Inhaltsverzeichnis

T	Gultige Ziffern	J
2	Fehlerquellen2.1Fehlerquellen	1
3	Fehlerarten3.1 systematische Fehler3.2 Statistische Fehler	2 2 2
4	Fehlerfortpflanzung4.1Gaußsches Fehlerfortpflanzungsgesetz4.2Spezialfälle	3
5	Graphische Auswertung	3

Gültige Ziffern 1

Alle angegebenen Ziffern, abzüglich führender Nullen werden als gültige Ziffern bezeichnet.

 $\mathbf{Bsp.:}\;$ Sie zählen 7 Umdrehungen eines Rades in 11 Sekunden.

Mathematiker: $\frac{7}{11}$ Taschenrechner: 0.63636364

Physiker: ? Anzahl der geltenden Ziffern: eine $\rightarrow~0.6$

Fehlerquellen 2

An der Genauigkeit da arbeiten, wo der Fehler am meisten ausmacht.

2.1Fehlerquellen

• Instrument

Auflösungsgenauigkeit

Genauigkeit der genutzten Bauteile (ist bei Waagen angegeben)

falsche Eichung oder Tarierung

• Experimentator(z.B. Reaktionszeit)

Ablesefehler

menschliche Unzulänglichkeiten

Gewöhnungseffekt bei häufiger Wiederholung

- Modell (z.B. Vernachlässigung der Reibung)
 - Vernachlässigung von Kräften
 - andere Näherungen \rightarrow alle drei Fehlerquellen bedenken!

3 Fehlerarten

3.1 systematische Fehler

systematische Fehler: Offset

- wert-und zeitunabhängig
- z.B. Reaktionszeit beim Stoppen
- durch geschicktes Messen eliminieren
- ullet oder Formeln anpassen
- ansonsten angeben!

systematische Fehler: Drift

- zeitabhängig bzw. nutzungsabhängig (Messwerte verschieben sich mit der Zeit)
 - z.B. sich erhitzender Innenwiderstand eines Amperemeters
- meist nur schwer kompensierbar(Kalibrationskurve)

systematischer Fehler: Restfehler

- nicht korrigierbar
- in der Regel am Messgerät oder dessen Dokumentation zu finden

3.2 Statistische Fehler

- zufällig oder unbeeinflussbar
- treten immer auf \rightarrow immer angeben!
- Messwerte oft annähernd gaußverteilt($e^{-\frac{(x-\overline{x})^2}{2\sigma^2}}$)
- \bullet Standardabweichung σ durch mehrere Messungen ermitteln
- Mittelwert der Messwerte:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Empirische Standardabweichung der Verteilung

$$\sigma_{x,n-1} = \sqrt{\frac{1}{n-1} * \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

• Empirische Standardabweichung des Mittelwerts

$$s_x = \frac{1}{\sqrt{n} * \sigma_{x,n-1}}$$

4 Fehlerfortpflanzung

4.1 Gaußsches Fehlerfortpflanzungsgesetz

Ist G(x,y,...) eine Funktion der unabhängigen Messgrößen x,y,... mit den Fehlern $\delta x, \delta y,...$, so erhält man den statistischen Fehler δG nach Gauß:

$$\delta G_{Gauss} = \sqrt{\left(\frac{\delta G}{\delta x} |_{x_0, y_0, \dots} \delta x\right)^2 + \left(\frac{\delta G}{\delta y} |_{x_0, y_0, \dots} \delta x\right)^2 + \dots}$$

4.2 Spezialfälle

 \bullet Eine fehlerbehaftete Messgröße G(x)

$$\delta G_{Gauss} = \frac{\partial G}{\partial x} * \delta x$$

• Summe oder Differenz $G(x,y,z...)=x\pm y\pm ...$ fehlerbehafteter Messgrößen

$$\delta G_{Gauss}, \pm = \sqrt{(\delta x)^2 + (\delta y)^2 + \dots}$$

• Produkt und Quotienten $G(x,y,\dots) = \frac{x^r * y^s}{z^t * \dots} * \dots$

$$\frac{\delta G}{G} = \sqrt{\left(r\frac{\delta x}{\delta x}\right)^2 + \left(s\frac{\delta y}{y}\right)^2 + \dots}$$

5 Graphische Auswertung

- Ein Graph sagt mehr als 1000 Werte
- Achsenbeschriftung
- Einfach immer Linearisieren!

- nur Geraden lassen sich nach Augenmaß fitten
- Achsen transformieren, damit sich eine Gerade ergibt
- Steigung und Achsenabschnitt der Geraden lassen sich oft nutzen (z.B. Federhärte,...)
- Durch drei Messpunkte legt man keine Gerade...
- \bullet einfache logarithmische Abszisse (x-Achse) Logarithmen werden zu Geraden
- einfache logarithmische Ordinate Exponentialfunktionen werden zu Geraden
- doppelt logarithmische Graphen
 Potenzfunktionen werden Geraden
 Steigung entspricht Exponenten