HOMEWORK 9: ENTIRE FUNCTIONS DUE: WEDNESDAY, NOVEMBER 20TH

- (1) Find the order of growth of a polynomial p(z), $f(z) = e^{bz^n}$ with $b \neq 0$, and $g(z) = e^{e^z}$.
- (2) Show that if τ is fixed with $Im(\tau) > 0$, then the Jacobi function

$$\Theta(z,\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau} e^{2\pi i n z}$$

is of order 2 in z. (hint: Notice that $-n^2t + 2n|z| \le -\frac{n^2t}{2}$ for t > 0 and $n \ge 4\frac{|z|}{t}$)

(3) For t > 0 fixed, consider

$$F(z) = \prod_{n>1} \left(1 - e^{-2\pi nt} e^{2\pi iz} \right)$$

Note that F(z) is entire.

- \circ Show $|F(z)| \leq Ae^{a|z|^2}$, hence F is of order 2.
- $\circ F(z) = 0$ exactly when z = nit + m, where n > 1 and $n, m \in \mathbb{Z}$. Thus if z_n are its zeroes, then

$$\sum_{n} \frac{1}{|z_n|^2} = \infty \qquad \sum_{n} \frac{1}{|z_n|^{2+\epsilon}} < \infty$$

(4) If $\alpha > 1$, then

$$F_{\alpha}(z) = \int_{-\infty}^{\infty} e^{-|t|^{\alpha}} e^{2\pi i zt} dt$$

has order of growth $\frac{\alpha}{\alpha-1}$. (hint: Show that $-\frac{|t|^{\alpha}}{2} + 2\pi|z||t| \le c|z|^{\frac{\alpha}{\alpha-1}}$ by consideration of $|t|^{\alpha-1} \le A|z|$ and $|t|^{\alpha-1} \ge A|z|$ for some A > 0)

- (5) Establish the following identities:
 - If $\sum |a_n|^2$ converges, and $a_n \neq -1$ for any n, then $\prod (1+a_n)$ converges and is non-zero if and only if $\sum a_n$ converges.
 - Find an example for which $\sum a_n$ converges, but $\prod (1 + a_n)$ diverges.
 - \circ Find a convergent $\prod (1+a_n)$ where $\sum a_n$ diverges.