MTH 447: Lecture 2

Cliff Sun

January 24, 2025

The Algebra of \mathbb{Z} :

1.
$$(x + y) + z = x + (y + z)$$

2.
$$x + y = y + x$$

3.
$$x + 0 = x$$
 for some $0 \in \mathbb{Z}$

4.
$$x + (-x) = 0$$
 for some $-x \in \mathbb{Z}$

This is an abelian group. We then introduce the multiplication rules

1.
$$(xy)z = x(yz)$$

$$2. xy = yx$$

3.
$$x \cdot 1 = 1 \cdot x = x$$

$$4. \ x(y+z) = xy + xz$$

These proporties form a communative ring, but NOT a field because there is no multiplicative inverse. Recall, equivalence relations are

- 1. Reflexive
- 2. Symmetric
- 3. Transitive

The statement ad = bc is an equivalence relation. Where $d, c \neq 0$. In the rational numbers \mathbb{Q} , we have a new property that

1.
$$xx^{-1} = 1$$
 for some $x^{-1} \in \mathbb{Q}$

Now our set of numbers is a field. Note that

$$\mathbb{Q} = \left[\mathbb{Z} \times (\mathbb{Z} \ 0) \right] / \sim \tag{1}$$

Where \sim is the equivalence relation as above. This creates a coordinate system with (p,q) where p is the top part of the fraction and etc. But $\mathbb Q$ has a lot of "holes", that we can't use analysis on it. Example: we claim that there is no rational solution for $c^2 = 2$.

Proof. We assume that $x = \frac{p}{q}$ and $x^2 = 2$. Then

$$\frac{p^2}{q^2} = 2\tag{2}$$

$$p^2 = 2q^2 \tag{3}$$

Thus the right hand side is even. Therefore, p^2 is even. Now that p is even. Thus p=2k. Then

$$4k^2 = 2q^2 \tag{4}$$

$$q^2 = 2k^2 \tag{5}$$

Therefore, q^2 is even, which implies that q is also even. Therefore, there is no rational solution to $x^2 = 2$.

Theorem 0.1. Let $x_1 < x_2$ be in \mathbb{Q} , then there are infinitely many irrational numbers between x_1 and x_2 .

Lemma 0.2. Let $x_1 < x_2$ be in \mathbb{Q} . Then

$$x_1 + \frac{x_2 - x_1}{n} \in \mathbb{Q} \tag{6}$$

Is rational. Thus, there are infinitely many rational numbers between x_1 and x_2 .

Lemma 0.3. Given $x_1, x_2 \in \mathbb{Q}$, and $x_1 < x_2$. Then

$$x_1 + \frac{x_2 - x_1}{\sqrt{2}} \tag{7}$$

 $is \ not \ rational.$

Proof. Assume that

$$x_1 + \frac{x_2 - x_1}{\sqrt{2}} = \frac{p}{q} \tag{8}$$

Then we simplfy down to

$$\sqrt{2} = \frac{x_2 - x_1}{\frac{p}{q} - x_1} \in \mathbb{Q} \tag{9}$$

and $\frac{p}{q} \neq x_1$. This is a contradiction.

Then between 2 rational numbers, there is always at least on irrational number.