

Statistics and **Probability**

Hafara Firdausi, M.Kom.

Department of Information Technology Faculty of Electrical and Intelligent Informatics Institut Teknologi Sepuluh Nopember

02. Concepts in Statistics Konsep Statistika

its_campus

Outline

- 1. What is Statistics?
- 2. Sample and Population
- 3. Summary Measures

What is Statistics?

What is Statistics?

- Statistics is a branch of mathematics that consists of a set of analytical techniques that can be applied to data to help us make judgments and decisions in problems involving uncertainty.
- Statistics is a scientific discipline consisting of procedures for
 - collecting,
 - o describing,
 - o **analyzing**, and
 - o interpreting numerical data

What is Statistics?

Main Objectives:

To provide a set of procedures that enables us to **make inferences, predictions, and decisions** about **characteristics of a population of data** based on the information obtained from only a part of the population (**sample**).

"Probability provides a mathematical framework for measuring uncertainty"

"Statistics uses data to draw conclusions that are supported by that probability"

Analisis faktor paling berpengaruh dalam penjualan Smartphone

Analisis faktor paling berpengaruh dalam penjualan Smartphone

Statistika

Koefisien	Nilai p	Interpretasi Pengaruh
1.5	0.03	Signifikan
0.8	0.10	Tidak Signifikan
-2.2	0.01	Signifikan
2.5	0.002	Sangat Signifikan
3.0	0.04	Signifikan
	0.8 -2.2 2.5	0.8 0.10 0.10 -2.2 0.01 2.5 0.002

Analisis faktor paling berpengaruh dalam penjualan Smartphone

Kesimpulan:

- Rating pelanggan paling berpengaruh terhadap penjualan smartphone, artinya pelanggan lebih cenderung membeli produk yang memiliki rating tinggi dan ulasan positif.
- Harga yang lebih rendah dan jumlah promosi yang banyak dapat meningkatkan penjualan.
- Resolusi kamera memiliki pengaruh lebih besar dibandingkan RAM.

Analisis faktor paling berpengaruh dalam penjualan Smartphone

Keputusan:

- Meningkatkan ulasan pelanggan dan promosi untuk meningkatkan penjualan, misalnya dengan menggunakan jasa para influencer sosial media agar meng-endorse produk kita.
- Menetapkan harga yang kompetitif untuk mendorong lebih banyak penjualan.
- Memfokuskan promosi pada fitur yang lebih dihargai oleh pelanggan seperti resolusi kamera, dibandingkan RAM.

Why learn Statistics?

- Numerical information is everywhere and we dealing with uncertainty
- Statistical techniques are used to make decisions that affect our daily lives
- The knowledge of statistical methods will help you understand how decisions are made and give you a better understanding of how they affect you

This Photo by Unknown Author is licensed under CC BY-NC-ND

Why learn Statistics?

Statistics in Information Technology

- Data Mining is the analysis of information in a database, using tools that look for trends or irregularities in large data sets.
- Data Compression is the coding of data using compact formulas, called algorithms, and utilities to save storage space or transmission time.
- Speech Recognition is the identification of spoken words by a machine. The spoken words are turned into a sequence of numbers and matched against coded dictionaries.
- Vision and Image Analyses use statistics to solve contemporary and practical problems in computer vision, image processing, and artificial intelligence.

- Human/Computer Interaction uses statistics to design, implement, and evaluate new technologies that are useable, useful, and appealing to a broad cross-section of people.
- Network/Traffic Modeling uses statistics to avoid network congestion while fully exploiting the available bandwidth.
- Stochastic Optimization uses chance and probability models to develop the most efficient code for finding the solution to a problem.

The field of statistics

Descriptive statistics

The methods used to **summarize** quantitative and qualitative features in a sample or population and **present** data in an **informative way**.

Inferential statistics

The methods used for the derivation of conclusions about a population from information in a random sample of that population.

The Field of Statistics

Population

Sample

Descriptive Statistics

Descriptive Statistics

Descriptive statistics consist of procedures for:

Inferential Statistics

Inferential statistics consists of a set of procedures that helps us make inferences and predictions about a whole population based on information from a sample of the population.

Estimation / Prediction / Forecasting Ex: Estimate the population mean weight using the sample mean weight

Hypothesis testing Ex: Test the claim that the population means the weight is 120 pounds

Make decisions

The appropriate conclusions regarding the population's features

Sample and Population

Sample and Population

- A population consists of the set of all measurements for which the investigator is interested.
- A sample is a subset of the measurements selected from the population.
- A census is a complete enumeration of every item in a population.

Population Parameter and Sample Statistic

We want to know about these ...

(Population mean)

(Sample mean)

PEMBER, Surabaya - Indonesia

Random Sample

- Sampling from the population is often done randomly, such that every possible sample of equal size (n) will have an equal chance of being selected.
- A sample selected in this way is called a simple random sample or just a random sample.
- A random sample allows the chance to determine its elements.

Why Sample?

- o **Census** of a population may be:
 - Impossible
 - Impractical
 - Too costly

Summary Measures

Summary Measures

- Statistical values that summarize or describe key characteristics of a dataset.
- Provide a quick, overall understanding of the data by focusing on aspects such as central tendency, spread, and distribution.

- Statistical tools are used to determine the center or typical value in a dataset.
- Summarize the data by identifying a central point that best represents the distribution of values.

Median	 Middle value when sorted in order of magnitude 50th percentile
Mode	Most frequently-occurring value
Mean	 Average

Measures of Central Tendency or Location

- Statistical tools are used to determine the center or typical value in a dataset.
- Summarize the data by identifying a central point that best represents the distribution of values.

Example – Median

Sorted Sales

24

Sales

17

<u>Sales</u>	Sorted Sales		
9	6		
6	9		
12	10		Median
10	12		
13	13		50th Percentile
15	14		
16	14		
14	15		
14	16		(20+1)50/100-105
16	<u>16</u>	Median	(20+1)50/100=10.5
17	16	Median	
16	17		16 + (.5)(0) = 16
24	17		10 + (.5)(0) = 10
21	18		
22	18		
18	19		
19	20		
18	21		
20	22		

- The median is the middle value of data sorted in order of magnitude. It is the 50th percentile.
- Useful for skewed distributions or datasets with outliers, as it isn't affected by extreme values.

www.its.ac.id

Example – Median

Median

Arrange the observations in ascending order.

Number of observations (n) is odd.

The median is the middle value, which is at position

$$\left(\frac{n+1}{2}\right)$$

Number of observations (n) is even.

The median is the average of the two middle values.

- 1. Find the value at position $\left(\frac{n}{2}\right)$
- 2. Find the value at position $\left(\frac{n}{2}\right)+1$
- 3. Find the average of the two values to get the median.

Example – Mode

- The mode is the most frequently occurring value. It is the value with the highest frequency.
- Best for categorical data or when identifying the most common occurrence is important.

Arithmetic Mean or Average

- The mean of a set of observations is their average - the sum of the observed values divided by the number of observations.
- Best for datasets with evenly distributed data without extreme outliers

Population Mean	Sample Mean
$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$
N = number of items in the population	n = number of items in the sample

Example – Mean

<u>Sales</u>

$\sum_{i=1}^{n} \mathbf{v}_{i}$	
$\chi = \frac{\sum_{i=1}^{N} X_i}{\sum_{i=1}^{N} X_i}$	$\frac{317}{1} = 15.85$
n	20

- Quantify how much the data values in a dataset differ from the central value (mean or median).
- These measures help describe the distribution's spread and indicate how concentrated or scattered the data is.

Range	 Difference between maximum and minimum values
Interquartile Range	 Difference between third and first quartile (Q3 - Q1)
Variance	 Average of the squared deviations from the mean Definitions of population variance and sample variance differ slightly
Standard Deviation	 Square root of the variance

Example – Range and Interquartile Range

		Sorted	
	Rank	Sales	<u>Sales</u>
Minimum	1	6 ←	9
	2	9	6
	3	10	12
	4	12	10
First Organitie	5	13	13
First Quartile	6	14	15
	7	14	16
	8	15	14
	9	16	14
	10	16	16
	11	16	17
	12	17	16
	13	17	24
	14	18	21
	15	18	22
Third Quartile	16	19	18
	17	20	19
	18	21	18
	19	22	20
Maximum	20	24 ←	17

$$Q_1 = 13 + (.25)(1) = 13.25$$

$$Q_3 = 18 + (.75)(1) = 18.75$$

Interquartile Q3 - Q1 = 18.75 - 13.25 = 5.5

Variance and Standard Deviation

population variance:

$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n} = 8$$

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

 σ^2 = population variance x_i = value of i^{th} element μ = population mean N = population size

Sample Variance

$$s^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}$$

 s^2 = sample variance x_i = value of i^{th} element \overline{x} = sample mean n = sample size

Calculation of Sample Variance

X	$x-\overline{x}$	$(x-\overline{x})^2$	x^2
6	-9.85	97.0225 36	
9	-6.85	46.9225 81	
10	-5.85	34.2225 100	
12	-3.85	14.8225 144	
13	-2.85	8.1225	169
14	-1.85	3.4225	196
14	-1.85	3.4225 196	
15	-0.85	0.7225 225	
16	0.15	0.0225 256	
16	0.15	0.0225 256	
16	0.15	0.0225 256	
17	1.15	1.3225 289	
17	1.15	1.3225 289	
18	2.15	4.6225 324	
18	2.15	4.6225 324	
19	3.15	9.9225 361	
20	4.15	17.2225 400	
21	5.15	26.5225 441	
22	6.15	37.8225 484	
24	8.15	66.4225 576	
317	0	378.5500	5403

$s^{2} = \frac{\sum_{i=1}^{n} (x - \overline{x})^{2}}{(n-1)} = \frac{378.55}{(20-1)}$		
$=\frac{378.55}{19}=19.923684$		
$=\frac{\sum_{i=1}^{n} x^2 - \frac{\left(\sum_{i=1}^{n} x\right)^2}{n}}{(n-1)}$		
$=\frac{5403 - \frac{317^2}{20}}{(20 - 1)} = \frac{5403 - \frac{100489}{20}}{19}$		
$=\frac{5403-5024.45}{19}=\frac{378.55}{19}=19.923684$		
$s = \sqrt{s^2} = \sqrt{19.923684} = 4.46$		

- The mean represents the average value of a dataset or the central point around which the data is distributed.
- The standard deviation measures the spread or dispersion of the data points from the mean. It quantifies how far, on average, the data points are from the mean.
- A low standard deviation means that the data points are close to the mean (the data is less spread out).
- A high standard deviation means that the data points are more spread out from the mean (the data is more dispersed).

Relations between the Mean and Standard Deviation

Empirical Rule

- In a normal distribution (bell-shaped curve), about 68% of the data points lie within one standard deviation of the mean, 95% within two standard deviations, and 99.7% within three standard deviations.
- This is known as the 68 95 99.7 rule or the empirical rule.

Empirical Rule

(Normal Distributions)

Relations between the Mean and Standard Deviation

Assignments

Pelajari tentang Chebyshev's Inequality ©

Chebyshev's Inequality

(Any Distribution)

- Jelaskan dan pelajari tentang Aturan Empiris (Empirical Rules)
- Kerjakan:
 - Tinggi badan siswa di sebuah sekolah mengikuti distribusi normal dengan rata-rata 160 cm dan standar deviasi 7 cm. Gunakan Aturan Empiris untuk menjawab pertanyaan berikut:
 - Berapa rentang tinggi badan di mana sekitar 68% siswa berada?
 - Berapa rentang tinggi badan di mana sekitar 95% siswa berada?
 - Berapa rentang tinggi badan di mana sekitar 99.7% siswa berada?

- Jelaskan dan pelajari tentang Aturan Empiris (Empirical Rules)
- Kerjakan:
 - Dalam sebuah uji coba, waktu reaksi dari sejumlah pengemudi diukur. Diketahui bahwa waktu reaksi rata-rata adalah 0,8 detik dengan standar deviasi 0,1 detik. Berdasarkan Aturan Empiris, tentukan rentang waktu reaksi di mana:
 - o 68% pengemudi berada
 - 95% pengemudi berada
 - 99.7% pengemudi berada

- Jelaskan dan pelajari tentang Teorema Chebyshev (Chebyshev's Theorem)
- Kerjakan:
 - Sebuah perusahaan mencatat waktu produksi barang dengan rata-rata 40 menit dan standar deviasi 5 menit. Gunakan Teorema Chebyshev untuk menjawab pertanyaan berikut:
 - Berapa proporsi minimum waktu produksi yang berada dalam jarak 3 standar deviasi dari rata-rata?

- Jelaskan dan pelajari tentang Teorema Chebyshev (Chebyshev's Theorem)
- Kerjakan:
 - Dari sebuah penelitian, diketahui bahwa penghasilan bulanan dari 100 orang karyawan memiliki rata-rata Rp5.000.000 dengan standar deviasi Rp500.000. Tentukan proporsi minimum dari karyawan yang penghasilannya berada dalam jarak 2 standar deviasi dari rata-rata menurut Teorema Chebyshev.

Notation

Dasar perbandingan	Parameter	Statistik
Mean	μ	Ā
Standard deviation	σ	S
Proporsi	Р	ĝ
Elemen data	X	X
Ukuran sampel	Ν	n
Koefisiensi korelasi	ρ	r

Sumber: Key Differences

https://revou.co/revoupedia/kosakata

Notation

Parameter name	Population parameter symbol	Sample statistic
Number of cases	N	n
Mean	μ (mu)	\overline{x} (Sample mean)
Proportion	π (Pi)	P (Sample proportion)
Variance	σ² (Sigma-square)	s² (Sample variance)
Standard deviation	σ (Sigma)	s (sample standard deviation)
Correlation	ρ (rho)	r (Sample correlation)
Regression	β (beta)	b (sample regression
Coefficient		coefficient)