Fábio C. C. Meneghetti

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

28 de maio de 2021



1 Motivação

Motivação

•000

- Geometria Riemanniana
- Variedades estatísticas
- Modelos estatísticos

Motivação

0000

Distribuição normal (gaussiana): 
$$f_{\mu,\sigma} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\|x-\mu\|^2}{2\sigma^2}\right)$$
.



Motivação oo∙o



Motivação

0000

Definir uma estrutura de variedade Riemanniana em  $M = \left\{ p_{\xi} : \xi \in \Theta \right\}$  nos permite:

- Entender distâncias entre distribuições como geodésicas;
- Entender o quão sensível  $p_{\xi}$  é aos parâmetros  $\xi$ ;
- Entender como fazer otimização sobre M, o que é essencial para decidir qual distribuição é mais apropriada para um dado problema (inferência estatística).

- Motivação
- Geometria Riemanniana
- Variedades estatísticas

Modelos estatísticos

6/33

### Variedade Riemanniana

Uma variedade Riemanniana é uma variedade diferenciável M munida de um produto interno  $g_p = \langle \cdot, \cdot \rangle_p$  suave em  $T_pM$ .

#### Variedade Riemanniana

Uma variedade Riemanniana é uma variedade diferenciável M munida de um produto interno  $g_p = \langle \cdot, \cdot \rangle_p$  suave em  $T_pM$ .

Denote por  $\mathfrak{X}(M)$  o conjunto de campos de vetores suaves  $X \colon M \to TM$ .

#### Definição 2.1

Uma conexão é uma função  $\nabla \colon \mathfrak{X}(M) imes \mathfrak{X}(M) o \mathfrak{X}(M)$  que satisfaz:

- 2  $\nabla_X fY = X(f)Y + f\nabla_X Y$  (regra de Leibniz na 2ª entrada)

#### Variedade Riemanniana

Uma variedade Riemanniana é uma variedade diferenciável M munida de um produto interno  $g_p = \langle \cdot, \cdot \rangle_p$  suave em  $T_pM$ .

Denote por  $\mathfrak{X}(M)$  o conjunto de campos de vetores suaves  $X \colon M \to TM$ .

#### Definição 2.1

Uma conexão é uma função  $\nabla \colon \mathfrak{X}(M) imes \mathfrak{X}(M) o \mathfrak{X}(M)$  que satisfaz:

- 2  $\nabla_X f Y = X(f) Y + f \nabla_X Y$  (regra de Leibniz na 2ª entrada)

Símbolos de Christoffel (locais):  $\nabla_{\partial_i}\partial_j = \sum_k \Gamma^k_{ij}\partial_k$ 



- Um campo X ao longo de  $\gamma$  é parelelo se  $\nabla_{\dot{\gamma}} X \equiv 0$ .
- Uma geodésica é uma curva autoparalela  $(\nabla_{\dot{\gamma}}\dot{\gamma}\equiv 0)$ .

- Um campo X ao longo de  $\gamma$  é parelelo se  $\nabla_{\dot{\gamma}} X \equiv 0$ .
- Uma geodésica é uma curva autoparalela  $(\nabla_{\dot{\gamma}}\dot{\gamma}\equiv 0)$ .

## Teorema 2.2 (Conexão de Levi-Civita)

Seja (M,g) variedade Riemanniana. Então existe única conexão  $^{\mathrm{LC}}\nabla$  que é:

- $\textbf{0} \ \, \mathsf{Compativel} \ \, \mathsf{com} \ \, \mathsf{a} \ \, \mathsf{m\'etrica} \colon \, X\langle Y,Z\rangle = \langle {}^{\mathsf{LC}}\nabla_XY,Z\rangle + \langle Y,{}^{\mathsf{LC}}\nabla_XZ\rangle.$
- 2 Livre de torção:  $T(X,Y) = {}^{\mathsf{LC}}\nabla_X Y {}^{\mathsf{LC}}\nabla_Y X [X,Y] = 0.$



- Motivação
- Geometria Riemanniana
- Variedades estatísticas

Modelos estatísticos

## Conexões duais

Consideremos aqui conexões sempre livres de torção, mas não necessariamente de Levi-Civita.

### Conexões duais

Consideremos aqui conexões sempre livres de torção, mas não necessariamente de Levi-Civita.

#### Definição 3.1

Dada uma conexão  $\nabla$ , dizemos que uma outra conexão  $\nabla^*$  é dual (ou conjugada) com respeito à métrica q se

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X^* Z \rangle$$



## Propriedades:

1 O dual é único.

#### **Propriedades:**

- 1 O dual é único.
- $(\mathbf{C} \nabla)^* = \mathbf{C} \nabla \nabla$  (Conexão de Levi-Civita é autodual).

#### **Propriedades:**

- O dual é único.
- 2  $({}^{LC}\nabla)^* = {}^{LC}\nabla$  (Conexão de Levi-Civita é autodual).
- 3  $\frac{1}{2}(\nabla + \nabla^*) = {}^{LC}\nabla$  para qualquer par de conexões duais.

Variedades estatísticas

0000000

- O dual é único.
- 2  $({}^{LC}\nabla)^* = {}^{LC}\nabla$  (Conexão de Levi-Civita é autodual).
- 3  $\frac{1}{2} (\nabla + \nabla^*) = {}^{\text{LC}} \nabla$  para qualquer par de conexões duais.
- 4 Transporte paralelo dual preserva a métrica:

$$\langle v, w \rangle_{\gamma(0)} = \left\langle \prod_{\gamma}^{\nabla} v, \prod_{\gamma}^{\nabla^*} w \right\rangle_{\gamma(1)}$$

### Teorema 3.2 (Fundamental de Geometria da Informação)

 $(M, g, \nabla)$  tem curvatura contante  $\kappa \iff (M, g, \nabla^*)$  tem curvatura contante  $\kappa$ .

• Se as  $\kappa = 0$ , dizemos que a variedade é **dualmente plana** (isso vale em particular quando existe um sistema de coordenadas onde  $\Gamma_{i,i}^k$  se anulam).

Modelos estatísticos

 $(M,g,\nabla)$  tem curvatura contante  $\kappa\iff (M,g,\nabla^*)$  tem curvatura contante  $\kappa$ .

• Se as  $\kappa = 0$ , dizemos que a variedade é dualmente plana (isso vale em particular quando existe um sistema de coordenadas onde  $\Gamma_{i,i}^k$  se anulam).

#### Definição 3.3

A tripla  $(q, \nabla, \nabla^*)$  é chamada de **estrutura dualística** para a variedade M.

# Construção equivalente

• Frequentemente  $(M, g, \nabla, \nabla^*)$  é chamada de *variedade estatística*.

<sup>&</sup>lt;sup>1</sup>Steffen L. Lauritzen. "Chapter 4: Statistical Manifolds". Em: Institute of Mathematical Statistics Lecture Notes - Monograph Series Differential geometry in statistical inference (1987), pp. 163–216. DOI: 10.1214/lnms/1215467061.

- Frequentemente  $(M, g, \nabla, \nabla^*)$  é chamada de *variedade estatística*.
- Mas Lauritzen $^1$  define **variedade estatística** como (M,g,C), onde C é um 3-tensor covariante simétrico, isto é,

$$C(X, Y, Z) = C(Y, X, Z) = C(Y, Z, X)$$

<sup>&</sup>lt;sup>1</sup>Steffen L. Lauritzen. "Chapter 4: Statistical Manifolds". Em: Institute of Mathematical Statistics Lecture Notes - Monograph Series Differential geometry in statistical inference (1987), pp. 163–216. DOI: 10.1214/lnms/1245467061.

# Construção equivalente

- Frequentemente  $(M, g, \nabla, \nabla^*)$  é chamada de *variedade estatística*.
- Mas Lauritzen $^1$  define **variedade estatística** como (M,g,C), onde C é um 3-tensor covariante simétrico, isto é,

$$C(X, Y, Z) = C(Y, X, Z) = C(Y, Z, X)$$

- As definições são consideradas equivalentes:
  - $C(X,Y,Z) = \langle \nabla_X Y \nabla_X^* Y, Z \rangle;$

<sup>&</sup>lt;sup>1</sup>Steffen L. Lauritzen. "Chapter 4: Statistical Manifolds". Em: Institute of Mathematical Statistics Lecture Notes - Monograph Series Differential geometry in statistical inference (1987), pp. 163–216. DOI: 10.1214/lnms/1215467061. \*\* \*\*

- Frequentemente  $(M, g, \nabla, \nabla^*)$  é chamada de *variedade estatística*.
- Mas Lauritzen<sup>1</sup> define **variedade estatística** como (M,g,C), onde C é um 3-tensor covariante simétrico, isto é,

$$C(X, Y, Z) = C(Y, X, Z) = C(Y, Z, X)$$

- As definições são consideradas equivalentes:
  - $C(X,Y,Z) = \langle \nabla_X Y \nabla_X^* Y, Z \rangle;$
  - A partir de C construímos uma estrutura dualística  $\left(\nabla^{\alpha},\nabla^{-\alpha}\right)$ ,  $\alpha\in\mathbb{R}$ :

$$\langle \nabla_X^\alpha Y, Z \rangle \coloneqq \langle {}^{\operatorname{LC}} \nabla_X Y, Z \rangle - \tfrac{\alpha}{2} C(X,Y,Z).$$

<sup>&</sup>lt;sup>1</sup>Steffen L. Lauritzen. "Chapter 4: Statistical Manifolds". Em: Institute of Mathematical Statistics Lecture Notes - Monograph Series Differential geometry in statistical inference (1987), pp. 163–216. DOI: 10.1214/lnms/1245467061.

# Variedades estatísticas a partir de divergências

Notação: 
$$\partial_{i,\cdot}f(x,y) = \frac{\partial}{\partial x_i}f(x,y)$$
.

# Variedades estatísticas a partir de divergências

Notação:  $\partial_{i,\cdot}f(x,y) = \frac{\partial}{\partial x_i}f(x,y)$ .

#### Definição 3.4

Uma **divergência**  $D\colon M\times M\to [0,\infty)$  com respeito a uma carta  $\varphi$  é uma função  $C^3$  satisfazendo:  $(p,q\in \mathrm{dom}\varphi)$ 

- $2 \partial_{i,\cdot} D(p:q)\big|_{p=q} = \partial_{\cdot,j} D(p:q)\big|_{p=q} = 0 \text{ para todo } i,j,$
- $\mathbf{3} \partial_{\cdot,i}\partial_{\cdot,j}D(p:q)\big|_{p=q}$  é positiva-definida.

# Variedades estatísticas a partir de divergências

Notação:  $\partial_{i,\cdot}f(x,y) = \frac{\partial}{\partial x_i}f(x,y)$ .

#### Definição 3.4

Uma **divergência**  $D\colon M\times M\to [0,\infty)$  com respeito a uma carta  $\varphi$  é uma função  $C^3$  satisfazendo:  $(p,q\in \mathrm{dom}\varphi)$ 

- $2 \partial_{i,\cdot} D(p:q)\big|_{p=q} = \partial_{\cdot,j} D(p:q)\big|_{p=q} = 0 \text{ para todo } i,j,$
- $\mathbf{3} \partial_{\cdot,i}\partial_{\cdot,j}D(p:q)|_{p=q}$  é positiva-definida.
- Divergência dual:  $D^*(p:q) := D(q:p)$ .



Toda divergência dá origem a uma estrutura dual:

• 
$${}^Dg_{ij} \coloneqq \partial_{i,j}D(p:q)\big|_{p=q} = {}^{D^*}g_{ij},$$

Toda divergência dá origem a uma estrutura dual:

- ${}^{D}g_{ij} := \partial_{i,j}D(p:q)|_{p=q} = {}^{D^*}g_{ij},$
- ${}^D\Gamma^k_{ij}=\left.\partial_{ij,k}D(p:q)\right|_{p=q}$  (coordenadas locais da conexão).

Variedades estatísticas

00000000

Toda divergência dá origem a uma estrutura dual:

- ${}^{D}g_{ij} := \partial_{i,j}D(p:q)|_{p=q} = {}^{D^*}g_{ij},$
- ${}^D\Gamma^k_{ij}=\left.\partial_{ij,k}D(p:q)\right|_{p=q}$  (coordenadas locais da conexão).

### Propositção 3.5

Se  ${}^D\nabla$  é a conexão definida por  ${}^D\Gamma^k_{ij}$ , temos:

$$D^*\nabla = (D\nabla)^*$$

Toda variedade estatística vem de uma divergência.<sup>2</sup>

 $<sup>^2</sup>$ Takao Matumoto. "Any statistical manifold has a contrast function — on the  $C^3$ -functions taking the minimum at the diagonal of the product manifold". Em: Hiroshima Mathematical Journal 23.2 (1993), pp. 327–332. DOI:  $10.32917/\mathrm{hmj}/1206128255$ .

- Motivação
- 2 Geometria Riemanniana
- S Variedades estatísticas

4 Modelos estatísticos

### Modelos estatísticos

Um modelo estatístico é uma família  $\mathcal{M}=\left\{p_{\xi}\right\}_{\xi\in\Theta}$ , onde  $\Theta$  é aberto de  $\mathbb{R}^n$ , e cada  $p_{\xi}$  é uma função densidade de probabilidade.

• Podemos tomar  $p_{\xi}$  como sendo funções  $\mathbb{R}^n \to \mathbb{R}^+$  contínuas, integráveis com  $\int_{\mathbb{R}^n} p_{\xi} \, \mathrm{d}x = 1$ .



Tome 
$$\mathcal{M} = \left\{ p_{\mu,\sigma} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\|x-\mu\|^2}{2\sigma^2}\right) \,\middle|\, (\mu,\sigma) \in \mathbb{R} \times \mathbb{R}^+ \right\}$$
 a família das distribuições normals univariadas.





# Métrica da informação de Fisher

A métrica Riemanniana "padrão" em modelos estatísticos é a **métrica da informação de Fisher**:

$$g_{ij} = \int_{\mathbb{R}^n} p_{\xi}(x) \frac{\partial \log(p_{\xi}(x))}{\partial \xi_i} \frac{\partial \log(p_{\xi}(x))}{\partial \xi_j} dx$$
$$= {}^{3} - \int_{\mathbb{R}^n} p_{\xi}(x) \frac{\partial^{2} \log(p_{\xi}(x))}{\partial \xi_i \partial \xi_j} dx$$



<sup>&</sup>lt;sup>3</sup>Sob algumas condições de regularidade.

<sup>&</sup>lt;sup>3</sup>Sob algumas condições de regularidade.

# Métrica da informação de Fisher

A métrica Riemanniana "padrão" em modelos estatísticos é a métrica da informação de Fisher:

$$g_{ij} = \int_{\mathbb{R}^n} p_{\xi}(x) \frac{\partial \log(p_{\xi}(x))}{\partial \xi_i} \frac{\partial \log(p_{\xi}(x))}{\partial \xi_j} dx$$
$$= {}^{3} - \int_{\mathbb{R}^n} p_{\xi}(x) \frac{\partial^{2} \log(p_{\xi}(x))}{\partial \xi_i \partial \xi_j} dx$$

**Obs:** Podemos escrever também  $g_{ij} = \mathbb{E}_{p_{\varepsilon}}[\partial_i \ell_{\xi} \partial_j \ell_{\xi}]$ , onde  $\ell_{\mathcal{E}}(x) = \log(p_{\mathcal{E}}(x))$  é a função log-verossimilhança.

<sup>&</sup>lt;sup>3</sup>Sob algumas condições de regularidade.

<sup>&</sup>lt;sup>3</sup>Sob algumas condições de regularidade.

## Teorema de Chentsov

#### Teorema 4.2

A métrica de Fisher é a **única** métrica Riemanniana (a menos de constante) invariante por <u>estatísticas suficientes</u>.<sup>a</sup>

<sup>a</sup>Nihat Ay et al. "Information geometry and sufficient statistics". Em: *Probability Theory and Related Fields* 162.1-2 (jun. de 2014), pp. 327–364. ISSN: 1432-2064. DOI: 10.1007/s00440-014-0574-8.



Modelos estatísticos

0000000000000000

#### Teorema 4.2

A métrica de Fisher é a **única** métrica Riemanniana (a menos de constante) invariante por estatísticas suficientes.<sup>a</sup>

<sup>a</sup>Nihat Ay et al. "Information geometry and sufficient statistics". Em: Probability Theory and Related Fields 162.1-2 (jun. de 2014), pp. 327–364. ISSN: 1432-2064, DOI: 10.1007/s00440-014-0574-8.

 Informalmente, uma estatística suficiente é uma mudança do espaço de parâmetros  $\xi$  sem perda de informações sobre a variável aleatória correspondente a  $p_{\mathcal{E}}$ .



## Entropia relativa

A métrica de Fisher define uma variedade estatística através da **divergência de Kullback-Leibler** (ou *entropia relativa*), uma das principais divergências em teoria da informação:

$$D_{\mathsf{KL}}(p:q) = \int_{\mathbb{R}^n} p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}x$$

Fazendo a construção mostrada anteriormente, obtemos com a entropia relativa, obtemos uma variedade estatística **dualmente plana**:

• 
$$g_{ij} = {}^{D_{\mathsf{KL}}}g_{ij} = \left.\partial_{i,j}D_{\mathsf{KL}}(p_{\xi}:p_{\xi'})\right|_{\xi=\xi'}$$

$$\bullet \ ^{D_{\mathrm{KL}}}\Gamma^k_{ij} = 0$$

$$\bullet \ ^{D_{\mathrm{KL}}^*} \Gamma_{ij}^k = 0$$

## Generalidade

- Em 2005, Hông Vân Lê mostrou que toda variedade estatística abstrata pode ser descrita como uma família de distribuições de probabilidade com a métrica de Fisher<sup>4</sup>.
- A demonstração usa resultados importantes de geometria, como o teorema da imersão de Nash.

<sup>&</sup>lt;sup>4</sup>Hông Vân Lê. "Statistical manifolds are statistical models". Em: *Journal of Geometry* (2006). DOI: 10.1007/s00022-005-0030-0.

## Métrica de Fisher-Rao

• A métrica de Fisher induz uma métrica sobre o modelo  $\mathcal{M}$ , dada pelas geodésicas minimizantes.

## Métrica de Fisher-Rao

- A métrica de Fisher induz uma métrica sobre o modelo  $\mathcal{M}$ , dada pelas geodésicas minimizantes.
- Uma geodésica pode ser descrita pelas equações de Euler-Lagrange, como uma função  $\gamma\colon [0,1] \to \mathcal{M}$  que satisfaz:

$$\frac{\mathrm{d}^2 x_k}{\mathrm{d}t^2} \sum_{i,j} \Gamma_{ij}^k \frac{\mathrm{d}x_i}{\mathrm{d}t} \frac{\mathrm{d}x_j}{\mathrm{d}t} = 0.$$

## Métrica de Fisher-Rao

- A métrica de Fisher induz uma métrica sobre o modelo  $\mathcal{M}$ , dada pelas geodésicas minimizantes.
- Uma geodésica pode ser descrita pelas equações de Euler-Lagrange, como uma função  $\gamma\colon [0,1] \to \mathcal{M}$  que satisfaz:

$$\frac{\mathrm{d}^2 x_k}{\mathrm{d}t^2} \sum_{i,j} \Gamma_{ij}^k \frac{\mathrm{d}x_i}{\mathrm{d}t} \frac{\mathrm{d}x_j}{\mathrm{d}t} = 0.$$

ullet A distância de Fisher-Rao é a métrica geodésica em  ${\mathcal M}$ , dada por

$$d_{\mathsf{F}}(p_{\xi}, p_{\theta}) = \inf_{\gamma} \int_0^1 \|\gamma'(t)\| \, \mathrm{d}t,$$

onde 
$$\gamma(0) = p_{\mathcal{E}}, \ \gamma(1) = p_{\theta}.$$



#### Exemplo 4.3

Tomando  ${\mathcal M}$  do exemplo anterior, podemos calcular $^a$  a matriz de Fisher como

$$[g_{ij}(\mu,\theta)] = \begin{bmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{2}{\sigma^2} \end{bmatrix}$$

 A geometria definida por esta métrica coincide com a geometria hiperbólica sobre o meio-plano de Poincaré<sup>b</sup>.

<sup>b</sup>Com uma pequena deformação por conta do termo 2 na última entrada.



<sup>&</sup>lt;sup>a</sup>Sueli I.R. Costa, Sandra A. Santos e João E. Strapasson. "Fisher information distance: A geometrical reading". Em: *Discrete Applied Mathematics* 197 (2015), pp. 59–69. ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2014.10.004.

#### Exemplo 4.3

• Nesta geometria, as geodésicas são dadas por retas verticais e por meias-elipses de excentricidade  $1/\sqrt{2}$ .



Figura: Geodésicas no meio-plano.

Mais detalhes no artigo [5].





**Figure 6.** Dual Pythagorean theorems in a dually flat space.



# Método do gradiente Riemanniano

De forma bem simplificada, podemos tratar o problema de aprendizado de máquina com deep learning da seguinte forma:

• Temos um conjunto de treinamento  $\{(x_i, y_i)\}_{i=1}^m$ ,  $x_i \in \mathbb{R}^n$ ,  $y_i \in \{0, 1\};$ 

De forma bem simplificada, podemos tratar o problema de aprendizado de máquina com *deep learning* da seguinte forma:

- Temos um conjunto de treinamento  $\{(x_i,y_i)\}_{i=1}^m$ ,  $x_i \in \mathbb{R}^n$ ,  $y_i \in \{0,1\}$ ;
- Temos uma família de funções parametrizadas  $\left\{f_{\xi}\right\}_{\xi\in\Omega}$ , com  $f_{\mathcal{E}}\colon\mathbb{R}^n\to\mathbb{R};$

# Método do gradiente Riemanniano

De forma bem simplificada, podemos tratar o problema de aprendizado de máquina com *deep learning* da seguinte forma:

- Temos um conjunto de treinamento  $\{(x_i,y_i)\}_{i=1}^m$ ,  $x_i \in \mathbb{R}^n$ ,  $y_i \in \{0,1\}$ ;
- Temos uma família de funções parametrizadas  $\left\{f_{\xi}\right\}_{\xi\in\Omega}$ , com  $f_{\mathcal{E}}\colon\mathbb{R}^n\to\mathbb{R};$
- Queremos encontrar o  $\bar{\xi}$  tal que  $f_{\bar{\xi}}$  melhor se aproxime do conjunto de treinamento



 Para isso escolhe-se uma medida de dissimilaridade, chamada função **perda**  $\mathcal{L}$ . O problema do aprendizado consiste em encontrar  $\xi$  que minimize

$$\mathcal{L}_{\xi} = \mathcal{L}\left(f_{\xi}(\mathbf{x}), \mathbf{y}\right), \quad \mathbf{x} = [x_i], \ \mathbf{y} = [y_i]$$

Por exemplo, podemos ter  $\mathcal{L}(p,q) = D_{\mathsf{KL}}(p,q) = \sum_i p_i \log \frac{p_i}{q_i}$ 

• Para isso escolhe-se uma medida de dissimilaridade, chamada **função perda**  $\mathcal{L}$ . O problema do aprendizado consiste em encontrar  $\xi$  que minimize

$$\mathcal{L}_{\xi} = \mathcal{L}\left(f_{\xi}(\mathbf{x}), \mathbf{y}\right), \quad \mathbf{x} = [x_i], \ \mathbf{y} = [y_i]$$

Por exemplo, podemos ter  $\mathcal{L}(p,q) = D_{\mathsf{KL}}(p,q) = \sum_i p_i \log \frac{p_i}{q_i}$ 

• Isso é quase sempre feito atreavés do método do gradiente:

$$\xi_{n+1} = \xi_n - \alpha \cdot \nabla_{\xi} \mathcal{L}_{\xi_n}$$

 O aprendizado de máquina, portanto, é um problema de otimização na variedade estatística do espaço de parâmetros.

- O aprendizado de máquina, portanto, é um problema de otimização na variedade estatística do espaço de parâmetros.
- Numa variedade Riemanniana, o gradiente Riemanniano  $\nabla_M \mathcal{L}_{\xi}$  é definido como o vetor v que minimiza

$$\nabla_{v}\mathcal{L}(p) = \lim_{h \to 0} \frac{\mathcal{L}(\exp_{p} hv) - \mathcal{L}(p)}{h}.$$

- O aprendizado de máquina, portanto, é um problema de otimização na variedade estatística do espaço de parâmetros.
- Numa variedade Riemanniana, o gradiente Riemanniano  $\nabla_M \mathcal{L}_{\mathcal{E}}$  é definido como o vetor v que minimiza

$$\nabla_v \mathcal{L}(p) = \lim_{h \to 0} \frac{\mathcal{L}(\exp_p hv) - \mathcal{L}(p)}{h}.$$

• Se utilizamos a aproximação  $\nabla_M \mathcal{L}_{\xi} \approx [g_{ij}(\xi)]^{-1} \nabla_{\xi} \mathcal{L}_{\xi}$  teremos o método do gradiente Riemanniano:

$$\xi_{n+1} = \xi_n - \alpha [g_{ij}(\xi)]^{-1} \nabla_{\xi} \mathcal{L}_{\xi}.$$



- No artigo<sup>5</sup>, argumenta-se que, no espaço de parâmetros de redes neurais, o gradiente Riemanniano é o gradiente que realmente representa a direção de máxima descida.
- Ele é mostrado ser estatisticamente eficiente, e apresenta outras vantagens como a redução do "efeito platô"

<sup>&</sup>lt;sup>5</sup>Shun-ichi Amari. "Natural Gradient Works Efficiently in Learning". Em: Neural Computation 10.2 (1998), pp. 251–276. DOI: 10.1162/089976698300917746.

- Shun'ichi Amari. *Information Geometry and Its Applications*. Springer, 2016.
- N. Ay, J. Jost, H.V. Lê e L. Schwachhöfer. *Information Geometry*. A Series of Modern Surveys in Mathematics. Springer International Publishing, 2017. ISBN: 9783319564784.
- Sueli I.R. Costa, Sandra A. Santos e João E. Strapasson. "Fisher information distance: A geometrical reading". Em: *Discrete Applied Mathematics* 197 (2015), pp. 59–69. ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2014.10.004.
  - Frank Nielsen. "An Elementary Introduction to Information Geometry". Em: *Entropy* 22.10 (2020), p. 1100. DOI: 10.3390/e22101100.