Kapitel 9

Stationäre Fliessprozesse

9.1 Rückblick

Maschinen und Apparate in technischen Systemen werden von einem oder mehreren Stoffströmen meistens stationär durchflossen. Nachfolgend wenden wir unsere Kenntnisse auf einige wichtige technische Anwendungen an.

Siehe Kapitel 7 "Der 2. Hauptsatz der Thermodynamik", behandelt innerhalb Modul TH-FL+GRU.

Beispiele: Pumpe, Turbine, Wärmeübertrager etc.

9.2 Das h, s-Diagramm

9.2.1 Enthalpie: Eine kalorische Zustandsgrösse

Bisher haben wir Zustandsänderungen im T,s-Diagramm dargestellt. Die spezifische Enthalpie als "energetische Zustandsgrösse" wurde im vergangenen Semester eingeführt. Man nennt den funktionalen Zusammenhang

$$h = h(p, T)$$

kalorische Zustandsgleichung. Für ein ideales Gas ist die Wärmekapazität bei konstantem Druck nur von der Temperatur abhängig, das heisst d $h = c_p(T) dT$. Das h,s-Diagramm eignet sich sehr gut für die Bestimmung von Enthalpiedifferenzen.

9.2.2 h, s-Diagramm reiner Stoffe: Beispiele

Zeichnen Sie in das untenstehende h,s-Diagramm die isothermen, isobaren und isochoren für ein ideales Gas ein.

Im folgenden sind h,s-Diagramme für die Gase Luft, Wasserdampf, Ammoniak und Methan dargestellt:

h,s-Diagramm von Luft

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

h,s-Diagramm von Wasserdampf

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

h,s-Diagramm von Ammoniak

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

$h,s ext{-}\mathrm{Diagramm}$ von Methan

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

Im folgenden sind die h,s-Diagramme von Wasser, Ammoniak und Methan mit dem Zweiphasengebiet dargestellt.

$\boldsymbol{h}, \boldsymbol{s}\text{-}\text{Diagramm}$ von Wasser

h,s-Diagramm von Ammoniak

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

$h,s ext{-}\mathrm{Diagramm}$ von Methan

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

9.3 Adiabate Arbeitsprozesse

9.3.1 Verdichter

Die Verdichtung eines Gases erfordert die Umwandlung von mechanischer in thermische Energie. Dem Gas muss technische Arbeit zugeführt werden. Viele reale Verdichtungsprozesse können in guter Näherung als *adiabat* betrachtet werden.

1. HS:

$$P_{12} + \dot{Q}_{12} = \dot{m} \left[h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right) \right]$$
$$w_{t12} + q_{12} = h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right)$$

Die technische Arbeit beträgt somit:

$$w_{t \, 12} = h_2 + \frac{1}{2} c_2^2 - \left(h_1 + \frac{1}{2} c_1^2 \right)$$

$$w_{t12} = h_2^0 - h_1^0$$

Die aufzuwendende technische Arbeit ist gleich der Zunahme der Totalenthalpie des Gases.

Die Verdichterleistung P_{12} ergibt sich mit \dot{m} als Massenstrom des Gases:

$$P_{12} = \dot{m} \, w_{t \, 12}$$

Die adiabate Verdichtung ist mit Dissipation behaftet, d.h. sie verläuft nicht isentrop, sondern polytrop.

Die Güte der Verdichtung wird mit dem isentropen Verdichterwirkungsgrad beschrieben:

$$\eta_s = \frac{\Delta h_s}{\Delta h} = \frac{h_{2s} - h_1}{h_2 - h_1} \left(= \frac{\text{Arbeit isentrop}}{\text{Arbeit real (polytrop)}} \right)$$

Man beachte, dass beim isentropen Verdichterwirkungsgrad die kinetischen Energien nicht berücksichtigt werden.

Bei idealen Gasen darf die Temperaturabhängigkeit von c_p oft vernachlässigt werden und der isentrope Verdichterwirkungsgrad kann über die Temperaturdifferenzen der verschiedenen Zustände ermittelt werden:

$$\eta_{s} = \frac{\Delta h_{s}}{\Delta h} = \frac{h_{2s} - h_{1}}{h_{2} - h_{1}} = \frac{c_{pm} (T_{2s} - T_{1})}{c_{pm} (T_{2} - T_{1})} = \frac{T_{2s} - T_{1}}{T_{2} - T_{1}} \le 1$$

Beispiel 9.1: Adiabater Luftverdichter. Ruhende Umgebungsluft bei 20°C und 1 bar(a) soll auf 30 bar(a) verdichtet werden. Die Strömungsgeschwindigkeit im Druckrohr nach dem Verdichter beträgt 20 m/s. Der Massenstrom ist 1000 kg/h. Berechnen Sie die benötigte Verdichterleistung bei isentroper und realer Verdichtung mit einem isentropen Wirkungsgrad von 75%. Luft kann als perfektes Gas mit folgenden Stoffdaten betrachtet werden: $R_L = 287.2 \text{ J/kg K}, \ \kappa = 1.4.$

Isentrop:

$$w_{t\,12} + q_{12} = h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right)$$

$$w_{t\,12} = h_2 - h_1 + \frac{1}{2} c_2^2 = c_p \left(T_2 - T_1 \right) + \frac{1}{2} c_2^2$$

$$T_2 = T_1 \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} = 774.3 \text{ K}$$

$$c_p - c_v = R_L; \quad \frac{c_p}{c_v} = \kappa \to c_p = 1005.2 \text{ J/kg K}$$

$$P_{12\,s} = \dot{m} \, w_{t\,12} = 134.4 \text{ kW}$$

Polytrop:

$$P_{12} = \frac{P_{12\,s}}{\eta} = 179.3 \text{ kW}$$

9.3.2 Turbine

In einer Turbine wird thermische Energie in mechanische Energie umgewandelt. Wir behandeln die Expansion, analog zur Verdichtung, als *adiabat*.

1. HS:

$$w_{t12} + q_{12} = h_2 - h_1 + \frac{1}{2} (c_2^2 - c_1^2) + g(z_2 - z_1)$$

Die technische Arbeit beträgt also:

$$w_{t12} = h_2 + \frac{1}{2}c_2^2 - (h_1 + \frac{1}{2}c_1^2)$$
$$w_{t12} = h_2^0 - h_1^0 < 0$$

oder:

$$-w_{t\,12} = h_1^0 - h_2^0$$

Die aus der Expansion gewonnene technische Arbeit ist gleich der Abnahme der Totalenthalpie des Gases.

Mit \dot{m} als Massenstrom erhält man für die abgegebene Turbinenleistung P_{12} :

$$P_{12} = \dot{m} \, w_{t \, 12} \quad \text{oder} \quad -P_{12} = \dot{m} \, |w_{t \, 12}|$$

s

 S_2

Die adiabate Expansion ist mit Dissipation behaftet und verläuft deshalb polytrop.

Der isentrope Turbinenwirkungsgrad kennzeichnet die Güte der Turbine:

s

 S_1

$$\eta_s = \frac{-\Delta h}{-\Delta h_s} = \frac{h_1 - h_2}{h_1 - h_2 s} \left(= \frac{\text{Arbeit real (polytrop)}}{\text{Arbeit isentrop}} \right)$$

 S_1

Wie beim isentropen Verdichterwirkungsgrad werden die kinetischen Energien nicht berücksichtigt.

Bei idealen Gasen gilt unter der Voraussetzung, dass die Temperaturabhängigkeit von c_p vernachlässigt werden darf:

$$\eta_s = \frac{T_1 - T_2}{T_1 - T_{2s}}$$

9.4 Adiabate Strömungsprozesse

Adiabate Strömungsprozesse kommen in technischen Anwendungen häufig vor. Durchströmte Rohre, Düsen, Drosseln usw. können meistens in guter Näherung als *adiabate Systeme* behandelt werden.

1. HS:

$$w_{t12} + q_{12} = h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right)$$
$$h_2 + \frac{1}{2} c_2^2 = h_1 + \frac{1}{2} c_1^2$$

Bei adiabaten Strömungsprozessen bleibt die Totalenthalpie $h^0 = h + \frac{c^2}{2}$ konstant.

Diese Resultate gelten für reversible und irreversible Prozesse, also auch für Strömungen mit Reibung.

Aus dem 2. HS wissen wir, dass für den Endzustand

$$s_2 \ge s_1$$

gelten muss!

Weiter gilt für die technische Arbeit bekanntlich (ohne Berücksichtigung der potentiellen Energien):

$$w_{t12} = \int_{1}^{2} v \, dp + \frac{1}{2} \left(c_{2}^{2} - c_{1}^{2} \right) + j_{12} = 0$$

$$\frac{1}{2} \left(c_{2}^{2} - c_{1}^{2} \right) = -\int_{1}^{2} v \, dp - j_{12}$$

Dies muss für jeden Strömungsprozess gelten!

9.4.1 Drossel

In einem Drosselorgan (Blende, Expansionsventil) wird der Druck eines Fluids reduziert.

1. HS:

$$w_{t12} + q_{12} = h_2 - h_1 + \frac{1}{2} (c_2^2 - c_1^2) + g(z_2 - z_1)$$

$$\underbrace{w_{t \, 12}}_{0} + \underbrace{q_{12}}_{0} = h_2 - h_1 + \frac{1}{2} \underbrace{\left(c_2^2 - c_1^2\right)}_{0} + g \underbrace{\left(z_2 - z_1\right)}_{0}$$

$$h_1 = h_2$$

Für perfekte Gase mit $c_p = \mathrm{konst.}$ gilt: $T_2 = T_1$

Eine Drosselung verläuft also isenthalp. Für ein perfektes Gas gilt:

9.4.2 Düsen

In einer konvergenten Düse wird ein Fluid beschleunigt.

Aus dem 1. HS wissen wir:

$$h_2 + \frac{1}{2}c_2^2 = h_1 + \frac{1}{2}c_1^2$$

Austrittsgeschwindigkeit: $c_2 = \sqrt{2(h_1 - h_2) + c_1^2}$, reversibel und irreversibel

In einer Düse wird thermische Energie in kinetische Energie umgewandelt. Die höchste Endgeschwindigkeit c_2 erhält man bei einer isentropen Zustandsänderung.

9.4.3 Rohrströmung

Im Teil "Fluidmechanik" des Moduls Thermo- und Fluiddynamik Systeme befassen Sie sich intensiv mit Rohrströmungen. Wir betrachten hier eine Rohrströmung aus "thermodynamischer Sicht":

Der 1. HS lautet:

$$w_{t12} + q_{12} = h_2 - h_1 + \frac{1}{2} (c_2^2 - c_1^2) + g(z_2 - z_1)$$

Für die technische Arbeit gilt:

$$w_{t12} = \int_{1}^{2} v \, dp + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right) + j_{12}$$

Das Integral nennen wir spezifische Druckänderungsarbeit, spezifische Strömungsarbeit oder spezifische Stutzenarbeit (Fläche im p,v-Diagramm).

Wir betrachten nun das strömende Fluid als inkompressibel, also mit v = konstant. Dies gilt für Flüssigkeiten mit hoher Genauigkeit und für Gase ist es eine brauchbare Näherung, wenn die Druckunterschiede nicht zu gross werden. Die technische Arbeit ist dann:

$$w_{t 12} = v (p_2 - p_1) + \frac{1}{2} (c_2^2 - c_1^2) + g (z_2 - z_1) + j_{12}$$

Für Prozesse ohne Arbeitszufuhr oder -abfuhr ist $w_{t12} = 0$. Mit $v = \frac{1}{\rho}$ erhält man:

$$\left(p + \frac{\rho}{2}c^2 + \rho g z\right)_2 - \left(p + \frac{\rho}{2}c^2 + \rho g z\right)_1 = -\rho j_{12}$$

Für reibungsfreie Strömungen ist $j_{12} = 0$ und wir erhalten die Gleichung von Bernoulli.

An einem inkompressiblen Fluid kann keine Volumenänderungsarbeit verrichtet werden (dv = 0). Damit erhält man für die Änderung seiner inneren Energie:

$$u_2 - u_1 = -\int_{1}^{2} p \, dv + q_{12} + j_{12} \ge 0$$

Da $j_{12} > 0$ ist, kann sich ein inkompressibles Fluid bei einem adiabaten Strömungsprozess niemals abkühlen, sondern nur erwärmen.

9.5 Übungen

Hinweis: Die Übungen 9.1 bis 9.4 stammen aus Kap. 10 THFL+GRU.

Übung 9.1: Entspannung in Düse. Luft von 300 K und 10 bar(a) wird in einer Düse auf 7 bar(a) entspannt. Wärme- und Strömungsverluste sind vernachlässigbar. Stoffdaten Luft: $R_L = 287 \text{ J/kg K}$, $c_p = 1004 \text{ J/kg K}$.

- a. Wie gross sind Austrittsgeschwindigkeit und Austrittstemperatur, wenn die Eintrittsgeschwindigkeit vernachlässigbar klein ist? $(c_2 = 241 \text{ m/s}, T_2 = 271 \text{ K})$
- b. Welche Form muss die Düse haben (Flächenverhältnis A_1/A_2)? $(A_1/A_2 = 0.77 c_2/c_1)$
- c. Ist Energie der Luft dissipiert worden? (nein, da $j_{12} = 0$)

Übung 9.2: Entspannung in Turbine. Luft von 300 K und 10 bar(a) wird in einer wärmeisolierten Turbine auf 7 bar(a) entspannt. Die Strömungsverluste seien vernachlässigbar. Es gelte $c_1 = c_2$ und $z_1 = z_2$.

Stoffdaten Luft: $R_L = 287 \text{ J/kg K}$, $c_p = 1004 \text{ J/kg K}$.

- a. Welche Arbeit pro kg und welche Leistung bei 2 kg/s Massenstrom gibt sie ab? ($w_{t\,12}=-29.1~kJ/kg,~P_{12}=-58.2~kW$)
- b. Wie gross ist die Austrittstemperatur? $(T_2 = 271 \text{ K})$
- c. Ist Energie der Luft dissipiert worden? (nein, da $j_{12} = 0$)

Übung 9.3: Entspannung in Turbine und anschliessende Erwärmung. Die in Aufgabe 9.2 berechnete Arbeit wird der Luft nach der Entspannung durch elektrische Arbeit über einen ohmschen Widerstand wieder zugeführt.

- a. Wie gross ist nun die Austrittstemperatur? $(T_2 = 300 \text{ K})$
- b. Was ist mit diesem Prozess erreicht worden?
- c. Wieviel Energie ist dissipiert worden? $(j_{12} = 30.7 \text{ kJ/kg})$

9.5 Übungen 429

Übung 9.4: Drosselung in Blende. Luft von 300 K und 10 bar(a) wird über eine Blende auf 7 bar(a) gedrosselt. Berechnen Sie die Austrittstemperatur und die dissipierte Energie,

```
a. wenn z_1 = z_2 und c_1 = c_2 (d.h. Querschnittserweiterung) (T_2 = 300 \text{ K}, j_{12} = 30.7 \text{ kJ/kg})
b. wenn c_1 = 20 \text{ m/s} und d_1 = d_2 (Rohrdurchmesser) (T_2 = 299.79 \text{ K}, j_{12} = 30.7 \text{ kJ/kg})
```

Stoffdaten Luft: $R_L = 287 \text{ J/kg K}, c_p = 1004 \text{ J/kg K}$

Übung 9.5: Verdichtung von Sauerstoff. In einem realen Kompressionsvorgang wird Sauerstoff O_2 von 1 bar(a) und 20° C auf 50 bar(a) adiabat verdichtet. Die Temperaturerhöhung des Sauerstoffes ist aufgrund innerer Dissipation 20% höher, als jene bei einer isentropen Verdichtung. Dieser reale Prozess verläuft polytrop.

Stoffdaten von Sauerstoff: $R_{O2} = 259.8 \text{ J/kg K}, \kappa = 1.397.$

- a. Wie gross ist der Polytropenexponent? (n = 1.463)
- b. Wie gross ist die spezifische Arbeit? $(w_{t12} = 655.9 \text{ kJ/kg})$
- c. Wie gross ist der isentrope Wirkungsgrad? ($\eta_s = 0.833$)

Übung 9.6: Irreversibler Druckaufbau in einem adiabaten Diffusor. Wasserdampf strömt durch einen adiabaten Diffusor. Der isentrope Wirkungsgrad beträgt 0.757. Beim Eintritt hat der Wasserdampf eine Temperatur von 300°C, einen Druck von 45 bar(a) und die Geschwindigkeit beträgt 440 m/s. Bestimmen Sie den Druck p_2 mit Hilfe des h,s-Diagrammes so, dass die Austrittsgeschwindigkeit gerade 0 m/s beträgt. $(p_2 = 62 \ bar(a))$

$h,\!s\text{-}\mathrm{Diagramm}$ von Wasser

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

9.5 Übungen 431

Übung 9.7: Expansion von Luft mit einer adiabaten Turbine. In einer adiabaten Turbine expandieren stündlich 14'000 m³, 800°C heisse Luft von 15 bar(a) irreversibel auf 1 bar(a). Der isentrope Wirkungsgrad beträgt 0.85. Der Strömungsquerschnitt beträgt am Eintritt der Turbine 0.02 m², am Austritt 0.43 m². Die Höhendifferenz zwischen Turbineneinund austritt ist vernachlässigbar klein und die spezifische Wärmekapazität bleibt während der Zustandsänderung konstant. Zeichnen Sie die Zustandsänderung im h,s-Diagramm ein. Stoffwerte von Luft: $R_L = 287 \text{ J/kg K}$, $\kappa = 1.35$.

Es sollen berechnet werden:

- a. die technische Arbeit $(w_{t12} = -525.3 \text{ kJ/kg})$
- b. die abgegebene Wellenleistung $(P_{12} = -9.95 \ MW)$
- c. die spezifische Dissipationsenergie $(j_{12} = 130.7 \ kJ/kg)$

$h,s\text{-}\mathrm{Diagramm}$ von Luft

Kapitel 10

Kreisprozesse

Kreisprozesse spielen in der thermischen Energietechnik eine wichtige Rolle! Wir werden später Kreisprozesse für Verbrennungsmotoren, Wärmekraftanlagen, Wärmepumpen, Kälteanlagen, usw. kennen lernen. Was verstehen wir unter einem Kreisprozess?

"Kreisendes" Fluid durchläuft eine Zustandsänderung stationär oder instationär.

10.1 Energien am Kontrollraum von Kreisprozessen

In diesem Abschnitt betrachten wir lediglich ein einfaches Beispiel: Das kreisende Fluid dient hier nur als

• Wärmeträger

434 10. Kreisprozesse

Zentrale Heizanlage

Energiebilanz:

"Ein" = "Aus"
$$\dot{Q}_H + P_P = \dot{Q}_A + \dot{Q}_B + \dot{Q}_V$$

Von der Heizung an "Wärmeträger" zugeführter Wärmestrom: \dot{Q}_H

Vom "Wärmeträger" an die Räume übertragene Wärmeströme: $\dot{Q}_A + \dot{Q}_B$

"Wärmeverlust", d.h. an die Umgebung abgeführter Wärmestrom durch mangelhafte Isolation: \dot{Q}_V

Im System auftretende Energieströme: Wärmeströme, Leistung

Im System nicht auftretende Energieströme: Enthalpieströme

${\bf Energie fluss bild:}$

10.2 Energiebilanz für Kreisprozesse aus Teilprozessen

Wir betrachten einen Kreisprozess, der aus n stationären Teilprozessen (reversibel oder irreversibel) besteht:

Energiebilanz:

Prozess 1:

$$P_1 + \dot{Q}_1 = \dot{m} \left(h_2 - h_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2} + g z_2 - g z_1 \right)$$

Prozess 2:

$$P_2 + \dot{Q}_2 = \dot{m} \left(h_3 - h_2 + \frac{c_3^2}{2} - \frac{c_2^2}{2} + g z_3 - g z_2 \right)$$

Prozess i:

$$P_i + \dot{Q}_i = \dot{m} \left(h_{i+1} - h_i + \frac{c_{i+1}^2}{2} - \frac{c_i^2}{2} + g z_{i+1} - g z_i \right)$$

Prozess n:

$$P_n + \dot{Q_n} = \dot{m} \left(h_1 - h_n + \frac{c_1^2}{2} - \frac{c_n^2}{2} + g z_1 - g z_n \right)$$

Gesamter Kreisprozess:

$$\sum_{i=1}^{n} P_i + \sum_{i=1}^{n} \dot{Q}_i = 0$$

$$\sum_{i=1}^{n} w_{t\,i} + \sum_{i=1}^{n} q_{i} = 0$$

436 10. Kreisprozesse

Beispiel 10.1: Wärmekraftanlage (WKA). Einer WKA wird ein Wärmestrom von $\dot{Q} = 1$ GW zugeführt. Die abgeführte Leistung beträgt P = -0.5 GW. Wie lautet die Energiebilanz für diesen Kreisprozess?

$$\begin{aligned} \dot{Q}_{zu} &= P + \dot{Q}_{ab} \\ \dot{Q} &= P + \dot{Q}_{U} \\ \eta &= \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{|P|}{\dot{Q}} < 1 \end{aligned}$$

Beispiel 10.2: Wärmepumpe (WP). Eine WP entzieht der Umgebung $\dot{Q}_U = 15$ kW, die zugeführte mechanische Leistung ist P = 5 kW. Wie lautet die Energiebilanz für diesen Kreisprozess?

$$\dot{Q}_U + P = \dot{Q}_H$$

$$\eta_{th} = \varepsilon_{WP} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{\dot{Q}_H}{P} > 1$$

438 10. Kreisprozesse

10.3 Reversible Kreisarbeit

Der Kreisprozess bestehe aus n stationären Teilprozessen, wobei jeder Teilprozess reversibel sein muss:

Grundgleichung für die technische Arbeit:

$$w_{t12} = \int_{1}^{2} v \, dp + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right) + j_{12}$$

Prozess 1:

$$w_{t 12} = \int_{1}^{2} v \, dp + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \left(z_2 - z_1 \right)$$

Prozess 2:

$$w_{t \, 23} = \int_{2}^{3} v \, dp + \frac{1}{2} \left(c_3^2 - c_2^2 \right) + g \left(z_3 - z_2 \right)$$

Prozess i:

$$w_{ti} = \int_{i}^{i+1} v \, dp + \frac{1}{2} \left(c_{i+1}^2 - c_i^2 \right) + g \left(z_{i+1} - z_i \right)$$

Prozess n:

$$w_{tn} = \int_{0}^{1} v \,dp + \frac{1}{2} (c_1^2 - c_n^2) + g(z_1 - z_n)$$

Gesamter Kreisprozess:

$$w_{trev} = \int_{1}^{2} v \, dp + \int_{2}^{3} v \, dp + \dots + \int_{n}^{1} v \, dp = \oint v \, dp = \sum_{i=1}^{n} w_{pi}$$

Beispiele:

${\bf Rechtsdrehender\ Kreisprozess}$

$$w_{t\,rev} = w_{p\,23} + w_{p\,41} < 0$$

${\bf Links drehender\ Kreisprozess}$

$$w_{t\,rev} = w_{p\,12} + w_{p\,34} > 0$$

440 10. Kreisprozesse

10.4 Übungen

Übung 10.1: System mit 3 Teilprozessen.

A.: Geschlossenes System

Mit Luft werden folgende drei Teilprozesse nacheinander durchgeführt:

- 1. Die Luft hat einen Anfangszustand von 1 bar(a) und 25°C, sie wird bis zum Zustand 2 isotherm verdichtet. Das Volumenverhältnis V_2/V_1 beträgt 0.2.
- 2. Durch Wärmezufuhr von aussen wird die Luft bei konstantem Volumen erwärmt.
- 3. Die Erwärmung $2\rightarrow 3$ erfolgt soweit, dass nach der adiabaten und reibungsfreien Expansion $3\rightarrow 1$ wieder der Anfangszustand erreicht wird.

Stoffdaten von Luft: $R_L=287~\mathrm{J/kg\,K}, \kappa=1.4$

Aufgaben:

- a. Zeichnen Sie die Prozesse im p, V- und T, s-Diagramm ein.
- b. Berechnen Sie die spezifische Netto-Arbeit (Kreisarbeit) und zeichnen Sie diese im p, Vund T, s-Diagramm ein. Ist die Netto-Arbeit positiv oder negativ? ($w_K = -55.60 \ kJ/kg$)

10.4 Übungen 441

B.: Stationärer Kreisprozess

Mit Luft werden folgende drei Teilprozesse nacheinander durchgeführt:

1. Die Luft hat einen Anfangszustand von 1 bar(a) und 25°C, sie wird bis zum Zustand 2 isotherm auf einen Druck von 7 bar(a) verdichtet.

- 2. Durch Wärmezufuhr von aussen wird die Luft bei konstantem Druck erwärmt.
- 3. Die Erwärmung $2\rightarrow 3$ erfolgt soweit, dass nach der adiabaten und reibungsfreien Expansion $3\rightarrow 1$ wieder der Anfangszustand erreicht wird.

Aufgaben:

- a. Zeichnen Sie ein Prozessschema.
- b. Zeichnen Sie die Prozesse im p, v- und T, s-Diagramm ein.
- c. Berechnen Sie die spezifische Netto-Arbeit (Kreisarbeit) und zeichnen Sie diese im p, vund T, s-Diagramm ein. Ist die Netto-Arbeit positiv oder negativ? ($w_K = -56.20 \ kJ/kg$)

Schema:

442 10. Kreisprozesse

Übung 10.2: Kalte Luft auf einfache Weise erzeugen - idealisiert.

A.: Geschlossenes System

Mit Luft werden folgende drei Teilprozesse nacheinander durchgeführt:

- 1. Die Luft hat einen Anfangszustand von 1 bar(a) und 20°C, sie wird bis zum Zustand 2 isotherm verdichtet.
- 2. Durch die adiabate und reibungsfreie Expansion auf das Anfangsvolumen kühlt sich die Luft auf -125°C ab.
- 3. Bei konstantem Volumen wird durch Wärmezufuhr wieder der Anfangszustand erreicht.

Stoffdaten von Luft: $R_L = 287 \text{ J/kg K}, \kappa = 1.4$

Aufgaben:

- a. Stellen Sie den Prozess im p, V- und T, s-Diagramm dar.
- b. Wie gross sind Druck und Volumen (für 1 kg Luft) nach dem ersten Teilprozess? $(p_2 = 5.51 \ bar(a), \ V_2 = 0.152 \ m^3)$
- c. Berechnen Sie die spezifische Netto-Arbeit (Kreisarbeit) und zeichnen Sie diese im p, Vund T, s-Diagramm ein. $(w_K = 39.51 \ kJ/kg)$

10.4 Übungen 443

B.: Stationärer Kreisprozess

Mit Luft werden folgende drei Teilprozesse nacheinander durchgeführt:

1. Die Luft hat einen Anfangszustand von 1 bar(a) und 20°C, sie wird bis zum Zustand 2 isotherm verdichtet.

- 2. Durch die adiabate und reibungsfreie Expansion auf den Anfangsdruck kühlt sich die Luft auf -125° C ab.
- 3. Bei konstantem Druck wird durch Wärmezufuhr wieder der Anfangszustand erreicht.

Aufgaben:

- a. Zeichnen Sie ein Prozessschema.
- b. Stellen Sie den Prozess im p, v- und T, s-Diagramm dar.
- c. Wie gross sind Druck und spezifisches Volumen nach dem ersten Teilprozess? $(p_2 = 10.90 \ bar(a), \ v_2 = 0.077 \ m^3/kg)$
- d. Berechnen Sie die spezifische Netto-Arbeit (Kreisarbeit) und zeichnen Sie diese im p, vund T, s-Diagramm ein. $(w_K = 55.31 \ kJ/kg)$

Schema:

444 10. Kreisprozesse

Kapitel 11

Die Anwendung des 2. HS auf Energieumwandlungen

11.1 Die Entropiebilanzgleichung

Der 1. HS der Thermodynamik sagt aus, dass die Energie eines Systems als Quantität erhalten bleibt. Er unterscheidet nicht zwischen der Qualität der verschiedenen Energieformen! Darüber gibt der 2. HS der Thermodynamik Auskunft: Er sagt aus, dass bei allen realen Prozessen Energie entwertet wird. Mathematisch wird dies mit der Entropiebilanzgleichung formuliert. Wir wollen diese hier repetieren (siehe THFL+GRU).

11.1.1 Geschlossene Systeme

Die Aussagen des 2. HS über die Änderung der Entropie erlauben es, für jeden Prozess eine *Entropiebilanzgleichung* aufzustellen. Die Entropieänderung dS (in J/K) eines geschlossenen Systems besteht aus zwei Anteilen:

$$dS = dS_O + dS_{irr}$$

Die Entropieänderung in einem geschlossenen System erfolgt nur

1) durch Wärmeübertragung über die Systemgrenze:

$$\mathrm{d}S_Q = \dot{S}_Q(t)\,\mathrm{d}t$$

2) durch irreversible Vorgänge im Innern des Systems:

$$dS_{irr} = \dot{S}_{irr}(t) dt$$

Damit haben wir zwei zeitabhängige Entropieströme (in W/K):

- 1) Entropietransportstrom $\dot{S}_Q(t)$
- 2) Entropieproduktionsstrom $\dot{S}_{irr}(t)$

Beispiel für ein geschlossenes System, bei dem die Wärmeströme bei einer jeweils konstanten Temperatur übertragen werden:

Jeder Wärmestrom wird von einem Entropiestrom begleitet. Damit erhält man für den gesamten Entropietransportstrom im geschlossenen System:

$$\dot{S}_{Q} = \sum_{i=1}^{n} \dot{S}_{Qi} = \frac{\dot{Q}_{1}}{T_{1}} + \frac{\dot{Q}_{2}}{T_{2}} + \dots + \frac{\dot{Q}_{i}}{T_{i}} + \dots + \frac{\dot{Q}_{n}}{T_{n}}$$

 T_i ist die Temperatur, bei der der Wärmestrom \dot{Q}_i übertragen wird. Es wird hier angenommen, dass alle Wärmeströme bei einer konstanten Temperatur übertragen werden.

Entropie kann nur mit Wärme über die Grenze eines geschlossenen Systems transportiert werden. Arbeit wird niemals von Entropie oder einem Entropiestrom begleitet.

Der Entropietransportstrom kann abhängig vom Vorzeichen von \dot{Q}_i grösser, kleiner oder gleich null (adiabates System) sein.

Für die im Innern des Systems erzeugte Entropie, d.h. den Entropieproduktionsstrom \dot{S}_{irr} , gilt:

$$\dot{S}_{irr} \begin{cases} > 0 \text{ für irreversible Prozesse} \\ = 0 \text{ für reversible Prozesse} \\ < 0 \text{ unmöglich} \end{cases}$$

Bei allen irreversiblen (natürlichen) Prozessen wird Entropie erzeugt; nur im Grenzfall des reversiblen Prozesses verschwindet die Entropieerzeugung. Eine Vernichtung oder Beseitigung von Entropie ist unmöglich.

Damit lautet die Entropiebilanzgleichung für ein geschlossenes System:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \sum_{i=1}^{n} \dot{S}_{Qi} + \dot{S}_{irr}, \quad \text{wobei} \quad \dot{S}_{Qi} = \int_{0}^{\dot{Q}} \frac{\mathrm{d}\dot{Q}_{i}}{T_{i}} \quad \text{und} \quad \dot{S}_{irr} \geqslant 0$$

Im **stationären** Fall ist dS/dt = 0 und es gilt:

$$\dot{S}_{irr} = -\sum_{i=1}^{n} \dot{S}_{Qi} \geqslant 0$$

Es gibt keinen allgemeinen Entropie-Erhaltungssatz, weil in obigen Gleichungen ein Produktionsterm (\dot{S}_{irr}) auftritt, der die Irreversibilität des Prozesses kennzeichnet. Nur im reversiblen Grenzfall bleibt die Entropie erhalten.

11.1.2 Offene Systeme

Wir erweitern nun die Entropiebilanz auf offene Systeme (Kontrollräume), berücksichtigen also auch den Entropietransport, der durch einen Stofftransport über die Systemgrenze bewirkt wird.

Die Entropiebilanzgleichung für offene Systeme lautet (ohne Herleitung):

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \sum_{\alpha} \dot{m}_{\alpha} s_{\alpha} - \sum_{\omega} \dot{m}_{\omega} s_{\omega} + \sum_{\alpha} \dot{S}_{Qi} + \dot{S}_{irr}, \quad \text{wobei} \quad \dot{S}_{Qi} = \int_{0}^{\dot{Q}} \frac{\mathrm{d}\dot{Q}_{i}}{T_{i}} \quad \text{und} \quad \dot{S}_{irr} \geqslant 0$$

Sie unterscheidet sich von der Entropiebilanz eines geschlossenen Systems durch die beiden Summen (Entropietransport der mit der Materie einströmenden Entropie und der mit der Materie ausströmenden Entropie).

Für stationäre Fliessprozesse gilt:

$$\dot{S}_{irr} = \sum_{\omega} \dot{m}_{\omega} \, s_{\omega} - \sum_{\alpha} \dot{m}_{\alpha} \, s_{\alpha} - \sum_{\alpha} \dot{S}_{Qi} \, \geq \, 0$$

Für stationäre und adiabate Fliessprozess gilt:

$$\dot{S}_{irr} = \sum_{\omega} \dot{m}_{\omega} \, s_{\omega} - \sum_{\alpha} \dot{m}_{\alpha} \, s_{\alpha} \ge 0$$

11.2 Exergiebilanzgleichung und Exergieverlust

Wir haben gelernt, dass nur in einem reversiblen Prozess die Exergie erhalten bleibt. In jedem realen Prozess geht Exergie verloren und wird unwiderruflich in Anergie umgewandelt. Für diesen Exergieverlust gilt:

$$\dot{E}_{V} = \sum_{\alpha} \dot{E}_{\alpha} - \sum_{\omega} \dot{E}_{\omega}$$

$$\dot{E}_{V} = \sum_{\alpha} P_{i} + \sum_{\alpha} \dot{E}_{Qi} + \sum_{\alpha} \dot{m}_{\alpha} e_{\alpha} - \sum_{\omega} \dot{m}_{\omega} e_{\omega}$$

Man beachte: \dot{E} bezeichnet hier die Exergieströme (nicht die Energieströme). P_i und \dot{E}_{Qi} sind mit den richtigen Vorzeichen einzusetzen (Eintritt +, Austritt -).

Der Exergieverlust kann auch aus der Entropiebilanzgleichung berechnet werden:

$$\dot{E}_V = T_U \, \dot{S}_{irr}$$

Es sei an dieser Stelle auf das Modul THFL+GRU verwiesen.

11.3 Perpetuum Mobile 2. Art

Für einen stationären Prozess in einem geschlossenen System lautet die Entropiebilanzgleichung:

$$\dot{S}_{irr} = -\sum_{i=1}^{n} \dot{S}_{Qi} \geqslant 0$$
, wobei $\dot{S}_{Qi} = \int_{0}^{\dot{Q}} \frac{\mathrm{d}\dot{Q}_{i}}{T_{i}}$

Damit die Entropie des Systems konstant bleibt, muss die in das System mit Wärme einströmende und die im System durch irreversible Prozesse erzeugte Entropie mit Wärme über die Systemgrenze abgeführt werden.

Beispiel 11.1: Perpetuum Mobile 2. Art. Wir betrachten ein stationär arbeitendes System, das einen Wärmestrom \dot{Q} bei einer Temperatur T aufnimmt und eine betragsmässig gleich grosse mechanische Leistung abgibt.

Man sagt auch, ein Perpetuum Mobile 2. Art wandle einen Wärmestrom vollständig in eine mechanische Leistung um. Dies widerspricht nicht dem 1. HS:

$$P = -\dot{Q}$$

Das Perpetuum Mobile 2. Art ist jedoch nach dem 2. HS nicht möglich, denn es müsste den mit dem zugeführten Wärmestrom zufliessenden Entropietransportstrom vernichten:

$$\dot{S}_{irr} = -\sum_{i=1}^{n} \dot{S}_{Qi} = -\frac{\dot{Q}}{T} < 0 \rightarrow \text{unmöglich}$$

11.4 Die Umwandlung von Wärme in Arbeit: Wärmekraftmaschine

Eine Wärmekraftmaschine ist eine stationär arbeitende Einrichtung, die Wärme aufnimmt und Arbeit abgibt (Umwandlung von Wärme in Arbeit). Das Arbeitsmedium durchläuft dabei einen Kreisprozess. Für die folgenden Betrachtungen brauchen wir die Details nicht zu kennen.

Wie gesehen verbietet der 2. HS die vollständige Umwandlung von Wärme in Arbeit. Es muss stets ein Abwärmestrom vorhanden sein, der die zugeführte Entropie und die in der WKM erzeugte Entropie abführt.

1. HS (Energiebilanz):

$$\dot{Q} + \dot{Q}_0 + P = 0$$
$$-P = \dot{Q} + \dot{Q}_0 = \dot{Q} - |\dot{Q}_0|$$

Thermischer Wirkungsgrad:

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{-P}{\dot{Q}} = 1 - \frac{|\dot{Q}_0|}{\dot{Q}}$$

 \dot{Q}_0 kann nicht gleich null sein, damit kann η_{th} den Wert eins nie erreichen. Die Entropiebilanz für dieses geschlossene System lautet im stationären Zustand:

$$\dot{S}_{irr} = -\sum_{i=1}^{n} \dot{S}_{Qi} = -\frac{\dot{Q}}{T} - \frac{\dot{Q}_{0}}{T_{0}} \geqslant 0$$

Damit erhalten wir für den Abwärmestrom:

$$-\dot{Q}_0 = T_0 \left(\frac{\dot{Q}}{T} + \dot{S}_{irr}\right)$$

In der Klammer steht der Entropie
transportstrom, der den Wärmestrom Q begleitet, und der Entropie
produktionsstrom, der die Irreversibilitäten innerhalb des geschlossenen Systems WKM kennzeichnet.

Durch Einsetzen in die Energiebilanz erhält man für die gewonnene Leistung

$$-P = \dot{Q} - T_0 \left(\frac{\dot{Q}}{T} + \dot{S}_{irr}\right)$$

$$-P = \left(1 - \frac{T_0}{T}\right)\,\dot{Q} - T_0\,\dot{S}_{irr}$$

und für den thermischen Wirkungsgrad der WKM

$$\eta_{th} = 1 - \frac{T_0}{T} - \frac{T_0 \, \dot{S}_{irr}}{\dot{Q}}$$

Die Höchstwerte von -P und η_{th} ergeben sich für eine reversibel arbeitende WKM mit $\dot{S}_{irr}=0$:

$$-P_{max} = -P_{rev} = \left(1 - \frac{T_0}{T}\right) \dot{Q}$$
$$\eta_{th, max} = \eta_C = 1 - \frac{T_0}{T}$$

Jede Irreversibiltät verringert die gewonnene Leistung und den thermischen Wirkungsgrad gegenüber diesen Höchstwerten.

Den thermischen Wirkungsgrad $\eta_{th,\,rev}$ der reversibel arbeitenden WKM nennt man Carnot-Faktor η_C :

$$\eta_C = \eta_C(T, T_0) = 1 - \frac{T_0}{T}$$

Der Carnot-Faktor η_C hängt nicht vom Aufbau der WKM und vom verwendeten Arbeitsmedium ab, sondern ist eine universelle Funktion der thermodynamischen Temperaturen T der Wärmezufuhr und T_0 der Wärmeabgabe.

Beispiel 11.2: Wärmekraftmaschine (WKM). Einer WKM wird ein Wärmestrom von 10 MW bei 1200 K zugeführt. Die Abwärme wird an Flusswasser mit einer Temperatur von 14°C abgegeben.

- a. Wie gross ist die maximal zu gewinnende Leistung?
- b. Wie hoch ist in diesem Fall der Wirkungsgrad der WKM?
- c. Wie gross ist der Wärmestrom, der an die Umgebung abgeführt werden muss?

Lösen Sie diese einfache Aufgabe zur Repitition mittels Entropiebilanzgleichung und Carnot-Faktor.

a.
$$-P_{max} = \left(1 - \frac{T_0}{T}\right) \dot{Q} = 7.61 \text{ MW}$$

b.
$$\eta_C = 1 - \frac{T_0}{T} = 76~\%$$

c.
$$\dot{Q}_0 = -\dot{Q} - P_{rev} = -2.39 \; \text{MW}$$

Ergänzung: Thermodynamische Mitteltemperatur

Oft wird die Wärme nicht bei einer konstanten Temperatur aufgenommen, sondern innerhalb eines Temperaturintervalls. Der damit verbundene Entropietransportstrom ist:

$$\dot{S}_Q = \int_{1}^{2} \frac{\mathrm{d}\dot{Q}}{T} = \frac{\dot{Q}}{T_m}$$

Mit dieser Gleichung wird die thermodynamische Mitteltemperatur definiert:

$$T_m = \frac{\dot{Q}}{\dot{S}_Q} = \frac{\dot{Q}}{\int\limits_{1}^{2} \frac{\mathrm{d}\dot{Q}}{T}}$$

Carnot-Faktor: $\eta_C(T_0/T_m) = 1 - \frac{T_0}{T_m}$

11.5 Der Carnot-Prozess

11.5.1 Grundlagen

Der von dem französischen Militäringenieur Sadi Carnot im Jahr 1824 vorgeschlagene Kreisprozess arbeitet zwischen zwei Isentropen und zwei Isothermen. Der Wärmetransport erfolgt bei konstanten Temperaturen: Die Wärmezufuhr bei der hohen Temperatur T_3 , die Wärmeabfuhr bei der niedrigeren Temperatur T_1 . Der Carnot-Prozess besteht aus folgenden Zustandsänderungen:

- $1 \to 2$: Isentrope Verdichtung
- $2 \rightarrow 3$: Reversible isotherme Entspannung mit Wärmezufuhr
- $3 \rightarrow 4$: Isentrope Entspannung
- $4 \rightarrow 1$: Reversible isotherme Verdichtung mit Wärmeabgabe

Aus der Energiebilanz ergibt sich die Nutzleistung:

$$-P = \dot{Q}_{zu} + \dot{Q}_{ab} = \dot{Q}_{23} + \dot{Q}_{41}$$

Drückt man die Wärmeströme \dot{Q} durch die Entropietransportströme $\dot{S}_Q=\dot{Q}/T$ aus, erhält man:

$$\dot{Q}_{zu} = \dot{Q}_{23} = T \, \dot{S}_{Q\,23} \quad \text{und} \quad \dot{Q}_{ab} = \dot{Q}_{41} = T_0 \, \dot{S}_{Q\,41}$$

und nach Einsetzen in die Energiebilanz für die Nutzleistung:

$$-P = (T - T_0) \, \dot{S}_Q$$

Im T,\dot{S} -Diagramm bildet sich der Carnot-Prozess als Rechteck ab, dessen Flächeninhalt dem Betrage nach der Nutzleistung entspricht.

Die Leistung beträgt also:

$$-P = \left(1 - \frac{T_0}{T}\right) \dot{Q}_{zu}$$

Der thermische Wirkungsgrad ist wie folgt definiert:

$$\eta_{th} = \frac{-P}{\dot{Q}_{zu}} = 1 - \frac{|\dot{Q}_{ab}|}{\dot{Q}_{zu}}$$

Setzt man die obige Beziehung für die Nutzleistung ein, erhält man den Wirkungsgrad für den reversiblen Carnot-Prozess:

$$\eta_C = 1 - \frac{T_0}{T}$$

Diese Gleichung beschreibt jedoch nicht nur den Wirkungsgrad des Carnot-Prozesses, sondern ganz allgemein den höchstmöglichen mit einer Wärmekraftmaschine erreichbaren Wert, wie nachfolgend gezeigt wird.

Die Entropiebilanzgleichung für eine stationäre Wärmekraftmaschine (dS/dt = 0) lautet:

$$\dot{S}_{irr} = -\sum_{i=1}^{n} \dot{S}_{Qi} \geqslant 0$$

Für die obige Wärmekraftmaschine ergibt sich:

$$\dot{S}_{irr} = -\frac{\dot{Q}_{zu}}{T} - \frac{\dot{Q}_{ab}}{T_0} \geqslant 0$$

Auflösen nach \dot{Q}_{ab} ergibt:

$$-\dot{Q}_{ab} = T_0 \left(\frac{\dot{Q}_{zu}}{T} + \dot{S}_{irr} \right)$$

Eingesetzt in die Energiebilanz erhält man:

$$-P = \left(1 - \frac{T_0}{T}\right) \dot{Q} - T_0 \dot{S}_{irr}$$

Wir erhalten also das gleiche Resultat wie in Kapitel 11.4.

Für den thermischen Wirkungsgrad erhält man:

$$\eta_{th} = \left(1 - \frac{T_0}{T}\right) - \frac{T_0 \, \dot{S}_{irr}}{\dot{Q}_{zu}}$$

Der Maximalwert des thermischen Wirkungsgrades ergibt sich offensichtlich für reversible Prozesse mit $\dot{S}_{irr}=0$ zu:

 $\eta_{th,\,max} = \eta_C = 1 - \frac{T_0}{T}$

Der Carnot-Faktor erweist sich als völlig unabhängig von der Bauart der Anlage und der Art des Arbeitsfluids. Er hängt ausschliesslich vom Temperaturverähltnis ab. Er wächst mit zunehmendem Wert der Temperatur T der Wärmezufuhr und abnehmender Temperatur T_0 , bei der die Wärme abgeführt wird. Beide Temperaturen unterliegen Grenzwerten. Für die Temperatur T setzt die Warmfestigkeit der Werkstoffe eine obere Grenze. Der tiefste Wert von T_0 ist die Temperatur der Umgebung, etwa der Atmosphäre am Erdboden oder die Temperatur von Seen oder Flüssen, in die die abgeführte Wärme übergeht. Daraus folgt, dass die **zugeführte Wärme niemals vollständig in Arbeit umgewandelt** werden kann. Ein gewisser Bruchteil muss mit niedriger Temperatur an die Umgebung abgeführt werden. **Der Carnot-Faktor beschreibt also den Grad der Wandelbarkeit der Wärme in Nutzarbeit. Er kann niemals gleich eins werden!** Er wird gleich null, wenn die Temperaturen der Wärmeaufnahme und die der Wärmeabgabe gleich gross sind, also $T = T_0$ ist. Die mit der Umgebungstemperatur zur Verfügung stehenden ungeheueren Energiemengen, die in den Weltmeeren und in der Luft der Atmosphäre gespeichert sind, sind demnach energetisch wertlos.

Die technische Realisierung des Carnot-Prozesses ist ein ausserordentlich schwieriges Problem und bis heute nicht gelungen.

11.5 Der Carnot-Prozess 457

11.5.2 Der rechtslaufende Carnot-Prozess mit idealen Gasen

Die Anlage eines rechtslaufenden Carnot-Prozesses mit idealen Gasen sieht wie folgt aus:

- $1 \rightarrow 2$: Isentrope Verdichtung, s = konst.
- $2 \rightarrow 3$: Reversible isotherme Entspannung mit Wärmezufuhr, T = konst.
- $3 \rightarrow 4$: Isentrope Entspannung, s = konst.
- $4 \rightarrow 1$: Reversible isotherme Verdichtung mit Wärmeabfuhr, T = konst.

Berechnung der Teilprozesse:

Der 1. HS lautet beispielhaft für den Teilprozess $1 \rightarrow 2$ für ein perfektes Gas:

$$w_{t\,12\,rev} + q_{12\,rev} = h_2 - h_1 = c_p (T_2 - T_1)$$

Da alle Teilprozesse reversibel sind, wird nachfolgend der Index "rev" einfachheitshalber weggelassen. Wir bezeichnen das hohe Temperaturniveau mit T ($T=T_2=T_3$), das tiefe Temperaturniveau mit T_0 ($T_0=T_1=T_4$) und das Druckverhältnis mit π ($\pi=p_2/p_3=p_1/p_4$).

 $1 \rightarrow 2$, s = konst.:

$$w_{t\,12} = h_2 - h_1 = c_p \left(T - T_0 \right)$$

 $2 \rightarrow 3$, T = konst.:

$$w_{t \, 23} + q_{23} = h_3 - h_2 = c_p \left(T - T \right) = 0$$
$$-w_{t \, 23} = q_{23} = -R_i \, T \, \ln \frac{p_3}{p_2} = R_i \, T \, \ln \frac{p_2}{p_3} = R_i \, T \, \ln \pi$$

 $3 \rightarrow 4$, s = konst.:

$$-w_{t\,34} = h_3 - h_4 = c_p (T - T_0)$$
$$w_{t\,12} = -w_{t\,34}$$

 $4 \rightarrow 1$, T = konst.:

$$w_{t\,41} = R_i T_0 \ln \frac{p_1}{p_4} = -q_{41} = R_i T_0 \ln \pi$$

Carnot-Wirkungsgrad:

$$\eta_{th} = \eta_C = \frac{-P_{rev}}{\dot{Q}_{23}} = \frac{-w_{trev}}{q_{23}}$$

$$= \frac{|-w_{t23}| - |w_{t41}|}{q_{23}} = \frac{(T - T_0) R_i \ln \pi}{R_i T \ln \pi}$$

$$= \frac{T - T_0}{T} = 1 - \frac{T_0}{T}$$

Der Carnot-Wirkungsgrad ist allein durch T und T_0 bestimmt. Er ist unabhängig vom Arbeitsfluid.

11.5 Der Carnot-Prozess 459

Entropiebilanz des rechtslaufenden Carnot-Prozesses:

Flussbilder des rechtslaufenden Carnot-Prozesses:

Beispiel 11.3: Flüssig-Erdgas (LNG) aus Tanker (Rotterdam). Um das Ladevolumen der Tanker möglichst gut auszuntzen, wird das Erdgas vor dem Verladen durch Abkühlung verflüssigt. Dieser Wärmeentzug benötigt grosse Energiemengen. Beim Entleeren des Tankers im Zielhafen, wird das Erdgas durch Wärmezufuhr aus der Umgebung wieder verdampft. Man möchte nun die zur Verflüssigung "reingesteckte" Energie mit einer WKM wieder zurückgewinnen. Beurteilen Sie, ob und wie das geht!

Geg: $\vartheta_U=27^{\circ}\text{C},\ \vartheta_{LNG}=-150^{\circ}\text{C}$ $Q_V=m_{LNG}\,\Delta\,h_V=25\cdot10^9\ \text{kJ (Energiemenge im Flüssig-Erdgas)}$

1.HS:
$$-W_{rev}=Q_U+Q_V$$
 2.HS:
$$\frac{Q_U}{T_U}=-\frac{Q_V}{T_V}\quad\Rightarrow\quad Q_U=-Q_V\,\frac{T_U}{T_V}=60.9~{\rm TJ}$$

11.5 Der Carnot-Prozess 461

11.5.3 Der linkslaufende Carnot-Prozess mit idealen Gasen

Die Anlage eines linkslaufenden Carnot-Prozesses mit idealen Gasen sieht wie folgt aus:

- $1 \rightarrow 2 :$ Is entrope Verdichtung, s = konst.
- $2 \rightarrow 3$: Reversible isotherme Verdichtung mit Wärmeabfuhr, T = konst.
- $3 \rightarrow 4$: Isentrope Entspannung, s = konst.
- $4 \rightarrow 1$: Reversible isotherme Entspannung mit Wärmezufuhr, T = konst.

Entropiebilanz des linkslaufenden Carnot-Prozesses:

Flussbilder des linkslaufenden Carnot-Prozesses:

11.5 Der Carnot-Prozess 463

Die ideale Wärmepumpe (WP):

Energieflussbild und T,\dot{S}_Q -Diagramm

Beurteilung der Wärmepumpe:

 ε_{WP} = Leistungszahl der Wärmepumpe

$$\varepsilon_{WP} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{-\dot{Q}_{II}}{P_{rev}} = \frac{T_{II} \, \dot{S}_Q}{(T_{II} - T_I) \, \dot{S}_Q}$$
$$\varepsilon_{WP \, rev} = \frac{T_{II}}{T_{II} - T_I} = \frac{1}{\eta_C}$$

$$\Delta T_H = T_{II} - T_I = \text{Temperaturhub}, \ \varepsilon_{WP\,rev} \sim \frac{1}{\Delta T_H}$$

Abängigkeit der Leistungszahl der Carnot-Wärmepumpe vom Temperaturhub:

$artheta_U/artheta_H$	20°C	30°C	40°C
10°C	29.3	15.1	10.4
0°C	14.6	10.1	7.8
−10°C	9.8	7.6	6.26

Fazit: Die Effizienz der Wärmepumpe ist in starkem Mass vom Temperaturhub abhängig!

Die ideale Kältemaschine (KM):

Energieflussbild und T,\dot{S}_Q -Diagramm

Beurteilung der Kältemaschine:

 $\varepsilon_{KM} =$ Leistungszahl der Kältemaschine

$$\varepsilon_{KM_{rev}} = \varepsilon_{KM_{max}} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{|\dot{Q_0}|}{P_{rev}}$$

$$\varepsilon_{KM_{rev}} = \frac{\dot{Q_u} - P_{rev}}{P_{rev}} = \varepsilon_{WP_{rev}} - 1$$

$$\varepsilon_{KM_{rev}} = \frac{T_I}{T_{II} - T_I} = \frac{T_0}{T_u - T_0}$$

Abängigkeit der Leistungszahl der Carnot-Kältemaschine vom Temperaturhub:

$artheta_U \ / \ artheta_0$	$0^{\circ}\mathrm{C}$	$-50^{\circ}\mathrm{C}$	$-200^{\circ}\mathrm{C}$	$-270^{\circ}\mathrm{C}$	-273°C	$-273.1^{\circ}{\rm C}$
$40^{\circ}\mathrm{C}$	6.8	2.5	0.30	0.01	0.00047	0.00016
20°C	13.7	3.2	0.33	0.01	0.00051	0.00017

Fazit: Die Effizienz der Kältemaschine ist in starkem Mass vom Temperaturhub abhängig!

11.5 Der Carnot-Prozess 465

Beispiel 11.4: Wärmepumpe. Ein gut wärmegedämmtes Einfamilienhaus benötigt bei einer Umgebungstemperatur von -5° C eine Heizleistung von 4 kW für die Aufrechterhaltung der gewünschten Raumtemperatur von 21°C. Bestimmen Sie die Antriebsleistung einer Carnot-Wärmepumpe. Treffen Sie dazu vernünftige Annahmen zu den Temperaturniveaus der Wärmeaufnahme und Wärmeabgabe.

Beispiel 11.5: Kühlschrank. Ein Kühlschrank benötigt eine Kälteleistung von 400 W, um die gewünschte Temperatur von 5°C aufrecht zu erhalten. Die Temperatur in der Küche beträgt 22°C. Bestimmen Sie die Antriebsleistung einer Carnot-Kältemschine. Treffen Sie dazu vernünftige Annahmen zu den Temperaturniveaus der Wärmeaufnahme und Wärmeabgabe.

11.6 Zusammenfassung

Untenstehend sind die drei idealen Prozesse der WKM, WP und KM und ihre Bewertungszahlen zusammengefasst:

11.7 Übungen

Übung 11.1: Rechts- und linksdrehender Carnot-Prozess. Der Carnot-Prozess ist der reversible Kreisprozess zur Umwandlung von Wärme und Arbeit. Versuchen Sie, die beiden nachfolgenden Fragen ohne Unterlagen zu beantworten (im Sinne einer Selbstkontrolle):

- a. Stellen Sie den rechts- und den linksdrehenden Carnot-Prozess je in einem p,v-Diagramm dar und veranschaulichen Sie darin die spezifische Kreisarbeit w_K als Fläche. Erklären Sie das Vorzeichen der Kreisarbeit!
- b. Stellen Sie den rechts- und den linksdrehenden Carnot-Prozess je in einem T,s-Diagramm dar und veranschaulichen Sie darin die spezifische zugeführte Wärme q_{zu} , die abgeführte Wärme q_{ab} und die Kreisarbeit w_K .

Übung 11.2: Beurteilung eines Patentes. Als junger Maschineningenieur arbeiten Sie beim Patentamt. Sie erhalten die Eingabe eines Erfinders zur Überprüfung: Der Erfinder möchte eine Wärmekraftmaschine patentieren, welche einen bei 600°C zugeführten Wärmestrom von 50 kW in eine mechanische Leistung von 36 kW umwandelt. Die Abwärme wird an Flusswasser mit einer Temperatur von 15°C abgegeben.

Ist diese WKM patentierbar? Geben Sie Ihre Beurteilung ab!

Übung 11.3: Kombination von rechts- und linksdrehendem Carnot-Prozess. Ein rechtsdrehender Carnot-Prozess treibt einen linksdrehenden an; beide arbeiten mit gleichen Temperaturniveaus der Wärmeenergie: T_2 = hohes Temperaturniveau, T_1 = niedriges Temperaturniveau (z.B. die Umgebungstemperatur).

- a. Zeichnen Sie das Energieflussbild mit den Wärme- und Arbeitsströmen dieser Anordnung aus den zwei Carnot-Prozessen mit den beiden Energiereservoirs T_2 und T_1 .
- b. Zeigen Sie, dass diese Kombination ein "perpetuum mobile" darstellt. Überprüfen Sie "Geratenes"!

11.7 Übungen 469

Übung 11.4: Energiebedarf eines Kühllagers. Wir betrachten ein Kühllager für Lebensmittel. Die geforderte Temperatur im Kühllager ist −18°C. Das Kühllager befindet sich unter der Erdoberfläche (d.h. in einem Untergeschoss) und ist sehr gut isoliert, so dass der Kälteverlust an die Umgebung unabhängig von der Aussentemperatur ist. Die benötigte Kälteleistung beträgt 20 kW. Das Kühllager wird mit einer Carnot-Kältemaschine gekühlt. Diese gibt die Wärme an die Umgebung ab, die im Jahresmittel eine Temperatur von 9.0°C hat (Mittelwert SMA Zürich-Kloten).

- a. Wie gross ist die Antriebsleistung der Carnot-Kältemaschine und der jährliche Bedarf an elektrischer Energie, wenn das Kühllager 8'300 h/a in Betrieb ist? $(P_{el} = 2.1 \text{ kW}, W_{el} = 17'430 \text{ kWh})$
- b. Anspruchsvolle Zusatzfrage: Wie gross ist die Antriebsleistung und der Energiebedarf einer realen Kältemaschine? Wagen Sie eine einfache Abschätzung!

Übung 11.5: Analyse einer Wärmepumpe. Mit einer Wärmepumpe soll aus Wärme mit der Umgebungstemperatur von 5°C (Reusswasser) ein Gebäude auf 20°C gehalten werden. Die Wärme wird bei 5°C an das Kreislauffluid übertragen und bei 40°C an den Raum abgegeben (Bodenheizung). Der Heizbedarf ist 50 kW. Die elektrische Antriebsleistung der Wärmepumpe beträgt 10 kW.

- a. Zeichnen Sie ein massstäbliches Energieflussbild der realen Wärmepumpe.
- b. Wie gross ist die effektive Leistungsziffer? $(\varepsilon_{WP,real} = 5)$
- c. Wie gross ist die innere reversible Leistungsziffer, d.h. bezüglich den Temperaturen des Kreislauffluides? $(\varepsilon_{WP,rev,i}=8.94)$
- d. Wie gross ist die äussere reversible Leistungsziffer, d.h. bezüglich den Temperaturen der Wärmequelle und -senke? $(\varepsilon_{WP,\,rev,\,a}=19.53)$
- e. Wie gross ist der äussere Reversibilitätsgrad, d.h. bezüglich der Wärmequelle und -senke? $(\varphi=0.26)$

Reversibilitätsgrad
$$\varphi = \frac{P_{rev,\,a}}{P_{real}}$$

Übung 11.6: Idealer Wärmetransformator. In einem Stahlwerk fällt 25 MW Abwärme von 330°C an. Andererseits werden für verschiedene Zwecke 50 MW Heizströme bei 100°C gebraucht. Die Umgebungstemperatur beträgt 25°C. Ein junger Ingenieur behauptet, diesen Heizstrom von 50 MW mit der Abwärme von 25 MW erzeugen zu können, natürlich ohne Verletzung des 1. und 2. HS.

Überprüfen Sie diese Behauptung unter idealen Bedingungen: nämlich, dass mit der Abwärme eine ideale Wärmekraftmaschine angetrieben wird, welche ihrerseits eine ideale Wärmepumpe antreibt (Prinzip der Wärmetransformation).

- a. Zeichnen Sie eine Prinzipskizze der Anlage.
- b. Welcher Heizstrom kann tatsächlich bei 100°C abgegeben werden? (unter diesen idealen Voraussetzungen) $(\dot{Q}_{Heiz} = -62.9 \ MW)$
- c. Wie gross ist das Wärmeverhältnis von Heizwärme und Abwärme? Entwickeln Sie dafür eine Formel, in der nur diese drei gegebenen Temperaturen enthalten sind. $(\varsigma = 2.52)$
- d. Zeichnen Sie das Energieflussbild dieser Anlage.
- e. Zeichnen Sie den Prozess der Wärmetransformation in ein T,s-Diagramm ein.

Übung 11.7: Wärmekraftmaschine. Theorieaufgabe: Versuchen Sie im Sinne einer Selbstkontrolle, diese Fragen ohne Unterlagen zu lösen. Seien Sie exakt in der Wahl der Begriffe und Ihren Erklärungen!

- a. Wie ist der thermische Wirkungsgrad einer Wärmekraftmaschine (WKM) definiert?
- b. Warum kann der thermische Wirkungsgrad einer WKM auch unter den bestmöglichen Bedingungen den Wert 1 nicht erreichen?
- c. Wir betrachten einen rechtslaufenden Kreisprozess mit zwei isentropen und zwei isobaren Zustandsänderungen. Erklären Sie anhand eines T,s-Diagramms den Zusammenhang zwischen dem thermischen Wirkungsgrad und den thermodynamischen Mitteltemperaturen der Wärmezufuhr und Wärmeabfuhr!
- d. Wie ist der "Wirkungsgrad" einer Wärmepumpe bzw. einer Kältemaschine definiert? Wie gross werden die beiden Werte, falls es sich um linkslaufende Carnot-Prozesse handelt? Leiten Sie die Formel anhand des T,\dot{S}_O -Diagramms her.
- e. Zeigen Sie anschaulich mit dem T,\dot{S}_Q -Diagramm, dass zur Erreichung des absoluten Nullpunktes (0 K) unendlich viel mechanische Arbeit aufgewendet werden muss!
- f. Zeigen Sie anschaulich mit dem T, \dot{S}_Q -Diagramm, dass an einem kalten Wintertag (-5° C) eine Wärmepumpe mit Erdwärmesonde effizienter ist als eine Luft/Wasser-Wärmepumpe! Treffen Sie vernünftige Annahmen zu den Systemtemperaturen.

Übung 11.8: Stromerzeugung aus Abwärme. Sie arbeiten als junger Betriebsingenieur in einer Papierfabrik. In der Produktion entsteht ein Abwärmestrom von 10 MW auf einem mittleren Temperaturniveau von 50°C. Der Konzernleiter (er ist ein Ökonom) rechnet Ihnen vor: Aus der riesigen Abwärmemenge kann man mit einer WKM Strom erzeugen, wenn auch mit einem bescheidenen Wirkungsgrad. Zur Kühlung der WKM steht Flusswasser mit einer mittleren Temperatur von 14°C zur Verfügung. Er geht von einer erzeugten Leistung von 1 MW el aus,

11.7 Übungen 471

was zu einer jährlichen Stromproduktion von rund 8'500 MWh führt. Die Papierfabrik kauft den Strom für 120 CHF/MWh, d.h. die Idee des Konzernleiters führt zu einer Reduktion der Energiekosten von über 1 Mio CHF.

Geben Sie eine Beurteilung zuhanden des Konzernleiters ab!

Übung 11.9: Carnot-Prozess mit Luft und Kohlendioxid (CO₂). 1 kg Luft und 1 kg CO₂ durchlaufen jeweils einen rechtslaufenden Carnot-Prozess. Der "tiefste Punkt" im Kreisprozess entspricht dem Umgebungszustand mit $p_4 = 1$ bar(a) und $\vartheta_4 = \vartheta_U = 20$ °C. Am Ende der beiden Verdichtungsvorgänge $4 \to 1$ und $1 \to 2$ beträgt der Druck $p_2 = 200$ bar(a) und die Temperatur $\vartheta_2 = 350$ °C.

Stoffdaten:

Luft:
$$c_{pL} = 1004.2 \text{ J/kg K}$$
; $c_{vL} = 717 \text{ J/kg K}$; $R_L = 287.2 \text{ J/kg K}$; $\kappa = 1.4$

Kohlendioxid:
$$c_{pK} = 827 \text{ J/kg K}$$
; $c_{vK} = 638.1 \text{ J/kg K}$; $R_K = 188.9 \text{ J/kg K}$; $\kappa = 1.3$

Für die beiden Kreisprozesse sind die folgenden Fragen zu beantworten:

- a. Zeichnen Sie die Kreisprozesse in die angefügten T,s-Diagramme ein.
- b. Wie gross sind Druck, Temperatur und spezifisches Volumen in den Eckpunkten? Berechnen Sie die Werte und lesen Sie die Werte aus den Diagrammen ab.
- c. Welche spezifischen Wärmemengen müssen zu- und abgeführt werden?
- d. Wie gross ist die gewonnene spezifische Arbeit und der thermische Wirkungsgrad?

Zustandstabellen:

Zustand Luft	1	2	3	4
θ [°C]		350		20
$p \left[bar(a) \right]$		200		1
$v [\mathrm{m}^3/\mathrm{kg}]$				

Zustand Kohlendioxid	1	2	3	4
θ [°C]		350		20
p [bar(a)]		200		1
$v [\mathrm{m}^3/\mathrm{kg}]$				

Numerische Lösungen

Zustandstabellen:

Zustand Luft	1	2	3	4
θ [°C]	20	350	350	20
$p \left[bar(a) \right]$	14.28	200	14	1
$v [\mathrm{m}^3/\mathrm{kg}]$	0.0589	0.0089	0.1278	0.842

Zustand Kohlendioxid	1	2	3	4
θ [°C]	20	350	350	20
p [bar(a)]	7.62	200	26.25	1
$v [\mathrm{m}^3/\mathrm{kg}]$	0.0727	0.00588	0.0448	0.5537

Spezifische Wärmemengen, spezifische Arbeit und thermischer Wirkungsgrad für Luft:

$$q_{zu} = 475.92 \text{ kJ/kg}$$

 $q_{ab} = -223.85 \text{ kJ/kg}$
 $w_{rev} = -252.07 \text{ kJ/kg}$
 $\eta_{th} = 0.529$

Spezifische Wärmemengen, spezifische Arbeit und thermischer Wirkungsgrad für Kohlendioxid:

$$\begin{aligned} q_{zu} &= 239.03 \text{ kJ/kg} \\ q_{ab} &= -112.46 \text{ kJ/kg} \\ w_{rev} &= -126.6 \text{ kJ/kg} \\ \eta_{th} &= 0.529 \end{aligned}$$

11.7 Übungen 473

T,s-Diagramm für Luft als perfektes Gas

T, s-Diagramm Kohlendioxid

Kapitel 12

Verbrennungsmotoren

12.1 Verbrennungsprozesse

Die vollständige Verbrennung eines Brennstoffs bedeutet die Oxidation seiner brennbaren Bestandteile zu CO₂, H₂O und SO₂. Hierfür gelten die einfachen Reaktionsgleichungen:

$$1 C + 1 O_2 \rightarrow 1 CO_2$$

$$1\,\mathrm{H}_2 + \frac{1}{2}\,\mathrm{O}_2 \rightarrow 1\,\mathrm{H}_2\mathrm{O}$$

$$1S + 1O_2 \rightarrow 1SO_2$$

Diese Gleichungen werden als Verbrennungsgleichungen bezeichnet. In ihnen kommt die Erhaltung der chemischen Elemente zum Ausdruck: Die Zahl der Atome eines jeden Elementes, das an einer chemischen Reaktion teilnimmt, bleibt konstant.

Die Stoffmenge n eines Stoffs ist proportional zur Zahl ihrer Teilchen. Dies bedeutet für die erste Reaktionsgleichung, dass die gleiche Stoffmenge an Sauerstoff n_{O2} nötig ist für die Oxidation einer Stoffmenge an Kohlenstoff n_C .

$$y_{O2,C} = \frac{n_{O2}}{n_C} = 1$$

$$y_{O2, H2} = \frac{n_{O2}}{n_{H2}} = 0.5$$

$$y_{O2,S} = \frac{n_{O2}}{n_S} = 1$$

12.1.1 Die Berechnung der Verbrennungsluftmenge

Der zur Oxidation benötigte Sauerstoff wird in der Regel mit der Verbrennungsluft zugeführt. Luft besteht hauptsächlich aus Sauerstoff ($y_{O2,L} \approx 21\%$) und Stickstoff ($y_{N2,L} \approx 79\%$). Zusätzlich enthält die Luft in geringen Mengen Ar, Ne und CO₂.

Bei Verbrennungsrechnungen wird vorteilhaft mit Stoffmengenbeladungen gerechnet. Dabei dient die Stoffmenge des Brennstoffes n_B als Bezugsgrösse. Für die Luft gilt z.B.:

$$Y_L = \frac{n_L}{n_B}$$

Bei der vollständigen Verbrennung des Brennstoffes spricht man von einer so genannten stöchiometrischen Verbrennung. Dazu muss dem Brennstoff eine Mindestluftmenge $n_{L,\,min}$ zugeführt werden.

$$Y_L = \frac{n_L}{n_B} = \frac{n_L}{n_{L,min}} \frac{n_{L,min}}{n_B} = \lambda Y_{L,min}$$

 λ beschreibt das Luftverhältnis und $Y_{L,\,min}$ die minimale Beladung für eine stöchiometrische Verbrennung. $Y_{L,\,min}$ wird über die Brennstoff- und die Luftzusammensetzung bestimmt. Der Sauerstoffgehalt in der Luft wird über den Stoffmengenanteil $y_{O2,\,L}$ definiert.

$$Y_{L,min} = \frac{n_{L,min}}{n_{O2,min}} \frac{n_{O2,min}}{n_B} = \frac{1}{y_{O2,L}} Y_{B,min}$$

 $Y_{B,\,min}$ bezeichnet die minimale Beladung des Brennstoffs mit Sauerstoff und kann aus der chemischen Zusammensetzung des Brennstoffs bestimmt werden. A bezeichnet dabei die Anzahl Atome:

$$Y_{B,min} = A_C + \frac{1}{4} A_H + A_S - \frac{1}{2} A_{O2}$$

Besteht der Brennstoff aus mehreren Stoffkomponenten, wird die jeweilige Beladung mit dem dazugehörigen Stoffmengenanteil multipliziert. Gesamthaft ergibt sich daraus die minimale Beladung für die vollständige Oxidation des Brennstoffs.

$$Y_{B,min} = \sum y_i Y_{B,min,i}$$

Mit dem Luftverhältnis $\lambda=1$ wird der Verbrennung gerade die stöchiometrisch erforderliche Mindestluftmenge zugeführt.

 $\lambda < 1$: Luftmangel, unvollständige Verbrennung des Brennstoffs.

 $\lambda > 1$: Luftüberschuss, Energieverluste durch höheren Abgasstrom.

In der Praxis werden Verbrennungen oft mit Luftüberschuss realisiert, damit auch bei ungleichmässiger Verteilung des Brennstoffs in der Luft eine vollständige Verbrennung gewährleistet ist. Dadurch entstehen kein Russ oder unverbrannte Kohlenwasserstoffe in der Abluft.

Beispiel 12.1: Heizkessel befeuert mit Erdgas. In einem Heizkessel wird Erdgas mit einem Volumenstrom in Normzustand $\dot{V}_E=1.20~\text{m}^3/\text{h}$ und der Zusammensetzung nach untenstehender Tabelle beim Luftverhältnis $\lambda=1.25$ verbrannt. Zu berechnen ist der Volumenstrom der Verbrennungsluft, die der Feuerung mit $\vartheta_L=22^{\circ}\text{C}$ unter dem Druck $p_L=100~\text{kPa}$ zugeführt wird.

Hinweis: Normzustand der Luft $T_N=273~\mathrm{K},\,p_N=101.325~\mathrm{kPa}$

Zusammensetzung des Erdgases:

Komponente i	y_i	$Y_{O2,min}$	$y_i Y_{O2, min}$
CH ₄	0.896	2	1.792
C_2H_6	0.012	3.5	0.042
C_3H_8	0.006	5	0.03
N_2	0.058	0	0
CO_2	0.028	0	0

$$\begin{split} Y_{O_2,min,CH_4} &= 1 + \frac{1}{4} \, 4 + 0 - \frac{1}{2} \, 0 = 2 \\ Y_{O_2,min,C_2H_6} &= 2 + \frac{1}{4} \, 6 + 0 - \frac{1}{2} \, 0 = 3.5 \\ Y_{O_2,min,C_3H_8} &= 3 + \frac{1}{4} \, 8 + 0 - \frac{1}{2} \, 0 = 5 \\ Y_{O_2,min,N_2} &= 0 + \frac{1}{4} \, 0 + 0 - \frac{1}{2} \, 0 = 0 \\ Y_{O_2,min,CO_2} &= 1 + \frac{1}{4} \, 0 + 0 - \frac{1}{2} \, 2 = 0 \\ Y_{O_2,min} &= \sum y_i \, Y_{O_2,min,i} = 1.864 \\ Y &= \lambda \, Y_{min} = 1.25 \cdot \frac{1.864}{0.21} = 11.095 \\ \dot{V}_L &= \frac{295 \, \mathrm{K}}{273 \, \mathrm{K}} \cdot \frac{101.325 \, \mathrm{kPa}}{100 \, \mathrm{kPa}} \cdot 11.095 \cdot 1.20 \, \mathrm{m}^3/\mathrm{h} \\ \dot{V}_L &= 14.58 \, \mathrm{m}^3/\mathrm{h} \end{split}$$

12.2 Otto- und Dieselmotoren

12.2.1 Otto-Prozess

Der Viertakt-Ottomotor wurde im Jahr 1876 von N. A. Otto erfunden. Sein Arbeitsspiel besteht aus 4 Takten, die sich nach je zwei Kurbelwellenumdrehungen wiederholen:

- 1. Takt: Ansaugen eines Benzindampf-Luftgemisches
- 2. Takt: Verdichtung des Gemisches
- 3. Takt: Verbrennung mit anschliessender Expansion des Verbrennungsgases = Arbeitstakt
- 4. Takt: Ausschieben des Verbrennungsgases

Der Arbeitsablauf eines Otto-Motors kann als Indikatordiagramm im p, V-Diagramm dargestellt werden. Diese werden auf Motorenprüfständen durch Messung des Gasdrucks im Zylinder bei laufendem Motor erstellt. Der Hubraum $V_H = V_1 - V_2$ ist zwischen dem oberen und unterem Totpunkt.

Das Verhältnis von Gesamtraum und Verdichtungsraum heisst $Verdichtungsverhältnis \varepsilon$:

$$\varepsilon = \frac{V_1}{V_2}$$

Der Ottomotor ist ein offenes System, das pulsierend durchströmt wird. Die untere Fläche (-) ist die Gaswechselarbeitsfläche. Sie wird linkslaufend umfahren und stellt die für den Ladungswechsel aufzuwendende Arbeit dar. Die darüberliegende Fläche (+) wird rechts umfahren und ist proportional der vom Arbeitsfluid abgegebene Arbeit. Die Nutzarbeit des Kreisprozesses entspricht der Differenz beider Flächen. Dem reversiblem Vergleichsprozess liegt ein geschlossenes System zugrunde. Es besteht aus dem vom Kolben und Zylinder eingeschlossenem Gas. Die Gaswechselfläche entfällt. Das Arbeitsfluid ist ein ideales Gas. Verdichtung und Expansion werden als adiabate Zustandsänderungen angenommen, die bei reversiblem Prozess zugleich isentrop sind. Der bei der Verbrennung beobachtete steile Druckanstieg wird durch eine isochore Zustandsänderung mit Wärmezufuhr angenähert.

Der Otto-Vergleichsprozess besteht aus folgenden Zustandsänderungen:

- $\bullet~1 \rightarrow 2$: Isentrope Kompression der Luft
- $\bullet~2 \rightarrow 3$: Isochore Druckerhöhung durch Wärmezufuhr
- $\bullet \ 3 \rightarrow 4$: Isentrope Expansion der Luft
- $\bullet~4 \rightarrow 1$: Isochore Druckreduktion durch Wärmeabfuhr

Dargestellt in einem p,V-und T,s-Diagramm sieht der Prozess wie folgt aus:

Die spezifische Kreisarbeit berechnet sich aus der Gleichung:

$$-w_k = q_{23} + q_{41} = q_{zu} + q_{ab} = q_{zu} - |q_{ab}|$$

Für die isochore Zustandsänderung von 2 nach 3 erhalten wir die zugeführte spezifische Wärmemenge:

$$q_{zu} = q_{23} = \bar{c}_{v23} (T_3 - T_2)$$

Die isochor von 4 nach 1 abgeführte Wärmemenge ist:

$$q_{ab} = q_{41} = \bar{c}_{v\,41} (T_1 - T_4)$$

Die oberen beiden Gleichungen eingesetzt in die Gleichung für die spezifische Kreisarbeit und vereinfacht durch die Vernachlässigung der Temperaturabhängigkeit der spezifischen Wärmekapazität ergibt:

$$-w_K = q_{23} + q_{41} = c_v \left(T_1 - T_2 + T_3 - T_4 \right)$$

Die Gleichung umgeformt ergibt den folgenden Ausdruck:

$$-w_K = \frac{R_i T_1}{\kappa - 1} \left[1 - \frac{1}{\varepsilon^{\kappa - 1}} \right] \left[\frac{T_3}{T_1} - \varepsilon^{\kappa - 1} \right]$$

Der thermische Wirkungsgrad η_{th} ist definiert durch:

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{-w_K}{q_{23}} = \frac{q_{zu} - |q_{ab}|}{q_{zu}} = 1 - \frac{|q_{ab}|}{q_{zu}} = 1 - \frac{\bar{c}_{v\,41} (T_4 - T_1)}{\bar{c}_{v\,23} (T_3 - T_2)}$$

Mit der Näherung $\bar{c}_{v\,41} = \bar{c}_{v\,23} = c_v = \text{konst. gilt:}$

$$\eta_{th} = 1 - \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{\varepsilon^{\kappa - 1}}$$

12.2.2 Diesel-Prozess

Der Dieselmotor saugt Luft an und verdichtet sie im ersten Takt. Am Ende des Verdichtungsvorgangs werden sehr hohe Temperaturen und Drücke erreicht. In die komprimierte Luft wird durch eine Düse Kraftstoff eingespritzt, der fein zerstäubt mit der Luft ein zündfähiges Gemisch bildet, das ohne Fremdzündung verbrennt. Der Einspritzvorgang wird dabei so geregelt, dass die Verbrennung bei etwa konstantem Druck erfolgt. An den Verbrennungsvorgang schliesst sich die Expansion und das Ausschieben der Verbrennungsgase an. Der Vergleichsprozess wird für ein geschlossenes System mit einem idealen Gas als Arbeitsfluid berechnet. Es besteht aus folgenden Zustandsänderungen:

- $1 \rightarrow 2$: Isentrope Verdichtung
- $2 \rightarrow 3$: Isobare Expansion durch Wärmezufuhr
- $3 \rightarrow 4$: Isentrope Expansion der Luft = Arbeitstakt
- $4 \rightarrow 1$: Isochore Druckreduktion durch Wärmeabfuhr

Der Prozess wird ein einem p, V-und T, s-Diagramm dargestellt.

Das $Einspritzverhältnis\ \varphi$ berechnet sich wie folgt:

$$\varphi = \frac{V_3}{V_2}$$

Dieses Verhältnis ist neben dem Verdichtungsverhältnis $\varepsilon = V_1/V_2$ der zweite Parameter des Dieselprozesses.

Die spezifische Kreisarbeit des Diesel-Vergleichsprozesses ergibt sich aus der Energiebilanz:

$$-w_K = q_{zu} + q_{ab}$$

Die isobare Wärmezufuhr bestimmt sich aus:

$$q_{zu} = q_{23} = \bar{c}_{p\,23} \left(T_3 - T_2 \right)$$

Für die isochore Wärmeabfuhr gilt:

$$q_{ab} = q_{41} = \bar{c}_{v\,41} (T_1 - T_4)$$

Eingesetzt in die Gleichung für die spezifische Nutzarbeit ergibt sich folgende Gleichung:

$$-w_K = q_{23} + q_{41} = \bar{c}_{p\,23} (T_3 - T_2) + c_{v\,41} (T_1 - T_4)$$

Durch Umformen der Gleichung und Vernachlässigung der Temperaturabhängigkeit von $c_{p\,23}$ und $c_{v\,41}$ ergibt sich die folgende Gleichung:

$$-w_K = \frac{R_i T_1}{\kappa - 1} \left[(\varphi - 1) \kappa \varepsilon^{\kappa - 1} - (\varphi^{\kappa} - 1) \right]$$

Der thermische Wirkungsgrad berechnet sich wie folgt:

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{-w_K}{q_{23}} = \frac{q_{23} - |q_{41}|}{q_{23}} = 1 - \frac{|q_{41}|}{q_{23}}$$

Für konstante spezifische Wärmekapazitäten erhält man die Form:

$$\eta_{th} = 1 - \frac{c_v}{c_p} \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{1}{\kappa} \frac{T_4 - T_1}{T_3 - T_2}$$
$$\eta_{th} = 1 - \frac{1}{\kappa} \frac{1}{\varepsilon^{\kappa - 1}} \frac{\varphi^{\kappa} - 1}{\varphi - 1}$$

12.2.3 Vergleich von Otto- und Dieselmotoren

Etappen des	Otto-Motor	Diesel-Motor	
Arbeitsprozesses			
	Luft- Brennstoffgemisch		
	vor der Zufuhr in den		
	Brennraum vorbereiten		
	Gemisch ansaugen	Luft ansaugen	
	Gemisch verdichten	Luft verdichten	
		Brennstoff in die verdichtete	
		Luft einspritzen	
	Fremdzündung (Zündkerze)	Selbstzündung	
	Verbrennung führt Wärme zu	Verbrennung führt Wärme zu	
	Arbeitsabgabe während	Arbeitsabgabe während	
	der Expansion	der Expansion	
	Ausstossen der	Ausstossen der	
	Verbrennungsgase	Verbrennungsgase	

Unterschiede	Otto-Motor	Diesel-Motor	
Gemischbildung	Luft-Brennstoffgemisch	Brennstoff in die verdichtete	
	vor der Zufuhr in den	Luft einspritzen	
	Brennraum vorbereiten		
Zündung	Fremdzündung	Selbstzündung	

Unterschiede	2-Takt Motor	4-Takt Motor	
Anzahl Umdrehungen			
der Kurbelwelle pro	Eine Umdrehung	Zwei Umdrehungen	
Arbeitsprozess			

Idealisierung:

- Alle Zustandsänderungen laufen dissipationsfrei ab.
- Die Änderung der chemischen Zusammensetzung infolge der Verbrennung wird nicht berücksichtigt, d.h. das Arbeitsmittel ist reine Luft (ideales Gas).
- Die spezifische Wärmekapazität c_p und der Isentropenexponent \varkappa sind konstant, d.h. ihre Temperaturabhängigkeit wird nicht mitberücksichtigt.
- Die Wärmezufuhr, welche in Wirklichkeit durch die chemische Reaktion zwischen Brennstoff und Luft im Brennraum zustande kommt, wird als "von aussen" zugeführt betrachtet.

Otto-Motor

• Wärmezufuhr bei konstantem Volumen (Wärmezufuhr erfolgt sehr schnell in der Nähe des oberen Totpunktes wegen der schnellen Fortpflanzung der Flamme nach der Fremdzündung)

Diesel-Motor

• Wärmezufuhr bei konstantem Druck (zwar verbrennt die eingespritzte Brennstoffmenge sofort, jedoch kann die Einspritzung nur über eine bestimmte Zeitspanne realisiert werden)

In Wirklichkeit erfolgt ein Teil der Wärmezufuhr bei beinahe konstantem Volumen, anschliessend bei polytroper Zustandsänderung mit variablen Polytropenexponenten und danach bei fast konstantem Druck:

- \rightarrow Idealisierter Kreisprozess nach Seiliger
 - mit einem ersten Wärmezufuhrteil bei konstantem Volumen und
 - mit einem zweiten Wärmezufuhrteil bei konstantem Druck

12.2.4 Seiliger-Prozess

Der tatsächliche Verbrennungsverlauf ist weder im Ottomotor streng isochor noch im Dieselmotor streng isobar. Man sieht im gemessenen Indikator-Diagramm (siehe Kapitel 12.2.1) eine Kombination von beiden. Um eine bessere Annäherung an den tatsächlichen Prozess zu erhalten, schlug Seiliger einen Vergleichsprozess vor, indem die Verbrennung durch eine isochore und eine daran anschliessende isobare Wärmezufuhr angenähert wird. Der Seiliger-Prozess ist somit eine Mischung des Otto- und des Diesel-Prozesses und heisst deshalb auch gemischter Vergleichsprozess. Er besteht aus folgenden Zustandsänderungen:

- $1 \rightarrow 2$: Isentrope Verdichtung der Luft
- $2 \rightarrow 3$: Isochore Druckerhöhung durch Wärmezufuhr
- $3 \rightarrow 4$: Isobare Expansion durch Wärmezufuhr
- $4 \rightarrow 5$: Isentrope Expansion der Luft
- $\bullet~5 \rightarrow 1$: Isochore Druckreduktion durch Wärmeabfuhr

Der Prozess in einem p, V- und T, s-Diagramm dargestellt:

Zum Verdichtungsverhältnis $\varepsilon = V_1/V_2$ und dem Einspritzverhältnis $\varphi = V_4/V_3$ kommt als weiterer Parameter das *Druckverhältnis* ψ dazu.

$$\psi = \frac{p_3}{p_2} = \frac{T_3}{T_2}; \varepsilon = \frac{V_1}{V_2}; \varphi = \frac{V_4}{V_3}$$

Die spezifische Kreisarbeit des Seiliger-Prozesses ist:

$$-w_K = \underbrace{q_{23} + q_{34}}_{q_{zu}} + \underbrace{q_{51}}_{q_{ab}}$$

Einsetzen der isochor und isobar ausgetauschten Wärmemengen q_{23} und q_{51} bzw. q_{34} ergibt:

$$-w_K = \bar{c}_{v\,23} (T_3 - T_2) + \bar{c}_{p\,34} (T_4 - T_3) + \bar{c}_{v\,51} (T_1 - T_5)$$

Durch Vernachlässigung der Temperaturabhängigkeit der spezifischen Wärmekapazitäten ergibt sich:

$$-w_K = c_v [T_1 - T_2 + (1 - \kappa) T_3 + \kappa T_4 - T_5]$$

Umformen der Gleichung:

$$-w_K = \frac{R_i T_1}{\kappa - 1} \left[1 + \varepsilon^{\kappa - 1} \left[\psi \left(1 - \kappa \left(1 - \varphi \right) \right) - 1 \right] - \psi \varphi^{\kappa} \right]$$

Der thermische Wirkungsgrad berechnet sich aus:

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{-w_K}{q_{23} + q_{34}} = 1 - \frac{|q_{ab}|}{q_{23}} = 1 - \frac{|q_{51}|}{q_{23} + q_{34}}$$

Für konstante spezifische Wärmekapazitäten gilt:

$$\eta_{th} = 1 - \frac{T_5 - T_1}{T_3 - T_2 + \kappa (T_4 - T_3)}$$

oder

$$\eta_{th} = 1 - \frac{1}{\varepsilon^{\kappa - 1}} \frac{\varphi^{\kappa} \psi - 1}{\psi - 1 + \kappa \psi (\varphi - 1)}$$

mit

$$\varphi=1 \to {\rm Otto}$$

$$\psi = 1 \rightarrow \text{Diesel}$$

Beispiel 12.2: Beispiele von Ottomotoren.

Motor: SRT 6.1-Liter HEMI V-8 (Bild links) Typ: 8-Zylinder V-Motor (90°) / saugend

Hubraum: 6059 cm³ (370 cu. in.)

Bohrung x Hub: $103 \times 90.9 \text{ mm}$

Verdichtungsverhältnis: 10.3:1

Ventilsystem: 16 Ventile / 1 zentrale Nockenwelle

Ventilbetätigung über Stössel und Kipphebel

Leistung: $425 \text{ PS } (318 \text{ kW}) \text{ bei } 6000 \text{ min}^{-1}$

Drehmoment: 569 Nm bei 4800 min⁻¹

Motor: Smart suprex (Bild rechts)

Typ: 3-Zylinder Reihe / Turboaufladung

Hubraum: 599 cm^3 Bohrung x Hub: 63.5 x 63 mm

Verdichtungsverhältnis: 9.5:1

Ventilsystem: 6 Ventile / 1 obenliegende Nockenwelle

dirkete Ventilbetätigung

Leistung: $60 \text{ PS } (45 \text{ kW}) \text{ bei } 5250 \text{ min}^{-1}$

Drehmoment: 88 Nm bei 4500 min^{-1}

12.3 Der SMART-Motor als Beispiel

In diesem Kapitel haben wir uns intensiv mit Vergleichsprozessen von Verbrennungsmotoren beschäftigt. Wir wollen nun das Gelernte an einem praktischen Beispiel anwenden! Dazu betrachten wir die Zustandsänderungen in einem SMART-Motor.

Arbeitsprinzip eines 4-Takt Ottomotors

Der SMART-Motor arbeitet nach dem Prinzip eines 4-Takt Ottomotors. Das Arbeitsspiel besteht aus 4 Takten, die sich nach je zwei Kurbelumdrehungen wiederholen:

- 1. Takt: Ansaugen eines Kraftstoff/Luft-Gemisches
- 2. Takt: Verdichtung des Gemisches
- 3. Takt: Verbrennung mit anschliessender Expansion des Verbrennungsgases
- 4. Takt: Ausstossen des Verbrennungsgases

Dem reversiblen Vergleichsprozess liegt ein geschlossenes System zugrunde. Es besteht aus dem von Kolben und Zylinder eingeschlossenem Kraftstoff/Luft-Gemisches, welches als ideales Gas betrachtet wird. Das Gemisch wird vor der Zufuhr in den Brennraum vorbereitet und vom Zylinder angesaugt (1), verdichtet (2) und über die Zündkerze gezündet (3). Durch die Verbrennung wird dem System Wärme zugeführt, während der Expansion erfolgt die Arbeitsabgabe. Anschliessend werden die Verbrennungsgase ausgestossen (4).

Der Hubraum eines Zylinders ist definiert als Raum zwischen dem oberen und unteren Totpunkt. Der Gesamthubraum des Motors berechnet sich aus der Multiplikation des Hubraums eines Zylinders mit der Anzahl Zylinder.

Der SMART "suprex" Motor

In einem Laborversuch werden Sie den SMART "suprex" Motor an einem Motorenprüfstand testen und detailliert kennenlernen. Aus diesem Laborversuch sind die Daten für die Übung entnommen worden.

Der Motor mit einem sehr kleinen Bauvolumen hat 3 Zylinder mit einem Gesamthubraum von 599 cm³. Der Hersteller macht dazu folgende Angaben:

Motor: SMART "suprex"

Typ: 3-Zylinder Reihe / Turboaufladung

Gesamthubraum: 599 cm³
Bohrung: 63.5 mm
Hub: 63 mm
Zylinderabstand: 73 mm
Kolbenhöhe: 27 mm
Verdichtungsverhältnis: 9.5:1

Ventilsystem: 6 Ventile / 1 obenliegende Nockenwelle

direkte Ventilbetätigung

Zündkerzen: 2 pro Zylinder

Leistung: 45 kW (60 PS) bei 5'250 min⁻¹

Drehmoment: 88 Nm bei 4'500 min⁻¹

Gewicht: 59 kg

Die reale Zustandsänderung während eines Arbeitsspiels kann über eine Druckmessung im Zylinder und die Bestimmung der Kurbelwellenposition in einem p,V-Diagramm dargestellt werden. Dieses Diagramm wird als Indikatordiagramm bezeichnet.

Von Punkt 1 nach 2 wird das angesaugte Kraftstoff/Luft-Gemisch im Zylinder verdichtet. Nach der Zündung erfolgt von 2 nach 3 die Wärmezufuhr. Sobald sich der Kolben nach unten bewegt, erfolgt die Expansion bei gleichzeitiger Arbeitsabgabe (Punkt 3 nach 4). Das Ausstossen der Verbrennungsgase und das Ansaugen von frischem Gemisch, der sogenannte Gaswechsel, erfolgt von 4 nach 1. Diese Zustandsänderung wird auch als "Wärmeabfuhr" bezeichnet, da die warmen Verbrennungsgase durch frisches Kraftstoff/-Luft-Gemisch ersetzt werden.

Das oben dargestellte Indikatordiagramm wurde bei einer Drehzahl von 2'500 $\rm min^{-1}$ aufgenommen. Die Wertepaare für Druck und Volumen betragen an den Zustandspunkten:

$$p_1 = 1.70 \text{ bar(a)}$$
 $V_1 = 226.05 \text{ cm}^3$

$$p_2 = 31.09 \text{ bar(a)}$$
 $V_2 = 23.85 \text{ cm}^3$

$$p_3 = 61.01 \text{ bar(a)}$$
 $V_3 = 43.77 \text{ cm}^3$

$$p_4 = 8.06 \text{ bar(a)}$$
 $V_4 = 226.05 \text{ cm}^3$

Bei der Durchführung von Berechnungen gilt es zu beachten, dass:

- ein Arbeitsspiel 2 Kurbelwellenumdrehungen beinhaltet und
- der SMART-Motor ein 3-Zylinder Motor (z = 3) ist.

Aufgabe

Ihre Aufgabe ist es, mit Hilfe der vorne gegebenen Daten und dem Indikatordiagramm die Leistung des SMART-Motors zu berechnen. Der *idealisierte Otto-Kreisprozess* besteht aus zwei Isochoren für die Wärmezufuhr und -abfuhr sowie zwei Isentropen für die Kompression und Expansion (siehe p, V-Diagramm unten). Die "Kreisarbeit" berechnet man aus der Summe aller zu- und abgeführten Volumenänderungsarbeiten:

$$W_{Kreis} = \sum W_i$$

Wir betrachten hier nur die Kompression $1 \to 2$ und die Expansion $3 \to 4$ und vernachlässigen die Arbeiten bei den restlichen Zustandsänderungen (Ansaugen, Wärmezufuhr $2 \to 3$, Wärmeabfuhr $4 \to 1$ und Ausstossen). Bei der Kompression und Expansion handelt es sich um polytrope Zustandsänderungen.

Lösung:

Bestimmung der Polytropenexponenten aus den Zustandspunkten

Polytropenexponent Kompression:

$$n_{12} = \frac{\ln \frac{p_2}{p_1}}{\ln \frac{V_1}{V_2}} = 1.29$$

Volumenänderungsarbeit Kompression:

$$W_{v \, 12} = \frac{p_1 \, V_1}{n_{12} - 1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n_{12} - 1}{n_{12}}} - 1 \right] = 122.17 \text{ J}$$

Polytropenexponent Expansion:

$$n_{34} = \frac{\ln\frac{p_4}{p_3}}{\ln\frac{V_3}{V_4}} = 1.23$$

Volumenänderungsarbeit Expansion:

$$W_{v\,34} = \frac{p_3\,V_3}{n_{34}-1} \left[\left(\frac{p_4}{p_3} \right)^{\frac{n_{34}-1}{n_{34}}} - 1 \right] = -365.86 \text{ J}$$

Kreisarbeit und Leistung:

$$W_{Kreis} = W_{12} + W_{34} = -243.69 \text{ J}$$

$$P = \frac{n}{2} z W_{Kreis} = -15.23 \text{ kW}$$

Teillastverhalten

Auf der nächsten Seite sind Indikatordiagramme des SMART-Motors bei verschiedenen Leistungen dargestellt.

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

12.4 Übungen 495

12.4 Übungen

Übung 12.1: Kreisprozess für Verbrennungsmotoren. Die erste Aufgabe ist eine Theorieaufgabe: Versuchen Sie im Sinne einer Selbstkontrolle, diese ohne Unterlagen zu lösen. Seien Sie exakt in der Wahl der Begriffe und Ihren Erklärungen!

- a. Zeichnen Sie die idealisierten Kreisprozesse für Verbrennungsmotoren von Otto, Diesel und Seiliger jeweils in ein p,v- und T,s-Diagramm. Bezeichnen Sie sämtliche Zustandsgrössen sowie die spezifischen Arbeiten und Wärmeenergien.
- b. "Der thermische Wirkungsgrad des Otto-Kreisprozesses hängt *nicht* von der Grösse der zugeführten Wärmeenergie ab." Ist diese Aussage korrekt? Begründen Sie Ihre Antwort mit Hilfe des T,s-Diagramms.
- c. Der thermische Wirkungsgrad eines Otto-Kreisprozesses verbessert sich mit steigendem Verdichtungsverhältnis ($\eta_{th}=1-1/\varepsilon^{\kappa-1}$). Erklären Sie diese Tatsache anschaulich mit Hilfe des T,s-Diagramms.
- d. Wir betrachten den idealisierten Kreisprozess von Diesel: Wie verändert sich der thermische Wirkungsgrad, wenn der Betriebszustand von Voll- zu Teillast wechselt? Hinweis: Sie brauchen keine Formeln; denken Sie qualitativ im T,s-Diagramm.
- e. Was wird mit der "Aufladung" von Verbrennungsmotoren bezweckt?

Übung 12.2: Otto-Kreisprozess. Ein Otto-Kreisprozess hat ein Verdichtungsverhältnis von $\varepsilon=8.4$. Die pro Arbeitsspiel (d.h. alle 4 Takte) zugeführte Wärmeenergie beträgt 3.2 kJ. Als Arbeitsmittel wird Luft mit $R_L=287~\mathrm{J/kg}~\mathrm{K}$ und $\kappa=1.4$ angenommen. Wie gross ist

- a. der thermische Wirkungsgrad? ($\eta_{th} = 0.573$)
- b. die Kreisarbeit? ($W_K = -1.83 \text{ kJ}$)
- c. die nicht umgewandelte Wärmeenergie? ($Q_{ab} = -1.37 \ kJ$)

Übung 12.3: Verbrennungsmotor nach dem Otto-Prozess. Der thermodynamische Prozess in einem PKW-Motor wird nach dem Otto-Kreisprozess (idealisierter Kreisprozess) verwirklicht. Die folgenden Berechnungen werden für 1 kg Luft durchgeführt (Stoffdaten Luft: siehe Angaben).

Beim Anfangspunkt 1 beträgt der Druck 1 bar(a) und die Gastemperatur 30°C.

Das Verdichtungsverhältnis ist $\varepsilon = v_1/v_2 = 8$.

Während des Prozesses darf die Höchsttemperatur von 1600 °C nicht überschritten werden. Stellen Sie den Kreisprozess im p, v- und T, s-Diagramm dar.

Zu ermitteln sind:

- a. Drücke und Temperaturen an allen Eckpunkten des Kreisprozesses. $(p_1=1\ bar(a);\ T_1=303\ K,\ p_2=18.4\ bar(a);\ T_2=697\ K,\ p_3=49.4\ bar(a);\ T_3=1873\ K,\ p_4=2.7\ bar(a);\ T_4=814\ K)$
- b. Das Drucksteigerungsverhältnis $\psi = p_3/p_2$. $(\psi = 2.7)$
- c. Die pro kg Luft zugeführte Wärmeenergie q_{23} und abgeführte Wärmeenergie q_{41} . $(q_{23}=844\ kJ/kg;\ q_{41}=-367\ kJ/kg)$
- d. Die spezifische Kreisarbeit w_K ($w_K = -477 \ kJ/kg$)
- e. Der thermische Wirkungsgrad des Kreisprozesses: $(\eta_{th} = 0.565)$
 - (a) mit der Definition: $\eta_{th} = \text{Nutzen/Aufwand}$
 - (b) mit der Berechnungsformel von η_{th} in Abhängikeit von ε und κ .

Angaben:

Die Temperaturabhängigkeit der spezifischen Wärmekapazitäten und deren Verhältnis κ ist zu vernachlässigen.

Mittlere spezifische Wärmekapazitäten der Luft:

$$c_{pL} = 1005.2 \text{ J/kg K}; c_{vL} = 718 \text{ J/kg K}$$

12.4 Übungen 497

Übung 12.4: Verbrennungsmotor nach dem Diesel-Prozess. Der thermodynamische Prozess in einem stationären Motor für den Antrieb eines Notstromgenerators wird nach dem Diesel-Kreisprozess (idealisierter Kreisprozess) verwirklicht. Die folgenden Berechnungen werden für 1 kg Luft durchgeführt (Stoffdaten Luft: siehe Angaben).

Beim Anfangspunkt 1 beträgt der Druck 1 bar(a) und die Gastemperatur 30°C.

Das Verdichtungsverhältnis ist $\varepsilon = v_1/v_2 = 18$.

Während des Prozesses darf die Höchsttemperatur von 1600°C nicht überschritten werden. Stellen Sie den Kreisprozess im p, v- und T, s-Diagramm dar.

Zu ermitteln sind:

- a. Drücke und Temperaturen an allen Eckpunkten des Kreisprozesses. ($p_1=1\ bar(a);\ T_1=303\ K,\ p_2=57.2\ bar(a);\ T_2=963\ K,\ p_3=57.2\ bar(a);\ T_3=1873\ K,\ p_4=2.5\ bar(a);\ T_4=769\ K)$
- b. Das Einspritzverhältnis. $\varphi = v_3/v_2 \ (\varphi = 1.942)$
- c. Die pro kg Luft zugeführte Wärmeenergie q_{23} und abgeführte Wärmeenergie q_{41} . $(q_{23} = 915 \ kJ/kg; q_{41} = -335 \ kJ/kg)$
- d. Die spezifische Kreisarbeit w_K . ($w_K = -580 \ kJ/kg$)
- e. Der thermische Wirkungsgrad des Kreisprozesses: $(\eta_{th} = 0.634)$
 - (a) mit der Definition: $\eta_{th} = \text{Nutzen/Aufwand}$
 - (b) mit der Berechnungsformel von η_{th} in Abhängikeit von ε , φ und κ .

Angaben:

Die Temperaturabhängigkeit der spezifischen Wärmekapazitäten und deren Verhältnis κ ist zu vernachlässigen.

Mittlere spezifische Wärmekapazitäten der Luft:

$$c_{pL} = 1005.2 \text{ J/kg K}; c_{vL} = 718 \text{ J/kg K}$$

Übung 12.5: Verbrennungsmotor nach dem Seiliger-Prozess. Der thermodynamische Prozess in einem LKW Diesel-Motor wird nach dem Seiliger-Kreisprozess (idealisierter Kreisprozess) verwirklicht. Die folgenden Berechnungen werden für 1 kg Luft durchgeführt (Stoffdaten Luft: siehe Angaben).

Beim Anfangspunkt 1 beträgt der Druck 1 bar(a) und die Gastemperatur 30°C.

Das Verdichtungsverhältnis ist $\varepsilon = v_1/v_2 = 12$.

Während des Prozesses dürfen der Höchstdruck von 50 bar(a) und die Höchsttemperatur von 1600°C nicht überschritten werden.

Stellen Sie den Kreisprozess im p, v- und T, s-Diagramm dar.

Zu ermitteln sind:

- a. Drücke und Temperaturen an allen Eckpunkten des Kreisprozesses. $(p_1 = 1 \ bar(a); \ T_1 = 303 \ K, \ p_2 = 32.4 \ bar(a); \ T_2 = 819 \ K, \ p_3 = 50 \ bar(a); \ T_3 = 1263 \ K, \ p_4 = 50 \ bar(a); \ T_4 = 1873 \ K, \ p_5 = 2.68 \ bar(a); \ T_5 = 812 \ K)$
- b. Das Drucksteigerungsverhältnis $\psi = p_3/p_2$. ($\psi = 1.542$)
- c. Das Einspritzverhältnis $\varphi = v_4/v_3$. ($\varphi = 1.484$)
- d. Die pro kg Luft zugeführten Wärmeenergien q_{23} und q_{34} sowie die abgeführte Wärmeenergie q_{51} . ($q_{23}=319~kJ/kg;~q_{34}=614~kJ/kg;~q_{51}=-365~kJ/kg$)
- e. Die spezifische Kreisprozessarbeit w_K . $(w_K = -567 \, kJ/kg)$
- f. Der thermische Wirkungsgrad des Kreisprozesses: $(\eta_{th} = 0.608)$
 - (a) mit der Definition: $\eta_{th} = \text{Nutzen/Aufwand}$
 - (b) mit der Berechnungsformel von η_{th} in Abhängikeit von ε , φ , ψ und κ .

Angaben:

Die Temperaturabhängigkeit der spezifischen Wärmekapazitäten und deren Verhältnis κ ist zu vernachlässigen.

Mittlere spezifische Wärmekapazitäten der Luft:

$$c_{pL} = 1005.2 \text{ J/kg K}; c_{vL} = 718 \text{ J/kg K}$$

Kapitel 13

Thermische Anlagen mit Gasturbinen

Gasturbinen setzen die durch Verbrennung von Brennstoff (Erdgas, Erdöl, Petrol, Kerosin etc.) erzeugte Wärme in mechanische Energie (Wellenleistung) um. Gasturbinenanlagen besitzen im Gegensatz zu Verbrennungsmotoren eine höhere Leistungsdichte, d. h. sie geben mehr Leistung pro Anlagengewicht ab. Sie kommen deshalb als Flugzeugtriebwerk zum Einsatz. Als PKW- oder LKW-Antrieb konnten sie sich nicht durchsetzen, da ihr Teillastwirkungsgrad schlechter ist als derjenige der Verbrennungsmotoren. Wenn sehr hohe Leistungen gefordert werden, stossen Otto- und Dieselmotoren bauartbedingt an ihre mechanische Belastbarkeitsgrenze. Stationäre Gasturbinenanlagen liefern hingegen Leistungen bis 400 MW und werden z. B. für die Stromproduktion (als Kraftwerk) eingesetzt.

Betriebsparameter von Gasturbinenanlagen:

- Das Druckverhältnis $\pi = p_2/p_1$ beträgt bei Gasturbinenanlagen im stationären Betrieb 20...30. Bei Flugzeugtriebwerken kann das Druckverhältnis π bis zu 50 betragen!
- Die Maximaltemperatur im Kreisprozess der Gasturbinenanlage wird durch die Werkstoffund Kühltechnologie begrenzt. Sie liegt bei ca. 1500°C.

Vereinfacht kann der Prozess folgendermassen idealisiert werden:

- Alle Zustandsänderungen laufen dissipationsfrei ab.
- Während des gesamten Kreisprozesses ist Luft (ideales Gas) das Arbeitsmittel, d.h. die Änderung der chemischen Zusammensetzung durch die Verbrennung wird nicht berücksichtigt.
- Die spezifische Wärmekapazität c_p und der Isentropenexponent κ sind konstant, d. h. ihre Temperaturabhängigkeit wird nicht mitberücksichtigt.
- Die Wärmezufuhr, welche in Wirklichkeit durch die chemische Reaktion zwischen Brennstoff und Luft im Brennraum erfolgt, wird als "von aussen" zugeführt betrachtet.

Die Gasturbinenanlage besteht in der einfachsten Version aus einem Verdichter, einer Brennkammer, einer Turbine, Kraftstoffleitungen sowie Frischluft- und Abgasrohren. Die angesaugte Luft wird verdichtet und in der Brennkammer mit dem Brennstoff zu einem Gemisch aufbereitet. Dieses verbrennt bei konstantem Druck. Die heissen Gase expandieren in der Turbine unter Arbeitsabgabe und strömen danach in die Umgebung. Die Turbine ist über eine Welle mit dem Verdichter verbunden, an den sie einen Teil der Leistung abgibt. Die restliche Wellenleistung steht dem Verbraucher zur Verfügung.

Die Gasturbinenanlage ist der Bauart nach ein offenes System. Für den Vergleichsprozess geht man aber von einem geschlossenen System aus. Die Zuluft- und Abgasleitung werden kurzgeschlossen, so dass das Arbeitsfluid einen geschlossenen Kreisprozess durchläuft. Der mit dem Abgas abtransportierte Energiestrom wird durch Wärmeabgabe in einem Wärmeübertrager nach der Turbine simuliert. Der Verdichter und die Turbine werden so schnell durchströmt, dass der Wärmeaustausch mit der Umgebung vernachlässigt werden kann \rightarrow adiabate Systeme.

13.1 Vergleichsprozess nach Joule

Der Gasturbinenvergleichsprozess wurde von Joule vorgeschlagen. Er besteht aus zwei Isentropen für die Kompression und Expansion sowie zwei Isobaren für die Wärmeübertragung. Das Schema für den Vergleichsprozess nach Joule sieht wie folgt aus:

Es finden die folgenden Zustandsänderungen statt:

- $1 \rightarrow 2$: Isentrope Verdichtung
- 2 \rightarrow 3: Isobare Wärmezufuhr bis zur Höchsttemperatur T_3
- $3 \rightarrow 4$: Arbeitsabgabe während der isentropen Expansion
- $\bullet~4 \rightarrow 1$: Isobare Wärmeabfuhr, um den Startzustand zu erreichen

Der Prozess in einem p, V- und T, s-Diagramm dargestellt:

Wir führen das Druckverhältnis π ein:

$$\pi = \frac{p_2}{p_1} = \frac{p_3}{p_4}$$

Die spezifische Kreisarbeit w_K berechnet sich wie folgt:

$$-w_K = q_{zu} + q_{ab} = q_{23} + q_{41} = c_p (T_3 - T_2 + T_1 - T_4)$$

Umgeformt erhält man die Gleichung:

$$-w_K = c_p T_1 \left[1 - \pi^{\frac{\kappa - 1}{\kappa}} + \frac{T_3}{T_1} - \frac{T_3}{T_1} \frac{1}{\pi^{\frac{\kappa - 1}{\kappa}}} \right]$$

oder:

$$-w_K = \frac{\kappa}{\kappa - 1} R_i T_1 \left[\left[\pi^{\frac{\kappa - 1}{\kappa}} - 1 \right] \left[\frac{T_3}{T_1} \frac{1}{\pi^{\frac{\kappa - 1}{\kappa}}} - 1 \right] \right]$$

Der thermische Wirkungsgrad η_{th} für konstante spezifische Wärmekapazitäten:

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{q_{23} - |q_{41}|}{q_{23}} = 1 - \frac{|q_{41}|}{q_{23}}$$

oder:

$$\eta_{th} = 1 - \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{1}{\pi^{\frac{\kappa - 1}{\kappa}}}$$

Daraus wird ersichtlich, dass der Wirkungsgrad mit zunehmendem Druckverhältnis wächst. Triebwerk im Thermolabor:

$$\pi = 7.5; \eta_{th} = 1 - \frac{1}{7.5^{\frac{0.4}{1.4}}} = 43\%$$

13.2 Vergleichsprozess nach Ericsson

Beim Ericsson-Prozess zirkuliert das Fluid in einem geschlossenen Kreislauf. Das Schema einer nach Ericsson arbeitenden Gasturbinenanlage zeigt folgendes Bild:

Der Prozess besteht aus folgenden Zustandsänderungen:

- $\bullet~1 \rightarrow 2$: Isotherme Verdichtung der Luft bei gleichzeitiger Wärmeabfuhr
- $\bullet~2 \rightarrow 3$: Isobare Wärmezufuhr
- $3 \rightarrow 4$: Isotherme Expansion der Luft bei gleichzeitiger Wärmezufuhr
- $4 \rightarrow 1$: Isobare Wärmeabfuhr

Die abgeführte Wärme von Zustand 4 nach 1 wird der Luft im Rekuperator von Zustand 2 nach 3 wieder zugeführt. Das Problem ist die Realisierung des Ericsson-Prozesses. Isotherme Kompression mit Kühlung und eine isotherme Expansion mit Wärmezufuhr lassen sich in einer Maschine nicht verwirklichen. Ein solcher Prozess kann nur durch eine stufenweise Verdichtung mit Zwischenkühlung und eine stufenweise Expansion mit Zwischenerhitzung angenähert werden. Dies ist apparativ sehr aufwändig.

Die spezifische Kreisarbeit w_K berechnet sich aus:

$$-w_K = q_{zu} - |q_{ab}| = q_{23} + q_{34} + q_{41} + q_{12} = q_{34} + q_{12}$$

Es ist zu beachten, dass die spezifischen Wärmemengen $q_{23}=-q_{41}$ intern im Rekuperator übertragen werden.

Die spezifische Wärmemenge q_{12} bei der isothermen Kompression von p_1 auf p_2 berechnet sich aus:

$$q_{12} = -R_i T_1 \ln \frac{p_2}{p_1}$$

Für die isotherme Expansion von p_3 nach p_4 unter Wärmezufuhr gilt für q_{34} :

$$q_{34} = R_i T_3 \ln \frac{p_2}{p_1}$$

Die Formeln für die spezifischen Wärmemengen eingesetzt in die Gleichung für die spezifische Kreisarbeit ergeben:

$$-w_K = R_i (T_3 - T_1) \ln \frac{p_2}{p_1}$$

Der thermische Wirkungsgrad $\eta_{th\ Ericsson}$ errechnet sich nach:

$$\eta_{th \, Ericsson} = 1 - \frac{T_1}{T_3}$$

Der thermische Wirkungsgrad stimmt mit dem thermischen Wirkungsgrad des Carnot-Prozesses überein. Insofern wäre der Ericsson-Prozess ein "idealer" Prozess.

Beispiel 13.1: Gasturbinen-Prozess nach dem Joule-Prozess. Eine Gasturbinenanlage arbeitet mit Luft nach dem Joule-Prozess zwischen den Drücken 1 bar(a) und 6 bar(a). Anfangstemperatur $\vartheta_1 = 30^{\circ}\text{C}$, höchste Temperatur des Prozesses $\vartheta_3 = 650^{\circ}\text{C}$, Umgebungstemperatur $\vartheta_U = 15^{\circ}\text{C}$. Die Temperaturabhängigkeit von c_P kann vernachlässigt werden und κ betrage 1.4.

Bestimmen Sie den thermischen Wirkungsgrad η_{th} und die Temperatur am Ende der isentropen Expansion. Zeichnen Sie den Prozess in das T, s-Diagramm ein.

a.

$$\eta_{th} = 1 - \frac{|q_{41}|}{q_{23}} = 1 - \frac{1}{\pi^{\frac{\kappa - 1}{\kappa}}}$$

$$\pi = \frac{p_2}{p_1} = \frac{6}{1} = 6$$

$$\eta = 1 - \frac{1}{6^{\frac{0.4}{1.4}}} = 0.40$$

b.

$$T_4 = ?$$

$$T_4 = T_3 \left(\frac{1}{\pi}\right)^{\frac{\kappa - y}{\kappa}} = 553.3 \text{ K}$$

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

Beispiel 13.2: Gasturbinen-Prozess nach dem Ericsson-Prozess. Eine Gasturbinenanlage arbeitet mit Luft nach dem Ericsson-Prozess zwischen den Drücken 1 bar(a) und 6 bar(a). Anfangstemperatur $\vartheta_1=30^{\circ}\mathrm{C}$, höchste Temperatur des Prozesses $\vartheta_3=650^{\circ}\mathrm{C}$, Umgebungstemperatur $\vartheta_U=15^{\circ}\mathrm{C}$. Die Temperaturabhängigkeit von c_p kann vernachlässigt werden und κ betrage 1 4

Bestimmen Sie den thermischen Wirkungsgrad η_{th} und zeichnen Sie den Prozess in das T, s-Diagramm ein.

$$\eta_{th} = 1 - \frac{T_1}{T_2} = 1 - \frac{303}{923} = 0.67$$

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

Beispiele von Gasturbinen

Strahltriebwerk: Pratt & Whitney JT9D
Verwendung: Boeing 747 "Jumbo-Jet"
Fan¹ Aussendurchmesser: 2372 mm (93.4 inches)
Länge: 3371 mm (132.7 inches)

Gesamtdruckverhältnis: 26:1 Fan Druckverhältnis: 1.67:1

Maximalschub: 213 kN (48'000 lb)

Mantelstromverhältnis²: 5:1

Strahltriebwerk: General Electric F404 mit Nachbrenner

Verwendung: F/A 18; F 15; F 16; F 117

Durchmesser: 889 mm Länge: 3912 mm Gesamtdruckverhältnis: 26:1

Maximalschub: 48.9 kN (mit Nachbrenner: 78.7 kN)

Mantelstromverhältnis: 0.34:1

¹Fan: 1. Verdichterstufe. Fördert einen Teil der Luft durch den Mantelraum ausserhalb der Gasturbine.

 $^{^2}$ Mantelstromverhältnis = $\dot{m}_{\mathrm{Mantel}}/\dot{m}_{\mathrm{GT}}$

13.3 Übungen

Übung 13.1: Gasturbinen-Anlagen. Ein Gasturbinen-Prozess soll für die folgenden drei Fälle berechnet werden.

- 1. Idealisierter Joule-Prozess: Verdichtung und Expansion isentrop, Wärmezu- und -abfuhr bei konstantem Druck.
- 2. Kreisprozess mit Dissipation während der Verdichtung ($\eta_{s\,12}=0.84$) und der Expansion ($\eta_{s\,34}=0.88$), Wärmezu- und -abfuhr bei konstantem Druck.
- 3. Kreisprozess mit Dissipation während der Verdichtung ($\eta_{s\,12}=0.84$) und der Expansion ($\eta_{s\,34}=0.88$), Druckverlust während der Wärmezufuhr $\Delta p_v=1.5$ bar.

Einfachheitshalber wird Luft als Arbeitsmittel angenommen. Vor der Verdichtung hat die Luft einen Druck von $p_1 = p_U = 1$ bar(a), die Temperatur beträgt $\vartheta_1 = \vartheta_U = 20$ °C. Der Druck nach der Verdichtung, d. h. am Anfang der Wärmezufuhr in der Brennkammer, beträgt 30 bar(a). Für die eingesetzte Legierung in der Gasturbine ist eine maximale Temperatur von $\vartheta_{max} = 950$ °C zulässig. In allen Fällen beträgt die Wellenleistung (Kreisleistung) $P_K = 150$ MW. Der spezifische Heizwert des Brennstoffs beträgt: $H_u = 40$ '000 kJ/kg Brennstoff

Aufgaben:

- a. Zeichnen Sie die drei Kreisprozesse in das beiliegende h, s-Diagramm ein und tragen Sie die fehlenden Zustandsgrössen in die nachfolgenden Tabellen ein!
- b. Bestimmen Sie den jeweiligen Luftmassenstrom im Prozess!
- c. Wie gross ist die Leistung des Verdichters und der Turbine?
- d. Wie gross ist der Brennstoffverbrauch pro Stunde?

13.3 Übungen 513

	p [bar(a)]	θ [°C]	T [K]	h [kJ/kg]
1				
2'				
3′				
4'				

	p [bar(a)]	θ [°C]	T [K]	h [kJ/kg]
1				
2"				
3"				
4"				

	p [bar(a)]	θ [°C]	T [K]	$h [\mathrm{kJ/kg}]$
1				
2""				
3′′′				
4 <i>s</i> ′′′′				
4""				

Fakultativ: Berechnen Sie die Zustandsgrössen für den Fall 3 anstatt sie aus dem Diagramm zu ermitteln und lösen Sie die Aufgaben b.-d.. Nehmen Sie Luft als perfektes Gas an und vergleichen Sie die Resultate.

Luft: $\kappa = 1.35;\, c_{p\,L} = 1005 \,\, \mathrm{J/kg\,K} = \mathrm{konst.}$

Numerische Lösungen:

• b. bis d. :

	$w_K [{ m kJ/kg}]$	$\dot{m}_L ~ [{ m kg/s}]$	P_{12} [MW]	P_{34} [MW]	\dot{m}_{BS} [t/h]
1.	-315	476	232	-382	22.5
2.	-126	1190	690	-840	46.3
3.	-118	1271	737	-887	49.4
	1, , , A C	1 / (***	1.05		

- Fakultative Aufgabe (für $\kappa = 1.35$):
 - b. $\dot{m}_L = 1139.1 \text{ kg/s}$
 - c. $P_{12} = 565.1 \text{ MW}, P_{34} = -715.1 \text{ MW}$
 - -d. $\dot{m}_{BS}=44.96$ t/h

Referenzpunkt h, s-Diagramm: -40°C und gesättigte Flüssigkeit gemäss ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers)

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

13.3 Übungen 515

Übung 13.2: Strahltriebwerk einer Boeing 747.

Ein Strahltriebwerk der Boeing 747 hat auf Meereshöhe und bei 15°C Umgebungstemperatur einen maximalen Schub im Stillstand von $F_{Smax}=213$ kN. Der hierzu notwendige Luftmassenstrom von $\dot{m}_L=680$ kg/s wird zunächst mittels Fan in einem Verhältnis von 1.5 verdichtet. Anschliessend teilt sich der Luftmassenstrom auf, indem dass 85% durch den sog. Mantelraum und 15% durch die ND- und HD-Verdichter strömen. Das gesamte Verdichtungsverhältnis über alle 3 Stufen beträgt für diesen Kernstrom $\pi=p_2/p_1=35/1$. Im Anschluss an die Verdichtung erfolgt unter Zugabe von Kerosin die Verbrennung, gefolgt von einer Entspannung in der HD- und ND-Turbine und abschliessender Beschleunigung in der Schubdüse auf die Geschwindigkeit c_{Kern} . (siehe Skizze)

Es werden folgende Annahmen getroffen:

- Massenstrom des Kerosins: $\dot{m}_{Kerosin} = 1/64 \ \dot{m}_L$
- Mantelstromgeschwindigkeit am Austritt des Triebwerkes: $c_{Mtl}=1/2\ c_{Kern}$
- Isentroper Wirkungsgrad für die Verdichtung sowie für die Entspannung: $\eta_s = 0.9$
- Strömung in der Schubdüse verläuft isentrop
- Zustandsänderung im Ansaugdiffusor ist vernachlässigbar
- Luft wird als perfektes Gas angenommen mit $R_L = 287.2 \text{ J/kg K}$ und $\kappa = 1.4$
- Die Wärmezufuhr in der Brennkammer erfolge isobar
- Die Temperatur der Luft am Eintritt in die HD-Turbine ist begrenzt auf 1'300°C

Lösen Sie dazu folgende Aufgaben:

- a. Zeichnen Sie das Anlagenschema, (Bauteile des Triebwerks, verbunden mit Linien zum Anzeigen der Luftströmung zwischen den Bauteilen, sowie Doppellinien zum Anzeigen der Wellen) aus dem hervorgeht, dass die ND-Turbine den Fan und den ND-Verdichter antreibt (low-spool) und die HD-Turbine den HD-Verdichter (high-spool).
- b. Zeichnen Sie den Prozess schematisch in ein h, s-Diagramm.
- c. Wie gross ist die Austrittsgeschwindigkeit c_{Kern} aus der Schubdüse? (Hinweis: Durch Anwendung des Impulssatzes erhält man $F_S = \dot{m} (c_{aus} c_{ein})$. Vergessen Sie nicht, dass sich die Strömung aus einem Mantel- und einem Kernstrom zusammensetzt.) $(c_{Kern} = 530.3 \ m/s)$
- d. Welche Temperatur hat die Luft vor dem Eintritt in die Brennkammer? $(T_2 = 852.1 \text{ K})$
- e. Wie gross ist die Verdichterleistung der 3 Stufen zusammen? $(P_V = 80.68 \text{ MW})$
- f. Auf welchen Druck wird die Luft entspannt, wenn die mechanischen Verluste der Turbinen vernachlässigt werden? $(p_{4a}=3.0\ bar(a))$

Kapitel 14

Thermische Anlagen mit Dampfturbinen

14.1 Der Dampf als Arbeitsmittel

Dampf unterscheidet sich in seiner physikalischen Eigenschaft grundsätzlich nicht von Gas. Der Übergang eines Stoffes von seiner flüssigen Phase in die Gasphase heisst Verdampfen und geschieht unter Wärmezufuhr. Im Nassdampfgebiet entsteht ein Zweiphasensystem, bestehend aus einer gasförmigen und einer flüssigen Phase. Die beiden Phasen befinden sich im thermodynamischen Gleichgewicht.

14.2 Dampfarten

Bei der Dampfbildung unterscheiden wir drei verschiedene Arten von Dämpfen: Den Nassdampf, den Sattdampf und den überhitzten Dampf. Die während der Verdampfung einer Flüssigkeit unter konstantem Druck auftretenden Dampfarten sind im folgenden Bild dargestellt:

Führt man dem Flüssigkeitsvolumen Wärme zu, ändert sich das Volumen bis zum Erreichen der Siedetemperatur ϑ_S kaum. Sobald die Siedetemperatur erreicht wird, bleibt die Temperatur konstant und der Verdampfungsvorgang mit starker Volumenzunahme durch den entstehenden Dampf beginnt. Sobald der letzte Tropfen verdampft wird, steigt die Temperatur durch Wärmezufuhr weiter an und der Dampf wird überhitzt.

14.2.1 Nassdampf

Das Gemisch aus Flüssigkeit und des, mit ihr im thermodynamischen Gleichgewicht stehenden, Dampfes heisst *Nassdampf*. Im obigen Bild, befindet sich die Flüssigkeit am Behälterboden, Flüssigkeit und Dampf sind voneinander getrennt. Häufig ist die Flüssigkeit jedoch in Form von Tröpfehen im Dampf verteilt (Nebel).

14.2.2 Sattdampf

Sobald der letzte Flüssigkeitstropfen verdampft wurde, spricht man von *Sattdampf*. Dieser Zustand liegt auf der Taulinie im Zustandsdiagramm. Bei der geringsten Abkühlung unter konstantem Druck werden aus dem Dampf wieder Wassertröpfchen ausgeschieden.

14.2.3 Überhitzter Dampf

Wird dem Sattdampf Wärme zugeführt, steigt die Temperatur weiter an und man spricht von *überhitztem Dampf*. Dieser hat die gleichen Eigenschaften wie ein Realgas. Stark überhitzter Dampf hat die Charakteristik eines Idealgases.

14.3 Grenzkurven des Nassdampfgebietes (Siede- und Taulinie)

Die spezifischen Volumen auf der Siedelinie werden mit v' und diejenigen auf der Taulinie mit v'' bezeichnet. Im Nassdampfgebiet verlaufen die Druck- und Temperaturkonstantlinien parallel. Mit zunehmendem Druck verringert sich die bei der Verdampfung auftretende Volumenzunahme $\Delta v = v'' - v'$. Identisch verhält es sich mit der Verdampfungsenthalpie Δh_V und der spezifischen Entropiedifferenz zwischen den Zuständen siedende Flüssigkeit und Sattdampf. Oberhalb des kritischen Punktes K, der durch den kritischen Druck p_K und die kritische Temperatur ϑ_K gekennzeichnet ist, tritt kein Nassdampf auf. Aus der Flüssigkeit entsteht bei Erwärmung direkt überhitzter Dampf.

14.4 Thermische Zustandsgleichung des Dampfes

14.4.1 Das Nassdampfgebiet

Die vorhandene Flüssigkeit und der Dampf haben bei thermodynamischem Gleichgewicht dieselbe Temperatur und denselben Druck. Der Zustand des Nassdampfes kann über diese beiden Zustandsgrössen nicht ausreichend beschrieben werden, da der Druck und die Temperatur voneinander abhängig sind (Dampfdruckkurve). Erst durch die Angabe des Massenverhältnisses der beiden Phasen kann der Zustand eindeutig beschrieben werden.

Das Massenverhältnis wird über die Masse m' der Flüssigphase und die Masse m'' der Gasphase definiert. Es wird als Dampfgehalt x bezeichnet:

$$x = \frac{m''}{m' + m''} = \frac{m''}{m}$$

Für den Zustand auf der Siedelinie gilt m'' = 0 und somit auch x = 0. Auf der Taulinie gilt m'' = m und somit beträgt x = 1. Der Dampfgehalt x variiert stets zwischen den Grenzen 0 und 1.

Die Differenz

$$1 - x = \frac{m'}{m}$$

beschreibt den Flüssigkeitsanteil des Nassdampfes, also den Massenanteil der noch zu verdampfen ist.

Der Dampfanteil ist über die Massenbilanz m=m'+m'' und die Volumenbilanz mit dem spezifischen Volumen verknüpft. Das Gasvolumen des Nassdampfes enspricht der Summe der Volumen der Flüssigkeit V' und des Sattdampfes V'':

$$V = V' + V''$$

Drückt man die Volumen durch die spezifischen Volumen aus, erhält man den Zusammenhang zwischen Massenbilanz und spezifischem Volumen:

$$m v = m' v' + m'' v''$$

 $v = \frac{m'}{m} v' + \frac{m''}{m} v''$

Durch einsetzen von m'/m=1-x und m''/m=x erhalten wir für das spezifische Volumen des Nassdampfes:

$$v = (1 - x) v' + x v'' = v' + x (v'' - v')$$

Diese Gleichung legt den Nassdampfzustand auf jeder Isobaren, mit den entsprechenden spezifischen Gasvolumen des Siede- und Sättigungszustandes, in Abhängigkeit des Dampfgehaltes \boldsymbol{x} fest. Umgekehrt kann aus dem spezifischen Volumen des Nassdampfes der Dampfgehalt berechnet werden:

$$x = \frac{v - v'}{v'' - v'}$$

Die Berechnung der spezifischen Enthalpie h(x) und der spezifischen Entropie s(x) erfolgen analog zur Berechnung des spezifischen Volumens des Nassdampfes. Die Werte für die Zustandsgrössen auf der Siede- und Taulinie von Wasser sind in der Wasserdampftafel auf Seite 522 aufgeführt.

14.4.2 Verlauf der x = konst. Linien (Isovaporen)

Jeder durch x festgelegte Zustandspunkt teilt die Isobaren im Nassdampfgebiet im Verhältnis x: (1-x). Durch die Verbindung der Punkte mit gleichem Dampfgehalt auf unterschiedlichen Isobaren, können x= konst. Linien in das p,v- und T,s-Diagramm im Nassdampfgebiet eingetragen werden.

14.4.3 Wasserdampftafel: Sättigungszustand

0,0061	p	°C	v'	v"	h'	h"	r 1,1/1,0	s'	s"
0.01 6,98 0,0010012 129,20 29,34 2514,4 2485,0 0,1600 8,7746 0.03 24,10 0,0010027 45,67 101,00 2545,6 2444,6 0,3544 8,5785 0,04 228,98 0,0010040 34,80 121,41 2554,5 2433,1 0,4225 8,4755 0,05 32,90 0,0010064 23,74 151,50 2567,5 2416,0 0,5209 8,3312 0,07 39,03 0,0010064 23,74 151,50 2567,5 2416,0 0,5299 8,3312 0,07 39,03 0,0010084 18,10 173,86 2577,1 2403,2 0,5991 8,2766 0,09 43,79 0,001004 16,20 183,28 2581,1 2397,9 0,6224 8,1881 0,1 45,83 0,0010121 14,67 191,83 2584,8 2392,9 0,6224 8,1881 0,2 60,09 0,0010121 2,650 251,45 2609,9 2318,4									
0.02 17,51 0,0010012 67,01 73,46 2533,6 2460,3 0,2607 8,7246 0.03 224,10 0,0010024 34,80 121,41 2554,5 2433,1 0,4225 8,4755 0.05 32,90 0,0010052 28,19 137,77 2561,6 2433,8 0,4763 8,3960 0.06 36,18 0,0010064 23,74 151,50 2567,5 2416,0 0,5209 8,3312 0,07 39,03 0,0010074 20,53 163,38 2572,6 2409,2 0,5591 8,2767 0,08 41,53 0,0010094 16,20 183,28 2581,1 2397,9 0,6224 8,1881 0,1 45,83 0,0010101 14,67 191,83 2584,8 3392,9 0,6493 8,1511 0,2 60,09 0,0010223 52,29 289,30 26254 2336,1 0,9441 7,7699 0,3 69,12 0,001033 2,732 359,93 3163,6 2460,0									
0,03 24,10 0,0010027 45,67 101,00 2545,6 2444,6 0,3544 8,785 0,05 32,90 0,0010062 28,19 137,77 2561,6 2423,8 0,4763 8,3960 0,06 36,18 0,0010064 23,74 151,50 2567,5 2416,0 0,5209 8,312 0,07 39,03 0,0010084 18,10 173,86 2577,1 2403,2 0,5925 8,2767 0,09 43,79 0,0010094 16,20 183,28 2581,1 2397,9 0,6224 8,1881 0,1 45,83 0,0010172 7,650 251,45 260,99 2358,4 0,8321 7,9942 0,2 60,09 0,001023 5,229 289,30 2652,4 2336,1 0,944 7,695 0,001036 3,993 317,65 2636,9 2319,2 1,0261 7,6709 0,4 75,89 0,0010361 2,365 376,77 2660,1 2305,4 1,3911 7,7690	0,02	17,51						0,2607	8,7246
0,05 32,90 0,0010052 28,19 137,77 2561,6 2423,8 0,4763 8,3960 0,06 36,18 0,0010064 23,74 151,50 2567,5 2416,0 0,5209 8,331 0,07 39,03 0,0010084 18,10 173,86 2577,1 2403,2 0,5925 8,236 0,09 43,79 0,0010094 16,20 183,28 2581,1 2397,9 0,6224 8,1881 0,1 45,83 0,0010172 7,650 251,45 260,99 2358,4 0,8321 7,994 0,3 69,12 0,001023 5,229 289,30 2625,4 2336,1 0,944 7,789 0,001023 5,229 289,30 2625,4 2336,1 0,944 7,789 0,0010301 3,240 340,56 2646,9 2319,2 1,0261 7,6709 0,5 81,35 0,0010387 2,787 391,72 2665,8 2274,0 1,233 0,7 89,96 0,0010345 2,087	0,03								8,5785
0,06 36,18 0,0010064 23,74 151,50 2567.5 2416,0 0,5209 8,315 0,07 39,03 0,0010074 20,53 163,38 2572.6 2409,2 0,5915 8,2767 0,08 41,53 0,0010094 16,20 183,28 2581,1 2397,9 0,6224 8,1881 0,1 45,83 0,0010101 14,67 191,83 2584,8 2392,9 0,6433 8,1511 0,2 60,09 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,699 0,3 69,12 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,699 0,5 81,35 0,0010331 3,240 340,56 2646,0 2305,4 1,0912 7,594 0,6 85,95 0,0010333 2,732 359,93 2653,6 2319,2 1,0211 7,4804 0,8 93,51 0,0010387 2,865 376,77 2660,1 2283,3									
0,07 39,03 0,0010084 18,10 173,86 2577,1 2403,2 0,5925 8,2767 0,09 43,79 0,0010084 18,10 173,86 2577,1 2403,2 0,5925 8,2296 0,1 45,83 0,0010101 14,67 191,83 2581,1 2397,9 0,6224 8,1811 0,2 60,09 0,0010127 7,650 251,45 260,99 2358,4 0,8321 7,9094 0,3 69,12 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,7695 0,5 81,35 0,0010333 2,732 359,93 2653,6 2319,2 1,0261 7,6709 0,6 85,95 0,0010331 2,732 359,93 2653,6 2293,6 1,1454 7,5327 0,8 93,51 0,0010412 1,869 405,21 2670,9 2265,6 1,2696 7,3954 1,0 9,963 0,0010444 1,694 4417,51 2675,4 2257,9									
0,08 41,53 0,0010094 18,10 173,86 2577,1 2403,2 0,5925 8,2296 0,09 43,79 0,0010094 16,20 183,28 2581,1 2397,9 0,6224 8,1811 0,1 45,83 0,0010101 14,67 191,83 2584,8 2392,9 0,6493 8,1511 0,2 60,09 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,7699 0,4 75,89 0,001035 3,240 340,56 2646,0 2305,4 1,0912 7,5947 0,6 85,95 0,0010333 2,352 359,93 2653,6 2293,6 1,1454 7,5327 0,7 89,96 0,0010412 1,869 405,21 2665,8 2274,0 1,2330 7,4352 0,9 96,71 0,0010413 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010455 1,549 428,84 2679,6 2256,6									
0,09 43,79 0,0010094 16,20 183,28 2581,1 2397,9 0,6224 8,1881 0,1 45,83 0,0010101 14,67 191,83 2584,8 2392,9 0,6493 8,1511 0,2 60,09 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,7695 0,4 75,89 0,0010265 3,993 317,65 263,69 2319,2 1,021 7,5947 0,6 85,95 0,0010301 3,240 340,56 2660,1 2283,3 1,1921 7,5947 0,8 93,51 0,0010343 2,057 391,72 2660,1 2283,3 1,1921 7,4804 0,8 93,51 0,0010441 1,869 405,21 2670,9 2265,6 1,2696 7,3954 1,0 99,63 0,0010455 1,549 428,84 2679,6 2250,8 1,3330 7,3279 1,1 102,32 0,0010455 1,549 428,84 2679,6 2250,8						2577,1	2403,2	0,5925	8,2296
0.2 60,09 0,0010172 7,650 251,45 2609,9 2358,4 0,8321 7,9094 0,3 69,12 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,7695 0,4 75,89 0,0010301 3,240 340,56 2646,0 2305,4 1,0912 7,5947 0,6 85,95 0,0010331 2,732 359,93 2653,6 2293,6 1,1454 7,5327 0,7 89,96 0,0010387 2,087 391,72 2665,8 2274,0 1,2330 7,3524 1,0 99,63 0,0010412 1,869 405,21 2670,9 2256,6 1,2696 7,3954 1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010455 1,549 428,84 2679,6 2250,8 1,3330 7,3274 1,2 10,41 10,31 10,713 481,42 2679,6 2250,8	0,09	43,79	0,0010094	16,20	183,28			0,6224	8,1881
0,3 69,12 0,0010223 5,229 289,30 2625,4 2336,1 0,9441 7,7695 0,4 75,89 0,0010265 3,993 317,65 2636,9 2319,2 1,0261 7,6709 0,5 81,35 0,0010301 3,240 340,56 2646,0 2305,4 1,0912 7,5947 0,6 85,95 0,0010333 2,732 359,93 2653,6 2293,6 1,1454 7,5327 0,7 89,96 0,0010361 2,365 376,77 2660,1 2283,3 1,1921 7,4804 0,8 93,51 0,0010387 2,087 391,72 2665,8 2274,0 1,2330 7,4352 0,9 96,71 0,0010412 1,869 405,21 2670,9 2265,6 1,2696 7,3954 1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010455 1,549 428,84 2679,6 2250,8 1,3330 7,3277 1,2 104,81 0,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,3 107,13 0,0010495 1,325 449,19 2687,0 2237,8 1,3868 7,2715 1,4 109,32 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010680 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 1,6716 6,9909 4,0 143,62 0,001083 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011009 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 170,41 0,0011539 0,1317 8447, 2789,9 1945,2 2,3145 6,4406 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,001251 0,0498 1087,4 2800,3 171,29 2,7965 6,0685 50 263,91 0,0012858 0,0347 1213,7 2785,0 1517,3 3,0273 5,8908 100 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 8447, 2789,9 1945,2 2,3145 6,4406 250,33 0,0012521 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 6,3367 70 285,79 0,0013513 0,0247 1213,7 2785,0 1517,3 3,0273 5,8908 100 310,96 0,001453 0,0166 1007,4 2802,3 1793,9 2,24655 6,1837 40 250,33 0,0012521 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,001288 0,001267 10048 0,00148 0,0016 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001387 0,0024 1213,7 2785,0 1517,3 3,0275 5,7471 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,497									
0,4 75,89 0,0010265 3,993 317,65 2636,9 2319,2 1,0261 7,6709 0,5 81,35 0,0010301 3,240 340,56 2646,0 2305,4 1,0912 7,5947 0,6 85,95 0,0010361 2,365 376,77 2660,1 2283,3 1,1454 7,5327 0,7 89,96 0,0010437 2,087 391,72 2665,8 2274,0 1,2330 7,4352 0,9 96,71 0,0010434 1,694 417,51 2670,9 2265,6 1,2696 7,3954 1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010455 1,549 428,84 2679,6 2250,8 1,3307 7,3278 1,2 104,81 0,0010455 1,324 428,84 2679,6 2237,8 1,3868 7,2715 1,4 109,32 0,001053 1,236 488,42 2690,3 2231,8	0,2				251,45				
0,5 81,35 0,0010301 3,240 340,56 2646,0 2305,4 1,0912 7,5947 0,6 85,95 0,0010361 2,365 376,77 2660,1 2283,6 1,1454 7,5327 0,8 93,51 0,0010387 2,087 391,72 2665,8 2274,0 1,2330 7,4352 0,9 96,71 0,0010434 1,694 405,21 2670,9 2265,6 1,2696 7,3954 1,0 99,63 0,0010455 1,549 428,84 2679,6 2250,8 1,33027 7,3598 1,1 102,32 0,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,3 107,13 0,0010513 1,236 488,42 2690,3 2231,8 1,3868 7,2715 1,4 109,32 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010698 0,8854 504,70 2706,3 2201,6	0,3								
0,7 89,96 0,0010361 2,365 376,77 2666,1 2283,3 1,1921 7,4804 0,8 93,51 0,0010412 1,869 391,72 2665,8 2274,0 1,2330 7,4352 1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,2 104,81 0,0010476 1,428 439,36 2687,0 2237,8 1,3800 7,22715 1,4 109,32 0,0010513 1,236 448,42 2690,3 2231,9 1,4109 7,2465 1,5 111,37 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010608 0,8854 504,70 2706,3 2261,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 </td <td>0,5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0,5								
0,7 89,96 0,0010361 2,365 376,77 2666,1 2283,3 1,1921 7,4804 0,8 93,51 0,0010412 1,869 391,72 2665,8 2274,0 1,2330 7,4352 1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,2 104,81 0,0010476 1,428 439,36 2687,0 2237,8 1,3800 7,22715 1,4 109,32 0,0010513 1,236 448,42 2690,3 2231,9 1,4109 7,2465 1,5 111,37 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010608 0,8854 504,70 2706,3 2261,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 </td <td></td> <td>85,95</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		85,95							
0,9 96,71 0,0010412 1,869 405,21 2670,9 2265,6 1,2696 7,3954 1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 10,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,3 107,13 0,0010495 1,325 449,19 2687,0 2237,8 1,3868 7,2715 1,4 109,32 0,0010513 1,236 458,42 2690,3 2231,9 1,4109 7,2465 1,5 111,37 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010608 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,001033 0,665 561,43 2724,7 2163,2 1,6716 6,9909 4,0 143,62 0,001153 0,2462 604,67 2737,6 2133,0 <td>0,7</td> <td></td> <td></td> <td>2,365</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0,7			2,365					
1,0 99,63 0,0010434 1,694 417,51 2675,4 2257,9 1,3027 7,3598 1,1 102,32 0,0010475 1,549 428,84 2679,6 2250,8 1,3330 7,3277 1,2 104,81 0,0010495 1,325 449,19 2687,0 2237,8 1,3609 7,2984 1,3 107,13 0,0010495 1,325 449,19 2687,0 2237,8 1,3868 7,2715 1,4 109,32 0,001053 1,159 467,13 2693,4 2226,2 1,4336 7,2246 1,5 111,37 0,0010608 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 1,6716 6,999 4,0 143,62 0,001089 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011274 0,1943 762,6 2776,5 2046,5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1,1 102,32 0,0010455 1,549 428,84 2679,6 2250,8 1,3330 7,3277 1,2 104,81 0,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,3 107,13 0,0010495 1,325 449,19 2687,0 2237,8 1,3609 7,2984 1,4 109,32 0,0010513 1,236 458,42 2690,3 2231,9 1,4109 7,2465 1,5 111,37 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010608 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,001039 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,001109 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 179,88 0,0011274 0,1943 762,6 2776,2 2013,6<									
1,2 104,81 0,0010476 1,428 439,36 2683,4 2244,1 1,3609 7,2984 1,3 107,13 0,0010495 1,325 449,19 2687,0 2237,8 1,3868 7,2715 1,4 109,32 0,0010513 1,236 488,42 2690,3 2231,9 1,4109 7,2465 1,5 111,37 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010608 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,0010839 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011099 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 170,41 0,0011576 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2				,					
1,4 109,32 0,0010513 1,236 458,42 2690,3 2231,9 1,4109 7,22465 1,5 111,37 0,0010630 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010680 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 1,6716 6,9909 4,0 143,62 0,0011009 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 170,41 0,0011150 0,2403 720,94 2767,5 2046,5 2,0457 6,6594 10 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011263 0,0666 1007,4 2802,3 179,9<	1,2	104,81	0,0010476	1,428	439,36	2683,4	2244,1	1,3609	7,2984
1,5 111,37 0,0010530 1,159 467,13 2693,4 2226,2 1,4336 7,2234 2,0 120,23 0,0010608 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 1,6716 6,9909 4,0 143,62 0,0010839 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011009 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 170,41 0,0011150 0,2403 720,94 2767,5 2046,5 2,0457 6,6594 10 179,88 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,00122163 0,0666 1007,4 2802,3 179,	1,3			1,325				1,3868	
2,0 120,23 0,0010608 0,8854 504,70 2706,3 2201,6 1,5301 7,1268 3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 1,6716 6,9909 4,0 143,62 0,0010839 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011009 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 170,41 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,6594 10 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,0012851 0,0648 1007,4 2802,3 1793,9<	1,4			1,236			2231,9		
3,0 133,54 0,0010735 0,6056 561,43 2724,7 2163,2 1,6716 6,9909 4,0 143,62 0,0010839 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011009 0,3155 670,42 2755,5 2046,5 2,0457 6,6594 10 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,0012813 0,0666 1007,4 2802,3 1793,9 2,6455 6,1837 40 250,33 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 50 263,91 0,0012858 0,0324 1213,7 2785,0 1517,3 </td <td></td> <td>· '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		· '							
4,0 143,62 0,0010839 0,4622 604,67 2737,6 2133,0 1,7764 6,8943 6,0 158,84 0,0011009 0,3155 670,42 2755,5 2085,0 1,9308 6,7575 8,0 170,41 0,0011150 0,2403 720,94 2767,5 2046,5 2,0457 6,6594 10 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4466 20 212,37 0,0011766 0,0995 908,6 2797,2 188,6 2,4469 6,3367 30 233,84 0,0012853 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013513 0,0274 1267,4 2773,5 1506,0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
8,0 170,41 0,0011150 0,2403 720,94 2767,5 2046,5 2,0457 6,6594 10 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,0012163 0,0666 1007,4 2802,3 1793,9 2,6455 6,1837 40 250,33 0,0012521 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013842 0,0235 1317,1 2759,9 1442,8 <td>4,0</td> <td>143,62</td> <td>0,0010839</td> <td>0,4622</td> <td>604,67</td> <td></td> <td>2133,0</td> <td></td> <td></td>	4,0	143,62	0,0010839	0,4622	604,67		2133,0		
10 179,88 0,0011274 0,1943 762,6 2776,2 2013,6 2,1382 6,5828 15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,0012163 0,0666 1007,4 2802,3 1793,9 2,6455 6,1837 40 250,33 0,0012521 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001448 0,0205 1363,7 2744,6 1380,9		158,84							
15 198,29 0,0011539 0,1317 844,7 2789,9 1945,2 2,3145 6,4406 20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,0012163 0,0666 1007,4 2802,3 1793,9 2,6455 6,1837 40 250,33 0,0012858 0,0394 1154,5 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013813 0,0274 1267,4 2773,5 1506,0 3,1219 5,8162 80 294,97 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001443 0,0225 1363,7 2744,6 1380,9									
20 212,37 0,0011766 0,0995 908,6 2797,2 1888,6 2,4469 6,3367 30 233,84 0,0012163 0,0666 1007,4 2802,3 1793,9 2,6455 6,1837 40 250,33 0,0012521 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013813 0,0274 1267,4 2773,5 1506,0 3,1219 5,8162 80 294,97 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
30 233,84 0,0012163 0,0666 1007,4 2802,3 1793,9 2,6455 6,1837 40 250,33 0,0012521 0,0498 1087,4 2800,3 1712,9 2,7965 6,0685 50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001418 0,0205 1363,7 2744,6 1380,9 3,2867 5,6820 100 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 <td></td> <td></td> <td></td> <td></td> <td>908,6</td> <td></td> <td>1888,6</td> <td></td> <td></td>					908,6		1888,6		
50 263,91 0,0012858 0,0394 1154,5 2794,2 1639,7 2,9206 5,9735 60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013513 0,0274 1267,4 2773,5 1506,0 3,1219 5,8162 80 294,97 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001418 0,0205 1363,7 2744,6 1380,9 3,2867 5,6820 100 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 <td></td> <td>233,84</td> <td>0,0012163</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		233,84	0,0012163						
60 275,55 0,0013187 0,0324 1213,7 2785,0 1517,3 3,0273 5,8908 70 285,79 0,0013513 0,0274 1267,4 2773,5 1506,0 3,1219 5,8162 80 294,97 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001418 0,0205 1363,7 2744,6 1380,9 3,2867 5,6820 100 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-					
70 285,79 0,0013513 0,0274 1267,4 2773,5 1506,0 3,1219 5,8162 80 294,97 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001418 0,0205 1363,7 2744,6 1380,9 3,2867 5,6820 100 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
80 294,97 0,0013842 0,0235 1317,1 2759,9 1442,8 3,2076 5,7471 90 303,31 0,001418 0,0205 1363,7 2744,6 1380,9 3,2867 5,6820 100 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 3,6859 5,3178 160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.8162</td>									5.8162
100 310,96 0,001453 0,0180 1408,0 2727,7 1319,7 3,3605 5,6198 110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 3,6859 5,3178 160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9					1317,1				5,7471
110 318,05 0,001489 0,0160 1450,6 2709,3 1258,7 3,4304 5,5595 120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 3,6859 5,3178 160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3	90		0,001418	0,0205	1363,7	2744,6	1380,9	3,2867	5,6820
120 324,65 0,001527 0,0143 1491,8 2689,2 1197,4 3,4972 5,5002 130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 3,6859 5,3178 160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5									
130 330,83 0,001567 0,0128 1532,0 2667,0 1135,0 3,5616 5,4408 140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 3,6859 5,3178 160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799						2709,3			
140 336,64 0,001611 0,0115 1571,6 2642,4 1070,7 3,6242 5,3803 150 342,13 0,001658 0,0103 1611,0 2615,0 1004,0 3,6859 5,3178 160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799					1532.0		1135.0		
160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799	140								
160 347,34 0,001710 0,0093 1650,5 2584,9 934,3 3,7471 5,2531 180 356,96 0,001840 0,0075 1734,8 2513,9 779,1 3,8765 5,1128 200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799		342,13			1611,0	2615,0			
200 365,70 0,002037 0,0059 1826,5 2418,4 591,9 4,0149 4,9412 210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799	160	347,34	0,001710		1650,5	2584,9		3,7471	5,2531
210 369,78 0,002202 0,0050 1886,3 2347,6 461,3 4,1048 4,8223 220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799									
220 373,69 0,002671 0,0037 2011,1 2195,6 184,5 4,2947 4,5799					1886.3				4,8223
				·					,
1 1 1 1	221,2	374,15	0,0	0317				4,4	29

Beispiel 14.1: Nassdampf. Wasser wird bei einem Druck von 50 bar(a) verdampft. Daraus entstehen 80 m³ Nassdampf mit einem Dampfgehalt von x = 0.6. Zu bestimmen sind mit den Werten aus der Wasserdampftafel:

- a. das spezifische Volumen des Nassdampfes
- b. die Masse des Nassdampfes und die Masse des flüssigen Wassers im Nassdampf
- c. die spezifische Enthalpie des Nassdampfes

$$v = v' + x (v'' - v') = 0.00129 \text{ m}^3/\text{kg} + 0.6 \cdot (0.0394 \text{ m}^3/\text{kg} - 0.00129 \text{ m}^3/\text{kg})$$

 $v = 0.024 \text{ m}^3/\text{kg}$

$$m = \frac{V}{v} = \frac{80 \text{ m}^3}{0.024 \text{ m}^3/\text{kg}} = 3312 \text{ kg}$$

$$m_W = (1 - x) m = 0.4 \cdot 3312 \text{ kg} = 1325 \text{ kg}$$

$$h = h' + x \left(h'' - h' \right) = 1154.5 \text{ kJ/kg} + 0.6 \cdot \left(2794.2 \text{ kJ/kg} - 1154.5 \text{ kJ/kg} \right)$$

$$h = 2138.3 \text{ kJ/kg}$$

14.4.4 Der überhitzte Dampf

In den Zustandsdiagrammen befindet sich das Gebiet des überhitzten Dampfes rechts von der Taulinie. Der überhitzte Dampf kann als reales Gas behandelt werden. Umso weiter der Zustand vom Nassdampfgebiet entfernt ist, desto mehr nimmt der Dampf Idealgascharakter an. Die Werte der Zustandsgrössen des überhitzten Dampfes von Wasser sind in den Wasserdampftafeln auf Seite 525 und 526 aufgeführt.

14.4.5 Wasserdampftafel: Überhitzter Dampf

		T						1
bar	°C	m ³ /kg	h kJ/kg	s kJ/kg K	°C.	m^3/kg	<i>h</i> kJ/kg	s kJ/kg K
0,2	100	8,585	2686,3	8,1261	350	14,374	3177,1	9,1303
	150	9,748	2782,3	8,3676	400	15,529	3279,4	9,2882
	200	10,907	2879,2	8,5839	450	16,684	3383,4	9,4372
	250 300	12,064 13,219	2977,1 3076,4	8,7806	500 600	17,838	3489,0	9,5784
				8,9618		20,146	3705,4	9,8416
0,4	100	4,279	2683,8	7,8009	350	7,185	3176,8	8,8100
ļ	150 200	4,866	2780,9	8,0450	400	7,763	3279,1	8,9680
	250	5,448 6,028	2878,2 2976,5	8,2625	450	8,340	3383,1	9,1170
	300	6,607	3075,9	8,4598 8,6413	500 600	8,918 10,07	3488,8 3705,3	9,2583 9,5216
0,6	100	2,844	2681,3	7,6085	350	4,788	3176,4	8,6224
0,0	150	3,238	2779,4	7,8551	400	5,174	3278,8	8,7806
	200	3,628	2877,3	8,0738	450	5,559	3382,9	8,9296
ļ	250	4,016	2975,8	8,2718	500	5,944	3488,6	9,0701
	300	4,402	3075,4	8,4536	600	6,714	3705,1	9,3343
1,0	100	1,696	2676,2	7,3618	350	2,871	3175,6	8,3858
	150	1,936	2776,3	7,6137	400	3,102	3278,2	8,5442
	200	2,172	2875,4	7,8349	450	3,334	3382,4	8,6939
	250 300	2,406	2974,5	8,0342	500	3,565	3488,1	8,8348
		2,639	3074,5	8,2166	600	4,028	3704,8	9,0982
1,2	150	1,611	2774,8	7,5267	400	2,585	3277,9	8,4597
	200 250	1,808	2874,4	7,7492	450	2,778	3382,1	8,6090
	300	2,004 2,198	2973,9 3074,0	7,9491 8,1319	500 550	2,971 3,163	3487,9 3595,4	8,7505 8,8852
	350	2,391	3175,3	8,3012	600	3,356	3704,6	9,0140
1,5	150	1,285	2772,5	7,4194	400	2,067	3277,5	8,3562
1	200	1,444	2872,9	7,6439	450	2,222	3381,7	8,5056
	250	1,601	2972,9	7,8447	500	2,376	3487,6	8,6472
	300	1,757	3073,3	8,0280	550	2,530	3595,1	8,7819
	350	1,912	3174,7	8,1976	600	2,684	3704,4	8,9108
2,0	150	0,9595	2768,5	7,2794	400	1,549	3276,7	8,2226
	200	1,080	2870,5	7,5072	450	1,665	3381,1	8,3722
ļ	250	1,199	2971,2	7,7096	500	1,781	3487,0	8,5139
	300 350	1,316	3072,1	7,8937	550	1,897	3594,7	8,6487
10		1,433	3173,8	8,0638	600	2,013	3704,0	8,7776
4,0	150	0,4707	2752,0	6,9285	400	0,7725	3273,6	7,8994
	200 250	0,5343 0,5952	2860,4	7,1708 7,3800	450	0,8309 0,8892	3378,5	8,0497
	300	0,6549	2964,5 3067,2	7,5675	500 550	0,8892	3484,9 3592,8	8,1919 8,3271
	350	0,7139	3170,0	7,7395	600	1,0054	3702,3	8,4563
6,0	200	0,3520	2849,7	6,9662	450	0,5528	3376,0	7,8600
.,.	250	0,3939	2957,6	7,1829	500	0,5918	3482,7	8,0027
	300	0,4344	3062,3	7,3740	550	0,6308	3590,9	8,1383
	350	0,4742	3166,2	7,5479	600	0,6696	3700,7	8,2678
	400	0,5136	3270,6	7,7090	650	0,7084	3812,1	8,3919
8,0	200	0,2608	2838,6	6,8148	450	0,4137	3373,4	7,7246
	250	0,2932	2950,4	7,0397	500	0,4432	3480,5	7,8678
	300	0,3241	3057,3	7,2348	550	0,4725	3589,0	8,0038
	350 400	0,3543	3162,4	7,4107	600	0,5017	3699,1	8,1336
L	400	0,3842	3267,5	7,5729	650	0,5309	3810,7	8,2579

14.4.6 Wasserdampftafel: Überhitzter Dampf

(Fortsetzung)

		Ι	7				,	
bar	°C	m ³ /kg	<i>h</i> kJ/kg	kJ/kg K	°C	m ³ /kg	h kJ/kg	kJ/kg K
10	200	0,2059	2826,8	6,6922	450	0,3303	3370,8	7,6190
	250	0,2327	2943,0	6,9259	500	0,3540	3478,3	7,7627
	300	0,2580	3052,1	7,1251	550	0,3775	3587,1	7,8991
	350	0,2824	3158,5	7,3031	600	0,4010	3697,4	8,0292
	400	0,3065	3264,4	7,4665	650	0,4244	3809,3	8,1537
15	200	0,1324	2794,7	6,4508	450	0,2191	3364,3	7,4253
	250	0,1520	2923,5	6,7099	500	0,2350	3472,8	7,5703
	300	0,1697	3038,9	6,9207	550	0,2509	3582,4	7,7077
	350	0,1865	3148,7	7,1044	600	0,2667	3693,3	7,8385
	400	0,2029	3256,6	7,2709	650	0,2824	3805,7	7,9636
20	250	0,1114	2902,4	6,5454	500	0,1756	3467,1	7,4323
	300	0,1255	3025,0	6,7696	550	0,1876	3577,6	7,5706
	350	0,1386	3138,6	6,9596	600	0,1995	3689,2	7,7022
	400	0,1511	3248,7	7,1296	650	0,2114	3802,1	7,8279
	450	0,1634	3357,8	7,2859	700	0,2232	3916,5	7,9485
30	250	0,07055	2854,8	6,2857	500	0,11608	3456,2	7,2345
	300	0,08116	2995,1	6,5422	550	0,12426	3567,2	7,3748
	350	0,09053	3117,5	6,7471	600	0,13234	3681,0	7,5079
	400	0,09931	3232,5	6,9246	650	0,14036	3795,0	7,6349
	450	0,10779	3344,6	7,0854	700	0,14832	3910,3	7,7564
40	300	0,05883	2962,0	6,3642	550	0,09260	3558,6	7,2333
	350	0,06645	3095,1	6,5870	600	0,09876	3672,8	7,3680
	400	0,07338	3215,7	6,7733	650	0,10486	3787,9	7,4961
	450	0,07996	3331,2	6,9388	700	0,11090	3904,1	7,6187
	500	0,08634	3445,0	7,0909	750	0,11689	4021,4	7,7363
60	300	0,03614	2885,0	6,0692	550	0,06094	3539,3	7,0285
	350	0,04222	3045,8	6,3386	600	0,06518	3656,2	7,1664
	400	0,04738	3180,1	6,5462	650	0,06936	3773,5	7,2971
	450	0,05210	3303,5	6,7230	700	0,07348	3891,7	7,4217
	500	0,05659	3422,2	6,8818	750	0,07755	4010,7	7,5409
80	300	0,02426	2786,8	5,7942	550	0,04510	3519,7	6,8778
	350	0,02995	2989,9	6,1349	600	0,04839	3639,5	7,0191
	400	0,03431	3141,6	6,3694	650	0,05161	3759,2	7,1523
	450	0,03814	3274,3	6,5597	700	0,05477	3879,2	7,2790
	500	0,04170	3398,8	6,7262	750	0,05788	3999,9	7,3999
100	350	0,02242	2925,8	5,9489	600	0,03832	3622,7	6,9013
	400	0,02641	3099,9	6,2182	650	0,04096	3744,7	7,0373
	450	0,02974	3243,6	6,4243	700	0,04355	3866,8	7,1660
	500	0,03276	3374,6	6,5994	750	0,04608	3989,1	7,2886
	550	0,03560	3499,8	6,7564	800	0,04858	4112,0	7,4058
150	350	0,01146	2694,8	5,4467	600	0,02488	3579,8	6,6764
	400	0,01566	2979,1	5,8876	650	0,02677	3708,3	6,8195
	450	0,01845	3159,7	6,1468	700	0,02859	3835,4	6,9536
	500	0,02080	3310,4	6,3487	750	0,03036	3962,1	7,0806
	550	0,02291	3448,3	6,5213	800	0,03209	4088,6	7,2013
200	400 450 500 550 600	0,00995 0,01271 0,01477 0,01655 0,01816	2820,5 3064,3 3241,1 3394,1 3535,5	5,5485 5,9089 6,1456 6,3374 6,5043	650 700 750 800	0,01967 0,02111 0,02250 0,02385	3671,1 3803,8 3935,0 4065,3	6,6554 6,7953 6,9267 7,0511

14.5 Zustandsdiagramme

14.6 Dampfkraftanlagen

Weltweit wird mehr als 90% der elektrischen Energie in Dampfkraftanlagen erzeugt!

14.6.1 Der idealisierte Vergleichsprozess nach Clausius+Rankine

Ein Gasprozess mit isentroper Kompression und Expansion wird als Joule-Prozess bezeichnet. Der Dampfprozess mit den gleichen Zustandsänderungen heisst *Clausius-Rankine-Prozess*. Im Clausius-Rankine-Prozess kommt es zu Aggregatszustandsänderungen von flüssig nach gasförmig und von gasförmig nach flüssig.

14.6.2 Funktionsschema einer thermischen Anlage mit Dampfturbine

Idealisierung: Alle Zustandsänderungen laufen dissipationsfrei ab.

14.6.3 Darstellung des idealen Kreisprozesses im T,s-Diagramm

- $1 \rightarrow 2$: isentrope Druckerhöhung in der Speisewasserpumpe
- $2 \rightarrow 3$: isobare Wärmezufuhr im Dampferzeuger
- $3 \rightarrow 4$: isentrope Expansion in der Dampfturbine (Arbeitsabgabe)
- $4 \rightarrow 1$: isobare Wärmeabfuhr im Kondensator

Die isobare Wärmezufuhr im Dampferzeuger kann wie folgt unterteilt werden:

- $2 \rightarrow 2A$: Erwärmung des flüssigen Wassers bis zum Siedepunkt
- $2A \rightarrow 2B$: Verdampfung
- $2B \rightarrow 3$: Überhitzung

14.6.4 Der reale Kreisprozess der Dampfkraftanlagen (DKA)

Darstellung im T,s-Diagramm:

- $1 \rightarrow 2$: dissipationsbehaftete Druckerhöhung in der Speisewasserpumpe (polytrope ZÄ)
- $2 \rightarrow 3$: annähernd isobare Wärmezufuhr im Dampferzeuger (Druckverluste bei der Verdampfung)
- $3 \to 4$: dissipationsbehaftete Expansion in der Dampfturbine (Arbeitsabgabe, polytrope ZÄ)
- $4 \rightarrow 1$: annähernd isobare Wärmeabfuhr im Kondensator

14.6.5 Der thermische Wirkungsgrad der Dampfkraftanlagen

1.HS für stationäre Fliessprozesse:

$$w_{t 12} + q_{12} = h_2 - h_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2} + g(z_2 - z_1)$$

$$1 \to 2$$
: $w_{t \cdot 12} = h_2 - h_1$

$$2 \rightarrow 3$$
: $q_{23} = h_3 - h_2$

$$3 \rightarrow 4$$
: $w_{t,34} = h_4 - h_3$

$$4 \to 1$$
: $q_{41} = h_1 - h_4$

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{|w_K|}{q_{23}} = \frac{|q_{23} - q_{41}|}{q_{23}} = \frac{(h_3 - h_2) - (h_4 - h_1)}{h_3 - h_2}$$
$$\eta_{th} = 1 - \frac{h_4 - h_1}{h_3 - h_2}$$

Das Arbeitsverhältnis (Bewertungsziffer) beträgt:

$$r_W = \frac{|w_K|}{|w_{t34}|} = \frac{(h_3 - h_2) - (h_4 - h_1)}{h_3 - h_4} = 1 - \frac{h_2 - h_1}{h_3 - h_4}$$

14.6.6 Möglichkeiten zur Verbesserung des thermischen Wirkungsgrades

a. Erhöhung der Temperatur des überhitzten Dampfes

Begrenzung durch thermische Belastbarkeit der verwendeten Werkstoffe (wenn T_3 steigt sind bessere Werkstoffe notwendig).

b. Erhöhung des Druckes im Dampferzeuger

Führt zu höheren mechanischen Belastungen im Dampferzeuger (massivere Konstruktion).

c. Senkung des Kondensationsdruckes Begrenzung durch die Temperatur des Kühlmediums.

d. Zwischenüberhitzung(en) während der Expansion

Verfahren zur Verringerung des Wassergehaltes im Dampf am Austritt aus der Turbine.

e. Speisewasservorwärmung

Ziel: Mittlere Temperatur der Wärmezufuhr im Verdampfer erhöhen \to Annäherung an Carnot-Prozess. Die Fläche für die Erwärmung des Speisewassers bis zum Siedepunkt entfällt.

Beispiel Kernkraftwerk Gösgen: Rund 40% der schweizerischen Stromproduktion wird durch Kernkraftwerke bereitgestellt. Die Jahresproduktion des Kernkraftwerks Gösgen beträgt nahezu 8 Milliarden kWh, dies entspricht 15% des schweizerischen Stromverbrauchs. Ein Kernkraftwerk besteht im wesentlichen aus 2 Teilen: Im Nuklearteil wird mit Hilfe der Kernspaltung Wärme produziert. In der Dampfkraftanlage wird aus der Wärme elektrische Energie erzeugt. Im folgenden wird die Anlage in Gösgen kurz vorgestellt.

Das Funktionsschema des Druckwasserreaktors zeigt den Nuklearteil und die DKA vereinfacht auf:

Die Hauptkomponenten der Dampfkraftanlage sind nachfolgend abgebildet.

- 1 Coolant exit
- 2 Coolant inlet
- 3 Tube sheet
- 4 Support and guide brackets
- 5 Hand hole
- 6 Tube support grid
- 7 Container
- 8 Conductor
- 9 Heating pipes
- 10 Feed water loop
- 11 Feed water
- 12 Inlet muff
- 13 Coarse separator
- 14 Manhole
- 15 Fine separator

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

Bild links: Dampfturbine, Bild rechts: Kühlturm

Im Schema des Wasserdampf-Kreislaufs sind die Dampfströme sowie die jeweiligen Drücke dargestellt.

Von den drei Dampferzeugern im Reaktorgebäude gelangt der Frischdampf mit 62 bar(a) und 280° C ins Maschinenhaus. Der Dampf wird in den doppelflutigen Hochdruckteil des Turbinensatz geleitet. Am Austritt der Hochdruckturbine beträgt der Druck noch 11 bar(a) bei einem Dampfgehalt x von 0.87 und einer Temperatur von 184° C. Zur Verhinderung von Erosionsschäden an der Niederdruckturbine wird der Dampf über einen kombinierten Wasserabscheider-Zwischenüberhitzer geleitet, welcher den Dampf auf 250° C erhitzt und den Dampfgehalt auf ein x von 0.995 erhöht, bevor er in die Niederdruckturbine kommt. Die Zwischenüberhitzung des Dampfes erfolgt mittels Frischdampf. Der Abdampf aus der Niederdruckturbine kondensiert in den nachgeschalteten Kondensatoren durch Abgabe der Kondensationswärme an den Hauptkühlwasserkreislauf, der die Wärme über den Kühlturm an die Umgebung abgibt.

Zeichnen Sie die Ein- und Austrittspunkte der Hochdruckturbine im untenstehenden T, s-Diagramm ein.

Die technischen Angaben der Anlage in Gösgen sind in der folgenden Tabelle zusammengefasst:

Leistungsdaten	
Elektrische Bruttonennleistung	1020 MW
Elektrische Nettonennleistung	970 MW
Thermische Nennleistung des Reaktors	3002 MW
Reaktorgebäude	
Aussendurchmesser	63,6 m
Höhe über Grundplatte	56,8 m
Wandstärke im zylindrischen Teil	1,6 m
Wandstärke der Kuppel	1,2 m
Dicke der Grundplatte	2,8 m
Stahlhülle	
Innendurchmesser	52 m
Wanddicke	32 mm
Auslegungsüberdruck/-temperatur	4,89 bar/135 °C
Zulässige Leckrate	0,25 Vol.%/d
	· · · · · · · · · · · · · · · · · · ·
Reaktordruckbehälter	
Innendurchmesser	4360 mm
Wanddicke Zylindermantel	
(ohne Plattierung)	221 mm
Werkstoff	22NiMoCr37
Dicke der Plattierung	6 mm
Gesamthöhe einschliesslich Deckel	10 827 mm
Auslegungsüberdruck/-temperatur	175 bar/350 °C
Gewicht ohne Einbauten	360 t
Gewicht Kerneinbauten	135 t
Reaktoranlage	
Kühlmittel und Moderator	H ₂ O
Brennstoff	Uran (UO ₂) und MOX (UO ₂ und PuO ₂)
Anzahl Brennelemente	177
Gesamtgewicht eines Elements	666 kg
Anzahl Brennstäbe je Brennelement	205 (MOX: 204)
Anordnung	Quadratgitter
Gesamtlänge der Brennstäbe	3860 mm
Aktive Länge der Brennstäbe	3550 mm
Aussendurchmesser der Brennstäbe	10,75 mm
Hüllrohrwerkstoff	Zry-4/DX ELS 0,8
Hüllrohrwanddicke	0,725 mm
Gesamte Uranmasse im Kern	76 t
Anreicherung Nachladebrennelemente	4,3% U-235 / 4,8% Pu _{fiss}
Abbrand entladene Brennelemente	50 000 MWd/t
Mittlere Wärmestromdichte	67,3 W/cm ²
Mittlere lineare Ctableigtung	227 7 M/om

227,7 W/cm

48

Mittlere lineare Stableistung

Anzahl Steuerelemente

Anzahl der Absorberstäbe je Steuerelemen	t 20
Absorberwerkstoff	Ag15In5Cd
Antrieb	magnetische Klinkenschrittheber
Verstellgeschwindigkeit	60 Schritte/min
Schrittlänge	10 mm
Anzahl der Reaktorkühlkreisläufe	3
Betriebsüberdruck Reaktoranlage	153 bar
Kühlmitteltemperatur am Eintritt	291,5 °C
Kühlmitteltemperatur am Austritt	324,2 °C
Kühlmittelnenndurchsatz	15 984 kg/s
Dampferzeuger	
Anzahl	3
Höhe	21 200 mm
Durchmesser	3570/4860 mm
Mantelwerkstoff	Feinkornstahl
Werkstoff der Rohrplatte	Feinkornstahl
Rohrwerkstoff	Incoloy 800
Rohrabmessungen	Ø 22 x 1,2 mm
Auslegungsüberdruck/-temperatur	175/87,3 bar/350 °C
Gesamtgewicht	380 t
Hauptkühlmittelpumpen	
Anzahl/Typ	3 einstufige Halbaxialzentrifugalpumpen
Förderhöhe	84,4 m
Nenndurchsatz je Pumpe	5328 kg/s
Drehzahl	1490 U/min
Motorleistung (Auslegung)	9200 kW
Druckhalter	
Höhe	13 400 mm
Durchmesser	2400 mm
Volumen	42 m ³
Betriebsüberdruck/-temperatur	153 bar/344 °C
Heizleistung der Heizstäbe	1400 kW
Dampfkraftanlage	
Frischdampfdurchsatz	5890 t/h
Frischdampfzustand	
am Dampferzeugeraustritt	64,5 bar/280,3 °C
Dampfnässe am Dampferzeugeraustritt	max. 0,25%
Endnässe	10%
Kondensatordruck	80 mbar
Kühlwassertemperatur	22 °C
Kondensatorkühlwasserdurchsatz	120 500 m ³ /h
Speisewasservorwärmtemperatur	218 °C
Anzahl der Vorwärmstufen	5
Aufteilung der Vorwärmstufen	3 ND, 1 Entgaser, 1 HD

Turbine

Viergehäusige Einwellenkondensationsturbine mit einem doppelflutigen HD-Teil und 3 doppelflutigen ND-Teilen. Trocknung und Zwischenüberhitzung zwischen HD-Teil und ND-Teilen. Drehzahl 3000 U/min.

Generator	
Bruttowirkleistung Turbine	1020 MW
Scheinleistung	1141 MVA
Leistungsfaktor (cos φ)	0,93
Klemmenspannung	27 kV
Regelbereich	± 7,5%
Frequenz	50 Hz
Kühlung Läuferwicklung	Wasserstoff (6 bar abs.)
Kühlung Ständerwicklung	Wasser (27 kg/s)
Länge des Turbosatzes	55 m
Blocktransformator	
Anzahl/Typ	3 Einphaseneinheiten und 1 Reserveeinheit
Oberspannung	420 kV
Unterspannung	27 kV
Leistung	1110 MVA
Universal and a second a second and a second a second and	
Hauptspeisewasserpumpen Anzahl/Typ	2 deposification receiptufies
Anzani/Typ	3 doppelflutige zweistufige Radialzentrifugalpumpen
Förderhöhe nach Hauptnumne	812 m
Förderhöhe nach Hauptpumpe Nenndurchsatz je Pumpe	
Motorleistung	844 kg/s 8600 kW
Motorieistung	OOUU KVV
Kühlturm	
Anzahl/Typ	1 Naturzugnasskühlturm
Höhe	150 m
Basisdurchmesser	117 m
Öffnungsdurchmesser	74 m
Durchmesser an der Taille	70 m
Schalendicke unten	750 mm
Schalendicke Minimum	160 mm
Wasserdurchsatz	31,6 m ³ /s
Warmwassertemperatur	36 °C
Kaltwassertemperatur	22 °C
Trockenlufttemperatur	7,8 °C
Feuchtlufttemperatur	6,2 °C
Luftdurchsatz	25 400 m ³ /s
Verdunstung von Wasser	0,4–0,7 m ³ /s
Hauptkühlwasserpumpen	
Anzahl/Typ	2 einstufige
,	Halbaxialzentrifugalpumpen
Förderhöhe	20,5 m
Nenndurchsatz je Pumpe	15,8 m ³ /s
Drehzahl	248 U/min
Motorleistung	4100 kW

14.7 Thermische Anlagen mit gekoppeltem Gasturbinen- und Dampfturbinen-Prozess (GuD)

Durch Kopplung einer Gasturbinenanlage mit einem Dampfturbinenprozess lässt sich der Gesamtwirkungsgrad der Energieumwandlung erhöhen.

14.7.1 Funktionsschema einer GuD-Anlage

$$\eta_{th\,GT} = 1 - \frac{h_{14} - h_{11}}{h_{13} - h_{12}} \qquad \eta_{th\,DT} = 1 - \frac{h_{24} - h_{21}}{h_{23} - h_{22}}$$

$$\eta_{th\,GuD} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{\dot{m}_{GT}\left[(h_{13} - h_{14}) - (h_{12} - h_{11}) \right] + \dot{m}_{DT}\left[(h_{23} - h_{24}) - (h_{22} - h_{21}) \right]}{\dot{m}_{GT}\left(h_{13} - h_{12} \right)}$$

Beispiel 14.2: Beispiel GuD-Anlage in Monthey (befindet sich im Bau). Die GuD-Anlage wird nach der Fertigstellung – voraussichtlich September 2009 – Prozessdampf und Storm für die ansässigen Chemieunternehmen liefern. Die Anlage wird jährlich rund 460'000 t Dampf und 456 GWh Strom produzieren.

Gasturbine Siemens SGT 800

Elektrische Leistung: 44 MW_{el} Turbinendrehzahl: 6608 min^{-1}

Druckverhältnis Verdichter: 19:1

Abgasmassenstrom: 131.5 kg/s bei 544°C

Dampfkreislauf

Abhitzekessel mit Zusatzfeuerung: Dampf bei 64 bar(a) (525°C) und 8.5 bar(a) (270°C) Dampfturbine: 13 MW_{el} mit Entnahmestellen bei 14 und 8 bar(a)

Wassergekühlter Kondensator: $25 \text{ MW}_{\text{th}}$

Bei maximaler Leistung der GuD-Anlage (hier ein Beispielbild) beträgt der Nutzungsgrad 83%.

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

$14.8~{ m Kraft}~+~{ m W\"{a}rme} ext{-Kopplung}~{ m mit}~{ m thermischen}$ Anlagen

Durch gleichzeitige Nutzung der mechanischen Energie und der Abwärme der Anlage, kann der Gesamtwirkungsgrad der Energieumwandlung erhöht werden.

14.8.1 Kraft + Wärme-Kopplung mit einer Gasturbinenanlage

14.8.2 Kraft + Wärme-Kopplung mit einer Dampfkraftanlage

 ϑ

14.9 Übungen

Zum Lösen der Aufgaben 14.1–14.5 benötigen Sie eine Wasserdampftafel.

Übung 14.1: Zustandsgrössen von Wasser aus der Wasserdampftafel. Ergänzen Sie die fehlenden Werte:

[°C]]; $v \text{ [m}^3/\text{kg]}$; $h \text{ [kJ/kg]}$; $s \text{ [kJ/kg K]}$
a.	für siedendes Wasser von 100 bar(a):
b.	$\vartheta =$; $v =$; $h =$; $s =$; $x =$; für Sattdampf von 100 bar(a):
с.	$\vartheta=$; $v=$; $h=$; $s=$; $x=$; für Nassdampf von 100 bar(a) mit 70 % Dampfgehalt:
	$\vartheta =$; $x =$
	$v = \dots $
	$h = \dots $
d.	$s = \dots$ für Wasser von 100 bar(a), 520°C:
	v=; $h=$; $s=$
e.	Aggregatszustand: für Wasser von 100 bar(a), 30°C:
	v=; $h=$; $s=$
	Aggregatszustand:

14.9 Übungen 549

Übung 14.2: Erwärmung von Wasser in einem Dampfkraftwerk. In einem Dampferzeuger wird Wasser von 30°C und 100 bar(a) bei praktisch konstantem Druck auf 520°C erwärmt.

- a. Stellen Sie den Prozess im T, s-Diagramm dar!
- b. Wie gross sind die spezifischen Wärmen, die dem Wasser zugeführt werden?

für das Überhitzen: q......

für das Verdampfen: q......

bis zum Sieden: q......

für den gesamten Prozess: q......

q....=

q....=

q....=

q....=

Diese Wärmen sind im T,s-Diagramm darzustellen! ($q_{12}=1273.3~kJ/kg,~q_{23}=1319.7~kJ/kg,~q_{34}=697.4~kJ/kg,~q_{14}=3290.4~kJ/kg$)

c. Welcher Wärmestrom muss dem Dampferzeuger zugeführt werden, wenn der Massenstrom 100 kg/s beträgt? ($\dot{Q}_{14}=329.04~MW$)

Hinweis: Die Zustandsgrössen sind identisch mit denen aus Aufgabe 8.

Übung 14.3: Zustandsänderung mit Wasser/Wasserdampf.

1. Adiabate Drosselung von siedendem Wasser

Siedendes Wasser von 150°C, Massenstrom 10 kg/s wird in einem Drosselventil adiabat auf 2 bar(a) entspannt. Der entstandene Nassdampf wird getrennt und der Sattdampf in einem Kondensator isobar als Heizenergie verwendet.

- a. Zeichnen Sie das Verfahrensfliessbild!
- b. Stellen Sie diesen Prozess im $p, T_{-}, p, v_{-}, T, s_{-}, \text{ und } h, s_{-}$ Diagramm dar!
- c. Vervollständigen Sie die Zustandsgrössen in der nachfolgenden Tabelle!
- d. Wie gross sind die Massen- und Volumenströme der siedenden Flüssigkeit und des Sattdampfes? ($\dot{m}_3=0.58~kg/s,~\dot{V}_3=0.514~m^3/s,~\dot{m}_5=9.42~kg/s,~\dot{V}_3=0.0104~m^3/s)$
- e. Welchen Wärmestrom gibt der Sattdampf im Kondensator ab? ($\dot{Q}_{34}=1276.9~kW$)

	1	2	3	4	5
θ [°C]	150				
p [bar(a)]		2			
x [-]					
h [kJ/kg]					
$s [\mathrm{kJ/kg K}]$					
$v [\mathrm{m}^3/\mathrm{kg}]$					

2. Bestimmung der Zustandsgrössen des Nassdampfes

In der Dampftrommel eines Dampferzeugers (Volumen der Dampftrommel = 100 m^3) befindet sich Nassdampf bei 80 bar(a) und x = 0.9. Bestimmen Sie:

- a. die spezifische Enthalpie des Nassdampfes. (h = 2615.62 kJ/kg)
- b. das spezifische Volumen des Nassdampfes. ($v = 0.021315 \text{ m}^3/\text{kg}$)
- c. die Masse des Nassdampfes und die Masse des siedenden Wassers. ($m=4692\ kg,\ m'=469.2\ kg$)
- d. das von siedendem Wasser beanspruchte Volumen ($V' = 0.6495 \text{ m}^3$)

14.9 Übungen 551

3. Isobare Wärmezufuhr in einem Dampferzeuger

In einem Dampferzeuger wird dem Nassdampf bei 10 bar(a) und x=0.6 isobar Wärme zugeführt. Nach der Wärmezufuhr erhält man überhitzten Dampf bei 400°C. Bestimmen Sie:

- a. die spezifische Enthalpie des Nassdampfes. ($h_{\alpha}=1970.77~kJ/kg$)
- b. die spezifische Enthalpie des überhitzten Dampfes. ($h_{\omega}=3264.4~kJ/kg$)
- c. die während dieser Zustandsänderung zugeführte spezifische Wärme
energie. (q=1293.63~kJ/kg)

4. Isentrope Expansion in einer Dampfturbine

In den Ansaugstutzen einer Dampfturbine führt man 100 kg/s überhitzten Dampf bei 20 bar(a) und 550°C. In der Turbine findet eine isentrope Expansion bis 0.1 bar(a) statt. Bestimmen Sie:

- a. die spezifische Enthalpie des Dampfes vor der Turbine. ($h_{\alpha} = 3577.6 \ kJ/kg$)
- b. die Temperatur, die spezifische Enthalpie und den Dampfgehalt des Nassdampfes nach der Expansion. ($\vartheta_{\omega}=45.83\,^{\circ}C,\ h_{\omega}=2399.6\ kJ/kg,\ x_{\omega}=0.9226$)
- c. die Enthalpiedifferenz bei der isentropen Expansion. $(h_{\omega} h_{\alpha} = -1178.0 \ kJ/kg)$
- d. die von der Turbine abgegebene technische Leistung. ($P_T = -117.8 \ MW$)

5. Isentrope Druckerhöhung in einer Speisewasserpumpe

In einer Speisewasserpumpe wird 100 kg/s siedendes Wasser bei 0.1 bar(a) isentrop auf 20 bar(a) gepumpt. Bestimmen Sie:

- a. die spezifische Enthalpie des Wassers vor und nach der Pumpe. ($h_{\alpha}=191.83~kJ/kg,~h_{\omega}=194.03~kJ/kg$)
- b. die Temperatur des Wassers vor und nach der Pumpe. $(\vartheta_{\alpha} = 45.83^{\circ}C, \vartheta_{\omega} = 45.94^{\circ}C)$
- c. die an die Speisewasserpumpe zugeführte technische Leistung. ($P_{t12} = 222 \text{ kW}$)

6. Isobare Wärmeabfuhr in einem Kondensator

In einem Kondensator soll 100 kg/s Nassdampf bei 0.08 bar(a) und x=0.95 isobar zum siedenden Flüssigkeitszustand verflüssigt werden. Bestimmen Sie:

- a. die spezifische Enthalpie des Nassdampfes vor der Kondensation. ($h_{\alpha}=2456.9~kJ/kg$)
- b. die spezifische Wärmeenergie, die abgeführt werden soll. ($q = -2283.04 \ kJ/kg$)
- c. die Wärmeleistung, die abgeführt werden soll. ($\dot{Q} = -228.3~MW$)

7. Dissipationsbehaftete Expansion in einer Dampfturbine

In den Ansaugstutzen der Dampfturbine der Teilaufgabe 4 führt man weiterhin 100 kg/s überhitzter Dampf bei 20 bar(a) und $550 ^{\circ}\text{C}$. In der Turbine findet diesmal eine sehr schnelle und dissipationsbehaftete Expansion bis 0.1 bar(a) mit einem isentropen Wirkungsgrad von 0.80 statt. Bestimmen Sie:

- a. die spezifische Enthalpie des Dampfes vor der Turbine. $(h_{\alpha} = 3577.6 \text{ kJ/kg})$
- b. die Temperatur, die spezifische Enthalpie und den Zustand des Dampfes nach der Expansion. ($\vartheta_{\omega}=72.95\,^{\circ}C,\ h_{\omega}=2635.17\ kJ/kg)$
- c. die Enhalpiedifferenz bei der dissipationsbehafteten schnellen Expansion. ($h_{\omega}-h_{\alpha}=-943.08~kJ/kg$)
- d. die von der Turbine abgegebene technische Leistung. ($P_T = -94.24 \ MW$)

8. Adiabate Drosselung

In einer horizontalen Leitung hat man überhitzen Dampf bei 50 bar(a) und 450°C. Man drosselt diesen Dampf in einer adiabaten Drosselstelle auf 10 bar(a).

Es wird angenommen, dass die Dampfgeschwindigkeit vor und nach der Drosselstelle gleich sei. Bestimmen Sie mit Hilfe des h, s-Diagrammes:

- a. die spezifische Enthalpie des Dampfes bei der Drosselung. (h = 3317.5 kJ/kg)
- b. die Temperatur des Dampfes nach der Drosselung. $(\vartheta_{\omega} = 426 \, ^{\circ}C)$

Überprüfen Sie diese Ergebnisse danach mit der Ablesung der Stoffdaten aus der Wasserdampftafel. (Bei Bedarf linear interpolieren!)

9. Bestimmen des Dampfgehaltes des Nassdampfes mit Hilfe einer adiabaten Drosselung

In einer horizontalen Nassdampfleitung wird 20 bar(a) gemessen. Zur Ermittlung des Dampfgehaltes wird eine Drosselung auf 1 bar(a) vorgenommen und nach der Drosselung eine Temperatur von 120°C gemessen.

Es wird angenommen, dass die Dampfgeschwindigkeit vor und nach der Drosselstelle gleich sei. Bestimmen Sie mit Hilfe des h, s-Diagrammes:

- a. die spezifische Enthalpie des Dampfes bei der Drosselung. (h = 2716 kJ/kg)
- b. den Dampfgehalt vor der Drosselung. (x = 0.96)

14.9 Übungen 553

10. Adiabate Drosselung des siedenden Wassers

Siedendes Wasser bei 2 bar(a) wird isenthalp auf 1 bar(a) gedrosselt.

Es wird angenommen, dass die Änderung der kinetischen Energie vor und nach der Drosselstelle vernachlässigbar sei. Bestimmen Sie:

- a. die spezifische Enthalpie des Wassers vor der Drosselung (h=504.7~kJ/kg)
- b. den Dampfgehalt nach der Drosselung. (x = 0.0386)

11. Zwischenüberhitzer

In einer Dampfkraftanlage wird der Dampf zwischen Hochdruck- und Niederdruckteilen einer Dampfturbinengruppe bei einem Druck von 45 bar(a) von 300°C auf 550°C erhitzt. Bestimmen Sie:

- a. die spezifischen Enthalpien des Dampfes vor und nach dieser Zwischenüberhitzung. $(h_{\alpha}=2944.2~kJ/kg,~h_{\omega}=3553.8~kJ/kg)$
- b. die während dieser Zustandsänderung zugeführte spezifische Wärme
energie. $(q=609.6\ kJ/kg)$

Übung 14.4: Steam power plant with real Clausius+Rankine-Cycle. It is proposed to build a 1000 MW_{elec} electric power plant with water/steam as working fluid and a fossil fuel (heavy oil or coal). The maximum steam pressure will be 150 bar(a), the maximum steam temperature 550°C, the pressure in condensers 0.1 bar(a). The isentropic efficiency of the steam turbine is 0.80.

The condensers are be cooled with river water. The river is 50 m large and 10 m deep. The average velocity of the river water is 10 m/min.

As an engineering consultant you are asked to estimate:

- a. the temperature rise of the river water far downstream of the plant. ($\Delta T_{KW} = 5.65 K$)
- b. the daily consumptions of heavy oil (lower heating value = 40 MJ/kg) and of coal (lower heating value = 25 MJ/kg). ($\dot{m}_{oil} = 6469.65 \ t/d$, $\dot{m}_{coal} = 10351 \ t/d$)

Übung 14.5: Analyse eines einfachen Dampfkraftwerkes. Als junger Ingenieur arbeiten Sie in einem Dampfkraftwerk. Im Gesamten erscheint Ihnen der Prozess noch komplex und die Anlage kompliziert, aber rasch erarbeiten Sie sich den Überblick und stellen Energie-Bilanzierungen auf.

a. Prozess und Verfahrensfliessbild

Heisser Hochdruckdampf 1 strömt in zwei symmetrisch angeordnete Dampfturbinen, der sich unter Leistungsabgabe an die Welle entspannt und sie als Nassdampf verlässt. Die Wellenleistung geht über ein Getriebe auf einen Generator, der die elektrische Leistung $-P_{el}$ abgibt. Der Nassdampf 2 wird in einem Kondensator verflüssigt (kondensiert) durch Kühlwasser, das als 5.1 eintritt, sich erwärmt und als 5.2 austritt. Das Kondensat tritt mit dem $Zustand\ 3$ aus und wird in der Kesselspeisewasserpumpe auf den $Zustand\ 4$ gebracht (Druckerhöhung). Schliesslich wird im Dampferzeuger das Wasser erwärmt, verdampft, auf den $Ausgangszustand\ 1$ "uberhitzt und strömt in die Turbine zurück."

Zeichnen Sie das *Verfahrensfliessbild* dieses *Kreisprozesses* auf und geben Sie die Energieströme an, welche die Bilanzhülle schneiden!

b. Tabelle der Zustandsgrössen und Darstellung im T,s- und h,s-Diagramm

An den Messinstrumenten lesen Sie Drücke, Temperaturen und Dampfdurchsatz ab, den Zeichnungen entnehmen Sie die Rohrleitungsdurchmesser. Weitere thermische Zustandsgrössen ermitteln Sie mit der Dampftafel. Sie haben auch den Nassdampf im Punkt 2 bestimmt: $x_2 = 0.9$.

Tragen Sie in der Tabelle die fehlenden Daten ein und stellen Sie den Prozess im T,s- und h,s-Diagramm dar!

14.9 Übungen 555

		1	2	3	4	5.1	5.2
\dot{m}	[kg/s]	92.6	92.6	92.6		312	0.2
ϑ	[C°]	530	29.0	29.0	29.8	20	25
p	[bar(a)]	100	0.04	0.04	100	2	1.7
v	$[\mathrm{m}^3/\mathrm{kg}]$				0.9998·10-	10^{-3}	10^{-3}
h	[kJ/kg]					84	104.9
x	[-]	-	0.9	0	-	-	-
c	[m/s]			2.5	2.5	3	3
\dot{V}	$[\mathrm{m}^3/\mathrm{s}]$						
D	[mm]	200	2.2200				

c. Turbine und Generator

Der mechanische Wirkungsgrad der Turbine inkl. Getriebe beträgt 98%, der Generatorwirkungsgrad 97%.

Wie gross ist P_{el} und η_{sT} ?

 η_{sT} soll approximativ mit Hilfe des beiliegenden h,s-Diagrammes bestimmt werden, in dem man eine isentrope Entspannung (von 1 auf 2s) einzeichnet. - Hinweis: Die Zustandspunkte 2 und 2s beziehen sich stets auf den Druck p_2 - auch wenn diese sich im Nassdampfgebiet befinden. ($P_{el}=-100.26~MW,~\eta_{sT}=0.80$)

d. Kondensator

Wie gross ist der Kühlwasserstrom?

$$c_p = 4.18 \text{ kJ/kg K}$$

 $(\dot{m}_{KW} = 10'025 \ kg/s)$

e. Kesselspeisewasserpumpe

Diese Pumpe hat einen Strömungswirkungsgrad von 75% und einen mechanischen von 95%.

Wie gross ist die Antriebsleistung?

Um wieviel erwärmt sich das Wasser? Das Wasser erwärmt sich hauptsächlich wegen der Dissipation gemäss dem Strömungswirkungsgrad der Pumpe, zudem auch ein wenig wegen der Kompressibilität des Wassers. Jedoch betrachten wir es hier als inkompressibel mit $v \approx 1.0 \cdot 10^{-3} \text{ m}^3/\text{kg}$.

Weisen Sie nach, dass mit 75% (innerem) Pumpenwirkungsgrad das Wasser sich um $0.8~\mathrm{K}$ erwärmt.

Es gilt: $c_v \approx c_p \approx 4.18 \text{ kJ/kg K}$

Spez. Volumen von Wasser:

29°C, 0.04 bar(a): $1.004 \cdot 10^{-3}$ m³/kg 29°C, 100 bar(a): $0.998 \cdot 10^{-3}$ m³/kg

 $(P_{SWP} = 1295 \ kW)$

f. Dampferzeuger

Das Wasser aus der Kesselspeisewasserpumpe wird im Dampferzeuger bei 100 bar(a) auf 311°C erwärmt, bei 100 bar(a) und 311°C verdampft und dann als Dampf bei 100 bar(a) auf 530°C überhitzt. Die Wärmeverluste im Dampferzeuger betragen 4% und der Wirkungsgrad der Verbrennung 92%. Das Heizöl hat einen Heizwert von 41 MJ/kg.

Wieviel Heizöl wird stündlich verbrannt?

$$(m_{BS} = 30.52 t)$$

g. Innerer und äusserer Gesamtwirkungsgrad des Dampfkraftwerkes

Ermitteln Sie den inneren und äusseren energetischen Wirkungsgrad dieser (vereinfachten) Energiezentrale.

$$(\eta_{th,i} = 0.34, \, \eta_{th,a} = 0.27)$$

h. Arbeitsverhältnis

Wie gross ist für diese einfache Dampfkraftanlage das Arbeitsverhältnis?

$$(r_{wi} = 0.99)$$

14.9 Übungen 557

Mollier h, s-Diagramm für Wasser

$T,s\operatorname{\!-Diagramm}$ für Wasser

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

14.9 Übungen 559

Übung 14.6: Dampfkraftprozess mit thermischer Energie aus dem Ozean. Gerne möchten wir mehr Sonnenenergie nutzen; künftig wird es unumgänglich werden! Als Standort scheint z. B. Afrika günstig. Aber der grösste Sonnenkollektor der Erde ist das Meer: in tropischen Gebieten ist das Oberflächenwasser 28°C, in etwa 500 m Tiefe 5°C warm. Mit dieser Temperaturdifferenz des Meerwassers soll eine Dampfkraftanlage betrieben werden. Bei einem solchen Konzept ist der Wirkungsgrad weniger wichtig als geringe Investitionsn; daher wählen wir einen offenen Kreisprozess: Dampf wird durch Entspannungsverdampfung (Drosselung) von Oberflächenwasser erzeugt, in der Turbine abgearbeitet und schliesslich in einem barometrischen Mischkondensator mit Tiefenwasser kondensiert. Die Anlage steht auf einer etwa 10 m hohen Plattform (gemäss der barometrischen Abtauchhöhe)

Verfahrensfliessbild:

Zustandspunkte:

	1	2	3	4	5	6	7
ϑ [°C]	28	24	24	10	24	5	10
p [bar(a)]	0.038					-	
h [kJ/kg]	117.3					21	42
$s [\mathrm{kJ/kg K}]$	0.4088					0.0762	0.151
$\dot{m}~[10^3~{\rm kg/s}]$	100						

Aufgaben:

- a. Stellen sie den Prozess qualitativ in einem T,s- oder h,s-Diagramm sowie im p,T-Diagramm dar
- b. Berechnen Sie die abgegebene Leistung und ergänzen Sie die Tabelle. Die Turbine ist eine Nassdampfturbine (hat deswegen eine spezielle Schaufelung) und arbeite mit einem isentropen Wirkungsgrad von 1. Ebenso sei $\eta_m = \eta_{el} = 1$. $(P_{el} = -79.71 \ MW)$

Hinweis:

Wir beschäftigen uns hier nicht im Detail mit der Fluiddynamik dieser Anlage, ausser dass sie eine barometrische Abtauchung hat und der Wasserspiegel im Abscheider und im barometrischen Kondensator um $H=p_U-p_i/\rho\,g\approx 10$ m über dem Meeresspiegel steht, damit keine Pumpen erforderlich ist. Das Oberflächenwasser wird im Steigrohr verdampft, es ist ebenfalls keine Pumpe notwendig und das Wasser könnte sogar bedeutend höher steigen als erforderlich, da die Dichte von Nassdampf kleiner ist als diejenige vom Wasser im Fallrohr. Der Prozess im Steigrohr ist energetisch: $0=h_2-h_1+\frac{c_2^2}{2}-\frac{c_1^2}{2}+g(z_2-z_1)$ und darf für die Berechnung der Dampfbildung im Zustand 2 als isenthalp $h_2=h_1$ behandelt werden - dieser Fehler ist kleiner als 0.01%, also identisch einer Drosselung von siedendem Wasser!