UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 4

1. Sea G una gráfica no trivial. Demuestre que G es una trayectoria si y sólo si G es un árbol con exactamente dos vértices de grado 1.

Demostración: (Reducción al absurdo) (——-¿) Pd G es una trayectoria ⇒ G es un arbol con exactamente 2 vértices de grado 1

Pd G es una trayectoria y G no es un árbol

Pd G es una trayectoria y G no es conexa o contiene un ciclo

Caso 1 G no es conexa

Si G no es conexa \Longrightarrow Existen u,v que pertenecen a G tal que u,v no son adyacente \Longrightarrow G no puede ser una trayectoria (Lo que es una contradicción ya que G es una trayectoria)

Caso 2 G contiene un ciclo

Si G contiene un ciclo \Longrightarrow G no es un orden lineal \Longrightarrow G no es trayectoria (Lo que es una contradicción ya que G es una trayectoria)

Por lo tanto G es una trayectoria y G es un Árbol ⇒ (—tengo dudas aqui—) Existe G con tansolo 2 vertices de grado 2, pero tambien existen G con mas vertices que lo cumplen

(i——) Sea G un arbol con exactamente 2 vertices de grado $1 \Longrightarrow G$ es un orden lineal por lo tanto G es una trayectoria

2. (a) Demuestre que cada árbol con grado máximo $\Delta > 1$ tiene al menos Δ hojas.

Demostración: Sea G un árbol y sea $x \in V_G$ tal que $d(x) = \Delta$ (notar que x no necesariamente es el único que cumple tener grado igual a Δ , por lo que se tomará alguno que cumpla esto), entonces x tiene exactamente Δ vecinos, por la caracterización de árbol, sabemos que G es acíclico y por tanto los caminos que parten desde x (tienen a x como vértice inicial) hacia algunos de sus Δ vecinos, no tienen vértices en común que sean distintos de x (caso contrario, habría 2 trayectorias que tienen inicio en x a las que llamaremos w_1 y w_2 , y además tienen en común al menos un vértice v y por tanto w_1w_2 es un ciclo!! que está contenido en G), luego, como x tiene Δ vecinos, entonces podemos tomar al menos Δ trayectorias distintas entre ellas tales que terminen en algún vértice u_i $(1 \le i \le \Delta)$ y por tanto cada u_i es una hoja de G, como hemos encontrado Δ hojas podemos concluir que el árbol G con grado máximo Δ tiene al menos Δ hojas.

(b) Construya, para cada elección de n y Δ , con $2 \leq \Delta < n$, un árbol de orden n con exactamente Δ hojas.

Soluci'on: Sea G un árbol, usemos el resultado anterior, y garantizamos que, como G tiene algún $x \in V_G$: $d(x) = \Delta$, entonces G tiene al menos Δ hojas. Luego, partícularmente en los árboles de exactamente Δ hojas, cada camino W_i que tenga como vértice inicial a x no tendrá bifurcaciones, esto es, xW_iv_i es la única manera de llegar de x a v_i y además W_i es una trayectoria (y por definición de trayectoria, no tendrá bifurcaciones), como x es vértice inicial de exactamente Δ trayectorias W_i , entonces hay exactamente Δ hojas en G. En resumen, G tendrá exactamente Δ vértices de grado 1, a continuación se muestra un ejemplo que trata de ser lo más general posible:

donde los v_i 's son las hojas, para $1 \le i \le \Delta$.

3. Un centro en una gráfica es un vértice u tal que $\max_{v \in V} d(u, v)$ es mínima. Demuestre que un árbol tiene exactamente un centro o dos centros adyacentes.

- 4. Demuestre o brinde un contraejemplo: Toda gráfica con menos aristas que vértices tiene una componente que es un árbol.
- 5. Un hidrocarburo saturado es una molécula C_mH_n en la que cada átomo de carbono tiene cuatro enlaces, cada átomo de hidrógeno tiene un enlace, y ninguna sucesión de enlaces forma un ciclo. Demuestre que para cualquier entero positivo m, la molécula C_mH_n existe sólo si n=2m+2.

Demostración: Demostración por inducción sobre m

Paso base (m=1)

Por definición de hidrocarburo saturado $C_1k_4 \Longrightarrow 4=2(1)+2$ por lo tanto para m=1 se cumple que n=2m+2

Hipótesis de inducción m = k, si $C_k H_n \Longrightarrow \text{supongamos n=2k+2}$

Paso Inductivo

Pd m=k+1

Por hipótesis de inducción tenemos que $C_kH_n \implies n=2k+2$ y por paso base $c_1K_4 \implies 4=2(1)+2 \implies$ sean r que pertenece a los Naturales sin el 0, sea C_r y C_1 donde C_r pertenece a C_kH_n y C_1 pertenece a C_1k_4 tal que r pertenece a $1,2,3,...,k \implies$ eliminemos 1 hidrógeno a C_r y $C_1 \implies C_kH_{n-1}$ y C_1k_3 son iguales a n-1=2k+1 ...(1) y 3=2(1)+1 ...(2) \implies uniendo C_kH_{n-1} y C_1k_3 mediante los vertices C_r y $C_1 \implies C_{k+1}H_m$ seria igual a la suma de (1) y (2) $\implies n+2=2(k)+2(1)+2 \implies n+2=2(k+1)+2 \implies m=n+1 \implies n+2=2(k+1)+2$. Por lo tanto para $C_{k+1}H_m$ m=2(k+1)+2

Por lo tanto, para todo m
 que pertenece a Naturales sin el cero C_mH_n tal que n=2m+2

6. Demuestre que una sucesión (d_1, \dots, d_n) de enteros positivos es la sucesión de grados de un árbol si y sólo si $\sum_{i=1}^n d_i = 2(n-1)$.

Demostración: Para este ejercicio analicemos 2 posibles casos:

 \Rightarrow) Dada la sucesión de grados (d_1, \ldots, d_n) de un árbol, entonces $\sum_{i=1}^n d_i = 2(n-1)$. Sabemos que para cualquier gráfica pasa que

$$\sum_{i=1}^{n} d_i = 2|E|$$

Como en un árbol se cumple que $|E| = |V| - 1^1$, entonces |E| = n - 1 y por tanto

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

 \Leftarrow) Dada una gráfica G donde se cumple que $\sum_{i=1}^{n} d_i = 2(n-1)$, entonces (d_1, \ldots, d_n) es la sucesión de grados en un arbol.

Veamos que G no tiene vértices aislados, pues en caso de tenerlos supongamos sin pérdida de generalidad que $x \in V_G$ es un vértice aislado, entonces $G - \{x\}$ no contiene vértices aislados y $|E_{G-\{x\}}| = 2|V_{G-\{x\}}|$!!, lo que implica que G contiene como subgráfica inducida a algún ciclo (pues la cantidad de vértices sería de al menos la cantidad de vértices) y se deja de cumplir que $\sum_{i=1}^{n} d_i = 2(n-1)$!!.

De la misma manera que la anterior podemos observar que todos los vértices de G no pueden tener al menos grado 2, pues suponer esto nos genera al menos un ciclo y esto implicaría que $\sum_{i=1}^{n} d_i = 2(n)!!$, y claramente $2n \neq 2(n-1)$.

Luego, hay exactamente 2 vértices de grado 1 en G, para esto llamemos $x,y \in V_G$ a los vértices de grado 1, entonces en $G - \{x,y\}$ se cumple que $\sum_{i=1}^n d_i = 2(n-2)$ y al anexarle exactamente $\{x,y\}$ tendremos que

$$\sum_{i=1}^{n} d_i = 2(n-2) + 2$$

$$= 4n - 4 + 2$$

$$= 4n - 2$$

$$= 2(n-1)$$

en caso contrario, se deja de cumplir lo anterior y es por esto que se puede garantizar que estos son únicos.

Como G es acíclica (por el argumento dado anteriormente), podemos deducir que G es conexa, pues de no serlo habría más de 2 vértices con grado 1 y ya observamos que este no es un caso posible. Luego, G es un árbol y por el ejercicio 1 de esta tarea tenemos que G es, partícularmente, una trayectoria.

De los casos analizados concluimos que una sucesión (d_1, \ldots, d_n) de enteros positivos es la sucesión de grados de un árbol si y sólo si $\sum_{i=1}^n d_i = 2(n-1)$. QED

Puntos Extra

- 1. Para una gráfica conexa G definimos la gráfica de árboles de G, \mathcal{T}_G , como la gráfica que tiene por vértices a todos los árboles generadores de G, y tal que, si $S, T \in V_{\mathcal{T}_G}$, entonces ST es una arista de \mathcal{T}_G si y sólo si existen aristas $e \in E_S E_T$ y $f \in E_T E_S$ tales que (S e) + f = T. Demuestre que \mathcal{T}_G es conexa.
- 2. Sea T un árbol arbitrario con k+1 vértices. Demuestre que si G es simple y $\delta \geq k$, entonces G tiene una subgráfica isomorfa a T.
- 3. Sea \mathcal{T} una familia de subárboles de un árbol T. Deduzca, por inducción sobre $|\mathcal{T}|$, que si cualesquiera dos elementos de \mathcal{T} tienen un vértice en común, entonces hay un vértice de T que está en todos los elementos de \mathcal{T} .

 $^{^1\}mathrm{Prop.}\,$ 2.2.5 en las notas de clase

4. (a) Determine todos los arboles T tales que \overline{T} también es un árbol.

Solución:

- ·) Si $|V_T| = 1$, entonces por vacuidad se cumple el enunciado y terminamos.
- ··) Si $|V_T| > 1$, entonces sabemos existen $|V_T| 1$ aristas para T y que a lo más $\binom{|V_T|}{2}$ si T fuera completa. Notar que $E_{\overline{T}} = \binom{|V_T|}{2} (|V_T| 1)$, como queremos que \overline{T} se un árbol, entonces se debe cumplir la siguiente igualdad

$$|V_T| - 1 = {|V_T| \choose 2} - (|V_T| - 1)$$

$$\Leftrightarrow 2 \cdot (|V_T| - 1) = {|V_T| \choose 2}$$

$$\Leftrightarrow 2 \cdot (|V_T| - 1) = \frac{|V_T| \cdot (|V_T| - 1)}{2}$$

$$\Leftrightarrow 4 \cdot (|V_T| - 1) = |V_T| \cdot (|V_T| - 1)$$

$$\Rightarrow |V_T| = 4$$

y del ejercicio 1 de la tarea 1 sabemos que hay 11 gráficas de orden 4 no isomorfas entre sí y sólo 2 de esas son árboles, una es P_4 y la otra es el árbol tal que uno de sus vértices es de grado 3, pero en este último su complemento no es un árbol. Luego $T = P_4$ y este es la único salvo isomorfismo.

(b) Determine todas las gráficas de orden al menos cuatro tales que la subgráfica inducida por cualesquiera tres de sus vértices es un árbol.

Solución: Veamos que si |V| > 4, se cumple cualquiera de las siguientes condiciones:

- ·) Si la gráfica es incompleta existen al menos dos vértices que no se conectan mediante una arista, si no existe trayectoria entre estos, entonces existe una "elección" de 3 vértices tales que son inducidos de la gráfica original y no son un árbol.
- ··) Si la gráfica es completa, entonces hay 3 vértices que al inducirlos en la gráfica original forman un 3-ciclo y por tanto no son un árbol.

De lo anterior la única gráfica que cumple con el enunciado es un 4-ciclo que no contenga como gráfica inducida un 3-ciclo. \Box