Unit 4 Artificial Neural Networks

Artificial Neural Networks

- Human Cognitive Learning
- Perceptron
- Sigmoid neuron
- NN Architecture
- Supervised Vs Unsupervised NN
- NN Learning Algorithms
- Feed Forward
- Back Propagation
- Deep Learning

Human Cognitive Learning

- Cognitive Science Higher order thinking
- Learning focuses on reasoning and understanding at higher level
- Biological approach to Al
- Developed in 1943
- Understanding the mind
- The networks are represented by interconnected neurons
- They send messages to each other
- Comprised of one or more layers of neurons

Human Cognitive Learning

Biologica

Artificial

9 Dr.S.Thenmozhi

Understanding the NN

- Neurons with synapses connecting them
- Input layer, hidden layer, output layer
- N- hidden layers Deep Learning
- Hidden layers are increased when the system is too complex to understand and learn
- Synapses take the input and multiply by a weight
- Neurons add all the output from all synapses and apply an activation function

Neural Networks

- A NN is a machine learning approach inspired by the way in which the brain performs a particular learning task:
 - Knowledge about the learning task is given in the form of examples.
 - Inter neuron connection strengths (weights) are used to store the acquired information (the training examples).
 - During the learning process the weights are modified in order to model the particular learning task correctly on the training examples.

Types of Neural Networks

Neural Network types can be classified based on following attributes:

-Connection Type

- Static (feedforward)
- Dynamic (feedback)

-Topology

- Single layer
- Multilayer
- Recurrent

Learning Methods

- Supervised
- Unsupervised
- Reinforcement

Feed forward

- Feed forward Network wherein connections between the nodes do not form a cycle.
- Simplest type
- Information moves in one direction
- From input nodes to hidden nodes and then to output
- There is no cycles or loop in the network
- Input is the matrix and the output is the target_vector

Back Propagation

- Feed backward Network Back propagation
- Back propagation is a training algorithm consisting of 2 steps:
 - Feed forward the values
 - Calculate the error and propagate it back to the earlier layers
- Input for back propagation is output_vector, target_output_vector, output is adjusted_weight_vector.

Network architectures

Three different classes of network architectures

```
single-layer feed-forward neurons are organizedmulti-layer feed-forward in acyclic layers
```

recurrent

 The architecture of a neural network is linked with the learning algorithm used to train

Single Layer Feed-forward

Input layer of source nodes

Output layer of neurons

Multi layer feed-forward

3-4-2 Network

Recurrent network

Recurrent Network with *hidden neuron(s)*: unit delay operator *z*¹ implies dynamic system

Neural Network Architectures

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded in time

Learning Methods

Supervised NN

- Each training pattern: input + desired output
- At each presentation: adapt weights
- After many epochs convergence to a local minimum

UnSupervised NN

- In training data, no information available on the desired output
- Learning by doing
- Used to pick out structure in the input:
 - Clustering, Reduction of dimensionality, Compression
- Example: Kohonen"s Learn

Learning Methods

Reinforcement NN

- Use performance score to shuffle weights randomly
- Relatively slow learning due to randomness

The Neuron

- The neuron is the basic information processing unit of a NN. It consists of:
 - 1 A set of synapses or connecting links, each link characterized by a weight:

$$W_1, W_2, ..., W_m$$

2 An adder function (linear combiner) which computes the weighted sum of the inputs: $\mathbf{u} = \sum_{i=1}^{m} \mathbf{w}_i \mathbf{x}_i$

3 Activation function (squashing function) φ for limiting the amplitude of the output of the neuron. $y = \varphi(u + b)$

The Neuron

Bias of a Neuron

Bias b has the effect of applying an affine transformation to u

$$V = U + b$$

v is the induced field of the neuron

Bias as extra input

Perceptron

- A perceptron has one or more inputs, a bias, an activation function, and a single output.
- The perceptron receives inputs, multiplies them by some weight, and then passes them into an activation function to produce an output.

Face Recognition

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Handwritten digit recognition

40004 (4310) 3502 7536 35460 A4209

10119134857268U3226414186 63597202992947722510046701 3084114591010615406103631 1064111030475262001979966 8912056128557131427955460 1014730187112991089970984 0109707597331972015519056 1075518255182814358010963 1787521655460554603546055 18255108503067520439401

FIGURE 10.8

Examples of ZIP code image, and segmented and normalized numerals from the testing set. (Source: Reprinted with permission from Y. Le Cun, et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, 1:541–551, 1989. ©1989 The MIT Press.)

Advantages

 A neural network can perform tasks that a linear program can not.

 When an element of the neural network fails, it can continue without any problem by their parallel nature

Disadvantages

Requires high processing time for large neural networks

 The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated

Feed Forward Algorithm

- Initialize the weights and biases randomly.
- Iterate over the data
 - i. Compute the predicted output using the sigmoid function
 - ii. Compute the loss using the square error loss function
 - iii. $W(new) = W(old) \alpha \Delta W$
 - iv. $B(new) = B(old) \alpha \Delta B$
- Repeat until the error is minimal

Feed forward - Illustration

$$(1, 1) => 0$$

Assign weight to all the synapses

Find Z

```
1 * 0.8 + 1 * 0.2 = 1
1 * 0.4 + 1 * 0.9 = 1.3
1 * 0.3 + 1 * 0.5 = 0.8
```


Activation Function

ReLU Rectified linear units represented by R(x) R(x) = max(0,x)Partial Derivative of ReLU if x < 0, R(x) = 0and if x >= 0, R(x) = x.

Apply activation function to z

```
S(1.0) = 0.73105857863

S(1.3) = 0.78583498304

S(0.8) = 0.68997448112
```


 Sum the product of the hidden layer results with the second set of weights

 apply the activation function to get the final output result.

S(1.235) = 0.7746924929149283

Result of Feedforward

Back Propagation

- To improve our model, we first have to quantify just how wrong our predictions are. Then, we adjust the weights accordingly so that the margin of errors are decreased.
- Output sum margin of error= target-calc

0-0.77=-0.77

- Take the derivative of the activation function and apply it to the output sum
- The activation function we have taken in the example is sigmoid function
- The derivative of the sigmoid function is ds or s' = (exp(-x))/((1+exp(-x))^2)

Find delta output sum

```
Delta output sum = S'(sum) * (output sum margin of error)

Delta output sum = S'(1.235) * (-0.77)

Delta output sum = -0.13439890643886018
```


 Now we have the proposed change in the output layer is -0.13

$$H_{result} \times w_{h \rightarrow o} = O_{sum}$$

$$\frac{\mathrm{d}O_{sum}}{\mathrm{d}w_{h\to o}} = H_{results}$$

$$dw_{h\rightarrow o} = \frac{dO_{sum}}{H_{results}}$$

Find Delta weights using delta output sum

```
hidden result 1 = 0.73105857863
hidden result 2 = 0.78583498304
hidden result 3 = 0.68997448112
Delta weights = delta output sum / hidden layer results
Delta weights = -0.1344 / [0.73105, 0.78583, 0.69997]
Delta weights = [-0.1838, -0.1710, -0.1920]
old w7 = 0.3
old w8 = 0.5
old w9 = 0.9
new w7 = 0.1162
new w8 = 0.329
new w9 = 0.708
```

$$H_{result} \times w_{h \rightarrow o} = O_{sum}$$

$$\frac{\mathrm{d}H_{result}}{\mathrm{d}O_{sum}} = \frac{1}{w_{h\to o}}$$

$$dH_{result} = \frac{dO_{sum}}{w_{h \to o}}$$
 $S'(H_{sum}) = \frac{dH_{sum}}{dH_{result}}$

$$dH_{result} \times \frac{dH_{sum}}{dH_{result}} = \frac{dO_{sum}}{w_{h \to o}} \times \frac{dH_{sum}}{dH_{result}}$$

$$dH_{sum} = \frac{dO_{sum}}{w_{h\to o}} \times S'(H_{sum})$$

```
Delta hidden sum = delta output sum / hidden-to-outer weights * S'(hidden sum)
Delta hidden sum = -0.1344 / [0.3, 0.5, 0.9] * S'([1, 1.3, 0.8])
Delta hidden sum = [-0.448, -0.2688, -0.1493] * [0.1966, 0.1683, 0.2139]
Delta hidden sum = [-0.088, -0.0452, -0.0319]
```

$$I \times w_{i \rightarrow h} = H_{sum}$$

$$\frac{\mathrm{d}H_{sum}}{\mathrm{d}w_{i\to h}} = I$$

$$\mathrm{d}w_{i\to h} = \frac{\mathrm{d}H_{sum}}{I}$$

```
input 1 = 1
input 2 = 1
Delta weights = delta hidden sum / input data
Delta weights = [-0.088, -0.0452, -0.0319] / [1, 1]
Delta weights = [-0.088, -0.0452, -0.0319, -0.088, -0.0452, -0.0319]
old w1 = 0.8
old w2 = 0.4
old w3 = 0.3
old w4 = 0.2
old w5 = 0.9
old w6 = 0.5
new w1 = 0.712
new w2 = 0.3548
new w3 = 0.2681
new w4 = 0.112
new w5 = 0.8548
new w6 = 0.4681
```

Do again the feed forward

Gradient Descent

- Gradient descent is an optimization algorithm used to find the values of parameters (coefficients) of a function (f) that minimizes a cost function (cost)
- Gradient descent is best used when the parameters cannot be calculated analytically (e.g. using linear algebra) and must be searched for by an optimization algorithm.
- Takes longer time

47

Deep Learning

'Deep Learning' means using a neural network with several layers of nodes between input and output

Tuning parameters

- hidden_layer_sizes: tuple, length = n_layers 2, default (100,)The ith element represents the number of neurons in the ith hidden layer.
- **activation** : {'identity', 'logistic', 'tanh', 'relu'}, default 'relu' Activation function for the hidden layer.
 - 'identity', no-op activation, f(x) = x
 - 'logistic', the logistic sigmoid function, returns $f(x) = 1 / (1 + \exp(-x))$.
 - 'tanh', the hyperbolic tan function, returns f(x) = tanh(x).
 - 'relu', the rectified linear unit function, returns f(x) = max(0, x)
- **solver** : {'lbfgs', 'sgd', 'adam'}, default 'adam' The solver for weight optimization.
 - 'lbfgs' is an optimizer in the family of quasi-Newton methods.
 - 'sgd' refers to stochastic gradient descent.
 - 'adam' refers to a stochastic gradient-based optimizer

Hint: Larger datasets – use adam, Smaller datasets – lbfgs
10/28/2019 Dr.S.Thenmozhi

49

- alpha: float, optional, default 0.0001
 - L2 penalty (regularization term) parameter.
 - Can be given in GridSearchCV to find best alpha can be in range of 10 like 10,1,0.1,0.01,0.0001
- **learning_rate** : {'constant', 'invscaling', 'adaptive'}, default 'constant' Learning rate schedule for weight updates.
 - 'constant' is a constant learning rate given by 'learning_rate_init'.
 - 'invscaling' gradually decreases the learning rate at each time step 't' using an inverse scaling exponent of 'power_t'.
 effective_learning_rate = learning_rate_init / pow(t, power_t)
 - 'adaptive' keeps the learning rate constant to 'learning_rate_init' as long as training loss keeps decreasing.
- learning_rate_init : double, optional, default 0.001
- power_t : double, optional, default 0.5
- max_iter : int, optional, default 200