Continuity and compactness, continuity and connectedness, discontinuity

Given two functions $f: X \to Y$ and $g: X \to Z$, one can define their direct sum $f \oplus g: X \to Y \times Z$ defined by $f \oplus g(x) := (f(x), g(x))$, i.e., this is the function taking values in the Cartesian product $Y \times Z$ whose first co-ordinate is f(x) and whose second co-ordinate is g(x).

Lemma Let $f: X \to \mathbf{R}$ and $g: X \to \mathbf{R}$ be functions, and let $f \oplus g: X \to \mathbf{R}^2$ be their direct sum. We give \mathbf{R}^2 the Euclidean metric.

- (a) If $x_0 \in X$, then f and g are both continuous at x_0 if and only if $f \oplus g$ is continuous at x_0 .
- (b) f and g are both continuous if and only if $f \oplus g$ is continuous.

Lemma The addition function $(x,y) \mapsto x + y$, the subtraction function $(x,y) \mapsto x - y$, the multiplication function $(x,y) \mapsto xy$, the maximum function $(x,y) \mapsto \max(x,y)$, and the minimum function $(x,y) \mapsto \min(x,y)$, are all continuous functions from \mathbf{R}^2 to \mathbf{R} . The division function $(x,y) \mapsto x/y$ is a continuous function from $\mathbf{R} \times (\mathbf{R} \setminus \{0\}) = \{(x,y) \in \mathbf{R}^2 : y \neq 0\}$ to \mathbf{R} . For any real number c, the function $x \mapsto cx$ is a continuous function from \mathbf{R} to \mathbf{R} .

Theorem

(a) Let f_1, \ldots, f_k be real functions on a metric space X, and let f be the mapping of X into R^k defined by

$$\mathbf{f}(x) = (f_1(x), \dots, f_k(x)) \qquad (x \in X);$$

then \mathbf{f} is continuous if and only if each of the functions f_1, \ldots, f_k is continuous. (b) If \mathbf{f} and \mathbf{g} are continuous mappings of X into R^k , then $\mathbf{f} + \mathbf{g}$ and $\mathbf{f} \cdot \mathbf{g}$ are continuous on X.

The functions f_1, \ldots, f_k are called the *components* of \mathbf{f} . Note that $\mathbf{f} + \mathbf{g}$ is a mapping into R^k , whereas $\mathbf{f} \cdot \mathbf{g}$ is a real function on X.

Lemma Suppose that $g: D \to \mathbb{R}$ (or \mathbb{C}) is continuous at $p \in D$, and that $g(p) \neq 0$. Then there exists $\delta > 0$ with the property that for all $x \in D$ with $|x - p| < \delta$

$$g(x) \neq 0$$

as well.

邻域保号

Proof. Let $\varepsilon := \frac{|g(p)|}{2} > 0$. Since g is continuous at p, we may find $\delta > 0$ such that for all $x \in D$ with $|x - p| < \delta$

$$|g(x) - g(p)| < \varepsilon = \frac{|g(p)|}{2}.$$

This implies

$$|g(x)| > \frac{|g(p)|}{2} > 0.$$

Definition Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ (or \mathbb{C}), and $0 < \alpha < 1$. f is called α -Hölder continuous (for $\alpha = 1$ Lipschitz continuous) if for any closed and bounded interval $I \subset D$ there exists an $m_I \in \mathbb{R}$ with

$$|f(x) - f(y)| \le m_I |x - y|^{\alpha}$$
 for all $x, y \in I$.

One easily checks that if $f, g : D \to \mathbb{R}(\mathbb{C})$ are α -Hölder continuous, then so is their sum f + g, and likewise λf , for any $\lambda \in \mathbb{R}(\mathbb{C})$.

Definition The vector space of α -Hölder continuous functions $f: D \to \mathbb{R}$ (resp. \mathbb{C}) will be denoted by $C^{0,\alpha}(D,\mathbb{R})$ (resp. $C^{0,\alpha}(D,\mathbb{C})$). We also write $C^{0,\alpha}(D)$ for $C^{0,\alpha}(D,\mathbb{R})$ and, for $0 < \alpha < 1, C^{0,\alpha}(D)$ as $C^{\alpha}(D)$.

Definition A mapping f of a set E into R^k is said to be bounded if there is a real number M such that $|f(x)| \le M$ for all $x \in E$.

Theorem Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Proof Let $\{V_{\alpha}\}$ be an open cover of f(X). Since f is continuous, each of the sets $f^{-1}(V_{\alpha})$ is open. Since X is compact, there are finitely many indices, say $\alpha_1, \ldots, \alpha_n$, such that $X \subset f^{-1}(V_{\alpha_1}) \cup \cdots \cup f^{-1}(V_{\alpha_n})$. Since $f(f^{-1}(E)) \subset E$ for every $E \subset Y$, it follows that $f(X) \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$.

Note: We have used the relation $f(f^{-1}(E)) \subset E$, valid for $E \subset Y$. If $E \subset X$, then $f^{-1}(f(E)) \supset E$; equality need not hold in either case.

Corollary If f is a continuous mapping of a compact metric space X into R^k , then f(X) is closed and bounded. Thus, f is bounded.

Proposition Let K be a compact subset of (X, d). Then any continuous function $f: K \to \mathbb{R}$ is bounded and attains its bounds.

紧集在连续函数下的修 集是有界的且包含上下 确界

Proof $f(K) \subset \mathbb{R}$ is compact and so is bounded and closed. Let $l = \sup\{f(x), x \in K\}$; then $l < \infty$. Take $\{f(x_n)\} \subset f(K)$ so that $f(x_n) \to l$; then $l \in f(K)$ since f(K) is closed. Hence, there is a $z \in K$ such that l = f(z). Similarly, there is a $y \in K$ such that $f(y) = \inf\{f(x), x \in K\}$.

Theorem Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y. Then the inverse mapping f^{-1} defined on Y by

$$f^{-1}(f(x)) = x \qquad (x \in X)$$

is a continuous mapping of Y onto X.

Proof. Let $g = f^{-1}$ and C be a closed subset of X. We need only to show that $g^{-1}(C) = f(C)$ is a closed subset of Y. Since X is compact and C is a closed subset of X, we know that C is a compact subset of X. Since f is a continuous map from a compact metric space to another metric space, it maps compact sets to compact sets. Thus f(C) is a compact subset of Y and so is a closed subset of Y.

Definition (Uniform continuity). Let $f: X \to Y$ be a map from one metric space (X, d_X) to another (Y, d_Y) . We say that f is uniformly continuous if, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $d_Y(f(x), f(x')) < \varepsilon$ whenever $x, x' \in X$ are such that $d_X(x, x') < \delta$.

Definition A function $f: E \to \mathbb{R}$ is uniformly continuous on a set $E \subset \mathbb{R}$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x_1) - f(x_2)| < \varepsilon$ for all points $x_1, x_2 \in E$ such that $|x_1 - x_2| < \delta$.

$$(f: E \to \mathbb{R} \text{ is uniformly continuous }) :=$$

$$= (\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x_1 \in E \,\forall x_2 \in E \, (|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon)).$$

$$(f: E \to \mathbb{R} \text{ is not uniformly continuous}) := (\exists \varepsilon > 0 \forall \delta > 0 \exists x_1 \in E \exists x_2 \in E (|x_1 - x_2| < \delta \& |f(x_1) - f(x_2)| \ge \varepsilon)).$$

$$\begin{split} (f:E \to \mathbb{R} \text{ is continuous on } E := \\ &= \left(\forall a \in E \, \forall \varepsilon > 0 \, \exists \delta > 0 \, \forall x \in E \, (|x-a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon) \right) \,. \end{split}$$

Example i) The function $f(x) = \frac{1}{x}$ is continuous but not uniformly continuous on (0, 1).

- ii) For any a > 0, the function $f(x) = \frac{1}{x}$ is uniformly continuous on $[a, \infty)$.
- iii) The function $g(x) = x^2$ is continuous but not uniformly continuous on $(-\infty, \infty)$.

Definition Let $D \subset \mathbb{R}$ (or \mathbb{C}) and $f: D \to \mathbb{R}$ (or \mathbb{C}) a function. The function f is said to be uniformly continuous in D

$$\iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x_1, x_2 \in D \quad \text{with } |x_1 - x_2| < \delta :$$
$$|f(x_1) - f(x_2)| < \varepsilon . \tag{5}$$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2$. We show that f is continuous at every $p \in \mathbb{R}$. Let $\varepsilon > 0$. We set

$$\delta = \min\left(1, \frac{\varepsilon}{2|p|+1}\right).$$

If $|x-p| < \delta$ then

$$|x^2 - p^2| = |x - p||x + p| \le |x - p|(|x| + p) < |x - p|(2|p| + 1) < \varepsilon.$$

This shows that f is continuous. We now show that f is not uniformly continuous on \mathbb{R} .

For this we prove the negation of (5), namely

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x_1, x_2 \in \mathbb{R} \quad \text{with } |x_1 - x_2| < \delta$$

but $|f(x_1) - f(x_2)| > \varepsilon$. (6)

We choose $\varepsilon = 1$. For $\delta > 0$ there exist $x_1, x_2 \in \mathbb{R}$ with $|x_1 - x_2| = \frac{\delta}{2}, |x_1 + x_2| > \frac{2}{\delta}$. Therefore

$$|x_1^2 - x_2^2| = |x_1 - x_2||x_1 + x_2| > 1$$

which proves (6).

Proposition Let (X, d_X) , (Y, d_Y) , (Z, d_Z) be metric spaces, and let $f: X \to Y$ and $g: Y \to Z$ be two uniformly continuous functions. Then $g \circ f: X \to Z$ is also uniformly continuous.

Theorem Let I = [a, b] be a closed and bounded interval and $f : I \to \mathbb{R}$ (or \mathbb{C}) a continuous function. Then f is uniformly continuous on I.

Lemma If $f:(X,d_X)\to (Y,d_Y)$ is continuous and X is compact, then f is uniformly continuous on $X:\ \forall \epsilon>0\ \exists \delta>0$ such that

$$d_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) < \epsilon, \ x,y \in X. \tag{0.3}$$

Proof If f is not uniformly continuous then $\exists \epsilon > 0$ s.t. $\forall \delta > 0$, $\exists x,y \in X$ with $d_X(x,y) < \delta$ and $d_Y(f(x),f(y)) \geq \epsilon$. Taking $\delta = 1/n$, we can find $x_n,y_n \in X$ such that

$$d_X(x_n, y_n) < 1/n \text{ and } d_Y(f(x_n), f(y_n)) \ge \epsilon.$$
 (0.4)

Since X is compact, $\exists \{x_{n_k}\} \subset \{x_n\}$ s.t. $x_{n_k} \to x$. It follows that $y_{n_k} \to x$ also. Since f is continuous at x, we can find $\delta > 0$ such that $d_X(z,x) < \delta$ ensures that $d_Y(f(z),f(x)) < \epsilon/2$. Thus for j sufficiently large we have $d_X(x_{n_j},x) < \delta$, $d_X(y_{n_k},x) < \delta$. Hence

$$d_Y(f((x_{n_j}), f((y_{n_j}) \le d_Y(f((x_{n_j}), f(x)) + d_Y(f((y_{n_j}), f(x)) < \epsilon,$$

contradicting (0.4).

Theorem Let E be a noncompact set in \mathbb{R}^1 . Then

- (a) there exists a continuous function on E which is not bounded;
- (b) there exists a continuous and bounded function on E which has no maximum. If, in addition, E is bounded, then
- (c) there exists a continuous function on E which is not uniformly continuous.

Proof Suppose first that E is bounded, so that there exists a limit point x_0 of E which is not a point of E. Consider

$$f(x) = \frac{1}{x - x_0} \qquad (x \in E).$$

This is continuous on E, but unbounded. To see that it is not uniformly continuous, let $\varepsilon > 0$ and $\delta > 0$ be arbitrary, and choose a point $x \in E$ such that $|x - x_0| < \delta$. Taking t close enough to x_0 , we can then make the difference |f(t) - f(x)| greater than ε , although $|t - x| < \delta$. Since this is true for every $\delta > 0$, f is not uniformly continuous on E.

The function g given by

$$g(x) = \frac{1}{1 + (x - x_0)^2} \qquad (x \in E)$$

is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that

$$\sup_{x \in E} g(x) = 1,$$

whereas g(x) < 1 for all $x \in E$. Thus g has no maximum on E.

Having proved the theorem for bounded sets E, let us now suppose that E is unbounded. Then f(x) = x establishes (a), whereas

$$h(x) = \frac{x^2}{1+x^2} \qquad (x \in E)$$

establishes (b), since

$$\sup_{x \in E} h(x) = 1$$

and h(x) < 1 for all $x \in E$.

Assertion (c) would be false if boundedness were omitted from the hypotheses. For, let E be the set of all integers. Then every function defined on E is uniformly continuous on E.

Theorem If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then f(E) is connected.

Proof Assume, on the contrary, that $f(E) = A \cup B$, where A and B are nonempty separated subsets of Y. Put $G = E \cap f^{-1}(A)$, $H = E \cap f^{-1}(B)$.

Then $E = G \cup H$, and neither G nor H is empty.

Since $A \subset \overline{A}$ (the closure of A), we have $G \subset f^{-1}(\overline{A})$; the latter set is closed, since f is continuous; hence $\overline{G} \subset f^{-1}(\overline{A})$. It follows that $f(\overline{G}) \subset \overline{A}$. Since f(H) = B and $\overline{A} \cap B$ is empty, we conclude that $\overline{G} \cap H$ is empty.

The same argument shows that $G \cap \overline{H}$ is empty. Thus G and H are separated. This is impossible if E is connected.

Theorem Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point $x \in (a, b)$ such that f(x) = c.

Proof

Since [a, b] is connected and f is continuous, f([a, b]) is connected. Therefore, for any c satisfying f(a) < c < f(b), we have $c \in f([a, b])$ and so there exists an $x \in [a, b]$ such that f(x)=c.

If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x, or that f has a discontinuity at x.

4.25 Definition Let f be defined on (a, b). Consider any point x such that $a \le x < b$. We write

$$f(x+)=q$$

if $f(t_n) \to q$ as $n \to \infty$, for all sequences $\{t_n\}$ in (x, b) such that $t_n \to x$. To obtain the definition of f(x-), for $a < x \le b$, we restrict ourselves to sequences $\{t_n\}$ in (a, x).

$$\lim_{t \to x} f(t) \text{ exists if and only if } f(x+) = f(x-) = \lim_{t \to x} f(t).$$

Definition Let f be defined on (a, b). If f is discontinuous at a point x, and if f(x+) and f(x-) exist, then f is said to have a discontinuity of the *first kind*, or a *simple discontinuity*, at x. Otherwise the discontinuity is said to be of the *second kind*.

There are two ways in which a function can have a simple discontinuity:

$$f(x +) \neq f(x -)$$
 or $f(x +) = f(x -) \neq f(x)$

Examples

(a) Define

$$f(x) = \begin{cases} 1 & (x \text{ rational}), \\ 0 & (x \text{ irrational}). \end{cases}$$

Then f has a discontinuity of the second kind at every point x, since neither f(x+) nor f(x-) exists.

(b) Define

$$f(x) = \begin{cases} x & (x \text{ rational}), \\ 0 & (x \text{ irrational}). \end{cases}$$

Then f is continuous at x = 0 and has a discontinuity of the second kind at every other point.

(c) Define

$$f(x) = \begin{cases} x+2 & (-3 < x < -2), \\ -x-2 & (-2 \le x < 0), \\ x+2 & (0 \le x < 1). \end{cases}$$

Then f has a simple discontinuity at x = 0 and is continuous at every other point of (-3, 1).

(d) Define

$$f(x) = \begin{cases} \sin\frac{1}{x} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Since neither f(0+) nor f(0-) exists, f has a discontinuity of the second kind at x = 0.