PROBABILITIC FEATURE SELECTION (FILTER METHOD)

Ashutosh Upreti . Siddharth Mundada

MAJOR COMPONENTS

- → Introduction
- → Previous Work
- → Our Approach
- → Experimental Setup
- → Conclusion and Future Work

FEATURE SELECTION

INTRODUCTION

- Feature Selection and its importance in text classification
- Types of Feature
 Selection methods
 - a. Filter Methods
 - b. Wrapper Methods
 - c. Embedded Methods

PREVIOUS WORK

- Distinguishing Feature Selector (DFS)
- Improved Gini-Index
 Algorithm
- Chi-square with K-Means

DISTINGUISHING FEATURE SELECTON (DFS)

$$DFS(t) = \sum_{i=1}^{M} \frac{P(C_i|t)}{P(\overline{t}|C_i) + P(t|\overline{C_i}) + 1}$$

IMPROVED GINI-INDEX ALGORITHM

GiniTxt(w) =
$$\sum_{i=1}^{m} P(w|C_i)P(C_i|w)$$
TF(w|C_i) =
$$\sum_{d \in C_i}^{|C_i|} TF(w|d)$$

Gini-TF(w) =
$$\sum_{i=1}^{m} \sum_{d \in C_i}^{r} P(C_i|w)TF(w|d)$$

CHI-SQUARE WITH K-MEANS

FINAL FEATURE SET 'F'

APPLY K-MEANS CLUSTERING USING EUCLIDEAN NORM

CREATE 'K' CLUSTERS ON THE NEW TERM-DOCUMENT MATRIX

CHI-SQUARE FEATURE SELECTION TO ENTIRE TERM-DOCUMENT MATRIX

OUR APPROACH

- > Gini-DFS
- Improved
 Gini-DFS
- Applying K-Means before Improved Gini-DFS

GINI-DFS

Gini-DFS
$$(w) = \sum_{i=1}^{N} \sum_{d \in C_i} DFS_i(w)TF(w|d)$$

$$DFS_i = \sum_{i=1}^{m} \frac{P(C_i|t)}{P(\overline{t}|C_i) + P(t|\overline{C_i}) + 1}$$

IMPROVED GINI-DFS

$$GiniImpTF(t) = \sum_{C_i} DFS_i(t) * ImpTF_i(t)$$

$$ImpTF_{i}(t) = \frac{TF_{i}(t) * ATF_{i}(t)}{M_{i}}$$

$$ATF_i(t) = \frac{\sum_{d=1}^k t f_{t,d}}{N_i}$$

$$\mathbf{M}_i = \frac{\sum_{d \in C_i} \operatorname{termCount}(d)}{D_i}$$

K-MEANS WITH IMPROVED-GINI-DES

- Applying K-Means Clustering to preprocess the data
- Using a threshold, we select the top-N features from every cluster
- Feature set constructed is passed to Improved-Gini-DFS

EXPERIMENTAL SETUP

- Dataset Information
- Classification
 Algorithms
- Performance measures
- Experimental setting
- Visualizations

DATASET INFORMATION

- > WebKB
- > Reuters-8
- > Newsgroup20

CLASSIFICATION ALGORITHMS

- Support Vector Machine (SVM)
- MultinomialBayes Classifier
- Random Forest
 Classifier

PERFORMANCE MEASURES

$$Micro-F1 = \frac{2 * p * r}{p+r}$$

Macro-F1 =
$$\frac{\sum_{k=1}^{C} F_k}{C}$$
, $F_k = \frac{2 * p_k * r_k}{p_k + r_k}$

(a) Newsgroup-20 dataset

(a) Newsgroup-20 dataset

(b) Reuters-8 dataset

(a) WebKB dataset comparison

CONCLUSION AND FUTURE WORK

- Dataset can be skewed in nature. In such cases, inclusion of TF (term-frequency) in the scoring function proves to be useful.
- Filter methods sometimes become vulnerable to high frequency terms.
- Performance of feature selection techniques rely on the classifier used.
- In our future work, we can use model probabilities with different probability distributions. We can also use a weighted scoring function.