Definition 1 (Convergence in Probability). Given a sequence of random variables X_n . We say X_n convergence to a random variable X in probability if and only if $\forall \epsilon > 0$

$$P(|X_n - X| > \epsilon) \to 0.$$

Definition 2. Convergence in Distribution Given a sequence of random variables X_n . We say X_n convergence to a random variable X in distribution if and only if PDF/PMF/CDF of X_n convergence to PDF/PMF/CDF of X.

Problem 1. Let U_1, \ldots, U_n be random variables. U_n has distribution Exp(n). Claim U_n convergence to 0 in probability.

Problem 2. Let U_1, \ldots, U_n be independent Unif(0,1) random variables, $X_{(n)} := \max\{U_1, \ldots, U_n\}$. Prove that $n(1 - X_{(n)})$ convergence in distribution to Exp(1).

Problem 3. Let X_1, \ldots, X_{100} be independent Possion(1) random variables. Use normal approximation to approximate the probability that $\sum_{i=1}^{100} X_i$ is between 90 and 110.