

Hands-on 4: Loopback transmissão e recepção BPSK utilizando o GNURadio

Vicente Sousa
GppCom/DCO/UFRN

Universidade Federal do Rio Grande do Norte (UFRN)

Objetivos do hands-on

 Construir um "loop-back" da transmissão e recepção do BPSK em banda-base.

O Transmissor

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

Transmissor binário em banda-base

- Um sistema de comunicação binária consiste em
 - Uma sequencia de 0's e 1's transmitido por meio de dois sinais

$$0 \rightarrow s_0(t), 0 \le t \le T_b$$

$$1 \rightarrow s_1(t), 0 \le t \le T_b$$

- O que $1/T_b$ mede?
 - R = $1/T_b$ é a taxa de transmissão em bits/seg (bps)
- O que vem depois da transmissão?
 - CANAL DE TRANSMISSÃO !!!!

O Canal

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente.sousa@ct.ufrn.br

O Canal de transmissão

- Potência do sinal transmitido sobre atenuação/distorção devido aos fenômenos de propagação do canal rádiomóvel
 - Essa atenuação é aditiva ou multiplicativa?
 - Reflexão, refração, difração, etc
 - Interferência também causa degradação na recepção
 - E o ruído?

Desvanecimento de pequena escala (fast fading) Ceiling TX RX Combined Results

O Canal de transmissão

 Atenuação bastante severa para pequenos deslocamentos

Obstruction

 Atenuação depende da velocidade entre TX e RX

O Canal de transmissão

- E ainda temos o ruído térmico
 - Causado pela própria agitação dos átomos nos componentes dos circuitos dos equipamentos.
 - O ruído é um sinal sem padrão definido (aleatório) que se espalha por todo o espectro das ondas eletromagnéticas de maneira mais ou menos uniforme

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

O Canal de transmissão

- · Porque estudar o desempenho perante ao ruído é muito importante?
 - R.: o ruído é o único efeito que não pode ser completamente removido.

Receptor/Detector binário

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente sousa@ct.ufm.br.

Receptor/Detector binário

- Objetivo da recepção digital binária?
 - a cada tempo de bit é decidido se foi transmitido o bit 0 ou o bit 1
- Receptor é composto de dois blocos (recepção feita em duas etapas com objetivos distintos)

Quais seus objetivos?

Correlator do Sinal

Detector

Maximizar a SNR

Minimizar a BER

© Prof. Dr. Vicente Angelo de Sousa Junior @ CappCom

Sinais antipodais

• Uma forma de onda é o negativo da outra

Correlator de Sinais Antipodais

 O problema da maximização da SNR é obtida através da correlação cruzada do sinal recebido r(t) e os sinais de entrada

Se $s_0(t)$ for transmitido: r = E + n

$$r(t) = \pm s(t) + n(t)$$

Se $s_1(t)$ for transmitido: r = -E + n

O Detector

Método de simulação

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

Metodologia de Monte Carlo

- Método de Monte Carlo (MMC): método que se baseia em amostragens aleatórias massivas para obter resultados numéricos
 - repetindo sucessivas simulações um elevado numero de vezes, para calcular probabilidades heuristicamente, tal como se, de fato, se registrassem os resultados reais.

Metodologia de Monte Carlo

- Exemplo: calcular valor de π
 - Modelagem: considerar um círculo inscrito em um quadrado unitário. Sabemos que: a razão de suas áreas é π /4.
- MMC:
 - · Desenhar um quadrado com um círculo inscrito
 - Distribuir uniformente objetos pequenos e de tamanho uniforme (e.g. grãos de arroz) no quadrado
 - Contar o número de objetos dentro do círculo e o número total de objetos
 - A razão entre os dois contadores é uma estimativa da razão entre as duas áreas, que multiplicada por 4, dá o valor de π

O que acontece se o número de objetos distribuídos é pequeno?

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

Metodologia de Monte Carlo

- **Exemplo**: calcular valor de π (uma realização do experimento)
 - Valor real = 3.141592653589793 (format long do Matlab)

# de pontos de Monte Carlo	Razão das áreas	π estimado	Erro
1.000	0.776	3.104	0.037593
10.000	0.79	3.16	-0.018407
10.000.000	0.78538	3.1415072	8.5454e-05

Script do Matlab: MCCPi.m

Simulação de Monte Carlo de Sistemas de Comunicação Binários Antipodais

- Modelagem geral
 - Simulação de Monte Carlo
 - Cada evento é a transmissão e recepção de um bit
 - Número de bits transmitidos é igual ao número de experimentos de Monte Carlo (entrada da simulação)
 - Variação da potência de transmissão para gerar vários valores de SNR (saída do simulador)
- Modelagem da transmissão/recepção (um evento de Monte Carlo)
 - s₀ e s₁ são gerados: gerar aleatoriamente a informação se 0 ou 1 foi transmitido
 - A atenuação do canal no sinal transmitido é modelado
 - r é calculado e comparado com zero: verificar se 0 ou 1 foi detectado
 - Comparar a detecção com o que realmente foi transmitido

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

Simulação de Monte Carlo de Sistemas de Comunicação Binários Antipodais

- Ao final de todos os experimentos: calcular a taxa de erro
 - Contar todos os bits errados
 - Calcular BER

$$BER = \frac{\text{# de bits errados}}{\text{# de bits transmitidos}}$$

Comparar BER com p_e teórica

$$p_e = Q \left(\sqrt{\frac{2E}{N_0}} \right)$$

Simulação de Monte Carlo de Sistemas de Comunicação Binários Antipodais

 Ao final do experimento podemos ver o diagrama de constelação

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente sousa@ct.ufm.br

Simulação de Monte Carlo de Sistemas de Comunicação Binários Antipodais

Ao final do experimento podemos ver o diagrama de constelação

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente sousa@ct.ufm.br

icente.sousa@ct.ufrn.b

- Porque para poucas amostras alguns pontos não aparecem?
 (e.g. a partir de 7 dB para 10 amostras)
- O que acontece com BER quando a número de amostras aumenta?

Bom material para treinar

 GNU Radio Tutorials: Part 4 - Phase-Shift Keying (PSK), Constellations & Auto-correlation:

https://www.youtube.com/watch?v=JMEyN lvaiE

GNU Radio Tutorial Series:

https://www.youtube.com/playlist?list=PL618122BD66C8B3 C4&feature=view all

- Introduction to GNU Radio from the 2012 ARRL TAPR DCC
 - Parte 1: https://www.youtube.com/watch?v=_hGNT1w-jig
 - Parte 2: https://www.youtube.com/watch?v=cg3TA3EDx78
 - Parte 3: https://www.youtube.com/watch?v=nemfS9QAYHc
 - Parte 4: https://www.youtube.com/watch?v=94R2qE7mEc4