Conrad Werner p-adic numbers

Talk 3: Ostrowski's theorem

0 Review

Remark 0.1. $|\cdot|$ be a non-archimedean absolute value over $\mathbb{Q}, n \in \mathbb{Z}$. $\Longrightarrow |n| \leq 1$

Remark 0.2 (Strong triangle inequality). Let $|\cdot|$ be a non-archimedean absolute value over \mathbb{F} $\Rightarrow \forall x, y \in \mathbb{F}, |x| \neq |y| : |x+y| = \max\{|x|, |y|\}$

Proofs for all following statements can be found in [Gou, Chapter 3.2]

1 Equivalence of absolute values

Definition 1.1. Two absolute values are considered equivalent if and only if they create the same topology on K.

Example 1.2. Example from [Con]:

Define an absolute value as $|\cdot|': \mathbb{Q} \to \mathbb{R}_{>0}$ $x \mapsto \sqrt{|x|}$. Then $|\cdot|'$ is equivalent to the regular absolute value on \mathbb{Q}

Lemma 1.3. Let $(a_n) \subset \mathbb{F}$ be a sequence in \mathbb{F}

 $\lim_{n\to\infty}(a_n)=a\iff Any\ open\ set\ containing\ a\ also\ contains\ almost\ all\ a_n.$

Proposition 1.4. Let $|\cdot|_1$ and $|\cdot|_2$ be absolute values on a field \mathbb{F} . The following statements are equivalent:

- (i) $|\cdot|_1$ and $|\cdot|_2$ are equivalent absolute values.
- (ii) A sequence $(a_n) \subset \mathbb{F}$ converges with respect to $|\cdot|_1$ if and only if it converges with respect to $|\cdot|_2$
- (iii) $\forall x \in \mathbb{F} : |x|_1 < 1 \iff |x|_2 < 1$
- (iv) $\exists \alpha \in \mathbb{R}_{>0} \forall x \in \mathbb{F} : |x|_1 = |x|_2^{\alpha}$

Example 1.5. Let $c \in \mathbb{R}_{>1}$ be a constant.

Recall the absolute value defined on \mathbb{Q} as $\forall n \in \mathbb{Z} : |n| := c^{-v_p(n)}$. $|\cdot|$ is equivalent to the p-adic absolute value $|\cdot|_p$.

2 Ostrowski's theorem and the product formula

Theorem 2.1 (Ostrowski). Any non-trivial absolute value on \mathbb{Q} is equivalent either to the regular absolute value or a p-adic absolute value for some prime p.

Proposition 2.2 (Product formula).

$$\prod_{r \le \infty} |x|_r = 1$$

Conrad Werner p-adic numbers

References

 $[Gou] \hspace{1cm} \textbf{Fernando Q. Gouvêa: } \textit{p-adic Numbers}.$

 $[{\it Con}] \begin{tabular}{ll} {\it Keith Conrad: } {\it Equivalence of absolute values}, {\it available on the author's website. Last} \\ \end{tabular}$

visited on 04/16/23