γ

$$F = m \frac{dv}{dt}$$

$$F = m \frac{d^2x}{dt^2}$$

 $F_{weight} = mg$ Weight and Mass Weight density and Mass density

Perimeter P = 2x + 2ySurface area A = 2xy + 2yz + 2xz

Area A = xy

Volume V = xyz

Surface area
$$A = 2\pi r^2 + 2\pi rh$$

Volume $V = \pi r^2 h$

De area
$$A = 2\pi r^2 + 2\pi rh$$

Surface area $A = \pi r \sqrt{r^2 + h^2} + \pi r^2$ Volume $V = \frac{1}{3} \pi r^2 h$

Cone

Note: the volume of any pyramid or cone is one-third the product of its height (h)

and the area of its base.

Tetrahedron

 $[Watts] = [Amperes] \times [Volts]$ [W] = [A][V]

$$\left[\frac{\text{Joules}}{\text{Seconds}}\right] = \left[\frac{\text{Coulombs}}{\text{Seconds}}\right] \times \left[\frac{\text{Joules}}{\text{Coulombs}}\right] \quad \text{or} \quad \left[\frac{\text{J}}{\text{s}}\right] = \left[\frac{\text{C}}{\text{s}}\right] \left[\frac{\text{J}}{\text{C}}\right]$$

35 qt = ??? gal

$$\left(\frac{35 \text{ qt}}{1}\right) \left(\frac{1 \text{ gal}}{4 \text{ qt}}\right)$$

$$\left(\frac{35 \text{ qt}}{1}\right) \left(\frac{1 \text{ gal}}{4 \text{ qt}}\right) = 8.75 \text{ gal}$$

$$\left(\frac{40 \text{ gal}}{1}\right) \left(\frac{128 \text{ fl. oz.}}{1 \text{ gal}}\right) = 5120 \text{ fl. oz}$$

$$\left(\frac{5.5 \text{ pt}}{1}\right) \left(\frac{231 \text{ in}^3}{8 \text{ pt}}\right) = 158.8 \text{ in}^3$$

 $\left(\frac{5.5 \text{ pt}}{1}\right) \left(\frac{231 \text{ in}^3}{8 \text{ pt}}\right) \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) = 13.23 \text{ in}^2 \cdot \text{ft}$

$$\left(\frac{5.5 \text{ pt}}{1}\right) \left(\frac{231 \text{ in}^3}{8 \text{ pt}}\right) \left(\frac{1 \text{ ft}}{12 \text{ in}}\right)^3$$

$$\left(\frac{5.5 \text{ pt}}{1}\right) \left(\frac{231 \text{ in}^3}{8 \text{ pt}}\right) \left($$

$$\left(\frac{5.5 \text{ pt}}{1}\right) \left(\frac{231 \text{ im}^3}{8 \text{ pt}}\right) \left(\frac{1 \text{ ft}^3}{1728 \text{ im}^3}\right) = 0.0919 \text{ ft}^3$$

$$\left(\frac{205 \text{ ft}^3}{\text{min}}\right) \left(\frac{1^3 \text{ yd}^3}{3^3 \text{ ft}^3}\right) \left(\frac{60 \text{ min}}{1 \text{ hr}}\right) \left(\frac{24 \text{ hr}}{1 \text{ day}}\right) = 10933.3 \text{ yd}^3/\text{day}$$

$$\left[\frac{\text{Joules}}{\text{Seconds}}\right] = \left[\frac{\text{Coulombs}}{\text{Seconds}}\right] \times \left[\frac{\text{Joules}}{\text{Coulombs}}\right] \quad \text{or} \quad \left[\frac{\text{J}}{\text{s}}\right] = \left[\frac{\text{C}}{\text{s}}\right] \left[\frac{\text{J}}{\text{C}}\right]$$

$$[J] = \frac{[\mathrm{kg}][\mathrm{m}^2]}{[\mathrm{s}^2]}$$

Physical quantity	SI unit	SI symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

$$E = mc^2$$

$$W = \vec{F} \cdot \vec{x}$$

$$W = Fx$$

$$W = -Fx$$

 $\cos \theta$

$$W = Fx \cos \theta$$

$$\cos 0^{\circ} = 1$$

 $\cos 180^{\circ}$

Crane lifts weight 15 feet up

Crane does work on weight $W_{crane} = (2380 \text{ lb})(15 \text{ ft})(\cos 0^{\circ}) = +35700 \text{ ft-lbs}$ Work is done on the weight $W_{weight} = (2380 \text{ lb})(15 \text{ ft})(\cos 180^{\circ}) = -35700 \text{ ft-lbs}$ W_{crane} = +35700

$$W_{weight} = -35700$$

 180^{o}

Crane moves weight 15 feet along the ground

No work done on or by the crane $W_{crane} = (2380 \text{ lb})(15 \text{ ft})(\cos 90^{\circ}) = 0 \text{ ft-lbs}$ No work done on or by the weight $W_{weight} = (2380 \text{ lb})(15 \text{ ft})(\cos -90^{\circ}) = 0 \text{ ft-lbs}$ Crane lowers weight 15 feet back to ground

Work is done on the crane $W_{crane} = (2380 \text{ lb})(15 \text{ ft})(\cos 180^{\circ}) = -35700 \text{ ft-lbs}$ Weight does work on crane $W_{weight} = (2380 \text{ lb})(15 \text{ ft})(\cos 0^{\circ}) = +35700 \text{ ft-lbs}$

$$W = \vec{F} \cdot \vec{x}$$

$$W = E_P$$

$$E_p = mgh$$

$$E_p = mgh$$

$$W_{truck} = Fx \cos \theta$$

$$W_{truck} = (1200 \text{ lb})(40 \text{ ft}) \cos 0^{\circ}$$

 $W_{truck} =$ 48000 lb-ft

$$W_{load} = Fx \cos \theta$$

$$W_{load} = (1200 \text{ lb})(40 \text{ ft}) \cos 180^{\circ}$$

$$W_{load} = -48000 \text{ lb-ft}$$

$$C = \pi D = 2\pi r$$

$$\tau = rF$$

$$W = k\tau x$$

$$W = 2\pi\tau x$$

Winch lifts weight 15 feet up

$$W = 2\pi\tau x$$

$$\tau = (0.25 \text{ ft})(2380 \text{ lb})$$

= 595 lb-ft

$$x = \frac{W}{2\pi\tau}$$

$$x = \frac{35700 \text{ ft-lb}}{(2\pi)(595 \text{ lb-ft})}$$

Energy Control Procedure

Revision Number & Date one 7/23/2009

Ingersol Rand KVS 412 Minor maintenance

Items to be completed before proceeding

			Items to be completed before proceeding	
	In	itial all s	eps	
	172	1	Only qualified \authorized employees are allowed to complete this task.	
	37	2	Verify equipment has not changed before relying on this procedure	
	137	3	Redline and update any changes & notify effected employee if required	
	TZ	. 4	Notify all effected employees before starting	
	72.	5	Notify Gas Control	
	50	6	If the crane is to be used complete crane inspection	
	17	7	Complete all required documentation	
	ST.	8	Indentify required forms, Use updated forms	
	V.	9	Hot Work Permit WGP- 0059 Procedure 65.0020.05	
	100	10	Crane pre use inspection. Form Attachment A Procedure 65.00.08.06	
		11	Drawing ####### Not available at this time	
	Date & Tin	ne .	9-28-11 10:00 6:41	
Authorized Technician			Thiesen (dus	
Scope of work			SANCE MUSES CAMBINE IDEAT	
Out of S	ervice		The transfer of the transfer o	_
Step	Initials	Lock#	Task	
1	12	1	Tag out unit mode switch in off position	
2	132	7	Close starting air block valve. Lock and tag.	-
3	1	2	Close fuel block valve. Lock and tag.	
	1.			

Return	to Service			
Step	Initials	Lock # off	Task	
1			Remove tag from unit mode switch. Place switch in local manual	
2			Remove lock from starting air block valve open valve.	
3			Remove tag from fuel block valve open valve	
4			Reset unit panel alarms	
5			Place unit panel selector switch in remote auto.	
			Affected employee log	
lock	On	Off	Name	
w	10:00		Name	

$$E_k = \frac{1}{2}mv^2$$

$$E_p + E_k = \text{constant}$$

$$E_p$$
 (initial) = E_k (final)

$$mgh_i = \frac{1}{2}mv_f^2$$

$$gh_i = \frac{1}{2}v_f^2$$

 $E_n = mqh$ Potential energy due to elevation

$$E_k = \frac{1}{2}mv^2$$
 Kinetic energy due to velocity

$$\frac{[kg][m^2]}{[s^2]} = [kg] \left[\frac{m}{s^2}\right] [m] \qquad \text{Potential energy due to elevation}$$

$\frac{\text{kg}][\text{m}^2]}{[\text{s}^2]} = [\text{kg}] \left[\frac{\text{m}}{\text{s}}\right]^2$	Kinetic energy due to velocity
--	--------------------------------

$\frac{[kg][m^2]}{[s^2]} = [kg] \left[\frac{m}{s}\right]^2$	Mass-to-energy conversion
---	---------------------------

$$P = \frac{dW}{dt}$$

$$F = -kx$$

$$E_p = Fx$$

$$E_p = Fx$$

$$E_p = \int kx \, dx$$

$$E_p = \frac{1}{2}kx^2 + E_0$$

$$E_p = \frac{1}{2}kx^2$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\frac{\tau_1}{\tau_2} = \frac{n_1}{n_2}$$

$$\frac{\omega_1}{\omega_2} = \frac{n_2}{n_1}$$

Linear quantity, symbol, and unit	Rotational quantity, symbol, and unit
Force (F) N	Torque (τ) N-m
Linear displacement (x) m	Angular displacement (θ) radian
Linear velocity $(v) m/s$	Angular velocity $(\omega) \ rad/s$
Linear acceleration (a) m/s^2	Angular acceleration (α) rad/s^2
Mass (m) kg	Moment of Inertia $(I) kg-m^2$

F= ma $= I\alpha$

$$a = \frac{dv}{dt}$$
 (Acceleration as the time-derivative of velocity) $\alpha = \frac{d\omega}{dt}$

WFxW $= \tau \theta$

$$E_k = \frac{1}{2}mv^2 \qquad E_k = \frac{1}{2}I\omega^2$$

Efficiency = $\eta = \frac{E_{output}}{E_{input}}$

$$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\frac{N_r}{N_s} + 1$$

$$\frac{N_s}{N_r} + 1$$

Worm gear mechanism Worm wheel Worm screw

Melting or boiling substance	$^{o}\mathrm{C}$	$^{o}\mathrm{F}$	K	$^{o}\mathrm{R}$
Melting point of water (H ₂ O)	0	32	273.15	491.67
Boiling point of water (H_2O)	100	212	373.15	671.67
Melting point of ammonia (NH ₃)	-77.7	-107.9	195.45	351.77
Boiling point of ammonia (NH ₃)	-33.6	-28.5	239.55	431.17
Melting point of gold (Au)	1063	1945	1336	2405
Melting point of magnesium (Mg)	651	1203.8	924.2	1663.5
Boiling point of acetone (C_3H_6O)	56.5	133.7	329.65	593.37
Boiling point of propane (C_3H_8)	-42.1	-43.8	231.05	415.87
Boiling point of ethanol (C_2H_6O)	78.4	173.1	351.55	632.77

Fuel	Combustion heat (kcal/g)	Combustion heat (BTU/lb)
Methane (CH_4)	13.3	23940
Methanol (CH ₄ O)	5.43	9767
Ethanol (C_2H_6O)	7.10	12783
Propane (C_3H_8)	12.1	21700
Carbon monoxide (CO)	2.415	4347

dl

$$R = \frac{l}{k}$$

$$\frac{dQ}{dt} = \frac{kA\Delta T}{kR}$$

$$\frac{dQ}{dt} = \frac{A\Delta T}{R}$$

$$\frac{[BTU]}{[h]} = \frac{[ft^2][^oF]}{\frac{[ft^2][h][^oF]}{[BTU]}}$$

$$\frac{dQ}{dt} = \frac{(2400 \text{ ft}^2)(30^{\circ} \text{ F})}{4 \text{ ft}^2 \cdot \text{h} \cdot {}^{\circ} \text{ F/BTU}} = 18000 \text{ BTU per hour}$$

Natural convection near a candle flame Air motion Candle

$$Q = mc\Delta T$$

$$Q = mc\Delta T$$

$$Q = mc[T_2 - T_1]$$

$$Q = m \int_{T_1}^{T_2} c \, dT$$

Substance	Specific heat value (c) cal/g· o C or BTU/lb· o F
Aluminum (solid)	0.215
Iron (solid)	0.108
Copper (solid)	0.092
Lead (solid)	0.031
Ice (solid)	0.50
Water (liquid)	1.00
Methanol (liquid)	0.609
Ethanol (liquid)	0.587
Acetone (liquid)	0.521
Hydrogen (gas)	3.41
Helium (gas)	1.24
Nitrogen (gas)	0.249
Oxygen (gas)	0.219
Steam (gas)	0.476

c = 1.00m = 3700 gramsStarting temperature = 20 °C Copper pot c = 0.092m = 1100 grams $\frac{dQ}{dx} = 5000 \text{ BTU/h} = 350 \text{ cal/s}$

Time of heating = 40 seconds

Water

$$Q = \left(\frac{dQ}{dt}\right)t = \left(\frac{350 \text{ cal}}{\text{s}}\right)40 \text{ s} = 14000 \text{ calories}$$

$$Q_{total} = Q_{pot} + Q_{water}$$

$$Q_{total} = m_{pot}c_{pot}\Delta T + m_{water}c_{water}\Delta T$$

$$Q_{total} = (m_{pot}c_{pot} + m_{water}c_{water})\Delta T$$

$$\Delta T = \frac{Q_{total}}{m_{pot}c_{pot} + m_{water}c_{water}}$$

$$\frac{14000 \text{ cal}}{(1100 \text{ g})(0.092 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}) + (3700 \text{ g})(1 \frac{\text{cal}}{\text{g}^{\circ}\text{C}})}$$

 ΔT

 ΔT $= 3.68 \, {}^{o}\text{C}$

$$Q_{iron} + Q_{water} = 0$$

$$Q_{iron} = Q_{water}$$

$$m_{iron}c_{iron}\Delta T_{iron} = m_{water}c_{water}\Delta T_{water}$$

$$m_{iron}c_{iron}(65 \, ^{\circ}\text{C} - T) = m_{water}c_{water}(T - 20 \, ^{\circ}\text{C})$$

$$m_{iron}c_{iron}(65) - m_{iron}c_{iron}T = m_{water}c_{water}T - m_{water}c_{water}(20)$$

$$m_{iron}c_{iron}(65) + m_{water}c_{water}(20) = m_{iron}c_{iron}T + m_{water}c_{water}T$$

$$m_{iron}c_{iron}(65) + m_{water}c_{water}(20) = T(m_{iron}c_{iron} + m_{water}c_{water})$$

$$T = \frac{m_{iron}c_{iron}(65) + m_{water}c_{water}(20)}{m_{iron}c_{iron} + m_{water}c_{water}}$$

$$\frac{(100 \text{ g})(0.108 \text{ cal/g}^{\circ}\text{C})(65^{\circ}\text{C}) + (500 \text{ g})(1 \text{ cal/g}^{\circ}\text{C})(20^{\circ}\text{C})}{(100 \text{ g})(0.108 \text{ cal/g}^{\circ}\text{C}) + (500 \text{ g})(1 \text{ cal/g}^{\circ}\text{C})}$$

 $20.95\,{}^{o}\mathrm{C}$ Т

Fluid analogy for heat and temperature

$$Q = (1 \text{ lb}) \left(1 \frac{\text{BTU}}{\text{lb}^{o}\text{F}} \right) (125 \text{ }^{o}\text{F} - 32 \text{ }^{o}\text{F})$$

$$Q = (70 \text{ g}) \left(1 \frac{\text{cal}}{\text{g}^{o}\text{C}} \right) (100 \,^{o}\text{C} - 24 \,^{o}\text{C})$$

Q = 5320 cal

$$Q = mL$$

Fluid (@ 70 °F)	$L_{vaporization}, BTU/lb$	$L_{vaporization}, \text{cal/g}$	c_{liquid}
Water	970.3	539.1	1
Ammonia	508.6	282.6	1.1
Carbon dioxide	63.7	35.4	0.66
Butane	157.5	87.5	0.56
Propane	149.5	83.06	0.6

Heat loss mechanism	Formula	Quantity
Cooling vapor	$Q = mc\Delta T$	(1)(0.476)(500 - 212) = 137 BTU
Phase change	Q = mL	(1)(970) = 970 BTU
Cooling liquid	$Q = mc\Delta T$	(1)(1)(212 - 32) = 180 BTU
TOTAL		1287 BTU

Heat exchanger application

32 °F water

138 BTU/lb

(Enthalpy of 170 °F water)

$$Q = mL$$

$$N_{freedom} + N_{phase} = N_{substance} + 2$$

$$P = \frac{F}{A}$$

Power = (Voltage in)(Current in) = (Voltage out)(Current out)

Work = (Force in)(Distance in) = (Force out)(Distance out)

Hydraulic power system **Pipe** Cylinder Pump Reservoir Piston

$$P = \gamma h$$

$$\left[\frac{\mathrm{lb}}{\mathrm{ft}^2} \right] = \left[\frac{\mathrm{lb}}{\mathrm{ft}^3} \right] \left[\frac{\mathrm{ft}}{1} \right]$$

$$P = \left(\frac{60.5 \text{ lb}}{\text{ft}^3}\right) (8 \text{ ft})$$

$$P = \frac{484 \text{ lb}}{\text{ft}^2}$$

$$\left(\frac{484 \text{ lb}}{\text{ft}^2}\right) \left(\frac{1 \text{ ft}^2}{144 \text{ ir}}\right)$$

$$P = \frac{3.36 \text{ lb}}{\text{in}^2} = 3.36 \text{ PSI}$$

 D_{liquid} Specific gravity of any liquid = D_{water}

 78.6 lb/ft^3 $D_{glycerin}$ Specific gravity of glycerin = = 1.26 $\overline{62.4 \text{ lb/ft}^3}$ D_{water}

141.5Degrees API =131.5 Specific gravity

Degrees Twaddell = $200 \times (Specific gravity)$

140 130 Degrees Baumé (light) = Specific gravity

145 Degrees Baumé (heavy) = 145 -Specific gravity

Degrees Baumé (heavy, old Dutch) = 144 -Specific gravity

146.78Degrees Baumé (heavy, Gerlach scale) = 146.78 -Specific gravity

U-tube manometer (vented): (vented) (vented) Applied pressure Height difference

$$in \theta = \frac{h}{3}$$

$$x = \frac{\gamma h A_{large}}{2A_{small}}$$

Gauge pressure	Fluid example	Absolute pressure
90 PSIG	Bicycle tire air pressure	104.7 PSIA
35 PSIG	Automobile tire air pressure	49.7 PSIA
0 PSIG	Atmospheric pressure	14.7 PSIA
	at sea level	
-9.8 PSIG	Engine manifold vacuum	4.9 PSIA
(9.8 PSI vacuum)	under idle conditions	
-14.7 PSIG	Perfect vacuum	0 PSIA
(14.7 PSI vacuum)	(no fluid molecules present)	

$$\frac{35 \text{ PSI}}{1} \times \frac{27.68 \text{ "W.C.}}{1 \text{ PSI}} = 968.8 \text{ "W.C.}$$

$$\frac{49.7 \text{ PSIA}}{1} \times \frac{27.68 \text{ "W.C.A}}{1 \text{ PSIA}} = 1375.7 \text{ "W.C.A}$$

$$\frac{4.5 \text{ atm}}{1} \times \frac{14.7 \text{ PSIA}}{1 \text{ atm}} = 66.15 \text{ PSIA}$$

$$\frac{49.7 \text{ PSIA}}{1} \times \frac{760 \text{ torr}}{14.7 \text{ PSIA}} = 2569.5 \text{ torr}$$

$$F_{buoyant} = \gamma V$$

$$[lb] = \frac{[lb]}{[ft^3]}[ft^3]$$

$$F_{weight} = mg$$

Specific Gravity =
$$\frac{m_{dry}}{m_{dry} - m_{wet}} = \frac{m_{dry}g}{m_{dry}g - m_{wet}g} = \frac{\text{Dry weight}}{\text{Dry weight} - \text{Wet weight}}$$

$$PV = nRT$$

PV = ConstantBoyle's Law (assuming constant temperature T)

$V \propto T$ Charles's Law (assuming constant pressure P)

Gay-Lussac's Law (assuming constant volume V) $P \propto T$

$$PV = ZnRT$$

$$\eta = \frac{FL}{Av}$$

•

$$Re = \frac{(3160)G_fQ}{D\mu}$$

$$Re = \frac{[m] \left[\frac{m}{s}\right] \left[\frac{kg}{m^3}\right]}{[Pa \cdot s]}$$

$$Re = \frac{\left[\frac{kg}{m \cdot s}\right]}{\left[\frac{N \cdot s}{m^2}\right]}$$

$$\mathrm{e} = \left[rac{\mathrm{kg}}{\mathrm{m}\cdot\mathrm{s}}
ight] \cdot \left[rac{\mathrm{m}^2}{\mathrm{N}\cdot\mathrm{s}}
ight]$$

ŀ

$$Re = \left[\frac{kg \cdot m}{N \cdot s^2}\right]$$

$$Re = \left[\frac{kg \cdot m \cdot s^2}{kg \cdot m \cdot s^2} \right]$$

Re =unitless

$$Re = \frac{\left[\frac{\text{in} \cdot \text{cp} \cdot \text{min}}{\text{gal}}\right] \left[\frac{\text{gal}}{\text{min}}\right]}{\left[\text{in} \cdot \text{cp}\right]}$$

Laminar flow (low Re)

Turbulent flow (high Re)

$$\rho_1 A_1 \overline{v_1} = \rho_2 A_2 \overline{v_2} = \cdots \rho_n A_n \overline{v_n}$$

$$\rho A \overline{v} = \left[\frac{\mathrm{kg}}{\mathrm{m}^3}\right] \left[\frac{\mathrm{m}^2}{1}\right] \left[\frac{\mathrm{m}}{\mathrm{s}}\right] = \left[\frac{\mathrm{kg}}{\mathrm{s}}\right]$$

$$W = \rho A \overline{v}$$

$$A_1\overline{v_1} = A_2\overline{v_2}$$

$$A\overline{v} = \left[\frac{\mathrm{m}^2}{1}\right] \left[\frac{\mathrm{m}}{\mathrm{s}}\right] = \left[\frac{\mathrm{m}^3}{\mathrm{s}}\right]$$

$$Q = A\overline{v}$$

$$\overline{v} = \frac{Q}{A}$$

$$A = \pi r^2$$

$$=\pi\left(\frac{1}{3} \text{ ft}\right)^2 = \frac{\pi}{6}$$

Δ

 ft^2

$$\overline{v} = \frac{Q}{A} = \frac{\frac{5 \text{ ft}^3}{\text{min}}}{\frac{\pi}{9} \text{ ft}^2}$$

$$\overline{v} = \frac{45 \text{ ft}}{\pi \text{ min}} = 14.32 \frac{\text{ft}}{\text{min}}$$

$$Q = k \left(\frac{\Delta P D^4}{\mu L} \right)$$

$$z_1 \rho g + \frac{v_1^2 \rho}{2} + P_1 = z_2 \rho g + \frac{v_2^2 \rho}{2} + P_2$$

$$z_1 + \frac{v_1^2}{2g} + \frac{P_1}{\gamma} = z_2 + \frac{v_2^2}{2g} + \frac{P_2}{\gamma}$$

Elevation head $z\rho g$

$$\frac{v^2\rho}{2}$$
 Velocity head

Pressure head

 $E_n = mqh$ Potential energy formula

$$E_k = \frac{1}{2}mv^2$$
 Kinetic energy formula

$$\left[\frac{\mathrm{slug}}{\mathrm{ft}^3}\right] \left[\frac{\mathrm{ft}}{\mathrm{s}^2}\right] + \left[\frac{\mathrm{ft}}{\mathrm{s}}\right]^2 \left[\frac{\mathrm{slug}}{\mathrm{ft}^3}\right] + \left[\frac{\mathrm{lb}}{\mathrm{ft}^2}\right]$$

slug

 $\mathrm{ft}\cdot\mathrm{s}^2$

[slug]

[ft]

$$[lb] = [slug] \left[\frac{ft}{s^2} \right]$$

$$\left[\frac{\mathrm{lb}}{\mathrm{ft}^2}\right] = \left[\frac{\mathrm{slug}\left[\frac{\mathrm{ft}}{\mathrm{\overline{s}^2}}\right]}{\mathrm{ft}^2}\right] = \left[\frac{\mathrm{slug}}{\mathrm{ft} \cdot \mathrm{s}^2}\right]$$

$$z + \frac{v^2}{2g} + \frac{P}{\gamma}$$

$$+ \left[\frac{\left[\frac{\mathbf{m}}{\mathbf{S}} \right]^2}{\left[\frac{\mathbf{m}}{\mathbf{S}^2} \right]} \right] + \left[\frac{\left[\frac{\mathbf{N}}{\mathbf{m}^2} \right]}{\left[\frac{\mathbf{N}}{\mathbf{m}^3} \right]} \right] = [\mathbf{m}]$$

Known quantity	Comments	
z_1	0 ft (arbitrarily assigned as 0 height)	
z_2	3 ft (if z_1 is 0 feet, then z_2 is 3 ft above it)	
v_1	11 ft/s	
P_1	46 PSI (need to convert into PSF so all units match)	
g	$32.2. \text{ ft/s}^2$	

Unknown quantity	Comments	
ho	(needs to be in units of slugs/ft 3)	
v_2	(needs to be in units of ft/s just like v_1)	
P_2	(the quantity we are ultimately solving for)	

ŀ mq

$$\frac{F_W}{V} = \frac{m}{V}g$$

$$\rho = \frac{\gamma}{g}$$

$$\rho = \frac{62.4 \text{ lb/ft}^3}{32.2 \text{ ft/s}^2} = 1.94 \text{ slugs/ft}^3$$

$$z_1 \rho g + \frac{v_1^2 \rho}{2} + P_1 = \text{Total head at 10-inch pipe}$$

Head	Calculation at 10 inch pipe	Value
$z_1 \rho g$	$(0 \text{ ft}) (1.94 \text{ slugs/ft}^3) (32.2 \text{ ft/s}^2)$	0 lb/ft^2
$v_1^2 \rho / 2$	$(11 \text{ ft/s})^2 (1.94 \text{ slugs/ft}^3) / 2$	117.4 lb/ft^2
P_1	$(46 \text{ lb/in}^2) (144 \text{ in}^2/1 \text{ ft}^2)$	6624 lb/ft^2
Total	$0 \text{ lb/ft}^2 + 117.4 \text{ lb/ft}^2 + 6624 \text{ lb/ft}^2$	$6741.4~\mathrm{lb/ft^2}$

$$Q = A_1 v_1 = A_2 v_2$$

$$\frac{A_1}{A_2} = \frac{v_2}{v_1}$$

$$\frac{\pi(5 \text{ in})^2}{\pi(3 \text{ in})^2} = \frac{v_2}{v_1}$$

$$\frac{25}{9} = \frac{v_2}{v_1}$$

$$v_2 = 11 \text{ ft/s} \left(\frac{25}{9}\right)$$

$$v_2 = (11 \text{ ft/s})(2.778) = 30.56 \text{ ft/s}$$

$$z_2 \rho g + \frac{v_2^2 \rho}{2} + P_2 = \text{Total head at 6-inch pipe}$$

Head	Calculation at 6 inch pipe	Value
$z_2 \rho g$	$(3 \text{ ft}) (1.94 \text{ slugs/ft}^3) (32.2 \text{ ft/s}^2)$	187.4 lb/ft^2
$v_2^2 \rho / 2$	$(30.56 \text{ ft/s})^2 (1.94 \text{ slugs/ft}^3) / 2$	905.6 lb/ft^2
P_2		(unknown)
Total	$187.4 \text{ lb/ft}^2 + 905.6 \text{ lb/ft}^2 + P_2$	1093 lb/ft ² + P_2

$$6741.4 \text{ lb/ft}^2 = 1093 \text{ lb/ft}^2 + P_2$$

$$P_2 = 6741.4 \text{ lb/ft}^2 - 1093 \text{ lb/ft}^2 = 5648.3 \text{ lb/ft}^2$$

$$P_2 = (5648.3 \text{ lb/ft}^2) \left(\frac{1 \text{ ft}^2}{144 \text{ in}^2}\right)$$

 39.2 lb/in^2

$$mgh = \frac{1}{2}mv^2$$

$$gh = \frac{1}{2}v^2$$

$$2gh = v^2$$

$$v = \sqrt{2gh}$$

$$\frac{v^2}{2g} + \frac{P}{\gamma} = (\text{constant})$$

