Topics in Macro 2

Week 8 - Second Part - Part II - Exercise II

Oscar Fentanes www.oscarfentanes.com

TSE

Tuesday (17:00-18:30)

TD Second Part: Fiscal Multipliers (Weeks 6 to 10)

Part I

- Exercise I: Habit Persistence and The Keynesian Multiplier (Week 6)
- Exercise II: A Benchmark Model (Week 7)
- Exercise III: Consumption, Labor Supply and the Multiplier (Week 7)

Part II

- Exercise I: Taxes on the Labor Input and the Multiplier (Week 8)
- Exercise II: Public Spending in Utility Function and the Multiplier (Week 8)
- Exercise III: Labor Supply, Public Spending in Utility and the Multiplier (Week 9)

Part III

- Exercise I: Endogenous Public Spending (Week 9)
- Exercise II: Externality in Production and the Multiplier (Week 10)
- Exercise III: Externality in Labor Supply and the Multiplier (Week 10)

Exercise II: Public Spending in Utility Function and the Multiplier

The Economy

Utility:

$$u(c_t, n_t) = log(c_t^*) - \eta n_t$$
, where $c_t^* = c_t + \alpha_g g_t$

Budget constraint:

$$c_t \leq w_t n_t + \Pi_t - T_t$$

Production:

$$y_t = an_t$$

Profits:

$$\Pi_t = y_t - w_t n_t$$

Government budget constraint:

$$g_t = T_t$$

Market clearing:

$$y_t = c_t + g_t$$

Question 1. Determine the optimality condition of the households and then deduce the Marginal Rate of Substitution (MRS)

Answer: $\eta(c_t + \alpha_g g_t) = w_t$.

Question 2. Determine the optimality condition of the firm.

Answer: $w_t = a$.

Question 3. Determine the equilibrium output.

We know
$$\eta(ct + \alpha g g_t) = W_t$$
, $\alpha = W_t$

and $c_t = J_t - g_t$

Then $\eta(y_t - g_t + \alpha g g_t) = \alpha$
 $\Rightarrow y_t - (1 - \alpha g) g_t = \eta$

Answer: $y_t = \frac{a}{2} + (1 - \alpha g) g_t$.

Question 4. Compute the output multiplier and discuss the value of this multiplier with respect to $\alpha_{\rm g}$.

We know
$$y_t = \frac{\alpha}{\eta} + (1 - \gamma_g)g_t$$

Then $\frac{dy_t}{dg_t} = (1 - \alpha_g)$ and $\frac{dc_t}{dg_t} = \frac{dy_t}{dg_t} - 1 = -\alpha_g$
If $\alpha_g = 0 \Rightarrow \frac{dy_t}{dg_t} = 1$ and $\frac{dc_t}{dg_t} = 0$
Very effective fiscal policy

Answer: $\frac{dy_t}{dg_t} = (1 - \alpha_g)$.

Question 5. Compute the consumption multiplier and discuss the value of this multiplier with respect to α_g .

Answer:
$$\frac{dc_t}{dg_t} = \frac{dy_t}{dg_t} - 1 = -\alpha_g$$
.