

# Введение в экономико-математическое моделирование

Лекция 18. Проверка гипотез

канд. физ.-матем. наук, доцент Д.В. Чупраков usr10381@vyatsu.ru



### Структура лекции

- 1 Понятие статистической гипотезы
- 2 Статистический критерий
- 3 Алгоритм проверки гипотез
- 4 Проверка гипотезы о вероятности события
- 5 Проверка гипотезы о значении математическом ожидании



### Статистическая гипотеза

#### Определеине

#### Статистическая гипотеза это предположение

- о виде распределения генеральной совокупности или
- о величинах неизвестных параметров известного распределения генеральной совокупности,

которое может быть проверено на основании выборочных показателей.

По количеству предположений гипотезы делятся на:

- простые это гипотезы, содержащие только одно предположение;
- сложные гипотезы, состоящие из конечного или бесконечного числа простых гипотез.



### Mortal Combat



Нулевая гипотеза  $H_0$  — гипотеза, подлежащая проверке.

Конкурирующая (альтернативная) гипотеза  $H_1$  — любое утверждение, которое противоречит нулевой гипотезе.



Нулевая гипотеза — утверждение, принимаемое по умолчанию.

Проверяя статистическую гипотезу исследователь пытается показать несостоятельность нулевой гипотезы, несогласованность её с имеющимися опытными данными, то есть отвергнуть гипотезу.

При этом подразумевается, что должна быть принята другая, альтернативная (конкурирующая), исключающая нулевую гипотезу.

Отвергнуть нулевую гипотезу — значит сделать вывод, что конкурирующая гипотеза  $H_1$  лучше описывает реальность, чем нулевая гипотеза  $H_0$ 



Для нулевой гипотезы действует своеобразная "презумпция невиновности":

Нулевая гипотеза считается верной, пока не будет доказано обратное (нулевая гипотеза отвергнута) сверх необходимых сомнений (т. е. в статистически значимой степени).

Истинность нулевой гипотезы невозможно доказать, но можно показать, что в данный момент нет причин сомневаться в ней.



### Статистический критерий

Статистический критерий — правило, которое позволяет на основе имеющихся данных отвергнуть нулевую гипотезу.

- Параметрические критерии, которые служат для проверки гипотез о параметрах распределений генеральной совокупности (чаще всего нормального распределения).
- Непараметрические критерии, которые для проверки гипотез не используют предположений о распределении генеральной совокупности. Эти критерии не требуют знания параметров распределений.
- Критерии согласия служат для проверки гипотез о согласии распределения генеральной совокупности, из которой получена выборка, с ранее принятой теоретической моделью (чаще всего нормальным распределением).



### Статистика критерия

В основе критерия лежит статистика критерия — искусственно сконструированная функция

$$T_n = T(X_1, X_2, \ldots, X_n)$$

от выборки  $X_1, X_2, ..., X_n$ .

- Статистика критерия является случайной величиной.
- Закон распределения статистики критерия должен быть известнен!



### Обозначение статистики

В зависимости от закона распределения статистику обозначают через:

- $\triangleright$  *U* или *Z*, если она имеет нормальное распределение;
- $\triangleright$  *F* или  $v^2$  распределение Фишера;
- $\triangleright \chi^2$  распределение «хи квадрат»;
- ▶ t распределение Стьюдента.



### Критическая область

Множество всех значений статистики критерия разбивается на два непересекающихся подмножества:

- Критическую область включает значения статистики, появление которых при справедливости Н<sub>0</sub> практически невозможно.
- Область допустимых значений (область принятия гипотезы) — значения которые может принимать статистика при условии справедливости нулевой гипотезы H<sub>0</sub>;

- Статистика подбирается так, чтобы область допустимых значений и критическая область были интервалами.
- Вид критической области зависит от типа альтернативной гипотезы.



### Отвержение и принятие гипотезы

#### Условие отвержения гипотезы

Если значение статистики попадает в критическую область, то гипотеза  $H_0$  отвергается в пользу альтернативной.

#### Условие согласия гипотезы

Если значение статистики попадает в область допустимых значений, то гипотеза  $H_0$  не противоречит наблюдаемым значениям, поэтому нет оснований отвергать ее.

Нулевая гипотеза принимается только волевым решением исследователя.



### Матрица ошибок

|                                  | <i>H</i> 0 верна | <i>H</i> 0 неверна |
|----------------------------------|------------------|--------------------|
| $H_0$ принята                    | Верное решение   | Ошибка II рода     |
| <i>H</i> <sub>0</sub> отвергнута | Ошибка I рода    | Верное решение     |

- ▶ Ошибка первого рода отвержение верной гипотезы H<sub>0</sub>.
- ▶ Ошибка второго рода принятие ошибочной гипотезы H<sub>0</sub>.





#### Определеине

Вероятность ошибки первого рода называется уровнем значимости  $\alpha$ .

Уровень значимости  $\alpha$  устанавливается из значений следующего ряда:

0.05, 0.01, 0.005, . . .

события с такими вероятностями считаются практически невозможными.

Допустимая величина уровня значимости определяется теми последствиями, которые наступают после совершения ошибки.



### Критическое значение

Так как область допустимых значений и критическая область являются интервалами, то существует граничная точка, разделяющая их



Критическое значение статистики — граница области допустимых значений статистики, при условии, что нулевая гипотеза  $H_0$  верна.



### Типы критической области

#### Односторонняя:

▶ Левосторонняя — определяется  $P(T < T_{\kappa p}) = \alpha$ 



ightharpoonup Правосторонняя — определяется  $P(T>T_{\kappa p})=lpha$ 



Двухсторонняя — определяется  $P(T>|T_{\text{кр}}|)=rac{lpha}{2}$   $-T_{\text{кр.}}$  T



### Мощность критерия

#### Определеине

Мощность критерия — вероятность попадания критерия в критическую область при условии, что верна конкурирующая гипотеза.

Если  $\beta$  — вероятность ошибки второго рода, то мощность критерия равна  $1 - \beta$ .

Чем больше мощность критерия, тем меньше вероятность совершить ошибку второго рода.

После выбора уровня значимости  $\alpha$  следует строить критическую область так, чтобы мощность критерия была максимальной.



### Алгоритм проверки гипотез

- 1. Формулируются гипотезы  $H_0$  и  $H_1$ .
- 2. По виду гипотезы выбирается статистический критерий T;
- 3. Выбирается уровень значимости критерия  $\alpha$ . Он равен вероятности допустить ошибку первого рода.
- 4. По выборочным данным вычисляется вычисляется наблюдаемое значение сатистики  $T_{\rm Ha6D.}$
- 5. По уровню значимости  $\alpha$  вычисляется критическое значение  $T_{\kappa p}$ , разделяющее критическую область и область допустимых значений.
- 6. Определяется неравенство, задающее критическую область.
- ► Если *Т*<sub>набл.</sub> попадает в критическую область, то нулевая гипотеза отвергается.
- ► Если *T*<sub>набл.</sub> попадает в область допустимых значений, то нулевая гипотеза не противоречит наблюдаемым данным.



### Проверка гипотезы о вероятности события

Пусть проведено n независимых испытаний, в каждом из которых некоторое событие A появляется с одной и той же, но неизвестной вероятностью p.

Найдена относительная частота  $\omega(A) = \frac{m}{n}$  появлений A в этой серии испытаний.

#### Нулевая гипотеза

 $H_0$ : Вероятность p события A равна некоторому значению  $p_0$ .



# Статистический критерий

По теореме Лапласа при достаточно большом n относительную частоту можно приближенно считать нормально распределенной с математическим ожиданием p и средним квадратическим отклонением  $\sigma_{\omega} = \sqrt{\frac{pq}{n}}$ , где q=1-p.

#### Статистический критерий

$$U = (\omega - p_0) \frac{\sqrt{n}}{\sqrt{p_0(1-p_0)}} \sim N(0,1)$$

Наблюдаемое значение вычисляется по формуле:

$$U_{ ext{ iny Ha6} ext{ iny N}.} = \left(rac{m}{n} - p_0
ight)rac{\sqrt{n}}{\sqrt{p_0(1-p_0)}}$$

где n — число испытаний, m — число появлений события A



# Критическая область гипотезы $H_1 \colon p \neq p_0$

▶ Критическая область:

$$(-\infty; -U_{\kappa p}) \cup (U_{\kappa p}; +\infty)$$

- ▶ Значение U<sub>кр</sub> определяется из условия
- $\Phi(U_{\kappa p}) = \frac{1 \alpha}{2}$  $|U_{\text{Hafin}}| > U_{\kappa p}.$

▶ Нулевая гипотеза отвергается, если





# Критическая область гипотезы $H_1$ : $p>p_0$

Критическая область правосторонняя:

 $(U_{\kappa p}; +\infty)$ 

- ightharpoonup Значение  $U_{
  m kp}$  определяется из условия
- $\Phi(U_{ ext{kp}}) = rac{1-2lpha}{2}$   $U_{ ext{Ha6}n} > U_{ ext{Kp}}.$

Нулевая гипотеза отвергается, если





# Критическая область $H_1$ : $p < p_0$

- Критическая область левоосторонняя:
- ► Значение *U*<sub>кр</sub> определяется из условия
- Нулевая гипотеза отвергается, если

$$(-\infty; -U_{\text{Kp}})$$

$$\Phi(U_{\text{Kp}}) = \frac{1 - 2\alpha}{2}$$

$$U_{\text{Ha6D}} < -U_{\text{KD}}.$$



Пусть проведено 50 независимых испытаний, и относительная частота появления события A оказалась равной 0.12. Проверим при уровне значимости  $\alpha=0.01$  нулевую гипотезу  $H_0$ : p=0.1 при конкурирующей гипотезе  $H_1$ : p>0.1.

- ► Критерий  $U = (w p_0) \frac{\sqrt{n}}{\sqrt{p_0(1-p_0)}}$
- ▶ Найдем наблюдаемое значение критерия

$$U_{\text{набл}} = (0.12 - 0.1) \frac{\sqrt{50}}{\sqrt{0.1 \cdot 0.9}} = 0.471.$$

▶ Критическая область является правосторонней.

ightharpoonup Теоретическое значение критерия  $U_{
m kp.}$  находим из равенства

$$\Phi(U_{\text{Kp.}}) = (1 - 2 \cdot 0.01)/2 = 0.49$$

- ▶ По таблице значений функции Лапласа  $U_{\text{кр.}} = 2.33$ .
- ightharpoonup Итак,  $U_{
  m Ha6\pi}=0.471,\ U_{
  m Kp.}=2.33.$  Неравенство  $U_{
  m Ha6\pi.}< U_{
  m Kp.}$  означает, что гипотеза  $H_0\colon p=0.1$  согласуется с наблюдаемыми данными.



### Проверка гипотезы о матем. ожидании

Пусть генеральная совокупность X имеет нормальное распределение.

Требуется проверить предположение о том, что ее математическое ожидание  $\bar{x}$  равно некоторому числу  $a_0$ .

#### Возможны два случая:

- ightharpoonup дисперсия распределения известна и равна  $\sigma^2$ ;
- дисперсия распределения неизвестна.



# Случай известной дисперсии

- lacktriangle По выборке объема n найдем выборочное среднее  $ar{x}_{ exttt{B.}}$
- **▶** Проверим нулевую гипотезу  $H_0$ :  $\bar{x} = a_0$ .
- В качестве критерия возьмем

$$U=(\bar{x}_{\scriptscriptstyle\rm B}-a_0)\frac{\sqrt{n}}{\sigma}\sim N(0,1)$$

Наблюдаемое значение критерия:

$$U_{\text{набл.}} = (\bar{x}_{\text{в}} - a_0) \frac{\sqrt{n}}{\sigma}$$



# Критическая область

#### $H_1: \bar{x} \neq a_0$

- ► Значение *U*<sub>кр</sub> определяется из условия
- ▶ Нулевая гипотеза отвергается, если

$$Φ(U_{\text{Kp}}) = \frac{1-\alpha}{2}$$
 $|U_{\text{Ha6л}}| > U_{\text{Kp}}.$ 

### $H_1: \bar{x} > a_0$

- ► Значение *U*<sub>кр</sub> определяется из условия
- Нулевая гипотеза отвергается, если

$$\Phi(U_{\kappa p}) = \frac{1 - 2\alpha}{2}$$

$$U_{\text{Hafin}} > U_{\kappa p}.$$

#### $H_1: \bar{x} < a_0$

- ► Значение *U*<sub>кр</sub> определяется из условия
- Нулевая гипотеза отвергается, если

$$\Phi(U_{
m kp}) = rac{1-2lpha}{2} \ U_{
m Ha6} / < -U_{
m kp}.$$



## Случай неизвестной дисперсии

- ightharpoonup По выборке объема n найдем выборочное среднее  $ar{x}_{ exttt{B.}}$
- ▶ Проверим нулевую гипотезу  $H_0$ :  $\bar{x} = a_0$ .
- ▶ В качестве критерия возьмем

$$T = (\bar{x}_{\scriptscriptstyle B} - a_0) \, \frac{\sqrt{n}}{\hat{s}}$$

где  $\hat{s}$  — исправленной выборочное среднее. случайная величина T имеет распределение Стьюдента с k=n-1 степенями свободы.

▶ Наблюдаемое значение критерия:

$$U_{\mathsf{Ha}\bar{\mathsf{o}}\mathsf{n}.} = (\bar{x}_{\mathsf{B}} - a_{\mathsf{0}}) \, rac{\sqrt{n}}{\sigma}$$



### Критическая область

### $H_1: \bar{x} \neq a_0$

- ▶ Значение  $T_{\kappa p}$  определяется по таблице квантилей Стьюдента по параметрам  $1-\alpha$  и k=n-1
- ▶ Нулевая гипотеза отвергается, если

$$|T_{\mathsf{набл}}| > T_{\mathsf{\kappa p}}.$$

#### $H_1: \bar{x} > a_0$

- ▶ Значение  $T_{\kappa p}$  определяется по таблице квантилей Стьюдента по параметрам  $1-2\alpha$  и k=n-1
- Нулевая гипотеза отвергается, если

$$T_{\text{набл}} > T_{\kappa p}$$
.

#### $H_1: \bar{x} < a_0$

- lacktriangle Значение  $T_{\kappa p}$  определяется по таблице квантилей Стьюдента по параметрам 1-2lpha и k=n-1
- Нулевая гипотеза отвергается, если

$$T_{\text{набл}} < -T_{\kappa p}$$
.