А.1.3. Описание случайных величин

Выполнил Лапин Ярослав. 18/05/2011.

Лирическое отступление

Так как в matlab 7.12 отсутствует функция d_{gauss} , то в скрипте нужно было заменить d_{gauss} на normpdf

Биномиальное распределение

График представляет какая вероятность получить m успешных испытаний при n попытках и вероятности успеха p.

Зависимость от п.

Зависимость от р.

Распределение при n=1 является распределением Бернулли. При больших n распределение совпадает с нормальным распределением c мат ожиданием np и дисперсией np(1-p). Кроме того для фиксированного числа $\lambda <= n$ и большого n распределение n вероятностью n0 совпадает n0 распределением Пуассона n1 параметром n2.

χ^2 распределение

 χ^2 распределение с k степенями свободы это сумма квадратов (независимых) нормальных распределений.

При k=2, распределение совпадает с экспоненциальным распределением. При $n\to\infty$ распределение совпадает с нормальным распределением с мат. ожиданием k и дисперсией 2k.

Нормальное распределение

Figure 1: N(0,1)

Figure 2: N(0,3)

Figure 3: N(3,1)

Нормальное распределение для различных значений мат. ожидания и дисперсии.

Распределение Пуассона

Распределение Пуассона $P(\lambda)$ имеет мат. ожидание и дисперсию λ (поэтому с увеличением λ увеличивается и "ширина" распределения, и как следствие уменьшение "высоты"). Распределение визуально очень схоже с нормальным начиная с довольно малых значений λ .

Распределение Стьюдента

Распределение Стьюдента с n степенями свободы получается как $\frac{Y_0}{\sqrt{\frac{1}{n}\sum_{i=1}^n Y_n^2}}$, где Y_n это независимые нормальные распределения. Мат ожидание 0, n > 1, дисперсия n/(n-2), n > 2

Распределение симметрично, дисперсия стремится к 1 и как следствие распределение стремится к нормальному с увеличением n. При n = 1, 2 формулы для дисперсии дают заведомо "странные" результаты (корень из -1 в первом случае и деление на ноль во втором).

Равномерное распределение

Случайная величина может принимать с равной вероятностью $(\frac{1}{b-a})$ любое значение в отрезке [a,b] и вне его вероятность 0.

Мат. ожидание $\frac{a+b}{2}$, дисперсия $\frac{(a-b)^2}{12}$.

Двумерное нормальное распределение

Распределение от переменных x и y называется нормальным, если для каждого фиксированного значения одной переменной распределение соответствующего значения другой переменной будет нормальным.

Матрица ковариации содержит дисперсии величин (диагональные элементы) и коэффициенты корреляции.

2-D Gaussian density function

m1 = 0, m2 = 0; d1 = 1, d2 = 3; r12 = 0.95, r21 = 0.95

figure 1, d2 = 3; r12 = 0.95, r21 = 0.95

x probability density

Изменение мат. ожидания просто смещает всю картину так, что максимум будет находиться в точке с координатами с соответствующими значениям мат. ожидания. При корреляции 0, величина дисперсии будет увеличивать "ширину" распределения соответствующей координаты независимо от другой. Положительная корреляция "вытягивает" распределение при d1=d2 вдоль прямой y=x, а отрицательная вдоль y=-x. В случае $d1\neq d2$ распределение "вытянуто" вдоль прямой, угол между которой меньше с той осью, на которой больше дисперсия.