

MÁSTER EN ASTRONOMÍA Y ASTROFÍSICA

Efecto de las turbulencias atmosféricas terrestres sobre los parámetros de Stokes usados para el calculo del campo magnético solar

Curso académico: 2017-2108. Fecha de convocatoria:

Octubre 2109

Trabajo dirigido por:

Dr. Santiago Vargas Dominguez

Restrepo Gómez René DNI: 02797460-Q

e-mail: rrestre6@gmail.com

Índice general

1.	Intr	oducción	1
	1.1.	Objetivos	4
	1.2.	Estructura del documento	5
2.	Sim	ulación de las turbulencias atmosféricas	7
	2.1.	Modelo de turbulencia de Kolmogorov	8
		2.1.1. Parámetro estructural de índice de refracción C_n^2	10
	2.2.	Simulación atmosférica usando LES	11
		2.2.1. Fundamentos de LES y Software PALM	11
		2.2.2. Resultados de las simulaciones atmosféricas	14
3.	Pro	pagación de la luz en medios inhomogéneos	17
	3.1.	Algoritmo de espectro angular para la propagación de la luz en la atmósfera	18
	3.2.	Definición de Φ_n y Φ_ϕ	19

	3.3.	Cálculo de las máscaras de fase usando PSDs	21		
	3.4.	Función de transferencia óptica (OTF) y función de punto esparcido (PSF)	22		
	3.5.	Resultados	23		
4.	Esp	ectro-polarimetría Solar	27		
	4.1.	Sección 1	27		
		4.1.1. Subsección 1	27		
		4.1.2. Subsección 2	27		
5.	Con	clusiones y trabajo futuro	29		
	5.1.	Conclusiones generales	29		
	5.2.	Conclusiones por capítulo	30		
		5.2.1. Simulación de las turbulencias atmosféricas	30		
		5.2.2. Propagación de la luz en medios inhomogéneos	31		
		5.2.3. Espectro-polarimetría Solar	31		
	5.3.	Trabajo futuro	32		
Bi	Bibliografía				
Α.	A. Configuración PALM				
В.	B. Rutina de simulación de la propagación de la luz				

Capítulo 1

Introducción

El estudio del Sol y su interacción con la Tierra ha sido motivo de debates científicos en la astrofísica moderna Vita-Finzi (2008). La interacción Sol-Tierra tiene implicaciones directas en la vida humana y en el desarrollo de la sociedad Collins (2013), por tanto, entender dichas implicaciones parte por comprender los fenómenos que se presentan en la evolución y dinámica Solar. Las hipótesis de estudio vienen dadas por las diferentes aproximaciones de la física, desde la mecánica clásica hasta la mecánica cuántica, pasando por la física moderna Lang (2006, 2008), sin embargo, es la corroboración observacional lo que permite descartar o continuar con las hipótesis plateadas.

La instrumentación científica para la observación y comprensión del cosmos ha avanzado en los últimos 50 años mas que en toda la historia de la humanidad, con proyectos espaciales como el Hubble Space Telescope (HST) NASA-HST, el Jammes Webb Space Telescope (JWST) STScI-JWST, Global Astrometric Interferometer for Astrophysics (GAIA) ESA-GAIA o Solar Dynamics Obserbatory (SDO) NASA-SDO y terrestres como Atacama Large Millimiter Array (ALMA) ESO-ALMA, Very Large Telescope (VLT) ESO-VLT o European Solar Telescope (EST) EAST-EST, por mencionar solo algunos. Estos proyectos de gran envergadura y con unas prestaciones técnicas que alcanzan en ocasiones la vanguardia tecnología, tienen como principal motivación mover las fronteras del conocimiento, razón por la

Figura 1.1: Efectos adversos de las tormentas geomagnéticas en la Tierra Collins (2013)

cual los costos de fabricación, funcionamiento y mantenimiento son elevados. Por lo general, con estos instrumentos no es posible hacer mediciones continuadas durante mucho tiempo, ya sea por las condiciones de funcionamiento y operación o por la ocupación de los mismos.

En el caso de Sol, las observación continuadas en periodos de tiempo extensos, donde las prestaciones instrumentales no sean excesivamente exigentes, a un relativo bajo costo, han sido anheladas por los físicos solares desde hace tiempo. Pero no solo los físicos solares han deseado esto, para las compañías que operan sistemas satelitales de algún tipo, entender la actividad solar les permitiría anticiparse en la protección de los equipos ante la llegada de tormentas geomagnéticas. La Fig. 1.1 presenta una recreación gráfica de los efectos adversos de las tormentas geomagnéticas en la tecnologías necesarias para la actividad humana actual.

El proyecto Solar Activity Monitor NETwork (SAMNet) HSPF-SAMNet dirigido por la Fundación Húngara de Física Solar , tiene como objetivo estudiar las fulguraciones solares, principalmente, aquellas denominadas tipo X, estas emiten radiación de alta energía a altas velocidades, las partícu-

las expulsadas pueden colisionar con el campo magnético terrestre, lo cual, produce fenómenos físicos impresionantes como las auroras boreales o crear anomalías en la ionosfera que son las denominadas tormentas geomagnéticas. Parte del objetivo del proyecto es utilizar instrumentos de bajo costo, lo que implica obtener información con menos resolución espacial, desde múltiples sitios sobre la superficie terrestre, entre los sitios de interés están aquellos ubicados donde el rango entre el alba y el ocaso sea máximo a lo largo de año y esto ocurre en el ecuador terrestre.

En la literatura reciente Korsós et al. (2015, 2019), se han desarrollado modelos predictivos de la formación de fulguraciones, estos trabajos se basan en la premisa de dependencia entre las regiones activas magnéticamente bipolares y la formación de dichas fulguraciones solares. Las variables de interés analizadas son: las áreas y magnitud media del campo magnético en las umbras de las manchas solares de las regiones con polaridad opuesta. Con esta información se estima la distancia entre los baricentros de las zonas que son magnéticamente opuestas, el cual, es el parámetro principal de predicción. La Fig. 1.2 muestra una representación del proceso de formación de una fulguración solar asociada al cambio en la distancia de manchas con polaridad opuesta ocurriendo en una región activa.

La información de entrada para el calculo de los baricentros son los magnetogramas y estos son obtenidos a partir de modelos matemáticos de inversión de los parámetros de Stokes Toro-Iniesta (2003), los cuales a su vez, son obtenidos por los verdaderos parámetros observables para telescopios en el rango de las longitudes de onda entre el visible y el infrarrojo cercano, parámetros que son medidas de intensidad lumínica en diferentes estados de polarización del campo eléctrico.

La adquisición de las imágenes desde telescopios ubicados en tierra se verán afectadas por el seeing atmosférico y por las aberraciones propias del sistema óptico Schmidt (2010), perdiendo éstas, calidad e información asociada a las altas frecuencias, más aún si el telescopio esta ubicado en la franja ecuatorial terrestre como se propone en el proyecto SAMNet, donde las turbulencias atmosféricas suelen ser mayores a los telescopios ubicados en latitudes mas lejanas.

Figura 1.2: Formación de fulguraciones debido al cambio en la distancia de las manchas con polaridad opuesta, Adaptado de Korsós et al. (2019) en Granados-Hernández (2019)

1.1. Objetivos

Por tanto, este trabajo de fin de máster, tiene como objetivo principal, determinar vía simulación, los efectos negativos de las turbulencias atmosféricas terrestres sobre los parámetros de Stokes usados para el calculo del campo magnético solar, en una ubicación especifica del ecuador terrestre, localizada en Colombia y con los siguientes objetivos específicos:

- 1. Encontrar vía simulación con la metodología Large Eddy Simulation (LES), el parámetro estructural de índice de refracción.
- 2. Simular la propagación de un campo de luz (imágenes del sol sin atmósfera terrestre extraídas de SDO) a través de la atmósfera terrestre usando el parámetro estructural de índice de refracción encontrado y un telescopio ideal de apertura menor a 0.5 m, usando la teoría clásica de propagación de la luz en medios inhomogéneos.
- 3. Reconstruir los parámetros de Stokes a partir de las imágenes obtenidas

de propagar la luz polarizada a través de la atmósfera terrestre.

4. Comparar los resultados obtenidos contra los parámetros de Stokes entregados por SDO.

1.2. Estructura del documento

Este trabajo esta dividido en 5 capítulos. El Capítulo actual, que introduce al problema planteado y a los objetivos a resolver. El Capítulo 2 muestra el procedimiento para calcular el parámetro estructural de indice de refracción usando LES, con el programa de acceso libre Maronga et al. (2015); PALM ¹. El Capítulo 3 desarrolla la teoría clásica de propagación de la luz en medios inhomogéneos, con el fin de encontrar el Point Spread Function (PSF) que caracterice la atmósfera, y así encontrar las imágenes necesarias para reconstruir los parámetros de Stokes. En el Capítulo 4 se introduce la espectro-polarimetría solar y se hace un análisis sobre los resultados obtenidos. Por ultimo, En el Capítulo 4 se presentan las conclusiones y el trabajo futuro.

 $^{^1{\}rm Sistema}$ de modelado meteorológico avanzado y moderno para la simulación de flujos de capa limite atmosférica y oceánica.

Capítulo 2

Simulación de las turbulencias atmosféricas

La atmósfera de la Tierra se puede entender como una envolvente de aire atrapada en dirección de la superficie debido a la atracción gravitatoria Nickola (2012). Esta envolvente es una mezcla de gases con variaciones espacio-temporales de temperatura y presión Moeng and Sullivan (1994), las cuales, definen la estratificación de las diferentes capas, aquellas que están definidas en los primeros 100 km se llaman: troposfera, estratosfera, mesosfera y termosfera Nickola (2012); Stull (2012). La Fig. 2.1 muestra las variaciones tanto de temperatura y presión de las diferentes capas atmosféricas.

La capa que cubre los primeros 2 km dentro de la troposfera se llama Planetary Boundary Layer (PLB) y es la que mas aporta a las turbulencias atmosféricas, en los primeros 100 m es donde ocurre la turbulencia mas disruptiva Nickola (2012), esta es una de las razones por la cual, los telescopios científicos de grandes aperturas esta elevados Breckinridge (2012) y con cúpulas que estabilizan la atmósfera en los primeros metros. Principalmente, la turbulencia es el resultado del contacto entre la PLB con flujo de aire a diferentes temperatura y las masas de aire local inestables muy cerca de la superficie, las cuales son llamadas eddies Stull (2012). Sin embargo, los eddies también se forman en alturas mas elevadas cuando se produce una

Figura 2.1: Perfil de temperatura vs. presión para en las diferentes capas atmosféricas de la Tierra Nickola (2012)

fricción entre diferentes flujos ambientales, estos crean vientos de corte que cambian de dirección y velocidad con la altura, generando así los eddies Stull (2012). Lo anterior ocurre debido a que la PLB es responsable del transporte vertical de flujos turbulentos de cantidad de movimiento (momentum), masa y calor latente desde la superficie Moeng and Sullivan (1994); Stull (2012); Nickola (2012). Un consecuencia importante de este proceso, es el cambio en el indice de refracción del aire, temporal y espacialmente Tatarski (2016).

La atmósfera de la Tierra es por tanto un medio inhomogéneo, que puede ser caracterizada por unos parámetros físicos, siguiendo unos modelos matemáticos propios de la estadística. El modelo mas aceptado es el de Kolmogorov (1941) con algunas variaciones afinadas Obukhov (1970); Tatarski (2016) y diferentes formas de implementación Schmidt (2010).

2.1. Modelo de turbulencia de Kolmogorov

El flujo turbulento es un proceso no lineal que esta gobernado por las ecuaciones de Navier-Stokes Sagaut (2006). Resolver dichas ecuaciones para una turbulencia totalmente desarrollada es complejo, en términos de las suposiciones sobre las variable físicas involucradas que definen el microclima y también en términos de su implementación computacional Schmidt (2010).

EARTH'S ATMOSPHERE EDDIES Large Outer scale, L₀ Small Wind shear Convection Dissipation range Dissipation range EARTH'S SURFACE EARTH'S SURFACE

Figura 2.2: Modelo de turbulencia de Kolmogorov Nickola (2012)

Kolmogorov propuso una teoría estadística y separó la forma de entender la atmósfera en tres regiones definidas por las escalas de los eddies, supuso un medio incompresible donde los eddies de escala pequeña (inner scale - l_0) son homogéneos e isotrópicos y los eddies de gran escala (outer scale - L_0) transfieren la energía cinética a los mas pequeños, la región entre l_0 y L_0 se le conoce como subrango inercial. El efecto cascada de transferencia de energía cinética es el responsable de las variaciones de temperatura y densidad del aire Kolmogorov (1941); Tatarski (2016) y por tanto de las variaciones del indice de refracción. La Fig. 2.2 muestra el modelo de Kolmogorov gráficamente.

Con la suposición, que dentro del subrango inercial los eddies son estadísticamente homogéneos e isotrópicos en pequeñas regiones del espacio, propiedades como la velocidad y el indice de refracción tiene incrementos estacionarios Goodman (2015), esto permite un analisis dimensional para determinar la velocidad turbulenta de los eddies en relación con su tamaño $(v \propto r^{(1/3)})$ Kolmogorov (1941). Por tanto, la función estructural de velocidad se puede definir como el promedio ensamblado de la diferencia cuadrática de las velocidades en dos puntos cercanos del espacio $(D_v(r) = \langle (v_1 - v_2)^2 \rangle)$ y como resultado debe ser de la forma

$$D_v(r) = C_v^2 r^{(2/3)}, \quad l_0 \ll r \ll L_0,$$
 (2.1)

donde, C_v^2 $[m^{(4/3)}s^{-2}]$ es el parámetro estructural de velocidad. De la misma forma como se ha analizado la velocidad, se puede analizar la temperatura

potencial θ , la cual esta relacionada linealmente con la temperatura ordinaria T, tal que, $\theta \propto T \propto r^{(1/3)}$ y por tanto, $D_T(r) = C_T^2 r^{(2/3)}$ en el subrango inercial, con C_T^2 [$m^{(-2/3)}$] como el parámetro estructural de temperatura.

2.1.1. Parámetro estructural de índice de refracción C_n^2

Para longitudes de onda dentro del rango visible del espectro electromagnético, el indice de refracción (n) en relación con la estructura atmosférica, puede ser determinado como lo propuso Andreas (1988); Frederickson et al. (2000),

$$n = 1 + 10^{-6} \left\{ m_1(\lambda) \frac{P}{T} + \left[m_2(\lambda) - m_1(\lambda) \right] \frac{qP}{T\varepsilon_q \gamma} \right\}, \tag{2.2}$$

donde, $\lambda[\mu m]$ es la longitud de onda de interés, P[hPa] es la presión atmosférica, T[K] es la temperatura absoluta, $\varepsilon_q = 0.62197$, $q[gg^{-1}]$ es la humedad especifica y $\gamma = (1 + 0.61q)$. Con los parametros m_1 y m_2 definidos como

$$m_1(\lambda) = 23.7134 + \frac{6839.397}{130 - \lambda^{-2}} + \frac{45.473}{39.9 - \lambda^{-2}},$$
 (2.3)

$$m_2(\lambda) = 64.8731 + 0.58058\lambda^{-2} - 0.0071150\lambda^{-4} + 0.0008851\lambda^{-6}.$$
 (2.4)

Definido n, ahora es posible encontrar la función estructural del indice de refracción como $D_n(r) = C_n^2 r^{(2/3)}$ o como $D_n(r) = \langle (n_1 - n_2)^2 \rangle$. Donde nos interesa el parámetro estructural de indice de refracción $C_n^2 = [m^{(-2/3)}]$, parámetro necesario para propagar la luz a través de la atmósfera, como se explica en el Capitulo 3.

Sin embargo, como de las simulaciones atmosféricas usando LES, particularmente PALM Maronga et al. (2015); PALM, se obtienen principalmente, la temperatura potencial (θ) , la humedad especifica (q), las componentes del flujo de velocidad (v_u, v_v, v_w) y parámetros estadísticos como varianzas y co-varianzas sobre estas variables, se plantea obtener C_n^2 usando la metodología planteada por Wilson and Fedorovich (2012) que usa las variables mencionadas.

Por tanto, definimos C_n^2 como

$$C_n^2 = (A^2 \langle (\theta_1 - \theta_2)^2 \rangle + 2AB \langle (\theta_1 - \theta_2)(q_1 - q_2) \rangle + B^2 \langle (q_1 - q_2)^2 \rangle) r^{(3/2)}, \quad (2.5)$$

donde los coeficientes A y B, definidos por Andreas (1988), son

$$A = -10^{-6} m_1 \left(\frac{P}{T^2}\right),\tag{2.6}$$

$$B = 4.6150 \times 10^{-6} (m_2 - m_1), \tag{2.7}$$

con m1 y m2 definidos en las Eqs. 2.3 y 2.4.

2.2. Simulación atmosférica usando LES

Como se explicó en el Capitulo 1, parte del objetivo del proyecto SAM-Net HSPF-SAMNet es utilizar instrumentos de bajo costo para la predicación de tormentas geomagnéticas, en ubicaciones que no son completamente aptas para la observación astronómica, cuando se habla de alta resolución en las imágenes científicas, pero que tienen relevancia por la cantidad de horas de exposición solar al día, durante todo el año y adicionalmente, no se necesita en principio, una alta resolución en las imágenes. La región seleccionada para el análisis de la atmósfera es Villa de Leyva, pueblo ubicado en Colombia. Las características climatológicas esta resumidas en la Tabla 2.1, extraídas del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) de Colombia.

Tabla 2.1: Indicadores de posición y climatológicos de Villa de Leyva (Colombia) IDEAM

En la siguiente subsección se describen brevemente las principales características del funcionamiento del software utilizado para la modelación atmosférica y posteriormente, se muestran los resultados para de simulación de la atmósfera en Villa de Leyva.

2.2.1. Fundamentos de LES y Software PALM

LES es la sigla en ingles de Large Eddy Simulation. Principalmente, es un modelo matemático utilizado en el estudio computacional de la dinámica de fluidos para la simulación de turbulencias. Los flujos turbulentos, como

Figura 2.3: Eddies en el dominio espacial (Izquierda) y frecuencial (Derecha). Imagen tomada de la documentación de PALM

puede ser la atmósfera terrestre, suelen estudiarse a través de solucionar la ecuaciones de Navier-Stokes, donde se requiere resolver periodos de tiempo extenso y un rango amplio de escalas, que afectan el campo de flujo. La principal idea detrás de LES es reducir el costo computacional ignorando las escalas mas pequeñas, haciendo filtros paso-bajos en las ecuaciones de Navier-Stokes, lo cual produce una perdida de resolución espacio-temporal, por el promediado en ambas magnitudes Sagaut (2006).

En general, los puntos mas importantes a tener en cuenta cuando se hace una simulación LES son: a) El tamaño del dominio debe ser lo suficientemente amplio para capturar las escalas relevantes de turbulencia. b) El espaciado de la malla debe ser lo suficientemente fino para resolver el transporte turbulento. c) En las condiciones de frontera horizontal, los flujos de entrada y salida en la frontera no deben afectar el flujo turbulento, usualmente se usan las condiciones de frontera cíclica. d) El tiempo de simulación debe ser suficiente para alcanzar el estado cuasi-estacionario y una estadística estable, tanto para el flujo como para la turbulencia. e) El análisis de los datos debe hacerse solo después del comienzo de la turbulencia y después de que la media del flujo alcance el estado cuasi-estacionario PALM; Sagaut (2006).

Una de las principales características de la simulación LES, es que distingue entre las cantidades de escala-resulta (resolved-scale) y escala-submallada (subgrid-scale), una representación gráfica de los eddies para la simulación LES se muestra en la Fig. 2.3.

Las turbulencias se pueden definir como la desviación (ϕ^*) de un estado promediado $([\phi])$, el promedio de la variable puede estar contenido en el espacio o tiempo promedio. Las cantidades pronosticadas en LES contienen ambas, el flujo promedio y la turbulencia de escala-resuelta $(\overline{\phi} = [\overline{\phi}] + \overline{\phi}^*)$ Maronga et al. (2015); PALM; Sagaut (2006). Como ejemplo, el **transporte** en escala-resuelta incluye el transporte por el promedio del flujo y el transporte por las turbulencias en escala-resulta, tal que,

$$\frac{\partial \overline{u}_i}{\partial t} = \dots - \frac{\partial \overline{u}_k \overline{u}_i}{\partial x_k} \dots - \frac{\partial \overline{u'_k u'_i}}{\partial x_k},$$

en color rojo esta el transporte en escala-resuleta y en cyan el transporte por escala-submallada, para el caso de homogeneidad horizontal ($\overline{u}_i = \langle \overline{u}_i \rangle + \overline{u}_i^*$), con \overline{u}_i como el valor instantáneo, $\langle \overline{u}_i \rangle$ como el promedio horizontal y variación en z y \overline{u}_i^* como las desviación con respecto al promedio horizontal, este ultimo termino es la turbulencia en escala-resulta, el cual puede ser determinado de forma directa. las cantidades en escala-submallada, la cual esta definida después de cierta frecuencia de corte (frecuencias altas), deben ser modeladas y parametrizadas usando modelos estadísticos Sagaut (2006); Obukhov (1970); Tatarski (2016); Kolmogorov (1941) basados en la teoría de Kolmogorov. Las simulaciones LES están principalmente diseñadas para el subrango inercial.

El software PALM es una contribución de muchos equipos de trabajo a lo largo del globo, liderado por la Universidad de Leibniz en Hannover, Alemania Maronga et al. (2015); PALM. Escrito en Fortran95/2003, PALM tiene varias modalidades de ejecución, incluida la paralelización en CPU y GPU, es de código abierto bajo licencia GNU v3.

PALM entrega 7 cantidades de pronostico por defecto, las 3 componentes de la velocidad, la temperatura potencial, el coeficiente mixto de vapor de agua, el escalar pasivo y la energía cinética turbulenta en la escalasubmallada.

El modelo usa las ecuaciones de Navier-Stokes en la aproximación Boussinesq incompresible, filtrado y no hidrostático,

$$\frac{\partial u_i}{\partial t} = \frac{\partial u_i u_j}{\partial x_j} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3j} f_3 u_{g,j} - \frac{1}{\rho_0} \frac{\partial \pi^*}{\partial x_i} + g \frac{\theta_v - \langle \theta_v \rangle}{\langle \theta_v \rangle} \delta_{i3} - \frac{\partial}{\partial x_j} \left(\overline{u_i^* u_j^*} - \frac{2}{3} e \delta_{ij} \right), \tag{2.8}$$

los paréntesis triangulares denotan un dominio horizontal promediado, el subindice 0 indica el valor en superficie, las doble comillas indican variables

en la escala-submallada, la barra sobre las variables indica cantidades filtradas en la escala-submallada. Sin embargo, todas variables están filtradas por la discretización. u_i son componentes de velocidad, x_i son las componentes de posición, t es el tiempo, f_j es el parámetro de Coriolis, $u_{g,j}$ son las componentes de la velocidad del viento geostrópico, ρ_0 la densidad del aire, π^* parámetro de la perturbación de presión modificada, e es la energía cinética turbulenta en escala-submallada, g aceleración de la gravedad, δ_{ij} es delta de Kronecker y ε es el símbolo de Levi-Civita. Adicionalmente a la Eq. 2.8, PALM necesita las ecuaciones de conservación de masa, energía y humedad, mas la ecuación de continuidad Sagaut (2006); Maronga et al. (2015); PALM, para resolver las mencionadas cantidades de pronostico.

2.2.2. Resultados de las simulaciones atmosféricas

EL primer paso para correr PALM, es definir un fichero de configuración, este tiene la forma mostrada en la Codigo 2.1 y el archivo usado para correr los modelos de la atmósfera de Villa de Leyva se encuentra en el Apéndice A.

```
&initialization parameters
        !-- grid parameters
        !-- initialization
            physics
        !-- boundary conditions
        !-- mode
        !-- numerics
&runtime parameters
        !-- run steering
        !-- general output setting
        !-- 2D and 3D output setting
&land_surface_parameters
        !-- soil setup
        !-- boundary conditions
\& radiation\_parameters
        !-- general setup
```

Codigo 2.1: Ejemplo de fichero de configuración para PALM

El fichero de configuración de PALM, tiene una amplia variedad de controles, no siempre evidentes de operar y entender, pero principalmente, se definen los tamaños de malla y la extensión ha analizar, así como características de la ubicación, es decir, altura sobre nivel del mar, longitud, latitud, componentes de la velocidad del viento en superficie, humedad relativa, temperatura, tipo de vegetación en el sitio, topografía, presión atmosférica en superficie, etc. También, se define la estación respecto al mes de año, tiempo total de la simulación, condiciones de frontera, tipo de algoritmo para la minimización. Los resultados numéricos para análisis posteriores de las variables de pronostico, son entregados en formato NetCDF (*.nc). Adicionalmente, se escribe un archivo PDF con imágenes de las variables de interés.

Capítulo 3

Propagación de la luz en medios inhomogéneos

La atmósfera puede ser interpretada como un medio inhomogéneo, no magnético e isotrópico y la fuente de su inhomogeneidad esta relacionada con los cambios en el indice de refracción (n) Goodman (2015); Schmidt (2010). También, puede considerarse que el indice de refracción de la atmósfera es cercano a la unidad. Estas consideraciones permiten hacer pequeñas variaciones en las técnicas computacionales para el calculo de la propagación de la luz en el vacío. Sin embargo, como se ha dicho en el Capítulo 2, n varia de forma aleatoria tanto en el tiempo como en el espacio y debe ser tratado desde la perspectiva de la óptica estadística Goodman (2015). Como resultado de estos cambios aleatorios, se produce un efecto negativo en la formación de imagen, debido a que la luz se distorsiona de forma aleatoria limitando la resolución de los telescopios.

Bajo las premisas mencionadas, nos limitaremos a estudiar n asumiendo cambios pequeños (δn) , tal que, $\delta n = n-1$ y con ello, en la siguiente subsección, desarrollaremos el algoritmo de propagación de la luz, el cual esta basado en el algoritmo ampliamente conocido de espectro angular Schmidt (2010). Los cambios en el indice de refracción, desde un punto de vista matemático, introduce cambios aleatorios de fase en el campo eléctrico, lo

que nos permite formular la teoría de Rytov Ishimaru (2017), la cual, es una teoría de perturbaciones que usa las ecuaciones de Maxwell para obtener unas propiedades estadísticas en el plano de observación del campo óptico Goodman (2015); Schmidt (2010). Los parámetros estadísticos como las varianzas, correlaciones y espectros de densidad, de propiedades como la amplitud-logarítmica, fase e irradiancia son usadas para generar mascaras aleatorias, las cuales a su vez, son entradas para el algoritmo de propagación. Así que principalmente, este Capitulo muestra un modelo de atmósfera por capas siguiendo unos parámetros estadísticos determinados previamente.

Empezaremos por describir el algoritmo de propagación, luego, mostraremos la relación entre las variables estadísticas encontradas para la atmósfera simulada en el Capitulo 2, las cuales, nos servirán para hacer un modelo de capas de la atmósfera usando máscaras de fase aleatorias calculadas a través de un modelo sencillo de Monte-Carlo. Las mascaras computadas son la entrada principal del algoritmo.

3.1. Algoritmo de espectro angular para la propagación de la luz en la atmósfera

En la teoría escalar de la difracción, explicada con rigor físico y matemático por Goodman (2005), en Introduction to Fourier Optics, la propagación en campo cercano esta definida por la integral de Fresnel y es el tratamiento de esta transformación, la que permitirá plantar la propagación de la luz a través de la atmósfera Schmidt (2010). Supongamos un campo óptico de entrada escrito de forma fasorial, $U(\mathbf{r}_1) = A(\mathbf{r}_1) \exp[-i\phi(\mathbf{r}_1)]$, que va siendo transformado a medida que atraviesa cada pequeña sección transversal de la atmósfera, tal que, $U(\mathbf{r}_{i+1}) = A(\mathbf{r}_{i+1}) \exp[-i\phi(\mathbf{r}_{i+1})]$. La transformación entonces esta dada por

$$U(\mathbf{r}_{i+1}) \simeq \mathcal{R}\left[\frac{\Delta z_i}{2}, \mathbf{r}_i, \overline{\mathbf{r}}_{i+1}\right] \mathcal{T}[z_i, z_{i+1}] \mathcal{R}\left[\frac{\Delta z_i}{2}, \mathbf{r}_i, \overline{\mathbf{r}}_{i+1}\right] \{U(\mathbf{r}_i)\}, \quad (3.1)$$

donde, $\mathcal{R}[.]$ y $\mathcal{T}[.]$ son operadores que representan la difracción en el espacio libre y la acumulación de fase debido a la atmósfera, respectivamente. $\bar{\mathbf{r}}_{i+1}$ es la coordenada a medio camino entre el plano i y i+1. Expandiendo la

Eq. 3.1 en la notación de Nazarathy and Shamir (1982) obtenemos

$$U(\mathbf{r}_{n}) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, \mathbf{r}_{n}\right]$$

$$\times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_{i}, z_{i+1}] \mathcal{F}^{-1}\left[\mathbf{f}_{i}, \frac{\mathbf{r}_{i+1}}{m_{i}}\right] \mathcal{Q}_{2}\left[-\frac{\Delta z_{i}}{m_{i}}, \mathbf{f}_{i}\right] \mathcal{F}[\mathbf{r}_{i}, \mathbf{f}_{i}] \frac{1}{m_{i}} \right\}$$

$$\times \left\{ \mathcal{Q}\left[\frac{1-m_{1}}{\Delta z_{1}}, \mathbf{r}_{1}\right] \mathcal{T}[z_{1}, z_{2}] U(\mathbf{r}_{1}) \right\}.$$

$$(3.2)$$

La Eq. 3.2 esta en términos de transformadas de Fourier $(\mathcal{F}, \mathcal{F}^{-1})$ y operadores que contienen fases cuadráticas $(\mathcal{Q}[c, \mathbf{r}]\{U(\mathbf{r})\} = e^{i(k/2)c|\mathbf{r}|^2}U(\mathbf{r}), \mathcal{Q}_2[d, \mathbf{r}] = \mathcal{Q}[(4\pi^2/k^2)d, \mathbf{r}])$. El subindice n representa el numero de planos de propagación y la acumulación de fase esta definida como

$$\mathcal{T}[z_i, z_{i+1}] = \exp[-i\phi(\mathbf{r}_{i+1})], \tag{3.3}$$

donde, la fase ϕ esta definida a través del cambio en el indice de refracción δn , como

$$\phi(\mathbf{r}_i) = k \int_{z_i}^{z_{i+1}} \delta n(\mathbf{r}_i) dz.$$
 (3.4)

En la aproximación de Rytov Ishimaru (2017); Goodman (2015), el campo óptico esta definido como $U(\mathbf{r}) = U_0(\mathbf{r}) \exp[\psi(\mathbf{r})]$, donde, $U_0(\mathbf{r})$ representa la solución de las ecuaciones de Maxwell para el vacío $(n_1 = 0)$ y $\psi(\mathbf{r})$ es la perturbación de fase compleja, la cual, sigue la forma $\psi(\mathbf{r}) = \psi_1(\mathbf{r}) + \psi_2(\mathbf{r}) + ...$, con realizaciones sucesivas de perturbación, caracterizadas por varios momentos estadísticos. Adicionalmente, ψ puede ser escrita en términos de amplitud y fase $(\psi = \mathcal{X} + i\phi)$. \mathcal{X} es la perturbación de amplitud-logarítmica y ϕ como se dijo, es la perturbación de fase. El metodo de Rytov puede ser construido a partir de un modelo *Power Spectrum Density* (PSD - Φ), con el cual calcular analíticamente los momentos estadísticos del campo óptico.

3.2. Definición de Φ_n y Φ_{ϕ}

Siguiendo la teoría de Kolmogorov Kolmogorov (1941), explicada brevemente en el Capítulo 2, la descripción espectral de las fluctuaciones del índice de refracción, puede ser interpretada a través de su PSD $(\Phi_n(\kappa))$,

la cual es calculada usando la función estructural de indice de refracción $(D_n(r))$ Andrews and Phillips (2005). Un modelo practico de la PSD de indice de refracción basada en la teoría de Kolmogorov y modificada por Von Kármán Andrews and Phillips (2005) viene dada por

$$\Phi_n(\kappa) = 0.033 C_n^2 \frac{\exp(-\kappa^2/\kappa_m^2)}{(\kappa^2 + \kappa_0^2)^{(11/6)}}, \quad 0 \le \kappa < \infty,$$
 (3.5)

con $\kappa = 2\pi (f_x \hat{\mathbf{i}} + f_y \hat{\mathbf{j}})$ como la frecuencia espacial angular, $\kappa_m = 5.92/l_0$ y $\kappa_0 = 2\pi/L_0$. El modelo de Von Kármán modificado esta diseñado para tener en cuenta escalas mas pequeñas y mas grandes de Eddies que el modelo estándar de Kolmogorov. Nótese que el parámetro estructural de indice de refracción (C_n^2) es necesario para construir su PSD. La relación entre los parámetros que definen el indice de refracción y la fase, puede escribirse a traves de sus PSDs como

$$\Phi_{\phi}(\kappa) = 2\pi^2 k^2 \Delta z \Phi_n(\kappa), \tag{3.6}$$

resolviendo, se obtiene

$$\Phi_{\phi}(\kappa) = 0.49 r_0^{(-5/3)} \frac{\exp(-\kappa^2/\kappa_m^2)}{(\kappa^2 + \kappa_0^2)^{(11/6)}},$$
(3.7)

donde r_0 es conocido como el parámetro de Fried o radio de coherencia atmosférico Fried (1965); Schmidt (2010) y Δz es la distancia de propagación. El parámetro de Fried depende de la forma de la onda propagada, para un frente de onda esférico r_0 esta dado por

$$r_{0,sw} = \left[0.423k^2 \int_0^{\Delta z} C_n^2(z) \left(\frac{z}{\Delta z}\right)^{(5/3)} dz\right]^{(-3/5)}.$$
 (3.8)

Para el caso de un frente de onda plano, el termino de divergencia de la onda $((z/\Delta z)^{(5/3)})$ desaparece de la Eq. 3.8. El parámetro de Fried, físicamente hablando, es la medida de la calidad de transmisión óptica a través de la atmósfera.

3.3. Cálculo de las máscaras de fase usando PSDs

Como se ha dicho, las variaciones aleatorias en el indice de refracción producen cambios en el camino óptico de la luz, también aleatorios. Por tanto, el objetivo es crear mascaras de fase que produzcan cambios aleatorios en la propagación de la luz que sigan la estadística de la atmósfera estudiada, las cuales servirán, como fue mencionado antes, de entrada en el algoritmo de propagación de la luz. Es decir, que las turbulencias atmosféricas producen variaciones de fase que deben ser representadas por números aleatorios generados por ordenador con una estadística propia definida a través de las PSDs. La fase puede ser escrita como la sumatoria ponderada de unas funciones base. Usando la transformada de Fourier, podemos escribir la fase como

$$\phi(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi(f_x, f_y) e^{i2\pi(f_x x + f_y y)} df_x df_y, \tag{3.9}$$

donde, $\Psi(f_x, f_y)$ es la representación de la fase en el domino espacio-frecuencial. Entendiendo la fase como una realización de un proceso aleatorio con una PSD dada por $\Phi_{\phi}(\kappa)$ o $\Phi_{\phi}(f)$ y usando el terorema de Parseval, mas la definición de PSD Schmidt (2010); Goodman (2005) obtenemos la siguiente relación

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi_{\phi}(f_x, f_y) df_x df_y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\phi(x, y)|^2 dx dy, \tag{3.10}$$

Ahora, usando la Eq. 3.9 de forma discreta para poder ser computada, esta se convierte en una serie de Fourier donde el conjunto de los coeficientes son la variable de interés para construir la fase aleatoria. Para determinar los coeficientes se utilizara el teorema de limite central, con el cual obtener una distribución Gaussiana Goodman (2015); Schmidt (2010). La razón principal de este razonamiento, es que las variaciones de fase a través de la atmósfera tiene muchas inhomogeneidades aleatorias independientes a lo largo del camino óptico. Tal que, los coeficientes pueden ser escritos usando la Eq. 3.9 y la Eq. 3.10 en su forma discreta, como

$$\left\langle |c_{n,m}|^2 \right\rangle = \frac{1}{L_x L_y} \Phi_{\phi}(f_{x_n}, f_{y_m}), \tag{3.11}$$

siendo f_{x_n} y f_{y_m} las frecuencias espaciales discretizadas y L_x y L_y el espaciado de la malla en representación frecuencial. $c_{n,m}$ son los coeficientes de Fourier complejos y tanto su parte real como imaginaria tiene una media de cero, las varianzas son iguales y las covarianzas cruzadas son cero. Una vez obtenidos los coeficientes, computacionalmente hablando, la parte real de la transformada de Fourier de estos, es la fase aleatoria buscada. Sin embargo, este método no reproduce de forma precisa las frecuencias bajas del modelo modificado de Von Kármán, por tanto hay que introducir una corrección, basado en la reconstrucción de subarmónicos Lane et al. (1992), donde se hace una suma adicional, para hacer un promedio de varias mascaras de fase aleatorias, solo alrededor de las frecuencias bajas.

La fase para bajas frecuencias esta dada por

$$\phi_{LF}(x,y) = \sum_{p=1}^{N_p} \sum_{n=-1}^{1} \sum_{m=-1}^{1} c_{n,m} \exp[i2\pi (f_{x_n} x + f_{y_m} y)], \qquad (3.12)$$

donde, N_p es la suma sobre diferentes mascaras de fase. La definicion de la fase para las altas frecuencias tiene la misma forma de la Eq. 3.12, pero sin la sumatoria sobre N_p y con n y m del tamaño total de la mascara, es decir, para el tamaño total de las frecuencias analizadas. Finalmente, la fase total es la suma de la fase para las altas frecuencias mas la fase para las bajas frecuencias.

3.4. Función de transferencia óptica (OTF) y función de punto esparcido (PSF)

Retomando la teoría Rytov Ishimaru (2017); Goodman (2015) que ha sido introducida al inicio de este Capitulo, el valor promedio de un campo óptico esta definido como

$$\langle U(\mathbf{r}) \rangle = U_0(\mathbf{r}) \langle \exp[\psi(\mathbf{r})] \rangle.$$
 (3.13)

A partir de la Eq. 3.13, se puede definir la función de coherencia mutua, la cual nos indica, el grado de coherencia de la luz de un campo óptico

y tiene un rol importante en la interpretación de la transformación de los campos ópticos parcialmente coherentes, a través de los sistemas ópticos formadores de imagen Goodman (2015). La función de coherencia mutua tiene la siguiente forma

$$\Gamma(\mathbf{r}, \mathbf{r}', z) = U_0(\mathbf{r})U_0^*(\mathbf{r}')\langle \exp[\psi(\mathbf{r})\psi^*(\mathbf{r}')]\rangle. \tag{3.14}$$

La función de coherencia mutua permite calcular propiedades útiles para la caracterización de la propagación de la luz. Estas propiedades son el factor modulo complejo de coherencia, la función estructural de onda, la PSD de la fase y la OTF del sistema Goodman (2015); Schmidt (2010). Para el modelo de atmósfera que se viene analizando, el factor modulo complejo de coherencia esta definido como

$$\mu(\mathbf{r}, \mathbf{r}', z) = \frac{|\Gamma(\mathbf{r}, \mathbf{r}', z)|}{[\Gamma(\mathbf{r}, \mathbf{r}, z)\Gamma(\mathbf{r}', \mathbf{r}', z)]^{(1/2)}}.$$
(3.15)

Por otro lado, la OTF esta definida después de un cambio de coordenadas, de la misma forma que el factor modulo complejo de coherencia

$$\mathcal{H}(f) = \frac{\Gamma(\lambda f_l f)}{\Gamma(0)},\tag{3.16}$$

donde, f_l es la focal del sistema, λ la longitud de onda y f las coordenadas frecuenciales. Finalmente, como es bien sabido, la PSF del sistema óptico incluidas las turbulencias atmosféricas es la transformada de Fourier de la OTF Goodman (2005).

3.5. Resultados

Los resultados del algoritmo de propagación se muestra en la Fig. 3.1, donde el eje x esta determinado por el muestreo en esa dirección, dividido por el diámetro del telescopio. De la misma forma que el eje x, el eje y es determinado, tal que, hay simetría en ambos ejes. La Fig. 3.1(a) muestra la amplitud de la propagación de un haz puntual sin el efecto de la atmósfera, es decir, en el espacio libre, con el uso de súper-gaussianas para simular al absorción. La Fig. 3.1(b) muestra la fase después de colimar el haz, como era

Figura 3.1: Resultados de la simulación del algoritmo de propagación. (a) Amplitud y (b) fase de haz puntual propagado sin atmósfera. (c) Amplitud y (d) fase de haz puntual propagado a través de la atmósfera. El circulo rojo representa la apertura del telescopio

de esperar, tiene frente de onda plano. La Fig. 3.1(c) muestra la amplitud del mismo haz que el de la Fig. 3.1(a), pero con el efecto de la atmósfera, se puede evidenciar como hay un esparcimiento de la luz. La Fig. 3.1(d) muestra la fase correspondiente a la propagación de la luz a través de la atmósfera, de esta puede inferirse como el frente de onda es aleatorio debido a los efectos de la atmósfera. En la Fig. . 3.1(c) y Fig. 3.1(d), el circulo rojo representa la superposición de la apertura del telescopio.

La rutina principal realizada en Matlab, que llama las funciones para simular la propagación de la luz a través de la atmósfera, es mostrada en el Apéndice B. Los parámetros principales en la simulación fueron: longitud de onda $(550 \ nm)$, distancia de propagación $(20 \ km)$, diámetro del telescopio (9.25), Numero-f (f/10).

Por otro lado, el resultado necesario para simular la degradación de las imágenes en los diferentes estados de polarización del Sol, es la PSF del

Figura 3.2: Resultado de la PSF. Corte en dirección x.

sistema óptico incluida la atmósfera. La Fig. 3.2 muestra tres curvas, la representación de la PSF del telescopio limitado por difracción (azul), la PSF aberrada por la atmósfera (rojo) y el ajuste a una gaussiana de la curva aberrada de la atmósfera (negro).

En la Fig. 3.2, puede verse como la PSF debido a la atmósfera se ensancha y baja su energía máxima. La resolución del telescopio es $\sim 0.6~arcsec$ y la resolución del sistema con atmósfera es $\sim 4~arcsec$, medidos desde el primer mínimo de del patrón de Airy. Si utilizamos el criterio de "Full-Width at Half Maximum" (FWHM) para la resolución del sistema con atmósfera (seeing) es $\sim 2~arcsec$.

Capítulo 4

Espectro-polarimetría Solar

- 4.1. Sección 1
- 4.1.1. Subsección 1
- 4.1.2. Subsección 2

Capítulo 5

Conclusiones y trabajo futuro

En este Capítulo final se detallan y discuten las conclusiones mas relevantes de este trabajo de fin de máster. Empezaremos hablando de las conclusiones generales del trabajo y luego unas conclusiones especificas asociadas a cada capitulo y finalmente una discusión sobre la dirección en la que debería continuar el trabajo.

5.1. Conclusiones generales

Como era de esperar, la resolución de la señal óptica obtenida por sistemas formadores de imagen que están ubicados en tierra, se ven afectadas de forma negativa por las variaciones de fase, ocasionadas por las variaciones de indice de refracción, que introducen las turbulencias atmosféricas. La afectación sobre la información óptica se traduce en una perdida de las frecuencias altas y un aumento en el ruido. Sin embargo, los parámetros de Stokes se pueden recuperar y estructuras finas dentro de estos siguen siendo apreciables, cuando son comparados con los mismos parámetros recuperados sin la afectación de las turbulencias atmosféricas. Por tanto, el campo magnético del Sol (magnetograma) se puede reconstruir a partir de los parámetros de Stokes, lo que nos lleva a pensar, que los baricentros de las zonas que son magnéticamente opuestas podrán estar calculados con fiabilidad y

así el cambio en la distancia entre estos, la cual, es el parámetro principal de predicción de fulguraciones solares y por consiguiente de las tormentas geomagnéticas.

Por otro lado, con este TFM se ha generado una metodología para hacer estudios preliminares, es decir antes de las mediciones, de ubicaciones que permitan usar tecnología de bajo costo para la predicción de tormentas geomagnéticas, incluidos sitios no completamente aptos para la observación astronómica, como busca el proyecto SAMNet.

5.2. Conclusiones por capítulo

5.2.1. Simulación de las turbulencias atmosféricas

El estudio de la dinámica atmosférica y por tanto de las turbulencias vía medición, es un campo complejo que involucra muchas variables físicas, en ocasiones difíciles de describir e interpretar, incluso si se utilizan instrumentos de medida sofisticados. Por esta razón, las simulaciones tipo LES con modelos físico-matemáticos muy rigurosos, han permitido una comprensión mucho mayor de los procesos de formación de turbulencias y la interacción con propiedades locales en tierra. Para el caso de Villa de Leyva, se simuló la formación de Eddies locales y se obtuvo el parámetro estructural de indice de refracción necesario para definir la propagación de la luz en este medio inhomogéneo. De los parámetros atmosféricos obtenidos, se concluye que la atmósfera en la localización analizada es altamente turbulenta ($C_n^2 \sim 10^{-15}$), comparado con los sitios científicos especializados para observación astronómica ($C_n^2 \sim 10^{-17}$).

Kolmogorov sentó las bases para la comprensión de la dinámica atmosférica, usando herramientas estadísticas que facilitan la solución de las ecuaciones de Navier-Stokes y con las capacidades computacionales actuales (computación de alto rendimiento) se ha facilitado hacer simulaciones de atmósferas locales, en las que interactúan varios paramentos que hacen costoso el tiempo de procesamiento. Adicionalmente, las simulaciones LES se han convertido

en una herramienta complementaria a las medidas. Dentro de este TFM se consiguió entender como interactúan la variables que definen las turbulencias atmosféricas y por tanto, hacer simulaciones de este tipo usando herramientas científicas disponibles de código abierto.

5.2.2. Propagación de la luz en medios inhomogéneos

La forma en la que la luz se propaga en un medio depende de las propiedades de este. Para el caso de la atmósfera, el cual es un medio inhomogéneo, no magnético e isotrópico, la luz se ve afectada de forma aleatoria tanto en cambios de dirección como en cambios de amplitud. Por tanto, definiendo el campo óptico de forma fasorial, la atmósfera produce cambios que afectan la fase y la amplitud-logarítmica del campo, lo cual permite definir matemáticamente esta propagación a través de la teoría escalar de la difracción y generar o utilizar algoritmos computacionales existentes que representen este fenómeno, siguiendo las propiedades físicas de la atmósfera, definidas estadisticamente. En este trabajo se programó el algoritmo de espectro angular y se determinaron las propiedades ópticas (OTF y PSF) que definen la calidad de un sistema óptico, esto permitió comparar la perdida de resolución debido a las turbulencias atmosféricas (PSF $\sim XXX$ arcsec) en el proceso de formación de imagen, comparado con sistema limitado por difracción de la apertura analizada (PSF $\sim XXX$ arcsec).

5.2.3. Espectro-polarimetría Solar

La espectro-polarimetría Solar se basa en recomponer el campo eléctrico de forma vectorial, lo que posteriormente, permite la reconstrucción del campo magnético. La forma de estudiar el campo eléctrico es a través de medidas de diferentes estados de polarización de la luz, lo cual, permite entender la dirección de vibración y el desfase entre las componentes del campo eléctrico. Una de las formas de representar matemáticamente el campo es a través de los parámetros de Stokes. En este TFM, se descompuso los parámetros de Stokes provenientes del la misión SDO y el instrumento HMI, en las intensidades obtenidas en diferentes estados de polarización, luego, se

hizo una convolución cada una de las medidas de intensidad con la PSF de la atmósfera y se reconstruyeron nuevamente los parámetros de Stokes para entender como estos se ven afectados. La conclusión principal, es que las estructuras de altas frecuencias que se aprecian en los parámetros de Stokes originales se pierden una vez se reconstruyen los parámetros afectados por la atmósfera, sin embargo, la degradación en las bajas frecuencias no es tan significativa para destruir la información polarimétrica. Por tanto, esto nos lleva a pensar que es posible reconstruir el magnetograma necesario para la prediccion de las tormentas geomagnéticas. En este TFM, también se empezó el análisis de inversión de los parámetros de Stokes para la reconstrucción de el magnetograma usando código científico de libre acceso.

5.3. Trabajo futuro

La propuesta de los pasos a seguir en un trabajo posterior, son principalmente, un estudio mas detallado de la atmósfera local, tanto desde nuevos parámetros en las simulaciones, como algunas medidas in-situ. Los parámetros importantes en la simulación deben ser el diseño de topografía superficial y la definición de la vegetación de los alrededores. Po otro lado, el análisis de la propagación de la luz debe ser hecha por capas no simétricamente espaciadas, siguiendo criterios basados en el comportamiento de los parámetros atmosféricos. Un aspecto importante en el futuro, es hacer de forma mas rigurosa el análisis del magnetograma con el código científico de inversión de los parámetros de Stokes, definiendo mejor la fotosfera y cromosfera Solar. Por ultimo, se debe hacer un estudio de como la variación de la distancia entre los baricentros de las zonas que son magnéticamente opuestas, debido a el emborronamiento de las imágenes debido a la atmósfera que componen los parámetros de Stokes, afectan la predicción de las tormentas geomagnéticas

Bibliografía

- Andreas, E. L.: 1988, JOSA A 5(4), 481
- Andrews, L. C. y Phillips, R. L.: 2005, Laser beam propagation through random media, Vol. 152, SPIE press Bellingham, WA
- Breckinridge, J. B.: 2012, Basic Optics for the Astronomical Sciences, SPIE Press.
- Collins, C.: 2013, Astronomy 101: From the Sun and Moon to Whormholes and Warpdrive, Key Theories, Discoveries, and Facts about the Universe, USA: Adams Media.
- EAST-EST, European Solar Telescope: http://www.est-east.eu/
- ESA-GAIA, Global Astrometric Interferometer for Astrophysics: https://sci.esa.int/web/gaia
- ESO-ALMA, Atacama Large Millimiter Array: https://www.almaobservatory.org/
- ESO-VLT, Very Large Telescope: https://www.eso.org/public/ teles-instr/paranal-observatory/vlt/
- Frederickson, P. A., Davidson, K. L., Zeisse, C. R., y Bendall, C. S.: 2000, Journal of Applied Meteorology 39(10), 1770
- Fried, D. L.: 1965, JoSA 55(11), 1427
- Goodman, J. W.: 2005, *Introduction to Fourier optics*, Roberts and Company Publishers

- Goodman, J. W.: 2015, Statistical optics, John Wiley & Sons
- Granados-Hernández, N.: 2019, Análisis de Centroides de Polaridad Magnética en Regiones Solares Activas, Observatorio Astronómico Nacional. Universidad Nacional de Colombia.
- HSPF-SAMNet, Solar Activity Monitor NETwork: http://hspf.eu/samnet.html
- IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales: http://institucional.ideam.gov.co/jsp/index.jsf
- Ishimaru, A.: 2017, Electromagnetic wave propagation, radiation, and scattering from fundamentals to applications, Wiley Online Library
- Kolmogorov, A. N.: 1941, Cr Acad. Sci. URSS 30, 301
- Korsós, M. B., Ludmány, A., Erdélyi, R., y Baranyi, T.: 2015, Astrophysical Journal Letters 802(2), L21
- Korsós, M. B., Yang, S., y Erdélyi, R.: 2019, Journal of Space Weather and Space Climate 9, A6
- Lane, R., Glindemann, A., Dainty, J., et al.: 1992, Waves in random media **2(3)**, 209
- Lang, K. R.: 2006, Sun, Earth and Sky, 2nd. Springer.
- Lang, K. R.: 2008, The Sun from Space, 2nd. Springer.
- Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., y Raasch, S.: 2015, Geoscientific Model Development Discussions 8, 1539
- Moeng, C.-H. y Sullivan, P. P.: 1994, Journal of the Atmospheric Sciences 51(7), 999
- NASA-HST, Hubble Space Telescope: https://hubblesite.org/
- NASA-SDO, Solar Dynamics Obserbatory: https://sdo.gsfc.nasa.gov/
- Nazarathy, M. y Shamir, J.: 1982, JOSA 72(3), 356

- Nickola, M.: 2012, Astronomical seeing conditions as determined by turbulence modelling and optical measurement, Faculty of Natural and Agricultural Sciences. University of Pretoria. South Africa
- Obukhov, A. M.: 1970, Structure of temperature field in turbulent flow, Technical report, AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AFB OH FOREIGN TECHNOLOGY DIVISION
- PALM, https://palm.muk.uni-hannover.de/trac bajo licencia GNU General Public License V3
- Sagaut, P.: 2006, Large eddy simulation for incompressible flows: an introduction, Springer Science & Business Media
- Schmidt, J. D.: 2010, Numerical Simulations of Optical Wave Propagation, SPIE Press.
- STScI-JWST, Jammes Webb Space Telescope: http://www.stsci.edu/ jwst/
- Stull, R. B.: 2012, An introduction to boundary layer meteorology, Vol. 13, Springer Science & Business Media
- Tatarski, V. I.: 2016, Wave propagation in a turbulent medium, Courier Dover Publications
- Toro-Iniesta, J. C.: 2003, *Introduction to Spectropolarimetry*, Cambridge University Press.
- Vita-Finzi, C.: 2008, The Sun. A User's Manual, Springer.
- Wilson, C. y Fedorovich, E.: 2012, Acta Geophysica 60(5), 1474

Apéndice A

Configuración PALM

```
&initialization_parameters
!-- grid parameters
                                        = 39,
                                        = 39,
                                        = 50,
                                        = \ 50.0 \; ,
                                        =\ 5\,0\,.\,0\ ,
                                        =\ 2\,5\,.\,0\ ,
    ^{\rm dz\_stretch\_level}
                                        = 2215.0, ! Altura villa de leyva
   dz\_max
!-- initialization
    \verb|initializing_actions||\\
                                        = 'set_constant_profiles',
   {\tt ug\_surface}
                                        = 2.5,
   vg_surface
   _{\rm pt\_surface}
                                        =\ 3\,0\,6\,.\,0\;,
    pt_vertical_gradient
                                               0.0, 3.0, 0,
    \label{eq:pt_vertical_gradient_level} \begin{array}{lll} \texttt{pt\_vertical\_gradient\_level} = 0.0\,, & 800\,, & 1600\,, \end{array}
                                        =~0.019, ! mixing ratio -\!\!-\!\!> rel. hum. =~?
   surface_pressure
                                        =\ 1\,0\,1\,6\,.\,0\;,
    day_of_year_init
                                        =~172\,,~!~\mathrm{June}~21
    time_utc_init
                                        =\ 4\,3\,2\,0\,0\,.\,0\;,\ !\ 1\,2\,:\,0\,0\;\;UTC
!-- physics
    latitude
                                        = 5.66,
                                        = 286.46, ! -73.54 villa de leyva
    longitude
!-- boundary conditions
    constant_flux_layer
                                        = .TRUE.,
```

```
= 'dirichlet', ! required when using LSM
= 'dirichlet', ! required when using LSM
    bc_pt_b
    bc_q_b
     rayleigh\_damping\_height
                                              = 138.0.
     {\tt rayleigh\_damping\_factor}
                                               = 0.01,
!-- mode
                                              = .TRUE.,
     humidity
     !\ {\tt precipitation}
                                                 = .FALSE.
     reference_state
                                              = 'horizontal_average',
!-- numerics
                                               = 'temperton-algorithm', !'fftw', !
     fft\_method
&runtime_parameters
!-- run steering
     {\tt end\_time}
                                               =\ 216000.0\,,\ !\ 2.5\ days
     \tt create\_disturbances
                                               = \ .\, T\,. \ ,
     dt_disturb
                                               = 120.0,
     __disturbance_energy_limit
                                               =\ 0.0001\,,
!-- general output setting
     netcdf data format
                                              = 2, ! NetCDF3
     dt_run_control
                                               = 900.0,
     dt_data_output
                                              = 21600.0, ! 6 hours
     dt_data_output_av
                                               =\ 3\,6\,0\,0\,.\,0\;,
     averaging interval
                                               = 1800.0,
!-- profile output setting
                                               = '#u', '#v', '#theta', '#q', '#thetav',
'#km', '#kh', '#l',
'w', 'e', 'e*', 'p',
'w"u"', 'w*u*', 'w"v"', 'w*v*',
     data output pr
                                                   "w"\,theta\,"", \quad "w*theta*", \quad "w"\,thetav\,"", \quad "w*thetav*",
                                                  """q"', 'w*q*', 'w*e*', 'theta*2', 'q*2', 'u*2', 'v*2', 'w*2', '#t_soil', '#m_soil',
!-- 2D and 3D output setting
     section xy
                                               = 0, ! surface variables only
                                               = 'theta', 'thetav', 'q', 'u', 'v', 'theta_av', 'thetav_av', 'q_av', 'u_av', 'v_av',
     data output
                                                   't_soil', 't_soil_av', 'm_soil_av',
                                                                     'us*_xy_av',
                                                   'us*_xy',
                                                                    ^{,}\,t*\_xy\_av\,^{,}\,,
                                                   ^{,}\,\mathbf{t}*_{-}\mathbf{xy}^{\,,}\;,
                                                  'r_a*_xy', 'r_a*_xy_av',
'r_s*_xy', 'r_a*_xy_av',
'r_s*_xy', 'r_s*_xy_av',
'tsurf*_xy', 'tsurf*_xy_av'
                                                   '\,g\,h\,f\,*\,_xy\,'\,,\quad '\,g\,h\,f\,*\,_xy\,_av\,'\,,\\ '\,s\,h\,f\,*\,_xy\,'\,,\quad '\,s\,h\,f\,*\,_xy\,_av\,'\,,
                                                   'qsws_liq*_xy', 'qsws_liq*_xy_av',
'qsws_soil*_xy', 'qsws_soil*_xy_av',
'qsws_veg*_xy', 'qsws_veg*_xy_av',
```

```
'c_liq*_xy', 'c_liq*_xy_av',
'c_soil*_xy', 'c_soil*_xy_av',
'c_veg*_xy', 'c_veg*_xy_av',
\& land\_surface\_parameters
!-- soil setup
    {\tt soil\_type}
                                        = 3,
                                       =\ 2\,9\,3\,.\,0\;,\ 2\,9\,3\,.\,0\;,\ 2\,9\,3\,.\,0\;,\ 2\,9\,3\,.\,0\;,
    {\tt soil\_temperature}
                                       293.0, 293.0, 293.0, 293.0,
= 293.0,
    {\tt deep\_soil\_temperature}
                                       soil_moisture
!-- boundary conditions
                                       = 'vegetation',
    {\tt surface\_type}
                                       = ???,
    \stackrel{-}{\text{vegetation}}\_\text{type}
    vegetation_coverage
                                       = ???,
    {\tt c\_surface}
                                       = 0.0,
    conserve_water_content
                                       = .T.,
\& {\tt radiation\_parameters}
!-- general setup
                                        = 'clear-sky',
    dt_radiation
                                        = 60.0,
```

Codigo A.1: Fichero de configuración de PALM para la atmósfera de Villa de Leuva

Apéndice B

Rutina de simulación de la propagación de la luz

```
\%\%\ atmos\_\ setup
\%\ determine\ geometry
D2 = 0.235; % diameter of the observation aperture [m] wvl = 0.55e-6; % de-6; % optical wavelength [m]
\begin{array}{lll} k = 2*\mathbf{pi} \ / \ wvl \, ; \ \% \ optical \ wavenumber \ [\mathit{rad/m}] \\ Dz = 20e3 \, ; \ \% \ \textit{0e3} \, ; \ \ \% \ \textit{propagation} \ \ \textit{distance} \end{array}
                             % propagation distance [m]
\%\,use\,\,sinc\,\,to\,\,model\,\,pt\,\,source
R = Dz; % wavefront radius of curvature [m]
\%\ atmospheric\ properties
{
m Cn2} = 0.5\,{
m e} - 15; It is a mean over air column \%\,structure\, parameter [m^{-2/3}]
\%SW and PW coherence diameters [m]
r0sw \ = \ (0.423 \ * \ k^2 \ * \ Cn2 \ * \ 3/8 \ * \ Dz)^(-3/5);
r0pw \; = \; (\, 0\,.\,4\,2\,3 \;\; * \;\; k\,{^{\hat{}}}2 \;\; * \;\; Cn2 \;\; * \;\; Dz\,)\,{^{\hat{}}}(\, -\, 3\,/\,5\,)\,;
p = linspace(0, Dz, 1e3);
\% log-amplitude variance
rytov \, = \, 0.563 \, * \, k^{\, \smallfrown}(7/6) \, * \, \text{sum}(\,Cn2 \, * \, (1-p/Dz).^{\, \smallfrown}(5/6) \, \ldots \,
     * p.^{(5/6)} * (p(2)-p(1));
\% screen properties
nscr = 8; % number of screens
A = zeros(2, nscr); % matrix
alpha = (0:nscr-1) / (nscr-1);
A(1,:) = alpha.^{(5/3)};
A(2,:) = (1 - alpha).^(5/6) .* alpha.^(5/6);
b = [r0sw.^{(-5/3)}; rytov/1.33*(k/Dz)^{(5/6)}];
\%\ initial\ guess
x0 = (nscr/3*r0sw * ones(nscr, 1)).^(-5/3);
% objective function
fun = @(X) sum((A*X(:) - b).^2);
\%\ constraints
x1 = zeros(nscr, 1);
rmax = 1; % maximum Rytov number per partial prop.
x2 = rmax/1.33*(k/Dz)^(5/6) ./ A(2,:);
```

```
options = optimset('Display', 'iter');
[X, fval, exitflag, output]
     = \; fmincon \, (\, fun \, , x0 \, , [\,] \, \, , [\,] \, \, , [\,] \, \, , x1 \, , x2 \, , [\,] \, \, , options \, ) \, ;
\%\;check\;\;screen\;\;r0s
r0scrn = X.^(-3/5);
r0scrn(isinf(r0scrn)) = 1e6;
\%\ check\ resulting\ r0sw\ \ \ rytov
bp \, = \, A*X\,(\,:\,)\,; \quad [\,bp\,(\,1\,)\,\,\hat{}\,\,(\,-\,3\,/\,5\,) \quad bp\,(\,2\,)\,*\,1\,.\,3\,3\,*\,(\,Dz\,/\,k\,)\,\,\hat{}\,\,(\,5\,/\,6\,)\,]
[r0sw rytov]
\%\ pt\_source\_vac\_prop
\mathtt{delta1} \; = \; \mathtt{d1} \; ;
                       \% \, source-plane \, grid \, spacing \, [m]
deltan = d2;
                     \%\ observation-plane\ grid\ spacing\ [m]
n = nscr;
                         % number of planes
[\,x1\ y1\,]\ =\ \mathbf{meshgrid}((\,-N/2\ :\ N/2\,-1)\ *\ delta1\,)\,;
[theta1 r1] = cart2pol(x1, y1);
{\tt pt} \; = \; {\tt exp}(-\,{\tt i}\,*{\tt k}\,/\,(\,2\,*{\tt R}) \;\;*\;\; {\tt r1}\,.\,{\tt ^2}) \;\;/\;\; {\tt D1}\,{\tt ^2}\;\;\ldots
    .* \operatorname{sinc}(x1/D1) .* \operatorname{sinc}(y1/D1) ...
    .* exp(-(r1/(4*D1)).^2);
% partial prop planes
z = (1 : n-1) * Dz / (n-1);
\% \ simulate \ vacuum \ propagation
sg = exp(-(x1/(0.47*N*d1)).^16)
     * \exp(-(y1/(0.47*N*d1)).^16);
t = repmat(sg, [1 1 n]);
[ \, {\tt xn \ yn \ Uvac} \, ] \, = \, {\tt ang\_spec\_multi\_prop} \, ( \, {\tt pt} \, , \, \, {\tt wvl} \, , \, \, \ldots \,
     delta1, deltan, z, t);
% collimate the beam
{\tt Uvac} \; = \; {\tt Uvac} \; \; . * \; \; {\tt exp}(-\,i * pi\,/\,(\,wvl * R\,) * (\,xn.\,\hat{}\,\,2 + yn\,.\,\hat{}\,\,2\,)\,)\,;
\% \ pt\_source\_turb\_prop
                 % inner scale [m]
L0 = inf;
                % outer scale [m]
zt = [0 z]; % propagation plane locations
Delta z = zt(2:n) - zt(1:n-1);
                                               % propagation distances
% grid spacings
alpha = zt / zt(n);
delta = (1-alpha) * delta1 + alpha * deltan;
\%\ initialize\ array\ for\ phase\ screens
phz = zeros(N, N, n);
nreals = 10;
                    % number of random realizations
\%\ initialize\ arrays\ for\ propagated\ fields ,
% aperture mask, and MCF
Uout = zeros(N);
mask = circ(xn/D2, yn/D2, 1);
MCF2 = zeros(N);
sg = repmat(sg, [1 1 n]);
\label{eq:formula} \textbf{for} \ \ \text{idxreal} \ = \ 1 \ : \ \ \text{nreals}
                                          % loop over realizations
     idxreal
      \%\ loop\ over\ screens
      for idxscr = 1 : 1 : n
           [\,\mathrm{phz\_lo}\ \mathrm{phz\_hi}\,]\ \dots
                 = \ {\rm ft\_sh\_phase\_screen} \quad \dots
                 (\,{\tt r0\,scrn}\,(\,{\tt id\,xscr}^{\,\overline{}}\,)\,,\ N,\ {\tt delta}\,(\,{\tt id\,xscr}\,)\,,\ L0\,,\ 10\,)\,;
```

```
{\tt phz}\,(\,:\,,:\,,{\tt idxscr}\,) \;=\; {\tt phz\_lo} \;+\; {\tt phz\_hi}\,;
     end
      \% \ simulate \ turbulent \ propagation
     [\,\mathtt{xn}\ \mathtt{yn}\ \mathtt{Uout}\,]\ =\ \mathtt{ang\_spec\_multi\_prop}\,(\,\mathtt{pt}\;,\ \mathtt{wvl}\;,\ \ldots.
           \mathtt{deltal} \ , \ \mathtt{deltan} \ , \ \mathtt{z} \ , \ \mathtt{sg.*exp(i*phz))} \ ;
      % collimate the beam
     {\rm Uout} \ = \ {\rm Uout} \ .* \ {\bf exp}(-\,i*{\bf pi}\,/\,(\,wvl*R\,)*(\,xn.\,\hat{\ }\,2\,+\,yn\,.\,\hat{\ }\,2\,)\,)\,;
      \%\ accumulate\ realizations\ of\ the\ MCF-\ \%\ Mirar\ Statistical\ Optics\ MCF-OTF
     MCF2 \,=\, MCF2 \,+\, corr2\_ft \,(\, Uout \,,\, Uout \,,\, mask \,,\, deltan \,) \,;
end
\%\,modulus\, of the complex degree of coherence
\label{eq:mcdoc2} MCDOC2 \, = \, \mathbf{abs} \, (MCF2) \ / \ (MCF2(N/2+1,N/2+1)) \, ;
\!\%\!\% Telescope Imaging (PSF) and Atsmosphere imaging
\begin{split} & OTF\_Telsecope = corr2\_ft(mask, mask, ones(N), deltan); \\ & PSF\_Telescope = ift2(OTF\_Telsecope, deltan); \end{split}
PSF\_Telescope = PSF\_Telescope/max(PSF\_Telescope(:));
PSF Atmosphere = ift2 (MCF2, deltan);
PSF_Atmosphere = PSF_Atmosphere/max(PSF_Atmosphere(:));
\mathscr{W}TF = ((OTF\_Telsecope/max(OTF\_Telsecope(:))).*(MCF2/max(MCF2(:)))).*mask;
\Re SF = ift2(OTF, deltan);
\Re PSF = PSF/max(PSF(:));
% Units convertion
\% Telescope properies Aperture D2 = 235 mm. conFactor paralax deducted (pc/AU).
\%\ Pixel\ size\ in\ microns
fRatio=10; focal=2350; covFactor=206265; pixelSize=4.8;
S=covFactor/focal; % Angular magnification
rs=S*10^-3*pixelSize; % Resolution
{\it th} = 1.22*{\it covFactor}*({\it wvl/D2}); ~\% {\it Angular resolution}
PSFcover= ceil(th/rs);
PSF Tel 1D = real(PSF Telescope(:, size(PSF Telescope,1)/2+1));
 PSF\_size = PSF\_Tel\_1D( PSF\_Tel\_1D(:) >= 0.02 & PSF\_Tel\_1D(:) < 1); 
realUnits_PSF = PSFcover/length(PSF_size);
scaledPSF_Atmosphere = imresize(real(PSF_Atmosphere) , realUnits_PSF, 'nearest'); if mod(size(scaledPSF_Atmosphere,1),2) == 1;
     scaledPSF_Atmosphere = padarray(scaledPSF_Atmosphere,[1 1],0,'pre');
end
h= fspecial('average',7);
scaled PSF\_Atmosphere = imfilter(scaled PSF\_Atmosphere, h, 'same');
scaledPSF_Atmosphere = padarray(scaledPSF_Atmosphere, [(size(PSF_Telescope, 1)/2 ...

-round(size(scaledPSF_Atmosphere, 1)/2)) ...
     (size (PSF Telescope,1)/2-round(size (scaledPSF Atmosphere,1)/2))],0,'both');
```

Codigo B.1: Rutina para simular la propagación de la luz