9. Basics of Set Theory

Important Proof Strategies:

- ☐ Direct Proof ☐ Indirect Proof
- \square Proof by Cases ☐ Proof of Equivalence

SETS AND SET CONCEPTS

A set is a well-defined unordered collection of objects called elements.

Ex.
$$A = \{1, 2, a, Ottawa, \emptyset\}$$

name of set list of elements contained in set.

Ex. & people in this room?

Notation for set membership:

(greek letter epsilon)

1 EA means "I is an element of A" 3 ∉ A means "3 is not an element of A"

☐ Proof by Contradiction

Two sets are **equal** if they contain the same elements (regardless of the order and multiplicity).

EX.
$$\mathcal{D} = \{a, b, c\} \quad \exists = \{b\}$$

$$U = \{a, a, b, c\}$$

Ex. $S = \{a, b, c\}$ $T = \{b, c, a\}$ $U = \{a, a, b, c\}$ (U contains 3 distinct elements, namely a, b, and c)

Note S=T=U.

A set either contains some element or it does not.

- order elements are listed does not affect "is an element of"

Li repeating an element more than once does not affect "is an element of"

Describing a Set.

by listing its elements between braces {} (using ellipses () if necessary)	by using set-builder notation
A={a,e,i,o,u}	A={l: l is a vowel of the English alphabet}
B=\{3,6,9,,36\}	$B = \{3n: n \in \mathbb{Z}, \leq n \leq 2\}$
C={3,4,5,6,}	C={n: n∈Z, n>3}
D={,-4,-2,0,2,4,6,}	$D = \{n : n \text{ is an even integer}\}$

^{*} These notes are solely for the personal use of students registered in MAT1348.

Important Sets of Numbers

 $\mathbb{N} = \{0,1,2,3,...\}$ (The set of natural numbers)

 \mathbb{Z}_{-3} , -2, -1, 0, 1, 2, 3, -7 (the set of integers)

 $\mathbb{Q} = \{ f : p \in \mathbb{Z}, g \in \mathbb{N}, g \neq 0 \}$ (the set of rational numbers)

 $\mathbb{R} = \{r: r \text{ is a real number}\}\$ (the set of real numbers)

 $\mathbb{Z}^+ = \{ n \in \mathbb{Z} : n > 0 \}$ (the set of positive integers)

 $\mathbb{Z}^{-}=\{n\in\mathbb{Z}:n<0\}$ (the set of negative integers)

Similarly, $Q^+, Q^-, R^+, R^- \dots$

The Empty Set.

The empty set, denoted \emptyset , is the set with no elements. i.e. $\emptyset = \{3\}$

Note. $\{\emptyset\}$ is <u>not</u> the empty set because it does contain an element (its one element happens to be a Set, the empty set in fact. Regardless of what the element is, $\{\phi\}$ does contain an element)

The Universal Set. U

The universal set, denoted \mathcal{U} , is the set of all objects under consideration.

Subsets.

Let *A* and *B* be sets.

BSC

Then *A* is said to be a **subset** of *B* (written $A \subseteq B$) if every element of *A* is also an element of *B*.

i.e. for all $x \in \mathcal{U}$, the implication $(x \in A) \rightarrow (x \in B)$ is true. exercise Write the negation of this definition; ie What is the definition for "A is not a subset of B"?

EX NOZSQCR

 $Ex. A = \{a,b,c\} B = \{a,c\} C = \{a,\{b\},c\}$

~ is not a subset of a B⊆A

A \$B because b∈A but b \$B

 $A \not= G$ because $b \in A$ but $b \not\in G$

G\$A because {b}∈G but {b} \$\neq A\$

 $A \neq C$ because A and C do not contain the same elements

_b vs. {b} _a <u>set</u> containing one element, namely b. just a letter of the English alphabet -

Theorem 9.1. Let *S* be any set. Then

1.
$$S \subseteq S$$

2. $\emptyset \subseteq S$

Theorem 9.2. Let *A* and *B* be sets. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Note. To prove A = B, we must prove two things: 1. $A \subseteq B$ and 2. $B \subseteq A$.

Proper Subsets.

Let *A* and *B* be sets.

Then *A* is said to be a **proper subset** of *B* (written $A \subset B$) if $A \subseteq B$ and $A \neq B$.

Ex. NCZ because NSZ but N + Z.

EX. Let S be a set. Then $S \not\leftarrow S$. Although $S \subseteq S$ is True, S = S is also true. .. S is not a proper subset of itself.

Cardinality.

If a set A has exactly n distinct elements (for some $n \in \mathbb{N}$), then A is called **finite** and the **cardinality** of *A* is *n* (its size). The **cardinality** of a set *A* is denoted |A|.

> (what about cardinality of infinite sets? we'll talk about it later...)

Ex. $A = \{a, b, c\}$ |A| = 3 "the cardinality of A is 3" because A contains 3 distinct elements.

Ex. B={a,a,b} |B|= 2 "the cardinality of B is 2" because B contains 2 distinct elements.

 $Ex. G = \{3n: n \in \mathbb{Z}, 1 \leq n \leq 12\}$ |G| = 12

 $\mathbb{E}_{X}. \mathcal{D} = \{ \underline{a}, \underline{\{a\}}, \underline{\{a, \{a\}\}\}} \}$

these are the 3 elements of D

(one element of D is just a letter, each of the other 2 elements of D happen to be sets)

All Subsets of a Finite Set.

Ex. List all subsets of A={a,b,c} in increasing order of cardinality.

O-element subsets: Ø

1-element subsets: {a}, {b}, and {c}

2-element subsets: {a,b}, {a,c}, and {b,c}

3-element subsets: {a,b,c} (ie ASA)

A has 7 proper subsets S A has 8 subsets

The Power Set. $\mathcal{P}(A)$

Let A be a set.

The **power set of** A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

$$Ex. A = \{a,b,c\}$$

$$\mathcal{P}(A) = \{ \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, A \} \}$$

In particular, $\emptyset \subseteq A$. Thus $\emptyset \in \mathcal{P}(A)$. Similarly, $A \subseteq A$. Thus $A \in \mathcal{P}(A)$.

Observe also that $A \nsubseteq P(A)$ because for example, $a \in A$, but $a \notin P(A)$.

Note.
$$|A| = 3$$
 and $|P(A)| = 2^3 = 8$.

Ex
$$\mathcal{P}(\phi) = \{\phi\}$$
 Note. $|\phi| = 0$ and $|\mathcal{P}(\phi)| = 2^{\circ} = 1$

Theorem 9.3. Let *A* be a set. If |A| = n, then $|\mathcal{P}(A)| = 2^n$.

(to be proved later)

Well-defined Sets and Russell's Paradox.

Note. In the definition of set, we stated "well-defined"...

here is an example of something that seems like a set but is not actually well-defined:

Let S be the set of all sets that do not contain themselves as elements.

ie
$$S = \{x : x \notin x\}$$

S might seem okay but S is <u>not</u> well-defined!

Suppose S∈S. Then S≠S by definition of S

• Suppose $S \notin S$. Then $S \in S$ by definition of $S \not = S$

Russell's Paradox.

There is a village in which a barber shaves all those villagers and only those who do not shave themselves. Who shaves the barber?

STUDY GUIDE

Important terms and concepts:

- set element list notation set-builder notation
- when two sets are equal
- \diamond empty set \varnothing universal set \mathscr{U}
- \diamond subset proper subset cardinality power set of S $\mathcal{P}(S)$

Exercises Sup.Ex. §4 # 2, 3, 10

Rosen §2.1 # 1, 2, 5, 6, 7, 8, 9, 11, 19, 21, 23, 27, 31