Decision trees

COMS 4771 Fall 2019

Overview

- ► Decision tree learning
- Comparison to NN

) / 18

2/18

Example of decision tree

```
1: if age ≥ 40 then
2: if genre = western then
3: return 4.3
4: else if release date > 1998 then
5: return 2.5
6: else
7: :
8: end if
9: else if · · · then
10: :
11: end if
```

General structure of decision trees

- ▶ <u>Decision tree</u>: nested if-then-else rules
- ► Family of possible if-clauses is pre-determined
 - ► Typically very simple predicates (e.g., "age is at least 40?")
- ► Axis-aligned / coordinate splits for numerical features
 - For input ${m x}=(x_1,\ldots,x_d)\in \mathbb{R}^d$, splits are of the form

$$\mathbb{1}_{\{x_i > \theta\}} = \begin{cases} 1 & \text{if } x_i > \theta \\ 0 & \text{if } x_i \le \theta \end{cases}$$

► (Other types of splits are possible.)

2/10

Example: iris classification

- ▶ Three classes of irises $\{1, 2, 3\}$ (red, green, blue)
- **Each** input $x = (x_1, x_2)$ represented by two numerical features
 - $ightharpoonup x_1 = \text{sepal length-to-width ratio}$
 - $\blacktriangleright x_2 = \text{petal length-to-width ratio}$

Example: iris classification

- \blacktriangleright Three classes of irises $\{1,2,3\}$ (red, green, blue)
- **Each** input $x = (x_1, x_2)$ represented by two numerical features
 - $ightharpoonup x_1 =$ sepal length-to-width ratio
 - $ightharpoonup x_2 = petal length-to-width ratio$

Example: iris classification

- ▶ Three classes of irises $\{1, 2, 3\}$ (red, green, blue)
- **Each** input $x = (x_1, x_2)$ represented by two numerical features
 - $ightharpoonup x_1 = \text{sepal length-to-width ratio}$
 - $ightharpoonup x_2 = \text{petal length-to-width ratio}$

Example: iris classification

- ightharpoonup Three classes of irises $\{1,2,3\}$ (red, green, blue)
- ightharpoonup Each input $x=(x_1,x_2)$ represented by two numerical features
 - $ightharpoonup x_1 = \text{sepal length-to-width ratio}$
 - $ightharpoonup x_2 = ext{petal length-to-width ratio}$

5 / 18

Example: iris classification

- \blacktriangleright Three classes of irises $\{1, 2, 3\}$ (red, green, blue)
- **Each** input $x = (x_1, x_2)$ represented by two numerical features
 - $ightharpoonup x_1 = \text{sepal length-to-width ratio}$
 - $ightharpoonup x_2 = petal length-to-width ratio$

Example: iris classification

- \blacktriangleright Three classes of irises $\{1, 2, 3\}$ (red, green, blue)
- **Each** input $x = (x_1, x_2)$ represented by two numerical features
 - $ightharpoonup x_1 = \text{sepal length-to-width ratio}$
 - $ightharpoonup x_2 = petal length-to-width ratio$

Growing a decision tree

- ► Leaf nodes form a *partitioning* of the input space
 - ▶ Prediction to use at each leaf node: plurality label
- ► Greedy algorithm for decision trees:
 - ► Start with a single leaf node
 - ► Repeat: pick a leaf node and split into two new leaf nodes
 - ▶ Rule for picking leaf + split: choose leaf and splitting rule to maximally reduce "uncertainty"

Notions of uncertainty

- ► Fix attention to single leaf
 - Let p_k be the proportion of examples reaching a leaf with label k
 - ▶ Classification error rate: $1 \max_k p_k$

 - ► Each is minimized when only a single label appears

Figure 1: Uncertainty measures

Overall uncertainty

► (Overall) uncertainty:

 $\sum_{\mathsf{leaf}\;\ell} (\#\;\mathsf{training}\;\mathsf{examples}\;\mathsf{reaching}\;\ell) \cdot (\mathsf{uncertainty}\;\mathsf{at}\;\ell)$

► In greedy algorithm, we consider reduction in uncertainty from splitting a leaf

Limits of uncertainty notions

Figure 2: XOR example

12 / 18

Stopping criterion

- ▶ Option 1: Stop when tree reaches pre-specified size
 - ► Tree size is a hyperparameter
- ▶ Option 2: Stop when uncertainty is zero
 - ▶ Risk of over-fitting (since training error rate is zero)

Figure 3: Typical error rate curves

Pruning a large tree

- ► An instantiation of the hold-out approach
- ightharpoonup Split training data into G (grow) and P (prune)
 - ightharpoonup Use G to grow the tree until zero uncertainty
 - ightharpoonup Use P to choose a good pruning of the tree
- ▶ Pruning algorithm:
 - ▶ Repeat: replace any non-leaf node by leaf node if it improves error rate with respect to (wrt) P

Figure 4: Pruning a tree

14 / 18

.

Example: spam filtering I

- ► Spam dataset
- ▶ 4601 email messages, about 39% are spam
- ► Classify message by spam and not-spam
- ▶ 57 features
 - ▶ 48 are of the form "percentage of email words that is (WORD)"
 - ▶ 6 are of the form "percentage of email characters is (CHAR)"
 - ▶ 3 other features (e.g., "longest sequence of all-caps")
- ▶ Final tree after pruning has 17 leaves, 9.3% test error rate

Example: spam filtering II

16 / 18

Comparing k-NN and decision trees

- ► k-NN
 - ► Training/fitting: memorize data set
 - ► Testing/predicting: find neighbors in memorized data set, output plurality label
- ► Decision tree
 - ► Training/fitting: greedily partition feature space to reduce "uncertainty"
 - ► Testing/prediction: traverse tree, output leaf label