Introdução

Com a cultura data-driven as empresas podem aumentar o seu potencial através dos dados, por meio deles a companhia leva análise de informações para outros processos, porém, as empresas precisam lidar com a enorme quantidade de dados, a fim de transformá-los e obter informações e valores. Dessa forma, com a análise de dados é possível avaliar alguns indicadores da empresa, tornando possível a avaliação de diversas esferas do negócio e melhor tomada de decisão, como é o caso desta solução.

Para esta solução, foram usados dados da área de Recursos Humanos, onde teve como objetivo analisar o *turnover* (rotatividade de pessoal), de modo a identificar e compreender o perfil e características do colaborador que deixa a empresa. Para Chiavenato (2014), o turnover é resultado de alguns funcionários saindo e outros entrando no mercado de trabalho. Ainda de acordo com Chiavenato (2014), existem dois tipos de desligamento: o de forma voluntária pelo empregado e o desligamento de iniciativa da organização.

Consequentemente, neste projeto foi coberto todas as etapas de um projeto real de Data Science, sobretudo utilizar os dados para responder às questões abaixo.

☐ Quais são os fatores que influenciam para um colaborador deixar a empresa?
☐ Como reter pessoas?
☐ Como antecipar e saber se um determinado colaborador vai sair da empresa?

E por fim, disponibilizar recursos para que a empresa consiga realizar a predição para verificar se um colaborador vai ou não deixar a empresa com base em atributos como comportamento e carga de trabalho, nível de satisfação com a empresa e resultados de performance.

Observação: Este projeto foi desenvolvido durante o curso "Human Resource Analytics" da Stack Academy (Stack Tecnologias)

Arquitetura do projeto

A solução do projeto parte de possíveis sistemas de cliente, podendo ser aplicações desktop ou *mobile*, aplicações essas que são fonte de dados para o desenvolvimento do projeto, a exemplo, arquivos em formatos: json, csv e planilhas de excel, e com esses dados

podemos fazer a ligação com o banco de dados.

Data Lake
Processing
Bucket
Bucket
Rucket

Ambiente da solução

Para execução do projeto foi desenvolvida a estrutura de virtualização de containers para trabalhar com as ferramentas: **MySQL**, **MinIO**, e **Apache Airflow** e, assim, sendo efetuadas todas as dependências necessárias para execução das aplicações,.

solução completa que engloba ciência de dados e engenharia de dados.

SGBD MySQL

Após a configuração do MySQL, é feita a importação dos dados brutos coletados de planilha excel. A figura abaixo demonstra o conteúdo das tabelas.

Esses dados são necessários para a de modelagem dos dados e uso do Data Lake com a orquestração/automatização feita com o **Airflow**

MinIO

Para o Data Lake da solução usou-se o **MinIO**, servidor de armazenamento de objetos compatível com o protocolo S3, compatível com AWS, escrito em Go.

Dessa forma, conseguimos criar os buckets:

- Landing (zona de pouso com dados brutos)
- **Processing** (zona de dados processados)
- Curated (zona de dados curados disponível para consumo de aplicações finais)

Navegando até o bucket **Lading**, foi feita a carga dos dados e separação dos dados em:

- working-hours (registro do ponto eletrônico)
- **performance-evaluation** (avaliação de performance e desempenho)

Airflow

O Airflow é uma plataforma de gerenciamento de fluxo de trabalho de código aberto para pipelines de engenharia de dados, onde automatizamos as execuções a serem efetuadas, neste projeto utilizamos das DAGS.

Cada DAGS tem como finalidade realizar a carga de arquivos para bucket Processing que está no Data Lake. A tarefa **DAG etl_employees_dataset** busca por arquivos em formato parquet (que possui mais eficiência que outros formatos como o csv, consumindo menos memória) na zona processing,

Abaixo está a Representação em *graph view* da DAG etl_employees_dataset

Após a executadas todas as DAGS do **Airflow**, o bucket processing do **MinIO** ficou dessa forma da figura abaixo.

Análise Exploratória de Dados

De acordo os dados a empresa possui uma taxa de rotatividade de colaboradores de aproximadamente 24% como pode ser visto na figura acima.

Mais detalhes sobre o turnover são apresentados nos gráficos acima, onde podemos chegar à algumas insights:

Departamento em relação ao turnover

Resumo: Vamos ver mais informações sobre os departamentos da empresa.

- Os departamentos de **sales** (vendas), **technical** (técnico) e **support** (suporte) são os 3 departamentos com maior índice de turnover.
- O departamento management (gestão) tem o menor volume de turnover.

Questões:

- Será que se examinarmos em profundidade os departamentos que têm maior índice de turnover e o menor pode nos revelar mais informações importantes?
- Qual o salário nestes departamentos?

Nível de Avaliação do Funcionário

De acordo a figura acima, temos um resumo:

- Temos uma distribuição bimodal para o conjunto que deixou a empresa.
- Colaboradores com baixa performance tendem a deixar a empresa.
- Colaboradores com alta performance tendem a deixar a empresa.
- O ponto ideal para os funcionários que permaneceram está dentro da avaliação de 60 à 80.

Nível de Satisfação do Funcionário

Com o gráfico acima, temos:

- Empregados com o nível de satisfação em 20 ou menos tendem a deixar a empresa.
- Empregados com o nível de satisfação em até 50 têm maior probabilidade de deixar a empresa.

Clusterização

Com a análise chegamos a 3 *cluster* (grupos) distintos, onde cada grupo é obtido com base nas semelhanças dos dados.

Cluster 1 (Azul) - (Empregados insatisfeitos e trabalhadores): A satisfação foi inferior a 20 e as avaliações foram superiores a 75.

• O que pode ser uma boa indicação de que os funcionários que deixaram a empresa eram bons trabalhadores, mas se sentem péssimos no trabalho.

Questões:

- Qual poderia ser o motivo de se sentir tão mal quando você é altamente avaliado?
- Será que está trabalhando muito?
- Esse cluster poderia significar funcionários que estão "sobrecarregados"?

Cluster 2 (Vermelho) - (Empregados ruins e insatisfeitos): Satisfação entre 35 à 50 e as suas avaliações abaixo de ~ 58.

Questões:

- Isso pode ser visto como funcionários que foram mal avaliados e se sentiram mal no trabalho.
- Podemos chamar esse grupo de baixo desempenho?

Cluster 3 (Verde) - (Empregados satisfeitos e trabalhadores): Satisfação entre 75 à 90 e avaliações superiores a 80.

- O que poderia significar que os funcionários neste grupo eram "ideais".
- Eles amavam seu trabalho e eram altamente avaliados por seu desempenho.

Questões:

- Este grupo pode representar os empregados que deixaram a empresa porque encontraram outra oportunidade de trabalho?
- Poderíamos ter mais do que 3 clusters?

Machine Learning

Importância de Features

```
Converte os atributos categóricos valores numéricos.
                                                                                In [289]:
df["department"] = df["department"].astype('category').cat.codes
df["salary"] = df["salary"].astype('category').cat.codes
Separando os conjuntos de dados.
                                                                                In [291]:
target_name = 'turnover'
X = df.drop('turnover', axis=1)
y = df[target_name]
Transformando os dados.
                                                                                In [292]:
from sklearn.preprocessing import MinMaxScaler
                                                                                In [293]:
scaler = MinMaxScaler()
                                                                                In [294]:
X = scaler.fit_transform(X)
                                                                                In [295]:
                                                                                Out[295]:
```

Separando os conjuntos.

```
In [296]:
from sklearn.model_selection import train_test_split
                                                                               In [297]:
X_train, X_test, y_train, y_test = train_test_split(
      , y
      ,test_size = 0.2
      ,random_state = 123
      ,stratify = y
Treinando o algoritmo de árvore de decisão.
                                                                               In [298]:
from sklearn.tree import DecisionTreeClassifier
                                                                               In [299]:
dtree = DecisionTreeClassifier()
dtree = dtree.fit(X_train,y_train)
                                                                               In [300]:
importances = dtree.feature_importances_
feat_names = df.drop(['turnover'],axis=1).columns
                                                                               In [301]:
indices = np.argsort(importances)[::-1]
plt.figure(figsize=(12,4))
plt.title("Feature importances by DecisionTreeClassifier")
plt.bar(range(len(indices)), importances[indices], color='lightblue', align="center")
plt.xticks(range(len(indices)), feat_names[indices], rotation='vertical',fontsize=14)
plt.xlim([-1, len(indices)])
plt.show()
```


Podemos ver que no gráfico acima as variáveis que mais contribuem para o modelo são:

```
"satisfaction","evaluation","averageMonthlyHours","yearsAtCompany"
Filtrando apenas os atributos relevantes.
                                                                                In [302]:
X = df[["satisfaction","evaluation","averageMonthlyHours","yearsAtCompany"]]
Separando os conjuntos de dados.
                                                                                In [303]:
scaler = MinMaxScaler()
                                                                                In [304]:
X = scaler.fit_transform(X)
                                                                                In [305]:
X_train, X_test, y_train, y_test = train_test_split(
       Χ
      , y
      ,test_size = 0.2
      ,random_state = 123
      ,stratify = y
)
                                                                                In [306]:
X_train
                                                                                Out[306]:
Função do modelo de base.
                                                                                In [307]:
```

```
def base_rate_model(X) :
   y = np.zeros(X.shape[0])
   return y
Importando métodos de métrica de avaliação.
                                                                                In [35]:
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
                                                                                In [36]:
def accuracy_result(y_test,y_predict):
   acc = accuracy_score(y_test, y_predict)
   print ("Accuracy = %2.2f" % acc)
                                                                                In [37]:
def roc_classification_report_results(model,y_test,y_predict):
   roc_ = roc_auc_score(y_test, y_predict)
   classfication_report = classification_report(y_test, y_predict)
   print ("\n{} AUC = {}\n".format(model, roc_))
   print(classfication_report)
Análise do modelo de baseline
                                                                                In [38]:
y_predict = base_rate_model(X_test)
                                                                                In [39]:
accuracy_result(y_test, y_predict)
Accuracy = 0.76
                                                                                In [40]:
roc_classification_report_results("Base Model", y_test, y_predict)
Base Model AUC = 0.5
As acurácias obtidas com os modelos de ML foram:
Modelo de Regressão Logística.
       Accuracy = 0.77
Modelo de Árvore de decisão.
      Accuracy = 0.75
Modelo de Árvore Aleatória (Random Forest)
      Accuracy = 0.83
```

Abaixo estão a comparação dos modelos utilizando o setup do PyCaret, onde o modelo **gbc** foi o que teve melhor performance.

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
gbc	Gradient Boosting Classifier	0.8284	0.8022	0.6883	0.6280	0.6565	0.5426	0.5437	1.0760
lightgbm	Light Gradient Boosting Machine	0.8495	0.7978	0.6571	0.6950	0.6752	0.5774	0.5780	0.8540
ada	Ada Boost Classifier	0.8010	0.7961	0.6995	0.5666	0.6260	0.4925	0.4976	0.4540
rf	Random Forest Classifier	0.8130	0.7815	0.5690	0.6163	0.5916	0.4706	0.4713	1.6280
knn	K Neighbors Classifier	0.7403	0.7597	0.6863	0.4692	0.5572	0.3826	0.3965	0.2900
qda	Quadratic Discriminant Analysis	0.7207	0.7552	0.7487	0.4482	0.5607	0.3744	0.4009	0.0660
et	Extra Trees Classifier	0.8061	0.7525	0.5482	0.6020	0.5737	0.4486	0.4495	1.3700
nb	Naive Bayes	0.7074	0.7105	0.5867	0.4183	0.4883	0.2914	0.2996	0.0440
Ir	Logistic Regression	0.6743	0.6913	0.6327	0.3873	0.4804	0.2627	0.2796	2.9120
lda	Linear Discriminant Analysis	0.6772	0.6905	0.6263	0.3893	0.4801	0.2641	0.2798	0.0620
dt	Decision Tree Classifier	0.7342	0.6631	0.5070	0.4487	0.4760	0.2989	0.2999	0.1500
svm	SVM - Linear Kernel	0.6525	0.0000	0.6327	0.3683	0.4648	0.2341	0.2531	0.1400
ridge	Ridge Classifier	0.6772	0.0000	0.6263	0.3893	0.4801	0.2641	0.2798	0.0740

Dados Curados

Após a finalização do modelo, é feito o armazenamento dos métodos usados no desenvolvimento da solução, sendo salvos na zona de Curated.

Disponibilização do App da Solução

Para disponibilização da solução foi usado o framework **Streamlit**, tecnologia para criação de Data App com script em Python. Abaixo pode ser visto o deploy da solução, onde se tem as variáveis para realização da predição.

Conclusão

Através desse projeto foi possível praticar e implementar conceitos importantes da Ciência e Engenharia de Dados e propor uma solução para um problema latente e recorrente de qualquer empresa que é a retenção de talentos através da Análise de Dados de Recursos Humanos. Como um processo de melhoria contínua podemos desenvolver uma automação para executar não só o pipeline de coleta e transformação de dados como automatizar os passos da etapa de Machine Learning e Deploy.

Caso tenha interesse em consultar o projeto, ficam aqui meu o repositório do projeto e meu LinkedIn para possível contato:

- LinkedIn: https://www.linkedin.com/in/luiscarlos-almeida/
- Repositório Github:

https://github.com/luiscals1/Data_Science/tree/main/human-resources-analytics

Referências

CHIAVENATO, Idalberto. **Gestão de Pessoas**: o novo papel dos recursos humanos nas organizações. 4. ed. Barueri: Manole, 2014.