E-Commerce Customer Churn Analysis and Prediction

BY: PRIYANKA BAGCHI

PRIYANKA.BAGCHI.PB@GMAIL.COM

SUPERVISOR: DR. SEDEF AKINLI KOCAK, PHD

SEDEF.AKINLIKOCAK@RYERSON.CA

Approach

Step 1: Exploratory Data Analysis (EDA)

Step 2: Predictive Modelling

Step 3: Post-Predictive Analysis

Exploratory Data
Analysis
(EDA)

- Data types of the variables
- Summary of the Dataset
- Descriptive Analysis
- Examine Data Distribution via visualization
- Data Cleaning
- Data Balancing
- Attribute Selection

Predictive Modelling

- Logistic Regression
- Random Forest
- Decision Tree

Post-Predictive Analysis

- Results
- Reccomendations

Step 1: Exploratory Data Analysis (EDA)

- Data types of the Variables
- Summary of the Dataset
- Examine Data Distribution
- Density plots to see the Distribution of all the Variables
- Frequency table of all the columns that have character data types
- Total number of missing values in each column
- Data Cleaning: Character Variables
- Data Cleaning: Numeric Variables
- Density plots to see the Distribution of all the Variables after Cleaning
- Correlation Between all Numerical Variables
- Feature Selection

Step 2: Predictive Modelling

The 3 Machine Learning Models Used

After reviewing multiple journal articles during the literature review these are

the 3 models that were chosen:

- Logistic Regression
- Random Forest
- Decision Tree

Step 3: Post-Predictive Analysis

Results

Unbalanced Training Set Before Feature Selection							
	AUC	ROC	Sensitivity	Specificity	Accuracy	F1 Score	Used Pythagora
Logistic Regression	0.91	0.93	0.62	0.94	0.88	0.91	Theorem
Logistic Regression 3 CV	0.78	0.93	0.62	0.94	0.88	1 091	sqrt((1- sensitivity
Logistic Regression 10 CV	0.78	0.93	0.62	0.94	0.88	0.51	+(1-
Random Forest	0.93	0.53	0.87	0.99	0.97	0.98	specificity) for ROC
Decision Tree	0.80	0.89	0.65	0.95	0.89	0.93	ľ

Unbalanced Training Set After Feature Selection							
	AUC	ROC	Sensitivity	Specificity	Accuracy	LE1 Score	Used Pythagoras
Logistic Regression	0.88	1.04	0.51	0.94	0.85	0.91	Theorem
Logistic Regression 3 CV	0.73	1.04	0.51	0.94	0.85	1 (14)	sqrt((1- sensitivity)
Logistic Regression 10 CV	0.73	1.04	0.51	0.94	0.85		+(1-
Random Forest	0.93	0.53	0.87	0.99	0.96	0.98	specificity)) for ROC
Decision Tree	0.80	0.89	0.65	0.95	0.89	0.93	ľ

Balanced Training Set Before Feature Selection							
	AUC	ROC	Sensitivity	Specificity	Accuracy	F1 Score	Used Pythagora
Logistic Regression	0.91	0.80	0.87	0.81	0.86	0.90	Theorem
Logistic Regression 3 CV	0.84	0.80	0.81	0.87	0.86	0.90	sqrt((1- sensitivity
Logistic Regression 10 CV	0.84	0.80	0.81	0.87	0.86		(1-
Random Forest	0.95	0.46	0.91	0.99	0.97	0.98	specificity for ROC
Decision Tree	0.82	0.84	0.74	0.91	0.87	0.92]

Balanced Training Set After Feature Selection								
	AUC	ROC	Sensitivity	Specificity	Accuracy	IE1 Score	Used Pythagoras	
Logistic Regression	0.88	0.91	0.84	0.75	0.82	0.88	Theorem	
Logistic Regression 3 CV	0.80	0.91	0.75	0.84	0.82	1 0 88	sqrt((1- sensitivity)²+	
Logistic Regression 10 CV	0.80	0.91	0.75	0.84	0.82		(1-	
Random Forest	0.93	0.54	0.88	0.98	0.96	0.97	specificity) ²) for ROC	
Decision Tree	0.83	0.84	0.75	0.90	0.87	0.91		

Recommendations

- Continue to collect more data. This will help with the overfitting issue and improve the performance of all the models.
- If they still want to use the current predictions, the top 8 variables to keep in mind would be:
 - 1) Tenure
 - 2) OrderCount
 - 3) Complain
 - 4) NumberOfAddress
 - 5) CashbackAmount
 - 6) DaySinceLastOrder
 - 7) NumberOfDeviceRegistered
 - 8) WarehouseToHome

Limitations

- Relatively small dataset
- Due to time restrictions and the scope of this course:
 - The planned use of the XGBoost model was replaced with Decision Tree
 - Simple oversampling used instead of Safe-Level-SMOTE
 - Automatic feature selection method and Variable Importance from Machine Learning Algorithms, Recursive Feature Elimination (RFE) used instead of Step wise Forward and Backward Selection

Thank You!