Universidad de Granada. Ecuaciones Diferenciales I. Grupo A 21 de Marzo de 2019

NOMBRE:

1. En el plano con coordenadas (x,y) se considera la familia de curvas dada por la ecuación

$$\frac{y^2}{2} + x = c$$

donde $c \in \mathbb{R}$ actúa como parámetro. Encuentra la familia de trayectorias ortogonales. Dibuja ambas familias.

Now +1=0=>y=-1

$$4y' = -\frac{1}{100} = 48$$

N'= N = N (x) = Kex / KeR

2. Escribe la ecuación diferencial que modela la desintegración del Radio 226 sabiendo que la masa se reduce a la mitad (periodo de semi-desintegración) en 1600 años.

sea m(t) la masa del elemento en el instante de tiempo t>0. sea >>0 un parametro que depende de la sustancia.

sabemos que la ecuación de desintegración es de la forma

$$M'(t) = -x M(t) = x M(t) = C e^{-xt} \cdot c > 0$$

$$M(1600) = \frac{M(0)}{2} = 7 Ce^{-x/1600} = \frac{C}{2} = 9 e^{-x/1600} = \frac{1}{2} = 9 = \frac{14(2)}{1660}$$

Por tanto, nuestra ecuación es la siguiente: $m'(t) = -\frac{\ln(z)}{1600} m(t)$

STAND STANDS

3. Encuentra las órbitas del sistema autónomo

$$x' = (x^2 + 3y^2 + 1)y, \ y' = -(x^2 + 3y^2 + 1)x.$$

¿Qué tipo de curvas son?

Orbito =
$$(x(t), y(t)) / t \in I$$

$$\frac{dx}{dt} = (x^2 + 3y^2 + 1) y$$

$$\frac{dy}{dt} = -(x^2 + 3y^2 + 1) x$$

$$= \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{-x}{y}$$

Llegamos a una ecuación de variables separadas:

$$\frac{dy}{dx} = \frac{-x}{x} \implies \int -xdx = \int ydy \implies -\frac{x^2}{2} + c = \frac{y^2}{2} \implies x^2 + y^2 = c \implies \frac{x^2}{2} + \frac{y^2}{2} = 1$$

Por tauto, vemos que la orbita es una elipse.

4. Se considera la transformación
$$\varphi:\mathbb{R}^2\to\mathbb{R}^2,\,\varphi(t,x)=(s,y)$$
 con

$$s = e^t$$
, $y = e^t x$.

Determina la imagen $\varphi(\mathbb{R}^2) = \hat{\Omega}$ y prueba que φ es un C^1 -difeomorfismo entre $\Omega = \mathbb{R}^2$ y $\hat{\Omega}$. ¿Es este cambio de variable admisible para la ecuación x' =

$$Y(t_1 \times) = (e^t, e^t \times)$$

- Veamos
$$\psi(\mathbb{R}^2) = \hat{\Lambda} = \mathbb{R}^4 \times \mathbb{R}^4$$

Sea (tix)
$$\in \mathbb{R}^7$$
. $\psi(t_1x) = (e^t, e^t x) \in \mathbb{R}^t \times \mathbb{R} \Rightarrow \psi(\mathbb{R}^2) \subseteq \mathbb{R}^t \times \mathbb{R}$

2) Sea (sign) e R+xR. si pérdida de garevalidad, podemos tomar (sign) = (e+, e+x) = ((+,x),(+,x)eR²
$$\Rightarrow$$
 \forall (sign) e R+xR, \exists (+, x) e R² / \forall (fix) = (sign) \Rightarrow (sign) e \forall (R²) \Rightarrow R† xR \Rightarrow \forall (IR²)

Sea
$$\psi: \hat{\Lambda} \rightarrow \mathbb{R}^{2} \mid \psi(s, y) = (\ln(s), \frac{y}{s})$$

Claramente $\Psi \in C^{1}(\mathbb{R}^{2})$ y $\Psi \in C^{1}(\hat{\Lambda})$ for serio cada Componente.

$$\Psi(\Psi(s, y)) = \Psi(\ln(s), \frac{y}{s}) = (e^{\ln(s)}, \frac{y}{s}, e^{-\ln(s)}) = (s, y)$$

 $\Psi(\Psi(s, y)) = \Psi(e^{t}, xe^{t}) = (\ln(e^{t}), \frac{xe^{t}}{e^{t}}) = (f(x))$

for tanto, ean inversors.

- Para ser admisible pour x'= t'cosx = &(t,x), g: R->R

3)
$$\frac{1}{\sqrt{1}}(t_{1}x) + \frac{1}{\sqrt{1}}(t_{1}x)f(t_{1}x) = e^{t} + 0 = e^{t} \neq 0 \quad \forall (t_{1}x) \in \mathbb{R}^{3}$$

Por tanto, es accesible.

5. Por un argumento visto en clase sabemos que la ecuación

$$x^{55} + x + t = 0$$

define una función $x: \mathbb{R} \to \mathbb{R}$, x=x(t), de clase C^1 . Demuestra que esta función también es de clase C^2 y encuentra una ecuación diferencial de segundo orden que la admita como solución.