1. Traditional Encryption

- Traditional cryptography involves a function T (for example, substitute each letter for the kth letter beyond that one)
- Deciphering the message is very easy, using the function T^{-1} (the inverse of T, which will be substituting each letter for the kth letter after that one)
- If the algorithm becomes public knowledge (or even if it does not), it would not take a cryptanalyst long to decrypt a message by testing every possible value of k

2. Public Key Encryption

- In public key cryptography, the public key, k need never be changed
- The receiver of messages has a private key, k'
- There is a relationship between k and k' such that k' is very hard to compute given k
- But k is very easy to compute given k' (so new public keys can be created easily)

The Subset Sum Problem

- This problem is NP-Complete
- I.e. there is no algorithm that is able to solve the subset problem in polynomial, $O(n^k)$ time
- So a solution can only be produced by sometimes waiting an extraordinarily long time most likely a significant proportion of the 2^n possible solutions will have to be tested
- This forms the basis of the Diffile-Hellman Key Exchange

Encrypting a Message

- Each user is given a public key made up of n positive integers, a_1 , a_2 ,..., a_n
- The message x is transformed into a string of binary digits, which are partitioned into blocks of length n, $(x_1, x_2, ..., x_n)$

The final output is $B_x = \sum_{i=1}^n x_i a_i$

An Example of Encryption

- Take the word, SECRET, encoded in 7-bit ASCII:
- Taking n = 7 (although much higher values are usually used), and using (901,568,803,39,450,645,1173) as the key, encoding the S will give:

$$1 \times 901 + 0 \times 568 + 1 \times 803 + 0 \times 39 + 0 \times 450 + 1 \times 645 + 1 \times 1173 \Rightarrow B_x = 3522$$

Anybody attempting to decipher the message, even with the knowledge of what public key integers were used, will likely have to attempt a significant proportion of the $2^7 = 128$ possible combinations (for each letter!) – and n will normally be very much larger than 7

Decrypting the Message

- The receiver of the message uses a private key, $(a'_1, a'_2, ..., a'_n)$ and two integers, w and m to decrypt the message
- The public key is related to the private key such that:

$$a_i = (w \times a_i') \mod m$$

Hence to calculate the message bits, x_i , we use a special version of the subset sum problem, such that we have a subset of $(a'_1, a'_2, ..., a'_n)$ that gives B'_x , where $B'_x = (B_x \times w^{-1}) \mod m$

(Here we take w^{-1} to be the inverse of w in the field of integers modulo m – i.e. $w \times w^{-1} = 1 \mod m$)

- This is really just the inverse of the encryption process, T^{-1} , and happens to be very easy to solve quickly (in linear O(n)) (given that the private key is superincreasing each integer is larger than the sum of integers preceding it)
 - Take the largest integer, a'_n : if $B'_x > a'_n$, then include a'_n , else discard it
 - Take the next largest integer, a_i' , if $B_x' > \sum a_{included}' + a_i'$, then include a_i' , else discard it
 - Repeat the second step until $\sum a'_{included} = B'_x$

An Example of Decryption

Taking the example from earlier, we already have:

$$B_x = 3522$$
 and $k = (901,568,803,39,450,645,1173)$

– Now we let, for example:

$$w = 901$$
, $m = 1234$ and hence $k' = (1,2,5,11,32,87,141)$ (since $a_i = (w \times a_i') \mod m$)

- This means we have to find the set of a_i' such that $B_x' = (3522 \times (901)^{-1}) \mod 1234 = (3522 \times 1171) \mod 1234 = 234$
- Applying the algorithm from the previous slide to $B'_x=234$ and k'=(1,2,5,11,32,87,141), we get:

$$141 + 87 + 5 + 1 = 234$$
, giving $(1,0,1,0,0,1,1)$, which is the 7-bit ASCII for 'S'

An Overview of How it Works

- We can prove that this method always works nicely by analysing the algebra of T and T^{-1} :

T is obviously given by $B_x = \sum_{i=1}^n x_i a_i$ (which is equivalent to $\sum_{i=1}^n x_i \times w a_i' \mod m$)

Meanwhile, T^{-1} is given by $B'_x = (B_x \times w^{-1}) \mod m$,

which gives $B'_x = \sum_{i=1}^n x_i (wa'_i \mod m) w^{-1} \mod m$ and hence $B'_x = \sum_{i=1}^n x_i a'_i$

I.e. the message x encoded in B_x as $\sum_{i=1}^n x_i a_i$ is encoded in B_x' as $\sum_{i=1}^n x_i a_i'$

How to Break it?

- There are only two points of vulnerability (short of the private key being discovered), which are:
 - (a) An algorithm is discovered that can solve NP-Complete problems quickly (most likely impossible), or
 - (b) The problem used isn't actually an NP-Complete problem
- This is precisely what happened to the Diffie-Hellman-Merkle system in the 1980s since the "public" subset-sum problem is very much a special case (rather than a general version of the subset-sum problem (which is an NP-Complete problem)), it is solvable in polynomial time
- There are, however, other forms of public-key encryption, which instead rely upon the general case of an NP-complete problem (such as the RSA cryptosystem (which instead uses the prime factorization problem) which is currently solvable in $O(e^{(\log n \log \log n)^{\frac{1}{2}}})$ (subexponential time) steps)
- However, even the RSA cryptosystem is solvable in polynomial time given a quantum computer with enough qubits to perform Shor's Algorithm (which simply reduces the prime-factorization problem to an order-solving one) 21 in 2012 (and 56153 in 2014 but with a different algorithm)