2021年普通高等学校招生全国统一考试(全国乙卷)

化学

注意事项:

- 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将自己的姓名、准考证号、座位号填写在本试卷上。
- 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,涂写在本试卷上无效。
- 3.作答非选择题时,将答案书写在答题卡上,书写在本试卷上无效。
- 4.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量: H1 C12 N14 O16 Na 23 Al 27 Cl35.5 Fe 56

一、选择题

- 1. 我国提出争取在 2030 年前实现碳达峰,2060 年实现碳中和,这对于改善环境,实现绿色发展至关重要。碳中和是指 ${
 m CO}_2$ 的排放总量和减少总量相当。下列措施中能促进碳中和最直接有效的是
- A. 将重质油裂解为轻质油作为燃料
- B. 大规模开采可燃冰作为清洁燃料
- C. 通过清洁煤技术减少煤燃烧污染
- D. 研发催化剂将CO,还原为甲醇

【答案】D

【解析】

【分析】

- 【详解】A. 将重质油裂解为轻质油并不能减少二氧化碳的排放量, 达不到碳中和的目的, 故 A 不符合题意;
- B. 大规模开采可燃冰做为清洁燃料,会增大二氧化碳的排放量,不符合碳中和的要求,故 B 不符合题意;
- C. 通过清洁煤技术减少煤燃烧污染,不能减少二氧化碳的排放量,达不到碳中和的目

的,故C不符合题意;

D. 研发催化剂将二氧化碳还原为甲醇,可以减少二氧化碳的排放量,达到碳中和的目的,故 D 符合题意;

故选 D。

2. 在实验室采用如图装置制备气体, 合理的是

	化学试剂	制备的气体
A	$Ca(OH)_2 + NH_4C1$	NH ₃
В	MnO ₂ + HCl(浓)	Cl ₂
С	$MnO_2 + KClO_3$	O_2
D	NaCl+H ₂ SO ₄ (浓)	HCl

A. A B. B C. C D. D

【答案】C

【解析】

【分析】由实验装置图可知,制备气体的装置为固固加热装置,收集气体的装置为向上排空气法,说明该气体的密度大于空气的密度;

【详解】A. 氨气的密度比空气小,不能用向上排空法收集,故 A 错误;

- B. 二氧化锰与浓盐酸共热制备氯气为固液加热反应,需要选用固液加热装置,不能选用固固加热装置,故 B 错误;
- C. 二氧化锰和氯酸钾共热制备氧气为固固加热的反应,能选用固固加热装置,氧气的密

度大于空气,可选用向上排空气法收集,故C正确;

D. 氯化钠与浓硫酸共热制备为固液加热反应,需要选用固液加热装置,不能选用固固加热装置,故 D 错误;

故选 C。

- 3. 下列过程中的化学反应,相应的离子方程式正确的是
- A. 用碳酸钠溶液处理水垢中的硫酸钙: $CO_3^{2-} + CaSO_4 = CaCO_3 + SO_4^{2-}$
- B. 过量铁粉加入稀硝酸中: Fe+4H⁺+NO₃⁻=Fe³⁺+NO↑+2H₂O
- C 硫酸铝溶液中滴加少量氢氧化钾溶液: $Al^{3+} + 4OH^- = AlO_2^- + 2H_2O$
- D. 氯化铜溶液中通入硫化氢: $Cu^{2+} + S^{2-} = CuS \downarrow$

【答案】A

【解析】

【分析】

【详解】A. 硫酸钙微溶,用碳酸钠溶液处理水垢中的硫酸钙转化为难溶的碳酸钙,离子方程式为: $CO_3^{2-}+CaSO_4=CaCO_3+SO_4^{2-}$,故 A 正确;

B. 过量的铁粉与稀硝酸反应生成硝酸亚铁、一氧化氮和水, 离子方程式应为:

3Fe+8H++2N O_3^- =3Fe²⁺+2NO↑+4H₂O,故B错误;

- C. 硫酸铝溶液与少量氢氧化钾溶液反应生成氢氧化铝沉淀和硫酸钾,离子方程式应为: $Al^{3+}+3OH^{-}=Al(OH)_3 \downarrow$,故 C 错误;
- D. 硫化氢为弱电解质,书写离子方程式时不能拆,离子方程式应为:

Cu²⁺+H₂S=CuS ↓ +2H⁺, 故 D 错误;

答案选 A。

列有关该物质的叙述正确的是

- A. 能发生取代反应,不能发生加成反应
- B. 既是乙醇的同系物也是乙酸的同系物

D. 1mol 该物质与碳酸钠反应得44g CO,

【答案】C

【解析】

【分析】

【详解】A. 该物质含有羟基、羧基、碳碳双键,能发生取代反应和加成反应,故A错误;

B. 同系物是结构相似,分子式相差 1 个或 n 个 CH_2 的有机物,该物质的分子式为 $C_{10}H_{18}O_3$,而且与乙醇、乙酸结构不相似,故 B 错误;

 $C_{10}H_{18}O_3$, 所以二者的分子式相同,结构式不同,互为同分异构体,故 C 正确;

D. 该物质只含有一个羧基, 1mol 该物质与碳酸钠反应, 生成 0.5mol 二氧化碳, 质量为 22g, 故 D 错误;

故选 C。

- 5. 我国嫦娥五号探测器带回1.731kg的月球土壤,经分析发现其构成与地球士壤类似土壤中含有的短周期元素 W、X、Y、Z,原子序数依次增大,最外层电子数之和为15,X、Y、Z为同周期相邻元素,且均不与 W 同族,下列结论正确的是
- A. 原子半径大小顺序为W>X>Y>Z
- B. 化合物 XW 中的化学键为离子键
- C. Y 单质的导电性能弱于 Z 单质的
- D. Z 的氧化物的水化物的酸性强于碳酸

【答案】B

【解析】

【分析】由短周期元素 W、X、Y、Z,原子序数依次增大,最外层电子数之和为 15, X、 Y、Z为同周期相邻元素,可知 W 所在主族可能为第IIIA 族或第VIA 族元素,又因 X、 Y、Z为同周期相邻元素,且均不与 W 同族,故 W 一定不是第IIIA 族元素,即 W 一定是

第VIA族元素,进一步结合已知可推知W、X、Y、Z依次为O、Mg、Al、Si,据此答题。

- 【详解】A. O 原子有两层,Mg、Al、Si 均有三层且原子序数依次增大,故原子半径大小顺序为Mg>Al>Si>O,即X>Y>Z>W,A 错误;
- B. 化合物 XW 即 MgO 为离子化合物,其中的化学键为离子键,B 正确;
- C. Y 单质为铝单质,铝属于导体,导电性很强,Z 单质为硅,为半导体,半导体导电性介于导体和绝缘体之间,故Y 单质的导电性能强于Z 单质的,C 错误;
- $D.\ Z$ 的氧化物的水化物为硅酸,硅酸酸性弱于碳酸,D 错误; 故选 B.
- 6. 沿海电厂采用海水为冷却水,但在排水管中生物的附着和滋生会阻碍冷却水排放并降低 冷却效率,为解决这一问题,通常在管道口设置一对惰性电极(如图所示),通入一定的电 流。

下列叙述错误的是

- A. 阳极发生将海水中的 Cl⁻氧化生成 Cl₂的反应
- B. 管道中可以生成氧化灭杀附着生物的 NaClO
- C. 阴极生成的H, 应及时通风稀释安全地排入大气
- D. 阳极表面形成的 Mg(OH), 等积垢需要定期清理

【答案】D

【解析】

- 【分析】海水中除了水,还含有大量的 Na^+ 、 Cl^- 、 Mg^{2+} 等,根据题干信息可知,装置的原理是利用惰性电极电解海水,阳极区溶液中的 Cl^- 会优先失电子生成 Cl_2 ,阴极区 H_2O 优先得电子生成 H_2 和 OH^- ,结合海水成分及电解产物分析解答。
- 【详解】A. 根据分析可知,阳极区海水中的 Cl-会优先失去电子生成 Cl_2 ,发生氧化反应,A 正确;

- B. 设置的装置为电解池原理,根据分析知,阳极区生成的 Cl_2 与阴极区生成的 OH-在管道中会发生反应生成 NaCl 、NaCl O 和 H_2O ,其中 NaCl O 具有强氧化性,可氧化灭杀附着的生物,B 正确;
- C. 因为 H_2 是易燃性气体,所以阳极区生成的 H_2 需及时通风稀释,安全地排入大气,以排除安全隐患,C 正确;
- D. 阴极的电极反应式为: $2H_2O+2e=H_2\uparrow+2OH$ -,会使海水中的 Mg^2+ 沉淀积垢,所以阴极 表面会形成 $Mg(OH)_2$ 等积垢需定期清理,D 错误。 故选 D。
- 7. HA 是一元弱酸,难溶盐 MA 的饱和溶液中 $c(M^+)$ 随 $c(H^+)$ 而变化, M^+ 不发生水解。实验发现, 298K 时 $c^2(M^+)$ - $c(H^+)$ 为线性关系,如下图中实线所示。

下列叙述错误的是

- A. 溶液 pH = 4 时, $c(M^+) < 3.0 \times 10^{-1} \text{mol} \cdot L^{-1}$
- B. MA 的溶度积度积 K_{sp}(MA)=5.0×10⁻⁸
- C. 溶液 pH=7 时, $c(M^{+})+c(H^{+})=c(A^{-})+c(OH^{-})$
- D. HA 的电离常数 $K_a(HA) \approx 2.0 \times 10^{-4}$

【答案】C

【解析】

【分析】由题意可知 HA 是一元弱酸,其电离常数 $K_a(HA) = \frac{c(H^+) \times c(A^-)}{c(HA)}$;

 $K_{sp}(MA)$ = $c(M^+)$ × $c(A^-)$,联立二式可得线性方程 $c^2(M^+)$ = $c(H^+)$ × $\dfrac{K_{sp}(MA)}{K_a(HA)}$ + $K_{sp}(MA)$ 。

【详解】A. 由图可知 pH=4,即 c(H⁺)= 10×10^{-5} mol/L 时,c²(M⁺)= 7.5×10^{-8} mol/L= $\sqrt{7.5\times10^{-8}}$ mol/L= $\sqrt{7.5\times10^{-4}}$ mol/L<3.0×10⁻⁴mol/L,A 正确;

B. 当 c(H⁺)=0mol/L 时, c²(M⁺)=5.0×10⁻⁸, 结合分析可知 5.0×10⁻⁸=

$$0 \times \frac{K_{sp}(MA)}{K_{a}(HA)} + K_{sp}(MA) = K_{sp}(MA)$$
, B 正确;

- C. 设调 pH 所用的酸为 H_nX ,则结合电荷守恒可知 $c(M^+)+c(H^+)=c(A^-)+c(OH^-)+$ $nc(X^{n-})$,题给等式右边缺阴离子部分 $nc(X^{n-})$,C 错误;
- D. 当 $c(H^+)=20\times 10^{-5}$ mol/L 时, $c^2(M^+)=10.0\times 10^{-8}$ mol²/L²,结合 $K_{sp}(MA)=5.0\times 10^{-8}$ B 代入

线性方程有
$$10.0\times10^{-8}=2\times10^{-4}\times\frac{5.0\times10^{-8}}{K_a(HA)}+5.0\times10^{-8}$$
,解得 $K_a(HA)\approx2.0\times10^{-4}$,D 正

确:

选 C。

- 三、非选择题:共174分。第22~32为必考题,每个试题考生都必须作答。第33~38题为选考题,考生根据要求作答。
- 8. 磁选后的炼铁高钛炉渣,主要成分有 TiO_2 、 SiO_2 、 Al_2O_3 、MgO、CaO以及少量的 Fe_2O_3 。为节约和充分利用资源,通过如下工艺流程回收钛、铝、镁等。

该工艺条件下,有关金属离子开始沉淀和沉淀完全的pH 见下表

金属离子	Fe ³⁺	Al ³⁺	Mg ²⁺	Ca ²⁺
开始沉淀的 pH	2.2	3.5	9.5	12.4
沉淀完全(c=1.0×10 ⁻⁵ mol·L ⁻¹)的 pH	3.2	4.7	11.1	13.8

回答下列问题:

(1)"焙烧"中, TiO,、SiO,几乎不发生反应, Al,O,、MgO、CaO、Fe₂O,转化为相应 的硫酸盐,写出 Al_2O_3 转化为 $NH_4Al(SO_4)_3$ 的化学方程式_____。

(2)"水浸"后"滤液"的pH约为2.0,在"分步沉淀"时用氨水逐步调节pH至11.6,依次析出 的金属离子是。

(3)"母液①"中 Mg²⁺浓度为 mol·L⁻¹。

(4)"水浸渣"在 160℃"酸溶"最适合的酸是 "酸溶渣"的成分是 、

(5)"酸溶"后,将溶液适当稀释并加热, TiO^{2+} 水解析出 $TiO_2 \cdot xH_2O$ 沉淀,该反应的离子 方程式是。

(6)将"母液(1)"和"母液(2)"混合,吸收尾气,经处理得,循环利用。

(1). $Al_2O_3 + 4(MH_4)_2SO_4 = 2NH_4Al(SO_4)_2 + 6NH_3 \uparrow +3H_2O \uparrow$ 【答案】

(2). ${\rm Fe}^{3+}$ 、 ${\rm Al}^{3+}$ 、 ${\rm Mg}^{2+}$ (3). 1.0×10^{-6} (4). 硫酸 (5). ${\rm SiO}_2$ (6). ${\rm CaSO}_4$

(7). $TiO^{2+} + (x+1)H_2O \triangleq TiO_2 \cdot xH_2O \downarrow + 2H^+$ (8). $(NH_4)_2SO_4$

【解析】

【分析】由题给流程可知,高钛炉渣与硫酸铵混合后焙烧时,二氧化钛和二氧化硅不反 应,氧化铝、氧化镁、氧化钙、氧化铁转化为相应的硫酸盐,尾气为氨气;将焙烧后物质 加入热水水浸,二氧化钛、二氧化硅不溶于水,微溶的硫酸钙部分溶于水,硫酸铁、硫酸 镁和硫酸铝铵溶于水,过滤得到含有二氧化钛、二氧化硅、硫酸钙的水浸渣和含有硫酸 铁、硫酸镁、硫酸铝铵和硫酸钙的滤液; 向 pH 约为 2.0 的滤液中加入氨水至 11.6,溶液中

铁离子、铝离子和镁离子依次沉淀,过滤得到含有硫酸铵、硫酸钙的母液①和氢氧化物沉淀;向水浸渣中加入浓硫酸加热到 160° C酸溶,二氧化硅和硫酸钙与浓硫酸不反应,二氧化钛与稀硫酸反应得到 $TiOSO_4$,过滤得到含有二氧化硅、硫酸钙的酸溶渣和 $TiOSO_4$ 溶液,将 $TiOSO_4$ 溶液加入热水稀释并适当加热,使 $TiOSO_4$ 完全水解生成 $TiO_2 \cdot x H_2O$ 沉淀和硫酸,过滤得到含有硫酸的母液②和 $TiO_2 \cdot x H_2O$ 。

- 【详解】(1)氧化铝转化为硫酸铝铵发生的反应为氧化铝、硫酸铵在高温条件下反应生成硫酸 铝 铵 、 氨 气 和 水 , 反 应 的 化 学 方 程 式 为 $Al_2O_3+4(NH_4)_2SO_4$ <u>焙烧</u> $NH_4Al(SO_4)_2+4NH_3\uparrow+3H_2O_5$ 故 答 案 为 : $Al_2O_3+4(NH_4)_2SO_4$ <u>焙烧</u> $NH_4Al(SO_4)_2+4NH_3\uparrow+3H_2O_5$
- (2)由题给开始沉淀和完全沉淀的 pH 可知,将 pH 约为 2.0 的滤液加入氨水调节溶液 pH 为 11.6 时,铁离子首先沉淀、然后是铝离子、镁离子,钙离子没有沉淀,故答案为: Fe^{3+} 、 Al^{3+} 、 Mg^{2+} ;
- (3)由镁离子完全沉淀时,溶液 pH 为 11.1 可知,氢氧化镁的溶度积为 $1\times10^{-5}\times(1\times10^{-10.8})^{2-9}$ $1\times10^{-10.8}$,当溶液 pH 为 11.6 时,溶液中镁离子的浓度为 $\frac{1\times10^{-10.8}}{(1\times10^{-2.4})^2}$ $=1\times10^{-10.8}$

⁶mol/L, 故答案为: 1×10⁻⁶;

- (4)增大溶液中硫酸根离子浓度,有利于使微溶的硫酸钙转化为沉淀,为了使微溶的硫酸钙 完全沉淀,减少 TiOSO4 溶液中含有硫酸钙的量,应加入浓硫酸加热到 160℃酸溶;由分析可知,二氧化硅和硫酸钙与浓硫酸不反应,则酸溶渣的主要成分为二氧化硅和硫酸钙,故 答案为: 硫酸; SiO₂、CaSO₄;
- (5) 酸溶后将 $TiOSO_4$ 溶液加入热水稀释并适当加热,能使 $TiOSO_4$ 完全水解生成 $TiO_2 \cdot x$ H_2O 沉淀和硫酸,反应的离子方程式为 $TiO^{2+}+(x+1)$ H_2O $\underline{\triangle}$ $TiO_2 \cdot xH_2O+2H^+$,故答案为: $TiO^{2+}+(x+1)H_2O$ $\underline{\triangle}$ $TiO_2 \cdot xH_2O+2H^+$;
- (6)由分析可知,尾气为氨气,母液①为硫酸铵、母液②为硫酸,将母液①和母液②混合后吸收氨气得到硫酸铵溶液,可以循环使用,故答案为: (NH₄)₂SO₄。
- 9. 氧化石墨烯具有稳定的网状结构,在能源、材料等领域有着重要的应用前景,通过氧化 剥离石墨制备氧化石墨烯的一种方法如下(转置如图所示):

I.将浓 H_2SO_4 、 $NaNO_3$ 、石墨粉末在c中混合,置于冰水浴中,剧烈搅拌下,分批缓慢加入 $KMnO_4$ 粉末,塞好瓶口。

II.转至油浴中,35°C搅拌 1 小时,缓慢滴加一定量的蒸馏水。升温至 98°C并保持 1 小时。 III.转移至大烧杯中,静置冷却至室温。加入大量蒸馏水,而后滴加 $\mathbf{H}_2\mathbf{O}_2$ 至悬浊液由紫色变为土黄色。

Ⅳ.离心分离,稀盐酸洗涤沉淀。

V.蒸馏水洗涤沉淀。

VI.冷冻干燥,得到土黄色的氧化石墨烯。

回答下列问题:

(1)装置图中,	仪器 a、c 的名称	尔分别是	_>	, 1	仪器 b 的进水口是	블	<u>(</u> 填字
母)。							
(2)步骤 I 中,	需分批缓慢加入	.KMnO ₄ 粉末并	+使用冰水浴	谷,	原因是。		

(4)步骤Ⅲ中, H₂O₂, 的作用是_____(以离子方程式表示)。

(3)步骤Ⅱ中的加热方式采用油浴,不使用热水浴,原因是。

(5)步骤 \mathbb{N} 中,洗涤是否完成,可通过检测洗出液中是否存在 \mathbf{SO}_4^{2-} 来判断。检测的方法是____。

(6)步骤V可用pH 试纸检测来判断 Cl^- 是否洗净,其理由是____。

【答案】 (1). 滴液漏斗 (2). 三颈烧瓶 (3). d (4). 反应放热, 使反应过快 (5). 反应温度接近水的沸点,油浴更易控温 (6).

,没有白色沉淀生成 (8). H^+ 与 Cl^- 电离平衡,洗出液接近中性时,可认为 Cl^- 洗净

【解析】

【分析】

- 【详解】(1)由图中仪器构造可知, a 的仪器名称为滴液漏斗, c 的仪器名称为三颈烧瓶; 仪器 b 为球形冷凝管, 起冷凝回流作用, 为了是冷凝效果更好, 冷却水要从 d 口进, a 口出, 故答案为: 分液漏斗; 三颈烧瓶; d;
- (2)反应为放热反应,为控制反应速率,避免反应过于剧烈,需分批缓慢加入 KMnO₄ 粉末 并使用冰水浴,故答案为:反应放热,使反应过快;
- (3)油浴和水浴相比,由于油的比热容较水小,油浴控制温度更加灵敏和精确,该实验反应温度接近水的沸点,故不采用热水浴,而采用油浴,故答案为:反应温度接近水的沸点,油浴更易控温;
- (4)由滴加 H_2O_2 后发生的现象可知,加入的目的是除去过量的 $KMnO_4$,则反应的离子方程式为: $2Mn\,O_4^- + 5H_2O_2 + 6H^+ = 2Mn^{2^+} + 5O_2 \uparrow + 8H_2O$,故答案为: $2Mn\,O_4^- + 5H_2O_2 + 6H^+ = 2Mn^{2^+} + 5O_2 \uparrow + 8H_2O$;
- (5)该实验中为判断洗涤是否完成,可通过检测洗出液中是否存在 SO_4^{2-} 来判断,检测方法是: 取最后一次洗涤液,滴加 $BaCl_2$ 溶液,若没有沉淀说明洗涤完成,故答案为: 取少量洗出液,滴加 $BaCl_2$,没有白色沉淀生成;
- (6)步骤 IV 用稀盐酸洗涤沉淀,步骤 V 洗涤过量的盐酸, H^+ 与 Cl^- 电离平衡,洗出液接近中性时,可认为 Cl^- 洗净,故答案为: H^+ 与 Cl^- 电离平衡,洗出液接近中性时,可认为 Cl^- 洗净。
- 10. 一氯化碘(ICl)是一种卤素互化物,具有强氧化性,可与金属直接反应,也可用作有机合成中的碘化剂。回答下列问题:
- (1)历史上海藻提碘中得到一种红棕色液体,由于性质相似,Liebig 误认为是 ICI,从而错过了一种新元素的发现,该元素是。
- (2)氯铂酸钡($BaPtCl_6$)固体加热时部分分解为 $BaCl_2$ 、Pt和 Cl_2 ,376.8℃时平衡常数 $K_p^{'}=1.0\times10^4Pa^2$,在一硬质玻璃烧瓶中加入过量 $BaPtCl_6$,抽真空后,通过一支管通入

碘蒸气(然后将支管封闭),在 376.8℃,碘蒸气初始压强为 20.0kPa 。 376.8℃平衡时,测得烧瓶中压强为 32.5kPa ,则 p_{ICl} = _____kPa ,反应 2ICl(g) = Cl_2 (g) + I_2 (g) 的平衡常数 K=____(列出计算式即可)。

(3)McMorris 测定和计算了在 136~180 ℃范围内下列反应的平衡常数 K_p 。

$$2\mathrm{NO}(g) + 2\mathrm{ICl}(g) \Longrightarrow 2\mathrm{NOCl}(g) + \mathrm{I}_2(g) \quad \mathrm{K}_{\mathrm{pl}}$$

$$2NOCl(g) \rightleftharpoons 2NO(g)+Cl_2(g)$$
 K_{p2}

得到 $\lg K_{pl} \sim \frac{1}{T}$ 和 $\lg K_{p2} \sim \frac{1}{T}$ 均为线性关系,如下图所示:

①由图可知, NOCl 分解为 NO 和 Cl₂ 反应的 ΔH _____0(填"大于"或"小于")

(4)Kistiakowsky 曾研究了 NOCl 光化学分解反应,在一定频率(v)光的照射下机理为:

$$NOCl + hv \longrightarrow NOCl^*$$

$$NOC1 + NOC1^* \longrightarrow 2NO + C1$$
,

其中 hv 表示一个光子能量, NOCl*表示 NOCl 的激发态。可知,分解 1mol 的 NOCl 需要 吸收_____mol 光子。

【答案】 (1). 溴(或 Br) (2). 24.8 (3).
$$\frac{100 \times 7.6 \times 10^3}{(24.8 \times 10^3)^2}$$
 (4). 大于 (5).

$$K_{\rm p1} \cdot K_{\rm p2}$$
 (6). 大于 (7). 设 $T' > T$, 即 $\frac{1}{T'} < \frac{1}{T}$, 由图可知:

$$|gK_{p2}(T') - lgK_{p2}(T) > \left| lgK_{p1}(T') - lgK_{p1}(T) \right| = |gK_{p1}(T) - lgK_{p1}(T')| = |gK_{p1}(T') - lgK_{p1}(T')|$$

 $\lg[K_{p2}(T')\cdot K_{p1}(T')]>\lg[K_{p2}(T)\cdot K_{p1}(T)]$,即 k(T')>k(T),因此该反应正反应为吸热反应,即 ΔH 大于 0 (8). 0.5

【解析】

【分析】

【详解】(1)红棕色液体,推测为溴单质,因此错过发现的元素是溴(或 Br);

(2)由题意玻 376.8℃时璃烧瓶中发生两个反应: BaPtCl₆(s) ⇌ BaCl₂(s)+ Pt (s)+2 Cl₂(g)、

 $Cl_2(g)+I_2(g)$ \rightleftharpoons 2ICl(g)。 BaPtCl₆(s) \rightleftharpoons BaCl₂(s)+ Pt(s)+2 Cl₂(g)的平衡常数

 $K_{p}^{'}=1.0\times10^{4}Pa^{2}$,则平衡时 $p^{2}(Cl_{2})=1.0\times10^{4}Pa^{2}$,平衡时 $p(Cl_{2})=100Pa$,设到达平衡时

烧瓶中压强为32.5kPa ,则0.1+20.0+p=32.5,解得p=12.4,则平衡时 $p_{ICI}=2p$ kPa

=2×12.4kPa=24.8kPa;则平衡时, $I_2(g)$ 的分压为(20.0-p)kPa=7.6kPa=7.6×10³Pa, p_{ICI} =

24.8kPa=24.8×10³Pa, p(Cl₂)=0.1kPa=100Pa, 因此反应 2ICl(g) = Cl₂(g) + I₂(g) 的平衡常数

$$K = \frac{100 \times 7.6 \times 10^3}{(24.8 \times 10^3)^2};$$

(3)①结合图可知,温度越高, $\frac{1}{T}$ 越小, $lgKp_2$ 越大,即 Kp_2 越大,说明升高温度平衡 $2NOCl(g) \rightleftharpoons 2NO(g)+Cl_2(g)$ 正向移动,则 NOCl 分解为 NO 和 Cl, 反应的大于 0;

② I .2NO(g)+2ICl(g) \rightleftharpoons 2NOCl(g)+I₂(g) K_{pl}

 $\text{II.2NOCl}(g) \Longrightarrow 2\text{NO}(g) + \text{Cl}_2(g) \quad K_{p2}$

 $I + II 得 2ICl(g) = Cl_2(g) + I_2(g)$,则 $2ICl(g) = Cl_2(g) + I_2(g)$ 的 $K = K_{p1} \cdot K_{p2}$; 该反应的

 ΔH 大于 0; 推理过程如下: 设 $T^{'} > T$,即 $\frac{1}{T^{'}} < \frac{1}{T}$,由图可知:

 $\left| \lg K_{p2}(T') - \lg K_{p2}(T) \right> \left| \lg K_{p1}(T') - \lg K_{p1}(T) \right| = \lg K_{p1}(T) - \lg K_{p1}(T')$ 则:

 $\lg[K_{p2}(T')\cdot K_{p1}(T')]>\lg[K_{p2}(T)\cdot K_{p1}(T)]$,即 k(T')>k(T),因此该反应正反应为吸热反应,即 ΔH 大于 0;

- (4) I \cdot NOCl + hv \longrightarrow NOCl*
- II . NOC1 + NOC1* \longrightarrow 2NO + Cl₂
- I+II得总反应为 2NOCl+hv=2NO+Cl₂,因此 2molNOCl 分解需要吸收 1mol 光子能量,则分解 1mol 的 NOCl 需要吸收 0.5mol 光子。
- 11. 过渡金属元素铬(Cr)是不锈钢的重要成分,在工农业生产和国防建设中有着广泛应用。回答下列问题:
- (1)对于基态 Cr 原子,下列叙述正确的是 (填标号)。
- A.轨道处于半充满时体系总能量低,核外电子排布应为 $[Ar]3d^54s^1$
- B.4s 电子能量较高, 总是在比 3s 电子离核更远的地方运动
- C.电负性比钾高,原子对键合电子的吸引力比钾大
- (2)三价铬离子能形成多种配位化合物。 $\left[\operatorname{Cr}\left(\operatorname{NH}_3\right)_3\left(\operatorname{H}_2\operatorname{O}\right)_2\operatorname{Cl}\right]^{2+}$ 中提供电子对形成配位键的原子是_____,中心离子的配位数为_____。
- (3) $\left[\operatorname{Cr}\left(\operatorname{NH}_3\right)_3\left(\operatorname{H}_2\operatorname{O}\right)_2\operatorname{Cl}\right]^{2+}$ 中配体分子 NH_3 、 $\operatorname{H}_2\operatorname{O}$ 以及分子 PH_3 的空间结构和相应的键角如图所示。

 PH_3 中 P 的杂化类型是_____。 NH_3 的沸点比 PH_3 的_____,原因是_____, H_2O 的键角小于 NH_3 的,分析原因_____。

(4)在金属材料中添加 AlCr, 颗粒,可以增强材料的耐腐蚀性、硬度和机械性能。AlCr, 具

有体心四方结构,如图所示,处于顶角位置的是______原子。设 Cr 和 Al 原子半径分别为 r_{Cr} 和 r_{Al} ,则金属原子空间占有率为______%(列出计算表达式)。

【答案】 (1). AC (2). N、O、Cl (3). 6 (4). sp³ (5). 高 (6). NH₃

存在分子间氢键 (7). NH_3 含有一对孤对电子,而 H_2O 含有两对孤对电子, H_2O 中的

孤对电子对成键电子对的排斥作用较大 (8). Al (9). $\frac{8\pi \left(2r_{Cr}^3+r_{Al}^3\right)}{3a^2c} \times 100$

【解析】

【分析】

【详解】(1) A. 基态原子满足能量最低原理,Cr 有 24 个核外电子,轨道处于半充满时体系总能量低,核外电子排布应为 $[Ar]3d^54s^1$,A 正确;

B. Cr 核外电子排布为[Ar] $3d^54s^1$,由于能级交错,3d 轨道能量高于 4s 轨道的能量,即 3d 电子能量较高,B 错误:

C. 电负性为原子对键合电子的吸引力,同周期除零族原子序数越大电负性越强,钾与铬位于同周期,铬原子序数大于钾,故铬电负性比钾高,原子对键合电子的吸引力比钾大,C正确:

故答案为: AC;

(2) $\left[\text{Cr} \left(\text{NH}_3 \right)_3 \left(\text{H}_2 \text{O} \right)_2 \text{Cl} \right]^{2+}$ 中三价铬离子提供空轨道, N、O、Cl 提供孤对电子与三价铬离子形成配位键,中心离子的配位数为 N、O、Cl 三种原子的个数和即 3+2+1=6,故答案为: N、O、Cl; 6;

(3) PH_3 的价层电子对为 3+1=4,故 PH_3 中 P 的杂化类型是 sp^3 ; N 原子电负性较强, NH_3 分子之间存在分子间氢键,因此 NH_3 的沸点比 PH_3 的高; H_2O 的键角小于 NH_3

的,原因是: NH_3 含有一对孤对电子,而 H_2O 含有两对孤对电子, H_2O 中的孤对电子对成键电子对的排斥作用较大,故答案为: sp^3 ;高; NH_3 存在分子间氢键; NH_3 含有一对孤对电子,而 H_2O 含有两对孤对电子, H_2O 中的孤对电子对成键电子对的排斥作用较大;

(4)已知 $AlCr_2$ 具有体心四方结构,如图所示,黑球个数为 $8 \times \frac{1}{8} + 1 = 2$,白球个数为 $8 \times \frac{1}{4} + 2 = 4$,结合化学式 $AlCr_2$ 可知,白球为 Cr,黑球为 Al,即处于顶角位置的是 Al 原子。设 Cr 和 Al 原子半径分别为 r_{Cr} 和 r_{Al} ,则金属原子的体积为

$$\frac{4\pi r_{Cr}^3}{3}\times 4+\frac{4\pi r_{Al}^3}{3}\times 2=\frac{8\pi (2r_{Cr}^3+r_{Al}^3)}{3}\,,\ \, 故金属原子空间占有率=\frac{8\pi (2r_{Cr}^3+r_{Al}^3)}{\frac{3}{a^2c}}\times 100\%=$$

$$\frac{8\pi \left(2r_{Cr}^{3}+r_{Al}^{3}\right)}{3a^{2}c}$$
×100%,故答案为:Al; $\frac{8\pi \left(2r_{Cr}^{3}+r_{Al}^{3}\right)}{3a^{2}c}$ ×100。

12. 卤沙唑仑 W 是一种抗失眠药物,在医药工业中的一种合成方法如下:

回答下列问题:

- (1)A 的化学名称是____。
- (2)写出反应③的化学方程式。
- (3)D 具有的官能团名称是____。(不考虑苯环)
- (4)反应④中,Y的结构简式为____。
- (5)反应⑤的反应类型是____。
- (6)C 的同分异构体中,含有苯环并能发生银镜反应的化合物共有种种。
- (7)写出 W 的结构简式____。

(2).

(3). 氨基, 羟基, 卤素原子(溴原子, 氯原子) (4). **Br** (5). 取代反应

【解析】

为: 2-氟甲苯(或邻氟甲苯);

(3)含有的官能团为溴原子, 氟原子, 氨基, 羰基(或酮基), 故答案为: 溴原子, 氟原子, 氨基, 羰基(或酮基);

代反应;

原子, 即苯环上含有三个不同的取代基, 可能出现的结构有

体为 10 种, 故答案为: 10;