CSC 8980 Deep Reinforcement Learning

Jonathan Shihao Ji

Spring 2023

https://titan.cs.gsu.edu/~sji/teaching/drl/

1/19/2023

Overview

- □ In this project, you will have an opportunity to apply the DRL techniques to some more interesting problems.
 - You can choose any problem that you are interested in, but within the domain of RL
 - Get some data related to the task
 - Apply some RL algorithms to your data
 - Evaluate and compare your algorithms
 - Present your results and demo to the whole class
 - Finally, submit a report

Project Ideas

□ Applications

Apply a few existing RL algorithms to a domain of your interest

Project Ideas

- □ New architectures or algorithms
 - Design new RL architectures or algorithms for new or old problems
- □ Theory*
 - Theoretically analyze existing RL algorithms

Stage 1: Form Groups

- Deadline: 1/27/2022 (by 11:59 pm)
- 1 PhD student
- Up to 2 MS students
- Can combine the project with your own research (computer vision, NLP, biology,...). In this case, you will work on your own.

- Where to submit: email TA (<u>sgaddam5@student.gsu.edu</u>)
- What to submit: Group members (names, email addresses)
- Points: 1 point

Stage 2: Project Proposal

- \square Deadline: 2/10/2022 (by 11:59 pm)
- □ Where to submit: iCollege
- □ What to submit: A 2-page proposal including
 - Problem and goal
 - □ What do you want to solve?
 - □ Why do you think it's important?
 - □ What results do you expect?
 - Formulate it into a RL task (for application-type project only)
 - □ What kind of data?
 - Potential RL algorithms?
 - Schedule: detailed plan of your project
- □ Points: 5 points
- □ Note: If necessary, I will discuss with some groups about their proposals in the following week

Stage 3: Midpoint Check

- \square Deadline: 3/10/2022 (by 11:59 pm)
- □ Where to submit: iCollege
- What to submit:
 - A preliminary 4-page report
 - Discuss about progress
 - Issues and difficulties you have met
- □ Points: 2 points
- □ Note: If necessary, I will discuss with some groups about their progress in the following week

Stage 4: Presentation

- \square When: 4/18, 4/20, 4/25 or more (tentative)
- □ Who to present: whole class
- □ How long to present: 15 mins (including QA)
- □ In what form: slides + demo
 - Problem introduction, formulation, algorithms, experiment results, demo, etc.
 - Credits: 5 points
 - Peer review

Stage 5: Final Report

- \square Deadline: 4/28/2022 (by 11:59 pm)
- □ Where to submit: iCollege
- □ What to submit: At least 6-page font size 11 report
 - Problem introduction, formulation, algorithms, experiment results, etc.
 - A table describing each team member's contributions
- \square Points: 17 + 2 points

Grading

- □ Total: 30 points of regular credit and 2 points of extra credit
 - Group formation (1 point)
 - Proposal (5 points)
 - Midpoint check (2 points)
 - Presentation (5 points)
 - Final report (17 points)
- □ 2 extra points
 - Novelty of the problem
 - New RL algorithm, or architecture
 - Publishable

Grading

- □ Collaboration Rules
 - Each member in a group gets the same score (encourage teamwork)
 - □ Exception: a team member has the right to claim someone as a free rider, and we will lower his/her score
 - A table describing your contributions. For example:

Task	People
1. Collecting and preprocessing data	Student A
2. Implementing Algorithm 1	Student B
3. Implementing Algorithm 2	Student A
4. Evaluating and comparing algorithms	Student B
5. Slides, demo and Presentation	Student A, B
6. Writing report	Student A, B

Resources and References

- □ NeuroIPS/ICML/ICLR/CVPR/ICCV/ECCV/ICRA
- □ arXiv
- □ Talk to me for pointers ©