Feedforward neural nets

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 The architecture
- 2 The functions
- 3 The effect of depth

The architecture

The value at a hidden unit

How is h computed from z_1, \ldots, z_m ?

- $h = \sigma(w_1z_1 + w_2z_2 + \cdots + w_mz_m + b)$
- $\sigma(\cdot)$ is a nonlinear **activation function**, e.g. "rectified linear"

$$\sigma(u) = \begin{cases} u & \text{if } u \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Why do we need nonlinear activation functions?

The output layer

Classification task with k labels: want k probabilities summing to 1.

- y_1, \ldots, y_k are linear functions of the parent nodes z_i .
- Get probabilities using **softmax**:

$$\Pr(\mathsf{label}\ j) = rac{\mathsf{e}^{y_j}}{\mathsf{e}^{y_1} + \dots + \mathsf{e}^{y_k}}.$$

The complexity

The effect of depth

Universal approximator

Any function can be arbitrarily well approximated by a neural net with one hidden layer.

Concerns about size

To fit certain classes of functions:

- Either: one hidden layer of enormous size
- Or: multiple hidden layers of moderate size