

Neal Patel

CLASSPASS

Agenda

Background

- Hyper-local industry
- Challenges

Distance Estimation

- KNN modified (SQL)
- Results

Location Prediction

- DBSCAN Clustering Algorithm Overview
- Results
- Validation

Next Steps

Background

Fitness is a Hyper Local Industry

COST | CONVENIENCE | CALORIES

Location Based Context is Critical Information

• Class Recommendations – User Engagement

• Studio Optimizations – Studio Engagement

• Inventory Management – Balancing Supply & Demand

• User-level preference / availablility: Churn Prediction

Primary Challenges

- Personal information for users is *private*
- We do not have any labeled data for validation

Solution: 2-pronged approach to validating results

- Estimate willingness to travel using reservation data
- Predict locations and measure relative distances to reservations

Distance Estimation

How Far Are Users Willing to Travel for Class?

Personal Information is protected, we must build an understanding without it

• Data:

- Reservation location (latitude / longitude)
- Reservation time
- Reservation frequency

K - Nearest Neighbors: Modified (SQL)

- Users behaviors tend to cluster near "anchor points"
- Using a method inspired by KNN, we can produce an estimate
- We are essentially trying to classify a given reservation as being part of a "cluster"
- However, we are not interested in classifications, rather, the distances between the points in a cluster

K - Nearest Neighbors: Modified (SQL)

- Look at every incremental reservation and identify the *nearest* previously attended venue
- Log the minimum distances and produce a histogram
- Use a 'cutoff' to remove long-tail and use value @ threshold as the estimate
- This will likely 'underestimate' the distance

K - Nearest Neighbors: Modified (SQL)

Percent of all Reservations

Location Prediction

User Searches Provide Location Data

- Majority of our users make use of "Search Near Me" feature
- Enables logging of GPS data
- Assumption: Users will most often be browsing for classes at an "anchor point" (i.e. Home, Work, Sig. Other, etc.)

DBSCAN Algorithm - Overview

Figure 5. Density connectivity.

- User coordinates from mobile phones are highly variable
 - Creates lots of 'noise'
- DBSCAN identifies points that are connected by a relative "density" value eliminates noise points
- Goal: Identify clusters, take center-point as "prediction"

DBSCAN Algorithm - Sample Data

DBSCAN Algorithm - K-Mean Comparison

DBSCAN - Location Predictions

Validation: Zip vs. Anchors

- Users provide Zip Codes when signing-up
- We can compare performance of Zip Codes vs. Predicted Anchor Points
 - Performance measured on relative distances to user reservations

Validation: Zip vs. Anchors

• Distribution of the deltas(d) ($d = Anchor \, Distance - Zip \, Distance$) provides additional insight

Validation: Zip vs. Anchors

• Distribution of the deltas(d) ($d = Anchor \, Distance - Zip \, Distance$) provides additional insight

Next Steps

The Road Ahead

- 1. Tweak algorithm further to improve performance beyond 16%
- 2. Apply model to full user database
- 3. Develop understanding of user-level inventory trends
- 4. Explore models to use above inputs as predictors of user churn:
 - Logistic Regression
 - Classification Problem