Train simple ★

On s'intéresse à la chaîne de transmission de puissance d'un tracteur Fendt. Cette dernière est composée d'un moteur (et d'une pompe) hydraulique (Mh) ainsi que d'un moteur thermique MAN (Mm).

A3-05

C2-06

Le moteur MAN a pour but de fournir de la puissance à la pompe hydraulique et au tracteur (récepteur R). On donne ci-dessous le schéma de la transmission.

Les rayons des pignons sont les suivants : $R_{12}=60$, $R_{1M}=33$, $R_2=30$, $R_{32}=120$, $R_{3P}=54$, $R_M=54$, $R_M'=48$, $R_R=42$, $R_R'=48$.

Une étude antérieure a permis d'établir que $\frac{\omega(Ph/0)}{\omega(Mh/0)} = \frac{2y}{x}$ avec $x \in [0,71;1]$ et $y \in [0;1]$.

La fréquence de rotation du moteur Man est de 1900 tr/min.

Question 1 Déterminer la relation entre $\omega(1/0)$, $\omega(3/0)$ et $\omega(4/0)$.

Question 2 Montrer que la relation entre la rotation du moteur hydraulique et le moteur Man peut se mettre sous la forme : $\frac{\omega(Mh/0)}{\omega(Mm/0)} = -\frac{Ax}{BR_py + Cx}$ où on explicitera A, B et C.

Corrigé voir .

Éléments de correction

1.
$$R_{32}\omega(3/0) + R_{12}\omega(1/0) = \omega(4/0) (R_{12} + R_{32}).$$

2. $\frac{\omega(Mh/0)}{\omega(Mm/0)} = \frac{(R_{12} + R_{32}) R_{1M} R_{3P} x}{R_{32} 2y R_P R_{1M} + R_{3P} x R_{12} R_{M}}$

 $\frac{R_{32}2yR_{P}R_{1M} + R_{3P}xR_{12}R}{\text{avec}} = (R_{12} + R_{32})R_{1M}R_{3P},$ $B = R_{32}2R_{1M} \text{ et}$

 $C = R_{3P} x R_{12} R_M.$

