Our dataset is about Bay Area Bike Share data. The Bay Area Bike Share enables quick, easy, and affordable bike trips around the San Francisco Bay Area. They make data releases, containing information about stations located in this area, bikes and docks available and trip details by customers (who are not part of any plan) and subscribers (who are part of subscription plans).

The goal of this project is to create a database and demonstrate proficiency in extracting data from database files using SQL and the ability to analyze these values in context. This database contains three data tables: station, status, trip.

The Station table contains data about bike station such as id, name, city, dock count etc. The Trip table contains data about individual bike trips such as start and end time, station, duration etc.

The Status table contains data about the number of bikes and docks available for a given station at a given time.

Business Understanding:

Bike share is a bike rentals corporate company that has gathered the bike share data in the bay area for the purpose of verifying the statistics, our main aim is to study the data and come up with meaningful insights from it to run the company smoothly.

From the gathered data we can mainly identify the most and least preferred bike stations, bike models and routes. We want to determine how different variables can affect the number of bikes rented, along with their duration. Using which we can optimize our resources by allocating more bikes in the most preferred areas, similarly by identifying the most preferred bike models we can optimize the ratio of different bikes present in a bike station.

We are studying this data to gain insightful information about our business and to verify if we're on track with our business goals or if not to take some measures related to the growth of the company.

Business Goals:

- To identify the stations that have been preferred the greatest number of times by customers.
- To identify the stations that have been preferred least number of times by customers.
- Identifying the numbers of subscribers and customers using the service.
- Identifying the most traveled routes.
- The identify the category of customers who took longer trips.
- Trips covered within the cities and between the cities.
- Trips by customers and subscribers over the week.
- Busiest days of the week.

By identifying the above details, we can propose strategies for the company regarding the bike counts, different offers to customers to convert into subscribers, and increase facilities in the cities at required stations.

Data Understanding:

- ♦ What information each column of the data contains, data types of each column, values, scale and range of data?
 - Please find below the details of the data we are using for the analysis.

		Data			
	Column Name	Type	Information provided	Values	
	id	int	Unique ID for each station	70 unique values	
	name	varchar	Station Name	70 unique names	
			Latitude of station	In degrees from 37.3 to	
	latitude	double	location	37.8	
			Longitude of station		
Station	longitude	double	location	In degrees around -122	
			Number of bikes the	Values ranging from 11	
	dock_count	int	station can hold	to 27	
	city	varchar	City Name	Five Cities	
				Dates ranging from	
	installation_date	date	Date of station installation	2013 & 2014	
			Unique ID for each status		
	status id	int	record	Incremental value	
				Unique station ID at	
	station_id	int	Unique ID for each station	different times	
a			Number of bikes available		
Status	bikes available	int	at the provided time	Ranging from 0 to 27	
			Number of docks		
	11		available in the station at	D	
	docks_available	int	the provided time	Ranging from 0 to 27	
		1	D (177)	Dates ranging from Aug	
	time	datetime	Date and Time	2013 to Aug 2015	
	id	int	Unique ID for each trip	Unique Values	
	duration	int	Trip duration in seconds	Time in seconds	
	start date	datetime	Start date and time of Trip	Date and time	
Trip	start_station_id	int	Starting station id of Trip	Id's from Station table	
****	end_date	datetime	End date and time of Trip	Date and Time	
	end_station_id	int	Ending station id of Trip	Id's from station table	
	bike_id	int	Unique ID for each bike	Unique Values	
	subscription_type	varchar	Subscription Type	Subscriber or Customer	

• Verify the data quality

• In Station table, column name id and name needed to be changed to station_id & station_name respectively. (Query: alter table station rename column id to station_id; alter table station rename column name to station_name)

- In table trip, column name id needed to be changed to trip_id. (Query: alter table trip rename column id to trip_id)
- In table status, there is no unique value column. So, we have added an additional column with incremental value as primary key for the table. (Query: alter table status add status id int unsigned not null auto increment, add primary key (status id))
- In the given data, there are no missing values.
- Provide simple statistics of the data and describe what these values mean if you found something interesting

Below are few statistics for numeric attributes

column_data	maximum	minimum	Mean	Std Dev
Docks count	27	11	17.66	3.98
Bikes Available	27	0	8.39	3.99
Docks available	27	0	9.28	4.18
Duration (in mins)	287840	1	18.47	370.92

Below are few of the inferences that can be made from studying the given data.

In the status table, The City column has five values. It contains cities such as San Jose, Redwood City, Mountain View, Palo Alto and San Francisco. 50% of the stations are in San Francisco, 23% of the stations are in San Jose and remaining covers the rest of the cities. (Query: Select city, count (*) from station group by city)

The maximum and minimum dock counts for the given station are 27 and 11, respectively. Almost 50% of stations have 15 docks. (**Queries**: Select max(dock_count), min(dock_count) from station; select count (*), dock_count from station group by dock_count order by count (*) desc)

Most of the stations were installed in August 2013. (Query: Select count (*), installation date, city from station group by installation date order by installation date)

85% of trips are done by subscribers. (**Query**: Select subscription type, count (*) from trip group by subscription_type)

The average number of bikes and docks available at a station is 8 and 9, respectively.

From all the trips, minimum duration is one-minute, maximum duration is 287840 minutes, and the average duration of trips is 18 minutes. (**Query**: select min(duration/60), max(duration/60), avg(duration/60) from trip)

Database Design:

- ♦ Schema Design
 - Find entities, their attributes, their primary keys, and relationships between them

We have three entities in our schema, Station, Status and Trip. Please find below their respective attributes.

Station							
station id	station name	latitude	longitude	dock count	city	installation date	

station id is the primary key of this table.

Status							
status id	station id	bikes available	docks available	time			

status_id is the primary key of this table.

Trip							
		start_	start_station	end_	end_station		subscription
trip_id	duration	date	_id	date	_id	bike_id	_type

trip id is the primary key of this table.

Trip table contains start and end station id from Station table. Status table contains availability of bikes and docks at a station from Station table. Station table has unique id and name for each station.

Model all the constraints you believe should be there in your schema

Trip can have more than one station id as part of start and end station id Status can have more than one station id at different time Station provides unique id, name and details of each station

• Draw and ER diagram of your dataset

• Translate your ER diagram into relations

- ♦ Schema Normalization
 - Find all the functional dependencies you can from your schema
 {station_id} -> {station_name, latitude, longitude, dock_count, city, installation_date}

{station_id, station_name} -> {latitude, longitude, dock_count, city, installation_date} {station_id, longitude, latitude} -> { station_name, dock_count, city, installation_date} {status_id} -> {time, station_id, bikes_available, docks_available} {trip_id} -> {start_date, end_date, start_station_id, end_station_id, duration, bike_id, subscription type}

• Check if the keys you have chosen for your relations are minimal

For Status table, set of all attributes $A = \{status_id, time, station_id, bikes_available, docks_available\}$ and functional dependency $F = \{status_id\} \rightarrow \{time, station_id, bikes_available, docks_available\}$ and $X = status_id$ Let's find closure of X. Initialize X + as X. $X + = \{status_id\}$ Using $F, X + = \{status_id, time, station_id, bikes_available, docks_available\}$ No more attributes can be added to $X + So \{status_id\}$ is the key.

Similarly, $\{station_id\}$ & $\{trip_id\}$ are keys for their respective tables.

• Check if your schema is in BCNF (Boyce-Codd Normal Form)

{station_id} -> {station_name, latitude, longitude, dock_count, city, installation_date} - all are in same table, and station_id is the key {status_id} -> {time, station_id, bikes_available, docks_available} - all are in same table and status_id is the key {trip_id} -> {start_date, end_date, start_station_id, start_station_name, end_station_id, end_station_name, duration, bike_id, subscription_type} - all are in same table and trip_id is the key

For above FDs, there are no violations for BCNF.

The schema is in BCNF form, and there is no update in the ER diagram.

• Create your database using latest version of schema and import the data.

Database is created in MySQL using the given schema. Initially tables are created, and csv files are imported using the below query. Errors while importing data were infile restriction errors and date time format errors. To solve this infile access has been provided and date time format has been adjusted according to MySQL preference.

We have imported the tables using below query: load data infile 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/status.csv' into table status fields terminated by ',' enclosed by '''' lines terminated by '\n' ignore 1 rows;

Data cleaning and Database Testing:

- ♦ For each table in your database, check all the columns and the values they contain Done in above steps.
- For numeric columns, check for the statistics Statistics done in above steps

We have found few initial statistics above and below are insights inferred from the data.

• Identify the stations that have been preferred the greatest number of times by customers:

• Identify the stations that have been preferred least number of times by customers:

• Getting the numbers of subscribers and customers using the service:

• Identifying the highest travelling routes:

• Bike model that is most preferred by customers:

• The category of customers who took longer trips:

• Number of stations and docks count across various cities:

• Busiest days of the week:

Weekdays are the busiest days of the week, as number of trips are lower on the weekends.

• Trips covered by customers and subscribers over the week: On weekdays, many numbers of subscribers use the bikes to travel. And in weekends this number comes down, but the count of trips by customers is increases compared to weekdays. We can infer that most of the subscribers are working on weekdays and have day off on weekends. And on weekends most customers go on trips.

Trips covered within cities and between cities:
 Highest intracity trips occurred in San Francisco followed San Jose, and highest intercity
 trips is between Palo Alto & Mountain View.

• Foreign Key Constraints:

We have tried to insert values into status and trip table with station id does not present in the station table and we received an error message.

Similarly, we have tried deleting a row from station table whose station id was present in other two tables and we got an error message.

