ISU GP and JGP Final 2011

x Credit for highlight distribution, base value multiplied by 1.1

PAIRS FREE SKATING JUDGES DETAILS PER SKATER

R	ank Nam	e			Natio		tarting umber	Segr	otal nent core	Elem	ent ore	Pro		Total omponent (factored)	De	Tota eductions
	1 Alion	na SAVCHENKO / Robin SZC	LKOWY		GER		5	14	2.44	70	.80			71.64		0.00
#	Executed Elements	į	Base Value	GOE					Judges I						Ref	Scores of Pane
1	3FTh		5.50	2.00	3	3	2	3	3	2	3	3	3			7.50
2	3T+3T+SEC	Q	6.56	1.40	2	2	1	2	2	2	3	2	2			7.96
3	ChSp1		2.00	1.40	2	2	2	2	2	2	2	2	2			3.40
4	FCCoSp4		3.50	0.36	0	1	0	1	0	1	1	1	2			3.86
5	BoDs4		4.50	1.30	2	2	1	2	2	0	2	2	2			5.80
6	3LzTw1		5.50 x	0.00	0	-1	0	-1	1	-1	1	1	0			5.5
7	2A		3.63 x	0.29	0	0	1	0	0	1	1	1	1			3.9
8	3Li4		4.40 x	0.93	2	2	2	1	2	1	2	2	2			5.3
9	5ALi3		6.60 x	1.20	2	1	1	1	3	1	3	2	2			7.8
0	PCoSp4		4.50	0.93	2	2	1	2	2	1	2	2	2			5.43
1	5RLi4		7.15 x	0.90	1	2	1	0	1	2	2	1	1			8.0
2	3STh		4.95 x	1.30	2	2	1	2	3	1	2	2	2			6.2
			58.79													70.8
	Program Co	omponents		Factor												
	Skating Skill	ls		1.60	8.75	9.00	8.50	8.50	8.75	8.00	9.00	8.75	9.25			8.7
	Transition /	Linking Footwork		1.60	8.75	8.75	8.50	8.75	8.75	8.00	9.00	8.75	9.00			8.7
	Performance	e / Execution		1.60	9.00	9.25	8.75	9.25	9.00	8.25	9.25	9.00	9.50			9.0
	Choreograp	hy / Composition		1.60	9.25	9.25	8.75	9.00	10.00	8.25	9.00	9.00	9.25			9.0
	Interpretatio	n		1.60	9.00	9.25	8.75	9.50	9.25	8.00	9.00	9.25	9.50			9.1
	Judges Total	Program Component Score (factored)													71.64
	Deductions	:														0.00
c Cr		: t distribution, base value multiplied by	1.1													0.00
Cr			1.1			Si	tarting	Т	otal	To	otal			Total		
	edit for highligh	t distribution, base value multiplied by	1.1		Natio		tarting umber		otal nent		otal ent	Pro	gram C	Total omponent	De	Total
		t distribution, base value multiplied by	1.1		Natio		tarting umber	Segr		Elem		Pro	_	Total omponent (factored)	De	Total
	edit for highlight	t distribution, base value multiplied by			Natio RUS		- I	Segr S	nent	Elem Sc	ent	Pro	_	omponent	De	Total eductions
R	ank Nam 2 Tatia Executed	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	TRANKOV Base	GOE			umber	Segr S 14	nent core 0.51	Elem Sc 69 Panel	ent ore	Pro	_	omponent (factored)	De	Total eductions 0.00 Scores
#	ank Nam 2 Tatia Executed Elements	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	TRANKOV Base Value		RUS	n N	umber 6	Segr S 14 The	nent core 0.51 Judges random o	Elem Sc 69 Panel order)	ent ore .22		Score	omponent (factored)		Tota eductions 0.00 Scores of Pane
# 1	ank Nam 2 Tatia Executed Elements 3LzTw1	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	TRANKOV Base Value 5.00	2.10	RUS	n N	umber 6	Segr Si 14 The (in)	0.51 Judges I	Elem Sc 69 Panel order)	ent ore .22	3	Score 3	omponent (factored)		Tota eductions 0.00 Scores of Pane
# 1 2	ank Nam 2 Tatia Executed Elements 3LzTw1 3S	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	Base Value 5.00 4.20	2.10 1.10	RUS 3 2	3 1	6 3 2	Segr S 14 The (in)	0.51 Judges Frandom of	Elem Sc 69 Panel order)	ent ore .22	3 2	Score 3 1	omponent (factored)		Total eductions 0.00 Scores of Pane 7.10 5.30
# 1 2 3	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	Base Value 5.00 4.20 5.40	2.10 1.10 0.50	RUS 3 2 0	3 1 1	3 2 1	Segr Si 14 The (in) 3 2 1	0.51 Judges Frandom of 1	Elem Sc 69 Panel order) 3 2 0	ent ore .22	3 2 1	3 1	omponent (factored)		Total ductions 0.00 Score of Pane 7.10 5.30 5.90
# 1 2 3 4	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00	2.10 1.10 0.50 1.10	RUS 3 2 0 1	3 1 1 2	3 2 1	Segr S 14 The (in 1 3 2 1 2	o.51 Judges I random o	Elem Sc 69 Panel order) 3 2 0 1	3 1 1 2	3 2 1 2	3 1 1 2	omponent (factored)		Tota eductions 0.00 Score: of Pane 7.11 5.30 5.90 5.10
# 1 2 3 4 5	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50	2.10 1.10 0.50 1.10 0.86	RUS 3 2 0 1 2	3 1 1 2 2 2	3 2 1 1 2	Segr S 14 The (in 1 3 2 1 2 2 2	nent core 0.51 Judges I random c 3 1 0 1	Sc 69 Panel order) 3 2 0 1 1	3 1 1 2 2	3 2 1 2 2	3 1 1 2	omponent (factored)		7.11 5.30 5.90 5.11 4.36
# 1 2 3 4 5 6	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x	2.10 1.10 0.50 1.10 0.86 1.80	RUS 3 2 0 1 2 2	3 1 1 2 2 3 3	3 2 1 1 2 3	Segr S 14 The (in 1 2 2 3 3	o.51 Judges random o	Fanel order) 3 2 0 1 1 2	3 1 1 2 2 3	3 2 1 2 2 2	3 1 1 2 1 3	omponent (factored)		7.11 5.30 5.91 4.30 7.30
# 1 2 3 4 5 6 7	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x	2.10 1.10 0.50 1.10 0.86 1.80 1.40	RUS 3 2 0 1 2 2 2	3 1 1 2 2 3 3 3	3 2 1 1 2 3 3 3	Segr S 14 The (in 1) 3 2 1 2 2 3 2	o.51 Judges random o	69 Panel order) 3 2 0 1 1 2 2	3 1 1 2 2 3 1	3 2 1 2 2 2 2	3 1 1 2 1 3 1	omponent (factored)		Total eductions 0.00 Scores of Pane 7.11 5.30 5.90 5.11 4.33 7.30 8.55
# 1 2 3 4 5 6 7 8	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00	RUS 3 2 0 1 2 2 2 1	3 1 1 2 2 3 3 3 2	3 2 1 1 2 3 3 1 1	Segr S 14 The (in 1) 3 2 1 2 2 3 2 2	onent core 0.51 Judges random c 3 1 0 1 1 2 2 1	80 Panel order) 3 2 0 1 1 2 2 2 2	3 1 1 2 2 3 1 2	3 2 1 2 2 2 2 1	3 1 1 2 1 3 1	omponent (factored)		7.11 5.30 5.11 4.30 7.31 8.55 8.11
# 1 2 3 4 5 6 7 8 9	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 4.95 x	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00	RUS 3 2 0 1 2 2 2 1 1	3 1 1 2 2 3 3 2 -1	3 2 1 1 2 3 3 1 -1	Segr S 14 The (in) 3 2 1 2 2 3 2 1	3 1 0 1 1 2 2 1 0	80 Panel order) 3 2 0 1 1 2 2 2 2 -1	3 1 2 2 3 1 2 2 3 1 2	3 2 1 2 2 2 2 2 1	3 1 1 2 1 3 1 1 1-1	omponent (factored)		7.10 Scores of Pane 7.11 5.30 5.90 5.11 4.30 7.30 8.55 8.11 4.75
# 1 2 3 4 5 6 7 8 9 10	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 4.95 x 4.40 x	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64	RUS 3 2 0 1 2 2 2 1 1 2	3 1 1 2 2 3 3 3 2 -1 1	3 2 1 1 2 3 3 1 -1 1	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2	3 1 0 1 1 1 2 2 1 0 1	80 Panel order) 3 2 0 1 1 2 2 2 -1 2	3 1 2 2 3 1 2 2 3 1 2 -1 1	3 2 1 2 2 2 2 2 1 1	3 1 1 2 1 3 1 1 -1 0	omponent (factored)		7.10 5.30 5.11 4.36 7.30 8.55 8.18 4.75 5.04
# 1 2 3 4 5 6 7 8 9 10 11	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3STh 3Li4 ChSp1	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10	RUS 3 2 0 1 2 2 2 1 1 2 2 2	3 1 1 2 2 3 3 3 2 -1 1 1 1	3 2 1 1 2 3 3 1 1 -1 1 2	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2 2 2 2 2	3 1 0 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	80 Panel order) 3 2 0 1 1 2 2 2 2 -1 2 2 2	3 1 1 2 2 3 1 2 -1 1 1 1	3 2 1 2 2 2 2 1 1 1 1 2	3 1 1 2 1 3 1 1 -1 0 1	omponent (factored)		7.10 Scores of Pane 7.11 5.30 5.90 5.11 4.36 7.30 8.55 8.11 4.75 5.04 3.11
# 1 2 3 4 5 6 7 8 9 10 1	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64	RUS 3 2 0 1 2 2 2 1 1 2	3 1 1 2 2 3 3 3 2 -1 1	3 2 1 1 2 3 3 1 -1 1	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2	3 1 0 1 1 1 2 2 1 0 1	80 Panel order) 3 2 0 1 1 2 2 2 -1 2	3 1 2 2 3 1 2 2 3 1 2 -1 1	3 2 1 2 2 2 2 2 1 1	3 1 1 2 1 3 1 1 -1 0	omponent (factored)		7.10 5.30 5.91 4.36 7.30 8.55 8.11 4.75 5.90 3.11 4.51
# 1 2 3 4 5 6 7 8 9 10 1	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3STh 3Li4 ChSp1	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10	RUS 3 2 0 1 2 2 2 1 1 2 2 2	3 1 1 2 2 3 3 3 2 -1 1 1 1	3 2 1 1 2 3 3 1 1 -1 1 2	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2 2 2 2 2	3 1 0 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	80 Panel order) 3 2 0 1 1 2 2 2 2 -1 2 2 2	3 1 1 2 2 3 1 2 -1 1 1 1	3 2 1 2 2 2 2 1 1 1 1 2	3 1 1 2 1 3 1 1 -1 0 1	omponent (factored)		7.10 5.30 5.30 5.30 5.30 7.30 8.55 8.11 4.76 5.00 3.10 4.50
# 1 2 3 4 5 6 7 8 9 10 1	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3STh 3Li4 ChSp1	t distribution, base value multiplied by e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10	RUS 3 2 0 1 2 2 2 1 1 2 2 2	3 1 1 2 2 3 3 3 2 -1 1 1 1	3 2 1 1 2 3 3 1 1 -1 1 2	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2 2 2 2 2	3 1 0 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	80 Panel order) 3 2 0 1 1 2 2 2 2 -1 2 2 2	3 1 1 2 2 3 1 2 -1 1 1 1	3 2 1 2 2 2 2 1 1 1 1 2	3 1 1 2 1 3 1 1 -1 0 1	omponent (factored)		7.10 5.30 5.30 5.30 5.30 7.30 8.55 8.11 4.76 5.00 3.10 4.50
# 1 2 3 4 5 6 7 8 9 10 1	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4 ChSp1 PCoSp4	e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07	RUS 3 2 0 1 2 2 2 1 1 2 2 2	3 1 1 2 2 3 3 3 2 -1 1 1 1	3 2 1 1 2 3 3 1 1 -1 1 2	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2 2 2 2 2	3 1 0 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	80 Panel order) 3 2 0 1 1 2 2 2 2 -1 2 2 2	3 1 1 2 2 3 1 2 -1 1 1 1	3 2 1 2 2 2 2 1 1 1 1 2	3 1 1 2 1 3 1 1 -1 0 1	omponent (factored)		7.10 Scores of Pane 7.11 5.30 5.99 5.11 4.30 7.30 8.55 8.11 4.75 5.04 3.11 4.55 69.22
# 1 2 3 4 5 6 7 8 9 10 1	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALI4 5RLI4 3STh 3SLi4 ChSp1 PCoSp4 Program Cc Skating Skill	e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07	RUS 3 2 0 1 2 2 2 1 1 2 2 0	3 1 1 2 2 3 3 2 -1 1 1 1 -1	3 2 1 1 2 3 3 1 -1 1 2 0	Segr S 14 The (in) 2 1 2 2 3 2 1 2 0	3 1 0 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	80 Panel order) 3 2 0 1 1 2 2 2 -1 2 2 0 0	3 1 1 2 2 3 1 2 -1 1 1	3 2 1 2 2 2 2 2 1 1 1 2 0	3 1 1 2 1 3 1 1 -1 0 1	omponent (factored)		7.10 5.30 5.11 4.30 7.30 8.51 4.70 5.90 5.11 4.70 6.9.2
# 1 2 3 4 5 6 7 8 9 10 11	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4 ChSp1 PCoSp4 Program Cc Skating Skill Transition / /	e ana VOLOSOZHAR / Maxim	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07	RUS 3 2 0 1 2 2 2 1 1 2 2 0 8.50	3 1 1 2 2 3 3 3 2 -1 1 1 -1 9.00	3 2 1 1 2 3 3 1 1 -1 1 2 0 8.75	Segr S 14 The (in) 3 2 1 2 2 3 2 2 1 2 0 9.00	3 1 0 1 1 2 2 1 0 0 1 1 1 1 1 9.00	8.50	3 1 1 2 2 3 1 1 2 -1 1 1 1 9.00	3 2 1 2 2 2 2 1 1 1 1 2 0	3 1 1 2 1 3 1 1 -1 0 1 0	omponent (factored)		7.10 Scores of Pane 7.11 5.30 5.90 5.11 4.30 7.30 8.55 8.11 4.75 5.00 3.11 4.55 69.22 8.88 8.64
# 1 2 3 4 5 6 7 8 9 10 11	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4 ChSp1 PCoSp4 Program Cc Skating Skill Transition / I	e ana VOLOSOZHAR / Maxim and VOLOSOZHAR / Max	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07 Factor 1.60 1.60	RUS 3 2 0 1 2 2 2 1 1 2 2 0 8.50 8.75	3 1 1 2 2 3 3 2 -1 1 1 -1 9.00 8.75	3 2 1 1 2 3 3 1 1 -1 1 2 0 8.75 8.50	Segr S 14 The (in) 3 2 1 2 2 3 2 1 2 0 9.00 8.75	3 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.50 8.25	3 1 1 2 2 3 1 2 -1 1 1 1 1 9.00 8.75	3 2 1 2 2 2 2 1 1 1 2 0	3 1 1 2 1 3 1 1 -1 0 1 0	omponent (factored)		Tota eductions 0.00 Scores of Pane 7.10 5.30 5.90 5.11 4.36 7.30 8.56 8.16 4.76 69.22 8.88 8.64 8.96
# 1 2 3 4 5 6 7 8 9 10 11	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4 ChSp1 PCoSp4 Program Cc Skating Skill Transition / I	omponents Is Linking Footwork e / Execution hy / Composition	FRANKOV Base Value 5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 7.15 x 4.95 x 4.40 x 2.00 4.50	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07 Factor 1.60 1.60	RUS 3 2 0 1 2 2 2 1 1 2 2 0 8.50 8.75 9.00	3 1 1 2 2 3 3 2 -1 1 1 -1 9.00 8.75 9.25	3 2 1 1 2 3 3 1 -1 1 2 0 8.75 8.50 9.00	Segr S 14 The (in t) 3 2 1 2 2 3 2 1 2 0 9.00 8.75 9.00	3 1 0 1 1 2 2 1 0 1 1 1 2 2 1 0 1 1 1 1 9.00 8.75 8.75	8.50 8.25 8.25	3 1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 9.000 8.75 9.25	3 2 1 2 2 2 2 2 1 1 1 1 2 0	3 1 1 2 1 3 1 1 -1 0 1 0 9.00 7.00 8.50	omponent (factored)		Tota eductions 0.00
# 1 2 3 4 5 6 7 8 9 10 11	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4 ChSp1 PCoSp4 Program Cc Skating Skill Transition / I Performanc Choreograp Interpretatio	omponents Is Linking Footwork e / Execution hy / Composition	5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 4.95 x 4.40 x 2.00 4.50 57.75	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07 Factor 1.60 1.60	RUS 3 2 0 1 2 2 1 1 2 2 0 8.50 8.75 9.00 9.00	3 1 1 2 2 3 3 2 -1 1 1 -1 9.00 8.75 9.25 9.25	3 2 1 1 2 3 3 11 1 2 0 8.75 8.50 9.00 9.00 9.00	Segr S 14 The (in 1) 3 2 1 2 2 3 2 2 1 2 2 0 9.00 8.75 9.00 9.25	3 1 0 1 1 2 2 1 0 1 1 1 1 2 2 1 0 1 1 1 1	8.50 8.25 8.25 8.25	3 1 1 2 2 3 1 2 -1 1 1 1 1 9.00 8.75 9.25 9.50	3 2 1 2 2 2 2 1 1 1 1 2 0	3 1 1 2 1 3 1 1 -1 0 1 0 9.00 7.00 8.50 7.75	omponent (factored)		7.10 Scores of Pane 7.11 5.33 5.90 5.10 4.36 7.33 1.10 4.57 69.22 8.88 8.64 8.99 9.00 9.07
# 1 2 3 4 5 6 7 8 9 10 11	ank Nam 2 Tatia Executed Elements 3LzTw1 3S 3T+2T BoDs3 FCCoSp4 3LoTh 5ALi4 5RLi4 3STh 3Li4 ChSp1 PCoSp4 Program Cc Skating Skill Transition / I Performanc Choreograp Interpretatio	e ana VOLOSOZHAR / Maxim bomponents Is Linking Footwork e / Execution hy / Composition Program Component Score (factored)	5.00 4.20 5.40 4.00 3.50 5.50 x 7.15 x 4.95 x 4.40 x 2.00 4.50 57.75	2.10 1.10 0.50 1.10 0.86 1.80 1.40 1.00 -0.20 0.64 1.10 0.07 Factor 1.60 1.60	RUS 3 2 0 1 2 2 1 1 2 2 0 8.50 8.75 9.00 9.00	3 1 1 2 2 3 3 2 -1 1 1 -1 9.00 8.75 9.25 9.25	3 2 1 1 2 3 3 11 1 2 0 8.75 8.50 9.00 9.00	Segr S 14 The (in 1) 3 2 1 2 2 3 2 2 1 2 2 0 9.00 8.75 9.00 9.25	3 1 0 1 1 2 2 1 0 1 1 1 1 2 2 1 0 1 1 1 1	8.50 8.25 8.25 8.25	3 1 1 2 2 3 1 2 -1 1 1 1 1 9.00 8.75 9.25 9.50	3 2 1 2 2 2 2 1 1 1 1 2 0	3 1 1 2 1 3 1 1 -1 0 1 0 9.00 7.00 8.50 7.75	omponent (factored)		7.10 5.30 5.90 5.11 4.33 7.30 8.55 8.15 4.77 5.04 3.10 4.55 69.22

ISU GP and JGP Final 2011

Deductions:

x Credit for highlight distribution, base value multiplied by 1.1

PAIRS FREE SKATING JUDGES DETAILS PER SKATER

		_	eauc		duc	du —)dı	.d)d	dı —	lu _	u ·	u	ш с	10	IC	с _	ان	_	, (I	ti —	ti	:t	C	10	u	u	lu _	lu	lu _	Ju 	ut 	lu	u	u	u	u	u	u	u	u	u(10	10	10	uc	u	u	u	uc	u	u	u	u _	lι	l	dι	Jt	dι	lu	lu	lu	lu _	u	u	u	lu	lu	lu –	lu	lι	lι	lu —	Ju —	Ju	וג			-	_	11	11	וג	JI _	di.	di.	_ _	đ	;c	e)е —	D _	_	_							•	m fa
							_	_	_							_		_		_		(_										_	_	_		_	_	_		_		_	_	_	_	_	_	_	_	_	_							_	_	_	_	_	_	_	_	_	_				_	_	_					_				_					_	_					_	3	6	1.6	<u>3</u> 4	6	_	
	So of I	,						L	Ĺ																			c	c	c	((c																					c	(,	,	,	,	,	c	,	c	c	c	c	((((((,	,	,	,	,	,	,	,	,	,										f	tef	R								
																				((e	,																																																																															
																							•																																																																															
																				((6	(
	7			_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	7	7	Т	7	-	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_						_	_	_	_	_	_	_	_	_	_				_	_	_					_				_	_	_	_		_		_	_	_	_	_	al	ta	ot	_ T	-	_	_
Dedu	educt	edu	du	duc	uc	du	≱dı	∍d	ŧd	dι	lu	u	u	uc	ıc	ıc	С	C1	ct	:ti	:ti	ti	:t	C	ıc	u	u	lu	lu	lu	ut	ut	lu	u	u	u	u	u	u	u	u	uc	JC	JC	10	uc	u	u	u	uc	u	u	u	u	lι	lı	dι	dι	dι	lu	lu	lu	lu	u	u	u	lu	lu	lu	lu	lι	lι	lu	iu	İι	lι	lι	lι	lı	Jι	l	l	ıb	dı	dı	dı	d	d	≱ d	e)e	D									-	m fa
																						(7	0	3.0	58	5		
	So of I							I																							_	_																							,	,	,		,	-		-					٠,	٠,	٠,		,	,	_	_	_				,					_	_	_	_					ī	tef	R	_				_		_	
																				•	f	e	,																																																																															
																						5																																																																																

0.00

ISU GP and JGP Final 2011

PAIRS FREE SKATING JUDGES DETAILS PER SKATER

R	ank Name			Natio		tarting umber	Segr	otal nent core	Elem	tal ent ore	Pro	-	Total component (factored)	De	Total eductions
	5 Meagan DUHAMEL / Eric RADFOR	RD		CAN		2	10	9.39	55	.32			55.07		-1.00
#	Executed on Elements	Base Value	GOE					Judges random o						Ref	Scores of Panel
1	3LzTw2	5.40	-0.20	0	1	0	0	-1	-1	0	-2	0			5.20
2	3Lz	6.00	-2.10	-3	-3	-3	-3	-3	-3	-3	-3	-3			3.90
3	3S+SEQ	3.36	0.60	1	1	1	0	1	1	0	1	2			3.96
4	BoDs	0.00	0.00	-	-	-	-	-	-	-	-	-			0.00
5	FCCoSp4	3.50	0.43	1	1	2	1	0	0	1	0	2			3.93
6	ChSp1	2.00	0.80	1	0	1	1	2	1	1	1	2			2.80
7	5ALi4	7.15 x	0.70	1	1	2	1	1	0	1	0	2			7.85
8	3STh	4.95 x	-0.10	0	0	0	0	0	-1	0	-1	0			4.85
9	5SLi4	6.60 x	0.86	1	2	2	2	1	2	2	1	2			7.46
10	3FTh	6.05 x	-0.30	-1	-1	0	0	-1	0	0	0	-1			5.75
11	3Li4	4.40 x	0.43	1	1	2	1	0	-1	2	0	1			4.83
2	PCoSp4	4.50 53.91	0.29	1	0	1	1	1	0	0	0	1			4.79 55.3 2
	Program Components	55.5	Factor												55.52
	Skating Skills		1.60	6.25	6.75	7.50	7.75	6.25	7.00	7.25	6.75	6.75			6.89
	Transition / Linking Footwork		1.60	7.00	6.50	7.50	7.75	6.00	6.50	7.23	7.00	7.00			6.89
	Performance / Execution		1.60	7.25	6.75	7.25	7.75	6.75	6.75	6.50	6.50	6.75			6.86
	Choreography / Composition		1.60	7.00	6.75	7.25	7.50	6.50	6.75	7.00	6.50	7.50			6.96
	Interpretation		1.60	6.75	6.50	7.00	7.50	6.75	6.50	6.75	6.75	7.25			6.82
	Judges Total Program Component Score (factored)														55.07
Cr	edit for highlight distribution, base value multiplied by 1.1	l 			S	tarting	т	otal	To	tal			Total		Total
R	ank Nama														i Otai
	ank Name			Natio	n N	umber	Segr S	nent core	Elem Sc	ent ore	Pro	-	omponent (factored)	De	eductions
	6 Narumi TAKAHASHI / Mervin TRAN	N		Natio JPN	n N	umber 1	S		Sc		Pro	-	omponent	De	
#		N Base Value	GOE		n N		10	core	Sc 51 Panel	ore	Pro	-	omponent (factored)	De Ref	eductions
	6 Narumi TAKAHASHI / Mervin TRAN	Base	GOE		n N		10	4.88 Judges	Sc 51 Panel	ore	Pro 2	-	omponent (factored)		-2.00 Scores
#	6 Narumi TAKAHASHI / Mervin TRAN Executed Selements	Base Value		JPN		1	Solution 10	4.88 Judges random c	51 Panel order)	.68		Score	omponent (factored)		-2.00 Scores of Panel
#	6 Narumi TAKAHASHI / Mervin TRAN Executed Elements g SFTw3	Base Value 5.80	1.30	JPN 2	2	1	Solution 10 The (in)	4.88 Judges random 0	51 Panel order)	.68 2	2	Score	omponent (factored)		-2.00 Scores of Panel 7.10 1.30
# 1 2	6 Narumi TAKAHASHI / Mervin TRAN Executed	Base Value 5.80 2.90	1.30 -1.60 -2.10 0.20	JPN 2 -3 -3 1	2 -2	1 -1	10 The (in)	4.88 Judges random c	51 Panel order) 2 -2 -3 0	.68 2 -3	2 -3	2 -2	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18
# 1 2 3	6 Narumi TAKAHASHI / Mervin TRAN Executed	Base Value 5.80 2.90 3.28	1.30 -1.60 -2.10 0.20 0.29	JPN 2 -3 -3 1 0	2 -2 -3 0 1	1 -1 -3	2 -2 -3 0 0	4.88 Judges random c 0 -2 -3	51 Panel order) 2 -2 -3 0 1	2 -3 -3 0 1	2 -3 -3 -1 0	2 -2 -3 1 1	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.70
# 1 2 3 4	6 Narumi TAKAHASHI / Mervin TRAN Executed genents g 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4	Base Value 5.80 2.90 3.28 4.50 3.00 7.15 x	1.30 -1.60 -2.10 0.20 0.29 1.30	JPN 2 -3 -3 -1 0 2	2 -2 -3 0 1 2	1 -1 -3 1 1 1	2 -2 -3 0 0 2	0 -2 -3 0 0 1	51 Panel order) 2 -2 -3 0 1 2	2 -3 -3 0 1 2	2 -3 -3 -1 0 2	2 -2 -3 1 1 2	omponent (factored)		-2.00 Scores of Pane 7.10 1.30 1.18 4.70 3.29 8.45
# 1 2 3 4 5 6 7	6 Narumi TAKAHASHI / Mervin TRAN Executed	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10	JPN 2 -3 -3 -3 1 0 2 -3	2 -2 -3 0 1 2 -3	1 -1 -3 1 1 -3 -3	2 -2 -3 0 0 2 -3	0 -2 -3 0 0 1 -3	51 Panel order) 2 -2 -3 0 1 2 -3	2 -3 -3 0 1 2 -3	2 -3 -3 -1 0 2 -3	2 -2 -3 1 1 2 -3	omponent (factored)		-2.00 Scores of Pane 7.10 1.30 1.18 4.77 3.29 8.48 2.86
# 1 2 3 4 5 6 7 8	6 Narumi TAKAHASHI / Mervin TRAN Executed Elements 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4 3STh 3TTh	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40	JPN 2 -3 -3 1 0 2 -3 -2	2 -2 -3 0 1 2 -3 -2	1 -1 -3 -1 -3 -2	The (in) 2 -2 -3 0 0 2 -3 -2	0 -2 -3 0 0 1 -3 -2	51 Panel order) 2 -2 -3 0 1 2 -3 -3 -2	2 -3 -3 0 1 2 -3 -2	2 -3 -3 -1 0 2 -3 -2	2 -2 -3 1 1 2 -3 -2	omponent (factored)		-2.00 Scores of Pane 7.10 1.30 1.118 4.70 3.22 8.44 2.85 3.55
# 1 2 3 4 5 6 7 8 9	6 Narumi TAKAHASHI / Mervin TRAN Executed Elements 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4 3STh 3TTh PCoSp4	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.50	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14	JPN 2 -3 -3 1 0 2 -3 -2 1	2 -2 -3 0 1 2 -3 -2 1	1 1 -1 -3 1 1 1 -3 -2 0	2 -2 -3 0 0 2 -3 -2 1	0 -2 -3 0 0 1 -3	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0	2 -3 -3 0 1 2 -3 -2 0	2 -3 -3 -1 0 2 -3 -2 0	2 -2 -3 1 1 2 -3	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.77 3.29 8.45 2.88 3.55 4.64
# 1 2 3 4 5 6 7 8 9 10	6 Narumi TAKAHASHI / Mervin TRAN Executed	Base Value 5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00	JPN 2 -3 -3 1 0 2 -3 -2 1 2	2 -2 -3 0 1 2 -3 -2 1 2	1	2 -2 -3 0 0 2 -3 -2 1 2	0 -2 -3 0 0 1 -3 -2 0 1 1	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 2	2 -3 -3 0 1 2 -3 -2 0 3	2 -3 -3 -1 0 2 -3 -2 0 2	2 -2 -3 1 1 2 -3 -2 0 2	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.70 3.29 8.45 2.85 3.55 4.64 5.40
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.50 4.40 x 2.00	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2	2 -2 -3 0 1 2 -3 -2 1 2	1 -1 -3 -1 1 1 -3 -2 0 2 1	S 10 The (in / 2 -2 -3 0 0 2 -3 -2 -1 2 1	0 -2 -3 0 0 1 -3 -2 0 1 0	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1	2 -3 -3 0 1 2 -3 -2 0 3 1	2 -3 -3 -1 0 2 -3 -2 0 2 1	2 -2 -3 1 1 2 -3 -2 0 2 0	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.70 3.29 8.45 2.85 3.55 4.64 5.40 2.60
# 1 2 3 4 5 6 7 8 9 0 1	6 Narumi TAKAHASHI / Mervin TRAN Executed	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00	JPN 2 -3 -3 1 0 2 -3 -2 1 2	2 -2 -3 0 1 2 -3 -2 1 2	1	2 -2 -3 0 0 2 -3 -2 1 2	0 -2 -3 0 0 1 -3 -2 0 1 1	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 2	2 -3 -3 0 1 2 -3 -2 0 3	2 -3 -3 -1 0 2 -3 -2 0 2	2 -2 -3 1 1 2 -3 -2 0 2	omponent (factored)		-2.00 Scores of Panel 7.10 1.38 4.70 3.29 8.45 2.85 3.55 4.64 2.60 6.62
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.50 4.40 x 2.00	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2	2 -2 -3 0 1 2 -3 -2 1 2	1 -1 -3 -1 1 1 -3 -2 0 2 1	S 10 The (in / 2 -2 -3 0 0 2 -3 -2 -1 2 1	0 -2 -3 0 0 1 -3 -2 0 1 0	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1	2 -3 -3 0 1 2 -3 -2 0 3 1	2 -3 -3 -1 0 2 -3 -2 0 2 1	2 -2 -3 1 1 2 -3 -2 0 2 0	omponent (factored)		-2.00 Scores
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60 0.57	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2 1	2 -2 -3 0 1 2 -3 -2 1 2 1	1 -1 -3 -1 -3 -2 0 2 1 1	S 10 The (in) 2 -2 -3 0 0 2 -3 -2 1 2 1	0 -2 -3 0 0 1 -3 -2 0 1 0 0 0	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1 2	2 -3 -3 0 1 2 -3 -2 0 3 1 1	2 -3 -3 -1 0 2 -3 -2 0 2 1	2 -2 -3 1 1 2 -3 -2 0 2 0 1	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.70 3.29 8.45 2.85 3.55 4.64 5.40 2.60 6.62 51.68
# 1 2 3 4 5 6 7 8 9 0 1	6 Narumi TAKAHASHI / Mervin TRAN Executed	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60 0.57	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2 1	2 -2 -3 0 1 2 -3 -2 1 2	1 -1 -3 -1 1 1 -3 -2 0 2 1	S 10 The (in / 2 -2 -3 0 0 2 -3 -2 -1 2 1	0 -2 -3 0 0 1 -3 -2 0 1 0	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1	2 -3 -3 0 1 2 -3 -2 0 3 1 1 7.00	2 -3 -3 -1 0 2 -3 -2 0 2 1	2 -2 -3 1 1 2 -3 -2 0 2 0 1	omponent (factored)		-2.00 Scores of Pane 7.10 1.30 1.18 4.70 3.22 8.44 2.85 3.55 4.66 5.40 2.60 6.62 51.66
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed Elements 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4 3STh 3TTh PCoSp4 3Li4 ChSp1 5TLi3 Program Components Skating Skills Transition / Linking Footwork	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60 0.57	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2 1	2 -2 -3 0 1 2 -3 -2 1 2 1 1 7.50 7.00	1 -1 -3 -1 1 1 -3 -2 0 2 1 1 1 6.25	S 10 The (in) 2 -2 -3 0 0 2 -3 -2 1 2 1 2 7.50 7.75	0 -2 -3 0 0 1 -3 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sc 51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1 2 6.75 6.75	2 -3 -3 0 1 2 -3 -2 0 3 1 1	2 -3 -3 -1 0 2 -3 -2 0 2 1 1	2 -2 -3 1 1 2 -3 -2 0 2 0 1 1 6.50 6.50	omponent (factored)		-2.00 Scores of Panel 7.10 1.33 1.18 4.70 3.29 8.45 2.85 3.55 4.64 2.60 6.62 51.66
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed Elements 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4 3STh 3TTh PCoSp4 3Li4 ChSp1 5TLi3 Program Components Skating Skills	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60 0.57	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2 1 7.50 7.50	2 -2 -3 0 1 2 -3 -2 1 2 1 1	1 -1 -3 -1 1 1 -3 -2 0 2 1 1 1 6.25 6.50	S 10 The (in) 2 -2 -3 0 0 2 -3 -2 1 2 1 2	0 -2 -3 0 0 1 -3 -2 0 1 0 0 0 6.50 6.75	51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1 2 6.75	2 -3 -3 0 1 2 -3 -2 0 3 1 1 7.00 7.50	2 -3 -3 -1 0 2 -3 -2 0 2 1 1	2 -2 -3 1 1 2 -3 -2 0 2 0 1	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.70 3.29 8.45 2.85 3.55 4.64 5.40 6.62 51.68
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed gelements gelements 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4 3STh 3TTh PCoSp4 3Li4 ChSp1 5TLi3 Program Components Skating Skills Transition / Linking Footwork Performance / Execution	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.57 Factor 1.60 1.60	JPN 2 -3 -3 1 0 2 -3 -2 1 2 2 1 7.50 7.50 7.00	2 -2 -3 0 1 2 -3 -2 1 1 2 1 1 7.50 7.00 7.25	1 1 -1 -3 1 1 1 -3 -2 0 2 1 1 1 6.25 6.50 6.00	S 10 The (in) 2 -2 -3 0 0 2 -3 -2 1 2 1 2 7.50 7.75 7.00	0 -2 -3 0 0 1 -3 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sc 51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1 2 -2 6.75 6.75 6.75	2 -3 -3 0 1 2 -3 -2 0 3 1 1 7.00 7.50 6.50	2 -3 -3 -1 0 2 -3 -2 0 2 1 1	2 -2 -3 1 1 2 -3 -2 0 2 0 1 1 6.50 6.50 6.75	omponent (factored)		-2.00 Scores of Panel 7.10 1.30 1.18 4.70 3.29 8.45 2.85 3.55 4.64 2.60 6.62
# 1 2 3 4 5 6 7 8 9 10 11	6 Narumi TAKAHASHI / Mervin TRAN Executed gelements g 3FTw3 3S< < 3T+SEQ BoDs4 FCCoSp3 5ALi4 3STh 3TTh PCoSp4 3Li4 ChSp1 5TLi3 Program Components Skating Skills Transition / Linking Footwork Performance / Execution Choreography / Composition	5.80 2.90 3.28 4.50 3.00 7.15 x 4.95 x 4.95 x 4.95 x 4.50 4.40 x 2.00 6.05 x	1.30 -1.60 -2.10 0.20 0.29 1.30 -2.10 -1.40 0.14 1.00 0.60 0.57 Factor 1.60 1.60	JPN 2 -3 -3 -1 0 2 -3 -2 1 2 2 1 7.50 7.50 7.00 7.50	2 -2 -3 0 1 2 -3 -2 1 2 1 1 7.50 7.00 7.25 7.50	1 1 -1 -3 1 1 1 -3 -2 0 2 1 1 1 6.25 6.50 6.00 6.50	S 10 The (in) 2 -2 -3 0 0 2 -3 -2 1 2 1 2 7.50 7.75 7.00 7.75	0 -2 -3 0 0 1 -3 -2 0 0 0 6.50 6.50 6.50 6.50	Sc 51 Panel order) 2 -2 -3 0 1 2 -3 -2 0 2 1 2 1 2	2 -3 -3 -2 0 3 1 1 7.00 7.50 6.50 7.50	2 -3 -3 -1 0 2 -3 -2 0 2 1 1 6.00 6.50 5.50 6.00	2 -2 -3 1 1 2 -3 -2 0 1 1 6.50 6.50 6.75 6.75	omponent (factored)		-2.00 Scores of Pane 7.10 1.30 1.11 4.77 3.23 8.44 2.81 3.55 4.64 5.40 5.166 6.86 6.99 6.64 7.00

< Under-rotated jump x Credit for highlight distribution, base value multiplied by 1.1

Printed: 10.12.2011 21:24:24