Alumno:

Duración: dos horas y media. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera. No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

1. Sea el grafo orientado G=(V(G),E(G)) de orden n=|V(G)| y tamaño m=|E(G)| representado en la figura. Proponer, siempre que exista, un grafo orientado H semieuleriano y fuertemente conexo que, no siendo isomorfo a G, tenga el mismo orden, tamaño, radio, diámetro, centro y periferia que el grafo G. Verificar que el grafo propuesto cumple todas estas características o probar que no existe ninguno que lo haga.

- 2. En el conjunto $A = \{a_1, a_2, a_3, a_4, a_5\}$ sea \mathcal{S} la relación determinada por el digraph de la figura, y \mathcal{T} la relación definida por la matriz $M_{\mathcal{T}}$, y sea \leq la relación $\leq \stackrel{\text{def}}{=} (\mathcal{S} + \mathcal{T})'$ (el complemento de $\mathcal{S} + \mathcal{T}$).
 - (a) Determinar si \leq es una relación de orden en A y, en caso afirmativo, representar su diagrama de Hasse.
 - (b) Si \leq es de orden y se definen $A_1 = \{x \in A : x \leq a_3\}, B = \{x \in A : x \leq a_5\}$ determinar todos los $X \subset A$ tales que $A_1X = B$.

- 3. Las justificaciones en este ejercicio exigen definir precisamente los conceptos involucrados (planaridad, dualidad, coloración, grafo-arista).
 - (a) Sea F el grafo representado en la figura. Dar, siempre que sea posible, una representación planar del grafo-arista $F_1 = L(F)$ y una representación planar de $(F_1)^*$, el dual de F_1 .
 - (b) Sea G=(V(G),E(G)) el único (salvo isomorfismo) grafo simple con sucesión gráfica d=(1,2,3,3,3). Determinar el índice cromático del grafo-arista de G (esto es $\kappa'(L(G))$), mostrando una $\kappa'(L(G))$ -coloración.

4. (a) Si el grafo orientado G = (V(G), E(G)) tiene a K_n por grafo subvacente, d_k^+ es el grado entrante del vértice $v_k \in V(G)$ y d_k^- es el grado saliente del vértice $v_k \in V(G)$, probar que se cumple que:

$$\sum_{k=1}^{n} (d_k^+)^2 = \sum_{k=1}^{n} (d_k^-)^2$$

(b) Dado el alfabeto $\Sigma = \{a, b\}$, definir, siempre que exista, un autómata finito determinista $(\Sigma, Q, q_0, \Upsilon, F)$ cuyo lenguaje reconocido $L = \{x \in \Sigma^* : \Upsilon^*(q_0, x) \in F\}$ sea $L = \{x \in \Sigma^* : x = uba, u \in \Sigma^*\}$ (la resolución debe mostrar no solo que el autómata propuesto acepta L, sino tambi'en que ningún otro es aceptado).