- (2) Proving that Carmichael numbers are squarefree.
 - (a) Show that a given nonsquarefree number n can be written in the form $n = p^{\ell}N$ for some prime p and integers N and ℓ with $\ell \geq 2$ and $\gcd(p, N) = 1$.
 - (b) Show that $(1 + pN)^{n-1} \not\equiv 1 \pmod{p^2}$.
 - (c) Deduce that Carmichael numbers are squarefree.
 - (a) Take a prime p such that $p^2\mid n$. Then $p^\ell||n$ for some $\ell\geq 2$. So $n=p^\ell N$ say, where $N=n/p^\ell$ is coprime to p.
 - (b) Now $(1+pN)^{n-1}\equiv 1+pN(n-1)\pmod{p^2}\equiv 1-pN\pmod{p^2}\not\equiv 1\pmod{p^2}$, by the Binomial Theorem and because $p^2\mid n$ and $\gcd(N,p)=1$.
 - (c) Now take a=1+pN. Then $a^{n-1}\not\equiv 1\pmod{p^2}$ by (b), so $a^{n-1}\not\equiv 1\pmod{n}$. Hence, as $\gcd(a,n)=1$, n is not a Carmichael number.