

Bio

Li-Tin (Lily) Chen

Data Scientist from Institute of Data Bachelor of Midwifery

Diabetes in Australia

In 2016-2017

1.2 MILLION

diabetes-related hospitalisations

Annual Health
Expenditure:

\$6 BILLION

10% of all hospitalisations

13% readmitted within 30 days

What can be done?

How to lower hospital readmission rate for diabetic patients to minimise unnecessary spending?

Average cost per hospital admission: \$7656 Current readmission rate: 13%

\$230 million saved

- 1. What factors show strong correlation with readmission rate?
- 2. What model can we use to accurately predict future readmission based on existing data?

Dataset Description

Source: UCI repository

Collection Timeframe: 1999-2008

- Contain missing values
- Incorrect data type

Final Cleaned Dataset:

- 97874 rows x 15 columns
- No missing values
- All data of numeric type

Outcome variable: readmitted

- 0 = No readmission
- 1 = Readmitted

Data Exploration

Imbalanced outcome distribution:

- High in non-readmission (0)
- Low in readmitted (1)

Similar features distributions between the two outcome classes – low correlation

EDA Findings

Imbalanced Dataset

	Outcome	Number of Patients
0	No Readmission	86705
1	Readmitted	11169

Low Correlation between features and outcome variable (readmitted)

readmitted	-0.0027	0.02	0.046	0.024	-0.0099	0.042	0.019	0.061	0.17	0.13	0.052	-0.02	-7.1e-05	0.035	0.042	
	gender	age	days_in_hospital	num_lab_procedures	num_procedures	num_medications	number_outpatient	number_emergency	number_inpatient	total_visits	number_diagnoses	num_prescribed_meds	umchange_med_dosage	insulin_administration	insulin_dosage_change	readmitted

Data Allocation

Data Processing

Imbalanced data leads to bias in favour of the majority class (No readmission)

Data Balancing

Feature Selection

Identify strong predictors of the outcome

Top 5 Features

Top Contributing Features

Models Evaluation

- 7 Models
- Randomised search with 5-fold cross validation for finding best hyperparameters combinations.

		Model	Recall	Precision	f1 Score
	0	Log Reg	0.465	0.134	0.208
L	1	KNN	0.356	0.160	0.221
	2	DT	0.497	0.130	0.206
	3	RF	0.504	0.132	0.209
	4	Bagging	0.495	0.130	0.205
	5	Boosting	0.498	0.130	0.206
	6	Stacking	0.480	0.132	0.208

Recall: 36% of actual readmissions were labelled correctly

Precision: 16% of all predicted readmissions were actual readmissions

F1 score of 0.22 – harmonic mean between precision and recall

KNN Performance on 'Unseen' Data

	Train Set	Test Set	Val Set
Accuracy	0.599	0.711	0.714
AUC	0.599	0.556	0.560
Recall	0.437	0.356	0.359
Precision	0.646	0.160	0.166
f1 Score	0.521	0.221	0.227

Main Finding: Factors we thought might be useful (prior to data analysis) is found to give low predictive values in predicting the readmission.

Recommendations

References

Supporting Documentation on GitHub Repository:

- Exploratory Data Analysis: Lily-Chen/capstone/code/Lily Capstone Project Diabetes Hospital Readmission EDA.ipynb
- Modelling: Lily-Chen/capstone/code/Lily Capstone Project Diabetes Hospital Readmission Modelling FINAL.ipynb

Data Source: https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008#

Websites:

- https://static.diabetesaustralia.com.au/s/fileassets/diabetes-australia/e7282521-472b-4313-b18e-be84c3d5d907.pdf
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966497/#:~:text=Poor%20medication%20adherence%20in%20T2D,and%20managing%20complications%20of%20diabetes.
- https://towardsdatascience.com/hyper-parameter-tuning-and-model-selection-like-a-movie-star-a884b8ee8d68
- https://www.aihw.gov.au/reports/diabetes/diabetes/contents/what-is-diabetes
- https://www.sciencedirect.com/science/article/pii/S1059131117302455
- https://link.springer.com/article/10.1186/s12913-018-3723-4
- https://lukesingham.com/whos-going-to-leave-next/
- ttps://towardsdatascience.com/the-5-classification-evaluation-metrics-you-must-know-aa97784ff226
- https://link.springer.com/article/10.1007/s11892-018-0989-1

