CS60064 Spring 2022 Computational Geometry

Instructors

Bhargab B. Bhattacharya (BBB)
Partha Bhowmick (PB)
Lecture 04
12 January 2022

Indian Institute of Technology Kharagpur Computer Science and Engineering

Problem of the Day

Data depth – used in analytics, M/L

Given a cluster of data comprising *n* points, what is the relative location of a new query point?

depth of query point (q) in 2D:

- imagine a line L passing thru q;
- rotate L around q such that
 # points appearing on one side of
 L is minimized over all angles;
- Output the number including q; i.e., the smallest number of points in any closed *half-plane* that contains q (Tukey depth)

Problem: Design an efficient algorithm for computing the depth of a query point in a 2D cluster of *n* points

Other measures: use of convex hull; distance of q from the centroid (arithmetic mean) or from the Fermat point

Introducing Polygons

Polygonal Curves

Ref: David Mount, Lecture Notes

simple polygonal curve (open)

line segment: a subset of a straight-line contained between two end-points a, b (inclusive), denoted as ab

open polygonal curve but not simple

closed polygonal curve but not simple

polygon: closed and simple polygonal curve

Simple Polygons

Definition: A simple polygon P is the (closed) region bounded

Simple Polygon

Two non-consecutive edges are disjoint
Two consecutive edges have a single common end-point

Some definitions would allow this as a Simple Polygons "degenerate" simple polygon no (polygon with yes no no holes) (b) (d) (a) (c)

(Polygonal Jordan Curve). The boundary ∂P of a polygon P partitions

the plane into two parts. In particular, the two components of $\mathbb{R}^2 \setminus \partial P$ are the bounded

interior and the unbounded exterior.²

Connect-the-dots

Labels of the vertices are given; draw the polygonal edges in sequence, to reveal ...

Polygon described as an ordered sequence of vertices

Given labelled points, is it always possible to construct the polygon?

Connect-the-dots

Trail Marking Test:

Often used in testing cognitive decline in dementia, Parkinson's, Alzheimer's disease Q. Given points 1, 2, ..., n on 2D, can you sequentially connect them with a closed curve without crossing?

Geometric Cognition Test

Clock Drawing Test: often used in testing cognitive decline in dementia, Parkinson's, and Alzheimer's disease Q. Can you draw the clock with the current time?

Polygonization

Vertices are given but their ordering, i.e., labels are not given; the goal is to construct a simple polygon spanning all vertices

one way of polygonization

another way of polygonization

Polygonization

Given a set of points construct a simple polygon that spans all points

Polygonization

Different polygonizations of the *same set* of points

- Q1. Can you find the one with minimum perimeter, area?
- Q2. An unordered point set *P* and some edges *E* defined on a subset of *P*, are given. Can you always polygonise such that it includes all edges in *P*?
- Q3. An unordered point set *P* and a hole *H* are given. Can you polygonise *P* such that *H* appears as a hole in *P*?

Simple polygons: Convex and reflex angles

Walk along & P CCW

Left turn > strictly convex

Right turn > strictly reflex

No turn > 17

internal angles of P d: strictly convex < T B: strictly concave > TT (also called reflex) γ : assume convex = π (We often consider collineanity as de generate cases)

Lemma: Every polygon has at least one strictly convex vertex.

(ii) open ab lies completely within
$$P$$
, i.e., ab $\in P$ & closed ab $(1 \delta P = \{a,b\})$

Convex polygons

Any line segment ab joining two non-adjacent vertices of a Convers polygon of is a valid diagnonal.

He diagrorals in a convex of with n vertices

$$= \binom{N}{2} - N$$

Every polygon P(n), n>,4 must have

Pick a strictly convex
vertex v_i v_i $v_k \rightarrow immediate reighbor of <math>v_i$

J. O'Rourke: *Computational Geometry in C,* Cambridge Univ. Press, 1998

Av v; Vk must contain at least one vertipo x that is closest to vi

7 Vix is a diagonal

CS60064 Spring 2022 Computational Geometry

Instructors

Bhargab B. Bhattacharya (BBB)
Partha Bhowmick (PB)
Lecture 05 & Lecture 06
14 January 2022

Indian Institute of Technology Kharagpur Computer Science and Engineering

Problem of the Day: Magical Cut

Question: Given 2*m* red points and 2*n* blue points in the plane in general positions, is it possible to divide them in half each, by a *single* straight-line cut?

Story of Pancake and Sandwich

Pancake Theorem: It is *always possible* to cut the stack of two arbitrarily-shaped pancakes into two equal-size (area) portions each, by a single straight knife-cut, without moving them relative to each other

Story of Sandwich

Ham-Sandwich Theorem: Given n measurable objects in n-dimensional Euclidean space, it is possible to divide them in half each, by a single (n - 1)-dimensional hyperplane

Today's Agenda

- 1. Orthogonal polygonization
- 2. Triangulation of simple polygons

Orthogonal Polygons

All edges are axis-parallel In other words, internal turn angles are either $\pi/2$ or $3\pi/2$

Avoid degenerate cases where internal angle is π

Polygonization: Vertices are given but their ordering, i.e., labels are not given; the goal is to construct an orthogonal polygon spanning all vertices

Orthogonal Polygonization

Every horizontal row or vertical column must have even number of vertices (assuming no degeneracy with internal angle π)

Instances which are not ortho-polygonizable

If polygonization is possible, then the solution is unique; may generate multiple polygons and with holes;

Can be accomplished in

 $O(n \log n)$ time, where n is the number of points

Why Orthogonal?

Robot-path configuration

Document image segmentation

Original

Outer approximation

huge space savings

Inner approximation

Triangulation of Simple Polygons

Triangulation is not unique

Triangulation of a simple polygon

Triangulation is not unique

However, #D = n-3; #T = n-2, for all cases

A simple polygon P(n) can always be triangulated using exactly (n-3) Theorem: diagonals that partition P(n) into (n-2) triangles.

Theorem holdsfor base care Assume it helds for k < n

$$P(n)$$
:
$$P(n_2) \# n$$

$$n_1 + n_2 = n + 2$$

(#) A valid triangulation always expists

To prove:
$$\# D = n - 3; \# T = n - 2$$

$$= (\eta_1 - 3) + (\eta_2 - 8) + 1$$

$$= N_1 + N_2 - 5 = n - 3$$

triangles

$$= (n_1 - 2) + (n_2 - 2)$$

$$= (n_1-2) + (n_2-2)$$

$$= n_1+n_2-4 = n-2$$

Same argument does not hold good for polygons with holes!

Corollany:

Avea of
$$P(n) = \sum_{i=1}^{N-2} A(T_i)$$

1=1

Triangulated polygon as a graph

$$\# D = n - 3; \# T = n - 2$$

Triangulated polygon as a graph

G is a maximal outer planar graph
G is 3-colorable

Triangulated polygon as a graph

G is 3-colorable, i.e., X(G)=3

Proof: Suppose not, i.e., X(G)=4

G'is also planer

Consider G =
Gu(u) as shown

X(G') = 5contradiction

Dual of a triangulated polygon

each triangle (face) \rightarrow a vertex in dual graph

If two triangles share a diagonal, put an edge between the two corresponding vertices in the dual graph

The dual of a triangulated simple polygon is a tree

The dual of a triangulated simple polygon is a tree T

D = n - 3; # T = n - 2

2. # vertices(dual) = #T = n - 2;

3. # edges(dual) = #D = n - 3

Triangulations of a polygon with holes

Every triangulation of a polygon with h holes with a total of n vertices uses n+3h-3 diagonals and has n+2h-2 triangles

The dual graph of a triangulation of a polygon with holes must have a *cycle*

Self study

Summary and generalizations: Triangulation

Select a *maximal* set of non-intersecting diagonals or edges that subdivide the interior into triangles

Triangulation is a general concept applicable to many instances

Summary:

- A line segment *l* joining any two visible vertices of a polygon is called a *diagonal* of the polygon provided *l* lies completely within *P*
- Every triangulation of a simple polygon P of n vertices uses n − 3 diagonals and has n − 2 triangles
- The sum of the internal angles of a simple polygon of n vertices is $(n-2)\pi$
- The dual of a triangulation of a simple polygon *P* is a tree, while that of a polygon with holes contains cycles

Surface Triangulation

Surface triangulation of 3D objects, mesh generation, 3D modeling, visualization, computer graphics

Surface Triangulation

Algorithms for triangulation

Challenges in triangulation: Pn

1. select (n-3) sticks ab s.t. a, $l \in Vertices . of P_n$ 2. $\overline{ab} \in P_n$ 3. $\overline{ab} \cap SP_n = \{a,b\}$ adlagand 4. ab must not intersect with any other previously selected diagonals

 \Rightarrow Result: $T(P_n)_{,i.e.,}$ partition of P_n into (1-2) Δ^s .

Every polygon Pn can be partitioned into triangles by adding (M-3) diagonals Triangulation Algorithm (Naive) 1. $\binom{N}{2} = O(n^2)$ diagonal candidates 2. Test for diagonal $\rightarrow O(n)$ Hence, to insert (n-3) diagonals $\Rightarrow 0 (n4)$

Interesting Fact: Triangulation algorithm time complexity $O(n^4) \to O(n^3) \to O(n^2) \to O(n\log n) \to O(n)$

Self-Portrait by Vincent van Gogh (1853-1890)

Room where van Gogh chopped off his own ear (1888)

Polygon Triangulation by Ear-Clipping Algorithm

Ears in a Polygon

- Three consecutive vertices v_{i-1} v_i v_{i+1} of a polygon is an ear if v_{i-1}v_{i+1} is a diagonal; and v_i is the ear-tip of the triangle
- There are at most n ears
- (a convex polygon has exactly n ears)

Meister's Two-Ear Theorem

Every polygon with n > 4 vertices has at least two non-overlapping ears

The dual of a polygon is a tree

A tree has at least two leaves

The face (triangle) containing a leaf must be an ear

J. O'Rourke: *Computational Geometry in C,* Cambridge Univ. Press, 1998

Triangulation: Ear-Clipping Algorithm

Every polygon has at least two ears!

Find an ear, fix a diagonal, chop the ear and iterate

Triangulation by ear-clipping

Using the two-ears theorem: (an ear consists of three consecutive vertices u, v, w where \overline{uw} is a diagonal)

Find an ear, cut it off with a diagonal, triangulate the rest iteratively

Question: Why does every simple polygon have an ear?

Question: How efficient is this algorithm?

There are O(n) ear candidates; checking each for ear O(n); (n-3) diagonals; Total time complexity $O(n^3)$

Can we improve it to $O(n^2)$

Smarter approach

When clipping ear with tip v_i the only ear tip statuses that can change are at v_{i-1} and v_{i+1}

Naive: $O(n^3)$

Both V_1 and V_2 are possible ear-tips; When V_2 is clipped and the diagonal is inserted, V_1 no longer remains an ear-tip. So, only the two neighbors of V_2 need to be checked for change of status. "Ear"-ities of other vertices are not affected. Thus, only O(1) updates are needed after inserting one diagonal!

There are O(n) ear candidates; checking each for ear O(n); Total $\Rightarrow O(n^2)$ Update O(1); There will be O(n) iterations

Total: O(n²)

Ear-clipping algorithm

Triangulation

Initialize the ear tip status of each vertex.

while n > 3 do

Locate an ear tip v_2 .

Output diagonal v_1v_3 .

Delete v_2 .

Update the ear tip status of v_1 and v_3 .

Initially determine "ear-tip status" of each v_i , $O(n^2)$

Update of each ear status requires O(1); ear-tip tests @ O(n) per test; n-3 diagonals

Total: $O(n^2)$

J. O'Rourke: *Computational Geometry in C,* Cambridge Univ. Press, 1998

After inserting one diagonal, the search for the next ear may take O(n) time

Total: $\Omega(n^2)$

Example: Triangulate

Example: Output

