BREADTH-FIRST SEARCH (G, s)

```
for each vertex u \in V[G]-s
               do color[u] ← WHITE
2
3
                   distance[u] \leftarrow \infty
                   predecessor[u] \leftarrow NIL
4
5
    color[s] \leftarrow GRAY
    distance[s] \leftarrow 0
   predecessor[s] \leftarrow NIL
8 Q \leftarrow \emptyset
    ENQUEUE (Q, s)
10 while Q \neq \emptyset
               do u ← DEQUEUE (Q)
11
                   for each v \in Adj[u]
12
                          do if color [v] = WHITE
13
                                    then color [v] \leftarrow GRAY
14
15
                                           distance[v] \leftarrow distance[u] + 1
                                           predecessor[v] \leftarrow u
16
                                           ENQUEUE (Q, v)
17
                   color[u] ← BLACK
18
```

Source s = B

Source s = B

Breadth-first tree

$$Q = \{B_0\}$$

$$Q = \{B_0\}$$

expand B Breadth-first tree

$$Q = \{A_1, F_1\}$$

$$Q = \{A_1, F_1\}$$

expand A Breadth-first tree

$$Q = \{F_1, E_2\}$$

$$Q = \{E_2, C_2, G_2\}$$
 expand E Breadth-first tree

$$Q = \{C_2, G_2\}$$

Demostraciones sobre BFS

1. Caminos más cortos (shortest paths)

2. Exactitud BFS (correctness)

3. Árbol de búsqueda en anchura (BF tree)

Demostraciones sobre BFS

1. Caminos más cortos (shortest paths)

2. Exactitud BFS (correctness)

3. Árbol de búsqueda en anchura (BF tree)

 $\delta(s,v)$ =: número mínimo de aristas, si v se alcanza desde s (no ponderado)

 $\delta(s,v)=\infty$, si v no se alcanza desde s

L1: Para cualquier arista (u,v): $\delta(s,v) \leq \delta(s,u) + 1$

Dem:

L1: Para cualquier arista (u,v): $\delta(s,v) \leq \delta(s,u) + 1$

Dem:

si ∃ trayectoria (s,u), como mucho se recorre una arista más

si no, $\delta(s,v) = \infty$, y también se cumple

L2: Tras ejecutar BFS, para todo v: **distance**[v] ≥ δ (s,v)

Dem (inducción):

L2: Tras ejecutar BFS, para todo v: **distance[v]≥** δ(s,v)

Dem (inducción):

base: situación inicial: $d[s] = 0 = \delta(s,s)$ y $d[v] = \infty \ge \delta(s,v)$

hip otesis: d[u] ≥ δ(s,u)

inducción: v descubierto desde u (v "blanco"), entonces:

$$d[v] = d[u]+1$$
 (línea 15)
 $\geq \delta(s,u) + 1$ (hipótesis)
 $\geq \delta(s,v)$ (L1)

Y una vez ENQUEUED, d[v] no varía.

```
L3: Q contiene (v_1, v_2...v_r). Entonces:
```

$$d[v_r] \le d[1]+1$$
, y $d[v_i] \le d[v_{i+1}]$, para i=1, 2,... r-1

Dem (inducción sobre el número de operaciones en Q):

```
L3(1/2): Q contiene (v1, v2...vr). Entonces:
d[v_r] \le d[v_1] + 1, y d[v_i] \le d[v_{i+1}], para i=1, 2,... r-1
Dem (inducción sobre el número de operaciones en Q):
base: es cierto para la situación inicial (sólo s en Q)
Inducción 1: (DEQUEUE v_1) \Rightarrow el primer vértice es v_2
    d[v_1] \le d[v_2]
                             (hipótesis)
    d[v_r] \leq d[v_1] + 1
           \leq d[v_2] + 1
```

El resto de las desigualdades para los demás vértices no varían

L3: Q contiene $(v_1, v_2...v_r)$. Entonces: $d[v_r] \le d[v_1]+1$, y $d[v_i] \le d[v_{i+1}]$, para i=1, 2,... r-1 Dem (inducción sobre el número de operaciones en Q): base: es cierto para la situación inicial (sólo s en Q) Inducción 2: (ENQUEUE v_{r+1})

```
L3 (2/2): Q contiene (v1, v2...vr). Entonces:
```

$$d[v_r] \le d[v_1]+1$$
, y $d[v_i] \le d[v_{i+1}]$, para i=1, 2,... r-1

Dem (inducción sobre el número de operaciones en Q):

base: es cierto para la situación inicial (sólo s en Q)

Inducción 2: (ENQUEUE $v=v_{r+1}$) \Rightarrow se ha eliminado "u" de Q. Se está explorando el vértice v (adyacente a u). Hay un nuevo v_1 .

$$d[u] \le d[v_1]$$
 (hipótesis)

$$d[v_{r+1}] = d[v] = d[u] + 1 \le d[v_1] + 1 \qquad (v \text{ es adyacente a } u)$$

$$d[v_r] \le d[u] + 1$$
 (hipótesis)

Así que: $d[v_r] \le d[u] + 1 = d[v] = d[v_{r+1}]$

El resto de las desigualdades para los demás vértices no varían

Demostraciones sobre BFS

1. Caminos más cortos (shortest paths)

2. Exactitud BFS (correctness)

3. Árbol de búsqueda en profundidad (BF tree)

Teorema: BFS en G, desde s. Entonces:

- Durante la ejecución, <u>BFS descubre todos los vértices</u> <u>alcanzables desde s</u>
- Al finalizar, $d[v] = \delta(s,v)$ para todo v
- Para cada v≠s, uno de los caminos más cortos en G para <u>ir de s a v</u> es uno de los caminos más cortos para ir de <u>s al predecesor[v] más la arista</u> (<u>predecesor[v], v)</u>

Dem (contradicción 1/3):

- 1. Supongamos v, con el menor valor de $\delta(s,v)$ tal que d[v] $\neq \delta(s,v)$. Evidentemente, v \neq s
- 2. $d[v] \ge \delta(s,v)$ (por L2) \Rightarrow $d[v] > \delta(s,v)$
- 3. v es alcanzable desde s (si no, $\delta(s,v) = \infty \ge d[v]$, que contradice la desigualdad anterior)
- 4. Sea u el vértice inmediatamente anterior a v por uno de los caminos más cortos: $\delta(s,v)=\delta(s,u)+1$ (luego $\delta(s,u)<\delta(s,v)$)
- 5. Por otra parte: $d[u] = \delta(s,u)$, por la forma en que v ha sido elegido

Entonces:

$$d[v] > \delta(s,v) = \delta(s,u)+1 = d[u]+1 \Rightarrow d[v] > d[u]+1$$
 (*)

Dem. (contradicción 2/3):

Ahora, en el algoritmo, BFS DEQUEUE u.

- Si v fuera "blanco" \Rightarrow d[v]=d[u]+1 (línea 15) \Rightarrow contradicción *
- Si v fuera "negro" v ya no estaría en Q, y d[v] ≤ d[u] ⇒
 contradicción *
- Si v fuera "gris" ⇒ v es gris antes de DEQUEUE u, al sacar otro vértice distinto w, para el que d[v]=d[w]+1
 - Si w salió de Q antes que $u \Rightarrow d[w] \le d[u] \Rightarrow d[v] \le d[u] + 1 \Rightarrow$ contradicción *

Por lo que d[v]= δ (s,v) para todo v

Dem (contradicción 3/3):

Se deduce también que:

- BFS descubre todos los vértices alcanzables desde s.
 Si no fuera así, tendríamos para algún v ∞ = d[v] > δ(s,v), que contradice el resultado anterior.
- Como predecesor[v]=u, entonces d[v]=d[u]+1. Así que uno de los caminos más cortos para ir de s a v es uno de los caminos más cortos para ir de s al predecesor[v] más la arista (predecesor[v], v)

Demostraciones sobre BFS

1. Caminos más cortos (shortest paths)

2. Exactitud BFS (correctness)

3. Árbol de búsqueda en profundidad (BF tree)

Breadth-first tree

Def: Dados G=(V,E) y s, se define subgrafo predecesor de G: G_p =(V_p , E_p), siendo:

$$V_p = \{v \in V : p[v] \neq NIL\} \cup \{s\}$$

 $E_p = \{(p(v) \ v) : v \in V_p - \{s\}\}$

G_p es un **breadth-first tree** si:

- V_p = todos los v alcanzables desde s
- Existe un único camino desde s a v en G_p, que es, además, el camino más corto (s,v) en G

Breadth-first tree

L: BFS construye una estructura de datos con predecessor de modo que el correspondiente subgrafo predecesor $G_p=(V_p, E_p)$ es un breadth-first tree

Dem:

Breadth-first tree

L: BFS construye una estructura de datos con predecessor de modo que el correspondiente subgrafo predecesor $G_p=(V_p, E_p)$ es un breadth-first tree

Dem:

p[v]=u (línea 16), sii (u,v) \in E y δ (s,v) $<\infty$ (esto es, si v puede alcanzarse desde s)

 \Rightarrow V_p contiene todos los v alcanzables desde s

El árbol G_p tiene un único camino para cada $v \in V_p \Rightarrow$ todos los caminos son los más cortos (teorema anterior)