MLProbabilistic Modeling 1 by ambedkar@IISc

- ► Introduction

 ► Markov Random Fields

On Probabilistic Modeling

On Probabilistic Modeling: Why?

► Let us go back to our fundamental assumption

The observed data is assumed to be sampled from a (unknown) underlying probability distribution

 Previously we have not used this for modeling but we have used when we defined the risk

On Probabilistic Modeling (Contd...)

► Recall the definition of risk in the context of supervised learning :

Given data $(x_n, y_n)_{n=1}^N$ find $f: \mathcal{X} \to \mathcal{Y}$ that best approximates the relation between random variables X and Y. Thus the risk is defined as

$$L(f) = \mathbb{E}_{(x,y)\sim P}[l(Y, f(X))]$$
$$= \int l(y, f(x))d(P(x,y))$$

▶ What if we just learn P(X,Y) instead of y = f(x)?

On Probabilistic Modeling (Contd...)

Advantages

- Machine learning problems intrinsically involve "Uncertainty".
 Probabilistic models automatically include that is the predictions
- Probabilistic models are generative in nature. Hence one can generate samples.

Disadvantages

Inference and learning of probabilistic modeling is notoriously difficult.

Solution

- ► MCMC
- Variational methods

Probabilistic Modeling: Example

Consider the problems of text classification. Aim is to classify an email is spam or not.

▶ $X = (X_1, ..., X_i, ..., X_D)$: is a one hot vector i.e. $X_i \in {0, 1}$ denotes whether an email is spam or not.

▶ $Y \in 0,1$: whether an email is spam or not.

 $ightharpoonup P_{\theta}(Y, X_1, \dots, X_D)$: Probabilistic modeling of Y, X_1, \dots, X_D .

Probabilistic Modeling: Example (Cont...)

 $P_{\theta}(y=1|x_1,\ldots,x_D)$: Given an email $x=(x_1,\ldots,x_D)$ this is the probability that x is spam $P_{\theta}(y=0|x_1,\ldots,x_D)$: Given x, probability that x is not spam

 ${\bf Question}: {\bf What}$ is the size of the set on which P_{θ} in defined? ${\bf Ans}: \, 2^{D+1}$

- Considering D is the size of the vocabulary of English, this is a huge set
- ightharpoonup Also estimating the parameter θ is very difficulty.

Probabilistic Modeling: Challenges

 We can say machine learning problems involves probabilistic modeling on
 "Sets that are exponentially big"

► Hence knowing the "dependencies" among the random variables is important

Naive Bayes Assumption

Assumption: Given Y, all X_1, \ldots, X_D are independent i.e.

$$P(Y, X_1, \dots, X_D) = P(Y) \prod_{d=1}^{D} P(X_d|Y)$$

In the text classification problems

- ▶ Each $P(X_d|Y)$ can be described by 4 parameters
- ► The entire distribution is parameterized by O(n) parameter

We have brought this down from exponential sized set to fixed sets.

Naive Bayes Assumption : Graphical Representation

The graphical representation of data generation
 Story: That is the graph describes how the data is generated

An email was generated by first choosing email is spam or not (y_k) and thus based on this words for email are sampled.

3 Elements of Probabilistic Modeling

► Reputation : Deals with model selection and assumptions

 Inference: given a Model how to get answers for various questions

► Learning : Parameter estimation

Probabilistic Modeling

Reputation

► How do we represent underlying probability models

► What kind of independence : Directed Vs Undirected

► Latent variable models?

Probabilistic Modeling (Contd...)

Inference

Given a model how can we obtain answer to relevant questions?

Marginal inference: What is the probability distribution of X_1 . For example, what is the probability that email is spam if certain word present in the email?

$$P(X_1) = \sum_{X_2} \sum_{X_3} \dots \sum_{X_D} P(X_1, \dots, X_D)$$

► MAP Inference : MAP inference answer questions about mostly likely assignment. For example, what is the mostly likely spam message

$$\underset{X_1,\dots,X_D}{\operatorname{arg\,max}} P(X_1,\dots,X_D,Y=1)$$

Probabilistic Modeling

Learning

► Given data how to estimate the parameters?

► Learning and inference are tightly connected

▶ Usually inference algorithm will become part of learning

Bayesian Nets

We will not study this in detail. We give only some definitions

▶ Given any distribution $P(X_1, ..., X_D)$ we can write this using chain rule

$$P(X_1, ..., X_D) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)...$$
$$...(X_n|X_{n-1}, ..., X_1)$$

▶ Bayesian network represent distributions where right hand side depends only on small number of ancestor variables X_A :

$$P(X_i|X_{i-1},\ldots,X_1)=P(X_i|X_A)$$

Bayesian Networks(Contd...)

▶ Example : Suppose we have $P(X_7|X_6,\ldots,X_2,X_1)$. Say we can approximate this distribution by $P(X_7|X_4,X_2)$. Than $A_{X_7}=X_4,X_2$

Definition: Bayesian network is a directed graph G=(V,E) together with

- lacktriangle A random variable X_i for each node V_i
- lacktriangle One conditional probability distribution $P(X_i|A_{X_i})$ per node

We say probability model $P(X_1,\ldots,X_D)$ over a DAG G if it can be decomposed into product of factor specified by G.

Markov Random Fields

Markov Random Fields

Markov Random Fields generalizes Markovian Property

$$X_n \leftarrow X_{n-1} \leftarrow X_{n-2} \leftarrow \ldots \leftarrow X_D$$

Given X_{n-1} there is no effect of X_{n-2},\ldots,X_D on X_n i.e. $P(X_n|X_{n-1},\ldots,X_D)=P(X_n|X_{n-1})$

Suppose every node in A has a path to B via S. Thus given S, A and B are independent.

MRF: Example

Example

► Let us study voting preferences of four individuals A,B,C,D. Suppose friendships are (A,B),(B,C),(C,D),(D,A). hence assumption is that they have similar voting patterns.

MRF: Example (contd...)

Aim: Probabilistic modeling of joint voting decision of A,B,C,D.

Define
$$\tilde{P}(A,B,C,D) = \phi(A,B)\phi(B,C)\phi(C,D)\phi(D,A)$$

where $\phi(X,Y)$ is a factor that gives more weight to consistent voter among friends e.g.

$$\phi(X,Y) = \begin{cases} 10 & \text{if X=1, Y=1} \\ 5 & \text{if X=0, Y=0} \\ 1 & \text{otherwise} \end{cases}$$

MRF (Example) Contd ...

Now we define probability distribution

$$P(A, B, C, D) = \frac{1}{Z}\tilde{P}(A, B, C, D)$$
$$WhereZ = \sum_{A,B,C,D} \tilde{P}(A, B, C, D)$$

Note that the way we have defined potential function i.e. ϕ , results in the following : P(A,B,C,D) has more value when A and B votes consistently. Similarly same for (B,C),(C,D) and (D,A)

MRF : Some Remarks

- ► We cannot say anything about how one variable effect othe. We can only say somthing about how two r.v.s are coupled.
- ▶ In the case of undirected models we need less knowledge and we do not need generalize story of how one variable is generated.
- We only identify dependent variables and define the strength of their interactions.
 - Energy depending on different configuration
 - thus connect this energy to a probability via normalizing constant.

MRF: Definition

 $\underline{\mathrm{Def}}$: Let G=(V,E) be a graph. Consider the collection of r.v.s $X_{vv\in V}$ and each r.v X_v taken values from the same set $\mathcal{X}.X_{vv\in V}$ is said to be Markov Random Field if the joint probability distribution satisfies Markovian property w.r.t G.

What is Markovian Property w.r.t Graph G?

A set $A \subset V$ separates two vertices $v \in A$ and $w \in A$, if every path from v to w contains a node from A.

▶ For any disjoint sets A, B, $S \subset V$ if all vertices in A and B are separated by S thus $\{X_a\}_{a \in A}$ and $\{X_b\}_{b \in B}$ are independent given $\{X_s\}_{s \in S}$

i.e.
$$P(X_a : a \in A | X_t : t \in S \cup B) = P(X_a : a \in A | X_t : t \in S)$$

Markov Property w.r.t Graph G

Example:

$$P(X_1, X_2, X_3 | X_4, X_5, X_6, X_7, X_8, X_9) = P(X_1, X_2, X_3 | X_4, X_5)$$

Markov Blanket

A set of vertices MB(v) is called Markov blanket of $v \in V$ if for any $B \subset V$ such that $v \notin B$ we have

$$P(X_v|X_t:t\in MB(v),B)=P(X_v|X_t:t\in MB(v))$$

i.e. X_v is conditionally independent from any other r.v.s given $X_t: t \in MB(v)$

In MRF MB(v)=Neighbour(v)

Hammersley-Clifford Theorem

Proof can be found in Koller and Friedman : Probabilistic Graphical Models 2009

Factorization of a P.D over a graph

A distribution P is said to factorize about our undirected graph G with set g maximal cliques τ is there exists a set of non-negative functions

$$\begin{split} \{\Psi_c\}_{c \in \tau}, &\quad \Psi_c : \mathcal{X}^D \to \mathbb{R} \text{ satisfying} \\ x,y \in \mathcal{X}^D &\quad \text{thus} \quad (x_i)_{i \in c} = (y_j)_{j \in c} \\ &\quad \Longrightarrow \quad \Psi_c(x) = \Psi_c(y) \\ &\quad and \quad P(x) = \frac{1}{Z} \prod_{c \in \tau} \Psi_c(x_c) \\ &\quad Where \quad Z = \sum_{x \in \mathcal{X}} \prod_{c \in \tau} \Psi_c(x_c) \end{split}$$

Factorization of a P.D. over a Graph

If P is strictly positive same holds for potential function. Thus

$$P(x) = \frac{1}{z} \prod_{c \in \tau} \Psi_c(x_c)$$

$$= \frac{1}{z} \exp\left(\sum_{c \in \tau} \ln \Psi(x_c)\right)$$

$$P(x) = \frac{1}{Z} e^{-E(x)}$$

$$Where E(x) = -\sum_{c \in \tau} \ln \Psi_c(x_c)$$

- ► Here P(x) represent Gibbs distribution and E(x) is called energy function.
- Probability distribution of any model can be represented in the form of Gibbs distribution.

Factorization of a P.D. over a Graph

If the distribution P is Markovian w.r.t this graph thus it can be represented as

$$P(X) = \frac{1}{Z} \Psi_{123}(x_1, x_2, x_3) \Psi_{234}(x_2, x_3, x_4) \Psi_{35}(x_3, x_5)$$

representation of Potential Functions

Note that though we ignored parameters θ , undirected graphical models involve parameter. We can write this as

$$P(X|\theta) = \frac{1}{Z(\theta)} \prod_{c \in \tau} \Psi_c(y_c|0_c)$$
$$= \frac{1}{Z(\theta)} \exp(\sum_{c \in \tau} \ln \Psi_c(x_c))$$

Define log potential as linear function of the parameter

$$\log \Psi_c(x_c) = \Phi_c(x_c)^T \theta_c,$$

Where $\Phi_c(x_c)$ is a feature vector defined from the values of the variable x_c

Representation of Potential Functions (Contd...)

The resultant model is

$$P(x|\theta) = \frac{1}{Z(\theta)} \exp(\sum_{c} \Phi_{c}(x_{c}^{T}\theta_{c}))$$

$$or$$

$$\log P(x|\theta) = \sum_{c} \Phi_{c}(x_{c})^{T}\theta_{c} - \log Z(\theta)$$

These are called maximum entropy or log-linear models

Examples of MRFs

I Ising Models : Modeling behaviour of marginals, which is a 3d or 2d lather with $x_0 \in [-1, +1]$

- 2 Hopfield Network : Fully connected ising model
- 3 Boltzmann Machine: This is a generalization of Hopfield network, where oenwould introduce hidden nodes that makes the model more powerfull.

We will study something called Restricted Boltzmann Machines

Remarks on MRFs

 Computing Z requires summation over exponential numbers of configurations. This is intractable and requires approximate approaches

 Undirected graphical models can be difficult to interpret as causality in last

► It is easier to generate data from directed models rather than undirected models

Conditional Random Fields

- ► This is a special case of MRFs and is applicable in supervised learning
- ► Aim is to model distribution of type P(Y|X), where X and Y are vector values
- Application
 Given a sequence of images of English alphabet recognize the letters or a word

Conditional Random Fields

<u>Definition</u>: CRF is a MRF over variables

$$X = (X_1, \dots, X_N)$$
$$Y = (Y_1, \dots, Y_M)$$

defines conditional distribution

$$P(y|x) = \frac{1}{Z(x)} \prod_{c \in \tau} \Phi_c(x_c, y_c)$$

Where
$$Z(x) = \sum_{y \in \mathcal{Y}} \prod_{c \in \tau} \Phi_c(x_c, y_c)$$