AIRBNB, NYC STORYTELLING CASE STUDY

DATA INSIGHTS

RUSHABH PATEL

C59 BATCH, 2024

OBJECTIVE

- To Conduct a thorough analysis of New York Airbnb Dataset.
- Ask effective questions that can lead to data insights.
- Process, analyze and share findings by data visualization and statistical techniques.

Importing libraries and reading the data

Importing libraries and reading data:

```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
In [2]: data1 = pd.read_csv('AB_NYC_2019.csv')
         data1.head()
Out[2]:
                           name host_id host_name neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights number_of_revie
                     Clean & quiet
                                                                                                              Private
                                                                                                                      149
          0 2539 apt home by the
                                   2787
                                               John
                                                                 Brooklyn
                                                                             Kensington 40.64749 -73.97237
                                                                                                               room
                     Skylit Midtown
          1 2595
                                    2845
                                             Jennifer
                                                                Manhattan
                                                                                Midtown 40.75362 -73.98377
                                                                                                                      225
                           Castle
                                                                                                            home/apt
                    THE VILLAGE
                                                                                                              Private
                                                                                                                      150
                                                                                                                                        3
                                            Elisabeth
                                                                Manhattan
                                                                                Harlem 40.80902 -73.94190
                  HARLEM....NEW
                          YORK!
```

Creating features

Categorizing the "price" column into 5 categories:

```
|: def price_cat_func(row):
      Categorizes the "number_of_reviews" column into 5 categories
      if row <= 1:
         return 'Very Low'
      elif row <= 4:
          return 'Low'
      elif row <= 15 :
          return 'Medium'
      elif (row <= 100):
         return 'High'
          return 'Very High'
|: data1['price_categories'] = data1.minimum_nights.map(price_cat_func)
  data1['price_categories']
            Very Low
            Very Low
            Very Low
             Medium
```

Categorization:

Categorizing the "availability_365" column into 5 categories:

```
def availability_365_cat_func(row):
    """
    Categorizes the "minimum_nights" column into 5 categories
    """
    if row <= 1:
        return 'Very Low'
    elif row <= 200:
        return 'Low'
    elif row <= 200 :
        return 'Medium'
    elif (row <= 300):
        return 'Hedium'
    elif (row <= 300):
        return 'High'
    else:
        return 'Very High'</pre>
```

```
[: data1['availability_365_categories'] = data1.availability_365.map(availability_365_cat_func)
data1['availability_365_categories']
```

: 0 Very High 1 Very High 2 Very High 3 Medium 4 Very Low

Categorizing the "minimum_nights" column into 5 categories:

```
def min_night_cat_func(row):
    """

Categorizes the "minimum_nights" column into 5 categories
    """

if row <= 1:
    return 'Very Low'
elif row <= 3:
    return 'Low'
elif row <= 5:
    return 'Medium'
elif (row <= 7):
    return 'Medium'
elif (row <= 7):
    return 'High'
else:
    return 'High'</pre>
```

data1['minimum_night_categories'] = data1.minimum_nights.map(min_night_cat_func) data1['minimum_night_categories']

```
Very Low
Very Low
Low
Very Low
Very High
```

EDA

EDA:

```
4]: ## Let's check null counts and data types:
   data1.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 48895 entries, 0 to 48894
    Data columns (total 20 columns):
    # Column
                                      Non-Null Count Dtvpe
                                      -----
    0 id
                                      48895 non-null int64
        name
                                      48879 non-null object
    2 host id
                                      48895 non-null int64
    3 host name
                                      48874 non-null object
        neighbourhood group
                                      48895 non-null object
      neighbourhood
                                      48895 non-null object
    6 latitude
                                      48895 non-null float64
       longitude
                                      48895 non-null float64
                                      48895 non-null object
    8 room_type
    9 price
                                      48895 non-null int64
    10 minimum_nights
                                      48895 non-null int64
    11 number of reviews
                                      48895 non-null int64
    12 last_review
                                      38843 non-null object
    13 reviews_per_month
                                      38843 non-null float64
    14 calculated_host_listings_count 48895 non-null int64
    15 availability 365
                                      48895 non-null int64
```

```
data1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 20 columns):
    Column
                                    Non-Null Count Dtype
    -----
    id
                                    48895 non-null int64
    name
                                    48879 non-null object
    host id
                                    48895 non-null int64
    host_name
                                    48874 non-null object
    neighbourhood group
                                    48895 non-null object
    neighbourhood
                                    48895 non-null object
    latitude
                                    48895 non-null float64
    longitude
                                    48895 non-null float64
                                    48895 non-null object
    room_type
 9
    price
                                    48895 non-null int64
    minimum nights
                                    48895 non-null int64
 11 number of reviews
                                    48895 non-null int64
12 last review
                                    38843 non-null datetime64[ns]
 13 reviews per month
                                    38843 non-null float64
 14 calculated_host_listings_count
                                   48895 non-null int64
 15 availability_365
                                    48895 non-null int64
16 availability_365_categories
                                    48895 non-null object
 17 minimum_night_categories
                                    48895 non-null object
18 number of reviews categories
                                    48895 non-null object
 19 price categories
                                    48895 non-null object
```

dtypes: datetime64[ns](1), float64(3), int64(7), object(9)

memory usage: 7.5+ MB

Data Types

Categorical Data Types:

```
data1.columns
Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
       'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
       'minimum_nights', 'number_of_reviews', 'last_review',
       'reviews_per_month', 'calculated_host_listings_count',
       'availability_365', 'availability_365_categories',
       'minimum_night_categories', 'number_of_reviews_categories',
       'price_categories'],
      dtype='object')
## let's differentiate categorical columns:
categorical_columns = data1.columns[[0, 1, 3,4,5,8,16,17,18,19]]
categorical_columns
Index(['id', 'name', 'host_name', 'neighbourhood_group', 'neighbourhood',
       'room_type', 'availability_365_categories', 'minimum_night_categories',
       'number_of_reviews_categories', 'price_categories'],
      dtype='object')
```

Numerical Data Types:

]: data1[numerical_columns].head()

:		price	minimum_nights	number_of_reviews	reviews_per_month	calculated_host_listings_count	availability_365
	0	149	1	9	0.21	6	365
	1	225	1	45	0.38	2	355
	2	150	3	0	NaN	1	365
	3	89	1	270	4.64	1	194
	4	80	10	9	0.10	1	0

]: data1.describe()

Missing Values

Missing value analysis:

```
# Selecting the data with missing values for 'last_review' feature

data2 = data1.loc[data1.last_review.isnull(),:]
data2
```

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	numbe
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3	
19	7750	Huge 2 BR Upper East Cental Park	17985	Sing	Manhattan	East Harlem	40.79685	-73.94872	Entire home/apt	190	7	
26	8700	Magnifique Suite au N de Manhattan - vue Cloitres	26394	Claude & Sophie	Manhattan	Inwood	40.86754	-73.92639	Private room	80	4	
36	11452	Clean and Quiet in Brooklyn	7355	Vt	Brooklyn	Bedford- Stuyvesant	40.68876	-73.94312	Private room	35	60	
38	11943	Country space in the city	45445	Harriet	Brooklyn	Flatbush	40.63702	-73.96327	Private room	150	1	

Missing Value Analysis

```
Missing values Analysis (MvA) ('neighbourhood_group' feature)
# Count of 'neighbourhood group' with missing values
data2.groupby('neighbourhood_group').neighbourhood_group.count()
neighbourhood group
Bronx
                  215
                 3657
Brooklyn
Manhattan
                 5029
Queens
                 1092
Staten Island
                   59
Name: neighbourhood_group, dtype: int64
# Count of 'neighbourhood_group'
data1.groupby('neighbourhood group').neighbourhood group.count()
neighbourhood_group
Bronx
                  1091
Brooklyn
                 20104
Manhattan
                 21661
Oueens
                  5666
Staten Island
                   373
Name: neighbourhood_group, dtype: int64
(data2.groupby('neighbourhood_group').neighbourhood_group.count() /
 data1.groupby('neighbourhood_group').neighbourhood_group.count())*100
```

MvA 'room_type' feature

```
]: # Count of 'room_type' with missing values

data3 = (data2.groupby('room_type').room_type.count() / data1.groupby('room_type').room_type.count())*100
data3
```

]: room_type Entire home/apt 19.981109 Private room 20.877004 Shared room 27.068966 Name: room_type, dtype: float64

```
]: plt.figure(figsize=[5,4])
plt.title('Missing values')
sns.barplot(x = data3.index, y = data3.values, palette='viridis')
plt.show()
```



```
((data2.groupby('neighbourhood_group').neighbourhood_group.count() /
  data1.groupby('neighbourhood_group').neighbourhood_group.count())*100).plot.bar()
```

: <Axes: xlabel='neighbourhood_group'>

MOST CONTRIBUTING NEIGHBORHOODS

- 85 % of the listing are Manhattan and Brooklyn neighborhood group.
- Staten Island has the lowest contribution.

MINIMUM NIGHT CATEGORIES

Number of Reviews Categories

• Low category in minimum night feature contributes 40% and Very Low category contributes 26%.

EFFECT OF MINIMUM NIGHT ON REVIEWS

• Customers are more likely to leave reviews for lower number of minimum nights.

Minimum Night Categories

Bivariate and Multivariate Analysis

APPENDIX - DATA SOURCES

Column	Description
id	listing ID
name	name of the listing
host_id	host ID
host_name	name of the host
neighbourhood_group	location
neighbourhood	area
latitude	latitude coordinates
longitude	longitude coordinates
room_type	listing space type
price	
minimum_nights	amount of nights minimum
number_of_reviews	number of reviews
last_review	latest review
reviews_per_month	number of reviews per month
calculated_host_listings_count	amount of listing per host
availability 365	number of days when listing is available for booking

The columns in the dataset are selfexplanatory. You can refer to the diagram given below to get a better idea of what each column signifies.

APPENDIX - DATA ASSUMPTIONS

Categorical Variables: - room_type - neighbourhood_group - neighbourhood Continous Variables(Numerical): - Price - minimum nights - number of reviews - reviews per month - calculated_host_listings_count - availability 365 - Continous Variables could be binned in to groups too Location Varibles: - latitude - longitude Time Varibale: - last review

APPENDIX – DATA METHODOLOGY

- Performed a comprehensive analysis of the New York Airbnb dataset, which included the following steps:
- Data Cleaning: Utilized Python to clean and preprocess the dataset.
- Feature Engineering: Extracted and derived essential features.
- Statistical Analysis: Employed group aggregation, pivot tables, and other statistical techniques.

CONCLUSION

Here are the insights presented in a different way:

- Significant insights have been derived from various dataset attributes.
- A wide range of visuals has been used in presentations for stakeholders.
- The data collection team should gather data on review scores to enhance future analysis.
- A clustering machine learning model can be developed to identify groups of similar objects in datasets with multiple variables.