

Вебинар №8. Подсчет пределов функций.

Эквивалентность определений Коши и Гейне

Эти два определения, несмотря на свою внешнюю разницу, являются полностью эквивалентными. Докажем это.

Доказательство (Коши \Longrightarrow **Гейне):** Пусть предел функции f(x) по Коши равен A, то есть $\lim_{x\to x_0} f(x) = A$. Это означает, что:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \forall x$$
 такого, что $0 < |x - x_0| < \delta \hookrightarrow |f(x) - A| < \varepsilon$

Рассмотрим произвольную последовательность $\{x_n\}$ такую, что $x_n \to x_0$ и $x_n \ne x_0$ для всех n. Нам нужно показать, что $\lim_{n \to \infty} f(x_n) = A$.

Пусть задано произвольное $\varepsilon > 0$. По определению предела по Коши, для этого ε существует соответствующее $\delta > 0$. Теперь, поскольку $\lim_{n \to \infty} x_n = x_0$, по определению предела последовательности, для этого δ найдется такой номер N, что для всех $n \ge N$ выполняется $|x_n - x_0| < \delta$. Так как по условию $x_n \ne x_0$, то мы имеем $0 < |x_n - x_0| < \delta$ для всех $n \ge N$.

Из определения предела по Коши следует, что для таких x_n выполняется $|f(x_n) - A| < \varepsilon$. Таким образом, мы показали, что для любого $\varepsilon > 0$ существует N такое, что для всех $n \ge N$ выполняется $|f(x_n) - A| < \varepsilon$. Это по определению означает, что $\lim_{n \to \infty} f(x_n) = A$. Следовательно, из определения предела по Коши следует определение по Гейне. Доказательство окончено.

Доказательство (Гейне \Longrightarrow **Коши):** Докажем методом от противного. Предположим, что определение предела по Гейне выполняется (то есть для любой последовательности $x_n \to x_0$, $x_n \neq x_0$, имеем $f(x_n) \to A$), но определение предела по Коши не выполняется.

Если определение по Коши не выполняется, это означает, что существует такое $\varepsilon_0 > 0$, что для любого $\delta > 0$ найдется x (в проколотой δ -окрестности x_0) такое, что $|f(x) - A| \ge \varepsilon_0$.

Используя это, мы можем построить последовательность $\{x_n\}$:

- Для $\delta = 1$, существует x_1 такое, что $0 < |x_1 x_0| < 1$ и $|f(x_1) A| \ge \varepsilon_0$.
- Для $\delta = \frac{1}{2}$, существует x_2 такое, что $0 < |x_2 x_0| < \frac{1}{2}$ и $|f(x_2) A| \ge \varepsilon_0$.
- ullet В общем, для $\delta=rac{1}{n},$ существует x_n такое, что $0<|x_n-x_0|<rac{1}{n}$ и $|f(x_n)-A|\geq arepsilon_0.$

Рассмотрим построенную последовательность $\{x_n\}$. Из неравенства $0<|x_n-x_0|<\frac{1}{n}$ и того, что $\lim_{n\to\infty}\frac{1}{n}=0$, по теореме о двух милиционерах следует, что $\lim_{n\to\infty}|x_n-x_0|=0$, то есть $\lim_{n\to\infty}x_n=x_0$. Также, по построению, $x_n\neq x_0$ для всех n.

Однако, по построению этой последовательности, для каждого её члена $f(x_n)$ выполняется $|f(x_n) - A| \ge \varepsilon_0$. Это означает, что последовательность $\{f(x_n)\}$ не сходится к A (поскольку она не попадает в ε_0 -окрестность A).

Мы пришли к противоречию: мы построили последовательность $x_n \to x_0$ ($x_n \neq x_0$), для которой $f(x_n)$ не стремится к A, что противоречит нашему исходному предположению (что определение по Гейне выполняется). Следовательно, наше предположение было неверным, и определение предела по Гейне влечет за собой определение по Коши. Доказательство окончено.

Арифметические свойства пределов функций

Арифметические свойства пределов функций полностью дублируют арифметические свойства пределов последовательностей, что является прямым следствием эквивалентности определений Коши и Гейне.

Пусть функции f(x) и g(x) имеют конечные пределы при $x \to x_0$: $\lim_{x \to x_0} f(x) = A$ и $\lim_{x \to x_0} g(x) = B$. Тогда:

1) Предел суммы функций равен сумме их пределов:

$$\lim_{x \to x_0} \left(f(x) + g(x) \right) = A + B$$

2) Предел произведения функций равен произведению их пределов:

$$\lim_{x \to x_0} \left(f(x) \cdot g(x) \right) = A \cdot B$$

3) Предел частного функций равен частному их пределов, при условии, что предел знаменателя не равен нулю:

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{A}{B},\quad \text{при }B\neq 0$$

Из этих основных свойств вытекают следующие следствия:

ullet Вынесение константы за знак предела: Если c — константа, то

$$\lim_{x \to x_0} \left(c \cdot f(x) \right) = c \cdot \lim_{x \to x_0} f(x) = cA$$

• Предел разности:

$$\lim_{x \to r_0} \left(f(x) - g(x) \right) = A - B$$

• Предел степени (для натурального показателя):

$$\lim_{x \to x_0} \left((f(x))^n = \left(\lim_{x \to x_0} f(x) \right)^n = A^n, \ n \in \mathbb{N}$$

Доказательства всех этих свойств пределов функций напрямую следуют из определения предела функции по Гейне. В каждом из свойств достаточно написать: рассмотрим произвольную последовательность $x_n \to x_0$, $x_n \neq x_0$, тогда $f(x_n) \to A$. Так как $f(x_n)$ - числовая последовательность, то для нее выполняются все арифметические свойства последовательностей, доказанные нами ранее. Таким образом, сводя пределы функций к пределам последовательностей, мы сможем доказать арифметические свойства пределов функций.

Теорема о двух милиционерах (Теорема о сжатой функции)

Эта теорема очень полезна, когда мы не можем напрямую вычислить предел функции, но можем "зажать" её между двумя другими функциями, пределы которых известны и совпадают.

Теорема: Пусть функции h(x), f(x) и g(x) определены в некоторой проколотой окрестности точки x_0 . Если для всех x из этой окрестности выполняется неравенство $h(x) \le f(x) \le g(x)$, и при этом пределы "зажимающих" функций совпадают:

$$\lim_{x \to x_0} h(x) = A \quad \text{if} \quad \lim_{x \to x_0} g(x) = A$$

тогда и предел функции f(x) также равен A:

$$\lim_{x \to x_0} f(x) = A$$

Геометрический смысл: Представьте, что у вас есть две функции h(x) и g(x), которые как будто "загоняют" или "сжимают "функцию f(x) между собой. Если при приближении к некоторой точке x_0 обе "загоняющие" функции сходятся к одному и тому же значению A, то функция f(x), находящаяся между ними, вынуждена "прийти" к тому же самому значению A. Это похоже на двух милиционеров, ведущих под руки подозреваемого: если милиционеры направляются к одной и той же двери, то подозреваемый неизбежно пройдет через ту же дверь.

Рис. 1: Геометрический смысл теоремы о двух милиционерах

Вычисление пределов функций

Давайте перейдем к практике вычисления пределов функций. Мы будем использовать рассмотренные свойства и методы раскрытия неопределенностей.

Пределы отношений многочленов при $x \to \infty$

Для пределов вида $\lim_{x\to\pm\infty}\frac{P(x)}{Q(x)}$, где P(x) и Q(x) — многочлены, и возникает неопределенность $\left\lceil\frac{\infty}{\infty}\right\rceil$, делим числитель и знаменатель на старшую степень x.

Пример 1.

$$\lim_{x \to +\infty} \frac{3x+2}{2x-1} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{\frac{3x}{x} + \frac{2}{x}}{\frac{2x}{x} - \frac{1}{x}} = \lim_{x \to +\infty} \frac{3 + \frac{2}{x}}{2 - \frac{1}{x}} = \frac{3+0}{2-0} = \frac{3}{2}$$

Пример 2.

$$\lim_{x \to +\infty} \frac{7x^2 + 5x - 100}{1241 + 3x^2 - 20x} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{\frac{7x^2}{x^2} + \frac{5x}{x^2} - \frac{100}{x^2}}{\frac{1241}{x^2} + \frac{3x^2}{x^2} - \frac{20x}{x^2}}$$

$$= \lim_{x \to +\infty} \frac{7 + \frac{5}{x} - \frac{100}{x^2}}{\frac{1241}{x^2} + 3 - \frac{20}{x}} = \frac{7 + 0 - 0}{0 + 3 - 0} = \frac{7}{3}$$

Пример 3.

$$\lim_{x \to +\infty} \frac{2x^3 + 3x - 10}{3x^4 + 1} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{\frac{2x^3}{x^4} + \frac{3x}{x^4} - \frac{10}{x^4}}{\frac{3x^4}{x^4} + \frac{1}{x^4}}$$
$$= \lim_{x \to +\infty} \frac{\frac{2}{x} + \frac{3}{x^3} - \frac{10}{x^4}}{3 + \frac{1}{x^4}} = \frac{0 + 0 - 0}{3 + 0} = \frac{0}{3} = 0$$

Пример 4.

$$\lim_{x \to +\infty} \frac{5x^3 + 7}{x^2 - 100x + 2} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{\frac{5x^3}{x^3} + \frac{7}{x^3}}{\frac{x^2}{x^3} - \frac{100x}{x^3} + \frac{2}{x^3}}$$
$$= \lim_{x \to +\infty} \frac{5 + \frac{7}{x^3}}{\frac{1}{x} - \frac{100}{x^2} + \frac{2}{x^3}} = \frac{5 + 0}{0 - 0 + 0} = \frac{5}{0} = +\infty$$

В чем разница между пределами функций и последовательностей?

Главное отличие состоит в том, что для последовательностей индекс n всегда стремится к $+\infty$ (поскольку он принимает только натуральные значения). Для функций же переменная x не обязана стремиться к бесконечности; она может стремиться к **любому числу из** \mathbb{R} , а также к $+\infty$, $-\infty$ и ∞ . Кроме того, мы можем рассматривать односторонние пределы (стремление к точке x_0 справа или слева).

Чтобы было понятно, как устроены односторонние пределы, приведем их графическую интерпретация на Рис. 2 и Рис. 3:

Рис. 2: Стремление к $x = \frac{1}{2}$ слева и справа

Рис. 3: Поведение функции $y = \frac{3x+2}{2x-1}$ слева и справа от точки $x = \frac{1}{2}$

Как видно из рисунков, односторонние пределы показывают, к чему стремится функция f(x) при x стремящемся к точке x_0 слева или справа. На Рис. 3 видим, что

$$\lim_{x \to \frac{1}{2}^+} \frac{3x+2}{2x-1} = +\infty$$

$$\lim_{\substack{x \to \frac{1}{2}^{-} \\ x \to \frac{1}{2}}} \frac{3x+2}{2x-1} = -\infty$$

Давайте теперь рассмотрим примеры, где x стремится к конечному числу. Пример 1.

$$\lim_{x \to -1} \frac{2x^2 - 3x - 5}{x + 1}$$

При прямой подстановке x=-1 в числитель получаем $2(-1)^2-3(-1)-5=2+3-5=0$. В знаменателе получаем -1+1=0. Таким образом, у нас неопределенность вида $\begin{bmatrix} 0\\ \overline{0} \end{bmatrix}$. Чтобы раскрыть эту неопределенность, разложим числитель на множители. Поскольку x=-1 является корнем числителя, то (x+1) будет одним из множителей. Выполним деление многочленов или используем теорему Виета. Для квадратного трехчлена ax^2+bx+c , если x_1 — корень, то он раскладывается как $a(x-x_1)(x-x_2)$. Корни числителя $2x^2-3x-5$: $D=(-3)^2-4(2)(-5)=9+40=49$. $x=\frac{3\pm\sqrt{49}}{2\cdot2}=\frac{3\pm7}{4}$. $x_1=\frac{3-7}{4}=\frac{-4}{4}=-1$. $x_2=\frac{3+7}{4}=\frac{10}{4}=\frac{5}{2}$.

Тогда числитель $2x^2-3x-5=2(x-(-1))(x-\frac{5}{2})=2(x+1)(x-\frac{5}{2})=(x+1)(2x-5)$. Теперь подставим это в предел:

$$\lim_{x \to -1} \frac{(x+1)(2x-5)}{x+1}$$

Поскольку $x \to -1$, но $x \neq -1$ (так как это проколотая окрестность), мы можем сократить (x+1):

$$= \lim_{x \to -1} (2x - 5)$$

Теперь подставим x = -1:

$$=2(-1)-5=-2-5=-7$$

Otbet: -7.

Пример 2.

$$\lim_{x \to 2} \frac{x^3 - 8}{x^3 - 3x - 2}$$

При прямой подстановке x=2: Числитель: $2^3-8=8-8=0$. Знаменатель: $2^3-3(2)-2=8-6-2=0$. Неопределенность вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Поскольку x=2 является корнем как числителя, так и знаменателя, то (x-2) — их общий множитель.

Разложим числитель $x^3 - 8$ делением на (x - 2):

$$\begin{array}{c|cccc}
x^3 & +0x^2 & +0x & -8 & x-2 \\
\underline{-(x^3 - 2x^2)} & & & x^2 + 2x + 4 \\
\hline
2x^2 & +0x & & & \\
\underline{-(2x^2 - 4x)} & & & & \\
\underline{-(4x - 8)} & & & & \\
\hline
& & & & & \\
\end{array}$$

Таким образом, $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$.

Разложим знаменатель $x^3 - 3x - 2$ делением на (x - 2):

$$\begin{array}{c|ccccc}
x^3 & +0x^2 & -3x & -2 & x-2 \\
\underline{-(x^3 - 2x^2)} & & & x^2 + 2x + 1 \\
\hline
2x^2 & -3x & & \\
\underline{-(2x^2 - 4x)} & & & x & -2 \\
& & & & x & -2 \\
\hline
& & & & & 0
\end{array}$$

Таким образом, $x^3 - 3x - 2 = (x - 2)(x^2 + 2x + 1)$. Заметим, что $x^2 + 2x + 1 = (x + 1)^2$.

Подставим полученные разложения в предел:

$$\lim_{x \to 2} \frac{(x-2)(x^2+2x+4)}{(x-2)(x^2+2x+1)}$$

Поскольку $x \to 2$, но $x \ne 2$, мы можем сократить множитель (x-2):

$$= \lim_{x \to 2} \frac{x^2 + 2x + 4}{x^2 + 2x + 1}$$

Теперь подставим x = 2:

$$= \frac{2^2 + 2(2) + 4}{2^2 + 2(2) + 1} = \frac{4 + 4 + 4}{4 + 4 + 1} = \frac{12}{9} = \frac{4}{3}$$

Otbet: $\frac{4}{3}$.

Пример 3.

$$\lim_{x \to 1} \frac{x^4 - 2x + 1}{x^8 - 2x + 1}$$

При прямой подстановке x=1: Числитель: $1^4-2(1)+1=1-2+1=0$. Знаменатель: $1^{8}-2(1)+1=1-2+1=0$. Снова неопределенность $\begin{bmatrix} 0\\0 \end{bmatrix}$. Поскольку x=1 является корнем обоих многочленов, то (x-1) — их общий множитель.

Разложим числитель $x^4 - 2x + 1$ делением на (x - 1):

Таким образом, $x^4 - 2x + 1 = (x - 1)(x^3 + x^2 + x - 1)$.

Разложим знаменатель $x^8 - 2x + 1$ делением на (x - 1):

азложим знаменатель
$$x^8-2x+1$$
 делением на $(x-1)$:
$$\frac{x^8+0x^7+0x^6+0x^5+0x^4+0x^3+0x^2+0x-2x+1}{x^7+0x^6+0x^5+0x^4} = \frac{x-1}{x^7+x^6+x^5+x^4+x^3+x^2+x-1}$$

$$\frac{-(x^8-x^7)}{x^7+0x^6} = \frac{-(x^7-x^6)}{x^6+0x^5} = \frac{-(x^6-x^5)}{x^5+0x^4} = \frac{-(x^5-x^4)}{x^4+0x^3} = \frac{-(x^4-x^3)}{x^3+0x^2} = \frac{-(x^3-x^2)}{x^2+0x} = \frac{-(x^2-x)}{x-2x} = \frac{-(x^2-x)}{x-2x} = \frac{-(x-1)}{-(x+1)} = \frac{-(x^2-x)}{0} = \frac{-(x^2-x)}{x^2+0x} = \frac{$$

Таким образом, $x^8 - 2x + 1 = (x - 1)(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1).$

Подставим полученные разложения в предел:

$$\lim_{x \to 1} \frac{(x-1)(x^3 + x^2 + x - 1)}{(x-1)(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1)}$$

Поскольку $x \to 1$, но $x \ne 1$, мы можем сократить множитель (x-1):

$$= \lim_{x \to 1} \frac{x^3 + x^2 + x - 1}{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1}$$

Теперь подставим x=1: Числитель: $1^3+1^2+1-1=1+1+1-1=2$. Знаменатель: $1^7+1^6+1^5+1^4+1^3+1^2+1-1=1+1+1+1+1+1+1=6$.

$$=\frac{2}{6}=\frac{1}{3}$$

Otbet: $\frac{1}{3}$.

Пример 4.

$$\lim_{x \to 6} \frac{\sqrt{x-2} - 2}{x - 6}$$

При прямой подстановке x=6: Числитель: $\sqrt{6-2}-2=\sqrt{4}-2=2-2=0$. Знаменатель: 6-6=0. Неопределенность $\begin{bmatrix} 0\\ 0 \end{bmatrix}$ с корнем. Умножим числитель и знаменатель на сопряженное выражение к числителю: $\sqrt{x-2}+2$.

$$\lim_{x \to 6} \frac{(\sqrt{x-2}-2)(\sqrt{x-2}+2)}{(x-6)(\sqrt{x-2}+2)}$$

$$= \lim_{x \to 6} \frac{(x-2)-2^2}{(x-6)(\sqrt{x-2}+2)}$$

$$= \lim_{x \to 6} \frac{x-2-4}{(x-6)(\sqrt{x-2}+2)}$$

$$= \lim_{x \to 6} \frac{x-6}{(x-6)(\sqrt{x-2}+2)}$$

Сокращаем (x-6):

$$= \lim_{x \to 6} \frac{1}{\sqrt{x-2} + 2}$$

Теперь подставим x = 6:

$$=\frac{1}{\sqrt{6-2}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{2+2}=\frac{1}{4}$$

Otbet: $\frac{1}{4}$.

Пример 5.

$$\lim_{x \to 5} \frac{\sqrt{6-x} - 1}{3 - \sqrt{4+x}}$$

При прямой подстановке x=5: Числитель: $\sqrt{6-5}-1=\sqrt{1}-1=1-1=0$. Знаменатель: $3-\sqrt{4+5}=3-\sqrt{9}=3-3=0$. Неопределенность $\left[\frac{0}{0}\right]$. Умножим на сопряженные выражения как для числителя, так и для знаменателя. Сопряженное для числителя: $\sqrt{6-x}+1$. Сопряженное для знаменателя: $3+\sqrt{4+x}$.

$$\lim_{x \to 5} \frac{(\sqrt{6-x}-1)(\sqrt{6-x}+1)(3+\sqrt{4+x})}{(3-\sqrt{4+x})(3+\sqrt{4+x})(\sqrt{6-x}+1)}$$

$$= \lim_{x \to 5} \frac{((6-x)-1^2)(3+\sqrt{4+x})}{(3^2-(4+x))(\sqrt{6-x}+1)}$$

$$= \lim_{x \to 5} \frac{(6-x-1)(3+\sqrt{4+x})}{(9-4-x)(\sqrt{6-x}+1)}$$

$$= \lim_{x \to 5} \frac{(5-x)(3+\sqrt{4+x})}{(5-x)(\sqrt{6-x}+1)}$$

Сокращаем (5-x):

$$= \lim_{x \to 5} \frac{3 + \sqrt{4 + x}}{\sqrt{6 - x} + 1}$$

Теперь подставим x = 5:

$$= \frac{3+\sqrt{4+5}}{\sqrt{6-5}+1} = \frac{3+\sqrt{9}}{\sqrt{1}+1} = \frac{3+3}{1+1} = \frac{6}{2} = 3$$

Ответ: 3.

Пример 6.

$$\lim_{x \to +\infty} (x - \sqrt{x^2 + 5x - 2})$$

При прямой подстановке $x=+\infty$: $x\to +\infty$. $\sqrt{x^2+5x-2}\approx \sqrt{x^2}=x$ при больших x. Получаем неопределенность $[\infty-\infty]$. Умножим на сопряженное выражение $(x+\sqrt{x^2+5x-2})$:

$$\lim_{x \to +\infty} \frac{(x - \sqrt{x^2 + 5x - 2})(x + \sqrt{x^2 + 5x - 2})}{x + \sqrt{x^2 + 5x - 2}}$$

$$= \lim_{x \to +\infty} \frac{x^2 - (x^2 + 5x - 2)}{x + \sqrt{x^2 + 5x - 2}}$$

$$= \lim_{x \to +\infty} \frac{x^2 - x^2 - 5x + 2}{x + \sqrt{x^2 + 5x - 2}}$$

$$= \lim_{x \to +\infty} \frac{-5x + 2}{x + \sqrt{x^2 + 5x - 2}}$$

Теперь у нас неопределенность $\left[\frac{\infty}{\infty}\right]$. Старшая степень x в числителе — x^1 . В знаменателе: x и $\sqrt{x^2+5x-2}$. $\sqrt{x^2+5x-2}=\sqrt{x^2(1+\frac{5}{x}-\frac{2}{x^2})}=|x|\sqrt{1+\frac{5}{x}-\frac{2}{x^2}}$. Поскольку $x\to+\infty$, то |x|=x. Знаменатель: $x+x\sqrt{1+\frac{5}{x}-\frac{2}{x^2}}=x(1+\sqrt{1+\frac{5}{x}-\frac{2}{x^2}})$. Старшая степень в знаменателе — x^1 . Разделим числитель и знаменатель на x:

$$\lim_{x \to +\infty} \frac{\frac{-5x}{x} + \frac{2}{x}}{\frac{x}{x} + \frac{\sqrt{x^2 + 5x - 2}}{x}}$$

$$= \lim_{x \to +\infty} \frac{-5 + \frac{2}{x}}{1 + \sqrt{\frac{x^2}{x^2} + \frac{5x}{x^2} - \frac{2}{x^2}}}$$

$$= \lim_{x \to +\infty} \frac{-5 + \frac{2}{x}}{1 + \sqrt{1 + \frac{5}{x} - \frac{2}{x^2}}}$$

Применяем предел:

$$=\frac{-5+0}{1+\sqrt{1+0-0}}=\frac{-5}{1+\sqrt{1}}=\frac{-5}{1+1}=\frac{-5}{2}$$

Ответ: $-\frac{5}{2}$.