AUTOMATA FORMAL LANGUAGES AND LOGIC

Lecture notes on equivalence of Regular Grammar & Finite Automata

Prepared by:

Prof.Sangeeta V I

Assistant Professor

Department of Computer Science & Engineering

PES UNIVERSITY

(Established under Karnataka Act No.16 of 2013)

100-ft Ring Road, BSK III Stage, Bangalore – 560 085 Table of contents

Section	Topic	Page number
1	Conversion from Finite automata to regular grammar.	4
2	Converting Regular grammar to finite automata.	7

Examples Solved:

#	Conversion from Finite automata to regular grammar.	Page number
1	Converting a given finite automata accepting $L=\{n_a(w) \bmod 2=0 \text{ and } n_b(w) \bmod 2=0 \}$ to regular grammar.	4
2	Converting a given finite automata accepting L={abw,w∈{a,b}*} to regular grammar.	5
3	Converting given finite automata accepting L={awa,w∈{a,b}*}to regular grammar.	6

Examples Solved:

#	Converting Regular grammar to finite automata.	Page number
1	Convert given regular grammar to finite automata. $S \rightarrow bS aA$ $A \rightarrow aA bA aB$ $B \rightarrow bbB \lambda$	7
2	Convert given regular grammar to finite automata. $S \rightarrow 01A$ $A \rightarrow 10B$ $B \rightarrow 0A 11$	8
3	Convert given regular grammar to finite automata. $A \rightarrow aB bA b$ $B \rightarrow aC bB$ $C \rightarrow aA bC a$	9

1. Conversion from Finite automata to regular grammar.

Regular grammar and Finite Automata are equivalent in power.

Example 1:

Converting a given finite automata accepting $L=\{n_a(w) \mod 2=0 \text{ and } n_b(w) \mod 2=0 \}$ to regular grammar.

L={even number of a's and b's}

Start state of automata will be the start symbol of the grammar.

We start with S,S on seeing terminal a it moves to state $A(S \rightarrow aA)$ and on seeing terminal b it moves to state B ($S \rightarrow bB$).

Since S is also the final state, we introduce the production $S \rightarrow \lambda$.

 $S \rightarrow aA|bB| \lambda$

We will repeat the same for other states and terminal symbols.

 $A \rightarrow aS|bC$ $B \rightarrow aC|bS$ $C \rightarrow aB|bA$

So the grammar is,

 $S \rightarrow aA|bB| \lambda$

 $A \rightarrow aS|bC$

 $B \rightarrow aC|bS$

 $C \rightarrow aB|bA$

Parse tree for the string abab.

Example 2:

Converting a given finite automata accepting $L=\{abw,w\in\{a,b\}^*\}$ to regular grammar.

Start state of automata will be the start symbol of the grammar.

State S on seeing terminal a it goes to state A. So we introduce the production $S \rightarrow aA$ State A on seeing terminal a it goes to state B. So we introduce the production $S \rightarrow bB$ State B on seeing terminal a,b remains in state B. So we introduce the production $B \rightarrow aB|bB$.

Any final state we introduce the production $B \rightarrow \lambda$.

So the grammar is,

 $S \rightarrow aA$

 $A \rightarrow bB$

 $B \rightarrow aB|bB|\lambda$

Example 3:

Converting given finite automata accepting $L=\{awa,w\in\{a,b\}^*\}$ to regular grammar.

Start state of automata will be the start symbol of the grammar.

State S on seeing terminal a it goes to state A. So we introduce the production $S \rightarrow aA$ State A on seeing terminal a,b remains in state A. So ,we introduce the production $A \rightarrow aA|bA$.

State A on seeing terminal a it goes to state B. So we introduce the production $A \rightarrow aB$ Since B is the final state we introduce the production $B \rightarrow \lambda$.

We will not encode the production to state D ,as D is a dead state and it will never lead us to the terminal.It is an useless production.

So the grammar is,

 $S \rightarrow aA$

 $A \rightarrow aA|bA|aB$

 $\mathbf{B} \rightarrow \lambda$

2. Converting Regular grammar to finite automata.

Example 1:

Convert given regular grammar to finite automata.

 $S \rightarrow bS|aA$

A→ aA|bA|aB

<mark>B→ bbB| λ</mark>

State S on seeing b remains in S,we will have a self loop on S.

State S on seeing a moves to state A.

A on seeing a and b remains in state A, we will have a self loop on A.

A on seeing a also moves to state B.

B loops on bb,we introduce a new state and loop on bb.

 $B \rightarrow \lambda$ indicates B is a final state.

Example 2:

Convert given regular grammar to finite automata.

 $S \rightarrow 01A$

A→ 10B

 $B \rightarrow 0A|11$

State S on seeing 01 is moving to state A. State A on seeing 10 is moving to state B. State B on seeing 0 moves to state A. B ends with 11.

Example 3:

Convert given regular grammar to finite automata.

<mark>A→ aB|bA|b</mark>

<mark>B→ aC|bB</mark>

<mark>C→ aA|bC|a</mark>

State A seeing terminal a is moving to state B.

State A seeing terminal b remains in state B.

State B seeing terminal a is moving to state C.

State B seeing terminal b remains in state B.

State A accepts only b as well.

State C on a moves to final state.

