

WHAT IS CLAIMED IS:

1. A Coriolis mass flow meter having two parallel flow tubes, an entry-side manifold that branches a fluid being measured from an inlet port into said two flow tubes, an exit-side manifold that converges flows of said fluid being measured flowing in said two flow tubes into an outlet port to discharge said fluid being measured, a drive unit for driving and resonating a flow tube with another flow tube at mutually opposite phases, and a pair of oscillation sensors installed at locations horizontally symmetrical with respect to the installation location of said drive unit for sensing a phase difference proportional to a Coriolis force, said meter comprising;

10 said two flow tubes being formed into an arch shape that is bent in only one direction; and

 said entry-side and exit-side manifolds being smoothly bent from an inlet of said entry-side manifold and an outlet of said exit-side manifold to joints connecting to said two flow tubes, and connected to said flow tubes at said joints at a predetermined rise

15 angle in the same direction as said flow tubes.

2. A Coriolis mass flow meter as set forth in Claim 1 further comprising a sealed pressure-resistant case of a cylindrical shape in axis direction, with openings of the cylindrical portion thereof closed by end plates, wherein said entry-side and exit-side manifolds are installed at corners of said cylindrical portion and passed through said

20 corners.

3. A Coriolis mass flow meter as set forth in Claim 1 wherein said entry-side and exit-side manifolds have a pair of integrally formed disc-shaped flanges, to which both ends of said pressure-resistant case are fixedly fitted; the cross-sectional shape of said pressure-resistant case being an oval shape with the major axis oriented in the curved direction of said flow tubes, with the length of said major axis smoothly and gradually

stab end. reduced from the axial central part thereof to both ends thereof into a substantially circular shape over a predetermined length near both ends.

4. A Coriolis mass flow meter as set forth in Claim 3 further comprising a temperature sensor provided on said pressure-resistant case for compensating the
5 thermal effects of a distance between fixed ends on both sides of said flow tubes, and a temperature sensor provided near said joints connecting said flow tubes to said manifolds for compensating the thermal effects of the rigidity of said flow tubes.

Add *Y*
A3