

ST JOSEPH ENGINEERING COLLEGE, MANGALURU

An Autonomous Institution Second Semester BE(Autonomous) Examinations

							AA3 5 4 7700 A
USN:							22MATS21
			l	l			

Duration: 3:00 Hrs Model Question Paper-1 Maximum Marks: 100

Mathematics for CSE Stream

Note:

- 1. **Part-A** is mandatory.
- 2. Answer any five full questions from **Part-B** choosing at least one full question from each module.

DADTA

3. For the necessary data, students are allowed to use data handbook.

PART-A								
Q.No.	Questions	BL	CO	PO	Marks			
1	Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$	3	1	1	2			
2	Find the value of $\Gamma\left(\frac{7}{2}\right)$	3	1	1	2			
3	Find the divergence of vector field $\vec{f} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + xyz^3\hat{k}$	3	2	2	2			
4	Write the base vectors for cylindrical polar coordinates.	3	3	5	2			
5	State the rank nullity theorem for a m x n matrix.	3	4	2	2			
6	Find the coordinate vector of [2 1] with respect to basis [1 1] and [0 1]	3	4	5	2			
7	Construct a finite difference table for the function $f(x) = x^3 + x + 1$ where x takes the values $0, 1, 2, 3, 4, 5, 6$	3	5	1	2			
8	Construct the table of values to evaluate $\int_0^6 3x^2 dx$ by dividing the interval into 6 equal parts.	3	5	5	2			
9	Find $y''(0)$ given $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$.	3	6	2	2			
10	Using Runge-Kutta method of fourth order find k_1 given $\frac{dy}{dx} = 3e^x + 2y, \ y(0) = 0 \text{ taking } h = 0.1.$	3	6	5	2			

Q.No.		Question	BL	co	PO	Marks
		MODULE - 1				
1	a	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	3	1	1	5
	b	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$ by changing into polar coordinates	4	1	5	5

	c	Show that $\int_0^\infty x e^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$	4	1	5	6
	a	Evaluate $\iint xy(x+y)dy dx$ taken over the area between $y=x^2$ and $y=x$	3	1	1	5
2	b	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ by changing the order of integration.	4	1	5	5
	c	Show that $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta = \pi$	4	1	5	6
		MODULE - 2				_I
	a	Find the directional derivative of $\varphi = x^2yz + 4xz^2$ at $(1, -2, -1)$ along $2i - j - 2k$	3	2	2	5
3	b	Show that $\vec{F} = (y+z)\hat{\imath} + (z+x)\hat{\jmath} + (x+y)\hat{k}$ is irrotational. Also, find a scalar function \emptyset such that $\vec{F} = \nabla \vec{\emptyset}$.	3	2	5	5
	С	Express the vector $f = z\hat{\imath} - 2x\hat{\jmath} + y\hat{k}$ in cylindrical polar coordinates.	4	3	5	6
	a	Find the $\operatorname{curl}(\operatorname{curl} \vec{A})$, where $\vec{A} = x^2 y \hat{\imath} - 2xz \hat{\jmath} + 2yz \hat{k}$ at the point $(1,0,2)$.	3	2	2	5
4	b	Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.	3	2	5	5
	С	Derive the expression for divergence in orthogonal curvilinear coordinates.	4	3	5	6
		MODULE - 3				
	a	Show that the polynomial $f(x) = x^2 + 2x + 2$ is in the linear span of the polynomials $4x^2 + x + 2$, $3x^2 - x + 1$ and $5x^2 + 2x + 3$.	4	4	2	5
5	b	Show that $T: V_2(R) \to V_3(R)$ defined by $T(x,y) = (-x + 2y, y, 3x + 3y)$ is a Linear Transformation and hence find the matrix of the Linear Transformation relative to the bases $X = \{(1,1), (-1,1)\}$ and $Y = \{(1,1,1), (1,-1,1), (0,0,1)\}$	4	4	5	5
	c	Verify rank-nullity theorem for the following matrix: $A = \begin{bmatrix} 1 & -3 & 4 & -1 \\ 9 & -2 & 6 & -6 \\ -1 & -10 & -3 & 9 \\ -6 & -6 & 3 & 3 \\ -9 & 4 & 9 & 0 \end{bmatrix}$	3	4	5	6
6	a	Check whether the w is in the span of $\{v_1, v_2, v_3\}$ where $w = [-9748], v_1 = [7-4-29], v_2 = [-45-17], v_3 = [-944-7]$	4	4	2	5

2 | Page 22MATS21

	b	Determine the Linear Transformation $T: V_3(R) \to V_2(R)$ such that $T(e_1) = (-1,0), T(e_2) = (1,1), T(e_3) = (0,-1)$ where e_1, e_2, e_3 are the standard basis of $V_3(R)$.	4	4	5	5
	С	Find the range, null space, rank, nullity for the Linear Transformation $T: V_3(R) \to V_3(R)$ defined by $T(x,y,z) = (x+2y+z,z-x,y+z)$. Also verify rank nullity theorem.	3	4	5	6
	1	MODULE - 4		1	1	,
	a	Find cube root of 37 correct to three decimal places using Newton Raphson method.	3	5	1	5
7	b	Find the cubic polynomial which passes through the points (2,4), (4,56), (9,711), (10,980) using Newton's divided difference formula.	3	5	5	5
	С	Evaluate $\int_0^1 \frac{dx}{1+x}$ applying Simpson's 3/8 th rule taking 7 ordinates.	4	5	5	6
	a	Compute the real root of $x^2 - 1.2 = 0$ correct to four decimal places using Regula-Falsi method.	3	5	1	5
8	b	Given $\sin \sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$ find $\sin 57^{\circ}$ using Newton's backward interpolation formula.	3	5	5	5
	С	Evaluate $\int_4^{5.2} log x \ dx$ by taking 6 equal parts using Trapezoidal rule.	4	5	5	6
		MODULE - 5				
	a	Employ Taylor's series method upto third degree to find y at $x = 0.1$ given $\frac{dy}{dx} - 2y = 3e^x$ whose solution passes through the origin.	4	6	2	5
9	b	Using modified Euler's method find y at $x = 0.2$ given $\frac{dy}{dx} = 3x + \frac{y}{2}$ with $y(0) = 1$ taking $h = 0.1$.	4	6	5	5
	c	Given that $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$, $y(0.6) = 0.1762$. Compute y at $x = 0.8$ by applying Milne's method.	4	6	5	6
	1			ı	1	
10	a	Use Taylor's series method to obtain a power series in $(x - 4)$ upto third degree for the equation $5x \frac{dy}{dx} + y^2 - 2 = 0$ given $y = 1$ at $x = 4$.	4	6	2	5
	b	Using Runge-Kutta method of fourth order, find $y(0.2)$ for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ taking $h = 0.2$.	4	6	5	5

3 | Page 22MATS21

c	Apply Milne's method to compute $y(1.4)$ correct to four decimal places given $\frac{dy}{dx} = x^2 + \frac{y}{2}$ and the following data: $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, $y(1.3) = 2.7514$.	4	6	5	6
---	--	---	---	---	---