A NEW NEARBY GALAXY TABLE*

DAVID M. FRENCH, BART P. WAKKER Department of Astronomy, University of Wisconsin - Madison Draft version October 27, 2017

ABSTRACT

We present an all-sky catalog of galaxies in the nearby, $cz \le 10,000 \text{ km s}^{-1}$ redshift range. We have sourced published data available through the NASA Extragalactic Database(NED), the NASA/IPAC Infrared Science Archive (IRSA), the Third Reference Catalogue of Bright Galaxies (RC3), and the Tully (2015) 2MASS galaxy group catalog.

Subject headings: IGM, CGM, galaxies

1. INTRODUCTION

Galaxy catalogs at once seem somewhat outdated in the age of the internet, yet still frustratingly necessary. The ideal solution of an all-sky and all-object online database containing homogenized information has not been completely realized, even as the NASA Extragalactic Database (NED), Vizier, SIMBAD and others fulfill some of these requirements. Each of these databases offer slightly different sets of information on their objects however, and there is often no straightforward way for extracting all the parameters needed. For example, there is no way to return the diameters of all known galaxies in a particular redshift range.

In an effort to study the circumgalactic medium (CGM) in the nearby universe we have constructed a catalog of galaxies with $cz \leq 10,000~\rm km\,s^{-1}$. All of the data included here is publicly available through the NASA Extragalactic Database (NED) and the NASA/IPAC Infrared Science Archive (IRSA). We have endeavored in various ways to create a single, homogeneous catalog

This catalog is not meant to be entirely robust or comprehensive - rather it's purpose is to present a common batch of parameters for nearby galaxies in a easily retrievable and machine-readable manner. We have nonetheless endeavored to provide reasonable error estimates on all derivations and for as many observed quantities as possible.

We originally began compiling this data base as a tool to aid in the matching of galaxies to absorption detected in background QSO spectra. As effort in it's creation mounted, we decided that it could prove useful to the community.

Some caveats:

- 1. This is not the result of a targeted survey or observing program, so it's coverage and completeness is inherently non-uniform. We have endeavored to quantify this non-uniformity in Section XXXX.
- 2. The quality of the data and observational errors are difficult to determine. We present this dataset as more of a convenient "quick-look" directory than a scientifically rigorous data product.

Some background on currently available, up to date catalogs.

Is anything missing? What hole are we filling with this one?

At the risk of creating yet another catalog

2. Data

2.1. Galaxy Data Retrieval

The goal of this study relies on knowing the locations and properties of all galaxies near detected Ly α absorption lines. To facilitate this, we have constructed a dataset of all $z \leq 0.033$ ($cz \leq 10,000~{\rm km\,s^{-1}}$) galaxies with published data available through the NASA Extragalactic Database (NED).

The galaxy dataset contains over 130,000 entries, and includes data from SDSS, 2MASS, 2dF, 6dF, RC3, and many other, smaller surveys. Our criteria for including a galaxy in this dataset is only a published redshift which places the galaxy in the $cz \leq 10,000 \text{ km s}^{-1}\text{velocity}$ range. This restriction leads to a completeness limit of $B \lesssim 18.7 \text{ mag, or } \sim 0.2L_*, \text{ at } cz = 10,000 \text{ km s}^{-1}, \text{ and}$ progressively better towards lower velocities (see Figure 1). This limit will vary depending on which major surveys include a particular region of the sky. The major contributor is whether or not SDSS data is available, which begins around $cz = 5{,}000 \text{ km s}^{-1}$. Figure 1 is split into 4 velocity bins to illustrate this. Our data is complete down to $\sim 0.1L_*$ in the first bin, $0 \le cz \le 2,500 \text{ km s}^{-1}$. At slightly higher velocity, $2500 \le cz \le 6000 \text{ km s}^{-1}$, the completeness falls to barely better than $\sim 1.0L_*$ as we move past the near and well studied galaxies, but have yet to reach the footprint of deep all sky surveys. SDSS data becomes available in the last two bins, spanning $6000 \le cz \le 10,000 \text{ km s}^{-1}$, and correspondingly completeness remains high down to the SDSS limits of $B \lesssim 18.7 \text{ mag, or } \sim 0.2 L_* \text{ at } cz = 10,000 \text{ km s}^{-1}.$

2.2. Distances & Velocities

For XXXX% of galaxies, a redshift-independent distance estimate is available. In this case d_{best} is set to the mean of all available redshift-independent distance estimates, and $derr_{best}$ is set to the standard deviation on the mean. When only a redshift is available, we set d_{best} equal to the Hubble law distance as calculated with $H_0=71~{\rm km\,s^{-1}~Mpc^{-1}}$, and $derr_{best}$ equal to 10% of the resulting distance estimate. Nearby, the uncertainty is dominated by deviations from the Hubble Flow due to, e.g., the Local Group, and at larger distances the uncertainty in H_0 becomes dominant. The distance error for any particular galaxy is difficult to ascertain, but at 10% error should contain the true $1-\sigma$ error across our full redshift range.

Figure 1. Distribution of L/L_* values for all galaxies in the dataset. Black vertical lines highlight 1, 0.5, 0.1, 0.05 and 0.01 L_* . The turnoff around $0.1L_*$ shows that on average, the dataset is complete to $0.1L_*$.

All galaxies with zero or negative v_hel have d_{best} set to 1 Mpc, and $derr_{best}$ to 0.5 Mpc.

3. THE CATALOG

The following section describes the contents of each column in the order it appears in the catalog. Null values are marked in one of three ways. Columns containing strings have the null value of 'x', those containing integers have null value '-99', and those containing floating point entries have null value '-99.99'.

3.1. Name

Our preferred name for the galaxy. The ordering is as follows: NGC, MRK, UGC, PHL, 3C, IC, SBS, MCG, ISO, TON, PGC, PG, PB, FGC, HS, HE, KUG, IRAS, RX, CGCG, FBQS, LBQS, SDSS, VCC, 2MASS, 2DF, 6DF, HIPASS, 2MASX, MESSIER. If none of these are available, the NED preferred name is adopted.

$3.2. \ NED name$

The preferred name for the galaxy in the NED database.

3.3. z

NED redshift for the galaxy.

3.4. RAdeq

Equatorial right ascension coordinate in degrees (J2000.0 epoch).

3.5. DEdeg

Equatorial declination coordinate in degrees (J2000.0 epoch).

3.6. RAh

Equatorial right ascension hour coordinate (J2000.0 epoch).

3.7. RAm

Equatorial right ascension minute coordinate (J2000.0 epoch).

3.8. RAs

Equatorial right ascension second coordinate (J2000.0 epoch).

3.9. DE-

Equatorial declination coordinate sign (J2000.0 epoch).

3.10. DEd

Equatorial declination degree coordinate (J2000.0 epoch).

3.11. DEm

Equatorial declination minute coordinate (J2000.0 epoch).

3.12. *DEs*

Equatorial declination second coordinate (J2000.0 epoch).

3.13. *GLON*

Galactic longitude coordinate.

3.14. *GLAT*

Galactic latitude coordinate.

3.15. Vhel

Heliocentric radial velocity in km s⁻¹units.

$3.16. \ vcorr$

Virgocentric flow-corrected velocity. Following Geller & Huchra (1982), this corresponds to a 300 km s^{-1} velocity toward $R.A. = 186^{\circ}.7833$, $decl. = 12^{\circ}.9333$.

3.17. distvcorr

Distance calculated from vcorr with a Hubble constant of $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$ WHY? CITATION.

$3.18. RID_mean$

Mean redshift independent distance from the NED-D catalog.

$3.19. RID_median$

Median redshift independent distance from the NED-D catalog.

$3.20. RID_std$

Standard deviation of all redshift independent distance measurements.

$3.21. RID_min$

Minimum published redshift independent distance.

$3.22. RID_max$

Maximum published redshift independent distance.

$3.23.\ best Dist$

Our chosen best distance estimate. dist_best is equal to RID_median when a redshift independent distance is available, and otherwise defaults to distrectr.

3.24. $e_bestDist$

The error on $bestDist.\ e_bestDist$ is equal to RID_std when a redshift independent distance is available. Otherwise, $e_bestDist$ is set to 10% of distvcorr when $vcorr \ge 0$, and 50% of distvcorr if vcorr < 0.

$3.25. MajDiam_ang$

Major axis diameter in units of arcsec.

We have homogenized the galaxy data beyond the steps taken by NED by normalizing diameter measurements to 2MASS K-band values. Most galaxies in NED have measures of inclination, position angle and diameter available in several different bands, so in order to make more meaningful comparisons we choose one band for all measurements. We chose 2MASS values for this because it was an all-sky survey, and represents the largest fraction of available galaxy data. Physical galaxy diameters are derived from 2MASS K_s "total" angular diameter measurements and galaxy distances. 2MASS K_s "total" diameter estimates are surface brightness extrapolation measurements and were derived by the 2MASS team as

$$r_{tot} = r' + a(\ln(148)^b),$$
 (1)

where r_{tot} is defined as the point where the surface brightness extends to 5 disk scale lengths, r' is the starting point radius (> 5" - 10" beyond the nucleus, or core influence), and a and b are Sersic exponential function scale length parameters ($f = f_0 \exp\left(-r/a\right)^{(1/b)}$, see Jarret et al. 2003 for a full description). Approximately 50% of all the galaxies have this 2MASS K_s "total" diameter. Of the remainder, 20% have SDSS diameters, 3% have diameters from other surveys, and 27% have no published diameter.

For galaxies with multiple published measurements from different facilities, we have derived linear fits in order to convert between them. The orthogonal distance regression (ODR) algorithm as implemented by the Fortran code ODRPACK (and the Python wrapped version included in the Scipy package) was used to derive these best fits and their associated errors. ODR, compared to the more common linear regression algorithm, assumes errors in both x- and y-coordinates and thus minimizes

the orthogonal distance between both dependent and independent data and the fit. We then ranked the available surveys in order of goodness of fit to 2MASS values. The fits for each survey are listed in Table 1.

A significant fraction of galaxies have irregular, incomplete, or otherwise suspect diameter data as published in NED. For example, some have 2MASS K_s "total" diameters available, but the published axis ratio is either greater than 1, or otherwise significantly deviates from that found in other surveys. Furthermore, often our highest ranking diameter survey has incomplete data (such as a missing axis ratio or position angle measurement). For our purposes we want to choose a single, representative value for each parameter. We decision tree is as follows: 1) we choose the highest ranking measurement available. and choose the largest major-axis diameter value when multiple are available from the same facility, 2) we choose the highest ranking axes ratio, preferentially selecting the value from the measurement chosen in (1), but rejecting a ratio = 1 when the average ratio of all measurements is less than 1, 3) we choose the highest ranking position angle measurement, again preferentially selecting the value included in (1).

Finally, we check to see if our initial choices are outliers using a version of the Iglewicz-Hoaglin Method, a median absolute deviation algorithm (Iglewicz & Hoaglin 1993). Through trial-and-error we set our outlier thresholds at 4.0 for major axis diameters, 3.5 for position angles, and 2.5 for axis ratios. If our initial choice of any of these values is flagged as an outlier, we choose the next highest-ranking, non-outlier value. The decision of diameter, ratio and position angle for each galaxy is included in the ??, ??, and ?? columns.

$3.26. \ MinDiam_ang$

Minor axis diameter in units of arcsec. See 3.25 for a complete discussion.

$$3.27. e_MajDiam_ang$$

Major axis diameter error. This error is purely a result of the fit to K_s (2MASS) values, and thus does not take into account any observational errors.

$3.28. e_MinDiam_ang$

Minor axis diameter error. This error is purely a result of the fit to K_{-s} (2MASS) values, and thus does not take into account any observational errors.

3.29. MajDiam

Linear major axis diameter in units of kpc, calculated using bestDist.See 3.25 for a complete discussion.

$3.30. \ MinDiam$

Linear minor axis diameter in units of kpc, calculated using bestDist. See 3.25 for a complete discussion.

3.31.
$$e_MajDiam$$

Linear major axis diameter error. This error is purely a result of the fit to K_{-s} (2MASS) values, and thus does not take into account any observational errors.

$$3.32. e_MinDiam$$

Linear minor axis diameter error. This error is purely a result of the fit to K_{-s} (2MASS) values, and thus does not take into account any observational errors.

Survey Name	m	y-intercept	Fraction of Total
K_s (2MASS isophotal)	1.765 ± 0.003	1.31 ± 0.06	XXX
POSS1 103a-O	0.869 ± 0.007	17.6 ± 0.4	XXX
POSS1 103a-E	1.055 ± 0.043	26.22 ± 1.98	XXX
ESO-LV "Quick Blue" IIa-O	0.81 ± 0.02	-9.7 ± 1.4	XXX
r (SDSS Isophotal)	1.033 ± 0.005	0.84 ± 0.17	XXX
RC3 D_0 (blue)	1.040 ± 0.009	1.29 ± 0.58	XXX
RC3 D ₋ 25, R ₋ 25 (blue)	1.107 ± 0.009	3.09 ± 0.60	XXX
r (SDSS Petrosian)	4.728 ± 0.032	3.38 ± 0.21	XXX
r (SDSS deVaucouleurs)	3.49 ± 0.04	14.45 ± 0.21	XXX
r (SDSS de Vaucouleurs)	2.70 ± 0.04	15.64 ± 0.22	XXX
RC3 A_e (Johnson B)	2.25 ± 0.06	19.2 ± 1.8	XXX
r (SDSS Exponential)	8.24 ± 0.06	7.7 ± 0.2	XXX
B (Johnson)	1.24 ± 0.09	-25.3 ± 9.7	XXX
R (Kron-Cousins)	1.47 ± 0.14	-35.9 ± 14.4	XXX
ESO-Uppsala "Quick Blue" IIa-O	1.06 ± 0.02	-13.4 ± 1.4	XXX
ESO-LV IIIa-F	4.65 ± 0.13	23.02 ± 0.92	XXX

Table 1
Diameter fits in order of quality.

3.33. $R_{-}vir$

Virial radius estimate calculated as

$$log R_{vir} = 0.69 log D + 1.24.$$
 (2)

This follows the parametrization of Stocke et al. (2013) relating a galaxy's luminosity to its virial radius, combined with the Wakker & Savage (2009) empirical relation between diameter and luminosity (see Wakker et al. 2015 and references therein for further details).

3.34. inc

Galaxy inclination calculated as inc. $\cos^{-1}(minor/major)$ in units of degrees.

3.35. adjustedInc

Galaxy inclination calculated assuming a finite disk thickness following Heidmann et al. (1972a):

$$\cos(i) = \sqrt{\frac{q^2 - q_0^2}{1 - q_0^2}},\tag{3}$$

where q is the ratio of minor to major axes and q_0 is the minimum disk thickness. We set $q_0 = 0.2$ for all galaxies. This value is a compromise, as some galaxies (e.g., Sc type) will have intrinsic q_0 closer to ~ 0.13 (e.g., see **REFERENCE**), while highly bulged galaxies will have larger q_0 . The result is that very thin galaxies will be slightly biased towards higher inclination and vice-versa with thicker galaxies.

3.36. incErr

Inclination error derived from the error in major and minor axes fits (see 3.25). Measurement errors for diameters, axis-ratios, and position angles are inconsistently reported in NED, so this value only captures the additional error introduced by converting non-2MASS diameters. For consistency, we set 2MASS diameter errors uniformly at 5%.

3.37. PA

Position angle in units of degrees.

When multiple PA measurements are available for a given target, we choose the highest ranking measurement as outlined in **ref** *MajDiam_ang*.

$3.38. diam_key$

The observed passband of the diameter measurements. The published diameters are converted to an equivalent 2MASS K_s "total" value following the fits given in 1.

3.39. ratio_key

The observed passband of the diameter ratio measurement. This is used to calculate the minor axis diameters and inclinations.

$3.40. pa_{-}key$

The observed passband of the position angle measurement.

$3.41. RC3_type$

Galaxy morphology as published in the Third Reference Catalog of Bright Galaxies (RC3; see de Vaucouleurs G. et al. 1994 for full description). Galaxies not included in RC3 are marked 'x'.

3.42. *RC3_d25*

The RC3 apparent major isophotal diameter measured at the 25th magnitude surface-brightness level, in units of B-mag per arcsecond.

3.43. *RC3_r25*

The RC3 ratio of the major to minor axis diameter (converted from decimal logarithm to a straight ratio in order to match the units of *ratio_key*).

The RC3 position angle in units of degrees.

$3.45. \quad qroup_num$

Group designation taken from the Tully (2015) group catalog.

$3.46. \ group_mem$

Number of members in this galaxy group from the 2MASS 11.75 catalog (Huchra et al. 2012), taken from the Tully (2015) group catalog.

$3.47. \ group_dist$

Distance to the galaxy group, taken from the Tully (2015) group catalog.

3.48. MType

Morphological type as homogenized by NED. We have removed extraneous space characters, and then replaced the individual spaces with underscore characters.

3.49. flag

A flag to help identify suspected issues with a galaxy. For most objects flag = 0. If, however, we suspect an object to be a star we set flag = 1. Our criteria for this is as follows: 1) if an object has $Vhel < 500 \text{ km s}^{-1}$, no diameter measurement, and no MType available, 2) if MType is found to match any of our exclude morphologies. Our full exclude list is the following: ['M-star', 'M star', 'Opt.var.', 'K4-K5;Candidate WD', 'F6-F8;Candidate WD', 'A', 'Candidate AGN', 'M1', 'star??', 'O', 'K Star', 'PN?', 'K1', 'M0', 'M0V', 'A0', 'DA-star', 'High vel. cloud', 'O', 'Carbon', 'Point Src [SDSS]', 'Possible star', 'Planetary nebula', 'M3-M4', 'F2', 'A-star', 'PN:', 'Cand. glob. cluster', 'Candidate PN', 'F']. Secondly, we set flag = 2 if the velocity implied by

Secondly, we set flag = 2 if the velocity implied by RID_median (i.e., RID_median * H_0) differs from Vhel by more than 1500 km s⁻¹. If flag = 2, it may be wise to use distvcorr instead of bestDist.

3.50. distIndicator

A key indicating which method was used to measure the redshift-independent distance for this galaxy. Table 2 shows the keys and their corresponding full names as compiled in the NED-D distance catalog. This key corresponds only to the RID_median value.

3.51. lumClass

3.52. E(B-V)

Galactic mean dust extinction in the direction of each galaxy from Schlafly and Finkbeiner (2011). MORE?

3.53. Bmaq

The median B-band magnitude.

$3.53.1.\ Photometry$

For each galaxy we retrieved all B-band and SDSS g, r, and z measurements. Direct B band measurements are available for $\sim 30\%$ of galaxies, and most of the rest have SDSS magnitudes, which we converted to B-band via B=g+0.39(g-r)+0.21 (Jester et al. 2005). Per SDSS DR12 guidelines, we preferentially selected SDSS petrosian magnitudes when available, followed by model and cmodel values if petrosian was not available. We then selected the min, max and median B-band values when more than one was available for inclusion in the final data product. SDSS-converted B-band values are included as a separate estimate.

AGBAGBMagEnMagnetic energyAGNtlAGN time lagMagMagnitudeBstarB StarsMaserMaserBCGBCGMassMMass ModelBHBlack HoleMirasMirasBLumBL Lac LuminosityNovaeNovaeBSGBlue SupergiantOBstrOB StarsBrstrBrightest StarsOrMecOrbital Mech.CstarCarbon StarsPAGBPAGB StarsCephCepheidsPNLFPNLFCMDCMDpropMProper MotiondCOCO ring diameterQSQuasar spectrumDsigmD-SigmaRadioRadio BrightnessScutiDelta ScutiRClumRed ClumpDiamDiameterDRingRing DiameterdwEllDwarf EllipticalsRRLyrRR LyraeDwarfDwarf Galaxy DiameterRSVRSV StarsFelBiEclipsing BinaryRVRV StarsFJFaber-JacksonSDorSS Doradus StarsFGLRFGLRSBFSBFGCEnsG LensSGRBSGRBGCFPGC FPSNIaSNIaGCKJKGC K vs. (J-K)SNIIoSNII opticalGCKJKGC K vs. (J-K)SNIIoSNII opticalGCKJFGC SBFStatStatisticalgammaGeV TeV ratioSosieSosiesGSGDGrav. Stability Gas. DiskSubDwSubdwarf fittingGRBGRB		D: t I I: t	TZ	D: / T 1: /
AGNtl AGN time lag Bstar B Stars BCG BCG MassM Mass Model BH Black Hole BLum BL Lac Luminosity BSG Blue Supergiant Brstr Brightest Stars Ceph Cepheids Cotar Carbon Stars Ceph Cepheids Cotor Cotar Delta Scuti Delta Scuti Delta Scuti Diam Diameter Diam Diameter Dwarf Galaxy Diameter EclBi Eclipsing Binary FJ Faber-Jackson FGLR FGLR GCFP GC FP GCFP GCFP GCFP GCK SKI GCCK GCC SBF GCCSBF GCSBF GCR BCC BCC MassM Mass Model Miras Miras Mass Model Miras Maser Novae Novae Obstar Sparb FORB Stars FORB Scalible Forbital Mech. CPAB Stars RALyr Proper Motion Proph Proper Motion CPMC QV Quasar spectrum Radio Radio Brightness Radio Ralible Radio Radio Brightness Sporal Radio Brightness Sporal Radio Brightness Sporal Scalible Sparbar Scalible Sparba	Key	Distance Indicator	Key	Distance Indicator
Bstar B Stars Maser Maser BCG BCG BCG MassM Mass Model Miras Miras Miras BL Lum BL Lac Luminosity Novae Novae SSG Blue Supergiant OBstr OB Stars Brstr Brightest Stars OrMcc Orbital Mech. Cstar Carbon Stars PAGB PAGB Stars Ceph Cepheids PNLF PNLF PNLF CMD CMD CMD PropM Proper Motion QCO CO ring diameter Qs Quasar spectrum Dsigm D-Sigma Radio Brightness Rclum Red Clump Diam Diameter DRing Ring Diameter DRing Ring Diameter dwEll Dwarf Ellipticals RRLyr RR Lyrae RSV Stars EclBi Eclipsing Binary RV RV Stars FGLR FGLR SBF SGRB SGRB GCFP GC FP SNIa SNIa SNIa SNIa SNIa SNIa SNIa SNIa	-		0	0
BCG BCG MassM Mass Model BH Black Hole Miras Miras Miras BLLum BL Lac Luminosity Novae Novae OBST OB Stars Brightest Stars OrMec Orbital Mech. Cstar Carbon Stars PAGB PAGB Stars Ceph Cepheids PNLF PNLF CMD CMD Propom Proper Motion dCO CO ring diameter QS Quasar spectrum Posigm D-Sigma Radio Radio Brightness Scuti Delta Scuti RClum Red Clump Diam Diameter DRing Ring Diameter dwEll Dwarf Ellipticals RRLyr RR Lyrae RSV RSV Stars EclBi Eclipsing Binary RV RV Stars FJ Faber-Jackson SDorS S Doradus Stars FGLR FGLR SBF SBF SBF GCFP GC FP SNIa SNIa SNIa SNIa SCEPP GC FP SNIA SNII OF SNII SONS SDOS SNII	AGNtl	AGN time lag	Mag	Magnitude
BH Black Hole BLLum BL Lac Luminosity BSG Blue Supergiant Brstr Brightest Stars Ceph Cephids CMD CMD dCO CO ring diameter Dsigm D-Sigma Scuti Delta Scuti Diam Diameter dwEll Dwarf Ellipticals Dwarf Ellipticals Eclibi Eclipsing Binary FJ Faber-Jackson FGLR FGLR GLens GCFP GC FP GCFP GCFP GCFP GCFP GCFP GCFP GCFP GC				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BCG		MassM	Mass Model
BSG Blue Supergiant OBstr OB Stars Brstr Brightest Stars OrMec Orbital Mech. Cstar Carbon Stars PAGB PAGB Stars Ceph Cepheids PNLF PNLF CMD CMD Proper Motion dCO CO ring diameter QS Quasar spectrum Dsigm D-Sigma Radio Radio Brightness Scuti Delta Scuti Delta Scuti PRIME Red Clump Diam Diameter DRing Ring Diameter dwEll Dwarf Ellipticals RRLyr RR Lyrae Dwarf Dwarf Galaxy Diameter RSV RSV Stars EclBi Eclipsing Binary RV RV Stars FJ Faber-Jackson SDorS S Doradus Stars FGLR FGLR SBF SBF GLens G Lens SGRB SGRB GCFP GC FP SNIa SNIa SNIa GCKJK GC K vs. (J-K) SNIIo SNII optical GCTad GC radius SNIIr SNII radio GCLF GCLF SNIas SNIa SDSS GCSBF GC SBF Stat Statistical gamma GeV TeV ratio Sosie Sosies GSGD Grav. Stability Gas. Disk GRB GRB HIOd H I + optical distribution HILLF HII LF Terti Tertiary HII LF Terti Tertiary HII HII region diameter HB Horizontal Branch HRAS IRAS TF Tully-Fisher LSB LSB galaxies WR Wolf-Rayet				Miras
Brstr Brightest Stars OrMec Orbital Mech. Cstar Carbon Stars PAGB PAGB Stars Ceph Cepheids PNLF PNLF PNLF CMD CMD CMD Proper Motion QS Quasar spectrum Dsigm D-Sigma Radio Radio Brightness Scuti Delta Scuti RClum Red Clump Diam Diameter DRing Ring Diameter RRLyr RR Lyrae Dwarf Ellipticals Dwarf Ellipticals Eclipsing Binary RV RV Stars FJ Faber-Jackson SDorS S Doradus Stars FGLR FGLR SBF SBF SBF GC FP GC FP SNIa SNIa SNIa SNIa SCEP GC FP SNIa SNII SNII optical GCLF GCLF GCLF SNIas SNII SNII radio GCLF GCLF GCSBF GC SBF Stat Statistical Samma GeV TeV ratio GSGD Grav. Stability Gas. Disk GRB GRB GRB HIOd H I + optical distribution HIILF HII LF HII LF Terti Tertiary dHII HII region diameter TRGB TRGB HAS IRAS IRAS TF TUlly-Fisher LSB LSB galaxies WR Wolf-Rayet		BL Lac Luminosity	Novae	110140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$_{\mathrm{BSG}}$	Blue Supergiant	OBstr	OB Stars
CephCepheidsPNLFPNLFCMDCMDpropMProper MotiondCOCO ring diameterQSQuasar spectrumDsigmD-SigmaRadioRadio BrightnessScutiDelta ScutiRClumRed ClumpDiamDiameterDRingRing DiameterdwEllDwarf EllipticalsRRLyrRR LyraeDwarfDwarf Galaxy DiameterRSVRSV StarsEclBiEclipsing BinaryRVRV StarsFJFaber-JacksonSDorSS Doradus StarsFGLRFGLRSBFSBFGLensGLensSGRBSGRBGCFPGC FPSNIaSNIaGCKJKGC K vs. (J-K)SNIIoSNII opticalGCTAGGC radiusSNIIrSNII radioGCLFGCSBFStatStatisticalgammaGeV TeV ratioSosieSosiesGSGDGrav. Stability Gas. DiskSubDwSubdwarf fittingGRBGRBSXPSSX Phe StarsHIGHHI LFTertiTertiTertiarydHIIHII region diameterTRGBTRGBHBHorizontal BranchTFestTully-FisherJetJet Proper MotionCepIIType II CepheidsLHbsL(H β)- σ WDWhite DwarfsLSBLSB galaxiesWRWolf-Rayet	Brstr	Brightest Stars	OrMec	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
CMD CMD dCO CO ring diameter Dsigm D-Sigma Scuti Delta Scuti Diam Diameter dwEll Dwarf Ellipticals Dwarf Galaxy Diameter EclBi Eclipsing Binary FJ Faber-Jackson FGLR FGLR GCKJK GC K vs. (J-K) GCTad GC radius GCLF GCSBF GCSBF GCSBF GCSBF GRB GRB GRB GRB GRB GRB GRB G	0.000	Carbon Stars	_	PAGB Stars
dCO CO ring diameter Dsigm D-Sigma Radio Radio Brightness Scuti Delta Scuti RClum Red Clump Diam Diameter DRing Ring Diameter dwEll Dwarf Ellipticals RRLyr RR Lyrae Dwarf Dwarf Galaxy Diameter RSV RSV Stars EclBi Eclipsing Binary RV RV Stars FJ Faber-Jackson SDorS S Doradus Stars FGLR FGLR SBF SBF SBF GCFP GC FP SNIa SNIa SNIa SNIa SNIa SNIa SNIa SNII SNII	Ceph	Cepheids	PNLF	PNLF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CMD	CMD	propM	Proper Motion
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	dCO	CO ring diameter	QS	Quasar spectrum
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dsigm	D-Sigma		Radio Brightness
dwEllDwarf EllipticalsRRLyrRR LyraeDwarfDwarf Galaxy DiameterRSVRSV StarsEclBiEclipsing BinaryRVRV StarsFJFaber-JacksonSDorSS Doradus StarsFGLRFGLRSBFSBFGLensG LensSGRBSGRBGCFPGC FPSNIaSNIaGCKJKGC K vs. (J-K)SNIIoSNII opticalGCradGC radiusSNIIrSNII radioGCLFGCLFSNIasSNSI a SDSSGCSBFGC SBFStatStatisticalgammaGeV TeV ratioSosieSosiesGSGDGrav. Stability Gas. DisksubDwSubdwarf fittingGRBGRBSXPSSX Phe StarsHIOdH I + optical distributionSZSZ effectHIILFHII LFTertiTertiarydHIIHII region diameterTRGBTRGBHBHorizontal BranchTFestTully estIRASIRASTFTully-FisherJetJet Proper MotionCepIIType II CepheidsLHbs $L(H \beta)$ - σ WDWhite DwarfsLSBLSB galaxiesWRWolf-Rayet	Scuti	Delta Scuti	RClum	Red Clump
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diam	Diameter	DRing	Ring Diameter
EclBiEclipsing BinaryRVRV StarsFJFaber-JacksonSDorSS Doradus StarsFGLRFGLRSBFSBFGLensG LensSGRBSGRBGCFPGC FPSNIaSNIaGCKJKGC K vs. (J-K)SNIIoSNII opticalGCradGC radiusSNIIrSNII radioGCLFGCLFSNIasSNIa SDSSGCSFFGC SBFStatStatisticalgammaGeV TeV ratioSosieSosiesGSGDGrav. Stability Gas. DiskSubDwSubdwarf fittingGRBGRBSXPSSX Phe StarsHIOdH I + optical distributionSZSZ effectHIILFHII LFTertiTertiarydHIIHII region diameterTRGBTRGBHBHorizontal BranchTFestTully estIRASIRASTFTully-FisherJetJet Proper MotionCepIIType II CepheidsLHbs $L(H \beta)$ - σ WDWhite DwarfsLSBLSB galaxiesWRWolf-Rayet	dwEll	Dwarf Ellipticals	RRLyr	RR Lyrae
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dwarf	Dwarf Galaxy Diameter	RSV	RSV Stars
FGLR FGLR SBF SBF GLens G Lens SGRB SGRB GCFP GC FP SNIa SNIa GCKJK GC K vs. (J-K) SNIIo SNII optical GCrad GC radius SNIIr SNII radio GCLF GCLF SNIas SNIa SDSS GCSBF GC SBF Stat Statistical gamma GeV TeV ratio Sosie Sosies GSGD Grav. Stability Gas. Disk subDw Subdwarf fitting GRB GRB SXPS SX Phe Stars HIod H I + optical distribution SZ SZ effect HIILF HII LF Terti Tertiary dHII HII region diameter TRGB TRGB HB Horizontal Branch TFest Tully-Fisher Jet Jet Proper Motion CepII Type II Cepheids LHbs L(H β)- σ WD White Dwarfs LSB LSB galaxies WR Wolf-Rayet	EclBi	Eclipsing Binary	RV	RV Stars
GLens G Lens SGRB SGRB GCFP GC FP SNIa SNIa SNIa SNIa SNII optical GCKJK GC K vs. (J-K) SNII optical SNII radio SCLF GCLF SNIas SNIA SDSS GCSBF GC SBF Stat Statistical Samma GeV TeV ratio Sosie Sosies SSGD Grav. Stability Gas. Disk SXPS SX Phe Stars HIod H I + optical distribution SZ SZ effect HIILF HII LF Terti Tertiary dHII HII region diameter TRGB TRGB HB Horizontal Branch TFest Tully est IRAS IRAS TF Tully-Fisher Jet Jet Proper Motion CepII Type II Cepheids LHbs $L(H \beta)-\sigma$ WD White Dwarfs LSB LSB galaxies WR Wolf-Rayet	FJ	Faber-Jackson	SDorS	S Doradus Stars
GCFPGC FPSNIaSNIaGCKJKGC K vs. (J-K)SNIIoSNII opticalGCradGC radiusSNIIrSNIIr radioGCLFGCLFSNIasSNIa SDSSGCSBFGC SBFStatStatisticalgammaGeV TeV ratioSosieSosiesGSGDGrav. Stability Gas. DisksubDwSubdwarf fittingGRBGRBSXPSSX Phe StarsHIodH I + optical distributionSZSZ effectHIILFHII LFTertiTertiarydHIIHII region diameterTRGBTRGBHBHorizontal BranchTFestTully estIRASIRASTFTully-FisherJetJet Proper MotionCepIIType II CepheidsLHbs $L(H \beta)$ - σ WDWhite DwarfsLSBLSB galaxiesWRWolf-Rayet	FGLR	FGLR	SBF	SBF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GLens	G Lens	SGRB	SGRB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GCFP	GC FP	SNIa	SNIa
GCLFGCLFSNIasSNIa SDSSGCSBFGC SBFStatStatisticalgammaGeV TeV ratioSosieSosiesGSGDGrav. Stability Gas. DisksubDwSubdwarf fittingGRBGRBSXPSSX Phe StarsHIodH I + optical distributionSZSZ effectHIILFHII LFTertiTertiarydHIIHII region diameterTRGBTRGBHBHorizontal BranchTFestTully estIRASIRASTFTully-FisherJetJet Proper MotionCepIIType II CepheidsLHbsL(H β)- σ WDWhite DwarfsLSBLSB galaxiesWRWolf-Rayet	GCKJK	GC K vs. (J-K)	SNIIo	SNII optical
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GCrad	GC radius	SNIIr	SNII radio
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GCLF	GCLF	SNIas	SNIa SDSS
GSGD Grav. Stability Gas. Disk SUbDw Subdwarf fitting GRB GRB SXPS SX Phe Stars HIod H I + optical distribution SZ SZ effect HIILF HII LF Terti Tertiary GHII HII region diameter TRGB TRGB HB Horizontal Branch TFest Tully est IRAS IRAS TF Tully-Fisher Jet Jet Proper Motion CepII Type II Cepheids LHbs $L(H \beta)$ - σ WD White Dwarfs LSB LSB galaxies WR Wolf-Rayet	GCSBF	GC SBF	Stat	Statistical
GRB GRB SXPS SX Phe Stars HIod H I + optical distribution SZ SZ effect HIILF HII LF Terti Tertiary dHII HII region diameter TRGB TRGB HB Horizontal Branch TFest Tully est IRAS IRAS TF Tully-Fisher Jet Jet Proper Motion CepII Type II Cepheids LHbs $L(H \beta)-\sigma$ WD White Dwarfs LSB LSB galaxies WR Wolf-Rayet	gamma	GeV TeV ratio	Sosie	Sosies
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GSGD	Grav. Stability Gas. Disk	subDw	Subdwarf fitting
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GRB	GRB	SXPS	SX Phe Stars
dHII HII region diameter TRGB TRGB TRGB HB Horizontal Branch TFest Tully est TRAS IRAS TF Tully-Fisher Jet Jet Proper Motion CepII Type II Cepheids LHbs $L(H \beta)$ - σ WD White Dwarfs LSB LSB galaxies WR Wolf-Rayet	HIod	H I + optical distribution	SZ	SZ effect
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$_{ m HIILF}$	HII LF	Terti	Tertiary
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$_{ m dHII}$	HII region diameter	TRGB	TRGB
Jet Jet Proper Motion CepII Type II Cepheids LHbs $L(H \beta)-\sigma$ WD White Dwarfs LSB LSB galaxies WR Wolf-Rayet	HB		TFest	Tully est
$ \begin{array}{cccc} \text{LHbs} & \text{L(H β)-σ} & \text{WD} & \text{White Dwarfs} \\ \text{LSB} & \text{LSB galaxies} & \text{WR} & \text{Wolf-Rayet} \\ \end{array} $	IRAS	IRAS	TF	Tully-Fisher
$ \begin{array}{cccc} \text{LHbs} & \text{L(H β)-σ} & \text{WD} & \text{White Dwarfs} \\ \text{LSB} & \text{LSB galaxies} & \text{WR} & \text{Wolf-Rayet} \\ \end{array} $	Jet	Jet Proper Motion	CepII	Type II Cepheids
· ·	LHbs	$L(H \beta)-\sigma$	WD	
ů.	LSB	LSB galaxies	WR	Wolf-Rayet
Mstar M Stars	Mstar	M Stars		*

Table 2

Distance indicators and associated keys. Full descriptions can be found here https://ned.ipac.caltech.edu/ Library/Distances/distintro.html

We then computed each galaxys luminosity in units of L_* for each of the min, median, max and SDSS B-band values as follows:

$$\frac{L}{L_*} = 10^{-0.4(M_B - M_{B_*})},\tag{4}$$

where M_B is the galaxy absolute magnitude, calculated using the d_{best} distance estimate as described above. We adopted the CfA galaxy luminosity function by Marzke et al. (1994), which sets $B_* = -19.57$.

$3.54. \ Bmag_key$

The survey that contributed the value of Bmag.

$3.55. \ Bmag_max$

The brightest B-band magnitude available in NED for this object. See ?? for details.

$3.56. \ Bmag_max_key$

The survey that contributed the value of $Bmag_max$.

$3.57. \ Bmag_min$

The dimmest B-band magnitude available in NED for this object. See ?? for details.

$3.58. \ Bmag_min_key$

The survey that contributed the value of *Bmag_min*.

$3.59. \ Bmag_sdss$

SDSS g and r-band measurements converted to B-band via B = g + 0.39(g - r) + 0.21 (Jester et al. 2005). See $\ref{eq:solution}$? for details.

$3.60. \ gmag_sdss$

The SDSS g-band magnitude used in the $Bmag_sdss$ calculation.

$3.61. \ rmag_sdss$

The SDSS r-band magnitude used in the $Bmag_sdss$ calculation.

$3.62. \ zmag_sdss$

SDSS z-band magnitude used in the $Bmag_sdss$ calculation.

$3.63. \ Lstar_med$

The L/L_* ratio calculated using Bmag, distBest, and E(B-V) following Eq. 4.

3.64. e_Lstar_med

 $Lstar_med$ error calculated with e_Bmag and $e_distBest$. Errors in E(B-V) are relatively negligible and thus were not used.

$3.65.\ Lstar_max$

The L/L_* ratio calculated using B_max , $distBest + dist_err$, and E(B-V) following Eq. 4.

$3.66.~e_Lstar_max$

Lstar_med error calculated with e_Bmag_max and $e_distBest$. Errors in E(B-V) are relatively negligible and thus were not used.

$3.67. \ Lstar_min$

The L/L_* ratio calculated using B_min , distBest - $dist_err$, and E(B-V) following Eq. 4.

3.68. e_Lstar_min

The L/L_* ratio calculated using e_Bmag_min , distBest - $dist_err$, and E(B-V) following Eq. 4.

$3.69.\ Lstar_sdss$

The L/L_* ratio calculated using B_min , $dist_best$ - $dist_err$, and E(B-V) following Eq. 4.

3.70. $e_L star_s dss$

The L/L_* ratio calculated using B_min , $dist_best$ - $dist_err$, and E(B-V) following Eq. 4.

3.71. altNames

The NED list of alternative object names for this galaxy with spaces removed. In the main catalog we have included only NGC, IC, UGC, SDSS, and 2MASS names in this column. The associated alternative names table contains the full list. Note that our preferred name, Name, and NEDname will only appear in the altNames list if they match these same criteria.

4. SUMMARY

Summary...

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations with the NASA/ESA *Hubble Space Telescope*, obtained at the Space Telescope Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.