2011-XE-'53-65'

EE24BTECH11057 - SHIVAM SHILVANT*

1) A plain carbon steel was annealed just above the eutectoid temperature. Microstructural analysis revealed that the proeutectoid ferrite content was 30 wt %. The eutectoid reaction in the iron-iron carbide phase diagram is given below:

$$\gamma (0.76 \text{ } wt\% \text{ } C) \xrightarrow[\text{heating}]{\text{cooling}} \alpha (0.022 \text{ } \text{wt\% } \text{ } \text{C}) + \text{Fe}_3 \text{C} (6.7 \text{ } \text{wt\% } \text{ } \text{C})$$

The carbon content of the steel (in wt%) is

a) 0.24

b) 0.34

c) 0.44

d) 0.54

1

2) Match the materials in Column-I with the descriptions in Column-II.

Column-I	Column-II	
P. Zirconia	1. Ultra-hard material	
Q. Cubic boron nitride	2. High temperature superconductor	
R. Hafnium carbide	3. Transformation toughening	
S. Yttrium aluminium garnet	4. Ultra-high temperature material	
	5. Host material for laser	
	6. Micro-crack toughening	

a) P-3, Q-4, R-1, S-2

c) P-3, Q-1, R-4, S-5

b) P-6, Q-1, R-4, S-2

d) P-4, Q-6, R-1, S-5

3) Match the materials in Column-Iwith the descriptions in Column-II.

Column-I	Column-II
P. Polyacrylonitrile	1. Hard and brittle material
Q. Nylon-6,6	2. Very high temperature resistant polymer
R. Polytetrafluoroethylene (PTFE)	3. H-bonding
S. Ebonite	4. Acrylic fibre
	5. Rubber
	6. Polyester fibre

a) P-6, Q-3, R-2, S-1

c) P-4, Q-2, R-6, S-5

b) P-2, Q-6, R-4, S-5

d) P-4, O-6, R-1, S-5

4) Match the materials in Column-I with the descriptions in Column-II.

a) P-6, Q-5, R-2, S-	a) P-0	o, Q-:), K-2	z, 5-1
----------------------	--------	--------	--------	--------

c) P-4, Q-1, R-3, S-2

d) P-6, Q-1, R-5, S-3

5) Match the materials in Column-I with the descriptions in Column-II.

Column-I	Column-II
P. Thermal conductivity	1. Hm^{-1}
Q. Dielectric strength	2. Wbm ⁻²
R. Magnetic permeability	3. $Wm^{-1}K^{-1}$
S. Capacitance	$4.Vm^{-1}$
	5. <i>CV</i> ⁻¹
	6. $Imol^{-1}K^{-1}$

a) P-6, Q-4, R-2, S-5

c) P-3, Q-4, R-1, S-5

b) P-3, Q-5, R-1, S-4

- d) P-6, Q-5, R-1, S-4
- 6) It takes 4 h for carburising a steel at 900°C. If the same carburising is to be accomplished in 2 h, what should be the temperature? The activation energy of diffusion of carbon in the steel is 151 kJ mol⁻¹.
 - a) 850°C
- b) 955°C
- c) 1015°C
- d) 1228°C
- 7) A steel specimen (12mm diameter and 60 mm length) undergoes elastic deformation under tension. The deformed specimen experiences a longitudinal strain of 0.001. If the Poisson's ratio is 0.3, the diameter of the deformed specimen (in mm) is
 - a) 12.0120
- b) 11.9964
- c) 11.9964
- d) 11.9880

Common Data Questions

Common Data for Questions 17 and 18:

The first peak in the powder X-ray diffraction pattern of an FCC metal appears at a Bragg angle of 19.2°. The wavelength of Cu-K_{α} radiation used is 0.154 nm.

8) The lattice parameter of the metal (in nm) is

d) 0.3055

	vidth at half maximum (F I instrumental broadening		eak is 0.35°. Ignoring microfof the sample (in nm) is	0-
a) 20	b) 24	c) 200	d) 240	
	1 Common D	ATA FOR QUESTIONS 10	and 11:	
$m^2V^{-1}s^{-1}$		spectively. Its bandga	electrons and holes are 0.1 p is 1.107 eV and electric	
10) 1 The free	e electron concentration ((in m^{-3}) at 300 K is		
a) 13.99 ×	(10^{15}) b) 27.98×10^{15}	c) 13.99×10^{1}	d) 27.98×10^{17}	
11) 1 What $0.399\Omega^{-1}$		hich the conductivit	y of the semiconductor	is
a) 343 K	b) 443 K	c) 493 K	d) 543 K	
	2 Link	ED Answer Questions	3	
A continuel elasticity with a mo	of 150 GPa in the longiodulus of 4.5 GPa. The g	fibre reinforced contudinal direction. The lass fibre has a modu	mposite has a modulus e matrix is a polyester res	
12) 2 The vol	lume fraction of the glass	fibres is		

c) 0.497

c) 20.5

d) 29.5

13) 2 If the cross-sectional area of the composite is 300 mm², and a stress of 100 MPa is applied in the longitudinal direction, what will be the total load (in kN) carried

d) 0.566

c) 0.3505

a) 0.4505

a) 0.398

a) 0.5

b) 5

by the glass fibres?

b) 0.4055

b) 0.434