Correlation Coefficient

$$r = \frac{\sum z_X z_Y}{n - 1}$$

Covariance

$$c = r s_X s_Y$$

Effect Size

• Coefficient of determination: r^2 or R^2

Spearman Correlation

$$r_{s} = 1 - \frac{6\sum D^{2}}{n(n^{2} - 1)}$$

- where
 - *D* is the difference between the ranks of each factor
 - n is the number of pairs of ranks

Phi Correlation

TABLE 15.10

A Matrix Displaying the Notation Used for the Phi Correlation Coefficient

		Variable <i>X</i>		
		X ₁	X ₂	
	Y ₁	а	b	Α
Variable Y	Y ₂	С	d	В
		С	D	

$$r_{\phi} = \frac{ad - bc}{\sqrt{ABCD}}$$