Kocka je bačena (jer je loše izlakirana)

$$S_4 \cong \langle s_1, s_2, s_3 \mid s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^2 = (s_2 s_3)^3 = (s_1 s_3)^3 = e \rangle$$

Ideja

Svaki dan farbamo 3, a ne 1 stranu!

Prostranstva

$$u, v \in V$$
 $\alpha, \beta \in \mathbb{K}$

$$\alpha, \beta \in \mathbb{K}$$

$$\rightarrow 1 \circ u = u$$

$$\rightarrow \alpha \circ (u \oplus v) = \alpha \circ u \oplus \alpha \circ v$$

$$\rightarrow (\alpha \oplus \beta) \circ u = \alpha \circ u \oplus \beta \circ u$$

$$\rightarrow \alpha \circ (\beta \circ u) = (\alpha \cdot \beta) \circ u$$

$$\rightarrow 0\vec{u} = \vec{0}$$

$$\rightarrow \alpha \vec{0} = \vec{0}$$

$$\rightarrow \alpha \vec{u} = \vec{0} \implies \alpha = 0 \lor \vec{u} = \vec{0}$$

$$\rightarrow (-1)\vec{u} = \underline{\vec{u}}$$

$$\rightarrow (-\alpha)\vec{u} = \underline{\alpha}\vec{u}$$

Kombinacije

- $\rightarrow \mathcal{L}(M) = \{v \in V \mid v \text{ je linearna kombinacija vektora iz } M\}$
- $\rightarrow dimV = |B|$, gd<mark>e je B neki ba</mark>zni skup
- $\rightarrow V \cong \mathbb{K}^{dimV}$

Zašto je \mathbb{R}^3 trodimenzionalan?

Perspektiva

 $\mathsf{Zvu\check{c}nik} \cong A(t) * p(x,y,z,t)$

Ideja

Funkcije su vektori!

3Blue1Brown

Linearna preslikavanja

Preslikavanje $f: \mathbb{V} \to \mathbb{W}$ je linearno ako važi:

$$f(\alpha \vec{x} + \beta \vec{y}) = \alpha f(\vec{x}) + \beta f(\vec{y})$$

Tada je:

$$f(\vec{0}_{\mathbb{V}}) = \vec{0}_{\mathbb{W}}$$

Prostor svih linearnih preslikavanja $f: \mathbb{V} \to \mathbb{W}$ je vektorski prostor dimenzije $dim\mathbb{V} \cdot dim\mathbb{W}$

Magični kvadrati

Sabiranje, množenje skalarom?

Fibonačijevi nizovi

Koliko dimenzionalan je ovaj prostor?

Igrice

Rotacije i izduživanja su linearne transformacije. Translacije 3D prostora su linearne transformacije 4D prostora. Projekcije 3D prostora na 2D ekran su linearne transformacije.

Svadba

Mnogo ljudi došlo je na svadbu, zapravo ispostavilo se da su došli svi, odnosno na kraju nije više bilo mesta za sedenje. Međutim, niko nije bio obavešten o rasporedu sedenja. Koja je verovatnoća da niko nije seo na predviđeno mesto? (rešenje e^{-1})

Hvala na pažnji!

