Detection Circuit

Raw log from measurement

Chip 1 - 2021

Tapeout 1

Fig 11: a) Chip layout in the simulator b) Die photo

Bonding diagram

Fig 12: 40 pin CLCC package for the first iteration, design the frame for package and pinout

PCB Design

Fig 13: PCB design for test chip in EAGLE a) Schematic b) Board layout c) Fabricated board

Tunable current with External Vref sweep

External averaging

Try Averegaing it nois	e if is the limiting factor							
Chip 6	TS_sw1; Resistance							
All OUTP	All Out N	Threshold	Averaging	RSCA	TP_SW			
5.73E-01	1 4.20E-01	4.97E-01	16	No inserted	6V			
Not inserted								
All P	All N				chip 6, thre	shold based	on 1000 sam	ples
594	424	509		Safe				
Inserted						ideal thresh	old	50
588	422	505		Attacked				
579	425	502						
Inserted				Safe				
OutP	OutN	Total	TP	OutP	OutN	Total	TN	
51	1 48	99	51.51515152	48	51	99	51.51515	
503	497	1000	50.3	497	503	1000	50.3	

RSCA	20											
CLK	2.00E+05											
Chip	Iforce	All P	All N	Difference	Rsca		All P	All N	Difference	Rsca		
	1 0	466	454	12	Not inserted		46	7 45	7 10	Inserted		
	1E-6	486	334	152			50	0 33	5 165			
	4.00E-04	111										
RSCA	1											
CLK	2.00E+05											
	Iforce	All P	All N	Difference	Rsca		All P	All N	Difference	Rsca		
	0				Not inserted		46			Inserted		
	1.00E-04						50					
	2.00E-04						48					
	3.00E-04	393	312				39	6 31	3 83			
	4.00E-04	118	Doesn't Appear									
C	urrent not going	g above 420	uA in SC02									
	NOTE: For Iford	ce as 400 u.	OUTN never appear	rs across the ti	hreoshol from 0.1 to 0	TP stops below 110 and is a	II OUTP by	118mV. Ther	e is a range to	increase Ifc	orce to get outpu	t from compara
RSCA	18											
CLK	2.00E+05											
	Iforce	All P	All N	Difference	Rsca		All P	All N	Difference	Rsca		
	0	466	459	7	Not Inserted		46	5 45	9 6	Inserted		
	1.00E-04	475	348	127			47	7 34	9 128			
	2.00E-04	450	340	110			45	1 34	111			
	3.00E-04	375	316	59			37	5 31	59			
					the 1Meg resistor, th							
OTA	gets saturated	after ampli	fying the signal. Ide	ad current flo	owing in 1MEG is 1uA	By10 multiplication form th	e array					

						1					
						200	1451	200			
R @VINSC		Rsca	Normal mode	operation	Current	RSCA	VCM	RSCA			
2.2	1.1(Min)	1.1(Min)			600uA	Not inserted	500	Inserted			
All P	All N	Threshold	Difference					All P	All N	Threshold	Difference
499	489.5	494.25	9.5					498	489	493.5	9
R @VINSC		Rsca	Normal mode	operation	Current	RSCA	VCM	RSCA			
2.2	1.1(Min)	1.1(Min)			700uA	Not inserted	500	Inserted			
All P	All N	Threshold	Difference					All P	All N	Threshold	Difference
499	490.5	494.75	8.5					498.5	491.5	495	7
		arator perforr		(No current	t pulled from	battery)					
All P	All N	Threshold	Difference								
498.5	489.5	494	9								
Now trying	increasing	he resistance	to increase sign	nal level to pe	erturb the co	omparator					
R @VINSC	Rs	Rsca	Normal mode	operation	Current	RSCA	VCM	RSCA			
-	1.1(Min)	10			200uA	Not inserted	500	Inserted			
All P	All N	Threshold	Difference								
185.1	178.8	181.95	6.3								
R @VINSC	Rs	Rsca	Normal mode	operation	Current	RSCA	VCM	RSCA			
19.74	1.1(Min)	18.6(Max)			200uA	Not inserted	500	Inserted			
All P	All N	Threshold	Difference								
CHILL C	200 134	intestiold	Difference								

Chip 2								Chip 7			
Rsca	Resistance seen by Vinsc	Min achievable resistance on this board	Resistance in safe configuration	Drop	of 2mV across Resistor	s when switch t	oggles ON/OFF	Rsca	Resistance seen by Vinsc	Min achievable resistance on this board	Resistance in safe configuration
10	11.2	2.2	1.6					10	11.2	2.2	1.6
	All N	Threshold	Difference	Config	200uA			All P	All N	Threshold	Difference
145	138	141.5	7	Safe					138	138	
145	139	142	6					No Result	139	139	
Docrossina	the signal to 30mV - reduce cur	rrent to 100uA		50% duty c	velo			Decreasing the	signal to 30mV - reduce	co current to 100uA	
Decreasing	the signal to some - reduce cu	Hent to 1000A		30% duty C	ycie			Decreasing the	signal to some - reduc	Le current to 1000A	
591	377	484	214		No flippin	e		591	377	484	214
Increasing	the signal to 45 mV - increase cu	rrent to 150uA						Increasing the	signal to 45 mV - increa	ase current to 150uA	
500	348	424	152					453	393	423	60
	170uA							Current	170uA		
348	307	327.5	41					308	298	303	10
c	4004								4004		
Current 288	180uA 276	282	12		1.82mV IR	dran		Current 277	180uA 271	274	6
200	2/0	202	12		1.021111111	агор		211	2/1	2/4	
276	261	268.5	15		@20KHz	1.82mV IR dro	op op	274	265	269.5	g
Current	190uA							Current	190uA		
200	188	194	12		1.91mV IR	drop		194	190	192	4
No flipping	observed for both chips. The o	omparator decid	es faster with igher current(signal) b	out unable to	flip even with 60mV	signal swign at t	he input (Even aft	er increasing and o	ecreasing VCMI by fro	om 400mV to 850mV)
Iforce	Rsca		Gain	Comparato	r output Signal						
1.00E-04		1.00E-04		3.00E-03	- output signal						
7.00E-04				2.31E-02							
2.00E-04				6.00E-02							
2.00E-04				1.24E-01							
5.00E-03				3.00E+00							

Chip 2 - 2022

Tapeout 2

a) SC02 Chip Layout

b) Die photo

Fig 16: Second tapeout with corrections, design U-frame

PCB plan - 2

Fig 17: PCB for second chip a) Schematic b) Board layout c) Fabricated PCB

Textmode setup

ode Definiti	on																S1	Connected	to Cs(PHI1ORF	PHI2 switc
b2	b1	b0) Tes	tmode AMU	UX1	AMUX2	Condition				Goal						S2	Connected	d to Vcm	
	0	0	0 TM	0 NC		NC	Normal Operation	of the circu	it		Normal O	eration					S3	Switch in f	eedback	
	0	0	1 TM	1 VOU	JT_OTA	VC2	S1,S2 = OPEN; S3=	OPEN			IN and OU	T of OTA acc	essible, feed	back on PCE	to test para	ameters	NC	Not Conne	ected	
	0	1	0 TM	2 VOU	JT_OTA	rdy_interna	S1=OPEN; S2=S3=0	CLOSE			Vout_OTA	accessible, V	thresh acce	ssible; Test	Comparator	, Vout_OTA shorts to Vx and VCMI				
	0	1	1 TM	3 VOU	JT_OTA	fast	S1=OPEN; S2=S3=0	CLOSE			Feed Vout	OTA from e	xternal sour	ce to set the	e fast thresh	old. OTA is shorted. Vout_OTA shorts to Vx and VC	MI.			
	1	0	0 TM	4 NC		fast	Normal operation	for all switc	hes		Normal O	eration; obs	erve fast							
	1	0	1 TM	5 NC		fast ext	Normal operation	for all switc	hes		Add a 2-1	MUX selectin	g between f	ast extand	fast to be t	he "fast" for DDNR. TM5 is the "sel".				
							·						Ĭ							
																	_			
						TM	Delta Modulation	VCNAL	Virtual Ground	Feedback										
						IIVI														
							S1	S2	S3	S4										
						TM0		-				: normal o	peration							
								OPEN	CLOSE	OPEN										
								CLOSE	CLOSE	CLOSE										
							OPEN	CLOSE	CLOSE	CLOSE										
						TM4	-		-											
						TM5		-		-										
May Chip 7																				

Testmode Check

Initial board setup

Chip 7										
Resitance	from VINSC	to TP1	resistors se	t to minimu	ım		Battery Cur	rent		
TP_SW	ON(3.3V)	3.5 Ohm				CLK	3.3	100u	Setting	initial state for
TP_SW	OFF(1V)	2.5 Ohm				CLK	0	3nA	the boa	ard with chip 7
						CLK@ 50%		48.5uA		

OTA Testing

Chip 7	UG Tracking		Trying wit	h a gain of 2		AMUX1	Vout OTA		
	NO: Not W	orking				Rf	220K		
						Ri	100K		
Chip 5	In a range from 0 to abou	t 380mV; the output	For VCMI a	at 300mV(within	ICMR)	Inverting gain	2.2		
	terminal doesn't tra	ck VCMI and the							
	difference starts increasing	ng. Max value of Vout				Vim =250m	50mV*2.2=110mV		
	OTA at VMCI of 950m	nV is 480mV: Not				Vip=300m			
	Worki	ng				gain=2.2			
						Expected output = 190mV			
el I. e	UC Totalda a							Т	
Chip 6	UG Tracking			***					
	The negative terminal is s	aturated at 1V, the meet a	t 1V for VCMI: Not	Working					
	Coin of 2 - ICNAP at 4	V - at an auch an ac for an	in of the co						
	Gain of 2 : ICMR rage at 1	V, not enough space for ga	in of two						
Chip 4	UG Functionality		Gain of 2		Chip 3	UG Functionality			
	Behaviour similar to ch	nip 5; ICMR starts	Vim =250n	rnV*2.2=110mV					
	dviating at 350mV	and then the	Vip=300m						
	distance inc	reases.	gain=2.2			The negative terminal	is saturated at 1V, the m	eet at 1V for VCMI: N	ot Workin
			Expected o	utput = 190mV					
						Gain of 2: ICMR rage	at 1V, not enough space f	or gain of two	
	The outp	out shorts to VMCI and trac	ks it till 750						-
	where it st	arts to deviate. Gain of two	not observed						
		as expected.							

Simulation Results

VDD	Varia	tion a	and A	ccurac	:y	Vth = 496.	1		
598 Samp	les					Normalize	d 598		
	VDD	TP	FP	FN	TN	TP	FP	FN	TN
	1.5	582	16	25	573	97.65886	29 2.341137	4.180602	95.8194
	2	584	14	23	575	97.32441	47 2.675585	3.846154	96.15385
	2.5	582	16	18	580	97.32441	47 2.675585	3.010033	96.98997
	3	582	16	15	583	96.48829	43 3.511706	2.508361	97.49164
	3.5	577	21	13	585	96.48829	43 3.511706	2.173913	97.82609

Rmin vs Sigma Analysis with different averaging techniques

Sigma with DDNR

Rsns(mOhm)	OUTP	RDY_int	DDNR N=5 Re	esults				DDNR N=5	Sigma = 158.16
100	214	202	Rsns(mOhm)	DETOUT	RDYOUT	TP	FP	Rsns(mOhm)	DDNR N=5
150	209	202	100	1	192		0.52083333	100	0.52083333
200	206	202	150	2	178		1.12359551	150	1.12359551
250	193	202	200	2	163		1.22699387	200	1.22699387
300	180	202	250	9	147		6.12244898	250	6.12244898
350	164	202	300	15	138		10.8695652	300	10.8695652
400	138	202	350	20	116		17.2413793	350	17.2413793
450	119	202	400	41	118		34.7457627	400	34.7457627
500	105	202	450	59	118		50	450	50
550	88	202	500	65	117	55.555556		500	55.555556
600	67	202	550	85	125	68		550	68
650	53	202	600	94	120	78.3333333		600	78.3333333
700	47	202	650	121	145	83.4482759		650	83.4482759
750	35	202	700	137	152	90.1315789		700	90.1315789
800	30	202	750	147	157	93.6305732		750	93.6305732
900	19	202	800	156	161	96.8944099		800	96.8944099
			900	175	177	98.8700565		900	98.8700565

Majority Voting

Majority Voti	ing N=16				NO MV					1	MV N=16 Res	sults	
Rsns(mOhm)	RDYOUT	DETOUT	TP	FP	Rsns(mOhm)	OUTP	RDY_int	TP	FP	1	Rsns(mOhm)	MV N=16	NO MV
100	122	1		0.81967213	100	1	202		0.4950495		100	0.81967213	0.4950495
150	72	0		0	150	6	202		2.97029703		150	0	2.97029703
200	72	0		0	200	9	202		4.45544554		200	0	4.45544554
250	53	3		5.66037736	250	22	202		10.8910891		250	5.66037736	10.8910891
300	57	5		8.77192982	300	36	202		17.8217822		300	8.77192982	17.8217822
350	39	5		12.8205128	350	52	202		25.7425743		350	12.8205128	25.7425743
400	40	11		27.5	400	78	202		38.6138614		400	27.5	38.6138614
450	44	19		43.1818182	450	97	202		48.019802		450	43.1818182	48.019802
500	54	28	51.8518519		500	111	202	54.950495			500	51.8518519	54.950495
550	56	42	75		550	128	202	63.3663366			550	75	63.3663366
600	40	30	75		600	149	202	73.7623762			600	75	73.7623762
650	56	48	85.7142857		650	163	202	80.6930693			650	85.7142857	80.6930693
700	72	65	90.2777778		700	169	202	83.6633663			700	90.2777778	83.6633663
750	72	68	94.444444		750	181	202	89.6039604			750	94.444444	89.6039604
800	104	99	95.1923077		800	186	202	92.0792079			800	95.1923077	92.0792079
900	99	98	98.989899		900	197	202	97.5247525			900	98.989899	97.5247525

Rmin vs Sigma with different techniques

DDNR N=5					DDNR Result	s		MV N=9					MV N=9 Resu	ilts	
Rsense	RDYOUT	DETOUT	TP	FP	Rsense	N=5	No. DDNR	Rsense	RDYOUT	DETOUT	TP	FP	Rsense	N=9	No. MV
100	191	1		0.52356021	100	0.52356021	0.49751244	100	250	2		0.8	100	0.8	3.46820809
150	177	2		1.1299435	150	1.1299435	2.98507463	150	207	4		1.93236715	150	1.93236715	6.06936416
200	162	2		1.2345679	200	1.2345679	4.47761194	200	162	4		2.4691358	200	2.4691358	9.8265896
250	146	9		6.16438356	250	6.16438356	10.9452736	250	168	18		10.7142857	250	10.7142857	15.8959538
300	137	15		10.9489051	300	10.9489051	17.9104478	300	165	26		15.7575758	300	15.7575758	22.2543353
350	116	20		17.2413793	350	17.2413793	25.8706468	350	106	31		29.245283	350	29.245283	31.7919075
400	118	41		34.7457627	400	34.7457627	38.3084577	400	107	43		40.1869159	400	40.1869159	40.4624277
450	117	58		49.5726496	450	49.5726496	47.761194	450	123	63		51.2195122	450	51.2195122	51.1560694
500	116	64	55.1724138		500	55.1724138	54.7263682	500	130	82	63.0769231		500	63.0769231	59.2485549
550	124	84	67.7419355		550	67.7419355	63.1840796	550	122	96	78.6885246		550	78.6885246	69.6531792
600	119	93	78.1512605		600	78.1512605	73.6318408	600	130	115	88.4615385		600	88.4615385	76.300578
650	144	120	83.3333333		650	83.3333333	80.5970149	650	140	133	95		650	95	84.1040462
700	151	136	90.0662252		700	90.0662252	83.5820896	700	164	161	98.1707317		700	98.1707317	91.0404624
750	156	146	93.5897436		750	93.5897436	89.5522388	750	194	188	96.9072165		750	96.9072165	93.6416185
800	160	155	96.875		800	96.875	92.039801	800	230	226	98.2608696		800	98.2608696	96.2427746
900	176	174	98.8636364		900	98.8636364	97.5124378	900	321	319	99.376947		900	99.376947	98.5549133

Rsense	RDY_int	POSEDG	E TP	FP	Rmin	RDYOUT	DETOUT	Confidence	Rsense	RDY_int	POSE	DGE TP	FP	Rmin	RDYOUT	DETOUT	Confidence
10	00 2	01	1	0.49751244	750	157	147	93.6305732	100	34	16	12	3.46820809	600	116	97	83.6206897
1	50 2	01	6	2.98507463	760	158	151	95.5696203	150	34	16	21	6.06936416	610	130	109	83.8461538
2	00 2	01	9	4.47761194	770	158	152	96.2025316	200	34	16	34	9.8265896	620	138	121	87.6811594
2	50 2	01	22	10.9452736	780	159	153	96.2264151	250	34	16	55	15.8959538	630	128	115	89.84375
3	00 2	01	36	17.9104478	790	157	152	96.8152866	300	34	16	77	22.2543353	640	120	113	94.1666667
3.	50 2	01	52	25.8706468	800	161	156	96.8944099	350	34	16	110	31.7919075	650	128	119	92.96875
4	00 2	01	77	38.3084577	'				400	34	16	140	40.4624277				
4.	50 2	01	96	47.761194					450	34	16	177	51.1560694				
5	00 2	01	110 54.726368	2		RDYOUT	DETOUT	Confidence	500	34	16	205 59.248554	9	Rmin_fine	RDYOUT	DETOUT	Confidence
		01	127 63.184079	6	755	152	145	95.3947368	550			241 69.653179		631	120		91.6666667
		01	148 73.631840	8	756			94.8051948	600			264 76.30057	3	632			93.333333
		01	162 80.597014		757			94.3396226	650			291 84.104046		633			
		01	168 83.582089	6	758			94.8717949	700	34	16	315 91.040462	1	634			
		01	180 89.552238		759	159	150	94.3396226	750			324 93.641618		635			
8	00 2	01	185 92.03980	1					800	34	16	333 96.242774	5	636	136		91.9117647
9	00 2	01	196 97.512437	8					900	34	16	341 98.554913	3	637			91.9117647
					Without Avg	ng								638			
					Rmin	POSEDGE	RDY_int	Confidence 90%						639	128	117	91.40625
					750	184	201	91.5422886									
					760	186	201	92.5373134									
					770	187	201	93.0348259									
					780	188	201	93.5323383									
					790	189	201	94.0298507									
					800	190	201	94.5273632									

Rsense	RDYOUT	DETOUT	TP	FP	Rsense	RDYOUT	DETOUT	TP	FP	Sigma
100	95	1		1.05263158	100	167	1		0.5988024	124.15
		_								
150	79	3		3.79746835	150	159	2		1.25786164	
200	73	4		5.47945205	200	149	5		3.3557047	
250	55	7		12.7272727	250	141	6		4.25531915	
300	46	10		21.7391304	300	129	15		11.627907	
350	40	22	55		350	113	20		17.699115	
400	48	31	64.5833333		400	104	24		23.0769231	
450	41	36	87.804878		450	101	46		45.5445545	
500	49	46	93.877551		500	106	64	60.3773585		
550	73	71	97.260274		550	105	76	72.3809524		
600	88	87	98.8636364		600	112	93	83.0357143		
650	112	112	100		650	112	103	91.9642857		
700	132	131	99.2424242		700	134	128	95.5223881		
750	147	147	100		750	144	142	98.6111111		
800	163	163	100		800	154	152	98.7012987		
900	175	175	100		900	170	169	99.4117647		

Rsense	RDY_int	POSEDGE	TP	FP	DA	Rsense	RDYOUT	DETOUT	TP	FP	DA	Sigma with MV3	125.71
100	183	4		2.18579235	2.18579235	100	165	1		0.60606061	0.60606061	SIgma No Avg	161.34
150	183	5		2.73224044	2.73224044	150	155	2		1.29032258	1.29032258		
200	183	11		6.01092896	6.01092896	200	143	6		4.1958042	4.1958042		
250	183	23		12.568306	12.568306	250	137	10		7.29927007	7.29927007		
300	183	35		19.1256831	19.1256831	300	121	17		14.0495868	14.0495868		
350	183	50		27.3224044	27.3224044	350	109	26		23.853211	23.853211		
400	183	70		38.2513661	38.2513661	400	105	39		37.1428571	37.1428571		
450	183	91		49.726776	49.726776	450	95	53	55.7894737		55.7894737		
500	183	116	63.3879781		63.3879781	500	102	71	69.6078431		69.6078431		
550	183	135	73.7704918		73.7704918	550	107	86	80.3738318		80.3738318		
600	183	152	83.0601093		83.0601093	600	114	101	88.5964912		88.5964912		
650	183	165	90.1639344		90.1639344	650	124	118	95.1612903		95.1612903		
700	183	173	94.5355191		94.5355191	700	136	132	97.0588235		97.0588235		
750	183	178	97.2677596		97.2677596	750	152	150	98.6842105		98.6842105		
800	183	179	97.8142077		97.8142077	800	158	157	99.3670886		99.3670886		
900	183	183	100		100	900	172	172	100		100		

MV5							NoAvging					
Rsense	RDYOUT	DETOUT	TP	FP	DA	RDY_int	POSEDGE	TP	FP	DA	Sigma MV5	149.52
100	286	3		1.04895105	1.04895105	346	8		2.31213873	2.31213873	Sigma No Av	211.51
150	266	4		1.5037594	1.5037594	346	16		4.62427746	4.62427746		
200	234	8		3.41880342	3.41880342	346	31		8.95953757	8.95953757		
250	215	15		6.97674419	6.97674419	346	52		15.0289017	15.0289017		
300	204	26		12.745098	12.745098	346	70		20.2312139	20.2312139		
350	192	40		20.8333333	20.8333333	346	99		28.6127168	28.6127168		
400	183	64		34.9726776	34.9726776	346	127		36.7052023	36.7052023		
450	151	65		43.0463576	43.0463576	346	158		45.6647399	45.6647399		
500	158	91	57.5949367		57.5949367	346	199	57.5144509		57.5144509		
550	162	117	72.222222		72.222222	346	226	65.3179191		65.3179191		
600	186	152	81.7204301		81.7204301	346	265	76.5895954		76.5895954		
650	210	182	86.6666667		86.6666667	346	275	79.4797688		79.4797688		
700	226	211	93.3628319		93.3628319	346	296	85.5491329		85.5491329		
750	232	226	97.4137931		97.4137931	346	317	91.6184971		91.6184971		
800	260	253	97.3076923		97.3076923	346	326	94.2196532		94.2196532		
900	286	286	100		100	346	341	98.5549133		98.5549133		

Rmin	RDYOUT	DETOUT	Confidence 90%
650	210	182	86.6666667
660	198	177	89.3939394
670	210	188	89.5238095
680	206	186	90.2912621
690	210	194	92.3809524
700	226	211	93.3628319
Rmin	680	MV5	

MV N=9					MV N=16 Resu	lts	
Rsense	RDYOUT	DETOUT	TP	FP	Rsense	N=16	No. MV
100	412	7		1.69902913	100	1.69902913	3.9184953
150	316	6		1.89873418	150	1.89873418	6.42633229
200	265	10		3.77358491	200	3.77358491	9.56112853
250	162	8		4.9382716	250	4.9382716	14.7335423
300	159	31		19.4968553	300	19.4968553	21.9435737
350	155	36		23.2258065	350	23.2258065	31.661442
400	124	41		33.0645161	400	33.0645161	40.1253918
450	133	70		52.6315789	450	52.6315789	50
500	150	84	56		500	56	58.1504702
550	134	103	76.8656716		550	76.8656716	67.5548589
600	188	161	85.6382979		600	85.6382979	75.2351097
650	188	168	89.3617021		650	89.3617021	83.2288401
700	205	198	96.5853659		700	96.5853659	89.4984326
750	268	260	97.0149254		750	97.0149254	92.9467085
800	316	310	98.1012658		800	98.1012658	95.6112853
900	478	474	99.1631799		900	99.1631799	98.7460815

Rsense	RDY_int	POSEDGE	TP	FP	Rmin	RDYOUT	DETOUT	Confidence
100	638	25		3.9184953	660	188	169	89.893617
150	638	41		6.42633229	670	172	158	91.8604651
200	638	61		9.56112853	680	189	172	91.005291
250	638	94		14.7335423	690	237	216	91.1392405
300	638	140		21.9435737				
350	638	202		31.661442				
400	638	256		40.1253918	Rmin_fine	RDYOUT	DETOUT	Confidence
450	638	319		50	691	205	193	94.1463415
500	638	371	58.1504702		692	237	219	92.4050633
550	638	431	67.5548589		693	237	218	91.9831224
600	638	480	75.2351097		694	205	196	95.6097561
650	638	531	83.2288401		695	205	196	95.6097561
700	638	571	89.4984326		696	237	225	94.9367089
750	638	593	92.9467085		697	205	196	95.6097561
800	638	610	95.6112853		698	205	197	96.097561
900	638	630	98.7460815		699	205	197	96.097561
				F(a,b)	Confidence	Z	Sigma	Rmin(No Avg)
			1.65	(0.5.0.5)	95%	3.29	208.95	687.4455
			2.33	(0.1,0.1)	99%	4.66	208.95	973.707
				(0.1,0.5)		3.98		831.621
				(0.5,0.1)		3.98		831.621

TT sim	Temp=25	Rs =1ohm	Vthr=496.14m	Samples	24								
Rs	TP	FN	FP	TN	TP	FN	FP	TN					
75	22	2	1	23	91.66666667	8.333333	4.166667	95.83333					
100	22	2	1	23	91.66666667	8.333333	4.166667	95.83333					
150	22	2	1	23	91.66666667	8.333333	4.166667	95.83333					
200	22	2	2	22	91.66666667	8.333333	8.333333	91.66667					
250	23	1	. 3	21	95.83333333	4.166667	12.5	87.5					
300	23	1	3	21	95.83333333	4.166667	12.5	87.5					
350	24	0	4	20	100	0	16.66667	83.33333					
400	24	0	5	19	100	0	20.83333	79.16667					
										100			
Samples	424									100			
Rs	TP	FN	FP	TN	TP	FN	FP	TN	Rs	TN-after	TP-after	TP	TN
75	398	26	21	403	93.86792453	6.132075	4.95283	95.04717	75	74.24	0.95455	0.93868	0.95047
100	401	23	25	399	94.5754717	5.424528	5.896226	94.10377	100	0.7273	0.95455	0.94576	0.94104
150	409	15	42	382	96.46226415	3.537736	9.90566	90.09434	150	0.7121	0.95455	0.96462	0.90094
200	412	12	62	362	97.16981132	2.830189	14.62264	85.37736	200	0.7121	0.95455	0.9717	0.85377
250	416	8	78	346	98.11320755	1.886792	18.39623	81.60377	250	0.6667	0.95455	0.98113	0.81604
300	420	4	98	326	99.05660377	0.943396	23.11321	76.88679	300	0.6364	0.95455	0.99057	0.76887
350	422	2	129	295	99.52830189	0.471698	30.42453	69.57547	350	0.6212	0.9697	0.99528	0.69576
400	422	2	146	278	99.52830189	0.471698	34.43396	65.56604	400	0.6212	0.9697	0.99528	0.65566
450	424	0	167	257	100	0	39.38679	60.61321	450	0.62121	0.9697	1	0.60613
500	424	0	190	234	100	0	44.81132	55.18868	500	0.62121	0.9697	1	0.55189
550	424	0	215	209	100	0	50.70755	49.29245	550	0.59091	0.9697	1	0.49293
600	424	0	228	196	100	0	53.77358	46.22642	600	0.54546	0.9697	1	0.46226
650	424	0	250	174	100	0	58.96226	41.03774	650	0.54546	0.95455	1	0.41038
700	424	0	274	150	100	0	64.62264	35.37736	700	0.51515	0.9697	1	0.35377
750	424	0	297	127	100	0	70.04717	29.95283	750	0.48485	0.9697	1	0.29953
800	424	0	314	110	100	0	74.0566	25.9434	800	0.45455	0.9697	1	0.25943
850	424	0	335	89	100	0	79.00943	20.99057	850	0.42424	0.95455	1	0.20991

	For 95% Confid	ence	
	Rmin(mOhm)		
DDNR N =5	755	159.25	
MV N=9	650	144.08	
MV N=16	694	144.59	
No Avg	751	208.95	
For 90% Confidence			
	R sense (mOhn	Sigma(mOhm	1)
DDNR N =5	700(DDNR5)	159.25	
MV N=9	631	144.08	
MV N=16	670	144.59	
No Avg	750	208.95	
MV5	680	149.52	

Temp Variation

Matirx with	Temperature (Coeffcients inc	cluded for Rs	and Rsns									
Samples	598	Vthresh	495.87	Based on TT	corner 25C								
	Value(Ohm)	TempCO	Source										
Rs	1	0.0001	https://www	.digikey.com/	en/products/fi	ilter/through	-hole-resistors/5	3?s=N4IgTC	BcDallwAID2ALA	tggTgUwM4E	tcAXJTEAXQF	Bg	
Rsns	0.15	0.00393	Source: https	://www.cirris	.com/learning	-center/gene	ral-testing/spec	ial-topics/17	7-temperature-c	oefficient-of-	copper		
										Normalized			
	Temp	TP	FN	FP	TN	mu0(mV)	mu0(sigma)uV	mu1(mV)	mu1(sigma)uV	TP	FP	FN	TN
	-40	555	43	4	594	496.51	460.67	494.23	460.92	92.8093645	7.19063545	0.66889632	99.3311037
	0	553	45	17	581	496.83	484	494.59	485.28	92.4749164	7.52508361	2.84280936	97.1571906
	25	532	66	25	573	497.01	498.32	494.81	500.43	88.9632107	11.0367893	4.18060201	95.819398
	50	506	92	31	567	497.22	512.35	495.06	514.25	84.6153846	15.3846154	5.18394649	94.8160535
	85	440	158	41	557	497.54	535.92	495.46	537.86	73.5785953	26.4214047	6.85618729	93.1438127
	125	376	222	48	550	497.97	559.44	495.99	561.51	62.8762542	37.1237458	8.02675585	91.9732441

Temp		mu0(mV)	mu1(mV)
	-40	496.51	494.23
	0	496.83	494.59
	25	497.01	494.81
	50	497.22	495.06
	85	497.54	495.46
	125	497.97	495.99
Temp		mu0(sigma)u	mu1(sigma)uV
	-40	460.67	460.92
	0	484	485.28
	25	498.32	500.43
	50	512.35	514.25
	85	535.92	537.86
	125	559.44	561.51

After caliberation

Before caliberation

Temp	TP	FP	FN	TN
-40	92.8093645	7.19063545	0.66889632	99.3311037
0	92.4749164	7.52508361	2.84280936	97.1571906
25	88.9632107	11.0367893	4.18060201	95.819398
50	84.6153846	15.3846154	5.18394649	94.8160535
85	73.5785953	26.4214047	6.85618729	93.1438127
125	62.8762542	37.1237458	8.02675585	91.9732441

Through with different techniques

	Throughpu	ıt		
Rsns	DDNR	No DDNR	MV	MV-Always
100	185	202	174	40
150	168	202	150	40
200	142	202	126	40
250	147	202	134	40
300	136	202	114	40
350	114	202	94	40
400	112	202	91	40
450	105	202	93	40
500	106	202	92	40
550	114	202	96	40
600	137	202	118	40
650	144	202	122	40
700	151	202	130	40
750	165	202	150	40
800	187	202	178	40
900	193	202	186	40

Detection Time

	Average Detection Time			
Rsns	DDNR	No DDNR	MV	MV-Alwa
100	1.091892	1	1.16092	5.05
150	1.202381	1	1.346667	5.0
200	1.422535	1	1.603175	5.0
250	1.37415	1	1.507463	5.0
300	1.485294	1	1.77193	5.0
350	1.77193	1	2.148936	5.0
400	1.803571	1	2.21978	5.0
450	1.92381	1	2.172043	5.0
500	1.90566	1	2.195652	5.0
550	1.77193	1	2.104167	5.0
600	1.474453	1	1.711864	5.0
650	1.402778	1	1.655738	5.0
700	1.337748	1	1.553846	5.0
750	1.224242	1	1.346667	5.0
800	1.080214	1	1.134831	5.0
900	1.046632	1	1.086022	5.0
Min	1.046632	5.233161		
Max	1.92381	9.619048		
Rscamin	1.474453	7.372263		

Detection Rate

Thank you!