Construction of \mathbb{R}

MTH 301

Parasar Mohanty, 2021

0.1 Real Numbers

Definition 0.1. A sequence is a map $f: \mathbb{N} \to \mathbb{Q}$. If $f(n) = x_n$ then we denote $\{x_n\}$ as a sequence.

Example 0.2. 1. $x_n = 1$, $x_n = n$, $x_n = n^2$, $x_n = (-1)^n$.

- 2. In definition of sequence we need only $x_n \in \mathbb{Q}$ for every n. We may not write always x_n is a compact form.
- 3. Consider $x_1 = 1$ and $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$.

Definition 0.3. 1. Bounded Sequence: A sequence $\{x_n\}$ is said to be bounded if there exists $M \in \mathbb{N}$ such that $|x_n| \leq M$, $\forall n \in \mathbb{N}$.

- 2. Cauchy Sequence: A sequence $\{x_n\}$ is said to be Cauchy if for every $\epsilon > 0$ there exists a $N_0 \in \mathbb{N}$ such that $|x_n x_m| < \epsilon$, $\forall n, m > N_0$.
- 3. Convergence: A sequence $\{x_n\}$ is said to converge to some $x \in \mathbb{Q}$ if for every $\epsilon > 0$ there exists a $N_0 \in \mathbb{N}$ such that $|x_n x| < \epsilon$, $\forall n > N_0$.

Proposition 0.1. Every Cauchy sequence is bounded.

Proof. Let $\epsilon = 1$. Then there exists N_0 such that $|x_n - x_m| < 1$ for all $n \geq N_0$. Clearly, $|x_n| \leq \max\{|x_1|, \ldots, |x_{N_0-1}|, 1+|x_{N_0}|\}$, $\forall n \in \mathbb{N}$.

Proposition 0.2. Every convergent sequence is Cauchy.

Proof. Let $x_n \to x$. For $\epsilon > 0$ there exists a $N_0 \in \mathbb{N}$ such that $|x_n - x| < \frac{\epsilon}{2}, \ \forall n > N_0$. Let $n, m > N_0$ then

$$|x_n - x_m| \le |x_n - x| + |x_m - x| < \epsilon.$$

However every bounded sequence may not be Cauchy. Consider $x_n = (-1)^n$. Take $\epsilon = 1$ then for every N we have $|x_{2N} - x_{2N+1}| = 2!$ Now we would like to show that every Cauchy sequence may not converge. Consider the sequence $x_1 = 1$ and $x_{n+1} = \frac{2(1+x_n)}{2+x_n}$. Now, $x_n \ge 0$ (by induction!) So,

$$|x_{n_1} - x_n| = \frac{2(1+x_n)}{2+x_n} - \frac{2(1+x_{n-1})}{2+x_{n-1}}$$

$$= \frac{2}{(2+x_n)(2+x_{n-1})} [(1+x_n)(2+x_{n-1}) - (1+x_{n-1})(2+x_n)]$$

$$= \frac{2}{(2+x_n)(2+x_{n-1})} (x_n - x_{n-1}).$$

For

Thus, $|x_{n+1} - x_n| \leq \frac{1}{2}|x_n - x_{n-1}|$. Hence, $\{x_n\}$ is Cauchy. This does not converge in $\mathbb{Q}!!$ By using triangle inequality and above proposition we have the following.

Lemma 0.4. If $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences then $\{x_n + y_n\}$ and $\{x_n y_n\}$ are also Cauchy sequences.

Definition 0.5 (Equivalent). We say that a Cauchy sequence is equivalent to 0 if $\lim_{n \to \infty} |x_n| = 0$.

Two Cauchy sequences $\{x_n\}$ and $\{y_n\}$ are equivalent if $\{x_n - y_n\}$ is equivalent to 0.

Denote \mathbb{R} to be the set of equivalence classes of Cauchy sequences.

Clearly $\mathbb{Q} \subset \mathbb{R}$. (if $x \in \mathbb{Q}$ then consider $x = [\{x_n\}]$ where $x_n = x$ for each n.) Now we define addition and multiplication on \mathbb{R} in the following way

- $[\{x_n\}] + [\{y_n\}] = [\{x_n + y_n\}]$
- $[\{x_n\}].[\{y_n\}] = [\{x_n.y_n\}]$

Exercise 0.6. Show that addition and multiplication are well defined.

Constant sequences $(0,0,0,\ldots)$ and $(1,1,\ldots)$ are additive and multiplicative identities. Ever Cauchy sequence has a an additive inverse i.e. $\{-x_n\}$. However, not all have multiplicative inverse! Following lemma is required to show \mathbb{R} is a field.

Lemma 0.7. Every non-zero equivalence class of Cauchy sequence has a multiplicative inverse.

Proof. $\{x_n\}$ is a non-zero Cauchy sequence then there exists $\epsilon > 0$ such that $|x_n| > \epsilon$ for $n \ge N$ for some $N \in \mathbb{N}$. If not then for every $\epsilon > 0$ and $n \in \mathbb{N}$ $\exists N_n > n$ such that $|x_{N_n}| < \epsilon$. As $\{x_n\}$ is Cauchy $\exists N_0$ such that $|x_n - x_m| < \epsilon$, $\forall n, m > N_0$. Consider $n > N_0$ then $|x_n| \le |x_n - x_{n_n}| + |x_{N_n}| < 2\epsilon$ $(N_n > n > N_0)$ i.e. $x_n \to 0$! Consider $y_n = \frac{1}{x_n}$. Now, $|\frac{1}{x_n} - \frac{1}{x_m}| \le \frac{|x_n - x_m|}{\epsilon}$, $\forall n, m \ge N$. Hence, $\{y_n\}$ is Cauchy. This does the job.

Corollary 0.8. \mathbb{R} forms a field.

Now we extend absolute value to \mathbb{R} by $|[\{x_n\}]| = [\{|x_n|\}]$. —bf Order structure on \mathbb{R} :

Definition 0.9. We say that $x = [\{x_n\}] \in \mathbb{R}$ is **positive** (x > 0) if $\exists N \in \mathbb{N}$ such that $x_n > 0$, $\forall n > N$. Given any two $x, y \in \mathbb{R}$ we say that x > y if x - y > 0. $x \in \mathbb{R}$ is **negative** if $-x = [\{-x_n\}]$ is positive.

Proposition 0.3 (Trichotomy). Let $x \in \mathbb{R}$. Then exactly one of the following three statements is true:

- (i) x = 0
- (*ii*) x > 0
- (iii) x < 0

Proposition 0.4. Let $x, y \in \mathbb{R}$ such that x > y. Then x + t > y + t, $\forall t \in \mathbb{R}$.

Proof. Let $x=[\{x_n\}],\ y=[\{y_n\}],\ \text{and}\ t=[\{t_n\}].$ As x>y there exists $N\in\mathbb{N}$ such that $x_n>y_n,\ \forall n>N.$ Now, $x_n+t_n>y_n+t_n,\ \forall n>N.$ Thus x+t>y+t.

Theorem 0.10. \mathbb{R} is an Archimedian field.

Proof. Let x, y > 0 be two elements of \mathbb{R} . We want to show there exists $N \in \mathbb{N}$ such that N.x > y. (Here N is considered as the constant sequence of N)

We can assume x < y. As x > 0 there exist $\epsilon > 0$ and $N_1 \in \mathbb{N}$ such that $x_n > \epsilon > 0$, $\forall n > N_1$. Also, $\{y_n\}$ is Cauchy hence bounded. So there exists $M \in N$ such that $y_n \leq M$, $\forall n \in \mathbb{N}$. Consider ϵ and M there exists $m \in \mathbb{N}$ such that $m\epsilon > M$ (recall all we are doing in \mathbb{Q}). Now, $mx_n > m\epsilon > M \geq y_n$, $forall n > N_1$. Hence, m.x > y.

Proposition 0.5. \mathbb{Q} is dense in \mathbb{R} . i.e. For all $x \in \mathbb{R}$ and $\epsilon \in \mathbb{Q}_{>0}$ there exists a $r \in \mathbb{Q}$ such that $|x - r| < \epsilon$.

Proof. Let $x = [\{x_n\}]$ and $\epsilon > 0$. As $\{x_n\}$ is Cauchy there exists N_{ϵ} such that $|x_n - x_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$. Choose $r = \{x_{N_{\epsilon}+1}\}$. Then $|x_n - r| < \epsilon$, $\forall N > N_{\epsilon}$.

Remark 0.1. Now we can replace $\epsilon \in \mathbb{Q}_+$ by $\epsilon \in \mathbb{R}_+$.

0.2 lub Property

Now we are ready to prove the most important property of \mathbb{R} .

Theorem 0.11. Let $A \subset \mathbb{R}$. If A has an upper bound then A has least upper bound.

Proof. First we claim that there exists $p \in \mathbb{Q}$ which is an upper bound for A but p-1 is not an upper bound. Let $a \in A$ then r = a-1 is not an upper bound. If s < r then s is also not an upper bound. Consider the sequence $s_n = s + n$. So there exists $n \in \mathbb{N}$ such that s_n is an upper bound. Denote $N = \{n : s_n \text{ is an upper bound}\}$. Denote $n_0 = \min N$. So s_{n_0} is an upper bound whereas $s_{n_0} - 1 = s_{n_0-1}$ is not an upper bound.

Nest we claim that there exists sequences $\{p_n\}$ and $\{q_n\}$ in \mathbb{Q} such that for all $n \in \mathbb{N}$ we have q_n is an upper bound for A but p_n is not, also

$$q_n - p_n = \frac{1}{2^{n-1}}. (1)$$

We will prove it by induction. Let q be an upper bound such that q-1 is not. Define $q_1=q$ and $p_1=q-1$. Then $q_1-p_1=1$. Thus for n=1 claim is true. Suppose qe have p_n and q_n with required property. Now define $s_n=\frac{p_n+q_n}{2}$. If s_n is not an upper bound then define

$$p_{n+1} = s_n$$
$$q_{n+1} = q_n.$$

Clearly, $q_{n+1} - p_{n+1} = \frac{q_n - p_n}{2} = \frac{1}{2^n}$. If s_n is an upper bound then define $p_{n+1} = p_n$ and $q_{n+1} = s_n$. Hence we have the claim.

Our next claim is above chosen sequences $\{p_n\}$ and $\{q_n\}$ are Cauchy and $[\{p_n\}] = [\{q_n\}]$. Observe that $p_n \leq p_{n+1} \leq q_{n+1} \leq q_n$. So by induction $q_n \leq p_{n+k} \leq q_{n+k} \leq q_n$, $\forall k \in \mathbb{N}$. If $m \geq n$ then $|p_n - p_m| = p_m - p_n \leq q_n - p_n = |q_n - p_n| = \frac{1}{2^{n-1}}$. Similarly we can prove $\{q_n\}$ is Cauchy.

Define $[\{p_n\}] = [\{q_n\}] = r$. First we show that r is an upper bound for A. Suppose not then $\exists a \in A$ such that a > r. There exists $q \in \mathbb{Q}$ such that r < q < a. Then q - r > 0 as element of \mathbb{R} . So $q - q_n$ eventually a positive sequence in \mathbb{Q} . i.e. $\exists N \in \mathbb{N}$ such that $q - q_n > 0$, $\forall n \geq N$. So, $q_n < q < a$, $\forall n \geq N$. A contradiction. So r is an upper bound.

Now we want to show that r is the lub. Suppose s < r and an upper bound. we can find $p \in \mathbb{Q}$ such that $s and <math>p_n - p$ is eventually positive. So, $p_n - p > 0$ eventually. So $p_n > p > a$, $\forall a \in A$. A contradiction. So we have the result.

Corollary 0.12. If $A \subset \mathbb{R}$ is bounded below then it has greatest lower bound.

Now we are also in a position to prove the following. For $x \in \mathbb{R}$ define $[x] = lub \{ n \in \mathbb{Z} : x \geq n \}$.

Proposition 0.6. Every real number has a decimal expansion.

Proof. Let $x \in \mathbb{R}$. Then we know that $x = a_0 + y_0$ where $0 \le y_0 < 1$. Denote $a_1 = [10y_0]$. Then

$$x = a_0 + \frac{10y_0}{10} = a_0 + \frac{a_1}{10} + \frac{y_1}{10}$$
, where $0 \le y_1 < 1$.

Similarly, consider $a_2 = [10y_1]$. Then,

$$x = a_0 + \frac{a_1}{10} + \frac{10y_1}{100} = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{y_2}{10^2}$$
, where $0 \le y_2 < 1$.

Now consider $A = \{a_0, a_0 + \frac{a_1}{10}, a_0 + \frac{a_1}{10} + \frac{a_2}{10^2}, \dots, a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n}, \dots \}$. Clearly A is bounded above by x. We claim that $x = \sup A$. If not let $\sup A = \alpha < x$.i.e. $x - \alpha = \epsilon > 0$. We can get $m \in \mathbb{N}$ such that $\frac{1}{10^m} < \epsilon$. Then,

$$x - \left(a_0 + \frac{a_1}{10} + \dots + \frac{a_m}{10^m}\right) = \frac{y_m}{10^m}$$

$$< \frac{1}{10^m}$$

$$< \epsilon = x - \alpha$$

$$\Rightarrow \alpha < a_0 + \frac{a_1}{10} + \dots + \frac{a_m}{10^m}.$$

This is a contradiction.

0.3 Cardinality of \mathbb{R}

Proposition 0.7. \mathbb{R} is uncountable.

Proof. Suppose not, then there will be an enumeration of numbers in (0,1) say $\{y_n\}$, where

$$y_1 = 0.a_{11}a_{12}...a_{1n}...$$

 $y_2 = 0.a_{21}a_{22}...a_{2n}...$
 \vdots

$$y_n = 0.a_{n1}a_{n2}\dots a_{nn}\dots$$

Consider $y = 0.b_1b_2\cdots_n\dots$, where $b_n = \begin{cases} a_{nn} + 1 & \text{if } a_{nn} = 0, 1, 2, \dots, 8 \\ 0 & \text{if } a_{nn} = 9. \end{cases}$ Clearly, $y \neq y_n$ for any n. Hence, (0,1) is not countable.

As any $x \in (0,1)$ has a binary representation. We have,

Proposition 0.8. $|\mathcal{P}(\mathbb{N})| = |T(\mathbb{N})| = |\mathbb{R}|$.

Proposition 0.9. Every infinite set contains a countably infinite subset.

Proof. First we show that for every $n \in \mathbb{N}$ there exists a subset $A_n \subset A$ such that $|A_n| = n$. As A is non-empty $\exists a_1 \in A$. Let us choose $A_l \subsetneq A$ such that $|A_l| = l$. As A is infinite $\exists x \in A_l^c \cap A$. Define $A_{l+1} = A_l \cup \{x\}$. So by induction we get the desired property. Now for every $n \in \mathbb{N}$ define $B_n = A_{2^n} \cap (\bigcup_{k=0}^{2^{n-1}} A_k)^c$. Easy to see that $B_n \cap B_m = \phi$ if $n \neq m$. Define $B = \{x_n : x_n \in B_n\}$. (Such a choice is possible by Axiom of Choice!!)