Algoritmo 1-NN con umbral ajustable:

- Procedure 1-NN with adjustable threshold
- **Design parameter**: an adjustable distance threshold $\delta \approx 0$ to be optimized
- **Given** a memory of N landmarks 'images and their corresponding normalized grey histograms:
- [(L $_1 \rightarrow$ I $_1 \rightarrow$ H $_1$) (L $_N \rightarrow$ I $_N \rightarrow$ H $_N$)] ; where L are landmarks, I images and H normalized histograms
- For a new image $[I_{new} \rightarrow H_{new}]$ to be recognized as a possible landmark **do**
- Compute the Euclidean distance of H $_{\rm new}$ to all the normalized histograms stored in the memory and take the minimum distance d $_{\rm min}$
- If [$d_{min} \le \delta$] Then [classify the new image as the landmark corresponding to the minimum distance d_{min}] Else [classify the new image as "unknown"]
- Note1: the adjustable distance threshold is meant to avoid false alarms and simultaneously to keep a good efficiency in the classification of the real landmarks. For its experimental tuning it is advisable to implement a search starting with a small value near zero ($\delta_{min} = 0,1$) up to a maximum value ($\delta_{max} = 1,0$) by means of small scanning steps $\approx 0,1$ $\rightarrow 0,1 \le \delta \le 1$
- Note 2: the recognizer 'memory must be as big as possible and well-balanced(all the landmarks must have the same number of istances stored in the memory).