ECE 269: Linear Algebra and Applications, Sample-Final Exam Instructor: Behrouz Touri

- 1. Prove or disprove each of the following statements (to disprove you need to provide an example and explain why the example disproves the statement):
 - (a) The matrix $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ is diagonalizable.
 - (b) For an $n \times n$ real-valued matrix A, $\max_{x\neq 0} \frac{x^T A x}{x^T x} = \lambda_{max}(A)$ where $\lambda_{max}(A)$ is the eigenvalue with the maximum modulus (absolute value).
 - (c) For a real-valued $n \times n$ and full-rank matrix A, span($\{A^k \mid k \geq 1\}$) has dimension n^2 . Here, $\{A^k \mid k \geq 1\}$ is the set of all powers of A.
 - (d) If the $n \times n$ matrix A is a positive-definite matrix then the diagonal elements $a_{ii} > 0$ for all $i = 1, \ldots, n$.
- 2. Let $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.
 - (a) Find a QR decomposition for A.
 - (b) Find a PLU decomposition for A.
 - (c) Find the (compact) SVD for A.
 - (d) Find a full SVD for A.
 - (e) Determine whether a solution to $Ax = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ exists for an $x \in \mathbb{R}^3$. If so, find the least norm solution to this problem. If the solution does not exist, find the least square solution to the problem.
 - (f) Determine the spectral norm and Frobenius norm of A.
- 3. Let $A, B \in \mathbb{R}^{m \times n}$ be matrices such that $R(B) \perp R(A)$, i.e., any vector in the range space of B is orthogonal to any vector in the range space of A.
 - (a) Show that $||A + B||_F^2 = ||A||_F^2 + ||B||_F^2$, where $||\cdot||_F$ is the Frobenius-norm.
 - (b) Provide an example to show that part (a) does not hold for the spectral norm.
- 4. For all $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbb{R}^3$, define $\langle x, y \rangle = x_1 y_1 + \frac{1}{2} x_1 y_3 + \frac{1}{2} x_3 y_1 + 2 x_2 y_2 + x_3 y_3$.
 - (a) Prove that $\langle x, y \rangle$ is a valid inner product (over \mathbb{R}).
 - (b) Find an orthonormal basis for \mathbb{R}^3 using the above inner product.
- 5. (a) Let $A = \begin{pmatrix} 5 & -6 & 3 \\ -6 & 4 & -6 \\ 3 & -6 & -4 \end{pmatrix}$. Is A diagonalizable?
 - (b) Let B be a complex-valued square matrix with rank(B) = 2. The characteristic polynomial of B is given by $c_B(\lambda) = (\lambda^2 + 4)\lambda^3$.
 - i. Find the dimension of B and all its eigenvalues.
 - ii. Is B diagonalizable? Explain.
 - iii. Show that B+I is invertible and find the eigenvalues of $(B+I)^{-1}$.