Лабораторная работа

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей. Цель лабораторной работы: изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

Задание: Выберите набор данных (датасет) для решения задачи классификации или регрессии. С использованием метода train_test_split разделите выборку на обучающую и тестовую. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик. Произведите подбор гиперпараметра К с использованием GridSearchCV и/или RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кросс-валидации. Сравните метрики качества исходной и оптимальной моделей.

Ввод [1]:

```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder

goal_column='TargetClass'
%matplotlib inline
sns.set(style="ticks")

# скроем предупреждения о возможных ошибках для лучшей читаемости
import warnings
warnings.filterwarnings('ignore')
```

Ввод [2]:

```
data = pd.read_csv('./Star3642_balanced.csv')
data.head()
```

Out[2]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag	TargetClass
0	5.99	13.73	0.58	1.318	K5III	16.678352	0
1	8.70	2.31	1.29	-0.045	B1II	15.518060	0
2	5.77	5.50	1.03	0.855	G5III	14.471813	0
3	6.72	5.26	0.74	-0.015	B7V	15.324928	1
4	8.76	13.44	1.16	0.584	G0V	19.401997	1

```
Ввод [3]:
```

```
data.shape
```

```
Out[3]:
```

(3642, 7)

Удаление пропусков

Удалим колонки, содержащие пустые значения

Ввод [4]:

```
data = data.dropna(axis=1, how='any')
data.head()
```

Out[4]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag	TargetClass
0	5.99	13.73	0.58	1.318	K5III	16.678352	0
1	8.70	2.31	1.29	-0.045	B1II	15.518060	0
2	5.77	5.50	1.03	0.855	G5III	14.471813	0
3	6.72	5.26	0.74	-0.015	B7V	15.324928	1
4	8.76	13.44	1.16	0.584	G0V	19.401997	1

Ввод [5]:

```
data.shape
```

Out[5]:

(3642, 7)

Проверим что пропуски отсутствуют

Ввод [6]:

```
for col in data.columns:
    null_count = data[data[col].isnull()].shape[0]
    if null_count == 0:
        column_type = data[col].dtype
        print('{} - {} - {}'.format(col, column_type, null_count))
```

```
Vmag - float64 - 0
Plx - float64 - 0
e_Plx - float64 - 0
B-V - float64 - 0
SpType - object - 0
Amag - float64 - 0
TargetClass - int64 - 0
```

Кодирование категориальных признаков

```
Ввод [7]:
```

```
for col in data.columns:
    column_type = data[col].dtype
    if column_type == 'object':
        print(col)
```

SpType

```
Ввод [8]:
```

```
le = LabelEncoder()
data['SpType'] = le.fit_transform(data['SpType'])
```

Проверка

Ввод [9]:

```
for col in data.columns:
    column_type = data[col].dtype
    if column_type == 'object':
        print(col)
```

Разделение выборки на обучающую и тестовую

Разделим данные на целевой столбец и признаки

```
Ввод [10]:
```

```
X = data.drop(goal_column, axis=1)
X
```

Out[10]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag
0	5.99	13.73	0.58	1.318	522	16.678352
1	8.70	2.31	1.29	-0.045	99	15.518060
2	5.77	5.50	1.03	0.855	337	14.471813
3	6.72	5.26	0.74	-0.015	150	15.324928
4	8.76	13.44	1.16	0.584	293	19.401997
3637	7.29	3.26	0.95	1.786	515	14.856089
3638	8.29	6.38	1.00	0.408	208	17.314104
3639	6.11	2.42	0.79	1.664	539	13.029078
3640	7.94	4.94	2.90	0.210	53	16.408636
3641	8.81	1.87	1.23	1.176	454	15.169209

3642 rows × 6 columns

```
Ввод [11]:
Y = data[[goal column]]
Y
Out[11]:
      TargetClass
              0
   0
              0
   1
              0
   2
   3
              1
   4
 3637
              0
 3638
              1
3639
3640
              1
              0
3641
3642 rows × 1 columns
С использованием метода train_test_split разделим выборку на обучающую и тестовую
Ввод [12]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_sta
Ввод [13]:
```

```
print("X_train:", X_train.shape)
print("X_test:", X_test.shape)
print("Y_train:", Y_train.shape)
print("Y_test:", Y_test.shape)
```

```
X_train: (2731, 6)
X_test: (911, 6)
Y_train: (2731, 1)
Y_test: (911, 1)
```

Обучение модели с произвольным гиперпараметром

```
Ввод [14]:
```

```
cl1_1 = KNeighborsClassifier(n_neighbors=70)
cl1_1.fit(X_train, Y_train)
target1_0 = cl1_1.predict(X_train)
target1_1 = cl1_1.predict(X_test)
accuracy_score(Y_train, target1_0), accuracy_score(Y_test, target1_1)
```

```
Out[14]:
```

(0.8524350054924936, 0.858397365532382)

Построение и оценка качества модели

```
Ввод [15]:
```

```
scores = cross_val_score(KNeighborsClassifier(n_neighbors=2), X, Y, cv=3)
scores
```

Out[15]:

```
array([0.92421746, 0.92998353, 0.91433278])
```

Усредненное значение метрики ассuracy для 3 фолдов

Ввод [16]:

```
np.mean(scores)
```

Out[16]:

0.9228445908841296

Подбор гиперпараметра

Произведем подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации

Ввод [17]:

```
n_range = np.array(range(1, 50, 2))
tuned_parameters = [{'n_neighbors': n_range}]
n_range
```

```
Out[17]:
```

```
array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49])
```

Ввод [18]:

```
%%time
clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='accur
clf_gs.fit(X, Y)
clf_gs.best_params_
CPU times: user 14.7 s, sys: 85.1 ms, total: 14.8 s
```

```
CPU times: user 14.7 s, sys: 85.1 ms, total: 14.8 s
Wall time: 14.7 s
Out[18]:
{'n_neighbors': 1}
```

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

Ввод [19]:

```
plt.plot(n_range, clf_gs.cv_results_["mean_train_score"]);
```


Очевидно, что для K=1 на тренировочном наборе данных мы находим ровно ту же точку, что и нужно предсказать, и чем больше её соседей мы берём — тем меньше точность. Посмотрим на тестовом наборе данных

Ввод [20]:

```
plt.plot(n_range, clf_gs.cv_results_["mean_test_score"]);
```


Проверим получившуюся модель:

```
Ввод [21]:
```

```
cl1_2 = KNeighborsClassifier(**clf_gs.best_params_)
cl1_2.fit(X_train, Y_train)
target2_0 = cl1_2.predict(X_train)
target2_1 = cl1_2.predict(X_test)
accuracy_score(Y_train, target2_0), accuracy_score(Y_test, target2_1)
```

Out[21]:

```
(1.0, 0.9374313940724479)
```

Ввод []: