

Ontwerpen van Geregelde Systemen

Ontwerpen van geregelde systemen

Inleiding

Regelaarinput: E

Regelaaroutput: U

$$U = E * H_r$$

$$H_r = U / E$$

De regelaar moet de geregelde waarde constant houden of moet de referentiewaarde volgen.

DE AUTOMATISCHE REGELAAR

Filmpje over PID (intro)

https://www.youtube.com/watch?v=UR0hOmjaHp0

P(Proportional)-, I(Integral)- en D(Derivative)-actie

a. stapresoponsie c als d verandert van 0 naar D,

b. stapresoponsie c als r verandert van 0 naar R,
 bij P-geregeld systeem

 c. stapresoponsie c als r verandert van 0 naar R, bij PI-geregeld systeem

 d. stapresoponsie c als r verandert van 0 naar R, bij PD-geregeld systeem

e. stapresoponsie c als r verandert van 0 naar R,
 bij PID-geregeld systeem

P:
$$u(t) = K_p * e(t)$$

I:
$$u(t) = K_i * \int e(t)dt$$

D:
$$u(t) = K_d * \frac{d}{dt}e(t)$$

P-, I- en D-actie

- P: $u(t) = K_p * e(t)$
- $\blacksquare \ \text{I:} \ u(t) = K_i * \int e(t) dt$

Invloeden: zie voorgaand figuur

- P: D(% overshoot) groter; t_s kleiner; E kleiner
- I: t_s groter; E kleiner
- D: t_s kleiner; D(% overshoot) kleiner

Bij alle regelaars bestaat de kans dat het geregelde systeem instabiel wordt!

Zie: https://commons.wikimedia.org/wiki/File:PID_Compensation_Animated.gif

P-, I- en D-actie

$$P: u(t) = K_p * e(t)$$

I:
$$u(t) = K_i * \int e(t)dt$$

P:
$$u(t) = K_p * e(t)$$
 I: $u(t) = K_i * \int e(t)dt$ D: $u(t) = K_d * \frac{d}{dt}e(t)$

P: D(% overshoot) groter; t_s kleiner; E kleiner

I: t_s groter; E kleiner

D: t_s kleiner; D(% overshoot) kleiner

De <u>parallel</u> PID-regelaar (toegepast in praktijk):

$$u(t) = K_p * e(t) + K_i * \int_{0}^{t} e(t)dt + K_d * \frac{de(t)}{dt}$$

Kp wordt soms Kr genoemd

P = Proportioneel

I = Integrerend

D = Differentiërend

DE PID-REGELAAR

De <u>parallel</u> PID-regelaar (toegepast in praktijk):

$$H_R(s) = \frac{U(s)}{E(s)} = K_R \cdot \left(1 + \frac{1}{s\tau_i} + s\tau_d\right)$$

Kp wordt soms Kr genoemd

P = Proportioneel

I = Integrerend

D = Differentiërend

DE REGELAARS

Pregelaar:
$$H_r = K_r$$

ideale PI regelaar:
$$H_r = K_r \left(1 + \frac{1}{\tau_i s} \right)$$

ideale PD regelaar: $H_r = K_r(1 + \tau_d s)$

ideale PID regelaar:
$$H_r = K_r \left(1 + \frac{1}{\tau_i s} + \tau_d s \right)$$

In de praktijk worden meestal niet-ideale regelaars gebruikt. Niet-ideale PI wordt vaak 'lag-controller' genoemd. Niet-ideale PD wordt vaak 'lead-controller' of ook 'tamme D-regelaar' genoemd.

Ontwerp van een P-regelaar

a. stapresoponsie c als d verandert van 0 naar D,

b, stapresoponsie c als r verandert van 0 naar R, bij P-geregeld systeem

 c. stapresoponsie c als r verandert van 0 naar R, bij Pl-geregeld systeem

d. stapresoponsie c als r verandert van 0 naar R, bij PD-geregeld systeem

 e. stapresoponsie c als r verandert van 0 naar R, bij PID-geregeld systeem

- Settling time wordt kleiner
- Overshoot wordt groter
- Statische fout wordt kleiner

Proportionaliteits factor:
$$K_r = \frac{U(s)}{E(s)}$$

Instellen P-actie

 $H(s) = 1/(s^2 + 16s + 48)$. Doel: $E_{stat} = 0$, $t_s = minimaal$, $D \le 10\%$ Eerst alleen P-regelaar; poolbaan met K = 1:

Instellen P-actie

Eerst alleen P-regelaar; stapresponsie closed loop, K = 1

(1):
$$E_{stat} = \frac{100\%}{1 + K_L}$$

Toevoegen I-actie (ideale PI-regelaar)

 $H(s) = 1/(s^2 + 16s + 48)$. Doel: $E_{stat} = 0$, $t_s = minimaal$, $D \le 10\%$ Eerst alleen P-regelaar; poolbaan met K = 1:

Toevoegen I-actie

Eerst alleen P-regelaar; stapresponsie closed loop, K = 1

PI-regelaar

$$H_r = K_r \left(1 + \frac{1}{\tau_i s} \right)$$

Ideale PI-regelaar: Pool in 0, nulpunt in -14, K = 9,2

Ideale PI-regelaar: Pool in 0, nulpunt in -14, K = 9,2

Ideale PI-regelaar: Pool in 0, nulpunt in -8, K = 22,6

Ideale PI-regelaar: Pool in 0, nulpunt in -8, K = 22,6

Ideale PI-regelaar: Pool in 0, nulpunt in -2, K = 209

Ideale PI-regelaar: Pool in 0, nulpunt in -2, K = 209

Een goede keuze voor de waarde van τ_i in een PI-regelaar is dus een waarde die gelijk is aan of iets groter is dan de grootste tijdconstante van het systeem. Het nulpunt van deze PI-actie ligt dan <u>iets rechts van de dominante systeempool</u>

 τ_i

PI-regelaar

$$E_{stat} = \frac{100\%}{1 + K_L}$$

$$K_L = K \frac{\prod |z_i|}{\prod |p_i|}$$

Toevoegen D-actie (ideale PD-regelaar)

 $H(s) = 1/(s^2 + 16s + 48)$. Doel: $E_{stat} = 0$, $t_s = minimaal$, $D \le 10\%$ Eerst alleen P-regelaar; poolbaan met K = 1:

Toevoegen D-actie

Eerst alleen P-regelaar; stapresponsie closed loop, K = 1

- Zuivere PD-regelaar: $H_r = K_r(1 + \tau_d s)$
- Getemde PD-regelaar: $H_r = K_R \frac{\tau_d s + 1}{\frac{\tau_d}{a} s + 1}$
 - □ a is tamheidsfactor, vaak gekozen als 6, 10 of 20
 - $\Box a \rightarrow \infty \Rightarrow$ getemde wordt zuivere PD-regelaar

- Een D-actie wordt toegepast voor vergroting van de demping en/of de responsiesnelheid van een systeem.
- Niet-ideale PD-regelaar: Nulpunt in -3, pool in -18, K = 70:

Niet-ideale PD-regelaar: Nulpunt in -3, pool in -18, K = 70:

Niet-ideale PD-regelaar: Nulpunt in -8, pool in -48, K = 2275:

Niet-ideale PD-regelaar: Nulpunt in -8, pool in -48, K = 2275:

Niet-ideale PD-regelaar: Nulpunt in -14, pool in -84, K = 4580:

Niet-ideale PD-regelaar: Nulpunt in -14, pool in -84, K = 4580:

Voor de keuze van τ_d kan dus de vuistregel worden gehanteerd dat bij systemen met twee of meer polen de differentiatietijd τ_d iets kleiner wordt gekozen dan de op één na grootste tijdconstante van het systeem. Het nulpunt van deze D-actie ligt dan <u>iets links van de één-na meest dominante systeempool</u>.

De <u>parallel</u> PID-regelaar (toegepast in praktijk):

$$u(t) = K_R \cdot \left(e(t) + \frac{1}{\tau_i} \int_0^t e(t) \cdot dt + \tau_d \frac{de(t)}{dt} \right)$$

Kp wordt soms Kr genoemd

P = Proportioneel

I = Integrerend

D = Differentiërend

$$H_R(s) = \frac{U(s)}{E(s)} = K_R \cdot \left(1 + \frac{1}{s\tau_i} + s\tau_d\right)$$

PID in het s-domein

P: Instellen van ontwerp criteria

PI: Het nulpunt van deze I-actie ligt dan iets rechts van de dominante systeempool

■ PD: Het nulpunt van deze D-actie ligt dan iets links van de één-na meest dominante systeempool.

Controller design

Time domain	s-domain	Frequency domain
Overshoot (D%)	λ	Gain Margin (GM)
Peak Time t_p	ω	Phase Margin (PM)
Settling Time t_s		Bandwidth (ω_B)
Rise Time t_r		

Klassieke P/PI/PD/PID regelaars

Differential Op-amp

Vout =
$$\frac{Rf}{Rin}$$
 (V2 – V1)

Summing Op-amp

$$Vout = -\left(\frac{Rf}{R1}V1 + \frac{Rf}{R2}V2 + \frac{Rf}{R3}V3\right)$$

Differentiator Op-amp

Integrator Op-amp

м

Ontwerpen van regelacties in het ω-domein.

s vervangen door jω:

Pregelaar:
$$H_r = K_r$$
 ideale PI regelaar: $H_r = K_r(1 + \frac{1}{\tau_i j \omega})$ ideale PD regelaar: $H_r = K_r(1 + \tau_d j \omega)$ ideale PID regelaar: $H_r = K_r(1 + \frac{1}{\tau_i j \omega} + \tau_d j \omega)$

Kan jij de bodediagrammen van al die vier H_r 's schetsen?

м

Ontwerpcriteria: fase en versterkingsmarge; Praktijkwaarden zijn respectievelijk 45° en factor 2 ofwel 6 dB. Verder is de bandbreedte ook een belangrijk criterium.

Invloed van regelacties in het ω -domein. Voor het statische gedrag kijken we bij $\omega = 0$ r/s. Voor het dynamische gedrag kijken we naar de

- bandbreedte,
- fase- en
- versterkingsmarge in het bode diagram en in het Nyquist diagram.

Ontwerpen in het ω -domein

Voorbeeld: De procesoverdracht is:

$$H_p(j\omega) = \frac{6000}{(j\omega + 2)(j\omega + 10)(j\omega + 30)}$$

Vraag: Hoe kiezen we een goede K uit?

- 1) Poolbanen
- 2) Bode diagram -> Doen we nu

Bode diagram met $K_r = 1$ (P-regelaar)

Voor $PM = 45^o$ moet gelden: $|H|_{\phi(H) = -135^o} = 0dB$ Voor $K_r = 1$ geldt: $|H|_{\phi(H) = -135^o} \approx 4dB \approx 1.6$ Voor $|H|_{\phi(H) = -135^o} = 0dB = 1 \Rightarrow K_r = 1/1.6 \approx 0.63$

Bode diagram met $K_r = 0.63$ (P-regelaar) voor PM = 45°

PI-regelaar

$$H_{PI} = K_r * \left(1 + \frac{1}{\tau_i * j\omega}\right) = K_r * \frac{j\omega + \frac{1}{\tau_i}}{j\omega}$$

Vb: $K_r = 1$; $\tau_i = 0.01 \Rightarrow \omega_i = 100 \ rad/sec$

Toevoegen I-actie (ideale PI-regelaar): $H_{PI}=(j\omega+1)/j\omega$ ($\omega_{FM} \approx 10 \text{ r/s dus } \omega_i = 1 \text{ r/s}$); bode diagram regelaar met $K_r = 0.63$:

Bode diagram proces met PI-regelaar:

Stapresponsie proces met PI-regelaar:

Toevoegen D-actie (lead-regelaar) Start: Bode diagram met $K_r = 0.63$ (P-regelaar) voor PM = 45°

Getemde D-actie, effecten van a en τ_d

Getemde D-actie,
$$H_d(j\omega) = K_r \text{'.a.} \frac{j\omega + \frac{1}{\tau_d}}{j\omega + \frac{a}{\tau_d}}$$

$$= K_r'.a. \frac{j\omega + \frac{\omega_d}{\sqrt{a}}}{j\omega + \omega_d.\sqrt{a}}$$

Dan: Toevoegen D-actie (lead-regelaar)

$$H_{lead}(j\omega) = K_r'.a. \frac{j\omega + \frac{1}{\tau_d}}{j\omega + \frac{a}{\tau_d}} = K_r'.a. \frac{j\omega + \frac{\omega_d}{\sqrt{a}}}{j\omega + \omega_d.\sqrt{a}}$$

Stap 1: kies $\omega_d = \omega_{GM} = 20 \text{ r/s}$

Stap 2: kies PM = 45°

Stap 3: bereken a met
$$\phi_{\text{max}} = 45^{\circ}$$
: $a = \frac{1 + \sin \phi_{\text{max}}}{1 - \sin \phi_{\text{max}}} = 6$

Stap 4: bepaal nieuwe K_r : $K_r' = K_r * \frac{GM}{\sqrt{a}}$

GM = 12 dB = factor 4, dus $K_r' = 0.63*4/\sqrt{6} = 1.03$

Resultaat:

$$H_{lead}(j\omega) = 1,03.6. \frac{j\omega + \frac{20}{\sqrt{6}}}{j\omega + 20.\sqrt{6}} = 6,2. \frac{j\omega + 8,2}{j\omega + 49,2}$$

Bode diagram lead-regelaar zonder K_r':

Bode diagram proces met lead-regelaar:

DE TAMME PID-REGELAAR

$$H_{R}(s) = \frac{X(s)}{E(s)} = K_{R} \cdot (1 + \frac{1}{s\tau_{i}})(1 + s\tau_{d})(\frac{1}{1 + sb\tau_{d}})$$

voordeel: - geen offset,

- bijna even snel als de PD-reg.

Interactieve demo – Position control

Vanaf deze dia komen extra/alternatieve uitleg van de stof. Tot deze dia wordt het in de klas behandeld.

DE P-REGELAAR

$$H_{R}(s) = \frac{X(s)}{E(s)} = K_{R}$$

$$x(t) = K_R \cdot e(t)$$

Als $e(t) = A \cdot 1(t)$ dan $x(t) = K_R \cdot A \cdot 1(t)$

KR = Proportionaliteitsfactor

x = aansturing

voordeel: snel

nadeel: offset niet nul

DE I-REGELAAR

$$H_R(s) = \frac{X(s)}{E(s)} = \frac{1}{s\tau_i} = \frac{K_R}{s}$$

 τ_i = integratie tijdconstante, pool = 0

Als
$$e(t) = A \cdot 1(t)$$
 dan $x(t) = \frac{1}{\tau_i} \int_0^t A \cdot 1(t) dt = \frac{A}{\tau_i} t$

Als e(t) niet nul is blijft de uitgang van de I-regelaar veranderen totdat e = 0. Hiervan maakt men gebruik om de statische fout E_{stat} van een regelsysteem nul te krijgen, dus de offset E(%) = 0 %.

Als A=2 en τ_i =1/6 dan x(t)=12 t als τ_i =1/4 dan x(t)=8 t

voordeel: geen offset

nadeel: - minder stabiel dan P-reg. door extra 90° fase-naijling,

traag

VOORBEELD I-REGELAAR

Proces:

$$Hp(s) = \frac{1}{1+s}$$

P-regelaar:

$$H_R(s) = \frac{X(s)}{E(s)} = K_R \Rightarrow H_L(s) = \frac{K_R}{1+s}$$

I-regelaar:

$$H_R(s) = \frac{X(s)}{E(s)} = \frac{1}{s\tau_i} = \frac{K_R}{s} \Rightarrow H_L(s) = \frac{K_R}{s(1+s)}$$

met
$$K_R = \frac{1}{\tau_i}$$

DE PI-REGELAAR

e(t)

$$H_{R}(s) = \frac{X(s)}{E(s)} = K_{R} \cdot (1 + \frac{1}{s\tau_{i}}) = K_{R} \cdot (\frac{1 + s\tau_{i}}{s\tau_{i}}) = K_{R} \cdot (\frac{1 + s\tau_{i}}{s\tau_{i}})$$

$$\tau_{i} = \text{integratietijd constante}$$

Vuistregel: $\tau_i \geq$ grootste tijdc. proces bestaande uit serie van 1^e -orde systemen. (nulpunt regelaar \geq grootste pool proces)

$$x(t) = K_R e(t) + \frac{K_R}{\tau_i} \int\limits_0^t e(t) \, dt$$

De responsie op een eenheidstap e(t)=1(t) is:

$$x(t) = K_R + \frac{K_R}{\tau_i}t$$

voordeel: - snel door P-actie,

- geen offset door I-actie

nadeel: trager dan P-reg.

Responsie PI-regelaar

VOORBEELD PI-REGELAAR

Proces:

$$\mathsf{Hp}(\mathsf{s}) = \frac{1}{1+\mathsf{s}}$$

P-regelaar:

$$H_R(s) = \frac{X(s)}{E(s)} = K_R \Rightarrow H_L(s) = \frac{K_R}{1+s}$$

PI-regelaar:

$$H_R(s) = \frac{X(s)}{E(s)} = K_R(\frac{1+s\tau_i}{s\tau_i}) \Longrightarrow H_L(s) = K_R(\frac{1+s\tau_i}{s\tau_i}) \frac{1}{(1+s)}$$

met $\tau_i = 1$ s (vuistregel: tijdcons tan te van het proces)

$$H_L(s) = K_R(\frac{1+s}{s})\frac{1}{(1+s)} = \frac{K_R}{s}$$

Nulpunt van PI-regelaar compenseert de pool van het proces!

DE PD-REGELAAR

e(t)

$$H_{R}(s) = \frac{X(s)}{E(s)} = K_{R} \cdot (1 + s\tau_{d})$$

$$\tau_{d} = \text{ differentiatietijd constante}$$

Vuistregel: τ_d ≤ één na grootste tijdc. proces bestaande uit serie van 1e-orde systemen (nulpunt regelaar ≤ één na grootste pool proces)

$$x(t) = K_R e(t) + K_R \tau_d \frac{de(t)}{dt}$$

De responsie op een eenheidstap e(t)=1(t) is: $x(t)=K_{R}+K_{R}\tau_{d}\delta(t)$

voordeel:- sneller dan P-reg.,

- stabieler door fasevoorijling,
- offset minder dan P-reg.

nadeel:- minder geschikt voor stapvormige ingangssignalen, remedie Lead filter

DE PD-REGELAAR

De responsie op een rampfunctie e(t)=t.1(t) is:

$$x(t) = K_R t + K_R \tau_d$$

Als KR=5 en τ_d =0,1 s dan: x(t) = 5t + 0,5

Door de D-actie wordt er met een sprong gereageerd op een verandering in de fout e(t), bij een P-actie gaat dit geleidelijk.

De D-actie zorgt dus voor een sneller bijregelen dan bij alleen een P-actie!

PD-aktie in terugkoppelweg:

De uitgang van een proces verandert minder snel en nooit stapvormig, daardoor leidt differentiëren niet tot grote pieken op de uitgang van de D-actie.

De lusoverdracht H_L(s) verandert daardoor echter niet.

VOORBEELD PD-REGELAAR

Proces:
$$Hp(s) = \frac{32}{(s+2)(s+8)}$$

P-regelaar:

$$H_R(s) = \frac{X(s)}{E(s)} = K_R \implies H_L(s) = \frac{32K_R}{(s+2)(s+8)}$$

PD-regelaar:

$$\begin{split} H_R(s) &= \frac{X(s)}{E(s)} = K_R(1 + s\tau_d) \Rightarrow H_L(s) = K_R(1 + s\tau_d) \frac{32}{(s+2)(s+8)} = \\ K_R(1 + s\tau_d) \frac{2}{(\frac{1}{2}s+1)(\frac{1}{8}s+1)} \end{split}$$

met $\tau_d = 1/8s$ (vuistregel: één na grootste tijdcons tan te van het proces)

$$H_L(s) = K_R (1 + \frac{1}{8}s) \frac{2}{(\frac{1}{2}s + 1)(\frac{1}{8}s + 1)} = \frac{2K_R}{(\frac{1}{2}s + 1)} = \frac{4K_R}{(s + 2)}$$

Door compensatie door het nulpunt v.d. PD-regelaar ontstaat er een nieuwe poolbaan waarop de regelsysteem-pool steeds verder naar links kan worden verschoven, dus systeem sneller.

Nulpunt van PD-regelaar compenseert de pool van het proces!

DE TAMME PD-REGELAAR

voordeel: rustiger en minder storingsgevoelig dan PD-regelaar door toevoeging v.e. eerste orde systeem (LDF)

DE TAMME PID-REGELAAR

$$H_{R}(s) = \frac{X(s)}{E(s)} = K_{R} \cdot (1 + \frac{1}{s\tau_{i}})(1 + s\tau_{d})(\frac{1}{1 + sb\tau_{d}})$$

voordeel: - geen offset,

- bijna even snel als de PD-reg.