ELEC2104 – Semester 2

Introduction and Review

Unit of Study Coordinator: Prof. Xiaoke Yi

Lecturer: Dr. Suen Xin Chew

i. Course Website

https://cusp.sydney.edu.au/students/view-unit-page/alpha/ ELEC2104

ii. Mixed-mode delivery

	Online (Zoom)	Recording	Face-to-face
Lectures	✓	✓	X
Tutorials	✓	X	✓
Labs	✓	X	✓

iii. Staff

Unit of Study Coordinator – Prof Xiaoke Yi

- xiaoke.yi@sydney.edu.au
- Office number: Level 3, J13 Link Building next to Electrical Engineering Building OR Room3018, Sydney Nano Hub, The University of Sydney
- Research interests: Optoelectronics, Sensing, Signal processing, Silicon photonics, Integrated photonic circuits

https://www.sydney.edu.au/engineering/about/our-people/academic-staff/xiaoke-yi.html

iii. Staff

- **Lecturer Dr. Suen Xin Chew**
 - suenxin.chew@sydney.edu.au
 - Office number: Level 3, J13 Link Building
 - Consultation hours:
 - Online: Mondays after lectures (1-2pm)
 - Zoom link : https://uni-sydney.zoom.us/j/9750012764
 - Background
 - Bachelors of Electrical Engineering at University of Sydney 1st class Honours, University Medal
 - > PhD at University of Sydney
 - Visiting Fellow at Harvard University

iii. Staff

- Lab Coordinator Dr. Rui Hong Chu
 - rui.chu@sydney.edu.au
 - Office number: 522A (Labs are in Lab 440)

Tutors

	Tutorials	Labs
1.	Adam Bova abov2820@uni.sydney.edu.au	Bo Liu bo.liu@sydney.edu.au
2.	Jony Kaushik jkau9173@uni.sydney.edu.au	Huan Li huli0307@uni.sydney.edu.au
3.	Xiaoyi Tian xiaoyi.tian@sydney.edu.au	Yikai Yang yikai.yang@sydney.edu.au

iv. Class Materials

- Recommended Textbook
 - Microelectronic Circuit Design by R. Jaeger and T. Blalock
- > Lecture
 - Lecture notes available on Canvas
 - Lecture pre-recordings will be available
 - One 2-hour lecture session (online zoom) on Mondays 11 1pm
 - Zoom link available on Canvas (under "ZOOM" tab)
- > Tutorials/Labs
 - Online sessions will run concurrently with face-to-face sessions
 - Attendance will be taken for face-to-face sessions for safety measures (ie. contact tracing should this information be required) – not for assessment

v. Assessment details

	Component	Group/Individual	Weight	Due	
1.	Labs				
	- Face-to-face	Group report	10%	At the end of lab sessions	
	- Online	Individual report		000010110	
2.	Term project	Group	5%	Week 12	
3.	Online quizzes	Individual	5%	Midnight Sundays	
4.	Assignments	Individual	10%	Week 6, Week 11	
5.	Final exam	Individual	70%	End of Semester	

Term project – Starts in Week 9

- Duration: Week 9 to Week 12
- 4 weeks lab sessions dedicated for term project
- Group of 2-3 must consist of a mixture of remote and on-campus students
 - Equal opportunity for remote students to learn some hands-on experience
 - Communication is the key
 - Approach lab tutors if you have difficulties finding group members
- Will be assessed based on a group report and demo

Summary for this Week:

- Tutorials starts this week
- Online quizzes starts this week, due Sunday midnight
- Labs no lab this week, starts in Week 3

COURSE SYLLABUS

Week	Date	Lecture	Lab	Tutorial
Week 1	24/8/2020	Introduction and Circuit Review	No Lab	Tut 1
Week 2	31/8/2020	Basic Semiconductor Physics	No Lab	Tut 2
Week 3	7/9/2020	PN Junctions	Lab 0 – RC Filters	Tut 3
Week 4	14/9/2020	Diode Models and Circuits	Lab 1 - Dlodes	Tut 4
Week 5	21/9/2020	Physics of Bipolar Transistors	Lab 2 – Diodes and Rectifiers	Tut 5
Week 6	28/9/2020	BJT Circuits and Analysis	Lab 3 - BJT	Tut 6
		COMMON WEE	EK .	•
Week 7	12/10/2020	MOSFET Circuits and Analysis	Lab 4 – Optical Link	Tut 7
Week 8	19/10/2020	Operational Amplifiers	Lab 5 - MOSFET	Tut 8
Week 9	26/10/2020	Digital CMOS Circuits	Project starts	Tut 9
Week 10	2/11/2020	Filter designs	Project cont.	Tut 10
Week 11	9/11/2020	Second order systems	Project cont.	Tut 11
Week 12	16/11/2020	Review	Project demo Tut 12	

COVID safety measures for face-to-face sessions

- ➤ All students who have cold or flu symptoms should isolate themselves from others.
- ➤ If you are unwell with any symptoms, please excuse yourself from this class and get tested for COVID-19 as soon as possible. We will support you to continue the work remotely.
- Wash hands before class.
- Use hand sanitisers regularly.
- ➤ Use the wipes provided in class to clean bench/equipment that you use at the start and end of lab/tut session.
- It is not mandatory, but you are encouraged to wear masks in lab/tut session.
- BYO PPE for use on campus

Tips for students joining online

- > Remember that you are still in a space with other students.
- ➤ Mute your microphone when not speaking.
- ➤ Use earphones or headphones the mic is better and you'll disturb others less.
- ➤ If you have a webcam and feel comfortable doing so, please switch it on so we can see you!
- > Try not to talk over someone else.
- > Use the chat function to send messages to the teacher or classmates during class.

Introduction to Microelectronics

> Integrated Circuits (Ics) are in every corner of our lives

Introduction to Microelectronics

- Overview: Invention of the Transistor
 - Vacuum tubes ruled in the first half of 20th century large, expensive, power-hungry
 - 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs

The heart and soul of microelectronics – A device with just three terminals!

Introduction to Microelectronics

> Overview: Types of transistors

- Bipolar Transistors
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors (MOSFET)
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - -Low power allows very high integration

Growth of microelectronics

1958: First-integrated circuit

- Flip-flop using two transistors
- Built by Jack Kilby at Texas Instruments

2011: Integrated circuits have billions of transistors

- 10-Core Xeon Westmere-EX (2.6 billion transistors) 45 nm
- NVIDIA GF100 (3 billion transistors) 40 nm
- Altera Stratix V FPGA (3.8 billion transistors)
 28 m

53% compound annual growth over 45 years

- No other technology has grown so fast for so long
- Driven by miniaturization of transistors
- Smaller is cheaper, faster, lower in power

> History

- In 1965, Gordon Moore, noted that the number of transistors on a chip doubled every 18 to 24 months
- He made the now famous prediction that semiconductor technology will double its effectiveness every 18 months.
- In 2005, "It can't continue forever.
 The nature of exponentials is that you push them out and eventually disaster happens."

Trend of power dissipation with scaling

> Power Issues

Integration of microelectronics

Design abstraction levels

Integration of microelectronics

Increasing scales of integration

Vacuum Tubes

Discrete Transistors

SSI and MSI Integrated Circuits

VLSI Surface-Mount Circuits

Pentium 4 180-90 nm process 42-125M transistors

Optical integrated ICs

- > Photonic integrated circuits integrated circuits with optical functions
 - Optical signal processing of electrical signals

Research & Prototype Foundry (RPF)

- Our very own fabrication facility on campus (Building A31)
- Development of optical chips, electronic devices and new quantum technology

Domains of Electrical Signal Processing

Processing of Electrical Signals and Information

- > Electrical engineers design and build systems to process information
 - Personal computers, control systems, signal processing, etc
- > In electronic circuits, information is represented in terms of voltages or currents
 - Digital circuits: voltage or current is either ON or OFF
 - Information is represented as 1s and 0s
 - Analog circuits: voltage or current is present at continuous levels

Domains of Electrical Signal Processing

Domains: Signal Amplitude and Time

- Continuous Amplitude (CA) versus Discrete Amplitude (DA)
- Continuous Time (CT) versus Discrete Time (DT)
- > Put the two together to obtain a Framework:
 - DTDA: Digital signal processors and computers
 - Digitization of amplitude makes circuit insensitive to analogue imperfections such as tolerance, matching, and noise. Requires sampling in the time domain leading to aliasing.
 - CTCA: Amplifiers, RF front-end of mobile phone
 - Does not require time sampling and does not suffer from aliasing, but is sensitive to tolerance, matching, and noise.
 - DTCA: Digital camera and switched-capacitor filters
 - Can suffer from both aliasing and sensitivity to tolerance, matching and noise
 - CTDA: Spike-based signal processing (human brain)
 - Eliminates aliasing and maintains advantages of amplitude quantization
 - Research area for electronic devices

Domains of Electrical Signal Processing

Domains: Current and Voltage Signals

- The information represented in voltage or current interacts with wires and circuit elements in an electrical circuit.
 - This is how information is processed.
- Think of voltage and current as variables
- > Think of electrical circuits as mathematical equations
- Just like mathematical equations are used to manipulate the value of variables, electrical circuits are used to manipulate, or "process", voltage and current.
- Any electrical circuit can be described using mathematical equations.
 - To design a circuit, choose the equations you need to modify the current and voltage variables to suit your purpose!

Circuit Elements

Passive Elements

- You should already understand how passive elements operate in a circuit
- Passive elements are unable to amplify or generate energy
 - Resistors
 - Resistance (R) is measured in Ohms (Ω)
 - Conductance (G), reciprocal of R, is measured in siemens (S)
 - Capacitors
 - Capacitance (C) is measured in Farads (F)
 - Inductors
 - Inductance (L) is measured in Henries (H)
 - Diodes

What does a resistor do to an electrical signal?

Ohm's Law

- V = IR
- Resistors in series

$$\begin{cases}
R_1 & \Longrightarrow \\
R_2 & \Longrightarrow \\
R_t & \Longrightarrow \\
R$$

Conductance

- Inverse of resistance
 - G = 1/R
- Conductance may be used in place of resistance to simplify equations involving multiple parallel elements
- Resistors in parallel

Conductan $\begin{array}{c|c} & & & \\ \hline \\ R_1 & & \\ \hline \\ R_t = R_1 \parallel R_2 = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-} \end{array}$

What does a capacitor do to an electrical signal?

Current and voltage are a function of time

$$i(t) = C \frac{dv(t)}{dt}$$

Capacitors in series

$$\begin{array}{c|cccc} C_1 & C_2 & C_t \\ \hline & & & \\ \hline & & \\ \hline & & &$$

Capacitors

$$\begin{array}{c|c} & & & \\ \hline \end{array} \quad \begin{array}{c} C_1 & & \\ \hline \end{array} \quad \begin{array}{c} C_2 & \\ \hline \end{array} \quad \begin{array}{c} C_t \\$$

What does an inductor do to an electrical signal?

Current and voltage are a function of time

$$v(t) = L \frac{di(t)}{dt}$$

- Inductors in series
 - Add like resistors in series: $L_{t}=L_{1}+\ L_{2}$
- Inductors in parallel
 - Add like resistors in parallel: $L_t = (L_1 + L_2)^{-1}$

What does an inductor do to an electrical signal?

Current and voltage are a function of time

$$v(t) = L \frac{di(t)}{dt}$$

- Inductors in series
 - Add like resistors in series: $L_{t}=L_{1}+\ L_{2}$
- Inductors in parallel
 - Add like resistors in parallel: $L_t = \left(L_1 + L_2\right)^{-1}$

Review of Circuits

Sources

 An ideal voltage source maintains a constant voltage across its terminals no matter how much current is drawn from it V_s

 An ideal current source maintains a constant current output regardless of the voltage across its terminals

Real voltage and current sources have some output impedance. This limits the amount of power they can provide.

Review of Circuits

Dependent Sources – four types

- Dependent voltage sources are voltage sources whose output voltage depends on the value of other parameters in the circuit
 - Current-controlled voltage source. *K* is a transresistance and β is a current gain.

Voltage-controlled voltage sourc

Review of Circuits

Dependent Sources – four types

- Dependent current sources are current sources whose output current depends on the value of other parameters in the circuit
 - Current-controlled current source. B is current gain.

- Voltage-controlled current source. g_m is tr

> These four types are linear depender V_1

- Current and voltage are associated with sc
- Important when we study transistor models

Source Transformations

- Using the principles of linearity, we can apply source transformations.
- Source transformations are frequently used when considering the current, voltage or power of a single element in a circuit.
- A source transformation is the process of replacing a voltage source in series with a resistor by a current source in parallel with a resistor (or vice versa).

In order for the two circuits to be equivalent with respect to terminals 'a' and 'b', we must have:

$$v_s = i_s R$$

The arrow of the current source is directed toward the positive terminal of the voltage source.

Thevenin and Norton Equivalent Circuits

Thévenin Equivalent Circuit

Any two-terminal circuit containing resistances and sources can be replaced by an equivalent circuit consisting of just an independent voltage source in series with a resistance (without affecting the behaviour of the rest of the circuit).

Assumptions:

- This is the only connection between circuits A and B
- If there is a dependent source, then both the dependent source and its controlling variable must be either in circuit A or both parts must be in circuit B (i.e. each dependent source is either totally contained in circuit A or in circuit B)

Thevenin and Norton Equivalent

How do we compute the Thévenin equivalent circuit parameters?

Consider open circuit voltage v_{oc} of circuit A

Consider short circuit current i_{sc} of circuit A

So we must have

$$V_{
m Th} = v_{
m oc}$$

So we must have

$$V_{\rm Th} = R_{\rm Th} i_{\rm sc}$$

$$\Rightarrow R_{\rm Th} = \frac{V_{\rm Th}}{i_{\rm sc}} \Longrightarrow R_{\rm Th} = \frac{v_{oc}}{i_{sc}}$$

Thevenin and Norton Equivalent

If circuit A does not contain dependent source, then R_{Th} can also be obtained by first zeroing the independent sources (resulting in circuit A*) and then computing its equivalent resistance as seen at the terminals.

Zeroing a voltage source corresponds to replacing it with a short circuit Zeroing a current source corresponds to replacing it with an open circuit Note that dependent current and voltage source are not zeroed in obtaining circuit A*. This is not an issue here as the above method does not apply to circuits with dependent sources, but later we will see a modification of this that does.

Example

Compute the Thévenin equivalent circuit for the circuit shown below with dependent source.

Example

Compute the Thévenin equivalent circuit for the circuit shown below with dependent source.

Example

Compute the Thévenin equivalent circuit for the circuit shown below with dependent source.

Thevenin and Norton Equivalent Circuits

Norton Equivalent Circuit

Related to Thévenin equivalent circuit by a source transformation

$$R_{\rm N} = R_{\rm Th}$$

$$I_{\scriptscriptstyle
m N} = V_{\scriptscriptstyle
m Th} \ / \ R_{\scriptscriptstyle
m Th} = i_{\scriptscriptstyle
m sc} \ \iff V_{\scriptscriptstyle
m Th} = R_{\scriptscriptstyle
m Th} I_{\scriptscriptstyle
m N}$$

Thevenin and Norton Equivalent Circuits

Norton Equivalent Circuit

Any two-terminal circuit containing resistances and sources can be replaced by an equivalent circuit consisting of just an independent current source in parallel with a resistance (without affecting the behaviour of the rest of the circuit). Assumptions are same as those for Thévenin equivalent circuit.

Thevenin and Norton Equivalent Circuits

$$V_{\mathrm{Th}} = V_{\mathrm{oc}}$$
 $R_{\mathrm{Th}} = R_{\mathrm{N}}$ $I_{\mathrm{N}} = I_{\mathrm{sc}}$

Notation

- > Conductance is the reciprocal of resistance (G=1/R).
 - Ohm's Law: V = IR
 - -R=V/I
 - -G = I/V
 - Thus, conductance is the ratio of current to voltage
- > Transconductance is the ratio of change in current to change in voltage
- Much of the circuit analysis $v_{g_m}=rac{\Delta I_{
 m out}}{\Delta V_{
 m in}}$ on changes in current and voltage rather than static values.
- This is called small-signal analysis
- Small-signals are represented using lower-case letters:

$$g_m = \frac{i_{\text{out}}}{v_{\text{in}}}$$

Non-linear circuits

- So far, you have probably only worked with linear circuit elements
- This means the values of the components do not change with the level of voltage or current
- > In reality, few devices are linear
- For example, the resistor that forms an incandescent light bulb filament increases in resistance as the current through it increases

A light bulb filament is a non-linear resistor. Increasing the voltage applied to a light bulb past a certain point will not make the light any brighter.

This also prevents the light bulb from burning out too quickly.

Non-linear circuits

- > Linear circuit networks are easy to model using mathematical equations
- However: transistors, diodes, non-ideal resistors, capacitors, current and voltage sources, etc – are all non-linear
- > Non-linear circuits are more difficult to analyse precisely
- > Multisim and other circuit simulators can provide accurate results
- Numerical methods can be used to approximate circuit behaviour
- > Alternately, we can apply *small-signals* to the circuit elements
- If our current and voltage signals only change within a small range of values, even non-linear circuit elements such as transistors can behave linearly.
- > In this course, we will study both linear and non-linear circuit behaviour.
- We will learn when mathematical approximations are appropriate

For now a little test: what is ratio of V2/V1?

