Projekt systemu do wypożyczania aut

Kluza Łukasz i Mateusz Sacha

1. Schemat Bazy Danych i konfiguracja aplikacji

1.1 CarsModels

```
ObjectId
2 mark: "Toyota/"
                                                             String
3 model: "Corolla/"
                                                             String
4 ▼ type : Array (3)
                                                             Array
 0: "combi/"
1: "hatchback/"
                                                             String
                                                             String
   2: "cuope/"
                                                             String
                                                         CANCEL
                                                                UPDATE
   _id: ObjectId('00000000000000000000000001')
   mark: "Toyota"
   model: "Auris"
 ▼ type: Array (2)
    0: "sedan"
    1: "hatchback"
   mark: "Toyota"
   model: "Avensis"
 ▶ type: Array (2)
   mark: "Toyota"
   model: "RAV4"
 ▶ type : Array (1)
```

1.2 Cars

```
ObjectId
2
   ObjectId
3
   seats: 5
                                                         Int32
   type: "combi/"
4
                                                         String
5
   color: "pink/"
                                                         String
6
  power: 130
                                                         Int32
7
   curr_mileage: 1500
                                                         Int32
   price_per_day: 120
                                                         Int32
9
   isAvailable: true
                                                         Boolean
10
  production_year: 2021
                                                         Int32
                                                     CANCEL
                                                            UPDATE
   _id: ObjectId('00000000000000000000000001')
   seats: 5
   type: "hatchback"
   color : "yellow"
   power: 110
   curr_mileage: 23400
   price_per_day: 130
   isAvailable: true
   production_year: 2022
   seats: 5
   type: "sedan"
   color: "black"
   power: 120
   curr_mileage: 12500
   price_per_day: 140
   isAvailable: true
   production_year: 2018
```

1.3 Clients

```
ObjectId
1
2
    first_name: "John/"
                                                                             String
3
    last_name: "Wick/"
                                                                             String
   phone_number: "456895236/"
4
                                                                             String
   gender: "male/"
                                                                             String
    pesel: "70031112345/"
6
                                                                             String
7
    email: "john.wick@example.com/"
                                                                             String
    address: "123 Main St, New York/"
8
                                                                             String
9
   city: "New York/"
                                                                             String
10
   country: "USA /"
                                                                             String
    customer_since: 2020-01-15T00:00:00.000+00:00
11
                                                                             Date
12
    total_rental_days: 52
                                                                             Int32
13
    birthday: 1970-03-11T00:00:00.000+00:00
                                                                             Date
                                                                                 UPDATE
                                                                       CANCEL
    _id: ObjectId('0000000000000000000000001')
    first_name: "Alice"
    last_name : "Johnson"
    phone_number: "789654123"
    gender: "female"
    pesel: "85072223456"
    email: "alice.johnson@example.com"
    address: "456 Elm St, Los Angeles"
    city: "Los Angeles"
    country: "USA"
    customer_since: 2018-09-30T00:00:00.000+00:00
    total_rental_days: 8
    birthday: 1985-07-22T00:00:00.000+00:00
```

1.4 Rentals

```
_id: ObjectId('000000000000000000000000000000)
                                                                              ObjectId
 2 ▼ rental_car: Object
                                                                              Object
      ObjectId
      make: "Toyota/"
 4
                                                                             String
 5
      model: "Corolla/"
                                                                             String
       price_per_day: 120
                                                                             Int32
 6
 7 ▼ customer: Object
                                                                             Object
       8
                                                                             ObjectId
       first_name : "John/"
9
                                                                             String
       last_name: "Wick/"
10
                                                                              String
11 * rental_details : Object
                                                                             Object
12
       start_date: 2024-05-12T12:00:00.000+00:00
                                                                             Date
13
       expected_end_date: 2024-05-17T12:00:00.000+00:00
                                                                             Date
14
       end_date: 2024-05-18T10:08:55.906+00:00
                                                                              Date
15
       rental_status: "finished/"
                                                                             String
16
       insurance_type : "full/"
                                                                             String
17
       extra_insurance_amount: 100
                                                                             Int32
18
       days: 6
                                                                             Int32
19
      extra_days_amount: 60
                                                                             Int32
20
      mileage: 550
                                                                             Int32
21
       extra_mileage_amount: 0
                                                                             Int32
22
      extra_fuel: 0
                                                                             Int32
23
      extra_fuel_amount: 0
                                                                             Int32
24
      price: 600
                                                                             Int32
25
      discount: 0.1
                                                                             Double
26
       extra_amount: 160
                                                                             Int32
27
       final_amount: 700
                                                                             Int32
  _id: ObjectId('00000000000000000000000001')
▼ rental_car : Object
    make: "Toyota"
    model: "Corolla"
    price_per_day: 130
▼ customer : Object
    clientId : ObjectId('000000000000000000000001')
    first_name: "Alice"
    last_name: "Johnson"
rental_details : Object
    start_date: 2024-05-14T12:00:00.000+00:00
    expected_end_date: 2024-05-20T12:00:00.000+00:00
    end_date: null
    rental_status: "ongoing"
    insurance_type : "standard"
    extra_insurance_amount: 80
    days: 6
    extra_days_amount: 0
   mileage: 900
    extra_mileage_amount: 0
    extra_fuel: 0
    extra_fuel_amount: 0
    price: 780
    discount: 0
    extra_amount: 0
    final_amount: 780
```

1.5 Startup.cs

```
public class Startup
{
    public Startup(IConfiguration configuration)
       Configuration = configuration;
    public IConfiguration Configuration { get; }
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddControllersWithViews()
            .AddJsonOptions(options =>
                options.JsonSerializerOptions.Converters.Add(new ObjectIdJsonConverter());
                options.JsonSerializerOptions.DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull;
           });
        var jwtSettings = Configuration.GetSection("Jwt");
        var key = Encoding.ASCII.GetBytes(jwtSettings["Key"]);
        services.AddAuthentication(options =>
        {
            options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
            options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
        })
        .AddJwtBearer(options =>
            options.TokenValidationParameters = new TokenValidationParameters
                ValidateIssuer = true,
                ValidateAudience = true,
                ValidateLifetime = true,
               ValidateIssuerSigningKey = true,
               ValidIssuer = jwtSettings["Issuer"],
               ValidAudience = jwtSettings["Audience"],
                IssuerSigningKey = new SymmetricSecurityKey(key)
           };
        });
        services.AddAuthorization(options =>
            options.AddPolicy("AuthenticatedUser", policy =>
                policy.RequireAuthenticatedUser());
        });
        services.AddControllersWithViews();
        services.AddCors(options =>
            options.AddPolicy("AllowAllOrigins",
                builder =>
```

```
builder.AllowAnyOrigin()
                    .AllowAnyMethod()
                    .AllowAnyHeader();
           });
    });
    services.AddControllers();
    services.AddSingleton<MongoDbContext>();
    services.AddScoped<ICarService, CarService>();
    services.AddScoped<ICarsModelsService, CarsModelsService>();
    services.AddScoped<IRentalService, RentalService>();
    services.AddScoped<IClientService, ClientService>();
    services.AddScoped<IStatisticsService, StatisticsService>();
    services.AddScoped<IMongoCollection<Car>>(provider =>
    {
       var dbContext = provider.GetRequiredService<MongoDbContext>();
       return dbContext.GetCollection<Car>("Cars");
    services.AddScoped<IMongoCollection<CarModel>>(provider =>
       var dbContext = provider.GetRequiredService<MongoDbContext>();
        return dbContext.GetCollection<CarModel>("CarsModels");
    });
    services.AddScoped<IMongoCollection<Rental>>(provider =>
        var dbContext = provider.GetRequiredService<MongoDbContext>();
        return dbContext.GetCollection<Rental>("Rentals");
    });
    services.AddScoped<IMongoCollection<Client>>(provider =>
        var dbContext = provider.GetRequiredService<MongoDbContext>();
       return dbContext.GetCollection<Client>("Clients");
    });
}
public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
        app.UseDeveloperExceptionPage();
    }
    else
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }
    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCors("AllowAllOrigins");
```

```
app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllers();
});
}
```

2. Opis Serwisów

Serwisy w C# to klasy, które wykonują różnorodne operacje na danych w aplikacji. Ich główną rolą jest oddzielenie tych operacji od pozostałych części aplikacji, co przynosi korzyści w zarządzaniu, testowaniu i ponownym wykorzystaniu kodu.

2.1 Car Service

2.1.1 Create Car

Metoda asynchroniczna służąca do tworzenia nowych samochodów w bazie danych. W przypadku nieudanej operacji metoda rzuca wyjątki.

Parametry:

• Car car - obiekt typu Car, który ma zostać dodany do kolekcji.

2.1.2 Update Car

Metoda asynchroniczna służąca do aktualizacji istniejących samochodów w bazie danych. Sprawdza, czy dany samochód istnieje, a następnie dokonuje aktualizacji.

Parametry:

- ObjectId id identyfikator samochodu do zaktualizowania.
- Car car obiekt typu Car z nowymi danymi.

```
public async Task<bool> UpdateCarAsync(ObjectId id, Car car)
{
    try
    {
        var filter = Builders<Car>.Filter.Eq(car => car._id, id);
        var originalCar = await _carCollection.Find(filter).FirstOrDefaultAsync();
        if (originalCar == null)
            _logger.LogWarning($"Car with ID '{id}' not found.");
           return false;
        }
        car._id = originalCar._id;
        var result = await _carCollection.ReplaceOneAsync(filter, car);
        if (result.ModifiedCount > ∅)
            _logger.LogInformation($"Car with ID '{id}' updated successfully.");
            return true;
        }
        else
            _logger.LogWarning($"Car with ID '{id}' not found.");
            return false;
        }
    catch (Exception ex)
        _logger.LogError($"An error occurred while updating the car: {ex.Message}");
        throw;
    }
```

2.1.3 Delete Car

Metoda asynchroniczna służąca do usuwania samochodów z bazy danych na podstawie ich identyfikatora.

• ObjectId id - identyfikator samochodu do usuniecia.

```
public async Task<bool> DeleteCarAsync(ObjectId id)
{
    try
    {
        var filter = Builders<Car>.Filter.Eq(car => car._id, id);
        var result = await _carCollection.DeleteOneAsync(filter);
        if (result.DeletedCount > 0)
            _logger.LogInformation($"Car with ID '{id}' deleted successfully.");
            return true;
        }
        else
        {
            _logger.LogWarning($"Car with ID '{id}' not found.");
            return false;
    }
    catch (Exception ex)
        _logger.LogError($"An error occurred while deleting the car: {ex.Message}");
        throw;
}
```

2.1.4 Get Cars Per Filter

Metoda asynchroniczna służąca do pobierania listy samochodów spełniających określone kryteria.

Parametry:

• FilterDefinition<Car> filter - filtr używany do wyszukiwania samochodów.

2.1.5 Get Car By ID

Metoda asynchroniczna służąca do pobierania samochodu na podstawie jego identyfikatora.

Parametry:

• ObjectId id - identyfikator samochodu do pobrania.

```
public async Task<Car> GetCarByIdAsync(ObjectId id)
{
    var filter = Builders<Car>.Filter.Eq(car => car._id, id);
    var car = await _carCollection.Find(filter).FirstOrDefaultAsync();
    return car;
}
```

2.1.6 Update Car Availability By ID

Metoda asynchroniczna służąca do aktualizacji statusu dostępności samochodu.

- ObjectId id identyfikator samochodu do zaktualizowania.
- bool availability nowy status dostępności samochodu.

2.1.7 Update Current Mileage

Metoda asynchroniczna służąca do aktualizacji przebiegu samochodu.

Parametry:

- ObjectId id identyfikator samochodu do zaktualizowania.
- int mileage nowy przebieg samochodu.

2.2 Cars Models Service

2.2.1 Create Car Model

Metoda asynchroniczna służąca do tworzenia nowych modeli samochodów w bazie danych. Obsługuje operacje transakcyjne, zapewniając, że operacja zostanie wykonana w całości lub w ogóle.

Parametry:

• CarModel carModel - obiekt typu CarModel, który ma zostać dodany do kolekcji.

```
public async Task CreateCarModelAsync(CarModel carModel)
{
    try
    {
        _logger.LogInformation("Attempting to create car model: {@CarModel}", carModel);
        if (_carModelCollection == null)
```

```
{
    __logger.LogError("Cars models collection is null");
    return;
}
await __carModelCollection.InsertOneAsync(carModel);
__logger.LogInformation("Car model created successfully: {@CarModel}", carModel);
}
catch (Exception ex)
{
    __logger.LogError(ex, "An error occurred while creating the car model");
    throw;
}
```

2.2.2 Update Car Model

Metoda asynchroniczna służąca do aktualizacji istniejących modeli samochodów w bazie danych. Sprawdza, czy dany model samochodu istnieje, a następnie dokonuje aktualizacji.

- ObjectId id identyfikator modelu samochodu do zaktualizowania.
- CarModel carModel obiekt typu CarModel z nowymi danymi.

```
public async Task<bool> UpdateCarModelAsync(ObjectId id, CarModel carModel)
{
    try
        var filter = Builders<CarModel>.Filter.Eq(carModel => carModel._id, id);
        var originalCarModel = await _carModelCollection.Find(filter).FirstOrDefaultAsync();
        if (originalCarModel == null)
            _logger.LogWarning($"Car model with ID '{id}' not found.");
            return false;
        carModel._id = originalCarModel._id;
        var result = await _carModelCollection.ReplaceOneAsync(filter, carModel);
        if (result.ModifiedCount > ∅)
           _logger.LogInformation($"Car model with ID '{id}' updated successfully.");
            return true;
        }
        else
            _logger.LogWarning($"Car model with ID '{id}' not found.");
            return false;
```

```
}
}
catch (Exception ex)
{
    _logger.LogError($"An error occurred while updating the car model: {ex.Message}");
    throw;
}
```

2.2.3 Delete Car Model

Metoda asynchroniczna służąca do usuwania modeli samochodów z bazy danych na podstawie ich identyfikatora.

Parametry:

• ObjectId id - identyfikator modelu samochodu do usunięcia.

```
public async Task<bool> DeleteCarModelAsync(ObjectId id)
   try
   {
        var filter = Builders<CarModel>.Filter.Eq(carModel => carModel._id, id);
        var result = await carModelCollection.DeleteOneAsync(filter);
        if (result.DeletedCount > ∅)
            _logger.LogInformation($"Car model with ID '{id}' deleted successfully.");
            return true;
        }
        else
            _logger.LogWarning($"Car model with ID '{id}' not found.");
            return false;
   }
   catch (Exception ex)
        _logger.LogError($"An error occurred while deleting the car model: {ex.Message}");
        throw;
   }
```

2.2.4 Get Cars Models Per Filter

Metoda asynchroniczna służąca do pobierania listy modeli samochodów spełniających określone kryteria.

Parametry:

• FilterDefinition < CarModel > filter - filtr używany do wyszukiwania modeli samochodów.

```
public async Task<IEnumerable<CarModel>> GetCarsModelsPerFilterAsync(FilterDefinition<CarModel> filter)
{
    try
    {
        var result = await _carModelCollection.Find(filter).ToListAsync();
        return result;
    }
    catch (Exception ex)
    {
            _logger.LogError($"An error occurred while retrieving cars models: {ex.Message}");
            throw;
    }
}
```

2.2.5 Get Car Model By ID

Metoda asynchroniczna służąca do pobierania modelu samochodu na podstawie jego identyfikatora.

Parametry:

• ObjectId id - identyfikator modelu samochodu do pobrania.

```
public async Task<CarModel> GetCarModelByIdAsync(ObjectId id)
{
    var filter = Builders<CarModel>.Filter.Eq(carModel => carModel._id, id);
    var carModel = await _carModelCollection.Find(filter).FirstOrDefaultAsync();
    return carModel;
}
```

2.3 Client Service

2.3.1 Create Client

Metoda asynchroniczna służąca do tworzenia nowych klientów w bazie danych. Obsługuje operacje transakcyjne, zapewniając, że operacja zostanie wykonana w całości lub w ogóle.

Parametry:

• Client client - obiekt typu Client, który ma zostać dodany do kolekcji.

```
public async Task CreateClientAsync(Client client)
{
    try
    {
        _logger.LogInformation("Attempting to create client: {@Client}", client);
        if (_clientCollection == null)
        {
            _logger.LogError("Clients collection is null");
        }
}
```

```
return;
}
await _clientCollection.InsertOneAsync(client);
_logger.LogInformation("Client created successfully: {@Client}", client);
}
catch (Exception ex)
{
    _logger.LogError(ex, "An error occurred while creating client");
    throw;
}
```

2.3.2 Delete Client

Metoda asynchroniczna służąca do usuwania klientów z bazy danych na podstawie ich identyfikatora.

Parametry:

• ObjectId id - identyfikator klienta do usuniecia.

```
public async Task<bool> DeleteClientAsync(ObjectId id)
{
    try
    {
        var filter = Builders<Client>.Filter.Eq(client => client._id, id);
       var result = await _clientCollection.DeleteOneAsync(filter);
        if (result.DeletedCount > 0)
            _logger.LogInformation($"Client with ID '{id}' deleted successfully.");
           return true;
        }
        else
            _logger.LogWarning($"Client with ID '{id}' not found.");
            return false;
        }
    }
    catch(Exception ex)
        _logger.LogError($"An error occurred while deleting the client: {ex.Message}");
       throw;
```

2.3.3 Get Clients Per Filter

Metoda asynchroniczna służąca do pobierania listy klientów spełniających określone kryteria.

• FilterDefinition < Client > filter - filtr używany do wyszukiwania klientów.

```
public async Task<IEnumerable<Client>> GetClientsPerFilterAsync(FilterDefinition<Client> filter)
{
    try
    {
        var jsonFilter = filter.Render(BsonSerializer.SerializerRegistry.GetSerializer<Client>(),
BsonSerializer.SerializerRegistry);
        _logger.LogInformation($"Generated Filter: {jsonFilter}");
        var result = await _clientCollection.Find(filter).ToListAsync();
        return result;
    }
    catch (Exception ex)
    {
        _logger.LogError($"An error occurred while retrieving clients: {ex.Message}");
        throw;
    }
}
```

2.3.4 Get User By Email

Metoda asynchroniczna służąca do pobierania klienta na podstawie jego adresu e-mail.

Parametry:

• string email - adres e-mail klienta do pobrania.

```
public async Task<Client> GetUserByEmailAsync(string email)
{
    try
    {
        var result = await _clientCollection.Find(client => client.Email == email).FirstOrDefaultAsync();
        return result;
    }
    catch(Exception ex)
    {
        _logger.LogError($"An error occurred while retrieving client: {ex.Message}");
        throw;
    }
}
```

2.3.5 Update Client

Metoda asynchroniczna służąca do aktualizacji istniejących klientów w bazie danych. Sprawdza, czy dany klient istnieje, a następnie dokonuje aktualizacji.

 ObjectId id - identyfikator klienta do zaktualizowania. Client client - obiekt typu Client z nowymi danymi.

```
public async Task<bool> UpdateClientAsync(ObjectId id, Client client)
    try
    {
        var filter = Builders<Client>.Filter.Eq(client => client._id, id);
        var originalClient = await _clientCollection.Find(filter).FirstOrDefaultAsync();
        if (originalClient == null)
            _logger.LogWarning($"Client with ID '{id}' not found.");
            return false;
        client._id = originalClient._id;
        var result = await _clientCollection.ReplaceOneAsync(filter, client);
        if (result.ModifiedCount > ∅)
            _logger.LogInformation($"Client with ID '{id}' updated successfully.");
            return true;
        }
        else
            _logger.LogWarning($"Client with ID '{id}' not found.");
            return false;
        }
    catch (Exception ex)
        _logger.LogError($"An error occurred while updating the client: {ex.Message}");
        throw;
    }
```

2.3.6 Update Rental Days

Metoda asynchroniczna służąca do aktualizacji liczby dni wypożyczeń klienta w bazie danych. Pobiera aktualną liczbę dni wypożyczeń i dodaje nowe dni.

- ObjectId id identyfikator klienta.
- int rental_days liczba dni wypożyczeń do dodania.

```
public async Task<bool> UpdateRentalDaysAsync(ObjectId id, int rental_days)
{
    try
    {
        var filter = Builders<Client>.Filter.Eq(client => client_id, id);
        Client client = await _clientCollection.Find(filter).FirstOrDefaultAsync();

    if (client == null)
    {
            _logger.LogError($"Client (id) does not exist");
            return false;
    }

    client.Total_Rental_Days += rental_days;
    var result = await UpdateClientAsync(id, client);
    return result;
    }
    catch (Exception ex)
    {
            _logger.LogError($"An error occurred while updating client rental days: {ex.Message}");
            return false;
    }
}
```

2.4 Rental Service

2.4.1 New Rental

Służy do asynchronicnzego tworzenia nowych wypożyczeń, zapytanie to jest stworzene w modelu transakcyjnym co oznacza, że wykonuje się ono albo w całości albo w ogóle. Przyjmuje on jako parametr obiekt typu *Rental* i ralizuje kolejne operacje

Zarządza transakcjami

```
using (var session = await _client.StartSessionAsync())
{
    session.StartTransaction();
    try
    {
        await session.CommitTransactionAsync();
    }
    catch (Exception ex)
    {
        await session.AbortTransactionAsync();
        throw;
    }
}
```

• Sprawda czy obiekt Rental nie jest nulem

```
if (rental == null)
{
    _logger.LogError("Rental model is null");
    throw new ArgumentNullException(nameof(rental), "Rental model cannot be null");
}
```

• Sprawdza czy auto które chcemy wypozyczyć istnieje i jest dostępne:

```
Car car = await _carService.GetCarByIdAsync(carID);
if(car == null)
{
    _logger.LogWarning($"Car with ID '{carID}' not found.");
    throw new KeyNotFoundException($"Car does not exist.");
}
if(!car.IsAvailable)
{
    _logger.LogWarning($"Car with ID '{carID}' is not available.");
    throw new KeyNotFoundException($"Car does not available.");
}
```

• Aktualizuje status dostępności auta:

```
var res = await _carService.UpdateCarAvailabilityByIdAsync(carID, false);
if (!res){
    _logger.LogWarning($"Error: UpdateCarAvailabilityByIdAsync()");
    throw new KeyNotFoundException($"Error: UpdateCarAvailabilityByIdAsync()");
}
```

• Jeśli żaden wyjątek nie został rzucony i wszystko pobiegło pomyślnie to dodaje obiek rental do bazy:

```
await _rentalCollection.InsertOneAsync(rental);
_logger.LogInformation("Rental model created successfully: {@Rental}", rental);
```

2.4. Finish Rental

Służy do asynchronicnzego końcenia obecnych wypożyczeń, zapytanie to jest stworzene w modelu transakcyjnym co oznacza, że wykonuje się ono albo w całości albo w ogóle. Przyjmuje on jako parametr *id* wyporzyczenia które chcemy zakończyć oraz obiekt typu *Rental* i ralizuje kolejne operacje

• Zarządza transakcjami:

```
using (var session = await _client.StartSessionAsync())
{
```

```
session.StartTransaction();
try
{
   await session.CommitTransactionAsync();
}
catch (Exception ex)
{
   await session.AbortTransactionAsync();
   throw;
}
```

• Spraawdza czy wyporzyczenie, które chcemy zakończyć istnieje:

```
var filter = Builders<Rental>.Filter.Eq(rental => rental._id, id);
var originalRental = await _rentalCollection.Find(filter).FirstOrDefaultAsync();

if (originalRental == null || rental == null)
{
    _logger.LogWarning($"Rental with ID '{id}' not found.");
    throw new KeyNotFoundException($"Rental does not exist.");
}
```

Tworzy zmienne pomocnicze

```
Rental_Details orginal_rental_Details = originalRental.Rental_Details;
Rental_Details rental_Details = rental.Rental_Details;
Rental_Car rental_Car = rental.Rental_Car;
```

• Ustawia datę zakończenia wypożyczenia na obecną, oblicza liczbę rozpoczętnych dni wypożyczenia, aktualizuje status na *sinished*

```
rental_Details.End_Date = DateTime.UtcNow;
rental_Details.Days = (int)Math.Ceiling((rental_Details.End_Date.Value - rental_Details.Start_Date).TotalDays);
rental_Details.Rental_Status = "finished";
```

 Oblicza karę umowną za każdy dodatkowy dzień wypożyczenia (doliczane jest dodatkowe 50% dziennej opłaty za dane auto):

```
if(rental_Details.Days > orginal_rental_Details.Days)
{
    rental_Details.Extra_Days_Amount = (int)((rental_Details.Days - orginal_rental_Details.Days) * 0.5 *
    rental_Car.Price_Per_Day);
    rental_Details.Extra_Amount += rental_Details.Extra_Days_Amount;
}
```

 Oblicza karę umowną za każdą dodatkowo przejechaną milę (doliczane jest dodatkowe 0.5% dziennej opłaty za dane auto do dodatkowej każdej mili powyżej 150 za dzień):

```
if(rental_Details.Mileage > orginal_rental_Details.Mileage)
{
    rental_Details.Extra_Mileage_Amount = (int)((orginal_rental_Details.Mileage - rental_Details.Mileage) * 0.005 *
    rental_Car.Price_Per_Day);
    rental_Details.Extra_Mileage_Amount += rental_Details.Extra_Mileage_Amount;
}
```

 Oblicza karę umowną za każdy brakujący galon paliwa (wymagamy aby przy zwrocie bag był zatankowany do pełna, za każdy brakujący galon doliczamy 5\$):

```
if(rental_Details.Extra_Fuel != null)
{
    rental_Details.Extra_Fuel_Amount = rental_Details.Extra_Fuel.Value * 5;
    rental_Details.Extra_Amount += rental_Details.Extra_Fuel_Amount;
}
```

Oblicza końcowy koszt wypozyczenia z uwzględnieniem rabatu:

```
rental_Details.Final_Amount = (int)(rental_Details.Price * (1-orginal_rental_Details.Discount) +
rental_Details.Extra_Amount);
```

• Aktualizuje dostępność zwrócenego medelu auta oraz sprawdza poprawnośc wykonania się operacji:

```
var res = await _carService.UpdateCarAvailabilityByIdAsync(rental_Car.carId, true);
if (!res)
{
    _logger.LogWarning($"Error: UpdateCarAvailabilityByIdAsync()");
    throw new KeyNotFoundException($"Error: UpdateCarAvailabilityByIdAsync()");
}
```

• Aktualizuje przebieg zwrócenego medelu auta oraz sprawdza poprawnośc wykonania się operacji:

```
var mileageUpdate = await _carService.UpdateCurrentMileageAsync(rental_Car.carId, rental_Details.Mileage);
if (!res)
{
    _logger.LogWarning($"Error: UpdateCurrentMileageAsync()");
    throw new KeyNotFoundException($"Error: UpdateCurrentMileageAsync()");
}
```

• Aktulizuje liczbę dni wypożyczeń przez danego klienta:

```
var clientUpdate = await _clientService.UpdateRentalDaysAsync(rental.Customer.ClientId, rental_Details.Days);
```

• Aktualizuje obiekt rental:

```
var result = await _rentalCollection.ReplaceOneAsync(filter, rental);
```

2.4.3 Get Rentals Per Filter

Jest to asynchroniczna funckja, która zwraca wypożyczenia pasujące do otrzymanego jako parametr filtra.

```
public async Task<IEnumerable<Rental>> GetRentalsPerFilterAsync(FilterDefinition<Rental> filter)
{
   try
   {
     var result = await _rentalCollection.Find(filter).ToListAsync();
     return result;
   }
   catch (Exception ex)
   {
     _logger.LogError($"An error occurred while retrieving rentals: {ex.Message}");
     throw;
   }
}
```

2.5 Statistics Service

2.5.1 Top N Cars

Metoda asynchroniczna służąca do pobierania najczęściej wypożyczanych samochodów, ograniczona do pierwszych n wyników.

Parametry:

• int n - liczba najczęściej wypożyczanych samochodów do pobrania.

Opis:

- Tworzy pipeline agregacyjny, który łączy kolekcje wypożyczeń i samochodów, grupuje dane według modelu samochodu, liczy wypożyczenia każdego modelu i sortuje je w kolejności malejącej.
- Zwraca wynik w postaci Task < IActionResult >

```
public async Task<IActionResult> TopNCars(int n)
{
```

```
try
{
    var pipeline = _rentalCollection.Aggregate()
        .Lookup("Cars", "rental_car.carId", "_id", "cars")
        .Unwind("cars")
        .Group(new BsonDocument
            { "_id", "$cars._carModelId" },
            { "count", new BsonDocument("$sum", 1) },
            { "model", new BsonDocument("$first", "$rental_car.model") },
            { "make", new BsonDocument("$first", "$rental_car.make") },
        .Sort(new BsonDocument("count", -1))
       .Limit(n);
    var result = await pipeline.ToListAsync();
    var formattedResult = result.Select(doc => doc.ToDictionary(
       element => element.Name,
        element => BsonTypeMapper.MapToDotNetValue(element.Value)
    )).ToList();
   return new JsonResult(formattedResult);
catch (Exception ex)
    _logger.LogError($"An error occurred while retrieving top cars: {ex.Message}");
    throw;
```

2.5.2 Top N Clients Per Mileage

Metoda asynchroniczna służąca do pobierania klientów, którzy przejechali najwięcej mil, ograniczona do pierwszych n wyników.

Parametry:

• int n - liczba klientów do pobrania.

Opis:

- Tworzy pipeline agregacyjny, który grupuje dane według identyfikatora klienta, sumuje przejechane mile i sortuje wyniki w kolejności malejącej.
- Zwraca wynik w postaci Task < IActionResult >

```
public async Task<IActionResult> TopNClientsPerMileage(int n)
{
    try
    {
       var pipeline = _rentalCollection.Aggregate()
```

```
.Group(new BsonDocument
           {
               { "_id", "$customer.clientId" },
               { "sum", new BsonDocument("$sum", "$rental_details.mileage") },
                { "customer", new BsonDocument("$first", "$customer") }
           })
            .Sort(new BsonDocument("sum", -1))
           .Project(new BsonDocument
           {
               { "_id", 0 },
               { "customer", 1 },
                { "sum", 1 }
           })
           .Limit(n);
       var result = await pipeline.ToListAsync();
       var formattedResult = result.Select(doc => doc.ToDictionary(
           element => element.Name,
           element => BsonTypeMapper.MapToDotNetValue(element.Value)
       )).ToList();
       return new JsonResult(formattedResult);
   catch (Exception ex)
       _logger.LogError($"An error occurred while retrieving top clients per mileage: {ex.Message}");
       throw;
}
```

2.5.3 Favorite Car Per Client

Metoda asynchroniczna służąca do pobierania ulubionego samochodu każdego klienta (samochodu najczęściej przez niego wypożyczanego).

Opis:

- Tworzy pipeline agregacyjny, który łączy kolekcje klientów i wypożyczeń, grupuje dane według
 identyfikatora klienta i identyfikatora samochodu, liczy wypożyczenia każdego samochodu i sortuje je w
 kolejności malejącej.
- Zwraca wynik w postaci Task < IActionResult >

```
{ "_id", new BsonDocument{ {"clients_id" ,"$_id"}, {"car_id" ,"$rental.rental_car.carId"}}},
            { "sum", new BsonDocument("$sum", 1) },
       })
        .Group(new BsonDocument
            { "_id", "$_id.clients_id" },
            { "maxSum", new BsonDocument("$max", "$sum") },
            { "cars", new BsonDocument("$push", new BsonDocument
                    { "car_id", "$_id.car_id" },
                    { "sum", "$sum" }
               })
            }
       })
        .Project(new BsonDocument
        {
            { "_id", 0 },
            { "customer", "$_id" },
            { "filteredCars", new BsonDocument
                    { "$filter", new BsonDocument
                        {
                            { "input", "$cars" },
                            { "as", "car" },
                            { "cond", new BsonDocument("$eq", new BsonArray { "$$car.sum", "$maxSum" }) }
                    }
            }
       });
    var result = await pipeline.ToListAsync();
    var formattedResult = result.Select(doc => doc.ToDictionary(
        element => element.Name,
       element => BsonTypeMapper.MapToDotNetValue(element.Value)
    )).ToList();
    return new JsonResult(formattedResult);
}
catch (Exception ex)
    _logger.LogError($"An error occurred while retrieving favorite car per customer: {ex.Message}");
```

3. Opis kontrolerów

Kontrolery w C# to klasy odpowiedzialne za obsługę żądań HTTP w aplikacji. Służą do routingu żądań do odpowiednich akcji oraz koordynacji logiki biznesowej z warstwą prezentacji. Ich głównym celem jest

zapewnienie komunikacji między interfejsem użytkownika a serwisami, umożliwiając przetwarzanie i przekazywanie danych.

3.1 Car Controller

Kontroler CarController jest odpowiedzialny za obsługę zapytań dotyczących operacji na samochodach.

3.1.1 Create Car

Metoda CreateCar służy do asynchronicznego tworzenia nowego samochodu.

- Metoda HTTP: POST
- Ścieżka: api/Car
- Parametry wejściowe: Obiekt typu Car przekazywany w ciele żądania.
- Działanie:
 - Wywołuje usługę CreateCarAsync interfejsu ICarService w celu utworzenia nowego samochodu.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Car created successfully." w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpPost]
public async Task<IActionResult> CreateCar([FromBody] Car car)
{
    try
    {
        await _carService.CreateCarAsync(car);
        return Ok("Car created successfully.");
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while creating the car: {ex.Message}");
    }
}
```

3.1.2 Update Car

Metoda UpdateCar służy do asynchronicznego aktualizowania istniejącego samochodu.

- Metoda HTTP: PUT
- Ścieżka: api/Car/{id}
- Parametry wejściowe: ID samochodu oraz obiekt typu Car przekazywany w ciele żądania.
- Działanie:
 - Aktualizuje samochód o podanym ID, wywołując metodę UpdateCarAsync usługi ICarService.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Car with ID '{id}' updated successfully." w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia samochodu o podanym ID.

o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

3.1.3 Delete Car

Metoda DeleteCar służy do asynchronicznego usuwania istniejącego samochodu.

- Metoda HTTP: DELETE
- Ścieżka: api/Car/{id}
- Parametry wejściowe: ID samochodu.
- Działanie
 - Usuwa samochód o podanym ID, wywołując metodę DeleteCarAsync usługi ICarService.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Car deleted successfully." w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia samochodu o podanym ID.
 - Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteCar(string id)
{
    try
```

```
{    if (10bjectId.TryParse(id, out ObjectId objectId))
{
        return BadRequest("Invalid ObjectId format.");
}

var success = await _carService.DeleteCarAsync(id);
if (success)
{
        return Ok("Car deleted successfully.");
}
else
{
        return NotFound("Car not found.");
}
}
catch (Exception ex)
{
        return StatusCode(500, $"An error occurred while deleting the car: {ex.Message}");
}
```

3.1.4 Get Cars Per Filter

Metoda GetCarsPerFilterAsync służy do asynchronicznego pobierania samochodów zgodnie z określonymi kryteriami.

- Metoda HTTP: GET
- **Ścieżka**: api/Car/Cars
- Parametry wejściowe: Opcjonalne parametry filtrujące samochody.
- Działanie:
 - Tworzy filtr na podstawie przekazanych parametrów.
 - Wywołuje metodę GetCarsPerFilterAsync usługi ICarService z utworzonym filtrem.
 - o Zwraca odpowiedź HTTP 200 (OK) z listą samochodów, które spełniają kryteria filtracji.
 - o Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia samochodów.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("Cars")]
public async Task<IActionResult> GetCarsPerFilterAsync(string? modelId = null, int? seats = null,
    string? type = null, string? color = null, int? minPower = null, int? maxPower = null,
    int? minCurrMileage = null, int? maxCurrMileage = null, double? minPricePerDay = null,
    double? maxPricePerDay = null, bool? isAvailable = null, int? minProductionYear = null,
    int? maxProductionYear = null)
{
    try
    {
        var filterDefinitioinBuilder = Builders<Car>.Filter;
        var filter = Builders<Car>.Filter.Empty;

        if (!string.IsNullOrEmpty(modelId))
        {
            if (!ObjectId.TryParse(modelId, out ObjectId objectModelId))
        }
}
```

```
return BadRequest("Invalid ObjectId format.");
       }
       else
               filter &= filterDefinitioinBuilder.Eq("_CarModelId", objectModelId);
    if(seats.HasValue){
        filter &= filterDefinitioinBuilder
            .Eq(car => car.Seats, seats.Value);
    if(!string.IsNullOrWhiteSpace(type)){
        filter &= filterDefinitioinBuilder
            .Eq(car => car.Type, type);
    }if(!string.IsNullOrWhiteSpace(color)){
       filter &= filterDefinitioinBuilder
            .Eq(car => car.Color, color);
    if(isAvailable.HasValue){
        filter &= filterDefinitioinBuilder
            .Eq(car => car.IsAvailable, isAvailable.Value);
    filter &= filterDefinitioinBuilder
        .Gte(car => car.Power, minPower ?? ∅);
    filter &= filterDefinitioinBuilder
        .Lte(car => car.Power, maxPower ?? int.MaxValue);
    filter &= filterDefinitioinBuilder
        .Gte(car => car.Price_per_day, minPricePerDay ?? 0);
    filter &= filterDefinitioinBuilder
        .Lte(car => car.Price_per_day, maxPricePerDay ?? int.MaxValue);
    filter &= filterDefinitioinBuilder
       .Gte(car => car.Curr_mileage, minCurrMileage ?? 0);
    filter &= filterDefinitioinBuilder
        .Lte(car => car.Curr_mileage, maxCurrMileage ?? int.MaxValue);
    filter &= filterDefinitioinBuilder
        .Gte(car => car.Production_year, minProductionYear ?? 1900);
    filter &= filterDefinitioinBuilder
        .Lte(car => car.Production_year, maxProductionYear ?? 2100);
    var result = await _carService.GetCarsPerFilterAsync(filter);
    if (result.Any())
    {
       return Ok(result);
    }
    else{
       return NotFound("Cars not found.");
catch (Exception ex)
```

```
{
    return StatusCode(500, $"An error occurred while retrieving cars:: {ex.Message}");
}
```

3.1.5 Get Car By ID

Metoda GetCarByIdAsync służy do asynchronicznego pobierania pojedynczego samochodu na podstawie jego ID.

- Metoda HTTP: GET
- **Ścieżka**: api/Car/Cars/{id}
- Parametry wejściowe: ID samochodu.
- Działanie:
 - Pobiera samochód o podanym ID, wywołując metodę GetCarByIdAsync usługi ICarService.
 - o Zwraca odpowiedź HTTP 200 (OK) z danymi samochodu w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia samochodu o podanym ID.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("Cars/{id}")]
public async Task<IActionResult> GetCarByIdAsync(string id)
    try
    {
       if (!ObjectId.TryParse(id, out ObjectId objectId))
           return BadRequest("Invalid ObjectId format.");
        var car = await _carService.GetCarByIdAsync(id);
        if (car != null)
           return Ok(car);
       }
        else
           return NotFound($"Car with ID {id} not found.");
        }
    catch (Exception ex)
        return StatusCode(500, $"An error occurred while retrieving the car: {ex.Message}");
    }
}
```

3.2 Car Model Controller

Kontroler CarModelController odpowiada za obsługę zapytań dotyczących operacji na modelach samochodów.

3.2.1 Create Car Model

Metoda CreateCarModel służy do asynchronicznego tworzenia nowego modelu samochodu.

- Metoda HTTP: POST
- **Ścieżka**: api/CarModel
- Parametry wejściowe: Obiekt typu CarModel przekazywany w ciele żądania.
- Działanie:
 - Wywołuje usługę CreateCarModelAsync interfejsu ICarsModelsService w celu utworzenia nowego modelu samochodu.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Car model created successfully." w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpPost]
public async Task<IActionResult> CreateCarModel([FromBody] CarModel carModel)
{
    try
    {
        await _carsModelsService.CreateCarModelAsync(carModel);
        return Ok("Car model created successfully.");
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while creating the car model: {ex.Message}");
    }
}
```

3.2.2 Update Car Model

Metoda UpdateCarModel służy do asynchronicznego aktualizowania istniejącego modelu samochodu.

- Metoda HTTP: PUT
- **Ścieżka**: api/CarModel/{id}
- **Parametry wejściowe**: ID modelu samochodu oraz obiekt typu **CarModel** przekazywany w ciele żądania.
- Działanie:
 - Aktualizuje model samochodu o podanym ID, wywołując metodę UpdateCarModelAsync usługi ICarsModelsService.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Car model with ID '{id}' updated successfully."
 w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia modelu samochodu o podanym ID.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

3.2.3 Delete Car Model

Metoda DeleteCarModel służy do asynchronicznego usuwania istniejącego modelu samochodu.

- Metoda HTTP: DELETE
- **Ścieżka**: api/CarModel/{id}
- Parametry wejściowe: ID modelu samochodu.
- Działanie:
 - Usuwa model samochodu o podanym ID, wywołując metodę DeleteCarModelAsync usługi ICarsModelsService.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Car model deleted successfully." w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia modelu samochodu o podanym ID.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteCarModel(string id)
{
    try
    {       if (!ObjectId.TryParse(id, out ObjectId objectId))
        {
            return BadRequest("Invalid ObjectId format.");
        }
}
```

```
var success = await _carsModelsService.DeleteCarModelAsync(id);
if (success)
{
    return Ok("Car model deleted successfully.");
}
else
{
    return NotFound("Car model not found.");
}
}
catch (Exception ex)
{
    return StatusCode(500, $"An error occurred while deleting the car model: {ex.Message}");
}
```

3.2.4 Get Cars Models Per Filter

Metoda GetCarsModelsPerFilterAsync służy do asynchronicznego pobierania modeli samochodów zgodnie z określonymi kryteriami.

- Metoda HTTP: GET
- Ścieżka: api/CarModel/Models
- Parametry wejściowe: Opcjonalne parametry filtrujące modele samochodów: mark, model.
- Działanie:
 - Tworzy filtr na podstawie przekazanych parametrów.
 - Wywołuje metodę GetCarsModelsPerFilterAsync usługi ICarsModelsService z utworzonym filtrem.
 - o Zwraca odpowiedź HTTP 200 (OK) z listą modeli samochodów, które spełniają kryteria filtracji.
 - o Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia modeli samochodów.
 - Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("Models")]
public async Task<IActionResult> GetCarsModelsPerFilterAsync(string? mark = null, string? model = null)
{
    try
    {
        var filterDefinitioinBuilder = Builders<CarModel>.Filter;
        var filter = Builders<CarModel>.Filter.Empty;

        if(!string.IsNullOrWhiteSpace(mark)){
            filter &= filterDefinitioinBuilder.Eq(carModel => carModel.Mark, mark);
        }if(!string.IsNullOrWhiteSpace(model)){
            filter &= filterDefinitioinBuilder.Eq(carModel => carModel.Model, model);
        }

        var result = await __carsModelsService.GetCarsModelsPerFilterAsync(filter);
        if (result.Any())
        {
             return Ok(result);
        }
}
```

```
    else{
        return NotFound("Cars models not found.");
    }
}

catch (Exception ex)
{
    return StatusCode(500, $"An error occurred while retrieving cars models: {ex.Message}");
}
```

3.2.5 Get Car Model By ID

Metoda GetCarModelByIdAsync służy do asynchronicznego pobierania pojedynczego modelu samochodu na podstawie jego ID.

- Metoda HTTP: GET
- **Ścieżka**: api/CarModel/{id}
- Parametry wejściowe: ID modelu samochodu.
- Działanie:
 - Pobiera model samochodu o podanym ID, wywołując metodę GetCarModelByIdAsync usługi ICarsModelsService.
 - o Zwraca odpowiedź HTTP 200 (OK) z danymi modelu samochodu w przypadku sukcesu.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia modelu samochodu o podanym ID.
 - Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("{id}")]
public async Task<IActionResult> GetCarByIdAsync(string id)
{
    try
    {        if (!ObjectId.TryParse(id, out ObjectId objectId))
        {
             return BadRequest("Invalid ObjectId format.");
    }
    var carModel = await _carsModelsService.GetCarModelByIdAsync(id);
    if (carModel != null)
    {
             return Ok(carModel);
    }
        else
    {
             return NotFound($"Car model with ID {id} not found.");
        }
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while retrieving the car model: {ex.Message}");
    }
}
```

3.3 Client Controller

Kontroler ClientController obsługuje zapytania dotyczące operacji na klientach.

3.3.1 Create Client

Metoda CreateClient służy do asynchronicznego tworzenia nowego klienta.

- Metoda HTTP: POST
- **Ścieżka**: api/Client
- Parametry wejściowe: Obiekt typu Client przekazywany w ciele żądania.
- Działanie:
 - Wywołuje usługę CreateClientAsync interfejsu IClientService w celu utworzenia nowego klienta
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Client created successfully." w przypadku sukcesu.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpPost]
public async Task<IActionResult> CreateClient([FromBody] Client client)
{
    try
    {
        await _clientService.CreateClientAsync(client);
        return Ok("Client created successfully.");
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while creating the client: {ex.Message}");
    }
}
```

3.3.2 Update Client

Metoda UpdateClient służy do asynchronicznego aktualizowania istniejącego klienta.

- Metoda HTTP: PUT
- Ścieżka: api/Client/{id}
- Parametry wejściowe: ID klienta oraz obiekt typu Client przekazywany w ciele żądania.
- Działanie:
 - Aktualizuje klienta o podanym ID, wywołując metodę UpdateClientAsync usługi IClientService.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Client with ID '{id}' updated successfully." w przypadku sukcesu.
 - o Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia klienta o podanym ID.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpPut("{id}")]
public async Task<IActionResult> UpdateClient(string id, [FromBody] Client client)
    {    if (!ObjectId.TryParse(id, out ObjectId objectId))
        {
           return BadRequest("Invalid ObjectId format.");
       var success = await _clientService.UpdateClientAsync(id, client);
       if (success)
        {
           return Ok($"Client with ID '{id}' updated successfully.");
       }
        else
           return NotFound("Client not found.");
    }
    catch (Exception ex)
       return StatusCode(500, $"An error occurred while updating the client: {ex.Message}");
}
```

3.3.3 Delete Client

Metoda DeleteClient służy do asynchronicznego usuwania istniejącego klienta.

- Metoda HTTP: DELETE
- Ścieżka: api/Client/{id}
- Parametry wejściowe: ID klienta.
- Działanie:
 - Usuwa klienta o podanym ID, wywołując metodę DeleteClientAsync usługi IClientService.
 - Zwraca odpowiedź HTTP 200 (OK) z komunikatem "Client deleted successfully." w przypadku sukcesu.
 - o Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia klienta o podanym ID.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteClient(string id)
{
    try
    {
        if (!ObjectId.TryParse(id, out ObjectId objectId))
        {
            return BadRequest("Invalid ObjectId format.");
        }
        var success = await _clientService.DeleteClientAsync(id);
```

```
if (success)
{
    return Ok("Client deleted successfully.");
}
else
{
    return NotFound("Client not found.");
}
}
catch (Exception ex)
{
    return StatusCode(500, $"An error occurred while deleting the client: {ex.Message}");
}
```

3.3.4 Get Clients Per Filter

Metoda GetClientsPerFilterAsync służy do asynchronicznego pobierania klientów zgodnie z określonymi kryteriami.

- Metoda HTTP: GET
- Ścieżka: api/Client/Clients
- Parametry wejściowe: Opcjonalne parametry filtrujące klientów.
- Działanie:
 - Tworzy filtr na podstawie przekazanych parametrów.
 - Wywołuje metodę GetClientsPerFilterAsync usługi IClientService z utworzonym filtrem.
 - o Zwraca odpowiedź HTTP 200 (OK) z listą klientów, które spełniają kryteria filtracji.
 - Zwraca odpowiedź HTTP 404 (Not Found) w przypadku braku znalezienia klientów.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
filter &= filterDefinitioinBuilder.Eq("_id", objectId);
    }
}
if(!string.IsNullOrWhiteSpace(first_name)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.First_Name, first_name);
if(!string.IsNullOrWhiteSpace(last_name)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.Last_Name, last_name);
if(!string.IsNullOrWhiteSpace(phone number)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.Phone_Number, phone_number);
}
if(!string.IsNullOrWhiteSpace(gender)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.Gender, gender);
}
if(!string.IsNullOrWhiteSpace(pesel)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.Pesel, pesel);
if(!string.IsNullOrWhiteSpace(address)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.Address, address);
}
if(!string.IsNullOrWhiteSpace(city)){
    filter &= filterDefinitioinBuilder
       .Eq(client => client.City, city);
if(!string.IsNullOrWhiteSpace(country)){
    filter &= filterDefinitioinBuilder
        .Eq(client => client.Country, country);
filter &= filterDefinitioinBuilder
    Gte(client => client.Total_Rental_Days,minTotal_rental_days ?? 0);
filter &= filterDefinitioinBuilder
    .Lte(client => client.Total_Rental_Days, maxTotal_rental_days ?? int.MaxValue);
filter &= AddDateRangeFilter(filter, filterDefinitioinBuilder,
    client => client.Customer_Since, minCustomerSince, maxCustomerSince);
filter &= AddDateRangeFilter(filter, filterDefinitioinBuilder,
    client => client.Birth_Day, minBirthday, maxBirthday);
var result = await _clientService.GetClientsPerFilterAsync(filter);
if (result.Any())
   return Ok(result);
else{
   return NotFound("Clients not found.");
```

```
catch (Exception ex)
{
    return StatusCode(500, $"An error occurred while retrieving clients: {ex.Message}");
}
```

Funkcja AddDateRangeFilter

Funkcja AddDateRangeFilter dodaje do filtru odpowiedni zakres dat z zapytania

• Parametry wejściowe:

- FilterDefinition<T> filter: Obiekt reprezentujący klienta.
- FilterDefinitionBuilder<T> filterBuilder: Obiekt reprezentujący klienta.
- Expression<Func<T, DateTime?>> field: Obiekt reprezentujący pole po którym filtrujemy.
- DateTime? minValue: Obiekt DataTime reprezentujący początek przedziału.
- o DateTime? maxValue: Obiekt DataTime reprezentujący koniec przedziału.
- Zwracana wartość: Zaktualizowany o podany zakres dat filter

```
private static FilterDefinition<T> AddDateRangeFilter<T>(
    FilterDefinition<T> filter,
    FilterDefinitionBuilder<T> filterBuilder,
    Expression<Func<T, DateTime?>> field,
    DateTime? minValue,
    DateTime? maxValue)
    {
        if (minValue.HasValue)
        {
            filter &= filterBuilder.Gte(field, minValue.Value);
        }
        if (maxValue.HasValue)
        {
                filter &= filterBuilder.Lte(field, maxValue.Value);
        }
        return filter;
}
```

3.3.5 Register Client

Metoda CreateClient służy do asynchronicznego rejestracji nowego klienta.

- Metoda HTTP: POST
- Ścieżka: api/Client/register
- Parametry wejściowe: Obiekt typu Register przekazywany w ciele żądania.
- Działanie:
 - o Sprawdza istnienie użytkownika o podanym adresie e-mail.
 - Tworzy nowego klienta na podstawie danych przekazanych w obiekcie Register.
 - Zwraca odpowiedź HTTP 200 (OK) w przypadku sukcesu.

 Zwraca odpowiedź HTTP 400 (Bad Request) w przypadku istnienia już użytkownika o podanym adresie e-mail.

o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpPost("register")]
public async Task<IActionResult> CreateClient([FromBody] Register register_model)
   try
    {
        var existingUser = await _clientService.GetUserByEmailAsync(register_model.Email);
       if (existingUser != null)
            return BadRequest("User already exists");
        var client = new Client
           First_Name = register_model.First_Name,
           Last_Name = register_model.Last_Name,
           Phone_Number = register_model.Phone_Number,
           Gender = register_model.Gender,
           Birth_Day = register_model.Birth_Day,
           Pesel = register_model.Pesel,
           Email = register_model.Email,
           Address = register_model.Address,
           City = register_model.City,
           Country = register_model.Country,
           Customer_Since = DateTime.Now.Date,
           Total_Rental_Days = 0,
            Password_Hash = BCrypt.Net.BCrypt.HashPassword(register_model.Password)
       };
            await _clientService.CreateClientAsync(client);
       return Ok();
    catch (Exception ex)
        return StatusCode(500, $"An error occurred while creating client: {ex.Message}");
}
```

3.3.6 Login

Metoda Login służy do asynchronicznego logowania klienta.

- Metoda HTTP: POST
- Ścieżka: api/Client/login
- Parametry wejściowe: Obiekt typu Login przekazywany w ciele żądania.
- Działanie:
 - o Sprawdza istnienie użytkownika o podanym adresie e-mail i poprawności hasła.

- o Generuje token JWT dla klienta.
- Zwraca odpowiedź HTTP 200 (OK) z tokenem JWT w przypadku poprawnego logowania.
- o Zwraca odpowiedź HTTP 401 (Unauthorized) w przypadku niepowodzenia logowania.

```
[HttpPost("login")]
public async Task<IActionResult> Login([FromBody] Login login_model)
    var client = await _clientService.GetUserByEmailAsync(login_model.Email);
    if (client == null || !BCrypt.Net.BCrypt.Verify(login_model.Password, client.Password_Hash))
       return Unauthorized();
    var jwtSettings = _config.GetSection("Jwt");
    var key = Encoding.ASCII.GetBytes(jwtSettings["Key"]);
    var tokenDescriptor = new SecurityTokenDescriptor
        Subject = new ClaimsIdentity(new[]
           new Claim(ClaimTypes.NameIdentifier, client._id.ToString())
       }).
       Expires = DateTime.UtcNow.AddMinutes(double.Parse(jwtSettings["ExpiresInMinutes"])),
       Issuer = jwtSettings["Issuer"],
       Audience = jwtSettings["Audience"],
        SigningCredentials = new SigningCredentials(new SymmetricSecurityKey(key), SecurityAlgorithms.HmacSha256Signature)
    var tokenHandler = new JwtSecurityTokenHandler();
    var securityToken = tokenHandler.CreateToken(tokenDescriptor);
    var token = tokenHandler.WriteToken(securityToken);
    return Ok(token);
```

3.4 RentalController

Kontroler RentalController zarządza operacjami związanymi z wypożyczaniem samochodów.

3.4.1 CreateNewRental

Tworzy nowe wypożyczenie na podstawie przesłanych danych.

- Ścieżka: POST api/Rental/NewRental
- Parametry wejściowe:
 - o Rental rental: Obiekt zawierający informacje o wypożyczeniu.
- Kody odpowiedzi:
 - o 200 OK: Wypożyczenie zostało pomyślnie utworzone.
 - 401 Unauthorized: Niektóre wartości są nieprawidłowe.
 - o 500 Internal Server Error: Wystąpił błąd podczas tworzenia wypożyczenia.

```
[HttpPost("NewRental")]
public async Task<IActionResult> CreateNewRental([FromBody] Rental rental)
{
    if(!CheckRental(rental)){
        return StatusCode(401, "Some value are invalid");
    }
    try
    {
        await _rentalService.CreateRentalAsync(rental);
        return Ok("Rental created successfully.");
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while creating the new rental: {ex.Message}");
    }
}
```

3.4.2 UpdateRental

Aktualizuje istniejące wypożyczenie na podstawie podanego identyfikatora.

- **Ścieżka**: POST api/Rental/FinishRental/{id}
- Parametry wejściowe:
 - o int id: Identyfikator wypożyczenia.
 - Rental rental: Obiekt zawierający zaktualizowane informacje o wypożyczeniu.
- Kody odpowiedzi:
 - o 200 OK: Wypożyczenie zostało pomyślnie zaktualizowane.
 - o 401 Unauthorized: Niektóre wartości są nieprawidłowe.
 - o 500 Internal Server Error: Wystąpił błąd podczas aktualizowania wypożyczenia.

```
[HttpPost("FinishRental/{id}")]
public async Task<IActionResult> UpdateRental(string id, [FromBody] Rental rental)
{
    if(|CheckRental(rental)){
        return StatusCode(401, "Some value are invalid");
    }
    if (|ObjectId.TryParse(id, out ObjectId objectId))
    {
        return BadRequest("Invalid ObjectId format.");
    }
    try
    {
        Rental finished_rental = await _rentalService.FinishRentalAsync(id, rental);
        return Ok(finished_rental);
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while finishing the rental: {ex.Message}");
}
```

```
}
```

3.4.3 CheckRental

Sprawdza poprawność danych wypożyczenia.

- Parametry wejściowe:
 - Rental rental: Obiekt zawierający informacje o wypożyczeniu.
- Zwracane wartości:
 - o bool: Wartość true, jeśli dane wypożyczenie jest poprawne, w przeciwnym razie false.

```
private bool CheckRental(Rental rental)
{
    Rental_Details rental_Details = rental_Rental_Details;

    if (rental_Details.Start_Date >= rental_Details.Expected_End_Date)
    {
        return false;
    }
    if (rental_Details.Days <= 0)
    {
        return false;
    }
    if (rental_Details.Discount >= 1 || rental_Details.Discount < 0 || rental_Details.Price < 0
        || rental_Details.Extra_Amount < 0 || rental_Details.Extra_Fuel_Amount < 0 || rental_Details.Extra_Days_Amount < 0
        || rental_Details.Extra_Insurance_Amount < 0 || rental_Details.Final_Amount < 0
        || rental_Details.Extra_Mileage_Amount < 0 || rental_Details.Mileage < 0 || rental_Details.Extra_Fuel < 0)
    {
        return false;
    }
    return true;
}</pre>
```

3.4.4 GetRentalsPerFilterAsync

Pobiera wypożyczenia na podstawie określonych filtrów.

- Ścieżka: GET api/Rental/Rentals
- Parametry wejściowe:
 - o Parametry opcjonalne do filtrowania wyników.
- Zwracane wartości:
 - Lista wypożyczeń spełniających kryteria filtrów lub komunikat "Cars not found", jeśli nie znaleziono żadnego wypożyczenia.
- Kody odpowiedzi:
 - o 200 OK: Zwraca listę wypożyczeń.
 - o 404 Not Found: Nie znaleziono żadnego wypożyczenia.
 - o 500 Internal Server Error: Wystąpił błąd podczas pobierania danych.

```
[HttpGet("Rentals")]
public async Task<IActionResult> GetRentalsPerFilterAsync(string? clientId = null, string? carId = null,
   string? make = null, string? model = null, double? minPricePerDay = null, double? maxPricePerDay = null,
   DateTime? minStartDate = null, DateTime? maxStartDate = null, DateTime? minExpectedEndDate = null,
   DateTime? maxExpectedEndDate = null, DateTime? minEndDate = null, DateTime? maxEndDate = null,
   string? rentalStatus = null, string? insuranceType = null, double? minExtraInsuranceAmount = null,
   double? maxExtraInsuranceAmount = null, int? minDays = null, int? maxDays = null,
   double? minExtraDaysAmount = null, double? maxExtraDaysAmount = null, int? minMileage = null,
   int? maxMileage = null, double? minExtraMileageAmount = null, double? maxExtraMileageAmount = null,
   int? minExtraFuel = null, int? maxExtraFuel = null, double? minExtraFuelAmount = null,
   double? maxExtraFuelAmount = null, double? minPrice = null, double? maxPrice = null,
   double? minDiscount = null, double? maxDiscount = null, double? minExtraAmount = null,
   double? maxExtraAmount = null, double? minFinalAmount = null, double? maxFinalAmount = null)
   try
       var filterDefinitioinBuilder = Builders<Rental>.Filter;
       var filter = Builders<Rental>.Filter.Empty;
       if (!string.IsNullOrEmpty(clientId))
           if (!ObjectId.TryParse(clientId, out ObjectId objectClientId))
               return BadRequest("Invalid objectClientId format.");
           else
            {
               filter &= filterDefinitioinBuilder.Eq("Customer.ClientId", objectClientId);
       if (!string.IsNullOrEmpty(carId))
           if (!ObjectId.TryParse(carId, out ObjectId objectCarId))
               return BadRequest("Invalid objectCarId format.");
           else
               filter &= filterDefinitioinBuilder.Eq("Rental_Car.carId", objectCarId);
       if(!string.IsNullOrWhiteSpace(make)){
           filter &= filterDefinitioinBuilder
                .Eq(rental => rental.Rental_Car.Make, make);
       }if(!string.IsNullOrWhiteSpace(model)){
            filter &= filterDefinitioinBuilder
                .Eq(rental => rental.Rental_Car.Model, model);
        if(!string.IsNullOrWhiteSpace(rentalStatus)){
           filter &= filterDefinitioinBuilder
                .Eq(rental => rental.Rental_Details.Rental_Status, rentalStatus);
        }
```

```
if(!string.IsNullOrWhiteSpace(insuranceType)){
        filter &= filterDefinitioinBuilder
            .Eq(rental => rental.Rental_Details.Insurance_Type, insuranceType);
    }
    filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
        rental => rental.Rental_Car.Price_Per_Day, minPricePerDay, maxPricePerDay);
    filter &= AddDateRangeFilter(filter, filterDefinitioinBuilder,
        rental => rental.Rental_Details.Start_Date, minStartDate, maxStartDate);
   filter &= AddDateRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Expected_End_Date, minExpectedEndDate, maxExpectedEndDate);
    filter &= AddDateRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.End_Date, minEndDate, maxEndDate);
   filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Extra_Mileage_Amount, minExtraInsuranceAmount);
    filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Days, minDays, maxDays);
    filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
        rental => rental.Rental_Details.Extra_Days_Amount, minExtraDaysAmount, maxExtraDaysAmount);
    filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Mileage, minMileage, maxMileage);
   filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Extra_Mileage_Amount, minExtraMileageAmount, maxExtraMileageAmount);
   filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Extra_Fuel, minExtraFuel, maxExtraFuel);
   filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
        rental => rental.Rental_Details.Extra_Fuel_Amount, minExtraFuelAmount, maxExtraFuelAmount);
   filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Price, minPrice, maxPrice);
    filter &= filterDefinitioinBuilder
        .Gte(rental => rental.Rental_Details.Discount, minDiscount ?? 0);
    filter &= filterDefinitioinBuilder
        .Lte(rental => rental.Rental_Details.Discount, maxDiscount ?? 1);
   filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Extra_Amount, minExtraAmount, maxExtraAmount);
    filter &= AddRangeFilter(filter, filterDefinitioinBuilder,
       rental => rental.Rental_Details.Final_Amount, minFinalAmount, maxFinalAmount);
   var result = await _rentalService.GetRentalsPerFilterAsync(filter);
   if (result.Any())
       return Ok(result);
   else{
       return NotFound("Cars not found.");
catch (Exception ex)
   return StatusCode(500, $"An error occurred while retrieving cars:: {ex.Message}");
```

```
}
```

Funkcje AddRangeFilter, AddDateRangeFilter

Funkcje AddRangeFilter, AddDateRangeFilter dodają do filtru odpowiedni zakres danego parametru z zapytania

• Parametry wejściowe:

- FilterDefinition<T> filter: Obiekt reprezentujący klienta.
- FilterDefinitionBuilder<T> filterBuilder: Obiekt reprezentujący klienta.
- Expression<Func<T, _?>> field: Obiekt reprezentujący pole po którym filtrujemy.
- o __? minValue: Obiekt _ reprezentujący początek przedziału.
- o __? maxValue: Obiekt _ reprezentujący koniec przedziału.
- Zwracana wartość: Zaktualizowany o podany zakres dat filter

```
private static FilterDefinition<T> AddRangeFilter<T>(
    FilterDefinition<T> filter,
    FilterDefinitionBuilder<T> filterBuilder,
    Expression<Func<T, double?>> field,
    double? minValue,
    double? maxValue)
        filter &= filterBuilder.Gte(field, minValue ?? 0);
       filter &= filterBuilder.Lte(field, maxValue ?? double.MaxValue);
        return filter;
private static FilterDefinition<T> AddRangeFilter<T>(
    FilterDefinition<T> filter,
    FilterDefinitionBuilder<T> filterBuilder,
    Expression<Func<T, int?>> field,
    int? minValue,
    int? maxValue)
        filter &= filterBuilder.Gte(field, minValue ?? 0);
       filter &= filterBuilder.Lte(field, maxValue ?? int.MaxValue);
        return filter;
private static FilterDefinition<T> AddDateRangeFilter<T>(
    FilterDefinition<T> filter,
    FilterDefinitionBuilder<T> filterBuilder,
    Expression<Func<T, DateTime?>> field,
    DateTime? minValue,
    DateTime? maxValue)
        if (minValue.HasValue)
           filter &= filterBuilder.Gte(field, minValue.Value);
```

```
if (maxValue.HasValue)
{
    filter &= filterBuilder.Lte(field, maxValue.Value);
}
return filter;
}
```

3.5 Statistics Controller

Kontroler StatisticsController zarządza zapytaniami dotyczącymi statystyk.

3.5.1 Get Top N Cars

Metoda GetTopNCarsAsync zwraca listę top N samochodów.

- Metoda HTTP: GET
- **Ścieżka**: api/Statistics/Rentals/{n}
- **Parametry wejściowe**: Liczba całkowita n określająca liczbę samochodów do zwrócenia.
- Działanie:
 - Wywołuje metodę TopNCars usługi IStatisticsService.
 - o Zwraca odpowiedź HTTP 200 (OK) z listą top N samochodów.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("Rentals/{n}")]
public async Task<IActionResult> GetTopNCarsAsync(int n){
    try
    {
       var topNcars = await _statisticsService.TopNCars(n);
       return Ok(topNcars);
    }
    catch (Exception ex)
    {
       return StatusCode(500, $"An error occurred while getting the top n car: {ex.Message}");
    }
}
```

3.5.2 Get Top N Customers Per Mileage

Metoda GetTopNCustomersPerMileageAsync zwraca listę top N klientów według przebytego przebiegu.

- Metoda HTTP: GET
- **Ścieżka**: api/Statistics/Customers/{n}
- Parametry wejściowe: Liczba całkowita n określająca liczbę klientów do zwrócenia.
- Działanie:
 - Wywołuje metodę TopNClientsPerMileage usługi IStatisticsService.
 - Zwraca odpowiedź HTTP 200 (OK) z listą top N klientów.
 - o Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("Customers/{n}")]
public async Task<IActionResult> GetTopNCustomersPerMileageAsync(int n){
    try
    {
        var topNcustomers = await _statisticsService.TopNClientsPerMileage(n);
        return Ok(topNcustomers);
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while getting the top n customers per mileage: {ex.Message}");
    }
}
```

3.5.3 Get Favorite Car Per Client

Metoda GetFavCarPerClient zwraca ulubiony samochód każdego klienta.

- Metoda HTTP: GET
- Ścieżka: api/Statistics/Customers/Cars
- Działanie:
 - Wywołuje metodę FavCarPerClient usługi IStatisticsService.
 - o Zwraca odpowiedź HTTP 200 (OK) z listą ulubionych samochodów klientów.
 - Zwraca odpowiedź HTTP 500 (Internal Server Error) w przypadku wystąpienia błędu.

```
[HttpGet("Customers/Cars")]
public async Task<IActionResult> GetFavCarPerClient(){
    try
    {
        var topNcustomers = await _statisticsService.FavCarPerClient();
        return Ok(topNcustomers);
    }
    catch (Exception ex)
    {
        return StatusCode(500, $"An error occurred while getting favorite car per customer {ex.Message}");
    }
}
```

4 Transakcje

Aby móc korzystać z transakcji musieliśmy odpowiednio skonfugurować nasz serwer bazodanywo.

W pliku konfiguracyjnym mongo.cfg dodaliśmy zależnoć, która pozwala korzystać z replication set

```
replication:
replSetName: "rs0"
```

```
> rs.initiate()
```

oraz kontrolnie

```
> rs.status()
```

```
rs0 [direct: primary] test> rs.status()
 set: 'rs0',
 date: ISODate('2024-06-02T19:39:16.112Z'),
 myState: 1,
 term: Long('1'),
 syncSourceHost: '',
 syncSourceId: -1,
 heartbeatIntervalMillis: Long('2000'),
 majorityVoteCount: 1,
 writeMajorityCount: 1,
 votingMembersCount: 1,
 writableVotingMembersCount: 1,
 optimes: {
   lastCommittedOpTime: { ts: Timestamp({ t: 1717357155, i: 1 }), t: Long('1') },
   lastCommittedWallTime: ISODate('2024-06-02T19:39:15.353Z'),
   readConcernMajorityOpTime: { ts: Timestamp({ t: 1717357155, i: 1 }), t: Long('1') },
   appliedOpTime: { ts: Timestamp({ t: 1717357155, i: 1 }), t: Long('1') },
   durableOpTime: { ts: Timestamp({ t: 1717357155, i: 1 }), t: Long('1') },
   lastAppliedWallTime: ISODate('2024-06-02T19:39:15.353Z'),
   lastDurableWallTime: ISODate('2024-06-02T19:39:15.353Z')
 lastStableRecoveryTimestamp: Timestamp({ t: 1717357137, i: 1 }),
 electionCandidateMetrics: {
   lastElectionReason: 'electionTimeout',
   lastElectionDate: ISODate('2024-06-01T10:25:44.170Z'),
   electionTerm: Long('1'),
   lastSeenOpTimeAtElection: { ts: Timestamp({ t: 1717237544, i: 1 }), t: Long('-1') },
   numVotesNeeded: 1,
   priorityAtElection: 1,
   electionTimeoutMillis: Long('10000'),
   newTermStartDate: ISODate('2024-06-01T10:25:44.244Z'),
   wMajorityWriteAvailabilityDate: ISODate('2024-06-01T10:25:44.291Z')
 },
 members: [
   {
     _id: 0,
     name: '127.0.0.1:27017',
     health: 1,
     state: 1,
     stateStr: 'PRIMARY',
```

```
uptime: 119743,
    optime: { ts: Timestamp({ t: 1717357155, i: 1 }), t: Long('1') },
    optimeDate: ISODate('2024-06-02T19:39:15.000Z'),
    lastAppliedWallTime: ISODate('2024-06-02T19:39:15.353Z'),
    lastDurableWallTime: ISODate('2024-06-02T19:39:15.353Z'),
    syncSourceHost: '',
    syncSourceId: -1,
    infoMessage: '',
    electionTime: Timestamp({ t: 1717237544, i: 2 }),
    electionDate: ISODate('2024-06-01T10:25:44.000Z'),
    configVersion: 1,
    configTerm: 1,
    self: true,
    lastHeartbeatMessage: ''
  }
],
ok: 1,
'$clusterTime': {
 clusterTime: Timestamp({ t: 1717357155, i: 1 }),
  signature: {
   hash: Binary.createFromBase64('AAAAAAAAAAAAAAAAAAAAAAAAAAA=', 0),
    keyId: Long('0')
 }
},
operationTime: Timestamp({ t: 1717357155, i: 1 })
```

5 Testy

5.1 Kontroler Car

5.1.1 Wyszukiwanie aut pasujących do filtru

http://localhost:5000/api/Car/Cars?seats=5&color=black&minPower=200&maxPower=300&maxProductionYear= 2022

```
1 ~[
        "seats": 5,
        "type": "SUV",
        "color": "black",
        "power": 220,
        "curr_mileage": 7500,
        "price_per_day": 180,
        "isAvailable": true,
12
        "production_year": 2019
      },
        "seats": 5,
        "type": "SUV",
        "color": "black",
        "power": 220,
        "curr_mileage": 7500,
        "price_per_day": 180,
        "isAvailable": false,
        "production_year": 2020
      з,
        "seats": 5,
        "type": "SUV",
        "color": "black",
        "power": 220,
        "curr_mileage": 7500,
34
        "price_per_day": 180,
        "isAvailable": false,
        "production_year": 2019
      з,
```

5.1.2 Wyszukiwanie aut pasujących z danym ID

5.2 Kontroler Client

5.2.1 Wyszukiwanie clientów pasujących do filtru

http://localhost:5000/api/Client/Clients?minTotal_rental_days=30&minCustomerSince=2021-01-01&maxCustomerSince=2023-12-31

```
"first_Name": "Emily",
   "last_Name": "Brown",
   "phone_Number": "369258147",
   "gender": "female",
   "birth_Day": "1988-12-30T00:00:00Z",
   "pesel": "88123045678",
   "email": "emily.brown@example.com",
   "address": "101 Pine St, San Francisco",
   "city": "San Francisco",
   "country": "USA",
   "customer_Since": "2021-03-05T00:00:00Z",
   "total_Rental_Days": 30
з,
   "first_Name": "Charlotte",
   "last_Name": "Scott",
   "phone_Number": "654123987",
   "gender": "female",
   "birth_Day": "1987-05-09T00:00:00Z",
   "pesel": "87050967890",
   "email": "charlotte.scott@example.com",
   "address": "1313 Oak St, San Diego",
   "city": "San Diego",
   "country": "USA",
   "customer_Since": "2021-05-02T00:00:00Z",
   "total_Rental_Days": 35
```

5.2.2 Wyszukiwanie wszystkich clientów

http://localhost:5000/api/Client/Clients

```
"_id": "00000000000000000000000000000000",
   "first_Name": "John",
   "last_Name": "Wick",
   "phone_Number": "456895236",
   "gender": "male",
   "birth_Day": "1970-03-11T00:00:00Z",
   "pesel": "70031112345",
   "email": "john.wick@example.com",
   "address": "123 Main St, New York",
   "city": "New York",
   "country": "USA",
   "customer_Since": "2020-01-15T00:00:00Z",
   "total_Rental_Days": 52
3,
   "first_Name": "Alice",
   "last_Name": "Johnson",
   "phone_Number": "789654123",
   "gender": "female",
   "birth_Day": "1985-07-22T00:00:00Z",
   "pesel": "85072223456",
   "email": "alice.johnson@example.com",
   "address": "456 Elm St, Los Angeles",
   "city": "Los Angeles",
   "country": "USA",
   "customer_Since": "2018-09-30T00:00:00Z",
    "total_Rental_Days": 8
```

5.3 Kontroler Rental

5.3.1 Wyszukiwanie wypożyczeń pasujących do filtru

http://localhost:5000/api/Rental/Rentals/?maxExpectedEndDate=2024-05-21&maxExtraAmount=0

```
"rental_Car": {
              "make": "Toyota",
              "model": "Corolla",
              "price_Per_Day": 130
           "customer": {
              "first_Name": "Alice",
              "last_Name": "Johnson"
           "rental_Details": {
              "start_Date": "2024-05-14T12:00:00Z",
              "expected_End_Date": "2024-05-20T12:00:00Z",
              "rental_Status": "ongoing",
              "insurance_Type": "standard",
              "extra_Insurance_Amount": 80,
              "days": 6,
              "extra_Days_Amount": 0,
              "mileage": 900,
              "extra_Mileage_Amount": 0,
              "extra_Fuel": 0,
              "extra_Fuel_Amount": 0,
              "price": 780,
              "discount": 0,
              "extra_Amount": 0,
              "final_Amount": 780
33
```

5.3.1 Wyszukiwanie wszystkich wypożyczeń

http://localhost:5000/api/Rental/Rentals

```
"rental_Car": {
               "make": "Toyota",
               "model": "Corolla",
               "price_Per_Day": 120
            "customer": {
11
               "clientId": "00000000000000000000000000000",
               "first_Name": "John",
               "last_Name": "Wick"
13
            },
            "rental_Details": {
               "start_Date": "2024-05-12T12:00:00Z",
               "expected_End_Date": "2024-05-17T12:00:00Z",
18
               "end_Date": "2024-05-18T10:08:55.906Z",
               "rental_Status": "finished",
               "insurance_Type": "full",
               "extra_Insurance_Amount": 100,
               "days": 6,
23
               "extra_Days_Amount": 60,
               "mileage": 550,
               "extra_Mileage_Amount": 0,
               "extra_Fuel": 0,
               "extra_Fuel_Amount": 0,
28
               "price": 600,
               "discount": 0.1,
               "extra_Amount": 160,
               "final_Amount": 700
```

5.3.2 Tworzenie nowego wypożyczeni

```
http://localhost:5000/api/Rental/NewRental
```

BODY:

```
},
  "rental_details": {
   "start_date": "2024-05-22T12:00:00.000Z",
   "expected_end_date": "2024-05-30T12:00:00.000Z",
    "end_date": null,
   "rental_status": "ongoing",
    "insurance_type": "basic",
   "extra_insurance_amount": 50,
    "days": 8,
   "extra_days_amount": 0,
    "mileage": 1200,
    "extra mileage amount": 0,
    "extra_fuel": 0,
    "extra_fuel_amount": 0,
   "price": 1600,
    "discount": 0,
    "extra_amount": 50,
    "final_amount": 1650
}
```

1 Rental created successfully.

```
_id: ObjectId('665e201b13635eefe1b66587')
▼ rental_car : Object
   make: "Audi"
   model: "Q5"
   price_per_day: 200
▼ customer : Object
   first_name: "Michael"
   last_name: "Smith"
▼ rental_details : Object
   start_date: 2024-05-22T12:00:00.000+00:00
   expected_end_date: 2024-05-30T12:00:00.000+00:00
   end_date: null
   rental_status: "ongoing"
   insurance_type : "basic"
   extra_insurance_amount: 50
   days: 8
   extra_days_amount: 0
   mileage: 1200
   extra_mileage_amount: 0
   extra_fuel: 0
   extra_fuel_amount: 0
   price: 1600
   discount: 0
   extra_amount: 50
   final_amount: 1650
```

5.3.3 Zakończenie danego wypożyczenia o danym ID

http://localhost:5000/api/Rental/FinishRental/665e201b13635eefe1b66587

BODY response

```
"_id": "665e201b13635eefe1b66587",
   "rental_Car": {
      "make": "Audi",
       "model": "Q5",
      "price_Per_Day": 200
   },
   "customer": {
      "first_Name": "Michael",
      "last_Name": "Smith"
   "rental_Details": {
       "start_Date": "2024-05-22T12:00:00Z",
      "expected_End_Date": "2024-05-30T12:00:00Z",
       "end_Date": "2024-06-03T19:58:21.9528212Z",
      "rental_Status": "finished",
       "insurance_Type": "basic",
       "extra_Insurance_Amount": 50,
       "days": 13,
      "extra_Days_Amount": 500,
      "mileage": 1200,
       "extra_Mileage_Amount": 0,
      "extra_Fuel": 0,
       "extra_Fuel_Amount": 0,
      "price": 1600,
       "discount": 0,
       "extra_Amount": 550,
       "final_Amount": 2150
   }
}
```

```
_id: ObjectId('665e201b13635eefe1b66587')
▼ rental_car : Object
   make: "Audi"
   model: "Q5"
   price_per_day: 200
▼ customer : Object
   first_name: "Michael"
   last_name: "Smith"
▼ rental_details : Object
   start_date: 2024-05-22T12:00:00.000+00:00
   expected_end_date: 2024-05-30T12:00:00.000+00:00
   end_date: 2024-06-03T19:58:21.952+00:00
   rental_status: "finished"
   insurance_type : "basic"
   extra_insurance_amount: 50
   days: 13
   extra_days_amount: 500
   mileage: 1200
   extra_mileage_amount: 0
   extra_fuel: 0
   extra_fuel_amount: 0
   price: 1600
   discount: 0
   extra_amount: 550
   final_amount: 2150
```

Oczywiście na czas wypożyczenia status auta zminił się na *niedostepny* a po zakończeniu danego wypozyczenia pownie auto była do dyspozycji wypożyczalni. Dodatkowo został zaktualizowany przebieg auta oraz sumaryczna liczba dni wypozyczeń przez danego kliena.

5.4 Kontroler Statistics

5.4.1 Zwracanie najchętniej wypożyczanych aut

http://localhost:5000/api/Statistics/Rentals/10

```
"value": [
          "count": 2,
          "model": "Corolla",
          "make": "Toyota"
          "count": 1,
          "model": "X5",
          "make": "BMW"
          "count": 1,
          "model": "Grandland X",
          "make": "Opel"
          "count": 1,
          "model": "Q5",
          "make": "Audi"
     ]
28
```

5.4.2 Zwracanie klientów z największą liczbą wypożyczeń

http://localhost:5000/api/Statistics/Customers/10

```
1
      "value": [
            "sum": 2700,
            "customer": {
                "first_name": "Michael",
               "last_name": "Smith"
            "sum": 900,
            "customer": {
               "first_name": "Alice",
               "last_name": "Johnson"
            "sum": 550,
            "customer": {
               "clientId": "000000000000000000000000000000",
                "first_name": "John",
                "last_name": "Wick"
```

5.4.2 Zwracanie najchętniej wypożyczanego auta przez dla każdego klienta

```
http://localhost:5000/api/Statistics/Customers/Cars
```

```
1
  "value": [
    "filteredCars": [
       "sum": 1
      }
    "filteredCars": [
       "sum": 1
    ]
   3,
    "filteredCars": [
       "sum": 1
      3,
       "sum": 1
      },
       "sum": 1
  ]
```

FrontEnd

Frontend został napisany w Blazerze, który jest frameworkiem do budowania aplikacji internetowych w języku C#. Blazer umożliwia pisanie kodu aplikacji webowej w języku C# i wykorzystanie go do renderowania interfejsu użytkownika w przeglądarce. W naszym przypadku, frontend polega na systemie logowania użytkowników, wyświetlaniu wszystkich modeli i aut, a także w prezentowaniu statystyk.

Register

First Name:		
Last Name:		
Phone Number:		
Gender:		
Birth Day:		
Pesel:		
Email:		
Address:		
City:		
Country:		
Password:		
Register		

Your Profile

First Name: Mateusz

Last Name: Sacha

Phone Number: +48 698798779

Gender: male

Birthday: 2002-10-26

Pesel: 43214144414

Email: test@10.pl

Address: Ogrowdowa

City: Brzesko

Country: Polska

Customer Since: 2024-06-03

Total Rental Days: 0

Log out

This is list of car models.

This is list of available cars for this Model:

Type: combi

Color: red

Seats: 5

Price per day: 130

Type: combi

Color: red

Seats: 5

Price per day: 120

Type: combi

Color: red

Seats: 5

Price per day: 120

Toyota

Corolla

combi - red

Seats: 5

Power: 130

Current Mileage: 10234

Price per Day: 130

Production Year: 2020

Komentarz/Dyskusja

Projekt wykorzystuje MongoDB jako bazę danych, co pozwala na efektywne przechowywanie i zarządzanie danymi w dokumentach JSON. Zalety MongoDB, szczególnie w kontekście tego projektu, obejmują jego skalowalność, elastyczność schematu oraz wsparcie dla transakcji. MongoDB umożliwia łatwe skalowanie horyzontalne poprzez replikację i partycjonowanie, co jest istotne dla aplikacji o rosnącej liczbie użytkowników i danych. Ponadto, elastyczność schematu pozwala na dynamiczne dostosowywanie struktury danych do zmieniających się wymagań biznesowych bez konieczności migracji schematu.

W kontekście .NET, wykorzystanie funkcji asynchronicznych jest kluczowe dla wydajności i responsywności aplikacji. Dzięki funkcjom asynchronicznym, aplikacja może wykonywać operacje na bazie danych i inne zadania bez blokowania głównego wątku, co pozwala na obsługę wielu żądań jednocześnie i zapewnia płynne działanie interfejsu użytkownika. Funkcje asynchroniczne w .NET pozwalają na efektywne wykorzystanie zasobów systemu, co jest istotne zwłaszcza w przypadku aplikacji obsługujących dużą liczbę użytkowników, jak w przypadku tego projektu. Dzięki temu, aplikacja może obsługiwać duże obciążenie przy jednoczesnym zachowaniu responsywności i wydajności.