Binary classification using logistic regression

Shreyas Pandit

10th September 2021

1. Introduction

These are some notes that I have made surrounding the mathematical theory behind binary classification using logistic regression. The accompanying code can be found here.

In binary classification, we would like to predict a binary outcome (either 0 or 1), eg. if an email is spam or not, or whether a customer will buy something or not. The data we have available is of the form (\mathbf{x}_i, y_i) , where $y_i \in \{0, 1\}$ is our outcome, and \mathbf{x}_i is a vector with our input data (factors that affect the outcome), referred to as features. Suppose we have m data samples and n different features. We will also assume throughout that the vectors are row vectors. Our goal is to predict the probability that a given input should be classified as 1.

Define

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

The model we will use is: the probability that a given input \mathbf{x} is classified as 1 is $\sigma(\mathbf{x}\theta^T)$. Here, $\theta = (\theta_0, \theta_1, \dots \theta_n)$ are parameters that we will vary according to the training data we were given. In particular, we will vary θ to minimise the error in our predictions. Note that the first component of \mathbf{x} is always 1, which is just so $\mathbf{x}\theta^T = \theta_0 + \theta_1 x_1 + \dots \theta_n x_n$.

Recall that given some data and a probability model depending on a parameter μ , the likelihood function $L(\mu)$ is the probability of observing this data given the parameter μ . The log-likelihood is $\log L(\mu)$.

Proposition 1. The log-likelihood function for our model is

$$l(\theta) = \sum_{i=1}^{m} (y_i \log(\sigma(\mathbf{x}_i \theta^T)) + (1 - y_i) \log(1 - \sigma(\mathbf{x}_i \theta^T)))$$

Proof. Notice that the likelihood function is

$$L(\theta) = \prod_{\substack{1 \le i \le m \\ y_i = 1}} \sigma(\mathbf{x}_i \theta^T) \prod_{\substack{1 \le i \le m \\ y_0 = 1}} \left(1 - \sigma(\mathbf{x}_i \theta^T)\right).$$

We can write this compactly as

$$L(\theta) = \prod_{1 \le i \le m} \sigma(\mathbf{x}_i \theta^T)^{y_i} \left(1 - \sigma(\mathbf{x}_i \theta^T) \right)^{1 - y_i}.$$

Hence,

$$l(\theta) = \log(L(\theta)) = \sum_{i=1}^{m} (y_i \log(\sigma(\mathbf{x}_i \theta^T)) + (1 - y_i) \log(1 - \sigma(\mathbf{x}_i \theta^T))).$$

Since we want to maximise the likelihood, we will consider the negative loglikelihood function. To find the cost function, we will also average over all of the training examples.

Proposition 2. The cost function is

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(y_i \log(\sigma(\mathbf{x}_i \theta^T)) + (1 - y_i) \log(1 - \sigma(\mathbf{x}_i \theta^T)) \right).$$

To maximise this, we will use gradient descent. Hence, we would like to find the gradient vector of J.

Proposition 3. Let **X** be the matrix given by

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_2 \\ \mathbf{x}_2 & \mathbf{x}_2 & \mathbf{x}_m \end{pmatrix}$$

We have that

$$\nabla J = \frac{1}{m} \mathbf{X}^T (\sigma(\mathbf{X}\boldsymbol{\theta}^T) - \mathbf{y}).$$

Proof. For each integer k, with $1 \le k \le m$, we have that

$$\frac{\partial J}{\partial \theta_k} = -\frac{1}{m} \left(\sum_{i=1}^m y_i \frac{\partial}{\partial \theta_k} \left(\log(\sigma(\mathbf{x}_i \theta^T)) \right) + \sum_{i=1}^m (1 - y_i) \frac{\partial}{\partial \theta_k} \left(\log(1 - \sigma(\mathbf{x}_i \theta^T)) \right) \right) \\
= -\frac{1}{m} \left(\sum_{i=1}^m y_i \frac{\sigma'(\mathbf{x}_i \theta^T)}{\sigma(\mathbf{x}_i \theta^T)} [\mathbf{x}_i]_k - \sum_{i=1}^m (1 - y_i) \frac{\sigma'(\mathbf{x}_i \theta^T)}{(1 - \sigma(\mathbf{x}_i \theta^T))} [\mathbf{x}_i]_k \right).$$

Recall that $\sigma'(x) = \sigma(x)\sigma(1-x)$. Hence,

$$\frac{\partial J}{\partial \theta_k} = -\frac{1}{m} \left(\sum_{i=1}^m \left(y_i (1 - \sigma(\mathbf{x}_i \theta^T)) - (1 - y_i) \sigma(\mathbf{x}_i \theta^T) \right) [\mathbf{x}_i]_k \right)$$

$$= -\frac{1}{m} \sum_{i=1}^m [\mathbf{x}_i]_k (y_i - \sigma(\mathbf{x}_i \theta^T))$$

$$= \frac{1}{m} \sum_{i=1}^m [\mathbf{x}_i]_k (\sigma(\mathbf{x}_i \theta^T) - y_i).$$

Now, observe that

$$\sigma(\mathbf{X}\theta^T) = \begin{pmatrix} \sigma(\mathbf{x}_1\theta^T) \\ \sigma(\mathbf{x}_2\theta^T) \\ \vdots \\ \sigma(\mathbf{x}_m\theta^T) \end{pmatrix}$$

and so

$$\mathbf{X}^{T}(\sigma(\mathbf{X}\boldsymbol{\theta}^{T}) - \mathbf{y}) = \begin{pmatrix} | & & | \\ \mathbf{x}_{1} & \dots & \mathbf{x}_{m} \\ | & & | \end{pmatrix} \begin{pmatrix} \sigma(\mathbf{x}_{1}\boldsymbol{\theta}^{T}) - y_{1} \\ \sigma(\mathbf{x}_{2}\boldsymbol{\theta}^{T}) - y_{2} \\ \vdots \\ \sigma(\mathbf{x}_{m}\boldsymbol{\theta}^{T}) - y_{m} \end{pmatrix}.$$

Expanding out this matrix multiplication and comparing with the above result for $\frac{\partial J}{\partial \theta_k}$, we obtain the result.

We can now apply gradient descent: $\theta \leftarrow \theta - \alpha \nabla J$, where α is the learning rate.

References

[1] G. James et al. An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer New York, s2013. ISBN: 9781461471387. URL: https://books.google.co.uk/books?id=qcI_AAAAQBAJ.