OK TO ENTER: /J.L./

09/03/2009Application No.: 10/576,030

Filing Date: April 13, 2006

AMENDMENTS TO THE CLAIMS

1-34. (Canceled)

35. (Previously presented) A method for producing a purified scyllo-inositol, comprising:

a first step of precipitating a scyllo-inositol/boric acid complex by adding boric acid and a metal salt into a liquid mixture containing scyllo-inositol and neutral sugar other than scyllo-

inositol in an amount by mol two times or more that of scyllo-inositol dissolved in the liquid mixture, and by adjusting the pH of the liquid mixture to 8.0 to 11.0;

a second step of separating the complex from the liquid mixture;

a third step of dissolving the separated complex into acid to cleave into scyllo-inositol

and boric acid to obtain an acidic solution or acidic suspension; and

a fourth step of adding ethanol or methanol to the acidic solution or acidic suspension to precipitate scyllo-inositol and purifying the scyllo-inositol from the acidic solution or acidic

suspension,

wherein the metal salt to be added is one or more kinds of metal salts selected from the group consisting of NaCl. NaHCO₃, Na₂CO₃, Na₂SO₄, NaHSO₄, NaH₂PO₄, Na₂HPO₄, Na₂HPO₄, Na₂PO₄, Na₂PO₄,

 $KCl,\,KHCO_{3},\,K_{2}CO_{3},\,K_{2}SO_{4},\,KHSO_{4},\,KH_{2}PO_{4},\,K_{2}HPO_{4},\,K_{3}PO_{4},\,MgCl_{2},\,MgCO_{3},\,and\,\,MgSO_{4},\,MgCO_{4},\,MgCO_{5$

and wherein the ethanol is added in a volume 0.3 to 3 times the volume of the acidic solution or

acidic suspension, or the methanol is added in a volume 0.3 to 5 times the volume of the acidic

solution or acidic suspension.

36. (Previously presented) The method according to claim 35, wherein, in the first step,

the amounts of the boric acid and metal salt to be added are two to three times the amount by mol

of the scyllo-inositol dissolved in the liquid mixture.

37. (Previously presented) The method according to claim 35, wherein, in the first step,

the pH of the liquid mixture is adjusted to 9.0 to 10.0.

38-42. (Canceled)

-2-

Application No.: 10/576,030 Filing Date: April 13, 2006

43. (Previously presented) The method according to claim 35, wherein the ethanol is added in a volume 0.6 to 1.5 times the volume of the acidic solution or acidic suspension, or the methanol is added in a volume 0.9 to 2 times the volume of the acidic solution or the acidic suspension.

44-47. (Canceled)