Workshop on Bayesian calibration using UQLab WINDTRUE: WP2

Vinit Dighe & Benjamin Sanderse September 09, 2020

UQLab and Aeromodule installation test

- ▶ UQLab
 - ► Set the Matlab layout to **Default**.
 - ► Type **uqlab** in command window.
 - Change the path in config.m file located in the sensitivity analysis folder. The path will be where your personal UQLab licence is stored.
 - ► Type **uglab** in command window.
- ▶ Aeromodule
 - Run the ECNAero executable to check whether your Aeromodule licence is activated.
 Folder: sensitivity analysis/AEROmodule/NM80 calibrate

Ingredients to perform Bayesian calibration

- ► Experimental data
- ► Forward model
- ► Likelihood/Discrepancy
- ► Prior

Examples

- ► Simple beam model calibration
- ► ECN AeroModule calibration
- ► Exercise

Simple beam model calibration

 $\label{linear_continuity} Calibration/uq SimplySupportedBeam.m$

Ingredients for Bayesian calibration

► Data (y): {12.84, 13.12, 12.13, 12.19, 12.67} (mm)

Forward model: $V = \frac{5}{32} \frac{pL^4}{Ebh^3}$

► Likelihood: $\pi(\mathbf{y}|\theta)$: $\sigma^2 = 10^{-6}$

θ	$\pi(\theta)$		
b (m)	0.15		
h (m)	0.3		
L (m)	5		
p (kN/m)	$\mathcal{N}(0.012, 0.0006)$		
E (MPa)	$\mathcal{LN}(30000, 4500)$		

► Prior distribution:

Ingredients for Bayesian calibration

```
myData.y = [12.84; 13.12; 12.13; 12.19; 12.67]/1000; % (m)
myData.Name = 'Mid-span deflection';
ModelOpts.mFile = 'uq_SimplySupportedBeam';
ModelOpts.isVectorized = true:
mvForwardModel = ug createModel(ModelOpts);
DiscrepancyOpts.Parameters = 1e-6; % known discrepancy variance
BayesOpts.Discrepancy = DiscrepancyOpts;
PriorOpts.Marginals(1).Name = 'b';
                                                % heam width
PriorOpts.Marginals(1).Type = 'Constant';
PriorOpts.Marginals(1).Parameters = [0.15];
                                               % (m)
PriorOpts.Marginals(2).Name = 'h':
                                               % beam height
PriorOpts.Marginals(2).Type = 'Constant';
PriorOpts.Marginals(2).Parameters = [0.3];
                                                % (m)
PriorOpts.Marginals(3).Name = 'L':
                                                % beam length
PriorOpts.Marginals(3).Type = 'Constant';
PriorOpts.Marginals(3).Parameters = 5;
                                                % (m)
PriorOpts.Marginals(4).Name = 'E':
                                                % Young's modulus
PriorOpts.Marginals(4).Type = 'LogNormal';
PriorOpts.Marginals(4).Moments = [30000 4500];
                                               % (MPa)
PriorOpts.Marginals(5).Name = 'p':
                                               % uniform load
PriorOpts.Marginals(5).Type = 'Gaussian';
PriorOpts.Marginals(5).Moments = [0.012 0.012*0.05]; % (kN/m)
mvPriorDist = ug createInput(PriorOpts):
```


Prior and posterior distribution

Figure: Prior and posterior samples.

MAP estimate

Figure: Bayesian estimate using posterior distribution against the experimental data.

MAP estima	te: $\mathbb{E}[heta \mathbf{y}]$		
р	E		
2.4 × 10 ⁴	0.0012		

ECN AeroModule calibration

 $sensitivity_analysis/cases/aero_module/NM80_calibrate.m$ $sensitivity_analysis/cases/aero_module/initialize_calibration.m$ $sensitivity_analysis/testCalibration.m$

Ingredients for Bayesian calibration

- \blacktriangleright Axial force data $(y) = \{y_1, y_2, y_3, y_4\}$
- ► Forward model : ECN Aero-Module
- ► Likelihood: $\pi(\mathbf{y}|\theta) = \prod_{i=1}^{n} \mathcal{N}[\mathbf{y}_i f_i(\theta)]^2$
- ► Prior distribution:

θ	$\pi(\theta)$
Р	Constant
C_L	Uniform
σ^2	Uniform


```
Marco's (ECN) script for reading the data in N/m
 filename exp = ('../../Experimental/WINDTRUE/raw.dat');
 output raw = read exp data(filename exp, 2);
 % Because the model has different discrepancy options at different
 % the measurement data is stored in four different data structures:
 Data(1).v = mean(output raw.Fv03); % [N/m]
 Data(1).Name = 'Fv03';
 Data(1).MOMap = 1; % Model Output Map 1
 Name of Matlab file representing the model
 Model.mHandle = @aero module calibration;
 % Optionally, one can pass parameters to model stored in the cell
  array P
 P - getParameterAeroModule(turbineName);
 Model.Parameters = P:
 Model.isVectorized = false;
 DiscrepancyPriorOpts1.Name = 'Prior of sigma 1';
 DiscrepancyPriorOpts1.Marginals(1).Name = 'Sigma1';
 DiscrepancyPriorOptsl.Marginals(1).Type = 'Uniform';
 DiscrepancyPriorOpts1.Marginals(1).Parameters =
  [0.5*std(output raw.Fy03), 1.5*std(output raw.Fy03)];
 DiscrepancyPrior1 = ug createInput(DiscrepancyPriorOpts1);
 DiscrepancyOpts(1).Type = 'Gaussian';
 DiscrepancyOpts(1).Prior = DiscrepancyPrior1;
uncertain params = {{'CL',1, 0.2}, {'CL',2, 0.2}, {'CL',3, 0.3},
{'CL',4,0.3}};
QoI = 'force'; % Force at different radial stations
aero module outputfile = 'Bln BEM.txt'; % Aero-Module data to be
 calibrated
```


Switch for Bayesian analysis with the AeroModule or with the surrogate model Bayes full = 0; % 0: use surrogate model (PCE); 1: run full model for Bayes (Computationally expensive!) % If Bayes full = 0, we need to specify options for loading a surrogate model Surrogate model type = 0; % 0: Uses a stored PCE surrogate model, 1: create surrogate model % Options for loading a surrogate model Surrogate model filename = 'surrogate/PCE 60.mat'; % Specify the surrogate model file to be used % Options for creating a surrogate model % These are used if Bayes full = 0 and Surrogate model type = 1 MetaOpts.Type = 'Metamodel'; MetaOpts.MetaTvpe = 'PCE'; MetaOpts.Method = 'LARS'; % Ouadrature, OLS, LARS MetaOpts.ExpDesign.Sampling = 'LHS'; MetaOpts.ExpDesign.NSamples = 60; MetaOpts.Degree = 1:4; MetaOpts.TruncOptions.gNorm = 0.75;

MCMC parameters

```
Solver.Type = 'MCMC';
% MCMC algorithms available in UQLab
MH = 0; % Metropolis-Hastings
AM = 0; % Adaptive Metropolis
AIES = 1; % Affine invariant ensemble
HMC = 0; % Hamilton Monte Carlo
```


Convergence diagnostics

Figure: Trace plots and convergence for y4

Prior and posterior distribution

Figure: Prior and posterior samples.

MAP estimate

Figure: Violin plot showing distributions of Bayesian prediction against the DANAERO data.

MAP estimate: $\mathbb{E}[\theta|y]$

ΔC_{L1}	ΔC_{L2}	ΔC_{L3}	ΔC_{L4}	σ_{1}^{2}	σ_{2}^{2}	σ_{3}^{2}	σ_{4}^{2}
-0.2025	-0.1604	-0.1087	-0.2067	73.7666	100.2012	138.4856	112.8861

Calibrated polars

Figure: C_L polars comparison.

Qol validation

Figure: Comparison of axial force obtained using: experimental, non-calibrated Aero-Module run and calibrated Aero-Module run.

Exercise

- 1. Calibrate Aero-Module using CI and Ch as the uncertain parameters
- 2. Create a surrogate model using 50 samples and save the model in the surrogate folder

Note

Ch6 calibrated = Ch6 reference (1 + (0.264 \times 0.2))

Relevant cases?

Figure: Comparison of axial force in the azimuthal direction.

