Lista de exercícios - Limites Infinitos e Limites no Infinito

1ª Questão: Calcule os seguintes limites laterais:

(a)
$$\lim_{x\to 6^+} \frac{4}{x-6}$$

(d)
$$\lim_{x \to 1^{-}} \frac{3}{1-x}$$

(g)
$$\lim_{x \to 1^+} \frac{x^2}{x-1}$$

(j)
$$\lim_{x \to -3^-} \frac{x^2}{x^2 - 9}$$

(b)
$$\lim_{x\to 6^-} \frac{4}{x-6}$$

(e)
$$\lim_{x \to 0^+} \frac{x+5}{x}$$

(h)
$$\lim_{x \to 1^{-}} \frac{x^2}{x-1}$$

(c)
$$\lim_{x\to 1^+} \frac{3}{1-x}$$

(f)
$$\lim_{x \to 0^-} \frac{x+5}{x}$$

(i)
$$\lim_{x \to -3^+} \frac{x^2}{x^2 - 9}$$

2ª Questão: Calcule os seguintes limites no infinito:

(a)
$$\lim_{x \to +\infty} \frac{4x^2 - 3x}{2x - 6}$$

(d)
$$\lim_{x \to -\infty} \frac{3}{1 - x^2}$$

(g)
$$\lim_{x \to +\infty} \frac{x^2}{4x^2 - 1}$$

(j)
$$\lim_{x \to -\infty} \frac{x^2}{x^2 - 9}$$

(b)
$$\lim_{x \to -\infty} \frac{4x^2 - 3x}{2x^2 + 6}$$

(e)
$$\lim_{x \to +\infty} \frac{x+5}{x^3}$$

(h)
$$\lim_{x \to -\infty} \frac{4x^2}{5x-1}$$

(c)
$$\lim_{x \to +\infty} \frac{1-3x^2}{2x^2-6}$$

(f)
$$\lim_{x \to -\infty} \frac{x^2 + 4x - 5}{5x^2 - 1}$$

(i)
$$\lim_{x \to +\infty} \frac{x^2}{x^2 - 9}$$

3ª Questão: Com base no gráfico abaixo, responda:

(a)
$$\lim_{x \to -3^-} f(x)$$

$$(f)\lim_{x\to 0}f(x)$$

(b)
$$\lim_{x \to -3^+} f(x)$$

(g)
$$\lim_{x\to 3^-} f(x)$$

(c)
$$\lim_{x \to -3} f(x)$$

(h)
$$\lim_{x \to 3^+} f(x)$$

(d)
$$\lim_{x\to 0^-} f(x)$$

(i)
$$\lim_{x \to 3} f(x)$$

(e)
$$\lim_{x\to 0^+} f(x)$$

4º Questão: Considerando o gráfico da questão anterior, quais são as assíntotas verticais?

5º Questão: Quais são as assíntotas verticais da função $f(x) = \frac{3}{x^2 - 8x + 7}$?

6º Questão: Qual é a assíntota horizontal da função $f(x) = \frac{3x^2 - 5x}{x^2 - 8x + 7}$?

1. a)
$$+\infty$$
 b) $-\infty$ c) $-\infty$ d) $+\infty$ e) $+\infty$ f) $-\infty$

$$g) + \infty$$
 $h) - \infty$ $i) - \infty$ $j) + \infty$

2. a)
$$+ \infty$$
 b) 2 c) $- 3/2$ d) 0 e) 0 f) $1/5$

c)
$$-3/2$$
 d) 0

3. a)
$$+\infty$$
 b) $-\infty$ c) $\not\exists$ d) $+\infty$ e) $+\infty$ f) $+\infty$ g) $+\infty$ h) $-\infty$ i) $\not\exists$

3. a) +
$$\infty$$
 b) - ∞ c) ;

4.
$$x = -3, x = 0 e x = 3$$

5.
$$x = 1 e x = 7$$

6.
$$y = 3$$