Sample Final Exam (Fall 2019)

Problem 1

Consider the problem

$$\min \sum_{j=1}^{n} \frac{a_j}{x_j}$$
subject to
$$\sum_{j=1}^{n} x_j \le b$$

$$0 \le x_j \le u_j, \quad j = 1, \dots, m,$$

in which all coefficients a_i , u_i and b are positive.

Formulate the dual problem. Treat simple constraints directly.

Problem 2

A random variable Z has realizations z_1, z_2, \ldots, z_n , attained with probabilities p_1, p_2, \ldots, p_n . It represents profits. Formulate a linear programming problem to calculate the following measure of risk:

$$\rho(Z) = -\frac{1}{2}\mathbb{E}[Z] + \frac{1}{2}\text{AVaR}_{\alpha}^{-}(Z),$$

where

$$\mathrm{AVaR}_{\alpha}^{-}(Z) = \frac{1}{\alpha} \int_{0}^{\alpha} \mathrm{VaR}_{\beta}(Z) \ d\beta = \min_{\eta} \Big\{ -\eta + \frac{1}{\alpha} \mathbb{E} \big[(\eta - Z)_{+} \big] \Big\}.$$

Formulate the dual problem.

Problem 3

The monthly return rates of assets 1 and 2 have joint distributions with the mean return rates $r_1 = 0.02$ and $r_2 = 0.01$ and with the covariance matrix

$$C = \begin{bmatrix} 0.002 & 0\\ 0 & 0.001 \end{bmatrix}$$

Suppose shorting is allowed.

- (a) Find the minimum variance portfolio.
- (b) Find the best portfolio with the return rate 0.02.

- (c) Describe the set of all efficient portfolios, with return rate μ . What is the range of μ ?
- (d) Suppose a riskless asset with return rate $r_0 = 0.005$ is available. Find the market portfolio.

Problem 4

Suppose the returns of assets in problem 3 have a joint normal distribution. Find the value at risk and the average value at risk at level $\alpha=0.05$ of the portfolio with asset weights 1.5 and -0.5 and the total amount invested equal to \$100,000. The 5% critical value for the standard normal distribution equals 1.65.