TRIGONOMETRY Chapter 21

FUNCIONES
TRIGONOMÉTRICAS II

MOTIVATING STRATEGY

FENÓMENOS PERIÓDICOS

Son aquellos que se repiten en el tiempo de forma idéntica; entre ellos podemos mencionar al movimiento de rotación de la tierra, el péndulo, la corriente alterna, la luz, las mareas, el ciclo económico, la temperatura, los latidos del corazón, etc.

Para un mejor estudio de estos fenómenos, se usan a las funciones trigonométricas para crear los modelos de dichos fenómenos.

Ejemplo:

En un pueblo de la sierra, la temperatura en grados centígrados, puede calcularse por :

$$T(t) = 16 - 7\cos\left(\frac{\pi}{12}t\right)$$

Donde t está en horas y t = 0 corresponde a la medianoche.

¿ Cuál es la temperatura a las 4 pm?

FUNCION COSENO:

$$\mathbf{F} = \{(\mathbf{x}; \mathbf{y})/\mathbf{y} = \mathbf{cosx}; \mathbf{x} \in \mathbb{R}\}$$

Tabulando para algunos valores de x : 1

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$y = \cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

Tabulando para más valores y uniendo dichos puntos obtenemos la curva :

Dominio: $Dom(F) = \mathbb{R}$; $x \in \mathbb{R}$

Rango: Ran(F) = $[-1;1] \Rightarrow -1 \leq \cos x \leq 1$

Periodo: $T = 2\pi$

Es función par : cos(-x) = cosx

HELICO | THEORY

OBSERVACIÓN:

Sea la función : $y = A \cos Bx$

Amplitud : | A |

Ejemplos:

$$T = \frac{2\pi}{|B|} = \frac{2\pi}{|1|} = \frac{2\pi}{1} = 2\pi$$

 $y = 3 \cos x$

 3π

 $y = \cos x$

Halle el rango de la función $f(x) = 2 \cos x - 3$

RESOLUCIÓN

Recordar: $\forall x \in \mathbb{R} : -1 \le \cos x \le 1$

Luego: $(-1 \le \cos x \le 1)(2)$

$$-2 -3 \leq 2 \cos x - 3 \leq 2 - 3$$

$$-5 \leq f(x) \leq -1$$

Ran
$$(f) = [-5; -1]$$

Halle el rango de la función g(x) = $4 cos^2 x - 3$

RESOLUCIÓN

Recordar: $\forall x \in \mathbb{R}$: $-1 \le \cos x \le 1$

Luego:
$$(-1 \le \cos x \le 1)^2$$

$$(0 \le \cos^2 x \le 1)(4)$$

$$0-3 \le 4 \cos^2 x - 3 \le 4 - 3$$

$$-3 \leq g(x) \leq 1$$

Ran(
$$g$$
) = [-3;1]

Calcular $T_1 + T_2$, siendo T_1 y T_2 los periodos de las funciones f(x) y g(x), respectivamente ; donde $f(x) = 3 \cos(2x)$; $g(x) = 5 \cos(\frac{x}{4})$

RESOLUCIÓN

$$f(x) = 3 \cos(2x)$$

$$g(x) = 5 \cos\left(\frac{1}{4}x\right)$$

$$B_{1}$$

$$T_{1} = \frac{2\pi}{|B_{1}|} = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi$$

$$T_{2} = \frac{2\pi}{|B_{2}|} = \frac{2\pi}{\frac{1}{4}} = \frac{2\pi}{\frac{1}{4}} = 8\pi$$

Luego: $T_1 + T_2 = \pi + 8\pi$

$$\therefore T_1 + T_2 = 9\pi$$

Del gráfico, calcule E = m . n

RESOLUCIÓN

Dato: $f(x) = y = 4 \cos 2x$

$$P(\frac{\pi}{8}; m) \in f$$

$$\Rightarrow$$
 m = 4 cos $\left(2.\frac{\pi}{8}\right)$

$$m = 4 \cos 45^{\circ}$$

$$\mathbf{m} = 4\left(\frac{\sqrt{2}}{2}\right)$$

$$m = 2\sqrt{2}$$

$$Q(\frac{7\pi}{12};n) \in f$$

$$\implies n = 4 \cos\left(2 \cdot \frac{7\pi}{12}\right)$$

$$n = 4 \cos 210^{\circ}$$

$n = 4 \cos(180^{\circ} + 30^{\circ})$

$$n = 4 (-\cos 30^{\circ})$$

$$\mathbf{n} = 4\left(-\frac{\sqrt{3}}{2}\right)$$

$$\mathbf{n} = -2\sqrt{3}$$

Luego:

$$E = m \cdot n$$

$$E = (2\sqrt{2})(-2\sqrt{3})$$

$$\therefore \mathbf{E} = -4\sqrt{6}$$

Del gráfico calcule A + B.

RESOLUCIÓN

Según figura: A > 0; B > 0

$$A=3$$
; $T=3\pi$

$$\Rightarrow \frac{2\pi}{B} = 3\pi \Rightarrow B = \frac{2}{3}$$

Luego: A + B = 3 +
$$\frac{2}{3}$$

: A + B =
$$\frac{11}{3}$$

Una población de aves silvestres tiene modelo de crecimiento dado por : $P(t) = 1000 \left[2 \cos \left(\frac{\pi}{n} t \right) + 5 \right]$ aves; donde t se expresa en años, con fluctuaciones periódicas de 7 años.- Determine el menor tiempo en el que la población será de 6000 aves.

RESOLUCIÓN

Dato: T = 7
$$P(t) = 1000 \left[2 \cos \left(\frac{2\pi}{7} t \right) + 5 \right]$$
 Luego: $\frac{2\pi}{7} t = \frac{\pi}{3}$

$$\frac{2\pi}{B} = 7$$

$$\frac{2\pi}{7} = \mathbf{B} = \frac{\pi}{n}$$

$$6000 = 1000 \left[2 \cos \left(\frac{2\pi}{7} t \right) + 5 \right]$$

$$6 = 2\cos\left(\frac{2\pi}{7}t\right) + 5$$

$$\frac{1}{2} = \cos\left(\frac{2\pi}{7}t\right)$$

$$Luego: \frac{2\pi}{7}t = \frac{\pi}{3}$$

$$t = \frac{7}{6} \text{ anos}$$

El menor tiempo es 1 año y 2 meses.

El siguiente gráfico muestra las ondas emitidas por un teléfono móvil .- Calcule el área de la región sombreada .

RESOLUCIÓN

Dato:
$$f(x) = y = 2 \cos(4x)$$

A

B

Calculamos el periodo:

$$T = \frac{2\pi}{B} = \frac{2\pi}{4} \quad \Longrightarrow \quad T = \frac{\pi}{2}$$

Calculamos el área sombreada:

$$S = (\frac{\pi}{2}) (2)$$

$$: S = \pi u^2$$

