Chapitre 5

Oscillateurs

1 L'oscillateur harmonique

1.a Position du problème

On retrouve l'oscillateur harmonique dans une grande diversité de domaines de la physique, nous allons en étudier deux exemples caractéristiques.

Oscillateur mécanique

On accroche une masse m à un ressort de raideur k. La masse se déplace sans frottement sur un plan horizontal. On note x l'allongement du ressort par rapport à la position d'équilibre. On cherche à déterminer le mouvement de la masse, donc l'expression de x(t).

Oscillateur électrique

On place une bobine et un condensateur en parallèle, le condensateur étant initialement chargé. On cherche à déterminer l'équation différentielle de la tension aux bornes de C.

1.b Équation différentielle

Oscillateur mécanique

La masse subit une force $\vec{F} = -k \cdot x \vec{e}_x$. Le principe fondamental de la dynamique appliqué dans le référentiel du laboratoire considéré comme galiléen donne :

$$\vec{F} = m\vec{a} \Leftrightarrow -kx \vec{e}_x = m\ddot{x} \vec{e}_x \tag{5.1}$$

en projetant sur l'axe $\vec{e}_x,$ on obtient l'équation différentielle :

$$m\ddot{x} = -kx \Leftrightarrow \ddot{x} + \frac{k}{m}x = 0$$

On pose $\omega_0=\sqrt{\frac{k}{m}}$ la pulsation propre du système, on obtient l'équation différentielle :

$$\ddot{x} + \omega_0^2 x = 0 \tag{5.2}$$

C'est l'équation d'un oscillateur harmonique lorsque x est le déplacement par rapport à la position d'équilibre. (sinon on peut avoir un second membre constant)

Oscillateur électrique

On peut écrire les équations suivantes :

- Aux bornes de $L: u = -L \frac{di}{dt}$
- aux bornes de $C: i = C \frac{du}{dt}$

En combinant les deux équations, on obtient $u = -LC \frac{d^2 u}{dt^2}$, soit en notant $\omega_0^2 = \frac{1}{LC}$

$$\left[\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \omega_0^2 u = 0 \right] \tag{5.3}$$

On remarque que l'on obtient exactement la même équation que dans le cas de l'oscillateur mécanique. C'est l'équation différentielle de l'oscillateur harmonique.

1.c Résolution

Nous allons résoudre l'équation de l'oscillateur harmonique en nous référant à l'oscillateur électrique, mais il faut garder à l'esprit que la méthode est strictement identique en ce qui concerne l'oscillateur mécanique.

La solution de l'équation différentielle $\frac{d^2u}{dt^2} + \omega_0^2 u = 0$ est de la forme :

$$u(t) = A\sin(\omega_0 t + \varphi) \tag{5.4}$$

où l'amplitude A et la phase à l'origine φ sont des constantes déterminées par les conditions initiales u(t=0) et $\frac{du}{dt}(t=0)$.

Cas simple : à t = 0 le condensateur est chargé sous une tension $u(0) = u_0$ et l'intensité du courant qui circule dans le circuit est nulle i(0) = 0.

La solution de l'équation différentielle est $u(t) = A\sin(\omega_0 t + \varphi)$ et on a $\frac{du}{dt}(t) = A\omega_0\cos(\omega_0 t + \varphi)$. L'intensité nulle à l'origine impose

$$i(0) = C\frac{\mathrm{d}u}{\mathrm{d}t}(0) = 0 \Leftrightarrow CA\omega_0\cos(\varphi) = 0 \Leftrightarrow \cos(\varphi) = 0 \Leftrightarrow \varphi = \pi/2 + n\pi \quad n \in \mathbb{Z}$$
 (5.5)

donc $u(t) = A\sin(\omega_0 t + \pi/2) = A\cos(\omega_0 t)$

La charge du condensateur à l'origine impose :

$$u(0) = u_0 = A\cos(0) = A \quad \text{donc} \quad A = u_0$$
 (5.6)

finalement

Cas général : $u(0) = u_0$ et $i(0) = i_0$ (un courant circule dans le circuit à l'instant initial).

Les conditions initiales deviennent :

$$u(0) = A\sin(\varphi) = u_0$$
 et $C\frac{\mathrm{d}u}{\mathrm{d}t}(0) = AC\omega_0\cos(\varphi) = i_0$ (5.8)

Pour trouver A, on multiplie la première équation par $C\omega_0$ et on utilise la relation $\cos^2 + \sin^2 = 1$ pour trouver

$$A = \sqrt{u_0^2 + \left(\frac{i_0}{C\omega_0}\right)^2} \tag{5.9}$$

MPSI– Physique-Chimie

En divisant la première équation par la seconde, on obtient :

$$\tan(\varphi) = \frac{u_0 C \omega_0}{i_0} \quad \text{donc} \quad \varphi = \begin{cases} \arctan\left(\frac{x_0 C \omega_0}{i_0}\right) & \text{si} \quad -\frac{\pi}{2} < \varphi < \frac{\pi}{2} \quad \text{donc si} \quad i_0 > 0\\ \pi + \arctan\left(\frac{u_0 C \omega_0}{i_0}\right) \quad \text{sinon} \end{cases}$$
(5.10)

1.d Évolution du système

La tension aux bornes du condensateur est donnée par : $u(t) = A\sin(\omega_0 t + \varphi)$ avec $\omega_0 = \frac{1}{\sqrt{LC}}$. La tension oscille autour de sa valeur d'équilibre (nulle) à la pulsation ω_0 .

La période T des oscillations est $T=\frac{2\pi}{\omega_0}=2\pi\sqrt{\frac{\omega_0}{k}}$. La fréquence est $f=\frac{1}{T}=\frac{\omega_0}{2\pi}$. φ est la phase à l'origine des oscillations.

Le **portrait de phase** du système correspond au graphique représentant l'ensemble des points $(u(t), \frac{du}{dt}(t))$ parcourus par le système au cours de son évolution.

Dans le cas de l'oscillateur harmonique, on a :

$$u(t) = A\sin(\omega_0 t + \varphi) \tag{5.11}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t}(t) = A\omega_0 \cos(\omega_0 t + \varphi) \tag{5.12}$$

le portrait de phase est une ellipse :

L'énergie totale stockée dans le circuit :

$$E = E_C + E_L = \underbrace{\frac{1}{2}Cu^2}_{E_C} + \underbrace{\frac{1}{2}Li^2}_{E_L}$$

avec $i = C \frac{du}{dt} = AC\omega_0 \cos(\omega_0 t + \varphi)$ on obtient :

$$E = \frac{1}{2}L\omega_0^2 C^2 A^2 \cos^2(\omega_0 t + \varphi) + \frac{1}{2}CA^2 \sin^2(\omega_0 t + \varphi) = \frac{1}{2}CA^2 \underbrace{\left(\cos^2(\omega_0 t + \varphi) + \sin^2(\omega_0 t + \varphi)\right)}_{=1} = \frac{1}{2}CA^2$$

En reprenant l'expression de A obtenue en (5.9), on montre facilement que

$$E(t) = \frac{1}{2}kA^2 = \frac{1}{2}Cu_0^2 + \frac{1}{2}Li_0^2 = E(0) = \text{constante.}$$
(5.13)

Comme on pouvait s'y attendre, l'énergie du système reste constante au cours du temps.

MPSI– Physique-Chimie 3/9

Oscillateur harmonique ammorti $\mathbf{2}$

2.a Exemples

Masse + ressort + frottement visqueux :

On ajoute une force de frottement visqueux : $\vec{f}=-\gamma\vec{v}$. Le PFD $\sum \vec{F}=m\vec{a}$ donne lorsqu'on le projette sur l'axe $\vec{e_x}$:

$$-kx - \gamma \dot{x} = m\ddot{x} \tag{5.14}$$

Ce qui permet d'obtenir l'équation différentielle :

$$\ddot{x} + \underbrace{\frac{\gamma}{m}}_{\omega_0/Q} \dot{x} + \underbrace{\frac{k}{m}}_{\omega_0^2} x = 0 \tag{5.15}$$

soit

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = 0 \tag{5.16}$$

où $Q = \frac{\sqrt{km}}{\gamma}$ est appelé facteur de qualité de l'oscillateur.

Circuit RLC série:

- Loi des mailles : $u_R + u_C + u_L = 0$ donc $\frac{\mathrm{d}u_R}{\mathrm{d}t} + \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{\mathrm{d}u_L}{\mathrm{d}t} = 0$;
- Loi d'Ohm : $u_R = Ri$ donc $\frac{\mathrm{d}u_R}{\mathrm{d}t} = R\frac{\mathrm{d}i}{\mathrm{d}t}$;
- Bobine : $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$ donc $\frac{\mathrm{d}u_L}{\mathrm{d}t} = L \frac{\mathrm{d}^2i}{\mathrm{d}t^2}$;
- Condensateur : $\frac{\mathrm{d}u_C}{\mathrm{d}t} = \frac{i}{C}$.

On obtient alors l'équation : $L\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + R\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{C} = 0$ soit :

$$\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \underbrace{\frac{R}{L}}_{\omega_0/Q} \frac{\mathrm{d}i}{\mathrm{d}t} + \underbrace{\frac{1}{LC}}_{\omega_0^2} i = 0 \tag{5.17}$$

soit

$$\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}i}{\mathrm{d}t} + \omega_0^2 i = 0 \tag{5.18}$$

où $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ est le facteur de qualité de l'oscillateur.

4/9MPSI– Physique-Chimie

2.b Analyse qualitative

L'amortissement correspond à une dissipation d'énergie. L'énergie du système diminue donc au cours du temps, il tend à retourner vers sa position d'équilibre stable.

Évolution temporelle

Portrait de phase

2.c Solution exacte

L'équation de l'oscillateur harmonique amorti est :

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = 0$$

L'équation caractéristique associée

$$r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0$$

Le discriminant est $\Delta = \frac{\omega_0^2}{Q^2} - 4\omega_0^2 = \omega_0^2 \left(\frac{1}{Q^2} - 4\right)$. On distingue trois cas, selon la valeur de Δ :

— Si $\Delta>0\Leftrightarrow Q<1/2,$ l'équation caractéristique a 2 solutions réelles r_1 et r_2 :

$$r_{1,2} = \frac{1}{2} \left(-\frac{\omega_0}{Q} \pm \sqrt{\Delta} \right)$$

et on a $x(t) = Ae^{r_1t} + Be^{r_2t}$. C'est le **régime apériodique**, il n'y a pas d'oscillations.

Lorsque $Q \ll \frac{1}{2}$, on a $x(t) \simeq A \exp(-t/\tau)$. Le temps de retour à l'équilibre est de l'ordre de :

$$\tau = \frac{1}{Q\omega_0} \tag{5.19}$$

— Si $\Delta = 0 \Leftrightarrow Q = \frac{1}{2}$, l'équation caractéristique a une racine double :

$$r = -\omega_0 \tag{5.20}$$

et on a $x(t) = (A + Bt)e^{-\omega_0 t}$. C'est le **régime critique**. Il n'y a pas d'oscillations.

MPSI– Physique-Chimie 5/9

Le temps de retour à l'équilibre est de l'ordre de :

$$\tau \simeq \frac{1}{\omega_0} \tag{5.21}$$

C'est le régime pour lequel le retour à l'équilibre se fait le plus rapidement.

— Si $\Delta < 0 \Leftrightarrow Q > \frac{1}{2}$, l'équation caractéristique a deux solutions complexes :

$$r_{1,2} = \frac{1}{2} \left(-\frac{\omega_0}{Q} \pm i\sqrt{-\Delta} \right) = -\underbrace{\frac{\omega_0}{2Q}}_{\underline{1}} \pm i\underbrace{\omega_0 \sqrt{1 - \frac{1}{4Q^2}}}_{\omega}$$
 (5.22)

on a alors $x(t) = Ae^{-t/\tau}\cos(\omega t + \varphi)$. C'est le régime **pseudo-périodique**.

Évolution temporelle

Portrait de phase

La pseudo-période T du signal est :

$$T = \frac{2\pi}{\omega} = \underbrace{\frac{2\pi}{\omega_0}}_{T_0} \frac{1}{\sqrt{1 - 1/(4Q^2)}}$$
 (5.23)

 T_0 est la période propre de l'oscillateur (la période d'oscillation en l'absence d'amortissement). Avec amortissement, on a $T > T_0$. Le temps de retour à l'équilibre est de l'ordre de :

$$\tau = \frac{2Q}{\omega_0} \tag{5.24}$$

En régime pseudo-périodique, on peut déterminer graphiquement la valeur de Q en comptant le nombre d'oscillations avant que l'amplitude ne passe sous une valeur limite que nous allons déterminer.

L'amplitude des oscillations est $A(t) = A \exp(-\omega_0 t/2Q) = A \exp(-\pi/Q * t/T_0)$ après n oscillations, on a $t = nT_0$ et $A(t) = \exp(-n\pi/Q)$. Si n = Q l'amplitude est $A(t) = A \exp(-\pi) \simeq A/20$. Donc après Q oscillations, l'amplitude des oscillations est divisée par 20.

On obtient la règle suivante : Q =nombre d'oscillations avant que l'amplitude ne soit divisée par 20.

3 Régime sinusoïdal forcé

3.a Position du problème

Un système dynamique (électrique, mecanique, ...) est soumis à une excitation sinusoïdale de pulsation ω .

exemples:

MPSI– Physique-Chimie 6/9

3.b Régime transitoire et régime permanent

Lorsqu'un système linéaire est soumis à une excitation sinusoïdale de pulsation ω on distingue deux régimes :

- Le régime transitoire au cours duquel l'amplitude des oscillations varie
- Le régime permanent au cours duquel toutes les grandeurs oscillent à la pulsation ω avec une amplitude constante.

La durée du régime transitoire est identique à celle du régime transitoire de l'oscillateur libre (elle dépend de Q et de ω_0).

3.c Étude du régime permanent – méthode des complexes

En régime permanent, toutes les grandeurs oscillent à la pulsation ω . On peut les représenter par une amplitude et une phase, c'est à dire un nombre complexe.

$$\underline{x}(t) = Xe^{j(\omega t + \varphi)} \quad \text{avec} \quad j^2 = -1$$
 (5.25)

La grandeur réelle (celle qui a une signification physique) est la partie réelle de la grandeur complexe : $x(t) = \Re(\underline{x}) = X \cos(\omega t + \varphi)$.

La dérivation devient une opération très simple :

$$\frac{\mathrm{d}\underline{x}(t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(X\mathrm{e}^{j(\omega t + \varphi)}) = Xj\omega\mathrm{e}^{j(\omega t + \varphi)} = j\omega\underline{x}(t) \tag{5.26}$$

Donc:

$$\frac{\mathrm{d}\underline{x}(t)}{\mathrm{d}t} = j\omega\underline{x}(t) \tag{5.27}$$

Cela permet de transformer toutes les équations différentielles en équations algébriques.

Application au circuit RLC en régime forcé : On cherche à déterminer la tension $u_L(t)$ en régime permanent dans le circuit suivant :

On remplace les valeurs réelles par leur représentation complexe : $\underline{i}(t)$, $\underline{e}(t)$, $\underline{u}_R(t)$, $\underline{u}_C(t)$ et $\underline{u}_L(t)$. Les différentes lois du circuit s'écrivent :

— Mailles : $\underline{e} = \underline{u}_R + \underline{u}_L + \underline{u}_C$

— Ohm : $\underline{u}_R = R\underline{i}$

— Condensateur : $\underline{i} = C \frac{d\underline{u}_C}{dt} = j\omega \underline{u}_C$

— Bobine : $\underline{u}_L = L \frac{d\underline{i}}{dt} = jL\omega\underline{i}$

On obtient finalement

$$\underline{u}_{L} = \frac{jL\omega}{R + j\left(L\omega - \frac{1}{C\omega}\right)}\underline{e}$$

que l'on peut écrire sous la forme :

$$\underline{u}_{L} = \frac{jQ\frac{\omega}{\omega_{0}}}{1+jQ\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)}\underline{e}$$

en faisant intervenir la pulsation propre $\omega_0 = \frac{1}{\sqrt{LC}}$ et le facteur de qualité $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$ de l'oscillateur. L'amplitude de la tension aux bornes de la bobine est donnée par le module de \underline{u}_L :

$$|\underline{u}_L| = \frac{Q\frac{\omega}{\omega_0}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} |\underline{e}|$$
(5.28)

On représente sur le graphique ci-dessous l'amplitude de la tension aux bornes de la bobine en fonction de la pulsation ω pour plusieurs valeurs du facteur de qualité Q:

On remarque que lorsque le facteur de qualité est grand (>1), la tension aux bornes de la bobine peut être supérieurs à la tension d'alimentation du circuit. On dit qu'il y a **résonance**.

Plus le facteur de qualité est élevé, plus le pic de résonance est haut et étroit. Si $\Delta\omega$ est la largeur du pic de résonance, on peut montrer que l'on a

$$\left[\frac{\omega_0}{\Delta\omega} \approx Q \right] \tag{5.29}$$

Dès que Q est suffisamment grand (le pic de résonance est assez étroit). La relation est exacte pour la résonance en intensité dans un circuit RLC série.

On peut également s'intéresser au déphasage φ entre la tension d'alimentation et la tension aux bornes de la bobine. Pour cela on doit calculer l'argument de \underline{u}_L , on trouve :

$$\arg(\underline{u}_L) = \arg(\underline{e}) + \frac{\pi}{2} - \arctan\left(Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right)$$

Le graphique ci-dessous représente $\arg(\underline{u}_L) - \arg(\underline{e})$ en fonction de ω , il s'agit donc du déphasage entre les deux grandeurs.

À la résonance, il y a un déphasage de $\frac{\pi}{2}$ entre le signal et l'excitation.

MPSI- Physique-Chimie 8/9

3.d Impédances complexes

Dans un circuit électrique en régime sinusoïdal forcé, on peut définir **l'impédance complexe** \underline{Z} d'un dipôle (équivalente à la résistance en régime continu) telle que

$$\underline{u} = \underline{Zi} \tag{5.30}$$

Pour une résistance : $\underline{u} = R\underline{i}$ donc

$$\underline{Z}_R = R \tag{5.31}$$

L'impédance est réelle.

Pour une bobine : $u_L = L \frac{di}{dt}$ donc $\underline{u} = jL\omega\underline{i}$ et :

$$\left[\underline{Z}_L = jL\omega \right]$$
(5.32)

L'impédance est imaginaire pure et dépend de ω .

Lorsque $\omega = 0$, $|\underline{Z}_L| = 0$, à basses fréquences la bobine se comporte comme un fil.

Lorsque $\omega \to \infty$, $|\underline{Z}_L| \to \infty$, donc à hautes fréquences, la bobine se comporte comme un interrupteur ouvert.

Pour un condensateur : $i=C\frac{\mathrm{d}u}{\mathrm{d}t}$ donc $\underline{i}=jC\omega\underline{u}$ et :

$$\underline{Z}_C = \frac{1}{jC\omega} \tag{5.33}$$

L'impédance est imaginaire pure et dépend de ω .

Lorsque $\omega \to 0$, $|\underline{Z}_C| \to \infty$, à basses fréquences le condensateur se comporte comme un interrupteur ouvert.

Lorsque $\omega \to \infty$, $|\underline{Z}_C| \to 0$, donc à hautes fréquences, le condensateur se comporte comme un fil.

Associations d'impédances : Les règles sont les mêmes que pour des associations de résistances

En série :
$$\underline{\underline{Z}_1}$$
 $\underline{\underline{Z}_2}$ \Leftrightarrow $\underline{\underline{Z}_{eq}}$ $\underline{\underline{Z}_{eq}}$ $\underline{\underline{Z}_{eq}}$ $\underline{\underline{Z}_{1}}$ $\underline{\underline{Z}_{eq}}$ $\underline{\underline{Z}_{1}}$ \Leftrightarrow $\underline{\underline{Z}_{eq}}$ $\underline{\underline{Z}_{1}}$ $=$ $\underline{\underline{I}_{1}}$ $+$ $\underline{\underline{I}_{2}}$

MPSI– Physique-Chimie 9/9