

Machine Learning CS60050

Bayesian Learning

(Probability Overview)

Probability Overview

- Events
 - discrete random variables, continuous random variables, compound events
- Axioms of probability
 - What defines a reasonable theory of uncertainty
- Independent events
- Conditional probabilities
- Bayes rule and beliefs
- Joint probability distribution
- Expectations
- Independence, Conditional independence

Random Variables

- Informally, A is a <u>random variable</u> if
 - A denotes something about which we are uncertain
 - perhaps the outcome of a randomized experiment
- Examples
 - A = True if a randomly drawn person from our class is female
 - A = The hometown of a randomly drawn person from our class
 - A = True if two randomly drawn persons from our class have same birthday
- Define P(A) as "the fraction of possible worlds in which A is true" or "the fraction of times A holds, in repeated runs of the random experiment"
 - the set of possible worlds is called the sample space, S
 - A random variable A is a function defined over S

A:
$$S \to \{0,1\}$$

A little formalism

More formally, we have

- a sample space S (e.g., set of students in our class)
 - aka the set of possible worlds
- a <u>random variable</u> is a function defined over the sample space
 - Gender: $S \rightarrow \{ m, f \}$
 - Height: S → Reals
- an <u>event</u> is a subset of S
 - e.g., the subset of S for which Gender=f
 - e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
- we're often interested in probabilities of specific events
- and of specific events conditioned on other specific events

Visualizing A

P(A) = Area of reddish oval

The Axioms of Probability

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

[di Finetti 1931]:

when gambling based on "uncertainty formalism A" you can be exploited by an opponent

iff

your uncertainty formalism A violates these axioms

Elementary Probability in Pictures

• $P(\sim A) + P(A) = 1$

A useful theorem

0 <= P(A) <= 1, P(True) = 1, P(False) = 0,
 P(A or B) = P(A) + P(B) - P(A and B)

$$\rightarrow$$
 P(A) = P(A ^ B) + P(A ^ ~B)

A = $[A \text{ and } (B \text{ or } \sim B)] = [(A \text{ and } B) \text{ or } (A \text{ and } \sim B)]$ P(A) = P(A and B) + P(A and $\sim B$) – P((A and B) and (A and $\sim B$)) P(A) = P(A and B) + P(A and $\sim B$) – P(A and B and A and $\sim B$)

Elementary Probability in Pictures

• $P(A) = P(A ^ B) + P(A ^ -B)$

Definition of Conditional Probability

Definition of Conditional Probability

Corollary: The Chain Rule

$$P(A \land B) = P(A|B) P(B)$$

Bayes Rule

let's write 2 expressions for P(A ^ B)

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Other Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A | B \land X) = \frac{P(B | A \land X)P(A \land X)}{P(B \land X)}$$

Applying Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$$

A = you have the flu, B = you just coughed

Assume:

$$P(A) = 0.05$$

$$P(B|A) = 0.80$$

$$P(B| \sim A) = 0.2$$

what is $P(flu \mid cough) = P(A|B)$?

what does all this have to do with function approximation?

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

Recipe for making a joint distribution of M variables:

 Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows). Example: Boolean variables A, B, C

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Distribution

One you have the JD you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

P(Poor Male) = 0.4654
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

$$P(Poor) = 0.7604$$

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

Inference with the Joint

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

 $P(Male \mid Poor) = 0.4654 / 0.7604 = 0.612$

You should know

- Events
 - discrete random variables, continuous random variables, compound events
- Axioms of probability
 - What defines a reasonable theory of uncertainty
- Conditional probabilities
- Chain rule
- Bayes rule
- Joint distribution over multiple random variables
 - how to calculate other quantities from the joint distribution

Expected values

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x)P(X = x)$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

e.g., X=gender, Y=playsFootball

or X=gender, Y=leftHanded

Remember:
$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

Thank You!

@ MARK ANDERSON, WWW.ANDERTOONS.COM

"I know mathematically that A is more likely, but I gotta say, I feel like B wants it more."