

Dingzeyu

COLUMBIA COMPUTER GRAPHICS GROUP

Oct 24, 2017

Multi-Layer Profile

 $R(d) = R_1 + T_1 R_2 T_1 + T_1 R_2 R_1 R_2 T_1 + \cdots$

 $= R_1 + \frac{T_1 R_2 T_1}{1 - R_1 R_2}$

 $= R_1 + T_1 R_2 T_1 (1 + R_1 R_2 + (R_1 R_2)^2 + \cdots)$

1-bounce

2-bounce

Efficient computation for layered material

```
R(d) \&= R_1 + T_1 R_2 T_1 + T_1 R_2 R_1 R_2 T_1 + \cdot \cdot
\&= R_1 + T_1 R_2 T_1 (1 + R_1 R_2 + (R_1 R_2)^2 + \cdot cdots)
\&= R_1 + \frac{T_1 R_2 T_1}{1 - R_1 R_2}
```


[Donner and Jensen, SIGGRAPH 2005]

$R_1(d), T_1(d)$

$R_2(d), T_2(d)$

Putting it together

0-bounce

1-bounce

2-bounce

```
R(d) \&= R_1 + T_1 R_2 T_1 + T_1 R_2 R_1 R_2 T_1 + \cdot \cdot
```



```
\&= R_1 + T_1 R_2 T_1 (1 + R_1 R_2 + (R_1 R_2)^2 + \cdot cdots)
```

```
&= R_1 + \frac{T_1 R_2 T_1}{1 - R_1 R_2}
```


