CSCI 570 - Fall 2016 - HW 7 solution

1. (Chapter 6, Exercise 10)

Solution:

- (a) Consider the following example: there are totally 4 minutes, the numbers of steps that can be done on the two machines in the 4 minutes are listed as follows (in time order):
 - Machine A: 2, 1, 1, 200
 - Machine B: 1, 1, 20, 100

The given algorithm will choose A then move, then stay on B for the final two steps. However, the optimal solution will stay on A for the four steps.

(b) An observation is that, in the optimal solution for the time interval from minute 1 to minute i, you should not move in minute i; because otherwise, you can keep staying on the machine where you are and get a better solution $(a_i > 0)$ and $b_i > 0$. For the time interval from minute 1 to minute i, consider that if you are on machine A in minute i, you either (i) stay on machine A in minute i-1 or (ii) are in the process of moving from machine B to A in minute i-1. Now let $OPT_A(i)$ represent the maximum value of a plan in minute 1 through i that ends on machine A, and define $OPT_B(i)$ analogously for B. If case (i) is the best action to make for minute i-1, we have $OPT_A(i) = a_i + OPT_A(i-1)$; otherwise, we have $OPT_A(i) = a_i + OPT_B(i-2)$. Thus, we have

$$OPT_A(i) = a_i + \max\{OPT_A(i-1), OPT_B(i-2)\}\$$

 $OPT_B(i) = b_i + \max\{OPT_B(i-1), OPT_A(i-2)\}\$

Then the algorithm is illustrated in Algorithm 1.

Algorithm 1

- 1: $OPT_A(0) = 0$
- 2: $OPT_B(0) = 0$
- 3: $OPT_A(1) = a_1$
- 4: $OPT_B(1) = b_1$
- 5: **for** i from 2 to n **do**
- 6: $OPT_A(i) = a_i + \max\{OPT_A(i-1), OPT_B(i-2)\}$
- 7: Record the action (either stay or move) in minute i-1 that achieves the maximum
- 8: $OPT_B(i) = b_i + \max\{OPT_B(i-1), OPT_A(i-2)\}$
- 9: Record the action (either stay or move) in minute i-1 that achieves the maximum
- 10: end for
- 11: **return** $\max\{OPT_A(n), OPT_B(n)\}$
- 12: Track back through the arrays OPT_A and OPT_B by checking the action records from minute n-1 to minute 1 to recover the optimal solution

It takes O(1) time to complete the operations in each iteration; there are O(n) iterations; the tracing backs takes O(n) time. Thus, the overall complexity is O(n).

2. (Chapter 6, Exercise 20)

Solution: Let the (i,h)-subproblem be the problem in which one wants to maximize one's grade on the first i courses, using at most h hours. Let OPT(i,h) be the maximum total grade that can be achieved for this subproblem. Then OPT(0,h)=0 for all h, and $OPT(i,0)=\sum_{j=1}^i f_j(0)$. Now, in the optimal solution to the (i,h) subproblem, one spends k hours on course i for some value of $k \in \{0,1,...,h\}$; thus, we have

$$OPT(i,h) = \max_{0 \le k \le h} \{f_i(k) + OPT(i-1, h-k)\}$$

Then the algorithm is illustrated in Algorithm 2.

Algorithm 2

```
1: for h from 1 to H do
      OPT(0, h) = 0
 3: end for
 4: OPT(1,0) = f_1(0)
 5: for i from 2 to n do
      OPT(i, 0) = f_i(0) + OPT(i - 1, 0)
 7: end for
 8: for i from 1 to n do
     for h from 1 to H do
 9:
        OPT(i,h) = \max_{0 \le k \le h} \{f_i(k) + OPT(i-1, h-k)\}
10:
        Record the k that results in the maximum, denoted as k^*(i,h)
11:
     end for
12:
13: end for
14: return OPT(n, H)
15: Having obtained the (n+1)\times (H+1) table with each entry filled with OPT(i,h);
   in order to produce the optimal distribution of time, track back from the (n +
   (1, H+1)th entry using \{k^*(i,h)\} until a boundary entry of the table is reached
```

The total time to fill in each entry OPT(i,h) is O(H), and there are nH entries, resulting in a total time of $O(nH^2)$. Tracking back according to the records takes O(n) time. Thus, the overall time is $O(nH^2)$.

3. Given a sequence $\{a_1, a_2, ..., a_n\}$ of n numbers, describe an $O(n^2)$ algorithm to find the longest monotonically increasing sub-sequence.

Solution: Let l_i denote the length of the longest monotonically increasing sub-sequence that ends with a_i ($l_1 = 1$). Compute the sequences S_i, S_{ij} using the following recurrences.

- Initialize $S_1 = a_1$.
- For $1 \le j < i$, if $a_j > a_i$ then $S_{ij} = a_i$. Otherwise, S_{ij} is set to $\{S_j \text{ concatenated with } a_i\}$.
- S_i is set to the longest sequence among all the sequences S_{ij} , $1 \le j < i$.

Claim: The length of S_i , $l(S_i) = l_i$.

Assume otherwise. Let k be the smallest index such that $l(S_k) < l_k$. Let O_k be a sequence of length l_i ending with a_k . Let a_j be the second last element of the sequence O_k . As j < k, $l_j = l(S_j)$

$$l(S_k) < l_k = l_j + 1 \Rightarrow l(S_j) < l_j$$

This is a contradiction as j < k and k is the smallest index such that $l(S_k) < l_k$. Thus our claim is true. Clearly the longest monotonically increasing sub-sequence is by definition the longest of the sequences S_i , $1 \le i \le n$. 4. You are given n points $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ on the real plane. They have been sorted from left to right and no two points have the same x-coordinate. That means $x_1 < x_2 < ... < x_n$.

A bitonic tour is defined as follows. The tour starts from (x_1, y_1) , goes through some intermediate points and reaches (x_n, y_n) . Then it goes back to (x_1, y_1) through every one of the rest of the points. All points except (x_1, y_1) are thus visited exactly once. Further, from (x_1, y_1) to (x_n, y_n) , you have to keep going right at every step. Similarly, you have to keep going left from (x_n, y_n) to (x_1, y_1) . Describe an $O(n^2)$ algorithm to compute the shortest bitonic tour.

Solution: Let $p_j = (x_j, y_j)$ denote the j^{th} point. A shortest bitonic tour can be thought of as a cycle where the vertices are points. Edges connect the points if they are visited one after another. Consider the shortest bitonic tour on the first i points. Observe that such a tour must contain an edge (p_k, p_i) with k < i - 1. For k < i - 1, a shortest bitonic tour on the points p_1, \dots, p_i that contains (p_k, p_i) must be a shortest bitonic tour on the points p_1, \dots, p_{k+1} minus the edge (p_k, p_{k+1}) plus the edge (p_k, p_i) and plus the path $\{(p_{k+1}, p_{k+2}), \dots (p_{i-1}, p_i)\}$. Consequently k can be chosen such that we end up with the shortest bitonic tour on p_1, \dots, p_i .

The fact that the subproblem on p_1, \dots, p_{k+1} exhibits the optimal substructure property can be proved by a simple replacement strategy. Suppose we have an optimal solution on p_1, \dots, p_i points which uses a solution on p_1, \dots, p_{k+1} and is not optimal. Now by replacing the non-optimal solution on the p_1, \dots, p_{k+1} points by an optimal solution into the " p_1, \dots, p_i " problem, we obtain a solution which is better than the optimal solution on p_1, \dots, p_i , resulting in a contradiction.

Let OPT(i) be the length of the shortest bitonic tour on the first i points, we can write the following recursion.

$$OPT(i) = \min_{1 \leq k \leq i-2} \left\{ OPT(k+1) + D(k+1,i) + d(k,i) - d(k,k+1) \right\}$$

for all $3 \le i \le n$, where

$$d(i,j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
$$D(i,j) = \sum_{k=i}^{j-1} d(k,k+1)$$

The base cases are: $OPT(1) = 0, OPT(2) = 2 \times d(1,2)$. OPT(n) is the length of the shortest bitonic tour.

Each step of the iterations costs O(n) and we need to compute n values in total, so the total running time is $O(n^2)$.