FINAL PROJECT

IMPLEMENTASI DEEP BELIEF NETWORK (DBN) SEBAGAI ALGORITMA UNTUK MENDETEKSI PENYAKIT KANKER PAYUDARA

Wahyu Novitasari (2043201001) Hafidz Dinillah Al-Faqih (2043201072)

Adistyari Husna (2043201102)

Dosen: Mukti Ratna Dewi, S.Si, M.Sc

DEPARTEMEN STATISTIKA BISNIS

FAKULTAS VOKASI

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

2023

01

Pendahuluan

Menurut data organisasi kesehatan dunia (WHO), kanker payudara memiliki Tingkat prevalensi yang tinggi

Membuat sistem deteksi kanker sejak dini menggunakan Metode Deep Belief Network

Landasan Teori

Machine Learning

aplikasi komputer dan algoritma matematika yang diadopsi dengan cara pembelajaran yang berasal dari data dan pembelajaran yang berasal dari data dan menghasilkan prediksi di masa yang akan datang

Confusion Matrix

metode untuk mengetahui informasi yang berisi data aktual dan data prediksi dari hasil klasifikasi hasil klasifikasi yang dilakukan oleh sistem

Deep Belief Network

pengembangan dari Deep Learning yang merupakan tumpukan atau stack dari beberapa algoritma atau metode yang bertujuan feature extraction yang memanfaatkan seluruh resource seoptimal mungkin

Fine Tuning

Fine Tuning terdiri dari proses backpropagation dan softmax yang digunakan dalam penyempurnaan DBN.

Sumber Data

Jenis Data : Sekunder

Data: Dataset breast cancer Wisconsin

Jumlah: 678 Data (468 data training dan 200

data testing)

Sumber: <u>Breast Cancer Wisconsin (Original)</u> –

UCI Machine Learning Repository.

Variabel Penelitian

Variabel	Keterangan	Kategori	Skala
Y	Cancer	2 = Benig 4 = Maligant	Nominal
X1	Clump Thickness	1	Rasio
X2	Uniformity of Cell Size	-	Rasio
X3	Uniformity of Cell Shape	-	Rasio
X4	Marginal Adhesion	-	Rasio
X5	Single Epithelial Cell Size	-	Rasio
X6	Bare Nuclei	-	Rasio
X7	Normal Nucleoli	_	Rasio

Langkah Analisis

Preprocessing Data

Algoritma DBN

- Normalisasi
- Positive phase
- Negative phase
- Update weights

Fine-tuning (backpropagation)

- Mengambil weights terakhir untuk training backpropgation
- Forward propagation
- Backward propagation
- Update weights

Implementasi Program

Positive Phase

```
pos_hidden_activations = np.dot(train_data, weights)
pos_hidden_probs = sigmoid(pos_hidden_activations)
```

- 1.Meng-update hidden node pada code dengan menggunakan fungsi np.dot dengan melakukan perkalian antara array input dan masing-masing weights-nya dan ditambah dengan bias
- 2. aktivasi dengan menggunakan fungsi sigmoid ().

Negative Phase

```
neg_visible_activations = np.dot(pos_hidden_states, weights.T)
neg_visible_probs = sigmoid(neg_visible_activations)
```

- 1. Meng-update visible node pada code dengan menggunakan fungsi np.dot untuk melakukan perkalian antara hasil dari positive phase dan masingmasing weights-nya
- 2. aktivasi dengan menggunakan fungsi sigmoid ().

Update Weights

```
# Update weights.
weights += learning_rate * ((pos_associations - neg_associations) / num_examples)
```

Hasil Implementasi update weights

Hasil Pengujian

Grafik Tingkat Error DBN


```
-Epoch = 0; error = 83,437

-Epoch = 25; error = 6,753

-Epoch = 50; error = 5,879

-Epoch = 75; error = 5,736

-Epoch = 100; error = 5,678

-Epoch = 125; error = 5,645

-Epoch = 150; error = 5,620

-Epoch = 175; error = 5,598

-Epoch = 199; error = 5,579
```


Klasifikasi

Confussion Matrix

Variabel	Predicted Magligant	Predict Beign
Actual Maglinant	64	1
Actual Begin	2	122

- 1. Terdapat 64 kasus diprediksi dengan benar sebagai magligant dan 133 sebagai beign
- 2. Terdapat 1 kasus diprediksi begin tetapi sebenarnya magligant dan 2 kasus diprediksi magligant tetapi sebenarnya begin

Hasil Akurasi, Sensitivity, Specifity, dan F1-Score

	Nilai
Accuracy	98,5%
Sensitivity	98,4%
Specifity	98,52%
F1-Score	98,49%

- 1. Accurancy: 135 prediksi benar dari 137 prediksi
- 2. Sensitivity : 64 kasus kanker payudara ganas berhasil diprediksi dengan benar dari 65 kasus.
- 3. Specifity: 71 kasus kanker payudara jinak diprediksi dengan benar dari 72 kasus.
- 4.F1-Score: Ukuran kinerja model sebesar 98,4% dapat dikatakan sudah baik

Kesimpulan

- Proses pendeteksian penyakit kanker payudara menggunakan DBN dilakukan dengan beberapa langkah, yaitu persiapan data, training DBN, dan evaluasi dengan backpropagation.
- DBN menunjukkan performa yang baik. Model klasifikasi berhasil memprediksi dengan benar sebanyak 98,5% dari total prediksi. Selain itu, model tersebut juga memiliki sensitivity dan specificity yang tinggi, sehingga dapat mendeteksi kanker payudara ganas dan kanker payudara jinak dengan baik

Terima Kasin

