

Pushdown Automata (PDA)

Reading: Chapter 6

PDA - the automata for CFLs

- What is?
 - FA to Reg Lang, PDA is to CFL
- PDA == [ε -NFA + "a stack"]
- Why a stack?

Pushdown Automata - Definition

- A PDA P := $(Q, \sum, \Gamma, \delta, q_0, Z_0, F)$:
 - Q: states of the ε-NFA
 - ∑: input alphabet
 - Γ : stack symbols
 - δ: transition function
 - \bullet q₀: start state
 - Z₀: Initial stack top symbol
 - F: Final/accepting states

i)

ii)

iii)

$\delta: Q \times \Sigma \times \Gamma => Q \times \Gamma^*$

δ: The Transition Function

$$\delta(q,a,X) = \{(p,Y), ...\}$$

state transition from q to p a is the next input symbol X is the current stack top symbol

Y is the replacement for X; it is in Γ^* (a string of stack symbols)

Set
$$Y = \varepsilon$$
 for: Pop(X)

- If Y=X: stack top is unchanged
- If $Y=Z_1Z_2...Z_k$: X is popped iii. and is replaced by Y in

reverse order (i.e., Z₁ will be the new stack top)

Y = ?	Action
Υ=ε	Pop(X)
Y=X	Pop(X) Push(X)
$Y=Z_1Z_2Z_k$	$\begin{aligned} & Pop(X) \\ & Push(Z_{k}) \\ & Push(Z_{k-1}) \end{aligned}$
	Push(Z_2) Push(Z_1)

4

Example

```
Let L_{wwr} = \{ww^{R} \mid w \text{ is in } (0+1)^{*}\}

• CFG for L_{wwr}: S==>0S0 \mid 1S1 \mid \epsilon

• PDA for L_{wwr}:

• P := (Q, \sum, \Gamma, \delta, q_{0}, Z_{0}, F)

= (\{q_{0}, q_{1}, q_{2}\}, \{0, 1\}, \{0, 1, Z_{0}\}, \delta, q_{0}, Z_{0}, \{q_{2}\})
```

Initial state of the PDA:

1.
$$\delta(q_0,0, Z_0) = \{(q_0,0Z_0)\}$$

$$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$$

$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 0, 1)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.
$$\delta(\mathbf{q}_1, \, \varepsilon, \, Z_0) = \{(\mathbf{q}_2, \, Z_0)\}$$

First symbol push on stack

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Enter acceptance state

PDA as a state diagram

 $\delta(q_i, a, X) = \{(q_i, Y)\}$

PDA for L_{wwr}: Transition Diagram

Example 2: language of balanced paranthesis

Grow stack

Pop stack for matching symbols

$$\sum = \{ (,) \}$$

$$\Gamma = \{ Z_0, (\}$$

$$Q = \{ q_0, q_1, q_2 \}$$

Switch to popping mode

Go to acceptance (by final state) when you see the stack bottom symbol $(, (//((Z_0/(Z_0)))))$

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

$$\sum = \{ (,) \}$$

$$\Gamma = \{Z_0, (\}$$

$$Q = \{q_0, q_1\}$$

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q,w,y)

- q current state
- w remainder of the input (i.e., unconsumed part)
- y current stack contents as a string from top to bottom of stack

If $\delta(q,a, X) = \{(p, A)\}\$ is a transition, then the following are also true:

- (q, a, X) |--- (p,ε,Α)
- (q, aw, XB) |--- (p,w,AB)
- |--- sign is called a "turnstile notation" and represents one move
- |---* sign represents a sequence of moves

How does the PDA for L_{wwr} work on input "1111"?

There are two types of PDAs that one can design: those that accept by <u>final state</u> or by <u>empty stack</u>

Acceptance by...

- PDAs that accept by final state:
 - For a PDA P, the language accepted by P, denoted by L(P) by final state, is: Checklist:
 - $\{w \mid (q_0, w, Z_0) \mid ---^* (q, \varepsilon, A) \}$, s.t., $q \in F$

- input exhausted?
- in a final state?

- PDAs that accept by empty stack:
 - For a PDA P, the language accepted by P, denoted by N(P) by empty stack, is:
 - $\{w \mid (q_0, w, Z_0) \mid ---^* (q, \varepsilon, \varepsilon) \}$, for any $q \in Q$.
- Q) Does a PDA that accepts by empty stack need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Example: L of balanced parenthesis

PDA that accepts by final state

An equivalent PDA that accepts by empty stack

$$P_{N}: \begin{array}{c} (,Z_{0}/(Z_{0})\\ (,(/((U_{0}),(/\varepsilon_{0}),(/\varepsilon_{0}))) \end{array}$$

PDAs accepting by final state and empty stack are equivalent

- P_F <= PDA accepting by final state
 - $P_F = (Q_F, \sum, \Gamma, \delta_F, q_0, Z_0, F)$
- P_N <= PDA accepting by empty stack
 - $P_{N} = (Q_{N}, \sum, \Gamma, \delta_{N}, q_{0}, Z_{0})$
- Theorem:
 - $(P_N = P_F)$ For every P_N , there exists a P_F s.t. $L(P_F) = L(P_N)$
 - $(P_F ==> P_N)$ For every P_F , there exists a P_N s.t. $L(P_F) = L(P_N)$

How to convert an empty stack PDA into a final state PDA?

- Whenever P_N's stack becomes empty, make P_F go to a final state without consuming any addition symbol
- To detect empty stack in P_N : P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simulating P_N

Example: Matching parenthesis "(" ")"

```
(\{p_0,q_0,p_f\},\{(,)\},\{X_0,Z_0,Z_1\},\delta_f,p_0,X_0,p_f)
P<sub>N</sub>:
                                                                                                            P<sub>f</sub>:
                         (\{q_0\}, \{(,)\}, \{Z_0, Z_1\}, \delta_N, q_0, Z_0)
                                                                                                            \delta_{\rm f}:
\delta_N:
                                                                                                                                      \delta_f(p_0, \epsilon, X_0) = \{ (q_0, Z_0) \}
                         \delta_{N}(q_{0},(Z_{0})) = \{ (q_{0},Z_{1}Z_{0}) \}
                                                                                                                                      \delta_f(q_0, (Z_0)) = \{ (q_0, Z_1, Z_0) \}
                         \delta_{N}(q_{0},(Z_{1})) = \{ (q_{0}, Z_{1}Z_{1}) \}
                                                                                                                                      \delta_f(q_0, (Z_1)) = \{ (q_0, Z_1Z_1) \}
                         \delta_{N}(q_{0},),Z_{1}) = \{ (q_{0}, \mathcal{E}) \}
                                                                                                                                      \delta_f(q_0, 1), Z_1 = \{ (q_0, \epsilon) \}
                         \delta_N(q_0, \mathcal{E}, Z_0) = \{ (q_0, \mathcal{E}) \}
                                                                                                                                      \delta_f(q_0, \epsilon, Z_0) = \{ (q_0, \epsilon) \}
                                                                                                                                      \delta_f(p_0, \epsilon, X_0) = \{ (p_f, X_0) \}
                                          (Z_0/Z_1Z_0)
                                                                                                                                                               (Z_0/Z_1Z_0)
                                           (Z_1/Z_1Z_1)
                                                                                                                                                               (Z_{1}/Z_{1})
                                          ),Z_1/\varepsilon
                                                                                                                                                               ),Z_1/\epsilon
                                          \varepsilon,Z_0/\varepsilon
                                                                                                                                                               \epsilon ,Z<sub>0</sub>/ \epsilon
                        start
                                                                                                              start
```

Accept by empty stack

Accept by final state

How to convert an final state PDA into an empty stack PDA?

$P_F ==> P_N$ construction

Main idea:

- Whenever P_F reaches a final state, just make an ε-transition into a new end state, clear out the stack and accept
- Danger: What if P_F design is such that it clears the stack midway without entering a final state?
 - \rightarrow to address this, add a new start symbol X_0 (not in Γ of P_F)

$$P_N = (Q \cup \{p_0, p_e\}, \sum, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

Equivalence of PDAs and CFGs

CFGs == PDAs ==> CFLs

Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

Converting a CFG into a PDA

Main idea: The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

Steps:

- Push the right hand side of the production onto the stack, with leftmost symbol at the stack top
- If stack top is the leftmost variable, then replace it by all its productions (each possible substitution will represent a <u>distinct</u> path taken by the non-deterministic PDA)
- 3. If stack top has a terminal symbol, and if it matches with the next symbol in the input string, then pop it

State is inconsequential (only one state is needed)

Formal construction of PDA from CFG Note: Initial stack syn

Note: Initial stack symbol (S) same as the start variable in the grammar

- Given: G= (V,T,P,S)
- Output: $P_N = (\{q\}, T, V \cup T, \delta, q, S)$
- δ:

For all A ∈ V , add the following transition(s) in the PDA:

• $\delta(q, \epsilon, A) = \{ (q, \alpha) \mid \text{``} A ==>\alpha\text{''} \in P \}$

- For all a ∈ T, add the following transition(s) in the PDA:
 - $\delta(q,a,a) = \{ (q, \epsilon) \}$

Example: CFG to PDA

- $G = (\{S,A\}, \{0,1\}, P, S)$
- P:
 - S ==> AS | ε
 - A ==> 0A1 | A1 | 01
- PDA = $(\{q\}, \{0,1\}, \{0,1,A,S\}, \delta, q, S)$
- δ:
 - $\delta(q, \epsilon, S) = \{ (q, AS), (q, \epsilon) \}$
 - $\delta(q, \epsilon, A) = \{ (q,0A1), (q,A1), (q,01) \}$
 - $\delta(q, 0, 0) = \{ (q, \epsilon) \}$
 - $\delta(q, 1, 1) = \{ (q, \epsilon) \}$

How will this new PDA work?

Lets simulate string <u>0011</u>

Simulating string 0011 on the

Leftmost deriv.:

```
\begin{array}{l} \underline{PDA\;(\delta):} \\ \delta(q,\,\epsilon\,,\,S) = \{\;(q,\,AS),\,(q,\,\epsilon\,)\} \\ \delta(q,\,\epsilon\,,\,A) = \{\;(q,0A1),\,(q,A1),\,(q,01)\;\} \\ \delta(q,\,0,\,0) = \{\;(q,\,\epsilon\,)\;\} \\ \delta(q,\,1,\,1) = \{\;(q,\,\epsilon\,)\;\} \end{array}
```

1,1/ε 0,0/ε ε,A/01 ε,A/A1 ε,A/OA1 ε,S/ε ε,S/AS

S => AS => 0A1S => 0011S => 0011

Stack moves (shows only the successful path):

Accept by empty stack

Converting a PDA into a CFG

Main idea: Reverse engineer the productions from transitions

If
$$\delta(q,a,Z) => (p, Y_1Y_2Y_3...Y_k)$$
:

- State is changed from q to p;
- 2. Terminal *a* is consumed;
- 3. Stack top symbol Z is popped and replaced with a sequence of k variables.
- Action: Create a grammar variable called "[qZp]" which includes the following production:
- Proof discussion (in the book)

Example: Bracket matching

To avoid confusion, we will use b="(" and e=")"

Two ways to build a CFG

Deterministic PDAs

This PDA for L_{wwr} is non-deterministic

Switch to popping mode

ε, 1/1

Why does it have to be non-deterministic?

Accepts by final state

To remove guessing, impose the user to insert c in the middle

Example shows that: Nondeterministic PDAs ≠ D-PDAs

D-PDA for $L_{wcwr} = \{wcw^R \mid c \text{ is some special symbol not in } w\}$

Deterministic PDA: Definition

- A PDA is deterministic if and only if:
 - 1. $\delta(q,a,X)$ has at most one member for any $a \in \Sigma \cup \{\epsilon\}$
- → If $\delta(q,a,X)$ is non-empty for some $a \in \Sigma$, then $\delta(q, ε,X)$ must be empty.

Summary

- PDAs for CFLs and CFGs
 - Non-deterministic
 - Deterministic
- PDA acceptance types
 - By final state
 - By empty stack
- PDA
 - IDs, Transition diagram
- Equivalence of CFG and PDA
 - CFG => PDA construction
 - PDA => CFG construction