武汉大学

2007 年攻读硕士学位研究	生入学考试试题
科目名称: 计算机基础	科目代码: 828
注意: 所有的答案内容必须写在答题纸上,凡写	写在试题或草稿纸上的一律无效。
《计算机组成原理》部分	(共75分)
、单项选择题(共 15 题,每题 1 分,	共 15 分)
1、定点数运算发生溢出时应该。	
A. 输出错误信息 B. 舍入	处理
A. 输出错误信息 B. 舍入 C. 向左规格化 D. 向右	5规格化
2、尾数采用补码的浮点数运算中,出现	_ 情况应该进行规格化处理。
A. 符号位与最高数值位不同 B. 符号	位与最高数值位相同
C. 符号位与最低数值位不同 D. 符号	位与最低数值位相同
3、SRAM 写入数据的条件是。	
A. AB 有效比 R/W#=0 早到达 B. AB	有效与 R/W#=0 同时到达
C. AB 有效比 R/W#=0 迟到达 D. AB	有效与 ADS#=0 同时到达
4、DRAM 地址分两次输入(行选通 RAS#、列动	选通 CAS#)的目的是。
A. 提高速度 B. 减少芯片引出线 C. 刷	J新 D. 电平需要
5、半导体存储器速度最快的是。	
A. EPROM B. DRAM C. SRAM	D. FLASH MEMORY
6、多体交叉存储器主要解决的问题是	
A. 扩充主存储器的容量 B. 提高	主存储器数据传输率
C. 减少主存储器芯片数量 D. 简化:	线路结构
7、一主机的 Cache 容量是 256 块, 采用直接映作	象方式,主存中的第i块将会映作
到 Cache 的第 块中。	
A. 256 B. i(mod256) C. i	D. i+1
8、在磁盘存储器中,以下正确的描述是	
	磁道的位密度较大
	圈磁道的位密相等
9、FM 的编码效率是。	
A. 50% B. 25% C. 75%	D. 100%

	1				
	10、DLL 磁记录方式的优点是。				
	A. 自同步能力强 E	抗干扰	尤能力强」	且存储密度	高
	C. 读写电路简单 D	可以抗	是高磁盘化	专输率	
	11、采用断定方式的微指令中,下一条微	旨令的均	也址	٥	
	A. 在微指令计数器中 B	在微措	台令寄存器	 各中	
	C. 在程序计数器中 D	在本条	k微指令的	的顺序控制	字段。
	12、控制存储器用来存储。				
	A. 机器指令和数据 B	微程序	和数据		
	C. 机器指令和微程序 D	微程序	₹ .		
	13、通用微机系统的结构属于。				
	A. 以 MEM 为中心的单总线结构 B.	以 ME	M 为中心	的双总线组	吉构
	C. 以 CPU 为中心的双总线结构 D.	单总线	结构		
	14、总线设计中采用复合传输方式的目的	于	°. •		
	A. 提高总线的传输带宽 B.	减少总	线中信号	线的数量	
	C. 增加总线的功能 D.	简化总	线协议		
	15、在统一编址的设计方法中进行 I/O 操作	的指令	是	o`	
	A. 控制指令 B. 运算指令 C	访存指	令 D	 .I/O 指令	
- 1					

二、运算方法与运算器分析题(共15题)

1、(7分)图一是一个(7,4)循环海明码编码器的原理图,该码的生成多 项式是 $G(x)=x^3+x+1$,它由三个延迟电路 D 和两个异或门组成。如果输入的信息 码为 1001, 分析该电路的编码输出, 写出编码过程和输出信息。

图一 (7, 4) 编码器原理图

2、(8 分)在定点补码加法运算中,产生溢出的条件是什么?写出两种溢出 判断方法,并分析判断溢出的过程。

三、存储结构与存储系统分析题(共15题)

某一计算机系统采用段页式虚拟存储器方式,已知虚拟地址有32位,按字编 址每个字段最多可以有 1K 字,每页 16K 字,主存储器容量 64M 字。

- 1、(5分) 计算出虚拟存储器的容量。
- 2、(5分)分析逻辑地址和物理地址的格式。
- 3、(5分) 计算出段表和页表的长度。

四、指令系统与控制器设计题(共15题)

1、(共10分)某一单流水线处理机,包含取指、译码、执行3个功能段。取 指、译码各需 1T: 在执行段, MOV 操作需 2T, ADD 操作需 3T, MUL 操作需 4T; 各操作在 1T 内取数, 在最后 1T 写结果。执行下面程序后按要求分析指令 流水线的功能。

 $k: MOV R_1, R_0$

 $R_1 \leftarrow (R_0)$

 $k+1: MUL R_0, R_2, R_1 : R_0 \leftarrow (R_1)^*(R_0)$

k+2: ADD R_0,R_2,R_1 ; $R_0 \leftarrow (R_2)+(R_3)$

- 1)(2分)设计并画出流水线功能段的结构图。
- 2) (5分) 考虑指令数据相关性,设计并画出指令执行过程流水线的时空图。
- 3)(3分)为了加快速度,可以采取那些改进措施。
- 2、(5 分) 假定某一微处理器的控制器完成每条指令功能的时间为 5 个机器 周期 $(M_1, M_2, M_3, M_4, M_5)$,设计能够产生 5 个机器周期的时序电路,并画 出时序图。

五、系统总线与 I/O 调度设计题(共 15 题)

- 1、(7分) 用异步串行传输方式发送十六进制数 3BH,数据位为 8 位,奇偶 校验位为一位,结束位为一位。设计并画出该数据串行传输波形图。
- 2、(8分)某一计算机系统设计为 5 级中断系统,硬件中断响应从高到低的 优先顺序是 1-2-3-4-5, 如果设置中断屏蔽位使中断处理顺序改为 1-2-4 -3-5, 当 CPU 执行程序时有 2、3、4 和 5 级的中断请求同时到达, CPU 在按 优先顺序处理第 3 个中断过程中又有 1 个 1 级中断请求到来。设计并画出 CPU 处理这些中断过程的示意图。

《数据结构》部分(共75分)

- 一. 单项选择题(2×10分,共20分)
- 1、在设计存储结构时,通常不仅要存储各数据元素的值,而且还要存储。
 - A. 数据的处理方法

B. 数据元素的类型

C. 数据元素之间的关系

D. 数据的存储方法

2、若已知一个栈的进栈序列 p_1 , p_2 , p_3 , ..., p_n , 输出序列是 1, 2, 3, ..., n. 若 p_n=1,则 p_i(1≤i<n)为____。

A. n-i+1

B. n-i C. i

D. 有多种可能

3、a*(b+c)-d 的后缀表达式是。

A. abcd*+-

B. abc+*d- C. abc*+d- D. -+*abcd

4、一个 n*n 的对称矩阵,如果采用压缩存储放入内存,则容量为 B. $n^2/2$ C. n*(n+1)/2 D. $(n+1)^2/2$

 $A. n^2$

5、在一棵非空二叉树的中序遍历序列中,根结点的右边

A. 只有右子树上的所有结点

B. 只有右子树上的部分结点

C. 只有左子树上的部分结点

D. 只有左子树上的所有结点

6、一个图中包含 k 个连通分量, 若按深度优先搜索方法访问所有结点, 则必须 调用______次深度优先遍历算法。

A. k

B. 1

D. k+1

7、已知一个有向图的邻接表存储结构如图 1 所示。根据有向图的深度优先遍历 算法,从顶点1出发,所得到的顶点序列是。

A. 1,2,3,5,4

C. k-1

B. 1,2,3,4,5 C. 1,3,4,5,2 D. 1,4,3,5,2

图 1 有向图的邻接表存储结构

8、对有 18 个元素的有序表 R[1..18]进行二分查找,则查找 R[3]的比较序列的下 标为____。

A. 1, 2, 3

B. 9, 5, 2, 3 C. 9, 5, 3 D. 9, 4, 2, 3

- 9、在下列排序算法中, 可能出现下列情况:在最后一趟开始之前,所有 的元素都不一定在其最终的位置上。
 - A. 堆排序
- B. 冒泡排序
- C. 插入排序
- D. 快速排序
- 10、下述几种排序方法中,要求内存量最大的是
 - A. 插入排序
- B. 选择排序
- C. 快速排序
- D. 归并排序

- 二. 问答题(共30分)
- 1、(8分)如果对长度为n的线性表的运算只有4种,即删除第一个元素,删除 最后一个元素,在第一个元素前插入新元素,在最后一个元素后插入新元素, 现有以下4种存储结构:
 - A. 只有表尾指针没有表头指针的循环单链表
 - B. 只有表尾指针没有表头指针的非循环双链表
 - C. 只有表头指针没有表尾指针的循环双链表
 - D. 既有表头指针也有表尾指针的循环单链表
 - 请填表给出在每一种存储结构下各运算算法的时间复杂度。

TO STATE OF THE PARTY OF THE PA								
运算	删除第一个元素	删除最后一个元素	第一个元素前插入	最后一个元素后插				
存储结构			元素	入元素				
A								
В								
С								
D								

- 2、(5分)若一棵哈夫曼树的叶子结点个数为5,则该树的总结点个数为多少? (要求写出求解过程)
- 3、(5分)在有 n 个顶点的有向图中,每个顶点的度最大可达多少?
- 4、(7分)对给定的数列 R={7,16,4,8,20,9,6,18,5},构造一棵二叉排序树, 并且:
 - 1) 给出按中序遍历得到的数列 R1;
 - 2) 给出按后序遍历得到的数列 R2:
- 5、(5分)在直接插入排序、希尔排序、冒泡排序、直接选择排序、快速排序、 堆排序和基数排序方法中,
 - 1) 不需要进行关键字比较的是哪些?
 - 2) 关键字比较的次数与记录的初始排列次序无关的是哪些?
- 三. 算法设计题(共25分)
- 1、(10 分) 设有一个带头结点的单链表 hc, 其结点值序列为(a,, b,, a2, b2, …, a_n, b_n) (n≥1, 且 a、b 成对出现),

设计一个算法 void split(LinkList *hc, LinkList *&ha, LinkList *&hb), 将 hc 拆分成两个带头结点的单链表 ha 和 hb, 其中 ha 的结点值序列为 (a₁, a₂, ···, a_n), hb 的结点值序列为(b_n, b_{n-1}, ···, b₁), 要求 ha 利用原 hc 的头 结点,算法的空间复杂度为0(1)。

2、(15分)假设一棵二叉树采用二叉链存储结构进行存储,结点类型为 NodeType, NodeType 的定义如下:

typedef struct node

char name[10]; int val:

/*存放名字*/

/*存放数量*/

struct node *lchild, *rchild; /*左、右孩子结点指针*/

NodeType;

现给定的二叉树中,每个结点都有 name 值(假设所有结点的 name 值均不相 同),但只有叶子结点提供了 val 值,其他各分支结点的 val 为 0,每个分 支结点的 val 值应等于它的孩子结点的 val 值之和。要求:

- 1) (7 分)设计查找指定 name 值 na 的结点指针的算法 NodeType *find(NodeType *bt, char na[])。若找到这样的结点,返回其结点指针,否 则返回 NULL:
- 2) (8 分)设计统计指定结点(其结点指针为 p)的 val 值的算法 int getval (NodeType*p),例如,对于图 2 所示的二叉树,求得的各分支结点的 val 值如下:

n11: 7

n121: 5

n12: 5 n1: 12

图 2 一棵二叉树