Chapitre 23: Interférences par division du front d'onde

I Trous d'Young

A) Dispositif expérimental

1) A distance finie

2) A l'infini

Il y a en M une intensité $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\varphi$. On doit trouver φ On admet que S_1, S_2 diffractent de façon quasiment isotrope.

B) Expression du déphasage

1) Expression générale en fonction du chemin optique

En S: on a une phase ωt

En M: de S_1 , on a une phase $\omega t + \varphi_1 = \omega(t - t_1)$ (t_1 : temps mis par l'onde pour aller de S à M en passant par S_1).

On a
$$t_1 = \frac{L_1}{c}$$
 (L_1 : chemin optique: $L_1 = \int_S^M n ds$ le long du parcours)
Ainsi, $\varphi_1 = -\frac{L_1 \omega}{c} = \frac{-2\pi}{\lambda_0} L_1$

Ainsi,
$$\varphi_1 = -\frac{L_1 \omega}{c} = \frac{-2\pi}{\lambda_0} L_1$$

De
$$S_2$$
, on aura $\varphi_2 = \frac{-2\pi}{\lambda_0} L_2$

On a donc
$$\varphi = \varphi_2 - \varphi_1 = -\frac{2\pi}{\lambda_0} (L_2 - L_1) = \frac{2\pi}{\lambda_0} \delta$$

 $(\delta = L_1 - L_2]$: différence de marche, ou différence de chemin optique)

2) Cas d'un milieu homogène

• Expression rigoureuse :

$$\varphi = \frac{2\pi}{\lambda_0} (L_1 - L_2) = \frac{2\pi}{\lambda_0} n(D_1 - D_2) \ (L = \int nds)$$

Où
$$D_1 = S_1 M$$
, $D_2 = S_2 M$

Ainsi,
$$\varphi = \frac{2\pi}{\lambda}(D_1 - D_2) (\lambda = \frac{\lambda_0}{n})$$

• Expression approchée :

On suppose D >> a, x, y

Ainsi,
$$D_1 = \sqrt{D^2 + (y + \frac{a}{2})^2 + z^2} = D \left(1 + \frac{1}{2D^2} \left(\left(y + \frac{a}{2} \right)^2 + z^2 \right) \right)$$

Et $D_2 = D \left(1 + \frac{1}{2D^2} \left(\left(y - \frac{a}{2} \right)^2 + z^2 \right) \right)$

Donc
$$D_1 - D_2 = \frac{ay}{D}$$
. Et $\varphi = \frac{2\pi}{\lambda} \frac{ay}{D}$

C) Figure d'interférence

1) Franges

On a des franges claires pour $\varphi = 2k\pi$, $k \in \mathbb{Z}$. Et des franges sombres pour $\varphi = (2k+1)\pi$

• Rigoureusement:

$$\varphi = \text{cte} \Rightarrow D_2 - D_1 = \text{cte}$$

On a donc des hyperboloïdes de foyers S_1, S_2

• Pratiquement:

$$D_2 - D_1 = \text{cte} \Rightarrow y \approx \text{cte}$$

- Franges claires
$$(I = I_M)$$

On a
$$\varphi_2 - \varphi_1 = 2k\pi$$
, donc $y = k\frac{\lambda D}{a}$

- Franges sombres
$$(I = I_m)$$

On a
$$\varphi_2 - \varphi_1 = (2k+1)\pi$$
, donc $y = (k+\frac{1}{2})\frac{\lambda D}{a}$

C'est un écart pour lequel
$$\Delta k = \pm 1$$
, soit $i = \frac{\lambda D}{a}$

2) Eclairement de l'écran

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(2\pi \frac{y}{i}\right)$$

Si I_1 , I_2 sont indépendants de y:

$$\xrightarrow{\parallel \parallel \parallel \parallel} y$$

3) Facteur de visibilité, contraste

On pose $v = \frac{I_M - I_m}{I_M + I_m} = \frac{\sqrt{I_1 I_2}}{\frac{1}{2}(I_1 + I_2)} = \frac{\text{moyenne géométrique}}{\text{moyenne arithmétique}}$, contraste.

- On a 0 < v < 1
- v correspond à l'écart relatif entre I_M et I_m
- Si v = 0, $I_m = I_M$

Si v=1, $I_m=0$. On a alors

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(2\pi \frac{y}{i}\right)$$

$$= (I_1 + I_2)(1 + v\cos(2\pi \frac{y}{i}))$$

$$= (I_1 + I_2)(1 + \gamma \cos(\varphi))$$

Où
$$|\gamma| = v$$
.

4) Répartition de l'énergie

Si
$$I_1 = I_2$$
, on a alors $I_m = 0$, $I_M = 4I_1$

Les interférences correspondent donc à une autre répartition de la même énergie.

Interférence photon par photon:

On prend une source lumineuse très faible, émettant les photons quasiment un par un :

On observe effectivement qu'il y a des zones où les photons ont une probabilité nulle de tomber, et d'autres où ils ont au contraire une très forte probabilité.

D) Déplacement des franges par variation d'indice

1) Exemple

• On a donc toujours des fentes parallèles à l'axe Oy.

Toutes les franges sont décalées de $\Delta y = \frac{(n-1)eD}{a}$ du côté où on a mis la petite lame.

• L'interfrange n'est pas modifié.

2) Application : calcul de l'indice de l'air

On place le point M sur une frange claire.

On laisse ensuite entrer très progressivement l'air dans le tube vide.

A la fin, le point M est décalé, et on compte combien de franges sont passées par le point M.

On peut ainsi calculer l'indice de l'air :

Observation : avec $\lambda_0 = 5890 \,\text{Å}$, on voit passer 99 franges claires, et le point M s'arrête sur la frange sombre suivante.

Avant :
$$\Delta L = \delta = k\lambda_0$$

Après :
$$\Delta L = \delta' = (k + 99.5)\lambda_0$$

Donc
$$\delta - \delta' = 99.5\lambda_0 = (n-1)e$$

Soit
$$n = 1 + \frac{99.5 \lambda_0}{e} = 1,000293$$
 avec $e = 20$ cm

On peut donc faire des calculs très précis.

E) Déplacement des franges par décalage du point source

On suppose que $a, y', z' \ll d$

On a
$$\varphi_2 - \varphi_1 = \frac{2\pi}{\lambda} (D_1 + d_1 - D_2 - d_2) = \frac{2\pi}{\lambda_0} n(D_1 + d_1 - D_2 - d_2)$$

Et
$$D_1 - D_2 = \frac{ay}{D}$$
, $d_1 - d_2 = \frac{ay'}{d}$

Donc
$$\varphi_2 - \varphi_1 = \frac{2\pi a}{\lambda} \left(\frac{y}{D} + \frac{y'}{d} \right)$$

En posant
$$Y = y + \frac{D}{d}y'$$
, on a $\varphi_2 - \varphi_1 = \frac{2\pi}{\lambda_0} \frac{aY}{D}$

On a
$$\Delta y = -\frac{D}{d}y'$$
, donc la figure est translatée en bloc.

Il n'y a pas de changement si on décale la source selon l'axe Oz. L'interfrange n'est pas modifié.

II Fentes d'Young

A) Remplacement des trous S_1 , S_2 par des fentes

1) Dispositif expérimental

$$\begin{array}{c|c}
 & b_{\lambda}^{\vee}|S_{2} \\
\hline
S & \downarrow & \uparrow a \\
\downarrow S_{1}
\end{array}$$

On suppose que les fentes ont une hauteur $c \gg \lambda$.

2) Cohérence temporelle

D'après le principe de Huygens-Fresnel, les fentes vont émettre de façon cohérente l'une avec l'autre

3) Amplitude

• Calcul direct:

$$\begin{split} \underline{A}(k_{y}) &= K \left(\int_{-\frac{a}{2} - \frac{b}{2}}^{-\frac{a}{2} + \frac{b}{2}} e^{-ik_{y}y} dy + \int_{\frac{a}{2} - \frac{b}{2}}^{\frac{a}{2} + \frac{b}{2}} e^{-ik_{y}y} dy \right) \\ &= K \left(e^{ik_{y} \frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{-ik_{y}y'} dy' + e^{-ik_{y} \frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{-ik_{y}y'} dy' \right) \\ &= \underbrace{Kb \text{sinc} \left(\frac{k_{y}b}{2} \right)}_{F \to \text{diffraction}} \times \underbrace{2 \cos \left(\frac{k_{y}a}{2} \right)}_{S \to \text{interference}} \end{split}$$

• Utilisation de la convolution :

$$t(y) = \pi(\frac{y}{b}) \otimes (\delta(y - \frac{a}{2}) + \delta(y + \frac{a}{2}))$$

Donc

$$\underline{A}(k_y) = K\mathfrak{F}(\pi(\frac{y}{b})) \times \mathfrak{F}(\delta(y - \frac{a}{2}) + \delta(y + \frac{a}{2})) = Kb \operatorname{sinc}\left(\frac{k_y b}{2}\right) (e^{ik_y \frac{a}{2}} + e^{-ik_y \frac{a}{2}})$$

4) Intensité

On a
$$I = I_0 \text{sinc}^2 \left(\frac{k_y b}{2}\right) \cos^2 \left(\frac{k_y a}{2}\right)$$

Pour $a \gg b$:

B) Remplacement du point source par une fente source

1) Dispositif

On prend une fente source de largeur *e* selon *y*, *h* selon *z*.

2) Cohérence spatiale

- Elargissement de la source :
- Selon *Oz*:

Les franges se superposent (il y a un décalage vertical), donc on n'aura pas de changement.

- Selon *Oy*:

Pour une répartition uniforme (c'est-à-dire un contraste nul), on a $\frac{e}{d} = \frac{i}{D}$, c'est-à-dire $e = \frac{id}{D} = \frac{\lambda d}{a}$. Si la fente est plus petite, il n'y aura pas exactement annulation des interférences.

3) Calcul de l'intensité

On fractionne la surface en éléments de surface dS = dy'dz'

• Intensité élémentaire :

Pour une source ponctuelle,

$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\varphi$$
, avec $I_1 = I_2 = I_0$

Soit
$$I = 2I_0(1 + \cos\varphi) = 2I_0\left(1 + \cos\left(\frac{2\pi a}{\lambda}\left(\frac{y}{D} + \frac{y'}{d}\right)\right)\right)$$

Donc pour un élément de surface

$$dI = 2I_0 \frac{dS}{S} \left(1 + \cos \left(\frac{2\pi a}{\lambda} \left(\frac{y}{D} + \frac{y'}{d} \right) \right) \right)$$

• Intensité résultante :

$$I = \frac{2I_0}{eh} \int_{-h/2}^{h/2} \int_{-e/2}^{e/2} dy' dz' \left(1 + \cos \left(\frac{2\pi a}{\lambda} \left(\frac{y}{D} + \frac{y'}{d} \right) \right) \right)$$

$$= \frac{2I_0}{e} \int_{-e/2}^{e/2} dy' \left(1 + \cos \left(\frac{2\pi a}{\lambda} \left(\frac{y}{D} + \frac{y'}{d} \right) \right) \right)$$

$$= \frac{2I_0}{e} \left(e + e \cos \left(\frac{2\pi ay}{\lambda D} \right) \operatorname{sinc} \left(\frac{2\pi ae}{2\lambda D} \right) \right)$$

$$= 2I_0 \left(1 + \cos \left(\frac{2\pi ay}{\lambda D} \right) \operatorname{sinc} \left(\frac{2\pi ae}{2\lambda D} \right) \right)$$

$$= 2I_0 \left(1 + \gamma \cos \left(\frac{2\pi ay}{\lambda D} \right) \right)$$

$$= 2I_0 \left(1 + \gamma \cos \left(\frac{2\pi ay}{\lambda D} \right) \right)$$

• Contraste
$$v = |\gamma| = \left| \operatorname{sinc} \left(\frac{\pi ae}{\lambda D} \right) \right|$$
:

C) Influence de la répartition spectrale de la source

1) Cas d'une raie spectrale double

Pour deux longueurs d'onde $\lambda_1, \lambda_2 = \lambda_1 + \Delta \lambda$ où $\frac{\Delta \lambda}{\lambda_1} << 1$

Exemple : le sodium $\lambda_1 = 5890 \,\text{Å}$, $\lambda_2 = 5896 \,\text{Å}$

$$\begin{pmatrix}
I_{\nu} & \xrightarrow{\Delta \nu} & I_{0,1} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
V_{2} & V_{1} & & \downarrow \\
(\frac{\Delta \lambda}{\lambda} = -\frac{\Delta \nu}{\nu})$$

• Calcul de l'intensité :

Pour la longueur d'onde λ_1 , on aura une intensité $I_1=2I_{0_1}(1+\cos\varphi)$ Pour la longueur d'onde λ_2 , $I_2=2I_{0_2}(1+\cos\varphi')$

On suppose pour simplifier que $I_{0_2} = I_{0_1} = \frac{I_0}{2}$ (faux pour le sodium)

Ainsi,
$$I_1 = I_0 \left(1 + \cos \left(\frac{2\pi ay}{\lambda_1 D} \right) \right)$$
, $I_2 = I_0 \left(1 + \cos \left(\frac{2\pi ay}{\lambda_2 D} \right) \right)$

Donc comme les sources de λ_1 et λ_2 sont incohérentes :

$$\begin{split} I &= I_1 + I_2 = 2I_0 \Bigg[1 + \cos \Bigg(\frac{\pi a y}{D} \Bigg(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \Bigg) \Bigg) \cos \Bigg(\frac{\pi a y}{D} \Bigg(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} \Bigg) \Bigg) \Bigg] \\ &= 2I_0 \Bigg(1 + \cos \Bigg(\frac{\pi a y}{\lambda D} \frac{\Delta \lambda}{\lambda} \Bigg) \cos \frac{2\pi a y}{\lambda D} \Bigg) \\ &= 2I_0 \Bigg(1 + \gamma \cos \frac{2\pi a y}{\lambda D} \Bigg) \end{split}$$

 $(\gamma \text{ dépend de } y)$

On a donc un battement spatial.

• Contraste:

$$v = |\gamma| = \left| \cos \left(\frac{\pi a y}{\lambda d} \frac{\Delta \lambda}{\lambda} \right) \right| = v(y)$$

$$v(y) = 0 \Leftrightarrow \frac{\pi a y}{\lambda^2 d} \Delta \lambda = \frac{\pi}{2} \Leftrightarrow \frac{y}{i} = \frac{\lambda}{2\Delta \lambda} \ (i = \frac{\lambda d}{a})$$

Pour le sodium :

$$\lambda \sim 6000 \,\text{Å}$$
, $\Delta \lambda \sim 6 \,\text{Å}$

Donc
$$\frac{y}{i} = 500$$

2) Influence de la largeur spectrale d'une raie

Pour une source ponctuelle, monochromatique,

$$I = 2I_0(1 + \cos \varphi)$$
, où $\varphi = \frac{2\pi ay}{\lambda D}$

Ici,
$$I_0 \rightarrow I_\nu d\nu$$

Donc
$$dI = 2I_{\nu}d\nu \left(1 + \cos\left(\frac{2\pi ay}{cD}n\nu\right)\right)$$

Puis
$$I = 2 \int_0^{+\infty} I_v (1 + \text{Re}(e^{i\frac{2\pi n v}{cD}nv})) dv = 2I_0 + 2 \text{Re} \left(\int_0^{+\infty} I_v (v) e^{i\frac{2\pi n v}{cD}nv} dv \right)$$

$$(I_0 = \int_0^{+\infty} I_v dV)$$

Et on reconnaît dans $\int_0^{+\infty} I_{\nu}(\nu) e^{i\frac{2\pi ay}{cD}n\nu} d\nu$ une transformée de Fourier.

La transformée est bijective : à partir de la figure d'interférence, on peut identifier la forme de la répartition spectrale (spectrométrie par transformée de Fourier)

3) Cas d'une répartition rectangulaire

• Intensité :

On a alors

$$I = 2I_0 \left(1 + \operatorname{sinc} \left(\frac{\pi a y}{\lambda D} \frac{\Delta v}{v_0} \right) \cos \left(\frac{2\pi a y}{\lambda D} \right) \right) = 2I_0 \left(1 + \gamma(y, \Delta v) \cos \left(\frac{2\pi a y}{\lambda D} \right) \right)$$

• Contraste:

$$v = |\gamma|$$
; le contraste s'annule en $\frac{Dv_0\lambda}{a\Delta v}$

On a à la première annulation : $\frac{dy}{D} = \frac{c}{\Delta v} = c\tau_c = L_c$ (longueur de cohérence)

Ainsi, la différence de marche est égale à la longueur de cohérence : le premier train d'onde vient de finir d'arriver quand le deuxième arrive.

4) Interférence en lumière blanche

Pour un corps noir :

• Observations sur un écran :

La lumière blanche provient d'une superposition de sources incohérentes de longueurs d'onde différentes.

Pour une onde monochromatique:

On aura donc pour des longueurs d'onde correspondant au rouge et bleu :

On a donc:

- Une frange centrale blanche
- Un peu plus loin, des franges irisées
- Encore plus loin, un blanc d'ordre supérieur :

Pour une courbe générale, par exemple de la forme :

Lorsqu'on coupe une partie du spectre, on voit le complémentaire.

Ici, on a une coupe de la forme :

Ainsi, l'œil voit blanc (les coupes sont trop resserrées), mais pas un blanc normal.

• Analyse au spectroscope :

- Ordre d'interférence en *M* :

$$p = \frac{\varphi}{2\pi} = \frac{\delta}{\lambda_0} = \frac{ay}{\lambda D}$$
, dépendant de λ .

- On observe le spectre de la lumière blanche, mais avec certaines parties plus sombres que d'autres :

(Spectre cannelé)

(1) Cannelures claires:

C'est lorsque
$$p = k, k \in \mathbb{Z}$$
, soit $\lambda = \frac{1}{k} \frac{ay}{D}$

(2) Cannelures sombres:

$$\lambda = \frac{1}{k + \frac{1}{2}} \frac{ay}{D}$$

- Exemple:

Pour $a = 10^{-4} \,\text{m}$, $D = 1 \,\text{m}$:

(1) Si y = 3.4cm, on a des cannelures brillantes pour 4.2 (4.2 et <math>8.5 correspondent à p pour le rouge et le bleu)

Ainsi, on peut avoir k = 5,6,7,8

(2) Si maintenant on déplace M progressivement à partir de O (milieu de l'écran):

En O, on voit tout le spectre.

En montant, à k fixé, quand y augmente, λ va aussi augmenter.

Si on monte progressivement à partir de O: on voit une grosse cannelure sombre apparaître dans le bleu et se déplacer vers le rouge en se resserrant peu à peu ; avant qu'elle ne soit totalement sortie, une autre apparaît dans le bleu, un peu plus resserrée,...

III Autres dispositifs interférentiels par division du front d'onde

A) Principe

A partir d'une seule source (cohérence temporelle) ponctuelle (cohérence spatiale), on forme deux sources secondaires cohérentes.

On a ainsi:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \varphi$$
$$= I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \frac{2\pi y}{i}$$

Où *i* est l'interfrange, $i = \frac{\lambda D}{a}$

$$\Delta L = \delta = \frac{nay}{D} + \Delta L_0$$
 où:

 ΔL est la différence de chemin optique,

 $\Delta L_0\,$ la différence de marche entre $SS_1\,$ et $SS_2\,$.

B) Bilentilles de Billet

On prend une lentille simple, qu'on coupe en deux sur son diamètre :

(S' est l'image de S par la lentille si elle était restée collée)

Pour construire géométriquement l'image de *S*, on peut considérer qu'un rayon passant par le centre (coupé en deux) ne sera pas dévié, et une lentille (même coupée en deux) vérifie l'aplanétisme, c'est-à-dire que les images de points dans un même plan vertical seront aussi dans un plan vertical.

Ainsi, les deux images de chaque ½ lentille sont dans un même plan :

On aura donc deux sources secondaires, qui pourront interférer dans la zone hachurée (on a ainsi des interférences non localisées)

C) Miroirs de Fresnel

On note $a=S_1S_2$. On a $\alpha=2\varepsilon$ (l'angle au centre α intercepte le même arc S_1S_2 que l'angle au sommet ε)

Ainsi, $a = S_1 S_2 \approx R \times 2\varepsilon$ (ε doit être petit pour que S_1 soit proche de S_2)

D) Miroir de Lloyd

- Il est moins pratique que les miroirs de Fresnel : pour les miroir de Fresnel, on avait $I_1 = I_2$. Ici, on a en général $I_2 < I_1$, donc on a un moins bon contraste.
- Intérêt

En O (à proximité), on devrait avoir *géométriquement* $\delta(O) = 0$, c'est-à-dire une frange claire en O.

En fait, on observe une frange sombre : il y a un déphasage à la réflexion, donc $\delta(O) = \frac{\lambda_0}{2}$. On a ainsi pu mettre en évidence expérimentalement le déphasage de π à la réflexion.

E) Bilentilles de Meslin

On ne décale pas les lentilles dans la même direction que pour les bilentilles de Billet :

1) Champ d'interférence

On obtient deux ½ cônes:

2) Forme des franges

On a, sur une frange
$$\Delta L(M) = L(SS_2) + L(S_2M) - (L(SS_1) - L(S_1M))$$

$$=$$
ct ϵ

(Pour la source 2, le rayon passe par *M* après être passé par la source, d'où le +, et pour la source 1, il passe avant, d'où le –)

 $L(SS_1)$ et $L(SS_2)$ sont indépendants du rayon (principe de Fermat)

Ainsi, pour un frange, $L(S_2M) + L(S_1M) = \text{cte}$

Dans un milieu homogène, on a alors $S_2M + S_1M = \text{cte}$, ce qui correspond à l'équation d'une ellipsoïde de foyers S_1 et S_2 (coupée en deux)

En O, les deux rayons ont parcouru le même chemin optique, donc géométriquement, $\delta(O) = 0$, c'est-à-dire qu'on devrait avoir une frange claire.

En fait, on a une frange sombre : on peut montrer que lorsque la lumière passe par un de ses foyers, il y a un déphasage de π :

Comme en O l'un des deux rayons est déjà passé par son foyer, on aura $\delta(O)=\frac{\lambda_0}{2}$, d'où la frange sombre.

On a ainsi encore mis en évidence expérimentalement le fait qu'on a un déphasage.

F) Biprisme de Fresnel

1) Dispositif

• Source à distance finie :

On peut montrer que le prisme est approximativement stigmatique, et que l'image est dans le plan de S:

 $(S_1S_2 = l.(n-1)A, l$ étant la distance de S à la pointe du prisme)

• A l'infini :

2) Calcul de la direction

On a $\alpha = i - r$, $\sin i = n \sin r$ donc $i \approx nr$

Et r = A, donc $\alpha = (n-1)A$.

3) Calcul de l'interfrange

On place deux points M, M' à une distance d'un interfrange :

On aura donc un déphasage entre M et M':

On aura $\varphi(M') - \varphi(M) = \pm 2\pi$

Donc
$$\varphi'_2 - \varphi'_1 - (\varphi_2 - \varphi_1) = \pm 2\pi$$
, c'est-à-dire $(\varphi'_2 - \varphi_2) - (\varphi'_1 - \varphi_1) = \pm 2\pi$

Donc $\vec{k}_2 \cdot \overrightarrow{MM'} - \vec{k}_1 \cdot \overrightarrow{MM'} = \pm 2\pi$ ou $(\vec{k}_2 - \vec{k}_1) \cdot \overrightarrow{MM'} = \pm 2\pi$

On a avec les notations du dessin : $2\frac{2\pi}{\lambda}\sin\alpha \times i\cos\beta = 2\pi$

Donc
$$i = \frac{\lambda}{2\sin\alpha\cos\beta}$$

Cas particuliers:

- Si
$$\beta = 0$$
, $i = \frac{\lambda}{2 \sin \alpha}$

- Si
$$\beta = \alpha$$
, $i = \frac{\lambda}{\sin 2\alpha} \approx \frac{\lambda}{2\alpha}$

