数量形状位点定位与全基因组关联分析

日期: 2022-12-7

实验者: 生信 2001 张子栋

MarkdownNotes/软件第6次作业.md at main · Bluuur/MarkdownNotes (github.com) 生物信息学原理/软件第6次作业.md · blur/MarkdownNotes - 码云 - 开源中国 (gitee.com)

实验目的

- 1. 了解 R 语言工作环境
- 2. 熟悉 QTL 和 GWAS 分析的一般流程
- 3. 掌握至少一种常用 QTL 和 GWAS 分析软件

实验内容

- 1. 使用 R 包 qtl2 进行 QTL 分析
- 2. 使用软件 TASSEL 进行 GWAS 分析
- 3. 熟悉基因型、表型等数据格式,掌握 QTL 和 GWAS 分析结果的解读和可视化

实验操作

- 1. 利用玉米 MAGIC 群体数据(<u>https://github.com/rqtl/qtl2data/blob/main/MaizeMAGIC/maize magic.zip</u>),根据前面 R/qtl2 使用方法和流程,使用 R/qtl2 完成以下 QTL 分析:
 - 1. 本群体包含哪些数据?
 - 基因型标记文件 maize_magic_geno.csv
 - 表型文件 maize_magic_pheno.csv
 - 遗传图谱 maize_magic_gmap.csv
 - 物理图谱 maize_magic_pmap.csv
 - 表型协变量文件 maize_magic_phenocovar.csv
 - 2. 绘制株高 (PH) 的 LOD 曲线

3. 给出株高对应的 QTL

```
      1
      lodindex lodcolumn chr
      pos
      lod
      ci_lo
      ci_hi

      2
      4
      2
      PH
      6
      12.28468
      15.910467
      11.009798
      12.30230

      3
      5
      2
      PH
      8
      90.14981
      10.979198
      79.445938
      93.54998

      4
      6
      2
      PH
      10
      13.94991
      7.916526
      9.585541
      43.14987
```

代码实现:

```
1 > # 安装 R 包并导入
2 > if (! require ('BiocManager')){
        install.packages("BiocManager")
4
         library("BiocManager")
   +
5
   + }
   > if (! require ('qt12')){
6
7
        install.packages("qt12")
         library("qt12")
8
   +
9
   + }
10
   > # 加载数据
11 > maizeMagic <- read_cross2(file.choose())</pre>
12 > # 查看数据
13 > summary(maizeMagic)
   Object of class cross2 (crosstype "genril9")
14
15
16 Total individuals
                                529
17 No. genotyped individuals
                               529
   No. phenotyped individuals
                               529
18
19 No. with both geno & pheno 529
20
21 No. phenotypes
                                  4
   No. covariates
                                 0
22
23 No. phenotype covariates
                                1
24
25 No. chromosomes
                                 10
26 Total markers
                             41324
27
28 No. markers by chr:
     1
              3 4 5 6 7 8 9 10
29
          2
30 6594 4788 4675 4663 4458 3295 3380 3567 3025 2879
31
  > # 标记插入遗传图, 获取假定 QTL; 以 1 cM 为间隔插入伪标记
   > maizeMagicMap <- qtl2::insert_pseudomarkers(map = maizeMagic$gmap,</pre>
32
   step = 1)
33
   > # 计算基因型概率, 假定基因分型误差概率 0.002
   > maizeMagicPr <- qtl2::calc_genoprob(cross = maizeMagic, map =</pre>
   maizeMagicMap, error_prob = 0.002)
35 > # 可视化查看基因型效率
36
   > # 参数以此为 基因型效率, marker 图, 要查看的个体编号, 要查看的染色体号
   > # 染色体的坐标在横轴上, 基因型在纵轴上, 较高的基因型概率表示为暗色
37
38
   > qtl2::plot_genoprob(maizeMagicPr, maizeMagicMap, ind = 1, chr = 1)
39
   > # 运用 Haley-Knott regression 进行基因组扫描
40
   > # 可加协变量, 此处不加, 输出 LOD 分数矩阵 (positions \times phenotypes)
41 > maizeMagicScan1Out <- qtl2::scan1(maizeMagicPr, maizeMagic$pheno,
   cores = 0)
```

```
42 > # 绘制 LOD 曲线, 指定一列 表型 PH
43
   > qtl2::plot_scan1(maizeMagicScan1Out, map = maizeMagicMap, lodcolumn =
   > # 查看对 PH 而言 LOD 分数最高的伪标记, LOD 得分最高的基因型标记
44
45
   > which.max(maizeMagicScan1Out[, "PH"])
46
   PZE.106020122
           26298
47
48 > # permutation test 说明scan结果的统计学意义
   > # 识别随机下可能出现的最大 LOD 分数, 使用 1000 种排列
49
50 > maizeMagicOperm <- qt12::scan1perm(genoprobs = maizeMagicPr, pheno =</pre>
   maizeMagic$pheno, n_perm = 1000)
51 > # 显著性阈值, 默认 5% 水平
   > # PH 为 7.45 期望 LOD 得分低于 7.45 是偶然事件
52
53 > summary(maizeMagicOperm, alpha = 0.05)
   LOD thresholds (1000 permutations)
55
          PS
             PH
                   EH GYrad
56 0.05 7.33 7.53 7.82 7.75
57
   > # 寻峰, 95% 置信区间
   > thr <- summary(maizeMagicOperm)</pre>
58
59 > maizeMagicPeaks <- qtl2::find_peaks(scan1_output = maizeMagicScan1Out,</pre>
   map = maizeMagicMap, threshold = thr, prob = 0.95, expand2markers =
   FALSE)
60
   > # 查看 PH 表型对应多少满足阈值的峰(QTL), 分别在哪
61 > maizeMagicPeaks[maizeMagicPeaks$lodcolumn == "PH", ]
    lodindex lodcolumn chr
62
                               pos
                                         lod
                                                ci_lo
                                                         ci_hi
63 4
          2
                   PH 6 12.28468 15.910467 11.009798 12.30230
           2
                    PH 8 90.14981 10.979198 79.445938 93.54998
64
   5
                    PH 10 13.94991 7.916526 9.585541 43.14987
           2
65 6
```

2. 使用 TASSEL 对自带数据集(安装目录下 TutorialData 子目录中),对其它两个性状(EarHT 和 EarDia)中任意一个,进行关联分析。

至少需要给出以下结果:

- 1. 与 EarHT 或 EarDia 最显著关联的 Top 5 位点信息 (包括染色体号、位置和 P 值)
 - 选择性状为 EarHT

Trait	Marker	Chr	Pos	df	F	p 🕶	add_effect	add_F	add_p	dom_effect	dom_F	dom_p	errordf	MarkerR2	Genetic Var	Residual Var	-2LnLikelih
Ea	HT None			0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	263	NaN	131.93544	119.64002	2244.66218
Ea	HT PZA01597.1	10	61603191	2	1.1403E-4	0.99989	6.5767E-4	2.3484E-7	0.99961	-1.5862E-1	2.2805E-4	0.98796	251.0	9.167E-7	131.93544	119.64002	2244.66218
Ea	HT PZA00106	1	10069145	2	2.1144E-4	0.99979	0.01187	4.4577E-5	0.99468	-2.3476E-1	3.9181E-4	0.98422	260.0	1.6072E-6	131.93544	119.64002	2244.66218
Ea	HT PZB01389.1	8	134723842	1	1.0094E-7	0.99975	NaN	NaN	NaN	NaN	NaN	NaN	262.0	3.7753E-10	131.93544	119.64002	2244.66218
Ea	HT PZA03613.1	1	2914171	2	3.4808E-4	0.99965	0.03152	3.9754E-4	0.98411	0.17382	2.8005E-4	0.98666	264.0	2.5792E-6	131.93544	119.64002	2244.66218
Ea	HT PZA01688.3	3	223670423	2	4.1419E-4	0.99959	0.01811	1.5051E-4	0.99022	-2.6208E-1	6.3325E-4	0.97994	256.0	3.1298E-6	131.93544	119.64002	2244.66218

- 2. 两张图 (曼哈顿图、QQ图) 及相应的解释 (绘图结果说明什么)
 - 曼哈顿图
 - 一号染色体 五号染色体出现明显堆积峰, 说明这些区域的基因型与 EarHT 表型关联性强, 可以对其进行进一步分析.

■ QQ图

■ QQ 图后半部分脱离均匀分布, 说明基因型与表型之间存在显著相关的自然选择作用.

讨论

在这次上机操作中,熟悉了 R/qtl 包, TASSEL 的使用.