## C. View Angle

If we have 5 points like this let's find the angles  $\alpha_i$ :  $P_i >$  the origin > the positive x-axis (in the counter clockwise direction).

Then sort the points according to their angles. **O(n logn)** 



Now if we have n point  $P_0$  ,  $P_1$  , ... ,  $P_{n\text{-}1}$  and the angle  $\ P_i$  > the origin >  $P_j$  is  $\ \Theta_{i,j}$ 

then for any two consecutive points  $P_i$ ,  $P_{i+1}$  there is a view angle to see all points and it will be the complement of  $\Theta_{i,\ i+1}$  (  $360-\Theta_{i,i+1}$  ).



to get the minimum view angle we will iterate over all the points O(n) and find : min (  $360 - \Theta_{i,i+1}$  ) , for  $0 \le i \le n-2$ 

note : don't forget to find (  $360-\Theta_{\text{0,n-1}}$  )

To calculate  $\Theta_{i,j}$ :  $\Theta_{i,j} = abs(\alpha_i - \alpha_j)$ 

To calculate  $\alpha_i$ : consider the vector  $v = 1 \ i + 0 \ j$  (represents the positive x-axis) and the vector  $u = P_i.x \ i + P_i.y \ j$ 



now "from dot product":

$$\alpha_i = \cos^{-1}((P.x * 1 + P.y * 0) / (||u|| * ||v||)) = \cos^{-1}(P.x / ||u||)$$

but please note this case (if P is below the x-axis) : we need  $\alpha_i = 360 - \cos^{-1} (P.x / ||u||)$  because as mentioned above we cares about the angle (in the counter clockwise direction)

## My C++ solution:

http://codeforces.com/contest/257/submission/ 40388893

Best regards.

