これからの仮説検証・モデル評価

ベイズ塾 北條大樹 東京大学 D1・日本学術振興会(DC1)

名前:北條大樹

所属: 東京大学 教育学研究科 教育心理学コース D1

研究室:心理統計学研究室(指導教員:岡田謙介)

研究関心:ベイズ統計学・心理統計学・数理心理学

HP: https://dastatis.github.io/index.html

OSF: osf.io/7d9zw

Github: https://github.com/dastatis

Twitter: @dastatis

・心理学者におけるベイズ統計について

- 事後分布が出てくるまで
 - ・事前分布について
 - どうやってデータ生成メカニズムを考えるのか?

・事後分布の取り扱い方

- 事後分布の点要約
- 事後分布の区間要約

・これからの仮説検証・モデル評価

- 我々はどちらに興味があるのか?
- 周辺尤度 + α
- 事後予測チェックについて
- •情報量規準について

第1部 心理学者における ベイズ統計について

~ 事後分布がでてくるまで ~

Big Picture for Bayesian inference

Figure 1.1: Framework of Bayesian inference. The procedure of Bayesian estimation is shown. A sample X^n is taken from unknown true distribution q(x). A statistician sets a statistical model and a prior, then the posterior density $p(w|X^n)$ is obtained. The true distribution q(x) is estimated by a predictive density $p(x|X^n)$, whose accuracy is evaluated by using mathematical laws.

Watanabe (2018) P.4 Figure 1.1 \sharp 0 \sharp 1 \sharp 1 mathematical laws.

心理学者の統計分析

•調査データ・・・項目回答データ

ID	Q1	Q2	Q3
1	5	2	3
2	2	1	1
3	3	2	4

- ・カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

• 実験データ・・・反応時間(RT)データ

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

- ・平均RTは?
- ・2条件で差がある?

等々

ID	Q1	Q2	Q3
1	5	2	3
2	2	1	1
3	3	2	4

- カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

・実験データ・・・反応時間(RT)データ

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

- ・平均RTは?
- ・2条件で差がある?

等々

・データ生成過程を考える

調査データ…項目回答データ

ID	Q1	Q2	Q3
1	5	2	3
2	2	1	1
3	3	2	4

- ・カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

実験データ・・・反応時間(RT)データ

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

- ・平均RTは?
- ・2条件で差がある?

等々

・モデルを考える

調査データ・・・項目回答データ

ID	Q1	Q2	Q3
1	5	2	3
2	2	1	1
3	3	2	4

- カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

実験データ・・・反応時間(RT)データ

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

- ・平均RTは?
- ・2条件で差がある?

等々

モデルとは、尤度関数と事前分布を考えることに相当

・そして、パラメータ推定へ

•調査データ・・・項目回答データ

ID	Q1	Q2	Q3
1	5	2	3
2	2	1	1
3	3	2	4

- ・カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

・実験データ・・・反応時間(RT)データ

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

- ・平均RTは?
- ・2条件で差がある?

等々

データ生成を表現したベイズモデル

まとめ

- いままでの心理学は、得られたデータを統計分析
- これからの心理学は、データ生成メカニズムを考えたモデル
- → もちろん、ベイズ統計は、どちらにも対応できる

調査データ・・・項目回答データ

Q1	Q2	Q3
5	2	3
2	1	1
3	2	4
	5 2	5 2 2 1

- ・カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

 \Rightarrow

- ・平均RTは?
- ・2条件で差がある?

等々

知らぬ間に仮定

t検定モデル・分散分析モデル

仮定を設定する必要

拡散モデル・項目反応モデル

事後分布がでてくるまで

パラメータ推定の文脈で、我々の興味のあるパラメータ8の不確かさを観測データyから求めるとき

事後分布 尤度 事前分布
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$
 周辺尤度

と表す

• しかし、実際はMCMC等で事後分布を導出するので

事後分布 尤度 事前分布

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

* ∝…は比例を表す

必要なのは、**尤度と事前分布**のみ

Next 事前分布をどうやって選ぶ? →

・事前分布の選択方法は、2種類ある(私論)

特徴: モデルに**必要な**仮定を、

事前分布に取り組む

イメージ: 良いと思う仮定を

加えていくスタイル

相性:〇 データ生成メカニズ

ムを考えたモデル

→ 分析者がデータ生成メカニズムをモデルに柔軟に表現できるため

自由な事前分布

ブラックリストベイジアン

特徴: モデルに不適切な仮定を、事前分布から除く

イメージ: 不適切な仮定を除いていくスタイル

相性:〇得写机定于一夕を統計分析

→ 強く制約された仮定のも とで、モデルの一部を検討 するため

≠無情報事前分布

- ホワイトリストベイジアンの考え方
 - ・得られたデータの生成メカニズムを考えるならば、○○という仮定を置くことにしよう
 - → 論文ではこれを客観的に説明する。
 - ex) 成人男性の身長の事前分布
 - × 0-∞(限りなく広い正)の範囲の一様分布
 - 1.65m(成人男性の平均身長)を平均とする正規分布
 - ・データ生成メカニズムを考えたモデルのパラメータ推定がうまくいかないため、推定可能となるような事前分布を設定する
 - ⇒ 論文では、モデルの仮定の一つとして上記の事前分布を置いたことを説明し、モデルの挙動を正確に記述する。また、分析を再現可能な形として論文とともに提出し、査読を受ける。論文化される場合、分析コードを公開する。現段階でモデルの最善を尽くした結果、このような仮定(事前分布)のモデルになった
 - → これによって、別の研究者がそのコードに基づいて再現、改良を加えることができる、もしくは、計算技術の向上等で、より自然な仮定のモデルが誕生。**当該領域の研究の発展につながる**

- ブラックリストベイジアンの考え方
 - ・得られたデータの生成メカニズムを考えるならば、○○という仮定は不 適切だから取り除こう
 - ⇒ 誰もが納得するような事前分布をまずは設定する
 - ex) 成人男性の身長の事前分布
 - × 0-∞(限りなく広い正)の範囲の一様分布
 - 1.2 2mの範囲の一様分布(身長が2m以上の人は稀だから)
 - ・得られたデータを統計分析では、モデルの一部分について興味があることが多いので、細かいところまで事前分布をきっちり設定
 - → ダメダメ式で事前分布を設定
 - ex) 2つの群のある指標の平均得点の差を検討したい 群間の平均得点の差といったモデルの一部にしか興味がない そのデータがどのような群(分布)から生成されたかは興味が無い
 - →この部分に関しては、既存の分析の仮定を流用する

研究目的に応じて、適切に使い分けるべき

- •**事後分布**を導出するためには、**尤度と事前分布**が必要
 - 事前分布の設定をどうすべきか?
 - → あなたの研究目的は?何が知りたい?
 - 今回の研究では、ホワイトリストベイジアンになるのか、ブラックリストベイジアンになるのか?又はその中間で行くのか(オフホワイトw)
- 事後分布を導出するためには(再掲)

事後分布 尤度 事前分布 $p(\theta|y) \propto p(y|\theta)p(\theta)$

Next データ生成(尤度の部分)をどうやって考えていく?

- ・得られたデータを統計分析
- → 既にモデルが定まっていることが多い
- データ生成メカニズムを考えたモデル
- ➡ 既存のモデルをベースを元に自分組み立てて行く

- それは、午後のセッションをお楽しみに!(・∀・)ハァハァ
 - 13:30 発表3. ベイズモデリングの実践例
 - 1. 認知心理学への実践 「データ生成メカニズムのベイズモデリング」 武藤拓之 (大阪大学/日本学術振興会特別研究員)
 - 2. 臨床心理学への実践 「妄想の認知モデル」 杣取恵太 (専修大学)
 - 3. 社会心理学への実践 「ベイズモデリングで見る因子構造」 難波修史 (広島大学/日本学術振興会特別研究員)
 - 4. 教育心理学への実践 「ベイズモデリングによる第2種信号検出モデルの表現」 山根嵩史(川崎医療福祉大学)
 - 5. 青年心理学への実践 「AR法は心理学研究に受け入れられるのか」 ゲスト:豊田秀樹(早稲田大学)
- ・熟練のベイジアンモデラーによる心理学実践例を見ることが できます

- データ生成メカニズムを考えたモデルのために何を?
 - ・データをあらゆる視点から眺める
 - → 眺めるとは、単純な可視化・記述統計・相関を算出すること データがどのような形状(分布)なのか?(属性別・個人別にも出してみる)

ヒストグラム・散布図を描く

- ・データがどのような環境・背景・人物・時間で取れたのか
- → 他に使えそうなデータを捨ててしまった or 取りこぼしていないか? 実験デザイン・調査デザイン全体を通したデータが得られるまでの過程 を隅々まで追求する

本来、統計分析は事前にやることがたくさん これからの仮説検証・モデル評価には

これらが非常に重要になってくる

*ベイズか否かは、ここではあまり関係ない

第2部 事後分布の取り扱い方

~ 事後分布がでてから ~

ここまで

事後分布 尤度 事前分布

 $p(\theta|y) \propto p(y|\theta)p(\theta)$

- 事前分布と尤度を設定し、パラメータ推定を実施
- 事後分布を得ることができた *収束していることにします
- 事後分布を可視化(重要)

- まずは確認する
 - ・左右対称? → 左右対称には見えない
 - ・単峰性? ➡ 単峰性だが、左に少し山がある
- この事後分布をどうやって、報告する?

- •一つの統計量に要約する
 - MAP推定値···事後分布の確率密度が最も高い値
 - ・MED推定値···事後分布の中央値
 - EAP推定値(事後平均値)・・・事後分布の平均値
- どれを報告すればよい? → 最良のものはない

事後分布を点要約するために

- MEDとEAPは左に引き寄せられている
 - 分布の端の情報の影響を受けている
 - →分布の端の情報も反映していると考えることができる

- ·信用区間(Credible Interval)
 - HPDI (Highest Posterior Density Interval)
 - ⇒ 事後分布全体の確率密度の高い区間
 - PI (Percentile Interval)
 - → 事後分布の両側から同じ%分を除いた区間

事後分布を区間要約するために

HPDI (Highest Posterior Density Interval)

95%HPDI Lower	95%HPDI Upper
-2.76	8.10

事後分布を区間要約するために

• HPDI	95%HPDI Lower	95%HPDI Upper
	-2.76	8.10

まとめ

- ・事後分布を点・区間要約するには?
 - ・点であれば、MAP/MED/EAP推定値というまとめ方がある
 - MED/EAPは、分布が左右非対称の場合、分布の端の情報を 反映させることができる
 - 報告の際に、余裕があるのであれば全て報告した方が良い?
 - •大体一致しているならば、その旨を書いても良いかも
 - ・区間であれば、同じ信用区間という呼び名でも2種類 (HPDIとPI)ある
 - 報告の際は、どちらの信用区間なのか記述すべき
 - もし、二つの区間幅の違いが大きいようであれば、そもそも 区間要約は適切ではないかもしれない(Robert, 2017)

要約は便利でわかりやすいが、 事後分布の大事な情報を削りすぎないよう注意が必要 可能な限り事後分布を報告 (付録や補足資料としてOSF等にUP)

第3部 これからの仮説検証・モデル評価

~ 複数のモデルで事後分布を算出したら ~

突然ですが、 あなた知りたいことは現象の 当てはまり?予測?

反応時間をとる実験 あなたの興味があるのはどちらですか?

- ・参加者が次の試行でも同じ反応をするか
- ・参加者がこの試行で反応した現象について

質問紙調査 あなたの興味があるのはどちらですか?

- ・参加者が次の項目でも同じ反応をするか
- ・参加者がこの項目に回答した理由

Figure 1.1: Framework of Bayesian inference. The procedure of Bayesian estimation is shown. A sample X^n is taken from unknown true distribution q(x). A statistician sets a statistical model and a prior, then the posterior density $p(w|X^n)$ is obtained. The true distribution q(x) is estimated by a predictive density $p(x|X^n)$, whose accuracy is evaluated by using mathematical laws.

Watanabe (2018) P.4 Figure 1.1 & D IIII

(公式: https://www.taylorfrancis.com/books/9781482238082)

Figure 1.1: Framework of Bayesian inference. The procedure of Bayesian estimation is shown. A sample X^n is taken from unknown true distribution q(x). A statistician sets a statistical model and a prior, then the posterior density $p(w|X^n)$ is obtained. The true distribution q(x) is estimated by a predictive density $p(x|X^n)$, whose accuracy is evaluated by using mathematical laws.

Watanabe (2018) P.4 Figure 1.10 $\partial J = 0$ ($\Delta \pi$): https://www.taylorfrancis.com/books/9781482238082)

*ここでの当てはまりは

*当てはまりの該当箇所

(公式: https://www.taylorfrancis.com/books/9781482238082)

はイメージです Figure 1.1: Framework of Bayesian inference. The procedure of Bayesian estimation is shown. A sample X^n is taken from unknown true distribution q(x). A statistician sets a statistical model and a prior, then the posterior density $p(w|X^n)$ is obtained. The true distribution q(x) is estimated by a predictive density $p(x|X^n)$, whose accuracy is evaluated by using mathe-Watanabe (2018) P.4 Figure 1.1のみ引用 matical laws.

*ここでの当てはまりは 手元のデータと モデルとの当てはまり *当てはまりの該当箇所 はイメージです

周辺尤度+α

Watanabe (2018) P.4 Figure 1.1のみ引用

(公式: https://www.taylorfrancis.com/books/9781482238082)

当てはまり評価につながる周辺尤度+α

・周辺尤度つて何?

- ベイズの定理の分母の部分
 - MCMC等での事後分布の導出には、尤度と事前分布があればよかった ので使ってなかった
- 現在のデータとモデルの当てはまりを表す周辺尤度+αとは? 自由エネルギーのこと → 周辺尤度から計算できる *自由エネルギーって何?
 - →これは、いろいろ端折ると真の分布と確率モデルの近さを表す
- ・複数のモデルにおける自由エネルギーを比較することで 現在のデータとモデルの当てはまりを評価できる ここら辺の
- → 心理学現象の解釈につながる

詳しい話は <u>清水先生の資料</u>へ

自由エネルギーを算出した

・3つのモデルの自由エネルギーをそれぞれ算出した

	モデル1	モデル2	モデル3
自由エネルギー	-500	-600	-10000

- •自由エネルギーは相対指標なので、いくつ以下になるとOKみたいなものはない!
 - 上に示しているのは例であり、これより大きくなることも小さくなることも当然ある
- 論文にするならば、以下のように解釈できる
- 3つのモデルの自由エネルギーを比較するとモデル3が最も 低いので、ほかの2つよりも、現在のデータから得られたモ デルと真のモデルが近いと解釈できる

• 今回は3つのモデルを比較した

モデル1

モデル2

モデル3

自由エネルギー

-500

-600

-10000

- 検討していない第4のモデルの自由エネルギーを算出したら -10000000かもしれない
- ・モデルは常に間違っていると前提しておく
- ・今のモデルが正しいことをチェックするのではなく, 観測 データをどれだけ記述できていないかを考える(Robert, 2017)

・Next 周辺尤度とベイズファクターについて →・二つのモデルを比較するならば...

周辺尤度とベイズファクター

• 二つのモデル(m=2)の比較を考える

$$p(M_1|y) = \frac{p(y|M_1)p(M_1)}{\sum_{j=1}^{m} p(y|M_j)p(M_j)} \qquad p(M_2|y) = \frac{p(y|M_2)p(M_2)}{\sum_{j=1}^{m} p(y|M_j)p(M_j)}$$

• 式の分母が等しいので、くっつけて整理(オッズで表す)

事後オッズ ベイズファクター 事前オッズ

$$\frac{p(M_1|y)}{p(M_2|y)} = \frac{p(y|M_1)}{p(y|M_2)} \times \frac{p(M_1)}{p(M_2)}$$
 ベイズファクター
=周辺尤度の比

• 次のようにも

ベイズファクター
$$BF_{12} = \frac{p(y|M_1)}{p(y|M_2)} = \frac{\frac{p(M_1|y)}{p(M_2|y)}}{\frac{p(M_1)}{p(M_2)}}$$
事前オッズ

ベイズファクターとは、データによって与えられたモデルM2に比してモデルM1を支持する程度(オッズ)の変化を表す

ベイズファクターを求める

- モデル(仮説) 1 とモデル(仮説) 2 を用意して、比較を行った
- すると $BF_{12} = 3$ と求まった。これはどういう意味だ
 - ・現在得られたデータはモデル2より、モデル1のほうが3倍 上手に表現できる(あってる?)
- ・このように、2つのモデル比較を事前オッズと事後オッズ比で 考えることができる
- Nullモデルを用意して、検定っぽく比較することもあります
 - これに関連して、詳細を知りたい人はSavage-Dickey法な どと併せて、検索してみてください(怖い人本等)へ
- ただ、ベイズファクターは比なので、片方のモデルがおかしいと、とても大きな影響を受ける
- ➡事前分布等の影響を大きく受ける(後述)

- 周辺尤度を算出する
- 自由エネルギー or ベイズファクターをもとめる

- じゃあ、なんでこんなに便利なのに今まで使われなかったのか?
 - 周辺尤度を算出するのが大変だった(心理学者は特に)
 - 心理学で事前分布に関する議論が(あまり)行われなかった

これまでの周辺尤度事情

・周辺尤度を計算できないケースが多かった

どんなケースで計算が難しかったのか?

- ・非線形モデル
- •パラメータ数が多い場合(特に階層モデル)
- ・しかし、近年、周辺尤度を計算できない時代は終わりを告げようとしている
 - 1. Naive Monte Carlo Estimator
 - 2. Importance Sampling Estimator
 - 3. Generalized Harmonic Mean Estimator
 - 4. Bridge Sampling
 - 5. WARP-III bridge sampling or WARP-U bridge sampling

周辺尤度の弱点をどうするか

- ・周辺尤度は事前分布の影響を大きく受ける
 - 事前分布の選択がとても重要になる
 - どこまでホワイトリストベイジアンで、どこまでブラックリストベイジアンでいくのか?
 - <u>清水(2018)</u>は、心理学者も真剣に事前分布を考える時だと提言
 - Farrell & Lewandowsky (2018)では、心理学者がベイズファクター使用する際の事前分布をどうすべきか解説
 - →曖昧な事前分布はかえって、ベイズファクターに悪影響
 - →ベイズファクターがすべてのモデル比較を解決するわけではない
 - →ベイズファクターの基準を決めて判断するのはナンセンス

*ここでの当てはまりは 手元のデータと モデルとの当てはまり *当てはまりの該当箇所 はイメージです

事後予測分布

周辺尤度+α

Watanabe (2018) P.4 Figure 1.1のみ引用

(公式: https://www.taylorfrancis.com/books/9781482238082)

45

Robert (2017)を参考に作成

事後予測分布の扱い方

- ・事後予測分布と実際のデータの分布を比較してみる
- 大きな相違がなければ、今回のベイズモデルの予測がきちんとできていることを表す

Next 事後予測分布以外の予測について検討する方法 情報量基準の話➡ • WAICやLOOという情報量基準によって、将来予測の観点から モデルを評価することができる。

・WAICって何?

- とても省略して書くと、AICの改良の改良版
- AICは、複雑すぎるモデルが"良い"モデルとされないために罰則を付加
- **→**しかし、**この計算には最尤推定値が用いられている**
- ベイズでいうと、MAP推定値が用いられていることを指す
- ここで、事後分布の点要約の話を思い出そう
- MAP推定値は事後確率密度の高いところ表現する代わりに、ゆがんだ分布がと分布の端の情報を考慮できない
- ⇒では、計算に事後平均値(EAP)を使ってやろう!ってのがDIC

しかし、ベイズの本質を改めて思い出してほしい ベイズでは、事後分布に全ての情報が込められている

→事後分布の各点の値を用いて、計算を行おう!ってのがWAIC

*注:DICもWAICも 罰則項も変化している

情報量基準つづき

- •LOOって何?(LOOは、PSIS-LOO,LOO-CVとも呼ばれる)
 - 正式名称は

Pareto Smooth Importance Sampling – Leave One Out – Cross Validation

- やっていることは、PSISというすごいアルゴリズムに基づいて、データを1つとって、それを残りのデータで予測できるかをすべての組み合わせで繰り返す
- WAICとLOOは近い値になる。そういう性質がある

- 予測に興味がある?当てはまりに興味がある?
- 当てはまりなら、周辺尤度を考えることが非常に重要になってくる
 - 自由エネルギーやベイズファクターとお友達になろう
 - 適切な事前分布の選択が必要になる
- 予測なら、事後予測分布を書いてみるのが大事
 - また、別の方法として情報量規準による方法もある
 - 基本的にこれらの指標は相対的な指標である
- ・どんなモデルチェックやモデル比較にも有効な手段は存在しない。状況に応じて方法を変える必要あり
 - そのために引き出しを増やそう

モデル比較で決めるよりも試行錯誤を繰り返して "素晴らしい"モデルを作ろう

心理学者が ベイジアンになるためのツール

- いままでの心理学は、得られたデータを統計分析
- これからの心理学は、データ生成メカニズムを考えたモデル
- → もちろん、ベイズ統計は、どちらにも対応できる

•調査データ・・・項目回答データ

Q1	Q2	Q3
5	2	3
2	1	1
3	2	4
	5 2	5 2 2 1

- ・カットオフを超えた?
- ・平均得点は?
- ・2群で差がある?

等々

・実験データ・・・反応時間(RT)データ

ID	条件	RT
1	1	3.25
1	2	4.17
2	1	3.36
2	2	4.01

- ・平均RTは?
- ・2条件で差がある?

等々

知らぬ間に仮定

t検定モデル・分散分析モデル

仮定を設定する必要

拡散モデル・項目反応モデル

- いままでの心理学は、得られたデータを統計分析
- → こちらから始めるのが楽
- これからの心理学は、データ生成メカニズムを考えたモデル
- → ベイズの雰囲気がわかってきたらこっち/別に初めからでも

- どう始める?
- ・得られたデータを統計分析 ⇒ JASP
- → 最後にこのお話と実践
- ・データ生成メカニズムを考えたモデル ⇒ brms / JAGS / Stan
- → こちらを学びたい人は、関連書籍や午後の話を参考にしてね

A Fresh Way to Do Statistics

FREE

JASP is an open-source project supported by the University of Amsterdam.

FRIENDLY

JASP has an intuitive interface that was designed with the user in mind.

FLEXIBLE

JASP offers standard analysis procedures in both their classical and Bayesian form.

JASPとは?

- JASPは、統計解析を行うための新たな"方法"(ソフト)である。
 - ・完全無料
 - ・オープンソース
 - ・クロスプラットフォーム
- 見やすい画面、そして、ドラッグ&ドロップ操作で簡単に統計 分析できる
- JASPは、ANOVAや回帰分析のような古典的分析だけでなく、 それらのベイズ統計分析も実施することができる
- →モデリングはできない
- まだ誕生したばかり。開発が盛ん(すぎて資料作りに困った)

なぜJASPを使うのか?

・多くの利点

- SPSSのような商用パッケージと比較して、JASPは無料で、オープンソースで、開発が盛ん、そして、パラメータ推定法としてベイズ法を使える。
- Rのようなフリーパッケージと比較しても、ドラッグ&ドロップで簡単 に操作できる。プログラミング能力を必要としない。
- その他の全てのパッケージと比べて、JASPは基本となる分析を古典的 かつベイズ的に実行することができる。
- Windows/Mac/Linux の全てで使用することが可能である。

より

- JASPって何の略?
 - Jeffereys's Amazing Statistics Program
 - Bayesian pioneer Sir Harold Jeffreysが驚愕の統計プログラム
- JASPって何のプログラミング言語で書かれているの?
 - アプリケーション自体はC++で書かれている。
 - 分析は、RとC++のどちらもで書かれている(R packageも導入済)。
 - ・その他、ソフト外観でjavascriptも使用されている。
- どのライセンスでJASPは公開されているのか?
 - The GNU Affero General Public License, Version 3

JASPで可能な分析・処理

Frequentist Analyses

ANCOVA

ANOVA

Binomial Test

Contingency Tables

Correlation

Descriptive Statistics

Exploratory Factor Analysis

Hierarchical Regression

Independent Samples T-Test

Linear Regression

Logistic Regression

Log-Linear Regression

One Sample T-Test

Paired Samples T-Test

Principal Component Analysis

Repeated Measures ANOVA

Reliability Analysis

Structural Equation Modeling

Bayesian Analyses

ANCOVA

ANOVA

Binomial Test

Contingency Tables

Correlation

Independent Samples T-Test

Linear Regression

Log-Linear Regression

One Sample T-Test

Paired Samples T-Test

Repeated Measures ANOVA

Summary Stats

Functions & Modules

Data & Label Editing

Exact P-Values

How to Test Interval-Null Hypotheses in JASP

OSF support

VS-MPR

Network Module

JASP起動時

分析時の画面

実際に操作をお見せします

もっと使えるようになりたいって?

• 操作方法についてのスライド資料

https://www.slideshare.net/daikihojo/jasp-89875504

• 日本心理学会 第82回大会@仙台にて ワークショップ

「心理学者のためのJASP統計解析入門」

開催します(通ってればw)

興味があればご検討ください

参考書籍

Mathematical Theory of Bayesian Statistics

Sumio Watanabe

CRC Press Republications A CHAMMAN & HALL BOOK

- Farrell, S., & Lewandowsky, S. (2018). Computational Modeling of Cognition and Behavior. Cambridge University Press. [LINK]
- Robert, C. (2017). Statistical Rethinking. CRC Press.
 [LINK]
- Watanabe, S.
 (2018). Mathematical theory of Bayesian statistics. CRC
 Press. [LINK]

・本スライド(主に参考書籍)は、特別研究員奨励費 (18J22162)の助成を受けたものです。関係者の皆様ありが とうございます。