A computational approach to identify enrichment from NGS data across multiple rounds of phage display screening

Tatyana Zamkovaya¹, Jessica Min-DeBartolo¹, James Apgar¹, Jonathan McDaniel¹, Joel Bard¹

¹ Biomedicine Design, Pfizer, Cambridge, MA 02139, USA.

ABSTRACT

Background:

Phage display selection combined with next-generation-sequencing (NGS) can allow for rapid generation of large cohorts of antibody sequences which may bind specifically to a given target. It can, however, be difficult to identify specific binders based on this NGS data alone.

Method:

We developed an NGS-based strategy to identify enriched hits across rounds of selection. Our approach reduces millions of sequences to a manageable number based on their frequency in on-target versus off-target pools. A unique identifier based on key sequence features helps combine and collapse annotated antibody sequences across pools into one table, with each row representing a unique identifier sequence and each column representing its frequency in each pool. Sequence enrichment is then calculated as the normalized change in read frequency between the on- and offtarget pools. The enrichment score, ranging between -1 (not enriched) and 1(enriched), can be summed up across multiple comparisons to find the most consistently enriched sequences which are likely to be specific binders.

Results:

12E6 antibody sequences from 3 selection rounds and 12 pools were reduced to 18,000 abundant, shared sequences. 2700 sequences were enriched in at least one on-target pool. 288 highly enriched sequences with good manufacturability profiles were selected for recombinant expression and binding assays. 75 percent of the NGSderived hits demonstrated a strong binding.

Conclusion:

Our approach enables identification of highly enriched binders from NGS data, saving time and effort in antibody hit selection and allowing examination of a wider range of sequences than traditional in vitro screening alone. Future work using machine learning to predict enrichment will further advance antibody discovery.

PHAGE DISPLAY WORKFLOW FOR ANTIBODY DISCOVERY

CASE STUDY: ENRICHMENT ACROSS 3 ROUNDS

H: Human; M: Mouse; C: Complex; BSA: Bovine serum albumin (negative control)

Sample Name	Selection Round	Average Total Reads	Average Distinct Antibody Sequences
Rd2_HC	2	859015	644728
Rd2_HH	2	779831	573612
Rd2_HM	2	824365	552515
Rd2_BSA	2	837144	561503
Rd3_HCH	3	874084	618634
Rd3_HHH	3	808988	560331
Rd3_HMH	3	881734	532372
Rd3_BSA_1	3	837574	467991
Rd3_BSA_2	3	852018	510928
Rd3_BSA_3	3	839294	549624

NGS-BASED PIPELINE TO IDENTIFY RELATIVE ENRICHMENT

NGS-DERIVED ANTIBODIES ENRICHED FOR TARGET CAN BE FOUND ACROSS MULTIPLE SAMPLES AND SELECTION ROUNDS

Change_ Rd2AHH _vs_Rd2 DHB	BHM_vs_Rd	Change_Rd2 _CHC_vs_Rd 2_DHB	Change_Rd3 _AHHH_vs_R d3ABHHB	Change_Rd3 _AHHH_vs_r d3BBHMB	Change_Rd3 _AHHH_vs_R d3CBHCB	_BHMH_vs_R	_BHMH_vs_R	Change_Rd3 _BHMH_vs_R d3CBHCB	Change_Rd3 _CHCHvs_Rd 3ABHHB	_CHCH_vs_R	Change_Rd3 _CHCH_vs_R d3CBHCB	ΣΔ (sum Changes)	Eliminate low freq. clones 18000 total sequences Enriched for target Enriched antibody sequences per sumChange
1	1	0	1	1	1	1	1	1	1	1	1	11	2700 sequences
1	1	0	1	1	1	1	1	1	1	1	1	11	In silico liability prediction 🏚
1	1	0	1	1	1	1	1	1	1	1	1	11	Select hits for IgG
0	1	0	1	1	1	1	1	1	1	1	1	10	288 sequences
0	1	1	1	0.713	0.125	1	0.895	0.593	1	0.759	0.224	9.31	gift of sumChanges score

STREAMLIT APPLICATION AUTOMATES CROSS-POOL COMPARISON CONFIGURATION AND SUBMISSION

NGS HITS HAVE HIGH RATE OF BINDING AND CROSS-REACTIVE BINDING, INCREASING HIT PANEL QUANTITY & DIVERSITY BY 50 %

CONCLUSIONS

FUTURE GOALS

We plan to use cross-pool NGS results to train ML/AI for target binding prediction and de novo sequence generation. The combination of in-vitro selection, NGS, and AI has significant potential to reduce the time and overall experimental effort needed for antibody lead identification.

New methodology to identify hits from NGS data was established and validated. NGS clones had a 75% hit rate and increased hit panel by 50 %. Hit calling from NGS data successfully improved target binding selection