

Introduction to Next-Generation Sequencing

Junfan Huang

MRC Cancer Unit University of Cambridge

CRUK Bioinformatics Summer School 2021 21th July 2021

DNA sequencing

DNA sequencing

Cost per genome

Illumina sequencers

	MiSeq	HiSeq	NovaSeq	Sanger
Reads (millions)	30	3,000	13,000	0.0004
Gigabases/day	7	500	4000	0.001

Illumina sequencers

	MiSeq	HiSeq	NovaSeq	Sanger
Reads (millions)	30	3,000	13,000	0.0004
Gigabases/day	7	500	4000	0.001

Illumina sequencing by synthesis

Sequencing reagents, including fluorescently labeled nucleotides, are added and the first base is incorporated. The flow cell is imaged and the emission from each cluster is recorded. The emission wavelength and intensity are used to identify the base. This cycle is repeated "n" times to create a read length of "n" bases.

Library Preparation

Add sequencing adapters to DNA fragments

Flow cell

Library Preparation

Add sequencing adapters to DNA fragments

Cluster generation

Rosario Michael Piro, Chapter 7 - sequencing technologies for epigenetics: From basics to applications, Epigenetics of the Immune System (Dieter Kabelitz and Jaydeep Bhat, eds.), Translational Epigenetics, vol. 16, Academic Press, 2020, pp. 161–183.

Chemistry for sequencing

Chemistry for sequencing

Chemistry for sequencing

Chemistry for sequencing

Chemistry for sequencing

Chemistry for sequencing

Rosario Michael Piro, Chapter 7 - sequencing technologies for epigenetics: From basics to applications, Epigenetics of the Immune System (Dieter Kabelitz and Jaydeep Bhat, eds.), Translational Epigenetics, vol. 16, Academic Press, 2020, pp. 161–183.

Illumina sequencing by synthesis

NGS library is prepared by fragmenting a gDNA sample and ligating specialized adapters to both fragment ends.

FASTQ

Multiplexing

- Sequences multiple samples at the same time
- Blocks against possible technical bias caused by differences between flow cell lanes
- Sequences small genomes or specific genomic regions.

Unaligned sequence: FASTQ

FASTQ header decoded (Illumina example):

Worst quality

Best quality

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
```

Alignment

Trimmed DNA sequences

?

GRCh38

Human genome

Alignment

?

GRCh38

10 min break!