Leksioni 9

Endri Raco

10 May, 2024

Endri Raco Leksioni 9 10 May, 2024 1 / 118

- 1 Python për Analizën e Rrjetit
- 2 Shkenca e Rrjetave

Endri Raco Leksioni 9 10 May, 2024 2 / 118

Section 1

Python për Analizën e Rrjetit

Endri Raco Leksioni 9 10 May, 2024 3 / 118

Python për Analizën e Rrjetit

• Në Python ne përdorim një kombinim të librarive të specializuara për analizimin e rrjetave.

Endri Raco Leksioni 9 10 May, 2024 4 / 118

Python për Analizën e Rrjetit

- **networkx** (importuar si nx): Një nga paketat kryesore për të punuar me të dhëna rrjeti
- osmnx: Një paketë për të nxjerrë të dhëna rrjeti nga OpenStreetMap dhe për t'i manipuluar ato në networkx për analizë komplekse të rrjeteve (https://github.com/gboeing/osmnx).

Endri Raco Leksioni 9 10 May, 2024 5 / 118

Python për Analizën e Rrjetit

• Këto paketa mbështesin disa nga funksionalitetet e njëjta të implementuara në ESRI-të e famshme ArcGIS Network Analyst.

Endri Raco Leksioni 9 10 May, 2024 6 / 118

Section 2

Shkenca e Rrjetave

Endri Raco Leksioni 9 10 May, 2024 7 / 118

- Rrjetet, të njohura gjithashtu si grafe, janë një strukturë thelbësore e të dhënave që lejon përfaqësimin e sistemeve.
- Një **nyje** (node) (e quajtur gjithashtu vertex) është një element i rrjetit që përfaqëson një entitet (p.sh., një person, një mjet, një kafshë, një stacion, një organizatë).

Endri Raco Leksioni 9 10 May, 2024 8 / 118

- Një **skaj** (edge) (i quajtur gjithashtu link) është një lidhje midis dy nyjeve dhe mund të ketë atribute.
- Një skaj përfaqëson një marrëdhënie midis dy nyjeve (p.sh., një miqësi midis dy personave, një hekurudhë midis dy stacioneve të trenit, një telefonatë midis dy përdoruesve të telefonit).
- Një skaj mund të jetë **i drejtuar** (directed) (a -> b dhe b -> a janë dy skaje të veçanta) ose **i pa drejtuar** (undirected) (a b nuk ka drejtim).

Endri Raco Leksioni 9 10 May, 2024 9 / 118

• networkx mbështet krijimin e llojeve të ndryshme të rrjeteve dhe ofron implementime të shumë algoritmeve dhe metrikave të grafeve.

Endri Raco Leksioni 9 10 May, 2024 10 / 118

Problemet e Grafeve

- Një nga shembujt më të hershëm të problemeve teorike të grafeve është shtatë urat e Königsberg.
- A ka një rrugë që kalon çdo urë saktësisht një herë?

Endri Raco Leksioni 9 10 May, 2024 11 / 11

• Leonhard Euler (1735) tregoi se një shëtitje e tillë nuk ekzistonte duke formuluar problemin si një graf

Endri Raco Leksioni 9 10 May, 2024 12 / 118

Rrjetet Gjeohapësinore

- Në shkencën e të dhënave gjeografike, rrjetet gjeohapësinore janë rrjete ku vendndodhja e nyjeve dhe skajeve është e nevojshme për t'i studiuar dhe përdorur për analizë.
- Të tilla rrjete janë të kudogjendura dhe përfshijnë rrjetet e transportit, rrjetet hidrologjike, matricat origjinë-destinacion (të dhëna të rrjedhës), rrjetet e energjisë dhe rrjetet tregtare.

Endri Raco Leksioni 9 10 May, 2024 13 / 118

Algoritmet e Rrjetit

- Një nga problemet themelore në grafe është llogaritja e rrugës më të shkurtër midis dy nyjeve.
- Ky problem ka aplikime të panumërta në sektorin gjeohapësinor, duke përfshirë rrugëtimin nga pika A në B.

Endri Raco Leksioni 9 10 May, 2024 14 / 118

Algoritmet e Rrjetit

• Që nga viti 1956, algoritmi i Dijkstra ka qenë mënyra më e famshme për të llogaritur një rrugë më të shkurtër në një graf me peshë.

Endri Raco Leksioni 9 10 May, 2024 15 / 118

Algoritmi i Dijkstra

```
## Prezantimi i Grafit dhe Nujeve
import networkx as nx
import matplotlib.pyplot as plt
# Krijoni graf-in
G = nx.Graph()
edges = [
   ('A', 'B', 1),
    ('A', 'C', 4).
    ('B', 'C', 2),
    ('B', 'D', 5),
    ('C', 'D', 1).
    ('C', 'E', 3).
    ('D', 'E', 2)
G.add_weighted_edges_from(edges)
# Vizualizoni graf-in
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_color='lightblue', edge_color='grey')
labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels=labels)
plt.show()
```


Algoritmi i Dijkstra

Endri Raco Leksioni 9 10 May, 2024 17 / 118

Filloni me nyjen fillestare (A)

• Distanca nga A në A: 0

Endri Raco Leksioni 9 10 May, 2024 18 / 11:

Filloni me nyjen fillestare (A)

• Distanca nga A te fqinjët:

B: 1

C: 4

• Rrugët më të shkurtra:

Zgjidhni nyjen më të afërt (B)

• Distanca nga B te fqinjët:

$$C: 3 (1 + 2)$$

D:
$$6(1+5)$$

- Rrugët më të shkurtra:
- A -> B: 1
- A -> C: 3 (via B)
- A -> D: 6 (via B)

Zgjidhni nyjen më të afërt të ardhshme (C)

• Distanca nga C te fqinjët:

D:
$$4(3+1)$$

E:
$$6(3+3)$$

• Rrugët më të shkurtra:

Zgjidhni nyjen më të afërt të ardhshme (D)

• Distanca nga D te fqinjët:

• Rrugët më të shkurtra:

A -> B: 1

A -> C: 3 (via B)

A -> D: 4 (via C)

A -> E: 6 (via C)

Distancat më të shkurtra janë: {'A': (None, 0), 'B': ('A', 1), 'C': ('B', 3), 'D': ('C', 4), 'E': ('C', 6)} Rruga më e shkurtër nga A në E është: ['A', 'B', 'C', 'E'] me total 6.

```
import networkx as nx
# Krijoni graf-in
G = nx.Graph()
edges = [
    ('A', 'B', 1),
    ('A', 'C', 4),
    ('B', 'C', 2),
    ('B', 'D', 5),
    ('C', 'D', 1),
    ('C', 'E', 3).
    ('D', 'E', 2)
G.add weighted edges from(edges)
# Filloni me nyjen 'A'
shortest_paths = {'A': (None, 0)} # Nyja 'A' me kosto zero
current node = 'A'
visited = set()
# Hari 2 dhe 3: Zajidhni nujen më të afërt dhe llogaritni distancat
def calculate_shortest_paths(graph, start_node):
    visited = set()
    shortest_paths = {start_node: (None, 0)}
    current node = start node
    while current_node:
        visited.add(current node)
        destinations = graph[current_node]
        weight to current node = shortest paths[current node][1]
```

```
for next_node, weight in destinations.items():
    weight = weight['weight']
    total_weight = weight_to_current_node + weight
    if next_node not in shortest_paths:
        shortest_paths[next_node] = (current_node, total_weight)
    else:
        current_weight = shortest_paths[next_node][i]
        if current_weight > total_weight:
        shortest_paths[next_node] = (current_node, total_weight)

next_destinations = {node: shortest_paths[node] for node in shortest_paths if node not in visited}
    if not next_destinations:
        break
    current_node = min(next_destinations, key=lambda k: next_destinations[k][i])

return shortest_paths
```



```
# Llogarithi rrugët më të shkurtra nga 'A' në të gjitha nyjet
shortest_paths = calculate_shortest_paths(G, 'A')
print("Distancat më të shkurtra janë:", shortest_paths)

# Për rrugën më të shkurtër nga A në E
def get_path(shortest_paths, end_node):
    path = []
    while end_node:
        path.append(end_node)
        next_node = shortest_paths[end_node][0]
        end_node = next_node
    path = path[::-1]
    return path

# Gjeni rrugën më të shkurtër nga A në E
shortest_path = get_path(shortest_paths, 'E')
print("Rruga më e shkurtër nga A në E është:", shortest_path)
```


Krijimi i Grafit

- Le të krijojmë një graf me skaje të peshësuara.
- Peshat mund të përfaqësojnë për shembull koston e përshkimit të një skaji (p.sh., një skaj i gjatë ka një peshë më të madhe se një i shkurtër) dhe përdoren shumë shpesh për të përfaqësuar sisteme.

Endri Raco Leksioni 9 10 May, 2024 26 / 118

Krijimi i Grafit

Në disa skenarë, grafet mund të krijohen dhe popullohen drejtpërdrejt me networkx:

```
import networkx as nx
import matplotlib.pyplot as plt

# krijoni një graf të thjeshtë të pa drejtuar
g = nx.Graph(name='graf i vogël')

# shtoni skaje me një atribut (peshë)
g.add_edge('a', 'b', weight=0.1)
g.add_edge('b', 'c', weight=1.5)
g.add_edge('a', 'c', weight=1.0)
g.add_edge('a', 'c', weight=2.2)

# Printoni informacionine grafit
print("Emri:", g.graph['name'])
print("Tipi:", type(g))
print("Numri i nyjeve:", g.number_of_nodes())
print("Numri i skajeve:", g.number_of_edges())
print("Shkalla mesatare:", sum(dict(g.degree()).values()) / g.number_of_nodes())
```


Endri Raco Leksioni 9 10 May, 2024 27 / 118

Vizualizimi i Grafit

- Veçanërisht për rrjete të vogla, është e mundur t'i vizatojmë ato drejtpërdrejt.
- Vini re se ky graf i pa drejtuar është jo-hapësinor, në kuptimin që nyjet nuk kanë një vendndodhje të caktuar hapësinore.

Endri Raco Leksioni 9 10 May, 2024 28 / 118

Vizualizimi i Grafit

```
# gjeneroni pozicionet e nyjeve duke përdorur një paraqitje të njohur
pos = nx.spring_layout(g)

# hapni vizatimin
nx.draw_networkx(g, pos=pos, font_color='white')

# vizatoni etiketat e skajeve
nx.draw_networkx_edge_labels(g, pos=pos)

# vizatoni skajet
nx.draw_networkx_edges(g, pos=pos)

# shfaqni graf-in
plt.show()
```


Endri Raco Leksioni 9 10 May, 2024 29 / 118

Aksesimi i Elementeve të Grafit

• Elementet e grafit mund të aksesohen drejtpërdrejt

```
# Nyjet e grafit
g.nodes
# NodeView(('a', 'b', 'c', 'd'))

# Skajet e grafit
g.edges
# EdgeView([('a', 'b'), ('a', 'c'), ('b', 'c'), ('c', 'd')])
```


Endri Raco Leksioni 9 10 May, 2024 30 / 118

Aksesimi i Elementeve të Grafit

```
# shikoni nyjet fqinje të nyjës 'a':
for node_nei in g.neighbors('a'):
    print(node_nei)
```


Endri Raco Leksioni 9 10 May, 2024 31 / 118

Aksesimi i Atributeve

```
weights = nx.get_edge_attributes(g, 'weight')
weights
# {('a', 'b'): 0.1, ('a', 'c'): 1.0, ('b', 'c'): 1.5, ('c', 'd'): 2.2}
```


Endri Raco Leksioni 9 10 May, 2024 32 / 118

Llogaritja e Rrugës më të Shkurtër

- Tani mund të përdorim **networkx** për të llogaritur rrugën më të shkurtër midis nyjeve.
- Fillimisht, mund të llogarisim rrugën më të shkurtër të peshuar (unweighted shortest path), duke supozuar se të gjitha skajet kanë të njëjtën peshë:

Endri Raco Leksioni 9 10 May, 2024 33 / 118

Llogaritja e Rrugës më të Shkurtër

```
unweighted_path = nx.shortest_path(g, 'b', 'd')
unweighted_path
```


Endri Raco Leksioni 9 10 May, 2024 34 / 118

Rruga e Peshuar

• Tani, mund të shohim rrugën më të shkurtër të peshuar (weighted shortest path), duke vënë re se shuma e peshave të (bacd) është më e lehtë se (bcd):

Endri Raco Leksioni 9 10 May, 2024 35 / 118

Rruga e Peshua

```
weighted_path = nx.shortest_path(g, 'b', 'd', weight='weight')
weighted_path
```


Endri Raco Leksioni 9 10 May, 2024 36 / 118

- Për të përshkruar dhe kuptuar rrjetet, janë krijuar shumë metrika.
- Për shembull, ne mund të shohim se sa skaje janë të lidhura me një nyje (shkalla (degree) e një nyje).

Endri Raco Leksioni 9 10 May, 2024 37 / 118

- Nyja 'a' ka dy skaje, ndërsa 'c' ka 3.
- Disa nyje me shkallë të lartë janë "qendra", duke lidhur shumë nyje: Për shembull, në rrjetet sociale, politikanët janë qendra.

Endri Raco Leksioni 9 10 May, 2024 38 / 118

• Qendra (**centrality**) i një nyje është gjithashtu i rëndësishëm: Sa "hapje" në skaje janë të nevojshme për të arritur të gjitha nyjet e tjera?

Endri Raco Leksioni 9 10 May, 2024 39 / 118

• Për shembull, Londra është një qendër e udhëtimeve ajrore më e rëndësishme se çdo qytet tjetër në Mbretërinë e Bashkuar

Endri Raco Leksioni 9 10 May, 2024 40 / 118

```
import networkx as nx

# Krijo graf-in
g = nx.Graph(name='graf i vogël')
g.add_edge('a', 'b', weight=0.1)
g.add_edge('a', 'c', weight=1.5)
g.add_edge('a', 'c', weight=1.0)
g.add_edge('a', 'c', weight=1.0)
g.add_edge('c', 'd', weight=2.2)

# Ekstraktoni të gjitha shkallët: kjo është zakonisht një pjesë e rëndësishme e informacionit për të kuptuar str
g.degree()
```


Endri Raco Leksioni 9 10 May, 2024 41 / 118

```
# Nxirrni shkallët në një listë të thjeshtë
degrees = [deg for node, deg in g.degree()]
degrees
```


Endri Raco Leksioni 9 10 May, 2024 42 / 118

'c' është nyja më qendrore, pasi mund të arrijmë të gjitha nyjet e tjera me numrin më të vogël të hapave, ndër nx.algorithms.centrality.degree_centrality(g)

Endri Raco Leksioni 9 10 May, 2024 43 / 118

Centraliteti dhe Pesha

• Një tjetër metrikë popullore e qendralitetit është **betweeness centrality** i bazuar në rrugët më të shkurtra midis nyjeve

Endri Raco Leksioni 9 10 May, 2024 44 / 118

Centraliteti dhe Pesha

• Peshat e skajeve **Edge weights** mund të jenë të rëndësishme për të llogaritur centralitetin dhe metrika të tjera.

Endri Raco Leksioni 9 10 May, 2024 45 / 118

```
# Centraliteti i nyjeve
nx.algorithms.centrality.betweenness_centrality(g, weight='weight')
# 'a' dhe 'b' janë nyjet më qendrore të grafit
```


Endri Raco Leksioni 9 10 May, 2024 46 / 118

```
# Centraliteti i skajeve
nx.algorithms.centrality.edge_betweenness_centrality(g, weight='weight')
# 'ac' është skaji më qendror i grafit
```


Endri Raco Leksioni 9 10 May, 2024 47 / 118

- Analiza e rrjetave aplikohet me sukses për të modeluar ndërveprimet në ekonomi, sociologji dhe fusha të tjera.
- Të dhënat nga kjo analizë përfaqësojnë ndërveprimet tregtare midis palëve (p.sh. tregtia e kafshëve midis Argjentinës dhe Brazilit në vitin 2017).

Endri Raco Leksioni 9 10 May, 2024 48 / 118

Rrjetet e marra nga këto të dhëna do të ofrojnë një pamje të anuar mbi tregtinë botërore.

```
import pandas as pd

# ngarkoni të dhënat nga një skedar TSV duke përdorur pandas
trade_df = pd.read_csv('data/gis4/trade_network_wits-1988_2018.tsv', sep='\t')
# shfaqni katër rreshta shembuj nga të dhënat e ngarkuara
trade_df.sample(4)
```


Endri Raco Leksioni 9 10 May, 2024 49 / 118

	partner	reporter	product_categories	indicator_type	indicator	2018	2017	2016	2015	2014	 1995	1994	1993	
4978	France	Antigua and Barbuda	all_products	export	trade_us_mil_top_5_export_partner	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
11027	United States	Zimbabwe	all_products	import	partner_share_pc_top_5_import_partner	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
15951	World	Congo, Rep.	all_products	export	exports_in_us_mil	NaN	8148.01	NaN	NaN	6550.0	 1089.79	917.8	965.34	
401		Hungary	NaN	export	no_of_export_products	4006.0	3983.00	4011.0	4010.0	4011.0	 3143.00	3024.0	2901.00	2

4 rows × 38 columns

Endri Raco Leksioni 9 10 May, 2024 50 / 118

Pasi kemi ngarkuar dhe shfaqur disa rreshta shembull nga të dhënat, le të përqendrohemi në të dhënat e vitit 2018 dhe të heqim të dhënat e paplota:

Endri Raco Leksioni 9 10 May, 2024 51/118

përzajedhja e kolonave të interesit për analizë

import pandas as pd

Endri Raco Leksioni 9 10 May, 2024 52 / 118

```
# numri total i rreshtave të filtruar
len(trade_df)
```


Endri Raco Leksioni 9 10 May, 2024 53 / 118

Për të parë shembullin e rrjetit tregtar të Kinës:

```
# shembull i rrjetit tregtar të Kinës
trade_df[trade_df.reporter_country_code=='CHN']
```


Endri Raco Leksioni 9 10 May, 2024 54/118

	reporter_country_code	reporter	partner_country_code	partner	product_categories	indicator_type	indicator	2018
4009	CHN	China	CHN	China	all_products	import	partner_share_pc_top_5_import_partner	6.86
5970	CHN	China	HKG	Hong Kong, China	all_products	export	partner_share_pc_top_5_export_partner	12.15
6991	CHN	China	JPN	Japan	all_products	export	partner_share_pc_top_5_export_partner	5.90
7084	CHN	China	JPN	Japan	all_products	import	partner_share_pc_top_5_import_partner	8.45
7377	CHN	China	KOR	Korea, Rep.	all_products	export	partner_share_pc_top_5_export_partner	4.37
7378	CHN	China	KOR	Korea, Rep.	all_products	import	partner_share_pc_top_5_import_partner	9.58
8437	CHN	China	OAS	Other Asia, nes	all_products	import	partner_share_pc_top_5_import_partner	8.31
11304	CHN	China	USA	United States	all_products	import	partner_share_pc_top_5_import_partner	7.31
11386	CHN	China	USA	United States	all_products	export	partner_share_pc_top_5_export_partner	19.23
12164	CHN	China	VNM	Vietnam	all_products	export	partner_share_pc_top_5_export_partner	3.37

Endri Raco Leksioni 9 10 May, 2024 55 / 118

```
import networkx as nx
import matplotlib.pyplot as plt
# Define a function to print graph information manually
def print_graph_info(g):
   num nodes = g.number of nodes()
   num_edges = g.number_of_edges()
    avg_in_degree = sum(dict(g.in_degree()).values()) / num_nodes
    avg_out_degree = sum(dict(g.out_degree()).values()) / num_nodes
   print(f"Emri:")
   print(f"Tipi: {type(g).__name__}")
   print(f"Numri i nvjeve: {num nodes}")
   print(f"Numri i degeve: {num_edges}")
   print(f"Mesatarja brenda në gradë: {avg in degree:.4f}")
    print(f"Mesataria jashtë në gradë: {avg out degree: .4f}")
# Gjeneroni grafikun nga data frame (lista e degeve)
df = trade df[trade df.indicator == 'partner share pc top 5 import partner']
trade_import_g = nx.from_pandas_edgelist(df, 'reporter', 'partner', ['2018'], create using=nx.DiGraph())
print_graph_info(trade_import_g)
```


Emri:

Tipi: DiGraph

Numri i nyjeve: 140 Numri i degeve: 663

Mesatarja në gradë: 4.7357 Mesatarja jashtë: 4.7357

Endri Raco Leksioni 9 10 May, 2024 57 / 11

```
# Gjeneroni grafikun nga data frame (lista e skajeve)

df = trade_df[trade_df.indicator="partner_share_pc_top_5_export_partner']

trade_export_g = nx.from_pandas_edgelist(df, 'reporter', 'partner', ['2018'], create_using=nx.DiGraph())

print_graph_info(trade_export_g)
```


Endri Raco Leksioni 9 10 May, 2024 58 / 118

```
Emri:
Tipi: DiGraph
Numri i nyjeve: 151
Numri i degeve: 635
Mesatarja në gradë: 4.2053
Mesatarja jashtë: 4.2053
```


Shkalla e plot in- and out

Hapi i parë për të kuptuar strukturën e një rrjeti është llogaritja e shkallës së çdo nyje (numri i skajeve).

```
def plot_graph_degrees(g, title, logscale=False):
   Paraqitni shkallën e hyrjes dhe daljes së grafikut q në një grafik linje.
    @ q: një grafik
    @ title: titulli i arafikës
    @ logscale: transformoni boshtet x dhe u me log10
    # merrni shkallët
    indegrees = [deg for node, deg in g.in_degree()]
    outdegrees = [deg for node, deg in g.out_degree()]
    # numërimi i shkallës në hyrje
    indeg_vals = sorted(list(set(indegrees)))
    indeg_hist = [indegrees.count(x) for x in indeg_vals]
    # numërimi i shkallës në dalje
    outdeg vals = sorted(list(set(outdegrees)))
    outdeg hist = [outdegrees.count(x) for x in outdeg vals]
    # shtoni informacionin në titull
    title = title + " [" + str(len(g.nodes)) + " nyje, " + str(len(g.edges)) + " skaje]"
    # paragitni
   plt.figure()
   plt.grid()
    # paragitni shkallët
   plt.plot(indeg vals, indeg hist, 'ro-')
   plt.plot(outdeg_vals, outdeg_hist, 'bv-')
```

Shkalla e plot in- and out (vazhdim)

```
if logscale:
    plt.xscale("log")
    plt.yscale("log")
    title = title + " [log]"

# shtoni legjendën dhe etiketat
plt.legend(['shkalla në hyrje','shkalla në dalje'])
plt.xlabel('Shkalla')
plt.ylabel('Numri i nyjeve')
plt.title(title)
plt.show()

# paraqitni strukturën e rrjetit
plot_graph_degrees(trade_export_g, 'Rrjeti i eksportit tregtar', logscale=False)
plot_graph_degrees(trade_import_g, 'Rrjeti i importit tregtar', logscale=True)
```


Shkalla e plot in- and out (vazhdim)

```
# nderto strukturen e rrjetit
plot_graph_degrees(trade_export_g, 'Rrjeti i eksportit tregtar', logscale=False)
plot_graph_degrees(trade_export_g, 'Rrjeti i eksportit tregtar', logscale=True)
plot_graph_degrees(trade_import_g, 'Rrjeti i importit tregtar', logscale=False)
plot_graph_degrees(trade_import_g, 'Rrjeti i importit tregtar', logscale=True)
```


Shkalla e plot in- and out (vazhdim)

- Gjenerimi i vizualizimeve të mira të rrjeteve nuk është i lehtë.
- Kur një rrjet rritet në numër të nyjeve dhe shkallë, mbivendosja bëhet e pashmangshme.

Endri Raco Leksioni 9 10 May, 2024 64 / 118

- Libraria ofron funksionalitet për vizualizim të avancuar
- Me grafet hapësinore, është e nevojshme të zgjidhni një paraqitje për të rregulluar nyjet në një mënyrë të përshtatshme.

Endri Raco Leksioni 9 10 May, 2024 65 / 118

```
# përkufizoni funksionin e ripërdorshëm për të vizatuar paragitjen e rrjetit
def plot_graph(g, title, edge_label_attribute, layout='spring', fig_sz=10):
    Funksioni për të vizatuar një grafik të drejtuar me vlera të përshtatshme të parazqjedhura.
    Q q: një grafik
    @ title: titulli i grafikut
    @ edge_label_attribute: emri i atributit të skajit që do të përdoret si etiketa e skajit
    @ layout: paragitja e rrjetit që do të përdoret
    @ fiq sz: madhësia e kanavacës
    11 11 11
    # gjeneroni pozicionet e nyjeve bazuar në paragitjen e zgjedhur
   if layout == 'spring':
        pos = nx.spring_layout(g, k=0.55, iterations=30)
    elif lavout == 'circular':
        pos = nx.circular_layout(g)
    else:
        raise ValueError ("Paragitie e pavlefshme")
```


Endri Raco Leksioni 9 10 May, 2024 66 / 118

Vizualizimi i Nyjeve dhe Skajeve (vazhdim)

```
# rregulloni figurën
plt.figure(figsize=(fig_sz, fig_sz))
# hapni vizatimin
nx.draw_networkx(g, pos=pos, node_color='lightblue', alpha=.8)
# nxirrni etiketat e skajeve
edge_labels = nx.get_edge_attributes(g, edge_label_attribute)
# vizatoni etiketat e skajeve
nx.draw_networkx_edge_labels(g, pos=pos, edge_labels=edge_labels, alpha=.6)
# vizatoni skajet
nx.draw_networkx_edges(g, pos=pos, arrows=True, alpha=.6, edge_color='lightgray')
plt.title(title)
plt.show()
```


Endri Raco Leksioni 9 10 May, 2024 67 / 118

Vizualizimi i Nyjeve dhe Skajeve (vazhdim)

```
# vizatoni grafikun me dy paraqitje të ndryshme
plot_graph(trade_export_g, "Rrjeti i eksportit (% i eksportit total)", '2018', 'circular', fig_sz=40)
plot_graph(trade_import_g, "Rrjeti i importit (% i importit total)", '2018', 'spring', fig_sz=40)
```


Endri Raco Leksioni 9 10 May, 2024 68 / 118

Vizualizimi i Nyjeve dhe Skajeve (vazhdim)

Endri Raco Leksioni 9 10 May, 2024 69/118

- Këto vizualizime në thelb janë të padobishme pasi nuk mund të dallojmë strukturën e rrjeteve.
- Një strategji për të vizualizuar një rrjet të madh është të përfshini vetëm nyje të lidhura relativisht.
- Për shembull, le të zgjedhim nyje me shkallë të lartë nga grafiku **trade_export_g**:

Endri Raco Leksioni 9 10 May, 2024 70 / 118

```
# zajedhni nujet me shkallë të lartë
degrees = trade export g.degree()
nodes_to_remove = [n for n, degree in degrees if degrees[n] < 20]
# kopjoni dhe hiqni nyjet nga grafiku
hideg_trade_export_g = trade_export_g.copy()
hideg trade export g.remove nodes from(nodes to remove)
# shtypni informacionin e grafikut të shkallës së lartë
def print_graph_info(g):
   num nodes = g.number of nodes()
   num edges = g.number of edges()
    avg_in_degree = sum(dict(g.in_degree()).values()) / num_nodes
    avg out degree = sum(dict(g.out degree()), values()) / num nodes
   print(f"Name:")
   print(f"Type: {type(g).__name__}")
   print(f"Number of nodes: {num nodes}")
   print(f"Number of edges: {num_edges}")
   print(f"Average in degree: {avg in degree: .4f}")
   print(f"Average out degree: {avg out degree:.4f}")
print_graph_info(hideg_trade_export_g)
```


Endri Raco Leksioni 9 10 May, 2024 71 / 118

Name:

Type: DiGraph

Number of nodes: 12 Number of edges: 41

Average in degree: 3.4167 Average out degree: 3.4167

Grafiku me shkallë të lartë është më i lehtë për t'u vizatuar dhe ne mund të shohim lidhjet midis vendeve me shkallë të lartë:

Endri Raco Leksioni 9 10 May, 2024 73 / 118

```
# grafiku i shkallës së lartë
plot_graph(hideg_trade_export_g, "Rrjeti i eksportit (% i eksportit total)", '2018', 'spring', fig_sz=10)
```


Endri Raco Leksioni 9 10 May, 2024 74 / 118

Endri Raco Leksioni 9 10 May, 2024 75/118

Një qasje tjetër është të zgjidhni nën-grafikë, për shembull fqinjët e një nyje të synuar:

```
# tregoni nën-grafikë për secilin vend me shkallë të lartë
for country in hideg_trade_export_g.nodes:
    # mxirrmi nën-grafikun për rrjetin e eksportit të një vendi
    # skajet në dalje
    edges = trade_export_g.out_edges(country, data=True)
    g = nx.DiGraph(edges)
    plot_graph(g, "Rrjeti i eksportit nga\n" + country + ' (% i eksportit total)', '2018', fig_sz=6)
    # skajet në hyrje
    edges = trade_export_g.in_edges(country, data=True)
    g = nx.DiGraph(edges)
    plot_graph(g, "Rrjeti i eksportit për\n" + country + ' (% i eksportit total)', '2018', fig_sz=6)
    plot_graph(g, "Rrjeti i eksportit për\n" + country + ' (% i eksportit total)', '2018', fig_sz=6)
```


Endri Raco Leksioni 9 10 May, 2024 76 / 118

Rrjeti i eksportit nga Russian Federation (% i eksportit total)

Endri Raco Leksioni 9 10 May, 2024 77/118

Eksportimi i grafikut

- Shpesh është e nevojshme të eksportoni një grafik në një format standard të skedarit
- networkX supporton shumë formate.
- Ndër formatet më të supportuara janë **GraphML** dhe **GEXF**, të dy bazuar në XML.

Endri Raco Leksioni 9 10 May, 2024 78 / 118

Eksportimi i grafikut

Ekzaminoni skedarët e eksportuar me një redaktues teksti për të parë se si kodohen të dhënat.

Endri Raco Leksioni 9 10 May, 2024 79 / 118

Eksportimi i grafikut

```
# eksportoni grafikun si GraphML dhe GEXF
nx.write_graphml(hideg_trade_export_g, "tmp/street_network.graphml")
nx.write_gexf(hideg_trade_export_g, "tmp/street_network.gexf")
```


Endri Raco Leksioni 9 10 May, 2024 80 / 118

Qëndra e Nyjeve

• Ne mund të përdorim **networkX** për të llogaritur metrikat e rrjetit, për shembull për të parë qendrën e ndërmjetësimit të vendeve në të dy rrjetet e ndryshme që përfaqësojnë importin dhe eksportin:

Endri Raco Leksioni 9 10 May, 2024 81 / 11:

Qëndra e Nyjeve

Qëndra e Nyjeve

	betw_centrality_export	country
United States	0.042676	United States
India	0.033241	India
China	0.031147	China
Hong Kong, China	0.024218	Hong Kong, China
United Arab Emirates	0.023079	United Arab Emirates
United Kingdom	0.018608	United Kingdom
Germany	0.017931	Germany
Japan	0.017918	Japan
France	0.015561	France
Cinnanana	0.012022	Cinganara

Importo Rrjetin

	$betw_centrality_import$	country			
China	0.040320	China			
Japan	0.036756	Japan			
Germany	0.029491	Germany			
United States	0.026588	United States			
Australia	0.019231	Australia			
Saudi Arabia	0.016419	Saudi Arabia			
Netherlands	0.013404	Netherlands			
Thailand	0.012864	Thailand			
France	0.010686	France			

Endri Raco Leksioni 9 10 May, 2024 84 / 118

Kombinimi i Treguesve për të Krahasuar

```
# kombinoni dy treguesit per t'i krahasuar ata
impexp_df = country_centrality_df.merge(imp_df, on='country')
impexp_df = impexp_df[['country', 'betw_centrality_import', 'betw_centrality_export']]
impexp_df = impexp_df.sort_values('betw_centrality_export', ascending=False)
impexp_df.to_csv('tmp/trade_importexport_centrality_2018.csv')
impexp_df.head(10)
```


Kombinimi i Treguesve për të Krahasuar

	country	betw_centrality_import	betw_centrality_export
0	United States	0.026588	0.042676
1	India	0.008226	0.033241
2	China	0.040320	0.031147
3	Hong Kong, China	0.000000	0.024218
4	United Arab Emirates	0.005016	0.023079
5	United Kingdom	0.003019	0.018608
6	Germany	0.029491	0.017931
7	Japan	0.036756	0.017918
8	France	0.010686	0.015561
9	Singapore	0.001280	0.012823

Endri Raco Leksioni 9 10 May, 2024 86 / 11

Rrjetet Rrugore

- Rrjetet rrugore janë një lloj rrjeti që është veçanërisht i rëndësishëm në analizën e të dhënave gjeografike.
- Libraria **osmnx** ofron funksione për të nxjerrë lehtësisht rrjetet rrugore nga **OpenStreetMap**.

Endri Raco Leksioni 9 10 May, 2024 87 / 118

Rrjetet Rrugore

- Mënyra më efikase për të ruajtur këto rrjete kur punoni në Python është formati **pickle**.
- Do të përdorim skedarë pickle të kompresuar.
- Shumë formate të tjera rrjeti ekzistojnë, duke përfshirë GeoPackages dhe GraphML, që mund të përdoren .

Endri Raco Leksioni 9 10 May, 2024 88 / 118

Merrni Rrjetet Rrugore

```
import osmnx as ox
import pickle

# Emri i vendit të synuar
place_name = "City of London, UK"

# Shkarkoni rrjetin rrugor nga OpenStreetMap bazuar në një emër vendi
graph = ox.graph_from_place(place_name, network_type='drive')

# Ruani rrjetin në disk duke përdorur gzip (.gz) për të zvogëluar madhësinë e skedarit
net_file = "data/streets_citylondon.gpik"

# Use pickle to write the graph to a file
with open(net_file, 'wb') as f:
    pickle.dump(graph, f)

print("Skedari i grafikut të rrugëve në", place_name, "shkarkuar në", net_file)
```


Endri Raco Leksioni 9 10 May, 2024 89 / 118

Merrni Rrjetet Rrugore

```
# 'del' (fshij) shkatërron një objekt. Është e dobishme për të siguruar që ky objekt
# nuk mund të përdoret në qeliza të tjera gabimisht.
del graph, net file
```


Endri Raco Leksioni 9 10 May, 2024 90 / 118

Merrni Rrjetet Rrugore

Në mënyrë alternative, paketa supporton një **point and radius search** bazuar në adresa ose nga poligonet:

```
import osmnx as ox
import pickle
import gzip

# Vendndodhja e Birkbeck, rreze 1 km
radius_m = 1000
graph = ox.graph_from_address('Malet St, London, UK', network_type='drive', dist=radius_m)

# Ruani rrjetin në disk duke përdorur gzip (.gz) për të zvogëluar madhësinë e skedarit
net_file = "data/streets_birkbeck_1km.gpik.gz"

# Use pickle to write the graph to a compressed file
with gzip.open(net_file, 'wb') as f:
    pickle.dump(graph, f)

print(f"Rrjeti rrugor i ruajtur në {net_file}")

# Delete the graph object to free up memory
del graph
```


Endri Raco Leksioni 9 10 May, 2024 91 / 118

- Rrjeti rrugor shprehet si networkx.classes.multidigraph.MultiDiGraph.
- Le të ngarkojmë një skedar **pickle** dhe të vizatojmë rrjetin.

Endri Raco Leksioni 9 10 May, 2024 92 / 118

```
import pickle
import gzip

# Load the graph from the compressed file
net_file = "data/streets_birkbeck_lkm.gpik.gz"
with gzip.open(net_file, 'rb') as f:
    streets_g = pickle.load(f)

# Print the number of nodes and edges in the graph
print("N i nyjeve:", len(streets_g.nodes))
print("N i skajeve:", len(streets_g.dees))
```



```
# vizatoni rrjetin
osmnx.plot_graph(streets_g, figsize=(10,10))
```


Endri Raco Leksioni 9 10 May, 2024 94/118

Skajet përmbajnë atribute, si emri i rrugës dhe lloji, të cilat mund të aksesohen si një dataframe gjeografik.

```
# Merrni vetëm skajet nga grafiku
edges_df = osmnx.graph_to_gdfs(streets_g, nodes=False, edges=True)
edges_df.sample(3)
```


Endri Raco Leksioni 9 10 May, 2024 96 / 118

			osmid	name	highway	maxspeed	access	oneway	reversed	length	geometry
u	v	key									
108009	108034	0	[1186049313, 851719169, 694563843, 1065127938,	Gower Street	primary	20 mph	NaN	False	False	199.796	LINESTRING (-0.13424 51.52396, -0.13419 51.523
294158420	300501141	0	1067121896	Albany Street	primary	20 mph	NaN	False	False	90.621	LINESTRING (-0.14433 51.52858, -0.14435 51.529
108901	11747638084	0	9346429	High Holborn	primary	20 mph	NaN	True	False	80.030	LINESTRING (-0.11918 51.51771, -0.11961 51.517

Endri Raco Leksioni 9 10 May, 2024 97 / 118

edges_df.plot()

Endri Raco Leksioni 9 10 May, 2024 98 / 118

7]: <Axes: >

)aço

Endri Raco Leksioni 9

Nyjet gjithashtu mund të kenë atribute, të tilla si vendndodhja dhe numri i skajeve ndërprerëse:

```
# Merrni nyjet nga grafiku si një kuadër të dhënash
nodes_df = osmnx.graph_to_gdfs(streets_g, nodes=True, edges=False)
nodes_df.sample(5)
# vizatoni nyjet
nodes_df.plot()
```


Për të punuar në rrjetet rrugore, është e nevojshme t'i projektoni ato në një sistem të përshtatshëm të referencës koordinative.

```
print("Sistemi i koordinatave të nyjeve:", nodes_df.crs)
print("Sistemi i koordinatave të skajeve:", edges_df.crs)
```


Endri Raco Leksioni 9 10 May, 2024 102 / 118

```
Sistemi i koordinatave të nyjeve: epsg:4326
Sistemi i koordinatave të skajeve: epsg:4326
```


Endri Raco Leksioni 9 10 May, 2024 103 / 118

Projektimi i këtij rrjeti rrugor në British National Grid:

```
streets_g = osmnx.project_graph(streets_g, 27700)

# kontrolloni nēse projektimi funksionoi
nodes_proj, edges_proj = osmnx.graph_to_gdfs(streets_g, nodes=True, edges=True)
print(nodes_proj.crs)
print(edges_proj.crs)
```


EPSG:27700 EPSG:27700

Endri Raco Leksioni 9 10 May, 2024 105 / 118

Tani koordinatat janë projektuar

edges_proj.sample(5)

Endri Raco Leksioni 9 10 May, 2024 106 / 118

			osmid	name	highway	maxspeed	oneway	length	geometry	lanes	ref	tunnel	access
u	V	key											
4243601481	4243601512	0	[425013568, 425013571, 425013579]	Stephen Street	unclassified	20 mph	True	45.710	LINESTRING (529679.139 181544.887, 529682.283	1	NaN	NaN	NaN
11544696	7684041426	0	823004754	Dane Street	unclassified	20 mph	False	15.209	LINESTRING (530622.046 181683.648, 530628.976 	NaN	NaN	NaN	NaN
				Great					LINESTRING (530045.266				

Endri Raco Leksioni 9 10 May, 2024 107 / 118

Ndërtojmë përsëri

```
osmnx.plot_graph(streets_g, figsize=(10,10))
```


Endri Raco Leksioni 9 10 May, 2024 108 / 118

Ndërtojmë përsëri

Analiza e Rrjetit

Rrjetet rrugore mund të analizohen në aspektin e strukturës së tyre (morfologji) duke përdorur një sërë treguesish:

```
import osmnx as ox
# Merrni statistikat bazike të rrjetit
basic_stats = ox.basic_stats(streets_g)
basic stats
```


Endri Raco Leksioni 9 10 May, 2024 110 / 118

Llogaritja e Rrugëve

Një pjesë qendrore në udhëzime është llogaritja e rrugëve më të shkurtra në rrjetet rrugore.

```
import random
import networkx as nx
import matplotlib.pyplot as plt
from networkx.exception import NetworkXNoPath

# zgjidhni dy nyje të rastësishme
nodes = [n for n in streets_g.nodes]
orig_node = random.choice(nodes)
dest_node = random.choice(nodes)
print("Nyja e origjinës:", orig_node, ", nyja e destinacionit:", dest_node)
```


Endri Raco Leksioni 9 10 May, 2024 111 / 118

Llogaritja e Rrugëve (vazhdim)

```
# Përpiquni/gjeni se për shkak se ndonjëherë rrugët nuk mund të gjenden
try:
    # gjeni rrugën më të shkurtër midis dy nyjeve
    route = nx.shortest_path(streets_g, orig_node, dest_node, weight='length')
    route_len_m = nx.shortest_path_length(streets_g, orig_node, dest_node, weight='length')
    print("Rruga e udhëtimit e gjetur:", len(route), "segmente; gjatësi (m)", round(route_len_m))

# vizatoni rrugën
    plt.figure(figsize=(6, 6))
    fig, ax = ox.plot_graph_route(streets_g, route, route_linewidth=6, node_size=0, bgcolor='k')
except NetworkXNoPath as e:
    print("Rruga nuk u gjet", e)
```


Endri Raco Leksioni 9 10 May, 2024 112 / 118

Llogaritja e Rrugëve

Endri Raco

Leksioni 9

10 May, 2024

Gjetja e Nyjeve Më të Afërta

• Kur udhëtoni nga pika A në pikën B, hapi i parë është të gjeni nyjet më të afërta me A dhe B.

```
from pyproj import Transformer

def project_points(points, in_epsg_code, out_epsg_code):
    """ Transformojme pikat nga nje EPSG te tjetra
    @ in_epsg_code: EPSG fillestare
    @ out_epsg_code: EPSG target
    """
    transformer = Transformer.from_crs(in_epsg_code, out_epsg_code, always_xy=True)
    proj_points = [pt for pt in transformer.itransform(points)]
    return proj_points
```


Endri Raco Leksioni 9 10 May, 2024 114 / 118

Llogaritja e Rrugës së Udhëtimit

```
# origjina dhe destinacioni (lonx, laty)
birkbeck_loc = [-0.13134307, 51.522510]
british_museum_loc = [-0.12575, 51.518391]

# transformojmē lokacionin nē British Grid (get first element with [0])
birkbeck_loc_bg = project_points([birkbeck_loc], 4326, 27700)[0]
britishmus_loc_bg = project_points([british_museum_loc], 4326, 27700)[0]
print("Vendndodhjet nē BMG: ", birkbeck loc bg, britishmus loc bg)
```


Llogaritja e Rrugës së Udhëtimit

```
import matplotlib.pyplot as plt
import pyproj

birkbeck_node = ox.distance.nearest_nodes(streets_g, birkbeck_loc_bg[0], birkbeck_loc_bg[1])
britishmus_node = ox.distance.nearest_nodes(streets_g, britishmus_loc_bg[0], britishmus_loc_bg[1])

# Llogarisim rrugen me te shkurter
route = nx.shortest_path(streets_g, birkbeck_node, britishmus_node, weight='length')
route_len_m = nx.shortest_path_length(streets_g, birkbeck_node, britishmus_node, weight='length')
print("Rruga me e shkurter midis Birkbeck dhe British Museum u gjet:",
len(route), "segmente; length (m):", round(route_len_m))
```


Endri Raco Leksioni 9 10 May, 2024 116 / 118

vizatoni rrugën

```
fig, ax = ox.plot_graph_route(streets_g, route, node_size=0)
plt.show()
```

Këto të dhëna të rrjetit dhe mjetet mund të përdoren në një sërë aplikimesh.

Endri Raco Leksioni 9 10 May, 2024 117 / 11

vizatoni rrugën

