

Meeting 23.03.09

COMPUTER VISION LAB

22211226 Ju-Hyeon Nam

Motivation

- High-frequency component contains noise.
- Learn from easy to difficult tasks

Motivation

- High-frequency component contains noise.
- Learn from easy to difficult tasks

Find approximate location of Rols

Find details of Rol

Motivation

Experiment : Fixed Frequency Ratio (Cutout high-frequency)

Backbone : Unet

Epoch : 200

Batch Size: 16

Optimizer : Adam with learning rate : 0.0001

Learning rate scheduler : Cosine Annealing Scheduler (0.0001 → 0.000001)

Dataset : Kvasir-SEG & CVC-ClinicDB

Motivation

Experiment : Fixed Frequency Ratio (Cutout high-frequency)

Motivation

Experiment : Fixed Frequency Ratio (Cutout high-frequency)

Motivation

Experiment : Fixed Frequency Ratio (Cutout high-frequency)

Adaptive Frequency Ratio Scheduler

Negative Linear Scheduler

Adaptive Frequency Ratio Scheduler

Negative Linear Scheduler

	CVC-ClinicDB					
Final FR	Pixel Accuracy	F1-Score	Precision	Recall	IoU	
0.9	0.9732	0.8307	0.8207	0.8882	0.7622	
0.8	0.9755	0.8288	0.8143	0.8851	0.7645	
0.7	0.9708	0.8115	0.7971	0.8759	0.7451	
0.6	0.9749	0.838	0.8322	0.8956	0.7697	
0.5	0.9639	0.8122	0.7767	0.91	0.737	
0.4	0.9625	0.749	0.7364	0.8008	0.6859	
0.3	0.8826	0.6322	0.6173	0.7618	0.5515	
0.2	0.926	0.5272	0.5506	0.5419	0.4925	
0.1	0.8991	0.4811	0.4871	0.4798	0.4536	
0	0.4622	0.3404	0.4901	0.3886	0.2422	

Adaptive Frequency Ratio Scheduler

Negative Linear Scheduler

	Kvasir-SEG					
Final FR	Pixel Accuracy	F1-Score	Precision	Recall	IoU	
0.9	0.9634	0.9053	0.9193	0.9171	0.8558	
0.8	0.9603	0.8959	0.9143	0.9037	0.8453	
0.7	0.9581	0.8933	0.9211	0.896	0.839	
0.6	0.9409	0.8334	0.9066	0.8217	0.7721	
0.5	0.8997	0.6532	0.7287	0.6542	0.6006	
0.4	0.8738	0.544	0.6032	0.5645	0.4992	
0.3	0.795	0.5282	0.5515	0.5554	0.4521	
0.2	0.7514	0.5325	0.5547	0.587	0.4399	
0.1	0.4316	0.3823	0.5609	0.6257	0.2589	
0	0.6449	0.5103	0.5579	0.6391	0.3896	

Adaptive Frequency Ratio Scheduler

• Question : How to find optimal frequency ratio??

Condition 1. Maximally utilize the saliency information of input

Condition 2. Maximally decrease the noise of input

Adaptive Frequency Ratio Scheduler

- Question: How to find optimal frequency ratio??
 Condition 1. Maximally utilize the saliency information of input
 - Saliency information = Gradient of a pre-trained DNN

Adaptive Frequency Ratio Scheduler

Question: How to find optimal frequency ratio??
 Condition 1. Maximally utilize the saliency information of input

$$\max_{r \in (0.0,1.0)} \left(s \left(\mathfrak{F}^{-1} \left\{ \mathbf{M}(r) \odot \mathfrak{F} \left\{ x \right\} \right\} \right) + s \left(\mathfrak{F}^{-1} \left\{ (\mathbf{1} - \mathbf{M}(r)) \odot \mathfrak{F} \left\{ x \right\} \right\} \right) \right)$$

- x : input image
- $\mathfrak{F}\{\cdot\}, \mathfrak{F}^{-1}\{\cdot\}$: Discrete Fourier Transform (DFT) & Inverse DFT
- ① : Element-wise Multiplication
- $\mathbf{M}(r)$: Low-frequency mask with r frequency ratio
- $s(\cdot)$: The *saliency* of the input data, <u>computed by taking l_2 norm of gradient values</u> <u>across input channels</u>

Adaptive Frequency Ratio Scheduler

Question: How to find optimal frequency ratio??
 Condition 2. Maximally decrease the noise of input

$$\min_{r \in (0.0,1.0)} \left(\sigma \left(\mathfrak{F}^{-1} \left\{ \mathbf{M}(r) \odot \mathfrak{F} \left\{ x \right\} \right\} \right) + \sigma \left(\mathfrak{F}^{-1} \left\{ (\mathbf{1} - \mathbf{M}(r)) \odot \mathfrak{F} \left\{ x \right\} \right\} \right) \right)$$

- x : input image
- $\mathfrak{F}\{\cdot\}, \mathfrak{F}^{-1}\{\cdot\}$: Discrete Fourier Transform (DFT) & Inverse DFT
- ① : Element-wise Multiplication
- $\mathbf{M}(r)$: Low-frequency mask with r frequency ratio
- $\sigma(\cdot)$: The **total variance** of the input data

- Adaptive Frequency Ratio Scheduler
 - Question : How to find optimal frequency ratio??
 - Final Objective function

Condition1

$$\min_{r \in (0.0,1.0)} \left(\frac{-\alpha(s(\mathfrak{F}^{-1}\{\mathbf{M}(r) \odot \mathfrak{F}\{x\}\}) + s(\mathfrak{F}^{-1}\{(\mathbf{1} - \mathbf{M}(r)) \odot \mathfrak{F}\{x\}\}))}{+\beta(\sigma(\mathfrak{F}^{-1}\{\mathbf{M}(r) \odot \mathfrak{F}\{x\}\}) + \sigma(\mathfrak{F}^{-1}\{(\mathbf{1} - \mathbf{M}(r)) \odot \mathfrak{F}\{x\}\}))}\right)$$
Condition 2

- Future work
 - Find optimization method