Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introdução

Metodologia Bases de Dados

MTD1 MTD2 MTD3

M I D4 Implementação

Resultac

Testes com Diferentes Combinações de Parâmetros Resultados Utilizando

Conclusões

Métodos de Segmentação Automática de Sinais de Eletromiografia de Superfície para Classificação de Movimentos Utilizando RNA

Vicente Cunha Alexandre Balbinot (orientador)

Universidade Federal do Rio Grande do Sul

Porto Alegre, dezembro de 2015

Sumário

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introduçã

Metodologia

Bases de Dados MTD1 MTD2 MTD3

MTD4 Implementação

Resultad

Testes com Diferentes Combinações de Parâmetros Resultados Utilizando Parâmetros

- Introdução
- Metodologia
 - Detalhes sobre Bases de Dados
 - MTD1
 - MTD2
 - MTD3
 - MTD4
 - Detalhes de Implementação dos Métodos e RNA
- Resultados
 - Testes com Diferentes Combinações de Parâmetros
 - Resultados Utilizando Parâmetros Selecionados
- 4 Conclusões

Eletromiografia Principais aplicações

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introdução

Metodologia
Bases de Dados
MTD1
MTD2
MTD3
MTD4

Danulkadaa

Testes com Diferentes Combinações de Parâmetros Resultados Utilizando

onclusões

Diagnóstico de desordens neuromusculares

Atuação de Próteses Mioelétricas

NinaPro

Non-Invasive Adaptive Hand Prosthetics - IDIAP Research Institute 2012

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introdução

Metodologia
Bases de Dados
MTD1
MTD2
MTD3
MTD4

December 1

Testes com Diferentes Combinações d Parâmetros Resultados Utilizando Parâmetros

Canalucão

Etapas Necessárias para a Classificação de Movimentos

- Segmentação do Sinal em Trechos de Interesse
- Extração de Características dos Segmentos
- Treinamento de RNA

Objetivos deste Trabalho

Proposição e implementação de métodos de segmentação automática e consequente classificação de movimentos utilizando RNA.

NinaPro

Posicionamento de Eletrodos 12 Canais

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introduç

Metodolo

Bases de Dados MTD1

MTD3 MTD4

Resultados

Testes com Diferentes Combinações de Parâmetros Resultados Utilizando Parâmetros

Conclusões

igualmente espaçados

úmero-radial

em torno da articulação

Superficial dos Dedos

Rotina de Aquisição

Voluntários replicam movimentos apresentados em vídeo

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodolog

Bases de Dados

MTD2 MTD3

MTD4

Resultados

Testes com Diferentes Combinações d Parâmetros

Utilizando Parâmetros Selecionados

Conclusões

Repetição de Movimentos em Vídeo

17 diferentes movimentos de mão e punho

6 repetições por movimento

5 segundos de duração por repetição

3 segundos de pausa entre repetições

Método iterativo utilizando threshold de amplitudes Segmentos de comprimento constante

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodologia

Bases de Dado

MTD1 MTD2 MTD3 MTD4

Implementação

Testes com Diferentes Combinações de Parâmetros

Resultados Utilizando Parâmetros Selecionados

onclusões

Baseado em Chauvet et al. (2001)

•
$$T_0 = max(x)$$

•
$$r_k = \frac{N_k}{L}$$

•
$$T_k = q \times T_{k-1}$$

•
$$r_k > r_{target}$$
?

•
$$T_k < T_{min}$$
?

MTD1 (Fluxograma)

Método iterativo utilizando threshold de amplitudes Segmentos de comprimento constante

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introdução

Metodologia

Bases de Dado

MTD1 MTD2

MTD3 MTD4

Described as

Resultados

Diferentes Combinações d

Resultados Utilizando Parâmetros

Método não-iterativo utilizando threshold de amplitudes Segmentos de comprimento constante

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodologia

Bases de Dado

MTD2

MTD3 MTD4

MTD4 Impleme

Resultados

Diferentes Combinações d Parâmetros

Resultados Utilizando Parâmetros

Conclusões

Baseado em Katsis et al. (2006)

Método com janela deslizante utilizando variação total Segmentos de comprimento variável

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodologia
Bases de Dados
MTD1
MTD2
MTD3

M I D4 Implementação

Testes com Diferentes Combinações de Parâmetros

Resultados Utilizando Parâmetros Selecionados

Conclusões

Baseado em Gut e Moschytz (2000)

$$V = \sum_{i=w_0+1}^{w_0+W} (x_i - x_{i-1})$$

- BEPs: V > B?
- EEPs: *V* < *C*?

Método com janela deslizante utilizando threshold Segmentos de comprimento variável

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introduçã

Metodologia
Bases de Dados
MTD1
MTD2
MTD3
MTD4

Implementação

Testes com Diferentes Combinações d Parâmetros

Resultados Utilizando Parâmetros Selecionados

Conclusões

Baseado em Pattichis, Schizas e Middleton (1995)

- BEPs: max(x) > T?
- EEPs: max(x) < T?

Detalhes de Implementação

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodologia Bases de Dados MTD1 MTD2

MTD4
Implementação

Resultado

Testes com Diferentes Combinações de Parâmetros Resultados Utilizando Parâmetros

Conclusões

Preprocessamento

- Retificação
- Normalização

Características Extraídas

- RMS
- Variância
- Frequência Mediana

Bases de Dados Utilizadas

Ninapro: 40 voluntários

• IEE: 10 voluntários

Agrupamento por DBSCAN

A partir da densidade de posições de segmentos obtidas nos diferentes canais, identifica-se os segmentos referentes a um mesmo trecho de interesse.

Segmentação final é realizada nas posições médias de grupos de segmentos.

RNA

Treinamento e simulação de redes neurais artificiais

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introduçã

<mark>Metodologia</mark> Bases de Dado

MTD2 MTD3 MTD4

Implementação

Resulta

Diferentes Combinações de Parâmetros Resultados Utilizando

Conclusõe

Divisão de Grupos para Treino, Validação e Teste

Para N_{ζ} segmentos obtidos referentes à classe de movimento ζ

- Grupo de Treino: primeiros $N_{\zeta}-2$ segmentos
- ullet Grupo de Validação: segmento de índice $N_{\zeta}-1$
- Grupo de Teste: N_{ζ} -ésimo segmento

Testes com Diferentes Combinações de Parâmetros MTD1 e MTD2

Métodos de Segmentação Automática de Sinais de sEMG

Cunh

Introduçã

Metodologia

Bases de Dados MTD1 MTD2 MTD3 MTD4

Resulta

Testes com Diferentes Combinações de Parâmetros

Resultados Utilizando Parâmetros Selecionado

Testes com Diferentes Combinações de Parâmetros MTD3 e MTD4

Métodos de Segmentação Automática de Sinais de sEMG

Testes com Diferentes Combinações de

Parâmetros Selecionados

Combinações de parâmetros de cada método com média de número de segmentos obtidos por classe mais próximo de 6

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introdução

Metodologia

Bases de Dados
MTD1
MTD2
MTD3
MTD4
Implementação

Resultados Testes com Diferentes Combinações de Parâmetros

Resultados Utilizando Parâmetros Selecionado

~---i...~~-

Método	Base de dados	Índice	Parâmetros	Média de Segmentos por Classe	Moda de Segmentos por Classe
MTD1	NinaPro IEE	15 11	$q = 0.95$ $T_{lim} = 0.15$ $q = 0.75$ $T_{lim} = 0.15$	6,05 $6,23$	6 6
MTD2	NinaPro IEE	7 18	A = 60 $B = 8$ $C = 2A = 100$ $B = 8$ $C = 5$	6,01 6,28	6 6
MTD3	NinaPro IEE	7 7	B = 0.10 $C = -0.10B = 0.10$ $C = -0.10$	4,29 3,15	6 3
MTD4	NinaPro IEE	6 21	T = 0.06 $T = 0.21$	4,46 2,78	6 2

Resultados Utilizando Parâmetros Selecionados Valor F por Classe de Movimento, Base de Dados NinaPro

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodologia Bases de Dados MTD1 MTD2

MTD4 Implementação

Testes com Diferentes

Parâmetros Resultados Utilizando Parâmetros Selecionados

Resultados Utilizando Parâmetros Selecionados Valor F por Classe de Movimento, Base de Dados IEE

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduçã

Metodologia Bases de Dados MTD1 MTD2

MTD4 Implementação

Testes com

Diferentes Combinações de Parâmetros

Resultados Utilizando Parâmetros Selecionados

Conclusões

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introduç

Metodologia
Bases de Dados
MTD1
MTD2
MTD3
MTD4

Resultados
Testes com
Diferentes
Combinações de
Parâmetros
Utilizando
Parâmetros

Conclusões

MTD1 e MTD2 obtiveram valores F médio cerca de 17% maiores que MTD3 e MTD4

- Valores F de classificação similares com MTD1 e MTD2
- Com MTD3 e MTD4 n\u00e3o foi poss\u00edvel obter moda 6 de n\u00edmero de segmentos na base IEE

Maiores Valor F médio (NinaPro): 0,96

- 6 (flexão de todos os dedos ao punho)
- 14 (extensão de punho)
- 16 (desvio ulnar do punho)
- 17 (extensão de punho com mão cerrada)

Menores Valor F médio (NinaPro)

- 1 (polegar esticado, flexão dos outros dedos): 0,81
- 7 (extensão do indicador em movimento de "apontar"): 0,84

Métodos de Segmentação Automática de Sinais de sEMG

Cunha

Introdução

Metodologia

D 1 D 1

MTD1

MTD2

MTD3

MTD4

. .

impicinentaça

Resultado

Testes com Diferentes Combinações de Parâmetros Resultados Utilizando

Conclusões

Obrigado!