# MATEMÁTICA DISCRETA

Distancias en Grafos

Distancias en grafos

#### Definición

Dado un grafo conexo G = (V, E), la **distancia** entre dos vértices  $u, v \in V$  es la mínima de las longitudes de los caminos que conectan u y v:

$$d_G(u,v) = \min\{\ell(C): C \text{ es un } u-v \text{ camino}\}$$

### Definición

Sea G = (V, E) un grafo conexo y sea  $v \in V$ .

- La **excentricidad** de v es  $\varepsilon(v) = \max_{u \in V} \{d_G(u, v)\}.$
- El **radio** de G es  $r(G) = \min_{v \in V} \{ \varepsilon(v) \}$ .
- El diámetro de G es  $D(G) = \max_{u \in V} \{ \varepsilon(v) \}.$

### Ejemplo

Para el grafo G de la siguiente figura, se tiene que:

$$d(a,h) = d(a,c) = d(a,f) = d(a,i) = 2,$$

• 
$$d(a,g) = d(a,j) = 3$$
,

• 
$$\varepsilon(a) = 3 = D(G)$$
,

• 
$$\varepsilon(b) = r(G) = 2$$
.



## Ejercicio

Determina el diámetro de los siguientes grafos:  $K_n$ ,  $K_{r,s}$ ,  $C_n$ ,  $P_n$ .

$$K_{4} = \begin{cases} k_{2,3} = \\ k_{2,3} = \\ k_{3,4} = \\ k_{4,5} = \\ k_{5,5} = \\ k_{5,5$$

### Ejercicio

Determina el diámetro de los siguientes grafos:  $K_n$ ,  $K_{r,s}$ ,  $C_n$ ,  $P_n$ .

#### Solución:

- $D(K_n) = 1$ .
- $D(K_{r,s}) = 2 \text{ si } r \ge 2 \text{ ó } s \ge 2.$
- $D(P_n) = n 1$ ,  $n \ge 2$ .
- $D(C_n) = \frac{n}{2}$  si n es par y  $D(C_n) = \frac{n-1}{2}$  si n es impar.

### Proposición

Para todo grafo G no conexo se cumple que  $G^c$  es conexo y  $D(G^c) \leq 2$ .



- Sean  $G_1, G_2, ..., G_k$  las componentes conexas de G.
- Sean  $x \in V(G_i)$ ,  $y \in V(G_i)$  con  $i \neq j$ .
- Para todo vértice  $z \notin V(G_i)$  tenemos  $d_{G^c}(x,z) = 1$  y para todo  $z \notin V(G_j)$  tenemos  $d_{G^c}(y,z) = 1$ .
- Así, x es adyacente a y en  $G^c$  y todos los vértices de  $G^c$  que no sean adyacentes a x también serán adyacentes a y.
- Por lo tanto,  $G^c$  es conexo y  $D(G^c) \leq 2$ .

### Ejercicio

Sea G=(V,E) un grafo de orden n tal que para todo par de vértices  $u,v\in V$  se cumple  $\delta(u)+\delta(v)\geq n-1$ . Prueba que G es conexo. Obtén una cota superior para el diámetro de G.



### Solución

Si n = 2, entonces G es isomorfo a  $K_2$ .

Supongamos que n>2. Si dos vértices no adyacentes,  $u,v\in V$ , no tienen ningún vecino en común, entonces  $\delta(u)+\delta(v)\leq n-2$ , lo que contradice que  $\delta(u)+\delta(v)\geq n-1$ . Por lo tanto,  $N(u)\cap N(v)\neq\varnothing$ . Así, el grafo G es conexo y  $D(G)\leq 2$ .

Matemática Discreta

#### Definición

El **centro** de un grafo G es el conjunto

$$C(G) = \{ v \in V(G) : \varepsilon(v) = r(G) \}.$$

### Ejercicio

Ponga dos ejemplos de grafos G = (V, E) tales que C(G) = V.

#### Solución

- Los grafos completos,  $G = K_n$ .
- Los grafos bipartitos completos  $G = K_{r,s}$  con  $r, s \ge 2$ .

#### Teorema

Un grafo es bipartito si y sólo si no tiene ciclos de longitud impar.

$$V_{2} = \{u_{0}\} \cup \{v \in V : d(u_{0}, v) \text{ es par }\}$$

$$V_{1} = V \setminus V_{2}$$

$$u_{1} = \begin{cases} u_{0} \\ v \\ v \end{cases}$$

$$d(u_{0}, u) = 1 + x_{1}$$

$$d(u_{0}, v) = x + x_{2}$$

#### Corolario

Todos árbol es un grafo bipartito.

### Ejercicio

Sean G y H dos grafos. Determina una condición necesaria y suficiente para que los siguientes grafos sean bipartitos.

- $\bigcirc G \odot H$
- G+H

#### Solución

- ⓐ  $G \odot H$  es bipartito si y sólo si G es bipartito y H es nulo.
- $\bigcirc$  G+H es bipartito si y sólo si G y H son nulos.

Problema del camino mínimo

#### Definición

Un **grafo ponderado** es un par (G, w) donde G = (V, E) es un grafo y w es una función  $w: E \to \mathbb{R}$  que asigna pesos a las aristas del grafo.

#### Definición

Dado un grafo ponderado (G,w) y un camino  $C: v_0, v_1, \ldots, v_k$  se define el **peso del camino** C como

$$w(C) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

y la **distancia** entre dos vértices  $u, v \in G$  como

$$d_G(u,v) = \min\{w(C) : C \text{ es un } u-v \text{ camino }\}.$$

## Ejemplo

Determina la distancia entre cada par de ciudades.



## Algoritmo de Dijkstra

- Se aplica sobre un grafo (o digrafo) ponderado.
- Calcula la distancia desde un vértice inicial s al resto de vértices del grafo.
- En cada paso del algoritmo se etiquetan los vértices con (dist(u); v), donde dist(u) es la distancia mínima actual desde el vértice s al vértice u. El vértice v es el predecesor de u en el camino mínimo que une s y u.

### Estructuras necesarias para la formulación del algoritmo

- Un grafo ponderado (G; w) representado mediante una lista de adyacencias.
- ullet Un conjunto U de los vértices que se han visitado, en el orden en que se ha realizado.
- Una tabla de distancias, dist(), indexada por los vértices de G, que registra la distancia del vértice inicial a los vértices que se van visitando.
- Al final, la tabla dist(), registra la distancia desde el vértice inicial al resto de vértices.

### Algoritmo Dijkstra (G,s)

```
U \leftarrow \emptyset (U es la lista de vértices visitados)
 para v \in V \setminus \{s\}
     dist(v) \leftarrow \infty
     Se etiqueta v \text{ con } (dist(v), s)
 finpara
 dist(s) \leftarrow 0
 Se etiqueta s con (dist(s), s)
 para i \leftarrow 0 hasta \leftarrow n-1
     u_i vértice que alcanza \min_{v \in V-U} \{dist(v)\}
     U \leftarrow U \cup \{u_i\}
     para v \in V - U advacente a u_i
          si dist(u_i) + w(u_i, v) < dist(v)
                    entonces dist(v) \leftarrow dist(u_i) + w(u_i, v)
                    Se etiqueta v \text{ con } (dist(v), u_i)
          finsi
     finpara
 finpara
retorno (dist)
```

#### **Observaciones**

- Cuando sea posible visitar más de un vértice, siempre eligiremos por conveniencia el de menor índice en la ordenación de los vértices disponibles.
- A cada paso se fija la distancia de uno de los vértices del grafo. Por tanto, tras n pasos se habría calculado la distancia a todos los vértices del grafo.
- El algoritmo se puede utilizar para obtener un camino de longitud mínima entre el vértice inicial y cualquier otro vértice.

# Ejemplo



| Α      | В      | С      | D      |
|--------|--------|--------|--------|
| (0,A)  | (∞,A)  | (∞,A)  | (∞,A)  |
| (0,A)* | (7,A)  | (∞,A)  | (2,A)  |
|        | (7,A)  | (3,D)  | (2,A)* |
|        | (6,C)  | (3,D)* |        |
|        | (6,C)* |        |        |

#### Árbol de distancias



d(A,B)=6

d(A,C)=3

d(A,D)=2

### Ejercicio

Determina la distancia de A a cada una de los vértices de la red de carreteras mostrada en la tabla.

|   | Α | В | C | D | Ε | F | G |
|---|---|---|---|---|---|---|---|
| Α | 0 | 5 | 3 | 2 | - | - | - |
| В | 5 | 0 | 2 | - | 3 | - | 1 |
| C | 3 |   |   | 7 | 7 | - | - |
| D | 2 | - | 7 |   | 2 | 6 | - |
| Ε | _ | 3 | 7 | 2 | 0 | 1 | 1 |
| F | _ | - | - | 6 | 1 | 0 | - |
| G | - | 1 | - | - | 1 | - | 0 |

Determina la distancia de A a cada una de los vértices de la red de carreteras mostrada en la tabla.

|   | A | В |   | D | Ε | F | G |
|---|---|---|---|---|---|---|---|
| Α | 0 | 5 | 3 | 2 | - | - | - |
| В | 5 | 0 | 2 | - | 3 | - | 1 |
| C | 3 | 2 | 0 | 7 | 7 | _ | _ |
| D | 2 | - | 7 | 0 | 2 | 6 | - |
| Ε |   | 3 | 7 | 2 | 0 | 1 | 1 |
| F | - | _ | - | 6 | 1 | 0 | - |
| G | - | 1 | = | - | 1 | - | 0 |

Subgrafo reconstruido a partir de la tabla:



| Α      | В      | C      | D      | E      | F      | G      |
|--------|--------|--------|--------|--------|--------|--------|
| (0,A)  | (∞,A)  | (∞,A)  | (∞,A)  | (∞,A)  | (∞,A)  | (∞,A)  |
| (0,A)* | (5,A)  | (3,A)  | (2,A)  | (∞,A)  | (∞,A)  | (∞,A)  |
| (0,A)  | (5,A)  | (3,A)  | (2,A)* | (4,D)  | (8,D)  | (∞,A)  |
| (0,A)  | (5,A)  | (3,A)* | (2,A)  | (4,D)  | (8,D)  | (∞,A)  |
| (0,A)  | (5,A)  | (3,A)  | (2,A)  | (4,D)* | (5,E)  | (5,E)  |
| (0,A)  | (5,A)* | (3,A)  | (2,A)  | (4,D)  | (5,E)  | (5,E)  |
| (0,A)  | (5,A)  | (3,A)  | (2,A)  | (4,D)  | (5,E)* | (5,E)  |
| (0,A)  | (5,A)  | (3,A)  | (2,A)  | (4,D)  | (5,E)  | (5,E)* |

Caminos mínimos:

A-5-B

А-3-С

A-2-D

A-2-D-2-E

A-2-D-2-E-1-F

A-2-D-2-E-1-G

### Ejemplo

La siguiente matriz es la matriz de adyacencia de un grafo ponderado de vértices A, B, C, D, E y F.

$$\begin{pmatrix} 0 & 8 & 0 & 0 & 5 & 0 \\ 8 & 0 & 7 & 2 & 2 & 0 \\ 0 & 7 & 0 & 8 & 0 & 3 \\ 0 & 2 & 8 & 0 & 0 & 4 \\ 5 & 2 & 0 & 0 & 0 & 9 \\ 0 & 0 & 3 & 4 & 9 & 0 \end{pmatrix}$$

Aplica el algoritmo de Dijkstra partiendo del vértice C

La siguiente matriz es la matriz de adyacencia de un grafo ponderado de vértices  $A,\,B,\,C,\,D,\,E$  y F.

$$\begin{pmatrix} 0 & 8 & 0 & 0 & 5 & 0 \\ 8 & 0 & 7 & 2 & 2 & 0 \\ 0 & 7 & 0 & 8 & 0 & 3 \\ 0 & 2 & 8 & 0 & 0 & 4 \\ 5 & 2 & 0 & 0 & 0 & 9 \\ 0 & 0 & 3 & 4 & 9 & 0 \end{pmatrix}$$

Aplica el algoritmo de Dijkstra partiendo del vértice C

| Α       | В      | С      | D      | E      | F      |
|---------|--------|--------|--------|--------|--------|
| (∞,C)   | (∞,C)  | (0,C)  | (∞,C)  | (∞,C)  | (∞,C)  |
| (∞,C)   | (7,C)  | (0,C)* | (8,C)  | (∞,C)  | (3,C)  |
| (∞,C)   | (7,C)  | (0,C)  | (7,F)  | (12,F) | (3,C)* |
| (15,B)  | (7,C)* | (0,C)  | (7,F)  | (9,B)  | (3,C)  |
| (15,B)  | (7,C)  | (0,C)  | (7,F)* | (9,B)  | (3,C)  |
| (14,E)  | (7,C)  | (0,C)  | (7,F)  | (9,B)* | (3,C)  |
| (14,E)* | (7,C)  | (0,C)  | (7,F)  | (9,B)  | (3,C)  |

Árbol de distancias

Caminos mínimos:

La excentricidad de C es 14

