Marginal and Conditional Parobability Function

Consider a joint distribution of two random variables

x and Y then

$$f_{X}(x) = f_{X}(x_{i}) = f(X = x_{i}) = f_{i1} + f_{i2} + \dots + f_{ij} + \dots + f_{im}$$

$$= \sum_{J=1}^{m} f_{iJ}$$

= Pi

> Marginal perobability function of X.

$$t_{x}(y) = P_{y}(y_{3}) = P(Y=y_{3}) = \sum_{i=1}^{n} P_{i,j} = P_{3}$$

$$(\Rightarrow) \text{ Manginal Powbability Function of } Y.$$

$$(\text{conditional Powbability } P_{3}^{(n)} \text{ of } X \text{ when } Y=y_{3} \text{ is given } P(X=x_{4} \cap Y=y_{3})$$

$$t_{Xy_{4}}(x/y_{3}) = P(X=x_{4}/Y=y_{3}) = \frac{P(X=y_{3})}{P(X=y_{3})}$$

$$= \frac{P(X=y_{3})}{P(X=y_{3})}$$

Conditional Parabolability ξ^n of y when $x = \alpha_i$ is giran $\xi_{yx}(y_{ix}) = P(Y=y, | x=\alpha_i) = \frac{p(x_i, y_j)}{p(x_i)} = \frac{p_i}{p_i}$

Independent; $p(x=x_1, Y=y_3) = P(x=x_1)P(Y=y_3)$

JOINT DISTRIBUTION FUNCTION

XY & Two R.V.S

Then their joint distribution on Fxy (x,y) is given by

$$F_{x,y}(n,y) = P(X \le n, Y \le y) + n,y \in \mathbb{R}$$

where $\sum_{\alpha} \sum_{\beta} f_{x,y}(\alpha,y) = 1$ \(Disenste R.V.

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x,y}(x,y) = 1 \qquad \text{Cont. } R.V.$

Persperties

1) If x1<x2 and 4,< 42 then

(Revongte Rule)

P[x1 < X ≤ x2, y, < Y ≤ y2] = F(x2, y2) - F(x2, y1) - F(x1, y2) + F(x1, y1) >0

$$I = (a) f(-\infty, y) = \lim_{N \to -\infty} f(n, y) = 0 + y \in \mathbb{R}$$

(b)
$$F(\eta_1-\alpha) = \lim_{y \to -\alpha} F(\eta_1 y) = 0$$
 $+ \eta \in \mathbb{R}$

$$\lim_{x\to\infty} F(x,y) = F(x,\infty) = 1$$

$$y\to\infty$$

30 F(a14) is sight continuous in each argument i.e.

q. if the density function & (nix) is continuous of (xix) then anay = +(xix). Expedation, Covariance, coordation coefficient

Cet us consider (x,y) as a two dimensional discrete earndom variable with joint discrete density function tx, y (x, y).

The expectation of g(x,y) is denoted by E[g(x,y)] and defined as

 $E\left[g(x,y)\right] = \sum_{x} \sum_{y} g(x,y) f_{x,y}(x,y)$

Rosficular Cases

 $OE[x] = \sum x f^{x}(x)$

(8) x f y 3 = [y] 3 1

(IN) E[XY] = E Z My to Chy)

Covariance: Cov (x,y) = E[x - E(x)] E[y - E(y)] = E[xy] - E[xy] - E[xy]

correlation coefficient:

 $P(x,y) = \frac{Cov(x,y)}{\sqrt{var}} = \frac{Cov(x,y)}{\sqrt{var}}$

where, 0x>0,0470

Note: -1 < 2(x, y) < 1

Conditional Expectation

If (x,4) are joint discrete random variable then conditional

expectation of g(x,y) given x=x is defined as $E[g(x,y)/x=x] = \sum_{j} g(x_j,y_j) k_{j,x}(y_j|x)$

ber Particular,

 $E[Y/X=n] = \sum_{j} y_{j} f_{Y/X}(y_{j}|x) = \sum_{j} y_{j} P(Y=y_{j}|X=x)$

Q. For the following birariate probability distribution of X and I Kind (T) P(X62, Y=3)

OP(X & I)

(ii) P(Y=4)

(N) P (7 4 5)

1 P(XC2; YE3)

	X Y	١	2	3	4	5	6
	0	0	0	1/32	2/32	2/32	3/32
	1	1/16	11/2	Vg	Ye	Y8	1/8
1	2	432	1/32	464	1649	0	2/64

Som: The marginal distribution is given

X. P	\	2	3	4	5	G	px (30)
0 1 2	0 416 432	0 1/16 1/32	1/32 1/64	2/32 1/8 1/64	2/32 Y8	3/32 Ve 2/64	8/32
Py (4)	3/22	3/32	11/64	13/69	6/32	16/64	

$$\bigcirc P(X \le 2, Y = 3) = P(X = 0, Y = 3) + P(X = 1, Y = 3) + P(X = 2, Y = 3)$$

$$= \frac{1}{32} + \frac{1}{8} + \frac{1}{64}$$

$$=\frac{11}{64}$$

(ii)
$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= \frac{8}{32} + \frac{10}{16}$$

(iii)
$$P(Y=4) = \frac{13}{64}$$

$$(y) = \frac{13$$