

ATLAS Note

ATL-COM-OREACH-2019-002

19th June 2019

Proposal for an ATLAS endorsed 13 TeV dataset for outreach purposes

Meirin Oan Evans^a, Even Simonsen Haaland^b, Arturo Sanchez Pineda^c, Kate Shaw^a, Farid Ould-Saada^b, Leonid Serkin^c, Jean-Francois Arguin^d, Susana Cabrera Urban^e, Dimitris Fassouliotis^f, Christine Kourkoumelis^f, Stelios Vourakis^f, Terrence Wyatt^g, Magnar Kopangen Bugge^b, Eirik Gramstad^b, Sascha Mehlhase^h, Agni Bethani^g, Thomas James Stevenson^a

^aUniversity of Sussex (GB)

^bUniversity of Oslo (NO)

^cINFN Gruppo Collegato di Udine and ICTP, Trieste (IT)

^dUniversité de Montréal (CA)

^eUniversity of Valencia and CSIC (ES)

^fNational and Kapodistrian University of Athens (GR)

^gUniversity of Manchester (GB)

^hLMU Munich (DE)

This document describes the motivations and educational aims of a new ATLAS Open Dat release of datasets. The plan is to release a set of ROOT ntuple files for real data recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV, plus an extensive collection of Monte Carlo datasets. The note outlines the design, content and internal structure of the ntuple files. Also outlined are the different educational use cases that are considered to decid which datasets to produce and which variables to include. This note is intended as a proposate to ATLAS members of the dataset to be released, and also as documentation for ATLAS members that then go on to use the dataset. The note follows a deep review of the different feedback given by ATLAS and non-ATLAS members that have been using the previous release for several years.	d n e e al S
© 2019 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.	

Contents

L	ast of Figures	4				
Li	ist of Tables	5				
1	1 Introduction					
2	Proposed real and simulated datasets	6				
	2.1 Dataset layout	6				
	2.2 Intended use	9				
	2.3 Capabilities and limitations of the proposed dataset	9				
	2.4 Size of the dataset	10				
	2.5 Proposed Monte Carlo datasets	10				
	2.6 Hosting of the datasets	10				
3	Motivation for research-driven education	10				
	3.1 Searching for the Higgs boson in the $H \rightarrow \gamma \gamma$ channel	11				
	3.2 Extending the 8 TeV Open Data example analyses	11				
	3.3 Reconstructing the invariant and transverse masses of Standard Model bosons	12				
	3.4 Searching for the Higgs boson and new physics	12				
	3.5 Study of <i>t</i> -channel single-top production	13				
	3.6 Optimisation of event selection criteria for discovering new physics with ATLAS	13				
4	Conclusion	15				
Li	ist of contributions	20				
A	appendix	21				
A	Detailed List of MC Datasets	21				
R	References	48				

List of Figures

1	Evolution of the Open Data datasets from the 8 TeV release (2016) to the 13 TeV release	
	(2019)	7
2	Evolution of the Open Data Higgs and Beyond Standard Model (BSM) MC signals from	
	the 8 TeV release (2016) to the 13 TeV release (2019)	7
3	Evolution of the Open Data ntuple TTree structure from the 8 TeV release (2016) to the	
	13 TeV release (2019)	8
4	HYPATIA batch processing GUI to adjust the criteria to be optimised	14
5	Example of adjusting event selection criteria definition	15
6	Data and simulation comparisons for $Z \to \ell\ell$ and $H \to ZZ(^*) \to \ell\ell\ell\ell$ analyses	16
7	Reviewed Open Data physics analysis examples released together with the 8 TeV (2016)	
	public samples.	16
8	Proposed Open Data physics analysis examples to be released using the 13 TeV (2019)	
	public samples.	19
9	Evolution of the Open Data physics analysis examples from those using the 8 TeV samples	
	(2016) to those using the 13 TeV samples (2019). *The idea is that once the 13 TeV samples	
	are public, ATLAS and non-ATLAS members can contribute to the development of those	
	analysis examples.	19

List of Tables

1	Proposed event, lepton, MET & jet ntuple variables	17
2	Proposed photon, fatjet, tau, truth information & systematics estimation ntuple variables	18
3	1 lepton collection real data	21
4	2 lepton collection real data	22
5	Diphoton collection real data	22
6	1 hadronic τ + 1 leptonic τ collection real data	23
7	2 hadronic τ + 0 lepton collection real data	23
8	1 hadronic τ + 0 lepton collection real data	24
9	Lepton + fatjet collection real data	24
10	1 lepton collection SM simulated data preselection details	25
11	1 lepton collection sliced W simulated data preselection details	26
12	1 lepton collection Higgs simulated data preselection details	27
13	1 lepton collection Z' simulated data preselection details	28
14	1 lepton collection SUSY simulated data preselection details	29
15	1 lepton collection truth information simulated data preselection details	30
16	2 lepton collection SM simulated data preselection details	31
17	2 lepton collection low-mass Drell-Yan simulated data preselection details	32
18	2 lepton collection Higgs simulated data preselection details	33
19	2 lepton collection Z' & Mono- Z simulated data preselection details	34
20	2 lepton collection graviton simulated data preselection details	35
21	2 lepton collection SUSY simulated data preselection details part (a)	36
22	2 lepton collection SUSY simulated data preselection details part (b)	37
23	2 lepton collection truth information simulated data preselection details	38
24	Diphoton collection simulated data preselection details	39
25	1 hadronic τ + 1 lepton top, Z, W, diboson & H simulated data preselection details	40
26	1 hadronic τ + 1 lepton low-mass Drell-Yan simulated data preselection details	41
27	2 hadronic τ + 0 lepton collection simulated data preselection details	42
28	1 hadronic τ + 0 lepton collection simulated data preselection details	43
29	Lepton + fatjet collection SM simulated data preselection details	44
30	Lepton + fatjet collection sliced W simulated data preselection details	45
31	Lepton + fatjet collection BSM simulated data preselection details	46

1 Introduction

The ATLAS Collaboration, as well as most other high-energy physics collaborations and experiments, rely on public funding to support their scientific programmes. Even more importantly, their continuity depends on a constant integration and replacement of human power – students and professionals that need to be trained, usually by senior members of those collaborations. We can call it "Knowledge Transfer", and it goes in both ways: to reattribute to society and to keep running the – even larger – scientific endeavours worldwide. Moreover, for that knowledge transfer to happen between members and non-members of the collaboration it is necessary to have real public datasets, tools and documentation.

An important part of ATLAS' current Open Access model regarding recorded and simulated data is to release datasets with a focus on education, training and outreach [1]. This mandate supports the creation of multiple platforms, projects, software and educational products that are used all over the planet. Examples of these platforms are the ATLAS and CERN Open Data websites [2, 3].

With that approach in mind, ATLAS has already released trillions of simulated and recorded collision events at a centre-of-mass energy of 8 TeV in 2016 [4–6], together with analysis tools and web-based documentation on the websites mentioned above.

Following the 2016 release (that included 1 fb⁻¹ of real data), ATLAS members as well as external collaborators and users reported a range of activities [7]. This note documents the overall design, physics object content and selection, example analysis proposals and collections of samples for the next ATLAS Open Data release.

The new set of samples is based on ATLAS data and Monte Carlo (MC) datasets recorded and produced at a centre-of-mass energy of 13 TeV. This release would be the first 13 TeV public dataset released by an LHC experiment. The format of the new samples follows the 8 TeV samples. Amongst other reasons, this keeps backward compatibility of the documentation, software and tools developed by ATLAS, external partners and users. The samples are ROOT [8] files containing TTree objects with almost a hundred variables.

The design and content of the TTree object is based on input from multiple collaboration members. These include researchers and educators that are using the 8 TeV samples, and others who want to explore new academic programmes or educational exercises for their students using real LHC data. Other formats are under consideration, but they will be simple translations of the aforementioned ROOT TTree into tabular formats, when possible and relevant.

There is a significant number of use cases for this soon-to-come release of 10 fb⁻¹ of real data, hundreds of fb⁻¹ more in MC and resources. These data, MC and resources will be invaluable for the ATLAS Collaboration, as well as any other people that would like to explore the world of experimental particle physics and the computer science behind its data analysis.

The following three figures give an idea of the most relevant changes in the number of samples and the content of 13 TeV datasets for this 2019 release proposal with respect to the 2016 release at 8 TeV:

- Figure 1 shows the evolution of the Open Data datasets from the 8 TeV release (2016) to the 13 TeV release (2019).
- Figure 2 shows the evolution of the Open Data Higgs and BSM MC signals from the 8 TeV release (2016) to the 13 TeV release (2019).
- Figure 3 shows the evolution of the Open Data ntuple TTree structure from the 8 TeV release (2016) to the 13 TeV release (2019).

2 Proposed real and simulated datasets

2.1 Dataset layout

The dataset to be published needs to meet several demands. It has to enable institutes with diverse needs to implement their desired laboratory courses and present an interesting dataset for students outside ATLAS.

Figure 1: Evolution of the Open Data datasets from the 8 TeV release (2016) to the 13 TeV release (2019)

Figure 2: Evolution of the Open Data Higgs and Beyond Standard Model (BSM) MC signals from the 8 TeV release (2016) to the 13 TeV release (2019)

Figure 3: Evolution of the Open Data ntuple TTree structure from the 8 TeV release (2016) to the 13 TeV release (2019)

At the same time it should still be analysable on older commodity hardware as one wants to have a low technical entry barrier. Furthermore, the rules laid down in the ATLAS Data Access Policy [1] have to be honoured. Compromising between these demands affects the size and content of the dataset.

It is proposed to set the size of the dataset to about 10 fb^{-1} . Laboratory courses doing searches may have enough statistics to exclude models with strong signals in a meaningful phase space. Furthermore, Standard Model analyses such as a measurement of $H \to ZZ \to \ell\ell\ell\ell$ will have suitable statistics for relatively precise results.

The information content includes only basic information: four vectors, quality flags, an estimate for systematics, some basic event information and truth information for some datasets. Furthermore, the published dataset will not contain information for precise systematics treatment or serious data-driven methods like the Matrix Method [9]. Such a lean information layout will help the students retain a clear view of the data, and will help them to focus on the educational targets at hand, rather than being swamped by technical details. It is also expected that such a dataset will be processed faster on commodity hardware.

Currently, the ideal layout for the dataset is a modified version of the ntuple produced by the $HH \rightarrow bb\tau\tau$ version of the CxAODFramework [10, 11], using the "Goldcrest" $HH \rightarrow bb\tau\tau$ CxAOD production tag [12]. This framework sets up AnalysisBase release 2.4.28. The ntuple layout is defined in Tables 1 and 2. Electrons and muons are combined into a lepton collection and distinguished using lep_type to ensure as much continuity as possible for users that have experienced 8 TeV ATLAS Open Data. This also emphasises how electrons and muons are different to hadronic taus (which are new since 8 TeV ATLAS Open Data), by having separate tau branches.

By employing a stable release of the $HH \to bb\tau\tau$ version of the CxAODFramework, one would have the advantage of having a documented and well tested foundation for the definition of the dataset.

2.2 Intended use

This note is intended as a proposal to ATLAS members of the dataset to be released, and also as documentation for ATLAS members that then go on to use the dataset. These public data will be for educational use only. They do not qualify to reproduce actual ATLAS analysis results or produce publishable results. The fact that full systematics will not be provided, among other simplifications, restricts people from publishing actual results. The limited information provided sets the desired bounds of usage.

2.3 Capabilities and limitations of the proposed dataset

The provided content of the proposed datasets translates directly to the type of physics analyses that are feasible. It may support studies such as selection optimisation studies, searches, and measurements such as $H \to ZZ \to \ell\ell\ell\ell$. In addition it may be used as a testbed for new data-analysis techniques external to ATLAS, e.g. kinematic fits. To highlight in a public way the new analysis techniques people have created, we intend to invite users to add content to the atlas-outreach-data-tools GitHub repository [14].

The proposed datasets can be used for educational and physics purposes with different levels of task difficulty. At a beginner level, one could visualise the content of the datasets and produce simple distributions. An intermediate-level task would consist of making histograms with collision data after some basic selection, while advanced-level tasks would allow for a deeper look into the ATLAS data, with possibilities of measuring real event properties and physical quantities.

A non-exhaustive list of possible tasks with the proposed datasets include: comparisons of several distributions of event variables for simulated signal and background events; finding variables that are able to separate signal from background (jet multiplicity, transverse momenta of jets and leptons, lepton isolation, *b*-tagging, missing transverse energy, angular distributions); development and modification of cuts on these variables in order to enrich the signal over background separation; optimisation of the signal-over-background ratio and estimation of the purity based on simulation only; comparisons of the selection efficiency between data and simulation.

Advanced-level tasks might include: reconstruction of the truth objects (quarks or bosons) by assigning the detector objects (jets, leptons, missing energy) to the hypothetical decay trees; estimation of the impact of several sources of systematic uncertainties (luminosity uncertainty, *b*-tagging efficiency, trigger efficiency, uncertainty on background events) by adding approximate and conservative values; derivation of production cross sections and masses of objects.

The content does not support the creation of unfolded distributions, measuring efficiency corrected cross sections, and searches for signals that are not supported by signal datasets made available by ATLAS.

Only limited truth object information is provided, in order to facilitate the derivation of detector responses. Some experimental uncertainties are added in the datasets to provide ground for systematic-uncertainty estimation studies. With the aim of facilitating particle-level studies that do not require detailed knowledge of the detector, high-level object information and limited low-level object information is provided.

2.4 Size of the dataset

The integrated luminosity of the dataset needed for the individual exercises has been estimated to be $10~{\rm fb^{-1}}$. The total needed space will be determined by the size of the preselected real data and the size of the simulated data. To lessen the need for large storage resources the simulated datasets will be preselected. The final storage needs can be seen in Tables \ref{Tables} to \ref{Tables} to \ref{Tables} to \ref{Tables} to \ref{Tables} will be needed for the lepton (STDM4) collections, 3 GB for the diphoton (HIGG1D1) collection, 2 GB for the \ref{Tables} (HIGG4D2) collection, 100 MB for the \ref{Tables} (HIGG4D3) collection, 310 MB for the \ref{Tables} (HIGG4D5) collection, 2 GB for the fatjet (i.e. large-R jet) (HIGG5D2) collection and 1 GB for the truth (STDM4) collection. These collections will be provided separately as ntuples with different content. A total of approximately 100 GB of storage will be needed for all real and simulated data.

2.5 Proposed Monte Carlo datasets

Utilising simulated data in laboratory courses can teach students about background composition, statistical aspects of MC generation and data/MC comparison. A standard set of simulated SM processes includes W+jets, Z+jets, $t\bar{t}$, single-top, QCD, diboson, and diphoton datasets. Here the QCD datasets may be neglected due to the application of a one-lepton, one-tau or diphoton skim. For searches, the basic set of SM processes is complemented by simulations of Z', graviton and Higgs processes. The final datasets are described in Tables 10 to 31 in the Appendix. 85 GB of disk space is required for the lepton (STDM4) collection, 3 GB for the diphoton (HIGG1D1) collection, 2 GB for the 1τ +1lep (HIGG4D2) collection, 100 MB for the 2τ (HIGG4D3) collection, 310 MB for the 1τ +0lep (HIGG4D5) collection, 2 GB for the fatjet (i.e. large-R jet) (HIGG5D2) collection and 1 GB for the truth (STDM4) collection. These collections will be provided separately as ntuples with different content. Bundled together the simulated and real data require about 100 GB in storage.

2.6 Hosting of the datasets

It is proposed to host the dataset on the ATLAS and CERN Open Data portals [2, 3] in ROOT ntuple format, produced using ROOT 6.04/16 [16]. Currently, ATLAS stores 8 TeV Open Data in ROOT ntuple format on these portals, which in total has a size of about 8 GB. Storing an additional dataset of an order of magnitude larger in size should not pose a problem.

3 Motivation for research-driven education

The importance of the continuous integration of qualified personnel to the ATLAS Experiment is paramount. This endeavour started 25 years ago and is planned to last at least another 15 years from now. With such a lifetime it is easy to imagine that ATLAS members can spend their entire professional career associated with the experiment. Of course, this is not always the case, therefore constant knowledge transfer to students and young researchers is needed to keep running the experiment and the infrastructure around it.

In the meantime, ATLAS and the other LHC experiments are writing (and re-writing) the high-energy and particle physics textbooks in many subjects: from detector development and technology, to Data Acquisition Systems; from novel data-analysis techniques, to new (or more precise) physics results. This requires that professors and senior researchers around the world design and perform exercises with their trainees as close as possible to the reality of that new physics knowledge.

This provides strong motivation to make a collaborative effort to release meaningful and reliable samples for training and education. The 2016 release of ATLAS Open Data at 8 TeV succeeded in providing such samples. However, the 2016 release does not contain enough statistics to actually study the Higgs. Students are left with few events around the Higgs mass, which is somewhat disappointing since they expect to make a discovery with the 1 $\rm fb^{-1}$ of Open Data currently available. The next sections explore the physics analysis examples that influenced the design of the 13 TeV ATLAS Open Data samples.

3.1 Searching for the Higgs boson in the $H \rightarrow \gamma \gamma$ channel

One possible analysis to carry out with students during a laboratory course might be the study of $H \to \gamma \gamma$. The aim is to show students how this channel was used in the Higgs discovery. To reproduce selection requirements to reconstruct a simple invariant-mass peak, the following photon variables would be needed: four-momenta, isolation and quality criteria, and information whether photons were trigger and truth matched. The necessary MC would include the main Higgs production mechanisms; gluon–gluon fusion (ggH), vector-boson fusion (VBFH) and vector-boson associated production (VH). The production of a top-quark pair in association with a Higgs boson (ttH) would also be nice to include since this was only recently observed. To bring the current research frontier into the classroom, the most recent observations are important to cover. Processes that have been observed very recently are also often considered more attractive to students. For a simple analysis without using multivariate techniques, up to $10~{\rm fb}^{-1}$ and a centre-of-mass energy of 13 TeV might be required to observe a statistically significant (3σ) Higgs peak in this channel alone.

3.2 Extending the 8 TeV Open Data example analyses

The ATLAS Open Data project has been used to teach undergraduate introductory courses in particle physics. These courses could include a general (qualitative) introduction followed by a discussion of experimental methods and finish with an "appetiser" to theoretical physics, i.e. quantum electrodynamics. The part discussing experimental methods could include e.g. three weeks using Open Data.

Example analyses could be released alongside the proposed datasets outlined in this document. Students could choose projects based on some of the example analyses provided in the Open Data project, and each would have a suggested analysis to start from. The analysis examples are briefly described below:

- Z boson analysis (suggested starting point: ZAnalysis.py): code containing a study regarding the Z mass peak, Z+jet balancing for jet calibration, Z+jet invariant mass.
- W boson analysis (suggested starting point: WAnalysis.py): code containing a study regarding the W charge asymmetry and its evolution with p_T , W+1 jet selection, fake-lepton study.
- $t\bar{t}$ 1-lepton analysis (suggested starting point: TTbarAnalysis.py): code containing a study regarding cross-section measurement, top mass measurement, boosted W boson inside $t\bar{t}$ events, $t\bar{t}$ invariant mass.

- WZ and ZZ analyses (suggested starting points: WZAnalysis.py and ZZAnalysis.py): code containing a study regarding the WZ charge asymmetry, p_T of the Z boson in WZ events, ZZ invariant mass, WZ invariant mass.
- $t\bar{t}$ 2-lepton analysis (suggested starting point: TTbarAnalysis.py): code containing selections for $t\bar{t}$ 2-lepton, cross-section measurement, b-jet content of the dataset.
- WW and $Z \to \tau\tau$ analyses (suggested starting point: ZAnalysis.py): code containing an extraction of a WW signal (starting from a Z boson selection), extraction of $Z \to \tau\tau$ signal, cross-section measurement of $Z \to \tau\tau$, WW+2 jets
- Search for new physics using same-sign lepton pairs (suggested starting point: ZAnalysis.py): code containing a study and suppression of fake leptons, suppression of charge-flip electrons, searching for a bump in the mass distribution.

If the university physics curriculum includes a mandatory programming course prior to taking this course, students would not need an introduction to programming for this course. Four hours of course time during the week in a computing laboratory, would provide a chance for a teacher and teaching assistant to answer questions. Students could either form teams of about seven, each picking one of the above projects, or teams of two working on the same project. Another possibility is to have only one simpler project which consists of re-discovering the Z and W bosons, the top quark and diboson (WZ) production, and demonstrate that these particles' behaviours are consistent with the SM.

The higher centre-of-mass energy and increased luminosity of a new release of Open Data using 13 TeV data will allow to study $H \to ZZ$, which will be very attractive to students. An addition of simulated Supersymmetry (SUSY) processes will allow to search for new physics with only slight modifications of the $t\bar{t}$ and WZ analyses, and will allow to bring the subject of dark matter into courses (since the lightest SUSY particle is considered to be a good dark matter candidate). From the educational and outreach points-of-view, a highlight for the new release could be the capability to inject these signals in the real data. Also, the addition of fat jets, which can be used to reconstruct boosted objects (W/Z/top/H) in the new release could allow to design interesting projects that use modern particle-physics tools.

3.3 Reconstructing the invariant and transverse masses of Standard Model bosons

A university laboratory course already studying $Z \to \ell\ell$ ($\ell = e, \mu$) could be extended to include $Z \to \tau\tau$, $H \to \tau\tau$ and $H \to \gamma\gamma$. In the same way, extending $W \to \ell\nu_\ell$ to $W \to \tau\nu_\tau$ would be possible. Having been introduced to the concept of invariant and transverse mass, students would be encouraged to discover the entire actual analyses themselves. Additionally to the first release of Open Data, these analyses would require information on hadronic tau and photon candidates. Some very simple systematic-uncertainty estimations will also be useful to teach students the importance of systematics. With 10 fb⁻¹ at 13 TeV, studies of diboson events, including $H \to ZZ \to \ell\ell\ell\ell$, will be possible.

3.4 Searching for the Higgs boson and new physics

The previous release of ATLAS Open Data at 8 TeV has been used in several courses at the University of Oslo for the past years, and three different projects have been developed [7, 17]. Some parts of these projects can unfortunately not be completely carried out with the current Open Data release due to a lack of information/variables and/or low statistics.

A release of a 13 TeV dataset with higher integrated luminosity, and additional variables (e.g. photon information), would allow for nice extensions and realisations of the already existing projects.

The first project focuses on the 4ℓ final state, what it can tell us about the SM, and in particular the Higgs boson. As already mentioned in Section 3.3, a release of a dataset with higher integrated luminosity (and energy) would allow students to study the $H \to ZZ$ process, which would be very attractive.

The second project focuses on new forces and extra space dimensions, and the students do a search for the Z' and/or the graviton by studying the invariant mass distribution of two leptons. These two different signals could be further characterised by studying their angular distributions, since the Z' and the graviton carry different spins (spin-1 and spin-2, respectively). A part of this project that currently can not be carried out is to also study the diphoton channel, and do a search for Higgs (spin-0) and graviton production by making use of the diphoton invariant mass and angular distributions. This would however be possible with the proposed 13 TeV dataset.

The third project focuses on searches for SUSY and dark matter by looking at final states with two leptons and missing transverse energy. The simplest signal models to study in these cases are direct production of sleptons ($\tilde{\ell}^+\tilde{\ell}^-$) and production of mono-Z with associated dark matter candidate particles. The necessary variables are already contained in the existing 8 TeV dataset. However, additional variables (e.g. truth information and systematics) would allow for more sophisticated analyses for advanced students.

In general all three projects are closely related to the research done by the ATLAS group in Oslo, and they serve as excellent introductions to the field, in particular for first-year master students, or bachelor students that are curious about experimental particle physics. A new release of Open Data would bring these projects even closer to the current research frontier. It would also, to a larger extent, allow students to select the analyses they find most interesting, without the limitations of lacking variables or low statistics.

3.5 Study of t-channel single-top production

Another analysis that would be possible to carry out with undergraduate students, e.g. during a two weeks summer programme dedicated to introduce them into the field of top-quark physics, is the study of the t-channel single-top production. This study will consist of three steps. First, they will perform a simple generator-level study where they will reconstruct the top-quark mass using the true four-momenta of the top-quark decay products: $t \rightarrow W(\rightarrow \ell \nu)b$.

Later, they will reconstruct the top-quark mass using the four-momenta of detector-level physics objects: a lepton, a b-jet and the missing transverse momentum of the event. From the detector-level physics objects, they can determine neutrino longitudinal momentum, and then compare the rescaled missing transverse momentum with the true transverse momentum of the neutrino. Finally, they will perform a simple cut-based selection of t-channel single-top-quark events using the previously reconstructed top-quark mass and three additional discriminating variables and they will evaluate signal and background event yields.

3.6 Optimisation of event selection criteria for discovering new physics with ATLAS

Analysis paths exploring thousands of events in a batch mode could be used for third year undergraduate laboratories [18]. They would aim to enable students to simulate the researcher's analysis by optimising a set of relevant criteria in order to maximise the signal to background ratio. Students could study both decays of a Z boson to two leptons, and decays of Higgs bosons to four leptons.

For each particle they could be provided with three sets of events: a) Monte Carlo signal events b) Monte Carlo background events and c) real data.

In the case of the Z boson analysis, the background would be constructed by W+jets events with one same flavour opposite sign additional lepton. In the case of the Higgs boson search, the irreducible background $ZZ \rightarrow \ell\ell\ell\ell$ would be used together with two sources of reducible backgrounds Z+ jets and $t\bar{t}$. For the latter, the four-lepton-filtered datasets would be used.

The variables which could be used from the Open Data ntuples would be the kinematic information of the leptons (p_T, η, ϕ) , the charge and the identification type (electron or muon). Furthermore, the variables which are implemented in the standard analysis to suppress the reducible backgrounds could also be used. These are the impact parameter significances (lep_trackd0pvunbiased, lep_tracksigd0pvunbiased, and lep_z0) and the track and calorimeter isolation variables (lep_ptcone30 and lep_etcone20) normalised to the lepton p_T .

Students could then use a user friendly GUI (see Figure 4) which lists the group of criteria (such as p_T of leptons, impact parameter significance and isolation) and optimise each one separately by inspecting the histograms provided for simulated signal and background events and maximising the corresponding significance, which is displayed as a function of the discriminating variable value (see Figure 5).

Figure 4: HYPATIA batch processing GUI to adjust the criteria to be optimised for a two lepton analysis (left) and a four lepton analysis (right).

Figure 5: Example of adjusting event selection criteria definition. The upper plot represents signal MC distribution, the middle plot the background MC distribution and the lower plot the corresponding significance. The x-axes correspond to isolation value and the y-axes to bin entries.

Many students could follow the above described analysis over a number of academic years. Nevertheless at the end of the day, while there are enough real data events for the data and simulation comparison in the $Z \to \ell\ell$ study, there are too few real data events for the data and simulation comparison in the $H \to ZZ \to \ell\ell\ell\ell$ study with 1 fb⁻¹ of 8 TeV Open Data (see Figure 6). With the proposed release of 10 fb⁻¹ of real data at 13 TeV this would finally be possible.

4 Conclusion

This note details the design, requirements, technical details and benefits of publishing an ATLAS endorsed dataset at a centre-of-mass energy of 13 TeV. We describe a series of educational projects and physics analyses that justify and will profit from such a dataset, as well as a comparison with respect to the previous ATLAS public release dataset at a centre-of-mass energy of 8 TeV in 2016. In terms of total luminosity, the size of the recorded data is proposed to be 10 fb⁻¹. Proper sizes for Monte Carlo samples describing necessary SM and BSM processes have been calculated taking into account the feedback of users and ATLAS analysis groups to be able to produce meaningful analysis examples. The content of the data samples will be rather basic: replicating a final-analysis kind of dataset and using only high-level variables such as the kinematics of reconstructed physics objects, quality flags, necessary event information and a minimal amount of truth and systematic information. Once published, both data and MC samples are proposed to be hosted on the ATLAS [2] and CERN [3] Open Data portals, having a total size of around 150 GB. The published datasets will foster educational efforts at the high-school and university levels by providing the material for hands-on physics exercises at different levels of complexity with the aim to reach as many people as possible in ATLAS and non-ATLAS members' institutions around the world.

Figure 6: Data and simulation comparisons for the (a) $Z \to \ell\ell$ analysis and (b) $H \to ZZ(^*) \to \ell\ell\ell\ell$ analysis. In each case the upper plot corresponds to real data, while the lower plot corresponds to the combined signal and background MC data with user imposed normalisation.

Figure 7: Reviewed Open Data physics analysis examples released together with the 8 TeV (2016) public samples.

branchname	type	description
runNumber	int	run identifier
eventNumber	int	event identifier
channelNumber	int	simulated data dataset ID e.g. $WW \rightarrow \ell \nu \ell \nu$ 361600
mcWeight	float	weight of a simulated event
SF_PILEUP	float	scalefactor for pileup reweighting
SF_ELE	float	scalefactor for electron efficiency, only ≠1 if electron selected & tagged
SF_MUON	float	scalefactor for muon efficiency, only ≠1 if muon selected & tagged
SF_PHOTON	float	scalefactor for photon efficiency, only ≠1 if photon selected & tagged
SF_TAU	float	scalefactor for tau efficiency, only ≠1 if tau selected & tagged
SF_BTAG	float	scalefactor for b-tagging algorithm, only $\neq 1$ if b-jet selected & tagged
SF_LepTRIGGER	float	scalefactor for different operating efficiencies of used lepton triggers
SF_PhotonTRIGGER	float	scalefactor for different operating efficiencies of used photon triggers
SF_TauTRIGGER	float	scalefactor for different operating efficiencies of used tau triggers
SF_DiTauTRIGGER	float	scalefactor for different operating efficiencies of used ditau triggers
trigE	bool	boolean whether a standard trigger has fired in the egamma stream
trigM	bool	boolean whether a standard trigger has fired in the muon stream
trigP	bool	boolean whether a standard trigger has fired in the photon stream
trigT	bool	boolean whether a standard trigger has fired in the tau stream
trigDT	bool	boolean whether a standard trigger has fired in the ditau stream
lep_n	int	number of preselected leptons
lep_truthMatched	vector <bool></bool>	boolean indicating whether the lepton is matched to a simulated lepton
lep_trigMatched	vector <bool></bool>	boolean signifying whether the lepton is triggering the event
lep_pt	vector <float></float>	transverse momentum of the lepton
lep_eta	vector <float></float>	pseudo-rapidity of the lepton
lep_phi	vector <float></float>	azimuthal angle of the lepton
lep_E	vector <float></float>	energy of the lepton
lep_z0	vector <float></float>	z-coordinate of the track associated to the lepton wrt. primary vertex
lep_charge	vector <int></int>	charge of the lepton
lep_type	vector <int></int>	number signifying the lepton type (e or μ)
lep_isTightID	vector <bool></bool>	boolean indicating whether lepton satisfies tight ID reconstruction criteria
lep_ptcone30	vector <float></float>	scalar sum of track p_T in a cone of R =0.3 around lepton
lep_etcone20	vector <float></float>	scalar sum of track $E_{\rm T}$ in a cone of R =0.2 around lepton
lep_d0	vector <float></float>	d_0 of track associated to lepton at point of closest approach (p.o.a.)
lep_d0sig	vector <float></float>	d_0 significance of track associated to lepton at p.o.a.
met_et	float	transverse energy of the missing momentum vector
met_phi	float	azimuthal angle of the missing momentum vector
jet_n	int	number of preselected jets
jet_pt	vector <float></float>	transverse momentum of the jet
jet_eta	vector <float></float>	pseudo-rapidity of the jet
jet_phi	vector <float></float>	azimuthal angle of the jet
jet_E	vector <float></float>	energy of the jet
jet_jvt	vector <float></float>	jet vertex tagging of the jet
jet_trueflav	vector <int></int>	flavour of the simulated jet
jet_truthMatched	vector <bool></bool>	boolean indicating whether the jet is matched to a simulated jet
jet_MV2c10	vector <float></float>	weight from algorithm based on Multi-Variate technique

Table 1: Proposed event, lepton, missing transverse momentum and jet variable content of a data dataset for educational purposes. The content presented is a further slimmed down version of the ntuple produced by the $HH \to bb\tau\tau$ version of the CxAODFramework.

branchname	type	description
photon_n	int	number of preselected photons
photon_truthMatched	vector <bool></bool>	boolean indicating whether the photon is matched to a simulated photon
photon_trigMatched	vector <bool></bool>	boolean signifying whether the photon is triggering the event
photon_pt	vector <float></float>	transverse momentum of the photon
photon_eta	vector <float></float>	pseudo-rapidity of the photon
photon_phi	vector <float></float>	azimuthal angle of the photon
photon_E	vector <float></float>	energy of the photon
photon_isTightID	vector <bool></bool>	boolean indicating whether photon satisfies tight ID reconstruction criteria
photon_ptcone30	vector <float></float>	scalar sum of track p_T in a cone of R =0.3 around photon
photon_etcone20	vector <float></float>	scalar sum of track $E_{\rm T}$ in a cone of R =0.2 around photon
photon_convType	vector <int></int>	information whether and where the photon was converted
fatjet_n	int	number of preselected fatjets
fatjet_pt	vector <float></float>	transverse momentum of the fatjet
fatjet_eta	vector <float></float>	pseudo-rapidity of the fatjet
fatjet_phi	vector <float></float>	azimuthal angle of the fatjet
fatjet_E	vector <float></float>	energy of the fatjet
fatjet_m	vector <float></float>	invariant mass of the fatjet
fatjet_truthMatched	vector <int></int>	information whether the fatjet is matched to a simulated fatjet
fatjet_D2	vector <float></float>	weight from algorithm for W/Z boson tagging
fatjet_tau32	vector <float></float>	weight from algorithm for top quark tagging
tau_n	int	number of preselected taus
tau_pt	vector <float></float>	transverse momentum of the tau
tau_eta	vector <float></float>	pseudo-rapidity of the tau
tau_phi	vector <float></float>	azimuthal angle of the tau
tau_E	vector <float></float>	energy of the tau
tau_isTightID	vector <bool></bool>	boolean indicating whether tau satisfies tight ID reconstruction criteria
tau_truthMatched	vector <bool></bool>	boolean indicating whether the tau is matched to a simulated tau
tau_trigMatched	vector <bool></bool>	boolean signifying whether the tau is triggering the event
tau_nTracks	vector <int></int>	number of tracks in the tau decay
tau_BDTid	vector <float></float>	Boosted Decision Tree identification number of the tau
ditau_m	float	mass of ditau system, from the Missing Mass Calculator [13]
truth_pt	vector <float></float>	transverse momentum of the simulated particle in t decay chain (t, W, b, lep, v)
truth_eta	vector <float></float>	pseudo-rapidity of the simulated particle in t decay chain (t, W, b, lep, v)
truth_phi	vector <float></float>	azimuthal angle of the simulated particle in t decay chain (t, W, b, lep, v)
truth_E	vector <float></float>	energy of the simulated particle in t decay chain (t, W, b, lep, v)
truth_pdgid	vector <int></int>	PDG ID number of the simulated particle in t decay chain (t, W, b, lep, v)
lep_pt_syst	vector <float></float>	quadrature sum of systematic shifts that affect lep_pt, to provide an estimate
met_et_syst	float	quadrature sum of systematic shifts that affect met_pt, to provide an estimate
jet_pt_syst	vector <float></float>	quadrature sum of systematic shifts that affect jet_pt, to provide an estimate
photon_pt_syst	vector <float></float>	quadrature sum of systematic shifts that affect photon_pt, to provide an estimate
fatjet_pt_syst	vector <float></float>	quadrature sum of systematic shifts that affect fatjet_pt, to provide an estimate
tau_pt_syst	vector <float></float>	quadrature sum of systematic shifts that affect tau_pt, to provide an estimate

Table 2: Proposed photon, fatjet, hadronic tau truth information and systematics estimation variable content of a data dataset for educational purposes. The content presented is a further slimmed down version of the ntuple produced by the $HH \rightarrow bb\tau\tau$ version of the CxAODFramework.

Figure 8: Proposed Open Data physics analysis examples to be released using the 13 TeV (2019) public samples.

Figure 9: Evolution of the Open Data physics analysis examples from those using the 8 TeV samples (2016) to those using the 13 TeV samples (2019).

^{*}The idea is that once the 13 TeV samples are public, ATLAS and non-ATLAS members can contribute to the development of those analysis examples.

List of contributions

Meirin Oan Evans	Editing, table compilation, appendix writing, "Searching for the Higgs boson in the $H \rightarrow \gamma \gamma$ channel" analysis
Even Simonsen Haaland	Editing, "Searching for the Higgs boson and new physics" analysis
Arturo Sanchez Pineda	ATLAS Outreach Data & Tools group coordination
	6 1
Kate Shaw	ATLAS Open Data concept
Farid Ould-Saada	BSM processes and "Searching for the Higgs boson and new physics" analysis
Leonid Serkin	"Capabilities and Limitations of the Proposed Dataset" section
Jean-Francois Arguin	"Extending the provided example analyses" analysis
Susana Cabrera Urban	"Study of <i>t</i> -channel single top production" analysis
Dimitris Fassouliotis	"Optimisation of event selection criteria for discovering new physics with ATLAS" analysis
Christine Kourkoumelis	"Optimisation of event selection criteria for discovering new physics with ATLAS" analysis
Stelios Vourakis	'Optimisation of event selection criteria for discovering new physics with ATLAS" analysis
Terrence Wyatt	"Reconstructing the invariant and transverse masses of Standard
Ž	Model bosons" analysis
Magnar Kopangen Bugge	BSM processes and cross sections
Eirik Gramstad	BSM processes and cross sections
Sascha Mehlhase	editorial work, concept, comments
Agni Bethani	Tuple making code design
Thomas James Stevenson	Tuple making code design

Appendix

A Detailed List of MC Datasets

~85 GB will be needed for the lepton collections, ~3 GB for the diphoton collection, ~2 GB for the $1\tau+1$ lep collection, 100 MB for the 2τ collection, 310 MB for the $1\tau+0$ lep collection, ~2 GB for the fatjet collection and 1 GB for the truth collection. Bundled together the simulated and measured data require about ~100 GB in storage.

The cross sections and DSIDs for the SM and $Z' \to t\bar{t}$ processes quoted were taken from the Central MC15 Production List page [19]. Cross sections for leptonic Z', graviton, mono-Z and SUSY processes were taken from AMI [20]. Higgs to diphoton cross sections were taken from the paper "Measurements of Higgs boson properties in the diphoton decay channel with 36 fb⁻¹ of pp collision data at \sqrt{s} = 13 TeV with the ATLAS detector". Higgs branching ratios were taken from the Handbook of LHC Higgs Cross Sections [21].

period	$N_{\text{events}}^{\text{measured}}$	$N_{\rm events}^{\rm pre}$	$N_{ m events}^{ m tuple}$	$\mathcal{L}/\mathrm{fb}^{-1}$	size/MB
A	361236098	47317312	10430587	0.547	1678
В	369173081	101669759	34876174	1.949	5910
C	623945258	152132517	51062670	2.884	8667
D	872671484	230557180	72797928	4.684	12362

Table 3: Breakdown of the dataset of measured data with exactly 1 lepton per event, with a total luminosity of $10.064~{\rm fb^{-1}}$. $N_{\rm events}^{\rm measured}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm pre}$ the number of events after preselection. $N_{\rm events}^{\rm tuple}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the 1 lepton collection were selected using the same preselection as applied on the simulated data in the 1 lepton collection. The total needed storage for 1 lepton measured data with exactly 1 lepton per event is around 28.617 GB.

period	$N_{\text{events}}^{\text{measured}}$	$N_{ m events}^{ m pre}$	$N_{ m events}^{ m tuple}$	$\mathcal{L}/\mathrm{fb}^{-1}$	size/MB
A	361236098	47317312	535499	0.547	143
В	369173081	101669759	2459378	1.949	523
C	623945258	152132517	3587885	2.884	761
D	872671484	230557180	5490432	4.684	1162

Table 4: Breakdown of the dataset of measured data with at least 2 leptons per event, with a total luminosity of $10.064~{\rm fb^{-1}}$. $N_{\rm events}^{\rm measured}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm pre}$ the number of events after preselection. $N_{\rm events}^{\rm tuple}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the 2 lepton collection were selected using the same preselection as applied on the simulated data in the 2 lepton collection. The total needed storage for 2 lepton measured data with at least 2 leptons per event is around 2.589 GB.

period/run	$N_{\rm events}^{\rm measured}$	$N_{ m events}^{ m pre}$	$N_{ m events}^{ m tuple}$	\mathcal{L}/fb^{-1}	size/MB
A	361236098	2069198	430348	0.547	89.6
В	369173081	7010247	1528729	1.949	317.8
C	623945258	10321765	2237193	2.884	462.0
D	872671484			4.684	

Table 5: Breakdown of the dataset of measured data in the diphoton collection with a total luminosity of $10.064~{\rm fb}^{-1}$. $N_{\rm events}^{\rm measured}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm pre}$ the number of events after preselection. $N_{\rm events}^{\rm tuple}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the diphoton collection were selected using the same preselection as applied on the simulated data in the diphoton collection. The total needed storage for diphoton measured data is around ~1 GB.

period	$N_{\rm events}^{\rm measured}$	$N_{\rm events}^{\rm pre}$	$N_{ m events}^{ m tuple}$	$\mathcal{L}/\mathrm{fb}^{-1}$	size/MB
A	361236098	19767030	49620	0.547	12.4
В	369173081	46411468	170700	1.949	42.9
C	623945258	69363987	259259	2.884	65.0
D	872671484	113197747	374120	4.684	94.0

Table 6: Breakdown of the dataset of measured data in the 1 hadronic $\tau+1$ leptonic τ collection with a total luminosity of $10.064~{\rm fb}^{-1}$. $N_{\rm events}^{\rm measured}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm pre}$ the number of events after preselection. $N_{\rm events}^{\rm tuple}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the 1 hadronic $\tau+1$ leptonic τ collection. The total needed storage for 1 hadronic $\tau+1$ leptonic τ measured data is around 214 MB.

period	$N_{\rm events}^{\rm measured}$	$N_{ m events}^{ m pre}$	$N_{ m events}^{ m tuple}$	$\mathcal{L}/\mathrm{fb}^{-1}$	size/MB
A	361236098	6565575	10488	0.547	2.9
В	369173081	12373001	41499	1.949	10.8
C	623945258	19101749	62763	2.884	16.2
D	872671484	28072391	104718	4.684	27.1

Table 7: Breakdown of the dataset of measured data in the 2 hadronic τ + 0 lepton collection with a total luminosity of 10.064 fb⁻¹. $N_{\rm events}^{\rm measured}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm pre}$ the number of events after preselection. $N_{\rm events}^{\rm tuple}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the 2 hadronic τ + 0 lepton collection were selected using the same preselection as applied on the simulated data in the 2 hadronic τ + 0 lepton collection. The total needed storage for 2 hadronic τ + 0 lepton measured data is around 57 MB.

run	$N_{\rm events}^{\rm measured}$	$N_{\rm events}^{\rm pre}$	$N_{\rm events}^{\rm tuple}$	$\mathcal{L}/\mathrm{pb}^{-1}$	size/MB
A	361236098	9385153	226308	0.547	50.1
В	369173081	13885436	131628	1.949	30.1
C	623945258	21913530	198942	2.884	45.5
D	872671484	32604484	324365	4.684	74.3

Table 8: Breakdown of the dataset of measured data in the 1 hadronic τ + 0 lepton collection with a total luminosity of 10.064 fb⁻¹. $N_{\text{events}}^{\text{measured}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{pre}}$ the number of events after preselection. $N_{\text{events}}^{\text{tuple}}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the 1 hadronic τ + 0 lepton collection were selected using the same preselection as applied on the simulated data in the 1 hadronic τ + 0 lepton collection. The total needed storage for 1 hadronic τ + 0 lepton measured data is around 200 MB.

run	$N_{ m events}^{ m measured}$	$N_{\rm events}^{\rm pre}$	$N_{\rm events}^{\rm tuple}$	$\mathcal{L}/\mathrm{pb}^{-1}$	size/MB
A	361236098			0.547	_
В	369173081			1.949	
C	623945258			2.884	
D	872671484			4.684	

Table 9: Breakdown of the dataset of measured data in the lepton + fatjet collection with a total luminosity of $10.064~\rm fb^{-1}$. $N_{\rm events}^{\rm measured}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm pre}$ the number of events after preselection. $N_{\rm events}^{\rm tuple}$ is the number of events after further preselection. \mathcal{L} denotes the luminosity of the dataset. Period A was made by combining the runs 297730, 298595, 298609, 298633, 298687, 298690, 298771, 298773, 298862, 298967, 299055, 299144, 299147, 299184, 299243, 299584 and 300279. Period B was made by combining the runs 300345, 300415, 300418, 300487, 300540, 300571, 300600, 300655, 300687, 300784, 300800, 300863 and 300908. Period C was made by combining the runs 301912, 301918, 301932, 301973, 302053, 302137, 302265, 302269, 302300, 302347, 302380, 302391 and 302393. Period D was made by combining the runs 302737, 302831, 302872, 302919, 302925, 302956, 303007, 303079, 303201, 303208, 303264, 303266, 303291, 303304, 303338, 303421, 303499 and 303560. The measured data in the lepton + fatjet collection were selected using the same preselection as applied on the simulated data in the lepton + fatjet collection. The total needed storage for lepton + fatjet measured data is around ~40 MB.

1.054 4985800 1.054 4985600 0048 997800
1.054
33.989 2.0514
410025 PowHeg+Pythia
3 6
single antiton stonan 4 1111/6

Table 10: Full top, Z, inclusive W and diboson datasets with exactly 1 lepton. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated top, Z, inclusive W and diboson datasets with exactly 1 lepton is about ~60 GB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{luple}}$ is the number of events after preselection and requiring exactly 1 lepton per event.

	ı														ı														i													1
size/MB	1520	710	1130	1280	970	1720	1010	830	2500	570	370	350	770	×	1330	640	066	1220	950	820	1000	029	2520	590	390	360	820	009	06	50	70	140	110	90	150	120	140	90	9	50	120	100
Ntuple events	8395656	3666436	5825715	5938336	4324093	7627342	4307540	3414233	10156719	2212383	1359828	1250347	2663218	×	7298004	3282722	5152119	2668677	4252664	3682272	4347004	2759997	10298381	2282543	1431891	1290393	2821018	1955311	445592	226449	333628	650945	494988	411187	630080	494208	570262	358142	218067	193784	404545	317213
$\mathcal{L}/\mathrm{fb}^{-1}$	1.61	4.05	20.78	23.91	44.14	253.1	49.73	76.8	676.43	128.98	132.08	337.53	405.97	3154	1.61	4.05	20.72	23.7	43.83	103.3	50.07	77.82	687.19	128.42	132.51	308.56	405.3	3296	1.62	4.04	20.61	23.91	44.3	103.39	50.15	77.95	281.81	128.57	132.76	311.26	366.69	3296
Ngenerated events	24723000	9847000	17226200	14788000	9853800	19639000	9882000	7408000	24585000	4940000	2958000	2959500	5910500	3779000	24740000	9853500	17242400	14660500	9818400	9801900	0006286	7410000	24677800	4923800	2963400	2958000	5916800	3947000	24784000	0095986	17273200	14808500	0000986	9857000	0006686	7315000	9834000	4931200	2956400	2954100	5355000	3946000
$f_{\rm k}$	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702
Æ	0.8245	0.13091	0.044641	0.6743	0.24335	0.084708	0.60292	0.29253	0.110298	0.54768	0.32016	0.12542	1	-	0.82467	0.13086	0.04482	0.67483	0.24413	0.10341	0.59875	0.28876	0.10898	0.5483	0.31969	0.13706	-	1	0.82462	0.13152	0.045111	0.67562	0.24247	0.10391	0.59872	0.28477	0.10599	0.54837	0.31881	0.13597	1	1
$\sigma/{ m pb}$	19149	19142	19138	945.52	945.44	944.14	339.7	339.88	339.64	72.079	72.1	72.058	15.006	1.2348	19153	19145	19138	944.98	945.74	945.79	339.67	339.87	339.64	72.074	72.105	72.091	15.047	1.2344	19155	19149	19148	945.02	946.23	945.71	339.78	339.66	339.35	72.091	71.994	71.945	15.052	1.2341
Generator	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa
DSID	364156	364157	364158	364159	364160	364161	364162	364163	364164	364165	364166	364167	364168	364169	364170	364171	364172	364173	364174	364175	364176	364177	364178	364179	364180	364181	364182	364183	364184	364185	364186	364187	364188	364189	364190	364191	364192	364193	364194	364195	364196	364197
process	W+Jets $\mu\nu$ no jets by 0-70	W+Jets $\mu\nu$ with jets byeto	W+Jets $\mu\nu$ with b 0-70	W+Jets $\mu\nu$ no jets by veto 70-140	W+Jets $\mu\nu$ with jets by to 70-140	W+Jets $\mu\nu$ with b 70-140	W+Jets $\mu\nu$ no jets byeto 140-280	W+Jets $\mu\nu$ with jets by to 140-280	W+Jets $\mu\nu$ with b 140-280	W+Jets $\mu\nu$ no jets byeto 280-500	W+Jets $\mu\nu$ with jets byeto 280-500	W+Jets $\mu\nu$ with b 280-500	W+Jets $\mu\nu$ 500-1000	W+Jets $\mu \nu > 1000$	W+Jets ev no jets bv eto 0-70	W+Jets ev with jets byeto	W+Jets ev with b 0-70	W+Jets ev no jets bv eto 70-140	W+Jets ev with jets $bveto 70-140$	W+Jets ev with $b 70-140$	W+Jets ev no jets bv eto 140-280	W+Jets ev with jets bv eto 140-280	W+Jets ev with $b 140-280$	W+Jets ev no jets bv eto 280-500	W+Jets ev with jets bv eto 280-500	W+Jets ev with b 280-500	W+Jets $ev 500-1000$	W+Jets $ev > 1000$	W+Jets $\tau \nu$ no jets by octo 0-70	W+Jets $\tau \nu$ with jets byeto	W+Jets $\tau \nu$ with b 0-70	W+Jets $\tau \nu$ no jets by $V = 140$	W+Jets $\tau \nu$ with jets by to 70-140	W+Jets $\tau \nu$ with b 70-140	W+Jets $\tau \nu$ no jets byeto 140-280	W+Jets $\tau \nu$ with jets byeto 140-280	W+Jets $\tau \nu$ with b 140-280	W+Jets $\tau \nu$ no jets byeto 280-500	W+Jets $\tau \nu$ with jets byeto 280-500	W+Jets $\tau \nu$ with b 280-500	W+Jets $\tau v 500-1000$	$W+Jets \ \tau \nu > 1000$

Table 11: Full sliced W datasets with exactly 1 lepton. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated sliced W datasets with exactly 1 lepton is about ~28 GB. Nevents denotes the number of events prior to preselection and $N_{
m events}^{
m upple}$ is the number of events after preselection and requiring exactly 1 lepton per event.

		ing the leading MB. Newents
size/MB		d for rescali bout ~100 per event.
$N_{ m events}^{ m tuple}$		fk is use epton is a
$\mathcal{L}/\mathrm{fb}^{-1}$	5559 12030	ataset and xactly 1 li ing exactly
σ/pb FE f_k $N_\mathrm{events}^\mathrm{generated}$ $\mathcal{L}/\mathrm{fb}^{-1}$ $N_\mathrm{events}^\mathrm{tuple}$ size/MB	975900	or a given d tasets with e n and requiri
$\mathcal{F}_{\mathbf{k}}$		ection
Н Н		efficie 1 Hig. presel
σ/pb	0.17555	es the filter ill simulated wents after
Generator	345053 PowHeg+Pythia 0.17555 1 1 345054 PowHeg+Pythia 0.16458 1 1	1 lepton. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading bative QCD. The total size of all simulated Higgs datasets with exactly 1 lepton is about ~100 MB. $N_{\rm events}^{\rm generated}$ n and $N_{\rm events}^{\rm luple}$ is the number of events after preselection and requiring exactly 1 lepton per event.
DSID	345053 345054	l lepton. T ative QCD and N ^{tuple}
process	$WmH \rightarrow \ell \nu_{\ell} bb M_{\rm H} = 125 {\rm GeV}$ $WpH \rightarrow \ell \nu_{\ell} bb M_{\rm H} = 125 {\rm GeV}$	~ ~ ~

size/MB	9.3	10.7	12.2	12.9	13.1	12.7	12.2	11.6	11.0	10.4	8.6	0.6
	31697	35678	39762	41026	41243	39920	38413	36249	34299	32235	30322	28003
$\mathcal{L}/\mathrm{fb}^{-1}$	22.17	22.84	63.78	177.43	433.22	961.08	1995	3891	7249	13017	22996	38511
$N_{ m events}^{ m generated}$	199200	199600	199000	199800	199200	198800	199800	199800	199200	198200	199800	195800
$f_{\mathbf{k}}$	_	_	_	_	_	_	_	_	_	_	_	-
FE	-	_	_	_	_	_	_	_	_	_	_	-
σ/pb	8.9857	8.7385	3.1201	1.1261	0.45981	0.20685	0.10016	0.051346	0.027481	0.015226	0.0086884	0.0050843
Generator	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pvthia
DSID	301322	301323	301324	301325	301326	301327	301328	301329	301330	301331	301332	301333
process	$Z' \to t\bar{t} M_{Z'} = 400 \text{GeV}$	$Z' \to t\bar{t} M_{Z'} = 500 \text{ GeV}$	$Z' \to t\bar{t} M_{Z'} = 750 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 1000 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 1250 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 1500 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 1750 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 2000 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 2250 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 2500 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 2750 \text{ GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 3000 \text{ GeV}$

Table 13: Full Z' signal datasets with exactly 1 lepton. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated Z' datasets with exactly 1 lepton is about 130 MB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and N^{tuple} is the number of events after preselection and requiring exactly 1 lepton per event.

Table 14: SUSY signal datasets with exactly 1 lepton. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of the simulated SUSY datasets with exactly 1 lepton is about 50 MB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and N_{events} is the number of events after preselection and requiring exactly 1 lepton per event.

490	520	-
1480868	1551986	• •
112.94	189.9	-
4986200	4989800	
1.0094	1.0193	15
_	1	-
43.739	25.778	-
PowHeg+Pythia	PowHeg+Pythia	
410011	410012	7
single top t-chan	single antitop t-chan	
	1 1.0094 4986200 112.94 1480868	PowHeg+Pythia 43.739 1 1.0094 4986200 112.94 1480868 PowHeg+Pythia 25.778 1 1.0193 4989800 189.9 1551986

Table 15: Full truth information datasets with exactly 1 lepton. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all truth information 1 datasets with exactly 1 lepton is about 1 GB. The datasets have been subjected to the same skimming procedure as the 1 lepton SM datasets. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{imple}}$ is the number of events after preselection.

size/MB	921.9	49.6	50.4	2.1	2.2	4877.5	4885.0	44.5	10.2	8.6	9.0	7.8	7.3	0.4	396.4	372.9	4.0	4.2	8.4					1281.1		319.2	233.6
$N_{ m events}^{ m tuple}$	2910544	165555	167835	2086	7513	21848557	22122823	182181	41503	35185	1774	31894	30308	1409	1403154	1316638	13375	14246	28200					4190712		789536	276598
$\mathcal{L}/\mathrm{fb}^{-1}$	109.09	135.74	138.05	484.08	772.45	40.53	39.73	15.15	3.64	3.43	5.16	3.48	3.72	2.32	2413	1493	270.07	287.78	621.72	14172	3425	1187	1834	14086	12371	34121	34137
$N_{ m events}^{ m generated}$	49386600	4985800	4985600	997800	995400	79045597	77497800	29546000	41870000	39493600	59343600	29886000	31915400	19945400	5317000	5124000	6673000	7115000	7100000	17825300	15772084	14803000	5922600	17635900	7432900	1408800	1409600
$f_{\mathbf{k}}$	1.195	1.054	1.054	1.0048	1.0215	1.026	1.0261	1.0261	1.0172	1.0172	1.0172	1.0358	1.0358	1.0358	0.14158	_		_		П	-			1	1.096	1.12	1.12
Æ	0.5442	-	_	_	-	1	_				_	_	_	1	-	_	_	_		П	-	_	_	1		-	1
σ/pb	696.11	34.009	33.989	2.0514	1.2615	1901.1	1901.1	1901.1	11306.0	11306.0	11306.0	8283.1	8283.1	8283.1	15.564	3.4328	24.708	24.724	11.42	1.2578	4.6049	12.466	3.2286	1.252	0.54822	0.036865	0.036868
Generator	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Pythia	Pythia	Pythia
DSID	410000	410013	410014	410025	410026	361106	361107	361108	361100	361101	361102	361103	361104	361105	363356	363358	363359	363360	363489	363490	363491	363492	363493	364250	410155	410218	410219
process	$t\bar{t} \to \ell + X$	single top wt-chan	single antitop wt-chan	single top s-chan	single antitop s-chan	Z+Jets ee	Z +Jets $\mu\mu$	$Z+J$ ets $\tau\tau$	W^+ +Jets ev	W^+ +Jets $\mu\nu$	W^+ +Jets $\tau \nu$	W^- +Jets ev	W^- +Jets $\mu\nu$	W^- +Jets $\tau \nu$	$ZZ o qq\ell^+\ell^-$	$WZ o qq\ell^+\ell^-$	$W_{ m p}W_{ m m} o qq\ell u_{ m \ell}$	$W_{ m p}W_{ m m} ightarrow \ell u_\ell qq$	$WZ o \ell u_\ell qq$	$ZZ \to \ell^+\ell^-\ell^+\ell^-$	$WZ o \ell u_\ell \ell^+ \ell^-$	$ZZ o \ell^+ \ell^- \nu \nu$	$WZ o \ell u_\ell u_ u$	ZZ +Jets 4 ℓ filter	$tar{t}W$	$t\bar{t}Z \to e^+e^- + X$	$t\bar{t}Z \to \mu^+\mu^- + X$

Table 16: Full top, Z, W and diboson datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated top, Z, W and diboson datasets with at least 2 leptons is about $x \in SE$. $x \in SE$. $x \in SE$ denotes the number of events prior to preselection and $x \in SE$ is the number of events after preselection and requiring at least 2 leptons per event.

process	DSID	Generator	σ/pb	FE	$f_{\mathbf{k}}$	$N_{ m events}^{ m generated}$	\mathcal{L}/fb^{-1}	$N_{ m events}^{ m tuple}$	size/MB
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV} b \text{-veto } 0.70$	364198	Sherpa	2414.3	0.96536	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV with } b \text{ 0}70$	364199	Sherpa	2414.2	0.034445	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV} b$ -veto 70-280	364200	Sherpa	50.33	0.89306	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV} \text{ with } b 70-280$	364201	Sherpa	50.29	0.11212	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV} b\text{-veto } 280 +$	364202	Sherpa	3.2398	0.85373	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV with } b 280+$	364203	Sherpa	3.2813	0.16027	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV} b \text{-veto } 0 - 70$	364204	Sherpa	2415.3	0.96520	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeVwith } b \text{ 0}70$	364205	Sherpa	2415.5	0.034696	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV} b\text{-veto } 70\text{-}280$	364206	Sherpa	50.354	0.89320	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV with } b 70-280$	364207	Sherpa	50.487	0.1087	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{GeV} b\text{-veto } 280 +$	364208	Sherpa	3.2539	0.85485	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV}$ with $b 280 + b^-$	364209	Sherpa	3.2526	0.15351	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV} b\text{-veto } 0\text{-}70$	364210	Sherpa	2416.0	0.96534	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV with } b \text{ 0}70$	364211	Sherpa	2414.4	0.034676	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV} b\text{-veto } 70\text{-}280$	364212	Sherpa	50.376	0.89310	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV}$ with $b 70-280$	364213	Sherpa	50.468	0.10985	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV} b\text{-veto } 280 +$	364214	Sherpa	3.2852	0.85552	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV with } b 280 +$	364215	Sherpa	3.2813	0.15581	0.9751				

Table 17: Full low-mass Drell-Yan datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated low-mass Drell-Yan datasets with at least 2 leptons is about \sim 28 GB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{lumble}}$ is the number of events after preselection and requiring at least 2 leptons per event.

process	DSID	Generator	$ m dd/ m \omega$	FE	ſk	Ngenerated events	$\mathcal{L}/\mathrm{fb}^{-1}$	$N_{ m events}^{ m tuple}$	size/MB
$gg \to H \to \tau\tau M_{\rm H} = 125 {\rm GeV}$	341122	PowHeg+Pythia	1.90820026	0.12277	1.4547	1522300	4467	104490	26.7
$VBFH \rightarrow \tau \tau M_H = 125 \text{ GeV}$	341155	PowHeg+Pythia	0.2420117	0.12271	0.9788	2078800	71516	403327	105.3
$ZH \to \text{any} + ZZ(\to \ell\ell\ell\ell) M_{\text{H}} = 125 \text{ GeV}$	341947	Pythia	0.0002089	0.010256	_	150000	70012374	59325	20.4
$WH \rightarrow ZZ \rightarrow \ell\ell\ell\ell \ M_{\rm H} = 125 \ {\rm GeV}$	341964	Pythia	0.0003769	П	-	149400	396392	61009	20.9
$VBFH \rightarrow ZZ \rightarrow \ell\ell\ell\ell \ M_H = 125 \ GeV$	344235	PowHeg+Pythia	0.0004633012	П	-	985000	2126047	583980	185.6
$ZH \rightarrow \ell^+ \ell^- bb \ M_{\rm H} = 125 \ {\rm GeV}$	345055	PowHeg+Pythia	0.044837	П	-	2968500	66206		
$gg \to ZH \to \ell^+\ell^-bb \ M_{\rm H} = 125 \ {\rm GeV}$	345057	PowHeg+Pythia	0.005803	1	-	000829	116836		
$gg \to H \to ZZ \to \ell\ell\ell\ell \ M_{\rm H} = 125 \ {\rm GeV}$	345060	PowHeg+Pythia	0.0060239	1	-	985000	163515	525407	162.3
$VBFH \rightarrow WW \rightarrow \ell \nu \ell \nu M_H = 125 \text{ GeV}$	345323	PowHeg+Pythia	3.7365	0.51007	-	1175000	616.51	425132	108.2
$gg \to H \to WW \to \ell \nu \ell \nu M_{\rm H} = 125 {\rm GeV}$	345324	PowHeg+Pythia	28.301	0.49374	_	1972000	141.13	638689	155.4
$WH \to qqWW(\to \ell\nu\ell\nu) M_{\rm H} = 125 {\rm GeV}$	345325	PowHeg+Pythia	0.86202	1	_	246000	285.38	55035	16.3
$WH \to \ell \nu WW(\to \ell \nu \ell \nu) M_{\rm H} = 125 {\rm GeV}$	345327	PowHeg+Pythia	0.27864	1	_	00066	355.30	41887	12.3
$ZH \to qqWW(\to \ell\nu\ell\nu) M_{\rm H} = 125 {\rm GeV}$	345336	PowHeg+Pythia	0.76093	1		245000	321.97	48665	14.8
$ZH \to \ell\ell WW(\to \ell\nu\ell\nu) M_{\rm H} = 125 {\rm GeV}$	345337	PowHeg+Pythia	0.076214	1		297000	3897	168829	53.7
$ZH \to \nu \nu WW (\to \ell \nu \ell \nu) M_{\rm H} = 125 {\rm GeV}$	345445	PowHeg+Pythia	0.1501	1	1	198000	1319	40364	10.4

Table 18: Full Higgs signal datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated Higgs datasets with at least 2 leptons is about ~1000 MB. Though not very big the datasets have been subjected to the same skimming procedure as the 2 lepton SM datasets. $N_{\text{generated}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection and requiring at least 2 leptons per event.

size/MB	1.8	2.0	2.1	2.1	2.0	1.8	1.7	1.5	1.3	1.2	1.1	1.0	3.8	3.8	3.8	3.2	129.5	126.1	113.7	119.2	8.0	1.0	1.1	1.2	1.2	1.3	1.3	1.3	1.3	1.4	3.3	2.5		3.1	3.0
$N_{ m events}^{ m tuple}$	2176	6333	6646	6498	5937	5337	4816	4278	3741	3333	3093	2674	14938	15054	14912	12554	526455	516562	501025	492452	3311	4058	4484	4796	4875	4955	5146	5249	5227	5427	9238	6994		8759	2098
$\mathcal{L}/\mathrm{fb}^{-1}$	22.17	22.84	63.78	177.43	433.22	961.08	1995	3891	7249	13017	22996	38511	2239	24312	191286	982586	110697	1230463	9543167	54488928	7.40	32.77	89.41	189.15	365.32	623.01	997.43	1506	2211	65410	636.23	796.73	3867	12760	96039
$N_{ m events}^{ m generated}$	199200	199600	199000	199800	199200	198800	199800	199800	199200	198200	199800	195800	19800	19600	19800	18000	983000	000886	000986	000666	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	20000	15000	20000	19000	19000
$f_{\mathbf{k}}$	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	П	_	_	_	-	$\overline{}$	_	_	_	_	_	_	_	_	_	_	_	_	_
FE		-	_		1	_	_	-	_	-	П	_	-	П			1	_	-	П	0.117	0.65182	0.78542	0.82651	0.85903	0.87831	0.88255	0.89535	0.90148	0.93449		-	-	1	П
σ/pb	8.9857	8.7385	3.1201	1.1261	0.45981	0.20685	0.10016	0.051346	0.027481	0.015226	0.0086884	0.0050843	0.0088432	0.00080617	0.00010351	0.000018319	0.0088801	0.00080295	0.00010332	0.000018334	11.55	0.4682	0.1424	0.063965	0.031865	0.018275	0.01136	0.007416	0.005016	0.0001636	0.031435	0.018827	0.005172	0.001489	0.00028772
Generator	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia
DSID	301322	301323	301324	301325	301326	301327	301328	301329	301330	301331	301332	301333	301215	301216	301217	301218	301220	301221	301222	301223	303511	303512	306085	303513	306093	305710	306103	305711	306109	303514	302681	302687	302701	302708	309070
process	$Z' \rightarrow t\bar{t} M_{Z'} = 400 \mathrm{GeV}$	$Z' o t \bar{t} M_{Z'} = 500 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 750 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 1000 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 1250 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 1500 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 1750 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 2000 \mathrm{GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 2250 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 2500 \mathrm{GeV}$	$Z' \to t\bar{t} M_{Z'} = 2750 \mathrm{GeV}$	$Z' \rightarrow t\bar{t} M_{Z'} = 3000 \mathrm{GeV}$	$Z' \rightarrow ee M_{Z'} = 2000 \mathrm{GeV}$	$Z' \rightarrow ee M_{Z'} = 3000 \mathrm{GeV}$	$Z' \rightarrow ee M_{Z'} = 4000 \mathrm{GeV}$	$Z' \rightarrow ee M_{Z'} = 5000 \mathrm{GeV}$	$Z' \rightarrow \mu \mu M_{Z'} = 2000 \mathrm{GeV}$	$Z' \rightarrow \mu \mu M_{Z'} = 3000 \mathrm{GeV}$	$Z' \rightarrow \mu \mu M_{Z'} = 4000 \mathrm{GeV}$	$Z' \rightarrow \mu \mu M_{Z'} = 5000 \mathrm{GeV}$	Mono- $Z M_{\rm DM} = 10 {\rm GeV}$	Mono- $Z M_{\rm DM} = 100 {\rm GeV}$	Mono- $Z M_{\rm DM} = 200 {\rm GeV}$	Mono- $Z M_{\rm DM} = 300 {\rm GeV}$	Mono- $Z M_{\rm DM} = 400 {\rm GeV}$	Mono- $Z M_{\rm DM} = 500 {\rm GeV}$	Mono- $Z M_{\rm DM} = 600 {\rm GeV}$	Mono- $Z M_{\rm DM} = 700 {\rm GeV}$	Mono- $Z M_{\rm DM} = 800 {\rm GeV}$	Mono- $Z M_{\rm DM} = 2000 {\rm GeV}$					

Table 19: Full Z' and Mono-Z signal datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated Z' and Mono-Z datasets with at least 2 leptons is about 530 MB. Though not very big the datasets have been subjected to the same skimming procedure as the 2 lepton SM datasets. Nevents denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection and requiring at least 2 leptons per event.

Table 20: Full graviton signal datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated graviton datasets with at least 2 leptons is about ~10 MB. Though not very big the datasets have been subjected to the same skimming procedure as the 2 lepton SM datasets. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\rm events}^{\rm tuple}$ is the number of events after preselection and requiring at least 2 leptons per event.

size/MB	5.7	5.9	5.4	5.2	9.0	0.2	9.0	9.0	3.3	2.1	2.1	1.1	6.0	1.6	1.5	1.7	6.0	1.5	2.8	2.9	6.0	6.0	6.0	0.8	0.0	6.0
$N_{ m events}^{ m tuple}$	12096	12564	11509	11067	1601	959	1690	1652	11686	7009	7099	3644	2947	5412	4947	5708	2924	5105	2696	9921	2785	3023	3050	2407	3006	3072
\mathcal{L}/fb^{-1}	1753	1754	6347	20855	56.55	42.92	107.06	315.76	1.26	70.5	123.93	165.93	196.22	45.83	45.68	145.7	194.41	149.10	1.62	19.48	195.60	450.52	451.99	772.11	977.03	959.89
$N_{ m events}^{ m generated}$	100000	100000	100000	00066	20000	20000	50000	49000	20000	10000	10000	2000	2000	10000	10000	10000	2000	10000	20000	20000	2000	2000	2000	4000	2000	2000
$\hat{f}_{\mathbf{k}}$	1	_	1	-	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_	1	1	1	1	1
FE	1	_	_		-		_	1	0.67285	0.76781	0.76994	0.77285	0.65405	0.62499	0.62466	0.65427	0.65878	0.63997	0.52366	0.59586	0.65563	0.67099	0.668	0.67526	0.66687	0.6786
σ/pb	0.057037	0.057002	0.015756	0.004747	0.88424	0.46603	0.46702	0.15518	23.525	0.18475	0.10480	0.03899	0.03896	0.34915	0.35045	0.1049	0.03904	0.1048	23.595	1.7228	0.03899	0.01654	0.01656	0.007672	0.007674	0.007676
Generator	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia
DSID	370114	370118	370129	370144	388240	387154	387157	387163	392226	392220	392217	392223	392302	392304	392308	392317	392323	392324	392326	392330	392332	392354	392356	392361	392364	392365
process	$\tilde{g}\tilde{g} \to t\tilde{t}t\tilde{t} \to tttt + DM M_{\tilde{g}} = 1.2 \text{ TeV}M_{DM} = 1 \text{ GeV}$	$\tilde{g}\tilde{g} \to t\tilde{t}t\tilde{t} \to tttt + DM M_{\tilde{g}} = 1.2 \text{ TeV} M_{DM} = 600 \text{ GeV}$	$\tilde{g}\tilde{g} \to t\tilde{t}t\tilde{t} \to tttt + DMM_{\tilde{g}} = 1.4 \text{ TeV}M_{DM} = 1 \text{ GeV}$	$\tilde{g}\tilde{g} \to t\tilde{t}t\tilde{t} \to tttt + DM M_{\tilde{g}} = 1.6 \text{ TeV} M_{DM} = 1 \text{ GeV}$	$\widetilde{t}\widetilde{t} \to tt + DM M_{\widetilde{t}} = 450 \text{ GeV} M_{DM} = 1 \text{ GeV}$	$\widetilde{t}\widetilde{t} \to tt + \mathrm{DM}\ M_{\widetilde{t}} = 500\ \mathrm{GeV}M_{\mathrm{DM}} = 1\ \mathrm{GeV}$	$\widetilde{t}\widetilde{t} \to tt + \mathrm{DM}M_{\widetilde{t}} = 500\mathrm{GeV}M_{\mathrm{DM}} = 200\mathrm{GeV}$	$\widetilde{t}\widetilde{t} \to tt + \mathrm{DM}\ M_{\widetilde{t}} = 600\ \mathrm{GeV}M_{\mathrm{DM}} = 1\ \mathrm{GeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + \cancel{E}_T M_{\tilde{\chi}_1^{\pm}} = 100 \text{ GeV} M_{\tilde{\chi}_1^0} = 0 \text{ GeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 350 \text{ GeV} M_{\tilde{\chi}_1^0} = 0 \text{ GeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + \cancel{E}_T M_{\tilde{\chi}_1^{\pm}} = 400 \text{ GeV} M_{\tilde{\chi}_0^0} = 0 \text{ GeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 500 \text{ GeV} M_{\tilde{\chi}_0^0} = 0 \text{ GeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \cancel{E}_T M_{\tilde{\chi}_1^{\pm}} = 0.5 \text{ TeV} M_{\tilde{\chi}_0} = 0.1 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \cancel{E}_T M_{\tilde{\chi}_1^{\pm}} = 0.3 \text{ TeV} M_{\tilde{\chi}_0^0} = 0.1 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \cancel{E}_T M_{\tilde{\chi}_1^{\pm}} = 0.3 \text{ TeV} M_{\tilde{\chi}_1^0} = 0.2 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 0.4 \text{ TeV } M_{\tilde{\chi}_2^0} = 0 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 0.5 \text{ TeV} M_{\tilde{\chi}_2^0} = 0 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \tilde{\mathcal{L}}_T M_{\tilde{\chi}_1^{\pm}} = 0.4 \text{ TeV} M_{\tilde{\chi}_1^0} = 0.3 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 0.1 \text{ TeV} M_{\tilde{\chi}_0^0} = 0 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \cancel{E}_T M_{\tilde{\chi}_1^{\pm}} = 0.2 \text{ TeV} M_{\tilde{\chi}_1^0} = 0.1 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \tilde{\mathcal{L}}_T M_{\tilde{\chi}_1^{\pm}} = 0.5 \text{ TeV} M_{\tilde{\chi}_1^0} = 0.3 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \tilde{\mathcal{L}}_T M_{\tilde{\chi}_1^{\pm}} = 0.6 \text{ TeV} M_{\tilde{\chi}_1^0} = 0.1 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 0.6 \text{ TeV} M_{\tilde{\chi}_0^0} = 0 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 0.7 \text{ TeV} M_{\tilde{\chi}_0^0} = 0.4 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + \tilde{\mathcal{L}}_T M_{\tilde{\chi}_1^{\pm}} = 0.7 \text{ TeV} M_{\tilde{\chi}_1^0} = 0.1 \text{ TeV}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow qq\ell\ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 0.7 \text{ TeV} M_{\tilde{\chi}_2^0} = 0 \text{ TeV}$

leading order estimate to next to leading order in perturbative QCD. The total size of part (a) of the simulated SUSY datasets with at least 2 leptons is about 50 MB. Though not very big the datasets have been subjected to the same skimming procedure as the 2 lepton SM datasets. Nevents denotes the number of Table 21: Part (a) of SUSY signal datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and fk is used for rescaling the events prior to preselection and $N_{\text{events}}^{\text{uple}}$ is the number of events after preselection and requiring at least 2 leptons per event.

size/MB	3.4	1.2	3.9	1.2	4.3	3.6	4.3	4.4	4.5	4.5	1.4	1.3	1.7	1.6	1.3	1.6	1.7	1.6	1.6	1.8	1.7	1.7	1.7	1.8
$N_{ m events}^{ m tuple}$	13632	4590	15595	4617	16869	14203	16686	17380	17666	17602	5538	5019	6594	6005	5024	6164	0999	6284	6414	6823	2849	6820	6783	8689
$\mathcal{L}/\mathrm{fb}^{-1}$	57.03	36.96	240.05	173.86	802.82	874.57	2185	5117	10784	10938	12.4	123.71	803.68	7358	12.25	154.69	8135	804.17	2909	8253	21515	21516	48844	48808
$N_{ m events}$	25000	14000	24000	14000	25000	25000	25000	25000	25000	25000	10000	8000	10000	0006	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
$f_{\mathbf{k}}$	-	П	П	П	П	П	П	П	П	_	П	_	_	_	_	_	_	_	_	_	_	_	_	_
FE	0.46715	0.40376	0.53084	0.4276	0.55667	0.51064	0.55669	0.56632	0.58451	0.57637	0.55255	0.63868	0.66521	0.68467	0.54858	0.63191	0.68505	0.65847	0.65989	0.67467	0.68457	0.68434	0.68634	0.68684
σ/pb	0.93842	0.93826	0.18834	0.18832	0.05594	0.05598	0.02055	0.0086272	0.003966	0.0039656	1.46	0.10125	0.018705	0.0017865	1.4885	0.1023	0.0017945	0.018885	0.00521	0.001796	0.00067895	0.00067915	0.0002983	0.0002983
Generator	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia	MadGraph+Pythia
DSID	392501	392502	392504	392506	392507	392509	392513	392517	392518	392521	392916	392918	392920	392924	392925	392936	392942	392951	392962	392964	392982	392985	392996	392999
process	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^{\pm}} = 0.2 \text{ TeV} M_{\tilde{\chi}_1^0} = 100 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^{\pm}} = 0.2 \text{ TeV} M_{\tilde{\chi}_0^{\pm}} = 150 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^{\pm}} = 0.3 \text{ TeV} M_{\tilde{\chi}_0^{\pm}} = 100 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^+} = 0.3 \text{ TeV} M_{\tilde{\chi}_0^+} = 250 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^{\pm}} = 0.4 \text{ TeV} M_{\tilde{\chi}_0^{\pm}} = 100 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^{\pm}} = 0.4 \text{ TeV} M_{\tilde{\chi}_0^{\pm}} = 300 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^+} = 0.5 \text{ TeV} M_{\tilde{\chi}_0^+} = 300 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^+} = 0.6 \text{ TeV} M_{\tilde{\chi}_1^0} = 300 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^{\pm}} = 0.7 \text{ TeV} M_{\tilde{\chi}^0} = 1 \text{ GeV}$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\ell} \nu \ell \tilde{\nu} \rightarrow \ell \nu \ell \nu + E_T M_{\tilde{\chi}_1^+} = 0.7 \text{ TeV} M_{\tilde{\chi}_1^0} = 300 \text{ GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + \text{DM } M_{\tilde{\ell}} = 100 \text{ GeV} M_{\text{DM}} = 1 \text{ GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + {\rm DM}M_{\tilde{\ell}} = 200{\rm GeV}M_{\rm DM} = 1{\rm GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + {\rm DM}M_{\tilde{\ell}} = 300{\rm GeV}M_{\rm DM} = 1{\rm GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + \mathrm{DM}M_{\tilde{\ell}} = 500\mathrm{GeV}M_{\mathrm{DM}} = 1\mathrm{GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + \mathrm{DM}M_{\tilde{\ell}} = 100\mathrm{GeV}M_{\mathrm{DM}} = 50\mathrm{GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + \mathrm{DM}\ M_{\tilde{\ell}} = 200\ \mathrm{GeV}M_{\mathrm{DM}} = 100\ \mathrm{GeV}$				$\tilde{\ell}\tilde{\ell} \to \ell\ell + {\rm DM} \ M_{\tilde{\ell}} = 500 \ {\rm GeV} M_{\rm DM} = 300 \ {\rm GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + \text{DM } M_{\tilde{\ell}} = 600 \text{ GeV} M_{\text{DM}} = 1 \text{ GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + {\rm DM}\ M_{\tilde{\ell}} = 600\ {\rm GeV}M_{\rm DM} = 300\ {\rm GeV}$	$\tilde{\ell}\tilde{\ell} \to \ell\ell + \mathrm{DM}M_{\tilde{\ell}} = 700\mathrm{GeV}M_{\mathrm{DM}} = 1\mathrm{GeV}$	$\tilde{\ell}\tilde{\ell} \rightarrow \ell\ell + \text{DM } M_{\tilde{\ell}} = 700 \text{ GeV} M_{\text{DM}} = 300 \text{ GeV}$

Table 22: Part (b) of SUSY signal datasets with at least 2 leptons. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of part (b) of the simulated SUSY datasets with at least 2 leptons is about 60 MB. Though not very big the datasets have been subjected to the same skimming procedure as the 2 lepton SM datasets. Nevents denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection and requiring at least 2 leptons per event.

single ton t-chan	410011	PowHea+Pythia 43 739 1 1 0094 4	07/p0 43 739	1 -	Jk 1 0094	vevents 4986200	2/10 /Vevents	36847	14.2
d d	410012	PowHeg+Pythia 2	25.778	. —	1.0193	4989800	189.90	38934	15.0

order estimate to next to leading order in perturbative QCD. The total size of all truth information 1 datasets with at least 2 leptons is about 30 MB. The datasets have been subjected to the same skimming procedure as the 2 lepton SM datasets. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{luple}}$ is the number of events after preselection.

process DSID	Generator	σ/bp	FE	f_k	Ngenerated events	$\mathcal{L}/\mathrm{fb}^{-1}$	Nupre	size/MB
ttH 341081	Herwig	0.00115938	0.00228		927400	350837850	576492	225
343981	PowHeg+Pythia	28.3	0.00228	1.580807142	1976000	19373	1054714	231
345041	PowHeg+Pythia	3.7363	0.00228		921000	108114	497470	114
345318	PowHeg+Pythia	0.86204	0.00228	1	248000	126180	113765	32
345319	PowHeg+Pythia	0.76087	$\overline{}$	1	471000	271504	230901	63
$G \rightarrow \gamma \gamma M_{\rm G} = 500 {\rm GeV}$ 302460	Pythia	34.771			20000	0.58	×	×
	Pythia	1.2256	1	1	20000	16.32	×	×
	Pythia	0.024346	П		20000	82.15	×	×
302463	Pythia	0.001505	-	Π	20000	13289	×	×
$G \rightarrow \gamma \gamma M_{\rm G} = 4000 {\rm GeV}$ 302464	Pythia	0.00013698	-	Π	20000	146007	×	×
process tiH $gg \rightarrow H$ vBFH wH ZH $G \rightarrow \gamma \gamma M_G = 500 \text{ GeV}$ $G \rightarrow \gamma \gamma M_G = 1000 \text{ GeV}$ $G \rightarrow \gamma \gamma M_G = 2000 \text{ GeV}$ $G \rightarrow \gamma \gamma M_G = 2000 \text{ GeV}$ $G \rightarrow \gamma \gamma M_G = 3000 \text{ GeV}$ $G \rightarrow \gamma \gamma M_G = 3000 \text{ GeV}$ $G \rightarrow \gamma \gamma M_G = 3000 \text{ GeV}$		DSID 341081 343981 F 345041 F 345319 F 302460 302461 302463 302463	DSID Generator 341081 Herwig 0.0 343981 PowHeg+Pythia 345318 PowHeg+Pythia 345319 PowHeg+Pythia 302460 Pythia 302461 Pythia 302461 Pythia 302461 Pythia 302461 Pythia	DSID Generator 341081 Herwig 343981 PowHeg+Pythia 345041 PowHeg+Pythia 345318 PowHeg+Pythia 302460 Pythia 302461 Pythia 302462 Pythia 302463 Pythia 302464 Pythia 302465 Pythia 302466 Pythia	DSID Generator σ/pb FE 341081 Herwig 0.00115938 0.00228 343981 PowHeg+Pythia 28.3 0.00228 1. 345041 PowHeg+Pythia 3.7363 0.00228 1. 345318 PowHeg+Pythia 0.86204 0.00228 302460 Pythia 34.771 1 302461 Pythia 1.2256 1 302462 Pythia 0.001505 1 302463 Pythia 0.001505 1 302464 Pythia 0.0001505 1	DSID Generator σ / pb FE f _k I 341081 Herwig 0.00115938 0.00228 1.580807142 343981 PowHeg+Pythia 28.3 0.00228 1.580807142 345041 PowHeg+Pythia 3.7363 0.00228 1 345318 PowHeg+Pythia 0.76087 0.00228 1 302460 Pythia 34.771 1 1 302461 Pythia 0.024346 1 1 302463 Pythia 0.001505 1 1 302464 Pythia 0.001505 1 1	DSID Generator σ/pb FE fk Nevents 341081 Herwig 0.0011593 0.00228 1.580807142 1976000 3508 343981 PowHeg+Pythia 28.3 0.00228 1.580807142 1976000 10 345041 PowHeg+Pythia 3.7363 0.00228 1 248000 11 345319 PowHeg+Pythia 0.76087 0.00228 1 471000 2 302460 Pythia 1.2256 1 20000 302461 Pythia 0.0024346 1 20000 302462 Pythia 0.001505 1 20000 302463 Pythia 0.001569 1 20000	DSID Generator σ/pb FE fk Nevents L/fb ⁻¹ 341081 Herwig 0.00115938 0.00228 1.580807142 1976000 19373 10 345041 PowHeg+Pythia 28.3 0.00228 1.580807142 1976000 19373 10 345318 PowHeg+Pythia 0.86204 0.00228 1 248000 126180 1 345319 PowHeg+Pythia 0.76087 0.00228 1 471000 271504 2 302460 Pythia 1.2256 1 20000 0.58 302461 Pythia 0.0024346 1 20000 16.32 302463 Pythia 0.001505 1 20000 13289 302464 Pythia 0.0001569 1 20000 13289

Table 24: Full $H \to \gamma \gamma$ signal datasets in the diphoton collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated datasets in the diphoton collection is about ~1 GB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection.

	I	ı						ı			ı						ı					ı					
size/MB	183.53	1.28	1.49	4.23	4.18	0.57	09.0	72.71	0.69	7.34	3.55	0.38	0.05	5.23	0.42	0.07										23.60	23.79
$N_{ m events}^{ m tuple}$	529068	4202	4911	12785	12564	1785	1897	280913	2327	27362	13674	1447	107	20474	1627	174										84632	81876
$\mathcal{L}/\mathrm{fb}^{-1}$	108.90	45.22	75.9	55.63	55.66	484.08	772.45	31.33	1.02	15.15	2.22	0.17	0.17	2.09	0.23	0.23	2413	1493	270.07	287.78	621.72	14172	3425	1187	1834	1146	19355
$N_{ m events}^{ m generated}$	49296600	1996600	1994200	1994200	1994000	997800	995400	61106597	1998400	29546000	25544800	1996000	1979400	17905400	1997000	1999800	5317000	5124000	6673000	7115000	7100000	17825300	15772084	14803000	5922600	1446900	2087900
$f_{\mathbf{k}}$	1.195	1.0094	1.0193	1.054	1.054	1.0048	1.0215	1.026	1.0261	1.0261	1.0172	1.0172	1.0172	1.0358	1.0358	1.0358	0.14158	1	1	1		_	_	_		1.4546	0.9788
FE	0.5442		1	1	_	_	1	-	1	1	1	1	1	_	1				1							0.4548	0.45539
σ/pb	696.11	43.739	25.778	34.009	33.989	2.0514	1.2615	1901.1	1901.1	1901.1	11306.0	11306.0	11306.0	8283.1	8283.1	8283.1	15.564	3.4328	24.708	24.724	11.42	1.2578	4.6049	12.466	3.2286	1.90820026	0.24201136
Generator	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	PowHeg+Pythia	PowHeg+Pythia
DSID	410000	410011	410012	410013	410014	410025	410026	361106	361107	361108	361100	361101	361102	361103	361104	361105	363356	363358	363359	363360	363489	363490	363491	363492	363493	341123	341156
process	$t\bar{t} \to \ell + X$	single top t-chan	single antitop t-chan	single top wt-chan	single antitop wt-chan	single top s-chan	single antitop s-chan	Z+Jets ee	Z +Jets $\mu\mu$	Z +Jets $\tau\tau$	W^+ +Jets ev	W^+ +Jets $\mu\nu$	W^+ +Jets $\tau \nu$	W^- +Jets ev	W^- +Jets $\mu\nu$	W^-+ Jets $\tau \nu$	$ZZ o qq\ell^+\ell^-$	$WZ o qq\ell^+\ell^-$	$W_{\rm p}W_{\rm m} o qq\ell u_\ell$	$W_{ m p}W_{ m m} ightarrow \ell u_\ell qq$	$WZ o \ell u_\ell qq$	$ZZ \to \ell^+\ell^-\ell^+\ell^-$	$WZ o \ell u_\ell \ell^+ \ell^-$	$ZZ o \ell^+ \ell^- \nu \nu$	$WZ \to \ell \nu_\ell \nu \nu$	$gg \to H \to \tau\tau$	$VBFH \rightarrow \tau \tau$

Table 25: Full top, Z, W, diboson and $H \to \tau \tau$ simulated datasets in the 1 hadronic $\tau + 1$ leptonic τ collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all top, Z, W, diboson and $H \to \tau \tau$ simulated datasets in the 1 hadronic $\tau + 1$ leptonic τ collection is about 330 MB. $N_{\text{events}}^{\text{events}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection.

process	DSID	Generator	σ/pb	FE	$f_{\mathbf{k}}$	Ngenerated events	$\mathcal{L}/\mathrm{fb}^{-1}$	$N_{ m events}^{ m tuple}$	size/MB
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV} b\text{-veto } 0\text{-}70$	364198	Sherpa	2414.3	0.96536	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV with } b \text{ 0}70$	364199	Sherpa	2414.2	0.034445	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV} b\text{-veto } 70\text{-}280$	364200	Sherpa	50.33	0.89306	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV with } b 70-280$	364201	Sherpa	50.29	0.11212	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{GeV} b\text{-veto } 280 +$	364202	Sherpa	3.2398	0.85373	0.9751				
$Z \to \mu^+ \mu^- M_{\mu\mu} = 10 - 40 \text{ GeV}$ with $b 280 + b = 10 - 40 \text{ GeV}$	364203	Sherpa	3.2813	0.16027	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV} b \text{-veto } 0.70$	364204	Sherpa	2415.3	0.96520	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV}$ with $b \text{ 0}70$	364205	Sherpa	2415.5	0.034696	0.9751				
$Z \to e^+e^- M_{\rm ee} = 10 - 40 {\rm GeV} b$ -veto 70-280	364206	Sherpa	50.354	0.89320	0.9751				
$Z \to e^+e^- M_{\rm ee} = 10 - 40 {\rm GeV}$ with $b 70\text{-}280$	364207	Sherpa	50.487	0.1087	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{GeV} b\text{-veto } 280 +$	364208	Sherpa	3.2539	0.85485	0.9751				
$Z \to e^+ e^- M_{ee} = 10 - 40 \text{ GeV}$ with $b 280 + b = 10 - 40 \text{ GeV}$	364209	Sherpa	3.2526	0.15351	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV} b\text{-veto } 0\text{-}70$	364210	Sherpa	2416.0	0.96534	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV with } b \text{ 0}70$	364211	Sherpa	2414.4	0.034676	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV} b\text{-veto } 70\text{-}280$	364212	Sherpa	50.376	0.89310	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV with } b 70-280$	364213	Sherpa	50.468	0.10985	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{GeV} b\text{-veto } 280 +$	364214	Sherpa	3.2852	0.85552	0.9751				
$Z \to \tau^+ \tau^- M_{\tau\tau} = 10 - 40 \text{ GeV with } b 280+$	364215	Sherpa	3.2813	0.15581	0.9751				

Table 26: Full low-mass Drell-Yan simulated datasets in the 1 hadronic $\tau + 1$ leptonic τ collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all low-mass Drell-Yan simulated datasets in the 1 hadronic $\tau + 1$ leptonic τ collection is about x MB. $N_{events}^{egnerated}$ denotes the number of events prior to preselection and N_{events}^{upple} is the number of events after preselection.

size/MB	9	7	24
$N_{ m events}^{ m tuple}$	20999	26556	81307
$\mathcal{L}/\mathrm{fb}^{-1}$	15.15	1318	20911
$N_{ m events}^{ m generated}$	29546000	1543100	2089900
$f_{\mathbf{k}}$	1.0261	1.4546	0.9788
FE	1	0.42194	0.42191
σ/pb	1901.1	1.90819703	0.24201165
Generator	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia
DSID	361108	341124	341157
process	Z+Jets $\tau\tau$	$gg \to H \to \tau\tau$	$VBFH \rightarrow \tau \tau$

Table 27: Full simulated datasets in the 2 hadronic τ + 0 lepton collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated datasets in the 2 hadronic τ + 0 lepton collection is about 40 MB. N_{events} denotes the number of events prior to preselection and N_{events} is the number of events after preselection.

process	DSID	Generator	σ/pb	FE	$f_{\rm k}$	$N_{ m events}^{ m generated}$	$\mathcal{L}/\mathrm{fb}^{-1}$	$N_{ m events}^{ m tuple}$	size/MB
W^+ +Jets $\tau \nu$	361102	PowHeg+Pythia	11306.0		1.0172	59343600	5.16	2462	0.91
W^+ +Jets $\tau \nu$	361105	PowHeg+Pythia	8283.1		1.0358	19945400	2.32	2509	0.90
W+Jets $\tau \nu$ no jets byeto 0-70	364184	Sherpa	19155	0.82462	0.9702	24784000	11668	94	90.0
W+Jets $\tau \nu$ with jets byeto	364185	Sherpa	19149	0.13152	0.9702	9865600	6719	41	0.03
W+Jets $\tau \nu$ with $b 0-70$	364186	Sherpa	19148	0.045111	0.9702	17273200	11670	83	0.07
W+Jets $\tau \nu$ no jets by to 70-140	364187	Sherpa	945.02	0.67562	0.9702	14808500	320146	1023	0.27
W+Jets $\tau \nu$ with jets by to 70-140	364188	Sherpa	946.23	0.24247	0.9702	0000986	250727	985	0.26
W+Jets $\tau \nu$ with b 70-140	364189	Sherpa	945.71	0.10391	0.9702	9857000	230455	847	0.23
W+Jets $\tau \nu$ no jets byeto 140-280	364190	Sherpa	339.78	0.59872	0.9702	0006686	1121004	32582	8.05
W+Jets $\tau \nu$ with jets byeto 140-280	364191	Sherpa	339.66	0.28477	0.9702	7415000	750555	23622	6.17
W+Jets $\tau \nu$ with b 140-280	364192	Sherpa	339.35	0.10599	0.9702	24595900	2201658	60101	15.79
W+Jets $\tau \nu$ no jets byeto 280-500	364193	Sherpa	72.091	0.54837	0.9702	4931200	892504	61268	16.04
W+Jets $\tau \nu$ with jets byeto 280-500	364194	Sherpa	71.994	0.31881	0.9702	2956400	512309	31643	8.71
W+Jets $\tau \nu$ with b 280-500	364195	Sherpa	71.945	0.13597	0.9702	2954100	478683	26023	7.37
W+Jets $\tau \nu$ 500-1000	364196	Sherpa	15.052	-	0.9702	5945000	1277937	85971	25.42
W+Jets $\tau \nu > 1000$	364197	Sherpa	1.2341	1	0.9702	3946000	1148849	62567	20.44

Table 28: Full simulated datasets in the 1 hadronic τ + 0 lepton collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated datasets in the 1 hadronic τ + 0 lepton collection is about 110 MB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{lumple}}$ is the number of events after preselection.

В	2	- <u>-</u>	2	ε;	0.	1.	8.0	0.	7.9	1.2	2	7.	7.	3	1.9	ς:	6	4.	2	6	1.6	0.	Τ.	7.	ε;
size/MB		12.	10.	28.	28.0	4	0	~3220	7.	-	3.	2.	0	2.	- i	0	17.9	15.4	3.2	2.9	- i	12.0	11.1	45.7	15.3
$N_{ m events}^{ m tuple}$	~19206795	34019	28713	72198	71531	11461	2068	~16442978	22027	3415	9943	7965	1392	7522	5785	962	51368	39659	10402	7178	4714	33886	27751	27465	38860
	~192							~164																	
\mathcal{L}/fb^{-1}	111.70	51.55	189.90	135.74	138.05	484.08	247.86	40.53	39.73	15.15	3.64	3.43	5.16	3.48	3.72	2.32	557.16	1105	353.69	3096	1063	98.31	446.75	960.18	1728
$N_{ m events}^{ m generated}$	20299999	2276000	4989800	4985800	4985600	008266	319400	79045597	77497800	29546000	41870000	39493600	59343600	29886000	31915400	9945400	5926000	4985000	982600	3920000	981000	4343000	1469000	9693000	3933000
$N_{\rm ev}^{\rm gc}$	505	22	49	49	49	6	3	790	774	295	418	394	593	298	319	199	59.	49	6	39.	6	43,	14	96	39.
$f_{\mathbf{k}}$	1.195	1.0094	1.0193	1.054	1.054	1.0048	1.0215	1.026	1.0261	1.0261	1.0172	1.0172	1.0172	1.0358	1.0358	1.0358					-	П	-	_	1
FE	0.5442	1	1	1	1	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
σ/pb	696.11	43.739	25.778	34.009	33.989	2.0514	1.2615	1901.1	1901.1	1901.1	1306.0	1306.0	1306.0	8283.1	8283.1	8283.1	10.636	4.5106	2.7781	1.2663).92296	44.177	3.2882	10.095	2.2761
_		_										_	_								_				
Generator	PowHeg+Pythia	Pow Heg+Pythia	PowHeg+Pythia	Pow Heg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	Pow Heg+Pythia	PowHeg+Pythia	PowHeg+Pythia	Pow Heg+Pythia	Pow Heg+Pythia	Pow Heg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	Pow Heg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia	PowHeg+Pythia
Ger	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+	Heg+
	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow	Pow
DSID	410000	410011	410012	410013	410014	410025	410026	361106	361107	361108	361100	361101	361102	361103	361104	361105	361600	361601	361602	361603	361604	361606	361607	361609	361610
SSS			au ,	•	-	-	-								π	77			77	. 33	: 33	<i>bb</i>	: 33	, bb	. 33
process	$t\bar{t} \to \ell + X$	single top t-chan	p t-ch	single top wt-chan	wt-ch	single top s-chan	p s-ch	Z+Jets ee	Z+Jets μμ	Z+Jets ττ	W^+ +Jets ev	W^+ +Jets $\mu\nu$	W^+ +Jets $\tau \nu$	+Jets	W^- +Jets $\mu\nu$	W^- +Jets $\tau \nu$	$NW \to \ell \nu \ell \nu$	\uparrow	$WZ \to \ell \nu \nu \nu$	$ZZ \to \ell\ell\ell\ell\ell$	₹	$VW \to \ell \nu qq$	$\rightarrow qq$	$WZ \to \ell \nu qq$	$ZZ \rightarrow qq\ell\ell$
	tī-	gle to	antito	le top	ntitop	gle to	antito	Z	Ż	Z	M^{+}	M^+	M^{+}	M^{-}	M^{-}	M^{-}	WW	WZ	WZ	ZZ	ZZ	WW	WZ	MZ	ZZ
		sin	single antitop t-chan	sing	single antitop wt-chan	sin	single antitop s-chan																		
			S		sir		S																		

Table 29: Full top, Z, W and diboson datasets in the lepton + fatjet collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated top, Z, W and diboson datasets in the lepton + fatjet collection is about ~XXX GB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection.

	اما	, •	_	•	٥)		_	_	_	_	, 0	_	۵)		_	_	••	10	•)	•)	_		_	_	_	۵)	, 0	ارم	رما	۵)	٥)	16	u			_	10	_	16	_	_	, <u> </u>
size/MB	0.12	0.0	0.10	0.13	0.12	0.26	60.6	5.4(16.89	130.00	57.96	50.70	651.62	710.65	0.17	0.10	0.13	0.25	0.12	0.12	13.44	8.7	26.80	164.90	77.70	71.32	337.66	801.62	0.02	0.02	0.02	0.05	^	0.03	2.11	1.30	0.95	30.77	13.95	12.09	117.00	125.76
$N_{ m events}^{ m tuple}$	102	53	107	144	125	265	32435	18215	55473	443369	187891	163974	1889106	1822749	220	112	194	511	306	233	46844	28933	87012	550845	250094	219286	964639	1977331	7	S	3	22	×	18	7469	4329	3040	103499	44839	37962	338738	319788
$\mathcal{L}/\mathrm{fb}^{-1}$	1.61	4.05	20.78	23.91	44.14	253.1	49.73	2.97	676.43	128.98	132.08	332.96	405.97	3305	1.61	4.05	20.72	23.7	43.83	103.3	50.07	77.82	687.19	128.42	132.51	308.56	405.3	3296	1.62	4.04	20.61	23.91	41.65	103.39	50.15	78.91	711.26	128.57	132.76	311.26	407.1	3296
$N_{ m events}^{ m generated}$	24723000	9847000	17226200	14788000	9853800	19639000	9882000	7408000	24585000	4940000	2958000	2919500	5910500	3959000	24740000	9853500	17242400	14660500	9818400	5401900	0006286	7360000	24677800	4923800	2963400	2958000	5911800	3947000	24784000	0095986	17273200	14808500	9270000	9857000	0006686	7405000	24819900	4931200	2956400	2954100	5945000	3946000
$f_{\mathbf{k}}$	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702	0.9702
FE	0.8245	0.13091	0.044641	0.6743	0.24335	0.084708	0.60292	0.29253	0.110298	0.54768	0.32016	0.12542	1	1	0.82467	0.13086	0.04482	0.67483	0.24413	0.10341	0.59875	0.28876	0.10898	0.5483	0.31969	0.13706	T	1	0.82462	0.13152	0.045111	0.67562	0.24247	0.10391	0.59872	0.28477	0.10599	0.54837	0.31881	0.13597	-	1
σ/pb	19149	19142	19138	945.52	945.44	944.14	339.7	339.88	339.64	72.079	72.1	72.058	15.006	1.2348	19153	19145	19138	944.98	945.74	945.79	339.67	339.87	339.64	72.074	72.105	72.091	15.047	1.2344	19155	19149	19148	945.02	946.23	945.71	339.78	339.68	339.35	72.091	71.994	71.945	15.052	1.2341
Generator	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa	Sherpa
DSID	364156	364157	364158	364159	364160	364161	364162	364163	364164	364165	364166	364167	364168	364169	364170	364171	364172	364173	364174	364175	364176	364177	364178	364179	364180	364181	364182	364183	364184	364185	364186	364187	364188	364189	364190	364191	364192	364193	364194	364195	364196	364197
process	W+Jets $\mu\nu$ no jets byeto 0-70	W+Jets $\mu\nu$ with jets byeto	W+Jets $\mu\nu$ with b 0-70	W+Jets $\mu\nu$ no jets by veto 70-140	W+Jets $\mu\nu$ with jets by of 70-140	W+Jets $\mu\nu$ with b 70-140	W+Jets $\mu\nu$ no jets byeto 140-280	W+Jets $\mu\nu$ with jets by 140-280	W+Jets $\mu\nu$ with b 140-280	W+Jets $\mu\nu$ no jets byeto 280-500	W+Jets $\mu\nu$ with jets byeto 280-500	W+Jets $\mu\nu$ with b 280-500	W+Jets $\mu\nu$ 500-1000	W+Jets $\mu\nu > 1000$	W+Jets ev no jets bv eto 0-70	W+Jets ev with jets bv eto	W+Jets ev with b 0-70	W+Jets ev no jets bv eto 70-140	W+Jets ev with jets by $ev = 70-140$	W+Jets ev with b 70-140	W+Jets ev no jets bv eto 140-280	W+Jets ev with jets by beto 140-280	W+Jets ev with $b 140-280$	W+Jets ev no jets by ev 280-500	W+Jets ev with jets by ev 280-500	W+Jets ev with $b 280-500$	W+Jets $ev 500-1000$	$W + Jets \ ev > 1000$	W+Jets $\tau \nu$ no jets byeto 0-70	W+Jets $\tau \nu$ with jets byeto	W+Jets $\tau \nu$ with $b 0-70$	W+Jets $\tau \nu$ no jets by of 70-140	W+Jets $\tau \nu$ with jets by or 70-140	W+Jets $\tau \nu$ with b 70-140	W+Jets $\tau \nu$ no jets byeto 140-280	W+Jets $\tau \nu$ with jets by by 140-280	W+Jets $\tau \nu$ with b 140-280	W+Jets $\tau \nu$ no jets byeto 280-500	W+Jets $\tau \nu$ with jets byeto 280-500	W+Jets τv with b 280-500	W+Jets $\tau v 500-1000$	$W+Jets \ \tau \nu > 1000$

Table 30: Full sliced W datasets in the lepton + fatjet collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated sliced W datasets in the lepton + fatjet collection is about \sim 3 GB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection.

process	DSID	Generator	σ/pb	FE	$f_{\mathbf{k}}$	Ngenerated Nevents	$\mathcal{L}/\mathrm{fb}^{-1}$	$N_{ m events}^{ m tuple}$	size/MB
$Z' \rightarrow t\bar{t} M_{Z'} = 400 \text{GeV}$	301322	Pythia	8.9857	-	-	199200	22.17	790	0.3
	301323	Pythia	8.7385	_	_	199600	22.84	1446	9.0
$Z' \rightarrow t\bar{t} M_{Z'} = 750 \text{ GeV}$	301324	Pythia	3.1201		_	199000	63.78	15300	5.9
$Z' \rightarrow t\bar{t} M_{Z'} = 1000 \text{ GeV}$	301325	Pythia	1.1261	_	_	199800	177.43	29427	11.5
$Z' \rightarrow t\bar{t} M_{Z'} = 1250 \text{ GeV}$	301326	Pythia	0.45981	_	_	199200	433.22	35494	14.1
$Z' \rightarrow t\bar{t} M_{Z'} = 1500 \text{ GeV}$	301327	Pythia	0.20685	_	_	198800	961.08	36985	14.8
$Z' \rightarrow t\bar{t} M_{Z'} = 1750 \text{ GeV}$	301328	Pythia	0.10016	_	_	199800	1995	36920	15.0
$Z' \rightarrow t\bar{t} M_{Z'} = 2000 \text{ GeV}$	301329	Pythia	0.051346	_	_	199800	3891	35353	14.4
$Z' \rightarrow t\bar{t} M_{Z'} = 2250 \text{ GeV}$	301330	Pythia	0.027481	_	_	199200	7249	33813	13.9
$Z' \rightarrow t\bar{t} M_{Z'} = 2500 \mathrm{GeV}$	301331	Pythia	0.015226	_	_	198200	13017	31832	13.1
$Z' \rightarrow t\bar{t} M_{Z'} = 2750 \text{ GeV}$	301332	Pythia	0.0086884	_	_	199800	22996	29764	12.4
$Z' \rightarrow t\bar{t} M_{Z'} = 3000 \text{ GeV}$	301333	Pythia	0.0050843	_	_	195800	38511	27368	11.3
$\tilde{g}\tilde{g} \rightarrow t\tilde{t}t\tilde{t} \rightarrow tttt + DM M_{\tilde{g}} = 1.2 \text{ TeV} M_{DM} = 1 \text{ GeV}$	370114	MadGraph+Pythia	0.057037	-	-	100000	1753	35809	19.8
$\tilde{g}\tilde{g} \rightarrow t\tilde{t}t\tilde{t} \rightarrow tttt + DM M_{\tilde{g}} = 1.2 \text{ TeV} M_{DM} = 600 \text{ GeV}$	370118	MadGraph+Pythia	0.057002	-	_	100000	1754	26245	13.9
$\tilde{g}\tilde{g} \rightarrow t\tilde{t}t\tilde{t} \rightarrow tttt + DMM_{\tilde{g}} = 1.4 \text{ TeV}_{DM} = 1 \text{ GeV}$	370129	MadGraph+Pythia	0.015756	_	_	100000	6347	36476	20.3
	370144	MadGraph+Pythia	0.004747		_	00066	20855	35951	20.0
$\widetilde{t}\widetilde{t} \to tt + \mathrm{DM}\ M_{\widetilde{t}} = 450\ \mathrm{GeV}M_{\mathrm{DM}} = 1\ \mathrm{GeV}$	388240	MadGraph+Pythia	0.88424	-	-	20000	56.55	3896	1.6
$\widetilde{t}\widetilde{t} \to tt + \mathrm{DM}\ M_{\widetilde{t}} = 500\ \mathrm{GeV}M_{\mathrm{DM}} = 1\ \mathrm{GeV}$	387154	MadGraph+Pythia	0.46603		_	20000	42.92	1921	0.8
	387157	MadGraph+Pythia	0.46702		_	20000	107.06	3422	1.4
$\widetilde{t}\widetilde{t} \to tt + \mathrm{DM}\ M_{\widetilde{t}} = 600\ \mathrm{GeV}M_{\mathrm{DM}} = 1\ \mathrm{GeV}$	387163	MadGraph+Pythia	0.15518	1	_	49000	315.76	6483	2.6
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 100 \text{ GeV} M_{\tilde{\chi}_1^0} = 0 \text{ GeV}$	392226	MadGraph+Pythia	23.525	0.67285	_	20000	1.26	317	0.1
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + E_T M_{\tilde{\chi}_1^{\pm}} = 350 \text{ GeV} M_{\tilde{\chi}_0^0} = 0 \text{ GeV}$	392220	MadGraph+Pythia	0.18475	0.76781	_	10000	70.50	1613	9.0
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + \cancel{\cancel{\mathcal{L}}}_1 M_{\tilde{\chi}_1^{\pm}} = 400 \text{ GeV} M_{\tilde{\chi}_1^0} = 0 \text{ GeV}$	392217	MadGraph+Pythia	0.10480	0.76994	_	10000	123.93	1995	0.7
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ(\rightarrow \ell \nu \ell \ell) + \cancel{\cancel{E}}_T M_{\tilde{\chi}_1^{\pm}} = 500 \text{ GeV} M_{\tilde{\chi}_1^0} = 0 \text{ GeV}$	392223	MadGraph+Pythia	0.03899	0.77285	_	5000	165.93	1402	0.5

Table 31: Full BSM signal datasets in the lepton + fatjet collection. The factor FE denotes the filter efficiency for a given dataset and f_k is used for rescaling the leading order estimate to next to leading order in perturbative QCD. The total size of all simulated BSM datasets in the lepton + fatjet collection is about 210 MB. $N_{\text{events}}^{\text{generated}}$ denotes the number of events prior to preselection and $N_{\text{events}}^{\text{tuple}}$ is the number of events after preselection.

References

- [1] ATLAS Collaboration, ATLAS Data Access Policy, http://opendata.cern.ch/record/413, 2014.
- [2] URL: http://opendata.atlas.cern.
- [3] URL: http://opendata.cern.ch.
- [4] F. Socher et al., *Proposal for an ATLAS endorsed data set for Outreach Purposes*, tech. rep. ATL-COM-OREACH-2015-001, CERN, 2015, URL: https://cds.cern.ch/record/2034188.
- [5] Review Studies for the ATLAS Open Data Dataset, tech. rep. ATL-OREACH-PUB-2016-001, CERN, 2016, URL: https://cds.cern.ch/record/2203649.
- [6] URL: http://atlas.cern/updates/atlas-news/explore-lhc-data-new-atlas-educational-platform.
- [7] Review of ATLAS Open Data 8 TeV datasets, tools and activities, tech. rep. ATL-OREACH-PUB-2018-001, CERN, 2018, URL: https://cds.cern.ch/record/2624572.
- [8] R. Brun and F. Rademakers, *ROOT An object oriented data analysis framework*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **389** (1997) 81, New Computing Techniques in Physics Research V, ISSN: 0168-9002,

 URL: http://www.sciencedirect.com/science/article/pii/S016890029700048X.
- [9] M. Aaboud et al., *Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data*, Eur. Phys. J. **C76** (2016) 666, arXiv: 1606.01813 [hep-ex].
- [10] The CxAODFramework physics analysis framework, URL: https: //twiki.cern.ch/twiki/bin/view/AtlasProtected/CxAODFramework#Introduction.
- [11] Framework to produce CxAODs from DAODs for 13 TeV ATLAS Open Data. URL: https://gitlab.cern.ch/meevans/OpenCxAOD8.
- [12] Goldcrest setup tag for the $HH \rightarrow bb\tau\tau$ version of the CxAOD Framework, URL: https://gitlab.cern.ch/CxAODFramework/FrameworkSub_HH_bbtautau/tree/ 505d5a37580df1661b5c987556eb3dd36333e230.
- [13] A. Elagin, P. Murat, A. Pranko, and A. Safonov,

 A new mass reconstruction technique for resonances decaying to ττ,

 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

 Detectors and Associated Equipment 654 (2011) 481, ISSN: 0168-9002,

 URL: http://www.sciencedirect.com/science/article/pii/S0168900211014112.
- [14] ATLAS Outreach data and tools GitHub account, URL: https://github.com/atlas-outreach-data-tools.
- [15] Derivation grid sample lists, URL: https://gitlab.cern.ch/meevans/OpenCxAOD8/tree/master/FrameworkSub_HH_bbtautau/In.
- [16] ROOT Release 6.04/16 2016-03-17, URL: https://root.cern.ch/content/release-60416.

- [17] Advanced research projects,
 URL: https://www.mn.uio.no/fysikk/english/research/projects/zpath/researchbased-education/advanced-research-projects.html.
- [18] D. Fassouliotis, C. Kourkoumelis, and S. Vourakis,

 Introducing HEP to high-school and university students through ATLAS event analysis tools,
 EPJ Web of Conferences 164 (07018 2017).
- [19] URL: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/ CentralMC15ProductionList#Overview_of_all_DSIDs_with_corre.
- [20] AMI service for ATLAS, URL: https://ami.in2p3.fr/.
- [21] J. R. Andersen et al., *Handbook of LHC Higgs Cross Sections: 3. Higgs Properties*, (2013), ed. by S. Heinemeyer, C. Mariotti, G. Passarino, and R. Tanaka, arXiv: 1307.1347 [hep-ph].