

EEL7104 – PLANEJAMENTO E REGULAÇÃO DE MERCADOS DE ENERGIA ELÉTRICA UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA

PROF.: ERLON CRISTIAN FINARDI

SEMESTRE: 2022/1

ESTUDO DE CASO - TRABALHO COMPUTACIONAL

VITOR DIAS JAVORNIK

FLORIANÓPOLIS, 2022

Sumário

1.	Introdução	3
2.	Questão 1 e 2 – Sorteio e execução de rotina	4
3.	Questão 3 e 4 – Cálculo do EM, EMT e contabilização no mercado de cu	ırto
pra	zo, com e sem contratos	6
4.	Questão 7	7

1. Introdução

O seguinte trabalho constitui em simular um sistema elétrico constituído por três barras, de acordo com o esquema abaixo:

Figura 1 – Diagrama de fluxo de potência

Este foi executado em Python, com o uso das bibliotecas Gurobipy, Pandas e Numpy.

2. Questão 1 e 2 – Sorteio e execução de rotina

O uso da biblioteca Gurobipy foi responsável por permitir a automatização de grande parte do processo, tratando os dados como dataframes.

Os 20 trios foram obtidos por meio da função np.random.randint(), resultando nos casos abaixo:

```
#Demanda Barra 2 - entre 23 e 27

D2 = [26, 26, 24, 23, 25, 23, 24, 23, 23, 25, 23, 23, 25, 24, 26, 25, 26, 26, 25, 26]

#Demanda Barra 3 - entre 20 e 30

D3 = [20, 22, 21, 21, 24, 24, 29, 25, 26, 26, 20, 24, 21, 28, 20, 22, 22, 26, 29, 29]

#Afluência - entre 0 e 100

afl = [72, 54, 77, 1, 26, 35, 81, 1, 7, 0, 48, 85, 78, 93, 61, 78, 69, 90, 52, 16]
```

Figura 2 – Sorteio de demandas e afluência

Os valores foram congelados para facilitar as comparações durante as análises. Quanto ao melhor custo e melhor despacho, a função foi elaborada da seguinte maneira:

```
def roda_caso(D1,D2,D3,af1):
    m = Model("Custo")
    gt1 = m.addVar( lb=0, ub=30, name="ptermica 1")
   gt2 = m.addVar( lb=0, ub=20, name="ptermica 1")
gt3 = m.addVar( lb=0, ub=100, name="ptermica 3"
   alfa =m.addVar(lb=0, ub=GRB.INFINITY, name="alfa")
   v = m.addVar(lb=0, ub=100, name="volume final")
   y = m.addVar(lb=0, ub=100, name="afluência")
    s = m.addVar(1b=0, ub=1*10e8, name="vertimento")
   q = m.addVar(lb=0, ub=100, name="vazão turbinada")
    f12 = m.addVar(lb=-25, ub=25, name="Fluxo lt:1-2") #f3
   f31 = m.addVar(lb=-50,ub=50,name="Fluxo lt:3-1") #f1
    f23 = m.addVar(1b=-35,ub=35,name="Fluxo 1t:2-3") #f2
   m.addConstr(y == afl, "afluência")
   m.addConstr( v + q + s - y == 0, "balanço de volume")
m.addConstr(q - f12 - f31 == D1, "Barra 1")
m.addConstr(gt1 + gt2 + f12 + f23 == D2, "Barra 2")
   m.addConstr(gt3 + f31 - f23 == D3, "Barra 3")
   m.addConstr(alfa + 5*v >= 320, "corte 1")
   m.addConstr(alfa + 2*v >= 170, "corte 2")
m.addConstr(alfa + 1*v >= 100, "corte 3")
   m.addConstr(alfa >= 0, "corte 4")
   m.setObjective(gt1 +2*gt2 + 5*gt3 + alfa, GRB.MINIMIZE)
   m.params.timelimit = 120
    m.params.MIPGap = 0.0000001
    m.optimize()
    if m.status == GRB.Status.OPTIMAL:
        fobj = m.objval
        GT1 = m.getAttr("x", m.getVars())
        linha = GT1
        linha.append(fobj)
        print("InviáveL!!!")
    return linha, fobj
```

Figura 3 – Função de otimização

A partir disto, um loop foi executado fornecendo os valores de input desta função e gravando a saída em um dataframe.

	gt1	gt2	gt3						f12							receita_ger cu	sto_mercado		EMT
0	30.0	0.0	0.0	58.0		72.0	0.0			-9.0	-29.0	88.0						4.0	0.0
1	30.0	18.0	0.0		54.0	54.0	0.0	0.0	13.0	-13.0		128.0							0.0
2	30.0	0.0	0.0		62.0		0.0			-10.0					21	90.0	90.0	14.0	0.0
3	30.0	14.0	0.0				0.0	0.0	14.0	-14.0		373.0	2.0		21	88.0	88.0		0.0
4	30.0	19.0	0.0	190.0		26.0	0.0	0.0	11.0	-11.0		258.0				98.0	98.0	-160.0	0.0
5	30.0	17.0	0.0	145.0			0.0	0.0	11.0	-11.0		209.0				94.0	94.0	-115.0	0.0
6	30.0	0.0	0.0	54.0	58.0		0.0					84.0						22.0	0.0
7	30.0	18.0	0.0				0.0	0.0	10.0	-10.0									0.0
8	30.0	19.0	0.0				0.0	0.0	9.0	-9.0			2.0			98.0	98.0		0.0
9	30.0	20.0		320.0	0.0	0.0	0.0	0.0	10.0	-10.0								-140.0	0.0
10	30.0	13.0	0.0	80.0	48.0	48.0	0.0	0.0				136.0						-50.0	0.0
11	30.0		0.0	30.0	70.0		0.0			-10.0	-34.0	64.0				94.0	94.0	30.0	0.0
12	30.0	0.0	0.0		62.0	78.0	0.0			-9.0	-30.0				21				0.0
13	30.0	0.0	0.0	29.0	71.0	93.0	0.0					59.0					52.0		0.0
14	30.0		0.0	48.0			0.0	0.0				110.0						-18.0	0.0
15	30.0	0.0	0.0	48.0		78.0	0.0	17.0		-8.0	-30.0	78.0				94.0	94.0		0.0
16	30.0	18.0	0.0		69.0	69.0	0.0	0.0	13.0			98.0							0.0
17	30.0		0.0	30.0	70.0	90.0	0.0	20.0				64.0				104.0	104.0	40.0	0.0
18	30.0	20.0		70.0	50.0	52.0	0.0		10.0	-8.0		150.0				270.0	270.0	120.0	0.0
19	30.0	20.0		240.0		16.0	0.0	0.0	11.0	-11.0						275.0		-60.0	0.0

Figura 4 – Dataframe com EM e EMT (df1)

Cada linha se refere ao resultado gerado a partir de um dos trios executados. Algumas considerações se tornam evidentes ao analisar estes dados:

- Em nenhum caso é encontrado excedente de mercado devido a transmissão
- Todos os CMOs foram idênticos para cada iteração, reforçando mais uma vez que a transmissão não se mostrou uma limitante para o problema.
- O gerador térmico 3 foi utilizado em poucas execuções, sendo seu uso muito associado a afluência na hidrelétrica.
- O uso do gerador térmico 2, embora muito frequente, também está associado em escala a afluência na hidrelétrica, sendo seu uso preferenciado quando esta esteve com pouco volume.

3. Questão 3 e 4 – Cálculo do EM, EMT e contabilização no mercado de curto prazo, com e sem contratos

O cálculo destes foi muito mais facilmente obtido, já que consistia praticamente em manipulação do dataframe já criado. É importante ressaltar que EM e EMT já foram calculados e comentados, sem consideração de contratos, no caso anterior. Abaixo, as contabilizações do mercado a curto prazo para cada gerador e consumidor.

	MCP_gt1	MCP_gt2	MCP_gt3	MCP_gh	MCP_B2	MCP_B3	EMT
0	60.0	0.0	0.0	32.0	52.0	40.0	0.0
1	60.0	36.0	0.0	0.0	52.0	44.0	0.0
2	60.0	0.0	0.0	30.0	48.0	42.0	0.0
3	60.0	28.0	0.0	0.0	46.0	42.0	0.0
4	60.0	38.0	0.0	0.0	50.0	48.0	0.0
5	60.0	34.0	0.0	0.0	46.0	48.0	0.0
6	60.0	0.0	0.0	46.0	48.0	58.0	0.0
7	60.0	36.0	0.0	0.0	46.0	50.0	0.0
8	60.0	38.0	0.0	0.0	46.0	52.0	0.0
9	150.0	100.0	5.0	0.0	125.0	130.0	0.0
10	60.0	26.0	0.0	0.0	46.0	40.0	0.0
11	60.0	4.0	0.0	30.0	46.0	48.0	0.0
12	60.0	0.0	0.0	32.0	50.0	42.0	0.0
13	30.0	0.0	0.0	22.0	24.0	28.0	0.0
14	60.0	32.0	0.0	0.0	52.0	40.0	0.0
15	60.0	0.0	0.0	34.0	50.0	44.0	0.0
16	60.0	36.0	0.0	0.0	52.0	44.0	0.0
17	60.0	4.0	0.0	40.0	52.0	52.0	0.0
18	150.0	100.0	10.0	10.0	125.0	145.0	0.0
19	150.0	100.0	25.0	0.0	130.0	145.0	0.0

Figura 5 – Contabilização a mercado de curto prazo (sem contratos)

	MCP_gt1	MCP_gt2	MCP_gt3	MCP_gh	MCP_B2	MCP_B3	EMT
0	20.0	-20.0	-10.0	-8.0		-10.0	-10.0
1	20.0	16.0	-10.0	-40.0			-10.0
2	20.0	-20.0	-10.0	-10.0		-8.0	-10.0
3	20.0	8.0	-10.0	-40.0	-4.0	-8.0	-10.0
4	20.0	18.0	-10.0	-40.0	0.0		-10.0
5	20.0	14.0	-10.0	-40.0	-4.0		-10.0
6	20.0	-20.0	-10.0			8.0	-10.0
7	20.0	16.0	-10.0	-40.0	-4.0	0.0	-10.0
8	20.0	18.0	-10.0	-40.0			-10.0
9	50.0	50.0	-20.0	-100.0	0.0		-25.0
10	20.0		-10.0	-40.0	-4.0	-10.0	-10.0
11	20.0	-16.0	-10.0	-10.0	-4.0		-10.0
12	20.0	-20.0	-10.0	-8.0	0.0	-8.0	-10.0
13	10.0	-10.0					-5.0
14	20.0	12.0	-10.0	-40.0		-10.0	-10.0
15	20.0	-20.0	-10.0		0.0		-10.0
16	20.0	16.0	-10.0	-40.0			-10.0
17	20.0	-16.0	-10.0	0.0			-10.0
18	50.0	50.0	-15.0	-90.0	0.0	20.0	-25.0
19	50.0	50.0	0.0	-100.0	5.0	20.0	-25.0

Figura 6 - Contabilização a mercado de curto prazo (com contratos)

4. Questão 7

Foi também executada a rotina com as limitações de linhas de transmissão fornecidas para o problema 7. Abaixo, a função em Python.

```
def roda_caso(D1,D2,D3,af1):
   m = Model("Custo")
   gt1 = m.addVar( lb=0, ub=30, name="ptermica 1")
   gt2 = m.addVar( lb=0, ub=20, name="ptermica 1")
   gt3 = m.addVar( lb=0, ub=100, name="ptermica 3")
   alfa =m.addVar(lb=0, ub=GRB.INFINITY, name="alfa")
   v = m.addVar(lb=0, ub=100, name="volume final")
   y = m.addVar(lb=0, ub=100, name="afluência")
   s = m.addVar(lb=0, ub=1*10e8, name="vertimento"
   q = m.addVar(1b=0, ub=100, name="vazão turbinada")
   f12 = m.addVar(lb=-15, ub=15, name="Fluxo lt:1-2") #f3
   f31 = m.addVar(1b=-15,ub=15,name="Fluxo lt:3-1") #f1
   f23 = m.addVar(lb=-10,ub=10,name="Fluxo lt:2-3") #f2
   m.addConstr(y == afl, "afluência")
   m.addConstr( v + q + s - y == 0, "balanço de volume")
m.addConstr(q - f12 - f31 == D1, "Barra 1")
   m.addConstr(gt1 + gt2 + f12 + f23 == D2, "Barra 2")
   m.addConstr(gt3 + f31 - f23 == D3, "Barra 3")
   m.addConstr(alfa + 5*v >= 320, "corte 1")
   m.addConstr(alfa + 2*v >= 170, "corte 2")
   m.addConstr(alfa + 1*v >= 100, "corte 3")
   m.addConstr(alfa >= 0, "corte 4")
   m.setObjective(gt1 +2*gt2 + 5*gt3 + alfa, GRB.MINIMIZE)
   m.params.timelimit = 120
   m.params.MIPGap = 0.0000001
   m.optimize()
    if m.status == GRB.Status.OPTIMAL:
       fobj = m.objval
       GT1 = m.getAttr("x", m.getVars())
       linha = GT1
       linha.append(fobj)
       print("InviáveL!!!")
    return linha, fobj
```

Figura 8 - Função otimização de custo

Seguem abaixo os dataframes resultantes da execução.

Figura 9 – Dataframe com EM e EMT (df)

	MCP_gt1	MCP_gt2	MCP_gt3	MCP_gh	MCP_B2	MCP_B3
0	20.0	-20.0	-10.0	-8.0	2.0	-10.0
1	20.0	16.0	-10.0	-40.0	2.0	-6.0
2	20.0	-20.0	-10.0	-10.0	-2.0	-8.0
3	20.0	8.0	-10.0	-40.0	-4.0	-8.0
4	20.0	18.0	-10.0	-40.0	0.0	-2.0
5	20.0	14.0	-10.0	-40.0	-4.0	-2.0
6	20.0	-20.0	-5.0	-2.0	-2.0	20.0
7	20.0	16.0	-25.0	-100.0	-4.0	0.0
8	20.0	16.0	-20.0	-100.0	-4.0	5.0
9	50.0	50.0	-20.0	-100.0	0.0	5.0
10	20.0	6.0	-10.0	-40.0	-4.0	-10.0
11	20.0	-16.0	-10.0	-10.0	-4.0	-2.0
12	20.0	-20.0	-10.0	-8.0	0.0	-8.0
13	10.0	-10.0	-10.0	-1.0	-1.0	15.0
14	20.0	12.0	-10.0	-40.0	2.0	-10.0
15	20.0	-20.0	-10.0	-6.0	0.0	-6.0
16	20.0	16.0	-10.0	-40.0	2.0	-6.0
17	20.0	-18.0	-20.0	0.0	2.0	5.0
18	20.0	20.0	-5.0	-40.0	0.0	20.0
19	50.0	50.0	0.0	-100.0	5.0	20.0

Figura 10 – Contabilização a mercado de curto prazo (com contratos)

	MCP_gt1	MCP_gt2	MCP_gt3	MCP_gh	MCP_B2	MCP_B3
0	60.0	0.0	0.0	32.0	52.0	40.0
1	60.0		0.0	0.0	52.0	44.0
2	60.0	0.0	0.0	30.0	48.0	42.0
3	60.0	28.0	0.0	0.0		42.0
4	60.0	38.0	0.0	0.0	50.0	48.0
5	60.0	34.0	0.0	0.0		48.0
6	60.0	0.0	20.0	38.0	48.0	145.0
7	60.0		0.0	0.0		125.0
8	60.0			0.0		130.0
9	150.0	100.0		0.0	125.0	130.0
10	60.0		0.0	0.0		40.0
11	60.0	4.0	0.0	30.0		48.0
12	60.0	0.0	0.0	32.0	50.0	42.0
13	30.0	0.0	15.0	19.0	24.0	140.0
14	60.0	32.0	0.0	0.0	52.0	40.0
15	60.0	0.0	0.0	34.0	50.0	44.0
16	60.0		0.0	0.0	52.0	44.0
17	60.0			40.0	52.0	130.0
18	60.0	40.0	20.0	0.0	50.0	145.0
19	150.0	100.0	25.0	0.0	130.0	145.0

Figura 11 – Contabilização a mercado de curto prazo (sem contratos)

É possível extrair insights pertinentes a partir destas tabelas:

- Os CMOs entre todas as barras de cada caso não foram idênticos
- Foi muito mais comum ocorrer o CMO de 5 \$/MWh em pelo menos uma barra
- Desta vez, houve excedentes de mercado devido a transmissão

Mesmo havendo estes "prejuízos" financeiros por limitações de transmissão, observa-se que esta redução drástica na transferência de potência entre as barras ainda permite a resolução do sistema com folga, na maioria dos casos. Ou seja, as LTs do primeiro caso estavam bastante sobre dimensionadas.

5. Conclusão

O principal aprendizado a partir da elaboração deste relatório é sobre como as ferramentas computacionais já disponíveis no mercado podem facilitar análises de sistemas simples (ou não) e rapidamente visualizar cenários que levariam dezenas de horas caso fossem elaborados implementados manualmente.