Exercises

Introduction to Verification

Exercise Sheet 4 (for 2.5.2023)

Exercise 4.1

Prove that the language noncontainment problem for finite automata ("Given two finite automata \mathcal{A} and \mathcal{B} , does $L(\mathcal{A}) \not\subseteq L(\mathcal{B})$ hold?") is PSPACE-hard.

Exercise 4.2

Prove that the language nonequivalence problem for finite automata ("Given two finite automata \mathcal{A} and \mathcal{B} , does $L(\mathcal{A}) \neq L(\mathcal{B})$ hold?") is PSPACE-complete.

Exercise 4.3

Consider the following regular properties for *finite paths* of the Kripke structure \mathcal{K}_1 shown below.

- (i) When the traffic light is green, then it will *finally* be red.
- (ii) When the traffic light is green, then it will be red after exactly two steps.
- (iii) Everytime the traffic light is red, it was preceded by a yellow phase.

- (a) For each of the properties (i), (ii), and (iii), give a corresponding finite automaton over the alphabet $\mathcal{P}(\mathbb{P})$ that expresses the property, where $\mathbb{P} = \{red, green, yellow\}$.
- (b) Can you give an algorithm that decides whether some finite path of \mathcal{K}_1 starting in ω_2 satisfies these properties?
- (c) Do all finite paths of \mathcal{K}_1 starting in ω_2 satisfy these properties?

Exercise 4.4

Consider the Kripke structure \mathcal{R}_3 over $\mathbb{P} = \{p, q, r\}$ depicted below. For the following statements, can you give an algorithm that decides whether \mathcal{R}_3 satisfies them?

- (i) In every path of \mathcal{R}_3 , the propositional variable p always holds true.
- (ii) There is some path in \mathcal{K}_3 , where p is as often true as q is true.
- (iii) It is *always possible* to reach a world where r holds in \mathcal{K}_3 .

