Devoir maison 2.

Exercice 1

Soit $x \in \mathbb{R}$. On note (*) l'équation : $\cos^4 x + \sin^4 x = \frac{7}{8}$.

M'ethode~1:

On fait baisser le degré grâce à $\cos^2 x = \frac{1 + \cos(2x)}{2}$ et $\sin^2 x = \frac{1 - \cos(2x)}{2}$.

$$(*) \iff \left(\frac{1+\cos(2x)}{2}\right)^2 + \left(\frac{1-\cos(2x)}{2}\right)^2 = \frac{7}{8}$$

$$\iff 1+2\cos(2x)+\cos^2(2x)+1-2\cos(2x)+\cos^2(2x) = \frac{7}{2}$$

$$\iff 2\cos^2(2x) = \frac{3}{2}$$

$$\iff \cos^2(2x) = \frac{3}{4}$$

$$\iff \cos(2x) = \frac{\sqrt{3}}{2} \text{ ou } \cos(2x) = -\frac{\sqrt{3}}{2}$$

$$\iff \exists k \in \mathbb{Z}, 2x = \frac{\pi}{6} + 2k\pi \text{ ou } 2x = -\frac{\pi}{6} + 2k\pi \text{ ou } 2x = \frac{5\pi}{6} + 2k\pi \text{ ou } 2x = -\frac{5\pi}{6} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, x = \frac{\pi}{12} + k\pi \text{ ou } x = -\frac{\pi}{12} + k\pi \text{ ou } x = \frac{5\pi}{12} + k\pi \text{ ou } x = -\frac{5\pi}{12} + k\pi$$

L'ensemble des solutions est
$$\left\{\frac{\pi}{12} + k\pi, -\frac{\pi}{12} + k\pi, \frac{5\pi}{12} + k\pi, -\frac{5\pi}{12} + k\pi / k \in \mathbb{Z}\right\}$$
.

Variante de la méthode 1 :

On reprend à l'étape :

$$(*) \iff 2\cos^{2}(2x) = \frac{3}{2}$$

$$\iff 2\cos^{2}(2x) - 1 = \frac{1}{2}$$

$$\iff \cos(4x) = \frac{1}{2}$$

$$\iff \cos(4x) = \cos\left(\frac{\pi}{3}\right)$$

$$\iff \exists k \in \mathbb{Z}, \ 4x = \frac{\pi}{3} + 2k\pi \text{ ou } 4x = -\frac{\pi}{3} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ x = \frac{\pi}{12} + k\frac{\pi}{4} \text{ ou } x = -\frac{\pi}{12} + k\frac{\pi}{4}$$

L'ensemble des solutions est $\left\{\frac{\pi}{12} + k\frac{\pi}{4}, -\frac{\pi}{12} + k\frac{\pi}{4} / k \in \mathbb{Z}\right\}$.

M'ethode~2:

 $Astuce: identité remarquable <math display="inline">(\cos^2 x + \sin^2 x)^2 = \cos^4 x + \sin^4 x + 2\cos^2 x \sin^2 x,$ ce qui s'écrit : $1 = \cos^4 x + \sin^4 x + 2\cos^2 x \sin^2 x.$

$$(*) \iff 1 - 2\cos^2 x \sin^2 x = \frac{7}{8}$$

$$\iff 2(\cos x \sin x)^2 = \frac{1}{8}$$

$$\iff 2\left(\frac{\sin(2x)}{2}\right)^2 = \frac{1}{8}$$

$$\iff \sin^2(2x) = \frac{1}{4}$$

$$\iff \sin(2x) = \frac{1}{2} \text{ ou } \sin(2x) = -\frac{1}{2}$$

$$\iff \exists k \in \mathbb{Z}, 2x = \frac{\pi}{6} + 2k\pi \text{ ou } 2x = \frac{5\pi}{6} + 2k\pi \text{ ou } 2x = -\frac{\pi}{6} + 2k\pi \text{ ou } 2x = -\frac{5\pi}{6} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, x = \frac{\pi}{12} + k\pi \text{ ou } x = \frac{5\pi}{12} + k\pi \text{ ou } x = -\frac{\pi}{12} + k\pi \text{ ou } x = -\frac{5\pi}{12} + k\pi$$

Exercice 2

Soit $n \in \mathbb{N}^*$. On pose $H_n : 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$.

- ★ Pour $n = 1 : 1 \le 2 1$ donc H_1 est vraie.
- ★ Soit $n \in \mathbb{N}^*$ fixé. On suppose que H_n est vraie. $1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$ par H_n . Or,

$$2 - \frac{1}{n+1} - \left(2 - \frac{1}{n} + \frac{1}{(n+1)^2}\right) = -\frac{1}{n+1} + \frac{1}{n} - \frac{1}{(n+1)^2}$$

$$= \frac{-n(n+1) + (n+1)^2 - n}{n(n+1)^2}$$

$$= \frac{-n^2 - n + n^2 + 2n + 1 - n}{n(n+1)^2}$$

$$= \frac{1}{n(n+1)^2} > 0$$

Donc,
$$2 - \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{(n+1)^2}$$
.
Ainsi, $1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1}$.

 H_{n+1} est donc vraie. \star On a montré par récurrence que, pour tout $n \in \mathbb{N}^*, H_n$ est vraie

Exercice 3

On effectue un raisonnement par analyse-synthèse :

 \star Analyse: On se donne une fonction $f: \mathbb{R}^* \to \mathbb{R}$ vérifiant (*). Soit $x \in \mathbb{R}^*$.

En appliquant
$$(*): f(x) + 2f\left(\frac{1}{x}\right) = x$$
 L_1 .

En appliquant (*) avec
$$\frac{1}{x}$$
: $f\left(\frac{1}{x}\right) + 2f(x) = \frac{1}{x}$ L_2 .
En calculant $L_1 - 2L_2$: $-3f(x) = x - \frac{2}{x}$.
Ainsi, pour tout $x \in \mathbb{R}^*$, $f(x) = \frac{2}{3x} - \frac{x}{3}$.

D'où l'unicité de f.

★ Synthèse : On pose $f: \mathbb{R}^* \to \mathbb{R}$. $x \mapsto \frac{2}{3x} - \frac{x}{3}$

Soit $x \in \mathbb{R}^*$.

$$f(x) + 2f\left(\frac{1}{x}\right) = \frac{2}{3x} - \frac{x}{3} + \frac{4}{3}x - \frac{2}{3x}$$
$$= x$$

Ainsi f est solution de (*).

Il y a une unique solution au problème (*): la fonction $f: \mathbb{R}^* \to$

Exercice 4

Soit n un entier ≥ 2 . $S_n \sin\left(\frac{\pi}{n}\right) = \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) \sin\left(\frac{\pi}{2n}\right)$.

Retrouvons la formule donnant $\sin a \sin b$ pour a et b réels.

$$\begin{cases} \cos(a+b) &= \cos a \cos b - \sin a \sin b & L_1 \\ \cos(a-b) &= \cos a \cos b + \sin a \sin b & L_2 \end{cases}$$

$$\frac{L_2 - L_1}{2} \text{ donne} : \sin a \sin b = \frac{1}{2} \left(\cos(a-b) - \cos(a+b) \right).$$
Ainsi,

$$S_n \sin\left(\frac{\pi}{2n}\right) = \frac{1}{2} \sum_{k=1}^{n-1} \left(\cos\left(\frac{(2k-1)\pi}{2n}\right) - \cos\left(\frac{(2k+1)\pi}{2n}\right)\right)$$

$$= \frac{1}{2} \left(\sum_{k=1}^{n-1} \cos\left(\frac{(2k-1)\pi}{2n}\right) - \sum_{k=1}^{n-1} \cos\left(\frac{(2k+1)\pi}{2n}\right)\right)$$

$$= \frac{1}{2} \left(\sum_{j=0}^{n-2} \cos\left(\frac{(2j+1)\pi}{2n}\right) - \sum_{j=1}^{n-1} \cos\left(\frac{(2j+1)\pi}{2n}\right)\right)$$
en posant $j = k - 1$ (i.e. $k = j + 1$ dans la première somme)
$$= \frac{1}{2} \left(\cos\left(\frac{\pi}{2n}\right) - \cos\left(\frac{(2n-1)\pi}{2n}\right)\right)$$

$$= \frac{1}{2} \left(\cos\left(\frac{\pi}{2n}\right) - \cos\left(\pi - \frac{\pi}{2n}\right)\right)$$

$$= \frac{1}{2} \left(\cos\left(\frac{\pi}{2n}\right) + \cos\left(\frac{\pi}{2n}\right)\right)$$

$$= \cos\left(\frac{\pi}{2n}\right)$$

Comme
$$\frac{\pi}{2n} \in \left] 0, \frac{\pi}{4} \right], \sin\left(\frac{\pi}{2n}\right) \neq 0.$$

Ainsi, $S_n = \frac{\cos\left(\frac{\pi}{2n}\right)}{\sin\left(\frac{\pi}{2n}\right)}$ soit $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$.

Exercice 5

1°) La propriété (3) dit que :

si un entier n est dans A alors tout entier ≥ 1 qui est inférieur à n est aussi dans A.

- 2°) On pose, pour $m \in \mathbb{N}, H_m : 2^m \in A$.
 - ★ Pour $m = 0 : 2^0 = 1 \in A$.
 - ★ Soit $m \in \mathbb{N}$ fixé. On suppose que H_m est vraie. $2^m \in A$ donc par la propriété $(1): 2 \times 2^m \in A$ i.e. $2^{m+1} \in A$.
 - \bigstar On a montré par récurrence que : $\forall m \in \mathbb{N}, 2^m \in A$.
- **3**°) On sait déjà que $A \subset \mathbb{N}^*$.

Réciproquement, soit $n \in \mathbb{N}^*$.

Soit $m \in \mathbb{N}$. On résout :

$$2^m \ge n \iff \ln(2^m) \ge \ln n$$
 car ln est strictement croissante
$$\iff m \ln 2 \ge \ln n$$

$$\iff m \ge \frac{\ln n}{\ln 2} \text{ car } \ln 2 > 0$$

On prend alors comme entier m_0 le premier entier naturel supérieur ou égal à l'entier $\frac{\ln n}{\ln 2}$. On a donc $2^{m_0} \in A$ par 2.

Comme $2^{m_0} \in A$ et $n \leq 2^{m_0}$, on en déduit, par (3), que $n \in A$.

Ainsi, $\mathbb{N}^* \subset A$.

Finalement, $A = \mathbb{N}^*$.