Complexity

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 8

OUTLINE

- Analysis of Algorithm
 - Illustrative examples
- Time Complexity
 - How to measure running time?
 - Illustrative examples
- Asymptotic Notation

Analysis of Algorithms

- What to analyze
 - Domain of definition what inputs are legal?
 - Correctness does it solve the problem for all legal inputs?
- Efficiency: its maximum or average requirements to resources:
 - Runtime
 - Memory space
 - Other resources
- There could be different implementations of the same algorithm: different programs, programming languages, computer platforms, operating systems, etc.
- The analysis should be isolated from a particular implementation.

Complexity

- In a practical sense, complexity is an estimate of resource requirement
 - How long would it take to drive from Auckland to Wellington?
 - How much petrol would we need to drive from Auckland to Wellington?

Complexity (Contd.)

- Time complexity
 - An estimate of how long it would take to complete a task
- Space complexity
 - An estimate of how much memory the task might require for completion

Example: Fibonacci Numbers

- Italian mathematician, Leonardo Fibonacci (1170–1250). A problem of breeding rabbits.
 - A pair of rabbits takes a month to become mature and start to have pairs of baby rabbits
 - Each pair of newly born rabbits also take a month to reach maturity.
 - How many pairs of rabbits, F(n) would there be after n months?

Fibonacci numbers:

$$F(n) = F(n - 1) + F(n - 2)$$

 $F(0) = 0$, $F(1) = 1$

This immediately suggests a recursive algorithm

Algorithm 1 Slow method for computing Fibonacci numbers

- 1: **function** SLOWFIB(integer n)
- 2: **if** n < 0 then return 0
- 3: else if n = 0 then return 0
- 4: else if n = 1 then return 1
- 5: else return SLOWFIB(n 1) + SLOWFIB(n 2)

Correctness: The algorithm SLOWFIB is obviously correct

Efficiency: This algorithm is not efficient! It does a lot of repeated computation

- 1: **function** SLOWFIB(integer n)
- 2: **if** n < 0 then return 0
- 3: **else if** n = 0 then return 0
- 4: else if n = 1 then return 1
- 5: else return SLOWFIB(n 1) + SLOWFIB(n 2)

- 1: **function** SLOWFIB(integer n)
- 2: **if** n < 0 then return 0
- 3: **else if** n = 0 then return 0
- 4: else if n = 1 then return 1
- 5: else return SLOWFIB(n 1) + SLOWFIB(n 2)

- 1: **function** SLOWFIB(integer n)
- 2: **if** n < 0 then return 0
- 3: **else if** n = 0 then return 0
- 4: else if n = 1 then return 1
- 5: **else return** SLOWFIB(n 1) + SLOWFIB(n 2)

- 1: **function** SLOWFIB(integer n)
- 2: **if** n < 0 then return 0
- 3: else if n = 0 then return 0
- 4: else if n = 1 then return 1
- 5: else return SLOWFIB(n 1) + SLOWFIB(n 2)

Algorithm 1 Slow method for computing Fibonacci numbers

1: **function** SLOWFIB(integer n)

2: **if** n < 0 then return 0

3: else if n = 0 then return 0

4: **else if** n = 1 then return 1

5: else return SLOWFIB(n - 1) + SLOWFIB(n - 2)

• With a small (fixed) amount of extra space, we can do better, by working from the bottom up instead of from the top down.


```
1: function FASTFIB(integer n)
          if n < 0 then return 0
3:
           else if n = 0 then return 0
4:
           else if n = 1 then return 1
5:
           else
                                          \triangleright stores F(i-1) at bottom of loop
6:
             a \leftarrow 1
                                          \triangleright stores F(i-2) at bottom of loop
7:
             b \leftarrow 0
8:
             for i \leftarrow 2 to n do
9:
                  t \leftarrow a
                  a \leftarrow a + b
10:
11:
                  b \leftarrow t
12:
          return a
```



```
1: function FASTFIB(integer n)
         if n < 0 then return 0
         else if n = 0 then return 0
3:
        else if n = 1 then return 1
4:
5:
         else
6:
             a \leftarrow 1
                                          \triangleright stores F(i-1) at bottom of loop
             b \leftarrow 0
7:
                                          \triangleright stores F(i-2) at bottom of loop
8:
             for i \leftarrow 2 to n do
9:
                  t \leftarrow a
                 a \leftarrow a + b
10:
                 b \leftarrow t
11:
12:
          return a
```



```
1: function FASTFIB(integer n)
         if n < 0 then return 0
         else if n = 0 then return 0
3:
        else if n = 1 then return 1
4:
5:
         else
6:
             a \leftarrow 1
                                          \triangleright stores F(i-1) at bottom of loop
             b \leftarrow 0
                                         \triangleright stores F(i-2) at bottom of loop
7:
8:
             for i \leftarrow 2 to n do
9:
                  t \leftarrow a
                 a \leftarrow a + b
10:
                 b \leftarrow t
11:
12:
          return a
```



```
1: function FASTFIB(integer n)
         if n < 0 then return 0
         else if n = 0 then return 0
3:
         else if n = 1 then return 1
4:
5:
         else
6:
             a \leftarrow 1
                                          \triangleright stores F(i-1) at bottom of loop
             b \leftarrow 0
                                          \triangleright stores F(i-2) at bottom of loop
7:
8:
             for i \leftarrow 2 to n do
9:
                  t \leftarrow a
                 a \leftarrow a + b
10:
                 b \leftarrow t
11:
12:
          return a
```


Analysis of the Fast Algorithm

• It is easy to see that the number of additions, function calls, etc needed by **FASTFIB** to compute F(n) has the form An + B for some constants A,B.

SUMMARY

- Analysis of Algorithm: Fibonacci numbers
 - Slow implementation
 - Fast implementation
- Time Complexity
 - How to measure running time?
 - Illustrative examples
- Asymptotic Notation

Time Complexity

• The actual running time of an algorithm \mathcal{A} on a given input X depends on implementation, such as programming languages used, operating systems and hardware.

• The running time usually grows with the size of the input. Running time for very small inputs is not usually important; it is large inputs that cause problems if the algorithm is inefficient.

Elementary Operations

- We use the concept of elementary operation as our basic measuring unit of running time. This is any operation whose execution time does NOT depend on the size of the input.
- Typically, a standard unary or binary arithmetic operation:
 - Negation (-5)
 - Addition / subtraction (5 + 37; 350 75)
 - Multiplication / division / modulo (67 × 89; 399/54; 399%54)
 - Boolean operations (x AND y; x OR y, etc.)
 - Binary comparisons $(x == y; x \le y; x < y; x \ge y; \text{ etc.})$
 - variable assignments, function calls.
- The running time T(n) of algorithm \mathcal{A} on input X of size n is the number of elementary operations used when X is fed into \mathcal{A} .

Time Complexity

Running time $T(n)$		Input size of n			
Function	Notation	10	100	1000	10^{7}
Constant	1	1	1	1	1
Logarithmic	$\log n$	1	2	3	7
Linear	n	1	10	100	10^{6}
"Linearithmic"	$n \log n$	1	20	300	7×10^{6}
Quadratic	n^2	1	100	10000	10^{12}
Cubic	n^3	1	1000	10 ⁶	10^{18}
Exponential	2^n	1	10 ²⁷	10^{298}	$10^{3010296}$

Constant Time Complexity

- Algorithm: Swapping two elements
- This is a constant time algorithm

Algorithm 1 Swapping two elements in an array

```
    1: Require: 0 ≤ i ≤ j ≤ n − 1
    2: function SWAP(array a[0 ... n − 1], integer i, integer j)
    3: t ← a[i]
```

- 4: $a[i] \leftarrow a[j]$
- 5: $a[j] \leftarrow t$
- 6: return a

Linear Time Complexity

- Algorithm: finding the maximum value
- This is a linear time algorithm, since it makes one pass through the array and does a
 constant amount of work each time.

Algorithm 2 Finding the maximum in an array

```
1: function FINDMAX(array a[0 ... n - 1])

2: k \leftarrow 0 \triangleright location of maximum so far

3: for j \leftarrow 1 to n - 1 do

4: if a[k] < a[j] then

5: k = j

6: return k
```


Logarithmic Time Complexity

- Algorithm: : loop increments
- This runs in logarithmic time because i doubles about log n times until reaching n.

Algorithm 3 Example: exponential change of variable in loop

```
1: i \leftarrow 1
```

2: while $i \leq n$ do

 $i \leftarrow 2 * i$

4: print i

Quadratic Time Complexity

- Algorithm: nested loops
- This runs in quadratic time, because the inner loop runs n-i+1 times, while the outer loop runs n times. That is:

$$n + (n - 1) + (n - 2) + \dots + 1 = \frac{(n + 1)n}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$

Algorithm 4 Snippet: Nested loops

- 1: for $i \leftarrow 1$ to n do
- 2: **for** $j \leftarrow i$ to n **do**
- 3: **print** i + j

Exponential Time Complexity

- Algorithm: SLOWFIB
- SLOWFIB makes F(n) function calls each of which involves a constant number of elementary operations. It turns out that F(n) grows exponentially in n, so this is an exponential time algorithm.

```
1: function SLOWFIB(integer n)
```

- 2: **if** n < 0 then return 0
- 3: else if n = 0 then return 0
- 4: else if n = 1 then return 1
- 5: else return SLOWFIB(n-1) + SLOWFIB(n-2)

Example: Time Complexity Analysis

- Algorithm: Sum of an array $s = \sum_{i=0}^{n-1} a[i]$
- Summing n elements of the array α repeats elementary fetch/add operations n times.

Algorithm 6 Summing elements of an array a[0...n-1]

```
1: Require: array a
```

2: **function** SUM(a[0...n-1])

```
s \leftarrow 0
```

4: **for** $i \leftarrow 0$ to n-1 **do**

5: $s \leftarrow s + a[i]$

6: **return** *s*

Running time is linear in n, i.e., T(n) = cn

SUMMARY

- Analysis of Algorithm: Fibonacci numbers
 - Slow implementation
 - Fast implementation
- Time Complexity
 - How to measure running time?
 - Illustrative examples
- Asymptotic Notation $(0, \Omega, \Theta)$
 - Asymptotic Comparison
 - Asymptotic Bound

Asymptotic Notation

- In order to compare running times of algorithms we want a way of comparing the growth rates of functions.
- We want to see what happens for large values of n- small ones are not relevant.
- We are not usually interested in constant factors and only want to consider the dominant term.
- The standard mathematical approach is to use asymptotic notation O, Ω, O which we will now describe.

Asymptotic Notation (Contd.)

• Suppose that f and g are functions from $\mathbb N$ to $\mathbb R$, which take on nonnegative values.

Say f is O(g) ("f is **big-Oh** of g)" if there is some C > 0 and some $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $f(n) \leq Cg(n)$. Informally, f grows **at most** as fast as g.

Say f is $\Omega(g)$ ("f is **big-Omega** of g") if g is O(f). Or more formally if there is some C > 0 and some $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, $f(n) \ge Cg(n)$. Informally, f grows **at least** as fast as g.

Asymptotic Notation (Contd.)

• Suppose that f and g are functions from $\mathbb N$ to $\mathbb R$, which take on nonnegative values.

Say f is $\Theta(g)$ ("f is **big-Theta** of g") if f is O(g) and g is O(f). Specifically, if there is some $C_1 > 0$, $C_2 > 0$, and some $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, $C_1g(n) \le f(n) \le C_2g(n)$.

Informally, f/g is bounded away from zero and infinity, and f grows at the same rate as g

Note that we could always reduce n_0 at the expense of a bigger C but it is often easier not to.

Asymptotic Comparison

- Every linear function f(n) = an + b, a > 0, is O(n).
- **Proof**: $an + b \le an + |b| \le (a + |b|)n$ for $n \ge 0$.

- If f(n) = n; $g(n) = n^2/2$, then f is O(g) and g is not O(f), so g grows asymptotically faster than f.
- <u>Proof</u>: $f(n) \le 2 \cdot g(n)$ for $n \ge 1$ (or $f(n) \le 1 \cdot g(n)$ for $n \ge 2$); conversely, suppose that eventually $\frac{1}{2}n^2 \le Cn$. Then $n \le 2C$ for all sufficiently large n, a contradiction.

Exercises: Asymptotic Comparison

• I have seen the description "f = O(g)" before. Is this correct?

No. We can't say a function equals to a set of function! O(g) describes a set of functions that grows no faster than g. For instance, both $f_1(n) = n$ and $f_2(n) = 2n$ are in O(n).

But we can say $f \in O(g)$

Rules for Asymptotic Notation

- (irrelevance of constant factors) if c > 0 is constant then cf is O(f)
- (sum rule) If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1+f_2 is $O(\max\{g_1,g_2\})$
- (product rule) If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1f_2 is $O(g_1g_2)$
- (limit rule) Suppose that $L \coloneqq \lim_{n \to \infty} f(n)/g(n)$ exists. Then,
 - if L = 0 then f is O(g) and f is not $\Omega(g)$
 - if 0 < L < 1 then f is $\Theta(g)$
 - if L = 1 then f is $\Omega(g)$ and f is not O(g).
- (L'Hotal's rule) is often useful for the application of the limit rule. Note that the limit may not exist at all.

Limit Rule

Suppose that $L := \lim_{n \to \infty} f(n)/g(n)$ exists. Then,

- if L = 0 then f is O(g) and f is not $\Omega(g)$;
- if $0 < L < \infty$ then f is $\Theta(g)$;
- if $L = \infty$ then f is $\Omega(g)$ and f is not O(g).
- When f and g are positive and differentiable functions for n > 0, one of the following satisfies:
 - $\lim_{n\to\infty} f(n) = \infty$ and $\lim_{n\to\infty} g(n) = \infty$
 - $\lim_{n \to \infty} f(n) = 0$ and $\lim_{n \to \infty} g(n) = 0$

L'Hopital rule of calculus can be applied:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Exercises: Asymptotic Comparison

Prove that exponential functions grow faster than powers:

$$n^k$$
 is $O(a^n)$ for all $a > 1$ and $k \ge 0$

- Proof:
- First derivatives of $f(x) = n^k$ by x is $f'(x) = kx^{k-1}$
- First derivatives of $g(x) = a^x$ by x is $g'(x) = a^x \ln a$
- For $k = 0, n^k = 1 \in O(a^n)$
- For k > 0, by limit rule, and successive application of L'Hopital rule :

$$\lim_{n \to \infty} \frac{n^k}{a^n} = \lim_{n \to \infty} \frac{kn^{k-1}}{a^n \ln a} = \lim_{n \to \infty} \frac{k(k-1)n^{k-2}}{a^n(\ln a)^2}$$

$$\cdots$$

$$= \lim_{n \to \infty} \frac{k!}{a^n(\ln a)^k} = 0$$
When $a > 1$

$$= n^k \in O(a^n)$$

Exercises: Asymptotic Comparison

Logarithmic functions grow slower than powers?

$$\log_a n$$
 is $O(n^k)$ for all $a > 1$ and $k \ge 1$

- Proof:
- First derivatives of $f(x) = \log_a x$ when a > 1 is $f'(x) = \frac{1}{x \ln a}$
- First derivatives of $g(x) = x^k$ by x is $g'(x) = kx^{k-1}$
- By limit rule and L'Hopital rule :

$$\lim_{n \to \infty} \frac{\log_a n}{n^k} = \lim_{n \to \infty} \frac{\frac{1}{n \ln a}}{k n^{k-1}}$$

$$= \lim_{n \to \infty} \frac{1}{k \ln a n^k} = 0$$
When $k > 0$

$$\log_a n \in O(n^k)$$

Time Complexity

- Informal definition: A function f(n) such that the running time T(n) of a given algorithm is $\Theta(f(n))$ measures the time complexity of the algorithm.
- An algorithm is called polynomial time algorithm if its runtime T(n) is $O(n^k)$, where k is a constant positive integer.
- A computational problem is called intractable if and only if no deterministic polynomial time algorithm can solve it.

Asymptotic Bounds

- Asymptotic notation measures the running time of the algorithm in terms of elementary operations, i.e., asymptotic bounds are independent of implementation:
- For a given problem, the running time varies NOT ONLY according to the size of the input, BUT ALSO the input itself.
 - E.g., sorting an already sorted array takes almost no time for some sorting algorithms
- Common measures:
 - the worst-case running time
 - the average-case running time

Example: "Find the position of an element x in array"

- Worst Case: x is not in the array
- Average Case: treat all possible positions equally distributed

SUMMARY

- Analysis of Algorithm: Fibonacci numbers
 - Slow implementation
 - Fast implementation
- Time Complexity
 - How to measure running time?
 - Illustrative examples
- Asymptotic Notation $(\mathbf{O}, \mathbf{\Omega}, \mathbf{\Theta})$
 - Asymptotic Comparison
 - Asymptotic Bound

