用 tidyr 清理数据::速查表

清理数据 (Tidy data) 这种方法主要用于整理列 表数据, 使其具有跨包兼容的一致性数据结构。 一个整洁的数据集应具备如下特征:

每个变量 占一列 (column)

每组观测值,或每个案例, 占一行(row)

通过向量化运算 保存案例

Tibbles

一种扩展型数据框

Tibbles 作为一种列表格式。由 tibble 数据包提供。其继承了DataFrame

类型,但有如下改进:

- 取子集] 仍返回 tibble, [[和 \$返回向量
- 返回列时,**不进行部分匹配**(不存在就不返回)
- 显示 在屏幕上显示数据的简洁视图

options(tibble.print max = n, tibble.print min = m, tibble.width=Inf) 控制默认的显示设置

View() or glimpse() 观察整个数据集

创建一个 TIBBLE 数据框

tibble(...) 根据列(columns)创建 tibble(x = 1:3, y = c("a", "b", "c"))

tribble(...) 根据行(rows)创建

tribble(~x, ~y, 1, "a",

2, "b", 3, "c")

as_tibble(x, ...) 将DataFrame类型转换为tibble enframe(x, name = "name", value = "value") 将向量转成 tibble, 反之则为deframe(). is tibble(x) 检测 x 是否为 tibble 类型

重组数据 数据透视, 调整格局

С

В

1999

212K

2000 213K 1T

table4a 37K 80K 212K 213K С Α В

table2

2000

tahle3

2000 pop 1T

year	cases	<pre>pivot_longer(data, cols, names_to = "name",</pre>
1999	0.7K	values_to = "value", values_drop_na = FALSE)
	37K	_ , _ , _ ,
	212K	将多列折叠为两列,从而"拉长"数据。
2000		西利农 <u>杜</u> 农农 <u>农</u> 的。
2000		原列名转移至新的 names_to 列,
2000	213K	原数值转移至新的 values to 列。

1T

原数值转移至新的 values to 列。 pivot_longer(table4a, cols = 2:3, names_to = "year", values to = "cases")

pivot_wider(data, names_from = "name", values from = "value")

和 pivot_longer() 相反,将两列扩展为多列, 从而"加宽"数据。

原来的两列数据,一列扩展为不同的新列名, 另一列的数值也随之重新分布。

pivot wider(table2, names from = type, values from = count)

扩展表格

创建新的变量组合,或识别隐式缺失值(即没 有呈现在数据集中的变量组合).

expand(data,...)

创建一个新tibble,包含原 数据 ... 列中所有可能的变 量取值组合,同时舍去其 他未选中的变量。

expand(mtcars, cyl, gear, carb)

complete(data, ..., fill = list()) 补全 ... 列中所有可能 的变量取值组合,并在剩 B 2 3 余的变量中相应填充为缺 失值。

> complete(mtcars, cyl, gear, carb)

拆分单元格 - 将单元格拆分或合并为独立数值

2K

213K

	tubic.						
country	year	rate		country	year	cases	рор
Α	1999	0.7K/19M		Α	1999	0.7K	19M
Α	2000	2K/20M	\rightarrow	Α	2000	2K	20M
В	1999	37K/172M		В	1999	37K	172M
В	2000	80K/174M		В	2000	80K	174M

unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE) 多列合并为一列

unite(table5, century, year, col = "year", sep = "")

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE, extra = "warn", fill = "warn", ...) 一列拆分为多列 也可用 extract().

separate(table3, rate, sep = "/", into = c("cases", "pop"))

separate_rows(data, ..., sep = "[^[:alnum:].]+". convert = FALSE) 一列拆分为多行

separate_rows(table3, rate, sep = "/")

小理缺失值

舍弃或替换明确的缺失值(NA).

x1 x2

x1 x2

drop_na(data, ...) 舍弃...列中含有缺失值的 所有行 drop na(x, x2)

fill(data, ..., .direction = "down")将前个或后个数 据填充...列中的缺失值(默 认自上而下填充) fill(x, x2)

replace_na(data, replace) 用特定值替换指定列中的 所有缺失值NA

 $replace_na(x, list(x2 = 2))$

嵌套数据

嵌套数据框 (nested data frame) 将不同的列表嵌套储存为一个更大数据框的 list-column。List-columns 内也可以是一系列的向量或不同的数据类型。 嵌套数据框可用于:

- 保留观察值与数据各子集之间的关系。保留嵌套变量的类型(比如因子型和日期时间型,不会被强制转为字符型)。
- 一次性处理多个子表格,通过 **purrr** 包中的map(), map2(), 和 pmap() 等函数,或 **dplyr** 包中的 rowwise() 分组。

list-column中每个 "单元格"的内容

2005 24.2 -36.1

创建嵌套数据

nest(data, ...)

将成组的单元格移至一个数据框的list-column中。可单独使用,或与dplyr::group_by()函数配合使用。

1. 先用 group_by() 分组,然后用 nest() 将组移至list-column中。
n_storms <- storms %>%
group_by(name) %>%
nest()

2. 用 nest(new_col = c(x, y)) 指定需要分组的列 按照 dplyr::select() 语法

n_storms <- storms %>%
nest(data = c(year:long))

name	yr	lat	long		name	yr	lat	long	
Amy	1975	27.5	-79.0		Amy	1975	27.5	-79.0	
Amy	1975	28.5	-79.0		Amy	1975	28.5	-79.0	
Amy	1975	29.5	-79.0		Amy	1975	29.5	-79.0	
Bob	1979	22.0	-96.0	→	Bob	1979	22.0	-96.0	
Bob	1979	22.5	-95.3		Bob	1979	22.5	-95.3	\rightarrow
Bob	1979	23.0	-94.6		Bob	1979	23.0	-94.6	
Zeta	2005	23.9	-35.6		Zeta	2005	23.9	-35.6	
Zeta	2005	24.2	-36.1		Zeta	2005	24.2	-36.1	
Zeta	2005	24.7	-36.6		Zeta	2005	24.7	-36.6	

			, , , ,		-, - -
			yr	lat	long
			1975	27.5	-79.0
			1975	28.5	-79.0
	嵌套	后的数据框	1975	29.5	-79.0
	W 				
	name	data	yr	lat	long
	Amy	<tibble [50x3]=""></tibble>	1979	22.0	-96.0
•	Bob	<tibble [50x3]=""></tibble>	1979	22.5	-95.3
	Zeta	<tibble [50x3]=""></tibble>	1979	23.0	-94.6
			yr	lat	long
			2005	23.9	-35.6

用[[]] 索引 list-column n storms\$data[[1]]

创建含有 list-columns 的 Tibbles

tibble::tribble(...) 按需要构造 list-columns

tribble(~max,~seq,

3, 1:3, 4, 1:4,

5, 1:5)

max seq
3 <int [3]>
4 <int [4]>
5 <int [5]>

tibble::**tibble(...)** 把输入列表保存为 list-columns tibble(max = c(3, 4, 5), seg = list(1:3, 1:4, 1:5))

tibble::**enframe(**x, name="name", value="value") 将多级列表转换为带有 list-columns 的tibble enframe(list('3'=1:3, '4'=1:4, '5'=1:5), 'max', 'seg')

通过其他函数输出 list-columns

dplyr::mutate(), transmute(), and summarise()

当这些函数返回列表时, 会输出 list-columns

mtcars %>% group_by(cyl) %>% summarise(q = list(quantile(mpg)))

重组嵌套数据

unnest(data, cols, ..., keep_empty = FALSE)

与 nest()相反,将嵌套的列重新展开为常规列,n storms %>% unnest(data)

unnest_longer(data, col, values_to = NULL, indices_to = NULL) 将一个 list-column 按行展开

> starwars %>% select(name, films) %>% unnest_longer(films)

		name	Tilms
		Luke	The Empire Strik
		Luke	Revenge of the S
name	films	Luke	Return of the Jed
Luke	<chr [5]=""></chr>	C-3PO	The Empire Strik
C-3PO	<chr [6]=""></chr>	C-3PO	Attack of the Cl
R2-D2	<chr[7]></chr[7]>	C-3PO	The Phantom M
		R2-D2	The Empire Strik
		R2-D2	Attack of the Cl
		R2-D2	The Phantom M

unnest_wider(data, col) 将一个 list-column 按列展开

> starwars %>% select(name, films) %>% unnest_wider(films)

name	films		name	1	2	3
Luke	<chr [5]=""></chr>		Luke	The Empire	Revenge of	Return of
C-3PO	<chr [6]=""></chr>	\longrightarrow	C-3PO	The Empire	Attack of	The Phantom
R2-D2	<chr[7]></chr[7]>		R2-D2	The Empire	Attack of	The Phantom

hoist(.data,.col,...,.remove = TRUE) 选择性地按列展开 list-column 用 purrr::pluck() 语法选择 list-column 中需要展开的列

starwars %>%
 select(name, films) %>%
 hoist(films, first_film = 1, second_film = 2)

name	films	\rightarrow	name	first_film
Luke	<chr [5]=""></chr>		Luke	The Empire.
C-3PO	<chr [6]=""></chr>		C-3PO	The Empire.
R2-D2	<chr[7]></chr[7]>		R2-D2	The Empire.

变换嵌套数据

一个向量化函数通常要取一个向量,平行变换每一个元素,然后返回一个相同长度的向量。因此向量函数本身无法应用于列表,比如嵌套形成的 list-columns。

经 dplyr::rowwise(.data,...) 这一函数分组处理后,每行为一组,每组中的 list-columns 元素直接出现 (通过 [[访问),而非长度为1的列表。当你使用 rowwise() 函数时,dplyr 包中的函数就能以向量化处理的方式应用于 list-columns 了。

将一个函数应用到一个list-column, 并创建一个新的 list-column。

将一个函数应用到一个list-column, 并创建一个新的常规列。

将**多个**list-columns 折叠为一个。

starwars %>% rowwise() %>% append() 每行返回一个列表,所以列的类型必须为 列表类型

mutate(transport = list(append(vehicles, starships)))

将一个函数用于**多个**list-columns

starwars %>%
rowwise() %>%
mutate(n_transports = length(c(vehicles, starships)))

参见 purrr 包中的更多列表函数

<chr [3]>

<chr [4]>

Attack of..