1 Set Theory & Probability

General: (i) $S = A \cup \overline{A}$ (ii) $A - B = A \cap \overline{B}$ (iii) $(A \cap B) \cup (A \cap \overline{B}) = A$ DeMorgan's Laws: (i) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (ii) $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Semantic Meanings:

- (i) Neither $\implies A^c \cap B^c = (A \cup B)^c$
- (ii) Xor $\implies (A \cap B^c) \cup (A^c \cap B)$
- (iii) At least one $\implies A \cup B$

2 Combinatorics

Counting Tools:

- (a) $\mathbf{m} \times \mathbf{n}$: Number of pairs between m and n items.
- (b) $\mathbf{m}^{\mathbf{n}}$: Number of ways to fill n slots with m objects.
- (c) $\mathbf{P_r^n} = \frac{\mathbf{n!}}{(\mathbf{n} \mathbf{r})!}$: Number of ways of ordering n distinct objects taken r at a time.
- (d) $\binom{\mathbf{n}}{\mathbf{r}} = \frac{\mathbf{n}!}{\mathbf{r}!(\mathbf{n}-\mathbf{r})!}$: Number of subsets, each of size r, that can be formed from n objects.
- (e) $\binom{\mathbf{n}}{\mathbf{n_1, n_2, ..., n_k}} = \frac{\mathbf{n!}}{\mathbf{n_1! n_2!...n_k!}}$: Number of ways of partitioning n distinct objects into k distinct groups containing $n_1, n_2, ..., n_k$ objects. This has restriction: $\sum_{i=1}^k n_i = n$

Binomial Expansion: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$

3 Conditional Probability

A given B occurred: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Independence: Two events A, B are independent \iff

- (i) $P(A \mid B) = P(A) \iff P(B \mid A) = P(B)$
- (ii) $P(A \cap B) = P(A) P(B)$

Properties:

(i)
$$P(A \mid A \cup B) = \frac{P(A)}{P(A \cup B)}$$

(ii)
$$P(A \cap B \mid A \cup B) = \frac{P(A \cap B)}{P(A \cup B)}$$

(iii)
$$P(A^c \mid B) = 1 - P(A \mid B)$$

(iv)
$$P(A) = P(A \cap B) + P(A \cap B^c) \equiv P(A \mid B) P(B) + P(A \mid B^c) P(B^c)$$

(v) If A, B are independent then $\implies (A^c, B), (A, B^c)$ and (A^c, B^c) are all independent.

Multiplicative Law:

(i)
$$P(A \cap B) = P(A) P(B \mid A) = P(B) P(A \mid B)$$

(ii)
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid B \cap A)$$

3.1 Bayes

Total Law of Probability:

If $\{B_1, B_2, \dots, B_n\}$ is a partition of $S \implies P(A) = \sum_{k=1}^n P(A \mid B_k) P(B_k) = \sum_{k=1}^n P(A \cap B_k)$

Bayes' Theorem:

$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{k} P(A \mid B_k) P(B_k)}; P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

4 Discrete Random Variables

P(Y = y): Probability that Y takes on y is the sum of the probabilities of all the sample points in S that are assigned the value y.

 $\mathrm{E}[Y] = \mu = \sum_{y} y \, \mathrm{P}(Y = y)$: The expected value of Y. Alternatively, the mean.

 $Var(Y) = \sigma^2 = E[Y^2] - E[Y]^2$: The spread of Y from its expected value.

Properties:

(i) E[c] = c where c is a constant

(ii) $E[g(Y)] = \sum_{y} g(y) P(Y = y)$

(iii) Given $g_1(Y), g_2(Y), \dots, g_k(Y) \implies E[g_1(Y) + g_2(Y) + \dots + g_k(Y)] = E[g_1(Y)] + E[g_2(Y)] + \dots + E[g_k(Y)]$

(a) $Var(g_1(Y) + g_2(Y) + \dots + g_k(Y)) = Var(g_1(Y)) + Var(g_2(Y)) + \dots + Var(g_k(Y))$

(iv) $Var(aY + b) = Var(aY) = a^2 Var(Y)$

4.1 Moment Generating Functions

 $MGF ext{ of } Y$:

$$M_Y(t) = E[e^{tY}] = \sum_y e^{ty} P(Y = y)$$

 k^{th} Moment of Y: $E[Y^k]$

$$\frac{\mathrm{d}^k}{\mathrm{d}t^k} M_Y(t) \Big|_{t=0} = \begin{cases} k = 1 & \Longrightarrow & \mathrm{E}[Y] \\ k = 2 & \Longrightarrow & \mathrm{E}[Y^2] \\ \vdots \\ k = n & \Longrightarrow & \mathrm{E}[Y^n] \end{cases}$$

4.1.1 Calculus

Chain Rule: $(f \circ g)' = (f \circ g)'g'$ Product Rule: $(f \cdot g)' = f'g + fg'$ Quotient Rule: $(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$

Integration by parts:

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Power Rule:

$$\int x^n \, \mathrm{d}x = \frac{1}{n+1} x^{n+1}$$

5 Discrete Distribution Dictionary

• $Y \sim \text{Binomial}(n, p)$: Observing $y \in [0, n]$ successes in fixed n trials.

$$P(Y = y) = \binom{n}{y} p^y (1 - p)^{n-y} \implies \mu = n \cdot p \text{ and } \sigma^2 = np(1 - p)$$
$$M_Y(t) = \left[pe^t + (1 - p) \right]^n$$

• $Y \sim NB(r, p)$: Observing the fixed r^{th} success in $y \in [r, \infty)$ trials.

$$P(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r} \implies \mu = \frac{r}{p} \text{ and } \sigma^2 = \frac{r(1-p)}{p^2}$$
$$M_Y(t) = \left[\frac{pe^t}{1 - (1-p)e^t}\right]^r$$

• $Y \sim \text{Geometric}(p) = \text{NB}(1, p)$: Observing 1 success in $y \in [1, \infty)$ trials.

$$P(Y = y) = (1 - p)^{y-1}p \implies \mu = \frac{1}{p} \text{ and } \sigma^2 = \frac{1 - p}{p^2}$$

$$M_Y(t) = \frac{pe^t}{1 - (1 - p)e^t}$$

• $Y \sim \text{Hypergeometric}(N, r, n)$: Observing $y \in \begin{cases} [0, n] \text{ if } n \leq r, \\ [0, r] \text{ if } n > r \end{cases}$ successes in n draws, without replacement, from a population of N that contains r success states.

$$P(Y = y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}} \implies \mu = \frac{r \cdot n}{N} \text{ and } \sigma^2 = n \left(\frac{r}{N}\right) \left(\frac{N-r}{N}\right) \left(\frac{N-r}{N-1}\right)$$

• $Y \sim \text{Poisson}(\lambda)$: Observing $y \in [0, \infty)$ indepedent events that occur with a constant mean rate of λ in a fixed interval of time or area. Note: $Y \sim \text{Poisson}(n \cdot p) = Y \sim \text{Binomial}(n, p)$ if n is very large, or p is small. That is to say, it may be used to approximate the binomial distribution.

$$P(Y = y) = \frac{\lambda^y e^{-\lambda}}{y!} \implies \mu = \lambda \text{ and } \sigma^2 = \lambda$$

$$M_Y(t) = e^{\lambda(e^t - 1)}$$