4. Network Attacks and Their Detection Covert Channels, MitM, Poisoning, L7 threats

Simona Buchovecká, Tomáš Čejka

Faculty of Information Technology, CTU in Prague simona.buchovecka@fit.cvut.cz, tomas.cejka@fit.cvut.cz

March 7, 2021

Section 1

Covert Channels, Tunneling

Covert Channels

Some definitions of a covert channel:

- a transmission channel that may be used to transfer data in a manner that violates security policy (Van Horenbeeck)
- a means of communication not normally intended to be used for communication (Zander, Armitage & Branch, 2007)
- a mechanism for sending and receiving information data between machines without alerting any firewalls and IDSs on the network (Buetler, 2008)

https://www.sans.org/reading-room/whitepapers/detection/covert-channels-33413

Motivation

- Exfiltrate data from an otherwise secure system
- Avoid detection of unauthorized access
- Malware communication C&C channel hiding
- Circumvent filters which may be in place limiting their freedom of speech
- Bypass firewalls for unrestricted access to the web

Methods of Covert Data Encoding

- Header bit modulation
- Header bit crafting
- Optional header extension
- Temporal channels

Section 2

ICMP

ICMP Packet

IP Datagram

	Bits 0-7	Bits 8-15	Bits 16-23	Bits 24-31							
	Version/IHL	Type of service	Length								
	Identif	ication	flags and offset								
IP Header (20 bytes)	Time To Live (TTL)	Protocol	Checksum								
	Source IP address										
	Destination IP address										
ICMP Header	Type of message	Code	Checksum								
(8 bytes)	Header Data										
ICMP Payload (optional)	Payload Data										

ICMP Tunnelling I

lo.	Time	Source	Destination	Protoco	Info	Packet Size
19	11:19:37.039393	10,2.240.197	10.2.240.195	ICMP	Echo (ping) request	770
20	11:19:37.039473	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	770
30	11:19:37.071352	10,2.240,197	10.2.240.195	ICMP	Echo (ping) request	7.70
31	11:19:37.071399	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	-770
39	11:19:37.652033	.244.0.3	10.2.240.195	DNS	Standard query response CNAME www.l.google.com	192
43	11:19:37.653062	10.2.240.195	.85.227.1	47 HTTP	GET / HTTP/1.1	738
54	11:19:40.733100	.85.227.147	10.2.240.195	TCP	[TCP segment of a reassembled PDU]	1516
56	11:19:40.733240	.85.227.147	10.2.240.195	TCP	[TCP segment of a reassembled PDU]	1516
58	11:19:40.733870	.85.227.147	10.2.240.195	TCP	[TCP segment of a reassembled PDU]	1516
60	11:19:40.733941	.85.227.147	10.2.240.195	HTTP	HTTP/1.1 200 OK (text/html)	283
66	11:19:40.735795	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
67	11:19:40.735906	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
68	11:19:40.735983	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
69	11:19:40.736059	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
70	11:19:40.736134	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
71	11:19:40.736209	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
72	11:19:40.736306	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
73	11:19:40.736381	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
74	11:19:40.736479	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
75	11:19:40.736552	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1096
76	11:19:40.736633	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	1052
77	11:19:40.757953	10.2.240.197	10.2.240.195	ICMP	Echo (ping) request	850
78	11:19:40.758020	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	850
92	11:19:40.778930	10.2.240.197	10.2.240.195	ICMP	Echo (ping) request	964
93	11:19:40.778952	10,2.240.195	10.2.240.197	ICMP	Echo (ping) reply	964
94	11:19:40.779003	10.2.240.197	10.2.240.195	ICMP	Echo (ping) request	850
95	11:19:40.779024	10.2.240.195	10.2.240.197	ICMP	Echo (ping) reply	850

ICMP Tunnelling II

0000				01					56	32	74	1c	0.0	00	08	00	р	V2t
0010				f2												o5	E@.	₽.B
0020	0a	02	£0	03	08	0.0	59	£0	e5	ec	0.0	2e	d5	20	0.8	80	Y.	
0030	0.0	0.0	00	0.0	00	00	0.0	0.0	40	00	00	02	0.0	00	0.0	35		£ 5
0040	0.0	00	02	b9	0.0	2e	e5	ec	47	45	54	20	68	74	74	7.0		GET http
0050	3a	2f	2f	77	77	77	2e	67	6f	6£	67	6c	65	2e	63	6f	://www.g	oogle.co
0060	6d	2.£	20	48	54	54	50	2f	31	2e	31	0d	0a	48	6f	73	m/ HTTP/	1.1Hos
0070	74	3a	20	77	77	7.7	2e	67	6f	6f	67	6c	65	20	63	6f	t: www.g	oogle.co
0080	6d	0d	0a	55	73	65	72	2d	41	67	65	6e	74	3a	20	4d	mUser-	Agent: M
0090	6£	7a	69	6c	60	61	2f	35	2e	30	20	28	58	31	31	3Ъ	ozilla/5	.0 (X11;
00a0	20	55	3b	20	40	69	6e	75	78	20	69	36	38	36	3b	20	U; Linu	x i686;
0000	65	6e	2đ	55	53	3b	20	72	7.6	3a	31	2e	39	2e	31	2e	en-US; r	v:1.9.1.
0000	38	29	20	47	65	63	6b	6f	2f	32	30	31	30	30	32	31	8) Gecko	/2010021
0000	34	20	40	69	6e	75	78	20	4d	69	6e	74	2f	38	20	28	4 Linux	Mint/B (
00e0	48	65	6c	65	6e	61	29	20	46	69	7.2	65	66	6f	78	2f	Helena)	Firefox/
00f0	33	2e	35	2e	38	0d	0a	41	63	63	65	70	74	3a	20	74	3.5.8A	ccept: t
0100	65	78	74	2 f	68	74	6d	6c	20	61	70	70	60	69	63	61	ext/html	,applica
0110	74	69	6f	6e	2f	78	68	74	6d	60	2b	78	6d	60	2c	61	tion/xht	ml+xml,a
0120	70	70	6c	69	63	61	74	69	6f	6e	2f	78	6d	60	3b	71	pplicati	on/xml;q
0130	3d	30	2e	39	20	2a	2f	2a	3b	71	3d	30	2e	38	0d	0a	=0.9,*/*	;q=0.8
0140	41	63	63	65	70	74	2d	4c	61	6e	67	75	61	67	65	3a	Accept-L	anguage:
0150	20	65	6e	2d	75	73	20	65	6e	3b	71	3d	30	26	35	0d	en-us,e	n;q=0.5.
0160	0a	41	63	63	65	70	74	2d	45	60	63	6f	64	69	6e	67	.Accept-	Encoding
0170	3a	20	67	7a	69	70	2c	64	65	66	6c	61	74	65	0d	0a	: gzip,d	eflate
0180	41	63	63	65	70	74	2d	43	68	61	72	73	65	7.4	3a	20	Accept-C	
0190	49	53	4f	2d	38	38	35	39	2d	31	2c	75	74	66	2d	38	ISO-8859	-1,utf-8
01a0	3b	71	3d	30	2e	37	2c	2a			3d	30	2∈	37	0d	0a	;q=0.7,*	;q=0.7
0150	4.14	ce	Z.F.	TID.	5.4	4.7	1	20	30	100	200	5.0	0.0	30	20	N.2	Keep-Ali	ve: 300.

Section 3

Domain Name System (DNS)

Recap: How does DNS work?

```
1252: "# dig fit.cvut.cz
: <>> DiG 9.11.4-P1-RedHat-9.11.4-5.P1.fc28 <<>> fit.cvut.cz
;; global options: +cmd
;; Got answer:
;; ->>HEADER <<- opcode: QUERY, status: NOERROR, id: 61156
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
   ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 8192
;; QUESTION SECTION:
:fit.cvut.cz. IN A
:: ANSWER SECTION:
fit.cvut.cz. 3327 IN A 147.32.232.248
;; Query time: 1 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Oct 21 12:52:22 CEST 2018
;; MSG SIZE rcvd: 56
```

DNS I

DNS II

DNS Message

QR ... Query / Response RD ... Recursion Desired
AA ... Authoritative Response RA ... Recursion Available
TC ... Truncation Flag (UDP<512B) RCode ... Response Code (0-10)

DNS Tunnel (malware communication)

DNS Tunnel (escape from restricted network)

DNS Tunnelling: HowTo

Transmit "Greetings!" ...

- Client: base32 encode "Greetings!" and make a DNS query: I5ZGKZLUNFXGO4ZB.sshdns.mydomain.com
- Local DNS response: "I do not know I5ZGKZLUNFXGO4ZB. sshdns.mydomain.com, ask the DNS server of mydomain.com at IP address: w.x.y.z."
- w.x.y.z DNS response: "Ask DNS for sshdns.example.com at IP: a.b.c.d". This is attackers server with the proxy software.
- The proxy server base32 decodes I5ZGKZLUNFXGO4ZB as "Greetings!"

... and receive a reply "Hello..."

- The proxy server base64 encodes "Hello..." to get "SGVsbG8uLi4=" and returns that in a TXT record.
- The client receives "SGVsbG8uLi4=" and b64decode's it to get "Hello..."

Example of Tunneled Data I

DNS Request

 $\label{lem:decomposition} Daaapiaicab.FV+++++++9-J8C8FR3bL+P3L+ZLPb2XZCvg7LYN $$qwo-BvjMj0Dlt4U91.sv7KFx672PumRw8Zkz2gZWUaFhuNaK0fQ2$$ IsVKRZMh5I3vp5U1aq05qQV.o8ht+jU2qSNm5rqNbdXdDPTnaf8a $$391UYG0fFV2JE8106JaJ0XDdDoSkg.DAC-GMaj7klra4TVy3+bnT $$09j14lhIk+AkavZiqgKy3fjakMjSzIDgKvg.abc.ab$$

= 255 characters of domain name

Example of Tunneled Data II

DNS Request

Paaapiamci1gq.abc.ab Paaapiamei1ia.abc.ab Paaapiaici1lq.abc.ab Paaapiaiei1mq.abc.ab

= many packets with short domain names lookups

DNS Response

fp4suaacaakjngaaaeaaaagsaqaabhh6ovo2cp3kedmpt7ieaeaa aaa3aaaabsm.wvxuacaaiaaaqbuikomje3t7uab3vmf55ydjxg47 jlyph17y.v3.url.abc.ab

data stored in TXT field

Detection

- Unencrypted tunnel: Search for specific signatures, e.g., SSH connection contains identification string (SSH-protoversion-softwareversion SP comments CR LF).
- Anomaly detection
 - abnormally big packets ICMP, DNS
 - high packet rate of ICMP, DNS
- Entropy of DNS data?

Detection

T. Cejka, Z. Rosa, and H. Kubatova: Stream-wise detection of surreptitious traffic over DNS. In 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Athens, Greece, 2014, pp. 300–304.

What the Detection Module Analyzes?

Many characteristics are observed or computed:

- Mean value and variance of sizes of DNS requests & responses
- 2 Number of letters/digits in domain names
- Fraction of common part of domain names
- Repeating domain names

Data Structures

- network (IPv4 / IPv6) addresses used as keys
- stored values contain information about DNS traffic of an address

Data Structure in the memory

"Prefix" tree

- used for domain names storage (from right to left)
- analysis of different and common parts of domain names
- extended with metadata (statistics about domain names)

Countermeasures?

- Rate limiting
- Implicit output blocking & Permitted local proxy (with analysis)
- ???

Section 4

DNS over HTTPS

DNS over HTTPS (DoH)

- Encrypted communication of DNS requests&responses using HTTPS
- Motivation: "privacy" of the users
- Based on GET / POST methods
- wireformat binary DNS data encoded to HTTPS data
- DoH providers, e.g., Cloudflare, Google
- Supported by modern web browsers, OS

DoH: Potential Security Threats

- Covert channel
- CC communication
- Serving malware files
- Serving hidden links

DoH: Research in Detection

- DoH traffic differs in some characteristics
- Firefox / Chrome / cloudflared differs
- Beware of traffic context
- D. Vekshin, K. Hynek, and T. Cejka: *DoH Insight: Detecting DNS over HTTPS by Machine Learning*. In Proceedings of the 15th International Conference on Availability, Reliability and Security, New York, NY, USA, 2020.
- K. Hynek and T. Čejka: *Privacy Illusion: Beware of Unpadded DoH*. Proceedings of the 11th Annual IEEE Information Technology, Electronics and Mobile Communication Conference (IEMCON2020), 2020.

Section 5

Man in the Middle (MitM)

MitM Introduction

- Goal: to allow the intruder or the unauthorized party to eavesdrop and/or modify the transmitted data
- 1st step: getting the access to the network traffic

- Mr.Robot series: "femtocell": bogus AP
- DHCP rogue DHCP server
- ARP cache poisoning
- DNS cache poisoning
- DNS hijacking (https://en.wikipedia.org/wiki/Domain_hijacking)
- BGP hijacking (https://en.wikipedia.org/wiki/BGP_hijacking)
- Session hijacking (https://en.wikipedia.org/wiki/Session_hijacking)
- NTP MitM (Delorean https://github.com/PentesterES/Delorean), affecting HSTS?

Selvi, Jose. Bypassing HTTP strict transport security. Black Hat Europe (2014).

MitM and Encryption

How to intercept the encrypted data?

- SSL Stripping
- Host Certificate Hijacking / Certificate pinning
- TLS Protocol Downgrade

SSL Stripping

- SSLstrip tool
- In SSL MitM users have to click on SSL certificate warning
- Connection to the user is SSL stripped in plain HTTP
- Connection to the webserver from the attacker via HTTPS

Host Certificate Hijacking / Certificate Pinning

If the attacker is able to inject malicious root certificate into the trusted root certificate authority store of the victim device, user will receive no warning messages for certificates being not valid.

TLS Protocol Downgrade

Manipulate the negotiated connection to downgrade the negotiated protocol or cipher suites — various known attacks

- BEAST (CVE-2011-3389)
- BREACH (CVE-2013-3587)
- CRIME (CVE-2012-4929)
- Heartbleed (CVE-2014-0160)
- POODLE (CVE-2014-3566)

Section 6

DNS Attacks

DNS

- To increase performance server caches resolved translation for a certain amount of time
- No cryptographic protection, no authentication, no integrity checks by default
- DNS accepts only responses to pending queries... However, first good answer wins
- Cache poisoning attacks possible
 Sooel Son and Vitaly Shmatikov: The Hitchhiker's Guide to DNS Cache Poisoning

Blind response forgery using birthday attack

By default, DNS only checks are:

- 16-bit transaction ID (TXID) must match: query and response
- srcip and dstport of response ? = dstip and srcport of the query
- First arriving UDP packet satisfying the condition is treated as valid

TXID has only N bits of entropy (theoretically N=16);

Much less in practice: TXID not randomized properly (just incrementing)

Cache Poisoning without Response Forgery

Bailiwick rule

(example from http://www.linuxjournal.com/content/ understanding-kaminskys-dns-bug)

- Adopted by BIND in 1993
- Before adopted, the owner of any DNS authoritative server could compromise records corresponding to any domain name
- Kaminsky's exploit presented on BlackHat conference allows to even bypass the bailiwick check

```
# dig doesnotexist.example.com
  ANSWER SECTION:
doesnotexist.example.com.
                            120
                                   ΙN
                                             10.10.10.10
   AUTHORITY SECTION:
example.com.
                          86400
                                   ΤN
                                       NS
                                             www.example.com.
   ADDITIONAL SECTION:
                                             10.10.10.20
www.example.com.
                         604800
                                   ΤN
```

Fragmentation Attack

https:

IP Fragmentation and Reassembly (Example)

20k checksum		length	ID	fragflag	offset
3980k data	4k	4000	Х	0	0
			•	Offset = 14	480/8
20k checksum		length	ID	fragflag	offset
480k data	1.5k	1500	Х	1	0
20k checksum		length	ID	fragflag	offset
0k checksum 480k data	1.s _k	length 1500	ID X	fragflag 1	offset 185
	1.5 _K		9.0	fragflag 1 fragflag	

Length - The size of the fragmented datagram

ID - The ID of the datagram being fragmented

Fragflag - Indicates whether there are more incoming fragments

Offset - Details the order the fragments should be placed in during reassembly

Response forgery using eavesdropping

Different proposed countermeasures:

- Source port randomization
- 0x20-bit encoding randomize the case of question name ask for wWw.xyz.com, WWW.XyZ.com instead of www.xyz.com etc.
- Extended Query ID (XQID) A domain name label consisting of 24 to 63 random characters (0-9, a-z). Not case sensitive
- WSEC-DNS (http://ieeexplore.ieee.org/document/5270363/):
 - Does not add confidentiality nor provides authentication
 - Protects against "blind" brute forcing
 - DNS is still vulnerable to trivial attacks such as network eavesdroppers
 & packet forging

Section 7

Brief information about DNSSEC

DNSSEC

https://www.nanog.org/meetings/nanog51/presentations/Sunday/DNSSEC-tutorial-for-NANOG51-2011-01.pdf

- DNSSEC provides no confidentiality = all DNS data are public
- DNSSEC provides data origin authentication & data integrity
- Each zone has a public/private key pair
- Public key is stored in DNSKEY record
- Private key needs to be keep safe HSM (Hardware Security Module)

DNSKEY record

 $256/257 - 16 \rm bit\ flag\ field\ ---- DNSSEC\ zone\ key/key-signing\ key\ (used\ for\ signing\ zone\ keys)\ 3$ protocol octet for DNSSEC 5 algorithm number (RSA with SHA-1) The public key itself

```
example.com.
              2849 IN DNSKEY 257 3 8 (
          AwEAAZOaqu1rJ6orJynrRfNpPmayJZoAx9Ic2/R19VQW
          LMHyjxxem3VUSoNUIFXERQbj0A90gp0zDM9YIccKLRd6
          LmWiDCt7UJQxVdD+heb5Ec4qlqGmyX9MDabkvX2NvMws
          UecbYBq8oXeTT9LRmCUt9KUt/W0i6DKECxoG/bWTykrX
          yBR8elD+SQY430AVjlWrVltHxgp4/rhBCvRbmdflunaP
          Igu27eE2U4myDSLT8a4AOrB5uHG4PkOa9dIRs9y00M2m
          Wf4lyPee7vi5few2dbayHXmieGcaAHrx76NGAABeY393
          xjlmDNcUkF1gpNWUla4fWZbbaYQzA93mLdrng+M=
          ); KSK; alg = RSASHA256; key id = 45620
example.com.
               2849 IN DNSKEY 256 3 8 (
          AwEAAd31s8XH4tS6n576cFPy9ZbtQ1f8ivP29WA41Kes
          7KRQvU+jAT1R68mBW2AaIMxfdYaV9ddg0zz6jAt8o3zT
          foylcr8UpmgD0C1qZ/0QYQ/gA0ATMDCT61z8cz+eYB+R
          k2b/Ptuhkx2HRkZJKJyirRyHyg7vYQ0gMIdNJ8D9munn
          ) ; ZSK; alg = RSASHA256 ; key id = 63855
```

RRSIG Record

- Each resource record set (RRSET) in a zone is signed by zone's private key
- RRSET records with same owner, class and type
- Digital signature is stored in RRSIG record

A type of records signed 5 digital algorithm used (RSA with SHA1) 3 number of lables in the signed name 86400 original TTL When the signature expires When the record were signed 41148 the key ID/tag/footprint Test.com signer's name Digital signature itself

Issues with DNSSEC

- Large response (packet-amplifier)
- Complexity of key management prevents broad deployment
- Subdomain Injection
 causes resolvers to accept, cache and provide to clients a mapping for
 a non-existing (child) domain, of a DNSSEC- protected parent domain
- Attacker can create fake sub-domains this can lead to XSS, phishing, cookie stealing
- Name Server Hijacking causes resolvers to cache and use incorrect name servers for a DNSSEC-protected domain point them to name servers belonging to the attacker

Section 8

Some Other L7 Threats

VoIP — SIP

- Deregistering
- INVITE of Death (malformed or otherwise malicious SIP INVITE, https://en.wikipedia.org/wiki/INVITE_of_Death)
- Password guessing
- User account (extension) scanning
- Dial scheme guessing (exploit of weak configuration)
- ullet SCAM (similar to SPAM known from e-mails) o leads to DoS

Additional Reading:

- T. Jánský, et al.: Hunting SIP Authentication Attacks Efficiently. AIMS 2017, Zurich.
- T. Cejka, et al.: Using Application-Aware Flow Monitoring for SIP Fraud Detection. AIMS 2015, Ghent.

Shellshock / Bashdoor

- Vulnerability in Bash, disclosed in 2014
- Arbitrary code execution
- Specific exploitation vectors:
 - CGI-based web server
 - OpenSSH server, ForceCommand feature
 - DHCP clients, can pass commands to Bash, additional options
 - Qmail server, processing mails by Bash
 - IBM HMC, gain access to Bash from the restricted shell of the IBM Hardware Management Console

HTTP

- SlowLoris (https://en.wikipedia.org/wiki/Slowloris_(computer_security)) / Slowdroid (https://en.wikipedia.org/wiki/Slowdroid)
- RUDY (R-U-Dead-Yet? https://sourceforge.net/projects/r-u-dead-yet/)
- Exploit known vulnerabilities (CMS, ...)
- Password guessing (there was a "bug" in WordPress: different delays during authentication)
- SQL injection over HTTP(s)

SMTP

- Sending SPAM is one of the typical activies of malware.
- Spoofed addresses make a SMTP server to produce lots of bounces.
- Spreading of malware, worms
- There are many blacklists (http://valli.org) and best practices as a "defense".

Section 9

Closing Words

References

- http://cs.uccs.edu/~jkalita/papers/2014/ HoqueNetworkAttacksJCNA2014.pdf
- https:
 - //www.eecis.udel.edu/~sunshine/publications/ccr.pdf
- https://www.eecis.udel.edu/~mills/teaching/eleg867b/ dos/p38-paxson.pdf
- http://www.cs.uccs.edu/~jkalita/papers/2013/ BhuyanMonowarComputerJournal2013.pdf
- http://www.cs.uccs.edu/~jkalita/papers/2015/ RupDekaJNCA2015.pdf
- http://ce.sharif.edu/courses/83-84/1/ce534/resources/ root/Papers/attackstaxonomy.pdf
- https://en.wikipedia.org/wiki/Timeline_of_computer_ security_hacker_history
- and other links inside this presentation

Questions?