Entiers somme de deux carrés

L'objectif de ce problème est de déterminer quels sont les entiers naturels qui sont somme de deux carrés.

Notations:

 \mathbb{N} , \mathbb{Z} et \mathbb{C} désignent respectivement les ensembles des entiers naturels, des entiers relatifs et des nombres complexes.

On pose $\mathbb{Z}[i] = \{a + i.b / a \in \mathbb{Z}, b \in \mathbb{Z}\} \subset \mathbb{C} \ \text{ et } \mathbb{Z}[i]^* = \mathbb{Z}[i] \setminus \{0\}$.

Pour $z \in \mathbb{C}$, on pose $N(z) = z\overline{z}$.

Partie I :Présentation de l'anneau de $\mathbb{Z}[i]$

- 1. Présentation de l'anneau $\mathbb{Z}[i]$.
- 1.a Vérifier que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} muni de l'addition et de la multiplication usuelles.
- 1.b Etablir que pour tout $u, v \in \mathbb{Z}[i]$, N(uv) = N(u)N(v) et que pour tout $u \in \mathbb{Z}[i]$, $N(u) \in \mathbb{N}$.
- 1.c Un élément $u \in \mathbb{Z}[i]$ est dit inversible ssi il existe $v \in \mathbb{Z}[i]$ tel que uv = 1. Montrer que si u est inversible alors N(u) = 1. Déterminer alors l'ensemble, noté U, des éléments inversibles de $\mathbb{Z}[i]$.
- 2. Divisibilité dans l'anneau $\mathbb{Z}[i]$. Soit $u,v\in\mathbb{Z}[i]$. On dit que u divise v dans $\mathbb{Z}[i]$, et on note $u\,|\,v$, ssi il existe $s\in\mathbb{Z}[i]$ tel que v=su.
- 2.a Soit $u, v, w \in \mathbb{Z}[i]$. Etablir l'implication que si $u \mid v$ et $v \mid w$ alors $u \mid w$.
- 2.b Soit $u, v \in \mathbb{Z}[i]$. Etablir que si $u \mid v$ et $v \mid u$ alors $u = \pm v$ ou $\pm iv$.
- 2.c Soit $u, v \in \mathbb{Z}[i]$. Montrer que si u divise v alors N(u) divise N(v) dans \mathbb{Z} .
- 2.d Déterminer les diviseurs de 1+i, puis de 1+3i dans $\mathbb{Z}[i]$.
- 3. Division euclidienne dans $\mathbb{Z}[i]$.
- 3.a Montrer que pour tout $z\in\mathbb{C}$, il existe $u\in\mathbb{Z}[i]$ tel que N(u-z)<1 . Ce u est-il unique ?
- 3.b Montrer que pour tout $u \in \mathbb{Z}[i]$ et tout $v \in \mathbb{Z}[i]^*$, il existe $(q,r) \in \mathbb{Z}[i] \times \mathbb{Z}[i]$ tel que : u = vq + r avec N(r) < N(v).

 On pourra utiliser la division dans \mathbb{C} .

Partie II : Arithmétique dans $\mathbb{Z}[i]$

- 1. Soit $\delta \in \mathbb{Z}[i]$. On note $\delta \mathbb{Z}[i] = \{\delta u / u \in \mathbb{Z}[i]\}$. Montrer que $\delta \mathbb{Z}[i]$ est un sous-groupe additif de $\mathbb{Z}[i]$.
- 2. Soit $u, v \in \mathbb{Z}[i]$ avec $u \neq 0$ ou $v \neq 0$. On note $I(u, v) = \{uz + vz'/z, z' \in \mathbb{Z}[i]\}$.
- 2.a Observer que u et v appartiennent à l'ensemble I(u,v).
- 2.b Montrer que l'ensemble $A = \{N(w)/w \in I(u,v) \setminus \{0\}\}$ possède un plus petit élément d > 0.
- 2.c Soit δ un élément de I(u,v) tel que $N(\delta)=d$. Etablir que $I(u,v)=\delta\mathbb{Z}\big[i\big]$. On pourra exploiter la division euclidienne présentée en I.3b.

- 2.d Montrer que δ divise u et v puis que pour tout $w \in \mathbb{Z}[i]$, on a l'équivalence : $(w \mid u \text{ et } w \mid v) \Leftrightarrow w \mid \delta$. On dit que δ est un pgcd de u et v.
- 3. Soit $u,v \in \mathbb{Z}[i]$ avec $u \neq 0$ ou $v \neq 0$.

 On dit que u et v sont premiers entre eux ssi le nombre δ défini en II.2.d appartient à $\{\pm 1, \pm i\}$.

 Dans les questions 3.a et 3.b, on suppose que u et v sont premiers entre eux.
- 3.a Justifier qu'il existe $z, z' \in \mathbb{Z}[i]$ tel que 1 = uz + vz'
- 3.b Soit $w \in \mathbb{Z}[i]$. Montrer que si u divise vw alors u divise w.
- 4. Soit $u \in \mathbb{Z}[i] \{0, \pm 1, \pm i\}$. On dit que u est irréductible ssi ses seuls diviseurs sont $\pm 1, \pm i, \pm u$ et $\pm iu$.
- 4.a Soit $v \in \mathbb{Z}[i]$. On suppose que u irréductible et ne divise pas v. Montrer que u et v sont premiers entre eux.
- 4.b Soit $v,w\in\mathbb{Z}[i]$. On suppose que u est irréductible et divise vw . Montrer que u divise v ou divise w .

Partie III : Nombres somme de deux carrés

- 1. On note $\Sigma = \{a^2 + b^2 / a \in \mathbb{Z}, b \in \mathbb{Z}\}$.
- 1.a Montrer que $n \in \Sigma \Leftrightarrow \exists u \in \mathbb{Z}[i], n = N(u)$.
- 1.b En déduire que si $n, n' \in \Sigma$ alors $nn' \in \Sigma$.
- 2. p désigne un nombre premier strictement supérieur à 2.
- 2.a Montrer que $p \in \Sigma \Rightarrow p \equiv 1 \mod 4$. Nous admettrons que l'implication réciproque est vraie (quoique loin d'être immédiate). Ainsi $5 = 1^2 + 2^2$, $13 = 2^2 + 3^2$, $17 = 1^2 + 4^2$,... sont des éléments de Σ .
- 2.b Montrer que si p n'est par irréductible alors $p \in \Sigma$.
- 3. Soit $a,b \in \mathbb{Z}$ et $n=a^2+b^2 \in \Sigma$. Soit $p \equiv 3 \mod 4$, un nombre premier diviseur de n.
- 3.a Montrer que $p \mid a + i.b$ dans $\mathbb{Z}[i]$.
- 3.b En déduire que p^2 divise n.
- 4. Etablir que les entiers naturels non nuls appartenant à Σ sont les nombres de la forme $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$ avec p_1,p_2,\dots,p_N nombres premiers deux à deux distincts et $\alpha_1,\alpha_2,\dots,\alpha_N$ entiers naturels tels que : $\forall 1 \leq i \leq N \;,\; p_i \equiv 3 \mod 4 \Rightarrow \alpha_i$ est pair.