Other Loose Ends

from this you might wonder: if $e^{\pi i}=-1$ then does it work for other radian angles besides π ? yes! euler's identity is actually just a special case of euler's formula, which says $e^{i\theta}$ is on the unit circle in the complex plane for any θ ! this is illustrated on the right using an image i swiped from wikipedia cause im getting tired now

i couldn't figure out a good way to prove or even informally show euler's formula here without having to dip into more calculus than i'd prefer but i like <u>this simple proof</u> if you do know calc

also i don't have any grand finale type thing here because my goal was to keep it as simple as possible while still leaving you with a sense of "wow" or at least "huh" or "that's so weird" even if you didn't understand absolutely everything!

thank you for reading my weird self-indulgent math presentation even though no one made you

i love u breath mints