Exercise: Markdown

Environmental Data Analytics | John Fay and Luana Lima

Contents

Set	up the coding environment	1
Wra	angle the data	1
Rep	port the summary	2
List	of Tables	
1	Summary of Total Nitrogen	2
2	Another Summary of Total Nitrogen	2
Set u	p the coding environment	

The raw dataset has 2406 rows and 14 columns.

Wrangle the data

```
#Subset columns and rows
nutrient_data <- nutrient_data_raw %>%
  select(-c(lakeid,depth_id,comments)) %>%
  filter(depth == 0) %>%
  drop_na()
#Compute summary stats for total nitrogen
nutrient_data_tn <- nutrient_data %>%
  group_by(lakename) %>%
  summarize(
   mean_tn_ug = mean(tn_ug),
   min_tn_ug = min(tn_ug),
   max_tn_ug = max(tn_ug),
    sd_tn_ug = sd(tn_ug)
```

Report the summary

knitr::kable(nutrient_data_tn, caption = "Summary of Total Nitrogen")

Table 1: Summary of Total Nitrogen

lakename	$mean_tn_ug$	$\min_{tn}ug$	max_tn_ug	sd_tn_ug
Paul Lake	368.7564	45.67	628.625	106.3474 305.6491
Peter Lake	561.8752	219.72	2048.151	-0

knitr::kable(nutrient_data_tn, caption = "Another Summary of Total Nitrogen")

Table 2: Another Summary of Total Nitrogen

lakename	$mean_tn_ug$	min_tn_ug	max_tn_ug	sd_tn_ug
Paul Lake	368.7564	45.67	628.625	106.3474
Peter Lake	561.8752	219.72	2048.151	305.6491