ROAD ACCIDENT PREDICTION PHASE-1

Submitted by:

S. Srisha – 2017103042

INTRODUCTION:

This project is done using python language, We built a classifier to train on 80% and test on 20% of accident prediction of UK dataset. We used Random Forest Classifier and Decision tree Classifier to predict a output. We used Seaborn library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. The dataset holds 36314 rows. We enfolded a data for the Random Forest Classifier and predicted certain results to it.

BLOCK DIAGRAM:

STEPS:

1. Importing the dataset file for the given constraints.

It prints the Top 5 rows of dataset File as i called the function called head() in my code.

	wkt_geom	code	severity	time	lat	desc	lon	name	clust	NN
0	POINT(6119950.59451242536306381 1886366.970110	201	2	04/10/13 08:00 AM	77.165655	NaN	26.984052	Accident(s)	31	11
1	POINT(6163265.98209197819232941 2195198.763392	201	2	04/10/13 05:30 PM	78.015568	NaN	27.117024	Accident(s)	14	3
2	POINT(6156011.13359668850898743 2064637.280291	201	3	04/10/13 05:55 PM	77.656750	NaN	27.098630	Accident(s)	11	52
3	POINT(6040154.25608104187995195 2127971.038348	201	3	04/10/13 06:17 PM	77.825210	NaN	26.694260	Accident(s)	28	11
4	POINT(6160755.65850416570901871 2058394.601888	243	3	04/10/13 06:19 PM	77.639801	NaN	27.115337	Accident. Left lane blocked	11	51

2. Characterstic graph:

It visualises the graph between Severity and Count. The Severity is represented in form of numbers ranging from 0 to 4.

3. Classification graph:

It visualises the graph between Number of accidents by hour and count.

4. Classification graph

This graph usually calculates the graph statistics here it takes number of accidents by month vs Count.

5. Classification graph:

This graph usually calculates the graph statistics here it takes number of accidents by Weekday vs Count.

Error's and Outlier removing:

Here we check for outliers and boundaries. Outliers are extreme values that deviate from other observations on data, they may indicate a variability in a measurement, experimental errors or a novelty.

	count
2	20944
3	15296
4	54
1	19
0	1

Distributions of features and labels:

Plotting of the dataset with a different color depending on the severity (2,3)

The mapping is between longitude and latitude by representing it with different colours i.e., Blue for severity = 2 and Red for severity = 3.

Applying Cross Validation and Splitting the data into training set and test sets, ratio of 2:8

We assign test size as 20% of actual data set , random state is set as 4 2 . Also we defined random state to get consistent and same results , r egardless of the training iterations ,

So that the values in the train and test sets are homogenous.

Basic Algorithm Model

Worst Accuracy for my model:

worst accuracy: 0.577924944812362

Applied algorithm's

Random Forest Algorithm

Random forest classifier creates a set of decision trees from randomly selected subset of training set. It then aggregates the votes from different decision trees to decide the final class of the test object.

N-FOLDING THE DATA FOR RANDOM FOREST CLASSIFIER

TOTAL=36000,

TRAINING DATA(80%)=28800,

TESTING DATA(20%)=7200,

SPLITTING DATA(10%)=3600

PARTITION	TRAINING DATA	TESTING DATA
No.		
1)	0-28799	28800-36000
2)	3601-32399	0-3600, 32400-36000
3)	7201-36000	0-7200
4)	10801-36000, 0-3600	3601-10800
5)	14401-36000, 0-7200	7201-14400
6)	18001-36000 , 0-10800	10801-18000
7)	21601-36000, 0-14400	14401-21600
8)	25201-36000 , 0-18000	18001-25200
9)	28801-36000 , 0- 21600	21601-28800
10)	32400-36000, 0-25200	25201-32400

PARTITION 1:

Random Forest Algorithm

recall: 0.87
precision: 0.83
f1: 0.85
accuracy: 0.87

PARTITION 2:

Random Forest Algorithm

Key Metrics:

recall: 0.92
precision: 0.86
f1: 0.89
accuracy: 0.90

PARTITION 3:

Random Forest Algorithm

Key Metrics:

PARTITION 4:

Random Forest Algorithm

recall: 0.78
precision: 0.79
f1: 0.79
accuracy: 0.82

PARTITION 5:

Random Forest Algorithm

Key Metrics:

recall: 0.82
precision: 0.81
f1: 0.81
accuracy: 0.85

PARTITION 6:

Random Forest Algorithm

Key Metrics:

recall: 0.85
precision: 0.80
f1: 0.83
accuracy: 0.86

PARTITION 7:

Random Forest Algorithm

recall: 0.77
precision: 0.84
f1: 0.80
accuracy: 0.84

PARTITION 8:

Random Forest Algorithm

Key Metrics:

```
recall: 0.86
precision: 0.84
f1: 0.85
accuracy: 0.86
```

PARTITION 9:

Random Forest Algorithm

Key Metrics:

```
recall: 0.87
precision: 0.81
f1: 0.84
accuracy: 0.86
```

PARTITION 10:

Random Forest Algorithm

#printScores(y_test, y_pred, "KandomForestill

----- RandomForestClassifier ----

recall : 0.86 precision : 0.84

f1: 0.85

accuracy : 0.87

Mean for overall partitions:

Overall mean for keymetrics

Recall: 0.863

Precision: 0.828

Accuracy: 0.863

Tree Algorithm:

DECISION TREE:

This is Structured tree where the data is continuously split according to a certain parameter. The tree can be explained by two entities, namely decision nodes and leaves.

N-FOLDING THE DATA FOR DECISION TREE ALGORITHM:-

PARTITION 1

Key Metrics:

------ tree -----recall : 0.88
precision : 0.88
f1 : 0.88
accuracy : 0.90

PARTITION 2

Key Metrics:

------ tree -----recall: 0.91
precision: 0.89
f1: 0.90
accuracy: 0.92

PARTITION 3

Key Metrics:

------ tree -----recall: 0.91
precision: 0.89
f1: 0.90
accuracy: 0.91

PARTITION 4

Key Metrics:

PARTITION 5

Key Metrics:

PARTITION 6

Key Metrics:

------ tree ------recall : 0.87
precision : 0.88

PARTITION 7

Key Metrics:

PARTITION 8

Key Metrics:

```
------ tree -------
recall : 0.90
precision : 0.87
f1 : 0.88
accuracy : 0.89
```

PARTITION 9

Key Metrics:

PARTITION 10

Key Metrics:

Mean for overall partitions:

Overall mean for keymetrics

Recall: 0.884

Precision: 0.869

Accuracy: 0.894