Ausgabe: 23. Mai 2023 _______ Besprechung: 05. Juni 2023

Einführung in die angewandte Stochastik

Übungsblatt 6

Aufgabe 23

Seien X und Y stochastisch unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit

$$P(X = 1) = P(X = 2) = P(X = 3) = \frac{1}{3}$$
 und $P(Y = 0) = \frac{1}{4}$, $P(Y = 1) = \frac{3}{4}$.

Betrachten Sie die Zufallsvariable V = XY. Berechnen Sie

- (a) P(V = 0)
- (b) $P(V \ge 2)$
- (c) $F_V(2)$, wobei F_V die Verteilungsfunktion von V ist.

Aufgabe 24

Seien X, Y Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f_c(x,y) = \begin{cases} c(x+y+xy), & 0 < x < 1, \ 0 < y < 2, \\ 0, & \text{sonst.} \end{cases}$$

- (a) Zeigen Sie: f_c ist nur für $c = \frac{1}{4}$ eine Dichtefunktion.
- (b) Berechnen Sie die Randdichten f_X und f_Y von X und Y.
- (c) Berechnen Sie E(X) und E(Y).
- (d) Berechnen Sie Var(X) und Var(Y).
- (e) Berechnen Sie Cov(X, Y).
- (f) Berechnen Sie Cor(X, Y).
- (g) Sind X und Y stochastisch unabhängig?

Aufgabe 25

Seien $Y \sim \text{Exp}(3)$ und $Z \sim \mathcal{N}(0,1)$ mit Cov(Y,Z) = 2 gelte. Weiterhin betrachten wir den 3-dimensionalen Zufallsvektor $\mathbf{X} = (X_1, X_2, X_3)'$, dessen Komponenten durch

$$X_1 := 2Y + Z - 1$$
, $X_2 := -Y$ und $X_3 := 3Z$

definiert sind. Berechnen Sie den Erwartungswertvektor $\mu_{\mathbf{X}}$ und die Kovarianzmatrix $\mathrm{Cov}(\mathbf{X})$ von \mathbf{X} .

Aufgabe 26

Sei $\mathbf{X} = (X_1, X_2)'$ ein 2-dimensional normalverteilter Zufallsvektor mit Erwartungswertvektor $E(\mathbf{X}) = 0 \in \mathbb{R}^2$ und der Kovarianzmatrix

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & rac{1}{2} \\ rac{1}{2} & 1 \end{pmatrix}.$$

Weiterhin seien

$$Y_1 = aX_1 - X_2$$
 und $Y_2 = X_1 + 2X_2$

für $a \in \mathbb{R}$. Für welche Werte des Parameters a sind die Zufallsvariablen Y_1 und Y_2 stochastisch unabhängig?