

TEMA: RADICAIS. POLINÓMIOS. FUNÇÕES.

TIPO: FICHA DE REVISÕES N°2

LR MAT EXPLICAÇÕES

1. Considere as funções $f: \{-1, 0, 1, 4, 5\} \to \mathbb{R}$ e $g: \{-1, 0, 2, 3, 5, 6\} \to \mathbb{R}$ definidas, respetivamente, por:

х	-1	0	1	4	5
f(x)	$\frac{1}{2}$	$\sqrt{2}$	√8	-3	3

 $(f \circ g)(5)$ é igual a:

(A) 1

(B) 3

(C) $\sqrt{2}$

(D) $2\sqrt{2}$

2. Na figura ao lado, estão representadas, num referencial O.n. xOy, duas retas verticais e a reta AB bissetriz dos quadrantes ímpares.

Os pontos A e B também pertencem às retas verticais e têm ordenadas iguais a -2 e 3, respetivamente.

2.1 Qual das condições seguintes define o domínio plano representado a sombreado, incluindo as fronteiras?

(D)
$$-2 \le x \le 3 \land \lceil (y \le x \land y \le 0) \lor (y \ge x \land y \le 0) \rceil$$

- 2.2 Qual é a distância entre os pontos A e B?
 - **(A)** $\sqrt{13}$

(B) $5\sqrt{2}$

(c) $\sqrt{2}$

(D) $2\sqrt{5}$

3. Na figura ao lado, o retângulo $\begin{bmatrix} AEOK \end{bmatrix}$ está dividido em oito quadrados geometricamente iguais.

Podemos afirmar que $N + \overrightarrow{LD} - \overrightarrow{BE}$ é igual a:

- **(A)** *B*
- (B) C
- (C) N
- (D) M

4. Na figura ao lado, estão assinalados segmentos de reta orientados que representam os vetores \vec{a} , \vec{b} e \vec{c} .

 \vec{b} \vec{c}

Tomando como unidade a medida do lado de cada quadrícula, em qual das opções seguintes está representada a norma do vetor $\vec{a} + \vec{b} + \vec{c}$?

- **(A)** 1
- **(B)** 2
- **(C)** 4
- **(D)** 6
- 5. Em qual das seguintes opções se tem um par de vetores colineares?

(A)
$$(\sqrt{6}, -2); (\sqrt{3}, -1)$$

(B)
$$(\sqrt{3}, -2); (-6, 4\sqrt{3})$$

(C)
$$(5,0);(0,5)$$

(D)
$$(1,-2);(-1,1)$$

6. Considere, num plano munido de um referencial o.n. xOy a circunferência de equação $x^2 + y^2 = 2$.

Sabe-se também que:

- a reta *r* interseta a circunferência nos eixos coordenados nos pontos *A* e *B*;
- a reta s é paralela ao eixo Ox e tangente à circunferência no ponto D;
- as retas *r* e *s* intersetam-se no ponto *C*.
- **6.1.** Considere o ponto P de coordenadas (-1,1).

Mostre que o ponto P pertence à circunferência.

6.2. Seja $\vec{u} = -2\vec{OP}$ e seja $Q = P + \vec{u}$.

Determine as coordenadas do ponto Q e refira, no contexto do problema, o significado de [PQ].

- **6.3.** Determine as coordenadas dos pontos *A*, *B* e *C*.
- **6.4.** Justifique que a reta *r* é paralela à bissetriz dos quadrantes ímpares.
- **6.5.** Escreva uma equação vetorial da reta *r*.
- **6.6.** Defina por uma condição a região sombreada da figura.

- 7. Num referencial o.n. Oxyz, considere os vetores $\vec{u}(2,-1,m), m \in \mathbb{R}$ e $\vec{v}\left(-\frac{1}{3},n,2\right), n \in \mathbb{R}$..
 - **7.1** Determine m e n de modo que os vetores \vec{u} e \vec{v} sejam colineares.
 - **7.2** Admita que m = -2. Determine as coordenadas do(s) vetor(es) colinear(es) com \vec{u} de norma 1.
- 8. Considere os conjuntos:

$$A = \{x \in \mathbb{R} : x < 1 \ \lor \ x \ge \pi\}$$

$$B = \{x \in \mathbb{R}: -2 < x < 2\}$$

$$C = \mathbb{R}_0^-$$

O conjunto $\overline{A} \setminus (B \cup C)$ é igual a:

- **(A)** $[2, \pi[$
- **(B)** $[\pi, +\infty[$
- (C) $[1, \pi[$
- (D) \mathbb{R}^+

9. Considere os seguintes polinómios:

$$A(x) = x^4 + 3x^3 - 10x^2 - 24x$$

$$B(x) = x^2 - 2x$$

$$C(x) = ax^2 + bx + c$$
, onde $a, b e c$ são números reais, com $a \neq 0$

- **9.1.** Determine o valor exato de $A(\sqrt{3}) + B(1 \sqrt{2})$.
- **9.2.** Determine o quociente e o resto da divisão inteira de A(x) por B(x).
- **9.3.** Decomponha o polinómio A(x) num produto de fatores de grau 1, sabendo que -2 é raiz simples do polinómio.
- **9.4.** Determine o conjunto-solução da condição $A(x) \ge 0$.
- **9.5.** Determine os valores de a, b e c, sabendo que 3 é uma raiz de multiplicidade 2 do polinómio C(x) e que o resto da divisão de C(x) por x-1 é 6.
- **10.** A expressão $\frac{x^2}{10\sqrt{x^8}}$, com x > 0, é igual a:

(A)
$$x^2$$

(B)
$$x^{10}\sqrt{x^2}$$

(C)
$$x^2 \sqrt[10]{x^8}$$

(D) $x^{10}\sqrt{x}$

11. Considere as proposições:

$$p: \sqrt[3]{4} = 2^{\frac{1}{3}}$$

$$q:\sqrt{(-3)^2}=-3$$

$$r: \sqrt[3]{(-2)^3} = -2$$

Qual das seguintes proposições é falsa?

- **12.** Qual dos seguintes números pertence ao intervalo $\left[6 \times 2^{-2}, 5^{\frac{1}{2}}\right]$?
 - **(A)** 3

- **(B)** $\frac{5}{7}$
- **(C)** 1,7

- **(D)** $\frac{7}{2}$
- 13. Na figura estão representados dois quadrados e um triângulo O triângulo [AFD] e os quadrados [ABCD] e [BEFG].
 Fixada uma unidade de comprimento, sabe-se que:
 - a área do quadrado [ABCD] é 48.
 - o perímetro do quadrado [BEFG] é $8\sqrt{2}$.
 - Mostra que:
 - **13.1** o perímetro do quadrado [ABCD] é igual a $16\sqrt{3}$;
 - **13.2** a área do triângulo [AFD] é igual a $24 4\sqrt{6}$.

14. Na figura está representado o hexágono regular [ABCDEF] de centro no ponto O.

Qual das seguintes igualdades é falsa?

(A)
$$\overrightarrow{AO} + \overrightarrow{DE} = \overrightarrow{CD}$$

(B)
$$E + (\overrightarrow{FO} - \overrightarrow{CD}) = C$$

(C)
$$\frac{1}{2}(\overrightarrow{AE} - \overrightarrow{CO}) + \overrightarrow{EF} = \overrightarrow{OA}$$

(B)
$$\frac{1}{2}\overrightarrow{CF} - 2\overrightarrow{CB} = \overrightarrow{AE}$$

15. Fixado um referencial ortonormado do espaço considere a pirâmide quadrangular regular de vértice V e base $\begin{bmatrix} ABCD \end{bmatrix}$. Sabe-se que A(-2,-1,4) e C(0,1,-4).

- **15.2** Sabendo que o vértice V pertence à reta definida pelo sistema de equações paramétricas $\begin{cases} x=k \\ y=2k \ , k \in \urcorner \end{cases}$, mostre que V tem coordenadas (1,2,1). z=k
- **15.3** Determine uma equação vetorial da reta MV em que M é o ponto médio do segmento AC
- **15.4** Determine a medida do volume da pirâmide.
- **16.** Considere a proposição $\forall x$, ($x \le 2 \lor x > 1$). Qual das seguintes proposições é equivalente à negação da anterior?
 - **(A)** $\forall x, (x > 2 \land x \le 1)$

(B) $\exists x : (x > 2 \land x \le 1)$

(C) $\exists x : (x > 2 \ \lor \ x \le 1)$

(D) $\exists x : (x \ge 2 \land x < 1)$

17. Considere duas funções f e g , de domínio $\left[0,2\right]$, cujos gráficos se apresentam a seguir.

Qual das seguintes opções pode corresponder ao gráfico da função $f\circ g$?

(A)

(C)

18. Considera o polinómio: $P(x) = x^4 - 2x^3 + 2x - 1$.

Qual é a multiplicidade de raiz 1?

19. Resolve a seguinte equação, apresentado a resposta com denominador racional.

$$x\sqrt{8} - 4 = x\sqrt{3} - 2$$

20. Mostra que a proposição $\sqrt{50} + 3\sqrt{2} = 8\sqrt{2}$ é verdadeira.

21. Calcula simplificando o resultado o mais possível:

(a)
$$\sqrt{2} \times \sqrt{5} + \frac{1}{2}\sqrt{10}$$

(b)
$$\sqrt[3]{18} : \sqrt[3]{9} \times (\sqrt[3]{2})^2$$

(c)
$$\sqrt{\sqrt{36}} + \sqrt{24} + \sqrt{54} - \sqrt{216}$$

22. Racionaliza os denominadores seguintes.

(a)
$$\frac{3}{2\sqrt{3}}$$

(b)
$$\frac{2}{\sqrt{6}}$$

(c)
$$\frac{2}{\sqrt[3]{4}}$$

(d)
$$\frac{2}{\sqrt{3}-3}$$

(e)
$$\frac{3}{\sqrt{2}+2\sqrt{3}}$$

(f)
$$\frac{7+\sqrt{3}}{1+\sqrt{3}}$$

- **23.** Consider os conjuntos A e B tais que $A = \{-2, -1, 0, 1, 2\}$ e $B = \{-10, -5, 0, 5, 10\}$.
 - Representa em extensão os seguintes conjuntos:

(a)
$$A \cap B$$

(b)
$$A \cup B$$

(c)
$$B \setminus A$$

(d)
$$A \cap \mathbb{N}$$

- **24.** Considera as funções reais de variável g e h definidas em \mathbb{R} por g(x) = 4x 2 e h(x) = -3x + 5.
- **24.1** Calcula:

(a)
$$(g \circ h)(-2)$$
 (b) $(h \circ g)(-2)$

(b)
$$(h \circ g)(-2)$$

24.2 Determina a expressão algébrica que define as funções:

(a)
$$(g \circ h)(x)$$
 (b) $(h \circ g)(x)$

(b)
$$(h \circ g)(x)$$

- 25. Qual das afirmações seguintes é necessariamente verdadeira?
 - (A) Toda a função real de variável real injetiva é também sobrejetiva.
 - (B) Toda a função real de variável real sobrejetiva é também injetiva.
 - (C) Toda a função real de variável real bijetiva é também sobrejetiva.
 - (D) Toda a função real de variável real injetiva é também bijetiva.

26. Considera a função g definida por: $g: \{0, 1, 4, 9\} \longrightarrow \mathbb{R}$ $x \longrightarrow \sqrt{x}$

- **26.1.** Indica: (a) D_g ; (b) o conjunto de chegada de g; (c) D_g'
- **26.2.** Determina f(C), sendo $C = \{0,1,4\}$.
- **26.3.** Determina o gráfico da função $f|_D$, sendo $D = \{1,4,9\}$.

27. Considera as funções f, g, h e i, representadas pelo seu gráfico cartesiano. Indica, justificando, as que são não injetivas.

- **28.** Considera a função f representada no referencial cartesiana da figura.
 - **29.1** Indica $D_f \in D'_f$.
 - **29.2** Sendo g a função real de variável real definida por $g(x) = \sqrt{3x+4}$, determina:

(b)
$$(f \circ g)(7)$$

(c)
$$(g \circ f)(0)$$

29. Considera a função f associada ao seguinte gráfico:

$$G_f = \{(1,2), (2,2), (3,1), (4,2), (5,4), (6,5)\}$$

- **29.1.** Completa a frase seguinte de forma a obteres uma afirmação verdadeira: "A função f é não injetiva pois os objetos _____, ____ e ____ têm a mesma imagem".
- **29.2.** Indica o conjunto de chegada da função f, de forma que f seja sobrejetiva.
- 30. Para cada alínea, indica, justificando, se a função definida pelo seu gráfico é bijetiva.

30.1
$$f: \{1,2,3\} \to \{1,2,3\}; G_f = \{(1,2), (2,1), (3,3)\}$$

30.2
$$g: \{1,2,3\} \rightarrow \{1,2\}; \ G_g = \{(1,2), (2,1), (3,1)\}$$

30.3
$$h: \{1,2\} \rightarrow \{1,2,3\}; G_g = \{(1,2),(2,1)\}$$

30.4
$$g: \{1,2,3\} \rightarrow \{1,2\}; \ G_g = \{(1,2),(2,1),(3,1)\}$$

30.5
$$j: \{2\} \rightarrow \{2\}; \ G_i = \{(2,2)\}$$

30.6
$$k: \{1,2,3\} \rightarrow \{1,2,3,4\}; G_g = \{(1,1), (2,2), (3,3)\}$$

31. Na figura em baixo, à esquerda, está representado o gráfico de uma função f, de domínio [-1,6], e, na figura da direita, está representada parte do gráfico de uma função g, de domínio \mathbb{R} .

Tal como as figuras sugerem, em ambas as funções, todos os objetos inteiros têm imagens inteiras.

Quais são os zeros da função $g \circ f$? (o símbolo \circ designa a composição de funções)

- (A) 0 e 4
- (B) 1 e 5
- (C) -1 e 3
- (D) 2 e 6
- **32.** Seja f a função, de domínio \mathbb{R} , definida por: $f(x) = \frac{2}{3}x^3 + 3x^2 13$.

Considera, para cada número real k, a função g, de domínio \mathbb{R} , definida por g(x)=kx+2.

Determine o valor de k para o qual se tem $(g \circ f)(-3) = 6$.

33. Seja f a função cujo gráfico está representado na figura ao lado.

Seja g a função, de domínio \mathbb{R} , definida por g(x) = -x + 3.

Qual é o valor de $(g \circ f)(3)$?

(o símbolo • designa a composição de funções)

- (A) -1
- (B) 0
- (C) 1
- (D) 2

34. Seja *f* a função cujo gráfico está representado a figura ao lado.

Seja g a função, de domínio \mathbb{R} , definida por g(x) = -2x + 1.

Qual é o valor de $(f \circ g)(2)$?

(o símbolo o designa a composição de funções)

- (A) -2
- (B) -1
- (C) 1
- (D) 2

35. Na figura ao lado está representada parte do gráfico de uma função g. Seja f a função de domínio $\mathbb R$ definida por f(x)=|x|.

Qual é o valor de $(f \circ g)(-3)$?

(o símbolo o designa a composição de funções)

- (A) -4
- (B) 0
- (C) 3
- (D) 4

36.1 Qual das correspondências não é uma função:

36.2 Qual das correspondências é uma função bijetiva?

(A) *f*

(A) f

(B) g

(C) h

(D) i

36.3 Qual das correspondências é uma função injetiva e não sobrejetiva?

(A) f

(B) g

(C) h

(D) i

36.4 Qual das correspondências é uma função sobrejetiva e **não** injetiva?

(A) f

(B) g

(C) h

(D) i

37. Considera as seguintes funções:

37.1 Qual é o valor de $(g \circ f)(4)$?

(A) 1

(B) 2

(C) 3

(D) 4

37.2 Qual é o valor de $(f \circ g)(4)$?

(A) 1

(B)2

(C) 3

(D) 4

38. Considera os conjuntos $A = \{0,2,4,6\}$ e $B = \{0,1,3,5,7,9\}$ e as funções $f: A \to \mathbb{Z}$ e $g: B \to \mathbb{Z}$ tais que: $f(x) = 2x + 1; \quad g(x) = 3 - x$

Determina o domínio e o contradomínio da função $g\circ f$ e representa a função através de um diagrama de setas.

- **39.** Considera os conjuntos $A = \{-2, -1, 0, 1, 2\}$ e $B = \{-4, -3, -2, -1, 0, 1\}$ e as funções $g: A \to \mathbb{Z}$ e $h: B \to \mathbb{Z}$ tais que: $g(x) = -x^2$ e h(x) = 1 x.
 - **39.1** Determina o domínio da função $g \circ h$.
 - **39.2** Determina o contradomínio de $g \circ h$.
 - **39.3** Determina: (a) $g \circ h(0)$ (b) $g \circ h(-1)$ (c) $h \circ h(1)$ (d) $g \circ g(-1)$