I Décidabilité

On rappelle que le problème de l'arrêt est indécidable :

ARRET

Instance: le code source d'un programme f et un argument x

Question : f termine-t-il sur l'entrée x?

Pour chacun des problèmes suivants, dire s'il est décidable ou non en le prouvant.

1.

TERMINE-N

Instance: une fonction f, un argument x et un entier n.

Question : est-ce que l'exécution de f(x) termine en moins de n étapes ?

2.

ZERO

Instance: une fonction f et un argument x. **Question**: est-ce que f(x) renvoie 0?

3.

SAC-A-DOS

Instance: un ensemble d'objets de poids p_1, \ldots, p_n et de valeurs v_1, \ldots, v_n , un poids maximal P et une valeur

Question : existe-t-il un sous-ensemble d'objets de poids total inférieur à P et de valeur totale supérieure à V?

II Semi-décidabilité

Un problème de décision est dit semi-décidable s'il existe un algorithme qui :

- répond correctement (et en temps fini) pour toutes les instances positives du problème ;
- répond correctement ou ne termine pas pour les instances négatives.

On demande simplement que l'algorithme ne réponde jamais « Oui » pour une instance négative : il peut répondre « Non » pour certaines de ces instances et ne pas terminer pour d'autres.

Pour un problème de décision A, on définit le problème complémentaire de A, noté co-A, comme le problème de décision ayant les mêmes instances que A, mais des réponses opposées. Autrement dit, les instances positives de co-A sont exactement les instances positives de A, et les instances négatives de co-A sont exactement les instances positives de A.

- 1. Le problème ARRET est-il semi-décidable ?
- 2. Montrer qu'un problème A est décidable si et seulement si A et co-A sont tous les deux semi-décidables.
- 3. Le problème co-ARRET est-il semi-décidable ?

 $ARRET_{\forall}$

Instance: une fonction f

Question: le calcul de f(x) termine-t-il pour tout x?

4.

- (a) Ce problème est-il décidable ?
- (b) Est-ce que co-ARRET $_{\forall}$ est semi-décidable ?
- (c) Est-ce que ARRET $_{\forall}$ est semi-décidable ?

III Castor affairé

On considère une version idéalisée du langage OCaml où la mémoire est illimitée et le type **int** permet de représenter des entiers arbitrairement grands.

On dit qu'une fonction $f: \mathbb{N} \longrightarrow \mathbb{N}$ est calculable s'il existe une fonction OCaml $f: int \rightarrow int$, dont l'exécution termine pour tout argument positif ou nul, qui calcule les images par f.

On appelle programme une expression OCaml de type **int**. Si l'évaluation de cette expression termine (sans erreur), on dit que le programme calcule la valeur de l'expression. On suppose que les programmes OCaml sont écrits en utilisant les 128 caractères ASCII, et l'on appelle taille d'un programme son nombre de caractères.

Par exemple, les deux programmes suivants calculent respectivement les valeurs 13 et 120 :

```
| let rec fact n = | if n = 0 then 1 | else n * fact (n - 1) | in | fact 5
```

alors que le programme ci-dessous ne termine pas, et ne calcule donc pas de valeur :

```
let rec fact \mathbf{n} = \mathbf{n} * \mathbf{fact} (\mathbf{n} - 1) in fact 5
```

Un castor affairé (busy beaver en anglais) est un programme dont l'exécution termine et qui calcule une valeur la plus grande possible parmi tous les programmes de même taille. On définit le problème de décision CASTOR :

Par exemple, le programme suivant :

```
let k=99 in k*k*k
```

est un programme de taille 17, qui termine et renvoie 970299. Ce n'est pas un castor affairé, puisque le programme suivant (qui n'est toujours pas un castor affairé) renvoie une valeur plus grande :

```
999999999999999
```

Pour un entier $n \ge 0$, on notera C(n) la valeur maximale renvoyée par un programme OCaml de taille n qui termine et renvoie un entier. On pose C(0) = 0 par convention.

On cherche à montrer que la fonction C n'est pas calculable, et que le problème CASTOR n'est pas décidable.

- 1. Combien existe-t-il de programmes OCaml à n caractères, en supposant qu'on dispose de 128 caractères différents possibles ? Expliquer pourquoi le fait qu'il y en ait un nombre fini ne permet pas de conclure que la fonction C est calculable.
- 2. Montrer que la fonction C est correctement définie.
- 3. Montrer que C est une fonction croissante, puis que pour $n \in \mathbb{N}$, on a C(n+2) > C(n).
- 4. Que vaut C(1)?

On considère $f: \mathbb{N} \longrightarrow \mathbb{N}$ une fonction calculable.

- 5. Montrer qu'il existe un entier k tel que pour tout $n \in \mathbb{N}$, $f(n) \leq C(|\log_{10} n| + k)$.
- 6. Montrer que C n'est pas calculable.
- 7. En déduire que CASTOR n'est pas décidable.
- 8. Montrer, en utilisant la non-calculabilité de C, que le problème de l'arrêt est indécidable. On ne demande pas simplement de prouver la non-décidabilité du problème de l'arrêt, comme cela a pu être fait dans le cours, mais bien de la déduire de la non-calculabilité de C.