Diszkrét matematika I. feladatok Relációk I

Harmadik alkalom (2024.02.26-03.01.)

- 1. Legyen $A = \{1, 2, 3, 4\}$ és $B = \{5, 6, 7, 8, 9\}$. Tekintsük a következő $R \subset A \times B$ binér (kétváltozós) relációt: $R = \{(1, 5), (1, 6), (1, 7), (3, 6), (3, 9), (4, 5), (4, 7), (4, 9)\}$.
 - a) Határozza meg a R reláció értelmezési tartományát és értékkészletét.
 - b) Rajzolja meg a reláció gráfját.
 - c) Legyen $H_1 = \{1, 2, 3\}$ és $H_2 = \{4\}$. Határozza meg a R reláció H_1 illetve H_2 halmazra való leszűíését.
 - d) A következő relációk közül melyek lehetnek a R reláció kiterjesztásei?
 - $R_1 = \{(1,5), (1,6), (1,7), (2,2), (2,4), (3,6), (3,9), (4,3), (4,5), (4,7), (4,9)\} \subset \{1,2,3,4\} \times \{2,3,4,5,6,7,8,9\}$
 - $R_2 = \{(1,5), (1,6), (1,7), (3,6), (3,8), (4,5), (4,6), (4,7), (4,9)\} \subset \{1,2,3,4\} \times \{5,6,7,8,9\}$
 - $R_4 = A \times B$
 - $\bullet \ R_4 = B \times A$
 - e) Határozza meg a R reláció inverzét, $R(\{1,2\})$ kápét és $R^{-1}(\{5,6\})$ inverz képet.
- 2. Legyen

$$M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad A = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\}$$

Az alábbi R relációkra határozza meg dmn(R), rng(R) halmazokat, illetve az A képét R(A), teljes inverzképét $R^{-1}(A)$, megszorítását $R \mid_A$:

- a) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : M\mathbf{u} = \mathbf{v}\},\$
- b) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : \mathbf{u} = N\mathbf{v}\},\$
- c) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : M\mathbf{u} = N\mathbf{v}\},\$
- d) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : M\mathbf{u} = N^2\mathbf{v}\}.$
- 3. Legyen $A=\{1,2,3\},\,B=\{a,b,c,d,e,f\},\,C=\{2,4,6,8\}$ továbbá $R\subset A\times B,\,S\subset B\times C,\,R=\{(1,a),(1,b),(2,c),(2,f),(3,d),(3,e),(3,f)\}$ és $S=\{(a,2),(a,4),(c,6),(c,8),(d,2),(d,4),(d,6),(f,8)\}.$

Határozza meg az $S \circ R$ kompozíciót.

4. Legyen

$$M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix},$$

Az alábbi R, S relációkra határozza meg az $R \circ S$ és $S \circ R$ kompozíciókat.

- a) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : M\mathbf{u} = \mathbf{v}\}, S = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : N\mathbf{u} = \mathbf{v}\},$
- b) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : \mathbf{u} = M\mathbf{v}\}, S = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : \mathbf{u} = M^2\mathbf{v}\},$
- c) $R = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : M\mathbf{u} = N\mathbf{v}\}, S = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^2 \times \mathbb{R}^2 : N\mathbf{u} = M\mathbf{v}\}$
- 5. Tekintsük a sajátvektor reláció $\{(\mathbf{v}, M) \in \mathbb{R}^2 \times \mathbb{R}^{2 \times 2} : \exists \lambda : M\mathbf{v} = \lambda \mathbf{v}\}$. Mi lesz a reláció értelmezési tartománya, értékkészlete?
- 6. Tekintsük a sajátérték reláció $\{(\lambda, M) \in \mathbb{R} \times \mathbb{R}^{2 \times 2} : \exists \mathbf{v} : M\mathbf{v} = \lambda \mathbf{v}\}$. Mi lesz a reláció értelmezési tartománya, értékkészlete?