Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 19.1 - Lösung

geg: $\dot{V}_{\rm A}=1000\,{\rm m^3/h}$, $T_{\rm A}=30\,{\rm ^{\circ}C}$, $\varphi_{\rm A}=80\,\%$, $p_{\rm ges}=1.013\,25\,{\rm bar}$, $T_{\rm B}=14\,{\rm ^{\circ}C}$, $\varphi_{\rm B}=100\,\%$

Stoffdaten für R134a:

Storidater für fürstä.						
$T/^{\circ}\mathrm{C}$	$p_{\rm s}/{\rm bar}$	h'/(kJ/kg)	h''/(kJ/kg)	$\rho''/(\mathrm{kg/m^3})$	s'/(kJ/(kg K))	s''/(kJ/(kg K))
8	3.8761	210.84	403.20	18.94	1.0388	1.7230
9	4.0094	212.21	403.76	19.57	1.0437	1.7226
10	4.1461	213.58	404.32	20.23	1.0485	1.7221
11	4.2863	214.95	404.88	20.90	1.0533	1.7217
34	8.6263	247.54	416.72	42.18	1.1623	1.7131
35	8.8698	249.01	417.19	43.42	1.1670	1.7128
einphasig:			h/(kJ/kg)	$\rho/({\rm kg/m^3})$		s/(kJ/(kg K))
36	8.8698		418.29	43.12		1.7163
38	8.8698		420.47	42.55		1.7234
40	8.8698		422.62	42.00		1.7303
42	8.8698		424.76	41.48		1.7371

a) ges: $\dot{m}_{\rm fL}$

$$v_{1+x,A} = \frac{\dot{V}_{\text{ges,A}}}{\dot{m}_{\text{L}}} \tag{1}$$

$$\iff \dot{m}_{\rm L} = \frac{\dot{V}_{\rm ges,A}}{v_{1+x,A}}$$
 (2)

$$v_{1+x,A} = \left(\frac{1}{M_{\rm L}} + \frac{x_{\rm A}}{M_{\rm W}}\right) \cdot \frac{R_{\rm m} \cdot T_{\rm A}}{p_{\rm ges}} \implies x_{\rm A} = ?$$
(3)

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

 $x_{\rm A} = \frac{M_{\rm W}}{M_{\rm L}} \cdot \frac{p_{\rm wd}}{p_{\rm ges} - p_{\rm wd}} = 0.622 \cdot \frac{\varphi_{\rm A} \cdot p_{\rm s,wd}}{p_{\rm ges} - \varphi_{\rm A} \cdot p_{\rm s,wd}}$ (4)

$$p_{\rm s,wd} \approx p_s(T) \implies p_{\rm s,wd}(T_{\rm A} = 30\,^{\circ}{\rm C})$$
 (5)

$$= \exp\left\{ \left(14.233 - \frac{5200.1 \,\mathrm{K}}{(273.15 + 30)\mathrm{K} - 4.114 \,\mathrm{K}} \right) \right\} \cdot 1 \,\mathrm{bar} \tag{6}$$

$$= 0.04257 \,\mathrm{bar}$$
 (7)

$$\implies x_A = 0.622 \cdot \frac{0.8 \cdot 0.04257 \,\text{bar}}{1.01325 \,\text{bar} - 0.8 \cdot 0.04257 \,\text{bar}} = 0.02164 \tag{8}$$

$$\implies v_{1+x,A} = \left(\frac{1}{28.96 \,\text{kg/kmol}} + \frac{0.02164}{18.02 \,\text{kg/kmol}}\right) \cdot \frac{8.3145 \,\text{kJ/(kmol K)} \cdot 303.15 \,\text{K}}{1.01325 \cdot 10^5 \,\text{Pa}}$$
$$= 0.8888 \,\frac{\text{m}^3}{\text{kg}} \tag{9}$$

$$\implies \dot{m}_{\rm L} = \frac{1000 \,\mathrm{m}^3/\mathrm{h}}{0.8888 \,\mathrm{m}^3/\mathrm{kg}} = 1125.0567 \,\frac{\mathrm{kg}}{\mathrm{h}} = 0.3125 \,\frac{\mathrm{kg}}{\mathrm{s}}$$
 (10)

ges: \dot{Q}_{ab}

$$\dot{Q}_{ab} = \dot{Q}_{AB^*} \tag{12}$$

$$\dot{Q}_{AB^*} = \dot{m}_L \cdot (h_{1+x,B^*} - h_{1+x,A}) \tag{13}$$

$$x_{\rm B} = x_s(T = 14\,^{\circ}\text{C}) = 0.622 \cdot \frac{p_{s,\text{wd}}(T = 14\,^{\circ}\text{C})}{p_{\text{ges}} - p_{s,\text{wd}}(T = 14\,^{\circ}\text{C})}$$
 (14)

$$p_{\text{ges}} - p_{s,\text{wd}}(T = 14 \,^{\circ}\text{C}) = \exp\left\{\left(14.233 - \frac{5200.1\,\text{K}}{287.15\,\text{K} - 4.144\,\text{K}}\right)\right\} \cdot 1\,\text{bar} = 0.0159\,\text{bar}$$
(15)

 $x_{\rm B} = 0.622 \cdot \frac{0.0159 \,\text{bar}}{1.01325 \,\text{bar} - 0.0159 \,\text{bar}} = 0.009919$ (16)

$$h_{1+x,A} = c_{p,L} \cdot t_A + x_A (\Delta h_{v,\circ} + c_{p,D} \cdot -t_A)$$

$$\tag{17}$$

$$= 1.007 \frac{\text{kJ}}{\text{kg K}} \cdot 30 \,\text{K} + 0.021 \,64 \cdot \left(2500 \,\frac{\text{kJ}}{\text{kg}} + 1.86 \,\frac{\text{kJ}}{\text{kg K}} \cdot 30 \,\text{K}\right) \tag{18}$$

$$=85.52 \frac{\mathrm{kJ}}{\mathrm{kg}} \tag{19}$$

$$h_{1+x,B^*} = c_{p,L} \cdot t_B + x_B(\Delta h_{v,\circ} + c_{p,D} \cdot t_B) + (x_{B^*} - x_B)c_{p,W} \cdot t_B$$
 (20)

$$= \underbrace{1.007 \cdot 14}_{\text{Luft}} \underbrace{\frac{\text{kJ}}{\text{kg}}} + \underbrace{(0.009919 \cdot (2500 + 1.86 \cdot 14))}_{\text{Wasser gasförmig}}) \underbrace{\frac{\text{kJ}}{\text{kg}}}_{\text{kg}}$$
(21)

+
$$(\underbrace{(0.02164 - 0.009919) \cdot 4.18 \cdot 14}_{\text{Wasser flüssig}}) \frac{\text{kJ}}{\text{kg}}$$
 (22)

$$= 39.89 \, \frac{\text{kJ}}{\text{kg}} \tag{23}$$

$$\implies \boxed{\dot{Q}_{AB^*}} = 0.3125 \, \frac{\text{kg}}{\text{s}} \cdot (39.89 - 85.52) \frac{\text{kJ}}{\text{kg}} = \boxed{-14.28 \, \text{kW}}$$
 (24)

Fachgebiet Thermodynamik Fakultät III - Prozesswissenschaften

mit $T_c = 20 \,^{\circ}\text{C}$ b) ges: $\varphi_{\rm C}$

$$\varphi_{\rm C} = \frac{p_{\rm wd,C}}{p_{\rm s.wd}(t_{\rm C} = 20\,^{\circ}\text{C})} \tag{25}$$

$$p_{\text{s,wd}}(T_{\text{C}} = 20\,^{\circ}\text{C}) = \exp\left\{\left(14.233 - \frac{5200.1\,\text{K}}{293.15\,\text{K} - 4.114\,\text{K}}\right)\right\} \cdot 1\,\text{bar}$$
 (26)

$$= 0.02333 \,\mathrm{bar}$$
 (27)

$$x_{\rm C} = x_{\rm B} = 0.622 \cdot \frac{p_{\rm wd,C}}{p_{\rm ges} - p_{\rm wd,C}}$$
 (28)

$$x_{\rm C} = x_{\rm B} = 0.622 \cdot \frac{p_{\rm wd,C}}{p_{\rm ges} - p_{\rm wd,C}}$$

$$\implies p_{\rm wd,C} = \frac{x_{\rm C} \cdot p_{\rm ges}}{(0.622 + x_{\rm C})} = \frac{0.009\,919 \cdot 1.013\,25\,\text{bar}}{(0.622 + 0.009\,919)} = 0.0159\,\text{bar}$$
(28)

$$\Longrightarrow \left[\varphi_{\mathcal{C}}\right] = \frac{0.0159}{0.02333} = \boxed{0.6814} \tag{30}$$

ges: $\dot{Q}_{\rm BC}$

$$\dot{Q}_{BC} = \dot{m}_{L} \cdot (h_{1+x.C} - h_{1+x.B}) \tag{31}$$

$$h_{1+x,B} = (1.007 \cdot 14) \frac{\text{kJ}}{\text{kg}} + 0.009919 \cdot (2500 + 1.86 \cdot 14) \frac{\text{kJ}}{\text{kg}} = 39.154 \frac{\text{kJ}}{\text{kg}}$$
 (32)

$$h_{1+x,C} = (1.007 \cdot 20) \frac{\text{kJ}}{\text{kg}} + 0.009919 \cdot (2500 + 1.86 \cdot 20) \frac{\text{kJ}}{\text{kg}} = 45.306 \frac{\text{kJ}}{\text{kg}}$$
 (33)

$$\implies \left[\dot{Q}_{BC} \right] = 0.3125 \, \frac{\text{kg}}{\text{s}} \cdot (45.306 - 39.154) \frac{\text{kJ}}{\text{kg}} = \boxed{1.926 \, \text{kW}}$$
 (34)

c) **geg:** $\Delta T_{\min} = 5 \,\mathrm{K}$, $T_{\mathrm{u}} = 30 \,\mathrm{^{\circ}C}$

ges: $T_{\text{Waermeaufnahme}}$, $T_{\text{Waermeabgabe}}$

$$T_{\text{Waermeaufnahme}} = T_4 = T_1 = T_B - \Delta T_{\text{min}} = 14 \,^{\circ}\text{C} - 5 \,^{\circ}\text{K} = 9 \,^{\circ}\text{C}$$
 (35)

$$T_{\text{Waermeabgabe}} = T_3 = T_{\text{u}} + \Delta T_{\text{min}} = 30\,^{\circ}\text{C} + 5\,\text{K} = \boxed{35\,^{\circ}\text{C}}$$
 (36)

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

d) **ges:** p_{\min} , p_{\max}

$$p_{\text{max}} = p_2 = p_3 = p_{\text{s}}(T = 35 \,^{\circ}\text{C}) = 8.8698 \,\text{bar}$$
 (37)

$$\overline{p_{\min}} = p_1 = p_4 = p_s(T = 9 \,^{\circ}\text{C}) = \boxed{4.0094 \,\text{bar}}$$
 (38)

e) **ges:** \dot{m}_1 ; \dot{V}_1

$$\dot{Q}_{AB*} = -\dot{Q}_{zu} = -\dot{m}_1 \cdot (h_1 - h_4) \tag{39}$$

$$\iff \dot{m}_1 = -\frac{\dot{Q}_{AB*}}{h_1 - h_4} \tag{40}$$

$$h_1 = h''(T = 9 \,^{\circ}\text{C}) = 403.76 \,\frac{\text{kJ}}{\text{kg}} \,\,\text{(Tabelle)}$$
 (41)

$$h_4 = h_3 = h'(T = 35 \,^{\circ}\text{C}) = 249.01 \,\frac{\text{kJ}}{\text{kg}} \,\text{(Tabelle)}$$
 (42)

$$\implies \left[\dot{m}_1 \right] = -\frac{-14.28 \,\text{kW}}{(403.76 - 249.01) \,\text{kJ/kg}} = \boxed{0.0923 \,\frac{\text{kg}}{\text{s}}}$$
 (43)

$$\boxed{\dot{V}_1} = \frac{\dot{m}_1}{\rho_1} = \frac{\dot{m}_1}{\rho''(T = 9 \,^{\circ}\text{C})} = \frac{0.0923 \,\text{kg/s}}{19.57 \,\text{kg/m}^3} = \boxed{0.00472 \,\frac{\text{m}^3}{\text{s}}}$$
 (44)

f) ges: $P_{\text{Antr.}} = P_{12}$ mit $\eta_{s,V} = 0.9$

$$\eta_{s,V} = \frac{h_{2s} - h_1}{h_2 - h_1} \tag{45}$$

$$\implies P_{12} = \dot{m}_1 \cdot \left(\frac{\dot{h}_{2s} - h_1}{\eta_{s,V}}\right) \tag{46}$$

$$s_{2s} = s_1 = s''(T = 9 \,^{\circ}\text{C}) = 1.7226 \,\frac{\text{kJ}}{\text{kg K}}$$
 (47)

$$h_{2s} = h(p_{\text{max}}, s_{2s}) = 418.29 \frac{\text{kJ}}{\text{kg}} + (420.47 - 418.29) \frac{\text{kJ}}{\text{kg}}$$

$$\cdot \frac{(1.7226 - 1.7163) \text{kJ/(kg K)}}{(1.7234 - 1.7163) \text{kJ/(kg K)}} = 420.22 \frac{\text{kJ}}{\text{kg}}$$
 (48)

$$\boxed{P_{12}} = 0.0923 \, \frac{\text{kg}}{\text{s}} \cdot \frac{(420.22 - 403.76) \,\text{kJ/kg}}{0.9} = \boxed{1.688 \,\text{kW}}
 \tag{49}$$

g) ges: ε_K

$$[\varepsilon_{\rm K}] = \frac{\dot{Q}_{\rm zu}}{P_{12}} = \frac{14.28 \,\mathrm{kW}}{1.688 \,\mathrm{kW}} = [8.46]$$
 (50)