Logică computațională Curs 9

Lector dr. Pop Andreea-Diana

Metoda tabelelor semantice în calculul predicatelor

- introdusă de Smullyan
- se bazează pe considerații semantice
- încearcă să construiască modelele unei formule date

(FND)

- $\vdash U$ prin respingere, $\neg U$ nu are modele
- ideea:
 - descompunerea formulei inițiale în subformule
 - până la nivel de literali

Clase de formule (1)

 clasa α - formule de tip conjunctiv

$$A \wedge B$$

$$\neg (A \lor B)$$

$$\neg (A \rightarrow B)$$

• clasa β - formule de tip disjunctiv

$$A \vee B$$

$$\neg (A \land B)$$

$$A \rightarrow B$$

Clase de formule (2)

• clasa γ - formule cuantificate universal

 clasa δ - formule cuantificate existențial

$$(\forall x) A(x)$$

$$(\exists x) A(x)$$

$$\neg (\exists x) A(x)$$

$$\neg (\forall x) A(x)$$

Reguli de descompunere a formulelor (1)

• regula α $A \wedge B \qquad \neg (A \vee B) \qquad \neg (A \rightarrow B)$ $/ \qquad / \qquad /$ $A \qquad \neg A \qquad A$ $/ \qquad / \qquad /$ $B \qquad \neg B \qquad \neg B$

Reguli de descompunere a formulelor (2)

Arborele binar de descompunere a unei formule

Având o formulă U, ei i se poate asocia o tabelă semantică, care este de fapt un arbore binar ce conține în nodurile sale formule și se construiește astfel:

- \bullet rădăcina arborelui este etichetată cu formula U;
- fiecare ramură a arborelui care conține o formulă va fi extinsă cu subarborele corespunzător regulii de descompunere care se aplică formulei;
- extinderea unei ramuri se încheie în două situații:
 - a) dacă pe ramură apare o formulă și negația sa;
 - dacă au fost descompuse toate formulele de pe acea ramură sau prin aplicarea regulilor de descompunere nu se mai obțin formule noi pe acea ramură

Tipuri de ramuri

- O ramură a tabelei se numeşte închisă (simbolizată prin ⊗) dacă ea conţine o formulă şi negaţia ei, în caz contrar, dacă este completă, ramura se numeşte deschisă (simbolizată prin⊙).
- O ramură a tabelei se numește completă dacă ea este fie închisă, fie toate formulele de pe acea ramură au fost descompuse.

Tipuri de tabele semantice

- O *tabelă* se numește *închisă* dacă toate ramurile sale sunt închise. Dacă o tabelă are cel puţin o ramură deschisă, atunci ea se numește *deschisă*.
- O *tabelă* se numește *completă* dacă toate ramurile ei sunt complete.

Observaţii:

- Procesul de construire a unei tabele semantice este unul *nedeterminist* deoarece regulile de descompunere se pot aplica în orice ordine și la un moment dat se pot alege mai multe ramuri pentru extindere. Astfel unei formule i se pot asocia mai multe tabele semantice, dar acestea sunt echivalente.
- Pentru a obține tabele semantice *cât mai simple* (mai puțin ramificate) se recomandă:
 - utilizarea regulilor de tip α înaintea regulilor de tip β care realizează o ramificare;
 - utilizarea regulilor de tip δ (care introduc constante noi) înaintea regulilor de tip γ care utilizează toate constantele de pe ramura respectivă;

Observaţii (2):

- formulele de pe aceeași ramură a unei tabele semantice sunt *legate* între ele prin conectiva logică ^, iar *ramificarea* corespunde conectivei logice >.
- tabela semantică asociată unei formule propoziționale este o reprezentare grafică a *formei* sale *normale disjunctive*. Fiecare ramură reprezintă un *cub* (conjuncția tuturor literalilor de pe acea ramură), iar arborele este *disjuncția* tuturor *ramurilor* sale.
- Unei formule *consistente* i se asociază o *tabelă completă deschisă*, iar fiecare *ramură deschisă* a tabelei furnizează cel puţin un *model* pentru formula respectivă.
- O *tabelă semantică închisă* asociată unei formule indică faptul că formula este *inconsistentă*, adică nu există nicio interpretare în care formula să fie adevărată

Teorema de corectitudine şi completitudine a metodei tabelelor semantice

• O formulă U este teoremă (tautologie) dacă și numai dacă există o tabelă semantică închisă pentru formula $\neg U$.

Teoremă

• $U_1, U_2, ..., U_n \vdash Y$ (echivalent cu $U_1, U_2, ..., U_n \models Y$) dacă şi numai dacă există o tabelă semantică închisă pentru formula $U_1 \land U_2 \land ... \land U_n \land \neg Y$.

Exemple

$$\stackrel{?}{\models} (\exists x) (A(x) \land B(x)) \rightarrow (\exists x) A(x) \land (\exists x) B(x)$$

Exemple

$$\stackrel{?}{\models} (\exists x) (A(x) \land B(x)) \rightarrow (\exists x) A(x) \land (\exists x) B(x)$$

$$\stackrel{?}{\models} (\forall x) (A(x) \lor B(x)) \to (\forall x) A(x) \lor (\forall x) B(x)$$

Deci tabela semntică este deschisă ⇒ formula nu este tautologie

Exemple

$$\stackrel{?}{\models} (\exists x) (A(x) \land B(x)) \rightarrow (\exists x) A(x) \land (\exists x) B(x)$$

$$\stackrel{?}{\models} (\forall x) (A(x) \lor B(x)) \to (\forall x) A(x) \lor (\forall x) B(x)$$

$$\not\stackrel{?}{\models} (\exists y) (\forall x) P(x, y)$$

$$\neg(\exists y) (\forall x) P(x, y) (1) \sqrt{ }$$

$$\gamma(1), \text{ a - constantă implicită}$$

$$\neg(\forall x) P(x, a) (2) \sqrt{ }$$

$$\neg(\exists y) (\forall x) P(x, y) (1') \sqrt{ }$$

$$\delta(2), \text{ b - constantă nouă}$$

$$\neg(\forall x) P(b, a)$$

$$\gamma(1'), \text{ b - constantă existentă}$$

$$\neg(\forall x) P(x, b) (3) \sqrt{ }$$

$$\neg(\exists y) (\forall x) P(x, y) (1'')$$

$$\delta(3), \text{ c - constantă nouă}$$

$$\neg(P(c, b))$$

$$\gamma(1''), \text{ c - constantă existentă}$$
...

Deci am intrat în ciclu infinit, deci nu putem decide tipul formulei (pp. nu are loc – identificăm un anti-model)

Semi-decidabilitatea calcului predicativ

- Pentru cazul logicii predicatelor de ordinul I, arborele poate fi infinit datorită combinării regulilor de tip γ și δ .
- Dacă arborele asociat negației unei formule predicative este *finit*, atunci *se poate* decide dacă formula respectivă este o tautologie sau nu, dar dacă arborele este *infinit*, *nu* se poate decide nimic asupra validității formulei.

Substituţii

Definiție: O *substituție* este o funcție definită pe mulțimea variabilelor, *Var* cu valori în mulțimea termenilor, *TERM*. Se notează cu $\theta = [x_1 \leftarrow t_1, ..., x_k \leftarrow t_k]$, reprezentând o mulțime finită de înlocuiri de variabile cu termeni. $x_1, ..., x_k$ sunt variabile distincte, iar $t_1, ..., t_k$ sunt termeni, astfel încât $\forall i = 1, ..., k, t_i \neq x_i$ și x_i nu este *subtermen* al lui t_i .

- $dom(\theta) = \{x_1, ..., x_k\}$ se numeşte domeniul substituţiei θ .
- ε substituția vidă
- φ , ξ , ψ , η , θ , λ

Aplicarea substituției

 $\theta = [x_1 \leftarrow t_1, ..., x_k \leftarrow t_k]$ asupra formulei U se definește recursiv:

- $\theta(x_i) = t_i$, $x_i \in dom(\theta)$; $\theta(x) = x$, $x \notin dom(\theta)$;
- $\theta(c) = c$, c constant;
- $\theta(f(t_1,...,t_n)) = f(\theta(t_1),...,\theta(t_n)), f \in \mathcal{F}_n;$
- $\theta(P(t_1,...,t_n)) = P(\theta(t_1),...,\theta(t_n)), P \in \mathcal{P}_n;$
- $\theta(\neg U) = \neg \theta(U)$;
- $\theta(U \wedge V) = \theta(U) \wedge \theta(V)$;
- $\theta(U \vee V) = \theta(U) \vee \theta(V)$;
- $\theta(U \to V) = \theta(U) \to \theta(V)$;
- $\theta(U \leftrightarrow V) = \theta(U) \leftrightarrow \theta(V)$.

Compunerea substituțiilor

$$\theta_1 = [x_1 \leftarrow t_1, \dots, x_k \leftarrow t_k]$$
 și $\theta_2 = [y_1 \leftarrow s_1, \dots, y_k \leftarrow s_k]$

$$\theta = \theta_1^{\circ} \theta_2 = [x_i \leftarrow \theta_2(t_i) \mid x_i \in dom(\theta_1), x_i \neq \theta_2(t_i)] \cup [y_i \leftarrow s_j \mid y_i \in dom(\theta_2) \setminus dom(\theta_1)]$$

 Obs.: Nu întotdeauna compunerea unor substituții este o substituție.

Exemple

$$\begin{aligned} \theta_1 &= [x_1 \leftarrow t_1, \dots, x_k \leftarrow t_k] \text{ si } \theta_2 = [y_1 \leftarrow s_1, \dots, y_k \leftarrow s_k] \\ \theta &= \theta_1 \circ \theta_2 = [x_i \leftarrow \theta_2(t_i) \mid x_i \in dom(\theta_1), x_i \neq \theta_2(t_i)] \cup \\ & [y_i \leftarrow s_j \mid y_i \in dom(\theta_2) \setminus dom(\theta_1)] \end{aligned}$$

$$\theta_1 = [x \leftarrow y, z \leftarrow a, u \leftarrow f(y)] \text{ si } \theta_2 = [y \leftarrow a, t \leftarrow g(b), v \leftarrow w]$$

$$\theta = \theta_1 \circ \theta_2 = [x \leftarrow a, z \leftarrow a, u \leftarrow f(a), y \leftarrow a, t \leftarrow g(b), v \leftarrow w]$$

$$\theta_3 = [x \leftarrow y, z \leftarrow a, u \leftarrow f(t)]$$
 şi $\theta_4 = [y \leftarrow a, t \leftarrow g(u), v \leftarrow w]$
 $\theta = \theta_3 \circ \theta_4 =$
 $= [x \leftarrow a, z \leftarrow a, u \leftarrow f(g(u)), y \leftarrow a, t \leftarrow g(u), v \leftarrow w] - \text{nu este}$
o substituție

Proprietăți ale operației de compunere

• Element neutru: ε – substituția vidă:

$$\varepsilon \theta = \theta \varepsilon = \theta$$
, $\forall \theta$ – substituție

- Asociativitatea: $\theta_1(\theta_2 \theta_3) = (\theta_1 \theta_2)\theta_3 = \theta_1 \theta_2 \theta_3$
- În general compunerea nu este comutativă

Unificatori

- O substituție θ se numește *unificator* al termenilor t_1 și t_2 dacă $\theta(t_1) = \theta(t_2)$. Termenul $\theta(t_1)$ se numește *instanța* comună a termenilor unificați.
- Un unificator al mulțimii de formule $\{U_1, U_2, ..., U_n\}$ este o substituție θ cu proprietatea: $\theta(U_1) = ... = \theta(U_n)$.
- Cel mai general unificator (mgu) este un unificator μ cu proprietatea că orice alt unificator θ se obține din compunerea lui μ cu o altă substituție λ : $\theta = \mu \lambda$.

Algoritm pentru determinarea celui mai general unificator a doi literali (1)

```
Date de intrare: l_1 = P_1(t_{1_1}, t_{1_2}, ..., t_{1_n}) și l_2 = P_2(t_{2_1}, t_{2_2}, ..., t_{2_k}) doi literali
Date de ieșire: mgu(l_1, l_2) sau "l_1, l_2 nu sunt unificabili"
dacă (P_1 \neq P_2) // simbolurile predicative sunt diferite
        atunci scrie "l_1, l_2 nu sunt unificabili"; STOP;
sf dacă
 \operatorname{daca}(n \neq k) // aritate diferită pentru același simbol predicativ
        atunci scrie "l_1, l_2 nu sunt unificabili"; STOP;
sf dacă
\theta \leftarrow \varepsilon; // inițializare cu substituția vidă
```

Algoritm pentru determinarea celui mai general unificator a doi literali (2)

 $\hat{\mathbf{cat}}_{\mathbf{timp}} (\theta(l_1) \neq \theta(l_2))$

Din $\theta(l_1), \theta(l_2)$ se determină cele mai din stânga simbol de funcție, constantă sau variabilă diferite și notăm cu t_1 și t_2 termenii lor corespunzători.

dacă (niciunul dintre t₁ și t₂ nu este variabilă sau unul este subtermenul celuilalt)

sf dacă

dacă (t₁ este variabilă)

atunci $\lambda = [t_1 \leftarrow t_2];$ **altfel** $\lambda = [t_2 \leftarrow t_1];$

sf dacă

 $\theta \leftarrow \theta \lambda$:

 \mathbf{daca} (θ nu este substituție)

atunci scrie " l_1 , l_2 nu sunt unificabili"; STOP;

sf dacă sf_cât_timp

scrie " l_1 și l_2 sunt unificabili,mgu(l_1 , l_2)=" θ

Sf_algoritm

atunci scrie " l_1 , l_2 nu sunt unificabili"; STOP;

Exerciții

- P(a, x, g(f(y))) și Q(f(y), f(z), g(z)) Nu au același simbol de predicat
- P(a, x, g(f(y)), b) și P(f(y), f(z), g(z)) Nu au aceeași aritate
- P(a, x, g(f(y))) și P(f(y), f(z), g(z)) $[a \leftarrow f(y)]$
- P(x, g(f(a)), x) și P(f(y), z, h(y, f(y)))

$$A_1 = P(x, g(f(a)), x) \text{ și } A_2 = P(f(y), z, h(y, f(y)))$$

$$\theta_1 = [x \leftarrow f(y)]$$

$$\theta_1(A_1) = P(f(y), g(f(a)), f(y))$$

$$\theta_1(A_2) = P(f(y), z, h(y, f(y)))$$

$$\theta_2 = [\mathbf{z} \leftarrow g(f(a))]$$

$$\theta_2(\theta_1(A_1)) = P(f(y), g(f(a)), f(y))$$

$$\theta_2(\theta_1(A_2)) = P(f(y), g(f(a)), h(y, f(y)))$$

Nu sunt unificabili pentru că nu avem variabilă care să se substituie (f și h sunt ambele simboluri de funcții)

Exerciții

- P(a, x, g(f(y))) și Q(f(y), f(z), g(z)) Nu au același simbol de predicat
- P(a, x, g(f(y)), b) și P(f(y), f(z), g(z)) Nu au aceeași aritate
- P(a, x, g(f(y))) și P(f(y), f(z), g(z)) $[a \leftarrow f(y)]$
- P(x, g(f(a)), x) și P(f(y), z, h(y, f(y)))
- P(a, h(x,u), f(g(y))) și P(z, h(z, u), f(u))

$$A_3 = P(a, h(x,u), f(g(y)))$$
 și $A_4 = P(z, h(z, u), f(u))$

$$\theta_{1} = [z \leftarrow a]$$

$$\theta_{1}(A_{3}) = P(a, h(x,u), f(g(y)))$$

$$\theta_{1}(A_{4}) = P(a, h(a, u), f(u))$$

$$\theta_{2} = [x \leftarrow a]$$

$$\theta_{2}(\theta_{1}(A_{3})) = P(a, h(a,u), f(g(y)))$$

$$\theta_{2}(\theta_{1}(A_{4})) = P(a, h(a, u), f(u))$$

$$\theta_{3} = [u \leftarrow g(y)]$$

$$\theta_{3}(\theta_{2}(\theta_{1}(A_{3})) = P(a, h(a, g(y)), f(g(y)))$$

$$\theta_{3}(\theta_{2}(\theta_{1}(A_{4})) = P(a, h(a, g(y)), f(g(y)))$$

Deci $\theta_3(\theta_2(\theta_1(A_3)) = \theta_3(\theta_2(\theta_1(A_4)), \text{ deci } A_3 \text{ și } A_4 \text{ sunt unificabile și } mgu(A_3,A_4) = \theta_1 \circ \theta_2 \circ \theta_3 = [z \leftarrow a, x \leftarrow a, u \leftarrow g(y)]$