ARITHMETIC Chapter 17

NÚMEROS RACIONALES

SUMAR FRACCIONES

Al sumar estos números

$$\frac{3}{100}$$
, $\frac{25}{10.000}$, $\frac{748}{10}$, etc.

Un ingeniero y matemático holandés llamado Simón Stevin inventó un método para hacer cálculos con fracciones decimales sin usar el denominador. Por ejemplo, escribía

$\frac{3}{100}$	como	3
$\frac{25}{10.000}$	como	2 5
$\frac{748}{10}$	como	7 4 8

Al sumar estos números, obtenía

$$\frac{2}{3} + \frac{3}{2} \frac{4}{5} + \frac{1}{7} \frac{1}{4} \frac{2}{8} = \frac{1}{7} \frac{2}{4} \frac{3}{8} \frac{4}{5}$$

Aunque su método no llegó a usarse mucho, su idea fue tomada por el escocés, Napier, quien desarrolló otra manera de escribir las fracciones decimales.

FRACCIONES

$$F = \left\{ \frac{\mathbf{a}}{\mathbf{b}} \mid (\mathbf{a}, \mathbf{b}) \in \Box \times (\Box - \{\mathbf{0}\}) \right\}$$

Donde:

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \left\{ \frac{\mathbf{c}}{\mathbf{d}} \middle| \frac{\mathbf{c}}{\mathbf{d}} \langle \rangle \frac{\mathbf{a}}{\mathbf{b}} \right\}$$

"clase de equivalencia $\frac{a}{b}$ "

Llamamos:

Numerador: a

Denominador : b

Ejm

$$\begin{bmatrix} \frac{4}{7} \end{bmatrix} = \left\{ \dots; \frac{-4}{-7}; \frac{4}{7}; \frac{8}{14}; \dots \right\}$$

2 CLASIFICACIÓN DE LAS FRACCIONESNB

HELICO | THEORY

Por la comparación de su valor con respecto a la unidad

1. Propia

$$\frac{15}{25}$$
; $\frac{9}{13}$; $\frac{19}{30}$

$$\Rightarrow f = \frac{a}{b} < 1 \to a < b \qquad 0 < f < 1$$

2. Impropia

$$\frac{18}{12}$$
; $\frac{11}{3}$; $\frac{5}{2}$

$$f = \frac{a}{b} > 1 \to a > b$$

Por su denominador

1. Decimal

Ejm
$$\frac{7}{10^2}$$
; $\frac{23}{10}$; $\frac{45}{10^3}$

$$f = \frac{a}{b} \to b = 10^n$$

$$\forall n \in \mathbb{Z}^+$$

2. Ordinaria

$$\frac{5}{26}$$
; $\frac{12}{8}$; $\frac{15}{6}$

$$\Rightarrow f = \frac{a}{b} \to b \neq 10^n$$

$$\forall n \in \mathbb{Z}^+$$

1. Irreductible

$$\frac{16}{25}$$
; $\frac{7}{13}$; $\frac{19}{5}$

$$f = \frac{a}{b} \to MCD(a, b) = 1$$

$$\frac{9}{15}$$
; $\frac{16}{10}$; $\frac{45}{24}$

$$\Rightarrow f = \frac{a}{b} \to a \ y \ b \ no \ son \ PESI$$

Por grupo de fracciones

1. Homogéneas 12 8 5

$$\frac{12}{9}$$
; $\frac{8}{9}$; $\frac{5}{9}$

$$b_1 = b_2 = b_3 = \dots = b_n$$

2. Heterogéneas 8 32 15

$$\frac{8}{15}$$
; $\frac{32}{10^2}$; $\frac{15}{6}$

$$\frac{a_1}{b_1}$$
, $\frac{a_2}{b_2}$, $\frac{a_3}{b_3}$, ..., $\frac{a_n}{b_n}$,

$$b_1 \neq b_2 \neq b_3 \neq \cdots \neq b_n$$

3 PROPIEDADES

1. Sea $n \in \mathbb{Z}^+$

$$f_1 = \frac{a}{b} < 1 \land f_2 = \frac{a+n}{b+n} < 1 \to f_1 < f_2$$

$$f_1 = \frac{a}{b} > 1 \land f_2 = \frac{a+n}{b+n} > 1 \to f_1 > f_2$$

Sean
$$\frac{a}{m}; \frac{b}{n}; \frac{c}{p}$$

$$MCD\left(\frac{a}{m}; \frac{b}{n}; \frac{c}{p}\right) = \frac{MCD(a; b; c)}{MCM(m; n; p)}$$

Si:
$$\frac{a}{b} + \frac{c}{d} = k$$
; $(k \in \mathbb{Z}) \to b = d$

$$MCM\left(\frac{a}{m};\frac{b}{n};\frac{c}{p}\right) = \frac{MCM(a;b;c)}{MCD(m;n;p)}$$

Determine los $\frac{4}{11}$ de los $\frac{3}{7}$ de los $\frac{2}{3}$ de 2926.

Resolución:

Simplificando

$$\frac{4}{11} \times \frac{3}{7} \times \frac{2}{3} \times \frac{418}{2926}$$

$$...4 \times 2 \times 38 =$$

Rpta: 304

Si la fracción $\frac{a}{24}$ es propia e irreductible, determine la suma de valores que puede tomar a.

Resolución:

f. propia:
$$\frac{a}{24} \Rightarrow a < 24$$
 $a: 1; 2; 3; ...; 23$

f. irreductible:
$$a y 24 \text{ son (PESI)} \implies 24 = 2^3 \times 3$$

 $a \neq 2 \wedge 3$

Suma de valores de a

$$1+5+7+11+13+17+19+23 =$$
 Rpta: 93

Si una fracción es dividida entre su inversa se obtiene $\frac{196}{441}$. ¿Cuál es la fracción?

Resolución:

$$f: \frac{a}{b} \Rightarrow \frac{a}{b} \div \frac{b}{a} = \frac{a^2}{b^2} \implies \frac{a^2}{b^2} = \frac{196}{441}$$

$$\Rightarrow \frac{a}{b} = \frac{14}{21} = \frac{2}{3}$$

Rpta: 2/3

Si al numerador de la fracción irreductible $\frac{a}{b}$ le sumamos 30 y al denominador 80, la fracción no se altera. Halle el valor de a+b.

Resolución:

$$\mathbf{f} : \frac{a}{b} \Rightarrow \frac{a+30}{b+80} = \frac{a}{b} \implies ab + 30b = ab + 80a$$
$$30b = 80a$$
$$\frac{a}{b} = \frac{30}{80} = \frac{3}{8}$$

Rpta:

comprendidas entre $\frac{3}{5}$ y $\frac{2}{3}$?

¿Cuántas fracciones de denominador 600 están

Resolución:

$$\frac{3}{5} \times 600 < \frac{N}{600} \times 600 < \frac{2}{3} \times 600$$

$$360 < N < 400$$

$$N = \{ 361; 362; 363; \dots; 399 \}$$

$$399 - 361 + 1 = 39$$

Rpta: 39 fracciones

Halle una fracción equivalente a $\frac{3}{9}$ sabiendo que el producto de sus términos es 216. Dé como respuesta la suma de cifras del denominador.

Resolución:

$$f: \frac{3}{8} \frac{k}{k}$$

(3k)(8k) = 216

$$24k^2 = 216$$

$$k^2 = 9$$

$$k = 3$$

Denominador:

$$8k = 8(3) = 24$$

Suma de cifras

$$2 + 4 =$$

Rpta:

Una pelota cae al suelo y en cada rebote se eleva los $\frac{2}{3}$ de la altura anterior. Si después del tercer rebote se elevó $32 \ cm$, determine la altura inicial de donde cayó.

Resolución:

Jacinto experto comerciante, cierto día decide entrar al negocio de venta de manzanas para lo cual va al mercado mayorista y compra cierto número de manzanas, luego se dirige al mercado central y vende 5/8 de las manzanas que tiene luego vende 1/2 del resto y finalmente 3/4 del nuevo resto; si todavía le quedan 153 manzanas. ¿Cuántas manzanas compró Jacinto en el mercado mayorista?

Resolución:

Sea "x" el número de manzanas

VENDE	QUEDA
$\frac{5}{8}$	$\frac{3}{8}X$
$\frac{1}{2}$	$\frac{1}{2}\left(\frac{3}{8}X\right)$
$\frac{3}{4}$	$\frac{1}{4} \left[\frac{1}{2} \left(\frac{3}{8} X \right) \right]$

$$\frac{1}{4} \left[\frac{1}{2} \left(\frac{3}{8} X \right) \right] = 153^{51}$$

$$\frac{X}{64} = 51$$

 $X = \mathbb{R}$ Rpta: 3264