Complexidade de Algoritmos

Mariana Kolberg

Projeto de Algoritmos Divisão e conquista

Aula 2

Complexidade de Algoritmos

Divisão e conquista

- Divide um problema em subproblemas independentes, resolve-os e combina as soluções obtidas em uma solução para o problema original.
 - resulta em um **processo recursivo** de decomposições e recombinações.
- Pode ser aplicado em problemas de:
 - buscas em tabelas, como buscas seqüencial e binária;
 - classificação, como classificação por seleção (selectionsort), por intercalação (mergesort)
 e por particionamento (quicksort);
 - multiplicação (de matrizes e de números binários, por exemplo);
 - seleção (para determinar máximo e mínimo, etc.).

Divisão e Conquista

- Métodos para resolver recorrências:
 - Método da árvore de recursão
 - Método da substituição
 - Método mestre

Recorrências - Método da árvore de recursão

Bem intuitiva para a análise de complexidade

- Numa árvore de recursão cada nó representa o custo de um único subproblema da respectiva chamada recursiva
- Somam-se os custos de todos os nós de um mesmo nível, para obter o custo daquele nível
- Somam-se os custos de todos os níveis para obter o custo da árvore

Recorrências - Método da árvore de recursão

Dada a recorrência T(n) = 3T(n/2) + cn

- Em que nível da árvore o tamanho do problema é 1?
- Quantos níveis tem a árvore?
- Quantos nós têm cada nível?
- Qual o tamanho do problema em cada nível?
- Qual o custo de cada nível i da árvore?
- Quantos nós tem o último nível?
- Qual o custo da árvore?

Recorrências - Método da árvore de recursão

Outro exemplo é a recorrência T(n) = 3T(n/2) + cn da multiplicação de números binários. Temos $\log_2 n$ níveis na árvore, o nível i com 3^i nós, tamanho do problema $n/2^i$, trabalho $cn/2^i$ por nó e portanto $(3/2)^i n$ trabalho total por nível. O número de folhas é $3^{\log_2 n}$ e portanto temos

$$T(n) = \sum_{0 \le i < \log_2 n} (3/2)^i n + \Theta(3^{\log_2 n})$$

$$= n \left(\frac{(3/2)^{\log_2 n} - 1}{3/2 - 1} \right) + \Theta(3^{\log_2 n})$$

$$= 2(n^{\log_2 3} - 1) + \Theta(n^{\log_2 3})$$

$$= \Theta(n^{\log_2 3})$$

Observe que a recorrência T(n) = 3T(n/2) + c tem a mesma solução.

Recorrências - Método mestre

Para aplicar o método mestre deve ter a recorrência na seguinte forma:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

onde $a \ge 1$, b > 1 e f(n) é uma função assintoticamente positiva. Se a recorrência estiver no formato acima, então T(n) é limitada assintoticamente como:

- 1. Se $f(n) = O(n^{\log_b a \epsilon})$ para algum $\epsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. Se $f(n)=\Omega(n^{\log_b a+\epsilon})$ para algum $\epsilon>0$, e se $af(n/b)\leq cf(n)$ para c<1 e para todo n suficientemente grande, então $T(n)=\Theta(f(n))$

Considerações

- Nos casos 1 e 3 f(n) deve ser polinomialmente menor, resp. maior que $n^{\log_b a}$, ou seja, f(n) difere assintoticamente por um fator n^{ϵ} para um $\epsilon > 0$.
- Os três casos não abrangem todas as possibilidades

Recorrência - Método mestre simplificado

- Algoritmos de divisão e conquista seguem um padrão genérico:
 - Resolvem um problema de tamanho n solucionando recursivamente a subproblemas de tamanho n/b e então combinando essas resposta em tempo O(nd), para certos a,b,d>0.
 - Seus tempos podem ser capturados pela equação $T(n) = aT\left(\left\lceil \frac{n}{b}\right\rceil\right) + O(n^d)$
- Teorema mestre:
 - Se $T(n) = aT(\left\lceil \frac{n}{b} \right\rceil) + O(n^d)$ para constantes a>0, b>1 e d≥0, então

$$T(n) = \begin{cases} O(n^d) & \text{se } d > \log_b a \\ O(n^d \log n) & \text{se } d = \log_b a \\ O(n^{\log_b a}) & \text{se } d < \log_b a \end{cases}$$

Esse teorema nos dá o tempo de execução da maioria dos problemas de divisão e conquista

- O método da substituição envolve duas etapas:
 - pressupõe-se um limite hipotético.
 - usa-se indução matemática para provar que a suposição está correta.
- Aplica-se este método em casos que é fácil pressupor a forma de resposta.
- Pode ser usado para estabelecer limites superiores ou inferiores.

Mergesort usando o método da substituição

Supõe-se que a recorrência

$$T(n) = 2T(\lfloor \frac{n}{2} \rfloor) + n$$

tem limite superior igual a $n \log n$, ou seja, $T(n) = O(n \log n)$. Devemos provar que $T(n) \le cn \log n$ para uma escolha apropriada da constante c > 0.

$$T(n) \le 2\left(c\lfloor \frac{n}{2}\rfloor \log(\lfloor \frac{n}{2}\rfloor) + n\right)$$

$$\le cn \log n/2 + n = cn \log n - cn + n$$

$$\le cn \log n$$

para $c \geq 1$.

A expressão na equação

$$c \cdot n \log n \underbrace{-c \cdot n + n}_{\text{residuo}}$$

se chama resíduo. O objetivo na prova é mostrar, que o resíduo é negativo.

Como fazer um bom palpite?

- Usar o resultado de recorrências semelhantes. Por exemplo, considerando a recorrência T(n) = 2T(⌊n/2⌋ + 17) + n, tem-se que T(n) ∈ O(n log n).
- Provar limites superiores (ou inferiores) e reduzir o intervalo de incerteza.
 Por exemplo, para equação do Mergesort podemos provar que T(n) = Ω(n) e T(n) = O(n²). Podemos gradualmente diminuir o limite superior e elevar o inferior, até obter T(n) = Θ(n log n).
- Usa-se o resultado do método de árvore de recursão como limite hipotético para o método da substituição.

Dada a recorrência $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$

 $\bullet\,$ Prove por indução que $T(n)=\Theta(n^2)$

Dada a recorrência $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$

• Prove por indução que $T(n) = \Theta(n^2)$

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^2$$

$$\le 3d\lfloor n/4 \rfloor^2 + cn^2$$

$$\le 3d(n/4)^2 + cn^2$$

$$= \frac{3}{16}dn^2 + cn^2 \le dn^2$$

para $(\frac{3d}{16}+c) \leq d$, ou seja, para valores de d tais que $d \geq \frac{16}{13}c$

Procurar o máximo em uma sequência

Máximo

Entrada Uma seqüência a e dois índices l, r tal que a_l, \ldots, a_{r-1} é definido.

Saída $\max_{l < i < r} a_i$

- 1 $m_1 := M(a, l, |(l+r)/2|)$
- $2 \quad m_2 := M(a, |(l+r)/2, r|)$
- Qual a recorrência?
- Resolva a recorrência utilizando os 3 métodos
- Resolva a recorrência $T(n) = 3T(\frac{n}{2}) + n^2$ utilizando os 3 métodos

Procurar o máximo em uma sequência

Máximo

Entrada Uma seqüência a e dois índices l, r tal que a_l, \ldots, a_{r-1} é definido.

Saída $\max_{l < i < r} a_i$

- 1 $m_1 := M(a, l, |(l+r)/2|)$ $2 \quad m_2 := M(a, |(l+r)/2, r|)$
- Qual a recorrência? $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- Resolva a recorrência utilizando os 3 métodos.

Exercícios

```
Potenciação-Trivial (PT)

Entrada Uma base a \in \mathbb{R} e um exponente n \in \mathbb{N}.

Saída A potência a^n.

1 if n = 0
2 return 1
3 else
4 return PT(a, n - 1) \times a
5 end if
```

Algoritmo Potenciação para $n=2^i$

```
Potenciação-Npotência 2 (P2)

Entrada Uma base a \in \mathbb{R} e um exponente n \in \mathbb{N}.

Saída A potência a^n.

1 if n = 1 then
2 return a
3 else
4 x := P2(a, n \div 2)
5 return x \times x
6 end if
```

Exercícios

```
Busca-Binária(i,f,x,S)
```

Entrada Um inteiro x, índices i e f e uma seqüência $S = a_1, a_2, \dots a_n$ de números ordenados.

Saída Posição i em que x se encontra na seqüência S ou ∞ caso $x \notin S$.

```
1 if i = f then

2 if a_i = x return i

3 else return \infty

4 end if

5 m := \lfloor \frac{f-i}{2} \rfloor + i

6 if x < a_m then

7 return Busca Binária(i, m-1)

8 else

9 return Busca Binária(m+1, f)

10 end if
```

Quicksort

Entrada Índices l, r e um vetor a com elementos a_1, \ldots, a_r .

Saída a com os elementos em ordem não-decrescente, i.e. para i < j temos $a_i \le a_j$.

```
1  if l < r then
2    m := Partition(l,r,a);
3    Quicksort(l,m-1,a);
4    Quicksort(m+1,r,a);
5  end if</pre>
```

Exercícios

▶ Resolva as recorrencias abaixo:

- $T(n) = 2T(n/2) + n \log n$
- 2. T(n) = 9T(n/3) + n