第五章 植物基因克隆原理和技术

梅西之所以能成为足坛巨星,很重要的原因是他生在这个时代。 因患侏儒症,他险些葬送了自己的足球生涯。 好在医学的发展,梅西才得以从过去的小矮子长到正常身高。

治疗侏儒症的唯一方法,是向人体注射生长激素。而 生长激素的获得很困难。以前要获得生长激素,需解剖尸体,从大脑底部摘取垂体,并从中提取生长激素。

现可利用基因工程方法,将人的生长激素基因导入大 肠杆菌中,使其生产生长激素。人们从450 L大肠杆菌培养 液中提取的生长激素,相当于6万具尸体的全部产量。LOCK

主要基因工程产品的研制、开发、上市时间

产品	时间	国家	用途	上市时间	国家
人生长激素释放抑制素(SRM)	1977	日本	巨人症		
人胰岛素	1978	美国	糖尿病	1982	欧洲
人生长激素 (HGH)	1979	美国	侏儒症	1985	美国
人α-干扰素 (IFN)	1980	美国	病毒	1985	欧洲
乙肝疫苗 (HBsAgV)	1983	美国	乙肝	1986	欧洲
人白细胞介素	1984	美国	肿瘤	1989	欧洲
人促红细胞生成素 (EPO)		日本	贫血	1988	欧洲
人粒细胞集落刺激因子(G-CSF)			白血病	1991	美国
人组织纤溶酶原激活剂 (t-PA)			血栓症	1987	美国

基因克隆的目的:使目标DNA片段得到扩增(富集)或表达。但外源DNA片段必须借助"载体"及"寄主细胞"来实现其扩增和表达。

基因克隆:将外源DNA 与载体DNA连接起来,并将 这些重组分子转入宿主细胞(细菌等), 通过宿主细 胞大量扩增复制外源DNA的过程。

主要过程包括:目标DNA的获得、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。

第一节植物基因克隆的主要载体 第二节植物基因克隆的主要工具酶 第三节基因重组与扩增技术 第四节重组载体转化与筛选

第一节植物基因克隆的主要载体

1.什么是基因克隆载体?

2.基因克隆载体有哪些基本特征?

3. 经典的克隆载体有哪些?

一、载体(Vector)的概念

在基因工程中,携带外源基因进入受体细胞的 工具叫做载体。作为基因工程载体, 质粒至少应该 具备复制的起始区、选择标记基因区、多克隆位点

扬州等學文学院LiOF

载体的本质是DNA。

二、载体的基本特征

- (1) 在宿主细胞内能独立复制;
- (2) 有合适的选择标记;
- (3) 有多克隆位点 (即多种单一的核酸内切 扬州、酶识别切割位点);
 - (4) 分子量小, 拷贝数多;
 - (5) 易从宿主细胞中回收。

多克隆位点: 指载体中用于插入外源DNA的特定区域,由 一系列紧密相连的限制性内切酶位点组成,而且每个酶位 点是载体中唯一的。

三、载体的分类

按功能分类

克隆载体 用于目的基因克隆,建立DNA文库

(Cloning vector) 或cDNA文库, 其上有复制子即可

使目的基因在宿主细胞中表达, 既 表达载体

(Expression vector) 有复制子,又有强启动子

1. 克隆载体

克隆载体: 用来克隆和扩增DNA片段(基因)的载体。 有一个松弛的复制子, 能带动外源基因在宿主细胞中 复制扩增。

扬州大学农学□质粒载体

□病毒载体

□黏粒载体 (柯斯质粒)

□人工染色体

1.1质粒 (plasmid)

独立于染色体以外、能自主复制与表达的双链闭合环状 DNA分子,一般大小1-200kb。

质粒载体的标记基因

按其用途可将标 记基因分为 用于鉴别目标 DNA (载体)的存在,将成 功转化了载体的宿主挑 选出来

扬州大学农学院 Li Ol

筛选标记基因 可用于将特殊表型的重 组子挑选出来。

选择标记

氣苄青霉素抗性基因(Ampicillin resistance gene, ampf)

四环素抗性基因(Tetracycline resistance gene, tet)

氣寒素抗性基因 (chloramphenicol resistance gene, Cmt, cat)

卡那霉素和新霉素抗性基因

(kanamycin/neomycin resistance gene, kant, neot)

筛选标记基因

筛选标记主要用来区分重组质粒与非重组质粒。

当一个外源 DNA 片段插入到一个质粒载体上时,可通过该标记来筛选插入了外源片段的质粒,即重组质粒。常用方法有 a- 互补 (蓝白斑筛选)等。

α互补

在质粒载体上带有一个大肠杆菌DNA的短区段,其中含有β-半乳糖苷酶基因 (LacZ) 的调控序列和头146个氨基酸的编码序列。在这一编码区中插入有一个**多克隆位点。**

细菌细胞含有野生质粒(没有外源DNA插入),在含有X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)的培养基上培养时产生蓝色菌落,易于识别。

当外源片段插入到质粒的多克隆位点后,lacZ基因失去功能,不能代谢X-gal。因此,带有重组质粒的细菌

形成白色菌落(阳性克隆)。

蓝白斑筛选

代表性的大肠杆菌质粒载体

pUC系列

在pBR322基础上改造而成,包括pUC7、pUC8、pUC9等。

pUC系列质粒的特点:

- ①. 分子量小,可接受较大外源片段(<10Kb);
- ②. 拷贝数多,例如pUC8质粒拷贝数是pBR322的5至10倍;
- ③. 克隆位点的酶切位点多, 克隆方便;
- ④. 具有2-互补显色表型,用于检测重组质粒的选择标记。

缺点: 质粒携带的外源基因小于10Kb

1.2 病毒载体

以λ噬菌体为例:

- ▶基因组全长48kb。
- ➤噬菌体DNA中间约2/3的序列为中间基因簇,位于两端的 II 为DNA左、右臂。
- ▶中间基因簇可被外源DNA替 代而不影响浸染细菌的能力。
- ▶能接受15-25kb外源DNA片段,既可做克隆载体又可做表 达载体。

1.3 黏粒 (柯斯质粒载体)

柯斯质粒 (cosmid):

一类由人工构建的含有ADNA的 cos序列和质粒复制子的 特殊类型的质粒载体 (cosmid vectors)。

柯斯质粒载体的特点

- ① 能像λ-DNA那样进行体外包装,并高效转染受体细胞
- ② 能像质粒那样在受体细胞中自主复制
- ③ 装载量大 (45 kb) , 且克隆片段大小具有一定范围 IOI
 - ④ 不能体内包装, 不裂解受体细胞

1.4 人工染色体载体

细菌人工染色体 (BAC):

F因子经基因工程改造成BAC载体,可用于克隆100kb以上的DNA片段。

特点: (1) 带有外源DNA的BAC载体在细胞中是单拷贝的;多克隆位点; (2) 载体本身分子量很小(7.4kb); (3) 选择标记: 氯霉素抗性基因。

YAC (1~2 Mb) yeast artificial chromosome

2. 表达载体

表达载体: 具有表达和调控能力的载体称表达载体。

不仅具有克隆载体的基本元件(如ori, Amp^r, Mcs等),还含 有转录/翻译所必需的DNA序列的载体。例如,表达载体必 需有强大的能被宿主细胞识别的启动子和终止子以有效转录。

常用表达载体

目的基因表达载体中的表达盒:

pET表达载体 pET-28a(+) 扬州大学农学队

pGEX表达载体

第二节植物基因克隆的主要工具酶

在植物基因克隆的过程中, DNA分子的切割、连接、 修饰以及合成等操作会涉及一系列工具酶的应用, 比如限制性核酸内切酶、DNA连接酶、DNA聚合酶、 反转录酶、末端转移酶、碱性磷酸酶等。

一、限制性核酸内切酶

能识别DNA 上特定碱基序列并从该位点切开DNA 分子。

1970年, Smith等分离出第一种限制性核酸内切酶。

1978年获诺贝尔生理或医学奖

从核酸分子内部切割磷酸二酯健使之断裂形成小片段

1. 限制性核酸内切酶的概念

限制性核酸内切酶: 又称限制酶, 是细菌降解外来 DNA分子的一类核酸水解酶。能识别双链DNA分子 中一段特异的核苷酸序列, 并在该序列中将双链 DNA分子切断。

不同于一般的脫氧核糖核酸酶 (DNase), 限制酶的 切点大多很严格,要求专一的核苷酸序列—即识别 序列。

2. 常用的Ⅱ型限制性核酸内切酶特征

- 每种酶有其特定的核苷酸序列识别特异性;
- 其切断DNA时无需ATP, 其切点严格, 位于识别序列中;
- 断裂部位可形成粘性末端或平头末端。
- · 只切割双链DNA分子,不切单链DNA。

二、DNA连接酶 (Ligase)

催化DNA中磷酸二酯键(5' -磷酸和3' -OH)的形成,从而使两个片段以共价键的形式结合起来。

(a) 具有 3'-OH 和 5'-P 基团的一个缺口被 DNA 连接酶封闭起来; (b) 如果是缺失一个或數个核苷酸的裂口, DNA 连接酶则不能将它封闭

DNA 连接酶对缺口 DNA(a)、平末端 DNA(b)和粘性末端 DNA 分子(c)的连接作用NAD+=烟酰胺腺嘌呤二核苷酸,ATP=腺苷三磷酸,NMN=烟酰胺单核苷酸,AMP=腺苷一磷酸

酶切与连接

三、DNA聚合酶

DNA聚合酶: 又称依赖于DNA的DNA聚合酶(DNAdependent DNA polymerase), 是细胞复制DNA过程中的重要酶。DNA聚合酶以DNA为复制模板,以dNTP为底物、催化合成子代DNA, DNA链只能由5'向3'延伸。

四、反转录酶

- ★反转录酶是一类以RNA为模板来指导DNA合成的DNA聚合酶,所以又称为**依赖于RNA的DNA聚合酶**。
- ★反转录酶在遗传工程中的主要用途是以mRNA为模板合成cDNA。

五、核酸修饰酶

细菌碱性磷酸酶 (BAP)

特点:(1) 除去ss-DNA, ds-DNA 和RNA分子两端的磷酸基团; (2) 对热稳定。

用途: (1) 载体DNA去磷酸化, 防止自我连接, 增加重组频率; (2) 核酸末端标记。

第三节基因重组与扩增技术

扬州大学农学院 Li QF

扬州大学农学院 Li OF

基因克隆载体构建过程

- · DNA的体外重组(切、接)
- · 重组DNA分子的转化和扩增(转、增)
- 转化子的筛选和鉴定(检)

外源DNA与载体重组方法

▶与T載体直接连接

> 酶切连接法

扬州大学农学院 Li QF 扬州大学农学院 Li QI

▶无缝克隆法 (同源重组法)

> Gateway 载体构建系统

一、与T载体直接连接

二、酶切连接法

理想的酶切位点的选择

- □选择的酶切位点在载体上出现的要尽可能少, 最好是唯一的酶切位点
- ■外源DNA片段上没有该酶切位点
- □保证在载体连接后对基因转录和翻译过程中的 编码区读码框不改变

1. 目的片段的获得

1.1 质粒酶切

引物设计:在引物的5°端设计酶切位点

- (1) 设计原则 符合载体的多克隆位点; 避免与所扩增的DNA片断内部酶切位点重复。
- (2) 带酶切位点的引物的结构 3'端15~20bp与模板互补; 5'端内切酶识别序列+保护碱基

实例:在引物5°端设计酶切位点

设计一对PCR引物,在N端和C端分别加一个BannHI跨切位点(GGATCC,保护减基 CGC)和 BcoRI(GAATTC,保护减基 GCA)。另外,各含有18个同该基因同源的 核苷酸,能够用于扩增该基因的编码序列。

设计的引物:

F: 5' CGCGGATCCATGGTAGACCACCTTCAA3'
R: 5' GCAGAATTCTCAACATGCCCCATCTGT3'

PCR反应过程和条件

实例: PCR产物的酶切

带酶切位点的PCR产物

两头各有一个粘性末端!

2. 粘性末端的连接

单酶切、双酶切

(1) 单酶切位点粘性末端连接

(2) 双酶切片段的定向克隆

双酶切片段的定向克隆的优点:

- 外源DNA只能以一个方向定向插入到重组质粒中,以 便目的基因的正确转录和表达
- 載体与外源DNA结合处的限制酶切位点仍然保留,可 切随时从重组载体中通过相应的限制性内切酶切割后 Li QF 分离获得目的基因
 - 不会自身环化,转化率高,转化后的细菌克隆大多数携 带有目的基因的重组质粒

三、无缝克隆法 (同源重组法)

与传统PCR产物克隆方法不同,无缝克隆目标基因PCR引物除目标基因特异引物外,还在引物5°端引入15-20个与裁体末端相同的碱基,由此得到的PCR产物两端分别带上了15-20个与裁体序列同源性的碱基。

无缝克隆过程示意图

优势:

- 位点选择灵活: 无需考虑外缘DNA片段内酶切位点;
- 快速简便:省略酶切、割胶回收、酶连等过程,大约1h 完成载体构建;
- 精确:不需要增加任何额外的程序;
- 扬州 克隆茲華高, 阳性克隆高达90%以上; 初州 大学农学院 Li QF 一次进行多片投目的基因的重组。

缺点:

- 适用于长度超过200bp的片段的组装;
- 如果粘性末端形成稳定的二级结构,如发夹或茎环结构, 成功率会大受影响。

四、Gateway 载体构建系统

Gateway技术来源于λ噬菌体的位点特异性重组。

Gateway系统:

- 扬州(1上入门载体:含重组位点attP,中间夹着ccdB自杀基因 OF 含目的基因的入门载体:目的基因替代ccdB基因。
 - (2) 表达載体: 含重组位点attR , 中间夹着ccdB自杀基因 含目的基因的表达载体: 目的基因替代ccdB基因。

(1) 创建入门克隆

BP反应: attB+attP → attL+attR, 产物: 入门克隆

(2) 构建表达克隆

LR反应: attL+attR ___ attB+attP,

产物:表达克隆

在构建入门载体后,不再需要使用限制性内切酶和连接酶。一旦拥有了一个入门克隆,就可以多次使用它转移目的基因到Gateway改造过的各种表达载体中。

第四节 重组载体转化及筛选

扬州大学农学院 Li OF

扬州大学农学院 Li OI

一. 用于基因转移的受体菌或细胞

- 受体细胞应具备的条件
- 各种基因工程受体的特性
- 实验室常用的基因工程受体

1. 受体细胞应具备的条件

- □具有较高的转化效率;
- □具有与载体选择标记互补的表型;
- □感染寄生缺陷型 (防止重组细菌扩散污染)。

2. 各种基因工程受体的特性

- □ 遗传背景清楚, 载体受体系统完备, 生长迅速, 培 养简单, 重组子稳定;
- □ 适用于外源DNA的扩增和克隆、原核生物基因的 高效表达、基因文库的构建,是DNA重组实验和 基因工程的主要受体菌。

3. 实验室常用的基因工程受体

● 大肠杆菌

1) 用于接受质粒: Trans T1、DH5α、BL21、Rossetta

2) 用于接受\-DNA: LE392、ED8654

● 酵母菌

1) Y2H, Y1H, Y187

2) 啤酒酵母 (Saccharomyces cerevisiae)

●农杆菌

EHA105、GV3101

二. 重组DNA导入受体细胞的方法

1. 重组体导入大肠杆菌:

转化:感受态大肠杆菌捕获和表达质粒载体DNA分子的过程。

感受态细胞:处于容易吸收外源DNA分子的生理状态的细菌细胞。

- (1) 热激法 (heat shock)
- (2) 电转化法 (electronporation)

(1) Ca²⁺诱导的细菌转化(热激法)

原理:

- 1、Ca2+与细菌外膜磷脂在低温下形成液晶结构,处于 感受态;
- 2、将感受态细胞与DNA混合, Ca²⁺与DNA结合形成抗 DNase的羟基-磷酸钙复合物, 粘附于细胞表面;
- 3、经42℃短时间热激处理,细胞吸收DNA复合物;
- 4、在培养基中生长数小时之后,球形细胞复原并增殖。

(2) 电穿孔转化过程 --- 电击法

- 从-70℃取出保存的感受态细胞,解冻后置于冰上
- 加入连接产物后转移到电击杯中, 利用脉冲电击转化仪电击

适用于真核细胞电转 化及原生质体融合

2. 重组DNA导入真核细胞

导入酵母细胞: PEG (聚乙二醇) 转化

导入植物细胞:

扬州大气, 载体介导的转化: 农杆菌介导;州大学农学院 Li QF

2. DNA直接导入: 基因枪法、电击法等;

3. 种质系统法: 花粉管通道法等。

三、重组子的筛选

• 筛选: 是指通过某种特定的方法, 从被分析的细胞群体 中、鉴定出成功转入重组DNA分子的特定克隆的过程。

由于重组率和转化率不可能达到理想极限,因此必须借 助各种筛选和鉴定方法区分转化子与非转化子、重组子 与非重组子、目的重组子与非目的重组子。

转化子

目的重组子

重组子的筛选方法: 遗传检测法

根据重组子结构特征的筛选法

核酸杂交法 DNA测序检测法

1. 遗传检测法

根据选择性标记筛选转化子

抗药性标记(Ampr、Tetr等)

插入失活选择法 (Tet*等)

显色互补选择法 (LacZ')

利用报告基因选择法 (GUS、Gfp、NTPⅡ、LUC等)

(1) 抗药性筛选法

抗药性筛选法的基本原理:

抗药性筛选法可区分转化子与非 转化子、重组子与非重组子。

· 将外源DNA片段插在EcoRI位点: 非重组子呈 Ap、Tc

童銀子里 Ap、To

· 特外源DNA片段插在BamHI位点: 非重组子呈 Ap、Tc 童組子呈 Apv、To

抗药性筛选法的基本操作:

- · 先将转化液涂布含有Amp的平板
- · 再将Amp平板上的转化子影印至 含有Amp和Tet的平板上
- · 在Ap平板上生长、但在Ap和Tc平 板上不长的转化子即为重组子

(2) 显色筛选法

显色筛选法的基本操作:

将外源基因克隆在pUC18的/lacZ'标记基因内部,使之灭活,此时重组 于星Ap、lacZ,白色菌落;而非重组于则星Ap、lacZ',蓝色菌落。

β-半乳糖苷酶显色反应选择法

 X-gal
 β-半乳糖苷酶

 + 乳糖 + 5-溴-4-氯靛蓝

 ※蓝色

β-半乳糖苷酶使X-gal分解成蓝色产物

(3) 营养缺陷型筛选法

营养缺陷型筛选法可区分转化子与非转化子,一般不能 区分重组子与非重组子。

原理: 载体分子上携带某种营养组份的合成基因,而受体细胞本身不能合成这一营养组份,将转化细胞涂布在不含此营养组份的培养基上,长出的便是转化子。

弥补缺陷:转入的外源基因产物能弥补受体菌株的突变型缺陷。

2 根据重组子结构特征的筛选法

(1) PCR扩增法

根据目的基因序列,设计特异PCR引物;或用载体报告基因序列设计引物

(2) 限制性酶切图谱法

- 酶切分析连入载体的外源DNA,并与目的基因已知图谱对比。
- 利用该方法不仅能区分重组子与非重组子,还能鉴定目的重组子。
- 但该方法在用于大规模转化子筛选时,工作量极大,实验成本高。

