

FDC654P

P-Channel Enhancement Mode Field Effect Transistor

General Description

These P-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- SuperSOTTM-6 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings T_A = 25°C unless otherwise note

Symbol	Parameter		FDC654P	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage - Continuous		±20	V
I _D	Drain Current - Continuous	(Note 1a)	-3.6	A
	- Pulsed		-10	
P _D	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
Γ _J ,Τ _{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	AL CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	30	°C/W

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D = -250 μA, Referenced to 25 °C			-29		mV /°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, \ V_{GS} = 0 \text{ V}$				-1	μA
			$T_J = 55^{\circ}C$			-10	μA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHARA	ACTERISTICS (Note 2)	•					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-1	-1.7	-3	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold VoltageTemp.Coefficient	I _D = -250 μA, Referenced to 25 °C			3.6		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -3.6 \text{ A}$			0.065	0.075	Ω
, ,			T _J = 125°C		0.094	0.127	1
		$V_{GS} = -4.5 \text{ V}, I_D = -2.7 \text{ A}$			0.11	0.125	
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$		-5			Α
g _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -3.6 \text{ A}$			3		S
DYNAMIC (CHARACTERISTICS	•					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$			435		pF
C _{oss}	Output Capacitance	f = 1.0 MHz			245		pF
C _{rss}	Reverse Transfer Capacitance				70		pF
SWITCHING	CHARACTERISTICS (Note 2)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = -15 \text{ V}, I_{D} = -1 \text{ A},$			10	18	ns
t _r	Turn - On Rise Time	$V_{GS} = -10 \text{ V}, \ R_{GEN} = 6 \Omega$			7	14	ns
t _{D(off)}	Turn - Off Delay Time				26	42	ns
t,	Turn - Off Fall Time				18	29	ns
Q_g	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -3.6 \text{ A},$			10.5	15	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = -10 \text{ V}$			2		nC
Q_{gd}	Gate-Drain Charge				2.6		nC
DRAIN-SOL	JRCE DIODE CHARACTERISTICS						,
l _s	Continuous Source Diode Current					-1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.3 \text{ A}$ (N	ote 2)		-0.8	-1.2	V
			T ₁ = 125°C		-0.62	-1	1

Notes

^{1.} R_{Bulk} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{Buc} is guaranteed by design while R_{Bck} is determined by the user's board design.

a. 78°C/W when mounted on a minimum on a 1 in² pad of 2oz Cu in FR-4 board.

b. 156°C/W when mounted on a minimum pad of 2oz Cu in FR-4 board.

^{2.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage
Variation with Source Current
and Temperature.

Typical Electrical And Thermal Characteristics

Figure 7. Gate Charge Characteristics.

1500

Figure 8. Capacitance Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.

Note: Thermal characterization performed using the conditions described in note 1b. Transient thermal response will change depending on the circuit board design.