Empirical Analysis of AMZN Microstructure Data

Sid Bhatia

12/3/2023

Importation

Import the required libraries.

```
library(highfrequency)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
             1.1.2
                       v readr
                                  2.1.4
## v forcats 1.0.0
                       v stringr
                                  1.5.0
## v ggplot2 3.4.2
                       v tibble
                                  3.2.1
## v lubridate 1.9.3
                       v tidyr
                                  1.3.0
## v purrr
             1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(xts)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
      as.Date, as.Date.numeric
##
## # We noticed you have dplyr installed. The dplyr lag() function breaks how
## # base R's lag() function is supposed to work, which breaks lag(my_xts).
## #
                                                                            #
## # Calls to lag(my_xts) that you enter or source() into this session won't
## # work correctly.
## # All package code is unaffected because it is protected by the R namespace
## # mechanism.
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.
## # You can use stats::lag() to make sure you're not using dplyr::lag(), or you #
## # can add conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop
## # dplyr from breaking base R's lag() function.
```

Data Pre-Processing

Load and pre-process the TAQ data.

```
# Write file path for data.
file_path <- 'C://Users//sbhatia2//OneDrive - stevens.edu//Desktop//amzn_tick_history_01_04_2023.csv'
# Read in TAQ data.
data <- read.csv(file_path)</pre>
# head(data)
# tail(data)
# Display columns of dataset.
# colnames(data)
# head(data$Bid.Price)
# tail(data$Bid.Price)
# head(data$Ask.Price)
# tail(data$Ask.Price)
# Remove rows with NA Bid/Ask/Trade prices.
cleaned_data <- data[!is.na(data$Bid.Price) & !is.na(data$Ask.Price) & !is.na(data$Price), ]
# head(cleaned_data)
# tail(cleaned_data)
# Convert Exchange Time column to be compatible with xts object.
cleaned_data$Exch.Time <- as.POSIXct(paste("2000-01-01", cleaned_data$Exch.Time))</pre>
# Convert dataframe into xts object.
amzn_xts <- xts(cleaned_data[,-which(names(cleaned_data) == "Exch.Time")], order.by = cleaned_data$Exch
# Rename Bid, Ask, and Symbol columns to match correct format.
names(amzn_xts)[names(amzn_xts) == 'Bid.Price'] <- 'BID'</pre>
names(amzn_xts)[names(amzn_xts) == 'Ask.Price'] <- 'OFR'</pre>
names(amzn_xts)[names(amzn_xts) == 'X.RIC'] <- 'SYMBOL'</pre>
# head(amzn_xts)
# tail(amzn_xts)
```

Liquidity Analysis

Perform core liquidity analysis for the project.

Price Computation Retrieve and compute the bid, ask, trade, and mid prices.

```
# Determine number of trades in dataset.
num_of_trades <- nrow(amzn_xts)

paste("Total number of trades for AMZN on 01/04/2023:", num_of_trades)

## [1] "Total number of trades for AMZN on 01/04/2023: 575733"

# Retrieve trade, bid, and ask prices.
prices <- as.numeric(amzn_xts$Price)
bids <- as.numeric(amzn_xts$BID)
asks <- as.numeric(amzn_xts$OFR)

# Compute the mid price as the average of the bid and ask prices.
mids <- (bids + asks) * 0.5</pre>
```

Trade vs. Mid Price Plotting Plot the trade vs. mid prices.

Trade vs. Mid Prices

Size Computation Retrieve and compute the bid and ask sizes as well as the LOB imbalances.

```
# Retrieve bid and ask sizes.
bid_size <- as.numeric(amzn_xts$Bid.Size)</pre>
```

```
ask_size <- as.numeric(amzn_xts$Ask.Size)

# Compute the LOB imbalance at each time step as the sum of the bid and ask sizes.
LOB_imbalance <- bid_size + ask_size</pre>
```

Trade Size Plotting Plot the trade sizes.

```
plot(ask_size, col="orange", type="h",
    ylab="Trade Size",
    xlab="Trade Count", main="Trade Size at Best Quote")
lines(bid_size, col="purple", type="h")
```

Trade Size at Best Quote

 ${\bf Liquidity\ Measures}\quad {\bf Compute\ the\ relevant\ liquidity\ measures}.$

```
# Retrieve liquidity measures.
liquidity_measures <- getLiquidityMeasures(amzn_xts)

# Compute the Quoted Spread.
quoted_spread <- mean(as.numeric(liquidity_measures$quotedSpread))

quoted_spread

## [1] 0.01512349

# Compute the Effective Spread.
effective_spread <- mean(as.numeric(liquidity_measures$effectiveSpread))</pre>
```

```
## [1] 0.03655411
# Compute the Realized Spread.
realized_spread <- mean(na.omit(as.numeric(liquidity_measures$realizedSpread)))
realized_spread
## [1] 0.02876561
# Compute the Price Impact.
price_impact <- mean(na.omit(as.numeric(liquidity_measures$priceImpact)))
price_impact
## [1] 0.00389478</pre>
```

Time Bucket Analysis

Perform analysis on each hour in the dataset.

```
## Split dataset into 24 buckets (24 hours) for analysis.
# amzn_data_list <- list()</pre>
# for (i in 0:23)
# {
#
   # Construct the time range string.
# start_hour <- sprintf("%02d:00", i)
   end_hour <- end_hour <- ifelse(i == 23, "23:59:59", sprintf("%02d:00", i + 1))
#
   time_range <- paste("T", start_hour, "/", "T", end_hour, sep = "")</pre>
#
#
   # Subset amzn_xts and store in the list.
#
    amzn_data_list[[paste("amzn_xts_", i + 1, sep = "")]] <- amzn_data_list[time_range]
# }
#
\# amzn\_data\_list
amzn xts 1 <- amzn xts["T00:00/T01:00"]
amzn_xts_2 <- amzn_xts["T01:00/T02:00"]</pre>
amzn_xts_3 <- amzn_xts["T02:00/T03:00"]</pre>
amzn_xts_4 <- amzn_xts["T03:00/T04:00"]</pre>
amzn_xts_5 <- amzn_xts["T04:00/T05:00"]
amzn_xts_6 <- amzn_xts["T05:00/T06:00"]
amzn_xts_7 <- amzn_xts["T06:00/T07:00"]
amzn_xts_8 <- amzn_xts["T07:00/T08:00"]</pre>
amzn_xts_9 <- amzn_xts["T08:00/T09:00"]
amzn_xts_10 <- amzn_xts["T09:00/T10:00"]
amzn_xts_11 <- amzn_xts["T10:00/T11:00"]
amzn_xts_12 <- amzn_xts["T11:00/T12:00"]
amzn_xts_13 <- amzn_xts["T12:00/T13:00"]
amzn_xts_14 <- amzn_xts["T13:00/T14:00"]
amzn_xts_15 <- amzn_xts["T14:00/T15:00"]
amzn_xts_16 <- amzn_xts["T15:00/T16:00"]
```

```
amzn_xts_17 <- amzn_xts["T16:00/T17:00"]
amzn_xts_18 <- amzn_xts["T17:00/T18:00"]
amzn_xts_19 <- amzn_xts["T18:00/T19:00"]</pre>
amzn_xts_20 <- amzn_xts["T19:00/T20:00"]
amzn_xts_21 <- amzn_xts["T20:00/T21:00"]</pre>
amzn_xts_22 <- amzn_xts["T21:00/T22:00"]
amzn_xts_23 <- amzn_xts["T22:00/T23:00"]
amzn xts 24 <- amzn xts["T23:00/T23:59:59"]
# head(amzn xts 1)
# head(amzn_xts_24)
## Calculate liquidity measures for each subset.
liquidity_1 <- getLiquidityMeasures(amzn_xts_1)</pre>
liquidity_2 <- getLiquidityMeasures(amzn_xts_2)</pre>
liquidity_3 <- getLiquidityMeasures(amzn_xts_3)</pre>
liquidity_4 <- getLiquidityMeasures(amzn_xts_4)</pre>
liquidity_5 <- getLiquidityMeasures(amzn_xts_5)</pre>
liquidity_6 <- getLiquidityMeasures(amzn_xts_6)</pre>
liquidity_7 <- getLiquidityMeasures(amzn_xts_7)</pre>
liquidity_8 <- getLiquidityMeasures(amzn_xts_8)</pre>
liquidity_9 <- getLiquidityMeasures(amzn_xts_9)</pre>
liquidity_10 <- getLiquidityMeasures(amzn_xts_10)</pre>
liquidity_11 <- getLiquidityMeasures(amzn_xts_11)</pre>
liquidity_12 <- getLiquidityMeasures(amzn_xts_12)</pre>
liquidity_13 <- getLiquidityMeasures(amzn_xts_13)</pre>
liquidity_14 <- getLiquidityMeasures(amzn_xts_14)</pre>
liquidity 15 <- getLiquidityMeasures(amzn xts 15)</pre>
liquidity_16 <- getLiquidityMeasures(amzn_xts_16)</pre>
liquidity_17 <- getLiquidityMeasures(amzn_xts_17)</pre>
liquidity_18 <- getLiquidityMeasures(amzn_xts_18)</pre>
liquidity_19 <- getLiquidityMeasures(amzn_xts_19)</pre>
liquidity_20 <- getLiquidityMeasures(amzn_xts_20)</pre>
liquidity_21 <- getLiquidityMeasures(amzn_xts_21)</pre>
liquidity_22 <- getLiquidityMeasures(amzn_xts_22)</pre>
liquidity_23 <- getLiquidityMeasures(amzn_xts_23)</pre>
liquidity_24 <- getLiquidityMeasures(amzn_xts_24)</pre>
# # Initialize an empty list to store the liquidity measures.
# liquidity_measures_list <- list()</pre>
# # Loop through 24 subsets,
# for (i in 1:24) {
      # Construct the variable name for each amzn_xts_*
        xts var name <- paste("amzn xts ", i, sep = "")</pre>
#
#
        # Use qet() to retrieve the xts object and calculate the liquidity measures.
        liquidity\_measures\_list[[paste("liquidity\_", i, sep = "")]] < - getLiquidityMeasures(get(xts\_var\_nam, sep = "")] < - getLiquidityMeasures(get(xts\_var\_nam, sep = "")] < - getLiquidityMeasures(get(xts\_var\_nam, sep = "")] < - getLiquidityMeasures(get(xts\_var\_nam, s
#
# }
```

Quoted Spread Calculation Calculated quoted spread for each hour.

```
## Calculate Quoted Spread for each bucket.
# Initialize an empty vector to store the quoted spread means.
quoted_spread_hr <- numeric(24)</pre>
# Loop through 24 hours.
for (i in 1:24) {
  # Construct the variable name as a string.
 var_name <- paste("liquidity_", i, sep = "")</pre>
  # Use get() to retrieve the dataframe and calculate the mean quoted spread.
  quoted_spread_hr[i] <- mean(as.numeric(get(var_name)$quotedSpread), na.rm = TRUE)</pre>
quoted_spread_hr
   [1] 0.04068116
                           NaN
                                       NaN
                                                   \mathtt{NaN}
   [7]
               {\tt NaN}
                           NaN 0.13031746 0.15699330 0.09759420 0.08401734
## [13] 0.06786622 0.05894439 0.01794931 0.01295927 0.01043155 0.01019991
## [19] 0.01184737 0.01382093 0.01064357 0.03497011 0.05088099 0.08928669
```

Quoted Spread Plotting Plot quoted spread for each hour.

Quoted Spread

Effective Spread Calculation Calculated effective spread for each hour.

```
## Calculate Effective Spread for each bucket.
# Initialize an empty vector to store the effective spread means.
effective_spread_hr <- numeric(24)</pre>
# Loop through 24 hours.
for (i in 1:24) {
  # Construct the variable name as a string.
  var_name <- paste("liquidity_", i, sep = "")</pre>
  # Use qet() to retrieve the dataframe and calculate the mean quoted spread.
  effective_spread_hr[i] <- mean(as.numeric(get(var_name) $effectiveSpread), na.rm = TRUE)
effective_spread_hr
##
   [1] 0.033885700
                              \mathtt{NaN}
                                          {\tt NaN}
                                                       \mathtt{NaN}
                                                                    {\tt NaN}
                                                                                 NaN
   [7]
                 NaN
                              NaN 0.147142857 0.120477387 0.053159420 0.058468208
## [13] 0.083390050 0.058367702 0.135155833 0.011162538 0.008454183 0.007855181
## [19] 0.009078966 0.011062543 0.008486380 0.027158412 0.033240495 0.071242091
```

Effective Spread Plotting Plot quoted spread for each hour.

Effective Spread

Volatility Estimate

The following section estimates the volatility using various methods.

```
prices <- as.numeric(amzn_xts$Price)

# Calculate price differences.
price_difference <- diff(prices)

# Display autocorrelation of price differences.
covpr <- acf(price_difference, lag.max=20, type="correlation", plot=FALSE)

plot(covpr, col="purple", ylim = c(-0.05,1), main = "Autocorrelation of Price Changes")</pre>
```

Autocorrelation of Price Changes

Roll Model Estimate

```
## Calculate parameters and estimates for Roll's Model.
covpr <- acf(price_difference, lag.max=20, type="covariance", plot=FALSE)
gamma0 <- sd(price_difference)^2
gamma0

## [1] 0.005261148
gamma1 <- covpr$acf[2]
gamma1

## [1] -0.00224291
cparam <- sqrt(-covpr$acf[2])
cparam

## [1] 0.04735937
sig2u <- gamma0 + 2*gamma1
sigu <- sqrt(sig2u)
sigu
## [1] 0.02784472</pre>
```

```
# Retrieve trade signs.
trade_signs <- getTradeDirection(amzn_xts)
acf_TS <- acf(trade_signs, main="ACF Trade Signs")</pre>
```

ACF Trade Signs

Improved Roll Model Estimate

```
trade_signs_diff <- diff(trade_signs)
mid_diff <- diff(mids)
fit_lm <- lm(price_difference ~ mid_diff + trade_signs_diff)
fit_lm$coeff[3]
## trade_signs_diff
## 0.00953869

realized_var <- function(q)
{
    rCov(diff(prices, lag = q, differences = 1)) / q
}
realized_var_df <- NULL
for(q in 1:200)</pre>
```

```
{
  realized_var_df <- c(realized_var_df, realized_var(q))</pre>
}
trades_per_five <- num_of_trades * 5 / 1440</pre>
realized_var_five <- realized_var(trades_per_five)</pre>
realized_var_five
Signature Plot
## [1] 11.41892
{\it \# Realized volatility sampling trades per five minutes}.
sqrt(realized_var_five)
## [1] 3.379189
\verb|realized_volatility_roll <- sig2u * num_of_trades|\\
realized_volatility_roll
## [1] 446.3821
sqrt(realized_volatility_roll)
## [1] 21.12776
plot(realized_var_df, type ="l", main="Signature Plot for Prices & Roll")
abline(h = realized_var_five,col="purple")
abline(h = realized_volatility_roll,col="orange")
```

Signature Plot for Prices & Roll

PIN (Probability of Informed Trading)

Compute the Probability of Informed Trading (PIN) based on this formula:

$$PIN = \frac{\alpha\mu}{\alpha\mu + \epsilon_B + \epsilon_S}$$

```
## [1] 2 3 4 5 6 7
buy_trades_df <- data.frame(</pre>
  BuyIndex <- buy_side,</pre>
  BuyPrice <- amzn_xts$Price[buy_side]</pre>
head(buy_trades_df)
##
                         BuyIndex....buy_side
                                                   Price
## X2000.01.01.00.00.06
                                              2 86.65000
## X2000.01.01.00.00.08
                                              3 86.65000
## X2000.01.01.00.00.11
                                              4 86.65000
## X2000.01.01.00.00.15
                                              5 86.65000
## X2000.01.01.00.00.16
                                              6 86.65000
## X2000.01.01.00.00.21
                                              7 86.68000
sell_side <- which(trade_direction < 0)</pre>
head(sell_side)
## [1] 1 9 11 12 13 14
sell_trades_df <- data.frame(</pre>
  SellIndex <- sell_side,</pre>
  SellPrice <- amzn_xts$Price[sell_side]</pre>
)
head(sell_trades_df)
##
                           SellIndex....sell_side
                                                       Price
## X2000.01.01.00.00.03
                                                  1 86.65000
## X2000.01.01.00.00.22
                                                  9 86.65000
## X2000.01.01.00.00.25
                                                 11 86.65000
## X2000.01.01.00.00.25.1
                                                 12 86.65000
## X2000.01.01.00.00.27
                                                 13 86.60000
## X2000.01.01.00.00.27.1
                                                 14 86.65000
num_buy_side <- length(matrix(buy_side))</pre>
num_buy_side
## [1] 305231
num_sell_side <- length(trade_direction) - length(matrix(buy_side))</pre>
num_sell_side
## [1] 270502
num_of_trades <- cbind(num_buy_side, num_sell_side)</pre>
num_of_trades
        num_buy_side num_sell_side
## [1,]
               305231
                              270502
\# EHO_out <- EHO(as.numeric(buy_trades_df$Price), as.numeric(sell_trades_df$Price))
```

```
\# model <- optim(initial_param, EHO_out, gr = NULL, method = c("Nelder-Mead"), hessian = FALSE)
pin_likelihood <- function(params)</pre>
    epsilon <- params[1]</pre>
    mu <- params[2]</pre>
    alpha <- params[3]</pre>
    delta <- params[4]</pre>
    lambda_b <- alpha * mu + epsilon</pre>
    lambda_s <- (1 - alpha) * mu + epsilon</pre>
    # Calculating the Poisson probabilities
    L_b <- dpois(num_of_trades[,1], lambda_b)</pre>
    L_s <- dpois(num_of_trades[,2], lambda_s)</pre>
    # To avoid log(0), we add a small number
    L \leftarrow L_b * L_s + 1e-10
    # Negative log-likelihood
    result <- -sum(log(L))
    return(result)
}
initial_params \leftarrow c(0.5, 0.5, 0.5, 0.5)
result <- optim(initial_params, pin_likelihood, method = "L-BFGS-B",
                  lower = c(0,0,0,0), upper = c(1,1,Inf,Inf))
optim_params <- result$par</pre>
alpha_hat <- optim_params[3]</pre>
mu_hat <- optim_params[2]</pre>
epsilon_hat <- optim_params[1]</pre>
pin <- (alpha_hat * mu_hat) / (alpha_hat * mu_hat + 2 * epsilon_hat)</pre>
pin
```

[1] 0.2