На тему: «	Отчет по лабораторной работе Определение свойств канала передачи данных»
	o P o Moore o Moore Moore Moore Moore Moore Moore Moore Moore Moore
Выполнил:	Дробышев Андрей Валентинович
Проверил:	Бондаренко Алексей Алексеевич

<u>Цель работы</u>: Определение условий эффективной передачи информации между процессами параллельного приложения.

Краткое описание:

В данной работе при помощи непосредственных измерений были определены основные характеристики вычислительной сети.

Результаты эксперимента:

Были проведены измерения латентности и пропускной способности ("точка-точка"и двунаправленный обмен) в зависимости от длины передаваемого сообщения (length= 2^k байт, где k=0,1,...,22.)

Ниже приведены соответствующие графики.

Рис. 1: График зависимости s(k), nsec (процессы на одном узле сети)

Рис. 2: График зависимости s(k), nsec (процессы на разных узлах сети)

Рис. 3: График зависимости Rpp(k), Mb/sec (процессы на одном узле сети)

Рис. 4: График зависимости Rpp(k), Mb/sec (процессы на разных узлах сети)

Рис. 5: График зависимости Rd(k), Mb/sec (процессы на одном узле сети)

Рис. 6: График зависимости Rpp(k), Mb/sec (процессы на разных узлах сети)

Видим, что при запуске процессов на одном узле латентность практически никак не зависит от размера сообщения, в то время как при запуске на разных узлах s выходит на константу при росте k.

Картины для Rpp и Rd при запуске на одном узле почти идентичны, пропусакная способность приближается к некоторой константе с ростом k, присутствует лишь не очень знаительная разница в скорости. Когда k мало, то есть мала длина посылаемого сообщения, время латентности, которое зависит лишь от числа пересылок, а не от L, начинает играть более существенную роль, и пропускная способность близка к 0. При запуске же на различных узлах графики также схожи, однако у графика Rpp имеется занятный пик при k=3,4,5. Предположительно он может быть обусловлен совпадением буфера односторонней посылки с размером передаваемого сообщения, что могло существенно ускорить процесс.

Ну и напоследок сравним полученные результаты с соответствующими значениями суперкомпьюера Sequoia:

Torus Network			
Topology	3D	5D	
Bandwidth (per node)	5.1 GB/s (6links*2way*425MB/s)	40 GB/s (10links*2way*2GB/s)	
Hardware Latency (nearest neighbor)	<1 us	<1 us	
Hardware Latency (worst case)	5 us	3 us	
Collective Network			
Bandwidth	5.1 GB/s	Included in 5D Torus	
Hardware Latency (round-trip, worst case - 72 racks)	3 us	n/a	

Рис. 7: Показатели Sequoia