S	
30	Reading Charter 1 2/16/28
3	1.1 Radioacone Decay
	-A typical example of niclear isotype 235U (vrantim nicleus that contains 143 neutrons and 92 protons).
	- Process of radioactive devay is random in the following sense.
	Late number of 235V nuclei.
	The North is the number of U nuclei that are present in a sample at time t.
	$\frac{dNU = -NU}{dt}$
	where T is the "tyme constant" for decay. For can then show by direct Sub;
3	$N_{c} = N_{c}(0)e^{-t}$
3	1.2 A Numerical Approach
2	method for solving this Problem

- Our soal is to obtain Ne as a function of t. - Given the value of Nu at a Particular Value of t, we want to estimate the Value at later +mes(intral value Problems We can use Taylor expansion for No N((1+)=N(0) + dN 1+ 1 do N (1+) 07 Where N(0) is the value of our function at time t=0, No(At) is its value of t = At, and de Watnes are evaluated at + =0. - While programming, live handwriting is a highly individual process, there are certain recommended practices.

- It is important that we be abled to inderstand programs written by cothers, as well as by ourselves.

- The first thing you should do is think. Construct an outline of how the problem is to be solved.

- Example 1.1

- Declare necessary variables that areas of thinks are problems. the Problem is to be solved - Example 1.1

-Do actual cerculeiton. - Store results. -Note that this is the main program. Consider how this looks in Fortran. C. Similation of radioactive decay. C Program to accomp & "Computational Phys by N. Grorden Of H. Nakanishi Program decey declare arrays double Precision n_cramicallol, +(100) cuse subroutines to do the nork call intialize(n-viannm, t, +ay, dt, n) can calculate(n-vrannm, t, tav, dt, n) call Store(n-crannmitin) 200h end Example 1.2 Pseudocode for subrountme Prompt for and assign Ne(0), T, and At - Set instal value of time, t(0). - Set numbers of time steps for care. Fortran version of subjoutine.

