

Arquitectura de Computadores

Clase 1 - Representaciones Numéricas I

Profesor: Germán Leandro Contreras Sagredo

Objetivos de la clase

- Entender la utilidad del uso de números para la representación de datos en el computador.
- Conocer distintas representaciones de números naturales y enteros.
- Realizar ejercicios que consoliden los conocimientos anteriores.

Representación de datos

A través de los números, podemos representar distintos tipos de dato:

- Caracteres (ASCII estándar que asocia números a caracteres).
- Imagen: Conjunto de pixeles con representación numérica (color).
- Sonido: Secuencia numérica (muestra) que se mapea a distintas amplitudes en un intervalo de tiempo.
- Video: Secuencia de imágenes con sonido.

Representación de datos

En resumen, sabiendo representar números dentro del computador, podemos representar una amplia gama de datos en este.

Ahora... ¿cómo lo hacemos?

Representaciones de números naturales

Asumamos que volvemos a una época sin computadores, papel ni lápices... pero con dodos (). Los usaremos para contar. ¿Cómo?

- Pero... ¿qué pasa si necesito un número mayor a la cantidad de que tengo?
- Es fácil operar (sumamos o restamos), pero esta representación no escala.

Representaciones de números naturales

Asumamos que tenemos \Rightarrow de distinto color. Podemos usar cada color para representar un número distinto (1 = \Rightarrow ; 2 = \Rightarrow ; etc.).

- Conociendo el valor asignado a cada color, podemos operar sin problemas. Pero... ¿qué pasa si se me acaban los colores de
- Podemos hacer que los valores dependan de la posición relativa de cada . Por ejemplo: = 12.

Así nace la representación posicional. Desde ahora usaremos la numeración indo-arábiga (0-9) para evitar confusiones con los .

Representaciones posicionales

Esta representación se basa en dos elementos:

- Cantidad de símbolos disponibles (base numérica).
- Posición de cada símbolo en una secuencia.

Por ejemplo, así representamos números con tres símbolos:

Secuencia	Valor	Secuencia	Valor	Secuencia	Valor	Secuencia	Valor
0	0	10	3	20	6	100	9
1	1	11	4	21	7	101	10
2	2	12	5	22	8	102	11

Representaciones posicionales

Podemos extrapolar la fórmula anterior a través de la siguiente fórmula:

s = Símbolo (en adelante dígito).

n = Cantidad de dígitos en la secuencia.

b = Base numérica (o número de dígitos).

k = Posición del dígito en la secuencia, siendo 0 la posición del extremo derecho.

Representaciones posicionales - Ejemplo

Supongamos que tenemos tres dígitos como en el ejemplo anterior (base ternaria).

Si tenemos el número 211 en esta base (que será indicada como subíndice en la secuencia), obtenemos su valor de la siguiente forma:

$$(211)_3 = \sum_{k=0}^{2} s_k * 3^k = 1 * 3^0 + 1 * 3^1 + 2 * 3^2 = 1 * 1 + 1 * 3 + 2 * 9 = 1 + 3 + 18 = 22$$

Representaciones posicionales

Las representaciones que más utilizaremos a lo largo del curso son dos:

- Binaria, dos dígitos (0 y 1).
 - Notación: Por subíndice o con b como sufijo.
 - Ejemplo: 01011b
- Hexadecimal, 16 dígitos (0-9, A-F).
 - Notación: Por subíndice, por h como sufijo o por prefijo 0x.
 - Ejemplo: A12h / 0xA12

Representaciones posicionales

- ¿Por qué son estas las que más utilizaremos?
- Representación binaria será la que nos permitirá operar dentro del computador (circuitos eléctricos, siguiente contenido).
- Representación hexadecimal se usa más en programación: permite reducir la cantidad de símbolos para representar números elevados (ejemplos: RGB, direcciones de memoria, etc.).

Al ser ambas potencias de 2, la conversión entre ambas bases se vuelve trivial:

Hexadecimal a binaria

- Cada dígito de la secuencia se representa en base binaria y luego se concatena el resultado.
- O Cada transformación binaria debe representar valores de 0 a 15 (o 16 combinaciones distintas). Como cada dígito otorga dos posibilidades: $2^n = 16 \rightarrow log_2(2^n) = log_2(16) \rightarrow log_2(2^n) = log_2(2^4) \rightarrow n = 4$

Ejemplo

$$0x9F2 = \begin{cases} 0x9 & = 1001b \\ 0xF & = 1111b \\ 0x2 & = 0010b \end{cases} \rightarrow 0x9F2 = 1001111110010b$$

Pequeña "demostración"

```
0x9F2 = 9 * 16^{2} + 15 * 16^{1} + 2 * 16^{0}
= 1001b * 2^{8} + 1111b * 2^{4} + 0010b * 2^{0}
= (1 * 2^{3} + 0 * 2^{2} + 0 * 2^{1} + 1 * 2^{0}) * 2^{8} + (1 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} + 1 * 2^{0}) * 2^{4} + (0 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}) * 2^{0}
= 1 * 2^{11} + 0 * 2^{10} + 0 * 2^{9} + 1 * 2^{8} + 1 * 2^{7} + 1 * 2^{6} + 1 * 2^{5} + 1 * 2^{4} + 0 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}
= 100111110010b
```

Al ser ambas potencias de 2, la conversión entre ambas bases se vuelve trivial:

Binaria a hexadecimal

- Se agrupan los dígitos de la secuencia en grupos de 4 y se transforma al dígito hexadecimal que representa el valor.
- El argumento es el mismo: Cada dígito hexadecimal puede abordar hasta 16 combinaciones distintas de dígitos binarios, esto es, una secuencia de 4 dígitos.

Ejemplo

$$1001111110010b = (1001)(1111)(0010) = (0x9)(0xF)(0x2) = 0x9F2$$

Pequeña "demostración"

```
\begin{aligned} 0x9F2 &= 9*16^2 + 15*16^1 + 2*16^0 \\ &= 1001b*2^8 + 1111b*2^4 + 0010b*2^0 \\ &= (1*2^3 + 0*2^2 + 0*2^1 + 1*2^0)*2^8 + (1*2^3 + 1*2^2 + 1*2^1 + 1*2^0)*2^4 + (0*2^3 + 0*2^2 + 1*2^1 + 0*2^0)*2^0 \\ &= 1*2^{11} + 0*2^{10} + 0*2^9 + 1*2^8 + 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 \\ &= 100111110010b \end{aligned}
```

Es lo mismo, solo deben leerla de arriba hacia abajo.

Hasta ahora hemos hablado solo de números naturales, es decir, positivos. ¿Qué hay de los enteros, que incluyen a los negativos?

- Existen varias alternativas, con sus pro y contra en términos de representación y operaciones.
- Nos basaremos en la representación binaria para estudiar nuestras alternativas. Ahora, hablaremos directamente de **bits** al hablar de dígitos binarios.

No usaremos dodos negativos. 😞

Opción 1: Agregar un símbolo negativo (-).

- Simple, pero aumenta la cantidad de símbolos que utiliza nuestra representación.
- Veremos más adelante por qué, pero de momento deseamos que nuestro sistema binario se mantenga solo con bits.

Opción 2: Agregar un bit de signo (ejemplo: 0 = +, 1 = -).

- Sabemos de forma inmediata qué secuencia es positiva o negativa.
- Tenemos dos representaciones de 0. Con 4 dígitos: 0000 y 1000.
- En términos aritméticos, no nos sirve. Para un número N de nuestra representación, se debe cumplir N + (-N) = 0.

N	0101	
-N	1101	
N + (-N)	0010	

Opción 3: Complemento de 1, reemplazamos todos los bits 0 por 1 y vice-versa.

- Nace naturalmente el bit de signo.
- Tenemos una mejora respecto a la aritmética. No obstante, el resultado estará compuesto solo de bits 1.
- Podemos asumir que esta será la representación de 0, pero no es intuitivo.

N	0101	
-N	1010	
N + (-N)	1111	

Opción 4: Complemento de 2, aplicamos complemento a 1 y sumamos una unidad adicional.

- Sigue naciendo naturalmente el bit de signo.
- Aritméticamente tenemos el resultado deseado: la suma de un número y su negativo entregan solo bits 0.
- Existen algunos puntos en contra que veremos a continuación, pero se aceptan respecto a lo que ganamos con esta representación.

N	0101	
-N	1011	
N + (-N)	0000	

Contras del complemento de 2

- Representación desbalanceada: como el 0 usa el bit de signo positivo, existe un número positivo que no estará siendo representado.
- Overflow: Si una operación aritmética resulta en un valor no representable, nos dará un valor erróneo.
- Ejemplo: 0111b + 0001b = 1000b = -8, no 8.

¿Por qué se llama "complemento de 2"?

- La operación equivale a la diferencia entre la base (en este caso, 2) elevada a la cantidad de dígitos de representación y el número que queremos representar de forma negativa.
- Ejemplo para el complemento de 2 de 7:
- En resumen: la representación binaria negativa de los números equivale al complemento de la potencia de 2.

$$egin{aligned} C_2(7_{10}) &= exttt{binary}(2^4-7) \ &= exttt{binary}(16-7) \ &= exttt{binary}(9) \ C_2(0111b) &= 1001b \end{aligned}$$

¿Y por qué se llama "complemento de 1" la conversión anterior al complemento de 2?

- Contrario al complemento de 2, en este caso se debe a que la suma entre ambos números entrega solo una secuencia de bits 1.
- Otra forma de verlo es como **el complemento de la secuencia de bits 1**. Ejemplo a continuación. $7_{10} = 1111b + C_1(7_{10})$

$$= 1111b + 1000b$$

 $= 0111b$

¿Por qué 1000b es -8 para representaciones de 4 bits en complemento de 2?: Podemos usar dos representaciones de 1000b:

Opción 1: Definir dos representaciones para el 0:
$$0000 = +0$$
; $1000 = -0$

- Respeta el bit de signo, pero perdemos un número representable.
- Aritméticamente, no nos sirve el valor -0:
 0001b + 1000b = 1001b; -7 si respetamos la representación de complemento de 2.

Opción 2: Asignarle un valor decimal negativo.

• ¿Cuál? El que sea consistente aritméticamente:

$$1 + 1000b = 0001b + 1000b = 1001b = -7$$

 $2 + 1000b = 0010b + 1000b = 1010b = -6$
 $3 + 1000b = 0010b + 1000b = 1011b = -5$

 Si extrapolamos a todos los casos, vemos que aritméticamente 1000b se comporta como un -8 decimal, siendo ideal esta asociación.

Ahora, veremos algunos ejercicios.

Estos se basan en preguntas de tareas y pruebas de semestres anteriores, por lo que nos servirán de preparación para las evaluaciones.

Indique la base β en la cual la siguiente ecuación es correcta:

$$7_{\beta} + 8_{\beta} = 13_{\beta}$$

Describa el valor decimal del número 0x94A6 si este se interpreta como binario con signo.

Dados A = 45 y B = 57, ¿cuál es el resultado, en binario, de la operación A - B?

Suponga que se tiene un total de 6 bits, usados para representar números positivos y negativos. Dados A = 27 y B = 8, ¿cuál es el resultado, en binario, de la operación A + B? ¿Por qué da este resultado?

Demuestre que el complemento a 2 del complemento a 2 de un número x es igual a x, esto es: $x = C_2(C_2(x))$

Hint: asuma que $C_2(x + y) = C_2(x) + C_2(y)$

Si hay algún problema eléctrico, como un alza de voltaje, es muy fácil corromper datos almacenados en binario. Por ejemplo, el número 10 (1010b) puede transformarse en 14 (1110b) con tan solo modificar un bit. Describa una codificación binaria para los números 0 y 1, de manera que esta permita detectar y corregir errores de a lo sumo 1 bit, *i.e.*, un bit de la codificación se ve alterado.

Antes de terminar

¿Dudas?

¿Consultas?

¿Inquietudes?

¿Comentarios?

Arquitectura de Computadores

Clase 1 - Representaciones Numéricas I

Profesor: Germán Leandro Contreras Sagredo

Anexo - Resolución de ejercicios

ilmportante!

Estos ejercicios pueden tener más de un desarrollo correcto. Las respuestas a continuación no son más que soluciones que **no excluyen** otras alternativas igual de correctas.

Indique la base β en la cual la siguiente ecuación es correcta:

$$7_{\beta} + 8_{\beta} = 13_{\beta}$$

Respuesta: Para responder esta pregunta se debe considerar que: $13_{\beta} = \beta^{\dot{1}} \cdot 1 + \beta^{0} \cdot 3 = 7_{10} + 8_{10} = 15_{10}$. O sea,

$$\beta + 3 = 15$$
$$\beta = 12$$

Nota: 7 y 8 en base β son iguales a 7 y 8 en base 10, demostrable con la fórmula de transformación decimal.

Describa el valor decimal del número 0x94A6 si este se interpreta como binario con signo.

Una forma rápida de expresar un número hexadecimal como uno binario, es transformando cada dígito de este a base binaria con 4 dígitos (recordando que $2^4 = 16$):

- 9 = 1001₂
- $4 = 0100_2$
- $A = 1010_2$
- \bullet 6 = 0110₂

Luego, nuestro número en base binaria corresponde a 1001010010100110₂. Como este se interpreta como binario con signo, y el bit más significativo corresponde a un 1, utilizamos el complemento a 2 para obtener la representación correcta:

 $1001010010100110_2 = -C_2(1001010010100110_2) = -0110101101011010_2 = -27482$

Dados A = 45 y B = 57, ¿cuál es el resultado, en binario, de la operación A - B?

Notemos que si queremos representar estos números en binario, y estamos realizando una operación que implica una resta, entonces necesariamente debemos considerar el bit de signo. Tenemos entonces que $A = 0101101_2$ y $B = 0111001_2$. Luego, restarle a un número positivo uno negativo es equivalente a sumarle su complemento a 2. Entonces:

$$-B = C_2(0111001_2) = 1000111_2$$
$$A - B = 0101101_2 + 1000111_2 = 1110100_2$$

Ahora, este número es negativo, por lo que si queremos su valor decimal correspondiente, realizamos nuevamente el complemento a 2:

$$A - B = -C_2(1110100_2) = -0001100_2 = -12$$

Suponga que se tiene un total de 6 bits, usados para representar números positivos y negativos. Dados A = 27 y B = 8, ¿cuál es el resultado, en binario, de la operación A + B? ¿Por qué da este resultado?

Si se tiene un total de 6 bits, podemos representar sin problemas los A y B dados como números positivos. Tenemos entonces que $A=011011_2$ y $B=000100_2$. Luego, al realizar la operación:

$$A + B = 011011_2 + 001000_2 = 100011_2$$

Podemos ver que el resultado, utilizando representación binaria con signo, es negativo. El número, en base decimal, sería entonces:

$$100011_2 = -C_2(100011_2) = -011101_2 = -29$$

Esto sucede debido a que sobrepasamos nuestro poder de representación. Con 6 bits, el máximo número que podemos representar es $011111_2=31$, Si la suma nos da un resultado mayor a ese, al no ser capaces de representar dicho número, obtenemos un número incorrecto (pues la suma de dos números positivos no pueden dar como resultado uno negativo). Este resultado se conoce como **overflow**.

Demuestre que el complemento a 2 del complemento a 2 de un número x es igual a x, esto es: $x = C_2(C_2(x))$

Hint: asuma que
$$C_2(x + y) = C_2(x) + C_2(y)$$

Solución:

$$x + C_2(x) = 0$$
 / C_2
 $C_2(x + C_2(x)) = 0$ / utilizamos el hint
 $C_2(x) + C_2(C_2(x)) = 0$
 $C_2(x) + C_2(C_2(x)) = x + C_2(x)$
 $C_2(C_2(x)) = x$

Si hay algún problema eléctrico, como un alza de voltaje, es muy fácil corromper datos almacenados en binario. Por ejemplo, el número 10 (1010b) puede transformarse en 14 (1110b) con tan solo modificar un bit. Describa una codificación binaria para los números 0 y 1, de manera que esta permita detectar y corregir errores de a lo sumo 1 bit, *i.e.*, un bit de la codificación se ve alterado.

Solución en la siguiente diapositiva.

Una codificación binaria sencilla para realizar esto, es codificar cada bit como 3 bits de sí mismo, es decir:

$$f(x) = \begin{cases} 111, & x = 1 \\ 000, & x = 0 \end{cases}$$

De esta forma, si tuvieramos el número 0101, este resultaría f(0101) = 000111000111. Si uno de los bits se corrompe, basta ir revisando de a 3 dígitos el número, y detenernos cuando no veamos que los 3 bits coinciden para encontrar el espacio que fue corrompido. El bit que predomine corresponderá al número original.

Notar que esto no habría funcionado para la siguiente codificación:

$$g(x) = \begin{cases} 11, & x = 1 \\ 00, & x = 0 \end{cases}$$

Esto, ya que si bien podemos identificar el lugar de corrupción revisando de a 2 dígitos, no podemos saber cuál correspondía al número original (por ejemplo, 10 pudo haber sido 11 o 00, no lo sabemos con dicha codificación).