262

温度が290Kの時、アルゴン分子の平均の運動エネルギー ϵ は、

$$\bar{\epsilon} = \frac{3}{2}kT$$
 より、 $k = 1.38 \times 10^{-23} J/K$, $T = 290K$ を代入して、 $\bar{\epsilon} = \frac{3}{2} \cdot 1.38 \times 10^{-23} \cdot 290$ $= 6.00 \times 10^{-21} J$

気体定数Rは、

$$k = \frac{R}{N}$$
 より、
 $k = 1.38 \times 10^{-23} J/K$, $N = 6.02 \times 10^{23} /mol$ を代入して、
 $1.38 \times 10^{-23} = \frac{R}{6.02 \times 10^{23}}$
 $\therefore R = 8.31 J/(mol \cdot K)$

よって、分子の平均の速さ v_m は、

$$v_m = \sqrt{\frac{_{3RT}}{_M}}$$
 LD.

 $R=8.31J/(mol\cdot K)$, T=290K , $M=39.9\times 10^{-3}kg$

を代入して、

$$v_m = \sqrt{\frac{3 \cdot 8.31 \cdot 290}{39.9 \times 10^{-3}}}$$
$$= 4.26 \times 10^2 \, \text{m/s}$$