Page: 1 of 52

FCC TEST REPORT

FCC ID · YCJ003-XXXXXXX

: GLOBALSCALE TECHNOLOGIES, INC. **Applicant**

Address : 5F,No.2 building Minxing industrial Park Minkang Road, Minzhi

Street, Baoan District, Shenzhen, Guangdong, China

Equipment Under Test (EUT):

Product Name : Display Plug

Model No. : 003-XXXXXXXX

Remark : XXXXXXXX is any number or English character

Standards : FCC Part 15 Subpart C:2009

Date of Test : July 1, 2011 ~ July 4, 2011

Date of Issue : July 14, 2011

Test Engineer : Hunk yan

Tarko zhous : Philo zhong **Reviewed By**

Test Result : PASS

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

Page: 2 of 52

2 Test Summary

FCC Part 15C Requirements for Bluetooth					
Maximum peak output power	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
Restricted Band	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
Dwell time	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
Channel separation	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
Hopping channel No.	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
20-dB Bandwidth	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
RF Exposure Test	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
Conducted Emission (150KHz to 30MHz)	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		
Radiation Emission, 30MHz to 25GHz	FCC Part 15 Subpart C:2009	ANSI C63.4: 2003	PASS		

3 Contents

1	(COVER PAGE	1
2		TEST SUMMARY	2
3		CONTENTS	3
4		GENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.1		
	4.3		
	4.4		
	4.5		
	4.6		
	4.7		
5		EQUIPMENT USED DURING TEST	7
6		CONDUCTED EMISSION TEST	Q
U			
	6.1		
	6.2		
	6.3		
	6.4 6.5		
	6.6		
	6.7		
7		RADIATION EMISSION TEST	
	7.1		
	7.1	·	
	7.2		
	7.4		
	7.5		
	7.6		
	7.7		
	7.8	B EUT OPERATING CONDITION	17
	7.9	RADIATED EMISSIONS LIMIT ON PARAGRAPH 15.209	17
	7.1		
	7.1		
		7.11.1 Test mode: continuously recevie mode	
		7.11.2 Test mode: continuously transmit mode	
8		ANTENNA REQUIREMENT	27
9		MAXIMUM PEAK OUTPUT POWER	27
1()	HOPPING CHANNEL NUMBER	28
11	1	FREQUENCY SEPARATED	29
1′	,	DWELL TIME	32

12.1	DEFINITION:	
12.2	TEST PROCEDURE	32
12.3	TEST RESULT: PASS	33
13 20D	OB BANDWIDTH	39
14 RA	DIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND	41
15 RF	EXPOSURE TEST	43
16 PH	OTOGRAPHS OF TESTING	45
17 PH	OTOGRAPHS - CONSTRUCTIONAL DETAILS	46
17.1	EUT – Front View	46
17.2	EUT – BACK VIEW	46
17.3	EUT – OPEN VIEW1	47
17.4	EUT – OPEN VIEW2	47
17.5	EUT – OPEN VIEW3	
17.6	PCB1 – Front View	48
17.7	PCB1 – BACK VIEW	49
17.8	PCB2 – Front View	
17.9	PCB2 – BACK VIEW	50
17.10	PCB3 – Front View	
17.11	PCB3 – BACK VIEW	51
18 FC	CIARFI	52

4 General Information

4.1 Client Information

Applicant : GLOBALSCALE TECHNOLOGIES, INC.

Address of Applicant : 5F,No.2 building Minxing industrial Park Minkang Road, Minzhi

Street, Baoan District, Shenzhen, Guangdong, China

Manufacturer : GLOBALSCALE TECHNOLOGIES, INC.

Address of Manufacturer : 5F,No.2 building Minxing industrial Park Minkang Road, Minzhi

Street, Baoan District, Shenzhen, Guangdong, China

4.2 General Description of E.U.T.

Product Name : Display Plug

Model No. : 003-XXXXXXXX

Remark : XXXXXXXX is any number or English character

Frequency Range:

Bluetooth :2402MHz \sim 2480MHz

Antenna Gain : 0 dBi

4.3 Details of E.U.T.

Technical Data : 100-240VAC 50/60Hz, 0.3A Max

4.4 Description of Support Units

The EUT has been tested as an independent unit. All the test was performed in the condition of AC 120V/60Hz input.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Display Plug. The standards used were FCC Part 15 Subpart C:2009.

WALTEK SERVICES

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

		•	•	1			•	
Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug- 2010	Aug- 2011	Wws200 81596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug- 2010	Aug- 2011	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug- 2010	Aug- 2011	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug- 2010	Aug- 2011	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug- 2010	Aug- 2011	-	-
10m 50 Ohm Coaxial Cable with N- plug,indivi dual length	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug- 2010	Aug- 2011	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	-	-	-	1
Color Monitor	SUNSPO/ SP-14C	-	-	-	-	-	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug- 2010	Aug- 2011	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	КН3931	-	9k-1GHz	Aug- 2010	Aug- 2011	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug- 2010	Aug- 2011	Wws200 80941	±10%
Absorbing Clamp	ROHDE&SC HWARZ/ MDS-21	100205	W2005003	impandance50 Ω loss : 17 dB	Aug- 2010	Aug- 2011	Wws200 80943	±1dB

WALTEK SERVICES

FCC ID:YCJ003-XXXXXXX

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
10m 50 Ohm Coaxial Cable with N- plug,indivi dual length	SCHWARZB ECK MESS- ELEKTROM / AK 9514	-	-	-	Aug- 2010	Aug- 2011	-	-
PC	Lenovo	T2900D	-	-	Aug- 2010	Aug- 2011	-	±1dB
Display	ViewSonic	S27996- 1W	-	-	Aug- 2010	Aug- 2011	-	±0.5dB
K/B	Dell	L100	-	-	Aug- 2010	Aug- 2011	-	±0.5dB
Mouse	Acer	M- UVACR1	-	-	Aug- 2010	Aug- 2011	-	±0.5dB

WALTEK SERVICES

6 Conducted Emission Test

Test Requirement: FCC Part15 Paragraph 15.207

Test Method: Based on FCC Part15 Paragraph 15.207

Frequency Range: 150kHz to 30MHz

Class: Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

Average Limit

6.1 Test Equipment

Please refer to Section 5 this report.

6.2 Test Procedure

- 1. The EUT was connected with signal generator and placed on a table.
- 2. The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- 3. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.3 Conducted Test Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

6.4 EUT Operating Condition

Operating condition is according to ANSI C63.4:2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

WALTEK SERVICES

6.5 Conducted Emission Limits

 $66\text{-}56~dB\mu V$ between 0.15MHz~&~0.5MHz $56~dB\mu V$ between 0.5MHz~&~5MHz $60~dB\mu V$ between 5MHz~&~30MHz

Note: In the above limits, the tighter limit applies at the band edges.

6.6 Conducted Emission Test Data

Remark: the EUT was tested in Continuously Transmit mode.

Live Line

WALTEK SERVICES

Neutral Line

6.7 Conducted Emission Test Setup View

7 Radiation Emission Test

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI 63.4:2003

Frequency Range: 30MHz to 25GHz

Measurement Distance: 3m

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

7.1 Test Equipment

Please refer to Section 5 this report.

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on ANSI C63.4:2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at WALTEK SERVICES EMC Lab is +/-5.03 dB.

7.3 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

WALTEK SERVICES

7.4 Radiated Test Setup

The radiated emission tests were performed in the 3m Semi-Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.209 limits and Paragraph 15.247 limits.

7.5 Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.247 Rules, the system was tested to 25000 MHz. Below 1GHz

30 MHz

Start Frequency 1000 MHz Stop Frequency Sweep Speed Auto IF Bandwidth 120 kHz Video Bandwidth 100KHz Quasi-Peak Adapter Bandwidth 120 kHz Quasi-Peak Adapter Mode Normal Resolution Bandwidth 100KHz

Above 1GHz

Start Frequency 1000 MHz 25000MHz Stop Frequency Sweep Speed Auto IF Bandwidth 120 kHz Video Bandwidth 1MHz

Quasi-Peak Adapter Bandwidth 120 kHz Quasi-Peak Adapter Mode Normal Resolution Bandwidth 1MHz

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Class B Limit

7.7 Summary of Test Results

According to the data in section 7.11, the EUT complied with the FCC Part15 Paragraph 15.247 standards.

7.8 EUT Operating Condition

The EUT was tested in Continuously Transmit, and Continuously Receive Mode.

7.9 Radiated Emissions Limit on Paragraph 15.209

Frequency(MHZ)	Distance(m)	Field strength(dBuV/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- (1) RF Voltage(dBuV)=20 log RF Voltage(uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna.
- (4)The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- (5)Above 1GHz, mark a Peak and average measurements for all emissions, Limit for peak is 74dBuV/m, According to Part15.35(b) and average is 54BuV/m.

7.10 Radiated Emissions Test Result

Formula of conversion factors:the field strength at 3m was egtablished by adding The meter reading of the spectrum analyzer (which is set to read in units of dBuV/m) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

WALTEK SERVICES

7.11 Radiated Emission Data

Test Item: Radiated Emission Data
Test Voltage: Adapter input 120.0V

Test Mode: TX On
Temperature: 25.0 °C
Humidity: 51%RH
Test Result: PASS

7.11.1 Test mode: continuously recevie mode.

Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the low Channel, so the data show was the low channel only.

Test frequency: 30-1000MHz radiation test data:

Vertical:

WALTEK SERVICES

Horizontal

Test frequency: Above 1GHz radiation test data:

Remark: above 18GHz,the test signal below the noise level,so the data was not perfromed.

Vertical

Horizontal

7.11.2 Test mode: continuously transmit mode.

Test frequency: 30-1000MHz radiation test data:

Vertical:

Horizontal:

Test frequency above 1GHz test data record:

And the below is the Fundamental and Harmonic

Frequenc	Detect	Antenna	Emission	FCC Part15	Margin	Antenna	Turntable		
y		Polarizat	Level	Subpart C Limit	_	Height	Angle		
(MHz)	or	ion	(dBuV/m)	(dBuV/m)	(dB)	(m)	(°)		
Low frequency									
2402.00	AV	Vertical	96.52		(Fund.)	1.2	150		
4804.00	AV	Vertical	41.02	54.00	13.98	1.2	0		
7206.00	AV	Vertical	35.23	54.00	19.73	1.5	120		
9608.00	AV	Vertical	32.52	54.00	21.48	1.8	60		
12010.00	AV	Vertical	31.25	54.00	22.75	1.6	90		
14412.00	AV	Vertical	31.01	54.00	22.99	1.4	120		
16814.00	AV	Vertical	30.02	54.00	23.98	1.7	100		
19216.00	AV	Vertical	30.67	54.00	23.33	1.5	180		
21618.00	AV	Vertical	29.63	54.00	24.34	1.6	120		
24020.00	AV	Vertical	29.01	54.00	24.99	1.2	135		
2402.00	AV	Horizontal	92.23		(Fund.)	1.2	120		
4804.00	AV	Horizontal	41.12	54.00	12.88	1.2	150		
7206.00	AV	Horizontal	36.21	54.00	17.79	1.5	120		
9608.00	AV	Horizontal	34.25	54.00	19.75	1.2	180		
12010.00	AV	Horizontal	33.21	54.00	20.79	1.5	135		
14412.00	AV	Horizonta	31.25	54.00	22.75	1.2	120		
16814.00	AV	Horizontal	30.74	54.00	23.26	1.5	180		
19216.00	AV	Horizontal	32.01	54.00	21.99	1.8	60		
21618.00	AV	Horizontal	31.53	54.00	22.47	1.2	90		
24020.00	AV	Horizontal	30.01	54.00	23.99	1.5	90		
2402.00	PK	Vertical	106.41		(Fund.)	1.5	180		
4804.00	PK	Vertical	45.21	74.00	29.64	1.8	30		
7206.00	PK	Vertical	40.01	74.00	33.99	1.6	110		
9608.00	PK	Vertical	37.42	74.00	36.58	1.4	100		
12010.00	PK	Vertical	36.21	74.00	37.79	1.2	90		
14412.00	PK	Vertical	32.01	74.00	41.99	1.2	60		
16814.00	PK	Vertical	33.21	74.00	40.79	1.4	90		
19216.00	PK	Vertical	30.10	74.00	43.90	1.2	120		
21618.00	PK	Vertical	29.01	74.00	44.99	1.7	120		
24020.00	PK	Vertical	29.01	74.00	44.99	1.4	135		
2402.00	PK	Horizontal	102.32		(Fund.)	1.8	180		
4804.00	PK	Horizontal	41.24	74.00	32.76	1.8	60		
7206.00	PK	Horizontal	38.25	74.00	35.75	1.8	120		
9608.00	PK	Horizontal	36.98	74.00	37.02	1.2	180		
12010.00	PK	Horizontal	35.69	74.00	38.31	1.2	90		
14412.00	PK	Horizontal	35.62	74.00	38.38	1.5	90		
16814.00	PK	Horizontal	33.35	74.00	40.65	1.8	150		
19216.00	PK	Horizontal	33.01	74.00	40.99	1.5	150		

WALTEK SERVICES

21618.00	PK	Horizontal	30.21	74.00	43.79	1.2	120
24020.00	PK	Horizontal	30.01	74.00	43.99	1.2	180
24020.00	1 K	Horizontai		liddle frequency	43.77	1.2	100
2441.00	AV	Vertical	92.21	riddic frequency	(Fund.)	1.5	0
4882.00	AV	Vertical	39.02	54.00	14.98	1.2	90
7323.00	AV	Vertical	35.21	54.00	18.71	1.0	90
9764.00	AV	Vertical	33.33	54.00	20.67	1.2	0
12205.00	AV	Vertical	32.02	54.00	21.98	1.2	0
14646.00	AV	Vertical	32.01	54.00	21.99	1.2	150
17087.00	AV	Vertical	30.26	54.00	23.74	1.5	0
19528.00	AV	Vertical	30.20	54.00	23.99	1.5	0
21969.00	AV	Vertical	29.02	54.00	24.98	1.8	180
							90
24410.00	AV	Vertical	28.23	54.00	25.77	1.2	
2441.00	AV	Horizontal	92.96	54.00	(Fund.)	1.0	120
4882.00	AV	Horizontal	35.69	54.00	18.31	1.0	90
7323.00	AV	Horizontal	34.25	54.00	19.75	1.5	270
9764.00	AV	Horizontal	33.52	54.00	20.48	1.2	120
12205.00	AV	Horizontal	31.21	54.00	22.79	1.2	150
14646.00	AV	Horizontal	30.25	54.00	23.75	1.4	180
17087.00	AV	Horizontal	29.25	54.00	24.75	1.6	135
19528.00	AV	Horizontal	28.36	54.00	25.64	1.4	90
21969.00	AV	Horizontal	28.02	54.00	25.98	1.2	150
24410.00	AV	Horizontal	28.02	54.00	25.98	1.7	120
2441.00	PK	Vertical	107.52		(Fund.)	1.0	0
4882.00	PK	Vertical	44.21	74.00	29.79	1.1	90
7323.00	PK	Vertical	38.25	74.00	35.75	1.4	100
9764.00	PK	Vertical	37.94	74.00	36.06	1.3	120
12205.00	PK	Vertical	37.87	74.00	36.13	1.7	180
14646.00	PK	Vertical	36.10	74.00	38.90	1.2	0
17087.00	PK	Vertical	32.03	74.00	41.97	1.4	0
19528.00	PK	Vertical	30.21	74.00	43.79	1.5	120
21969.00	PK	Vertical	28.30	74.00	45.70	1.5	135
24410.00	PK	Vertical	28.30	74.00	45.70	1.2	120
2441.00	PK	Horizontal	103.45		(Fund.)	1.0	0
4882.00	PK	Horizontal	43.56	74.00	30.44	1.7	45
7323.00	PK	Horizontal	41.51	74.00	32.49	1.6	90
9764.00	PK	Horizontal	40.14	74.00	33.86	1.5	60
12205.00	PK	Horizontal	39.36	74.00	34.64	1.4	150
14646.00	PK	Horizontal	37.44	74.00	36.56	1.2	150
17087.00	PK	Horizontal	34.21	74.00	39.79	1.1	120
19528.00	PK	Horizontal	38.86	74.00	35.14	1.5	150
21969.00	PK	Horizontal	34.21	74.00	39.79	1.1	0
24410.00	PK	Horizontal	33.33	74.00	40.67	1.6	135
			I	High frequency			

WALTEK SERVICES

2480.00	AV	Vertical	93.42		(Fund.)	1.0	0
4960.00	AV	Vertical	36.25	54.00	17.75	1.2	45
7440.00	AV	Vertical	32.25	54.00	21.75	1.2	120
9920.00	AV	Vertical	30.26	54.00	23.74	1.4	60
12400.00	AV	Vertical	30.55	54.00	23.45	1.5	135
14880.00	AV	Vertical	30.34	54.00	23.66	1.8	120
17360.00	AV	Vertical	30.62	54.00	23.38	1.1	100
19840.00	AV	Vertical	30.13	54.00	23.87	1.1	60
22320.00	AV	Vertical	30.27	54.00	23.73	1.4	0
24800.00	AV	Vertical	28.25	54.00	25.75	1.5	60
2480.00	AV	Horizontal	92.51		(Fund.)	1.0	0
4960.00	AV	Horizontal	34.56	54.00	19.44	1.8	120
7440.00	AV	Horizontal	30.35	54.00	23.65	1.2	60
9920.00	AV	Horizontal	31.47	54.00	22.53	1.5	100
12400.00	AV	Horizontal	31.89	54.00	22.11	1.2	60
14880.00	AV	Horizontal	32.42	54.00	21.58	1.2	120
17360.00	AV	Horizontal	31.17	54.00	22.83	1.4	100
19840.00	AV	Horizontal	32.55	54.00	21.45	1.8	100
22320.00	AV	Horizontal	32.86	54.00	21.14	1.3	100
24800.00	AV	Horizontal	30.25	54.00	22.75	1.6	10
2480.00	PK	Vertical	107.53		(Fund.)	1.0	0
4960.00	PK	Vertical	44.21	74.00	29.79	1.2	60
7440.00	PK	Vertical	35.62	74.00	38.38	1.8	90
9920.00	PK	Vertical	35.35	74.00	38.65	1.5	180
12400.00	PK	Vertical	35.56	74.00	38.44	1.4	60
14880.00	PK	Vertical	34.21	74.00	39.79	1.2	60
17360.00	PK	Vertical	33.54	74.00	40.46	1.2	135
19840.00	PK	Vertical	36.26	74.00	37.74	1.2	120
22320.00	PK	Vertical	36.73	74.00	37.27	1.6	60
24800.00	PK	Vertical	30.21	74.00	43.99	1.4	90
2480.00	PK	Horizontal	93.64		(Fund.)	1.1	60
4960.00	PK	Horizontal	42.58	74.00	31.42	1.4	90
7440.00	PK	Horizontal	38.64	74.00	35.36	1.5	60
9920.00	PK	Horizontal	35.37	74.00	38.63	1.3	0
12400.00	PK	Horizontal	35.52	74.00	38.48	1.2	135
14880.00	PK	Horizontal	35.26	74.00	38.74	1.7	0
17360.00	PK	Horizontal	36.41	74.00	37.59	1.8	180
19840.00	PK	Horizontal	32.41	74.00	41.59	1.5	60
22320.00	PK	Horizontal	31.11	74.00	42.89	1.8	120
24800.00	PK	Horizontal	28.21	74.00	45.79	1.0	60

WALTEK SERVICES

8 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent antenna, fulfill the requirement of this section.

9 Maximum Peak Output Power

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI 63.4:2003

Test mode: Compliance test in the worse case: Tx Lower/Tx Middle/Tx

Upper

Requirements: Regulation 15.247(b) The limit of Maximum Peak Output

Power Measurement is 1W(30dBm)

Test procedure:

The following test procedure as below:

The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

The bandwidth of the fundamental frequency was measured with the spectrum analyser using 100kHz RBW and 100kHz VBW.

Test Result: The unit does meet the FCC requirements.

Test Channel	Fundamental Frequency(MHz)	Output Power (mW)	Limit (W)	Power output level
Lower	2402	1.32	1	conducted
Middle	2441	1.32	1	conducted
Upper	2480	1.30	1	conducted

10 Hopping Channel Number

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247
Test mode: The EUT work in test mode(Tx) and test it

Requirements: Regulation 15.247(b) For frequency hopping systems

operating In the 2400-2483.5MHz band employing at least 15

hopping channels.

Test result: The total number of channels would be 79 channels.

The unit does meet the FCC requirements.

Please refer the graph as below:

11 Frequency Separated

The requirements in this clause are only applicable to equipment using frequency hopping spread spectrum (FHSS) modulation.

Channel Separated

Definition:

A hopping channel is any of the centre frequencies defined within the hopping sequence of a FHSS system.

Limit:

Non-adaptive frequency hopping system shall make use of non-overlapping channels separated by the channel bandwidth as measured at 20dB below peak power.

The hopping channels defined within a hopping sequence shall be at least 1MHz apart(channel separation)

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

Test Result: PASS

Test Channel	Channel Separation	PASS/FAIL
Lower Channels	1MHz	Pass
Middle Channels	1MHz	Pass
Upper Channels	1MHz	Pass

Please refer to the below photos for more details

WALTEK SERVICES

Lower Channel 2402MHz

Middle Channel 2441MHz

WALTEK SERVICES

Upper Channel 2480MHz

12 Dwell time

12.1 Definition:

The dwell time is the time spent at a particular frequency during any single hop.

Limit: the maximum dwell time shall be less than 0.4s.

Operating Environment:

Temperature: 25.5 °C Humidity: 51% RH

Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

12.2 Test Procedure

The EUT output antenna port was connected to the spectrum analyzer. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz, and the frequency span to 0 Hz, measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting.

DH5 Packet permit maximum 1600/79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000

Note: Mkr Delta is once pulse time.

12.3 Test Result: PASS

Please refer to the below photos for more details.

Channel 00 2402MHz

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2402 MHz	3.075	0.326	0.400
DH3	2402 MHz	1.845	0.295	0.400
DH1	2402 MHz	0.535	0.195	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Channel 00 2402 MHz DH5

WALTEK SERVICES

Channel 00 2402 MHz DH3

Channel 00 2402 MHz DH1

WALTEK SERVICES

Channel 39 2441MHz

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2441 MHz	3.075	0.326	0.400
DH3	2441 MHz	1.855	0.298	0.400
DH1	2441 MHz	0.530	0.192	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Channel 39 2441 MHz DH5

Channel 39 2441 MHz DH3

Channel 39 2441 MHz DH1

WALTEK SERVICES

Channel 78 2480MHz

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	
DH5	2480 MHz	3.135	0.334	0.400	
DH3	2480 MHz	1.855	0.298	0.400	
DH1	2480 MHz	0.535	0.195	0.400	

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Channel 78 2480 MHz DH5

Channel 78 2480 MHz DH3

Channel 78 2480 MHz DH1

WALTEK SERVICES

13 20dB Bandwidth

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247
Test mode: The EUT work in test mode(Tx) and test it

Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

Test Result

Please refer the graph as below:

Lower Channel 2402MHz

Middle Channel 2441MHz

Upper Channel 2480MHz

WALTEK SERVICES

14 Radiated Spurious Emissions Into Adjacent Restricted Band

Test Requirement: FCC Part15 Paragraph 15.205

Test Method: Based on FCC Part 15 Paragraph 15.247

Requirements: The EUT work in test mode(Tx) and test it

Requiments:

emissions that fall in the restricted bands(15.205). Above 1000MHz, compliance with the emissions limits in section 15.209 shall be demonstrated based on the average value of the measured emissions, The provisions in section 15.35 apply to these measurements.

Test procedure:

An in band field strength measurement of the fundamental emission using the RBW and detector function required by C63.4-2003 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted band is presented below.

Lower Bandedge/ Restricted Band (Peak Value)

Upper Bandedge/ Restricted Band (Peak Value)

15 RF Exposure Test

Test Requirement: FCC Part 2 Subpart J

Test Method: Based on FCC Part 15 Paragraph 15.247

Requirements: The EUT work in test mode(Tx) and test it

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 $\mathbf{P} = \text{Peak RF output power (W)}$

G = EUT Antenna numeric gain (numeric)

 $\mathbf{d} =$ Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)		Power Density (S) (mW/cm2)	Liencity (S)	Test Result
0	1	-1.21	1.32	0.000263	1	Complies
0	1	-1.21	1.32	0.000263	1	Complies
0	1	-1.15	1.30	0.000259	1	Complies

16 Photographs of Testing

Radiation Emission Test View For 30MHz-1000MHz

Radiation Emission Test View For 1GHz-25GHz

WALTEK SERVICES

17 Photographs - Constructional Details

17.1 EUT – Front View

17.2 EUT – Back View

WALTEK SERVICES

17.3 EUT – Open View1

17.4 EUT – Open View2

17.5 EUT – Open View3

17.6 PCB1 – Front View

WALTEK SERVICES

17.7 PCB1 – Back View

17.8 PCB2 – Front View

WALTEK SERVICES

17.9 PCB2 – Back View

17.10 PCB3 – Front View

WALTEK SERVICES

17.11 **PCB3** – Back View

18 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

