Билет 91

Автор1,, Автор
22 июня 2020 г.

Содержание

0.1	Билет 01. Теорема о недвиой	і функци	1
0.1	рилет эт. теорема о неявной	і функци	1

Билет 91 СОДЕРЖАНИЕ

0.1. Билет 91: Теорема о неявной функци

Определение 0.1.

Функции, задаваемые уравнениями – неявные функции.

:https://youtu.be/Z9sF0oic4Vo?list=PLcs

Теорема 0.1 (о неявной функции).

 $f: D \to \mathbb{R}^n \ D \subset \mathbb{R}^{n+m}$

D – откртытое, f – непрерывно дифференцируема. $f(a,b) = 0, (a,b) \subset D$

A = f'(a, b), и если A(h, 0) = 0, то h = 0. ...

Тогда $\exists W$ – окрестность точки b и единственная функция $g:W\to\mathbb{R}^n,$ т.ч. g(b)=a, g непрерывна дифференцируема, и f(g(y),y)=0 $\forall y\in W$

Доказательство.

 $F:D o\mathbb{R}^{n+m}$ F(x,y)=(f(x,y),y) – непрерывно дифференцируема.

$$f(a+h,b+k) = f(a,b) + A(h,k) + r(h,k) = A(h,k) + r(h,k)$$

$$F(a+h,b+k) = F(a,b) + (A(h,k),k) + (r(h,k),0) = (0,b) + (A(h,k),k) + (r(h,k),0)$$

$$F(a+h,b+k) = (f(a+h,b+k),b+k)$$

$$F'(a,b)(h,k) = (A(h,k),k)$$

Поймем, что F'(a,b) инъекция.

Пусть $(A(h,k),k) = (0,0) \Rightarrow k = 0$ и $A(h,0) = 0 \Rightarrow h = 0$, значит F'(a,b) инъекция.

F удволетворяет условиям теоремы об обратоной функции, тогда $\exists U$ – окрестность точки (a,b) и V – окрестность точки (0,b), т.ч. $F:U\to V$ биекция. $G=F^{-1}:V\to Y$ непрерывно дифференцируема.

 $G(z,w)=(\varphi(z,w),w)$, т.к. F сохраняет последню коодинату.

$$(z,w) = F(G(z,w)) = (f(\varphi(z,w),w),w) \Rightarrow f(\varphi(z,w),w) = z$$

Возьмем W — окрестность точки b, т.ч. ${ t 0}$ х ${ t W}$ ${ t C}$ ${ t W}$ https://youtu.be/-SArGnBjgl4?list=PLxMpl

$$g(w) := \varphi(0, w) \ g : W \to \mathbb{R}^n$$

$$f(g(w), w) = f(\varphi(0, w), w) = 0$$

$$g(b) = \varphi(0, b) = a$$

phi(0,b) = a:G(z, w) = (phi(z,w),w) G(0, b) = (phi(0,b), b) G

Доказли существование. Докажем единственность

~X

Пусть $f(x,y)=f(\mathbf{z},y)$, тогда $F(x,y)=F(\mathbf{z},y)$, но F обратима, а значит F – биекция $\Rightarrow x=x$

~X

F

(x, y) = (-x, y) => x = -x