2. sprawozdanie z laboratorium Hurtownie Danych

Mikołaj Kubś, 272662

12 marca 2025

1 Zadanie 1. Ekstrakcja danych

1.1

Utworzyć zestawienie, które dla poszczególnych miesięcy i lat przedstawi informację o liczbie różnych klientów. Przygotuj zapytanie z i bez użycia polecenia pivot.

1.1.1 Wersja bez pivot

- 1 SELECT
- 2 YEAR(OrderDate),
- 3 MONTH(OrderDate),
- 4 COUNT(DISTINCT CustomerID)
- 5 FROM Sales.SalesOrderHeader
- 6 GROUP BY YEAR(OrderDate), MONTH(OrderDate)
- 7 ORDER BY YEAR(OrderDate), MONTH(OrderDate)

Rysunek 1: Wynik wykonania kwerendy 1

1.1.2 Wersja z użyciem pivot

```
WITH UniqueCustomers AS (
       SELECT
           YEAR(OrderDate) AS OrderYear,
           MONTH(OrderDate) AS OrderMonth,
           CustomerID
       FROM Sales.SalesOrderHeader
       GROUP BY YEAR(OrderDate), MONTH(OrderDate), CustomerID
  )
  SELECT * FROM UniqueCustomers
  PIVOT (
10
       COUNT(CustomerID)
11
       FOR OrderMonth IN ([1], [2], [3], [4],
12
                           [5], [6], [7], [8],
13
                           [9], [10], [11], [12])
  ) AS PivotTable
  ORDER BY OrderYear;
```

Rysunek 2: Wynik wykonania kwerendy 1 z pivot

1.2

Utworzyć zestawienie zawierające w wierszach imiona i nazwiska sprzedawców, a w kolumnach kolejne lata. Wartością będzie liczba obsłużonych transakcji. Wyświetlić tylko tych sprzedawców, którzy pracowali przez wszystkie 4 lata.

```
SELECT * FROM

(
SELECT

FirstName, LastName, SalesOrderID,
YEAR(OrderDate) AS OrderYear FROM Sales.SalesPerson

JOIN HumanResources.Employee ON
Employee.BusinessEntityID = SalesPerson.BusinessEntityID

JOIN Person.Person ON
Person.BusinessEntityID = Employee.BusinessEntityID

JOIN Sales.SalesOrderHeader ON
```

```
SalesOrderHeader.SalesPersonID = SalesPerson.BusinessEntityID
WHERE YEAR(HireDate) = 2011
AS SourceTable
PIVOT (
COUNT(SalesOrderID)
FOR OrderYear IN ([2011], [2012], [2013], [2014])
AS PivotedTable
ORDER BY FirstName
```

Rysunek 3: Wynik wykonania kwerendy 2

1.3

Zdefiniować zapytanie wyznaczające sumę kwot sprzedaży towarów oraz liczbę różnych produktów w zamówieniach w poszczególnych latach, miesiącach, dniach.

```
YEAR(OrderDate) AS "Rok",

MONTH(OrderDate) AS "Miesiąc",

DAY(OrderDate) AS "Dzień",

SUM(LineTotal) AS "Suma",

COUNT(DISTINCT ProductID) AS "Liczbauróżnychuproduktów"

FROM Sales.SalesOrderHeader

JOIN Sales.SalesOrderDetail ON

SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID

GROUP BY YEAR(OrderDate), MONTH(OrderDate), DAY(OrderDate)

ORDER BY YEAR(OrderDate), MONTH(OrderDate), DAY(OrderDate)
```


Rysunek 4: Wynik wykonania kwerendy 3

1.4

Wykorzystując polecenie CASE przygotować podsumowania do zestawienia z poprzedniego zadania tak, aby sumowane były kwoty zamówień oraz obliczana liczba różnych produktów dla poszczególnych miesięcy i dni tygodnia. Uwaga: Pamiętaj o wybraniu właściwego atrybutu funkcji datepart tak, aby zgadzała się nazwa dnia tygodnia

```
SET DATEFIRST 1;
  SET LANGUAGE Polish;
  SELECT
       YEAR(OrderDate) AS "Rok",
5
       DATENAME(month, OrderDate) AS "Miesiac",
6
       CASE DATEPART(dw, OrderDate)
           WHEN 1 THEN 'Poniedziałek'
           WHEN 2 THEN 'Wtorek'
           WHEN 3 THEN 'Sroda'
10
           WHEN 4 THEN 'Czwartek'
11
           WHEN 5 THEN 'Piatek'
12
           WHEN 6 THEN 'Sobota'
13
           WHEN 7 THEN 'Niedziela'
14
       END AS "Dzień tygodnia",
15
       SUM(LineTotal) AS "Suma",
16
       COUNT(DISTINCT ProductID) AS "Liczba_różnych_produktów"
  FROM Sales.SalesOrderHeader
18
   JOIN Sales.SalesOrderDetail ON
19
       SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID
20
  GROUP BY
21
       YEAR(OrderDate),
^{22}
       DATENAME(month, OrderDate),
23
       MONTH(OrderDate),
```

```
DATEPART(dw, OrderDate)
ORDER BY
YEAR(OrderDate),
MONTH(OrderDate),
DATEPART(dw, OrderDate)
```

Rysunek 5: Wynik wykonania kwerendy 4

1.5

Przygotować zestawienie, w którym dla wybranych klientów przygotujemy kartę lojalnościową:

- a. srebrną, jeśli klient wykonał co najmniej 2 transakcje w sklepie;
- b. złotą, jeśli wykonał co najmniej 4 transakcje w sklepie, w tym co najmniej
- 2transakcje, których łączna kwota przekraczała 250%średniej wartości zamówień w bazie;
- c. platynową, jeśli klient spełniał warunki otrzymania karty złotej oraz w co najmniej jednej transakcji kupił jednocześnie produkty ze wszystkich kategorii

```
WITH AvgOrderValue AS (
       SELECT AVG(TotalOrderValue) AS AvgValue
       FROM (
3
           SELECT SalesOrderID, SUM(LineTotal) AS TotalOrderValue
           FROM Sales.SalesOrderDetail
           GROUP BY SalesOrderID
       ) AS OrderValues
  ),
  OrderCount AS (
       SELECT CustomerID, COUNT(DISTINCT SalesOrderID) AS TransactionCount,
10
               SUM(TotalDue) AS TotalTransactionValue
11
       FROM Sales.SalesOrderHeader
12
       GROUP BY CustomerID
14
  ),
```

```
HighValueOrders AS (
15
       SELECT CustomerID, COUNT(*) AS HighValueOrderCount
16
       FROM (
17
           SELECT SalesOrderID, SUM(LineTotal) AS TotalOrderValue
           FROM Sales.SalesOrderDetail
           GROUP BY SalesOrderID
       ) AS OrderValues
21
       JOIN Sales.SalesOrderHeader
22
           ON SalesOrderHeader.SalesOrderID = OrderValues.SalesOrderID
23
       CROSS JOIN AvgOrderValue A
       WHERE TotalOrderValue > 2.5 * A.AvgValue
25
       GROUP BY CustomerID
   ),
27
  UniqueCategories AS (
28
       SELECT
29
           C.CustomerID,
30
           COUNT(DISTINCT PC.ProductCategoryID) AS UniqueCategories
31
       FROM Sales.Customer C
       JOIN Sales.SalesOrderHeader SOH
           ON SOH.CustomerID = C.CustomerID
       JOIN Sales.SalesOrderDetail SOD
35
           ON SOD.SalesOrderID = SOH.SalesOrderID
36
       JOIN Production.Product PR ON PR.ProductID = SOD.ProductID
37
       JOIN Production. ProductSubcategory PSC
           ON PSC.ProductSubcategoryID = PR.ProductSubcategoryID
39
       JOIN Production. ProductCategory PC
40
           ON PC.ProductCategoryID = PSC.ProductCategoryID
       GROUP BY C.CustomerID
42
   )
43
   SELECT
44
       P.FirstName AS Imie,
       P.LastName AS Nazwisko,
       COALESCE(OrderCount.TransactionCount, 0) AS "Liczba transakcji",
47
       COALESCE(OrderCount.TotalTransactionValue, 0) AS "Łącznaukwotautransakcji",
48
       CASE
49
           WHEN COALESCE(OrderCount.TransactionCount, 0) >= 4
50
               AND COALESCE(HighValueOrders.HighValueOrderCount, 0) >= 2
51
               AND COALESCE(UniqueCategories.UniqueCategories, 0) =
               (SELECT COUNT(*) FROM Production.ProductCategory)
               THEN 'Platynowa'
54
           WHEN COALESCE(OrderCount.TransactionCount, 0) >= 4
55
```

```
AND COALESCE(HighValueOrders.HighValueOrderCount, 0) >= 2
56
               THEN 'Złota'
57
           WHEN COALESCE(OrderCount.TransactionCount, 0) >= 2
               THEN 'Srebrna'
           ELSE 'Brak_karty'
60
       END AS "Kolor<sub>□</sub>karty"
61
  FROM Sales. Customer C
62
  JOIN Person.Person P ON P.BusinessEntityID = C.PersonID
63
  LEFT JOIN HighValueOrders ON HighValueOrders.CustomerID = C.CustomerID
64
  LEFT JOIN OrderCount ON OrderCount.CustomerID = C.CustomerID
  LEFT JOIN UniqueCategories ON UniqueCategories.CustomerID = C.CustomerID
  ORDER BY OrderCount.TotalTransactionValue DESC;
```


Rysunek 6: Wynik wykonania kwerendy 5

2 Zadanie 2. Analiza danych

2.1

Przedstaw wyniki zadania 1 w postaci tabel i wykresów przestawnych w programie MS Excel. Zinterpretuj wyniki.

2.1.1

Rok\Miesiąc	V	1	2	3	4	5	6	7	8	9	10	11	12	Suma końcowa
2011						43	141	231	250	157	327	230	228	1607
2012		336	219	304	269	293	390	385	285	352	321	383	378	3915
2013		400	325	441	428	426	713	1675	1727	1741	1893	2041	1970	13780
2014		2073	1713	2342	2058	2350	898							11434
Suma końcowa		2809	2257	3087	2755	3112	2142	2291	2262	2250	2541	2654	2576	30736

Rysunek 7: Tabela przestawna na podstawie wyników kwerendy 1

Można zauważyć stabilny trend wzrostowy w liczbie klientów wraz z czasem. W lipcu 2013 roku do firmy przybyłoaż prawie 900 klientów, co było zdecydowanie największym wzrostem. Kolejną anomalią jest lipiec 2014 roku. Mimo posiadania danych z całego miesiąca, liczba różnych klientóww zmniejszyła się ponad dwukrotnie i osiągnęła najniższy poziom od czerwca 2013 roku. Dane za cały miesiąc były niskie. Nie było też żadnego dnia, w którym sklep miał ponad dwukrotność średniej klientów na miesiąc, jak to bywało w innych miesiącach.

2.1.2

Rysunek 8: Wykres na podstawie wyników kwerendy 2

Różnice między liczbą obsłużonych klientów między sprzedawcami są bardzo duże. Jest 4 sprzedawców, którzy pozytywnie wyróżniają się na tle reszty, i dwóch sprzedawców w odwrotnej sytuacji. Na tym wykresie również można zauważyć potwierdzony w innych kwerendach trend wzrostowy sklepu w

liczbie klientów. Jak widać na wykresie, dla prawie każdego sprzedawcy liczba obsłużonych klientów w 2012 lub 2013 jest znacznie wyższa niż w 2011. 2014 jeszcze się nie skończył i jest nadzieja na dobry sezon wakacyjny, dzięki któremu poziom poprzednich 2 lat może być utrzymany.

2.1.3

Rysunek 9: Wykres na podstawie wyników kwerendy 3

Od razu zauważalna jest pewna niespójność w danych - mniej więcej co miesiąc (na samym początku lub końcu miesiąca) liczba sprzedanych różnych produktów i suma sprzedaży osiągają wielokrotność wyników w innych dniach. Poza tym widać trend wzrostowy, wraz z nagłym silnym wzrostem sprzedaży, który został zauważony w poprzednich analizach. Tak jak w poprzednich analizach, ostatni miesiąc ma o około połowę niższą sprzedaż niż poprzednie.

2.1.4

Rysunek 10: Wykresy na podstawie wyników kwerendy 4

Wykres pokazuje, że nie ma bezpośredniej korelacji między liczbą różnych produktów a sumą sprzedaży. Na przykład niedziela charakteryzuje się podobną liczbą różnych produktów co piątek, ale wyraźnie wyższą wartością sprzedaży.

Piątek wyróżnia się najniższą liczbą produktów i najniższą sprzedażą, podczas gdy poniedziałek i środa osiągają najwyższe wartości. W weekend sobota generuje wyższe przychody i większą liczbę sprzedanych produktów niż niedziela.

2.1.5

Rysunek 11: Wykres na podstawie wyników kwerendy 5

Z wykresu drzewa można wyczytać, że największa suma wartości przypada na karty platynowe, które zajmują największą powierzchnię na wykresie. Karty srebrne są drugie pod względem sumy, natomiast karty złote i brak karty mają mniejsze wartości, przy czym "brak karty" ma najmniejszy udział. Wykres ten dobrze obrazuje proporcje między kategoriami, pokazując, że platynowe karty mają zdecydowaną dominację. Z tego wynika, że za większość obrotów sklepu odpowiadają stali klienci. Kupili oni coś przynajmniej 4 razy, przynajmniej raz bardzo różnorodne zakupy i przynajmniej 2 razy zakupy o wartości znacznie przewyższającej średnią. Złota karta odpowiada za stan przejściowy między srebrną a platynową, co sugeruje możliwość zmiany wielu klientów w tych najbardziej dochodowych.

2.2

Przygotuj 5 dodatkowych tabel/wykresów, które pokażą ciekawe zależności w bazie AdventureWorks przy użyciu Power BI lub Tableau. Przedstaw wnioski biznesowe wynikające z tych zestawień