《电路(慕课版 支持 AR+H5 交互)》习题参考答案

邹建龙 西安交通大学

习题2

- 2.1 非关联参考方向,代表发出功率,实际吸收功率。
- 2.2 (1) 24V 电压源为非关联参考方向,电阻为非关联参考方向,30V 电压源为关联参考方向; (2) 24V 电压源功率为-48W,实际吸收功率,电阻功率为-12W,实际吸收功率,30V 电压源-60V,实际发出功率。
- 2.3 题 2.3 图 (a) 电压控制电流源,输出电流,控制系数单位为 S (西门子); 题 2.3 图 (b) 电流控制电压源,输出电压,控制系数单位为 Ω (欧姆)。
 - 2.4 支路数5条(两个元件串联视为1条支路), 节点数3个, 网孔数3个。
- 2.5 $R_1 与 R_5$ 并联, $R_2 与 R_3$ 并联,两组并联支路串联, R_4 无电流,与其他电阻没有串并联关系。
 - 2.6 支路数9条(将电源与电容串联视为1条支路),节点数5个,网孔数5个。
- 2.7 节点数 4 个, R_5 与 R_6 并联,再与 R_4 串联,再与 R_3 并联,再与 R_2 串联,整体再与 R_1 和 R_7 并联。变形后的简明电路图为

2.8 2.7 小时。

3.1 $i_1+i_s=i_2$ (流入=流出); $i_1+i_s-i_2=0$ 或 $-i_1-i_s+i_2=0$ (代数和等于零)。

3.2
$$i_5 = 1 \text{ A} \circ$$

3.3
$$i_1 = i_2 + i_3 \not\equiv i_1 - i_2 - i_3 = 0; \quad i_3 + 2u + i_s = 0$$

3.4
$$i = -\frac{1}{6} A$$
.

3.5 $u_s + u_2 = u_1$ (顺时针绕向,升压=降压); $-u_s + u_1 - u_2 = 0$ 或 $u_s - u_1 + u_2 = 0$ (代数和等于零)。

3.6
$$u = -50 \text{ V}$$
.

3.7
$$-u_s + u_1 + u_2 = 0$$
; $-u_2 - u_3 - 3i = 0$

3.8
$$U = -1 \text{ V}$$
.

3.9
$$i = \frac{5}{6} \text{ A}$$
.

3.10 电压源发出功率为-360 W; 电流源发出功率为900 W。

3.11
$$u=6 \text{ V}$$
 .

3.12
$$u = \frac{2}{3} \text{ V}$$
.

3.13
$$u_s = -13 \text{ V}$$
, $i_2 = -1.5 \text{ mA}$ \circ

3.14 $R_{\rm T} = R_{\rm a}$ 时测温电路灵敏度最高。

$$4.1 u = 9.6 V$$
.

$$4.2 i = 2A$$
.

4.3
$$i = -\frac{1}{3}A$$

$$4.4 \quad i = 0.5A \\ u = 12V \quad \circ$$

$$4.6 \ \ u = \frac{60}{11} \text{V} \approx 5.455 \text{V}$$

4.7
$$u = 20$$
V, 发出的功率为 -50 W。

$$4.8 i_0 = -4A_{\circ}$$

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)u_{n1} - \left(\frac{1}{R_3} + \frac{1}{R_4}\right)u_{n2} = \frac{u_{s1}}{R_1} + \frac{2i}{R_4}$$

4.9
$$u_{n2} = u_{s2}$$

$$i = \frac{u_{\rm n1} - u_{\rm s1}}{R_{\rm l}}$$

$$4.10i = 1.5A$$

$$u_{\rm n1} = 10$$

$$(1+3)u_{n2} - u_{n1} - 3u_{n4} = i_2$$

$$(4+6)u_{n3}-6u_{n1}=-2\times 6-i_2+6$$

4.11
$$(3+5)u_{n4} - 3u_{n2} = 2u_1$$

$$u_{n2} - u_{n3} = 3i_1$$

$$i_1 = 5u_{\rm n4}$$

$$u_{\rm n1} - 2 - u_{\rm n3} = u_{\rm 1}$$

$$(R_1 + R_2)i_1 - R_2i_2 = u_{s1} - u_{s3}$$

$$-R_2 i_1 + (R_2 + R_3) i_2 - R_3 i_3 = -u_{s2}$$

$$-R_3 i_2 + (R_3 + R_4) i_3 = u_{s3}$$

4.14
$$i = 1 \,\mathrm{A}_{\circ}$$

$$4.15 \ u = 88 \ V \ \circ$$

4.16
$$p = -672 \text{ W}$$
, 实际吸收功率。

5.1 u = 20 V.

5.2 i = -0.4 A.

5.3 $u = -1V_{\circ}$

5.4 u = 6 V.

5.5 i = 5 A.

5.6 $u_{\rm oc} = 18 \, \text{V}$, $R_{\rm eq} = 3 \, \Omega$.

5.7 $u_{\rm oc} = 15 \, \rm V$, $R_{\rm eq} = 7.5 \, \Omega$

5.8 $u_{oc} = 0 \text{ V}$, $R_{eq} = 8 \Omega$

5.9 $u_{\rm oc} = -14 \, \text{V}$, $R_{\rm eq} = -2.6 \, \Omega$

5.10 可变电阻可获得的最大功率为3W。

5.11 $R=6\Omega$ 时可获最大功率,最大功率为6W。

5.12 有戴维南等效电路, $u_{\rm oc}\!=\!-2\,{
m V}$, $R_{\rm eq}\!=\!0\,\Omega$ 。无诺顿等效电路。

5.13 $R = \frac{2}{3} k\Omega$ 时可获最大功率,最大功率为 $\frac{2}{3}$ mW。

5.14 $R=1 \,\mathrm{k}\Omega$.

 $5.15 u = 1.25 V_{\circ}$

 $5.16 \ u = 24 V_{\circ}$

5.17 i = -1A

5.18 $i = -\frac{2}{3}A$.

$$5.20 R = 2\Omega$$
.

$$5.21$$
 $i = 2.5$ A或3.5A

$$_{5.22}$$
 $R=22.5\Omega$ $_{\circ}$

6.1
$$i_C(t) = -0.06e^{-300t} A$$
.

6.2
$$C_{eq} = 2 \text{ F}$$
.

6.3
$$u_C(t) = -19 + 20e^{-1000t} \text{ V}$$
.

6.4
$$u_L(t) = 0.2e^{-1000t} \text{ V}$$

6.5
$$L_{\rm eq} = 5.636 \, \mathrm{H} \, \circ$$

6.6
$$i_L(t) = 1 + 400t \text{ A}$$

6.7
$$LC \frac{d^2 i_L}{dt^2} + \frac{L}{R} \frac{d i_L}{dt} + i_L = \frac{u_s}{R}$$

*6.8
$$\begin{bmatrix} \frac{\mathrm{d}u_C}{\mathrm{d}t} \\ \frac{\mathrm{d}i_L}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} -\frac{1}{8} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_C \\ i_L \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} u_s$$

$$6.9 \ LC \frac{\mathrm{d}^2 u_{\scriptscriptstyle C}}{\mathrm{d}t^2} + RC (1-\alpha) \frac{\mathrm{d}u_{\scriptscriptstyle C}}{\mathrm{d}t} + u_{\scriptscriptstyle C} = 2L\omega\cos\omega t \ .$$

$$\begin{bmatrix} \frac{\mathrm{d}i_{L_1}}{\mathrm{d}t} \\ \frac{\mathrm{d}i_{L_2}}{\mathrm{d}t} \\ \frac{\mathrm{d}u_{C_1}}{\mathrm{d}t} \\ \frac{\mathrm{d}u_{C_2}}{\mathrm{d}t} \\ \frac{\mathrm{d}u_{C_2}}{\mathrm{d}t} \\ \frac{\mathrm{d}u_{C_3}}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{L_1} & 0 & -\frac{1}{L_1} \\ 0 & -\frac{R_3}{L_2} & 0 & 0 & \frac{1}{L_2} \\ -\frac{1}{C_1} & 0 & -\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_1}\right) & \frac{1}{R_2C_1} & \frac{1}{R_2C_1} \\ 0 & 0 & \frac{1}{R_2C_2} & -\frac{1}{R_2C_2} & -\frac{1}{R_2C_2} \\ \frac{1}{L_2} & -\frac{1}{L_2} & \frac{1}{L_2} \end{bmatrix} \begin{bmatrix} u_{S} \\ u_{C_1} \\ u_{C_2} \\ u_{C_3} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{R_1C_1} & -\frac{1}{C_1} \\ 0 & \frac{1}{L_2} \\ u_{C_3} \end{bmatrix} \begin{bmatrix} u_{S} \\ i_{S} \end{bmatrix}$$

6.11
$$u_C(0_-) = 8 \text{ V}$$
, $i_C(0_-) = 0 \text{ A}$, $u_C(0_+) = 8 \text{ V}$, $i_C(0_+) = \frac{4}{3} \text{ A}$

6.12
$$i_L(0_-) = 2 \text{ A}$$
, $u_L(0_-) = 0 \text{ V}$, $i_L(0_+) = 2 \text{ A}$, $u_L(0_+) = -4 \text{ V}$

6.13
$$u_C(0_+) = 20 \text{ V}$$
, $i_L(0_+) = 0 \text{ A}$, $\frac{\text{d}i_L}{\text{d}t}\Big|_{t=0} = 5 \text{ A/s}$.

6.14
$$\frac{du_C}{dt}\Big|_{t=0_+} = 2 \text{ V/s}, \quad \frac{di_L}{dt}\Big|_{t=0_+} = 160 \text{ A/s}.$$

6.15
$$i_L(0_+) = 3 \text{ A}$$
, $i(0_+) = -1 \text{ A}$.

- 7.1 2302.6 s_o
- 7.2 $R=0\,\Omega$,电感电流充电到 10A 所需要的时间为1 ms , $R=0.5\,\Omega$,电感电流充电到 10A 所需要的时间为1.386 ms 。

7.3
$$u_C(t) = 4e^{-2t} V$$
.

7.4
$$i_{I}(t) = e^{-0.25t} A$$

7.5
$$u_C(t) = 15 - 15e^{-4t} \text{ V} \text{ } \pi i(t) = 11.25 - 3.75e^{-4t} \text{ mA}$$
.

7.6
$$u_C(t) = 8 + e^{-50000t} \text{ V}$$
, $i(t) = 2.4 - 0.15e^{-500t} \text{ A}$.

7.7
$$i(t) = 2 - 2e^{-5000t} A$$
, $i_{L1}(t) = \frac{4}{3} - \frac{4}{3}e^{-5000t} A$, $i_{L2}(t) = \frac{2}{3} - \frac{2}{3}e^{-5000t} A$.

7.8
$$u_C(t) = 8e^{-5 \times 10^8 t} \text{ V}$$
, $i_L(t) = 2 + 2e^{-20t} \text{ A}$, $i(t) = 6 + 4e^{-5 \times 10^8 t} - e^{-20t} \text{ A}$.

7.9
$$u_C(t) = -4 + 4e^{-\frac{2}{3} \times 10^4 t} \text{ V}$$
.

7.10
$$i_L(t) = 3 - 1.125 e^{-\frac{1000}{3}t}$$
 A.

7.11 (1)
$$u_{C1}(t) = -3 + 3e^{-t} V$$
, $u_{C2}(t) = 12 - 12e^{-0.25t} V$;

$$u_{C1}(t) = 3.598 - 5.495e^{-0.5(t-1)} V$$
, $u_{C2}(t) = 5.402 - 2.747e^{-0.5(t-1)} V$

7.12
$$u_C(t) = (0.5 - 0.5e^{-0.1t})\varepsilon(t)V$$
.

7.13
$$i_L(t) = (-\frac{1}{4} + \frac{1}{4}e^{-4t})\varepsilon(t)A$$

7.14
$$u_C = 10e^{-5t} \varepsilon(t) V, u_C(0_+) = 10V$$
.

7.15
$$i_{L}(t) = 2.5[1 - e^{-10^{6}(t-10^{-3})}] \varepsilon(t-10^{-3}) - 2.5[1 - e^{-10^{6}(t-2\times10^{-3})}] \varepsilon(t-2\times10^{-3}) + \\ 2.5[1 - e^{-10^{6}(t-4\times10^{-3})}] \varepsilon(t-4\times10^{-3}) - 2.5[1 - e^{-10^{6}(t-5\times10^{-3})}] \varepsilon(t-5\times10^{-3})$$
 (mA)

7.16
$$i_2(t) = \left(\frac{5}{12} - \frac{1}{6} e^{-10^6 t}\right) \varepsilon(t) \text{ mA}$$
.

7.17 $t \approx 46.05 \text{ms}$.

8.1
$$LC \frac{d^2 i_L}{dt^2} + RC \frac{d i_L}{dt} + i_L = 0$$
.

8.2

$$u_C(t) = -\frac{4}{3}\sqrt{3}e^{-0.5t}\sin\left(\frac{\sqrt{3}}{2}t\right)V$$
, $i_L(t) = e^{-0.5t}\left[2\cos\left(\frac{\sqrt{3}}{2}t\right) - \frac{2}{3}\sqrt{3}\sin\left(\frac{\sqrt{3}}{2}t\right)\right]A$.

8.3 $R = 10 \Omega$ 时二阶电路工作于临界阻尼。绘制三种状态波形省略。

8.4
$$u_C(t) = \frac{200}{3} e^{-10t} - \frac{200}{3} e^{-2.5t} V$$
.

8.5
$$u_C(t) = 6 - e^{-t} [2\cos(2t) + \sin(2t)] V$$
, $i_L(t) = -C \frac{du_C}{dt} = -e^{-t} \sin(2t) A$.

8.6
$$u_C(t) = 8 - 32e^{-3t} + 24e^{-4t} \text{ V}$$
, $i_L(t) = 4 + 8e^{-3t} - 12e^{-4t} \text{ A}$.

8.7
$$L = 24.8 \text{ mH}$$
, $R = 45.448 \Omega$.

9.1 (1) $2\cos(\omega t - 30^{\circ})$ 相位超前 $3\cos(\omega t - 60^{\circ})$ 相位 30 度; (2) $3\cos(\omega t - 60^{\circ})$ 超前 $4\cos(\omega t + 150^{\circ})$ 相位 150 度。

9.2
$$z_1 z_2 = 2 = 2 \angle 0^\circ$$
, $\frac{z_1}{z_2} = j = 1 \angle 90^\circ$.

9.3
$$3\cos(\omega t - 60^{\circ}) = \text{Re} \left[3e^{j(\omega t - 60^{\circ})} \right]$$
.

9.4 $3\cos\omega t + 4\sin\omega t = 5\cos(\omega t - 53.1^{\circ})$

9.5
$$\dot{U}_1 = 5\sqrt{2}\angle 30^{\circ} \text{ V}$$
 , $\dot{U}_2 = 100\angle -90^{\circ} \text{ V}$, $\dot{I}_1 = \sqrt{2}\angle -120^{\circ} \text{ A}$, $\dot{I}_2 = 1.5\sqrt{2}\angle -60^{\circ} \text{ A}$,

9.6 $u = 200\sqrt{2}\cos(100\pi t + 45^{\circ}) \text{ V}$, $i = 4\cos 100\pi t \text{ A}$.

9.7
$$Z_{\text{eq}} = \frac{25}{14} + j \frac{25}{14} \Omega$$
.

9.8
$$Z_{\rm eq} = 3.5 - {\rm j}0.5~\Omega$$
 .

9.9
$$Y_{\text{eq}} = 1.5 \,\text{S}$$
, $Z_{\text{eq}} = \frac{2}{3} \,\Omega$

9.10 (1) $Z_{\rm eq}=0.75-{\rm j}0.125\,\Omega$,为容性阻抗; (2) $Z_{\rm eq}=0.6+{\rm j}0.05\,\Omega$,为感性阻抗。

9.11
$$Z_{\rm eq} = -0.8 - {\rm j}0.6~\Omega$$
 $_{\odot}$

$$10.1 \ \dot{U}_{\scriptscriptstyle C} = 5\sqrt{2} \angle - 45^{\circ} \ {\rm V} \ .$$

10.2
$$\dot{U} = \sqrt{2} \angle -45^{\circ} \text{ V}$$
.

10.3
$$\dot{I} = 10\sqrt{2} \angle 135^{\circ} \text{ A}$$
.

10.4
$$u_C(t) = 10\cos(10t - 15^\circ) \text{ V}$$
.

$$10.5\,\dot{I}_{\scriptscriptstyle C} = 0.67 \angle 7.52^{\circ}\,\mathrm{A}_{\scriptscriptstyle \circ}$$

10.6
$$I = 10\sqrt{2} \text{ A}$$

10.7
$$U_{\rm s} = 30\sqrt{2} \ {\rm V}$$
 .

$$10.8~6\,A_{\,\circ}$$

10.9

10.10
$$R = \frac{1}{\omega C} = 10 \Omega$$
, $\omega L = 5 \Omega$.

10.11 当 ω 由 0逐渐增加到 ∞ , \dot{U}_{cd} 辐角逐渐由 180^{o} 减小到 0^{o} 。

10.13
$$i_L(t) = \frac{\sqrt{2}}{2} e^{-10^6 t} + \cos(10^6 t + 45^\circ) A$$

10.14 (1)
$$R = \frac{1}{\omega C}$$
, $\frac{U_{\text{out}}}{U_{\text{in}}} = \frac{1}{3}$; (2) $R = \frac{1}{\omega C}$, $\frac{U_{\text{out}}}{U_{\text{in}}} = \frac{1}{3}$.

11.1
$$P = -250\sqrt{2} \text{ W}$$

- 11.2 1000 W_o
- $11.3 \quad 6000 \; W_{\,\circ}$
- 11.4(1) $Z_L = 1.5 + j0.5 \Omega$ 时获得最大功率, $P_{max} = \frac{1}{12} \approx 0.0833 \, W$;(2)纯电阻

 $Z_{\rm L}=1.581\,\Omega$ 时获得最大功率, $P_{\rm max}=0.081\,{
m W}$ 。

- 11.5 $Z_{\rm L}=0.42+{
 m j}0.06\,\Omega$ 时获得最大功率, $P_{
 m max}=29.17~{
 m W}$ 。
- 11.6 电感的无功功率为 80 var, 电容的无功功率为-40 var, 电压源发出的无功功率为 40 var。

11.7
$$\overline{S} = 50 + j50\sqrt{3} \text{ VA}$$

11.8
$$\overline{S} = 500 - i1500 \text{ VA}$$
.

- 11.9(1)功率因数 λ =0.682;(2) $Z_{\rm L}$ = 75 + j80.467 Ω ;(3) C = 21.15 $\mu {\rm F}$ 。
- 11.10 $C = 394.6 \,\mu\text{F}$
- 11.11 (1) 电容的无功功率为-60 var; (2) $R = 125 \Omega$, $C = 60 \mu$ F。

11.12
$$Z_2 = 5 + \mathrm{j} 10 \,\Omega$$
 . $U_2 = 22.36 \,\mathrm{V}$.

11.13
$$\overline{S} = 240 + j80 \text{ VA}$$
.

11.14
$$\overline{S} = 8 + j9 \text{ VA}$$

11.15
$$P = 17 \text{ W}$$
, $Q = 1 \text{ var}$

- 11.16 $\omega = 1000 \text{ rad/s}$.
- 11.17 (1) $Z = -\mathrm{j}15\,\Omega$, $P_{\mathrm{max}} = 1382.86\,\mathrm{W}$;(2) 电路元件对应电容,

 $C = 212.207 \, \mu \text{F}$.

- 12.1 $\dot{U}_{AB} = 220\sqrt{3}\angle30^{\circ} \text{ V}$, $\dot{U}_{A'B'} = 358.03\angle33.81^{\circ} \text{ V}$, $\dot{I}_{C} = 1.375\sqrt{2}\angle75^{\circ} \text{ A}$.
- 12.2 $\dot{I}_{BA} = 3.8 \angle 126.9^{\circ} \text{ A}$ 、 $\dot{I}_{BC} = 3.8 \angle -173.1^{\circ} \text{ A}$ 和 $\dot{I}_{B} = 3.8 \sqrt{3} \angle 156.9^{\circ} \text{ A}$ 。
- 12.3 总有功功率为 7.2 kW, 总无功功率为 5.4 kvar。
- 12.4 $\dot{I}_{B} = 0.39 \angle -165^{\circ} \text{ A}$, $\dot{I}_{A'C'} = 0.22 \angle -75^{\circ} \text{ A}$.
- 12.5 $I = 1.5 \,\mathrm{A}_{\odot}$
- 12.6 开关断开后,电流表 A_2 的读数为 30 A,电流表 A_1 和 A_3 的读数均为 $10\sqrt{3}$ A。
- 12.7 $\dot{I}_{A} = \sqrt{2} \angle -45^{\circ} \text{ A}$, $\dot{I}_{B} = 2.13 \angle -80.1^{\circ} \text{ A}$, $\dot{I}_{C} = 3.39 \angle 113.8^{\circ} \text{ A}$.
- 12.8 功率表 1 读数为 $200\sqrt{3}$ W,功率表 2 读数为 $100\sqrt{3}$ W。三相负载总有功功率为 $300\sqrt{3}$ W。
- 12.9 (1)功率表 1 读数 654.2 W,功率表 2 读数 1161.6 W;(2)功率表 1 和功率表 2 读数均为 1540 W。
 - 12.10 $Z = 225 + j75\sqrt{3} \Omega$,三相负载总无功功率为 $100\sqrt{3}$ var。
 - 12.11 功率表读数不变,即功率表 1 读数为-100 W,功率表 2 读数为 100 W。
- 12.12 (1) $C = 63.66 \,\mu\text{F}$,相电流有效值为 17.6 A; (2) 电容移除后,相电流有效值为 22 A。

12.13

$$i_{\rm A}(t) = -e^{-1000t} + \sqrt{2}\cos\left(1000t - 45^{\circ}\right) A , \quad i_{\rm B}(t) = 1.366e^{-1000t} + \sqrt{2}\cos\left(1000t - 165^{\circ}\right) A$$

$$i_{\rm C}(t) = -0.366e^{-1000t} + \sqrt{2}\cos\left(1000t + 75^{\circ}\right) A .$$

12.14 亮度相对较高的灯泡位于 B 相。

13.1 a 与 d 为同名端, b 与 c 为同名端。

13.2
$$u_1 = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$
, $u_2 = L_2 \frac{di_2}{dt} - M \frac{di_1}{dt}$

13.3 电流表读数为 1.5 A, 电压表读数为 75 V。

13.4
$$I_1 = 3 \text{ A}$$
, $I_2 = 1 \text{ A}$

13.5
$$\frac{\left(R_1 + j\omega L_1\right)\dot{I}_1 - \left(j\omega L_1 + j\omega M\right)\dot{I}_2 = \dot{U}_S}{-\left(j\omega L_1 + j\omega M\right)\dot{I}_1 + \left(R_2 + j\omega L_1 + j\omega L_2 + j2\omega M\right)\dot{I}_2 = 0}$$

13.6 -200 var.

13.7
$$\dot{U} = 36.06 \angle 146.3^{\circ} \text{ V}$$

13.8 20 VA。

13.9
$$\dot{I}_1 = 0 \text{ A}$$
, $\dot{U}_2 = 32 \angle 0^{\circ} \text{ V}$.

13.10
$$Z_{\rm L}$$
=32 – j16 Ω 时获得最大功率, $P_{\rm max}$ =12.5 ${
m W}$ 。

13.11
$$\dot{I}_C = 5\sqrt{2} \angle -135^\circ \text{ A}$$
.

13.12 −800 var ∘

13.13
$$Z_{eq} = \frac{(1-n)^2 R}{1+j\omega CRn^2}$$

$$13.14 \quad \omega = \frac{1}{\sqrt{L_{\rm p}C_{\rm p}}} \, .$$

13.15
$$i(t) = \left(-\frac{1}{8} + \frac{1}{8}e^{-\frac{40000}{7}t}\right) \approx \left(-0.125 + 0.125e^{-5741.3t}\right) A$$

13.16
$$n = 10\sqrt{10}$$
, $u_C(t) = \frac{1}{10\sqrt{10}} \left[\left(-10 - 5 \times 10^4 t \right) e^{-5000t} + 10 \right] V$

13.17
$$n = 4\sqrt{6}$$
.

14.1
$$H(j\omega) = \frac{\dot{U}_C}{\dot{U}_S} = \frac{1}{1 + jR\omega C}$$
,

14.2
$$H(j\omega) = \frac{\dot{U}_o}{\dot{U}_i} = \frac{R}{R - \omega^2 RLC + j\omega L}$$

14.3
$$H(j\omega) = \frac{\dot{U}_o}{\dot{I}_i} = 1 \Omega$$
.

14.4
$$H(j\omega) = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{1}{1 - (R\omega C)^{2} + j3R\omega C}$$
,

14.5 高 通 滤 波 器 ,
$$H(j\omega) = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{1}{1-j\frac{10^{4}}{\omega}}$$
 , 截 止 频 率 $\omega_{c} = 10^{4} \text{ rad/s}$,

- 14.6 低通滤波器。
- 14.7 高通滤波器。

14.8 带 通 滤 波 器 ,
$$H(j\omega) = \frac{\dot{U}_o}{\dot{U}_i} = \frac{j\omega}{(j\omega)^2 + 3j\omega + 1} = \frac{1}{3 + j\left(\omega - \frac{1}{\omega}\right)}$$
 ,

14.9 谐振角频率 $\omega_0=1.25\times 10^7~{
m rad/s}$,品质因数 Q=80,带宽 $B=1.5625\times 10^5~{
m rad/s}$, $U_C=80~{
m V}~\circ$

- 14.10 谐振角频率 $\omega_0=1.581\times 10^4~{
 m rad/s}$, $I_L=63.3~{
 m A}$ 。
- 14.11 谐振角频率 $\omega_0=1$ rad/s。 $\omega=\omega_0$ 时, $U_{\scriptscriptstyle R}=1$ V。 $\omega=1.2\omega_0$ 时, $U_{\scriptscriptstyle R}=0.939$ V。

14.12 对
$$RLC$$
 串联谐振电路,
$$Q = \frac{\omega_0 L}{R} = \frac{\frac{1}{\sqrt{LC}} \times L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 对 RLC 并联谐振电路,
$$Q = \frac{R}{\omega_0 L} = \frac{R}{\frac{1}{\sqrt{LC}} \times L} = R \sqrt{\frac{C}{L}}$$
 °

14.13
$$R < \sqrt{\frac{L}{C}}$$
, $\omega_0 = \frac{1}{\sqrt{LC}} \sqrt{1 - R^2 \frac{C}{L}}$

14.14 并联谐振,
$$\omega_0 = \frac{1}{\sqrt{L_2 C}}$$
; 串联谐振 $\omega_0 = \frac{1}{\sqrt{\frac{L_1 L_2}{L_1 + L_2} C}}$ 。

- 14.15 $\omega_0 = 100 \text{ rad/s}$; $Z_{eq} = 50 \Omega$.
- 14.16(1) $\omega_0=10^4$ rad/s 时电阻电流有效值最大,最大有效值为 $\sqrt{2}$ A;(2) $\omega_0=5\times10^3$ rad/s 时电阻电流有效值最小,最小有效值为0 A。
 - 14.17 电流表 1 的读数为 1 A, 电流表 2 和电流表 3 的读数均为 10 A。
 - 14.18 R_1 和 R_2 吸收的有功功率均为 $1000\sqrt{3}$ W,电压源发出的复功率为 $2000\sqrt{3}$ VA。
 - 14.19 $L_0 = 271.26 \,\mu\text{H}$, $C_0 = 26.25 \, \text{pF}$ \circ

15.1
$$f(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{n} \sin(n\pi t), \quad n = 2k - 1$$

15.2
$$i_C(t) = 2\cos(\omega t + 90^\circ) A$$
, $i_L(t) = 2 + 2\cos(\omega t - 90^\circ) A$.

15.3
$$i(t) = \frac{1}{2}\cos(1000t + 96.9^{\circ}) + \frac{5}{16}\cos 2000t \text{ A}$$
.

15.4
$$u_C(t) = \frac{1}{9} + \sum_{n=1}^{\infty} \frac{\sqrt{n^2 \pi^2 + 1}}{n^2 \pi^2 \sqrt{4n^2 + 9}} \cos \left(nt - \arctan \frac{2n}{3} + \arctan n\pi \right) V$$

15.5
$$L = 4 \text{ H}$$
, $C_1 = 33.33 \,\mu\text{F}$, $i_2(t) = 1 + 0.5 \cos(100t + 45^\circ) \,\text{A}$

15.6
$$U = 2.55 \,\mathrm{V}$$
 \circ

15.7
$$P = 1.875 \text{ W}$$
.

15.8
$$i(t) = 2 + 2\cos(1000t + 45^{\circ}) + 2\cos(2000t + 45^{\circ}) A$$
, $P = 35 \text{ W}$

15.9
$$i(t) = 5\cos 1000t \text{ A}$$
,电阻吸收的平均功率为 125 W。

15.10
$$C = 100 \,\mu\text{F}$$
, $i(t) = 0.5 + 0.2\cos(1000t - 36.9^{\circ}) + 0.0588\cos(2000t - 61.9^{\circ})$ A \circ

15.11 功率表 1 读数为 2.5 W, 功率表 2 读数为 6.4 W。

15.12
$$C=11.258 \,\mu\text{F}$$
, $i_R(t)=0.9992\cos(100\pi t-2.28^\circ)\text{A}$

16.1
$$\mathbf{Y} = \begin{bmatrix} 0.75 & -0.5 \\ -0.5 & 0.625 \end{bmatrix}$$

16.2
$$\mathbf{Z} = \begin{bmatrix} j\omega L & j\omega L \\ j\omega L & R + j\omega L \end{bmatrix}$$
.

16.3
$$\mathbf{Z} = \begin{bmatrix} 18 & 3 \\ 12 & 3 \end{bmatrix}$$
, $\mathbf{Y} = \begin{bmatrix} \frac{1}{6} & -\frac{1}{6} \\ -\frac{2}{3} & 1 \end{bmatrix}$.

16.4
$$\mathbf{H} = \begin{bmatrix} 1.2 & 0.4 \\ -0.4 & 0.4 \end{bmatrix}$$
.

16.5
$$\mathbf{T} = \begin{bmatrix} \frac{3}{5} & \frac{3}{5} \\ \frac{4}{15} & \frac{3}{5} \end{bmatrix}$$
.

16.6
$$\mathbf{H} = \begin{bmatrix} j\omega \frac{L_1L_2 - M^2}{L_2} & \frac{M}{L_2} \\ -\frac{M}{L_2} & \frac{1}{j\omega L_2} \end{bmatrix}, \mathbf{T} = \begin{bmatrix} \frac{L_1}{M} & j\omega \frac{L_1L_2 - M^2}{M} \\ \frac{1}{j\omega M} & \frac{L_2}{M} \end{bmatrix}.$$

16.7
$$\mathbf{H} = \begin{bmatrix} \frac{10}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{6} \end{bmatrix}, \mathbf{T} = \begin{bmatrix} 1.5 & 5 \\ 0.25 & 1.5 \end{bmatrix}$$

$$16.8 \quad \mathbf{Z} = \begin{bmatrix} 3 & 1 \\ -3 & 5 \end{bmatrix}.$$

$$\begin{array}{c|c}
 & 17 \Omega \\
\hline
 & 3.4 \Omega \\
\hline
 & 8.5 \Omega
\end{array}$$

16.11
$$\mathbf{T} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.$$

16.12 (1) 证明过程略; (2)
$$\mathbf{Y} = \begin{bmatrix} 27 - \mathbf{j}15 & -25 + \mathbf{j}10 \\ -25 + \mathbf{j}10 & 27 - \mathbf{j}5 \end{bmatrix}$$
。

16.13
$$R_{\rm L} = 2 \, \Omega$$
 , $P_{\rm max} = 0.5 \, {\rm W}$.

16.14 (1)
$$\mathbf{H} = \begin{bmatrix} 15 \Omega & 0.5 \\ -0.5 & 0.05 S \end{bmatrix}$$
; (2) $i_1 = 1.4 \,\mathrm{A}$, $i_R = 0.4 \,\mathrm{A}$.

16.15

$$4\times10^{-7}\,\frac{\mathrm{d}^2u_C}{\mathrm{d}t^2} + 8\times10^{-4}\,\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 30\, \mathrm{或}\,\frac{\mathrm{d}^2u_C}{\mathrm{d}t^2} + 2000\frac{\mathrm{d}u_C}{\mathrm{d}t} + 2.5\times10^6u_C = 7.5\times10^7\,\,\mathrm{,}$$
 工作于欠阻尼状态。

16.16
$$H(j\omega) = \frac{\dot{U}_{\text{out}}}{\dot{U}_{\text{in}}} = \frac{1}{T_{11} + \frac{T_{12}}{R}} = \frac{R}{RT_{11} + T_{12}}$$

17.1
$$u_0 = 4 \text{ V}$$
.

17.2
$$u_0 = 6 \text{ V}$$
.

17.3
$$u_0 = -4 \text{ V}$$
, $i_0 = -2 \text{ mA}$

17.4
$$u_{o}(t) = 2\cos(5000t - 90^{\circ}) = 2\sin 5000t \text{ V}$$
.

17.5
$$u_0 = -4 \text{ V}$$
.

17.6
$$R_{\rm eq} = -1 \,\mathrm{k}\Omega$$
 .

17.7
$$u_0 = -30 \text{ V}$$
.

17.8
$$u_{\rm o}(t) = \frac{R_2 R_3 C}{R_1} \frac{\mathrm{d}u_{\rm in}(t)}{\mathrm{d}t}$$
.

17.9
$$u_0 = \frac{R_2 R_4}{R_1 R_5} u_1 - \frac{R_4}{R_3} u_2$$

17.10
$$H(j\omega) = \frac{\dot{U}_o}{\dot{U}_{in}} = \frac{1 + jR_2\omega C_2}{\omega^2 R_1 R_2 C_1 C_2 - jR_1\omega (C_1 + C_2)}$$
, 低通滤波器。

17.11
$$i_{o}(t) = -0.6e^{-t} \text{ mA}$$

17.12
$$u_0(t) = -12 + 12e^{-2500t} \text{ V}$$

17.13
$$Z = \begin{bmatrix} R_1 + R_2 & 0 \\ \frac{R_2}{R_3} (R_3 + R_4) & R_5 \end{bmatrix}$$
°

17.14
$$Z_{\text{eq}} = \frac{\dot{U}_{\text{in}}}{\dot{I}_{\text{in}}} = j\omega C \frac{R_1 R_3 R_4}{R_2}$$
, $L_{\text{eq}} = \frac{R_1 R_3 R_4}{R_2} C$.

18.1
$$\frac{1}{s+3}$$
.

18.2
$$2-3e^{-2s}$$
.

18.3
$$\frac{3(s+1)}{(s+1)^2+100^2} + \frac{4\times100}{(s+2)^2+100^2}$$

18.4
$$\frac{e^{-2(s+1)}}{s+1}$$
 o

$$18.5 \ \frac{2}{\left(s+a\right)^3} \ .$$

18.6
$$\left(-2+0.5e^{-t}+1.5e^{t}\right)\varepsilon(t)$$
, $\left(3e^{-t}+2e^{-2t}+e^{-3t}\right)\varepsilon(t)$.

18.7
$$\left(1+2te^{-t}+3e^{-t}\right)\varepsilon(t)$$
, $\left(\frac{1}{9}e^{t}-\frac{1}{9}e^{-2t}+\frac{5}{3}te^{-2t}\right)\varepsilon(t)$.

18.8

$$\left(\frac{2}{3}\cos t - \frac{2}{3}\sin t\right)e^{-t}\varepsilon(t) = \frac{2}{3}\sqrt{2}\cos(t + 45^{\circ})e^{-t}\varepsilon(t), \quad (10e^{-5t} - 8.33e^{-5t}\sin 12t)\varepsilon(t).$$

18.9
$$(20-200t^2e^{-5t}-100te^{-5t}-20e^{-5t})\varepsilon(t)$$
.

18.10
$$[1-\cos(t-1)]\varepsilon(t-1)$$
.

18.11
$$u_{C1}(t) = \frac{11}{3} - \frac{8}{3} e^{-0.5t} V$$
, $u_{C2}(t) = \frac{7}{3} - \frac{4}{3} e^{-0.5t} V$.

18.12
$$u_{C1}(t) = 1.2e^{-0.1t} \text{ V}$$
, $i(t) = 0.24e^{-0.1t} \text{ A}$.

18.13
$$i(t) = 5e^{-0.6t} \sin 0.8t \text{ A}$$

18.14
$$u_C(t) = 1.2 \times 10^5 t e^{-5000t} \text{ V}$$
.

18.15
$$i_L(t) = 20 - 10e^{-2t} - 0.76e^{-0.05t} \sin 25t \text{ mA}$$

18.16
$$i_L(t) = \left[\frac{2}{3} + \frac{16}{75} e^{-3t} + \frac{1}{5} \cos(4t - 53.1^{\circ}) \right] A$$

18.17
$$u_C(t) = (4e^{-0.5t} - 4e^{-2t})\varepsilon(t) V$$
.

18.18
$$H(s) = \frac{U(s)}{I_s(s)} = \frac{10(s+2)}{s^2 + 2s + 10}$$
 , 单位冲激响应为

$$\left(10e^{-t}\cos 3t + \frac{20}{3}e^{-t}\sin 3t\right)\varepsilon(t) \text{ V}, \text{ 单位阶跃响应为}\left(2 - 2e^{-t}\cos 3t + 2e^{-t}\sin 3t\right)\varepsilon(t) \text{ V}.$$

18.19 传递函数为
$$\frac{\sqrt{2}}{(s+1)^2 + \frac{1}{2}}$$
,单位阶跃响应为

$$\frac{\sqrt{2}}{3} - \frac{\sqrt{2}}{3} e^{-t} \cos\left(\frac{\sqrt{2}}{2}t\right) - \frac{4}{3} e^{-t} \sin\left(\frac{\sqrt{2}}{2}t\right) \circ$$

18.20
$$i_1(t) = \left(10 - 5e^{-4t} - 5e^{-\frac{4}{3}t}\right) A$$
, $i_2(t) = \left(-5e^{-4t} + 5e^{-\frac{4}{3}t}\right) A$.

18.21
$$u_{o}(t) = (e^{-5t} - e^{-2t})\varepsilon(t) V_{o}$$

19.1 i 中包含直流分量 0.5、基波分量 $\cos \omega t$ 和 2 次谐波分量 $0.5 \cos 2\omega t$ 。

19.2
$$2u^3 + \left(\frac{1}{R_1} + \frac{1}{R_2}\right)u = \frac{u_s}{R_1}$$
.

19.3
$$\frac{u_{s}-3i^{2}}{R_{1}}+i_{s}=i$$
, $\mathbb{E}[3i^{2}+R_{1}i=u_{s}+R_{1}i_{s}]$

为补充方程,此时需要列写3个方程。

19.5
$$R\frac{\mathrm{d}q}{\mathrm{d}t}+2q^3=u_{\mathrm{s}}$$
。
$$\left(\frac{1}{R_1}+\frac{1}{R_2}\right)u_{\mathrm{n}1}-\frac{1}{R_2}u_{\mathrm{n}2}=i_{\mathrm{s}}-i_{\mathrm{l}}$$

$$19.6 \quad -\frac{1}{R_2}u_{\mathrm{n}1}+\left(\frac{1}{R_2}+\frac{1}{R_3}\right)u_{\mathrm{n}2}=i_{\mathrm{l}}-i_{\mathrm{l}}+\frac{2i_{\mathrm{l}}}{R_3}, \ \$$
也可以将最后两个附加方程代入到前面
$$\left(u_{\mathrm{n}1}-u_{\mathrm{n}2}\right)^2=i_{\mathrm{l}}$$

$$u_{\mathrm{n}2}=i_{\mathrm{l}}^3$$

两个方程中。

19.7
$$LC \frac{d^2 u_C}{dt^2} + \left(C \frac{d u_C}{dt}\right)^2 + u_C = u_s(t)$$
, $LC \frac{d^2 i_L}{dt^2} + 2C i_L \frac{d i_L}{dt} + i_L = C \frac{d u_s(t)}{dt}$.

19.8
$$u(t) = 2 + \frac{1}{30}\cos 3t \text{ V}$$
, $i(t) = 1 + \frac{1}{12}\cos 3t \text{ A}$.

19.9
$$i(t) = 1 + 0.04 \sin 10t \text{ A}$$
, $u(t) = -6 + 0.12 \sin 10t \text{ V}$

19.10
$$\frac{du_{C}}{dt} = \frac{1}{C}i_{L}$$

$$i_{L}\frac{di_{L}}{dt} = -\frac{1}{2}u_{C} - \frac{R}{2}i_{L} + \frac{1}{2}u_{s}$$

19.11
$$u = 3 \text{ V}, i = 3 \text{ A}$$
; $\vec{x}u = -1.5 \text{ V}, i = 4.75 \text{ A}$.

图中 $-\frac{1}{R_f}$ 和 $\frac{1}{R_f}$ 为直线的斜率。