Proje Başlığı: Online Kargo Takip Sistemi

Amaç: Öğrencilerin farklı veri yapıları ve algoritmaları entegre ederek gerçek bir problem üzerinde çalışmaları.

Proje Özellikleri ve Teknik Detaylar

1. Müşteri Verilerinin Yönetimi (Linked List)

Her müşteri için aşağıdaki bilgiler tutulmalıdır:

- Müşteri ID (benzersiz bir kimlik numarası)
- İsim ve Soyisim
- Kargo Gönderim Geçmişi (Linked List kullanılarak)
 - Her bir gönderi aşağıdaki bilgilere sahip olmalıdır:
 - Gönderi ID
 - Gönderi Tarihi
 - Teslim Durumu (Teslim Edildi / Teslim Edilmedi)
 - Teslim Süresi (gün cinsinden)

Görevler:

- Yeni bir müşteri ekleme.
- Mevcut bir müşterinin gönderim geçmişini sorgulama.
- Gönderi geçmişi sonradan eklendiği için düğümleri sıralı bir şekilde ekleme işlemi yapılmalı (örneğin tarih sırasına göre).

2. Kargo Önceliklendirme (Priority Queue)

Sistem, kargoları teslimat önceliğine göre işleme almalıdır.

- Gerekli Bilgiler:
 - Gönderi ID
 - Teslimat Süresi
 - Kargo Durumu (İşleme Alındı / Teslimatta / Teslim Edildi)

Priority Queue Uygulaması:

- Teslimat süresi daha kısa olan kargolar öncelikli olmalıdır.
- Kargo ekleme ve öncelikli kargo işleme işlemleri için zaman karmaşıklığı analiz edilmelidir.

3. Kargo Rotalama (Tree Data Structure)

Teslimat yapılacak şehirler ve rotalar bir ağaç yapısı ile temsil edilecektir.

Ağaç Yapısı:

- Kök düğüm: Kargo şirketinin merkezi.
- Alt düğümler: Şehirler ve alt rotalar.

Özellikler:

- Her düğüm bir şehir olacak ve aşağıdaki bilgilere sahip olacaktır:
 - Şehir Adı
 - Şehir ID
 - Şehre bağlı alt şehirler (çocuk düğümler)
- Sistem, ağacın derinliğini kullanarak en kısa teslimat süresini hesaplamalıdır.
- Rotaların görselleştirilmesi için öğrencilerden **ağacın bir çıktısını** üretmeleri istenebilir (örneğin, konsol üzerinde bir ağaç yapısı).

4. Gönderim Geçmişi Sorgulama (Stack)

Her müşteri için son gönderilen kargoları hızlıca sorgulamak için bir **yığın (stack)** kullanılmalıdır.

İslevler:

- Son gönderilen 5 kargoyu sorgulama.
- Yeni gönderim eklenmesi durumunda stack'e push işlemi yapılmalıdır.
- Eğer gönderim geçmişi boşsa, uygun bir hata mesajı döndürülmelidir.

5. Kargo Durum Sorgulama (Sorting & Searching)

Sistem, kargo durumlarını sorgulamak için sıralama ve arama algoritmalarını kullanmalıdır.

Teslim Edilmiş Kargolar:

- Kargo ID'ye göre binary search algoritması kullanılarak bulunmalıdır.
- o Arama işlemi sırasında **sorted list** kullanılmalıdır.
- Teslim Edilmemiş Kargolar:

- Teslimat süresine göre merge sort veya quick sort kullanılarak sıralanmalıdır.
- Sıralama işleminin zaman karmaşıklığı analiz edilmelidir.

Ek Özellikler

6. Raporlama ve Performans Analizi

Öğrencilerden, kullandıkları veri yapıları ve algoritmaların performansını raporlamaları istenmelidir:

- Hangi veri yapısı neden seçildi?
- Algoritmaların zaman ve uzay karmaşıklığı.
- Daha verimli bir çözüm önerilebilir mi?

7. Arayüz (Opsiyonel)

Projeyi daha görselleştirmek için bir **konsol tabanlı menü** veya basit bir GUI oluşturulabilir:

- Menü Seçenekleri:
 - 1. Yeni müşteri ekle.
 - 2. Kargo gönderimi ekle.
 - 3. Kargo durumu sorgula.
 - 4. Gönderim geçmişini görüntüle.
 - 5. Tüm kargoları listele (sıralı).
 - 6. Teslimat rotalarını göster.

Teslimat Gereksinimleri

1. **Kod:**

- o Projenin eksiksiz ve çalışan bir kodu teslim edilmelidir.
- Kod, her veri yapısını ve algoritmayı belirgin bir şekilde içermelidir.

2. Dokümantasyon:

- Algoritmaların ve veri yapılarının seçimi.
- Performans analizi ve sonuçları.
- o Kullanıcı rehberi.

3. Test Senaryoları:

 Çeşitli senaryolarla sistem test edilmelidir (örneğin, kargo ekleme, arama, sıralama).

Zorluk Düzeyi ve Değerlendirme Kriterleri

- Proje zorluğu, farklı veri yapılarının bir arada kullanımı ve entegrasyonu ile artırılmıştır.
- Değerlendirme:
 - 1. Kodun doğruluğu (%40)
 - 2. Algoritmaların ve veri yapıların doğru kullanımı (%30)
 - 3. Performans analizi ve dokümantasyon (%30)