Proofs that relations are in BCNF

1. **USER** relation :-

Attributes:-USER {User_ID, Pan_No., Email_ID, Name, Contact_No., Hold_Balance, Availabel_Balance, Blocked_Balance}

❖ Functional Dependencies :-

User_ID → Pan_No.

User_ID → Email_ID

User_ID → Name

User_ID \rightarrow Contact_No.

User_ID → Hold_Balance

User_ID → Availabel_Balance

User_ID → Blocked_Balance

Pan_No. → User_ID

Email_ID → User_ID

Let X = {User_ID , Pan_No. , Email_ID}

X⁺ = {User_ID , Pan_No. , Email_ID , Name , Contact_No. ,
Hold_Balance , Availabel_Balance , Blocked_Balance}

Such that **Primary Key** = {User_ID, Pan_No., Email_ID}

The left side of all the FD's in the minimal set of FD's for the relation 'USER' is {User_ID, Pan_No., Email_ID}, which is the primary Key of this relation. Such that "USER" is in BCNF.

2. **Account** relation :-

❖ Attributes:-Account {Account No, Bank Name, IFSC, User ID}

❖ Functional Dependencies :-

Account_No → IFSC

Account_No → User_ID

IFSC → Bank_Name

```
Let X = Account_No
X<sup>+</sup> = {Account_No , Bank_Name , IFSC , User_ID}
```

Such that **Primary Key = Account_No**

Here as we can see in last FD violates BCNF as determinant is not key. It also violates 3NF as last FD dependent is not prime attributes .

The above given relation is in 2NF it satisfies transitivity. To convert this into BCNF we here do "LossLess Decomposition".

Account

- Attributes:-Account {Account_No, IFSC, User_ID}
- ❖ Functional Dependencies :-Account_No → IFSC Account_No → User_ID

Bank Info

- Attributes :- Account { IFSC ,Bank_Name }
- ❖ Functional Dependencies :-IFSC → Bank_Name

Above in both relation determinant is key, such that our relation becomes in BCNF.

3. **Transactions** relation:

- Attributes:Transactions {Transaction_ID, Transaction_Time, User_ID}
- Functional Dependencies:-

Transaction_ID → Transaction_Time

Transaction_ID → User_ID

Let X = Transaction_ID X⁺ = {Transaction_ID, Transaction_Time, User_ID}

Such that **Primary Key = Transaction_ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Transactions' is Transaction_ID, which is the primary Key of this relation. Such that "Transactions" is in BCNF.

4. Bank_Wallet relation :-

❖ Attributes :-

```
Bank_Wallet { Transaction_ID , Bank_Acc_No , Amount ,
Transaction_Type}
```

❖ Functional Dependencies :-

```
Transaction_ID → Bank_Acc_No
```

Transaction_ID → Amount

Transaction_ID → Transaction_Type

Let X = Transaction_ID X⁺ = { Transaction_ID , Bank_Acc_No , Amount , Transaction_Type}

Such that **Primary Key = Transaction_ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Bank_Wallet' is Transaction_ID, which is the primary Key of this relation. Such that "Bank_Wallet" is in BCNF.

5. Wallet_Stock relation :-

Attributes:-

```
Wallet_Stock {Transaction_ID s, Stock_Symbol , Order_Type , Qty , Price , Order_ID}
```

❖ Functional Dependencies :-

```
Transaction_ID → Stock_Symbol
```

Transaction_ID → Order_Type

Transaction_ID → Qty

Transaction_ID → Price

Transaction_ID → Order_ID

```
Let X = Transaction\_ID

X^+ = \{Transaction\_ID, Stock\_Symbol, Order\_Type, Qty, Price, Order\_ID\}
```

Such that **Primary Key = Transaction_ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Wallet_Stock' is Transaction_ID, which is the primary Key of this relation. Such that "Wallet_Stock" is in BCNF.

6. Holding Histroy relation:-

Attributes:-

Holding Histroy {User_ID , Transaction_ID , To Time_Stamp , From Time_Stamp , Sold Price , Baught Price , Profit/Loss , Amount}

❖ Functional Dependencies :-

```
{User_ID , Transaction_ID} → To Time_Stamp

{User_ID , Transaction_ID} → From Time_Stamp

{User_ID , Transaction_ID} → Sold Price

{User_ID , Transaction_ID} → Baught Price
```

{User_ID , Transaction_ID} → Profit/Loss {User ID , Transaction ID} → Amount

```
Let X = {User_ID , Transaction_ID}

X<sup>+</sup> = {User_ID , Transaction_ID , To Time_Stamp , From
Time_Stamp , Sold Price , Baught Price , Profit/Loss , Amount}
```

Such that **Primary Key** = {User_ID, Transaction_ID}

The left side of all the FD's in the minimal set of FD's for the relation 'Holding History' is {User_ID, Transaction_ID}, which is the primary Key of this relation. Such that "Holding History" is in BCNF.

7. **Order** relation :-

Attributes:-

Order {Order_ID , Order_time , Stop_Price , Status , User_ID , Stock_Symbol}

❖ Functional Dependencies :-

Order_ID → Order_time

Order_ID → Stop_Price

Order_ID → Status

Order_ID → User_IDOrder_ID → Stock_Symbol

Let X = Order ID

 $X^+ = \{Order_ID , Order_time , Stop_Price , Status , User_ID , Stock_Symbol\}$

Such that **Primary Key** = Order_ID

The left side of all the FD's in the minimal set of FD's for the relation 'Order' is Order_ID, which is the primary Key of this relation. Such that "Order" is in BCNF.

8. Watchlist relation:

Attributes:-

Watchlist {User_ID, Stock_Symbol}

Here, Primary Key = {User_ID, Stock_Symbol} According to thorem, All attributes of the relation are key such that "Watchlist" is in BCNF.

9. **Holding** relation:-

❖ Attributes :-

Holding {User_ID , Stock_Symbol , Purchase_Time ,
Invested_Price , Qty}

❖ Functional Dependencies :-

{User_ID , Stock_Symbol , Purchase_Time} → Invested_Price {User_ID , Stock_Symbol , Purchase_Time} → Qty

 $\label{eq:loss_symbol} Let \ X = \{User_ID \ , \ Stock_Symbol \ , \ Purchase_Time \} \\ X^+ = \{User_ID \ , \ Stock_Symbol \ , \ Purchase_Time \ , \ Invested_Price \ , \ Qty \}$

Such that **Primary Key** = { User_ID , Stock_Symbol , Purchase_Time }

The left side of all the FD's in the minimal set of FD's for the relation 'Holding' is {User_ID, Stock_Symbol, Purchase_Time}, which is the primary Key of this relation. Such that "Holding" is in BCNF.

10. **Stocks** relation:-

- Attributes:-Stocks {Stock_Symbol, Name, Type, Highest, Lowest, Exchange, CIN}
- Functional Dependencies:-

Stock_Symbol → Name

Stock_Symbol → Type

Stock_Symbol → Highest

Stock_Symbol → Lowest

Stock_Symbol → Exchange

Stock_Symbol → CIN

Let X = Stock_Symbol

 $X^{\mbox{\tiny +}} = \{Stock_Symbol$, Name , Type , Highest , Lowest , Exchange , CIN $\}$

Such that **Primary Key = Stock_Symbol**

The left side of all the FD's in the minimal set of FD's for the relation 'Stocks' is Stock_Symbol, which is the primary Key of this relation. Such that "Stocks" is in BCNF.

11. **Stock_History** relation:-

Attributes:-

Stock_History {Stock_Symbol, Time_Stamp, Price, Open_Price, Previous Close, Inc/Dec, Volume}

❖ Functional Dependencies :-

```
\{Stock\_Symbol, Time\_Stamp\} \rightarrow Price
```

 $\{Stock_Symbol, Time_Stamp\} \rightarrow Open_Price$

{Stock_Symbol, Time_Stamp} → Previous Close

 $\{Stock_Symbol, Time_Stamp\} \rightarrow Inc/Dec$

{Stock_Symbol, Time_Stamp} → Volume

Let X = {Stock_Symbol, Time_Stamp}

 $X^+ = \{Stock_Symbol, Time_Stamp, Price, Open_Price, Previous Close, Inc/Dec, Volume\}$

Such that **Primary Key** = {**Stock_Symbol**, **Time_Stamp**}

The left side of all the FD's in the minimal set of FD's for the relation 'Stock_History' is {Stock_Symbol, Time_Stamp}, which is the primary Key of this relation. Such that "Stock_History" is in BCNF.

12. **Stock_Group** relation :-

Attributes:-

Stock_Group {Group_Name , Lowest , Highest , Price , Open Price , Close Price , Stock_Exchange}

Functional Dependencies :-

Group_Name → Lowest

Group_Name → Highest

Group_Name → Price

Group_Name → Open Price

Group_Name → Close Price

Group_Name → Stock_Exchange

Let X = Name

 $X^{\scriptscriptstyle +} = \{ Name \ , \ Lowest \ , \ Highest \ , \ Price \ , \ Open \ Price \ , \ Close \ Price \ , \ Stock_Exchange \}$

Such that **Primary Key = Group_Name**

The left side of all the FD's in the minimal set of FD's for the relation 'Stock_Group' is Group_Name, which is the primary Key of this relation. Such that "Stock_Group" is in BCNF.

13. **Stock_Group_History** relation:-

Attributes:-

Stock_Group_History {Group_Name, Time_Stamp, Inc/Dec, Open Price, Previous Close, Price}

Functional Dependencies :-

```
{Group_Name, Time_Stamp} → Inc/Dec

{Group_Name, Time_Stamp} → Open Price

{Group_Name, Time_Stamp} → Previous Close

{Group_Name, Time_Stamp} → Price
```

 $\label{eq:comp_Name} Let \ X = \{Group_Name \ , \ Time_Stamp \} \\ X^+ = \{Group_Name \ , \ Time_Stamp \ , \ Inc/Dec \ , \ Open \ Price \ , \\ Previous \ Close \ , \ Price \}$

Such that **Primary Key** = {**Group_Name**, **Time_Stamp**}

The left side of all the FD's in the minimal set of FD's for the relation 'Stock_Group_History' is {Group_Name, Time_Stamp}, which is the primary Key of this relation. Such that "Stock_Group_History" is in BCNF.

14. **MemberOf** relation :-

Attributes:-

MemberOf {Stock_Symbol , Group_Name}

Here, Primary Key = {Stock_Symbol, Group_Name} According to thorem, All attributes of the relation are key such that "MemberOf" is in BCNF.

15. Company relation:-

- ❖ Attributes:Company {CIN, Name, CEO, Market Capital, Revenue}
- ❖ Functional Dependencies :-

CIN → Name

CIN → CEO

CIN → Market_Capital

CIN → Revenue

Let X = CIN

 $X^{+} = \{CIN, Name, CEO, Market_Capital, Revenue\}$

Such that **Primary Key = CIN**

The left side of all the FD's in the minimal set of FD's for the relation 'Company' is CIN, which is the primary Key of this relation. Such that "Company" is in BCNF.

16. **Sector** relation :-

Attributes:-

Sector {Sector_Name , CIN}

Here , Primary Key = {Sector_Name , CIN}

According to thorem, All attributes of the relation are key such that "Sector" is in BCNF.

17. **IPO** relation:

Attributes:-

IPO {IPO_Name, Open_Date, CIN, Issue Price, Close Date, Lot Size, Issue Price, Minimum Invest, Listing Date}

❖ Functional Dependencies :-

IPO_Name → CIN

IPO_Name → Open_Date

IPO_Name → Issue Price

IPO Name → Close Date

IPO_Name → Lot Size

IPO_Name → Issue Price

IPO_Name → Minimum Invest

IPO_Name → Listing Date

Let $X = IPO_Name$

 $X^+ = \{IPO_Name, Open_Date, CIN, Issue Price, Close Date, Lot Size, Issue Price, Minimum Invest, Listing Date\}$

Such that **Primary Key** = {**IPO_Name**, **Open_Date**}

The left side of all the FD's in the minimal set of FD's for the relation 'IPO' is { IPO_Name, Open_Date }, which is the primary Key of this relation. Such that "IPO" is in BCNF.

18. **News** relation:-

- ❖ Attributes :-News {CIN , Title , Description}
- ❖ Functional Dependencies:-{CIN, Title} → Description

Let X = {CIN, Title} X⁺ = {CIN, Title, Description}

Such that **Primary Key** = {**CIN**, **Title**}

The left side of all the FD's in the minimal set of FD's for the relation 'News' is {CIN, Title}, which is the primary Key of this relation. Such that "News" is in BCNF.