1799.
$$\int x^2 \sin 2x \, dx$$
. 1800. $\int x \sin x \, dx$.
1801. $\int x^3 \cosh 3x \, dx$. 1802. $\int \arctan x \, dx$.
1803. $\int \arcsin x \, dx$. 1804. $\int x \arctan x \, dx$.
1805. $\int x^2 \arccos x \, dx$. 1806. $\int \frac{\arctan x}{x^2} \, dx$.
1807. $\int \ln (x + \sqrt{1 + x^2}) \, dx$.
1809. $\int \arctan \frac{1 + x}{1 - x} \, dx$.
1810. $\int \sin x \cdot \ln (\operatorname{tg} x) \, dx$.
1811. $\int x^3 \, e^{x^3} \, dx$. 1812. $\int (\arcsin x)^2 \, dx$.
1813. $\int x (\arctan x)^2 \, dx$.
1814. $\int x^2 \ln \frac{1 - x}{1 + x} \, dx$.
1815. $\int \frac{x \ln (x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx$.
1817. $\int \frac{dx}{(a^2 + x^2)^2} \cdot 1818$. $\int \sqrt{a^3 - x^3} \, dx$. 1819. $\int \sqrt{x^3 + a} \, dx$.
1820. $\int x^2 \sqrt{a^2 + x^3} \, dx$. 1821. $\int x \sin^3 x \, dx$.
1824. $\int \frac{x e^{\operatorname{arctg} x}}{(1 + x^2)^{3/2}} \, dx$. 1826. $\int \sin (\ln x) \, dx$.
1827. $\int \cos (\ln x) \, dx$. 1828. $\int e^{ax} \cos hx \, dx$

1827.
$$\int \cos (\ln x) dx$$
. 1828. $\int e^{\alpha x} \cos bx dx$.
1829. $\int e^{\alpha x} \sin bx dx$. 1830. $\int e^{2x} \sin^2 x dx$.
1831. $\int (e^x - \cos x)^2 dx$.

1832.
$$\int \frac{\arctan \cot g \, e^x}{e^x} \, dx.$$
 1833.
$$\int \frac{\ln (\sin x)}{\sin^2 x} \, dx.$$
 1834.
$$\int \frac{x \, dx}{\cos^2 x} \, .$$
 1835.
$$\int \frac{x \, e^x}{(x + 1)^2} \, dx.$$

Нахождение следующих интегралов основано на приведении квадратного трехчлена к каноническому виду и примене-