Work

$$W = \vec{F} \vec{d} = Fdcos(\theta)$$

$$P = \frac{|W|}{\Delta t}$$

Kinetic energy

$$K = \frac{1}{2} mv^2$$

Unit: J

Unit:
$$J/s = W$$

Gravitational potential energy

Unit: J

Elastic potential energy

$$U = \frac{1}{2} kx^2$$

Unit: J

Conservation of mechanical energy

$$E_{mec} = K + U$$
 $K_1 + U_1 = K_2 + U_2$

Work done on a system (no friction involved)

$$W = \Delta E_{mec} = \Delta K + \Delta U$$

Unit: J

Work done on a system (friction involved)

$$W = \Delta E_{mec} + \Delta E_{thermal}$$

Unit: J

Work done by friction

$$|W_{\text{friction}}| = \Delta E_{\text{thermal}} = -\Delta E_{\text{mec}}$$

$$W_{friction} = \overrightarrow{F} \overrightarrow{d}$$

Center of mass

$$\mathbf{x}_{\text{com}} = \frac{\mathbf{m}_1 \mathbf{x}_1 + \mathbf{m}_2 \mathbf{x}_2 + \dots + \mathbf{m}_n \mathbf{x}_n}{\mathbf{m}_1 + \mathbf{m}_2 + \dots + \mathbf{m}_n} = \frac{\mathbf{A}_1 \mathbf{x}_1 + \mathbf{A}_2 \mathbf{x}_2}{\mathbf{A}_1 + \mathbf{A}_2} \quad \text{Unit: m}$$

 $m = \rho x$ thickness x area

Linear momentum

$$\vec{p} = m \vec{v}$$

Unit: kg m/s

Conservation of Tinear momentum

$$\frac{p = p'}{m'}$$

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$$

$$J = F_{avg} \times \Delta t = \Delta p$$

$$\Delta \vec{p} = \vec{J}$$

Collision

- Elastic collision: p and K conserved

- Inelastic collision: only p conserved

 - + Perfectly inelastic collision
 + Non-perfectly inelastic collision
- \rightarrow Elastic or inelastic? $K_i = K_f \rightarrow elastic$ $K_i \neq K_f \rightarrow \text{inelastic}$

Angular position: 0

Angular velocity: ω

Angular acceleration: α

Unit: rad (1 rev = 2π rad)

Unit: rad/s

Unit: rad/s²

Period of revolution: $T = \frac{2\pi}{}$ Unit: s

Tangential acceleration: $a_t = \alpha r$ Unit: m/s² Radial acceleration: $a_r = \frac{v^2}{r} = \omega^2 r$ Unit: m/s²

Rotational inertia: I

Torque: $\vec{\tau} = \vec{F} \vec{r}$

Unit: kg.m²

Unit: N.m

Angular momentum: $\vec{l} = \vec{p} \vec{r}$ Unit: kg m² s⁻¹

Translation

Rotation

X

V

a

$$\vec{F} = m \vec{a}$$

m

$$\vec{p} = m \vec{v}$$

$$\overrightarrow{W} = \overrightarrow{F} \overrightarrow{d}$$

$$K = \frac{1}{2} mv^2$$

$$\omega$$

$$\vec{\tau} = \vec{F}\vec{r} = I \alpha$$

$$\vec{l} = \vec{p} \vec{r} = I \omega$$

$$\overrightarrow{W} = \overrightarrow{\tau} \, \overrightarrow{\phi}$$

$$K = \frac{1}{2}I\omega^2$$

$$(\vee) \omega = \omega_{0} + \alpha t$$

$$(\times) \theta = \theta_{0} + \omega_{0} t + \frac{1}{2} \alpha t^{2}$$

$$(\vee) \omega^{2} - \omega_{0}^{2} = 2\alpha(\theta - \theta 0)$$

$$(\nabla) \vec{r} = \vec{r} \vec{r}$$

Rotational inertia (I)

- For a point mass: $I = mr^2$
- For a rigid body: depends on the shape

Conservation of angular momentum: $I_i \omega_i = I_f \omega_f$

Rotational work

$$W = \Delta K = \frac{1}{2} I \omega_f^2 - \frac{1}{2} I \omega_i^2 = \tau \varphi$$

Rolling motion: Translational + Rotational

$$v = \omega R$$

$$a = \alpha R$$

$$K = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2$$

Rolling on horizontal surface

Rolling on an incline

The yo-yo

The pulley

