Tutorial 13

- 1. What is the probability of these events when we randomly select a permutation of $\{1,2,3,4\}$?
 - a. 1 precedes 4;
 - b. 4 precedes 1 and 4 precedes 2;
 - c. 4 precedes 3 and 2 precedes 1.
- 2. What is the probability that a positive integer not exceeding 100 selected at random is divisible by 5 or 7?
- 3. For each of the following pairs of events, which are subsets of the set of all possible outcomes when a coin is tossed three times, determine whether or not they are independent.
 - a. E_1 : tails comes up with the coin is tossed the first time; E_2 : heads comes up when the coin is tossed the second time.
 - b. E_1 : the first coin comes up tails; E_2 : two, and not three, heads come up in a row.
 - c. E_1 : the second coin comes up tails; E_2 : two, and not three, heads come up in a row.
- 4. Let E_1 and E_2 be events in sample space Ω . Then we have

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).$$

Tutorial 17

- 1. What is the conditional probability that a randomly generated bit string of length four contains at least two consecutive 0s, given that the first bit is a 1? (Assume the probabilities of a 0 and a 1 are the same.)
- 2. What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up heads?
- 3. Find each of the following probabilities when a coin is flipped n times, and head appears with probability p.
 - a. the probability of no failures
 - b. the probability of at least one failure
 - c. the probability of at most one failure
 - d. the probability of at least two failures

Tutorial 17 Cont'd

- 4. Suppose that E, F_1, F_2 , and F_3 are events from a sample space Ω and that F_1, F_2 , and F_3 are pairwise disjoint and their union is Ω . Find P(E) if $P(E|F_1) = 1/8$, $P(E|F_2) = 1/4$, $P(E|F_3) = 1/6$, $P(F_1) = 1/4$, $P(F_2) = 1/4$, and $P(F_3) = 1/2$.
- 5. When a test for steroids is given to soccer players, 98% of the players taking steroids test positive and 12% of the players not taking steroids test positive. Suppose that 5% of soccer players take steroids. What is the probability that a soccer player who tests positive takes steroids?