DM n°2 - FDI

 $Hugo \ Salou$

9 avril 2025

Exercice 1.

On pose, pour tout $n \in \mathbb{N}$, le mot $v_n = 1^n 2$. Montrons que les mots de la suite $(v_n)_{n \in \mathbb{N}}$ sont deux-à-deux non-équivalents pour la relation de congruence \equiv_L .

Considérons les mots $v_n = 1^n 2$ et $v_m = 1^m 2$ pour $n \neq m$. Sans perdre en généralité, supposons n < m. Soit z le mot 2^{m-1} . Remarquons que l'on a $v_m z = 1^m 2^m \in L$ mais que $v_n z = 1^n 2^m \notin L$.

Le théorème de MYHILL-NERODES démontre ainsi que l'automate minimal reconnaissant L a un nombre infini d'états. On en conclut que L n'est pas rationnel.

Exercice 2.

On applique l'algorithme de Moore en calculant les classes d'équivalences des relations \equiv_i pour tout $i \in \mathbb{N}$ jusqu'à sa stationnarité :

- \triangleright Étape 0. les classes sont $\{1,2,6\}$ et $\{3,4,5\}$;
- \triangleright *Étape* 1. les classes sont $\{1, 2\}$, $\{6\}$ et $\{3, 4, 5\}$;
- \triangleright Étape 2. les classes sont $\{1\}, \{2\}, \{6\} \text{ et } \{3,4,5\};$
- \triangleright Étape 3. les classes sont {1}, {2}, {6} et {3, 4, 5}.

On s'arrête à l'étape 3 car on a atteint un point fixe ($\equiv_2 = \equiv_3$).

On en déduit l'automate minimal : chaque état représente une classe d'équivalence pour la congruence de NERODE.

Figure 1 | Automate minimal équivalent