heaps priority queues

fall 2024 - data structures

Priority Queue

- queue
 - o FIFO
 - Call center
 - A new call is added to back
 - Calls are taken from the front
- Sometimes FIFO may not be enough
 - Air-traffic control center
 - Need to add some factors now:
 - plane distance, time spent waiting, amount of fuel

PQ

- Priority queue
 - Collection of prioritized elements that allows arbitrary element insertion
 - Düz elemanlar harici artık öncelik var
 - Allows the removal of the element that has first priority
 - İlk önceliğe sahip olan eleman queue dan çıkarılacak artık tam fıfo değil.
- When an element is added, user gives a key
 - This key is the *importance*
 - Usually the minimal key is the most important

PQ ADT

- insert(k,v)
 - Creates an entry with key k and value v
- min()
 - Returns the minimum key.
- removeMin()
 - Removes and returns the entry with minimum key.
- size()
 - Number of entries in the queue
- isEmpty()
 - Returns a boolean

PQ

- Can have multiple entries with same key.
 - o In that case, *min* and *removeMin* chooses arbitrarily

Method	Return Value	Priority Queue Contents
insert(5,A)		{ (5,A) }
insert(9,C)		{ (5,A), (9,C) }
insert(3,B)		{ (3,B), (5,A), (9,C) }
min()	(3,B)	{ (3,B), (5,A), (9,C) }
removeMin()	(3,B)	{ (5,A), (9,C) }
insert(7,D)	1.70	{ (5,A), (7,D), (9,C) }
removeMin()	(5,A)	{ (7,D), (9,C) }
removeMin()	(7,D)	{ (9,C) }
removeMin()	(9,C)	{ }
removeMin()	null	{ }
isEmpty()	true	{ }

Heaps

- A PQ is an ADT.
 - When we implement it, it becomes a data structure.
 - Can be implemented by using a List.
 - Can also be implemented by using a binary heap
 - binary heap implementation is faster
- Uses a binary tree structure.

Relational property

- Heap-order property
 - In a heap, for every position p other than the root, the key stored at p is greater than or equal to the key stored at p's parent.
 - O Bir heap içinde, root haricindeki herhangi bir *p* noktasında saklanan veri, *p* nin parent'ında saklanandan ya büyük ya da eşittir.
- So, keys encountered on a path from root to a leaf are in nondecreasing order.
 - Minimal key is always stored at the root.

Structural property

- We want the heap to have minimum height.
- Enforced by:
 - Heap T must be **complete** binary tree.

Completeness

heaps

- Two types:
 - Min-heap
 - Value is smaller than or equal to its children
 - Same for all subtrees
 - Good for *priority queues*
 - Max-heap
 - Value is larger than or equal to its children
 - Same for all subtrees
 - Good for heapsort

representation

- A heap can be represented as an array.
- We can easily get the children and parent of a node by using simple arithmetics on the indices of the array.
 - We can start from 1 to make the math work.
 - We can also start from 0. Children will become
 2i+1 and 2i+2
 - Parent is floor(i-1 / 2)
- Find the left and right child and parent of (2).

for Node at i: Left child will be 2i and right child will be at 2i+1 and parent node will be at [i/2].

- In heaps, children are not ordered. Can be however.
- a node must be larger than or equal to its children.
 - o for max heap
- a node must be smaller than or equal to its children
 - for min heap
- max heap
 - root is the largest
- min heap
 - o root is the smallest

Creating a heap

- We will create a heap from a given array.
- Heap is not unique
 - You can have different heaps but still satisfying the complete binary tree and min max heap property.
- 10,20,15,30,40
 - Show step by step

Creating a new heap

- Since it is a complete binary tree, we know where to add.
 - We add it there, but then we check whether the tree is a max or min heap.
 - o If not, we turn it into one by replacing, swapping elements.
- Let's do: 5,1,2,6,3,8,9,7,5

insertion

- Let's say we have:
 - 50,30,20,15,10,8,16
 - This is already a max-heap
 - Just draw the tree.
- Later, we want to add 60 to it.
 - At first glance, we understand it should be at the root!
 - But we don't add it like that.
 - Every operation we do, the result must be a complete binary tree + satisfy max/min property.
 - So we add it as the *next* element.
 - Starting from the leftmost.

complexity

- how many operations we did?
 - we did swaps.
 - Number of swaps are dependent on the **height** of the tree.
 - Height of the tree is log(n).
- Therefore insertion is log(n).
 - Worst case.
 - \circ Best case is O(1) -> You don't swap anything.
- We added a leaf and moved upwards.
 - Bottom up heapify

deletion

- in heap, only logical deletion is done to the root.
 - If you want to delete some other elements, maybe you should not use a heap.
 - We get the maximum or minimum key (max heap, min heap)
 - o So, we will delete the root!
- When we delete the root, we replace it with the last element and remove the last element.
- O(logn)

Deletion

- Delete the root
- 50,30,20,15,10,8,16

deletion

- We will delete 9.
 - Swap 9 with last element -> 5.
 - 5 becomes the root.
 - Complete binary tree but not max heap
 - We check the children of 5.
 - 7 and 8
 - 8 is larger, so we swap 8 with 5.
 - We do this until the max heap is satisfied.

Heapsort

- We use an array to implement heap.
 - Array is static. Size doesnt change.
 - But the heap size changes when deleted.
- We also saw that when we deleted items, it was sorted (reversely)
 - And each time we delete something from the heap, the array is becoming free.
 - What if we put the deleted element back into the array but in the back.
- So:
 - 50,30,20,15,10,8,16
 - We delete 50. Remember, we put 16 into its place.
 - \circ 16,30,20,15,10,8, $_\rightarrow$ Last place is free.
 - Why not put the deleted item there?
 - After satisfying the max heap array will be: 30,16,20,15,10,8,50.
 - Let's delete the max again. 30 will be replaced by 8. (Not 50, remember the size!)
 - Becomes 8,16,20,15,10,_,50. We heapify: $20,16,8,15,10,_,50 \rightarrow Put$ the 30 there:
 - 20 16 8 15 10 30 50
 - ..

Heapsort

- So, we have some numbers.
 - We can sort them by creating a heap and then deleting the heap!
 - In-place sorting.
 - Space complexity O(1)

downward heapify

- How to make a heap out of a given tree.
 - We Convert a binary tree into a heap.

Imagine that this tree is given to us: 10, 20, 15, 12, 40, 25, 18

- We start from the last element.
 - o if it satisfies max heap, we continue
 - \circ 18, 25, 40, 12 are leaves \rightarrow max heaps -> we continue
 - We get to 15. We look at the children. Is it a max heap? No.
 - We compare 25,18 -> we swap the larger with 15. swap(15,25)
 - We get to 20. We look at children. 12, 40 -> swap(40,20)
 - We get to 10. We look at children. 40,15 -> swap(40,10)
 - We check 10 again, because it still has children -> 12,20 \rightarrow swap(20,10)

build_heap vs heapify

- When you have a tree and you try to make it into a heap, we call it heapify.
- When you build your heap from ground up, it is build_heap.
- Imagine:
 - We have a heap.
 - Deleted the root.
 - Not a heap anymore.
 - Making it into a heap: heapify.

Sift Down vs. Sift Up

PQ

- Here, we have some items → we care about the key.
- 8, 6, 3, 10, 5, 4, 9
 - We can say the smallest number is the most important
 - We can say the largest number is the most important.
- In the first case,
 - We want to remove the minimum -> 3.
- In the second case;
 - We want to remove the maximum -> 10.
- So, we will use a min heap or max heap
- Again, we can just write functions and methods and store numbers in an array.
 - complexity will be o(n)
 - we need to find the element, we need to shift elements
 - But if we implement PQ as HEAP;
 - Inserting and removing is O(logn) -> faster.

PQ

- So,
- For a given array:
 - First you need to create a heap (min or max depending on what is the most important)
 - And you may need to get the most important element and give the new heap.
- All done by using the things we learned

good to read / watch

- https://yuminlee2.medium.com/golang-heap-data-structure-45760f9562dc
- https://www.youtube.com/watch?v=HqPJF2L5h9U