Economics
of Human
Capital

Philipp Eisenhauer

Material available on

Economics of Human Capital

Dynamic model of human capital accumulation

Philipp Eisenhauer

Introduction

We build on the following seminal paper:

► Keane, M. P., & Wolpin, K. I. (1997). The career decisions of young men. *Journal of Political Economy*, 105(3), 473–522.

Roadmap

- ► Economic Model
- ► Mathematical Model
- Data
- Computational Model
- Results

Economic Model

Decision Problem

t = 1, ..., T decision period

 $s \in S$ state

 $a \in A$ action

 $d_t(s)$ decision rule

 $r_t(s, a)$ immediate reward

Timing of Events

$$\pi=(d_1,\ldots,d_T)$$
 policy $h_t=(s_1,a_1,\ldots,s_t)$ history δ discount factor $p_t(s,a)$ conditional distribution

Individual's Objective under Risk

$$v_1^{\pi^*}(s) = \max_{\pi \in \Pi} \mathsf{E}_s^{\pi} \left[\sum_{t=1}^T \delta^{t-1} r_t(X_t, d_t(X_t)) \right]$$

Mathematical Model

Policy Evaluation

$$v_t^{\pi}(s) = \mathsf{E}_s^{\pi} \left[\sum_{\tau=t}^T \delta^{\tau-t} r_{\tau}(X_{\tau}, d_{\tau}(X_{\tau})) \right]$$

Inductive Scheme

$$v_t^{\pi}(s) = r_t(s, d_t(s)) + \delta \mathsf{E}_s^{\pi} \Big[v_{t+1}^{\pi}(X_{t+1}) \Big]$$

Optimality Equations

$$v_t^{\pi^*}(s) = \max_{a \in A} \left\{ r_t(s, a) + \delta \mathsf{E}_s^p \left[v_{t+1}^{\pi^*}(X_{t+1}) \right] \right\}.$$

Backward Induction Algorithm for MDP

$$\begin{aligned} &\textbf{for } t = T, \dots, 1 \textbf{ do} \\ &\textbf{ if } t == T \textbf{ then} \\ &v_T^{\pi^*}(s) = \max_{a \in A} \left\{ r_T(s, a) \right\} \quad \forall \quad s \in S \\ &\textbf{ else} \\ & \text{ Compute } v_t^{\pi^*}(s) \textbf{ for each } s \in S \textbf{ by} \\ &v_t^{\pi^*}(s) = \max_{a \in A} \left\{ r_t(s, a) + \delta \mathsf{E}_s^p \left[v_{t+1}^{\pi^*}(X_{t+1}) \right] \right\} \\ & \text{ and set} \\ &d_t^{\pi^*}(s) = \underset{a \in A}{\operatorname{arg max}} \left\{ r_t(s, a) + \delta \mathsf{E}_s^p \left[v_{t+1}^{\pi^*}(X_{t+1}) \right] \right\} \\ &\textbf{ end if} \\ &\textbf{ end for} \end{aligned}$$

Data

National Longitudinal Survey of Youth (1979)

- ▶ 1,373 white males starting at age 16
- life-cycle histories
 - school attendance
 - occupation-specific work status
 - real wages

Figure: Decision Tree

Descriptives

Figure: Sample Size

Figure: Observed Choices

Table: Observed Real Wages

	<u>White</u>		<u> </u>	<u> Blue</u>
Age	Obs.	Mean	Obs.	Mean
16	2		26	10,287
20	128	5,499	349	14,432
25	201	16,540	222	21,991
				-

Figure: Observed Transitions

Figure: Initial Schooling

Table: Activities by Initial Schooling

	Initial Schooling				
Alternatives	7	8	9	10	11
School	0.69	0.86	2.48	3.37	2.83
White	0.08	0.38	0.65	1.36	2.04
Blue	3.69	3.62	3.05	2.40	1.98
Home	4.23	4.19	1.91	1.10	1.32
Total	8.69	9.05	8.09	8.24	8.17

Reduced-form Analysis

Table: Mincer Regressions

	Log Real Wages		
Intercept	8.314***	8.329***	
Schooling	0.086***	0.077***	
	Work Experience		
- linear	0.132***	0.125***	
- squared	-0.005***	-0.003***	
	Corrected AFQT		
- linear	_	0.002***	
Adj-R ²	0.21	0.22	
Auj-N	0.21	0.22	
Observations	4, 420	4, 232	

Table: Mincer Regressions

	Log Real Wages		
	White	Blue	
Intercept	7.748***	8.790***	
Schooling	0.128***	0.044***	
	Own Experience		
- linear	0.146***	0.129***	
- squared	-0.003	-0.005***	
	Other Experience		
- linear	0.096***	0.085***	
- squared	0.002	-0.003	
Adj-R ²	0.28	0.17	
Observations	1, 468	2, 952	

Open Issues

- distinction between ex ante and ex post returns
- role of psychic costs
- nonlinearities in the return
- role of uncertainty

Computational Model

Additional Structure

```
t age k unobserved type x_{j,t} experience in occupation j at age t a_t action at age j g_t level of schooling at age t
```

Skill Production Function

$$e_{j,k,t} = \exp\{e_{j,k,16} + \underbrace{\alpha_{j,1}g_t + \alpha_{j,2}I[g_t \geq 12] + \alpha_{j,3}I[g_t \geq 16]}_{\text{schooling}} \\ + \underbrace{\alpha_{j,4}x_{j,t} + \alpha_{j,5}x_{j,t}^2 + \alpha_{j,6}I[x_{j,t} > 0] + \alpha_{j,7}x_{j\neq j',t}}_{\text{work experience}} \\ + \underbrace{\alpha_{j,8}I[a_{t-1} \neq j]}_{\text{depreciation}} + \alpha_{j,9}(t-16) + \alpha_{j,10}I[t < 18] + \epsilon_{j,t}\}$$

with i, i' = 1, 2, k = 1, ..., 4, and t = 16, ..., 65

Labor Market

$$r_{j,k,t} = w_{j,k,t} + \underbrace{\kappa_1 \mathsf{I}[g_t \ge 12] + \kappa_2 \mathsf{I}[g_t \ge 16]}_{\text{common returns}} + \underbrace{\beta_{j,2} \mathsf{I}[x_{j,t} > 0, a_{t-1} \ne j] + \beta_{j,3} \mathsf{I}[x_{j,t} = 0, a_{t-1} \ne j]}_{\text{entry cost}}$$

with
$$w_{j,k,t} = r_j e_{j,k,t}$$

School

$$\begin{split} r_{3,k,t} &= e_{3,k,16} + \underbrace{\gamma_1 \mathsf{I}[g_t \geq 12] + \gamma_2 \mathsf{I}[g_t \geq 16]}_{\text{monetary and psychic cost}} \\ &+ \underbrace{\gamma_3 \mathsf{I}[a_{t-1} \neq 3, g_t \leq 11] + \gamma_4 \mathsf{I}[a_{t-1} \neq 3, g_t \geq 12]}_{\text{reenrollment cost}} \\ &+ \gamma_5 (t-16) + \gamma_6 \mathsf{I}[t \leq 18] + \underbrace{\kappa_1 \mathsf{I}[g_t \geq 12] + \kappa_2 \mathsf{I}[g_t \geq 16]}_{\text{common returns}} \\ &+ \epsilon_{3,t} \end{split}$$

Home

$$r_{4,k,t} = e_{4,k,16} + \zeta_1 I[18 \le t \le 20] + \zeta_2 I[t \ge 21] + \underbrace{\kappa_1 I[g_t \ge 12] + \kappa_2 I[g_t \ge 16]}_{\text{common returns}} + \epsilon_{4,t}$$

State Space

> at time t

$$s_t = \{g_t, \{x_{j,t}\}_{j=1,2}, a_{t-1}, \{\epsilon_{j,t}\}_{j=1,...,4}\}$$

 $\bar{s}_t = \{g_t, \{x_{j,t}\}_{j=1,2}, a_{t-1}\}$

laws of motion

$$x_{j,t+1} = x_{j,t} + I[a_t = j]$$
 $\forall j \in \{1, 2\}$
 $g_{t+1} = g_t + I[a_t = 3]$

Distribution of shocks

$$[\epsilon_{1,t}, \epsilon_{2,t}, \epsilon_{3,t}, \epsilon_{4,t}]^T \sim \mathcal{N}_0(\mathbf{0}, \Sigma)$$

Figure: Value Functions

Computational Tool

https://respy.readthedocs.io

- Technical Documentation
 - Numerical Methods, Source Codes, Test Suite
- User Documentation
 - Tutorial
- ⇒ Transparency, Recomputability, and Extensibility

Conclusion

Appendix

References

- Becker, G. S. (1964). *Human capital* (1st ed.). New York City, NY: Columbia University Press.
- Keane, M. P., & Wolpin, K. I. (1997). The career decisions of young men. *Journal of Political Economy*, 105(3), 473–522.