UGBA 141 Discussion 6

Agenda:

- Problem solving of (P,T) and Newsvendor
- Midterm review I: Process module
- Next week: Midterm review II

Feb 25, 2022 Hansheng Jiang

Reminder

Homework 3 due on March 2 (next Wednesday)

- Start doing practice midterm (pdf available on bcourses)
 - Hard copy solution handed out in class (last Wednesday and next Monday)

- Upcoming
 - A Discord channel will be set up for each project team
 - Guest speaker for next Monday's lecture will start at 12:30 pm (not Berkeley time)

Summary of Inventory Models

	EOQ	(Q, R)	(P, T)	Newsvendor
Replenish	Yes	Yes	Yes	No
Terms of interest	Order quantity Q	Order quantity Q Reorder point R	Period length P Target level T	Profit- maximizing quantity Q^*
Context	Constant demand and no lead time	Uncertain demand and lead time	Uncertain demand and lead time	Uncertain demand

Note: EOQ and (Q,R) reviewed in Discussion 5

(P, T)

$$P = \frac{\text{EOQ}}{D} = \sqrt{\frac{2S}{Dh}}, T = \mu_{P+LT} + z\sigma_{P+LT}$$

 μ_{P+LT} = mean demand during P+LT

 σ_{P+LT} = demand standard deviation during P+LT

z = z score (from reading standard normal table)

"Order up to T every P periods"

Practice Problem: (P, T)

$$P = \frac{\text{EOQ}}{D} = \sqrt{\frac{2S}{Dh}}, T = \mu_{P+LT} + z\sigma_{P+LT}$$

$$\mu_{P+LT} = \text{mean demand during } P + LT$$

$$\sigma_{P+LT} = \text{demand standard deviation during } P + LT$$

$$z = z \text{ score (from reading standard normal table)}$$

Problem. Consider the product described in solved problem 2 when answering the following questions:

- a. How often should orders be placed for this product if they are placed at regular intervals
- using a periodic review system?
- b. Compute the target inventory level.
- c. State the specific decision rule for this product by using the information you have calculated so far.
- d. Assume it is time for a periodic review. A check of the inventory level for this product reveals that there are 60 units on hand and 110 units on order. What should be done?

Newsvendor

Critical ratio =
$$\frac{G}{G+L}$$

$$G=\text{gain, } L=\text{loss}$$
Probability of $D\leq Q^*=\text{critical ratio}$

Problem. The Johnson Shoe Company buys shoes for \$40 per pair and sells them for \$60 per pair. If there are surplus shoes left at the end of the season, all shoes are expected to be sold at the sale price of \$30 per pair. Suppose demand is normally distributed with a mean of 500 units and a standard deviation of 100 units/season. How many shoes should the Johnson Shoe Company buy?

Midterm Review I

Process Module

- Basic metrics and how to compute them
- Advanced topics
 - * Inventory buildup
 - * Rework
 - * Flow-dependent processing

Midterm Logistics

- Try the practice midterm to get a sense
- Most exam questions are in a similar taste as those in the homework and the practice midterm
- Some exam questions are related to cases
- Calculators are allowed (and necessary) but electronics such as phones/laptops/pads are prohibited — be prepared with a standalone calculator
- Can bring one cheatsheet (8.5" x 11", double sided) make your own cheatsheet, typed or handwritten
- Summary of formulas will be provided on the exam paper

	Lecture Process	Lecture Process	Lecture Process	Lecture Process IV
Concepts				
Practice				
Related HW1 Q				
DIS				
Case				

	Lecture Process	Lecture Process	Lecture Process	Lecture Process IV
Concepts	efficiency frontier; flow unit; process flow diagram	process capacity; bottleneck; flow rate; utilization; labor productivity (idle time, labor content, labor utilization, cost)	rework; flow unit- dependent process	cranberry case
Practice	a) identify efficiency frontier; b) read process flow diagram	a) compute capacity, flow rate, cycle time; b) compute labor productivity; c) compute time to make X units;	a) process capacity with rework; b) implied utilization in flow unit-dependent process; c) process choice	inventory buildup
Related HW1 Q		a) Q1, Q2, Q3;b) Q4, Q5, Q6, Q7;c) Q10, Q11	a) Q8; b) Q9	Q11, Q12
DIS	DIS 1	DIS 2	DIS 3	DIS 3
Case		Kristen's cookie	Beleza Natural	National Cranberry

	Lecture Process	Lecture Process	Lecture Process	Lecture Process IV
Concepts	efficiency frontier; flow unit; process flow diagram	process capacity; bottleneck; flow rate; utilization; labor productivity (idle time, labor content, labor utilization, cost)	rework; flow unit- dependent process	cranberry case
Practice	a) identify efficiency frontier; b) read process flow diagram	a) compute capacity, flow rate, cycle time; b) compute labor productivity; c) compute time to make X units;	a) process capacity with rework; b) implied utilization in flow unit-dependent process; c) process choice	inventory buildup
Related HW1 Q		a) Q1, Q2, Q3; b) Q4, Q5, Q6, Q7 c) Q10, Q11	a) Q8; b) Q9	Q11, Q12
DIS	DIS 1	DIS 2	DIS 3	DIS 3
Case		Kristen's cookie	Beleza Natural	National Cranberry

	Lecture Process	Lecture Process	Lecture Process	Lecture Process IV
Concepts	efficiency frontier; flow unit; process flow diagram	process capacity; bottleneck; flow rate; utilization; labor productivity (idle time, labor content, labor utilization, cost)	rework; flow unit- dependent process	cranberry case
Practice	a) identify efficiency frontier; b) read process flow diagram	a) compute capacity, flow rate, cycle time; b) compute labor productivity; c) compute time to make X units;	a) process capacity with rework; b) implied utilization in flow unit-dependent process c) process choice	inventory buildup
Related HW1 Q		a) Q1, Q2, Q3;b) Q4, Q5, Q6, Q7;c) Q10, Q11	a) Q8; b) Q9	Q11, Q12
DIS	DIS 1	DIS 2	DIS 3	DIS 3
Case		Kristen's cookie	Beleza Natural	National Cranberry

	Lecture Process	Lecture Process	Lecture Process	Lecture Process IV
Concepts	efficiency frontier; flow unit; process flow diagram	process capacity; bottleneck; flow rate; utilization; labor productivity (idle time, labor content, labor utilization, cost)	rework; flow unit- dependent process	cranberry case
Practice	a) identify efficiency frontier; b) read process flow diagram	a) compute capacity, flow rate, cycle time; b) compute labor productivity; c) compute time to make X units;	a) process capacity with rework; b) implied utilization in flow unit-dependent process; c) process choice	inventory buildup
Related HW1 Q		a) Q1, Q2, Q3;b) Q4, Q5, Q6, Q7;c) Q10, Q11	a) Q8; b) Q9	Q11, Q12
DIS	DIS 1	DIS 2	DIS 3	DIS 3
Case		Kristen's cookie	Beleza Natural	National Cranberry

	Lecture Process	Lecture Process	Lecture Process	Lecture Process IV
Concepts	efficiency frontier; flow unit; process flow diagram	process capacity; bottleneck; flow rate; utilization; labor productivity (idle time, labor content, labor utilization, cost)	rework; flow unit- dependent process	cranberry case
Practice	a) identify efficiency frontier; b) read process flow diagram	a) compute capacity, flow rate, cycle time; b) compute labor productivity; c) compute time to make X units;	a) process capacity with rework; b) implied utilization in flow unit-dependent process; c) process choice	inventory buildup
Related HW1 Q		a) Q1, Q2, Q3; b) Q4, Q5, Q6, Q7; c) Q10, Q11	a) Q8; b) Q9	Q11, Q12
DIS	DIS 1	DIS 2	DIS 3	DIS 3
Case		Kristen's cookie	Beleza Natural	National Cranberry

Process Module: Basic Metrics

Process capacity

Bottleneck

Flow rate

Cycle time

Utilization / Implied utilization

Process Module: Basic Metrics (Cont.)

- Time to make X units
 - -Steady state
 - -Start with empty system

- Labor productivity
 - Labor content and Idle time
 - Labor utilization
 - Cost of direct labor

Process Module: Advanced Topics

Inventory buildup

Rework

• Flow unit dependent process