Solution of Question 1.

(a)

i It is straightforward to compute that

$$x^{3} + x + 2 = (x + 1)(x^{2} + 2x) + 2x + 2,$$

 $x^{2} + 2x = (2x + 2)(2x + 2) + 2.$

As a result,

$$1 = \gcd\left(f\left(x\right), g\left(x\right)\right).$$

[5]

ii According to the previous part, it is clear that

$$2 = x^{2} + 2x - (2x + 2)(2x + 2)$$

$$= x^{2} + 2x + (x + 1)((x^{3} + x + 2) - (x + 1)(x^{2} + 2x))$$

$$= (x + 1)(x^{3} + x + 2) + (1 - (x + 1)^{2})(x^{2} + 2x)$$

$$= (x + 1)(x^{3} + x + 2) + (2x^{2} + x)(x^{2} + 2x).$$

Multiply both sides with 2. It holds that

$$1 = (2x + 2)(x^3 + x + 2) + (x^2 + 2x)(x^2 + 2x).$$

As a result,

$$a\left(x\right) =2x+2,$$

$$b\left(x\right) =x^{2}+2x.$$

[5]

(b)

i By Gaussian elimination, it is clear that

[2]

ii The corresponding parity-check matrix is given by

$$H = \left[egin{array}{cccccc} 1 & & & 1 & 1 & 0 & 1 \\ & 1 & & 1 & 0 & 1 & 1 \\ & & 1 & 1 & 1 & 1 & 0 \end{array}
ight].$$

iii The syndrome vector is given by

$$\boldsymbol{y}_1 \boldsymbol{H}^T = [1 \ 0 \ 1].$$

As a result, the error vector is given by $e = [0\ 0\ 0\ 1\ 0\ 0]$ and the minimum distance decoder outputs $\hat{c}_1 = [1\ 0\ 0\ 1\ 0\ 1\ 0]$. From the last four bits of \hat{c}_1 , it is clear that $\hat{m}_1 = [1\ 0\ 1\ 0]$.

iv The syndrome vector is given by

$$[0\ 0\ 0\ 0\ 0\ 0\ 1]\ H^T = [1\ 1\ 0].$$

Let c_5 and c_6 be the 5th and 6th symbols in c. Then one has

$$[c_5 \ c_6] \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right] = [1 \ 1 \ 0].$$

It is clear that $[c_5 c_6] = [1 1]$. Hence $c = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1]$ and $m = [0 \ 1 \ 1 \ 1]$.

2

[3]

Solutions of Question 2.

(a)

$$d(\mathcal{C}) = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C}, \ \mathbf{c}_1 \neq \mathbf{c}_2} d(\mathbf{c}_1, \mathbf{c}_2)$$

$$= \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C}, \ \mathbf{c}_1 \neq \mathbf{c}_2} d(\mathbf{c}_1 - \mathbf{c}_2)$$

$$= \min_{\mathbf{c} \in \mathcal{C}, \ \mathbf{c} \neq \mathbf{0}} d(\mathbf{c}),$$

where the last step follows from the facts that $c_1 - c_2 \neq 0$, $c_1 - c_2 \in \mathcal{C}$ (by linearity), and $\{c_1 - c_2 : c_1, c_2 \in \mathcal{C}, c_1 \neq c_2\} = \{c : c \in \mathcal{C}, c \neq 0\}$ (this can be verified by simply taking $c_2 = 0$).

(b)

- The "only if" part. Let d(C) = d. There exists a codeword c such that wt (c) = d. This implies there exist d columns of H that are linearly dependent. Now take arbitrary d-1 columns of H. If they are linearly dependent, then there exist a nonzero word c such that cH^T = 0 and wt (c) = d-1. This contradicts the assumption that d(C) = d. As a result, all d-1 columns of H are linearly independent.
- The "if" part. Since $cH^T = 0$ and every d-1 columns of H are linearly independent, it holds that min wt (c) > d-1. At the same time, since there exist d columns of H that are linearly dependent, the corresponding coefficients give a nonzero codeword $c \in C$ such that wt (c) = d. Hence, d(C) = d.
- (c) Note that $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$. Since each column of \mathbf{H} is of length n-k, any n-k+1 columns of \mathbf{H} must be linearly dependent. As a result, $d \leq n-k+1$.

(d) Take arbitrary n-k columns of H. Denote the indices by i_1, i_2, \dots, i_{n-k} . The sub-matrix is given by

$$m{H}_{\mathcal{I}} = \left[egin{array}{ccccc} lpha^{i_1} & lpha^{i_2} & \cdots & lpha^{i_{n-k}} \ lpha^{2 \cdot i_1} & lpha^{2 \cdot i_2} & \cdots & lpha^{2 \cdot i_{n-k}} \ dots & dots & \ddots & dots \ lpha^{(n-k) \cdot i_1} & lpha^{(n-k) \cdot i_2} & \cdots & lpha^{(n-k) \cdot i_{n-k}} \end{array}
ight].$$

[2]

[6]

[2]

Then

$$|H_{\mathcal{I}}| = \prod_{\ell=1}^{n-k} lpha^{i_\ell} |V_L|,$$

where V_L is a standard Vandemonde matrix with $\beta_{\ell} = \alpha_{i_{\ell}}$ and L = n - k. Note that $\alpha \neq 0$ and $\beta_{\ell} \neq \beta_m$ for $\ell \neq m$. It holds that $|\mathbf{H}_{\mathcal{I}}| \neq 0$ and every n - k columns of \mathbf{H} are linearly independent. Hence $d(\mathcal{C}) = n - k + 1$ and it is MDS.

- (e) It is clear that G' = H, H' = G, n' = n, and k' = n k. [2]
- (f) It is clear that d=n-k+1. We shall show that d'=n'-k'+1=k+1 by contradiction. Suppose that $d' \leq k$. Then there must exist a nonzero codeword $c' \in \mathcal{C}^\perp$ such that wt $(c') \leq k$ and the number of zero components in c' is at least n-k. Without loss of generality, assume that the last n-k components of c' are zero. Write the generator matrix G'=H in the form of $[A\ B]$ where $A \in \mathbb{F}_q^{(n-k)\times k}$ and $B \in \mathbb{F}_q^{(n-k)\times (n-k)}$. By the assumption that \mathcal{C} is MDS, the matrix B is of full rank. Let $c'=s'\cdot G'=s'\cdot H=[s'\cdot A\ s'\cdot B]$. That $s'\cdot B=0$ implies that s'=0 and hence c'=0. This contradicts the assumption that $c'\neq 0$. Hence d'>k. But by Singleton bound, $d\leq k+1$.

[2]

Solutions of Question 3.

(a)

i Define $t = (p_1 - 1)(p_2 - 1)$. Choose d and e such that 1 < d, e < t, $\gcd(d, t) = \gcd(e, t) = 1$, and $d \cdot e = 1 \mod t$. With this choice, $\hat{m} = c^d = m^{de} = m^{qt+1} = m \mod n$.

ii If the factorisation $n=p_1p_2$ is known, then one can compute $t=(p_1-1)(p_2-1)$ and use Euclidean algorithm to compute $d=e^{-1} \mod t$.

[2]

[2]

(b)

i Let $e = \tau(d) = b^d \mod p$. Then the decryption process is given by

$$\hat{m} = y \cdot x^{-d} = m \cdot e^{dt} \cdot b^{-td} = m \bmod p.$$

[4]

[3]

ii

A. It is clear that $\tau(1) = b$ and $p \nmid \tau(1) = b$. Inductively assume that $p \nmid \tau(d-1)$ and we shall show that $p \nmid \tau(d)$. Note that $\tau(d) = \tau(1) \cdot \tau(d-1)$. By Euclid's Lemma, that $p | \tau(d)$ implies that either $p | \tau(1)$ or $p | \tau(d-1)$, both of which are false according to the assumptions. Hence, $p \nmid \tau(d)$.

B. Let $d_1, d_2 \in \mathbb{F}_p^*$ be such that $d_1 \neq d_2$. Without loss of generality, let $d_1 > d_2$. Define $e_1 = \tau(d_1)$ and $e_2 = \tau(d_2)$. Consider $e_1/e_2 = b^{d_1-d_2} \mod p$. Since $0 < d_1 - d_2 < p - 1$, $b^{d_1-d_2} \neq 1$ by the fact that ord (b) = p - 1. Hence $e_1 \neq e_2$ and the mapping τ is one-to-one. [3]

C. Denote the image set of τ by \mathcal{E} . It is clear $\mathcal{E} \subseteq \mathbb{F}_p^*$ from part A). Since the mapping is one-to-one, $|\mathcal{E}| = |\mathbb{F}_p^*| = p - 1$, which suggests that $\mathcal{E} = \mathbb{F}_p^*$ and the mapping is onto. [2]

iii Let $x = \operatorname{ord}(\beta)$. Write $p - 1 = q \cdot x + r$ for non-negative integers q and r such that r < x. By Fermat's little theorem and the definition of the order, it holds that

$$1 = \beta^{p-1} = \beta^{qx+r} = \beta^r \bmod p.$$

This implies that r = 0 otherwise it contradicts the definition of the order. Hence $x \mid (p-1)$. [4]

Solutions of Question 4.

(a) In order to show g(x)|c(x), write c(x) = u(x)g(x) + r(x). By linearity of a cyclic code, $u(x)g(x) \in \mathcal{C}$ and $r(x) = c(x) - u(x)g(x) \in \mathcal{C}$. By the definition of g(x), it is clear that $\deg(r(x)) = 0$. Hence g(x)|c(x).

The uniqueness is proved by contradiction. Suppose that there exist two different monic polynomials $g_1(x) \neq g_2(x)$ of the same degree that generate \mathcal{C} . Then by linearity of a cyclic code, $g_1(x) - g_2(x) \in \mathcal{C}$. Note that $\deg(g_1(x) - g_2(x)) < \deg(g_1(x)) = \deg(g_2(x))$. This contradicts the definition of g(x), which proves the uniqueness of g(x).

(b)

i The cyclotomic cosets are

$$C_0 = \{0\}, C_1 = \{1, 2, 4, 8\}, C_3 = \{3, 6, 12, 9\}, C_5 = \{5, 10\}, \text{ and } C_7 = \{7, 14, 13, 11\}.$$
 [5]

ii The generator polynomial of the constructed BCH code is given by

$$g(x) = \operatorname{lcm} (M^{(1)}(x), M^{(2)}(x), \dots, M^{(6)}(x))$$

= $M^{(1)}(x) \cdot M^{(3)}(x) \cdot M^{(5)}(x)$,

where

$$\begin{split} M^{(1)}\left(x\right) &= \left(x-\alpha\right)\left(x-\alpha^2\right)\left(x-\alpha^4\right)\left(x-\alpha^8\right),\\ M^{(3)}\left(x\right) &= \left(x-\alpha^3\right)\left(x-\alpha^6\right)\left(x-\alpha^{12}\right)\left(x-\alpha^9\right),\\ M^{(5)}\left(x\right) &= \left(x-\alpha^5\right)\left(x-\alpha^{10}\right). \end{split}$$

[5]

[5]

iii From the previous part,

$$h(x) = M^{(0)}(x) \cdot M^{(7)}(x),$$

 $g(x) = 0,$

where

$$M^{(0)}(x) = x - 1,$$

 $M^{(7)}(x) = (x - \alpha^7)(x - \alpha^{14})(x - \alpha^{13})(x - \alpha^{11}).$

iv The generator and parity-check matrices are respectively given by

and

$$m{H} = \left[egin{array}{cccccc} h_{\ell} & h_{\ell-1} & \cdots & h_0 & & & & \\ & h_{\ell} & h_{\ell-1} & \cdots & h_0 & & & & \\ & & \ddots & & & \ddots & & & \\ & & & h_{\ell} & h_{\ell-1} & \cdots & h_0 \end{array}
ight].$$

[3]

Solutions of Question 5.

(a) It is clear that $\mathcal{R}_1 = \mathbb{F}_2^2$ is a linear code.

Suppose that \mathcal{R}_m is a linear code. We shall show \mathcal{R}_{m+1} is linear by considering linear combinations of two codewords c_1 and c_2 from \mathcal{R}_{m+1} . Since the code is defined on \mathbb{F}_2 , we only need to consider the linear combination of the form $c_1 + c_2$.

If $c_1 = [u_1, u_1]$ and $c_2 = [u_2, u_2]$, then $c_1 + c_2 = [u_1 + u_2, u_1 + u_2]$. By linearity of \mathcal{R}_m , $c_1 + c_2 \in \mathcal{R}_{m+1}$.

If $c_1 = [u_1, u_1 + 1]$ and $c_2 = [u_2, u_2 + 1]$, then $c_1 + c_2 = [u_1 + u_2, u_1 + u_2] \in \mathcal{R}_{m+1}$.

If $c_1 = [u_1, u_1]$ and $c_2 = [u_2, u_2 + 1]$, then $c_1 + c_2 = [u_1 + u_2, u_1 + u_2 + 1]$, which is also in \mathcal{R}_{m+1} by the definition of \mathcal{R}_{m+1} . The same is true if $c_1 = [u_1, u_1 + 1]$ and $c_2 = [u_2, u_2]$.

This finishes the proof.

[5]

(b) It is straightforward to verify that

$$G_{m+1} = \left[egin{array}{cc} G_m & G_m \ 0 & 1 \end{array}
ight],$$

where **0** is the all zero vector and **1** is the all one vector.

[4]

(c) It is clear that for \mathcal{G}_m , $n=2^m$ and k=m+1.

[3]

(d) We prove this part by mathematical induction.

When m = 1, \mathcal{R}_m contains 0 and 1. All other codewords have weight $2^{m-1} = 1$.

Suppose that the claim is true for \mathcal{R}_m . We consider the code \mathcal{R}_{m+1} .

• Consider the codeword of the form [u, u] where $u \in \mathcal{R}_m$. Clearly u = 0 gives the all zero vector in \mathcal{R}_{m+1} and u = 1 gives the all one vector in \mathcal{R}_{m+1} .

When u is neither 0 nor 1, weight $(u) = 2^{m-1}$ and hence weight $([u, u]) = 2^m = 2^{(m+1)-1}$.

• Consider the codeword of the form [u, u+1] where $u \in \mathcal{R}_m$. One has weight $([u, u+1]) = \text{weight } (u) + (2^m - \text{weight } (u)) = 2^m$.

This proves the claimed result.

[8]