Excercise 4 Implementing a centralized agent

Group №: Student 1, Student 2

November 3, 2020

1 Solution Representation

We formalize the pickup and delivery problem as a constraint optimization problem, where we describe an entire plan (a set of actions leading to all tasks being completed). A plan in the COP is formally a tuple $\langle X, D, C, f \rangle$ where X is a set of variables describing a plan, D the domain of the variables $x_i \in X$, C a set of constraints that a plan needs to fulfill and f a value function that we are trying to minimize. We call N_v the number of vehicles and N_t the number of tasks.

1.1 Variables

Any plan can be described by a given assignment of the 4 following variables:

- 1. **nextTask_v**: the $nextTask_v$ variable is an array of size N_v where each element $nextTask_v[i]$ represents the first task that the i^{th} vehicle will perform.
 - if $nextTask_{-}v[i] = j$ it means that the i^{th} vehicle will start it's route by delivering the j^{th} task if $nextTask_{-}v[i] = NULL$ it means that the i^{th} vehicle has no task to deliver in the given plan.
- 2. $\mathbf{nextTask_t}$: the $nextTask_t$ variable is an array of size N_t where each element $nextTask_t[i]$ represents the next task that the vehicle that the vehicle will pickup
 - if $nextTask_{-}t[i] = j$ it means that the vehicle that delivered the i^{th} task will deliver the j^{th} task next.
 - if $nextTask_t[i] = NULL$ it means that the vehicle that delivered the i^{th} has no task to deliver next.
- 3. **time**: the *time* variable is an array of size N_t where each element time[i] represents the position of the i^{th} task in the plan of the vehicle delivering it in the plan (so if it is the first task delivered by some vehicle we would have time[i] = 1)
- 4. **vehicle**: the *vehicle* variable is an array of size N_t where each elements vehicle[i] describes which vehicle will delivered the i^{th} task

1.2 Constraints

Not all possible variable assignments correspond to a valid plan, a valid plan is a plan that satisfies all constraints $c \in C$, the constraints are the following:

The next task after a given task t cannot be itself

The time variable must be coherent

All tasks must be delivered

From the definition of vehicle
From the definitions of nextTask_t and vehicle
From the definitions of nextTask_v and vehicle
A vehicle cannot carry more than it's capacity

 $nextTask_t[t] \neq t$ $nextTask_v[i] = j \Rightarrow time(j) = 1$ $nextTask_t[i] = j \Rightarrow time(j) = time(i) + 1$ $\# NULL \ values \ in \ nextTask_t$ $= \# \ non\text{-}NULL \ values \ in \ nextTask_v$ $nextTask_v(k) = j \Rightarrow vehicle(j) = k$ $nextTask_t[i] = j \Rightarrow vehicle[j] = vehicle[i]$ $nextTask_v[i] = j \Rightarrow vehicle[j] = vehicle[i]$ $load(i) > capacity(k) \Rightarrow vehicle(i) \neq k$

1.3 Objective function

2 Stochastic optimization

- 2.1 Initial solution
- 2.2 Generating neighbours
- 2.3 Stochastic optimization algorithm
- 3 Results
- 3.1 Experiment 1: Model parameters
- 3.1.1 Setting
- 3.1.2 Observations
- 3.2 Experiment 2: Different configurations
- 3.2.1 Setting
- 3.2.2 Observations