ROBOT CONTROL USING PYTHON

Contents

☐ Arduino control with Python

- □ Robot Control using Python
 - Motor Control
 - Distance measurement with Ultrasonic sensor
 - RGB LED Control
 - Robot Control through Bluetooth

Arduino control with Python

Arduino + Python

Controlling Arduino with Raspberry Pi

Nanpy

- Nanpy is a python library
 - use your Arduino as a slave, controlled by a master device where you run your scripts, such as a PC, a Raspberry Pi etc.
 - control Arduino through serial connection over a USB cable.
 - allow to program with python in Arduino

Using Nanpy

- ☐ Upload Nanpy program to Arduino board
 - : Open Nanpy file in the Arduino IDE and upload it to Arduino board

Using Nanpy

- ☐ Write python code using Nanpy library
 - 1. import the necessary libraries
 - 2. create a connection to the arduino using SerialManager
 - 3. initiate a arduino object using ArduinoApi
 - 4. write arduino code with arduino object

```
from nanpy import ArduinoApi
from nanpy import SerialManager

connection = SerialManager()

a = ArduinoApi(connection=connection)

a.pinMode(13, a.OUTPUT)

a.digitalWrite(13, a.HIGH)

...

...
```


Arduino Wiring: LED

Sample Code

```
from nanpy import ArduinoApi, SerialManager
from time import sleep
connection = SerialManager()
a = ArduinoApi(connection=connection)
LED = 13
a.pinMode(LED, a.OUTPUT)
while True:
  a.digitalWrite(LED, a.HIGH)
  sleep(0.5)
  a.digitalWrite(LED, a.LOW)
  sleep(0.5)
```


Arduino Wiring: Push button

Sample Code

```
from nanpy import ArduinoApi, SerialManager
from time import sleep
connection = SerialManager()
a = ArduinoApi(connection=connection)
BUTTON = 2
a.pinMode(BUTTON, a.INPUT)
while True:
  state = a.digitalRead(BUTTON)
  print("Button state is ", state)
  sleep(0.5)
```


#1 задача: Button & LED

□ Task(Задание)

- 1. Read digital value from a pin connected with push button
- 2. Turn LED on when push button is pressed
- 3. Turn LED off when push button is released

□ Use Tip(Использование Совет)

Flowchart	Syntax(синтаксис)	Example(пример)
true-block false-block	<pre># ifelse if expression : statement_1 statement_2 else : statement_3 statement_4</pre>	str1 = 'Start' if 's' in str1 : print("Hello World!") else : print("Hi, There")

Contents

☐ Arduino control with Python

- □ Robot Control using Python
 - Motor Control
 - Distance measurement with Ultrasonic sensor
 - RGB LED Control
 - Robot Control through Bluetooth

Robot Control using Python

☐ Control DC motor, Ultrasonic sensor and RGB LED with

Alphabot2

DC Motor Control with TB6612

Arduino ↔ TB6612

N20 motor + rubber wheel

☐ Motor Speed Control

PWMA	Motor Output
0~255	0 is off, 255 is full speed

■ Motor Direction Control

AIN1	AIN2	Motor Output
LOW	HIGH	Turn in Clockwise direction
HIGH	LOW	Turn in Anti-clockwise direction
LOW	LOW	Stop
HIGH	HIGH	Stop

Sample Code

from nanpy import ArduinoApi, SerialManager

```
connection = SerialManager()
a = ArduinoApi(connection=connection)
```

```
PWMA = 6 # Left Motor Speed pin

AIN1 = 15 # Motor-L backward

AIN2 = 14 # Motor-L forward

PWMB = 5 # Right Motor Speed pin

BIN1 = 16 # Motor-R forward

BIN2 = 17 # Motor-R backward

SPEED = 100 # Motor speed value
```

```
a.analogWrite(PWMA,SPEED) # Set the speed on MotorA a.digitalWrite(AIN1,a.LOW) # Move MotorA forward a.digitalWrite(AIN2,a.HIGH) # Move MotorA forward a.analogWrite(PWMB,SPEED) # Set the speed on MotorB a.digitalWrite(BIN1,a.LOW) # Move MotorB forward a.digitalWrite(BIN2,a.HIGH) # Move MotorB forward
```


#2 задача: Motor Control

- □ Task(Задание)
 - Write a code to move the robot backward
 - 2. Write a code that slowly rotates the robot left or right
- □ Use Tip(Использование Совет)
 - Apply DC voltage correctly to the two digital pins
 - Set the motor speed by applying appropriate voltage to analog pin

Ultrasonic Ranging


```
void setup() {
  pinMode(trigPin, OUTPUT);
                                                // sets the trigPin as output
  pinMode(echoPin, INPUT);
                                                // sets the echoPin as input
void loop() {
   float duration, distance;
   digitalWrite(trigPin, HIGH);
                                                // the trigPin is at 5 volts
   delayMicroseconds(10);
                                                // 10us delay
   digitalWrite(trigPin, LOW);
                                               // the trigPin is at ground
  duration = pulseIn(echoPin, HIGH);
                                               // read the width of Echo pin
                                                // calculate the distance in cm
  distance = (duration) / 58;
```


Object

Sample Code: Ultrasonic Ranging

```
from nanpy import ArduinoApi, SerialManager, Ultrasonic
from time import sleep
connection = SerialManager()
a = ArduinoApi(connection=connection)
ECHO = 2
                                   # Echo pin number
TRIG = 3
                                   # Trigger pin number
u = Ultrasonic(ECHO, TRIG, False) # an object of Ultrasonic class
while True:
                                   # a function that calculates distance
  distance = u.get_distance()
  print("The distance is ", distance)
  sleep(0.5)
```


#3 задача: Ultrasonic Ranging

□ Task(Задание)

: According to the range, control Motor and show corresponding mess ages as below table.

Distance Range	Motor	Print message
distance ≤ 5	Stop	Obstacle in front of the robot
5 < distance ≤ 20	Forward slowly	Attention to front obstacle
distance ≥ 20	Forward fast	No obstacle

□ Use Tip(Использование Совет)

```
if distance <= 5:
...
elif 5 < distance <= 20:
...
else:
...
```


RGB LED Control with W2812

□ RGB or Red-Green-Blue LEDs are a fusion of three LEDs in a single package.

Display any color of the rainbow by fusing together combinations of three colors

Sample Code: RGB LED Control

from nanpy import ArduinoApi, SerialManager, W2812

```
connection = SerialManager()
a = ArduinoApi(connection=connection)
```

```
\begin{aligned} &\text{NUM\_RGB} = 4 & \text{\# Numbers of RGB} \\ &\text{RGB} = 7 & \text{\# RGB LED pin} \\ &\text{w} = \text{W2812(NUM\_RGB,RGB)} & \text{\# an object of W2812 class} \end{aligned}
```

```
w.setColorRGB(0, 255, 0, 0) # Red LED on 1st LED
w.setColorRGB(1, 0, 255, 0) # Green LED on 2nd LED
w.setColorRGB(2, 0, 0, 255) # Blue LED on 3rd LED
w.setColorRGB(3, 255, 255, 0) # Yellow LED on 4th LED
```


RGB Color Codes

☐ RGB color format

: RGB code has 24 bits format (bits 0..23)

RED[7:0]						G	RE	ΕI	N[7	7:0]		BLUE[7:0]									
23							16	15							8	7						0

☐ RGB color table

Color	HTML / CSS Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	Black	#000000	(0,0,0)
	White	#FFFFFF	(255,255,255)
	Red	#FF0000	(255,0,0)
	Lime	#00FF00	(0,255,0)
	Blue	#0000FF	(0,0,255)
	Yellow	#FFFF00	(255,255,0)
	Cyan / Aqua	#00FFFF	(0,255,255)
	Magenta / Fuchsia	#FF00FF	(255,0,255)

#4 задача: RGB LED Control

□ Task(Задание)

: Turn all 4 LEDs on in accordance with user input value

User input	LED
Red	RED LED on
Green	Green LED on
Blue	Blue LED on

□ Use Tip(Использование Совет)

Bluetooth programming with Python

- □ PyBluez
 - is Python Bluetooth library written in C for the Windows and GNU/Linux operating systems
 - allows Python code to access the host machine's Bluetooth resources
- □ Bluetooth programming in Python follows the socket program ming model called RFCOMM
 - RFCOMM socket is a connection-oriented protocol, similar to TCP
 - one process acts as a server accepting connections, another process acts as the client requesting the connection

Sample Code: Bluetooth (Client)

```
import bluetooth
                                  # import python bluetooth library
ADDR = "xx:xx:xx:xx:xx:xx"
                                  # address of bluetooth device
PORT = 1
                                  # port number to connect
# Create a socket for RFCOMM service
socket = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
socket.connect((ADDR, PORT))
                                  # a connection with xx:xx:xx:xx:xx on port 1
socket.send("Hello World")
                                  # Send data through the socket
socket.close()
                                  # Close the connection on socket
```

[Python Code in Raspberry Pi]

Example Code: Bluetooth (Server)

```
char data = 0;  // for incoming serial data

void setup() {
    Serial.begin(115200);  // opens serial port, sets data rate to 115200 bps
}

void loop() {
    if (Serial.available() > 0) {
        data = Serial.read();  // reply only when you receive data:
        data = Serial.print(data);  // say what you got:
    }
}
```

[C++ Code in Arduino]

#5 задача: Bluetooth Control

□ Task(Задание)

: According to Bluetooth data, control components of robot

Bluetooth data	Motor	Bluetooth data	LED
F	Move Forward	r	Red
В	Move Backwards	g	Green
L	Turn Left	b	Blue
R	Turn Right	У	Yellow
S	Stop	W	White

□ Use Tip(Использование Совет)

Write Arduino code to react with Bluetooth data #include <Adafruit_NeoPixel.h> Adafruit_NeoPixel RGB = Adafruit_NeoPixel(4, 7, NEO_GRB + NEO_KHZ800) RGB.setPixelColor(0, 0x00FF00) // # Green LED on 1st LED

Write Python code to send Bluetooth data continuously

