Concurso JTP

Lenguajes Formales y Computabilidad

Damian Ariel Marotte

Enunciado

Ejercicio 1b Definir como FRP a la funcion TR(a,b,c) la cual determina si los argumentos conforman un triangulo rectangulo o no. Donde TR(a,b,c)=1 si a,b,c se corresponde con los lados de un triangulo rectangulo y TR(a,b,c)=0 si a,b,c no forman un triangulo rectangulo.

Recuerde que en un triangulo rectangulo la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa.

Cuadrado

$$\bullet \ \Box^{(1)}(x) = x \cdot x$$

Cuadrado

•
$$\Box^{(1)}(x) = x \cdot x$$

$$ullet$$
 $\Box^{(1)} = \Phi\left(\Pi^{(2)}, p_1^{(1)}, p_1^{(1)}
ight)$

Delta

•
$$\Delta^{(3)}(x, y, z) = \begin{cases} 1 & \text{si } x^2 + y^2 = z^2 \\ 0 & \end{cases}$$

Delta

•
$$\Delta^{(3)}(x, y, z) = \begin{cases} 1 & \text{si } x^2 + y^2 = z^2 \\ 0 & \end{cases}$$

•
$$\Delta^{(3)}(x, y, z) = E^{(2)}(x^2 + y^2, z^2) = E^{(2)}(\Box^{(1)}(x) + \Box^{(1)}(y), \Box^{(1)}(z)) = E^{(2)}(\Sigma^{(2)}(\Box^{(1)}(x), \Box^{(1)}(y)), \Box^{(1)}(z))$$

Delta

•
$$\Delta^{(3)}(x, y, z) = \begin{cases} 1 & \text{si } x^2 + y^2 = z^2 \\ 0 & \end{cases}$$

•
$$\Delta^{(3)}(x, y, z) = E^{(2)}(x^2 + y^2, z^2) = E^{(2)}(\Box^{(1)}(x) + \Box^{(1)}(y), \Box^{(1)}(z)) = E^{(2)}(\Sigma^{(2)}(\Box^{(1)}(x), \Box^{(1)}(y)), \Box^{(1)}(z))$$

$$\bullet \ \Delta^{(3)} = \Phi\left(E^{(2)}, \Phi\left(\Sigma^{(2)}, \Phi\left(\square^{(1)}, \boldsymbol{\rho}_{1}^{(3)}\right), \Phi\left(\square^{(1)}, \boldsymbol{\rho}_{2}^{(3)}\right)\right), \Phi\left(\square^{(1)}, \boldsymbol{\rho}_{3}^{(3)}\right)\right)$$

•
$$TR^{(3)}(a,b,c) = \Delta^{(3)}(a,b,c) \vee \Delta^{(3)}(a,c,b) \vee \Delta^{(3)}(b,c,a)$$

•
$$TR^{(3)}(a,b,c) = \Delta^{(3)}(a,b,c) \vee \Delta^{(3)}(a,c,b) \vee \Delta^{(3)}(b,c,a)$$

•
$$TR^{(3)} = \Phi\left(\Delta^{(3)}, p_1^{(3)}, p_2^{(3)}, p_3^{(3)}\right) \vee \Phi\left(\Delta^{(3)}, p_1^{(3)}, p_3^{(3)}, p_2^{(3)}\right) \vee \Phi\left(\Delta^{(3)}, p_2^{(3)}, p_3^{(3)}, p_1^{(3)}\right) = \Phi\left(\bigvee^{(2)}, \Phi\left(\bigvee^{(2)}, \alpha^{(3)}, \beta^{(3)}\right), \gamma^{(3)}\right)$$

Oı

x	У	x + y	$D_0^{(1)}\left(x+y\right)$	$D_0^{(1)}\left(D_0^{(1)}(x+y)\right)$
0	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	2	0	1

Oı

x	у	x + y	$D_0^{(1)}\left(x+y\right)$	$D_0^{(1)}\left(D_0^{(1)}(x+y)\right)$
0	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	2	0	1

•
$$\bigvee^{(2)}(x,y) = \begin{cases} 0 & \text{si } x = y = 0 \\ 1 & \end{cases}$$

Or

x	у	x + y	$D_0^{(1)}\left(x+y\right)$	$D_0^{(1)}\left(D_0^{(1)}(x+y)\right)$
0	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	2	0	1

•
$$\bigvee^{(2)}(x,y) = \begin{cases} 0 & \text{si } x = y = 0 \\ 1 & \end{cases}$$

$$\bullet \ \bigvee^{(2)} = \Phi \left(D_0^{(1)}, \Phi \left(D_0^{(1)}, \Phi \left(\Sigma^{(2)}, p_1^{(2)}, p_2^{(2)} \right) \right) \right)$$