Floating-Point Reference Sheet for Intel® Architecture

https://software.intel.com/en-us/articles/floating-point-reference-sheet-for-intel-architecture (v2.12) | Michael Ferry

Binary Format Floating-Point Number

Sign	Biased Exponent		Sig	gnif	ica	nd		
S	E	X ₁	X 2	X 3		X _{p-1}	Хр	$ = \}$
MSB		J-bit		Fr	act	ion	LSB	('

$$=\begin{cases} (-1)^s \times x_1.x_2x_3\cdots x_{p-1}x_p \times 2^{E-B}, & \text{if normal} \\ (-1)^s \times x_1.x_2x_3\cdots x_{p-1}x_p \times 2^{e_{min}}, & \text{if denormal} \end{cases}$$

- Sign bit is s = 0 for '+', and s = 1 for '-' (also refer to 's' as 'sign')
- Unbiased exponent is $e = E B x_1 + 1$ for nonzero finite numbers
- For standard formats, x_1 equals (E \neq 0) and is implicit
- For NaNs, the payload is the bit string from x₃ to x_p

Floating-Point Classes, Encodings, and Parameters Standard Formats* Extended Format* Non-Std* Fraction Half (16b) x87 (80b) t*** Bfloat (16b) Values Single (32b) Double (64b) Quad (128b) 0000 **0**000 ... 0000 00...00 +Zero 0000 0000 0000 0000 0000 0000 0000 0000 0000 ... 0000 0000 Zero 0000 0001 0000 **0**000 ... 00...00 0 00...01 +D_{min} 0001 0000 0000 0001 ... 0000 0000 0001 0001 Denorma 000**0 7**fff 11...11 03ff 007f ffff 000f ffff ffff ffff 0000 ffff ffff 007f +D_{max} 00...01 00...00 +Nmin 0400 0000 0800 0010 0000 0000 0000 0001 0000 ... 0000 000**1 8**000 ... 0000 0080 Normal +One 3c00 3f80 0000 3ff0 0000 0000 0000 3fff 0000 ... 0000 3fff 8000 ... 0000 3f80 11...10 7ffe ffff ... ffff 11...11 $+N_{max}$ 7bff 7f7f ffff 7fef ffff ffff ffff 7ffe ffff ffff 7f7f 7c00 00...00 7f80 0000 7ff0 0000 0000 0000 0000 7ff**f 8**000 ... 0000 7f80 Infinity +Infinity 7c01 7f80 7fff **8**000 ... 0001 7f81 0001 7 f f 0 0000 0000 0001 7fff 0000 ... 00...01 "+"sNaN sNaN 01...11 7dff 7fbf ffff 7ff7 ffff 7fff 7fff **b**fff 7fbf 11...11 R Ind** ffff c000 ... 10...00 fe00 ffc0 0000 fff8 0000 0000 ffff 8000 ... 0000 ffc0 qNaN 7e00 7fc0 0000 7ff8 0000 0000 0000 7fff 8000 ... 0000 7fff **c**000 0000 7fc0 "+"qNaN 7fff 7fff ffff ffff 11...11 7fff ffff 7fff ffff ffff ffff 7 f f f ffff ffff 7fff s E J Field E J Ε E J Ε J S Ε S S # of Bits 1 5 0 10 1 8 0 23 11 0 52 15 0 112 15 1 8 0 63 Exp. bias (B) 0x0f (15) 0x7f (127) 0x3ff (1023) 0x3fff (16383) 0x3fff (16383) 0x7f (127) -126 -1022 1023 -16382 16383 -1638216383 emin: emax

Operation-Specific Results and Faults for Typical Intel® SSE or Intel® AVX Scalar Instructions

- If DAZ = 1, denormal inputs are replaced with appropriately signed zeros
- Q(X) (Quiet(X)) sets the most significant fraction bit of X (x2) to 1

	NaN Behavior:			Src	2		
	Add/Sub/Mul/Div	sNaN		qNaN		Other	
	sNaN	Q(Src1)	Т	Q(Src1)	Т	Q(Src1)	-1
Src1	qNaN	Src1	1	Src1		Src1	
	Other	Q(Src2)	1	Src2		op-specific	

Non	-NaN X * Y					Υ			
sign	= X.s ^ Y.s	Infinity	/	Norma	al	Denorm	nal	Zero	
	Infinity	Infinity		Infinity		Infinity	D	R Ind	$\overline{}$
х	Normal	Infinity		X * Y		X * Y	D	0.0	
^	Denormal	Infinity	D	X * Y	D	X * Y	D	0.0	D
	Zero	R Ind	1	0.0		0.0	D	0.0	

Non	n-NaN X / Y					Υ			
sign	1 = X.s ^ Y.s	Infinit	У	Norma	al	Denorm	nal	Zero	
	Infinity	R Ind	1	Infinity		Infinity	D	Infinity	
х	Normal	0.0		X / Y		X/Y	D	Infinity	Z
^	Denormal	0.0	D	X/Y	D	X/Y	D	Infinity	Z
	Zero	0.0		0.0		0.0	D	R Ind	-1

	NaN Behavior:			Z			
	FMA (X*Y + Z)	sNaN		qNaN	ı	Other	
	sNaN, sNaN	Q(X)	Т	Q(X)	-1	Q(X)	$\overline{}$
	sNaN, qNaN	Q(X)	1	Q(X)	1	Q(X)	1
	sNaN, Other	Q(X)	1	Q(X)	1	Q(X)	1
	qNaN, sNaN	Х	1	Χ	1	X	1
X,Y	qNaN, qNaN	Х	1	Χ		X	
	qNaN, Other	Х	1	Χ		X	
	Other, sNaN	Q(Y)	1	Q(Y)	1	Q(Y)	1
	Other, qNaN	Υ	1	Υ		Y	
	Other, Other	Q(Z)	1	Z		X*Y+Z	

•	For m	ore d	leta	ils on	exc	eption	pr	iorities and	unmaske	ed behavior,	, see	flov	vcha	irt c	n r	ıext	page
						_						_					

• NaN payload's least significant bits are zero-extended or truncated to fit the destination

No	n-NaN X + Y							Υ					
[X -	Y = X + (-Y)]	+Infinit	ty	-Infini	ity	Norma	al	Denorm	al	+Zero		-Zero	
	+Infinity	Х		R Ind	1	Х		Х	D	Х		Χ	
	-Infinity	R Ind	1	Х		Χ		Х	D	Х		Χ	
v	Normal	Υ		Y		X+Y*		X+Y*	D	Х		Χ	
Х	Denormal	Υ	D	Υ	D	X+Y*	D	X+Y*	D	Х	D	Χ	D
	+Zero	Υ		Υ		Υ		Υ	D	+0.0		0.0*	
	-Zero	Υ		Υ		Υ		Υ	D	0.0*		-0.0	

* If X + Y is exactly 0, sign bit s equals (RC == -INF)

	Sqrt(X)		
	sNaN	Q(X)	$\overline{}$
	qNaN	Х	
	+Infinity	Х	
	-Infinity	R Ind	1
X	+Normal	Sqrt(X)	
	-Normal	R Ind	1
	+Denormal	Sqrt(X)	D
	-Denormal	R Ind	1
	Zero	Х	

	Convert(X)	Fp2Int(X)	Fp2Fp(X)	Int2Fp(X)			
	sNaN	Int Ind	-1	Q(X)	1	N/A			
	qNaN	Int Ind	1	Х		N/A			
х	Infinity	Int Ind	X		N/A				
^	Normal	Fp2Int(X)	*	Fp2Fp(X)		Int2Fp(X)			
	Denormal	Fp2Int(X)		Fp2Fp(X)	D	N/A			
	Zero	Х		+0					
Int Ind (Integer Indefinite) is defined to be the hit string 10, 00									

Int Ind (Integer Indefinite) is defined to be the bit string 10...00

* If Fp2Int(X) is not representable in dest format, raise |

Nor	n-NaN X*Y+Z							Z						
	[XY + Z]	+Infinit	У	-Infini	ty	Norma	ıl	Denorma	al	+Zero		-Zero		
	R Ind	R Ind	1	R Ind	-1	R Ind	Т	R Ind	1	R Ind	1	R Ind	-1	
	+Infinity	XY	*	R Ind	1	XY	*	XY	D	XY	*	XY	*	
	-Infinity	R Ind	1	XY	*	XY	*	XY	D	XY	*	XY	*	
XY	Normal	Z	*	Z	*	XY+Z**	*	XY+Z**	D	XY	*	XY	*	
	Denormal	Z	D	Z	D	XY+Z**	D	XY+Z**	D	XY	D	XY	D	
	+Zero	Z	*	Z	*	Z	*	Z	D	+0.0	*	0.0**	*	
	-Zero	Z	*	Z	*	Z	*	Z	D	0.0**	*	-0.0	*	

* If X or Y is Denormal and X*Y+Z does not raise I, raise D

** If XY + Z is exactly 0, sign bit s equals (RC == -INF)

Control and Status Words

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
x87	FPCW				Χ	R	C	Р	Ö					Ma	sks		
X87	FPSW	В	C3		Top		C2	C1	CO	ES	SF			Excep	tions		
SSE, AVX	MXCSR	FTZ	R	RC.			Ma	sks			DAZ			Excep	tions		
	•				Р	U	0	Z	D	- 1		Р	U	0	Z	D	\Box

		00	01	10	11
PC SP DP DEP	RC	RNE	-INF	+INF	RTZ
I C JI DI DLI	PC	SP		DP	DEP

*E, *M: Exceptions and Masks RC: Round Control PC: Precision Control Precision (P), Underflow (U), Overflow (O), Divide-by-Zero (Z), Denormal Inputs (D), Invalid Inputs (I)

RoundTiesToEven / RoundToNearestEven (RNE), RoundTowardsNegative (-INF), RoundTowardsPositive (+INF), RoundTowardZero (RTZ) Single Precision (SP), Double Precision (DP), Double Extended Precision (DEP)

Underflow / Denormals Flush to Zero (FTZ), Denormals Are Zero (DAZ)

Flowchart for a Typical Intel® SSE or Intel® AVX Floating-Point Scalar Instruction

Unnormalized Reduced Precision Result (URPR) $\frac{|VRPR|}{|VRPR|} = (-1)^s \times x_0 x_1 \cdot x_2 \cdots x_{p-1} L G R S \times 2^{exp}$ significand $\in [0,4)$ expunbounded

Theoretical: Compute the Infinitely Precise Result (IPR); if not representable, choose one of the two nearest representable FP numbers using IEEE 754 rounding process. Practical effect: we must usually compute URPR instead. The URPR is formed from the terminating representation of the IPR if one exists (ex.: 10.0₂ vs. 01.111...₂).

Operation		Input Manipulation	Leading 1	URPR.exp	Guard	Round	Sticky
X + Y	True Add	Denormalize smaller number (R-shift) to make	$x_0 \text{ or } x_1$	may/V avn V avn)			
X – Y	True Sub ²	exponents equal, if required	$x_1 - x_p$, or URPR = 0.0	max(X.exp,Y.exp)		IPR.x _{p+1}	OR(IPR.x _{p+2} ,IPR.x _{p+3} ,)
XY+Z	FMTrueAdd	Denormalize smaller of XY or Z (R-shift) to make	x_0 or x_1	max(XY.exp,Z.exp)	N/A		
XY-Z	FMTrueSub ²	exponents equal, if required	$x_1 - x_{2p-1}$, or URPR = 0.0	max(x1.exp,2.exp)			
X×Y	Multiply	None	x_0 or x_1	X.exp+Y.exp			
٧X	Sqrt	L-shift significand to make exponent even, if required	X ₁	(X.exp+1)>>1			
X/Y	Divide	None	$x_1 \text{ or } x_2$	X.exp - Y.exp	IPR.x _{p+1}	IPR.x _{p+2}	OR(IPR.x _{p+3} ,IPR.x _{p+4} ,)
² A heterogeneous sub (Ex: homogeneous FMA true subtraction) requires a set of guard bits							

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.