Food detection & Calorie estimation using images

Group - Code Wars

Abhitej Thonupunoori Manoj Kumar Madireddy Aravind Kumar Gardas

Introduction

The main aim of the project is to build a food recognition model that predicts the food captured using the camera and also estimate its calorie, to help patients and dietitians in managing daily food intake.

Technology & Libraries

- Deep Learning CNN
- Libraries used -
 - 1. Numpy, Pandas for prepocessing the data
 - 2. Open-CV, to read the image
 - 3. Keras, for training the data & visualizing the data
- Interface Flask, Gradio

Data set

We have downloaded data from Kaggle,

https://www.kaggle.com/datasets/aelchimminut/fruits262

We have classified 6 food types from the data set, each category has 400 images uploaded to respective folders in google drive, which is mounted to google colab for project implementation.

Categories: Apple, Banana, Cherry, Pineapple, Lemon, Tomato

320 images from each category are used for training the model & 80 images from each category are used for testing the model.

Data pre-processing

- Converting the data types
- Image reshaping
- Image scaling between values 0 and 1
- Transforming the target data to binary class matrix

Model summary

Model: "sequential_1"		
Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 58, 58, 32)	2432
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 29, 29, 32)	0
conv2d_4 (Conv2D)	(None, 27, 27, 64)	18496
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 13, 13, 64)	0
conv2d_5 (Conv2D)	(None, 11, 11, 64)	36928
max_pooling2d_5 (MaxPooling 2D)	(None, 5, 5, 64)	0
flatten_1 (Flatten)	(None, 1600)	0
dense_2 (Dense)	(None, 128)	204928
dense_3 (Dense)	(None, 6)	774
Total params: 263,558 Trainable params: 263,558 Non-trainable params: 0		
None		

Model flow diagram

Model performance

```
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Accuracy & Loss

Predictions

Predictions

Interface

Future Scope

Now that we are able to predict the food given by the end user using our application, we can extend the functionality so to predicting multiple types of food in a single image, calculate quantity, derive nutrition tables etc.

Thank you!! Any Questions???