Multi-armed Bandits in Practice

Alexandr Vorobyev

Yandex

April 27, 2017

Outline

- Classic Multi-Armed Bandit Problem
- Contextual Multi-Armed Bandit Problem

Outline

- Classic Multi-Armed Bandit Problem
- Contextual Multi-Armed Bandit Problem

Multi-Armed Bandit Problem

Multi-Armed Bandit Problem: Formalization

Setting

- A finite set of arms $\{a_1, a_2, \ldots, a_k\}$
- We have T steps (trials). At each step t:
 - We choose an arm $a_{j(t)}$.
 - We observe a **reward** $R_{j(t)}$ **random** value, $ER_{j(t)} = r_{j(t)}$ $(R_{j(1)}, \ldots, R_{j(T)})$ are independent).

Multi-Armed Bandit Problem: Formalization

Setting

- A finite set of arms $\{a_1, a_2, \ldots, a_k\}$
- We have T steps (trials). At each step t:
 - We choose an arm $a_{j(t)}$.
 - We observe a **reward** $R_{j(t)}$ **random** value, $ER_{j(t)} = r_{j(t)}$ ($R_{j(1)}, \ldots, R_{j(T)}$ are independent).

Objective

Maximize the expectation of **cumulative reward** $\sum_{t=1}^{I} R_{j(t)}$.

Let's try to play

• At start: choose an arm arbitrarily.

Let's try to play

- At start: choose an arm arbitrarily.
- After several turns:
 - We need to gain reward, so we tend to choose arms with higher estimates of expectation r_j .

Let's try to play

- At start: choose an arm arbitrarily.
- After several turns:
 - We need to gain reward, so we tend to choose arms with higher estimates of expectation r_j .
 - We need to explore arms, so we tend to choose arms with few statistics on their observed rewards.

Let's try to play

- At start: choose an arm arbitrarily.
- After several turns:
 - We need to gain reward, so we tend to choose arms with higher estimates of expectation r_j .
 - We need to explore arms, so we tend to choose arms with few statistics on their observed rewards.

The problem of balancing between these two goals is known as exploration—exploitation dilemma.

Multi-Armed Bandit Problem

Most important case

which often arises in practice:

• Reward R_j is a **Bernoulli random variable**:

$$P(R_j = 1) = r_j$$
 , $P(R_j = 0) = 1 - r_j$, $ER_j = r_j$.

• Parameter r_i has uniform prior distribution on [0, 1].

Multi-Armed Bandit Problem: practical examples

Advertisement

- Problem setting: to choose an ad from the database to show to a user in some known context.
- Step = appearance of the context.
- \bullet Arm = ad.
- $R_{i(t)} = 1$, if the user clicked the ad $a_{i(t)} = 0$ otherwise.
- r_j is known as CTR (click-through rate).

Multi-Armed Bandit Problem: practical examples

Information retrieval

- Problem setting: to choose a document from the database to show to a user at the top position to some known query.
- Step = an issue of the query.
- Arm = document.
- $R_{j(t)} = 1$, if the user clicked the document, = 0 otherwise.
- r_j is known as CTR at position 1.

Multi-Armed Bandit Problem: algorithms

Algorithms for Bernoulli Rj

Define an appropriate scoring $S_t(a)$, choose $j(t) = \operatorname{argmax}_j S_t(a_j)$.

- UCB-1: $S_t(a_j) = \widehat{r_{t,j}} + \alpha \sqrt{\frac{2 \ln t}{N_{t-1,j}}}$, where
 - $\widehat{r}_{a_j,t} = \frac{S_{t-1,j}}{N_{t-1,j}}$, $S_{t-1,j}$ ($N_{t-1,j}$) is the number of successful (all) trials of a_j .
 - ullet lpha is an exploration parameter (to be fitted to T).

Multi-Armed Bandit Problem: algorithms

Algorithms for Bernoulli R_j

Define an appropriate scoring $S_t(a)$, choose $j(t) = \operatorname{argmax}_j S_t(a_j)$.

- UCB-1: $S_t(a_j) = \widehat{r_{t,j}} + \alpha \sqrt{\frac{2 \ln t}{N_{t-1,j}}}$, where
 - $\widehat{r}_{a_j,t} = \frac{S_{t-1,j}}{N_{t-1,j}}$, $S_{t-1,j}$ ($N_{t-1,j}$) is the number of successful (all) trials of a_j .
 - ullet lpha is an exploration parameter (to be fitted to T).
- Bayesian approach
 - Calculate posterior distribution of r_j : $p_{t,j}(r) \propto r^{S_{t-1,j}} (1-r)^{N_{t-1,j}-S_{t-1,j}} p_{0,j}(r)$
 - **Thompson sampling** algorithm: $S_t(a_j)$ is a sample from $p_{t,j}(r)$.
 - Bayesian-UCB algorithm: $S_t(a_j)$ is a $\alpha(t)$ -quantile of $p_{t,j}(r)$, $\alpha(t)$ is an exploration parameter (to be fitted to T).

Practical Aspects

Practical Aspects

Practical Aspects

Outline

- Classic Multi-Armed Bandit Problem
- Contextual Multi-Armed Bandit Problem

Setting

- A set A of arms
 - finite: documents, objects for recommendation;
 - continuum: vectors of formula's coefficients.
- A set C of contexts (query, user, location, position, upper documents) with a distribution P_C on it.
- Arm-context pair $(a,c)\longleftrightarrow$ a feature vector $x_{a,c}\in\mathbb{R}^d$.

Setting

- A set A of arms
 - finite: documents, objects for recommendation;
 - continuum: vectors of formula's coefficients.
- A set C of contexts (query, user, location, position, upper documents) with a distribution P_C on it.
- Arm-context pair $(a,c)\longleftrightarrow$ a feature vector $x_{a,c}\in\mathbb{R}^d$.
- We have T steps (trials). At each step t:
 - We observe a context $c(t) \in \mathbf{C}$ sampled from P_C .
 - We choose an arm $a(t) \in \mathbf{A}$.
 - We observe a **reward** R_t a realization of a r.v. $R(x_{a(t),c(t)})$, $ER(a(t),c(t))=r(x_{a(t),c(t)})$, R_1,\ldots,R_T are independent.

Setting

- A set A of arms
 - finite: documents, objects for recommendation;
 - continuum: vectors of formula's coefficients.
- A set C of contexts (query, user, location, position, upper documents) with a distribution P_C on it.
- Arm-context pair $(a,c)\longleftrightarrow$ a feature vector $x_{a,c}\in\mathbb{R}^d$.
- We have T steps (trials). At each step t:
 - We observe a context $c(t) \in \mathbf{C}$ sampled from P_C .
 - We choose an arm $a(t) \in \mathbf{A}$.
 - We observe a **reward** R_t a realization of a r.v. $R(x_{a(t),c(t)})$, $ER(a(t),c(t))=r(x_{a(t),c(t)})$, R_1,\ldots,R_T are independent.

Objective

Maximize the expectation of **cumulative reward** $\sum_{t=1}^{T} R_t$.

200

What is new?

- We believe that r(x) is continuous, Lipschitzian or smooth function on \mathbb{R}^d .
- A challenge: aggregate information over features $x_{a,c}$.

What is new?

- We believe that r(x) is continuous, Lipschitzian or smooth function on \mathbb{R}^d .
- A challenge: aggregate information over features $x_{a,c}$.

General Idea

At step t, for each arm a_j , try to **estimate** r(a(t), c(t)) **and confidence** in this estimate (variance, confidence bounds) on the features $x_{a(t),c(t)}$ and the history of observations $\{x_{j(\tau),c(\tau)},R_t\}_{\tau=1,\ldots,T}$.

Adaptation of the classical MAB (for contexts)

[Hoffman; Radlinski; Sloan, Wang; our paper on WWW'15...]

- Divide C into regions:
 region=query (web search), region=user (recommendations).
- Run a separate bandit for each region.

Adaptation of the classical MAB (for contexts)

[Hoffman; Radlinski; Sloan, Wang; our paper on WWW'15...]

- Divide C into regions:
 region=query (web search), region=user (recommendations).
- Run a separate bandit for each region.

Analysis

- + The smaller region the more specific feedback.
- The smaller region more information ignored, the lower learning rate.

Effective for small regions with a lot of feedback (frequent queries, active users).

Context tree

[Slivkins, Radlinski, "zooming algorithm"]

 \bullet Fix tree structure of $\textbf{A}\times\textbf{C}$ (e.g., topical taxonomy of documents).

Context tree

[Slivkins, Radlinski, "zooming algorithm"]

- Fix tree structure of $\mathbf{A} \times \mathbf{C}$ (e.g., topical taxonomy of documents).
- At each step:
 - Some set of nodes divides $\mathbf{A} \times \mathbf{C}$ into regions.
 - Choose one of nodes, choose an arm from it arbitrary, refer reward to the node.
 - ullet Collected sufficient information for a node \Longrightarrow substitute it by its children, use the information as prior for them.

Context tree

[Slivkins, Radlinski, "zooming algorithm"]

- Fix tree structure of $\mathbf{A} \times \mathbf{C}$ (e.g., topical taxonomy of documents).
- At each step:
 - Some set of nodes divides A × C into regions.
 - Choose one of nodes, choose an arm from it arbitrary, refer reward to the node.
 - ullet Collected sufficient information for a node \Longrightarrow substitute it by its children, use the information as prior for them.

Analysis

- + Adaptive width of regions.
- Threshold-based aggregation of feedback.
- No approach to construct a tree reflecting proximity of r(a, c) over (a, c).

LinUCB: linear regression

- Linear regression for $r_{a,c}$
 - Disjoint model aggregate over contexts: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a$.

LinUCB: linear regression

- Linear regression for $r_{a,c}$
 - Disjoint model aggregate over contexts: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a$.
 - Hybrid model aggregate over contexts and arms: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a + x_{a,c}^T \xi$.

LinUCB: linear regression

- Linear regression for $r_{a,c}$
 - Disjoint model aggregate over contexts: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a$.
 - Hybrid model aggregate over contexts and arms: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a + x_{a,c}^T \xi$.
 - Add $x_{a,c}^T \eta_g$ for any division of $\mathbf{A} \times \mathbf{C}$ into regions g?
- $R_{a,c} = E(r_{a,c}|x_{a,c}) + \epsilon$, $E\epsilon = 0$, $|\epsilon| < b$.

LinUCB: linear regression

- Linear regression for $r_{a,c}$
 - Disjoint model aggregate over contexts: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a$.
 - Hybrid model aggregate over contexts and arms: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a + x_{a,c}^T \xi$.
 - Add $x_{a,c}^T \eta_g$ for any division of $\mathbf{A} \times \mathbf{C}$ into regions g?
- $R_{a,c} = E(r_{a,c}|x_{a,c}) + \epsilon$, $E\epsilon = 0$, $|\epsilon| < b$.
- ullet At each step, obtain an upper confidence bound for $r_{a,c}$

LinUCB: linear regression

[Lihong Li, Langford, Schapire]

- Linear regression for $r_{a,c}$
 - Disjoint model aggregate over contexts: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a$.
 - Hybrid model aggregate over contexts and arms: $E(r_{a,c}|x_{a,c}) = x_{a,c}^T \theta_a + x_{a,c}^T \xi$.
 - Add $x_{a,c}^T \eta_g$ for any division of $\mathbf{A} \times \mathbf{C}$ into regions g?
- $R_{a,c} = E(r_{a,c}|x_{a,c}) + \epsilon$, $E\epsilon = 0$, $|\epsilon| < b$.
- ullet At each step, obtain an upper confidence bound for $r_{a,c}$

Analysis

- + Learning dependence between clicks and features.
- Linearity.
- An upper bound is not in [0,1], logistic model is more preferable:

$$E(r_{a,c}|x_{a,c}) = \frac{1}{1+e^{-x_{a,c}^T\theta_a}}$$

Disjoint LinUCB algorithm

```
0: Inputs: \alpha \in \mathbb{R}_+
  1: for t = 1, 2, 3, \ldots, T do
             Observe features of all arms a \in \mathcal{A}_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
 3:
            for all a \in \mathcal{A}_t do
 4.
                 if a is new then
 5:
                      \mathbf{A}_a \leftarrow \mathbf{I}_d (d-dimensional identity matrix)
                      \mathbf{b}_a \leftarrow \mathbf{0}_{d \times 1} (d-dimensional zero vector)
 6:
 7:
                 end if
                \hat{\boldsymbol{\theta}}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a 
 p_{t,a} \leftarrow \hat{\boldsymbol{\theta}}_a^{\top} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top} \mathbf{A}_a^{-1} \mathbf{x}_{t,a}}
 8:
 9:
10:
             end for
11:
             Choose arm a_t = \arg \max_{a \in A_t} p_{t,a} with ties broken arbi-
             trarily, and observe a real-valued payoff r_t
             \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\top}
12:
             \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}
13:
14: end for
```


Gaussian process

[Vanchinathan, Nicolic, De Bona]

• $E(r_{a,c}|x_{a,c}) = f(x_{a,c})$, f(x) is a Gaussian process.

Gaussian process

[Vanchinathan, Nicolic, De Bona]

- $E(r_{a,c}|x_{a,c}) = f(x_{a,c})$, f(x) is a Gaussian process.
- Set prior $Ef(x) = \mu(x)$, Cov(f(x), f(x')) = k(x, x').

Gaussian process

[Vanchinathan, Nicolic, De Bona]

- $E(r_{a,c}|x_{a,c}) = f(x_{a,c})$, f(x) is a Gaussian process.
- Set prior $Ef(x) = \mu(x)$, Cov(f(x), f(x')) = k(x, x').
- $k(x, x') = x^T \Sigma x'$ provides the linear regression.

Gaussian process

[Vanchinathan, Nicolic, De Bona]

- $E(r_{a,c}|x_{a,c}) = f(x_{a,c})$, f(x) is a Gaussian process.
- Set prior $Ef(x) = \mu(x)$, Cov(f(x), f(x')) = k(x, x').
- $k(x, x') = x^T \Sigma x'$ provides the linear regression.
- $R_{a,c} = E(r_{a,c}|x_{a,c}) + \epsilon$, ϵ is a standard error.

Gaussian process

[Vanchinathan, Nicolic, De Bona]

- $E(r_{a,c}|x_{a,c}) = f(x_{a,c})$, f(x) is a Gaussian process.
- Set prior $Ef(x) = \mu(x)$, Cov(f(x), f(x')) = k(x, x').
- $k(x, x') = x^T \Sigma x'$ provides the linear regression.
- $R_{a,c} = E(r_{a,c}|x_{a,c}) + \epsilon$, ϵ is a standard error.
- At each step, obtain normal posterior distribution for $f(x_{a,c})$.

$$\mu_t(\mathbf{s}, \mathbf{z}) = \mathbf{k}_t(\mathbf{s}, \mathbf{z})^T (\mathbf{K}_t + \mathbb{I})^{-1} \bar{\mathbf{y}}_t, \tag{3}$$

$$\sigma_t^2(\mathbf{s}, \mathbf{z}) = \kappa((\mathbf{s}, \mathbf{z}), (\mathbf{s}, \mathbf{z})) - \mathbf{k}_t(\mathbf{s}, \mathbf{z})^T (\mathbf{K}_t + \mathbb{I})^{-1} \mathbf{k}_t(\mathbf{s}, \mathbf{z}), \quad (4)$$

where $\mathbf{k}_t(\mathbf{s}, \mathbf{z}) = [\kappa((\mathbf{s}_1, \mathbf{z}_1), (\mathbf{s}, \mathbf{z})), \dots, \kappa((\mathbf{s}_t, \mathbf{z}_t), (\mathbf{s}, \mathbf{z}))]^T$ and \mathbf{K}_t is the positive semi-definite kernel matrix such that $\mathbf{K}_{t,i,j} = [\kappa((\mathbf{s}_i, \mathbf{z}_i), (\mathbf{s}_j, \mathbf{z}_j))]$.

Gaussian process

[Vanchinathan, Nicolic, De Bona]

- $E(r_{a,c}|x_{a,c}) = f(x_{a,c})$, f(x) is a Gaussian process.
- Set prior $Ef(x) = \mu(x)$, Cov(f(x), f(x')) = k(x, x').
- $k(x, x') = x^T \Sigma x'$ provides the linear regression.
- $R_{a,c} = E(r_{a,c}|x_{a,c}) + \epsilon$, ϵ is a standard error.
- At each step, obtain normal posterior distribution for $f(x_{a,c})$.

$$\mu_t(\mathbf{s}, \mathbf{z}) = \mathbf{k}_t(\mathbf{s}, \mathbf{z})^T (\mathbf{K}_t + \mathbb{I})^{-1} \bar{\mathbf{y}}_t, \tag{3}$$

$$\sigma_t^2(\mathbf{s}, \mathbf{z}) = \kappa((\mathbf{s}, \mathbf{z}), (\mathbf{s}, \mathbf{z})) - \mathbf{k}_t(\mathbf{s}, \mathbf{z})^T (\mathbf{K}_t + \mathbb{I})^{-1} \mathbf{k}_t(\mathbf{s}, \mathbf{z}), \tag{4}$$
where $\mathbf{k}_t(\mathbf{s}, \mathbf{z}) = [\kappa((\mathbf{s}_1, \mathbf{z}_1), (\mathbf{s}, \mathbf{z})), \dots, \kappa((\mathbf{s}_t, \mathbf{z}_t), (\mathbf{s}, \mathbf{z}))]^T$ and \mathbf{K}_t is the positive semi-definite kernel matrix such that $\mathbf{K}_{t,i,j} = [\kappa((\mathbf{s}_i, \mathbf{z}_i), (\mathbf{s}_i, \mathbf{z}_i))].$

Analysis

- + General model (despite two normality assumptions).
- No approach to set k(x, x').

Interesting? Have ideas how to do better?

You are welcome:

yandex.ru/jobs/vacancies/interns/intern_researcher