18.01 EXERCISES

Unit 5. Integration techniques

5A. Inverse trigonometric functions; Hyperbolic functions

- **5A-1** Evaluate $\tan^{-1}\sqrt{3}$ $\sin^{-1}(\sqrt{3}/2)$
 - c) If $\theta = \tan^{-1} 5$, then evaluate $\sin \theta$, $\cos \theta$, $\cot \theta$, $\csc \theta$, and $\sec \theta$.
 - d) $\sin^{-1}\cos(\pi/6)$ e) $\tan^{-1}\tan(\pi/3)$
 - f) $\tan^{-1} \tan(2\pi/3)$ g) $\lim_{x \to -\infty} \tan^{-1} x$.
- **5A-2** Calculate a) $\int_{1}^{2} \frac{dx}{x^{2}+1}$ b) $\int_{b}^{2b} \frac{dx}{x^{2}+b^{2}}$ c) $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^{2}}}$.
- ${f 5A-3}$ Calculate the derivative with respect to x of the following
 - a) $\sin^{-1}\left(\frac{x-1}{x+1}\right)$ b) $\tanh x$
 - c) $\ln(x + \sqrt{x^2 + 1})$ d) y such that $\cos y = x$, $0 \le x \le 1$ and $0 \le y \le \pi/2$.

 - $\tan^{-1}(x/\sqrt{1-x^2}) \quad \sin^{-1}\sqrt{1-x}$
- **5A-4** a) If the tangent line to $y = \cosh x$ at x = a goes through the origin, what equation must a satisfy?
 - b) Solve for a using Newton's method.
- **5A-5** Sketch the graph of $y = \sinh x$, by finding its critical points, points of inflection, symmetries, and limits as $x \to \infty$ and $-\infty$.

COPYRIGHT DAVID JERISON AND MIT 1996, 2003

Give a suitable definition for $\sinh^{-1}x$, and sketch its graph, indicating the domain of definition. (The inverse hyperbolic sine.)

Find
$$\frac{d}{dx} \sinh^{-1} x$$
.

d) Use your work to evaluate
$$\int \frac{dx}{\sqrt{a^2 + x^2}}$$

5A-6 a) Find the average value of y with respect to arclength on the semicircle $x^2 + y^2 = 1$, y > 0, using polar coordinates.

b) A weighted average of a function is

$$\int_{a}^{b} f(x)w(x)dx \bigg/ \int_{a}^{b} w(x)dx$$

Do part (a) over again expressing arclength as ds = w(x)dx. The change of variables needed to evaluate the numerator and denominator will bring back part (a).

c) Find the average height of $\sqrt{1-x^2}$ on -1 < x < 1 with respect to dx. Notice that this differs from part (b) in both numerator and denominator.

5B. Integration by direct substitution

Evaluate the following integrals

$$5B-1. \int x\sqrt{x^2-1}dx \qquad 5B-2. \int e^{8x}dx \qquad 5B-3. \int \frac{\ln x dx}{x}$$

$$5B-4. \int \frac{\cos x dx}{2+3\sin x} \qquad 5B-5. \int \sin^2 x \cos x dx \qquad 5B-6. \int \sin 7x dx$$

$$5B-7. \int \frac{6x dx}{\sqrt{x^2+4}} \qquad 5B-8. \int \tan 4x dx \qquad 5R-9. \int e^x (1+e^x)^{-1/3} dx$$

$$5B-10. \int \sec 9x dx \qquad 5B-11. \int \sec^2 9x dx \qquad 5B-12. \int x e^{-x^2} dx$$

$$5B-13. \int \frac{x^2 dx}{1+x^6}. \text{ Hint: Try } u = x^3.$$

Evaluate the following integrals by substitution and changing the limits of integration.

5B-14.
$$\int_0^{\pi/3} \sin^3 x \cos x dx$$

5B-15.
$$\int_{1}^{e} \frac{(\ln x)^{3/2} e^{-x}}{x}$$

5B-14.
$$\int_0^{\pi/3} \sin^3 x \cos x dx$$
 5B-15. $\int_1^e \frac{(\ln x)^{3/2} dx}{x}$ 5B-16. $\int_{-1}^1 \frac{\tan^{-1} x dx}{1+x^2}$

5C. Trigonometric integrals

Evaluate the following

5C-1.
$$\int \sin^2 x dx$$

5C-1.
$$\int \sin^2 x dx$$
 5C-2. $\int \sin^3(x/2) dx$ 5C-3. $\int \sin^4 x dx$

5C-3.
$$\int \sin^4 x dx$$

5C-4.
$$\int \cos^3(3x) dx$$

$$50.5. \int \sin^3 x \cos^2 x dx$$

5C-6.
$$\int \sec^4 x dx$$

$$56-7. \int \sin^2(4x) \cos^2(4x) dx$$

5C-4.
$$\int \cos^3(3x) dx$$
 5C-5. $\int \sin^3 x \cos^2 x dx$ 5C-6. $\int \sec^4 x dx$ 5C-7. $\int \sin^2(4x) \cos^2(4x) dx$ 5C-8. $\int \tan^2(ax) \cos(ax) dx$ 5C-9. $\int \sin^3 x \sec^2 x dx$

5C-10.
$$\int (\tan x + \cot x)^2 dx$$
 5C-11. $\int \sin x \cos(2x) dx$ (Use double angle formula.)

5C-12.
$$\int_0^{\pi} \sin x \cos(2x) dx$$
 (See 27.)

- 5C-13. Find the length of the curve $y = \ln \sin x$ for $\pi/4 \le x \le \pi/2$.
- 5C-14. Find the volume of one hump of $y = \sin ax$ revolved around the x-axis.

5D. Integration by inverse substitution

Evaluate the following integrals

5D-1.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}}$$
 5D-2. $\int \frac{x^3 dx}{\sqrt{a^2 - x^2}}$ 5D-3. $\int \frac{(x+1)dx}{4 + x^2}$

$$5R-2. \int \frac{x^3 dx}{\sqrt{a^2 - x}}$$

5D-3.
$$\int \frac{(x+1)dx}{4+x^2}$$

5D-4.
$$\int \sqrt{a^2 + x^2} dx$$

5D-5.
$$\int \frac{\sqrt{a^2 - x^2} dx}{x^2}$$

5D-5.
$$\int \frac{\sqrt{a^2 - x^2} dx}{x^2}$$
 5D-6. $\int x^2 \sqrt{a^2 + x^2} dx$

(For 5D-4,6 use $x = a \sinh y$, and $\cosh^2 y = (\cosh(2y) + 1)/2$, $\sinh 2y = 2 \sinh y \cosh y$.)

50-7.
$$\int \frac{\sqrt{x^2 - a^2} dx}{x^2}$$

5D-8.
$$\int x\sqrt{x^2 - 9}dx$$

5D-9. Find the arclength of $y = \ln x$ for $1 \le x \le b$.

Completing the square

Calculate the following integrals

5D.10.
$$\int \frac{dx}{(x^2 + 4x + 13)^{3/2}}$$

5D 10.
$$\int \frac{dx}{(x^2 + 4x + 13)^{3/2}}$$
 5D-11. $\int x\sqrt{-8 + 6x - x^2}dx$ 5D-12. $\int \sqrt{-8 + 6x - x^2}dx$

5D-13.
$$\int \frac{dx}{\sqrt{2x-x^2}}$$

5D-14.
$$\int \frac{xdx}{\sqrt{x^2 + 4x + 13}}$$

5D-13.
$$\int \frac{dx}{\sqrt{2x-x^2}}$$
 5D-14. $\int \frac{xdx}{\sqrt{x^2+4x+13}}$ 5D-15. $\int \frac{\sqrt{4x^2-4x+17}dx}{2x-1}$

5E. Integration by partial fractions

5E-1.
$$\int \frac{dx}{(x-2)(x+3)} dx$$

5E-1.
$$\int \frac{dx}{(x-2)(x+3)} dx$$
 5E-2. $\int \frac{xdx}{(x-2)(x+3)} dx$ 5E-3. $\int \frac{xdx}{(x^2-4)(x+3)} dx$

5E-4.
$$\int \frac{3x^2 + 4x - 11}{(x^2 - 1)(x - 2)} dx$$

5E-5.
$$\int \frac{3x+2}{x(x+1)^2} dx$$

5E-4.
$$\int \frac{3x^2 + 4x - 11}{(x^2 - 1)(x - 2)} dx$$
 5E-5. $\int \frac{3x + 2}{x(x + 1)^2} dx$ 5E-6. $\int \frac{2x - 9}{(x^2 + 9)(x + 2)} dx$

5E-7 The equality (1) of Notes F is valid for $x \neq 1, -2$. Therefore, the equality (4)

is also valid only when $x \neq 1, -2$, since it arises from (1) by multiplication.

Why then is it legitimate to substitute x = 1 into (4)?

5E-8 Express the following as a sum of a polynomial and a proper rational function

a)
$$\frac{x^2}{x^2 - 1}$$

b)
$$\frac{x^3}{x^2 - 1}$$
 c) $\frac{x^2}{3x - 1}$

c)
$$\frac{x^2}{3x-1}$$

d)
$$\frac{x+2}{3x-1}$$

e)
$$\frac{x^8}{(x+2)^2(x-2)^2}$$
 (just give the form of the solution)

5E-9 Integrate the functions in Problem **5E-8**.

5E-10 Evaluate the following integrals

a)
$$\int \frac{dx}{x^3 - x^3}$$

b)
$$\int \frac{(x+1)dx}{(x-2)(x-3)}$$
 c) $\int \frac{(x^2+x+1)dx}{x^2+8x}$

c)
$$\int \frac{(x^2+x+1)dx}{x^2+8x}$$

d)
$$\int \frac{(x^2 + x + 1)dx}{x^2 + 8x}$$
 e) $\int \frac{dx}{x^3 + x^2}$ f) $\int \frac{(x^2 + 1)dx}{x^3 + 2x^2 + x}$

e)
$$\int \frac{dx}{x^3 + x^2}$$

f)
$$\int \frac{(x^2+1)dx}{x^3+2x^2+1}$$

g)
$$\int \frac{x^3 dx}{(x+1)^2(x-1)}$$
 h) $\int \frac{(x^2+1)dx}{x^2+2x+2}$

h)
$$\int \frac{(x^2+1)dx}{x^2+2x+2}$$

5E-11 Solve the differential equation dy/dx = y(1-y).

5E-12 This problem shows how to integrate any rational function of $\sin \theta$ and $\cos \theta$ using the substitution $z = \tan(\theta/2)$. The integrand is transformed into a rational function of z, which can be integrated using the method of partial fractions.

a) Show that

$$\cos \theta = \frac{1 - z^2}{1 + z^2}, \quad \sin \theta = \frac{2z}{1 + z^2}, \quad d\theta = \frac{2dz}{1 + z^2}.$$

Calculate the following integrals using the substitution $z = \tan(\theta/2)$ of part (a).

b)
$$\int_0^{\pi} \frac{d\theta}{1 + \sin \theta}$$
 c) $\int_0^{\pi} \frac{d\theta}{(1 + \sin \theta)^2}$ d) $\int_0^{\pi} \sin \theta d\theta$ (Not the easiest

5E-13 a) Use the polar coordinate formula for area to compute the area of the region $0 < r < 1/(1 + \cos \theta)$, $0 \le \theta \le \pi/2$. Hint: Problem 12 shows how the substitution $z = \tan(\theta/2)$ allows you to integrate any rational function of a trigonometric function.

b) Compute this same area using rectangular coordinates and compare your answers.

5F. Integration by parts. Reduction formulas

Evaluate the following integrals

5F-1 a) $\int x^a \ln x dx \ (a \neq -1)$ b) Evaluate the case a = -1 by substitution.

5F-2 a)
$$\int xe^x dx$$
 b) $\int x^2 e^x dx$ c) $\int x^3 e^x dx$

- d) Derive the reduction formula expressing $\int x^n e^{ax} dx$ in terms of $\int x^{n-1} e^{ax} dx$.
- **5F-3** Evaluate $\int \sin^{-1}(4x)dx$
- **5F-4** Evaluate $\int e^x \cos x dx$. (Integrate by parts twice.)
- **5F-5** Evaluate $\int \cos(\ln x) dx$. (Integrate by parts twice.)
- **5F-6** Show the substitution $t=e^x$ transforms the integral $\int x^n e^x dx$, into $\int (\ln t)^n dt$. Use a reduction procedure to evaluate this integral.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.