CNN (CONVOLUTION NEURAL NETWORK)

◆ DNN (MLP) 이미지 인식

- ✓ 픽셀의 공간정보 유실
- ✓ 실제 이미지 데이터 보다 배경 데이터가 더 많음
- ✓ 픽셀 수 만큼의 가중치(W)로 연산량 증가
- ✓ 낮은 인식률

◆ 사람/동물 시간 인식

- ✔ 동물의 시각피질(visual cortex, 視覺皮質) 구조에서 영감
- ✓ 시각 자극이 1차 시각피질을 통해서 처리된 다음, 2차 시각피질 경유하여, 3차 시각피질 등 여러 영역 통과하며 모여진 정보가 계층적으로 처리되며 추상적인 특징이 추출되어 시각 인식

◆ CNN 합성곱신경망

- DNN의 한 종류로 컴퓨터 비전, 시각적 이미지 인식에 주로 사용
- 텍스트 처리 등 여러 다른 분야에도 다양하게 활용
- LeNet-5은 1998년 Yann LeCun 교수가 발표한 CNN 알고리즘으로 지속적인 연구와 발전 진행, 특히 2010년 초중반에 많은 발전

LeNet-5 -> Alexnet -> GoogLeNet -> VGGNet -> Resnet (1998) (2012) (2014) (2014) (2015)

◆ CNN 합성곱신경망

■ 입력 데이터의 형상을 유지하며 특징 추출 후 분류

▶ 전반부 : 3차원 이미지 입력 받아 특징 추출

▶ 후반부 : 특징 입력 받아 분류

Convolution Layer

- 이미지 위를 일정 간격으로 이동하며 특징(정보)를 하나씩 추출
- 위에서 아래로 전체 이동으로 특징(정보)를 모은 특징맵을 출력하는 기능의 Layer

특징맵

Convolution Layer

- 커널/필터/마스크
 - 가중치로 구성되며 일반적으로 3x3, 5x5 크기
 - 너무 큰 커널은 특징 추출 부족
 - 이미지 위를 일정 간격 이동
- 스트라이드(stride)
 - 커널의 이동 방향 및 크기
 - 기본 : 왼쪽 -> 오른쪽 1칸

Convolution Layer

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	3	

- 스트라이드(stride)
 - 이동방향 : LT -> RB
 - 기본 : 왼쪽 -> 오른쪽 1칸

1	1	1,	0,0	0,1
0	1	1,0	1,	0,0
0	0	1,	1,0	1,
0	0	1	1	0
0	1	1	0	0

4	3	4

Convolution Layer

4	3	4	
2			
			5

4	3	4
2	4	

- 스트라이드(stride)
 - 이동방향 : LT -> RB
 - 기본 : 왼쪽 -> 오른쪽 1칸

1	1	1	0	0
0	1	1,	1,0	0,1
0	0	1,0	1,	1,0
0	0	1,	1,0	0,1
0	1	1	0	0

4	3	4
2	4	3

♦ Convolution Layer

1	1	1	0	0
0	1	1	1	0
0,,1	0,0	1,	1	1
0,0	0,1	1,0	1	0
0,,1	1,0	1,	0	0

4	3	4
2	4	3
2		

1	1	1	0	0
0	1	1	1	0
0	0,,1	1,0	1,	1
0	0,0	1,	1,0	0
0	1,	1,0	0,,1	0

4	3	4
2	4	3
2	3	

- 스트라이드(stride)
 - 이동방향 : LT -> RB
 - 기본 : 왼쪽 -> 오른쪽 1칸

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,,1

4	3	4
2	4	3
2	3	4

Convolution Layer

■ 패딩(Padding)

- 커널(필터) 이동 시 좌우상하 모서리 부분 특징 추출 안됨
- 입력 데이터 사면을 특정값(0)으로 채운 후 합성곱층 진행

> Valid Padding

- 입력 데이터와 출력 데이터 크기 다름

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,

4	3	4
2	4	3
2	3	4

Convolution Layer

- 패딩(Padding)
 - > Same Padding
 - 입력 크기와 출력 크기 동일
 - 입력 데이터 사면을 특정값(0)으로 채운 후 진행

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	1	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

Same-padding

2	2	3	1	1
1	4	3	4	1
2	2	5	3	3
1	2	3	4	1
1	2	3	1	1

stride = 1

♦ Convolution Layer

■ 패딩(Padding)

- 입력 이미지와 특징맵 크기

커널/필터

w	w	w
8	w	W
w	w	w

No Padding

1w	٩w	3w	4	5	6	7	8	9	10	11	11	12	13	14	15	16	17	18	19	20	21	22	24	25	26	
w	w	w																								
w	w	w																								

Padding

1w	2w	3 w	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
w	w	w																										
w	w	w																										
						·																						

Polling Layer

- 합성곱 층(합성곱 연산 + 활성화 함수) 다음에 풀링 층 추가
- 특성 맵을 다운샘플링하여 **특성 맵의 크기 줄**이는 **풀링 연산** 진행
- 합성곱층과 달리 **커널이 중첩되지 않음**
- 커널 크기 : 2x2
- 종류 → 최대 풀링(max pooling), 평균 풀링(average pooling)

[최대 폴링 연산]

- ◆ Image 처리
 - ➤ Pillow 패키지 활용
 - https://pillow.readthedocs.io/en/stable/

◆ Image 처리

➤ Pillow 패키지 활용

```
!pip install pillow
import numpy as np
from PIL import Image
FILE='./new_data_2.png'
with Image.open(FILE) as img:
    img_resize = img.resize((32, 32))
    img_resize.save('./new_data_2_32.png')
x = np.array(img_resize)
print(x.shape)
(32, 32, 3)
```