GNU Octave-Cli + GNU Parallel

- 1) Mainly C++-libraries based high level, script-programming language GNU Octave is freely provided with many low computational complexity algorithms. Overall Octave's scripts execution time efficiency is not comparable to optimized C++ code, but with usage of already implemented proper processing functions makes it trivially applicable for prototyping and tuning tests of algorithms. On the other hand, median many core CPU's provides additional capabilities of computations on modern Personal Computers local networks. GNU Parallel makes parallel computations of real data (at easiest example: on different data files) easy deployable. If one will use GNU Parallel with publishing purposes, please cite authors article. On next tip dashes there will be provided simplified usage of both packages on local network (it is applicable to Virtual Box machines for educational purposes as well).
- 2) install GNU Octave:

#sudo aptitude install parallel octave

3) write Octave test kernel function:

```
#cd ~/Documents
```

#mkdir octave Parallel && cd octave Parallel

#vi kernelFunction.m

4) check if kernel function is correctly adding numbers bigger that 1.0f

```
#octave-cli -p ~/Documents/octave_Parallel/ --eval "[ res, retVal ] = kernelFunction( 1.0, 2.0 )" #octave-cli -p ~/Documents/octave_Parallel/ --eval "[ res, retVal ] = kernelFunction( 2.0, 2.0 )"
```

5) write Octave - Command Line Interface commands for deploying work to GNU Parallel (it will be executed on separate, each CPU core provided in GNU Parallel configuration file clusterList.txt):

#vi parallelCommands.txt

```
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 2.0, 2.0 )"
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 1.0, 2.0 )"
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 3.0, 2.0 )"
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 4.0, 2.0 )"
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 5.0, 2.0 )"
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 6.0, 2.0 )"
octave-cli -p ~/Documents/octave_Parallel/ --eval "kernelFunction( 7.0, 2.0 )"
```

such file can be easily generated in Octave or Bash script.

- 6) on each computer in local cluster create the same userName account,
- 7) write numbers of cores (one can use #nproc function within bash script to get CPU number of cores) to clusterList.txt. This file includes configs for GNU Parallel to make usage of local and remote computers cores. Lets suppose that we have two computers with 2 cores on local PC, and 4 cores on one remote PC. We will write GNU Parallel config file to use all local cores and 4 cores on remote PC with IPv4 address.

```
#vi clusterList.txt
```

```
1/:
4:/IPv4
```

8) generate local sh public-private key pairs (credentials) - one can use defaults:

#ssh-kevgen

9) upload credentials to each worker (in our case, there is single remote computer) for automatic, authorized and encrypted work distribution:

```
#ssh-copy-id IPv4
```

10) check if there is no need for additional authorization via ssh (after this command user should be logged in automatically, without ask for password), create script instruction folders on remote computers (workers), and logout:

```
#ssh IPv4
```

```
#mkdir ~/Documents/octave_Parallel; exit
```

11) rsync local and remote folders (copy only file differences between folders). For details please refer to RSYNC tutorial.

```
#rsync -uv --progress -e ssh ~/Documents/octave_Parallel/* <u>userName@IPv4</u>:~/Documents/octave_Parallel/
```

- 12) run GNU Parallel for deploying parallel work on 6 cores in local cluster (2 local cores and 4 remote cores):
 #touch log.txt && rm log.txt && parallel --slf clusterList.txt --progress < parallelCommands.txt &>> log.txt;
 cat log.txt
- 13) please note that data, instructions network deployment, and run of octave-cli provide overheads. As a result processing should be big enough for obtaining any benefits from such model. For small data and instructions communication please use Message Passing Interface, which is better for such communication,
- 14) some High Performance Computing tricks:

-create local high throughput RAMDISK for data deployment to workers (best efficiency will be provided with usage of PCIe multiple 1GE / 10GE network Host Bus Adapters HBA's, and getting benefits from fastest possible star network topology) . For details please refer to RAMDISK tutorial. Single session mount of volatile 4GB RAMDISK:

#mkdir ~/RAMDISK && sudo mount -t tmpfs -o size=4096M,mode=777 tmpfs ~/RAMDISK/

check if RAMDISK is mounted, and running:

#mount;

#echo;echo RAM sequential writes:;for ((i=0;i<3;i++)); do dd if=/dev/zero of=~/RAMDISK/a.txt conv=fdatasync bs=1512M count=1;done; rm ~/RAMDISK/a.txt;echo;echo HDD sequential writes;for ((i=0;i<3;i++)); do dd if=/dev/zero of=~/a.txt conv=fdatasync bs=1512M count=1;done; rm ~/a.txt;

-tmpfs RAMDISK has sequential read and write efficiency of about 6-10 SSD's RAID0, but pseudorandom read of small data latency is about order of magnitude smaller. Please note that overall storage size is about two orders of magnitude smaller than Solid State Drive disk array,

-make Samba file sharing of RAMDISK on local computer with HBA's. Mount file share with project folders on workers – there will be no need for rsync instructions, and data will be reasonably deployed to workers. For details please refer to Samba tutorial.

#sudo apt-get install samba cifs-utils; sudo smbpasswd -a userName

```
#sudo vim /etc/samba/smb.conf
    [parallelProjectFileShare]
    path = ~/RAMDISK/
    force user = userName
    force group = root
    create mask = 0777
    directory mask = 0777
    hosts allow = IPv4 IPv4_1
    read only = no
    public = yes
    guest ok = yes
    writable = yes
```

#sudo service smbd restart

workers file share mount:

#ssh IPv4

#mkdir ~/remoteRAMDISK && sudo mount -t cifs //IPv4/parallelProjectFileShare /home/userName/remoteRAMDISK -o username=userName

Post Scriptum: it is simplified tutorial providing very basis of algorithms prototyping with GNU Octave-Cli and GNU Parallel packages in many core parallelism scheme. End program must be developed efficiently after completion of vast set of algorithm tests. Please do note, that programming language is less important (for example Bash scripts efficiency), in opposition to popular stereotypes. Program efficiency is mainly correlated with computations complexity, and efficiency of hardware use (General Purpose Graphical Processing Units provides best results for majority of current problems in 2018y. - efficient execution time, but with price of longer development time).

Post Post Scriptum: please do note, that some embedded platforms (*Pi) might not provide full support for some functionalities – such problem appeared within Orange Pi One and Lubuntu 16.04. Check your hardware with Unit Tests before you will make bigger purchase order.