Problem Set #4

Danny Edgel Econ 709: Economic Statistics and Econometrics I Fall 2020

September 30, 2020

 ${\it Collaborated with Sarah \ Bass, \ Emily \ Case, \ Michael \ Nattinger, \ and \ Alex \ Von \ Hafften}$

Question 1

Suppose that another observation X_{n+1} becomes available. Show that:

$$(\mathrm{a})\ \overline{\mathbf{X}}_{\mathbf{n+1}} = (\mathbf{n}\overline{\mathbf{X}}_{\mathbf{n}} + \mathbf{X}_{\mathbf{n+1}})/(\mathbf{n+1})$$

$$\overline{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} X_i$$

$$= \frac{1}{n+1} \left(\sum_{i=1}^{n} X_i + X_{n+1} \right)$$

$$= \frac{1}{n+1} \left(n\overline{X}_n + X_{n+1} \right)$$

(b)
$$s_{n+1}^2 = \frac{1}{n}((n-1)s_n^2 + (n/(n+1))(X_{n+1} - \overline{X}_n)^2)$$

Using the relation from (a), we can derive:

$$\begin{split} s_{n+1}^2 &= \frac{1}{n} \sum_{i=1}^{n+1} (X_i - \overline{X}_{n+1})^2 \\ &= \frac{1}{n} \sum_{i=1}^{n+1} \left((X_i - \overline{X}_n) + (\overline{X}_n - \overline{X}_{n+1}) \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^{n+1} \left[(X_i - \overline{X}_n)^2 + 2(X_i - \overline{X}_n)(\overline{X}_n - \overline{X}_{n+1}) + (\overline{X}_n - \overline{X}_{n+1})^2 \right] \\ &= \frac{1}{n} \left[\sum_{i=1}^{n} (X_i - \overline{X}_n)^2 + (X_{n+1} - \overline{X}_n)^2 + 2(\overline{X}_n - \overline{X}_{n+1}) \sum_{i=1}^{n+1} (X_i - \overline{X}_n) + \sum_{i=1}^{n+1} (\overline{X}_n - \overline{X}_{n+1})^2 \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + (X_{n+1} - \overline{X}_n)^2 + 2(n+1)(\overline{X}_n - \overline{X}_{n+1})(\overline{X}_{n+1} - \overline{X}_n) + (n+1)(\overline{X}_n - \overline{X}_{n+1})^2 \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + (X_{n+1} - \overline{X}_n)^2 - 2(n+1)(\overline{X}_n - \overline{X}_{n+1})^2 + (n+1)(\overline{X}_n - \overline{X}_{n+1})^2 \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + (X_{n+1} - \overline{X}_n)^2 - (n+1)(\overline{X}_n - \overline{X}_{n+1})^2 \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + (X_{n+1} - \overline{X}_n)^2 - (n+1)\left(\frac{1}{n+1}\overline{X}_n - \frac{1}{n+1}(n\overline{X}_n + X_{n+1})\right)^2 \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + (X_{n+1} - \overline{X}_n)^2 - (n+1)\left(\frac{1}{n+1}\overline{X}_n - \frac{1}{n+1}X_{n+1}\right) \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + (X_{n+1} - \overline{X}_n)^2 - (n+1)\left(\frac{1}{n+1}\overline{X}_n - \frac{1}{n+1}X_{n+1}\right) \right] \\ &= \frac{1}{n} \left[(n-1)s_n^2 + \left(1 - \frac{1}{n+1}\right)(X_{n+1} - \overline{X}_n)^2 \right] \\ &= \frac{(n-1)s_n^2 + \frac{n}{n+1}(X_{n+1} - \overline{X}_n)^2}{n} \end{split}$$

Question 2

For some integer k, set $\mu_k = E(X^k)$. Construct an unbiased estimator $\hat{\mu}_k$ for μ_k , and show its unbiasedness. Define $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$. If the bias

of this estimator is equal to zero, then it is unbiased:

$$E(\hat{\mu}_k) - \mu_k = 0$$

$$E(\frac{1}{n} \sum_{i=1}^n X_i^k) - E(X^k) = 0$$

$$\frac{1}{n} \sum_{i=1}^n X_i^k = X^k$$

Since $\{X_i\}_{i=1}^n$ is assumed to be a random sample, this is equality holds. Thus, $\hat{\mu}_k$ is an unbiased estimator.

Question 3

Consider the central moment $m_k = E((X - \mu)^k)$. Construct an estimator \hat{m}_k for m_k without assuming a known μ . In general, do you expect \hat{m}_k to be biased or unbiased?

Question 4

Calculate the variance of $\hat{\mu}_k$ that you proposed above, and call it $Var(\hat{\mu}_k)$.

Question 5

Show that $E(s_n) \leq \sigma$ using Jensen's inequality (CB Theorem 4.7.7).

Question 6

Show algebraically that $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \mu)^2 - (\overline{X}_n - \mu)^2$.

Question 7

Find the covariance of $\hat{\sigma}^2$ and \overline{X}_n . Under what condition is this zero? (See lecture question for hint)

Question 8

Suppose that X_i are independent but not necessarily identically distributed (i.n.i.d.) with $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$.

- (a) Find $E(\overline{X}_n)$.
- (b) Find $Var(\overline{X}_n)$.

Question 9

Show that if $Q \sim \chi_r^2$, then E(Q) = r and Var(Q) = 2r (hint: use the representation $Q = \sum_{i=1}^n X_i^2$ with X_i being i.i.d $\mathcal{N}(0,1)$).

Question 10

Suppose that $X_i \sim \mathcal{N}(\mu_X, \sigma_X^2): i=1,...,n_1$ and $Y_i \sim \mathcal{N}(\mu_Y, \sigma_Y^2), i=1,...,n_2$ are mutually independent. Set $\overline{X}_n=n_1^{-1}\sum_{i=1}^{n_2}Y_i$.

- (a) Find $E(\overline{X}_n \overline{Y}_n)$.
- (b) Find $Var(\overline{X}_n \overline{Y}_n)$.
- (c) Find the distribution of $\overline{X}_n \overline{Y}_n$.