

### Первый закон (правило) Кирхгофа

**Густав Роберт Кирхгоф** немецкий физик XIX века.

### Алгебраическая сумма токов, сходящихся в любом узле

цепи равна нулю:



$$\sum_{r=1}^{u} I_k = 0.$$

Сколько тока втекает в узел, столько из него и вытекает.

$$i_2 + i_3 = i_1 + i_4$$

(узел – любой участок цепи, где сходятся более двух проводников)

#### Доказательство первого закона Кирхгофа



Находим общее сопротивление цепи *Рэкв* 

$$R$$
 $\theta \kappa \theta = \frac{61}{100} + \frac{31}{200} + \frac{21}{300} = \frac{11}{600} = \frac{600}{11} = 54,5 \text{ Om}$ 

Сила тока в цепи 
$$I=\frac{U}{R}~I=\frac{100}{54,5}=1,83~\mathrm{A}$$

#### Примем *I* за *Iвх*

#### Расчет токов протекающих через резисторы

$$I_{R1} = \frac{U}{R1} = \frac{100}{100} = 1 A$$

$$I_{R2} = \frac{U}{R2} = \frac{100}{200} = 0.5 A$$

$$I_{R3} = \frac{U}{R3} = \frac{100}{300} = 0.33 A$$

Івых = 
$$I_{R1} + I_{R2} + I_{R3} = 1 + 0,5 + 0,33 = 1,83$$
 А

Сумма токов входящих в узел равна сумме токов исходящих из узла ,Первый закон Кирхгофа доказан

#### Расчетная работа №5 ЭЛЕКТРОТЕХНИКА

# TEMA: Закон Ома для участка цепи, первое правило Кирхгофа.

- 1. Зарисовать принципиальную схему электрической цепи.
- 2. Произвести расчеты силы тока проходящего через каждую ветвь цепи, рассчитать общий ток.
- 3. Полученные результаты записать в таблицу. Доказать первое правило Кирхгофа.
- 4. Как изменится общий ток цепи если исключить из схемы резистор R4



#### Вариант задания

| №        | <b>R1</b> | <b>R2</b> | <b>R3</b> | <b>R4</b> | <b>R5</b> | R6  | <b>U</b> (GB) |
|----------|-----------|-----------|-----------|-----------|-----------|-----|---------------|
| варианта | Ом        | Ом        | Ом        | Ом        | Ом        | Ом  | (B)           |
| 1        | 100       | 100       | 500       | 500       | 1000      | 100 | 26            |

#### Таблица ответов

| $I_{R1}$ | <b> </b> <sub>R2</sub> | I <sub>R3</sub> | <b> </b> <sub>R4</sub> | <b> </b>   <b> </b>   R5 | <b> </b> <sub>R6</sub> | <b>∑</b> / <sub>1-6</sub> | $oldsymbol{R}$ экв. | <b>I</b> BX. |
|----------|------------------------|-----------------|------------------------|--------------------------|------------------------|---------------------------|---------------------|--------------|
| Α        | Α                      | Α               | Α                      | Α                        | Α                      | A                         | Ом                  | A            |
|          |                        |                 |                        |                          |                        |                           |                     |              |
|          |                        |                 |                        |                          |                        |                           |                     |              |

### Второй закон (правило) Кирхгофа

**Густав Роберт Кирхгоф** немецкий физик XIX века.

## Формулировка II закон Кирхгофа

В любого замкнутом контуре алгебраической сумма ЭДС равна алгебраической сумме падений напряжения на активных элементах данного контура.

$$\sum E = \sum I R$$





Алгебраическая сумма всех напряжений любой замкнутой цепи должна равняться нулю"





 $R_{\text{экв}} = R1 + R2 + R3 = 5 + 10 + 7,5 = 22,5$  кОм или 22500 Ом

Сила тока в цепи

$$I = \frac{U}{R}$$

$$I = \frac{45}{22500} = 0,002 \text{ A}$$

$$\Delta U_{R1} = I \cdot R1 = 0,002 \cdot 5000 = 10 B$$

$$\Delta U_{R2} = I \cdot R2 = 0,002 \cdot 10000 = 20 B$$

$$\Delta U_{R3} = I \cdot R3 = 0,002 \cdot 7500 = 15 B$$

U =I ∙R

 $\sum \Delta U_R = 45 E$ 

#### Расчетная работа №6 ЭЛЕКТРОТЕХНИКА

# TEMA: Закон Ома для участка цепи, второе правило Кирхгофа.

- 1. Зарисовать принципиальную схему электрической цепи.
- Произвести расчеты силы тока проходящего через каждую ветвь цепи, рассчитать ∆U падения напряжения на каждом резисторе.
- 3. Полученные результаты записать в таблицу. Доказать второе правило Кирхгофа.



| 1             | 100       | 100       | 500       | 50        | 100       | 100       | 400       | 100 | 200       | 26 |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----------|----|
|               | Ом        | Ом  | Ом        | В  |
| №<br>варианта | <i>R1</i> | <i>R2</i> | <i>R3</i> | <i>R4</i> | <i>R5</i> | <i>R6</i> | <i>R7</i> | R8  | <i>R9</i> | U  |