Type Safety

Concepts of Programming Languages Lecture 19

Outline

- » Demo an implementation of the simply typed lambda calculus and desugaring
- » Discuss induction over derivations
- » Show that STLC satisfies progress and
 preservation

Recap

Recall: The Picture


```
type_check : expr -> ty -> bool
type_of : expr -> ty option
```

```
type_check : expr -> ty -> bool
type_of : expr -> ty option
```

Type checking: determining whether an expression can be typed

```
type_check : expr -> ty -> bool
type_of : expr -> ty option
```

<u>Type checking:</u> determining whether an expression can be typed <u>Type inference:</u> synthesizing a type for an expression

```
type_check : expr -> ty -> bool
type_of : expr -> ty option
```

Type checking: determining whether an expression can be typed

Type inference: synthesizing a type for an expression

Theoretically, these two problems can be very different. For STLC, they are both easy

Recall: Syntax (STLC) fur (x:1) se

$$e ::= \bullet \mid x \mid \lambda x^{\tau} \cdot e \mid ee$$

$$\tau ::= \top \mid \tau \to \tau$$

$$x := variables$$

The syntax is the same as that of the lambda calculus except:

- >> we include a unit expression
- >> we have types, which annotate arguments

Recall: Typing (STLC)

$$\frac{}{\Gamma \vdash \bullet : T}$$
 unit

$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x^{\tau} \cdot e : \tau \rightarrow \tau'}$$
 abstraction

$$\frac{(x:\tau) \in \Gamma}{\Gamma \vdash x:\tau} \text{ variable}$$

$$\frac{\Gamma \vdash e_1 : \tau \rightarrow \tau'}{\Gamma \vdash e_1 e_2 : \tau'} \text{application}$$

$$\Gamma \vdash e_1 e_2 : \tau'$$

These rules enforce that a function can only be applied if we *know* that it's a function

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval}$$

$$\frac{}{(\lambda x \cdot e)e' \longrightarrow [e'/x]e} \text{ beta}$$

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval} \qquad \frac{}{(\lambda x^{\Gamma} e)e' \longrightarrow [e'/x]e} \text{ beta}$$

We can use any semantics (this is small-step CBN)

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval} \qquad \frac{}{(\lambda x^{\P}. e)e' \longrightarrow [e'/x]e} \text{ beta}$$

We can use any semantics (this is small-step CBN)

This is part of the point. Type-checking only determines whether we go on to evaluate the program

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval} \qquad \frac{}{(\lambda x^{\P}. e)e' \longrightarrow [e'/x]e} \text{ beta}$$

We can use any semantics (this is small-step CBN)

This is part of the point. Type-checking only determines whether we go on to evaluate the program

It doesn't determine how we evaluate the program

Practice Problem

$$(\lambda x^{(\top \to \top) \to \top} \cdot x(\lambda z^{\top} \cdot x(wz)))y$$

Determine the smallest context such that the above expression is typeable (also give its type)

Answer

$$(\lambda x^{(T \to T) \to T} . x(\lambda z^T . x(wz)))y$$

$$(T \to T) \to T$$

$$w: ?, x: (T \to T) \to T \mapsto x (\lambda \in T, x(w \in T)) : ??$$

$$T \to T \to T$$

$$do the derivation$$

$$T \to T \to T$$

$$(\lambda \in T, x(w \in T)) \to T \to T$$

$$(\lambda \in T, x(w \in T)) \to T \to T$$

$$(\lambda \in T, x(w \in T)) \to T \to T$$

demo (STLC)

Induction over Derivations

```
\frac{}{\{\} \vdash 2 : int\}} (intLit) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y + y : int} (let)} (var)
\{\} \vdash let \ y = 2 \ in \ y + y : int} (let)
```

Derivations are trees

```
\frac{}{ \{\} \vdash 2 : int \}} (intLit) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y + y : int} (let)} (var) = \frac{}{\{\} \vdash 1et \ y = 2 \ in \ y + y : int} (let)}
```

Derivations are trees

We can prove things about trees using induction


```
\frac{}{ \{\} \vdash 2 : int \}} (intLit) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y + y : int} (let)} (var) = \frac{}{\{\} \vdash 1et \ y = 2 \ in \ y + y : int} (let)}
```

Derivations are trees

We can prove things about trees using induction

We can prove things about *derivable* judgments using induction


```
\frac{}{ \{\} \vdash 2 : int \}} (intLit) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y : int} (var) = \frac{}{\{y : int\} \vdash y + y : int} (let)} (intAdd)
\{\} \vdash let \ y = 2 \ in \ y + y : int}
```

Derivations are trees

We can prove things about trees using induction

We can prove things about *derivable* judgments using induction

Important: Every derivable judgment corresponds to a derivation


```
type 'a tree =
    | Empty
    | Node of 'a tree * 'a * 'a tree
```

```
type 'a tree =
    | Empty
    | Node of 'a tree * 'a * 'a tree
```

Let $\operatorname{size}(T)$ denote the number of Nodes and let $\operatorname{height}(T)$ denote the length of the longest path from the root to Empty

```
type 'a tree =
    | Empty
    | Node of 'a tree * 'a * 'a tree
```

Let $\operatorname{size}(T)$ denote the number of Nodes and let $\operatorname{height}(T)$ denote the length of the longest path from the root to Empty

Theorem. $size(T) \le 2^{height(T)}$ for any tree T

```
type 'a tree =
    | Empty
    | Node of 'a tree * 'a * 'a tree
```

Let $\operatorname{size}(T)$ denote the number of Nodes and let $\operatorname{height}(T)$ denote the length of the longest path from the root to Empty

Theorem. $size(T) \le 2^{height(T)}$ for any tree T

Proof. By induction on the <u>structure of trees</u>

Base Case: Empty

$$h_{n} = 0$$

$$h_{n} = 0$$

Inductive Hypothesis

If T is of the form Node (T_1, a, T_2) then $\operatorname{size}(T_1) \leq 2^{\operatorname{height}(T_1)}$ and $\operatorname{size}(T_2) \leq 2^{\operatorname{height}(T_2)}$ That is, we get to assume that what we want holds of our subtrees

Inductive Step: Nodes

$$h(T_{1})$$

$$T_{1}$$

$$T_{2}$$

$$h(T_{2})$$

$$h(T_{2})$$

$$h(T_{1}) = \max \left(h(T_{1}), h(T_{2})\right) + 1$$

$$s(T) = 1 + s(T_{1}) + s(T_{2})$$

$$t(T_{1}) = 1 + s(T_{1}) + s(T_{2})$$

$$t(T_{1}) = 1 + s(T_{2}) = s(T_{1}) = 1$$

$$t(T_{1}) = 1 + s(T_{2}) = 1$$

$$t(T_{2}) = 1 + s(T_{2}) = 1$$

$$F(e) \subseteq Var(\Gamma)$$
 x: intry: int

An expression e is **well-scoped** with respect to a context Γ if $x \in FV(e)$ implies x appears in Γ

An expression e is **well-scoped** with respect to a context Γ if $x \in FV(e)$ implies x appears in Γ

Theorem. If e is well-typed in Γ , then e is well-scoped

An expression e is **well-scoped** with respect to a context Γ if $x \in FV(e)$ implies x appears in Γ

Theorem. If e is well-typed in Γ , then e is well-scoped

Proof. By induction on <u>derivations</u>

Base Case: Axioms

$$\frac{}{\Gamma \vdash \bullet : T}$$

$$= \frac{}{4}$$

$$= \frac{}{4}$$

We need to show that expressions typed using just axioms satisfy well-scopedness

Inductive Hypothesis

If $e_1, ..., e_k$ are well-scoped (because they are typeable in the each of their contexts)

Inductive Step 1: Application

$$\frac{\mathcal{D}_{1}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{1}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{2} : \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\text{application}}$$

$$\frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow \tau'} \frac{\mathcal{D}_{2}}{\Gamma \vdash e_{1} : \tau \rightarrow$$

Inductive Step 2: Abstraction

Progress and Preservation

```
<u>Theorem.</u> If \cdot \vdash e : \tau then there is a value v such that \langle \emptyset, e \rangle \Downarrow v and \cdot \vdash v : \tau
```

```
<u>Theorem.</u> If \cdot \vdash e : \tau then there is a value v such that \langle \emptyset, e \rangle \Downarrow v and \cdot \vdash v : \tau
```

With small-step semantics, we can give a finer-grained analysis:

<u>Theorem.</u> If $\cdot \vdash e : \tau$ then there is a value v such that $\langle \emptyset, e \rangle \Downarrow v$ and $\cdot \vdash v : \tau$

With small-step semantics, we can give a finer-grained analysis:

Theorem. If $\cdot \vdash e : \tau$, then

- » (progress) either e is a value or there is an e' such that $e \longrightarrow e'$
- \Rightarrow (preservation) If $\cdot \vdash e : \tau$ and $e \longrightarrow e'$ then $\cdot \vdash e' : \tau$

<u>Theorem.</u> If $\cdot \vdash e : \tau$ then there is a value v such that $\langle \emptyset, e \rangle \Downarrow v$ and $\cdot \vdash v : \tau$

With small-step semantics, we can give a finer-grained analysis:

Theorem. If $\cdot \vdash e : \tau$, then

ightharpoonup
igh

 \Rightarrow (preservation) If $\cdot \vdash e : \tau$ and $e \longrightarrow e'$ then $\cdot \vdash e' : \tau$

These results are *fundamental*. They tell us that our PL is well-behaved (it's a "good" PL)

```
<u>Theorem.</u> If \cdot \vdash e : \tau then there is a value v such that \langle \emptyset, e \rangle \Downarrow v and \cdot \vdash v : \tau
```

With small-step semantics, we can give a finer-grained analysis:

goal for today

```
Theorem. If \cdot \vdash e : \tau, then \Rightarrow (progress) either e is a value or there is an e' such that e \longrightarrow e'
```

» (preservation) If $\cdot \vdash e : \tau$ and $e \longrightarrow e'$ then $\cdot \vdash e' : \tau$

These results are *fundamental*. They tell us that our PL is well-behaved (it's a "good" PL)

Disclaimer: We're gonna hand-wave liberally

Recall: STLC

$$e := \bullet \mid x \mid \lambda x^{\tau} . e \mid ee$$

$$\tau ::= T \mid \tau \to \tau$$

$$x ::= variables$$

Typing

$$\frac{\Gamma, x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda x^{\tau}. e: \tau \rightarrow \tau'} \text{ abstraction}$$

$$\frac{(x:\tau) \in \Gamma}{\Gamma \vdash x:\tau} \text{ variable}$$

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 e_2 : \tau'} \text{ application}$$

Semantics

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval}$$

$$\frac{1}{(\lambda x \cdot e)e' \longrightarrow [e'/x]e} \text{ beta}$$

Progress (STLC)

Theorem. If e is well-typed ($\cdot \vdash e : \tau$ for some type τ), then e is a value, or there is an expression e' such that $e \longrightarrow e'$

Proof. By induction over <u>derivations</u>

Base Case: Axioms

We need to show that expressions typed using just axioms yield non-stuck terms

Inductive Step 1: Application

$$\frac{\cdot \vdash e_1 : \tau \to \tau' \qquad \cdot \vdash e_2 : \tau}{\cdot \vdash e_1 e_2 : \tau'} \text{ application}$$

$$(1) e, is either a value $(\lambda \times \uparrow, e)$ or $e \to e'$ for some $e'$$$

- (a) (hxte)e, -> (cz/x3e (beta)
- (b) e -> e, implies e, ez -> e, ez (applef+)

What do we know given that e_1 is either a value or reducible?

Inductive Step 2: Abstraction

Our expression already a value if the last rule we applied was abstraction!

Preservation (STLC)

Theorem. If e has type τ in Γ (i.e., $\Gamma \vdash e : \tau$ is derivable) and $e \longrightarrow e'$ then so is e' (i.e., $\Gamma \vdash e' : \tau$ is derivable)

Proof. By induction over <u>derivations</u>

This one is much tricker...

Base Case: Axioms

$$\frac{(x:\tau) \in \Gamma}{\Gamma \vdash x:\tau} \text{ variable}$$

Expressions typed using just axioms cannot be reduced (nothing to do here)

Inductive Step 1: Abstraction

$$\frac{\Gamma, x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda x^{\tau}. e: \tau \rightarrow \tau'} \text{ abstraction}$$

Expressions derived using abstraction as the last rule is already a value (nothing to do here)

Inductive Step 2: Application

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 e_2 : \tau'} \text{ application}$$

This is where the work comes in...

<u>The trick:</u> We do induction (inside our current induction) on the structure of *semantic* derivations!

What possible ways can e_1e_2 be reduced?

Inductive Step 2.1: leftEval

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval}$$

$$\frac{e_1 \longrightarrow e_1'}{e_1 e_2 \longrightarrow e_1' e_2} \text{ leftEval } \frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 e_2 : \tau'} \text{ application }$$

What if our last rule was an application **and** e_1e_2 is reducible by leftEval?

Inductive Step 2.1: leftEval

$$\frac{1}{(\lambda x \cdot e)e_2 \longrightarrow [e_2/x]e} \text{beta}$$

$$\frac{\Gamma \vdash (\lambda x.e) : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{(\lambda x.e) e_2 \longrightarrow [e_2/x]e} \text{ beta} \qquad \frac{\Gamma \vdash (\lambda x.e) : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash (\lambda x.e) e_2 : \tau'} \text{ application}$$

What if our last rule was an application **and** e_1e_2 is reducible by beta?

Substitution Lemma

Lemma. If $\Gamma \vdash e_2 : \tau_2$ and $\Gamma, x : \tau_2 \vdash e : \tau$ then

$$\Gamma \vdash [e_2/x]e : \tau$$

That is, if e is well-typed in a context with (x,τ) then we can substitute x with anything of type τ and it's still the same type

(we can prove this by, you guessed it, induction on derivations)

The Point

Progress and preservation tell us that terms never get stuck during evaluation

This is HUGE. I can't emphasize this enough

Our type system ensures we only evaluate programs that make sense!

Summary

- » Progress and preservation are fundamental
 features of good programming languages
- » We can prove things about well-typed
 expressions by performing induction over
 derivations