4. Sea $A \in \mathbb{R}^{m \times n}$ y $A = U \Sigma V^t$ una descomposición SVD de A. a) Expresar en función de U, Σ y V a las siguientes matrices: i) $A^t A$ ii) AA^t iii) $(A^tA)^{-1}A^t$ (asumiendo A con columnas linealmente independientes) b) Hallar una descomposición SVD de las siguientes matrices (\mathbb{Q}_n es la matriz de ceros de $n \times n$): i) A^t ii) A^{-1} (suponiendo m = n y A inversible) iv) $(A \quad \mathbf{0}_m)$ c) Dado $\alpha \in \mathbb{R}_{>0}$, expresar los valores singulares de $(A^tA + \alpha I)^{-1}A^t$ en función de los de A y α . a) $A^{T} = (U \Sigma V^{T})^{T} = V (U \Sigma)^{T} = V \Sigma^{T} U^{T}$ i) $A^TA = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T \in \mathbb{R}^{n \times n}$ ii) AAT = UZVTVZTUT = UZZTUT EIRMXM $(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = (\sqrt{\Sigma}^{\mathsf{T}}\Sigma\sqrt{})^{-1}\sqrt{\Sigma}^{\mathsf{T}}U^{\mathsf{T}} = (\sqrt{})^{-1}(\Sigma^{\mathsf{T}}\Sigma)^{-1}\sqrt{}V\Sigma^{\mathsf{T}}U^{\mathsf{T}}$ $= \bigvee (\Sigma^{\mathsf{T}} \Sigma)^{-1} \Sigma^{\mathsf{T}} U^{\mathsf{T}}$ Es inversible porque rango(A) = n luego hay n valores singulares $\neq 0 \Rightarrow \sum \sum \in \mathbb{R}^{n \times n}$ es inversible P) i) $A^T = (U \Sigma V^T)^T = V (U \Sigma)^T = V \Sigma^T U^T$ ii) $A^{-1} = (U \Sigma V^T)^{-1} = (V^T)^{-1} \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^T$ $m=n \Rightarrow \sum \in \mathbb{R}^{n \times n}$ $\Rightarrow \sum inversible$ A inversible => \(\chi_i \neq 0 \vert i=1...n => \si_i \neq 0 \vert i=1...n

