What is statistics?

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui Senior Content Developer, DataCamp

What is statistics?

- The field of statistics the practice and study of collecting and analyzing data
- A summary statistic a fact about or summary of some data

What can statistics do?

What is statistics?

- The field of statistics the practice and study of collecting and analyzing data
- A summary statistic a fact about or summary of some data

What can statistics do?

- How likely is someone to purchase a product? Are people more likely to purchase it if they can use a different payment system?
- How many occupants will your hotel have? How can you optimize occupancy?
- How many sizes of jeans need to be manufactured so they can fit 95% of the population? Should the same number of each size be produced?
- A/B tests: Which ad is more effective in getting people to purchase a product?

What can't statistics do?

Why is Game of Thrones so popular?

Instead...

• Are series with more violent scenes viewed by more people?

But...

• Even so, this can't tell us if more violent scenes lead to more views

Types of statistics

Descriptive statistics

Describe and summarize data

- 50% of friends drive to work
- 25% take the bus
- 25% bike

Inferential statistics

 Use a sample of data to make inferences about a larger population

What percent of people drive to work?

Types of data

Numeric (Quantitative)

- Continuous (Measured)
 - Airplane speed
 - Time spent waiting in line
- Discrete (Counted)
 - Number of pets
 - Number of packages shipped

Categorical (Qualitative)

- Nominal (Unordered)
 - Married/unmarried
 - Country of residence
- Ordinal (Ordered)
 - O Strongly disagree
 - Somewhat disagree
 - O Neither agree nor disagree
 - Somewhat agree
 - O Strongly agree

Categorical data can be represented as numbers

Nominal (Unordered)

- Married/unmarried (1/0)
- Country of residence (1, 2, ...)

Ordinal (Ordered)

- Strongly disagree (1)
- Somewhat disagree (2)
- Neither agree nor disagree (3)
- Somewhat agree (4)
- Strongly agree (5)

Why does data type matter?

Summary statistics

```
import numpy as np
np.mean(car_speeds['speed_mph'])
```

40.09062

Plots

Why does data type matter?

Summary statistics

Plots

```
demographics['marriage_status'].value_counts()

single 188
married 143
divorced 124
dtype: int64
```


Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

Measures of center

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Mammal sleep data

print(msleep)

name	genus	vore	order	• • •	sleep_cycle	awake	brainwt	bodywt	
1 Cheetah	Acinonyx	carni	Carnivora		NaN	11.9	NaN	50.000	
2 Owl monkey	Aotus	omni	Primates		NaN	7.0	0.01550	0.480	
3 Mountain beaver	Aplodontia	herbi	Rodentia		NaN	9.6	NaN	1.350	
4 Greater short-ta	Blarina	omni	Soricomorpha		0.133333	9.1	0.00029	0.019	
5 Cow	Bos	herbi	Artiodactyla		0.666667	20.0	0.42300	600.000	
•••	• • •		• • •		• • •	• • •	• • •	• • •	
79 Tree shrew	Tupaia	omni	Scandentia		0.233333	15.1	0.00250	0.104	
80 Bottle-nosed do	Tursiops	carni	Cetacea		NaN	18.8	NaN	173.330	
81 Genet	Genetta	carni	Carnivora		NaN	17.7	0.01750	2.000	
82 Arctic fox	Vulpes	carni	Carnivora		NaN	11.5	0.04450	3.380	
83 Red fox	Vulpes	carni	Carnivora		0.350000	14.2	0.05040	4.230	

Histograms

How long do mammals in this dataset typically sleep?

What's a typical value?

Where is the center of the data?

- Mean
- Median
- Mode

Measures of center: mean

	name	sleep_total
1	Cheetah	12.1
2	Owl monkey	17.0
3	Mountain beaver	14.4
4	Greater short-t	14.9
5	Cow	4.0
• •	• • •	• • •

```
import numpy as np
np.mean(msleep['sleep_total'])
```

10.43373

Mean sleep time =

$$\frac{12.1 + 17.0 + 14.4 + 14.9 + \dots}{83} = 10.43$$

Measures of center: median

```
msleep['sleep_total'].sort_values()
       1.9
      2.7
30
      2.9
22
      3.0
23
      3.1
19
      18.0
      18.1
     19.4
36
     19.7
     19.9
42
```

```
msleep['sleep_total'].sort_values().iloc[41]
10.1
np.median(msleep['sleep_total'])
10.1
```

Measures of center: mode

msleep['sleep_total'].value_counts()

Most frequent value

```
12.5
10.1
14.9
11.0
8.4
14.3
17.0
Name: sleep_total, Length: 65, dtype: int6
```

```
msleep['vore'].value_counts()
herbi
         32
omni
carni
           5
insecti
Name: vore, dtype: int64
import statistics
statistics.mode(msleep['vore'])
```

'herbi'

```
msleep[msleep['vore'] == 'insecti']
```

	name	genus	vore	order	sleep_total
22	Big brown bat	Eptesicus	insecti	Chiroptera	19.7
43	Little brown bat	Myotis	insecti	Chiroptera	19.9
62	Giant armadillo	Priodontes	insecti	Cingulata	18.1
67	Eastern american mole	Scalopus	insecti	Soricomorpha	8.4

```
msleep[msleep['vore'] == "insecti"]['sleep_total'].agg([np.mean, np.median])
```

```
mean 16.53
median 18.9
```

Name: sleep_total, dtype: float64

```
msleep[msleep['vore'] == 'insecti']
```

	name	genus	vore	order	sleep_total
22	Big brown bat	Eptesicus	insecti	Chiroptera	19.7
43	Little brown bat	Myotis	insecti	Chiroptera	19.9
62	Giant armadillo	Priodontes	insecti	Cingulata	18.1
67	Eastern american mole	Scalopus	insecti	Soricomorpha	8.4
84	Mystery insectivore	• • •	insecti	• • •	0.0

```
msleep[msleep['vore'] == "insecti"]['sleep_total'].agg([np.mean, np.median])
```

```
mean 13.22
```

median 18.1

Name: sleep_total, dtype: float64

Mean: $16.5 \rightarrow 13.2$

Median: 18.9 → 18.1

Which measure to use?

Skew

Left-skewed

Right-skewed

Which measure to use?

Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

Measures of spread

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

What is spread?

Variance

Average distance from each data point to the data's mean

Variance

Average distance from each data point to the data's mean

Calculating variance

1. Subtract mean from each data point

```
0 1.666265
1 6.566265
2 3.966265
3 4.466265
4 -6.433735
...
```

2. Square each distance

```
sq_dists = dists ** 2
print(sq_dists)
```

```
0 2.776439
1 43.115837
2 15.731259
3 19.947524
4 41.392945
...
```

Calculating variance

3. Sum squared distances

```
sum_sq_dists = np.sum(sq_dists)
print(sum_sq_dists)
```

1624.065542

4. Divide by number of data points - 1

```
variance = sum_sq_dists / (83 - 1)
print(variance)
```

19.805677

Use np.var()

19.805677

```
np.var(msleep['sleep_total'], ddof=1)
```

Without ddof=1, population variance is calculated instead of sample variance:

```
np.var(msleep['sleep_total'])
```

19.567055

Standard deviation

```
np.sqrt(np.var(msleep['sleep_total'], ddof=1))
```

4.450357

```
np.std(msleep['sleep_total'], ddof=1)
```

4.450357

Mean absolute deviation

```
dists = msleep['sleep_total'] - mean(msleep$sleep_total)
np.mean(np.abs(dists))
```

3.566701

Standard deviation vs. mean absolute deviation

- Standard deviation squares distances, penalizing longer distances more than shorter ones.
- Mean absolute deviation penalizes each distance equally.
- One isn't better than the other, but SD is more common than MAD.

Quantiles

```
np.quantile(msleep['sleep_total'], 0.5)
```

0.5 quantile = median

Quartiles:

10.1

```
np.quantile(msleep['sleep_total'], [0, 0.25, 0.5, 0.75, 1])
array([ 1.9 , 7.85, 10.1 , 13.75, 19.9 ])
```

Boxplots use quartiles

```
import matplotlib.pyplot as plt
plt.boxplot(msleep['sleep_total'])
plt.show()
```


Quantiles using np.linspace()

```
np.quantile(msleep['sleep_total'], [0, 0.2, 0.4, 0.6, 0.8, 1])
 array([ 1.9 , 6.24, 9.48, 11.14, 14.4 , 19.9 ])
np.linspace(start, stop, num)
 np.quantile(msleep['sleep_total'], np.linspace(0, 1, 5))
 array([ 1.9 , 7.85, 10.1 , 13.75, 19.9 ])
```

Interquartile range (IQR)

Height of the box in a boxplot

```
np.quantile(msleep['sleep_total'], 0.75) - np.quantile(msleep['sleep_total'], 0.25)

5.9

from scipy.stats import iqr
iqr(msleep['sleep_total'])

5.9
```

Outliers

Outlier: data point that is substantially different from the others

How do we know what a substantial difference is? A data point is an outlier if:

- $\mathrm{data} < \mathrm{Q1} 1.5 imes \mathrm{IQR}$ or
- data $> Q3 + 1.5 \times IQR$

Finding outliers

```
from scipy.stats import iqr
iqr = iqr(msleep['bodywt'])
lower_threshold = np.quantile(msleep['bodywt'], 0.25) - 1.5 * iqr
upper_threshold = np.quantile(msleep['bodywt'], 0.75) + 1.5 * iqr
```

```
msleep[(msleep['bodywt'] < lower_threshold) | (msleep['bodywt'] > upper_threshold)]
```

All in one go

```
msleep['bodywt'].describe()
```

```
count
           83.000000
          166.136349
mean
          786.839732
std
min
            0.005000
25%
            0.174000
            1.670000
50%
75%
           41.750000
         6654.000000
max
Name: bodywt, dtype: float64
```

Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

