ILLUSTRATIVE EXAMPLES

EXAMPLE-1 Apply the Gram-Schmidt orthogonalization process to the basis $B = \{(1, 0, 1), (1, 0, -1), (0, 3, 4)\}$ of the inner product space R^3 to find an orthogonal and an orthonormal basis of R^3 .

SOLUTION Let $v_1 = (1, 0, 1)$, $v_2 = (1, 0, -1)$ and $v_3 = (0, 3, 4)$. Further, let $w_1 = v_1 = (1, 0, 1)$.

$$w_{2} = v_{2} - \frac{\langle v_{2}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} = v_{2} - 0 = v_{2} = (1, 0, -1)$$

$$w_{3} = v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2}$$

$$(1, 0, -1)$$

$$(1, \langle v_{2}, w_{1} \rangle = 0)$$

$$\Rightarrow w_3 = v_3 - \frac{4}{2}v_1 + \frac{4}{2}v_2$$

$$\Rightarrow w_3 = v_3 - 2v_1 + 2v_2$$

$$\Rightarrow$$
 $w_3 = (0, 3, 4) + (-2, 0, -2) + (2, 0, -2) = (0, 3, 0)$

Thus, $\{w_1, w_2, w_3\}$ is an orthogonal basis of \mathbb{R}^3 .

In order to obtain an orthonormal basis of R^3 , let us normalize w_1, w_2, w_3 We have,

$$||w_1||^2 = 2$$
, $||w_2||^2 = 2$ and $||w_3||^2 = 9$

 $u_i = \frac{w_i}{||w_i||}; \quad i = 1, 2, 3.$

Then,
$$u_1 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), u_2 = \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right), u_3 = (0, 1, 0)$$

form an orthonormal basis for R^3 .

EXAMPLE-2 Let $V = P_3(t)$ be the vector space of all polynomials f(t) of degree less than of

equal to 3 with inner product defined by
$$\langle f,g \rangle = \int_{-1}^{1} f(t) g(t) dt$$
.

Apply Gram-Schmidt orthogonalization process to find an orthogonal basis with integral coefficients and the an orthonormal basis from the basis $\{1, t, t^2, t^3\}$.

PROOF. Let $f_0 = 1$, $f_1 = t$, $f_2 = t^2$, $f_3 = t^3$ form the given basis. Then,

$$\langle f_0, f_0 \rangle = \int_{-1}^{1} 1 dt = 2, \ \langle f_1, f_1 \rangle = \int_{-1}^{1} t^2 dt = \frac{2}{3}, \ \langle f_2, f_2 \rangle = \int_{-1}^{1} t^4 dt = \frac{2}{5}, \ \langle f_3, f_3 \rangle = \int_{-1}^{1} t^6 dt = \frac{2}{7}$$

$$\langle f_0, f_1 \rangle = \int_{-1}^{1} t dt = 0, \ \langle f_0, f_2 \rangle = \int_{-1}^{1} t^2 dt = \frac{2}{3}, \ \langle f_0, f_3 \rangle = \int_{-1}^{1} t^3 dt = 0$$

$$\langle f_1, f_2 \rangle = \int_{-1}^{1} t^3 dt = 0, \ \langle f_1, f_3 \rangle = \int_{-1}^{1} t^4 dt = \frac{2}{5}, \ \langle f_2, f_3 \rangle = \int_{-1}^{1} t^5 dt = 0$$

Let
$$g_0 = f_0 = 1$$
,
 $g_1 = f_1 - \frac{\langle f_1, f_0 \rangle}{\langle f_0, f_0 \rangle} f_0 = t - 0 = t$
 $g_2 = f_2 - \frac{\langle f_2, f_0 \rangle}{\langle f_0, f_0 \rangle} f_0 - \frac{\langle f_2, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 = t^2 - \frac{2}{3} \times \frac{1}{2} = t^2 - \frac{1}{3}$
 $g_3 = f_3 - \frac{\langle f_3, f_0 \rangle}{\langle f_0, f_0 \rangle} f_0 - \frac{\langle f_3, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 - \frac{\langle f_3, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2 = t^3 - \frac{2}{5} \times \frac{3}{2} \times t - 0 = t^3 - \frac{3}{5}t$

Thus, $\left\{g_0 = 1, g_1 = t, g_2 = t^2 - \frac{1}{3}, g_3 = t^3 - \frac{3}{5}t\right\}$ is an orthogonal basis V. Multiplying g_2 by 3 and g_3 by 5, we obtain $\{\phi_0(t) = 1, \ \phi_1(t) = t, \ \phi_2(t) = 3t^2 - 1, \ \phi_3(t) = 5t^3 - 3t\}$ as an orthogonal basis with integral coefficients.

$$||\phi_{0}(t)||^{2} = \langle 1, 1 \rangle = \int_{-1}^{1} 1 dt = 2 \quad \Rightarrow \quad ||\phi_{0}(t)|| = \sqrt{2}$$

$$||\phi_{1}(t)||^{2} = \langle t, t \rangle = \int_{-1}^{1} t^{2} dt = \frac{2}{3} \quad \Rightarrow \quad ||\phi_{1}(t)|| = \sqrt{\frac{2}{3}}$$

$$||\phi_{2}(t)||^{2} = \langle 3t^{2} - 1, 3t^{2} - 1 \rangle = \int_{-1}^{1} (3t^{2} - 1)^{2} dt = \frac{8}{5} \quad \Rightarrow \quad ||\phi_{2}(t)|| = 2\sqrt{\frac{2}{5}}$$

$$||\phi_{3}(t)||^{2} = \langle 5t^{3} - 3t, 5t^{3} - 3t \rangle = \int_{-1}^{1} (5t^{3} - 3t)^{2} dt = \frac{8}{7} \quad \Rightarrow \quad ||\phi_{3}(t)|| = 2\sqrt{\frac{2}{7}}$$
an orthonormal Legislation is a second of the parameter of

Hence, an orthonormal basis of $P_3(t)$ is

$$\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}t, \frac{1}{2}\sqrt{\frac{5}{2}}(3t^2-1), 2\sqrt{\frac{7}{2}}(5t^3-3t)\right\}.$$

EXAMPLE-3 Let S be the subspace, of the inner product space R^4 , spanned by the vectors $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5), v_3 = (1, -3, -4, -2)$ in R^4 . Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal basis of S.

SOLUTION We observe that the vectors v_1, v_2, v_3 form a linearly independent set. So, $\{v_1, v_2, v_3\}$ is a basis for S. In order to orthogonalize this basis, let us define:

$$w_1 = v_1$$

$$w_{2} = v_{2} - \frac{\langle v_{2}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} = v_{2} - \frac{12}{4} v_{1} = v_{2} - 3v_{1} = (-2, -1, 1, 2)$$

$$w_{3} = v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2} = v_{3} + \frac{8}{4} v_{1} + \frac{7}{10} w_{2} = \left(\frac{8}{5}, \frac{-17}{10}, \frac{-13}{10}, \frac{7}{5}\right)$$

Thus, $\{w_1, w_2, w_3\}$ forms an orthogonal basis of S. Now,

$$||w_1||^2 = \langle w_1, w_1 \rangle = 4, ||w_2||^2 = \langle w_2, w_2 \rangle = 10, ||w_3||^2 = \langle w_3, w_3 \rangle = \frac{910}{100}$$
Let $u_i = \frac{w_i}{||w_i||}$, $i = 1, 2, 3$. Then,
$$\left\{ u_1 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), u_2 = \left(\frac{-2}{\sqrt{10}}, \frac{-1}{\sqrt{10}}, \frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right), u_3 = \left(\frac{16}{\sqrt{910}}, \frac{-17}{\sqrt{910}}, \frac{-13}{\sqrt{910}}, \frac{14}{\sqrt{910}}\right) \right\}$$
Is an orthonormal basis of S .

582 • Theory and Problems of Linear Algebra

EXAMPLE-4 Let S be the subspace of R^4 spanned by the vectors $v_1 = (1, 1, 1, 1)$, $v_2 = (1, -1, 2, 2), v_3 = (1, 2, -3, -4)$. Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis of S and hence, find the projection of v = (1, 2, -3, 4) onto S.

SOLUTION Let $w_1 = v_1 = (1, 1, 1, 1)$.

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = v_2 - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = v_2 - v_1 = (0, -2, 1, 1)$$

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 = v_3 + w_1 + \frac{11}{6} w_2 = \left(2, \frac{-2}{3}, \frac{-1}{6}, \frac{-7}{6}\right)$$

Let $w_3' = 6w_3 = (12, -4, -1, -7)$

Clearly, $\{w_1, w_2, w_3'\}$ forms an orthogonal basis of S.

$$\therefore \quad \text{proj } (v,S) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 + \frac{\langle v, w_3' \rangle}{\langle w_3', w_3' \rangle} w_3'$$

$$\Rightarrow$$
 proj $(v,S) = w_1 - \frac{1}{2}w_2 - \frac{1}{10}w_3' = \left(\frac{-1}{5}, \frac{12}{5}, \frac{3}{5}, \frac{6}{5}\right)$

THEODER O I at C has a subspace of a fuite dimensional inner muchost and IV