	Homology inference
	Cool: infer the homology groups of or topological space from a finite set of points.
	(1. slides: payes 0-1)
	Distance functions:
	Of: The distance function dx is defined by:
	$d_{\times}: \mathbb{R}^d \to \mathbb{R}$
	$d_{x}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ $ \mathcal{Z} \rightarrow \min_{x \in X} \mathcal{Z} \rightarrow \mathbb{R} _{z}.$
	Note: distance functions are dosely related to the
	Note: distance functions are closely related to the Hausdorff distance du polich is the "right" metric between compact sets in IRd:
	$Dy:$ $x + (x, y) := mox { mox d y (x); mox d x(y)}$
	Prop: dH(x, y) = dx - dy = sup dx (x) - dy (3) .
-	=> Max-dy 11 as > d + (x, y)- mon dx (y) - 0
	=> 11dx-dy 110 > d+ (x, y)- (mox 1dx (y) - 0)
	Now, given & CIRd, let x E X he one of its nearest

(2) Medial assis and reach:
let X C IRd he compact.
Defi (einen $z \in \mathbb{R}^d$, let $T_{\infty}(z) := \underset{z \in X}{\operatorname{argmin}} \ z - z\ $.
Notes: TIx (2) + & (humse X is compact)
when $H = I_X(y) = 1$, one calls "projection of y" the unique point of $I_I_X(y)$, denoted by $I_I(y)$.
Det; The medial axis of x is:
$\mathcal{L}_{\mathcal{S}}(x) := \begin{cases} f \in \mathbb{R}^d \mid \# \widetilde{\mathbb{I}}_{\mathcal{S}}(x) > 1 \end{cases}.$
Note: the projection map Tx is defined outside M(X):
$\pi_{X}: \mathbb{R}^{d} \setminus \mathcal{M}(X) \longrightarrow X$
Def: The reach of X is: rch (X):= inf 1/x-y . zex yem(x)
Enomply. $M(x) = \emptyset (\longrightarrow \times \text{ convex})$ $(\text{rch}(x) = +\infty)$
open mor dosed
x compact (1/2 continuous manifold in the of => rch(x)>0
M(x) is not bounded

luma: [Federer 1959] The is continuous over Rd (M(X). Note: TIX is not lipselity continuous over Rd \ M(X) however it is outside every offset of elb(x)

(and the hipselisty constant depends of the offset parameter), Thm: It X C Rd compact he such blook rch (x). Then: $\forall t \in [0, \text{ rch}(x)), \text{ the } t - \text{offset of } x$ is homotopy equivalent to X: > proof: Note What X < X^. by Nohe Si: X c> Xt (inclusion) (Tx: Xt -> X (projection), Since A < reh(x), we have X + r M(x) = p ound So TIX is well defined over X +. Lo $\Pi_{X} \circ i = id_{X}$. $i \circ \Pi_{X} = \Pi_{X}$, which is homotopic to $id_{X} t$ (s, g) $f \circ (1-s)g + s \Pi_{X}(g)$ => when dy (P, X) -> 0, the signal -to-noise ratio in the weet raye goes to so

3) Computing Dam de: In practice, offsets filtrotrons are replaced by
"equiscolant" simplicial filtrations built on P.

using metric information.

(if . shide 2) Def: Cech (or Nerve) filtrotion $G(I) = (C(I, t))_{t \in \mathbb{R}}$ Thm (New) [Borsul, Leroy]

[H & PR, C(P, +) is homotopy equivalent No

Pt = U B(p, +). Lema (kusikent Newe); (Chazal, O. 2008)

Moreour, & 5 \(\in \in \mathbb{N}, \text{ the following diagram commutes:} \\

\frac{\frac{12}{12}}{12} \quad \text{Dym (Pt)} \\

\frac{12}{12} \quad \text{Dym (Pt) $Hh(C(I,s) \xrightarrow{\leq *} Hh(C(I,f))$ Def: (Vietoris) Rips filtrotion $R(1) = (R(1, h))_{t \in R}$ $G = \{p_0, ..., p_n\} \in R(P, k) (=) \text{ diam } G \leq k$.

The second of the

