[6]

- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's marking policy and rules on collaboration.
- Submit your completed solutions to **Crowdmark**.
- 1. **Definition 1** Let X and Y be sets. Then the intersection of X and Y, denoted $X \cap Y$, is the set of elements of both X and Y:

$$X \cap Y = \{ z \mid z \in X \text{ and } z \in Y \}.$$

Definition 2 Let X and Y be sets. Then the **union of** X **and** Y, **denoted** $X \cup Y$, is the set of elements of either X or Y (or both):

$$X \cup Y = \{z \mid z \in X \text{ or } z \in Y, \text{ or both}\}.$$

Definition 3 Let X and Y be sets. Then Y is a subset of X, denoted $Y \subseteq X$, if and only if every element of Y is also an element of X.

Definition 4 Let X be a set. Then the **power set of** X, **denoted** P(X), is defined to be the set of subsets of X. In other words, $Y \in P(X)$ if and only if $Y \subseteq X$.

(a) Let E and F be sets. Prove that $P(E) \cap P(F) = P(E \cap F)$.

If we assume

$$A \in P(E \cap F)$$

by the **power set** and **intersection** definitions,

$$A \subseteq E \cap F$$

$$A \subseteq E \wedge A \subseteq F$$

$$A \in P(E) \wedge A \in P(F)$$

$$A \in P(E) \cap P(F)$$

$$(1)$$

Since we assumed $A \in P(E \cap F)$ and have shown $A \in P(E) \cap P(F)$

$$P(E \cap F) \subseteq P(E) \cap P(F)$$

Using the same method we now assume,

$$A \in P(E) \cap P(F)$$

Then.

$$A \in P(E) \land A \in P(F)$$

$$A \subseteq E \land A \subseteq F$$

$$A \subseteq E \cap F$$

$$A \in P(E \cap F)$$
(2)

Which shows that $P(E) \cap P(F) \subseteq P(E \cap F)$. Since we have already shown $P(E \cap F) \subseteq P(E) \cap P(F)$ we now have proven,

$$P(E) \cap P(F) = P(E \cap F)$$

[3]

(b) Let E and F be sets. Prove that $P(E) \cup P(F) \subseteq P(E \cup F)$.

Let $G \in P(E) \cup P(F)$ then using the **power set** and **union** definitions we need to show $G \in P(E \cup F)$.

$$G \in P(E) \cup P(F)$$

$$G \subseteq E \vee G \subseteq F$$

$$G \subseteq E \cup G$$

$$G \in P(E \cup F)$$
(3)

Since we have shown that for an arbitrary $G \in P(E) \cup P(F)$ and G is also an element of $P(E \cup F)$. We have proven $P(E) \cup P(F) \subseteq P(E \cup F)$.

[3]

(c) Give an example of finite sets E and F such that $P(E \cup F) \not\subseteq P(E) \cup P(F)$. Briefly explain why your choice of E and F is correct.

Proof by counter-example

Let
$$E = \{a\}$$

 $F = \{b\}$
Then, $P(E) = \{\emptyset, \{a\}\}$
 $P(F) = \{\emptyset, \{b\}\}$
 $P(E \cup F) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
 $P(E) \cup P(F) = \{\emptyset, \{a\}, \{b\}\}$
 $P(E) \cup P(F) \neq P(E \cup F)$
 $P(E \cup F) \not\subset P(E) \cup P(F)$ (4)

- [3]
- 2. Let $\Sigma^* = \{0, 1\}$. Let L be the language, over Σ^* , or words having at least two different substrings, each of length 2. For example,
 - $010 \in L$, because it contains the substrings 01 and 10, and
 - $000 \notin L$, because its only substring of length 2 is 00.

Describe L by writing a sentence of the form

$$L = \{ w \in \Sigma^* \mid P(w) \},\$$

where P(w) is a first-order logic formula. In P(w), you may use the notation

- |x| to return the length of any string x,
- standard arithmetic relations $=, \neq, <, \leq,$ etc.,
- standard arithmetic constants 0, 1, 2, etc., and
- the relation Substr(u, v), which is true if and only if u is a substring of v.

$$L = \{ w \in \Sigma^* \mid P(w) \},$$

$$P(w) \to \exists x \exists y : |x| = 2$$

$$\land |y| = 2$$

$$\land Substr(x, w)$$

$$\land Substr(y, w)$$

$$\land x \neq y$$

$$(5)$$

3. Consider the NFA, M, having alphabet $\Sigma^* = \{0,1\}$ and defined by the following diagram.

For each choice of input word w given below, determine whether or not $w \in L(M)$. Briefly justify each answer.

(a)
$$w = 101$$

$$w \in L(M) \implies \hat{\delta}(q_0, w) \cap F \neq \emptyset$$

$$\hat{\delta}(q_0, w) = \hat{\delta}(q_0, 101)$$

$$= \delta(\hat{\delta}(q_0, 10), 1)$$

$$= \delta(\delta(\delta(q_0, 1), 0), 0)$$

$$\delta(q_0, 1) = \{q_1, q_3\}$$

$$\delta(\{q_1, q_3\}, 0) = \delta(q_1, 0) \cup \delta(q_3, 0)$$

$$\delta(q_1, 0) = \{q_1, q_2\}$$

$$\delta(q_3, 0) = \{q_3\}$$

$$\delta(\{q_1, q_3\}, 0) = \{q_1, q_2, q_3\}$$

$$\delta(\{q_1, q_2, q_3\}, 1) = \delta(q_1, 1) \cup \delta(q_2, 1) \cup \delta(q_3, 1)$$

$$\delta(q_1, 1) = \{q_3\}$$

$$\delta(q_2, 1) = \{q_3\}$$

$$\delta(q_3, 1) = \{q_1\}$$

$$\delta(\{q_1, q_2, q_3\}, 1) = \{q_1, q_3\}$$

$$\hat{\delta}(q_0, 101) = \{q_1, q_3\}$$

$$F = \{q_0, q_2\}$$

$$\therefore \hat{\delta}(q_0, 101) \cap F = \emptyset$$

$$\therefore w \notin L(M)$$

[3] (b) w = 1010

$$w \in L(M) \implies \hat{\delta}(q_0, w) \cap F \neq \emptyset$$

$$\hat{\delta}(q_0, w) = \hat{\delta}(q_0, 1010)$$

$$= \delta(\hat{\delta}(q_0, 101), 0)$$

$$\hat{\delta}(q_0, 101) = \{q_1, q_3\} \quad \text{FROM PART (a)}$$

$$\delta(\{q_1, q_3\}, 0) = \delta(q_1, 0) \cup \delta(q_3, 0)$$

$$\delta(q_1, 0) = \{q_1, q_2\}$$

$$\delta(q_3, 0) = \{q_3\}$$

$$\delta(\{q_1, q_3\}, 0) = \{q_1, q_2, q_3\}$$

$$\therefore \hat{\delta}(q_0, 1010) \cap F = \{q_2\}$$

$$\therefore w \in L(M)$$

- [4]
- 4. Draw the diagram of a DFA, NFA or ε -NFA which accepts each of the following languages over $\Sigma^* = \{0, 1\}$, and argue informally why your automaton accepts exactly the language given.
 - (a) $L_a = \{w \in \Sigma^* \mid n_0(w) \ge 2\}$. Recall that $n_0(w)$ denotes the number of occurrences of the symbol 0 in the string w.

Letting $w = \epsilon$ we begin at state q_0 . From state q_0 we can see $\delta(q_0, 1) = q_0$ and $\delta(q_0, 0) = q_1$ so any addition of a 1 to w will keep us in this state where $n_0(w) = 0$. Only by adding a 0 to w can we move to state q_1 . Once in q_1 we have $n_0(w) = 1$ and once again adding any additional 1 symbols to w keeps us in state q_1 as seen by $\delta(q_1, 1) = q_1$. Similarly, only by adding a 0 symbol to w can we progress to the final state q_2 . $\delta(q_1, 0) = q_2$. Once in state q_2 we are at the point where $n_0(w) = 2$ since only the 2 additions of 0 symbols to $w = \epsilon$ could bring us to this state. In state q_2 , $\delta(q_2, 0) = q_2$ and $\delta(q_2, 1) = q_2$. Since we know there are at least 2 0 symbols at state q_2 and any addition of 0s keeps us in q_2 we see $n_0(w) \ge 2$ in state q_2 . Because $q_2 \in F$ we can be confident that the above diagram accepts exactly the language $L_a = \{w \in \Sigma^* \mid n_0(w) \ge 2\}$.

(b) $L_b = \{ w \in \Sigma^* \mid w \text{ begins or ends with } 00 \text{ or } 11 \}.$

To argue the above diagram accepts exactly the language described by L_b we first consider the case where w either starts with 00 or with 11. When w starts with 00 $\hat{\delta}(q_0, 00) = \delta(\delta(q_0, 0), 0) = q_3$ Similarly for w starting with 11 $\hat{\delta}(q_0, 11) = \delta(\delta(q_1, 1), 1) = q_3$

At q_3 any additional symbol additions will keep L_b in q_3 which is correct since $q_3 \in F$.

Next we consider the case where w does not start with 00 or 11. This means that either w starts with 01 or 10.

For w = 01 $\hat{\delta}(q_0, 01) = \delta(\delta(q_0, 0), 1) = q_4$. Then for w = 10 $\hat{\delta}(q_0, 10) = \delta(\delta(q_0, 1), 0) = q_5$.

From q_4 or q_5 there is no path to q_3 so the final cases must be considered where w ends with either 00 or 01.

At state q_4 we have just read a 1 so an additional 1 will give us a string with a potential 11 ending $\delta(q_4, 1) = q_6$. Conversely, reading a 0 will take us to state q_5 .

At state q_5 we have just read a 0 so an additional 0 will give us a string with a potential 00 ending $\delta(q_4, 1) = q_6$. Conversely, reading a 1 will take us to state q_4 (discussed above).

At state q_6 we have just read two consecutive 1s. Any additional 1s read in this state will not change the state and $q_6 \in F$. However the addition of a 0 will take us to state q_5 which we have discussed above.

At state q_7 we have just read two consecutive 0s. Any additional 0s read in this state will not change the state and $q_7 \in F$. However the addition of a 1 will take us to state q_4 which we have discussed above.

As we cycle through the 8 states of the diagram it is clear that only in states:

- q_3 The string must start with a 00 or a 11.
- q_6 The string must end with a 11.
- q_7 The string must end with a 00.

Since $F = \{q_3, q_6, q_7\}$ the language defined as L_b exactly accepts strings which begin or end with 00 or 11.

(c)
$$L_c = \{ w \in \Sigma^* \mid n_0(w) \equiv 0 \mod 2 \text{ and } n_1(w) \equiv 0 \mod 2 \}.$$

Given the predicate $n_0(w) \equiv 0 \mod 2$ and $n_1(w) \equiv 0 \mod 2$ combined with the fact $|\Sigma| = 2$ we can surmise that the addition of any symbol from Σ to w can lead to $2^2 = 4$ possible states:

- q_0 Where, $n_0(w) \equiv 0 \mod 2$ and $n_1(w) \equiv 0 \mod 2$
- q_1 Where, $n_0(w) \equiv 1 \mod 2$ and $n_1(w) \equiv 0 \mod 2$
- q_2 Where, $n_0(w) \equiv 0 \mod 2$ and $n_1(w) \equiv 1 \mod 2$
- q_3 Where, $n_0(w) \equiv 1 \mod 2$ and $n_1(w) \equiv 1 \mod 2$

Because $|\Sigma| = 2$ and the above diagram is a DFA each state has 2 transitions $\delta(q, 0)$ and $\delta(q, 1)$ for some $q \in Q$.

- q_0 When a 0 is read $n_0(w) \mod 2$ changes from 0 to 1 $\delta(q_0, 0) = q_1$
- q_0 When a 1 is read $n_1(w) mod 2$ changes from 0 to 1 $\delta(q_0, 1) = q_2$
- q_1 When a 0 is read $n_0(w) mod 2$ changes from 1 to 0 $\delta(q_1,0)=q_0$
- q_1 When a 1 is read $n_1(w) mod 2$ changes from 0 to 1 $\delta(q_1, 1) = q_3$
- q_2 When a 0 is read $n_0(w) mod 2$ changes from 0 to 1 $\delta(q_2, 0) = q_3$
- q_2 When a 1 is read $n_1(w) mod 2$ changes from 1 to 0 $\delta(q_2, 1) = q_0$ q_3 When a 0 is read $n_0(w) mod 2$ changes from 1 to 0 $\delta(q_3, 0) = q_2$
- q_3 When a 1 is read $n_1(w) \mod 2$ changes from 1 to 0 $\delta(q_3, 1) = q_1$

Then to show the above diagram accepts exactly the language we start with $w = \epsilon$ at q_0 . Since $n_{0,1}(w) = 0$, $0 \mod 2 \equiv 0$ and $q_0 \in F$ the predicate holds. We have shown that every transition leads to a state that corresponds with our 4 states above and only in q_0 does the predicate $n_0(w) \equiv 0 \mod 2$ and $n_1(w) \equiv 0 \mod 2$ hold. We have shown our diagram accepts exactly the language described.

- 5. Let $M = (Q, \Sigma^*, \delta, q_0, F)$ be a DFA. let $\hat{\delta}$ denote the extended transition function of M, as defined in the lecture slides.
 - (a) Prove that, for any $x, y \in \Sigma^*$, and any $q \in Q$, we have

$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y).$$

Proof by induction on |y|. Base Case:

$$|y| = 0 \implies y = \epsilon$$

Then

$$\hat{\delta}(q, xy) = \hat{\delta}(q, x\epsilon)
= \hat{\delta}(\hat{\delta}(q, x), \epsilon)$$
(8)

Since the base case holds. For our **Induction Hypothesis:** We assume

$$\hat{\delta}(q, xz) = \hat{\delta}(\hat{\delta}(q, x), z) \quad | \quad z \in \Sigma^* \quad \text{and} \quad |z| \ge 0$$

For our **Inductive Step:** we let z = ya where $a \in \Sigma$, |a| = 1 and $y \in \Sigma^*$, $|y| \ge 0$ Then,

$$\hat{\delta}(q, xz) = \hat{\delta}(q, xya)
= \delta(\hat{\delta}(q, xy), a)
= \delta(\hat{\delta}(\hat{\delta}(q, x), y), a)
= \hat{\delta}(\hat{\delta}(q, x), ya)
= \hat{\delta}(\hat{\delta}(q, x), z)$$
(9)

By the principle of induction we have shown $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$ for all $x, y \in \Sigma^*$ and some $q \in Q$.

(b) Assume that for some state $q \in Q$, and for every $a \in \Sigma^*$, we have $\delta(q, a) = q$. Prove that $\hat{\delta}(q, x) = q$ holds for every $x \in \Sigma^*$.

Proof by induction on |x| with Base Case:

$$|x| = 0 \quad \rightarrow \quad x = \epsilon$$

Then,

$$\hat{\delta}(q,\epsilon) = q$$

Induction Hypothesis: Assume,

$$\hat{\delta}(q,k) = q \quad \forall k \in \Sigma^*, |k| \ge 1$$

Inductive Step:

Let $\omega = ak$ where $x \in \Sigma^*$, $|k| \ge 1$ and $a \in \Sigma^*$, |a| = 1 then,

$$\hat{\delta}(q,\omega) = \hat{\delta}(q,ak)
= \hat{\delta}(\delta(q,a),k)
= \hat{\delta}(q,k)
= q$$
(10)

Since $\hat{\delta}(q,\omega) = q$ our inductive hypothesis holds and we have shown

$$\hat{\delta}(q, x) = q \quad \forall x \in \Sigma^*$$

(c) Assume that for some state $q \in Q$, and some string $x \in \Sigma^*$, we have $\hat{\delta}(q, x) = q$. Prove that, for every $n \geq 0$, we have $\hat{\delta}(q, x^n) = q$.

Proof by induction on n with Base Case:

$$n = 0$$

Then,

$$\hat{\delta}(q, x^0) = \hat{\delta}(q, \epsilon) = q$$

Induction Hypothesis: Assume,

$$\hat{\delta}(q, x^k) = q \quad \forall k \in \mathbb{Z} \quad | \quad k \ge 0$$

Inductive Step: Show true for k + 1.

$$\hat{\delta}(q, x^{k+1}) = \hat{\delta}(q, xx^k)
= \hat{\delta}(\hat{\delta}(q, x), x^k)
= \hat{\delta}(q, x^k)
= q$$
(11)

Since $\hat{\delta}(q, x^{k+1}) = q$ our induction hypothesis holds and we have shown:

$$\hat{\delta}(q, x^n) = q, \quad \forall n \in \mathbb{Z} \quad | \quad n \ge 0$$