Introduction to Mathematical Programming IE496

Lecture 6

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 3.1-3.2.

What We've Learned So Far

- We are interested in the extreme points of polyhedra.
- There is a one-to-one correspondence between the extreme points of a polyhedron and the basic feasible solutions.
- We can construct basic solutions by
 - Choosing a basis B of m linearly independent columns of A.
 - Solve the system $Bx_B = b$ to obtain the values of the basic variables.
 - Set $x_N = 0$.
- We can move between adjacent (nondegenerate) basic solutions by removing one column of the basis and replacing it with another.
- In the presence of degeneracy, we might stay at the same extreme point.
- These are the building blocks we need to construct algorithms for solving LPs.

Iterative Search Algorithms

- Many optimization algorithms are iterative in nature.
- Geometrically, this means that they move from a given starting point to a new point in a specified *search direction*.
- This search direction is calculated to be both feasible and improving.
- The process stops when we can no longer find a feasible, improving direction.
- For linear programs, it is always possible to find a feasible improving direction if we are not at an optimal point.
- This is essentially what makes linear programs "easy" to solve.

Feasible and Improving Directions

Definition 1. Let \hat{x} be an element of a polyhedron \mathcal{P} . A vector $d \in \mathbb{R}^n$ is said to be a feasible direction if there exists $\theta \in \mathbb{R}_+$ such that $\hat{x} + \theta d \in \mathcal{P}$.

Definition 2. Consider a polyhedron \mathcal{P} and the associated linear program $\min_{x \in \mathcal{P}} c^{\top} x$ for $c \in \mathbb{R}^n$. A vector $d \in \mathbb{R}^n$ is said to be an improving direction if $c^{\top} d < 0$.

Constructing Feasible Search Directions

- Consider a BFS \hat{x} , so that $\hat{x}_N = 0$.
- Any feasible direction must increase the value of at least one of the nonbasic variables (why?).
- We will consider moving in *basic directions* that increase the value of exactly one of the nonbasic variables, say variable j. This means

• In order to remain feasible, we must also have Ad=0 (why?), which means

Constructing Improving Search Directions

 Now we know how to construct feasible search directions—how do we ensure they are improving?

• Recall that we must have $c^{\top}d < 0$.

Definition 3. Let \hat{x} be a basic solution, let B be an associated basis matrix, and let c_B be the vector of costs of the basic variables. For each j, we define the reduced cost \bar{c}_j of variable j by

$$\bar{c}_j = c_j - c_B^{\mathsf{T}} B^{-1} A_j.$$

- The basic direction associated with variable j is improving if and only if $\bar{c}_i < 0$.
- Note that all basic variables have a reduced cost of 0 (why?).

Optimality Conditions

Theorem 1. Consider a basic feasible solution \hat{x} associated with a basis matrix B and let \bar{c} be the corresponding vector of reduced costs.

- If $\bar{c} \geq 0$, then \hat{x} is optimal.
- If \hat{x} is optimal and nondegenerate, then $\bar{c} \geq 0$.

Optimal Bases

Definition 4. A basis matrix B is said to optimal is

- $B^{-1}b \ge 0$, and
- $\bar{c} \geq 0$.

An Algorithm for Linear Programming

We will develop the following basic algorithm for linear programming:

- 1. Find an initial BFS.
- 2. Compute the reduced costs.
- 3. Determine an improving feasible direction d.
- 4. Move as far as possible in direction d to a new BFS.
- 5. If the new BFS is not optimal, then repeat.

The Step Length

- For now, we will assume that we can find an initial BFS (Step 1).
- We will also assume nondegeneracy.
- We have already seen how to compute the reduced costs and find an improving feasible direction (Steps 2 and 3).
- The distance we move in the computed direction is the *step length*.
- We want to move as far as possible, so the step length is

What determines the step length?

Determining the Step Length

• If $d \ge 0$, then the step length is ∞ and the linear program is unbounded.

- if $d_i < 0$, then $\hat{x}_i + \theta d_i \ge 0 \Rightarrow \theta \le -\frac{\hat{x}_i}{d_i}$.
- Therefore, we can compute the step length explicitly as

Note that we need only consider the basic variables in this computation.

Determining the Next Solution

- Once we have θ^* , the new feasible solution is $\hat{x} + \theta^* d$. Is this a BFS?
- One variable that was nonbasic now has positive value (the *entering* variable.
- One (at least) variable that was basic now has value 0 (the leaving variable).
- ullet If j is the entering variable and i is the leaving variable, define the new set of basic variables by

• Is the corresponding matrix \bar{B} a basis matrix?

Determining the Next Basis

Theorem 2.

- The columns $A_{\bar{B}(i)}$ for $i \in [1..m]$ are linearly independent and hence \bar{B} does form a basis matrix.
- The vector $\hat{x} + \theta^* d$ is the BFS corresponding to \bar{B} .

The Simplex Method

A typical iteration of the simplex method:

- 1. Start with a specified basis matrix B and a corresponding BFS x^0 .
- 2. Compute the reduced cost vector \bar{c} . If $\bar{c} \geq 0$, then x^0 is optimal.
- 3. Otherwise, choose j for which $\bar{c}_j < 0$.
- 4. Compute $u = B^{-1}A_j$. If $u \leq 0$, then $\theta^* = \infty$ and the LP is unbounded.
- 5. Otherwise, $\theta^* = \min_{\{i=1,...,m:u_i>0\}} \frac{x_{B(i)}^0}{u_i}$.
- 6. Choose l such that $\theta^* = \frac{x_B^0(l)}{u_l}$ and form a new basis, replacing $A_{B(l)}$ with A_j . The values of the new basic variables are $x_j^1 = \theta^*$ and $x_{B(i)}^1 = x_{B(i)}^0 \theta^* u_i$ if $i \neq l$.