GSM 850-Right Head Cheek Low CH128	2
GSM 850-Right Head Cheek Middle CH190	3
GSM 850-Right Head Cheek High CH251	4
GSM 850-Right Head Tilted Low CH128	5
GSM 850-Right Head Tilted Middle CH190	6
GSM 850-Right Head Tilted High CH251	7
GSM 850-Left Head Cheek Low CH128	8
GSM 850-Left Head Cheek Middle CH190	9
GSM 850-Left Head Cheek High CH251	10
GSM 850-Left Head Tilted Low CH128	11
GSM 850-Left Head Tilted Middle CH190	12
GSM 850-Left Head Tilted High CH251	13
GSM 850-Body Up High CH251	14
GSM 850-Body Down High CH251	15
GPRS 850-Body Up High CH251	16
GPRS 850-Body Down High CH251	17
PCS-1900-Right Head Cheek Low CH512	18
PCS-1900-Right Head Cheek Middle CH661	19
PCS-1900-Right Head Cheek High CH810	20
PCS-1900-Right Head Tilted Low CH512	21
PCS-1900-Right Head Tilted Middle CH661	22
PCS-1900-Right Head Tilted High CH810	23
PCS 1900-Left Head Cheek Low CH512	24
PCS 1900-Left Head Cheek Middle CH661	25
PCS 1900-Left Head Cheek High CH810	26
PCS 1900-Left Head Tilted Low CH512	27
PCS 1900-Left Head Tilted Middle CH661	28
PCS 1900-Left Head Tilted High CH810	29
PCS1900-Body Up Low CH512	30
PCS1900-Body Down Low CH512	31
GPRS 1900-Body Up Low CH512	32
CPRS 1900-Rody Down Low CH51	33

GSM 850-Right Head Cheek Low CH128

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 41.628$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Right Head Cheek Low CH128/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.552 mW/g

GSM850/Right Head Cheek Low CH128/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 24.149 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.614 W/kg

SAR(1 g) = 0.502 mW/g; SAR(10 g) = 0.381 mW/g

Maximum value of SAR (measured) = 0.557 mW/g

GSM 850-Right Head Cheek Middle CH190

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Right Head Cheek Middle CH190/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.599 mW/g

GSM850/Right Head Cheek Middle CH190/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 24.409 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.677 W/kg

SAR(1 g) = 0.542 mW/g; SAR(10 g) = 0.411 mW/g

Maximum value of SAR (measured) = 0.604 mW/g

GSM 850-Right Head Cheek High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.03dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 41.327$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Right Head Cheek High CH251/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.627 mW/g

GSM850/Right Head Cheek High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 25.957 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.718 W/kg

SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.440 mW/g

Maximum value of SAR (measured) = 0.648 mW/g

GSM 850-Right Head Tilted Low CH128

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 41.628$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Right Head Tilted Low CH128/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.345 mW/g

GSM850/Right Head Tilted Low CH128/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 19.492 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.234 mW/g

Maximum value of SAR (measured) = 0.351 mW/g

GSM 850-Right Head Tilted Middle CH190

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Right Head Tilted Middle CH190/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.346 mW/g

GSM850/Right Head Tilted Middle CH190/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 19.882 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 0.353 mW/g

GSM 850-Right Head Tilted High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 41.327$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Right Head Tilted High CH251/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.347 mW/g

GSM850/Right Head Tilted High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 20.398 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.452 W/kg

SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.224 mW/g

Maximum value of SAR (measured) = 0.373 mW/g

GSM 850-Left Head Cheek Low CH128

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 41.628$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Left Head Cheek Low CH128/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.638 mW/g

GSM850/Left Head Cheek Low CH128/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 24.714 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.706 W/kg

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.437 mW/g

Maximum value of SAR (measured) = 0.645 mW/g

GSM 850-Left Head Cheek Middle CH190

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Left Head Cheek Middle CH190/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.744 mW/g

GSM850/Left Head Cheek Middle CH190/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 26.139 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.819 W/kg

SAR(1 g) = 0.667 mW/g; SAR(10 g) = 0.505 mW/g

Maximum value of SAR (measured) = 0.743 mW/g

GSM 850-Left Head Cheek High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 41.327$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Left Head Cheek High CH251/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.915 mW/g

GSM850/Left Head Cheek High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 28.620 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.000 W/kg

SAR(1 g) = 0.798 mW/g; SAR(10 g) = 0.619 mW/g

Maximum value of SAR (measured) = 0.911 mW/g

GSM 850-Left Head Tilted Low CH128

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 41.628$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Left Head Tilted Low CH128/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.364 mW/g

GSM850/Left Head Tilted Low CH128/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 20.104 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.337 mW/g; SAR(10 g) = 0.248 mW/g

Maximum value of SAR (measured) = 0.386 mW/g

GSM 850-Left Head Tilted Middle CH190

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Left Head Tilted Middle CH190/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.379 mW/g

GSM850/Left Head Tilted Middle CH190/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 20.436 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.498 W/kg

SAR(1 g) = 0.345 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.390 mW/g

GSM 850-Left Head Tilted High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.899$ mho/m; $\epsilon_r = 41.327$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM850/Left Head Tilted High CH251/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.438 mW/g

GSM850/Left Head Tilted High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 21.698 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.565 W/kg

SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.290 mW/g

Maximum value of SAR (measured) = 0.448 mW/g

GSM 850-Body Up High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 55.752$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(9.07, 9.07, 9.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM 850/GSM850 Body Up High CH251/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.267 mW/g

GSM 850/GSM850 Body Up High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.305 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.314 W/kg

SAR(1 g) = 0.252 mW/g; SAR(10 g) = 0.189 mW/g

Maximum value of SAR (measured) = 0.265 mW/g

GSM 850-Body Down High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.03 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 55.752$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(9.07, 9.07, 9.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM 850/GSM850 Body Down High CH251/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.835 mW/g

GSM 850/GSM850 Body Down High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.337 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.079 W/kg

SAR(1 g) = 0.687 mW/g; SAR(10 g) = 0.446 mW/g

Maximum value of SAR (measured) = 0.743 mW/g

GPRS 850-Body Up High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GPRS; Communication System Band: GPRS 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 3.01 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 55.752$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(9.07, 9.07, 9.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GPRS 850/GPRS850 Body Up High CH251/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.193 mW/g

GPRS 850/GPRS850 Body Up High CH251/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.713 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.180 mW/g; SAR(10 g) = 0.135 mW/g

Maximum value of SAR (measured) = 0.189 mW/g

GPRS 850-Body Down High CH251

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GPRS; Communication System Band: GPRS 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 3.01 dB Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 55.752$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(9.07, 9.07, 9.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GPRS 850/GPRS850 Body Down High CH251/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.426 mW/g

GPRS 850/GPRS850 Body Down High CH251/Zoom Scan (7x7x9)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.276 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.529 W/kg

SAR(1 g) = 0.373 mW/g; SAR(10 g) = 0.260 mW/g

Maximum value of SAR (measured) = 0.398 mW/g

PCS-1900-Right Head Cheek Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.87$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Right Head Cheek Low CH512/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.648 mW/g

PCS1900/Right Head Cheek Low CH512/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.505 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.919 W/kg

SAR(1 g) = 0.545 mW/g; SAR(10 g) = 0.304 mW/g

Maximum value of SAR (measured) = 0.704 mW/g

PCS-1900-Right Head Cheek Middle CH661

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.03 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Right Head Cheek Middle CH661/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.474 mW/g

PCS1900/Right Head Cheek Middle CH661/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 16.101 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.644 W/kg

SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.219 mW/g

Maximum value of SAR (measured) = 0.499 mW/g

PCS-1900-Right Head Cheek High CH810

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 39.6$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Right Head Cheek High CH810/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.318 mW/g

PCS1900/Right Head Cheek High CH810/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 13.011 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.439 W/kg

SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.337 mW/g

PCS-1900-Right Head Tilted Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.87$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Right Head Tilted Low CH512/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.511 mW/g

PCS1900/Right Head Tilted Low CH512/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 18.072 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.740 W/kg

SAR(1 g) = 0.426 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.556 mW/g

PCS-1900-Right Head Tilted Middle CH661

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.03 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Right Head Tilted Middle CH661/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.376 mW/g

PCS1900/Right Head Tilted Middle CH661/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 15.442 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.556 W/kg

SAR(1 g) = 0.316 mW/g; SAR(10 g) = 0.175 mW/g

Maximum value of SAR (measured) = 0.413 mW/g

PCS-1900-Right Head Tilted High CH810

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 39.6$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Right Head Tilted High CH810/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.232 mW/g

PCS1900/Right Head Tilted High CH810/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.936 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.357 W/kg

SAR(1 g) = 0.196 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.216 mW/g

PCS 1900-Left Head Cheek Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.87$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Left Head Cheek Low CH512/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.429 mW/g

PCS1900/Left Head Cheek Low CH512/Zoom Scan (7x8x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 16.050 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.566 W/kg

SAR(1 g) = 0.356 mW/g; SAR(10 g) = 0.213 mW/g

Maximum value of SAR (measured) = 0.449 mW/g

PCS 1900-Left Head Cheek Middle CH661

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.03 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2
 (2595)

PCS1900/Left Head Cheek Middle CH661/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.365 mW/g

PCS1900/Left Head Cheek Middle CH661/Zoom Scan (8x8x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.357 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.174 mW/g

Maximum value of SAR (measured) = 0.372 mW/g

PCS 1900-Left Head Cheek High CH810

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Left Head Tilted High CH810/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.274 mW/g

PCS1900/Left Head Tilted High CH810/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 12.075 V/m; Power Drift = -0.05dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.123 mW/g

Maximum value of SAR (measured) = 0.264 mW/g

PCS 1900-Left Head Tilted Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.87$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Left Head Tilted Low CH512/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.403 mW/g

PCS1900/Left Head Tilted Low CH512/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 17.212 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.350 mW/g; SAR(10 g) = 0.201 mW/g

Maximum value of SAR (measured) = 0.447 mW/g

PCS 1900-Left Head Tilted Middle CH661

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.03 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Left Head Tilted Middle CH661/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.306 mW/g

PCS1900/Left Head Tilted Middle CH661/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.841 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.458 W/kg

SAR(1 g) = 0.266 mW/g; SAR(10 g) = 0.153 mW/g

Maximum value of SAR (measured) = 0.345 mW/g

PCS 1900-Left Head Tilted High CH810

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 39.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

PCS1900/Left Head Cheek High CH810/Area Scan (6x9x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.202 mW/g

PCS1900/Left Head Cheek High CH810/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 12.214 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.232 mW/g

PCS1900-Body Up Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.23, 7.23, 7.23); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM1900/GSM1900 Body Up Low CH512/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.253 mW/g

GSM1900/GSM1900 Body Up Low CH512/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 11.219 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.340 W/kg

SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.126 mW/g

Maximum value of SAR (measured) = 0.260 mW/g

PCS1900-Body Down Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.03 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.23, 7.23, 7.23); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM1900/GSM1900 Body Down Low CH512/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.913 mW/g

GSM1900/GSM1900 Body Down Low CH512/Zoom Scan (8x7x9)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 18.547 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.482 W/kg

SAR(1 g) = 0.785 mW/g; SAR(10 g) = 0.442 mW/g

Maximum value of SAR (measured) = 1.032 mW/g

GPRS 1900-Body Up Low CH512

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GPRS; Communication System Band: GPRS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 3.01 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.23, 7.23, 7.23); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GPRS 1900/GPRS1900 Body Up Low CH512/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.158 mW/g

GPRS 1900/GPRS1900 Body Up Low CH512/Zoom Scan (7x7x9)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 9.168 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.131 mW/g; SAR(10 g) = 0.081 mW/g

Maximum value of SAR (measured) = 0.163 mW/g

GPRS 1900-Body Down Low CH51

DUT: Mobile Phone; Type: KRAZE; Serial: 251888101011080

Communication System: Generic GPRS; Communication System Band: GPRS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 3.01 dB

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.23, 7.23, 7.23); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GPRS 1900/GPRS1900 Body Down Low CH512/Area Scan (6x9x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.524 mW/g

GPRS 1900/GPRS1900 Body Down Low CH512/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.990 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.694 W/kg

SAR(1 g) = 0.422 mW/g; SAR(10 g) = 0.249 mW/g

Maximum value of SAR (measured) = 0.536 mW/g

