Online Review Mining Tutorial

Jongkyung Shin

shinjk1156@unist.ac.kr

Learning Objectives

Get to know:

- How to preprocess online reviews
- How to execute LDA topic modeling as feature engineering
- How to execute VADER sentiment analysis
- How to build the logit model as prediction modeling on customer satisfaction

Online Review Mining Framework for Service Quality Improvement

Tutorial of Online Review Mining for Service Quality Improvement

(1) Online reviews preprocessing

(2) Service Feature Engineering

Tutorial of Online Review Mining for Service Quality Improvement

(3) Sentiment Analysis

(4) Prediction modeling on customer satisfaction

Dataset

Singapore hotels under four ratings

■ Time: 2010.01 – 2019.12

■ Number of reviews: about 30,000

Dataset

■ HotelRev_less4STAR.xlsx

Class		Name	id	date	date_of_s	title	body	rating	trip_type	aspect	aspect_ra
	2	Arianna H	Zee7	10월-11	10월-11	Expect Pu	Arrived at	10	Travelled	['Value', 'l	['10', '10'
	2	Arianna H	triippyy	10월-11	10월-11	Not bad, ı	The hotel	50	Travelled	['Value', 'l	['40', '40'
	2	Arianna H	Minibreal	10월-11	10월-11	Better the	Expected	30	Travelled	['Value', 'l	['40', '30'
	2	Arianna H	Masrura F	12월-11	10월-11	Really in t	My reason	30		['Value', 'l	['30', '20'
	2	Arianna H	Genevie A	1월-12	10월-11	Average	Don't exp	30	Travelled	['Value', 'l	['40', '30'
	2	Arianna H	Sapphire ²	11월-11	11월-11	Overprice	The hotel	20	Travelled	['Value', 'l	['30', '20'
	2	Arianna H	PCUY	2월-12	12월-11	Comforta	Stayed 5 r	40	Travelled	['Value', 'l	['50', '40'
	2	Arianna H	keenaz	12월-11	12월-11	ok la	although	30	Travelled	['Value', 'l	['30', '30'
	2	Arianna H	cinta_alar	2월-12	12월-11	No frills b	my family	30	Travelled	['Value', 'l	['30', '30']
	2	Arianna H	ariellek_b	1월-12	1월-12	Budget tra	Singapore	40	Travelled	['Value', 'l	['40', '30'
	2	Arianna H	OnaBeech	2월-12	2월-12	A lot of no	You might	20	Travelled	['Value', 'l	['30', '20'
	2	Arianna H	RonnySig	4월-12	3월-12	The only o	Singapore	30	Travelled	['Value', 'l	['30', '20'
	2	Arianna H	Luah G	3월-12	3월-12	Bad decis	Was our f	30	Travelled	['Value', 'l	['20', '20'
	2	Arianna H	Danno_99	4월-12	3월-12	Small, sm	Arianna is	20	Travelled	['Value', 'l	['30', '20'
	2	Arianna H	cj_shiju	3월-12	3월-12	Great Loc	After reac	30	Travelled	['Value', 'l	['20', '30'
	2	Arianna H	brendon l	2월-13	3월-12	Not good	I stayed h	10	Travelled	['Value', 'l	['10', '10'
	-			- 01	. 01					.	
+ ≡		2clas	s ▼ 3	Bclass ▼	4clas	SS ▼					

Loading Dataset

- Loading hotel reviews from the excel file
- Data=[review 1, review 2, ... review n],
- Review n=[class, hotel name, id, date1, date2, title, body, rating, trip_type, aspect, aspect_rating]

aspect_rating	aspect	trip_type	rating	body	title	date_of_stay	date	id	Name	Class	
['10', '10', '10', '10', '10', '10']	['Value', 'Rooms', 'Location', 'Cleanliness',	Travelled solo	10	Arrived at the hotel at 2PM for my stay on Thu	Expect Pure Misery	2011-10-01	2011- 10-01	Zee7	Arianna Hotel	2	0
['40', '40', '40', '40', '40', '40']	['Value', 'Rooms', 'Location', 'Cleanliness',	Travelled solo	50	The hotel was cosy and it was perfect for a so	Not bad, not bad at all	2011-10-01	2011- 10-01	triippyy	Arianna Hotel	2	1
['40', '30', '40', '30', '40', '30']	['Value', 'Rooms', 'Location', 'Cleanliness',	Travelled solo	30	Expected the worst after booking a 1* rated ho	Better then 1*	2011-10-01	2011- 10-01	Minibreak_11	Arianna Hotel	2	2
['30', '20', '50', '30', '20']	['Value', 'Rooms', 'Location', 'Cleanliness',	NaN	30	My reason to stay in this hotel was the Locati	Really in the Centre of Shopping Centre	2011-10-01	2011- 12-01	Masrura Ramidjal	Arianna Hotel	2	3
['40', '30', '30', '20', '30', '20']	['Value', 'Rooms', 'Location', 'Cleanliness',	Travelled as a couple	30	Don't expect the luxuries of a hotel if you ar	Average	2011-10-01	2012- 01-01	Genevie A	Arianna Hotel	2	4

- Remove review data that is not in the analysis period
- Remove unnecessary attributes
- Splitting sentences and clearing
- Text preprocessing
 - Lowercasing
 - Tokenization and Lemmatization
 - Removal of stop words
 - POS (Part-Of-Speech) tagging
 - Noun extraction

- Remove review data that is not in the analysis period (Depending on your analysis purpose)
 - Make sure "date of stay" falls within the analysis period
- Remove unnecessary attributes
- Splitting sentences and clearing

```
def makeClearSent(sent):
    sent = str(sent)
    sent = sent.replace("\n", "")
    sent = sent.replace("\r", "")
    sent = sent.replace("", "")
    return sent

def makeReviewList(df):
    review_list = []
    for i in range(len(df)):
        review_list.append(makeClearSent(df.loc[i, "title"]) + ". " + makeClearSent(df.loc[i, "body"]))

--- same as ----
    review_list = [makeClearSent(df.loc[i, "title"]) + ". " + makeClearSent(df.loc[i, "body"]) for i in range(len(df))]
    return review_list
```


Merging the data


```
star2_review_list = makeReviewList(df_star2)
star3_review_list = makeReviewList(df_star3)
star4_review_list = makeReviewList(df_star4)

star2_rating_list = (df_star2.loc[:,"rating"]//10).to_list()
star3_rating_list = (df_star3.loc[:,"rating"]//10).to_list()
star4_rating_list = (df_star4.loc[:,"rating"]//10).to_list()
```


Text Preprocessing: Lowercasing, Tokenization, and Lemmatization

- Lowercasing is required to handle words mixed with uppercase letters as semantically equal
 - ex) Room <-> room, Staff <-> staff

ex="Expected the worst after booking a 1* rated hotel. Surprised with good location, easy access to shopping and MRT. Staff very friendly, rooms basic, yet clean with all the basic amenities. ."

```
#Lowercasing
ex=ex.lower()
print(ex)
```

expected the worst after booking a 1* rated hotel. surprised with good location, easy access to shopping and mrt. staff very f riendly, rooms basic, yet clean with all the basic amenities.

```
print("Original sentence : ",ExampleSentence + "\n")
LowerCasedSentence = ExampleSentence.lower() # for string
print("Lowercased Sentence : ", LowerCasedSentence)

print("\nOriginal word token list : ", ExampleWordTokenList)

LowerCasedTokenList = []
for token in ExampleWordTokenList:
    LowerCasedToken = token.lower() # for string
    LowerCasedTokenList.append(LowerCapToken)

print("\nLowercased word token list : ", LowerCasedTokenList)

ExampleWordTokenList = LowerCasedTokenList

Original sentence : Again, he laughed and proceeded to recommend other hotels in the area.

Lowercased Sentence : again, he laughed and proceeded to recommend other hotels in the area.

Original word token list : ['Again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotels', 'in', 'the', 'area', '.']

Lowercased word token list : ['again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotels', 'in', 'the', 'area', '.']

Lowercased word token list : ['again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotels', 'in', 'the', 'area', '.']
```


Text Preprocessing: Lowercasing, Tokenization, and Lemmatization

- Tokenization is required to handle words as tokens
 - ex) What a nice hotel! <-> ['What', 'a', 'nice', 'hotel', '!']


```
ExampleSentence = SentenceTokenList[10]

ExampleWordTokenList = word_tokenize(ExampleSentence)

print("The number of words in a sentence : {}\n".format(len(ExampleWordTokenList)))
print("Original sentence : ", ExampleSentence + "\n")
print("Tokenized sentence : ", ExampleWordTokenList)

The number of words in a sentence : 14

Original sentence : Again, he laughed and proceeded to recommend other hotels in the area.

Tokenized sentence : ['Again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotels', 'in', 'the', 'area', '.']
```

- Lemmatization is required to handle inflectional forms as semantically equal
 - ex) rooms <-> room, staffs <-> staff

```
lemma = WordNetLemmatizer()

LemmatizationTokenList = []
for token in ExampleWordTokenList:
    LemmatizedToken = lemma.lemmatize(token)
    LemmatizationTokenList.append(LemmatizedToken)

print("\nOriginal word token list : ", ExampleWordTokenList)

print("\nLemmatized word token list : ", LemmatizationTokenList)

ExampleWordTokenList = LemmatizationTokenList

Original word token list : ['again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotels', 'in', 'the', 'area', '.']

Lemmatized word token list : ['again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotel' 'in', 'the', 'area', '.']
```


Text Preprocessing: Removal of Stop Words

- Stop words are a set of commonly used words in any language
 - ex) the, is, and, she, he, they, that, etc.

```
import nltk
from nltk.corpus import stopwords
print(stopwords.words('english'))
```

{'ourselves', 'hers', 'between', 'yourself', 'but', 'again', 'there', 'about', 'once', 'during', 'out', 'very', 'having', 'with', 'they', 'own', 'an', 'be', 'some', 'for', 'do', 'its', 'yours', 'such', 'into', 'of', 'most', 'itself', 'other', 'off', 'is', 's', 'am', 'or', 'who', 'as', 'from', 'him', 'each', 'the', 'themselves', 'until', 'below', 'are', 'we', 'these', 'your', 'his', 'through', 'don', 'nor', 'me', 'were', 'her', 'more', 'himself', 'this', 'down', 'should', 'our', 'their', 'while', 'above', 'both', 'up', 'to', 'ours', 'had', 'she', 'all', 'no', 'when', 'at', 'any', 'before', 'them', 'same', 'and', 'been', 'have', 'in', 'will', 'on', 'does', 'yourselves', 'then', 'that', 'because', 'what', 'over', 'why', 'so', 'can', 'did', 'not', 'now', 'under', 'he', 'you', 'herself', 'has', 'just', 'where', 'too', 'only', 'myself', 'which', 'those', 'i', 'after', 'few', 'whom', 't', 'being', 'if', 'theirs', 'my', 'against', 'a', 'by', 'doing', 'it', 'how', 'further', 'was', 'here', 'than'}

```
StopWordRemovalTokenList = []
for token in ExampleWordTokenList:
    if token not in StopWordList:
        StopWordRemovalTokenList.append(token)

print("\n0riginal word token list : ", ExampleWordTokenList)

print("\nStopword Removed token list : ", StopWordRemovalTokenList)
ExampleWordTokenList = StopWordRemovalTokenList
```

```
Original word token list: ['again', ',', 'he', 'laughed', 'and', 'proceeded', 'to', 'recommend', 'other', 'hotel', 'in', 'the', 'area', '.']
```

Stopword Removed token list: [',', 'laughed', 'proceeded', 'recommend', 'hotel', 'area', '.']

Text Preprocessing: POS (Part-Of-Speech) Tagging

 POS tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech

```
Interjection
                                             NNS
                                                       Noun, plural
                                                                                           UH
         Coordinating conjunction
CC
                                                       Proper noun, singular
                                                                                                    Verb, base form
                                             NNP
                                                                                          VB
CD
          Cardinal number
                                                       Proper noun, plural
                                                                                                    Verb, past tense
                                                                                          VBD
                                             NNPS
DT
          Determiner
                                                       Predeterminer
                                                                                                    Verb, gerund or present
                                             PDT
                                                                                           VBG
EX
          Existential there
                                             POS
                                                       Possessive ending
                                                                                           participle
FW
          Foreign word
                                             PRP
                                                       Personal pronoun
                                                                                           VBN
                                                                                                    Verb, past participle
         Preposition or subordinating
                                             PRP$
                                                                                           VBP
                                                                                                    Verb, non-3rd person singular
                                                       Possessive pronoun
conjunction
                                             RB
                                                       Adverb
                                                                                           present
         Adjective
IJ
                                                       Adverb, comparative
                                                                                           VBZ
                                             RBR
                                                                                                     Verb, 3rd person singular
JJR
          Adjective, comparative
                                                       Adverb, superlative
                                             RBS
                                                                                           present
JJS
          Adjective, superlative
                                             RP
                                                       Particle
                                                                                           WDT
                                                                                                     Wh-determiner
LS
          List item marker
                                             SYM
                                                       Symbol
                                                                                           WP
                                                                                                     Wh-pronoun
          Modal
MD
                                             TO
                                                                                           WP$
                                                                                                     Possessive wh-pronoun
                                                       to
NN
          Noun, singular or mass
                                                                                                     Wh-adverb
                                                                                           WRB
```

```
PosTaggedTokenList = pos_tag(ExampleWordTokenList)

print("\n0riginal word token list: ", ExampleWordTokenList)

print("\nPos tagged token list: ", PosTaggedTokenList)

Original word token list: [',', 'laughed', 'proceeded', 'recommend', 'hotel', 'area', '.']

Pos tagged token list: [(',', ','), ('laughed', 'VBD'), ('proceeded', 'JJ'), ('recommend', 'JJ'), ('hotel', 'NN'), ('area', 'NN'), ('.', '.')]
```


POS tagged tokens

Review example = "Expected the worst after booking a 1* rated hotel. Surprised with good location, easy access to shopping and MRT. Staff very friendly, rooms basic, yet clean with all the basic amenities."

```
POS tagged tokens for one review= [[('expected', 'VBN'), ('the', 'DT'), ('worst', 'JJS'), ('after', 'IN'), ('booking', 'VBG'), ('a', 'DT'), ('1', 'CD'), ('*', 'NN'), ('rated', 'VBN'), ('hotel', 'NN'), ('.', '.')], [('surprised', 'VBN'), ('with', 'IN'), ('good', 'JJ'), ('location', 'NN'), (',', ','), ('easy', 'JJ'), ('access', 'NN'), ('to', 'TO'), ('shopping', 'NN'), ('and', 'CC'), ('mrt', 'NN'), ('.', '.')], [('staff', 'NN'), ('very', 'RB'), ('friendly', 'RB'), (',', ','), ('rooms', 'NNS'), ('basic', 'VBP'), (',', ','), ('yet', 'CC'), ('clean', 'JJ'), ('with', 'IN'), ('all', 'PDT'), ('the', 'DT'), ('basic', 'JJ'), ('amenities', 'NNS'), ('.', '.')]]
```


Text Preprocessing: Noun Extraction

Noun Extraction is the process to extract service feature candidates in review data

```
NNS
                                                                         Noun, plural
                                                                                                            UH
                                                                                                                      Interjection
                  CC
                            Coordinating conjunction
                                                               NNP
                                                                         Proper noun, singular
                                                                                                            VB
                                                                                                                      Verb, base form
                  CD
                            Cardinal number
                                                               NNPS
                                                                         Proper noun, plural
                                                                                                            VBD
                                                                                                                      Verb, past tense
                  DT
                            Determiner
                                                               PDT
                                                                         Predeterminer
                                                                                                                      Verb, gerund or present
                                                                                                            VBG
                  EX
                            Existential there
                                                               POS
                                                                         Possessive ending
                                                                                                            participle
                  FW
                            Foreign word
                                                               PRP
                                                                         Personal pronoun
                                                                                                            VBN
                                                                                                                      Verb, past participle
                            Preposition or subordinating
                                                               PRP$
                                                                         Possessive pronoun
                                                                                                                      Verb, non-3rd person singular
                                                                                                            VBP
Pos tag
                  conjunction
                                                               RB
                                                                         Adverb
                                                                                                            present
                  IJ
                            Adjective
                                                               RBR
                                                                         Adverb, comparative
                                                                                                            VBZ
                                                                                                                      Verb, 3rd person singular
                  JJR
                            Adjective, comparative
                                                               RBS
                                                                        Adverb, superlative
                                                                                                            present
                  JJS
                            Adjective, superlative
                                                               RP
                                                                         Particle
                                                                                                            WDT
                                                                                                                      Wh-determiner
                  LS
                            List item marker
                                                                         Symbol
                                                               SYM
                                                                                                            WP
                                                                                                                      Wh-pronoun
                  MD
                            Modal
                                                                                                                      Possessive wh-pronoun
                                                                                                            WP$
                                                               TO
                 NN
                            Noun, singular or mass
                                                                                                            WRB
                                                                                                                      Wh-adverb
```

```
NounTokenList = []
for token, pos in PosTaggedTokenList:
    if pos[0] == "N":
        NounTokenList.append(token)

print("\nOriginal word token list : ", ExampleWordTokenList)

print("\nNoun token list : ", NounTokenList)
Original word token list : [',', 'laughed', 'proceeded', 'recommend', 'hotel', 'area', '.']
```


Noun token list: ['hotel', 'area']

- LDA topic modeling
 - LDA_input=[[noun1, noun2, ...noun n], [noun1, noun2, ...noun n], ...[noun1, noun2, ...noun n]]

Review 1

Review 2

Review M

Review*topic matrix (output)

Review*keyword matrix (input)

	$Keyword_1$	 $Keyword_m$
$Review_1$		
$Review_n$		

	$Topic_1$	 $Topic_m$
$Review_1$		
$Review_n$		

Topic*keyword matrix (output)

	Keyword	<i>l</i> ₁	$Keyword_m$
$Topic_1$			
Topic _n	J.		

Execute LDA using genism library


```
import gensim
import gensim.corpora as corpora

'''Create dictionary'''
id2word= corpora.Dictionary(LDA_input)
corpus = [id2word.doc2bow(rev) for rev in LDA_input]
```



```
import pyLDAvis
import pyLDAvis.gensim # don't skip this
#Visualize LDA model

pyLDAvis.enable_notebook()

vis= pyLDAvis.gensim.prepare(model, corpus, id2word)
vis
# pyLDAvis.save_html(vis, 'LDA visualization.html')
```


LDA output (example)

Word list of Topic 1 (name: 'location')

```
['location', 'accessibility', 'station', 'mrt', 'distance', 'proximity', 'chinatown', 'mtr', 'underground', 'mrts', 'downtown', 'transportation', 'cbd', 'metro', 'subway', 'transport', 'heart', 'place', 'train', 'shopping', 'shoping', 'funan', 'hawker', 'paragon', 'tekka', 'newton', 'shop', 'mustafa', 'mustapha', 'mustaffa', 'closeby', 'zhongshan', 'katong', 'riverfront', 'convention', 'eatery', 'supermarket', 'shopper', 'suntec', 'cinema', 'area', 'surroundings', 'mall', 'complex', 'centre', 'arcade', 'center', 'plaza', 'paradise', 'hub', 'landmark', 'grocery', 'mcdonald', 'starbucks', 'mcdonalds', 'starbuck', 'smrt', 'railway', 'bus', 'tube', 'stn', 'stop', 'interchange']
```

Hotel service features in Singapore (example)

	Feature	Frequent word	# of words	# of reviews
f_1	Location	location, · · ·	63	26,700
f_2	View	view, outlook, \cdots	15	6,527
f_3	Breakfast	breakfast, buffet, \cdots	24	13,484
f_4	Sleep quality	bed, mattress, \cdots	20	10,707
f_5	Bathroom	bathroom, toilet, \cdots	24	11,466
f_6	Service	service, staff, \cdots	32	20,864
f_7	Check	check, checkin,···	19	12,651
f_8	Value	value, price,···	6	11,477
f_9	Internet	internet, wifi, \cdots	32	6,137

VADER

- A full list of emoticons (e.g., ";-)" and ":-("), acronyms and initialisms (e.g., "LOL" and "BRB"), and frequently used slang (e.g., "sux" and "meh") on social media was also incorporated
- -1 (extremely negative) and 1 (extremely positive)

```
# Example
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyser = SentimentIntensityAnalyzer()
example1 = "Location was great, nearby landmark"
example2 = "Awesome view, Wow"
example3 = "City veiw was not good"
example4 = "Terrible room condition"
example5 = "great quality internet"
print("Sentence : [Sentiment score] ")
print("{0} : {1}".format(example1, analyser.polarity_scores(example1)['compound']))
print("{0} : {1}".format(example2, analyser.polarity_scores(example2)['compound']))
print("{0} : {1}".format(example3, analyser.polarity_scores(example3)['compound']))
print("{0}: {1}".format(example4, analyser.polarity_scores(example4)['compound']))
print("{0} : {1}".format(example5, analyser.polarity_scores(example5)['compound']))
Sentence : [Sentiment score]
Location was great, nearby landmark: 0.6597
Awesome view, Wow: 0.836
                                                                                          +Star rating
City veiw was not good : -0.3412
                                                                                          Encoding
                                                                              VADER
                                                    Original sentences search
Terrible room condition: -0.4767
                                                   including service feature words
                                                                           Sentiment analysis
great quality internet: 0.6249
                                               21
```



```
#Sentiment analysis
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyser = SentimentIntensityAnalyzer()
def show_sentence_sentiment (TopicWordList_topic, TokenDataset, ReviewList):
    for i,review in enumerate(TokenDataset):
        SentenceTokenizedList = nltk.sent_tokenize(ReviewList[i])
        for j,sent in enumerate(review):
            for word in sent:
                if word in TopicWordList_topic:
                    print("word: ",word)
                    print("tokenlist: ",sent)
                    print("Sent: ",SentenceTokenizedList[j])
                    print("Sentiment score: {}\n".format(analyser.polarity_scores(SentenceTokenizedList[j])['compound']))
# Only for topic 1
show sentence sentiment(TopicWordList[0], TokenDataset, ReviewList)
word: stay
```

```
word: stay
tokenlist: ['hotel', 'cosy', 'perfect', 'solo', 'stay', '.']
Sent: The hotel was cosy and it was perfect for a solo stay.
Sentiment score: 0.5719

word: shopping
tokenlist: ['24', 'hour', 'shopping', 'centre', 'stone', 'throw', 'away', 'add', 'value', 'location', '.']
Sent: There is a 24 hour shopping centre just a stones throw away which adds more value to its location.
Sentiment score: 0.4005
```


Dataset preparation for prediction model

Review 1

▶ **S1**: Surprised with good location, easy access to shopping and MRT. \rightarrow Location (f_1) : 0.772

S2: Room was clean. \rightarrow Room (f_2) : (0.402)

S3: Staffs were friendly and efficient. \rightarrow Employee (f_i) : (0.719)

						$S_{im} = \begin{cases} 4, & if \ 0.525 \le \text{Sentiment intensity} \le 1\\ 3, & if \ 0.05 \le \text{Sentiment intensity} < 0.525\\ 0, & if \ -0.05 < \text{Sentiment intensity} < 0.05\\ 2, & if \ -0.525 < \text{Sentiment intensity} \le -0.05 \end{cases}$
	f_1	f_2		f_i	Star ratings	1, $if - 1 \le \text{Sentiment intensity} \le -0.525$
1	4	3		4	1	
2	0	2		0	0 _	→ Negative label (1, 2, 3 ratings)
3	0	0		0	1	
M	3	4		2	1	→ Positive label (4, 5 ratings)
		Input variab	oles	Out	tput variable	es

Statistical results of sentiment scores of each feature in reviews of all hotels

Prediction Modeling on Customer Satisfaction

Execute linear logit model using scikit-learn library

	f_1	f_2	 f_i	Star ratings	
1	4	3	4	0	Nogative label (1, 2, 2 ratings)
2	0	2	 0	0	→ Negative label (1, 2, 3 ratings)
3	0	0	 0	1	→ Positive label (4, 5 ratings)
M	3	4	 2	1	
					_

Input variables

Output variables

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

logit=LogisticRegression()
logit=logit.fit(All_input,All_y_2la)
print(logit.score(All_input,All_y_2la))
print(logit.coef_)
```

0.6298839096242667

[[0.18386161 0.06931302 0.0955905 -0.00675778 -0.0964391 0.26514475 -0.00630123 0.0700245 0.03206919]]

$$Y_i = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \cdots + \beta_i A_i,$$

 Y_i : customer satsfaction A_1 : performance of quality attributes

Service Improvement Implications from Online Review Mining

■ Importance-Performance Analysis (IPA) for service improvement

• Q1: "Keep up the good work"

Q2: "Concentrate here"

Q3: "Low priority"

Q4: Possible overkill"

Check ReviewMining_Practice.ipynb file in BlackBoard

Thank you

