Correlación y Regresión Lineal

Existe relación entre estas variables?

Un profesor de estadística realiza un estudio para investigar la relación que existe entre el rendimiento de sus estudiantes en los exámenes y su ansiedad. Elige a 10 estudiantes de su grupo para el experimento. Justo antes de asistir al examen final, los 10 estudiantes contestan un cuestionario de ansiedad. Los resultados obtenidos son los siguientes

Ansiedad	28	41	35	39	31	42	50	46	45	37
Examen final	82	58	63	89	92	64	55	70	51	72

Análisis de Correlación

Correlación y Regresión Lineal

- El análisis de la asociación entre variables depende del nivel de medición de las mismas.
- Nos remitiremos en lo que sigue a analizar el caso en el que las variables analizadas son cuantitativas
- El análisis estadístico de la asociación entre variables se realiza mediante
 - Gráficos (Gráfico de dispersión)
 - *Resúmenes numéricos (Covarianza/Coeficiente de correlación lineal)

Gráfico de dispersión

Covarianza y Coeficiente de Correlación de Pearson

Covarianza

$$Cov(X,Y) = \frac{\sum (x_i - \bar{X})(Y_i - \bar{Y})}{n}$$

- Permite evaluar asociaciones del tipo lineal
- Puede tomar cualquier valor
- •Depende de las unidades de medida de las variables

Interpretación de la Covarianza

Interpretación de la Covarianza

 $cov(X,Y) > 0 \longrightarrow asociación lineal directa$

cov(X,Y) < 0→ asociación lineal inversa

 $cov(X,Y) = 0 \longrightarrow no$ están asociadas linealmente

Covarianza y Coeficiente de Correlación de Pearson

Coeficiente de Correlación lineal de Pearson

$$r = \frac{Cov(X, Y)}{S_X * S_Y}$$

- Permite evaluar asociaciones del tipo lineal
- \bullet $-1 \le r \le 1$
- •Es independiente de las unidades de medida de las variables

r = -0.6907746

Distintos tipos de asociación

Distintos tipos de asociación

•Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Asociación lineal

Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Asociación lineal

Análisis de Regresión lineal

• Es posible predecir el rendimiento de los alumnos a partir de su nivel de ansiedad?

Un profesor de estadística realiza un estudio para investigar la relación que existe entre el rendimiento de sus estudiantes en los exámenes y su ansiedad. Elige a 10 estudiantes de su grupo para el experimento. Justo antes de asistir al examen final, los 10 estudiantes contestan un cuestionario de ansiedad. Los resultados obtenidos son los siguientes

Ansiedad	28	41	35	39	31	42	50	46	45	37
Examen final	82	58	63	89	92	64	55	70	51	72

Análisis de Regresión Lineal

- En otras palabras: es posible definir un modelo estadístico que vincule estas variables?
- Es claro que el rol desempeñado por las variables es diferente. La variable cuyos valores quieren predecirse se denomina variable dependiente
- Las restantes se denominan *predictoras* o *independientes*

Ecuación de Regresión Lineal para una variable dependiente

• Si se tienen $(x_1, y_1),, (x_n, y_n)$, el modelo de regresión lineal es

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

- Para i=1,2,..,n
- ε_i es el error del modelo, que se supone aleatório y de media cero para todo i.
- Los parámetros α y β deben estimarse a partir de los datos.

Ecuación de Regresión Lineal para una variable dependiente

 Si a y b son los estimadores de α y β respectivamente, se obtiene la recta de regresión estimada o ajustada

$$y_i = a + bx_i + e_i$$

- *Para i=1,2,..,n*
- $e_i = y_i \hat{y}_i$ es el residuo y describe el error en el ajuste del modelo en cada punto.

Estimación de los parámetros de la ecuación de Regresión Lineal

- Los estimadores a y b de los parámetros de la regresión α y β, pueden hallarse mediante el método de mínimos cuadrados
- Se trata de encontrar los valores de a y b que minimicen

$$SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - a - bx_i)^2$$

- Es factible derivar fórmulas explícitas para estos estimadores mediante la resolución de este problema de minimización
- Observar que sólo se ha supuesto aleatoriedad de los errores y media cero

Estimación de los parámetros de la ecuación de Regresión Lineal

$$SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - a - bx_i)^2$$

Estimación de los parámetros de la ecuación de Regresión Lineal

También se obtiene un estimador para la varianza común del problema, σ

$$S^{2} = \frac{SSE}{n-2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\sum (y_{i} - a - bx_{i})^{2}}{n-2}$$

Inferencia sobre los parámetros de la ecuación de Regresión Lineal

ullet Para testear la significación del estimador de eta

$$H_0$$
: $\beta = 0$ H_1 : $\beta \neq 0$

Estadístico de prueba:
$$t = \frac{b}{s/S_{xx}}$$

Siendo
$$S_{xx} = \sum (x_i - \bar{x})^2$$

Bajo el supuesto de normalidad t sigue una distribución t de Student con n-2 grados de libertad

Inferencia sobre los parámetros de la ecuación de Regresión Lineal

Para testear la significación del estimador de α se utiliza el estadístico

$$H_0$$
: $\alpha = 0$ H_1 : $\alpha \neq 0$

Estadístico de prueba
$$t = \frac{a}{s\sqrt{\sum x_i^2/nS_{xx}}}$$

Bajo el supuesto de normalidad, t sigue una distribución de Student con n-2 grados de libertad

Análisis de la Varianza en Regresión Lineal

• La suma total de cuadrados SST de la variable dependiente puede escribirse como

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$$

En otras palabras

Análisis de la Varianza en Regresión Lineal

 SST es la suma de cuadrados de y y refleja su variabilidad en torno a su media

• SSR se llama suma de cuadrados de la regresión y refleja la cantidad de variación de los valores de y explicados por el modelo

• SSE es la suma de cuadrados del error

Análisis de la Varianza en Regresión Lineal

• Análisis de la varianza para testear la significatividad de la regresión

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado s medios	F
Regresión Error	SSR SSE	1 n-2	SSR SSE/(n-2)	F
Total	SST	n-1		

Siendo

$$F = \frac{SSR/1}{SSE/(n-2)}$$

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 125.8830 21.1109 5.963 0.000337 ***

## ansiedad -1.4285 0.5287 -2.702 0.026986 *
```

Multiple R-squared: 0.4772, Adjusted R-squared: 0.4118
F-statistic: 7.301 on 1 and 8 DF, p-value: 0.02699

nota = 125.88 - 1.42 * ansiedad

La función Im()

• lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y =
FALSE, qr = TRUE, singular.ok = TRUE, contrasts =
NULL, offset, ...)