Axioma II₃. Uma reta m determina exatamente dois semi-planos distintos cuja interseção é a reta m.

Figura 1.7

Exercícios

1. Sobre uma reta marque quatro pontos A, B, C e D, em ordem, da esquerda para a direita. Determine:

a)	AB	U	BO	7

e) $S_{AB} \cap S_{BC}$

b) $AB \cap BC$

f) $S_{AB} \cap S_{AD}$

 $AC \cap BD$

g) $S_{CB} \cap S_{BC}$

d) $AB \cap CD$

- e) $S_{AB} \cup S_{BC}$
- 2. Quantos pontos comuns a pelo menos duas retas pode ter um conjunto de 3 retas do plano? E um conjunto de 4 retas do plano?
- 3. Prove o item (b) da proposição (1.4).
- 4. Prove a afirmação feita, no texto, de que existem infinitos pontos em um segmento.
- 5. Sejam $P = \{a, b, c\}$, $m_1 = \{a, b\}$, $m_2\{a, c\}$ e $m_3 = \{b, c\}$. Chame P de plano e m_1, m_2 e m_3 de retas. Verifique que nesta "geometria" vale o axioma I_2 .

Definição: Um subconjunto do plano é convexo se o segmento ligando quaisquer dois de seus pontos está totalmente contido nele.

- 6. Os exemplos mais simples de conjuntos convexos são o próprio plano e qualquer semi-plano. Mostre que a interseção de dois semi-planos é um convexo.
- 7. Mostre que a interseção de n semi-planos é ainda um convexo.
- 8. Mostre, exibindo um contra-exemplo, que a união de convexos pode não ser um convexo.

- 9. Três pontos não colineares determinam três retas. Quantas retas são determinadas por quatro pontos sendo que quaisquer três deles são não colineares?
- 10. Repita o exercício anterior para o caso de 6 pontos.

PROBLEMAS

- 1. Discuta a seguinte questão utilizando apenas os conhecimentos geométricos estabelecidos, até agora, nestas notas: "Existem retas que não se interceptam?"
- 2. Prove que, se uma reta intercepta um lado de um triângulo e não passa por nenhum de seus vértices, então ela intercepta também um dos outros dois lados.
- 3. Repita o exercício 2 para o caso de 5 e 6 retas. Faça uma conjectura de qual será a resposta no caso de n retas.
- 4. Mostre que não existe um exemplo de uma "geometria" com 6 pontos, em que sejam válidos os axiomas I_1 e I_2 e em que todas as retas tenham exatamente 3 pontos.
- 5. Se C pertence a S_{AB} e $C \neq A$, mostre que: $S_{AB} = S_{AC}$, que $BC \subset S_{AB}$ e que $A \notin BC$.
- 6. Demonstre que a interseção de convexos é ainda um convexo.
- 7. Mostre que um triângulo separa o plano em duas regiões, uma das quais é convexa.
- 8. Generalize os exercícios 11 e 12 para o caso de n pontos.
- 9. Podem existir dois segmentos distintos tendo dois pontos em comum? E tendo exatamente dois pontos em comum?

11

COMENTÁRIO

Para se aprender a jogar algum jogo, tal como damas, firo, xadrez, etc., temos que, inicialmente, aprender as suas regras. Um pai tentando ensinar seu filho a jogar damas dirá algo como: "Este é o tabuleiro de damas e estas são as pedras com que se joga", "São 12 para cada jogador", "As pedras são arrumadas no tabuleiro assim.", e arrumará as pedras para o filho. Aí já terá recebido uma enxurrada de perguntas do tipo: "Por que as pedras só ficam nas casas pretas?", "Por que só são doze pedras?", "Eu acho mais bonitas as pedras brancas nas casas pretas e as pretas nas casas brancas, por que não é assim?", etc.

Todas estas perguntas têm uma única resposta: Porque esta é uma das regras do jogo. Se alguma delas for alterada, o jogo resultante, embora possa ser também muito interessante, não será mais um jogo de damas.

Observe que, ao ensinar um tal jogo, você dificilmente deter-se-ia em descrever o que são as pedras. O importante são as regras do jogo, isto é, a maneira de arrumar as pedras no tabuleiro, a forma de movê-las, a forma de "comer" uma pedra do adversário, etc. Qualquer criança, após dominar o jogo, improvisará tabuleiros com riscos no chão e utilizará tampinhas de garrafa, botões, cartões, etc., como pedras.

Ao criar-se um determinado jogo é importante que suas regras sejam suficientes e consistentes. Por suficiente queremos dizer que as regras devem estabelecer o que é permitido fazer em qualquer situação que possa vir a ocorrer no desenrolar de uma partida do jogo. Por consistente queremos dizer que as regras não devem contradizer-se, ou sua aplicação levar a situações contraditórias.

Geometria, como qualquer sistema dedutivo, é muito parecida com um jogo: partimos com um certo conjunto de elementos (pontos, retas, planos) e é necessário aceitar algumas regras básicas que dizem respeito às relações que satisfazem estes elementos, as quais são chamadas de axiomas. O objetivo final deste jogo é o de determinar as propriedades das figuras planas e dos sólidos no espaço. Tais propriedades, chamadas Teoremas ou Proposições, devem ser deduzidas somente através do raciocínio lógico a partir dos

axiomas fixados ou a partir de outras propriedades já estabelecidas.

De fato, existem várias geometrias distintas dependendo do conjunto de axiomas fixado. A geometria que iremos estudar nestas notas é chamada de Geometria Euclidiana, em homenagem a Euclides que a descreveu no seu livro, denominado "Elementos".

b) Do plano

Tres pontos não colineares determinam em único plano que passa por eles.

Os pontos A, B e C não colineares determinam um plano α que indicamos por (A, B, C).

O plano α é o único plano que passa por A, B e C.

8. Postulado da inclusão

Contida nesse alestro plano.

$$(A \neq B, r = \overrightarrow{AB}, A \in \alpha, B \in \alpha) \implies r \subset \alpha$$

Dados dois pontos distintos A e B de um plano, a reta $r = \overrightarrow{AB}$ tem todos os pontos no plano.

9. Pontos coplanares são pontos que pertencem a um mesmo plano.
Figura é qualquer conjunto de pontos.
Figura plana é uma figura que tem todos os seus pontos num mesmo plano.
A Geometria Plana estuda as figuras planas.

10. Retas concorrentes

a) Definição

Duas retas são concorrentes se, e somente se, elas têm um único ponto comum.

b) Existência

Usando o postulado da existência (item 4), tomemos uma reta r, um ponto $P \in r$ ($P \in r$) e um ponto Q fora de r ($Q \notin r$).

Os pontos $P \in Q$ são distintos, pois um deles pertence a r e o outro não.

Usando o postulado da determinação (item 7a), consideremos a reta s determinada pelos pontos $P \in Q$ ($s = \overrightarrow{PQ}$).

As retas r e s são distintas, pois se coincidissem o ponto Q estaria em r (e ele foi construído fora de r), e o ponto P pertence às duas. Logo,

r e s são concorrentes.

EXERCÍCIOS

- 1. Classifique em verdadeiro (V) ou falso (F):
- \a) Por um ponto passam infinitas retas.
- 🗅 b) Por dois pontos distintos passa uma reta. 🗸
- c) Uma reta contém dois pontos distintos.
- d) Dois pontos distintos determinam uma e uma só reta.
 - e) Por três pontos dados passa uma só reta.
- 2. Classifique em verdadeiro (V) ou falso (F):
- a) Três pontos distintos são sempre colineares.
- b) Três pontos distintos são sempre coplanares.
- c) Quatro pontos todos distintos determinam duas retas.
- d) Por quatro pontos todos distintos pode passar uma só reta.
- e) Três pontos pertencentes a um plano são sempre colineares.

- 3. Classifique em verdadeiro (V) ou falso (F):
 - a) Quaisquer que sejam os pontos A e B, se A é distinto de B, então existe uma reta a tal que $A \in a$ e $B \in a$.
 - b) Quaisquer que sejam os pontos $P \in Q$ e as retas $r \in s$, se $P \in distinto de <math>Q$, e $P \in Q$ pertencem às retas $r \in s$, então r = s.
 - c) Qualquer que seja uma reta r, existem dois pontos A e B tais que A é distinto de B, com $A \in r$ e $B \in r$.
 - d) Se A = B, existe uma reta r tal que A, $B \in r$.
- 4. Usando quatro pontos todos distintos, sendo três deles colineares, quantas retas podemos construir?
- 5. Classifique em verdadeiro (V) ou falso (F):
 - a) Duas retas distintas que têm um ponto comum são concorrentes.
 - b) Duas retas concorrentes têm um ponto comum.
 - c) Se duas retas distintas têm um ponto comum, então elas possuem um único ponto comum.

CAPÍTULO II

Segmento de Reta

Conceitos

11. A noção estar entre é uma noção primitiva que obedece aos postulados (ou axiomas) que seguem:

Quaisquer que sejam os pontos A, B e P:

- 1) Se P está entre A e B, então A, B e P são colineares;
- 2) Se P está entre A e B, então A, B e P são distintos dois a dois;
- 3) Se P está entre A e B, então A não está entre P e B nem B está entre A e P;

e ainda

4) Quaisquer que sejam os pontos A e B, se A é distinto de B, então existe um ponto P que está entre A e B.