Security Concepts ivan notes 2022

Devices

- ▼ routers
 - -most routers support ACLs
 - -ACLs define what traffic is allowed to and from where
- ▼ firewalls
 - stateful keep track of the status of network connections
 - -if a connection is allowed to a host, then it is allowed
 - -server should not make the first move
- **▼** IDS
 - -monitor traffic for IoCs
 - -fire alerts to notify security teams to investigate further and take action
- ▼ IPS
 - -like IDS, but can act directly to stop attacks as they happen
- ▼ OoB
 - IDS and IPS can both be 'inline' or 'out of band'
 - -for best protection inline devices must be on every network segment
 - -out of band devices have traffic forwarded to them from other network segments
- ▼ Proxies
 - -act as middle man to shield hosts
 - -most common proxy is an HTTP proxy, used to filter unauthorized traffic
 - -reverse proxies exist to shield the existence of multiple servers behind one proxy
- **▼** SIEM
 - Capable of ingesting and anlyzing data from multiple sources, can be
 configured with automated alerts relies on synchronization to process time
 stamps on logs

▼ TLS and SSL

- ▼ TLS
 - provides encryption for a variety of secure protocols

- ▼ SSL
 - -the predecessor for SSL, no longer secure
 - -supports early forms of encryption that can be broken

▼ Protocols

- ▼ SSH
 - encrypted, can tunnel there protocols, can perform complex file ops
 SCP secure copy, simple file transfer
 SFTP FTB tunneled via SSH
- ▼ FTP
 - used to transfer files, unencrypted
 - FTPS FTP secure, not to be confused with SFTP, FTP with TLS encryption,
 support certificates
- ▼ VOIP
 - ▼ SIP
 - session initiation protocol establishes connections between callers
 - ▼ RTP
 - Realtime transfer protocol carries voice data between callers, unencrypted
 - ▼ SRTP
 - secure real time protocol like RTP, but encrypted
- ▼ SNMP v3
 - v3 is encrypted

Architecture

- ▼ DMZ
 - designate a network segment that is accessible to the public, but does not
 access the rest of the network
- ▼ intranet
 - intra internal network
- ▼ extranet
 - private network accessible to authorized partners
- ▼ honey pot
 - attracts intruders to fake env

- ▼ minimize attack surface
 - least priv, open ports, which services, what permissions? reduce blast radius

Hashing

- one way, provides integrity
- data can be converted into a fixed length hash, unique to the data
- no mathematical process to reverse this, only way to is to figure out what is hashed is through trial and error

Cryptography

- ▼ Symmetric encryption
 - -one key is used to encrypt and decrypt data
 - -this provides confidentiality
 - -generally more efficient than asymmetric encryption
- ▼ Asymmetric encryption
 - ▼ everyone has 2 keys public and private
 - public known to everyone and directly associated with its owner
 - private only known to its owner
 - public keys can encrypt data that can only be decrypted by its associated private key and vice cersa
 - generally slower than symmetric, often used to encrypt symmetric encryption keys when transferring them
 - can be used with hashing to digitally sign a message
 - hash of msg is computed > hash is encrypted with the senders private key > receiver decrypts hash with senders public key > if hash matches the message sent, then the message is authentic
- ▼ considerations
 - key strength is an assessment of how difficult a key or password would be to guess, indicated by length and complexity
 - ▼ strong vs weak encryption

Strong: PGP, AES Weak: WEP, DES

▼ Virtualization

- -allows for rapid reconfig of entire networks
 - -snapshots allow us to reset to known good state

- ▼ allows for sandboxing
 - observe what malware does without endangering any real assets
 - because malware is on a vm with no network access that we can destroy or
 reset to a clean snapshot with minimal effort

▼ Malware

- ▼ keylogger
 - records keystrokes
- ▼ trojan horse
 - masquerades as a legit program
- ▼ worm
 - self propagate through networks
- ▼ virus
 - infects files in the hopes of being spread by users or host processes
- ▼ ransomware
 - holds data hostage

Attacks

- ▼ SQLi
 - placing db commands in input that will be read by the db
- ▼ XSS
 - embedding malicious code into innocent websites so victims who browse to
 the website will execute said code
- ▼ phishing
 - attempt to gain info or access by masquerading as a legit party
- ▼ DOS
 - denies access to systems or services, usually refers to actions by single attacker
 - syn flood: DOS attack that overwhelms victims through half open TCP
 connection
- **▼** DDOS
 - DOS attacks where large groups of hosts overwhelm victims with their combined bandwidth

- bots are infected hosts that participate in DDOS attacks without their owners
 consent
- ▼ ARP Poisoning
 - maliciously sending ARP requests to alter the ARP table of a host
 - allows attacker to redirect traffic destined for other machine
- ▼ Buffer Overflow
 - exploit that sends more data than a variable in a program can hold, allowing
 attackers to change the value of other memory locations

Vulnerabilities

- ▼ Default config
 - devices and services often come with a well known default password and other
 vulnerable configs
- ▼ Humans are the biggest vulnerability of any system
 - social engineering is effective, user training is the most effective
 countermeasure to this and other human issues
- ▼ improper input validation
 - not ensuring that user input will not lead to error or unexpected behavior in an
 app
 - use input validation to mitigate attacks, e.g. SQLi, XSS, etc