Sorular

1. Verilen Köprü devresinde (R+ΔR) bir sensöru temsil ediyor fiziksel değişim olmadan ΔR=0 olduğuna göre Fiziksel değişime göre çıkış gerilimini bulunuz.

2. Verilen devrede V=10 olduğuna göre, Vout'un max ve minimum değerlerini yazınız, her potansiyometrenin görevi açıklayınız.(yatay potansiyometreler orta konumdadır.)

3. Verilen DAC devresinde çıkış gerilimini bulunuz. Vs =20 ise1110 için çıkış değeri nedir?

- 4. Kodlayıcıda(encoder) çözünürlük nedir bir örnek ile açıklayınız.
- **5.** "Absolute" ve "incremental encoder" arasındaki fark nedir?
- **6.** İki çıkışlı bir encoder'in dalga şekli şekilde verilmiştir. Saat yönünde veya tersi yönde motorun dönüşünün tespiti için gereken yöntemi yazınız. (xor)
- Processor D/A

7. Verilen blok diyagramda genelde hangi motorlar kullanılır. Encoder'in çıkışları arasındaki faz açısı nedir?

- 8. Verilen encoder'ın açısal çözünürlüğü yanınız.
- 9. Verilen encoder tipinde sağ ve sola dönüş nasıl algılanır?

10. Açısal hızı ve pozisyonu ölçmek için hangi elemanlar kullanılır?

b. Gray code encoder

11. Verilen şekilde Vout ile açı değişimi arasındaki ilişkiyi formülle açıklayınız.

- 12. İki adet D flip/flop ve bir UP/Down sayıcı kullanarak encoder arayüz devresini oluşturunuz...
- 13. Önceki soruda aşağıdaki verilen girişler için flip/flop'lar ın çıkış ındaki değişimi çiziniz.
- **14.** Verilen devrede istenilen elemanların görevlerini açıklayınız. Potansiyo metreler, OP-amp, Transistörler

- 15. "Input capture" ve "output compare" modları genel olarak hangi uygulamalarda kullanılır?
- 16. Mikrodenetleyicide PWM modülü analog sinyal elde etmek için nasıl kullanılır?
- 17. "Rotary Pulse Generator" nedir ve hangi amaç için kullanılır?
- 18. CPU tabanlı devrede Timer'in kullanım biçimini şekle bakarak açıklayınız.

- **19.** ADC entegre devrelerinde genellikle kullanılan giriş ve çıkışlarını(start,read) kısaca açıklayınız.
- 20. En hızlı ADC'nin avantaj ve dezavantajlarını yazınız.
- 21. ADC'den önce anti-alias filtre kullanılmasının amacı nedir?
- 22. S/H devresini ADC devresine ilave edilmesinin faydası nedir?
- 23. İzolasyonda kullanılan elemanların adını yazınız.
- **24.** Yazılım ortamında bir anahtarın kapanması ile oluşan debounce'ı yok etmek için basit akış diyagramını çiziniz.
- **25.** 3x3 matris klavyede basılan butonun mikrodenetleyici tarafından algılanması için basit bir akış diyagramını çiziniz.
- 26. Senkron ve asenkron seri haberleşmeyi kısaca karşılaştırınız.
- 27. Asenkron seri haberleşmede döndürülen veri paketinde hangi bilgiler yer alır.
- **28.** Mikrodenetleyicinin aynı board üzerinde çevresel elemanlarla haberleşmek için hangi protokoller kullanılır.
- 29. Seri haberleş mede kullanılan MAX232 chip'inin görevini kısaca açıklayınız.
- 30. I2C ve SPI haberleş meyi karşılaştırınız.
- 31. Mikrodenetlevicilerde CCP'nın ne olduğunu açıklayınız.
- 32. I2C seri protokolünde ACK ne anlama gelir?
- 33. SPI seri protokolünde A CK'nin görevi nedir?
- 34. I2C protokolünde Master tarafından Slave'e veri yazılması için bir protokol Wordunu yazınız

- 35. SPI ve I2C Pc ve mikroden etleyiciler arasında haberleş mede nasıl kullanılır?
- **36.** SCI asenkron haberleş mede gönderilen bir paketin içerisinde hangi veriler yer alır?
- 37. Baud-rate ve bit-rate arasındaki farkı örnekle açıklayınız.
- 38. I2C protokolu için start ve stop durumunu bus'ı çizerek açıklayınız
- 39. Sensörların sınıflandırması hangi kriterlere göre yapılır?
- **40.** Herhangi bir sensorde sensivite(hassasiyet) ve transfer fonksiyonu arasındaki ilişkiyi açıklayınız. Aynı fiziksel değeri ölçen iki sensoru karşılaştırabilirsiniz
- **41.** Histeresis aralıklı On-Off denetim için genel bir code yazınız (C veya C benzeri kod veya çalış ma mantığını kod yazılabilecek sırasıyla)
- 42. Mikrodenetleyicilerde CCP'nın ne olduğunu açıklayınız.
- 43. Buton'da oluşan debounce'ı yok etmek için iki devre çiziniz.
- 44. Watchdog timer'ın görevini kısaca açıklayınız.
- **45.** Mikrodenetleyicide bulunan timer hangi işlevleri yerine getirmek için kullanılır. Maddeler halinde yazınız.
- **46.** Adım motorlarında hız ve yön değişimi nasıl sağlanır?
- 47. Adım motorlarında akımın artırıp azaltılması neyi etkiler?
- **48.** Da motorun sürülmesinde kullanılan H-köprü yerine nasıl bir ara sürücü devresi eklenmelidir ki motor dönüş yönü tekrar denetlenebilsin.
- 49. Da motorlarda dönüş kuvveti yükten bağımsız olarak nasıl sabit tutulur.

50. Kapalı döngü denetim uygulamak için Da motor sürme algoritmasında(DA_motor_sunu'daki şekil 5) nasıl bir değişiklik yapılmalıdır.

Binary Values | Decimal Values

51. Yandaki LCD karakter yapısını oluşturunuz.

- **52.** Çoklanmış LED arayüz devresinin işleyiş yordamını(procedure) yazınız.
- 53. Çoklanmış LED arayüz devrelerinde frekans, akım ve gerilimin önemi nedir?
- **54.** LCD'lerde okuma ve yazma yordamları(procedure) nasıldır?
- 55. Yanda görülen encoder 1MHz'lik iç vuruma sahip mikrodenetleyici ile birlikte kullanılarak motorun hızının ölçülmesi için kullanılıyor. Vm=1200 rpm
 - a. θ_H / θ_L = 2 olduğuna göre encoderin çalışma süresi(Duty Cycle) nedir? (prescalar value=1/4)
 Bu encoder'in cözünürlüğü(resolution) nedir?
 - b. prescalar value = 1/8 olsun. Aynı encoder için
 t_{count} = 32 μsec ise bu encoder'in çözünürlüğü(resolution) nedir?

57. XOR ve NAND işlemlerini ladder diyagramla gösteriniz.

58. Yanda görülen devrenin Ladder Diyagramını oluşturunuz.

Çözüm lü soru:7.10

A stepping motor has 130 steps per revolution. Find the digital input rate that produces 10.5 rev/s.

Solution:

We have, (130 steps/rev)(10.5 rev/s) = 1365 steps/s

so we need 1365 pluses per second where each pulse produces one step.

Çözüm lü soru:7.11 A stepping motor has 7.5° per step. Find the rpm produced by a pulse rate of 2000 pps on the input.

Solution:

the motor steps once for each pulse, so, $R = (2000 \text{ steps/s})(7.5^{\circ}/\text{step}) = 15000^{\circ}/\text{s}$ There are 360° per revolution, so, $R = (15000^{\circ}/\text{s})/(360^{\circ}/\text{rev}) = 41.67 \text{ rev/s}$

There are 60 seconds per minute, so, R = (41.67 rev/s)(60 s/min)

R = 2500 rpm

Verilmiş olan sorular final sınavının en az 30% nı oluşturacaktır.

Aşağıda verilen dosyalardan sadece verilen sorular sorulabileæktir. Ayrıca bu notları çalışmaya gerek kalmayacaktır.

DAK_ek, sensor,sensor1, EEM415_l1 EEM415_l2, EEM415_l4a, EEM415_l4b, EEM415_l7, EEM415_l10