EPITA

Mathématiques

Contrôle S3

Novembre 2021

Durée: 3 heures

Nom:		
Prénom :		
Classe:		
NOTE:		
Consignes: — Documents et calculatrices interdits		

— Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (3 points)

1. Déterminer la nature de la série de terme général $u_n = \frac{\sin(2n)}{n^2}$.

HOCK, OE | Un | < 1/2

Or & 1/2 converge donc & | un | converge.

Ainsi & un converge absolument donc converge.

2. Déterminer la nature de la série de terme général $u_n = \frac{n^2}{e^{n^2}}$.

 $A_{\text{garrif}}^{(V_n)} > 0. \quad A_{\text{ppliquons}} \quad \text{tarsight de d'Alembert:}$ $V_{n+1} = \frac{(n+1)^2}{e^{(n+1)^2}} = \frac{(n+1)^2}{e^{n^2} + 2n^{2}} = \frac{(n+1)^2}{e^{n^2} + 2n^2} = \frac{(n+1)^2}{e^{n^2} + 2n^{2}} = \frac{(n+1)^2}{e^{n^2} + 2n^{2}} = \frac{(n+1)^2}{$

3. Quelle est la nature de la série $\sum \frac{(-1)^n}{\ln(n)}$?

C'est une serie à termes alternés.

Or |u_n| = \frac{1}{\lambda h} \frac{1}{\lambda n \tag{2}} \tag{3}.

De plus, (|u_n|) = \frac{1}{\lambda h} \tag{2} est d'ecroissante.

En vertu du CSSA, \text{\tag{2}} u_n converge.

Exercice 2 (3 points)

Considérons la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par : $u_n = \sqrt{n + (-1)^n} - \sqrt{n}$.

Le but de l'exercice est de déterminer la nature de $\sum u_n$.

2. À l'aide du résultat de la question précédente, déterminer la nature de $\sum u_n$.

Posons
$$V_n = \frac{1}{2} \frac{1}{n^{3}l^{2}}$$
 et $V_n = -\frac{1}{8} \frac{1}{n^{3}l^{2}} + o(\frac{1}{n^{3}l^{2}})$

$\sum V_n$ converge d'après le CSSA

• (V_n) est d'après le CSSA

• $(V_n) = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n|)$ est l'un d'écroissante

$V_n = \frac{1}{3}$ et $(|V_n$

Exercice 3 (4 points)

Le but de cet exercice est d'étudier la nature de la suite (u_n) définie par : $u_n = \frac{2 \times 4 \times 6 \times \cdots \times (2n)}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$ Pour cela, on utilise la suite auxiliaire (v_n) définie par : $v_n = \ln(u_n)$.

1. Soit $n \in \mathbb{N}^*$. Calculer $\frac{u_{n+1}}{u_n}$ et en déduire $v_{n+1} - v_n$.

Uni = 2x4+ ... x(2n) x (2(n+1)) 2x4x...x(2n) (2n+2) Ainsi, Unt = lote Dove Nuti-Nu= pr(nut) - pr(50+1)

2. Déterminer $a \in \mathbb{R}^+$ tel que $(v_{n+1} - v_n)$

NATI - N= P (SUTS) = P (1+1) = P (1+1) - P (1+1) Dare VMI - Vn = 1 + 0(1) - 2 = 1 + 0(1) N 1

3. Quelle est la nature de (v_n) ? Et que peut-on dire de $\lim_{n\to+\infty}v_n$?

(v_n) a la nature de $\geq (v_n, -v_n)$ (principe telescopique $v_n, -v_n$) a la nature de 1/2 - qui diverse. Donc (Vn) diverse. De plus, (Vn) est croissente car vni, -vn = h (ZALZ) >0 Donc lim Vn = + 50

4. En déduire $\lim_{n\to+\infty} u_n$?

Exercice 4 (6 points)

Les questions de cet exercice sont interdépendantes.

Si vous n'avez pas répondu à certaines d'entre elles, n'hésitez pas à admettre leurs résultats et à les réutiliser, si besoin, dans des questions ultérieures.

- 1. Soit $q \in \mathbb{R}^*$. On considère la série entière $\sum q^n x^n$.
 - a. Quel est son rayon de convergence R?

b. Soit la fonction f définie sur]-R,R[par : $f(x)=\sum_{n=0}^{\infty}q^n\,x^n$

Exprimer f(x) sous la forme d'une fraction rationnelle.

c. En déduire une expression de la fonction $g: x \longmapsto \frac{1}{(1-qx)^2}$ sous la forme : $g(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Expliciter les coefficients a_n et le rayon de convergence de cette série entière.

Decivors l'expression précédente:

$$\frac{q}{(1-qn)^2} = \sum_{n=1}^{\infty} nq^n x^{n-1} = \sum_{n=0}^{\infty} (n+i)q^n x^n. \text{ le rayon de CV}$$

$$D'où \frac{1}{(1-qn)^2} = \sum_{n=0}^{\infty} (n+i)q^n x^n. \text{ le rayon de CV}$$
est aussi $\frac{1}{(qn)^2}$

2. Soit $p \in]0,1[$. On considère une expérience qui peut mener soit à un succès (avec la probabilité p) soit à un échec (avec la probabilité 1-p). On suppose que cette expérience peut être tentée autant de fois que l'on souhaite, chaque résultat étant indépendant des autres.

Enfin, on définit la variable aléatoire $X = \emptyset$ nombre de tentatives nécessaires pour obtenir un premier succès ». Ainsi, si la première tentative est un succès, on aura X = 1.

a. Donner la loi de X.

b. Déterminer la fonction génératrice de X. Exprimer $G_X(t)$ d'abord sous la forme d'une série entière puis sous la forme d'une fraction rationnelle.

Posons
$$q = 1-p$$
. $P(K=n) = (1-q)q^{n-1}$
 $C_{K}(k) = (1-q)q^{0}k + (1-q)q^{1}k^{2} + (1-q)q^{2}k^{3} + \cdots$
 $= (1-q)k = (qk)^{n} = (1-q)k$
 $1-qk$

c. En déduire l'espérance et la variance de X.

$$G_{x}'[+] = (1-q) \times \frac{\Delta(1-q+) - +(-q)}{(1-q+)^{2}} = \frac{1-q}{(1-q+)^{2}}$$

$$G_{y}''[+] = (1-q) \left[(1-q+)^{-2} \right]^{1} = (1-q) \left[-2(1-q+)^{-3}(1-q) \right]$$

$$= \frac{2q|1-q|}{(1-q+)^{3}}$$

$$Dore E(x) = G_{y}''(\Delta) + \frac{1-q}{(1-q)^{2}} = \frac{1}{1-q} = \frac{1}{p}$$

$$Vor(x) = G_{y}'''(\Delta) + E(x) - \left(E(x) \right)^{2}$$

$$= \frac{2q(1-q)}{(1-q)^{3}} + \frac{1}{p} - \frac{1}{p^{2}}$$

$$= \frac{2(1-p)}{p^{2}} + \frac{p}{p^{2}} - \frac{1}{p^{2}}$$

$$= \frac{2-2p+p-1}{p^{2}} = \frac{1-p}{p^{2}}$$

- 3. On définit la variable aléatoire Y =« nombre de tentatives nécessaires pour obtenir deux succès ».
 - a. Écrire Y comme une somme de deux variables aléatoires étudiées précédemment.

b. En déduire sa fonction génératrice $G_Y(t)$

En déduire sa fonction génératrice
$$G_Y(t)$$
.
$$G_Y(t) = G_{Y_1}(Y_1) G_{Y_2}(Y_2) = \left(\frac{1-q}{1-q} + \frac{1-q}{1-q} +$$

c. Application : en utilisant les résultats précédents, déterminer P(Y=5).

D'oprès 1.c.,
$$\frac{1}{(1-q+1)^2} = \frac{1}{n-1} (n+1) q^n t^n$$
D'où $(x-1)^2 + 2 = (1-q)^2 + 2 = (1-q)^2 + 3 = (1-q)^2$

Exercice 5 (4 points)

Soit X une variable aléatoire entière de fonction génératrice $G_X(t) = a \ln \left(1 - \frac{t}{3}\right)$.

1. Quelle est la valeur de a?

2. En partant de la série géométrique, donner le développement en série entière de $G_X(t)$. Préciser le rayon de convergence et en déduire la loi de X.

3. Déterminer l'espérance et la variance de X.

$$G_{N}(+) = \frac{1}{2n(2l_{3})} \times \frac{-1l_{3}}{1-4l_{3}} = \frac{1}{2n(2l_{3})} \times \frac{1}{3-4}$$

$$G_{N}''(+) = \frac{1}{2n(3l_{2})} \times \frac{1}{3-4}$$
[suite du cadre page suivante]

4. Trouver une fonction f telle que, en posant Y = f(X), on ait : $G_Y(t) = t G_X(t)$.

Ecrivons Gy III = $\frac{12}{2}$ ant I sans s'occuper des valuers de an) Alors to Em, P(V=n)=an. Si Gyltl= + Gy(+), alors Gyltl= E on + ni Ainsi, 4 DEN, P(Y= n+1)= On= P(X=n)

Une variable y verificat cette proprieté est 4=X+1