

Scalable Machine Learning Agenda

```
8:00 - 8:30 - Breakfast
8:30 - 8:40 - Welcome
8:40 - 10:00 - Introduction to Singularity
10:00 - 10:10 - Break
10:10 - 12:10 - CONDA & Jupyter on Expanse
12:10 - 1:10 - Lunch
 1:10 - 1:30 - Machine Learning Overview
 1:30 - 2:25 - R on HPC
 2:25 - 2:35 - Break
2:35 - 4:35 - Spark
```

Scalable Machine Learning Agenda

```
8:00 - 8:30 - Breakfast
8:30 - 8:40 - Welcome
8:40 - 10:00 - Introduction to Singularity
10:00 - 10:10 - Break
10:10 - 12:10 - CONDA & Jupyter on Expanse
12:10 - 1:10 - Lunch
 1:10 - 1:30 - Machine Learning Overview
 1:30 - 2:25 - R on HPC
2:25 - 2:35 - Break
2:35 - 4:35 - Spark
```


Introductions

- Mai Nguyen, Ph.D.
 - Lead for Data Analytics
- Paul Rodriguez, Ph.D.
 - Computational Data Scientist

Machine Learning Overview

Mai H. Nguyen, Ph.D.

How would you define machine learning?

Source:

http://halalfocus.net/uk-will-people-pay-more-to-ensure-their-meat-is-not-halal/question-mark-nothing/

Machine learning is ...

- "... a subfield of computer science that ... explores the study and construction of algorithms that can learn from and make predictions on data." (wikipedia.org)
- "... a type of artificial intelligence that provides computers with the ability to learn without being explicitly programmed." (whatis.techtarget.com)
- "... a method of data analysis that automates analytical model building and ... allows computers to find hidden insights to produce ... predictions that can guide better decisions and smart actions..." (www.sas.com)

learning from data

no explicit programming

discover hidden patterns

data-driven decisions

learning from data no explicit programming

Working Definition

 The field of machine learning focuses on the study and construction of computer systems that can learn from data without being explicitly programmed. Machine learning algorithms and techniques are used to build models to discover hidden patterns and trends in the data, allowing for data-driven decisions to be made.

Machine Learning as Interdisciplinary Field

- ML combines concepts
 & methods from many disciplines:
 - Mathematics, statistics, computer science, artificial intelligence, etc.
- ML is being used in various fields:
 - Science, engineering, business, medical, law enforcement, etc.

Why the Increased Interest in ML?

- Advances in processing power, storage capacity, mobile computing, and interconnectivity
 - Create unprecedented data
 - Can store and process more data
- Data-driven applications in many areas
 - Science: bioinformatics, image analysis, remote sensing
 - Personal health data from wearable devices
 - Medicine: drug design, healthcare, data from wearable devices
 - Retail: targeted advertisement, dynamic pricing
 - Finance: fraud detection, risk analysis
 - Manufacturing: preventive maintenance, supply chain management
 - Social media data related to customer satisfaction, political trends, health epidemics, law enforcement, terrorist activities

Why the Increased Interest in ML?

- Advances in processing power, storage capacity, mobile computing, and interconnectivity are creating unprecedented data:
 - User preferences and purchasing history on websites
 - Scientific data from remote sensors and instruments
 - Personal health data from wearable devices
 - Medical data from drug trials, treatment options, patient population
 - Social media data related to customer satisfaction, political trends, health epidemics, law enforcement, terrorist activities

MACHINE LEARNING APPLICATIONS

Best Sellers based on your browsing history

Apple AirPods with Charging Case (Wired) ★★★★ 153,701 \$129.00

Apple AirPods Pro ★★★★☆ 54,773 \$219.00

Apple EarPods with Lightning Connector -*** 38.539

\$19.98

Apple AirPods with Wireless Charging Case ★★★★ 24,208 \$159.99

TOZO T10 Bluetooth 5.0 Wireless Earbuds with Wireless Charging Case IPX8 Waterproof TWS... ★★★★☆ 107,951 \$29.98

Inspired by your browsing history

AirPods Case Cover with Keychain, Full Protective Silicone AirPods Accessories Skin Cover... ★★★★ 18,919

Apple Watch Series 3 (GPS, 38mm) - Space Gray Aluminum Case with Black Sport Band ** * 49,269 \$169.00

AirPods Case, GMYLE Silicone Protective Shockproof Case Cover Skins with Keychain... ★★★★ 15,592

Apple 5W USB Power Adapter ★★★★☆ 3,627 \$16.99

AmazonBasics Premium AirPods Case - Compatible with Apple AirPods 1 & 2, ★★★★☆ 78

SENTIMENT ANALYSIS

NEGATIVE

Totally dissatisfied with the service. Worst customer care ever.

Good Job but I will expect a lot more in future.

POSITIVE

Brilliant effort guys! Loved Your Work.

Applications of Machine Learning

- Recommendations on websites
- Targeted ads on mobile apps
- Handwriting recognition
- Fraud detection
- Sentiment analysis
- Network intrusion detection
- Drug effectiveness analysis
- Crime pattern detection
- Self-driving cars

Scientific Data Analysis

- HPWREN High Performance Wireless Research and Education Network
 - 30 TB of data: sensor and imagery data from weather stations in San Diego county per year (hpwren.ucsd.edu)
- MODIS Moderate Resolution Imaging Spectroradiometer
 - 219 TB of data: moderate resolution satellite imagery covering Earth's surface per year (modis.gsfc.nasa.gov)
- Precision Medicine
 - 4 EB (10¹⁸ bytes) of data: genome sequences of people diagnosed with cancer (www.fastcompany.com)
- LIGO, Deep Space Network, Protein Data Bank, ...

How much data is generated every minute on the Internet?

https://www.allaccess.com/merge/archive/31294/infographic-whathappens-in-an-internet-minute

Data Deluge

Data Deluge:

- Rapid growth in amount of digital data, and problems of managing this data.
- "We are drowning in information and starving for knowledge"
 John Naisbitt

Source: Megatrends, 1982

http://www.digitalzenway.com/2011/12/data-diet-a-resolution-you-can-stick-to/

Why do Machine Learning?

- How can all of this data be turned into useful information?
- Answer:
 - Apply machine learning!

http://www.kdnuggets.com/2015/03/all-machine-lear ning-models-have-flaws.html

MACHINE LEARNING PROCESS

CRoss Industry Standard Process for Data Mining

ftp://ftp.software.ibm.com/software/analytics/s pss/support/Modeler/Documentation/14/User Manual/CRISP-DM.pdf

https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

Phase 1: Business Understanding

Define problem or opportunity

What is the problem of interest? Why is it interesting?

Assess situation

- Resources
- Requirements, assumptions, and constraints
- Risks and contingencies; costs and benefits

Formulate goals and objectives

- Goals and objectives
- Success criteria

Create project plan

Steps to achieve goals

Phase 2: Data Understanding

Data Acquisition

- Collect available data related to problem
- Consider all sources: flat files, databases, sensors, websites, etc.
- Integrate data from multiple sources

Exploratory Data Analysis

- Preliminary exploration of data
- To become familiar with data

http://www.greenbookblog.org/2013/08/04/50-ew-tools-democratizing-data-analysis-visualiza

Exploratory Data Analysis

Goal:

http://www.greenbookblog.org/2013/08/04/50-new-tools-democratizing-data-analysis-visualization/

- Exploratory data analysis -> data understanding -> informed analysis
- Also referred to as 'data profiling'.

Techniques:

- Summary statistics
 - Mean, frequency, mode, range, variance, standard deviation, etc.
- Visualization
 - Histograms, scatter plots, line graphs, etc.
- Look for:
 - Correlations, general trends, outliers, etc.

Phase 3: Data Preparation

Goal:

- Prepare data to make it suitable for modeling
- Also referred to as 'data preprocessing', 'data munging', 'data wrangling'

Activities:

- Identify and address quality issues
- Select features to use
- Create data for modeling

http://www.datasciencecentral.com/profiles/blogs/5-data-cleansing-tools

Data Quality

Data Quality Issues

- Missing Values
- Duplicate Data
- Inconsistent Data
- Noise
- Outliers

Addressing data quality

Also referred to as 'data cleansing' or 'data cleaning'.

Important: Garbage in = Garbage out!

process.

es/blogs/5-data-cleansing-tools

Phase 4: Modeling

- Determine type of problem
 - Classification
 - Regression
 - Cluster analysis
- Build model(s)
 - Select modeling technique(s) to use
 - Construct model(s)
 - Train model(s)

http://phdp.github.io/posts/2013-07-05-dtl.html

Building Model

• Goal:

- Construct model that accurately predicts targets of training data as well as of new data.
- This is called "generalization".

Process:

 Adjust model's parameters to minimize error using a learning algorithm.

Source: https://en.wikiversity.org/wiki/Linear_regression

Phase 5: Evaluation

Assess model performance

- Determine metrics & methods to assess model results
 - Accuracy measures, confusion matrix, etc.
- Evaluate model results w.r.t. success criteria
 - Does model's performance meet success criteria?
 - Have all requirements been met?

Make Go/No-Go decision

- Go: Deploy model
- No-Go: Determine next steps

http://www.impactptac.com/?id=10

Evaluation Outcome

Determine next steps

- Go/No-go decision
- Go:
 - Proceed to Model Deployment to apply model.
- No-Go:
 - List of possible actions
 - Different modeling technique?
 - More data cleansing?
 - More data?

Source: http://www.impactptac.com/?id=10

Phase 6: Deployment

Documentation

Summarize findings and recommend uses

Model Deployment

- Optimize model for inference
- Integrate model into decision-making process in production
- Package model
- Make model available for inference

Model monitoring & maintenance

- Monitor model performance
- Plan for updating/correcting model

Phase 6: Deployment

Documentation

- Summarize findings and recommend uses
- · Document code, create user's guide, etc.

Packaging

- Modularize code
- Containerize code

Model deployment

- Integrate model into decision-making process in production
- Inference serving

Model monitoring & maintenance

- Monitor model performance
- Plan for updating/correcting model

Versioning

code, model, data, environment, configuration, etc.

Model Deployment

Considerations

- Think system-level: ML model is part of a larger system
- How quickly and often does model need to make predictions?
- How large is the data that needs to be processed?
- Plan for monitoring, updates, etc.

Tools

- Cloud service (PaaS, IaaS, SaaS)
- Containers (Docker, Kubernetes)
- Distributed web app architecture
- Microservices
- Others ...

Machine Learning Process

DM Process – Key Points

CRISP-DM

Process model that describes phases in data mining process

Phases

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

References

 SPSS. (2000). CRISP-DM 1.0. Retrieved from ftp://ftp.software.ibm.com/software/analytics/sps s/support/Modeler/Documentation/14/UserManua I/CRISP-DM.pdf

Main Machine Learning Approaches

- Classification
- Regression
- Cluster Analysis

CLASSIFICATION

- Goal: Predict category given input data
 - Target is categorical variable

Examples

- Classify tumor as benign or malignant
- Determine if credit card transaction is legitimate or fraudulent
- Identify customer as residential, commercial, public
- Predict if weather will be sunny, cloudy, windy, or rainy

REGRESSION

- Goal: Predict numeric value given input data
 - Target is numeric variable

www.wallstreetpoint.com

Examples

- Predict price of stock
- Estimate demand for a product based on time of year
- Determine risk of loan application
- Predict amount of rain

CLUSTER ANALYSIS

Goal: Organize similar items into groups

http://www.bostonlogic.com/blog/2014/01/seg ment-your-leads-to-get-better-results/

Examples

- Group customer base into segments for effective targeted marketing
- Identify areas of similar topography (desert, grass, etc.)
- Categorize different types of tissues from medical images
- Discover crime hot spots

Association Analysis

 Goal: Find rules to capture co-occurrence relationships between items

Customers who bought this:

Source: http://www.supercouponlady.com/best-diaper-deals-this-week/

Also bought:

Source: http://www.bizjournals.com/triangle/news/2012/06/2 1/new-craft-beer-store-opening-in-north.html

Association Analysis Examples

Cross-selling

 Recommended items based on your purchase/browsing history

Sales promotions

 Have sales on garden hose and potting soil at same time since people tend to buy these items together

Product placement

 Place diapers close to beer aisle to drive sales of both products.

Supervised vs. Unsupervised

Supervised Approaches

- Target (what you're trying to predict) is provided
 - 'Labeled' data
- Classification and regression approaches are supervised

Unsupervised Approaches

- Target is unknown or unavailable
 - 'Unlabeled' data
- Cluster analysis is unsupervised

MACHINE LEARNING MODEL

- ML model = Mathematical model with parameters that maps input to output
- Model parameters are adjusted during model training to change input-output mapping
- Parameters are learned or estimated from data
 - "fitting the model", "training the model", "building the model"
- Goal: Minimize some error function

ADJUSTING MODEL PARAMETERS

slope
$$m = 2$$

y-intercept $b = -1$
 $x=1 => y=2*1-1=1$

slope m = 2
y-intercept b = +1
x=1 =>
$$y=2*1+1=3$$

BUILDING VS APPLYING MODEL

Adjust model parameters "Train"

Test model on new data "Inference"

GENERALIZATION

Goal: Want model to perform well on data it was not trained on, i.e., to **generalize** well to unseen data

OVERFITTING & GENERALIZATION

Overfitting

Model is fitting to noise in data instead of to underlying distribution of data

Reasons for overfitting

- Training set is too small
- Model is too complex, i.e., has too many parameters

Overfitting leads to poor generalization

Model that overfits will not generalize well to new data

OVERFITTING

http://stats.stackexchange.com/questions/192007/what-measures-you-look-at-the-determine-over-fitting-in-linear-regression

Underfitting

Model has not learned structure of data

High training error High test error

Just Right

Model has learned distribution of data

Low training error Low test error

Overfitting

Model is fitting to noise in data

Low training error High test error

ADDRESSING OVERFITTING

Model complexity

- Number of parameters in model
- Chance of overfitting increases with model complexity

Validation set

- Monitor error on training and validation data
- To determine when to stop training

Regularization

- Constrain or shrink ("regularize") model parameters
- Add penalty term to error function used to train model
 - e.g., Add L1-norm and/or L2-norm regularization to linear regression model

VALIDATION SET

Scalable Machine Learning

- What is scalable machine learning?
- Applying machine learning to 'big data'

https://infocus.emc.com/scott_burgess/15350/

Scalable Machine Learning

http://www.digitalzenway.com/2011/12/data-diet-a-resolution-you-can-stick-to/

- "Growing torrent" of data
- Data
 - Comes in large volumes
 - Continuous
 - Complex

DSE 230 - Spring 2022 M. H. Nguyen 52

Where Does Big Data Come From?

DSE 230 - Spring 2022 M. H. Nguyen 53

petete condition of our colliding nautenn etner. Feadir Mational Science

How is Big Data Used?

V's of Big Data

V's of Big Data (Doug Laney of Gartner)

Volume

- Vast amounts of data being generated
- Petabytes (10¹⁵ bytes), exabytes (10¹⁸ bytes), and even more

Velocity

- Speed at which data is being generated
- Data is being generated continously

Variety

- Different forms of data
- Numeric, text, images, voice, geospatial, etc.

Veracity

Quality of data

Fifth 'V' of Big Data: Value

- Goal of processing Big Data is to extract value from data
 - Fifth 'V' of Big Data: Value
- Not sufficient to collect Big Data
- Need to analyze data to gain insights for decision-making

Scalable Machine Learning

- Extracting value is at the heart of analyzing any data
 - This is done using machine learning
- New technologies and approaches needed to address challenges (the V's) of Big Data
 - Parallel processing
 - Scalable algorithms
 - Distributed platforms

http://www.dreamstime.com/stock-photos-data-mining-image35154223

Machine Learning Overview

Machine learning

Definition, applications

Machine learning process

 Business understanding, data understanding, data preparation, modeling, evaluation, deployment

Machine learning approaches

- · Classification, regression, cluster analysis
- Supervised vs. unsupervised

Machine learning model

- Training vs. applying model
- Overfitting & generalization

Scalable machine learning

- V's of Big data
- New approaches needed to scale to big data

ML Introduction – Key Points

- Definition of machine learning (What)
- Reasons for doing machine learning (Why)
- Machine learning approaches (How)
 - Classification
 - Regression
 - Cluster analysis
 - Supervised vs. unsupervised
- Machine learning process
 - Business understanding, data understanding, data preparation, modeling, evaluation, deployment

Questions?

