

AMENDMENTS TO THE CLAIMS

Claims 1-6 (Cancelled)

Claim 7. (Withdrawn) A selective-herbicidal composition that comprises as active ingredient, in addition to customary inert formulation adjuvants, a mixture of

a) a herbicidally effective amount of a compound of formula I according to claim 1, with the proviso that Q is other than Q₁;

and

b) a herbicide-antagonistically effective amount either of a compound of formula X

wherein

R₃₇ is hydrogen, C₁-C₈alkyl, or C₁-C₈alkyl substituted by C₁-C₆alkoxy or by C₃-C₆alkenyloxy; and X₇ is hydrogen or chlorine; or of a compound of formula XI

wherein

E is nitrogen or methine;

R₃₈ is -CCl₃, phenyl or phenyl substituted by halogen;

R₃₉ and R₄₀ are each independently of the other hydrogen or halogen; and

R₄₁ is C₁-C₄alkyl; or of a compound of formula XII

wherein R_{44} and R_{45} are each independently of the other hydrogen or halogen, and R_{46} , R_{47} and R_{48} are each independently of the others C_1-C_4 alkyl, or of a compound of formula XIII

wherein A_2 is a group

R_{51} and R_{52} are each independently of the other hydrogen, C_1-C_8 alkyl, C_3-C_8 cycloalkyl,

C_3-C_6 alkenyl, C_3-C_6 alkynyl, , or C_1-C_4 alkyl substituted by C_1-C_4 alkoxy or

; or R₅₁ and R₅₂ together form a C₄-C₆alkylene bridge that may be

interrupted by oxygen, sulfur, SO, SO₂, NH or by -N(C₁-C₄alkyl)-;

R₅₃ is hydrogen or C₁-C₄alkyl;

R₄₉ is hydrogen, halogen, cyano, trifluoromethyl, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j, -CONR_kR_m, -COR_n, -SO₂NR_kR_m or -OSO₂-C₁-C₄alkyl;

R_g is hydrogen, halogen, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j, -CONR_kR_m, -COR_n, -SO₂NR_kR_m, -OSO₂-C₁-C₄alkyl, C₁-C₆alkoxy, or C₁-C₆alkoxy substituted by C₁-C₄alkoxy or by halogen, C₃-C₆alkenyloxy, or C₃-C₆alkenyloxy substituted by halogen, or C₃-C₆alkynyloxy, or R₄₉ and R₅₀ together form a C₃-C₄alkylene bridge that may be substituted by halogen or by C₁-C₄alkyl, or together form a C₃-C₄alkenylene bridge that may be substituted by halogen or by C₁-C₄alkyl, or together form a C₄alkadienylene bridge that may be substituted by halogen or by C₁-C₄alkyl;

R₅₀ and R_h are each independently of the other hydrogen, halogen, C₁-C₄alkyl, trifluoromethyl, C₁-C₆alkoxy, C₁-C₆alkylthio or -COOR_j;

R_c is hydrogen, halogen, nitro, C₁-C₄alkyl or methoxy; R_d is hydrogen, halogen, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j or CONR_kR_m;

R_e is hydrogen, halogen, C₁-C₄alkyl, -COOR_j, trifluoromethyl or methoxy, or R_d and R_e together form a C₃-C₄alkylene bridge;

R_p is hydrogen, halogen, C₁-C₄alkyl, -COOR_j, trifluoromethyl or methoxy; R_q is hydrogen, halogen, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j or CONR_kR_m; or R_p and R_q together form a C₃-C₄alkylene bridge;

R_r is hydrogen, halogen, C₁-C₄alkyl, -COOR_j, trifluoromethyl or methoxy; R_s is hydrogen, halogen, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j or CONR_kR_m; or R_r and R_s together form a C₃-C₄alkylene bridge;

R_t is hydrogen, halogen, C₁-C₄alkyl, -COOR_j, trifluoromethyl or methoxy; R_u is hydrogen, halogen, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j or CONR_kR_m; , or R_v and R_u together form a C₃-C₄alkylene bridge;

R_f and R_v are hydrogen, halogen or C₁-C₄alkyl;

R_x and R_y are each independently of the other hydrogen, halogen, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, -COOR₅₄, trifluoromethyl, nitro or cyano;

R_j, R_k and R_m are each independently of the others hydrogen or C₁-C₄alkyl; or

R_k and R_m together form a C₄-C₆alkylene bridge that may be interrupted by oxygen, NH or by -N(C₁-C₄alkyl)-;

R_n is C₁-C₄alkyl, phenyl, or phenyl substituted by halogen, C₁-C₄alkyl, methoxy, nitro or by trifluoromethyl;

R₅₄ is hydrogen, C₁-C₁₀alkyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₁-C₄alkylthio-C₁-C₄alkyl, di-C₁-C₄alkylamino-C₁-C₄alkyl, halo-C₁-C₈alkyl, C₂-C₈alkenyl, halo-C₂-C₈alkenyl, C₃-C₈alkynyl, C₃-C₇cycloalkyl, halo-C₃-C₇cycloalkyl, C₁-C₈alkylcarbonyl, allylcarbonyl, C₃-C₇cycloalkylcarbonyl, benzoyl, which is unsubstituted or substituted on the phenyl ring identically or differently up to three times by halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, halo-C₁-C₄alkoxy or C₁-C₄alkoxy; or furoyl, thienyl; or C₁-C₄alkyl substituted by phenyl, halophenyl, C₁-C₄alkylphenyl, C₁-C₄alkoxyphenyl, halo-C₁-C₄alkylphenyl, halo-C₁-C₄alkoxyphenyl, C₁-C₆alkoxycarbonyl, C₁-C₄alkoxy-C₁-C₈alkoxycarbonyl, C₃-C₈alkenyloxycarbonyl, C₃-C₈alkynyloxycarbonyl, C₁-C₈alkylthiocarbonyl, C₃-C₈alkenylthiocarbonyl, C₃-C₈alkynylthiocarbonyl, carbamoyl, mono-C₁-C₄alkylaminocarbonyl, di-C₁-C₄alkylaminocarbonyl; or phenylaminocarbonyl, which is unsubstituted or substituted on the phenyl identically or differently up to three times by halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, halo-C₁-C₄alkoxy or C₁-C₄alkoxy or once by cyano or nitro; or dioxolan-2-yl, which is unsubstituted or substituted by one or two C₁-C₄alkyl radicals, or dioxan-2-yl, which is unsubstituted or substituted by one or two C₁-C₄alkyl radicals, or C₁-C₄alkyl, which is substituted by cyano, nitro, carboxyl or by C₁-C₈alkylthio-C₁-C₈alkoxycarbonyl; or of a compound of formula XIV

(XIV), wherein R₅₆ and R₅₇ are each independently of the

other C₁-C₆alkyl or C₂-C₆alkenyl; or R₅₆ and R₅₇ together are

; R₅₈ and R₅₉

are each independently of the other hydrogen or C₁-C₆alkyl; or R₅₆ and R₅₇ together are

R₆₀ and R₆₁ are each independently of the other C₁-C₄alkyl, or R₆₀ and R₆₁ together are -(CH₂)₅-;

R₆₂ is hydrogen, C₁-C₄alkyl or

or R₅₆ and R₅₇ together are

R₆₃, R₆₄, R₆₅, R₆₆, R₆₇, R₆₈, R₆₉, R₇₀, R₇₁, R₇₂, R₇₃, R₇₄, R₇₅, R₇₆, R₇₇ and R₇₈ are each independently of the others hydrogen or C₁-C₄alkyl;
or of a compound of formula XV

wherein R_{80} is hydrogen or chlorine and R_{79} is cyano or trifluoromethyl;
or of a compound of formula XVI

wherein R_{81} is hydrogen or methyl;
or of a compound of formula XVI

wherein R_{81} is hydrogen or methyl;
or of a compound of formula XVII

wherein

R_{82} is hydrogen, $C_1\text{-}C_4$ alkyl, or $C_1\text{-}C_4$ alkyl substituted by $C_1\text{-}C_4$ alkyl- X_2^- or by $C_1\text{-}C_4$ haloalkyl- X_2^- , or is $C_1\text{-}C_4$ haloalkyl, nitro, cyano, $-COOR_{85}$, $-NR_{86}R_{87}$, $-SO_2NR_{88}R_{89}$ or $-CONR_{90}R_{91}$;

R_{83} is hydrogen, halogen, $C_1\text{-}C_4$ alkyl, trifluoromethyl, $C_1\text{-}C_4$ alkoxy or $C_1\text{-}C_4$ haloalkoxy;

R_{84} is hydrogen, halogen or $C_1\text{-}C_4$ alkyl;

U, V, W₁ and Z₄ are each independently of the others oxygen, sulfur, C(R₉₂)R₉₃, carbonyl,

C₂-C₄alkenyl or C₂-C₄alkynyl; with the provisos that

a) at least one of the ring members U, V, W₁ or Z₄ is carbonyl, and a ring member adjacent

to that ring member or to those ring members is the group

b) two adjacent ring members U and V, V and W₁, and W₁ and Z₄ cannot simultaneously be oxygen;

R₉₅ and R₉₆ are each independently of the other hydrogen or C₁-C₈alkyl; or

R₉₅ and R₉₆ together form a C₂-C₆alkylene group;

A₁ is R₉₉-Y₁- or -NR₉₇R₉₈;

X₂ is oxygen or -S(O)_s;

Y₁ is oxygen or sulfur;

R₉₉ is hydrogen, C₁-C₈alkyl, C₁-C₈haloalkyl, C₁-C₄alkoxy-C₁-C₈alkyl, C₃-C₆alkenyloxy-C₁-C₈alkyl, or phenyl-C₁-C₈alkyl in which the phenyl ring may be substituted by halogen, C₁-C₄alkyl, trifluoromethyl, methoxy or by methyl-S(O)_s-; or is C₃-C₆alkenyl, C₃-C₆haloalkenyl, phenyl-C₃-C₆alkenyl, C₃-C₆alkynyl, phenyl-C₃-C₆alkynyl, oxetanyl, furyl or tetrahydrofuryl;

R₈₅ is hydrogen or C₁-C₄alkyl;

R₈₆ is hydrogen, C₁-C₄alkyl or C₁-C₄alkylcarbonyl;

R₈₇ is hydrogen or C₁-C₄alkyl; or

R₈₆ and R₈₇ together form a C₄- or C₅-alkylene group;

R₈₈, R₈₉, R₉₀ and R₉₁ are each independently of the others hydrogen or C₁-C₄alkyl; or R₈₈ together with R₈₉, or R₉₀ together with R₉₁, are each independently of the other C₄- or C₅-

alkylene in which one carbon atom may have been replaced by oxygen or by sulfur, or one or two carbon atoms may have been replaced by -NR₁₀₀-;

R₉₂, R₁₀₀ and R₉₃ are each independently of the others hydrogen or C₁-C₈alkyl; or R₉₂ and R₉₃ together are C₂-C₆alkylene;

R₉₄ is hydrogen or C₁-C₈alkyl;

R₉₇ is hydrogen, C₁-C₈alkyl, phenyl or phenyl-C₁-C₈alkyl, wherein the phenyl rings may be substituted by fluorine, chlorine, bromine, nitro, cyano, -OCH₃, C₁-C₄alkyl or by CH₃SO₂-; or is C₁-C₄alkoxy-C₁-C₈alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

R₉₈ is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl; or

R₉₇ and R₉₈ together are C₄- or C₅-alkylene in which one carbon atom may have been replaced by oxygen or by sulfur, or one or two carbon atoms may have been replaced by -NR₁₀₁-;

R₁₀₁ is hydrogen or C₁-C₄alkyl;

r is 0 or 1; and

s is 0, 1 or 2,

or of a compound of formula XVIII

wherein R₁₀₃ is hydrogen, C₁-C₆alkyl, C₃-C₆cycloalkyl, C₃-C₆alkenyl or C₃-C₆alkynyl; and R₁₀₄, R₁₀₅ and R₁₀₆ are each independently of the others hydrogen, C₁-C₆alkyl, C₃-C₆cycloalkyl or C₁-C₆alkoxy, with the proviso that one of the substituents R₁₀₄, R₁₀₅ and R₁₀₆ is other than hydrogen;

or of a compound of formula XIX

wherein Z_5 is N or CH, n is 0, 1, 2 or 3 when Z_5 is N, and n is 0, 1, 2, 3 or 4 when Z_5 is CH, R_{107} is halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, nitro, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, C₁-C₄alkoxycarbonyl, phenyl or phenoxy, or phenyl or phenoxy substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

R_{108} is hydrogen or C₁-C₄alkyl, R_{109} is hydrogen, C₁-C₄alkyl, C₃-C₆cycloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₄haloalkyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₁-C₄alkylthio-C₁-C₄alkyl, C₁-C₄alkylsulfonyl-C₁-C₄alkyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₁-C₄alkenyloxy-C₁-C₄alkyl or C₁-C₄alkynyloxy-C₁-C₄alkyl;

or of a compound of formula XX

wherein Z_6 is oxygen or N-R₁₁₀ and R₁₁₀ is a group of formula

wherein R₁₁₁ and R₁₁₂ are each independently of the other cyano, hydrogen, C₁-C₄alkyl, C₃-C₆cycloalkyl, C₂-C₆alkenyl, aryl, phenyl or heteroaryl, or phenyl, aryl or heteroaryl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

or of a compound of formula XXI

wherein Z₇ is oxygen, sulfur, S=O, SO₂ or CH₂, R₁₁₃ and R₁₁₄ are each independently of the other hydrogen, halogen or C₁-C₄alkyl, W₂ and W₃ are each independently of the other CH₂COOR₁₁₅ or COOR₀₁₁₅ or together are a group of formula -(CH₂)C(O)-O-C(O)-(CH₂)-, and R₁₁₅ and R₀₁₁₅ are each independently of the other hydrogen, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₆alkynyl, C₃-C₆cycloalkyl, C₁-C₄haloalkyl, or a metal cation or an ammonium cation; or of a compound of formula XXII

wherein R₁₁₉ and R₁₂₀ are each independently of the other hydrogen, halogen or C₁-C₄haloalkyl, R₁₂₁ is hydrogen, C₁-C₄alkyl, C₃-C₄alkenyl, C₃-C₄alkynyl, C₁-C₄haloalkyl, C₃-C₆cycloalkyl, a metal cation or an ammonium cation, Z₈ is N, CH, C-F or C-Cl and W₄ is a group of formula

wherein R₁₂₂ and R₁₂₃ are each independently of the other hydrogen or C₁-C₄alkyl and R₁₂₄ and R₁₂₅ are each independently of the other hydrogen or C₁-C₄alkyl; or of a compound of formula XXIII

wherein R₁₂₆ is hydrogen, cyano, halogen, C₁-C₄alkyl, C₃-C₆cycloalkyl, C₁-C₄alkoxy, C₁-C₄alkoxycarbonyl, C₁-C₄alkylthiocarbonyl, -NH-R₁₂₈, -C(O)NH-R₀₁₂₈, aryl or heteroaryl, or aryl or heteroaryl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

R_{127} is hydrogen, cyano, nitro, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy or C_1 - C_4 thioalkyl; and

R_{128} and R_{0128} are each independently of the other C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, C_3 - C_4 cycloalkyl, aryl or heteroaryl, or aryl or heteroaryl substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, formyl, C_1 - C_4 alkylcarbonyl or C_1 - C_4 alkylsufonyl;

or of a compound of formula XXIV

(XXIV),

wherein R_{129} and R_{130} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, mono- C_1 - C_8 - or di- C_1 - C_8 -alkylamino, C_3 - C_6 cycloalkyl, C_1 - C_4 thioalkyl, phenyl or heteroaryl, R_{131} has the meanings of R_{129} and in addition is OH, NH_2 , halogen, di- C_1 - C_4 aminoalkyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsufonyl or C_1 - C_4 alkoxycarbonyl, R_{132} has the meanings of R_{129} and in addition is cyano, nitro, carboxyl, C_1 - C_4 alkoxycarbonyl, di- C_1 - C_4 aminoalkyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsufonyl, SO_2OH , i- C_1 - C_4 aminoalkylsufonyl or C_1 - C_4 alkoxysufonyl, R_{133} has the meanings of R_{129} and in addition is OH, NH_2 , halogen, di- C_1 - C_4 aminoalkyl, pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsufonyl, C_1 - C_4 alkoxycarbonyl, phenoxy, naphthoxy, phenylamino, benzoyloxy or phenylsulfonyloxy;

or of a compound of formula XXV

(XXV),

wherein R_{134} is hydrogen, C_4 alkyl, C_1-C_4 haloalkyl, C_2-C_4 alkenyl, C_2-C_4 alkynyl or C_1-C_4 alkoxy- C_1-C_4 alkyl, R_{135} is hydrogen, halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl or C_1-C_4 alkoxy and R_{136} is hydrogen, halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl or C_1-C_4 alkoxy, with the proviso that R_{135} and R_{136} are not simultaneously hydrogen,
or of formula XXVI

wherein

R_{143} is hydrogen, an alkali metal cation, alkaline earth metal cation, sulfonium cation or ammonium cation or ethyl;

or of formula XXVII

wherein R_{144} and R_{145} are each independently of the other hydrogen, C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl or C_3-C_6 cycloalkyl;

R_{146} is hydrogen, halogen, C_1-C_4 alkyl, C_1-C_6 haloalkyl or C_1-C_6 haloalkoxy;

R_{147} is hydrogen, halogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C_1-C_4 alkylthio, C_1-C_4 alkoxycarbonyl or nitro;

n_1 is 0, 1, 2 or 3; and

m is 1 or 2;

or of formula XXVIII

wherein

R_{148} is hydrogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, $C_1\text{-}C_6$ alkylthio, $C_3\text{-}C_8$ cycloalkyl, phenyl, phenyl- $C_1\text{-}C_6$ alkyl or heteroaryl; wherein the said groups may be substituted by halogen, cyano, nitro, amino, hydroxy, carbonyl, carboxyl, formyl, carbonamide or by sulfonamide;

R_{149} is hydrogen, $C_1\text{-}C_6$ alkyl or $C_1\text{-}C_4$ haloalkyl ;

each R_{150} is independently of any other(s) hydrogen, halogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylsulfonyl, cyano, nitro, formyl or carboxyl ;

R_{151} is hydrogen, $C_1\text{-}C_6$ alkyl or $C_1\text{-}C_4$ haloalkyl ;

each R_{152} is independently of any other(s) hydrogen, halogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylsulfonyl, cyano, nitro, formyl or carboxyl ;

o is 0, 1, or 2 , and

p is 0, 1 or 2 ;

or of formula XXIX

wherein

R_{159} is hydrogen, formyl, $C_{1\text{-}6}$ alkylcarbonyl, $C_{1\text{-}6}$ alkenylcarbonyl, $C_{1\text{-}6}$ alkynylcarbonyl, $C_{1\text{-}6}$ alkoxycarbonyl, $C_{1\text{-}6}$ alkylthiocarbonyl, $C_{3\text{-}8}$ cycloalkylcarbonyl, phenyl- $C_{1\text{-}6}$ alkylcarbonyl, phenylcarbonyl, $C_{1\text{-}6}$ alkylsulfonyl, $C_{1\text{-}6}$ alkenylsulfonyl or phenylsulfonyl, wherein the aforementioned hydrocarbon groups may be substituted by one or more halogen atoms, cyano, nitro, amino, methoxy, ethoxy or phenyl;

R_{153} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkenyl, $C_{1\text{-}6}$ alkynyl, $C_{3\text{-}8}$ cycloalkyl, formyl, $C_{1\text{-}6}$ alkylcarbonyl, $C_{1\text{-}6}$ alkenylcarbonyl, $C_{1\text{-}6}$ alkynylcarbonyl, $C_{1\text{-}6}$ alkoxycarbonyl, $C_{1\text{-}6}$ alkylthiocarbonyl, $C_{3\text{-}8}$ cycloalkylcarbonyl, $C_{1\text{-}6}$ alkylsulfonyl, $C_{1\text{-}6}$ alkenylsulfonyl or phenylsulfonyl, wherein the aforementioned hydrocarbon groups may be substituted by one or more halogen atoms, cyano, nitro, amino, methoxy, ethoxy or phenyl;

R_{154} is hydrogen, C₁₋₆alkyl, C₁₋₆alkenyl, C₁₋₆alkynyl, C₃₋₈cycloalkyl, formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkenylcarbonyl, C₁₋₆alkynylcarbonyl, C₁₋₆alkoxycarbonyl, C₁₋₆alkylthiocarbonyl, C₃₋₈cycloalkylcarbonyl, C₁₋₆alkylsulfonyl, C₁₋₆alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon groups may be substituted by one or more halogen atoms, cyano, nitro, amino, methoxy, ethoxy or phenyl;

R_{155} , R_{156} , R_{157} , and R_{158} are each independently of the others hydrogen, halogen, amino, C₁₋₃alkylamino, C₁₋₆dialkylamino, hydroxy, cyano, nitro, formyl, carboxyl, C₁₋₆alkoxy, C₁₋₆haloalkoxy, C₁₋₆alkylcarbonyl, C₁₋₆alkoxycarboxyl, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkenyl or C₁₋₆alkynyl;

or R_{153} and R_{158} , together with the ring atoms to which they are bonded, form a five- or six-membered, partially saturated or unsaturated ring that may contain up to 2 identical or different hetero atoms from the group oxygen, sulfur and nitrogen, it being possible for that ring to be substituted by an oxo radical.

Claim 8. (Withdrawn) A composition according to claim 7 that comprises a herbicide-antagonistically effective amount of a safener of formula X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV or XXV.

Claim 9. (Withdrawn) A method of selectively controlling weeds and grasses in crops of useful plants that comprises treating the useful plants, the seeds or the cuttings thereof or the area of cultivation thereof with a herbicidally effective amount of a herbicide of formula I according to claim 1, and of a herbicide-antagonistically effective amount of a safener of formula X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV, XXV, XXVI, XXVII, XXVIII or XXIX, according to claim 7.

Claim 10. (Withdrawn) A method according to claim 9 that comprises treating the useful plants, the seeds or cuttings thereof or the area of cultivation thereof with a herbicide-antagonistically effective amount of a safener of formula X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV or XXV, according to claim 7.

Claim 11. (Withdrawn) A composition according to claim 4 that further comprises spray tank adjuvants.

Claim 12. (Withdrawn) A composition according to claim 7 that further comprises spray tank adjuvants.

Claim 13. (Withdrawn) A compound of formula (XXXIa)

wherein R₁ and R₃ are ethyl and Hal is chlorine, bromine or iodine.

Claim 14. (New). A compound of formula I

wherein

R₁ and R₃ are each independently of the other ethyl, haloethyl, ethynyl, C₁-C₂alkoxy, C₁-C₂haloalkoxy, C₁-C₂alkylcarbonyl, C₁-C₂hydroxyalkyl or C₁-C₂alkoxycarbonyl;

Q is a group

(Q₁),

(Q₂),

,

(Q₅),

or

R₄ and R₅ are each independently of the other C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₂-C₁₀alkylsulfinylalkyl, C₂-C₁₀alkylsulfonylalkyl, C₂-C₁₀alkylcarbonylalkyl, C₂-C₁₀-N-alkoxyiminoalkyl, C₂-C₁₀alkoxycarbonylalkyl, C₁-C₁₀aminoalkyl, C₃-C₁₀dialkylaminoalkyl, C₂-C₁₀alkylaminoalkyl, C₁-C₁₀cyanooalkyl, C₄-C₁₀cycloalkylalkyl, C₁-C₁₀phenylalkyl, C₁-C₁₀heteroarylalkyl, C₁-C₁₀phenoxyalkyl, C₁-C₁₀heteroaryloxyalkyl, C₁-C₁₀alkylideneaminoxyalkyl, C₁-C₁₀nitroalkyl, C₁-C₁₀trialkylsilylalkyl, C₂-C₁₀alkylaminocarbonylalkyl, C₂-C₁₀dialkylaminocarbonylalkyl, C₂-C₁₀alkylaminocarbonyloxyalkyl, C₃-C₁₀dialkylaminocarbonyloxalkyl, C₂-C₁₀alkoxycarbonylaminooalkyl, C₁-C₁₀-N-alkoxycarbonyl-N-alkylaminoalkyl, C₁-C₁₀cycloalkyl, aryl or heteroaryl; or

R₄ and R₅, together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur and that, in addition, may contain a fused or spiro-bound alkylene or alkenylene chain consisting of from 2 to 6 carbon atoms, which chain may in turn contain one or two hetero atoms selected from oxygen and sulfur, wherein the cyclic group may be substituted by phenyl or benzyl, which in turn may be substituted by halogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl, hydroxy, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆haloalkoxy or by nitro;

R₆ is C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₂-C₁₀alkylsulfinylalkyl, C₂-C₁₀alkyl-sulfonylalkyl, C₂-C₁₀alkylcarbonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl;

R₇, is hydrogen, C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl or C₂-C₁₀alkoxyalkyl;

R₈ is hydrogen, C₁-C₁₀alkyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyl-oxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₂-C₁₀alkylsulfinylalkyl, C₂-C₁₀alkylsulfonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl; or

R₆ and R₇, together with the atom to which they are bonded, form a saturated 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur; or

R₆ and R₈, together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

R₉, R₁₀, R₁₁ and R₁₂ are each independently of the others C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₂-C₁₀alkylsulfinylalkyl, C₂-C₁₀alkyl-sulfonylalkyl, C₂-C₁₀alkylcarbonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl; or

R₉ and R₁₁ or R₉ and R₁₀, together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

R₁₆ is C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthiolkyl, C₂-C₁₀alkyl-sulfinylalkyl, C₂-C₁₀alkylsulfonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl;

R₁₇ is C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₂-C₁₀alkyl-sulfinylalkyl, C₂-C₁₀alkylsulfonylalkyl, C₂-C₁₀alkylcarbonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl;

R₁₈ is hydrogen, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀alkyl or C₁-C₁₀alkoxyalkyl; or

R₁₇ and R₁₈, together with the atoms to which they are bonded, form a 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

Y is oxygen, sulfur, C-R₁₉ or N-R₃₆;

R₁₉ and R₃₆ are each independently of the other C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, phenyl or heteroaryl; or

R₁₈ and R₁₉ or R₁₈ and R₃₆, together with the atom to which they are bonded, form a saturated 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

G₁, G₂, G₅, and G₉ are each independently of the others hydrogen, -C(X₁)-R₂₀, -C(X₂)-X₃-R₂₁, -C(X₄)-N(R₂₂)-R₂₃, -SO₂-R₂₄, an alkali metal cation, alkaline earth metal cation, sulfonium cation or ammonium cation, -P(X₅)(R₂₅)-R₂₆ or -CH₂-X₆-R₂₇;

X₁, X₂, X₃, X₄, X₅ and X₆ are each independently of the others oxygen or sulfur;

R₂₀, R₂₁, R₂₂ and R₂₃ are each independently of the others hydrogen, C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₁-C₁₀cyanooalkyl, C₁-C₁₀nitroalkyl, C₁-C₁₀aminoalkyl, C₁-C₅alkylamino-C₁-C₅alkyl, C₂-C₈dialkylamino-C₁-C₅alkyl, C₃-C₇cycloalkyl-C₁-C₅alkyl, C₂-C₁₀alkoxyalkyl, C₄-C₁₀alkenyloxyalkyl, C₄-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₁-C₅alkylsulfoxyl-C₁-C₅alkyl, C₁-C₅alkyl-sulfonyl-C₁-C₅alkyl, C₂-C₈alkylideneaminooxy-C₁-C₅alkyl, C₁-C₅alkyl-carbonyl-C₁-C₅alkyl, C₁-C₅alkoxycarbonyl-C₁-C₅alkyl, C₁-C₅aminocarbonyl-C₁-C₅alkyl, C₂-C₈dialkylamino-carbonyl-C₁-C₅alkyl, C₁-C₅alkylcarbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C₂-C₅alkyl)-aminoalkyl, C₃-C₆trialkylsilyl-C₁-C₅alkyl, phenyl-C₁-C₅alkyl, heteroaryl-C₁-C₅alkyl, phenoxy-C₁-C₅alkyl, heteroaryloxy-C₁-C₅alkyl, C₂-C₅alkenyl, C₂-C₅haloalkenyl, C₃-C₈cycloalkyl, phenyl, or phenyl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or heteroaryl or heteroalkylamino, or heteroaryl or heteroarylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diheteroaryl or diheteroalkylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, phenylamino, or phenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diphenylamino, or diphenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or C₃-C₇cycloalkylamino, di-C₃-C₇cycloalkylamino or C₃-C₇cycloalkoxy;

R₂₄, R₂₅ and R₂₆ are hydrogen, C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₁-C₁₀cyanooalkyl, C₁-C₁₀nitroalkyl, C₁-C₁₀aminoalkyl, C₁-C₅alkylamino-C₁-C₅alkyl, C₂-C₈dialkylamino-C₁-C₅alkyl, C₃-C₇cycloalkyl-C₁-C₅alkyl, C₂-C₁₀alkoxyalkyl, C₄-C₁₀alkenyloxyalkyl, C₄-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₁-C₅alkylsulfoxyl-C₁-

C₅alkyl, C₁-C₅alkylsulfonyl-C₁-C₅alkyl, C₂-C₈alkylideneaminooxy-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-C₁-C₅alkyl, C₁-C₅alkoxycarbonyl-C₁-C₅alkyl, C₁-C₅aminocarbonyl-C₁-C₅alkyl, C₂-C₈dialkyl-aminocarbonyl-C₁-C₅alkyl, C₁-C₅alkylcarbonylamino-C₁-C₅alkyl, C₁-C₅alkyl-carbonyl-(C₂-C₅alkyl)-aminoalkyl, C₃-C₆trialkylsilyl-C₁-C₅alkyl, phenyl-C₁-C₅alkyl, heteroaryl-C₁-C₅alkyl, phenoxy-C₁-C₅alkyl, heteroaryloxy-C₁-C₅alkyl, C₂-C₅alkenyl, C₂-C₅haloalkenyl, C₃-C₈cycloalkyl, phenyl, or phenyl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or heteroaryl or heteroaryl amino, or heteroaryl or heteroaryl amino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diheteroaryl amino, or diheteroaryl amino substituted by C₁-C₃alkyl, C₁-C₃halo-alkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, phenylamino, or phenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃halo-alkoxy, halogen, cyano or by nitro, diphenylamino, or diphenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or C₃-C₇cycloalkylamino, di-C₃-C₇cycloalkylamino, C₃-C₇cycloalkoxy, C₁-C₁₀alkoxy, C₁-C₁₀haloalkoxy, C₁-C₅alkylamino, C₂-C₈dialkylamino, benzyloxy or phenoxy, wherein the benzyl and phenyl groups may in turn be substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro; R₂₇ is C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₁-C₁₀cyanoalkyl, C₁-C₁₀nitroalkyl, C₁-C₁₀aminoalkyl, C₁-C₅alkylamino-C₁-C₅alkyl, C₂-C₈dialkyl-amino-C₁-C₅alkyl, C₃-C₇cycloalkyl-C₁-C₅alkyl, C₂-C₁₀alkoxyalkyl, C₄-C₁₀alkenyl-oxyalkyl, C₄-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthioalkyl, C₁-C₅alkylsulfoxyl-C₁-C₅alkyl, C₁-C₅alkylsulfonyl-C₁-C₅alkyl, C₂-C₈alkylideneaminooxy-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-C₁-C₅alkyl, C₁-C₅alkoxycarbonyl-C₁-C₅alkyl, C₁-C₅amino-carbonyl-C₁-C₅alkyl, C₂-C₈dialkylamino-carbonyl-C₁-C₅alkyl, C₁-C₅alkyl-carbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C₂-C₅alkyl)-aminoalkyl, C₃-C₆trialkylsilyl-C₁-C₅alkyl, phenyl-C₁-C₅alkyl, heteroaryl-C₁-C₅alkyl, phenoxy-C₁-C₅alkyl, heteroaryloxy-C₁-C₅alkyl, C₂-C₅alkenyl, C₂-C₅haloalkenyl, C₃-C₈cyclo-alkyl, phenyl, or phenyl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or heteroaryl or heteroaryl amino, or heteroaryl or heteroaryl amino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diheteroaryl amino, diheteroaryl amino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or phenylamino,

phenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diphenylamino, diphenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, C₃-C₇cycloalkylamino, di-C₃-C₇cycloalkylamino, C₃-C₇cycloalkoxy or C₁-C₁₀alkylcarbonyl; or an agronomically tolerable salt, isomer or enantiomer of such a compound.

Claim 15. (New). A compound according to claim 1, wherein Q is Q₁.

Claim 16. (New) A process for the preparation of a compound of formula I according to claim 1, wherein a compound of formula XXX

Q-H (XXX)

wherein Q is Q₁, Q₂, Q₅, or Q₉, the substituents of which, with the exception of G₁, G₂, G₅, and G₉, have the meanings given above, and G₁, G₂, G₅, and G₉ are hydrogen, is reacted with a compound of formula XXXI

wherein R₁ and R₃ are as defined for formula I and Hal is chlorine, bromine or iodine, in the presence of an inert solvent, a base and a palladium catalyst at temperatures of from 30 to 250°C.

Claim 17. (New) A herbicidal and plant growth-inhibiting composition that comprises a herbicidally effective amount of a compound of formula I according to claim 1, on an inert carrier.

Claim 18. (New) A method of controlling undesired plant growth that comprises applying a herbicidally effective amount of an active ingredient of formula I according to claim 1, or of a composition comprising such an active ingredient, to the plants or to the locus thereof.

Claim 19. (New). A method of inhibiting plant growth that comprises applying a herbicidally effective amount of an active ingredient of formula I according to claim 1, or of a composition comprising such an active ingredient, to the plants or to the locus thereof.