微分流形初步*

童嘉骏

北京大学 2023-2024 学年秋季学期 数学分析 (III)

本讲义简要介绍微分流形 (differentiable manifolds) 中的相关概念. 主要的参考资料为 [1, 2]. 一言以蔽之, 微分流形指的是"局部长得像欧氏空间且具有光滑结构的拓扑空间". 为了理解这个说法, 我们首先介绍一些基础的拓扑学概念.

1 拓扑空间

拓扑的概念主要是为了说清楚什么是"连续"的映射. 在 Rⁿ 中,标准的欧氏拓扑是由欧氏度量诱导的: 在有了度量 (即距离) 的概念后,就不难定义开球、邻域、以及开集,然后就可以讨论序列收敛和映射连续的概念了. 但对于一般的集合,我们并不能期待其上存在一个度量,因此邻域和开集的概念并不能由其他结构诱导而来. 所以我们采取的策略是在一个集合上指定哪些子集叫做开集,不过这种指定方式需要满足一定的条件. 这就引出了拓扑的定义.

定义 1.1 (拓扑空间). 设 X 是一个非空集合. $\mathcal{O} = \{U_{\alpha}\}_{{\alpha} \in \Lambda}$ 是 X 的一个子集族, 即对任意的 ${\alpha} \in \Lambda$, 都有 $U_{\alpha} \subset X$. 如果 \mathcal{O} 满足以下三个条件, 则称它为 X 上的一个拓扑 (topology):

- (i) $\varnothing \in \mathscr{O}, X \in \mathscr{O};$
- (ii) Ø 中任意多元素的并集仍是 Ø 中的元素;
- (iii) Ø 中有限多元素的交集仍是 Ø 中的元素.

集合 X 与它的一个拓扑 $\mathcal O$ 一起称为一个拓扑空间, 记作 $(X,\mathcal O)$, 也时常简写为 X. 称 $\mathcal O$ 中的元素为 X 上的开集.

注记 1.1. 不难发现, 上述对于 𝒪 的三个条件正好对应于 𝔞" 中通常的开集的全体所具有的性质. 因此上述定义是对 𝔞" 中通常开集概念的推广, 上述三个条件也被称为开集公理.

例 1.1. 给定非空集合 X.

- 1. 若令 $\emptyset = \{\emptyset, X\}$, 不难验证它是 X 上的一个拓扑. 这个拓扑被称为平凡拓扑.
- 2. 若令 𝒪 = {X的所有子集}, 同样不难验证它是 X 上的一个拓扑. 这个拓扑被称为离散拓扑.

定义 1.2. 设 X 是一个拓扑空间. 称 $A \subset X$ 是 X 中的闭集, 如果 A^c 是 X 中的开集.

定义 1.3 (内点和邻域). 设 X 是一个拓扑空间, $A \subset X$, $x \in A$. 如果存在开集 U 使得 $x \in U \subset A$, 那 么称 x 为 A 的一个内点, 称 A 为 x 的一个邻域.

^{*}最后更新日期: 2023 年 12 月 21 日

1 拓扑空间 2

思考题 1.1 (度量拓扑). 对于度量空间 (X,d), 其度量可以诱导 X 上的一个拓扑. 首先定义 "开球": 对任意的 $x \in X$ 和 r > 0, 令 $B_r(x) := \{y \in X : d(x,y) < r\}$. 然后定义 "开集": $A \subset X$ 被称为 X 的一个 "开集", 如果对任意的 $x \in A$, 都存在 $\varepsilon > 0$, 使得 $B_{\varepsilon}(x) \subset A$.

请证明, 这样定义的"开集"的全体, 记作 \mathcal{O} , 构成了 X 上的一个拓扑. \mathcal{O} 被称为 X 上由 d 诱导的度量拓扑. 如果 $X = \mathbb{R}^n$ 而 d 是欧氏度量, 那么称这样得到的 \mathcal{O} 为欧氏拓扑.

有了邻域的概念后就可以定义序列的收敛和映射的连续性了.

定义 1.4 (序列收敛). 设 X 是一个拓扑空间, $\{x_n\}_{n=1}^{\infty} \subset X$ 为其中的一个序列, $x \in X$. 如果对于 x 的任意邻域 A, 都可以找到 N > 0, 使得 $x_n \in A$ 对所有 n > N 成立, 那么就称 x_n 收敛到 x, 记作 $x_n \to x$. **例 1.2.** 我们继续例 1.1 的讨论. 给定非空集合 X.

- 1. 如果在 X 上取平凡拓扑,那么 X 中的任意序列 $\{x_n\}_{n=1}^{\infty}$ 都收敛,且收敛到 X 中的任意元素. 也就是说,这种拓扑下序列极限不具有唯一性,与欧氏空间中点列的收敛十分不同. 事实上,平凡拓扑将 X 中的所有元素"捆绑"在了一起,它们从收敛性上讲是不可区分的,表现得就像是一个元素一样.
- 2. 如果在 X 上取离散拓扑, 那么序列 $\{x_n\}_{n=1}^{\infty} \subset X$ 要收敛到 $x \in X$, 当且仅当存在 N > 0 使得 $x_n = x$ 对所有 n > N 成立.

定义 1.5 (连续映射). 设 X, Y 都是拓扑空间, $f: X \to Y$. 对于 $x \in X$, 如果对 Y 中 f(x) 的任一邻域 $V, f^{-1}(V)$ 总是 x 的邻域, 那么就称 f 在 x 处连续. 如果 $f: X \to Y$ 在任意 $x \in X$ 都连续, 则称 f 为 X 上的连续映射.

注记 1.2. 此处 $f^{-1}(V) := \{x \in X : f(x) \in V\}$ 是指 V 在 f 下的原象. 因此上面的条件就是在说 "f 将 x 附近的点都映到了 f(x) 附近".

定义 1.6 (同胚映射). 如果 $f: X \to Y$ 是双射, 且 f, f^{-1} 均连续, 则称 f 是一个同胚映射, 简称同胚. 此时称拓扑空间 X 和 Y 同胚.

两个拓扑空间同胚就表明其上的拓扑结构是完全等价的,即在讨论连续性和收敛性层面,这两个空间没有区别.

下面介绍 Hausdorff 空间的概念.

定义 1.7 (Hausdorff 空间). 设 X 是一个拓扑空间. 若 X 中任意两个不同的点都有不相交的邻域, 即对任意 $x,y\in X, x\neq y$, 存在开集 $U_1,U_2\subset X$, 使得 $x\in U_1,y\in U_2$, 且 $U_1\cap U_2=\varnothing$, 那么就称 X 是一个 Hausdorff 空间 (或称 X 满足 T_2 分离公理).

注记 1.3. T_2 分离公理 (即上述 Hausdorff 空间的条件) 是四个分离公理中最常用的一个. 它对于序列 极限具有重要意义: 如果 X 是一个 Hausdorff 空间, 那么 X 中收敛序列的极限必然唯一. 这一命题的证明留给读者思考.

下面介绍拓扑基和第二可数空间的概念. 拓扑基的概念源于如下的思考: 所有开集的全体 \mathcal{O} 可能比较复杂, 但有没有可能取出一部分 (可能比较简单的) 开集, 用它们可以生成所有的开集? 在欧氏空间 \mathbb{R}^n 中, 这是可行的: 如果 U 是 \mathbb{R}^n 中的一个开集, 那么 $U = \bigcup_{x \in U} B_{r_x}(x)$, 这里的 $r_x > 0$ 是一个依赖于 U 以及 $x \in U$ 的半径. 换句话说, 我们可以用开球通过取并生成所有 \mathbb{R}^n 欧氏拓扑中的开集.

定义 1.8. 设 \varnothing 是 X 的一个子集族. 定义

 $\vec{\mathscr{A}} := \{U \subset X : \forall x \in U, \text{ 存在 } A \in \mathscr{A}, \text{ s.t. } x \in A \subset U\}$ $= \{U \subset X : U \notin \mathscr{A} \text{ 中若干元素的并集}\}.$

2 微分流形 3

换句话说, \vec{A} 是由 \vec{A} 中集合在取并操作下生成的 \vec{X} 的子集族. 请读者自行验证上面定义中的第二个等号.

定义 1.9 (拓扑基). 设 (X, \mathcal{O}) 是一个拓扑空间, \mathcal{A} 为 X 的一个子集族. 如果 $\bar{\mathcal{A}} = \mathcal{O}$, 则称 \mathcal{A} 为这个 拓扑空间的一个拓扑基 (basis).

如果 \mathscr{A} 是 (X, \mathscr{O}) 的一个拓扑基, 那么 \mathscr{A} 中的开集就起到了上述 "用于生成一般开集的基本单元" 的作用. 显然, 拓扑基不是唯一的.

例 1.3. 设 (\mathbb{R}^n , \mathcal{O}) 是 \mathbb{R}^n 赋予欧氏拓扑, 即 $\mathcal{O} := \{\mathbb{R}^n \text{ 中由欧氏度量定义的开集} \}$ (参见思考题 1.1). 若 取 $\mathcal{A} := \{B_r(x) : x \in \mathbb{R}^n, r > 0\}$, 此处 $B_r(x)$ 为开球, 则有 $\bar{\mathcal{A}} = \mathcal{O}$, 故 \mathcal{A} 为 (\mathbb{R}^n , \mathcal{O}) 的一个拓扑基. 类似的结论对于一般的度量空间也成立. 请结合思考题 1.1 中的讨论自行推广.

定义 1.10 (第二可数空间). 如果拓扑空间 (X, \mathcal{O}) 具有可数拓扑基,则称它为第二可数 (second countable) 空间,或称完全可分空间.

例 1.4. \mathbb{R}^n 赋予欧氏拓扑后是一个第二可数空间. 注意到, 例 1.3 中构造的拓扑基不是可数的, 但我们可以找到另一组可数的拓扑基 $\tilde{\mathcal{A}} := \{B_r(x) : x \in \mathbb{Q}^n, r \in \mathbb{Q}_+\}$. 请读者用定义自行验证它也是拓扑基.

2 微分流形

2.1 定义与基本概念

定义 2.1 (拓扑流形). 设 M 是一个第二可数的 Hausdorff 空间. 若对任意 $x \in M$, 都存在 x 的一个 (开) 邻域 U, 使得 U 与 \mathbb{R}^m 中的一个开集同胚, 则称 M 为一个 m 维的拓扑流形 (topological manifold).

换句话说, "局部上长得像欧氏空间"的拓扑空间就称为流形. 这里的 m 是一个与 x 无关的自然数. 注记 2.1. 该定义中暂未考虑流形带边的情况. 直观地说, 流形的"边界"处应与半空间 \mathbb{R}^m_+ 的边界类似, 故需要单独定义.

既然拓扑流形 M 局部上与 \mathbb{R}^m 的一个局部建立了同胚, 那就自然可以将 \mathbb{R}^m 中的坐标搬到 M 的这个局部上去, 即为 M 这个局部上的每个点赋予坐标.

定义 2.2 (坐标图卡和局部坐标). 给定 m 维拓扑流形 M 和 $x \in M$. 按定义, 存在 x 的邻域 U 和其上的映射 $\varphi: U \to \varphi(U) \subset \mathbb{R}^m$ 使得 φ 是 U 到 $\varphi(U)$ 的同胚. 称 (U, φ) 为 M 的一个坐标图卡 (coordinate chart), 或简称坐标卡. 对于任意的 $y \in U$, 定义 $u^i = (\varphi(y))^i$ $(i = 1, \cdots, m)$ 为 y 的局部坐标 (local coordinate), 这里的上标表示分量.

通常 M 上有多个不同的坐标图卡. 设 (U,φ) 和 (V,ψ) 为 M 上的两个坐标图卡, 且 $U \cap V \neq \varnothing$. 此时, 重叠部分 $U \cap V$ 中的点就会在这两个坐标图卡下被赋予两个不同的局部坐标, 而这两种不同的局部坐标间可以相互转换. 具体来说, $\psi \circ \varphi^{-1}|_{\varphi(U \cap V)}$ 为 $\varphi(U \cap V)$ 到 $\psi(U \cap V)$ 的同胚, 其逆为 $\varphi \circ \psi^{-1}|_{\psi(U \cap V)}$.

定义 2.3 (C^r 相容性). 称坐标图卡 (U, φ) 和 (V, ψ) 是 C^r 相容的 (C^r -compatible), 如果 $U \cap V = \emptyset$, 或者 $U \cap V \neq \emptyset$ 且 $\psi \circ \varphi^{-1}|_{\varphi(U \cap V)}$ 为 $\varphi(U \cap V)$ 到 $\psi(U \cap V)$ 的 C^r 微分同胚.

这里的 C^r 可以取 C^{∞} . 以上 C^r 相容定义即是说, 不同的坐标图卡如果有重叠, 那么在重叠部分上, 它们所定义的局部坐标之间需要具有 C^r 的相互转换关系.

定义 2.4 (图集与微分结构). 设 M 是一个 m 维拓扑流形, 令 $\mathscr{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ 为 M 上的一族坐标图卡. 如果 \mathscr{A} 满足:

参考文献 4

- (i) $\cup_{\alpha \in \Lambda} U_{\alpha} = M$, 即 $\{U_{\alpha}\}_{\alpha \in \Lambda}$ 是 M 的一个开覆盖;
- (ii) 对任意的 $\alpha, \beta \in \Lambda$, $(U_{\alpha}, \varphi_{\alpha})$ 与 $(U_{\beta}, \varphi_{\beta})$ 是 C^r 相容的;

则称 \mathscr{A} 是 M 的一个 C^r 图集 (atlas of class C^r).

一个极大 (maximal) 的 C^r 图集 $\mathscr A$ 被称为 M 上的一个 C^r 微分结构 (differentiable structure). 这里称图集 $\mathscr A$ 是极大的, 如果 M 的一个图卡 $(\tilde U,\tilde\varphi)$ 与 $\mathscr A$ 中所有的图卡都 C^r 相容, 那么必然有 $(\tilde U,\tilde\varphi)\in\mathscr A$.

定义 2.5 (微分流形). 一个 m 维拓扑流形 M 上赋予一个 C^r 微分结构就被称为一个 m 维的 C^r 微分流形 (C^r -differentiable manifold). 特别地, 如果 $r = \infty$, 则可称 M 为一个光滑流形 (smooth manifold).

注记 2.2. C^r 微分结构总可以由一个 C^r 图集扩充而来. 具体来说, 假设 \mathscr{A} 是一个 C^r 图集, 令 $\widetilde{\mathscr{A}}$ 为与 \mathscr{A} 中所有图卡都 C^r 相容的坐标图卡的全体, 那么可以证明 $\widetilde{\mathscr{A}}$ 就构成了 M 的一个 C^r 微分结构, 它是由 \mathscr{A} 唯一确定的. 因此只需确定一个 C^r 图集便可给定拓扑流形 M 上的一个 C^r 微分结构, 从而使之成为一个 C^r 微分流形.

(本讲义未完待续)

参考文献

- [1] 陈省身, 陈维桓. 微分几何讲义(第二版). 北京大学出版社, 2001.
- [2] Jeffrey M. Lee. Manifolds and Differential Geometry. American Mathematical Society, 2009.