	Suite arithmétique de raison r et de premier terme u_0	Suite géométrique de raison q et de premier terme u_0
Relation de récurrence	$u_{n+1}=u_n+r$	$u_{n+1}=u_n\times q$
Terme général	Pour tout entier $n \geq p$:	Pour tout entier $n\geq p$:
	$u_n = u_p + (n-p)r$	$u_n=u_p imes q^{n-p}$
	En particulier, si $\left(u_{n}\right)$ est définie dès le rang 0 :	En particulier, si $\left(u_{n}\right)$ est définie dès le rang 0 :
	$u_n=u_0+nr$	$u_n=u_0 imes q^n$

THÉORÊME La limite d'une suite géométrique de terme général $\,q^n\,$

La limite de la suite géométrique de terme général $\,q^n\,$ dépend de la valeur de $\,q\,$:

Condition sur q	Limite de $\left(q^{n}\right)$
0 < q < 1	$\lim_{n o +\infty} q^n = 0$
q=1	$\lim_{n o +\infty} q^n = 1$
q > 1	$\lim_{n o +\infty}q^n=+\infty$