Workshop solutions for week 7

1. For each $r \in (0, 1/2)$, let $\mathcal{D}_r = \{0, r, 1-r, 1\}$. Then the upper and lower Riemann sums of f with respect to this dissection are

$$u_{\mathscr{D}_r}(f) = 1 \times r + 1 \times (1 - 2r) + 1 \times r = 1$$

 $l_{\mathscr{D}_r}(f) = 0 \times r + 1 \times (1 - 2r) + 0 \times r = 1 - 2r.$

Hence the set of all upper Riemann sums contains 1, and so its infimum $u(f) \leq 1$. Further, the set of all lower Riemann sums contains

$$\{1 - 2r : r \in (0, 1/2)\} = (0, 1)$$

so its supremum $l(f) \ge 1$. Hence $l(f) \ge u(f)$. But $l(f) \le u(f)$ by Lemma 5.13. Hence l(f) = u(f), that is, f is Riemann integrable.

2. The piecewise linear function $f:[0,3] \to \mathbb{R}$ depicted below has the required properties with respect to the dissections $\mathcal{D} = \{0,3\}, \mathcal{D}' = \{0,2,3\}.$

We see that

$$l_{\mathscr{D}}(f) = 3 \times 1 = 3$$

 $u_{\mathscr{D}}(f) = 3 \times 3 = 9$
 $l_{\mathscr{D}'}(f) = 2 \times 1 + 1 \times 1 = 3$
 $u_{\mathscr{D}'}(f) = 2 \times 2 + 1 \times 3 = 7$.

So in this case, passing from \mathcal{D} to its refinement \mathcal{D}' improves the overestimate (the upper sum), but makes no change to the underestimate (the lower sum).

3. As usual let $\mathcal{D} = \{a_0, a_1, \dots, a_n\}$ and, for any bounded function h on [a, b] define

$$m_j(h) = \inf\{h(x) : x \in [a_{j-1}, a_j]\}, \qquad M_j(h) = \sup\{h(x) : x \in [a_{j-1}, a_j]\}.$$

Then, for all $x \in [a_{j-1}, a_j]$, $m_j(f) \le f(x) \le M_j(f)$ and $m_j(g) \le g(x) \le M_j(g)$, so $f(x) + g(x) \le M_j(f) + M_j(g)$ and $f(x) - g(x) \ge m_j(f) - M_j(g)$. Hence, $M_j(f) + M_j(g)$ is an upper bound on $\{f(x) + g(x) : x \in [a_{j-1}, a_j]\}$ and $M_j(f+g)$

is the least upper bound on this set, so $M_j(f+g) \leq M_j(f) + M_j(g)$. Hence

$$u_{\mathscr{D}}(f+g) = \sum_{j=1}^{n} M_{j}(f+g)(a_{j}-a_{j-1})$$

$$\leq \sum_{j=1}^{n} (M_{j}(f)+M_{j}(g))(a_{j}-a_{j-1})$$

$$= \sum_{j=1}^{n} M_{j}(f)(a_{j}-a_{j-1}) + \sum_{j=1}^{n} M_{j}(g)(a_{j}-a_{j-1})$$

$$= u_{\mathscr{D}}(f) + u_{\mathscr{D}}(g).$$

Similarly, $m_j(f) - M_j(g)$ is a lower bound on $\{f(x) - g(x) : x \in [a_{j-1}, a_j]\}$ and $m_j(f-g)$ is the *greatest* lower bound on this set, so $m_j(f-g) \ge m_j(f) - M_j(g)$. Hence

$$l_{\mathscr{D}}(f+g) = \sum_{j=1}^{n} m_{j}(f-g)(a_{j}-a_{j-1})$$

$$\geq \sum_{j=1}^{n} (m_{j}(f)-M_{j}(g))(a_{j}-a_{j-1})$$

$$= \sum_{j=1}^{n} m_{j}(f)(a_{j}-a_{j-1}) - \sum_{j=1}^{n} M_{j}(g)(a_{j}-a_{j-1})$$

$$= l_{\mathscr{D}}(f) - u_{\mathscr{D}}(g).$$