

CUx-Daemon Wireless M-Bus Dokumentation

Version 1.9

Inhaltsverzeichnis

1	Wireless M-Bus Geräte (WMOD)	3
	1.1 (25) Fast Forward EnergyCam / Sensus iPEARL	4
	1.1.1 Darstellung der Messwerte	
	1.2 128 Bit AES Verschlüsselung	

1 Wireless M-Bus Geräte {WMOD}

Der CUxD ist eine universelle Schnittstelle zwischen der CCU-Logikschicht (ReGa HSS) und externen Geräten. Als Ergänzung zur ausführlichen CUxD-Dokumentation geht es im folgenden nur um die Anbindung von Wireless M-Bus Geräten an den CUxD.

Für die Einbindung von Wireless M-Bus Geräten ist ein IMST <u>iM871A-USB</u> Stick und eine Nutzungslizenz für die Implementation des Wireless M-Bus Protokolls im CUxD erforderlich. (http://www.ehomeportal.de/)

Die Nutzungslizenz besteht aus einem **KEY** der separat erworben werden muss und dann im CUxD-Setup als Parameter hinzugefügt wird.

Mit jedem empfangenen Wireless M-Bus Datentelegramm wird zusätzlich auch die Empfangsfeldstärke in dBm (Kanal: **0**, Datenpunkt: **RSSI_PEER**) zurückgeliefert.

Die Adressen der empfangenen Wireless M-Bus-Geräte findet man zeitlich sortiert auf der CUxD-Statusseite. Von dort können sie über die Zwischenablage in das CODE-Feld des Gerätes kopiert werden. Weiterhin ist auch ein automatisches Anlernen von Wireless M-Bus Geräten über den LEARN-Parameter möglich.

1.1 (25) Fast Forward EnergyCam / Sensus iPEARL

Die Fast Forward <u>EnergyCam</u> (Kennung: *FFD*) ermöglicht das automatische Ablesen mechanischer Zählwerke für Gas, Wasser und Strom. Beim Sensus <u>iPEARL</u> (Kennung: *SEN*) handelt es sich um einen Wasserzähler.

Es ist sowohl eine unverschlüsselte als auch eine 128 Bit AES verschlüsselte Daten übertragung möglich.

Für die Verschlüsselung muss die EnergyCam zuvor mittels USB-Adapter (als Zubehör erhältlich) nach Anleitung konfiguriert werden. Beim iPEARL ist es ggf. anders. Für den Datenempfang muss der vollständige 128 Bit AES Schlüssel bekannt sein.

Konfigurationsparameter:

Parameter					
DEVICE					
CODE	03601721				
Zyklische Statusmeldung	✓				
RESET					
SUM_RESET					
LEARN					

DEVICE - USB-ID oder TTY oder leer

CODE - Adresse des Gerätes

CYCLIC INFO MSG -[x] zyklische Statusmeldung des Sensors überwachen. Wenn

der Sensor sich nicht mindestens einmal innerhalb von 60 Minuten meldet, erfolgt eine **UNREACH**-Servicemeldung auf

der CCU.

RESET - **SUM 24H** Verbrauchsstatistik zurücksetzen

SUM_RESET - **SUM** Verbrauchszähler zurücksetzen und aktuellen Zeitstempel

im Datenpunkt **SUM_DATE** speichern.

LEARN

 - [x] das Anlernen der Geräteadresse erfolgt beim nächsten asynchronen Datentelegramm (z.B. auslösen der Zählerablesung durch Tastendruck an der EnergyCam)

Gewerk	Letzte Aktualisierung	Control	
Filter			
Energiemanagement	17.05.2014 19:58:22	[INFO] Gas [METER] 1613.60 m ³ [SUM] 10.30 m ³	[SUM_24H] 0.70 m ³ [SUM_DATE] 12.05.2014 20:35

Kanaltypen:

Kanaltyp	Kanalnummer
SENSOR	1

Kanaltyp SENSOR:

DP-Name	Тур	Zugriff	Beschreibung
INFO	string	lesend	empfangenen Zählertyp anzeigen
COUNTER	integer	lesend	Nummer des empfangenen Datensatzes (0255) aus dem Wireless M-Bus Protokoll
METER	float	lesend	aktueller Verbrauchswert des Zählwerkes. Die Einheit wird aus dem Datentelegramm bestimmt.
SUM_24H	float	lesend	Verbrauch der letzten 24 Stunden (die Aktualisierung erfolgt mit dem Wechsel der aktuellen Stunde)
SUM	float	lesend	Aktueller Verbrauch seit der Initialisierung des Zählers mittels SUM_RESET
SUM_DATE	string	lesend	Zeitstempel der Initialisierung des SUM -Zählers
SUM_DATE_ISO	string	lesend	Zeitstempel im ISO-Format: "YYYY-MM-DDThh:mm:ss"
SUM_RESET	action	schreibend	SUM Verbrauchszähler zurücksetzen und aktuellen Zeitstempel im Datenpunkt SUM_DATE speichern

1.1.1 Darstellung der Messwerte

Beispieldarstellung des aufgezeichneten **Strom-** und **Gasverbrauchs** mit <u>CUxD</u> <u>HighCharts</u> direkt auf der CCU (m³ bzw. kWh):

1.2 128 Bit AES Verschlüsselung

Neben dem Empfang unverschlüsselter Datentelegramme, können mit jedem IMST iM871-USB Stick auch 16 verschlüsselte Wireless M-Bus Sensoren direkt entschlüsselt werden. Dafür müssen auf dem Sensor und im Gateway (USB-Stick) jeweils die gleichen Schlüssel konfiguriert sein.

Der CUxD übernimmt bei jeder Initialisierung die Konfiguration des USB-Sticks mit den zuvor festgelegten Geräteschlüsseln über den **TTYINIT=** Parameter.

Konfiguration für 128 Bit AES Entschlüsselung:

TTYINIT=<TTY>:+0125|TT AA...A SS...S:<nächster Schlüssel>

Hinter dem TTYINIT= Parameter wird zuerst das *TTY* (an dem der USB-Stick steckt) angegeben. Dann folgt ein Doppelpunkt und das Plus-Zeichen, gefolgt vom Befehl **0125**, dem senkrechten Strich als Trenner und den Daten. Leerzeichen sind optional und dienen nur der besseren Lesbarkeit.

- Tabellenindex zum Abspeichern des Schlüssels auf dem Stick (von **00** bis **0F**)
- AA...A Sensoradresse von der CUxD-Statusseite (hinter encrypted [...])
- SS...S 16 Byte langer Schlüssel vom Sensor (32 Hex-Zeichen)

Nach einem weiteren Doppelpunkt kann der nächste Schlüssel folgen usw...

Die Sensor-Adressen von verschlüsselten Wireless M-Bus Sensoren können auf der CUxD-Statusseite gefunden werden. (siehe oben!)

Beispiel mit 2 konfigurierten Schlüsseln:

```
TTYINIT=ttyUSB0:+0125|00 C418 28136051 0103 12312311112311312312312311111111: 0125|01 C418 78563412 0102 123456789ABCDEF0123456789ABCDEF0
```

Daten erfolgreich entschlüsselt:

```
gefundene Adressen (aktuelle zuerst 17:22:34):

Letzte Status Device Gerät 'CODE'

17:22:25 [X] ttyUSB0 wM-Bus-Gas '51601328' (-74dBm secure)
```