Lesson 9.1

Decision Theory with Unknown State Probabilities

Decision Theory

- Most management decisions are made in an environment of uncertainty.
- •Decision theory provides a orderly way of choosing among several alternative strategies when decisions are made under uncertainty or risk.

Decision Theory

- Uncertainty exists when the decision maker is unable to ascertain or subjectively estimate the probabilities of the various states of nature.
- Risk exists when the decision maker does not know with certainty the state of nature, but the probabilities of various outcomes is known.

States of Nature,

States of Nature,

			itatano	
	\mathbf{S}_{1}	s_2	s_3	S_4
\mathbf{a}_{1}	c ₁₁	c ₁₂	c ₁₃	c ₁₄
Alternatives _i				
\mathbf{a}_2	c ₂₁	c ₂₂	c ₂₃	c ₂₄
a_3	c ₃₁	c ₃₂	c ₃₃	c ₃₄

C_{ii} is the consequence of state I under alternative j

Home Health Example

Suppose a home health agency is considering adding physical therapy (PT) services for its clients. There are three ways to do this:

Option A: contract with an independent practitioner at \$60 per visit.

Option B: hire a staff PT at a monthly salary of \$4000 plus \$400/mo. for a leased car plus \$7/visit for supplies and travel.

Option C: independent practitioner at \$35/visit but pay for fringe benefits at \$200/mo. and cover the car and expenses as in Option B.

Source: Austin, CJ and Boxerman, SB, Quantitative Analysis for Health Services Administration, AUPHA/Health Administration Press, Ann Arbor, Michigan, 1995

Demand of Patient Services: $\begin{bmatrix} s_1 & s_2 & s_3 & s_4 \\ 90 & 140 & 150 \\ \hline \end{bmatrix}$

States of Nature,

Assumption: Probabilities of States of Nature are unknown.

Visits/ mo.

Alternatives.

Assumption: Charge \$75 per visit.

Alternatives.

```
•Contract with independent Contractor at $60/visit.
Net Profit = (75 - 60) * D = 15*D
•Pay monthly salary of $4,000
•Car allowance $400
•Expenses @$7 a visit
Net Profit = -4,000 - 400 + (75 - 7) * D = -4,400 + 68*D
```

Assumption: Charge \$75 per visit.

Alternatives.

```
•Contract with independent Contractor at $60/visit.
Net Profit = (75 - 60) * D = 15*D
•Pay monthly salary of $4,000
•Car allowance $400
•Expenses @$7 a visit
Net Profit = -4,000 - 400 + (75 - 7) * D = -4,400 + 68*D
•Contract @ $35 per visit
•Car allowance $400
Fringe benefits of $200
•Expenses @$7 a visit
Net Profit = -400 - 200 + (75 - 35 - 7) * D = -600 + 33*D
```

Assumption: Charge \$75 per visit.

Total Profit (Alt 2) = -4,400 + 68D
$$s_{1} \quad s_{2} \quad s_{3} \quad s_{4} \quad s_{2} \quad s_{2} \quad s_{3} \quad s_{4} \quad s_{2} \quad s_{2} \quad s_{3} \quad s_{4} \quad s_{2} \quad s_{2} \quad s_{2} \quad s_{3} \quad s_{4} \quad s_{2} \quad$$

	30 30	S ₂ 90	s ₃ 140	S ₄ 150
\mathbf{a}_1	450	1350	2100	2250
a_2	-2360	1720	5120	5800
a_3	390	2370	4020	4350

No alternative dominates any other alternative

$\frac{s_1}{30}$	90	S ₃ 140	150
450	1350	2100	2250
-2360	1720	5120	5800
390	2370	4020	4350

Criteria for Decision Making

Maximin Criterion - criterion that maximizes the minimum payoff for each alternative.

Steps:

- 1) Identify the minimum payoff for each alternative.
- 2) Pick the largest minimum payoff.

Maximin Decision Criterion

	30	S ₂ 90	s ₃ 140	S ₄ 150	Maximin
\mathbf{a}_1	450	1350	2100	2250	<i>450</i>
a_2	-2360	1720	5120	5800	-2360
a_3	390	2370	4020	4350	390

Maximin Decision Criterion

The maximin criterion is a very conservative or risk adverse criterion. It is a pessimistic criterion. It assumes nature will vote against you.

Minimax Decision Criterion

If the values in the payoff matrix were costs, the equivalent conservative or risk adverse criterion would be the minimax criterion. It is a pessimistic criterion.

Criteria for Decision Making

Maximax Criterion- criterion that maximizes the maximum payoff for each alternative.

Steps:

- 1) Identify the maximum payoff for each alternative.
- 2) Pick the largest maximum payoff.

Maximax Decision Criterion

	30	S ₂ 90	s ₃ 140	s ₄ 150	Maximax
a_1	450	1350	2100	2250	2250
\mathbf{a}_2	-2360	1720	5120	5800	5800
a_3	390	2370	4020	4350	4350

Maximax Decision Criterion

The maximax criterion is a very optimistic or risk seeking criterion. It is not a criterion which preserves capital in the long run.

Minimin Decision Criterion

If the values in the payoff matrix were costs, the equivalent optimistic criterion is minimin. It assumes nature will vote for you.

Criteria for Decision Making

Minimax Regret Criterion- criterion that minimizes the loss incurred by not selecting the optimal alternative.

Steps:

- 1) Identify the largest element in the first column.
- 2) Subtract each element in the column from the largest element to compute the opportunity loss and repeat for each column.
- 3) Identify the maximum regret for each alternative and then choose that alternative with the smallest maximum regret.

			J
S_1	S_2	\mathbf{S}_{3}	S_4
30	90	140	150
450	1350	2100	2250
-2360	1720	5120	5800
390	2370	4020	4350
1			

\mathbf{S}_{1}	\mathbf{s}_{2}	\mathbf{S}_{3}	S_4
30	90	140	150
450	1350	2100	2250
450 - 450 0			
-2360 450 - (-230 2810	1720 60)	5120	5800
2 2810			
390 450 - 390	2370	4020	4350
60			

		J	-J -J
S_1	S_2	\mathbf{S}_{3}	$\mathbf{S}_{\mathcal{A}}$
30	90	140	150
450	1350	2100	2250
450 - 450			
0			
-2360	1720	5120	5800
450 - (-2360))		
2810			
390	2370	4020	4350
450 - 390			
60			

	S_1	S_2	S_3	$\mathbf{S}_{\mathcal{A}}$
	30	90	140	150
	450	1350	2100	2250
_	450 - 450 0	2370 - 1350 1020	5120 - 2100 3020	5800 - 2250 3550
		1720 2370 - 1720	<i>5120</i> 5120 - 5120	5800 5800 - 5800
2	2810	650	0	0
	390	2370	4020	4350
	450 - 390	2370 - 2370	5120 - 4020	5800 - 4350
3	60	0	1100	1450

 $\textbf{Minimax Regret: Regret}_j = \textbf{Max} [c_{ij}] - c_{ij}$

			J		ıj ıj
	\mathbf{S}_{1}	\mathbf{s}_2	\mathbf{s}_3	s_4	Max
ı	30	90	140	150	Regret
1	0	1020	3020	3550	3550
2	2810	650	0	0	2810
3	60	0	1100	1450	1450

$\mathbf{Minimax\ Regret:\ Regret}_{j} = \mathbf{Max}\ [\mathbf{c}_{ij}] - \mathbf{c}_{ij}$

	s ₁ 30	S ₂ 90	S ₃ 140	s ₄ 150	Max Regret
a ₁	0	1020	3020	3550	3550
a_2	2810	650	0	0	2810
\mathbf{a}_3	60	0	1100	1450	1450
J					

Minimax Regret Decision Criterion

The minimax regret criterion is also a conservative criterion. It is not as pessimistic as the maximin criterion.