Network Layer Overview

Services and Protocols

- To transport **segments** from the **sending host**, to the **receiving host** the following happens:
 - 1. The sender encapsulates segments into datagrams and passes them to the link layer.
 - 2. The receiver delivers segments to the transport layer protocol.
 - 3. A router is a piece of network hardware than manages traffic between networks.
 - Routers work by examining the headers in IP datagrams (Packets), and move
 the datagrams from input ports to output ports; with the goal of transfering
 datagrams along the end-end path.
 - Routers work a the **Network Layer (Layer 3)**, and also use layers 1 and 2 to facilitate the data transfer.
 - Routers us Internet Protocol Addresses (IP Address) to identify networks / hosts.

Key Network-Layer Functions

- One key network-layer function is **forwarding**, **forwarding** involves **moving packets** from a **rounter's input link** to the appropriate **output link**.
- Another key network-layer function is **routing**, **routing** involves **determining the route taken by packets** from the **source** to the **destination**.
 - There are many routing algorithms that can be used the achieve this.

The Data Plane vs The Control Plane

- The data plane is a local, per-router function that determines how packets arriving on a router's input port is forwarded to router's output port.
- The control plane is a network-wide function, that determines how packets are routed amongst routers along end-end paths from source host to destination host.
 - There are two control-plane approaches:
 - 1. Traditional routing algorithms that are implemented in routers.
 - 2. Software-defined networking (SDN) that is implemented in remote servers.

Per-Router Control PLane Software-Defined Networking (SDN) Control Plane

- Per-Router control plane consits of a routing algorithm in every router that interacts with the control plane. Each router determines where to route the packets.
- SDN is composed of remote controller computers, that install forwarding tables in router. The routers then use these tables to forwards packets.

Network Service Models

• Internet service models:

Network Architecture		Service Model	Quality of Service (QoS) Guarantees ?				
			Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	
	ATM	Constant Bit Rate	Constant rate	yes	yes	yes	
	ATM	Available Bit Rate	Guaranteed min	no	yes	no	
	Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes	
	Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no	

• Though the **best effor service model** may not provide any guarantees, it allowed the internet to be widely deployed, and adopted.

Router Architecture Overview

Routers

- A router is a networking device that forwards and router data packets between networks.
- Routers have input ports and output ports, to receive and forward packets respectively.

- The green boxes represents the **physical layer**, the blue boxes represent the **link layer**, and the red boxes represent the **network layer**.
- The first red box continas a queue of packets that need to be forwarded, and the lookup table, that map headers to ports.
- **Destination-based forwarding** is forwarding based only on the **destination IP Address** (traditional).
- Generalized forwarding is forwarding based on any set of header field values.
- The following is an example of a lookup table:

Destination Address Range	Link Interface	
11001000 00010111 000 <mark>10000 00000000</mark> through	0	
11001000 00010111 000 <mark>10111 11111111</mark>		
11001000 00010111 000 <mark>11000 00000000</mark> through	1	
11001000 00010111 000 <mark>11000 11111111</mark>		
11001000 00010111 000 <mark>11001 00000000</mark> through	2	
11001000 00010111 00011111 11111111		
otherwise	3	

 To determine which interface a an IP address should be mapped to, you see what address range has the longest prefix that matches the IP address of the packet that is being router.

Switching Fabrics

• Switching fabrics are responsible for transfering the packet from the input link to the appropriate output link.

- The switching rate is the rate at which packets can be transferred from inputs to outputs.
- There are three main types of switching fabrics:

- With **memory switching**, the packets are copied to the **system's memory**. This limits the switching rate to the **memories bandwidth**. This type of switching is directly under the control of the **CPU**.
- With **bus switching**, the packets are delivered from the **input port's memory**, to the **output port's memory** directly. The switching speed is limited to the **speed of the bus** (which is much faster than memory switching).
- With interconnnection network switching, is similar to the bus, except we can transfer several packets in parallel.
- We can have **seveal planes** of **interconnection network switching** that run in parallel to allow for scaling.

Input Port Functions

- There are three functions of an **input port**:
 - 1. Receives the bits.
 - 2. Interperates the bits.
 - 3. Forward the packet to the switching fabric.
- There are two types of **forwarding** in **decentralized switching**:
 - Destination-based forwarding Packets are forwarded based on their destination IP Address.
 - 2. **Generalized forwarding** Packets are forwarded based on any set of header field values.
- If the switching fabric is slower than the input ports combined, then queueing may occur at the input queues. The queueing may lead to delays, and packet loss.
- Head-of-Line (HOL) blocking is when the packet at the front of the queue prevents the queue from moving (due to congestion).

Output Port Functions

- There are three functions of an **output port**:
 - 1. Receive the packet from the switching fabric.
 - 2. Send the bits.
 - 3. Send a line termination.
- Buffering is required when packets arrive from the switching fabric faster than the link's transmission rate.

- The drop policy is a policy to determine which packets to drop if the buffer is full.
- Congestion occurs when the output link is slower than the output ports.

Determining Buffer Sizes

- The RFC 3439 rule of thumb is that the average buffer size should be equal to RTT × LinkCapacity.
- There is such a thing as **too much buffering**; this can increase delays (particularly in home routers).
 - Long RTTs lead to poor performance in real-time allocations.
- When the buffer is full, there are two ways to determine the packets to drop when more arrive:
 - 1. **Tail drop** involves dropping the arriving packets.
 - 2. **Priority drop** involves dropping packets on a priority basis.

•

Packet Scheduling

- There are several ways to determine the way packets are scheduled:
 - 1. First Come First Serve (FCFS) Scheduling schedules packets in the order they arrive.
 - 2. **Priority Scheduling** schedules packets **based on their classification** (classifications can be determined by header fields); all higher classified queues get send first.
 - 3. Round Robin (RR) Scheduling schedules packets based on their classification, but cycles between the different classification queues.
 - 4. Weighted Fair Queueing (WFQ) is a round robin scheduling algorithm, that assigns each class a weight, and the weight determines the amount of time is spent on each queue.

The Internet Protocol

Internet Protocol Datagrams

32 bits									
Version Header length		Type of service	Datagram length (bytes)						
16-bit Identifier			Flags	13-bit Fragmentation offset					
Time-to-live		Upper-layer protocol	Header checksum						
32-bit Source IP address									
32-bit Destination IP address									
Options (if any)									
Data									

• The maximum length of a datagram is 65536 bytes. However the typical size is around 1500 bytes or less.

IP Address

- An IP Address is a 32-bit identifier associate with each network host or router interface.
 - An interface is a connection between a host/router and a physical link.
 - Routers typically have multiple interfaces, and hosts typically have one or two interfaces.

Subnetworks (Subnets)

- A subnetwork is a local partition of an Internet Protocol network.
- Subnets are typically defined as a group of device interfaces that can physically reach each other without passinging through an intervening router.
- Devices in the same subnet have common high order bits in their IP Addresses, and the low order bits differ between hosts.
 - For example, the following addresses are an example of a subnet: 1.0.23.1, 1.0.23.5, 1.0.23.10
- A subnet mask is a **32-bit number** created by setting host bits to **0**, and network bits to **1**. All bits set to **0** can change, and the addresses will still be a part of the subnet.

- There are three main classes of networks:
 - 1. Class A networks have a subnet mask of 255.0.0.0.
 - 2. Class B networks have a subnet mask of 255.255.0.0.
 - 3. Class C networks have a subnet mask of 255.255.25.0.
- There is also a **Class D and Class E**, but they are reserved for special purposes, and research. They are not available for network hosts.