Augmented Lagrangian Preconditioner for Linear Stability Analysis of incompressible fluid flows on large configurations

J.Moulin¹, J-L. Pfister¹, O.Marquet¹, P. Jolivet²

¹ Office National d'Etudes et de Recherches Aérospatiales

² ENSEEIHT – Institut de Recherche en Informatique de Toulouse

Funded by ERC Starting Grant

FreeFem++ Days, Paris, 14-15 december 2017

ONERA

THE FRENCH AEROSPACE LAB

What is Linear Stability Analysis?

One wants to know if some steady solution of equation (1) is temporally stable or unstable:

$$\frac{\partial \boldsymbol{q}}{\partial t} = \boldsymbol{\mathcal{R}}(\boldsymbol{q}) \tag{1}$$

Method: Linear Stability Analysis

<u>Step 1</u>: compute a steady solution

$$\mathcal{R}(q_h) = 0$$

<u>Step 2</u>: test its stability for small monochromatic perturbations $\hat{q}(x)e^{\sigma t}$ around the steady solution q_h

$$\sigma M \widehat{q} = J(q_b) \widehat{q}$$

Mass matrix (spatial discretization)

Jacobian matrix:

 (q_b)

Growth rate

$$\lambda = \Re[\sigma]$$

Frequency

$$\omega = \Im[\sigma]$$

A classical example

From [Goharzadeh & Molki, 2015]

Typical question:

What is the critical Reynolds number above which the von Karman vortex street appears?

A classical example

Step 1: compute a steady solution

Steady Navier-Stokes solution (Re = 50) [Sipp et al, 2010]

A classical example

Step 1: compute a steady solution

Steady Navier-Stokes solution (Re = 50) [Sipp et al, 2010]

Step 2: test its stability for small monochromatic perturbations $\widehat{q}(x)e^{\sigma t}$ around the steady solution q_b

$$\sigma M\widehat{\boldsymbol{q}} = J(\boldsymbol{q_b})\widehat{\boldsymbol{q}}$$

$$\lambda = \Re[\sigma]$$

$$\omega=\Im[\sigma]$$

A classical example

Step 1: compute a steady solution

Steady Navier-Stokes solution (Re = 50) [Sipp et al, 2010]

Step 2: test its stability for small monochromatic perturbations $\widehat{q}(x)e^{\sigma t}$ around the steady solution q_b

$$\sigma M \widehat{\boldsymbol{q}} = J(\boldsymbol{q_b}) \widehat{\boldsymbol{q}}$$

$$\lambda = \Re[\sigma]$$

$$\omega = \Im[\sigma]$$

Why Linear Stability Analysis?

<u>Some nice features:</u>

- o Easy to determine a threshold value (sign of $\Re[\sigma]$)
- Less expensive than nonlinear time-integration

But some computational burdens:

- Find a (not necessarily stable) steady solution: Newton method
 - Multiple inversions of J
- Find internal eigenvalues of generalized EV problems: Krylov-Schur + shift-and-invert
 - \blacktriangleright Multiple inversions of J-sM, where s is the shift

How to invert matrix of the type J - s M efficiently?

- > For reasonably small configurations: direct sparse solvers (MUMPS, SUPERLU, etc.)
- > For large configurations: iterative method (GMRES, BiCGSTAB, ...) + good preconditioner

Linearized incompressible Navier-Stokes operator (i.e. $J-s\,M$):

Once discretized with FE: classical saddle-point problem

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

How to precondition this?

- SIMPLE [Patankar 1980]
- Stokes Preconditioner [Tuckerman, 1989] (based on adaptation of existing time-stepping code)
- Pressure Convection Diffusion [Silvester et al. 2001]
- Least-Squares Commutator [Elman et al. 2006]
- Augmentated Lagrangian [Benzi and Olshanskii 2006], [Heister and Rapin 2013]

Linearized incompressible Navier-Stokes operator (i.e. J - s M):

Once discretized with FE: classical saddle-point problem

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

How to precondition this?

- SIMPLE [Patankar 1980]
- o Stokes Preconditioner [Tuckerman, 1989] (based on adaptation of existing time-stepping code)
- o Pressure Convection Diffusion [Silvester et al. 2001]
- o Least-Squares Commutator [Elman et al. 2006]
- \circ Augmentated Lagrangian [Benzi and Olshanskii 2006], [Heister and Rapin 2013]

Overview

- 1 Augmentation-based preconditioners
- 2 Performances

- 3 FreeFem++ parallel implementation
- 4 Parallel 3D numerical examples
- 5 Some further refinement ...

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \longrightarrow \begin{pmatrix} A_{\gamma} & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f_{\gamma} \\ g \end{pmatrix} \qquad A_{\gamma} = A + \gamma B^T W^{-1} B$$

$$f_{\gamma} = f + \gamma B^T W^{-1} g$$

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \longrightarrow \begin{pmatrix} A_{\gamma} & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f_{\gamma} \\ g \end{pmatrix} \qquad A_{\gamma} = A + \gamma B^T W^{-1} B$$

$$f_{\gamma} = f + \gamma B^T W^{-1} g$$

Grad-Div augmentation (variational augmentation)

$$\int_{\Omega} s \, \boldsymbol{u} \cdot \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \boldsymbol{u} + Re^{-1} \nabla \boldsymbol{u} : \nabla \boldsymbol{u} - p \nabla \cdot \boldsymbol{u}$$

$$+ \int_{\Omega} \gamma (\nabla \cdot \boldsymbol{u}) (\nabla \cdot \boldsymbol{u}) = 0$$

$$- \int_{\Omega} (\nabla \cdot \boldsymbol{u}) \boldsymbol{q} = 0$$

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \longrightarrow \begin{pmatrix} A_{\gamma} & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f_{\gamma} \\ g \end{pmatrix} \qquad A_{\gamma} = A + \gamma B^T W^{-1} B$$

$$f_{\gamma} = f + \gamma B^T W^{-1} g$$

Grad-Div augmentation (variational augmentation)

$$\int_{\Omega} s \, \boldsymbol{u} \cdot \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \boldsymbol{u} + Re^{-1} \nabla \boldsymbol{u} : \nabla \boldsymbol{u} - p \nabla \cdot \boldsymbol{u}$$

$$+ \int_{\Omega} \gamma(\nabla \cdot \boldsymbol{u}) (\nabla \cdot \boldsymbol{u}) = 0$$

$$- \int_{\Omega} (\nabla \cdot \boldsymbol{u}) \boldsymbol{q} = 0$$

Augmented Lagrangian leaves the discrete solution unchanged Grad-Div leaves the continuous solution unchanged

Augmented problems

Augmented Lagrangian (algebraic augmentation)

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \longrightarrow \begin{pmatrix} A_{\gamma} & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f_{\gamma} \\ g \end{pmatrix} \qquad A_{\gamma} = A + \gamma B^T W^{-1} B$$

$$f_{\gamma} = f + \gamma B^T W^{-1} g$$

Grad-Div augmentation (variational augmentation)

$$\int_{\Omega} s \, \boldsymbol{u} \cdot \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \boldsymbol{u} + Re^{-1} \nabla \boldsymbol{u} : \nabla \boldsymbol{u} - p \nabla \cdot \boldsymbol{u}$$

$$+ \int_{\Omega} \gamma (\nabla \cdot \boldsymbol{u}) (\nabla \cdot \boldsymbol{u}) = 0$$

$$- \int_{\Omega} (\nabla \cdot \boldsymbol{u}) \boldsymbol{q} = 0$$

Augmented Lagrangian leaves the discrete solution unchanged Grad-Div leaves the continuous solution unchanged

Classical vs. modified version

In both cases, the same block structure arises:

$$\begin{pmatrix} A_{\gamma} & B^{T} \\ B & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ BA_{\gamma}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{\gamma} & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A_{\gamma}^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

$$S = -BA_{\gamma}^{-1}B^{T}$$

Classical preconditioner

$$\mathcal{P}_{class} = DU = \begin{pmatrix} A_{\gamma} & B^{T} \\ 0 & S \end{pmatrix}$$

with

$$S^{-1} \simeq (\text{Re}^{-1} + \gamma) M_p^{-1} - s(B M_u B^T)^{-1}$$

 $A_{\gamma}^{-1} \simeq \text{it's complicated} \dots$

Main features:

- Mesh optimality
- Reynolds optimality
- The higher γ , the less iterations $(A_{\gamma}^{-1} \text{ ouch }!)$

Classical vs. modified version

In both cases, the same block structure arises:

$$\begin{pmatrix} A_{\gamma} & B^{T} \\ B & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ BA_{\gamma}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{\gamma} & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A_{\gamma}^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

$$S = -BA_{\gamma}^{-1}B^{T}$$

Classical preconditioner

$$\mathcal{P}_{class} = DU = \begin{pmatrix} A_{\gamma} & B^{T} \\ 0 & S \end{pmatrix}$$

with

$$S^{-1} \simeq (\text{Re}^{-1} + \gamma) M_p^{-1} - s(B M_u B^T)^{-1}$$

 $A_{\nu}^{-1} \simeq \text{it's complicated} \dots$

Main features:

- Mesh optimality
- Reynolds optimality
- \triangleright The higher γ , the less iterations (A_{γ}^{-1} ouch !)

Modified preconditioner

$$\mathcal{P}_{modif} = \begin{pmatrix} \begin{bmatrix} A_{11,\gamma} & A_{12,\gamma} \\ 0 & A_{22,\gamma} \end{bmatrix} & B^T \\ 0 & S \end{pmatrix}$$
with

$$S^{-1} \simeq (\text{Re}^{-1} + \gamma) M_p^{-1} - s(BM_u B^T)^{-1}$$

 $A_{ii,\gamma}^{-1} \simeq \text{off-the-shelf}$ algebraic multigrid

Main features:

- Mesh optimality
- > Reynolds dependent
- \triangleright Exists an optimal and case dependent γ

Classical vs. modified version

In both cases, the same block structure arises:

$$\begin{pmatrix} A_{\gamma} & B^{T} \\ B & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ BA_{\gamma}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{\gamma} & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A_{\gamma}^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

$$S = -BA_{\gamma}^{-1}B^{T}$$

Classical preconditioner

$$\mathcal{P}_{class} = DU = \begin{pmatrix} A_{\gamma} & B^{T} \\ 0 & S \end{pmatrix}$$
 with

$$S^{-1} \simeq (\text{Re}^{-1} + \gamma) M_p^{-1} - s(BM_u B^T)^{-1}$$

 $A_{\gamma}^{-1} \simeq$ it's complicated ...

Main features:

- Mesh optimality
- Reynolds optimality
- The higher γ , the less iterations (A_{γ}^{-1} ouch !)

Modified preconditioner

$$\mathcal{P}_{modif} = \begin{pmatrix} \begin{bmatrix} A_{11,\gamma} & A_{12,\gamma} \\ 0 & A_{22,\gamma} \end{bmatrix} & B^T \\ 0 & S \end{pmatrix}$$
 with

$$S^{-1} \simeq (\text{Re}^{-1} + \gamma) M_p^{-1} - s(BM_u B^T)^{-1}$$

 $A_{ii,\gamma}^{-1} \simeq \text{off-the-shelf algebraic multigrid}$

Main features:

- Mesh optimality
- > Reynolds dependent
- \triangleright Exists an optimal and case dependent γ

Choice of γ

The choice of a good γ is determinant for the preconditioning efficiency!

<u>Bright side</u>: since the preconditioner is independent of the mesh

Optimal γ can be found on a coarse mesh

Dark side: Optimal γ is problem and Re – dependent

Figure: Influence of $Re \in [10,120]$ on optimal γ for modified Grad-Div preconditioner

CPU time in Newton method

	Velocity	/elocity Pressure -	Full MUMPS			Modified Grad-Div		
Mesh	DOFs	DOFs	Facto (ms)	Reso (m s)	tot/ndof (μs)	Facto (ms)	Reso (m s)	tot/ndof (μs)
32x32	9900	1300	140	0	20	30	50	14
64x64	39000	5000	810	10	27	320	250	20
96x96	88000	11000	2250	40	33	840	580	21
256x256	623400	78200	34480	290	62	8090	4780	25

Averaged timings for 1 Newton iteration (2D lid-driven cavity, Re = 100, $\gamma = 0.1$)

CPU time in Newton method

	Velocity	Pressure	Full MUMPS			Modified Grad-Div		
Mesh	DOFs	DOFs	Facto (ms)	Reso (m s)	tot/ndof (μs)	Facto (ms)	Reso (m s)	tot/ndof (μs)
32x32	9900	1300	140	0	20	30	50	14
64x64	39000	5000	810	10	27	320	250	20
96x96	88000	11000	2250	40	33	840	580	21
256x256	623400	78200	34480	290	62	8090	4780	25

Averaged timings for 1 Newton iteration (2D lid-driven cavity, Re = 100, $\gamma = 0.1$)

	Volocity	Proceuro	Full MUMPS			Modified Grad-Div		
Mesh	Velocity DOFs	Pressure DOFs	Facto (ms)	Reso (m s)	tot/ndof (<i>µs</i>)	Facto (ms)	Reso (m s)	tot/ndof (μs)
8x8x8	9900	1300	3,2	0,01	263	0,6	0,26	112
16x16x16	39000	5000	295	0,3	2675	21	2,8	274

Averaged timings for 1 Newton iteration (3D lid-driven cavity, Re = 100, $\gamma = 0.1$)

CPU time for eigenvalue computation

	Velocity	Pressure	Full MU	MPS	Modified Grad-Div		
Mesh	DOFs	DOFs	Fact [s]	Eig [s]	Fact [s]	Eig [s] (it. inner GMRES)	
32x32	9890	1269	0,27	0,36	0,05	9 (29)	
64x64	39306	4978	1,7	1,3	0,45	34 (30)	
256x256	623482	78192	85	36	15	841 (30)	

Timings for computing 10 ev with ARPACK (2D lid-driven cavity, Re=100, $\gamma=0.1$)

CPU time for eigenvalue computation

	Velocity	Pressure	Full MU	MPS	Modified Grad-Div		
Mesh	DOFs	DOFs	Fact [s]	Eig [s]	Fact [s]	Eig [s] (it. inner GMRES)	
32x32	9890	1269	0,27	0,36	0,05	9 (29)	
64x64	39306	4978	1,7	1,3	0,45	34 (30)	
256x256	623482	78192	85	36	15	841 (30)	

Timings for computing 10 ev with ARPACK (2D lid-driven cavity, Re = 100, $\gamma = 0.1$)

Velocity		Velocity Pressure		MPS	Modified Grad-Div		
Mesh	DOFs	DOFs	Fact [s]	Eig [s]	Fact [s]	Eig [s] (it. inner GMRES)	
8x8x8	14739	729	8	2	1,6	35 (24)	
16x16x16	107811	4913	753	31	57	353 (23)	

Timings for computing 10 ev with ARPACK (**3D** lid-driven cavity, Re = 100, $\gamma = 0.1$)

What to remember?

Iterative strategy will be faster than the direct solver when:
time facto >> time solving

- For Newton method: always the case because the jacobian is new at each iteration
- > For eigenvalue computation: true only for large configurations (3D typically)

Krylov subspace recycling techniques and eigenvalue computation

<u>Idea</u>: In Krylov-Schur + shift-invert, one has to perform many $(J - s M)^{-1}$ with the same matrix!

> Why not use Krylov subspace recycling from one linear solve to the next?

Krylov subspace recycling techniques and eigenvalue computation

<u>Idea</u>: In Krylov-Schur + shift-invert, one has to perform many $(J - s M)^{-1}$ with the same matrix!

> Why not use Krylov subspace recycling from one linear solve to the next?

Figure: Effect of recycling during eigenvalue computation. Test case: 2D

circular cylinder at Re = 50.

Preconditioner: Modified Grad-Div with $\gamma=1$ Eigenvalue solver: ARPACK with shift-invert

PETSc/SLEPc interface (P. Jolivet)

<u>Ingredient 1:</u> handle the preconditioner's block structure

<u>PETSc solution</u>: use of PCFIELDSPLIT preconditioner

<u>FreeFem++ interface</u>:

PETSc/SLEPc interface (P. Jolivet)

<u>Ingredient 2:</u> provide a specific Schur complement approximation

FreeFem++ interface:

```
fespace Wh(th,[P2,P2,P2,P1]); // full space
fespace Qh(th,P1); // pressure space
Wh [u,v,w,p];
Wh [b,bv,bw,bp] = [1.0, 2.0, 3.0, 4.0];
string[int] names(4);
names[0] = "xvelocity";
names[1] = "yvelocity";
names[2] = "zvelocity";
names[3] = "pressure";
Oh pind;
pind[] = 1:pind[].n;
Wh [list, listv, listw, listp]= [0, 0, 0, pind]; // correspondance between Wh and Qh pressure DOFs
matrix[int] S(1);
S[0]=vSchur(Qh,Qh); // Schur complement approximation
// Set PETSc solver
set(A, sparams = " ... ... " ,
       fields = b[], names = names, schurPreconditioner = S, schurList = list[]);
```


PETSc/SLEPc interface (P. Jolivet)

Ingredient 3: provide the inverse Schur complement approx. as a composition of two simple inverses $S^{-1} \simeq (\mathrm{Re}^{-1} + \gamma) M_p^{-1} - s L_p^{-1}$

PETSc solution: use of PCCOMPOSITE preconditioner

FreeFem++ interface:

PETSc/SLEPc interface (P. Jolivet)

Ingredient 4: Recycling of Krylov basis bewteen two consecutive solve $(J - s M)^{-1}$ in SLEPc

PETSc solution: interface HPDDM's solvers with PETSc/SLEPc

FreeFem++ interface:

Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

Test case:

- ➤ 1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
- Re = 100

Solvers:

- o Steady solution: Newton method with FGMRES preconditioned by **Modified Grad-Div** ($\gamma_{optimal}=0.3$)
 - ➤ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
 - ➤ Schur complement sub-block solved with CG preconditionned by jacobi, tol=10⁻³
- Eigenvalues: Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by **Modified Grad-Div** ($\gamma_{optimal} = 0,3$)
 - > velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
 - ➤ Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10⁻³
 - ➤ Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

Test case:

- ➤ 1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
- Re = 100

Solvers:

- Steady solution: Newton method with FGMRES preconditioned by **Modified Grad-Div** ($\gamma_{optimal} = 0.3$)
 - ➤ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
 - ➤ Schur complement sub-block solved with CG preconditionned by jacobi, tol=10⁻³
- Eigenvalues: Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by **Modified Grad-Div** ($\gamma_{optimal} = 0,3$)
 - ➤ velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
 - > Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10⁻³
 - > Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10-3

Steady solution (axial velocity)

Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

Test case:

- 1 million tetrahedrons / Taylor-Hood FE pair / 4,8 millions DOFs
- Re = 100

Solvers:

- o Steady solution: Newton method with FGMRES preconditioned by **Modified Grad-Div** ($\gamma_{optimal}=0.3$)
 - > velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
 - Schur complement sub-block solved with CG preconditionned by jacobi, tol=10⁻³
- Eigenvalues: Krylov-Schur + shift-invert + GCRO-DR(100,30) preconditioned by **Modified Grad-Div** ($\gamma_{optimal} = 0,3$)
 - > velocity sub-blocks solved with FGMRES preconditionned by ASM, overlap=1, tol=10-1
 - ➤ Schur complement sub-block 1 solved with CG preconditionned by jacobi, tol=10⁻³
 - > Schur complement sub-block 2 solved with FMGRES preconditionned by gamg, tol=10⁻³

Marginally stable mode ($\lambda = 0$; $\omega = 0.58$) from [Marquet & Larsson 2015]

Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

Newton Method (average iteration time is represented)

Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

Newton Method (average iteration time is represented)

The loss of scaling for high number of procs is mainly due to the non-optimality of ASM w.r.t. number of domains. To be improved ...

Flow around low aspect-ratio flat plates [Marquet & Larsson 2015]

Newton Method (average iteration time is represented)

Eigenvalue computation (10 ev requested with tolerance 10^{-6})

The loss of scaling for high number of procs is mainly due to the non-optimality of ASM w.r.t. number of domains. To be improved ...

5- Some further refinement ...

Influence of γ on the solution ?

Grad-Div augmentation (variational augmentation)

$$\int_{\Omega} s \, \boldsymbol{u} \cdot \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \boldsymbol{u} + Re^{-1} \nabla \boldsymbol{u} : \nabla \boldsymbol{u} - p \nabla \cdot \boldsymbol{u}$$

$$+ \int_{\Omega} \gamma (\nabla \cdot \boldsymbol{u}) (\nabla \cdot \boldsymbol{u}) = 0$$

$$- \int_{\Omega} (\nabla \cdot \boldsymbol{u}) \boldsymbol{q} = 0$$

Grad-Div leaves the continuous solution unchanged

But ... changes the discrete solution!

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at Re = 50

<u>Spatial discretization</u>: Taylor-Hood (P_2, P_1)

5- Some further refinement ...

Influence of γ on the solution ?

Grad-Div augmentation (variational augmentation)

$$\int_{\Omega} s \, \boldsymbol{u} \cdot \boldsymbol{\check{u}} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \cdot \boldsymbol{\check{u}} + Re^{-1} \nabla \boldsymbol{u} : \nabla \boldsymbol{\check{u}} - p \nabla \cdot \boldsymbol{\check{u}}$$

$$+ \int_{\Omega} \gamma (\nabla \cdot \boldsymbol{u}) (\nabla \cdot \boldsymbol{\check{u}}) = \mathbf{0}$$

$$- \int_{\Omega} (\nabla \cdot \boldsymbol{u}) \boldsymbol{\check{q}} = \mathbf{0}$$

Grad-Div leaves the continuous solution unchanged

But ... changes the discrete solution!

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at Re = 50

Spatial discretization Taylor-Hood (P_2, P_1)

Not a divergence free element !! $\nabla \cdot (P_2) \notin P_1$

5- Some further refinement ...

Influence of γ on the solution ?

What if one uses a divergence-free element?

Scott-Vogelius FE pair : (P_2, P_1^{dc}) s.t. $\nabla \cdot (P_2) \in P_1^{dc}$

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at Re = 50

Spatial discretization: Taylor-Hood (P_2, P_1)

Figure : Eigenvalue spectrum of the flow around a 2D circular cylinder at Re = 50

Spatial discretization: Scott-Vogelius (P_2, P_1^{dc})

A few remarks:

- \circ (P_2, P_1^{dc}) is inf-sup stable only on specific types of mesh (Hsieh-Clough-Toucher triangulation)
- We showed that when using divergence-free elements the variational and discrete augmentations are equivalent
- It is unprecational to use the discrete augmentation without divergence free elements due to the unsparse nature of the augmentation term ...

Conclusion:

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- Ritz vector recycling was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Conclusion:

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- o **Ritz vector recycling** was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Perspectives:

- Scalings must be improved: find an optimal preconditioner for velocity sub-blocks
- Extension for preconditioning turbulence models (RANS equations)
- Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations ...

Conclusion:

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- Ritz vector recycling was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Perspectives:

- Scalings must be improved: find an optimal preconditioner for velocity sub-blocks
- Extension for preconditioning turbulence models (RANS equations)
- Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations ...

Fluid-structure Jacobian matrix =
$$\begin{pmatrix} J_{ff} & J_{fs} \\ J_{sf} & J_{ss} \end{pmatrix}$$

Conclusion:

- Krylov subspaces iterative method preconditioned by Modified Grad-Div where shown to be efficient both for finding a steady solution and computing its spectrum
- Large 3D configurations and large number of processors accentuate the benefits of using the iterative strategy w.r.t. direct solver.
- o **Ritz vector recycling** was shown to provide significant acceleration of the eigenvalue computation when using an iterative strategy for $(J s M)^{-1}$
- A parallel implementation in FreeFem++/PETSc/SLEPc was proposed.

Perspectives:

- Scalings must be improved: find an optimal preconditioner for velocity sub-blocks
- Extension for preconditioning turbulence models (RANS equations)
- o Towards coupled fluid-structure Linear Stability Analysis on large 3D configurations ...

Fluid-structure Jacobian matrix =
$$\begin{pmatrix} J_{ff} & J_{fs} \\ J_{sf} & J_{ss} \end{pmatrix}$$
 Modified Grad-Div

Questions

Memory requirements in Newton method

Mesh	Velocity DOFs	Pressure DOFs	Memory direct MUMPS (Mb)	Memory Modified Grad-Div (Mb)	Memory gain (%)
16x16	2600	340	5	2x2	20
32x32	9900	1300	16	2x4	50
64x64	39000	5000	75	2x17	55
96x96	88000	11000	191	2x41	57
256x256	623400	78200	1862	2x353	62

Memory requirements (2D lid-driven cavity, Re = 100, $\gamma = 0.1$)

Mesh	Velocity DOFs	Pressure DOFs	Memory direct MUMPS (Mb)	Memory Modified Grad-Div (Mb)	Memory gain (%)
8x8x8	14700	729	143	3x21	56
16x16x16	107800	4900	2565	3x260	70

Memory requirements (3D lid-driven cavity, Re = 100, $\gamma = 0.1$)

