Hardware Enclaves & Intel SGX

CS261

Hardware Enclaves

 HW abstractions for distributing <u>trusted execution</u> to <u>untrusted platforms</u>

Hardware Enclaves

 HW abstractions for distributing <u>trusted execution</u> to <u>untrusted platforms</u>

System Threats to Trusted Execution

- What can go wrong?
 - Side channels
 - out of scope for Intel SGX
 - Counterfeit software
 - Inject rootkits into OS
 - Privilege escalation
 - Install malicious kernel
 - Compromised HW devices
 - Cold-boot attacks

Threat Model of Hardware Enclaves

Elements of Hardware Enclaves

- Secure boot: HW-verified measurement + first instruction
- On-chip program isolation
- Cryptographically protected external memory
- Execution integrity; no interference from attackers
- Attestation and/or secret sealing

Enclave Creation with Intel SGX

- <u>ECREATE(SECS):</u> create an enclave range
- EADD(SECS, addr, prot),
 EEXTEND(SECS, addr):
 add a page to enclave and measure
 the content
- EINIT(SECS, license):
 check & initialize an enclave

Enclave Enter & Exit

- <u>EENTER(SECS, TCS):</u> enter at a static enclave addr
- <u>EEXIT(addr):</u> exit enclave to any addr
- Enclave can accept parameters after the entry
- Attackers cannot interfere control flow unpredictably

Enclave Isolation

Abort page semantic:

EPC pages contains all 0s for execution outside the enclave

Memory Encryption Engine

- EPC pages are encrypted in DRAM
- Memory Encryption Engine (MEE) sits at the edge of CPU, connected to Memory Controller (MC)
- Cachelines are decrypted at cache misses, and re-encrypted when being written back to DRAM

Memory Encryption Engine

EPC Paging

- EPC pages are limited: currently 93.5 MB on each platform
- Untrusted OS swaps the pages for enclaves
- Swapped-out pages are not in EPC, so no longer protected by MEE

EPC Paging

- EWB: copy a EPC page to non-EPC page
- ELDU: copy a non-EPC page to EPC page

Execution Integrity

- Program states in either enclave memory or registers
- Enclave can be interrupted
 - Page faults (Paging)
 - Scheduling events
 - Exceptions or signals
- Interrupt → Asynchronous Exit (AEX)
 - Register values dumped inside enclave before exit
 - OS can only: (1) resume the enclave execution
 (2) re-enter enclave for exception handling

Attestation

- Proof that the program runs in a genuine enclave
- Each enclave has a set of unique keys
 - Report key intra-platform (local) attestation
 - Attestation key inter-platform (remote) attestation
 - Seal key Sealing enclave secrets
 - Other keys see Intel SDM
- Generated by a root secret (EPID) hidden in Intel CPU
 - Verified by Intel Attestation Service

Attestation Procedure

Use Cases for Hardware Enclaves

- Digital Right Management (DRM)
- Computation outsourcing, NFV
- Distributed system, edge computing, blockchains
- Alternative to HME or MPC
- Protection for antivirus, JIT compilers, etc
- Used for concealing attacks

Questions?

Hardware Enclaves & Intel SGX