Unmanned Airplane Design

— An overview of Designing and — Constraints

The Lift Equation

The Drag Equation

Glenn Research Center

$$D = Cd x r x \frac{V^2}{2}x A$$

Drag = coefficient x density x velocity squared x reference area two

Coefficient Cd contains all the complex dependencies and is usually determined experimentally.

Choice of reference area A affects the value of Cd.

DRAG POLAR

- $C_{D,0}$ is parasite drag coefficient at zero lift ($\alpha_L=0$)
- C_{D.i} drag coefficient due to lift (induced drag)
- · Oswald efficiency factor, e, includes all effects from airplane
- C_{D,0} and e are known aerodynamics quantities of airplane

$$C_D = C_{D,0} + \frac{C_L^2}{\pi e A R} = C_{D,0} + C_{D,i}$$

Example of Drag Polar for complete airplane

Coefficient of lift	α
0.3	-2
0.45	0
0.54	1
0.62	2
0.79	4
0.96	6
1.12	8
1.28	10
1.33	12
1.20	15

Find:

- Maximum rate of climb, velocity for maximum rate of climb and corresponding angle of attack.
- Angle of attack during cruise for which aerodynamic efficiency is maximum.
- Minimum turn radius and its corresponding velocity and angle of attack.
- Maximum turn rate and its respective velocity and angle of attack.
- Minimum glide angle and respective velocity and angle of attack.
- Minimum sink rate and velocity and angle of attack to maintain that sink rate.