Problem 1

Number of needed subnets 14
Number of needed usable hosts 14
Network Address 192.10.10.0

Show your work for **Problem 1** in the space below.

Add the binary value numbers to the left of the line to create the custom subnet mask. $\begin{array}{r}
128 \\
64 \\
32 \\
+16 \\
\hline
240
\end{array}$

Observe the total number of hosts.
Subtract 2 for the number of usable hosts.

Problem 2

Number of needed subnets 1000

Number of needed usable hosts 60

Network Address 165.100.0.0

Default subnet mask _____255 . 255 . 0 . 0

Custom subnet mask _____255 . 255 . 255 . 192

Total number of host addresses _____64

Number of usable addresses 62

Show your work for Problem 2 in the space below.

Add the binary value numbers to the left of the line to create the custom subnet mask. $\begin{array}{r}
128 \\
64 \\
792
\end{array}$ Add the binary value numbers to the left of the line to create the custom subnet mask.

Observe the total number of hosts.

Subtract 2 for the number of usable hosts.

Problem 3

Network Address 148.75.0.0 /26

/26 indicates the total number of bits used for the network and subnetwork portion of the address. All bits remaining belong to the host portion of the address.

Default subnet mask _____255 . O . O

Custom subnet mask _____255 . 255 . 255 . 192

Total number of host addresses _____64

Number of usable addresses ______62

Show your work for **Problem 3** in the space below.

Number of
$$\frac{8}{6}$$
 $\frac{8}{4}$ $\frac{1}{1}$ $\frac{1}$

subnets.

subnets to get the usable number of

Problem 7

Number of needed subnets 2000

Number of needed usable hosts 15

Network Address 178.100.0.0

Show your work for Problem 7 in the space below.

Problem 15

Number of needed usable hosts **50** Network Address **172.59.0.0**

Show your work for Problem 15 in the space below.

65,536 32,768 16,384 8,192 4,048 2,048 1,024 512 256 128 64 32 16 8 4 2 2 4 8 16 32 64 128 265 512 1,024 2,048 4,048 8,192 16,384 32,768 65,536 128 64 32 16 8 4 2 1 . 128 64 32 16 8 4 2 1

128 + 64 = 192

Problem 1

Number of needed subnets 14
Number of needed usable hosts 14
Network Address 192.10.10.0

Address class ____C Default subnet mask _____255 . 255 . 255 . 0 Custom subnet mask _____255 . 255 . 255 . 240 16 Total number of subnets _____ 4 Number of bits borrowed _____ What is the 4th subnet range? 192.10.10.48 to 192.10.10.63 What is the subnet number for the 8th subnet? ___ /92 . /0 . /0 . //2 What is the subnet broadcast address for What are the assignable addresses for the 9th subnet? 192.10.10.129 to 192.10.10.142

Show your work for Problem 1 in the space below.

The binary value of the last bit borrowed is the range. In this problem the range is 16.

mask

The first address in each subnet range is the subnet number.

The last address in each subnet range is the subnet broadcast address.

Problem 2

Number of needed subnets 1000
Number of needed usable hosts 60
Network Address 165.100.0.0

what is the subnet number for the 6th subnet?

What is the subnet broadcast address for the 6th subnet?

What are the assignable

What are the assignable addresses for the 9th subnet? 165.100.2.1 to 165.100.0.62

```
Number of
                                                256 128
      Hosts -
  Number of
                                                                                                       Show your work
   Subnets
                                       128 256
Binary values - 128
                       32
                                                128
                                                         32
165 . 100 . 0
                                                 0
                                                                             0
                                                          165,100,00
                                                                                    165.100.0.63
                                  (0)
                                                          165.100.0.64
                                                                              to
                                                                                    165.100.0.127
                            128
                                                          165.100.0.128
                                                                               to
                                                                                    165.100.0.191
              Usable <u>-2</u>
                                                          165.100.0.192
                                                                                     165.100.0.255
                                                                                                        for
                hosts 62
                                                          165,100,10
                                                                                    165.100.1.63
                             16
                                                                              to
                                                          165.100.1.64
                                                                               to
                                                                                     165,100,1,191
                Custom
            subnet mask
                                                          165,100,20
                                                                              to
                                                                              to
  The binary value of the last bit borrowed is
  the range. In this problem the range is 64.
                                                                               to
                                                                                     165.100.0.191
  The first address in each subnet range is the
  subnet number.
                                                                                                        pace
                                                          165.100.3.0
  The last address in each subnet range is the
                                                          165.100.3.64
                                                                              to
                                                                                     165.100.3.127
  subnet broadcast address.
                                                          165.100.3.128
                                                                              to
                                                                                     165,100.3.
                                                          165.100.3.192
                                                                                     165.100.3.255
                                                                          Down to
           165.100.255.128 to 165.100.255.192 to
                                                                                   165.100.255.191
                                                                                  165.100.255.255
```

Problem 11

Number of needed usable hosts 8,000 Network Address 135.70.0.0

Address clas	SS
Default subnet ma	sk
Custom subnet ma	sk
Total number of subne	ets
Total number of host addresse	es
Number of usable addresse	es
Number of bits borrowe	ed
What is the 6th subnet range?	
What is the subnet number for the 7th subnet?	
What is the subnet broadcast address for the 3rd subnet?	
What are the assignable addresses for the 5th subnet?	

Show your work for <u>Problem 11</u> in the space below.

Problem 12

Number of needed usable hosts 45 Network Address 198.125.50.0

Address class	S
Default subnet masl	ζ
Custom subnet masl	<
Total number of subnets	S
Total number of host addresses	S
Number of usable addresses	S
Number of bits borrowed	d
What is the 2nd subnet range?	
What is the subnet number for the 2nd subnet?	
What is the subnet broadcast address for the 4th subnet?	
What are the assignable addresses for the 3rd subnet?	

Show your work for <u>Problem 12</u> in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of subnets**, and allow enough extra subnets and hosts for 100% growth in both areas. Circle each subnet on the graphic and answer the questions below.

Address class	<i>B</i>						
Custom subnet mask	255.255.224.0						
Minimum number of subnets needed	4						
Extra subnets required for 100% growth (Round up to the next whole number)	+ 4						
Total number of subnets needed	= 8						
Number of host addresses in the largest subnet group	60						
Number of addresses needed for 100% growth in the largest subnet (Round up to the next whole number)	+ 60						

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

Total number of address needed for the largest subnet = 120

IP address range for Research	172.16.0.0 to 172.31.255
IP address range for Marketing	172.16.32.0 to 172.63.255
IP address range for Management	172.16.64.0 to 172.95.255
IP address range for Router A to Router B serial connection	172.16.96.0 to 172.127.255

Based on the information in the graphic shown, design a network addressing scheme that will supply the minimum number of hosts per subnet, and allow enough extra subnets and hosts for 30% growth in all areas. Circle each subnet on the graphic and answer the guestions below

B Address class

255.255.255.224 Custom subnet mask

5 Minimum number of subnets needed

2 Extra subnets required for 30% growth (Round up to the next whole number)

> 7 Total number of subnets needed =

> > Number of host addresses 20 in the largest subnet group

Number of addresses needed for 30% growth in the largest subnet (Round up to the next whole number) 6

Total number of address 26 needed for the largest subnet =

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

IP address range for Tech Ed /35./26.0.0 to /35./26.0.3/

IP address range for English 135.126.0.32 to 135.126.0.63

IP address range for Science 135.126.0.64 to 135.126.0.95

IP address range for Router A

to Router B serial connection 135.126.0.96 to 135.126.0.127

IP address range for Router A to Router B serial connection /35./26.0./28 to /35./26.0./59

Number of 36 84 84 84 85 85 86 84 85 85 85 85 85 85 85 85 85 85 85 85 85		64 128	. 23	24 8 64	2048		8 14 32,768 2 0	N 65,536 - O	
		(0) (1))	,	0 1	135.12 135.12	6.0.32	to	135.126.0.3 135.126.0.6
5 <u>x.3</u> 1.5		(2) (3) (4))	10	0 1 0	135.12 135.12 135.12		to to to	135.126.0.9 135.126.0.1 135.126.0.1
1.5 (Round up to 2)		(5) (6) (7)		0	101	135.12	6.0.160 6.0.192 6.0.224	to to	135.126.0.19 135.126.0.2 135.126.0.2
20		(8) (9)	11:0	0	0	135.12 135.12	6.1.0 6.1.32	to to	135.126.1.3 135.126.1.6
<u>x.3</u>		(D) (11) (12))	10	0 1 0	135.12 135.12 135.12	6.1.96	to to	135.126.1.95 135.126.1.12 135.126.1.15
		(13) (14) (15))	0 1	/ 0 /	135.12 135.12 135.12	6.1.192	to to	135.126.1.19 135.126.1.2 135.126.1.2

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of subnets**, and allow enough extra subnets and hosts for 70% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address	135.126.0.0
	S0/0/1 F0/0 S0/0/0 S0/0/0 New York ashington D.C. 0 Hosts
Address class	
Custom subnet mask	
Minimum number of subnets needed	
Extra subnets required for 70% growth (Round up to the next whole number)	+
Total number of subnets needed	=
Number of host addresses in the largest subnet group	
Number of addresses needed for 70% growth in the largest subnet (Round up to the next whole number)	+
Total number of address needed for the largest subnet	=
Start with the first subnet and arrange your sub-r	networks from the largest group to the smallest.
IP address range for New York	
IP address range for Washington D. C.	
IP address range for Router A to Router B serial connection	
IP address range for Router A to Router C serial connection	

Show your work for **Problem 4** in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 20% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Show your work for **Problem 6** in the space below.