COMPUTER SCIENCE AND ENGINEERING

Federico Mainetti Gambera

17 novembre 2020

Indice

1	ARGOMENTI	2
2	FORMULARIO 1	4
3	FORMULARIO 2	4

1 ARGOMENTI

Lesson 1: INTRODUZIONE

- ../lezioni/L01-Introduzione.pdf
 - Sistema termodinamico: contorno, ambiente, serbatoio, sistema composto, sistema mono e pluricomponenti, sistema semplice
 - Stato di equilibrio: grandezze intensive ed estensive, legge di Duhem, regola di Gibbs, equazione di stato
 - Tipologie di sistemi termodinamici: contorno del sistema, sistema chiuso e aperto
 - Trasformazioni termodinamiche: internamente reversibile, reversibile, irreversibile, ciclica, elementare
 - Equazione di stato: gas ideali, costante R, gas reali, liquidi e solidi

Lesson 2: PRINCIPI DI CONSERVAZIONE

- ../lezioni/L02-Principi+di+conservazione.pdf
 - Primo principio della termodinamica per sistemi chiusi: formulazione assiomatica, lavoro L, calore Q, proprietà e casi particolari, formulazione classica, esperienze di Joule
 - Secondo principio della termodinamica per sistemi chiusi: formulazione assiomatica, entropia S, proprietà e casi particolari, bilancio di entropia
 - Osservazioni sul primo e secondo principio della termodinamica

Lesson 3: TRASFORMAZIONI

- ../lezioni/L03-Trasformazioni.pdf
 - Lavoro termodinamico: calcolo, trasformazione reversibile vs irreversibile, funzione di stato, lavoro in un ciclo
 - Calori specifici: capacità termica, calore specifico, calori specifici a pressione costante e a volume costante e per i gas ideali e perfetti e per i liquidi incomprimibili ideali e perfetti, entalpia, relazione di Mayer
 - Trasformazioni politropiche: indice della politropica, equazione della politropica, politropiche per i as perfetti, trasformazioni elementari, lavoro scambiato in una politropica
 - Diagramma T-S
 - Calcolo delle grandezze termodinamiche: tabella gas perfetti, variazione di entropia per i gas ideali e perfetti e per liquidi incomprimibili perfetti, ..., note aggiuntive

Lesson 4: SISTEMI BIFASE

- ../lezioni/L04-Sistemi+bifase.pdf
 - Sistema eterogeneo: omogeneo vs eterogeneo, monocomponente vs multicomponente, grndezze estensive in sistemi eterogenei bifase, frazione massica, regola di Gibbs, transizione di fase
 - Sistema eterogeneo monocomponente: nomenclatura
 - Diagramma di stato P-v-T
 - Proprietà termodinamiche dei sistemi eterogenei: entalpia di transizione di fase, titoli
 - **Utilizzo delle tabelle**: Tabella di saturazione in pressione e in temperatura, tabella del vapore surriscaldato, interpolazione lineare, interpolazione bilineare, formule pre l'acqua sottoraffreddata

• Relazioni semplificate vicino al punto triplo per l'acqua

Lesson 5: MACCHINE TERMODINAMICHE

../lezioni/L05-Macchine+termodinamiche.pdf

Lesson 6: SISTEMI APERTI

../lezioni/L06-Sistemi+aperti.pdf

Lesson 7: CICLI A GAS

../lezioni/L07-Cicli+a+gas.pdf

Lesson 8: CICLI A VAPORE

../lezioni/L08-Cicli+a+vapore.pdf

Lesson 9: TRASMISSIONE DEL CALORE

../lezioni/L09-Trasmissione+del+calore.pdf

Lesson 10: CONDUZIONE

../lezioni/L10-Conduzione.pdf

Lesson 11: CONVEZIONE

 ${\tt ../lezioni/L11-Convezione.pdf}$

Lesson 12: IRRAGIAMENTO

 ${\tt ../lezioni/L12-Irraggiamento.pdf}$

2 FORMULARIO 1

./ fisica-tecnica-cheat sheet-travis-2020/fisica-tecnica.pdf

3 FORMULARIO 2