

FIG. 1B

FIG. 1A

2/13

FIG.2

FIG.3

FIG.4A

$G_c(\text{gate}) \ll G_c(\text{control gate})$

FIG.4B

$$G_c(\text{gate}) = G_c(\text{control gate})$$

FIG.4C

$G_c(\text{gate}) \gg G_c(\text{control gate})$

FIG.5C

FIG.5B

FIG.5A

G_c(gate) << G_c(control gate)

G_c(gate) = G_c(control gate)

G_c(gate) >> G_c(control gate)

5/13

FIG.6A

FIG.6B

6/13

FIG.7

FIG.8

7/13

FIG.9

FIG.10

8/13

FIG.11

FIG.12

Title: METAL OXIDE SEMICONDUCTOR TRANSISTOR
Inventors: Yutaka ARIMA
Atty Docket No.: 402952
Leydig, Voit & Mayer 202-737-6770

9/13

FIG. 13

10/13

FIG. 14

FIG. 15

11/13

FIG.16A FIG.16B FIG.16C

$V_{cg} > V_{tmax}$

$V_{tmax} > V_{cg} > V_{tmiddle}$

$V_{tmiddle} > V_{cg} > V_{tmin}$

12/13

FIG. 17

FIG. 18

13/13

FIG.19

