

# ${\bf Design notat}\ 7$

Tittel: Anti-Aliasing Filter

Forfattere: Sindre Danielsen

Versjon: 1.4 Dato: 11.12.21

# Innhold

| 1 | Problembeskrivelse  | 2  |
|---|---------------------|----|
| 2 | Prinsipiell løsning | 3  |
| 3 | Realisering og test | 7  |
| 4 | Konklusjon          | 11 |

#### 1 Problembeskrivelse

Når et analogt signal skal filtreres, så brukes vanligvis digital signalbehandling. For å unngå at ADC omformeren skal få alvorlige aliasing-feil, så burde båndbredden B begrenses. Dette kan gjøres ved et anti-aliasing filter slik vist i figur 1.



**Figur 1:** Filtrerer vekk uønskede frekvenser på signalet  $v_1(t)$ , som gir signalet  $v_2(t)$ .

Anti-alias filtreringen skal brukes ved en punktprøvingsfrekvens  $f_s$ , som er gitt ved  $f_s = 2B$ . En fullstendig båndbegrensning er derimot ikke mulig i praksis. Det er heller ikke nødvendig, så lenge frekvensene større enn B blir svekket betydelig og frekvensene innenfor B ikke blir vesentlig påvirket. Ved bruk av analoge filter, så er det mulig å oppnå ved en knekkfrekvens  $f_c$  slik ønskelig.

Krav til  $v_2(t)$ :

- Dempning  $A_{min} \le -10$ db ved B.
- Knekkfrevkensen (-3db fra maksimum amplituderespons.):

$$f_c \ge 0.75 \frac{f_s}{2} \tag{1}$$

#### 2 Prinsipiell løsning

Et anti-aliasing filter kan utvikles ved bruk av et lavpass filter. Enten det er bruk av RC filter, RCL filter eller andre muligheter som Butterworth- eller Chebeschev filter. Merk at spolen i et RCL filter vil i virkeligheten ha litt motstand, spesielt for større spoler.

Et aktivt lavpass filter, som holder passbandet maksimalt flatt, samt en valgbar dempning ved B er Butterworth filteret. Det har flatere knekkfrekvens enn Chebeschev filter, men til gjengjeld, så er det neglisjerbare forstyrrelser for amplituderesponen i og utenfor B. Filter design på analoge signal går ut ifra et system som er sensitivt for forstyrrelse i amplituderesponsen og derfor velges et Butterworth filter, slik vist i figur 2.



Figur 2: 2.ordens Butterworth filter med Sallen-Key kretstopologi [2].

Filteret filtrerer ut de høye frekvensene fra  $v_1(t)$  og sender ut et signal  $v_2(t)$  som har de lave frekvensene påtrykket. Det er vanlig at motstandene R i kretsen er like hverandre, som gjør analysen lettere. Dersom et 1. ordens filter ønskes, så kan kondensatoren  $C_1$  fjernes. Kondensatoren  $C_2$  i samband med  $C_1$  skaper et 2. ordens filter.

For å utvikle filteret som nevnes i seksjon 1, så er likningen for et Butterworth filter gitt ved:

$$A_{min} = |H(j2\pi)| = \frac{1}{\sqrt{1 + \left(\frac{f_c}{B}\right)^{2n}}},$$
 (2)

Den generelle formelen har en  $\epsilon^2$  fremfor  $\left(\frac{f_c}{B}\right)^{2n}$ , men vanligvis er  $f_c = -3\text{db} \implies \epsilon^2 = 1$ . For mer informasjon om Butterworth filter, se [1].

N-orden gir informasjon om hvor mange poler som eksisterer:

- $n=1 \implies 1$ . ordens lavpass filter.
- $n=2 \implies 2$ . ordens lavpass filter
- $n > 2 \implies 1$ . ordens- og 2. ordens-lavpass filter i seriekopling.

Det er derfor essensielt å finne n-orden på kretsen, som kan gjøres ved å omforme likning 2 til

$$n = \frac{1}{2} \frac{\ln(A^{-2} - 1)}{\ln\left(\frac{f_c}{B}\right)}.$$
 (3)

Merk at n skal være et heltall. Ved desimaler, så rundes n opp til neste heltall. Å runde ned n impliserer at  $A_{min}$  vil øke. Da er det heller bedre å oppnå en større dempning enn ønsket ved å øke n. Ønskelig frekvensspekter av  $v_2(t)$  for et Butterworth filter er vist ved det begrensede området i figur 3.



Figur 3: Frekvensresponsen til et Butterworth filter.

Filteret vil ha tidskonstantene gitt ved

$$\tau_1 = \frac{1}{2\pi f_c \zeta} \quad , \quad \tau_2 = \frac{1}{(2\pi f_c)^2 \tau_1} \,.$$
(4)

Et 1. ordens system vil kun ta i bruk  $\tau_1$ .

Kondensatorene er gitt ved

$$C_1 = \frac{\tau_1}{R} \quad , \quad C_2 = \frac{\tau_2}{R} \, .$$
 (5)

Vi mangler dempningsfaktoren  $\zeta$ . Den kan eventuelt finnes grafisk ved å dele opp en halvsirkel for en reell- (x-aksen) og imagineær-akse (y-aksen). Det første komplekskonjugerte polparet n=2 plasseres  $\pm 45^{\circ}$ . Hvis n=4, så plasseres to komplekskonjugerte polpar på  $\pm \left(45^{\circ} + \frac{45^{\circ}}{2}\right)$  og  $\pm \left(45^{\circ} - \frac{45^{\circ}}{2}\right)$ . Slik kan man fortsette for høyere N-orden. Det er vanlig å lese av  $\zeta$  for den reelle verdien. Dette kan være tungvint å gjenta seg, så legger ved en liste for  $n \in [1, 10]$ , som vist ved tabell 1. Merk at alle verdier  $\zeta_1$ ,  $\zeta_1$ , ...  $\zeta_n$  har samme  $f_c$ , siden systemet er lineært innenfor opampens virkeområde.

| N-Orden $n$ | Reelle Verdier $\zeta$ | N-Orden $n$ | Reelle Verdier $\zeta$ |
|-------------|------------------------|-------------|------------------------|
| 1           | 1.0000                 | 6           | 0.9659                 |
|             |                        |             | 0.7071                 |
|             |                        |             | 0.2588                 |
| 2           | 0.7071                 | 7           | 0.9010                 |
|             |                        |             | 0.6235                 |
|             |                        |             | 0.2225                 |
|             |                        |             | 1.0000                 |
| 3           | 0.5000                 | 8           | 0.9808                 |
|             | 1.0000                 |             | 0.8315                 |
|             |                        |             | 0.5556                 |
|             |                        |             | 0.1951                 |
| 4           | 0.9239                 | 9           | 0.9397                 |
|             | 0.3827                 |             | 0.7660                 |
|             |                        |             | 0.5000                 |
|             |                        |             | 0.1737                 |
|             |                        |             | 1.0000                 |
| 5           | 0.8090                 | 10          | 0.9877                 |
|             | 0.3090                 |             | 0.8910                 |
|             | 1.1000                 |             | 0.7071                 |
|             |                        |             | 0.4540                 |
|             |                        |             | 0.1564                 |

**Tabell 1:** Butterworth pol lokasjoner for  $\zeta$  av  $n \in [1, 10]$ 

En notasjon ved bruk av opamper er å velge  $R \in [1k\Omega, 100k\Omega]$ . Årsaken er at i dette området vil kretsen trekke minst mulig strøm og ha en neglisjerbar følsomhet for støy når det kommer til opamper. Det kalles *opampens gyldne regel*.

Generelt sett er det en enkel metodikk for utvikling av Butterworth filter:

- 1. Velg en R innenfor området gitt av den gylne regel for opamper.
- 2. Regn ut N-orden for å finne antall butterworth-filter.
- 3. Finn  $\zeta$  verdiene.
- 4. Regn ut kondensatorverdiene.

## 3 Realisering og test

Oppkoblingen av kretsen bruker komponentverdiene gitt ved tabell 2.

| Navn      | Verdi                | Beskrivelse                                      |  |
|-----------|----------------------|--------------------------------------------------|--|
| opamp     | LF353N               | Tilgjengelige opamper.                           |  |
| R         | $1 \mathrm{k}\Omega$ | Valgt motstand (innenfor opampens gyldne regel). |  |
| $C_{1,1}$ | 172 nF               | 1. Kondensator for 1. filter (likning 5).        |  |
| $C_{1,2}$ | $147 \mathrm{nF}$    | 2. Kondensator for 1. filter.                    |  |
| $C_{2,1}$ | 416nF                | 1. Kondensator for 2. filter.                    |  |
| $C_{2,2}$ | $60.9 \mathrm{nF}$   | 2. Kondensator for 2. filter.                    |  |

**Tabell 2:** Reelle verdier basert på tabell 3

| Navn        | Verdi                    | Beskrivelse                                      |  |
|-------------|--------------------------|--------------------------------------------------|--|
| $f_s$       | $7.6 \mathrm{kHz}$       | Valgt samplingsfrekvens.                         |  |
| B           | $3.8 \mathrm{kHz}$       | Gitt ved $f_s/2$ .                               |  |
| $f_c$       | $\geq 2.85 \mathrm{kHz}$ | Knekkfrekvens ved $\geq 0.75B$ .                 |  |
| $A_{min}$   | $-10\mathrm{dB}$         | Ønsket dempning ved $B$ .                        |  |
| n           | 4                        | N-orden fra likning 3.                           |  |
| $	au_{1,1}$ | $60.4\mu s$              | 1. tidskonstant for 1. filter (likning 4).       |  |
| $	au_{1,2}$ | $51.6\mu s$              | 2. tidskonstant for 1. filter.                   |  |
| $	au_{2,1}$ | $145.9 \mu s$            | 1. tidskonstant for 2. filter.                   |  |
| $	au_{2,2}$ | $21.4 \mu s$             | 2. tidskonstant for 2. filter.                   |  |
| R           | $1 \mathrm{k}\Omega$     | Valgt motstand (innenfor opampens gyldne regel). |  |
| $C_{1,1}$   | 60.4nF                   | 1. Kondensator for 1. filter (likning 5).        |  |
| $C_{1,2}$   | 51.6nF                   | 2. Kondensator for 1. filter.                    |  |
| $C_{2,1}$   | 145.9nF                  | 1. Kondensator for 2. filter.                    |  |
| $C_{2,2}$   | 21.4nF                   | 2. Kondensator for 2. filter.                    |  |

 ${\bf Tabell~3:~De~teoretiske~verdiene~av~komponentene~i~figur~4.}$ 

Endrer figur 2 for n = 4, som vist ved figur 4.



Figur 4: Anti-aliasing filter: 4. ordens Butterworth filter.

Verdiene på  $\tau$  utreknes ved bruk av n=4 i tabell 1, der  $\zeta_1=0.9239$  for første filteret og  $\zeta_2=0.3827$  for det andre.

Siden kondensatorverdiene og R er ulike fra tabell 3 til tabell 2, så kan det være lurt å rekne ut frekvensene B og  $f_c$  for de nye verdiene. Vi kan da få få en idé om det forventede resultatet ved frekvensanalysen. Isolering av  $f_c$  i likning 4 for  $\tau_2$  gir at

$$f_c^* = \frac{\zeta_1}{2\pi R C_{12}} = 2905.0 \text{Hz}.$$
 (6)

Merk at kondensatorer har toleranseområde på kapitansen, som varierer på komponentene, så det kan gi minimale avvik i resultatet.

Forventer å få  $A_{min} = -10$ dB ved

$$B^* = \frac{f_c}{0.75} = 3873.4 \text{Hz}. \tag{7}$$

Kobler opp kretsen som vist i figur 5 og sammenlikner tidligere utrekninger med figur 6.



Figur 5: Realiseringen av figur 4.



Figur 6: Frekvensspekter av figur 4 med grensene (borders) fra figur 3.

Fra figur 6 kan vi ved å observere nøye, se at amplituderesponsen til  $v_2(t)$  ligger innenfor ønsket området for et Butterworth filter. Merk at der de stiplede linjene krysser hverandre gir en mindre frekvens enn der den horisontale stiplede linjen på -3dB krysser  $v_2(t)$ . Det betyr at kravet om  $f_c \geq 2.85 \,\mathrm{kHz}$  er verifisert. For mer nøyaktige verdier, så kan det brukes markører (cursors) i oscilloskop. Verdiene for  $f_c$ ,  $f_c^*$ , B og  $B^*$  er vist i figur 7.

|   | Name | Position   | C2         |
|---|------|------------|------------|
| 1 | f_c  | 2.85 kHz   | -2.7851 dB |
| 2 | В    | 3.8 kHz    | -9.9726 dB |
| 3 | f_c* | 2.905 kHz  | -3.1132 dB |
| 4 | B*   | 3.8734 kHz | -10.573 dB |

**Figur 7:** Markører for  $f_c$  og B.

Verdiene for C2 gir at kravene satt i seksjon 1 ikke overholdes for  $A_{min}$  eller  $f_c$ , dersom det brukes  $f_c^*$  og  $B^*$ .

## 4 Konklusjon

For utvikling av et anti-aliasing filter ved bruk av Butterworth filter design, så kreves det nøyaktighet i komponentverdier, herunder kondensatorer og motstander. I tillegg kan det også kreve flere lavpass filter for å oppnå ønskelig  $A_{min}$ . Flere kaskadekoblede Butterworth filter gir en brattere knekkfrekvens. Butterworth filter med Sallen-Key topologi oppnår oppførselen vi et ute etter dersom kondensatorverdiene og motstandene overholder likningene beskrevet i seksjon 2. De teoeretisk ønskede verdiene for  $f_c$  og B overholder kravene satt i seksjon 1.

## Referanser

[1] ElectronicsTutorials. (Ukjent), Article

 $Butterworth\ Filter\ Design$ 

Tilgjengelig ved: https://www.electronics-tutorials.ws/filter/filter<sub>8</sub>.html

(Sist åpnet: 7. November 2021)

[2] ElectronicsTutorials (2021),

Sallen and Key Filter

Tilgjengelig ved:

https://www.electronics-tutorials.ws/filter/sallen-key-filter.html

(Sist åpnet: 7. November 2021)