Теория и реализация языков программирования. Доказательство алгоритма Brzozowski (DRDR $\mathcal{A}\cong\mathcal{A}_{\min}$)

Сергей Володин, 272 гр.

11 декабря 2013 г.

Доказательство основано на доказательстве со стр. 116-117 книги «Elements of Automata Theory», Jacques Sakarovitch

- 1. До того, как не указано обратное считаем, что у автоматов нет ε -переходов. Обобщим определение конечного автомата: $\mathcal{A} = (Q, \Sigma, \delta, I, F)$, где I вместо q_0 множесто начальных состояний. $w \in L(\mathcal{A}) \stackrel{\text{def}}{\Leftrightarrow} \exists i \in I : (i, w) \vdash^* (q, \varepsilon), q \in F$, где \vdash^* из изначального определения. Автомат называем детерминированным, если |I| = 1, и он детерминированный в смысле изначального определения.
- 2. Определим $\mathbf{R}\mathcal{A} \stackrel{\text{def}}{=} (Q, \Sigma, \delta^r, F, I)$ автомат с обращенными переходами, распознающий $L(\mathcal{A})^r$. $\delta^r(p, a) \ni q \Leftrightarrow \delta(q, a) \ni p$. (отличие от изначального алгоритма в том, что не создается ε -переходов и новых состояний).
 - Пусть |I|=1. Тогда у $R\mathcal{A}$ одно принимающее состояние.
 - По построению, $RR\mathcal{A} = \mathcal{A}$.
- 3. Определим $\mathrm{D}\mathcal{A}\stackrel{\scriptscriptstyle\mathrm{def}}{=}(Q',\Sigma,\delta,I',F')$ автомат, полученный детерминизацией \mathcal{A} по модифицированному алгоритму:
 - На первом шаге алгоритма вместо добавления множества-состояния $\{q_0\}$, добавим множество-состояние I, сделаем его единственным начальным состоянием ДКА.
 - В определении указана та же функция переходов, что и у \mathcal{A} . Имеется в виду, что δ доопределена следующим образом на множествах состояний исходного автомата: $\delta(X,a) = \bigcup_{x \in X} \delta(x,a)$. Заметим, что именно такую функцию переходов даст алгоритм: $\delta^{\text{alg.}}(X,a) = \bigcup_{x \in X} \varepsilon\text{-closure}(\delta(x,a))$, и ε -переходов в исходном автомате нет.
 - Заметим, что состояниями ДКА являются $\delta(I, x)$ при $x \in \Sigma^*$.
- 4. Пусть $\mathcal{A}=(Q,\Sigma,\delta,I,F)$ HKA, причем R \mathcal{A} детерминированный, и все его состояния достижимы. Тогда D $\mathcal{A}\cong\mathcal{A}_{\min}$
 - (a) $L \stackrel{\text{def}}{=} L(\mathcal{A})$. $\mathcal{R}\mathcal{A}$ детерминированный, поэтому имеет одно начальное состояние. Значит, \mathcal{A} имеет одно принимающее состояние: $F = \{f\}$.
 - (b) Пусть $x,y\in \Sigma^*: x\sim_L y$. Докажем, что $\delta(I,x)=\delta(I,y)$. Действительно, пусть $\underline{p}\in \delta(I,x)$. Тогда $\exists i\in I\colon i\xrightarrow{x} p$. Поскольку все состояния $\mathbf{R}\mathcal{A}$ достижимы по условию (из его начального состояния f), имеем слово z и путь $p\xrightarrow{z} f$ в \mathcal{A} . Получаем, $i\xrightarrow{x} p\xrightarrow{z} f\in F$, и $xz\in L$. Но $x\sim y$, значит, $yz\in L$. Значит, $\exists i'\in I\colon (i',yz)\vdash^* (f,\varepsilon)$. Пусть перед прочтением z автомат находился в p'. Тогда $p'\xrightarrow{z} f$. $\mathbf{R}\mathcal{A}$ детерминированный, поэтому в нем путь из f по z единственный, поэтому p=p'. Значит, $p\in \delta(I,y)$. Аналогично доказывается обратное включение $\delta(I,y)\subseteq \delta(I,x)$.
 - (c) Заметим, что задана функция φ , сопоставляющая классу эквивалентности некоторое состояние автомата D \mathcal{A} : классу C(x) с представителем x сопоставлено состояние $\delta(I,x)$. Корректность (значение функции не зависит от выбора представителя класса) как раз доказана выше.
 - (d) Поскольку все состояния DA достижимы, φ сюръективно: состояние $\delta(I,w)$ можно выразить как $\varphi(C(w))$.
 - (e) Имеем $\Sigma^*/\sim_L \equiv \{C(w) | w \in \Sigma^*\} \xrightarrow{\varphi} \{\delta(I,w) | w \in \Sigma^*\} \equiv \{\text{состояния D}\mathcal{A}\}$. Из сюръективности следует, что количество состояний D \mathcal{A} не больше, чем $|\Sigma^*/\sim_L|$. Значит, эти числа равны.
 - (f) Изоморфизм между каноническим минимальным автоматом и $D\mathcal{A}$ уже построен: действительно, φ биекция (сюръективность + равенство мощностей $E\varphi$ и $D\varphi$). Также φ сохраняет переходы:
 - і. Пусть $C(w) \stackrel{a}{\to} C(wa)$ (переходы на классах эквивалентности). Тогда $\varphi(C(w)) = \delta(I,w) \stackrel{a}{\to} \delta(\delta(I,w),a) = \delta(I,wa) = \varphi(C(wa))$.
 - іі. Пусть $X \stackrel{a}{\to} Y$ (переходы на состояниях). $X = \delta(I, w)$. Тогда $\delta(I, wa) = Y$, $X = \varphi(C(w))$, и $\varphi^{-1}(X) = C(w) \stackrel{a}{\to} C(wa) = \varphi^{-1}(Y)$.
- 5. Пусть дан НКА \mathcal{A} . Построим $\mathcal{B}\stackrel{\text{def}}{=}$ RDR \mathcal{A} . R $\mathcal{B}\equiv$ DR \mathcal{A} детерминированный, все его состояния достижимы. Тогда $\mathrm{D}\mathcal{B}\cong\mathcal{B}_{\min}=\mathcal{A}_{\min}$, так как $L(\mathcal{B})=L(\mathcal{A})^{R^R}=L(\mathcal{A})$, т.е. $\overline{\mathrm{DRDR}\mathcal{A}\cong\mathcal{A}_{\min}}$
- 6. Заметим, что доказываемая изоморфность сохранится, если разрешить ε -переходы в \mathcal{A} , т.к. ε -переходов уже не будет после первой детерминизации DR \mathcal{A} .