Quiz

- Define *linear combination* and give two examples using the 3-vectors $\mathbf{v}_1 = [1, 1, 0], \mathbf{v}_2 = [3, 1, 1]$ over \mathbb{R} .
- ▶ Define *span* of $\{\mathbf{v}_1, \mathbf{v}_2\}$.
- ▶ What does it mean for $\mathbf{v}_1, \mathbf{v}_2$ to be *generators* of a set \mathcal{V} of vectors?

Geometry of sets of vectors: span of vectors over \mathbb{R} Span of a single nonzero vector **v**:

 $\mathsf{Span} \ \{ \mathbf{v} \} = \{ \alpha \, \mathbf{v} : \alpha \in \mathbb{R} \}$

Span
$$\{\mathbf{v}\} = \{\alpha \mathbf{v} : \alpha \in \mathbb{R}\}$$

This is the line through the origin and **v**. *One-dimensional*

Span of the empty set: just the origin. Zero-dimensional

Span $\{[1,2],[3,4]\}$: all points in the plane. Two-dimensional

Span of two 3-vectors? Span $\{[1,0,1.65],[0,1,1]\}$ is a plane in three dimensions:

Geometry of sets of vectors: span of vectors over $\ensuremath{\mathbb{R}}$

Is the span of k vectors always k-dimensional?

- ▶ Span $\{[0,0]\}$ is 0-dimensional.
- ▶ Span $\{[1,3],[2,6]\}$ is 1-dimensional.
- ▶ Span $\{[1,0,0],[0,1,0],[1,1,0]\}$ is 2-dimensional.

Fundamental Question: How can we predict the dimensionality of the span of some vectors?

Geometry of sets of vectors: span of vectors over $\ensuremath{\mathbb{R}}$

Span of two 3-vectors? Span $\{[1,0,1.65],[0,1,1]\}$ is a plane in three dimensions:

Two-dimensional

Useful for plotting the plane

$$\begin{cases} \alpha \left[1, 0.1.65 \right] + \beta \left[0, 1, 1 \right] & : \\ \alpha \in \left\{ -5, -4, \dots, 3, 4 \right\}, \\ \beta \in \left\{ -5, -4, \dots, 3, 4 \right\} \end{cases}$$

Geometry of sets of vectors: span of vectors over \mathbb{R}

Span of two 3-vectors? Span $\{[1, 0, 1.65], [0, 1, 1]\}$ is a plane in three dimensions

$$\{(x,y,z) : ax + by + cz = 0\}$$

Using dot-product, we could rewrite as
$$\{[x,y,z] : [a,b,c] \cdot [x,y,z] = 0\}$$

Set of vectors satisfying a linear equation with right-hand side zero.

We can similarly specify a line in three dimensions:

$$\{[x, y, z] : \mathbf{a}_1 \cdot [x, y, z] = 0, \mathbf{a}_2 \cdot [x, y, z] = 0\}$$

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors ▶ Solution set of some system of linear equations with zero right-hand sides

Geometry of sets of vectors: Two representations

Span $\{[4, -1, 1], [0, 1, 1]\}$

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- ▶ Solution set of some system of linear equations with zero right-hand sides

Span
$$\{[1,2,-2]\}$$

$$\{[x,y,z]: [4,-1,1]\cdot [x,y,z]=0, [0,1,1]\cdot [x,y,z]=0\}$$

 $\{[x, y, z] : [1, 2, -2] \cdot [x, y, z] = 0\}$

Geometry of sets of vectors: Two representations

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- ▶ Solution set of some system of linear equations with zero right-hand sides

Each representation has its uses. Finding the plane containing two given lines:

- First line is Span $\{[4, -1, 1]\}$.
- ▶ Second line is Span $\{[0,1,1]\}$.

► The plane containing these two lines is Span $\{[4, -1, 1], [0, 1, 1]\}$

Geometry of sets of vectors: Two representations

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- ► Solution set of some system of linear equations with zero right-hand sides

Each representation has its uses. Finding the intersection of two given planes:

- ▶ First plane is $\{[x, y, z] : [4, -1, 1] \cdot [x, y, z] = 0\}$.
- ► Second plane is $\{[x, y, z] : [0, 1, 1] \cdot [x, y, z] = 0\}$.

▶ The intersection is $\{[x, y, z] : [4, -1, 1] \cdot [x, y, z] = 0, [0, 1, 1] \cdot [x, y, z] = 0\}$

Two representations: What's common?

Subset of \mathbb{F}^D that satisfies three properties:

Property V1 Subset contains the zero vector **0**

Property V2 If subset contains ${\bf v}$ then it contains $\alpha\,{\bf v}$ for every scalar α

Property V3 If subset contains \mathbf{u} and \mathbf{v} then it contains $\mathbf{u} + \mathbf{v}$

Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ satisfies

- ▶ Property V1 because $0 \mathbf{v}_1 + \cdots + 0 \mathbf{v}_n$
- Property V2 because if $\mathbf{v} = \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n$ then $\alpha \mathbf{v} = \alpha \beta_1 \mathbf{v}_1 + \cdots + \alpha \beta_n \mathbf{v}_n$

Property V3 because

if $\mathbf{u} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ and $\mathbf{v} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$ then $\mathbf{u} + \mathbf{v} = (\alpha_1 + \beta_1) \mathbf{v}_1 + \dots + (\alpha_n + \beta_n) \mathbf{v}_n$

Two representations: What's common?

Subset of \mathbb{F}^D that satisfies three properties:

Property V1 Subset contains the zero vector **0**

Property V2 If subset contains
$${\bf v}$$
 then it contains $\alpha\,{\bf v}$ for every scalar α

Property V3 If subset contains \mathbf{u} and \mathbf{v} then it contains $\mathbf{u} + \mathbf{v}$

Solution set
$$\{\mathbf{x} : \mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0\}$$
 satisfies

Property V1 because

$$\mathbf{a_1} \cdot \mathbf{0} = 0, \ldots, \mathbf{a_m} \cdot \mathbf{0} = 0$$

if $\mathbf{a}_1 \cdot \mathbf{v} = 0$, ..., $\mathbf{a}_m \cdot \mathbf{v} = 0$

then
$$\mathbf{a}_1 \cdot (\alpha \mathbf{v}) = \alpha (\mathbf{a}_1 \cdot \mathbf{v}) = 0, \dots, \mathbf{a}_m \cdot (\alpha \mathbf{v}) = \alpha (\mathbf{a}_n)$$

Property V3 because

then $\mathbf{a}_1 \cdot (\alpha \mathbf{v}) = \alpha (\mathbf{a}_1 \cdot \mathbf{v}) = 0, \dots, \mathbf{a}_m \cdot (\alpha \mathbf{v}) = \alpha (\mathbf{a}_m \cdot \mathbf{v}) = 0$ if $\mathbf{a}_1 \cdot \mathbf{u} = 0$, ..., $\mathbf{a}_m \cdot \mathbf{u} = 0$

Two representations: What's common?

Subset of \mathbb{F}^D that satisfies three properties:

Property V1 Subset contains the zero vector **0**

Property V2 If subset contains ${\bf v}$ then it contains $\alpha\,{\bf v}$ for every scalar α

Property V3 If subset contains ${\boldsymbol u}$ and ${\boldsymbol v}$ then it contains ${\boldsymbol u}+{\boldsymbol v}$

Any subset $\mathcal V$ of $\mathbb F^D$ satisfying the three properties is called a *subspace* of $\mathbb F^D$.

Example: Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\{\mathbf{x} : \mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0\}$ are *subspaces* of \mathbb{R}^D

- **Possibly profound fact** we will learn later: Every subspace of \mathbb{F}^D
 - \triangleright can be written in the form Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$
 - ▶ can be written in the form $\{\mathbf{x} : \mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0\}$

Abstract vector spaces

In traditional, abstract approach to linear algebra:

- Traditional: don't define vectors as sequences [1,2,3] or even functions {a:1, b:2, c:3}.
 Traditional: define a vector space over a field

 ▼ to be any set

 V that is equipped with
 - an addition operation, and
 an additive identity (the zero vector)
 - an additive inverse operation (i.e. negation),
 a scalar-multiplication operation

a scalar-multiplication operation
 satisfying certain axioms (commutative, associative, and distributive laws, what happens

when scalar is zero or one)

Example: All functions with domain $\{x \in \mathbb{R} : 0 \le x \le 1\}$ is a vector space over \mathbb{R} :

- ▶ For such a function f and a real number α , the function αf is defined by the rule $(\alpha f)(x) = \alpha f(x)$
 - For two such functions f and g, f+g is the function defined by the rule (f+g)(x)=f(x)+g(x).
 - The operations are commutative and associative.
 - ▶ For a function f, -f is the function defined by the rule (-f)(x) = -(f(x)). ▶ The vector $\mathbf{0}$ is the function f that maps every value to 0.

Abstract vector spaces

In traditional, abstract approach to linear algebra:

- ▶ Traditional: don't define vectors as sequences [1,2,3] or even functions $\{a:1, b:2, c:3\}$.
- lacktriangle Traditional: define a *vector space* over a field $\mathbb F$ to be any set $\mathcal V$ that is equipped with
 - an addition operation, and
 - an additive identity (the zero vector)
 - ▶ an additive inverse operation (i.e. negation),
 - ▶ a scalar-multiplication operation

satisfying certain axioms (commutative, associative, and distributive laws)

Abstract approach has the advantage that it avoids committing to specific structure for vectors.

I avoid abstract approach in this class because more concrete notion of vectors is helpful in developing intuition.

What vector spaces do we study in this class? For any field \mathbb{F} and any set D, \mathbb{F}^D is a vector space:

(In this class, we usually think only about finite D.)

- ▶ Vector addition is a function $add : \mathbb{F}^D \times \mathbb{F}^D \longrightarrow \mathbb{F}^D$
- ▶ Scalar-vector multiplication is a function $scalar_mul : \mathbb{F} \times \mathbb{F}^D \longrightarrow \mathbb{F}^D$

However, this is not the only kind of vector space we consider.

Consider any subspace \mathcal{V} of \mathbb{F}^D : By Properties V2 and V3, the addition and scalar-multiplication operations defined for \mathbb{F}^D can

be viewed as addition and scalar-multiplication operations for \mathcal{V} : **b** By Property V2, when we restrict the domain of add to $\mathcal{V} \times \mathcal{V}$, we can restrict the

- co-domain to \mathcal{V} . **b** By Property V3, when we restrict the domain of scalar_mul to $\mathbb{F} \times \mathcal{V}$, we can restrict the
- co-domain to \mathcal{V} ▶ These operations satisfy commutative, associative, distributive laws.
- By Property V1, the zero vector is included in \mathcal{V} .

So \mathcal{V} is a vector space.

Conclusion: Any subspace of a vector space is itself a vector space.

Vector Space examples

Examples of vector spaces:

- ▶ №3 ► *GF*(2)^{'a','b','c'}
- Examples of subspaces of \mathbb{R}^3 :
- - $ightharpoonup \{ \mathbf{v} : [1,2,3] \cdot \mathbf{v} = 0 \}$
 - ▶ ℝ3
 - **▶** {**0**} $\mathbf{v} : [1,2,3] \cdot \mathbf{v} = 0, [4,5,6] \cdot \mathbf{v} = 0$

 - ► Span {[5, 6, 7], [8, 9, 10]}