

# ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing

- P. Balaji, Argonne National Laboratory
- W. Feng and J. Archuleta, Virginia Tech
- H. Lin, North Carolina State University

## Overview

- Biological Problems of Significance
  - Discover missing genes via sequence-similarity computations (i.e., mpiBLAST, <a href="http://www.mpiblast.org/">http://www.mpiblast.org/</a>)
  - Generate a complete genome sequence-similarity tree to speedup future sequence searches
- Our Contributions
  - Worldwide Supercomputer
    - Compute: ~12,000 cores across six U.S. supercomputing centers
    - Storage: 0.5-petabyte at the Tokyo Institute of Technology
  - ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing
    - Decouples computation and I/O and drastically reduces I/O overhead
    - Delivers 90% storage bandwidth utilization
      - A 100x improvement over (vanilla) mpiBLAST







## Approach: ParaMEDIC Framework









## The ParaMEDIC Paradigm

- A semantics-based data compression/decompression approach for distributed I/O
  - ParaMEDIC "understands" the output and transmits orders-ofmagnitude smaller summarization (metadata) of the output
  - Application-level approach vs. System-level approach
    - Trading portability for performance
    - Serves a specific class of applications
- Example applications that benefit from ParaMEDIC
  - ParaMEDIC accelerated mpiBLAST by more than 25-fold
  - Remote visualization on TeraGrid optimized by 4 to 6-fold
  - Applicable for most applications that have semantic-aware data!
    - Bioinformatics (e.g. ClustalW, MUSCLE), Geophysics







# Addressing the Storage Challenge Criteria

## Performance and Scalability

- Utilized 90% of the storage bandwidth
  - 100x improvement compared to (vanilla) mpiBLAST
- Results show scalability up to 90% of available storage bandwidth

#### Effective Use of Resources

- Compute:
  - Earlier, compute resources had to wait idly for long, waiting for I/O
  - ParaMEDIC improved compute resource utilization to nearly 100%
- Storage: Approximately 90% utilization of storage bandwidth

#### Innovation

- A semantics-based data compression/decompression approach for distributed I/O
  - A new approach to enable worldwide supercomputing!







## **Utility**

- Analysis of the Similarity Tree
  - Expect that replicons (i.e., chromosomes) will match other replicons reasonably well
  - But many replicons do not match many other replicons
    - 25% of all replicon-replicon searches do not match at all!











## **Utility**

- Semantic-aware metadata gives scientists 2.5\*10<sup>14</sup> searches at their finger-tips
  - All metadata results from all searches can fit on iPod Nano
  - "Semantically compressed" 1 Petabyte into 4 Gigabytes (10<sup>6</sup>X)
    - Usual compression results in 1 PB into 300 TB (3X)







