Механико-математический факультет МГУ имени М.В. Лононосова
Конспект курса «Наглядная геометрия и топология»
Автор курса: профессор, д.фм.н. Ведюшкина Виктория Викторовна Автор конспекта: Цыбулин Егор, студент 108 группы

Содержание

1	Топологические пространства		
	1.1	Основные понятия	
	1.2	Непрерывность	
	1.3	Способы задания топологии	
	1.4	Гомеоморфизм	
	1.5	Связность	
	1.6	Линейная связность	
		Компактность	
	1.8	Хаусдорфовость	
	1.9	Фактор-топология	
2	Графы		
	2.1	Комбинаторное описание графа	
		Топологическое описание графа	

1 Топологические пространства

1.1 Основные понятия

Определение 1.1. *Метрика* — это функция $\rho(x,y) \to \mathbb{R}$, которая обладает следующими свойствами:

- 1. $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x,y) = \rho(y,x);$
- 3. $\rho(x,z) + \rho(z,y) > \rho(x,y)$.

Определение 1.2. Множество X называется метрическим пространством, если на нём задана метрика $\rho(x,y): X \times X \to \mathbb{R}$.

Определение 1.3. ε -окрестность точки x_0 — это множество всех точек $x \in X$: $\rho(x, x_0) < \varepsilon$.

Из курса математического анализа.

Определение 1.4. Точка $x \in X \subset A$ называется внутренней точкой множества X, если $\exists B_{\varepsilon}(x) \subset X$.

Определение 1.5. Множество называется открытым, если все его точки — внутренние.

Определение 1.6. Множество A называется закрытым, если его дополнение $A \setminus X$ открыто.

Свойства открытых множеств:

- 1. Пустое множество и само множество X открыты;
- 2. Любые объединения открытых множеств открыты;
- 3. Конечное пересечение открытых множеств открыто.

Определение 1.7. Семейство τ подмножеств некоторого множества X, удовлетворяющее условиям 1-3, называется mononozue \dot{u} .

Определение 1.8. Пусть X — произвольное множество и $\tau = \{U_{\alpha}\}$ — некоторое семейство подмножеств множества X. Семейство подмножеств τ называется *топологией*, если оно удовлетворяет следующим условиям:

- 1. Пустое множество и само множество X принадлежат τ ;
- 2. Объединение любого семейства множеств из τ принадлежит τ ;
- 3. Пересечение любого конечного семейства множеств из τ также принадлежит τ .

Определение 1.9. Множество X с фиксированной топологией τ называется monoлогиче- cким пространством и обозначается через (X, τ) . Элементы множества X называются movie movie

Если X — метрическое пространство, то на нём можно задать топологию, индуцированную метрикой: множество открыто, если любая точка входит в него с некоторым ε -шаром (некоторой окрестностью).

[Дополнение вне лекций] Топология, индуцированная метрикой — это топология, в которой открытые множества определяются через ε -шары. Таким образом, топология τ на множестве X задаётся как:

$$\tau = \{ U \subset X | \ \forall x \in U \ \exists r > 0 : B_r(x) \subset U \}$$

Пример 1.1. 1. \varnothing, X , других нет — тривиальная топология.

2. Семейство au состоит из всех подмножеств множества $X-\partial uc\kappa pemhas$ топология.

Определение 1.10. Множество A топологического пространства X называется *замкну-* mым, если его дополнение $X \setminus A$ открыто.

Определение 1.11. Пусть X — топологическое множество, $x_0 \in X$. Окрестностью точки x_0 назовём любое открытое множество, содержащее эту точку.

Утверждение 1.1. Множество A топологического пространства X открыто $\Leftrightarrow \forall x_0 \in A \ \exists U_{x_0} \in \tau : x_0 \in U_{x_0} \subset A$

 \mathcal{A} оказательство. \Longrightarrow Пусть A открыто, x_0 — точка A, тогда $U_{x_0} = A$. \Longleftrightarrow Возьмём $x \in U_x \subset A$, где U_x открыты $(\in \tau)$. Рассмотрим $\cup_{x \in A} U_x = U$, где U открыто, т.к. все U_x открыты. При этом $A \subset U$ и $U \subset A \Rightarrow U = A \Rightarrow A$ открыто.

1.2 Непрерывность

Определение 1.12. Обратимся к курсу математического анализа. Пусть D_f — область определения $f(x), x_0 \in D_f$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon,$$

то f(x) называется непрерывной в точке x_0 .

$$f: X \to Y \ \forall B_{\varepsilon}(f(x_0)) \ \exists B_{\delta}(x_0): f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$$

— в терминах окрестностей.

Определение 1.13. Отображение $f: X \to Y$ топологии пространств X и Y непрерывно, если $\forall x_0 \in X$ и для любой окрестности δ точки $f(x_0)$ существует окрестность точки x_0 такая, что $f(B(x_0)) \subset B_\delta(f(x_0))$.

Утверждение 1.2. Отображение f двух топологических пространств непрерывно \Leftrightarrow прообраз любого открытого множества открыт.

Доказательство. $\Longrightarrow f: X \to Y$. Пусть $A \subset Y$ открыто. Рассмотрим $f^{-1}(A)$. Пусть $x_0 \in f^{-1}(A) \Rightarrow \exists U$ — открытое: $f(U) \subset A \Rightarrow U \subset f^{-1}(A)$. \Longleftrightarrow Пусть прообраз любого множества открыт. Пусть $x_0 \in X \Rightarrow f(x_0) \in Y$. Возьмём $V \subset Y$, которое будет открыто. $f(x_0) \in V \Rightarrow f^{-1}(V)$ — открытое множество и $x_0 \in f^{-1}(V) \Rightarrow U := f^{-1}(V)$.

1.3 Способы задания топологии

1. Топология на подмножестве: Пусть X — топологическое пространство.

$$X_0 \subset X, \ U \in \tau(X) \Rightarrow \ U \cap X_0 \in \tau(X_0).$$

2. $f: X \to Y, Y$ — топологическое пространство, f — произвольное отображение. Тогда открытые множества на X — прообразы открытых на Y, то есть:

$$\tau_X = \left\{ f^{-1}(U) | \ U \in \tau_Y \right\}$$

Замечание 1.1 (Дополнение с лекции №2). Топология на Y порождается отображением f: множество открыто, если его прообраз открыт.

1.4 Гомеоморфизм

Определение 1.14. Топологические пространства X и Y называются *гомеоморфными*, если между ними существует непрерывная биекция $f: X \to Y$, которая и называется *гомеоморфизмом*, такая, что отображение f^{-1} также непрерывно.

Пример 1.2. Окружность с выколотым полюсом и прямая гомеоморфны.

1.5 Связность

Определение 1.15. Топологическое пространство X называется *связным*, если не существует двух открытых непересекающихся множеств A и B таких, что $X = A \cup B$.

Утверждение 1.3. Отрезок вещественной прямой в стандартной топологии связен.

Доказательство. От противного. Пусть отрезок несвязен. $\exists A, B \subset \mathbb{R} : [a, b] = A \cup B, \ A \cap B = \emptyset$, где A, B — открытые множества. Пусть $\alpha \in A$, тогда $[a, \alpha) \subset A$ (т.к. A открыто). Рассмотрим $\alpha_0 = \sup \alpha : [a, \alpha) \subset A$. Пусть $\alpha_0 \in A$, тогда:

- 1. $\alpha_0 = b \Rightarrow B = \emptyset$ противоречие.
- 2. $\alpha_0 < b \Rightarrow \alpha_0$ входит в A с окрестностью \Rightarrow существует $(\alpha_0 \varepsilon, \alpha_0 + \varepsilon) \in A \Rightarrow \alpha_0$ не супремум противоречие.

Утверждение 1.4. Непрерывный образ связного пространства связен.

Доказательство. $f: X \to Y$. От противного. Пусть образ несвязен. Тогда $Imf = A \cup B$, где A, B — открытые и непустые множества, $A \cap B = \varnothing$. $f^{-1}(A)$ открыто, $f^{-1}(B)$ открыто. Если множества не пересекаются, то и их образы не пересекаются. Так как множества не пусты, то и их образы не пусты. $f^{-1}(A) \cup f^{-1}(B) = X \Rightarrow X$ не связно — противоречие.

Замечание 1.2. Связность является топологическим инвариантом.

1.6 Линейная связность

Определение 1.16. *Непрерывная кривая (параметрическая)* — непрерывное отображение ненулевого отрезка в топологическое пространство. $\gamma:[a,b]\to X$, где γ непрерывна.

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$

$$\begin{cases} x = \cos t, \\ y = \sin t, \\ t \in [0, 2\pi]. \end{cases}$$

Определение 1.17. Топологическое пространство называется *линейно связным*, если любые две его точки можно соединить кривой.

$$x,y$$
 — точки X , тогда $\exists \gamma: [\alpha,\beta] \to X: \ \gamma(\alpha)=x, \ \gamma(\beta)=y$

Утверждение 1.5. Образ линейно связного пространства линейно связен.

Доказательство. Композиция непрерывных отображений непрерывна:

$$\gamma: [\alpha, \beta] \to X, \ f: X \to Y.$$

Утверждение 1.6. Если топологическое пространство линейно связно, то оно связно. (Наоборот, вообще говоря, неверно — как задачу можно попросить привести контрпример).

Доказательство. Пусть топологическое пространство линейно связно, но не связно. Тогда $X=A\cup B$. Возьмём $x\in A,\ y\in B$. Пользуемся линейной связностью: $\gamma:[0,1]\to X,\ \gamma$ непрерывна, $\gamma(0)=A,\ \gamma(1)=B,\ Im\gamma$ в X— связно. $Im\gamma\cap A$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X (пользуемся топологией на подмножестве), $Im\gamma\cap B$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X— получили противоречие с тем, что отрезок несвязен.

1.7 Компактность

Определение 1.18. Топологическое пространство *компактно*, если из его любого открытого покрытия можно выбрать конечное подпокрытие.

Утверждение 1.7. Непрерывный образ компакта является компактом.

Доказательство. Пусть $f: X \to Y$. Покрываем образ: $Imf \subseteq \bigcup_{\alpha} U_{\alpha}$ — покрытие. $X \subset \bigcup_{\alpha} f^{-1}(U_{\alpha})$ — открытое покрытие X (т.к. f непрерывно). $X \subset \bigcup_{i=1}^n f(U_i)$ — конечное подпокрытие. Пользуемся компактностью X: $Imf \subset \bigcup_{i=1}^n f(U_i)$

Замечание 1.3. Компактность является топологическим инвариантом.

Утверждение 1.8. Замкнутое подмножество компакта есть компакт.

Доказательство. $M \subset X \subset Y$, M замкнуто, X компактно, Y — топологическое пространство. $M \subset \bigcup_{\alpha} U_{\alpha}$ открытое покрытие M. $(Y \setminus M) \cup \bigcup_{\alpha} U_{\alpha}$ — открытое покрытие. Выберем в нём конечное подпокрытие: $X \subset (Y \setminus M) \cup \bigcup_{i=1}^n U_i$ — конечное подпокрытие. $M \subset \bigcup_{i=1}^n U_i$. \square

1.8 Хаусдорфовость

Определение 1.19. Топологическое пространство X называется $xaycdop\phioвым$, если у любых двух его различных точек существуют непересекающиеся окрестности.

 $\tau = X, \varnothing \Rightarrow X$ не хаусдорфово.

Лемма 1.1. Компакт в хаусдоровом пространстве является замкнутым множеством.

Доказательство. $M \subset X$, M — компакт. $x_0 \in X \setminus M$, $y \in M$. Пользуемся хаусдорфовостью: $x_0 \in U^y_{x_0}, \ y \in V_y, \ U^y_{x_0} \cap V_y = \varnothing. \bigcup_{y \in M} V_y$ — открытое покрытие всего множества M. Пользуемся компактностью: выберем конечное подпокрытие $M \subset \bigcup_{i=1}^n v_{y_i}, \ y_i \in M$. $\bigcap_{i=1}^n U^{y_i}_{x_0} = U, \ x_0 \in U, \ U \cap V_{y_i} = \varnothing, \ U$ открытое $\Rightarrow X \setminus M$ открыто.

Утверждение 1.9. $f: X \to Y, f$ — непрерывная биекция, X — компакт, Y — хаусдорфово топологическое пространство $\Longrightarrow f$ — гомеоморфизм.

Доказательство. $f: X \to Y, X$ замкнуто, $M \subset X, M$ замкнуто $\Rightarrow M$ компактно $\Rightarrow f(M) \subset Y$, где f(M) тоже компактно (т.к. f непрерывно) $\Rightarrow f(M)$ замкнуто в Y.

1.9 Фактор-топология

Определение 1.20. Пусть X — топологическое пространство, а \sim — отношение эквивалентности на X. Φ актор-пространство X/\sim — это множество классов эквивалентности [x] для всех $x\in X$. Топология на X/\sim называется ϕ актор-топологие \dot{u} .

Множество $U \subset X/\sim$ открыто в фактор-топологии тогда и только тогда, когда его прообраз $f^{-1}(U)$ открыт в X, где $f: X \to X/\sim$.

Пример 1.3 (нехаусдорфова пространства). Рассмотрим две числовые прямые $\mathbb{R}_1, \mathbb{R}_2$ и отождествим все их точки, кроме одной: $x \sim y \Leftrightarrow x = y, \ x \neq 0, x \in \mathbb{R}_1, \ y \in \mathbb{R}_2$. Получили фактор-пространство $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$. Оно не является хаусдорфовым, так как у нулей числовых прямых нет непересекающихся окрестностей.

2 Графы

Будьте внимательны и осторожны! Всё, что написано ниже, никакую проверку ещё не проходило.

2.1 Комбинаторное описание графа

Определение 2.1 (Комбинаторное определение графа). V — множество вершин (конечное), E — множество рёбер, отношение инцидентности — любому ребру соответствует начало и конец, принадлежащие множеству вершин V.

Рис. 1: Граф с одной петлёй и двумя кратными рёбрами.

Определение 2.2. Два графа называются *изоморфными*, если существует биекция между их множествами вершин и рёбер, уважающая отношение инцидентности.

 $v_1, v_2 \in V_1, \ e_1 \in E_1, \ f(v_1), f(v_2) \in V_2$ если вершины v_1 и v_2 были соединены ребром e_1 , то их образы $f(v_1)$ и $f(v_2)$ соединены ребром $f(e_1)$.

Рис. 2: Изоморфные графы.

2.2 Топологическое описание графа

Определение 2.3 (Топологическое определение графа). Пусть дано множество (конечное) точек V, (конечное) множество отрезков E и отображение ∂ : (множество концов отрезков) \rightarrow V. $\Gamma pa\phi om$, определённым этими данными, назовём топологическое пространство, состоящее из множества точек V, называемых вершинами графа, множества внутренних точек отрезков E, называемых внутренними точками рёбер графа, на котором задана фактор-топология. Отношение эквивалентности: вершина v лежит в том же классе эквивалентности, что и концы рёбер, которые в неё переходят.

[3]: В теории графов принята следующая терминология:

- 1. если $v \in \partial(e)$, то говорят, что вершина v и ребро e инцидентны;
- 2. если $\partial(e) = \{v, w\}$, то говорят, что вершины v и w cмежсны, или же, что они соединены ребром e;
- 3. рёбра e, e' называются *смежными*, если $\partial(e) \cap \partial(e') \neq \emptyset$;
- 4. ребро, иницидентное ровно одной вершине, называется петлёй;
- 5. если некоторой паре вершин инцидентно несколько рёбер, то все эти рёбра называются *кратными*;
- 6. если некоторой вершине инцидентно несколько петель, то все эти петли также называются кратными. [Конец цитирования]

$$v \in V, \ \partial^{-1}(v): A \sim B \Leftrightarrow A, B \in \partial^{-1}(v), \ A \sim B \sim v.$$

Определение 2.4. Графы называются *гомеоморфными*, если они гомеоморфны как топологические пространства.

Рис. 3: Гомеорморфные, но не изоморфные графы.

Определение 2.5. Непрерывное отображение графа Γ в топологическое пространство X называется *вложением*, если при этом отображение Γ и его образ гомеоморфны (никакие две различные точки не переходят в одну).

Рис. 4: K_5 и $K_{2,3}$.

Определение 2.6 (Вне лекций). Граф без петель и кратных рёбер называется простым.

Рис. 5: Имеется пять областей, на которые разбивается плоскость.

Определение 2.7. Граф, для которого существует его вложение в плоскость, называется *планарным*.

Определение 2.8. Планарный граф вместе с вложением в плоскость называется плоским.

Теорема 2.1. Для связного плоского графа $B-P+\Gamma=2$, где $\Gamma-$ количество областей, на которые граф разбивает плоскость.

Теорема 2.2 (\bigstar). Для любого планарного графа существует его вложение в плоскость такое, что образ любого ребра является ломаной с конечным числом звеньев.

Свойства непрырывных кривых:

Лемма 2.1. Образ $\gamma:[a,b]\to\mathbb{R}^2$ непрерывной кривой — замкнутое подмножество плоскости.

Доказательство. [a,b] — компакт \Rightarrow образ его — компакт. \mathbb{R}^2 — хаусдорфово \Rightarrow компакт замкнут в хаусдорфовом пространстве.

A danmupoванное доказательство из [1]: Возьмём точку P, которая не принадлежит образу кривой γ . Докажем, что существует такая окрестность U этой точки P, что U не пересекается с образом γ .

Рассмотрим вспомогательную функцию f на [a,b], которая будет обозначать расстояние от точки P до образа кривой. f непрерывна \Rightarrow достигает минимума c>0 (т.к. P не лежит в γ). Рассмотрим тогда круг радиуса c/2 с центром в P. Получим окрестность $U_{P,c/2}$, которая не пересекается с образом γ .

Сюда рисунок №6

Лемма 2.2. Ω — замкнутое подмножество \mathbb{R}^2 , $\gamma(t)$ — непрерывная кривая, $\gamma:[0,1] \to \mathbb{R}^2$, $\gamma(0) = A \notin \Omega$, $\gamma(1) = B \in \Omega \Rightarrow \exists t_0 \in [0,1]: \gamma(t_0) \in \Omega$, $\forall t < t_0 \ \gamma(t) \notin \Omega$.

Доказательство. Рассмотрим $T: \{ \tau \in [0,1]: \ \forall t \in [0,\tau): \ \gamma(t) \notin \Omega \}$ — не пусто (так как $0 \in T$) и ограничено.

Так как множество T не пусто и ограничено, то можно сказать, что существует $\sup T = c$, более того, $c \neq 1$, т.к. $\gamma(1) = B \in \Omega$ по условию.

Если $\gamma(c)=C\notin\Omega$, то существует окрестность U точки C такая, что $U\cap A=\varnothing$ (воспользовались замкнутостью множества Ω).

Так как γ — непрерывная кривая, то существует окрестность $V=(c-\varepsilon,c+\varepsilon)$ такая, что $\gamma(V)\in U$, то есть $\forall t\in (c-\varepsilon,c+\varepsilon): \gamma(t)\notin\Omega\Rightarrow c\neq\sup T$ — противоречие, значит, $C\in\Omega$.

В качестве t_0 возьмём c.

(В исходнике есть наброски прямо с лекции)

Доказательство ★. Шаг 1. Удалим из графа петли.

- Шаг 2. Сюда рисунок №7. Для каждой вершины рассмотрим окрестность такую, что она не пересекается с рёбрами графа, НЕ инцидентными данной вершине, и другими вершинами. Рассмотрим замкнутые окрестности вершин в два раза меньшего радиуса.
- Шаг 3. Исправляем вложение в окрестности вершины и добавим обратно петли. Сюда рисунок №8

Шаг 4. Сюда рисунок №9.

Список литературы

- [1] А.А. Ошемков. Нагядная геометрия и топология. Лекции. Москва: teach in, электронное издание. 185 с.
- [2] Учебные материалы по наглядной геометрии и топологии от кафедры дифференциальной геометрии и приложений механико-математического факультета МГУ имени М.В. Ломоносова [Электронный ресурс]. URL: http://dfgm.math.msu.su/ngit.php (дата обращения: 19.02.2025).
- [3] А.А. Ошемков и др. Курс наглядной геометрии и топологии. Москва: ЛЕНАНД, 2015. 360 с.