

Computer Vision Systems Programming VO Specific Object Recognition

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Introduction to object recognition Specific object recognition

Image from Grauman and Leibe 2011

Fundamental problem in Computer Vision

Many applications

- Panorama stitching, 3D reconstruction
- HCI and surveillance (face recognition)
- ▶ Image understanding (recall Fei-Fei Li's TED talk)

Taxonomy – Instance vs. Category

Instance recognition (specific object recognition)

- ▶ Recognize a specific, uniquely looking object
- ▶ Face of a certain person, the Eiffel tower

Object category recognition

- Recognize objects of a certain category
- Human faces, buildings

Taxonomy – Instance vs. Category

Taxonomy - Classification vs. Detection

Object classification

- Recognize main object in image
- Location and other objects not relevant

Object detection

Recognize multiple objects, possibly of different category

Taxonomy - Classification vs. Detection

Object Recognition Challenges

Instances of same category can look very differently

▶ Illumination, pose, viewpoint, occlusions, background

Image from Grauman and Leibe 2011

We want to detect specific rigid planar objects

- Like markers, books
- Comparatively easy problem

Challenges

- Unknown object pose and scale
- Varying illumination
- Partial occlusions

Image from youtube.com

Selecting \mathbf{x} and \mathbf{w}

Our problem formulation is

- Given a pixel location in a query image
- Predict location on object surface

So we know how to select \mathbf{x} and \mathbf{w}

- $\mathbf{x} = (x, y)$: pixel location in query image
- ${f w}=(u,v)$: corresponding location on object surface

As $\mathbf{w} \in \mathbb{R}^2$ this is a regression problem

Selecting \mathbf{x} and \mathbf{w}

Image adapted from Prince 2012

Planar Rigid Object Detection Model Selection

Images of planar objects are always related by a homography Φ

lacksquare 3 imes 3 matrix mapping between corresponding points

In homogeneous coordinates this means that

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \Phi \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

The model of choice is thus (disregarding noise)

$$\mathbf{w} = \Gamma(\mathbf{x}) = \begin{pmatrix} u \\ v \end{pmatrix} \quad , \quad \lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \mathbf{\Phi} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Learning Model Parameters

We again learn parameters $oldsymbol{ heta}$ from samples $\{(\mathbf{x}_i,\mathbf{w}_i)\}_{i=1}^n$

lacktriangledown $m{ heta}$ contains 9 parameters comprising $m{\Phi}$

Usually no exact solution because of noisy \mathbf{x}_i

Formulate as a least squares problem instead

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left[\sum_{i=1}^{n} (\mathbf{w}_i - \Gamma(\mathbf{x}_i))^{\top} (\mathbf{w}_i - \Gamma(\mathbf{x}_i)) \right]$$

Learning Model Parameters

This least squares approach is optimal

▶ If noise is distributed normally with spherical covariance

This is a nonlinear optimization problem

- Solvable using any general nonlinear least squares solver
- OpenCV has an own function findHomography

Pose Estimation

 Φ is a 2D transformation

We may want to know the position and orientation of the object

- ► This is called pose estimation
- ► Required e.g. for marker-based AR like above

This information can be extracted from Φ

- ▶ If we know the intrinsic camera parameters
- ▶ See Prince 2012 for details

Obtaining Point Correspondences

How can we compute $\{(\mathbf{x}_i, \mathbf{w}_i)\}_{i=1}^n$ automatically?

lacktriangle We first select \mathbf{w}_i , then search corresponding \mathbf{x}_i

 \mathbf{w}_i can be selected

- Manually (e.g. specific corners on markers)
- Automatically (e.g. SIFT)

Planar Rigid Object Detection Obtaining Point Correspondences

We adopt the second approach and use SIFT (or similar)

- ▶ Features invariant to rotation, scale, illumination
- Robust to affine transformations

Approach

- Compute keypoints and descriptors in both images
- ► Match descriptors (e.g. nearest neighbor association)
- ▶ Use keypoint locations of matches as $\{(\mathbf{x}_i, \mathbf{w}_i)\}_{i=1}^n$

Planar Rigid Object Detection Obtaining Point Correspondences – Remarks

There will likely be incorrect matches

- ▶ Would greatly impact the least squares solution
- ▶ Hence we use a robust alternative like RANSAC

Obtaining Point Correspondences Using OpenCV

```
// read images (SIFT expects gravscale images)
cv::Mat object = cv::imread("object.jpg", cv::IMREAD GRAYSCALE);
cv::Mat search = cv::imread("search.ipg", cv::IMREAD GRAYSCALE);
cv::SIFT sift: // using default arguments here
// compute keypoints
std::vector<cv::KeyPoint> kobject, ksearch;
sift.detect(object, kobject); sift.detect(search, ksearch);
// compute descriptors
cv::Mat dobject, dsearch;
sift.compute(object, kobject, dobject); sift.compute(search, ksearch, dsearch);
```

Obtaining Point Correspondences Using OpenCV

```
// find two nearest neighbors x,x' for each w
cv::FlannBasedMatcher matcher; // fast nearest neighbor search
std::vector<std::vector<cv::DMatch> > kMatches;
matcher.knnMatch(dobject, dsearch, kMatches, 2);

// keep match (x,w) if x is clearly more similar than x'
// this is a popular matching strategy
std::vector<cv::DMatch> matches;
for(const std::vector<cv::DMatch>& match : kMatches)
    if(match[0].distance < match[1].distance * 0.8) // x, x'
        matches.push_back(match[0]); // (x,w)</pre>
```

Learning Homography Parameters Using OpenCV

```
// collect feature locations of correspondences from before
std::vector<cv::Point2f> pobject, psearch;
for(const cv::DMatch& match : matches) {
    pobject.push_back(kobject.at(match.queryIdx).pt);
    psearch.push_back(ksearch.at(match.trainIdx).pt);
}

// estimate homography using RANSAC for robustness
cv::Mat inliers; // contains indices of valid correspondences
cv::Mat homography = cv::findHomography(pobject, psearch, CV_RANSAC, 2, inliers);
```

What if sought objects are not planar?

Bibliography

Grauman, Kristen and Bastian Leibe (2011). *Visual object recognition*. Morgan & Claypool.

Prince, S.J.D. (2012). *Computer Vision: Models Learning and Inference*. Cambridge University Press.