http://www.rgpvonline.com

Total No. of Questions: 8]

Roll No

MCA-102

MCA. I Semester

Examination, December 2016

Mathematical Foundation of Computer Science

Time: Three Hours

Maximum Marks: 70

Note: i) Answer any five questions.

- ii) All questions carry equal marks.
- 1. a) If A,B,C are three sets, Prove: $A \cap (B-C) = (A \cap B) - (A \cap C)$
 - b) Prove that:

1.3+2.4+3.5+.....+n(n+2)=
$$\frac{1}{6}n(n+1)(2n+7)$$

n∈N [By mathematical Induction]

- 2. a) If $A = \{1, 2\}$, $B = \{2, 3\}$ and $C = \{3, 5\}$, then find: $(A \times B) \cap (A \times C)$
 - b) If a relation $R = \{(x, y) : x, y \in \mathbb{N} \text{ and } x + y = 8 \text{, then find the domain and range of } \mathbb{R}.$
- 3. a) Prove that $(p \Leftrightarrow q) \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p)$ is a tautology.
 - b) Prepare the truth table of the statement: $(P \Rightarrow Q \land R) \lor (\neg P \land Q)$
- 4. a) Prove that the relation "a divides b", If there exists an integer c such that ac = b and denoted by a/b, on the set of all positive integers N is a partial order relation.

b) Consider the chains of divisions of 4 and 10, i.e. $L_1 = \{1, 2, 4\}$ and $L_2 = \{1, 2, 5, 10\}$ and partial ordering relation of division on L_1 and L_2 . Represent $L_1 \times L_2$.

5. a) Define group with its properties.

- b) Show that the set of numbers of the form $a + b\sqrt{2}$, with a and b as rational number is a field.
- a) Prove that the sum of the degrees of all vertices in a graph is equal to twice the number of edges.
 - b) Define followings for a graph.
 - i) Graph
 - ii) Sub-Graph
 - iii) Finite and Infinite Graph
- 7. a) What is a tree? Prove that a tree with n vertices have (n-1) number of edges.
 - b) Write the incidence matrix for the following graph:

- 8. a) Determine the discrete numeric function to the generating function $A(Z) = \frac{1}{5-6Z+Z^2}$
 - b) Given $Y_h = A \cdot 2^h + B \cdot 3^h$, find the corresponding recurrence relation.

MCA-102

PTO

MCA-102