多面体的外接球和内切球

1、球与多面体的接、切

定义1;若一个多面体的各项点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

类型一球的内切问题(等体积法)

例如:在四棱锥P-ABCD中,内切球为球O,求球半径r.

方法如下:

$$V_{P-ABCD} = V_{O-ABCD} + V_{O-PBC} + V_{O-PCD} + V_{O-PAD} + V_{O-PAB}$$

即:
$$V_{P-ABCD} = \frac{1}{3} S_{ABCD} \cdot r + \frac{1}{3} S_{PBC} \cdot r + \frac{1}{3} S_{PCD} \cdot r + \frac{1}{3} S_{PAD} \cdot r + \frac{1}{3} S_{PAB} \cdot r$$
,可求出 r .

类型二 球的外接问题

1. 公式法

正方体或长方体的外接球的球心为其体对角线的中点

2. 补形法(补长方体或正方体)

①墙角模型(三条线两个垂直)

题设:三条棱两两垂直(重点考察三视图)

②对棱相等模型(补形为长方体)

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD, AD=BC, AC=BD)

3. 单面定球心法(定+算)

步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面 ΔABC ,确定其外接圆圆心 O_1 (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心 $2r=\frac{a}{\sin A}$);

- ②过外心 O_1 做(找)底面 ΔABC 的垂线,如图中 PO_1 上面ABC,则球心一定在直线(注意不一定在线段 PO_1 上) PO_1 上;
- ③计算求半径 R: 在直线 PO_1 上任取一点 O 如图:则 OP = OA = R,利用公式 $OA^2 = O_1A^2 + OO_1^2$ 可计算出 球半径 R.

4. 双面定球心法(两次单面定球心)

如图:在三棱锥P-ABC中:

- ①选定底面 $\triangle ABC$, 定 $\triangle ABC$ 外接圆圆心 O_1
- ②选定面 ΔPAB , 定 ΔPAB 外接圆圆心 O_2
- ③分别过 O_1 做面ABC的垂线,和 O_2 做面PAB的垂线,两垂线交点即为外接球球心O.

二、典型例题

- 例 1 (2023 春·湖南湘潭·高二统考期末) 棱长为1的正方体的外接球的表面积为 ()
 - A. $\frac{3\pi}{4}$
- B. 3π
- C. 12π
- D. 16π
- 例 2 (2023 春·湖南长沙·高三长沙一中校考阶段练习) 在四面体 PABC中, $PA \perp AB$, $PA \perp AC$, $\angle BAC = 120^\circ$,AB = AC = AP = 2,则该四面体的外接球的表面积为 ()
 - Α. 12π
- Β. 16π
- C. 18π
- D. 20π
- 例 3 (2023 秋·湖南娄底·高三校联考期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早 1000 多年. 在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马. 如图 P-ABCD 是阳马,PA 上平面 ABCD,PA=5,AB=3,BC=4. 则该阳马的外接球的表面积为 ()

A.	$125\sqrt{2}\pi$
	3

B. 50π

C. 100π

D. $\frac{500\pi}{3}$

例 4 (2023·全国·高三专题练习) 已知菱形 ABCD 的各边长为 $2, \angle D = 60^\circ$. 如图所示,将 ΔACD 沿 AC 折起, 使得点D到达点S的位置,连接SB,得到三棱锥S-ABC,此时SB=3. E是线段SA的中点,点F在三 棱锥S-ABC的外接球上运动,且始终保持 $EF \perp AC$,则点F的轨迹的周长为(

A. $\frac{2\sqrt{3}}{3}\pi$

B. $\frac{4\sqrt{3}}{3}\pi$

C. $\frac{5\sqrt{3}}{3}\pi$ D. $\frac{2\sqrt{21}}{3}\pi$

- 例 5 (2023·浙江·校联考模拟预测) 在三棱锥 ABCD 中,对棱 $AB = CD = 2\sqrt{2}$, $AD = BC = \sqrt{5}$, $AC = BD = \sqrt{5}$ $\sqrt{5}$,则该三棱锥的外接球体积为,内切球表面积为。
- 例 6 (2022 春·山西·高二校联考期末) 如图所示,用一个平行于圆锥 SO 的底面的平面截这个圆锥,截得的圆 台,上、下底面的面积之比为1:9,截去的圆锥的底面半径是3,圆锥SO的高为18.则截得圆台的体积为 ;若圆锥 SO 中有一内切球,则内切球的表面积为 .

针对训练 举一反三

一、单选题

题目 1 (2023·陕西西安·统考一模) 在三棱锥 A-BCD,平面 $ACD \perp$ 平面 BCD, $\triangle ACD$ 是以 CD 为斜边的 等腰直角三角形, $\triangle BCD$ 为等边三角形,AC=4,则该三棱锥的外接球的表面积为(

A.
$$\frac{32\pi}{3}$$

B. $\frac{64\pi}{3}$

题目 2 $(2023 \cdot 湖南 \cdot 模拟预测)$ 在三棱锥 $A - BCD + AB \perp$ 平面 $BCD, BC \perp CD, CD = 2AB = 2BC = 4$, 则三棱锥 A-BCD 的外接球的表面积与三棱锥 A-BCD 的体积之比为()

A. $\frac{3\pi}{4}$

B. $\frac{3\pi}{2}$

C. 2π

D. 9π

题目 3 (2023·山西临汾·统考一模)《九章算术·商功》提及一种称之为"羡除"的几何体,刘徽对此几何体作

注:"羡除,隧道也其所穿地,上平下邪.似两鳖臑夹一堑堵,即羡除之形."羡除即为:三个面为梯形或平行四边形(至多一个侧面是平行四边形),其余两个面为三角形的五面几何体.现有羡除 ABCDEF 如图所示,底面 ABCD 为正方形, EF=4,其余棱长为 2,则羡除外接球体积与羡除体积之比为 ()

A. $2\sqrt{2}\pi$

B. $4\sqrt{2}\pi$

C. $\frac{8\sqrt{2}}{3}\pi$

D. 2π

题目 4 (2023 春·江西·高二校联考开学考试) 在长方体 $ABCD - A_1B_1C_1D_1$ 中, $AB = AA_1 = 3$,AD = 2,点 M 为平面 ABB_1A_1 内一动点,且 C_1M // 平面 ACD_1 ,则当 C_1M 取最小值时,三棱锥 M - ABD 的外接球的表面积为 ()

Α. 13π

Β. 16π

C. 26 π

D. 32π

题目 5 (2023·四川南充·校考模拟预测) 在平面中,若正 $\triangle ABC$ 内切圆的面积为 S_1 ,内切圆与外接圆之间的圆环面积为 S_2 ,则 $\frac{S_1}{S_2}=\frac{1}{3}$. 在空间中,若正四面体 PABC 内切球的体积为 V_1 ,内切球之外与外接球之内的几何体的体积为 V_2 ,则 $\frac{V_1}{V_2}=$ ()

A. $\frac{1}{63}$

B. $\frac{1}{26}$

C. $\frac{1}{15}$

D. $\frac{1}{7}$

题目 6 (2023 秋·浙江湖州·高三安吉县高级中学校考期末) 如图所示的多面体由正四棱锥 P-ABCD 和三 棱锥 Q-PAB 组成,其中 AB=2. 若该多面体有外接球且外接球的体积是 $\frac{8\sqrt{2}}{3}\pi$,则该多面体体积的最大值是 ()

A. $3\sqrt{3}$

B. $2\sqrt{3} + 1$

C. $\frac{3+\sqrt{3}}{2}$

D. $\frac{\sqrt{6} + 3\sqrt{2}}{3}$

题目 7 (2023·陕西榆林·统考一模) 已知四面体 ABCD 外接球的球心 O 与正三角形 ABC 外接圆的圆心重合, 若该四面体体积的最大值为 $2\sqrt{3}$,则该四面体外接球的体积为 ()

A. 8π

B. $\frac{32\pi}{3}$

C. 16π

D. $\frac{64\pi}{3}$

题目 8 (2023 春·河南新乡·高三校联考开学考试) 已知体积为 3 的正三棱锥 P-ABC,底面边长为 $2\sqrt{3}$,其内切球为球 O,若在此三棱锥中再放入球 O,使其与三个侧面及内切球 O 均相切,则球 O 的半径为

A. $\frac{\sqrt{3}}{3}$

B. $\frac{1}{9}$

C. $\frac{\sqrt{2}}{3}$

D. $\frac{\sqrt{3}}{0}$

题目 9 (2022春·河南信阳·高一信阳高中校考阶段练习)正棱锥有以下四个命题: ①所有棱长都	相等的三棱
锥的外接球、内切球、棱切球 (六条棱均与球相切) 体积比是 $3\sqrt{6}$: $\frac{\sqrt{6}}{9}$: $\sqrt{2}$; ②侧面是全等的等腰三	E角形顶点
在底面射影为底面中心的四棱锥是正四棱锥;③经过正五棱锥一条侧棱平分其表面积的平面必:	经过其内切
球球心;④正六棱锥的侧面不可能是正三角形,其中真命题是()	

A. (1)(4)

B. (3)(4)

C. (1)(3)(4) D. (2)(3)(4)

题目 10 (2021 秋·辽宁·高二沈阳二中校联考开学考试) 在正三棱柱 ABC - A'B'C' 中,D 是侧棱 BB' 上一 点, E 是侧棱 CC' 上一点, 若线段 AD + DE + EA' 的最小值是 $2\sqrt{7}$,且其内部存在一个内切球 (与该棱柱 的所有面均相切),则该棱柱的外接球表面积为()

A. 4π

B. 5π

D. 8π

题目 11 (2022 秋·黑龙江哈尔滨·高二校考期中) 古希腊阿基米德被称为"数学之神". 在他的墓碑上刻着一 个圆柱,圆柱里内切着一个球,这个球的直径恰好等于圆柱的高,则球的表面积与圆柱的表面积的比值为

A. $\frac{1}{2}$

B. $\frac{2}{3}$

C. $\frac{3}{4}$

D. $\frac{4}{5}$

二、填空题

题目 12 (2023·全国·模拟预测) 已知在三棱锥 P-ABC中, $\triangle ABC$ 是面积为 $\sqrt{3}$ 的正三角形,平面 PBC \bot 平面 ABC,若三棱锥 P-ABC的外接球的表面积为 $\frac{20\pi}{3}$,则三棱锥 P-ABC体积的最大值为 _____.

题目 13 $(2023 \cdot 2 + 20)$ 全国·唐山市第十一中学校考模拟预测) 已知 N为正方体 $ABCD - A_1B_1C_1D_1$ 的内切球球面上 的动点,M为 B_1C_1 的中点, $DN \perp MB$,若动点N的轨迹长度为 $\frac{8\sqrt{5}\pi}{5}$,则正方体的体积是 $__$

三、双空题

题目 14 (2023·全国·模拟预测) 如图所示的六面体由两个棱长为 α 的正四面体M-ABC, Q-ABC组合而 成,记正四面体M-ABC的内切球为球 O_1 ,正四面体Q-ABC的内切球为球 O_2 ,则 $O_1O_2=$ _____;若在 该六面体内放置一个球O,则球O的体积的最大值是 .

题目 15 (2022·陕西西安·校考模拟预测)中国古代数学名著《九章算术》中将底面为矩形且有一条侧棱垂直 于底面的四棱锥称为"阳马". 现有一"阳马"的底面是边长为3的正方形,垂直于底面的侧棱长为4,则该 "阳马"的内切球表面积为 _____,内切球的球心和外接球的球心之间的距离为 _____.