Problem

In a convex quadrilateral ABCD, AD//BC. Show that $AC \perp BD$ if $AC^2 + BD^2 = (AD + BC)^2$.

Solution

Draw DE so that DE//AC and DE meets the extension of BC at E. Then $\triangle CED \cong \triangle DAC$ and DE = AC, CE = AD. In $\triangle BDE, BE = BC + CE = BC + AD.ADCE$ is a parallelogram and DE = AC. Since $AC^2 + BD^2 = (AD + BC)^2$, or $DE^2 + BD^2 = BE^2$,

by the converse of the Pythagorean theorem, $\angle BDE=90^\circ$. Therefore $BD\perp DE$. We also know that AC//DE, so $AC\perp BD$.