Семантический анализ фотографий с помощью глубоких нейронных сетей

Выпускная квалификационная работы

02.03.02 - Фундаментальная информатика и информационные технологии

Выполнил:

студент 4 курса Ивахненко Дмитрий Игоревич

Научный руководитель:

к. ф.-м. н., ст.преп. М. В. Юрушкин

24 июня 2020 г.

Институт ММиКН им. И.И. Воровича, Южный Федеральный Университет

Введение

В рамках данной работы освещается вопрос семантического анализа изображений путем применения глубоких сверточных нейронных сетей. Данная тема будет рассмотрена на примере задачи обнаружения и выделения неба на изображениях. Входными данными задачи являются фотографии, сделанные на камеры мобильных устройств. Решением задачи выступают сгенерированные для входных фотографий полутоновые изображения - сегментационные маски

Пример задачи сегментации

1. Результат работы сети

3. Коррекция результата

2. Исходное изображение

4. Размеченная маска

Метрика

Визуалзиация метода сравнения площадей

Общий вид FCN

Енкодер и декодер части сети

Выходы декодер-части

Нормализация по пакету

1.
$$\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

2.
$$\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

3.
$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

4.
$$BN_{\gamma,\beta}(x_i) = \gamma \hat{x}_i + \beta$$

Softmax

Pre-softmax state; Size: torch.Size([2, 256, 256]),

- 1. tensor([-9.2658939, 10.0882759], dtype=torch.float64),
- 2. tensor([4.1472898, -4.4603243], dtype=torch.float64)

Post-softmax state; Size: torch.Size([2, 256, 256]),

- 1. tensor([0.0000000, 1.0000000], dtype=torch.float64),
- 2. tensor([0.9998173, 0.0001827], dtype=torch.float64)

Формула:

$$Softmax(x_i) = \frac{e^{x_i}}{\sum_{j} e^{x_j}}$$

Свойства после применения

•
$$v_i \in [0,1] \forall i \in [0,C]$$

$$\bullet \ \sum_{i=0}^{C} v_i = 1$$

Полная архитектура сети

Обзор блоков

Оптимизация функции потерь

Сравнение процессов обучения

Примеры изображений SkyFinder

Коррекция результатов сети

Синтетическая разметка

Результаты работы сети

