Veštačke neuronske mreže

Osnovni koncepti

Šta je konekcionizam?

- □ KONEKCIONZAM je teorijsko stanovište ili pravac u kognitivnoj nauci koji želi da objasni ljudske intelektualne sposobnosti konstruisanjem veštačke neuronske mreže.
- ■MOZAK čoveka sadrži nekoliko tipova nervnih ćelija ili neurona. Ukupno čovekov mozak ima 10¹¹ neurona koji ostvaruju 10¹⁵ konekcija.
- □INDIVIDUALNE ĆELIJE komuniciraju tako što prenose signal (celularna transdukcija) iz jedne ćelije u drugu, uz pomoć neurotransmitera (serotonin, dopamin, acetylholin, adrenalin, i dr.).

Prirodni (biološki) neuron

Cilj:

Definisati osnovne principe pomoću kojih se neuronske mreže matematički opisuju.

Principi proizilaze iz realnog sveta – biologije.

Matematički aparat služi da bi na što bolji način opisao prirodu i ponašanje neurona.

Karakteristike neuronskih mreža (NM)

Mogu da se podele u dve grupe:

Arhitektura

Neurodinamika

Arhitektura

Definiše strukturu NM, kao što je broj neurona i način njihove međusobne povezanosti.

Neuronske mreže se sastoje od određenog broja međusobno povezanih neurona, procesnih elemenata, sa sličnim karakteristikama kao što su: ulazi, sinapse, sinaptičke težine, aktivacija, izlazi, bias, ...

Neurodinamika

Definiše osobine u smislu "ponašanja" NM, odnosno, kako NM uče, podsećaju se (pozivaju naučeno), vrše grupisanje (pridruživanje podataka), upoređuju nove podatke sa već postojećim znanjem, kako klasifikuju nove informacije i kako razvijaju novu klasifikaciju, ako je to potrebno.

- Veštačke neuronske mreže (VNM) vrše procesiranje informacija.
- Ideja je da to čine paralelnim procesiranjem a ne sekvencijalnim algoritmima.
- Paralelno procesiranje znači da se ulazna informacija "razlaže" i istovremeno obrađuje u više različitih neurona (elemenata)
- U zadnjih nekoliko desetina godina je uložen veliki rad da bi se projektovala elektronska kola koja bi ličila na biološke NM sa svim pripadajućim karakteristikama.
- Na taj način su razvijeni različiti modeli NM poznati pod nazivom - PARADIGME

- Svi modeli VNM se tradicionalno opisuju diferencijalnim (diferencnim) jednačinama.
- I najbolje projektovane VNM su daleko inferiorne i od najprimitvnijih oblika života.
- VNM ipak predstavljaju veoma ozbiljan pokušaj da se spozna način na koji funkcionišu biološke NM, a posebno mozak.

Sada se postavlja pitanje:

Kako upotrebiti matematiku da bi se opisali principi rada neurona?

Matematika je dobra za sekvencijalnu obradu podataka ali biološke NM ne rade sekvencijalno, a ne znaju ni matematiku.

Ipak, BNM su u nekim slučajevima sposobne da urade nešto što ne može ni najsavršeniji računar.

Primer:

100:3=33.33

 $3 * 33.33 = 99.99 \neq 100$

Međutim, može se uzeti kanap dugačak 100cm i jednostavno podeliti na tri dela.

BNM je rešila problem koji računar ne može.

Modelovanje

- Da bi se razvio model VNM potrebno je razviti **matematički model** koji na najbolji mogući način opisuje funkcionalnost prirodnog (biološkog) sistema.
- Tada je moguće izvršiti **računarsku simulaciju** i utvrditi u kojoj se meri slažu rezultati simulacije sa realnim ponašanjem biološke NM.

Nakon simulacije se mogu vršiti korekcije, i to u dva pravca:

- 1. Ako su **rezultati loši**: promena parametara i strukture, usložnjavanje modela.
- 2. Ako su rezultati dobri: uprošćavanje modela.
- Naravno, da bi se napravio dobar simulacioni model potrebno je izuzetno dobro poznavati **prirodu** pojave koja se modeluje, pa tek onda matematiku kao **alat** kojim se to čini.

- Matematika je ljudski pronalazak kojim se pokušava opisati priroda oko sebe
- Model je naša predstava o nekoj pojavi.

U svakom slučaju:

PRIRODA PRETHODI MATEMATICI

 Veliki uticaj na način i pristup modelovanju VNM je imao najsloženiji proces obrade podataka koji se vrši u mozgu – proces obrade vizuelnih informacija.

odatle potiče i veliki broj termina vezanih za VNM.

Osnovni model neurona

- Osnovni blok, sastavni elemenat svake NM je neuron.
- Pošto je ovde reč o veštačkim NM (VNM) njihov osnovni elemenat je veštački neuron.
- Pod ovim nazivom se podrazumeva osnovni procesni elemenat VNM u smislu svoje funkcije, tj. načina rada (delovanja).
- Generalno, neuron ima n ulaza označenih sa x_j; j=1, 2, ..., n koji predstavljaju izvor (vrše indikaciju) ulaznog signala.

- Svaki ulazni signal je otežan (ponderisan)
 pre nego što preko kontaktnog elementa
 (sinapse) dođe do tela procesnog elementa.
- "Otežavanje" se vrši množenjem vrednosti ulaznog signala x_j njegovom težinom sinapse w_j.
- Takođe postoji slobodni član (bias) w_0 i prag (threshold) θ , koji određuju potrebni nivo signala za aktivaciju neurona.
- Nelinearna funkcija f_j deluje na pobudni signal R_j i formira izlaz neurona O_j .

- Funkcija f_i se naziva **aktivaciona funkcija**.
- Izlaz neurona O_j predstavlja ulaz za neke druge neurone.
- Kada je neuron deo VNM često se naziva čvor (node).
- Ako se VNM sastoji od više čvorova, dodaje se još jedan indeks koji služi da označi kom neuronu signal ili funkcija pripada, tako da je:
 - \mathbf{x}_{ij} j-ti ulaz i-tog neurona;
 - \mathbf{w}_{ij} težina j-te sinapse i-tog neurona;

- **R**_i aktivacioni signal *i*-tog neurona;
- **f**_i aktivaciona funkcija *i*-tog neurona;
- O_i izlazni signal *i*-tog neurona;
- θ_i prag (treshold) *i*-tog neurona.

Sve ovo se može predstaviti i grafički, na sledeći način ->

- Osnovni razlog uvođenja nelinearne funkcije f_i u VNM jeste ograničavanje nivoa izlaznog signala.
- Ovaj koncept sasvim odgovara biološkom neuronu – ne postoje signali beskonačno velikog intenziteta.
- Najčešći tipovi nelinearnosti u VNM:
 - -Hard limit (idealni prekidač)
 - -Rampa
 - -Sigmoida
 - -Gausijan zvonasta funkcija

Hard limit

Rampa

Sigmoida

Gausijan

O analitičkim izrazima ovih funkcija će biti reči kasnije

- Sigmoida je veoma popularna kao aktivaciona funkcija jer je:
 - monotona
 - ograničena
 - jednostavno joj se izračunava prvi izvod, što će kasnije biti veoma bitno.

$$f'(s) = K \cdot f(s) \cdot (1 - f(s))$$

Primer rada jednog neurona

Učenje u VNM

- Učenje je važan proces, kako u BNM tako i u VNM.
- Osnovna pitanja koje se ovde postavljaju:
 - Kako učimo?
 - Koji način učenja je najefikasniji?
 - Koliko puno i koliko brzo možemo da učimo?
 - Koje su prepreke u učenju?
- Istraživanja su dala mnoge odgovore na ova pitanja. Trenutno je od interesa kako uče VNM:

- Proces učenja u VNM je proces podešavanja promenljivih težina sinapsi (w_{ij}) u cilju postizanja odgovarajućeg (željenog) izlaza (O_i) za dati pobudni signal (x_{ij}).
- Kada je izlazni signal jednak željenom (očekivanom) tada je proces učenja završen i kaže se da je VNM obučena, odnosno da je "stekla znanje".
- Obuka VNM se vrši prema algoritmima (pravilima obuke) koji se opisuju u matematičkom obliku - jednačinama obuke.
- Jednačine obuke opisuju proces obuke pojedinog tipa VNM.

 Pošto neuroni u VNM mogu biti povezani na različite načine i može ih biti različit broj, postoje i različiti primeri modela VNM (paradigme), pa i različiti algoritmi obuke.

Karakteristični tipovi algoritama obuke

- Učenje sa nadzorom učiteljem (supervised learning)
- Učenje bez nadzora (unsupervised learning)
- Pojačano učenje (reinforcement learning)
- Kompetitivno učenje (competitive learning)
- Delta pravilo (delta rule LMS)
- Metoda opadajućeg gradijenta (gradient descent rule)
- Hebovo učenje (Hebbian learning)

Osnovne karakteristike VNM su:

Kolektivna - sinergična obrada podataka (computing)

- program se izvršava kolektivno i sinergično
- operacije su decentralizovane

2. Robusnost

- operacije su neosetljive na slučajne poremećaje
- operacije su neosetljive na parcijalne i netačne ulaze

3. Učenje

- VNM automatski uspostavlja preslikavanja (asocijacije)
- algoritam rada program, kreira VNM tokom procesa obuke
- VNM se podešava (adaptira) sa ili bez učitelja, ali svakako bez intervencije programera

4. Asinhrono izvršavanje (rad)

 BNM nemaju sat da međusobno usklade svoj rad. Veći broj VNM, ipak, zahteva vremensko usklađivanje.

Važniji parametri VNM

- Perfomanse VNM govore u kojoj meri je VNM sposobna da u procesu eksploatacije reprodukuje skup za obuku (Training, Validation, Test).
- 100% performanse znači da VNM u procesu eksploatacije sve uzorke procesira apsolutno tačno.
- Pri obuci se uvek teži da performanse budu što bliže 100%, ali i tu postoje granice.

Pri projektovanju VNM je potrebno razmotriti i definisati sledeće parametre VNM:

1. Topologija VNM

Karakteristika	Feed-forward NN	Recurrent NN
Smer toka signala	Samo napred	Dvosmerno
Uvođenje kašnjenja	Ne	Da
Kompeksnost	Niska	Visoka
Nezavisnost neurona u istom sloju	Da	Ne
Brzina	Velika (brze)	Mala (spore)
Primena	Prepoznavanje oblika, govora, karaktera,	Prevod, konverzija govora u tekst, robotsko upravljanje,

2. Broj slojeva u VNM

Pri projektovanju VNM je potrebno razmotriti i definisati sledeće parametre VNM:

- 3. Broj neurona (čvorova) po sloju
- 4. Usvajanje algoritma obuke
- 5. Broj iteracija po uzorku tokom treninga
- 6. Brzina rada u eksploataciji
- 7. Performanse VNM
- 8. Kapacitet VNM maksimalan broj uzoraka koji VNM može da nauči i kasnije pozove

- 9. Stepen adaptivnosti VNM u kom stepenu je VNM sposobna da se adaptira posle okončanja procesa obuke
- 10. Vrednost biasa često se unapred postavlja na neku određenu vrednost
- 11. Vrednost praga (threshold) često se unapred postavlja na neku fiksnu vrednost, npr 0 ili 1.
- 12. Ograničenje težina sinapsi za bolje performanse i otpornost prema šumu; često se zadaje unapred; normalizacija

- 13. Izbor nelinearne aktivacione funkcije i opseg aktivnosti neurona
- 14. Otpornost VNM na šum stepen u kome šum (smetnja, oštećenje) na ulaznom signalu uzrokuje šum na izlaznom signalu
- 15. Vrednost težina sinapsi u stacionarnom stanju stanje VNM nakon obuke

Topologije VNM

- VNM se sastoje od većeg broja neurona i veza među njima.
- Neke karakteristične topologije su prikazane na sledećim slikama.
- Kod svih topologija se mogu uočiti sledeći elementi:
 - ulazni sloj (input layer)
 - izlazni sloj (output layer)
 - skriveni slojevi (hidden layers)

Višeslojni perceptron Višeslojna VNM sa prostiranjem signala u napred Multilayer Feed Forward ANN

Višeslojna kooperativno/kompetetivna VNM Multilayer cooperative/competitive ANN

Dvoslojna VNM sa prostiranjem signala napred/nazad Bilayer feed forward/backward ANN

Jednoslojna VNM sa kombinovanom povratnom spregom Monolayer hetero feedback ANN

Modelovanje VNM

- Matematičkom analizom se može doći do sledećih podataka o mreži:
- Kompleksnost koliko VNM treba da bude velika da bi izvršila zadatak
- Kapacitet koliko bita informacija se može pohraniti u jednoj VNM
- 3. Izbor modela koji tip VNM je najpogodniji za datu primenu
- 4. Performanse koja VNM ima najbolje performanse

- 5. Efikasnost učenja koliko brzo VNM "uči"
- Odziv kolikom brzinom VNM daje odziv nakon dejstva signala na ulazu
- 7. Pouzdanost da li VNM uvek daje isti odziv za istu pobudu
- Osetljivost na šum koliko tačno VNM reprodukuje željeni izlaz u prisustvu šuma
- Osetljivost na otkaz koliko tačno radi VNM ako jedan njen deo ne funkcioniše.

Obuka i programiranje VNM

- Matematički opis načina kako se menjaju težine sinapsi (w_{ij}) tokom procesa obuke VNM naziva se **algoritam obuke**.
- Na kraju obuke, stacionarne vrednosti težina w_{ij} definišu **program VNM**.
- Načini učenja su **pozajmljeni iz prirode**, i već su prethodno navedeni (npr. obuka sa i bez učitelja)

Obuka sa nadzorom (sa učiteljem) Supervised Learning

- Iterativni postupak, zahteva više prolaza kroz skup za obuku.
- Na sledećoj slici je prikazana VNM sa učiteljem

Generalno: promena težina je proporcionalna signalu greške tokom obuke i stimulaciji (ulazu) neurona.

Obuka *i*-tog neurona se može opisati izrazom:

$$\frac{\delta w_{ij}}{\delta t} = \mu E_i(O_i, T_i) \mathbf{X}_i(t)$$

gde je μ mala pozitivna konstanta poznata kao korak obuke – learning rate

Ako se obuka vrši na digitalnom računaru pogodniji diskretni oblik jednačine:

$$W_{ij}(k+1) = W_{ij}(k) + \mu E_i(O_i(k), T_i(k)) X_i(k)$$

odnosno:

$$w_{ij}(k+1) = w_{ij}(k) + iznos korekcije$$

gde je k – broj iteracije

Algoritmi obuke

- Algoritam obuke je matematički alat koji predstavlja metod kojim će se određenom brzinom uspešno doći do stacionarnog stanja parametara - težina i pragova VNM.
- Obuka počinje definisanjem kriterijumske funkcije (funkcija greške) koju je potrebno minimizirati.
 - Ova funkcija se izražava preko težina i pragova VNM.
 - Na taj način se obezbeđuje da kriterijumska funkcija bude u direktnoj vezi sa promenljivim veličinama VNM.

Algoritmi obuke

- Odabir kriterijumske funkcije i optimizacionog metoda je od izuzetne važnosti, jer od njih zavisi stabilnost procesa obuke i opasnost od završetka obuke u lokalnom minimumu.
- Tokom obuke vrednost kriterijumske funkcije opada i težine se približavaju stacionarnom stanju.

Primer obuke VNM bez nadzora

 T_i – vektor željenih izlaza, **ne postoji (nije poznat)**

f = sgn(.) – nelinearnost je bipolarna funkcija (+1,-1)

 $\mathbf{w}_{ij} = [\mathbf{w}_{i1} \ \mathbf{w}_{i2} \ ... \ \mathbf{w}_{in}]$ – vektor težina ulaza *i*-tog neurona, na početku obuke male pozitivne i negativne vrednosti

 $\mathbf{x}_{ij} = [\mathbf{x}_{i1} \ \mathbf{x}_{i2} \ \dots \ \mathbf{x}_{in}]$ - vektor ulaza *i*-tog neurona

μ – korak učenja; mali, pozitivan broj

k – broj iteracije

$$O_i(k) = f\left(\sum_{i=1}^{n} w_{ij}(k)x_{ij}\right)$$

$$\Delta W_i = \mu O_i(k) X_{ij}$$

$$W_i(k+1) = W_i(k) + \mu O_i(k) X_{ij}$$

VNM i problem klasifikacije

Obučena VNM je sposobna da prepoznaje i klasifikuje različite vrste ulaznih podataka (uzoraka).

Problem.

Podeliti skup od četiri tačke {(-1,-1),(-1,+1),(+1,-1),(+1,+1)} na dva, tri ili četiri neprazna podskupa.

Trivijalno, ali problem se komplikuje kako broj uzoraka i grupa raste

Sposobnost klasifikacije – maksimalni broj tačaka koje VNM može da klasifikuje, odnosno tačno identifikuje, i za koje može da generiše jedinstveni izlaz.

Prema sposobnosti klasifikacije VNM se dele na:

- ✓ linearne
- ✓ multilinearne
- ✓ nelinearne

VNM - linearni klasifikatori

X ₁	X ₂	Υ
+1	+1	0
-1	+1	+1
+1	-1	0
-1	-1	0

Kako se ovo može upotrebiti?

VNM - multilinearni klaşifikatori

VNM - Ekskluzivno ILI

VNM – nelinearni klasifikatori

KRAJ