Ré-identification sans coordination dans les types de données répliquées sans conflits

Matthieu Nicolas (matthieu.nicolas@loria.fr)
20 décembre 2022

Rapporteurs: Hanifa Boucheneb Professeure, Polytechnique Montréal

Davide Frey Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Examinateurs : Hala Skaf-Molli Maîtresse de conférences, HdR, Nantes Université, LS2N

Stephan Merz Directeur de Recherche, Inria Nancy - Grand Est

Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Encadrants ·

RenamableLogootSplit

- Peuvent générer opérations concurrentes aux opérations rename
- · Produisent anomalies si intégrées naïvement

- Peuvent générer opérations concurrentes aux opérations rename
- · Produisent anomalies si intégrées naïvement

Nécessité d'un mécanisme dédié

Ajout mécanisme d'époques

Ajout mécanisme d'époques

- Séquence commence à époque d'origine, notée ε_0

Ajout mécanisme d'époques

- · Séquence commence à époque d'origine, notée $arepsilon_0$
- \cdot rename font progresser à nouvelle époque, $arepsilon_{ ext{nodeld nodeSeq}}$

Ajout mécanisme d'époques

- Séquence commence à époque d'origine, notée ε_0
- \cdot rename font progresser à nouvelle époque, $arepsilon_{ ext{nodeld nodeSeq}}$
- · Opérations labellisées avec époque de génération

Correction de l'intégration des opérations concurrentes

- Ajout d'un système d'époque pour identifier les opérations concurrentes à une opération rename
- · Transformation avant intégration des opérations concurrentes

Exemple avec $i_0^{B1}m_0^{B2}$

- Trouver son prédecesseur à l'époque d'origine ε_0 : $i_0^{B1}f_0^{A1}$
- Trouver son équivalent à l'époque destination $\varepsilon_{\rm A1}$: $i_1^{\rm A2}$
- Concaténer ce dernier à l'identifiant pour obtenir son équivalent à ε_{A1} : $i_1^{A2}i_0^{B1}m_0^{B2}$