전자공학개론

1. 다음 주기적인 전류파형 i(t)의 실횻값[A]과 $4[\Omega]$ 의 저항에서 소모되는 평균전력[W]은?

	실횻값	평균전략
1	4	64
2	4	128
3	8	64
4	8	256

- 2. n채널 공핍형 MOSFET에 대한 설명으로 옳지 않은 것은?
 - ① 게이트와 소스 사이의 V_{GS} 전압이 양의 방향으로 증가하면 드레인 전류 I_{D} 는 증가한다.
 - ② $V_{\rm GS}$ 전압이 음의 값으로 낮아지면 드레인 전류는 줄어들게 되고 특정 전압에서 흐르지 않게 된다.
 - ③ $V_{\rm GS} > 0$ 인 영역을 공핍영역(depletion region)이라고 한다.
 - ④ 증가영역(enhancement region)과 공핍영역에서는 같은 드레인 전류 I_{D} 방정식이 적용된다.
- 3. 논리회로에서 사용되는 수 체계에 대한 설명으로 옳지 않은 것은?
 - ① 디지털 컴퓨터에서는 2진수의 뺄셈 연산에 대부분 보수(complement)를 사용한다.
 - ② 2진법은 소수(小數)를 표현할 수 없다.
 - ③ 16진법은 0에서 9까지의 숫자와 여섯 개의 문자(A ~ F)를 사용하여 숫자를 표현한다.
 - ④ 그레이(Gray) 코드를 사용할 경우 연속되는 두 숫자는 한 비트만 다르다.

4. 다음 연산증폭기 회로에서 저항 R과 커패시터 C를 각각 하나씩 사용하여 미분기와 적분기를 구현하려 할 때, Z_i 에 사용될 소자와 증폭기 종류는? (단, 연산증폭기는 이상적이다)

	미분기($Z_{ m i}$)	<u>석분기(Z_{i})</u>	<u> 중폭기</u>
1	C	R	반전
2	R	C	반전
3	C	R	비반전
4	R	C	비반전

5. 다음 555타이머 IC를 활용한 구형파 발생 회로가 정상동작할 때, 이에 대한 설명으로 옳지 않은 것은?

- ① 비안정(astable) 모드로 동작한다.
- ② 출력되는 구형파의 ON($V_{\rm out}=V_{\rm CC}$) 시간은 $R_{\rm A},~R_{\rm B},~C$ 가 결정한다.
- ③ 출력되는 구형파의 OFF($V_{\mathrm{out}}=0$) 시간은 $R_{\mathrm{B}},\ C$ 가 결정한다.
- ④ 출력되는 구형파의 듀티사이클(duty cycle)은 50 %보다 작다.

6. 다음 T 플립플롭 회로에서 입력신호 Clock, Input이 인가되었을 때, 구간 $(t_2 \sim t_3)$ 와 $(t_7 \sim t_8)$ 에서 출력 Q_1 , Q_2 는? (단, 출력 Q_1 , Q_2 는 0으로 초기화되어 있고, 게이트에서 전파지연은 없다고 가정한다)

$Q_1 \stackrel{(t_2 \sim t_3)}{=} Q_2$		$(t_2 \sim t_3)$	$(t_7 \sim t_8)$		
	Q_1	Q_2	Q_1	Q_2	
1		1	0	1	
2	1	0	1	1	
3	0	1	0	0	
4	1	1	1	0	

않은 것은? ① 주파수가 감소함에 따라 증폭기의 이득이 기준값(중간대역

8. 증폭기의 주파수 응답특성과 관련된 파라미터에 대한 설명으로 옳지

- ① 주파수가 감소함에 따라 증폭기의 이득이 기준값(중간대역 이득)에 비해 3 [dB] 감소하는 주파수를 하한 임계 주파수(lower critical frequency)라고 한다.
- ② 하한 임계 주파수는 증폭기 회로의 결합 및 바이패스 커패시턴스의 영향을 받는다.
- ③ 상한 임계 주파수(upper critical frequency)는 증폭기 회로의 저주파 응답 특성을 나타낸다.
- ④ 상한 임계 주파수와 하한 임계 주파수의 차이를 대역폭(bandwidth) 이라고 한다.

7. 다음 회로가 정상상태(steady state)일 때, 전류 i_2 [A]는?

- 1 0
- ② 3
- 3 6
- ④ 12

9. 좌측 BJT 전압분배 바이어스 회로를 우측과 같이 테브난 등가회로를 적용하여 해석하고자 할 때, 테브난 등가전압 $V_{\rm TH}$ [V]와 테브난 등가저항 $R_{\rm TH}$ [k Ω]는? (단, $V_{\rm CC}=20$ [V], $R_1=4$ [k Ω], $R_2=1$ [k Ω], $R_{\rm C}=4.7$ [k Ω], $R_{\rm E}=1.1$ [k Ω])

1

	$V_{ m TH}$	$R_{ m TH}$
1	4	0.8
2	4	1
3	16	0.8

4

16

10. 다음 회로의 입출력 전달특성으로 옳은 것은? (단, 다이오드의 순방향 전압강하는 $V_{
m D}\,[{
m V}]$ 이고 저항 성분은 무시한다)

1

2

3

4

- 11. 10진수 -3을 10비트 2의 보수 형태로 표현하면?
 - ① 1111111100
 - 2 1011111100
 - ③ 1011111101
 - 4 1111111101

12. FET의 드레인전류 I_{D} 와 게이트-소스 간 전압 V_{GS} 의 전달특성곡선과 부하선이 다음과 같은 회로는?

13. 다음 정류회로에서 $V_{(\text{sec})}$ 가 $\frac{20}{\sqrt{2}}$ [V_{rms}]이고 부하저항 R_{L} 이 2 [$\text{k}\Omega$]일 때, 최대출력전류 $I_{\text{p(out)}}$ [mA]은? (단, 다이오드의 순방향 전압강하는 0.7 [V]이고 저항 성분은 무시한다)

- ① 10
- 2 9.65
- ③ 9.3
- 4 8.95

14. 다음 NPN BJT 증폭회로에서 직류 전류이득이 $eta_{\rm DC}=100,\ eta_{\rm DC}=200$ 일 때, $V_{\rm CE}$ [V]는? (단, $V_{\rm CC}=15$ [V], $R_{\rm B}=286$ [kΩ], $R_{\rm C}=1$ [kΩ], 다이오드의 순방향 전압강하는 0.7 [V]이고 저항성분은 무시한다)

K	$\beta_{\rm DC} = 100$	$\beta_{\rm DC} = 20$
1	10	5
2	10	20
3	13	6.5
4	13	26

- 15. 2단 증폭기에서 1단은 1 [kHz]의 하한 임계 주파수와 100 [kHz]의 상한 임계 주파수를 갖고, 2단은 3 [kHz]의 하한 임계 주파수와 250 [kHz]의 상한 임계 주파수를 가질 때, 전체 대역폭[kHz]은?
 - ① 97
 - 2 99
 - ③ 247
 - 4 249
- 16. 귀환 발진기에 대한 설명으로 옳지 않은 것은?
 - ① 출력신호의 일부가 위상변이 없이 입력으로 인가된다.
 - ② 정귀환 회로를 사용한다.
 - ③ 폐루프 이득은 1보다 작아야만 발진이 유지된다.
 - ④ 동작시키는 데 외부 입력신호는 필요치 않다.
- 17. 다음 다단 증폭기의 전압이득 $\frac{V_{\rm out}}{V_{\rm in}}$ 은? (단, $R_{\rm f}=470~{\rm [k\Omega]},$ $R_1=4.7~{\rm [k\Omega]},~R_2=R_3=47~{\rm [k\Omega]},~연산증폭기는 이상적이다)$

 R_1 R_2 R_3 V_{out}

- 10,000
- 2 10,100
- 3 -10,000
- (4) -10,100

- 18. TCP/IP 프로토콜에 대한 설명으로 옳지 않은 것은?
 - ① 네트워크 계층은 패킷이 근원지에서 목적지까지 갈 수 있도록 경로를 라우팅하고 포워딩하는 역할을 수행한다.
 - ② 7개의 계층으로 구성되어 있다.
 - ③ TCP는 종단 대 종단의 논리적 연결을 구성하고 흐름제어, 오류제어, 혼잡제어 서비스들을 제공한다.
 - ④ IP는 흐름제어, 오류제어, 혼잡제어 서비스들을 제공하지 않는 비연결형 프로토콜이다.
- 19. 다음 비반전 슈미트 트리거(schmit trigger) 회로에서 하측문탁 전압 $V_{\rm TL}$ [V]과 상측문턱전압 $V_{\rm TH}$ [V]는? (단, $R_1=25$ [k Ω], $R_2=50$ [k Ω], $V_{\rm R}=1$ [V], 음의포화전압 $V_{\rm L}=-4$ [V], 양의포화 전압 $V_{\rm H}=4$ [V], 연산증폭기는 이상적이다)

•	V_{TL}	$V_{ m TH}$
1	-0.5	3.5
2	-0.5	2.5
3	0.5	3.5
4	0.5	2.5

20. 다음 카르노 맵(Karnaugh map)과 일치하는 논리식은?

$\begin{array}{c} wz \\ xy \end{array}$	00	01	11	10
00		1	1	
01	1	1	1	1
11	1		1	1
10			1	

- ① $\overline{wz} + \overline{x}z + zy$
- $\overline{w}z + x\overline{z} + z\overline{y}$