Alliance

1.0

E.A.Gorbunov, Dr. B.Teaca

Disclaimer

Project initiated by Dr. B.Teaca Developed by E.A.Gorbunov, Dr. B.Teaca Written by E.A.Gorbunov

The code was designed and developed by Dr. B. Teaca and E.A.Gorbunov. ALLIANCE can be used freely. In order to download a copy of the code, please contact Dr. B.Teaca (*email?*). In case ALLIANCE was used in your work, please cite the code paper (...).

1 File Index	1
1.1 File List	1
2 File Documentation	3
2.1 array.c File Reference	3
2.1.1 Detailed Description	4
2.1.2 Function Documentation	4
2.1.2.1 get_flat_c()	4
2.1.2.2 get_flat_r()	4
2.1.2.3 get_flatIndexComplex3D()	5
2.1.2.4 getIndChi()	5
2.1.2.5 getIndChiBufEL_c()	5
2.1.2.6 getIndChiBufEL_r()	7
2.1.2.7 getIndChiBufEM_c()	7
2.1.2.8 getIndChiBufEM_r()	8
2.1.2.9 multiply_ar_c()	8
2.1.2.10 multiply_ar_r()	8
2.2 diagnostics.c File Reference	8
2.2.1 Detailed Description	10
2.2.2 Function Documentation	10
2.2.2.1 diag_compute()	10
2.2.2.2 diag_computeEnergy()	11
2.2.2.3 diag_computeEnergyBalance()	11
2.2.2.4 diag_computeFieldSpectrum()	11
2.2.2.5 diag_computeFreeEnergy()	11
2.2.2.6 diag_computeFreeEnergyFields()	11
2.2.2.7 diag_computeHSpectrum()	12
2.2.2.8 diag_computeKSpectrum()	12
2.2.2.9 diag_computeMSpectrum()	12
2.2.2.10 diag_computeSpectra()	13
2.2.2.11 diag_getShells()	13
2.2.2.12 diag_initSpec()	13
2.2.3 Variable Documentation	13
2.2.3.1 diag_freeEnergy	13
2.3 distrib.c File Reference	14
2.3.1 Detailed Description	14
2.3.2 Function Documentation	14
2.3.2.1 distrib_enforceReality()	14
2.3.2.2 distrib_getG()	15
2.3.2.3 distrib_getH()	15
2.3.2.4 distrib_getXGrad()	15
2.3.2.5 distrib_getYGrad()	16

2.3.2.6 distrib_getZGrad()	16
2.3.2.7 distrib_setZeroNHalf()	16
2.4 equation.c File Reference	17
2.4.1 Detailed Description	18
2.4.2 Function Documentation	18
2.4.2.1 equation_getLinearTerm()	18
2.4.2.2 equation_getNonlinearElectromagnetic()	18
2.4.2.3 equation_getNonlinearElectrostatic()	19
2.4.2.4 equation_getNonlinearProduct()	19
2.4.2.5 equation_getNonlinearTerm()	20
2.5 fields.c File Reference	20
2.5.1 Detailed Description	22
2.5.2 Function Documentation	22
2.5.2.1 fields_getA()	22
2.5.2.2 fields_getAFromH()	22
2.5.2.3 fields_getB()	22
2.5.2.4 fields_getBFromH()	23
2.5.2.5 fields_getChi()	23
2.5.2.6 fields_getChiA()	23
2.5.2.7 fields_getChiB()	23
2.5.2.8 fields_getChiPhi()	24
2.5.2.9 fields_getFields()	24
2.5.2.10 fields_getFieldsFromH()	24
2.5.2.11 fields_getGradX()	24
2.5.2.12 fields_getGradY()	25
2.5.2.13 fields_getPhi()	25
2.5.2.14 fields_getPhiFromH()	25
2.5.2.15 fields_init()	26
2.5.2.16 fields_sendF()	26
2.6 init.c File Reference	26
2.6.1 Detailed Description	27
2.6.2 Macro Definition Documentation	27
2.6.2.1 RANK_IO	27
2.6.3 Function Documentation	28
2.6.3.1 fill_rand()	28
2.6.3.2 fill_randM0()	28
2.6.3.3 fill_randSingleKM()	28
2.6.3.4 init_conditions()	29
2.6.3.5 init_energySpec()	29
2.6.3.6 init_fillSinc()	29
2.6.3.7 init_initEnums()	30
2.6.3.8 init_printParameters()	30

2.6.3.9 init_start()	30
2.7 parameters_io.c File Reference	30
2.7.1 Detailed Description	31
2.7.2 Function Documentation	31
2.7.2.1 init_global_size()	31
2.7.2.2 read_parameters()	31
2.7.2.3 read_parametersFromFile()	31
2.8 solver.c File Reference	31
2.8.1 Detailed Description	32
2.8.2 Function Documentation	32
2.8.2.1 solver_getLinearDt()	32
2.8.2.2 solver_init()	32
2.9 space_config.c File Reference	32
2.9.1 Detailed Description	33
2.9.2 Function Documentation	34
2.9.2.1 free_wavespace()	34
2.9.2.2 space_generateMSpace()	34
2.9.2.3 space_generateWaveSpace()	34
2.10 utils_fftw.c File Reference	34
2.10.1 Detailed Description	36
2.10.2 Function Documentation	36
2.10.2.1 cosinus()	37
2.10.2.2 dealiasing23()	37
2.10.2.3 fftw_c2r()	37
2.10.2.4 fftw_c2r_chi()	37
2.10.2.5 fftw_c2r_field()	37
2.10.2.6 fftw_copy_buffer_c()	37
2.10.2.7 fftw_copy_buffer_r()	38
2.10.2.8 fftw_copyChiBuf_c()	38
2.10.2.9 fftw_copyChiBuf_r()	38
2.10.2.10 fftw_copyFieldBuf_c()	39
2.10.2.11 fftw_copyFieldBuf_r()	39
2.10.2.12 fftw_dealiasing()	39
2.10.2.13 fftw_kill()	40
2.10.2.14 fftw_normalise_chi_r()	40
2.10.2.15 fftw_normalise_data()	40
2.10.2.16 fftw_normalise_data_r()	40
2.10.2.17 fftw_normalise_field_r()	40
2.10.2.18 fftw_r2c()	41
2.10.2.19 fftw_r2c_chi()	41
2.10.2.20 fftw_r2c_field()	41
2.10.2.21 fftw_test_fill()	41

2.11 utils_hdf.c File Reference	41
2.11.1 Detailed Description	43
2.11.2 Function Documentation	43
2.11.2.1 hdf_create_file_c()	43
2.11.2.2 hdf_create_file_r()	44
2.11.2.3 hdf_createCheckpoint()	44
2.11.2.4 hdf_createChiFile_c()	44
2.11.2.5 hdf_createChiFile_r()	44
2.11.2.6 hdf_createFieldFile()	44
2.11.2.7 hdf_createFiles()	44
2.11.2.8 hdf_createParamFile()	44
2.11.2.9 hdf_createSaveDirs()	45
2.11.2.10 hdf_dumpCheckpoint()	45
2.11.2.11 hdf_dumpCheckpointReal()	45
2.11.2.12 hdf_init()	45
2.11.2.13 hdf_initCheckpoints()	45
2.11.2.14 hdf_initChi()	45
2.11.2.15 hdf_initField()	45
2.11.2.16 hdf_readData()	46
2.11.2.17 hdf_saveData()	46
2.11.2.18 hdf_saveEnergy()	46
2.11.2.19 hdf_saveField_r()	46
2.11.2.20 hdf_saveFieldA()	46
2.11.2.21 hdf_saveFieldB()	46
2.11.2.22 hdf_saveFieldPhi()	47
2.11.2.23 hdf_saveFields()	47
2.11.2.24 hdf_saveKSpec()	47
2.11.2.25 hdf_saveMSpec()	47
2.12 utils_mpi.c File Reference	47
2.12.1 Detailed Description	48
2.12.2 Function Documentation	48
2.12.2.1 mpi_createTopology()	49
2.12.2.2 mpi_exchangeMBoundaries()	49
2.12.2.3 mpi_exchangeMBoundaries_r()	49
2.12.2.4 mpi_findHermiteNeighbours()	49
2.12.2.5 mpi_generateTopology()	49
2.12.2.6 mpi_getLocalArrayOffsets()	49
2.12.2.7 mpi_getLocalArraySize()	49
2.12.2.8 mpi_init()	50
2.12.2.9 mpi_initMExchange()	50
2.12.2.10 mpi_kill()	50
2.12.2.11 mpi_sendVector()	50

Index	5	53
	2.13.2.2 var_getJ1()	51
	2.13.2.1 var_getJ0()	51
2	13.2 Function Documentation	51
2	13.1 Detailed Description	51
2.13 va	riables.c File Reference	50
	2.12.2.13 mpi_splitInRows()	50
	2.12.2.12 mpi_splitInCols()	50

Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:

array.c		
	Array manipulation module	3
diagnost	ics.c	
	Diagnostics module	8
distrib.c		
	Gyrokinetic distribution function module	14
equation		
	Equation module	17
fields.c		
	Field computation and manipulation module	20
init.c		
	Initialization module for alliance	26
paramet	ers_io.c	
	Reads inpuit parameters from parameter file provided by user	30
solver.c		
	Numerical solver	31
space_c		
	Space configuration module	32
utils_fftw		
	FFT module	34
utils_hdf		
	Hdf module	41
utils_mp		
	Mpi module	47
variables	5.C	
	Stores physical variables	50

2 File Index

Chapter 2

File Documentation

2.1 array.c File Reference

array manipulation module

```
#include "array.h"
#include "utils_fftw.h"
#include "space_config.h"
```

Macros

- #define CHI_EM 3
- #define CHI_EL 1
- #define FFT_OFFSET 2

Functions

```
    size_t get_flat_c (size_t is, size_t il, size_t im, size_t ix, size_t iy, size_t iz)
        returns flat index of the element of complex 6D array
    size_t getIndChiBufEM_c (size_t ix, size_t iy, size_t iz, size_t is, size_t ifield)
        returns flat index of an element of electromagnetic gyrokinetic potential in FOURIER SPACE
    size_t getIndChiBufEM_r (size_t ix, size_t iy, size_t iz, size_t is, size_t ifield)
        returns flat index of an element of electromagnetic gyrokinetic potential in POSITION SPACE
    size_t getIndChiBufEL_c (size_t ix, size_t iy, size_t iz, size_t is)
        returns returns flat index of an element of electrostatic gyrokinetic potential in FOURIER SPACE
    size_t getIndChiBufEL_r (size_t ix, size_t iy, size_t iz, size_t is)
        returns returns flat index of an element of electrostatic gyrokinetic potential in REAL SPACE
```

• size_t get_flat_r (size_t is, size_t il, size_t im, size_t ix, size_t iy, size_t iz)

returns flat index of the element of real 6D array

• size_t get_flatIndexComplex3D (size_t ix, size_t iy, size_t iz)

returns flat array of complex 3D array

- size_t getIndChi (size_t ix, size_t iy, size_t iz, size_t is)
- void multiply_ar_c (COMPLEX *ar1, COMPLEX *ar2, COMPLEX *ret)
- void multiply_ar_r (const double *ar1, const double *ar2, double *ret)

Variables

- struct array_size array_local_size
- struct array_size array_global_size
- · struct offset size array offset
- struct offset_size array_offset3D

2.1.1 Detailed Description

array manipulation module

contains functions which are supposed to make array manipulation simpler

2.1.2 Function Documentation

2.1.2.1 get_flat_c()

returns flat index of the element of complex 6D array

Parameters

is	species type
il	Laguerre moment
im	Hermite moment
ix	kx index
iy	ky index
iz	kz index

returns flattened index of a complex array from its 6D index. Flattened index then can be passed to distribution function 6D array to get a required element at position (is,il,im,ix,iy,iz).

2.1.2.2 get_flat_r()

```
size_t iy,
size_t iz )
```

returns flat index of the element of real 6D array

Parameters

is	species type
il	Laguerre moment
im	Hermite moment
ix	x index
iy	y index
iz	z index

returns flattened index of a real array from its 6D index. Flattened index then can be passed to distribution function 6D array to get a required element at position (is,il,im,ix,iy,iz).

2.1.2.3 get_flatIndexComplex3D()

returns flat array of complex 3D array

Parameters

ix	kx index
iy	ky index
iz	kz index

returns flattened index of a complex array from its 3D position index. Flattened index then can be passed to one of the fields ($\phi(\mathbf{k}), A_{||}(\mathbf{k}), B_{||}(\mathbf{k})$) 6D array to get a required element at position (ix,iy,iz).

2.1.2.4 getIndChi()

getIndChi(size_t ix,size_t iy, size_t iz, size_t is)

2.1.2.5 getIndChiBufEL_c()

```
size_t iy,
size_t iz,
size_t is)
```

returns returns flat index of an element of electrostatic gyrokinetic potential in FOURIER SPACE

Parameters

ix	kx index
iy	ky index
iz	kz index
is	particle species index

returns flattened index of a gyrokinetic potential $\chi^{\phi}(\mathbf{k})$ from its 4D index in FOURIER SPACE. flattened index is then can be used to access required value of the gyrokinetic potential at position (ix,iy,iz,is).

2.1.2.6 getIndChiBufEL_r()

returns returns flat index of an element of electrostatic gyrokinetic potential in REAL SPACE

Parameters

ix	x index
iy	y index
iz	z index
is	particle species index

returns flattened index of a gyrokinetic potential $\chi^{\phi}(\mathbf{r})$ from its 4D index in REAL SPACE. flattened index is then can be used to access required value of the gyrokinetic potential at position (ix,iy,iz,is).

2.1.2.7 getIndChiBufEM_c()

returns flat index of an element of electromagnetic gyrokinetic potential in FOURIER SPACE

Parameters

ix	kx index
iy	ky index
iz	kz index
is	particle species index
ifield	field type

returns flattened index of a gyrokinetic potential $\chi^{\phi,A,B}$ from its 4D index in FOURIER SPACE. flattened index is then can be used to access required value of the gyrokinetic potential at position (ix,iy,iz,is). Type of gyrokinetic potential is specified by ifield parameter. Use 0 is to access $\chi^{\phi}(\mathbf{k})$, 1 to access $\chi^{A}(\mathbf{k})$ and 2 to access $\chi^{B}(\mathbf{k})$.

2.1.2.8 getIndChiBufEM_r()

returns flat index of an element of electromagnetic gyrokinetic potential in POSITION SPACE

Parameters

ix	x index
iy	y index
iz	z index
is	particle species index
ifield	field type

returns flattened index of a gyrokinetic potential $\chi^{\phi,A,B}(\mathbf{k})$ from its 4D index in POSITION SPACE. flattened index is then can be used to access required value of the gyrokinetic potential at position (ix,iy,iz,is). Type of gyrokinetic potential is specified by ifield parameter. Use 0 is to access $\chi^{\phi}(\mathbf{r})$, 1 to access $\chi^{A}(\mathbf{r})$ and 2 to access $\chi^{B}(\mathbf{r})$.

2.1.2.9 multiply_ar_c()

multiply_ar_c(COMPLEX *ar1, COMPLEX *ar2, COMPLEX *ret)

2.1.2.10 multiply_ar_r()

multiply_ar_r(const double *ar1, const double *ar2, double *ret)

2.2 diagnostics.c File Reference

diagnostics module

```
#include "diagnostics.h"
#include "parameters_io.h"
```

Macros

- #define TO_ROOT 0
- #define BUFFER_SIZE 1

Functions

- void diag_computeSpectra (const COMPLEX *g, const COMPLEX *h, int timestep)
 general function to compute k or m spectra
- · void diag_initSpec ()

initialize spectra computation

void diag_computeFreeEnergy (COMPLEX *g, COMPLEX *h)

compute free energy

- void diag_computeKSpectrum (const COMPLEX *g, const COMPLEX *h, double *spec)
- void diag_computeMSpectrum (const COMPLEX *g, const COMPLEX *h, double *spec)

computes free energy spectra in m space

void diag_getShells ()

computes shells from parameters

• double diag_computeFreeEnergyFields (COMPLEX *g, COMPLEX *fields)

to be done later

void diag_compute (COMPLEX *g, COMPLEX *h, int timestep)

computes all diagnostics

- void diag_computeFieldSpectrum ()
- void diag_computeHSpectrum (const COMPLEX *h)
- void diag_computeEnergyBalance (const COMPLEX *h)
- void diag_computeEnergy (const COMPLEX *h)
- void diag_print (const COMPLEX *h, int it)

Variables

```
double * diag_kSpec = 0
```

used to store free energy k spectra

double * diag kSpecPhi = 0

used to store phi energy k spectra

double * diag_kSpecBperp = 0

used to store B_perp energy k spectra

double * diag_kSpecBpar = 0

used to store B_par energy k spectra

double * diag_kSpecH = 0

used to store h energy k spectra

double * diag_mSpec = 0

used to store free energy m spectra

• double * diag_shells = 0

used to store positions of k shells required to compute k spectra

• double * diag_shellCentres = 0

centers of shells

- double * diag_shellNorm = 0
- · double diag freeEnergy

free energy

• double diag_free_energy0

- double diag_sqrtGoldenRatio
- int diag_numOfShells
- int diag_numOfShellBounds
- double diag_energyH

h contribution to free energy

• double diag_energyPhi

phi contribution to free energy

• double diag_energyBperp

Bperp contribution to free energy.

• double diag_energyBpar

Bpar contribution to free energy.

• double diag_energyTotal

total amount of free energy

· double diag_injected

diag_injected amount of energy due to forcing

• double diag_dissipated

diag_dissipated amount of energy

• double diag_etakmax

eta*kmax

double * diag_MM

2.2.1 Detailed Description

diagnostics module

different diagnostic tools are gathered in this module

2.2.2 Function Documentation

2.2.2.1 diag_compute()

computes all diagnostics

Parameters

g	modified distribution function
h	distribution function
iter	current time step

2.2.2.2 diag_computeEnergy()

```
\label{eq:computeEnergy} \mbox{ diag\_computeEnergy (} \\ \mbox{const COMPLEX * $h$ )}
```

computes field energy k_{\perp} spectra $W(k_i^{shell}) = \frac{1}{N} \sum_{k_{i-1}^{shell} < |\mathbf{k}_{\perp}| < k_i^{shell}} \sum_{k_z,l,m,s} g\bar{h}$ where N is a number of wave vectors between shells k_{i-1}^{shell} and k_i^{shell}

2.2.2.3 diag computeEnergyBalance()

```
\label{eq:computeEnergyBalance} \mbox{diag\_computeEnergyBalance (} \\ \mbox{const COMPLEX * $h$ )}
```

computes field energy k_{\perp} spectra $W(k_i^{shell}) = \frac{1}{N} \sum_{k_{i-1}^{shell} < |\mathbf{k}_{\perp}| < k_i^{shell}} \sum_{k_z,l,m,s} g\bar{h}$ where N is a number of wave vectors between shells k_{i-1}^{shell} and k_i^{shell}

2.2.2.4 diag computeFieldSpectrum()

```
diag_computeFieldSpectrum ( )
```

computes field energy k_{\perp} spectra $W(k_i^{shell}) = \frac{1}{N} \sum_{k_{i-1}^{shell} < |\mathbf{k}_{\perp}| < k_i^{shell}} \sum_{k_z,l,m,s} g\bar{h}$ where N is a number of wave vectors between shells k_{i-1}^{shell} and k_i^{shell}

2.2.2.5 diag_computeFreeEnergy()

compute free energy

Parameters

g	modified gyrokinetic distribution function
h	gyrokintic distribution function

computes free energy as $W=2.\Re(\sum_{k_x,k_y,k_z>0,m,l,s}g*\bar{h})$, taking into account reality condition.

2.2.2.6 diag computeFreeEnergyFields()

to be done later

Parameters

g	
fields	computes free energy from the fields and distribution function.

2.2.2.7 diag_computeHSpectrum()

```
\label{eq:computeHSpectrum} \mbox{ diag\_computeHSpectrum (} \\ \mbox{const COMPLEX * $h$ )}
```

computes field energy k_{\perp} spectra $W(k_i^{shell})=\frac{1}{N}\sum_{k_{i-1}^{shell}<|\mathbf{k}_{\perp}|< k_i^{shell}}\sum_{k_z,l,m,s}g\bar{h}$ where N is a number of wave vectors between shells k_{i-1}^{shell} and k_i^{shell}

2.2.2.8 diag_computeKSpectrum()

Parameters

g	modified gyrokinetic distribution function
h	gyrokinetic distribution function
spec	spectra array

computes free energy k_{\perp} spectra $W(k_i^{shell})=\frac{1}{N}\sum_{k_i^{shell}<|\mathbf{k}_{\perp}|< k_i^{shell}}\sum_{k_z,l,m,s}g\bar{h}$ where N is a number of wave vectors between shells k_{i-1}^{shell} and k_i^{shell}

2.2.2.9 diag_computeMSpectrum()

computes free energy spectra in m space

Parameters

g	modified gyrokinetic distribution function
h	gyrokinetic distribution function
spec	spectra array

computes free energy m spectra as $W(m) = \sum_{k_x,k_y,k_z,l,s} g \bar{h}$

2.2.2.10 diag_computeSpectra()

general function to compute k or m spectra

Parameters

g	gyrokinetic distribution function
h	distribution function
timestep	current time step

function computes spectra at timestep as given in parameter file. k_{\perp} spectra is computed using diag_computeKSpectrum, and m spectra is computed using diag_computeMSpectrum

2.2.2.11 diag_getShells()

```
diag_getShells ( )
```

computes shells from parameters

computes positions of k_shells in between last_shell and first_shell as provided by user in parameter file. Position of i^{th} shell is computed as $k_i^{shell} = (last_shell - first_shell)/(k_shells) \cdot i$

2.2.2.12 diag_initSpec()

```
void diag_initSpec ( )
```

initialize spectra computation

Prepares free energy spectra computation. For spectra in k: allocates diag_kSpec array used to store k spectra. Allocates diag_shells array and fills it with shell positions k^{shells} , used for binning of wave vectors when computing k_{\perp} spectra. For spectra in m: allocates diag_mSpec array used to store m spectra. Called in init_start function

2.2.3 Variable Documentation

2.2.3.1 diag_freeEnergy

```
double diag_freeEnergy
```

free energy

free energy at initial timestep

2.3 distrib.c File Reference

gyrokinetic distribution function module

```
#include "distrib.h"
```

Functions

- void distrib_getH (COMPLEX *h, const COMPLEX *g)
 computes h from g
- void distrib_getG (COMPLEX *g, const COMPLEX *h)
 computes g from h
- void distrib_getXGrad (const COMPLEX *in, COMPLEX *out)
 Computes gradient in kx direction.
- void distrib_getYGrad (const COMPLEX *in, COMPLEX *out)
 Computes gradient in ky direction.
- void distrib_getZGrad (const COMPLEX *in, COMPLEX *out)
 Computes gradient in kz direction.
- void distrib_enforceReality (COMPLEX *f)
 enforces reality condition on distribution function array
- void distrib_setZeroNHalf (COMPLEX *f) sets all Nk/2 modes to zero

2.3.1 Detailed Description

gyrokinetic distribution function module

everything required to perform different manipulations to distribution functions

2.3.2 Function Documentation

2.3.2.1 distrib_enforceReality()

```
void distrib_enforceReality ( {\tt COMPLEX} \ * \ f \ )
```

enforces reality condition on distribution function array

Parameters

f complex array for which reality condition will be forced.

Enforces reality condition f(k) = conj(f(-k)) in plane kz = 0. For a given kx, it first checks where modes -kx are located

2.3 distrib.c File Reference

using the #mpi_whereIsX function:

```
where_neg = mpi_whereIsX[kxNeg * 2];
```

If -kx is stored on a different processor, MPI_VECTOR with a 4D data slice f(kx,kz = 0) is sent to this processor, to the buffer array:

```
mpi_sendVector(&f[ind6D], buffer, where_pos, where_neg);
```

if the data stored on the same processor, no vector is being sent. Reality condition is fulfilled in a loop over all other coordinates:

```
f[ind6D_neg] = conj(buffer[ind6D_pos]);
```

2.3.2.2 distrib_getG()

```
distrib_getG (  \begin{tabular}{ll} ${\tt COMPLEX} \, * \, g, \\ & {\tt const} \, \, {\tt COMPLEX} \, * \, h \, \end{tabular}
```

computes g from h

Parameters

g	complex array to store g
h	complex array with h

computes modified gyrokinetic distribution function g from gyrokinetic distribution function h. Please note that before calling this function gyrokinetic potentials must be computed

2.3.2.3 distrib_getH()

```
void distrib_getH ( {\tt COMPLEX} \, * \, h, {\tt const} \, \, {\tt COMPLEX} \, * \, g \, )
```

computes h from g

Parameters

h	complex array to store h
g	complex array with g

computes gyrokinetic distribution function h from modified gyrokinetic distribution function g. Please note that before calling this function gyrokinetic potentials must be computed

2.3.2.4 distrib_getXGrad()

Computes gradient in kx direction.

Parameters

in	complex array. Distribution function of which gradient will be taken
out	complex array, where gradient is stored

Computes gradient in kx direction as following: grad(f) = i * kx * f

2.3.2.5 distrib_getYGrad()

Computes gradient in ky direction.

Parameters

in	complex array. Distribution function of which gradient will be taken
out	complex array, where gradient is stored

Computes gradient in ky direction as following: grad(f) = i * ky * f

2.3.2.6 distrib_getZGrad()

Computes gradient in kz direction.

Parameters

in	complex array. Distribution function of which gradient will be taken
out	complex array, where gradient is stored

Computes gradient in kz direction as following: grad(f) = i * kz * f

2.3.2.7 distrib_setZeroNHalf()

```
void distrib_setZeroNHalf ( {\tt COMPLEX} \ * \ f \ )
```

sets all Nk/2 modes to zero

Parameters

```
f complex array
```

sets Nkx/2, Nky/2 and Nz/2 modes of distribution function to zero. Due to reality condition, for kz yhe last mode should be set to zero.

2.4 equation.c File Reference

equation module

```
#include "equation.h"
#include "array.h"
#include "fields.h"
#include "distrib.h"
```

Macros

- #define CHI_EM 3
- #define CHI EL 1
- #define CHI PHI 0
- #define CHI A 1
- #define CHI B 2

Functions

void equation_getLinearTerm (const COMPLEX *in, const COMPLEX *plus_boundary, const COMPLEX *minus_boundary, COMPLEX *out)

computes linear term

void equation_getNonlinearElectromagnetic (double *in, double *chiAr, double *out, double sign)

returns nonlinear electromagnetic term

• void equation_getNonlinearElectrostatic (double *in, double *chiAr, double *out, double sign)

returns nonlinear electrostatic term

• void equation_getNonlinearProduct (double *in, double *chiAr, double *out, double sign)

chooses between computing electrostatic or electromagnetic term

void equation getNonlinearTerm (const COMPLEX *h, COMPLEX *out)

computes nonlinear term

- void equation_getRHS (const COMPLEX *in_g, COMPLEX *in_h, COMPLEX *out)
- void equation_getDissipation (const COMPLEX *h, COMPLEX *rhs)
- void equation_init ()

initializes forcing.

void equation_getForcing (const COMPLEX *h, COMPLEX *rhs)

Variables

- size_t * equation_forceKxInd
- size_t * equation_forceKyInd
- size t * equation_forceKzInd
- int equation_forceKn
- int equation_forceNorm
- double equation_forcingCoef

2.4.1 Detailed Description

equation module

module required to compute RHS of the equation.

2.4.2 Function Documentation

2.4.2.1 equation_getLinearTerm()

computes linear term

Parameters

in	complex array
out	complex array
plus_boundary	complex array
minus_boundary	complex array

computes linear term ${\tt out}$ from distribution function ${\tt in}$.

2.4.2.2 equation_getNonlinearElectromagnetic()

returns nonlinear electromagnetic term

Parameters

in	input double array
chiAr	input double array
out	output double array
sign	should be 1 or -1

performs multiplication between input 6D complex array in and gyrokinetic potential array chiAr, in such way that the structure of the product is the same as nonlinear term of drift-kinetic equations. Used by equation_getNonlinearProduct. sign is used to determine the sign of the resulting product. See equation_getNonlinearTerm for explanation.

2.4.2.3 equation_getNonlinearElectrostatic()

returns nonlinear electrostatic term

Parameters

in	input double array	
chiAr	input double array	
out	output double array	
sign	should be 1 or -1	

see equation_getNonlinearElectromagnetic for explanation

2.4.2.4 equation_getNonlinearProduct()

chooses between computing electrostatic or electromagnetic term

Parameters

in	input double array
chiAr	input double array
out	output double array
sign	should be 1 or -1

depending on flag systemType provided by user in parameter file, chooses between equation_getNonlinearElectrostatic

and equation_getNonlinearElectromagnetic

2.4.2.5 equation_getNonlinearTerm()

```
void equation_getNonlinearTerm (
             const COMPLEX * h,
             COMPLEX * out )
```

computes nonlinear term

Parameters

h	input complex array
out	output complex array

function returns nonlinear term. First it takes y gradient of distribution function h, and x gradient of gyrokinetic potentials chi, and transforms them to real space:

```
distrib_getYGrad(h, fftw_hBuf);
fields_getGradX(fftw_chiBuf);
fftw_c2r();
fftw_c2r_chi();
after that, it computes \frac{\partial h}{\partial y} \frac{\partial \chi}{\partial x} part of the poisson brackets:
equation_getNonlinearProduct((double *)fftw_hBuf, (double *)fftw_chiBuf,
buffer, 1.);
with the result stored in buffer after that, it computes x gradient of h and y gradient of gyrokinetic potential chi,
```

and transforms results to real space:

```
distrib_getXGrad(h, fftw_hBuf);
fields_getGradY(fftw_chiBuf);
fftw_c2r();
fftw_c2r_chi();
```

and computes second part of the poisson brackets $-\frac{\partial h}{\partial x}\frac{\partial \chi}{\partial y}$ and adds the result to buffer. buffer is then transformed back to Fourier space, and dealiasing is performed.

2.5 fields.c File Reference

field computation and manipulation module

```
#include "fields.h"
```

Macros

- #define CHI PHI 0
- #define CHI A 1
- #define CHI_B 2

2.5 fields.c File Reference 21

Functions

```
• void fields_init ()
     intializes fields

    void fields_getA (const COMPLEX *g)

     compute A field

    void fields_getB (const COMPLEX *g0, const COMPLEX *g1)

     computes B potential

    void fields getPhi (const COMPLEX *g0, const COMPLEX *g1)

     computes phi potential
• void fields_getFields (COMPLEX *g00, COMPLEX *g10, COMPLEX *g01)
      wrapper to get all the fields simultaneously
void fields_getChi ()
     computes gyrokinetic potentials chi

    void fields getChiPhi ()

     computes chiPhi gyrokinetic potential from phi potential

    void fields_getChiB ()

     computes chiB gyrokinetic potential from B potential

    void fields_getChiA ()

     computes chiA gyrokinetic potential from A potential

    void fields_sendF (COMPLEX *f)

     sends moments of gyrokinetic distribution function which are required to compute fields

    void fields getFieldsFromH (COMPLEX *h00, COMPLEX *h10, COMPLEX *h01)

      wrapper to get all the fields simultaneously, computed from gyrokinetic distribution function

    void fields_getAFromH (const COMPLEX *h)

     compute A field

    void fields_getBFromH (const COMPLEX *h0, const COMPLEX *h1)

     computes B potential

    void fields_getPhiFromH (const COMPLEX *h)

     computes phi potential

    void fields getGradX (COMPLEX *out)

     computes chi gradient in x direction

    void fields_getGradY (COMPLEX *out)

     computes chi gradient in y direction
```

Variables

- · struct fields fields fields
- struct fields_chi fields_chi
- double * A_denom
- double * qnvTsJ
- double * I B
- double * I_phi
- double * a_pot
- double * b_pot
- double * c_pot
- double * phiB_denom
- int * global_nm_index
- COMPLEX * f00
- COMPLEX * f10
- COMPLEX * **f01**

2.5.1 Detailed Description

field computation and manipulation module

Rerquired to compute $A_{||}(\mathbf{k}), B_{||}(\mathbf{k}), \phi(\mathbf{k})$ potentials, as well as gyrokinetic potentials $\chi_s^A(\mathbf{k}), \chi_s^B(\mathbf{k}), \chi_s^\phi(\mathbf{k})$

2.5.2 Function Documentation

2.5.2.1 fields getA()

```
void fields_getA ( {\tt const~COMPLEX~*~g~)}
```

compute A field

Parameters

g 4D complex array (kx,ky,kz,s). Must be first Hermite and zeroth Laguerre moment of modified gyrokinetic distribution function g.

computes $A_{||}(\mathbf{k})$ potential from g^1_{s0} (g parameter)

2.5.2.2 fields_getAFromH()

```
void fields_getAFromH ( {\tt const~COMPLEX~*~h~)}
```

compute A field

Parameters

h 4D complex array (kx,ky,kz,s). Must be first Hermite and zeroth Laguerre moment of gyrokinetic distribution function h.

computes $A_{||}(\mathbf{k})$ potential from h^1_{s0} (h parameter)

2.5.2.3 fields_getB()

```
void fields_getB ( {\tt const~COMPLEX~*~g0,} {\tt const~COMPLEX~*~g1~)}
```

computes B potential

2.5 fields.c File Reference 23

Parameters

g0	4D complex array (kx,ky,kz,s). Zeroth Hermite and Laguerre moment of modified gyrokinetic distribution	
	function.	
g1	4D complex array (kx,ky,kz,s). Zeroth Hermite and first Laguerre moment of the modified distribution	
	function.	

Computes $B_{\perp}({\bf k})$ from g_{s0}^0 (g0 parameter) and g_{s0}^1 (g1 parameter).

2.5.2.4 fields_getBFromH()

computes B potential

Parameters

h0	4D complex array (kx,ky,kz,s). Zeroth Hermite and Laguerre moment of gyrokinetic distribution function.
h1	4D complex array (kx,ky,kz,s). Zeroth Hermite and first Laguerre moment of distribution function.

Computes $B_{\perp}({\bf k})$ from h^0_{s0} (h0 parameter) and h^1_{s0} (h1 parameter).

2.5.2.5 fields_getChi()

```
void fields_getChi ( )
```

computes gyrokinetic potentials chi

 $Wrapper\ for\ functions\ fields_getChiPhi,\ fields_getChiA,\ fields_getChiB$

2.5.2.6 fields getChiA()

```
void fields_getChiA ( )
```

computes chiA gyrokinetic potential from A potential

computes $chi_s^A(\mathbf{k})$

2.5.2.7 fields_getChiB()

```
void fields_getChiB ( )
```

computes chiB gyrokinetic potential from B potential

computes $\chi_s^B(\mathbf{k})$

2.5.2.8 fields_getChiPhi()

```
fields_getChiPhi ( )
```

computes chiPhi gyrokinetic potential from phi potential

```
computes chi_s^{\phi}(\mathbf{k})
```

2.5.2.9 fields_getFields()

wrapper to get all the fields simultaneously

Parameters

g00	4D complex array (kx,ky,kz,s). Zeroth Hermite and Laguerre moment of modified gyrokinetic distribution function.
g10	4D complex array (kx,ky,kz,s). Must be first Hermite and zeroth Laguerre moment of modified gyrokinetic distribution function g.
g01	4D complex array (kx,ky,kz,s). Zeroth Hermite and first Laguerre moment of the modified distribution function.

Wrapper for functions fields_getPhi, fields_getB, fields_getA.

2.5.2.10 fields_getFieldsFromH()

wrapper to get all the fields simultaneously, computed from gyrokinetic distribution function

Parameters

h00	4D complex array (kx,ky,kz,s). Zeroth Hermite and Laguerre moment of gyrokinetic distribution function.
h10	4D complex array (kx,ky,kz,s). Must be first Hermite and zeroth Laguerre moment of gyrokinetic distribution function h.
	idifiction it.
h01	4D complex array (kx,ky,kz,s). Zeroth Hermite and first Laguerre moment of the distribution function.

Wrapper for functions fields_getPhiFromH, #fields_get_BFromH, fields_getAFromH.

2.5.2.11 fields_getGradX()

2.5 fields.c File Reference 25

computes chi gradient in x direction

Parameters

```
out output complex array of size (kx,ky,kz,s,Nfields).
```

computes gradient in x direction for chi potentials. Nfields<\tt> can be 1 or 3, and chosen automatically at start of the simulation depending on the simulation type (electrostatic or electromagnetic)

2.5.2.12 fields_getGradY()

computes chi gradient in y direction

Parameters

out output complex array of size (kx,ky,kz,s,Nfields).

computes gradient in y direction for chi potentials. Nfields<\tt> can be 1 or 3, and chosen automatically at start of the simulation depending on the simulation type (electrostatic or electromagnetic)

2.5.2.13 fields_getPhi()

```
void fields_getPhi (  {\tt const~COMPLEX}~*~g0, \\ {\tt const~COMPLEX}~*~g1~)
```

computes phi potential

Parameters

g0	4D complex array (kx,ky,kz,s). Zeroth Hermite and Laguerre moment of modified gyrokinetic distribution
	function.
g1	4D complex array (kx,ky,kz,s). Zeroth Hermite and first Laguerre moment of the modified distribution
	function.

Computes $\phi(\mathbf{k})$ from g_{s0}^0 (g0 parameter) and g_{s0}^1 (g1 parameter).

2.5.2.14 fields_getPhiFromH()

computes phi potential

Parameters

h | 4D complex array (kx,ky,kz,s). Zeroth Hermite and Laguerre moment of gyrokinetic distribution function.

Computes $\phi(\mathbf{k})$ from h^0_{s0} (h parameter)

2.5.2.15 fields_init()

```
void fields_init ( )
```

intializes fields

pre-computes some comstants required to compute fields. Called in init_start function

2.5.2.16 fields_sendF()

```
fields_sendF ( {\tt COMPLEX} \ * \ f \ )
```

sends moments of gyrokinetic distribution function which are required to compute fields

Parameters

f complex array. Modified or non-modified gyrokinetic distribution function

```
sends g_{s0}^1(\mathbf{k})f, g_{s1}^0(\mathbf{k})f, g_{s0}^0(\mathbf{k})f
```

to all processes to compute potentials locally.

2.6 init.c File Reference

initialization module for alliance.

```
#include "init.h"
#include "distrib.h"
```

Macros

• #define RANK_IO 0

2.6 init.c File Reference 27

Functions

void init_start (char *filename)

initialization of ALLIANCE

void init_physicalSystem ()

initialization of physical system and parameters

void init_computation ()

initialize hdf, fftw and mpi

void init_printParameters ()

parameter output

• void init_initEnums ()

enumerator initialization

void fill rand (COMPLEX *ar1)

fills the inital conditions randomly

void fill_randM0 (COMPLEX *ar1)

fill zeroth Hermite moment with random values

void fill_randSingleKM (COMPLEX *ar1)

fill single chosen wavevector and Hermite moment

void init_conditions (COMPLEX *data)

distribution function initialization

• double init_energySpec (double k, double m, double amp, double disp)

returns energy spectrum

- double init_sinc (double amp, double f, double x, double y, double z, double x0, double y0, double z0)
- void init_fillSinc (COMPLEX *out)

returns energy spectrum

• double init_exp2 (double amp, double f, double x, double y, double z, double x0, double y0, double z0)

Variables

- · enum adiabatic kinetic
- enum electromagnetic systemType
- enum initial initialConditions
- enum spectrum spectrum Type
- · enum dealiasing dealiasingType

2.6.1 Detailed Description

initialization module for alliance.

all the inititalization routines are here.

2.6.2 Macro Definition Documentation

2.6.2.1 RANK IO

#define RANK_IO 0

defines rank of the processor used to output information to console

2.6.3 Function Documentation

2.6.3.1 fill_rand()

fills the inital conditions randomly

Parameters

data

complex 6d array to fill initializes distribution with spectrum defined in init_energySpec This function is supposed to be used in-module only and should not be used elsewhere outside init.c file.

2.6.3.2 fill_randM0()

fill zeroth Hermite moment with random values

Parameters

data | complex 6D array to fill

fills 0-th Hermite moment of a distribution function ar1 with random values This function is supposed to be used in-module only and should not be used elsewhere outside init.c file.

2.6.3.3 fill_randSingleKM()

fill single chosen wavevector and Hermite moment

Parameters

data | complex 6D array

initializes single wavevector and Hermite moment of a distribution function with random variable. This function is only for in-module use and should not be used elsewhere outside init.c file.

2.6 init.c File Reference 29

2.6.3.4 init_conditions()

```
void init_conditions ( {\tt COMPLEX} \ * \ \textit{data} \ )
```

distribution function initialization

Parameters

```
data complex 6D array
```

initializes distribution function with chosen method (see fill_rand, fill_randM0, fill_randSingleKM)

2.6.3.5 init_energySpec()

returns energy spectrum

Parameters

k	a wavenumber at which spectrum is computed
т	Hermite moment at which amplitude is computed
amp	amplitude of the spectrum
disp	dispersion of the spectrum

computes spectrum of form $A \cdot k^2 exp(-2k^2/\sigma^2)$, where $\sigma = disp$, and A = amp This function is supposed to be used in-module only and should not be used elsewhere outside init.c file.

2.6.3.6 init_fillSinc()

returns energy spectrum

Parameters

k	a wavenumber at which spectrum is computed
m	Hermite moment at which amplitude is computed
атр	amplitude of the spectrum
disp	dispersion of the spectrum

computes sinc function $A \cdot k^2 exp(-2k^2/\sigma^2)$, where $\sigma = disp$, and A = amp This function is supposed to be used in-module only and should not be used elsewhere outside init.c file.

2.6.3.7 init_initEnums()

```
void init_initEnums ( )
```

enumerator initialization

initializes enumerators, which are then used to define if system is adiabatic or kinetic, electromagnetic or electrostatic, and type of initial conditions

2.6.3.8 init_printParameters()

```
void init_printParameters ( )
```

parameter output

prints parameters of the simulation

2.6.3.9 init_start()

initialization of ALLIANCE

Parameters

filename	specifies parameter filename
----------	------------------------------

initializes all the modules required for ALLIANCE to work.

2.7 parameters_io.c File Reference

reads inpuit parameters from parameter file provided by user

```
#include "parameters_io.h"
#include "utils_fftw.h"
```

Macros

- #define VERBOSE 0
- #define IO_RANK 0

Functions

- void init_global_size ()
 - initializes global size of the 6D array
- void read_parameters (char *filename)
 - reads parameters from user parameter file.
- void read_parametersFromFile (char *filename)

2.8 solver.c File Reference 31

Variables

struct system_param parameters

2.7.1 Detailed Description

reads inpuit parameters from parameter file provided by user

2.7.2 Function Documentation

2.7.2.1 init_global_size()

```
void init_global_size ( )
```

initializes global size of the 6D array

initializes array_local_size structure with global simulation size.

2.7.2.2 read_parameters()

reads parameters from user parameter file.

Reads parameters from user parameter file. All the parameters are stored in the parameters structure

2.7.2.3 read_parametersFromFile()

read_parametersFromFile(char *filename):

2.8 solver.c File Reference

```
numerical solver
```

```
#include "solver.h"
```

Macros

- #define **SOLVERTYPE** RK4
- #define IORANK 0

Functions

```
• void solver_init ()
```

initializes solver

- void solver_makeStep (COMPLEX **g, COMPLEX *h, int it)
- void solver_updateDt (COMPLEX *g, COMPLEX *h, int it)
- void solver_getLinearDt ()

computes linear dt

Variables

- enum solverType solverType
- struct solver solver
- struct rk4 rk4

2.8.1 Detailed Description

numerical solver

2.8.2 Function Documentation

2.8.2.1 solver_getLinearDt()

```
void solver_getLinearDt ( )
```

computes linear dt

computes linear dt approximation using Gershgorin Discs

2.8.2.2 solver_init()

```
void solver_init ( )
```

initializes solver

initializes solver with the ${\tt solverType}.$

2.9 space_config.c File Reference

space configuration module

```
#include "space_config.h"
#include <complex.h>
```

Macros

- #define VERBOSE 0
- #define MINUS_I -1.j

Functions

```
void space_init ()
```

initializes wave space. Called in init_start() function.

• void space_generateWaveSpace ()

generates wave space.

void space_generateMSpace ()

generates Hermite space.

• void free_wavespace ()

deallocates all the arrays.

Variables

- · double space_Lx
- · double space_Ly
- double space_Lz
- double space dx
- double space_dy
- double space_dz
- double space_dKx
- double space_dKy
- double space_dKz
- double space_kXmaxdouble space_kYmax
- double space_kZmax
- double space_kPerpMax
- double * space_kx
- double * space_ky
- double * space_kz
- double * space_kPerp
- double * space_kPerp2
- double * space_kSq
- double * space_sqrtM
- double * space_zerosKx
- double * space_zerosKy
- double * space_zerosKz
- size_t * space_globalMIndex
- COMPLEX * space_iKx
- COMPLEX * space_iKy
- COMPLEX * space_iKz

2.9.1 Detailed Description

space configuration module

creates k and m spaces

2.9.2 Function Documentation

2.9.2.1 free_wavespace()

```
free_wavespace ( )
```

deallocates all the arrays.

to be added...

2.9.2.2 space_generateMSpace()

```
space_generateMSpace ( )
```

generates Hermite space.

to be added

2.9.2.3 space_generateWaveSpace()

```
void space_generateWaveSpace ( )
```

generates wave space.

generates wave number arrays space_kx, space_ky, space_kz of lengths nkx,nky,nkz for a numerical box of size [lx, ly, lz] in kx,ky,kz directions as following:

```
[0, pi / lx, 2 pi / lx, ..., (n / 2 + 1) pi / lx, - (n / 2) pi / lx, ..., , - pi / lx] generates arrays space_iKx, space_iKy, space_iKz, of lengths nkx,nky,nkz. These arrays are later used to compute gradients by fields_getGradX, fields_getGradY, distrib_getXGrad, distrib_getYGrad, distrib_getZGrad.
```

2.10 utils_fftw.c File Reference

```
FFT module.
```

```
#include "utils fftw.h"
```

Macros

- #define FFTW_RANK 3
- #define CHI_EL 1
- #define CHI EM 3
- #define VERBOSE 0

Functions

```
    void fftw init (MPI Comm communicator)

     initializes fftw transform.
void fftw_r2c ()
     real to complex fft transform.
void fftw_c2r ()
     complex to real fft transform.
· void fftw_r2c_chi ()
     real to complex transform of chi potentials
void fftw_c2r_chi ()
      complex to real transform of chi potentials

    void fftw_r2c_field ()

      real to complex transform of field potentials
void fftw_c2r_field ()
      complex to real transform of field potentials
· void fftw_kill ()
     kills fftw

    void fftw_copy_buffer_r (double *to, double *from)

     copy 6D real array

    void fftw_copy_buffer_c (COMPLEX *to, COMPLEX *from)

     copy 6D complex array

    void fftw_copyChiBuf_r (double *ar1, double *ar2)

     copy 5D real array

    void fftw_copyChiBuf_c (COMPLEX *ar1, COMPLEX *ar2)

      copy 5D complex array.

    void fftw copyFieldBuf r (double *to, double *from)

     copy 3D real data array.

    void fftw copyFieldBuf c (COMPLEX *to, COMPLEX *from)

     copy 3D complex data array.
• double cosinus (double f, int ix)

    void fftw test fill (double *ar, double f)

    void fftw_normalise_data (COMPLEX *data)

    void fftw normalise data r (double *data)

      normalise data.
• void fftw_normalise_chi_r (double *data)
     notmalase chi data

    void fftw_normalise_field_r (double *data)

     normalise real 3D data

    void dealiasing23 (COMPLEX *data_c)

      2/3 rule dealiasing

    void fftw_dealiasing (COMPLEX *data_c)

      dealiasing function

    void fftw_transposeToXY ()

     transposes 6D array

    void fftw_transposeToYX ()

    void fftw transposeToXY chi ()

     transposes chi array

    void fftw_transposeToYX_chi ()

    void fftw_transposeToXY_field ()

      transposes field array

    void fftw_transposeToYX_field ()

      transposes field array
```

Variables

- ptrdiff_t size_c [3]
- ptrdiff_t size_r [3]
- · ptrdiff t howmany
- ptrdiff_t howmany_chi
- · ptrdiff_t local_size
- ptrdiff_t local_nx
- ptrdiff_t local_ny
- · ptrdiff t local y start
- ptrdiff_t local_x_start
- · ptrdiff t local size chi
- ptrdiff_t local_nx_chi
- ptrdiff_t local_x_start_chi
- ptrdiff_t local_ny_chi
- ptrdiff_t local_y_start_chi
- ptrdiff_t local_size_field
- ptrdiff_t local_nx_field
- ptrdiff_t local_x_start_field
- ptrdiff_t local_ny_field
- ptrdiff_t local_y_start_field
- fftw_plan plan_c2r
- fftw_plan plan_r2c
- fftw_plan plan_transposeToXY
- fftw_plan plan_transposeToYX
- fftw plan plan c2r chi
- fftw_plan plan_r2c_chi
- fftw_plan plan_transposeToXY_chi
- fftw_plan plan_transposeToYX_chi
- fftw_plan plan_c2r_field
- fftw_plan plan_r2c_field
- fftw_plan plan_transposeToXY_field
- fftw_plan plan_transposeToYX_field
- COMPLEX * fftw_hBuf
- COMPLEX * fftw_chiBuf
- COMPLEX * fftw_field
- double fftw norm
- int * global nkx index

2.10.1 Detailed Description

FFT module.

contains FFT related routines

2.10.2 Function Documentation

2.10.2.1 cosinus()

```
double cosinus ( \label{eq:double f, int ix } \operatorname{double} \ f, int ix )
```

cosinus(double f,int ix)

2.10.2.2 dealiasing23()

```
void dealiasing23 ( {\tt COMPLEX} \ * \ {\tt data\_c} \ )
```

2/3 rule dealiasing

Parameters

data⊷	complex 6D data array
_c	

2.10.2.3 fftw_c2r()

```
fftw_c2r ( )
```

complex to real fft transform.

Performs complex to real in-place fft transform on array fftw_hBuf. Used to transform 6D arrays (x,y,z,m,l,s).

2.10.2.4 fftw_c2r_chi()

```
void fftw_c2r_chi ( )
```

complex to real transform of chi potentials

Performs complex to real in-place fft transform on array $fftw_chiBuf$. Used to transform 5D arrays (kx,ky,kz,s,field).

2.10.2.5 fftw_c2r_field()

```
void fftw_c2r_field ( )
```

complex to real transform of field potentials

Performs complex to real in-place fft transform on array fftw_field. Used to transform 3D arrays (kx,ky,kz).

2.10.2.6 fftw_copy_buffer_c()

copy 6D complex array

Parameters

to	where to copy array
from	array which will be copied

copies complex data from array to array to

2.10.2.7 fftw_copy_buffer_r()

copy 6D real array

Parameters

to	where to copy array
from	array which will be copied

copies real data from array to array to

2.10.2.8 fftw_copyChiBuf_c()

copy 5D complex array.

Parameters

ar1	destination
ar2	source

copies complex χ array from ar1 to ar2.

2.10.2.9 fftw_copyChiBuf_r()

copy 5D real array

Parameters

ar1	destination
ar2	source

copies real χ array from ar1 to ar2.

2.10.2.10 fftw_copyFieldBuf_c()

copy 3D complex data array.

Parameters

to	
from	copies 3D complex data array from to

2.10.2.11 fftw_copyFieldBuf_r()

copy 3D real data array.

Parameters

to	
from	copies 3D data array from to

2.10.2.12 fftw_dealiasing()

```
void fftw_dealiasing ( {\tt COMPLEX} \ * \ data\_c \ )
```

dealiasing function

Parameters

data⊷	complex 6D data array
_c	

2.10.2.13 fftw_kill()

```
void fftw_kill ( )
```

kills fftw

to be added

2.10.2.14 fftw_normalise_chi_r()

notmalase chi data

Parameters

```
data 5D real data array
```

normalises data by #fftw_norm.

2.10.2.15 fftw_normalise_data()

fftw_normalise_data(double *data)

2.10.2.16 fftw_normalise_data_r()

normalise data.

Parameters

```
data 6D data array
```

normalises data by #fftw_norm.

2.10.2.17 fftw_normalise_field_r()

normalise real 3D data

Parameters

```
data 3D real array
```

normalises data by #fftw_norm.

2.10.2.18 fftw_r2c()

```
fftw_r2c ( )
```

real to complex fft transform.

Performs real to complex in-place fft transform of on array $fftw_hBuf$. Used to transform 6D arrays (kx,ky,kz,m,l,s).

2.10.2.19 fftw_r2c_chi()

```
void fftw_r2c_chi ( )
```

real to complex transform of chi potentials

Performs real to complex in-place fft transform on array fftw_chiBuf. Used to transform 5D arrays (x,y,z,s,field).

2.10.2.20 fftw_r2c_field()

```
void fftw_r2c_field ( )
```

real to complex transform of field potentials

Performs real to complex in-place fft transform on array fftw_field. Used to transform 3D arrays (x,y,z).

2.10.2.21 fftw_test_fill()

fftw_test_fill(double *ar,double f)

2.11 utils_hdf.c File Reference

hdf module

```
#include "utils_hdf.h"
#include <unistd.h>
#include <sys/stat.h>
```

Macros

- · #define BASE DIR "."
- #define WORK_DIR "."
- #define CHCK_DIR "checkpoint"
- #define CHCK_NAME "chk"
- #define PATH SEPARATOR "/"
- #define VERBOSE 0
- #define FILENAME_ID_LEN 128
- #define CHECKPOINT ROOT 0
- #define PATH LEN 128

Functions

- void complex_t_init ()
- void hdf init ()
- void hdf_createSaveDirs ()
- void hdf create file c (char *filename, COMPLEX *data)
- void hdf_create_file_r (char *filename, double *data)
- void hdf_initChi ()
- void hdf_createChiFile_r (char *filename, double *data)
- void hdf_createChiFile_c (char *filename, COMPLEX *data)
- void hdf initField ()
- void hdf saveFieldA (char *filename)
- void hdf saveField r (double *f, char *filename)
- void hdf_saveFieldB (char *filename)
- void hdf saveFieldPhi (char *filename)
- void hdf saveEnergy (int timestep)
- void hdf_saveData (COMPLEX *h, int timestep)
- void hdf_createParamFile ()
- void hdf_createFiles ()
- void hdf_saveKSpec (int timestep)
- void hdf_saveMSpec (int timestep)
- void hdf_initCheckpoints ()
- void hdf createCheckpoint (COMPLEX *h, int timestep)
- void hdf_dumpCheckpoint (COMPLEX *h, int timestep, char *filename)
- void hdf_dumpCheckpointReal (COMPLEX *h, int timestep, char *filename)
- void hdf_saveDistrib (COMPLEX *h, int timestep)
- void hdf createFieldFile ()
- void hdf_saveFields (int timestep)
- void hdf_readData (char *filename, COMPLEX *h)

Variables

- int **hdf** rank = 6
- int hdf rankFields = 3
- int hdf rankChi = 5
- int hdf_freeEnergyCalls = 0
- char ** hdf_checkpointNames
- char hdf_newCheckpointName [FILENAME_ID_LEN]
- char **SIMULATION_PATH** [PATH_LEN]
- char CHECKPOINT_PATH [PATH_LEN]
- char PARAMETER_FILENAME [FILENAME_ID_LEN]

- char **DISTRIBUTION_FILENAME** [FILENAME_ID_LEN]
- char **FIELD_FILENAME** [FILENAME_ID_LEN]
- size_t hdf_checkpointCount = 0
- hid_t complex_id
- hsize_t dataspace_dims_r [6]
- hsize_t dataspace_dims_c [6]
- hsize_t dataspace_dimsFields [3]
- hsize_t dataspace_dimsFields_r [3]
- hsize_t dataspace_dimsChi [5]
- hsize t dataspace_dimsChi_r [5]
- hsize t chunk dims r [6]
- hsize_t chunk_dims_c [6]
- hsize_t chunk_dimsFields [3]
- hsize_t chunk_dimsFields_r [3]
- hsize_t chunk_dimsChi [5]
- hsize_t chunk_dimsChi_r [5]
- hsize_t offset [6]
- hsize t offsetFields [3]
- hsize_t offsetFields_r [3]
- hsize_t offsetChi [5]
- hsize t offsetChi_r [5]
- hsize_t count [6] = {1,1,1,1,1,1}
- hsize_t stride [6] = {1,1,1,1,1,1}
- hsize_t countFields [3] = {1,1,1}
- hsize_t **strideFields** [3] = {1,1,1}
- hsize_t countChi [5] = {1,1,1,1,1}
- hsize_t strideChi [5] = {1,1,1,1,1}
- · herr t status
- MPI_Info info = MPI_INFO_NULL
- complex_t tmp

2.11.1 Detailed Description

hdf module

contains HDF related routines to save and read hdf files

2.11.2 Function Documentation

2.11.2.1 hdf_create_file_c()

hdf_create_file_c

2.11.2.2 hdf_create_file_r()

hdf_create_file_r

2.11.2.3 hdf_createCheckpoint()

```
void hdf_createCheckpoint ( \label{eq:complex} {\tt COMPLEX} \, * \, h \text{,} \\ \\ {\tt int} \, \, timestep \, )
```

hdf_createCheckpoint

2.11.2.4 hdf_createChiFile_c()

hdf_createChiFile_c

2.11.2.5 hdf_createChiFile_r()

hdf_createChiFile_r

2.11.2.6 hdf_createFieldFile()

```
void hdf_createFieldFile ( )
```

FIELD FILE hdf_createFieldFile

2.11.2.7 hdf_createFiles()

```
void hdf_createFiles ( )
```

hdf_createFiles

2.11.2.8 hdf_createParamFile()

```
void hdf_createParamFile ( )
```

PARAMETER FILE hdf_createParamFile

2.11.2.9 hdf_createSaveDirs()

```
void hdf_createSaveDirs ( )
```

hdf_createSaveDirs

2.11.2.10 hdf_dumpCheckpoint()

hdf_dumpCheckpoint

2.11.2.11 hdf_dumpCheckpointReal()

hdf_dumpCheckpointReal

2.11.2.12 hdf_init()

```
void hdf_init ( )
```

INITIALIZE HDF5 hdf_init

2.11.2.13 hdf_initCheckpoints()

```
void hdf_initCheckpoints ( )
```

CHECKPOINTS hdf_initCheckpoints

2.11.2.14 hdf_initChi()

```
void hdf_initChi ( )
```

hdf_initChi

2.11.2.15 hdf_initField()

```
void hdf_initField ( )
```

hdf_initField

2.11.2.16 hdf_readData()

READ FILE hdf_readData

2.11.2.17 hdf_saveData()

```
void hdf_saveData ( \label{eq:complex} {\tt COMPLEX} \, * \, h \text{,} \\ \\ {\tt int} \, \, timestep \, )
```

hdf_saveData

2.11.2.18 hdf_saveEnergy()

hdf_saveEnergy

2.11.2.19 hdf_saveField_r()

hdf_saveField_r

2.11.2.20 hdf_saveFieldA()

 $hdf_saveFieldA$

2.11.2.21 hdf_saveFieldB()

hdf_saveFieldB

2.11.2.22 hdf_saveFieldPhi()

2.11.2.23 hdf_saveFields()

hdf_saveFieldPhi

hdf_saveFields

2.11.2.24 hdf_saveKSpec()

hdf_saveKSpec

2.11.2.25 hdf_saveMSpec()

hdf_saveMSpec

2.12 utils_mpi.c File Reference

```
mpi module
```

```
#include "utils_mpi.h"
```

Macros

- #define VERBOSE 0
- #define IO_RANK 0
- #define SUBARRAY_COUNT 1
- #define SUBARRAY_M_SIZE 1
- #define **SUBARRAY_DIMS** 6

Enumerations

• enum **DIRECTIONS** { MINUS , PLUS }

Functions

- void mpi_init ()
- void mpi_generateTopology ()
- void mpi kill ()
- void mpi_createTopology ()
- void mpi_getLocalArraySize ()
- void mpi_getLocalArrayOffsets ()
- void mpi_findHermiteNeighbours ()
- void mpi splitInRows ()
- void mpi_splitInCols ()
- void mpi initMExchange ()
- void mpi_exchangeMBoundaries (COMPLEX *input_array, COMPLEX *plus_boundary, COMPLEX *minus boundary)
- void mpi_exchangeMBoundaries_r (double *input_array, double *plus_boundary, double *minus_boundary)
- void mpi sendVector (COMPLEX *from array, COMPLEX *to buffer, int from proc, int to proc)

Variables

- · int mpi_my_rank
- · int mpi_size
- · int mpi my row rank
- int mpi_my_col_rank
- int mpi_my_coords [2]
- int mpi_dims[] = {0, 0}
- int m_neighbour_ranks [2]
- int mpi_sub_buf_size
- int mpi_sub_buf_size_r
- int * mpi_whereIsX
- int * mpi_whereIsM
- int * mpi_whereIsY
- size_t mpi_vectorSliceLength
- MPI_Comm mpi_cube_comm
- MPI_Comm mpi_row_comm
- MPI_Comm mpi_col_comm
- · MPI Datatype mpi subarray type plus
- MPI_Datatype mpi_subarray_type_minus
- MPI Datatype mpi subarray type plus r
- MPI_Datatype mpi_subarray_type_minus_r
- MPI_Datatype mpi_vector_kxSlice

2.12.1 Detailed Description

mpi module

module to generate mpi topology and other mpi related routines

2.12.2 Function Documentation

2.12.2.1 mpi_createTopology()

```
void mpi_createTopology ( )
mpi_createTopology
```

2.12.2.2 mpi_exchangeMBoundaries()

mpi_exchangeMBoundaries

2.12.2.3 mpi_exchangeMBoundaries_r()

mpi exchangeMBoundaries r

2.12.2.4 mpi_findHermiteNeighbours()

```
\begin{tabular}{ll} \begin{tabular}{ll} void & mpi\_findHermiteNeighbours & ( ) \\ \end{tabular}
```

2.12.2.5 mpi_generateTopology()

```
void mpi_generateTopology ( )
mpi_generateTopology
```

2.12.2.6 mpi_getLocalArrayOffsets()

```
void mpi_getLocalArrayOffsets ( )
mpi_getLocalArrayOffsets
```

2.12.2.7 mpi_getLocalArraySize()

```
void mpi_getLocalArraySize ( )
```

 $mpi_getLocalArraySize$

2.12.2.8 mpi_init()

```
void mpi_init ( )
mpi_init
```

2.12.2.9 mpi_initMExchange()

```
void mpi_initMExchange ( )
mpi initMExchange
```

2.12.2.10 mpi_kill()

```
void mpi_kill ( )
mpi_kill
```

2.12.2.11 mpi_sendVector()

mpi_sendVector(COMPLEX *from_array, COMPLEX *to_buffer, int to_proc)

2.12.2.12 mpi_splitInCols()

```
void mpi_splitInCols ( )
mpi_splitInCols
```

2.12.2.13 mpi_splitInRows()

```
void mpi_splitInRows ( )
mpi_splitInRows
```

2.13 variables.c File Reference

```
stores physical variables
#include "variables.h"
```

Functions

```
    void var_init ()
        initializes variables
    void var_getJ0 ()
        generates J0.
    void var_getJ1 ()
        generates J1.
    size_t var_getJIndex (size_t ikx, size_t iky, size_t is)
        returns index to get data from #var_J0 and #var_J1
    void var_varInit ()
        initializes physical variables
```

Variables

```
• struct phys_params var_var
```

```
double * var_J0
```

double * var_J1

2.13.1 Detailed Description

stores physical variables

2.13.2 Function Documentation

```
2.13.2.1 var_getJ0()
```

```
void var_getJ0 ( )
```

generates J0.

generates zeroth Laguerre moment #var_J0 of Bessel function used for gyroaveraging.

2.13.2.2 var_getJ1()

```
void var_getJ1 ( )
```

generates J1.

generates first Laguerre moment #var_J1 of Bessel function used for gyroaveraging.

Index

```
array.c, 3
                                                             diag_computeHSpectrum, 12
                                                             diag_computeKSpectrum, 12
    get_flat_c, 4
    get flat r, 4
                                                             diag computeMSpectrum, 12
    get flatIndexComplex3D, 5
                                                             diag computeSpectra, 12
    getIndChi, 5
                                                             diag_freeEnergy, 13
    getIndChiBufEL_c, 5
                                                             diag_getShells, 13
    getIndChiBufEL r, 7
                                                             diag initSpec, 13
    getIndChiBufEM_c, 7
                                                        distrib.c, 14
    getIndChiBufEM_r, 8
                                                             distrib_enforceReality, 14
                                                             distrib getG, 15
    multiply ar c, 8
    multiply ar r, 8
                                                             distrib getH, 15
                                                             distrib getXGrad, 15
cosinus
                                                             distrib_getYGrad, 16
    utils fftw.c, 36
                                                             distrib_getZGrad, 16
                                                             distrib setZeroNHalf, 16
dealiasing23
                                                        distrib_enforceReality
    utils fftw.c, 37
                                                             distrib.c, 14
diag compute
                                                        distrib_getG
    diagnostics.c, 10
                                                             distrib.c, 15
diag computeEnergy
                                                        distrib_getH
    diagnostics.c, 10
                                                             distrib.c, 15
diag_computeEnergyBalance
                                                        distrib getXGrad
    diagnostics.c, 11
                                                             distrib.c, 15
diag_computeFieldSpectrum
                                                        distrib getYGrad
    diagnostics.c, 11
                                                             distrib.c, 16
diag_computeFreeEnergy
                                                        distrib getZGrad
    diagnostics.c, 11
                                                             distrib.c, 16
diag computeFreeEnergyFields
                                                        distrib_setZeroNHalf
    diagnostics.c, 11
                                                             distrib.c, 16
diag_computeHSpectrum
    diagnostics.c, 12
                                                        equation.c, 17
diag_computeKSpectrum
                                                             equation_getLinearTerm, 18
    diagnostics.c, 12
                                                             equation getNonlinearElectromagnetic, 18
diag_computeMSpectrum
                                                             equation getNonlinearElectrostatic, 19
    diagnostics.c, 12
                                                             equation getNonlinearProduct, 19
diag computeSpectra
                                                             equation getNonlinearTerm, 20
    diagnostics.c, 12
                                                        equation getLinearTerm
diag freeEnergy
                                                             equation.c, 18
    diagnostics.c, 13
                                                        equation_getNonlinearElectromagnetic
diag_getShells
                                                             equation.c, 18
    diagnostics.c, 13
                                                        equation_getNonlinearElectrostatic
diag_initSpec
                                                             equation.c, 19
    diagnostics.c, 13
                                                        equation_getNonlinearProduct
diagnostics.c, 8
                                                             equation.c, 19
    diag_compute, 10
                                                        equation getNonlinearTerm
    diag computeEnergy, 10
                                                             equation.c, 20
    diag computeEnergyBalance, 11
    diag computeFieldSpectrum, 11
                                                        fftw c2r
    diag_computeFreeEnergy, 11
                                                             utils_fftw.c, 37
    diag_computeFreeEnergyFields, 11
                                                        fftw_c2r_chi
```

54 INDEX

utils_fftw.c, 37	fields_getBFromH
fftw_c2r_field	fields.c, 23
utils_fftw.c, 37	fields_getChi
fftw_copy_buffer_c	fields.c, 23
utils_fftw.c, 37	fields_getChiA
fftw_copy_buffer_r	fields.c, 23
utils_fftw.c, 38	fields_getChiB
fftw_copyChiBuf_c	fields.c, 23
utils_fftw.c, 38	fields_getChiPhi
fftw_copyChiBuf_r	fields.c, 23
utils_fftw.c, 38	fields_getFields
fftw_copyFieldBuf_c	fields.c, 24
utils_fftw.c, 39	fields_getFieldsFromH
fftw_copyFieldBuf_r	fields.c, 24
utils_fftw.c, 39	fields_getGradX
fftw_dealiasing	fields.c, 24
utils_fftw.c, 39	fields_getGradY
fftw_kill	fields.c, 25
utils_fftw.c, 39	fields_getPhi
fftw_normalise_chi_r	fields.c, 25
utils_fftw.c, 40	fields_getPhiFromH
fftw_normalise_data	fields.c, 25
utils_fftw.c, 40	fields_init
fftw_normalise_data_r	fields.c, 26
utils_fftw.c, 40	fields_sendF
fftw_normalise_field_r	fields.c, 26
utils_fftw.c, 40	fill_rand
fftw_r2c	init.c, 28
utils_fftw.c, 41	fill_randM0
fftw_r2c_chi	init.c, 28
utils_fftw.c, 41	fill_randSingleKM
fftw_r2c_field	init.c, 28
fftw_r2c_field utils_fftw.c, 41	init.c, 28 free_wavespace
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill	init.c, 28
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41	init.c, 28 free_wavespace space_config.c, 34
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20	init.c, 28 free_wavespace space_config.c, 34 get_flat_c
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getBFromH, 23	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getBFromH, 23 fields_getChi, 23	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getBFromH, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiB, 23 fields_getChiPhi, 23	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getBFromH, 23 fields_getChiA, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiPhi, 23 fields_getFields, 24	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 5
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiPhi, 23 fields_getFields, 24 fields_getFieldsFromH, 24	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 5 getIndChiBufEL_r
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 5 getIndChiBufEL_r array.c, 7
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradY, 25	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 5 getIndChiBufEL_r array.c, 7 getIndChiBufEM_c
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiPhi, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhi, 25	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 5 getIndChiBufEL_r array.c, 7 getIndChiBufEM_c array.c, 7
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradY, 25 fields_getPhi, 25 fields_getPhiFromH, 25	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiPhi, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhiFromH, 25 fields_getPhiFromH, 25 fields_getPhiFromH, 25 fields_init, 26	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 5 getIndChiBufEL_r array.c, 7 getIndChiBufEM_c array.c, 7
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiPhi, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhi, 25 fields_getPhiFromH, 25 fields_sendF, 26	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 8
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getAFromH, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getChiPhi, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhiFromH, 25 fields_getPhiFromH, 25 fields_getA	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 8 hdf_create_file_c
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getBFromH, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhi, 25 fields_getPhiFromH, 25 fields_getA fields_sendF, 26 fields_getA fields_getA	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 8 hdf_create_file_c utils_hdf.c, 43
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getBFromH, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhiFromH, 25 fields_getPhiFromH, 25 fields_getA fields_getA fields_getA fields_getA fields_getA fields_getA fields_getA fields_getAFromH	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 7 getIndChiBufEM_r array.c, 8 hdf_create_file_c utils_hdf.c, 43 hdf_create_file_r
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getFieldsFromH, 25 fields_getGradY, 25 fields_getPhi, 25 fields_getPhiFromH, 25 fields_getA fields_getA fields_getA fields_getA fields_getA fields_getA fields_getAFromH fields.c, 22	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 7 getIndChiBufEM_r array.c, 7 getIndChiBufEM_r array.c, 8 hdf_create_file_c utils_hdf.c, 43 hdf_create_file_r utils_hdf.c, 43
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getGradX, 24 fields_getGradY, 25 fields_getPhi, 25 fields_getPhiFromH, 25 fields_getA fields_getA fields_getA fields_getA fields_getA fields_getA fields_getAFromH fields.c, 22 fields_getB	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 7 getIndChiBufEM_r array.c, 8 hdf_create_file_c utils_hdf.c, 43 hdf_createCheckpoint
fftw_r2c_field utils_fftw.c, 41 fftw_test_fill utils_fftw.c, 41 fields.c, 20 fields_getA, 22 fields_getB, 22 fields_getBFromH, 23 fields_getChi, 23 fields_getChiA, 23 fields_getChiB, 23 fields_getFields, 24 fields_getFieldsFromH, 24 fields_getFieldsFromH, 25 fields_getGradY, 25 fields_getPhi, 25 fields_getPhiFromH, 25 fields_getA fields_getA fields_getA fields_getA fields_getA fields_getA fields_getAFromH fields.c, 22	init.c, 28 free_wavespace space_config.c, 34 get_flat_c array.c, 4 get_flat_r array.c, 4 get_flatIndexComplex3D array.c, 5 getIndChi array.c, 5 getIndChiBufEL_c array.c, 7 getIndChiBufEM_c array.c, 7 getIndChiBufEM_r array.c, 7 getIndChiBufEM_r array.c, 7 getIndChiBufEM_r array.c, 8 hdf_create_file_c utils_hdf.c, 43 hdf_create_file_r utils_hdf.c, 43

INDEX 55

utils hdf.c, 44	init fillSinc
hdf createChiFile r	init.c, 29
utils_hdf.c, 44	init_global_size
hdf createFieldFile	parameters_io.c, 31
utils hdf.c, 44	init initEnums
hdf createFiles	init.c, 29
utils hdf.c, 44	init_printParameters
hdf createParamFile	init.c, 30
utils hdf.c, 44	init_start
hdf createSaveDirs	init.c, 30
utils hdf.c, 44	IIII.C, 30
-	mpi_createTopology
hdf_dumpCheckpoint	utils_mpi.c, 48
utils_hdf.c, 45	mpi_exchangeMBoundaries
hdf_dumpCheckpointReal	. —
utils_hdf.c, 45	utils_mpi.c, 49
hdf_init	mpi_exchangeMBoundaries_r
utils_hdf.c, 45	utils_mpi.c, 49
hdf_initCheckpoints	mpi_findHermiteNeighbours
utils_hdf.c, 45	utils_mpi.c, 49
hdf_initChi	mpi_generateTopology
utils_hdf.c, 45	utils_mpi.c, 49
hdf_initField	mpi_getLocalArrayOffsets
utils_hdf.c, 45	utils_mpi.c, 49
hdf_readData	mpi_getLocalArraySize
utils_hdf.c, 45	utils_mpi.c, 49
hdf_saveData	mpi_init
utils_hdf.c, 46	utils_mpi.c, 49
hdf_saveEnergy	mpi_initMExchange
utils_hdf.c, 46	utils_mpi.c, 50
hdf_saveField_r	mpi_kill
utils_hdf.c, 46	utils_mpi.c, 50
hdf saveFieldA	mpi_sendVector
utils_hdf.c, 46	utils_mpi.c, 50
hdf saveFieldB	mpi splitInCols
utils_hdf.c, 46	utils mpi.c, 50
hdf saveFieldPhi	mpi_splitInRows
utils hdf.c, 46	utils mpi.c, 50
hdf_saveFields	multiply_ar_c
utils_hdf.c, 47	array.c, 8
hdf_saveKSpec	multiply ar r
utils hdf.c, 47	array.c, 8
hdf_saveMSpec	aa,, o
utils hdf.c, 47	parameters io.c, 30
utils_nul.c, 47	init_global_size, 31
init.c, 26	read parameters, 31
fill rand, 28	read parametersFromFile, 31
fill randM0, 28	
fill_randSingleKM, 28	RANK IO
init conditions, 28	init.c, 27
init_energySpec, 29	read_parameters
init_energySpec, 29	parameters_io.c, 31
-	read_parametersFromFile
init_initEnums, 29	parameters_io.c, 31
init_printParameters, 30	parametero_10.0, 01
init_start, 30	solver.c, 31
RANK_IO, 27	solver_getLinearDt, 32
init_conditions	solver_init, 32
init.c, 28	solver_getLinearDt
init_energySpec	solver.c, 32
init.c, 29	301V01.0, 0 L

56 INDEX

solver_init	utils_mpi.c, 47
solver.c, 32	mpi_createTopology, 48
space_config.c, 32	mpi_exchangeMBoundaries, 49
free_wavespace, 34	mpi_exchangeMBoundaries_r, 49
space_generateMSpace, 34	mpi_findHermiteNeighbours, 49
space_generateWaveSpace, 34	mpi_generateTopology, 49
space_generateMSpace	mpi_getLocalArrayOffsets, 49
space_config.c, 34	mpi_getLocalArraySize, 49
space_generateWaveSpace	mpi_init, 49
space_config.c, 34	mpi_initMExchange, 50
	mpi_kill, 50
utils_fftw.c, 34	mpi_sendVector, 50
cosinus, 36	mpi_splitInCols, 50
dealiasing23, 37	mpi_splitInRows, 50
fftw_c2r, 37	· - ·
fftw_c2r_chi, 37	var_getJ0
fftw_c2r_field, 37	variables.c, 51
fftw_copy_buffer_c, 37	var_getJ1
fftw_copy_buffer_r, 38	variables.c, 51
fftw_copyChiBuf_c, 38	variables.c, 50
fftw_copyChiBuf_r, 38	var_getJ0, <u>51</u>
fftw_copyFieldBuf_c, 39	var_getJ1, 51
fftw_copyFieldBuf_r, 39	
fftw_dealiasing, 39	
fftw_kill, 39	
fftw_normalise_chi_r, 40	
fftw_normalise_data, 40	
fftw_normalise_data_r, 40	
fftw_normalise_field_r, 40	
fftw_r2c, 41	
fftw_r2c_chi, 41	
fftw_r2c_field, 41	
fftw test fill, 41	
utils_hdf.c, 41	
hdf_create_file_c, 43	
hdf_create_file_r, 43	
hdf createCheckpoint, 44	
hdf_createChiFile_c, 44	
hdf_createChiFile_r, 44	
hdf_createFieldFile, 44	
hdf_createFiles, 44	
hdf_createParamFile, 44	
hdf createSaveDirs, 44	
hdf_dumpCheckpoint, 45	
hdf_dumpCheckpointReal, 45	
hdf_init, 45	
hdf_initCheckpoints, 45	
hdf_initChi, 45	
hdf_initField, 45	
hdf_readData, 45	
hdf_saveData, 46	
hdf_saveEnergy, 46	
hdf_saveField_r, 46	
hdf_saveFieldA, 46	
hdf_saveFieldB, 46	
hdf_saveFieldPhi, 46	
hdf_saveFields, 47	
hdf_saveKSpec, 47	
hdf_saveMSpec, 47	