University of the People

Discrete Mathematics Assignment Instructor: Bhumika Modi Abraham Chileshe

May 21, 2025

1 Partial Ordering Relation

A partial ordering relation is a binary relation that is reflexive, antisymmetric, and transitive. I'll explain this using the "divides" relation (|) on the set $\{1, 2, 3, 6, 12\}$.

In the divides relation, we say that a|b if a divides b evenly (without remainder). Formally, a|b if there exists an integer k such that $b=a \cdot k$.

Let's verify that the divides relation is a partial ordering:

- 1. **Reflexive**: For any element a, a|a (since $a = a \cdot 1$). \checkmark
- 2. **Antisymmetric**: If a|b and b|a, then a=b. \checkmark (If a divides b and b divides a, they must be equal)
- 3. **Transitive**: If a|b and b|c, then a|c. \checkmark (If a divides b and b divides c, then a divides c as well)

Here's the Hasse diagram for this relation:

Explanation of the Hasse Diagram:

- In a Hasse diagram, elements are represented as nodes, and the relation between elements is shown by lines connecting them.
- Elements are arranged vertically according to their "rank" if a|b, then b appears above a.
- We omit drawing edges implied by transitivity and reflexivity to keep the diagram clean.
- In this diagram, 1 is at the bottom since it divides all other numbers.
- 12 is at the top since it's divisible by all other numbers in the set.
- If we can follow a path upward from element a to element b, then a|b.
- Note that not all pairs of elements are comparable. For example, 2 and 3 are not related by the divides relation (neither divides the other), which is why there's no path between them.

2 Transitive Closure of Relations

2.1 Definition and Uses

The transitive closure of a relation R on a set A is the smallest transitive relation that contains R. It's denoted as R^+ or R^* and includes all pairs that are connected directly or indirectly through the relation.

Formally, (a, c) is in the transitive closure of R if either:

- (a, c) is in R, or
- There exists some b such that (a, b) and (b, c) are both in R, or
- There's a longer chain connecting a to c through the relation.

Uses of Transitive Closure:

- 1. Graph Theory: Finding all reachable nodes from a given node in a graph
- 2. Database Systems: Computing all dependencies between attributes
- 3. **Network Analysis**: Determining all nodes that can be reached from a starting point
- 4. **Programming Language Semantics**: Defining the inheritance relation between classes

Example: Consider a relation $R = \{(a, b), (b, c), (d, e)\}$ on the set $\{a, b, c, d, e\}$. R itself is not transitive because (a, b) and (b, c) are in R, but (a, c) is not.

The transitive closure $R^+ = \{(a,b), (b,c), (d,e), (a,c)\}$ R^+ adds (a,c) to make the relation transitive.

2.2 Equivalence Relation

Consider the relation R defined on the set of integers as $R = \{(x, y) : x, y \in \mathbb{Z}, (x - y) \text{ is a multiple of } 11\}.$

To show R is an equivalence relation, I need to prove it's reflexive, symmetric, and transitive.

- 1. **Reflexive**: For any $x \in \mathbb{Z}$, (x x) = 0, which is a multiple of 11 $(0 = 0 \times 11)$. So $(x, x) \in R$ for all x. \checkmark
- 2. **Symmetric**: If $(x, y) \in R$, then (x y) is a multiple of 11. This means (x y) = 11k for some integer k. Then (y x) = -(x y) = -11k = 11(-k), which is also a multiple of 11. So $(y, x) \in R$. \checkmark

3. **Transitive**: If $(x,y) \in R$ and $(y,z) \in R$, then: $(x-y) = 11k_1$ for some integer k_1 $(y-z) = 11k_2$ for some integer k_2 Adding: $(x-y) + (y-z) = (x-z) = 11k_1 + 11k_2 = 11(k_1+k_2)$ So (x-z) is a multiple of 11, which means $(x,z) \in R$. \checkmark

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

2.3 Equivalence Class of 0

The equivalence class of 0, denoted [0], is the set of all integers y such that $(0, y) \in R$. This means (0 - y) = -y must be a multiple of 11.

So y = 11k for some integer k. Therefore, $[0] = \{\dots, -33, -22, -11, 0, 11, 22, 33, \dots\} = \{11k : k \in \mathbb{Z}\}$

2.4 Number of Equivalence Classes

For the relation R, two integers x and y are in the same equivalence class if and only if (x - y) is a multiple of 11.

We can classify any integer by its remainder when divided by 11. There are exactly 11 possible remainders: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

So there are exactly 11 distinct equivalence classes:

$$[0] = \{x \in \mathbb{Z} : x \equiv 0 \pmod{11}\}$$

$$[1] = \{x \in \mathbb{Z} : x \equiv 1 \pmod{11}\}$$

$$[2] = \{x \in \mathbb{Z} : x \equiv 2 \pmod{11}\}$$

$$\vdots$$

$$[10] = \{x \in \mathbb{Z} : x \equiv 10 \pmod{11}\}$$

3 Mathematical Induction Proof

Prove that for all positive integers $n \ge 1$, 5n > 4n using mathematical induction. Base Case (n = 1):

$$5(1) = 5$$

 $4(1) = 4$
 $5 > 4$ \checkmark

Inductive Hypothesis: Assume that for some $k \ge 1$, 5k > 4k. Inductive Step: Need to prove that 5(k+1) > 4(k+1)

$$5(k+1) = 5k + 5$$
$$4(k+1) = 4k + 4$$

From the inductive hypothesis, we know 5k > 4k.

Adding 5 to both sides: 5k + 5 > 4k + 5

Since 5 > 4, we know 4k + 5 > 4k + 4

Therefore, by transitivity: 5k + 5 > 4k + 4

So 5(k+1) > 4(k+1)

By the principle of mathematical induction, 5n > 4n holds for all positive integers $n \ge 1$.

4 Relation $R = ' \ge '$ on a Set of Five Integers

Let's choose the set $A = \{5, 8, 13, 21, 34\}$ (five integers from the Fibonacci sequence).

The relation $R = ' \ge '$ (greater than or equal to) is defined on A.

4.1 Diagrammatical Representation of R on A

4.2 Adjacency Matrix for R on A

For the relation $R=`\ge'$ on the set $A=\{5,8,13,21,34\}$, the adjacency matrix is:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

In this matrix:

- Row i and column j contain a 1 if element $i \ge$ element j
- Row i and column j contain a 0 if element i < element j

For example:

- The entry at row 8, column 5 is 1 because $8 \ge 5$ (true)
- The entry at row 5, column 8 is 0 because $5 \ge 8$ (false)
- All diagonal entries are 1 because every number is equal to itself $(x \ge x)$

4.3 Hasse Diagram for $R = ' \ge '$ on A

Explanation of the Hasse Diagram:

- In a Hasse diagram for the ≥ relation, larger elements appear higher in the diagram.
- The diagram shows the transitive reduction of the relation, omitting edges that can be inferred through transitivity.
- For this relation $R = ' \ge '$ on $A = \{5, 8, 13, 21, 34\}$, the elements form a total ordering.
- The diagram shows a single vertical chain with 34 at the top (greatest) and 5 at the bottom (smallest).
- Each element is connected only to its immediate predecessor/successor, as the other relationships can be inferred through transitivity.
- $34 \ge 21 \ge 13 \ge 8 \ge 5$, and from this we can infer all other relations like 34 > 5.

This Hasse diagram illustrates that ' \geq ' is a total order on this set, meaning every pair of elements is comparable (either $a \geq b$ or $b \geq a$ for any a, b in the set).

References

- [1] Rosen, K. H. (2019). Discrete Mathematics and Its Applications (8th ed.). McGraw-Hill Education.
- [2] Grimaldi, R. P. (2017). Discrete and Combinatorial Mathematics: An Applied Introduction (5th ed.). Pearson.
- [3] Epp, S. S. (2019). Discrete Mathematics with Applications (4th ed.). Cengage Learning.