1-1

1-2

Calculate: C=B*log2(1+SINR), where B=10*7Hz. For a UE, SINR=P/pi+N. P is power receive from central BS, pi is sum of power from other BS and N is thermal noise

1-3

0.0

Buffer policy design: when new bit arrive, discard the oldest bit if buffer is full 因為設計從公平性來看,沒有道理要因為某個 user 的網路狀況很差而讓 buffer

6

1e7

I set buffer to be 6MB and CBR parameters $\{X_l, X_m, X_h\}$ to be (1.125MB/s, 3.125MB/s, 5.125MB/s) with corresponding bit loss rate about (0.012, 0.025, 0.042) respectively in duration 1000s.(大約)

I calculate bits loss probability based on $\frac{\text{loss bits}}{\text{total sent bits}}$

塞爆,應該以新來的服務品質為優先

(to be more completely in showing the curve, I plot 7 unit in x axis) It can be seen that the curve is like $(1-e^{-x})$, which would saturate in 1 when x is high 數字每次跑出來我設的最終項大約在 $0.48^{\circ}0.53$ 之間

B-1

B-2

Calculate: C=B*log2(1+SINR), where B=10*7Hz. For a UE, SINR=P/pi+N. P is power receive from central BS, pi is sum of power from other BS and N is thermal noise

B-3

Buffer policy: same as 1-3

I set buffer to be 6MB and parameters $\{\lambda_l, \lambda_m, \lambda_h\}$ to be (1.125MB/s, 3.125MB/s, 5.125MB/s) with corresponding bit loss rate about (0.012, 0.025,0.042) respectively in duration 1000s.(大約)

I calculate bits loss probability based on $\frac{loss \, bits}{total \, sent \, bits}$

(to be more completely in showing the curve, I plot 7 unit in x axis)

It can be seen that though the BR is set as poisson distribution, the overall bit loss probability isn't change dramatically, which may result from the cancelation natural of random variable.(雖然是隨機,但跑的時間夠久的話> λ_l 的項與< λ_l 的項會抵消因此整體看來一樣)