LÝ THUYẾT ĐỒ THỊ

Phạm Nguyên Khang BM. Khoa học máy tính, CNTT pnkhang@cit.ctu.edu.vn

Cần Thơ, 2012

Nội dung

- Phần cơ bản
 - Định nghĩa & Phân loại
 - Một số đồ thị đặc biệt
 - Tính liên thông của đồ thị
 - Cây & cây có hướng

Nội dung

- Phần nâng cao
 - 1. Đồ thị Euler & ứng dụng
 - 2. Đồ thị Hamilton & ứng dụng
 - 3. Tìm đường đi ngắn nhất
 - 4. Xếp hạng đồ thị và bài toán tổ chức thi công
 - 5. Cây khung vô hướng có trọng lượng nhỏ nhất
 - 6. Cây khung có hướng có trọng lượng nhỏ nhất
 - 7. Luồng cực đại trên mạng

Nội dung

- Giới thiêu
- Định nghĩa
 - Đồ thị
 - Cung, đa cung, khuyên
 - Bậc của đồ thị
- Phân loại đồ thị
- Một số đồ thị đặc biệt
- Tính liên thông của đồ thị

- Lý thuyết đồ thị (LTĐT, Graph Theory)
 - Ngành khoa học phát triển từ rất lâu
 - Có nhiều ứng dụng hiện đại
 - Ý tưởng xuất phát từ nhà toán học Thụy Sĩ Leonhoard Euler (1707 – 1783) vào thế kỷ XVIII
 - Bài toán 7 cây cầu ở Königsberg

Hamilton (1805 - 1865) và bài toán du lịch

- Úng dụng của LTĐT
 - Thiết kế mạch điện
 - So sánh cấu trúc của các hợp chất hóa học
 - Xác định hai máy tính có thể kết nối được với nhau hay không
 - Tìm đường đi ngắn nhất trên bản đồ
 - Lập lịch thi, phân chia kênh cho các đài truyền hình

• Tìm cộng đồng trên mạng

Kích thước có thể rất lớn

graph theory

Search

About 8,640,000 results (0.15 seconds)

Web

Images

Maps

Videos

News

Shopping

Books

More

Graph theory - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Graph_theory

In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects ...

Glossary of graph theory - Loop - Spectral graph theory - List of graph theory topics

Graph Theory Tutorials

www.utm.edu/departments/math/graph/

This is the home page for a series of short interactive tutorials introducing the basic concepts of **graph theory**. There is not a great deal of theory here, we will just ...

graph theory -- graph theory textbooks and resources

www.graphtheory.com/

The website www.graphtheory.com is sponsored by the mathematical textbooks of Professor Jonathan Gross of Columbia University. It provides comprehensive ...

Định nghĩa – Đồ thị

- Đô thị (Graph) G là một bộ đôi <V, E>, trong đó:
 - V: tập các đỉnh (vertex set), và
 - E: tập các cung (edge set), mỗi cung nối 2 đỉnh trong V
- Cho cung e nối 2 đỉnh x và y
 - Kí hiệu e = (x, y)
 - x, y được gọi là **đầu mút** (endpoints) của cung e
 - x và y được gọi là kê nhau (adjacent) hoặc lân cận của nhau (neighbours)
 - e được gọi là liên thuộc (incident) với x và y

Định nghĩa – Khuyên + Đa cung

 Khuyên (loop): cung có hai đầu mút trùng nhau

 Đa cung (multi edges): các cung có cùng chung đầu mút

Định nghĩa – Đơn đồ thị

- Đơn đồ thị vô hướng (simple graph):
 - Cung không có hướng: (x, y) ≡ (y, x)
 - Không chứa khuyên
 - Không chứa đa cung

Định nghĩa – Đa đồ thị + Giả đồ thị

- Đa đồ thị (Multigraphs)
 - Cung không có hướng
 - Không chứa khuyên
- Giả đồ thị (Pseudograph)
 - Cung không có hướng
 - Có thể chứa đa cung và khuyên

Bậc của đồ thị

- Bậc (degree) của đỉnh
 - Kí hiệu deg(x) = số cung liên thuộc với đỉnh x
- Đỉnh có bậc = 0 gọi là đỉnh cô lập
- Đỉnh có bậc = 1 gọi là đỉnh treo
- Định lý 1 (định lý bắt tay):
 - Tổng bậc của tất cả các đỉnh trong một đồ thị = 2
 lần số cung

$$\sum_{v \in V} \deg(v) = 2|E| = 2e$$

Định nghĩa – Đồ thị có hướng

- Đơn đồ thị có hướng
 - Cung có hướng (x, y) ≠ (y, x)
 - Không chứa chứa đa cung
 - Với mỗi cặp đỉnh x, y chỉ có thể tồn tại nhiều nhất 1 cung dạng (x, y) hoặc (y, x).

- Có thể chứa nhiều cung dạng (x,y)
- Không chứa khuyên
- Đa đồ thị có hướng (có khuyên)/quiver
 - Có thể chứa nhiều cung dạng (x,y)
 - Có thể chứa khuyên

Bậc của đồ thị

- Định lý 2:
 - Số đỉnh bậc lẻ của một đồ thị vô hướng là số chẵn.
 - C/M: xem như bài tập
- Bài tập:
 - Cho đồ thị vô hướng G = <V, E> có |E| = |V| 1. G không có đỉnh cô lập.
 - a) Chứng minh rằng, G có ít nhất 1 đỉnh bậc 1.
 - b) Chứng minh rằng, G có ít nhất 2 đỉnh bậc 1.

Bậc của đồ thị

- Bậc vào của đỉnh (đồ thị có hướng)
 - Kí hiệu: deg⁻(v) = số cung đi đến v
- Bậc ra của đỉnh (đồ thị có hướng)
 - Kí hiệu: deg+(v) = số cung đi ra từ v
- Tính chất:
 - $\bullet \deg(v) = \deg^{-}(v) + \deg^{+}(v)$
- Định lý 3:
 - Cho G = <V, E> làm một đồ thị có hướng

$$\sum_{v \in V} \operatorname{deg}^{-}(v) = \sum_{v \in V} \operatorname{deg}^{+}(v) = |E|$$

• Cho đồ thi vô hướng $G = \langle V, E \rangle n$ đỉnh *m* cung. Goi deg(v), $v \in V$ là bâc của đỉnh v. Chứng minh rằng:

a.
$$\min\{\deg(v)\}_{v\in V} \le \left\lfloor \frac{2m}{n} \right\rfloor$$

b. $\max\{\deg(v)\}_{v\in V} \ge \left\lceil \frac{2m}{n} \right\rceil$

b.
$$\max\{\deg(v)\}_{v\in V} \ge \left|\frac{2m}{n}\right|$$

c. Nếu G là đơn đồ thị thì $m \le \frac{n(n-1)}{2}$

- Cho đơn đồ thị vô hướng G = <V, E> n đỉnh (n > 1). CMR:
 - a. Bậc của một đỉnh luôn nhỏ hơn n.
 - b. Không tồn tại đồng thời một đỉnh có bậc 0 và một đỉnh có bậc n – 1.
 - c. Có ít nhất hai đỉnh có bậc bằng nhau

Clique

- Clique trên đồ thị vô hướng là tập các đỉnh mà chúng đôi một kề nhau.
- Clique tối đại (maximal clique): là một clique không thể thêm vào nổ bất cứ đỉnh nào nữa.
- Clique lớn nhất (maximum clique): là clique có nhiều phần tử nhất trong đồ thị.
- Tập độc lập/tập ổn định (independent set/stable set): tập các đỉnh mà chúng không kề nhau
- Tập độc lập tối đại (maximal independent set): tập độc lập mà nếu thêm vào một đỉnh sẽ làm mất tính độc lập của chúng
- Tập độc lập lớn nhất (maximum independent set) là tập độc lập có số đỉnh nhiều nhất

- Đồ thị đầy đủ (complete graph), Ký hiệu: K_n
 - Đơn đồ thị vô hướng
 - Mỗi cặp đỉnh đều có đúng 1 cung

- Đồ thị phân đôi (bipartite graph/bigraph), Ký hiệu: K_{n,m}
 - Tập đỉnh được chia thành hai tập không giao nhau: U và V
 - Mỗi cung nối 1 đỉnh trong U và 1 đỉnh trong V

- Đồ thị phân đôi đầy đủ
 - Còn gọi là đồ thị 2 clique (biclique)
 - Mỗi đỉnh của phần này nối với tất cả các đỉnh của phần kia

- Đồ thị đều bậc k (k-regular graph)
 - Là đồ thị mà tất cả các đỉnh của nó đều có bậc k.

Đồ thị vô hướng nền

- Đô thị vô hướng nên của một đồ thị có hướng là đồ thị vô hướng có được sau khi đã loại bỏ hướng của các cạnh.
- Đồ thị có hướng và đồ thị vô hướng nền của nó có cùng số cạnh

Đồ thị con

- Cho đồ thị G = <V, E>
 - Đồ thị con $G_s = \langle V, E_s \rangle$, $E_s \subset E$ được xây dựng từ G là đồ thị có được sau khi loại bỏ các cung không thuộc E_s .
 - Đồ thị con $G_s = \langle V_s, E_s \rangle$, $V_s \subset V$, $E_s \subset E$ được xây dựng từ G là đồ thị có được sau khi loại bỏ các đỉnh không nằm trong V_s và các cung liên thuộc với nó, cùng với các cung không nằm trong E_s .

Sự đẳng cấu của đồ thị

- 2 đồ thị $G_1 = \langle V_1, E_1 \rangle$ và $G_2 = \langle V_2, E_2 \rangle$ được gọi là đẳng cấu nếu và chỉ nếu tồn tại song ánh:
 - f: $V_1 \rightarrow V_2$ $v_2 = f(v_1) \in V_2$ sao cho $(x,y) \in E_1 \Leftrightarrow (f(x), f(y)) \in V_2$

Vẽ các đồ thị sau

```
a) V = {u, v, w, x}, E = {uv, vw, wx, vx}
b) V = {1, 2, 3, 4, 5, 6, 7, 8}, E = {12, 22, 23, 34, 35, 67, 68, 78}
c) V = {n, p, q, r, s, t}, E = {np, nq, nt, rs, rt, st, pq}
```

 Với mỗi đồ thị xét xem nó có phải là đơn đồ thị không? Tại sao?

 Trong các đồ thị B, C, D (các) đồ thị nào đẳng cấu với đồ thị A. Nếu đẳng cấu tìm song ánh tương ứng

• Cho đồ thị G như hình vẽ

 Trong các đồ thị dưới đây, đồ thị nào là đồ thị con của đồ thị G.

- Cho G₁, G₂ là 2 đơn đồ thị vô hướng hữu hạn.
 - 1. Chứng minh rằng nếu G₁ và G₂ đẳng cấu, thì G₁ là đồ thị đều bậc k khi và chỉ khi G₂ cũng là đồ thị đều bậc k.
 - 2. Tìm 2 đô thị G₁ và G₂ sao cho chúng là đô thị đều bậc k, chứa 1 tam giác nhưng không đẳng cấu với nhau.

- Cho G là đồ thị vô hướng có n đỉnh m cạnh (n≥1, m≥0). Với mọi số tự nhiên k∈N, gọi:
 - n_k là số đỉnh có bậc bằng k;
 - K là bậc lớn nhất (*i.e.* $n_K > 0$ và $\forall k > K$, $n_k = 0$)

1. CMR:
$$\sum_{k=0}^{K} k n_k = 2m$$
 và $\sum_{k=0}^{K} n_k = n$

- CMR: K ≤ 2m. Cho 1 ví dụ trong trường hợp đẳng thức xảy ra.
- 3. CMR: nếu G là đơn đồ thị thì K ≤ n-1; cho 1 ví dụ trong trường hợp dấu = xảy ra.

Biểu diễn đồ thị trên máy tính

- Cấu trúc dữ liệu đồ thị
 - Danh sách cung
 - Ma trận kề (đỉnh đỉnh)
 - Ma trận đỉnh cung
 - Danh sách kề (danh sách con/danh sách cha)
- Các phép toán trên cấu trúc dữ liệu đồ thị
 - init_graph(G): khởi tạo đồ thị
 - adjacent(G, x, y): kiểm tra x và y có kề nhau không
 - degree(G, x): tính bậc của đỉnh x
 - neighbors(G, x): trả về danh sách các đỉnh kề của x
 - add_edge(G, e, x, y): thêm cung e = (x, y) vào G
 - remove_edge(G, e, x, y): xoá cung e =(x, y) ra khỏi G

- Đi qua tất cả đỉnh của một đồ thị
 - Cập nhật và/hoặc kiểm tra giá trị của chúng trên đường đi
- Ý tưởng:
 - Bắt đầu từ 1 đỉnh bất kỳ đánh dấu nó đã duyệt
 - Duyệt các đỉnh kề của nó
 - Duyệt các đỉnh kề của đỉnh kề của nó
 - ...
- Phương pháp duyệt
 - Duyệt theo chiều rộng
 - Duyệt theo chiều sâu

- Duyệt theo chiều rộng
 - Sử dụng hàng đợi
 - Các đỉnh trong hàng đợi là các đỉnh đã duyệt nhưng chưa xét các đỉnh kề của nó
- Giải thuật:
 - Đưa 1 đỉnh s bất kỳ vào hàng đợi (vd: đỉnh 1)
 - Duyệt s (vd: in s ra màn hình)
 - Đánh dấu **s** đã được duyệt
 - while hàng đợi chưa rỗng do
 - Lấy đỉnh ở đầu hàng đợi ra => gọi là đỉnh u
 - for các đỉnh kề v của u do
 - if (v chưa được duyệt)
 - O Duyệt v (vd: in v ra màn hình)
 - o Đánh dấu v đã duyệt
 - o Đưa v vào hàng đợi

- Duyệt theo chiều rộng
 - Sử dụng hàng đợi
 - Các đỉnh trong hàng đợi là các đỉnh đã duyệt nhưng chưa xét các đỉnh kề của nó
- Giải thuật: (PHIÊN BẢN KHÁC)
 - Đưa 1 đỉnh s bất kỳ vào hàng đợi (vd: đỉnh 1)
 - Đánh dấu s đã được duyệt
 - while hàng đợi chưa rỗng do
 - Lấy đỉnh ở đầu hàng đợi ra => gọi là đỉnh u
 - Duyệt u (vd: in u ra màn hình)
 - for các đỉnh kề v của u do
 - if (v chưa được duyệt)
 - o Đánh dấu v đã duyệt
 - o Đưa v vào hàng đợi

A

A

Lấy A ra khỏi hàng đợi

Lấy B ra khỏi hàng đợi

A đã được duyệt

Lấy E ra khỏi hàng đợi

Lấy F ra khỏi hàng đợi

Lấy G ra khỏi hàng đợi

Thứ tự duyệt:

A, B, C, E, D, F, G

Hàng đợi rỗng => Kết thúc

- Duyệt theo chiều sâu
 - Sử dụng ngăn xếp
 - Các đỉnh trong ngăn xếp các đỉnh sẽ được duyệt. Một đỉnh có thể có mặt nhiều lần trong ngăn xếp.
- Giải thuật:
 - Đưa 1 đỉnh s bất kỳ vào ngăn xếp (vd: đỉnh 1)
 - while ngăn xếp chưa rỗng do
 - Lấy đỉnh ở đầu ngăn xếp ra => gọi là đỉnh u
 - if (u đã duyệt) continue; // bỏ qua
 - Duyệt u (vd: in u ra màn hình)
 - Đánh dấu u đã duyệt
 - for các đỉnh kề v của u do
 - o Đưa v vào ngăn xếp

Push A vào stack

A

A

Lấy A ra khỏi stack Đánh dấu A đã duyệt

A

Lần lượt push B, C, E vào stack (chú ý thứ tự) A

E

C

В

Lấy E ra khỏi stack Đánh dấu E đã duyệt

E

R

Push A, F vào stack

A C

Lấy F ra khỏi stack Đánh dấu F đã duyệt

F A C

Push B, E vào stack

E B A C

Lấy E ra khỏi stack E đã được duyệt => bỏ qua

E B A C

Lấy B ra khỏi stack Đánh dấu B đã duyệt

B A C

R

Push A, D, F vào stack

F D A A C B

Lấy F ra khỏi stack F đã được duyệt => bỏ qua

F D A A C B

Lấy D ra khỏi stack Đánh dấu D đã duyệt

Ð

A

A

C

R

Push B vào stack

B A A C B

Lấy B ra khỏi stack B đã được duyệt => bỏ qua

B A A C

Lấy A ra khỏi stack A đã được duyệt => bỏ qua

A A C

Lấy A ra khỏi stack A đã được duyệt => bỏ qua

A

p

Lấy C ra khỏi stack Đánh dấu C đã duyệt

 ϵ

B

Lấy C ra khỏi stack Push A, G vào stack

G A

R

Lấy G ra khỏi stack Đánh dấu G đã duyệt

G A

B

Push C vào stack

C A

В

Lấy C ra khỏi stack C đã được duyệt => bỏ qua

C A B

Lấy A ra khỏi stack A đã được duyệt => bỏ qua

A

Lấy B ra khỏi stack B đã được duyệt => bỏ qua

₿

Stack rỗng => Kết thúc

Duyệt đồ thị

- Duyệt theo chiều sâu (đệ quy)
 - Không sử dụng stack
 - Sử dụng đệ quy

```
Giải thuật:
void visit(u) {
if (u đã duyệt) return;
//Duyệt u: in u ra màn hình hoặc đánh số đỉnh u
Đánh dấu u đã duyệt
for (các đỉnh kề v của u) do
visit(v); //gọi đệ quy duyệt các đỉnh kề v của u

}
```


Đánh dấu A đã duyệt

Đánh dấu B đã duyệt

A đã được duyệt => bỏ qua

Đánh dấu D đã duyệt

B đã được duyệt => bỏ qua

D đã xét xong => quay về B

Đánh dấu F được duyệt

B đã được duyệt => bỏ qua

Đánh dấu E đã duyệt

A đã được duyệt => bỏ qua

F đã được duyệt => bỏ qua

E đã xét xong => quay về F

F đã xét xong => quay về B

B đã xét xong => quay về A

Đánh dấu C đã duyệt

A đã được duyệt => bỏ qua

Đánh dấu G đã duyệt

C đã được duyệt => bỏ qua

G đã xét xong => quay về C

C đã xét xong => quay về A

A đã xét xong => Kết thúc

Duyệt theo chiều sâu

Thứ tự duyệt của các đỉnh

• Sử dụng stack: A, E, F, B, D, C, G

• Đệ quy: A, B, D, F, E, C, G

- Để 2 phương pháp có thứ tự duyệt các đỉnh giống nhau, trong vòng lặp for của duyệt bằng stack
 - for các đỉnh kề v của u do
 - o Đưa v vào ngăn xếp
 - Ta phải xét qua các đỉnh kề v của theo thứ tự NGƯỢC LẠI với thứ tự của vòng lặp trong giải thuật đệ quy