Frequency Synthesizers (2/2)

ZHAO BO

Institute of VLSI Design

Zhejiang University

Email: zhaobo@zju.edu.cn

Web: <u>person.zju.edu.cn/zhaobo</u>

TSPC

- □In comparison to CML, TSPC is a kind of dynamic logic
- □TSPC achieves relatively high speeds with low power dissipation (no static power)
- □TSPC divider fails at very low clock frequencies due to the leakage of the transistors

 [B. Razavi, RF Microelectronics]

TSPC Logic

□The TSPC FF can readily incorporate logic at its input. For example, a NAND gate can be merged with the master latch

TSPC Ratioed Logic

☐ The slave latch is designed as "ratioed" logic, i.e., both NMOS devices are strong enough to pull down B and Q even if M_4 or M_6 is on.

Miller Divider

- □If the circuit operates properly, $f_{out}=f_{in}/2$, yielding two components, $3f_{in}/2$ and $f_{in}/2$, at node X. The former is attenuated by the LPF, and the latter circulates around the loop
- □Correct operation requires that the loop gain for 3f_{in}/2 be sufficiently small and that for the latter exceed unity

Miller Divider

- □With a shorter delay, Miller divider can provide a higher speed than CML logic
- □ However, that the divider loop requires some cycles to reach steady state, i.e., it does not divide correctly instantaneously

Third Harmonic

□Miller divider operates properly if the third harmonic is attenuated and shifted to avoid the additional zero crossings

Inductive Load

- □Inductors L_1 and L_2 must resonate with the total capacitance at X and Y at the output frequency
- □The tanks significantly suppress the third harmonic of the desired output [B. Razavi, RF Microelectronics]

Inductive Load

- □Inductively-loaded with feedback to the switching quad, operating as a divider by 2
- \square An oscillator is formed by M_5 - M_6 and L_1 - L_2 is heavily loaded by M_3 - M_4

Passive Mixer

- $\square M_1-M_4$ constitute a passive mixer and M_5-M_6 an amplifier
- \Box The cross-coupled pair M_7 - M_8 can be added to increase the gain by virtue of its negative resistance.

Feedback Divider

□A divider within the feedback loop can be used to produce moduli other than 2

□If the sum is suppressed by the LPF, then f_{out}=f_{in}-f_{out}/N

$$f_{out} = \frac{N}{N+1} f_{in} \qquad f_b = \frac{1}{N+1} f_{in}$$

Feedback Divider

- \Box The sum component at X comes closer to the difference component as N increases, such as $4f_{in}/3$ and $2f_{in}/3$, dictating a sharper LPF roll-off.
- □The Miller divider suffers from port-to-port feedthroughs of the mixer

Spurs

- □The feedthrough from the main input to node X produces a spur at f_{in}
- □The feedthrough from Y to X creates a component at f_{in}/3

SSB Mixing

- □The sum component is suppressed by single-sideband (SSB) mixing rather than filtering, thereby avoiding the problem of additional zero crossings
- □however, this approach requires a broadband 90 degree phase shift, a very difficult design.

 [B. Razavi, RF Microelectronics]

SSB Mixing

- \Box Employing a \div 2 circuit and generating $f_{in}/3$ at the output generates quadrature outputs
- □The principal drawback is that it requires quadrature LO phases as well

Injection-Locked Dividers

- □Assume the cross-coupled pair is strong enough to produce oscillation, transistors M_5 and M_6 can now be viewed as devices that couple the mixer output to the oscillator
- □If f_{in} varies across a certain "lock range," the oscillator remains injection locked to the frequency component at node X
- □If f_{in} falls outside the lock range, the oscillator is injectionpulled, thus producing a corrupted output

Injection-Locked Dividers

- □The mixer yields two components at node X, namely, f_{in}-f_{out}/N and f_{in}+f_{out}/N.
- \Box If the oscillator locks to f_{in} - f_{out} /N, then $f_{out} = \frac{N}{N+1}f_{in}$

$$f_{out} = \frac{N}{N+1} f_{in}$$

 \Box If the oscillator locks to $f_{in}+f_{out}/N$, then $f_{out}=\frac{N}{N-1}f_{in}$

$$f_{out} = \frac{N}{N-1} f_{in}$$

□The oscillator lock range must therefore be narrow enough to lock to only one of the two components [B. Razavi. RF Microelectronics]

Injection-Locked Dividers

 $\Box I_{in} = g_m V_{in}$ is commutated by M_1 and M_2 and hence translated to $f_{out} \pm f_{in}$ as it emerges at the drains of these transistors.

Divider Noise

□The output phase noise of the divider, $φ_{n,div}$, directly adds to the input phase noise, $φ_{n,in}$, experiencing the same low-pass response as it propagates to $φ_{out}$

Divider Noise

- □A retiming flipflop can be used to suppress the divider noise
- □The divider output is sampled by the VCO waveform, thus presenting the edges to the PFD only at the VCO transitions
- □In essence, the retiming operation bypasses the phase noise accumulated in the divider chain

Metastability

- □If the VCO output edge occurs close to the transition at node X, the FF becomes "metastable," i.e., it takes a long time to produce a well-defined logical level
- □This effect results in a distorted transition at node Y, confusing the PFD.

Fractional Multiplication

□How to realize a fractional multiplication of f_{REF}?

Fractional-N PLL

- □ Assume the prescaler divides by 10 for 90% of the time (nine reference cycles) and by 11 for 10% of the time,
- □For every 10 reference cycles, the output produces 9x10+11=101 pulses, yielding an average divide ratio of 10.1
- □If this operation is repeated, the PLL output contains many sidebands at integer multiples of 0.1 MHz (10 reference cycles)

Randomization

- □If the divider modulus is randomly set to 10 or 11 but such that its average value is still 10.1
- □Randomization of the modulus breaks the periodicity in the loop behavior, converting the spurs to noise

Quantization Noise

- □Suppose the divider has two moduli, N and N+1, and must provide an average modulus of N+ α .
- \square We can write the instantaneous modulus as N+b(t), where b(t) randomly assumes a value of 0 or 1 and an average value of α.

$$f_{FB}(t) = \frac{f_{out}}{N + b(t)}$$
 $b(t) = \alpha + q(t)$

 \Box q(t) the "quantization noise" because it denotes the error incurred by b(t) in approximating the value of α

Modulus Randomization

- □Randomization can be performed such that the resulting phase noise exhibits a high-pass spectrum
- □The generation of the sequence b(t) so as to create a highpass phase spectrum is called "noise shaping"

 [B. Razavi, RF Microelectronics]

Transfer Function

□if H(s) is an ideal integrator

$$\frac{Y(s)}{Q(s)} = \frac{1}{1 + H(s)} \qquad \frac{Y(s)}{Q(s)} = \frac{s}{s+1}$$

□A negative feedback loop containing an integrator acts as a high-pass system on the noise injected "near" the output

Time Domain

□Recall from the definition of the z-transform that $z=exp(j2\pi fT_{CK})$, where T_{CK} denotes the sampling or clock period □At a given clock, g(t) shows a high-pass versus the input a(t)

$$\frac{Y}{Q}(z) = 1 - z^{-1}$$

$$= e^{-j\pi f T_{CK}} \left(e^{j\pi f T_{CK}} - e^{-j\pi f T_{CK}} \right)$$

$$= 2je^{-j\pi f T_{CK}} \sin(\pi f T_{CK})$$

$$S_{y}(f) = S_{q}(f)|2\sin(\pi f T_{CK})|^{2}$$

$$= 2S_{q}(f)|1 - \cos(2\pi f T_{CK})|$$

Integrator

□Discrete-time integration can be realized by delaying the signal and adding the result to itself

□If the clock frequency increases, a(t) finds less time to change, and a_1 and a_2 exhibit a small difference, so the high-frequency noise of clock can be rejected by a greater amount. [B. Razavi, RF Microelectronics]

ΣΔ Modulator

□**Σ**Δ modulator is constructed to produce a binary output with an average value of α and a shaped noise spectrum

- □The high-resolution output of the integrator drives a flipflop (i.e., a one-bit quantizer), thereby generating a single-bit binary stream at the output.
- □The quantization from m+2 bits to 1 bit introduces quantization noise, but the feedback loop shapes this noise in proportion to 1-z⁻¹

ΣΔ PLL

□Clocked by the feedback signal, the modulator toggles the divide ratio between N and N+1 so that the average is equal to N+α.

Noise Shaping Order

$$S_y(f) = S_q(f)|2\sin(\pi f T_{CK})|^2$$

= 2S_q(f)|1 - \cos(2\pi f T_{CK})|

If
$$f \ll (\pi T_{CK})^{-1}$$

$$S_y(f) = S_q(f) |2\pi f T_{CK}|^2$$

- □An integrator results in a 2nd-order roll-off in a PLL
- □We therefore seek a system that exhibits a sharper roll-off, e.g., an output spectrum in proportion to fⁿ with n>2

2nd-Order ΣΔ Modulator

 \Box A ΣΔ modulator can suppress the quantization noise at low frequencies, we therefore replace the 1-bit quantizer with another ΣΔ modulator

2nd-Order Noise Shaping

$$\frac{Y}{Q}(z) = (1 - z^{-1})^2$$
 $S_y(f) = S_q(f)|2\sin(\pi f T_{CK})|^4$

- **□Noise shaping falls in proportion to f**⁴
- **□We can have even higher orders**

[B. Razavi, RF Microelectronics]

Cascaded Modulator

- $\Box U=Y_1-W=Q$ is the quantization error introduced by the first quantizer. Y_2 is a relatively accurate replica of U
- $\Box Y_2$ is combined with Y_1 , yielding Y_{out} as a more accurate representation of X, achieving a 2nd-order modulator [B. Razavi, RF Microelectronics]

Quantization Noise of PLL

□There is peaking of the phase noise spectrum at a certain frequency.

Reconstruct Quantization Noise

□A first-order, one-bit modulator produces

$$Y(z) = z^{-1}X(z) + (1 - z^{-1})Q(z)$$

□We delay X(z) by one clock cycle and subtract the result from Y(z) to reconstruct the quantization error:

$$W(z) = Y(z) - z^{-1}X(z) = (1 - z^{-1})Q(z)$$

DAC Forward Cancellation

 \Box The output of $\Sigma\Delta$ modulator travels through the divider, the PFD, and the charge pump is met by the output of a DAC, facing perfect cancellation

Double-Edge-Triggered Flipflop

- □When CK is high, the top latch is in the sense mode and the bottom latch in the hold mode, and vice versa
- □ For a given clock rate, the input data can be twice as fast as that applied to a single-edge-triggered counterpart

Fractional Divider

- □With the double-edge-triggered flipflops, the ÷3 divider can realize a divide-by-1.5 circuit
- \Box The fractional divider can replace the $\Sigma\Delta$ modulator in some case to avoid the quantization noise

Reference Doubling

□The noise shaping function indicates a direct dependence on the clock frequency

$$S_{y}(f) = S_{q}(f)|2\pi f T_{CK}|^{2}$$

□If T_{CK} is halved, the noise power falls by 6 dB

□ However, a crystal oscillator can only provide a reference frequency less than 100 MHz

Multiphase Frequency Division

- □The VCO is designed to generate multiple phases at the output
- ☐ The I and Q are picked out to realize a divide-by-1.25 operation

Multiphase Frequency Division

ΔΑ ΣΔ modulator is adopted to randomize selection of the VCO phases

- □This randomization can also incorporate noise shaping
- □The multiplexing of the VCO phases can be placed after the feedback divider to make the MUX easier to design