(312) 360 0080

2/21

3/21

(312) 360 0080

5/21

TICHETIS TIESDI

FIG. 5

$X_{k-1}X_k$	S ₀
00	S ₁
01	S₂
10	S ₃
11	S₄

FIG. 6

7/21

FIG. 8

-IG. 9

	RECOF	RECORDING SIGNAL Xk ON MEDIUM	IGNAL >	k ON M	EDIUM		STATE	MEAN VALUE OF WAVEFORM AFTER
X	:	X _{k-1}	×	X _{k+1}	•••	X _{k+Q}		EQUALIZATION
0		0	0	0	:	0	Smg	q(S _m ⁰)
0		0	0	0		-	S ^m ₁	d (S ^m ₁)
:	# # #		: .		•••	:	:	
-	:	-	,	-		0	S 2 [N+Q+1]-2	$d(S_{2}^{m_{2} \cdot \{N+Q+1\}-2})$
-		-	-	-	:	1	S "2^[N+Q+1}-1	d(S ^m 2 ² (N+Q+1}-1)

FIG. 10A

FIG. 10B

FIG. 10C

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 11 of 21 (312) 360 0080

11/21

STATE	· · · · · · · · · · · · · · · · · · ·		CORRELATIO	CORRELATION OF NOISES			STANDARD DEVIATION
	e_L(Sm,)	:	e ₋₁ (S ^m _k)	e ₁ (S ^m _k)	:	e _M (S ^m)	$\sigma(S^m)$
S ^m ₀	$\Theta^{-\Gamma}(S_0^m)$:	9 -1 (S ^m ₀)	e ₁ (S ^m ₀)	:	Θ _M (S ^m ₀)	σ (S ^m ₀)
Sm	Θ _{-L} (S ^m ₁)	:	e-1(Sm,)	e ₁ (S ^m ₁)	:	Θ _M (S ^m ₁)	σ (S ^m ₁)
•••••	:	:			:	-	
S"2^{[N+Q+1]-2	e-L (S ^m 2'[N+Q+1]-2)	:	e_1 (S ^m 2'[N+Q+1]-2)	e ₁ (S ^m ₂ ² [N+Q+1]-2)	:	$\Theta_{M}(S^{m}_{2^{2}[N+Q+1]-2})$	σ (S ^m _{2(N+Q+1]-2})
S ^m ₂ [N+Q+1]-1	$S_{2(N+Q+1]-1}^{m} = e_{-L}(S_{2(N+Q+1]-1}^{m})$:	e_1 (Sm 2/[N+Q+1]-1)	e ₁ (S ^m ₂ ′[N+Q+1]-1)	:	e _M (S ^m _{2'[N+Q+1]-1})	σ (S ^m ₂ ² [N+Q+1]-1)

LINKS/38 LIESD1

PATH OF THE SHORTEST PATH METRIC AMONG PATHS WHICH PASS S_k = S₁ PATHS WHICH PASS $S_k = S_1$ 1 $S_{k-1} = S_0 \rightarrow$ $S_{k-1}\!=\!S_0$

Sheet 13 of 21 (312) 360 0080

#OI45735 #102301

14/21

15/21

FIG. 17A

<S2

< S5

< S6

DIVIDE INPUT SERIES y_k OF SERIES LENGTH Ns IN MAP INTO SMALL N_{wind} SERIES (WINDOWS) OF SERIES LENGTH $N_u + N_t$

 $N_{wind} = [(N_s - N_t)/N_u]$

WINDOW No. i=1

 $NO(i=N_{wind})$ $i < N_{wind}$, YES 5**S**4

OBTAIN $\gamma k(s)$ REGARDING $k=(i-1)N_u+1\sim$ $i(N_u + N_t)$ BY EQUATION(3) AND STORE IT

INITIALIZE $\alpha_{(i-1)Nu+1}(s)$ BY EQUATION(6), OBTAIN $\alpha_k(s)$ REGARDING $k=(i-1)N_u+1\sim iN_u$ BY EQUATION (4) AND STORE IT

INITIALIZE $\beta_{i(Nu+Nt)}(s)$ BY EQUATION(6) BY SETTING $N=i(N_u+N_t)$, CALCULATE $\beta_k(s)$ IN OPPOSITE ORDER FROM $k=i(N_u+N_t)-1$ TO $k=(i-1)N_u+1$ BY EQUATION(5) AND STORE THE PORTION IN A RANGE FROM $k=iN_u$ TO $k=(i-1)N_u+1$

OBTAIN RELIABILITY INFORMATION $\Lambda(x_k)$ AND $\Lambda_{e}(x_{k})$ REGARDING $k=(i-1)N_{u}+1\sim iN_{u}$ BY EQUATIONS(7) AND (8) FROM α, β , AND γ OBTAINED BY PROCESSES 4), 5), AND 6)

$$i=i+1$$

S8

ς**S**7

Ref. No. 1990.65934 Sheet 18 of 21

(312) 360 0080

18/21

FIG. 17B

S10

S12

OBTAIN $\gamma_k(s)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATION(3) AND STORE IT

INITIALIZE $\alpha_{(i-1)Nu+1}(s)$ BY EQUATION(6), OBTAIN $\alpha_k(s)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATION (4) AND STORE IT

INITIALIZE $\beta_N(s)$ BY EQUATION(6), CALCULATE S11 $\beta_{k}(s)$ IN OPPOSITE ORDER FROM k=N-1 TO k= $(N_{wind}-1)N_u+1$ BY EQUATION(5) AND STORE IT

OBTAIN RELIABILITY INFORMATION $\Lambda(x_k)$ AND $\Lambda_{e}(x_{k})$ REGARDING $k=(i-1)N_{u}+1\sim N_{s}$ BY EQUATIONS(7) AND (8) FROM α, β , AND γ OBTAINED BY PROCESSES 9), 10), AND 11)

END

FIG. 18

$X_{k-3}X_{k-2}X_{k-1}X_k$	STATE
0000	S ^m ₀
0001	S ^m 1
0010	S ^m ₂
0011	S ^m ₃
0100	S ^m ₄
0101	NOT EXIST
0110	S ^m ₆
0111	S ^m ,
1000	S ^m ₈
1001	S ^m g
1010	NOT EXIST
1011	S ^m 11
1100	S ^m ₁₂
1101	S ^m ₁₃
1110	S ^m ₁₄
1111	S ^m ₁₅

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns) Ref. No. 1990.65934 Sheet 20 of 21 (312) 360 0080

20/21

FIG. 19

Li		-	T	T		Ţ-	1		721	T	T		1	1	1	1	T	1
MEAN VALUE OF	EQUALIZATION	O (S")	d (S ^m ₀)	d(Sm ₁)	d (Sm ₂)	d (Sm3)	d(S ^m ₄)		d(S ^m ₆)	d(S ^m ₇)	d(Smg)	d(S ^m _g)		d(S ^m ₁₁)	d(S ^m ₁₂)	d(S ^m ₁₃)	d(Sm ₁₄)	d(Sm ₁₅)
STANDARD	DEVIATION OF NOISES		$\sigma(S^m_0)$	σ(S ^m ₁)	σ(S ^m ₂)	σ(S ^m ₃)	0(S ^m ₄)	1	0(Smg)	σ(S ^m _γ)	σ(S ^m ₈)	σ(S ^m ₉)		σ(S ^m ₁₁)	σ(S ^m ₁₂)	σ(S ^m ₁₃)	σ(S ^m ₁₄)	σ(S ^m ₁₅)
		e _M (S ^m _k)	Θ _M (S ^m ₀)	e _M (S ^m ₁)	e _M (Sm ₂)	e _M (S ^m ₃)	e _M (S ^m ₄)		e _M (S ^m ₆)	e _M (S ^m ₇)	e _M (S ^m ₈)	e _M (S ^m ₉)	1	6 _M (S ^m ₁₁)	6 _M (S ^m ₁₂)	e _M (S ^m ₁₃)	e _M (S ^m ₁₄)	e _M (Sm ₁₅)
. 20	CORRELATION OF NOISES	-	-	=		-	-		-			-						
FIG. 20		e ₁ (S ^m _k)	e ₁ (S ^m ₀)	e ₁ (S ^m ₁)	6 ₁ (S ^m ₂)	e ₁ (Sm ₃)	e ₁ (S ^m ₄)	1	Θ ₁ (S ^m ₆)	e ₁ (Sm ₇)	e ₁ (S ^m ₈)	e ₁ (S ^m ₉)		e ₁ (Sm ₁₁)	e ₁ (Sm ₁₂)	e ₁ (Sm ₁₃)	e ₁ (Sm ₁₄)	e ₁ (Sm ₁₅)
	ORRELATIO	$e_{-1}(S^m_k)$	$e_{-1}(S_{0}^{m})$	$e_{-1}(S^{m}_{1})$	e ₋₁ (S ^m ₂)	$e_{-1}(S^{m}_{3})$	e_1 (Sm4)	-	e ₋₁ (S ^m ₆)	e ₋₁ (S ^m ₇)	e_1(Smg)	e_1(Sm ₉)		e_1(Sm11)	e-1 (Sm12)	e-1 (Sm13)	e-1 (Sm14)	e-1 (Sm15)
	0	= =			=	= = =	# B		-	•	•	-			-			-
		$e_{-L}(S^m_k)$	$e^{-\Gamma}(S_{0}^{m})$	e (Sm1)	e_L (Sm2)	ө- _L (S ^m ₃)	e-L (Sm4)	1	$e^{-L}(S^m_6)$	$\Theta_{-L}(S^m_7)$	$e_{-L}(S_m^m)$	e_L(Sm ₉)	ı	e-L (Sm11)	e_L(Sm12)	$e_{-L}(S_{13}^m)$	e_L (Sm14)	e (Sm15)
	STATE		o w O	S _n	S ₂	S _m	S m A	NOT EXIST	S e	Sm ₇	S B	ه و ه	NOT EXIST	S m L	S ^m ₁₂	S ^m ₁₃	Sm 14	S ₁₅