Aufgabe 7.1. Zeigen Sie, dass die Menge $\mathbb{Q}(\sqrt{2}) := \{a + \sqrt{2}b \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$ ausgestattet mit der Addition und Multiplikation reeller Zahlen einen Körper bildet. Bestimmen Sie $(a + \sqrt{2}b)^{-1}$.

Aufgabe 7.2. Beweisen Sie Lemma IV.3 (2)-(3).

Aufgabe 7.3. Seien die folgenden Matrizen über \mathbb{Z} gegeben:

$$A = \begin{bmatrix} 1 & -2 & 4 \\ -2 & 3 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 \\ 3 & 6 \\ 1 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Berechnen Sie, falls möglich, die Matrizen CA, BC, $B^{\top}A$, $A^{\top}C$, $(-A)^{\top}C$, $B^{\top}A^{\top}$, AC und CB.

Zum Abgeben (wie gehabt in Gruppen) bis zum 5. Dezember 2022, 12:00 Uhr Aufgabe 7.4. Beweisen Sie Lemma IV.4.

Aufgabe 7.5. Für ein Polynom $p = \alpha_n t^n + \cdots + \alpha_1 t + \alpha_0 t^0 \in R[t]$ und eine Matrix $A \in R^{m,m}$ definere $p(A) := \alpha_n A^n + \cdots + \alpha_1 A + \alpha_0 I_m$.

- (a) Bestimmen Sie p(A) für $p = t^2 2t + 1 \in \mathbb{Z}[t]$ und $A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \in \mathbb{Z}^{2,2}$.
- (b) Für eine Matrix $A \in \mathbb{R}^{m,m}$ sei die Abbildung $f_A \colon R[t] \to \mathbb{R}^{m,m}, p \mapsto p(A)$ gegeben. Zeigen Sie, dass $f_A(p+q) = f_A(p) + f_A(q)$ und $f_A(pq) = f_A(p)f_A(q)$ für alle $p,q \in R[t]$ gilt.

(Die Abbildung f_A ist ein Ringhomomorphismus von R[t] nach $R^{m,m}$.)

- (c) Zeigen Sie, dass $f_A(R[t]) = \{p(A) \mid p \in R[t]\}$ ein kommutativer Teilring von $R^{m,m}$ ist.
- (d) Ist die Abbildung f_A surjektiv?

Aufgabe 7.6. Sei $(\mathcal{P}(M), \triangle, \cap)$ der Boolesche Ring aus Aufgabe 5.8 mit $M = \{0, 1, 2, 3\}$ und sei weiter $A \in \mathcal{P}(M)^{3,3}$ die Matrix

$$A = \begin{bmatrix} \emptyset & \{1,2\} & \emptyset \\ \{1\} & \{2\} & \{0,1,2\} \\ \{0,1,2\} & \{0,1\} & \emptyset \end{bmatrix}.$$

Bestimmen Sie A^0 , A + A und A^3 .

Aufgabe 7.7. Sei K ein Körper mit $1+1 \neq 0$. Zeigen Sie, dass sich jede Matrix $A \in K^{n,n}$ eindeutig als Summe einer symmetrischen und einer schiefsymmetrischen Matrix darstellen lässt.