Элементы теории выбора

- Выбор предпочтительных решений путем попарного сравнения возможных вариантов решений и формирования бинарного отношения предпочтения либо с помощью функции ценности вполне соответствует разумности поведения индивидуума. ЛПР, делая свой выбор, стремится получить наиболее выгодный для себя результат, так что понятие оптимальности включается в понятие разумного выбора.
- Но многие практические задачи используют иные подходы к-выбору наилучшего варианта решения. Основатели современной экономики предлагали охарактеризовать рациональность поведения в терминах более общих, чем предпочтения. Это направление развивалось такими известными учеными (нобелевскими лауреатами) как К.Эрроу, А. Сэн.

Изучением закономерностей процесса выбора занимается теория выбора.

Рассмотрим конечное множество вариантов A, состоящее из двух или более элементов. Пусть $\mathcal{A} \subseteq 2^A \setminus \{\emptyset\}$ — некоторое заданное множество непустых подмножеств множества A. Любое подмножество $X \in \mathcal{A}$ может быть предъявлено для осуществления акта выбора и называется далее *предъявлением*. Акт выбора состоит в выделении из предъявления $X \in \mathcal{A}$ по некоторому фиксированному правилу подмножества $Y \subseteq X$, называемого «выбор из X» или в установлении факта отказа от выбора, т.е. выбор пуст, $Y = \emptyset$. Акт выбора описывается ϕ ункцией выбора Y = C(X).

Общая модель выбора представлена на рисунке

Для задания функции выбора требуется описать алгоритм отбора элементов x из предъявления X для их "перемещения" в выбор Y. Этот алгоритм в теории выбора принято называть *механизмом выбора*. Теория выбора занимается изучением функций выбора в общем случае, но если выбор трактовать как оптимальный, то понятие «механизм выбора» близко к понятию «принцип оптимальности».

Если варианты из множества A оценены по некоторому критерию K, то для выбора лучших вариантов принято из предъявления $X \in \mathcal{A}$ в выбор Y = C(X) включають те варианты $x \in X$, которые доставляют максимум или минимум критерию K. Такой механизм выбора называется однокритериально-экстримизационным $(K\mathfrak{I})$. Правило выбора для этого механизма можно записать любой из трех формул.

$$C(X) = arg \max_{x \in X} K(x)$$
$$x \in C(X) \Leftrightarrow (\nexists y \in X : K(y) > K(x))$$
$$x \in C(X) \Leftrightarrow (\forall y \in X : K(x) \ge K(y))$$

Механизм выбора

$$x \in C(X) \Leftrightarrow (\nexists y \in X : y P x),$$

структурой которого является произвольное бинарное отношение P называется $naphodomuhahmhым (\Pi Д)$.

Пример ПД механизма выбора:

$$x \in C_{P^0}(X) \Leftrightarrow (\nexists y \in X : y P^0 x).$$

Это механизм выбора совпадает с упомянутым принципом оптимальности Парето, через P^0 обозначено строгое отношение предпочтения Парето,

Характеристические свойства функций выбора

Рассмотрим ряд условий (xарактеристических csoйcms), которые выражают различные естественные требования к разумному выбору. При формулировке этих условий исходим из допущения о стабильности модели выбора, т.е. считаем, что множество A и механизм выбора, а, следовательно, и функция выбора C(X) остаются неизменными. Сами условия характеризует ту или иную черту "рационального выбора" в виде ответа на вопрос: как изменится выбор при определенной модификации исходного предъявления.

Говорят, что функция выбора C(X) удовлетворяет условию *наследования* H, если $\forall X, X' \in \mathcal{A}$ выполняется условие:

$$[X' \subseteq X] \Rightarrow [C(X) \cap X' \subseteq C(X')]$$
, т.е. $[X' \subseteq X] \Rightarrow [\text{если } x \in C(X) \cap X', \text{то } x \in C(X')].$

Если сузить предъявление, отбросив часть вариантов, то все варианты из суженного множества X', которые были выбраны из исходного множества X, также попадут в выбор из X'

Усилим условие H. Говорят, что функция выбора C(X) удовлетворяет условию *строгого* наследования или константности (K) выбора, если $\forall X, X' \in \mathcal{A}$ выполняется условие:

$$[X' \subseteq X] \Rightarrow [$$
если $C(X) = \emptyset$, то $C(X') = \emptyset$, а если $C(X) \cap X' \neq \emptyset$, то $C(X') = C(X) \cap X'$].

То есть если выбор из исходного предъявления X пуст, то и выбор из суженного предъявления X' пуст; все выбранные из X варианты, и только они, попадают в выбор из X', если, конечно, они в X' содержатся. Если выбор из X был пуст, то и выбор из X' будет пуст. Только если пересечение множеств C(X) и X' пусты, а множество C(X) не является пустым, то C(X') может содержать какие-то другие варианты

Функция выбора C(X) удовлетворяет условию согласия C, если $\forall X', X'' \in \mathcal{A}$ выполняется условие:

$$[X = X' \cup X''] \Rightarrow [C(X') \cap C(X'') \subseteq C(X)], \text{ T.e.}$$

$$[X = X' \cup X''] \Rightarrow [$$
если x $\in C(X')$ и $x \in C(X'')$, то $x \in C(X)]$.

Варианты, выбираемые и из X' и X'' по отдельности, должны выбираться и из объединения $X' \cup X''$. Хотя в этот выбор могут попасть и другие варианты

Функция выбора C(X) удовлетворяет условию независимости от отбрасывания отвергнутых вариантов O, если $\forall X, X' \in \mathcal{A}$ выполняется условие:

$$[C(X) \subseteq X' \subseteq X] \Rightarrow [C(X') = C(X)].$$

То есть сужение предъявления за счет отбрасывания некоторых или всех невыбранных вариантов не изменяет выбор

В дальнейшем теми же символами (H, C, O, K) будем обозначать не только характеристические свойства функций выбора, но и множества функций выбора удовлетворяющих соответствующим свойствам.

Пример. В таблице приведены восемь различных функций выбора из трехэлементного множества $A = \{x, y, z\}$. Строки, соответствующие одноэлементным предъявлениям, в эту таблицу не включены. Подразумевается, что в таких ситуациях выбор совпадает с предъявлением ($C(\{x\}) = \{x\}$, $C(\{y\}) = \{y\}$, $C(\{z\}) = \{z\}$). В последней строке указано, какими из свойств обладают эти функции. Горизонтальная черта над символами, обозначающими свойства, указывает, что соответствующее свойство не выполняется. Из этого примера видно, что существуют функции с любым сочетанием свойств H, C, O. Тем самым показано, что условия наследования, согласия и отбрасывания являются независимыми.

X	C(X)							
$\{x,y,z\}$	{ <i>x</i> , <i>y</i> }	{ <i>x</i> , <i>y</i> }	{ <i>x</i> , <i>y</i> }	{x}	{ <i>x</i> , <i>y</i> }	{ <i>x</i> , <i>y</i> }	{x}	{x}
{ <i>x</i> , <i>y</i> }	{x}	{ <i>x</i> , <i>y</i> }	{ <i>y</i> }	{ <i>x</i> , <i>y</i> }	{ <i>y</i> }			
{ <i>x</i> , <i>z</i> }	{x}	{z}	{ <i>x</i> , <i>z</i> }	{ <i>x</i> , <i>z</i> }	{z}	{z}	{x}	{z}
{ <i>y</i> , <i>z</i> }	{y}	{y}	{ <i>y</i> , <i>z</i> }	{y}	{z}	{y}	{ <i>y</i> , <i>z</i> }	{y}
свойства	$H \cap C \cap O$	<i>Ĥ</i> ∩ C ∩ O	<i>H</i> ∩ \bar{C} ∩ O	$H \cap C \cap \bar{O}$	Ĥ ∩ Ĉ ∩ O	<u> </u>	$H \cap \bar{C} \cap \bar{O}$	$ar{H} \cap ar{C} \cap ar{O}$

Приведем без доказательства следующие утверждения. Доказательства приведены, например в [1] и [3].

- Условия H, C, O независимы в совокупности, т.е. все возможные пересечения множеств H, C, O и их дополнений не пусты, условие K является усилением каждого из условий H, C, O, т.е. $K \subset H \cap C \cap O$.
- Функции выбора, построенные на основе *КЭ* механизм выбора удовлетворяют всем рассматриваемым характеристическим свойствам и, кроме того, обеспечивают непустой выбор. Такие функции широко используется на практике. Однако, основной сложностью применения *КЭ* механизм выбора является, как мы уже отмечали, формирование критерия *К*.
- Для функций выбора C(X), порожденных ΠZ механизмом выбора, выполняются условия H, C, а для функций выбора C(X), порожденных ΠZ механизмом выбора с транзитивным отношением P выполняется и условие O.

Упражнения*

- 1.На множестве вариантов $A = \{x, y, z\}$ заданы три строгих упорядочения $P_1: x > y > z$, $P_2: z > x > y$, $P_3: y > x > z$. Составьте таблицы функций выбора $C_1(X)$, $C_2(X)$, $C_3(X)$, реализуемых парнодоминантным механизмом выбора с этими структурами. Убедитесь, что каждая из этих функций удовлетворяет свойствам H, C, O.
- 2.Составьте таблицу функции выбора $C^{*1}(X)$ на основе функций выбора $C_1(X)$, $C_2(X)$, $C_3(X)$ из предыдущего упражнения по следующему правилу: в выбор $C^{*1}(X)$ попадают те и только те варианты, которые попали в выбор $C_i(X)$ не менее чем для двух i. Убедитесь, что эта функция выбора не удовлетворяет свойству C и не обеспечивает непустой выбор.
- 3.Составьте таблицу функции выбора $C^{*2}(X)$ на основе функций выбора $C_1(X)$, $C_2(X)$, $C_3(X)$ из первого упражнения по следующему правилу: в выбор $C^{*2}(X)$ попадают те и только те варианты, которые попали в выбор $C_i(X)$ максимальное число раз. Убедитесь, что эта функция выбора не удовлетворяет свойству H.