五、智能工廠推動進度報告

本部於2019年起推動數位優化管理模式,將現有營運管理及生產管理,導入大數據分析、人工智慧、模擬軟體等技術,來建構及推動模擬工廠與整廠優化及營運動態管理優化的目標努力。

模擬工廠與整廠優化

製程模擬

- ◎線性規劃
- ◎製程單元模擬

資料數位化

- ◎即時數據資料庫
- ◎現場輪班管理數位化

製程安全

- ◎腐蝕智慧監控系統
- ◎Flare系統監控模組

製程優化

- ◎製程單元預測模組
- ◎製程跨單元整合模組

設備管理

- ◎設備性能監控模組
- ◎泵浦軸承壽命預測

工廠安全

- ◎泵浦洩漏監控系統
- ◎儲槽VOC回收設備監控

營運動態管理優化

市場預測

- ◎資訊自動收集系統
- ◎原料產品價格預測

營業優化

- ◎營運動態管理平台
- ◎客戶意見回饋

產銷優化

- ◎輕油組成估價模組
- ◎原料產品組合模組

五、智能工廠推動進度報告

化一部模擬工廠與整廠優化:

主要以既有的全廠製程模擬模型(PROⅡ)為基礎,搭配即時數據資料庫(PI),利用適當的演算法建置AI模型給予可視化的最佳操作建議,以達到整廠即時優化的目的。

開發內容共分為五大部分,預定2024年6月完成,進度彙總如下:

	ملت ب منا الحدا الحداد	ARO1廠		ARO2廠		AR	A 51	
	化一部模擬工廠	已完成 /總數	完成日 (預完日)	已完成 /總數	完成日 (預完日)	已完成 /總數	完成日 (預完日)	合計
1	開發全廠製程 模擬模型	24/24	2005. 06	22/22	2006. 06	28/28	2007. 06	74/74
2	建立全廠即時 數據資料庫	15, 154/ 15, 154	2012. 01	15, 945/ 15, 945	2012. 01	18, 296/ 18, 296	2012. 01	49, 395/ 49, 395
3	開發各製程單元 預測模組	9/16	(2023, 09)	6/13	(2023. 06)	5/18	(2023, 12)	20/47
4	開發跨單元整合 預測模組	3/5	(2023. 12)	1/4	(2023. 12)	1/5	(2024. 06)	5/14
5	開發設備監控 預警模組	62/131	(2023. 09)	71/139	(2023. 12)	70/203	(2023. 12)	203/473

五、智能工廠推動進度報告

第三、第四項開發各製程單元與跨單元整合預測模組案件彙總

項次	項目	內容摘要	效益	效益 (千元/年)	完成日
1	ARO3廠重組觸媒 再生優化模組	推薦觸媒再生程序操作優化 ,提升芳香烴產率。	芳香烴: 2.4噸/H	89, 168	2022. 04. 30
2	ARO1廠重組反應 系統效益優化模組	推薦重組反應器系統操作條 件優化,提升芳香烴產率。	芳香烴: 0.7噸/H	29, 547	2020. 03. 31
3	ARO2廠重組單元 循環氫氣控制優化 模組	推薦壓縮機轉速控制優化, 節省蒸汽。	41K蒸汽: 1.0噸/H	5, 648	2021. 03. 31
4	ARO3廠重萃/裂萃 單元能源優化模組	能源優化,降低蒸汽耗用。	21K蒸汽: 1.5噸/H	8, 712	2021. 03. 31
5	ARO1廠去庚烷塔 節能優化模組	能源優化,降低蒸汽耗用。	41K蒸汽: 0.5噸/H	2, 824	2021. 12. 31
其他	已完成: 25案(137,5 進行中: 6案(38,0 規劃中: 30案(81,8	257, 426	(2024. 06. 30)		
		393, 325			

- 1. 200區重組反應器<u>芳香烴產率</u>是工廠獲利關鍵之一,因重組反應會導致觸媒快速積碳,所以必須在生產期間進行觸媒連續再生(將積碳燒除),再生後的觸媒(積碳<0.1%) 會再送回重組反應器。
- 2. 控制重組反應產率主要有兩個因素①反應器操作條件②觸媒再生後的品質。經檢討, 本廠觸媒再生在操作上還有優化的空間,擬導入AI人工智慧技術,強化觸媒再生後 的品質,進一步提升芳香烴產率。

觸媒再生優化模組

重組反應系統效益優化模組

觸媒連續再生示意圖

流程說明:

重組高積碳觸媒由頂部進入再生塔,在一號/二號燃燒床進行積碳燒除,在氣化區注入空氣、氣、水來恢復觸媒金屬基與酸性基功能,最後在乾燥區使用高溫氮氣吹除水分後送回重組反應器。

定義問題與目標)資料盤點及清理

探索分析

模組開發

線上應用

【問題點】

- 1. 觸媒再生單元系統複雜,控制參數眾多,觸媒再生後品質穩定度仍有優化空間。
- 2. 藉由導入AI工具精進觸媒再 生後穩定度,提升重組芳香 煙產率。

【改善對策】

開發重組觸媒再生優化模組

操作條件推薦功能透過DCS與品管數據,建置AI預測模組並依照重組進料環烷烴與芳香烴(N+A)組成分模後進行6個目標預測,藉由AI模式依建議功能得到主要九項操作變數,導入實務操作達到重組觸媒最佳產率。

定義問題與目標 資料盤點及清理 探索分析 模組開發 線上應用

再生單元相關錶點共88個,收集2020/1~2022/2, DCS操作數據18,533筆(1筆/時)及品管化驗數據1,977筆(3筆/天)。經資料對齊、補值及刪除離群值後,剩下12,413筆有效數據。

再生單元相關數據, 共 88 個 錄 點。 收 集 DCS操作數據 18,533 筆 及 品 管 化 驗 數 據 1,977筆。 針對DCS操作數據進 行刪除異常數值,與 停車資料。

針對品管化驗數據進 行補值。 剩下12,413筆有效 數據做為後續模組 建置使用。

定義問題與目標 資料盤點及清理 探索分析 模組開發 線上應用

從88個錶點中挑選出與芳香烴產率相關的錶點,以利後續模組開發,透過統計分析方法與製程專業知識(Domain knowledge)篩選再取聯集後,共篩選出16個特徵變數(X)進行模組開發。

特徵變數(X):16個錶點					預測目標(Y):6個		
操作參數	代號	數量	特徵變數名稱	代號	參數名稱		
重組入料條件	$\mathbf{X}_{1\sim2}$	2個	X_1 : 進料 $C10^+$ 含量、 X_2 : 反應器平均入口溫度				
再生入料條件	X _{3~4}	2個	X ₃ :觸媒處理量、X ₄ :再生前觸媒含氯		Y ₁ :觸媒再生前積碳、 Y ₂ :氯化區含氧、		
燃燒床 操作條件	X _{5~10}	6個	X5: 一床入口溫度、X6: 一床入口含氧、 X7: 一床氣體流量、X8: 二床入口溫度、 X9: 二床氣體補充量、X10: 二床出口含氧	$\mathbf{Y}_{1\sim 6}$	Y ₃ : 觸媒再生後積碳、 Y ₄ : 觸媒再生後含氯、 Y ₅ : 反應器總溫降、 Y ₆ : 芳香烴產率		
氯化/乾燥區 操作條件	X _{11~16}	6個	X_{11} :氯化區注入風量、 X_{12} :氯化區入口溫度、 X_{13} :乾燥區注入風量、 X_{14} :補充氣體流量 X_{15} :注水量、 X_{16} :注氣量				

定義問題與目標 資料盤點及清理 探索分析 模組開發 線上應用

- 1. 將篩選出來的12, 413筆資料選取80%作為訓練數據, 20%作為驗證數據進行準確度驗證。
- 2. 採用類別提升(Catboost)演算法建置AI預測模型,開發16個特徵變數(X)以及預測6個目標函數(Y)。
- 3. 將即時操作數據丟入訓練模中,選取符合驗收指標的操作參數。
- 4. 最後演算出觸媒再生優化主要9個控制參數,進行推薦指引。

定義問題與目標 資料盤點及清理 探索分析 模組開發 線上應用

線上應用--操作條件建議功能:

- 1.AI預測模組根據入料條件,在控制變數的操作範圍內,排列出864個組合進行最佳 目標預測(Y)。
- 2. 經由推薦功能篩選,找到芳香烴產率(Y)最高的組合條件,呈現於介面(Dashboard) 作為推薦值,指引製程人員進行調整。

操作條件(代入最新即時數據):

氯化區入口溫度

- 一床氣體流量
- 二床入口溫度
- 二床氣體補充量 補充氣體流量

再生前觸媒含氣

反應器入口平均溫度

控制變數:9個

(操作範圍內的間隔值)

<u>AI預測模組</u> (類別提升Catboost)

預測目標條件限制

觸媒再生前積碳 < 5.8% 觸媒再生後積碳 < 0.1% 觸媒再生後含氣 1~1.1% 氯化區含氧 > 4%

優化目標:

芳香烴產率Maximum

主控制變數推薦(9個):

- 1 觸媒處理量
- ② 進料C10+含量
- (3) 一床入口溫度
- 4 一床入口含氧
- 5 注氣量
- 6 注水量
- 7) 二床入口含氧
- 8 氯化區注入風量
- 9 乾燥區注入風量

定義問題與目標 資料盤點及清理 探索分析

模組開發

線上應用

ARO3廠重組觸媒再生優化模組已於2022年5月完成上線應用,如下圖:

- (1) 顯示模組預測準確度
- ③顯示控制變數的實際值與推薦值
- 5 顯示實際值及 優化目標趨勢圖

(2) 顯示入料條件

4 及優化目標值

經由模組自動推薦最佳化操作條件,於4月開始調整,<u>主要</u>提升觸媒處理量、調降二床出口含氧與氯化區/乾燥區注入風量,令氯化區氧氣濃度提升至4.5%以上,優化觸媒金屬基功能;次要調整注氣量及注水量,優化觸媒酸性基功能。

	操作參數									目標結果
驗證 測試	觸媒 處理量 (kg/hr)	進料C10 ⁺ 含量 (wt%)	· ·	一床 入口含氧 (vol%)	注氣量 (kg/hr)	注水量 (kg/hr)	二床 出口含氧 (vol%)	氯化區 注入風量 (NM ³ /H)	乾燥區 注入風量 (NM ³ /H)	芳香烴 產率(%)
調整前	1, 350	4. 62	460.0	0.80	2. 2	2.8	0.44	1, 480	1, 400	71.1
調整後	1, 496	4. 58	460.0	0.80	2. 6	3. 5	0. 35	1, 250	1, 256	72.3

由模組推薦的最佳操作建議調整後,產率由原本的<u>71.1</u>%提升至<u>72.3</u>%,增加芳香烴產出2.4噸/H,年效益89,168千元。

報告完畢

恭請指導