Module 2.3: Perceptron

The story ahead ...

• What about non-boolean (say, real) inputs?

The story ahead ...

- What about non-boolean (say, real) inputs?
- Do we always need to hand code the threshold ?

The story ahead ...

- What about non-boolean (say, real) inputs?
- Do we always need to hand code the threshold ?
- Are all inputs equal? What if we want to assign more weight (importance) to some inputs?

The story ahead ...

- What about non-boolean (say, real) inputs?
- Do we always need to hand code the threshold ?
- Are all inputs equal? What if we want to assign more weight (importance) to some inputs?
- What about functions which are not linearly separable?

• Frank Rosenblatt, an American psychologist, proposed the classical perceptron model (1958)

• Frank Rosenblatt, an American psychologist, proposed the classical perceptron model (1958)

- Frank Rosenblatt, an American psychologist, proposed the ${f classical}$ ${f perceptron}$ ${f model}$ (1958)
- A more general computational model than McCulloch-Pitts neurons

- Frank Rosenblatt, an American psychologist, proposed the classical perceptron model (1958)
- A more general computational model than McCulloch-Pitts neurons
- Main differences: Introduction of numerical weights for inputs and a mechanism for learning these weights

- Frank Rosenblatt, an American psychologist, proposed the classical perceptron model (1958)
- A more general computational model than McCulloch-Pitts neurons
- Main differences: Introduction of numerical weights for inputs and a mechanism for learning these weights
- Inputs are no longer limited to boolean values

- Frank Rosenblatt, an American psychologist, proposed the classical perceptron model (1958)
- A more general computational model than McCulloch-Pitts neurons
- Main differences: Introduction of numerical weights for inputs and a mechanism for learning these weights
- Inputs are no longer limited to boolean values
- Refined and carefully analyzed by Minsky and Papert (1969) - their model is referred to as the **perceptron** model here

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Rewriting the above,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

itesh M. Khapra CS7015 (D

CS7015 (Deep Learning) : Lecture 2

A more accepted convention,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Rewriting the above,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

Mitesh M. Khapra

CS7015 (Deep Learning): Lecture 2

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Rewriting the above,

A more accepted convention,
$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

where, $x_0 = 1$ and $w_0 = -\theta$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

A more accepted convention,
$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$

$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

where, $x_0 = 1$ and $w_0 = -\theta$

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

A more accepted convention,

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

Rewriting the above,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

We will now try to answer the following questions:

- Why are we trying to implement boolean functions?
- Why do we need weights?
- Why is $w_0 = -\theta$ called the bias?

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

• Consider the task of predicting whether we would like a movie or not

- Consider the task of predicting whether we would like a movie or not
- Suppose, we base our decision on 3 inputs (binary, for simplicity)

- Consider the task of predicting whether we would like a movie or not
- Suppose, we base our decision on 3 inputs (binary, for simplicity)
- Based on our past viewing experience (data), we may give a high weight to isDirectorNolan as compared to the other inputs

- Consider the task of predicting whether we would like a movie or not
- Suppose, we base our decision on 3 inputs (binary, for simplicity)
- Based on our past viewing experience (**data**), we may give a high weight to *isDirectorNolan* as compared to the other inputs
- x_3 Specifically, even if the actor is not *Matt Damon* and the genre is not *thriller* we would still want to cross the threshold θ by assigning a high weight to *isDirect-orNolan*

Mitesh M. Khapra

CS7015 (Deep Learning): Lecture 2

• w_0 is called the bias as it represents the prior (prejudice)

 $x_1 = isActorDamon$ $x_2 = isGenreThriller$ $x_3 = isDirectorNolan$

- w_0 is called the bias as it represents the prior (prejudice)
- A movie buff may have a very low threshold and may watch any movie irrespective of the genre, actor, director $[\theta=0]$

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

- w_0 is called the bias as it represents the prior (prejudice)
- A movie buff may have a very low threshold and may watch any movie irrespective of the genre, actor, director $[\theta=0]$
- On the other hand, a selective viewer may only watch thrillers starring Matt Damon and directed by Nolan $[\theta=3]$

 $x_1 = isActorDamon$ $x_2 = isGenreThriller$ $x_3 = isDirectorNolan$

- w_0 is called the bias as it represents the prior (prejudice)
- A movie buff may have a very low threshold and may watch any movie irrespective of the genre, actor, director $[\theta = 0]$
- On the other hand, a selective viewer may only watch thrillers starring Matt Damon and directed by Nolan $[\theta = 3]$
- The weights $(w_1, w_2, ..., w_n)$ and the bias (w_0) will depend on the data (viewer history in this case)

What kind of functions can be implemented using the perceptron? Any difference from McCulloch Pitts neurons?

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

McCulloch Pitts Neuron

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

• From the equations it should be clear that even a perceptron separates the input space into two halves

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

- From the equations it should be clear that even a perceptron separates the input space into two halves
- All inputs which produce a 1 lie on one side and all inputs which produce a 0 lie on the other side

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

McCulloch Pitts Neuron

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

even a perceptron separates the input space into two halves

• From the equations it should be clear that

- All inputs which produce a 1 lie on one side and all inputs which produce a 0 lie on the other side
- In other words, a single perceptron can only be used to implement linearly separable functions

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

- From the equations it should be clear that even a perceptron separates the input space into two halves
- All inputs which produce a 1 lie on one side and all inputs which produce a 0 lie on the other side
- In other words, a single perceptron can only be used to implement linearly separable functions
- Then what is the difference?

Mitesh M. Khapra

CS7015 (Deep Learning) : Lecture 2

McCulloch Pitts Neuron

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

- From the equations it should be clear that even a perceptron separates the input space into two halves
- All inputs which produce a 1 lie on one side and all inputs which produce a 0 lie on the other side
- In other words, a single perceptron can only be used to implement linearly separable functions
- Then what is the difference? The weights (including threshold) can be learned and the inputs can be real valued

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

- From the equations it should be clear that even a perceptron separates the input space into two halves
- All inputs which produce a 1 lie on one side and all inputs which produce a 0 lie on the other side
- In other words, a single perceptron can only be used to implement linearly separable func-
- Then what is the difference? The weights (including threshold) can be learned and the inputs can be real valued
- We will first revisit some boolean functions and then see the perceptron learning algorithm (for learning weights)

$$\begin{array}{c|cc} x_1 & x_2 & \text{OR} \\ \hline 0 & 0 & \end{array}$$

x_1	x_2	OR	
0	0	0	

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 2

$\overline{x_1}$	x_2	OR	
0	0	0	
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 2

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i < 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	

x_1	x_2		
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^2 w_i x_i < 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 2

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i > 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2^{n-1}} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i > 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$\begin{aligned} w_0 + w_1 \cdot 0 + w_2 \cdot 0 &< 0 \implies w_0 < 0 \\ w_0 + w_1 \cdot 0 + w_2 \cdot 1 &\ge 0 \implies w_2 &\ge -w_0 \end{aligned}$$

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$

Mitesh M. Khapra

CS7015 (Deep Learning): Lecture 2

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i > 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$\begin{split} & w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0 \\ & w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0 \\ & w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0 \\ & w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 \ge -w_0 \end{split}$$

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
_ 1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 \ge -w_0$$

• One possible solution to this set of inequalities is $w_0 = -1, w_1 = 1.1, w_2 = 1.1$ (and various other solutions are possible)

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 \ge -w_0$$

• One possible solution to this set of inequalities is $w_0 = -1, w_1 = 1.1, w_2 = 1.1$ (and various other solutions are possible)

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 \ge -w_0$$

is $w_0 = -1, w_1 = 1.1, w_2 = 1.1$ (and various other solutions are possible)

x_1	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$$

$$w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 \ge -w_0$$

• One possible solution to this set of inequalities is $w_0 = -1, w_1 = 1.1, w_2 = 1.1$ (and various other solutions are possible)

• Note that we can come up with a similar set of inequalities and find the value of θ for a McCulloch Pitts neuron also

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$\begin{aligned} & w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 & \Longrightarrow w_0 < 0 \\ & w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 & \Longrightarrow w_2 \ge -w_0 \\ & w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 & \Longrightarrow w_1 \ge -w_0 \\ & w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 & \Longrightarrow w_1 + w_2 \ge -w_0 \end{aligned}$$

• One possible solution to this set of inequalities is $w_0 = -1, w_1 = 1.1, w_2 = 1.1$ (and various other solutions are possible)

• Note that we can come up with a similar set of inequalities and find the value of θ for a McCulloch Pitts neuron also (Try it!)

