

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25

Dirk-André Deckert & Jago Silberbauer

Mathematik 3 für Physiker - Übung 3

Aufgabe 1

Gegeben sei eine stetige Funktion $\eta:\mathbb{R}\to\mathbb{R}$ mit $\eta=\eta\cdot\mathbb{1}_{[-1,1]}$ und

$$\int_{[-1,1]} \eta(x) = 1. \tag{1}$$

Für alle $k \in \mathbb{N}$ definieren wir die Funktion $\eta_k : \mathbb{R} \to \mathbb{R}, \ x \mapsto \eta_k(x) \coloneqq k \cdot \eta(kx)$. Betrachten Sie

$$\delta_0: \mathcal{C}([-1,1]) \to \mathbb{R}, \ g \mapsto \delta_0(g) := \lim_{k \to \infty} \int_{[-1,1]} \eta_k(x) g(x) dx. \tag{2}$$

Zeigen Sie, dass

- a) δ_0 wohldefiniert ist.
- b) $\delta_0(g) = g(0)$ gilt für alle $g \in \mathcal{C}([-1,1])$.

Aufgabe 2 (Integralrestglied der Taylor-Entwicklung)

Gegeben sei eine beliebig oft differenzierbare Funktion $f:\mathbb{R} \to \mathbb{R}$ und $a \in \mathbb{R}$. Zeigen Sie, dass

- a) $f(x) = f(a) + \int_a^x f'(t)dt$ für alle $x \in \mathbb{R}$.
- b) $f(x) = f(a) + (x-a)f'(a) + \int_a^x (x-t)f''(t)dt$ für alle $x \in \mathbb{R}$.
- c) $f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n + \int_a^x \frac{f^{(N+1)}(t)}{N!} (x-t)^N dt$ für alle $x \in \mathbb{R}$.

Hinweis: Nutzen Sie partielle Integration und vollständige Induktion.

Aufgabe 3

Berechnen Sie das Integral

$$\int_{-\pi}^{\pi} \frac{1}{2 + \sin(\alpha)} d\alpha. \tag{3}$$

Aufgabe 4

Lösen Sie Exercise 8 im Abschnitt Riemann Integral Calculus im Hitchhiker's Guide to Mathematics.

Aufgabe 5

Lösen Sie Exercise 3 im Abschnitt Convergence of Continuous Functions and the Riemann Integral im Hitchhiker's Guide to Mathematics.