DockTData: Automated Integration of Binding Affinity and Molecular Structure Data for Receptor-Ligand Interaction Modeling

José Renato D Fajardo,1* Matheus M P da Silva,1 Leon S C Costa,1 Isabella A Guedes,1 Laurent E Dardenne1*

¹ National Laboratory of Scientific Computation

joserdf@posgrad.lncc.br; dardenne@lncc.br

Background

Receptor-ligand affinity prediction

Predicting receptor–ligand affinity is central to rational drug discovery and molecular modeling, guiding compound design and reducing experimental costs.

Challenges in data integration

Integrating information from multiple databases is hindered by structural inconsistencies, lack of standardization, and weak linkage between activity values and three-dimensional structures.

The DockTData project

DockTData introduces an automated pipeline to extract, transform, and integrate receptor–ligand data from public sources such as BindingDB, ChEMBL, and the Protein Data Bank (PDB).

Open and free access

The dataset produced by DockTData is openly available and free of charge, supporting the development of machine learning models and scoring functions for affinity prediction.

The DockTData Project

Fig 1 - DockTData WorkFlow

- 37,0K Unique PDB structures
- 13,8K Unique Ligands
- Binding Affinity Types: Ki, Kd, IC50 & EC50
- Protein- & Nucleic acid- Ligand Complexes

Fig 2 - Integration of Structural and Affinity Data

Fig 3 - Dataset Characterization

The figure summarizes deposited structural data, including resolution (median 2.10 Å), release date (median November 2015), experimental methods (dominated by X-ray diffraction, 91.5%), and affinity values (median 4.2×10^2 nM, log scale).

Conclusions

DockTData establishes a scalable and reproducible pipeline for integrating structural and functional molecular data into an open and freely accessible resource that enables predictive modeling, virtual screening, and generative drug design.

Fig 3 - Dataset Characterization PDBBind v.2020 is freely available, whereas PDBBind v.2024 requires a paid license (USD 2,000 for academic users), however both versions are distributed under a highly restrictive license.

Further Information

For further information, please attend the Oral Communications in Session 2 on September 24 (Wednesday) at 16:55, or access the QR code provided.

This work was supported by CAPES, CNPq (grant number 309744/2022-9) and FAPERJ (grant numbers E-26/010.001415/2019, E-26/211.357/2021, E-26/200.393/2023).

[BindingDB] Liu, T. et al. Nucleic Acids Res. 2025, 53. [PDB] Berman, H. M. et al Nucleic Acids Res. 2000, 28. [ChEMBL] Mendez, D. et al. Nucleic Acids Res. 2019, 47.

