

Parallelism and Instructions: Synchronization

Parallel execution is easier when tasks are independent, but often they need to cooperate. Cooperation usually means some tasks are writing new values that others must read. To know when a task is finished writing so that it is safe for another to read, the tasks need to synchronize. If they don't synchronize, there is a danger of a **data race**, where the results of the program can change depending on how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on page 44 of Chapter 1. Suppose one reporter needs to read all the prior sections before writing a conclusion. Hence, he or she must know when the other reporters have finished their sections, so that there is no danger of sections being changed afterwards. That is, they had better synchronize the writing and reading of each section so that the conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level software routines that rely on hardware-supplied synchronization instructions. In this section, we focus on the implementation of *lock* and *unlock* synchronization operations. Lock and unlock can be used straightforwardly to create regions where only a single processor can operate, called a *mutual exclusion*, as well as to implement more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiprocessor is a set of hardware primitives with the ability to *atomically* read and modify a memory location. That is, nothing else can interpose itself between the read and the write of the memory location. Without such a capability, the cost of building basic synchronization primitives will be high and will increase unreasonably as the processor count increases.

There are a number of alternative formulations of the basic hardware primitives, all of which provide the ability to atomically read and modify a location, together with some way to tell if the read and write were performed atomically. In general, architects do not expect users to employ the basic hardware primitives, but instead expect that the primitives will be used by system programmers to build a synchronization library, a process that is often complex and tricky.

Let's start with one such hardware primitive and show how it can be used to build a basic synchronization primitive. One typical operation for building synchronization operations is the *atomic exchange* or *atomic swap*, which interchanges a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that we want to build a simple lock where the value 0 is used to indicate that the lock is free and 1 is used to indicate that the lock is unavailable. A processor tries to set the lock by doing an exchange of 1, which is in a register, with the memory address corresponding to the lock. The value returned from the exchange instruction is 1 if some other processor had already claimed access, and 0 otherwise. In the latter

data race Two memory accesses form a data race if they are from different threads to same location, at least one is a write, and they occur one after another.

case, the value is also changed to 1, preventing any competing exchange in another processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange simultaneously: this race is broken, since exactly one of the processors will perform the exchange first, returning 0, and the second processor will return 1 when it does the exchange. The key to using the exchange primitive to implement synchronization is that the operation is atomic: the exchange is indivisible, and two simultaneous exchanges will be ordered by the hardware. It is impossible for two processors trying to set the synchronization variable in this manner to both think they have simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in the design of the processor, since it requires both a memory read and a write in a single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction returns a value showing whether the pair of instructions was executed as if the pair were atomic. The pair of instructions is effectively atomic if it appears as if all other operations executed by any processor occurred before or after the pair. Thus, when an instruction pair is effectively atomic, no other processor can change the value between the instruction pair.

In MIPS this pair of instructions includes a special load called a *load linked* and a special store called a *store conditional*. These instructions are used in sequence: if the contents of the memory location specified by the load linked are changed before the store conditional to the same address occurs, then the store conditional fails. The store conditional is defined to both store the value of a (presumably different) register in memory *and* to change the value of that register to a 1 if it succeeds and to a 0 if it fails. Since the load linked returns the initial value, and the store conditional returns 1 only if it succeeds, the following sequence implements an atomic exchange on the memory location specified by the contents of \$ S 1:

```
again: addi $t0,$zero,1 ;copy locked value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,again ;branch if store fails

add $s4,$zero,$t1 ;put load value in $s4
```

Any time a processor intervenes and modifies the value in memory between the 11 and sc instructions, the sc returns 0 in t0, causing the code sequence to try again. At the end of this sequence the contents of s4 and the memory location specified by s1 have been atomically exchanged.

Elaboration: Although it was presented for multiprocessor synchronization, atomic exchange is also useful for the operating system in dealing with multiple processes in a single processor. To make sure nothing interferes in a single processor, the store conditional also fails if the processor does a context switch between the two instructions (see Chapter 5).