Introduction to Bayesian Nonparametrics

Arman Oganisian

@StableMarkets

Division of Biostatistics Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania

OUTLINE

Outline of the talk

- ▶ What is nonparametric Bayesian inference?
- What are some examples of nonparametric priors?
- ► Dirichlet Process priors.
- ► Application to cost modeling.

$$Y_1, Y_2, \ldots, Y_n \mid G \sim G$$

How to do inference on *G*?

$$Y_1, Y_2, \ldots, Y_n \mid G \sim G$$

How to do inference on *G*?

▶ Parametric Inference: $G = G_{\omega}$.

$$G_{\omega} = N(\mu, \phi), \quad \omega = (\mu, \phi)$$

$$Y_1, Y_2, \ldots, Y_n \mid G \sim G$$

How to do inference on *G*?

▶ Parametric Inference: $G = G_{\omega}$.

$$G_{\omega} = N(\mu, \phi), \quad \omega = (\mu, \phi)$$

- ▶ Prior over ω → prior over G_{ω} .
- ▶ Posterior over ω → posterior over G_{ω}

$$Y_1, Y_2, \ldots, Y_n \mid G \sim G$$

How to do inference on *G*?

▶ Parametric Inference: $G = G_{\omega}$.

$$G_{\omega} = N(\mu, \phi), \quad \omega = (\mu, \phi)$$

- ▶ Prior over ω → prior over G_{ω} .
- ▶ Posterior over ω → posterior over G_{ω}
- ▶ Nonparametric Inference: fewer restrictions on form of *G*.

Consider the regression problem

$$Y_i \mid X_i \sim N(f(X_i), \phi)$$

$$E[Y \mid X] = f(X)$$

How to do inference on f?

Consider the regression problem

$$Y_i \mid X_i \sim N(f(X_i), \phi)$$

$$E[Y \mid X] = f(X)$$

How to do inference on *f*?

▶ Parametric Inference: $f = f_{\omega}$.

$$f_{\omega}(X) = X'\omega$$

Consider the regression problem

$$Y_i \mid X_i \sim N(f(X_i), \phi)$$

$$E[Y \mid X] = f(X)$$

How to do inference on *f*?

▶ Parametric Inference: $f = f_{\omega}$.

$$f_{\omega}(X) = X'\omega$$

- ▶ Prior over ω → prior over f_{ω} .
- ▶ Posterior over ω → posterior over f_{ω}

Consider the regression problem

$$Y_i \mid X_i \sim N(f(X_i), \phi)$$

$$E[Y \mid X] = f(X)$$

How to do inference on *f*?

▶ Parametric Inference: $f = f_{\omega}$.

$$f_{\omega}(X) = X'\omega$$

- ▶ Prior over ω → prior over f_{ω} .
- ▶ Posterior over ω → posterior over f_{ω}
- ► Nonparametric Inference: impose less structure on *f*.

Inference for unknown function f(x),

Our working definition for this talk

- ► Nonparametric priors: over infinite dimensional spaces.
- ► Parametric priors: over finitely dimensional spaces.

Key advantages:

- ► Flexible: avoids restrictive modeling assumptions.
- ► Principled: well-defined, probabilistically valid shrinkage.
- ► Uncertainty quantification: not just point estimation.

SOME NONPARAMETRIC PRIORS...

- ► BART: prior over tree functions.
- ► Chinese Restaurant Process: prior over partitions.
- ▶ Dirichlet Process: prior over probability distributions.
- ► Gaussian Process: prior over functions.
- ► Gamma Process: prior over non-decreasing functions.
- Much, much, more ...

Tree T_j with terminal node parameters $M_j = \{\eta_1, \eta_2, \eta_3, \eta_4\}$

Prior on tree depth, *d*: Probability that node at depth *d* is non-terminal

$$\frac{\alpha}{(1+d)^{\beta}}$$

For $\alpha \in (0,1)$ and $\beta \geq 0$

Inference for unknown regression function f(X),

$$f(X) = \sum_{j=1}^{m} f_j(X; T_j, M_j)$$

- ▶ Sum of *m* trees.
- ▶ $f_j(\cdot)$ maps X to some $\eta_k \in M_j$ of tree T_j

Inference for unknown regression function f(X),

$$f(X) = \sum_{j=1}^{m} f_j(X; T_j, M_j)$$

- Sum of m trees.
- ▶ $f_i(\cdot)$ maps X to some $\eta_k \in M_i$ of tree T_i

Putting it all together, we say

$$f \sim BART$$

BIOSTATISTICS
EPIDEMIOLOGY &
INFORMATICS

PRIOR OVER PARTITIONS

Consider problem of clustering $\{y_{1:n}\}$

$$y_i \mid \mu_{c_i}, c_i \sim N(\mu_{c_i}, \phi)$$

 $\mu_{c_i} \sim G$

- ▶ Want inference on $c_{1:n} = (c_1, c_2, ..., c_n)$.
- ▶ How to specify a prior over $c_{1:n}$?

PRIOR OVER PARTITIONS

Consider problem of clustering $\{y_{1:n}\}$

$$y_i \mid \mu_{c_i}, c_i \sim N(\mu_{c_i}, \phi)$$

 $\mu_{c_i} \sim G$

- ▶ Want inference on $c_{1:n} = (c_1, c_2, ..., c_n)$.
- ▶ How to specify a prior over $c_{1:n}$?
- ▶ Equivalently: how to specify a partition of set $\{1, 2, ..., n\}$.

CHINESE RESTAURANT PROCESS

$$p(c_{1:n}) = p(c_1)p(c_2 \mid c_1)p(c_3 \mid c_1, c_2) \dots p(c_n \mid c_{1:n-1})$$

= $p(c_1) \prod_{i=2}^{n} p(c_i \mid c_{1:i-1})$

CHINESE RESTAURANT PROCESS

$$p(c_{1:n}) = p(c_1)p(c_2 \mid c_1)p(c_3 \mid c_1, c_2) \dots p(c_n \mid c_{1:n-1})$$

= $p(c_1) \prod_{i=2}^{n} p(c_i \mid c_{1:i-1})$

- $c_1 = 1$
- ▶ For i > 1.

$$p(c_i = j \mid c_{1:i-1}) = \begin{cases} \frac{n_{i-1,j}}{\alpha + i - 1} & j \in c_{1:i-1} \\ \frac{\alpha}{\alpha + i - 1} & j \notin c_{1:i-1} \end{cases}$$

CHINESE RESTAURANT PROCESS

This process generates a random partition.

$$c_{1:n} \sim CRP(\alpha)$$

TO RECAP...

Parametric Bayes		Nonparametric Bayes
	Models	
Low-dimensional		→ High-dimensional
	ъ.	
	Priors	
Distributions —		→ Processes

Observed data
$$D = \left\{ Y_i, X_i = (A_i, L_i) \right\}_{i=1:n}$$

Observed data
$$D = \left\{ Y_i, X_i = (A_i, L_i) \right\}_{i=1:n}$$

$$Y_i \mid X_i, \omega \sim \pi \left(X_i' \gamma \right) \delta_0 \left(Y_i \right) + \left(1 - \pi \left(X_i' \gamma \right) \right) \cdot p_+ \left(Y_i \mid X_i, \theta \right)$$

Observed data
$$D = \left\{ Y_i, X_i = (A_i, L_i) \right\}_{i=1:n}$$

$$Y_{i}\mid X_{i},\omega \sim \pi\left(X_{i}^{\prime}\gamma\right)\delta_{0}\left(Y_{i}\right)+\left(1-\pi\left(X_{i}^{\prime}\gamma\right)\right)\cdot p_{+}\left(Y_{i}\mid X_{i},\theta\right)$$

Define $\omega = (\gamma, \theta)$

Observed data
$$D = \left\{ Y_i, X_i = (A_i, L_i) \right\}_{i=1:n}$$

$$Y_i \mid X_i, \omega \sim \pi \left(X_i' \gamma \right) \delta_0 \left(Y_i \right) + \left(1 - \pi \left(X_i' \gamma \right) \right) \cdot p_+ \left(Y_i \mid X_i, \theta \right)$$

Define
$$\omega = (\gamma, \theta)$$

$$\bullet$$
 $\pi(\cdot) = expit(\cdot) \text{ or } \pi(\cdot) = \Phi(\cdot)$

$$Y_i \mid X_i \sim \pi \left(X_i' \gamma \right) \delta_0 \left(Y_i \right) + \left(1 - \pi \left(X_i' \gamma \right) \right) \cdot p \left(Y_i \mid X_i, \theta \right)$$

Define $\omega = (\gamma, \theta)$

▶ E.g. $p_+(Y_i \mid X_i, \theta)$ is Normal with $\theta = (\beta, \phi)$

$$E[Y \mid X_i, \beta] = X_i'\beta$$

DEPARTMENT of

What are our options?

$$Y_i \mid X_i \sim \pi \left(X_i' \gamma \right) \delta_0 \left(Y_i \right) + \left(1 - \pi \left(X_i' \gamma \right) \right) \cdot p \left(Y_i \mid X_i, \theta \right)$$

Define $\omega = (\gamma, \theta)$

▶ E.g. $p_+(Y_i | X_i, \theta)$ is Normal with $\theta = (\beta, \phi)$

$$E[Y \mid X_i, \beta] = X_i'\beta$$

▶ E.g. $p_+(Y_i \mid X_i, \theta)$ is log-Normal with $\theta = (\beta, \phi)$

$$E[Y \mid X_i, \beta] = \exp\left(X_i'\beta + \frac{\phi}{2}\right)$$

A NONPARAMETRIC APPROACH

$$Y_{i} \mid X_{i}, \omega \sim \pi \left(X_{i}^{\prime} \gamma\right) \delta_{0}\left(Y_{i}\right) + \left(1 - \pi \left(X_{i}^{\prime} \gamma\right)\right) \cdot p_{+}\left(Y_{i} \mid X_{i}, \theta\right)$$

- Very restrictive structure assumed.
- ► Are covariate effects really linear? additive?
- ► Interactions? Multimodality? Skewness?

A BAYESIAN NONPARAMETRIC APPROACH...

Go high-dimensional: $\omega \to \omega_i = (\gamma_i, \theta_i)$

$$Y_{i}\mid X_{i},\omega_{i}\sim\pi\left(X_{i}^{\prime}\gamma_{i}\right)\delta_{0}\left(Y_{i}\right)+\left(1-\pi\left(X_{i}^{\prime}\gamma_{i}\right)\right)\cdot p_{+}\left(Y_{i}\mid X_{i},\theta_{i}\right)$$

A BAYESIAN NONPARAMETRIC APPROACH...

Go high-dimensional: $\omega \to \omega_i = (\gamma_i, \theta_i)$

$$Y_{i}\mid X_{i},\omega_{i}\sim\pi\left(X_{i}^{\prime}\gamma_{i}\right)\delta_{0}\left(Y_{i}\right)+\left(1-\pi\left(X_{i}^{\prime}\gamma_{i}\right)\right)\cdot p_{+}\left(Y_{i}\mid X_{i},\theta_{i}\right)$$

$$\omega_{1:n} \mid G \sim G$$

A NONPARAMETRIC PRIOR OVER DISTRIBUTIONS

$$\omega_1,\ldots,\omega_n\mid G\sim G$$

Nonparametric prior on G

DEPARTMENT of

A Nonparametric Prior over Distributions

$$\omega_1,\ldots,\omega_n\mid G\sim G$$

Nonparametric prior on G

$$G \mid \alpha, G_0 \sim DP(\alpha G_0)$$

A NONPARAMETRIC PRIOR OVER DISTRIBUTIONS

$$\omega_1,\ldots,\omega_n\mid G\sim G$$

Nonparametric prior on G

$$G \mid \alpha, G_0 \sim DP(\alpha G_0)$$

- ▶ Each "realization" or "draw" is a random distribution.
- $ightharpoonup G_0$: mean of these realizations.
- α : controls dispersion/spread around G_0 .
- ▶ Distributions draw from the DP are discrete.

THE DIRICHLET PROCESS

$$G \mid \alpha, G_0 \sim DP(\alpha G_0)$$

PÓLYA URN PROCESS

Conditional posterior of *i*th subject

$$p\left(\omega_i \mid \omega_{1:(i-1)}, G_0, \alpha\right) \propto \frac{\alpha}{\alpha + i - 1} G_0(\omega_i) + \frac{1}{\alpha + i - 1} \sum_{i < i} I(\omega_i = \omega_i)$$

24/31

Pólya Urn Process

Conditional posterior of *i*th subject

$$p\left(\omega_i \mid \omega_{1:(i-1)}, G_0, \alpha\right) \propto \frac{\alpha}{\alpha + i - 1} G_0(\omega_i) + \frac{1}{\alpha + i - 1} \sum_{j < i} I(\omega_i = \omega_j)$$

- Data adaptive.
- Posterior clustering.
- ► Flexible predictions by ensembling cluster-specific models.

MCMC Inference via auxiliary parameters

Auxiliary variable scheme via $c_{1:n}^{(m)}$ at iteration m.

- 1. Update $c_{1:n}^{(m)} \mid \omega_{1:n}^{(m-1)}, D$.
- 2. Update $\omega_{1...}^{(m)}$, $|c_{1...}^{(m)}$, D.

Output: Posterior draws $\left\{\omega_{1:n}^{(m)}, c_{1:n}^{(m)}\right\}_{1:M}$

MCMC INFERENCE VIA AUXILIARY PARAMETERS

26/31

DATA DESCRIPTION

- ▶ Data source: SEER-Medicare.
- ▶ Endometrial cancer patients ($N \approx 1,000$).
- ► Treatment: post-hysterectomy radiation vs. chemotherapy.
- ▶ Outcome: Total inpatient costs over 2 years.
 - Skewed, zero-inflated
 - ▶ Chemo arm: 15% zeros; RT arm: 8%
- ► Covariates: tumor grade, cancer stage, CCI.

SAMPLE CHARACTERISTICS

	Chemotherapy	Radiation Therapy	SMD
	(n=92)	(n=952)	
Total Inpatient Costs (\$)	22131.59 (28608.07)	23370.63 (34453.31)	.039
Zero Costs	14 (15.2%)	75 (7.9%)	
Age (years)	73.68 (6.98)	73.25 (5.98)	.066
Household Income (\$)	64368.36 (32422.55)	56785.29 (26166.79)	.257
White	76 (82.6%)	835 (87.8%)	.147
Diabetic	20 (21.7%)	$197\ (20.7\%)$.026
CCI			.350
0	49 (53.3%)	529~(55.6%)	
1	22 (23.9%)	260~(27.3%)	
≥ 2	21 (22.8%)	131 (13.8%)	
Grade = 1	28 (30.4%)	208 (21.8%)	.196
FIGO Stage I-N0 or I-A	63 (68.5%)	357 (37.5%)	.653

Notes: Means and standard deviations are reported for continuous variables. Counts and percentages are reported for categorical variables. All monetary amounts are in 2018 U.S. Dollars.

28/31

PREDICTIONS

POSTERIOR CLUSTERING

THANK YOU!

