

Sensing Emotion through ECG Signals

Tim Sweeney-Fanelli

ECE PhD Candidate

Electrical and Computer Engineering Department
CLARKSON UNIVERSITY

Outline

- Introduction to Automated Emotion Recognition -Methods and Results
- Publicly available AER Datasets
- Analyzing ECG Signals
- Data Collection Study: How you can help!

Automated Emotion Recognition

To develop an algorithm to monitor and identify emotions, we need three things:

- A classification model (e.g. 6 basic human emotions)
- A method for ground truth assessments (e.g. "How are you feeling right now?")
- A modality to monitor (e.g. Computer Vision, EKG, ECG, etc)

Emotion Classification

Dimensional Model of

Human Emotion

- Valence: a characteristic of appeal or repulsion.
- Arousal: the state of being alert, awake and attentive
- Dominance: a sense of feeling in control (z-axis)

Classification into 4 Quadrants

Ground Truth Assessments

Semantic Differential

- 18 verbal bi-polar scales (hot-cold, good-evil, etc)
- Literacy and fluency

Self Assessment Manikin (SAM)

- 3 Question Graphical Questionnaire to Assess:
 - Valence
 - Arousal
 - Dominance

	Factor 1 "Pleasure"	Factor 2 "Arousal"	Factor 3 "Dominance"	
Unhappy-Happy	0.914	0.063	0.148	
Annoyed-Pleased	0.883	0.068	0.158	
Unsatisfied-Satisfied	0.868	0.144	0.114	
Melancholic-Contented	0.725	0.095	0.056	
Despairing-Hopeful	0.858	0.063	0.078	
Bored-Relaxed	0.580	0.372	0.234	
Relaxed-Stimulated	-0.211	0.774	0.052	
Calm-Excited	-0.181	0.793	0.056	
Sluggish-Frenzied	0.268	0.771	0.005	
Dull-Jittery	-0.211	0.793	0.121	
Sleepy-Wide awake	-0.046	0.810	0.047	
Unaroused-Aroused	0.051	0.827	0.127	
Controlled-Controlling	0.262	0.192	-0.673	
Influenced-Influential	0.292	0.089	-0.618	
Cared for-In control	-0.090	0.198	-0.626	
Awed-Important	0.199	-0.040	-0.301	
Submissive-Dominant	0.195	0.306	-0.695	
Guided-Autonomous	0.161	-0.100	-0.479	
Amount of variance accounted for:	24.6	23.12	12.18	

How to Observe Emotions?

Expressive and behavioral, neurological and physiological

- Easy to recognize
- Useful in public or covert surveillance (FACS)
- Subject to deception

- Neurological / Physiological:
 - Very high correlation
 - Not subject to deception
 - Current applications limited to laboratory environments

Summary of AER Results and Trends

12 years of AER ML/DL Results show clear trends

Highest Predictive Value

Classification Accuray

		1		1	1					•
	Model	Year	ECG	GSR	PPG	EMG	EOG	EMO	Arousal	Valence
Koelstra	GNB	2012		Х	Х	Χ	Χ		0.53	0.61
Valenza	SVM	2014	Х						0.84	0.79
Subramanian	SVM	2016	Х	Х				Χ	0.62	0.64
Wiem	SVM	2017	Х	Х					0.64	0.65
Udovicic	KNN	2017		Х	Х				0.68	0.66
Santamaria-Granados	1D CNN	2019	Х						0.76	0.75
Harper	CNN+LSTM	2022	Х	Wea.	rable					0.9
Hamad	PETSFCNN	2022	Х		ace				0.96	0.98
Sweeney-Fanelli	T-CNN	2024	Х						0.99	0.97

Improved upon CNN by retaining structural knowledge of the input data

Unimodal Emphasis

High Classification Accuracy

Publicly Available AER Datasets

Several AER datasets which already include ECG and ground-truth correlations:

- ASCERTAIN: https://ascertain-dataset.github.io/
- DREAMER: https://zenodo.org/record/546113
- MANHOB-HCI: https://mahnob-db.eu/hci-tagging/

Components of an ECG Signal

- PQRST Complex
 - P-Wave: atrial depolarization
 - QRS Complex: ventricular depolarization (and atrial repolarization)
 - T-Wave: ventricular repolarization

Working with ECG Signals

 Raw ECG Signals are very noisy ... we can see the R-peak, but not much else

Working with ECG Signals

ECG signal filtering is a multistep process. A typical pipeline consists of:

- Removing baseline wander
- Removing powerline interference
- Isolating relevant ECG frequencies (specifically, removing EMG)

Other situations that come up frequently:

- Polarity inversion due to misplaced leads
- Signal quality rating

Knowing What To Filter Out

- Fast Fourier Transform (FFT) is used to analyze the frequencies within the signal
- We can plot the signal as a histogram showing how much each frequency range contributes to the signal data

Baseline Wander

- Baseline drift caused by various things:
 - Body movement causing pads to change positions (even respiration)
 - Electrode contact issues (sweat, poor adhesion, etc)
 - Power supply or environment conditions
- Baseline levels tend to change over time, not a fixed offset in the signal
- Can be removed by high-pass filter to remove low-frequency (0.5 to 0.7
 Hz) components

Baseline Wander

- High-pass butterworth filter with cutoff = 0.5 Hz
- Baseline is now 0, and the drift over time is eliminated

Revisit Frequency Domain ...

 We just took out some low-frequency noise, let's see how much that impacted the frequency distribution ...

Powerline Interference

Bandpass Filter to remove 50Hz Frequency Noise (or 60 Hz)

Powerline Interference

Bandpass Filter to remove 50Hz Frequency Noise (or 60 Hz)

What frequencies do we really want?

- Eliminate as much EMG Signal Interference as possible (muscle activation: 20Hz to 500Hz)
- Read about ECG Signals:
 - P-Waves are typically between 0.5Hz and 10Hz
 - QRS-Complex typically lies between 10Hz and 40Hz
 - T-Waves are typically between 1Hz and 7Hz

So we have some options ... (switch to code on play around....)

Final, Cleaned Signal

On-Campus Study for Emotion Recognition

How you can help!

Data Collection / Human-Participant Study

- Why: Only two datasets still readily accessible for AER research: ASCERTAIN and DREAMER. Additional data needed for training and model optimization
- How: IRB approved at Feb 21 2024 session.
- Goal: 50 participants with ECG, PPG, and GSR signal recording, in-lab with controlled affective stimulus.

Outcomes:

- CUADS: CU Affects Data Set
- CUADSw: CU Affects Data Set for Wearables
- Open Source research tools (data API and mobile app)

Data Collection Materials and Methods

- Shimmer Sensing ECG "Wearable" Sensors
- Emotibit PPG + GSR Sensor
- Watch video clips, and complete a SAM survey for each

Get Involved

- When: before you're all too stressed about finals
- What do you have to do?
 - Show up
 - Spend 45 minutes watching video clips
- Important to know:
 - There'll be scheduled breaks, and you can leave anytime for any reason
- Qualifying / Disqualifying factors:
 - Qualifying: be a human, capable of feeling emotions.
 - Disqualifying: individuals prone to emotional dysregulation

Questions?

Links From These Slides:

Source Code + Sample ECG:

https://github.com/cutimcsf/ee502_ecg_guestlecture

AER Datasets:

- ASCERTAIN: https://ascertain-dataset.github.io/
- DREAMER: https://zenodo.org/record/546113
- MANHOB-HCI: https://mahnob-db.eu/hci-tagging/

