Intelligent Agents

Chapter 2

Announcements

None

Lecture outline

- The structure of agents
 - Agent programs
 - Simple reflex agents
 - Model-based agents
 - Goal-based agents
 - Utility based agents
 - Learning agents

Agent programs

- Behavior of agent is discussed first
- Agent program takes current percept and produces action for actuators
- Agent = Architecture + Program
- Figure 2.7 shows Table-Driven-Agent
- Unfortunately, it does not work! :-(
 - Let *P* be the set of possible percepts
 - Let *T* be the lifetime of the agent
 - The table will contain the following number of entries: T

Agent programs

- Example: automated taxi
 - Table has 10^{600'000'000'000} entries for one hour (± 70 MB/s, 30 fps, 1080 x 720 pixels, 25 bits)
 - Chess > 10¹⁵⁰, number of atoms in observable universe < 10⁸⁰
- Table is way too big!
 - No physical agent has enough storage space
 - Designer won't have enough time to create the table
 - No agent can learn all the correct table entries from experience

Agent programs

- Table-Driven-Agent implements agent function
- Challenge for Artificial Intelligence
 - Create rational behavior from a relative small amount of code rather than a large number of table entries
 - We believe it is possible!
- Discuss four basic types of agent programs
- Convert these programs to agents that can learn

Simple reflex agents

Actions based on current percept

- Vacuum agent program small (4 possibilities) compared to table (4^T possibilities)
- Taxi example

Simple reflex agents

Simple reflex agents

 Reflex agents simple, but with limited intelligence

- Infinite loops occur frequently
- Solution: randomized actions

Model-based reflex agents

- Handle partial observability by keeping track of world which is not observable
- Maintain an internal state that depends on the percept sequence
- Update internal state with two types of knowledge
 - How the world develops independent of the agent
 - How the agent's actions influence the world
- We also need some information about how the state of the world is reflected in the agent's percepts

Model-based reflex agents

Goal-based agents

Goal-based agents

Utility-based agents

- Goals not enough
- Better option is utility
- Utility function
- Improvement on goalbased agents
 - If goals compete with each other
 - If many goals exist, but no one can be obtained with certainty

Utility-based agents

Agents that learn

- Consider the origin of agents
- Turing suggested the building of machines capable of learning in 1950
- Agents that learn currently the preferred method
- Advantage
 - Start operating initially in unknown environment and gets more competent

Agents that learn

Assignment

- Recess: From 29 March to 1 April
- Study: Chapter 2.4 (The Structure of Agents) of the AIMA e-book
- Self-study: Chapter 2 (Fundamental concepts) of the Grokking Deep Learning e-book
- 8 April: Theory Quiz 3: Chapter 2.4 (The Structure of Agents) of the AIMA e-book
- 8 April: Practical Quiz 2: Chapter 2
 (Fundamental concepts) of the Grokking
 Deep Learning e-book