

N-Channel Enhancement Mode MOSFET

Feature

- 80V/160A $R_{DS(ON)} = 6m\Omega(typ.)@V_{GS} = 10V$
- 100% Avalanche Tested
- Reliable and Rugged
- Lead- Free Devices Available (RoHS Compliant)

Applications

- Power management in Inverter System
- Electric vehicle controllers
- Lithium battery protection board
- Switching Application

Pin Description

TO-220FB-3L

N-Channel MOSFET

Ordering and Marking Information

Package Code
P: TO-220FB-3L
Date Code
XXXYWXXXXX

Note: HUAYI lead-free products contain molding compounds/die attach materials and 100% matte tin plate Termi-Nation finish; which are fully compliant with RoHS. HUAYI lead-free products meet or exceed the lead-Free requirements of IPC/JEDEC J-STD-020 for MSL classification at lead-free peak reflow temperature. HUAYI defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

HUAYI reserves the right to make changes, corrections, enhancements, modifications, and improvements to this pr-oduct and/or to this document at any time without notice.

HYG068N08NR1P

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit	
Common Rat	ings (Tc=25°C Unless Otherwise Noted)			
VDSS	Drain-Source Voltage		80	V
Vgss	Gate-Source Voltage		±25	V
TJ	Maximum Junction Temperature		-55 to 175	°C
Tstg	Storage Temperature Range		-55 to 175	°C
ls	Source Current-Continuous(Body Diode) Tc=25°C		160	Α
Mounted on	Large Heat Sink		•	•
Ідм	Pulsed Drain Current *	Tc=25°C	380	А
1	Continuos Basis Commit	Tc=25°C	160	Α
lσ	Continuous Drain Current	Tc=100°C	113	Α
-	Marinana Barra Biratastina	Tc=25°C	268	W
Po	Maximum Power Dissipation Tc=100°C		134	W
R₀uc	Thermal Resistance, Junction-to-Case		0.56	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient **		62.5	°C/W
Eas	SinglePulsed-Avalanche Energy ***	L=0.3 mH	606	mJ

Note: * Repetitive rating; pulse width limited by max.junction temperature.

** Surface mounted on 1in2 FR-4 board.

*** Limited by TJmax , starting TJ=25°C, L = 0.3mH, Rg= 25Ω , Vgs =10V.

Electrical Characteristics(Tc =25°C Unless Otherwise Noted)

Cumbal	Parameter	Test Conditions	HY	HYG068N08NR1		l lmi4
Symbol	Parameter	rest Conditions	Min	Тур.	Max	Unit
Static Characteristics						
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V,I _{DS} = 250μA	80	-	-	V
Ipss	Drain to Source Leakage Current	V _{DS} = 80V,V _{GS} =0V	-	-	1	μA
lbss Drain-to-Source Leakage Current	TJ=125°C	-	-	50	μA	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _{DS} = 250μA	2	3	4	V
Igss	Gate-Source Leakage Current	V_{GS} = $\pm 25V$, V_{DS} = $0V$	-	-	±100	nA
RDS(ON)	Drain-Source On-State Resistance	V _{GS} = 10V,I _{DS} = 60A	-	6	7.5	mΩ
Diode Char	Diode Characteristics					
V _{SD}	Diode Forward Voltage	IsD=60A,Vgs=0V	1	0.9	1.2	V
trr	Reverse Recovery Time	Isb=60A,dIsb/dt=100A/µs	_	28	-	ns
Qrr	Reverse Recovery Charge	16υ-ουΑ,αιου/αι-10υΑ/μ s	-	50	-	nC

HYG068N08NR1P

Electrical Characteristics (Cont.) (Tc =25°C Unless Otherwise Noted)

Crossbal	Dove-menter.	Tool Conditions	HY	HYG068N08NR1		
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
Dynamic	Characteristics					
Rg	Gate Resistance	V _{GS} =0V,V _{DS} =0V,F=1MHz	-	2.32	-	Ω
Ciss	Input Capacitance	V _{GS} =0V,	-	3722	-	
Coss	Output Capacitance	V _{DS} = 25V,	-	566	-	рF
Crss	Reverse Transfer Capacitance	Frequency=1.0MHz	-	231	-	
td(ON)	Turn-on Delay Time		-	26	-	
Tr	Turn-on Rise Time	V_{DD} = 40V, R_{G} =6 Ω ,	-	38	-	
td(OFF)	Turn-off Delay Time	lps= 60A,Vgs= 10V	-	40	-	ns
Tf	Turn-off Fall Time			52	-	
Gate Cha	ge Characteristics					
Qg	Total Gate Charge	\/ - 64\/ \/ - 10\/	-	84	-	
Qgs	Gate-Source Charge	$V_{DS} = 64V, V_{GS} = 10V,$ $V_{DS} = 30A$	-	12	-	nC
Qgd	Gate-Drain Charge	IDS JON	-	33	-	

Note: *Pulse test, pulse width ≤ 300 us, duty cycle $\leq 2\%$

Typical Operating Characteristics

Figure 1: Power Dissipation

Figure 3: Safe Operation Area

VDS-Drain-Source Voltage(V)

Figure 5: Output Characteristics

Figure 2: Drain Current

Figure 4: Thermal Transient Impedance

Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 6: Drain-Source On Resistance

Typical Operating Characteristics(Cont.)

Figure 7: On-Resistance vs. Temperature

Figure 9: Capacitance Characteristics

Figure 8: Source-Drain Diode Forward

Figure 10: Gate Charge Characteristics

Avalanche Test Circuit

Switching Time Test Circuit

Gate Charge Test Circuit

Device Per Unit

Package Type	Unit	Quantity
TO-220FB-3L	Tube	50

Package Information

TO-220FB-3L

COMMON DIMENSIONS

SYMBOL	mm			
STWIBOL	MIN	NOM	MAX	
Α	4.37	4.57	4.77	
A1	1.25	1.30	1.45	
A2	2.20	2.40	2.60	
b	0.70	0.80	0.95	
b2	1.17	1.27	1.47	
С	0.40	0.50	0.65	
D	15.10	15.60	16.10	
D1	8.80	9.10	9.40	
D2	5.50	-	-	
E	9.70	10.00	10.30	
E3	7.00	-	ı	
е	2.54 BSC			
e1	5.08 BSC			
H1	6.25 6.50 6.8		6.85	
L	12.75	13.50	13.80	
L1	-	3.10	3.40	
ФР	3.40	3.60	3.80	
Q	2.60	2.80	3.00	

Classification Profile

Classification Reflow Profiles

Sn-Pb Eutectic Assembly	Pb-Free Assembly
100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds
3 °C/second max.	3°C/second max.
183 °C 60-150 seconds	217 °C 60-150 seconds
See Classification Temp in table 1	SeeClassification Tempin table 2
20** seconds	30** seconds
6 °C/second max.	6 °C/second max.
6 minutes max.	8 minutes max.
	100 °C 150 °C 60-120 seconds 3 °C/second max. 183 °C 60-150 seconds See Classification Temp in table 1 20** seconds 6 °C/second max.

^{*}Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

HYG068N08NR1P

Table 1.SnPb Eutectic Process – Classification Temperatures (Tc)

Package Thickness	Volume mm³ <350	Volume mm³ ≽350	
<2.5 mm	235 °C	220 °C	
≥2.5 mm	220 °C	220 °C	

Table 2.Pb-free Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm³	Volume mm³
Thickness	<350	350-2000	≥2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HTRB	JESD-22, A108	168 Hrs /500 Hrs /1000 Hrs, Bias @ 150°C
PCT	JESD-22, A102	96 Hrs, 100%RH, 2atm, 121°C
TCT	JESD-22, A104	500 Cycles, -55°C~150°C

Customer Service

Worldwide Sales and Service: sales@hymexa.com Technical Support:Technology@hymexa.com Xi'an Huayi Microelectronics Co., Ltd.

No.8928, Shangji Road, Economic and Technological Development Zone, Xi'an, China

TEL: (86-029) 86685706 FAX: (86-029) 86685705 E-mail: sales@hymexa.com Web net: www.hymexa.com