

Challenges and Solutions for Interconnecting Distributed Generation

David Palchak
National Renewable Energy Laboratory

India Smart Grid Forum – Distribution Utility Meet, Nov 2, 2018

Agenda

- Challenges of distributed generation
- Strategies for planning
- Beyond standards and codes
 - Compensation mechanisms
 - Forecasting PV growth

Major Technical Concerns for Utilities

Voltage regulation

Reverse power flow

Protection coordination

Unintentional islanding

Photo credit: David Palchak

Adapted from: Coddington, Michael, and Jeff Smith. 2014. Current Utility Screening Practices, Technical Tools, Impact Studies, and Mitigation Strategies for Interconnecting PV on the Electric Distribution Systems. EPRI Report #3002003277. Palo Alto, CA: EPRI

Approaches to addressing technical concerns

Foundational standards and codes establish interconnection requirements for all DPV systems

National electrical safety code

- Voltage standards for the electric utility transmission and distribution systems
- Example: ANSI C84.1 in the U.S.

Interconnection standards

- Criteria for how DPV interacts with the local distribution grid
- Example: New IEEE 1547-2018 standard requires use of smart inverters

Equipment standards

- Certification requirements for DPV equipment, harmonized with interconnection standards
- Example: UL 1741 in the U.S.

Building electrical codes

- Sets requirements for design, construction, and operation of DPV systems
- Example: National Electrical Code in the U.S.

Evolution in Planning: Interconnection process reviews grid interaction of a <u>specific</u> <u>DPV system and location</u>

- Determines need for detailed impact studies and mitigation strategies
- Streamlined approval process can improve viability for small systems

Evolution in Planning: Interconnection process reviews grid interaction of a specific DPV system and location

- Determines need for detailed impact studies and mitigation strategies
- Streamlined approval process can improve viability for small systems

Voltage regulation: key technical concern about distributed solar PV (DPV)

Voltage deviations
Increase in local voltage
from DPV may lead to
over- or under- voltages
for adjacent customers

Source: Coddington, Miller, & Katz. 2016. Grid-Integrated Distributed Solar: Addressing Challenges for Operations and Planning, Greening the Grid. NREL/FS-6A20-63042. https://www.nrel.gov/docs/fy16osti/63042.pdf.

Evolution in planning: Getting beyond rules-of-thumb

Preemptively analyze DPV suitability

1 Forecast DG growth on each circuit

Establish the hosting capacity and allowable "penetration level"

Determine available capacity on each distribution circuit

Plan upgrades and expedite interconnection procedures

Publish the results

Evolution in Planning: Addressing interconnection concerns with capacity and mapping

- Three levels of sophistication:
 - Restricted zones (where can't I build a system?)
 - Address-level search (can I build a system here?)
 - Feeder mapping (where should I build a system?)

"Good-bad-maybe":
Burlington Electric (VT),
Green Mountain Power
(VT), PSE&G (NJ)

Evolution in Planning: Building tools to speed interconnection processes - enabling smart inverters for voltage control

- PREconfiguring and Controlling Inverter Setpoints (PRECISE) for of smart-inverters
- Utility-agnostic tool to pre-configure inverters and allow greater penetration levels

This new planning method focuses on modeling secondary lines, where voltage is most affected by rooftop PV

Secondary over voltages due to high PV penetration

Real view of houses in the subdivision with over voltages

HECO example: Requiring rooftop PV to provide voltage support results in only small amounts of curtailment

Source: NREL/TP-5D00-68681

Limiting overvoltage to 1.05 results in 0% annual curtailment for most customers and up to 5% curtailment for only a handful of customers.

Analysis crucial for building stakeholder support for regulatory requirement

Beyond codes and standards

Compensation mechanisms and advanced planning

Another emerging measure in mature markets: "grid aware" compensation mechanisms

- Concept: compensate DPV generation based on time- and/or locationspecific value to the distribution system
- Example approaches either under consideration in California:
 - Net energy metering based on time-of-use-rates
 - Net billing or buy-all/sell-all, with exports compensated at an administratively-set locational value
 - Net billing or buy-all/sell-all, with exports compensated based on their participation in energy or ancillary services markets (e.g., via an aggregator)

Advanced planning - forecasting PV growth at the consumer level

dGen model

- Forecasts adoption of distributed solar or other DERs based on inputs
- Agent-Based Model simulating consumer decision-making
- Incorporates detailed spatial data to understand geographic variation

Agent characteristics derived from population-weighted sampling to create a comprehensive and representative database of the analysis population

Key messages

- Stakeholder processes to evaluate the value of new requirements (such as smart inverters) can help prepare distribution grids for high PV penetration levels in the longterm
- Aligning compensation with the locational value of PV can be used to help offset infrastructure upgrades

