

Algorithm Design and Analysis (H) cs216

Prof. Shiqi Yu (于仕琪)

yusq@sustech.edu.cn

http://faculty.sustech.edu.cn/yusq/

Divide and Conquer

Divide-and-Conquer

- Divide-and-conquer.
 - Break up problem into several parts.
 - Solve each part recursively.
 - Combine solutions to sub-problems into overall solution.
- Most common usage.
 - Break up problem of size n into two equal parts of size ½n.
 - Solve two parts recursively.
 - Combine two solutions into overall solution in linear time.
- Consequence.
 - Brute force: n².
 - Divide-and-conquer: n log n.

1. Mergesort

Sorting

- Sorting. Given n elements, rearrange in ascending order.
- Applications.
 - Sort a list of names.
 obvious applications
 - Organize an MP3 library.
 - Display Google PageRank results.
 - List RSS news items in reverse chronological order.
 - Find the median. problems become easy once
 - Find the closest pair. items are in sorted order
 - Binary search in a database.
 - Identify statistical outliers.
 - Find duplicates in a mailing list.

- Data compression. non-obvious applications
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

. . .

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

Merging. Combine two pre-sorted lists into a sorted whole.

- How to merge efficiently?
 - Linear number of comparisons.
 - Use temporary array.

• Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Proof by Recursion Tree

SOUTHER WILLIAM SOUTHERN WILLIAM SOUTH WILLIAM SOUTH WILLIAM SOUTHERN WILLIAM SOUTH WILLIAM SOUTH WILLIAM SOUTH WILLIAM SOUTH

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then $T(n) \le cn \log_2 n$.

```
Pf. For n > 1:

n = 2: T(2) \le 2c

assume for all m < n, T(m) \le cm \log_2 m.

T(n) \le 2T(n/2) + cn
\le 2c(n/2) \log_2(n/2) + cn
= cn \log_2(n/2) + cn
= cn \log_2(n) - cn + cn
= cn \log_2(n)
```


2. Counting Inversions

Counting Inversions

- Music site tries to match your song preferences with others.
 - You rank n songs.
 - Music site consults database to find people with similar tastes.
- Similarity metric: number of inversions between two rankings.
 - My rank: 1, 2, ..., n.
 - \triangleright Your rank: $a_1, a_2, ..., a_n$.
 - Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs				
	Α	В	С	D	Е
Me	1	2	3	4	5
You	1	3	4	2	5
<u> </u>					

Inversions

3-2, 4-2

• Brute force: check all $\Theta(n^2)$ pairs i and j.

• Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

- Divide-and-conquer.
 - Divide: separate list into two pieces.

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - \triangleright Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

- > Assume each half is sorted.
- \triangleright Count inversions where a_i and a_i are in different halves.
- Merge two sorted halves into sorted whole.

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

Counting Inversions: Implementation

- Pre-condition. [Merge-and-Count] A and B are sorted.
- Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

   Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r<sub>B</sub>, L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```


- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
- Fundamental geometric primitive.
 - Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
 - Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

- Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.
- 1-D version. O(n log n) easy if points are on a line.
- Assumption. No two points have same x coordinate.

Closest Pair of Points: First Attempt

• Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

- Divide. Sub-divide region into 4 quadrants.
- Obstacle. Impossible to ensure n/4 points in each piece.

- Algorithm.
 - Divide: draw vertical line L so that roughly ½n points on each side.

- Algorithm.
 - Divide: draw vertical line L so that roughly ½n points on each side.
 - Conquer: find closest pair in each side recursively.

Algorithm.

- Divide: draw vertical line L so that roughly ½n points on each side.
- Conquer: find closest pair in each side recursively.
- \triangleright Combine: find closest pair with one point in each side. \longleftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

• Find closest pair with one point in each side, assuming that distance $< \delta$.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- \blacksquare Observation: only need to consider points within δ of line L.
- If $q \in Q, r \in R, d(q,r) < \delta$, then q, r in stripe $(L_x \delta, L_x + \delta)$
- $\quad \textbf{Because } L_x q_x \leq r_x q_x \leq d(q,r) < \delta$
- $r_x L_x \le r_x q_x \le d(q, r) < \delta$

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - \succ Observation: only need to consider points within δ of line L.
 - \triangleright Sort points in 2 δ -strip by their y coordinate.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - \triangleright Observation: only need to consider points within δ of line L.
 - \triangleright Sort points in 2 δ -strip by their y coordinate.
 - Only check distances of those within 11 positions in sorted list!

• Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

• Claim. If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ .

• Pf.

 \triangleright No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.

Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

• Fact. Still true if we replace 12 with 7.

26

2 rows

δ

 $\frac{1}{2}\delta$

 $\frac{1}{2}\delta$

 $\frac{1}{2}\delta$

28

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                       O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                       2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                       O(n)
                                                                        O(n \log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                        O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

