Category Theory I

Isaac Cheng

Alon Danai

June 27, 2025

1 Motivating Examples

In many fields of math, we construct some kind of object from another. Usually, these constructions have special properties to justify them. We give a few of these constructions which have similar properties to justify the language of Category Theory.

Definition 1.1. Given a set S, the **free group** F(S) is the group consisting of all words that can be built from elements of S.

Example 1.2. For $S = \{ * \}$, $F(S) = \mathbb{Z}$. For $S = \{ x, y \}$, $F(S) = \mathbb{Z} * \mathbb{Z}$, where some words are x, y, xy, xyy, yxy, etc.

We note that for sets S,T, any set-function $f:S\to T$ gives us a unique group homomorphism $Ff:F(S)\to F(T)$. Constructing this homomorphism is left as an exercise.

$$S \xrightarrow{f} T$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(S) \xrightarrow{Ff} F(T)$$

Definition 1.3. Given a set S, we may define the **free** \mathbb{R} -vector space G(S) to be an \mathbb{R} vector space with basis S.

Example 1.4. For $S = \{*\}$, $G(S) \cong \mathbb{R}$. For $S = \{x,y\}$, $G(S) \cong \mathbb{R}^2$, where a vector would look like 3x + 2y or $4x - y\sqrt{2}$. Note that $G(\mathbb{Z})$ is infinite-dimensional.

Similarly, a set-function $f: S \to T$ induces a unique linear map $Gf: G(S) \to G(T)$, whose construction is also left as an exercise.

Definition 1.5. Given a set S, we may define the **free commutative ring** R(S) to be $\mathbb{Z}[S]$.

Example 1.6. For $S = \emptyset$, $R(S) = \mathbb{Z}$. For $S = \{x, y\}$, $R(S) \cong \mathbb{Z}[x, y]$.

Again, a set-function $f: S \to T$ induces a unique linear map $Rf: R(S) \to R(T)$, whose construction is again left as an exercise.

These "map-preserving" constructions are not limited to "free" objects:

Definition 1.7. For any topological space X and point $x \in X$, the **fundamental group** $\pi_1(X,x)$ is defined to be the collection of loops in X based at x, up to homotopy. Composition is defined by concatenation.

For topological spaces X and Y, with some point $x \in X$, any continuous function $f: X \to Y$ induces a unique linear map $\bar{f}: \pi_1(X, x) \to \pi_1(Y, f(x))$.

Definition 1.8. For any ring R, the **general linear group** $GL_n(R)$ is the set of $n \times n$ matrices with entries in R.

By now, you should know what's coming. For rings R, S and a ring homomorphism $\varphi: R \to S$, we get a group homomorphism $\bar{\varphi}: GL_n(R) \to GL_n(S)$. What is it?

If a construction preserves functions in this way, it is called **functorial**. Here are a few more examples:

Definition 1.9. Any ring R defines a multiplicative group of units R^{\times} .

Definition 1.10. Fix a group G. Any group H defines a set Hom(G, H), the set of group homomorphisms $G \to H$.

For any group homomorphism $\varphi: H \to I$, we get a set-function $\bar{\varphi}: \mathrm{Hom}(G,H) \to \mathrm{Hom}(G,I)$. How does this work?

This idea of consider both objects and the maps between them will just the definition of a category.

2 What is a category?

2.1 Definition

Definition 2.1. A category C consists of:

- A collection of objects, ob(C)
- For each pair of objects $A, B \in ob(\mathcal{C})$, there is a collection of morphisms $\operatorname{Hom}_{\mathcal{C}}(A, B)$. We will often write $f: A \to B$ instead of $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$
- We can compose morphisms. For any morphisms $f: A \to B$ and $g: B \to C$, there is a morphism $g \circ f: A \to C$.
- For any $A \in ob(\mathcal{C})$, There is an identity morphism $1_A : A \to A$ such that for $f : B \to A$, we have $1_A \circ f = f$ and for $g : A \to B$, we have $g \circ 1_A = g$
- Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$

2.2 Examples

- Set is the category of sets with morphisms being functions
- Group is the category of groups with morphisms being group homomorphisms
- Ab is the category of abelian groups with group homomorphisms
- CRing is the category of commutative rings with ring homomorphisms
- Top is the category of topological spaces with continuous maps as morphisms
- $Vect_k$ is the category of vector spaces over a field k with linear maps
- Categories don't need an underlying set structure. Any poset is a category where the relation is a morphism. That is, if $A \leq B$ then $\operatorname{Hom}_S(A,B)$ contains one element called \leq

3 What is a functor?

In the nature of category theory, we like to have maps between our objects. For categories, those maps are called functors.

Definition 3.1. A functor $F: \mathcal{C} \to \mathcal{D}$ consists of a map between the objects of a category together with a map between the morphisms of the categories defined so that for $f: A \to B$, there is a morphism $F(f): F(A) \to F(B)$. Functors need to have the following properties:

- $F(f \circ g) = F(f) \circ F(g)$
- $F(1_A) = 1_{F(A)}$

Remark 3.2. Categories, together with functors, form the category Cat.

Example 3.3. The forgetful functor $U : \mathsf{Grp} \to \mathsf{Set}$ sends a group to its underlying set.

All of our examples from section 1 are functors. For the next few examples, make sure to figure out for yourself how the functor acts on the morphisms and verify that it satisfies the necessary properties of a functor.

Example 3.4. The powerset functor $P: Set \to Set$ sends a set S to its set P(S) of subsets, and a function $f: S \to T$ to the direct-image functor $\bar{f}: P(S) \to P(T)$ sending $A \in P(S)$ to the image $f(A) \in P(T)$.

Example 3.5. The abelianization functor $Ab : Grp \rightarrow Ab \text{ sends a group } G$ to its abelianization G/[G,G].

Example 3.6. The path-components functor π_0 : Top \rightarrow Set sends a topological space to its set of path-connected components.

The fact that functors compose associatively, and the existence of a unique *identity functor* id: $\mathcal{C} \to \mathcal{C}$ for any category \mathcal{C} indicates that we can define a **category of categories**. There are some set-theoretic issues which we will not address, but this construction is still possible.

3.1 Contravariant functors

Some constructions seem functorial, but with the arrows in the wrong direction.

Example 3.7. Fix a group G. The functor $\text{Hom}(-,G): \mathsf{Grp} \to \mathsf{Set}$ sends a group H to the set of group homomorphisms Hom(H,G).

This is similar to Definition 1.10. But here, a group homomorphism $\varphi: H \to I$ induces a natural set-function $\operatorname{Hom}(I,G) \to \operatorname{Hom}(H,G)$, sending $f: I \to G$ to $f \circ \varphi: H \to G$.

There are many more examples.

Definition 3.8. Let V be a vector space over a field k. The dual vector space V^* of V is the space of linear maps $V \to k$.

These functors that reverse the arrows are called **contravariant**. A functor that is not contravariant, as in the original definition, is called **covariant**. Contravariant functors motivate a new categorical definition:

Definition 3.9. Given a category C, the **opposite** or **dual** category C^{op} is defined to be C with the arrows reversed.

Remark 3.10. A contravariant functor from a category C to a category D is typically written as a (covariant) functor $C^{op} \to D$.

4 Closing Thoughts

4.1 Philosophical Aside

Functors are a core facet of what makes category theory relevant: its ability to describe different fields of mathematics with the same universal language. This allows us to see deep underlying mathematical patterns and define them rigorously.

4.2 Isomorphisms

Definition 4.1. An **isomorphism** is a morphism $f: A \to B$ such that there is an inverse morphism $g: B \to A$ which satisfies $f \circ g = 1_B$ and $g \circ f = 1_A$. Objects A and B which have an isomorphism between them are called **isomorphic**.

This notion of isomorphism is a nice generalization of how isomorphisms are defined in various fields. This definition coincides with the definition of isomorphism in Grp and Top

Lemma 4.2. Functors preserve isomorphisms. That is, suppose $f: x \to y$ is an isomorphism in a category C, and let $F: C \to D$ be a functor. $Ff: Fx \to Fy$ is an isomorphism.

Proof. Let $g: y \to x$ be the inverse of f, so $fg = \mathrm{id}_y$ and $gf = \mathrm{id}_x$. Then $Ff \circ Fg = F\mathrm{id}_y = \mathrm{id}_{Fy}$, and $Fg \circ Ff = F\mathrm{id}_x = \mathrm{id}_{Fx}$. Thus Ff is an isomorphism.

4.3 An exercise

Given a group G, we may construct the **center** Z(G), the **commutator subgroup** [G,G], and the **automorphism group** Aut(G). Which of these constructions are functorial?