Tema 2

Exercițiul 1

Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. repartizate $\mathcal{U}([0,1])$.

- a) Determinați funcția de repartiție și densitatea variabilelor m_n și M_n , unde $m_n = \min(X_1, X_2, \dots, X_n)$ iar $M_n = \max(X_1, X_2, \dots, X_n)$.
- b) Fie $Z_n = n(1 M_n)$. Arătați că $Z_n \stackrel{d}{\to} Z$, unde Z este o variabilă aleatoare a cărei funcție de repartiție este $F_Z(z) = 1 e^{-z}$.

Exercițiul 2 (Box-Muller)

Fie U_1 , U_2 două variabile aleatoare independente repartizate uniform $\mathcal{U}([0,1])$.

a) Arătati că variabilele

$$X_1 = \cos(2\pi U_1)\sqrt{-2\log(U_2)}, \quad X_2 = \sin(2\pi U_1)\sqrt{-2\log(U_2)}$$

sunt variabile aleatoare independente repartizate normal $\mathcal{N}(0,1)$.

b) Deduceți că reprezentarea în coordonate polare (R,Θ) a lui (X_1,X_2) verifică

$$R^2 \sim \mathcal{E}\left(\frac{1}{2}\right)$$
 și $\Theta \sim \mathcal{U}([0, 2\pi])$

Exercițiul 3

Fie $U_{i1}, U_{i2}, V_i, i \in \{1, 2, ..., n\}$, variabile aleatoare independente repartizate unifom $\mathcal{U}([0, 1])$. Definim variabile aleatoare

$$X_i = \begin{cases} 1, & U_{i1}^2 + U_{i2}^2 < 1 \\ 0, & \text{altfel} \end{cases} \quad \text{si} \quad Y_i = \sqrt{1 - V_i^2}, \quad i \in \{1, 2, \dots, n\}$$

Considerăm variabilele aleatoare $\hat{\pi}_1 = \frac{4}{n} \sum_{i=1}^n X_i$ și $\hat{\pi}_2 = \frac{4}{n} \sum_{i=1}^n Y_i$. Calculați media și varianța acestor variabile și stabiliți care este mai eficientă în estimarea lui π .

Exercițiul 4

Fie U_1, U_2, \ldots, U_n variabile aleatoare independente și repartizate $\mathcal{U}([0,1])$ și $S_n = \sum_{i=1}^n U_i$. Dacă variabila aleatoare N este definită prin

$$N = \min\{k \mid S_k > 1\}$$

atunci:

- a) Arătați că dacă $0 \le t \le 1$ atunci $\mathbb{P}(S_k \le t) = \frac{t^k}{k!}$.
- b) Determinați $\mathbb{E}[N]$ și Var[N].

Grupele: 301, 311, 321 Pagina 1

 $^{^1\}mathrm{Spunem}$ că un estimator nedeplasat este mai eficient decât un altul dacă varianța lui este mai mică

Exercițiul 5

Fie $(E_n)_{n\geq 1}$ un șir de variabile aleatoare independente și repartizate $\mathcal{E}(\lambda)$.

a) Pentru $n \ge 1$ definim

$$f_n(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!} \mathbf{1}_{\{x \ge 0\}}, \quad x \in \mathbb{R}.$$

Arătați că f_n este o densitate de repartiție pentru orice $n \ge 1$. Repartiția a cărei densitate este f_n se numește repartiția Gamma de parametrii $n \ge 1$ și λ și se notează cu $\Gamma(n,\lambda)$.

- b) Fie $S_n = \sum_{i=1}^n E_i$ pentru $n \ge 1$. Arătați că S_n este repartizată $\Gamma(n, \lambda)$.
- c) Considerăm variabila aleatoare

$$N = \max\{n \ge 1 \mid S_n \le 1\}$$

cu convenția N=0 dacă $X_1>1$. Arătați că variabila aleatoare N este repartizată $Pois(\lambda)$.

Exercițiul 6

Folosind metoda respingerii, propuneți o metodă de simulare pentru observații independente din densitatea de repartiție $f: x \mapsto (1-|x|)^+$.

Grupele: 301, 311, 321 Pagina 2