Disciplina: CIC 116394 – Organização e Arquitetura de Computadores – Turma A

2009/2

Prof.: Marcus Vinicius Lamar

Nome:

d_0	d_1 / d_2	$d_3\ d_4\ d_5$	d_6
Matrícula:			

Prova 1

1) (6.0) Uma das maiores dificuldades em programação Assembly de qualquer processador é, em grande parte dos casos, a ausência de funções matemáticas transcendentais implementadas diretamente na ISA, que são de grande importância na simulação de processos físicos.

Sabendo que a série de potência da função seno é definida como:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}$$

- a) (3.0) Implemente um procedimento eficiente (número mínimo de operações) em Assembly MIPS que receba como argumento um ângulo em radianos $[-\pi,\pi]$, no formato *float* (IEEE 754 single) no registrador \$f0, *n* no registrado \$a0, e retorne o seno deste ângulo em formato *float* no registrador \$f12, respeitando a convenção do uso dos registradores.
- b) (1.0) Qual o valor do registrador \$f12 em hexadecimal, se $n \to \infty$ e:
 - b.2) (0.25) *x*=-1.5707963267948966192313216916398;
 - b.3) (0.25) x=0.0;
 - b.4) (0.5) $x = d_0.d_1d_2d_3d_4d_5d_6$;
- c) (1.0) Sabendo que um processador uniciclo de frequência de clock de 500MHz, dispõe de apenas 260ns para executar o procedimento seno escrito por você no item a), qual o valor máximo de *n* que poderia ser utilizado?
- d) (1.0) Um processador multiciclo, possui diretamente em sua ISA a instrução sen \$f12,\$f0 que necessita de 32 períodos de clock para ser executada com n=8 (default). Qual a frequência de clock que este processador deve ter de modo que esta implementação tenha um fator de desempenho de 3 frente a sua implementação usando o processador uniciclo do item c)?
- 2) (2.0) O padrão de ponto flutuante IEEE 754 especifica precisão simples de 23 bits para significando e 8 bits para o expoente. Supondo que redefiníssemos para 21 bits de significando e 10 bits de expoente.
 - a) (0.5) Qual seria o bias do expoente?
 - b) (1.0) Qual seria o intervalo de número que podem ser representados sem overflow ou undeflow? $\{-\infty,[A<0,B<0],0,[C>0,D>0],+\infty\}$
 - c) (0.5) Quais seriam as vantagens e desvantagens desta nova representação?
- (3.0) Dado o código em Assembly MIPS ao lado, em que o label INICIO corresponde ao endereço 0x00400000 da memória.

Qual é o valor impresso na tela? Justifique.

INICIO: ori \$a0,\$zero,0x00d₂d₃ la \$t1,0x0810000B

la \$t2,JUMP sw \$t1,0(\$t2)

JUMP: beq \$a0,\$zero,FIM

la \$t1, 0x208400d₅d₆

sw \$t1,20(\$t2) li \$a0.2

FIM: li \$a1,3 li \$v0,1

syscall

2) Exposor = 10 805 Frages = 21 BITS a) OFFSET = 511. b) (25/00ens 9/1/260 01) IFTE 754 tem 05 -Extent te E[1, 1022) 1023,300 $A = (-1)^{1} \times (111111...1) \times Z = -1 \times 2 \times 2 = -2$ $A = -1,34078079 \times 10^{154} / 154 = 2^{5/2}$ $P = -A = 1,34078079 \times 10^{154} = 2^{5/2}$ C) Vantagen i mais gits no expert aurera a faixa Diramica Pos rémeros Representavers gesvontagen: DiMINU; DN. Q BITS PO SIGNIFICAN DO Logo per en Precisão da Refirentação

C) proc. unicices f=50mx= X= 260/25 hmaix = ? T=1500M = 2175 1090 POPE UTILIZAR X/T = 26/2 = 130 Rassos PI h Paggos; MC, CLOS = 10 + 11xm +2

irie, o Sultimo Beq, 1r

(DGD:

Mn+12 = 130 -> n=10,72 -> n=10

d) n=8 -> 32 cizus

n= tnev = 3 trev = 209x (10+11x8+2)

troso TMEU = 200m5

Amora = 2004/3=66,66ps = 32 ciclos 47=6666 - 2,083,05 - 1 = 480MHZ

3) OXOOYO	0000	Pricio	*. OR; Gar, Freno, 0x0012
		0004) La \$t1, 0x 0810 0003
		0008	•	4 4 0040 002C
		000C		La \$12, JUMP GFM
		0010		
		0014		sw \$11,0 (\$72.)
		0018	Jump:	beg ggd fixed FAM
		0010		JLa \$11,0x20840045
		0020		
		0024		GW- \$ \$1,720 (\$\$72)
		8300		Li 998,2
		0020		Li \$91,3
		00 30	\	21 9V2, 1
		0034		SYSCAVE
		0071		
	KSCADUO	0×00	12 -7	1) ratela

ESCREVE 0x00/2 -> 18 ratela