302

Elektrische Brückenschaltungen

Ann-Sophie Schubert Lars Funke ann-sophie.schubert@udo.edu lars.funke@udo.edu

Durchführung: 24.11.2015 Abgabe: 01.12.2015

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel														4
2	The	orie													4
	2.1	Wheat	stonesche Brücke .									 			5
	2.2	Kapaz	itätsmessbrücke									 			5
	2.3	_	tivitätsmessbrücke .												6
	2.4	Maxwe	ell-Brücke									 			7
	2.5	Wien-	Robinson-Brücke									 			7
	2.6	Klirrfa	ktor												9
3	Dur	chführu	ng												9
	3.1	Wheat	stonesche Brücke .									 			9
	3.2	Kapaz	itätsmessbrücke									 			9
	3.3	Indukt	tivitätsmessbrücke .									 			10
	3.4	Maxwe	ell-Brücke									 			10
	3.5	Wien-	Robinson-Brücke							 •					10
4	Aus	wertung	g												10
	4.1	Fehler	rechnung									 			10
		4.1.1	Mittelwert und Star	ndarda	abv	veic	hui	ng				 			10
		4.1.2	Gaußfehler									 			11
		4.1.3	Lineare Regression												11
	4.2	Wheat	stonesche Brücke .									 			11
	4.3	Kapaz	itätsmessbrücke									 			11
	4.4	Indukt	tivitätsmessbrücke .												13
	4.5	Maxwe	ellbrücke												13
	4.6	Wien-	Robinson-Brücke									 			13
	4.7	Klirrfa	ktor												13
	4.8	Messw	erte							 •			•		15
5	Disk	ussion													17
Lit	eratı	ır													17

1 Ziel

Im Folgenden Versuch sollen unbekannte Widerstände, Induktivitäten und Kapazitäten sowie die Frequenzabhängigkeit der Brückenspannung einer Wien-Robinson Brücke bestimmt werden.

2 Theorie

Brückenschaltungen dienen zum Ausmessen von Größen, welche sich als elektrischer Widerstand darstellen lassen. Eine Brückenschaltung besteht allgemein aus vier Widerständen und einer Speisespannung.

Abbildung 1: Prinzipielle Brückenschaltung.[1].

Zwischen den Punkten A und B wird eine Potentialdifferenz gemessen, welche Brückenspannung heißt. Es gelten die Kirchhoffschen Gesetze.

1. In einem Knotenpunkt ist die Summe aller Ströme gleich Null.

$$\sum_{k} I_k = 0 \tag{1}$$

2. In einer abgeschlossenen Masche ist die Summe aller Spannungen gleich Null.

$$\sum_{k} U_k = 0 \tag{2}$$

Daraus folgt für die Brückenspannung:

$$U_{\rm Br} = \frac{R_2 R_3 - R_1 R_4}{(R_3 + R_4)(R_1 + R_2)} U_S. \tag{3}$$

Die Brückenspannung geht gegen Null, wenn

$$R_1 R_4 = R_2 R_3. (4)$$

Dies ist die sogenannte Abgleichbedingung. Die Widerstände können dabei sowohl ohmsch als auch komplex sein. Da sich komplexe Widerstände aus einem Wirk- und einem Blindwiderstand zusammensetzen, werden in den folgenden Unterkapiteln spezielle Brückenschaltungen erläutert.

2.1 Wheatstonesche Brücke

Abbildung 2: Wheatstonesche Brücke. Aus [1].

Der Widerstand R_1 in der prinzipiellen Brückenschlatung wird hier durch einen unbekannten Widerstand R_x ersetzt. Für R_x gilt:

$$R_x = R_2 \frac{R_3}{R_4}. (5)$$

Da nur das Verhältnis der Widerstände R_3 und R_4 zur Berechnung von R_x relevant ist, werden die beiden bekannten Widerstände in einem Potentiometer abgebildet.

2.2 Kapazitätsmessbrücke

Zur Messung von Kapzitäten, also komplexen Widerständen, wird die Kapazitätsmessbrücke werwendet. Sie wird wegen der komplexen Widerstände mit Wechselstrom betrieben. Für reale Kondensatoren gilt für den Widerstand:

$$\mathfrak{Z}_C = R - \frac{i}{\omega C} \tag{6}$$

Abbildung 3: Kapazitätsmessbrücke.[1].

Da reale Kondensatoren einen Teil der elektrischen Energie in Wärme umwandeln, wird im Schaltbild ein ohmscher Widerstand zur Kapazität in Reihen geschaltet. Es wird ein variabler Widerstand R_2 eingebaut. Für C_x und R_x folgt:

$$C_x = C_2 \frac{R_4}{R_3} \tag{7}$$

$$R_x = R_2 \frac{R_3}{R_4}. (8)$$

2.3 Induktivitätsmessbrücke

Hier sollen Induktivitäten ausgemessen werden. Da diese ebenfalls komplexe Widerstände sind, ist Wechselstrom zum Betreiben erforderlich. Der Widerstand einer realen Spule ergubt sich aus

$$\mathfrak{Z}_L = R + i\omega L \tag{9}$$

Eine ideale Spule wandelt einen Teil der magnetischen Feldenergie in Wärme um. Auch ihr Schaltbild enthält zusätzlich einen in Reihe geschalteten ohmschen Widerstand. Auch hier wird ein variabler Widerstand R_2 eingebaut. Für L_x und R_x gilt:

$$L_x = L_2 \frac{R_3}{R_4} \tag{10}$$

$$R_x = L_2 \frac{R_3}{R_4}. (11)$$

Abbildung 4: Induktivitätsmessbrücke. [1].

Für eine möglichst genaue Messung müsste nur R_2 in diesem Brückenzweig dem Wirkwiderstand entsprechen, was bei niedrigen Frequenzen schwer umzusetzen ist.

2.4 Maxwell-Brücke

Auch die Maxwell-Brücke dient zum Messen von Induktivitäten. Die Widerstände R_3 und R_4 werden als Abgleichelemente eingebaut. Die Kapazität C_4 besitzt einen möglichst geringen Wirkwiderstand. Für L_x und R_x gelten folgende Beziehungen:

$$L_x = R_2 R_3 C_4 (12)$$

$$R_x = R_2 \frac{R_3}{R_4} {13}$$

2.5 Wien-Robinson-Brücke

Diese Schaltung enthält keine Abgleichelemente. Sie hat die Funktion eines elektronischen Filters, was durch das Spannungsverhältnis von Brücken- und Speisespannung erkennbar ist.

$$\left| \frac{U_{\rm Br,eff}}{U_S} \right|^2 = \frac{(\omega^2 R^2 C^2 - 1)^2}{9((1 - \omega^2 R^2 C^2)^2 + 9\omega^2 R^2 C^2)} \tag{14}$$

Wenn

$$\omega_0 = \frac{1}{RC},\tag{15}$$

Abbildung 5: Maxwell-Brücke. [1].

Abbildung 6: Wien-Robinson-Brücke. [1].

geht die Brückenspannung gegen Null. Frequenzen nah
e ω_0 werden abgeschwächt. Mit $\varOmega=\frac{\omega}{\omega_0}$ folgt:

$$\left| \frac{U_{\text{Br,eff}}}{U_S} \right|^2 = \frac{1}{9} \frac{(\Omega^2 - 1^2)}{(1 - \Omega^2)^2 + 9\Omega^2} \tag{16}$$

2.6 Klirrfaktor

Der Gehalt der Oberwellen im Verhältnis zur Grundwelle des Frequenzgenerators wird durch den Klirrfaktor k berechnet.

$$k = \frac{\sqrt{\sum_{i=2}^{N} U_i^2}}{U_1} \tag{17}$$

Unter der Annahme, dass die Oberwellen lediglich aus einer einzigen zusätzlichen Schwingung bestehen lässt sich dies zu

$$k = \frac{U_2}{U_1} \tag{18}$$

vereinfachen.

3 Durchführung

Zum Ablesen der Brückenspannungen dient ein Oszilloskop.

3.1 Wheatstonesche Brücke

Die Wheatstonesche Brücke wird nach Schlatung 2 aufgebaut. Das Potetiometer muss so eingestellt werden,
dass die Brückenspannung Null wird. Die Werte für die verschiedenen Widerstände werden notiert. Es werden zwei unbekannte Widerstände mit je drei verschiedenen Werte für R_2 ausgemessen.

3.2 Kapazitätsmessbrücke

Die Kapazitätsmessbrücke wird entsprechend 3 aufgebaut. Es sollen zwei Kapazitäten der jeweiligen Kondensatoren gemsesen werden. Der Widerstand R_2 wird hierbei nicht benötigt, da die Kondensatoren ausreichend kleine Innenwiderstände besitzen. Erneut wird das Potentiometer so eingestellt, dass die Brückenspannung gegen Null geht. Die anderen Werte werden aufgenommen. Beim Ausmessen der RC-Kombination wird R_2 eingebaut. Anschließend müssen R_2 und das Potentiometer abwechselnd so variiert werden, dass die Brückenspannung null wird.

3.3 Induktivitätsmessbrücke

Zum Aufbau der Induktivitätsmessbrücke dient 4. Wie bei der Messung unter Verwendung der Kapazitätsmessbrücke werden R_2 und das Potentiometer abwechselnd so eingestellt, dass die Brückenspannung verschwindet.

3.4 Maxwell-Brücke

Die Maxwell-Brücke wird nach 5aufgebaut. Die Spule, welche bereits durch die Induktivitätsmessbrücke, ausgemessen wurde, wird nun mit der Maxwell-Brücke ausgemessen. Die Widerstände R_3 und R_4 werden variiert, bis die Brückenspannung verschwindet. Nach Austauschen von R_2 wird die Messung wiederholt.

3.5 Wien-Robinson-Brücke

Die Schaltung wird nach 6 aufgebaut. Die Messung wird im Bereich von 20-30000 Hz durchgeführt. Die Werte der Frequenz, der Brücken- und der Speisespannung werden aufgenommen.

4 Auswertung

4.1 Fehlerrechnung

4.1.1 Mittelwert und Standardabweichung

Der Mittelwert mehrerer Messwerte wird berechnet durch

$$\langle v \rangle = \frac{1}{N} \sum_{i=1}^{N} v_i, \tag{19}$$

dabei ist die Standardabweichung

$$s_i = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} \left(v_j - \langle v \rangle \right)^2}, \tag{20}$$

wobei v_j (j=1,...,N) die Messwerte sind. Der Standardfehler ist über

$$\sigma_i = \frac{s_i}{\sqrt{N}} = \sqrt{\frac{\sum_{j=1}^{N} \left(v_j - \langle v_i \rangle\right)^2}{N(N-1)}}.$$
 (21)

definiert.

4.1.2 Gaußfehler

Bei einer fehlerbehafteten Funktion f mit k als fehlerbehafteter Größe und σ_k als Ungenauigkeit, gilt

$$\Delta x_k = \frac{\mathrm{d}f}{\mathrm{d}k} \sigma_k. \tag{22}$$

Der relative Gaußfehler berechnet sich nach

$$\Delta x_{\rm k, rel} = 1 \pm \frac{\Delta x_k}{|x|} \cdot 100\%.$$
 (23)

Der absolute Gaußfehler ergibt sich aus

$$\Delta x_i = \sqrt{\left(\frac{\mathrm{d}f}{\mathrm{d}k_1} \cdot \sigma_{k_1}\right)^2 + \left(\frac{\mathrm{d}f}{\mathrm{d}k_2} \cdot \sigma_{k_2}\right)^2 + \dots}$$
 (24)

4.1.3 Lineare Regression

Bei einer linearen Regression über den Messdaten x_i, y_i wird für die Steigung

$$m = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \tag{25}$$

und für den y-Achsenabschnitt

$$b = \langle y \rangle - m \cdot \langle x \rangle \tag{26}$$

angenommen. Für die Standardabweichung gelten

$$s_m = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - b - mx_i)^2}$$
 (27)

und

$$s_b = s_m \cdot \sqrt{\frac{1}{N(\langle x^2 \rangle - \langle x \rangle^2)}}. \tag{28}$$

4.2 Wheatstonesche Brücke

Die Widerstandswerte 10 und 12 wurden mit jeweils 3 verschiedenen Referenzwiderständern R_2 nach (5) vermessen. Die Ergebnisse finden sich in Tabelle 1.

4.3 Kapazitätsmessbrücke

Die Kapazitätswerte 1, 3 und 9 werden mit jeweils 3 verschiendenen Referenzkondensatoren C_2 nach (7) und (8) vermessen. Die Ergebnisse finden sich in Tabelle 2 und Tabelle 3.

Tabelle 1: Ergebnisse der Widerstandsmessbrücke.

	Wert 1	.0	Wert 12			
R_2/Ω	R_3/R_4	R_{10}/Ω	R_3/R_4	R_{12}/Ω		
332 ± 0.07	$0,757 \pm 0,0004$	$251 \pm 0{,}1$	$1,23 \pm 0,0006$	408 ± 0.2		
$500 \pm 0{,}1$	$0,502 \pm 0,0003$	$251 \pm 0{,}1$	$0,\!818 \pm 0,\!0004$	409 ± 0.2		
1000 ± 0.2	$0,263 \pm 0,0001$	$263 \pm 0{,}1$	$0,411 \pm 0,0002$	411 ± 0.2		
	Mittelwert	255 ± 6		410 ± 1		

Tabelle 2: Ergebnisse der Kapazitätsmessbrücke.

C_2/nF	R_2/Ω	R_3/R_4	R_x/Ω	C_x/nF					
	Wert 1								
$450 \pm 0{,}09$	0 ± 0	$0,718 \pm 0,0004$	0 ± 0	627 ± 0.3					
$399 \pm 0{,}08$	0 ± 0	$0,637 \pm 0,0003$	0 ± 0	$627 \pm 0{,}3$					
$597 \pm 0{,}1$	0 ± 0	$0,927 \pm 0,0005$	0 ± 0	$644 \pm 0{,}3$					
		Wert 3							
$450 \pm 0{,}09$	0 ± 0	$1,11 \pm 0,0006$	0 ± 0	404 ± 0.2					
$399 \pm 0{,}08$	0 ± 0	$0,992 \pm 0,0005$	0 ± 0	$402 \pm 0{,}2$					
$597 \pm 0{,}1$	0 ± 0	$1,49 \pm 0,0007$	0 ± 0	$401 \pm 0{,}2$					
		Wert 9							
399 ± 0.08	510 ± 20	$0,927 \pm 0,0005$	473 ± 10	431 ± 0.2					
597 ± 0.1	341 ± 10	$1,37 \pm 0,0007$	466 ± 10	437 ± 0.2					
992 ± 0.2	202 ± 6	$2,28 \pm 0,001$	459 ± 10	$435 \pm 0{,}2$					

Tabelle 3: Gemittelte Ergebnisse der Kapazitätsmessbrücke.

	R_x/Ω	C_x/nF
Wert 1	0 ± 0	632 ± 8
Wert 3	0 ± 0	402 ± 1
Wert 9	466 ± 6	434 ± 3

Tabelle 4: Ergebnisse der Induktivitätsmessbrücke.

$L_2/\mu { m H}$	R_2/Ω	R_3/R_4	R_{16}/Ω	$L_{16}/\mu { m H}$
14.6 ± 0.003 20.1 ± 0.004	$45,0 \pm 1$ $52,0 \pm 2$	$9,53 \pm 0,005$ $6,94 \pm 0,003$	429 ± 10 361 ± 10	139 ± 0.07 139 ± 0.08
	•	Mittelwert	395 ± 30	139 ± 0.2

4.4 Induktivitätsmessbrücke

Die Induktivität 16 wird mit zwei verschiendenen Referenzspulen L_2 nach (10) und (11) vermessen. Die Ergebnisse finden sich in Tabelle 4.

4.5 Maxwellbrücke

Zum Vergleich wird die Messung der Induktivität 16 mit der Maxwellbrücke wiederholt, Ergebnisse nach (12) und (13) finden sich in Tabelle 5.

 $L_{16}/\mu {
m H}$ R_2/Ω R_4/Ω R_{16}/Ω R_3 438 ± 20 141 ± 6 992 ± 0.2 1000 ± 30 142 ± 4 324 ± 10 992 ± 0.2 332 ± 10 424 ± 10 333 ± 10 423 ± 20 140 ± 6

 220 ± 7

Tabelle 5: Ergebnisse der Maxwellbrücke.

 327 ± 10

Mittelwert

 373 ± 20

 411 ± 30

 121 ± 5

 134 ± 9

4.6 Wien-Robinson-Brücke

 992 ± 0.2

 554 ± 20

Die Frequenzabhängigkeit einer Wien-Robinson-Brücke wurde gemessen, Ergebnisse finden sich in Tabelle 6, Abb. 7 und Abb. 8. Die Theoriekurven in den Graphen ergeben sich aus (16), ν_0^{ideal} aus (15).

Tabelle 6: Resonanzfrequenz der Wien-Robinson-Brücke.

R/Ω	C_3/nF	$ u_0^{\mathrm{real}}/\mathrm{Hz}$	$ u_0^{\mathrm{ideal}}/\mathrm{Hz}$	$ u_0^{ m real}/ u_0^{ m ideal}$
332 ± 0.7	402 ± 1	1140	1190 ± 4	$0,959 \pm 0,003$

4.7 Klirrfaktor

Zuletzt wird der Klirrfaktor k des Funktionsgenerators Bestimmt. Dieser ist nach (17) bzw. (18) definiert. Dabei gilt

$$U_2 = \frac{U_{Br}(\nu = \nu_0)}{f(2)},\tag{29}$$

wobei

$$f(\Omega) = \frac{U_{Br}}{U_S}(\Omega) \tag{30}$$

aus (16) darstellt. Das Ergebnis findet sich in Tabelle 7.

Abbildung 7: Frequenzabhängigkeit der Wien-Robinson-Brücke.

Abbildung 8: Vergrößerung von Abb. 7 in der Nähe der Resonanzfrequenz.

Tabelle 7: Klirrfaktor.

$U_{Br}(\nu = \nu_0)/\text{mV}$	f(2)	k
2,40	0,149	0,00774

4.8 Messwerte

Tabelle 8: Messwerte der Wheatstone-Brücke.

	Wert 10		Wer	t 12
R_2/Ω	R_3/Ω	R_4/Ω	R_3/Ω	R_4/Ω
332,0	431,0	569,0	551,5	448,5
500,0	334,0	666,0	450,0	550,0
1000,0	208,5	791,5	291,5	708,5

 ${\bf Tabelle~9:}~{\bf Messwerte~der~Kapazit\"{a}tsmessbr\"{u}cke}.$

	Wert 1				Wert 3					
C_2/nF	R_2/Ω	R_3/Ω	R_4/Ω	C_2/nF	R_2/Ω	R_3/Ω	R_4/Ω			
450,000	0000000	0008,6	582,0	450,000	0000000	0 627),6	473,0			
399,0	0	389,0	611,0	399,0	0	498,0	502,0			
597,000	0000000	0 40 11,0	519,0	597,000	0000000	0,8960	402,0			

Wert 9								
C_2/nF	R_2/Ω	R_3/Ω	R_4/Ω					
399,0	510,0	481,0	519,0					
597,000	0334010000	0007,5	422,5					
992,0	201,5	695,0	305,0					

Tabelle 10: Messwerte der Induktivitätsmessbrücke.

Wert 16							
L_2/mH	R_2/Ω	R_3/Ω	R_4/Ω				
14,6	45,0	905,0	95,0				
20,100	00 52),0 0 (0087040,6	126,0				

Tabelle 11: Messwerte der Maxwellbrücke.

Wert 16										
C_4/nF	R_2/Ω	R_3/Ω	R_4/Ω							
992,0	1000,0	142,0	324,0							
992,0	332,0	424,0	333,0							
992,0	554,0	220,0	327,0							

Tabelle 12: Messwerte der Wien-Robinson-Brücke.

$\nu/{ m Hz}$	$U_{ m Br}/{ m V}$	ν/Hz	$U_{\mathrm{Br}}/\mathrm{V}$
20	696,0	1150	8,0
50	704,0	1160	12,0
70	704,0	1170	$14,\!4$
100	704,0	1180	18,0
200	632,0	1190	17,2
500	376,0	1200	20,0
700	216,0	1210	26,8
1000	64,0	1220	30,8
1050	38,4	1230	34,0
1060	34,4	1240	39,2
1070	30,4	1250	$42,\!4$
1080	26,4	1260	45,6
1090	23,2	5000	512,0
1100	20,8	10 000	592,0
1110	16,8	20 000	600,0
1120	12,0	50 000	608,0

5 Diskussion

Uber die Genauigkeit der einzelnen Messwerte kann nichts ausgesagt werden, da die Referenzwerte nicht bekannt sind. Als problematisch anzumerken ist, dass bei Kapazitätsund Induktivitätsmessbrücke teilweise 0 für R_2 bzw. R_x gemessen bzw. berechnet wird, damit wird auch der Fehler 0, da lediglich eine relative Genauigkeit der Referenzbauteile angegeben wurde. Es könnte die Messung negativ beeinflusst haben, dass eins der beiden Potentiometer schwergängig war. Wie Tabelle 6 zeigt, war die Bestimmung der Resonanzfrequenz ausreichend genau, denn die Abweichung vom Idealwert liegt bei 4,1 %. Wie in Abb. 7 und 8 ersichtlich, sind beim Frequenzganz der Wien-Robinson-Brücke teils erhebliche Abweichungen vom Theoriewert vorhanden, diese sind vermutlich dadurch zu erklären, dass die Bauteile für den Messbereich um ν_0 ausgelegt sind und in anderen Frequenzbereichen sich Störeinflüsse ergeben, weiterhin ist die Speisespannung U_S nicht konstant. Aus Tabelle 7 ist weiterhin ersichtlich, dass der Klirrfaktor des Frequenzgenerators sehr gering ist, jedoch ist wiederum kein Vergleich mit Referenzwerten möglich, da unbekannt.

Literatur

- [1] TU Dortmund. Versuchsanleitung zu Versuch 302: Elektrische Brückenschaltungen.
- [2] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.
- [3] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [4] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.