

Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Algebra

Henri Mühle Wintersemester 2017/18

2. Übungsblatt zur Vorlesung "Geordnete Mengen in Hyperebenenarrangements"

Grundlagen zu Hyperebenenarrangements

Im folgenden sei $\mathbf{V} = \mathbb{R}^n$, und es bezeichne wie in der Vorlesung Hyp(\mathbf{V}) die Klasse aller Hyperebenenarrangements in \mathbf{V} . Sei $\mathcal{A} \in \mathrm{Hyp}(\mathbf{V})$.

- Ü9. Zeigen Sie, dass $\chi_{\mathcal{A}}(t)=t^{\dim(\mathcal{A})-\mathrm{rk}(\mathcal{A})}\chi_{\mathrm{ess}(\mathcal{A})}(t)$ gilt.
- Ü10. Angenommen $\chi_{\mathcal{A}}(t)$ ist durch t^k , aber nicht durch t^{k+1} teilbar. Zeigen Sie, dass dann $\mathrm{rk}(\mathcal{A}) = n k$ gilt.
- Ü11. Seien $A_1, A_2 \in Hyp(\mathbf{V})$ mit $N(A_1) \cap N(A_2) = \{\vec{0}\}$. Zeigen Sie, dass gilt:

$$\chi_{\mathcal{A}_1 \cup \mathcal{A}_2}(t) = t^{-n} \chi_{\mathcal{A}_1}(t) \chi_{\mathcal{A}_2}(t).$$

Ü12. Es bezeichne $\operatorname{cone}(\mathcal{A})$ den Kegel über \mathcal{A} . Zeigen Sie, dass $\chi_{\operatorname{cone}(\mathcal{A})}(t)=(t-1)\chi_{\mathcal{A}}(t)$ gilt.

Hinweis: Benutzen Sie den Satz von Whitney.

- Ü13. Zeigen Sie, dass die Kammern von ${\cal A}$ offene, konvexe Teilmengen von ${\bf V}$ sind.
- Ü14. Zeigen Sie, dass es in zentralen Arrangements keine beschränkten Kammern gibt.
- Ü15. Sei $n = \dim(\mathcal{A})$. Dann ist \mathcal{A} in allgemeiner Lage, wenn für alle $H_1, H_2, \ldots, H_k \in \mathcal{A}$ gilt:

$$\dim(H_1 \cap H_2 \cap \cdots \cap H_k) = \begin{cases} n - k, & \text{wenn } k \leq n, \\ 0, & \text{sonst.} \end{cases}$$

Sei weiter #A = m. Bestimmen Sie das charakteristische Polynom von A, sowie die Anzahl der (beschränkten) Kammern von A.