PRACTICA 3 ALMACÉNS E MINARÍA DE DATOS

Alex Baquero Domínguez

alex.baquero@rai.usc.es

Tabla de contenido

1.	Tal	end. Añade saída un novo campo de inciencia semanal por millón de	
hab	oitan	tes, agrupando por ano e país ou continente	3
2.	Apache Hop.		7
	<u>a.</u>	Número de muertes por país	7
	<u>b.</u>	Número de muertes por continente.	9
	<u>c.</u>	País con el mayor número de casos por semana.	10
	<u>d.</u>	Muertes anuales por países con más de 10 millones de población.	12

1. Talend. Añade saída un novo campo de inciencia semanal por millón de habitantes, agrupando por ano e país ou continente

Creamos a conexión da base de datos: COVID.

Creamos a table covid coas suas correspondientes columnas e as tablas onde almacenaremos a saida.

```
country varchar(40),
country_code varchar(5),
continent varchar(10),
population bigint,
indicator_ varchar(5),
weekly_count int,
year smallint,
week smallint,
rate_14_day float,
cumulative_count int,
```

source_ varchar(60),

note varchar(40)

CREATE TABLE covid(

O job de talend quedaría desta maneira:

Primeiramente, conectamonos a base de datos que creamos en PostgresSQL. Procedemos a copiar os datos do .csv a través do talend debido a que este na columna de year_week ten un formato extraño. A mellor solución é mapear a táboa e dividir esta columna en duas: year e week.

Integer.parseInt(StringHandling.LEFT(row1.year_week,4))
Integer.parseInt(StringHandling.RIGHT(row1.year_week,2))

Na inserción de datos encontramonos un problema. Algunhas columnas de tipo numérico conteñen en algunha fila o dato "NA". Para iso, poñemos o seguinte:

row1.weekly_count.equals("NA")?Integer.parseInt("0"):Integer.parseInt(row1.weekly_count)
row1.rate_14_day.equals("NA")?Float.parseFloat("0.0"):Float.parseFloat(row1.rate_14_day)
row1.cumulative_count.equals("NA")?Integer.parseInt("0"):Integer.parseInt(row1.cumulative_count)

Almacenamos os datos na base de datos a través do tDBOutput_1 e utilizamos o mesmo para redireccionar o contido as entradas tDBInput_1 e tDBInput_2.

Aquí os camiños da tarefa separanse depende de se queremos agrupalos por ano, país ou por continente.

- Agrupación por ano e país:
 - tFilterRow: Existen datos que son cases e deaths. Interesanos os que son cases.

Conditions

 tMap: Quedamonos coas columnas que son país, ano e casos semanales. Estas son as columnas que creamos na tabla covid_is_anopais

- o tAggregateRow: Facemos un group by por ano e pais
- tDBOutput: Almacenamos todos os datos na táboa creada anteriormente "covid is anopais"
- Agrupación por continente.
 - tFilterRow: Quitamos os datos que conteñen o dato "NA" pois non nos interesan.

Conditions

 tMap: Quedamonos cos columnas continentes, ano, semana, casos semanales e añadimos unha nova saída: incidencias. Para calculalo, implementamos o seguinte código:

((float) row6.weekly_count * 1000000)/(float)row6.population

- o tAggregateRow: Facemos un group by por continente
- tDBOutput: Almacenamos todos os datos na tabla creada anteriormente "covid_is_continente"

Toda esta información está gardada en PostgreSQL, entonces facemos un commit na base de datos.

2. Apache Hop.

a. Número de muertes por país

Importamos os datos da base de datos do postgresSQL, seleccionando as columnas que vamos a utilizar a través do table input. Despois, collemos os datos que corresponden a mortes, é decir, os que teñen un "death" (concretamente "d" na nosa base de datos):

Finalmente, agrupamos a consulta por países e sumamos as mortes semanales a través "group by":

O resultado é o seguinte:

	А	В	С	D
1	country	mortes		
2	Afghanistan	7684		
3	Africa (total)	251517		
4	Albania	3443		
5	Algeria	6801		
6	America (tot	2733254		
7	American Sa	31		
8	Andorra	150		
9	Angola	1866		
10	Anguilla	8		
11	Antigua And	139		
12	Argentina	128679		
13	Armenia	8545		
14	Aruba	218		
15	Asia (total)	1292728		
16	Australia	8837		
17	Austria	16245		
18	Azerbaijan	9539		
19	Bahamas	812		
20	Bahrain	1488		
21	Bangladesh	29117		
22	Barbados	462		
23	Belarus	6753		

b. Número de muertes por continente.

Importamos os datos da base de datos do postgresSQL seleccionando as columnas que vamos a utilizar a través do table input. Despois, collemos os datos que corresponden a mortes, é decir, os que teñen un "death" (concretamente "d" na nosa base de datos) e os que non teñen un código que é igual a NA (eliminamos os países que incluyen a todo un continente):

```
The condition:

indicator_ = [d]

AND

NOT ( country_code CONTAINS [NA] )
```

Usamos un "group by" para agrupar a consulta por continente e sumar as mortes semanais e utilizamos un "text file output" para gardar todo nun .csv de saida.

O resultado seria o seguinte:

c. País con el mayor número de casos por semana.

Collese a información do postgresSQL a través da Table Input e filtramos os datos de tal maneira que non haxa deaths e os a columna country non conteña un país (total).

```
indicator_ = [d]

AND

NOT ( country CONTAINS [(total)] )
```

Organizamos a saída para que teñamos os primeiros países con maior casos en cada semana poñendo a year e week de forma ascendente e a weekly_count de forma descendente. Colocamos un memory group by para agrupar cada fila pola sua data. Mandamos ao seguinte sort o country e weekly_count xa que a primeira fila é o máximo grazas ao sort anterior.

Finalmente, imprimese nun arquivo .csv:

```
maiorCasosSemana.csv: caderno de notas
Ficheiro Editar Formato Ver Axuda
year; week; weekly_count; country
2020;01;59;China
2020;02;12;Denmark
2020;03;176;China
2020;04;2540;China
2020;05;14436;China
2020;06;22995;China
2020;07;30412;China
2020;08;6616;China
2020;09;3450;South Korea
2020;10;8241;Italy
2020;11;21095;Italy
2020;12;36642;Italy
2020;13;107819;United States Of America
2020;14;194610;United States Of America
2020;15;219936;United States Of America
2020;16;202116;United States Of America
```

d. Muertes anuales por países con más de 10 millones de población.

O esquema do pipeline é moi similar aos todos os anteriores. Primeiro seleccionamos as columnas das tablas que necesitamos a través do table input:

SELECT country, population, indicator_, weekly_count, year FROM "public".covid_talend

No filter rows, poñemos da mesma maneira que se mostra nos anteriores apartados, que o indicator_ sexa igual a d e que population sexa maior que 10 millons.

No group by, agrupamos por país e ano realizando unha operación que sume todos os datos presentes na columna weekly_count. Finalmente almacenase nun arquivo .csv

