

Org Lett. Author manuscript; available in PMC 2010 February 19

Published in final edited form as:

Org Lett. 2009 February 19; 11(4): 1031-1032. doi:10.1021/ol802981h.

Synthesis of (+)- and (−)-Monanchorin

Min Yu and Barry B. Snider*

Department of Chemistry MS 015, Brandeis University, Waltham MA 02454-9110

Abstract

The optically pure epoxy acetal was converted to the protected guanidino alcohol by reaction with NaN₃ in DMF, hydrogenation of the azide, and reaction of the amine with MeSC(NBoc)NHBoc, AgNO₃ and Et₃N. Treatment of the protected guanidino alcohol with 9:1 CDCl₃/TFA afforded monanchorin, whose absolute stereochemistry was assigned as shown.

McKee and coworkers recently isolated the weakly cytotoxic monanchorin (1) from the sponge *Monanchora ungiculata* collected in the Maldive islands (see Scheme 1). The carbon skeleton was assigned on the basis of 2D NMR experiments, leading to two possible aminal structures 1 and 2 that differ in the connection of the guanidine to the carbon chain. The ¹³C NMR shifts fit better with calculated values for 1 suggesting that this is the correct structure. This is consistent with the known reaction of *trans*-2-hydroxycyclohexylguanidine with cyclohexanone to afford aminal 3, whose structure has been established crystallographically. ² Crambesidin acid was also isolated from this sponge and other polycyclic crambescidin, ptilocaulin, and batzelladine guanidine alkaloids have been isolated from *Monanchora* sponges. As part of our continuing interest in the synthesis of these guanidine alkaloids, ³ we decided to investigate the synthesis of monanchorin.

Monanchorin is the aminal formed from the intramolecular dehydration of erythro-4-guanidino-5-hydroxydecanal. Initially we decided to investigate the reaction of guanidine with epoxy aldehyde **4** hoping that the guanidine would add initially to the aldehyde and then to the proximal end of the epoxide to form a hemi-aminal with regiochemical control. ⁴ Unfortunately, treatment of **4**⁵ with guanidine resulted in decomposition. We then turned to the non-regioselective preparation of guanidino hydroxy acetal **5** from epoxy acetal **6**.

Protection of 4*E*-decenal (7) with HC(OMe)₃ and camphorsulfonic acid (CSA) in MeOH afforded the acetal quantitatively, which was treated with Shi's D-fructose derived ketone (8)

⁶ and Oxone in H₂O/MeCN to give epoxy acetal **6** in 84% yield (91% brsm) and 90% ee⁷ (see Scheme 2). Guanidine reacts as a nucleophile with terminal epoxides⁸ and cyclohexene oxides, ⁹ but failed to react with the more hindered trans epoxide of **6**.

We therefore treated **6** with NaN₃ in DMF at 120 °C for 42 h to provide an inseparable 4:5 mixture of **10** and **11** in 86% yield. Reaction of **6** with NaN₃ and NH₄Cl in 8:1 MeOH/H₂O at 80 °C for 24 h proceeded in slightly lower yield and gave a 3:5 mixture of **10** and **11**. Hydrogenation of the mixture of **10** and **11** at 50 psi over 10% Pd/C gave an inseparable mixture of **12** and **13**, which was treated with **9**, Et₃N and AgNO₃¹⁰ in DMF at 0 °C for 3 h and at 25 °C overnight to give a readily separable mixture of **14** (31% from **6**) and **15** (42% from **6**). ¹¹

Stirring **14** in 9:1 CDCl₃/TFA at 25 °C for 12 h cleaved both Boc groups and the methyl acetal forming the aminal monanchorin (**1**) as the only non-volatile product. Flash chromatography (20:1 CH₂Cl₂/MeOH) gave pure **1** in 73% yield. Cross peaks in the COSY spectrum between H-1 at δ 4.81 and H-2 at δ 8.47 and between H-5 at δ 3.22 and H-4 at δ 8.66 confirmed that we had prepared **1**, not **2**. The ¹H and ¹³C NMR spectral data of synthetic **1** are identical to those of monanchorin unambiguously establishing the structure of the natural product. The optical rotation of synthetic **1**, $[\alpha]_D^{22} - 42.3$ (c 0.74, MeOH), is similar in magnitude, but opposite in sign to that of the natural product, $[\alpha] + 39$ (c 3.90, MeOH), establishing that **1** is the enantiomer of monanchorin.

Stirring **15** in 9:1 CDCl₃/TFA at 25 °C for 12 h gave **16** in 77% yield. A COSY cross peak between H-1 at δ 5.23 and H-2 at δ 8.73 established that different guanidine nitrogens are bound to C-1 and C-5 in **16**. A cross peak between H-5 at δ 3.46 and H-4 at δ 7.18 is not seen because the torsion angle is close to 90°.

The natural enantiomer of monanchorin (*ent-*1), $[\alpha]_D^{22} + 33.7$ (*c* 0.67, MeOH), was prepared analogously from *ent-*6, which was prepared from 7 using Shi' L-fructose derived ketone. ¹²

In conclusion, we have developed an enantiospecific six-step route from 4*E*-decenal to monanchorin (*ent-*1) (21% overall yield) that establishes the absolute stereochemistry of the natural product and the connection of the guanidine to the carbon chain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

We are grateful to the National Institutes of Health (GM-50151) for support of this work. We thank Dr. Tanya C. McKee, NCI-Frederick, for a copy of the 1D and 2D NMR spectra of monanchorin.

References

- 1. Meragelman KM, McKee TC, McMahon JB. J. Nat. Prod 2004;67:1165–1167. [PubMed: 15270573]
- a Takagi Y, Kawashima O, Tsuchiya T, Sano H, Umezawa S. Bull. Chem. Soc. Jpn 1976;49:3108–3112.
 b Nakamura H, Iitaka Y. Acta Cryst 1978;B34:3384–3387.
- a Snider BB, Faith WC. J. Am. Chem. Soc 1984;106:1443–1445. b Snider BB, Shi Z. J. Am. Chem. Soc 1994;116:549–557. c Snider BB, Chen J. Tetrahedron Lett 1998;39:5697–5700. d Yu M, Pochapsky SS, Snider BB. J. Org. Chem 2008;72:9065–9074. [PubMed: 18928319]
- 4. For a similar reaction with methoxide, see the conversion of **11** via an epoxy aldehyde to **12** in: Hori K, Hikage N, Inagaki A, Mori S, Nomura K, Yoshii E. J. Org. Chem 1992;57:2888–2902.
- 5. Prepared from 4*E*-decenal (7) by reduction to 4-decen-1-ol with NaBH4, epoxidation with *m*CPBA and oxidation of the alcohol with Dess-Martin periodinane.

6. Wang Z-X, Tu Y, Frohn M, Zhang J-R, Shi Y. J. Am. Chem. Soc 1997;119:11224–11235.

- 7. The ee was determined by analysis of the ¹³C NMR spectrum in the presence of europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate].
- 8. a Le Merrer Y, Gauzy L, Gravier-Pelletier C, Depezay J-C. Bioorg. Med. Chem 2000;8:307–320. [PubMed: 10722153] b Dennis M, Hall LM, Murphy PJ, Thornhill AJ, Nash R, Winters AL, Hursthouse MB, Light ME, Horton P. Tetrahedron Lett 2003;44:3075–3080.
- 9. Fritsche-Lang W, Wilharm P, Hädicke E, Fritz H, Prinzbach H. Chem. Ber 1985;118:2044–2078.
- 10. Ma D, Xia C, Jiang J, Zhang J. Org. Lett 2001;3:2189–2191. [PubMed: 11440576]
- 11. The regiochemistry of 14 and 15 was established by COSY correlations from H-1 through H-4.
- 12. Zhao M-X, Shi Y. J. Org. Chem 2006;71:5377-5379. [PubMed: 16808531]

1 (proposed structure for monanchorin)

OH

OMe

$$C_5H_{11}$$
 C_5H_{11}

OMe

 C_5H_{11}

OMe

Scheme 1. Retrosynthesis of Monanchorin

Scheme 2. Synthesis of (–) and (+)-Monanchorin