

Fundaciones profundas: Análisis del comportamiento dinámico de pilotes

Universidad de Buenos Aires. Facultad de Ingeniería

Juan Mussat (jmussat@fi.uba.ar)

Lisandro Roldan (<u>liroldan@fi.uba.ar</u>)

Pedro Fernández (pmfernandez@fi.uba.ar)

Contenido

- Estados límites últimos (ELU)
- Fórmula de hinca dinámica (HD)
- Ensayos dinámicos de campo (PDA)
- Modelación (MEF)

Contenido

- Estados límites últimos
- Fórmula de hinca dinámica
- Ensayos dinámicos de campo
- Modelación

Determinación de la capacidad de un pilote

La capacidad de un pilote se calcula mediante la combinación de los mecanimos de fuste y punta según

$$R_r = \phi R_n = \phi R_f + \phi R_p$$

Los métodos para definir el factor de resistencia se pueden divider en:

- Estáticos: $R_r = \phi_{est} R_n = \phi_{est} R_f + \phi_{est} R_p$
- Dinámicos: $R_r = \phi_{din} R_n$

Factores de resistencia estáticos

Condición	Metodología de determinación	Factor de resistencia
Resistencia nominal a compresión. Pilote individual	Resistencia de fuste y punta: arcillas • Método α • Método β (1991) • Brown (2001) • API RP2A (1993) • Elsami & Fellenius • Schmertmann (1975) Resistencia de fuste y punta: arenas • Método Nordlund	0.35 Ver manual AASHTO AASHTO AASHTO 0.50
Falla de bloque	Cohesivo	0.75
Resistencia nominal a tracción. Pilote individual	 Método Nordlund Método α Método β (1991) Método λ Método SPT Método CPT 	0.35 0.25 0.20 0.30 0.25 0.40
Levantamiento de grupo	Arenas y arcillas	0.50
Resistencia lateral	Suelos y rocas	1.0

Factores de resistencia dinámicos

Condición	Metodología de determinación	Factor de resistencia
Resistencia nominal a compresión	Ensayo estático de carga de al menos un pilote por condición de sitio y ensayo dinámico con ajuste de señal sobre dos pilotes por condición de sitio, pero no menos de un 2% de los pilotes a hincar	
	Ensayo estático de carga de al menos un pilote por condición de sitio sin ensayo dinámico; o ensayo dinámico con ajuste de señal en la totalidad de los pilotes	
	Ensayo dinámico con ajuste de señal de al menos dos pilotes por condición de sitio, pero no menos del 2% de los pilotes a hincar	0.65
	Análisis de propagación de ondas sin mediciones dinámicas o ensayo de carga para condiciones de final de hinca	0.50
	Fórmula de hinca de Gates Modificada (FHWA). Final de hinca	0.40
	Fórmula de hinca de WSDOT. Final de hinca * (AASHTO)	0.45 – 0.55
	Fórmula de hinca de Engineering News (AASHTO). Final de hinca	0.10
Resistencia nominal a tracción	Ensayo de carga estática	0.60
	Ensayo dinámico con ajuste de señal	0.50

Análisis de incertidumbre

La incertidumbre asociada a cada determinación se refleja en los resultados de distribuciones de cargas predecidas vs ensayos estáticos de carga

Análisis de incertidumbre

La incertidumbre asociada a cada determinación se refleja en los resultados de distribuciones de cargas predecidas vs ensayos estáticos de carga

Prediction Method	Status	Mean	C.O.V.	# Piles
Standard WEAP*	BOR	1.22	0.35	99
Hammer Performance Adjusted WEAP*	BOR	1.16	0.35	99
CAPWAP*	BOR	0.92	0.22	99
Static Analysis*		1.30	0.68	89
Engineering News Formula	EOD	1.22	0.74	139
Engineering News Formula	BOR	1.89	0.46	122
Modified Gates Formula	EOD	0.96	0.41	139
Modified Gates Formula	BOR	1.33	0.48	122

From Rausche et al. (1996)

EOD = End of Driving, BOR = Beginning of Restrike

Ejemplo de estudio: Planta Potabilizadora JMR

Planta Juan Manuel de Rosas, AySA

Ejemplo de estudio: Planta Potabilizadora

Para la fundación de los 3 módulos se utilizaron pilotes prefabricados

comportamiento dinámico de pilotes de

Ejemplo de estudio: Planta Potabilizadora

Para la fundación de los 3 módulos se utilizaron pilotes prefabricados

Análisis técnico-económico

La ejecución de ensayos de campo puede tener un impacto significativo en la reducción de costos del proyecto de fundación

	PDCA	Design	Total	Pile Cost	Testing	
Capacity	Safety	Load per	Piles per	\$	Cost	Total Cost
Verification Method	Factor	Pile (T)	Project	,	\$	\$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
dynamic formula	3.50	57 tons	700	1,260,000	100	1,260,100
wave equation	2.50	80	500	900,000	1,000	901,000
dynamic test (2%)	2.10	95	420	756,000	3,000	759,000
dynamic test (10%)	1.90	105	380	684,000	11,400	695,400
static test (0.5%)	2.00	100	400	720,000	25,000	745,000
static test (2%)	1.80	111	360	648,000	75,000	723,000
static test (1) +						
dynamic (6%)	1.80	111	360	648,000	21,480	669,480
static test (1) +						
dynamic (15%)	1.65	121	340	612,000	30,300	642,300

Definición de capacidad portante: ejemplo

En Holanda se hizo una competencia en campo entre numerosas firmas especializadas en ensayos dinámicos de pilotes. Fueron invitados para predecir la capacidad de carga última de cuatro pilotes prefabricados hincados a través de arenas y limos con profundidades entre 11.5 y 19 m.

Definición de capacidad portante: ejemplo

En Holanda se hizo una competencia en campo entre numerosas firmas especializadas en ensayos dinámicos de pilotes. Fueron invitados para predecir la capacidad de carga última de cuatro pilotes prefabricados hincados a través de arenas y limos con profundidades entre 11.5 y 19 m.

Un amplio rango de capacidades fue obtenido. Para uno de los pilotes el rango iba de **90** a **510** kN. La carga de falla proveniente de un ensayo estático fue de **340** kN.