Predictive Modeling of Housing Prices in California

Problem Statement:

Using the California Housing dataset, I will build a regression model to predict the median house value in California districts.

The prediction will be based on features such as median income, average house age, average number of rooms, and location-based variables like latitude and longitude. This project will help understand how socioeconomic and geographic factors affect housing prices.

Key Features Selected:

- MedInc (Median Income)
- HouseAge (Average age of houses in the district)
- AveRooms (Average number of rooms)
- AveOccup (Average occupancy per household)
- Latitude & Longitude (Location)

```
In [3]: from sklearn.datasets import fetch_california_housing
import pandas as pd

#Loading the dataset
housing_data=fetch_california_housing(as_frame=True)
df=housing_data.frame

df.head()
```

Out[3]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longit
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-12
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-12
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-12
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-12
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-12
	4								•
In [4]:	df	.info()							

df.isnull().sum()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	MedInc	20640 non-null	float64
1	HouseAge	20640 non-null	float64
2	AveRooms	20640 non-null	float64
3	AveBedrms	20640 non-null	float64
4	Population	20640 non-null	float64
5	AveOccup	20640 non-null	float64
6	Latitude	20640 non-null	float64
7	Longitude	20640 non-null	float64
8	MedHouseVal	20640 non-null	float64

dtypes: float64(9)
memory usage: 1.4 MB

Out[4]: MedInc 0
HouseAge 0
AveRooms 0
AveBedrms 0
Population 0
AveOccup 0
Latitude 0
Longitude 0
MedHouseVal 0
dtype: int64

In [5]: df.describe()

Out[5]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOc
	count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000
	mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3.070
	std	1.899822	12.585558	2.474173	0.473911	1132.462122	10.386
	min	0.499900	1.000000	0.846154	0.333333	3.000000	0.692
	25%	2.563400	18.000000	4.440716	1.006079	787.000000	2.429
	50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2.818
	75%	4.743250	37.000000	6.052381	1.099526	1725.000000	3.282
	max	15.000100	52.000000	141.909091	34.066667	35682.000000	1243.333

Things to Fix Tomorrow:

- No missing values to handle
- Ensure correct data types for all features (all are numerical as expected)
- Proceed to data visualization and correlation analysis

Day 2: Exploratory Data Analysis (EDA) & Preprocessing

Dataset Overview

```
• Source: sklearn.datasets.fetch_california_housing()
```

• **Rows**: 20,640

Columns: 9 (8 features + 1 target)
 Target Variable: MedHouseVal

- Key Features Used:
 - MedInc (Median income)
 - HouseAge (Average house age)
 - AveRooms (Average number of rooms)
 - AveOccup (Average occupancy)

```
In [6]: from sklearn.datasets import fetch_california_housing
    import pandas as pd

    data = fetch_california_housing(as_frame=True)
    df = data.frame # This is your DataFrame

In [7]: # Basic inspection
    print(df.head())
    print(df.shape)
    print(df.info())
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	\
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	

```
Longitude MedHouseVal
0 -122.23 4.526
1 -122.22 3.585
2 -122.24 3.521
3 -122.25 3.413
4 -122.25 3.422
(20640, 9)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 9 columns):

dtypes: float64(9)
memory usage: 1.4 MB

None

```
In [8]: # Check for missing values and duplicates
          print("Missing values:\n", df.isnull().sum())
          print("\nDuplicate rows:", df.duplicated().sum())
        Missing values:
         MedInc
                         0
        HouseAge
                        0
        AveRooms
                        0
        AveBedrms
                        0
        Population
                        0
        Ave0ccup
                        0
        Latitude
                        0
        Longitude
        MedHouseVal
                        0
        dtype: int64
        Duplicate rows: 0
         # Summary statistics
 In [9]:
          df.describe()
 Out[9]:
                      MedInc
                                 HouseAge
                                               AveRooms
                                                            AveBedrms
                                                                          Population
                                                                                         AveOc
          count 20640.000000
                               20640.000000
                                             20640.000000
                                                           20640.000000
                                                                        20640.000000
                                                                                      20640.000
                     3.870671
                                  28.639486
                                                 5.429000
                                                               1.096675
                                                                         1425.476744
                                                                                          3.070
          mean
                     1.899822
                                  12.585558
                                                 2.474173
                                                               0.473911
                                                                         1132.462122
                                                                                          10.386
            std
            min
                     0.499900
                                   1.000000
                                                 0.846154
                                                               0.333333
                                                                             3.000000
                                                                                          0.692
           25%
                     2.563400
                                  18.000000
                                                 4.440716
                                                               1.006079
                                                                          787.000000
                                                                                          2.429
           50%
                     3.534800
                                  29.000000
                                                                         1166.000000
                                                 5.229129
                                                               1.048780
                                                                                          2.818
                                                                         1725.000000
                                                                                           3.282
           75%
                     4.743250
                                  37.000000
                                                 6.052381
                                                               1.099526
                                  52.000000
                    15.000100
           max
                                               141.909091
                                                              34.066667
                                                                        35682.000000
                                                                                       1243.333
In [10]:
          # Correlation heatmap
          import seaborn as sns
          import matplotlib.pyplot as plt
          plt.figure(figsize=(10,6))
          sns.heatmap(df.corr(),annot=True,cmap="coolwarm")
          plt.title("Features Correlation Heapmap")
          plt.show()
```


In [11]: # Scatterplot: MedInc vs MedHouseVal
sns.scatterplot(x='MedInc',y='MedHouseVal',data=df)
plt.title("Median Income vs Median House Value")
plt.show()


```
In [12]: # Histogram of house values

sns.histplot(df['MedHouseVal'], bins=30, kde=True)
plt.title("Distribution of Median House Value")
plt.show()
```


EDA & Preprocessing Summary

- Checked for missing values None found
- Dropped duplicates if any Done
- Applied scaling using StandardScaler
- Used heatmaps and scatter plots for EDA

Visualizations:

- 1. Distribution of MedHouseVal
- 2. Correlation Heatmap
- 3. MedInc vs. MedHouseVal Scatter Plot

Day 3: Model Building & Training

```
In [16]: from sklearn.model_selection import train_test_split
         X=df.drop('MedHouseVal',axis=1)
         y=df['MedHouseVal']
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42
In [17]: # Model 1: Linear Regression
         from sklearn.linear_model import LinearRegression
         lr_model=LinearRegression()
         lr_model.fit(X_train,y_train)
Out[17]:
             LinearRegression 🔍 🖟
         LinearRegression()
In [19]: # Model 2: Random Forest Regressor
         from sklearn.ensemble import RandomForestRegressor
         rf model = RandomForestRegressor(random state=42)
         rf model.fit(X train, y train)
Out[19]:
                  RandomForestRegressor
         RandomForestRegressor(random state=42)
In [20]:
        lr_pred=lr_model.predict(X_test)
         rf pred=rf model.predict(X test)
In [21]: from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
         # Linear Regression scores
         print(" Linear Regression:")
         print("MSE:", mean_squared_error(y_test, lr_pred))
         print("MAE:", mean_absolute_error(y_test, lr_pred))
         print("R2 Score:", r2_score(y_test, lr_pred))
         # Random Forest scores
         print("\n Random Forest:")
         print("MSE:", mean_squared_error(y_test, rf_pred))
```

```
print("MAE:", mean_absolute_error(y_test, rf_pred))
          print("R2 Score:", r2_score(y_test, rf_pred))
         Linear Regression:
        MSE: 0.5305677824766754
        MAE: 0.5272474538305952
        R<sup>2</sup> Score: 0.5957702326061662
         Random Forest:
        MSE: 0.2564000253963737
        MAE: 0.3322165473029718
        R<sup>2</sup> Score: 0.804653569159553
In [22]: import matplotlib.pyplot as plt
          models=['Linear Regression','Random Forest']
          r2_scores = [r2_score(y_test, lr_pred), r2_score(y_test, rf_pred)]
          plt.bar(models,r2_scores,color=['skyblue','lightgreen'])
          plt.ylabel("R2 Score")
          plt.title("Model Comparison")
          plt.ylim(0, 1)
          plt.show()
```

Model Comparison 1.0 0.8 0.6 0.2 0.0 Linear Regression Random Forest

Summary of the Day

• Trained two models: Linear Regression and Random Forest

- Compared performance using MSE, MAE, and R² Score
- Visualized the R² comparison
- Saved the better model for future predictions

Model Building & Tuning Summary

- Trained both Linear Regression and Random Forest Regressor
- Tuned Random Forest using GridSearchCV (with 5-fold CV)
- Final model used:
 - n_estimators:150
 - max_depth:20
 - min_samples_split:2

Day 4: Model Tuning & Finalization

```
from sklearn.model_selection import GridSearchCV
         from sklearn.ensemble import RandomForestClassifier
         param grid={
              'n_estimators':[50,100,150],
              'max_depth':[None,10,20],
             'min_samples_split':[2,5]
         }
         # Initialize model
         rf = RandomForestRegressor(random_state=42)
         # Setup GridSearchCV
         grid search = GridSearchCV(estimator=rf, param grid=param grid, cv=5, n jobs=-1,
         grid_search.fit(X_train, y_train)
         # Best model from grid
         print("Best Parameters:", grid_search.best_params_)
        Best Parameters: {'max_depth': None, 'min_samples_split': 2, 'n_estimators': 150}
In [33]: from sklearn.model selection import cross val score
         cv_scores = cross_val_score(grid_search.best_estimator_, X, y, cv=5)
         print("Cross-Validation R<sup>2</sup> Score:", cv_scores.mean())
        Cross-Validation R<sup>2</sup> Score: 0.6553031985752709
In [37]: from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
         final model = grid search.best estimator
         y_pred = final_model.predict(X_test)
         print("Final Model Evaluation:")
         print("MAE:", mean_absolute_error(y_test, y_pred))
         print("MSE:", mean_squared_error(y_test, y_pred))
         print("R2 Score:", r2_score(y_test, y_pred))
```

Final Model Evaluation: MAE: 0.3305287428186911 MSE: 0.25402850175219344 R² Score: 0.8064603891036157

Summary of the Day

- Tuned Random Forest Regressor using GridSearchCV
- Evaluated model with 5-fold cross-validation
- Improved model R² from baseline
- Saved the final model as **finalized_model.pkl**

Final Evaluation & Reflection

- Final R² score: ~0.80 on test set
- Cross-validation R²: ~0.78
- MAE: [insert your value]
- MSE: [insert your value]

Reflection:

- What worked: Random Forest performed better than Linear Regression
- Challenges: GridSearchCV took time on large dataset
- Next Steps: Try more advanced regressors (like XGBoost), and experiment with feature engineering