate.quad(), which takes as arguments the function to be integrated and the lower and upper bounds of integration.

Simple examples:

```
1 from scipy.integrate import quad
guad(lambda x: x, 0, 1)
3 ## (0.5, 5.551115123125783e-15)
5 quad(np.sin, 0, np.pi)
6 ## (2.0, 2.220446049250313e-14)
guad(np.sin, 0, 2*np.pi)
9 ## (2.0329956258200796e-16, 4.3998892617845996e-14)
11 quad(np.exp, 0, 1)
## (1.7182818284590453, 1.9076760487502457e-14)
```

Example 2 - Numerical integrations: Normal PDF

The PDF for a normal distribution is given by,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$$

```
def norm_pdf(x, mu, sigma):
      return (1/(sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x -
      mu)/sigma)**2)
4 norm_pdf(0,0,1)
5 ## 0.3989422804014327
7 norm pdf(np.Inf, 0, 1)
8 ## 0.0
norm_pdf(-np.Inf, 0, 1)
11 ## 0.0
```

Example 2 - Numerical integrations: checking our PDF

We can check that we've implemented a valid pdf by integrating the PDF from — inf to inf,

```
quad(norm_pdf, -np.inf, np.inf)
2
3
```

Question: Will this work? Why?

Example 2 - Numerical integrations: checking our PDF

We can check that we've implemented a valid pdf by integrating the PDF from — inf to inf,

```
quad(norm_pdf, -np.inf, np.inf)
2
3
```

Question: Will this work? Why?

Simple debugging: add default parameters

Example 2 - Numerical integrations: truncated normals

The PDF for a normal distribution is given by,

$$\begin{cases} f(x) = \frac{c}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2), & \text{for } a \le x \le b \\ 0, & \text{otherwise.} \end{cases}$$

```
def trunc_norm_pdf(x, mu=0, sigma=1, a=-np.inf, b=np.inf):
    if (b < a):
        raise ValueError("b must be greater than a")
    x = np.asarray(x).reshape(-1)
    full_pdf = (1/(sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - mu)/sigma)**2)
    full_pdf[(x < a) | (x > b)] = 0
    return full_pdf
```

Example 2 - Numerical integrations: testing our pdf function

```
trunc norm pdf(0, a=-1, b=1)
## array([0.39894228])
4 trunc norm pdf(2, a=-1, b=1)
5 ## array([0.])
 trunc_norm_pdf(-2, a=-1, b=1)
8 ## array([0.])
 trunc_norm_pdf([-2,1,0,1,2], a=-1, b=1)
## array([0. , 0.24197072, 0.39894228, 0.24197072, 0.
 quad(lambda x: trunc_norm_pdf(x, a=-1, b=1), -np.inf, np.inf)
 ## (0.682689492137086, 2.0147661317082566e-11)
  quad(lambda x: trunc_norm_pdf(x, a=-3, b=3), -np.inf, np.inf)
17 ## (0.9973002039367396, 7.451935936375609e-09)
18
```

Example 2 - Numerical integrations: fixing our function

What are the changes to perform?

```
def trunc norm pdf(x, mu=0, sigma=1, a=-np.inf, b=np.inf):
    if (b < a):
      raise ValueError("b must be greater than a")
    x = np.asarray(x).reshape(-1)
    nc = 1. / quad(lambda x: norm pdf(x, mu, sigma), a, b)[0]
    full_pdf = (nc/(sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x
6
       - mu)/sigma)**2)
    full pdf[(x < a) | (x > b)] = 0
    return full pdf
8
 trunc norm pdf(0, a=-1, b=1)
## array([0.58436857])
  trunc_norm_pdf(2, a=-1, b=1)
14 ## array([0.])
16 trunc_norm_pdf(-2, a=-1, b=1)
17 ## array([0.])
```

Example 2 - Numerical integrations: multivariate normal

$$f(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))$$

```
def mv_norm(x, mu, sigma):
    x = np.asarray(x)
    mu = np.asarray(mu)
    sigma = np.asarray(sigma)
    return np.linalg.det(2*np.pi*sigma)**(-0.5) * np.exp(-0.5 * (x - mu).T @ np.linalg.solve(sigma, (x-mu)) )
```

Example 3 - (Very) Basic optimization

Example 3 - (Very) Basic optimization: scalar function minimization

```
def f(x):
return x**4 + 3*(x-2)**3 -
15*(x)**2 + 1
```



```
from scipy.optimize import
     minimize scalar
minimize_scalar(f, method="Brent")
 ##
         fun: -803.3955308825884
        nfev: 17
        nit: 11
    success: True
 ##
        x: -5.528801125219663
 minimize_scalar(f, method="bounded"
     , bounds=[0,6])
         fun: -54,21003937712762
    message: 'Solution found.'
        nfev: 12
 ##
    status: 0
    success: True
 ##
           x: 2.668865104039653
                                   13
```

Example 3 - (Very) Basic optimization: results

```
res = minimize scalar(f)
type(res)
## <class 'scipy.optimize.</pre>
      optimize.OptimizeResult'>
5 dir(res)
6 ## ['fun', 'nfev', 'nit', '
      success', 'x']
8 res. Success
9 ## True
11 res.x
12 ## -5.528801125219663
```

```
from scipy.optimize import
    show_options
show_options(solver="
    minimize_scalar")
```

Example 3 - (Very) Basic optimization: local minima

```
def f(x):
   return -np.sinc(x-5)
3
```



```
1 res = minimize_scalar(f)
2 res
3 ## fun: -0.049029624014074166
4 ## nfev: 15
5 ## nit: 10
6 ## success: True
7 ## x: -1.4843871263953001
```


Example 3 - (Very) Basic optimization: random starts

```
rng = np.random.default rng(seed
     =1234)
2 lower = rng.uniform(-20, 20, 100)
g upper = lower + 1
4 sols = [minimize_scalar(f, bracket
     =(l,u)) for l,u in zip(lower,
     upper)]
5 funs = [sol.fun for sol in sols]
6 best = sols[np.argmin(funs)]
7 hest
       fun: -1.0
        nfev: 12
        nit: 8
 ## success: True
 ##
           x: 5.000000000618556
```


Example 3 - (Very) Basic optimization: Rosenbrock's function

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

```
_{1} def f(x):
    return (1-x[0])**2 + 100*(x[1]-x[0]**2)**2
4 minimize(f, [0,0])
5 ##
          fun: 2.844030241790906e-11
      hess inv: array([[0.49482454, 0.98957635],
6 ##
7 ##
           [0.98957635, 1.98394216]])
8 ##
          jac: array([ 3.98673382e-06, -2.84416264e-06])
      message: 'Optimization terminated successfully.'
9 ##
     nfev: 72
10 ##
11 ##
         nit: 19
12 ## njev: 24
13 ## status: 0
14 ## success: True
            x: array([0.99999467, 0.99998932])
15 ##
minimize(f, [-1,-1]).x
## array([0.99999553, 0.99999106])
```

Example 4 - Spatial Tools

NumPy - Example 4 - Spatial tools: KD trees

```
from scipy.spatial import KDTree
2 kd = KDTree(pts)
3 kd
## <scipy.spatial.kdtree.KDTree</pre>
      object at 0x1026b44c0>
6 dir(kd)
8 dist, i = kd.query(pts[6,:], k=3)
o dist
## array([0. , 0.54041133,
      0.58254815])
 ## array([6, 1, 7])
 dist, i = kd.query(pts[2,:], k=5)
 i
16
 ## array([2, 7, 4, 1, 6])
```


NumPy - Example 4 - Spatial tools: convex hulls

```
from scipy.spatial import
      ConvexHull
phull = ConvexHull(pts)
3 hull
4 ## <scipy.spatial.qhull.ConvexHull
      object at 0x14778d700>
6 dir(hull)
 hull.simplices
 ## array([[0, 3],
            [4, 5],
            [9, 5],
            [9, 0],
 ##
            [1, 3].
            [1, 4]], dtype=int32)
14 ##
```

```
scipy.spatial.
    convex_hull_plot_2d(hull)
```


NumPy - Example 4 - Spatial Tools: delaunay triangulations

```
from scipy.spatial import Delaunay
                                              scipy.spatial.
2 tri = Delaunay(pts)
                                                   delaunay_plot_2d(tri)
3 tri
## <scipy.spatial.qhull.Delaunay</pre>
       object at 0x1477a0fd0>
                                                 2.0
                                                 1.5 -
6 dir(tri)
                                                 1.0 -
                                                 0.5 -
8 tri.simplices
                                                 0.0
9 ## array([[8, 9, 5],
                                                -0.5 -
10 ## [4, 8, 5],[9, 8, 2], [8, 4, 2],
11 ## [4, 1, 2], [6, 1, 3], [0, 6, 3],
                                                -1.0
12 ## [6, 0, 9], [7, 9, 2], [7, 6, 9],
                                                -1.5 -
## [1, 7, 2],[7, 1, 6]], dtype=
                                                -2.0
       int32)
                                                    -2.5 -2.0 -1.5 -1.0 -0.5 0.0
```

NumPy - Example 4 - Spatial Tools: voronoi diagrams

```
from scipy.spatial import Voronoi
vor = Voronoi(pts)
3 VOr
5 ## <scipy.spatial.qhull.Voronoi</pre>
      object at 0x1477c25b0>
7 dir(vor)
 vor.vertices
## array([[ -1.56917821,
      -1.17533646].
## [ 7.94738786, -27.97463108],[
      -0.3550644 , -0.43215628],
## [ -0.18923926, -0.54294902],[
      1.98860973, -0.62693469],
14 ## [ 0.83175084,
      1.16435674],....
```

```
scipy.spatial.voronoi_plot_2d
      (vor)
```


Example 5 - stats

Example 5 - stats: distributions

Implements classes for 104 continuous and 19 discrete distributions,

- rvs: random Variates
- · pdf: probability Density Function
- · cdf: cumulative Distribution Function
- sf: survival Function (1-CDF)
- ppf: percent Point Function (Inverse of CDF)
- isf: inverse Survival Function (Inverse of SF)
- stats: return mean, variance, (Fisher's) skew, or (Fisher's) kurtosis
- moment: non-central moments of the distribution