Conditional Independence in DAGs

INFO/STSCI/ILRST 3900: Causal Inference

19 Sep 2023

Learning goals for today

At the end of class, you will be able to:

- 1. Identify whether paths in a causal diagram are open or blocked given a conditioning set
- 2. Explain why conditioning on colliders differs from conditioning on non-colliders

Logistics

► Ch 6.4 of Hernan and Robins

Causal Graphs

► Causal Directed Acyclic Graphs (DAG) help communicate modeling assumptions and implications

Causal Graphs

- ► Causal Directed Acyclic Graphs (DAG) help communicate modeling assumptions and implications
- ► Check (marginal) independence by looking at paths in graph

$$A \to Z_1 \to Z_2 \leftarrow Z_3 \to Y$$

- ► Two types of nodes on a path:
 - ▶ Collider: \rightarrow *Z* \leftarrow

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- ► Two types of nodes on a path:
 - ▶ Collider: \rightarrow *Z* \leftarrow
 - ► Non-colliders: $\underbrace{\rightarrow Z \rightarrow}_{\text{mediator}}$ or $\underbrace{\leftarrow Z \rightarrow}_{\text{common cause}}$

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

► Two types of nodes on a path:

▶ Collider: \rightarrow *Z* \leftarrow

Non-colliders: $\xrightarrow{} Z \xrightarrow{}$ or $\xleftarrow{} Z \xrightarrow{}$ common cause

▶ Path is unblocked if it does **not** contain a collider

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

► Two types of nodes on a path:

▶ Collider: \rightarrow *Z* \leftarrow

Non-colliders: $\xrightarrow{} Z \xrightarrow{}$ or $\xleftarrow{} Z \xrightarrow{}$ common cause

▶ Path is unblocked if it does **not** contain a collider

▶ (Marginal) Exchangeability: $Y^a \perp A$

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point in the same direction

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point in the same direction
- Exchangeability holds if all unblocked paths are causal paths

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point in the same direction
- Exchangeability holds if all unblocked paths are causal paths
- ▶ Conditional Exchangeability: $Y^a \perp \!\!\! \perp A \mid L$

- ▶ (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point in the same direction
- Exchangeability holds if all unblocked paths are causal paths
- ▶ Conditional Exchangeability: $Y^a \perp A \mid L$
- ► How do we tell if a path is open or blocked when conditioning on *L*?

Open or blocked?

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables *L*?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

Open or blocked?

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables *L*?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- Check each node on the path
- ► If any node on the path is blocked, then the entire path is blocked
- ▶ If all nodes on the path are open, then the entire path is open

Open or blocked?

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables *L*?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- ► Check each node on the path
- ► If any node on the path is blocked, then the entire path is blocked
- ▶ If all nodes on the path are open, then the entire path is open

Conditional Exchangeability holds **given** L if all unblocked paths between A and Y are causal paths

For non-colliders

- ▶ Mediators: \rightarrow Z \rightarrow or \leftarrow Z \leftarrow
- ▶ Common causes: \leftarrow Z \rightarrow

For non-colliders

- ▶ Mediators: \rightarrow Z \rightarrow or \leftarrow Z \leftarrow
- ▶ Common causes: \leftarrow Z \rightarrow

When conditioning on a set of variables L

▶ If Z is in the conditioning set L, then Z is blocked

For non-colliders

- ▶ Mediators: \rightarrow Z \rightarrow or \leftarrow Z \leftarrow
- ▶ Common causes: $\leftarrow Z \rightarrow$

When conditioning on a set of variables L

- ightharpoonup If Z is in the conditioning set L, then Z is blocked
- ightharpoonup Otherwise, Z is open

Common cause

If Z has a causal effect on both X and Y, the path is blocked when we condition on Z

Mediation

If X effects Y only via Z, the path is blocked when we condition on Z

X: Sodium \longrightarrow $Z: High Blood Pressure <math>\longrightarrow$ Y: Heart Disease

Colliders

For Colliders \rightarrow *Z* \leftarrow

Colliders

For Colliders \rightarrow *Z* \leftarrow

When conditioning on a set of variables L

- ▶ If Z is in the conditioning set L, then Z is open
- ► Otherwise *Z* is blocked

Collider

Suppose the registrar randomly schedules classes so that the time of day is not associated with whether or not a class is interesting.

Collider

Suppose the registrar randomly schedules classes so that the time of day is not associated with whether or not a class is interesting.

Collider

Suppose the registrar randomly schedules classes so that the time of day is not associated with whether or not a class is interesting.

Mathematically,

$$Z = X + Y$$

If we keep Z fixed, but increase X, then to preserve the equation, Y must decrease

Colliders

For Colliders \rightarrow $Z \leftarrow$

Colliders

For Colliders \rightarrow *Z* \leftarrow

When conditioning on a set of variables L

- ► If Z (or any descendant of Z) is in the conditioning set L, then Z is open
- ► Otherwise *Z* is blocked

Exercise

- ► What are the paths from A to Y?
- ▶ When conditioning on $L = \{Z_1\}$ are those paths open or blocked?
- ▶ When conditioning on $L = \{Z_2\}$ are those paths open or blocked?
- ▶ When conditioning $L = \{Z_1, Z_2\}$ are those paths open or blocked?

Learning goals for today

At the end of class, you will be able to:

- 1. Identify whether paths in a causal diagram are open or blocked given a conditioning set
- 2. Explain why conditioning on colliders differs from conditioning on non-colliders