Tarea 3

Seminario de Geometría B

Grupos Kleinianos: Geometría y Visualización

Renato Leriche Vázquez y José Daniel Blancas Camarena

Semestre 2023 - 2

Teoría

Antes de los ejercicios, un paréntesis. Recuerden que:

 \blacksquare La proyección estereográfica (desde el polo norte (0,0,1)) es $\varPi:S^2\to \hat{\mathbb{C}}$ dada por

$$\Pi(x_1, x_2, x_3) = \frac{x_1}{1 - x_3} + \frac{x_2}{1 - x_3}i$$

y $\Pi(0,0,1) = \infty$. Además,

$$\Pi^{-1}(z) = \frac{1}{|z|^2 + 1}(z + \overline{z}, i\overline{z} - iz, |z|^2 - 1)$$

$$\Pi^{-1}(\infty) = (0, 0, 1).$$

- Una transformación de Möbius $T: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ está dada por $T(z) = \frac{az+b}{cz+d}$ donde $a,b,c,d \in \mathbb{C}$ son tales que $ad-bc \neq 0$. Además, si c=0 entonces $T(\infty) = \infty$, y si $c \neq 0$ entonces $T(\infty) = a/c$ y $T(-d/c) = \infty$.
- Una inversión por un círculo C (con centro en $z_0 \in \mathbb{C}$ y radio r_0) es $I_C : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ dada por

$$I_C(z) = z_0 + \frac{r_0^2}{z - z_0}$$

(nótese que el "denominador" es $\overline{z-z_0}$, es decir, el conjugado de $z-z_0$).

Demuestra que

1. [2 pts]. $\Pi \circ Rot_{\pi,X} \circ \Pi^{-1}(z) = \frac{1}{z}$, es decir, la transformación de Möbius $z \mapsto \frac{1}{z}$ consiste en proyectar el plano complejo extendido $\hat{\mathbb{C}}$ a la esfera S^2 , rotar la esfera π radianes en torno al eje X y luego proyectar de S^2 a $\hat{\mathbb{C}}$.

- 2. [3 pts]. La composición de dos inversiones por círculos en $\hat{\mathbb{C}}$ distintas es una transformación de Möbius. Ayuda: no es necesario hacer las las cuentas, pero si gustan hacerlas también está bien.
- 3. [3 pts]. Si $T(z)=\frac{az+b}{cz+d}$ es una transformación de Möbius con $c\neq 0, L$ es una recta que pasa por $z_0\in\mathbb{C}$ y el polo de T es tal que $-\frac{d}{c}\notin L$, entonces:
 - a) T(L) es un círculo en \mathbb{C} e $I_{T(L)} = T \circ Ref_L \circ T^{-1}$.
 - b) T(L) tiene centro $z_1 = T(Ref_L(-\frac{d}{c}))$ y radio $r_1 = |z_1 T(z_0)|$.
- 4. [2 pts]. En la red de Steiner de una transformación de Möbius loxodrómica, las espirales intersecan a los círculos de Apolonio en exactamente un punto y en un ángulo constante para toda la red. Ayuda: Recuerda que el vector tangente a una curva parametrizada diferenciable $\alpha(t)$ es $\alpha'(t)$.

Programación

Crea un programa para dibujar lo que se indica.

- 1. **[1 pt]**. Las órbitas de conjuntos de puntos $A, B \subset \mathbb{C}$ distintos (por ejemplo, una "retícula cuadrada" y el "Dr. Stickler"), bajo la transformación de Cayley $K(z) = \frac{z-i}{z+i}$ (que es una transformación de Möbius).
- 2. [3 pts]. Las imágenes de conjuntos de puntos $A, B \in \mathbb{C}$ distintos (por ejemplo, una "retícula cuadrada" y el "Dr. Stickler") bajo tres inversiones en un círculo $I_C : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ distintas. Primero <u>crea</u> una struct que represente inversiones, con sus correspondientes constructores y método objeto función para evaluación de puntos (números complejos).

[1 pt extra]. Implementa la function para componer dos inversiones, cuyo resultado es una transformación de Möbius.

- 3. [3 pts]. Las imágenes, bajo una transformación de Möbius $T(z) = \frac{az+b}{cz+d}$ tal que $c \neq 0$, de varias rectas paralelas que no contengan el polo de T. Primero implementa el método para objeto función con los cálculos del ejercicio $\overline{3}$. de teoría. (En la implementación completa faltaría el caso con polo finito de T en la recta L, pero no es necesario que realicen los cálculos para esto ni la implementación del caso.)
- 4. [3 pts]. La red de Steiner de una transformación de Möbius parabólica cuyo punto fijo es finito, indicando con diferentes colores las dos familias ortogonales de círculos.

Ejemplo: