浙江工业大学 2021/2022 学年第二学期 概率论与数理统计期末考试试卷

学号:		丝号:	姓名:			
班级:		任课教师:				
	题号	_	二	三	总分	
	得分					
分位点数据	: :					
$\Phi($	(0.5) = 0	$0.6915, \Phi(1) =$	$= 0.8413, \Phi(1.$	(5) = 0.9332,	$\Phi(1.645) = 0.98$	500
$\Phi($	1.96) =	$0.9750, \Phi(2)$	$=0.9772, t_{0.08}$	$_{5}(8) = 1.860,$	$t_{0.05}(9) = 1.83$	3
$t_{0.0}$	$_{025}(8) =$	$2.306, t_{0.025}($	9) = 2.262			
一. 填空题(包	毎空 2 タ	分,共28分)				
1. 己知 $P(A)$	A) = 0.8	$P(A \cap \overline{B}) = 0$	0.5, 则 P(A∩ 1	B) =	, $P(B A) =$	·
2. 设 $P(A)$	= 0.4, I	P(B) = 0.8, 若	A,B相互独立	. 则 <i>P</i> (<i>A</i> ∩ <i>B</i>) =	$_$, $P(A \cup B) =$
	·					
3. 甲口袋有	5个白	球, 3 个红球.	乙口袋有 5 个 [白球,4 个红球	. 从甲口袋任耶	又1个球放入乙
口袋中,	然后从Z	乙口袋任取 1 个	球. 那么从乙口	口袋中 取出的是	是白球的概率为	J
4. 若随机变	量X的	为概率密度函数	为:			
		j	$\hat{f}(x) = \begin{cases} A\cos x \\ 0, \end{cases}$	$ x \le \frac{\pi}{2};$ $ x > \frac{\pi}{2}.$		
则 $A = _{-}$		$\underline{\qquad};\ P(X \ge \frac{\pi}{4})$	=	_·		
5. 设随机变	·量 X ~	$B(10, \frac{1}{3})$,则	$E(X+2) = _$, Ve	$ar(2X+5) = \underline{}$	

依概率收敛到 ______.

6. 设 X_1, X_2, \dots, X_n 独立同分布, $E(X_1) = 0$, $Var(X_1) = 1$, 则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} (X_i - 2)^2$

7.	设总体 $X \sim N(0,4)$. 设 X_1, X_2, \cdots, X_{12} 员从 参数为 的 分布	\ 9 · 10	$\begin{array}{c} +\dots + X_8^2 \\ +X_{11}^2 + X_{12}^2 \end{array}$, 服
8.	设总体 $X \sim N(\mu, \sigma^2), \ \sigma^2 > 0$ 未知. 设本,其样本均值为 0 ,样本方差为 4 ,见			
9.	设总体 X 服从 $(0,\theta)$ 上的均匀分布.设 X_1 ,矩估计量为	X_2, \cdots, X_n 是来自总体 X 的简单样本.	则 $ heta$ 的	ſ
<u></u>	选择题(每题 3 分,共 12 分)			
1.		于一个发生的事件可表示为 B) $\bar{A}BC \bigcup A\bar{B}C \bigcup AB\bar{C}$ D) $\bar{A}\bar{B}\bar{C} \bigcup A\bar{B}\bar{C} \bigcup \bar{A}\bar{B}C \bigcup \bar{A}B\bar{C}$	()	ı
2.		B) $P(A)P(B) = 0$ D) 若 $P(B) \neq 0$, 则 $P(A B) = P(A)$	()	,
3.	若随机变量 X, Y 方差存在,且不相关.则 (A) X 与 Y 相互独立 (B) $Var(X+Y) = Var(X) + Var(Y)$ (C) $Var(X-Y) = Var(X) - Var(Y)$ (D) $Var(XY) = Var(X)Var(Y)$		()	
4.	下面结论不正确的是 $(A) \Phi(0) = \frac{1}{2}$ $(B) \Phi(-x) = 1 - \Phi(x)$ $(C) 若 X \sim N(0,2) \; , \; \text{则} \; \frac{X}{2} \sim N(0,1)$ $(D) 若 X \sim N(\mu,\sigma^2) \; , \; \text{则} \; P(X \leq x) = \Phi(x)$	$(\frac{x-\mu}{\sigma})$	()	

三. 解答题 (共 60 分)

- 1. $(10 \ \beta)$ 某工厂有 A,B,C 三个车间生产同一种产品. 它们的产量分别占全厂的30%, 30%和40%. 这三个车间的次品率分别为 3%, 2%和1%.
 - (1) 问该厂产品的次品率为多少?
 - (2) 任选一件产品, 若发现该产品为次品,问该产品是 A 车间生产的概率为多大?

2. (12 分) 设二维随机变量 (X,Y) 的概率密度函数为

$$f(x,y) = \begin{cases} Ae^{-(4x+2y)}, & x > 0 \text{ 且 } y > 0, \\ 0, & \text{其他.} \end{cases}$$

- (1) 求常数 A; (2) 计算 X 与 Y 的边缘密度函数;
- (3) 判断 X 与 Y 是否独立? 并给出理由.

(10分)假设有100个桃子. 它们的重量独立同分布,均值都为100克,标准差为3克. 请利用中心极限定理给出这100个桃子重量超过10060克的概率?
(8 分) 假设 X 服从参数为 100 的泊松分布. 利用切比雪夫不等式给出 $P(X \le 200)$ 的下界估计, 即说明 $P(X \le 200)$ 至少为多少.

5. $(10 \ f)$ 设总体 X 的分布律为 P(X=1)=p, P(X=0)=1-p. 从该总体中 取容量 为 100 的样本, 其具体观测值为 $x_1, x_2, \cdots, x_{100}$, 且 $\sum\limits_{i=1}^{100} x_i = 40$. 请给出 p 的极大似然估计值.

6. $(10\ \mathcal{H})$ 从某批矿砂中任选 9 个样品, 测得镍含量百分比的样本均值为 3.02,样本标准差为 0.18. 假设这批矿砂的镍含量百分比服从正态分布. 问在显著水平 $\alpha=0.05$ 下, 是否有充分的理由认为镍含量平均百分比大于 2.95 ?