答题卷

一、 判断题(10分)

1	X	2	X	3	X	4	X	5	X	
6	√	7	X	8	X	9	$\sqrt{}$	10	X	

二、 选择题(30分)

1	С	2	A	3	В	4	D	5	A
6	D	7	A	8	C	9	D	10	В
11	D	12	D	13	В	14	C	15	C
16	В	17	A	18	В	19	A	20	C
21	A	22	C	23	D	24	A	25	В
26	D	27	A	28	A	29	C	30	A

三、 填空题(15分)

1	程序直接控制		中断驱动方式
3	DMA		通道控制
5	运行时间短		等待时间长
7	28		216
9	文件		219
11	-73	12	计算机的地址结构
13	顺序结构(连续结构)		链接结构
15	索引结构		

四、 综合题 (45 分)

- 1、(5分)略。
- 2、(5分)参考答案:(1)采用 FIFO 页面置换算法:

访问	4	3	2	1	4	3	5	4	3	2	1	5
页面												
缺页	是	是	是	是	否	否	是	是	是	是	是	是
内	4	4	4	4	4	4	5	5	5	5	1	1
存		3	3	3	3	3	3	4	4	4	4	5
块			2	2	2	2	2	2	3	3	3	3
				1	1	1	1	1	1	2	2	2
换页							4	3	2	1	5	4

缺页次数是: 10次,缺页率=缺页次数/访问次数=10/12=83.3%

- (2) 采用 LRU 页面置换算法:
 - 缺页次数是: 8次,缺页率=缺页次数/访问次数=8/12=66.7%
- 3、(6分)(1) linux 文件系统中文件类型:普通文件、目录文件、块设备文件、字符设备文件、管道文件、符号链接文件、socket 文件。
 - (2) 目录文件;文件主:读写可执行;同组用户:读写;其他用户:只读
- 4、(7 分) (1) 解:对于 3GB 的硬盘,共有盘块 3GB/1KB = 3M 块,故需要有 22 个二进制位对盘块进行编号。此处延用 FAT 编号的惯例(4 的整数倍),我们可以取 24位对盘块进行编号。因此每一个编号占据 3 (24/8) 个字节(即文件分配表表项大小为 3 字节),FAT 表的大小= 3B*3M 块 = 9MB。

(2) 略。

- 5、(6分)(1)安全性检查过程从略,可行的其中一个安全序列: P0->P3->P4->P1->P2 (2) 不能分配,若是分配会进入不安全状态
- 6、(8分)(1) **UNIX 提供了两种文件共享机制:**基于索引节点的共享方式(硬链接)和利用符号连实现文件共享(软链接)。
- (2) 硬链接实现原理:系统为共享文件新建一个目录项,该目录项的文件名可以跟原共享文件不同,而目录项中的索引节点编号为原共享文件的索引节点编号。为避免文件主删除原共享文件而造成"悬空指针"的错误,在索引节点中增加一个共享计数 count,用于指示当前有多少用户在共享该文件。

软链接实现原理: 系统为共享文件新建一个 link 类型的新文件,该新文件的文件名可以跟原共享文件不同,系统将为该新文件建立目录项、分配索引节点和磁盘空间,新文件的内容即为原共享文件路径。这样用户就可以通过新文件名去访问原共享文件了。

优缺点比较: 1) 硬链接不需要建立新文件,只建立目录项,比软链接节省了磁盘空间;当有两个以上用户共享文件时,硬链接中不允许文件主删除共享文件,对文件主不方便,而软链接没有这种限制; 3) 硬链接不能跨文件卷共享,而软链接可以,且软连接可以方便的实现网络文件的共享; 4) 软链接中访问共享文件时,需进行两次路径查询(新文件路径及共享文件路径),查询效率比硬链接低。

7、(8分)将独木桥的两个方向分别标记为 A 和 B;并用整形变量 count A 和 count B 分别表示 A、B 方向上已在独木桥上的行人数,初值为 0;再设置三个初值都 1 的互斥信号量: SA 用来实现对 count A 的互斥访问,SB 用来实现对 count B 的互斥访问,mutex 用来实现两个方向的行人对独木桥的互斥使用。则具体描述如下:

```
Var SA, SB, mutex:semaphore:=1, 1, 1;
  CountA, countB:integer:=0, 0:
  begin
  parbegin
   process A: begin
               wait(SA);
                 if(countA=0) then wait(mutex);
                 countA:=countA+1;
               signal(SA);
               过独木桥;
               wait(SA);
                 countA:=countA-1;
                 if (countA=0) then signal(mutex);
               signa(SA);
                 end
   process B: begin
               wait(SB);
                 if(countB=0) then wait(mutex);
                 countB:=countB+1;
               signal(SB);
               过独木桥:
               wait(SB);
                 countB:=countB-1;
                 if (countB=0) then signal(mutex);
               signa(SB);
                 end
     parend
end
```