Bachelor's thesis defense

Nikolaj Dybdahl Rathcke

Background

- Inexpensive sequencing data
- Centroid-based clustering
- What does klust solve?

t: Threshold similarity

Distance metric

- Sequence alignment is expensive
- *k*-mer is cheap to compute
- The Manhattan distance

- Windows ensures that string of different length are still comparable
- K-Dist

k-mer	АА	AC	AG	AT	CA	СС	CG	СТ	GA	GC	GG	GT	TA	TC	TG	П
s1				2			1	1					1	2		
s2				2			1	1					2	2		1

K-DIST example with k = 2

Manhattan distance: 4

ATCTATCG TTATCTATCG

K-DIST example with k = 2

Manhattan distance: 2

ATCTATCG TTATCTATCG

K-DIST example with k = 2

Manhattan distance: 0

A T C T A T C G T T A T C T A T C G

• Greedy algorithm improves time complexity

- Greedy algorithm improves time complexity
- Intersection criterion to quickly dismiss sequences that are not likely to belong to a cluster

Intersection criterion

$$|K(s) \cap K(c)| \ge |K(c)| \cdot id$$

k-mer	АА	AC	AG	AT	CA	СС	CG	СТ	GA	GC	GG	GT	TA	TC	TG	тт
s1				2			1	1					1	2		
s2				2			1	1					2	2		1

- Greedy algorithm improves time complexity
- Intersection criterion to quickly dismiss sequences that are not likely to belong to a cluster

Intersection criterion

$$|K(s) \cap K(c)| \ge |K(c)| \cdot id$$

k-mer	AA	AC	AG	AT	CA	СС	CG	СТ	GA	GC	GG	GT	TA	TC	TG	тт
K(s1)				1			1	1					1	1		
K(s2)				1			1	1					1	1		1

- Greedy algorithm improves time complexity
- Intersection criteria to quickly dismiss sequences that are not likely to belong to a cluster
- Ordering centroids can improve performance

- Greedy algorithm improves time complexity
- Intersection criteria to quickly dismiss sequences that are not likely to belong to a cluster
- Ordering centroids can improve performance
- The centroid structure

- Greedy algorithm improves time complexity
- Intersection criteria to quickly dismiss sequences that are not likely to belong to a cluster
- Ordering centroids can improve performance
- The centroid structure
- K-Clust

Intersection criteria
Distance(s,c) >= id?
Distance(s,c.link) >= id?
Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Intersection criteria
Distance(s,c) >= id?
Distance(s,c.link) >= id?
Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Distance(s,c) >= id?Distance(s,c.link) >= id?

Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Intersection criteria

Distance(s,c) >= id? Distance(s,c.link) >= id? Update centroid list

Intersection criteria
Distance(s,c) >= id?
Distance(s,c.link) >= id?
Update centroid list

s has a link to the centroid it was close to matching

Results

- \bullet Evaluation of $K\text{-}\mathrm{CLUST}$ with synthetic data
- Evaluation of klust on real data

Multi-dimensional scaling of clustering output from SILVA

Clustering on 40 very different sequences with 9 copies of each that has been altered.

Comparison of klust and USEARCH on RDP

Clustering	Time	Throughput	Clusters	Clust	ter sizes	Max	
algorithm	(sec.)	(seqs./sec.)				memory	
K-Clust,				Max.	100 832		
k = 5, id = 0.85, m = 8,	5420.8	557.10	220 982	Avg.	13.67	\approx 2031 MB	
incr. sort				Min.	1		
K-Clust,				Max.	55 992		
k = 5, id = 0.9, m = 8,	11 948.7	252.74	344 122	Avg.	8.78	\approx 2031 MB	
incr. sort				Min.	1		
USEARCH,				Max.	65 654		
id = 0.95, decr. sort	6874.0	439.20	261 880	Avg.	11.50	pprox 1433 MB	
$-cluster_smallmem$				Min.	1		
USEARCH,				Max.	56 279		
id = 0.97, decr. sort	11 980.0	252.00	471 982	Avg.	6.40	\approx 2560 MB	
$-cluster_smallmem$				Min.	1		

Future work

- Link optimization effectively using max rejects
- Optimizing distance metric to better recognize mutations
- A better merge strategy for a solution using parallelization

