# Course Logistics & Introduction



## Theory of Computation

CISC 603, Spring 2020, Daqing Yun

## Who, Where, and When

- Daqing Yun, CISC program
- Office: 1227, HU main building
- Email: dyun@harrisburgu.edu
- Online meetings
  - Via AdobeConnect
     AdobeConnect
  - Thursdays, 6:00 8:00 pm EST
- See Canvas page for more details

## The 1<sup>st</sup> In-Class Attendance Check

- Name
- Program (CSMS, ISEM, ANLY, etc.)
- Year
- Why do you take this course?
- Have you ever heard of
  - Finite automata
  - Regular expressions
  - Pushdown automata
  - Turning machines
  - Algorithms
  - Complexity
  - P, NP, NP-complete





# **Big Picture**

| Quantum Computer                                     | Computers          |                     |                      |  |  |  |
|------------------------------------------------------|--------------------|---------------------|----------------------|--|--|--|
| Quantum Field Theory                                 |                    | Integrated Circuit  |                      |  |  |  |
|                                                      |                    | Combinational Logic |                      |  |  |  |
| Qubit                                                |                    | Bit                 |                      |  |  |  |
| Quantum Mechanics                                    |                    | Semiconductor       |                      |  |  |  |
| Turning Abstract Machine                             |                    |                     |                      |  |  |  |
| Complexity Theory The                                | Theory of Automata |                     | Computability Theory |  |  |  |
| Theory of Computation   Theoretical Computer Science |                    |                     |                      |  |  |  |
| Discretization                                       |                    |                     |                      |  |  |  |
| Arithmetization of Analysis                          |                    |                     |                      |  |  |  |
| Mathematical Analysis                                |                    |                     |                      |  |  |  |

- What does it mean, really?
- What to do when we have a problem that looks easy?

If you can tell it is easy, then



What to do when we have a problem that looks hard?



"I can't find an efficient algorithm, I guess I'm just too dumb."

What to do when we have a problem that looks hard?



"I can't find an efficient algorithm, because no such algorithm is possible."

What to do when we have a problem that looks hard?



"I can't find an efficient algorithm, but neither can these famous people."

## Sounds good, but ...

- What is an "easy/hard" problem? Define it!
- What is an "efficient" algorithm? Define it!
- We cannot just simply say
  - "There is no such efficient algorithm" prove it!
  - "These smart people cannot solve it either" prove it!
- What is the best we can do?
  - Give up ⊗ ? ... or ...
  - Design approximation algorithms?
    - What are these? We know how it works for the worst case
    - What if the problem is not approximable? prove it!
    - and then what to do? heuristics

#### What will we learn in this course?

- What are the mathematical properties of computer hardware and software?
- What is computation, and what is an algorithm?
- Can we give rigorous mathematical definitions of these notions?
- What are the limitations of computers?
- Can everything be computed?
- Central question: what are the fundamental capabilities and limitations of computers?

# **Theory of Computation**

- The question was asked by mathematicians in 1930's when they were trying to understand the meaning of "computation"
- Whether all mathematical problems can be solved in a systematic way?
- Led to the computers as we know and use today
- Three areas:
  - Complexity Theory
  - Computability Theory
  - Automata Theory

# **Complexity Theory**

- What makes some problems computationally hard and other problems easy?
  - Informally, a problem is called "easy" if it is "efficiently" solvable
  - Examples:
    - Sorting a sequence of, say, 1,000,000 numbers
    - Searching for a name in a telephone directory
    - Computing the shortest route to drive from HBG to where you live now

# **Example**

#### **Problem: Maximal Continuous Sub-array Sum Problem**

**Given**: an integer array  $A = a_1, a_2, ..., a_n$ .

**Output**: the sub-array of A starts from index i and ends at index j that has

the maximal sum.

| -2 | -3 | 4 | -1 | -2 | 1 | 5 | -3 |
|----|----|---|----|----|---|---|----|
| 0  | 1  | 2 | 3  | 4  | 5 | 6 | 7  |

## $O(n^3)$

#### **Algorithm 1** BruteForceMaxSum(A)

```
1: maxSum = A[1]
```

2: **for** 
$$i = 1$$
 **to**  $n$  **do**

3: for 
$$j = i$$
 to  $n$  do

4: 
$$sum = 0$$

6: 
$$sum + = A[k]$$

7: **if** 
$$maxSum < sum$$
 **then**

8: 
$$maxSum = sum$$

9: **return** maxSum

# **Example**

#### **Problem: Maximal Continuous Sub-array Sum Problem**

**Given**: an integer array  $A = a_1, a_2, ..., a_n$ .

**Output**: the sub-array of A starts from index i and ends at index j that has

the maximal sum.

| -2 | -3 | 4 | -1 | -2 | 1 | 5 | -3 |
|----|----|---|----|----|---|---|----|
| 0  | 1  | 2 | 3  | 4  | 5 | 6 | 7  |

# $O(n^2)$

#### **Algorithm 2** BruteForceMaxSumFaster(A)

```
1: maxSum = A[1]
```

2: **for** 
$$i = 1$$
 **to**  $n$  **do**

$$3: \quad sum = 0$$

4: for 
$$j = i$$
 to  $n$  do

5: 
$$sum + = A[j]$$

6: **if** 
$$maxSum < sum$$
 **then**

7: 
$$maxSum = sum$$

8: **return** maxSum

#### **Algorithm 3** DivideConquerMaxSum(A)

#### 1: **procedure** MaxSum(A, L, R)

2: if 
$$L < R$$
 then

$$3: m = \lfloor \frac{L+R}{2} \rfloor$$

#### **Problem: Maximal Continuo**

**Given**: an integer array A = **Output**: the sub-array of A the maximal sum.



$$O(n\log_2 n)$$

4: 
$$\mathcal{P}_1 = \text{MAXSUM}(A, L, m-1)$$

5: 
$$\mathcal{P}_2 = \text{MAXSUM}(A, m, R)$$

6: 
$$\mathcal{P}_3 = S = A[m-1]$$

7: **for** 
$$i = m - 2$$
 **to**  $L$  **do**

$$S = S + A[i]$$

9: if 
$$S > \mathcal{P}_3$$
 then

10: 
$$\mathcal{P}_3 = S$$

11: 
$$\mathcal{P}_4 = S = A[m]$$

12: **for** 
$$i = m + 1$$
 **to**  $R$  **do**

$$S = S + A[i]$$

14: if 
$$S > \mathcal{P}_4$$
 then

15: 
$$\mathcal{P}_4 = s$$

16: **return** 
$$\max\{\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3 + \mathcal{P}_4\}$$

18: 
$$L = 1$$

$$19: \qquad R = n$$

20: **return** 
$$MAXSUM(A, L, R)$$

# **Example**

#### **Problem: Maximal Continuous Sub-array Sum Problem**

**Given:** an integer array  $A = a_1, a_2, ..., a_n$ .

**Output**: the sub-array of A starts from index i and ends at index j that has

the maximal sum.



O(n)

#### **Algorithm 4** DPMaxSum(A)

1: 
$$max = a_1$$

2: 
$$\mathcal{P}_1 = a_1$$

3: **for** 
$$i = 2$$
 **to**  $n$  **do**

4: if 
$$\mathcal{P}_{i-1} > 0$$
 then

5: 
$$\mathcal{P}_i = \mathcal{P}_{i-1} + a_i$$

6: else

7: 
$$\mathcal{P}_i = a_i$$

8: if 
$$max < \mathcal{P}_i$$
 then

9: 
$$max = \mathcal{P}_i$$

10: **return** max

# **Complexity Theory**

- What makes some problems computationally hard and other problems easy?
  - Informally, a problem is called "hard" if it cannot be solved efficiently, or if we do not know whether it can be solved efficiently
  - Examples:
    - Time table scheduling for all courses at HU
    - Factoring a 300-digit integer into its prime factors
    - Coloring maps using red, blue, green colors
    - Computing a layout for chips in VLSI

## **Example**

**Problem: Graph 3-Colorability Problem** 

**Given**: a graph G = (V, E), an integer  $k=3 \le |V|$ 

**Question**: can the vertices of G be colored using at most k colors such

that adjacent vertices have different colors?

NP-complete



# **Complexity Theory**

#### Central question:

- Classify problems according to their degree of "difficulty"
- Give a rigorous proof that problems seem to be "hard" are really "hard"
- Recall that what we can do when problem are hard (see Slide 9)

# **Computability Theory**

- In 1930's, Gödel, Church, and Turing discovered that some of the fundamental problems cannot be solved by a "computer", which are only invented in 1940's
- "Is an arbitrary math statement true or false?"
- Formal definitions are needed to tackle such a problem
  - Computer
  - Algorithm
  - Computation
- Theoretical models that were proposed in order to understand solvable and unsolvable problems led to the development of real computers

# **Computability Theory**

- Central question:
  - Classify problems as being solvable and unsolvable
  - Can you write a program capable of predicting the behaviors of another program?

## **Automata Theory**

- Deal with definitions and properties of different types of "computation models"
- Context-Free Grammars Languages
  - Programming language definitions
- Finite Automata Control
  - Text processing, lexical analysis
- Turing Machines Hardware
  - A simple abstract model of a "real" computer, such as your PC at home

## **Automata Theory**

#### Central question:

- Do these models have the same power, or can one model solve more problems than the other?
- What kinds of languages can be recognized by NFAs, PDAs, TMs?

- Formulating "theory of computation" threatens to be a huge project
- Narrow it down in its simplicity yet think systematically about what computers do
- Explaining foundations of theoretical CS in an engaging, practical way without assuming significant academic background
- "It receives some input, in the form of a string of characters; it performs some sort of "computation"; and it gives us some output"

- Decision problems: questions can be answered either yes or no
  - "Is it a legal algebraic expression?"
  - The language accepted is the set of strings to which the computer answers yes
  - The language of legal algebraic expressions
- Computers play a role of a language acceptor
- Accepting a language is approximately the same as solving a decision problem
  - By receiving a string that represents an instance of the problem and answering either yes or no
- Many interesting computational problems can be formulated as decision problems

- Finite automata solve decision problems
  - Model: finite automaton
    - Proceeds by moving among a finite number of distinct states in response to input symbols, whenever it reaches an accepting state, answer "yes"
    - Lack of any auxiliary memory
  - Regular languages
    - Languages accepted by finite automaton
    - Regular expression or regular grammars
  - Pushdown automaton
    - More capable than finite automaton
    - Employs a stack
    - Generated by more general grammar context-free grammars

- Pushdown automaton
  - More capable than finite automaton
  - Employs a stack
  - Generated by more general grammar context-free grammars
  - Can describe much of the syntax of high-level programming languages as well as legal algebraic expression and balanced strings of parentheses

#### Turning machines

- The most general model of computation we will study
- Carry out any algorithmic procedure in principle as powerful as any computer
- Accept recursively enumerable languages, generated by, e.g., unrestricted grammars
- Not very "user-friendly", leave something to be desired as an actual computer
- Can be used as a yardstick for comparing the inherent complexity of one solvable problem to that of another
- Problems that can be solved in a reasonable time and those that cannot could be distinguished by the number of steps a Turing machine needs to solve a problem – computational complexity

#### Turning machines

- Simpler than any actual computer, because it is abstract
- Enable our study of computation, without becoming bogged down by hardware details or memory restrictions
- A TM is an implementation of an algorithm studying one in detail is equivalent to studying an algorithm, and studying them in general is a way of studying the algorithmic method
- Having a precise model makes it possible to identify certain types of computations that Turing machines cannot carry out
- Accept recursively enumerable languages, not all languages
  - i.e., cannot solve every problem
  - Undecidable problems
  - A limitation of algorithmic method

- An (unofficial) recipe of solving problems
  - 1. Problem formulation specific about what to achieve
  - Complexity analysis how hard?
  - Algorithm design abstract solution
  - 4. Implementation real-life solution
  - 5. Evaluation performance

## **Topics**

- Introduction what we are doing now
- Finite automata and the languages they accept
- Regular expressions
- Nondeterminism
- Context-free languages
- Pushdown automata
- Turing machines
- Undecidable problems
- Computable functions
- Computational complexity

## **Textbooks and Reading Materials**

- [Sipser] M. Sipser. *Introduction to the Theory of Computation* (3rd Ed.), 2012, ISBN: 978-1133187790.
- **[GJ]** M.R. Garey and D.S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*, 1979, ISBN: 0-7167-1044-7.
- **[DPV]** S. Dasgupta, C. Papadimitriou, and U. Vazirani. *Algorithms*, 2008, ISBN: 0073523402.
- [JS] R. Johnsonbaugh and M. Schaefer. Algorithms, 2003, ISBN: 0023606924.
- **[WS]** D. Williamson and D. Shmoys. *The Design of Approximation Algorithms*, 2011, ISBN: 0521195276.
- [Stuart] T. Stuart. *Understanding Computation: From Simple Machines to Impossible Programs*, 2013, ISBN: 978-1449329273. http://computationbook.com













## **Course Project**

#### A Toy Compiler

- Programming challenge: write a program (using any language of your choice) that can "understand" and "execute" some commands you defined beforehand
- For example, see in-class demo

```
// this is a curve of sin function
origin is (200,200);
rot is 0;
scale is (10,4);
for T from 0 to 2*pi + pi/50 step pi/500 draw(T,-30*sin(T));
```

 Course project deliverable 1 asks you to set up your development environment

#### I know you have other things to do, but ...





WWW.PHDCOMICS.COM

#### The first rule of CISC 603 is

- Don't plagiarize in CISC 603
- The second rule of CISC 603 is
  - Don't plagiarize in CISC 603
- Detection system
  - TurnItIn



- Penalty
  - 0 in this course, report to the University



# Thanks!

Questions?