

Energy Research Institute @ NTU

Decarbonisation Technical Workshop of Energy Innovation 2021

H2FC Research @ NTU

23 July 2021

Dr. SH Chan

Professor & President's Chair in Energy

Energy Research Institute @ NTU (ERI@N)

1 CleanTech Loop, #06-04 CleanTech One, Singapore 637151 Phone: (65) 6592 1786 / 2468 Fax: (65) 6694 6217

Table of Content

- H2FC RD&D in Singapore
- H2FC research @ NTU in the last 30 years
- Commercialization efforts
- Proposed projects aligned with national's decarbonization effort

Feasibility study

.

Snapshot of H2FC Research @ NTU over the last ~30 years

Four Major Laboratories for H2FC Research and Development

CSIJRI @ GKC

(Commercialization)

ERI@N

(Novel Catalyst)

Labs

MAE

(Fabrication & Characterization)

CBE

(Power to Gas)

Xin-Xiang (GZ) Hydrogen Technologies

Commercialization through China-Singapore International Joint Research Institute @ GKC

- Catalyst mass production
- CCM/MEA mass production

NTU-Sydrogen Energy Partnership

- Sydrogen Energy: a JV company of Nanofilm and Temasek
- Sydrogen Energy Core Activity: Manufacture of Fuel Cells
- Scope of collaboration: PEMFC technology, key components design and manufacturing, characterization.

Energy Research Institute @ NTU

Research projects:

1. Methane Cracking for Turquoise Hydrogen Generation

2. Seawater Electrolysis

3. CO₂ + H₂O (flue gas) converted to syngas

4. Ammonia-fed Solid Oxide Fuel Cell (SOFC)

Methane Cracking for Turquoise Hydrogen Generation

	INI	Co	re
Catalytic activity	Best	Moderate	Relatively poor
Temperature range	500-650°C	500-900°C	700-900°C
Oxide form	NiO	CoO & Co ₂ O ₃	Fe_2O_3

Fe

- A technology can potentially produce hydrogen at a cost like SMR but without CO₂ emissions.
- By-product graphite powder can be valorized to offset the cost of H₂.
- Compared to other reactors, rotary kiln reactor can potentially be scaled up for mass production.
- The challenging issues for research includes (1) catalyst fouling, (2) catalyst regeneration, (3) continuous operation.

Seawater Electrolysis

Overall concept for seawater electrolysis using an SOEC to store offshore renewable energy in the form of H₂

- Solid oxide cell is the ONLY technology that can operate in both fuel cell & electrolyzer modes.
- The electricity to H₂ heating value can be more than 100% if waste heat is available.
- SOCTESQA (2014-2017) is a consortium led by DLR.
 Testing conducted under reversible SOFC/SOEC
 mode following a wind profile recorded in a Danish
 island (3 h SOFC, 20 h SOEC per day).
- Challenges: (1) oxidation of fuel electrode, (2) long term effect of impurities (Na+, Ca++, etc.) on the fuel electrode.

CO₂ Capture from Oxy-Power Plant using SOEC

Flue gas from oxy-combustion plants (metal smelting, glass industries, etc.) contain rich CO₂ and H₂O.

Ammonia-fed Solid Oxide Fuel Cell (SOFC)

Ammonia Cracker

*NOx can be reduced chemically by either H₂ or NH₃

4)	dH [kJ/mol reaction]	dH [kJ/mol NH3]
2 NH3 + 3 N2O = 4 N2 + 3 H2O	dH=-1010	-506
4 NH3 + 6 NO = 5 N2 + 6 H2O	dH=-2071	-517
8 NH3 + 6 NO2 = 7 N2 + 12 H2O	dH=-3259	-407
H2 + N2O = N2 + H2O	dH=-368.4	
5 H2 + 2 NO = 2 NH3 + 2 H2O	dH=-844	
3.5 H2 + NO2 = NH3 + 2 H2O	dH=-651	

Confidential

Thank you

Energy Research Institu