

Aprendizagem automática

Sessão 6 - T

Aprendizagem não supervisionada Redução da dimensionalidade

Ciência de Dados Aplicada 2023/2024

Redução da

dimensionalidade

• Objetivo: transformar dados de elevada dimensão numa representação de dimensão inferior, com o objetivo de captar os padrões e relações essenciais dos dados, minimizando a redundância e o ruído.

- Porquê reduzir as dimensões?
 - Simplifica a análise e a visualização de dados complexos;
 - Reduz a complexidade computacional e os requisitos de memória;
 - Ajuda a atenuar a maldição da dimensionalidade;
 - Melhora o desempenho e a generalização do modelo;
 - Melhora a interpretabilidade e a compreensão dos padrões de dados subjacentes;

Redução da

dimensionalidade

- Se tivermos apenas uma caraterística, podemos facilmente traçar os dados numa reta numérica.
- Mesmo com este gráfico simples, podemos ver diferenças entre as amostras 1, 2 e 3 e 4, 5 e 6.

· Agora podemos traçar os dados num gráfico bidimensional.

Característica 1

• Agora podemos traçar os dados num gráfico tridimensional.

Característica Característi Característi Característ ica 3 ca 1 ca 2 Amostra 1 10 12 6 11 9 Amostra 2 Amostra 3 10 Amostra 4 2.5 1.3 **Amostra 5** 2.8 Caracterí Amostra 6 2 stica 3 Caracterí

• E quanto a 4 ou mais dimensões?

	Característi ca 1	Característi ca 2	Característic a 3	Característ ica 4	•••
Amostra 1	10	6	12	5	•••
Amostra 2	11	4	9	7	•••
Amostra 3	8	5	10	6	•••
Amostra 4	3	3	2.5	2	•••
Amostra 5	1	2.8	1.3	4	•••
Amostra 6	2	1	2	7	

Análise de componentes principais (PCA)

 Identifica os componentes principais, que são novas variáveis que captam a maior variação nos dados;

• Estes componentes são ortogonais (não correlacionados) entre si, permitindo uma redução eficiente das dimensões;

 O primeiro componente principal explica a quantidade máxima de variância nos dados, seguido dos componentes subsequentes por ordem decrescente de variância explicada.

passo

• Vamos começar com um exemplo simples com 2 características.

1.) Centrar os dados na média;

	Característi ca 1	Característic a 2
Amostra 1	10	6
Amostra 2	11	4
Amostra 3	8	5
Amostra 4	3	3
Amostra 5	1	2.8

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

passo1.) Centrar a média dos dados;

	Característi ca 1	Característic a 2
Amostra 1	10	6
Amostra 2	11	4
Amostra 3	8	5
Amostra 4	3	3
Amostra 5	1	2.8
Amostra 6	2	1

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

passo1.) Centro médio dos dados;

	Característi ca 1	Característic a 2
Amostra 1	10	6
Amostra 2	11	4
Amostra 3	8	5
Amostra 4	3	3
Amostra 5	1	2.8
Amostra 6	2	1

CATOLICA PORTUGUESA BRAGA

UNIVERSIDADE

passo1.) Centro médio dos dados;

	Característi ca 1	Característic a 2
Amostra 1	10	6
Amostra 2	11	4
Amostra 3	8	5
Amostra 4	3	3
Amostra 5	1	2.8
Amostra 6	2	1

passo

2.) Calcular PC1 utilizando a decomposição do valor singular (SVD).

passo

2.) Calcular PC1 utilizando a decomposição em valores singulares (SVD).

passo

2.) Calcular PC1 utilizando a decomposição em valores singulares (SVD).

 $d1^2 + d2^2 + d3^2 + d4^2 + d5^2 + d6^2 =$ soma das distâncias ao quadrado

passo

2.) Calcular PC1 utilizando a decomposição em valores singulares (SVD).

 $d1^2 + d2^2 + d3^2 + d4^2 + d5^2 + d6^2 = soma das distâncias$

ao quadrado
PCA passo a
passo

A média da soma das distâncias ao quadrado LICA para PC1 é designada por **Eigenvalue** Para UGUESA PC1.

passo

2.) Calcular PC1 utilizando a decomposição em valores singulares (SVD).

Característica 2 Digamos que o declive da reta é 0,25. Para 4 unidades da caraterística 1 aumentamos 1 unidade na caraterística 2. O PC1 é uma combinação linear das características 1 e 2. Característica 1

passo

2.) Calcular PC1 utilizando a decomposição em valores singulares (SVD).

passo

2.) Calcular PC1 utilizando a decomposição do valor singular (SVD).

Característica 2

As proporções de cada caraterística são designadas por **Carregando pontuações**.

Neste caso, as pontuações de carregamento do vetor próprio do PC1 são 0,97 e 0,242.

$$\frac{\frac{4.12}{4.12}}{\frac{1}{4.12}} = 1$$

$$\frac{\frac{1}{4.12}}{\frac{4}{4.12}} = 0.242$$
Característica 1

passo

3.) Calcular o PC2 utilizando a decomposição do valor singular (SVD).

passo

3.) Calcular o PC2 utilizando a decomposição do valor singular (SVD).

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

passo

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

passo

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

passo

UNIVERSIDADE CATOLICA PORTUGUESA

BRAGA

passo

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

passo

PCA - Variância Explicada

 $\frac{SS(\text{distances for PC1})}{n-1} = \text{Eigenvalue for PC1}$

PC2

 $\frac{SS(distances for PC2)}{n-1} = Eigenvalue for PC2$

Digamos que o valor próprio para PC1 é 15 e para PC2 é 3.

A variância explicada do PC1 = 15 / (15 + 3) = 0.83 = 83%

Para PC2 = 3/(15+3) = 0.17 = 17%

PCA - Variância explicada - Scree Plot

• PCA com 3 ou mais características é praticamente o mesmo que 2 características...

				Característ
	Característi ca 1	Característi ca 2	Característ ica 3	
Amostra 1	10	6	12	
Amostra 2	11	4	9	
Amostra 3	8	5	10	
Amostra 4	3	3	2.5	
Amostra 5	1	2.8	1.3	
Amostra 6	2	1	2	

PCA com mais recursos

PCA com mais recursos

NOTE: If the scree plot looked like this, where PC3 and PC4 account for a substantial amount of variation, then just using the first 2 PCs would not create a very accurate representation of the data.

Exemplo de PCA com o conjunto de dados da íris

Graph showing the variance explained by each PC

Scores plot showing coordinates of the different flowers in the PC1/ PC2. Colours represent species, which were not used in the PCA computations.

Terminologia PCA

- Componente principal: Combinações lineares de variáveis originais que captam a variância máxima nos dados.
- Vetor próprio: Direção no da caraterística espaço que define o principal componentes.
- **Valor próprio:** Escalar indicando a quantidade de variância explicada pelo pelo seu vetor próprio correspondente.
- Variância explicada: Proporção da variância total dos dados explicada por cada componente principal.
- Pontuação de carregamento: Peso ou coeficiente atribuído a cada variável original na construção de componentes principais.

Considerações finais da AdC

- Relações não lineares: A ACP pressupõe relações lineares entre variáveis, o que limita a sua eficácia na captação de padrões não lineares complexos; para esses casos, considerar técnicas não lineares como t-SNE ou UMAP.
- Interpretabilidade: A PCA cria novas combinações de características que podem ser difíceis de interpretar, tornando-a menos adequada quando é crucial manter a interpretabilidade das características individuais.
- Dados esparsos: O desempenho da PCA pode ser afetado por dados esparsos em que a maioria dos valores são zero ou estão em falta, o que leva a distorções na estrutura dos dados.
- Excedentes: A PCA é sensível a valores aberrantes, que podem distorcer os resultados; para conjuntos de dados com valores aberrantes, podem ser necessárias técnicas robustas de PCA para atenuar o seu impacto.
- Escala dos dados: A PCA é sensível à escala das características, por isso é importante padronizar ou normalizar os dados antes de aplicar a PCA para garantir que todas as

 Objetivo: Reduzir dados de elevada dimensão para um espaço de dimensão inferior, preservando as relações entre pares, permitindo a visualização e a análise.

Abordagens:

- MDS métrico: Procura preservar as distâncias reais entre os pontos de dados no espaço de dimensão inferior, utilizando frequentemente algoritmos de otimização como a descida do gradiente.
- MDS não métrico: centra-se na preservação da ordem de classificação das distâncias e não nos seus valores absolutos, o que o torna adequado para dados ordinais ou não quantitativos.

Outras técnicas de redução da

dimensionalidade • Computacionalmente intensivo para grandes conjuntos de dados e sensível à entrada.

Outras técnicas de redução da dimensionalidade Incorporação de vizinhança estocástica distribuída t (t-SNE)

Objetivo: Reduzir dados dados para a espaço de dimensão inferior espaço, dando ênfase às relações locais entre os pontos de dados.

Abordagem:

- O t-SNE utiliza uma abordagem de mapeamento não linear que visa preservar as semelhanças locais no espaço de alta dimensão, modelando-as como probabilidades condicionais.
- Minimiza a divergência entre as probabilidades condicionais nos espaços de alta dimensão e de baixa dimensão utilizando a otimização de descida gradiente.

Características principais:

- Enfatiza a preservação de estruturas locais, tornando-o eficaz para visualizar agrupamentos e estruturas múltiplas nos dados.
- Particularmente útil para explorar relações complexas e não lineares em conjuntos de dados de elevada dimensão.

Outras técnicas de redução da dimensionalidade Aproximação e Projeção Uniforme de Manifolds (UMAP)

 Objetivo: Reduzir a dimensionalidade de dados de elevada dimensão, preservando a estrutura local e global, oferecendo um equilíbrio entre a preservação de detalhes locais e a captura de padrões globais.

Abordagem:

- O UMAP constrói um gráfico de alta dimensão que representa as relações locais entre os pontos de dados e optimiza a incorporação num espaço de dimensão inferior para corresponder à topologia do gráfico.
- Utiliza uma combinação da teoria dos conjuntos difusos e da geometria Riemanniana para modelar a estrutura múltipla dos dados.

Características principais:

- Preserva a estrutura local e global, permitindo uma representação mais abrangente dos dados.
- Oferece flexibilidade no equilíbrio entre a preservação de detalhes locais e a captura de padrões globais através da afinação de parâmetros.
- Conhecido pela sua escalabilidade e eficiência, tornando-o adequado para grandes conjuntos de dados.

PCA vs MDS vs tSNE vs UMAP

Sainburg, T., Thielk, M., C Gentner, T. Q. (2020). Encontrar, visualizar e quantificar a estrutura latente em diversos repertórios vocais de animais. Em F. E. Theunissen (Ed.), PLOS Computational Biology (Vol. 16, Issue 10, p. e1008228). Biblioteca Pública da Ciência (PLoS). https://doi.org/10.1371/journal.pcbi.1008228

Recursos

• Redução de dimensão: Uma visita guiada:

(https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/FnT_dimensionReduction.pdf)

 Oskolkov, N. (2022). Redução da dimensionalidade. Em Applied Data Science in Tourism (pp. 151-167). Springer International Publishing. https://doi.org/10.1007/978-3-030-88389-8_9

Aprendizagem não supervisionada - Redução de