Aufgabe 1: Flohmarkt

Teilnahme-Id: 55628

Bearbeiter dieser Aufgabe: Michal Boron

April 2021

Inhaltsverzeichnis

1	Lösungsidee	2
	1.1 Formulierung des Problems	2
	1.2 Themenbezogene Arbeiten	2
	1.3 Komplexität des Problems	2
	1.5 Grenzen der Heuristik	2
	1.6 Laufzeit	2
2	Umsetzung	2
3	Beispiele	2
4_	Quellcode	_2
	• Definitionen, Modellierung des Problems	
	• (Themenbezogene Arbeiten)	
	• Komplexität	
	- Notwendigkeit einer Heuristik	
	• heuristisches Verfahren	
	- Greedy-Anlegen am Anfang	
	- heurostisches Verbesserungsverfahren	
	* welche Methode?	
	* hill climbing	
	* simuliertes Abglühen	
	• Diskussion der Ergebnisse	
	- Grenzen/Mängel der Heuristik	
	* was wird nicht erkannt? (edge-cases)	
	* was lässt sich nicht eindeutig ausschließen?	
	* getroffene Annahmen	
	– Qualität der Ergebnisse	
	* Qualität der Ergebnisse am Anfang (Greedy–Verfahren)	
	\ast Qualität bzgl. des großen Flächeninhalt, des Gesamtflächeninhalts aller Rechtecke, $\%$	
	* was und wann kann nicht verbessert werden? (Beispiel 4: 7370)	
	• Laufzeit	

Aufgabe 1: Flohmarkt Teilnahme-Id: 55628

1 Lösungsidee

1.1 Formulierung des Problems

Gegeben sei eine Strecke der Länge N und eine Zeitspanne von B bis E. Außerdem gegeben sei eine Liste von Z Voranmeldungen. Die Voranmeldugen betreffen die Vermietung eines Teils der Strecke in einer konkreten Zeitspanne. So besteht jede Voranmeldug i aus einer Strecke $0 < s_i \le N$, einem Mietbeginn $B \le b_i < E$ und einem Mietende $b_i < e_i \le E$. In diesem Problem behandelt werden Strecken in volltändigen Metern und alle Zeiten werden in vollständigen Stunden angegeben. Obwohl N auf 1000 Meter, B auf 8:00 und E auf 18:00 festgelegt sind, kann mein Programm mit beliebigen Größen umgehen.

Die Aufgabe ist ein Optimierungsproblem. Man soll so eine Teilfolge aus den m Voranmeldugen wählen, dass alle gewählten Strecken in den angebenen Zeiten vermietet werden können und die Mieteinnahmen möglichst hoch sind, wobei der Preis 1 Euro pro Meter pro Stunde beträgt.

Man kann das Problem auf folgende Weise modellieren. Wir setzen: M := E - B. Wir bilden ein Rechteck R der Größe $N \times M$. So kann man analog jede Voranmeldung i als ein kleineres Rechteck r_i der Größe $s_i \times m_i$ darstellen, wobei $m_i := e_i - b_i$.

So können wir die obige Aufgabe umformulieren: Wähle so eine Teilfolge Z' von Rechtecken aus Z, die eine Anordnung innerhalb von R bilden, sodass der Gesamtflächeninhalt aller Rechtecke in Z' maximal ist und kein Paar der Rechtecke sich nicht überdeckt. Genauer gesagt: Jedes Rechteck r_i in Z' besitzt Ecken, die den folgenden Punkten entsprechen: $(x_i, b_i), (x_i, e_i), (x_i + s_i, e_i), (x_i + s_i, b_i)$.

TODO: check, reformulate

1.2 Themenbezogene Arbeiten

1.3 Komplexität des Problems

TODO: Zeige, das Problem ist NP (überprüfbar in P)

Zeige, das Problem ist NP-schwer: Reduktion zu einem anderen NP-voll. oder NP-schweren Problem. Die Reduktionsfunktion muss in Polynomialzeit laufen.

https://stackoverflow.com/questions/4294270/how-to-prove-that-a-problem-is-np-complete

TODO: Notwendigkeit einer Heuristik

- 1.4 Inhalt: Heuristik
- 1.5 Grenzen der Heuristik
- 1.6 Laufzeit
- 2 Umsetzung
- 3 Beispiele
- 4 Quellcode