MULTI-MODAL GRAPH TRANSFORMER

ES667 - DEEP LEARNING PROJECT

Bhavya Parmar - 23110059

Rishabh Jogani - 23110276

Umang Shikarvar - 23110301

PROBLEM STATEMENT

• **Task:** Multimodal Sentiment Analysis using Graph Transformer – Predict sentiment from image and text pairs.

• **Objective:** Leverage graph transformers to better model structural dependencies between image-text pairs and outperform standard baselines.

 Good Model: One that effectively fuses visual and textual modalities and generalizes well to unseen sentiment cases.

DATASET USED

- Twitter Dataset for Sentiment Analysis
- 4869 Samples of image and text data (Train/val/test split = 80/10/10%)
- Image shape: (256, 256, 3)
- **Text:** A caption for each image
- Sentiment classes Positive (2) / Neutral (1) / Negative (0)

ARCHITECTURES

Architecture 1:

- 1. Get Embeddings for Image as well as Text data
- 2. Concatenate the two and pass to a single transformer
- 3. Pass the output from the transformer to the MLP layer

Architecture 2:

- 1. Get Embeddings for Image as well as Text data
- 2. Pass it through separate Transformers
- 3. Concatenate the two and pass to the MLP layer

ARCHITECTURES

Architecture 2 was implemented in four different configurations:

- 1. Graph Transformers for both image and text.
- 2. Graph Transformer for the image and a regular Transformer with Sinusoidal-Cosine positional encoding for the text.
- 3. Regular Transformers for both image and text, without positional encoding.
- 4. Regular Transformers for both image and text, with Sinusoidal-Cosine positional encoding.

ARCHITECTURE - 1

ARCHITECTURE - 2

TRAINING CONFIGURATION

• Optimizer: AdamW

• Learning Rate: 2e-5 with Cosine Annealing Scheduler

• Batch Size: 16

• Loss: Cross Entropy Loss

• **Epochs:** 15

• Evaluation Metric: Accuracy

• Checkpointing & Logging: Best model saved based on validation loss

• Hardware: NVIDIA P100 GPU (Kaggle)

Architecture 1- Generating Image and Text Embeddings (Preprocessing)

Architecture 1 - Transformer

For our Mask (Adjacency Matrix):

- For the intra-nodes (image-image, text-text) the graph edges in adjacency matrix were fixed (using nearby neighbours relation for image and sliding window method for text)
- For the inter-nodes (image-text, text-image) the graph edges in adjacency matrix were kept learnable (using gradient descent)

MLP Layers

Input Flattened Vector (from Transformer) 53,248

Architecture 2- Generating Image and Text Embeddings (Preprocessing)

Method 1 - Using Graph Transformer for both Image and Text

Method 2 - Graph Transformer for Image and Regular Transformer for Text (with Sinusoidal-Cosine positional encoding)

Method 3 - Using Regular Transformers for both Image and Text without Positional Encoding

Method 4 - Using Regular Transformers for both Image and Text with Sinusoidal-Cosine Positional Encoding

MLP Layers

Input Flattened Vector (from Transformer) 53,248

RESULTS

Architecture - 1

Architecture - 2

MODEL	ACCURACY
Single Graph Transformer	37.78
Graph Transformer for both	65.71
Graph Transformer for Image and regular Transformer for text	66.94
Regular Transformer for both with p.e.	66.12
Regular Transformer for both without p.e.	37.99

LIMITATIONS

- The dataset used was largely uncurated, consisting of randomly sampled Twitter images and captions
- Used pre-trained BERT and RESNET models to get encodings for data due to lack of time and compute to get them ourselves.
- The architecture assumes both image and text contribute equally to sentiment in reality, either modality may dominate or be irrelevant.

SCOPE FOR FUTURE

- Extend beyond image and text by integrating audio (e.g., tone of voice, background sounds) or short video clips, allowing the model to capture richer emotional cues.
- Currently, intra-node (image-image, text-text) graph edges are fixed (nearest neighbours/sliding-window). Making these edges learnable could let the model discover more semantically meaningful graph structures within each modality.
- Introduce mechanisms (e.g., attention-based gates) that allow the model to learn how much each modality should contribute per instance.
- Rather than relying on fixed pre-trained BERT and ResNet embeddings, fine-tune (or train from scratch) the visual and textual encoders on the target sentiment dataset to better adapt to its domain-specific patterns.

CONCLUSION

- Utilising graph transformers for image data proves effective, as it significantly enhances accuracy by capturing spatial relationships between visual elements.
- Applying graph transformers to textual data yields minimal improvement, likely due to the sequential nature of language already being well-modelled by standard transformers.
- Processing different modality embeddings separately at lower levels allows each modality to capture its unique semantic patterns more effectively. By combining the high-level features afterward, the model benefits from richer and more complementary representations, ultimately leading to improved performance in multimodal tasks.

PYTHON NOTEBOOKS

- https://www.kaggle.com/code/umangshikarvar/dl-tranformer/edit
- https://www.kaggle.com/code/umangshikarvar/gtn-2/edit
- https://www.kaggle.com/code/umangshikarvar/dl-gnn-1/edit

Thank you.