Dummit & Foote Ch. 4.3: Groups Acting on Themselves by Conjugation — The Class Equation

Scott Donaldson

Feb. 2024

Let G be a group.

1. (2/22/24)

Suppose G has a left action on a set A, denoted by $g \cdot a$ for all $g \in G$ and $a \in A$. Denote the corresponding right action on A by $a \cdot g$. Prove that the (equivalence) relations \sim and \sim' defined by

 $a \sim b$ if and only if $a = g \cdot b$ for some $g \in G$

and

 $a \sim' b$ if and only if $a = b \cdot q$ for some $q \in G$

are the same relation (i.e., $a \sim b$ if and only $a \sim' b$).

Proof. To show that $a \sim b$ implies $a \sim' b$, we must show that, given a $g \in G$ with $a = g \cdot b$, there exists an $h \in G$ such that $a = b \cdot h$. By definition, the corresponding right action of a left action is specified to be $g \cdot x = x \cdot g^{-1}$ for all $g \in G$, $x \in A$. Letting $h = g^{-1}$, we have found an element where $a = g \cdot b = b \cdot h$, and so $a \sim' b$.

The proof for $a \sim' b$ implies $a \sim b$ is identical, letting $h = g^{-1}$ but with h acting on the left. \square

2. (2/22/24)

Find all conjugacy classes and their sizes in the following groups:

(a) D_8 :

$$\{1\}_1 \qquad \{r^2\}_1 \qquad \{r,r^3\}_2 \qquad \{s,sr^2\}_2 \qquad \{sr,sr^3\}_2$$

(b) Q_8 :

$$\{1\}_1$$
 $\{-1\}_1$ $\{\pm i\}_2$ $\{\pm j\}_2$ $\{\pm k\}_2$

(c) A_4 :

$$\{1\}_1$$
 $\{(1\,2\,3), (1\,3\,4), (1\,4\,2), (2\,4\,3)\}_4$ $\{(1\,3\,2), (1\,2\,4), (1\,4\,3), (2\,3\,4)\}_4$ $\{(1\,2)(3\,4), (1\,3)(2\,4), (1\,4)(2\,3)\}_3$

3. (2/22/24)

Find all the conjugacy classes and their sizes in the following groups:

(a) $Z_2 \times S_3$:

$$\{(0,1)\}_1 \quad \{(1,1)\}_1 \quad \{(0,(1\,2)),(0,(1\,3)),(0,(2\,3))\}_3$$

$$\{(1,(1\,2)),(1,(1\,3)),(1,(2\,3))\}_3 \quad \{(0,(1\,2\,3)),(0,(1\,3\,2))\}_2$$

$$\{(1,(1\,2\,3)),(1,(1\,3\,2))\}_2$$

(b) $S_3 \times S_3$:

$$\begin{array}{lll} \{(1,1)\}_1 & \{(1,2\text{-cycle})\}_3 & \{(2\text{-cycle},1)\}_3 & \{(1,3\text{-cycle})\}_2 & \{(3\text{-cycle},1)\}_2 \\ & \{(2\text{-cycle},2\text{-cycle})\}_9 & \{(2\text{-cycle},3\text{-cycle})\}_6 & \{(3\text{-cycle},2\text{-cycle})\}_6 \\ & \{(3\text{-cycle},3\text{-cycle})\}_4 \end{array}$$

(c) $Z_3 \times A_4$ (using representatives from the conjugacy classes of A_4 above):

4. (2/22/24)

Prove that if $S \subseteq G$ and $g \in G$ then $gN_g(S)g^{-1} = N_G(gSg^{-1})$ and $gC_g(S)g^{-1} = C_G(gSg^{-1})$.

Proof. Let $x \in N_G(S)$. So $xsx^{-1} \in S$ for all $s \in S$. Then

$$gxsx^{-1}g^{-1} \in gSg^{-1}$$

$$gxg^{-1}gsg^{-1}gx^{-1}g^{-1} \in gSg^{-1}$$

$$(gxg^{-1})gsg^{-1}(gx^{-1}g^{-1}) \in gSg^{-1}$$

$$(gxg^{-1})gsg^{-1}(gxg^{-1})^{-1} \in gSg^{-1},$$

which implies that $gxg^{-1} \in N_G(gSg^{-1})$, and so $gN_G(S)g^{-1} \subseteq N_G(gSg^{-1})$. Conversely, let $x \in N_G(gSg^{-1})$. So $xgsg^{-1}x^{-1} \in gSg^{-1}$ for all $s \in S$. Then

$$xgsg^{-1}x^{-1} \in gSg^{-1}$$

$$g^{-1}xgsg^{-1}x^{-1} \in Sg^{-1}$$

$$g^{-1}xgsg^{-1}x^{-1}g \in S$$

$$(g^{-1}xg)s(g^{-1}xg)^{-1} \in S$$

$$g^{-1}xg \in N_G(S)$$

$$x \in gN_G(S)g^{-1},$$

which shows that $N_G(gSg^{-1}) \subseteq gN_G(S)g^{-1}$. This proves that $N_G(gSg^{-1}) = gN_G(S)g^{-1}$.

Next, let $x \in C_G(S)$. So xs = sx for all $s \in S$. Then

$$xs = sx$$

 $gsxg^{-1} = gsxg^{-1}$
 $gsg^{-1}gxg^{-1} = gsg^{-1}gxg^{-1}$
 $(gsg^{-1})(gxg^{-1}) = (gsg^{-1})(gxg^{-1}),$

and so $gxg^{-1} \in C_G(gSg^{-1})$, which implies that $gC_G(S)g^{-1} \subseteq C_G(gSg^{-1})$. Finally, let $x \in C_G(gSg^{-1})$. So $x(gsg^{-1}) = (gsg^{-1})x$ for all $x \in S$. Then

$$xgsg^{-1} = gsg^{-1}x$$

 $g^{-1}xgsg^{-1} = sg^{-1}x$
 $g^{-1}xgs = sg^{-1}xg$
 $(q^{-1}xq)s = s(q^{-1}xq),$

which implies that $g^{-1}xg \in C_G(S)$, so $x \in gC_G(S)g^{-1}$. It follows that $C_G(gSg^{-1}) \subseteq gC_G(S)g^{-1}$, and therefore $gC_g(S)g^{-1} = C_G(gSg^{-1})$.

9. (3/7/24)

Show that $|C_{S_n}((12)(34))| = 8 \cdot (n-4)!$ for all $n \ge 4$. Determine the elements in this centralizer explicitly.

Proof. In S_4 , the permutations that commute with (12)(34) are the four elements of the cyclic subgroup generated by it, as well as the transpositions (12) and (34), and the 4-cycles (1324) and (1423).

Now let n > 4. Consider the product of one of the elements of $C_{S_4}((1\,2)(3\,4))$ with an element of S_n . If the permutation only acts on 1,2,3,4, then it is already in $C_{S_4}((1\,2)(3\,4))$. If the permutation only acts on $\{5,...,n\}$ then it is disjoint with (thus commutes with) the permutations in $C_{S_4}((1\,2)(3\,4))$. Now $S_{\{5,...,n\}} \cong S_{n-4}$, therefore there are (n-4)! such permutations. Since the product of any of these permutations with an element of $C_{S_4}((1\,2)(3\,4))$ must commute with $(1\,2)(3\,4)$, there are thus $8 \cdot (n-4)!$ elements in $C_{S_n}((1\,2)(3\,4))$. \square

10. (2/28/24)

Let σ be the 5-cycle (1 2 3 4 5) in S_5 . In each of (a) to (c) find an explicit element $\tau \in S_5$ which accomplishes the specified conjugation:

- (a) $\tau \sigma \tau^{-1} = \sigma^2 = (13524)$. Let $\tau = (2354)$. Then $\tau \sigma \tau^{-1} = (\tau(1)\tau(2)\tau(3)\tau(4)\tau(5)) = (13524) = \sigma^2$.
- (b) $\tau \sigma \tau^{-1} = \sigma^{-1} = (15432)$. Let $\tau = (25)(34)$. Then $\tau \sigma \tau^{-1} = \sigma^{-1}$.
- (c) $\tau \sigma \tau^{-1} = \sigma^{-2} = (14253)$. Let $\tau = (2453)$. Then $\tau \sigma \tau^{-1} = \sigma^{-2}$.

11. (2/28/24)

In each of (a) - (d) determine whether σ_1 and σ_2 are conjugate. If they are, give an explicit permutation τ such that $\tau \sigma_1 \tau^{-1} = \sigma_2$.

- (a) $\sigma_1 = (12)(345)$ and $\sigma_2 = (123)(45)$. Both have cycle type 1, 1, 3 and so they are conjugate. Let $\tau = (14253)$. Then $\tau \sigma_1 \tau^{-1} = \sigma_2$.
- (b) $\sigma_1 = (15)(372)(106811)$ and $\sigma_2 = (37510)(49)(13112)$. In S_13 , both have cycle type 1, 1, 1, 1, 2, 3, 4 and so they are conjugate. Let $\tau = (14)(211103)(5967138)$. Then $\tau \sigma_1 \tau^{-1} = \sigma_2$.
- (c) $\sigma_1 = (15)(372)(106811)$ and $\sigma_2 = \sigma_1^3 = (15)(101186)$. They do not have the same cycle type (σ_1 contains a 3-cycle that σ_2 does not), and so they are not conjugate.
- (d) $\sigma_1 = (1\,3)(2\,4\,6)$ and $\sigma_2 = (3\,5)(2\,4)(5\,6) = (2\,4)(3\,5\,6)$. Let $\tau = (1\,2\,3\,4\,5)$. Then $\tau\sigma_1\tau^{-1} = \sigma_2$.

13. (2/28/24)

Find all finite groups which have exactly two conjugacy classes.

Proof. Let G be a non-trivial finite group. Since the conjugacy class of 1 is $\{1\}$, if G has exactly two conjugacy classes, then every other element in G must have the same conjugacy class, namely $G - \{1\}$.

From Proposition 6, for any $g \in G$, the number of conjugates of g (i.e. the cardinality of the conjugacy class of g) is the index of the centralizer of g, $|G:C_G(g)|$. Therefore the size of the conjugacy class of g must divide the order of G.

Let |G| = n. Then the size of the conjugacy class of g is $|G - \{1\}| = n - 1$. This is only possible when |G| = 2, and so G must be the unique group of order two.

17. (3/25/24)

Let A be a nonempty set and let X be any subset of A. Let

$$F(X) = \{a \in A \mid \sigma(a) = a \text{ for all } \sigma \in X\}$$
 — the fixed set of X.

Let M(X) = A - F(X) be the elements which are *moved* by some element of X. Let $D = \{ \sigma \in S_A \mid |M(\sigma)| < \infty \}$. Prove that D is a normal subgroup of S_A .

Proof. Let $\sigma \in D$. Then $M(\sigma)$ is a finite subset of A. Let $\tau \in S_A$ and consider $M(\tau \sigma \tau^{-1})$. If $|M(\tau \sigma \tau^{-1})|$ is also finite, then $\tau \in D$, and so $D \subseteq S_A$. Now $|M(\sigma)| = |A - F(\sigma)| = |A| - |F(\sigma)|$, and |A| is constant. Therefore, by proving that $|F(\sigma)| = |F(\tau \sigma \tau^{-1})|$, it follows that $|M(\sigma)| = |M(\tau \sigma \tau^{-1})|$, which proves that $D \subseteq S_A$. We will now construct a bijection between $|F(\sigma)|$ and $|F(\tau \sigma \tau^{-1})|$.

Let $\varphi: F(\sigma) \to F(\tau \sigma \tau^{-1})$ be defined by $\varphi(a) = \tau(a)$. The map φ is well-defined, because:

$$a \in F(\sigma) \Rightarrow a = \sigma(a) \Rightarrow \tau(a) = \tau(\sigma(a)) = (\tau \sigma \tau^{-1})(\tau(a)),$$

which implies that $\varphi(a) = \tau(a) \in F(\tau \sigma \tau^{-1})$.

It is injective: Let $a, b \in F(\sigma)$ and suppose that $\varphi(a) = \varphi(b)$. Then $\tau(a) = \tau(b)$, and since τ is a permutation, by definition we have a = b.

Finally, φ is surjective. Let $b \in F(\tau \sigma \tau^{-1})$ (to show that there exists an $a \in F(\sigma)$ such that $\varphi(a) = b$). Let $a = \tau^{-1}(b)$. Then $b = \tau(a)$, so $\varphi(a) = b$. We show that $\sigma(a) = a$:

$$\tau \sigma \tau^{-1}(b) = b$$
$$(\tau \sigma \tau^{-1})(\tau(a)) = \tau(a)$$
$$\tau(\sigma(a)) = \tau(a)$$
$$\sigma(a) = a,$$

which implies that $a \in F(\sigma)$, so φ is surjective. Therefore φ is a bijection between $F(\sigma)$ and $F(\tau \sigma \tau^{-1})$, which (as noted above), proves that D is a normal subgroup of S_A .