Correspondance id et numéro de la planche

ID	Planches	Observations
553	4	Bonnes réactions de la part de l'élève sauf une formule justifiée par un argument non
		valable
554	4	Vivement conseillé à refaire
562	9	On a du changer la façon de poser les questions 4 et 5 car ce n'est pas évident de prévoir la réponse
576		Bien mené, de bonnes idées, de bonnes réactions, la connexité par arcs : indication (étoilé)
585	25	Cette planche n'est associé à aucun élève mais je conseille vivement de la faire.
589	29	Cette planche n'est associé à aucun élève mais je conseille vivement de la faire. Cette planche n'est associé à aucun élève mais je conseille vivement de la faire.
590	30	planche n'est associé à aucun élève mais je conseille vivement de la faire.
592	32	L'élève concerné avait preuves de bonnes réactions quoique leur insuffisance pour trouver une piste. Après des indications (Formule de Tylor, inégalité de Cauchy-Schwarz).
594	34	La deuxième intégrale a posé plus de difficultés, non achevé.
595	34	Étudié pendant une séance d'exercices.
604	43	Question un peu technique et difficile, laissé à certains élèves.
605	44	Faite totalement avec indications données pendant une interogation sans préparation.
618	55	L'élève concerné a bien travaillé, il a fait les questions 1 et 2 tout seul et la dernière
620	56	Totalement fait par l'élève concerné, on a du ajouté une question
621	57	Plusieurs élèves ont eu cette question, ils arrivent à démarrer en général, on ajoute une question de recherche d'équivalent
622	57	Cette planche n'est associé à aucun élève mais je conseille vivement de la faire.
623	58	L'élève concerné a bien travaillé, beaucoup de bonnes idées.
624	58	Seule la première question de cette planche a été proposée
625	59	Trés bonnes réactions de l'élève concerné, il a terminé l'exercices.
626	60	Question reçue par plusieurs élèves, en général ils arrivent à répondre et trouvent l'adjoint. Cependant j'ai remarqué parfois des méconnaissances de base (unicité de
627	60	l'adjoint, interpretation matricielle de l'adjoint)
027	00	De bonnes idées, la question 2 : une indication, la question 3) : le temps ne restait pas pour la terminer.
628	61	Pas mal, l'élève réagit bien et assimile les indications données. Il a terminé l'exercice.
629	61	Bon démarrage, surtout que les élèves ayant eu cet exercice ont pensé à Cauchy-Schwarz, cependant la dernière question avait nécessité une indication
630	62	Bonnes réaction de la part des élève ayant eu cet exercice. Un peu d'aide a été quand même nécessaire pour la question 2
631	62	Même exercice que celui de l'id 629
632	63	Les élèves mènent à bien la recherche des coefficients de la série entière, un peu d'aide pour identifier la fonction usuelle et la recherche d'une deuxième solution (des élèves ont oublié le cours lié à ce sujet).
633	64	Exercice bien fait, la question 3 necessitait un peu d'aide(utilisation de $tr(A^2)$ mais un élève avait une idée : calcul de A^3 .)
634	65	Cet exercice n'est associé à aucun élève mais il est vivement conseillé de le faire.
636	67	Exercice obtenu par deux élèves : il y'avait de bonnes idée dont pour un des deux élèves le fait de travailler dans la question 2 avec la base $(X-1)^k$, $0 \le k \le n$.
638	68	Bonnes réactions, de bonnes idées, l'exercice est fait tout entier.
646	73	L'élève ayant eu cet exercice connaît bien le vas $p = n$. Au niveau du cas $p = n - 1$ il avait besoin d'indications.
647	73	Exercice que je propose et qui figurait aussi dans la planche 77 mais le temps n'était pas suffisant car l'exercice 647 n'était pas simple
653	77	Non associé à des élèves mais conseillé.
	•	

Les exercices et leur solutions

Exercice 1 [id=553] Endomorphisme a tel que $a^p = \text{Id}$, une relation...

Soit E un \mathbb{C} -espace vectoriel de dimension finie n avec $n \neq 0$ et a un endomorphisme de E tel qu'il existe $p \in \mathbb{N}^*$ tel que $a^p = \mathrm{Id}$. Montrer que :

$$\dim(\ker(a - \operatorname{Id})) = \frac{1}{p} \sum_{k=0}^{p-1} \operatorname{tr}(a^k).$$

Solution : a est diagonalisable car le polynôme X^p-1 est scindé à racines simples. Soit

$$\omega = \exp\left(i\frac{2\pi}{p}\right),\,$$

et pour tout $k \in \mathbb{N}$, notons $\omega_k = \omega^k$. Les valeurs propres distinctes de a sont $\lambda_j = \omega^j, j \in I$ avec $I \subset [0, p-1]$. Notons ν_j la multiplicité de λ_j , donc

$$\operatorname{tr}(a^k) = \sum_{j \in I} \nu_j \exp\left(i\frac{2jk\pi}{p}\right),\,$$

donc

$$\sum_{k=0}^{p-1} \operatorname{tr}(a^k) = \sum_{k=0} \sum_{j \in I} \nu_j \exp\left(i\frac{2jk\pi}{p}\right)$$
$$= \sum_{j \in I} \sum_{k=0}^{p-1} \exp\left(i\frac{2jk\pi}{p}\right)$$
$$= p\nu_0.$$

On a donc

$$\frac{1}{p} \sum_{k=0}^{p-1} \operatorname{tr}(a^k) = \nu_0.$$

l'ordre de multiplicité de la valeur propre 1. Comme a est diagonalisable on a $\nu_0 = \dim(E_1(a)) = \dim(\ker(a - \operatorname{Id}))$, ce qui termine la réponse.

Exercice 2 [id=554] Série entière avec un coefficient sous forme intégrale

On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par les conditions :

$$\begin{cases} a_0 = 1 \\ \text{et} \\ \forall n \ge 1, a_n = \frac{1}{n!} \int_0^1 t(t-1)(t-2) \dots (t-n+1) dt \end{cases}$$

- $\boxed{\mathbf{1}}$ Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$
- 2 Calculer la somme de cette série entière sur son intervalle ouvert de convergence]-R,R[.
- **3** Montrer que la série $\sum a_n$ converge absolument.
- 4 Calculer les sommes $\sum_{n=0}^{\infty} a_n$ et $\sum_{n=0}^{\infty} (-1)^n a_n$.

Solution:

1 Pour tout
$$t \in [0, 1], 0 \le t \le 1$$

$$-1 \le t - 1 \le 0$$

 $-2 \le t - 2 \le -1$

donc pour tout x réel, $|a_nx^n| \leq \frac{|x|^n}{n}$, ce qui montre par majoration que la série $\sum_{n=0}^{\infty} a_nx^n$ converge absolument pour |x| < 1. Son rayon de convergence est donc supérieur ou égal à 1.

• Pour tout $n \ge 2$ et $t \in [0, 1]$

$$|t-2| > 1, |t-3| > 2, \ldots, |t-n+1| > n-2$$

Chacun des facteurs du produit $t(t-1)(t-2)\dots(t-n+1)$ garde un signe constant sur [0,1] et le produit aussi, donc

$$|a_n| = \frac{1}{n!} \left| \int_0^1 t(t-1)(t-2) \dots (t-n+1) dt \right|$$

$$= \frac{1}{n!} \int_0^1 |t(t-1)(t-2) \dots (t-n+1)| dt$$

$$\geq \frac{1}{n!} \int_0^1 |t(t-1)(n-2)!| dt$$

$$= \frac{(n-2)!}{n!} \int_0^1 t(1-t) dt$$

$$= \frac{1}{n(n-1)} \left[\frac{t^2}{2} - \frac{t^3}{3} \right]_0^1$$

$$= \frac{1}{6n(n-1)}$$

donc pour tout x réel, $|a_nx^n| \ge \frac{|x|^n}{6n(n-1)}$, ce qui montre par minoration que la série $\sum_{n=0}^\infty a_nx^n$ diverge grossièrement pour |x| > 1. Son rayon de convergence est donc inférieur ou égal à 1. Finalement, la série entière $\sum_{n=0}^\infty a_nx^n$ a pour rayon de convergence R=1

2 On a :

$$\forall x \in]0,1[,\sum_{n=0}^{\infty} a_n x^n] = \sum_{n=0}^{\infty} \left(\frac{1}{n!} \int_0^1 t(t-1)(t-2)\dots(t-n+1) dt\right) x^n$$

$$= \sum_{n=0}^{\infty} \int_0^1 \underbrace{t(t-1)(t-2)\dots(t-n+1)x^n}_{n!} dt$$

d'après la majoration obtenue en a), $|u_n(t)| \leq \frac{(n-1)!|x|^n}{n!} \leq |x|^n$, terme général d'une série convergente puisque |x| < 1. La série de fonctions $\sum_{n=1}^{\infty} u_n(t)$ converge normalement et donc uniformément pour $t \in [0,1]$. On peut alors affirmer que

$$\forall x \in]0, 1 \left[\sum_{n=0}^{\infty} \left(\int_{0}^{1} u_n(t) dt \right) = \int_{0}^{1} \left(\sum_{n=0}^{\infty} u_n(t) dt \right) \right]$$

donc

$$\forall x \in]0,1[, \sum_{n=0}^{\infty} a_n x^n = \int_0^1 \left(\sum_{n=0}^{\infty} u_n(t) dt \right)$$
$$= \int_0^1 \left(\sum_{n=0}^{\infty} \frac{t(t-1)(t-2)\dots(t-n+1)x^n}{n!} \right) dt$$

or on sait que

$$\forall x \in]-1, 1[, (1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \dots (\alpha-n+1)x^n}{n!},$$

Mohamed Ait Lhoussain page 3 SPÉ MP

donc

$$\forall x \in]0,1[, \sum_{n=0}^{\infty} a_n x^n = \int_0^1 (1+x)^t dt = \int_0^1 e^{t \ln(1+x)} dt$$
$$= \left[\frac{e^{t \ln(1+x)}}{\ln(1+x)} \right]_{t=0}^{t=1} = \frac{1+x-1}{\ln(1+x)}.$$

Donc en résumé :

$$\forall x \in]0,1[, \sum_{n=0}^{\infty} a_n x^n = \frac{x}{\ln(1+x)}.$$

 $\boxed{\mathbf{3}}$ La série $\sum a_n$ converge absolument.

$$\forall x \in [-1, 1], |a_n x^n| \le |a_n|$$

donc $\sup_{x\in[-1,1]}|a_nx^n|\leq |a_n|$ et la série entière $\sum a_nx^n$ converge normalement et donc uniformément sur [-1,1]. La fonction somme

$$S: x \mapsto \sum_{n=0}^{\infty} a_n x^n$$

est donc continue sur [-1, 1]. d'où

$$\sum_{n=0}^{\infty} a_n = S(1) = \lim_{x \to 1^-} S(x) = \lim_{x \to 1^-} \frac{x}{\ln(1+x)} = \frac{1}{\ln(2)}$$

• De même,

$$\sum_{n=0}^{\infty} (-1)^n a_n = S(-1) = \lim_{x \to -1^+} S(x) = \lim_{x \to -1^+} \frac{x}{\ln(1+x)} = 0.$$

• En résumé, on a :

$$\sum_{n=0}^{\infty} a_n = \frac{1}{\ln(2)} \quad \text{et} \quad \sum_{n=0}^{\infty} (-1)^n a_n = 0$$

Exercice 3 [id=562] Activités sur les matrices, trace, determinant et autres.

Dans tout ce qui suit, \mathbb{K} dénote \mathbb{R} ou \mathbb{C} et n est un entier naturel tel que $n \geq 2$. Pour tout $X, Y \in \mathcal{M}_n(\mathbb{K})$, la notation $X \simeq Y$ veut dire X et Y sont semblables.

- $\begin{bmatrix} \mathbf{1} \end{bmatrix}$ Soit $U = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ et $V = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Montrer que $U \simeq V$,dans $\mathcal{M}_2(\mathbb{K})$.
- **2** Est il vrai que si $X, Y \in \mathcal{M}_2(\mathbb{K})$ on a :

$$(\star) \quad X \simeq Y \Leftrightarrow \left\{ \begin{array}{l} \operatorname{tr}(X) = \operatorname{tr}(Y) \\ \operatorname{det}(X) = \operatorname{det}(Y) \end{array} \right.$$

- **3** Démontrer que si $X, Y \in \mathcal{M}_2(\mathbb{K})$ et X et Y ne sont pas des matrices scalaires alors (\star) ci-dessus est vraie.
- Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice tel que pour toute matrice $M = (m_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$, on aie:

$$(\star\star)$$
 $A \simeq M \Rightarrow m_{1,1} = 0$

Que peut-on dire de A?

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice tel que pour toute matrice $M = (m_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$, on aie :

$$(\star \star \star)$$
 $A \simeq M \Rightarrow m_{1,2} = 0$

Mohamed Ait Lhoussain page 4 SPÉ MP

Que peut-on dire de A?

Solution:

1 Aisé

2 Non

3 Penser aux matrices compagnon

 $\boxed{\mathbf{4}} \quad A = 0$

5 A est scalaire

Exercice 4 [id=576] Sous-espace vectoriel engendré par les matrices nilpotentes

Soit $n \in \mathbb{N}, n \geq 2$. On note \mathcal{N}_n l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$.

 $\boxed{1}$ \mathcal{N}_n est il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$?

2 Préciser $Vect(\mathcal{N}_n)$.

 $\overline{\mathbf{3}}$ \mathcal{N}_n est il fermé? ouvert?

4 Démontrer que \mathcal{N}_n est connexe par arcs.

Solution:

Non. Contre-exemple: Soit $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $M = \operatorname{diag}(U, 0, \dots, O)$; alors M = J + K avec $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $K = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ avec $K^2 = J^2 = O_2$, donc en posant $J_n = \operatorname{diag}(J, 0, \dots, 0)$ et $K_n = \operatorname{diag}(K, 0, \dots, 0)$ on a $J_n + K_n = M$ non nilpotente alors que J_n et K_n le sont.

Vect $\mathcal{N}=\ker(\mathrm{tr})$, en effet pour toute matrice $M\in\mathcal{N}$, on peut dire que M est trigonalisable dont l'unique valeur propre est 0n donc $\mathrm{tr}(M)=0$ (somme des valeurs propres). Il en découle que $\mathcal{N}\subset\mathcal{H}$ où $\mathcal{H}=\ker(\mathrm{tr})$. Si pour tout $(i,j)\in[\![1,n]\!]^2\backslash\{(1,1)\}$, on note $F_{i,j}=\left\{egin{array}{c} E_{i,j} & \mathrm{si} & i\neq j \\ E_{i,i}-E_{1,1} & \mathrm{si} & i=j \end{array}\right\}$, il est aisé de prouver que la famille $\mathscr{F}=(F_{i,j})_{(i,j)\in I}$ est une famille libre de $\mathcal{M}_n(\mathbb{K})$. On peut démontrer que pour tout $(i,j)\in I$, on a $F_{i,j}\in\mathrm{Vect}(\mathcal{N})$, pour cela c'est immédiat si $i\neq j$, mais pour $2\leq i=j$, si on note u l'endomorphsme canoniquement associé à $F_{i,i}$, et $\mathscr{E}=(e_1,\ldots,e_n)$ la base canonique de \mathbb{K}^n , on a $u(e_1)=-e_1, u(e_i)=e_i$ et pour tout $j\in [\![1,n]\!]\setminus\{1,i\}$, on a $u(e_j)=e_j$. Soit $\mathscr{E}'=(e'_1,\ldots,e'_n)$ tel que $e'_1=e_1+e_i,e'_i=e_i-e_1$ et $e'_j=e_j$ pour tout $j\in [\![1,n]\!]\setminus\{1,i\}$, alors $u(e'_1)=u(e_1)+u(e_i)=-e_1+e_i=e'_i, u(e'_i)=u(e_i)-u(e_1)=e_i+e_1=e'_1$ donc la matrice M' de u relativement à \mathscr{E}' est $M'=E_{i,1}+E_{1,i}$ et comme $i\neq 1$, les matrices $E_{i,1}$ et $E_{1,i}$ sont nilpotentes donc $M'\in\mathrm{Vect}(\mathcal{N})$. Il en découle que $\mathrm{Vect}(\mathcal{N})$ admet une famille libre à n^2-1 vecteurs donc $\dim(\mathrm{Vect}(\mathcal{N}))=n^2-1=\dim(\mathcal{H})$, donc $\mathcal{H}=\mathrm{Vect}(\mathcal{N})$.

[3] Ce n'est pas un ouvert car inclus dans un hyperplan. C'est un fermé car image réciproque de $\{0\}$ par $\Phi: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}), X \mapsto X^n$.

 $\boxed{\mathbf{4}}$ \mathcal{N} est étoilé par rapport à 0, en effet , si $N \in \mathcal{N}$, posons $\gamma(t) = tN$, pour tout $t \in \llbracket 0, 1 \rrbracket$, alors γ est un chemin et $\gamma(t) \in \mathcal{M}, \forall t \in \llbracket 0, 1 \rrbracket$ et $\gamma(0) = 0$ et $\gamma(1) = N$

Exercice 5 [id=585] Matrice d'un endomorphisme cylique en dimension 3

Soit $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ et u l'endomorphisme canoniquement associé à A. On note $\mathbb{R}[A] = \{P(A)/P \in \mathbb{R}[X]\}$ et $\mathcal{C}(A) = \{X \in \mathcal{M}_3(\mathbb{R})/MA = AM\}$.

- 1 Diagonaliser A.
- $\mathbf{2}$ Déterminer les sous-espaces stables par u.
- **3** Démontrer qu'il existe un vecteur $e \in \mathbb{R}^3$ tel que $(e, u(e), u^2(e))$ est une base de \mathbb{R}^3 .
- **4** En déduire que $\mathcal{C}(A) = \mathbb{R}[A]$ et en donner une base.

Solution:

 $\boxed{\mathbf{1}}$ Le polynôme caractéristique de A est

$$\chi_A = \left| \begin{array}{ccc} X - 1 & -2 & -1 \\ -2 & X - 1 & -1 \\ -1 & -1 & X - 2 \end{array} \right|.$$

En utilisant l'opération élémentaire $C_1 \leftarrow C_1 + C_2 + C_3$, on obtient

$$\chi_A = (X - 4) \begin{vmatrix} 1 & -2 & -1 \\ 1 & X - 1 & -1 \\ 1 & -1 & X - 2 \end{vmatrix}.$$

On fait $L_k \leftarrow L_k - L_1$ pour $k \in \{2,3\}$, ce qui donne

$$\chi_A = (X - 4) \begin{vmatrix} 1 & -2 & -1 \\ 0 & X + 1 & 0 \\ 0 & 1 & X - 1 \end{vmatrix}.$$

Finalement, en développant suivant la deuxième ligne, on a $\chi_A = (X+1)(X-1)(X-4)$. Donc $\operatorname{Sp}(A) = \{-1, 1, 4\}$, on notera $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = 4$.

- Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$. Alors:
- Sous-espace propre associé à $\lambda_1 = -1$

$$X \in E_{\lambda_1}(A) \Leftrightarrow \begin{cases} x + 2y + z = -x \\ 2x + y + z = -y \\ x + y + 2z = -z \end{cases} \Leftrightarrow \begin{cases} 2x + 2y + z = 0 \\ x + y + 3z = 0 \end{cases} \Leftrightarrow z = 0 \text{ et } y = -x,$$

donc $E_{\lambda_1}(A) = \mathbb{R}V_1$ avec $V_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

• Sous-espace propre associé à $\lambda_2 = 1$

$$X \in E_{\lambda_2}(A) \Leftrightarrow \begin{cases} x + 2y + z = x \\ 2x + y + z = y \\ x + y + 2z = z \end{cases}$$

$$\Leftrightarrow \begin{cases} z = -2y \\ z = -2x \\ x + y + z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = x \\ z = -2x \end{cases}$$

$$\Leftrightarrow X = \begin{pmatrix} x \\ y \\ -2x \end{pmatrix} = xV_2, \text{ avec } V_2 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

Donc $E_{\lambda_2}(A) = \mathbb{R}V_2$.

Mohamed Ait Lhoussain page 6 SPÉ MP

• Sous-espace propre associé à $\lambda_3 = 4$:

$$X \in E_{\lambda_2}(A) \Leftrightarrow \begin{cases} x + 2y + z = 4x \\ 2x + y + z = 4y \\ x + y + 2z = 4z \end{cases}$$

$$\Leftrightarrow \begin{cases} z = 4x - 2y \\ z = 3y - 2x \\ 2z = x + y \end{cases}$$

$$\Leftrightarrow \begin{cases} y = x \\ z = x \end{cases}$$

$$\Leftrightarrow X = \begin{pmatrix} x \\ x \\ x \end{pmatrix} = xV_3, \text{ avec } V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Donc $E_{\lambda_3}(A) = \mathbb{R}V_3$.

- $\boxed{\mathbf{2}}$ Notons u l'endomorphisme canoniquement associé à A.
 - Tout d'abord $\{0\}$ est E sont stables par u.
 - Une droite $\mathbb{R}V$ est stable par u si et seulement si V est un vecteur propre de u, et comme tous les sous-espaces propres sont des droites vectorielles, il n'y a que trois droites vectorielles stables par u qui sont celles de la forme $\mathbb{R}V_k$ où V_k sont les vecteurs vecteurs propres associés aux valeurs propres $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = 4$ de la question précédente.
 - Si F est un plan stable par u, comme u est diagonalisable, l'endomorphisme $v = u_F$ induit par u sur F est diagonalisable, donc F admet une base de vecteurs propres qui sont parmi les vecteurs V_1, V_2, V_3 . Il en découle qu'il y'a exactement trois plans stables par u, à savoir, $F_1 = \text{Vect}(V_2, V_3), F_2 = \text{Vect}(V_3, V_1), F_3 = \text{Vect}(V_1, V_2)$.
- Soit $e=V_1+V_2+V_3$. Si on note $\mathscr{V}=(V_1,V_2,V_3)$ la base formée par les vecteurs propres V_1,V_2,V_3 associés aux valeurs propres respectives $\lambda_1,\lambda_2,\lambda_3,$ on a

$$\det_{\mathscr{V}}(e, u(e), u^{2}(e)) = \begin{vmatrix} 1 & \lambda_{1} & \lambda_{1}^{2} \\ 1 & \lambda_{2} & \lambda_{2}^{2} \\ 1 & \lambda_{3} & \lambda_{3}^{2} \end{vmatrix} = (\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1})(\lambda_{3} - \lambda_{2}) = 2.5.3 = 30$$

donc $(e, u(e), u^2(e))$ est une base de \mathbb{R}^3 .

4 On a $[u] \subset \mathscr{C}(u)$. Réciproquement, soit $g \in \mathscr{C}(u)$, écrivons $g(e) = \alpha_0 e + \alpha_1 u(e) + \alpha_2 u^2(e) = P(u)(e)$ où $P(X) = \alpha_0 + \alpha_1 X + \alpha_2 X^2$, alors pour tout $k \in \{1, 2\}$, on a $v(u^k(e)) = u^k(v(e)) = u^k(P(u)(e)) = P(u)(u^k(e))$, donc $g \in P(u)$ coincident sur les vecteurs de la base $(e, u(e), u^2(e))$, donc g = P(u) et $g \in \mathbb{K}[u]$. Il en découle que $\mathscr{C}(u) = \mathbb{K}[u]$.

Exercice 6 [id=589] Séries numériques des restes d'ordre n

Pour tout $n \in \mathbb{N}$, on pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$.

- $\boxed{\mathbf{1}}$ Justifier l'existence de R_n .
- **2** Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$R_n = (-1)^{n+1} \int_0^1 \frac{x^n}{x+1} dx.$$

3 Montrer qu'il existe $m \in \mathbb{N}^*$ et $A \in \mathbb{R}$ tels que

$$R_n = A \frac{(-1)^n}{n^m} + O\left(\frac{1}{n^{m+1}}\right).$$

En déduire la convergence de la série $\sum R_n$.

4 Calculer
$$\sum_{n=0}^{+\infty} R_n$$
.

Solution:

1 Critère de Leibnitz

2 Intégrons sur [0, 1] la relation

$$1 - x + x^{2} - \dots + (-x)^{n-1} = \frac{1 - (-x)^{n}}{1 + x}$$

on obtient :

$$-S_n = \ln(2) + (-1)^{n+1} \int_0^1 \frac{x^n}{1+x} dx.$$

Le dernier terme est majoré par $\int_0^1 x^n dx = \frac{1}{n+1}$, ce qui montre que $\lim_{n \to +\infty} S_n = -\ln(2)$, résultat que l'on connaissait depuis longtemps. On en déduit par ailleurs que :

$$R_n = S - S_n = \ln(2) - S_n = (-1)^{n+1} \int_0^1 \frac{x^n}{1+x} dx.$$

3 On effectue une intégration par parties, il vient :

$$\int_0^1 \frac{x^n}{x+1} \mathrm{d}x = \frac{1}{2n+2} + \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2} \mathrm{d}x.$$

Cette dernière inégalité est clairement majorée par $\frac{1}{n+2}$, donc :

$$\frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2} \mathrm{d}x = O\left(\frac{1}{n^2}\right)$$

On en déduit que :

$$R_n = \frac{(-1)^{n-1}}{2n} + O\left(\frac{1}{n^2}\right)$$

et que la série $\sum R_n$ est convergente.

4 Enfin, si on remplace R_n par son expression intégrale, on a :

$$\sum_{n=0}^{N} R_n = -\sum_{n=0}^{N} \int_0^1 \frac{(-x)^n}{1+x} dx$$

$$= -\int_0^1 \sum_{n=0}^{N} \frac{(-x)^n}{1+x} dx$$

$$= -\int_0^1 \frac{1}{1+x} \frac{1 - (-x)^{N+1}}{1+x} dx$$

$$= -\int_0^1 \frac{1}{(1+x)^2} dx - \underbrace{\int_0^1 \frac{(-x)^{N+1}}{(1+x)^2} dx}_{\leq \frac{1}{N+2}}$$

ce qui montre que :

$$\sum_{n=0}^{+\infty} R_n = -\int_0^1 \frac{1}{(1+x)^2} dx = -\frac{1}{2}$$

Exercice 7 [id=590] Théorème de Maskhe

Soit E un \mathbb{C} -espace vectoriel de dimension finie $n \geq 1$. Soit G un sous-groupe finie de $\mathbf{GL}(E)$ et F un sous-espace vectoriel G-stable (c'est-à-dire : $\forall g \in G, g(F) \subset F$). On cherche à démontrer que F admet un supplémentaire G-stable.

- I Soit p un projecteur de E. Montrer que p commute avec tous les éléments de G si et seulement si Im(p) et ker(p) sont G—stables.
- Soit π un projecteur de E tel que $\text{Im}(\pi) = F$. On note m = card(G) et on pose alors : $\Pi = \frac{1}{m} \sum_{g \in G} g^{-1} \circ \pi \circ g$. Prouver que Π est un projecteur de E et determiner son image et son noyau.
- 3 Conclure en utilisant Π ci-dessus.

Solution:

- Si p commute avec tout élément de G, alors $p \circ g = g \circ p$. Un résultat de cours donne $\operatorname{Im}(p)$ et $\ker(p)$ sont stables par g. Réciproquement, si pour tout $g \in G$, $\operatorname{Im}(p)$ et $\ker(p)$ sont stables par g. Comme p est un projecteur on a $E = \ker(p) \oplus \operatorname{Im}(g)$. Pour montrer que $g \circ p = p \circ g$ il suffit de prouver que c'est vrai sur $\operatorname{Im}(p)$ et $\ker(p)$. Soit $x \in \operatorname{Im}(p)$, alors p(x) = x, donc g(p-x) = g(x) et comme $g(x) \in \operatorname{Im}(p)$, on a g(g(x)) = g(x), donc $g(x) \in \operatorname{Im}(p)$. Si $g(x) \in \operatorname{Im}(p)$ et $g(x) \in \operatorname{Im}(p)$ par stabilité donc g(g(x)) = g(x).
- Remarquons que pour tout $x \in F$, on a $\Pi(x) = \frac{1}{m} \sum_{g \in G} g^{-1}(\pi(g(x)))$ et comme F est G-stable, on a $g(x) \in F$, donc $\pi(g(x)) = g(x)$, donc $\Pi(x) = \frac{1}{m} \sum_{g \in G} g^{-1}(x) = \frac{1}{m} \sum_{g \in G} x = \frac{1}{m} mx = x$, en particulier on a $\operatorname{Im}(\Pi) \subset F$. Inversement pour tout $x \in E$, on a $\pi(g(x)) \in \operatorname{Im}(\pi) = F$ et comme F est stable par g^{-1} , on a $g^{-1}(\pi(g(x))) \in F$, et par combinaison linéaire on a $\Pi(x) \in F$, donc $\operatorname{Im}(\Pi) \subset F$ et finalement $\operatorname{Im}(\Pi) = F$. Montrons que $\Pi^2 = \Pi$. Si $x \in E$, alors on a vu que $\Pi(x) \in F$. Il en découle par stabilité que pour tout $g \in G$, on a $g(\Pi(x)) \in F$, donc $\pi(g(\Pi(x))) = g(\Pi(x))$, donc $g^{-1}(\pi(g(\Pi(x)))) = \Pi(x)$, donc $(g^{-1} \circ \pi \circ g) \circ \Pi = \Pi$ donc $\frac{1}{m}(g^{-1} \circ \pi \circ g) \circ \Pi = \Pi$, donc $\Pi^2 = \Pi$. On a donc prouvé que Π est un projecteur de E tel que $\operatorname{Im}(\Pi) = F$.
- Soit $F' = \ker(\Pi)$. Tout d'abord on a $F \oplus F' = E$. Montrons que F' est G-stable : Si $h \in G$ alors h commute avec Π car $h \circ \Pi = \frac{1}{m} \sum_{g \in G} h \circ g^{-1} \circ \pi \circ g = \frac{1}{m} \sum_{g \in G} (g \circ h^{-1})^{-1} \circ \pi \circ (g \circ h^{-1}) \circ h = \Pi \circ h$ en effet en posant $k = g \circ h^{-1}$ et le fait que G est un groupe on a un changement de variable bijectif et $h \circ \Pi = \frac{1}{m} \sum_{k \in G} k^{-1} \circ \pi \circ k = \Pi$. En conclusion F' est un supplémentaire G-stable de F.

Exercice 8 [id=592] Recher de minimum d'une fonctionnelle

Minimum de $\int_0^1 (f''(x))^2 dx$ dans l'ensemble des fonctions f de classe C^2 de [0,1] dans \mathbb{R} vérifiant f(0) = f(1) = 0 et f'(0) = a où a est un réel donné.

Solution : Notons E l'ensemble des fonctions décrit ci-dessus. Par Taylors reste-intégrale on a $f(1) = f(0) + f'(0) + \int_0^1 (1-t)f''(t)dt$, donc $a = \int_0^1 (1-t)f''(t)$ dt. Par l'inégalité de CS, il vient : $a^2 = \left(\int_0^1 (1-t)f''(t)\right)dt\right)^2 \le \left(\int_0^1 (1-t)^2 dt\right)^2 \left(\int_0^1 (f''(t))^2 dt\right)$, donc $\int_0^1 (f''(t))^2 dt \ge 3a^2$ avec égalité si et seulement si f'' et $t \mapsto t-1$ sont linéairement dépendantes. un calcul simple montre que le minimum cherché est $3a^2$ réalisé par un unique élément f_0 tel que $f_0(x) = \frac{a}{2}t(t-1)(t-2)$.

Exercice 9 [id=594] Equivalent de suites définies par intégrales

On pose $I_n = \int_0^1 \ln(1+t^n) dt$ et $J_n = \int_0^1 \ln(1-t^n) dt$. Déterminer $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} J_n$. En donner des équivalents simples.

Solution : Le changement de variable $t^n=u$ permet de trouver $I_n=\int_0^1 u^{\frac{1}{n}-1} \ln(1+u) du$ et $J_n=\int_0^1 u^{\frac{1}{n}-1} \ln(1-u) du$. Cela rends aisé d'appliquer le théorème de convergence dominée , les dominantes

respectives étant $\phi: u \mapsto \frac{\ln(1+u)}{u}$ et $\psi: u \mapsto -\frac{\ln(1-u)}{u}$ qui sont positives continues et intégrable sur]0,1]. Il vient $J_n \sim \frac{C}{n}$ et $J_n \sim \frac{C'}{n}$ avec $C = \int_0^1 \frac{\ln(1+t)}{t}$ dt et $C' = \int_0^1 \frac{\ln(1-t)}{t}$ dt. A présent maple donne $C = \frac{\pi^2}{12}$ et $C' = -\frac{\pi^2}{6}$, mais le candidat doit trouver ces valeurs tout seul.

Exercice 10 [id=595] B non nulle tel que AB = BA = 0

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée de taille n avec $n \in \mathbb{N}$ et $n \geq 2$. Montrer par deux méthodes différentes que si $A \neq 0$ et A non inversible alors il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que

$$B \neq 0$$
 et $AB = BA = 0$

Solution: Non dsiponible encore

Exercice 11 [id=604] La série $\sum (-1)^n I_n *$ où I_n est une intégrale

Soit pour tout entier naturel n,

$$I_n = \int_0^{\pi} \frac{\sin(2n+1)t}{1+\cos^2 t} dt.$$

Convergence et calcul de la somme de la série numérique $\sum\limits_{n=0}^{+\infty} (-1)^n I_n$

Solution : Un calcul élémentaire donne :

$$\sum_{n=0}^{N} (-1)^n \sin((2n+1)t) = \frac{(-1)^n}{2\cos t} \sin((2N+2)t)$$

Donc:

$$\sum_{n=0}^{N} (-1)^n I_n = \frac{(-1)^N}{2} \int_0^{\pi} \frac{\sin((2N+2)t)}{\cos(1+\cos^2 t)} dt$$
$$= \frac{(-1)^N}{2} \int_0^{\pi} \sin((2N+2)t) \left(\frac{1}{\cos t} - \frac{\cos t}{1+\cos^2 t}\right) dt$$

Selon le théorème de Riemann-Lebesgue :

$$\lim_{x \to +\infty} \int_0^{\pi} \sin((2N+2)t) \frac{\cos t}{1 + \cos^2 t} dt = 0$$

Il reste à traiter :

$$\frac{(-1)^N}{2} \int_0^{\pi} \frac{\sin((2N+2)t)}{\cos t} dt = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin((2N+2)s)}{\sin s} ds
= \int_0^{\frac{\pi}{2}} \frac{\sin((2N+2)s)}{\sin s} ds
= \int_0^{\frac{\pi}{2}} \frac{\sin((2N+2)s)}{\sin s} ds$$

où:

$$\varphi: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}; s \mapsto \varphi(s) = \begin{cases} \frac{1}{\sin s} - \frac{1}{s} & \text{si} \quad s \neq 0 \\ 0 & \text{si} \quad s = 0 \end{cases}$$

A nouveau:

$$\lim_{N \to \infty} \int_0^1 \sin((2N+2)t)\varphi(t)dt = 0$$

Mohamed Ait Lhoussain page 10 SPÉ MP

et:

$$\int_{0}^{1} \frac{\sin((2N+2)s)}{s} ds = \int_{0}^{(N+1)\pi} \frac{\sin y}{y} dy$$

tend vers $\frac{\pi}{2}$ quand N tend vers $+\infty$ (classique) En définitive, la série envisagée converge, de somme $\frac{\pi}{2}$

Exercice 12 [id=605] Calculde de $\sum\limits_{n\geq 0} (-1)^n \int_0^1 \cos(nt^2) \mathrm{d}t$ après preuve de convergence

Montrer la convergence de la série

$$\sum_{n>0} (-1)^n \int_0^1 \cos(nt^2) \mathrm{d}t$$

et calculer sa somme.

Solution: Posons $u_n = (-1)^n \int_0^1 \cos nt^2 dt = \int_0^1 \cos n \left(t^2 + \pi\right) dt$ et

$$S_n = \sum_{k=0}^{n} u_k = \int_0^1 \sum_{k=0}^{n} \cos k \left(t^2 + \pi \right) dt$$

Or une simple transformation trigonométrique donne :

$$\cos ku \sin \frac{u}{2} = \frac{1}{2} \left[\sin \left(k + \frac{1}{2} \right) u - \sin \left(k - \frac{1}{2} \right) u \right]$$

Donc

$$\sum_{k=0}^{n} \cos ku \sin \frac{u}{2} = \frac{1}{2} \left[\sin \left(n + \frac{1}{2} \right) u + \sin \frac{u}{2} \right]$$

Posant $C_n(u) = \sum_{k=0}^n \cos ku$, on obtient, pour $\sin \frac{u}{2} \neq 0$:

$$C_n(u) = \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} + \frac{1}{2}$$

Finalement:

$$S_n = \int_0^1 C_n \left(t^2 + \pi \right) dt = \frac{1}{2} + \int_0^1 \frac{\sin \left(\left(n + \frac{1}{2} \right) \left(t^2 + \pi \right) \right)}{2 \sin \frac{t^2 + \pi}{2}} dt$$

Montrons que la dernière intégrale tend vers 0 . On écrit :

$$\int_0^1 \frac{\sin(n + \frac{1}{2})(t^2 + \pi)}{\sin\frac{t^2 + \pi}{2}} dt = \int_0^1 \cos n(t^2 + \pi) dt + \int_0^1 \sin n(t^2 + \pi) \cot\frac{t^2 + \pi}{2} dt$$

Or:

$$\int_0^1 \cos n \left(t^2 + \pi \right) \mathrm{d}t = (-1)^n \int_0^1 \cos n t^2 \mathrm{d}t = \frac{(-1)^n}{\sqrt{n}} \int_0^{\sqrt{n}} \cos t^2 \mathrm{d}t \to 0$$

 $\operatorname{car} \int_0^{+\infty} \cos t^2 dt$ converge.

De plus : $\int_0^1 \sin n(t^2 + \pi) \cot \frac{t^2 + \pi}{2} dt = (-1)^{n+1} \int_0^1 \sin nt^2 \tan \frac{t^2}{2} dt = \frac{(-1)^{n+1}}{2} \int_0^1 \sin nu \frac{\tan \frac{u}{2}}{\sqrt{u}} du$ Posons $f(u) = \frac{\tan \frac{u}{2}}{\sqrt{u}}$. Cette fonction est prolongeable en une application continue sur [0, 1]. Le lemme de Riemann-Lebesgue donne : $\int_0^1 f(u) \sin nu du$ tend vers 0. Finalement, (S_n) tend vers $\frac{1}{2}$, qui est la somme de la série.

Mohamed Ait Lhoussain page 11 SPÉ MP

Exercice 13 [id=618] L'équation $g^2 = u$ où $u \in \mathcal{L}(E)$ et $|\operatorname{Sp}(u)| = \dim(E)$

Soient E un \mathbb{C} -espace vectoriel de dimension finie n > 1 et $u \in \mathcal{L}(E)$ un endomorphisme ayant n valeurs propres distinctes.

- $\boxed{\mathbf{1}}$ Que peut-on dire de u?
- Montrer que si $g \in \mathcal{L}(E)$ est solution de l'équation $(E) : g^2 = u$, alors tout vecteur propre de u est aussi vecteur propre de g.
- $\overline{\mathbf{3}}$ Combien l'équation (E) admet-elle de solutions?

Solution:

- 1 puisque $\operatorname{card}(\operatorname{Sp}(u)) = \dim(E)$, le cours dit que u est diaginalisable et les sep sont des droites vectorielles.
- Si $g^2 = u$ alors $g \circ u = u \circ g = g^3$, donc g stabilise les sep de u qui sont des droites, si x est un vecteur peopre de u et λ la valeur propre associée alors $E_{\lambda}(u) = \mathbb{C}x$, donc $\mathbb{C}x$ est stable par g en particulier $g(x) \in \mathbb{C}x$, donc $\exists \mu \in \mathbb{C}, g(x) = \mu x$ et x est aussi vecteur propre de g.
- Soit $\mathscr{V}=(V_1,\ldots,V_n)$ une base de vecteurs propres de u, donc c'est aussi une base de vecteurs propres de g tel que $g^2=u$ donc les matrices de u et g relaticement à \mathscr{V} sont diagonales. Notons $\max_{\mathscr{V}}(u)=\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ et $\max_{\mathscr{V}}(g)=\operatorname{diag}(\mu_1,\ldots,\mu_n)$, alors , $g^2=u$ si et seulement si $\mu_k^2=\lambda_k$ pour tout $k\in [\![1,n]\!]$ si et seulement si $\mu_k=\varepsilon_k\delta_k$ où δ_k est un complexe tel que $\delta_k^2=\lambda_k$ et $\varepsilon_k\in\{-1,1\}$, si les λ_k sont tous non nuls on a 2^n solutions sinon on en a 2^{n-1} .

Exercice 14 [id=620] Distance d'une matrice à certains sev de $\mathcal{M}_n(\mathbb{R})$

Montrer que pour tout $n \in \mathbb{N}^*$, on définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$ en posant, pour A et B dans $\mathcal{M}_n(\mathbb{R})$:

$$\langle A, B \rangle = \operatorname{tr}({}^{\mathbf{t}}\!AB).$$

- En déduire que pour toute forme linéaire φ sur $\mathcal{M}_n(\mathbb{R})$ il exsite une et une seule matrice $A \in \mathcal{M}_n(\mathbb{R})$ tel que $\forall X \in \mathcal{M}_n(\mathbb{R}), \quad \varphi(X) = \operatorname{tr}(AX)$.
- $\fbox{\bf 3}$ Déterminer A pour φ définie par :

$$\forall X = (x_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R}), \quad \varphi(X) = x_{1,1}.$$

On suppose que n=3 et on munit $\mathcal{M}_3(\mathbb{R})$ du produit scalaire ci-dessus. Pour toute partie non vide Γ de $\mathcal{M}_3(\mathbb{R})$ et toute matrice $A \in \mathcal{M}_3(\mathbb{R})$, on note $d(A,\Gamma)$ la distance de A à Γ et on rappelle que $d(A,\Gamma) = \inf_{X \in \Gamma} d(A,X)$. On rappelle que $\mathcal{S}_3(\mathbb{R})$ est l'ensemble des matrices symétriques de $\mathcal{M}_3(\mathbb{R})$ et on note $\mathcal{H} = \{X \in \mathcal{M}_3(\mathbb{R}) / \operatorname{tr}(X) = 0\}$.

(a) Soit
$$M = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$
. Calculer $d(M, \mathcal{S}_3(\mathbb{R}))$.

 $ig(\mathbf{b}ig)$ Montrer que \mathcal{H} est un sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et calculer sa dimension.

© Soit
$$J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
. Calculer $d(J, \mathcal{H})$.

Solution: a

Exercice 15 [id=621] Nature d'une série numérique dont le tg est une intégrale

Quelle est la nature de la série numérique $\sum u_n$ où $u_n = \int_0^{\frac{\pi}{n}} \frac{\sin^3(t)}{1+t} dt$, pour tout $n \in \mathbb{N}^*$?

Solution : Pour tout $n \in \mathbb{N}$ tel que $n \geq 2$, on a $0 \leq \frac{\pi}{n} \leq \frac{\pi}{2}$, ce qui permet d'appliquer l'inégalité de concavité de la fonction sin sur l'intervalle $\left[0, \frac{\pi}{2}\right]$, selon laquelle, on a :

$$\forall t \in \left[0, \frac{\pi}{n}\right], \quad 0 \le \sin(t) \le t$$

Il en découle que pour tout $n \geq 2$, on a

$$0 \le u_n \le \int_0^{\frac{\pi}{n}} t^3 dt = \left[\frac{t^4}{4} \right]_0^{\frac{\pi}{n}} = \frac{\pi^4}{4n^4}$$

alors la série $\sum u_n$ est convergente.

Exercice 16 [id=622] L'équation $X^N = A$ dans $\mathcal{M}_N(\mathbb{K})$ pour N = 2n + 1

n est un entier naturel non nul. Résoudre dans $\mathcal{M}_{2n+1}(\mathbb{R})$ l'équation :

$$X^{2n+1} = A$$

οù

$$A = (a_{i,j})_{1 \le i, j \le 2n+1}$$

et pour tout $(i,j) \in [1,2n+1]^2$, on définit :

$$a_{i,j} = \begin{cases} -1 & \text{si} & j = 2k+1, k \in [0, n-1] \\ 2 & \text{si} & j = 2k, k \in [1, n] \\ -n & \text{si} & j = 2n+1 \end{cases}$$

Solution: Non disponible

Exercice 17 [id=623] Similitude et coefficients d'une matrice

- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Démontrer que si A n'est pas une matrice scalaire alors, il existe $X_0 \in \mathcal{M}_{n,1}(\mathbb{K})$ tel que la famille (X_0, AX_0) est libre.
- $\fbox{\bf 2}$ Soit $A\in\mathcal{M}_n(\mathbb{C})$ une matrice non scalaire, c'est-à-dire que

$$\forall \lambda \in \mathbb{C}, A \neq \lambda I_n.$$

Démontrer qu'il existe au moins une matrice

$$M = (m_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$$

tel que $M \sim A$ et $m_{1,2} \neq 0$.

3 Démontrer que si A et B sont deux matrices de $\mathcal{M}_2(\mathbb{K})$ non scalaires alors A et B sont semblables si et seulement si $\operatorname{tr}(A) = \operatorname{tr}(B)$ et $\operatorname{det}(A) = \operatorname{det}(B)$. En déduire que

$$\forall M \in \mathcal{M}_2(\mathbb{K}), M \sim {}^{\mathbf{t}}M.$$

Solution:

- Notons $\mathscr{E} = (E_1, \dots, E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$ et soit A une matrice son scalaire. S'il existe $i \in \llbracket 1, n \rrbracket$ tel que (E_i, AE_i) est libre, c'est terminé, sinon alors pout tout $i \in \llbracket 1, n \rrbracket$, $AE_1 = \lambda_i E_i$, pour un certain $\lambda_i \in \mathbb{K}$, donc $A \sim \Delta$ où $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, et comme A n'est pas scalaire, il existe $i, j \in \llbracket 1, n \rrbracket$ tel que $\lambda_i \neq \lambda_j$. Soit $X_0 = E_i + E_j$, donc $AX_0 = \lambda_i E_1 + \lambda_j E_j$, donc $\operatorname{det}_{(E_i, E_j)}(X_0, AX_0) = \begin{vmatrix} 1 & \lambda_i \\ 1 & \lambda_j \end{vmatrix} = \lambda_j \lambda_i \neq 0$ et par suite (X_0, AX_0) est libre.
- Soit A une matrice non scalaire et u l'endomorphisme canoniquement associé à A. Par 1), il existe $X_0 \in \mathcal{M}_{n,1}(\mathbb{K})$ tel que (X_0, AX_0) est libre. Posons $V_1 = AX_0$ et $V_2 = X_0$ et soit

 $\mathscr{V}=(V_1,V_2,\ldots,V_n)$ une base de $\mathcal{M}_{n,1}(\mathbb{K})$ et $M=\mathrm{mat}_{\mathscr{V}}(u)$. On a $u(V_2)=AV_0=AX_0=V_1$, donc $m_{1,2}=1$ et en particulier $m_{1,2}\neq 0$ et $M\sim A$.

3 On démontrer q'une telle matrice est semblable à $\begin{pmatrix} 0 & \delta \\ 1 & \tau \end{pmatrix}$ où $\tau = \operatorname{tr}(A)$ et $\delta = \det(A)$. La déduction est une conséquence de A et ${}^{\mathbf{t}}A$ ont même trace et même determinant.

Exercice 18 [id=624] Produit infini dont le tg est une intégrale

- **1** Quelle est la nature de la série numérique $\sum u_n$ où $u_n = \int_0^{\frac{\pi}{n}} \frac{\sin^3(t)}{1+t} dt$, pour tout $n \in \mathbb{N}^*$?
- Soit $p \in \mathbb{N}^*$ et pour tout $n \in \mathbb{N}$, on note $u_n = \prod_{k=1}^p \frac{1}{n+k}$. A quelle condition sur p la série $\sum u_n$ est convergente? Calculer sa somme S_p lorsque c'est le cas.

Solution: a

Exercice 19 [id=625] Noyaux itérés et suites de dimensions et leur différences

Soit E un espace vectoriel de dimension finie sur le corps \mathbb{K} avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}$, soient

$$r_k = \operatorname{rg}(f^k)$$
 et $\delta_k = r_k - r_{k+1}$,

avec la convention $f^0 = \mathrm{Id}_E$.

- a Montrer que $\delta_k = \dim (\ker f \cap \operatorname{Im} f^{k+1})$ (on pourra considérer la restriction \tilde{f}_k de f à $\operatorname{Im} f^k$). En déduire que (δ_k) est une suite décroissante. Montrer que pour tout $k, \delta_k \leq \frac{n}{k+1}$. En déduire que la suite (δ_k) est nulle à partir d'un certain rang.
 - (b) Soit p le plus petit entier tel que $\delta_p = 0$, (donc $\delta_{p-1} \neq 0$.) Montrer que :
 - si $k < p, \operatorname{Im}(f^{k+1}) \neq \operatorname{Im}(f^k)$ et que
 - si $k \ge p$, Im $(f^k) = \text{Im}(f^p)$
- On suppose que f est nilpotente d'indice de nilpotence 2, c'es-à-dire que : $f \neq 0$ et $f^2 = 0$. Montrer que rg $(f) \leq \frac{n}{2}$.
 - (b) Plus généralement, on suppose que f est nilpotent d'indice de nilpotence p. Montrer que rg $(f) \leq \frac{p-1}{p}n$.

Solution:

 $\boxed{\mathbf{1}}$ (a) Soit $k \in \mathbb{N}$ et \overline{f}_k la restriction de f à $\mathrm{Im}\, f^k$:

$$\operatorname{Im} f^k \xrightarrow{\overline{f}_k} E$$
$$x \longrightarrow f(x)$$

Recherchons noyau et image de \widetilde{f}_k : Pour tout $x \in \text{Im } f^k$, on a :

$$x \in \ker \left(\widetilde{f}_k \right) \iff \overline{f}_k(x) = 0$$

 $\iff f(x) = 0$

donc $\ker\left(\tilde{f}_k\right) = \operatorname{Im} f^k \cap \ker f$

• Pour tout $y \in E$, on a :

$$y \in E, y \in \operatorname{Im}\left(\tilde{f}_{k}\right) \Leftrightarrow \exists x \in \operatorname{Im} f^{k}, y = \tilde{f}_{k}(x) = f(x)$$

$$\Leftrightarrow \exists t \in E, y = f\left(f^{k}(t)\right)$$

$$\Leftrightarrow y \in \operatorname{Im} f^{k+1}$$

Mohamed Ait Lhoussain page 14 SPÉ MP

donc $\operatorname{Im}\left(\widetilde{f}_{k}\right) = \operatorname{Im} f^{k+1}$.

Le théorème du rang appliqué à \overline{f}_k permet d'écrire :

$$\dim (\operatorname{Im} f^k) = \dim (\operatorname{Im} f^{k+1}) + \dim (\operatorname{Im} f^k \cap \ker f)$$

soit aussi : $r_k = r_{k+1} + \dim (\operatorname{Im} f^k \cap \ker f)$ et par différence, $\delta_k = r_k - r_{k+1} = \dim (\operatorname{Im} f^k \cap \ker f)$

• Si $x \in \text{Im } f^{k+1}$, alors $\exists t \in E, x = f^{k+1}(t) = f^k(f(t))$ done $x \in \text{Im } f^k$. d'où $\text{Im } f^{k+1} \subset \text{Im } f^k$ alors $\text{Im } f^{k+1} \cap \text{ ker } f \subset \text{Im } f^k \cap \text{ ker } f$, et en passant aux dimensions, $\delta_{k+1} \leq \delta_k$ La suite (δ_k) est donc décroissante (au sens large) Remarque : Cette décroissance de δ s'écrit aussi $\delta_{k+1} = r_{k+1} - r_{k+2} \leq \delta_k = r_k - r_{k+1}$, ou encore $r_{k+1} \leq \frac{r_k + r_{k+2}}{2}$ On dit alors, par analogie aux fonctions, que la suite (r_k) est convexe.

$$\delta_0 = r_0 - r_1 = n - r_1$$
 $\delta_1 = r_1 - r_2$
- $\delta_2 = r_2 - r_3$
.....
 $\delta_k = r_k - r_{k+1}$

En additionnant membre à membre, $\underbrace{\delta_0 + \delta_1 + \ldots + \delta_k}_{\geq (k+1)\delta_k} = \underbrace{n - r_{k+1}}_{\leq n}$ donc $(k+1)\delta_k \leq n$ d'où $\delta_k \leq \frac{n}{k+1}$ - L'inégalité $0 \leq \delta_k \leq \frac{\overline{n}}{k+1}$ montre que $\lim_{k \to +\infty} \delta_k = 0$ Mais comme (δ_k) est

d'où $\delta_k \leq \frac{n}{k+1}$ - L'inégalité $0 \leq \delta_k \leq \frac{\overline{n}}{k+1}$ montre que $\lim_{k \to +\infty} \delta_k = 0$ Mais comme (δ_k) est une suite d'entiers naturels, puisqu'elle est de limite nulle, elle est nulle à partir d'un certain rang (prendre $\varepsilon = \frac{1}{2}$ dans la définition de la limite)

(b) Si p est le plus petit entier tel que $\delta_p = 0$, la suite (δ_k) étant décroissante,

$$\forall k < p, \delta_k = r_k - r_{k+1} \ge 1 \text{ donc } r_k = \operatorname{rg}\left(f^k\right) > r_{k+1} = \operatorname{rg}\left(f^{k+1}\right)$$

L'inclusion $\operatorname{Im}\left(f^{k+1}\right)\subset\operatorname{Im}\left(f^{k}\right)$ est donc stricte. - La suite (δ_{k}) étant stationnaire nulle à partir du rang $p, \forall k \geq p, \delta_{k} = r_{k} - r_{k+1} = 0$, l'inclusion $\operatorname{Im}\left(f^{k+1}\right)\subset\operatorname{Im}\left(f^{k}\right)$ à laquelle s'ajoute l'égalité des dimensions entraı̂ne alors l'égalité $\operatorname{Im}\left(f^{k+1}\right)=\operatorname{Im}\left(f^{k}\right)$ La suite des images itérées, $(\operatorname{Im}f^{k})$ est donc strictement décroissante jusqu'au rang p, puis stationnaire à partir de ce rang p.

- **2** a Si $f \circ f = 0$ alors Im $f \subset \ker f$ et donc dim(Im f) \leq dim(ker f) or, par le théorème du rang, dim(Im f) + dim(ker f) = n d'où $2 \dim(\operatorname{Im} f) \leq n$ et rg(f) $\leq \frac{n}{2}$
 - Bupposons que f soit nilpotente d'ordre p. Alors $\operatorname{Im} f^p = \{0\}$ donc $r_p = 0$ et $\delta_p = 0$. Le même calcul de sommation fait en **1-a**) montre que : $\delta_0 + \delta_1 + \ldots + \delta_{p-1} = n r_p = n$ La suite (δ_k) étant décroissante, $n = \delta_0 + \delta_1 + \ldots + \delta_{p-1} \leq p.\delta_0 = p (n r_1)$ donc $p \cdot r_1 \leq (p-1)n$ et finalement, $r_1 = \operatorname{rg}(f) \leq \frac{p-1}{p}n$

Note : Ce résultat généralise celui de la question précédente : Si f est nilpotente d'ordre 3 , alors $\operatorname{rg}(f) \leq \frac{2}{3}n$

Exercice 20 [id=626] Adjoint de $f: X \mapsto AX - XB$ de $\mathcal{M}_n(\mathbb{R})$

- $\boxed{\mathbf{1}} \text{ Montrer que l'application } (A,B) \stackrel{\Phi}{\longrightarrow} \operatorname{Tr}({}^tA.B) \text{ est un produit scalaire sur } M_n(\mathbb{R}).$
- $oxed{2}$ Soient A et B deux matrices données de $M_n(\mathbb{R})$. Montrer que

$$f: X \longrightarrow A.X - X.B$$

est un endomorphisme de $M_n(\mathbb{R})$ et trouver son adjoint f^* .

Solution:

 $\begin{array}{|c|c|c|c|c|} \hline \textbf{1} & \text{Par linéarité de la trace et les relations } \operatorname{Tr}\left({}^{t}A\right) = \operatorname{Tr}(A), \operatorname{Tr}(A.B) = \operatorname{Tr}(B.A), \\ \Phi & \text{est clairement bilinéaire et symétrique.} \end{array}$

Soit $A \in M_n(\mathbb{R})$, alors : $\Phi(A, A) = \text{Tr}({}^t A \cdot A) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2 = \sum_{1 \leq i,j \leq n} a_{i,j}^2$, Φ est une forme bilinéaire symétrique définie positive sur $M_n(\mathbb{R})$, donc un produit scalaire.

 $\boxed{\mathbf{2}}$ f est linéaire (immédiat). Recherchons $g \in L(M_n(\mathbb{R}))$ tel que :

$$\forall (X,Y) \in M_n(\mathbb{R}), \quad \Phi(f(X),Y) = \Phi(X,g(Y))$$

Pour tout $(X,Y) \in M_n(\mathbb{R})^2$, on a :

$$\begin{split} \Phi(f(X),Y) &= \operatorname{Tr} \left({}^t f(X).Y \right) = \operatorname{Tr} \left({}^t (A.X-X.B).Y \right) \Phi(f(X),Y) \\ &= \operatorname{Tr} \left({}^t X.^t A.Y - {}^t B.^t X.Y \right) \\ &= \operatorname{Tr} \left({}^t \left({}^t X.^t A.Y - {}^t B^t X.Y \right) \right) \quad \left(\operatorname{car} \operatorname{Tr} \left({}^t A \right) = \operatorname{Tr} A \right) \Phi(f(X),Y) \\ &= \operatorname{Tr} \left({}^t Y.A.X - {}^t Y.X.B \right) \\ &= \operatorname{Tr} \left({}^t Y.A.X \right) - \operatorname{Tr} \left(\left({}^t Y.X \right) \cdot B \right) \\ &= \operatorname{Tr} \left({}^t Y.A \cdot X \right) - \operatorname{Tr} \left(B \cdot \left({}^t Y.X \right) \right) \quad \left(\operatorname{car} \operatorname{Tr} (A \cdot B) = \operatorname{Tr} (B.A) \right) \\ &= \operatorname{Tr} \left({}^t Y.A \cdot A - B.^t Y \right) . X \right) \\ &= \operatorname{Tr} \left({}^t X. \left({}^t A \cdot Y - Y.^t B \right) \cdot Y \right) \\ &= \Phi \left(X, \left({}^t A \cdot Y - Y.^t B \right) \right) \end{split}$$

Donc

$$\forall (X,Y) \in M_n(\mathbb{R})^2, \quad \Phi(f(X),Y) = \Phi(X,\underbrace{(AY - Y^t B)}_{g(Y)})$$

d'où: $\forall Y \in M_n(\mathbb{R}), f^*(Y) = {}^t A \cdot Y - Y^t B.$

Exercice 21 [id=627] Recherche d'un équivalent de $R_n = \int_0^\pi \sum_{k=n}^{+\infty} \frac{\sin^3(\frac{s}{n})}{s+n} ds$

Pour tout $n \in \mathbb{N}^*$, on pose : $u_n = \int_0^{\frac{\pi}{n}} \frac{\sin^3(t)}{1+t} dt$

- $\boxed{\mathbf{1}}$ Quelle est la nature de la série numérique $\sum u_n$ où , pour tout $n \in \mathbb{N}^*$?
- $\boxed{\mathbf{2}}$ Donner un équivalent simple de u_n quand n tend vers $+\infty$.
- **3** En déduire un équivalent de $R_n = \int_0^{\pi} \sum_{k=n}^{+\infty} \frac{\sin^3(\frac{s}{n})}{s+n} ds$, aprés justification de l'existence de (R_n) .

Solution:

- 1 On a $0 \le u_n \le \int_0^{\frac{\pi}{n}} t^3 dt = \frac{\pi^4}{4n^4}$ et la série de Riemann $\sum \frac{1}{n^4}$ est convergente, donc $\sum u_n$ est convergente.
- $\boxed{\mathbf{2}}$ Le changement de variable nt = s donne

$$u_n = \int_0^\pi \frac{\sin^3\left(\frac{s}{n}\right)}{s+n} \mathrm{d}s.$$

Il en découle que

$$n^4 u_n = \int_0^\pi n^4 \frac{\sin^3\left(\frac{s}{n}\right)}{s+n} ds.$$

Posons $h_n(s) = n^4 \frac{\sin^3(\frac{s}{n})}{s+n}$ alors pour tout $n \in \mathbb{N}^*$, la fonction h_n est continue et la suite (h_n) converge simplement vers $h(s) = s^3$. Par ailleurs

$$|h_n(s)| \le \frac{n^4(\frac{s}{n})^3}{n+s} = \frac{ns^3}{n+s} \le 1 = \varphi(s)$$

Mohamed Ait Lhoussain page 16 SPÉ MP

et φ est continue intégrable sur $[0,\pi]$, donc par le théorème de convergence dominée, on a

$$\lim_{n \to +\infty} n^4 u_n = \lim_{n \to +\infty} \int_0^{\pi} n^4 \frac{\sin^3\left(\frac{s}{n}\right)}{s+n} ds = \int_0^{\pi} s^3 ds = \frac{\pi^4}{4},$$

par conséquent, quand n tend vers $+\infty$, on a $u_n \sim \frac{\pi^4}{4n^4}$.

Si pour tout $n \in \mathbb{N}^*$ et tout $s \in [0, \pi]$, on pose : $f_n(s) = \frac{\sin^3\left(\frac{s}{n}\right)}{s+n}$, alors la série de fonctions $f_n(s)$ converge simplement sur $[0, \pi]$, puisque on a la majoration $|f_n(s)| \leq \frac{c}{n^4}$ où $c = \frac{\pi^4}{4}$. In en découle que \mathbb{R}_n existe et comme on a vu que $f_n(s) \sim \frac{c}{n^4}$, les restes sont équivalents par sommation des relations de comparaisons, donc $R_n \sim c \sum_{k=n}^{+\infty} \frac{1}{k^4}$

Exercice 22 [id=628] Partie finie de matrice qui est un groupe

 $\mathbf{K} = \mathbb{R}$ ou \mathbb{C} et $G = \{M_1, M_2, \dots, M_p\}$ un sous ensemble fini de matrices de $\mathcal{M}_n(\mathbb{K})$ formant un groupe pour la multiplication des matrices.

- Donner un exemple d'un tel sous ensemble G. G est il nécessairement un sous groupe de $(GL_n(\mathbf{K}), \times)$?
- $\boxed{\mathbf{2}}$ Montrer que toutes les matrices de G ont même rang.
- 3 Montrer que $P = \frac{1}{n} \sum_{k=1}^{p} M_k$ est une matrice de projection.

Solution:

- The prenons $M_k = \left(\begin{array}{c|c|c} R_\theta & 0 \\ \hline 0 & 0 \end{array}\right)^k = \left(\begin{array}{c|c} R_\theta^k & 0 \\ \hline 0 & 0 \end{array}\right) \in M_n(\mathbb{R})$ où $\theta = \frac{2\pi}{p}$ et $M_k = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \in M_2(\mathbb{R})$ Alors $M_k \cdot M_j = \begin{pmatrix} R_0^{k+j} & 0 \\ \hline 0 & 0 \end{pmatrix} = M_{(k+j)[p]}$ et $M_p = \begin{pmatrix} I_2 & 0 \\ \hline 0 & 0 \end{pmatrix}$ est élément neutre de G pour la multiplication. Autre exemple : 30 racine primitive p_1 -ème de l'unité, α_2 une racine p_2 -ème de l'unité, ..., α_m une racine p_m -ème de l'unité. G est un groupe pour la loi \times , de cardinal $p_1.p_2....p_m$. Si $\mathbf{K} = \mathbb{R}$: Soit G l'ensemble des matrices de la forme précédente, avec $\alpha_i = \pm 1$ G est un groupe pour la loi \times , de cardinal 2^m . Ces exemples montrent que G n'est pas nécessairement un sous groupe de $(GL_n(\mathbf{K}), \times)$
- [2] Soient M_1 et M_2 deux matrices de G. Soit J l'élément neutre du groupe (G, \times) (qui n'est pas forcément la matrice unité I_n) Soit M_2^{-1} le symétrique de M_2 dans G pour cette loi \times . Alors, $M_1 = (M_2 \times M_2^{-1}) \times M_1 = M_2 \times (M_2^{-1} \times M_1)$, ce qui montre que $\operatorname{rg}(M_1) \leq \operatorname{rg}(M_2)$ Pour un raison analogue, $\operatorname{rg}(M_2) \leq \operatorname{rg}(M_1)$ et done $\operatorname{rg}(M_1) = \operatorname{rg}(M_2)$ ($\operatorname{carrg}(A \times B) \leq \operatorname{rg}(A)$)
- Pour tout $k \in \{1, 2, ..., n\}$, l'application $f_k : M \longrightarrow MM_k \cdot M$ est une bijection de G dans G:
 elle est injective : $\forall M, N \in G, f_k(M) = f_k(N) \Longrightarrow M_k \cdot M = M_k \cdot N$

$$\Longrightarrow M_k^{-1}\left(M_k\cdot M\right)=M_k^{-1}\left(M_k\cdot N\right)\Longrightarrow M=N$$

(M_k^{-f} désigne l'inverse de M_k dans le groupe (G, \times)) - elle est surjective : $\forall M \in G, M = M_k \cdot (M_k^{-1} \cdot M) = f_k (M_k^{-1} \cdot M)$ Donc quand M décrit $G, M_k \cdot M$ décrit G aussi.

$$P^{2} = \frac{1}{n^{2}} \left(\sum_{k=1}^{p} M_{k} \right) \cdot \left(\sum_{j=1}^{p} M_{j} \right) = \frac{1}{n^{2}} \sum_{k=1}^{p} \left(\sum_{j=1}^{p} \underbrace{M_{k} \cdot M_{j}}_{\text{decrit } G} \right) = \frac{1}{n^{2}} \sum_{k=1}^{p} \underbrace{\left(M_{1} + M_{2} + \ldots + M_{p} \right)}_{\text{independant de } k}$$

$$P^{2} = \frac{1}{n^{2}} n \left(M_{1} + M_{2} + \ldots + M_{p} \right) = \frac{1}{n} \left(M_{1} + M_{2} + \ldots + M_{p} \right) = P$$

Donc P est une matrice de projection.

Mohamed Ait Lhoussain page 17 SPÉ MP

Exercice 23 [id=629] Borne inférieure d'une fonctionnelle

On note $E = C^0([a, b], \mathbb{R}_+^*)$ l'espace vectoriel des applications continues d'un syment [a, b] de \mathbb{R} vers \mathbb{R} et on considère l'application Φ définie comme suit :

$$\begin{array}{cccc} \Phi & : & E & \longrightarrow & \mathbb{R} \\ & f & \longrightarrow & \left(\int_a^b f(t) dt \right) \left(\int_a^b \frac{1}{f(t)} dt \right) \end{array}$$

- $\boxed{\mathbf{1}}$ Montrer que Φ est minoré sur E.
- **2** Calculer $\inf_{f \in E} \Phi(f)$.
- $\boxed{\mathbf{3}}$ Φ est elle majorée?

Solution:

- 1 On applique l'inégalité de Cauchy-Schwarz à $u(t) = \sqrt{f(t)}$ et $v(t) = \sqrt{\frac{1}{f(t)}}$. On a $\langle u, v \rangle = \int_a^b u(t)v(t)\mathrm{d}t$, et l'inégalité de Cauchy-Schwarz s'écrit : $|\langle u, v \rangle|^2 \leq \langle u, u \rangle^2 \langle v, v \rangle^2$, donc $(b-a)^2 \leq \Phi(f)$. Il en découle que $(b-a)^2$ est un minorant de Φ sur E.
- Si $f_0(t) = 1$ pour tout $t \in [a, b]$, on voit que $\Phi(f_0) = (b a)^2$, ce qui veut dire que $(b a)^2$ est un minorant atteint par Φ , donc $(b a)^2 = \min_{f \in E} \Phi(f)$
- On donne ce contre-exemple : On considère un nombre réel strictement positif M et un segment [a,b] tel que a < b. On note :

$$x_1 = a + \frac{b-a}{3} = \frac{2a+b}{3}, x_2 = -\frac{b-a}{3} = \frac{a+2b}{3}$$

et l'application application $f_M:[a,b]\to\mathbb{R}$ avec $f_M(x)=M$, si $a\le x\le a+\frac{b-a}{3}$, $f_M(x)=\frac{1}{M}$, si $b-\frac{b-a}{3}\le x\le b$ et f_M affine sur $\left[a+\frac{b-a}{3},b-\frac{b-a}{3}\right]$ et continue affine par morceaux sur [a,b]. On voit que :

$$\Phi(f_M) \geq \int_a^{x_1} M dt \times \int_{x_2}^b M dt$$

$$= \left(\frac{M(b-a)}{3}\right)^2 = \frac{(b-a)^2}{9} M^2 \underset{M \to +\infty}{\longrightarrow} +\infty$$

Exercice 24 [id=630] Etude de l'ensemble des matrices nilpotentes

Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et $i = [1, n]^2 \setminus \{(1, 1)\}$ et on note \mathscr{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$. Pour tout $i \in [2, n]$, on pose $F_{i,i} = E_{1,1} - E_{i,i}$ et on considère la famille $(\Gamma_{i,j})_{(i,j) \in I}$

des matrices de $\mathcal{M}_n(\mathbb{K})$ tel que :

$$\forall (i,j) \in I, \quad \Gamma_{i,i} = \left\{ \begin{array}{ll} E_{i,j} & \text{si} & i \neq j \\ F_{i,i} & \text{si} & i = j \end{array} \right.$$

- 1 Justifier que \mathcal{N} n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
- **2** Démontrer que $Vect(\mathcal{N}) \subset \mathcal{H}$ où $\mathcal{H} = \ker(tr)$.
- **3** Démontrer que $\forall (i,j) \in I, \quad \Gamma_{i,j} \in vect(\mathcal{N})$
- **4** En déduire que $Vect(\mathcal{N}) = \mathcal{H}$.
- 5 Justifier que \mathcal{N} est une partie de $\mathcal{M}_n(\mathbb{R})$ fermée, connexe par arcs et d'intérieur vide.

Solution:

- $\boxed{\mathbf{1}} \ A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ et soit } X = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \text{ et }$ $Z = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}. \text{ Alors } X, Y \in \mathscr{N} \text{ et } X + Y = Z \text{ et } Z \notin \mathscr{N} \text{ car } C \text{ est inversible dans } \mathscr{M}_2(\mathbb{K}) \text{ et }$ Z est nilpotente si et seulement si C est nilpotente.
- 2 Si $M \in \text{Vect}(\mathcal{N})$ alors $M = \sum_{j=1}^{m} \lambda_j N_j$ et les N_j sont nilpotentes. Il en découle que $\text{tr}(M) = \sum_{j=1}^{m} \lambda_j \operatorname{tr}(N_j) = 0$ car si N est une matrice nilpotente alors N est trigonalisable et 0 est son unique valeur propre, donc sa trace qui est la somme de toutes ses valeurs propres est nulle.
- Si $i \neq j$, on a $\Gamma_{i,j}^2 = E_{i,j}^2 = E_{i,j}E_{i,j} = \delta_{j,i}E_{i,j} = 0$. Si $i \in [2,n]$, soit u l'endomorphisme canoniquement associé à $\Gamma_i = E_{1,1} E_{i,i}$ et notons $\mathscr{E} = (e_1, \dots, e_n)$ la base canonique de \mathbb{K}^n . Alors $u(e_1) = e_1$, $u(e_i) = e_i$ et pour tout $j \in [1,n]$ tel que $j \neq i$ et $j \neq 1$, on a $u(e_j) = 0$. Soit $\mathscr{V} = (V_1, \dots, V_n)$ avec $V_1 = e_1 + e_i, V_i = e_1 e_i, V_j = e_j$ pour tout $j \in [1,n] \setminus \{1,i\}$. On a $u(V_1) = V_i, u(V_i) = V_1$ et $u(V_i) = 0$ pour tout $j \in [1,n] \setminus \{1,i\}$, donc la matrice de u relativement à \mathscr{V} est une matrice de trace nulle car ses termes diagonaux sont tous nuls, donc $\operatorname{tr}(u) = 0$, donc $\operatorname{tr}(\Gamma_{i,i}) = 0$.
- La famille $(\Gamma_{i,j})$ est libre et compte $n^2 1$ vecteurs, donc $\dim(\operatorname{Vect}(\mathcal{N})) \geq n^2 1 = \dim(\mathcal{H})$, et comme $\operatorname{Vect}(\mathcal{N}) \subset \mathcal{H}$, on a $\operatorname{Vect}(\mathcal{N}) = \mathcal{H}$.
- On a $\mathcal{N} = g^{-1}(\{0\})$ avec $g(X) = X^n, \forall X \in \mathcal{M}_n(\mathbb{K})$, par continuité de g (polynômiale en les coordonnées), on a \mathcal{N} est un fermé. On a $\mathrm{Vect}(\mathcal{N})$ est un sous-espace strict de $\mathcal{M}_n(\mathbb{R})$, donc d'intérieur vide et à fortiori \mathcal{N} . Pour $N \in \mathcal{N}$, on a $\gamma_N(t) = tN$ est un chemin continue tel que $\gamma_N(0) = 0$ et $\gamma_N(1) = N$ et $\gamma_N([0,1]) \subset \mathcal{N}$, donc \mathcal{N} est connexe par arcs.

Exercice 25 [id=631] Minimum d'une fonctionelle

On considère l'application Φ définie comme suit :

$$\Phi: E = C^0\left([a,b], \mathbb{R}_+^*\right) \longrightarrow \mathbb{R}; f \longrightarrow \left(\int_a^b f(t)dt\right) \left(\int_a^b \frac{1}{f(t)}dt\right)$$

- **1** Montrer que Φ est minoré sur E.
- $\boxed{\mathbf{2}} \text{ Calculer } \inf_{f \in E} \Phi(f)$
- $\boxed{\bf 3}$ Φ est elle majorée?

Solution:

L'application $\Psi:(f,g)\longrightarrow \int_a^b f(t)g(t)dt$ est un produit scalaire sur $C^0([a,b],\mathbb{R})$ D'après l'inégalité de Cauchy-Schwarz, on a :

$$\forall f \in E, \quad \left| \int_a^b \left(\sqrt{f(t)} \sqrt{\frac{1}{f(t)}} \right) \mathrm{d}t \right|^2 \leq \left(\int_a^b \sqrt{f(t)}^2 \right) \left(\int_a^b \sqrt{\frac{1}{f(t)}}^2 \, \mathrm{d}t \right).$$

Donc:

$$(\star) \quad \left(\int_a^b f(t) dt\right) \left(\int_a^b \frac{1}{f(t)} dt\right) \ge \int_a^b dt = (b-a)^2,$$

et $(b-a)^2$ est un minorant de Φ .

Remarquons que pour f_0 définie par $f_0(t) = 1$, pour tout $t \in [a, b]$, l'inégalité (\star) devient une égalité. Il en découle que $(b-a)^2$ est un minorant de Φ atteint pour $f = f_0$, donc $\inf_{f \in E} \Phi(f) = (b-a)^2$.

Soit M un réel positif (aussi grand qu'on veut). Soit f la fonction affine par morceaux et continue, qui vaut M sur $\left[a, a + \frac{b-a}{3}\right]$ et qui vaut $\frac{1}{M}$ sur $\left[b - \frac{b-a}{3}, b\right]$. Alors :

$$\int_{a}^{b} f(t)dt \ge \int_{a}^{a + \frac{b - a}{3}} Mdt = \frac{b - a}{3} M$$

et

$$\int_a^b \frac{1}{f(t)} \mathrm{d}t \ge \int_{b-\frac{b-a}{2}}^b M \mathrm{d}t = \frac{b-a}{3} M,$$

donc

$$\Phi(f) \ge \frac{(b-a)^2}{9} M^2$$

et la fonction Φ n'est pas majorée.

Exercice 26 [id=632] Equation diff ayant sol DSE

On considère l'équation différentielle :

$$(E) \quad xy'' + 2y' + xy = 0$$

- Rechercher une solution de (E) développable en série entière et préciser le rayon de convergence de la série entière associée.
- **2** En déduire la forme générale des solutions de (E) sur l'intervalle $]0,\pi[$.

Solution: nd

Exercice 27 [id=633] Etude d'une matrice particulière

Soit $n\in\mathbb{N}$ tel que $n\geq 3$ et On considère la matrice

$$A = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 1 A est elle diagonalisable?
- **2** Calculer A^2 .
- $\fbox{3}$ Donner les valeurs propres de A sans utiliser le polynôme caractéristique.

Solution: nd

Exercice 28 [id=634] La dérivation et la lipschitizienneté

- Soit $(E, \|.\|)$ un espace vectoriel normé, et $T \in \mathcal{L}(E)$. Montrer que T est k-lipschitzienne si et seulement si : $\forall x \in E, \|T(x)\| \leq k.\|x\|$
- **2** Peut on trouver une norme sur $C^{\infty}([0,1],\mathbb{R})$ telle que l'application

$$D: C^{\infty}([0,1],\mathbb{R}) \to C^{\infty}([0,1],\mathbb{R}), f \mapsto f'$$

soit lipschitzienne?

3 Peut on trouver une norme sur $\mathbb{R}[X]$ telle que l'application

$$D: \mathbb{R}[X] \to \mathbb{R}[X]; f \mapsto f'$$

soit lipschitzienne?

Solution:

 $\boxed{\mathbf{1}}$ Soit T une application k-lipschitzienne sur l'espace vectoriel E:

$$\forall (x, y) \in E^2, ||f(x) - f(y)|| \le k.||x - y||$$

En particulier, en prenant y=0, et puisque f(0)=0, f étant linéaire, on a : $\forall x \in E, ||f(x)|| \le k||x||$

- Réciproquement, supposons que $\forall x \in E, \|f(x)\| \le k\|x\|$ Soit $(x,y) \in E^2$, en appliquant la relation avec z = x y, on peut écrire : $\|f(x y)\| \le k \cdot \|x y\|$, et par linéarité de f, on obtient : $\|f(x) f(y)\| \le k \cdot \|x y\|$.
- 2 Supposons qu'il existe une norme $\|.\|$ sur $C^{\infty}([0,1],\mathbb{R})$ pour laquelle l'application $D: f \mapsto f'$ soit lipschitzienne : il existe $k \in \mathbb{R}^+$ tel que

$$\forall f \in \mathcal{C}^{\infty}([0,1], \mathbb{R}), ||D(f)|| = ||f'|| \leq k.||f||$$

Soit alors $g: x \mapsto e^{(k+1)x}$. Alors g' = (k+1)g, donc

$$||D(q)|| = ||q'|| = (k+1)||q|| \le k \cdot ||q||$$

ce qui conduit à l'absurdité $(k+1) \leq k$. Donc il n'existe aucune norme $\|.\|$ sur $C^{\infty}([0,1],\mathbb{R})$ pour laquelle l'application $D: f \mapsto f'$ soit lipschitzienne.

|3| Considérons N l'application qui au polynôme

$$P = a_p X^p + a_{p-1} X^{p-1} + \dots + a_2 X^2 + a_1 X + a_0$$

fait correspondre

$$N(P) = p!|a_p| + (p-1)!|a_{p-1}| + \dots + 2|a_2| + |a_1| + |a_0|$$

$$= \sum_{k=0}^{d^o(P)} k!|a_k|$$

$$= \sum_{k=0}^{\infty} k!|a_k|$$

On vérifie que N est une norme sur $\mathbb{R}[X]$.

• Pour tout $P(X) = \sum_{k=0}^{\infty} a_k X^k$, on a:

$$P'(X) = \sum_{k=1}^{\infty} k a_k X^{k-1} = \sum_{k=0}^{\infty} (k+1) a_{k+1} X^k,$$

Mohamed Ait Lhoussain page 21 SPÉ MP

donc:

$$N(P) = \sum_{k=0}^{\infty} k! |a_k| = \sum_{k=0}^{d^{\circ}(P)} k! |a_k|$$

et

$$N(P') = \sum_{k=0}^{\deg(P)-1} k!(k+1)|a_{k+1}|$$
$$= \sum_{k=1}^{\deg(P)} k!|a_k| \le N(p)$$

L'application $D: f \mapsto f'$ est 1-lipschitzienne pour la norme N.

Exercice 29 [id=636] $(X-1)Q(X) = \int_1^X P(t)dt, P \mapsto Q$

Soient n un entier ≥ 2 et $E = \mathbb{R}_n[X]$

1 Montrer que pour tout $P \in E$, il existe $Q \in E$, unique tel que :

$$\forall x \in \mathbb{R}, \quad (x-1)Q(x) = \int_{1}^{x} P(t)dt,$$

et que l'application f qui à P associe Q est un endomorphisme de E.

- $\mathbf{2}$ Montrer que f est diagonalisable.
- **3** trouver le nombre de tous les endomorphismes $g \in \mathcal{L}(E)$ tels que $g^2 = f$

Solution:

Soit $P \in E$, et \widetilde{P} un polynôme primitive de E. Puisque $d^{\circ}(P) \leq n, d^{\circ}(\widetilde{P}) = d^{\circ}(P) + 1 \leq n + 1$ $\forall x \in \mathbb{R}, \int_{1}^{x} P(t) dt = \widetilde{P}(x) - \widetilde{P}(1)$

donc $\forall x \in \mathbb{R}, \int_1^x P(t)dt = \widetilde{P}(x) - \widetilde{P}(1) = (x-1)Q(x)$. La relation $(X-1)Q(X) = \widetilde{P}(X) - \widetilde{P}(1)$ montre que $d^\circ(Q) = d^\circ(\widetilde{P}) - 1 \leqslant n$, et $Q \in E$. Le polynôme quotient Q(X) défini ci-dessus vérifie donc la condition recherchée.

 \bullet Unicité : Soient Q_1 et Q_2 deux polynômes de E tels que :

$$\forall x \in \mathbb{R}, (x-1)Q_1(x) = (x-1)Q_2(x) = \int_1^x P(t)dt,$$

alors les polynômes $(X-1)Q_1(X)$ et $(X-1)Q_2(X)$ sont égaux, et par suite : $(X-1)(Q_1-Q_2)=0$, donc par intégrité de $\mathbb{K}[X]$, on a $Q_1=Q_2$. \hookrightarrow Autre méthode : Alors, $\forall x\in\mathbb{R}-\{1\}, Q_1(x)=Q_2(x)$, ce qui montre que $Q_1=Q_2$.

- linéarité : vérification sans difficulté.
- **Analyse**: Soit λ une (éventuelle) valeur propre de f. II existe $P \in E, Q = f(P) = \lambda P : \forall x \in \mathbb{R}, (x-1)\lambda P(x) = \int_1^x P(t)dt$ En dérivant : $\forall x \in \mathbb{R}, \lambda \left[(x-1)P'(x) + P(x) \right] = P(x)$ donc P est solution sur \mathbb{R} de l'équation différentielle (E) : $\lambda (x-1)y' + (\lambda 1)y = 0$ Pour $\lambda = 0$, cette équation n'a pour solution que la fonction nulle. Supposons $\lambda \neq 0$. La solution générale de (E) est :

$$x \to y(x) = \mu \exp\left(-\int^x \frac{\lambda - 1}{\lambda(x - 1)} dx\right)$$
$$= \mu \exp\left(\frac{1 - \lambda}{\lambda} \ln|x - 1|\right)$$
$$= \mu|x - 1|^{\frac{1 - \lambda}{\lambda}}$$

La fonction $x\mapsto \mu|x-1|^{\frac{1-\lambda}{\lambda}}$ est polynômiale et de degré $\leqslant n$ si et seulement si $\frac{1-\lambda}{\lambda}\in\{0,1,2,\ldots,n\}$ si et seulement si $\exists k\in\{0,1,2,\ldots,n\}, \frac{1-\lambda}{\lambda}=k\Longleftrightarrow \exists k\in\{0,1,2,\ldots,n\}, \lambda=1$

 $\frac{1}{k+1}$ Les réels $1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{k+1},\ldots,\frac{1}{n+1}$ sont valeurs propres de f. Le sous espace propre associé à la valeur propre $\lambda_k=\frac{1}{k+1}$ est la droite vectorielle engendrée par le polynôme $P_k(X)=(X-1)^k$ f est un endomorphisme de $E=\mathbb{R}_n[X],$ espace de dimension n+1, qui admet n+1 valeurs propres distinctes, donc f est diagonalisable.

- Notons $\mathscr{B} = (1, X 1, (X 1)^2, \dots, (X 1)^n)$ et pour tout $k \in [0, n]$, soit F_k la droite vectorielle engendrée par le polynôme $P_k(X) = (X 1)^k$.
 - Analyse: Soit $g \in \mathcal{L}(E)$ tel que $g^2 = f$. Remarquons que f et g commutent puisque $g \circ f = g \circ g^2 = g^3 = g^2 \circ g = f \circ g$. Il en découle que pour toute valeur propre λ de f, on a $E_{\lambda}(f)$ est stable par g, en particulier, si $k \in [0, n]$, alors $g(P_k) \in \text{Vect}(P_k)$, donc il existe $\mu_k \in \mathbb{R}$ tel que $g(P_k) = \mu_k P_k$ Dans la base \mathcal{B} . la matrice de f est

$$M_f = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \frac{1}{2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{1}{n+1} \end{pmatrix},$$

et la matrice de g est de la forme :

$$M_g = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & \mu_n \end{pmatrix}$$

Si $g^2 = f$ alors $M_g^2 = M_f$, donc :

$$\begin{pmatrix} \mu_1^2 & 0 & \dots & 0 \\ 0 & \mu_1^2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & \mu_{n+1}^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \frac{1}{2} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & \frac{1}{n+1} \end{pmatrix},$$

donc:

$$\begin{cases} \mu_1 = \pm 1 \\ \mu_2 = \pm \frac{1}{\sqrt{2}} \\ \dots \\ \mu_{n+1} = \pm \frac{1}{\sqrt{n+1}} \end{cases}$$

ce qui détermine au plus 2^{n+1} matrices de g solutions de l'équation en question.

• Synthèse : Considérons la matrice :

$$N = \begin{pmatrix} \varepsilon_1 & 0 & \cdots & 0 \\ 0 & \frac{\varepsilon_1}{\sqrt{2}} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{\varepsilon_n}{\sqrt{n+1}} \end{pmatrix}, \text{ avec } \forall k \in [1, n+1], \varepsilon_k \in \{-1, 1\}.$$

et $g \in \mathcal{L}(E)$ dont la matrice dans la base \mathscr{B} est N. L'égalité $N^2 = M_f$ montre alors que $g^2 = f$. Il existe donc 2^{n+1} endomorphismes de E dont le carré est f.

Exercice 30 [id=638] Noyau de la tyarce et crochet de Lie

Soit $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$.

- 1 Si $i \neq j$, calculer $E_{i,j}E_{j,j} E_{j,j}E_{i,j}$, et $E_{i,1}E_{1,i} E_{1,i}E_{i,1}$.
- Montrer que : $\ker(\operatorname{tr}) = \operatorname{Vect}\{AB BA/A, B \in \mathcal{M}_n(\mathbb{R})\}$

Mohamed Ait Lhoussain page 23 SPÉ MP

3 Soit
$$u \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$$
 telle que :

$$\begin{cases} u(I_n) = I_n \\ \text{et} \\ \forall (M, N) \in \mathcal{M}_n(\mathbb{R})^2, \quad u(M.N) = u(N.M) \end{cases}.$$

Montrer que : $\forall M \in \mathcal{M}_n(\mathbb{R}), u(M) = \frac{\operatorname{tr}(M)}{n} I_n$

Solution:

On rappelle que pour toutes matrices élémentaires $E'_{i,j}$ et $E'_{h,k}$ $E_{i,j} \cdot E_{h,k} = \delta_{j,h} \cdot E_{i,k}$ où $\delta_{j,h}$ représente le symbole de Kronecker. $\forall i, j \in \{1, 2, \dots, n\}^2, E_{i,j} E_{j,j} - E'_{j,j} E_{i,j} = \underbrace{\delta_{j,j} \cdot E_{i,j}}_{=1} \cdot \underbrace{E_{i,j} - E_{j,j} \cdot E_{i,j}}_{=1} + \underbrace{\delta_{j,j} \cdot E_{j$

$$\underbrace{\delta_{j,i}}_{=0} \cdot E'_{j,j} = E_{i,j} \ \forall i, j \in \{1, 2, \dots, n\}^2, E_{i,1}E_{1,i} - E_{1,i}E_{i,1} = \underbrace{\delta_{1,1}}_{=1} \cdot E'_{i,i} - \underbrace{\delta_{i,i}}_{=1} \cdot E_{1,1} = \underbrace{E_{i,i} - E_{1,1}}_{=1}$$

Notons $F = \text{Vect} \{ (A \cdot B - B \cdot A, (A, B) \in \mathcal{M}_n(\mathbb{R})^2 \}$ Par définition, F est un sous espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Toute matrice M de F est combinaison linéaire de matrices de la forme $A_i \cdot B_i - B_i \cdot A_i$. Or

$$\operatorname{tr}(A_i \cdot B_i - B_i \cdot A_i) = \operatorname{tr}(A_i \cdot B_i) - \operatorname{tr}(B_i \cdot A_i)$$

= 0.

et par linéarité de la fonction trace, $\operatorname{tr}(M)=0$. (on sait que $\forall (A,B)\in \mathcal{M}_n(\mathbb{R})^2, \operatorname{tr}(A\cdot B)=\operatorname{tr}(B\cdot A)$)

Donc $H \subset \ker(\operatorname{tr})$ La trace étant une forme linéaire non nulle sur l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$, son noyau en est un hyperplan, de dimension $n^2 - 1$.

Les matrices $E_{i,j}$, $i \neq j$ constituent $n^2 - n$ matrices de F, (puisque $E_{i,j} = E_{i,j}E_{j,j} - E_{j,j}E_{i,j}$), formant un système libre (car extrait de la base canonique de $\mathcal{M}_n(\mathbb{R})$)

Les n-1 matrices $E'_{i,i}-E'_{1,1}, 2\leqslant i\leqslant n$ sont n-1 autres matrices de F 'puisque $E'_{i,i}-E_{1,1}=E_{i,1}E_{1,i}-E_{1,i}E_{i,1}$

On vérifie que le système formé de l'union de ces deux systèmes est libre (pas de difficulté). Il constitue un système libre de $n^2 - n + n - 1 = n^2 - 1$ éléments de F. Donc $\dim(F) \ge n^2 - 1$.

Mais aussi $\dim(F) \leq n^2 - 1$ de par l'inclusion $F \sqsubset \ker(\operatorname{tr})$. L'inclusion et l'égalité des dimensions montrent alors que $F = \ker(\operatorname{tr})$

Soit $u \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ telle que : $u(I_n) = I_n$ et $\forall (M,N) \in \mathcal{M}_n(\mathbb{R})^2, u(M.N) = u(N.M)$ $I_n \notin \ker(\operatorname{tr})$ puisque $\operatorname{tr}(I_n) = n \neq 0$. La droite $\mathcal{D} = \operatorname{Vect}(I_n)$ n'est pas incluse dans l'hyperplan $F' = \ker(\operatorname{tr})$. La somme $\mathcal{D} \oplus F'$ est donc directe, et égale à $\mathcal{M}_n(\mathbb{R})$ puisque $\dim(\mathcal{D}) + \dim(F) = 1 + (n^2 - 1) = n^2$ Soit $M \in \mathcal{M}_n(\mathbb{R})$. On peut décomposer cette matrice M en $N + \alpha I_n$

Par hypothèse $\forall (M,N) \in \mathcal{M}_n(\mathbb{R})^2, u(M.N) = u(N.M), \text{ donc } u(M.N-N.M) = u(M.N) - u(N.M) = 0.$ et par linéarité de $u, \forall M \in F, u(M) = 0$ Donc $u(M) = \underbrace{u(N)}_{=0} + \alpha \underbrace{u(I_n)}_{=I_n} = \alpha I_n$ Mais

aussi $\operatorname{tr}(M) = \underbrace{\operatorname{tr}(N)}_{=0} + \alpha \underbrace{\operatorname{tr}(I_n)}_{=n} = n. \ \alpha, \ \operatorname{donc} \ \alpha = \frac{\operatorname{tr}(M)}{n} \ \operatorname{Finalement}, \ \forall \forall M \in \mathcal{M}_n(\mathbb{R}), u(M) = \underbrace{\operatorname{tr}(M)}_{n} I_n$

Exercice 31 [id=646] Commutant d'un endomorphoisme nilppotent dans les cas p=n, p=n-1

Soit $n \in \mathbb{N}$ tel que $n \geq 3$ et E un espace vectoriel de dimension finie de dimension n. On

considère un endomorphisme nilpotent u de E d'indice de nilpotence p. On note

$$\mathscr{C}(u) = \{ v \in \mathcal{L}(E) / u \circ v = v \circ v \},$$

appelé la commutant de u. Donner la dimension $\dim(\mathscr{C}(u))$, dans chacun des cas particuliers suivants :

- $\boxed{\mathbf{1}}$ Le cas p=n.
- $\boxed{\mathbf{2}} \text{ Le cas } p = n 1$

Solution:

Soit u un endomorphisme nilpotent d'indice de nilpotence n, alors $u^n = 0$ et $u^{n-1} \neq 0$, par suite il existe $x \in E$ tel que $u^{n-1}(x) \neq 0$. La famille $\mathscr{F}_x = (x, u(x), \dots, u^{n-1}(x))$ est libre car si $\alpha_0, \dots, \alpha_{n-1} \in \mathbb{K}$ tel que $(\star) \sum_{k=0}^{n-1} \alpha_k \neq 0$. Si on suppose que $\alpha = (\alpha_0, \dots, \alpha_{n-1}) \neq 0$, posons

 $m=\min\{k\in [0,n-1]]/\alpha_k\neq 0\}$. La relation (\star) devient $(\star\star)\sum_{k=m}^{n-1}\alpha_k=0$. En appliquant l'endomorphisme u^{n-m-1} , il vient $\alpha_m u^{n-1}(x)=0$, et puisque $u^{n-1}(x)\neq 0$, on a $\alpha_m=0$, ce qui contredit la définition de m. En conclusion la famille $(x,u(x),\ldots,u^{n-1}(x))$ est une base de E. Soit $v\in \mathscr{C}(u)$, donc $u\circ v=v\circ u$. Comme \mathscr{F}_x est une base de E, il existe $\alpha_0,\ldots,\alpha_{n-1}\in \mathbb{K}$ tel que $v(x)=\sum_{k=0}^{n-1}\alpha_k u^k(x)$, donc v(x)=P(u)(x) avec $P(X)=\sum_{k=0}^{n-1}\alpha_k X^k$. Pour tout $k\in [0,n-1]$, on a $v(u^k(x))=(v\circ u^k)(x)$ or $v\in \mathscr{C}(u)$ donc $u\in \mathscr{C}(v)$ et comme $\mathscr{C}(v)$ est une algèbre on a $u^k\in \mathscr{C}(v)$ donc $u^k\circ v=v\circ u^k$ et par suite $v(u^k(x))=u^k(v(x))=u^k(P(u)(x))=P(u)(u^k(x))$, donc les endomorphismes v et P(u) coincident sur la base \mathscr{F}_x donc v=P(u) et finalement $v\in \mathbb{K}[u]$. On remarque que la famille des endomorphismes (Id $_E,u,\ldots,u^{n-1}$) et libre dans $\mathbb{K}[u]$ et comprend

n vecteurs, et comme $\dim(\mathbb{K}[u]) \leq n$, c'est une base de $\mathbb{K}[u]$, donc $\dim(\mathscr{C}(u)) = \dim(\mathbb{K}[u]) = n$.

il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-2}(x))$ est libre. On a $u^{n-2}(x) \in \ker(u)$ et si on note $F = \operatorname{Vect}(x, u(x), \dots, u^{n-3}(x))$ alors $F \cap \ker(u) = \{0\}$ car si y est dans cette intersection alors $y = \sum_{k=0}^{n-3} \lambda_k u^k(x)$, donc en appliquant u, on a $\sum_{k=0}^{n-3} \lambda_k u^{k+1}(x) = \sum_{k=1}^{n-2} \lambda_{k-1} u^k(x)$, donc par liberté $\lambda_0 = \dots = \lambda_{n-3} = 0$. Il en découle que $\dim(\ker(u)) + \dim(F) \le n$, et comme $\dim(F) = n-2$ on déduit $\dim(\ker(u)) \le 2$. Comme $u^{n-2}(x) \in \ker(u)$, on a donc $1 \le \dim(\ker(u)) \le 2$. On va démontrer que $\dim(\ker(u)) = 2$. Sinon $\dim(\ker(u)) = 1$, donc en posant $d_k = \dim(\ker(u^k))$ pour tout $k \in [1, n-1]$, on a $1 = d_1 < \dots < d_{n-2} < d_{n-1} = n$. On a $u(N_{k+1}) \le N_k$, donc u induit une application linéaire $f : N_{k+1} \to N_k, x \mapsto f(x) = u(x)$. Le théorème du rang donne $d_{k+1} = \operatorname{rg}(f) + \dim(\ker(f))$ or $\ker(f) = \ker(u) \cap N_{k+1} = N_1$, donc $d_{k+1} = d_1 + \operatorname{rg}(f) \le d_k + d_1 = d_k + 1$. Une récurrence immédiate permet de voir que $d_k = k$ pour tout $k \in [1, n-1]$, donc $d_{n-2} = n-2$ donc $n = d_{n-1} \le d_1 + d_{n-2} = 1 + n-2 = n-1$, chose absurde donc $\dim(\ker(u)) = 2$. Il en découle que E admet une base de la forme (V_0, \dots, V_{n-1}) avec $V_k = u^k(x)$ pour tout $k \in [0, n-2]$ et $V_{n-1} \in \ker(u)$ de sorte que la matrice de u dans cette base est $M = \begin{pmatrix} M' & C \\ L & 0 \end{pmatrix}$ avec

$$M' = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ 1 & \ddots & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{n-1}(\mathbb{K}).$$

Exercice 32 [id=647] Une apploication du TCD

Soit $\varphi : \mathbb{R}_+ \to \mathbb{R}$ une fonction continue par morceaux positive intégrable sur \mathbb{R}_+ et $f : [0,1] \to \mathbb{C}$ une application continue par morceaux sur [0,1]. Calculer :

$$\lim_{n \to +\infty} \int_0^1 n f(t) \varphi(nt) dt.$$

Solution : Pour tout $n \in \mathbb{N}^*$, posons $I_n = \int_0^1 n f(t) \varphi(nt) dt$.. Le changement de variable nt = u permet d'obtenir : $I_n = \int_0^n f\left(\frac{u}{n}\right) \varphi(u) du$, donc si on note $1_{[0,n]}$ la fonction indicatrice de [0,n] et si, pour tout $n \in \mathbb{N}^*$, on pose $\forall t \in \mathbb{R}_+$, $f_n(t) = 1_{[0,n]}(t) f\left(\frac{u}{n}\right) \varphi(u)$ alors on dispose de la suite de fonctions (f_n) qui converge simplement vers $f: \mathbb{R}_+ \to \mathbb{R}; u \mapsto f(u) = f(0)\varphi(u)$, toutes les fonctions introduites ici sont continues par morceaux sur \mathbb{R}_+ et on a la domination $\forall n \in \mathbb{N}^*, \forall u \in \mathbb{R}_+, |f_n(u)| \leq ||f||_{\infty,[0,1]}|\varphi(u)$ qui est intagrable sur \mathbb{R}_+ . Le théorème de convergence dominé parmet de conclure que :

$$\lim_{n \to +\infty} \int_0^1 n f(t) \varphi(nt) dt = f(0) \int_0^{+\infty} \varphi(u) du.$$

Exercice 33 [id=653] Suites de fonctions, DSE, autres

- 1 On pose $f(x) = \int_0^{\pi/2} \arctan(x \tan(t)) dt$.
- 2 Étudier le domaine de définition de f, sa continuité et sa dérivabilité.
- **3** Montrer que : $\forall x > 0, f(x) = \int_0^x \frac{\ln u}{u^2 1} du$.
- $\boxed{\mathbf{4}}$ En déduire un équivalent de f en 0 .
- **5** Existence et calcul de : $I = \int_0^{+\infty} \frac{\ln(u)}{u^2 1} du$.
- **6** Retrouver I à partir de $\int_0^1 \frac{\ln(u)}{u^2-1} du$ et en utilisant un développement en série entière.

Solution:

La fonction f est clairement définie sur \mathbb{R} , impaire, continue (pas de problème). Pour la dérivabilité, il faut travailler sur $[a, +\infty[$ avec a > 0 (pour dominer la dérivée partielle). Ainsi f est dérivable sur \mathbb{R}^* et :

$$\forall x \neq 0, f'(x) = \int_0^{\pi/2} \frac{\tan(t)}{1 + x^2 \tan(t)^2} dt$$

2 On pose $u = x \tan(t)$:

$$f'(x) = \int_0^{\pi/2} \frac{\tan(t)}{1 + x^2 \tan(t)^2} dt = \frac{\ln(x)}{x^2 - 1}$$

Il n'y a pas de problème en 1 , car cette fonction se prolonge par continuité. Il y a intégrabilité en 0 et comme f(0)=0 on a :

$$\forall x \ge 0, f(x) = \int_0^x \frac{\ln u}{u^2 - 1} \, \mathrm{d}u$$

3 On compare f(x) et $g(x) = -\int_0^x \ln(u) du$. On trouve :

$$f(x) - g(x) = \int_0^x \frac{\ln u}{u^2 - 1} du + \int_0^x \ln(u) du$$
$$= -\int_0^x \frac{u^2 \ln u}{1 - u^2} du = h(x)$$

Par croissance de $u \mapsto \frac{1}{1-u^2}$ on a :

$$|h(x)| \le \frac{1}{1-x^2} \int_0^x u^2 |\ln u| \mathrm{d}u$$

Par ailleurs:

$$\int_0^x u^2 \ln(u) du = \frac{1}{3} x^3 \ln(x) - \frac{1}{9} x^3$$

Il en découle :

$$|h(x)| \le \frac{1}{1-x^2} \left| \frac{1}{3} x^3 \ln(x) - \frac{1}{9} x^3 \right|$$

donc $h(x) = o(x \ln x)$ à l'origine. Mais $g(x) \sim -x \ln(x)$. Il en résulte : $f(x) \stackrel{x \to 0}{\sim} -x \ln(x)$. En particulier, f n'est pas dérivable en 0.

- L'existence est facile et on a donc $I = \lim_{+\infty} f$. Si $x_n \to +\infty$, la suite $f_n(t) = \arctan(x_n \tan(t))$ converge simplement vers $\frac{\pi}{2}$ sur $]0, \frac{\pi}{2}[$. De plus la convergence est dominée par $\frac{\pi}{2}$. Le théorème de convergence dominée montre alors que $\lim_{+\infty} f = \frac{\pi^2}{4} = I$.
- **5** Sur]0,1 [, on a $\frac{\ln(u)}{1-u^2} = \sum_{n\geq 0} u^{2n} \ln(u)$ Par intégration par parties :

$$\int_0^1 u^{2n} \ln(u) du = -\frac{1}{(2n+1)^2}$$

Cette série converge donc on peut intervertir. Ainsi : $\int_0^1 \frac{\ln u}{1-u^2} du = -\sum_{n\geq 0} \frac{1}{(2n+1)^2}$.

On calcule cette somme à partir de $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ en séparant les termes pairs et impairs. On obtient : $\int_0^1 \frac{\ln u}{u^2 - 1} du = \frac{\pi^2}{8}$

6 Le changement de variable $u = \frac{1}{t}$ donne :

$$\int_0^1 \frac{\ln u}{u^2 - 1} \, \mathrm{d}u = \int_1^{+\infty} \frac{\ln u}{u^2 - 1} \, \mathrm{d}u$$

On retrouve donc:

$$\int_0^{+\infty} \frac{\ln u}{u^2 - 1} \, \mathrm{d}u = \frac{\pi^2}{4}$$