Deep Generative Models

Philip Schulz and Wilker Aziz

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Recap: Generative Models

Joint distribution over observed data x and latent variables Z.

$$p(x, z | \alpha) = \overbrace{p(x | z, \alpha)}^{\text{likelihood}} \underbrace{p(z | \alpha)}_{\text{prior}}$$

The likelihood and prior are often standard distributions (Gaussian, Bernoulli) with little dependence on side information.

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Feature-rich Generative Models

Let us assume that z has internal structure (features). How can we exploit that?

First Idea

Make $p(x|z, \alpha)$ a log-linear model.

- Only discrete data
- ► Trainable with EM if we can efficiently enumerate \mathcal{X} and \mathcal{Z} .

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp(w^{\top}f(x, y))}{\sum_{x \in \mathcal{X}} \exp(w^{\top}f(x, y))}$$

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = \mathbf{w}) = \frac{\exp\left(\mathbf{w}^{\top} f(x, y)\right)}{\sum_{x \in \mathcal{X}} \exp\left(\mathbf{w}^{\top} f(x, y)\right)}$$

$$\frac{d}{dw}\log p(x|z,w) = x - \mathbb{E}[X|z,w]$$

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top} f(x, y)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, y)\right)}$$

Weight Gradient

$$\frac{d}{dw}\log p(x|z,w) = x - \mathbb{E}\left[X|z,w\right]$$

Updates need to be performed iteratively.

Now let us treat z as latent.

Now let us treat z as latent.

Model

$$p(x, z | w) = \frac{\exp\left(w^{\top} f(x, y)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, y)\right)} \times \underbrace{p(z)}_{arbitrary}$$

Posterior

$$p(z|x, w) = \frac{p(x, z|w)}{p(x|w)} = \frac{p(x, z|w)}{\sum_{z} p(x, z|w)} = \frac{\exp(w^{T}f(x,y))}{\frac{\sum_{x \in \mathcal{X}} \exp(w^{T}f(x,y))}{\sum_{z \in \mathcal{X}} \exp(w^{T}f(x,y))} \times p(z)}$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} \left[\log p(x,z|w) \right] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w)$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} \left[\log p(x,z|w) \right] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \underbrace{\frac{d}{dw} \log p(x,z|w)}_{\text{We've already solved this!}}$$

$$\begin{aligned} & \frac{d}{dw} \mathbb{E}_{p(z|x,w)} \left[\log p(x,z|w) \right] = \\ & \mathbb{E}_{p(z|x,w)} \left[X \right] - \mathbb{E}_{p(z|x,w)} \left[\mathbb{E} \left[X|z,w \right] \right] \end{aligned}$$

Weight Gradient

$$egin{aligned} rac{d}{dw} \mathbb{E}_{
ho(z|x,w)} \left[\log
ho(x,z|w)
ight] = \ \mathbb{E}_{
ho(z|x,w)} \left[X
ight] - \mathbb{E}_{
ho(z|x,w)} \left[\mathbb{E} \left[X|z,w
ight]
ight] \end{aligned}$$

Procedurally

$$\mathsf{E}_{\mathsf{-}}\mathsf{count}(x,z)$$
 - $\mathsf{E}_{\mathsf{-}}\mathsf{count}(x,z)$ $\times \mathbb{E}\left[X|z,w\right]$

EM

E-step
$$p(z|x, w) = \frac{p(x,z|w)}{\sum_{z} p(x,z|w)}$$
 in $\mathcal{O}(|\mathcal{X}| \times |\mathcal{Z}|)$
M-step Iteratively optimise w to match $\mathsf{E}_\mathsf{count}(x,z)$ with $\mathsf{E}_\mathsf{count}(x,z) \times \mathbb{E}[X|z,w]$

Restrictions

- Only log-linear models
- Scales badly

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Wake-sleep Algorithm

- Generalise latent variables to Neural Networks
- Train generative neural model
- Use variational inference!

Wake-sleep Architecture

2 Neural Networks:

- ▶ A generation network to model the data (the one we want to optimise) – parameters: θ
- ▶ An inference (recognition) network (to model the latent variable) – parameters: λ
- Original setting: binary hidden units

Wake-sleep Architecture

2 Neural Networks:

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units
- ▶ Training is performed in a "hard EM" fashion

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z,\theta)$

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z, \theta)$

Sleep Phase

- Produce dream sample \tilde{x} from random hidden unit z
- ▶ Update inference parameters λ to maximize probability of latent state $q(z|\tilde{x}, \lambda)$

Wake Phase Objective

Assumes latent state z to be fixed random draws from $q(z|x, \lambda)$.

$$\max_{\theta} \log p(x|z,\theta)$$

This is simply supervised learning with imputed latent data!

Sleep Phase Objective

Assumes fake data \tilde{x} to be fixed random draw from $\log p(x|, z, \theta)$.

$$\min_{\lambda} = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z| heta) \right] + \mathbb{H} \left(q(z|x,\lambda) \right)$$

Wake-sleep Algorithm

Advantages

- Backprop can be used without modification
- Amortised inference: all latent variables are inferred from the same weights λ

Wake-sleep Algorithm

Advantages

- Backprop can be used without modification
- Amortised inference: all latent variables are inferred from the same weights λ

Drawbacks

- Inference and generative networks are trained on different objectives
- Inference weights \(\lambda \) are updated on fake data \(\tilde{x} \)
- Generative weights are bad initially, giving wrong signal to the updates of λ

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

 $p(x) = \int p(x|z,\theta)p(z)dz$ is hard to compute.

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

$$p(x) = \int \underbrace{p(x|z,\theta)}_{\substack{\text{highly} \\ \text{non-linear!}}} p(z) dz$$
 is hard to compute.

Solution: VI

$$\log p(x) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z| heta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{ ext{Euco}} = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z, heta)\right] + \mathsf{KL}\left(p(z) \mid\mid q(z|x,\lambda)\right)$$

Solution: VI

$$\log p(x) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{essume analytical}}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] + \underbrace{\mathsf{KL}\left(p(z) \mid\mid q(z|x,\lambda)\right)}_{\text{assume analytical}}$$

Solution: VI

$$\begin{split} \log p(x) &\geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{approximate by sampling}} + \underbrace{\mathsf{KL}\left(p(z)\mid\mid q(z|x,\lambda)\right)}_{\text{assume analytical}} \end{split}$$

Generation Network Gradient

$$\begin{split} & \frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right] \\ & \overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=0}^{S} \frac{d}{d\theta} \log p(x|z_i,\theta) \end{split}$$

Inference Network Gradient

$$\begin{split} & \frac{d}{d\lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] + \mathsf{KL} \left(p(z) \mid\mid q(z|x,\lambda) \right) \right] \\ = & \frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] + \mathsf{analytical computation} \end{split}$$

Inference Network Gradient

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\
= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

Problems for MC

- ▶ Sampling z neglects $\frac{d}{d\lambda}q(z|x,\lambda)$
- ▶ Differentiating $q(z|x, \lambda)$ breaks the expectation

Inference Network Gradient

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(\epsilon) \log \left(p(x|h(\epsilon,\lambda),\theta) \times \underbrace{\left| \frac{d}{d\epsilon} h(\epsilon,\lambda) \right|}_{\text{constant if h linear}} \right) d\epsilon$$

$$= \int q(\epsilon) \frac{d}{d\lambda} \log p(x|h(\epsilon,\lambda),\theta) d\epsilon$$

$$= \mathbb{E}_{p(\epsilon)} \left[\frac{d}{d\lambda} \log p(x|h(\epsilon,\lambda),\theta) \right] \overset{\text{MC}}{\approx} \sum_{i=1}^{S} \frac{d}{d\lambda} \log p(x|h(\epsilon,\lambda),\theta)$$

inference model

generation model

inference model

generation model

inference model

Example

- ▶ Data: binary mnist
- Likelihood: product of Bernoullis
- ▶ Prior over z: $\mathcal{N}(0,1)$
- $q(z|x,\lambda) = \mathcal{N}\left(\mu(x,\lambda), \sigma(x,\lambda)^2\right)$
- $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$

Example

- ▶ Data: binary mnist
- Likelihood: product of Bernoullis
- ▶ Prior over z: $\mathcal{N}(0,1)$
- $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$
- $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$

Mean Field assumption

Variational approximation factorises over latent dimensions

▶ approximate posterior $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$

$$\begin{array}{l} ~~\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda) \\ \text{e.g.} \\ ~~\mu(x,\lambda) = \mathsf{tanh}(W^{(u)}r(x) + b^{(u)}) \end{array}$$

•
$$\sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda))$$

e.g. $\sigma(x,\lambda) = \exp(\tanh(W^{(v)}r(x) + b^{(v)}))$

$$\lambda = (W^{(u)}, W^{(v)}, b^{(u)}, b^{(v)})$$

▶ approximate posterior $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$

▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$

$$\begin{split} \mu(x,\lambda) &= \mathsf{NN}_{\mu}(x;\lambda) \\ \text{e.g.} \\ \mu(x,\lambda) &= \mathsf{tanh}(W^{(u)}r(x) + b^{(u)}) \end{split}$$

▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$

$$\begin{split} \mu(x,\lambda) &= \mathsf{NN}_{\mu}(x;\lambda) \\ \text{e.g.} \\ \mu(x,\lambda) &= \mathsf{tanh}(W^{(u)}r(x) + b^{(u)}) \end{split}$$

$$\sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda))$$
e.g. $\sigma(x,\lambda) = \exp(\tanh(W^{(v)}r(x) + b^{(v)}))$

▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$

$$\begin{split} & \quad \mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda) \\ & \quad \text{e.g.} \\ & \quad \mu(x,\lambda) = \mathsf{tanh}(W^{(u)}r(x) + b^{(u)}) \end{split}$$

$$\sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda))$$
e.g. $\sigma(x,\lambda) = \exp\left(\tanh(W^{(v)}r(x) + b^{(v)})\right)$

$$\lambda = (W^{(u)}, W^{(v)}, b^{(u)}, b^{(v)})$$