COMP9418: Advanced Topics in Statistical Machine Learning

As Manko vro letwanksp

https://tutorcs.com

WeChat: cstutorcs

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture discusses Markov networks
 - These are undirected graphical models
 - They are frequently used to model symmetrical dependencies, as in case of pixels in an image
- Like Bayesian networks, Warkey networks are used to model variable independencies
 - However, these representations are not redundant https://tutorcs.com
 - There exist sets of independencies that can be expressed in a Markov network but not in a Bayesian network and vice-versa
 WeChat: cstutorcs
- We will discuss the semantics of Markov networks
 - As well as some inference algorithms such as stochastic search and variable elimination

Introduction

- Several processes such as an sentence or image can be modelled as a series of states in a chain or grid
 - Each state can be influenced by the state of its neighbours
 - Such symmetry is modelled ssignment terging to Execute Help
 Markov random fields (MRFs) or Markov networks (MN)
- MNs were proposed to model ferromagnetic.
 materials
 WeChat: cstutorcs
 - In Physics, these models are known as *Ising* models
 - Each variable represents a dipole with two states + and —
 - The state of each dipole depends on an external field and its neighbours

Introduction

WeChat: cstutorcs

- In an MN, a variable is independent of all other variables given its neighbours
 - For instance, in this figure, $X_1 \perp X_3, X_4 \mid X_2$
 - Therefore, $P(X_1|X_2,X_3,X_4)$ Ssignment Project Exam Help
- A common query is to find the instantiation of https://tutorcs.commaximum probability
 - MAP or MPE query
 - The probability of each instantiation depends on an external influence (prior) and the internal influence (likelihood)
 - MNs can be thought as a series of rings in poles, where each ring is a variable, and the height of a ring corresponds to its state

- Suppose that we are modeling voting preferences among four persons A, B, C, D
 - Let's say that A B, B C, C D, and D A are friends
 - Friends can influence each spignment Project Exam Help
 - These influences can be naturally represented by an undirected https://tutorcs.com
- In this example, A does not interact directly with C. The same occurs with B and D
 - $A \perp C \mid B, D \text{ and } B \perp D \mid A, C$
 - We saw there is no Bayesian network that can represent *only* these independence assumption (Lecture 4 Slide 33)

- Like Bayesian networks, Markov networks encode independence assumptions
 - Variables that are not independent must be in some Assignment Project Exam factor
 - Factor is a generalization of a CPT. It does not need to store values in the range 0 - 1https://tutorcs.com
- In this example, we can factorise the joint WeChat: cstutorcs distribution as

$$P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)$$

- Z is a normalizing constant known as the partition function
 - $Z = \sum_{A,B,C,D} \tilde{P}(A,B,C,D)$
 - $\tilde{P}(A, B, C, D) = \phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)$

D	A	$\phi_4(D,A)$	_	Α	В	$\phi_1(A,B)$
d	a	100		а	b	30
d	\bar{a}	1		а	\overline{b}	5
$ar{d}$	\boldsymbol{a}	1		\bar{a}	b	1
$d \over d \over F$	17	100	(A)	\bar{a}	\overline{b}	10
110	ΉP		$\nearrow \checkmark$			
		\sim		\-		
		(D)		(B))	
		\sim				
			\searrow			
_	_	la	(c)	_	_	l. (5 a)
	D	$\phi_3(C,D)$	_	<u>B</u>	\mathcal{C}	$\phi_2(B,C)$
С	d	1		b	С	100
С	$ar{d}$	100		b	\bar{c}	1
\bar{C}	d	100		\overline{b}	С	1
\bar{c}	\bar{d}	1		\overline{b}	\bar{c}	100

- We can view $\phi(A, B)$ as an interaction that pushes B's vote closer to that of A
 - The term $\phi(B,C)$ pushes B's vote closer to C, but C pushes D's vote away (and siegness ent Project Exam
 - The most likely vote will require reconciling these conflicting influences
 https://tutorcs.com
- We simply indicate a level of coupling between dependent variables in the graph
 - This requires less prior knowledge than CPTs
 - It defines an energy landscape over the space of possible assignments
 - We convert this energy to a probability via the normalization constant

D	A	$\phi_4(D,A)$	_	A	В	$\phi_1(A,B)$
d	a	100		а	b	30
d	\bar{a}	1		а	\overline{b}	5
$ar{d}$	a	1		\bar{a}	b	1
d \bar{d} \bar{d} \bar{d}	$1\bar{a}$	100	(A)	\bar{a}	\overline{b}	10
	'IP					
		\sim		\nearrow		
		\bigcup		$\int_{\mathbb{R}}$		
			\ /			
			C			
$\boldsymbol{\mathcal{C}}$	D	$\phi_3(C,D)$		B	\mathcal{C}	$\phi_2(B,C)$
C	\overline{d}	1	_	\overline{b}	С	100
С	$ar{d}$	100		b	\bar{c}	1

100

	As	ssig	nme	ent	Unnormalized	Normalized	D	A	$\phi_4(D,A)$		A B	$\phi_1(A,B)$
•	а	b	С	d	300,000	0.04	\overline{d}	а	100		a b	30
	a	b	С	$ar{d}$	300,000	0.04	d	\bar{a}	1		$a \overline{b}$	5
	a	b	\bar{c}	d	300,000	0.04	$ar{d}$	а	1		\bar{a} b	1
	a	b	\bar{c}	$ar{d}$	Assignmen	t Project	Exam E	$1\bar{q}$	100	(A)	\bar{a} \bar{b}	10
MPE assignment	а	$ar{b}$	С	d	Assignmen	6.9 10 ⁻⁵	L'Adill' I'C	ΤP				
	a	$ar{b}$	С	$ar{d}$	https://	tutorcs.c	com		\sim			
	а	$ar{b}$	\bar{c}	d	5,000,000	0.69	<u> </u>		D		$\binom{B}{}$	
	а	$ar{b}$	\bar{c}	$ar{d}$	We@h	at: estuto:	orcs					
	\bar{a}	b	С	d	100	1.4 10 ⁻⁵				C		
	\bar{a}	b	С	$ar{d}$	1,000,000	0.14	\mathcal{C}	D	$\phi_3(C,D)$		B C	$\phi_2(B,C)$
	\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵	<i>C</i>	\overline{d}	1		b c	100
	\bar{a}	b	\bar{c}	$ar{d}$	100	1.4 10 ⁻⁵	С	$ar{d}$	100		$b \bar{c}$	1
	\bar{a}	$ar{b}$	С	d	10	1.4 10 ⁻⁶	$ar{c}$	d	100		\bar{b} c	1
	\bar{a}	\overline{b}	С	\bar{d}	100,000	0.014	\bar{c}	\bar{d}	1		$ar{b}$ $ar{c}$ $ $	100
	\bar{a}	$ar{b}$	\bar{c}	d	100,000	0.014						8
	\bar{a}	$ar{b}$	\bar{c}	$ar{d}$	100,000	0.014						J

- Although expensive, the joint probability can be used to answer probabilistic queries
 - Prior marginal queries, such as P(A, B)

Assignment Project Exam I

_ <i>A</i>	B	P(A,B)	
a	b	.13	https://tutorcs.com
а	\overline{b}	.69	
\bar{a}	b	.14	WeChat: cstutorcs
\bar{a}	\overline{b}	.04	

- Probability of evidence, such as $P(\bar{b}) = 0.732$
- Posterior marginal, such as $P(\bar{b}|c) = 0.06$

7 toolgiiiioiit					1101111411204
а	b	С	d	300,000	0.04
а	b	С	$ar{d}$	300,000	0.04
а	b	\bar{c}	d	300,000	0.04
He	16	\bar{c}	$ar{d}$	30	4.1 10 ⁻⁶
а	\overline{b}	С	d	500	6.9 10 ⁻⁵
a	\overline{b}	С	\bar{d}	500	6.9 10 ⁻⁵
a	\overline{b}	Ē	d	5,000,000	0.69
a	\overline{b}	Ē	$ar{d}$	500	6.9 10 ⁻⁵
\bar{a}	b	С	d	100	1.4 10 ⁻⁵
\bar{a}	b	С	$ar{d}$	1,000,000	0.14
\bar{a}	b	Ē	d	100	1.4 10 ⁻⁵
\bar{a}	b	Ē	$ar{d}$	100	1.4 10 ⁻⁵
\bar{a}	$ar{b}$	С	d	10	1.4 10 ⁻⁶
\bar{a}	\overline{b}	С	\bar{d}	100,000	0.014
\bar{a}	$ar{b}$	Ē	d	100,000	0.014
ā	$ar{b}$	Ē	$ar{d}$	100,000	0.014

Unnormalized

Normalized

Assignment

Voting Example: Bad News for Learning!

- Suppose we had learned P(A, B) from data
 - By counting the occurrences of a and b
 - P(A,B) is not a direct replacement for $\phi_1(A,B)$

Assignment Project Exam Help

		i	
A	B	P(A,B)	
a	b	.13	https://tutorcs.com
a	\overline{b}	.69	
\bar{a}	b	.14	WeChat: cstutorcs
\overline{a}	\overline{h}	04	

С	D	$\phi_3(C,D)$	В	$\boldsymbol{\mathcal{C}}$	$\phi_2(B,C)$
С	d	1	b	С	100
С	$ar{d}$	100	b	\bar{c}	1
\bar{c}	d	100	\overline{b}	С	1
\bar{c}	$ar{d}$	1	\overline{b}	\bar{c}	100

Random Field

- A random field **X** is a set of random variables
 - It is common that each variable X_i to be associated with a *site*
 - This idea comes from areas such as image processing in which each variable is associated with spike megit associated with the project Exam Help
- We use a set S to index a set of n sites https://tutorcs.com
 The sites can be spatially regular, as in the case of a 2D image
 - Or irregular, if they do not present spatial regularity
- The sites in S are related to one another via a neighborhood system
 - A site is not neighboring to itself: $i \notin N_i$
 - The neighboring relationship is mutual: $i \in N_{i'}$ iff $i' \in N_{i}$

$$X = \{X_1, \dots, X_n\}$$

 N_i is a set of sites neighboring i $N = \{N_i | \forall i \in S\}$

Markov Networks

- A random field X is a Markov random field (or Markov network) on S w.r.t. a neighbourhood system N if and only if
 - $P(X_1 = x_1, ..., X_n = x_n) > 0, \forall x \in X$ (positivity)
 - $P(X_i|X_{S\setminus\{i\}}) = P(X_i|X_{N_i})$ Assignment Project Examiles Project

https://tutorcs.com

- Graphically, Markov networks (MN) are undirected graphical models
 WeChat: cstutorcs
 - G = (V, E), where V consists of a set of random variables, and E a set of undirected edges
 - A set of variables X is independent of Y given Z, if the variables in Z separate X and Y in the graph
 - Therefore, if we remove the nodes in **Z** from the graph, there will be no paths between **X** and **Y**

Markov Networks: Gibbs Distribution

- When the positivity condition is satisfied, the joint probability distribution is uniquely determined by the Gibbs distribution
 - This result is known as the *Hammersley-Clifford theorem*
 - Like in Bayesian networks Aisaignmenta Projecte Fungamt Help distribution into smaller factors
 - Therefore, we can efficiently answer probabilistic queries
- Using the example, we have the following factorisation for maximal cliques
 - $P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B, D)\phi_2(B, C, D)$
- In practice, we frequently use smaller cliques such as pairwise factors
 - $P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)\phi_5(D, B)$

$$P(\mathbf{X}) = \frac{1}{Z} \prod_{c \in cliques(G)} \phi_c(\mathbf{X}_c)$$

$$Z = \sum_{\mathbf{x}} \prod_{c \in cliques(G)} \phi_c(\mathbf{X}_c)$$

Markov Networks: Positivity

This graph encodes the independencies

- $A \perp C \mid B, D \text{ and } D \perp B \mid A, C$
- Let us verify if this joint distribution has the same independence assumption in Programment Programment

			-				-
В	D	A	P(A B,D)	В	D	C	P(C B,D)
b	d	а	.5	b	d	$\frac{\Pi t}{c}$	tps. ₄ /tutor
b	d	\bar{a}	.5	b	d	Ŵ	eChat: cst
b	\bar{d}	a	1	b		C	.5
b	\bar{d}	\bar{a}	0	b	\bar{d}	Ē	.5
\overline{b}	d	а	0	\overline{b}	d	С	.5
\overline{b}	d	\bar{a}	1	\overline{b}	d	\bar{c}	.5
\overline{b}	\bar{d}	a	.5	\overline{b}	\bar{d}	С	0
\overline{b}	\bar{d}	\bar{a}	.5	\overline{b}	\bar{d}	\bar{c}	1
			1				•

	В	D	A	С	P(A,C B,D)
ies	b	d	а	С	.5
	b	d	а	\bar{c}	0
the	b	d	ā	С	.5
	i ė c	tdE	ZĀ Z	īħ	Help
				С	.5
tutor	cs.	cō	179	\bar{c}	.5
	b	$ar{d}$	\bar{a}	С	0
at: cs	tut	oro	28	\bar{c}	0
	\overline{b}	d	а	С	0
	\bar{b}	d	а	\bar{c}	0
	\bar{b}	d	\bar{a}	С	.5
	\overline{h}	d	\bar{a}	\bar{c}	.5

$ar{b}$	d	a	С	0
\bar{b}	d	a	\bar{c}	0
$ar{b}$	d	ā	С	.5
\bar{b}	d	\bar{a}	\bar{c}	.5
$ar{b}$	$ar{d}$	a	С	0
$ar{b}$	$ar{d}$	a	\bar{c}	.5
\bar{b}	$ar{d}$	ā	С	0
\bar{b}	$ar{d}$	\bar{a}	\bar{c}	.5

		_		
Α	В	С	D	P(.)
а	b	С	d	1/8
a	b	С	$ar{d}$	1/8
a	b	Ē	$ar{d}$	1/8
a	$ar{b}$	Ē	$ar{d}$	1/8
\bar{a}	b	С	d	1/8
\bar{a}	\overline{b}	С	d	1/8
\bar{a}	$ar{b}$	Ē	d	1/8
\bar{a}	\overline{b}	\bar{c}	$ar{d}$	1/8

Markov Networks: Positivity

This graph encodes the independencies

- $A \perp C \mid B, D \text{ and } D \perp B \mid A, C$
- Let us verify if this joint distribution has the same independence assument Property

			_				
Α	С	В	P(B A,C)	A	С	D_{\perp}	P(D A,C) t <mark>ps://tut</mark> o
а	С	b	1	a	С	d	ips.//tuto
a	С	$ar{b}$	0	a	С	\ \$\bar{d}{d}\bar{d}{d}\bar{d}{d}\bar{d}{d}\bar{d}{d}\bar{d}{d}\bar{d}\	eChat: cs
а	\bar{c}	b	.5	a	\bar{c}		
a	\bar{c}	$ar{b}$.5	a	\bar{c}	$ar{d}$	1
ā	С	b	.5	\bar{a}	С	d	1
ā	С	$ar{b}$.5	\bar{a}	С	$ar{d}$	0
ā	\bar{c}	b	0	\bar{a}	\bar{c}	d	.5
ā	\bar{c}	\overline{b}	1	\bar{a}	\bar{c}	$ar{d}$.5
			•				:

	A	С	В	D	P(B,D A,C)
	а	С	b	d	.5
	a	С	b	$ar{d}$.5
	a	С	\overline{b}	d	0
)	ec.	t ^c E	EX 8	aħ	Help

	00	·	~		
oj	ec	tcE	XZ	ıħ	Help
	a	\bar{c}	b	d	0
)r(CS .	CŌ	m	$ar{d}$.5
	a	\bar{c}	\overline{b}	d	0
S	tuto	orc	S	$ar{d}$.5
	\bar{a}	С	b	d	.5
	\bar{a}	С	b	$ar{d}$	0
	\bar{a}	С	\overline{b}	d	.5
	\bar{a}	С	\overline{b}	$ar{d}$	0
	\bar{a}	\bar{c}	b	d	0
	\bar{a}	Ē	b	$ar{d}$	0
	\bar{a}	\bar{c}	\overline{b}	d	.5
	\bar{a}	\bar{c}	$ar{b}$	$ar{d}$.5

A	В	С	D	P(.)
а	b	С	d	1/8
a	b	С	$ar{d}$	1/8
a	b	Ē	$ar{d}$	1/8
a	$ar{b}$	Ē	$ar{d}$	1/8
\bar{a}	b	С	d	1/8
\bar{a}	\overline{b}	С	d	1/8
\bar{a}	$ar{b}$	Ē	d	1/8
\bar{a}	\overline{b}	\bar{c}	$ar{d}$	1/8

Markov Networks: Positivity

- This graph encodes the independencies
 - $A \perp C \mid B, D \text{ and } D \perp B \mid A, C$
 - Let us verify if this joint distribution has the same independences assume independences assume independences assument Project Exam Help
 - $P(\bar{a}, b, c, \bar{d}) = \phi_1(\bar{a}, b)\phi_2(b, c)\phi_3(c, \bar{d})\phi_4(\bar{d}, \bar{a}) = 0$
 - $P(\overline{a}, b, c, d) = \phi_1(\overline{a}, b)\phi_2(b, c) \psi_3(C) \psi_4(c) \psi_4(c)$
 - $P(\bar{a}, \bar{b}, \bar{c}, \bar{d}) = \phi_1(\bar{a}, \bar{b})\phi_2(\bar{b}, \bar{c})\phi_3(\bar{c}, \bar{d})\phi_4(\bar{d}, \bar{a}) = \frac{1}{8}$
 - $P(a,b,c,\bar{d}) = \phi_1(a,b)\phi_2(b,c)\phi_3(c,\bar{d})\phi_4(\bar{d},a) = \frac{1}{8}$

Α	В	С	D	<i>P</i> (.)	
a	b	С	d	1/8	
a	b	С	$ar{d}$	1/8	
a	b	Ē	\bar{d}	1/8	
a	$ar{b}$	Ē	$ar{d}$	1/8	
\bar{a}	b	С	d	1/8	
\bar{a}	\overline{b}	С	d	1/8	
\bar{a}	\overline{b}	\bar{c}	d	1/8	16
\bar{a}	$ar{b}$	\bar{c}	$ar{d}$	1/8	16
	a a a a \bar{a} \bar{a} \bar{a}	$ \begin{array}{cccc} a & b \\ a & b \\ a & \overline{b} \\ \overline{a} & \overline{b} \\ \overline{a} & \overline{b} \\ \overline{a} & \overline{b} \\ \overline{a} & \overline{b} \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a b c d $1/8$ a b c \bar{d} $1/8$ a b \bar{c} \bar{d} $1/8$ a \bar{b} \bar{c} \bar{d} $1/8$ \bar{a} \bar{b} \bar{c} \bar{d} $1/8$

Gibbs Distribution and Graph

- Different Gibbs distributions may induce a same undirected graph
 - $\phi_1(A,B,D)\phi_2(B,C,D)$
 - $\phi_1(A,B,D)\phi_2(B,D)\phi_3(B,E)$ ignment Project Exam Help
 - $\phi_1(A,B)\phi_2(A,D)\phi_3(B,D)\phi_4(B,C)\phi_5(C,D)$ https://tutorcs.com

- All these factorizations have the same independence assumptions
- However, they do not have the same representational power
- For example, for a fully connected graph, a maximal clique has $O(d^n)$ parameters, but a pairwise graph has only $O(n^2d^2)$ parameters

Potentials

Clique factors can be:

 Single-node factors: specify an affinity for a particular candidate Assignment Project Exam Help

$$\phi_{A}(a) = .8$$

Pairwise-factors: enforce affinities between
 friends
 WeChat: cstutorcs

$$\phi_{AB}(a,b) = 100 \text{ if } a = b$$

 Higher-order: important to specify relationships among sets of variables

$$\phi_{ABC}(a, b, c) = 100 \text{ if } a \oplus b \oplus c$$

The normalization Z makes the factors scale invariant!

Factor Graphs

- A factor graph is a graph containing two types of nodes
 - Random variables
 - Factors over the sets of variation name of va
- It allow us to derive the factorization without ambiguity
 WeChat: cstutorcs
 - $P(X_1, X_2, X_3, X_4, X_5) = P(X_1, X_2, X_3)P(X_2, X_3, X_4)P(X_3, X_5)$
 - $P(X_1, X_2, X_3, X_4, X_5) =$ $P(X_1, X_2)P(X_1, X_3)P(X_2, X_3)P(X_2, X_4)P(X_3, X_4)P(X_3, X_5)$
 - $P(X_1, X_2, X_3, X_4, X_5) = P(X_1, X_2)P(X_1, X_3)P(X_2, X_3, X_4)P(X_3, X_5)$

Energy Functions

- The joint probability in a MN is frequently expressed in terms of energy functions
 - E(X) is the energy. Therefore maximising P(X) is Help equivalent to minimising E(X)
 - The energy function can be the tems of local functions ψ_c known as potentials We Chat: cstutorcs

Why?

Historical: statistical physics

$$P(X) = \frac{1}{Z} \exp(-E(X))$$

$$E(X) = \sum_{c \in Cliques(G)} \psi_c(X_c)$$

$$P(X) = \frac{1}{Z} \exp\left(-\sum_{c \in Cliques(G)} \psi_c(X_c)\right)$$

$$\psi(X_c) = -\log \phi_c(X_c)$$

_	As	sig	nme	ent	Unnormalized	Normalized		D	$A \mid$	$\phi_4(D,A)$		\overline{A}	B	$\phi_1(A,B)$
	a	b	С	d	300,000	0.04	_	\overline{d}	a	100	_	а	b	30
	a	b	С	$ar{d}$	300,000	0.04		d	\bar{a}	1		a	\overline{b}	5
	a	b	\bar{c}	d	300,000	0.04		$ar{d}$	$a \mid$	1		\bar{a}	b	1
	a	b	\bar{c}	$ar{d}$	Assignmen	t Project	Exam l	μŧ	17	100	(A)	\bar{a}	\overline{b}	10
	a	$ar{b}$	С	d	500	6.9 10 ⁻⁵			- P		\sim			
	a	\overline{b}	С	$ar{d}$	https://	tutores.c	om				`			
	a	\overline{b}	\bar{c}	d	5,000,000	0.69				\bigcup_{D}		$\int B$		
	a	\overline{b}	\bar{c}	$ar{d}$	We@h	at: estuto	rcs							
	\bar{a}	b	С	d	100	1.4 10 ⁻⁵					C			
	\bar{a}	b	С	$ar{d}$	1,000,000	0.14		$\boldsymbol{\mathcal{C}}$	$D \mid$	$\phi_3(C,D)$		B	C	$\phi_2(B,C)$
	\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵	_	С	d	1	_	b	С	100
	\bar{a}	b	\bar{c}	$ar{d}$	100	1.4 10 ⁻⁵		С	$ar{d}$	100		b	\bar{c}	1
	\bar{a}	\overline{b}	С	d	10	1.4 10-6		\bar{C}	d	100		\overline{b}	С	1
	\bar{a}	\overline{b}	С	$ar{d}$	100,000	0.014		\bar{c}	$ar{d} \mid$	1		\overline{b}	\bar{c}	100
	\bar{a}	\overline{b}	\bar{c}	d	100,000	0.014								21
	\bar{a}	\overline{b}	\bar{c}	$ar{d}$	100,000	0.014								

As	sig	nme	ent	Unnormalized	Normalized		D	A	$\psi_4(D,A)$		A	$B \mid$	$\psi_1(A,B)$
a	b	С	d	300,000	0.04		d	a	-4.61		a	b	-3.40
a	b	С	$ar{d}$	300,000	0.04		d	\bar{a}	0		а	$ \bar{b} $	-1.61
a	b	\bar{c}	d	300,000	0.04		$ar{d}$	a	0		\bar{a}	$b \mid$	0
a	b	\bar{c}	$ar{d}$	Assignmen	t Project	Exam	ифе	17	-4.61	(A)	\bar{a}	\overline{b}	-2.30
a	\bar{b}	С	d	500	6.9 10 ⁻⁵			r					
a	\bar{b}	С	$ar{d}$	https://	tutores.c	om			\sim			\	
а	\bar{b}	\bar{c}	d	5,000,000	0.69				\bigcup_{D}		B		
a	\bar{b}	\bar{c}	$ar{d}$	We@h	at: estuto	rcs							
\bar{a}	b	С	d	100	1.4 10 ⁻⁵					C			
\bar{a}	b	С	$ar{d}$	1,000,000	0.14		\mathcal{C}	D	$\psi_3(C,D)$	\bigcirc	B	C	$\psi_2(B,C)$
\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵		С	\overline{d}	0		b	c	-4.61
\bar{a}	b	\bar{c}	$ar{d}$	100	1.4 10 ⁻⁵		С	$ar{d}$	-4.61		b	\bar{c}	0
\bar{a}	$ar{b}$	С	d	10	1.4 10-6		\bar{c}	d	-4.61		\overline{b}	c	0
\bar{a}	$ar{b}$	С	\bar{d}	100,000	0.014		\bar{C}	$ar{d}$	0		\overline{b}	\bar{c}	-4.61
\bar{a}	$ar{b}$	\bar{c}	d	100,000	0.014								22
\bar{a}	\bar{b}	\bar{c}	$ar{d}$	100,000	0.014								

Pairwise Markov Networks

- Common subclass of Markov networks
 - All the factors are over single variables or pairs of variables
 - Node potentials: $\{\psi(X_i): i = 1,...,n\}$
 - Edge potentials: $\{\psi(X_i, X_i) \in X_i\}$ Project Exam Help
- Application: noise removal from bing thingses om
 - Noisy image of pixel values, $Y_{i,j}$
 - Noise-free image of pixel values Chat: cstutorcs
 - Markov Net with
 - $\phi(X_{i,j}, X_{i',j'})$ potentials representing correlations between neighbouring pixels
 - $\phi(X_{i,j},Y_{i,j})$ potentials describing correlations between same pixels in noise-free and noisy image

Example: Image Smoothing

- Many applications of Markov networks involve finding the MAP or MPE assignment
 - This is known as the MAP-MRF approach
 - Given the Gibbs distribution, si graph plent to jain in the gibbs distribution
- The number of possible assignments is very large https://tutorcs.com
 - It increases exponentially with the number of variables in the network
 - For instance, for a binary image of £00 x 210,000 pixels others are 2^{10,000} possible assignments
- Finding the assignment of minimal energy is usually posed as a stochastic search
 - Start with a random value for each variable in the network
 - Improve this configuration via local operations
 - Until a configuration of (local) minimum energy is found

Stochastic Search Algorithm

```
Input: Markov network N with variables X, energy function E
Output: an assignment s for X with minimum (local) energy
s \leftarrow initial assignment for every variable X_i \in X
s_{prev} \leftarrow s
                                   Assignment Project Exam Help
# I is maximum number of iterations
for i = 1 to I
    s' \leftarrow s
                                           https://tutorcs.com
    for each variable X_i \in X do
         s_i' \leftarrow alternative value for variable that: cstutorcs
         if E(s') < E(s) or random(E(s') - E(s)) < T then
               s \leftarrow s'
                                             # T is threshold of accepting a change to a higher energy state
    if |E(s_{prev}) - E(s)| < \epsilon
                                  # \epsilon is a convergence threshold
         break
    s_{prev} \leftarrow s
return s
```

Example: Image Smoothing

- This algorithm has three main variations
 - Iterative Conditional Modes (ICM): it always selects
 the assignment of minimum energy
 Assignment Project Exam Help
 Metropolis: with a fixed probability, p, it selects an
 - Metropolis: with a fixed probability, p, it selects an assignment with higher entropys://tutorcs.com
 - Simulated annealing (SA): with a variable probability, P(T), it selects an assignment with higher energy. T is a parameter known as temperature. The probability of selecting a value with higher energy is determined by the expression $P(T) = e^{-\delta E/T}$ where δE is the energy difference. The value of T is reduced with each iteration

Local Independence

- In a Markov network the absence of edges imply in independence
 - Given an undirected graph G = (V, F) oject Exam Help
 - If the edge $X Y \notin E$ then $X \perp Y | V \setminus \{X, Y\}$
 - These are known as *pairwise Widrkov Independencies* of *G*
- Another local property of the epandemosis the Markov blanket
 - As in the case of Bayesian networks, the Markov blanket U of a variable X is the set of nodes such that X is independent from the rest of the graph if U is observed
 - In the undirected case the Markov blanket turns out to be simply equal a node's neighborhood

Global Independence: Separation

- A global interpretation of independence uses the idea of separation
 - Let X, Y, and Z be dis**point gatnoint desirch graph** A Help say that X and Y are separated by Z, written $sep_G(X, Z, Y)$, iff every path between a node that X and Y is blocked by Z.

 We Chat: cstutores
 - A path is blocked by Z iff at least one valve on the path is closed given Z
 - Like Bayesian networks. But now, there is not the exception of convergent structures

Separation: Complexity

 The definition of separation considers all paths connecting a node in X with a node in Y

In practice, this test is to in the Interpretate of the Interpreta

- We can replace it by a cut set test tutorcs.com
- Two sets **X** and **Y** of variables are separated by a set **Z** iff
 - There is no path from every node $X \in X$ to every node $Y \in Y$ after removing all nodes in Z
 - **Z** is a *cut-set* between two parts of the graph

Separation: Soundness and Completeness

- Like d-separation, separation test is sound
 - If P is a probability distribution induced by a Markov network then $sep_G(X, Z, Y)$ only if $X \perp Y \mid Z$ Assignment Project Exam Help
 - We can safely use separation test to derive independence statements about the post/the probability distributions induced by Markov networks WeChat: cstutorcs
- Like d-separation, separation test is not complete
 - The lack of separation does not imply into dependency
 - This is expected. As d-separation, separation only looks at the graph structure

Markov VS Bayesian Networks

Markov Nets

- Factors are easy to elicit from Factors are easy to change (no normalization), but diffiersignment Project ExampHelp
- Can be applied to problems with s://tutorcs.com/Must have no cycles and edges are cycles or no natural directionality directed
- Difficult to read the factoriza MaChat: cstutorcs Graphs are easy to interpret from the graph, but we can use particularly the causal ones factor graphs
- Z requires summing over all entries (NP-hard)

Bayes Nets

- Naturally normalized
- Easy to generate synthetic data from it (more about this later)

Markov VS Bayesian: Representation

- Bayesian and Markov networks can be understood as languages to represent independencies
 - These languages can represent different sets of independencies
 - Therefore, these representations igentated to leave the end of t
- For example, there is no directed graph that is a perfect map for the top case
 https://tutorcs.com
 - Conversely, there is no undirected graph that is a perfect map for the bottom case
 Conversely, there is no undirected graph that is a perfect map for the bottom case
- In several circumstances, we need to find a Markov network that is an I-MAP for a Bayesian network
 - This is achievable through moralisation
 - We connect the parents of unmarried child nodes
 - We lose the marginal independence of parents

- Let us now consider if Variable Elimination (VE) works for Markov networks
 - The idea of VE is to anticipate the elimination of variables
 - Using the network example, signment warpiect mentals P(A,B)
- We start with the Gibbs distribution https://tutorcs.com

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$
 WeChat: cstutorcs

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

D	A	$\phi_4(D,A)$	_	A	В	$\phi_1(A,B)$
d	a	100		а	b	30
d	\bar{a}	1		a	\overline{b}	5
$ar{d}$	a	1		\bar{a}	b	1
d d He	$1\bar{q}$	100	(A)	\bar{a}	\overline{b}	10
110	TP		$\nearrow \checkmark$			
		\sim		\ -		
		(D)		(B))	
			\			
			\searrow			
0	_		(c)	Ъ	0	
<u> </u>	D	$\phi_3(C,D)$	_	<u>B</u>	<u>C</u>	$\phi_2(B,C)$
С	d	1		b	С	100
С	$rac{d}{ar{d}}$	100		b	\overline{C}	1
\bar{C}	d	100		\overline{b}	С	1
\bar{c}	\bar{d}	1		\overline{b}	\bar{c}	100

- Let us now consider if Variable Elimination (VE) works for Markov networks
 - The idea of VE is to anticipate the elimination of variables
 - Using the network example, signing we want P(A, B)
- We start with the Gibbs distribution tutorcs.com

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$
 WeChat: cstutorcs

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

\mathcal{C}	D	A	Φ_1				
\overline{c}	d	а	100				
С	d	\bar{a}	1		В	\mathcal{C}	$\phi_2(B,C)$
С	$ar{d}$	a	100	_	$\frac{b}{b}$	$\frac{c}{c}$	$\frac{\varphi_2(B,c)}{100}$
С	$ar{d}$	\bar{a}	10000	,	b	\overline{c}	1
\bar{c}	d	a	10000	,	$\frac{b}{b}$	С	1
\overline{C}	d	\bar{a}	100		$\frac{b}{b}$	\bar{c}	100
\overline{C}	$ar{d}$	a	1		U	C	100
\bar{C}	$ar{d}$	\bar{a}	100				35

- Let us now consider if Variable Elimination (VE) works for Markov networks
 - The idea of VE is to anticipate the elimination of variables
 - Using the network example, signing we want P(A, B)
- We start with the Gibbs distribution tutorcs.com

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$
 WeChat: cstutorcs

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1}(C,A)$$

_ <i>C</i>	A	$\tau_1(C,A)$	В	С	$\phi_2(B,C)$
С	a	200	b	С	100
С	\bar{a}		b	\bar{c}	1
\bar{c}	a	10001	\overline{b}	С	1
\bar{c}	\bar{a}	200	\overline{b}	\bar{C}	100

We start with the Gibbs distribution

 $=\phi_1(A,B)\sum_C \Phi_2(C,A,B)$

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

	_4	A	В	$\phi_1(A,B)$
		\overline{a}	b	30
	(a	\overline{b}	5
		\bar{a}	$rac{b}{ar{b}}$	1
		\overline{a}	\overline{b}	10
_	_1	<u>B</u>	C	$\phi_2(B,C)$
		b	<i>c</i>	100
	Ì	b	\bar{c}	1
	Ī	<u>5</u>	С	1
	Ī	<u>5</u>	\bar{c}	100
		ı		
<u>C</u>	A	τ_{1}	$_{L}(A$	<u>, C)</u>
С	a		20	0
<i>c</i><i>c</i><u>c</u>	\bar{a}]	100	01
\bar{C}	a]	100	01
_	_		20	Λ

20000

200

1000100

10001

10001

1000100

200

20000

 \boldsymbol{a}

 \bar{a}

a b

 \overline{a} \overline{b}

a b

 $a \overline{b}$

 \bar{c} \bar{a} b

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\times \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1} (C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1} (C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

$$= \phi_{1}(A,B) \tau_{2}(A,B)$$

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$
Assignment Project Exam
$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1} \text{Vertical hat: cstutores}$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

$$= \phi_{1}(A,B) \tau_{2}(A,B)$$

$$= \phi_{3}(A,B)$$

A	В	$\Phi_3(A,B)$
а	b	900030 5001500 1000300 300010
а	\overline{b}	5001500
\bar{a}	b	1000300
\bar{a}	\overline{b}	300010

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$
Assignment Project Exam
$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1} \text{VeA} \text{hat: cstutorcs}$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

$$= \phi_{1}(A,B) \tau_{2}(A,B)$$

$$= \phi_{3}(A,B)$$

Differently from BN, MN are not naturally normalised

Α	В	$\Phi_3(A,B)$	A	В	P(A,B)
а		900030	а	b	.13
		5001500	a	\overline{b}	.69
		1000300	\bar{a}	b	.14
\bar{a}	\overline{b}	300010	\bar{a}	\overline{b}	.04

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence $\frac{\bar{d}}{\bar{d}} = \frac{\bar{d}}{\bar{d}} = \bar{d}$

https://tutorcs.com

WeChat: cstutorcs

С	D	$\phi_3(C,D)$	В	$\boldsymbol{\mathcal{C}}$	$\phi_2(B,C)$
С	d	1	b	С	100
С	$ar{d}$	100	b	\bar{c}	1
\bar{c}	d	100	\overline{b}	С	1
\bar{c}	$ar{d}$	1	\overline{b}	\bar{c}	100

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidencesignment Project Exam
- Again, we start with the Gibbs distribution https://tutorcs.com $P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$ $= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,W) \phi_{3}(hD) \phi_{4}(D,A)$ $= \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$ $= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$

D	A	$\phi_4(D,A)$		Α	В	$\phi_1(A,B)$
d	a	100	_	а	b	30
d	\bar{a}	1		а	\overline{b}	5
$ar{d}$	a	1		\bar{a}	b	1
<u></u> д Нфе	17	100	(A)	\bar{a}	\overline{b}	10
110						
		\sim		\ -		
		(D)		$\int_{\mathbb{R}^{2}} E$)	
С	D	$\phi_3(c,D)$	$\binom{\mathcal{C}}{}$	B	С	$\phi_2(B,c)$
		$\psi_3(c,D)$	_			
С	$rac{d}{ar{d}}$	1		b	С	100
С	$ar{d}$	100		\overline{b}	С	1

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence ssignment Project Exam Helph
- Again, we start with the Gibbs distribution https://tutorcs.com $P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$ = $\sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,W) \phi_{2}(hD) \phi_{3}(hD) \phi_{4}(hD) \phi_{5}(hD) \phi_{6}(hD) \phi_$

$$\propto \sum_{A} \sum_{D} \phi_1(A, B) \phi_2(B, c) \phi_3(c, D) \phi_4(D, A)$$

$$= \phi_2(B,c) \sum_A \phi_1(A,B) \sum_D \phi_3(c,D) \phi_4(D,A)$$

$$= \phi_2(B, c) \sum_A \phi_1(A, B) \sum_D \Phi_1(c, D, A)$$

Α	В	$\phi_1(A,B)$
a	b	30
а	\overline{b}	5
\bar{a}	b	1
\bar{a}	\overline{b}	10

С	D	A	$\Phi_1(c, D, A)$	$_B$	С	$\phi_2(B,c)$
С	d	а	100	b	С	100
C	d	\bar{a}	1	\overline{b}	С	1
С	$ar{d}$	а	100			
C	$ar{d}$	\bar{a}	10000			

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence ssignment Project Exam Helph
- Again, we start with the Gibbs distribution $P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_1(A, B) \phi_2(B, W) \phi Charcop (A, B) \phi_2(B, W) \phi_2($$

$$\propto \sum_{A} \sum_{D} \phi_1(A, B) \phi_2(B, c) \phi_3(c, D) \phi_4(D, A)$$

$$= \phi_2(B,c) \sum_A \phi_1(A,B) \sum_D \phi_3(c,D) \phi_4(D,A)$$

$$= \phi_2(B,c) \sum_A \phi_1(A,B) \sum_D \Phi_1(c,D,A)$$

$$= \phi_2(B,c) \sum_A \phi_1(A,B) \tau_1(c,A)$$

A	B	$\phi_1(A,B)$
а	b	30
а	\overline{b}	5
\bar{a}	b	1
\bar{a}	\overline{b}	10

С	\boldsymbol{A}	$\tau_1(c,A)$
С	a	200
С	\bar{a}	10001

$$egin{array}{c|c} B & c & \phi_2(B,c) \ \hline b & c & 100 \ \hline ar{b} & c & 1 \ \hline \end{array}$$

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{2}(C,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{2}(C,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1} \text{ We that: cstutores}$$

$= \phi_2(B,c) \sum_A \Phi_2(c,A,c)$	B)						
	С	A	B	$\Phi_2(c,A,B)$	<u>C</u>	\boldsymbol{A}	$\tau_1(c,A)$
	С	\boldsymbol{a}	b	6000	c	a	200
	С	а	\overline{b}	1000	С	\bar{a}	10001
	С	\bar{a}	b	10001			
	С	\bar{a}	\overline{b}	100010			

	_A	В	$\phi_1(A,B)$
(A)	а	b	30
	а	\overline{b}	5
	\bar{a}	b	1
$\frac{B}{\text{Kexp}}$	$ar{a}$	\overline{b}	10
		/	
C			

B	С	$\phi_2(B,c)$
b	С	100
\overline{b}	С	1

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{2}(C,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1} \bigvee_{C} \phi_{C} \text{ hat: cstutores}$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(C,A,B)$$

$$\frac{c}{A} = \frac{A}{B}$$

С	A	В	$\Phi_2(c,A,B)$
С	a	b	6000
С	a	\overline{b}	1000
С	\bar{a}	b	10001
С	\bar{a}	\overline{b}	100010

$$\begin{array}{c|cc} B & c & \phi_2(B,c) \\ \hline b & c & 100 \\ \overline{b} & c & 1 \end{array}$$

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{2}(C,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1} \bigvee_{C} \phi_{C} \text{ hat: cstutores}$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(c,A,B)$$

$$= \phi_{2}(B,c) \tau_{2}(c,B)$$

$$\frac{c}{c} = \frac{B}{c}$$

С	B	$\tau_2(c,B)$	В	С	$\phi_2(B,c)$
С	b	16001	b	С	100
С	\overline{b}	101010	\overline{b}	C	1

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{2}(C,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1} (C,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(c,A,B)$$

$$= \phi_{2}(B,c) \tau_{2}(c,B)$$

$$= \phi_{3}(c,B)$$

$$\frac{c B}{c b}$$

_ <i>C</i>	В	$\Phi_3(c,B)$
С	b	16001
С	\overline{b}	101010

Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{2}(C,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1} \bigvee_{C} \phi_{1} \text{ hat: cstutorcs}$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(c,A,B)$$

$$= \phi_{2}(B,c) \tau_{2}(c,B)$$

$$= \phi_{3}(c,B)$$

After normalisation, we get

Variable Elimination with Energy Functions

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \exp(-(\psi_{1}(A,B) + \psi_{2}(B,C) + \psi_{3}(C,D) + \psi_{4}(D,A)))$$
Assignment Project Exam Help
$$\propto \sum_{C} \sum_{D} \exp(-(\psi_{1}(A,B) + \psi_{2}(B,C) + \psi_{3}(C,D) + \psi_{4}(D,A)))$$

$$= \sum_{C} \sum_{D} \exp(-(\psi_{1}(A,B)) \exp(-(\psi_{1}(B,C))) \exp(-(\psi_{3}(C,D)) \exp(-(\psi_{4}(D,A)))$$

$$= \phi_{1} \exp(-(\psi_{1}(A,B))) \sum_{C} \exp(-(\psi_{2}(B,C))) \sum_{D} \exp(-(\psi_{3}(C,D)) \exp(-(\psi_{4}(D,A)))$$
We Chat: cstutorcs

С	D	$\psi_3(\mathcal{C},D)$	_	D	_
С	d	0		d	
С	$ar{d}$	-4.61		d	
\bar{c}	d	-4.61		$ar{d}$	
\bar{c}	\bar{d}	0		\bar{d}	

 Suppose we want to use Machine Learning classifiers to recognise handwritten words

• We can train a classifier C that takes as input an image of a single letter x Assignment Project Exam Help

• C outputs a class probability P(Y|x) or a score that is proportional to the class P(Y|x) or a score

• Given an input sequence (word) x_n x_n x_n

- We can call the classifier C n times and obtain n independent predictions $P(Y_i|x_i)$
- However, this approach does use the information that some sequences of letters may be very unlikely
- For instance, we expect that "QU" is much more common than "QV"

- A conditional random field (CRF) is a discriminative model
 - In this example, it will directly approximate $P(Y|x) = P(Y_1, ..., Y_n | x_1 Assignment Project Exam Help$
 - So far, we have only studied generative models (more about this later)
 https://tutorcs.com
- With independent classifiers, the probability of classifying a given input x with n letters is simply

$$P(Y_1, \dots, Y_n | \mathbf{x}) = \prod_i P(Y_i | x_i)$$

 We can see the output of the classifiers as factors

• $\phi_i(Y_i, x_i)$ is the score of the classifier

It assigns higher values to y signment x_i . W: .00

https://tutorcs.com

WeChat: cstutorcs

- We can see the output of the classifiers as factors
 - $\phi_i(Y_i, x_i)$ is the score of the classifier
 - It assigns higher values to x_i signment Rigiect Exam Help: .85 with the input x_i https://tutorcs.com
- We can add a new pairwise fat: cstutorcs consecutive letters
 - $\phi(Y_i, Y_{i+1})$ is a measure of co-occurrence of consecutive letters
 - It measures the affinity between y values

- Therefore, this problem can be modelled by the graph shown on the right
 - It is known as the linear chain CRF
 - It is an undirected version of the nament Project Exam Ha

https://tutorcs.com

- In this application, we want to know the most probable instantiation
 WeChat: cstutorcs
 - MAP or MPE query
 - The output is a sequence of letters that corresponds to the assignment with the highest probability
 - The answer is efficiently computed by the Viterbi algorithm

$$P(Y|x) = \frac{1}{Z(x)}\phi_1(Y_1, x_1) \prod_{i=2} \phi_i(Y_i, x_i)\phi(Y_{i-1}, Y_i)$$

- Structured (output) learning
 - Techniques that involves predicting structured objects, rather than scalar discrete or real values

 Assignment Project Exam Help

 CRF graph can be as complex as necessary

Original

Segmented

Independent classifiers

CRFs

Generative and Discriminative Models

- In this course, we have discussed several generative models
 - Markov chains, Hidden Markov models, Bayesian networks, Markov networks are examples
 of generative models
 - They model P(X) being X a set of variables that process on the graph models estimate P(X), they can be used to answer any queries that involve
 - As these models estimate P(X), they can be used to answer any queries that involve variables in X https://tutores.com
- https://tutorcs.com

 However, most of the Machine Learning algorithms are discriminative

 - These models can only answer queries that involve estimating the probability of *Y* given *X*, such as in the case of classification
- Generative models can be used in classification tasks
 - We pick one variable as class attribute (Y) and compute P(Y|X) from P(Y,X)
 - But, in this case, which model is better? Generative or discriminative?

Generative and Discriminative Models

- Generative models are particularly useful when missing data is present
 - We can leave the attributes with missing data as unobserved as run inference
 Assignment Project Exam Help
- However, the prevailing conseques in the discriminative models are preferred for classification tasks
 - "Discriminative models have lower generalization error"
 - "Discriminative models need less data to train"

Generative and Discriminative Models

- This paper compares a generative-discriminative pair
 - Naïve Bayes and logistic regression
 - The generative model has indeed a higher asymptotic error as the training set grows
 Assignment Project Exam Helps

 However, it approaches its asymptotic error much faster than the
 - However, it approaches its asymptotic error much faster than the discriminative model
 https://tutorcs.com
- Therefore, we can observe two Weigh af: pestornor se
 - For smaller datasets, the generative model has already approached its asymptotic error and is performing better
 - For larger datasets, the discriminative model approaches its lower asymptotic error and performs better

Generative Models and Synthetic Data

Conclusion

- Markov networks are undirected probabilistic graphical models
 - These models are widespread in areas such as image and language processing
- The dependency between variables do not have an intrinsic direction
 Assignment Project Exam Help
 Several tasks in image processing involve the computation of a MAP or MPE assignment
 - It is known as the MAP-MRF approach://tutorcs.com
 - As images involve a large number of variables and have large treewidth. This task requires specialised approximate inference method WeChat: cstutorcs
- Variable elimination works for Markov networks
 - Most of the algorithms were designed for MN and involve transforming the BN to an MN
 - VE is one case, the interaction graph is an MN
- CRFs are popular discriminative approaches
 - Frequently used in structured output prediction tasks