BookBinders Targeting Using Logistic Regression

Professor Song YaoOlin Business School

Customer Analytics

We use the BookBinders Book Club as an example of how to model the response to an offer with a logit model

LOGISTIC REGRESSION AT BOOKBINDERS

- Stan Lawton (marketing director) pulls a random sample of 50,000 customers from the BookBinders database
- Stan mails "The Art History of Florence" to the entire sample
- 4522 customers buy the book
- Plans to use the model to determine which customer to target from the entire database (500,000 remaining customers, excluding test group)
- Stan has information on R, F, M, and book purchases in each category from past, gender, zip code, etc.

How do different factors affect the probability of purchasing the promoted book?

RESULTS FROM LOGISTIC REGRESSION

Logit Regression Results								
Dep. Variate Model: Method: Date: Time: converged: Covariance	Tue	Lo 2, 07 Jan 2 17:54	ogit Df Re MLE Df Mo 2025 Pseud 1:32 Log-L True LL-Nu	o R-squ.: ikelihood:		50000 49989 10 0.2053 -12061. -15178.		
========		std err	z	P> z	[0.025	0.000 0.975]		
const	-1.6001	0.052		0.000	-1.702			
last	-0.0947	0.003	-33.918	0.000	-0.100	-0.089		
total	0.0011	0.000	5.630	0.000	0.001	0.002		
female	-0.7607	0.036	-21.272	0.000	-0.831	-0.691		
child	-0.1862	0.017	-10.775	0.000	-0.220	-0.152		
youth	-0.1130	0.026	-4.327	0.000	-0.164	-0.062		
cook	-0.2703	0.017	-15.782	0.000	-0.304	-0.237		
do it	-0.5392	0.027	-19.994	0.000	-0.592	-0.486		
refernce	0.2347	0.027	8.837	0.000	0.183	0.287		
art	1.1556	0.022	52.185	0.000	1.112	1.199		
geog	0.5743	0.019	30.823	0.000	0.538	0.611		

- Difficult to compare impacts because covariates have different scales.

3

Scaling of different variables

Standard Deviation of the Variables in the Data

```
# Calculate and report standard deviations of all independent variables, i.e., features
 # defined above
 std_devs = BBB[features].std()
 print("Standard Deviations of Independent Variables:")
 print(std_devs)
Standard Deviations of Independent Variables:
last
            8.153091
total
           101.357259
                       The variable "total" has a much larger SD.
female
            0.471630
child
            1.120153
youth
            0.682996
cook
             1.185432
do_it
            0.765877
refernce
            0.603882
            0.680261
art
             0.841052
geog
dtype: float64
```

Scale before or after the regression

0.0389

geog

Logit Marginal Effects Dep. Variable: Method: dydx At: overall dy/dx P>|z| [0.025 0.975] last -0.0064 0.000 -33.584 0.000 -0.007 total 7.555e-05 1.34e-05 5.630 0.000 4.92e-05 0.000 female -0.05150.002 -21.218 0.000 -0.056 -0.047child -0.0126 0.001 -10.7750.000 -0.015 -0.010youth -0.0076 0.002 -4.327 0.000 -0.011 -0.004 -15.785 -0.016 -0.0183 0.001 0.000 -0.021 cook -0.040 do it -0.0365 0.002 -19.987 0.000 -0.033 refernce 0.0159 0.002 8.839 0.000 0.012 0.019 0.075 0.001 53.462 0.000 art 0.0782 0.081

30.972

0.000

0.036

0.041

AME of total * SD = 7.555e-05 * 101.36 = 0.0077

0.001

5

Scale before the regression

```
# Scale the 'total' variable using z-score
BBB['total_scaled'] = (BBB['total'] - BBB['total'].mean()) / BBB['total'].std()
# Update the features list with the scaled 'total' variable
features = ['last', 'total_scaled', 'female', 'child', 'youth', 'cook', 'do_it', 'refernce', 'art', 'geog']
# Prepare the features (X) and target variable (y)
y = BBB['buyer']
# Add a constant term to the features (required for statsmodels)
X = sm.add_constant(X)
# Fit the logistic regression model with scaled 'total'
logit_model_scaled = sm.Logit(y, X)
results_scaled = logit_model_scaled.fit()
# Calculate Average Marginal Effects (AME)
ame = results_scaled.get_margeff(at='overall', method='dydx')
                            _____
                                                                          0.9751
                          std err
                                                              [0.025
                 dy/dx
                -0.0064
                                     -33.584
                                                              -0.007
                                                                          -0.006
                             0.000
                                                   0.000
last
total scaled
                0.0077
                             0.001
                                       5.630
                                                   0.000
                                                               0.005
                                                                           0.010
                                                              -0.056
female
                -0.0515
                             0.002
                                      -21.218
                                                   0.000
                                                                          -0.047
child
                -0.0126
                             0.001
                                     -10.775
                                                   0.000
                                                              -0.015
                                                                          -0.010
youth
                -0.0076
                             0.002
                                      -4.327
                                                   0.000
                                                              -0.011
                                                                          -0.004
cook
                -0.0183
                             0.001
                                      -15.785
                                                   0.000
                                                              -0.021
                                                                          -0.016
do_it
                -0.0365
                             0.002
                                      -19.987
                                                   0.000
                                                              -0.040
                                                                          -0.033
refernce
                 0.0159
                             0.002
                                        8.839
                                                   0.000
                                                               0.012
                                                                           0.019
art
                 0.0782
                             0.001
                                       53.462
                                                   0.000
                                                               0.075
                                                                           0.081
                 0.0389
                             0.001
                                       30.972
                                                   0.000
                                                               0.036
                                                                           0.041
```

6

We can generate individual purchase probabilities and then view the response rates by decile of predicted purchase probabilities

DECILE ANALYSIS OF PURCHASE PROBABILITIES

Prediction vs. Actual Buyer Rate by Decile:

Decile_Rank	Avg_Predicted_Prob	Actual_Buyer_Rate	
1	0.3856	0.3870	
2	0.1638	0.1672	
3	0.1049	0.1022	
4	0.0741	0.0736	
5	0.0556	0.0568	
6	0.0423	0.0392	
7	0.0321	0.0278	
8	0.0237	0.0242	
9	0.0157	0.0180	
10	0.0065	0.0084	

7

Number of customers, buyers, and response rate by decile

DECILE ANALYSIS OF PURCHASE PROBABILITIES

pred_prob_logit_decile	Customer_Count	Buyer_Count	Resp_Rate
1	5000	1935	0.3870000
2	5000	836	0.1672000
3	5000	511	0.1022000
4	5000	368	0.0736000
5	5000	284	0.0568000
6	5000	196	0.0392000
7	4998	139	0.0278111
8	5002	121	0.0241903
9	5000	90	0.0180000
10	5000	42	0.0084000

Why do the two regressions have such different estimates?

Original Model									
	coef	std err	z	P> z	[0.025	0.975]			
const	-1.3676	0.043	-31 . 457	0.000	-1.453	-1.282			
last	-0.0947	0.003	-33.918	0.000	-0.100	-0.089			
total_scaled	0.1131	0.020	5.630	0.000	0.074	0.152			
female	-0.7607	0.036	-21.272	0.000	-0.831	-0.691			
child	-0.1862	0.017	-10.775	0.000	-0.220	-0.152			
youth	-0.1130	0.026	-4.327	0.000	-0.164	-0.062			
cook	-0.2703	0.017	-15.782	0.000	-0.304	-0.237			
do it	-0.5392	0.027	-19.994	0.000	-0.592	-0.486			
refernce	0.2347	0.027	8.837	0.000	0.183	0.287			
art	1.1556	0.022	52.185	0.000	1.112	1.199			
geog	0.5743	0.019	30.823	0.000	0.538	0.611			

Child only Model

========	coef	std err	z	P> z	[0.025	0.975]
const	-2.3744	0.020	-119.412	0.000	-2.413	-2.335
child	0.0741	0.013	5.606	0.000	0.048	0.100

9

Why do the two regressions have such different estimates?

DECILE ANALYSIS OF INDEPENDENT VARIABLES

Art's Coefficient is 1.156 in the Original Model

Child's Coefficient is -0.186 in the Original Model

The correlations of "Child" with other "positive" variables are all significant—what does it imply?

11

DAG Analysis

What type of bias is this?
And how to mitigate?

Why do the two regressions have such different estimates?

	coef	std err	Z	P> z	[0.025	0.975]
const	-1.3676	0.043	-31 . 457	0.000	-1.453	-1.282
last	-0.0947	0.003	-33.918	0.000	-0.100	-0.089
total_scaled	0.1131	0.020	5.630	0.000	0.074	0.152
female	-0.7607	0.036	-21.272	0.000	-0.831	-0.691
child	-0.1862	0.017	-10.775	0.000	-0.220	-0.152
youth	-0.1130	0.026	-4.327	0.000	-0.164	-0.062
cook	-0.2703	0.017	-15.782	0.000	-0.304	-0.237
do_it	-0.5392	0.027	-19.994	0.000	-0.592	-0.486
refernce	0.2347	0.027	8.837	0.000	0.183	0.287
art	1.1556	0.022	52.185	0.000	1.112	1.199
geog	0.5743	0.019	30.823	0.000	0.538	0.611
Child	only Mod	del				
	coef	std err	z	P> z	[0.025	0.975]
const	_2.3744	0.020	-119.412	0.000	-2.413	-2 . 335
child	0.0741	0.013	5.606	0.000	0.048	0.100

Child and Art Model

	coef	std err	z	P> z	[0.025	0.975]
const	-2.8095	0.023	-119.575	0.000	-2.856	-2.763
child	-0.1351	0.015	-8.929	0.000	-0.165	-0.105
art	1.0407	0.019	54.289	0.000	1.003	1.078

13

Direction of the confounding bias: Over or under-estimate?

Two positives: effect upward bias (overestimate)

Two negatives: effect upward bias (overestimate)

One positive and one negative?

Gains Table and Chart (I wrote a function—see demo code on Canvas)

```
gain_table = create_gains_table(BBB['buyer'], BBB['predicted_prob'])
print(gain_table)
  Bucket Customers Cum_Customers
                                     Buyers Cum_Buyers Resp_Rate
                                                                     Gains
                5000
                               5000
                                       1935
                                                   1935
                                                            0.3870
                                                                    0.4279
1
        2
                5000
                              10000
                                        836
                                                   2771
                                                            0.1672
                                                                    0.1849
        3
                5000
                              15000
                                        511
                                                   3282
                                                            0.1022
                                                                    0.1130
3
                5000
                              20000
        4
                                        368
                                                   3650
                                                            0.0736
                                                                    0.0814
                5000
                              25000
                                        284
                                                   3934
                                                            0.0568
                                                                    0.0628
5
        6
                5000
                              30000
                                        196
                                                   4130
                                                            0.0392
                                                                    0.0433
6
        7
                4998
                              34998
                                        139
                                                   4269
                                                            0.0278
                                                                    0.0307
7
        8
                5002
                              40000
                                        121
                                                   4390
                                                            0.0242
                                                                    0.0268
8
                5000
                              45000
                                        90
                                                   4480
                                                            0.0180
                                                                    0.0199
      10
                5000
                              50000
                                         42
                                                   4522
                                                            0.0084
                                                                    0.0093
  Cum_Gains
                Lift Cum_Lift
      0.4279 4.2791
                        4.2791
      0.6128 1.8487
1
                        3.0639
      0.7258 1.1300
2
                        2.4193
3
     0.8072 0.8138
                        2.0179
     0.8700 0.6280
                        1.7399
     0.9133 0.4334
                        1.5222
     0.9441 0.3075
                        1.3487
7
     0.9708 0.2675
                        1.2135
     0.9907
             0.1990
                        1.1008
     1.0000 0.0929
                        1.0000
```

15

Gains Table and Chart

The break-even response rate tells us to which cells to extend the offer

BREAK EVEN RESPONSE RATE

- Cost of mailing an offer = \$0.50
- Selling price (includes shipping) = \$18
- Wholesale price paid by Bookbinders = \$9
- Shipping costs = \$3
- Break-even = Cost to mail/net revenue per sale = .5/(18-9-3)= 8.3%

17

Using the logit model, we target fewer customers but with a higher response rate

PROFITABILITY (LOGIT MODEL)

```
break_even = 0.5 / 6
print(f"The breakeven response rate is {break_even:.4f}")
                                                                            Mail to 31.1% of sample:
                                                                            500,000 * 31.1%=155,500
# Generate a "targeted" variable based on the breakeven response rate
BBB['targeted'] = (BBB['predicted_prob'] >= break_even).astype(int)
# Calculate and print the number of customers targeted
num_targeted = BBB['targeted'].sum()
print(f"\nNumber of customers targeted: {num_targeted}")
                                                                            Average response rate: 21.4%
# Calculate and print the percentage of customers targeted
                                                                            Expected number of buyers:
percent_targeted = (num_targeted / len(BBB)) * 100
                                                                               21.4% * 155,500 = 33,277
print(f"Percentage of customers targeted: {percent_targeted:.2f}%
# Calculate the number of targeted customers ending up
num_targeted_buyers = BBB[BBB['targeted'] == 1]['buy
                                                      r'].sum
print(f"Number of buyers targeted: {num_targeted_buyers}"
# Calculate the percentage of buyers among the targeted customers
percent_targeted_buyers = (num_targeted_buyers / num_targeted) * 100
print(f"Percentage of buyers targeted: {percent_targeted_buyers:.2f}%")
Number of customers targeted: 15560
                                                          - Gross profit = ($18 - 9 - 3)*33,277 - 0.5*155,500
Percentage of customers targeted: 31.129
Number of buyers targeted: 3323
                                                            = $ 121,912
Percentage of buyers targeted: 21.36%
                                                          - Return on marketing expenditure
```

= \$121,912/(\$0.5*155,500) =**156.8%**

We can start comparing the logit model with the RFM analysis by comparing predicted response rates by decile

19