Kyphosis Disease Classification Project

IMPORT LIBRARIES AND DATASETS

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.preprocessing import LabelEncoder, OneHotEncoder
   import pickle
```

In [2]: kyphosis_df=pd.read_csv('kyphosis.csv')
kyphosis_df

Out[2]:

	Kyphosis	Age	Number	Start
0	absent	71	3	5
1	absent	158	3	14
2	present	128	4	5
3	absent	2	5	1
4	absent	1	4	15
76	present	157	3	13
77	absent	26	7	13
78	absent	120	2	13
79	present	42	7	6
80	absent	36	4	13

81 rows × 4 columns

```
In [3]: kyphosis_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 81 entries, 0 to 80
Data columns (total 4 columns):
    Column
             Non-Null Count Dtype
             -----
0
    Kyphosis 81 non-null
                            object
             81 non-null
                            int64
1
    Age
2
    Number
             81 non-null
                            int64
3
    Start
             81 non-null
                            int64
dtypes: int64(3), object(1)
memory usage: 2.7+ KB
```

```
In [4]: kyphosis_df.describe()
```

Out[4]:

	Age	Number	Start
count	81.000000	81.000000	81.000000
mean	83.654321	4.049383	11.493827
std	58.104251	1.619423	4.883962
min	1.000000	2.000000	1.000000
25%	26.000000	3.000000	9.000000
50%	87.000000	4.000000	13.000000
75%	130.000000	5.000000	16.000000
max	206.000000	10.000000	18.000000

PERFORM DATA VISUALIZATION

```
In [5]: LabelEncoder_y = LabelEncoder()
kyphosis_df['Kyphosis'] = LabelEncoder_y.fit_transform(kyphosis_df['Kyphosis'])
```

In [6]: kyphosis_df

Out[6]:

	Kyphosis	Age	Number	Start
0	0	71	3	5
1	0	158	3	14
2	1	128	4	5
3	0	2	5	1
4	0	1	4	15
76	1	157	3	13
77	0	26	7	13
78	0	120	2	13
79	1	42	7	6
80	0	36	4	13

81 rows × 4 columns

```
In [7]: kyphosis_True = kyphosis_df[kyphosis_df['Kyphosis']==1]
```

In [8]: kyphosis_False = kyphosis_df[kyphosis_df['Kyphosis']==0]

In [9]: print('Disease present after operation percentage =', (len(kyphosis_True) / len(

Disease present after operation percentage = 20.98765432098765 %

```
In [10]: plt.figure(figsize=(10,10))
sns.heatmap(kyphosis_df.corr(), annot= True)
```

Out[10]: <AxesSubplot:>


```
In [11]: sns.pairplot(kyphosis_df, hue= 'Kyphosis')
```

Out[11]: <seaborn.axisgrid.PairGrid at 0x297cbe7a730>

Plotting the data countplot showing how many samples belong to each class

In [12]: sns.countplot(x = kyphosis_df['Kyphosis'], label = "Count");

TASK #4: CREATE TESTING AND TRAINING DATASET/DATA CLEANING

```
In [13]: # Let's drop the target Label coloumns
X = kyphosis_df.drop(['Kyphosis'], axis = 1)
Y = kyphosis_df['Kyphosis']
```

```
In [14]: X
```

Out[14]:

	Age	Number	Start
0	71	3	5
1	158	3	14
2	128	4	5
3	2	5	1
4	1	4	15
76	157	3	13
77	26	7	13
78	120	2	13
79	42	7	6
80	36	4	13

81 rows × 3 columns

```
In [15]: Y
Out[15]: 0
               0
               0
         1
         2
               1
         76
               1
         77
         78
               0
         79
               1
         80
         Name: Kyphosis, Length: 81, dtype: int32
In [16]: from sklearn.model_selection import train_test_split
In [17]: X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 0.2)
In [18]: X_train.shape
Out[18]: (64, 3)
In [19]: X_test.shape
Out[19]: (17, 3)
```

```
In [20]: # from sklearn.preprocessing import StandardScaler
# sc = StandardScaler()
# X_train = sc.fit_transform(X_train)
# X_test = sc.transform(X_test)
```

TASK #5: TRAIN A LOGISTIC REGRESSION CLASSIFIER MODEL

```
In [21]: X_train.shape
Out[21]: (64, 3)
In [22]: Y_train.shape
Out[22]: (64,)
In [23]: X_test.shape
Out[23]: (17, 3)
In [24]: Y_test.shape
Out[24]: (17,)
In [25]: from sklearn.linear_model import LogisticRegression
    model = LogisticRegression()
    model.fit(X_train, Y_train)
Out[25]: LogisticRegression()
```

TASK #6: EVALUATE TRAINED MODEL PERFORMANCE

```
In [26]: from sklearn.metrics import classification_report, confusion_matrix
```

Out[27]: <AxesSubplot:>

In [28]: print(classification_report(Y_test, y_predict_test))

	precision	recall	f1-score	support
0	0.93	0.93	0.93	1 5
1	0.50	0.50	0.50	2
accuracy			0.88	17
macro avg	0.72	0.72	0.72	17
weighted avg	0.88	0.88	0.88	17

#IMPLEMENTING DECISION TREES AND RANDOM FOREST CLASSIFIER MODELS

#IMPROVING THE MODEL

```
In [29]: from sklearn.tree import DecisionTreeClassifier
    decision_tree = DecisionTreeClassifier()
    decision_tree.fit(X_train, Y_train)
```

Out[29]: DecisionTreeClassifier()

Out[30]: <AxesSubplot:>

In [31]: print(classification_report(Y_test, y_predict_test))

	precision	recall	f1-score	support
0	0.88	0.93	0.90	15
1	0.00	0.00	0.00	2
accuracy			0.82	17
macro avg	0.44	0.47	0.45	17
weighted avg	0.77	0.82	0.80	17

importance
Age 0.600095
Start 0.359270
Number 0.040635

#Implementing the Random Forest Classifier

In [33]: from sklearn.ensemble import RandomForestClassifier RandomForest = RandomForestClassifier() RandomForest.fit(X_train, Y_train)

Out[33]: RandomForestClassifier()

	precision	recall	f1-score	support
0	0.88	1.00	0.94	15
1	0.00	0.00	0.00	2
accuracy			0.88	17
macro avg	0.44	0.50	0.47	17
weighted avg	0.78	0.88	0.83	17

C:\Users\DARSH KUMAR\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` paramet er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\DARSH KUMAR\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` paramet er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\DARSH KUMAR\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` paramet er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))


```
In [36]: #creating a pickel file
pickle.dump(model, open('randomtree.pkl', 'wb'))
```