EXPERIMENT -3

AIH: To delemine the Young's modulus of clasticity of the given material.

APPARATUS: Pin and minoscope annongement, scale, verniers callipers, Soven gange, weight langen, material bow on Hod

THEORY: If a light bound breadth b and depth d is placed hoursoutally on two Knife-adges separated by a distance I and a load of mass m, applied at the midpoint of the base, produces a depression of the box, then Young's modulus y of the material of the base is given by

Where g is the acceleration due to gravity. This is the working formula of the experiment; and is valid so long as the slope of the base at any point with respect to the unstrained position is much less than wity. Here I is delevisioned by measuring the quantities b, d, L and the mean depression (corresponding to a load m. If b, d, L and lave measured in cm, m; n gm , 9 is expressed in cm/ses2, and then y is obtained in dyne/cm2

EXPT. NO.

DATE

PAGE NO.

OBSERVATION:

Veruier constant of biarcting microscopie (L.C) = 0.001 cm Distance between the two knife edges (l) = 55 cm

SL NO	MASS (ingm)	MICROSCOPE READING FOR INCREASING LOAD (am)			HICROSCOPE READING FOR DECREASING LOAD (CM)			MEAN	DEPRE-
		MS.R (em)	V.S.R (cm)	TOTAL(cm)	M·S·R (cm)	V.S.R	TOTAL(cm)	(cm)	(em)
1	0	5.50	13	5-50 +13x0001 = 5-51	5. 80	13	5.50+(3×0.00) = 5.51	5.51	0.00
2	50	5.55	17	5.55+17x0-001 = 5.56	6.55	П	5.55 + MXU.001 = 5.56	5.56	0.05
3	100	5.60	22	5.60+22×0.001 =5.62	5.60	22	5.60+22×0.001 =5.62	6.62	0.11
4	150	5.65	5	5.65+5x0001 = 5.65	5.65	5	5.65 + 5 x0.001 = 5.65	5.65	0.14
5	200	5.70	10	6.70+10x0-001 =5.71	5.70	10	5.70+10×0.001 =5-71	5.71	0.20
6	250	5.75	6	5.75+6 x0.001 = 3.75	5.75	6	5.15+6×0.001 =6.75	5.75	0.24
7	300	5.80	5	5.80 + 5x0 001 = 5.80	5.80	5	5.80 + 5 X0.001 = 5.80	5.80	0.29
8	350	5.85	7	5.85+7x0001 = 6.85	5.85	1	5.85 + 7 x 0.001 = 5.85	5.85	0.34
9	400	540	4	5.90+4x0-001 = 6.90	5.90	4	540+4×0.001 =5.40	540	0.39
10	450	5.95	7	5.95+7x0.001 = 5.95	5.95	7	5.45+7×0.001 =5.95	5.95	0.44
11	500	6-00	8	6.00+8× 0.001	6.00	8	=6.00 6.00+8x0.001	6-00	0.49

DATE

PAGE NO

EXPT. NO

CALCULATION :-

Young's Modulus $y = gl^3m$ 46d31

Here, Y= young's Hodulus

9 = acceleration due to gravity

L= distance between two trife edges

m = man of the load

b = breadth of the steel bar

d = dopth of the steel base

1 = depnention produced

Values: 9 = 9.8 m/s2 OH 980 cm/s2

L = 55 cm

b = 1.5cm

d=025cm

Slope of guaph = $\Delta y = \Delta L = 0.001 \text{ cm/g}$

Therefore, according to the formula.

 $y = 980 \times (55)^3 = 1.739 \times 10^{12} \text{ dyne /am}^2$ $4 \times 1.5 \times (0.25)^3 \times 0.001$

CONCLUSION: - The Young's modulus is 1.739×1012 dyne/cm2
MERIT®