MATH 355: HOMEWORK 4

ALEXANDER LEE

Exercise 1 (2.3.3). Let $\epsilon > 0$ be arbitrary. Since $\lim x_n = l$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, we have that $|x_n - l| < \epsilon$. Thus, we have $l - \epsilon < x_n < l + \epsilon$. Similarly, since $\lim z_n = l$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, we have that $|z_n - l| < \epsilon$. Hence, we also have $l - \epsilon < z_n < l + \epsilon$. Because we are given that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, it follows that $l - \epsilon < x_n \leq y_n \leq z_n < l + \epsilon$, which implies that $l - \epsilon < y_n < l + \epsilon$ and $|y_n - l| < \epsilon$. Therefore, $\lim y_n = l$ as well.

Exercise 2 (2.3.4)**.** (a)

$$\lim \left(\frac{1+2a_n}{1+3a_n-4a_n^2}\right) = \frac{\lim 1+2\lim a_n}{\lim 1+3\lim a_n-4\lim a_n\lim a_n}$$
$$= \frac{1+2\cdot 0}{1+3\cdot 0 - 4\cdot 0\cdot 0}$$
$$= 1$$

(b)

$$\lim \left(\frac{(a_n+2)^2-4}{a_n}\right) = \frac{\lim(a_n+2)\lim(a_n+2)-\lim 4}{\lim a_n}$$

$$= \frac{(\lim a_n + \lim 2)(\lim a_n + \lim 2) - 4}{\lim a_n}$$

$$= \frac{(\lim a_n + 2)(\lim a_n + 2) - 4}{\lim a_n}$$

$$= \frac{(\lim a_n)^2 + 4 \lim a_n + 4 - 4}{\lim a_n}$$

$$= \frac{\lim a_n(\lim a_n + 4)}{\lim a_n}$$

$$= \lim a_n + 4$$

$$= 0 + 4$$

$$= 4$$

2

(c)

$$\lim \left(\frac{\frac{2}{a_n} + 3}{\frac{1}{a_n} + 5}\right) = \frac{\frac{\lim 2}{\lim a_n} + \lim 3}{\frac{\lim 1}{\lim a_n} + \lim 5}$$

$$= \frac{\frac{2}{\lim a_n} + 3}{\frac{1}{\lim a_n} + 5}$$

$$= \frac{\frac{2+3 \lim a_n}{\lim a_n}}{\frac{1+5 \lim a_n}{\lim a_n}}$$

$$= \frac{2+3 \lim a_n}{1+5 \lim a_n}$$

$$= \frac{2+3 \cdot 0}{1+5 \cdot 0}$$

$$= \frac{2}{1}$$

$$= 1$$

Exercise 3 (2.3.7). (a) Possible. Consider the divergent sequences $(x_n) = (-1, 1, -1, 1, \ldots)$ and $(y_n) = (1, -1, 1, -1, \ldots)$. Then, we have $(x_n + y_n) = (0, 0, 0, 0, \ldots)$, which converges to 0.

- (b) Impossible. Observe that $y_n = (x_n + y_n) x_n$. Since $(x_n + y_n)$ and (x_n) converge, (y_n) must converge as well by the Algebraic Limit Theorem (ii).
- (c) Impossible. Since (1) and (b_n) converge, $(1/b_n)$ must converge as well by the Algebraic Limit Theorem (iv). TODO
- (d) Impossible. Since (a_n-b_n) is bounded, there exists a number $M_1>0$ such that $|a_n-b_n|\leq M_1$ for all $n\in\mathbb{N}$. Furthermore, since (b_n) converges, it is also bounded. Thus, there exists a number $M_2>0$ such that $|b_n|\leq M_2$ for all $n\in\mathbb{N}$. As such, $|a_n|\leq |a_n-b_n|+|b_n|\leq M_1+M_2$, so (a_n) must be bounded too.
- (e) Impossible. TODO

Exercise 4 (2.3.10). (a) False. Consider $(a_n) = (b_n) = (1, 2, 3, 4, ...)$. Since $(a_n - b_n) = (0, 0, 0, 0, ...)$, we have that $\lim_{n \to \infty} (a_n - b_n) = 0$. However, since (a_n) and (b_n) are not bounded, they do not even converge to a limit.

- (b) True. Since $(b_n) \to b$, for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, we have that $|b_n b| < \epsilon$. Since $||b_n| |b|| \leq |b_n b|$, we also have that $||b_n| |b|| < \epsilon$. Thus, $|b_n| \to |b|$.
- (c) True. Note that $b_n = (b_n a_n) + a_n$. Thus, by the Algebraic Limit Theorem (ii), we have $\lim b_n = \lim (b_n a_n) + \lim a_n = 0 + a = a$.
- (d) True. Since $(a_n) \to 0$, for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, we have that $|a_n| < \epsilon$, implying that $-\epsilon < a_n < \epsilon$. Since we have that $|b_n b| \leq a_n$, we therefore have $|b_n b| \leq a_n < \epsilon$. Hence, $(b_n) \to b$.

Exercise 5 (2.3.12). (a) True. Given $b \in B$, we know that $a_n \geq b$ for all $n \in N$ since a_n is an upper bound for B. By the Order Limit Theorem (iii), we have that $a = \lim a_n \geq b$. Thus, a is also an upper bound for B.

(b) True. Suppose that every a_n is in the complement of the interval (0,1). Next, suppose towards a contradiction that a is in (0,1). Since $(a_n) \to a$, there exists an ϵ -neighborhood $V_{\epsilon}(a) \subseteq (0,1)$ that contains all but finitely many terms of (a_n) . That is, all but finitely many terms of (a_n) are in (0,1). This is a contradiction since we previously assumed that every a_n is not in (0,1).

- (c) False. Consider the sequence $(a_n) = (1.4, 1.41, 1.414, 1.4142, 1.41421, \ldots)$, where every consequent term is a decimal approximation of $\sqrt{2}$ that specifies an additional decimal. Each term in the sequence (a_n) is rational, however, by construction, $(a_n) \to \sqrt{2}$, which is irrational.
- **Exercise 6** (2.4.1). (a) We first show by induction that (x_n) is decreasing (i.e., $x_n \geq x_{n+1}$). Since $x_1 = 3$ and $x_2 = \frac{1}{4-3} = 1$, we have that $x_n \geq x_{n+1}$. Next, suppose that $3 = x_1 \geq x_2 \geq \cdots \geq x_n \geq x_{n+1}$. We want to show that $x_{n+1} \geq x_{n+2}$. Consider

$$x_{n+1} - x_{n+2} = \frac{1}{4 - x_n} - \frac{1}{4 - x_{n+1}}$$

$$= \frac{4 - x_{n+1} - (4 - x_n)}{(4 - x_n)(4 - x_{n+1})}$$

$$= \frac{x_n - x_{n+1}}{(4 - x_n)(4 - x_{n+1})}.$$

Since $x_n \geq x_{n+1}$ by our inductive hypothesis, we know that $x_n - x_{n+1} \geq 0$. Furthermore, by our inductive hypothesis, we also know that $3 \geq x_n \geq x_{n+1} \implies -3 \leq -x_n \leq -x_{n+1} \implies 1 = 4 - 3 \leq 4 - x_n \leq 4 - x_{n+1}$. Hence, we have that $x_{n+1} - x_{n+2} \implies x_{n+1} \geq x_{n+2}$. Therefore, (x_n) is decreasing. Next, we show that (x_n) is bounded. Since $x_n < 4$ for all $n \in \mathbb{N}$, we have that $x_{n+1} = \frac{1}{4-x_n} > 0$. Thus, (x_n) is bounded. As such, (x_n) converges by the Monotone Convergence Theorem.

- (b) Suppose $\lim x_n = l$. By definition, given any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|x_n l| < \epsilon$. Since $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$, we have $|x_{n+1} l| \leq |x_n l| < \epsilon$. Thus, $\lim x_{n+1} = l = \lim_{x_n}$.
- (c) Suppose $\lim x_n = \lim x_{n+1} = l$. Then,

$$\lim x_{n+1} = \lim \left(\frac{1}{4 - x_n}\right) \implies l = \frac{1}{4 - l}$$

$$\implies 4l - l^2 = 1$$

$$\implies 0 = l^2 - 4l + 1$$

$$\implies 0 = (l - 2)^2 - 3$$

$$\implies 3 = (l - 2)^2$$

$$\implies \pm \sqrt{3} = l - 2$$

$$\implies l = 2 \pm \sqrt{3}.$$

By the Order Limit Theorem (iii), we know that $\lim x_n = l \le x_n = 3$. Thus, $\lim x_n = 2 - \sqrt{3}$.

Exercise 7 (2.4.8).

Exercise 8 (2.4.9).