Tutorial on Image Clustering

by Joris Guérin

Problem definition

Inputs: Dataset of unlabelled images

Objective: make groups within these images

Difference with Image classification?

Motivations

Search web image databases

Web-scale image clustering revisited

Yannis Avrithis[†], Yannis Kalantidis[‡], Evangelos Anagnostopoulos[†], Ioannis Z. Emiris[†] [†]University of Athens, [‡]Yahoo! Labs

Joint Summarization of Large-scale Collections of Web Images and Videos for Storyline Reconstruction

Gunhee Kim Disney Research Pittsburgh

Leonid Sigal Disney Research Pittsburgh

Eric P. Xing Carnegie Mellon University

lsigal@disneyresearch.com epxing@cs.cmu.edu

gunhee@cs.cmu.edu

reconstruction

Storyline

(a) A set of videos help discover the sequential structure of a photo stream

Shape Discovery from Unlabeled Image Collections

Concept discovery

Yong Jae Lee and Kristen Grauman University of Texas at Austin

Unsupervised Joint Mining of Deep Features and Image Labels for Large-scale Radiology Image Categorization and Scene Recognition

Xiaosong Wang, Le Lu, *IEEE Senior Member*, Hoo-chang Shin, Lauren Kim, Mohammadhadi Bagheri, Isabella Nogues, Jianhua Yao, Ronald M. Summers Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892

Medical diagnoses

Figure 2. Sample images of two unsupervisedly discovered image clusters with associated clinically semantic key words, containing (likely appeared) anatomies, pathologies, their attributes and imaging protocols or properties.

Intro to clustering

Data clustering

K-Means clustering

Minimize
$$\sum_{i=1}^{M}\sum_{k=1}^{K}a_{ik} imes d(x_i,c_k),$$
 subject to $\sum_{k=1}^{K}a_{ik}=1,\ \forall i\in\{1,...,M\},$ $a_{ik}\in\{0,1\},\ \forall i,\ \forall k.$

With

- $ightharpoonup c_k$ cluster centers,
- a_{ik} membership binary variables,
- ▶ d(.,.) distance metric used.

→ Alternating optimization : EM algorithm

External metrics

Normalized Mutual Information

$$\operatorname{purity}(\Omega,\mathbb{C}) = \frac{1}{N} \sum_{k} \max_{j} |\omega_{k} \cap c_{j}|$$

$$NMI(\Omega,\mathbb{C}) = \frac{I(\Omega;\mathbb{C})}{[H(\Omega) + H(\mathbb{C})]/2}$$

Fowlkes-Mallows index

$$FM = \sqrt{rac{TP}{TP + FP} \cdot rac{TP}{TP + FN}}$$

Agglomerative clustering

Clustering on raw images

Clustering on standard CV features

Clustering on deep CNN features

CNN feature extractor

- Complex model
- Solve many computer vision tasks recently
- Trained in a supervised way

CNN feature extractor - pre-training

ImageNet

- Several million images
- 1000 categories

CNN feature extractor - image processing

ImageNet

- Several million images
- 1000 categories

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

For next time (21/03/2019)

- Choose an image dataset.
- Repeat the experiments on you dataset with various feature extractors
 - 10 available in Keras: https://github.com/keras-team/keras-applications/tree/master/keras_applications
 cations
- You can try different architectures, different layers, different clustering algorithms ...
 - https://scikit-learn.org/stable/modules/clustering.html
- Record and send all your results and send them to me 24 hours before the class.

For next time (21/03/2019)

- Code available at : https://github.com/jorisquerin/tutorial_IC
- Send your results to: jorisguerin.research@gmail.com