

MAT 3007 – Optimization Optimality Conditions

Lecture 12

July 6th

Andre Milzarek

SDS / CUHK-SZ

Repetition

Recap: Nonlinear Optimization

Terminologies:

- Global vs local optimizer (minimizer).
- Gradient, Hessian, Taylor expansions, ...

We started to study optimality conditions for unconstrained optimization problems.

Recap: Optimality for Unconstrained Problems

First-Order Necessary Conditions

If x^* is a local minimizer of the unconstr. problem $\min_{x \in \mathbb{R}^n} f(x)$, then we must have $\nabla f(x^*) = 0$.

Theorem: Second-Order Necessary Conditions

If x^* is a local minimizer of f, then it holds that:

- 1. $\nabla f(x^*) = 0$;
- 2. For all $d \in \mathbb{R}^n$: $d^\top \nabla^2 f(x^*) d \geq 0$.
- These necessary conditions can be used to find candidates for local minimizers.

Recap: Definiteness

Definiteness: Let A be a real $n \times n$ matrix.

- ▶ A is called positive (negative) semidefinite if $x^{\top}Ax \ge 0$ (≤ 0) for all $x \in \mathbb{R}^n$.
- ► The matrix A is positive (negative) definite if $x^T Ax > 0$ (< 0) for all $x \in \mathbb{R}^n \setminus \{0\}$.
- ▶ A is said to be indefinite if A is neither positive semidefinite nor negative semidefinite.

Theorem: Eigenvalues and Definiteness

Let A be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_i \in \mathbb{R}$, i = 1, ..., n. It follows:

- ▶ A is pos. (neg.) semidefinite iff $\lambda_i \geq 0$ (≤ 0) for all i.
- ▶ A is pos. (neg.) definite iff $\lambda_i > 0$ (< 0) for all i.
- ▶ A is indefinite iff there are $i, j \in \{1, ..., n\}$ with $\lambda_i > 0$ and $\lambda_j < 0$.

Logistics & Agenda

Logistics:

- ► The detailed description of the midterm project is online.
- ► The project is generally designed for groups of three students.
- ▶ Please send names and student IDs of the students in your group (and the group name) to huangzhipeng@cuhk.edu.cn until Wed., July 8th, 11:00 am.
- ▶ Deadline for the report submission is Sat., July 18th, 11:00 pm.
- ▶ Solutions for the second exercise sheet are now available.
- ► The fourth (smaller) exercise sheet is also online. It is due on Sun., July 12th, 11:00 am.

Agenda:

→ Continue with optimality conditions.

Second-Order Necessary Conditions

Example: SONC

We consider the unconstrained problem

minimize_{$$x \in \mathbb{R}$$} $f(x) := x^4 - 9x^2 + 4x - 1$.

Example: Continued

For $f(x) := x^4 - 9x^2 + 4x - 1$, the second-order condition is:

$$f''(x) = 12x^2 - 18 \ge 0$$

Only $x_1=-1-\sqrt{6}/2$ and $x_3=2$ satisfy the condition. But for the point $x_2=-1+\sqrt{6}/2$, we obtain $f''(x_2)=12(1-\sqrt{6})<0$ (thus, x_2 is not a local minimizer).

In the example of least squares problem, we use the following fact:

▶ If
$$f(x) = x^{\top} Mx$$
 (M is symmetric), then $\nabla^2 f(x) = 2M$.

Therefore, the Hessian matrix in that problem is $2X^{T}X$, which is always a PSD matrix. Therefore, the SONC always holds!

SONC is Not Sufficient & Saddle Points

However, even if both the first- and second-order necessary cond. hold, we still can not guarantee that the candidate is a local min.!

Example: Consider $f(x) = x^3$ at 0.

- f'(0) = f''(0) = 0, thus FONC and SONC hold.
- ▶ But 0 is not a local minimum.

- ► The SONC can used to verify that a candidates are **not** local minimizer.
- → By modifying the SONC, we can get a sufficient condition.

Indefiniteness and Saddle Points

Definition: Stationary Points and Saddle Points

- A point x satisfying $\nabla f(x) = 0$ is called critical point or stationary point.
- ► A stationary point is called saddle point if it is neither a local minimizer nor a local maximizer.

Corollary: Saddle Points

Suppose that x^* is a stationary point $(\nabla f(x^*) = 0)$ and that the Hessian $\nabla^2 f(x^*)$ is indefinite, then x^* is a saddle point.

Example: Saddle Point

Plot of the function $f(x) = x_1^2 - x_2^2$.

▶ The gradient is $\nabla f(x) = (2x_1, -2x_2)^{\top}$ and $x^* = (0, 0)^{\top}$ is the single stationary point of f. Since $\nabla^2 f(x^*)$ is indefinite, x^* has to be a saddle point.

Second-Order Sufficient Conditions

Second-Order Sufficient Condition (SOSC)

Theorem: Second-Order Sufficient Conditions

Let f be twice continuously differentiable. If x^* satisfies:

- 1. $\nabla f(x^*) = 0$;
- 2. For all $d \in \mathbb{R}^n \setminus \{0\}$: $d^\top \nabla^2 f(x^*) d > 0$;

then x^* is a strict local minimum of f.

► A symmetric matrix is PD ⇔ the determinants of all leading principal submatrices are positive.

The proof uses:

Lemma: Bounds and Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then

$$\lambda_{\min}(A) \|x\|^2 \le x^{\top} A x \le \lambda_{\max}(A) \|x\|^2 \quad \forall \ x \in \mathbb{R}^n,$$

where $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ are the smallest and largest EV of A.

For Maximization Problems

Our conditions are derived for minimization problems. For maximization problems, we just change the inequalities. Let $f \in C^2$.

Theorem: FONC for Maximization

If x^* is a local (unconstrained) maximizer of f, then we must have $\nabla f(x^*) = 0$.

Theorem: SONC for Maximization

If x^* is a local maximizer of f, then we must have 1.) $\nabla f(x^*) = 0$; 2.) $\nabla^2 f(x^*)$ is negative semidefinite.

Theorem: SOSC for Maximization

If x^* satisfies 1.) $\nabla f(x^*) = 0$; 2.) $\nabla^2 f(x^*)$ is negative definite, then x^* is a strict local maximizer.

Optimality Conditions

Optimality Conditions for Unconstrained Problems:

- First-order necessary condition.
- Second-order necessary condition.
- Second-order sufficient condition.

In many cases, we can utilize these conditions to identify local and global optimal solutions.

General Strategy:

- ▶ Use FONC and SONC to identify all possible candidates. Then, use the sufficient conditions to verify.
- ▶ If a problem only has one stationary point and one can reason that the problem must have a finite optimal solution, then this point must be the (global) optimum.

Examples – I

In the example $f(x) = x^4 - 9x^2 + 4x - 1$, the points x_1 and x_3 satisfy the second-order sufficient conditions (f''(x) > 0) and are local minimizer.

In the least squares problem, if $X^{T}X$ is positive definite (or if it is invertible), then the solution β of the FONC

$$X^{\top}X\beta = X^{\top}y$$

is unique and it satisfies the second-order sufficient conditions.

→ It must be the unique global minimizer of the problem.

Example – II

We consider the two-dimensional optimization problem

$$\min_{x \in \mathbb{R}^2} f(x) = x_1^2 x_2 + x_1 x_2^3 - 5x_1 x_2$$

Find all local minimizer, local maximizer, and saddle points of f!

Example – II: Continued

x*	$f(x^*)$	$\nabla^2 f(x^*)$	λ_1 , λ_2	Definiteness	Conclusion
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$		$\begin{pmatrix} 0 & -5 \\ -5 & 0 \end{pmatrix}$	5, -5		
$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$		$\begin{pmatrix} 0 & 5 \\ 5 & 0 \end{pmatrix}$	5, -5		
$\begin{pmatrix} 0 \\ \sqrt{5} \end{pmatrix}$		$\begin{pmatrix} \sqrt{5} & 10 \\ 10 & 0 \end{pmatrix}$	$5\sqrt{5}, -4\sqrt{5}$		
$\begin{pmatrix} 0 \\ -\sqrt{5} \end{pmatrix}$		$\begin{pmatrix} -\sqrt{5} & 10\\ 10 & 0 \end{pmatrix}$	$4\sqrt{5}, -5\sqrt{5}$		
$\binom{2}{1}$		$\begin{pmatrix} 1 & 2 \\ 2 & 12 \end{pmatrix}$	12.4, 0.7		
$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$		$\begin{pmatrix} -1 & 2 \\ 2 & -12 \end{pmatrix}$	-0.7, -12.4		

Example – II: Continued

Existence of Solutions

Weierstraß Theorem

Weierstraß Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function and let $\Omega \subset \mathbb{R}^n$ be a bounded, closed, and nonempty set. Then, f attains a global maximum and global minimum on the set Ω .

- ► The set Ω is closed if for every convergent sequence $(x^k)_k$ with $x^k \in \Omega$ for all k and $\lim_{k \to \infty} x^k = x$, it holds that $x \in \Omega$.
- ▶ Ω is bounded if there is B > 0 with $||x|| \le B$ for all $x \in \Omega$.
- ► A closed and bounded set is also called compact.

Example:

min
$$f(x) = x_1^2 - x_2^2$$
 s.t. $h(x) = x_1^2 + x_2^2 - 4 = 0$.

- ► The feasible set $\Omega = \{x : h(x) = 0\} = \{x \in \mathbb{R}^2 : ||x|| = 2\}$ is closed and bounded and f is continuous (on \mathbb{R}^2).
- \rightsquigarrow By Weierstraß: f attains a global max. and min. on Ω .

Unconstrained Problems: Coercivity

The Weierstraß Theorem guarantees existence of global minima if we minimize a continuous function on a compact set.

► For unconstr. problems, this result is not directly applicable.

Definition: Coercivity

A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be coercive if

$$\lim_{\|x\|\to\infty} f(x) = +\infty.$$

- ▶ Geometrically, coercivity means that f(x) increases as x moves away from the origin in any possible direction.
- Mathematically, coercivity means:

$$\forall B > 0 \quad \exists r > 0 \quad \text{such that} \quad ||x|| > r \implies f(x) > B.$$

Examples:

► The mappings $f(x) = x^2$, $f(x) = x^4$, and $f(x) = |x|^3$ are simple coercive functions.

Unconstrained Problems: Coercivity

Examples - Continued:

► The functions f(x) = x, $f(x) = x^3$, $f(x) = e^x$, and f(x) = 1 are not coercive.

Coercivity is often established by estimating the function and by finding a suitable lower bound for sufficiently large x. (What are the dominating terms in f?).

Coercivity guarantees existence of solutions:

Theorem: Coercivity and Existence of Solutions

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a continuous and coercive function. Then, for all $\alpha>0$, the level set

$$L_{\leq \alpha} := \{ x \in \mathbb{R}^n : f(x) \leq \alpha \}$$

is compact and f has at least one global minimizer.

Optimality Conditions for Constrained Problems

Constrained Problems

We have derived necessary and sufficient conditions for the local minimum for unconstrained problems.

▶ What is the difference between constrained and unconstrained problems? How can we characterize optimality?

Let us consider the constrained problem

$$\min_{x \in \mathbb{R}} f(x) := x^4 - 9x^2 + 4x - 1$$
 subject to $x \in [-3, 3]$.

In addition to the original local maximizer $(x_2 = \sqrt{6}/2 - 1)$, there are two more local maximizer at the boundary $(x = \pm 3)$.

Constrained Problems: Where to Go?

At the boundary (x = 3), the FONC is not satisfied:

$$f'(3) = 58 > 0.$$

However, at this point, in order to stay feasible, we can only go leftward. That is, in the Taylor expansion

$$f(x+d) = f(x) + f'(x) \cdot d + o(d)$$

we can only take d to be negative (otherwise x + d is not feasible).

Thus, f(x + d) < f(x) in a small neighborhood of x in the feasible region. Hence, x = 3 is a local (even global) maximizer.

Feasible Directions

We now formalize the above arguments.

Definition: Feasible Direction

Given $x \in \Omega$, we call d a feasible direction at x if there exists $\overline{t} > 0$ such that $x + td \in \Omega$ for all $0 < t < \overline{t}$.

Example:

- ▶ If $\Omega = \{x : Ax = b\}$, then all feasible directions at x are given by $\{d : Ad = 0\}$.
- ▶ If $\Omega = \{x : Ax \ge b\}$, then the feasible directions at x are given by $\{d : a_i^\top d \ge 0 \text{ if } a_i^\top x = b_i\}$.

FONC for Constrained Problems

Theorem: FONC for Constrained Problems

Let x^* be a local minimum of $\min_{x \in \Omega} f(x)$. Then for any feasible direction d at x^* , we must have $\nabla f(x^*)^{\top} d \geq 0$.

Proof:

 \leadsto As before by Taylor expansion and using $x+td \in \Omega$ for all t sufficiently small.

Remark:

- ▶ In the unconstrained case, all directions are feasible. Thus, we must have $\nabla f(x^*) = 0$.
- \rightsquigarrow This is also true, when x^* lies in the interior of Ω .

An Alternative View: Descent Directions

Definition: Descent Direction

Let f be continuously differentiable. Then d is called a descent direction at x if and only if $\nabla f(x)^{\top} d < 0$.

Remark:

▶ If d is a descent direction at x, then there exists $\bar{\gamma} > 0$ such that $f(x + \gamma d) < f(x)$ for all $0 < \gamma \leq \bar{\gamma}$.

If we denote the set of feasible directions at x by $S_{\Omega}(x)$ and the set of descent directions at x by $S_{D}(x)$, then the first order necessary condition can be written as:

$$S_{\Omega}(x^*) \cap S_D(x^*) = \emptyset$$

→ There are no feasible descent directions.

General Optimality Conditions

We want to use the notion of feasible and descent directions to obtain optimality conditions for nonlinear programs of the form:

General Nonlinear Optimization Problem:

$$f(x)$$
 subject to $g_i(x) \leq 0, \quad \forall \ i = 1,...,m,$ $h_j(x) = 0, \quad \forall \ j = 1,...,p.$

▶ The feasible set is $\Omega = \{x \in \mathbb{R}^n : g(x) \le 0, \ h(x) = 0\}.$

Definition: Active and Inactive Set.

At a point $x \in \Omega$, the set $\mathcal{A}(x) := \{i : g_i(x) = 0\}$ denotes the set of active constraints. The set of inactive constraints is given by $\mathcal{I}(x) := \{i : g_i(x) < 0\}$.

→ We first consider linear constraints as special case.

Optimality Conditions: Linear Constraints

Problems with Linear Inequality Constraints

We now first consider an inequality constrained problem:

$$minimize_x f(x)$$
 s.t. $Ax \ge b$. (1)

How can we express the necessary optimality conditions?

Theorem: FONC for Linearly Constrained Problems

If x^* is a local minimum of (1), then there exists some $y \ge 0$ with

$$\nabla f(x^*) - A^{\top} y = 0$$

$$y_i \cdot (a_i^{\top} x^* - b_i) = 0 \quad \forall i,$$

where a_i^{\top} is the *i*th row of A.

Problems with Linear Equality Constraints

As a consequence, the first-order conditions for the problem

$$minimize_x f(x) \quad \text{s.t.} \quad Ax = b \tag{2}$$

are given by:

Theorem: Linear Equality Constraints

If x^* is a local minimum of (2), then there is some $y \in \mathbb{R}^m$ with

$$\nabla f(x^*) = A^\top y.$$

Questions?