6.852: Distributed Algorithms Fall, 2015

Lecture 12

Last Time

- Asynchronous spanning tree algorithms:
 - Asynch Spanning Tree (not necessarily breadth-first)
 - Asynchronous BFS
 - Asynchronous Shortest Paths
- Important observation: In a distributed algorithm, fast execution of portions of the algorithm don't necessarily result in fastest execution overall.
- Different from sequential algorithms.
- Also GHS Minimum Spanning Tree algorithm.
- Questions?

Today's plan

- Simulating synchronous algorithms in asynchronous networks.
- Synchronizers
- Lower bound for global synchronization
- Reading: Chapter 16
- Next:
 - Logical time, state machine emulation, vector timestamps
 - Readings:
 - Chapter 18
 - [Lamport] Time, Clocks, and the Ordering of Events in a Distributed System
 - [Mattern] Vector timestamps

Simulating Synchronous Algorithms in Asynchronous Networks (Synchronizers)

Minimum spanning tree, revisited

- In GHS, complications arise because different processes can be at very different levels at the same time.
- Alternative, simpler, more synchronized approach:
 - Keep levels of nearby nodes close, by restricting the asynchrony.
 - Each process uses a level variable to keep track of the level of its current component (according to its local knowledge).
 - Each process at level k delays all "interesting" processing until it hears that all its neighbors have reached $level \ge k$.
 - Looks (to each process) like global synchronization, but easier to achieve.
 - Each node inform its neighbors whenever it changes level.
- Resulting algorithm is simpler than GHS.
- Complexity:
 - Time: $O(n \log n)$, like GHS.
 - Messages: $O(|E| \log n)$, worse than GHS.

A strategy for designing asynchronous distributed algorithms

- Assume undirected graph G = (V, E).
- Design a synchronous algorithm for G, then transform it into an asynchronous algorithm using local synchronization.
- Synchronize at every round (not every "level" as above).
- Method works only for non-fault-tolerant algorithms.
 - In fact, no general transformation can work for fault-tolerant algorithms.
 - E.g., simple fault-tolerant stopping agreement is solvable in synchronous networks, but unsolvable in asynchronous networks [FLP].
- Present a general strategy, and some special implementations.
 - Describe in terms of sub-algorithms, modeled as abstract services.
 - [Raynal book], [Awerbuch papers]
- Then a lower bound on the time for global synchronization.
 - Larger than upper bounds for local synchronization.

Synchronous model, reformulated in terms of I/O automata

- Global synchronizer automaton
- User process automata:
 - Processes of an algorithm that uses the synchronizer.
 - May have other inputs/outputs, for interacting with other programs.

- Interactions between user process i and synchronizer:
 - usersend $(T,r)_i$
 - T = set of (message, destination) pairs, destinations are neighbors of i.
 - $T = \text{empty set } \emptyset$, if no messages are sent by i at round r.
 - r = round number
 - $userrcv(T,r)_i$
 - T = set of (message, source) pairs, where source is a neighbor of i.
 - r = round number

Behavior of GlobSynch

- Manages global synchronization of rounds:
 - Users send packages of all their round 1 messages, using usersend(T, 1) actions.
 - GlobSynch waits for all round 1 messages, sorts them, then delivers to users, using userrcv(T, 1) actions.
 - Users send round 2 messages, etc.
- Not exactly the same as the synchronous model:
 - GlobSynch can receive round 2 messages from a user before it finishes delivering all the round 1 messages.
 - But it doesn't do anything with these until it's finished round 1 deliveries.
 - So, essentially the same.
- *GlobSynch* synchronizes globally between each pair of rounds.

Requirements on each U_i

- Well-formed:
 - U_i sends the right kinds of messages, in the right order, at the right times.
- Liveness:
 - After receiving the messages for any round r, U_i eventually submits messages for round r+1.
- Code for GlobSynch in [book, p. 534].
 - State consists of:
 - A tray of messages for each (destination, round).
 - Some Boolean flags to keep track of which sends and rcvs have happened.
 - Transitions obvious.
 - Liveness expressed by tasks, one for each (destination, round).

The Synchronizer Problem

- Design an automaton A that "implements" GlobSynch in the sense that it "looks the same" to each U_i :
 - Has the right interface.
 - Exhibits the right behavior:
 - For every fair execution α of the U_i s and A_i
 - There exists a fair execution α' of the U_i s and GlobSynch, such that
 - For every i, α is indistinguishable by U_i from α' , written as $\alpha \sim U_i \alpha'$.
- A "behaves like" GlobSynch, as far as any individual U_i can tell.
- Allows global reordering of events at different U_i .

Local Synchronizer, LocSynch

• Enforces local (not global) synchronization, still looks the same locally.

- Only difference from GlobSynch: the precondition for $usrrcv(T,r)_i$.
 - To deliver round r messages to user i, LocSynch checks only that i's neighbors have sent round r messages.
 - Doesn't wait for all nodes.

• Proof:

- Can't use a simulation relation, since the global order of external events need not be the same, and simulation relations preserve external order.
- So consider a partial order of events and dependencies:

Proof sketch for Lemma 1

- Consider partial order of events and dependencies:
 - Each U_i event depends on previous U_i events.
 - $userrcv(*,r)_i$ depends on $usersend(*,r)_j$ for every neighbor j of i.
 - Take transitive closure.
- Claim: If we start with a (fair) execution of the LocSynch system and reorder events while preserving these dependencies, the result is still a (fair) execution of the LocSynch system.
- So, obtain α' by reordering the events of α so that:
 - These dependencies are preserved, and
 - The rounds are globally aligned: events associated with any round r precede those of round r+1.
- OK because round r events don't depend on round r+1 events.
- This reordering preserves the view of each U_i .
- Also satisfies the extra userrcv precondition needed by GlobSynch.

Trivial distributed algorithm to implement *LocSynch*

- Processes, point-to-point channels.
- SimpleSynch algorithm, process i:
 - After $usersend(T,r)_i$, send a message to each neighbor j containing round number r and any algorithm messages i has for j.
 - Send (\emptyset, r) message if i has no basic algorithm messages for j.
 - Wait to receive round r messages from all neighbors.
 - Output userrcv(T',r).
- Lemma 2: For every fair execution α of U_i s and SimpleSynch, there is a fair execution α' of U_i s and LocSynch, such that for each i, $\alpha \sim U_i \alpha'$.
- In fact, indistinguishable by all the U_i s together--- preserves external order.

SimpleSynch, cont'd

Proof of Lemma 2:

- No reordering needed, preserves order of external events.
- Can use a simulation relation (for the safety part).
- Corollary: For every fair execution α of U_i s and SimpleSynch, there is a fair execution α' of U_i s and GlobSynch, such that for each i, $\alpha \sim U_i$ α' .
- Proof: Combine Lemmas 1 and 2.
- Complexity:
 - Messages: $\leq 2 |E|$ per simulated round.
 - Time:
 - Assume user always sends ASAP.
 - l, upper bound on time for each task of each process.
 - d, upper bound on time for first message in channel to be delivered
 - Then r rounds completed within time r (d + O(l)).

Reducing the communication

- General Safe Synchronizer strategy [Awerbuch].
- If there's no message from U_i to U_j at round r of the underlying synchronous algorithm, try to avoid sending such messages in the simulating asynchronous algorithm.
- Can't just omit them, since each process must determine, for each round r, when it has received all of its round r messages.
- Key idea: Separate the functions of:
 - Sending the actual messages, and
 - Determining when the round is over.
- Algorithm decomposes into:

Safe Synchronizers

Front End:

- Sends, receives algorithm messages for each round r.
- Sends acks for received messages.
- Waits to receive acks for its own messages.

Notes:

- Sends only actual algorithm messages, no dummies.
- acks double the messages, but can still be a win.

Front End, cont'd:

- When FE receives acks for all its round r messages, it's safe: it knows that all its messages have been received by its neighbors.
- Then sends OK for round r to SafeSynch.
- Before responding to user, FE must know that it has received all its neighbors' messages for round r.
- Suffices to know that all its neighbors are safe, that is, that they know that their messages have been received.

• SafeSynch:

- Tells each FE when its neighbors are safe.
- After it has received OK from i and all its neighbors, sends GO to i.

Correctness of SafeSynch

- Lemma 3: For every fair execution α of the SafeSynch system, there is a fair execution α' of the LocSynch system, such that for each i, $\alpha \sim U_i \alpha'$.
- (Actually, indistinguishable to all the U_i s together.)
- Corollary: For every fair execution α of the SafeSynch system, there is a fair execution α' of the GlobSynch system, such that for each i, $\alpha \sim U_i \alpha'$.
- We must still implement SafeSynch with a distributed algorithm...
- Three SafeSynch implementations: Synchronizers A, B, and Γ [Awerbuch].
- All implement SafeSynch, in the sense that the resulting systems are indistinguishable to each U_i (in fact, to all the U_i s together).

SafeSynch Implementations

 SafeSynch's job: After receiving OK for round r at location i and all its neighbors, send GO for round r at location i.

• Synchronizer A:

- When process i receives OK_i , sends to neighbors.
- When process i hears that it and all its neighbors have received OKs, outputs GO_i .
- Obviously implements *SafeSynch*.
- Complexity: To emulate *r* rounds:
 - Messages: $\leq 2m + 2r|E|$, if synchronous algorithm sends m messages in r rounds.

Messages and acks by FEs

Messages within A

- Time: $\leq r (3d + O(l))$

acks

report-OK

Comparisons

- To emulate r rounds:
 - SafeSynch system with Synchronizer A
 - Messages: 2m + 2r|E|
 - Time: r(3d + O(l))
 - SimpleSynch
 - Messages: 2r|E|
 - Time: r(d + O(l))
- So Synchronizer A hasn't improved anything.
- Next, Synchronizer B, with lower message complexity, but higher time complexity.
- Then Synchronizer Γ , does well in terms of both messages and time, in an important subclass of networks (those with a "cluster" structure).

Synchronizer B

- Assumes rooted spanning tree of the graph, height h.
- Algorithm:
 - All processes convergecast OK to the root, using spanning tree edges.
 - Root then broadcasts permission to GO, again using the spanning tree.
- Obviously implements SafeSynch (overkill).
- Complexity: To emulate r rounds, in which synchronous algorithm sends m messages:

- Beats A: 2m + 2r|E|- Time: $\le r(2d + O(l) + 2h(d + O(l)))$

FEs

B, convergecast and broadcast

Synchronizer Γ

- Hybrid of A and B.
- In "clustered" (almost partitionable) graphs, can get performance advantages of both:
 - Time like A, communication like B.
- Assume spanning forest of rooted trees, each tree spanning a "cluster" of nodes.
- Example:
 - Clusters = triangles
 - All edges between adjacent triangles in the line.
 - Spanning forest:

• Use B within each cluster, A between clusters.

Decomposition of Γ

• ClusterSynch:

- After receiving OKs from everyone in the cluster, sends clusterOK to ForestSynch.
- After receiving clusterGO from ForestSynch, sends GO to everyone in the cluster.
- Similar to B.
- ForestSynch:
 - Essentially, a safe synchronizer for the "Cluster Graph" G':
 - Nodes of G' are the clusters.
 - Edge between two clusters if and only if they contain nodes that are adjacent in G.
 - Send clusterGO to a cluster after receiving clusterOK from that cluster and all its neighboring clusters.
- Lemma: Automaton Γ Implements SafeSynch
- Proof idea:
 - Must show: If $GO(r)_i$ occurs, then there must be a previous $OK(r)_i$, and also a previous $OK(r)_j$ for every neighbor j of i.

Γ Implements SafeSynch

- Show: If $GO(r)_i$ occurs, then there must be a previous $OK(r)_{i,j}$ and also previous $OK(r)_{i,j}$ for every neighbor j of i.
- Must be a previous $OK(r)_i$:
 - $GO(r)_i$ preceded by cluster GO(r) for i's cluster (ClusterSynch),
 - Which is preceded by clusterOK(r) for i's cluster (ForestSynch),
 - Which is preceded by $OK(r)_i$ (ClusterSynch).
- Must be a previous $OK(r)_i$ for any neighbor j in the same cluster as i.
 - $GO(r)_i$ preceded by clusterGO(r) for i's cluster (ClusterSynch),
 - Which is preceded by clusterOK(r) for i's cluster (ForestSynch),
 - Which is preceded by $OK(r)_i$ (ClusterSynch).
- Must be a previous $OK(r)_i$ for any neighbor j in a different cluster.
 - Then the two clusters are neighboring clusters in the cluster graph G', because i and j are neighbors in G.
 - $GO(r)_i$ preceded by clusterGO(r) for i's cluster (ClusterSynch),
 - Which is preceded by clusterOK(r) for j's cluster (ForestSynch),
 - Which is preceded by $OK(r)_i$ (ClusterSynch).

Implementing ClusterSynch, ForestSynch

• ClusterSynch:

- Use variant of Synchronizer B on cluster tree:
 - Convergecast OKs to root on the cluster tree,
 - root outputs *clusterOK*, receives *clusterGO*,
 - root broadcasts GO on the cluster tree.

• ForestSynch:

- Clusters run Synchronizer A.
 - But clusters can't actually run anything...
 - So cluster roots run A.
 - Simulate communication channels between neighboring clusters by indirect communication paths between the roots.
 - These paths must exist: Run through the trees and across edges that join the clusters.
- *clusterOK* and *clusterGO* are internal actions of the cluster root processes.

Putting the pieces together

- In Γ , process i emulates $FrontEnd_i$, process i in ClusterSynch algorithm, and process i in ForestSynch algorithm.
 - Formally, it's the composition of three I/O automata.
- Real channel $C_{i\ j}$ emulates channel from $FrontEnd_i$ to $FrontEnd_j$, channel from i to j in the ClusterSynch algorithm, and channel from i to j in the ForestSynch algorithm.
- Orthogonal decompositions of Γ :
 - Physical: Nodes and channels.
 - Logical: FEs, ClusterSynch, and ForestSynch
 - Same system, two views.
 - Works because composition of I/O automata is associative, commutative.
- Such decompositions are common for complex distributed algorithms:
 - Each node runs pieces of algorithms at several layers.
- Theorem 1: For every fair execution α of the Γ (or A, or B) system, there is a fair execution α' of the GlobSynch system, such that for each i, $\alpha \sim U_i \alpha'$.

Complexity of Γ

- Consider r rounds, in which the synchronous algorithm sends m messages.
- Let:
 - $h = \max \text{ height of a cluster tree}$
 - -e' = total number of edges on shortest paths between roots of neighboring clusters.

- Time: O(rh(d+l))
- If n + e' << |E|, then Γ 's message complexity is much better than A's.
- If h << height of spanning tree of entire network, then Γ 's time complexity is much better than B's.
- Both of these are true for "nicely clustered" networks.

Comparison of Costs

- r rounds
- m messages sent by synchronous algorithm
- *d*, message delay
- Ignore local processing time *l*.
- e' = total length of paths between roots of neighboring clusters
- h = height of global spanning tree
- $h' = \max \text{ height of cluster tree}$

	Messages	Time
A	2 m + 2 r E	O(r d)
В	2 m + 2 r n	O(r h d)
Γ	2 m + O(r (n + e'))	O(r h' d)

Example

• $p \times p$ grid of complete k-node graphs, with all nodes of neighboring k-node graphs connected.

- Clusters = k-node graphs
- h = O(p)
- h' = O(1)
- $e' = O(p^2)$

	Messages	Time
A	2 m + O(r p ² k ²)	O(r d)
В	2 m + O(r p ² k)	O(r p d)
Γ	2 m + O(r p ² k)	O(r d)

Synchronizer Applications

Application 1: Breadth-First Search

Recall:

- SynchBFS:
 - Constructs BFS tree.
 - O(|E|) messages, O(diam) rounds
- When run in asynchronous network:
 - Constructs a spanning tree, but not necessarily a BFS tree.
- Modified version, with corrections:
 - Constructs BFS tree.
 - O(n|E|) messages, O(diam n d) time (counting pileups)

BFS using Synchronizers:

- Runs more like SynchBFS, avoids corrections, pileups
- With Synchronizer A:
 - O(diam |E|) messages, O(diam d) time
- With Synchronizer B :
 - Better communication, but worse time.
- With Synchronizer Γ :
 - Better overall, in clustered graphs.

Application 2: Broadcast/Ack

- Assume known leader, but no spanning tree.
- Recall:
 - Synchronous Bcast/Ack:
 - Constructs spanning tree while broadcasting
 - O(|E|) messages, O(diam) rounds
 - Asynchronous Bcast/Ack:
 - Timing anomaly: Construct non-minimum-hop paths, on which acks travel.
 - O(|E|) messages, O(nd) time
- Bcast/Ack using Synchronizers:
 - Using (e.g.) Synchronizer A:
 - Avoids timing anomaly.
 - Bcast travels on min-hop paths, so Acks follow min-hop paths.
 - O(diam |E|) messages, O(diam d) time

Application 3: Shortest paths

- Assume weights on edges.
- Without termination detection.
- Recall:
 - Synchronous Bellman-Ford:
 - Makes some corrections, due to low-cost high-hop-count paths.
 - O(n|E|) messages, O(n) rounds
 - Asynchronous Bellman-Ford
 - Many more corrections possible (exponential), due to message delays.
 - (Worst-case) message complexity is exponential in n.
 - Time complexity also exponential in n, counting message pileups.
- Using (e.g.) Synchronizer A:
 - Behaves like Synchronous Bellman-Ford.
 - Avoids corrections due to message delays.
 - Still has corrections due to low-cost high-hop-count paths.
 - O(n|E|) messages, O(n|d|) time
 - Big improvement.

Further reading

- To read more:
 - See Awerbuch's extensive work on
 - Applications of synchronizers.
 - Distributed algorithms for clustered networks.
 - Also work by Peleg.
 - [Awerbuch, Peleg] Dijkstra Prize paper on clustered networks.
- Q: This work used a strategy of purposely slowing down portions of a system in order to improve overall performance. In which situations is this strategy a win?

Lower Bound on Time for Synchronization

Lower bound on time for synchronization

- A, B, Γ emulate synchronous algorithms only in a local sense:
 - Looks the same to individual users,
 - Not to the combination of all users---can reorder events at different users.
- Good enough for many applications (e.g., data management).
- Not for others (e.g., embedded systems).
- Now a theoretical result showing that global synchronization is inherently more costly than local synchronization, in terms of time complexity.
- Approach:
 - Define a toy global synchronization problem, the k-Session Problem.
 - Show that this problem has a fast synchronous algorithm, and thus, a fast algorithm using GlobSynch.
 - Time O(k d), assuming GlobSynch takes steps ASAP.
 - Prove that all asynchronous distributed algorithms for this problem are slow.
 - Time $\Omega(k \ diam \ d)$.
 - Implies GlobSynch has no fast distributed implementation.
- Contrast:
 - Synchronizer A, SimpleSynch are fast distributed impls of LocSynch.

k-Session Problem

Session:

Any sequence of *flash* events containing at least one *flash*; event for each location *i*.

k-Session problem:

- In every fair execution, perform at least k separate sessions, and eventually halt.

Original motivation:

 Synchronization of this kind is useful for performing parallel matrix computations that require enough interleaving of process steps, but tolerate extra steps.

Application: Boolean matrix computation

- $n = m^3$ processes cooperate to compute the transitive closure of an $m \times m$ Boolean matrix M.
- $p_{i,i,k}$ repeatedly does:
 - read M(i,k), read M(k,j)
 - If both are 1 then write 1 in M(i,j)
- Each $flash_{i,j,k}$ in the abstract session problem represents a chance for $p_{i,j,k}$ to read or write a matrix entry.
- With enough interleaving ($O(\log n)$ sessions), this is guaranteed to compute the transitive closure.

Synchronous solution

- Fast algorithm using *GlobSynch*:
 - Just flash once at every round.
 - -k sessions done in time O(kd), assuming GlobSynch takes steps ASAP.

Asynchronous lower bound

- Consider a distributed algorithm A that solves the k-session problem.
- Consists of process automata and FIFO send/receive channel automata.

- Assume:
 - -d = upper bound on time to deliver any message (don't count pileups)
 - -l = local processing time, l << d
- Define time measure T(A):
 - Timed execution α : Fair execution with times labeling events, subject to upper bound of d on message delay, l for local processing.
 - $-T(\alpha)$ = time of last flash in α .
 - -T(A) = supremum, over all timed executions α , of $T(\alpha)$.

Lower bound

- Theorem 2: If A solves the k-session problem then $T(A) \ge (k-1) \operatorname{diam} d$.
- Factor of diam worse than the synchronous algorithm.
- Definition: Slow timed execution: All message deliveries take exactly the upper bound time d.
- Proof: By contradiction.
 - Suppose $T(A) < (k-1) \operatorname{diam} d$.
 - Consider α , any slow timed execution of A.
 - $-\alpha$ contains at least k sessions.
 - α contains no flash event at a time $\geq (k-1) \ diam \ d$.
 - So we can decompose $\alpha = \alpha_1 \alpha_2 \dots \alpha_{k-1} \alpha''$, where:

$$\alpha'$$

- Time of last event in α' is < (k-1) diam d.
- No flash events occur in α'' .
- The difference between the times of the first and last events in each α_r is strictly less than $diam\ d$.

Lower bound, cont'd

- Now reorder events in α , while preserving dependencies:
 - Events of same process.
 - Send and corresponding receive.
- Reordered execution will have strictly fewer than k sessions, which will yield a contradiction.
- Fix processes, j_0 and j_1 , with $dist(j_0, j_1) = diam$ (maximum distance apart).
- Reorder within each α_r separately:
 - For α_1 : Reorder to $\beta_1 = \gamma_1 \delta_1$, where:
 - γ_1 contains no event of j_0 , and
 - δ_1 contains no event of j_1 .
 - For α_2 : Reorder to $\beta_2 = \gamma_2 \delta_{2}$, where:
 - γ_1 contains no event of j_1 , and
 - δ_1 contains no event of j_0 .
 - And alternate thereafter.

Lower bound, cont'd

- If the reordering yields a fair execution of A (can ignore timing), then we get a contradiction, because it contains at most k-1 sessions:
 - No session entirely within γ_1 , (no event of j_0).
 - No session entirely within $\delta_1 \gamma_2$ (no event of j_1).
 - No session entirely within $\delta_2 \gamma_3$ (no event of j_0).
 - **—** ...
 - Thus, every session must span some γ_r δ_r boundary.
 - But, there are only k-1 such boundaries.
- It remains only to construct the reordering...

Constructing the reordering

- For example, consider α_r for r odd (analogous construction for r even).
- Need $\beta_r = \gamma_r \, \delta_r$, where γ_r contains no event of j_0 , δ_r no event of j_1 .
- If α_r contains no event of j_0 then don't reorder, define $\gamma_r = \alpha_r$, $\delta_r = \lambda$.
- If α_r contains no event of j_1 then don't reorder, define $\gamma_r = \lambda$, $\delta_r = \alpha_r$.
- Now assume α_r contains at least one event of each.
- Let π be the first event of j_0 , φ the last event of j_1 in α_r .
- Claim: φ does not depend on π .
- Why: There is insufficient time for messages to travel from j_0 to j_1 :
 - Execution α is slow (message deliveries take time d).
 - Time between π and φ is < $diam\ d$.
 - j_0 and j_1 are diam hops apart.
- Then, we can reorder α_r to β_r , in which π comes after φ .
- Consequently, in β_r , all events of j_1 precede all events of j_0 .
- Define γ_r to be the part ending with φ , δ_r the rest.

Next time...

- Time, clocks, and the ordering of events in a distributed system.
- State-machine emulation.
- Vector timestamps.
- Reading:
 - Chapter 18
 - [Lamport] Time, Clocks...paper
 - [Mattern] paper