

Neural Networks

Shea Mowry, Meghan Pinter, Maya Bartels, Felipe Munoz & Han Kahvecioglu

Topic	Who
Intro Neural networks	Han
Training NNs	Felipe
Intro regularization	Maya
Regularization techniques	Shea
Regularization Techniques LASSO and Elastic Net	Maya
MPWD Example	Meghan
Pros and cons (NN, Lasso, EN, Mult. Perceptron)	Shea, Han
Application NN	Felipe
Application Lasso/EN	Maya
Application MPWD	Meghan

Introduction to Neural Networks

Neural networks

Models that mimic how biological neurons work together to:

- identify phenomena
- weigh options
- arrive at conclusions

Organized in layers to conduct:

Complex processing

Neural networks: general working principle

Biologically, neurons integrate incoming signal and fire if the sum passes a threshold.

Neural nets use this principle as well:

Training Neural Networks

Loss function

- Measures distance between ground truth and model's prediction
- Function of model parameters

Examples of loss functions

- Classification: cross-entropy loss
- Regression: L1, L2, Ln loss

Training Objective → **Minimize Loss**

Introduction

Training Neural Networks

How to minimize loss?

- Update weights: $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$
- Gradient descent: $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} \eta \nabla E(\mathbf{w}^{(\tau)})$
 - At each time point, take a step in the direction that minimizes error function
 - Hyperparameter η (eta) learning rate

η - Learning rate

Too big → model might miss minima

Too small → longer training, model may fail to converge

Initial
Weight
Incremental
Step

Minimum Cost
Weight

source: Medium. 2024

Introduction

Training Neural Networks

- Modern neural networks contain billions of parameters
- How to calculate gradient with respect to each one?

Answer: Backpropagation

Forward Pass	Compute Gradient	Update Weights		Iterate	
 Process example to produce output Use loss function to compare output to ground truth 	- Compute gradient with respect to each parameter using chain rule	 Update weights using gradient information Variants of gradient descent SGD Adam 	-	Repeat for <i>n</i> steps <i>n</i> is a hyperparameter	

Multilayer Perceptron with Weight Decay - type of NN

Multilayer Perceptron (MLP)

- One input layer
- For each input there is one node
- Output layer has single node for each output
- Can have any number of hidden layers with any number of nodes

Weight Decay

- Regularization technique penalizing large weights
 - Avoids overfitting

$$L_{new}(w) = L_{original}(w) + \lambda w^T w$$

Intro to Regularization

- Prevent overfitting
- Make model more generalizable and make accurate predictions about new data

Penalize the cost function helps prevent overfitting by discouraging the model from becoming too complex.

Different regularization techniques have different penalization methods.

Regularization Techniques

Early stopping

- Stops when the models starts performing poorly to avoid overfitting
- Determined by:
 - Training Error decreasing
 - Validation Error increasing
 - Or both

Data augmentation

- Create a more diverse data set from existing data via
 - Color space transformations such as change of pixel intensities
 - Rotation and mirroring
 - Noise injection, distortion, and blurring
 - Cutout, CutMix, and AugMix (removing or changing data)

Addition of Noise

Noise can also be added to:

- Input data
- Output labels
- Gradients
- Weights

Dropout

Creates slightly different network architectures each time

Dropping based on a "drop probability"

LASSO Regularization Technique

- Performs variable selection and regularization to enhance prediction accuracy and interpretability
 - Selects more relevant features from input features
 - shrinks some feature weights to 0 to remove them and only use relevant features
- Uses L1 penalty to reduce coefficients to 0
 - Choose a lambda value that balances bias and variance

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

Elastic Net Regularization Technique

- Combines L1 (Lasso) and L2 (Ridge) regularization techniques
 - Controls cost balance and penalizes complexity in the model
 - Uses alpha (regularization parameter)
 - alpha = $0 \rightarrow \text{no L1 or L2 applied}$
 - alpha = 1 → L1 and L2 are both applied
 - \blacksquare 0 < alpha < 1 \rightarrow mixture of L1 and L2 are applied

ElasticNet =
$$\sum_{i=1}^{n} (y_i - y(x_i))^2 + \alpha \sum_{j=1}^{p} |w_j| + \alpha \sum_{j=1}^{p} (w_i)^2$$

Regularization Terms

Neural Networks Pros & Cons

Strengths:

- Useful to capture complex patterns (non-linear relationships)
- + Adaptability (can change and improve overtime as fed more data)
- + Tolerant to noise (useful for biological data)
- + Can be generalized to unseen data

Weaknesses:

- Requires large data set
- Computationally intensive
- Black box nature (unclear HOW)
- Prone to overfitting

Multilayer Perceptron with Weight Decay Pros & Cons

Strengths:

- + Reduces overfitting & improves generalization
- Ability to work with non-linear problems
- + Prevents over-reliance on single data features

Weaknesses:

- Difficult to find right hyperparameter (weight decay coefficient λ)
- Increased computational complexity
- Does not account for bias

Comparison of regularization techniques

<u>LASSO</u>

Suitable for high-dimensional data (chooses the most important data) Not well-suited for datasets with correlated features

Elastic Net

Can handle highly correlated sets (even collinearity)
High computational cost

Early stopping

Prevents memorization (better generalization)
Risk of premature stopping

Noise Addition

Prepared model for noisy real world data (audio, image, etc.) Longer time to converge to solution

Data augmentation

Good for when not enough data, especially comp. vision tasks
Risk of generating irrelevant data

Dropout

Prevents too much relying of neurons to one another Incompatible with crucial layers

Application of MLP with Weight Decay

Handwritten digit recognition

Handwritten digits have complex, non-linear patterns

Hidden layers can capture these patterns

Weight decay helps prevent overfitting of noisy patterns

Applications of LASSO and Elastic Net

- Immunological data has high dimensionality
- Regularization techniques such as LASSO and Elastic Net can help prevent overfitting with high dimensional datasets
 - Penalizes cost function and makes the model more generalizable to new data
 - Removes unnecessary features from the model to reduce complexity
 - Less complex often means a better neural network algorithm
 - Makes model more interpretable for use on future datasets

Applications: Transformer

Transformer

- Captures relationships in sequential data (text)
- Foundation of modern AI models
 - GPT, BERT

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Figure 1: The Transformer - model architecture.

Applications: AlphaFold

Evoformer - inspired by transformer

Other structure predictors - RoseTTAFold, ESM

Article Open access | Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

John Jumper A, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, ... Demis Hassabis 4 + Show authors

Nature 596, 583-589 (2021) Cite this article

Resources

Bourzac, K. (2017, April 14). Explained: Neural networks. MIT News. https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

IBM. (n.d.). Lasso regression. IBM.

 $\frac{\text{https://www.ibm.com/topics/lasso-regression\#:} \sim : \text{text=In\%20lasso\%20 regression\%2C\%20 the\%20 hyperparameter.simpler\%20 model\%20 with\%20 fewered by the statement of the$

Jain, A. (2020, May 19). Elastic net regression: Combined features of L1 and L2 regularization. *Medium*. https://medium.com/@abhishekiainindore24/elastic-net-regression-combined-features-of-l1-and-l2-regularization-6181a660c3a5

Singh, P. (2019, October 15). L1 vs L2 regularization: Which is better? *Medium* https://medium.com/analytics-vidhya/l1-vs-l2-regularization-which-is-better-d01068e6658c

Al Mind. (2020, February 18). Regularization techniques in Keras neural networks. *Al Mind.* https://pub.aimind.so/regularization-techniques-in-keras-neural-networks-2ec3ae48a764

The AI Summer. (n.d.). Regularization techniques in machine learning. The AI Summer. https://theaisummer.com/regularization/

GeeksforGeeks. (2021, November 28). Multi-layer perceptron learning in TensorFlow. *GeeksforGeeks*. https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/

D2L.ai. (n.d.). Chapter: Multi-Layer Perceptrons, Weight decay. In *Dive into Deep Learning* https://classic.d2l.ai/chapter multilayer-perceptrons/weight-decay.html

Brownlee, J. (2019, November 6). How to reduce overfitting in deep learning with weight regularization. *Machine Learning Mastery*. https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-regularization/

Nielsen, M. (n.d.). Chapter 1: Introduction. In Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/chap1.html

Team 4 - Irun Cohen: Neural Networks and Regularization 🧠 🔗

- Members: Shea Mowry, Han Kahvecioglu, Maya Bartels, Felipe Munoz, Meghan Pinter
- Focus Algorithms: nnet (Neural Network), mlpWeightDecay (Multilayer Perceptron with Weight Decay)

What to do:

- 1. Introduce neural networks and regularization techniques.
- 2. Explain how Neural Networks and Multilayer Perceptron with Weight Decay work, their strengths, weaknesses, and key differences.