

ANEXO 1 – Ejercicios a resolver Tarea 2

Apreciado Estudiante, a continuación, se presentan los ejercicios asignados para el desarrollo de **Tarea 2 - Métodos para probar la** validez de argumentos. Debe seleccionar un grupo de ejercicios A, B, C, D, o, E y enunciarlo en el *Foro de discusión - Unidad 1 -*Tarea 2 - Métodos para probar la validez de argumentos, ningún miembro del grupo podrá escoger la misma asignación.

Usted debe diligenciar la siguiente tabla en el foro (copie y pegue desde aquí), si ya sus compañeros hicieron elecciones con anterioridad, debe registrarlos en cada letra.

Tabla 1 Distribución ejercicios Tarea 2

1. Nombre del estudiante	2. Grupo de ejercicios a desarrollar			
	El estudiante desarrolla el			
	ejercicio A en todos los grupos de			
	ejercicios.			
	El estudiante desarrolla el			
	ejercicio B en todos los grupos de			
	ejercicios.			
	El estudiante desarrolla el			
	ejercicio C en todos los grupos de ejercicios.			
	El estudiante desarrolla el			
	ejercicio D en todos los grupos de ejercicios.			
	El estudiante desarrolla el			
	ejercicio E en todos los grupos de ejercicios.			

Nota: En esta tabla cada estudiante selecciona la letra a realizar para todos los ejercicios de la Tarea 2. Fuente. Autor

Ejercicio 1: Proposiciones y tablas de verdad

Descripción del ejercicio:

A continuación, encontrará las proposiciones simples y el lenguaje simbólico para el desarrollo del ejercicio 1:

Α. **p**: El alza en los precios de petróleo es imparable.

q: Disminuirá el consumo mundial de petróleo.

r: Habrá alzas exageradas en los precios de los alimentos básicos para consumo humano.

$$p \rightarrow (q \vee r)$$

В. **r**: La sequía persiste.

s: Aumentan los incendios forestales.

t: Habrá perdida de cultivos.

$$(r \land s) \rightarrow \sim (\sim t)$$

C. p: El alza del salario mínimo es superior a la inflación.

q: Disminuirá el desempleo.

r: Habrá una baja en las exportaciones.

$$(p \rightarrow \sim q) \rightarrow r$$

D. r: Daniela paga matricula completa en la UNAD.

s: Daniela podrá ver todos los cursos.

t: Daniela puede participar de manera oportuna en todos los foros de sus cursos.

$$\boldsymbol{r} \rightarrow \boldsymbol{(s \leftrightarrow t)}$$

Ε. **p**: Los bancos aumentan la tasa de interés.

q: Los bancos Suben el índice de ahorradores.

r: Los bancos tienen fuga de divisas.

$$(p \rightarrow q) \land \sim r$$

A partir del argumento que haya seleccionado deberá dar respuesta a los siguientes ítems:

- Escribir la proposición compuesta del leguaje simbólico en un lenguaje natural.
- > Generar una tabla de verdad manualmente a partir del lenguaje simbólico y determinar si el resultado es una tautología, contingencia o contradicción.
- Generar la tabla de verdad a través del simulador tablas de verdad. El paso a paso para el uso del simulador lo podrá encontrar en el Anexo 2 - Guía para el desarrollo de la Tarea 2 (ejercicios ejemplo), ubicado en el entorno de aprendizaje en la carpeta Guía de actividades y rúbrica de evaluación - Unidad 1- Tarea 2 - Métodos para probar la validez de argumentos.
- Realizar un vídeo de 5 minutos máximo, tenga en cuenta las siguientes recomendaciones:
 - 1. El estudiante hace su presentación personal básica en inglés (Nombre, edad, ciudad donde vive y programa en donde que está matriculado) y explica de forma detallada cómo realizó el ejercicio 1 de su letra escogida (en español).
 - 2. El estudiante debe aparecer en la grabación de frente y sin ningún filtro. Luego explica en pantalla compartida cómo realizó el ejercicio.
 - 3. Para la realización del vídeo puede usar la cámara de un celular, la cámara de una computadora u otra alternativa que se le facilite. También podrá usar la herramienta TEAMS para la realización de la grabación. Deberá subir el vídeo a una plataforma de vídeos (por ejemplo: YouTube, Loom, OBS, Clipchamp, Screencast, canva, etc) y compartir el enlace sin restricción al tutor asignado (puede configurar en modo oculto si es de su elección)

Ejercicio 2: Aplicación de la lógica fundamental

Descripción del ejercicio:

A continuación, encontrará los argumentos para el desarrollo del ejercicio 2:

- A. Si los estudiantes de la UNAD asisten a los CIPAS entonces aprueban el examen y no es cierto que el examen es bastante sencillo.
- B. Si Camila estudia licenciatura en Matemáticas en la UNAD o Ingeniería Industrial entonces Camila es una estudiante muy aplicada en la universidad.
- C. Si los juegos olímpicos son el mayor evento deportivo internacional y son considerados la principal competencia del mundo deportivo, entonces Ángel Barajas es considerado el mejor gimnasta colombiano del mundo.
- **D.** La copa América de fútbol es el campeonato de selecciones nacionales más importante del continente y uno de los más antiguos, o la selección Colombia no logró ser campeón de la copa América.
- **E.** Si la IA puede potenciar las habilidades del ser humano entonces el ser humano controla el desarrollo de la IA, si y solo si, la colaboración entre las dos partes resuelve problemas complejos.

partir del argumento deberá dar respuesta a los siguientes ítems:

- > Definir cuáles son las proposiciones simples que intervienen en el argumento.
- Identificar los conectores que intervienen en el argumento.
- Construir el lenguaje simbólico correspondiente al argumento.

> Determinar si el argumento es una tautología, contradicción o contingencia a través del simulador de tablas de verdad. (Ver Anexo 2 - Guía para el desarrollo de la Tarea 2 (ejercicios <u>ejemplo).</u>

Ejercicio 3: Demostración de un argumento usando las reglas de la inferencia lógica

Descripción del ejercicio:

A continuación, encontrará un argumento para el desarrollo del ejercicio 3, usted deberá identificar e indicar las leyes de inferencia y las premisas utilizadas en cada uno de los pasos para la demostración del argumento.

A. Expresión simbólica

[((
$$\mathbf{p} \land \mathbf{q}$$
) $\lor \mathbf{r}$) \land ($\sim \mathbf{r}$)] \rightarrow ($\mathbf{p} \land \mathbf{q}$)

P1:
P2:
Conclusión:
Ley utilizada:

B. Expresión simbólica

[((
$$\sim$$
r \lor \sim s) \rightarrow t) \land (t \rightarrow \sim s)] \rightarrow ((\sim r \lor \sim s) \rightarrow \sim s)

P1:
P2:
Conclusión:
Ley utilizada:

C. Expresión simbólica

[(p
$$\rightarrow$$
s) \land (\sim t \rightarrow \sim r) \land (p \lor \sim t)] \rightarrow (s \lor \sim r)
P1:
P2:

P3: Conclusión: Ley utilizada:

D. Expresión simbólica

E. Expresión simbólica

[(
$$\sim p \rightarrow \sim q$$
) $\land q$] $\rightarrow p$
P1:
P2:
Conclusión:
Ley utilizada:

A partir del argumento en lenguaje simbólico deberá dar respuesta a los siguientes ítems:

- Deducir las premisas (P1, P2, P3...) y la conclusión.
- > Defina la ley de inferencia que representa el lenguaje simbólico dado.
- > Adjuntar un pantallazo del simulador de tablas de verdad que demuestre la tautología de la ley de inferencia.

Ejercicio 4: Problemas de aplicación

Descripción del ejercicio:

A continuación, encontrará la expresión simbólica, las premisas y la conclusión de un argumento para el desarrollo del ejercicio 4:

A. Expresión simbólica:

[(p
$$\rightarrow$$
 s) \land (\sim s) \land (\sim p \rightarrow t)] \rightarrow (t \land \sim s)

Premisas dadas:

P1: $p \rightarrow s$

P2: ~s

P3: $\sim p \rightarrow t$

Tabla 2

Demostración por leyes de inferencia. Ejercicio A.

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P4: ~p	MTT	P1, P2		
P5: t	MPP	P3, P4		
P6: t∧~s	Simplificación	P2, P5		
	(LS)			

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio A. Fuente. Autor

Expresión simbólica: В.

[(
$$p \land r$$
) \land ($p \rightarrow s$) \land ($r \rightarrow t$)] \rightarrow ($s \land t$)

Premisas dadas:

P1: p ∧ r

P2: $p \rightarrow s$

P3: $r \rightarrow t$

Tabla 3 Demostración por leyes de inferencia. Ejercicio B

Premisas	Lov	Dromicae	¿Correcto o	luctificación
Premisas	Ley	Premisas	aconfecto o	Justilicacion
	Aplicada	Usadas	Incorrecto?	
P4: p	Simplificación	P1		
	(LS)			
P5: r	Simplificación	Р3		
	(LS)			
P6: s	MTT	P2, P4		
P7: t	MPP	P3,P5		
P8: s ∧ t	Conjunción	P6, p7		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio B. Fuente. Autor

C. Expresión simbólica:

$$[(s \rightarrow (p \lor q)) \land \sim (\sim s) \land (\sim p)] \rightarrow q$$

Premisas dadas:

P1: $s \rightarrow (p \lor q)$

P2: ~(~s)

P3: ~p

Tabla 4

Demostración por leyes de inferencia. Ejercicio C

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P4: s	Doble negación	P2		
P5: p∨q	MPP	P1,P3		
P6: q	MTT	P3, P5		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio C. Fuente. Autor

D. Expresión simbólica:

$$\textbf{[(p \rightarrow q) \land (\sim q) \land ((\sim p \lor r) \rightarrow s)]} \rightarrow \textbf{s}$$

Premisas dadas:

P1: $p \rightarrow q$

P2: ~q

P3: $(\sim p \lor r) \rightarrow s$

Tabla 5

Demostración por leyes de inferencia. Ejercicio D

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P4:~p	MTP	P1, P2		
P5: ~p∨r	Ley de la	P4		_
	Adición(LA)			
P6: s	MPP	P3,P5		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio D. Fuente. Autor

E. Expresión simbólica:

[(s
$$\rightarrow$$
 \sim t) \wedge (t) \wedge (\sim s \rightarrow r)] \rightarrow (r \wedge t)

Premisas dadas:

P1: $s \rightarrow \sim t$

P2: t

P3: $\sim s \rightarrow r$

Tabla 6

Demostración por leyes de inferencia. Ejercicio E

Premisas	Ley	Premisas	¿Correcto o	Justificación
	Aplicada	Usadas	Incorrecto?	
P4: ~s	MTP	P1, P2		
P5: r	MPP	P3,P4		
P6: r∧t	Conjunción	P2,P5		

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio E. Fuente. Autor

A partir de la expresión simbólica seleccionada, el estudiante deberá:

> Definir las proposiciones simples, tendrá la libertad de definirlas bajo una descripción basada en un contexto académico o social. Las proposiciones simples deben contener 1. Sujeto, 2. Verbo y 3. **Predicado**.

Ejemplo:

- **p**: Andrés estudia cálculo integral
- **q**: Andrés resuelve los ejercicios
- r: Andrés aprueba la evaluación
- > Remplazar las variables expresadas simbólicamente y llevarlas al lenguaje natural. Las proposiciones simples deben ser de autoría de cada estudiante, por lo que de encontrar proposiciones iguales entre estudiantes se considerara como copia y se tomaran las medidas correctivas estipuladas por la UNAD (Rubrica).
- > Complete la tabla de demostración de la validez del argumento mediante leyes de inferencia lógica. Analizar la tabla de la demostración e indicar si las premisas construidas y las leyes aplicadas son correctas o incorrectas y justificar porque es correcta o incorrecta

Nota:

Apreciado estudiante, tenga en cuenta que la valoración máxima de esta actividad es de 125 puntos, para aprobar deberá lograr una <u>calificación</u> <u>superior o igual a **75 puntos**.</u>

Para tener en cuenta:

El estudiante tendrá para su consulta el **Anexo 2 – Guía para el** desarrollo de la Tarea 2 (ejercicios ejemplo), en este documento se presentará a manera de ejemplo el desarrollo de ejercicios similares a los planteados en la tarea. También podrá utilizar la Plantilla Tarea 2 como documento base para la realización del informe final o entregable de la Tarea 2.