"文远知行"杯 中山大学程序设计竞赛线上赛

2020年4月25日 14:00-17:30

Α.	红宝石之光	2
В.	开花宣言	3
C.	向着梦想的一步	4
D.	夜空似乎知晓一切	5
E.	冬天给予的预感	6
F.	欲于辉夜之城起舞	8
G.	欢乐派对列车	9
н.	自我控制	11

温馨提示:

- 1. 不保证题目按照难度顺序排序,请合理安排解题顺序。
- 2. 本场比赛为单人赛,请不要以任何形式同其他选手交流。作弊者取消参赛资格。
- 3. 部分题目数据量较大,请注意输入输出效率,例如 C++ 选手请不要使用 cin、cout 等特别慢的输入输出语句。

A. 红宝石之光

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niyiz 不能外出, 只能宅在家里玩玩具。

Niyiz 有很多红宝石立方体积木,他还有一张大小为 $n \times n$ 的网格图,他在网格图的格子上堆积木,这样就形成了一个几何体,如图所示:

他的红宝石积木表面会发光很好看,所以他想知道这个几何体的表面积是多少。 **注意该题中的表面积包括其下底面**。

【输入格式】

第一行一个整数 $n (n \le 2000)$, 意义如题面所述。

接下来 n 行,每行共 n 个整数,第 i 行第 j 个数 a_{ij} 表示第 i 行第 j 列堆砌的立方体高度($0 \le a_i \le 2000$)。

【输出格式】

一行,一个整数,表示几何体的表面积。

样例输入	样例输出
4	62
2 1 2 0	
1 3 2 2	
0 2 2 1	
0 1 0 1	

B. 开花宣言

时间限制:1秒 空间限制:256MB

【题目描述】

疫情当前, Niviz 不能外出, 只能宅在家里种花。

种花需要肥料。Niyiz 有 n 种原料,第 i 种原料的肥力为 a_i 。如果使用若干种原料合成化肥,那么得到的肥力是这些原料肥力的异或和。例如,选择肥力分别为 1,2,3 的三种原料会合成肥力为 $1\oplus 2\oplus 3=0$ 的肥料,这当然是很失败的。

Niyiz 要从中选出恰好 m 种原料合成化肥,他想知道他能达到的最大肥力是多少。

【输入格式】

第一行两个整数 n, m。 $(1 \le m \le n \le 20)$ 第二行 n 个整数,第 i 个数表示 a_i 。 $(0 \le a_i \le 2^{31})$

【输出格式】

一行,一个整数,表示选出 m 个数异或的和的最大值。

样例输入	样例输出
8 3	7
0 1 2 3 4 5 6 7	

C. 向着梦想的一步

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niyiz 不能外出, 只能宅在家里梦想。

每天,Niyiz 都会朝着梦想前进一步,第一天他的梦想实现度为 a_1 ,第二天为 $a_2=a_1+d$,第三天为 $a_3=a_2+d$ ······一共有 n 天,这 n 天的梦想实现度形成了一个等差数列。

Niyiz 想知道这 n 天的梦想实现度的最大公约数。

【输入格式】

一行, 三个正整数 $a_1 d n (1 \le a_1, d, n \le 10^4)$ 。

【输出格式】

一行,一个整数,表示最大公约数。

样例输入	样例输出
1 2 3	1

D. 夜空似乎知晓一切

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niviz 不能外出, 只能宅在家里仰望星空。

"总感觉无法入睡 今夜我无法入睡 思念不停在我心里触动 整晚一直翻来覆去 既然是最为珍重的朋友 那就不得不坦诚面对吧 试着对你说明我的真心 我现在不安又迷乱的真心 夜空啊 它好像全都明白这一切…你知道吗?"

【输入格式】

第一行四个整数 x_1,y_1,x_2,y_2 ,表示第一条线段的两个端点。第二行四个整数 x_3,y_3,x_4,y_4 ,表示第二条线段的两个端点。线段的端点可以重合,此时线段退化成一个点。 $(|x_i|,|y_i|\leq 10^8)$

【输出格式】

若两条线段相交,输出 yes, 否则输出 no。

样例输入	样例输出
0 0 1 1	yes
0 1 1 0	
0 0 1 1	no
1 0 2 1	
0 0 2 2	yes
1 1 2 0	

[&]quot;夜空啊 你真的 全然知晓吗?"

[&]quot;我随便在平面上画两条线段,你也能立即告诉我它们是否相交吗?"

E. 冬天给予的预感

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niviz 不能外出, 只能宅在家里看偶像的 5 周年发布会。

发布会上说,她们要推出新的以冬日为主题的分组歌曲,还要进行巨蛋巡演。

Niyiz 对新的分组很感兴趣。这个偶像团体共有 n 个人,可以标号为 1 到 n,每次出分组专辑会分成 m 个小组,第 i 个小组有 a_i 人。每个人都会属于一个小组,即 $\sum_{i=1}^m a_i = n$ 。

这是她们第二次出分组专辑,第一次的时候,第 i 个小组的成员分别是 $w_{i,1}, w_{i,2}, \cdots, w_{i,a_i}$ 。由于偶像的 cp 是运营不能放过的卖点,因此这次出专,任何小组不能跟原来的某一个小组完全相同。

Niviz 想知道这次她们有多少种可能的分组方案。由于答案比较大,请输出答案对 109+7 取模。

两种分组方案不同,当且仅当存在两名成员,她们在其中一种方案中属于同一个小组,在另一种方案中属于不同的小组。

【输入格式】

第一行两个整数 n, m 。 (1 < n < 1000, 1 < m < 15)

接下来 m 行,第 i 行第一个整数为 a_i ,表示该小组的人数,接下来有 a_i 个整数 $w_{i,1}, \cdots, w_{i,a_i}$,表示第一次分组时这些人被分到了一组。

保证 $\sum_{i=1}^{m} a_i = n$, $\forall i, 1 \leq a_i \leq n$.

保证所有 $w_{i,j}$ 互不相同,且 $1 \le w_{i,j} \le n$ 。

【输出格式】

一行,一个整数,表示答案对 $10^9 + 7$ 取模。

【样例数据】

样例输入	样例输出
3 2	2
1 1	
2 2 3	
9 4	966
2 1 3	
2 4 9	
2 5 6	
3 2 7 8	

【样例解释】

对于第一组样例,两种方案分别是 (2)(1,3) 和 (3)(1,2)。

对于第二组样例,其中一种符合题意的方案是 (4,5)(7,8)(6,9)(1,2,3),其中一种不符合题意的方案是 (5,6)(3,4)(1,2)(7,8,9),因为 (5,6) 这个分组重复了。

【提示】

你可能需要用到的知识:如何在模意义下进行除法运算?根据费马小定理,对于质数 p,若 a (a>0) 与 p 互质,则 $a^{p-1}\equiv 1\pmod p$ 。两边除以 a 可得 $a^{p-2}\equiv \frac{1}{a}\pmod p$ 。在这题中, $p=10^9+7$ 是一个质数。因此, $\frac{a}{b}\equiv a\cdot b^{p-2}\pmod p$ 。

F. 欲于辉夜之城起舞

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niviz 不能外出, 只能宅在家里看电视舞蹈节目。

于辉夜之城起舞,是每一位舞者的梦想,不仅要非常努力地个人练习,还要进行组队练习。

在 Niyiz 看来,一个队伍所有人的能力值的中位数决定了这个队伍的优劣。中位数是指,假设队伍有 m个人,那么将这 m个能力值从小到大排序后取第 $\lceil \frac{m}{2} \rceil$ 个数。

这天一共有n个舞者来到辉夜之城,这n个人的能力值互不相同,且恰好形成了一个1到n的排列。这n个人会依次到达,但由于Niyiz并不知道会有多少人来,因此每来一个人,Niyiz都想要知道,对于当前的舞者组成的队伍,能力值的中位数是多少。

【输入格式】

第一行一个整数 $n (n \le 2 \cdot 10^6)$ 。

第二行 n 个整数,表示一个长度为 n 的排列 p_1, \dots, p_n ,代表依次到来的舞者的能力值。

【输出格式】

为了避免输出过大,将采用如下方式输出:

假设 p_1, \dots, p_i 的中位数为 m_i ,输出 $\sum_{i=1}^n m_i \cdot 2333333^i \mod (10^9 + 7)$ 。

【样例数据】

样例输入	样例输出
6	275452670
1 5 2 6 3 4	

【样例解释】

中位数依次是 1,1,2,2,3,3。

G. 欢乐派对列车

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niviz 不能外出, 只能宅在家里回忆昔日的欢乐时光。

Niyiz 曾乘坐欢乐派对列车飞向蓝天,驶向梦想。他所在的车厢可以视为一个 n 行 2m+1 列的矩阵(行从上往下按 1 至 n 编号,列从左往右按 1 至 2m+1 编号),其中每行的前 m 个位置和后 m 个位置都是座位,中间的一列为走道,门位于走道的最上方。下图展示了一个 n=5, m=3 的例子:

车上一共有 k 个人,第 i 个人位于第 x_i 行第 y_i 列。从列车到站的那一刻起,每秒钟,在车内的每个人可以选择下列三个行为之一:

- 若他位于 (1, m+1), 他可以选择从门出去;
- 若他位于座位,则向走道方向前进一格;若他位于走道,则向门方向前进一格;
- 原地不动。

每个格子每时每刻最多只能容纳一个人,因此不能有两人或以上选择同一个格子作为下一秒的目的地。 Niyiz 只记得这么多了,他想知道最少需要多少秒,能让所有人离开车厢。

【输入格式】

第一行三个整数 n, m, k 。 $(1 \le n, m \le 1000, 1 \le k \le \min(2nm, 10^5))$ 接下来 k 行,第 i 行两个整数 x_i, y_i ,表示第 i 个人的初始位置。

【输出格式】

一行,一个整数,表示所有人离开车厢所需的最小时间。

样例输入	样例输出
2 1 4	5
1 1	
1 3	
2 1	
2 3	
3 2 6	7
1 1	
1 2	
2 4	
2 5	
3 1	
3 2	

H. 自我控制

时间限制: 1秒 空间限制: 256MB

【题目描述】

疫情当前, Niyiz 不能外出, 只能宅在家里看新闻。

新闻里基本都是,某国爆发了疫情,政府提醒大家一定要严格自我控制,要戴口罩,不要聚集,balabala......

Niyiz 注意到一个特别的国家。这个国家有 n 个城市,有 m 条双向通道连接着这些城市。通道有两种,一种是航空通道,一种是公路。任何类型的通道都需要花 1 天时间通过。

某一天,城市 s 爆发了疫情。政府下令,a 天后关闭所有航空通道,b 天后关闭所有公路。这样一来,在 $\max(a,b)$ 天后,所有城市都被隔离开来了。

但是政府知道肯定有人在这些天内到处跑。为了制定下一步防疫政策,政府需要知道,当"全国封城"以后,有多少城市可能存在感染者。

【输入格式】

第一行五个整数 n, m, s, a, b。 $(1 \le n, a, b \le 10^5, 1 \le m \le 2 \cdot 10^5, 1 \le s \le n)$

接下来 m 行,每行 3 个整数 u_i, v_i, w_i ,表示一条双向通道连接着城市 u_i 和 v_i ,若 $w_i = 0$ 则表示一条 航空通道,若 $w_i = 1$ 则表示一条公路。

【输出格式】

一行,一个整数,表示最终有多少城市可能存在感染者。

【样例数据】

样例输入	样例输出
4 4 1 1 2	4
1 2 0	
1 3 1	
2 3 0	
2 4 1	
4 4 1 1 2	3
1 2 1	
1 3 0	
2 3 1	
2 4 0	

【样例解释】

对于第二组样例,感染者若要前往城市 4,必须先花 1 天时间从城市 1 到达城市 2,而这 1 天后航空通道就关闭了,因此城市 4 不会被感染。而其他 3 座城市都可能被感染。