Understanding audio data for deep learning

Valerio Velardo

Sound

- Produced by the vibration of an object
- Vibrations determine oscillation of air molecules
- Alternation of air pressure causes a wave

$$y(t) = A\sin(2\pi f t + \varphi)$$

Frequency/pitch and amplitude/loudness

Frequency/pitch and amplitude/loudness

higher frequency -> higher pitch

Frequency/pitch and amplitude/loudness

larger amplitude -> louder

Analog digital conversion (ADC)

- Signal sampled at uniform time intervals
- Amplitude quantised with limited number of bits

Analog digital conversion (ADC)

Sample rate = 44,100 Hz

Bit depth = 16 bits/channel

A real-world sound wave (piano key)

$$s = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2)$$

$$s = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2)$$

$$s = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2)$$

- From time domain to frequency domain
- No time information

- Computes several FFT at different intervals
- Preserves time information
- Fixed frame size (e.g., 2048 samples)
- Gives a spectrogram (time + frequency + magnitude)

DL pre-proprocessing pipeline for audio data

Traditional ML pre-proprocessing pipeline for audio data

- Feature engineering
- Perform STFT
- Extract time + frequency domain features

Mel Frequency Cepstral Coefficients (MFCCs)

- Capture timbral/textural aspects of sound
- Frequency domain feature
- Approximate human auditory system
- 13 to 40 coefficients
- Calculated at each frame

Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs applications

- Speech recognition
- Music genre classification
- Music instrument classification
- ...

DL pre-proprocessing pipeline for audio data

What's up next?

- Perform FFT and STFT with Python
- Extract MFCCs
- Get familiar with librosa