EQUILIBRIUM EFFECTS OF HOUSING SUBSIDIES: EVIDENCE FROM A POLICY NOTCH IN COLOMBIA

Juan Pablo Uribe

Brown University

April 29, 2022

Urban Economic Association, London 2022

ARE MARKET-ORIENTED HOUSING POLICIES EFFECTIVE?

Governments around the world provide subsidies or tax incentives to promote home-ownership and new housing construction.

e.g., help to buy, first time home buyer programs, MID, LIHTC,

QUESTIONS:

- 1. Housing market effect?
 - Prices, quantities, type of housing
- 2. Does incentivize home-ownership work?
 - Who benefits from them?
 - What happens if these policies are removed?
 - Are there efficiency costs or unintended consequences?

THIS PAPER

► Challenges:

- 1. We need a model that allows for product differentiation.
- 2. Identification approach to disentangle demand and supply responses rely on strong assumptions.
- 3. Hard to get detailed housing data.
- ► Colombian Housing Policy:
 - 1. Subsidies to low-income households to buy *low-cost housing*.
 - 2. Tax incentives to developers who build *low-cost housing*.
 - 3. *low-cost housing*: $P < \underline{P} = 135$ monthly minimum wages (mMW)

```
\approx 40,000 \$USD
```

... Additionally:

- Subsidy expansion 2006-2018
- Unique and novel data
 - Census data for all new construction projects.
 - Administrative records for the subsidies.

THIS PAPER

- I. Evidence of how these policy scheme affects the type of housing built.
- II. Identification and Estimation of a model that rationalises the observed equilbirum.
- III. Policy evaluation and welfare analysis.

LITERATURE AND CONTRIBUTION

Integrates the *bunching* and *hedonic* literatures to propose a method to think about welfare consequences of *housing policies*

Bunching	Hedonic	Housing Policy	
Housing marketLink to modelSupply and demand	Policy notchSupply sideIdentification	EvidenceWelfareCounterfactuals	
 Housing market applications Best et al. (2019), DeFusco and Paciorek (2017) Methodology Notches >> Kinks: Kleven (2016), Bertanha et al. (2021), Blomquist et al. (2021) 	- Seminal paper Rosen (1974),Epple (1987) - Recent Contributions Bajari and Benkard (2005), Heckman et al. (2010), Epple et al. (2020), Chernozhukov et al. (2021) - Reviews Kuminoff et al. (2013), Greenstone (2017)	 Developers subsidies Baum-Snow and Marion (2009), Soltas (2021), Sinai and Waldfogel (2005) Households Subsidies Carozzi et al. (2020) Incidence and welfare Poterba (1992), Galiani et al. (2015) 	

I. REDUCED FORM EVIDENCE

POLICY EXPANSION: THE SUBSIDY SIZE DOUBLED AND MORE HOUSEHOLDS BECAME ELIGIBLE

Government Expenditure

-

THE NOTCH: DISCONTINUOUS INCENTIVES TRIGGER BUNCHING AT THE CUTOFF

The three prices:

- Transaction Price
- Developers Price

$$\mathbf{P}^{\delta} = P \cdot (1 + \delta)$$
:

$$\delta = \text{Tax refund}$$

Households price

$$\mathbf{P}^{\tau} = P - \tau$$
$$\tau = \text{Subsidy}$$

- Low-cost housing
- $P < \underline{P} = 135 mMW$

BUNCHING AT THE LOW-COST HOUSING PRICE LIMIT

Solid line: Counterfactual Distribution

Kleven (2016); Chen et al. (2021); Diamond and Persson (2016)

BUNCHING AT THE LOW-COST HOUSING PRICE LIMIT

There is another notch at 70 mMW defining a cutoff targeting vulnerable populations.

II. EQUILIBRIUM MODEL OF HOUSING SUPPLY AND DEMAND

HOUSING MARKET EQUILIBRIUM MODEL

Hedonic/Sorting Equilibrium Model + Notched incentives

1. Housing

- Differentiated product described by its size $h \in \mathcal{H}$
- Price depends on size P(h)
- **2. Households** $i \in I$, Heterogeneous in Income $Y_i \sim F_Y$
 - Choose h_i and consumption C_i to maximize Utility $U(C_i, h_i; \theta)$
- 3. **Developers** $j \in J$, Heterogeneous in Productivity $A_j \sim G_A$
 - Choose h_i to maximize profits
 - Number of Units: $Q = Q(h_i)$ |lot,regulations
 - Building costs $B(A_j, h_j, Q(h_j); \beta)$

4. Competitive Market Equilibrium

• Price function $P(h) \rightarrow$ clears the market $\forall h \in \mathcal{H}$

- **Implicit Price Function** *P*(*h*)
- Subsidy

 τ

- Bid functions $\varphi_D(h, Y, \bar{U}; \theta)$

•
$$\bar{U} = U(h, Y_i - \varphi_D; \theta)$$

•
$$\bar{U}_{\tau} = U(h, Y_i - \varphi_D + \tau; \theta)$$

EQUILIBRIUM: DEVELOPERS AND HOUSEHOLDS MATCH

Equilibrium price P(h): Envelop of offer and bid curves.

AGGREGATE EQUILIBRIUM DENSITY

How to aggregate? \rightarrow Change of variable formula and optimality conditions (h^*) see details

ESTIMATION AND

IDENTIFICATION

STEP I: EQUILIBRIUM CHARACTERIZATION

► Hedonic price function:

$$P_{ltc}=P\left(h_{ltc}
ight)+\Gamma'X_{ltc}+arepsilon_{ltc}$$
 see Cattaneo et al. (2019a, 2019b)

- ▶ Notches:
 - Price after subsidy: P^{τ_t}
 - Price after tax: P^{δ} see
- ▶ Bunching:

•
$$\overline{P} = \min_{P} \left\{ f^{Obs} = f^{CF} | P > \underline{P} \right\}$$

Kleven (2016); Chen et al. (2021)

- ► Size thresholds:
 - $\underline{h} = P^{-1} (135 \text{mMW})$
 - $\overline{h} = P^{-1}(\overline{P})$
- ► Unit Supply Function:

$$Q_{ltc} = Q(h_{ltc}) + \Omega' X_{ltc} + \epsilon_{ltc}$$
 see Cattaneo et al. (2019a, 2019b)

STEP II: MARGINAL BUNCHER CONDITION AND STUCTURAL PARAMETERS IDENTIFICATION

Marginal Buncher Condition

•
$$U\left(\overline{Y} - \overline{P}, \overline{h}; \theta\right) - U\left(\overline{Y} - \underline{P}^{\tau}, \underline{h}; \theta\right) = 0$$

• $\pi\left(\overline{A}, Q(\overline{h}), P\left(\overline{h}\right); \beta\right) - \pi\left(\overline{A}, Q(\underline{h}), P^{\delta}(\underline{h}); \beta\right) = 0$

- ► *Functional forms*:
 - $B = A_i \cdot Q \cdot h^{\beta}$
 - $U = \left[\frac{1}{2} \cdot C^{\theta} + \frac{1}{2} \cdot h^{\theta}\right]^{\frac{1}{\theta}}$ $\sigma = 1/(1-\theta)$
- *Optimally conditions:*
 - $\overline{\mathbf{Y}} = \overline{P} \left(\frac{\frac{1}{2}h^{\theta-1}}{\overline{p}(\frac{1}{2}-1)}\right)^{\frac{1}{\theta-1}}$ $\overline{\mathbf{A}} = \frac{\left(\overline{P} \cdot \overline{q} + \overline{p} \cdot \overline{Q}\right)\overline{h}^{(1-\beta)}}{\overline{q} \cdot \overline{h} + \overline{Q} \cdot \boldsymbol{\beta}}$

	06-08	09-11	12-15	16-18
β	2.34	2.03	1.65	1.29
σ	2.23	1.68	2.22	3.88

III. WELFARE

EFFECT ON MARGINALLY SUBSIDIZED HOUSEHOLDS 2006-08

Same households get subsidy but they can buy any house.

EFFECT ON MARGINALLY SUBSIDIZED HOUSEHOLDS 2016-18

DEVELOPER RESPONSE TO TAX INCENTIVES

2006-08

What happens if tax incentives are removed.

DEVELOPER RESPONSE TO TAX INCENTIVES 2016-18

CONCLUSION

- Policy design matters → need to know how agents respond to incentives in equilibrium to design effective policies.
- ► This method can be used to evaluate other housing policies.
 - 1. There is increasing evidence to bunching responses to discontinuous incentives (e.g., help to buy, voucher housing programs in the USA)
 - 2. Many regulations or targeting rules use arbitrary cutoffs.
- ► Further, it can be applied to other markets (e.g., labor markets, drugs, etc.)

Appendix

References

- Bajari, P., & Benkard, C. L. (2005). Demand estimation with heterogeneous consumers and unobserved product characteristics: A hedonic approach. Journal of Political Economy, 113(6), 1239-1276. link
- Baum-Snow, N., & Marion, J. (2009). The effects of low income housing tax credit developments on neighborhoods. Journal of Public Economics, 93(5), 654 - 666. link
- Bertanha, M., McCallum, A. H., & Seegert, N. (2021). Better bunching, nicer notching. link
- Best, M. C., Cloyne, J. S., Ilzetzki, E., & Kleven, H. J. (2019, 05). Estimating the Elasticity of Intertemporal Substitution Using Mortgage Notches. The Review of Economic Studies, 87(2), 656-690. link
- Bishop, K. C., & Timmins, C. (2019). Estimating the marginal willingness to pay function without instrumental variables. *Journal of Urban Economics*, 109, 66-83. link
- Blomquist, S., Newey, W. K., Kumar, A., & Liang, C.-Y. (2021). On bunching and identification of the taxable income elasticity. Journal of Political Economy, 129(8), 000–000.
- Carozzi, F., Hilber, C., & Yu, X. (2020). On the economic impacts of mortgage credit expansion policies: Evidence from help to buy [CEP Discussion Paper No 1681]. link
- Cattaneo, M. D., Crump, R. K., Farrell, M. H., & Feng, Y. (2019a). Binscatter regressions. arXiv. link
- Cattaneo, M. D., Crump, R. K., Farrell, M. H., & Feng, Y. (2019b). On binscatter. arXiv. link
- Chen, Z., Liu, Z., Suárez Serrato, J. C., & Xu, D. Y. (2021, July). Notching rd investment with corporate income tax cuts in china. American Economic Review, 111(7), 2065-2100. link
- Chernozhukov, V., Galichon, A., Henry, M., & Pass, B. (2021). Identification of hedonic equilibrium and nonseparable simultaneous
- DeFusco, A. A., & Paciorek, A. (2017, February). The interest rate elasticity of mortgage demand: Evidence from bunching at the conforming loan limit. American Economic Journal: Economic Policy, 9(1), 210-40. link
- Diamond, R., & Persson, P. (2016, April). The long-term consequences of teacher discretion in grading of high-stakes tests (Working Paper No. 22207). National Bureau of Economic Research. link
- Epple, D. (1987). Hedonic prices and implicit markets: Estimating demand and supply functions for differentiated products. Journal of Political Economy, 95(1), 59-80. link
- Epple, D., Quintero, L., & Sieg, H. (2020). A new approach to estimating equilibrium models for metropolitan housing markets. Journal of Political Economy, 128(3), 948-983. link
- Galiani, S., Murphy, A., & Pantano, J. (2015, November). Estimating neighborhood choice models: Lessons from a housing assistance experiment. American Economic Review, 105(11), 3385-3415. link
- Greenstone, M. (2017). The continuing impact of sherwin rosen's "hedonic prices and implicit markets: Product differentiation in pure competition". Journal of Political Economy, 125(6), 1891-1902. link
- Heckman, J. J., Matzkin, R. L., & Nesheim, L. (2010). Nonparametric identification and estimation of nonadditive hedonic models. Econometrica, 78(5), 1569-1591. link
- Kleven, H. J. (2016). Bunching. Annual Review of Economics, 8(1), 435-464. link
- Kuminoff, N. V., Smith, V. K., & Timmins, C. (2013, December). The new economics of equilibrium sorting and policy evaluation using housing markets. *Journal of Economic Literature*. 51(4), 1007-62. link
- Poterba, J. M. (1984, 11). Tax Subsidies to Owner-Occupied Housing: An Asset-Market Approach*. The Quarterly Journal of Economics, 99(4), 729-752. link
- Poterba, J. M. (1992). Taxation and housing: Old questions, new answers. The American Economic Review, 82(2), 237–242. link
- Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure competition. Journal of Political Economy, 82(1), 34-55. link
- Sinai, T., & Waldfogel, J. (2005). Do low-income housing subsidies increase the occupied housing stock? Journal of Public Economics, 89(11), 2137 - 2164. link
- Soltas, E. (2021). The price of inclusion: Evidence from housing developer behavior.. link

OBSERVED EQUILIBRIUM: PRICES, QUANTITIES, AND SIZE

- ► Solid line: price vs size
- \rightarrow hedonic price function
- ► Multiple characteristics
- ightarrow Reduce to a single characteristic
- ► Standard unit size (*h*):
- → Size of a unit with average characteristics that costs the same price

details

DEVELOPERS' OPTIMAL CHOICES

- Implicit Price Function P(h)
- Tax incentives $P(h) \cdot (1 + \delta)$
- Offer Functions $\varphi_S(h, A_i, \bar{\pi}; \beta)$

$$\bar{\pi} = \pi \left(h, A_j, P(h); \beta \right)$$

$$\bar{\pi}_{\delta} = \pi \left(h, A_j, P(h) * (1 + \delta) \right); \beta \right)$$

HEDONIC PRICES

► Hedonic price/Implicit price for housing size

$$P_{ltc} = P(s_{ltc}) + \Gamma' X_{ltc} + \omega_{ltc}$$
 (1)

l, house type in a development, *t* year, *c* city

- Identifying assumption: $E(s_{ltc}|X_{ltc}, \varepsilon_{ltc}) = 0$
- ightharpoonup Standard Unit Size h_{ltc}

$$P = P(h_{ltc}) + \Gamma'\bar{X} + \bar{\omega} = P(size_{ltc}) + \Gamma'X_{ltc} + \omega_{ltc}$$
 (2)

• Characteristics of the standard house: \bar{X} , $\bar{\omega}$

figures

IMPLICIT PRICES FOR HOUSING SIZE OVER TIME

DEVELOPERS CHOICES OF SIZE AND UNIT SUPPLY

BEHAVIOURAL RESPONSES INDUCED BY THE POLICY

Recovered by comparing observed and counterfactual distribution

Observed
$$f_{h^*} \rightarrow \text{histogram}$$

Counterfactual $f_{h_0} \rightarrow$ predicted density excluding observations around the cutoff (Kleven, 2016)

$$h_b = \sum_{p=0}^T \hat{\iota}_p h_b^p + \sum_{k=L}^H \kappa_k \cdot \mathbb{1} \left[h_k = h_b
ight] + v_b$$

$$\hat{f}_{h_0} = \sum_{p=0}^{T} \hat{\iota}_p h_b^p$$

Choice parameters: bin size, bounds for excluded area (L,H) and polynomial degree p

Figures

THE DEMAND NOTCH INCREASES OVER TIME

Supply Notch δ 2006-18 4%

Demand Notch τ_t

2006-08: 18 mMW 2009-11: 26 mMW 2016-18: 33 mMW

Note: 2012-15 Too many changes and free housing at 70 mMW

NOTCHES

▶ Demand Notch Overtime

	Notch (in mMW)			# Subsidies (in thousand)		
	$ au^M$	$ au^i$	τ	down payment	i rate	Mi Casa Ya
2006-08	18.0		18.0	47.1		•
2009-11	20.0	5.85	25.9	46.4	16.7	•
2012-15	19.9	9.55	29.5	41.1	22.2	
2016-18	25.3	7.24	32.6	44.5	23.4	16.8

► Supply Notch: 4 percent

Step I

Model

HOUSING MARKET EQUILIBRIUM MODEL

1. Housing

- Differentiated product described by its size $h \in \mathcal{H}$
- Price depends on size P(h)
- 2. **Households** $i \in I$, Heterogeneous in Income $Y_i \sim F_Y$
 - Choose h_i and consumption C_i to maximize Utility $U(C_i, h_i; \theta)$
- 3. **Developers** $j \in J$, Heterogeneous in Productivity $A_j \sim G_A$
 - Choose h_i to maximize profits
 - Building costs $B(A_j, h_j, Q(h_j); \beta)$

4. Competitive Market Equilibrium

• Price function $P(h) \rightarrow$ clears the market $\forall h \in \mathcal{H}$

- **Implicit Price Function** P(h)

- Subsidy

 τ

- **Implicit Price Function** *P*(*h*)
- Subsidy
- **Bid functions** $\varphi_D(h, Y, \bar{U}; \theta)$
 - $\bar{U} = U(h, Y_i \varphi_D; \theta)$
 - $\bar{U}_{\tau} = U(h, Y_i \varphi_D + \tau; \theta)$

Housing demand function

HOUSEHOLDS' DEMAND FUNCTION

$$h^{D}(Y_{i}) = \begin{cases} h^{*}(Y_{i}, \tau; \theta, \boldsymbol{\rho}, \lambda) & \text{if } Y_{i} \leq \underline{Y} \\ \underline{h} & \text{if } \underline{Y} < Y_{i} < \overline{Y} \\ h^{*}(Y_{i}, \tau; \theta, \boldsymbol{\rho}, \lambda) & \text{if } \overline{Y} \leq Y_{i} \end{cases}$$

- Tangency conditions: $h^*(Y_i, \tau; \theta, \rho, \lambda)$
- Income and unit size: $Y_i = \tilde{Y}(h, \tau; \theta, \rho, \lambda) = h^{*-1}(h_i, \tau; \theta, \rho, \lambda)$

Graphs

EQUILIBRIUM: DEVELOPERS AGGREGATE SUPPLY DENSITY

$$D\left(h\right) = \begin{cases} f_{h^*}(h) \, \mathrm{d}h & \text{if } h < \underline{h} \\ f_{h^*}(h) \, \mathrm{d}h & \text{if } \underline{h} = h \\ + \int\limits_{\underline{h}}^{\overline{h}} f_{h^*}(h) \, \mathrm{d}h & \text{if } \underline{h} = h \\ 0 & \text{if } h \in \left(\underline{h}, \overline{h}\right) \end{cases} \\ S\left(h\right) = \begin{cases} g_{h^*}\left(h\right) \cdot Q\left(h\right) & \text{if } h < \underline{h} \\ \left(g_{\underline{h}^*}\left(\underline{h}\right) + \int\limits_{\underline{h}}^{\overline{h}} g_{h^*}\left(h\right) \, \mathrm{d}h \right) \cdot Q\left(\underline{h}\right) & \text{if } \underline{h} = h \\ 0 & \text{if } \underline{h} < h < \overline{h} \\ g_{h^*} \cdot Q\left(h\right) & \text{if } \overline{h} \leq h \end{cases}$$
 Equilibrium Figures

13 / 17

Inflation and minimum wages.

a. Min wage and Inflation

b. Min wage and Inflation

Data

DATA: MORTGAGES AND INTEREST RATES

rent equivalent ((Poterba, 1984), (Bishop & Timmins, 2019) assume it is 0.05)

- ➤ Size of the mortgages and interest rate.
- ▶ Identifier for SIH.

Market interest rate i and subsidy τ^r

Monthly payments and monthly equivalent for relevant values. P(h) < 135

To convert the magnitudes into monthly payments I use:

$$X_{montly} = X \cdot \kappa(i, n); \kappa(i, n) = \frac{\frac{i}{12} \cdot \left(1 + \frac{i}{12}\right)^{12 \cdot n}}{\left(1 + \frac{i}{12}\right)^{n \cdot 12} - 1}$$

THE NOTCH: DOWN PAYMENT SUBSIDY

Subsidy by household income

Average subsidy over time

- ► Varies by income.
- ► Increase in 2016.
- Expanded trough *mi casa YA*

CHANGES IN HOUSING STOCK CHARACTERISTICS

model