

CE320: Microcomputers I

Lab6: Output Device

Jung Me Park, Ph.D
ECE Department, Kettering University
jpark@kettering.edu

Dragon 12 plus: Interfacing with LEDS

Example Codes: 7 Segment Display

- Write an assembly program to display the number 1234 on the four 7-segment LEDs
 - 7-segment LEDs are mainly used to display decimal digits and a small set of letters.
 - To display 1234 on the four seven-segment LEDs

Interfacing with 7-Segments Display LEDs

■ 8 Bits in Port B (\$0001) are used as a data for LEDs

Decimal			Se	gme	ents	5		Value to send to port B		
digit	6	5	4	3	2	1	0	value to sella to port b		
0	0	1	1	1	1	1	1	\$3F		
1	0	0	0	0	1	1	0	<u>\$06</u>		
2	1	0	1	1	0	1	1	\$5B		
3	1	0	0	1	1	1	1	\$4F		
4	1	1	0	0	1	1	0	\$66		
5	1	1	0	1	1	0	1	\$6D		
6	1	1	1	1	1	0	1	\$7D		
7	0	0	0	0	1	1	1	\$07		
8	1	1	1	1	1	1	1	\$7F		
9	1	1	0	1	1	1	1	\$6F		

Example Code: 7 Segment LED Display

 Task: Write a program to display 1234 on the four sevensegment LEDs

Example Code: Data Declaration (I)

- Data declaration to display 1234 on the four seven-segment LEDs
- Need a set of data
 - 1. PORT B data: the data displayed on the selected LED

Decimal			Se	gme	ents	;		Value to send to port B		
digit	g	f	е	d	С	b	а	value to sellu to port b		
0	0	1	1	1	1	1	1	\$3F		
1	0	0	0	0	1	1	0	\$06		
2	1	0	1	1	0	1	1	\$5B		
3	1	0	0	1	1	1	1	\$4F		
4	1	1	0	0	1	1	0	\$66		
5	1	1	0	1	1	0	1	\$6D		
6	1	1	1	1	1	0	1	\$7D		
7	0	0	0	0	1	1	1	\$07		
8	1	1	1	1	1	1	1	\$7F		
9	1	1	0	1	1	1	1	\$6F		

2. **Port P data**: select the LED to display. Enable (active low) one 7-segment LED one at a time.

Example Code: Data Declaration (II)

- Data declaration to display 1234 on the four seven-segment LEDs
- Need a set of data
 - PORT B data: the data displayed on the selected LED
 - Port P data: Select the LED to display. Enable (active low) the selected LED

ORG \$1000 LEDdata: DC.b \$06, %00001110 DC.b \$5B, %00001101 DC.b \$4F, %00001011 DC.b \$66, %00000111

Example Codes: Configuration

2. Configure Port B, Port P and Port J as output ports.

```
BSET DDRB, %111111111 ;configure 8bits in Port B as output pins

BSET DDRJ, %0000 0010 ;configure bit 1 in Port J as a output pin

BSET DDRP, %0000 1111 ;configure 8bits in Port B as output pins
```

3. Disabling PJ1 by setting the value 1

```
BSET PTJ, % 0000 0010 ; Disable flashing LEDs
```


Previous Iteration X=\$1002

Loop:
MOVB 0,X, PORTB
INX
MOVB 0,X, PTP
INX
LDY #10
JSR Delay_yms
CPX # LEDdata +8
BNE Loop

2nd Iteration
PORT B= \$5B (display digit ' 2' on the led)
X=\$1003
PORT P= %0000 11 01 ; LED#1 is activated
X=\$1004
Y= 10 ms
Call subroutine for y ms delay
Compare X with the end of the LEDdata
If X is not the end of the LED Data, then go to Loop

Previous Iteration X=\$1004

Loop:
MOVB 0,X, PORTB
INX
MOVB 0,X, PTP
INX
LDY #10
JSR Delay_yms
CPX # LEDdata +8
BNE Loop

3rd Iteration	
PORT B= \$4F (display '3' or	n the LED)
X=\$1005	
PORT P= %0000 1 011	; LED#2 is activated
X=\$1006	
Y= 10 ms	
Call subroutine for y ms de	elay
Compare X with the end of	the LEDdata
If X is not the end of the LE	D Data, then go to Loop

\$100	0 \$1001	\$1002	\$1003	\$1004	\$1005	\$1006	\$1007
\$06	%0000111 0	\$5B	%0000 11 <mark>0</mark> 1	\$4F	%00001 0 11	\$66	%0000 <mark>0</mark> 111

1

Previous Iteration X=\$1006

Forever:

LDX # LEDdata
Loop:
MOVB 0,X, PORTB
INX
MOVB 0,X, PTP
INX
LDY #10
JSR Delay_yms
CPX # LEDdata +8
BNE Loop
BRA Forever

4th Iteration
PORT B=\$66 (display '4' on the LED)
X=\$1007
PORT P= %0000 0111 ; LED#3 is activated
X=\$1008
Y= 10 ms
Call subroutine for y ms delay
Compare X with the end of the LEDdata
X == \$1008, so BNE is not taken.
Branch To Forever - Start again.

Stack application: Delay Program

- Clock speed of Dragon12+:
 - 24 MHz (24,000,000 Hz) means 24 million clock cycles / sec
 - 24,000 clock cycles / 1 ms
- The following instruction sequence creates a delay of 1 ms.

Y ms Delay Program

□ Given E-clock = 24MHz, to make y ms delay (approximately)

```
; subroutine to make a delay of Y ms
Delay_yms:
             PSHX
                                      ; save X register in the stack
Outerloop:
               LDX #1000
Innerloop:
               PSHA
                                         ; 2 E cycles
               PULA
                                        ; 3 E cycles
               PSHA
                                        ; 2 E cycles
                                        ; 3 E cycles
               PULA
                                                                      = 24 * 1000
               PSHA
                                         ; 2 E cycles
                                                                        (24,000 cycles)
               PULA
                                         ; 3 E cycles
                                                                      = 1 \text{ ms}
               PSHA
                                         ; 2 E cycles
               PULA
                                         ; 3 E cycles
                                        ; 1 E cycle
               nop
              DBNE X, Innerloop
                                        ; 3 E cycles
            DBNE
                   Y, Outerloop
            PULX
                                          ; restore X register from the stack
            RTS
```