Lecture Note on Terwilliger Algebra

P. Terwilliger, edited by H. Suzuki

2022-11-24

Contents

Ab	Setting	5 5
1	Subconstituent Algebra of a Graph	7
2	Perron-Frobenius Theorem	13
3	Cayley Graphs	19
4	Examples	25
5	T-Modules of $H(D,2)$, I	31
6	T-Modules of $H(D,2)$, II	37
7	The Johnson Graph $J(D,N)$	43
8	Thin Graphs	49
9	Thin T -Module, I	55
10	Thin T -Module, II	61
11	Examples of T -Module	67
12	Distance-Regular	71
13	Modules of a DRG	7 9
14	Title of the Chapter	81

4 CONTENTS

About this lecturenote

Setting

sudo This note is created by bookdown package on RStudio.

For bookdown See (Xie, 2015), (Xie, 2017), (Yihui Xie, 2018).

- 1. Log-in to my GitHub Account
- 2. Go to RStudio/bookdown-demo repository: https://github.com/rstudio/bookdown-demo
- 3. Use This Template
- 4. Input Repository Name
- 5. Select Public default
- 6. Create repository from template
- 7. From Code download ZIP
- 8. Move the extracted folder into a favorite directory
- 9. Open RStudio Project in the folder
- 10. Use Terminal in the buttom left pane
 - confirm that the current directory is the home directry of the project by pwd
- 11. (failed to proceed by ssh)
- 12. Use Console
 - 1. library(usethis)
 - 2. use_git()
 - 3. use_github() Error
 - 4. gh_token_help()
 - 5. create_github_token(): create a token in the github page. Copy the token
 - 6. gitcreds::gitcreds_set(): paste the token, the token is to be expired in 30 days
- 13. Use Terminal
 - 1. git remote add origin https://github.com/icu-hsuzuki/t-alagebra.git
 - 2. git push -u origin main
 - 3. type in the password of the computer
- 14. Use GIT in R Studio

6 CONTENTS

Another Host

- 1. create a project by version control git
- 2. git init
- 3. git remote add origin git@github.com:/.git
- 4. git branch -r
- 5. git fetch
- 6. git pull origin main

Chapter 1

Subconstituent Algebra of a Graph

Wednesday, January 20, 1993

A graph (undirected, without loops or multiple edges) is a pair $\Gamma=(X,E),$ where

$$X = \text{finite set (of vertices)}$$
 (1.1)

$$E = \text{set of (distinct) 2-element subsets of } X \ (= \text{edges of }) \ \Gamma.$$
 (1.2)

vertices x and $y \in X$ are adjacent if and only if $xy \in E$.

Example 1.1. Let Γ be a graph. $X = \{a, b, c, d\}, E = \{ab, ac, bc, bd\}.$

Set n = |X|, the order of Γ .

Pick a field K (= \mathbb{R} or \mathbb{C}). Then $\mathrm{Mat}_X(K)$ denotes the K algebra of all $n \times n$ matrices with entries in K. (rows and columns are indexed by X)

Adjacency matrix $A \in \operatorname{Mat}_X(K)$ is defined by

$$A_{xy} = \begin{cases} 1 & \text{if } xy \in E \\ 0 & \text{else} \end{cases}$$
 (1.3)

Example 1.2. Let a, b, c, d be labels of rows and columns. Then

$$A = b \begin{pmatrix} a & b & c & d \\ a & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ c & 1 & 1 & 0 & 0 \\ d & 0 & 1 & 0 & 0 \end{pmatrix}$$

The subalgebra M of $\mathrm{Mat}_X(K)$ generated by A is called the Bose-Mesner algebra of $\Gamma.$

Set $V = K^n$, the set of *n*-dimensional column vectors, the coordinates are indexed by X.

Let $\langle \ , \ \rangle$ denote the Hermitean inner product:

$$\langle u, v \rangle = u^{\top} \cdot v \quad (u, v \in V)$$

V with \langle , \rangle is the standard module of Γ .

M acts on V: For every $x \in X$, write

$$\hat{x} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

where 1 is at the x position.

Then

$$A\hat{x} = \sum_{y \in X, xy \in E} \hat{y}.$$

Since A is a real symmetrix matrix,

$$V = V_0 + V_1 + \dots + V_r \quad \text{ some } r \in \mathbb{Z}^{\geq 0},$$

the orthogonal direct sum of maximal A-eigenspaces.

Let $E_i \in \operatorname{Mat}_X(K)$ denote the orthogonal projection,

$$E_i: V \longrightarrow V_i$$
.

Then E_0, \ldots, E_r are the primitive idempotents of M.

$$M = \operatorname{Span}_K(E_0, \dots, E_r),$$

$$E_i E_j = \delta_{ij} E_i$$
 for all $i, j, E_0 + \dots + E_r = I$.

Let θ_i denote the eigenvalue of A for V_i in \mathbb{R} . Without loss of generality we may assume that

$$\theta_0 > \theta_1 > \dots > \theta_r$$
.

Let

 $m_i = \text{the multiplicity of } \theta_i = \text{dim} V_i = \text{rank} E_i.$

Set

$$\operatorname{Spec}(\Gamma) = \begin{pmatrix} \theta_0, & \theta_1, & \cdots, & \theta_r \\ m_0, & m_1, & \cdots, & m_r \end{pmatrix}.$$

Problem. What can we say about Γ when Spec(Γ) is given?

The following Lemma 1.1, is an example of Problem.

For every $x \in X$,

$$k(x) \equiv \text{ valency of } x \equiv \text{ degree of } x \equiv |\{y \mid y \in X, xy \in E\}|.$$

Definition 1.1. The graph Γ is regular of valency k if k = k(x) for every $x \in X$.

Lemma 1.1. With the above notation,

- $\begin{array}{l} (i) \ \theta_0 \leq \max\{k(x) \mid x \in X\} = k^{\max}. \\ (ii) \ \textit{If} \ \Gamma \ \textit{is regular of valency} \ k, \ then \ \theta_0 = k. \end{array}$

Proof.

(i) Without loss of generality we may assume that $\theta_0 > 0$, else done. Let $v := \sum_{x \in X} \alpha_x \hat{x}$ denote the eivenvector for $\theta_0.$

Pick $x \in X$ with $|\alpha_x|$ maximal. Then $|\alpha_x| \neq 0$.

Since $Av = \theta_0 v$,

$$\theta_0 \alpha_x = \sum_{y \in X, xy \in E} \alpha_y.$$

So,

$$\theta_0|\alpha_x| = |\theta_0\alpha_x| \leq \sum_{y \in X, xy \in E} |\alpha_y| \leq k(x)|\alpha_x| \leq k^{\max}|\alpha_x|.$$

(ii) All 1's vector $v = \sum_{x \in X} \hat{x}$ satisfies Av = kv.

Subconstituent Algebra

Let $x, y \in X$ and $\ell \in \mathbb{Z}^{\geq 0}$.

Definition 1.2. A path of length ℓ connecting x, y is a sequence

$$x=x_0,x_1,\dots,x_\ell=y,\quad x_i\in X,\ 0\leq i\leq \ell$$

such that $x_i x_{i+1} \in E$ for $0 \le i \le \ell - 1$.

Definition 1.3. The distance $\partial(x,y)$ is the length of a shortest path connecting x and y.

$$\partial(x,y) \in \mathbb{Z}^{\geq 0} \cup \{\infty\}.$$

Definition 1.4. The graph Γ is connected if and only if $\partial(x,y) < \infty$ for all $x,y \in X$.

From now on, assume that Γ is connected with $|X| \geq 2$.

Set

$$d_{\Gamma} = d = \max\{\partial(x,y) \mid x,y \in X\} \equiv \text{the diameter of } \Gamma.$$

Fix a 'base' vertex $x \in X$.

Definition 1.5.

$$d(x) =$$
the diameter with respect to $x = \max\{\partial(x,y) \mid y \in X\} \le d$.

Observe that

$$V = V_0^* + V_1^* + \dots + V_{d(x)}^* \quad \text{(orthogonal direct sum)},$$

where

$$V_i^* = \operatorname{Span}_K(\hat{y} \mid \partial(x, y) = i) \equiv V_i * (x)$$

and $V_i^* = V_i^*(x)$ is called the *i*-the subconstituent with respect to x.

Let $E_i^* = E_i^*(x)$ denote the orthogonal projection

$$E_i^*: V \longrightarrow V_i^*(x).$$

View $E_i^*(x) \in \operatorname{Mat}_X(K)$. So, $E_i^*(x)$ is diagonal with yy entry

$$(E_i^*(x))_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i \\ 0 & \text{else,} \end{cases} \quad \text{ for } y \in X.$$

Set

$$M^*=M^*(x)\equiv \operatorname{Span}_K(E_0^*(x),\dots,E_{d(x)}^*(x)).$$

Then $M^*(x)$ is a commutative subalgebra of $\mathrm{Mat}_X(K)$ and is calle the dual Bose-Mesner algebra with respect to x.

Definition 1.6 (Subconstituent Algebra). Let $\Gamma = (X, E), x, M, M^*(x)$ be as above. Let T = T(x) denote the subalgebra of $\operatorname{Mat}_X(K)$ generated by M and $M^*(x)$. T is the *subconstituent algebra* of Γ with respect to x.

Definition 1.7. A T-module is any subspace $W \subset V$ such that $aw \in W$ for all $a \in T$ and $w \in W$.

T-module W is *irreducible* if and only if $W \neq 0$ and W does not properly contain a nonzero T-module.

For any $a \in \operatorname{Mat}_X(K)$, let a^* denbote the conjugate transpose of a.

Observe that

$$\langle au, v \rangle = \langle u, a^*v \rangle$$
 for all $a \in \operatorname{Mat}_X(K)$, and for all $u, v \in V$.

Lemma 1.2. Let $\Gamma = (X, E)$, $x \in X$ and $T \equiv T(x)$ be as above.

- (i) If $a \in T$, then $a^* \in T$.
- (ii) For any T-module $W \subset V$,

$$W^{\perp} := \{ v \in V \mid \langle w, v \rangle = 0, \text{ for all } w \in W \}$$

 $is\ a\ T$ -module.

(iii) V decomposes as an orthogonal direct sum of irreducible T-modules.

Proof.

(i) It is becase T is generated by symmetric real matrices

$$A, E_0^*(x), E_1^*(x), \dots, E_{d(x)(x)}^*.$$

(ii) Pick $v \in W^{\perp}$ and $a \in T$, it suffices to show that $av \in W^{\perp}$. For all $w \in W$,

$$\langle w, av \rangle = \langle a^*w, v \rangle = 0$$

as $a^* \in T$.

(iii) This is proved by the induction on the dimension of T-modules. If W is an irreducible T-module of V, then

$$V = W + W^{\perp}$$
 (orthogonal direct sum).

Problem. What does the structure of the T(x)-module tell us about Γ ?

Study those Γ whose modules take 'simple' form. The Γ 's involved are highly regular.

Remark.

- 1. The subconstituent algebra T is semisimple as the left regular representation of T is completely reducible. See Curtis-Reiner 25.2 (Charles W. Curtis, 2006).
- 2. The inner product $\langle a, b \rangle_T = \operatorname{tr}(a^{\top} \bar{b})$ is nondegenerate on T.

- 3. In general,
 - $T \colon \text{Semisimple}$ and Artinian $\Leftrightarrow T \colon \text{Artinian with } J(T) = 0$
 - $\Leftarrow T :$ Artinian with nonzero nilpotent element
 - $\Leftarrow T \subset \operatorname{Mat}_X(K) \text{ such that for all } a \in T \text{ is normal.}$

Chapter 2

Perron-Frobenius Theorem

Friday, January 22, 1993

In this lecture we use the Perron Frobenius theory of nonnegative matrices to obtain information on eigenvalues of a graph.

Let $K = \mathbb{R}$. For $n \in \mathbb{Z}^{>0}$, pick a symmetrix matrix $C \in \text{Mat}_n(\mathbb{R})$.

Definition 2.1. The matrix C is reducible if and only if there is a bipartition $\{1, 2, ..., n\} = X^+ \cup X^-$ (disjoint union of nonempty sets) such that $C_{ij} = 0$ for all $i \in X^+$, and for all $j \in X^-$, and for all $j \in X^+$, i.e.,

$$C \sim \begin{pmatrix} * & O \\ O & * \end{pmatrix}$$
.

Definition 2.2. The matrix C is bipartite if and only if there is a bipartition $\{1, 2, ..., n\} = X^+ \cup X^-$ (disjoint union of nonempty sets) such that $C_{ij} = 0$ for all $i, j \in X^+$, and for all $i, j \in X^-$, i.e.,

$$C \sim \begin{pmatrix} O & * \\ * & O \end{pmatrix}$$
.

Note.

1. If C is bipatite, for every eigenvalue θ of C, $-\theta$ is an eigenvalue of C such that $\operatorname{mult}(\theta) = \operatorname{mult}(-\theta)$.

Indeed, let $C = \begin{pmatrix} O & A \\ B & O \end{pmatrix}$,

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \theta \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = -\theta \begin{pmatrix} x \\ -y \end{pmatrix},$$

where $Ay = \theta x$ and $Bx = \theta y$.

- 2. If C is bipartite, C^2 is reducible.
- 3. The matrix C is irreducible and C^2 is reducible, if $C_{ij} \geq 0$ for all i, j and C is reducible. (Exercise)

Remark. Note 1. Even if C is not symmetric

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \theta \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} O & A \\ B & O \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = -\theta \begin{pmatrix} x \\ -y \end{pmatrix}$$

holds. So the geometrix multiplicities coincide. How about the algebraic multiplicities?

Note 3. Set $x \sim y$ if and only if $C_{xy} > 0$. So the graph may have loops. Then

$$(C^2)_{xy} > 0 \Leftrightarrow \text{ if there exists } z \in X \text{ such that } x \sim z \sim y.$$

Note that C is irreducible if and only if $\Gamma(C)$ is connected. Let

$$X^{+} = \{ y \mid \text{there is a path of even length from } x \text{ to } y \}$$
 (2.1)

$$X^{-} = \{y \mid \text{there is no path of even length from } x \text{ to } y\} \neq \emptyset.$$
 (2.2)

If there is an edge $y \sim z$ in X^+ and $w \in X^-$. Then there would be a path from x to y of even length. So $e(X^+, X^+) = e(X^-, X^-) = 0$..

Theorem 2.1 (Perron-Frobenius). Given a matrix C in $\operatorname{Mat}_n(\mathbb{R})$ such that

- (a) C is symmetric.
- (b) C is irreducible.
- (c) $C_{ij} \geq 0$ for all i, j.

Let θ_0 be the maximal eigenvalue of C with eigenspace $V_0 \subseteq \mathbb{R}^n$, and let θ_r be the maximal eigenvalue of C with eigenspace $V_r \subseteq \mathbb{R}^n$. Then the following hold.

$$(i) \ \textit{Suppose} \ 0 \neq v = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in V_0. \ \textit{Then} \ \alpha_0 > 0 \ \textit{for all} \ i, \ \textit{or} \ \alpha_i < 0 \ \textit{for all} \ i.$$

- $(ii) \dim V_0 = 1.$
- (iii) $\theta_r \geq -\theta_0$.
- (iv) $\theta_r = \theta_0$ if and only if C is bipartite.

First, we prove the following lemma.

Lemma 2.1. Let $\langle \ , \ \rangle$ be the dot product in $V = \mathbb{R}^n$. Pick a symmetric matrix $B \in \operatorname{Mat}_n(\mathbb{R})$. Suppose all eigenvalues of B are nonnegative. (i.e., B is positive semidefinite.) Then there exist vectors $v_1, v_2, \ldots, v_n \in V$ such that $B_{ij} = \langle v_i, v_j \rangle$ for $(1 \leq i, j \leq n)$.

Proof. By elementary linear algebra, there exists an orthonormal basis w_1, w_2, \ldots, w_n of V consisting of eigenvectors of B. Set the i-th column of P is w_i and $D = \operatorname{diag}(\theta_1, \ldots, \theta_n)$. Then $P^\top P = I$ and BP = PD.

Hence,

$$B = PDP^{-1} = PDP^{\top} = QQ^{\top},$$

where

$$Q = P \cdot \operatorname{diag}(\sqrt{\theta_1}, \sqrt{\theta_2}, \dots, \sqrt{\theta_n}) \in \operatorname{Mat}_n(\mathbb{R}).$$

Now, let v_i be the i-th column of $Q^\top.$ Then

$$B_{ij} = v_i^\top \cdot v_j^- = \langle v_i, v_j \rangle.$$

Now we start the proof of Theorem 2.1.

Proof of Theorem 2.1(i)

Let \langle , \rangle denote the dot product on $V = \mathbb{R}^n$. Set

$$B = \theta I - C \tag{2.3}$$

= symmetric matrix with eigenvalues
$$\theta_0 - \theta_i \ge 0$$
 (2.4)

$$= (\langle v_i, v_j \rangle)_{1 < i, j < n} \tag{2.5}$$

with the same $v_1, \dots, v_n \in V$ by Lemma 2.1.

Observe: $\sum_{i=1}^{n} \alpha_i v_i = 0$.

Pf.

$$\|\sum_{i=1}^{n} \alpha_i v_i\|^2 = \langle \sum_{i=1}^{n} \alpha_i v_i, \sum_{i=1}^{n} \alpha_i v_i \rangle$$
 (2.6)

$$= \begin{pmatrix} \alpha_1 & \dots & \alpha_n \end{pmatrix} B \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \tag{2.7}$$

$$= v^{\top} B v \tag{2.8}$$

$$=0, (2.9)$$

since $Bv = (\theta_0 I - C)v = 0$.

Now set

s =the number of indicesi, where $\alpha_i > 0$.

Replacing v by -v if necessary, without loss of generality we may assume that $s \ge 1$. We want to show s = n.

Assume s < n. Without loss of generality, we may assume that $\alpha_i > 0$ for $1 \le s \le s$ and $\alpha_i = 0$ for $s+1 \le i \le n$. Set

$$\rho = \alpha_1 v_1 + \dots + \alpha_s v_s = -\alpha_{s+1} v_{s+1} - \dots - \alpha_n v_n.$$

Then, for $i = 1, \dots, s$,

$$\langle v_i, \rho \rangle = \sum_{j=s+1}^n -\alpha_j \langle v_i, v_j \rangle \quad (\langle v_i, v_j \rangle = B_{ij}, B = \theta_0 I - C) \tag{2.10}$$

$$= \sum_{j=s+1}^{n} (-\alpha_{ij})(-C_{ij})$$
 (2.11)

$$\leq 0. \tag{2.12}$$

Hence

$$0 \leq \langle \rho, \rho \rangle = \sum_{i=1}^{s} \alpha_i \langle v_i, \rho \rangle \leq 0,$$

as $\alpha>0$ and $\langle v_i,\rho\rangle\leq 0$. Thus, we have $\langle ,\rho,\rho\rangle=0$ and $\rho=0$. For $j=s+1,\dots,n,$

$$0 = \langle \rho, v_j \rangle = \sum_{i=1}^s \alpha_i \langle v_i, v_j \rangle \le 0,$$

as $\langle v_i, v_j \rangle = -C_{ij}$.

Therefore,

$$0 = \langle v_i, v_j \rangle = -C_{ij} \text{ for } 1 \leq i, \leq s, \; s+1 \leq j \leq n.$$

Since C is symmetric,

$$C = \begin{pmatrix} * & O \\ O & * \end{pmatrix}$$

Thus C is reducible, which is not the case. Hence s=n.

Proof of Theorem 2.1 (ii).

Suppose dim $V_0 \ge 2$. Then,

$$\dim \left(V_0 \cap \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{\perp} \right) \geq 1.$$

So, there is a vector

$$0 \neq v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in V_0$$

with $\alpha_1 = 0$. This contradicts 1.

Now pick

$$0 \neq w = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \in V_r.$$

Proof of Theorem 2.1 (iii).

Suppose $\theta_r < -\theta_0$. Since the eigenvalues of C^2 are the squares of those of C, θ_r^2 is the maximal eigenvalue of C^2 .

Also we have $C^2w = \theta_r^2w$.

Observe that C^2 is irreducible. (As otherwise, C is bipartite by Note 3, and we must have $\theta_r = -\theta_0$.) Therefore, $\beta_i > 0$ for all i or $\beta_i < 0$ for all i. We have

$$\langle v, w \rangle = \sum_{i=1}^{n} \alpha_i \beta_i \neq 0.$$

This is a contradiction, as $V_0 \perp V_r$.

Proof of Theorem 2.1 (iv)

 \Rightarrow : Let $\theta_r = -\theta_0$. Then $\theta = \theta_1^2 = \theta_0^2$ is the maximal eigenvalue of C^2 , and v and w are linearly independent eigenvalues for θ for C^2 . Hence, for C^2 , mult $(\theta) \geq 2$.

Thus by 2, C^2 must be reducible. Therefore, C is bipartite by Note 3.

 \Leftarrow : This is Note 1. \square

Let $\Gamma = (X, E)$ be any graph.

Definition 2.3. Γ is said to be *bipartite* if the adjacency matrix A is bipartite. That is, X can be written as a disjoint union of X^+ and X^- such that X^+ , X^- contain no edges of Γ .

Corollary 2.1. For any (connected) graph Γ with

$$\operatorname{Spec}(\Gamma) = \begin{pmatrix} \theta_0 & \theta_1 & \cdots & \theta_r \\ m_1 & m_1 & \cdots & m_r \end{pmatrix} \ \ \text{with} \ \ \theta_0 > \theta_1 > \cdots > \theta_r.$$

Let V_i be the eigenspace of θ_i . Then the following holds.

- 1. Suppose $0 \neq v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in V_0 \in \mathbb{R}^n$. Then $\alpha_i > 0$ for all i or $\alpha_i < 0$ for all i
- 2. $m_0 = 1$.
- 3. $\theta_r \geq -\theta_0$ if and only if Γ is bipartite. In this case,

$$-\theta_i = \theta_{r-i} \ and \ m_i = m_{r-i} \quad (0 \leq i \leq r)$$

Proof. This is a direct consequences of Theorem 2.1 and Note 3. \Box

Chapter 3

Cayley Graphs

Monday, January 25, 1993

Given graphs $\Gamma = (X, E)$ and $\Gamma' = (X', E')$.

Definition 3.1. A map $\sigma: X \to X'$ is an $isomorphism \setminus index\{isomorphism of graphs whenever;$

- i. σ is one-to-one and onto,
- ii. $xy \in E$ if and only if $\sigma x \sigma y \in E'$ for all $x, y \in X$.

We do not distinguish between isomorphic graphs.

Definition 3.2. Suppose $\Gamma = \Gamma'$. Above isomorphism σ is called an *automorphism* of Γ . Then set $\operatorname{Aut}(\Gamma)$ of all automorphisms of Γ becomes a finite group under composition.

Definition 3.3. If $Aut(\Gamma)$ acts transitive on X, Γ is called *vertex transitive*.

Example 3.1. A Cayley graphs:

Definition 3.4 (Cayley Graphs). Let G be any finite group, and Δ any generating set for G such that $1_G \notin \Delta$ and $g \in \Delta \to g^{-1} \in \Delta$. Then Cayley graph $\Gamma = \Gamma(G, \Delta)$ is defined on the vetex set X = G with the edge set E define by the following.

$$E = \{(h_1, h_2) \mid h_1, h_2 \in G, h_1^{-1}h_2 \in \Delta\} = \{(h, hg) \mid h \in G, g \in \Delta\}$$

Example 3.2. $G = \langle a \mid a^6 = 1 \rangle, \ \Delta = \{a, a^{-1}\}.$

Example 3.3. $G = \langle a \mid a^6 = 1 \rangle, \Delta = \{a, a^{-1}, a^2, a^{-2}\}.$

Example 3.4. $G = \langle a, b \mid a^6 = 1, b^2, ab = ba \rangle, \ \Delta = \{a, a^{-1}, b\}.$

Remark. $\operatorname{Aut}(\Gamma) \simeq D_6 \times \mathbb{Z}_2$ contains two regular subgroups isomorphic to D_6 and $\mathbb{Z}_5 \times \mathbb{Z}_2$ and Γ is obtained as Cayley graphs in two ways.

Cayley graphs are vertex transitive, indeed.

Theorem 3.1. The following hold.

(i) For any Cayley graph $\Gamma = \Gamma(G, \Delta)$, the map

$$G \to \operatorname{Aut}(\Gamma) \ (g \mapsto \hat{g})$$

is an injective homomorphism of groups, where

$$\hat{g}(x) = gx$$
 for all $g \in G$ and for all $x \in X(=G)$.

Also, the image \hat{G} is regular on X. i.e., the image \hat{G} acts transitively on X with trivial vertex stabilizers.

(ii) For any graph $\Gamma = (X, E)$, suppose there exists a subgroup $G \subseteq \operatorname{Aut}(\Gamma)$ that is regular on X. Pick $x \in X$, and let

$$\Delta = \{ g \in G \mid \langle x, g(x) \in E \}.$$

Then $1 \notin \Delta$, $g \in \Delta \to g^{-1} \in \Delta$, and Δ generates G. Moreover, $\Gamma \simeq \Gamma(G, \Delta)$.

Proof. (i) Let $g \in G$. We want to show that $\hat{g} \in \operatorname{Aut}(\Gamma)$. Let $h_1, h_2 \in X = G$. Then,

$$(h_1, h_2) \in E \to h_1^{-1} h_2 \in \Delta \tag{3.1}$$

$$\to (gh_1)^{-1}(gh_2) \in \Delta \tag{3.2}$$

$$\rightarrow (gh_1,gh_2) \in E \tag{3.3}$$

$$\to (\hat{g}(h_1), \hat{g}(h_2)) \in E. \tag{3.4}$$

Hence, $\hat{g} \in \text{Aut}(\Gamma)$.

Observe: $g \mapsto \hat{g}$ is a homomorphism of groups:

$$\hat{1}_G = 1$$
, $\widehat{g_1g_2} = \widehat{g_1}\widehat{g_2}$.

Observe: $g \mapsto \hat{g}$ is one-to-one:

$$\widehat{g_1} = \widehat{g_2} \to g_1 = \widehat{g_1}(1_G) = \widehat{g_2}(1_G) = g_2.$$

Observe: \hat{G} is regular on X: Clear by construction.

(ii) $1_G \notin \Delta$: Since Γ has not loops, $(x, 1_G x) \notin E$.

 $g \in \Delta \to g^{-1} \in \Delta$:

$$a \in \Delta \to (x, g(x)) \in E \to E \ni (g^{-1}(x), g^{-1}(g(x))) = (g^{-1}(x), x).$$

 Δ generates G: Suppose $\langle \Delta \subsetneq G$. Let $\hat{X} = \{g(x) \mid g \in \langle \Delta \rangle\} \subsetneq X$. $(\hat{X} \subsetneq X \text{ as } G \text{ acts regularly on } X.)$

Since Γ is connected, there exists $y \in \hat{X}$ and $z \in X$ \hat{X} with $yz \in E$.

Let
$$y = g(x), g \in \langle \Delta \rangle, z \in h(x), h \in G \langle \Delta \rangle$$
. Then

$$(y,z) = (q(x),h(x)) \in E \to (x,q^{-1}h(x)) \in E \to q^{-1}h \in \langle \Delta \rangle \to h \in \langle \Delta \rangle.$$

This is a contradition. Therefore, Δ generates G.

Let $\Gamma' = (X', E')$ denote $\Gamma(G, \Delta)$. We shall show that

$$\theta: X' \to X \ (g \mapsto g(x))$$

is an isomorphism of graphs.

 θ is one-to-one: For $h_1, h_2 \in X' = G$,

$$\theta(h_1) = \theta(h_2) \to h_1(x) = h_2(x) \to h_2^{-1}h_1(x) = x \to h_2^{-1}h_1 \in \operatorname{Stab}_G(x) = \{1_G\} \to h_1 = h_2.$$

$$(\operatorname{Stab}_G = \{g \in G \mid g(x) = x\}.)$$

 θ is onto: Since G is transitive,

$$X = \{g(x) \mid g \in G\} = \theta(X') = \theta(G).$$

 θ respects adjacency: For $h_1, h_2 \in X' = G$,

$$(h_1,h_2)\in E' \leftrightarrow h_1^{-1}h_2\in \Delta \leftrightarrow (x,h_1^{-1}h_2(x))\in E \leftrightarrow (h_1(x),h_2(x))\in E \leftrightarrow (\theta(h_1),\theta(h_2))\in E.$$

Therefore θ is an isomorphism between graphs $\Gamma(G, \Delta)$ and $\Gamma(X, E)$.

How to compute the eigenvalues of the Cayley graph of and abelian group.

Let G be any finite abelian group. Let \mathbb{C}^* be the multiplicative group on \mathbb{C} $\{0\}$.

Definition 3.5. A (linear) G-character is any group homomorphism $\theta: G \to \mathbb{C}^*$.

Example 3.5. $G = \langle a \mid a^3 = 1 \rangle$ has three characters, $\theta_0, \theta_1, \theta_2$.

$$\begin{array}{c|cccc} \theta_i(a^j) & 1 & a & a^2 \\ \hline \theta_0 & 1 & 1 & 1 \\ \theta_1 & 1 & \omega & \omega^2 \\ \theta_2 & 1 & \omega^2 & \omega \end{array}, \quad \text{with } \omega = \frac{-1 + \sqrt{-3}}{2}.$$

Here ω is a primitive cube root pf q in \mathbb{C}^* , i.e., $1 + \omega + \omega^2 = 0$.

For arbitrary group G, let X(G) be the set of all characters of G.

Observe: For $\theta_1, \theta_2 \in X(G)$, one can define product $\ _1 \ _2$:

$$\theta_1\theta_2(g) = \theta_1(g)\theta_2(g)$$
 for all $g \in G$.

Then $\theta_1\theta_2 \in X(G)$.

Observe: X(G) with this product is an (abelian) group.

Lemma 3.1. The groups G and X(G) are isomorphic for all finite abelian groups G.

Proof. G is a direct sum of cyclic groups;

$$G = G_1 \oplus G_2 \oplus \cdots \oplus G_m, \quad \text{where} \ \ G_i = \langle a_i \mid a_i^{d_i} = 1 \rangle \quad (1 \leq i \leq m).$$

Pick any alement ω_i of order d_i in \mathbb{C}^* , i.e., a primitive d_i -the root of 1. Define

$$\theta_i:G\to\mathbb{C}^*\quad (a_1^{\varepsilon_1}\cdots a_m^{\varepsilon_m}\mapsto \omega_i^{\varepsilon_i}\quad \text{where }\ 0\le \varepsilon_i< d_i, 1\le i\le m).$$

Then $\theta_i \in X(G)$. (Exercise)

Claim: There exists an isomorphism of groups $G \to X(G)$ that sends a_i to θ_i .

Observe: $\theta_i^{d_i} = 1$. For every $g = a_1^{\varepsilon_1} \cdots a_m^{\varepsilon_m} \in G$,

$$\theta_i^{d_i}(g) = (\theta_i(g))^{d_i} = (\omega_i^{\varepsilon_i})^{d_i} = (\omega_i^{d_i})^{\varepsilon_i} = 1.$$

Observe: If $\theta_1^{\varepsilon_1}\theta_2^{\varepsilon_2}\cdots\theta_m^{\varepsilon_m}=1$ for some $0\leq \varepsilon_i < d_i, 1\leq i\leq m$. Then $\varepsilon_1=\varepsilon_2=\cdots=\varepsilon_m=0$.

 $\begin{array}{l} \textit{Pf. } 1 = \theta_1^{\varepsilon_1} \theta_2^{\varepsilon_2} \cdots \theta_m^{\varepsilon_m}(a_i) = \omega_i^{\varepsilon_i}, \text{ Since } \omega_i \text{ is a primitive } d_i\text{-th root of } 1, \, \varepsilon_i = 0 \text{ for } 1 < i < m. \end{array}$

Observe: $\theta_1, \dots, \theta_m$ generate X(G). Pick $\theta \in X(G)$. Since $a_i^{d_i} = 1$, $1 = \theta(a_i^{d_i}) = \theta(a_i)^{d_i}$.

Hence $\theta(a_i) = \omega^{\varepsilon_i}$ for some ε_i with $0 \le \varepsilon_i < d_i$.

Now $\theta = \theta_1^{\varepsilon_1} \cdots \theta_m^{\varepsilon_m}$, since these are both equal to $\omega_i^{\varepsilon_i}$ at a_i for $1 \le i \le m$.

Therefore,

$$G \to X(G) \quad (a_i \mapsto \theta_i)$$

is an isomorphism of groups.

Note. The correspondence above is clearly a group homomorphism.

Chapter 4

Examples

Wednesday, January 27, 1993

Theorem 4.1. Given a Cayley graph $\Gamma = \Gamma(G, \Delta)$. View the standard module $V \equiv \mathbb{C}G$ (the group algebra), so

$$\left\langle \sum_{g \in G} \alpha_g g, \; \sum_{g \in G} \beta_g g \right\rangle = \sum_{g \in G} \alpha_g \overline{\beta_g}, \quad \text{with } \alpha_g, \beta_g \in \mathbb{C}.$$

For any $\theta \in X(G)$, write

$$\hat{\theta} = \sum_{g \in G} \theta(g^{-1})g.$$

Then the following hold.

- $\begin{array}{l} (i)\ \langle \hat{\theta_1}, \hat{\theta_2} \rangle = |G|\ \ \emph{if}\ \theta_1 = \theta_2\ \ \emph{and}\ \ 0\ \ \emph{othewise}\ \ \emph{for}\ \ \theta_1, \theta_2 \in X(G). \ \ \emph{In particular}, \\ \{\hat{\theta}\ |\ \theta \in X(G)\}\ \ \emph{forms}\ \ a\ \ \emph{basis}\ \ \emph{for}\ \ V. \end{array}$
- (ii) $A\hat{\theta} = \Delta_{\theta}\hat{\theta}$ for $\theta \in X(G)$, where A is the adjacency matrix and

$$\Delta_{\theta} = \sum_{g \in \Delta} \theta(g).$$

In particular, the eigenvalues of Γ are precisely

$$\Delta_{\theta} \mid \theta \in X(G) \}.$$

Proof.

(i) Claim: For every $\theta \in X(G)$, let

$$s:=\sum_{g\in G}\theta(g^{-1})=\begin{cases} |G| & \text{if } \theta=1\\ 0 & \text{if } \theta\neq 1. \end{cases}$$

Pf. Clear if $\theta = 1$.

Let $\theta \neq 1$. Then $\theta(h) \neq 1$ for some $h \in G$.

$$s\cdot\theta(h) = \left(\sum_{g\in G}\theta(g^{-1})\right)\theta(h) = \sum_{g\in G}\theta(g^{-1}h) = \sum_{g'\in G}\theta(g'^{-1}) = s.$$

Since $\theta(h) \neq 1$, s = 0.

Claim. $\theta(g^{-1}) = \overline{\theta(g)}$ for every $\theta \in X(G)$ and every $g \in G$.

Since $\theta(g) \in \mathbb{C}$ is a root of 1,

$$|\theta(g)|^2 = \theta(g)\overline{\theta(g)} = 1.$$

On the other hand, since θ is a homomorphism,

$$\theta(g)\theta(g^{-1}) = \theta(1) = 1.$$

Hence $\theta(g^1) = \overline{\theta(g)}$.

Now

$$\langle \widehat{\theta_1}, \widehat{\theta_2} \rangle = \sum_{g \in G} \theta_1(g^{-1}) \overline{\theta_2(g^{-1})}$$

$$\tag{4.1}$$

$$= \sum_{g \in G} \theta_1(g^{-1})\theta_2(g)$$

$$= \sum_{g \in G} \theta_1\theta_2^{-1}(g^{-1})$$
(4.2)

$$=\sum_{g\in C}\theta_1\theta_2^{-1}(g^{-1})\tag{4.3}$$

$$= \begin{cases} |G| & \text{if} \quad \theta_1 \theta_2^{-1} = 1\\ 0 & \text{if} \quad \theta_1 \theta_2^{-1} \neq 1. \end{cases}$$
 (4.4)

Since |G|=|X(G)| by Lemma 3.1, and $\widehat{\theta_i}$'s are orthogonal nonzero elements in V, thet form a basis of V.

(ii) Let
$$\Delta = \{g_1, \dots, g_r\}$$
. Then

$$A\hat{\theta} = A\left(\sum_{g \in G} \theta(g^{-1}g)\right) \tag{4.5}$$

$$= \sum_{g \in G} \theta(g^{-1})(gg_1 + \dots + gg_r) \quad (\Gamma(g) = \{gg_1, \dots, gg_r\}) \tag{4.6}$$

$$=\sum_{i=1}^r \left(\sum_{g\in G} \theta(g^{-1})(gg_i)\right) \tag{4.7}$$

$$= \sum_{i=1}^{r} \left(\sum_{g \in G} \theta(g_i g_i^{-1} g^{-1})(g g_i) \right) \tag{4.8}$$

$$=\sum_{i=1}^r \left(\sum_{g\in G} \theta(g_i)\theta((gg_i)^{-1})gg_i\right) \tag{4.9}$$

$$= \sum_{i=1}^{r} \theta(g_i) \sum_{h \in G} \theta(h^{-1})h \tag{4.10}$$

$$= \Delta_{\theta} \cdot \hat{\theta}. \tag{4.11}$$

Since $\{\hat{\theta} \mid \theta \in X(G)\}$ forms a basis, the eigenvalues of Γ are precisely,

$$\{\Delta_{\theta} \mid \theta \in X(G)\}.$$

This completes the proof.

Example 4.1. Let $G = \langle a \mid a^6 = 1 \rangle$, and $\Delta = \{a, a^{-1}\}$. Pick a primitive 6-th root of 1, ω . Then

$$X(G) = \{\theta^i \mid 0 \leq i \leq 5\} \quad \text{such that} \quad \theta(a) = \omega, \ \omega + \omega^{-1} = 1.$$

$$\begin{array}{c|cccc} \varphi \in X(G) & \varphi(a) & \Delta_{\varphi} = \theta(a) + \theta(a)^{-1} \\ \hline 1 & 1 & 2 \\ \theta & \omega & \omega + \omega^{-1} = 1 \\ \theta^2 & \omega^2 & -1 \\ \theta^3 & \omega^3 = -1 & -2 \\ \theta^4 & \omega^4 & -1 \\ \theta^5 & \omega^5 & 1 \\ \hline \end{array}$$

$$\operatorname{Spec}(\Gamma) = \begin{pmatrix} 2 & 1 & -1 & -2 \\ 1 & 2 & 2 & 1 \end{pmatrix}.$$

Example 4.2. D-cube, H(D, 2). Let

$$X = \{(a_1, \dots, a_D) \mid a_i \in \{1, -1\}, \ 1 \le i \le D\},\$$

 $E = \{xy \mid x, y \in X, \ x, y \colon \text{different in exactly one coordinate}\}.$

Also H(D,2) is a Cayley graph $\Gamma(G,\Delta)$, where

$$G=G_1\oplus G_2\oplus \cdots \oplus G_D,$$

$$G_i = \langle a_i \mid a_i^2 = 1 \rangle, \quad \Delta = \{a_1, \dots, a_D\}.$$

Homework: The spectrum of H(D, 2) is

$$\begin{pmatrix} \theta_0 & \theta_1 & \cdots & \theta_D \\ m_0 & m_1 & \cdots & m_D \end{pmatrix},$$

where

$$\theta_i = D - 2i \quad (0 \leq i \leq D), \quad m_i = \binom{D}{i}.$$

Remark. Let $\theta \in X(G)$. Then $\theta : X \to \{\pm 1\}$. If

$$\nu(\theta) = |\{i \mid \theta(a_i) = -1\}|,$$

then $\Delta_{\theta} = D - 2i.$ Since there are $\binom{D}{i}$ such $\theta,$ we have te assertion.

We want to compute the subconstituent algebra for H(D, 2). First, we make a few observations about arbitrary graphs.

Let $\Gamma=(X,E)$ be any graph, A, the adjacemcy matrix of Γ , and V, the standard module over $K=\mathbb{C}$.

Fix a base $x \in X$. Write $E_i^* = E_i^*(x)$, and

$$T \equiv T(x) =$$
the algebra generated by A, E_0^*, E_1^*, \dots

Definition 4.1. Let W be any orreducible T-module ($\subseteq V$). Then the endpoint $r \equiv r(W)$ satisfied

$$r = \min\{i \mid E_i^* W \neq 0\}.$$

The diameter d = d(W) satisfied

$$d = |\{i \mid E_i^*W \neq 0\}| - 1.$$

Lemma 4.1. With the above notation, let W be an irreducible T-module. Then

- $\begin{array}{l} (i) \ E_i^*AE_j^* = 0 \ \ if \ |i-j| = 1, \quad \neq 0 \ \ if \ |i-j| = 1, \quad 0 \leq i, j \leq d(x). \\ (ii) \ AE_j^*W \subseteq E_{j-1}^*W + E_j^*W + E_{j+1}^*W, \ 0 \leq j \leq d(x). \ \ (E_i^*W = 0 \ \ if \ i < j \ \ or \end{array}$

Proof.

(i) Pick $y \in X$ with $\partial(x,y) = j$. We want to find $E_i^* A E_j^* \hat{y}$. Note,

$$E_j^* \hat{y} = \begin{cases} 0 & \text{if } \partial(x.y) \neq j \\ \hat{y} & \text{if } \partial(x,y) = j. \end{cases}.$$

$$E_i^* A E_j^* \hat{y} = E_i^* A \hat{y} \tag{4.12}$$

$$=E_i^* \sum_{z \in X, yz \in E} \hat{z} \tag{4.13}$$

$$= \sum_{z \in X, yz \in E, \partial(x,z)=i} \hat{z} \qquad (*)$$

$$(4.14)$$

$$= 0$$
 if $|i - j| > 1$ by triangle inequality. (4.15)

If |i-j|=1, there exist $y,y'\in X$ such that $\partial(x,y)=j,\ \partial(x,y')=i,\ yy'\in E$ by connectivity of Γ . Hence (*) contains $\widehat{y'}$ and $* \neq 0$

(ii) We have

$$AE_{j}^{*}W = \left(\sum_{i=0}^{d(x)} E_{i}^{*}\right) AE_{j}^{*}W \tag{4.16}$$

$$= E_{j-1}^* A E_j^* W + E_j^* A E_j^* W + E_{j+1}^* A E_j^* W$$
 (4.17)

$$\subseteq E_{i-1}^*W + E_i^*W + E_{i+1}^*W.$$
 (4.18)

(iii) Suppose $E_j^*W = 0$ for some j $(r \le j \le r + d)$. Then r < j by the definition of r. Set

$$\tilde{W} = E_r^*W + E_{r+1}^*W + \dots + E_{j-1}^*W.$$

Observe $0 \subsetneq \tilde{W} \subsetneq W$. Also $A\tilde{W} \subseteq \tilde{W}$ by (ii) and $E_i^*\tilde{W} \subseteq \tilde{W}$ for every i by construction.

Thus $T\tilde{W}\subseteq \tilde{W},$ contradicting W beging irreducible.

Chapter 5

T-Modules of H(D, 2), I

Friday, January 29, 1993

Let $\Gamma=(X,E)$ be a graph, A the adjacency matrix, and V the standard module over $K=\mathbb{C}.$

Fix a base $x \in X$ and write $E_I^* \equiv E_i^*(x)$, and $T \equiv T(x)$.

Let W be an irreducible T-module with endpoint $r := \min\{i \mid E_i^*W \neq 0\}$ and diameter $d := |\{i \mid E_i^*W \neq 0\}| - 1$.

We have

$$E_i^*W \neq 0 \qquad \qquad r \leq i \leq r+d \qquad (5.1)$$

$$= 0 \qquad \qquad 0 \leq i < r \text{ or } r+d < i \leq d(x). \qquad (5.2)$$

Claim: $E_i^*AE_j^*W\neq 0$ if |i-j|=1 for $r\leq i,j\leq r+d.$ (See Lemma 4.1.)

Suppose $E_{j+1}^*AE_j^*W = 0$ for some j with $r \leq j < r + d$. Observe that

$$\tilde{W} = E_r^* W + \cdot E_i^* W$$

is T-invariant with

$$0 \subsetneq \tilde{W} \subsetneq W.$$

Becase $A\tilde{W}\subseteq \tilde{W}$ since $AE_j^*W\subseteq E_{j-1}^*W+E_j^*W,$

$$E_k^* \tilde{W} \subseteq \tilde{W}$$
 for all k ,

we have $T\tilde{W} \subseteq W$.

Suppose $E_{i-1}^*AE_i^*W = 0$ for some i with $r \le i < r+d$.

Similarly,

$$\tilde{W} = E_i^* W + \cdot E_{r+d}^* . W$$

is a T-module with $0 \subseteq \tilde{W} \subseteq W$.

Definition 5.1. Let Γ , E_i^* , and T be as above. Irreducible T-modules W and W' are isomorphic whenever there is an isomorphism $\sigma:W\to W'$ of vector spaces such that $a\sigma=\sigma a$ for all $a\in T$.

Recall that the standard module V is an orthogonal direct sum of irreducible T-modules $W_1 \oplus W_2 \oplus \cdots$. Given W in this list, the multiplicity of W in V is

$$|\{j \mid W_i \simeq W\}|.$$

Remark. It is known that the multiplicity does not depend on the decomposition.

Now assume that Γ is the *D*-cube, H(D,2) with $D \geq 1$. Vew

$$X = \{a_1 \cdots a_D \mid a_i \in \{1, -1\}, 1 \le i \le D\},\tag{5.3}$$

$$E = \{xy \mid x, y \in X, \ x, y \ \text{differ in exactly 1 coordinate.} \}. \tag{5.4}$$

Find T-modules.

Claim: H(D,2) is bipartite with a partition $X=X^+\cup X^-$, where

$$X^+ = \{a_1 \cdots a_D \in X \mid \prod a_i > 0\} \tag{5.5}$$

$$X^- = \{a_1 \cdots a_D \in X \mid \prod a_i < 0\} \tag{5.6}$$

Observe: for all $y, z \in X$,

 $\partial(y,z)=i\Leftrightarrow y,z$ differ in exactly in i coordinates with $0\leq i\leq D.$

Here, the diameter of H(D,2) = D = d for all $x \in X$.

Theorem 5.1. Let $\Gamma = H(D,2)$ be as above. Fix $x \in X$, and write $E_i^* = E_i^*(x)$, and T = T(x).

Let W be an irreducible T-module with endpoint r, and diameter d with $0 \le r \le r + d \le D$.

(i) W has a basis w_0, w_1, \dots, w_d with $w_i \in E_{i+r}^*W$ for $0 \le i \le d$. With respect to which the matrix representing A is

$$\begin{pmatrix} 0 & d & 0 & \cdots & 0 & 0 & 0 \\ 1 & 0 & d-1 & \cdots & 0 & 0 & 0 \\ 0 & 2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 3 & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 2 & 0 \\ 0 & 0 & 0 & \cdots & d-1 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & d & 0 \end{pmatrix}$$

- (ii) d= D 2r. In particular, $0 \le r \le D/2$.
- (iii) Let W' denote an irreducible T-module with endpoint r'. Then W and W' are isormorphic as T-modules if and only if r = r'.
- (iv) The multiplicity of the irreducible T-module with endpoint r is

$$\binom{D}{r} - \binom{D}{r-1} \quad \text{if } 1 \le r \le R/2,$$

and 1 if r = 0.

Proof. Recall that Γ is vertex transitive. It is a Cayley graph.

Hence without loss of generality, we may assume that $x = \overbrace{11 \cdots 1}^{D}$.

Notation: Set $\Omega = \{1, 2, ..., D\}$. For every subset $S \subseteq \Omega$, let

$$\hat{S} = a_1 \cdot a_d \in X \quad a_i = \begin{cases} -1 & \text{if } i \in S \\ 1 & \text{if } i \notin S. \end{cases}$$

In particular, emptyset = x and

$$|S| = i \Leftrightarrow \partial(x, \hat{S}) = i \Leftrightarrow \hat{S} \in E_i^* V.$$

For all $S, T \subseteq \Omega$, we say S covers T\$ if and only if $S \supseteq T$ and |S| = |T| + 1.

Observe that \hat{S}, \hat{T} are adjacent in Γ if and only if either T coverse S or S coverr T

Define the 'raising matrix'

$$R = \sum_{i=0}^{D} E_{i+1}^* A E_i^*.$$

Observe that

$$RE_i^*V \subseteq E_{i+1}^*V$$
 for $0 \le i \le D$, and $E_{D+1}^*V = 0$.

Indeed for any $S \subseteq \Omega$ with |S| = i,

$$R\hat{S} = RE_i^* \hat{S} \tag{5.7}$$

$$=E_{i+1}^* A \hat{S} \tag{5.8}$$

$$= \sum_{T_1 \subseteq \Omega, S \text{ covers } T_1} E_{i+1}^* \widehat{T}_1 + \sum_{T \subseteq \Omega, T \text{ covers } S} E_{i+1}^* \widehat{T}$$
 (5.9)

$$= \sum_{T \subseteq \Omega, T \text{ covers } S} E_{i+1}^* \hat{T}. \tag{5.10}$$

Define the 'lowering matrix'

$$L = \sum_{i=0}^{D} E_{i-1}^* A E_i^*.$$

Observe that

$$LE_i^*V\subseteq E_{i-1V}^* \ \ \text{for} \ \ 0\leq i\leq D, \ \ \text{and} \ E_{-1}^*V=0.$$

Indeed for any $S \subseteq \Omega$,

$$L\hat{S} = \sum_{T \subseteq \Omega, S \text{ covers } T} \hat{T}.$$

Observe that A = L + R.

For convenience, set

$$A^* = \sum_{i=0}^{D} (D - 2i) E_i^*.$$

Claim: The following hold.

- (a) $LR RL = A^*$.
- (b) $A * L LA^* = 2L$.
- (c) $A^*R RA^* = -2R$.

In particular Span (R, L, A^*) is a 'representation of Lie algebra $sl_2(\mathbb{C})$.

Remark (Lie Algebra sl2(C)).

$$sl_2(\mathbb{C}) = \{ X \mid Mat(\mathbb{C} \mid tr(X) = 0 \}.$$

For $X, Y \in sl_2(\mathbb{C})$, define a binary operation [X, Y] = XY - YX.

$$A^* \sim \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad L \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad R \sim \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then these satisfy the relations (a) - (c) above.

Proof of Claim. Apply both sides to \hat{S} $(S \subseteq \Omega)$. Say |S| = i. Proof of (a):

$$(LR - RL)\hat{S} = L \left(\sum_{\substack{T \subseteq \Omega, T \text{ covers } S \\ (D-i \text{ of them})}} \hat{T} \right) - R \left(\sum_{\substack{U \subseteq \Omega, S \text{ covers } U \\ (i \text{ of them})}} \hat{T} \right)$$

$$= (D-i)\hat{S} + \sum_{\substack{V \subseteq \Omega, |V| = i, |S \cap V| = i-1}} \hat{V} - \left(i\hat{S} + \sum_{\substack{V \subseteq \Omega, |V| = i, |S \cap V| = i-1}} \hat{V} \right)$$

$$(5.11)$$

$$= (D - 2i)\hat{S} \tag{5.13}$$

$$=A^*\hat{S}. (5.14)$$

Proof of (b):

$$\begin{split} (A^*L - LA^*)\hat{S} &= (D - 2(i-1))L\hat{S} - (D - 2i)L\hat{S} \quad (\text{since } L\hat{S} \in E_{i-1}^*V) \\ &= 2L\hat{S}. \end{split} \tag{5.15}$$

Proof of (c):

$$\begin{split} (A^*R - RA^*)\hat{S} &= (D - 2(i+1))R\hat{S} - (D - 2i)R\hat{S} \quad (\text{since } R\hat{S} \in E_{i+1}^*V) \\ &= 2R\hat{S}. \end{split} \tag{5.17}$$

Let W be an irreducible T-module with endpoint r and diameter d $(0 \le r \le r + d \le D)$.

Proof of (i) and (ii):

Pick $0 \neq w \in E_r^*W$.

Claim: LRw = (D-2r)w.

Pf.

$$LRw = (A^* + RL)w \quad \text{(by Claim } (a)) \tag{5.19}$$

$$= A^* w \quad (Lw \in E_{r-1}^* W = 0) \tag{5.20}$$

$$(D-2r)w. (5.21)$$

Define

$$w_i = \frac{1}{i!} R^i w \in E^*_{r+i} W \quad (0 \le i \le d).$$

Then,

$$Rw_i = (i+1)w_{i+1} \quad (0 \le i \le d) \tag{5.22}$$

$$Rw_d = 0$$
 (by definition of d) (5.23)

Claim: $Lw_0 = 0$ and

$$Lw_i=(D-2r-i+1)w_{i-1} \quad (1\leq i\leq d).$$

Pf. We prove by induction on i. The case i = 0 is trivial, and the case i = 1

follows from above claim. Let $i \geq 2$,

$$Lw_i = \frac{1}{i}LRw_{i-1} = \frac{1}{i}(A^* + RL)w_{i-1}$$
 (by Claim (a)) (5.24)

$$=\frac{1}{i}((D-2(r+i-1))w_{i-1}+(D-2r-(i-1)+1)Rw_{i-2} \quad (Rw_{i-2}=(i-1)w_{i-1}) \\ \qquad \qquad (5.26)$$

$$=\frac{1}{i}i(D-2r-i+1)w_{i-1} \tag{5.27}$$

$$= (D - 2r - i + 1)w_{i-1}. (5.28)$$

Claim: w_0, \dots, w_d is a basis for W.

 $P\!f\!.$ Let $W'=\operatorname{Span}\{w_0,\dots,w_d\}.$ Then W' is R and L invariant. So it is A=R+L invariant.

Also it is E_i^* -invariant for every i.

Hence W' is a T-module.

Since W is irreducible, W' = W.

As w_i 's are orthogonal, they are linearly independent. Note that $w_i \neq 0$ by the definition of d and Lemma 4.1 (iv).

Claim: d = D - 2r.

Pf. By (a),

$$0 = (LR - RL - A^*)w_d (5.29)$$

$$= 0 - (D - 2r - d + 1)Rw_{d-1} - (D - 2(r+d))w_d$$
 (5.30)

$$= -d(D - 2r - d + 1)w_d - (D - 2(r + d))w_d$$
 (5.31)

$$= (-dD + 2rd + d^2 - d - D + 2r + 2d)w_d (5.32)$$

$$= (d^2 + (2r - D + 1)d + 2r - D)w_d (5.33)$$

$$= (d + 2r - D)(d+1)w_d. (5.34)$$

Hence d = D - 2r.

Therefore, with respect to a bais $w_0, w_1, \dots, w_d, A = L + R, w_{-1} = w_{d+1} = 0$,

$$Lw_i = (d-i+1)w_{i-1}, \quad Rw_i = (i+1)w_{i+1}.$$

$$L = \begin{pmatrix} 0 & d & 0 & \cdots & 0 & 0 \\ 0 & 0 & d - 1 & \cdots & 0 & 0 \\ & & \cdots & & \cdots & & \\ & & & & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \qquad R = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 0 & \cdots & & \\ & & & & 0 & 1 \\ 0 & 0 & 0 & \cdots & d & 0 \end{pmatrix}.$$

This completes the proof of (i) and (ii).

T-Modules of H(D, 2), II

Monday, February 1, 1993

Proof of Theorem 5.1 Continued.

(iii) Let
$$r = r'$$
,

 w_0, \dots, w_d : a basis for W with $w_i \in E_i^*W$, and

 w_0', \dots, w_d' : a basis for W' with $w_i' \in E_i^*W'$.

Then
$$d = D - 2r = D - 2r' = d'$$
, and

$$\sigma:W\to W' \quad (w_i\mapsto w_i')$$

is an isomorphism of T-modules by (i).

If $r \neq r'$, then

$$d = D - 2r \neq D - 2r' = d',$$

hence, $\dim W \neq \dim W'$.

(iv) Let W_i be the irreducible T-module with endpoint i. Then

$$\dim E_r^*V = \binom{D}{r} = \sum_{i=0}^r \operatorname{mult}(W_i).$$

Hence, we have that

$$\operatorname{mult}(W_r) = \binom{D}{r} - \binom{D}{r-1}$$

by induction on r.

Theorem 6.1. Let $\Gamma = H(D,2)$ with $D \ge 1$. Fix a vertex $x \in X$ and write

$$E_i^*\equiv E_i^*(x), \quad T=T(x), and A^*\equiv \sum_{i=0}^D (D-2i)E_i^*.$$

Let W be an irreducible T-module with endpoint r with $0 \le r \le D/2$. Then,

(i) W has a basis

 $w_0^*, w_1^*, \dots, w_d^*$ (d = D - 2r), such that $w_i^* \in E_{i+r}W$ $(0 \le i \le d)$ with respect to which the matrix corresponding to A^* is

$$\begin{pmatrix} 0 & d & 0 & & & & \\ 1 & 0 & d-1 & & & & \\ 0 & 2 & 0 & & & & \\ & & \ddots & \ddots & \ddots & \\ & & & 0 & 2 & 0 \\ & & & d-1 & 0 & 1 \\ & & & 0 & d & 0 \end{pmatrix}.$$

 $\label{eq:continuous} \mbox{In particular, } / \mbox{ (ii) } E_i A^* E_j = 0 \mbox{ if } |i-j| \neq 1 \mbox{ for } 0 \leq i,j \leq D.$

Proof. We use the notation,

$$[\alpha, \beta] = \alpha\beta - \beta\alpha \ (= -[\beta, \alpha]).$$

Recall that

- (a) $[L, R] = A^*$,
- $(b) [A^*, L] = wL,$
- $(c) [A^*, R] = -2R,$

and A = L + R.

Write (a) - (c) in terms of A and A^* , we have,

$$[A, A^*] = [L, A^*] + [R, A^*] = 2(R - L).$$

$$\begin{cases} R + L &= A \\ R - L &= [A, A^*]/2. \end{cases}$$

Hence,

$$R = \frac{1}{4}(2A + [A, A^*]) \quad \text{and}$$
 (6.1)

$$R = \frac{1}{4}(2A + [A, A^*]) \quad \text{and}$$

$$L = \frac{1}{4}(2A - [A, A^*]).$$
(6.1)

Now (a), (b) become

$$A^2A^* - 2AA^*A + A^*A^2 - 4A^* = 0 (6.3)$$

$$A^{*2}A - 2A^*AA^* + AA^{*2} - 4A = 0 ag{6.4}$$

Pf. By (b),

$$2A - AA^* + A^*A = 4L \tag{6.5}$$

$$= 2[A^*, L] (6.6)$$

$$=A^*\frac{2A-[A,A^*]}{2}-\frac{2A-[A,A^*]}{2}A^* \hspace{1cm} (6.7)$$

So we have ((6.4))

$$A^{*2}A - 2A^*AA^* + AA^{*2} - 4A = 0.$$

By (a),

$$-16A^* = [2A + [A, A^*], 2A - [A, A^*]]$$
(6.8)

$$(2A + [A, A^*])(2A - [A, A^*]) - (2A - [A, A^*])(2A + [A, A^*])$$
 (6.9)

$$= [4A^{2} - 2A[A, A^{*}] + [A, A^{*}](2A) - [A, A^{*}]^{2}$$
(6.10)

$$-4A^{2} - 2A[A, A^{*}] + [A, A^{*}](2A) + [A, A^{*}]^{2}$$
(6.11)

$$= -4A^{2}A^{*} + 4AA^{*}A + 4AA^{*}A - 4A^{*}A^{2}. (6.12)$$

So,

$$A^2A^* - 2AA^*A + A^*A^2 - 4A^* = 0.$$

Claim: $E_i^*A^*E_j=0$ if $|i-j|\neq 1$ for $0\leq i,j\leq D.$

Pf. We have,

$$0 = E_i(A^2A^* - 2AA^*A + A^*A^2 - 4A^*)E_i$$
(6.13)

$$= E_i A^* E_i (\theta_i^2 - 2\theta_i \theta_i + \theta_i^2 - 4) \tag{6.14}$$

$$(AE_{i} = \theta_{i}E_{i}, E_{i}A = (AE_{i})^{\top} = (\theta_{i}E_{i})^{\top} = \theta_{i}E_{i})$$
 (6.15)

$$= E_i A^* E_i (\theta_i - \theta_i - 2)(\theta_i - \theta_i + 2) \tag{6.16}$$

$$=E_{i}A^{*}E_{j}(D-2i-(D-2j)-2)(D-2i-(D-2j)+2) \hspace{1.5cm} (6.17)$$

$$(\theta_k = D - 2k) \tag{6.18}$$

$$= E_i A^* E_j \cdot 4(i-j+1)(i-j-1) \tag{6.19}$$

and $i - j + 1 \neq 0$, $i - j - 1 \neq 0$. Hence, $E_i^* A^* E_j = 0$.

Now define "dual raising matrix",

$$R^* = \sum_{i=0}^D E_{i+1} A^* E_i.$$

So,

$$R^*E_iV\subseteq E_{i+1}V,\quad (0\leq i\leq D,\; E_{D+1}V=0).$$

Define "dual lowering matrix"

$$L^* = \sum_{i=0}^{D} E_{i-1} A^* E_i.$$

Then

$$L^*E_iV\subseteq E_{i-1}V\quad (0\leq i\leq D,\; E_{-1}V=0).$$

Observe that

$$A^* = \left(\sum_{i=0}^{D} E_i\right) A^* \left(\sum_{j=0}^{D} E_j\right) = L^* + R^*$$

by Claim 1.

Claim 2. We have $|(a)[L^*, R^*] = A$, $|(b)[A, L^*] = 2L^*$, $|(c)[A, R^*] = -2R^*$. Pf. (b)

$$AL^* - L^*A = \sum_{i=0}^{D} (AE_{i-1}A^*E_i - E_{i-1}A^*E_iA) \tag{6.20}$$

$$=\sum_{i=0}^{D}E_{i-1}A^{*}E_{i}(\theta_{i-1}-\theta_{i}) \tag{6.21}$$

$$(\theta_k = D - 2k, \quad \theta_{i-1} - \theta_i = 2I - 2(i-1) = 2 \tag{6.22}$$

$$=2L^*. (6.23)$$

(c) Similar.

Remark.

$$AR^* - R^*A = \sum_{i=0}^{D} (AE_{i+1}A^*E_i - E_{i+1}A^*E_iA)$$
 (6.24)

$$= \sum_{i=0}^{D} E_{i+1} A^* E_i (\theta_{i+1} - \theta_i)$$
 (6.25)

$$=2R^*. (6.26)$$

(a) We have, by (b), (c)

$$[A, A^*] = [A, L^*] + [A, R^*] = 2(L^* - R^*). \tag{6.27}$$

Since $A^* = L^* + R^*$,

$$R^* = \frac{2A^* + [A^*,A]}{4}, \quad L^* = \frac{2A^* - [A^* - A]}{4}.$$

Now (a) is seen to be equivalent to ((6.4)) upon evaluation. This proves Claim 2.

Remark.

$$[L^*, R^*] = \frac{1}{16}((2A^* - [A^*, A])(2A^* + [A^*, A]) - (2A^* + [A^*, A])(2A^* - [A, A^*]))$$

$$(6.28)$$

$$= \frac{1}{16}(4A^{*2} + 2A^*[A^*, A] - [A^*, A]2A^* - [A^*, A]^2 - 4A^{*2} + 2A^*[A^*, A] - [A^*, A]2A^* + [A^*, A]^2)$$

$$(6.29)$$

$$= \frac{1}{4}(A^{*2}A - 2A^*AA^* + AA^{*2})$$

$$= A,$$

$$(6.31)$$

by ((6.4)).

Now apply same argument as for ((6.3)), ((6.4)) of Theorem 5.1 and observe A^* has D+1 distinct eigenvalues. So,

$$A^* = \sum_{i=0}^{D} (D-2i) E_i^*$$

generates

$$M^* = \text{Span}(E_0^*, \dots, E_D^*).$$

Hence, $E_0,\dots,E_D,\ A^*$ generates T.

Take an irreducible T-module W with endpoint r with $0 \le r \le D/2$. Set $t = \min\{i \mid E_iW\}$.

Pick $0 \neq w_0^* \in E_t W$. Set

$$w_i^* = \frac{1}{i!} R^{*i} w_0^* \in E_{t+i} W$$
 for all *i*.

Then,

$$R^*w_i^* = (i+1)w_{i+1}^*$$
 for all i .

By (a), we get by induction, $L^*w_i^* = (D - 2t - i + 1)w_{i-1}^*$,

$$L^* w_i^* = \frac{1}{i} L^* R^* w_{i-1}^* \tag{6.32}$$

$$=\frac{1}{i}(A+R^*L^*)w_{i-1}^* \tag{6.33}$$

$$=\frac{1}{i}((D-2(t+i-1))w_{i-1}^*+(i-1)(D-2t-i+2)w_{i-1}^*) \qquad (6.34)$$

$$= (D - 2t - i + 1)w_{i-1}^*. (6.35)$$

So Span (w_0^*,w_1^*,\dots) is $L^*,$ $R^*,$ A^* -invariant. Hence, $W=(Span)(w_0^*,w_1^*,\dots,w_d^*)$, $w_0^*,w_1^*,\dots,w_d^*\neq 0$, $w_i^*=0$ for every i>d by dimension.

Thus d = D - 2t.

Pf.

$$(D - 2(t+d))w_d^* = Aw_d^* (6.36)$$

$$= (L^*R^* - R^*L^*)w_d^* (6.37)$$

$$= -(D-2t-d+1)R^*w_{d-1}^* (6.38)$$

$$= -(D - 2t - d + 1)dw_d^*. (6.39)$$

Hence,

$$0 = d^2 + (2t - D - 1 + 2)d - (D - 2t) = (d - D + 2t)(d + 1)$$

So
$$d = D - 2t$$
.

Definition 6.1. For any graph $\Gamma = (X, E)$, pick a vertex $x \in X$ and set $E_i^* \equiv E_i^*(x)$ and $T \equiv T(x)$.

- (i) an irreducible T-module W is thin if $\dim E_i^*W \leq 1$ for every i,
- (ii) Γ is thin with respet to x, if every irreducible T(x)-module is thin,
- (iii) an irreducible T-module W is dual thin if dim $E_i W \leq 1$ for every i,
- (iv) Γ is dual thin with respect to x, if every irreducible T(x)-module is dual thin.

Observe: H(D,2) is thin, dual thin with respect to each $x \in X$.

With above notation, write $D \equiv D(x)$.

(i) an ordering E_0, E_1, \dots, E_R of primitive idempotents of Γ is restricted if E_0 corresponds to the maximal eigenvalue.

Fix a restricted ordering,

- (ii) Γ is Q-polynomial with respect to x, above ordering if there exists $A^* \equiv A^*(x)$ such that
 - (a) E_0^*V, \dots, E_D^*V are the maximal eigenspaces for A^* .
 - (b) $E_i A^* E_j = 0$ if |i j| > 1 for $0 \le i, j \le R$.

Observe H(D,2) is Q-polynomial with respect to the natural ordering of the idempotents and every vetex.

Program. Study graphs that are thin and Q-polynomial with respect to each vertex.

(In fact, thin with respect to x implies dual thin with respect to x.)

Get a situation like H(D,2), where T is generated by A, A^* . Except $\mathrm{sl}_s(\mathbb{C})$ is repalaced by a quantum Lie algebra.

The Johnson Graph J(D, N)

Wednesday, February 3, 1993

Definition 7.1. The Johnson graph, $\Gamma = J(D, N) \ (1 \le D \le N - 1)$ satisfies

$$X = \{S \mid S \subset \Omega, \ |S| = D\} \text{ where } \Omega = \{1, 2, \dots, N\}$$
 (7.1)

$$E = \{ ST \mid S, T \in X, \quad |S \cap T| = D - 1 \}. \tag{7.2}$$

Example 7.1. J(2,4)

Note 1. The symmetric group S_N acts on Ω . $S_N\subseteq \operatorname{Aut}(\Gamma)$ acts vertex transitively on Γ .

Note 2. $\Gamma = J(D, N)$ is isomorphic to $\Gamma' = J(N - D, N)$.

$$\Gamma = (X, E) \qquad \qquad \Gamma' = (X', E') \tag{7.3}$$

$$X \ni S \longrightarrow \bar{S} = \Omega \quad S \in X'$$
 (7.4)

This correspondence induces an isomorphism of graphs.

Pf.

$$ST \in E \Leftrightarrow |S \cap T| = D - 1$$
 (7.5)

$$\Leftrightarrow |\Omega - (S \cup T)| = N - D - 1 \tag{7.6}$$

$$\Leftrightarrow |\bar{S} \cap \bar{T}| = N - D - 1 \tag{7.7}$$

$$\Leftrightarrow \bar{S}\bar{T} \in E' \tag{7.8}$$

Hence, without loss of generality, assume

$$D \le N/2$$
 for $J(D, N)$.

We sill need the eigenvalues of J(D, N) for certain problem later in the course. We can get these eigenvalues from our study of H(D, 2).

Lemma 7.1. The eigenvalues for J(D, N) with $1 \le D \le N/2$ are give by

$$\theta_i = (N - D - i)(D - i) - i \quad (0 \le i \le D)$$
 (7.9)

$$m_i = \binom{D}{i} - \binom{N}{i-1}. \tag{7.10}$$

Proof. Let

$$\Gamma_J \equiv J(D, N) = (X_J, E_J) \tag{7.11}$$

$$\Gamma_H \equiv H(N, 2) = (X_H, E_H).$$
 (7.12)

Set $x \equiv 11 \cdots 1 \in X_H$.

Define $\tilde{\Gamma} \equiv (\tilde{X}, \tilde{E})$, where

$$\tilde{X} = \{ y \in X_H \mid \partial_H(x,y) = D \} \quad \partial_H : \text{distance in } \Gamma_H \tag{7.13}$$

$$\tilde{E} = \{ yz \in X_H \mid \partial_H(y, z) = 2 \}. \tag{7.14}$$

Observe

$$X_{J} \rightarrow \tilde{X}$$
 (7.15)

$$S \mapsto \hat{S}, \tag{7.16}$$

where

$$\hat{S} = a_1 \cdots a_N, \quad a_i = \begin{cases} -1 & \text{if } i \in S \\ 1 & \text{if } i \notin S \end{cases}$$

induces an isomorphism of graphs $\Gamma_J \to \tilde{\Gamma}.$

Pf.

$$ST \in E_J \Leftrightarrow |S \cap T| = D - 1$$
 (7.17)

$$\Leftrightarrow \partial_H(\hat{S}, \hat{T}) = 2 \tag{7.18}$$

$$\Leftrightarrow (\hat{S}, \hat{T}) \in \tilde{E}. \tag{7.19}$$

Identify, Γ_J with $\tilde{\Gamma}$. Then the standard module V_J of Γ_J becomes $\tilde{V} = E_D^* V_H$, where V_H is the standard module of Γ_H , and $E_D^* \equiv E_D^*(x)$.

Let R be the raising matrix with respect to x in Γ_H , and

let L be the lowering matrix with respect to x in Γ_H .

Recall

$$(RL-DE_D^*)|_{\tilde{V}}$$

is the adjacency map in $\tilde{\Gamma}$.

To find eigenvalues of \tilde{A} , pick any irreducible T(x)-module W with the endpoint $r \leq D$. Then by Theorem 5.1

$$\operatorname{diam}(W) = N - 2r + 1.$$

Let $w_0, w_1, \dots, w_{N-2r}$ denote a basis for W as in Theorem 5.1. Then,

$$w_{D-r} \in E_D^* W \subseteq \tilde{V}$$
.

Observe:

$$\tilde{A}w_{D-r} = RLw_{D-r} - DE_D^* w_{D-r} \tag{7.20}$$

$$= R(N - 2r - D + r + 1)w_{D-r-1} - Dw_{D-r}$$
(7.21)

$$= ((N - D - r + 1)(D - r) - D)w_{D-r}. (7.22)$$

Note that this is valid for D = r as well.

Hence,

$$\tilde{A}w_{D-r}=((N-D-r)(D-r)-r)w_{D-r}.$$

Let

$$V_H = \sum W \quad \text{(direct sum of irreducible } T(x) - \text{modules.)}$$

Then,

$$V_J = E_D^* V_H \tag{7.23}$$

$$= \sum_{W:r(W) \le D} E_D^* W \tag{7.24}$$

= a direct sum of 1 dimensional eigenspaces for
$$\tilde{A}$$
. (7.25)

The eigenspace for eigenvalue

 $(N-D-r)(D-r)-r \quad ({\rm monotonously\ decreasing\ with\ respec\ to\ } r)$

appears with multiplicity

$$\binom{N}{r}-\binom{N}{r-1}$$

in this sum by Theorem 5.1 (iv).

Theorem 7.1. Let $\Gamma = (X, E)$ be any graph. For a fixed vertex $x \in X$, let

$$E_i^* \equiv E_i^*(x), \quad T \equiv T(x), \quad D \equiv D(x), \text{ and } K = \mathbb{C}.$$

Then we have the following implications of conditions:

$$TH \Leftrightarrow C \Leftarrow S \Leftarrow G$$
.

where

- (TH) Γ is thinn with respect to x.
- (C) $E_i^*TE_i^*$ is commutative for every $i,\ (0 \le i \le D)$.
- (S) $E_i^*TE_i^*$ is symmetric for every i, $(0 \le i \le D)$.
- (G) For every $y, z \in X$ with $\partial(x, y) = \partial(x, z)$, there exists $g \in \operatorname{Aut}(\Gamma)$ such that

$$gx = x$$
, $gy = z$, $gz = y$.

Proof.

 $(TH) \Rightarrow (C)$

Fix i with $0 \le i \le D$. Let

 $V = \sum W$. The standard module written as a direct sum of irreducible T-modules.

The,

$$E_i^*V = \sum E_i^*W.$$
 The direct sum of 1-dimensional $E_i^*TE_i^*\text{-modules}.$

Since dim $E_i^*W=1$, for $a,b\in E_i^*TE_i^*$, $ab-ba_{|E^*W}=0$. Hence ab-ba=0.

$$(C) \Rightarrow (TH)$$

Suppose dim $E_i^*W \geq 2$ for some irreducible T-module W with some i with $1 \leq i \leq D$.

Claim: E_i^*W is an irreducible $E_i^*TE_i^*$ -module.

Pf. Suppose

$$0 \subseteq U \subseteq E_i^*W$$
,

where U is a $E_i^*TE_i^*$ -module. Then by the irreducibility,

$$TU = W$$
.

So

$$U \supseteq E_i^* T E_i^* U = E_i^* T U = E_i^* W.$$

This is a contradiction.

Claim 2: Each irreducible $S=E_i^*TE_i^*$ -module U has dimension 1. In particular, Γ is thin with respect to x.

Pf. Pick

$$0 \neq a \in E_i^* T E_i^*$$
.

Since $\mathbb C$ is algebraicallt closed, a has an eigenvector $w \in U$ with eigenvalue θ . Then,

$$(a - \theta I)U = (a - \theta I)Sw \tag{7.26}$$

$$= S(a - \theta I)w \tag{7.27}$$

$$=0. (7.28)$$

Hence,

$$a_{|U}=\theta I_{|U}\quad\text{for all }\ a\in S.$$

Thus each 1 dimensional subspace of U is an S-module. We have

$$\dim U = 1.$$

By Claim 1 and Claim 2, we hat (TH).

Thin Graphs

Friday, February 5, 1993

Proof of Theorem 7.1 continued.

$$(S) \Rightarrow (C)$$

Fix i and pick $a, b \in E_i^* T E_i^*$.

Since a, b and ab are symmetric,

$$ab = (ab)^{\top} = b^{\top}a^{\top} = ba.$$

Hence $E_i^*TE_i^*$ is commutative.

$$(G) \Rightarrow (S)$$

Fix i and pick $a \in E_i^*TE_i^*$. Pick vertices $y, z \in X$.

We want to show that

$$a_{yz} = a_{zy}$$
.

We may assume that

$$\partial(x,y) = \partial(x,z) = i,$$

othewise

$$a_{yz} = a_{zy} = 0.$$

By our assumption, there exists $g \in G$ such that

$$g(y) = z$$
, $g(z) = y$, $g(x) = x$.

Let \hat{g} denote the permutation matrix representing g, i.e.,

$$\widehat{g}\widehat{y} = \widehat{g(y)} \quad \text{for all} \ \ y \in X, \quad \widehat{y} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow y.$$

If $g \in Aut(\Gamma)$, then

$$\hat{g}A = A\hat{g}$$
 Exercise.

Also we have

$$\hat{g}E_j^* = E_j^*\hat{g} \quad (0 \le j \le D),$$

since

$$\partial(x, y) = \partial(g(x), g(y)) = \partial(x, g(y)).$$

Hence \hat{g} commutes with each element of T. We have

$$a_{yz} = (\hat{g}^{-1}a\hat{g})_{yz}, \quad (\hat{g})_{yz} = \begin{cases} 1 & g(z) = y\\ 0 & \text{else.} \end{cases}$$
 (8.1)

$$= \sum_{y',z'} (\hat{g}^{-1})_{yy'} a_{y'z'} \hat{g}_{z'z} \tag{8.2}$$

(zero except for
$$g^{-1}(y') = y$$
, $g(z) = z'$.) (8.3)

$$= a_{g(y)g(z)} \tag{8.4}$$

$$a_{zy}. (8.5)$$

This proves Theorem 7.1.

Open Problem: Find all the graphs that satisfy the condition (G) for every vertex x.

H(N,2) is one example, because

$$\mathrm{Aut}\Gamma_{1\cdots 1}\simeq S_{\Omega},\quad x=(1\cdots 1), \Gamma_{i}(x)=\{\hat{S}\mid |S|=i\}.$$

Property (G) is clearly related to the distance-transitive property.

Definition 8.1. Let $\Gamma = (X, E)$ be any graph. Γ with $G \subseteq \operatorname{Aut}(\Gamma)$ is said to be distance-transitive (or two-point homogeneous), whenever

for all
$$x, x', y, y' \in X$$
 with $\partial(x, y) = \partial(x', y')$,

there exists $q \in G$ such that

$$g(x) = y, \quad g(x') = y'.$$

(This means G is as close to being doubly transitive as possible.)

Lemma 8.1. Suppose a graph $\Gamma = (X, E)$ satisfies the property (G) = (G(x)) for every $x \in X$. Then,

- (i) either
- (ia) Γ is vertex transitive; or
- (iia) Γ is bipartite $(X = X^+ \cup X^-)$ with X^+ , X^- each an orbit of $\operatorname{Aut}(\Gamma)$.
- (ii) if (ia) holds, then Γ is distance-transitive.

Proof. (i) Claim. Suppose $y, z \in X$ are connected by a path of even length. Then y, z are in the same orbit of $\operatorname{Aut}(\Gamma)$.

Pf. It suffices to assume that the path has length 2, $y \sim w \sim z$.

Now $\partial(y,w)=\partial(w,z)=1$. So there exits $g\in {\rm Aut}(\Gamma)$ such that $\$gw=w,\ gy=z,\ gz=y.$ This proves Claim.

Fix $x \in X$. Now suppose that Γ is not vertex transitive, and we shall show (ib).

Observe that $X = X^+ \cup X^-$, where

$$X^{+} = \{y \in X \mid \text{there exists a path of even length connecting } x \text{ and } y\}$$
 (8.6)

$$X^- = \{ y \in X \mid \text{there exists a path of odd length connecting } x \text{ and } y \}$$
 (8.7)

Asi X^+ is contained in an orbit O^+ of $\operatorname{Aut}(\Gamma)$, and X^- is contained in an orbit O^- of $\operatorname{Aut}(\Gamma)$.

Now $O^+ \cap O^- = \emptyset$ (else $O^+ = O^- = X$ and vertex transitive). So, $X = O^+$, and $X^- = O^-$.

Also $X^+ \cup X^- = X$ is a bipartition by construction.

(ii) Fix
$$x, y, x', y'$$
 with $\partial(x, y) = \partial(x', y')$.

By vertex transitivity, there exists an element

$$g_1 \in G$$
 such that $g_1 x = x'$.

Observe that

$$\partial(x',y') = \partial(x,y) = \partial(g_1x,g_1y) = \partial(x',g_1y).$$

Hence, there exisits an element

$$g_2 \in G$$
 such that $g_1 x' = x', g_2 y' = g_1 y', g_2 g_1 y = y'$

by (G(x')) property.

Set $g = g_2g_1$. Then

$$gx = x', gy = y'$$

by construction.

The following graphs $\Gamma = (X, E)$ are vertex transitive, and satisfy the property (G(x)) for all $x \in X$.

$$J(D,N), \quad H(D,r), \quad J_a(D,N),$$

where

H(D,r):

$$X = \{a_1 \cdots a_D \mid a_i \in F, 1 \le i \le D\}$$
(8.8)

$$F:$$
 any set of cardinality r (8.9)

$$E = \{xy \mid y, x \in X, x \text{ and } y \text{ differ in exactly one coordiate}\}.$$
 (8.10)

 $J_q(D,N)$:

X= the set of all D-dimensional subspaces of N-dimensional vector space over GF(q).

(8.11)

$$F:$$
any set of cardinality r (8.12)

$$E = \{ xy \mid y, x \in X, \ \dim(x \cap y) = D - 1 \}. \tag{8.13}$$

The following graph is distance-transitive but does not satisfy (G(x)) for any $x \in G$.

 $H_q(D,N)$:

$$X =$$
the set of all $D \times N$ matrices with entries in $GF(q)$. (8.14)

$$E = \{ xy \mid y, x \in X, \ \text{rank}(x - y) = 1. \}. \tag{8.15}$$

Remark.

H(D,r): $G = S_r \operatorname{wr} S_D$, $G_r = S_{r-1} \operatorname{wr} S_D$,

For $x, y \in X$ with $\partial(x, y) = \partial(x, z) = i$,

$$Y = \{ j \in \Omega \mid x_i \neq y_i \} \leftrightarrow Z = \{ j \in \Omega \mid x_i \neq z_i \}$$

$$(8.16)$$

$$(y_{j_1}, \dots, y_{j_s}) \leftrightarrow (z_{\ell_1}, \dots, z_{\ell_s}) \tag{8.17}$$

 $J(D, N): G = S_N, G_x = S_D \times S_{N-D}.$

$$X \cap Y \leftrightarrow X \cap Z \tag{8.18}$$

$$(\Omega \ X) \cap Y \leftrightarrow (\Omega \ X) \cap Z. \tag{8.19}$$

The following graph is distance-transitive but does not satisfy (G(x)) for any $x \in G$.

 $J_q(D,N)$:

$$X \cap Y \leftrightarrow X \cap Z$$
.

The theory of single thin irreducible T-module.

Let $\Gamma = (X, E)$ be any graph.

M= Bose-Mesner algebra over K/\mathbb{C} generated by the adjacency matrix A. (8.20)

$$= \operatorname{Span}(E_0, \dots, E_R). \tag{8.21}$$

M acts on the standard module $V=\mathbb{C}^{|X|}.$

Fix $x \in X$, let $D \equiv D(x)$ be the x-diameter, and k = k(x) be the valency of x.

Thin T-Module, I

Monday, February 8, 1993

Let $\Gamma = (X, E)$ be any graph.

M: Bose-Mesner algebra over K/\mathbb{C} generated by the adjacency matrix A.

$$M = \operatorname{Span}(E_0, \dots, E_R).$$

M acts on the standard module $V = \mathbb{C}^{|X|}$.

Fix $x \in X$, let $D \equiv D(x)$ be the x-diameter, and k = k(x) be the valency of x.

Definition 9.1. Pick $x \in X$ and write $E_i^* \equiv E_i^*(x)$ and $T \equiv T(x)$.

Let W be an irreducible thin T-module with endpoint r, diameter d.

Let $a_i = a_i(W) \in \mathbb{C}$ satisfying

$$E_{r+i}^*AE_{r+i}^*|_{E_{r+i}^*W}=a_i1|_{E_{r+i}^*}\quad (0\leq i\leq d).$$

Let $x_i = x_i(W) \in \mathbb{C}$ satisfying

$$\left. E_{r+i-1}^* A E_{r+i}^* A E_{r+i-1}^* \right|_{E_{r+i}^* W} = x_i 1|_{E_{r+i}^*} \quad (0 \leq i \leq d).$$

Lemma 9.1. With above notation, the following hold.

- $(i)\ a_i \in \mathbb{R} \quad (0 \leq i \leq d).$
- $(ii) \ x_i \in \mathbb{R}^{>0} \quad (0 \le i \le d).$
- (iii) Pick $0 \neq w_0 \in E_r^*W$. Set $w_i = E_{r+i}^*A^iw_0$ for all i. Then
 - $(iiia) \ w_0, w_1, \dots, w_d \ is \ a \ basis \ for \ W, \ w_{-1} = w_{d+1} = 0.$
- $(iiib)\ Aw_i=w_{i+1}+a_iw_i+x_iw_{i-1}\quad (0\leq i\leq d).$

(iv) Define $p_0, p_1, \dots, p_{d+1} \in \mathbb{R}[\lambda]$ by

$$p_0 = 1$$
, $\lambda p_i = p_{i+1} + a_i p_i + x_i p_{i-1}$ $(0 \le i \le d)$, $p_{-1} = 0$.

 $\begin{array}{ll} (iva) \ p_i(A)w_0=w_i, & (0\leq i\leq d+1). \\ (ivb) \ p_{d+1} \ is \ the \ minimal \ polynomial \ of \ A|_W. \end{array}$

Proof. (i) a_i is an eigenvalue of a real symmetric matrix $E_{r+i}^*AE_{r+i}^*$.

 $(ii)~x_i$ is an eigenvalue of a real symmetrix matrix $B^\top B,$ where

$$B = E_{r+i}^* A E_{r+i-1}^*.$$

Hence, $x_i \in \mathbb{R}$.

Since $B^{\top}B$ is positive semidefinite,

$$x_i \geq 0$$
.

Pf. If $B^{\top}Bv = \sigma v$ for some $\sigma \in \mathbb{R}$, $v \in \mathbb{R}^m$ {0}, then

$$0 \le \|Bv\|^2 = v^{\top} B^{\top} B v = \sigma v^{\top} v = \sigma \|v\|^2, \quad \|v\|^2 > 0.$$

Hence, $\sigma \geq 0$.

Moreover, $x_i \neq 0$ by Lemma 4.1 (iv).

(iiia) Observe

$$w_i = E_{r+i}^* A E_{r+i-1}^* w_{i-1} \quad (1 \le i \le d).$$

So $w_i \neq 0$ $(1 \leq i \leq d)$ by Lemma 4.1 (iv).

Hence,

$$W = \operatorname{Span}(w_0, \dots, w_d)$$

by Lemma 4.1. (iii).

(iiib) We have that

$$Aw_i = E_{r+i+1}^* Aw_i + E_{r+i}^* Aw_i + E_{r+i-1}^* Aw_i$$
(9.1)

$$= w_{i+1} + E_{r+i}^* A E_{r+i}^* w_i + E_{r+i-1}^* A E_{r+i}^* A E_{r+i-1}^* w_{i-1}$$

$$(9.2)$$

$$= w_{i+1} + a_i w_i + x_i w_{i-1} (9.3)$$

(iva) Clear for i = 0. Assume it is valid for $0, \dots, i$.

$$p_{i+1}(A)w_0 = (A - a_iI)w_i - x_iw_{i-1} = w_{i+1}.$$

(ivb) By definition,

$$p_{d+1}(A)w_0 = 0.$$

Moreover, $p_{d+1}(A)W = 0$. For every $w \in W$, write

$$w = \sum_{i=0}^{d} \alpha_i w_i \tag{9.4}$$

$$=\sum_{i=0}^d \alpha_i p_i(A) w_0 \qquad \qquad \text{for some } \alpha_i \in \mathbb{C} \qquad \qquad (9.5)$$

$$= p(A)w_0 \qquad \qquad \text{for some } p \in \mathbb{C}[\lambda] \tag{9.6}$$

Hence,

$$p_{d+1}(A)w = p_{d+1}(A)p(A)w_0 (9.7)$$

$$= p(A)p_{d+1}(A)w_0 (9.8)$$

$$=0. (9.9)$$

Note that p_{d+1} is the minimal polynomial.

Pf. Suppose q(A)W=0 for some $0\neq q\in\mathbb{C}[\lambda]$ with $\deg q<\deg p_{d+1}=d+1.$ Then,

$$q = \sum_{i=0}^d \beta_i p_i \quad \text{for some } \beta_i \in \mathbb{C}.$$

We have,

$$0=q(A)w_0=\sum_{i=0}^d\beta_iw_i.$$

Hence $\beta_0 = \dots = \beta_d = 0$ by (iiia). Thus q = 0 and a contradiction. \square

Corollary 9.1. Let Γ , W, r, d be as above. Then

(i) W is dual thin, that is,

$$\dim E_i W < 1 \quad (1 < i < d).$$

$$(ii)\ d = |\{i \mid E_i W \neq 0\}| - 1.$$

Proof. (i) Set as in Lemma 9.1,

$$w_i = p_i(A)w_0 \in E_{r+i}^*W.$$

Then w_0, w_1, \dots, w_d is a basis for W. We have

$$W = Mw_0$$
.

So,

$$E_i W = E_i M w_0 = \operatorname{Span}(E_i w_0).$$

Thus,

$$\dim E_i W = \begin{cases} 1 & \text{if } E_i w_0 \neq 0 \\ 0 & \text{if } E_i w_0 = 0. \end{cases}$$

In particular,

$$\dim E_i^*W \le 1.$$

(ii) Immediate as

$$\dim W = d + 1.$$

This proves the lemma.

Lemma 9.2. Given an irreducible T(x)-module W with endpoint r = r(W), diameter d = d(W). Write

$$x_i = x_i(W) \ (0 \le i \le d), \quad w_i = p_i(A) w_0 \in E^*_{r+i} W \ (0 \le i \le d), \quad 0 \ne w_0 \in E^*_r W.$$

Then,

$$\frac{\|w_i\|^2}{\|w_0\|^2} = x_1 x_2 \cdots x_i \quad (1 \le i \le d).$$

Proof. It suffices to show that

$$||w_i||^2 = x_i ||w_i||^2 \quad (1 \le i \le d).$$

Recall by Lemma 9.1 (iiib) that

$$Aw_i = w_{i+1} + a_iw_i + x_iw_{i-1} \quad (0 \leq j \leq d), \quad w_{-1} = w_{d+1} = 0.$$

Now observe,

$$\langle w_{i-1}, Aw_i \rangle = \langle w_{i-1}, w_{i+1} + a_i w_i + x_i w_{i-1} \rangle$$
 (9.10)

$$= \overline{x_i} \| w_{i-1} \|^2 \tag{9.11}$$

$$= x_i \|w_{i-1}\|^2. (9.12)$$

by Lemma 9.1 (ii). Also,

$$\langle w_{i-1}, Aw_i \rangle = \langle Aw_{i-1}, w_i \rangle \quad (textsince \ \bar{A}^\top = A) \tag{9.13}$$

$$= \langle x_i + a_{i-1}w_{i-1} + x_{i-1}x_{i-2}, w_i \rangle \tag{9.14}$$

$$= ||w_i||^w. (9.15)$$

This proves the lemma.

Definition 9.2. Let W be an irreducible thin T(x) module with endpoint r, $E_i^* \equiv E_i^*(x)$.

The measure $m=m_W$ is the function

$$m: \mathbb{R} \to \mathbb{R}$$

such that

$$m(\theta) = \begin{cases} \frac{\|E_i w\|^2}{\|w\|^2} & \text{where } 0 \neq w \in E_r^*W \\ & \text{if } \theta = \theta_i \text{ is an eigenvalue for } \Gamma \\ 0 & \text{if } \theta \text{ is not an eigenvalue for } \Gamma. \end{cases}$$

Thin T-Module, II

Wednesday, February 10, 1993

Let $\Gamma = (X, E)$ be any graph.

Fix a vertex $x \in X$. Let $E_i^* \equiv E_i^*(x)$, $T \equiv T(x)$, the subconstituent algebra over \mathbb{C} , and $V = \mathbb{C}^{|X|}$ the standard module.

Lemma 10.1. With above notation, let W denote a thin irreducible T(x)-module with endpoint r and diameter d. Let

$$a_i = a_i(W) \quad (0 \le i \le d) \tag{10.1}$$

$$x_i = x_i(W) \quad (1 \le i \le d) \tag{10.2}$$

$$p_i=p_i(W) \quad (0\leq i \leq d+1) \tag{10.3}$$

be from Lemma 9.1, and measure $m=m_W$. Then,

 $(i)\ p_0,\dots,p_{d+1}\ are\ orthogonal\ with\ respect\ to\ m,\ i.e.,$

$$\sum_{\theta \in \mathbb{R}} p_i(\theta) p_j(\theta) m(\theta) = \delta_{ij} x_1 x_2 \cdots x_i \quad (0 \leq i, j \leq d+1) \ \ \textit{with} \ \ x_{d+1} = 0.$$

$$(ia)\ \sum_{\theta\in\mathbb{R}}p_i(\theta)^2m(\theta)=x_1\cdots x_i\quad (0\leq i\leq d).$$

$$(iia) \sum_{\theta \in \mathbb{R}} m(\theta) = 1.$$

$$(iiia) \, \sum_{\theta \in \mathbb{R}} p_i(\theta)^2 \theta m(\theta) = x_1 \cdots x_i a_i \quad (0 \leq i \leq d).$$

Proof. Pick $0 \neq w_0 \in E_r^*W$. Set

$$w_i=p_i(A)w_0\in E_{r+i}^*W.$$

Since E_i^*W and E_j^*W are orthogonal if $i \neq j$,

$$\delta_{ij} \|w_i\|^2 = \langle w_i, w_j \rangle \tag{10.4}$$

$$= \langle p_i(A)w_0, p_i(A)w_0 \rangle \tag{10.5}$$

$$= \left\langle p_i(A) \left(\sum_{\ell=0}^R E_\ell \right) w_0, p_j(A) \left(\sum_{\ell=0}^R E_\ell \right) w_0 \right\rangle \tag{10.6}$$

$$= \left\langle \sum_{\ell=0}^{R} p_i(\theta_\ell) E_\ell w_0, \sum_{\ell=0}^{R} p_j(\theta_\ell) E_\ell w_0 \right\rangle$$
 (as $AE_j = \theta_j E_j$) (10.7)

$$= \sum_{\ell=0}^{R} p_i(\theta_\ell) \overline{p_j(\theta_\ell)} \| E_\ell w_0 \|^2$$
(10.8)

$$(\text{as } p_j \in \mathbb{R}[\lambda], \quad \theta_\ell \in \mathbb{R}, \quad m(\theta_i) \|w_0\|^2 = \|E_i w_0\|^2) \eqno(10.9)$$

$$= \sum_{\theta \in \mathbb{R}} p_i(\theta) p_j(\theta) m(\theta) \|w_0\|^2. \tag{10.10}$$

Now we are done by Lemma 9.2 as

$$\|w_i\|^2 = \|w_0\|^2 x_1 x_2 \dots x_i.$$

For (ia), set i = j, and for (ib), set i = j = 0.

(ii) We have

$$\langle w_i, Aw_i \rangle = \langle w_i, w_{i+1} + a_i w_i + x_i w_{i-1} \rangle \tag{10.11}$$

$$= \overline{a_i} \|w_i\|^2 \tag{10.12}$$

$$= a_i x_1 \cdots x_i \|w_0\|^2, \tag{10.13}$$

as $a_i \in \mathbb{R}$ by Lemma 9.1.

Also,

$$\langle w_i, Aw_i \rangle = \langle p_i(A)w_0, Ap_i(A)w_0 \rangle \tag{10.14}$$

$$= \left\langle p_i(A) \left(\sum_{\ell=0}^R E_\ell \right) w_0, A p_i(A) \left(\sum_{\ell=0}^R E_\ell \right) w_0 \right\rangle \qquad (\text{ as in } (i))$$
 (10.15)

$$= \sum_{\ell=0}^{D} p_i(\theta_{\ell})^2 \theta_{\ell} \|E_{\ell} w_0\|^2$$
 (10.16)

$$= \sum_{\theta \in \mathbb{R}} p_i(\theta)^2 \theta m(\theta) \|w_0\|^2. \tag{10.17}$$

Thus, we have (ii).

Lemma 10.2. With above notation, let W be a thin irreducible T(x)-module with measure m. Then m determines diameter d(W),

$$a_i = a_i(W) \quad (0 \le i \le d)$$
 (10.18)

$$x_i = x_i(W) \quad (1 \leq i \leq d) \tag{10.19} \label{eq:10.19}$$

$$p_i = p_i(W) \quad (0 \le i \le d+1).$$
 (10.20)

Proof. Note that d+1 is the number of $\theta \in \mathbb{R}$ such that $m(\theta) \neq 0$. Hence m determines d.

Apply (ia), (ii) of Lemma 10.1.

$$\sum_{\theta \in \mathbb{R}} m(\theta) = 1 \qquad \qquad p_0 = 1. \tag{10.21} \label{eq:p0}$$

$$\sum_{\theta \in \mathbb{R}} \theta m(\theta) = a_0 \qquad \qquad p_1 = \lambda - a_0 \qquad \qquad (10.22)$$

$$\sum_{\theta \in \mathbb{R}} p_1(\theta)^2 m(\theta) = x_1 \tag{10.23}$$

$$\sum_{\theta \in \mathbb{R}} p_1(\theta)^2 \theta m(\theta) = x_1 a \qquad \qquad \rightarrow a_1 \qquad \qquad (10.24)$$

$$p_2 = (\lambda - a_1)p_1 - x_1p_0 \tag{10.25}$$

$$\sum_{\theta \in \mathbb{R}} p_2(\theta)^2 m(\theta) = x_1 x_2 \qquad \to x_2 \tag{10.26}$$

$$\sum_{\theta \in \mathbb{R}} p_2(\theta)^2 \theta m(\theta) = x_1 x_2 a_2 \qquad \qquad \rightarrow a_2 \qquad \qquad (10.27)$$

$$p_3 = (\lambda - a_2)p_2 - x_2p_1 \tag{10.28}$$

$$\vdots$$
 (10.29)

$$\sum_{\theta \in \mathbb{R}} p_d(\theta)^2 m(\theta) = x_1 x_2 \cdots x_d \qquad \qquad \rightarrow x_d \qquad \qquad (10.30)$$

$$\sum_{\theta \in \mathbb{R}} p_d(\theta)^2 \theta m(\theta) = x_1 x_2 \cdots x_d a_d \qquad \qquad \rightarrow a_d \qquad \qquad (10.31)$$

$$p_{d+1} = (\lambda - a_d)p_d - x_d p_{d-1}. (10.32)$$

(10.33)

This proves the assertions.

Corollary 10.1. With above notation, let W, W' denote thin irreducible T(x)-modules. The following are equivalent.

(i) W, W are isomorpphic as T-modoles.

$$(ii)\ r(W)=r(W')\ and\ m_W=m_{W'}.$$

$$(iii)\ r(W)=r(W'),\ d(W)=d(W'),\ a_i(W)=a_i(W')\ amd\ x_i(W)=x_i(W')\ (0\leq i\leq d).$$

Proof. (i) \Rightarrow (iii) Write $r \equiv r(W)$, $r' \equiv r(W')$, d = d(W), d' = d(W'), $a_i = a_i(W)$, $a_i' = a_i(W')$, $x_i = x_i(W)$ and $x_i' = x_i(W')$.

Let $\sigma: W \to W'$ denote an isomorphism of T-modules. (See Definition 5.1.)

For every i,

$$\sigma E_i^* W = E_i^* \sigma W = E_i^* W'.$$

So, r = r' and d = d'.

To show $a_i = a_i'$, pick $w \in E_{r+i}^* W$ {0}. Then,

$$E_{r+i}^*AE_{r+i}^*\sigma(W)=\sigma(E_{r+i}^*AE_{r+i}^*w)=\sigma(a_iw)=a_i\sigma(w),$$

and $\sigma w \neq 0$. So,

$$a_i = \text{eigenvalue of } E_{r+i}^* A E_{r+i}^* \text{ on } E_{r+i}^* W$$
 (10.34)

$$= a_i' \tag{10.35}$$

It is similar to show x = x'.

Remark. Pick $w \in E_{r+i-1}^* W$ {0}

$$E_{r+i-1}^*AE_{r+i}^*AE_{r+i-1}^*\sigma(W) = \sigma(E_{r+i-1}^*AE_{r+i}^*AE_{r+i-1}^*w) = x_i\sigma(w).$$

Hence, x_i is the eigenvalue of $E_{r+i-1}^*AE_{r+i}^*AE_{r+i-1}^*$ on $E_{r+i-1}^*W=x_i'$.

$$(iii) \Rightarrow (i)$$

Pick $0 \neq w_0 \in E_r^*W$, $0 \neq w_0' \in E_r^*W'$. Let p_i be in Lemma 9.1, and set

$$w_i = p_i(A)w_0 \in E_{r+i}^* W \quad (0 \le i \le d)$$
 (10.36)

$$w_i' = p_i'(A)w_0' \in E_{r+i}^* W \quad (0 \le i \le d)$$
(10.37)

Define a linear transformation,

$$\sigma: W \to W' \quad (w_i \mapsto w_i').$$

Since $\{w_i\}$ and $\{w_i'\}$ are bases with d=d', σ is an isomorphism of vector spaces.

We need to show

$$a\sigma = \sigma a$$
 (for all $a \in T$).

Take $a = E_j^*$ for some j $(0 \le j \le d(x))$. Then for all i, we have

$$E_i^* \sigma w_i = E_i^* w_i' = \delta_{ij} w_i',$$

$$\sigma E_i^* w_i = \delta_{ij} \sigma(w_i) = \delta_{ij} w_i'.$$

$$E_i^* \sigma w_i = \sigma E_i^* w_i$$
?

Take an adjacency matrix A of a. Then,

$$A\sigma w_i = Aw_i' = w_{i+1}' + a_i'w_i' + x_i'w_{i-1}' = \sigma(w_{i+1} + a_iw_i + x_iw_{i-1}) = \sigma Aw_i.$$

 $(ii) \Rightarrow (iii)$ Lemma 10.2.

 $(iii) \Rightarrow (ii)$ Given d, a_i, x_i , we can compute the polynomial sequence

$$p_0, p_1, \dots, p_{d+1}$$

for W.

Show p_0, p_1, \dots, p_{d+1} determines $m = m_W$. Set

$$\Delta = \{\theta \in \mathbb{R} \mid p_{d+1}(\theta) = 0\}.$$

Observe: $|\Delta| = d + 1$. See 'An Introduction to Interlacing'.

 $m(\theta) = 0$ if $\theta \notin \Delta$ $(\theta \in \mathbb{R})$. So it suffices to find $m(\theta)$, $\theta \in \Delta$.

By Lemma 10.1 (i),

$$\begin{cases} \sum_{\theta \in \Delta} m(\theta) p_0(\theta) &= 1 \\ \sum_{\theta \in \Delta} m(\theta) p_1(\theta) &= 0 \\ \vdots \\ \sum_{\theta \in \Delta} m(\theta) p_d(\theta) &= 0 \end{cases}$$

d+1 linear equation with d+1 unknowns $m(\theta)$ ($\theta \in \Delta$).

But the coefficient matrix is essentially Vander Monde (since $\deg p_i = i$). Hence the system is nonsingular and there are unique values for $m(\theta)$ ($\theta \in \Delta$).

Remark.

$$\begin{pmatrix} \theta-a_0 & -1 & \cdots & 0 & 0 \\ -x_1 & \theta-a_1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \theta-a_{d-1} & -1 \\ 0 & 0 & \cdots & -x_d & \theta-a_d \end{pmatrix} \begin{pmatrix} p_0(\theta) \\ \vdots \\ \vdots \\ p_d(\theta) \end{pmatrix} = 0,$$

where θ is an eigenvalue of a diagonalizable matrix

$$L = \begin{pmatrix} a_0 & 1 & \cdots & 0 & 0 \\ x_1 & a_1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{d-1} & 1 \\ 0 & 0 & \cdots & x_d & \theta a_d \end{pmatrix}$$

with multiplicity $\dim(\operatorname{Ker}(\theta I - L) = 1)$.

Examples of T-Module

Friday, February 12, 1993

Let $\Gamma = (X, E)$ be a connected graph.

Let θ_0 be the maximal eigenvalue of Γ , and δ its corresponding eigenvector.

$$\delta = \sum_{y \in X} \delta_y \hat{y}.$$

Without loss of generality, we may assume that $\delta_y \in \mathbb{R}^*$ for all $y \in X$.

Lemma 11.1. Fix a vertex $x \in X$. Write $T \equiv T(x)$, $E_i^* \equiv E_i^*(x)$.

- (i) $T\delta = T\hat{x}$ is an irreducible T-module.
- (ii) Given any irreducible T-module W, the following are equivalent:
- (iia) $W = T\delta$.
- (iib) The diameter d(W) = d(x).
- (iic) The endpoint r(W) = 0.

Proof. (i) Observe: there exists an irreducible T-module W that contains δ .

Let $V = \sum_i W_i$ be a direct sum decomposition of the standard module. Then

$$\mathrm{Span}(\delta) = E_0 V = \sum_i E_0 W_i.$$

So, $E_0W_i \neq 0$ for some i. Then,

$$\delta \in E_0 W_i \subseteq W_i$$
.

Observe: $T\delta$ is an irreducible T-module.

Since $\delta \in W$, where W is a T-module. As $T\delta \subseteq W$ and W is irreducible, $T\delta = W$.

Observe: $T\delta = T\hat{x}$.

Since $\hat{x} = \delta_x^{-1} E_0^* \delta \in T \delta$, $T \hat{x} \subseteq T \delta$. Since $T \delta$ is irreducible, $T \hat{x} = T \delta$.

(ii) $(a) \rightarrow (b)$:

$$E_i^*\delta = \sum_{y \in X, \partial(x,y) = i} \delta_y \hat{y} \neq 0, \quad (0 \leq i \leq d(x)),$$

because $\delta_y > 0$ for every $y \in X$.

Hence,

$$E_i^*T\delta \neq 0, \quad (0 \leq i \leq d(x)).$$

Thus, d(x) = d(W).

 $(b) \rightarrow (c)$: Immediate.

 $(c) \to (a)$: Since r(W) = 0, $E_0^*W \neq 0$. Hence, $\hat{x} \in W$ and $T\hat{x} \subseteq W$.

By the irreduciblity, we have $T\hat{x} = W$.

Lemma 11.2. Assume Γ is bipartite $(X = X^+ \cup X^-)$ $(X^+$ and X^- are nonempty). Then the following are equivalent.

(i) There exist α^+ and $\alpha^- \in \mathbb{R}$ such that

$$\delta_x = \begin{cases} \alpha^+ & \text{if } x \in X^+ \\ \alpha^- & \text{if } x \in X^-. \end{cases}$$

 $/\left(ii\right)$ There exist k+ and $k^{-}\in\mathbb{Z}^{>0}$ such that

$$k(x) = \begin{cases} k^+ & \text{if } x \in X^+ \\ k^- & \text{if } x \in X^-. \end{cases}$$

In this xase, $k^+k^- = \theta_0^2$, and Γ is called bi-regular.

Proof. $(i) \rightarrow (ii)$

$$A\delta = A\left(\alpha^{+} \sum_{x \in X^{+}} \hat{x} + \alpha^{-} \sum_{y \in X^{-}} \hat{y}\right)$$
(11.1)

$$= \alpha^{+} \sum_{y \in X^{-}} k(y)\hat{y} + \alpha^{-} \sum_{x \in X^{+}} k(x)\hat{x}$$
 (11.2)

$$= \theta_0 \delta. \tag{11.3}$$

So,

$$k(x)\alpha^- = \theta_0\alpha^+, \quad k(y)\alpha^+ = \theta_0\alpha^-.$$

As $\alpha^+ \neq =$ and $\alpha^- \neq 0$,

$$k^+ := k(x)$$
 is independent of the choice of $x \in X^+$, and (11.4)

$$k^- := k(y)$$
 is independent of the choice of $y \in X^-$. (11.5)

Moreover, $k^+k^- = \theta_0^2$.

 $(ii) \rightarrow (i)$ Set

$$\delta' = \sum_{y \in X} \alpha_y \hat{y} \quad \text{where } \alpha = \begin{cases} 1/\sqrt{k^-} & \text{if } \ y \in X^+ \\ 1/\sqrt{k^+} & \text{if } \ y \in X^-. \end{cases}$$

Then one checks

$$A\delta' = A\left(\frac{1}{\sqrt{k^{-}}} \sum_{y \in X^{+}} \hat{y} + \frac{1}{\sqrt{k^{+}}} \sum_{y \in X^{-}} \hat{y}\right)$$
(11.6)

$$= \frac{k^{-}}{\sqrt{k^{-}}} \sum_{y \in X^{-}} \hat{y} + \frac{k^{+}}{\sqrt{k^{+}}} \sum_{y \in X^{+}} \hat{y}$$
 (11.7)

$$=\sqrt{k^+k^-}\delta'\tag{11.8}$$

Since
$$\delta' > 0$$
, $\delta' \in \text{Span}(\delta)$, and $\theta_0 = \sqrt{k^+ k^-}$.

Definition 11.1. For any graph $\Gamma = (X, E)$, fix a vertex $x \in X$. Set d = d(x).

 Γ is distance-regular with respect to x, if for all i:(0 i d), and all $y \in X$ such that $\partial(x,y)=i$:

$$c_i(x) := |\{z \in X \mid \partial(x, z) = i - 1, \ \partial(y, z) = 1\}|$$
 (11.9)

$$a_i(x) := |\{z \in X \mid \partial(x, z) = i, \ \partial(y, z) = 1\}| \tag{11.10}$$

$$b_i(x) := |\{z \in X \mid \partial(x, z) = i + 1, \ \partial(y, z) = 1\}|$$
(11.11)

depends only on i, x, and not on y.

(In this case, $c_0(x) = a_0(x) = b_d(x) = 0$, $c_1(x) = 1$, $b_0(x) = k(x)$ is the valency of x.)

We call $c_i(x)$, $a_i(x)$ and $b_i(x)$ the intersection numbers with respect to x.

Example 11.1.

$$c_0 = 1 \qquad \qquad c_1 = 1 \qquad \qquad c_2 = 1 \qquad \qquad (11.12)$$

$$a_0 = 0$$
 $a_1 = 1$ $a_2 = 1$ (11.13)
 $b_0 = 2$ $b_1 = 1$ $b_2 = 0$ (11.14)

$$b_0 = 2$$
 $b_1 = 1$ $b_2 = 0$ (11.14)

Distance-Regular

Monday, February 15, 1993

Lemma 12.1. For any connected graph $\Gamma = (X, E)$, the following are equivalent.

(i) The trivial T(x)-module is thin for all $x \in X$.

$$(ii) \ \left\{ \sum_{y \in X, \partial(x,y) = i} \hat{y} \ | 0 \leq i \leq d(x) \right\} \ \ is \ \ a \ \ basis \ for \ \ the \ \ trivial \ T(x) - module \ for \ \ every \ x \in X.$$

(iii) Γ is distance-regular with respect to x for all $x \in X$.

Note. Let $\Gamma=(X,E)$ be a graph, with $X=\{x,y_1,y_2,y_3,z_1,z_2,z_3\},\ E=\{xy_1,xy_2,xy_3,y_1z_1,y_1z_2,y_2z_3,y_3z_3\}.$

Then (i), (ii) are not equivalent for a single vertex x.

$$E_0^* T \hat{x} = \langle \hat{x} \rangle, \tag{12.1}$$

$$E_1^* T \hat{x} = \langle y_1 + y_2 + y_3 \rangle, \tag{12.2}$$

$$E_2^*T\hat{x} = \langle z_1 + z_2 + 2z_3 \rangle. \tag{12.3}$$

Proof of Lemma 12.1. (i) \to (ii) Let $\delta = \sum_{y \in X} \delta_y \hat{y}$ be an eigenvector for the maximal eigenvalue θ_0 . Then,

$$\sum_{y \in X, \partial(x,y)=1} \hat{y} = A\hat{x} \in T(x)\hat{x} = T(x)\delta \ni E_1^*\delta \tag{12.4}$$

$$= \sum_{y \in X, \partial(x,y)=1} \delta_h \hat{y} \tag{12.5}$$

If the trivial T(x)-module is thin,

$$\delta_y = \delta_z \ \text{ for } \ y,z \in X, \ \partial(x,y) = \partial(x,z) = 1.$$

Hence, $\delta_y = \delta_z$ if y and z in X are connected by a path of even length.

So, Γ is regular or bipartite biregular by Lemma 11.2.

In particular, $\delta_y = \delta_z$ if $\partial(x,y) = \partial(x,z)$, as there is a path of length $2 \cdot \partial(x,y)$;

$$y \sim \cdots \sim x \sim \cdots \sim z$$
.

Hence,

$$E_i^*\delta \in \operatorname{Span}\left(\sum_{y \in X, \partial(x,y) = i} \hat{y}\right).$$

Since $E_0^*\delta, E_1^*\delta, \dots, E_d^*\delta$ forms a basis for $T(x)\delta$, we have (ii).

$$(ii) \rightarrow (iii)$$
 Fix $x \in X$, and let $T \equiv T(x)$, $E_i^* \equiv E_i^*(x)$, and $d \equiv d(x)$.

$$A \sum_{y \in X, \partial(x,y) = i} \hat{y} = \sum_{z \in X} |\{y \in X \mid \partial(y,z) = 1, \ \partial(x,y) = i\}|\hat{z}$$
 (12.6)

$$= \sum_{z \in X, \partial(x,y) = i-1} b_{i-1}(x,z)\hat{z} \tag{12.7}$$

$$+\sum_{z\in X,\partial(x,y)=i}a_i(x,z)\hat{z}$$
 (12.8)

$$+ \sum_{z \in X, \partial(x,y) = i+1} c_{i+1}(x,z)\hat{z}$$
 (12.9)

$$\in \operatorname{Span}\left\{\sum_{z\in X, \partial(x,z)=j} \hat{z} \mid j=0,1,\dots,d\right\}. \tag{12.10}$$

Hence, $b_{i-1}(x, z)$, $a_i(x, z)$ and $c_{i+1}(x, z)$ depend only on i and x, and not on z. Therefore, Γ is distance-regular with respect to x. $(iii) \rightarrow (i)$ Fix $x \in X$, and let $T \equiv T(x), E_i^* \equiv E_i^*(x)$, and $d \equiv d(x)$. By defintion of distance-regularity, for every i $(0 \le i \le d)$,

$$A\left(\sum_{y \in X, \partial(x,y)=i} \hat{y}\right) = b_{i-1}(x) \sum_{y \in X, \partial(x,y)=i-1} \hat{y}$$

$$+ a_{i}(x) \sum_{y \in X, \partial(x,y)=i} \hat{y}$$

$$+ c_{i+1}(x) \sum_{y \in X, \partial(x,y)=i+1} \hat{y}.$$

$$(12.11)$$

$$(12.12)$$

$$+ a_i(x) \sum_{y \in X} \widehat{g}(x, y) = i \qquad (12.12)$$

$$+ c_{i+1}(x) \sum_{y \in X, \partial(x,y)=i+1} \hat{y}.$$
 (12.13)

Hence.

$$W = \left\{ \sum_{y \in X, \partial(x,y) = i} \hat{y} \mid 0 \le i \le d \right\}$$

is A-invariant and so T-invariant. Since $\hat{x} \in W$, $T\hat{x} = W$ is the trivial module and $T\hat{x}$ is thin.

Next, we show more is true if (i) - (iii) hold in Lemma 12.1.

In fact, d(x), $a_i(x)$, $c_i(x)$, and $b_i(x)$ are

$$\begin{cases} \text{independent of } X & \text{if } \Gamma \text{ is regular; or} \\ \text{constant over } X^+ \text{ and } X^- & \text{if } \Gamma \text{ is biregular.} \end{cases}$$

Let $\Gamma = (X, E)$ be any (connected) graph. Pick vertices $x, y \in X$.

Let W be a thin, irreducible T(x)-module, and measure $m:\mathbb{R}\to\mathbb{R}$ determined by W.

Let W' be a thin, irreducible T(y)-module, and measure $m: \mathbb{R} \to \mathbb{R}$ determined by W'.

Recall W, W' are orthogonal if

$$\langle w, w' \rangle = 0$$
 for all $w \in W, w' \in W'$.

We shall show if W and W' are note orthogonal, then m and m' are related:

$$m \cdot \text{poly}_1 = m' \cdot \text{poly}_2$$

for some polynomials with

$$\operatorname{deg poly}_1 + \operatorname{deg poly}_2 \le 2 \cdot \partial(x, y).$$

Notation. V: standard module of Γ .

H: any subspace of V.

 $V = H + H^{\perp}$ orthogonal direct sum,

and for $v=v_1+v_2 \text{ proj}_H: V \to H \ (v \mapsto v_1)$: linear transformation.

Observe: For every $v \in V$,

$$v - \operatorname{proj}_H v \in H^{\perp}$$
.

So,

$$\langle v - \mathrm{proj}_H v, h \rangle = 0 \quad \text{for all} \ \ h \in H \text{ or},$$

$$\langle v, h \rangle = \langle \mathrm{proj}_H v, h \rangle \quad \text{for all} \ \ v \in V, \ \ \text{and for all} \ \ h \in H.$$

Theorem 12.1. Let $\Gamma = (X, E)$ be any graph. Pick vertices $x, y \in X$ and set $\Delta = \partial(x, y)$. Assume

W: thin irreducible T(x)-module with endpoint r, diameter d, and measure m.

W': thin irreducible T(y)-module with endpoint r', diameter d', and measure m'.

W and W' are not orghotonal.

Now ppick

$$0 \neq w \in E_r^*(x)W, \quad 0 \neq w \in E_{r'}^*(x)W'.$$

Then,

$$(i)\ \operatorname{proj}_{W'}w = p(A)\frac{\|w\|}{\|w'\|}w'$$

for some $0 \neq p \in \mathbb{C}[\lambda]$ with $\deg p \leq \Delta - r' + r, d'$,

$$\mathrm{proj}_W w' = p'(A) \frac{\|w'\|}{\|w\|} w$$

 $\label{eq:constraint} \textit{for some } 0 \neq p' \in \mathbb{C}[\lambda] \textit{ with } \deg p \leq \Delta - r + r', d.$

(ii) For all eigenvalues θ_i of Γ ,

$$\frac{\langle E_i w, E_i w' \rangle}{\|w\| \|w'\|} = m(\theta_i) \overline{p'(\theta_i)}.$$

(iii) For all eigenvalues θ_i of Γ ,

$$p(\theta_i)p'(\theta_i)$$

is in a real number in interval [0,1].

Proof. (i) Since W, W' are not orthogonal, there exist

$$v \in W, v' \in W'$$
 sich that $\langle v, v' \rangle \neq 0$.

Then there exists $a \in M$ such that

$$v' = aw'$$
.

(This is becase $w_i' = p_i'(A)w_0'$ and hence for every $v' \in W'$, there is a polynomial $q \in \mathbb{C}[\lambda], q(A)w_0' = v$.)

We have

$$0 \neq \langle v', v \rangle = \langle aw', v \rangle = \langle w', a^*v \rangle$$

and $a^*v \in W$.

Hence, $\operatorname{proj}_W w' \neq 0$.

Let $p_0,\dots,p_d\in\mathbb{C}[\lambda]$ be from Lemma 9.1.

Then, $w_i = p_i(A)w$ is a basis for $E^*_{r+i}(x)W \quad (0 \leq i \leq d).$

Hence,

$$\mathrm{proj}_W w' = \alpha_0 w_0 + \dots + \alpha_d w_d \quad \text{for some } \ \alpha_j \in \mathbb{C}.$$

Set

$$p' := \frac{\|w\|}{\|w'\|} \sum_{i=0}^d \alpha_i p_i.$$

Then $0 \neq p' \in \mathbb{C}[\lambda]$ and $\deg p' \leq d$.

Claim: $\alpha_i = 0 \ (\Delta - r + r' < i \leq d).$

In particular, $\deg p' \leq \Delta - r + r'$.

Pf. Obseve:

$$w' \in E_{r'}^*(y)V, \quad w \in E_r^*(x)V,$$

for $\partial(x,y) = \Delta$.

$$E_{r'}^*(y)V \cap E_{r+i}^*(x)V = 0$$

by triangle inequality.

$$(\Delta = \partial(x, y) < r + i - r' \text{ or } \Delta + r' < r + i \text{ by our choice of } i.)$$

Hence,

$$E_{r'}^*(y)V\bot E_{r+i}^*(x)V,$$

or

$$0 = \langle w', w_i \rangle \tag{12.14}$$

$$= \langle \operatorname{proj}_{W} w', w_{i} \rangle \tag{12.15}$$

$$=\sum_{j=0}^{d}\alpha_{j}\langle w_{j},w_{i}\rangle \tag{12.16}$$

$$= \alpha_i \|w_i\|^2. {(12.17)}$$

Hence, $\alpha_i = 0$. Thus,

$$\operatorname{proj}_{W} w' = \sum_{i=0}^{\Delta + r' - r} \alpha_{i} w_{i}$$
 (12.18)

$$= \sum_{i=0}^{\Delta + r' - r} \alpha_i p_i(A) w_0 \tag{12.19}$$

$$= p'(A) \frac{\|w'\|}{\|w\|} w. \tag{12.20}$$

(ii) We have

$$\frac{\langle E_i w, E_i w' \rangle}{\|w\| \|w'\|} = \frac{\langle E_i w, w' \rangle}{\|w\| \|w'\|} \tag{12.21}$$

$$= \frac{\langle E_i w, \text{proj}_W w' \rangle}{\|w\| \|w'\|} \quad \text{as } \text{proj}_W w' = p'(A) \frac{\|w\|}{\|w'\|} w \quad (12.22)$$

$$=\frac{\langle E_i w, p'(A)w\rangle}{\|w\|^2} \tag{12.23}$$

$$=\frac{\langle E_i w, E_i p'(A) w \rangle}{\|w\|^2} \tag{12.24}$$

$$= \overline{p'(\theta_i)} \frac{\|E_i W\|^2}{\|w\|^2} \tag{12.25}$$

$$= \overline{p'(\theta_i)} m(\theta_i). \tag{12.26}$$

Moreover, as $m(\theta_i)$, $m'(\theta_i) \in \mathbb{R}$,

$$\frac{\langle E_i w, E_i w' \rangle}{\|w\| \|w'\|} = \frac{\overline{\langle E_i w, E_i w' \rangle}}{\|w'\| \|w\|} = \overline{\overline{p(\theta_i)}} m'(\theta_i) = p(\theta_i) m'(\theta_i).$$

(iii) Sicne,

$$\frac{|\langle E_i w, E_i w' \rangle|^2}{\|w\|^2 \|w'\|^2} = p(\theta_i) p'(\theta_i) m(\theta_i) m'(\theta_i),$$

$$\begin{split} p(\theta_i)p'(\theta_i) &= \frac{|\langle E_i w, E_i w' \rangle|^2}{m(\theta_i)m'(\theta_i)\|w\|^2\|w'\|^2} \in \mathbb{R} \\ &= \frac{|\langle E_i w, E_i w' \rangle|^2}{\frac{\|E_i w\|^2}{\|w'\|^2}\|w\|^2\|w'\|^2}. \end{split} \tag{12.28}$$

$$= \frac{|\langle E_i w, E_i w' \rangle|^2}{\frac{\|E_i w\|^2}{\|w\|^2} \frac{\|E_i w'\|^2}{\|w'\|^2} \|w\|^2 \|w'\|^2}.$$
 (12.28)

By Cauchy-Schwartz inequality,

$$(|\langle a,b\rangle| \leq \|a\| \|b\|,)$$

$$\frac{|\langle E_i w, E_i w' \rangle \|^2}{\|E_i w\|^2 \|E_i w' \|^2} \leq 1.$$

Hence, we have the assertion.

Chapter 13

Modules of a DRG

Wednesday, February 17, 1993

Chapter 14

Title of the Chapter

Wednesday, February 17, 1993 # Edit Date

Bibliography

- Charles W. Curtis, I. R. (2006). Representation Theory of Finite Groups and Associative Algebras. Chelsea Pub Co, uk edition. 978-1138359420.
- Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. 978-0821840665.
- Xie, Y. (2017). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN 978-1138469280.
- Yihui Xie, J.J Allaire, G. G. (2018). *R Markdown: The Definitive Guide*. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. 978-1138359420.

Index

```
automorphism, 19
bipartite, 13, 17
Cayley graph, 19
character, 22
connected, 10
diameter, 29
distance, 10
distance-regular, 69
distance-transitive, 50
dual thin, 42
endpoint, 29
graph, 7
isomorphic, 32
measure, 58
module, 10
multiplicity, 32
path, 9
reducible, 13
regular, 9
restricted, 42
subconstituent algebra, 10
thin, 42
valency, 9
vertex transitive, 19
```