Modelos Actuariales

Actuarial 3

Marcelino Sánchez

24/9/23

Nota Técnica

- 1. Descripción de la cobertura del seguro
- a. Tipo de seguro

Es un seguro dotal mixto.

b. Temporalidad

El seguro tiene una vigencia de 8 años con primas niveladas por 3 años anticipadamente.

c. Población asegurada

La edad de los asegurados es de 30 años y son 100 asegurados.

2. Hipótesis demográficas y financieras

a. Hipótesis demográfica

Utilizaremos la tabla proporcionada por la aseguradora. La cual para una persona de 30 años se ve de la siguiente manera:

Tabla de mortalidad

b. Hipótesis sobre costos

Dados los valores observados por la aseguradora tendremos los siguientes gastos.

Los gastos asociados a la prima son \$1000 más 40% de la prima en la emisión, \$500 más 20% de la prima los siguientes dos años y \$100 más 5% de la prima para el resto de los años donde se paga prima. Los gastos asociados a la liquidación son \$3,000 mas 0.3% de la suma asegurada en caso de muerte y \$1,000 mas 0.1% de la suma asegurada en caso de supervivencia.

c. Hipótesis sobre tasa de interés

La tasa base será del 7%, porque actualmente existe la expectativa de disminución en la tasa de interés. Esto debido a que la inflación está disminuyendo, y la política de BM es bajar las tasas de interés una vez controlada la inflación. Además, como el seguro tiene una vigencia de 8 años esperamos que disminuya aún más manteniendose en promedio del 7%.

3. Procedimientos técnicos

a. Prima neta

(Fórmula para el cálculo y valor obtenido)

La prima neta está dada por la siguiente fórmula:

$$P = \frac{(2 \times 10^6) A_{30.\overline{8}|} + (10^6)_8 E_{30}}{\ddot{a}_{30.\overline{3}|}}$$

$$=\frac{(2\times 10^6)(\sum_{k=0}^7 v^{k+1}\frac{d_{30+k}}{\ell_{30}})+(10^6)v^8\frac{\ell_{38}}{\ell_{30}}}{\sum_{k=0}^7 v^k\frac{\ell_{30+k}}{\ell_{30}}}$$

Con lo cual el valor de la prima neta es de $$2.1055476 \times 10^{5}$.

b. Prima recargada

(Fórmula para el cálculo y valor obtenido)

El valor de la prima recargada proviene de despejar G de la siguiente ecuación:

$$(3000 + (1.003)(SA_M))A^{\,1}_{30:\overline{8}]} + (1000 + (1.001)(SA_S))_8E_{30} =$$

$$-1000 + .6G + (-500 + .8G)(\ddot{a}_{30:\overline{3}} - 1) + (-100 + .95G)\ddot{a}_{33:\overline{0}}(_{3}E_{30})$$

Es decir, tenemos que:

$$G = \frac{(3000 + (1.003)(SA_M))A_{30:\overline{8}|}^1 + (1000 + (1.001)(SA_S))_8E_{30} + 1000 + 500((\ddot{a}_{30:\overline{3}|} - 1)) + 100(\ddot{a}_{33:\overline{0}|})(_3E_{30})}{.6 + .8(\ddot{a}_{30:\overline{3}|} - 1) + .95\ddot{a}_{33:\overline{0}|}(_3E_{30})}$$

Con lo cual el valor de la prima recargada es de $$2.9046959 \times 10^{5}$.

c. Valores póliza asociados a la prima neta

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

Las fórmulas teóricas son las siguientes, pero para efectos prácticos las calcularemos con la fórmula recursiva de Fackler.

Para k = 0, ..., mPrimas - 1

$$_{k}V_{30:\overline{8}|}=\frac{1}{_{k}E_{30}}(P\ddot{a}_{30:\overline{k}|}-(SA_{M})A_{30:\overline{k}|}^{1})$$

Para k = mPrimas, ..., 8

$$_{k}V_{30:\overline{8}|}=\frac{1}{_{k}E_{30}}(P\ddot{a}_{30:\overline{4}|}-(SA_{M})A_{30:\overline{k}|}^{\ 1})$$

Valores póliza asociados a la prima neta

d. Valores póliza asociados a la prima recargada

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

Las fórmulas teóricas son las siguientes, pero para efectos prácticos las calcularemos con la fórmula recursiva de Fackler.

Para k = 0

$$_{k}V_{30:\overline{8}|}=0$$

Para k = 1

$$_{k}V_{30:\overline{8}|}=\frac{1}{_{k}E_{30}}(-1000+.6G-(3000+1.003SA_{M})A_{30:\overline{k}|}^{1})$$

Para k=2,3

$$_{k}V_{30:\overline{8}|}=\frac{1}{_{k}E_{30}}(-1000+.6G+(-500+.8G)(\ddot{a}_{30:\overline{k}|}-1)-(3000+1.003SA_{M})A^{1}_{30:\overline{k}|})$$

Para k = 4, ..., 8

$${}_{k}V_{30:\overline{8}|} = \frac{1}{{}_{k}E_{30}}(-1000 + .6G + (-500 + .8G)(\ddot{a}_{30:\overline{3}|} - 1) + (-100 + .95G)(\ddot{a}_{33:\overline{0}|})({}_{3}E_{30}) \\ - (3000 + 1.003SA_{M})A^{\,1}_{30:\overline{k}|})$$

- k Vx
- 1 0 0.0
- 2 1 183581.4
- 3 2 442887.2
- 4 3 720583.1
- 5 4 769586.6
- 6 5 821982.0
- 7 6 878008.3
- 8 7 937924.3
- 9 8 1002000.0

Valores póliza asociados a la prima recargada

e. Valores garantizados

(Fórmula para el cálculo y valores obtenidos mientras haya pago de primas)

Calculado retrospectivamente obtenemos la siguiente fórmula:

Los valores garantizados para la prima neta son:

Los valores garantizados para la prima recargada son:

Profit testing

1. Análisis determinista

a. Hipótesis demográficas y financieras

(Elige las variables a analizar, mínimo 2, y los supuestos realistas que vas a utilizar)

Vamos a analizar las variables de tasa de interés y de tabla de mortalidad y sus efectos en las medidas de VPN y MU.

Nuestro mejor estimador de estas variables es que la tasa de interés con la que traeremos a valor presente todos los flujos será de 7.5%, porque se espera que las tasas de interés bajen paulatinamente y considerando que actualmente nos encontramos con tasas altísimas del 11% aproximadamente.

Así mismo consideramos que la tabla de mortalidad será una Gamma(8, 1/4), esto porque suponemos que la tala de mortalidad se comporta como una normal y queremos además modelar mayores sobrevivientes que llegan a tener 100 años.

Esta gráfica se ve la siguiene forma:

b. Valor Presente Neto (VPN)

(Fórmula para el cálculo y valor obtenido)

$$VPN(r) = \sum_{k=1}^{19} F_k v_r^k$$

donde F_k representa los flujos vencidos de cada año (solo durante ese año) hasta la vigencia, tomando en cuenta el final de la vigencia.

Es decir $F_k = Ingreso_k(1+i^*) - Egreso_k - Reserva_k$

Donde

 $Ingreso_k(1+i^*)$: es el ingreso (menos gatos) y la reserva obtenidas al inicio del año y traídas a valor futuro que corresponde al final del año con la tasa de costo de capital. (CHECAR)

 $Egreso_k$: es el egreso obtenido al final del año (por muertes).

 $Reserva_k$: es la reserva que se debe componer al final del año.

Con lo que con las hipótesis planteadas obtenemos un VPN de \$NA.

c. Margen de Utilidad (MU)

(Fórmula para el cálculo y valor obtenido)

$$MU(r) = \frac{VPN(r)}{\sum_{k=1}^{19} R_k v_r^k}$$

Con lo cual obtenemos un MU de NA.

2. Análisis estocástico

a. Análisis stress-testing para el VPN y MU

(Escoge 2 variables y realiza el stress testing)

Escogemos las variables de tasa de interés y de tabla de mortalidad y realizamos el stress testing para el VPN y MU.

Variamos primero la tasa de interés de 3% a 10% dejando los supuestos base fijos.

Warning: Removed 71 rows containing missing values (`geom_line()`).

Warning: Removed 71 rows containing missing values (`geom_point()`).

Warning: Removed 1 rows containing missing values (`geom_text()`).
Removed 1 rows containing missing values (`geom_text()`).

VPN vs tasa de interés

Warning: Removed 71 rows containing missing values (`geom_line()`).

Warning: Removed 71 rows containing missing values (`geom_point()`).

Warning: Removed 1 rows containing missing values (`geom_text()`).
Removed 1 rows containing missing values (`geom_text()`).

MU vs tasa de interés

Ahora variaremos la tabla de mortalidad cambiando los valores del parámetro α . El efecto de estos cambios en la tabla se ven de esta forma:

Función de Supervivencia Gamma variando alpha

Y con lo cual los cambios en VPN y MU se ven gráficamente de la siguiente forma:

Warning: Removed 51 rows containing missing values (`geom_line()`).

Warning: Removed 51 rows containing missing values (`geom_point()`).

Warning: Removed 1 rows containing missing values (`geom_text()`).

VPN vs tabla de mortalidad

Warning: Removed 51 rows containing missing values (`geom_line()`).

Warning: Removed 51 rows containing missing values (`geom_point()`).

Warning: Removed 1 rows containing missing values (`geom_text()`).

MU vs tabla de mortalidad

b. Análisis por escenarios para el VPN y MU

(Plantea 5 escenarios para realizar el análisis)

Ahora plantearemos 5 escenarios para realizar el análisis.

Los escenarios serán los siguientes:

Descripción detallada de los escenarios:

- 1. Escenario 1 (Pesimista): Tasa de interés del 3% y tabla de mortalidad con alfa=4.
- 2. Escenario 2 (Conservador): Tasa de interés del 5% y tabla de mortalidad con alfa=6.5.
- 3. Escenario 3 (Estimado): Tasa de interés del 7.5% y tabla de mortalidad con alfa=8.
- 4. Escenario 4 (Optimista): Tasa de interés del 10% y tabla de mortalidad con alfa=9. 5.- Escenario 5 (Base): Tasa de interés del 5% y tabla de mortalidad base con la que calculamos las reservas.

Los resultados de VPN y MU de los primeros 4 escenarios se muestran en la siguiente tabla:

VPN MU
Escenario 1 NA NA
Escenario 2 NA NA
Escenario 3 NA NA

Escenario 4 NA NA

En el quinto escenario obviamente obtenemos MU=VPN=0

c. Análisis por simulación

c.1. Hipótesis para la simulación de las variables a analizar

Elegiremos tasa de interés y tabla de mortalidad como las variables a analizar.

Realizaremos simulaciones para la tasa de interés y la tabla de mortalidad, con la finalidad de obtener una distribución de los valores que pueden obtener VPN y MU conjuntamente.

Para la tasa de interés, supondremos que sigue una distribución normal recortada en 0 con media de 7.5% y desviación estándar de 1.5%.

Para la tabla de mortalidad, supondremos que la α de nuestro modelo Gamma sigue una distribución normal recortada en 0.

c.2. Histograma de 1000 realizaciones de VPN y MU

Procedemos a mostrar los histogramas de las 1000 realizaciones estocásticas sobre tasa de interés y tabla de mortalidad de VPN y MU. (Nota: se fijó una semilla de 191654)

Warning: Removed 1000 rows containing non-finite values (`stat_bin()`).

Histograma de VPN

Frecuencia

Valor de VPN

Medida	Promedio	Desviacion_Estandar
VPN	NA	NA
MU	NA	NA

Warning: Removed 1000 rows containing non-finite values (`stat_bin()`).

Histograma de MU

Frecuencia

Valor de MU

c.3. Promedio y desviación estándar de las 1000 realizaciones de VPN y MU

Los promedios y desviación estándar son los siguientes:

Para una cartera de 100 asegurados: Fondo Total

1. Asset-share

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza) Utilizaremos la fórmula recursiva para calcular el Asset-share:

$$_{k+1}AS = \frac{[_{k}AS + G_{k}(1-c_{k}) - e_{k}](1+i_{k,k+1}) - q_{x+k}(b_{k+1}(1+propb_{k}) + E_{k+1}))}{p_{x+k}}$$

	${\tt kTemp}$	${\tt assetShare}$
1	0	0.0
2	1	164094.5
3	2	423938.0
4	3	686748.1
5	4	748513.2
6	5	823448.2
7	6	899849.1
8	7	991761.4
9	8	1074286.0
10	9	0.0
11	10	0.0
12	11	0.0
13	12	0.0
14	13	0.0
15	14	0.0
16	15	0.0
17	16	0.0
18	17	0.0
19	18	0.0
20	19	0.0

2. Estimación del Fondo Total mediante el Asset-share

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

$$_{k}FT=\ell_{x\ k}^{O}AS$$

kTemp	${\tt assetShare}$	fondo_total
0	0.0	0
1	164094.5	16023639
2	423938.0	41354125
3	686748.1	66916964
4	748513.2	72849927
5	823448.2	80043025
6	899849.1	87352115
7	991761.4	96134524
8	1074286.0	103969874
9	0.0	0
10	0.0	0
11	0.0	0
	0 1 2 3 4 5 6 7 8 9	1 164094.5 2 423938.0 3 686748.1 4 748513.2 5 823448.2 6 899849.1 7 991761.4 8 1074286.0 9 0.0 10 0.0

Tabla 2: Utilidades por año

k	Utilidades
0	0.00
1	-23321.46
2	-29285.95
3	-51251.87
4	-40910.25
5	-21432.09
6	-4456.22
7	23225.84
8	37325.75
9	0.00
10	-183396.04
11	-441981.16
12	-718318.31
13	-766269.09
14	-817416.96
15	-871959.79
16	-930109.50
17	-992086.26
18	0.00
19	-183396.04

13	12	0.0	0
14	13	0.0	0
15	14	0.0	0
16	15	0.0	0
17	16	0.0	0
18	17	0.0	0
19	18	0.0	0
20	19	0.0	0

Análisis de Rentabilidad

1. Utilidades

(Fórmula para el cálculo y valores obtenidos para toda la vigencia de la póliza)

2. VPN

(Fórmula para el cálculo y valor obtenido)

Con lo cual la medida de rentabilidad de VPN para este producto dado lo observado es de $-8.9728038\times10^4.$

3. MU

(Fórmula para el cálculo y valor obtenido)

Con lo cual la medida de rentabilidad de MU para este producto dado lo observado es de $\hbox{-}0.1185717.$