Preliminary results of an echo integration-trawl survey for walleye pollock (*Theragra chalcogramma*) on the Bering Sea shelf and slope in June and July 2002

by Sarah Stienessen, Neal Williamson, Denise McKelvey and Taina Honkalehto

INTRODUCTION

Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) conduct research surveys of Bering Sea walleye pollock (*Theragra chalcogramma*) to estimate pollock distribution and abundance. Preliminary results presented here are from the echo integration-trawl (EIT) survey carried out between 4 June and 30 July 2002 on the eastern Bering Sea (EBS) shelf. The principal objective of the survey was to collect echo integration and trawl data to estimate midwater pollock abundance and distribution. This report summarizes observed pollock distribution, relative abundance, size composition and maturity information. Biomass estimates, acoustic system and intership calibration results, oceanography, and other survey results will be reported in a subsequent document. In addition to the EIT survey work, scientists from the National Marine Mammal Laboratory (NMML) conducted a marine mammal sighting survey along the EIT survey track. The AFSC survey was conducted in cooperation with the research vessel *TINRO* from TINRO-Centre, Vladivostok, Russia. Results of the NMML sighting survey and the RV *TINRO* survey will be reported elsewhere.

METHODS

Itinerary

Leg 1

3 Jun Embark scientists in Kodiak, AK

4-6 Jun Depart Kodiak 1500; calibration of acoustic system in Three Saints Bay,

Kodiak Island, AK. This includes time needed to diagnose and repair a

damaged transducer cable.

7 Jun Transit to Bering Sea.

8 Jun Calibration of acoustic system in Lost Harbor, Akutan Bay, AK.

9 Jun-2 Jul Echo integration-trawl survey of the EBS shelf through waypoint 20.1; personnel exchange in Dutch Harbor, AK on 17 June.

2-3 Jul Transit to Dutch Harbor; arrive 0900 3 July.

4-5 Jul Inport Dutch Harbor.

Leg 2

Depart Dutch Harbor 1200; calibration of acoustic systems in Captains Bay, Unalaska Island, AK.

7 Jul Transit to waypoint 21.0

8-24 Jul Echo integration-trawl survey of the EBS shelf through waypoint 29.1; intership calibration of scientific acoustic systems with the Russian RV *TINRO*

19-20 July.

25-28 Jul Transit to Dutch Harbor collecting acoustic data along 3 east-west oriented

transects.

29 Jul Calibration of acoustic system in Humpback Bay, Unalaska Island.

30 Jul Arrive Dutch Harbor 1200; end of cruise.

Acoustic Equipment

Acoustic data were collected with Simrad EK500¹ and EK60 quantitative echo-sounding systems on the NOAA ship *Miller Freeman*, a 66-m stern trawler equipped for fisheries and oceanographic research. Three split-beam transducers (38 kHz, 120 kHz, and 200 kHz) were

¹ Reference to trade names or commercial firms does not constitute U.S. Government endorsement.

mounted on the bottom of the vessel's centerboard extending 9 m below the water surface. Acoustic data were collected using the EK500 echo sounder operating at 38 kHz and 120 kHz frequencies. The 38 kHz data were processed using Simrad BI500 echo integration and target strength data collection and analysis software on a SUN workstation. Acoustic data collected using the Simrad EK60 echo sounder were collected at 200 kHz frequency and processed with SonarData Echolog Software. Results presented here are based on the 38 kHz data.

<u>Trawl Gear and Oceanographic Equipment</u>

Midwater and near-bottom echosign was sampled using an Aleutian Wing 30/26 Trawl (midwater trawl). On or near bottom echosign was sampled with an 83-112 bottom trawl without roller gear. Vertical net opening and depth were monitored with either a WESMAR third wire netsounder system or a Furuno acoustic link netsounder system. Both nets were fished with 5 m² Fishbuster trawl doors. A Methot trawl was used to target age-0 pollock and macrozooplankton.

Physical oceanographic data collected during the cruise included temperature/depth profiles obtained with a Sea-Bird Electronics temperature-depth probe (SBE-39) attached to the trawl headrope and conductivity-temperature-depth (CTD) profiles collected with a Sea-Bird CTD system at calibration sites and other locations. Sea surface temperature and salinity, and other environmental data were collected using the *Miller Freeman's* Scientific Computing System (SCS). Ocean current profile data were obtained using the vessel's centerboard-mounted acoustic Doppler current profiler system operating continuously in water-profiling mode.

Survey Design

The survey design consisted of 28 north-south transects spaced 20 nmi apart over the Bering Sea shelf from Port Moller, Alaska, to the U.S./Russia convention line (Fig. 1). Echo integration and trawl data were collected during daylight hours (typically between 0600 and 2400, depending on calendar date and location). Nighttime operations included additional trawling, target strength data collection, and acoustic system testing. Acoustic system settings used during the collection

were based on results from acoustic system calibrations and on experience from prior surveys. Pollock were sampled to determine sex, fork length, body weight, age, maturity, and ovary weight of selected females. Maturity was determined by visual inspection and categorized as immature, developing, pre-spawning, spawning, or post-spawning.

Data Analysis

Acoustic data were collected between 14 m from the surface (5 m below the centerboard-mounted transducer) and 0.5 m off the bottom. The depth limit of data collection was 1000 m. Data from echosign identified as pollock were stored in a relational database.

PRELIMINARY RESULTS

Biological data and specimens were collected from 135 trawl hauls (Table 1, Fig. 1): 108 using the midwater trawl; 18 using the bottom trawl; and 9 using the Methot trawl. Walleye pollock was the dominant species captured by weight in midwater and bottom trawl hauls (Tables 2 and 3). Jellyfish (Scyphozoa) were the next most abundant species group sampled in midwater trawl hauls by weight and Pacific cod (*Gadus macrocephalus*) were the next most abundant by weight in bottom trawl hauls. Methot trawl hauls caught mainly jellyfish and euphausiids (Table 4). During the cruise 40,234 pollock lengths were measured and 3233 pairs of otoliths were collected from pollock obtained in trawl hauls (Table 5).

Preliminary abundance estimates for pollock indicate that approximately one third of the total biomass was found east of 170°W and two thirds west of 170°W. The predominant length mode east of 170°W was 27 cm, with additional modes at 49 cm, 37 cm, and 15 cm (Fig. 2). West of 170°W the predominant length modes for pollock were 24 cm and 31 cm, with additional modes at 39 cm, 45 cm and 15 cm. Among pollock of both sexes larger than 29 cm

fork length (approximately age 3 and older), fewer than 1% were actively spawning and the majority (72% of males and 70% of females) were developing (Fig. 3).

Pollock were observed on all transects (Fig. 4). They were most dense north of Unimak Island (transects 5-8), southeast of St. Matthew Island (transects 18-20), and west of St. Matthew Island (transects 22-25). During daylight hours, pollock were usually observed in aggregations within 20 m of the sea floor or as discrete schools located throughout the water column. During the night pollock tended to disperse throughout the water column.

ACKNOWLEDGMENTS

The authors would like to thank the officers and crew of the NOAA ship *Miller Freeman* for their proficient field support.

SCIENTIFIC PERSONNEL

Organization

		Leg 1 (4 June-3 July)
Taina Honkalehto	F/USA	Chief Scientist	MACE
William Karp	M/USA	Fish. Biologist	MACE
Steve de Blois	M/USA	Fish. Biologist	MACE
Elaina Jorgensen	F/USA	Fish. Biologist	MACE (4-16 June)
Dale Hanson	M/USA	Fish. Biologist	MACE (16 June-3 July)
Mike Brown	M/USA	Computer Spec.	MACE
Laura Morse	F/USA	Biologist	NMML
Stephanie Norman	F/USA	Biologist	NMML
Suzanne Yin	F/USA	Biologist	NMML

Sex/Nationality Position

Name

⁵ Prelim.Results EBS EIT survey 9/5/02

Alexander Nikolayev	M/Russia	Acoustician	TINRO
Mikhail Stepanenko	M/Russia	Fish. Biologist	TINRO

Leg 2 (6-30 July)

Neal Williamson	M/USA	Chief Scientist	MACE
John Horne	M/Canada	Fish. Biologist	UW
Denise McKelvey	F/USA	Fish. Biologist	MACE
Sarah Stienessen	F/USA	Fish. Biologist	MACE
Laura Morse	F/USA	Biologist	NMML
Doug Kinzey	M/USA	Biologist	NMML
Paula Olson	F/USA	Biologist	NMML
Alexander Nikolayev	M/Russia	Acoustician	TINRO
Mikhail Stepanenko	M/Russia	Fish Biologist	TINRO
David Walker	M/USA	Teacher at sea	NOAA

- MACE Midwater Assessment and Conservation Engineering Program,
 Alaska Fisheries Science Center, Seattle, WA
- NMML National Marine Mammal Laboratory, AFSC, Seattle WA
- NOAA National Oceanic and Atmospheric Association, Seattle WA
- TINRO TINRO-Centre, Vladivostok, Russia
- UW University of Washington, Seattle WA.

Figure 1: Transect lines with locations of midwater (square), bottom (circle), and Methot (triangle) trawl hauls during the summer 2002 pollock echo integration-trawl survey of the eastern Bering Sea shelf and slope. Underlined numbers indicate transect sequence, and the

Figure 2: Estimated population of walleye pollock by length (proportion of numbers) between 14 m from the surface and 0.5 m off bottom from the summer echo integration-trawl survey of the eastern Bering Sea shelf and slope, MF0208.

Figure 3: Maturity stage (by sex) for pollock greater than 29 cm in length oberved in the 2002 echo intergration-trawl survey of the eastern Bering Sea shelf and slope.

Figure 4: Pollock acoustic backscatter along trackline during the summer 2002 echo intergration-trawl survey of the eastern Bering Sea shelf and slope. Transect numbers are underlined, and the Steller sea lion Conservation Area (SCA) is outlined. Z axis = 40, 000.

Table 1. Trawl station and catch data summary from the summer 2002 eastern Bering sea shelf/slope walleye pollock echo integration-trawl survey, MF2002-08.

Haul	Gear		Start time	Duration		Start P	osition		Depth	(m)	Temp. (d	deg. C)	Profile	Pollo	ck catch	Total catch
no.	type ¹	Date	(GMT)	(minutes)	Lati	tude	Long	itude	Gear B	ottom	Gear ²	Surface	$No.^3$	$(kg)^4$	number	(kg)
1 8	3-112	10 Jun	17:53	17	56	28.81	161	35.73	66	66	3.8	5.7		1,095.2	2,538	1,390.6
2	AWT	10 Jun	22:00	20	56	55.61	161	34.05	67	74	2.3	4.9	303	0.0	0	67.3
3 8	33-112	11 Jun	3:09	15	57	4.67	162	9.80	58	58	3.1	4.6	304	204.7	139	619.4
4	AWT	11 Jun	11:35	28	56	5.68	162	14.10	68	76	3.7	6.2	306	173.5	215	253.9
5 8	33-112	11 Jun	20:15	10	55	46.83	162	50.20	68	68	3.3	6.5	307	1,039.9	1,046	1,132.4
6 8	33-112	12 Jun	9:00	10	56	37.02	163	23.72	78	78	2.5	5.9	308	4.1	3	38.5
7	AWT	12 Jun	10:36	30	56	37.15	163	23.77	69	77	2.5	5.8	309	14.0	15	28.9
8	AWT	12 Jun	19:54	16	55	39.16	163	25.20	65	81	3.1	7	312	307.9	363	638.9
9 8	33-112	13 Jun	2:22	14	55	13.92	164	0.71	57	57	4.8	7.1	313	776.6	733	1,059.7
10	AWT	13 Jun	3:45	10	55	13.65	164	0.73	58	58	4.8	6.8	314	54.7	58	436.9
11	AWT	13 Jun	9:08	60	55	56.40	164	0.41	63	93	2.7	6.9	315	477.6	717	499.7
12	AWT	14 Jun	5:16	15	55	55.89	164	36.88	77	95	2.9	7.1	316	501.2	1,753	543.3
13	AWT	14 Jun	10:04	30	55	29.59	164	36.11	66	102	5.2	7.2	317	1,384.1	9,364	1,403.0
14	AWT	14 Jun	12:14	33	55	29.76	164	36.40	90	102	4.7	7.1	318	496.8	3,362	513.3
15	AWT	14 Jun	19:31	21	55	18.95	164	36.04	72	102	5.4	7.1	319	843.0	5,288	965.2
16 8	33-112	14 Jun	21:18	10	55	14.08	164	35.86	101	101	4.2	6.5	320	480.3	491	511.5
17	AWT	15 Jun	0:02	30	55	3.33	164	35.10	54	63	5.6	7.1	321	149.6	133	317.7
18	AWT	15 Jun	10:51	20	54	54.98	165	9.92	104	112	5.5	5.8	322	893.4	919	895.8
19	AWT	15 Jun	20:50	25	55	39.02	165	12.25	105	110	4.4	6.6	323	319.3	467	355.5
20	AWT	15 Jun	23:34	10	55	47.56	165	11.92	73	101	4.6	6.9	324	974.3	6,818	990.1
21 8	33-112	16 Jun	19:06	20	56	33.81	165	49.49	82	82	2.7	7.1	325	238.0	340	348.1
22	AWT	16 Jun	22:32	21	56	10.48	165	48.44	90	98	4.3	9.8	326	654.6	5,404	672.7
23	AWT	17 Jun	3:50	4	55	45.55	165	47.23	101	110	4.6	7.3	327	1,478.6	9,249	1,505.1
24	AWT	17 Jun	7:08	10	55	22.86	165	46.24	101	120	4.3	8.6	328	139.6	154	153.4
25 8	33-112	17 Jun	21:27	10	54	20.85	165	43.84	96	96	4.9	8	329	30.4	35	30.4
26	AWT	18 Jun	6:37	6	54	9.38	166	17.94	123	141	5.6	8.4	330	1,188.7	1,832	1,188.7
27	AWT	18 Jun	11:36	15	54	25.38	165	39.96	150	150	4.4	8.3	332	191.5	187	195.8

Table 1. Continued.

Haul	Gear		Start time	Duration		Start P	osition		Depth	(m)	Temp. (deg. C)	Profile	Polloc	k catch	Total catch
no.	type ¹	Date	(GMT)	(minutes)	Lati	tude	Long	itude	Gear E	Bottom	Gear 2	Surface	No. 3	$(kg)^4$	number	(kg)
28	AWT	18 Jun	14:37	13	54	22.19	165	45.16	128	137	5.5	7.9	333	6,019.7	8,818	6,019.7
29	AWT	19 Jun	3:56	2	56	13.52	166	24.99	96	109	4.6	8.3	334	1,796.2	11,317	1,826.3
30	AWT	19 Jun	10:54	10	56	28.81	166	25.66	51	99	5.7	9.6	335	61.2	402	84.5
31	AWT	20 Jun	0:00	26	57	4.44	167	5.23	71	74	3	13.3	336	27.0	32	69.6
32	AWT	20 Jun	3:53	15	56	39.27	167	3.34	93	96	3	12.2	337	813.3	3,326	851.7
33	AWT	20 Jun	5:03	30	56	38.41	167	3.26	46	96	6.5	12.2	338	3.1	8	157.0
34	AWT	20 Jun	8:42	12	56	17.24	167	1.49	77	117	4.3	9.9	339	639.8	2,311	643.2
35	AWT	20 Jun	10:52	30	56	24.35	167	1.88	52	112	6.6	10.2	340	466.7	2,704	469.3
36	AWT	21 Jun	9:23	15	55	33.15	167	33.68	128	138	3.6	9.8	341	593.8	639	600.6
37	AWT	21 Jun	18:12	17	55	57.70	167	36.14	124	132	3.8	8.7	342	1,466.4	1,517	1,476.9
38	AWT	21 Jun	23:45	7	56	42.35	167	40.43	89	96	3	10.1	343	1,110.1	2,855	1,153.7
39	AWT	23 Jun	0:39	13	56	38.59	168	18.13	96	108	3.2	10.1	345	788.8	1,509	800.5
40	AWT	23 Jun	7:08	18	55	51.96	168	12.93	137	142	3.8	9.2	346	1,792.9	1,685	1,794.5
41	83-112	23 Jun	18:42	30	55	29.74	168	9.92	155	155	3.8	8.3	347	185.6	150	494.1
42	AWT	24 Jun	2:51	9	56	23.24	168	51.73	113	128	3.5	10	348	591.4	845	591.4
43	AWT	24 Jun	8:01	10	56	52.71	168	55.02	60	85	3.5	9.7	349	607.0	1,986	631.4
44	AWT	24 Jun	17:50	15	57	12.88	168	57.66	72	75	3.6	9.5	350	184.0	331	200.6
45	AWT	25 Jun	9:17	40	57	59.20	169	41.60	59	71	2.3	9.1	351	295.1	460	319.3
46	AWT	25 Jun	17:51	17	57	25.48	169	37.09	67	71		8.4		905.1	1,901	923.5
47	AWT	26 Jun	9:17	30	56	21.23	170	4.10	104	110	3.4	9.8	354	716.8	1,305	720.9
48	AWT	26 Jun	17:31	26	56	46.17	170	5.68	84	90	4.5	9.8	355	937.0	1,273	1,023.3
49	AWT	27 Jun	1:12	16	57	45.36	170	17.05	69	73	2.7	9.8	356	375.9	1,302	394.2
50	AWT	27 Jun	22:25	60	59	11.55	171	10.84	70	77	0.8	7.8	358	539.3	603	957.5
51	AWT	28 Jun	5:00	12	58	24.67	171	2.49	79	84	2.4	7.6	359	1,426.1	7,648	1,522.7
52	AWT	28 Jun	9:37	20	57	49.23	170	56.00	66	87	3.5	10.3	360	437.2	844	455.4
53	AWT	28 Jun	13:57	25	57	49.47	170	56.05	68	87	3.5	9.7	361	531.3	816	535.3
54	AWT	28 Jun	19:26	16	57	5.14	170	48.47	85	88	3.9	9.7	362	409.0	644	466.0
55	AWT	28 Jun	23:31	13	56	36.58	170	43.61	107	115	3.9	10.3	363	390.3	723	393.3
56	83-112	29 Jun	2:56	19	56	15.71	170	40.21	124	124	3.8	9.6	364	1,378.7	1,465	1,730.0
57	AWT	29 Jun	12:02	20	56	39.49	171	22.02	114	121	3.6	10	365	488.6	593	488.6

Table 1. Continued.

Haul	Gear		Start time	Duration		Start P	osition		Depth	(m)	Temp. (deg. C)	Profile	Polloc	k catch	Total catch
no.	type ¹	Date	(GMT)	(minutes)	Lati	tude	Long	itude	Gear E	Bottom	Gear ²	Surface	No. 3	$(kg)^4$	number	(kg)
58	AWT	29 Jun	20:29	28	57	16.85	171	26.61	99	102	3.6	10.3	366	287.5	538	290.8
59	83-112	30 Jun	2:20	15	58	0.75	171	34.26	98	98	3.1	10.4	367	1,307.6	2,919	1,700.0
60	AWT	30 Jun	6:25	37	58	30.08	171	38.56	81	95	2.5	10.4	368	181.6	612	203.9
61	AWT	30 Jun	10:44	20	59	1.86	171	46.28	78	87	1.2	9.3	369	320.4	565	351.6
62	AWT	1 Jul	19:00	9	58	59.69	172	24.58	85	99	2	9.7	370	163.4	318	169.1
63	83-112	1 Jul	21:28	15	58	48.67	172	22.97	101	101	2.4	9.9	371	559.7	1,288	638.7
64	AWT	2 Jul	0:13	12	58	34.15	172	19.74	49	102	6	10.2	372	1,096.5	6,009	1,097.5
65	AWT	2 Jul	8:22	25	57	14.46	172	3.56	100	111	3.5	10.3	373	138.9	174	138.9
66	AWT	2 Jul	12:49	20	57	14.34	172	3.37	104	111	3.5	10.5	374	17.1	188	17.1
67	83-112	8 Jul	20:42	20	57	26.38	172	43.46	118	118	3.5	10.8	375	895.7	1,185	931.9
68	AWT	9 Jul	2:06	30	58	7.61	172	52.02	86	108	3.5	10.1	376	185.9	234	193.5
69	AWT	9 Jul	9:16	4	59	0.29	173	3.34	77	107	2.9	10.6	377	827.6	2,931	836.2
70	AWT	9 Jul	12:57	17	58	54.43	173	2.66	93	109	3.1	10.2	378	287.2	771	287.7
71	AWT	9 Jul	14:18	21	58	55.61	173	2.17	47	109	5.8	10.2	379	0.1	1	125.0
72	83-112	9 Jul	19:39	23	59	37.98	173	11.49	96	96	1.6	9	380	589.2	938	601.7
73	AWT	10 Jul	1:05	18	60	9.57	173	18.59	57	67	4.5	8.4		2.5	2	27.6
74	83-112	10 Jul	18:50	15	60	22.91	174	4.15	90	90	1.6	7.5	382	2,083.4	5,481	2,188.0
75	83-112	10 Jul	23:23	20	59	55.50	173	57.32	100	100	1.9	9.2	383	72.5	141	93.9
76	AWT	11 Jul	3:35	11	59	39.21	173	53.19	96	106	4.9	9.8	384	641.4	1,573	666.2
77	AWT	11 Jul	6:47	9	59	23.54	173	49.12	63	110	4.4	10	385	450.9	1,746	531.0
78	AWT	11 Jul	21:27	25	58	43.13	173	40.51	109	127	3.3	9.9	386	190.5	278	198.0
79	AWT	12 Jul	6:09	25	57	34.77	173	23.22	136	137	3.6	10.3	387	1,769.6	2,540	1,769.6
80	83-112	12 Jul	10:59	12	57	33.50	173	21.15	136	136	3.5	10.1	388	226.8	295	233.2
81	AWT	12 Jul	18:16	12	57	47.07	174	15.74	227	234	3.4	10.3	389	0.0	0	20.4
82	AWT	12 Jul	22:55	36	57	43.37	174	7.23	96	116	4	10.6	390	0.0	0	600.1
83	AWT	13 Jul	19:12	46	57	41.11	173	53.82	101	110	3.7	10.1	391	0.0	0	1.1
84	AWT	14 Jul	6:40	60	58	52.70	174	20.46	114	133	3.3	10.2	392	474.2	577	493.6
85	AWT	14 Jul	12:19	17	58	55.34	174	21.09	98	132	3.3	10.1	393	224.0	289	227.5
86	AWT	14 Jul	18:50	27	59	28.20	174	29.74	114	121	2.8	9.9	396	288.4	396	385.1
87	AWT	14 Jul	22:19	39	59	47.70	174	34.65	47	113	6.4	10.3	397	203.8	1,147	624.3

Table 1. Continued.

Haul	Gear		Start time	Duration		Start P	osition		Depth	(m)	Temp. (deg. C)	Profile	Polloc	k catch	Total catch
no.	type ¹	Date	(GMT)	(minutes)	Lati	tude	Long	itude	Gear B	ottom	Gear 2	Surface	No. ³	$(kg)^4$	number	(kg)
88	AWT	15 Jul	1:15	9	59	42.85	174	33.65	111	115	2.4	10.5	398	867.7	5,636	913.0
89	AWT	15 Jul	3:54	41	59	37.06	174	32.02	91	117	2.5	10.5	399	19.4	48	74.1
90	AWT	15 Jul	10:15	12	60	1.48	174	38.56	42	110	6.7	10.1	400	202.7	1,414	247.4
91	AWT	15 Jul	12:39	15	60	7.64	174	40.19	97	107	1.9	10.1	401	895.3	2,248	897.7
92	AWT	15 Jul	16:23	9	60	29.62	174	46.36	94	101	1.7	9.2	402	222.9	666	272.5
93	AWT	15 Jul	19:36	8	60	49.56	174	51.69	88	96	1.2	9.2	403	1,373.3	3,707	1,396.9
94	AWT	16 Jul	4:02	15	61	8.62	175	38.56	42	101	4	9.6	404	46.0	260	222.1
95	AWT	16 Jul	7:54	10	60	50.56	175	32.96	89	107	2.1	9.4	405	340.4	1,327	418.0
96	AWT	16 Jul	14:23	11	60	38.17	175	29.21	90	109	1.9	9.6	406	525.9	1,790	534.8
97	AWT	16 Jul	17:46	17	60	34.71	175	28.31	57	107	2.7	10	407	711.7	5,107	846.9
98	AWT	16 Jul	21:41	26	60	10.39	175	21.30	56	115	4.2	11	408	406.7	3,208	524.0
99	AWT	17 Jul	8:28	40	58	38.72	174	55.74	302	302	3.2	11.7	409	4.6	4	21.1
100	83-112	17 Jul	10:43	29	58	38.65	174	56.76	313	313	3.3	11.4	410	0.0	0	0.0
101	AWT	18 Jul	3:16	4	59	39.54	175	51.83	126	137	2.3	11.4	411	735.4	2,827	737.6
102	AWT	18 Jul	15:41	11	60	38.08	176	5.93	93	119	1.6	10.4	412	535.8	2,744	549.3
103	AWT	18 Jul	19:22	16	61	2.11	176	17.68	105	112	1.7	9.9	413	422.5	533	439.4
104	AWT	18 Jul	23:45	7	61	33.83	176	27.75	101	107	0.4	9.9	414	3,294.2	7,350	3,320.0
105	AWT	19 Jul	9:18	4	60	49.56	176	54.59	97	127	2	10.4	415	527.5	2,694	550.0
106	AWT	20 Jul	23:53	14	60	46.70	176	53.61	98	127	2	10.3	417	456.9	1,385	476.2
107	AWT	21 Jul	8:47	6	59	39.43	176	31.32	103	137	2.1	11.2	418	425.8	3,227	425.8
108	AWT	21 Jul	11:24	10	59	39.83	176	31.52	40	137	6.4	9.1	419	229.0	2,579	229.0
109	AWT	21 Jul	19:35	12	59	17.95	176	26.14	127	137	2.2	10.3	421	1,482.5	2,136	1,485.1
110	AWT	22 Jul	17:27	11	59	53.03	177	18.00	125	136	1.8	9.9	422	425.8	1,901	430.4
111	AWT	23 Jul	0:26	17	60	50.29	177	35.74	125	138	1.6	10.2	423	680.2	1,877	680.2
112	AWT	23 Jul	6:59	9	60	58.25	178	20.68	158	162	2.2	10	424	805.4	3,540	807.1
113	AWT	23 Jul	9:05	22	60	58.20	178	21.05	156	162	2.2	10	425	136.2	755	140.9
114	AWT	23 Jul	11:21	20	60	58.28	178	20.68	152	162	2.1	10.1	426	104.9	438	112.8
115	AWT	23 Jul	13:30	20	60	58.24	178	20.73	148	162	2.1	9.8	427	61.7	251	63.7
116	AWT	23 Jul	17:19	5	60	42.88	178	15.41	138	165	2.2	10.1	428	671.8	3,588	674.9
117	AWT	23 Jul	21:09	3	60	18.74	178	7.51	100	156	2.4	10.4	429	1,723.3	48,918	1,734.0

Table 1. Continued.

Haul	Gear		Start time	Duration		Start P	osition		Depth	(m)	Temp. ((deg. C)	Profile	Polloc	k catch	Total catch
no.	type ¹	Date	(GMT)	(minutes)	Lati	tude	Long	itude	Gear E	Bottom	Gear 2	Surface	No. 3	$(kg)^4$	number	(kg)
118	AWT	24 Jul	11:52	6	60	18.86	178	16.27	49	163	7.4	10.1	430	570.7	14,779	580.6
119	AWT	25 Jul	10:15	8	59	54.10	177	53.15	121	142	1.9	10.4	431	292.8	939	292.8
120	AWT	25 Jul	12:09	11	59	54.12	177	53.46	107	142	1.9	10.2	432	106.5	350	107.0
121	AWT	25 Jul	13:17	12	59	54.05	177	54.72	108	143	1.9	9.9	433	290.7	1,021	292.2
122	AWT	26 Jul	9:50	11	59	6.57	173	53.03	113	118	3.3	11.9	434	394.3	892	394.3
123	AWT	26 Jul	14:24	29	59	3.39	173	56.03	89	119	3.4	11.4	435	19.4	132	19.6
124	AWT	27 Jul	9:18	9	57	54.00	170	16.76	49	75	6.3	11.8	436	2.2	97	114.2
125	AWT	28 Jul	9:33	15	55	30.02	166	10.67	116	126	6.1	11.3	437	388.5	876	400.1
126	AWT	28 Jul	14:03	31	55	28.81	166	12.37	98	126	5	9.4	438	256.3	712	275.1
201	Methot	11 Jun	9:32	11	56	4.46	162	14.08	75	76	3.7	6.2	305	0.0	0	6.4
202	Methot	12 Jun	12:48	26	56	37.70	163	23.77	38	77	4.2	5.8	310	0.0	45	5.4
203	Methot	12 Jun	13:51	15	56	37.59	163	23.76	54	77	2.5	5.7	311	0.0	25	1.9
204	Methot	18 Jun	2:30	13	54	25.43	165	42.72	71	257	5.4		331	0.0	0	11.3
205	Methot	22 Jun	16:33	23	57	51.36	168	25.39	35	71	3	9	344	0.0	0	1.7
206	Methot	25 Jun	23:14	13	56	37.48	169	30.74	21	48	5.3	6	353	0.0	26	0.7
207	Methot	27 Jun	13:54	26	60	0.00	170	38.74	64	65	1.4	7.8	357	0.0	13	9.6
208	Methot	14 Jul	13:28	16	58	56.22	174	21.24	122	130	3.2	10.1	394	0.0	13	0.8
209	Methot	21 Jul	14:23	9	59	39.60	176	32.00	135	137	1.8	10.1	420	0.0	0	0.7

¹ Gear type: AWT=Aleutian wing trawl, 83-112 = 83-112 bottom trawl, Methot=Methot trawl

² Gear temperature was measured at the trawl headrope depth.

Temperature data collected with Sea-Bird SBE39

Young of the year pollock were caught in Methot trawls where number > 0 and kg = 0.0 (pollock weighed

Table 2. Catch by species from 108 Aleutian Wing trawl hauls conducted the summer 2002 pollock echo integration-trawl survey of the eastern Bering Sea shelf/slope, MF2002-08.

		Weigl	<u>nt</u>	
Common name	Scientific name	(kg)	(%)	Numbers
walleye pollock	Theragra chalcogramma	63,063.8	92.5	257,540
jellyfish	Scyphozoa	4,144.1	6.1	531
northern rockfish	Sebastes polyspinis	324.3	0.5	648
Pacific ocean perch	Sebastes alutus	280.6	0.4	1,217
chrysaora jellyfish	Chrysaora sp.	124.1	0.2	-
Pacific cod	Gadus macrocephalus	98.2	0.1	34
chum salmon	Oncorhynchus keta	26.7	< 0.1	8
coho salmon	Oncorhynchus kisutch	17.2	< 0.1	6
eulachon	Thaleichthys pacificus	11.7	< 0.1	159
yellowfin sole	Limanda aspera	10.5	< 0.1	19
squid	Teuthoidea	10.3	< 0.1	-
flathead sole	Hippoglossoides elassodon	7.2	< 0.1	13
smooth lumpsucker	Aptocyclus ventricosus	5.4	< 0.1	3
dusky rockfish	Sebastes ciliatus	4.0	< 0.1	2
chinook salmon	Oncorhynchus tshawytscha	3.8	< 0.1	1
shrimp	Pandalas sp.	3.7	< 0.1	1,260
rock sole	Lepidopsetta sp.	3.4	< 0.1	8
Pacific lamprey	Lampetra tridentata	2.9	< 0.1	7
arrowtooth flounder	Atheresthes stomias	2.8	< 0.1	4
lumpsucker	Cyclopterinae	2.3	< 0.1	1
great sculpin	Myoxocephalus polyacanthocephalus	1.3	< 0.1	1
magistrate armhook squid	Berryteuthis magister	1.3	< 0.1	10
capelin	Mallotus villosus	1.0	< 0.1	37
Pacific herring	Clupea pallasi	1.0	< 0.1	2
northern shrimp	Pandalus borealis	0.4	< 0.1	67
sturgeon poacher	Podothecus acipenserinus	0.4	< 0.1	6
Alaska plaice	Pleuronectes quadrituberculatus	0.3	< 0.1	1
prowfish	Zaprora silenus	0.2	< 0.1	1
Atka mackerel	Pleurogrammus monopterygius	0.2	< 0.1	1
bigfin eelpout	Lycodes cortezianus	0.1	< 0.1	1
daubed shanny	Lumpenus maculatus	0.0	< 0.1	1
lanternfish	Myctophidae	0.0	< 0.1	1
Totals		68,153.0		261,590

Table 3. Catch by species from 18 bottom trawl hauls trawl hauls conducted the summer 2002 pollock echo integration-trawl survey of the eastern Bering Sea shelf/slope, MF2002-08.

Common name	Scientific name	(kg)	(%)	Numbers	
walleye pollock	Theragra chalcogramma	11,168.4	81.3	19,187	
Pacific cod	Gadus macrocephalus	357.0	2.6	147	
yellowfin sole	Limanda aspera	337.8	2.5	1,372	
flathead sole	Hippoglossoides elassodon	274.7	2.0	678	
arrowtooth flounder	Atheresthes stomias	273.8	2.0	373	
jellyfish	Scyphozoa	239.0	1.7	4	
rock sole	Lepidopsetta sp.	227.9	1.7	872	
starfish	Asteroidea	136.9	1.0	2,278	
basketstar	Gorgonocephalus eucnemis	90.4	0.7	439	
red king crab	Paralithodes camtschaticus	87.2	0.6	43	
Pacific halibut	Hippoglossus stenolepis	70.3	0.5	14	
Alaska plaice	Pleuronectes quadrituberculatus	67.6	0.5	74	
hermit crab	Paguridae	50.4	0.4	619	
Alaska skate	Bathyraja parmifera	47.8	0.3	11	
rex sole	Glyptocephalus zachirus	45.2	0.3	122	
snail	Gastropoda	43.6	0.3	423	
sea urchin	Echinacea	41.5	0.3	1,139	
octopus	Octopodidae	36.2	0.3	2	
great sculpin	Myoxocephalus polyacanthocephalus	26.8	0.2	8	
sea anemone	Actiniaria	26.0	0.2	103	
empty gastropod shells		17.3	0.1	219	
Tanner crab	Chionoecetes bairdi	16.4	0.1	184	
snow crab	Chionoecetes opilio	10.1	0.1	63	
brittlestarfish	Ophiuroid	7.6	0.1	1,969	
starry flounder	Platichthys stellatus	6.8	< 0.1	5	
sponge	Porifera	4.6	< 0.1	77	
Aleutian skate	Bathyraja aleutica	4.2	< 0.1	5	
bigmouth sculpin	Hemitripterus bolini	3.0	< 0.1	1	
	Neptunea sp.	2.5	< 0.1	7	
sea cucumber	Holothuroidea	2.3	< 0.1	4	
Greenland turbot	Reinhardtius hippoglossoides	2.1	< 0.1	2	
skate egg case		2.1	< 0.1	63	
eelpout	Zoarcidae	1.6	< 0.1	6	
plain sculpin	Myoxocephalus jaok	1.3	< 0.1	1	
cockle	Veneroida	1.3	< 0.1	29	
butter sole	Isopsetta isolepis	1.1	< 0.1	4	
Hairy Triton	Fusitriton sp.	0.9	< 0.1	11	
Kamchatka flounder	Atheresthes evermanni	0.9	< 0.1	1	
snail eggs		0.8	< 0.1	4	
sturgeon poacher	Podothecus acipenserinus	0.8	< 0.1	9	
bivalve unidentifed	Pelecypoda	0.6	< 0.1	5	
Atka mackerel	Pleurogrammus monopterygius	0.5	< 0.1	1	
Pacific herring	Clupea pallasi	0.5	< 0.1	2	
salmon snailfish	Careproctus rastrinus	0.4	< 0.1	1	
empty bivalve shells		0.4	< 0.1	1	
	17 Dualina Dagulta EDC EIT august 0/5/0	12			

17 Prelim.Results EBS EIT survey 9/5/02

Table 3 continued

		<u>Weight</u>					
Common name	Scientific name	(kg)	(%)	Numbers			
spinyhead sculpin	Dasycottus setiger	0.4	< 0.1	1			
circumboreal toad crab	Hyas coarctatus	0.4	< 0.1	13			
ronquil	Bathymasteridae	0.3	< 0.1	1			
rose sea star	Crossaster papposus	0.3	< 0.1	17			
shortfin eelpout	Lycodes brevipes	0.3	< 0.1	6			
sea pen or sea whip	Pennatulacea	0.3	< 0.1	10			
crab	Brachyura	0.2	< 0.1	2			
tunicate	Ascidian unident.	0.3	< 0.1	4			
melon snail	Volutopsius sp.	0.1	< 0.1	4			
thorny sculpin	Icelus spiniger	0.1	< 0.1	7			
nudibranch	Nudibranchia unident.	0.1	< 0.1	1			
bat sea star	Ceramaster sp.	0.1	< 0.1	1			
rusty moonsnail	Natica russa	0.1	< 0.1	9			
shrimp	Pandalas sp.	0.1	< 0.1	11			
scale worm	Polynoidae	0.1	< 0.1	11			
Pacific lyre crab	Hyas lyratus	0.1	< 0.1	7			
tanner crab	Chionoecetes sp.	0.0	< 0.1	5			
graceful decorator crab	Oregonia gracilis	0.0	< 0.1	1			
sand dollar	Echinoidea	0.0	< 0.1	1			
bryozoan	Ectoprocta	0.0	< 0.1	1			
shrimp	Crangon sp.	0.0	< 0.1	2			
capelin	Mallotus villosus	0.0	< 0.1	1			
squid	Teuthoidea	0.0	< 0.1	1			
sea mouse	Aphroditidae	0.0	< 0.1	1			
Totals		13,741.9		30,700			

Table 4. Catch by species from 9 Methot trawl hauls conducted the summer 2002 pollock echo integration-trawl survey of the eastern Bering Sea shelf/slope, MF2002-08.

		Weigl		
Common name	Scientific name	(kg)	(%)	Numbers
jellyfish	Scyphozoa	20.6	53.7	56
euphausiid	Euphausiacea	14.0	36.6	2951
mottled sea star	Evasterias troschelii	1.4	3.7	1
salps	Thaliacea	1.2	3.1	7
yellowfin sole	Limanda aspera	0.6	1.4	2
flathead sole	Hippoglossoides elassodon	0.4	1.1	2
crangonid shrimp	Crangonidae	0.0	< 0.1	65
flatfish larvae	Pleuronectiformes	0.0	< 0.1	560
amphipod	Amphipoda	0.0	< 0.1	261
walleye pollock	Theragra chalcogramma	0.0	< 0.1	122
fish larvae	Teleostei	0.0	< 0.1	21
codlings	Moridae	0.0	< 0.1	205
rockfish	Sebastes sp.	0.0	< 0.1	64
polychaete worm	Polychaeta	0.0	< 0.1	17
Totals		38.3		4,334

Table 5. Numbers of walleye pollock biological samples and other fish specimens collected during the summer 2002 pollock echo integration-trawl survey of the eastern Bering Sea shelf/slope, MF2002-08.

				Weight		TINRO	Sea Lion	Classroom	
<u>Haul</u>	Length	Maturity	Otoliths	<u>Fish</u>	Gonad	collection1	Fish Prey	Specimens	
1	394	82	40	82	-	50	Х	X	
2	-	-	-	-	-	-	-	-	
3	139	82	40	82	-	50	-	X	
4	215	58	58	58	-	-	-	-	
5	336	90	42	90	-	-	-	-	
6	3	-	-	-	-	-	-	-	
7	15	-	-	-	-	-	-	-	
8	308	55	40	55	-	-	-	-	
9	402	67	42	67	1	-	-	X	
10	58	-	-	-	-	-	Х	-	
11	372	-	-	-	-	-	-	X	
12	429	81	41	81	-	-	-	-	
13	521	73	41	73	-	-	-	-	
14	440	124	39	124	-	-	-	-	
15	297	80	40	80	-	50	Х	-	
16	394	97	40	97	-	-	-	-	
17	133	87	40	87	2	-	-	-	
18	357	93	40	93	-	-	-	-	
19	347	119	43	119	-	-	-	-	
20	367	48	-	48	-	-	-	-	
21	281	59	40	59	-	-	-	-	
22	418	107	40	107	-	50	-	-	
23	427	46	7	46	-	-	-	-	
24	154	68	43	68	1	-	-	-	
25	35	35	35	35	-	-	-	-	
26	433	96	46	96	-	-	-	-	
27	187	64	40	64	-	-	Х	-	
28	475	50	39	50	-	-	-	-	
29	397	56	39	56	-	-	-	-	
30	353	49	-	49	-	-	-	-	
31	32	32	32	32	-	-	-	-	
32	285	36	36	36	-	-	-	-	
33	8	-	-	-	-	-	-	-	
34	382	54	41	54	-	-	-	-	
35	334	60	-	60	-	-	-	-	
36	406	84	41	84	-	-	-	X	
37	341	49	40	49	-	50	-	-	
38	285	48	48	48	1	50	-	-	
39	472	84	40	84	2	50	-	-	
40	358	84	40	84	2	-	-	-	
41	150	31	31	31	-	-	-	Х	
42	383	84	40	84	1	-	-	-	
43	704	90	46	90	1	-	-	-	
44	331	24	24	24	-	-	-	-	
45	298	39	25	39	-	-	-	-	
46	448	45	25 Prolim R	45		50 rvov 9/5/02	-	-	
20 Prelim.Results EBS EIT survey 9/5/02									

Table 5 continued

				We	eight	TINRO	Sea Lion	Classroom
<u>Haul</u>	Length	Maturity	Otoliths	<u>Fish</u>	Gonad	collection1	Fish Prey	Specimens
47	464	50	21	50	-	-	Х	-
48	345	45	25	45	1	50	-	-
49	419	57	24	57	-	-	-	-
50	387	59	26	59	3	50	-	-
51	584	59	20	59	-	-	-	-
52	461	66	25	66	1		-	-
53	331	-	-	_	-	-	-	-
54	339	41	25	41	-	-	-	-
55	342	59	26	59	1	_	_	-
56	397	57	25	57	2	_	_	-
57	363	38	24	38	_	_	_	_
58	482	56	25	56	_	_	_	Х
59	499	59	25	59	_	_	Х	-
60	350	50	25	50	_	_	-	_
61	327	47	25	47	_	_	_	_
62	318	58	25	58			_	_
63	495	53	25	55	-	50	_	_
64	459	60	25	60	_	- -	_	_
65	439 174	34	20	34			_	_
					-	-	-	-
66	188	-	-	-	-	-	Х	-
67	351	55	55	55	-	50	-	-
68	234	44	44	44	-	-	-	-
69	533	50	41	50	-	-	-	-
70	586	-	-	185	-	-	-	-
71	1	-	-	-	-	-	-	-
72	310	42	42	42	-	50	-	-
73	2	2	-	2	-	-	-	-
74	492	53	53	53	-	-	X	X
75	141	40	40	40	-	-	-	-
76	324	40	40	40	-	-	-	-
77	334	40	40	40	-	-	-	-
78	278	41	41	41	-	-	-	-
79	332	40	40	40	-	-	-	-
80	295	-	-	-	-	-	-	-
81	-	-	-	-	-	-	-	-
82	-	-	_	_	-	-	-	-
83	-	-	_	_	_	-	_	-
84	304	37	37	37	_	_	_	-
85	289	99	-	99	_	_	_	_
86	309	35	35	35	_	50	_	Х
87	341	43	43	43	_	-	_	-
88	570	36	36	36	_	_	_	_
89	48	-	-	-	_	_	_	_
90	344	34	34	34	-	-	_	_
	344 307	34 41			-	-	-	-
91			41	41	-	-	-	-
92	338	33	33	33	-	-	-	-
93	361	38	38	38	-	-	-	-
94	260	35	35	35	-	-	-	-
95	355	36	36	36		-	-	-

²¹ Prelim.Results EBS EIT survey 9/5/02

Table 5 continued

				We	eight	TINRO	Sea Lion	Classroom
<u>Haul</u>	Length	Maturity	Otoliths	<u>Fish</u>	Gonad	collection ¹	Fish Prey	Specimens
96	443	52	35	52	-	-	-	-
97	413	57	35	57	-	50	-	-
98	310	-	-	-	-	-	-	-
99	4	-	-	-	-	-	-	-
100	-	-	-	-	-	-	-	-
101	428	36	36	36	-	-	-	-
102	452	53	35	53	-	50	-	-
103	301	32	32	32	-	50	-	-
104	405	35	35	35	-	50	-	-
105	471	34	34	34	-	-	-	-
106	280	-	-	-	-	-	-	-
107	668	36	36	36	-	-	-	-
108	598	53	35	53	-	-	-	-
109	329	47	47	47	-	50	-	-
110	398	32	32	32	-	-	-	-
111	309	35	35	35	-	-	-	-
112	365	35	35	35	-	-	-	-
113	252	29	-	29	-	-	-	-
114	438	_	-	-	-	-	-	-
115	251	_	-	-	-	-	-	-
116	323	45	34	45	-	50	-	-
117	391	37	37	37	-	-	-	-
118	362	=	-	-	-	-	-	-
119	333	36	36	36	-	-	-	-
120	350	0	0	0	-	-	-	-
121	442	0	0	0	-	-	-	-
122	325	76	0	76	-	-	-	-
123	132	0	0	0	-	-	-	-
124	97	0	0	0	-	-	-	-
125	389	98	0	98	-	-	-	-
126	308	36	0	36	-	-	-	-
Totals	40,234	5,466	3,233	5,653	19	1,000	8 sites	9 sites

¹TINRO center biological sampling includes weight, length, sex, maturity, stomach contents, and otolith collection.