Vhodná lokalita pre **autokemp** (okres Vsetín)

Dominik Hološ, 484256

Přf GKGI, 3. ročník

Z8113 Kartografické modelování, jaro 2021

Podmienky

- 1. sklon: menší než 10 stupňov
- 2. náväznosť ku cestnej komunikácií (buď priamo na nej, alebo do 1 km)
- **3. mimo (obmedzenia**): lesa, zástavbu (+ zázamie 1 km), rieky/vodné plochy/jazerá, Od existujúcich kempov: aspoň 5 km
- **4. rozloha**: aspoň 2 ha = 20 000 m2 (*absencia malých polygónov*)

Dáta

- ArcČR:
- - cesty (I.,II.III. triedy)
- lesy
- rieky
- DMT
- OpenStreetMap:
- - zástavba (atribút residental z vrstvy LandUse)
- DIBAVOD
- Vodné plochy
- Mapy.cz:
- Vytvorená vlastná vrstva kempov (cez KML prevedené na shapefile)
- AOPK ČR:
- - maloplošné chránené územia

Struktura DIBAVOD

- databáze DIBAVOD je podkladem pro aktualizaci ZABAGED® kategorie vodstvo
- všechny objekty jsou ke stažení ve formátu SHP (komprese ZIP)
- U objektů A01 A03 a A07 A10 stále probíhá proces aktualizace ve spolupráci s ČHMÚ, které poskytuje aktuální data objektů A07 - A10.
- A základní jevy povrchových a podzemních vod
- B účelová klasifikace povrchových a podzemních vod
- E C chráněná území
- D záplavová území

Průběh je pouze orientační !!! Pro závazné informace kontaktujte správce daného vodního toku nebo místě příslušný vodoprávní úřad.

- E měřící a kontrolní místa povrchových vod
- F měřící a kontrolní místa podzemích vod
- G objekty subsystému užívání vody
- H místa odběrů a vypouštění
- 🖶 J objekty meteorologických pozorování

Metodika

Model Builder

Nástroj Measure (rozloha plôch)

Výstupy

Výstupy

- 35 vhodných miest
- Najväčšie plochy: Vsetín (FID 15),
 Kelč (FID 9), Kunovice (FID 6)
- Obce s najväčším počtom plôch:
 Vsetín (5), Kelč (5), Police (3),
 Kunovice (3), Choryně (2), Karolinka
 (2), Lačnov (2), Liptál (2), Střelná (2),
 Zašová (2)

Možné pokračovanie analýzy

- analýza konkrétnych 35 "vhodných miest"
- <u>d'alšie kritériá</u>:
- a) územný plán obcí
- dostupné na stránkach obcí
- b) prírodné a kultúrne zaujímavosti v okolí
- spojenie viacerých druhov dát (PP,NP a pod) + vlastný zber
- zapojenie miestnych

Diskusia

• Wang, C. a kol. (2016): Campgrounds Suitability Evaluation Using GIS-based Multiple Criteria Decision Analysis: A Case Study of Kuerdening, China

- multikriterálna analýza

0 5 10 20 30 Kilometers

Indexes of Kuerdening campground suitability.

Target Layer	Factor Layer	Criteria Layer
Kuerdening Campground Suitability	Natural Environment Condition A1	B1 Slope B2 Aspect B3 Canopy Density B4 Reserve Level B5 Drainage System Density
	Landscape Condition A2	B6 Distance from Scenic Spot B7 View-shed
	Safety Condition A3	B8 Geological Disaster B9 Threat of Dangerous Animals B10 Forest Fire
	Infrastructure Condition A4	B11 Telecommunication B12 Transportation

Záver

- 35 vhodných plôch
- Rôzne **rozmiestnenie** (prevažne v západnej časti okresu)
- Modelovaný výsledok *neodpovedá* reálnej situácií (skutočné kempy často ležia v zástavbe či lese na základe naších dát)
- Možnosť využitia Model Buildera
- Viaceré spôsoby riešenia

Zdroje

IS MUNI (2021): Študijne materiály predmetu Z8113 Kartografické modelování

Esri (2019): ArcMap Tools, https://desktop.arcgis.com/en/arcmap/latest/tools/main/a-quick-tour-of-geoprocessing-tool-references.htm (28.5.2021)

Wang C. Yang Z., Liu H., Han F. and Xia W. (2016): Campgrounds Suitability Evaluation Using GIS-based Multiple Criteria Decision Analysis: A Case Study of Kuerdening, China, https://www.degruyter.com/document/doi/10.1515/geo-2016-0028/html (29.5.2021)

ARCDATA Praha (2019): Arc ČR 500, https://www.arcdata.cz/produkty/geograficka-data/arccr-500 (28.5.2021)

Geofabrik (2021): OpenStreetMap Czech Republic, https://download.geofabrik.de/europe/czech-republic.html (29.5.2021)

DIBAVOD (2021): Struktura DIBAVOD, https://www.dibavod.cz/27/struktura-dibavod.html (29.5.2021)

Mapy.cz (2021): Kempy, https://sk.mapy.cz/zakladni?x=18.1336543&y=49.3947704&z=11&q=kempy (29.5.2021)

AOPK ČR (2021): Maloplošná zvláště chráněná území, https://gis-aopkcr.opendata.arcgis.com/datasets/aopkcr::maloplo%C5%A1n%C3%A1-zvl%C3%A1%C5%A1t%C4%9B-chr%C3%A1n%C4%9Bn%C3%A1-%C3%BAzem%C3%AD/about (29.5.2021)