Геометрия в компьютерных приложениях

Лекция 6: Многообразия. Продолжение.

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

19 октября 2017 г.

7.4. Проективное пространство.

Проективное пространство

Проективное n-мерное пространство $\mathbb{R}\mathrm{P}^n = \{\ell \in \mathbb{R}^{n+1} \mid \{0\} \in \ell\}$ является гладким (n+1)-мерным многообразием.

Доказательство.

- Почему оно вообще пространство? И какое?
- ullet Пусть $p,q\in\mathbb{R}\mathrm{P}^n$. Тогда $ho(p,q)=\angle(p,q)$ метрика.
- Рассмотрим карты U_j , состоящие из прямых, не перпендикулярных векторам $e_j \in \mathbb{R}^{n+1}$ соответственно. Иными словами, $\ell = (x_0: x_1: \ldots: x_n) \in U_j$, если $x_j \neq 0$.
- ullet Рассмотрим гомеоморфизм $arphi_i \colon U_i o \mathbb{R}$, где

$$\varphi(\ell) = \left(\frac{x_0}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_n}{x_j}\right)$$

- Теперь надо рассмотреть функции склейки $\varphi_{ii}: \varphi_i(U_i \cap U_i) \to \varphi_i(U_i \cap U_i).$
- ullet Пусть $\ell \in U_i \cap U_i$. Тогда

$$\varphi_i(\ell) = \left(\frac{x_0}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i}\right) = (a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n),$$

$$\varphi_j(\ell) = \left(\frac{x_0}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_n}{x_j}\right) = (b_0, \dots, b_{j-1}, b_{j+1}, \dots, b_n).$$

• Ясно, что $b_k = \frac{a_k}{a_i}$ при $k \neq i$ и $b_i = \frac{1}{a_i}$.

7.5. Касательное расслоение.

Касательное расслоение

$$T(M) = \bigcup_{P \in M} T_P M$$

Доказательство.

- ullet Пусть $\pi\colon T(M) o M$ такое отображение, что $\pi(v)=P$, где $v\in T_PM$.
- Пусть U карта с локальными координатами (x_1, \dots, x_n) , $TU = \pi^{-1}(U)$.
- ullet Определим $\Phi\colon TU o \mathbb{R}^{2n}$ так, что $\Phi(v)=(p_1,\ldots,p_n,v_1,\ldots,v_n).$
- Ясно, что Ф биекция.
- Введем на T(M) топологию так, чтобы для каждой карты U отображение Φ было открытым.
- ullet То есть $W \in au(T(M))$, если $\Phi(W \cap TU) \in au(\mathbb{R}^{2n})$ для всякого U.

- Более того, если $\{U_{\alpha}\}$ атлас на M, то $\{(TU_{\alpha}, \Phi_{\alpha})\}$ атлас на T(M).
- Осталось проверить функции склейки. Пусть $W_1 = (TU_1, \Phi_1)$, $W_2 = (TU_2, \Phi_2)$ (причем $U_1 \cap U_2$ непусто).
- ullet Пусть $(x_1,\ldots,x_n,u_1,\ldots,u_n)$, $(y_1,\ldots,y_n,v_1,\ldots,v_n)$ соответствующие координаты. Тогда $y_k = y_k(x_1, \dots, x_n)$, $v_k = \sum_{i=1}^n \frac{\partial y_k}{\partial x_i} u_i$.
- Ясно, что эти функции гладкие. То есть T(M) гладкое многообразие, причем dim T(M) = 2n.

Например, множество положений механической системы – конфигурационное пространство.

Если еще рассмотреть их скорости, то получаем фазовое пространство, что и есть касательное расслоение.

7.6. Прообраз регулярного значения.

Напоминание

- Пусть $F: M \to N$ гладкое отображение гладких многообразий.
- ullet Тогда dF(P) дифференциал отображения F в точке P.
- Пусть γ кривая на M, v ее касательный вектор. Тогда $F(\gamma)$ кривая на N, и пусть w касательный вектор.
- Ясно, что $v \in T_P M$, $w \in T_{F(P)} N$.
- Напомним, что dF(P)(v) = w. То есть $dF(P) \colon T_PM \to T_{F(P)}N$, причем матрица этого линейного отображения равна J(F)(P).

Определение

- **Регулярная точка** точка $P \in M$, в которой отображение dF сюръективно.
- Критическая (особая) точка не регулярная.
- Регулярное значение такая точка $Q \in N$, что все точки из прообраза $F^{-1}(Q)$ регулярны.
- Критическое значение не регулярное.

Теорема о прообразе регулярного значения

Пусть $Q \in \mathcal{N}$ – регулярное значение гладкого отображения F. Тогда $W = F^{-1}(Q)$ – гладкое многообразие размерности $\dim \mathcal{M} - \dim \mathcal{N}$.

Доказательство.

- ullet Пусть $P \in W$. В локальных координатах $y_j = f_j(x_1, \dots, x_m)$, $j \in \{1, \dots, n\}$.
- ullet Пусть $U\subset W$ окрестность точки $P,\ ilde{U}$ ее гомеоморфный образ в $\mathbb{R}^m.$
- ullet $ilde{U}$ задается в \mathbb{R}^m набором уравнений: $f_j(x_1,\ldots,x_m)=y_j(Q).$
- ullet Q регулярное значение, следовательно, $\operatorname{rk} J(F)(P) = \dim N = n$.
- ullet По теореме из Лекции 5 $ilde{U}$ гладкое многообразие, причем $\dim ilde{U} = m \mathrm{rk} \ J(F)(P) = m n.$
- ullet Композия гомеоморфизмов для $ilde{U}$ и гомеоморфизма $U o ilde{U}$ дает атлас на W.

7.7. Погружение и вложение.

Определение

- Погружение такое гладкое отображение F, что в каждой точке $P \in M$ отображение dF(P) является биекцией. (Это означает, что $\dim M \leq \dim N$)
- Вложение это погружение, при котором M гомеоморфно F(M).

Пусть $F: M \to N$ – произвольное погружение.

По теореме о неявной функции у каждой точки P существует такая окрестность U, что $F|_{U}$ – гомеоморфизм.

То есть локально всякое погружение является вложением.

7.8. Примеры вложений и погружений.

Примеры

Отображения $F_a\colon \mathbb{R}^1 \to \mathbb{R}^2$, где $F(x)=(x^2,x^3+ax)$. Ясно, что $J(F)=(2x,3x^2+a)$. Если $a\neq 0$, то F_a – погружение. F_a - вложение $\Leftrightarrow a>0$.

Богачев Н.В. (МФТИ)

Примеры

Поверхность Боя – погружение $\mathbb{R}\mathrm{P}^2$ в \mathbb{R}^3 .

7.9. Риманово многообразие и метрика.

Определение

- Риманово многообразие гладкое многообразие, для каждой точки P снабженное симметрической положительной определенной билинейной формой в $T_P M$, гладкой зависящей от P.
 - В локальных координатах: $g_{kl}(x_1,\ldots,x_m)$, $k,l\leq m$. Форму g(x,y) называют **римановой метрикой**.
- **Изометрическое** вложение это вложение, сохраняющее длины гладких кривых.

Примеры

- Поверхности с / квадратичной формой.
- ullet Вложение многообразия в \mathbb{R}^n позволяет индуцировать метрику.

7.10. Знаменитые теоремы вложения.

Теорема Уитни, 1938

Всякое гладкое n-мерное многообразие можно вложить в 2n-мерное вещественное пространство.

Теорема Нэша, 1956

Всякое n-мерное риманово многообразие можно изометрически вложить в \mathbb{R}^m , где $m=\frac{3n^2+14n^2+11}{3}$.