Tópicos de Matemática

		_	_				
0)(0,000	110500	Λ	 0	4~	forceroire	4~	つん1つ
exame -	versao	А	 О	ue	revereiro	ue	2012

IMPORTANTE: A duração do teste é de **2 horas**. O teste é composto por nove exercícios. Os exercícios **1.-4.** devem ser resolvidos no enunciado. Os exercícios **5.-9.** devem ser resolvidos numa folha separada. Nos exercícios em que a cotação não é indicada no enunciado, cada resposta certa conta 0,5 valores e cada resposta errada desconta 0,2 valores.

Nome:	Número:

exercício 1. Considere as fórmulas $\varphi:(p \land q) \lor r$ e $\psi:p \land (q \lor r)$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F).

- N S $\square \quad \square \quad \text{A fórmula } \varphi \Leftrightarrow \psi \text{ não \'e uma tautologia}.$
- \Box \Box As fórmulas φ e ψ são logicamente equivalentes.
- \qed \qed ter valor lógico verdadeiro é uma condição suficiente para φ ter valor lógico verdadeiro.
- $\ \square \ \square \ \psi$ ter valor lógico verdadeiro é uma condição necessária para φ ter valor lógico verdadeiro.

exercício 2. Considere os conjuntos $A = \{2, 3, \{2\}, \{3\}\} \in B = \mathbb{N} \cup \{\{2, 3\}, (2, 3)\}$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

exercício 3. Considere as funções $f: \mathbb{N} \to \mathbb{N}$ e $g: \mathbb{Z} \to \mathbb{N}$ dadas por

$$f(n) = \begin{cases} n+1, & \text{se } n \text{ \'e par } \land n \neq 2\\ n, & \text{se } n \text{ \'e primo}\\ 3n-1, & \text{se } n \text{ \'e \'impar e n\~ao primo} \end{cases}, \qquad g(n) = 2|n| + 4.$$

Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

V F $\square \quad \square \quad f(\{1,2,3,4\} = \{2,3,5\}.$ $\square \quad \square \quad g^{\leftarrow}(\{2,3,5,7,8\}) = \{1,2\}.$ $\square \quad \square \quad f \circ g \text{ \'e um funç\~ao de } \mathbb{Z} \text{ em } \mathbb{N} \text{ tal que } (f \circ g)(n) = n+1.$ $\square \quad \square \quad \text{A func\~ao } f \text{ \'e injetiva.}$

exercício 4. Considere a relação R definida em \mathbb{Z} por $x R y \Leftrightarrow |x - y| \leq 1$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

- V F
- \square A relação R é reflexiva.
- \square A relação R é simétrica.
- \square A relação R é anti-simétrica.
- \square A relação R é transitiva.

exercício 5. Considere os conjuntos $A = \{X \subseteq \mathbb{Z} \mid \exists x, y \in \mathbb{Z}, x \neq y \in X = \{x, y\}\},$ $B = \{-1, 0, 3\} \in C = \{x \in \mathbb{Z} : 2|x| + 1 \in B\}.$

- (a) (1.5 valores) Determine $(B \setminus C) \times C$.
- (b) (0,75 valores) Determine $\mathcal{P}(B) \setminus A$.

exercício 6. Sejam $n \in \mathbb{N}$ e R_n a relação de equivalência em $A = \{x \in \mathbb{Z} : -4 \le x \le 4\}$ definida por

$$x R_n y \Leftrightarrow n \text{ divide } x - y.$$

- (a) Considere n=3.
 - (i) (1 valor) Determine as classes de equivalência $[0]_{R_3}$ e $[1]_{R_3}$.
 - (ii) (0.75 valores) Determine o conjunto quociente A/R_3 .
- (b) (0.75 valores) Indique um valor de n tal que R_n seja a relação universal em A.

exercício 7. Considere o conjunto

$$P = \{\emptyset, \{1\}, \{2\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4, 5\}\}$$

e o seu subconjunto $S = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 3, 4\}\}.$

- (a) (1 valor) Desenhe o diagrama de Hasse do c.p.o. (P, \subseteq) onde \subseteq é a relação de inclusão.
- (b) (1 valor) Determine, caso existam, os majorantes, os minorantes, o supremo e o ínfimo de S.

exercício 8. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.

- (a) (1.25 valores) Se R e S são relações binárias antissimétricas num conjunto A, então $R \cup S$ é antissimétrica.
- (b) (1.25 valores) Se A, B e C são conjuntos tais que $A \cap B = A \cap (B \setminus C)$, então $A \cap B \subseteq A \setminus C$.
- (c) (1.25 valores) Sejam A, B e C conjuntos. Se $f:A\to B$ e $g:B\to C$ são funções tais que g e $g\circ f$ são sobrejetivas, então f é sobrejetiva.

exercício 9. (1,5 valores) Prove que, para cada $n \in \mathbb{N}$,

$$3 \times 2^{0} + 3 \times 2^{1} + 3 \times 2^{2} + \ldots + 3 \times 2^{n} = 3 \times (2^{n+1} - 1).$$