

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

VIGILADA MINEDUCACIÓN - SNIES 1732

Solución de ecuaciones No lineales

Solución de Ecuaciones No Lineales

MÉTODOS CERRADOS

Son aquellos que tienen en cuenta que la función cambia de signo alrededor de una raíz.

- 1. El método gráfico.
- 2. Métodos iterativos (bisección)
- 3. Método de la falsa posición

El método de la bisección es una técnica válida para determinar raíces. Sin embargo la forma de aproximación a la "fuerza" es relativamente ineficiente.

La falsa posición es un método que se basa en visualización gráfica.

Este método se basa en visualización gráfica y consiste en unir f(x1) y f(x2) con una línea recta. El punto donde se cruza la línea con el eje de las x, representa una mejor aproximación de la raíz.

Como se "reemplaza" la curva por una recta, se indica que se obtiene una "falsa posición" de la raíz; de ahí surge el nombre de **método de la falsa posición**. También es llamado el **método de interpolación lineal**.

El valor de la intersección se calcula de la siguiente manera:

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u}$$

Y al despejar x_r, se obtiene:

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Si tuviéramos dos puntos a y b, encontrar el valor de c:

$$m = \frac{f(b) - f(a)}{b - a} \qquad m = \frac{0 - f(b)}{c - b}$$

Se tienen dos puntos (a, f(a)) y (b, f(b))

Se tienen dos puntos (c, 0) y (b, f(b))

Igualando, tenemos:

$$\frac{f(b) - f(a)}{b - a} = \frac{0 - f(b)}{c - b} \implies c = b - \frac{f(b)(b - a)}{f(b) - f(a)}$$

El valor de x_r que se calculó, va a reemplazar a cualquiera de los valores iniciales x_l o x_u .

Es así, como los valores de los puntos iniciales siempre van a encerrar a la verdadera raíz.

Este proceso se repite hasta que se obtenga una aproximación a la raíz que sea adecuada.

La convergencia del método ocurre según lo siguiente:

- Si f (x_l) y f (x_r) tienen signos opuestos, un cero descansa entre $[x_l, x_r]$.
- Si f (x_r) y f (x_u) tienen signos opuestos, un cero descansa entre $[x_r, x_u]$.
- Si f $(x_r) = 0$, entonces el cero está en x_r .

La convergencia del método ocurre según lo siguiente:

- Si f (x_l) y f (x_r) tienen signos opuestos, un cero descansa entre $[x_l, x_r]$.
- Si f (x_r) y f (x_u) tienen signos opuestos, un cero descansa entre $[x_r, x_u]$.
- Si f $(x_r) = 0$, entonces el cero está en x_r .

Ejemplo:

Utilice el método de la falsa posición para determinar el coeficiente de arrastre c necesario para que un paracaidista de masa m = 68.1 kg tenga una velocidad de 40 m/s después de una caída libre de t = 10 s. Nota: La aceleración de la gravedad

es 9.8 m/s². Iniciar entre los puntos $x_1 = 12$ y $x_u = 16$.

$$g = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$f(c) = \frac{gm}{c} (1 - e^{-(c/m)t}) - v$$

$$X_1 = 12$$

$$f(12) = (9 \cdot 8) (68 \cdot 1) (1 - e^{-(12/68 \cdot 1) \cdot 10}) - 40$$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$f(c) = \frac{gm}{c} (1 - e^{-(c/m)t}) - v$$

$$X_1 = 12$$

$$f(12) = (9 \cdot 8) (68 \cdot 1) (1 - e^{-(12/68 \cdot 1) \cdot 10}) - 40$$

$$f(12) = f(x_1) = 60699$$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$f(c) = \frac{gm}{c} (1 - e^{-(c/m)t}) - v \qquad f(x_1) = 6,0699$$

$$f(x_0) = F(16) = (9.8)(68.1)(1 - e^{-(16/68.1)10}) - 40$$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$f(c) = \frac{gm}{c} (1 - e^{-(c/m)t}) - v \qquad f(x_1) = 6,0699$$

$$f(x_0) = F(16) = (9.8)(68.1)(1 - e^{-(16/68.1)10}) - 40$$

$$f(x_0) = -2,2688$$

Ejemplo:

$$g = 9.8$$

 $m = 68.1$
 $t = 10$
 $V = 40$

$$x_{r} = x_{u} - \frac{f(x_{u})(x_{l} - x_{u})}{f(x_{l}) - f(x_{u})}$$

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

$$f(x_1) = 6,0699$$

 $f(x_0) = -2,2688$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

$$X_r = 14,9113$$

$$f(x_1) = 6,0699$$

 $f(x_0) = -2,2688$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $V = 40$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

$$c$$
 (1 c) c

$$X_r = 14.9113$$

 $f(X_r) = (9.8)(68.1)(1-e^{-(14.9113/67.1)10}$
 $f(X_r) = (9.8)(68.1)(1-e^{-(14.9113/67.1)10})$

$$f(x_1) = 6,0699$$

$$f(x_0) = -2,2688$$

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$f(c) = \frac{gm}{c} (1 - e^{-(c/m)t}) - v$$

$$f(x_t) = 6,0699$$

$$f(x_t) = -2,2688$$

$$X_r = 14,9113$$
 $f(X_r) = (9.8)(68.1)(1-e)$
 $f(X_r) = -0,254$
iSiempre liste

Ejemplo:

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$f(x_4) = 6,0699$$

 $f(x_0) = -2,2688$
 $X_1 = 14,9113$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Ejemplo:

Calcule la raíz de la función, utilizando el método de la bisección y de la falsa posición.

$$f(x) = x^{10} - 1$$

entre $x = 0$ y 1.3.

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Ejemplo:

Calcule la raíz de la función, utilizando el método de la bisección y de la falsa posición.

$$f(x) = x^{10} - 1$$

entre $x = 0$ y 1.3.

		BISEC						
iteración	punto inicial (xI)	punto medio (xr)	punto fin	f(xI)	f(xr)	f(xu)	ea	et
1	0	0,65	1,3	-1	-0,9865	12,7858		
2	0,65	0,975	1,3	-0,9865	-0,2237	12,7858	33,33	
3	0,975	1,1375	1,3	-0,2237	2,62672	12,7858	14,29	
4	0,975	1,05625	1,1375	-0,2237	0,72849	2,62672	7,69	
5	0,975	1,015625	1,05625	-0,2237	0,16771	0,72849	4,00	
6	0,975	0,9953125	1,01563	-0,2237	-0,0459	0,16771	2,04	
7	0,9953125	1,00546875	1,015625	-0,0459	0,05605	0,16771	1,01	
8								
9								
10								

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Ejemplo:

Calcule la raíz de la función, utilizando el método de la bisección y de la falsa posición.

$$f(x) = x^{10} - 1$$

entre $x = 0$ y 1.3.

		FALSA POSICIÓN						
iteración	punto inicial (xI)	punto medio (xr)	punto fin	f(xl)	f(xr)	f(xu)	ea	et
1	0	0,094	1,3	-1	-1,000	12,7858		
2	0,094	0,182	1,3	-1	-1	12,7858	48,12	
3	0,182	0,263	1,3	-1	-1	12,7858	30,86	
4	0,263	0,338	1,3	-1	-1	12,7858	22,25	
5	0,338	0,408	1,3	-1	-0,9999	12,7858	17,11	
6	0,408	0,473	1,3	-0,9999	-0,9994	12,7858	13,69	
7	0,473	0,533	1,3	-0,9994	-0,9982	12,7858	11,26	
8	0,533	0,588	1,3	-0,9982	-0,995	12,7858	9,45	
9	0,588	0,640	1,3	-0,995	-0,9886	12,7858	8,04	
10	0,640	0,687	1,3	-0,9886	-0,9766	12,7858	6,90	

Referencia bibliográfica

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja