Physical Design Analysis

IR Drop Analysis

IR Drop

- The voltage that gets to the internal circuitry is less than that applied to the chip, since every metal layer offers resistance to the flow of current
- When a current, I passes through a conductor with resistor R, it exhibits a voltage drop V which is equal to the resistance times the current,

Ohm's law, V=IR

- IR Drop is defined as the average of the peak currents in the power network multiplied by the effective resistance from the power supply pads to the center of the chip
- IR Drop is a reduction in voltage that occurs on both Power and Ground networks
- IR Drop Analysis ensures that Power Delivery Network (PDN) is robust, and that your system will function to specification
- IR Drop is determined by the current flow and the supply voltage
- As distance between supply voltage and the component increases the IR Drop also increases

IR Drop Analysis

- IR Drop Analysis will compute the actual IDD and ISS currents, because these values are time-dependent
- IR Drop Analysis will compute Global IR drop which is important and more accurate, but cannot be compute separately (parallel) for smaller blocks, which may led to bigger run time

Local IR Drop

- IR Drop become a local phenomenon when a number of gates in close proximity switches at once
- Local IR Drop can also be caused by a higher resistance to a specific portion of the Grid

Global IR Drop

- IR Drop is a global phenomenon when activity in one region of a chip causes an IR Drop in other regions
- In a well-meshed power grid with equally distributed currents, the power grid typically has a set of equipotential IR Drop surfaces that form concentric circles cantered in the middle of the chip
- So the center of the chip usually has the largest IR Drop or the lowest supply voltage

- Peak IR Drop is much larger than the Average IR Drop
- Peak IR Drop happens in the worst-case switch patterns of the gates

Types of IR Drop

Static IR Drop

- Static IR drop is average voltage drop for the design
- The average current depends totally on the time period
- Static IR drop was good for signoff analysis in older technology nodes where sufficient natural decoupling capacitance from the power network and non-switching logic were available
- Localized switching is only considered
- Only be a few % of the supply voltage
- Can be reduced by lowering the resistance of Supply and Signal Paths

- Extract power grid to obtain R
- Select stimulus
- Compute time averaged power consumption for a typical operation to obtain I(current)
- Compute: V = IRNon time-varying

Dynamic IR Drop

- When large amounts of circuitry switch simultaneously causing peak current demand
- Dynamic IR drop is mainly due to Instantaneous Voltage Drop (IVD) and it can be controlled by inserting Decap Cells in the Power network
- Dynamic IR drop depends on switching activity and switching time of the logic and is less dependent on the a clock period
- Instantaneous current demand could be highly localized and could be brief within a single clock cycle (a few hundred ps)
- Vector dependent, so VCD-based analysis is required

Dynamic IR Drop methodology

- Extract power grid to obtain on-chip R and C
- Include RLC model of the package and bond wires
- Select stimulus
- Compute time varying power for specific operation to obtain I(t)
- Compute V(t) = I(t)*R + C*dv/dt*R + L*di/dt

IR Drop: Reasons

- Improper placement of Power/Ground Pads
- Wrong Block placement
- Bad global power routing
- Insufficient Core Ring, Power Strap width
- Lesser no of Power Straps
- Missing Vias
- Insufficient number of Power Pads

IR Drop: Robustness Checks

- Open circuits
- Missing or insufficient Vias
- Current Density violations
- Insufficient Power Rail design

IR Drop: Impacts

- IR Drop Analysis confirms that the worst case voltage drop (which is considered for the worst corner for timing) on a chip meets IR Drop targets
- Impacts in Timing
 - If this Voltage Drop is too severe, the circuit will not get enough voltage, resulting in the malfunction or timing failure
 - If IR Drop increases Clock Skew then it will result in Hold Time Violations
 - If IR Drop increases Signal Skew then it will result in Setup Time Violations

IR Drop Plot

Power grid has a set of equipotential surfaces that form concentric circles centered in the middle of a block

IR Drop Plot – After fixing

IR Drop: Remedies

- Stagger the firing of buffers (bad idea: increases skew)
- Use different power grid tap points for clock buffers (but it makes routing more complicated for automated tools)
- Use smaller buffers (but it degrades edge rates/increases delay)
- Rearrange blocks
- More VDD pins
- Connect bottom portion of grid to top portion
- Distributing supplies symmetrically on the chip
- Lowering the resistance of Supply and Signal Paths by making supply wires thicker in dimensions than signal wires, R = ρ.L / A
- Decap insertion can solve Dynamic IR drop, at later stage of the design
- Amount of decap depends on:
 - Acceptable ripple on VDD-VSS (typically 10% noise budget)
 - Switching activity of logic circuits (usually need 10X switched cap)
 - Current provided by power grid (di/dt)
 - Required frequency response (high frequency operation)

Ldi/dt Effects

- In addition to IR drop, power system inductance is also an issue
- Inductance may be due to power pin, power bump or power grid
- Overall voltage drop is:

Vdrop = IR + Ldi/dt

As a solution to this effect, distribute decoupling capacitors (decaps) liberally throughout design

Copyright © 2021

VLSI BACK-END ADVENTURE