# Теория Вероятностей и Статистика Гипотезы о распределении и независимости

#### Потанин Богдан Станиславович

доцент, кандидат экономических наук

2024-2025

#### Формулировка

• Рассмотрим выборку  $X=(X_1,...,X_n)$  из непрерывного распределения  $D_X$  с функцией распределения  $F_{D_X}(t)$ . Также, рассмотрим вариационный ряд  $X_{(1)},...,X_{(n)}$ .

#### Формулировка

- Рассмотрим выборку  $X = (X_1, ..., X_n)$  из непрерывного распределения  $D_X$  с функцией распределения  $F_{D_X}(t)$ . Также, рассмотрим вариационный ряд  $X_{(1)}, ..., X_{(n)}$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: D_X = D_0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_\alpha$ :

$$T(X) = \sqrt{n} d_n = \sqrt{n} \left( \sup_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right) \approx \sqrt{n} \left( \max_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right), \quad T(X) |H_0 \xrightarrow{d} \mathcal{K}(n)$$

#### Формулировка

- Рассмотрим выборку  $X = (X_1, ..., X_n)$  из непрерывного распределения  $D_X$  с функцией распределения  $F_{D_X}(t)$ . Также, рассмотрим вариационный ряд  $X_{(1)}, ..., X_{(n)}$ .
- При  $n \geq 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: D_X = D_0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sqrt{n} d_n = \sqrt{n} \left( \sup_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right) \approx \sqrt{n} \left( \max_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right), \quad T(X) |H_0 \xrightarrow{d} \mathcal{K}(n)$$

Где выборочная функция распределения  $\hat{F}_n(t)$  считается по выборке X.

ullet Критическая область является правосторонней  $\mathcal{T}_{lpha} = \left(\mathcal{K}_{n}^{1-lpha},\infty\right)$ , где  $\mathcal{K}_{n}^{1-lpha}$  – квантиль уровня 1-lpha распределения Колмогорова. В результате p-value  $= 1 - F_{\mathcal{K}(n)}(\mathcal{T}(x))$ .

#### Формулировка

- Рассмотрим выборку  $X=(X_1,...,X_n)$  из непрерывного распределения  $D_X$  с функцией распределения  $F_{D_X}(t)$ . Также, рассмотрим вариационный ряд  $X_{(1)},...,X_{(n)}$ .
- При  $n \geq 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: D_X = D_0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_\alpha$ :

$$T(X) = \sqrt{n} d_n = \sqrt{n} \left( \sup_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right) \approx \sqrt{n} \left( \max_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right), \quad T(X) |H_0 \xrightarrow{d} \mathcal{K}(n)$$

- ullet Критическая область является правосторонней  $\mathcal{T}_{lpha} = \left(\mathcal{K}_{n}^{1-lpha}, \infty\right)$ , где  $\mathcal{K}_{n}^{1-lpha}$  квантиль уровня 1-lpha распределения Колмогорова. В результате p-value  $= 1 F_{\mathcal{K}(n)}(\mathcal{T}(x))$ .
- Поиск супремума фактически предполагает нахождение наибольшей разности между предполагаемой (в соответствии с нулевой гипотезой) и выборочной функцией распределения, что нетрудно сделать с помощью двух вспомогательных статистик:

$$d_n = \max(d_n^+, d_n^-)$$

#### Формулировка

- Рассмотрим выборку  $X=(X_1,...,X_n)$  из непрерывного распределения  $D_X$  с функцией распределения  $F_{D_X}(t)$ . Также, рассмотрим вариационный ряд  $X_{(1)},...,X_{(n)}$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: D_X = D_0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_\alpha$ :

$$T(X) = \sqrt{n} d_n = \sqrt{n} \left( \sup_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right) \approx \sqrt{n} \left( \max_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right), \quad T(X) |H_0 \xrightarrow{d} \mathcal{K}(n)$$

- ullet Критическая область является правосторонней  $\mathcal{T}_{lpha} = \left(\mathcal{K}_{n}^{1-lpha},\infty\right)$ , где  $\mathcal{K}_{n}^{1-lpha}$  квантиль уровня 1-lpha распределения Колмогорова. В результате p-value  $= 1 F_{\mathcal{K}(n)}(\mathcal{T}(x))$ .
- Поиск супремума фактически предполагает нахождение наибольшей разности между предполагаемой (в соответствии с нулевой гипотезой) и выборочной функцией распределения, что нетрудно сделать с помощью двух вспомогательных статистик:

$$d_n = \max(d_n^+, d_n^-)$$

$$d_n^+ = \max\left(|\frac{1}{n} - F_{D_0}(X_{(1)})|, |\frac{2}{n} - F_{D_0}(X_{(2)})|, \cdots, |\frac{n}{n} - F_{D_0}(X_{(n)})|\right)$$

#### Формулировка

- Рассмотрим выборку  $X = (X_1, ..., X_n)$  из непрерывного распределения  $D_X$  с функцией распределения  $F_{D_X}(t)$ . Также, рассмотрим вариационный ряд  $X_{(1)}, ..., X_{(n)}$ .
- При  $n \geq 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: D_X = D_0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_\alpha$ :

$$T(X) = \sqrt{n} d_n = \sqrt{n} \left( \sup_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right) \approx \sqrt{n} \left( \max_{t \in R} |\hat{F}_n(t) - F_{D_0}(t)| \right), \quad T(X) |H_0 \xrightarrow{d} \mathcal{K}(n)$$

- Критическая область является правосторонней  $\mathcal{T}_{\alpha} = \left(\mathcal{K}_{n}^{1-\alpha}, \infty\right)$ , где  $\mathcal{K}_{n}^{1-\alpha}$  квантиль уровня  $1-\alpha$  распределения Колмогорова. В результате p-value  $= 1 F_{\mathcal{K}(n)}(T(x))$ .
- Поиск супремума фактически предполагает нахождение наибольшей разности между предполагаемой (в соответствии с нулевой гипотезой) и выборочной функцией распределения, что нетрудно сделать с помощью двух вспомогательных статистик:

$$\begin{split} d_n &= \max(d_n^+, d_n^-) \\ d_n^+ &= \max\left(|\frac{1}{n} - F_{D_0}(X_{(1)})|, |\frac{2}{n} - F_{D_0}(X_{(2)})|, \cdots, |\frac{n}{n} - F_{D_0}(X_{(n)})|\right) \\ d_n^- &= \max\left(|F_{D_0}(X_{(1)}) - \frac{1-1}{n}|, |F_{D_0}(X_{(2)}) - \frac{2-1}{n}|, \cdots, |F_{D_0}(X_{(n)}) - \frac{n-1}{n}|\right) \end{split}$$

#### Графическая интерпретация

• Тестовая статистика пропорциональна наибольшему расстоянию между графиками. Смысл расчета  $d_n^+$  и  $d_n^-$  заключается в том, что наибольшее расстояние имеет смысл искать лишь около точек разрыва выборочной функции распределения.



#### Пример

Имеется реализация выборки x=(2,-1,0). На 10%-м уровне значимости протестируем гипотезу  $H_0: X_1 \sim \mathcal{N}\left(0,1\right)$ . Отметим. что объем данной выборки слишком мал для того, чтобы асимптотическое распределение статистики было достаточно близко к истинному, однако, малая выборка рассматривается из соображений снижения вычислительной нагрузки.

#### Пример

Имеется реализация выборки x=(2,-1,0). На 10%-м уровне значимости протестируем гипотезу  $H_0: X_1 \sim \mathcal{N}\left(0,1\right)$ . Отметим. что объем данной выборки слишком мал для того, чтобы асимптотическое распределение статистики было достаточно близко к истинному, однако, малая выборка рассматривается из соображений снижения вычислительной нагрузки.

#### Пример

Имеется реализация выборки x=(2,-1,0). На 10%-м уровне значимости протестируем гипотезу  $H_0: X_1 \sim \mathcal{N}\left(0,1\right)$ . Отметим. что объем данной выборки слишком мал для того, чтобы асимптотическое распределение статистики было достаточно близко к истинному, однако, малая выборка рассматривается из соображений снижения вычислительной нагрузки.

$$d_n^+(x) = \max(|1/3 - \Phi(-1)|, |2/3 - \Phi(0)|, |3/3 - \Phi(2)|) \approx \max(0.175, 0.167, 0.023) = 0.175$$

#### Пример

Имеется реализация выборки x=(2,-1,0). На 10%-м уровне значимости протестируем гипотезу  $H_0: X_1 \sim \mathcal{N}\left(0,1\right)$ . Отметим. что объем данной выборки слишком мал для того, чтобы асимптотическое распределение статистики было достаточно близко к истинному, однако, малая выборка рассматривается из соображений снижения вычислительной нагрузки.

$$d_n^+(x) = \max(|1/3 - \Phi(-1)|, |2/3 - \Phi(0)|, |3/3 - \Phi(2)|) \approx \max(0.175, 0.167, 0.023) = 0.175$$
  
$$d_n^-(x) = \max(|\Phi(-1) - 0/3|, |\Phi(0) - 1/3|, |\Phi(2) - 2/3|) \approx \max(0.159, 0.167, 0.311) = 0.311$$

#### Пример

Имеется реализация выборки x=(2,-1,0). На 10%-м уровне значимости протестируем гипотезу  $H_0: X_1 \sim \mathcal{N}\left(0,1\right)$ . Отметим. что объем данной выборки слишком мал для того, чтобы асимптотическое распределение статистики было достаточно близко к истинному, однако, малая выборка рассматривается из соображений снижения вычислительной нагрузки.

$$\begin{aligned} d_n^+(x) &= \max(|1/3 - \Phi(-1)|, |2/3 - \Phi(0)|, |3/3 - \Phi(2)|) \approx \max(0.175, 0.167, 0.023) = 0.175 \\ d_n^-(x) &= \max(|\Phi(-1) - 0/3|, |\Phi(0) - 1/3|, |\Phi(2) - 2/3|) \approx \max(0.159, 0.167, 0.311) = 0.311 \\ T(x) &= \sqrt{3} d_n(x) \approx \sqrt{3} \max(0.175, 0.311) = 0.311\sqrt{3} \approx 1.457 \end{aligned}$$

#### Пример

Имеется реализация выборки x=(2,-1,0). На 10%-м уровне значимости протестируем гипотезу  $H_0: X_1 \sim \mathcal{N}\left(0,1\right)$ . Отметим. что объем данной выборки слишком мал для того, чтобы асимптотическое распределение статистики было достаточно близко к истинному, однако, малая выборка рассматривается из соображений снижения вычислительной нагрузки.

ullet Для удобства запишем реализацию вариационного ряда (-1,0,2) и рассчитаем тестовую статистику:

$$\begin{split} d_n^+(x) &= \max(|1/3 - \Phi(-1)|, |2/3 - \Phi(0)|, |3/3 - \Phi(2)|) \approx \max(0.175, 0.167, 0.023) = 0.175 \\ d_n^-(x) &= \max(|\Phi(-1) - 0/3|, |\Phi(0) - 1/3|, |\Phi(2) - 2/3|) \approx \max(0.159, 0.167, 0.311) = 0.311 \\ T(x) &= \sqrt{3} d_n(x) \approx \sqrt{3} \max(0.175, 0.311) = 0.311\sqrt{3} \approx 1.457 \end{split}$$

ullet Поскольку p-value  $=1-F_{\mathcal{K}(3)}(1.457)pprox 0.857>0.1$ , то нулевая гипотеза не отвергается на 10%-м уровне значимости.

Несколько технических примечаний

• Иногда тест Колмогорова также именуют тестом Колмогорова-Смирнова.

Несколько технических примечаний

- Иногда тест Колмогорова также именуют тестом Колмогорова-Смирнова.
- Найти таблицу распределения для распределения Колмогорова крайне сложно. Как правило, вместо таблицы с квантилями распределения Колмогорова, в учебниках и в интернете приводят таблицу критических значений для упрощенного вида тестовой статистики  $T(X)=d_n$ , то есть без  $\sqrt{n}$ . При использовании подобных таблиц следует либо использовать статистику  $T(X)=d_n$ , либо умножать критические значения на  $\sqrt{n}$ .

Несколько технических примечаний

- Иногда тест Колмогорова также именуют тестом Колмогорова-Смирнова.
- Найти таблицу распределения для распределения Колмогорова крайне сложно. Как правило, вместо таблицы с квантилями распределения Колмогорова, в учебниках и в интернете приводят таблицу критических значений для упрощенного вида тестовой статистики  $T(X)=d_n$ , то есть без  $\sqrt{n}$ . При использовании подобных таблиц следует либо использовать статистику  $T(X)=d_n$ , либо умножать критические значения на  $\sqrt{n}$ .
- Разбираться с данными таблицами не нужно. На контрольной работе будут непосредственно указаны квантили распределения Колмогорова (необходимо подобрать нужную в зависимости от уровня значимости, p-value считать для этого теста вручную не нужно, так как слишком сложно).

#### Формулировка

• Рассмотрим выборку  $X = (X_1, ..., X_n)$  из дискретного распределения (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения принимают значения  $v_1, ..., v_m$  с вероятностями  $p_1, ..., p_m$  соответственно, где  $p_1 + ... + p_m = 1$ .

#### Формулировка

- Рассмотрим выборку  $X = (X_1, ..., X_n)$  из дискретного распределения (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения принимают значения  $v_1, ..., v_m$  с вероятностями  $p_1, ..., p_m$  соответственно, где  $p_1 + ... + p_m = 1$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: p_1 = p_1^0, ..., p_m = p_m^0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m} \frac{\left(V_i - np_i^0\right)^2}{np_i^0}, \qquad V_i = \sum_{j=1}^{n} I(X_j = v_i), \qquad T(X)|H_0 \stackrel{d}{\to} \chi^2(m-1)$$

#### Формулировка

- Рассмотрим выборку  $X=(X_1,...,X_n)$  из дискретного распределения (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения принимают значения  $v_1,...,v_m$  с вероятностями  $p_1,...,p_m$  соответственно, где  $p_1+...+p_m=1$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: p_1 = p_1^0, ..., p_m = p_m^0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m} \frac{(V_i - np_i^0)^2}{np_i^0}, \qquad V_i = \sum_{j=1}^{n} I(X_j = v_i), \qquad T(X)|H_0 \stackrel{d}{ o} \chi^2(m-1)$$

Где  $V_i$  – количество наблюдений в выборке, принявших значение  $v_i$  (частота появления  $v_i$ ).

#### Формулировка

- Рассмотрим выборку  $X = (X_1, ..., X_n)$  из дискретного распределения (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения принимают значения  $v_1, ..., v_m$  с вероятностями  $p_1, ..., p_m$  соответственно, где  $p_1 + ... + p_m = 1$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: p_1 = p_1^0, ..., p_m = p_m^0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m} \frac{\left(V_i - np_i^0\right)^2}{np_i^0}, \qquad V_i = \sum_{j=1}^{n} I(X_j = v_i), \qquad T(X)|H_0 \stackrel{d}{\to} \chi^2(m-1)$$

Где  $V_i$  – количество наблюдений в выборке, принявших значение  $v_i$  (частота появления  $v_i$ ).

• Тестовая статистика измеряет, насколько математическое ожидание (при верной нулевой гипотезе) частоты появления значения  $v_i$ , то есть  $E(V_i|H_0)=np_i^0$ , отклоняется от фактически наблюдаемой частоты, то есть  $V_i$ . Чем больше соответствующие отклонения, тем менее правдоподобной кажется нулевая гипотеза, что мотивирует рассмотрение правосторонней критической области  $\mathcal{T}_{\alpha}=\left(\chi^2_{m-1,1-\alpha},\infty\right)$ . Где  $\chi^2_{m-1,1-\alpha}$  – квантиль уровня  $1-\alpha$  распределения  $\chi^2(m-1)$ .

#### Формулировка

- Рассмотрим выборку  $X = (X_1, ..., X_n)$  из дискретного распределения (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения принимают значения  $v_1, ..., v_m$  с вероятностями  $p_1, ..., p_m$  соответственно, где  $p_1 + ... + p_m = 1$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0: p_1 = p_1^0, ..., p_m = p_m^0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m} \frac{(V_i - np_i^0)^2}{np_i^0}, \qquad V_i = \sum_{j=1}^{n} I(X_j = v_i), \qquad T(X)|H_0 \stackrel{d}{\to} \chi^2(m-1)$$

Где  $V_i$  – количество наблюдений в выборке, принявших значение  $v_i$  (частота появления  $v_i$ ).

- Тестовая статистика измеряет, насколько математическое ожидание (при верной нулевой гипотезе) частоты появления значения  $v_i$ , то есть  $E(V_i|H_0)=np_i^0$ , отклоняется от фактически наблюдаемой частоты, то есть  $V_i$ . Чем больше соответствующие отклонения, тем менее правдоподобной кажется нулевая гипотеза, что мотивирует рассмотрение правосторонней критической области  $\mathcal{T}_{\alpha}=\left(\chi_{m-1,1-\alpha}^2,\infty\right)$ . Где  $\chi_{m-1,1-\alpha}^2$  квантиль уровня  $1-\alpha$  распределения  $\chi^2(m-1)$ .
- Очевидно, что p-value =  $1 F_{\chi^2(m-1)}(T(x))$ .

Лесничий утверждает, что бобры в лесу встречают вдвое реже, чем зайцы и вдвое чаще, чем белки. На летних каникулах Лаврентий часто посещал лес и встретил 30 бобров, 50 зайцев и 20 белок. Поможем Лаврентию, на уровне значимости 10%, протестировать гипотезу о том, что Лесничий говорит правду.

Лесничий утверждает, что бобры в лесу встречают вдвое реже, чем зайцы и вдвое чаще, чем белки. На летних каникулах Лаврентий часто посещал лес и встретил 30 бобров, 50 зайцев и 20 белок. Поможем Лаврентию, на уровне значимости 10%, протестировать гипотезу о том, что Лесничий говорит правду.

• У Лаврентия есть выборка из n=100 наблюдений. Без потери общности будем обозначать бобров как 1, зайцев как 2, а белок как 3, откуда x=(1,...,1,2,...,2,3,...,3), следовательно  $\frac{30 \text{ раз}}{50 \text{ раз}}$   $\frac{50 \text{ раз}}{20 \text{ раз}}$ 

$$V_1(x) = 30$$
,  $V_2(x) = 50$  u  $V_3(x) = 20$ .

Лесничий утверждает, что бобры в лесу встречают вдвое реже, чем зайцы и вдвое чаще, чем белки. На летних каникулах Лаврентий часто посещал лес и встретил 30 бобров, 50 зайцев и 20 белок. Поможем Лаврентию, на уровне значимости 10%, протестировать гипотезу о том, что Лесничий говорит правду.

- У Лаврентия есть выборка из n=100 наблюдений. Без потери общности будем обозначать бобров как 1, зайцев как 2, а белок как 3, откуда  $x=\begin{pmatrix}1,\dots,1,2,\dots,2,3,\dots,3\end{pmatrix}$ , следовательно  $V_1(x)=30,\ V_2(x)=50$  и  $V_3(x)=20$ .
- Поскольку  $p_1^0=0.5p_2^0$  и  $p_1^0=2p_3^0=2(1-p_1^0-p_2^0)$ , то  $p_1^0=2/7$ ,  $p_2^0=4/7$  и  $p_3^0=1/7$ . Следовательно тестируется гипотеза  $H_0: p_1=2/7, p_2=4/7, p_3=1/7$ .

#### Пример

Лесничий утверждает, что бобры в лесу встречают вдвое реже, чем зайцы и вдвое чаще, чем белки. На летних каникулах Лаврентий часто посещал лес и встретил 30 бобров, 50 зайцев и 20 белок. Поможем Лаврентию, на уровне значимости 10%, протестировать гипотезу о том, что Лесничий говорит правду.

- У Лаврентия есть выборка из n=100 наблюдений. Без потери общности будем обозначать бобров как 1, зайцев как 2, а белок как 3, откуда  $x=\begin{pmatrix}1,\dots,1,2,\dots,2,3,\dots,3\\30\text{ раз}&50\text{ раз}&20\text{ раз}\end{pmatrix}$ , следовательно  $V_1(x)=30,\ V_2(x)=50$  и  $V_3(x)=20$ .
- Поскольку  $p_1^0=0.5p_2^0$  и  $p_1^0=2p_3^0=2(1-p_1^0-p_2^0)$ , то  $p_1^0=2/7$ ,  $p_2^0=4/7$  и  $p_3^0=1/7$ . Следовательно тестируется гипотеза  $H_0: p_1=2/7, p_2=4/7, p_3=1/7$ .
- Рассчитаем реализацию тестовой статистики:

$$T(x) = \frac{(30 - 100 \times 2/7)^2}{100 \times 2/7} + \frac{(50 - 100 \times 4/7)^2}{100 \times 4/7} + \frac{(20 - 100 \times 1/7)^2}{100 \times 1/7} = 3.25$$

#### Пример

Лесничий утверждает, что бобры в лесу встречают вдвое реже, чем зайцы и вдвое чаще, чем белки. На летних каникулах Лаврентий часто посещал лес и встретил 30 бобров, 50 зайцев и 20 белок. Поможем Лаврентию, на уровне значимости 10%, протестировать гипотезу о том, что Лесничий говорит правду.

- У Лаврентия есть выборка из n=100 наблюдений. Без потери общности будем обозначать бобров как 1, зайцев как 2, а белок как 3, откуда  $x=\begin{pmatrix}1,\dots,1,2,\dots,2,3,\dots,3\\30\text{ раз}&50\text{ раз}&20\text{ раз}\end{pmatrix}$ , следовательно  $V_1(x)=30,\ V_2(x)=50$  и  $V_3(x)=20$ .
- Поскольку  $p_1^0=0.5p_2^0$  и  $p_1^0=2p_3^0=2(1-p_1^0-p_2^0)$ , то  $p_1^0=2/7$ ,  $p_2^0=4/7$  и  $p_3^0=1/7$ . Следовательно тестируется гипотеза  $H_0: p_1=2/7, p_2=4/7, p_3=1/7$ .
- Рассчитаем реализацию тестовой статистики:

$$T(x) = \frac{(30 - 100 \times 2/7)^2}{100 \times 2/7} + \frac{(50 - 100 \times 4/7)^2}{100 \times 4/7} + \frac{(20 - 100 \times 1/7)^2}{100 \times 1/7} = 3.25$$

• Поскольку p-value  $=1-F_{\chi^2(3-1)}(3.25)\approx 0.197>0.1$ , то нулевая гипотеза не отвергается на 10%-м уровне значимости.

#### Формулировка

• Имеются выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$ , такие, что  $Corr(X_i,Y_j)=\rho$  при i=j и  $X_i,Y_j$  независимы при любых  $i\neq j$ .

#### Формулировка

- Имеются выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$ , такие, что  $Corr(X_i,Y_j)=\rho$  при i=j и  $X_i,Y_j$  независимы при любых  $i\neq j$ .
- Состоятельная оценка корреляции  $\hat{\rho}_n \xrightarrow{p} \rho$ , именуемая выборочной корреляцией, имеет вид:

$$\hat{\rho}_{n} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}_{n}\right) \left(Y_{i} - \overline{Y}_{n}\right)}{\sqrt{\sum_{i=1}^{n} \left(X_{i} - \overline{X}_{n}\right)^{2} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y}_{n}\right)^{2}}} = \frac{\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}\right) - \overline{X}_{n} \overline{Y}_{n}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}_{n}\right)^{2} \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y}_{n}\right)^{2}}}$$

#### Формулировка

- Имеются выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$ , такие, что  $Corr(X_i,Y_j)=\rho$  при i=j и  $X_i,Y_j$  независимы при любых  $i\neq j$ .
- Состоятельная оценка корреляции  $\hat{\rho}_n \xrightarrow{p} \rho$ , именуемая выборочной корреляцией, имеет вид:

$$\hat{\rho}_{n} = \frac{\sum\limits_{i=1}^{n}\left(X_{i} - \overline{X}_{n}\right)\left(Y_{i} - \overline{Y}_{n}\right)}{\sqrt{\sum\limits_{i=1}^{n}\left(X_{i} - \overline{X}_{n}\right)^{2}\sum\limits_{i=1}^{n}\left(Y_{i} - \overline{Y}_{n}\right)^{2}}} = \frac{\left(\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}Y_{i}\right) - \overline{X}_{n}\overline{Y}_{n}}{\sqrt{\frac{1}{n}\sum\limits_{i=1}^{n}\left(X_{i} - \overline{X}_{n}\right)^{2}\frac{1}{n}\sum\limits_{i=1}^{n}\left(Y_{i} - \overline{Y}_{n}\right)^{2}}}$$

• Для доказательства достаточно несколько раз применить теорему Слуцкого, предварительно показав, что:

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i} \xrightarrow{p} E(X_{1} Y_{1}), \qquad \overline{X}_{n} \overline{Y}_{n} \xrightarrow{p} E(X_{1}) E(Y_{1})$$

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}} \xrightarrow{p} \sqrt{Var(X_{1})}, \qquad \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \overline{Y}_{n})^{2}} \xrightarrow{p} \sqrt{Var(Y_{1})}$$

#### Пример

Лаврентий оценивает корреляцию между ценой и продажами различных товаров по данным о n=100 фирмах. Средняя цена и средняя выручка оказались равны 50 и 9925, а общий объем продаж всех фирм составил 20000. Наконец, (не исправленные) выборочные дисперсии для цены и объема продаж оказались равны 100 и 225 соответственно.

Пример

Лаврентий оценивает корреляцию между ценой и продажами различных товаров по данным о n=100 фирмах. Средняя цена и средняя выручка оказались равны 50 и 9925, а общий объем продаж всех фирм составил 20000. Наконец, (не исправленные) выборочные дисперсии для цены и объема продаж оказались равны 100 и 225 соответственно.

ullet Через  $X=(X_1,...,X_{100})$  и  $Y=(Y_1,...,Y_{100})$  обозначим выборки из цен и объемов продаж.

Лаврентий оценивает корреляцию между ценой и продажами различных товаров по данным о n=100 фирмах. Средняя цена и средняя выручка оказались равны 50 и 9925, а общий объем продаж всех фирм составил 20000. Наконец, (не исправленные) выборочные дисперсии для цены и объема продаж оказались равны 100 и 225 соответственно.

- ullet Через  $X=(X_1,...,X_{100})$  и  $Y=(Y_1,...,Y_{100})$  обозначим выборки из цен и объемов продаж.
- Из условия известно, что:

$$\overline{x}_{100} = 50,$$
  $\sum_{i=1}^{100} y_i = 20000 \implies \overline{y}_{100} = 20000/100 = 200,$   $\frac{1}{100} \sum_{i=1}^{100} x_i y_i = 9925$ 

#### Пример

Лаврентий оценивает корреляцию между ценой и продажами различных товаров по данным о n=100 фирмах. Средняя цена и средняя выручка оказались равны 50 и 9925, а общий объем продаж всех фирм составил 20000. Наконец, (не исправленные) выборочные дисперсии для цены и объема продаж оказались равны 100 и 225 соответственно.

- ullet Через  $X=(X_1,...,X_{100})$  и  $Y=(Y_1,...,Y_{100})$  обозначим выборки из цен и объемов продаж.
- Из условия известно, что:

$$\overline{x}_{100} = 50,$$

$$\sum_{i=1}^{100} y_i = 20000 \implies \overline{y}_{100} = 20000/100 = 200,$$

$$\frac{1}{100} \sum_{i=1}^{100} x_i y_i = 9925$$

$$\frac{1}{100} \sum_{i=1}^{100} (x_i - \overline{x}_{100})^2 = 100,$$

$$\frac{1}{100} \sum_{i=1}^{100} (y_i - \overline{y}_{100})^2 = 225$$

#### Пример

Лаврентий оценивает корреляцию между ценой и продажами различных товаров по данным о n=100 фирмах. Средняя цена и средняя выручка оказались равны 50 и 9925, а общий объем продаж всех фирм составил 20000. Наконец, (не исправленные) выборочные дисперсии для цены и объема продаж оказались равны 100 и 225 соответственно.

- ullet Через  $X=(X_1,...,X_{100})$  и  $Y=(Y_1,...,Y_{100})$  обозначим выборки из цен и объемов продаж.
- Из условия известно, что:

$$\overline{x}_{100} = 50,$$

$$\sum_{i=1}^{100} y_i = 20000 \implies \overline{y}_{100} = 20000/100 = 200,$$

$$\frac{1}{100} \sum_{i=1}^{100} x_i y_i = 9925$$

$$\frac{1}{100} \sum_{i=1}^{100} (x_i - \overline{x}_{100})^2 = 100,$$

$$\frac{1}{100} \sum_{i=1}^{100} (y_i - \overline{y}_{100})^2 = 225$$

• Пользуясь найденными реализациями получаем:

$$\hat{\rho}_n(x) = \frac{9925 - 50 \times 200}{\sqrt{100 \times 225}} = -0.5$$

Визуализация в игровой форме

Попробуйте набрать как можно больше очков в игре по ссылке, угадывая значение реализации выборочного коэффициент корреляции по графику:

guessthecorrelation.com

#### Формулировка

• Имеются выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из нормального распределения, такие, что  $Corr(X_i,Y_j)=\rho$  при i=j и  $X_i,Y_j$  независимы при любых  $i\neq j$ .

#### Формулировка

- Имеются выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из нормального распределения, такие, что  $Corr(X_i,Y_j)=\rho$  при i=j и  $X_i,Y_j$  независимы при любых  $i\neq j$ .
- На уровне значимости  $\alpha$  гипотезу  $H_0: \rho = 0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \hat{\rho}_n \sqrt{\frac{n-2}{1-\hat{\rho}_n^2}}, \qquad T(X)|H_0 \sim t(n-2)$$

#### Формулировка

- Имеются выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из нормального распределения, такие, что  $Corr(X_i,Y_j)=\rho$  при i=j и  $X_i,Y_j$  независимы при любых  $i\neq j$ .
- На уровне значимости  $\alpha$  гипотезу  $H_0: \rho = 0$  можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \hat{
ho}_n \sqrt{rac{n-2}{1-\hat{
ho}_n^2}}, \qquad T(X)|H_0 \sim t(n-2)$$

• Рассмотрим несколько типов альтернативных гипотез, через  $t_{n-2,q}$  обозначая квантиль уровня q распределения t(n-2):

| Тип                  | Левосторонняя                  | Двухсторонняя                                                                        | Правосторонняя            |
|----------------------|--------------------------------|--------------------------------------------------------------------------------------|---------------------------|
| Гипотеза             | $H_1: \rho < 0$                | $H_1: ho eq 0$                                                                       | $H_1: \rho > 0$           |
| $\mathcal{T}_{lpha}$ | $(-\infty, -t_{n-2,1-\alpha})$ | $\left(-\infty,-t_{n-2,1-\alpha/2}\right)\cup\left(t_{n-2,1-\alpha/2},\infty\right)$ | $(t_{n-2,1-lpha},\infty)$ |
| p-value              | $F_{t(n-2)}(T(x))$             | $2\min(F_{t(n-2)}(T(x)), 1 - F_{t(n-2)}(T(x)))$                                      | $1 - F_{t(n-2)}(T(x))$    |

#### Пример

Ученый кот тестирует гипотезу о наличии корреляции между бюджетом и кассовыми сборами фильмов, предполагая, что они хорошо описываются нормальным распределением. Реализация выборочного коэффициента корреляции, посчитанного по выборке из 227 фильмов, оказалась равна 0.6. На уровне значимости 1% протестируем гипотезу об отсутствии корреляции между бюджетом и кассовыми сборами против двухсторонней альтернативы.

Пример

Ученый кот тестирует гипотезу о наличии корреляции между бюджетом и кассовыми сборами фильмов, предполагая, что они хорошо описываются нормальным распределением. Реализация выборочного коэффициента корреляции, посчитанного по выборке из 227 фильмов, оказалась равна 0.6. На уровне значимости 1% протестируем гипотезу об отсутствии корреляции между бюджетом и кассовыми сборами против двухсторонней альтернативы.

• Рассчитаем реализацию тестовой статистики:

$$T(x) = \sqrt{\frac{227 - 2}{1 - 0.6^2}} 0.6 = 11.25$$

#### Пример

Ученый кот тестирует гипотезу о наличии корреляции между бюджетом и кассовыми сборами фильмов, предполагая, что они хорошо описываются нормальным распределением. Реализация выборочного коэффициента корреляции, посчитанного по выборке из 227 фильмов, оказалась равна 0.6. На уровне значимости 1% протестируем гипотезу об отсутствии корреляции между бюджетом и кассовыми сборами против двухсторонней альтернативы.

• Рассчитаем реализацию тестовой статистики:

$$T(x) = \sqrt{\frac{227 - 2}{1 - 0.6^2}} 0.6 = 11.25$$

Вычислим p-value:

$$\text{p-value} = 2\min(F_{t(227-2)}(11.25), 1 - F_{t(227-2)}(11.25)) \approx 0$$

В результате нулевая гипотеза отвергается на любом разумном уровне значимости, в том числе на 1%-м.

#### Формулировка

• Рассмотрим выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из дискретных распределений (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения выборки  $Z\in\{X,Y\}$  принимают значения  $v_{Z,1},...,v_{Z,m_Z}$  с вероятностями  $p_{Z,1},...,p_{Z,m_Z}$  соответственно, где  $p_{Z,1}+...+p_{Z,m_Z}=1$ . Предположим, что  $X_i$  и  $Y_j$  независимы при  $i\neq j$ , причем случайные векторы  $(X_i,Y_i)$  одинаково распределены при любом  $i\in\{1,...,n\}$ .

#### Формулировка

- Рассмотрим выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из дискретных распределений (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения выборки  $Z\in\{X,Y\}$  принимают значения  $v_{Z,1},...,v_{Z,m_Z}$  с вероятностями  $p_{Z,1},...,p_{Z,m_Z}$  соответственно, где  $p_{Z,1}+...+p_{Z,m_Z}=1$ . Предположим, что  $X_i$  и  $Y_j$  независимы при  $i\neq j$ , причем случайные векторы  $(X_i,Y_i)$  одинаково распределены при любом  $i\in\{1,...,n\}$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0$ : ( $X_1$  и  $Y_1$  независимы) можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m_X} \sum_{j=1}^{m_Y} \frac{\left(V_{i,j} - n\hat{\rho}_{X,i}\hat{\rho}_{Y,j}\right)^2}{n\hat{\rho}_{X,i}\hat{\rho}_{Y,j}}, \qquad T(X)|H_0 \xrightarrow{d} \chi^2((m_X - 1)(m_Y - 1))$$

$$\hat{\rho}_{X,i} = \frac{1}{n} \sum_{j=1}^{n} I(X_j = v_{X,i}), \quad \hat{\rho}_{Y,i} = \frac{1}{n} \sum_{j=1}^{n} I(Y_j = v_{Y,i}), \quad V_{i,j} = \sum_{k=1}^{n} I(X_k = v_{X,i})I(Y_k = v_{Y,j})$$

#### Формулировка

- Рассмотрим выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из дискретных распределений (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения выборки  $Z\in\{X,Y\}$  принимают значения  $v_{Z,1},...,v_{Z,m_Z}$  с вероятностями  $p_{Z,1},...,p_{Z,m_Z}$  соответственно, где  $p_{Z,1}+...+p_{Z,m_Z}=1$ . Предположим, что  $X_i$  и  $Y_j$  независимы при  $i\neq j$ , причем случайные векторы  $(X_i,Y_i)$  одинаково распределены при любом  $i\in\{1,...,n\}$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0$ : ( $X_1$  и  $Y_1$  независимы) можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m_X} \sum_{j=1}^{m_Y} \frac{\left(V_{i,j} - n\hat{\rho}_{X,i}\hat{\rho}_{Y,j}\right)^2}{n\hat{\rho}_{X,i}\hat{\rho}_{Y,j}}, \qquad T(X)|H_0 \xrightarrow{d} \chi^2((m_X - 1)(m_Y - 1))$$

$$\hat{\rho}_{X,i} = \frac{1}{n} \sum_{i=1}^{n} I(X_j = v_{X,i}), \quad \hat{\rho}_{Y,i} = \frac{1}{n} \sum_{i=1}^{n} I(Y_j = v_{Y,i}), \quad V_{i,j} = \sum_{k=1}^{n} I(X_k = v_{X,i})I(Y_k = v_{Y,j})$$

Где  $V_{i,j}$  - частота, с которой встречается пара  $(v_{X,i},v_{Z,j})$ .  $\hat{p}_{X,i}\hat{p}_{Y,j}$  - оценка вероятности получить пару  $(v_{X,i},v_{Z,j})$  при верной нулевой гипотезе о независимости.  $n\hat{p}_{X,i}\hat{p}_{Y,j}$  - оценка ожидаемой частоты появления пары  $(v_{X,i},v_{Z,i})$  при верной нулевой гипотезе.

#### Формулировка

- Рассмотрим выборки  $X=(X_1,...,X_n)$  и  $Y=(Y_1,...,Y_n)$  из дискретных распределений (но можно обобщить и на случай непрерывного) с конечным носителем. То есть наблюдения выборки  $Z\in\{X,Y\}$  принимают значения  $v_{Z,1},...,v_{Z,m_Z}$  с вероятностями  $p_{Z,1},...,p_{Z,m_Z}$  соответственно, где  $p_{Z,1}+...+p_{Z,m_Z}=1$ . Предположим, что  $X_i$  и  $Y_j$  независимы при  $i\neq j$ , причем случайные векторы  $(X_i,Y_i)$  одинаково распределены при любом  $i\in\{1,...,n\}$ .
- При  $n \ge 50$  на уровне значимости  $\alpha$  гипотезу  $H_0$ : ( $X_1$  и  $Y_1$  независимы) можно протестировать с помощью следующей тестовой статистики с критической областью  $\mathcal{T}_{\alpha}$ :

$$T(X) = \sum_{i=1}^{m_X} \sum_{j=1}^{m_Y} \frac{(V_{i,j} - n\hat{\rho}_{X,i}\hat{\rho}_{Y,j})^2}{n\hat{\rho}_{X,i}\hat{\rho}_{Y,j}}, \qquad T(X)|H_0 \xrightarrow{d} \chi^2((m_X - 1)(m_Y - 1))$$

$$\hat{\rho}_{X,i} = \frac{1}{n} \sum_{j=1}^{n} I(X_j = v_{X,i}), \quad \hat{\rho}_{Y,i} = \frac{1}{n} \sum_{j=1}^{n} I(Y_j = v_{Y,i}), \quad V_{i,j} = \sum_{k=1}^{n} I(X_k = v_{X,i})I(Y_k = v_{Y,j})$$

Где  $V_{i,j}$  - частота, с которой встречается пара  $(v_{X,i},v_{Z,j})$ .  $\hat{p}_{X,i}\hat{p}_{Y,j}$  - оценка вероятности получить пару  $(v_{X,i},v_{Z,j})$  при верной нулевой гипотезе о независимости.  $n\hat{p}_{X,i}\hat{p}_{Y,j}$  - оценка ожидаемой частоты появления пары  $(v_{X,i},v_{Z,j})$  при верной нулевой гипотезе.

• Из асимптотического распределения тестовой статистики при условии верной нулевой гипотезы получаем, что p-value  $=1-F_{\chi^2((m_X-1)(m_Y-1))}(T(x))$  и  $\mathcal{T}_{\alpha}=\left(\chi^2_{(m_X-1)(m_Y-1),1-\alpha},\infty\right)$ .

### Пример

Изучается зависимость между числом пересдач у студентов и формой обучения: онлайн или оффлайн. Результаты опроса n=350 случайно отобранных студентов были собраны в таблицу:

| Число пересдач<br>Форма обучения | 0   | 1  | 2  |
|----------------------------------|-----|----|----|
| 0 (оффлайн)                      | 200 | 40 | 10 |
| 1 (онлайн)                       | 50  | 35 | 15 |

Например, из таблицы следует, что всего в онлайне обучалось 50 + 35 + 15 = 100 студентов и у 35 из них имеется ровно одна пересдача.

#### Пример

Изучается зависимость между числом пересдач у студентов и формой обучения: онлайн или оффлайн. Результаты опроса n=350 случайно отобранных студентов были собраны в таблицу:

| Число пересдач<br>Форма обучения | 0   | 1  | 2  |
|----------------------------------|-----|----|----|
| 0 (оффлайн)                      | 200 | 40 | 10 |
| 1 (онлайн)                       | 50  | 35 | 15 |

Например, из таблицы следует, что всего в онлайне обучалось 50 + 35 + 15 = 100 студентов и у 35 из них имеется ровно одна пересдача.

#### Пример

Изучается зависимость между числом пересдач у студентов и формой обучения: онлайн или оффлайн. Результаты опроса n=350 случайно отобранных студентов были собраны в таблицу:

| Число пересдач<br>Форма обучения | 0   | 1  | 2  |
|----------------------------------|-----|----|----|
| 0 (оффлайн)                      | 200 | 40 | 10 |
| 1 (онлайн)                       |     | 35 | 15 |

Например, из таблицы следует, что всего в онлайне обучалось 50 + 35 + 15 = 100 студентов и у 35 из них имеется ровно одна пересдача.

$$\hat{\rho}_{X,1}(x) = (200 + 50)/350 = 10/14, \quad \hat{\rho}_{X,2}(x) = (40 + 35)/350 = 3/14, \quad \hat{\rho}_{X,3}(x) = (10 + 15)/350 = 1/14$$

#### Пример

Изучается зависимость между числом пересдач у студентов и формой обучения: онлайн или оффлайн. Результаты опроса n=350 случайно отобранных студентов были собраны в таблицу:

| Число пересдач<br>Форма обучения | 0   | 1  | 2  |
|----------------------------------|-----|----|----|
| 0 (оффлайн)                      | 200 | 40 | 10 |
| 1 (онлайн)                       | 50  | 35 | 15 |

Например, из таблицы следует, что всего в онлайне обучалось 50 + 35 + 15 = 100 студентов и у 35 из них имеется ровно одна пересдача.

$$\hat{\rho}_{X,1}(x) = (200 + 50)/350 = 10/14, \quad \hat{\rho}_{X,2}(x) = (40 + 35)/350 = 3/14, \quad \hat{\rho}_{X,3}(x) = (10 + 15)/350 = 1/14$$

$$\hat{\rho}_{Y,1}(y) = (200 + 40 + 10)/350 = 10/14, \quad \hat{\rho}_{Y,2}(y) = (50 + 35 + 15)/350 = 4/14$$

#### Пример

Изучается зависимость между числом пересдач у студентов и формой обучения: онлайн или оффлайн. Результаты опроса n=350 случайно отобранных студентов были собраны в таблицу:

| Число пересдач<br>Форма обучения | 0   | 1  | 2  |
|----------------------------------|-----|----|----|
| 0 (оффлайн)                      | 200 | 40 | 10 |
| 1 (онлайн)                       | 50  | 35 | 15 |

Например, из таблицы следует, что всего в онлайне обучалось 50+35+15=100 студентов и у 35 из них имеется ровно одна пересдача.

$$\begin{split} \hat{\rho}_{X,1}(x) &= (200+50)/350 = 10/14, \quad \hat{\rho}_{X,2}(x) = (40+35)/350 = 3/14, \quad \hat{\rho}_{X,3}(x) = (10+15)/350 = 1/14 \\ \hat{\rho}_{Y,1}(y) &= (200+40+10)/350 = 10/14, \quad \hat{\rho}_{Y,2}(y) = (50+35+15)/350 = 4/14 \\ T(x) &= \frac{(200-350\times(10/14)(10/14))^2}{350\times(10/14)(10/14)} + ... + \frac{(15-350\times(1/14)(4/14))^2}{350\times(1/14)(4/14)} \approx 33.133 \end{split}$$

#### Пример

Изучается зависимость между числом пересдач у студентов и формой обучения: онлайн или оффлайн. Результаты опроса n=350 случайно отобранных студентов были собраны в таблицу:

| Число пересдач<br>Форма обучения | 0   | 1  | 2  |
|----------------------------------|-----|----|----|
| 0 (оффлайн)                      | 200 | 40 | 10 |
| 1 (онлайн)                       | 50  | 35 | 15 |

Например, из таблицы следует, что всего в онлайне обучалось 50+35+15=100 студентов и у 35 из них имеется ровно одна пересдача.

• Через X и Y обозначим выборки из числа пересдач и форм обучения соответственно. Из таблицы следует, что  $m_X=3$  и  $m_Y=2$ . Кроме того, в (i,j)-й ячейке таблицы фактически располагается  $V_{i,j}(x,y)$ , например,  $V_{3,2}(x,y)=15$ . Наконец, найдем реализации оценок вероятностей:

$$\hat{\rho}_{X,1}(x) = (200 + 50)/350 = 10/14, \quad \hat{\rho}_{X,2}(x) = (40 + 35)/350 = 3/14, \quad \hat{\rho}_{X,3}(x) = (10 + 15)/350 = 1/14$$

$$\hat{\rho}_{Y,1}(y) = (200 + 40 + 10)/350 = 10/14, \quad \hat{\rho}_{Y,2}(y) = (50 + 35 + 15)/350 = 4/14$$

$$T(x) = \frac{(200 - 350 \times (10/14)(10/14))^2}{350 \times (10/14)(10/14)} + \dots + \frac{(15 - 350 \times (1/14)(4/14))^2}{350 \times (1/14)(4/14)} \approx 33.133$$

• Поскольку p-value  $=1-F_{\chi^2((3-1)(2-1))}(33.133)=1-F_{\chi^2(2)}(33.133)\approx 0$ , то нулевая гипотеза отвергается на любом разумном уровне значимости.

#### Формулировка

• Классический коэффициент корреляции, оценивавшийся ранее, отражает меру линейной связи между переменными. Однако, связь может быть и более сложной.

#### Формулировка

- Классический коэффициент корреляции, оценивавшийся ранее, отражает меру линейной связи между переменными. Однако, связь может быть и более сложной.
- Для измерения монотонной связи между случайными величинами можно ориентироваться на линейную связь между значениями их функций распределения:

$$Corr_{Spearman}(X_i, Y_i) = Corr(F_{X_i}(X_i), F_{Y_i}(Y_i))$$

### Формулировка

- Классический коэффициент корреляции, оценивавшийся ранее, отражает меру линейной связи между переменными. Однако, связь может быть и более сложной.
- Для измерения монотонной связи между случайными величинами можно ориентироваться на линейную связь между значениями их функций распределения:

$$Corr_{Spearman}(X_i, Y_i) = Corr(F_{X_i}(X_i), F_{Y_i}(Y_i))$$

• Состоятельная оценка данной корреляции именуется ранговым коэффициентом корреляция Спирмена и рассчитываем как выборочная корреляция между рангами наблюдений:

$$Corr_{\mathsf{Spearman}}(X_i, Y_i) = \widehat{Corr}(R(X_i), R(Y_i))$$

$$R(X_i) = \sum_{i=1}^n I(X_i \le X_j) \qquad R(Y_i) = \sum_{i=1}^n I(Y_i \le Y_j)$$

### Формулировка

- Классический коэффициент корреляции, оценивавшийся ранее, отражает меру линейной связи между переменными. Однако, связь может быть и более сложной.
- Для измерения монотонной связи между случайными величинами можно ориентироваться на линейную связь между значениями их функций распределения:

$$Corr_{Spearman}(X_i, Y_i) = Corr(F_{X_i}(X_i), F_{Y_i}(Y_i))$$

Состоятельная оценка данной корреляции именуется ранговым коэффициентом корреляция
 Спирмена и рассчитываем как выборочная корреляция между рангами наблюдений:

$$Corr_{\mathsf{Spearman}}(X_i, Y_i) = \widehat{Corr}(R(X_i), R(Y_i))$$

$$R(X_i) = \sum_{i=1}^n I(X_i \le X_j) \qquad R(Y_i) = \sum_{i=1}^n I(Y_i \le Y_j)$$

Если все ранги различаются, то формула упрощается до:

$$Corr_{Spearman}(X_i, Y_i) = 1 - \frac{6\sum_{i=1}^{n} (R(X_i) - R(Y_i))^2}{n(n^2 - 1)}$$

• Имеются реализации выборок цен акций:

$$x = (51, 32, 43, 14, 25)$$
  $y = (80, 90, 70, 100, 60)$ 

• Имеются реализации выборок цен акций:

$$x = (51, 32, 43, 14, 25)$$
  $y = (80, 90, 70, 100, 60)$ 

• Нетрудно посчитать, что выборочный коэффициент корреляции между ценами акций составит  $\hat{\rho} \approx -0.358$ .

• Имеются реализации выборок цен акций:

$$x = (51, 32, 43, 14, 25)$$
  $y = (80, 90, 70, 100, 60)$ 

- Нетрудно посчитать, что выборочный коэффициент корреляции между ценами акций составит  $\hat{\rho} \approx -0.358$ .
- Для расчета рангового коэффициента корреляции спирмена сперва запишем ранги:

$$R(x) = (5, 3, 4, 1, 2)$$
  $R(y) = (3, 4, 2, 5, 1)$ 

• Имеются реализации выборок цен акций:

$$x = (51, 32, 43, 14, 25)$$
  $y = (80, 90, 70, 100, 60)$ 

- Нетрудно посчитать, что выборочный коэффициент корреляции между ценами акций составит  $\hat{\rho} \approx -0.358$ .
- Для расчета рангового коэффициента корреляции спирмена сперва запишем ранги:

$$R(x) = (5,3,4,1,2)$$
  $R(y) = (3,4,2,5,1)$ 

• Далее, можно либо рассчитать выборочный коэффициент корреляции между рангами, либо воспользоваться приведенной ранее упрощенной формулой:

$$Corr_{\mathsf{Spearman}}(X_i,Y_i) = 1 - 6 \times \frac{(5-3)^2 + (3-4)^2 + (4-2)^2 + (1-5)^2 + (2-1)^2}{5 \times (5^2-1)} = -0.3$$