Evaluate $\int_{0}^{3} \int_{-1}^{1} \int_{2}^{4} (y-xz) dz dy dx$.

L2

Evaluate $\int\limits_0^\infty \int\limits_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates. Hence deduce that $\int\limits_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

2

Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ by using double integration.

L2

1

loom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

a) Test for consistency and hence solve the system of equations by the Gauss elimination method:

$$4x+y+z=4$$

 $x+4y-2z=4$
 $3x+2y-4z=6$

6 L2

b) State Comparision test. Test for convergence of the series $\frac{1.2}{3.4.5} + \frac{2.3}{4.5.6} + \frac{3.4}{5.6.7} + \dots \infty$

7 L2

c) State Cauchy's root test. Test for convergence of the series:

$$1 + \frac{2}{3}x + (\frac{3}{4})^2x^2 + (\frac{4}{5})^3x^3 + \dots \infty$$
, (x>0)

7 L2 2

Unit - II

4. a) Define Jacobian of a transformation. If x+y+z=u, y+z=uv and z=uvw then find the value of $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.

6 L2

4

3

3

3

3

b) With usual notation prove that $\tan \varphi = r \frac{d\theta}{dr}$

7 L1

c) State Lagrange's mean value theorem. Verify Lagrange's mean value theorem for the function $f(x)=\sin^{-1}x$ in [0,1].

7 L1

5. a) Find the angle of intersection between the curves $r^n = a^n \cos \theta$ and $r^n = b^n \sin \theta$.

6 L3

b) i) If V = f(2x - 3y, 3y - 4z, 4z - 2x) then find the value of $6\frac{\partial V}{\partial x} + 4\frac{\partial V}{\partial y} + 3\frac{\partial V}{\partial z}$.

L2

7

ii) Find $\frac{dy}{dx}$ from the implicit function $x\sin(x-y)-(x+y)=0$.

7 L3 .

c) Find the extreme value of the function $f(x,y)=x^3y^2(1-x-y)$. 6. a) Find the radius of curvature of the curve $x=6t^2-3t^4$, $y=8t^3$.

6 L2 3

b) Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

7 L3 A

c) Expand the function $f(x,y) = \log(1+x-y)$ as a Maclaurin's series upto second degree terms.

7 L2 4

Unit - III

7. a) Using Gamma function evaluate $\int_{0}^{1} x^{2} (\log(\frac{1}{x}))^{3} dx$.

3

6

L1

b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
c) By changing the order of integration, evaluate

 $\int_{0}^{3} \int_{0}^{\sqrt{4-y}} (x+y) dx dy .$

7 L2

-2-

7 L3

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Beladavi)

First Semester B.E. (Credit System) Degree Examinations

April - May 2022

21MA101 - ENGINEERING MATHEMATICS - I

ation: 3 Hours

Max. Marks: 100

ite: Answer Five full questions choosing Two full questions from Unit - I & Unit - II each and One full question from Unit - III.

Unit - I

Marks BT* CO* PO*

a) Find the rank of the matrix $A = \begin{bmatrix} 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \end{bmatrix}$ using

elementary row transformation.

b) Find the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

c) Obtain the Maclaurin's series expansion for $f(x)=(1+x)^{\frac{1}{2}}$ up to the terms containing x^4 .

7 L1 1

a) Using Power method, find the dominant eigen value and corresponding eigen vector of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ starting with

an initial eigen vector as $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Perform five iterations.

b) Using Gauss-Seidel method solve the given system of linear 6x + y + z = 105equations:

4x+8y+3z=155

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ as an initial approximation and carry out three

iterations. c) State D'Alembert's ratio test. Test the convergence of the series:

 $\sum \frac{1.3.5.7....(2n-1)}{4.7.10...(3n+1)}$

		20MA101 Supplementary - Sept. 2022 Obtain the Maclaurin's expansion of $e^{\sin x}$ upto third degree			
	c)	terms.	7	L3	2
		Unit – III			
5.	a)	With usual notation prove that $tan\varphi = r\frac{d\theta}{dr}$.	7	L3	3
	b)	Show that the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ of the			
		folium $x^3 + y^3 = 3axy$ is $\frac{3a}{8\sqrt{2}}$	6	L2	3
	c)	State and prove Cauchy's mean value theorem.			
6.	a)	Find $\frac{ds}{d\theta}$, $\frac{ds}{dx}$, $\frac{ds}{dy}$ for the cycloid $x = a(\theta - \sin\theta)$, $y = a(1 - \cos\theta)$	7	L3	3
	b)	i) With usual notation prove that $\rho = \frac{(1+y_1^2)^{1/2}}{y_2}$			
		ii) Find the radius of curvature for the curve $y = a \log \frac{x}{a}$	7	12	3
	c)	State and prove Lagrange's mean value theorem.	6	L2 L1	3
		Unit – IV			
7.	a)	i) If $z = yf(x^2 - y^2)$ then show that $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = \frac{zx}{y}$.			
		ii) If $z = x^2y - x\sin xy$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.	6	L3	,
	b)	If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$	U	LJ	1.18
		find $\frac{\partial(u,v,w)}{\partial(x,v,z)}$ at (1,-1,0)	7	L3	4
	c)	Suppose a closed rectangular box has length twice its breadth			
		and has constant volume V. Determine the dimension of the box requiring least surface area.	7	L2	4
0	۵١		•	LL	7
8.	a)	i) If u is a homogeneous function of degree n prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$.			-1
		ii) If $\sin u = \frac{x^2 + y^2}{x + y}$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.	6	L1	4
	b)	Find total derivative of $u = xy + yz + zx$, when $x = t cost$,			
	c)	$y = t \sin t, z = t \cot \frac{\pi}{4}$.	7	L2	4
	٠,	Expand $f(x,y) = \tan^{-1}(\frac{y}{x})$ in powers of $(x-1)$ and $(y-1)$ upto second-degree terms.	_		
		described desgree terms.	7	L3	4
9.	a)	Unit – V			
0.	۵,	Obtain the reduction formula for $\int \sin^n x dx$. Hence obtain $\int_0^{\pi/2} \sin^n x dx$.			
	b)	Trace the curve $y^2(a-x)=x^3, a>0$.	7	L2 L3	5
	c)	Find the volume of the solid generated by the revolution of the	7	L3	5
		cardioid $r = a(1 + \cos\theta)$ about the initial line.	6	L2	5
10.	a)	Evaluate i) $\int_0^n \frac{\sin^4 \theta}{(1+\cos \theta)^2} d\theta$ ii) $\int_0^{2a} x^2 \sqrt{2ax-x^2} dx$			Ü
	b) -	If ace $r^2 = a^2 \cos 2\theta$	7	L2	5
5	c)	Find the surface area generated by revolving actordid	7	L3	5 5
S		$x = a \sin^3 t$, $y = a\cos^3 t$ about the initial line.	6	L2	5
	ث د	-la Tayanamy I t I ayak	•		THE STATE OF

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

NMAM INSTITUTE OF TECHNOLOGY NITTE

(An Autonomous Institution affiliated to VTX) Belagaville

First Semester B.E. (Credit System) Degree Examinations

Supplementary Examinations - September 2022

20MA101 - ENGINEERING MATHEMATICS -

tion: 3 Hours

Max. Marks: 100

Note: Answer Five full questions choosing One full question from each Unit.

Marks BT* CO* PO* Unit - I

Define Rank of the matrix. Find rank of the following matrix using a) elementary row transformation

2 1 L*2

Test for consistency and solve the following system of equations by Gauss-elimination method

> $x_1 + x_2 - x_3 = 0$ $2x_1 - x_2 + x_3 = 3$ $4x_1 + 2x_2 - 2x_3 = 2$

2 1 L3 7

Find Eigen value and Eigen vector of the matrix C)

 $\begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$

2 1 L3

Determine the largest Eigen value and the corresponding Eigen -1 using Rayleigh's power 2 vector of the matrix method, with initial approximation $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, carry out four

L3 7

2

2

iterations. Find matrix P which diagonalizes the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. Verify $P^{-1}AP = D$ where D is the diagonal matrix.

L2 2 7

Reduce the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_2x_3 + 2x_3x_1 - 2x_1x_2$ to canonical form.

2 L2 6

Unit - II

Test for convergence of the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots$. Examine convergence or divergence of the series a)

L2

6

 $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \cdots, \quad x > 0$

2 2 L2 7

2

Obtain Taylor's series expansion of log (secx) about the point c) $x = \frac{\pi}{3}$ upto third degree terms.

2 7 L3 2

Test for convergence a)

2 2 L2 6

i) $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots$ ii) $\sum \frac{\sqrt{n}}{n^2 + 1}$ State Cauchy's root test and test the convergence of $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \cdots, x > 0$

L2 7

2 2 Unit - III

7. a) Evaluate $\iint_{1}^{6} \iint_{2}^{3} \int_{0}^{2} 5x^{2}y^{2}z^{3} dxdydz$.

6 L2 5 1

b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

- 7 L2 5 2
- c) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} 5xy \, dy dx$ by changing the order of integration.
- 7 L2 5 1

8. a) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin\theta} \, d\theta \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin\theta}} \, d\theta = \pi.$

- 6 L2 5 2
- b) Evaluate $\int_{0}^{1} x^{7} (1 x^{4})^{3} dx$ using Beta and Gamma functions.
- 7 L2 5
- c) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} 2(x^2+y^2) \ dydx$ by changing to polar coordinates.
- 7 L2 5 1

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

SEE- September - October 2022

- b) Using Rayleighs' power method obtain the largest eigen value and the corresponding eigen vector of the matrix $\begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix}$
 - select $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial eigen vector and carry out 5 iterations.
 - Write Maclaurin's series expansion of $f(x) = e^x \cos x$ up to third degree terms.

- Given $u = 10 \sin\left(\frac{x}{v}\right)$, $x = 3e^{2t}$ and $y = 5t^2$, find $\frac{du}{dt}$ as a
 - function of t. b) If ρ is the radius of curvature at any point p on the parabola $y^2 = 4ax$ and s is its focus, then show that ρ^2 varies as $(sp)^3$.
 - c) With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$.
- Expand the function $f(x,y) = (\cos x)(\cos y)$ up to second 5. degree terms.
 - values extreme following for function the b) Examine $u = x^4 + y^4 - x^2 - y^2 + 1$
 - c) State and prove Cauchy's mean value theorem.
- The period of oscillation of a simple pendulum is $T=2\pi\sqrt{\frac{l}{g}}$.In an experiment carried out to find the value of g , errors of 1.5% and 0.5% are possible in values of l and T respectively. Find the error in the calculated value of $\,g\,.\,$
 - b) If $x = r\cos\theta$, $y = r\sin\theta$, find $J = \frac{\partial(x,y)}{\partial(r,\theta)}$, $J' = \frac{\partial(r,\theta)}{\partial(x,y)}$ and show that JJ'=1.
 - With usual notations prove that $\rho = \frac{(r^2 + r_1^2)^{\frac{1}{2}}}{r^2 + 2r^2 rr}$

- 1 1 L1
- 2 2 L2 7
- 2 4 6 L1
- 1 3 L2 7
- 2 3 L2
- 6 L1

- L2 2 6
- 7 L1
- 7 L2

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester B.E. (Credit System) Degree Examinations

September - October 2022/

21MA101 - ENGINEERING MATHEMATICS

Duration: 3 Hours

Max. Marks: 100

Note: Answer Five full questions choosing Two full questions from Unit – I & Unit – II each and One full question from Unit – III.

Unit-1

Marks BT* CO* PO*

1. a) Find the rank of the following matrix using elementary row

transformations $\begin{bmatrix} 2 & 7 & 1 & -2 \\ 1 & 3 & 1 & 4 \\ -3 & 0 & -2 & 1 \\ 0 & -3 & 1 & 5 \end{bmatrix}.$

6 L*1 1 1

b) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$

7 L2 1 1

c) (i) State Cauchy's root test.

(ii) Test for convergence of the series $\sum \left(\frac{n+2}{n+3}\right)^n x^n$, x > 0.

7 L2 2 2

a) Solve the system of equations given below by Gauss - Seidel Method.

6x + 15y + 2z = 72

27x + 6y - z = 85.

x + y + 54z = 110

take $x^{(0)} = 0$, $y^{(0)} = 0$, $z^{(0)} = 0$, carry out three iterations.

6 L1 1 1

b) Test for convergence of the series

 $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \infty , x > 0.$

7 L2 2 2

c) Test for consistency and solve the system of equations

x - 4y + 5z = 8

3x + 7y - z = 2 by Gauss elimination method.

x+15y-11z=-14

7 L2 1

3. a) Test for the convergence of the series

(i) $\sum \frac{n^3}{3^n}$, (ii) $\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \frac{1}{5.6} + \dots \infty$

6 L2 2 1