ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

На правах рукописи

Кудашова Екатерина Алексеевна

Математическое моделирование управляемых систем с дискретным управлением

Специальность 05.13.18 – математическое моделирование, численные методы и комплексы программ

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

> Научный руководитель д.ф.-м.н., профессор Андреев А.С.

Ульяновск 2015

ЗАКЛЮЧЕНИЕ

В диссертационной работе разработаны новые методы исследования устойчивости и стабилизации нелинейных управляемых систем, моделируемых дискретными уравнениями; обоснована методика построения моделей дискретного управления движениями управляемых механических систем. Основные результаты работы состоят в следующем.

- 1. Проведено развитие метода векторных функций Ляпунова а исследовании устойчивости и стабилизации нелинейных систем, моделируемых дискретными уравнениями.
- 2. Полученные результаты являются развитием для дискретных систем соответствующих теорем из работ Для систем, описываемых дифференциальными уравнениями, обобщением результатов работ из []. Эффективность новой методики в исследовании устойчивости стабилизации представлена на примере решения задачи об устойчивости системы, моделируемой уравнениями типа Вольтерра. Получено решение задачи о стабилизации программных движений управляемых механических систем CO ступенчатым импульсным управлением. Построены соответствующие модели управления системой с одной и многими степенями свободы, с одной позиционной и остальными циклическими координатами. Эти результаты представляют собой развитие для дискретного управления стабилизации соответствующих результатов O программных движений механических систем посредством непрерывных и релейных управлений из работ ||.
- 3. Представлена модель управляемого двузвенного манипулятора на подвижном основании со ступенчатым импульсным управлением.

4. Разработана компьютерная модель управляемого движения колесного мобильного робота с тремя омниколесами. Разработанный программный комплекс на языке высокого уровня Java с самостоятельным кроссплатформенным приложением позволяет составить анализ процесса управления при различных способах его задания — в виде функций, в виде поточечного закона и их модификаций.

Основные результаты работы опубликованы в работах [23, 34, 37, 39–41, 81–83, 85] в том числе, в статьях [14, 20–22, 25, 36, 38, 64, 84] опубликованных в журналах из списка ВАК. На программу моделирования управляемого движения мобильного робота получен патент РФ на программу для ЭВМ №2015615314.