Sistemas de Equações Algébricas e Lineares

Professor: Wemerson D. Parreira.

parreira@univali.br

Universidade do Vale do Itajaí Escola Politécnica

2023

Introdução

Motivação (Problema prático):

Uma empresa de transportes marítimos transporta as suas mercadorias em caixas de 3 tipos, designados por x_1 , x_2 e x_3 dispondo igualmente de 3 tipos de contentores (contêiner), designados por I, II e III, que podem transportar as seguintes quantidades de caixas:

	x_1	x_2	x_3
I	4	5	2
II	3	2	2
III	2	3	3

 \Rightarrow Quantas caixas de cada tipo x_1 , x_2 e x_3 deve a empresa preparar para o caso de ter ao seu dispor 42 contentores do tipo I, 27 do tipo II ou 33 do tipo III?

Podemos resolver o problema proposto a partir do seguinte sistema de equações lineares:

$$\begin{cases} 4x_1 + 5x_2 + 2x_3 = 42 \\ 3x_1 + 2x_2 + 2x_3 = 27 \\ 2x_1 + 3x_2 + 3x_3 = 33 \end{cases}$$

Podemos representar esse problema usando uma notação matricial:

$$\begin{bmatrix} 4 & 5 & 2 \\ 3 & 2 & 2 \\ 2 & 3 & 3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 42 \\ 27 \\ 33 \end{bmatrix}$$

Como resolver esse problema?

Definição: Um sistema linear é um conjunto de m equações lineares envolvendo n variáveis $\{x_i\}$, i = 1, 2, ..., n.

Uma **equação linear** é aquela que só apresenta termos proporcionais às variáveis na primeira potência, termos do tipo $a_{ij} x_j$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots &\vdots &\ddots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

ou ainda

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \vdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

ou seja,

$$A x = b$$

Observação: Sistemas de equação lineares, NÃO apresentam funções avaliadas em x_i nas formas sen (x_i) , $\ln(x_i)$, $\exp(x_i)$ ou qualquer outra que não preserve a propriedade proporcionalidade (combinação linear) entre os termos x_i na primeira potência.

Definição (Sistema Quadrado): É um sistema de equações em que o número de variáveis é igual ao número de equações (m = n). Caso o sistema de equações seja linear temos:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots &\vdots &\ddots &\vdots &\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

ou

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Classificação dos sistemas quanto ao número de soluções

Resolver um sistema de equações lineares é:

encontrar os valores numéricos das variáveis $x_1, x_2, x_3, \ldots, x_n$ que satisfazem **todas** as equações do sistema.

S.E.L podem não admitir solução, pode admitir solução única ou infinitas soluções.

Em situações práticas, é necessário estudar o sistema para determinar existência e a unicidade da solução.

Classificação dos SEL quanto à solução:

Sistema não possui solução :

Sistema Impossível – SI

(ou Sistema Incompatível)

Solução existe e é única:

Sistema Possível Determinado - SPD

(ou Sistema Compatível Determinado – SCD)

Sistema com infinitas soluções:

Sistema Possível Indeterminado – SPI

(ou Sistema Compatível Indeterminado – SCI)

Resultados importantes de Álgebra Linear (revisão):

- $\Rightarrow posto(A) = dim(Im\{A\}) \leq min\{m, n\}.$
- \triangleleft Se $posto(A) = min\{m, n\}$, então A é posto completo.
- \Rightarrow Se $posto(A) < min\{m, n\}$, então A é posto deficiente.
 - i. Se m = n (Sistema Linear Quadrado)
 - Se as colunas de A forem linearmente independentes (posto completo), então o sistema Ax = b admite uma solução única S.C.D.
 - Se as colunas de A forem linearmente dependentes (posto deficiente), então o sistema Ax = b:
 - (a) caso $b \in Im(A)$ o sistema admite infinitas soluções, portanto S.C.I,
 - (b) caso $b \notin A$ o sistema não admite solução, portanto S.I

ii. Se $m \neq n$

- ightharpoonup se m < n o sistema Ax = b nunca admitira solução única:
 - S.C.I: se \mathbf{A} é de posto completo (posto(A) = m) ou de posto deficiente e $b \in Im\{A\}$.
 - S.I: se **A** é de posto deficiente e $b \notin Im\{A\}$.
- se m > n, para o sistema Ax = b pode admitir solução única:
 - S.C.D: se posto(A) = n (posto completo) e $b \in Im\{A\}$
 - S.I: se $posto(A) \leq n$ (posto completo ou deficiente) e $b \notin Im\{A\}$
 - S.C.I se posto(A) < n (posto deficiente) e $b \in Im\{A\}$

Comandos úteis no Scilab, Matlab, Octave

- \bigcirc rank(A): é o posto numérico A;
- \bigcirc det(A): é o determinante de A;
- \bigcirc inv(A): é inversa de A;
- \bullet rref(A): forma reduzida de A;
- [V,LAMBDA]=spec(A): LAMBDA é uma matriz diagonal com os autovalores de A e V é uma matriz com os autovetores de A.
 - Arr Use [V, LAMBDA] = eig (A) para Matlab ou Octave.

Exercício 1 – Identifique quais os sistemas a seguir apresentam solução única (SCD):

(a)
$$\begin{cases} 2x_1 + x_2 = 3 \\ x_1 - 3x_2 = -2 \end{cases}$$
(b)
$$\begin{cases} 2x_1 + x_3 = 2 \\ +x_2 + x_3 = 3 \end{cases}$$

(b)
$$\begin{cases} 2x_1 + x_3 = 2 \\ +x_2 + x_3 = 3 \end{cases}$$

(c)
$$\begin{cases} 2x_1 + 4x_2 - 6x_3 - 4x_4 = 1\\ 3x_1 + 6x_2 - 9x_3 - 6x_4 = 7\\ x_1 + 2x_2 - 3x_3 - 2x_4 = 3 \end{cases}$$

(d)
$$\begin{cases} 2x_1 + 4x_2 = 1 \\ 3x_1 + 6x_2 = 7 \\ x_1 + 2x_2 = 3 \end{cases}$$

(e)
$$\begin{cases} 2x_1 + 4x_2 = -5\\ 3x_1 + 6x_2 = -\frac{15}{2}\\ 5x_1 + 10x_2 = -\frac{25}{2} \end{cases}$$

Métodos de resolução

- Diretos: fornecem solução exata, se ela existir, após um número finito de operações.
 - Possível erro de arredondamento.
- Iterativos: solução é alcançada a partir de uma estimativa inicial $\{x_i^{(0)}\}$ e repetição de determinado cálculo diversas vezes, utilizando sempre a estimativa da etapa anterior $\{x_i^{(k-1)}\}$ como estimativa para a etapa seguinte $\{x_i^{(k)}\}$.
 - \Rightarrow Sob certas condições a sequência $\{x_i^{(k)}\}$ converge para uma solução $\{x_i^*\}$, caso ela exista.
 - \Rightarrow Um sistema quadrado admite solução única sempre que $det(A) \neq 0$.

Solução de Sistemas Triangulares

Algoritmo para resolução de sistema triangular superior:

Dado um sistema triangular superior de ordem $n \times n$, com $diag(\mathbf{A}) = [\mathbf{A}]_{ii} \neq 0$, para obter as variáveis $x_n, x_{n-1}, x_{n-2}, \ldots, x_1$ pode-se proceder da seguinte maneira:

$$x_n = b_n/a_{nn}$$
Para $k = (n-1), \ldots, 1$

$$\begin{bmatrix} s = 0 \\ \operatorname{Para} j = (k+1), \ldots, n \\ s = s + a_{kj}x_j \\ x_k = (b_k - s)/a_{kk} \end{bmatrix}$$

➡ Você pode implementar esse conjunto de passos em qualquer linguagem (Matlab, Scilab, Octave, ...) para resolver um sistema triangular superior.

Métodos diretos

Método da Eliminação de Gauss

- Consiste em, usando transformações elementares, reduzir o sistema de equações a um sistema triangular (sistema de solução imediata).
- Técnica de pivotamento: Consiste em trocar a ordem das linhas de modo que na diagonal principal fiquem os maiores valores possível.

Descrição do método - Eliminação de Gauss

isto é, o sistema obtido é equivalente ao original.

Seja $\mathbf{A} \mathbf{x} = \mathbf{b}$. Se aplicarmos sobre as equações deste sistema uma sequência de operações elementares, tais como:

- i. trocar duas equações;
- ii. multiplicar uma equação por uma constante não nula;
- iii. adicionar um múltiplo de uma equação por outra equação; obtemos um novo sistema $\tilde{\mathbf{A}} \mathbf{x} = \tilde{\mathbf{b}}$ e os sistemas $\mathbf{A} \mathbf{x} = \mathbf{b} \Leftrightarrow \tilde{\mathbf{A}} \mathbf{x} = \tilde{\mathbf{b}}$,

Exemplo: Resolver pelo método de pivotamento de Gauss, o sistema linear de equações abaixo:

$$\begin{cases} 2x_1 + 3x_2 - x_3 = 5 \\ 4x_1 + 4x_2 - 3x_3 = 3 \\ 2x_1 - 3x_2 + x_3 = -1 \end{cases}$$

• Inicialmente troca-se de posição a 1ª e a 2ª linhas.

$$\begin{bmatrix} 4 & 4 & -3 & 3 \\ 2 & 3 & -1 & 5 \\ 2 & -3 & 1 & -1 \end{bmatrix}$$

• A 2^a e a 3^a linhas são multiplicadas por 2 ($\times 2$)

$$\begin{bmatrix} 4 & 4 & -3 & 3 \\ 4 & 6 & -2 & 10 \\ 4 & -6 & 2 & -2 \end{bmatrix}$$

• Agora subtrai-se a 2ª linha da 1ª; o mesmo é feito com a 3ª linha.

$$\left[\begin{array}{cc|cc|c} 4 & 4 & -3 & 3 \\ 0 & -2 & -1 & -7 \\ 0 & 10 & -5 & 5 \end{array}\right]$$

 Agora a 2^a e a 3^a linha são trocadas de posição para que o valor do "pivô" seja o maior possível.

$$\begin{bmatrix}
 4 & 4 & -3 & 3 \\
 0 & 10 & -5 & 5 \\
 0 & -2 & -1 & -7
 \end{bmatrix}$$

• A 3^a linha agora é multiplicada por -5

$$\left[\begin{array}{cc|cc|c} 4 & 4 & -3 & 3 \\ 0 & 10 & -5 & 5 \\ 0 & 10 & 5 & 35 \end{array}\right]$$

Agora a 3ª linha é subtraída da 2ª, e teremos o sistema triangular.

$$\left[\begin{array}{ccc|ccc}
4 & 4 & -3 & 3 \\
0 & 10 & -5 & 5 \\
0 & 0 & -10 & -30
\end{array}\right]$$

Agora, por substituição retroativas resolvemos o sistema de equações.

$$-10x_3 = -30 \Longrightarrow x_3 = 3$$

$$10x_2 - 5x_3 = 5 \Longrightarrow 10x_2 - 5 \times 3 = 5 \Longrightarrow 10x_2 = 20 \Longrightarrow x_2 = 2$$

$$4x_1 + 4x_2 - 3x_3 = 3 \Longrightarrow 4x_1 + 4 \times 2 - 3 \times 3 = 3 \Longrightarrow x_1 = 1$$

Exercício 2: Para cada um dos sistemas de equações lineares:

- i. analise se admitem solução única;
- ii. calcule a solução pelo método da Eliminação de Gauss.

(a)
$$\begin{cases} 2x_1 + x_2 - 3x_3 = -1 \\ x_1 - x_2 + 3x_3 = 7 \\ 3x_1 + 2x_2 - x_3 = 6 \end{cases}$$

(b)
$$\begin{cases} 3x_1 - x_2 + x_3 = 4; \\ 3x_1 + 7x_2 + 5x_3 = 0; \\ 3x_1 + 3x_2 + 7x_3 = 4; \end{cases}$$

Métodos Iterativos

Considere o seguinte sistema linear:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mm}x_m = b_m \end{cases}$$

De cada linha é separado o termo da diagonal, ou seja,

$$x_1 = \frac{b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1m}x_m}{a_{11}}$$

$$x_2 = \frac{b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2m}x_m}{a_{22}}$$

:

$$x_m = \frac{b_m - \sum_{i=1}^{m-1} a_{mi} x_i}{a_{mm}}$$

Método de Gauss-Jacobi

- Usa-se uma aproximação inicial $(x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_m^{(0)})^{\top}$ \Leftrightarrow em que o sobrescrito "0" indica a primeira aproximação ("chute").
- $ext{2}$ os valores de $x_i^{(0)}$ são substituídos no lado direito da Equação, gerando valores $x_i^{(1)}$;
- os valores de $x_i^{(1)}$ são substituídos no lado direito da Equação, gerando valores $x_i^{(2)}$; e assim sucessivamente até que os valores de x_i convirjam para os valores procurados (solução do sistema), com erros previamente estabelecidos.

Erro

Arr Convenciona-se aqui erro inferido (Δx_i) como o módulo da diferença entre um valor calculado de x e o seu valor calculado na iteração anterior.

Assim,
$$\Delta x_i^{(n)} = |x_i^{(n)} - x_i^{(n-1)}|$$
 .

Equações de Atualização G-J

De cada linha é separado o termo da diagonal, ou seja,

$$x_1^{(n+1)} = \frac{b_1 - a_{12}x_2^{(n)} - a_{13}x_3^{(n)} - \dots - a_{1m}x_m^{(n)}}{a_{11}}$$

$$x_2^{(n+1)} = \frac{b_2 - a_{21}x_1^{(n)} - a_{23}x_3^{(n)} - \dots - a_{2m}x_m^{(n)}}{a_{22}}$$

•

$$x_m^{(n+1)} = \frac{b_m - \sum_{i=1}^{m-1} a_{mi} x_i^{(n)}}{a_{mm}}$$

Critério de Convergência (Critério das linhas)

Seja o sistema linear
$$m{A}m{x} = m{b}$$
 e seja $m{lpha}_k = \sum_{\substack{j=1 \ j \neq k}} rac{|a_{kj}|}{|a_{kk}|}$. Se

 $\pmb{lpha} = \max_{1 \leq k \leq m} \{ \alpha_k \} < 1$, então o método de Gauss-Jacobi gera uma sequência

 $\{\mathbf{x}^k\}$ convergente para a solução do sistema dado, independentemente da escolha da aproximação inicial, $\mathbf{x}^{(0)} = [x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_m^{(0)}]^{\top}$.

 \triangleleft O sistema linear converge sempre que o sistema for diagonal dominante, ou seja, $|a_{ii}| > \sum_{i \neq i} |a_{ij}|$.

Exemplo: Resolver o sistema abaixo utilizando o método iterativo de Jacobi, com um erro relativo menor que 0,5%

$$\begin{cases} 5x_1 - x_2 = 3\\ x_1 + x_2 = 3 \end{cases}$$

Isolando os termos da diagonal, tem-se

$$\begin{cases} x_1 = \frac{3+x_2}{5} \\ x_2 = 3 - x_1 \end{cases}$$

Vamos chutar valores iniciais $(x_1, x_2)^{\top} = (0, 0)^{\top}$, e iniciar substituições sucessivas nas equações acima, conforme mostrado na tabela a seguir

Considere uma tabela com os seguintes elementos:

- n indica a ordem da iteração, então n=0 representa a inicialização do algoritmo.
- $\Delta x_i^{(n)}$ indica o erro absoluto da variável x_i na iteração n, i.e., $\Delta x_i^{(n)} = |x_i^{(n)} x_i^{(n-1)}|$.
- $\delta x_i^{(n)}$ indica o erro relativo (em porcentagem na tabela), i.e.,

$$\delta x_i^{(n)} = \left| \frac{\Delta x_i^{(n)}}{x_i^{(n)}} \right|.$$

n	$x_1 = (3 + x_2)/5$	$x_2 = 3 - x_1$	Δx_1	Δx_2	δx_1	δx_2
0	0	0	_	_	_	_
1	0,6000	3,0000	0,6000	3,0000	100,00	100,00
2	1,2000	2,4000	0,6000	0,6000	50,00	25,00
3	1,0800	1,8000	0,1200	0,6000	11,11	33,33
4	0,9600	1,9200	0,1200	0,1200	12,50	6,25
5	0,9840	2,0400	0,0240	0,1200	2,44	5,88
6	1,0080	2,0160	0,0240	0,0240	2,38	1,19
7	1,0032	1,9920	0,0048	0,0240	0,48	1,20
8	0,9984	1,9968	0,0048	0,0048	0,48	0,24

Exercício 3:[presença] Resolver o sistema abaixo utilizando o método iterativo de Gauss-Jacobi, com um erro absoluto menor que 0,01

$$\begin{cases} 3x_1 + x_2 - x_3 = 10 \\ x_1 + 2x_2 + x_3 = 8 \\ x_1 - x_2 + 4x_3 = 5 \end{cases}$$

Isolando os termos da diagonal, tem-se

$$\begin{cases} x_1 = \\ x_2 = \\ x_3 = \end{cases}$$

Vamos considerar uma aproximação inicial $(x_1, x_2, x_3)^{\top} = (0, 0, 0)^{\top}$, e realizaras substituições sucessivas nas equações obtidas, conforme mostrado na tabela a seguir

n	x_1	x_2	x_3	Δx_1	Δx_2	Δx_3
	$(10-x_2+x_3)/3$	$(8-x_1-x_3)/2$	$(5-x_1+x_2)/4$			
0	0	0	0	_	_	_
1	3,3333	4,0000	1,2500	3,3333	4,0000	1,2500
2	2,4167	1,7083	1,4167	0,9167	2,2917	0,1667
3	3,2361	2,0833	1,0729	0,8194	0,3750	0,3438
4	2,9965	1,8455	0,9618	0,2396	0,2378	0,1111
5	3,0388	2,0208	0,9622	0,0422	0,1753	0,0004
6	2,9805	1,9995	0,9955	0,0583	0,0213	0,0333
7	2,9987	2,0120	1,0048	0,0182	0,0125	0,0092
8	2,9976	1,9983	1,0033	0,0011	0,0137	0,0014
9	3,0017	1,9995	1,0002	0,0041	0,0013	0,0032
10	3,0002	1,9991	0,9995	0,0015	0,0005	0,0007
11	3,0001	2,0002	0,9997	0,0001	0,0011	0,0003
12	2,9999	2,0001	1,0000	0,0003	0,0001	0,0003
13	3,0000	2,0001	1,0001	0,0001	0,0000	0,0000
14	3,0000	2,0000	1,0000	0,0000	0,0001	0,0000
15	3,0000	2,0000	1,0000	0,0000	0,0000	0,0000

Método de Gauss-Seidel

O método de Gauss-Seidel é semelhante ao de Jacobi, a menos que ao substituirmos iterativamente valores de x, utilizamos sempre o valor mais atual.

- Inicialmente usamos os valores $(x_1^0, x_2^0, x_3^0, \dots, x_n^0)^{\top}$, como no método de Jacobi.
- os valores de $(x_2^0, x_3^0, \dots, x_n^0)$ são substituídos no lado direito da equação para obtemos o valor x_1^1 ;
- lacktriangledown para calcular x_2^1 usamos $(x_1^1, x_3^0, \dots, x_n^0)$
- lacktriangledown para calcular x_3^1 usamos $(x_1^1, x_2^1, x_4^0, \dots, x_n^0)$
- odessa maneira para o valor x_n^1 usamos os valores atualizados de (x_1^1,\dots,x_{n-1}^1) ;
- o usamos essa mesma metodologia para obter os sucessivos valores de \mathbf{x}^n até que convirja para os valores procurados, com erros previamente estabelecidos.

Erro

 \Leftrightarrow Convenciona-se aqui erro inferido (Δx_i) como o módulo da diferença entre um valor calculado de x e o seu valor calculado na iteração anterior. Assim, $\Delta x_i^n = |x_i^n - x_i^{n-1}|$.

Exemplo: Resolver o sistema abaixo utilizando o método iterativo de G-S, com um erro relativo menor que 0,5%

$$\begin{cases} 5x_1 - x_2 = 3\\ x_1 + x_2 = 3 \end{cases}$$

Isolando os termos da diagonal, tem-se

$$\begin{cases} x_1 = \frac{3+x_2}{5} \\ x_2 = 3 - x_1 \end{cases}$$

Vamos chutar valores iniciais $(x_1, x_2)^{\top} = (0, 0)^{\top}$, e iniciar substituições sucessivas nas equações acima, conforme mostrado na tabela a seguir

Na tabela novamente consideramos:

- n indica a ordem da iteração, então n=0 representa a inicialização do algoritmo.
- $\Delta x_i^{(n)}$ indica o erro absoluto da variável x_i na iteração n, i.e., $\Delta x_i^{(n)} = |x_i^{(n)} x_i^{(n-1)}|$.
- $\delta x_i^{(n)}$ indica o erro relativo (em porcentagem na tabela), i.e.,

$$\delta x_i^{(n)} = \left| \frac{\Delta x_i^{(n)}}{x_i^{(n)}} \right|.$$

n	$x_1 = (3 + x_2)/5$	$x_2 = 3 - x_1$	Δx_1	Δx_2	δx_1	δx_2
0	0	0	_	_	_	_
1	0,6000	2,4000	0,6000	2,4000	100,00	100,00
2	1,0800	1,9200	0,4800	0,4800	44,44	25,00
3	0,9840	2,0160	0,0960	0,0960	9,75	4,76
4	1,0032	1,9968	0,0192	0,0192	1,91	0,96
5	0,9994	2,0006	0,0038	0,0038	0,38	0,19

Note que o mesmo problema já resolvido anteriormente pelo método G-J foi agora resolvido usando G-S com menos interações.

Exercício 4: Resolver o sistema abaixo utilizando o método iterativo de Gauss-Seidel, com um erro absoluto menor que $0,01\,$

$$\begin{cases} 3x_1 + x_2 - x_3 = 10 \\ x_1 + 2x_2 + x_3 = 8 \\ x_1 - x_2 + 4x_3 = 5 \end{cases}$$

Isolando os termos da diagonal, tem-se

$$\begin{cases} x_1 = \\ x_2 = \\ x_3 = \end{cases}$$

Vamos a mesma aproximação inicial $(x_1,x_2,x_3)^\top=(0,0,0)^\top$, e iniciar substituições sucessivas nas equações acima, conforme mostrado na tabela a seguir

Método de Gauss-Seidel

n	x_1	x_2	x_3	Δx_1	Δx_2	Δx_3
	$(10 - x_2 + x_3)/3$	$(8-x_1-x_3)/2$	$(5-x_1+x_2)/4$			
0	0	0	0	_	_	_
1	3,3333	2,3333	1,0000	3,3333	2,3333	1,0000
2	2,8889	2,0556	1,0417	0,4444	0,2778	0,0417
3	2,9954	1,9815	0,9965	0,1065	0,0741	0,0451
4	3,0050	1,9992	0,9986	0,0096	0,0177	0,0020
5	2,9998	2,0008	1,0003	0,0052	0,0016	0,0017
6	2,9998	2,0000	1,0000	0,0000	0,0009	0,0002
7	3,0000	2,0000	1,0000	0,0002	0,0000	0,0001
8	3,0000	2,0000	1,0000	0,0000	0,0000	0,0000

Note que este sistema foi resolvido anteriormente pelo método de G-J, o qual convergiu com 15 iterações.

Critério de Convergência

Critério das linhas

 \triangleleft O sistema linear converge sempre que o sistema for diagonal dominante, ou seja, $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$.

Critério de Sassenfeld

Sejam
$$\beta_1 = \frac{|a_{12}| + |a_{12}| + \ldots + |a_{1m}|}{|a_{11}|}$$
, $\beta_2 = \frac{|a_{21}| \beta_1 + |a_{23}| + \ldots + |a_{2m}|}{|a_{22}|}$, ... e
$$\beta_m = \frac{|a_{m1}| \beta_1 + |a_{m2}| \beta_2 + \ldots + |a_{m(m-1)}| \beta_{m-1}}{|a_{mm}|}.$$

Seja agora
$$\beta = \max_{1 \le j \le m} \{\beta_j\}.$$

Se $\beta < 1$, então o método de Gauss-Seidel gera uma sequência convergente qualquer que seja \mathbf{x}^0 . Além disto, quanto menor for β , mais rápida será a convergência.

Exercício 5: Dado o sistema abaixo:

$$\begin{cases} 10, 1x_1 - 1, 2x_2 + 3, 2x_3 &= 3, 14 \\ 1, 1x_1 - 8, 2x_2 + 0, 8x_3 &= -3, 96 \\ 1, 2x_1 - 0, 9x_2 + 9, 8x_3 &= 3, 39 \end{cases}$$

- i. Aplique o Método de Gauss-Seidel e Gauss-Jacobi para cada um dos sistemas de equações lineares, executando 8 aproximações sucessivas para solução.
- ii. Exiba a estimativa do erro em cada iteração
- iii. Comente os resultados.

Resposta(Gauss-Jacobi)

$$x_1^{(n)} = \frac{3,14+1,2x_2^{(n-1)}-3,2x_3^{(n-1)}}{10,1}; x_2^{(n)} = \frac{3,96+1,1x_1^{(n-1)}+0,8x_3^{(n-1)}}{8,2};$$

$$x_3^{(n)} = \frac{3,39-1,2x_1^{(n-1)}+0,9x_2^{(n-1)}}{9,8};$$

n	x_1	x_2	x_3	δx_1	δx_2	δx_3
0	0	0	0	_	_	_
1	0,31089	0,48293	0,34592	100,000%	100,000%	100,000%
2	0,25867	0,55838	0,35220	20,188%	13,513%	1,784%
3	0,26564	0,55199	0,36552	2,625%	1,158%	3,645%
4	0,26066	0,55422	0,36408	1,911%	0,403%	0,396%
5	0,26139	0,55341	0,36490	0,276%	0,146%	0,223%
6	0,26103	0,55359	0,36474	0,136%	0,032%	0,045%
7	0,26110	0,55353	0,36480	0,028%	0,011%	0,016%
8	0,26108	0,55354	0,36478	0,010%	0,003%	0,004%

Resposta(Gauss-Seidel)

$$x_1^{(n)} = \frac{3,14+1,2x_2^{(n-1)}-3,2x_3^{(n-1)}}{10,1}; x_2^{(n)} = \frac{3,96+1,1x_1^{(n)}+0,8x_3^{(n-1)}}{8,2};$$
$$x_3^{(n)} = \frac{3,39-1,2x_1^{(n)}+0,9x_2^{(n)}}{9,8};$$

n	x_1	x_2	x_3	δx_1	δx_2	δx_3
0	0	0	0	_	_	_
1	0,31089	0,52463	0,35603	100,0000%	100,0000%	100,0000%
2	0,26042	0,55260	0,36478	19,3798%	5,0606%	2,3982%
3	0,26097	0,55352	0,36480	0,2111%	0,1675%	0,0049%
4	0,26108	0,55354	0,36478	0,0401%	0,0028%	0,0031%
5	0,26108	0,55354	0,36478	0,0021%	0,0001%	0,0002%
6	0,26108	0,55354	0,36478	0,0001%	0,0000%	0,0000%
7	0,26108	0,55354	0,36478	0,0000%	0,0000%	0,0000%
8	0,26108	0,55354	0,36478	0,0000%	0,0000%	0,0000%

É possível notar pelos quadros anteriores que o método de G-S converge com 7 iterações, enquanto, o método de G-J ainda não convergiu na 8^a iteração. Assim, por não ser necessário nenhum esforço computacional superior entre os métodos, o método de G-S se apresenta com uma solução mais precisa e mais rápida.

Exercício 6: Dado o sistema abaixo:

$$\begin{cases} kx_1 + x_2 + x_3 &= 2\\ kx_1 + 6x_2 + x_3 &= 3\\ x_1 + 6x_2 + 8x_3 &= 3 \end{cases}$$

- a. Para quais valores positivos de k o critério de Sassenfeld é satisfeito?
- b. Com relação aos métodos iterativos estudados, para solução de sistemas de equações lineares, o que se pode concluir levando em consideração a resposta do item anterior?

Resposta:

Pelo critério de Sassenfeld tem-se:

$$\beta_1 = \frac{1+1}{k} < 1 \Leftrightarrow k > 2;$$

$$\beta_2 = \frac{(2/k)k+1}{6} = 1/2 < 1;$$

$$\beta_3 = \frac{(2/k)+6/2}{8} = \frac{3k+2}{8k} < 1 \Leftrightarrow 8k > 2+3k \Leftrightarrow k > 2/5.$$

$$\therefore k > 2.$$

Para k>2 o critério de Sassenfeld está satisfeito, portanto, o método de G-S converge qualquer que seja o valor inicial $\mathbf{x}^{(0)}$.

Lista de Exercícios: 3

1 Bibliografia: Chapra, S.C., "Métodos Numéricos Aplicados com Matlab para Engenheiros e Cientístas". Mc Graw Hill, 3a. ed.

Disponível na Biblioteca Digital (intranet)

Problemas: 12.3 – 12.6, pg. 301.

2 Implemente na linguagem de sua preferência uma rotina para cálculo das aproximações sucessivas, usando Gauss-Jacobi ou Gauss-Seidel, para a solução de um sistema de equações lineares. Quando convergir, a menos de uma tolerância $\tau = \tau_0$ definida pelo usuário o programa deverá retornar o erro e a solução aproximada.