Math 327 Homework 2

Chongyi Xu

April 12, 2017

- 1. Prove the following.
 - (a) For any a,b real numbers, $|a|-|b|\leq |a+b|$. Let b=b+a-a, then $|b|=|b+a-a|\leq |a+b|-|a|$ (By Triangular Inequality) Since $-|b|\leq +|b|$, so $-|b|\leq |b|\leq |a+b|-|a|$ Thus $|a|-|b|\leq |a|+|b|\leq |a+b|$ Q.E.D.
 - (b) For any a, b real numbers, $||a| |b|| \le |a + b|$.

$$\rightarrow$$
 if $|a|-|b| \ge 0$, part(a) tells it is true.
 \rightarrow if $|a|-|b|<0$, $||a|-|b||=|b|-|a|\le |b+a|$ (By part(a)).

In both cases $||a| - |b|| \le |a + b|$ Q.E.D.

- (c) For any a, b real numbers, $||a| |b|| \le |a b|$. Let $b = -c, c \in \mathbb{R}$. In part(b), it is proved that $||a| - |c|| \le |a + c|$. So in this case, let c = -b, then we have $||a| - |b|| \le |a - b|$ since |-c| = c. Q.E.D
- 2. Prove Bernoulli's Inequality

$$(1+b)^n \ge 1 + nb$$

in two different ways:

(a) For any $b \ge 0$, using the binomial formula. Binomial Formula tells that $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. So we have Let a = 1,

$$(1+b)^n = \sum_{k=0}^n \binom{n}{k} b^k$$

$$\to \text{ when } k = 0, \ \binom{n}{0} \cdot b^0 = 1$$

$$\to \text{ when } k = 1, \ \binom{n}{1} \cdot b^1 = nb$$

So
$$(1+b)^n = 1 + nb + \sum_{k=2}^n \binom{n}{k} b^k$$
.

Since given $b \ge 0$, then $\sum_{k=2}^{n} {n \choose k} b^k \ge 0$.

Therefore $(1+b)^n \ge 1 + nb$. Q.E.D.

(b) For any b > -1, using mathematical induction.

Assume b > -1.

- Base Case(n=0) $(1+b)^0 = 1 \ge 1 + 0 \cdot b$
- Inductive Step

Assume
$$(1+b)^n \ge 1 + nb$$

Prove
$$(1+b)^{n+1} \ge 1 + (n+1) \cdot b$$

• Proof:

$$(1+b)^{n+1} = (1+b)^n \cdot (1+b)$$
Since $b > -1$ by assumption
$$(1+b)^n \cdot (1+b) \ge (1+nb)(1+b) \text{(inductive hypothesis)}$$

$$\ge 1+b+nb+nb^2$$

$$\ge 1+(n+1)b+nb^2$$

Since
$$b^2 \ge 0$$
, $nb^2 \ge 0$

Therefore $(1+b)^{n+1} \ge 1 + (n+1)b$. Q.E.D.

- 3. Decide if the following are true or false. If true, give a short proof. If false, find a counter example.
 - (a) If the sequence $|a_n|$ converges, then so does (a_n)

True. Assume $|a_n|$ converges, then $\exists N \in \mathbb{N}$ such that

$$||a_n| - a| < \varepsilon$$
 when $n \ge N$ for $\varepsilon > 0$

$$\rightarrow$$
 if $a_n \ge 0$, then $|a_n - a| < \varepsilon$

Converges to $a\sqrt{}$

 \rightarrow if $a_b < 0$

$$|-a_n - a| < \varepsilon$$

$$|a_n + a| < \varepsilon$$

$$|a_n - (-a)| < \varepsilon$$
Let $b = -a$,
$$|a_n - b| < \varepsilon$$

Converges to b. Q.E.D.

 \Rightarrow Therefore, (a_n) also converges if $|a_n|$ converges.

- (b) If the sequence $(a_n + b_n)$ converges, then so do the sequences (a_n) and (b_n) . False. Let $a_n = 2n$, $b_n = -2n$, then $(a_n + b_n)$ converges to 0, but a_n , b_n do not.
- (c) If the sequences (a_n+b_n) and (a_n) converge, then so does the sequence (b_n) .

 True. Assume $|a_n+b_n-c|<\frac{\varepsilon}{2},\ |a_n-a|<\frac{\varepsilon}{2}$ for any $n\geq N$, where $N\in\mathbb{N}$ Let c=a+b, then we have $|a_n+b_n-(a+b)|<\frac{\varepsilon}{2}$

 $< \varepsilon$

$$|b_n - b| = |a_n - a - a_n + a + b_n - b|$$

$$= |a_n - a + b_n - b + (a - a_n)|$$

$$\leq |a_n - a + b_n - b| + |a - a_n| \text{(Triangular Inequality)}$$
Since $|a - a_n| = |a_n - a|$

$$|b_n - b| \leq |a_n - a + b_n - b| + |a_n - a|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

Therefore, (b_n) converges. Q.E.D.

- 4. Use the definition of convergence to show the following limits.
 - (a) $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$
 - Proof: Given $\varepsilon > 0$, Archimedean Property(2) tells that there exists a $M \in \mathbb{N}, \ \frac{1}{M} < \varepsilon$. Let $N = M^2$, then $\frac{1}{\sqrt{N}} < \varepsilon$

Assume $n \geq N$, then

$$\left| \frac{1}{\sqrt{n}} - 0 \right| = \left| \frac{1}{\sqrt{n}} \right|$$

$$\leq \frac{1}{\sqrt{n}}$$

$$\leq \frac{1}{\sqrt{N}}, \text{ since } n \geq N$$

$$< \varepsilon$$

Therefore, $\frac{1}{\sqrt{n}}$ converges to $0 \iff \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.

- (b) $\lim_{n\to\infty} \frac{n^2}{n^2+n} = 1$ Prove $\left|\frac{n^2}{n^2+n} - 1\right| < \varepsilon$, for $n \ge N$
 - Proof: Given $\varepsilon > 0$, Archimedean Property(2) tells that there exists a $N \in \mathbb{N}, \ \frac{1}{N} < \varepsilon$. And Archimedean Property(1) tells that there exists a $N + 1 \in \mathbb{N}$. So $\frac{1}{N+1} < \frac{1}{N} < \varepsilon$.

Assume $n \ge N \iff n+1 \ge N+1$, then

$$\left| \frac{n^2}{n^2 + n} - 1 \right| = \left| \frac{n^2 - n^2 - n}{n^2 + n} \right|$$

$$= \left| \frac{-n}{n^2 + n} \right|$$

$$= \left| \frac{1}{n+1} \right|$$

$$\leq \frac{1}{n+1}$$

$$\leq \frac{1}{N+1}$$

$$\leq \frac{1}{N}$$

Therefore, $\frac{n^2}{n^2+n}$ converges to $1\iff \lim_{n\to\infty}\frac{n^2}{n^2+n}=1$

- 5. Discuss the convergence of the sequence $(\sqrt{n+1} \sqrt{n})_{n \in \mathbb{N}}$ Claim $(\sqrt{n+1} \sqrt{n})_{n \in \mathbb{N}}$ converges.
 - Proof: Given $\varepsilon > 0$, Archimedean Property(2) tells that there exists a $M \in \mathbb{N}$, $\frac{1}{M} < 2\varepsilon$. Let $M = \sqrt{N}$, then $\frac{1}{\sqrt{N}} < 2\varepsilon \Rightarrow \frac{1}{2\sqrt{N}} < \varepsilon$.

Assume $n \geq N$, then

$$\left|\sqrt{n+1} - \sqrt{n}\right| = \left|\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}\right|$$

$$= \left|\frac{1}{\sqrt{n+1} + \sqrt{n}}\right|$$

$$< \frac{1}{2\sqrt{n}}$$

$$\leq \frac{1}{2\sqrt{N}}$$

$$< \varepsilon$$

Therefore, $(\sqrt{n+1} - \sqrt{n})_{n \in \mathbb{N}}$ converges to 0.

6. Let $a_1 = 1$ and for $n \ge 1$,

$$a_{n+1} = \begin{cases} a_n + \frac{1}{n} & \text{if } a_n^2 \le 2\\ a_n - \frac{1}{n} & \text{if } a_n^2 > 2 \end{cases}$$

Show that for every n, $\left|a_n - \sqrt{2}\right| < \frac{2}{n}$ and prove that the sequence converges to $\sqrt{2}$. Since $a_1 = 1$ and $n \ge 1 \iff \frac{1}{n} \le 1$, $a_n > 0$

7. For a sequence (a_n) of positive numbers, prove that

$$a_n \to \infty$$
 if and only if $\frac{1}{a_n} \to 0$.

• (\Rightarrow) Assume $a_n \to \infty$, prove $\frac{1}{a_n} \to 0$.

Proof: $a_n \to \infty$ implies that for every $\varepsilon > 0, |a_n - 0| > \varepsilon$ when $n \ge N$.

So we have

$$|a_n|>arepsilon$$
 since a_n are all positive numbers
$$\frac{1}{a_n}<\frac{1}{arepsilon}$$

Therefore, $\frac{1}{a_n} \to 0$ since for every $\frac{1}{\varepsilon} > 0$, $\left| \frac{1}{a_n} \right| < \frac{1}{\varepsilon}$ when $n \ge N$.

• (\Leftarrow) Assume $\frac{1}{a_n} \to 0$, prove $a_n \to \infty$. Proof: $\frac{1}{a_n} \to 0$ implies for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\left| \frac{1}{a_n} - 0 \right| < \varepsilon$ when $n \ge N$. So we have

$$\left|\frac{1}{a_n}\right| < \varepsilon$$

$$\frac{1}{a_n} < \varepsilon, \text{ since } a_n \text{ are all positive numbers}$$

$$a_n > \frac{1}{\varepsilon}$$

Therefore, $a_n \to \infty$ since a_n will always be greater than $\frac{1}{\varepsilon}$, where $\varepsilon > 0$.

Q.E.D.