Grundlagen der Elektro- und Digitaltechnik (GED), Formelsammlung V5

Mechanik: Kräfte, Energie, Geschwindigkeit, Weg und Zeit

Zweites Netwtonsches Gesetz: Federkraft:

 $\vec{F} = m\vec{a}$

Energieformen:

Kinetisch: $\mathcal{E}_{kin} = \frac{1}{2}mv^2$

Konstantes a:

Gravitationskraft

 $\begin{array}{lll} s(t) = & \frac{1}{2}at^2 + v_0t + s_0 & \vec{F}_{12} = -\gamma \frac{m_1m_2}{|\vec{r}_1 - \vec{r}_2|^2} \vec{n}_{12} \\ v(t) = & at + v_0 & \mathbf{Coulombkraft} \\ = & \sqrt{2a(s-s_0) + v_0^2} & \vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{|\vec{r}_1 - \vec{r}_2|^2} \vec{n}_{12} \end{array}$ $= \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$

$$\Delta \mathcal{E} = \vec{F} \cdot \vec{s}$$

F = -k(x - L)

Feder: $\mathcal{E}_{\text{spring}} = \frac{1}{2}k(x-L)^2$ Potentiell (I): $\mathcal{E}_{\text{pot}} = mgh$ Potentiell (II): $\mathcal{E}_{\text{pot}} = Uq$

Energieerhaltung: $\sum \mathcal{E}_i = \text{konst.}$

Gleichförmig:

$$s(t) = s_0 + vt$$

Kraft \vec{F} (N), Masse m (kg), Beschleunigung \vec{a} (ms⁻²), Energie \mathcal{E} (J), Höhe h (m), Geschwindigkeit v (ms⁻¹), Federkonstante k (Nm⁻¹), Zeit t (s), Weg \vec{s} (m), Ort \vec{r} (m), Einheitsvektor \vec{n} , Ladung q (C), Spannung U (V)

Leistung, Strom, Spannung, Widerstand und Kirchhoffsche Regeln

Leistung:

Ohmsches Gesetz:

Spannung:

Widerstand eines Kabels:

$$R = \rho \frac{L}{A}$$

Wirkungsgrad η :

$P = \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = UI = I^2 R = \frac{U^2}{R} \qquad U = \int_{\vec{r}} \vec{E}(\vec{r}) \cdot \mathrm{d}\vec{r}$

U = RI

Strom:

$$I(t) = \frac{\mathrm{d}q(t)}{\mathrm{d}t}$$

$$\eta = \frac{P_{\text{erhalten}}}{P_{\text{investiert}}}$$

Kirchhoff-Regeln:

Knoten:

$$\sum_{n} I_n = 0$$

Masche:

$$\sum_{n} U_n = 0$$

 $U_1 + U_2$

Leistung P (W), Energie ε (J), Spannung U (V), Strom I (A), Widerstand R (Ω), Spezif. Wid. ρ (mm²m⁻¹Ω), Kabellänge L (m), Querschnittsfläche A (mm²), Ladung q (C), Zeit t (s), Ort r (m), E-Feld E (Vm⁻¹)

Kapazität, Induktivität, Schwingkreis

Kapazität: RC-Laden:

RC-Entladen:

Induktivität:

$$f_{\rm res} = \frac{1}{2\pi\sqrt{LC}}$$

LC-Schwingkreis: RLC-Schwingkreis:

Kapazität C (F=AsV⁻¹), Ladung im Kondensator q (C=As), Spannung U (V), Widerstand R (Ω), Zeitkonstante τ (s), Induktivität L (H=VsA⁻¹), Strom I (A), Zeit t (s), Frequenz f (Hz), Periode T (s)

Flip-Flops, KV-Diagramm

SR-Flipflop:

S	R	$oldsymbol{Q}_{ ext{next}}$	$-\int_{\mathbf{S}}$	0
0	0	Q		~
1	0	1 (set)		
0	1	1 (set) 0 (reset)		
1	1	verboten	$ $ $ $ $ $ $ $ $ $	\overline{Q}
			, (<u> </u>	

JK-Flipflop:

D-Flipflop:

				$\overline{}$
D	\triangleright	$oldsymbol{Q}_{ ext{next}}$	$ \int_{D}$	\circ
0		0		~
1		1		
(geta	ktet)			
			\rightarrow	$\overline{\mathbf{Q}}$

Elektrische und magnetische Felder

Kräfte:

Aus E-Feld: $\vec{F} = q\vec{E}$

Lorentzkraft: $\vec{F} = q\vec{v} \times \vec{B} = I\vec{\ell} \times \vec{B}$

 $w = \frac{\varepsilon_0}{2} \vec{E} \cdot \vec{E} + \frac{\varepsilon_0 c^2}{2} \vec{B} \cdot \vec{B}, \ \mathcal{E} = \int w dV$

El.Magn. Kraft: $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

Zentrifugalkraft: $F = \frac{mv^2}{r}$ Energie(dichte) im Feld:

Magnetisierung:

 $\vec{M} = \mu_0 \chi \vec{B}_{\rm ext}$

Paramagn.: $\gamma > 0$ Diamagn.: $\chi < 0$

Feld einer Punktladung bzw. ausserhalb einer gelad. Kugel:

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \frac{\vec{r}}{r}$$

Feld einer geladenen Platte:

$$E = \frac{\sigma}{2\varepsilon_0}$$

Feld eines Leiters:

Feld einer Spule:

$$B_{\rm Stirn} = \mu_0 \mu_r \frac{N}{L} I$$

Kraft \vec{F} (N), Ladung q (C), E-Feld \vec{E} (Vm⁻¹), B-Feld \vec{B} (T), Geschwindigkeit \vec{v} (ms⁻¹), Strom I (A), Leiterlänge $\vec{\ell}$ in technischer Stromrichtung (m), Energiedichte w (Jm⁻³), Energie \mathcal{E} (J), Volumen V (m³), Radius r(m), Masse m (kg), Magnetisierung \vec{M} (Am⁻¹), Suszeptibiliät χ , Flächenladungsdichte σ (Cm⁻²), relative Permeabilität μ_T , Windungszahl N, Spulenlänge L

Linien- und Oberflächenintegrale (Spezialfälle)

Kreis:

Rechteck:

 $\int_{\gamma} \vec{U} \cdot d\vec{\gamma} = 2\pi r U \qquad \int_{\gamma} \vec{U} \cdot d\vec{\gamma} = aU_1 - aU_5$ Linie γ , Oberfläche A (m²), Feld \vec{U} , Radius r (m), Höhe h (m)

Rechteck:

 $\Phi = AU$

Zvlinder:

Kugel:

Maxwellgleichungen

Gauss'sches Gesetz:

Quellenfreiheit von \vec{B} :

Faraday'sches Gesetz:

$$\underbrace{\int_{\gamma} \vec{E} \cdot \mathrm{d}\vec{\gamma}}_{\text{Spannung}} = -\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\int_{\Omega} \vec{B} \cdot \mathrm{d}\vec{\sigma}}_{\text{Fluss }\Phi_{\vec{B}}(\Omega)}$$

Durchflutungsgesetz:

E-Feld \vec{E} (Vm⁻¹), B-Feld \vec{B} (T), Ladungsdichte ρ (Cm⁻³), Volumen V (m³), Stromdichte \vec{j} (Am⁻²), geschlossene Fläche Σ , offene Fläche Ω , Normalenvektor d $\vec{\sigma}$, Randkurve von Ω ist γ

Induktion, Wechselspannung, Transformator

Induktionsspannung:

Fluss durch Schleife:

$$\Phi_{\vec{B}}(A) = \vec{\sigma} \cdot \vec{B}$$
$$= \sigma B \cos(\theta)$$

Wechselspannung:

$$U(t) = \sqrt{2} V_{\text{menn}} \cdot \cos(2\pi f t)$$

$$U(t) = V_{\text{menn}} \cdot \cos(2\pi f t)$$

$$U_s \sin(2\pi f t + \varphi)$$

Transformator:

Spannung U (V), Magnetischer Fluss $\Phi_{\vec{p}}$ (Wb), Fläche A (m²), B-Feld \vec{B} (T), Normalenvektor $\vec{\sigma}$ (m), Zwischenwinkel θ, Zeit t (s), Frequenz f (Hz), Phasenkonstante φ , Windungszahl N, Strom I (A)

Feldlinienbilder

Elektromagnetische Wellen

 $\frac{\partial^2}{\partial u^2} E_z(y,t) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} E_z(y,t)$

Wellengleichung (1D):

Ebene Welle:

Intensität der ebenen Welle:

Lichtbrechung:

$$\frac{\sin(\alpha)}{\sin(\beta)} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$$

Periode, Wellenlänge und -zahl:

$$T = \frac{1}{f}, \ f = \frac{c}{\lambda}, \ k = \frac{2\pi}{\lambda}$$

$$c = \lambda \cdot \mathbf{f}$$

Totale Reflexion:

$$\sin(\beta) > \frac{n_1}{n_2}$$

Intensität I (Wm⁻²), Feldamplituden E_0 (Vm⁻¹) bzw. B_0 (T), Periode T (s), Frequenz f (Hz), Wellenlänge λ (m), Wellenzahl k (rad/m), Winkel α & β , Ausbreitungsgeschw. c_1 & c_2 (ms⁻¹), Brechungsindices n_1 & n_2

Thermische Strahlung

 $T_{\rm K} = T_{\rm ^{\circ}C} + 273.15 \; {\rm K}$

 $\alpha_{1\to 2} = \alpha_{2\to 1} = \varepsilon_{2\to 1}$

Wien'scher Verschiebungssatz:

Periodische Funktion g(t), deren Periode T (s), Zeit t (s), Fourierkoeff. $a_n, b_n \in \mathbb{R}, G_s \in \mathbb{C}$, Frequenz f (Hz), Amplitude A_n , Phase φ_n , imaginäre Einheit i, Anzahl Samples N

$$\lambda_{\max} = \frac{b}{T}$$
 [m]

Stefan-Boltzmann Gesetz:

$$\lambda_{\text{max}} = \frac{b}{T} \qquad P_{\text{rad}} = \sigma A T^{4}$$

$$b = 2.8978 \cdot 10^{-3} \text{ Km} \qquad P_{\text{rad}} = \sigma A (T^{4} - T_{\text{on}}^{4})$$

$$\sigma = 5.67 \cdot 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$$

$$T = \sqrt[4]{\frac{\rho_{\text{cl}}}{\sigma_{\text{cl}}} \cdot T_{\text{on}}^{4}}$$

Energiebilanzrechnungen:

The bungs satz: Genetz:
$$\lambda_{\max} = \frac{b}{T} \quad \text{(r)} \quad P_{\text{rad}} = \sigma A T^4 \\ \rho_{\text{rad}} = \sigma A (T^4 - T_{\text{env}}) \\ \rho_{\text{rad}} = \sigma A (T^4 - T_{\text{env$$

Temperatur T, $T_{\rm K}$ (K) bzw. $T_{\rm C}$ (°C), Energiestrom I (W), Absorptionskoeffizient α , Reflexionskoeffizient $\rho = 1 - \alpha$, Emissionskoeffizient ε , Wellenlänge λ (m), Leistung P (W), Oberfläche A (m²), Einfallswinkel der Sonnenstrahlung β , Energiestromdichte j (Wm²), Wärmeübergangskoeffizient h (m²KW⁻¹), nicht zu verwechseln mit der Planck-Konstante in der zweiten Abbildung.

Fourier-Transformation, Aliasing

Reelle Fourierreihe (kontinuierlich, $f_n = nT^{-1}$):

 $g(t) = \frac{1}{2}a_0 + \sum_{n=0}^{\infty} a_n \cos(2\pi f_n t) + b_n \sin(2\pi f_n t) = \frac{1}{2}A_0 + \sum_{n=0}^{\infty} A_n \cos(2\pi f_n t) - \varphi_n$ $g(t_r) = \frac{1}{N}\sum_{n=0}^{N} G_s \exp(2\pi i f_s t_r)$

Komplexe Fourierreihe (diskret, $f_s = (s-1)T^{-1}$):

Theorem von Nyquist: $f_{\text{abtasten}} > f_{\text{Nyquist}} = 2f_{\text{max}}$

Messperkte: No 2T. frax

Minimale Frequenz:

Signale, Intensitäten, Dezibel, Schallpegel

Unschärfe: Intensität: Kugelwelle: Dezibel: Schallintensitätspegel: Signal to Noise Ratio: Effektivspannung: Eindringtiefe:

$$\frac{\Delta f \cdot \Delta t}{2} \sim 1 \quad I = \frac{P}{S} \qquad I_2 = \frac{r_1^2 I_1}{r_2^2} \qquad I(x) = I_0 \exp\left(-\frac{x}{\lambda}\right) \quad Q = 10 \log_{10}\left(\frac{I_1}{I_2}\right) \text{ dB} \quad H = 10 \log_{10}\left(\frac{I}{I_0}\right) \text{ dB} \quad \text{SNR} = \frac{P_{\text{signal}}}{P_{\text{noise}}} = \frac{A_{\text{signal}}^2}{A_{\text{noise}}^2} \qquad U_{\text{eff}} = \frac{1}{\sqrt{2}} U_{\text{s}}$$

Signalbreite Δf (Hz), Signaldauer Δt , Intensität I (Wm⁻²), Leistung P (W), Fläche S (m²), Radius r (m), Ort x (m), Eindringtiefe λ (m), Unterschied Q (dB), Schallintensitätspeg. H (dB), Amplitude A, Spannung U (V)

Konstanten und Mathematik

Elektrische Feldkonstante $\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ AsV}^{-1} \text{m}^{-1}$ Magnetische Feldkonstante $\mu_0 = 1.257 \cdot 10^{-6} \text{ VsA}^{-1} \text{m}^{-1}$ Lichtgeschwindigkeit $c = (\varepsilon_0 \mu_0)^{-0.5} = 299792458 \text{ ms}^{-1}$ Fallbeschleunigung $q = 9.81 \text{ ms}^{-2}$

Gravitationskonstante $\gamma = 6.674 \cdot 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$

Planck-Konstante $h = 6.627 \cdot 10^{-34}$ Js Boltzmann-Konstante $k = 1.381 \cdot 10^{-23} \text{ JK}^{-1}$ Menschl. Hörschwelle $I_0 = 10^{-12} \text{Wm}^{-2}$ Elementarladung $e = 1.602 \cdot 10^{-19} \text{ C}$

 $\vec{a} \cdot \vec{b} = ab\cos(\theta)$ $\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$

