साम्यावस्था EQUILIBRIUM

उद्देश्य

इस एकक के अध्ययन के बाद आप -

- भौतिक एवं रासायनिक प्रक्रियाओं में साम्य की गतिक प्रकृति को पहचान सकेंगे;
- भौतिक एवं रासायनिक प्रक्रियाओं के साम्य के नियम को व्यक्त कर सकेंगे:
- तथा साम्य के अभिलक्षणों को अभिव्यक्त कर सकेंगे;
- किसी दी गई अभिक्रिया के लिए साम्य स्थिरांक व्यंजक लिख सकेंगे;
- K_p एवं K_c के मध्य संबंध स्थापित कर सकेंगे;
- अभिक्रिया की साम्यावस्था को प्रभावित करनेवाले विभिन्न कारकों की व्याख्या कर स्रकेंगे
- आरेनियस, ब्रान्स्टेड-लोरी एवं लूइस धारणाओं के आधार पर पदार्थों को अम्ल अथवा क्षारों में वर्गीकृत कर सकेंगे;
- अम्ल तथा क्षारों के सामर्थ्य की व्याख्या उनके आयनन स्थिरांकों के रूप में कर सकेंगे;
- वैद्युत् अपघट्य तथा समआयन की सांद्रता पर आयनन की मात्रा की निर्भरता की व्याख्या कर सकेंगे;
- हाइड्रोजन आयन की मोलर सांद्रता का pH स्केल के रूप में वर्णन कर सकेंगे;
- जल के आयनन एवं इसकी अम्ल तथा क्षार के रूप में दोहरी भूमिका का वर्णन कर सकेंगे:
- जल के आयिनक गुणनफल (K_w) तथा pK_w में विभेद कर सकेंगे;
- बफर विलयनों के उपयोग को समझ सकेंगे एवं
- विलेयता गुणनफल स्थिरांक की गणना कर सकेंगे।

अनेक जैविक एवं पर्यावरणीय प्रक्रियाओं में रासायनिक साम्य महत्त्वपूर्ण है। उदाहरणार्थ— हमारे फेफड़ों से मांसपेशियों तक O_2 के परिवहन एवं वितरण में O_2 अणुओं तथा हीमोग्लोबिन के मध्य साम्य की एक निर्णायक भूमिका है। इसी प्रकार CO अणुओं तथा हीमोग्लोबिन के मध्य साम्य CO की विषाक्तता का कारण बताता है।

जब किसी बंद पात्र में एक द्रव वाष्पित होता है, तो उच्च गितज ऊर्जा वाले अणु द्रव की सतह से वाष्प प्रावस्था में चले जाते हैं तथा अनेक जल के अणु द्रव की सतह से टकराकर वाष्प प्रावस्था से द्रव प्रावस्था में समाहित हो जाते हैं। इस प्रकार द्रव एवं वाष्प के मध्य एक गितज साम्य स्थापित हो जाता है, जिसके पिरणामस्वरूप द्रव की सतह पर एक निश्चित वाष्प-दाब उत्पन्न होता है। जब जल का वाष्पन प्रारंभ हो जाता है, तब जल का वाष्प-दाब बढ़ने लगता है और अंत में स्थिर हो जाता है। ऐसी स्थिति में हम कहते हैं कि निकाय (System) में साम्यावस्था स्थापित हो गई है। यद्यपि यह साम्य स्थैतिक नहीं है तथा द्रव की सतह पर द्रव एवं वाष्प के बीच अनेक क्रियाकलाप होते रहते हैं। इस प्रकार साम्यावस्था पर वाष्पन की दर संघनन-दर के बराबर हो जाती है। इसे इस प्रकार दर्शाया जाता है

$$H_2O($$
 द्रव $) \rightleftharpoons H_2O($ वाष्प $)$

यहाँ दो अर्ध तीर इस बात को दर्शाते हैं कि दोनों दिशाओं में प्रक्रियाएँ साथ-साथ होती हैं तथा अभिक्रियकों एवं उत्पादों के साम्यावस्था पर मिश्रण को 'साम्य मिश्रण' कहते हैं। भौतिक प्रक्रमों तथा रासायनिक अभिक्रियाओं दोनों में साम्यावस्था स्थापित हो सकती है। अभिक्रिया का तीव्र अथवा मंद होना उसकी प्रकृति एवं प्रायोगिक परिस्थितियों पर निर्भर करता है। जब स्थिर ताप पर एक बंद पात्र में अभिक्रियक क्रिया कर के उत्पाद बनाते हैं, तो उनकी सांद्रता धीरे-धीरे कम होती जाती है तथा उत्पादों की सांद्रता बढ़ती रहती है। किंतु कुछ समय पश्चात् न तो अभिक्रियकों के सांद्रण में और न ही उत्पादों के सांद्रण में कोई परिवर्तन होता है। ऐसी स्थिति में निकाय में गितक साम्य (Dynamic Equilibrium) स्थापित हो जाता है तथा अग्र एवं पश्चगमी अभिक्रियाओं की दरें समान हो जाती हैं। इसी कारण इस अवस्था में अभिक्रिया-मिश्रण में उपस्थित विभिन्न घटकों के सांद्रण में कोई परिवर्तन नहीं होता है। इस आधार

पर कि साम्यावस्था पहुँचने तक कितनी अभिक्रिया पूर्ण हो चुकी है, समस्त रासायनिक अभिक्रियाओं को निम्नलिखित तीन समूहों में वर्गीकृत किया जाता है—

- (i) प्रथम समूह में वे अभिक्रियाएँ आती हैं, जो लगभग पूर्ण हो जाती हैं तथा अभिक्रियकों की सांद्रता नगण्य रह जाती है। कुछ अभिक्रियाओं में तो अभिक्रियकों की सांद्रता इतनी कम हो जाती है कि उनका परीक्षण प्रयोग द्वारा संभव नहीं हो पाता है।
- (ii) द्वितीय समूह में वे अभिक्रियाएँ आती हैं, जिनमें बहुत कम मात्रा में उत्पाद बनते हैं तथा साम्यावस्था पर अभिक्रियकों का अधिकतर भाग अपरिवर्तित रह जाता है।
- (iii) तृतीय समूह में उन अभिक्रियाओं को रखा गया है, जिनमें अभिक्रियकों एवं उत्पादों की सांद्रता साम्यावस्था में तुलना योग्य हो।

साम्यावस्था पर अभिक्रिया किस सीमा तक पूर्ण होती है यह उसकी प्रायोगिक परिस्थितियों जैसे—अभिक्रियकों की सांद्रता, ताप आदि) पर निर्भर करती है। उद्योग तथा प्रयोगशाला में परिचालन परिस्थितियों (Operational Conditions) का इष्टतमीकरण (Optimize) करना बहुत महत्त्वपूर्ण होता है, तािक साम्यावस्था का झुकाव इच्छित उत्पाद की दिशा में हो। इस एकक में हम भौतिक तथा रासायनिक प्रक्रमों में साम्य के कुछ महत्त्वपूर्ण पहलुओं के साथ-साथ जलीय विलयन में आयनों के साम्य, जिसे आयनिक साम्य कहते हैं, को भी सिम्मिलत करेंगे।

7.1 भौतिक प्रक्रमों में साम्यावस्था

भौतिक प्रक्रमों के अध्ययन द्वारा साम्यावस्था में किसी निकाय के अभिलक्षणों को अच्छी तरह समझा जा सकता है। प्रावस्था रूपांतरण प्रक्रम (Phase Transformation Processes) इसके सुविदित उदाहरण हैं। उदाहरणार्थ–

> ठोस <u></u> द्रव द्रव <u></u> गैस

7.1.1 ठोस-द्रव साम्यावस्था

पूर्णरूपेण रोधी (Insulated) थर्मस फ्लास्क में रखी बर्फ़ एवं जल (यह मानते हुए कि फ्लास्क में रखे पदार्थ एवं परिवेश में ऊष्मा का विनिमय नहीं होता है) 273 K तथा वायुमंडलीय दाब पर साम्यावस्था में होते हैं। यह निकाय रोचक अभिलक्षणों को दर्शाता है। हम यहाँ देखते हैं कि समय के साथ-साथ बर्फ

तथा जल के द्रव्यमानों का कोई परिवर्तन नहीं होता है तथा ताप स्थिर रहता है, परंतु साम्यावस्था स्थैतिक नहीं है। बर्फ़ एवं जल के मध्य अभी भी तीव्र प्रतिक्रियाएँ होती हैं। द्रव जल के अणु बर्फ से टकराकर उसमें समाहित हो जाते हैं तथा बर्फ़ के कुछ अणु द्रव प्रावस्था में चले जाते हैं। बर्फ एवं जल के द्रव्यमानों में कोई परिवर्तन नहीं होता है, क्योंकि जल-अणुओं की बर्फ से जल में स्थानांतरण की दर तथा जल से बर्फ में स्थानांतरण की दर 273 K और एक वायुमंडलीय दाब पर बराबर होती है।

यह स्पष्ट है कि बर्फ एवं जल केवल किसी विशेष ताप एवं दाब पर ही साम्यावस्था में होते हैं। वायुमंडलीय दाब पर किसी शुद्ध पदार्थ के लिए वह ताप, जिसपर ठोस एवं द्रव प्रावस्थाएँ साम्यावस्था में होती हैं, पदार्थ का 'मानक गलनांक' या 'मानक हिमांक' कहलाता है। यह निकाय दाब के साथ केवल थोड़ा-सा ही परिवर्तित होता है। इस प्रकार यह निकाय गतिक साम्यावस्था में होता है। इससे निम्नलिखित निष्कर्ष प्राप्त होते हैं —

 (i) दोनों विरोधी प्रक्रियाएँ साथ-साथ होती हैं। (ii)
 दोनों प्रक्रियाएँ समान दर से होती हैं। इससे बर्फ़ एवं जल का द्रव्यमान स्थिर रहता है।

7.1.2 द्रव-वाष्प साम्यावस्था

इस तथ्य को निम्नलिखित प्रयोग के माध्यम से समझा जा सकता है। एक U आकार की नलिका, जिसमें पारा भरा हो (मैनोमीटर), को एक काँच (या प्लास्टिक) के पारदर्शी बॉक्स से जोड देते हैं। बॉक्स में एक वाच ग्लास या पैट्री डिश में निर्जलीय कैल्सियम क्लोराइड (या फॉस्फोरस पेंटाऑक्साइड) जैसा जलशोषक रखकर बॉक्स की वायु को कुछ घंटों तक सुखाया जाता है। इसके पश्चात् जलशोषक को बाहर निकाल लिया जाता है। बॉक्स को एक तरफ टेढ़ाकर उसमें जलसहित एक वाच ग्लास (या पेट्री डीश) को शीघ्र रख दिया जाता है। मैनोमीटर को देखने पर पता चलता है कि कुछ समय पश्चात् इसकी दाईं भुजा में पारा धीरे-धीरे बढ़ता है और अंतत: स्थिर हो जाता है, अर्थात् बॉक्स में दाब पहले बढता है और फिर स्थिर हो जाता है। वाच ग्लास में लिये गए जल का आयतन भी कम हो जाता है (चित्र 7.1)। प्रारंभ में बॉक्स में जलवाष्प नहीं होती है या थोडी सी हो सकती है, किंतु जब जल का वाष्पन होने से गैसीय प्रावस्था में जल-अणुओं के बदलने के कारण वाष्प-दाब बढ जाता है, तब वाष्पन होने की दर स्थिर रहती है। समय के साथ-साथ दाब की वृद्धि-दर में कमी होने लगती है। जब साम्य स्थापित हो जाता है तो प्रभावी-वाष्पन नहीं होता है।

चित्र 7.1: स्थिर ताप पर जल की साम्यावस्था का वाष्प-दाब मापन

इसका तात्पर्य यह है, कि जैसे-जैसे जल के अणुओं की संख्या गैसीय अवस्था में बढ़ने लगती है, वैसे-वैसे गैसीय अवस्था से जल के अणुओं की द्रव-अवस्था में संघनन की दर साम्यावस्था स्थापित होने तक बढ़ती रहती है। अर्थात्-

सामयावस्था पर : वाष्पन की दर \longrightarrow संघनन की दर H_0O (जल) \longrightarrow H_0O (वाष्प)

साम्यावस्था में जल-अणुओं द्वारा उत्पन्न दाब किसी दिए ताप पर स्थिर रहता है, इसे जल का साम्य वाष्प दाब, (या जल का वाष्प-दाब) कहते हैं। द्रव का वाष्प-दाब ताप के साथ बढ़ता है। यदि यह प्रयोग मेथिल ऐल्कोहॉल, ऐसीटोन तथा ईथर के साथ दोहराया जाए, तो यह प्रेक्षित होता है कि इनके साम्य वाष्प-दाब विभिन्न होते हैं। अपेक्षाकृत उच्च वाष्प दाब वाला द्रव अधिक वाष्पशील होता है एवं उसका क्वथानांक कम होता है।

यदि तीन वाच-ग्लासों में ऐसीटोन, एथिल ऐल्कोहॉल एवं जल में प्रत्येक का 1 mL वायुमंडल में खुला रखा जाए तथा इस प्रयोग को एक गरम कमरे में इन द्रवों के भिन्न-भिन्न आयतनों के साथ दोहराया जाए तो हम यह पाएँगे कि इन सभी प्रयोगों में द्रव का पूर्ण वाष्पीकरण हो जाता है। पूर्ण वाष्पन का समय (i) द्रव की प्रकृति, (ii) द्रव की मात्रा तथा (iii) ताप पर निर्भर करता है। जब वाच ग्लास को वायुमंडल में खुला रखा जाता है। तो वाष्पन की दर तो स्थिर रहती है, परंतु वाष्प के अणु कमरे के पूरे आयतन में फैल जाते हैं। अत: वाष्प से द्रव-अवस्था में संघनन की दर वाष्पन की दर से कम होती है। इसके परिणामस्वरूप संपूर्ण द्रव वाष्पित हो जाता है। यह एक खुले निकाय का उदाहरण है। खुले निकाय में साम्यावस्था की स्थापना होना संभव नहीं है।

बंद पात्र में जल एवं जल-वाष्प एक वायुमंडलीय दाब (1.013 bar) तथा 100°C ताप पर साम्य स्थिति में हैं। 1.013 bar दाब पर जल का सामान्य क्वथनांक 100°C है।

किसी शुद्ध द्रव के लिए एक वायुमंडलीय दाब (1.013 bar) पर वह ताप, जिसपर द्रव एवं वाष्प साम्यावस्था में हों, 'द्रव का सामान्य क्वथनांक' कहलाता है। द्रव का क्वथनांक वायुमंडलीय दाब पर निर्भर करता है। यह स्थान के उन्नतांश (ऊँचाई) पर भी निर्भर करता है। अधिक उन्नतांश पर द्रव का क्वथनांक घटता है।

7.1.3 ठोस-वाष्प साम्यावस्था

अब हम ऐसे निकायों पर विचार करेंगे, जहाँ ठोस वाष्प अवस्था में ऊर्ध्वपातित होते हैं। यदि हम आयोडीन को एक बंद पात्र में रखें, तो कुछ समय पश्चात् पात्र बैगनी वाष्प से भर जाता है तथा समय के साथ-साथ रंग की तीव्रता में वृद्धि होती है। परंतु कुछ समय पश्चात् रंग की तीव्रता स्थिर हो जाती है। इस स्थिति में साम्यावस्था स्थापित हो जाती है। अत: ठोस आयोडीन ऊर्ध्वपातित होकर आयोडीन वाष्प देती है तथा साम्यावस्था को इस रूप में दर्शाया जा सकता है –

 I_2 (ठोस) $\stackrel{}{\longleftarrow} I_2$ (वाष्प) इस प्रकार के साम्य के अन्य उदाहरण हैं: कपूर (ठोस) $\stackrel{}{\longleftarrow}$ कपूर (वाष्प) NH_4Cl (ठोस) $\stackrel{}{\longleftarrow} NH_4Cl$ (वाष्प)

7.1.4 द्रव में ठोस अथवा गैस की घुलनशीलता-संबंधी साम्य

द्रवों में ठोस

हम अपने अनुभव से यह जानते हैं कि दिए गए जल की एक निश्चित मात्रा में सामान्य ताप पर लवण या चीनी की एक सीमित मात्रा ही घुलती है। यदि हम उच्च ताप पर चीनी की चाशनी बनाएं और उसे ठंडा करें, तो चीनी के क्रिस्टल पृथक् हो जाएंगे। किसी ताप पर दिए गए विलयन में यदि और अधिक विलेय न घुल सके, तो ऐसे विलयन को 'संतृप्त विलयन, (Saturated)

रेडियोऐक्टिवतायुक्त चीनी की सहायता से उपरोक्त दरों एवं साम्यावस्था की गतिक प्रकृति को सिद्ध किया गया है। यदि हम रेडियोएक्टिवताहीन (Non-radioactive) चीनी के संतृप्त विलयन में रेडियोऐक्टिवता युक्त चीनी की कुछ मात्रा डाल दें, तो कुछ समय बाद हमें दोनों विलयन एवं ठोस चीनी, जिसमें प्रारंभ में रेडियोऐक्टिवता युक्त चीनी के अणु नहीं थे, किंतु साम्यावस्था की गतिक प्रकृति के कारण रेडियोऐक्टिवतायुक्त एवं रेडियोऐक्टिवताहीन चीनी के अणुओं का विनियम दोनों प्रावस्थाओं में होता है। इसलिए रेडियोऐक्टिव एवं रेडियोऐक्टिवतायुक्त चीनी अणुओं का अनुपात तब तक बढ़ता रहता है, जब तक यह एक स्थिर मान तक नहीं पहुँच जाता।

दवों में गैसें

जब सोडा-वाटर की बोतल खोली जाती है, तब उसमें घुली हुई कार्बन डाइऑक्साइड गैस की कुछ मात्रा तेजी से बाहर निकलने लगती है। भिन्न दाब पर जल में कार्बन डाइऑक्साइड की भिन्न विलेयता के कारण ऐसा होता है। स्थिर ताप एवं दाब पर गैस के अविलेय अणुओं एवं द्रव में घुले अणुओं के बीच साम्यावस्था स्थापित रहती है। उदाहरणार्थ—

$$CO_2$$
 (गैस) \longrightarrow CO_2 (विलयन में)

यह साम्यावस्था हेनरी के नियमानुसार है। जिसके अनुसार, "िकसी ताप पर दी एक गई मात्रा के विलायक में घुली हुई गैस की मात्रा विलायक के ऊपर गैस के दाब के समानुपाती होती है।" ताप बढ़ने के साथ-साथ यह मात्रा घटती जाती है। CO₂ गैस को सोडा-वाटर की बोतल में अधिक दाब पर सीलबंद किया है। इस दाब पर गैस के बहुत अधिक अणु द्रव में विलेय हो जाते हैं। जैसे ही बोतल खोली जाती है। वैसे ही बोतल के द्रव की सतह पर दाब अचानक कम हो जाता है, जिससे जल में घुली हुई कार्बन डाइऑक्साइड निकलकर निम्न वायुमंडलीय दाब पर नई साम्यावस्था की ओर अग्रसर होती है। यदि सोडा-वाटर की इस बोतल को कुछ समय तक हवा में खुला छोड़ दिया जाए, तो इसमें से लगभग सारी गैस निकल जाएगी।

यह सामान्य रूप से कहा जा सकता है कि-

- (i) ठोस ≒ द्रव, साम्यावस्था के लिए वायुमंडलीय दाब पर (1.013 bar) एक ही ताप (गलनांक) ऐसा होता है, जिसपर दोनों प्रावस्थाएँ पाई जाती हैं। यदि परिवेश से ऊष्मा का विनिमय न हो, तो दोनों प्रावस्थाओं के द्रव्यमान स्थिर होते हैं।
- (iii) द्रव में ठोस की घुलनशीलता के लिए किसी निश्चित ताप पर द्रव में ठोस की विलेयता निश्चित होती है।
- (iv) द्रव में गैस की विलेयता द्रव के ऊपर गैस के दाब (सांद्रता) के समानुपाती होती है।
 - इन निष्कर्षों को सारणी 7.1 में दिया गया है –

सारणी 7.1 भौतिक साम्यावस्था की कुछ विशेषताएँ

	<u> </u>
प्रक्रम	निष्कर्ष
द्रव ⇌ वाष्प	निश्चित ताप पर $p_{\!\scriptscriptstyle \mathrm{H_2O}}$ स्थिर
H_2O (I) $\rightleftharpoons H_2O$ (g)	होता है।
ठोस ⇌ द्रव	स्थिर दाब पर गलनांक निश्चित
H_2O (s) \rightleftharpoons H_2O (l)	होता है।
विलेय (ठोस) ⇌ विलेय	विलयन में विलेय की सांद्रता
(विलयन)	निश्चित ताप पर स्थिर होती है।
चीनी (ठोस) ⇌ चीनी	
(विलयन)	
गैस (g) ⇌ गैस (aq)	[गैस (aq)]/[गैस (g)]
	निश्चित ताप पर स्थिर होता है।
CO_2 (g) \rightleftharpoons CO_2 (aq)	[CO ₂ (aq)]/[CO ₂ (g)]
	निश्चित ताप पर स्थिर होता है।

7.1.5 भौतिक प्रक्रमों में साम्यावस्था के सामान्य अभिलक्षण

उपरोक्त भौतिक प्रक्रमों में सभी निकाय-साम्यावस्था के सामान्य अभिलक्षण निम्नलिखित हैं:

- (i) निश्चित ताप पर केवल बंद निकाय (Closed System) में ही साम्यावस्था संभव है।
- (ii) साम्यावस्था पर दोनों विरोधी अभिक्रियाएँ बराबर वेग से होती हैं। इनमें गितक, किंतु स्थायी अवस्था होती है।
- (iii) निकाय के सभी मापने योग्य गुण-धर्म स्थिर होते हैं।
- (iv) जब किसी भौतिक प्रक्रम में साम्यावस्था स्थापित हो जाती है, तो सारणी 7.1 में वर्णित मापदंडों में से किसी

एक का मान निश्चित ताप पर स्थिर होना वर्णित साम्यावस्था की पहचान है।

(v) किसी भी समय इन राशियों का मान यह दर्शाता है कि साम्यावस्था तक पहुँचने के पूर्व भौतिक प्रक्रम किस सीमा तक आगे बढ चुका है।

7.2 रासायनिक प्रक्रमों में साम्यावस्था-गतिक साम्य

यह पहले ही बताया जा चुका है कि बंद निकाय में की जाने वाली रासायनिक अभिक्रियाएँ अंतत: साम्यावस्था की स्थिति में पहुँच जाती हैं। ये अभिक्रियाएँ भी अग्रिम तथा प्रतीप दिशाओं में संपन्न हो सकती हैं। जब अग्रिम एवं प्रतीप अभिक्रियाओं की दरें समान हो जाती हैं, तो अभिकारकों तथा उत्पादों की सांद्रताएँ स्थिर रहती हैं। यह रासायनिक साम्य की अवस्था है। यह गतिक साम्यावस्था अग्र अभिक्रिया (जिसमें अभिकारक उत्पाद में बदल जाते हैं) तथा प्रतीप अभिक्रिया (जिसमें उत्पाद मूल अभिकारक में बदल जाते हैं) से मिलकर उत्पन्न होती है। इसे समझने के लिए हम निम्नलिखित उत्क्रमणीय अभिक्रिया पर विचार करें (चित्र 7.2)—

$$A + B \rightleftharpoons C + D$$

समय बीतने के साथ अभिकारकों (A तथा B) की सांद्रता घटती है तथा उत्पादों (C तथा D) का संचयन होता है। अग्र अभिक्रिया की दर घटती जाती है और प्रतीप अभिक्रिया की दर घटती जाती है और प्रतीप अभिक्रिया की दर बढ़ती जाती है। फलस्वरूप एक ऐसी स्थिति आती है, जब दोनों अभिक्रियाओं की दर समान हो जाती है। ऐसी स्थिति में निकाय में साम्यावस्था स्थापित हो जाती है। यही साम्यावस्था C तथा D के बीच अभिक्रिया कराकर भी प्राप्त की जा सकती है। दोनों में से किसी भी दिशा से इस साम्यावस्था की प्राप्यता संभव है। $A + B \Longrightarrow C + D$ या $C + D \Longrightarrow A + B$

चित्र 7.2 : रासायनिक साम्यावस्था की प्राप्ति

हाबर-विधि द्वारा अमोनिया के संश्लेषण में रासायनिक साम्यावस्था की गतिक प्रकृति को दर्शाया जा सकता है। हाबर ने उच्च ताप तथा दाब पर डाइनाइट्रोजन तथा डाइहाइड्रोजन की विभिन्न ज्ञात मात्राओं के साथ अभिक्रिया कराकर नियमित अंतराल पर अमोनिया की मात्रा ज्ञात की। इसके आधार पर उन्होंने अभिक्रिया में शेष डाइनाइट्रोजन तथा डाइहाइड्रोजन की सांद्रता ज्ञात की। चित्र 7.4 दर्शाता है कि एक निश्चित समय के बाद कुछ अभिकारकों के शेष रहने पर भी अमोनिया का सांद्रण एवं मिश्रण का संघटन वहीं बना रहता है। मिश्रण के संघटन की स्थिरता इस बात का संकेत देती है कि साम्यावस्था स्थापित हो गई है। अभिक्रिया की गतिक प्रकृति को समझने के लिए अमोनिया का संश्लेषण उन्हें करीब-करीब प्रारंभिक परिस्थितियों (उसी आंशिक दाब एवं ताप पर), किंतु H, की जगह D, (Deuterium) लेकर किया गया। H, या D, के साथ अभिक्रिया कराने पर साम्यावस्था पर समान संघटनवाला अभिक्रिया-मिश्रण प्राप्त होता है, किंतु अभिक्रिया-मिश्रण में ${
m H_2}$ एवं ${
m NH_3}$ के स्थान पर क्रमश: ${
m D_2}$ एवं ${
m ND_3}$ मौजूद रहते हैं। साम्यावस्था स्थापित होने के बाद दोनों मिश्रण (जिसमें ${
m H_2}$, $\rm N_2,\,NH_3$ तथा $\rm D_2,\,N_2,\,ND_3$ होते हैं) को आपस में मिलाकर कुछ समय के लिए छोड़ देते हैं। बाद में इस मिश्रण का विश्लेषण करने पर पता चलता है कि अमोनिया की सांद्रता अपरिवर्तित रहती है।

हालाँकि जब इस मिश्रण का विश्लेषण द्रव्यमान स्पेक्ट्रोमीटर (Mass Spectrometer) द्वारा किया जाता है, तो इसमें ड्यूटीरियमयुक्त विभिन्न अमोनिया अणु (NH $_3$, NH $_2$ D, NHD $_2$ तथा ND $_3$) एवं डाइहाइड्रोजन अणु (H $_2$, HD तथा D $_2$) पाए जाते हैं। इससे यह निष्कर्ष निकलता है कि साम्यावस्था के बाद भी मिश्रण में अग्रिम एवं प्रतीप अभिक्रियाएँ होते रहने के कारण अणुओं में H तथा D परमाणुओं का व्यामिश्रण (Scrambling) होता रहता है। साम्यावस्था स्थापित होने के बाद यदि अभिक्रिया समाप्त हो जाती है, तो इस प्रकार का मिश्रण प्राप्त होना संभव नहीं होता।

अमोनिया के संश्लेषण में समस्थानिक (Deuterium) के प्रयोग से यह स्पष्ट होता है कि रासायनिक अभिक्रियाओं में गतिक साम्यावस्था स्थापित होने पर अग्रिम एवं प्रतीप अभिक्रियाओं की दर समान होती है तथा इसके मिश्रण के संघटन में कोई प्रभावी परिवर्तन नहीं होता है।

साम्यावस्था दोनों दिशाओं द्वारा स्थापित की जा सकती है, चाहे $H_2(g)$ तथा $N_2(g)$ की अभिक्रिया कराकर $NH_3(g)$ प्राप्त की जाए या $NH_3(g)$ का विघटन कराकर $N_2(g)$ एवं $H_3(g)$ प्राप्त की जाए।

गतिक साम्यावस्था-छात्रों के लिए एक प्रयोग

भौतिक या रासायनिक अभिक्रियाओं में साम्यावस्था की प्रकृति हमेशा गतिक होती है। रेडियोऐक्टिव समस्थानिकों के प्रयोग द्वारा इस तथ्य को प्रदर्शित किया जा सकता है। किंतु किसी विद्यालय की प्रयोगशाला में इसे प्रदर्शित करना संभव नहीं है। निम्नलिखित प्रयोग करके इस तथ्य को 5-6 विद्यार्थियों के समृह को आसानी से दिखाया जा सकता है —

100 mL के दो मापन सिलिंडर (जिनपर 1 तथा 2 लिखा हो) एवं 30 cm लंबी काँच की दो निलयाँ लीजिए। निलयों का व्यास या तो समान हो सकता है या उनमें 3 से 5 mm तक भिन्नता हो सकती है। मापन सिलिंडर-1 के आधे भाग में रंगीन जल (जल में पोटैशियम परमेंगनेट का एक क्रिस्टल डालकर रंगीन जल बनाएँ) भरते हैं तथा सिलिंडर-2 को खाली रखते हैं। सिलिंडर-1 में एक नली तथा सिलिंडर-2 में दूसरी नली रखते हैं। सिलिंडर-1 वाली नली के ऊपरी छिद्र को अंगुली से बंद करें एवं इसके निचले हिस्से में भरे गए जल को सिलिंडर-2 में डालें। सिलिंडर-2 में रखी नली का प्रयोग करते हुए उसी प्रकार सिलिंडर-2 से सिलिंडर-1 में जल स्थानांतरित करें। इस प्रकार दोनों निलयों की सहायता से सिलिंडर-1 से सिलिंडर-2 में एवं सिलिंडर-2 से सिलिंडर-1 में रंगीन जल बार-बार तब तक स्थानांतरित करते हैं। जब तक दोनों सिलिंडरों में रंगीन जल का स्तर समान हो जाए।

यदि इन दो सिलिंडरों में रंगीन विलयन का स्थानांतरण एक से दूसरे में करते, तो इन सिलिंडरों में रंगीन जल के स्तर में अब कोई परिवर्तन नहीं होगा। यदि इन दो सिलिंडरों में रंगीन जल के स्तर को हम क्रमश: अभिकारकों एवं उत्पादों के सांद्रण के रूप में देखें तो हम कह सकते हैं कि यह प्रक्रिया इस प्रक्रिया की गतिक प्रकृति को इंगित करती है, जो रंगीन जल का स्तर स्थायी होने पर भी जारी रहती है। यदि हम इस प्रयोग को विभिन्न व्यासवाली दो निलयों की सहायता से दोहराएँ, तो हम देखेंगे कि इन दो सिलिंडरों में रंगीन जल के स्तर भिन्न व्यास की निलयों के कारण होता है।

चित्र 7.3 गतिक साम्यावस्था का प्रदर्शन (क) प्रारंभिक अवस्था (ख) अंतिम अवस्था

चित्र 7.4: अभिक्रिया $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ की साम्यावस्था का निरूपण

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

 $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$

इसी प्रकार हम अभिक्रिया $H_2(g)+I_2(g)\rightleftharpoons 2HI(g)$ पर विचार करें। यदि हम H_2 एवं I_2 के बराबर-बराबर प्रारंभिक सांद्रण से अभिक्रिया शुरू करें, तो अभिक्रिया अग्रिम दिशा में अग्रसर होगी। H_2 एवं I_2 की सांद्रता कम होने लगेगी है एवं HI का सांद्रता बढ़ने लगेगी, जब तक साम्यावस्था स्थापित न हो जाए (चित्र 7.5)। अगर हम HI से शुरू कर अभिक्रिया को विपरीत दिशा में होने दें, तो HI की सांद्रता कम होने लगेगी। तथा H_2 एवं I_2 की सांद्रता तब तक बढ़ती रहेगी जब तक साम्यावस्था स्थापित न हो जाए (चित्र 7.5)।

चित्र 7.5: H₂(g) + I₂(g) ⇌ 2HI(g) अभिक्रिया में रासायिनक साम्यावस्था किसी भी दिशा से स्थापित हो सकती है।

यदि निश्चित आयतन में H एवं I के परमाणुओं की कुल संख्या वही हो, तो चाहे हम शुद्ध अभिकर्मकों से अभिक्रिया शुरू करें, या शुद्ध उत्पादों से वही साम्यावस्था मिश्रण प्राप्त होता है।

7.3 रासायनिक साम्यावस्था का नियम तथा साम्यावस्था स्थिरांक

साम्यावस्था में अभिकारकों एवं उत्पादों के मिश्रण को 'साम्य मिश्रण' कहते हैं। एकक के इस भाग में साम्य मिश्रण के संघटन के संबंध में अनेक प्रश्नों पर हम विचार करेंगे। एक साम्य मिश्रण में अभिकारकों तथा उत्पादों की सांद्रताओं में क्या संबंध है? प्रारंभिक सांद्रताओं से साम्य सांद्रताओं को केसे ज्ञात किया जा सकता है? साम्य मिश्रण के संघटन को कौन से कारक परिवर्तित कर सकते हैं? औद्योगिक दृष्टि से उपयोगी रसायन जैसे — (H_2, NH_3) तथा CaO) के संश्लेषण के लिए आवश्यक शर्तों का निर्धारण कैसे किया जाता है?

इन प्रश्नों के उत्तर के लिए हम निम्नलिखित सामान्य उत्क्रमणीय अभिक्रिया पर विचार करेंगे –

$$A + B \rightleftharpoons C + D$$

यहाँ इस संतुलित समीकरण में A तथा B अभिकारक एवं C तथा D उत्पाद हैं। अनेक उत्क्रमणी अभिक्रियाओं के प्रायोगिक अध्ययन के आधार पर नॉर्वे के रसायनज्ञों कैटो मैक्सिमिलियन गुलबर्ग (Cato Maximillian Guldberg) एवं पीटर वाजे (Peter Waage) ने सन् 1864 में प्रतिपादित किया कि किसी मिश्रण में सांद्रताओं को निम्नलिखित साम्य-समीकरण द्वारा दर्शाया जा सकता है—

$$K_c = \frac{[\mathbf{C}][\mathbf{D}]}{[\mathbf{A}][\mathbf{B}]} \tag{7.1}$$

यहाँ K_c साम्य स्थिरांक है तथा दाईं ओर का व्यंजक 'साम्य स्थिरांक व्यंजक' कहलाता है। इस **साम्य-समीकरण** को 'द्रव्य अनुपाती क्रिया का नियम' (Law of Mass Action) भी कहते हैं।

गुलबर्ग तथा वाजे द्वारा प्रतिपादित सुझावों को अच्छी तरह समझने के लिए एक मुँहबंद पात्र (Sealed Vessel) में 731 K पर गैसीय H_2 एवं गैसीय I_2 के बीच अभिक्रिया पर विचार करें। इस अभिक्रिया का अध्ययन विभिन्न प्रायोगिक परिस्थितियों में छ: प्रयोगों द्वारा किया गया—

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

1 मोल 1 मोल 2 मोल

पहले चार (1, 2, 3 तथा 4) प्रयोगों में प्रारंभ में बंद पात्रों में केवल गैसीय \mathbf{H}_2 एवं गैसीय \mathbf{I}_2 थे। प्रत्येक प्रयोग

प्रयोग संख्या	आरगि	भक सांद्रता /n	nol L ⁻¹	साम्यव	ास्था पर सांद्रता /¤	nol L ⁻¹
	[H ₂ (g)]	[I ₂ (g)]	[HI (g)]	[H ₂ (g)]	[I ₂ (g)]	[HI (g)]
1	2.4×10^{-2}	1.38×10^{-2}	0	1.14×10^{-2}	0.12×10^{-2}	2.52×10^{-2}
2	2.4×10^{-2}	1.68×10^{-2}	0	0.92×10^{-2}	0.20×10^{-2}	2.96×10^{-2}
3	2.44×10^{-2}	1.98×10^{-2}	0	0.77×10^{-2}	0.31×10^{-2}	3.34×10^{-2}
4	2.46×10^{-2}	1.76×10^{-2}	0	0.92×10^{-2}	0.22×10^{-2}	3.08×10^{-2}
5	0	0	3.04×10^{-2}	0.345×10^{-2}	0.345×10^{-2}	2.35×10^{-2}
6	0	0	7.58×10^{-2}	0.86×10^{-2}	0.86×10^{-2}	5.86×10^{-2}

सारणी 7.2 प्रारंभिक एवं साम्यावस्था पर H2, I2, एवं HI की सांद्रताएँ

हाइड्रोजन एवं आयोडीन के भिन्न-भिन्न सांद्रण के साथ किया गया। कुछ समय बाद बंद पात्र में मिश्रण के रंग की तीव्रता स्थिर हो गई, अर्थात्—साम्यावस्था स्थापित हो गई। अन्य दो प्रयोग (सं. 5 एवं 6) केवल गैसीय HI लेकर प्रारंभ किए गए। इस प्रकार विपरीत अभिक्रिया से साम्यावस्था स्थापित हुई। सारणी 7.2 में इन सभी छ: प्रयोगों के आँकड़े दिए गए हैं।

प्रयोग-संख्या 1, 2, 3 एवं 4 से यह देखा जा सकता है कि— अभिकृत H_2 के मोल की संख्या = अभिकृत I_2 के मोल की संख्या = $\frac{1}{2}$ (उत्पाद HI के मोल की संख्या)

प्रयोग-संख्या 5 तथा 6 में हम देखते हैं कि-

$$[H_2(g)]_{eq} = [I_2(g)]_{eq}$$

साम्यावस्था पर अभिकारकों एवं उत्पादों की सांद्रता के बीच संबंध स्थापित करने के लिए हम कई संभावनाओं के विषय में सोच सकते हैं। नीचे दिए गए सामान्य व्यंजक पर हम विचार करें—

$$\frac{\left[\mathrm{HI}(g)\right]_{\mathrm{eq}}}{\left[\mathrm{H_2}(g)_{\mathrm{eq}}\right]\!\left[\mathrm{I_2}(g)\right]_{\mathrm{eq}}}$$

सारणी 7.3 अभिकर्मकों के साम्य सांद्रता-संबंधी व्यंजक $\mathbf{H}_2(\mathbf{g}) + \mathbf{I}_2(\mathbf{g}) \rightleftharpoons 2\mathbf{HI}(\mathbf{g})$

प्रयोग-संख्या	$\frac{\left[\mathrm{HI}(g)\right]_{\mathrm{eq}}}{\left[\mathrm{H}_{2}(g)\right]_{\mathrm{eq}}\left[\mathrm{I}_{2}(g)\right]_{\mathrm{eq}}}$	$\frac{\left[\mathrm{HI}(g)\right]_{\mathrm{eq}}^{2}}{\left[\mathrm{H}_{2}(g)\right]_{\mathrm{eq}}\left[\mathrm{I}_{2}(g)\right]_{\mathrm{eq}}}$
1	1840	46.4
2	1610	47.6
3	1400	46.7
4	1520	46.9
5	1970	46.4
6	790	46.4

सारणी 7.3 में दिए गए आँकड़ों की सहायता से यदि हम अभिकारकों एवं उत्पादों की साम्यावस्था-सांद्रता को उपरोक्त व्यंजक में रखें, तो उस व्यंजक का मान स्थिर नहीं, बल्कि भिन्न-भिन्न होगा (सारणी 7.3)। यदि हम निम्नलिखित व्यंजक लें-

$$\frac{\left[\mathrm{HI}(g)\right]_{\mathrm{eq}}^{2}}{\left[\mathrm{H}_{2}(g)_{\mathrm{eq}}\right]\left[\mathrm{I}_{2}(g)\right]_{\mathrm{eq}}}\tag{7.1}$$

तो हम पाएँगे कि सभी छ:, प्रयोगों में यह व्यंजक स्थिर मान देता है (जैसा सारणी 7.3 में दिखाया गया है)। यह देखा जा सकता है कि इस व्यंजक में अभिकारकों एवं उत्पाद के सांद्रणों में घात (Power) का मान वही है, जो रासायिनक अभिक्रिया के समीकरण में लिखे उनके रससमीकरणिमतीय गुणांक (Stoichiometric Coefficients) हैं। साम्यावस्था में इस व्यंजक के मान को 'साम्यावस्था स्थिरांक' कहा जाता है तथा इसे ' K_c ' प्रतीक द्वारा दर्शाया जाता है। इस प्रकार अभिक्रिया $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ के लिए K_c , अर्थात् साम्यावस्था स्थिरांक को इस रूप में लिखा जाता है—

$$K_c = \frac{\text{HI(g)}_{\text{eq}}^2}{\text{H}_2(\text{g})_{\text{eq}} \text{I}_2(\text{g})_{\text{eq}}}$$
 (7.2)

ऊपर दिए गए व्यंजक, सांद्रता के पादांक के रूप में जो 'eq' लिखा गया है, वह सामान्यतः नहीं लिखा जाता है, क्योंकि यह माना जाता है कि K_c के व्यंजक में सांद्रता का मान साम्यावस्था पर ही है। अतः हम लिखते हैं—

$$K_c = \frac{\text{HI(g)}^2}{\text{H}_2(\text{g}) \text{ I}_2(\text{g})}$$
 (7.3)

पदांक 'c' इंगित करता है कि K_c का मान सांद्रण के मात्रक $\mathrm{mol}\ \mathrm{L}^{-1}$ में व्यक्त किया जाता है।

दिए गए किसी ताप पर अभिक्रिया–उत्पादों की सांद्रता एवं अभिकारकों की सांद्रता के गुणनफल का अनुपात स्थिर रहता है। ऐसा करते समय सांद्रता व्यक्त करने के लिए संतुलित रासायनिक समीकरण में अभिकारकों एवं उत्पादों के रस समीकरणमितीय गुणांक को उनकी सांद्रता के घातांक के रूप में व्यक्त किया जाता है।

इस प्रकार एक सामान्य अभिक्रिया $aA + bB \rightleftharpoons cC + cD$ के लिए साम्यावस्था स्थिरांक को निम्नलिखित व्यंजक से व्यक्त किया जाता है—

$$K_{c} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$
 (7.4)

अभिक्रिया उत्पाद (C या D) अंश में तथा अभिकारक (A तथा B) हर में होते हैं। प्रत्येक सांद्रता (उदाहरणार्थ— [C], [D] आदि) को संतुलित अभिक्रिया में रससमीकरणिमतीय अनुपात गुणांक के घातांक के रूप में व्यक्त किया जाता है। जैसे— $4NH_3 + 5O_2$ (g) $\rightleftharpoons 4NO$ (g) $+ 6H_2O$ (g) अभिक्रिया के लिए साम्यावस्था स्थिरांक को हम इस रूप में व्यक्त करते हैं—

$$K_c = \frac{[\text{NO}]^4 [\text{H}_2\text{O}]^6}{[\text{NH}_3]^4 [\text{O}_2]^5}$$

विभिन्न अवयवों (Species) की मोलर-सांद्रता को उन्हें वर्गाकार कोष्ठक में रखकर दर्शाया जाता है तथा यह माना जाता है कि ये साम्यावस्था सांद्रताएँ हैं। जब तक बहुत आवश्यक न हो, तब तक साम्यावस्था स्थिरांक के व्यंजक में प्रावस्थाएँ (ठोस, द्रव या गैस) नहीं लिखी जाती हैं।

हम रससमीकरणिमतीय अनुपात गुणांक बदल देते हैं, जैसे— यदि पूरे अभिक्रिया समीकरण को किसी घटक (Factor) से गुणा करें, तो साम्यावस्था स्थिरांक के लिए व्यंजक लिखते समय यह सुनिश्चित करना चाहिए कि वह व्यंजक उस परिवर्ततन को भी व्यक्त करे।

अभिक्रिया
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 (7.5) के साम्यावस्था व्यंजक को इस प्रकार लिखते हैं—

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = x$$
 (7.6)

तो प्रतीप अभिक्रिया $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ के लिए साम्यावस्था-स्थिरांक उसी ताप पर इस प्रकार होगा—

$$K'_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}} = \frac{1}{x} = \frac{1}{K_{c}}$$
 (7.7)

इस प्रकार,

$$K'_c = \frac{1}{K_c} \tag{7.8}$$

उत्क्रम अभिक्रिया का साम्यावस्था स्थिरांक अग्रिम अभिक्रिया के साम्यावस्था स्थिरांक के व्युत्क्रम होता है। उपरोक्त अभिक्रिया को इस रूप में लिखने पर

$$\frac{1}{2} H_{2}(g) + \frac{1}{2} I_{2}(g) \rightleftharpoons HI(g)$$
 (7.9)

साम्यावस्था स्थिरांक का मान होगा-

$$K_c'' = [HI] / [H_0]^{1/2} [I_0]^{1/2} = x^{1/2} = K_c^{1/2}$$
 (7.10)

इस प्रकार यदि हम समीकरण 7.5 को n से गुणा करें, तो अभिक्रिया $\mathrm{nH}_2(\mathrm{g})+\mathrm{nI}_2(\mathrm{g}) \rightleftarrows 2\mathrm{nHI}(\mathrm{g})$ प्राप्त होगी तथा इसके साम्यावस्था–स्थिरांक का मान $\mathrm{K}_{c}^{\mathrm{n}}$ होगा। इन परिणामों को सारणी 7.4 में सारांशित किया गया है।

सारणी 7.4 एक सामान्य उत्क्रमणीय अभिक्रिया के साम्यावस्था स्थिरांकों एवं उनके गुणकों में संबंध

रासायनिक समीकरण	साम्यावस्था स्थिरांक
$a A + b B \rightleftharpoons c C + dD$	K_c
$c C + d D \rightleftharpoons a A + b B$	$K_c' = (1/K_c)$
$na A + nb B \rightleftharpoons ncC + ndD$	$K_c'' = (K_c^n)$

यहाँ यह ध्यान रखना चाहिए कि K_c व K'_c के आंकिक मान भिन्न होते हैं। इसलिए यह आवश्यक है कि साम्य-अवस्था स्थिरांक का मान लिखते समय संतुलित रासायनिक समीकरण का उल्लेख करें।

उदाहरण 7.1

 $500~{\rm K}~{\rm TV}~{\rm N_2}~{\rm d}^2{\rm m}~{\rm H_2}~{\rm th}~{\rm NH_3}~{\rm a}$ नने के दौरान साम्यावस्था में निम्नलिखित सांद्रताएँ प्राप्त हुईं: $[{\rm N_2}] = 1.5\times 10^{-2}~{\rm M},~[{\rm H_2}] = 3.0\times 10^{-2}~{\rm M}~{\rm d}^2{\rm m}$ $[{\rm NH_3}] = 1.2\times 10^{-2}~{\rm M}.~{\rm th}$ साम्यावस्था स्थिरांक की गणना कीजिए।

हल

अभिक्रिया $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ के लिए साम्य स्थिरांक इस रूप में लिखा जा सकता है—

$$\begin{split} K_c &= \frac{\left[\mathrm{NH_3}\left(\mathrm{g} \right) \right]^2}{\left[\mathrm{N_2}\left(\mathrm{g} \right) \right] \left[\mathrm{H_2}\left(\mathrm{g} \right) \right]^3} \\ &= \frac{\left(1.2 \times 10^{-2} \right)^2}{\left(1.5 \times 10^{-2} \right) \left(3.0 \times 10^{-2} \right)^3} \\ &= 0.106 \times 10^4 = 1.06 \times 10^3 \end{split}$$

उदाहरण 7.2

800 K पर अभिक्रिया $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ के लिए साम्यावस्था सांद्रताएँ निम्नलिखित हैं—

$$N_2 = 3.0 \times 10^{-3} M$$
, $O_2 = 4.2 \times 10^{-3} M$ तथा $NO = 2.8 \times 10^{-3} M$ अभिक्रिया के लिए K_c का मान क्या होगा?

हल

अभिक्रिया के लिए साम्य स्थिरांक इस प्रकार लिखा जा सकता है—

$$K_{c} = \frac{[\text{NO}]^{2}}{[\text{N}_{2}][\text{O}_{2}]}$$

$$= \frac{(2.8 \times 10^{-3} \text{M})^{2}}{(3.0 \times 10^{-3} \text{M})(4.2 \times 10^{-3} \text{M})} = 0.622$$

7.4 समांग साम्यावस्था

किसी समांग निकाय में सभी अभिकारक एवं उत्पाद एक समान प्रावस्था में होते हैं। उदाहरण के लिए—गैसीय अभिक्रिया $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ में अभिकारक तथा उत्पाद सभी समांग गैस-प्रावस्था में हैं।

इसी प्रकार

$$CH_3COOC_2H_5$$
 (aq) + H_2O (l) \rightleftharpoons CH_3COOH (aq) + C_2H_5OH (aq)

तथा Fe^{3+} (aq) + SCN^- (aq) \rightleftharpoons $Fe(SCN)^{2+}$ (aq) अभिक्रियाओं में सभी अभिकारक तथा उत्पाद समाग विलयन-प्रावस्था में हैं। अब हम कुछ समाग अभिक्रियाओं के साम्यावस्था-स्थिरांक के बारे में पढ़ेंगे।

7.4.1 गैसीय निकाय में साम्यावस्था स्थिरांक (🐾)

हमने अभी तक अभिकारकों एवं उत्पादों के मोलर सांद्रण के रूप में साम्यावस्था स्थिरांक को व्यक्त किया है तथा इसे प्रतीक K_{c} द्वारा दर्शाया है। गैसीय अभिक्रियाओं के लिए साम्यावस्था स्थिरांक को आंशिक दाब के रूप में प्रदर्शित करना अधिक सुविधाजनक है।

आदर्श गैस-समीकरण (एकक-2) को हम इस रूप में व्यक्त करते हैं-

$$pV = nRT$$
या

$$p = \frac{n}{V}RT$$

यहाँ दाब (p) को bar में, गैस की मात्रा को मोलों की संख्या 'n' द्वारा आयतन, 'V' को लिटर (L) में तथा ताप को केल्विन (K) में व्यक्त करने पर $p=cRT\left(\frac{n}{\nu}=c\right)$ स्थिरांक 'R' का मान 0.0831 bar $L \, \mathrm{mol}^{-1}K^{-1}$ होता है।

जब n/V को हम mol/L में व्यक्त करते हैं, तो यह सांद्रण c' दर्शाता है। अत:

$$p = cRT$$

स्थिर ताप पर गैस का दाब उसके सांद्रण के समानुपाती होता है, अर्थात् $p \alpha$ [गैस] अतः उक्त संबंध को p = [गैस] $R\Gamma$ के रूप में भी लिखा जा सकता है। साम्यावस्था में अभिक्रिया $H_{s}(g) + I_{s}(g) \implies 2HI(g)$

के लिए
$$K_{c} = \frac{\left[\operatorname{HI}(g)\right]^{2}}{\left[\operatorname{H}_{2}(g)\right]\left[\operatorname{I}_{2}(g)\right]}$$

अथवा
$$K_c = \frac{(p_{HI})^2}{(p_{H_c})(p_{I_c})}$$
 (7.12)

चूँकि $p_{\rm HI}$ = $\left[{\rm HI}({\rm g})\right]{\rm R}T$ $p_{{\rm H}_2}$ = $\left[{\rm H}_2\left({\rm g}\right)\right]{\rm R}T$ तथा $p_{{\rm I}_2}$ = $\left[{\rm I}_2\left({\rm g}\right)\right]{\rm R}T$ इसलिए

$$K_{p} = \frac{\left(p_{\text{HI}}\right)^{2}}{\left(p_{\text{H}_{2}}\right)\left(p_{\text{I}_{2}}\right)} = \frac{\left[\text{HI}(g)\right]^{2} \left[\text{RT}\right]^{2}}{\left[\text{H}_{2}(g)\right] \text{RT.} \left[\text{I}_{2}(g)\right] \text{RT}}$$

$$= \frac{\left[\operatorname{HI}(g)\right]^{2}}{\left[\operatorname{H}_{2}(g)\right]\left[\operatorname{I}_{2}(g)\right]} = K_{c}$$
(7.13)

उपरोक्त उदाहरण में $K_p=K_c$, हैं अर्थात् दोनों साम्यावस्था स्थिरांकों के मान बराबर हैं, किंतु यह हमेशा सत्य नहीं होता है। उदाहरण के लिए - अभिक्रिया $N_2(g)+3H_2(g)$ \rightleftharpoons $2NH_3(g)$ में

$$K_{p} = \frac{\left(p_{NH_{3}}\right)^{2}}{\left(p_{N_{2}}\right)\left(p_{H_{2}}\right)^{3}} = \frac{\left[NH_{3}(g)\right]^{2} \left[RT\right]^{2}}{\left[N_{2}(g)\right]RT.\left[H_{2}(g)\right]^{3} \left(RT\right)^{3}}$$
$$= \frac{\left[NH_{3}(g)\right]^{2} \left[RT\right]^{-2}}{\left[N_{2}(g)\right] \left[H_{2}(g)\right]^{3}} = K_{c} \left(RT\right)^{-2}$$

इस प्रकार एक समांगी गैसीय अभिक्रिया

$$aA + bB \rightleftharpoons cC + dD$$

$$\begin{split} K_{p} &= \frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)} = \frac{\left[C\right]^{c}\left[D\right]^{d}\left(RT\right)^{(c+d)}}{\left[A\right]^{a}\left[B\right]^{b}\left(RT\right)^{(a+b)}} \\ &= \frac{\left[C\right]^{c}\left[D\right]^{d}}{\left[A\right]^{a}\left[B\right]^{b}}\left(RT\right)^{(c+d)-(a+b)} \end{split}$$

$$K_{p} = \frac{C^{c} D^{d}}{\Delta^{a} R^{b}} RT^{n} = K_{c} RT^{n}$$
 (7.15)

यहाँ संतुलित रासायनिक समीकरण में $\Delta n = [(\mathring{\eta})$ सीय उत्पादों के मोलों की संख्या)—($\mathring{\eta}$ सीय अभिक्रियकों के मोलों की संख्या)] है। यह आवश्यक है कि K_p की गणना करते समय दाब का मान bar में रखना चाहिए, क्योंकि दाब की प्रामाणिक अवस्था 1 bar है। एकक 1 से हमें ज्ञात है कि 1 pascal, $Pa = 1 \text{ Nm}^{-2}$ तथा 1 bar = 10^5Pa ।

सारणी 7.5 में कुछ चयनित अभिक्रियाओं के लिए K_p के मान दिए गए हैं।

सारणी 7.5 में कुछ चयनित अभिक्रियाओं के साम्यावस्था स्थिरांक $oldsymbol{K}_p$ के मान

अभिक्रिया	ताप /к	K_p
$N_2(g) + 3H_2(g) = 2NH_3$	298	6.8 ×10 ⁵
	400	41
	500	3.6 ×10 ⁻²
$2SO_2(g) + O_2(g) = 2SO_3(g)$	298	4.0×10^{24}
	500	2.5×10^{10}
	700	3.0×10^4
$N_2O_4(g) = 2NO_2(g)$	298	0.98
	400	47.9
	500	1700

उदाहरण 7.3

 $500~\rm K~\rm Tr~PCl_5, PCl_3~\rm और~\rm Cl_2~\rm साम्यावस्था में हैं तथा सांद्रताएँ क्रमशः <math>1.41~\rm M,~1.59~\rm M~\rm एवं~1.59~\rm M~\rm हैं।$ अभिक्रिया $\rm PCl_5 \implies PCl_3 + Cl_2~\rm \dot{a} h~\rm feq.~\rm K_c~\rm \dot{a}h$ गणना कीजिए।

हल

उपरोक्त अभिक्रिया के लिए साम्यावस्था स्थिरांक इस रूप में प्रकट किया जा सकता है—

$$K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]} = \frac{(1.59)^{2}}{(1.41)} = 1.79$$

उदाहरण 7.4

इस अभिक्रिया के लिए 800 K पर $K_c = 4.24 \text{ है} - \text{CO (g)} + \text{H}_2\text{O (g)} \iff \text{CO}_2 \text{ (g)} + \text{H}_2 \text{ (g)}$ 800 K पर CO_2 एवं H_2 , CO तथा H_2O के साम्य पर सांद्रताओं की गणना कीजिए, यदि प्रारंभ में केवल CO तथा H_2O ही उपस्थित हों तथा प्रत्येक की सांद्रता 0.1 M हो।

हल

निम्नलिखित अभिक्रिया के लिए:

CO (g) +
$$H_2$$
O (g) \rightleftharpoons CO $_2$ (g) + H_2 (g) प्रारंभ में :

0.1M 0.1M 0 0 साम्य पर

(0.1-x)M (0.1-x)M xM xM जहाँ साम्य पर CO_2 तथा H_2 की मात्रा $x \bmod L^{-1}$ है। अत: साम्य स्थिरांक को इस प्रकार लिखा जा सकता है—

$$K_c = x^2/(0.1-x)^2 = 4.24$$

 $x^2 = 4.24(0.01 + x^2 - 0.2x)$

$$x^2 = 0.0424 + 4.24x^2 - 0.848x$$

$$3.24x^2 - 0.848x + 0.0424 = 0$$

a = 3.24, b = -0.848, c = 0.0424

एक द्विघात समीकरण के लिए
$$ax^2 + bx + c = 0$$
,

$$x = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2a}$$
$$x = 0.848$$

 $\pm\sqrt{(0.848)^2}$ 4(3.24)(0.0424)/(3.24 2)

 $x = (0.848 \pm 0.4118) / 6.48$

 $x_1 = (0.848 - 0.4118)/6.48 = 0.067$

 $x_2 = (0.848 + 0.4118)/6.48 = 0.194$

मान 0.194 की उपेक्षा की जा सकती है, क्योंकि यह अभिकारकों की सांद्रता बतलाएगा, जो प्रारंभिक सांद्रता से अधिक है।

अत: साम्यावस्था पर सांद्रताएँ ये हैं,

 $[CO_2] = [H_2] = x = 0.067 M$

 $[CO] = [H_2O] = 0.1 - 0.067 = 0.033 M$

उदाहरण 7.5

इस साम्य 2NOCl(g) \rightleftharpoons 2NO(g) + $\mathrm{Cl_2}(\mathrm{g})$ हेतु 1069 K ताप पर साम्य स्थिारांक K_c का मान 3.75×10^{-6} है। इस ताप पर उक्त अभिक्रिया के लिए K_p की गणना कीजिए।

हल

हम जानते हैं कि $K_p = K_c (RT)^{\Delta n}$ उपरोक्त अभिक्रिया के लिए, $\Delta n = (2+1) - 2 = 1$ $K_p = 3.75 \times 10^{-6} (0.0831 \times 1069)$ $K_p = 0.033$

साम्यावस्था स्थिरांक के मात्रक

साम्यावस्था K_c का मान निकालते समय सांद्रण को $\mathrm{mol}\ \mathrm{L}^{-1}$ में तथा K_p का मान निकालते समय आंशिक दाब को Pa , kPa , bar अथवा atm में व्यक्त किया जाता है। इस प्रकार साम्यावस्था स्थिरांक का मात्रक सांद्रता या दाब के मात्रक पर आधारित है। यदि साम्यावस्था व्यंजक के अंश में घातांकों का योग हर में घातांकों के योग के बराबर हो। अभिक्रिया $\mathrm{H}_2(\mathrm{g}) + \mathrm{I}_2(\mathrm{g}) \rightleftharpoons 2\mathrm{HI}, K_c$ तथा K_p में कोई मात्रक नहीं होता। $\mathrm{N}_2\mathrm{O}_4(\mathrm{g}) \rightleftharpoons 2\mathrm{NO}_2(\mathrm{g}), K_c$ का मात्रक mol/L तथा K_p का मात्रक bar है।

यदि अभिकारकों एवं उत्पादों को प्रमाणिक अवस्था में लिया जाए तो साम्यावस्था स्थिरांकों को विमाहीन (Dimensionless) मात्राओं में व्यक्त करते हैं। अभिकारकों एवं उत्पादों को प्रामाणिक अवस्था में शुद्ध गैस की प्रामाणिक अवस्था एक bar होती है। इस प्रकार 4 bar दाब प्रामाणिक अवस्था के सापेक्ष में 4 bar / 1 bar = 4 होता है, जो विमाहीन है। एक विलेय के लिए प्रामाणिक अवस्था (C_0) 1 मोलर विलयन है तथा अन्य सांद्रताएँ इसी के सापेक्ष में मापी जाती हैं। साम्यस्थिरांक का आंकित मान चुनी हुई प्रामाणिक अवस्था पर निर्भर करता है। इस प्रकार इस प्रणाली में K_p तथा K_c दोनों विमाहीन राशियाँ हैं किंतु उनका आंकिक मान भिन्न प्रमाणिक अवस्था होने के कारण भिन्न हो सकता है।

7.5 विषमांग साम्यावस्था

एक से अधिक प्रावस्था वाले निकाय में स्थापित साम्यावस्था को 'विषमांग साम्यावस्था' कहा जाता है। उदाहरण के लिए—एक बंद पात्र में जल-वाष्प एवं जल-द्रव के बीच स्थापित साम्यावस्था 'विषमांग साम्यावस्था' है।

$$H_2O(1) \rightleftharpoons H_2O(g)$$

इस उदाहरण में एक गैस प्रावस्था तथा दूसरी द्रव प्रावस्था है। इसी तरह ठोस एवं इसके संतृप्त विलयन के बीच स्थापित साम्यावस्था भी विषमांग साम्यावस्था है। जैसे—

$$Ca(OH)_2$$
 (s) + (aq) \rightleftharpoons Ca^{2+} (aq) + $2OH^-$ (aq)

विषमांग साम्यावस्थाओं में अधिकतर शुद्ध ठोस या शुद्ध द्रव भाग लेते हैं। विषमांग साम्यावस्था (जिसमें शुद्ध ठोस या शुद्ध द्रव हो) के साम्यावस्था-व्यंजक को सरल बनाया जा सकता है, क्योंकि शुद्ध ठोस एवं शुद्ध द्रव का मोलर सांद्रण उनकी मात्रा पर निर्भर नहीं होता, बल्कि स्थिर होता है। दूसरे शब्दों में—साम्यावस्था पर एक पदार्थ 'X' की मात्रा कुछ भी हो, [X(s)] एवं [X(l)] के मान स्थिर होते हैं। इसके विपरीत यदि 'X' की मात्रा किसी निश्चित आयतन में बदलती है, तो [X(g)] तथा [X(aq)] के मान भी बदलते हैं। यहाँ हम एक रोचक एवं महत्त्वपूर्ण विषमांग रासायनिक साम्यावस्था केल्सियम कार्बोनेट के तापीय वियोजन पर विचार करेंगे—

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
 (7.16)
उपरोक्त समीकरण के आधार पर हम लिख सकते हैं कि

$$K_{c} = \frac{\left[\text{CaO(s)}\right]\left[\text{CO}_{2}\left(g\right)\right]}{\left[\text{CaCO}_{3}\left(s\right)\right]}$$

चूँिक [CaCO $_3$ (s)] एवं [CaO(s)] दोनों स्थिर हैं। इसलिए उपरोक्त अभिक्रिया के लिए सरलीकृत साम्यावस्था स्थिरांक $K_c' = [\mathrm{CO}_2(\mathrm{g})]$ (7.17)

या
$$K_p = p_{\text{CO}_2}$$
 (7.18)

इससे स्पष्ट होता है कि एक निश्चित ताप पर CO₂(g)

की एक निश्चित सांद्रता या दाब CaO(s) तथा $CaCO_3(s)$ के साथ साम्यावस्था में रहता है। प्रयोग करने पर यह पता चलता है कि $1100~\rm K$ पर $CaCO_3(s)$ एवं CaO~(s) के साथ साम्यावस्था में उपस्थित CO_2 का दाब $2.0\times 10^5~\rm Pa$ है। इसलिए उपरोक्त अभिक्रिया के लिए साम्यावस्था स्थिरांक का मान इस प्रकार होगा—

$$K_p = p_{\text{CO}_2} = 2 \times 10^5 \,\text{Pa} / 10^5 \,\text{Pa} = 2.00$$

इसी प्रकार निकैल, कार्बन मोनोऑक्साइड एवं निकैल कार्बोनिल के बीच स्थापित विषमांग साम्यावस्था (निकैल के शुद्धिकरण में प्रयुक्त) समीकरण —

Ni (s) + 4 CO (g) \rightleftharpoons Ni(CO) $_4$ (g) में साम्यावस्था स्थिरांक का मान इस रूप में लिखा जाता है—

$$K_c = \frac{\left[\text{Ni}\left(\text{CO}\right)_4\right]}{\left[\text{CO}\right]^4}$$

यह ध्यान रहे कि साम्यावस्था स्थापित होने के लिए शुद्ध पदार्थों की उपस्थिति आवश्यक है (भले ही उनकी मात्रा थोड़ी हो), किंतु उनके सांद्रण या दाब, साम्यावस्था—स्थिरांक के व्यंजक में नहीं होंगे। अत: सामान्य स्थिति में शुद्ध द्रव एवं शुद्ध ठोस को साम्यावस्था—स्थिरांक के व्यंजक में नहीं लिखा जाता है। अभिक्रिया—

 Ag_2O (s) + $2HNO_3$ (aq) $\implies 2AgNO_3$ (aq) + H_2O (l) में साम्यावस्था स्थिरांक का मान इस रूप में लिखा जाता है—

$$K_c = \frac{\left[\text{AgNO}_3\right]^2}{\left[\text{HNO}_3\right]^2}$$

उदाहरण 7.6

अभिक्रिया $\mathrm{CO}_2\left(\mathrm{g}\right)+\mathrm{C}\left(\mathrm{s}\right)\iff 2\mathrm{CO}\left(\mathrm{g}\right)$, के लिए $1000~\mathrm{K}~\mathrm{Tr}~\mathrm{K}_p$ का मान $3.0~\mathrm{g}$ । यदि प्रारंभ में $p_{co_2}=0.48~\mathrm{bar}$ तथा $p_{co}=0~\mathrm{bar}$ हो तथा शुद्ध ग्रेफाइट उपस्थित हो, तो CO तथा CO_2 के साम्य पर आंशिक दाबों की गणना कीजिए।

हल

इस अभिक्रिया के लिए-यदि CO_2 दाब में कमी x हो तो-

$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$

प्रारंभ में : 0.48 bar

साम्य पर: (0.48 - x)bar 2x bar

$$K_p = \frac{p_{CO}^2}{p_{CO_2}}$$

$$K_p = (2x)^2/(0.48 - x) = 3$$

$$4x^2 = 3(0.48 - x)$$

$$4x^2 = 1.44 - x$$

$$4x^2 + 3x - 1.44 = 0$$

$$a = 4, b = 3, c = -1.44$$

$$x = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2a}$$

$$= [-3 \pm \sqrt{(3)^2 - 4(4)(-1.44)}]''/2 \times 4$$

(चूँकि x का मान ऋणात्मक नहीं होता, अत: इस मान की उपेक्षा कर देते हैं।)

x = 2.66/8 = 0.33

साम्य पर आंशिक दाबों के मान इस प्रकार होंगे-

 $= (-3 \pm 5.66)/8$

$$p_{co} = 2 x = 2 x 0.33 = 0.66$$
bar

 $p_{CO_2} = 0.48 - x = 0.48 - 0.33 = 0.15$ bar

7.6 साम्यावस्था स्थिरांक के अनुप्रयोग

साम्यावस्था-स्थिरांक के अनुप्रयोगों पर विचार करने से पहले हम इसके निम्नलिखित महत्त्वपूर्ण लक्षणों पर ध्यान दें-

- क. साम्यावस्था-स्थिरांक का व्यंजक तभी उपयोगी होता है, जब अभिकारकों एवं उत्पादों की सांद्रता साम्यावस्था पर स्थिर हो जाए।
- ख. साम्यावस्था-सिथरांक का मान अभिकारकों एवं उत्पादों की प्रारंभिक सांद्रता पर निर्भर नहीं करता है।
- ग. स्थिरांक का मान एक संतुलित समीकरण द्वारा व्यक्त रासायनिक क्रिया के लिए निश्चित ताप पर विशिष्ट होता है, जो ताप बदलने के साथ बदलता है।
- घ. उत्क्रम अभिक्रिया का साम्यावस्था-स्थिरांक अग्रवर्ती अभिक्रिया के साम्यावस्था-स्थिरांक के मान का व्युत्क्रम होता है।
- ङ. किसी अभिक्रिया का साम्यावस्था–स्थिरांक K उस संगत अभिक्रिया के साम्यावस्था स्थिरांक से संबंधित होता है जिसका समीकरण मृल अभिक्रिया के समीकरण में किसी

छोटे पूर्णांक से गुणा या भाग देने पर प्राप्त होता है। अब हम साम्यावस्था स्थिरांक के अनुप्रयोगों पर विचार करेंगे तथा इसका प्रयोग निम्नलिखित बिंदुओं से संबंधित प्रश्नों के उत्तर देने में करेंगे।

- साम्यावस्था-स्थिरांक के परिमाण की सहायता से अभिक्रिया की सीमा का अनुमान लगाना।
- अभिक्रिया की दिशा का पता लगाना एवं
- साम्यावस्था-सांद्रण की गणना करना।

7.6.1 अभिक्रिया की सीमा का अनुमान लगाना

साम्यावस्था–स्थिरांक का आंकिक मान अभिक्रिया की सीमा को दर्शांता है, परंतु यह जानना महत्त्वपूर्ण है कि साम्यावस्था स्थिरांक यह नहीं बतलाता कि साम्यावस्था किस दर से प्राप्त हुई है। K_c या K_p का परिमाण उत्पादों की सांद्रता के समानुपाती होता है (क्योंकि यह साम्यावस्था–स्थिरांक व्यंजक के अंश (Numerator) में लिखा जाता है) तथा क्रियाकारकों की सांद्रता के व्युत्क्रमानुपाती होता है (क्योंकि यह व्यंजक के हर (Denominator) में लिखी जाती है)। साम्यावस्था स्थिरांक K का उच्च मान उत्पादों की उच्च सांद्रता का द्योतक है। इसी प्रकार K का निम्न मान उत्पादों के निम्न मान को दर्शाता है।

साम्य मिश्रणों के संघटन से संबंधित निम्नलिखित सामान्य नियम बना सकते हैं:

यदि $K_{\rm c} > 10^3$ हो, तो उत्पाद अभिकारक की तुलना में ज्यादा बनेंगे। यदि K का मान काफी ज्यादा है, तो अभिक्रिया लगभग पूर्णता के निकट होती है। उदाहरणार्थ—

- (क) 500 K पर $\rm H_2$ तथा $\rm O_2$ की अभिक्रिया साम्यावस्था हेतु स्थिरांक $\rm \it K_c = 2.4 \times 10^{47}$ ।
- (ख) 300 K पर $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$; $K_c = 4.0 \times 10^{31}$
- (ग) 300 K पर $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$; $K_c = 5.4 \times 10^{18}$

यदि $K_c < 10^{-3}$, अभिकारक की तुलना में उत्पाद कम होंगे। यदि K_c का मान अल्प है, तो अभिक्रिया दुर्लभ अवस्था में ही संपन्न होती है। निम्निलिखित उदाहरणों द्वारा यह स्पष्ट हो जाता है—

- (क) 500 K पर ${
 m H_2O}$ का ${
 m H_2}$ तथा ${
 m O_2}$ में विघटन का साम्य-स्थिरांक बहुत कम है $K_{
 m c}$ = 4.1×10^{-48}
- (図) 298 K Ψ N₂(g) + O₂(g) \rightleftharpoons 2NO(g); $K_c = 4.8 \times 10^{-31}$

यदि K_c 10^{-3} से 10^3 की परास (Range) में होता है, तो उत्पाद तथा अभिकारक दोनों की सांद्रताएँ संतोषजनक होती हैं। निम्निलिखित उदाहरण पर विचार करने पर—

(क) 700 K पर H, तथा I, से HI बनने पर $K_c = 57.0$ है।

चित्र 7.6 $K_{\rm c}$ पर अभिक्रिया की सीमा का निर्भर करना

(ख) इसी प्रकार एक अन्य अभिक्रिया N_2O_4 का NO_2 में विघटन है, जिसके लिए 25° C पर $K_c = 4.64 \times 10^{-3}$, जो न तो कम है और न ज्यादा। अतः साम्य मिश्रण में N_2O_4 तथा NO_2 की सांद्रताएँ संतोषजनक होंगी। इस सामान्यीकरण को चित्र 7.7 में दर्शाया गया है।

7.6.2 अभिक्रिया की दिशा का बोध

अभिकारक एवं उत्पादों के किसी अभिक्रिया–मिश्रण में अभिक्रिया की दिशा का पता लगाने में भी साम्यावस्था स्थिरांक का उपयोग किया जाता है। इसके लिए हम अभिक्रिया भागफल (Reaction Quotient) 'Q' की गणना करते हैं। साम्यावस्था स्थिरांक की ही तरह अभिक्रिया भागफल को भी अभिक्रिया की किसी भी स्थिति के लिए परिभाषित (मोलर सांद्रण से Q_c तथा आंशिक दाब से Q_p) किया जा सकता है। किसी सामान्य अभिक्रिया के लिए

a A + b B
$$\rightleftharpoons$$
 c C + d D (7.19)

$$Q_{c} = [C]^{c}[D]^{d} / [A]^{a}[B]^{b} (7.20)$$

 $Q_c = [C]^c[D]^d / [A]^a[B]^b$ (7.20) यदि $Q_c > K_c$ हो, तो अभिक्रिया अभिकारकों की ओर अग्रसरित होगी (विपरीत अभिक्रिया)

यदि $Q_c < K_c$ हो, तो अभिक्रिया उत्पादों की ओर अग्रसिरत होगी.

यदि $Q_c = K_c$ हो, तो अभिक्रिया मिश्रण साम्यावस्था में है।

 ${
m H_2}$ के साथ ${
m I_2}$ की गैसीय अभिक्रिया पर विचार करते हैं-

$$H_2(g) + I_2(g) \iff 2HI(g)$$

700 K पर $K_c = 57.0$
माना कि हमने $[H_2]_t = 0.10M$, $[I_2]_t = 0.20$ M

और [HI], = 0.40 M. लिया

(सांद्रता संकेत पर पादांक t का तात्पर्य यह है कि सांद्रताओं का मापन किसी समय t पर किया गया है, न कि साम्य पर।)

इस प्रकार, अभिक्रिया भागफल Q_c अभिक्रिया की इस स्थिति में दिया गया है—

 $Q_c = [HI]_t^2 / [H_2]_t [I_2]_t = (0.40)^2 / (0.10) \times (0.20) = 8.0$

इस समय Q_c (8.0), K_c (57.0) के बराबर नहीं है। अत: $H_2(g)$, $I_2(g)$ तथा HI(g) का मिश्रण साम्य में नहीं है। इसीलिए $H_2(g)$ व $I_2(g)$ अभिक्रिया करके और अधिक HI(g) बनाएँगे तथा उनके सांद्रण तब तक घटेंगे, जब तक $Q_c = K_c$ न हो जाए।

अभिक्रिया-भागफल Q_c , तथा K_c के मानों की तुलना करके अभिक्रिया-दिशा का बोध करने में उपयोगी हैं।

इस प्रकार, अभिक्रिया की दिशा के संबंध में हम निम्नलिखित सामान्य धारणा बना सकते हैं—

- यदि $Q_c < K_c$ हो, तो नेट अभिक्रिया बाईं से दाईं ओर अग्रसरित होती है।
- यदि $Q_c > K_c$ हो, तो नेट अभिक्रिया दाईं से बाईं ओर अग्रसरित होती है।
- यदि $Q_c = K_c$ हो, तो नेट अभिक्रिया नहीं होती है।

चित्र : 7.7 अभिक्रिया की दिशा का बोध

उदाहरण 7.7

 $2{
m A} \rightleftharpoons {
m B} + {
m C}$ अभिक्रिया के लिए K_c का मान 2×10^{-3} है।

दिए गए समय में अभिक्रिया-मिश्रण का संघटन [A] = $[B] = [C] = 3 \times 10^{-4} \, M$ है। अभिक्रिया कौन सी दिशा में अग्रसित होगी?

हल

अभिक्रिया के लिए अभिक्रिया भागफल $Q_c = \frac{[\mathrm{B}][\mathrm{C}]}{[\mathrm{A}]^2}$

$$[A] = [B] = [C] = 3 \times 10^{-4} M$$

$$Q_c = rac{[3 \quad 10^{\ 4}][3 \quad 10^{\ 4}]}{[3 \quad 10^{\ 4}]^2} \quad 1$$

इस प्रकार $Q_c > K_c$ इसलिए अभिक्रिया विपरीत दिशा में अग्रसित होती है।

7.6.3 साम्य सांद्रताओं की गणना

यदि प्रारंभिक सांद्रता ज्ञात हो, लेकिन साम्य सांद्रता ज्ञात नहीं हो, तो निम्नलिखित तीन पदों से उसे प्राप्त करेंगे—

पद 1: अभिक्रिया के लिए संतुलित समीकरण लिखो।

पद 2: संतुलित समीकरण के लिए एक सारणी बनाएँ, जिसमें अभिक्रिया में सिन्निहित प्रत्येक पदार्थ को सूचीबद्ध किया हो:

- (क) प्रारंभिक सांद्रता
- (ख) साम्यावस्था पर जाने के लिए सांद्रता में परिवर्तन और
- (ग) साम्यावस्था सांद्रता

सारणी बनाने में किसी एक अभिकारक की सांद्रता को x के रूप में, जो साम्यावस्था पर है को परिभाषित करें और फिर अभिक्रिया की रससमीकरणमितीय से अन्य पदार्थों की सांद्रता को x के रूप में व्यक्त करें।

पद 3: x को हल करने के लिए साम्य समीकरण में साम्य सांद्रताओं को प्रतिस्थापित करते हैं। यदि आपको वर्ग समीकरण हल करना हो, तो वह गणितीय हल चुनें, जिसका रासायनिक अर्थ हो।

पद 4: परिकलित मान के आधार पर साम्य सांद्रताओं की गणना करें।

पद 5 : इन्हें साम्य समीकरण में प्रतिस्थापित कर अपने परिणाम की जाँच करें।

उदाहरण 7.8

13.8 ग्राम $\mathrm{N_2O_4}$ को $1~\mathrm{L}$ पात्र में रखा जाता है तो इस प्रकार साम्य स्थापित होता है—

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

यदि साम्यावस्था पर कुल दाब $9.15~{
m bar}$ पाया गया, तो K_c, K_p तथा साम्यावस्था पर आंशिक दाब की गणना कीजिए।

हल

हम जानते हैं कि pV = nRTकुल आयतन (V) = 1 L

अणुभार $(N_2O)_4 = 92$ g गैस के मोल = 13.8 g/92 g = 0.15गैस-स्थिरांक (R) = 0.083 bar L मोल 1 K 1 ताप = 400 K pV = nRT $p \times 1$ लिटर = 0.15 मोल \times (0.083 bar L mol^{-1} K $^{-1}$) \times 400 K p = 4.98 bar

 N_2O_4 \rightleftharpoons $2NO_2$ प्रारंभ में $4.98~{\rm bar}$ 0 साम्य पर $(4.98~-x)~{\rm bar}$ $2x~{\rm bar}$ अतः साम्य पर $p_{\overline{q},\overline{q}}$ $p_{N_2O_4}$ p_{NO_2} 9.15=(4.98-x)+2x 9.15=4.98+x $x=9.15-4.98=4.17~{\rm bar}$ साम्यावस्था पर आंशिक दाब,

 $p_{N_2O_4} = 4.98 - 4.17 = 0.81$ bar $p_{NO_2} = 2x = 2 \times 4.17 = 8.34$ bar $K_p = p_{NO_2}^2 / p_{N_2O_4}$ $= (8.34)^2 / 0.81 = 85.87$ $K_p = K_c (RT)^{\Delta n}$ $85.87 = K_c (0.083 \times 400)^1$ $K_c = 2.586 = 2.6$

उदाहरण 7.9

 $380~{\rm K}$ पर $3.00~{\rm Him}~{\rm PCl}_5~{\rm ah}~1~{\rm L}$ बंद पात्र में रखा जाता है। साम्यावस्था पर मिश्रण का संघटन ज्ञात कीजिए यदि $K_0=1.80~{\rm \bar{e}l}$ ।

हल

 $\mathrm{PCl}_5 \ \rightleftharpoons \ \mathrm{PCl}_3 + \mathrm{Cl}_2$ प्रारंभ में 3.0 0 0 मान लीजिए PCl_5 के प्रति मोल में से $x \, \mathrm{mol}$ वियोजित होते हैं। तब- साम्य पर (3-x) x x

$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]}$$

$$1.8 = x^{2}/(3-x)$$

$$x^{2} + 1.8x - 5.4 = 0$$

$$x = [-1.8 \pm \sqrt{(1.8)^{2} - 4(-5.4)}]/2$$

$$x = [-1.8 \pm \sqrt{3.24 + 21.6}]/2$$

$$x = [-1.8 \pm 4.98]/2$$

$$x = [-1.8 + 4.98]/2 = 1.59$$

$$[PCl_{5}] = 3.0 - x = 3 - 1.59 = 1.41 \text{ M}$$

$$[PCl_{3}] = [Cl_{2}] = x = 1.59 \text{ M}$$

7.7 साम्यावस्था स्थिरांक к, अभिक्रिया भागफल g तथा गिब्स ऊर्जा G में संबंध

किसी अभिक्रिया के लिए K_{c} का मान अभिक्रिया की गतिकी पर निर्भर नहीं करता है। जैसा कि आप एकक – 6 में पढ़ चुके हैं, यह अभिक्रिया की ऊष्मागितकी, विशेषतः गिब्स ऊर्जा में परिवर्तन पर निर्भर करता है—

यदि ΔG ऋणात्मक है, तब अभिक्रिया स्वतः प्रवर्तित मानी जाती है तथा अग्र दिशा में संपन्न होती है।

यदि ΔG धनात्मक है, तब अभिक्रिया स्वत: प्रवर्तित नहीं होगी। इसकी बजाय प्रतीप अभिक्रिया हेतु ΔG ऋणात्मक होगा। अत: अग्र अभिक्रिया के उत्पाद अभिकारक में परिवर्तित हो जाएँगे।

यदि ΔG शून्य हो तो, अभिक्रिया साम्यावस्था को प्राप्त करेगी।

इस ऊष्मागतिक तथ्य की व्याख्या इस समीकरण से की जा सकती है–

$$\Delta G = \Delta G^{\circ} + \operatorname{RT} \ln Q$$
 (7.21)
जबिक ΔG° मानक गिब्स ऊर्जा है।

साम्यावस्था पर जब $\Delta G=0$ तथा $Q=K_c$ हो, तो समीकरण (7.21) इस प्रकार होगी—

 $\Delta G = \Delta G^{\circ} + RT \ln K = 0 (K_c$ के स्थान पर K मानते हुए)

$$\Delta G^{\ominus} = -RT \ln K$$
 (7.22) $\ln K = -\Delta G^{\ominus} / RT$ दोनों ओर प्रतिलघु गुणक लेने पर—

$$K = e^{-G^{\odot}/RT} \tag{7.23}$$

अतः समीकरण 7.23 का उपयोग कर, ΔG° के पदों के रूप में अभिक्रिया की स्वतः प्रवर्तिता को समझाया जा सकता है— यदि $\Delta G^{\circ} < 0$ हो, तो $-\Delta G^{\circ}/RT$ धनात्मक होगा। अतः $e^{-G^{\circ}}$ 1 होने से K>1 होगा, जो अभिक्रिया की स्वतः प्रवर्तिता

को दर्शाता है अथवा अग्र दिशा में उस सीमा तक होती है जिससे कि उत्पाद आधिक्य में बने।

यदि $\Delta G^{\ominus} > 0$ हो, तो $-\Delta G^{\ominus}/RT$ ऋणात्मक होगा। अतः $e^{-C^{\ominus}/RT}$ 1, होने से K < 1 होगा। जो अभिक्रिया की अस्वतःप्रवर्तिता दर्शाता है या अभिक्रिया अग्र दिशा में उस सीमा तक होती है, जिससे उत्पाद न्यूनतम बने।

उदाहरण 7.10

ग्लाइकोलाइसिस में ग्लूकोस के फॉस्फोराइलेशन के लिए ΔG^{\ominus} का मान $13.8~{
m kJ~mol}^{-1}~$ है। $298~{
m K}$ पर K_c का मान ज्ञात करें।

हल

 $\Delta G^{\ominus} = 13.8 \text{ kJ mol}^{-1} = 13.8 \times 10^{3} \text{ J mol}^{-1}$ $\Delta G^{\ominus} = -\text{RT ln} K_{c}$ $\ln K_{c} = -13.8 \times 10^{3} \text{J/mol}$ $(8.31 \text{ J mol}^{-1} \text{ K}^{-1} \times 298 \text{ K})$ $\ln K_{c} = -5.569$ $K_{c} = e^{-5.569}$

उदाहरण 7.11

 $K_c = 3.81 \times 10^{-3}$

सूक्रोस के जल-अपघटन से ग्लूकोस और फ्रक्टोस निम्नलिखित अभिक्रिया के अनुसार मिलता है— सूक्रोस $+ \mathrm{H_2O} \rightleftharpoons$ ग्लूकोस + फ्रक्टोस $300~\mathrm{K}$ पर अभिक्रिया के लिए साम्यावस्था स्थिरांक K_c , 2×10^{13} है। $300~\mathrm{K}$ पर $\Delta\mathrm{G}^\ominus$ के मान की गणना कीजिए।

हल

 $\Delta G^{\ominus} = -RT \ln K_c$ $\Delta G^{\ominus} = -8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ $\times 300 \text{K} \times \ln(2 \times 10^{13})$ $\Delta G^{\ominus} = -7.64 \times 10^4 \text{ J mol}^{-1}$

7.8 साम्य को प्रभावित करने वाले कारक

रासायनिक संश्लेषण के प्रमुख उद्देश्यों में से एक यह है कि न्यूनतम ऊर्जा के व्यय के साथ अभिकारकों का उत्पादों में अधिकतम परिवर्तन हो, जिसका अर्थ है— उत्पादों की अधिकतम लिब्ध ताप तथा दाब की मध्यम परिस्थितियों में हो। यदि ऐसा नहीं होता है, तो प्रायोगिक परिस्थितियों में परिवर्तन

की आवश्यकता है। उदाहरणार्थ— N_2 तथा H_2 से अमोनिया के संश्लेषण के हाबर प्रक्रम में प्रायोगिक परिस्थितियों का चयन वास्तव में आर्थिक रूप से महत्त्वपूर्ण है। विश्व में अमोनिया का वार्षिक उत्पादन 100 मिलियन टन है। इसका मुख्य उपयोग उर्वरकों के रूप में होता है।

साम्यावस्था स्थिरांक K_{μ} प्रारंभिक सांद्रताओं पर निर्भर नहीं करता है। परंतु यदि साम्यावस्थावाले किसी निकाय में अभिकारकों या उत्पादों में से किसी एक के सांद्रण में परिवर्तन किया जाए, तो निकाय में साम्यावस्था नहीं रह पाती है तथा नेट अभिक्रिया पुन: तब तक होती रहती है, जब तक निकाय में पुन: साम्यावस्था स्थापित न हो जाए। प्रावस्था साम्यावस्था पर ताप का प्रभाव एवं ठोसों की विलेयता के बारे में हम पहले ही पढ चुके हैं। हम यह भी देख चुके हैं कि ताप का परिवर्तन किस प्रकार होता है। यह भी बताया जा चुका है कि किसी ताप पर यदि अभिक्रिया के साम्यावस्था-स्थिरांक का मान ज्ञात हो तो किसी प्रारंभिक सांद्रण से उस अभिक्रिया के अभिकारकों एवं उत्पादों के साम्यावस्था में सांद्रण की गणना की जा सकती है। यहाँ तक कि हमें यदि साम्यावस्था स्थिरांक का ताप के साथ परिवर्तन नहीं भी ज्ञात हो, तो नीचे दिए गए ला-शातेलिए सिद्धांत की मदद से परिस्थितियों के परिवर्तन से साम्यावस्था पर पड्नेवाले प्रभाव के बारे में गुणात्मक निष्कर्ष हम प्राप्त कर सकते हैं। इस सिद्धांत के अनुसार किसी निकाय की साम्यावस्था परिस्थितियों को निर्धारित करनेवाले कारकों (सांद्रण. दाब एवं ताप) में से किसी में भी परिवर्तन होने पर साम्यावस्था उस दिशा में अग्रसर होती है। जिससे निकाय पर लगाया हुआ प्रभाव कम अथवा समाप्त हो जाए। यह भी भौतिक एवं रासायनिक साम्यावस्थाओं में लागू होता है। एक साम्य मिश्रण के संघटन को परिवर्तित करने के लिए अनेक कारकों का उपयोग किया जा सकता है-

निम्नलिखित उपखंडों में हम साम्यावस्था पर सांद्रण, दाब, ताप एवं उत्प्रेरक के प्रभाव पर विचार करेंगे—

7.8.1 सांद्रता-परिवर्तन का प्रभाव

सामान्यतया जब किसी अभिकारक/उत्पाद को अभिक्रिया में मिलाने या निकालने से साम्यावस्था परिवर्तित होती है, तो इसका अनुमान 'ला-शातेलिए सिद्धांत' के आधार पर लगाया जा सकता है—

 अभिकारक/उत्पाद को मिलाने से सांद्रता पर पड़े दबाव को कम करने के लिए अभिक्रिया उस दिशा की ओर अग्रसर होती है, तािक मिलाए गए पदार्थ का उपभोग हो सके।

 अभिकारक/उत्पाद के निष्कासन से सांद्रता पर दबाव को कम करने के लिए अभिक्रिया उस दिशा की ओर अग्रसर होती है ताकि अभिक्रिया से निकाले गए पदार्थ की पूर्ति हो सकें अन्य शब्दों में—

"जब किसी अभिक्रिया के अभिकारकों या उत्पादों में से किसी एक का भी सांद्रण साम्यावस्था पर बदल दिया जाता है, तो साम्यावस्था मिश्रण के संघटन में इस प्रकार परिवर्तन होता है कि सांद्रण परिवर्तन के कारण पड़नेवाला प्रभाव कम अथवा शून्य हो जाए।"

आइए, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ अभिक्रिया पर विचार करें। यदि साम्यावस्था पर अभिक्रिया मिश्रण में बाहर से H_2 गैस डाली जाए, तो साम्यवस्था के पुन: स्थापन के लिए अभिक्रिया उस दिशा में अग्रसर होगी जिस में H_2 उपभोगित हो अर्थात् और अधिक H_2 एवं I_2 क्रिया कर HI विरचित करगी तथा अंतत: साम्यावस्था दाईं (अग्रिम) दिशा में विस्थापित होगी (चित्र 7.8)। यह ला–शातेलिए के सिद्धांत के अनुरुप है जिसके अनुसार अधिकारक/उत्पाद के योग की स्थिति में नई साम्यावस्था स्थापित होगी जिसमें अभिकारक/उत्पाद की सांद्रता उसके योग करने के समय से कम तथा मूल मिश्रण से अधिक होनी चाहिए।

चित्र 7.8 $H_2(g)+I_2(g) \Longrightarrow 2HI(g)$ अभिक्रिया में साम्यावस्था पर H_2 के डालने पर अभिकारकों एवं उत्पादों के सांद्रण में परिवर्तन

निम्नलिखित अभिक्रिया भागफल के आधार पर भी हम इसी निष्कर्ष पर पहुँच सकते हैं–

$$Q_c = [HI]^2 / [H_2][I_2]$$

यदि साम्यावस्था पर H_2 मिलाया जाता है, तो $[H_2]$ बढ़ता है और Qू का मान Kू से कम हो जाता है। इसलिए अभिक्रिया दाई (अग्र) दिशा की ओर से अग्रसर होती है। अर्थात् [H¸] तथा [I] घटता है और [HI] तब तक बढ़ता है, जब तक Q = K न हो जाए। अर्थात् नई साम्यावस्था स्थापित न हो जाए। औद्योगिक प्रक्रमों में उत्पाद को अलग करना अधिकतर बहुत महत्त्वपूर्ण होता है। जब साम्यावस्था पर किसी उत्पाद को अलग कर दिया जाता है, तो अभिक्रिया, जो पूर्ण हुए बिना साम्यावस्था पर पहुँच गई है, पुन: अग्रिम दिशा में चलने लगती है। जब उत्पादों में से कोई गैस हो या वाष्पीकृत होने वाला पदार्थ हो, तो उत्पाद का अलग करना आसान होता है। अमोनिया के औद्योगिक निर्माण में अमोनिया का द्रवीकरण कर के, उसे अलग कर लिया जाता है जिससे अभिक्रिया अग्रिम दिशा में होती रहती है। इसी प्रकार CaCO3 से CaO जो भवन उद्योग की एक महत्त्वपूर्ण सामग्री है, के औद्योगिक निर्माण में भट्टी से CO2 को लगातार हटाकर अभिक्रिया पूर्ण कराई जाती है। यह याद रखना चाहिए कि उत्पाद लगातार हटाते रहने से Qू का मान K से हमेशा कम बना रहता है, जिससे अभिक्रिया अग्रिम दिशा में होती रहती है।

सांद्रता का प्रभाव-एक प्रयोग

इसे निम्नलिखित अभिक्रिया द्वारा प्रदर्शित किया जा सकता है—

Fe³ (aq)
$$SCN^-$$
 (aq) \rightleftharpoons [Fe(SCN)]² (aq)
पीला रंगहीन गाढ़ा लाल

$$K_c = \frac{\text{Fe(SCN)}^2 \text{ (aq)}}{\text{Fe}^3 \text{ (aq)} \text{ SCN}^-\text{(aq)}}$$
 (7.25)

एक परखनली में आयरन (III) नाइट्रेट विलयन का 1 mL लेकर उसमें दो बूँद पोटैशियम थायोसाइनेट विलयन डालकर परखनली को हिलाने पर विलयन का रंग लाल हो जाता है, जो $[Fe(SCN)]^{2+}$ बनने के कारण होता है। साम्यावस्था स्थापित होने पर रंग की तीव्रता स्थिर हो जाती है। अभिकारक या उत्पाद को अभिक्रिया की साम्यावस्था पर मिलाने से साम्यावस्था को अग्रिम या प्रतीप दिशाओं में अपनी इच्छानुसार विस्थापित कर सकते हैं। $[Fe^{3+}]/[SCN^-]$ आयनों की कमी करने वाले अभिकारकों को मिलाने पर साम्य विपरीत दिशा में विस्थापित कर सकते हैं। जैसे—ऑक्जेलिक अम्ल $(H_2 C_2 O_4)$, Fe^{3+}

आयन से क्रिया करके स्थायी संकुल आयन $[Fe(C_2O_4)_3]^{3-1}$ बनाते हैं। अत: मुक्त Fe^{3+} आयन की सांद्रता कम हो जाती है। ला–शातेलिए सिद्धांत के अनुसार Fe^{3+} आयन को हटाने से उत्पन्न सांद्रता दबाव को $[Fe(SCN)]^{2+}$ के वियोजन द्वारा Fe^{3+} आयनों की पूर्ति कर मुक्त किया जाता है। चूँिक $[Fe(SCN)]^{2+}$ की सांद्रता घटती है, अत: लाल रंग की तीव्रता कम हो जाती है। जलीय $HgCl_2$ मिलाने पर भी लाल रंग की तीव्रता कम होती है।

क्योंकि Hg^{2+} आयन, SCN^- आयनों के साथ अभिक्रिया कर स्थायी संकुल आयन $[Hg\ (SCN)_4]^{-2}$ बनाते हैं। मुक्त SCN^- आयनों की कमी समीकरण [7.24] में साम्य को बाईं से दाईं ओर SCN^- आयनों की पूर्ति हेतु विस्थापित करती है। पोटैशियम थायोसाइनेट मिलाने पर SCN^- का सांद्रण बढ़ जाता है। अत: इसलिए साम्यावस्था अग्र दिशा में (दाईं तरफ) बढ़ जाती है तथा विलयन के रंग की तीव्रता बढ़ जाती है।

7.8.2 दाब-परिवर्तन का प्रभाव

किसी गैसीय अभिक्रिया में आयतन परिवर्तन द्वारा दाब बदलने से उत्पाद की मात्रा प्रभावित होती है। यह तभी होता है, जब अभिक्रिया को दर्शाने वाले रासायनिक समीकरण में गैसीय अभिकारकों के मोलों की संख्या तथा गैसीय उत्पादों के मोलों की संख्या में भिन्नता होती है। विषमांगी साम्य पर ला-शातेलिए सिद्धांत, के प्रयुक्त करने पर ठोसों एवं द्रवों पर दाब के परिवर्तन की उपेक्षा की जा सकती है। क्योंकि ठोस/द्रव का आयतन (एवं सांद्रता) दाब पर निर्भर नहीं करता है। निम्नलिखित अभिक्रिया में—

CO(g) $3H_2(g) \rightleftharpoons CH_4(g)$ $H_2O(g)$

गैसीय अभिकर्मकों ($CO + 3H_2$) के चार मोल से उत्पादों ($CH_4 + H_2O$) के दो मोल बनते हैं। उपरोक्त अभिक्रिया में साम्यावस्था मिश्रण को एक निश्चित ताप पर पिस्टन लगे एक सिलिंडर में रखकर दाब दोगुना कर उसके मूल आयतन को आधा कर दिया गया। इस प्रकार अभिकारकों एवं उत्पादों का आंशिक दाब एवं इसके फलस्वरूप उनका सांद्रण बदल गया है। अब मिश्रण साम्यावस्था में नहीं रह गया है। ला–शातेलिए सिद्धांत, लागू करके अभिक्रिया जिस दिशा में जाकर पुन: साम्यावस्था स्थापित करती है, उसका पता लगाया जा सकता है। चूँिक दाब दुगुना हो गया है, अत: साम्यावस्था अग्र दिशा (जिसमें मोलों की संख्या एवं दाब कम होता है) में अग्रसर होता है। (हम जानते हैं कि दाब गैस के मोलों की संख्या के समानुपाती होता है)। इसे अभिक्रिया भागफल Q_c द्वारा समझा जा सकता है। ऊपर दी गई मेथेन बनाने की अभिक्रिया में

[CO], $[H_2]$, $[CH_4]$ एवं $[H_2O]$ क्रियाभिकारकों की साम्यावस्था के सांद्रण को प्रदर्शित करते हैं। जब अभिक्रिया मिश्रण का आयतन आधा कर दिया जाता है, तो उनके आंशिक दाब एवं सांद्रण दुगुने हो जाते हैं। अब हम अभिक्रिया भागफल का मान साम्यावस्था का दुगुना मान रखकर प्राप्त कर सकते हैं।

$$Q_{c} = \frac{(2 \text{ CH}_{4} (2 \text{ H}_{2} \text{O})}{(2 \text{ CO})(2 \text{ H}_{2})^{3}} = \frac{4}{16} \frac{\text{CH}_{4} \text{ H}_{2} \text{O}}{\text{CO} \text{ H}_{2}} = \frac{K_{c}}{4}$$

चूँकि $Q_c < K_c$ है, अतः अभिक्रिया अग्र दिशा में अग्रसर होती है। C(s) $CO_2(g) \rightleftharpoons 2CO(g)$ अभिक्रिया में जब दाब बढ़ाया जाता है तो अभिक्रिया विपरीत (या उत्क्रम) दिशा में होती है, क्योंकि अग्र दिशा में मोलों की संख्या बढ़ जाती है।

7.8.3 अक्रिय गैस के योग का प्रभाव

यदि आयतन स्थिर रखते हैं और एक अक्रिय गैस (जैसे— ऑर्गन) जो अभिक्रिया में भाग नहीं लेती है, को मिलाते हैं तो साम्य अपरिवर्तित रहता है। क्योंकि स्थिर आयतन पर अक्रिय गैस मिलाने पर अभिक्रिया में भाग लेने वाले पदार्थ की मोलर सांद्रताओं अथवा दाबों में कोई परिवर्तन नहीं होता है। अभिक्रिया भागफल में परिवर्तन केवल तभी होता है जब मिलाई गई गैस अभिक्रिया में भाग लेने वाला अभिकारक या उत्पाद हो।

7.8.4 ताप-परिवर्तन का प्रभाव

जब कभी दाब या आयतन में परिवर्तन के कारण साम्य सांद्रता विक्षुब्ध होती है, तब साम्य मिश्रण का संघटन परिवर्तित होता है, क्योंकि अभिक्रिया भागफल (Q) साम्यावस्था स्थिरांक (K) के बराबर नहीं रह पाता, लेकिन जब तापक्रम में परिवर्तन होता है, साम्यावस्था स्थिरांक (K) का मान परिवर्तित हो जाता है। सामान्यत: तापक्रम पर स्थिरांक की निर्भरता अभिक्रिया के \triangle H के चिह्न पर निर्भर करती है।

- ऊष्माक्षेपी अभिक्रिया (△H ऋणात्मक) का साम्यावस्था स्थिरांक तापक्रम के बढने पर घटता है।
- ऊष्माशेषी अभिक्रिया (△H धनात्मक) का साम्यावस्था स्थिरांक तापक्रम के बढ़ने पर बढ़ता है।

तापक्रम में परिवर्तन साम्यावस्था स्थिरांक एवं अभिक्रिया के वेग में परिवर्तन लाता है।

निम्नलिखित अभिक्रिया के अनुसार अमोनिया का उत्पादन $N_2(g) = 2NH_3(g)$;

 $\Delta H = -92.38 \text{ kJ mol}^{-1}$

एक उष्माक्षेपी प्रक्रम है। 'ला–शातालिए सिद्धांत' के अनुसार, तापक्रम बढ़ने पर साम्यावस्था बाई दिशा में स्थानान्तरित

हो जाती है एवं अमोनिया की साम्यावस्था सांद्रता कम हो जाती है। अन्य शब्दों में, कम तापक्रम अमोनिया की उच्च लिब्ध के लिए उपयुक्त है, लेकिन प्रायोगिक रूप से अत्यधिक कम ताप पर अभिक्रिया की गित धीमी हो जाती है, अत: उत्प्रेरक प्रयोग में लिया जाता है।

ताप का प्रभाव - एक प्रयोग

 NO_2 गैस (भूरी) का N_2O_4 गैस में द्वितयन (Dimerization) की अभिक्रिया के द्वारा साम्यावस्था पर ताप का प्रभाव प्रदर्शित किया जा सकता है।

2NO₂(g)
$$\rightleftharpoons$$
 N₂O₄(g); Δ H = -57.2 kJ mol⁻¹ (भूरा) (रंगहीन)

सांद्र HNO, में ताँबे की छीलन डालकर हम NO, गैस तैयार करते हैं तथा इसे एक निकासनली की सहायता से 5mL वाली दो परखनिलयों में इकट्ठा करते हैं। दोनों परखनिलयों में रंग की तीव्रता समान होनी चाहिए। अब एरल्डाइट (araldit) की सहायता से परखनली के स्टॉपर (stopper) को बन्द कर देते हैं। 250mL के तीन बीकर इनपर क्रमश: 1, 2 एवं 3 अंकित करते हैं। बीकर नं. 1 को हिमकारी मिश्रण (Freezing mixture) से बीकर नं. 2 को कमरे के तापवाले जल से एवं बीकर नं. 3 को गरम (363K) जल से भर दीजिए। जब दोनों परखनलियों को बीकर नं. 2 में रखा जाता है, तब गैस के भूरे रंग की तीव्रता एक समान दिखाई देती है। कमरे के ताप वाले पानी में 8 - 10 मिनट तक परखनलियों को रखने के बाद उसे निकालकर एक परखनली को बीकर नं. 1 के जल में तथा दूसरी परखनली को बीकर नं. 3 के जल में रखिए। अभिक्रिया की दिशा पर ताप का प्रभाव इस प्रयोग से चित्रित किया जा सकता है। कम ताप पर बीकर नं. 1 में ऊष्माशोषी अग्र अभिक्रिया द्वारा N2O4 बनने को तरजीह मिलती है तथा NO2 की कमी होने के कारण भूरे रंग की तीव्रता घटती है, जबकि बीकर नं. 3 में उच्च ताप पर उत्क्रम अभिक्रिया को तरजीह मिलती है, जिससे NO, बनता है। परिणामत: भूरे रंग की तीव्रता बढ़ जाती है।

चित्र 7.9 : अभिक्रिया $2NO_2(g) \rightleftharpoons N_2O_4(g)$ की साम्यावस्था पर ताप का प्रभाव

साम्यावस्था पर ताप का प्रभाव एक दूसरी ऊष्माशोषी अभिक्रिया से भी समझा जा सकता है।

$$Co(H_2O)_6^{2+}(aq) + 4Cl^{-1}(aq) \rightleftharpoons CoCl_4^{2-}(aq) + 6H_2O(1)$$

गुलाबी रंगहीन नीला

कमरे के ताप पर $[\mathrm{CoCl_4}]^{2-}$ के कारण साम्यावस्था मिश्रण का रंग नीला हो जाता है। जब इसे हिमकारी मिश्रण में ठंडा किया जाता जाता है, तो मिश्रण का रंग $[\mathrm{Co(H_2O)}_6]^{3+}$ के कारण गुलाबी हो जाता है।

7.8.5 उत्प्रेरक का प्रभाव

उत्प्रेरक क्रियाकारकों के उत्पादों में परिवर्तन हेतु कम ऊर्जा वाला नया मार्ग उपलब्ध करवाकर अभिक्रिया के वेग को बढ़ा देता है। यह एक ही संक्रमण-अवस्था में गुजरने वाली अग्र एवं प्रतीप अभिक्रियाओं के वेग को बढ़ा देता है, जबिक साम्यावस्था को परिवर्तित नहीं करता। उत्प्रेरक अग्र एवं प्रतीप अभिक्रिया के लिए संक्रियण ऊर्जा को समान मात्रा में कम कर देता है। उत्प्रेरक अग्र एवं प्रतीप अभिक्रिया मिश्रण पर साम्यावस्था संघटन को परिवर्तित नहीं करता है। यह संतुलित समीकरण में या साम्यावस्था स्थिरांक समीकरण में प्रकट नहीं होता है।

NH₃ के नाइट्रोजन एवं हाइड्रोजन से निर्माण पर विचार करें, जो एक अत्यंत ऊष्माक्षेपी अभिक्रिया है इिसमें उत्पाद के कुल मोलों की संख्या अभिकारकों के मोलों से कम होती है। साम्यावस्था स्थिरांक तापक्रम को बढ़ाने से घटता है। कम ताप पर अभिक्रिया वेग घटता है एवं साम्यावस्था पर पहुँचने में अधि क समय लगता है, जबिक उच्च ताप पर क्रिया की दर संतोषजनक होती है, परंतु लब्धि कम होती है।

जर्मन रसायनज्ञ फ्रीस हाबर ने दर्शाया है कि लौह उत्प्रेरक की उपस्थिति में अभिक्रिया संतोषजनक दर से होती है, जबिक NH_3 की साम्यावस्था सांद्रता संतोषजनक होती है। चूँिक उत्पाद के मोलो की संख्या अभिकारकों के मोलों की संख्या से कम है। अतः NH_3 का उत्पादन दाब बढ़ाकर अधिक किया जा सकता है।

NH₃ के संश्लेषण हेतु ताप एवं दाब की अनुकूलतम परिस्थितियाँ 500°C एवं 200 वायुमंडलीय दाब होती है।

इसी प्रकार, संपर्क विधि द्वारा सल्फ्यूरिक अम्ल के निर्माण में

 $2SO_2(g)$ $O_2(g) \rightleftharpoons 2SO_3(g); K_c$ 1.7 10^{26} साम्यावस्था स्थिरांक के परिणाम के अनुसार अभिक्रिया को लगभग पूर्ण हो जाना चाहिए, किंतु SO_2 का SO_3 में

ऑक्सीकरण बहुत धीमी दर से होता है। प्लेटिनम अथवा डाइवैनेडियम पेन्टॉक्साईड (V_2O_5) उत्प्रेरक की उपस्थिति में अभिक्रिया वेग काफी बढ़ जाता है।

नोट: यदि किसी अभिक्रिया के साम्यावस्था स्थिरांक का मान काफी कम होता हो, तो उसमें उत्प्रेरक बहुत कम सहायता कर पाता है।

7.9 विलयन में आयनिक साम्यावस्था

साम्य की दिशा पर सांद्रता परिवर्तन के प्रभाव वाले प्रसंग में आप निम्नलिखित आयनिक साम्य के संपर्क में आए हैं—

 $Fe^{3+}(aq) = SCN^{-}(aq) \rightleftharpoons [Fe(SCN)]^{2} (aq)$

ऐसे अनेक साम्य हैं, जिनमें केवल आयन सिम्मिलित होते हैं यहाँ हम उन साम्यों का अध्ययन करेंगे। यह सर्वविदित है कि चीनी के जलीय विलयन में विद्युत् धारा प्रवाहित नहीं होती है, जबिक जल में साधारण नमक (सोडियम क्लोराइड) मिलाने पर इसमें विद्युत् धारा का प्रवाह होता है तथा लवण की सांद्रता बढ़ने के साथ विलयन की चालकता बढ़ती है। माइकल फैराडे ने पदार्थों को उनकी विद्युत् चालकता क्षमता के आधार पर दो वर्गों में वर्गीकृत किया— एक वर्ग के पदार्थ जलीय विलयन में विद्युत् धारा प्रवाहित करते हैं, ये 'विद्युत् अपघट्य' कहलाते हैं, जबिक दूसरे जो ऐसा नहीं करते, वैद्युत अन अपघट्य कहलाते हैं। फैराडे ने विद्युत् अपघट्यों को पुनः प्रबल एवं दुर्बल वैद्युत अपघट्यों में वर्गीकृत किया। प्रबल वैद्युत अपघट्य जल में विलेय होकर लगभग पूर्ण रूप से आयनित होते हैं। उदाहरणार्थ-सोडियम क्लोराइड के जलीय विलयन में मुख्य

रूप से सोडियम आयन एवं क्लोराइड आयन पाए जाते हैं, जबिक ऐसीटिक अम्ल में एसीटेट आयन एवं हाइड्रोनियम आयन होते हैं। इसका कारण यह है िक सोडियम क्लोराइड का लगभग 100% आयनन होता है, जबिक ऐसीटिक अम्ल, जो दुर्बल, विद्युत्–अपघट्य है, 5% ही आयनित होता है। यह ध्यान रहे िक दुर्बल विद्युत् अपघट्यों में आयनों तथा अनायनित अणुओं के मध्य साम्य स्थापित होता है। इस प्रकार का साम्य, जिसमें जलीय विलयन में आयन पाए जाते हैं, आयनिक साम्य कहलाता है। अम्ल, क्षारक तथा लवण वैद्युत् अपघट्यों के वर्ग में आते हैं। ये प्रबल अथवा दुर्बल वैद्युत अपघट्यों की तरह व्यवहार करते हैं।

7.10 अम्ल, क्षारक एवं लवण

अम्ल, क्षारक एवं लवण प्रकृति में व्यापक रूप से पाए जाते हैं। जठर रस, जिसमें हाइड्रोक्लोरिक अम्ल पाया जाता है, हमारे आमाशय द्वारा प्रचुर मात्रा (1.2-1.5 L/दिन) में स्नावित होता है। यह पाचन प्रक्रिया के लिए अति आवश्यक है। सिरके का मुख्य अवयव एसीटिक अम्ल है। नीबू एवं संतरे के रस में सिट्रिक अम्ल एवं एस्कॉर्बिक अम्ल तथा इमली में टार्टिरक अम्ल पाया जाता है। अधिकांश अम्ल स्वाद में खट्टे होते हैं, लैटिन शब्द Acidus से बना 'एसिड' शब्द इनके लिए प्रयुक्त होता है, जिसका अर्थ है खट्टा। अम्ल नीले लिटमस को लाल कर देते हैं तथा कुछ धातुओं से अभिक्रिया करके डाइहाइड्रोजन उत्पन्न करते हैं। इसी प्रकार क्षारक लाल लिटमस को नीला करते हैं तथा स्वाद में कड़वे और स्पर्श में साबुनी होते हैं। क्षारक का एक सामान्य उदाहरण कपडे धोने का सोडा है, जो

फैराडे का जन्म लंदन के पास एक सीमित साधन वाले परिवार में हुआ था। 14 वर्ष की उम्र में वह एक दयालु जिल्दसाज (Book binder) के यहाँ काम सीखने लगे। उसने उन्हें उन किताबों को पढ़ने की छूट दे दी थी। जिनकी जिल्द वह बाँधता था। भाग्यवश डेवी वह (Davy) का प्रयोगशाला सहायक बन गए तथा सन् 1813–1814 में फैराडे उनके साथ महाद्वीप की यात्रा पर चले गए। उस यात्रा के दौरान वे उस समय के कई अग्रणी वैज्ञानिकों के संपर्क में आए और उनके अनुभवों से बहुत सीखा। सन् 1825 में डेवी के बाद वे रॉयल संस्थान प्रयोगशालाओं (Royal Institute Laboratories) के निदेशक बनें तथा सन् 1833 में वे रसायन शास्त्र के प्रथम फुलेरियन आचार्य (First Fullerian Professor) बने। फैराडे का पहला महत्त्वपूर्ण कार्य-विश्लेषण रसायन में था। सन् 1821 के बाद उनका अधिकतर कार्य विद्युत् एवं चुंबकत्व तथा अन्य वैद्युत

माईकल फैराडे (1791–1867)

चुम्बकत्व सिद्धांतों से संबंधित थे। उन्हों के विचारों के आधार पर 'आधुनिक क्षेत्र सिद्धांत' का प्रतिपादन हुआ। सन् 1834 में उन्होंने विद्युत् अपघटन से संबंधित दो नियमों की खोज की। फैराडे एक बहुत ही अच्छे एवं दयालु प्रकृति के व्यक्ति थे उन्होंने सभी सम्मानों को लेने से इंकार कर दिया। वे सभी वैज्ञानिक विवादों से दूर रहे। वे हमेशा अकेले काम करना पसंद करते थे। उन्होंने कभी भी सहायक नहीं रखा। उन्होंने विज्ञान को भिन्न-भिन्न तरीकों से प्रसारित (Disseminated) किया, जिसमें उनके द्वारा रॉयल संस्थान में प्रारंभ की गई प्रत्येक शुक्रवार के शाम की भाषणमाला सिम्मिलत है। 'मोमबत्ती के रासायनिक इतिहास' विषय पर अपने क्रिसमस व्याख्यान के लिए वे प्रख्यात थे। उन्होंने लगभग 450 वैज्ञानिक शोधपत्र प्रकाशित किए।

धुलाई के लिए प्रयुक्त होता है। जब अम्ल एवं क्षारक को सही अनुपात में मिलाते हैं, तो वे आपस में अभिक्रिया कर के लवण देते हैं। लवणों के कछ सामान्य उदाहरण सोडियम क्लोराइड. बेरियम सल्फेट, सोडियम नाइट्रेट आदि है। सोडियम क्लोराइड (साधारण नमक) हमारे भोजन का एक मुख्य घटक है, जो हाइडोक्लोरिक अम्ल एवं सोडियम हाइडॉक्साइड की क्रिया से प्राप्त होता है। यह ठोस अवस्था में पाया जाता है, जिसमें धनावेशित सोडियम तथा ऋणावेशित क्लोराइड आयन आपस में विपरीत आवेशित स्पीशीज़ के मध्य स्थिर वैद्युत आकर्षण के कारण गुच्छे बना लेते हैं। दो आवेशों के मध्य स्थिर वैद्युत बल माध्यम के परावैद्युतांक के व्युत्क्रमानुपाती होता है। जल सार्वत्रिक विलायक है, जिसका परावैद्युतांक 80 है। इस प्रकार जब सोडियम क्लोराइड को जल में घोला जाता है, तब आयनों के मध्य स्थित वैद्युत आकर्षण बल 80 के गुणक में दुर्बल हो जाते है, जिससे आयन विलयन में मुक्त रूप से गमन करते हैं। ये जल-अणुओं के साथ जलयोजित होकर पृथक हो जाते हैं।

चित्र 7.10 जल में सोडियम क्लोराइड का वियोजन। Na^{\dagger} तथा $C\Gamma$ आयन धुवीय जल–अणु के साथ जलयोजित होकर स्थायी हो जाते हैं।

जल में हाइड्रोक्लोरिक अम्ल के आयनन की तुलना ऐसीटिक अम्ल के आयनन से करने पर हमें ज्ञात होता है कि यद्यपि दोनों ही ध्रुवी अणु हैं, फिर भी हाइड्रोक्लोरिक अम्ल अपने अवयवी आयनों में पूर्ण रूप से आयनित होता है, परंतु ऐसीटिक अम्ल आंशिक रूप से (<5%) ही आयनित होता है। आयनन की मात्रा इनके मध्य उपस्थित बंधों की सामर्थ्य तथा आयनों के जलयोजन की मात्रा पर निर्भर करती है। पूर्व में वियोजन तथा आयनन पद भिन्न-भिन्न अर्थों में प्रयुक्त किए जाते रहे हैं। विलेय के आयन, जो उसकी ठोस अवस्था में भी विद्यमान रहते हैं; के जल में पृथक्करण की प्रक्रिया को 'वियोजन' कहते हैं (उदाहरणार्थ-सोडियम क्लोराइड). जबिक

आयनन वह प्रक्रिया है, जिसमें उदासीन अणु विलयन में टूटकर आवेशित आयन देते हैं। यहाँ हम इन दोनों पदों को अंतर्बदल कर प्रयुक्त करेंगे।

7.10.1 अम्ल तथा क्षारक की आरेनियस धारणा-

आरेनियस के सिद्धांतानुसार अम्ल वे पदार्थ हैं, जो जल में अपघटित होकर हाइड्रोजन आयन $H_{(aq)}^+$ देते हैं तथा क्षारक वे पदार्थ हैं, जो हाइड्रॉक्सिल आयन $OH_{(aq)}^-$ देते हैं। इस प्रकार जल में एक अम्ल HX का आयनन निम्नलिखित समीकरणों में से किसी एक के द्वारा प्रदर्शित किया जा सकता है–

$$HX$$
 (aq) \rightarrow H^+ (aq) + X^- (aq)
या HX (aq) + $H_2O(L)$ \rightarrow H_3O^+ (aq) + X^- (aq)

एक मुक्त प्रोट्रॉन, H^+ अत्यधिक क्रियाशील होता है। स्वतंत्र रूप से जलीय विलयन में इसका अस्तित्व नहीं है। यह विलायक जल अणु के ऑक्सीजन से बंधित होकर त्रिकोणीय पिरामिडी हाइड्रोनियम आयन, H_3O^+ देता है (बॉक्स देखें)। हम H^+ (aq) तथा H_3O^+ (aq) दोनों को ही जलयोजित हाइड्रोजन आयन, जो जल अणुओं से घिरा हुआ एक प्रोटॉन है, के रूप में प्रयोग में लाते हैं। इस अध्याय में इसे साधारणत: H^+ (aq) या H_3O^+ (aq) को अंतर्बदल कर प्रयोग करेंगे। इसका अर्थ जलयोजित प्रोटॉन है।

इसी प्रकार MOH सदृश्य किसी क्षारक का अणु जलीय

हाइड्रोनियम एवं हाइड्रॉक्सिल आयन

हाइड्रोजन आयन, जो स्वयं एक प्रोटॉन है, बहुत छोटा (व्यास = $10^{-13} {
m cm}$) होने एवं जल अणु पर गहन विद्युत् क्षेत्र होने के कारण स्वयं को जल-अणु पर उपस्थित दो एकाकी युग्मों में किसी एक के साथ जुड़कर H_3O^+ देता है। इस स्पीशीज को कई यौगिकों (उदाहरणार्थ— $H_3O^+Cl^-$) में ठोस अवस्था में पहचाना गया है। जलीय विलयन में हाइड्रोनियम आयन फिर से जलयोजित होकर $H_5O_2^+$, $H_7O_3^+$ एवं $H_9O_4^+$ सदृश स्पीशीज बनाती है। इसी प्रकार हाइड्रॉक्सिल आयन जलयोजित होकर कई ऋणात्मक स्पीशीज $H_3O_2^-$, $H_5O_3^-$ तथा $H_2O_4^-$ आदि बनाता है।

स्वांटे आरेनियस (1859-1927)

आरेनियस का जन्म स्वीडन में उपसाला के निकट हुआ था। सन् 1884 में उन्होंने उपसाला विश्वविद्यालय में विद्युत् अपघट्य विलयन की चालकताओं पर शोध ग्रंथ (Thesis) प्रस्तुत किया। अगले 5 वर्षों तक उन्होंने बहुत यात्राएँ कीं तथा यूरोप के शोध केंद्रों पर गए। सन् 1895 में वे नव स्थापित स्टॉकहोम विश्वविद्यालय में भौतिकी के आचार्य पद पर नियुक्त किए गए सन् 1897 से 1902 तक वे इसके रेक्टर भी रहे। सन् 1905 से अपनी मृत्यु तक वे स्टॉकहोम के नोबेल संस्थान में भौतिकी रसायन के निदेशक पद पर काम करते रहे। वे कई वर्षों तक विद्युत्–अपघट्य विलयनों पर काम करते रहे। 1899 में उन्होंने एक समीकरण, जो आज सामान्यत: आरेनियस समीकरण, कहलाता है, के आधार पर अभिक्रिया–दर की ताप पर निर्भरता का वर्णन किया।

उन्होंने कई क्षेत्रों में काम किया। प्रतिरक्षा रसायन (Immuno Chemistry), ब्रह्मांड विज्ञान (Cosmology), जीवन का स्रोत (Origin In Life) तथा हिम-युग के कारण (Cause Of Ice Age) संबंधी क्षेत्रों में उनका महत्त्वपूर्ण योगदान रहा। वे ऐसे प्रथम व्यक्ति थे, जिन्होंने 'ग्रीन हाउस प्रभाव' को यह नाम देकर इसकी विवेचना की। सन् 1903 में विद्युत्-अपघट्यों के विघटन के सिद्धांत एवं रसायन विज्ञान के विकास में इसकी उपयोगिता पर उन्हें रसायन विज्ञान का नोबेल पुरस्कार मिला।

विलयन में निम्नलिखित समीकरण के अनुसार आयनित होता है—

$$MOH(aq) \rightarrow M^{+}(aq) + OH^{-}(aq)$$

हाइड्रोक्सिल आयन भी जलीय विलयन में जलयोजित रूप से रहता है (बॉक्स देखें)। परंतु आरेनियस की अम्ल-क्षारक धारणा की अनेक सीमाएँ हैं। यह केवल पदार्थों के जलीय विलयन पर ही लागू होती है। यह अमोनिया जैसे पदार्थों के क्षारीय गुणों की स्पष्ट नहीं कर पाती है, जिनमें हाइड्रॉक्सिल समृह नहीं है।

7.10.2 ब्रन्स्टेद लोरी अम्ल एवं क्षारक

डेनिश रसायनज्ञ जोहान्स ब्रन्स्टेद (1874–1936) तथा अंग्रेज रसायनज्ञ थॉमस एम. लोरी (1874–1936) ने अम्लों एवं क्षारकों की एक अधिक व्यापक परिभाषा दी। ब्रान्स्टेद-लोरी सिद्धांत के अनुसार वे पदार्थ, जो विलयन में प्रोटॉन H⁺ देने में सक्षम हैं, अम्ल हैं तथा वे पदार्थ, जो विलयन से प्रोटॉन H⁺ ग्रहण करने में सक्षम हैं, क्षारक हैं।

संक्षेप में अम्ल प्रोटॉनदाता तथा क्षारक प्रोटॉन ग्राही हैं।

यहाँ हम NH_3 के H_2O में विलयन के उदाहरण पर विचार करें, जिसे निम्निलिखित समीकरण में दर्शाया गया है,

प्रोटॉन लेता है

$$NH_3(aq) + H_2O(l) \iff NH_4^+(aq) + OH^-(aq)$$

क्षारक अम्ल संयुग्मित अम्ल संयुग्मित क्षारक

प्रोटॉन मुक्त

करता है।

हाइड्रॉक्सिल आयनों की उपस्थित के कारण क्षारीय विलयन बनता है। उपरोक्त अभिक्रिया में जल प्रोटॉन दाता है तथा अमोनिया प्रोटॉनग्राही है। इसिलए इन्हें क्रमशः ब्रन्स्टेद अम्ल तथा क्षारक कहते हैं। उत्क्रम अभिक्रिया में प्रोटॉन NH_4^+ से OH^- को स्थानांतरित होता है। यहाँ NH_4^+ ब्रन्स्टेद अम्ल एवं OH^- ब्रन्स्टेद क्षारक का कार्य करते हैं। H_2O एवं OH^- अथवा NH_4^+ एवं NH_3 सदृश अम्ल और क्षार के युग्म, जो क्रमशः एक प्रोटॉन की उपस्थिति या अनुपस्थिति के कारण दूसरे भिन्न हैं, संयुग्मी अम्ल-क्षारक युग्म कहलाते हैं। इस प्रकार H_2O का संयुग्मी क्षारक OH^- है तथा क्षारक NH_3 का संयुग्मी क्षारक OH^+ है। यदि ब्रन्स्टेद अम्ल प्रबल है तो इसका संयुग्मी क्षारक दुर्बल होगा तथा यदि ब्रन्स्टेद अम्ल दुर्बल है, तो इसका संयुग्मी क्षारक प्रबल होगा। यहाँ ध्यान देने योग्य बात यह है कि संयुग्मी अम्ल में एक अतिरिक्त प्रोटॉन होता है तथा प्रत्येक संयुग्मी क्षार में एक प्रोट्रॉन कम होता है।

जल में हाइड्रोक्लोरिक अम्ल के अन्य उदाहरण पर विचार करें। HCl(aq), H_2O अणु को प्रोटॉन देकर अम्ल की भाँति एवं H_2O क्षारक की भाँति व्यवहार करता है।

उपरोक्त समीकरण से देखा जा सकता है कि जल भी एक क्षारक की भाँति व्यवहार करता है, क्योंकि यह प्रोटॉन ग्रहण करता है। जब जल HCl से प्रोटॉन ग्रहण करता है, तो H_3O^+ स्पीशीज का निर्माण होता है। अतः Cl- आयन HCl अम्ल का संयुग्मी क्षारक है एवं HCl, Cl- क्षारक का संयुग्मी अम्ल है। इसी प्रकार, H_2O भी H_3O^+ अम्ल का संयुग्मी क्षारक एवं H_3O^+ , H_3O क्षारक का संयुग्मी अम्ल है।

यह रोचक तथ्य है कि जल एक अम्ल तथा एक क्षारक की तरह दोहरी भूमिका दर्शाता है। HCl के साथ अभिक्रिया में जल क्षार की तरह व्यवहार करता है, जबिक अमोनिया के साथ प्रोटॉन त्यागकर एक अम्ल की भाँति व्यवहार करता है।

उदाहरण 7.12

निम्नलिखित ब्रन्स्टेद अम्लों के लिए संयुग्मी क्षारक क्या है?

HF, H₂SO₄ तथा HCO₃

हल

प्रत्येक के संयुग्मी क्षारकों में एक प्रोटॉन कम होना चाहिए। अत: संगत संयुग्मी क्षारक क्रमश: F^- , HSO_4^- तथा HCO_3^- हैं।

उदाहरण 7.13

ब्रन्स्टेद क्षारकों NH_2^- , NH_3 तथा HCOO^- के लिए संगत ब्रन्स्टेद अम्ल लिखिए।

हल

संयुग्मी अम्ल के पास क्षारक की अपेक्षा एक प्रोटॉन अधिक होना चाहिए। अत: संगत संयुग्मी अम्ल क्रमश: NH₃, NH₄ तथा HCOOH हैं।

उदाहरण 14

 ${
m H_2O,\ HCO_3^-,\ HSO_4^-}$ तथा ${
m NH_3}$ ब्रन्स्टेदअम्ल तथा ब्रन्स्टेद क्षारक-दोनों प्रकार से काम कर सकते हैं। प्रत्येक के लिए संगत संयुग्मी अम्ल तथा क्षारक लिखिए।

हल

उत्तर निम्नलिखित सारणी में दिया गया है-

स्पीशीज	संयुग्मी अम्ल	संयुग्मी क्षारक
H_2O	H_3O^+	OH ⁻
HCO_3^-	H_2CO_3	CO_3^{2-}
${\rm HSO}_4^-$	H_2SO_4	SO_4^{2-}
NH_3	NH_4^+	NH_2^-

7.10.3 लूइस अम्ल एवं क्षारक

जी.एन. लूइस ने सन् 1923 में अम्ल को 'इलेक्ट्रॉनयुग्मग्राही' तथा क्षारक को 'इलेक्ट्रॉन युग्मदाता' के रूप में पारिभाषित किया। जहाँ तक क्षारकों का प्रश्न है, ब्रन्स्टेद-लोरी क्षारक तथा लूइस क्षारक में कोई विशेष अंतर नहीं है, क्योंकि दोनों ही सिद्धांतों में क्षारक एकाकी इलेक्ट्रॉन युग्म देता है, परंतु लूइस अम्ल सिद्धांत के अनुसार, बहुत से ऐसे पदार्थ भी अम्ल हैं, जिनमें प्रोटॉन नहीं है। कम इलेक्ट्रॉन वाले BF_3 की NH_3 से अभिक्रिया इसका एक विशिष्ट उदाहरण है। इस प्रकार प्रोटॉनरहित एवं इलेक्ट्रॉन की कमी वाला BF_3 यौगिक NH_3 के साथ क्रिया कर उसका एकाकी इलेक्ट्रॉन युग्म लेकर अम्ल का कार्य करता है। इस अभिक्रिया को निम्नलिखित समीकरण द्वारा प्रदर्शित किया जा सकता है—

$$BF_3 + :NH_3 \rightarrow BF_3:NH_3$$

इलेक्ट्रॉन क्षुद्र स्पीशीज, जैसे - AlCl $_3$, Co $^{3+}$, Mg $^{2+}$ आदि लूइस अम्ल की भाँति व्यवहार करती हैं, जबिक H_2O , NH_3 , OH^- स्पीशीज जो एक इलेक्ट्रॉन युग्म दान कर सकती है, लूइस क्षारक की तरह व्यवहार करती है।

उदाहरण 7.15

निम्नलिखित को लूइस अम्लों तथा क्षारकों में वर्गीकृत कीजिए और बताइए कि ये ऐसा व्यवहार क्यों दर्शाते हैं?

- (क) HO ¯ (ख) F ¯ (ग) H ¯ (घ) BCl₃ **हल**
- (क) चूँिक हाइड्रॉक्सिल आयन एक लूइस क्षारक है, अत: यह इलेक्ट्रॉन युग्म दान कर सकता है।
- (ख) चूँिक फ्लुओराइड आयन लूइस क्षारक है, अत: यह चारों इलेक्ट्रॉन युग्म में से किसी एक का दान कर सकता है।
- (ग) चूँिक प्रोटॉन लूइस अम्ल है, अत: हाइड्रॉक्सिल आयन तथा फ्लुओराइड आयनों, जैसे– क्षारकों से इलेक्ट्रॉन युग्म ले सकता है।
- (घ) चूँिक बोरोन ट्राइक्लोराइड BCl3 लूइस अम्ल है, अत: अमोनिया अथवा अमीन अणुओं आदि क्षारकों से इलेक्ट्रॉन युग्म ले सकता है।

7.11 अम्लों एवं क्षारकों का आयनन

अधिकतर रासायनिक एवं जैविक अभिक्रियाएं जलीय माध्यम में होती हैं। इन्हें समझने के लिए आरेनियस की परिभाषा के

अनुसार अम्लों एवं क्षारकां के आयनन की विवेचना उपयोगी होगी। परक्लोरिक अम्ल (HClO₄) हाइड्रोक्लोरिक अम्ल (HCl), हाइड्रोब्रोमिक अम्ल (HBr) हाइड्रोआयोडिक अम्ल (HI), नाइट्रिक अम्ल (HNO3) एवं सल्फ्यूरिक अम्ल (H3SO1) आदि अम्ल 'प्रबल' कहलाते हैं, क्योंकि यह जलीय माध्यम में संगत आयनों में लगभग पूर्णत: वियोजित होकर प्रोटॉनदाता के समान कार्य करते हैं। इसी प्रकार लीथियम हाइड्रॉक्साइड (LiOH), सोडियम हाइड्रॉक्साइड (NaOH), पोटैशियम हाइड्रॉक्साइड (KOH), सीजियम हाइड्रॉक्साइड (CsOH) एवं बेरियम हाइड्रॉक्साइड Ba (OH),, जलीय माध्यम में संगत आयनों में लगभग पूर्णत: वियोजित होकर H₂O तथा OH- आयन देते हैं। आरेनियस सिद्धांत के अनुसार, ये प्रबल क्षारक हैं, क्योंकि ये माध्यम में पूर्णत: वियोजित होकर क्रमश: OH- आयन प्रदान करते हैं। विकल्पत: अम्ल या क्षार का सामर्थ्य अम्लों एवं क्षारकों के ब्रन्स्टेदलौरी सिद्धांत के अनुसार मापा जा सकता है। इसके अनुसार, 'प्रबल अम्ल' से तात्पर्य 'एक उत्तम प्रोटॉनदाता' एवं प्रबल क्षारक से तात्पर्य 'उत्तम प्रोटॉनग्राही' है।

दुर्बल अम्ल HA के अम्ल-क्षार वियोजन साम्य पर विचार करें-

HA(aq) $H_2O(l) \rightleftharpoons H_3O$ (aq) A (eq) अम्ल क्षारक संयुग्मी अम्ल संयुग्मी क्षारक

खंड 7.10.2 में हमने देखा कि अम्ल (या क्षारक) वियोजन साम्य एक प्रोटॉन के अग्र एवं प्रतीप दिशा में स्थानांतरण से युक्त एक गतिक अवस्था है। अब यह प्रश्न उठता है कि यदि साम्य गतिक है, तो वह समय के साथ किस दिशा में अग्रसर होगा? इसे प्रभावित करनेवाला प्रेरक बल कौन सा है? इन प्रश्नों के उत्तर देने के लिए हम वियोजन साम्य में सम्मिलित दो अम्लों (या क्षारकों) के सामर्थ्य की तुलना के संदर्भ में विचार करेंगे। उपरोक्त वर्णित अम्ल-वियोजन साम्य में उपस्थित दो अम्लों HA एवं $H_{a}O^{+}$ पर विचार करें। हमें यह देखना होगा कि इनमें से कौन-सा प्रबल प्रोटॉनदाता है। प्रोटॉन देने की जिसकी भी प्रवृत्ति अन्य से अधिक होगी, वह 'प्रबल अम्ल' कहलाएगा एवं साम्य दुर्बल अम्ल की दिशा में अग्रसर होगा। जैसे, यदि HA, H₂O+ से प्रबल अम्ल है, तो HA प्रोटॉन दान करेगा, H₃O+ नहीं। विलयन में मुख्य रूप से A- एवं H₂O+ आयन होंगे। साम्य दुर्बल अम्ल एवं क्षार की दिशा में अग्रसर होता है, क्योंकि प्रबल अम्ल प्रबल क्षार को प्रोटॉन देते हैं।

इसके अनुसार, प्रबल अम्ल जल में पूर्णत: आयनित होता है। परिणामी क्षारक अत्यंत दुर्बल होगा, अर्थात् प्रबल अम्लों के संयुग्मी क्षारक अत्यंत दुर्बल होते हैं। प्रबल अम्ल जैसे परक्लोरिक अम्ल HClO4, हाइड्रोक्लोरिक अम्ल HCl, हाइड्रोब्रामिक अम्ल HBr, हाइड्रोआयोडिक अम्ल HI, नाइट्रिक अम्ल HNO3, सल्फ्यूरिक अम्ल H₉SO₄ आदि प्रबल अम्लों के संयुग्मी क्षारक ClO₄, Cl-, Br-, I-, NO₃ आयन होंगे, जो H₂O से अधिक दुर्बल क्षारक है। इसी प्रकार अत्यंत प्रबल क्षार, अत्यंत दुर्बल अम्ल देगा, जबिक एक दुर्बल अम्ल, जैसे– HA अणु उपस्थित रहेंगे। नाइट्रस अम्ल (HNO₂), हाइड्रोफ्लुओरिक अम्ल (HF) एवं एसिटिक अम्ल (CH2COOH) प्रतीकात्मक दुर्बल अम्ल हैं। यह बात ध्यान रखने योग्य है कि दुर्बल अम्लों के संयुग्मी क्षारक अत्यंत प्रबल होते हैं। उदाहरण के लिए, NH-ु, O²- एवं H- उत्तम प्रोटॉनग्राही है। अत: H¸O से अत्यंत प्रबल क्षारक है। फिनाफ्थालीन, ब्रोमोथाइमोल ब्लू आदि जल में विलेय कार्बनिक यौगिक दुर्बल अम्लों की भाँति व्यवहार करते हैं। इनके अम्ल (HIn) तथा संयुक्त क्षार (In-) भिन्न रंग दर्शाते हैं।

HIn (aq) $H_2O(1) \rightleftharpoons H_3O$ (aq) In (aq) अम्ल सूचक संयुग्मी अम्ल संयुग्मी क्षार रंग-क रंग-ख

ऐसे यौगिकों का उपयोग अम्ल क्षार अनुमापन में सूचकों के रूप में H⁺ आयनों की सांद्रता निकालने के लिए किया जाता है।

7.11.1 जल का आयनन स्थिरांक एवं इसका आयनिक गुणनफल

हमने खंड 7.10.2 में यह देखा कि कुछ पदार्थ (जैसे जल) अपने विशिष्ट गुणों के कारण अम्ल एवं क्षारक— दोनों की तरह व्यवहार कर सकते हैं। अम्ल HA की उपस्थिति में यह प्रोटॉन ग्रहण करता है एवं क्षारक की तरह व्यवहार करता है, जबिक क्षारक B^- की उपस्थिति में यह प्रोटॉन देकर अम्ल की तरह व्यवहार करता है। शुद्ध जल H_2O का एक अणु प्रोटॉन देता है एवं अम्ल की तरह व्यवहार करता है। शुद्ध जल है तथा जल का दूसरा अणु एक प्रोटॉन ग्रहण करता है एवं उसी समय क्षारक की तरह व्यवहार करता है। निम्नलिखित साम्यावस्था स्थापित होती है—

 $H_2O(l) + H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ अम्ल क्षारक संयुग्मी अम्ल संयुग्मी क्षारक वियोजन स्थिरांक को हम इस तरह प्रदर्शित करते हैं— $K = [H_3O^+][OH^-] / [H_2O]$ (7.26) जल की सांद्रता को हर से हटा देते हैं, क्योंकि इसकी सांद्रता स्थिर रहती है। $[H_2O]$ को साम्य स्थिरांक सम्मिलित करने पर नया स्थिरांक K_{w} प्राप्त होता है, जिसे जल का आयनिक गुणनफल कहते हैं।

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$$
 (7.27)

 $298~{\rm K}~{\rm Y}$ प्रायोगिक रूप ${\rm H}^+$ आयन की सांद्रता $1.0\times 10^{-7}\,{\rm M}~{\rm Y}$ पाई गई है और जल के वियोजन से उत्पन्न ${\rm H}^+$ और ${\rm OH}^-$ आयनों की संख्या बराबर होती है,

हाइड्रॉक्सिल आयनों की सांद्रता, [OH⁻] = [H⁺] = $1.0 \times 10^{-7} \, \mathrm{M}$

इस प्रकार, 298 K पर $K_{\rm w}$ का मान $K_{\rm w}=[{\rm H_3O^+}][{\rm OH}^{\rm -}]=(1\times 10^{-7})^2=1\times 10^{-14}~{\rm M}^2$

(7.28)

 $K_{_{\!\!
m W}}$ का मान ताप पर निर्भर करता है, क्योंकि यह साम्यावस्था स्थिरांक है।

शुद्ध जल का घनत्व 1000 g/L है और इसका मोलर द्रव्यमान 18.0 g /mol है। इससे शुद्ध जल की मोलरता हम इस तरह निकाल सकते हैं—

 $[H_2O] = (1000 \text{ g /L})(1 \text{ mol}/18.0 \text{ g}) = 55.55 \text{ M}.$

इस प्रकार, वियोजित एवं अवियोजित योजित जल का अनुपात—

 10^{-7} / (55.55) = 1.8×10^{-9} or ~ 2 in 10^{-9}

(इस प्रकार साम्य मुख्यत: अवियोजित जल के अणुओं की ओर रहता है।)

अम्लीय, क्षारीय और उदासीन जलीय विलयनों को H_3O^+ एवं OH^- की सांद्रताओं के सापेक्षिक मानों द्वारा विभेदित किया जा सकता है—

अम्लीय : [H₃O⁺] > [OH⁻] उदासीन : [H₃O⁺] = [OH⁻]

क्षारीय : [H₃O+] < [OH-]

7.11.2 **pH** स्केल

हाइड्रोनियम आयन की मोलरता में सांद्रता को एक लघुगुणकीय मापक्रम (Logarithmic Scale) में सरलता से प्रदर्शित किया जाता है, जिसे **pH स्केल** कहा जाता है।

हाइड्रोजन आयन की सिक्रयता (a_H) के ऋणात्मक 10 आधारीय लघुगुणकीय मान को pH कहते हैं। कम सांद्रता (<0.01M) पर हाइड्रोजन आयन की सिक्रयता, संख्यात्मक रूप से इसकी मोलरता, जो (H^+) द्वारा प्रदर्शित की जाती है, के तुल्य होती है। हाइड्रोजन आयन की सिक्रयता की कोई इकाई नहीं होती है, इसे इस समीकरण द्वारा परिभाषित किया जा सकता है—

$$a_{H} = [H^{+}] / \text{mol } L^{-1}$$

निम्नलिखित समीकरण pH एवं हाइड्रोजन आयन सांद्रता में संबंध दर्शाता है—

 $pH = -\log a_{H_+} = -\log \{[H^+] / mol L^{-1}\}$

इस प्रकार HCl के अम्लीय विलयन (10^{-2} M) के pH का मान = 2 होता है। इसी तरह NaOH के एक क्षारीय विलयन, जिसमें [OH-] = 10^{-4} तथा [H_3O^+] = 10^{-10} M की pH = 10 होगी। शुद्ध तथा उदासीन जल में 298 K पर हाइड्रोजन आयन की सांद्रता 10^{-7} M होती है, इसलिए इसका pH = $-\log{(10^{-7})} = 7$ होगा।

यदि कोई जलीय विलयन अम्लीय है, तो उसका pH7 से कम एवं यदि वह क्षारीय है, तो उसका pH7 से अधिक होगा।

इस प्रकार,

अम्लीय विलयन की pH < 7

क्षारीय विलयन की pH < 7

उदासीन विलयन की pH = 7

अब 298K पर पुनर्विचार समीकरण 7.28 पर करें-

 $K_{\rm w} = [{\rm H_3O^+}] \ [{\rm OH}^{-}] = 10^{-14}$

समीकरण के दोनों ओर का ऋणात्मक लघुगुणक लेने पर:

 $-\log K_{w} = -\log \{ [H_{3}O^{+}] [OH^{-}] \}$

 $= -\log [H_3O^+] - \log [OH^-]$

 $= -\log 10^{-14}$

 $pK_{w} = pH + pOH = 14$ (7.29)

ध्यान देने योग्य बात यह है कि यद्यपि K_w का मान तापक्रम के साथ परिवर्तित होता है। तथापि तापक्रम के साथ pH के मान में परिवर्तन इतने कम होते हैं कि हम अकसर उसकी उपेक्षा कर देते हैं।

 pK_w जलीय विलयनों के लिए महत्त्वपूर्ण राशि होती है। यह हाइड्रोजन तथा हाइड्रोक्सल आयनों की सांद्रता को नियंत्रित करती है, चूँिक इनका गुणनफल स्थिरांक होता है। अतः यह ध्यानवत रहे कि pH मापक्रम लघुगुणक होता है। pH के मान में एक इकाई परिवर्तन का अर्थ है $[H^+]$ की सांद्रता में गुणक 10 का परिवर्तन। इसी प्रकार यदि हाइड्रोजन आयन सांद्रता $[H^+]$ में 100 गुणक का परिवर्तन हो, तो pH के मान में 2 इकाई का परिवर्तन होगा। अब आप समझ गए होंगे कि क्यों ताप pH में परिवर्तन की उपेक्षा हम कर देते हैं।

जैविक एवं प्रसाधन-संबंधी अनुप्रयोगों में विलयन के pH का मापन अत्यधिक आवश्यक है। pH पेपर, जो विभिन्न pH वाले विलयन में भिन्न-भिन्न रंग देता है, की सहायता से

pH के लगभग मान का पता लगाया जा सकता है। आजकल चार पट्टीवाला pH पेपर मिलता है। एक ही पर भिन्न-भिन्न पट्टियाँ भिन्न-भिन्न रंग देती हैं (चित्र 7.11) pH पेपर द्वारा 1-14 तक के pH मान लगभग 0.5 की यथार्थता तक ज्ञात किया जा सकता है।

चित्र 7.11: समान pH पर भिन्न रंग देनेवाली pH पेपर की चार पट्टियाँ

उच्च यथार्थता के लिए pH मीटर का उपयोग किया जाता है। pH मीटर एक ऐसा यंत्र है, जो परीक्षण-विलयन के विद्युत्-विभव पर आधारित pH का मापन 0.001 यथार्थता तक करता है। आजकल बाजार में कलम के बराबर आकारवाले pH मीटर उपलब्ध हो गए हैं। कुछ सामान्य पदार्थों की pH तालिका 7.5 में दी गई है—

उदाहरण 7.16

पेय पदार्थ के नमूने में हाइड्रोजन आयन की सांद्रता $3.8 \times 10^{-3} \mathrm{M}$ है। इसका pH क्या होगा?

हल

$$\log[10^{-3}]\}$$
 = $-\{(0.58) + (-3.0)\} = -\{-2.42\} = 2.42$
अत: पेय पदार्थ का pH 2.42 है यह अम्लीय है।

 $pH = -\log[3.8 \times 10^{-3}] = -\{\log[3.8] +$

उदाहरण 7.17

 $1.0 \times 10^{-8} \text{M}\,\text{HCl}$ विलयन के pH की गणना करें।

हल

$$2H_2O$$
 (l) \rightleftharpoons H_3O^+ (aq) + OH^- (aq)
 $K_w = [OH^-][] = 10^{-14}$

माना $x=[OH^-]=$ जल से प्राप्त H_3O^+ । H_3O^+ सांद्रता (i) जो घुलित HCl से प्राप्त होती है जैसे— HCl (aq) + H_2O (l) \rightleftharpoons H_3O^+ (aq)+Cl $^-$ (aq) तथा (ii) जलके आयनीकाण से प्राप्त होती है। यहाँ दोनों H_3O^+ उद्गमों पर विचार करना होगा—

$$[H_3O^+] = 10^{-8} + x$$
 $K_w = (10^{-8} + x)(x) = 10^{-14}$
अथवा $x^2 + 10^{-8}x - 10^{-14} = 0$
 $[OH^-] = x = 9.5 \times 10^{-8}$
अत: $pOH = 7.02$ तथा $pH = 6.98$

7.11.3 दुर्बल अम्लों के आयनन स्थिरांक

आइए, जलीय विलयन में आंशिक रूप से आयिनत एक दुर्बल अम्ल HX पर विचार करें। निम्निलिखित समीकरणों में से किसी भी समीकरण द्वारा अवियोजित HX एवं आयनों H+(aq) तथा X-(aq) के मध्य स्थापित साम्यावस्था को प्रदर्शित किया जा सकता है।

$$HX(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + X^-(aq)$$
 प्रारंभिक सांद्रता (M) $c = 0 = 0$ माना α आयनीकरण की मात्रा है। सांद्रता में परिवर्तन (M) $-c\alpha = +c\alpha = +c\alpha$

सारणी 7.5 कुछ सामान्य पदार्थों की pH के मान

द्रव के नाम	pН	द्रव के नाम	pН
NaOH का संतृप्त विलयन	~15	काली कॉफी	5.0
0.1 M NaOH विलयन	13	टमाटर का रस	~4.2
चूने का पानी	10.5	मृदु पेय पदार्थ तथा सिरका	~3.0
मिल्क ऑफ मैग्नीशिया	10	नीबू–पानी	~2.2
अंडे का सफेद भाग, समुद्री जल	7.8	जठर-रस	~1.2
मानव-रुधिर	7.4	lM HCl विलयन	~0
दूध	6.8	सांद्र HCl	~-1.0
मानव-श्लेष्मा	6.4		

साम्य सांद्रता (M)

$$c-c\alpha$$
 $c\alpha$ $c\alpha$

जहाँ c = अवियोजित अम्ल HX की प्रारंभिक सांद्रता तथा α = HX के आयनन की मात्रा है।

इन संकेतकों का उपयोग कर के हम उपर्युक्त अम्ल वियोजन साम्य के लिए साम्यावस्था स्थिरांक व्युत्पन्न कर सकते हैं।

$$K_{a} = c^{2}\alpha^{2} / c(1-\alpha) = c\alpha^{2} / (1-\alpha)$$

 K_a को अम्ल HX का **वियोजन या आयनन स्थिरांक** कहते हैं। इसे वैकल्पिक रूप से हम इस प्रकार मोलरता के रूप में प्रदर्शित कर सकते हैं—

$$K_{a} = [H^{+}][X^{-}] / [HX]$$
 (7.30)

किसी निश्चित ताप पर K_a का मान अम्ल HX की प्रबलता का माप है, अर्थात् K_a का मान जितना अधिक होगा, अम्ल उतना ही अधिक प्रबल होगा। K_a विमारहित राशि है, जिसमें सभी स्पीशीज़ की सांद्रता की मानक-अवस्था 1M है।

कुछ चुने हुए अम्लों के आयनन-स्थिरांक सारणी 7.6 में दिए गए हैं।

हाइड्रोजन आयन सांद्रता के लिए pH मापक्रम इतना उपयोगी है कि इसे $pK_{\rm w}$ के अतिरिक्त अन्य स्पीशीज एवं राशियों के लिए भी प्रयुक्त किया गया है। इस प्रकार,

$$pK_a = -\log(K_a)$$
 (7.31)

अम्ल के आयनन स्थिरांक K_a तथा प्रारंभिक सांद्रता c ज्ञात होने पर समस्त स्पीशीज़ की साम्य सांद्रता तथा अम्ल के आयनन की मात्रा से विलयन की pH की गणना संभव है। सारणी 7.6: 298K पर कुछ चुने हुए दुर्बल अम्लों के आयनन स्थिरांक के मान

अम्ल	आयनन स्थिरांक (Ka)
हाइड्रोफ्लुरिक अम्ल (HF)	3.5×10^{-4}
नाइट्रस अम्ल (HNO ₂)	4.5×10^{-4}
फार्मिक अम्ल (HCOOH)	1.8×10^{-4}
नियासीन (C ₅ H ₄ NCOOH)	1.5×10^{-5}
ऐसीटिक अम्ल (CH3COOH)	1.74×10^{-5}
बेन्जोइक अम्ल (C_6H_5COOH)	6.5×10^{-5}
हाइपोक्लोरस अम्ल (HCIO)	3.0×10^{-8}
हाइड्रोसायनिक अम्ल (HCN)	4.9×10^{-10}
फीनॉल (C ₆ H ₅ OH)	1.3×10^{-10}

दुर्बल विद्युत्-अपघट्य की pH इन पदों से निकाली जा सकती है—

पद-1 वियोजन से पूर्व उपस्थित स्पीशीज़ को ब्रॅन्स्टेद लोरी अम्ल/क्षारक के रूप में ज्ञात किया जाता है।

पद-2 सभी संभावित अभिक्रियाओं के लिए संतुलित समीकरण लिखे जाते हैं, जैसे—स्पीशीज, जो अम्ल एवं क्षारक दोनों के रूप में कार्य करती है।

पद-3 उच्च K_a वाली अभिक्रिया को प्राथमिक अभिक्रिया के रूप में चिह्नित किया जाता है, जबिक अन्य अभिक्रियाएं पूरक अभिक्रियाएं होती हैं।

पद-4 प्राथमिक अभिक्रिया की सभी स्पीशीज़ के निम्न मानों को सारणी के रूप में सूचीबद्ध किया जाता है-

- (क) प्रारंभिक सांद्रता, c
- (ख) साम्य की ओर अग्रसर होने पर आयनन की मात्रा α के रूप में सांद्रता में परिवर्तन
- (ग) साम्य सांद्रता

पद-5 मुख्य अभिक्रिया के लिए साम्यावस्था स्थिरांक समीकरण में साम्य सांद्रताओं को रखकर α के लिए हल करते हैं।

पद-6 मुख्य अभिक्रिया की स्पीशीज़ की सांद्रता की गणना करते हैं।

पद-7 pH की गणना

 $pH = -\log [H_3O^+]$

उपर्युक्त विधि को इस उदाहरण से समझाया गया है-

उदाहरण 7.18

HF का आयनन स्थिरांक 3.2×10^{-4} है। 0.22M विलयन में HF की आयनन की मात्रा की और विलयन में उपस्थित समस्त स्पीशीज़ $(H_3O^{\dagger}, F^{-}$ तथा HF) की सांद्रता तथा pH की गणना कीजिए।

हल

निम्नलिखित प्रोटॉन स्थानांतरण अभिक्रियाएं संभव हैं-

(1) HF +
$$H_2O \rightleftharpoons H_3O^+ + F^- K_a = 3.2 \times 10^{-4}$$

(2)
$$H_2O + H_2O \rightleftharpoons H_3O^{\dagger} + OH^{-}$$

 $K_{\rm w} = 1.0 \times 10^{-14}$

क्योंकि $K_{\rm a}>>K_{\rm w}$, मुख्य अभिक्रिया

 $HF + H_2O \rightleftharpoons H_3O^+ + F^-$

प्रारंभिक सांद्रता (M)

0.02 0 0 (0) सांद्रता परिवर्तन (M)

 -0.02α +0.02 α +0.02 α साम्य सांद्रता (M)

 $0.02-0.02~\alpha$ $0.02~\alpha$ 0.02α साम्य अभिक्रिया के लिए साम्य सांद्रताओं को प्रतिस्थापित करने पर

$$K_{\rm a} = (0.02\alpha)^2 / (0.02 - 0.02\alpha) = 0.02 \alpha^2 / (1 - \alpha) = 3.2 \times 10^{-4}$$

हमें निम्नलिखित द्विघात समीकरण प्राप्त होता है— $\alpha^2 + 1.6 \times 10^{-2} \alpha - 1.6 \times 10^{-2} = 0$

द्विघात-समीकरण को हल करने पर α के दो मान प्राप्त होते हैं—

$$\alpha = +0.12$$
 और -0.12

 α का ऋणात्मक मान संभव नहीं है। अत: $\alpha=0.12$ स्पष्ट है कि आयनन मात्रा, $\alpha=0.12$ हो तो अन्य स्पीशीज़ (जैसे-HF, F $^-$ तथा ${\rm H_3O}^+$) की साम्य सांद्रताएँ इस प्रकार हैं-

$$[H_3O^+] = [F^-] = c\alpha = 0.02 \times 0.12 =$$

$$2.4 \times 10^{-3} \text{ M}$$

[HF] =
$$c(1 - \alpha) = 0.02 (1 - 0.12) =$$

 $17.6 \times 10^{-3} M$

$$pH = -\log[H^+] = -\log(2.4 \times 10^{-3}) = 2.62$$

उदाहरण 7.19

0.1M एकल क्षारीय अम्ल का pH~4.50 है। साम्यावस्था पर H^{+},A^{-} तथा HA की सांद्रता की गणना कीजिए। साथ ही एकल क्षारीय अम्ल के K_{a} तथा pK_{a} के मान की भी गणना कीजिए।

हल

$$pH = -\log [H^{+}]$$

$$[H^+] = 10^{-pH} = 10^{-4.50} = 3.16 \times 10^{-5}$$

$$[H^{+}] = [A^{-}] = 3.16 \times 10^{-5}$$

$$K_{a} = [H^{+}][A^{-}] / [HA]$$

$$[HA]_{x_{11}x_{22}} = 0.1 - (3.16 \times 10^{-5}) \simeq 0.1$$

$$K_{\rm a} = (3.16 \times 10^{-5})^2 / 0.1 = 1.0 \times 10^{-8}$$

$$pK_{\rm a} = -\log(10^{-8}) = 8$$

वैकल्पिक रूप से 'वियोजन प्रतिशतता' किसी दुर्बल अम्ल की सामर्थ्य की गणना का उपयोगी मापक्रम है। इसे इस प्रकार दिया गया है—

$$= [HA]_{faulifing} / [HA]_{sinting} \times 100\%$$
 (7.32)

उदाहरण 7.20

0.08~M हाइपोक्लोरस अम्ल (HOCl) के विलयन के pH की गणना कीजिए। अम्ल का आयनन स्थिरांक $2.5\times10^{-5}~$ है। HOCl की वियोजन–प्रतिशतता ज्ञात कीजिए।

हल

$$HOCl(aq) + H_2O(l) \rightleftharpoons H_3O^{\dagger}(aq) + ClO^{\dagger}(aq)$$

प्रारंभिक सांद्रता (M)

साम्यावस्था के लिए परिवर्तन (M)

साम्य सांद्रता (M)

$$0.08-x$$
 x x

$$K_{\mathbf{a}} = \{[\mathbf{H}_{\mathbf{3}}\mathbf{O}^{\dagger}][\mathbf{ClO}^{-}] / [\mathbf{HOCl}]\}$$

$$= x^2 / (0.08 - x)$$

$$x^2 / 0.08 = 2.5 \times 10^{-5}$$

$$x^2 = 2.0 \times 10^{-6}$$
, इस प्रकार, $x = 1.41 \times 10^{-3}$

$$[H^+] = 1.41 \times 10^{-3} M.$$

अत:

वियोजन प्रतिशतता = { $[HOCl]_{\text{वियोजित}}$ / $[HOCl]_{\text{आर्रिभक}}$ × $100 = 1.41 \times 10^{-3} \times 10^2$ / 0.08 = 1.76 %. pH = $-\log(1.41 \times 10^{-3}) = 2.85$.

7.11.4 दुर्बल क्षारकों का आयनन

क्षारक MOH का आयनन निम्नलिखित समीकरण द्वारा प्रदर्शित किया जा सकता है—

$$MOH(aq) \rightleftharpoons M^+(aq) + OH^-(aq)$$

अम्ल आयनन साम्यावस्था की तरह दुर्बल क्षारक (MOH) आंशिक रूप से धनायन M^+ एवं ऋणायन OH^- में आयनित होता है। क्षारक आयनन के साम्यावस्था–स्थिरांक को **क्षारक आयनन–स्थिरांक** कहा जाता है। इसे हम $K_{\rm b}$ से प्रदर्शित करते हैं। सभी स्पीशीज़ की साम्यावस्था सांद्रता मोलरता में निम्नलिखित समीकरण द्वारा प्रदर्शित की जाती है—

$$K_{\rm b} = [{
m M}^+][{
m OH}^-] \ / \ [{
m MOH}]$$
 (7.33)
विकल्पत: यदि $c=$ क्षारक की प्रारंभिक सांद्रता और $\alpha=$ क्षारक के आयनन की मात्रा

जब साम्यावस्था प्राप्त होती है, तब साम्य स्थिरांक निम्नलिखित रूप से लिखा जा सकता है—

कुछ चुने हुए क्षारकों के आयनन-स्थिरांक $K_{_{b}}$ के मान सारणी 7.7 में दिए गए हैं।

सारणी 7.7 298 K पर कुछ दुर्बल क्षारकों के आयनन-स्थिरांक

क्षारक	K _b
डाइमेथिलऐमिन (CH ₃) ₂ NH	5.4 × 10 ⁻⁴
ट्राइएथिलऐमिन ($\mathrm{C_2H_5}$) $_3$ N	6.45×10^{-5}
अमोनिया NH ₃ or NH ₄ OH	1.77×10^{-5}
क्विनीन (एक वानस्पतिक उत्पाद)	1.10 × 10 ⁻⁶
पिरोडीन $\mathrm{C_5H_5N}$	1.77×10^{-9}
ऐनिलीन $\mathrm{C_6H_5NH_2}$	4.27×10^{-10}
यूरिया CO $(NH_2)_2$	1.3×10^{-14}

कई कार्बनिक यौगिक ऐमीन्स की तरह दुर्बल क्षारक हैं। ऐमीन्स अमोनिया के व्युत्पन्न हैं, जिनमें एक या अधिक हाइड्रोजन परमाणु अन्य समूहों द्वारा प्रतिस्थापित होते हैं। जैसे— मेथिलऐमीन, कोडीन, क्विनीन तथा निकोटिन, सभी बहुत दुर्बल क्षारक हैं। इसलिए इनके K_b के मान बहुत छोटे होते हैं। अमोनिया जल में निम्नलिखित अभिक्रिया के फलस्वरूप OH^- आयन उत्पन्न करती है—

NH3(aq) + H2O(l) ⇌ NH4+(aq) + OH-(aq) हाइड्रोजन आयन सांद्रता हेतु pH स्केल इतना उपयोगी है कि इसे अन्य स्पीशीज एवं राशियों के लिए भी प्रयुक्त किया गया है। इस प्रकार

$$pK_b = -\log(K_b) \tag{7.34}$$

उदाहरण 7.21

 $0.004~{
m M}~$ हाइड्रेजीन विलयन का pH 9.7~ है। इसके K_b तथा pK_b की गणना कीजिए।

हल

 ${\rm NH_2NH_2 + H_2O} \iff {\rm NH_2NH_3}^+ + {\rm OH}^-$ हम ${\rm pH}$ से हाइड्रोजन आयन सांद्रता की गणना कर सकते हैं। हाइड्रोजन आयन सांद्रता ज्ञात करके और जल के आयनिक गुणनफल से हम हाइड्रॉक्सिल आयन की सांद्रता की गणना करते हैं। इस प्रकार,

$$[H^{+}]$$
 = antilog (-pH) = antilog (-9.7)
= 1.67×10^{-10}

$$[OH^{-}] = K_w / [H^{+}] = 1 \times 10^{-14} / 1.67 \times 10^{-10}$$

= 5.98×10^{-5}

संगत हाइड्रेजीनियम आयन की सांद्रता का मान भी हाइड्रॉक्सिल आयन की सांद्रता के समान होगा। इन दोनों आयनों की सांद्रता बहुत कम है। अत: अवियोजित क्षारक की सांद्रता 0.004 M ली जा सकती है। इस प्रकार, $K_{\rm b} = [{\rm NH_2NH_3}^{+}][{\rm OH}^{-}] / [{\rm NH_2NH_2}] = (5.98 \times 10^{-5})^2 / 0.004 = 8.96 \times 10^{-7} pK_{\rm b} = -{\rm log}(8.96 \times 10^{-7}) = 6.04.$

उदाहरण 7.22

 $0.2 {\rm M~NH_4Cl}$ तथा $0.1~{\rm M~NH_3}$ के मिश्रण से बने विलयन के ${\rm pH}$ की गणना कीजिए। ${\rm NH_3}$ विलयन की ${\rm pK_b}$ = 4.75~ है।

हल

 $NH_3 + H_2O \rightleftharpoons NH_4^+$ OH⁻ NH3 का आयनन स्थिरांक $K_{\rm b}$ = antilog (-p $K_{\rm b}$) अर्थात्, $K_{\rm b} = 10^{-4.75} = 1.77 \times 10^{-5} \,\mathrm{M}$ $NH_3 + H_2O \rightleftharpoons NH_4^+$ OH-प्रारंभिक सांद्रता (M) 0.10 0.20 0 साम्यावस्था पर परिवर्तन (M) -X +xसाम्यावस्था पर (M) 0.10 - x0.20 + xX $K_{\rm b} = [{\rm NH_4}^+][{\rm OH}^-] / [{\rm NH_3}]$ $= (0.20 + x)(x) / (0.1 - x) = 1.77 \times 10^{-5}$ $K_{\rm b}$ का मान कम है। $0.1{
m M}$ एवं $0.2~{
m M}$ की तुलना में x को हम उपेक्षित कर सकते हैं। $[OH] = x = 0.88 \times 10^{-5}$ इसलिए [H⁺]= 1.12 × 10⁻⁹ $pH = -\log[H^{+}] = 8.95$

7.11.5 **K** तथा **K** में संबंध

इस अभ्यास में हम पढ़ चुके हैं कि K_a तथा K_b क्रमश: अम्ल और क्षारक की सामर्थ्य को दर्शाते हैं। संयुग्मी अम्ल-क्षार युग्म में ये एक-दूसरे से सरलतम रूप से संबंधित होते हैं। यदि एक का मान ज्ञात है, तो दूसरे को ज्ञात किया जा सकता है। NH_2^+

तथा $\mathrm{NH_3}$ के उदाहरण की विवेचना करते हैं— $\mathrm{NH_4^+(aq)} + \mathrm{H_2O(l)} \rightleftharpoons \mathrm{H_3O^+(aq)} + \mathrm{NH_3(aq)}$ $K_\mathrm{a} = [\mathrm{H_3O^+}][\mathrm{NH_3}] \ / [\mathrm{NH_4^+}] = 5.6 \times 10^{-10}$ $\mathrm{NH_3(aq)} + \mathrm{H_2O(l)} \rightleftharpoons \mathrm{NH_4^+(aq)} + \mathrm{OH^-(aq)}$ $K_\mathrm{b} = [\mathrm{NH_4^+}][\mathrm{OH^-}] \ / \mathrm{NH_3} = 1.8 \times 10^{-5}$ नेट: $2 \mathrm{H_2O(l)} \rightleftharpoons \mathrm{H_3O^+(aq)} + \mathrm{OH^-(aq)}$ $K_\mathrm{w} = [\mathrm{H_3O^+}][\mathrm{OH^-}] = 1.0 \times 10^{-14} \mathrm{M}$

 $K_a \, {
m NH_4^+}$ का अम्ल के रूप में तथा $K_b , {
m NH_3}$ की क्षार के रूप में सामर्थ्य दर्शाता है। नेट अभिक्रिया में ध्यान देने योग्य बात यह है कि जोड़ी गई अभिक्रिया में साम्य स्थिरांक का मान $K_a \,$ तथा $K_b \,$ के गुणनफल के बराबर होता है—

$$\begin{split} K_{\rm a} \times K_{\rm b} &= \{ [{\rm H_3O^+}][~{\rm NH_3}]~/~[{\rm NH_4^+}~] \} \times \{ [{\rm NH_4^+}~]~\\ &~~[~{\rm OH^-}]~/~[{\rm NH_3}] \} \end{split}$$

= $[H_3O^+][OH^-] = K_w$ = $(5.6 \times 10^{-10}) \times (1.8 \times 10^{-5}) = 1.0 \times 10^{-14} M$

इसे इस सामान्यीकरण द्वारा बताया जा सकता है— दो या ज्यादा अभिक्रियाओं को जोड़ने पर उनकी नेट या अभिक्रिया का साम्यावस्था-स्थिरांक प्रत्येक अभिक्रिया के साम्यावस्था-स्थिरांक के गुणनफल के बराबर होता है।

$$K_{\dot{\dagger}z} = K_1 \times K_2 \times \dots$$
 (3.35)
इसी प्रकार संयुग्मी क्षार युग्म के लिए

$$K_{\rm a} \times K_{\rm b} = K_{\rm w} \tag{7.36}$$

यदि एक का मान ज्ञात हो, तो अन्य को ज्ञात किया जा सकता है। यह ध्यान देना चाहिए कि प्रबल अम्ल का संयुग्मी क्षार दुर्बल तथा दुर्बल अम्ल का संयुग्मी क्षार प्रबल होता है।

वैकल्पिक रूप से उपर्युक्त समीकरण $K_{\rm w}=K_{\rm a}\times K_{\rm b}$ को क्षारक-वियोजन साम्यावस्था अभिक्रिया से भी हम प्राप्त कर सकते हैं—

$$\begin{split} &B(aq) + H_2O(l) \iff BH^+(aq) + OH^-(aq) \\ &K_b = [BH^+][OH^-] \ / \ [B] \end{split}$$

चूँकि जल की सांद्रता स्थिर रहती है, अत: इसे हर से हटा दिया गया है और वियोजन स्थिरांक में सम्मिलित कर दिया गया है। उपयुक्त समीकरण को [H+] से गुण करने तथा भाग देने पर—

$$K_{b} = [BH^{+}][OH^{-}][H^{+}] / [B][H^{+}]$$

$$= \{[OH^{-}][H^{+}]\}\{[BH^{+}] / [B][H^{+}]\}$$

$$= K_{w} / K_{a}$$

$$K_{a} \times K_{b} = K_{w}$$

यह ध्यान देने याग्य बात है कि यदि दोनों ओर लघुगुणक लिया जाए, तो संयुग्मी अम्ल तथा क्षार के मानों को संबंधित किया जा सकता है—

$$pK_a + pK_b = pK_w = 14$$
 (298K पर)

उदाहरण 7.23

0.05 M अमोनिया विलयन की आयनन मात्रा तथा pH ज्ञात कीजिए। अमोनिया के आयनन-स्थिरांक का मान तालिका 7.7 में दिया गया है। अमोनिया के संयुग्मी अम्ल का आयनन स्थिरांक भी ज्ञात कीजिए।

हल

जल में $\mathrm{NH_3}$ का आयनन इस प्रकार दर्शाया जा सकता है—

 ${
m NH_3} + {
m H_2O} \iff {
m NH_4}^+ + {
m OH}^-$ (7.33) समीकरण का उपयोग कर के हम हाइड्रोक्सिल आयन की सांद्रता की गणना कर सकते हैं—

$$[OH^{-}] = c \alpha = 0.05 \alpha$$

 $K_{b} = 0.05 \alpha^{2} / (1 - \alpha)$

 α का मान कम है, अत: समीकरण में दाईं ओर के हर 1 की तुलना में α को नगण्य मान सकते हैं। अत:

$$K_{\rm b} = {\rm c} \ \alpha^2 \ {\rm or} \ \alpha = \sqrt{(1.77 \times 10^{-5} / 0.05)}$$

= 0.018.

 $[OH^{-}] = c a = 0.05 \times 0.018 = 9.4 \times 10^{-4} M.$ $[H^{+}] = K_{w} / [OH^{-}] = 10^{-14} / (9.4 \times 10^{-4})$ $= 1.06 \times 10^{-11}$

 $pH = -log(1.06 \times 10^{-11}) = 10.97.$

संयुग्मी अम्ल क्षार युग्म के लिए संबंध प्रयुक्त करने पर

$$K_{\rm a} \times K_{\rm b} = K_{\rm w}$$

तालिका 7.7 से प्राप्त ${
m NH_3}$ के K_b का मान रखने पर हम ${
m NH_4^+}$ के संयुग्मी अम्ल की सांद्रता निकाल सकते हैं। $K_{
m a} = K_{
m w} \ / \ K_{
m b} \qquad = 10^{-14} \ / \ 1.77 \times 10^{-5} \ = 5.64 \times 10^{-10}$

7.11.6 द्वि एवं बहु क्षारकी अम्ल तथा द्वि एवं बहु अम्लीय क्षारक

ऑक्सेलिक अम्ल, सल्फ्यूरिक अम्ल एवं फास्फोरिक अम्ल आदि कुछ अम्लों में प्रति अणु एक से अधिक आयनित होने

वाले प्रोटॉन होते हैं। ऐसे अम्लों को बहु-क्षारकी या पॉलिप्रोटिक अम्ल के नाम से जाना जाता है। उदाहरणार्थ-द्विक्षारकीय अम्ल ${
m H}_2{
m X}$ के लिए आयनन अभिक्रिया निम्नलिखित समीकरणों द्वारा दर्शाई जाती है—

 $H_2X(aq) \iff H^+(aq) + HX^-(aq)$ $HX^-(aq) \iff H^+(aq) + X^{2-}(aq)$ तथा संगत साम्यावस्था समीकरण निम्नलिखित है—

$$K_{a_1} = \{ [H^+][HX^-] \} / [H_2X]$$
 (8.16)

तथा
$$K_{a_2} = \{[H^+][X^{2-}]\} / [HX^-]$$
 (8.17)

 $K_{\rm a_1}$ एवं $K_{\rm a_2}$ को अम्ल ${\rm H_2X}$ का प्रथम एवं द्वितीय आयनन–स्थिरांक कहते हैं। इसी प्रकार ${\rm H_3PO_4}$ जैसे त्रिक्षारकीय अम्ल के लिए तीन आयनन–स्थिरांक हैं। कुछ पॉलीप्रोटिक अम्लों के आयनन–स्थिरांकों के मान सारणी 7.8 में अंकित हैं।

सारणी 7.8 **298 K** पर कुछ सामान्य पॉलीप्रोटिक अम्लों के आयनन-स्थिरांक

अम्ल	Ka ₁	Ka ₂	Ka ₃
ऑक्सेलिक अम्ल एस्कार्बिक अम्ल सल्फ्यूरस अम्ल सल्फ्यूरिक अम्ल कार्बोनिक अम्ल साइट्रिक अम्ल	5.9×10^{-2} 7.4×10^{-4} 1.7×10^{-2} 31 ਤਸਟਾਬਿਕ 4.3×10^{-7} 7.4×10^{-4}	6.4×10^{-5} 1.6×10^{-12} 6.4×10^{-8} 1.2×10^{-2} 5.6×10^{-11} 1.7×10^{-5}	4.0 × 10 ⁻⁷
फास्फोरिक अम्ल	7.5×10^{-3}	6.2 × 10 ⁻⁸	4.2 × 10 ⁻¹³

इस प्रकार देखा जा सकता है कि बहु प्रोटिक अम्ल के उच्च कोटि के आयनन K_{a_2} , K_{a_3} स्थिरांकों का मान निम्न कोटि के आयनन-स्थिरांक (K_a) से कम होते हैं। इसका कारण यह है कि स्थिर विद्युत्-बलों के कारण ऋणात्मक आयन से धनात्मक प्रोटॉन निष्कासित करना मुश्किल है। इसे अनावेशित H_2CO_3 तथा आवेशित HCO_3 से प्रोटॉन निष्कासन से देखा जा सकता है। इसी प्रकार द्विआवेशित HPO_4^2 - ऋणायन से H_2PO_4 की तुलना में प्रोटॉन का निष्कासन कठिन होता है।

बहु प्रोटिक अम्ल विलयन में अम्लों का मिश्रण होता है ${\rm H_2A}$ जैसे द्विप्रोटिक अम्ल के लिए, ${\rm H_2A}$, ${\rm HA^-}$ और ${\rm A^{2-}}$ का मिश्रण होता है। प्राथमिक अभिक्रिया में ${\rm H_2A}$ का वियोजन तथा ${\rm H_3O^+}$ सम्मिलित होता है, जो वियोजन के प्रथम चरण से प्राप्त होता है।

7.11.7 अम्ल-सामर्थ्य को प्रभावित करनेवाले कारक

अम्ल तथा क्षारकों की मात्रात्मक सामर्थ्य की विवेचना के पश्चात् हम किसी दिए हुए अम्ल को pH मान की गणना कर सकते हैं। परंतु यह जिज्ञासा उत्पन्न होती है कि कुछ अम्ल अन्य की तुलना में प्रबल क्यों होते हैं? इन्हें अधिक प्रबल बनानेवाले कारक क्या हैं? इसका उत्तर एक जटिल तथ्य है। लेकिन मुख्य रूप से हम यह कह सकते हैं कि एक अम्ल की वियोजन की सीमा H – A बंध की सामर्थ्य एवं ध्रुवणता पर निर्भर करती है।

सामान्यत: जब H – A बंध की सामर्थ्य घटती है, अर्थात् बंध के वियोजन में आवश्यक ऊर्जा घटती है, तो HA का अम्ल-सामर्थ्य बढ़ता है। इसी प्रकार जब HA आबंध अधिक ध्रुवीय होता है, अर्थात् H तथा A परमाणुओं के मध्य विद्युत्–ऋणता का अंतर बढ़ता है और आवेश पृथक्करण दृष्टिगत होता है, तो आबंध का वियोजन सरल हो जाता है, जो अम्लीयता में वृद्धि करता है।

परंतु यह ध्यान देने योग्य बात यह है कि जब तत्त्व A आवर्त सारणी के उसी समूह के तत्त्व हों, तो बंध की ध्रुवीय प्रकृति की तुलना में H – A आबंध सामर्थ्य अम्लीयता के निर्धारण में प्रमुख कारक होता है। वर्ग में नीचे की ओर जाने पर ज्यों-ज्यों A का आकार बढ़ता है, त्यों-त्यों H – A आबंध सामर्थ्य घटती है तथा अम्ल सामर्थ्य बढ़ती है। उदाहरणार्थ—

इसी प्रकार H_2S , H_2O से प्रबलतर अम्ल है।

परंतु जब हम आवर्त सारणी के एक ही आवर्त के तत्त्वों की विवेचना करते हैं तो H-A आबंध की ध्रुवणता अम्ल-सामर्थ्य को निर्धारित करने में महत्त्वपूर्ण कारक हो जाती है। ज्यों-ज्यों A की विद्युत्ऋणता बढ़ती है, त्यों-त्यों अम्ल की सामर्थ्य भी बढ़ती है। उदाहरणार्थ—

7.11.8 अम्लों एवं क्षारकों के आयनन में सम आयन प्रभाव

आइए, ऐसीटिक अम्ल का उदाहरण लें, जिसका वियोजन इस साम्यावस्था द्वारा प्रदर्शित किया जा सकता है—

 $CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$ अथवा $HAc(aq) \rightleftharpoons H^+(aq) + Ac^-(aq)$

 $K_{a} = [H^{+}][Ac^{-}] / [HAc]$

ऐसीटिक अम्ल के विलयन में ऐसीटेट आयन को मिलाने पर हाइड्रोजन आयनों की सांद्रता घटती है। इसी प्रकार यिद बाह्य स्रोत से H+ आयन मिलाए जाएँ, तो साम्यावस्था अवियोजित ऐसीटिक अम्ल की तरफ विस्थापित हो जाती है, अर्थात् उस दिशा में अग्रसर होती है, जिससे हाइड्रोजन आयन सांद्रता [H+] घटती है। यह घटना सम आयन प्रभाव का उदाहरण है। किसी ऐसे पदार्थ के मिलने से जो विघटन साम्य में पूर्व से उपस्थित आयनिक स्पीशीज़ को और उपलब्ध करवाकर साम्यावस्था को विस्थापित करता है, वह 'सम आयन प्रभाव' कहलाता है।

अत: हम कह सकते हैं कि सम आयन प्रभाव ला-शातेलिये सिद्धांत पर आधारित है, जिसे हम खंड 7.8 में पढ़ चुके हैं।

0.05~M ऐसीटेट आयन को 0.05~M ऐसीटिक अम्ल में मिलाने पर pH की गणना हम इस प्रकार कर सकते हैं—

 $HAc(aq) \rightleftharpoons H^+(aq) + Ac^-(aq)$ प्रारंभिक सांद्रता (M)

0.05

0 0.05

यदि x ऐसीटिक अम्ल में आयनन की मात्रा हों, तो सांद्रता में परिवर्तन (M)

-x +x +x

साम्य सांद्रता (M)

0.05-x x 0.05+x

इस प्रकार

 $K_{\rm a}$ = [H+][Ac-]/[H Ac] = {(0.05+x)(x)}/(0.05-x) दुर्बल अम्ल के लिए $K_{\rm a}$ कम होता है x << 0.05

अत: $(0.05 + x) \approx (0.05 - x) \approx 0.05$

 $1.8 \times 10^{-5} = (x) (0.05 + x) / (0.05 - x)$ = $x(0.05) / (0.05) = x = [H^+] = 1.8 \times 10^{-5}M$ pH = $-\log(1.8 \times 10^{-5}) = 4.74$

उदाहरण 7.24

 $0.10~\mathrm{M}$ अमोनिया विलयन की pH की गणना कीजिए। इस विलयन के $50~\mathrm{mL}$ को $0.10~\mathrm{M}$ के HCl के $25.0~\mathrm{mL}$ से अभिक्रिया करवाने पर pH की गणना कीजिए। अमोनिया का वियोजन स्थिरांक $K_{\mathrm{b}}=1.77\times10^{-5}~\mathrm{g}$ ।

हल

 ${
m NH_3 + H_2O}
ightarrow {
m NH_4^+ + OH^-}$ $K_{
m b} = [{
m NH_4^+}] [{
m OH}^-] \ / [{
m NH_3}] = 1.77 imes 10^{-5}$ उदासीनीकरण से पूर्व $[{
m NH_4^+}] = [{
m OH}^-] = {
m x}$ $[{
m NH_3}] = 0.10 - {
m x} \simeq 0.10$ ${
m x}^2 \ / \ 0.10 = 1.77 imes 10^{-5}$

 $x = 1.33 \times 10^{-3} = [OH^{-}]$

इसलिए $[H^+] = K_w / [OH^-] = 10^{-14} /$

 $10^{-14}/(1.33 \times 10^{-3}) = 7.51 \times 10^{-12}$

 $pH = -log(7.5 \times 10^{-12}) = 11.12$

 $25\,\mathrm{mL}\,0.1\mathrm{M}\,\mathrm{HCl}$ विलयन (अर्थात् $2.5\,\mathrm{Hem}$ मोल HCl) को $50\,\mathrm{mL}\,0.1\,\mathrm{M}$ अमोनिया विलयन (अर्थात् $5\,\mathrm{mL}$ मोल $\mathrm{NH_3}$) में मिलाने पर $2.5\,\mathrm{Hem}$ मोल अमोनिया अणु उदासीनीकृत हो जाते हैं। शेष $75\,\mathrm{mL}$ विलयन में अनुदासीनीकृत $2.5\,\mathrm{Hem}$ मोल $\mathrm{NH_3}$ अणु तथा $2.5\,\mathrm{Hem}$ मोल $\mathrm{NH_4}^+$ रह जाते हैं।

 $NH_{3} + HC1 \rightarrow NH_{4}^{+} + C1^{-}$ 2.5 2.5 0 0

साम्यावस्था पर

0 0 2.5 2.5

परिणामी 75 mL विलयन में 2.5 मिलीमोल $\mathrm{NH_4^+}$ आयन (0.033 M) तथा 2.5 मिलीमोल अनुदासीनीकृत $\mathrm{NH_3}$ अणु (0.033 M) रह जाते हैं। साम्यावस्था में यह $\mathrm{NH_3}$ इस प्रकार रहता है—

 $NH_4OH \rightleftharpoons NH_4^+ + OH^ 0.033M - y \qquad y \qquad y$

जहाँ $y = [OH^-] = [NH_4^+]$

परिणामी 75 mL विलयन, उदासीनीकरण के पश्चात् 2.5 मिलीमोल NH_4^+ आयन $(0.033\,\mathrm{M})$ से युक्त होता है। अतः NH_4^+ को कुल सांद्रता इस प्रकार दी जाती है—

 $[NH_4^{+}] = 0.033 + y$

चूँकि y कम है, $[NH_4OH] \simeq 0.033 \text{ M}$ तथा $[NH_4^{\dagger}] \simeq 0.033 \text{M}$.

हम जानते हैं कि

 $K_{\rm b} = [{\rm NH_4}^+][{\rm OH}^-] \ / \ [{\rm NH_4OH}]$ = y(0.033)/(0.033) = 1.77 × 10⁻⁵ M
अत: y = 1.77 × 10⁻⁵ = [OH]
[H⁺] = 10⁻¹⁴ / 1.77 × 10⁻⁵ = 0.56 × 10⁻⁹
pH = 9.24

7.11.9 लवणों का जल-अपघटन एवं इनके विलयन का pH

अम्लों तथा क्षारकों के निश्चित अनुपात में अभिक्रिया द्वारा बनाए गए लवणों का जल में आयनन होता है। आयनन द्वारा बने धनायन, ऋणायन जलीय विलयन में जलयोजित होते हैं या जल से अभिक्रिया करके अपनी प्रकृति के अनुसार अम्ल या क्षार का पुर्नरूतपादन करते हैं। जल तथा धनायन अथवा ऋणायन या दोनों से होने वाली अन्योन्य प्रक्रिया को 'जल–अपघटन' कहते हैं। इस अन्योन्य क्रिया से pH प्रभावित होती है। प्रबल क्षारकों द्वारा दिए गए धनायन (उदाहरणार्थ— Na^+ , K^+ , Ca^{2+} , Ba^{2+} आदि) तथा प्रबल अम्लों द्वारा दिए गए ऋणायन (उदाहरणार्थ— Cl^- , Br^- , NO_3^- , ClO_4^- आदि) केवल जल–योजित होते हैं, जल–अपघटित नहीं होते हैं। इसलिए प्रबल अम्लों तथा प्रबल क्षारों से बने लवणों के घोल उदासीन होते हैं। यानी उनका pH 7 होती है। यद्यपि अन्य प्रकार के लवणों का जल अपघटन होता है।

अब हम निम्नलिखित लवणों के जल-अपघटन पर विचार करते हैं:

- (i) दुर्बल अम्लों एवं प्रबल क्षारकों के लवण, उदाहरणार्थ— CH₃COONa
- (ii) प्रबल अम्लों एवं दुर्बल क्षारकों के लवण, उदाहरणार्थ— NH_4Cl , तथा
- (iii) दुर्बल अम्लों एवं दुर्बल क्षारकों के लवण, उदाहरणार्थ— ${
 m CH_3COONH_4}$

प्रथम उदाहरण में CH_3COONa , दुर्बल अम्ल CH_3COOH तथा प्रबल क्षार NaOH का लवण है, जो जलीय विलयन में पूर्णतया आयनित हो जाता है।

 $CH_3COONa(aq) \rightarrow CH_3COO^-(aq) + Na^+(aq)$

इस प्रकार बने ऐसीटेट आयन जल के साथ जल अपघटित होकर ऐसीटिक अम्ल तथा OH- आयनों का निर्माण करते हैं—

 $\mathrm{CH_{3}COO^{\text{-}}(aq)} + \mathrm{H_{2}O(l)} \rightleftharpoons \mathrm{CH_{3}COOH(aq)} + \mathrm{OH^{\text{-}}(aq)}$

ऐसीटिक अम्ल एक दुर्बल अम्ल है ($K_a = 1.8 \times 10^{-5}$), जो विलयन में अनायिनत ही रहता है। इसके कारण विलयन में OH^- आयनों की सांद्रता में वृद्धि हो जाती है, जो विलयन को क्षारीय बनाती है। इस प्रकार बने विलयन की pH 7 से ज्यादा होती है।

इसी प्रकार दुर्बल क्षारक NH4OH तथा प्रबल अम्ल HCl से बना NH4Cl जल में पूर्णतया आयनित हो जाता है।

 $NH_4Cl(aq) \rightarrow NH_4^+(aq) +Cl^-(aq)$

अमोनियम आयनों का जल अपघटन होने से $\mathrm{NH_4OH}$ और $\mathrm{H^+}$ आयन बनते हैं।

$$NH_4^+(aq) + H_2O(1) \rightleftharpoons NH_4OH(aq) + H^+(aq)$$

अमोनियम हाइड्रॉक्साइड ($K_{\rm b}=1.77\times 10^{-5}$) एक दुर्बल क्षारक है। यह विलयन में अनायनित रहता है। इसके परिणामस्वरूप विलयन में ${\rm H^+}$ आयन सांद्रता बढ़ जाती है और विलयन को अम्लीय बना देती है। अतः ${\rm NH_4Cl}$ के जल में विलयन का ${\rm pH}$ 7 से कम होगा।

दुर्बल अम्ल तथा दुर्बल क्षारक द्वारा बनाए गए लवण $\mathrm{CH_{3}COONH_{4}}$ के जल-अपघटन को देखें। इसके द्वारा दिए गए आयनों का अपघटन इस प्रकार होता है—

$$\label{eq:ch3coo} \begin{split} \mathrm{CH_3COO^-} + \mathrm{NH_4^+} + \ \mathrm{H_2O} & \leftrightharpoons \mathrm{CH_3COOH} + \\ \mathrm{NH_4OH} \end{split}$$

 ${
m CH_3COOH}$ तथा ${
m NH_4OH}$ आंशिक रूप से इस प्रकार आयनीकृत रहते हैं-

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$
 $NH_4OH \rightleftharpoons NH_4^+ + OH^ H_2O \rightleftharpoons H^+ + OH^-$

विस्तार से गणना किए बिना कहा जा सकता है कि जल-अपघटन की मात्रा विलयन की सांद्रता से स्वतंत्र होती है। अत: विलयन का pH है—

$$pH = 7 + \frac{1}{2} (pK_a - pK_b)$$
 (7.38)

विलयन का pH 7 से ज्यादा होगा, यदि अंतरधनात्मक हो तथा pH 7 से कम होगा, यदि अंतर ऋणात्मक हो—

उदाहरण 7.25

ऐसीटिक अम्ल का pK_a तथा अमोनियम हाइड्रॉक्साइड का pK_b क्रमशः 4.76 और 4.75 है। अमोनियम ऐसीटेट विलयन की pH की गणना कीजिए।

हल

$$pH = 7 + \frac{1}{2} [pK_a - pK_b]$$

$$= 7 + \frac{1}{2} [4.76 - 4.75]$$

$$= 7 + \frac{1}{2} [0.01] = 7 + 0.005 = 7.005$$

7.12 बफर-विलयन

शरीर में उपस्थित कई तरल (उदाहरणार्थ—रक्त या मूत्र) के निश्चित pH होते हैं। इनके pH में हुआ परिवर्तन शरीर के ठीक से काम न करने (Malfunctioning) का सूचक है। कई रासायनिक एवं जैविक अभिक्रियाओं में भी pH का

नियंत्रण बहुत महत्त्वपूर्ण होता है। कई औषधीय एवं प्रसाधनीय संरूपणों (Consmetic Formulation) को किसी विशेष pH पर रखा जाता है एवं शरीर में प्रविष्ट कराया जाता है। ऐसे विलयन, जिनका pH तनु करने अथवा अम्ल या क्षारक की थोड़ी सी मात्रा मिलाने के बाद भी अपरिवर्तित रहता है, 'बफर-विलयन' कहलाते हैं। ज्ञात pH के विलयन के अम्ल को pK_a तथा क्षारक के pK_b के विदित मानों तथा अम्लों और लवणों के अनुपात या अम्लों तथा क्षारकों के अनुपात के नियंत्रण द्वारा बनाते हैं। ऐसिटिक अम्ल तथा सोडियम एसिटेट का मिश्रण लगभग pH, 4.75 का बफर विलयन देता है तथा अमोनियम क्लोराइड एवं अमोनियम हाइड्रॉक्साइड का मिश्रण pH, 9.25 देता है। बफर विलयनों के बारे में उच्च कक्षाओं में हम और अधिक पढ़ेंगे।

7.13 अल्पविलेय लवणों की विलेयता साम्यावस्था

हमें ज्ञात है कि जल में आयनिक ठोसों की विलेयता में बहुत अंतर रहता है। इनमें से कुछ तो इतने अधिक विलेय (जैसे कैल्सियम क्लोराइड) हैं कि वे प्रकृति में आर्द्रताग्राही होते हैं तथा वायुमंडल से जल-वाष्प शोषित कर लेते हैं। कुछ अन्य (जैसे लीथियम फ्लुओराइड) की विलेयता इतनी कम है कि इन्हें सामान्य भाषा में 'अविलेय' कहते हैं। विलेयता कई बातों पर निर्भर करती है, जिनमें से मुख्य है, लवण की जालक ऊष्मा (Lattice Enthalpy) तथा विलयन में आयनों की विलायक एंथैल्पी है। एक लवण को विलायक में घोलने के लिए आयनों के मध्य प्रबल आकर्षण बल (जालक एंथैल्पी) से आयन-विलायक अन्योन्य क्रिया अधिक होनी चाहिए। आयनों की विलायक एंथैल्पी को विलायकीयन के रूप में निरूपित करते हैं. जो सदैव ऋणात्मक होती है। अत: विलायकीय प्रक्रिया में ऊर्जा मुक्त होती है। विलायकीयन ऊर्जा की मात्रा विलायक की प्रकृति पर निर्भर होती है। अध्रवीय (सहसंयोजक) विलायक में विलायकीयन एंथैल्पी की मात्रा कम होती है, जो लवण की जालक ऊर्जा को पराथव (Overcome) करने में सक्षम नहीं है। परिणामस्वरूप लवण अध्रुवी विलायक में नहीं घुलता है। यदि कोई लवण एक सामान्य नियम से जल में घुल सकता है, तो इसकी विलायकीयन एंथैल्पी लवण की जालक एंथैल्पी से अधिक होनी चाहिए। प्रत्येक लवण की एक अभिलाक्षणीय विलेयता होती है, जो ताप पर निर्भर करती है। प्रत्येक लवण की अपनी विशिष्ट विलेयता होती है। यह ताप पर निर्भर करती है। हम इन लवणों को इनकी विलेयता के आधार पर तीन वर्गों में विभाजित करते हैं-

वर्ग I	विलेय	विलेयता > 0.1 M
वर्ग II	कुछ कम विलेय	0.01 < विलेयता < 0.1 M
वर्ग III	अल्प विलेय	विलेयता < 0.01 M

अब हम अन्य विलेय आयनिक लवण तथा इसके संतृप्त जलीय विलयन के बीच साम्यावस्था पर विचार करेंगे।

7.13.1 विलेयता गुणनफल स्थिरांक

आइए, बेरियम सल्फेट सदृश ठोस लवण, जो इसके संतृप्त जलीय विलयन के संपर्क में है, पर विचार करें। अघुलित ठोस तथा इसके संतृप्त विलयन के आयन के मध्य साम्यावस्था को निम्नलिखित समीकरण द्वारा प्रदर्शित किया जाता है—

$$BaSO_4(s) \stackrel{\overline{qq}}{=} Ba^{2+}(aq) + SO_4^{2-}(aq),$$

साम्यावस्था स्थिरांक निम्नलिखित समीकरण द्वारा प्रदर्शित किया जाता है—

> $K = \{[\mathrm{Ba^{2+}}][\mathrm{SO_4^{2-}}]\} \ / \ [\mathrm{BaSO_4}]$ शुद्ध ठोस पदार्थ की सांद्रता स्थिर होती है।

अत:
$$K_{sp} = K[BaSO_4] = [Ba^{2+}][SO_4^{2-}]$$
 (7.39)

 $K_{\rm sp}$ को 'विलेयता गुणनफल-स्थिरांक' या 'विलेयता गुणनफल' कहते हैं। उपरोक्त समीकरण में $K_{\rm sp}$ का प्रायोगिक मान $298~{\rm K}$ पर 1.1×10^{-10} है। इसका अर्थ यह है कि ठोस बेरियम सल्फेट, जो अपने संतृप्त विलयन के साथ साम्यावस्था में है, के लिए बेरियम तथा सल्फेट आयनों की सांद्रताओं का गुणनफल इसके विलेयता-गुणनफल स्थिरांक के तुल्य होता है। इन दोनों आयनों की सांद्रता बेरियम सल्फेट की मोलर-विलेयता के बराबर होगी। यदि मोलर विलेयता 'S' हो, तो

 1.1×10^{-10} = (S)(S) = S² या S = 1.05×10^{-5} इस प्रकार बेरियम सल्फेट की मोलर-विलेयता $1.05 \times 10^{-5} \text{ mol L}^{-1}$ होगी।

कोई लवण वियोजन के फलस्वरूप भिन्न-भिन्न आवेशों वाले दो या दो से अधिक ऋणायन या धनायन दे सकता है। उदाहरण के लिए— आइए, हम जिर्कोनियम फॉस्फेट $(Zr^{4+})_3$ $(PO_4^{\ 3-})_4$ सदृश लवण पर विचार करें, जो चार धनावेशवाले तीन जिर्कोनियम आयनों एवं तीन ऋण आवेशवाले 4 फास्फेट ऋणायनों में वियोजित होता है। यदि जिर्कोनियम फास्फेट की मोलर-विलेयता 'S' हो, तो इस यौगिक के रससमीकरणिमतीय अनुपात के अनुसार

 $[Zr^{4+}]=3S$ तथा $[PO_4^{\ 3-}]=4S$ होंगे। अत: $K_{\rm sp}=(3S)^3\ (4S)^4=6912\ (S)^7$ या $S=\{K_{\rm sp}\ /\ (3^3\times 4^4)\}^{1/7}=(K_{\rm sp}\ /\ 6912)^{1/7}$

यदि किसी ठोस लवण, जिसका सामान्य सूत्र $M_x^{p^+} X_y^{q^-}$ हो, जो अपने संतृप्त विलयन के साथ साम्यावस्था में हो तथा जिसकी मोलर-विलेयता 'S' ही, को निम्नलिखित समीकरण द्वारा व्यक्त किया जा सकता है—

$$M_x X_y(s) \rightleftharpoons x M^{p+}(aq) + y X^{q-}(aq)$$

(यहाँ $x \times p^+ = y \times q^-$)

तथा इसका विलेयता-गुणनफल स्थिरांक निम्नलिखित समीकरण द्वारा व्यक्त किया जाता है—

$$K_{\rm sp} = [{\rm M^{p+}}]^{\rm x} [{\rm X^{q-}}]^{\rm y} = ({\rm xS})^{\rm x} ({\rm yS})^{\rm y}$$
 (7.40)
 $= {\rm x^{\rm x}} \cdot {\rm y^{\rm y}} \cdot {\rm S^{({\rm x+y})}}$
 ${\rm S^{({\rm x+y})}} = K_{\rm sp} / {\rm x^{\rm x}} \cdot {\rm y^{\rm y}}$
स्मिलिए ${\rm S} = (K_{\rm sp} / {\rm x^{\rm x}} \cdot {\rm y^{\rm y}})^{1/{\rm x+y}}$ (7.41)

समीकरण में जब एक या अधिक स्पीशीज़ की सांद्रता उनकी साम्यावस्था सांद्रता नहीं होती है, तब $K_{\rm sp}$ को $Q_{\rm sp}$ से व्यक्त किया जाता है (देखें इकाई 7.6.2)। स्पष्ट है कि साम्यावस्था पर $K_{\rm sp} = Q_{\rm sp}$ होता है, किंतु अन्य परिस्थितियों में यह अवक्षेपण या विलयन (Dissolution) प्रक्रियाओं का संकेत देता है। सारणी 7.9 में 298 K पर कुछ सामान्य लवणों के विलेयता–गुणनफल स्थिरांकों के मान दिए गए हैं।

उदाहरण 7.26

यह मानते हुए कि किसी भी प्रकार के आयन जल से अभिक्रिया नहीं करते, शुद्ध जल में A_2X_3 की विलेयता की गणना कीजिए। A_2X_3 का विलेयता गुणनफल $K_{\rm sp}=1.1\times 10^{-23}$ है।

हल

$$A_2X_3 \rightarrow 2A^{3+} + 3X^{2-}$$
 $K_{\rm sp} = [A^{3+}]^2 [X^2]^3 = 1.1 \times 10^{-23}$
यदि $S = A_2X_3$, की विलेयता, तो $[A^{3+}] = 2S$; $[X^2] = 3S$
इस प्रकार $K_{\rm sp} = (2S)^2 (3S)^3 = 108S^5$
 $= 1.1 \times 10^{-23}$
अत: $S^5 = 1 \times 10^{-25}$
 $S = 1.0 \times 10^{-5} \, {\rm mol/L}$.

उदाहरण 7.27

दो अल्प विलेय लवणों Ni $(OH)_2$ एवं AgCN के विलेयता-गुणनफल के मान क्रमश: 2.0×10^{-15} एवं 6×10^{-17} हैं। कौन सा लवण अधिक विलेय है?

सारणी 7.9 **298K** पर कुछ सामान्य आयनिक लवणों के विलेयता-गुणनफल स्थिरांक $K_{\rm sp}$ के मान

सिल्वर ब्रोमाइड AgBr 5.0 × 10-13 (सल्वर ब्रोमाइड Ag2CO3 8.1 × 10-12 (सल्वर कार्बोनेट Ag2CO4 1.1 × 10-12 (सल्वर क्रोमेट Ag2CO4 1.8 × 10-10 (सल्वर क्लोराइड Ag1 8.3 × 10-17 (प्लोमिनयम हाइड्रॉक्साइड Ag2SO4 1.4 × 10-5 (बेरियम क्रोमेट Al(OH)3 1.3 × 10-33 (बेरियम फल्फेट BaCrO4 1.2 × 10-10 (क्लेल्सयम कार्बोनेट BaSO4 1.1 × 10-10 (क्लेल्सयम कार्बोनेट BaSO4 1.1 × 10-10 (क्लेल्सयम फल्फोराइड CaCO3 2.8 × 10-9 (क्लेल्सयम झाइड्रॉक्साइड CaF2 5.3 × 10-9 (क्लेल्सयम आॅक्सेलेट CaCQ04 4.0 × 10-9 (क्लेल्सयम सल्फेट केल्सयम सल्फेट CaSO4 9.1 × 10-6 (क्लेल्सयम सल्फेट CaCO3 2.5 × 10-6 (क्लेल्सयम सल्फेट CaCQ04 4.0 × 10-9 (क्लेल्सयम सल्फाइड Cd(OH)2 2.5 × 10-14 (CdS) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a
सिल्वर कार्बोनेट सिल्वर कार्बोनेट सिल्वर क्रोमेट Ag_2CO_3 8.1×10^{-12} सिल्वर क्रोमेट Ag_2CrO_4 1.1×10^{-12} सिल्वर क्लोराइड $AgCl$ 1.8×10^{-10} सिल्वर सल्फेट AgI 8.3×10^{-17} ऐलुिमिनयम हाइड्रॉक्साइड Ag_2SO_4 1.4×10^{-5} बेरियम क्रोमेट $AI(OH)_3$ 1.3×10^{-33} बेरियम पलुओराइड $BaCrO_4$ 1.2×10^{-10} केल्सियम सल्फेट BaF_2 1.0×10^{-6} केल्सियम पलुओराइड $CaCO_3$ 2.8×10^{-9} केल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $CaCO_4$ 4.0×10^{-9} केहिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमयम सल्फेट $CaCO_4$ 4.0×10^{-9} केडिमयम सल्फेट $CaCO_4$ 4.0×10^{-9} केडिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} 4.0×10^{-9} $4.$
सिल्वर क्रोमेट Ag_2CrO_4 1.1×10^{-12} सिल्वर क्लोराइड $AgCl$ 1.8×10^{-10} सिल्वर सल्फेट AgI 8.3×10^{-17} ऐलुमिनियम हाइड्रॉक्साइड Ag_2SO_4 1.4×10^{-5} बेरियम क्रोमेट $AI(OH)_3$ 1.3×10^{-33} बेरियम फ्लुओराइड $BaCrO_4$ 1.2×10^{-10} केल्सियम सल्फेट BaF_2 1.0×10^{-6} केल्सियम फ्लुओराइड $CaCO_3$ 2.8×10^{-9} केल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केडिमयम हाइड्रॉक्साइड $CaSO_4$ 4.0×10^{-9} केडिमयम सल्फेट ACO_4 ACO_5 ACO_5 ACO_5 ACO_6 ACO_7 AC
सिल्वर क्लोराइड $AgCl$ 1.8×10^{-10} सिल्वर सल्फेट AgI 8.3×10^{-17} ऐलुमिनियम हाइड्रॉक्साइड Ag_2SO_4 1.4×10^{-5} बेरियम क्रोमेट $Al(OH)_3$ 1.3×10^{-33} बेरियम पर्लुओराइड $BaCrO_4$ 1.2×10^{-10} बेरियम सल्फेट BaF_2 1.0×10^{-6} केल्सियम कार्बोनेट $BaSO_4$ 1.1×10^{-10} केल्सियम एलुओराइड $CaCO_3$ 2.8×10^{-9} केल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्प्सियम सल्फेट $CaSO_4$ 9.1×10^{-6} केल्प्सियम सल्फाइड $CaSO_4$ 9.1×10^{-6} केल्प्सियम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} क्रोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्यूप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
सिल्वर सल्फेट AgI 8.3×10^{-17} ऐलुमिनियम हाइड्रॉक्साइड Ag_2SO_4 1.4×10^{-5} बेरियम क्रोमेट $AI(OH)_3$ 1.3×10^{-33} बेरियम पर्लुओराइड $BaCrO_4$ 1.2×10^{-10} बेरियम सल्फेट BaF_2 1.0×10^{-6} केल्लियम काबोंनेट $BaSO_4$ 1.1×10^{-10} केल्लियम एलुओराइड $CaCO_3$ 2.8×10^{-9} केल्लियम ऑक्सेलेट $CaCO_3$ 2.8×10^{-9} केल्लियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्लियम सल्फेट CaC_2O_4 4.0×10^{-9} केडिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमयम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} कोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्युप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
ऐलुमिनियम हाइड्रॉक्साइड $A_{g2}SO_4$ 1.4×10^{-5} बेरियम क्रोमेट $AI(OH)_3$ 1.3×10^{-33} बेरियम पर्लुओराइड $BaCrO_4$ 1.2×10^{-10} बेरियम पर्लुओराइड BaF_2 1.0×10^{-6} केल्सियम काबोंनेट $BaSO_4$ 1.1×10^{-10} केल्सियम पर्लुओराइड $CaCO_3$ 2.8×10^{-9} केल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्सियम सल्फेट CaC_2O_4 4.0×10^{-9} केडिमियम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमियम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} क्रोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्युप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
बेरियम फ्रोमेट $Al(OH)_3$ 1.3×10^{-33} वेरियम पर्लुओराइड $BaCrO_4$ 1.2×10^{-10} वेरियम पर्लुओराइड BaF_2 1.0×10^{-6} केल्सियम काबोंनेट $BaSO_4$ 1.1×10^{-10} केल्सियम पर्लुओराइड $CaCO_3$ 2.8×10^{-9} केल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम आक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्सियम सल्फेट CaC_2O_4 4.0×10^{-9} केडिमियम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केल्प्रियम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} कोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्युप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
बेरियम फ्लुओराइड $BaCrO_4$ 1.2×10^{-10} बेरियम सल्फेट BaF_2 1.0×10^{-6} कैल्सियम कार्बोनेट $BaSO_4$ 1.1×10^{-10} कैल्सियम फ्लुओराइड $CaCO_3$ 2.8×10^{-9} कैल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} कैल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} कैल्सियम सल्फेट CaC_2O_4 4.0×10^{-9} कैडिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमयम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} कोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्यूप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
बेरियम सल्फेट BaF_2 1.0×10^{-6} केल्सियम कार्बोनेट $BaSO_4$ 1.1×10^{-10} केल्सियम फ्लुओग्रइड $CaCO_3$ 2.8×10^{-9} केल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्सियम सल्फेट CaC_2O_4 4.0×10^{-9} केडिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमयम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} कोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्युप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
केल्सियम कार्बोनेट $acc{BaSO}_4$ $acc{BaSO$
कैल्सियम फ्लुओराइड $CaCO_3$ 2.8×10^{-9} कैल्सियम हाइड्रॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्सियम सल्फेट CaC_2O_4 4.0×10^{-9} केडिमयम हाइड्रॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमयम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} क्रोमियम हाइड्रॉक्साइड CdS 8.0×10^{-27} क्युप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
कैल्सियम हाइड्ॉक्साइड CaF_2 5.3×10^{-9} केल्सियम ऑक्सेलेट $Ca(OH)_2$ 5.5×10^{-6} केल्सियम सल्फेट CaC_2O_4 4.0×10^{-9} केडिमियम हाइड्ॉक्साइड $CaSO_4$ 9.1×10^{-6} केडिमियम सल्फाइड $Cd(OH)_2$ 2.5×10^{-14} क्रोमियम हाइड्ॉक्साइड CdS 8.0×10^{-27} क्युप्रस ब्रोमाइड $Cr(OH)_3$ 6.3×10^{-31}
केल्सियम ऑक्सेलेट
कैल्सियम सल्फेट CaC2O4 4.0 × 10-9 कैडिमियम हाइड्रॉक्साइड CaSO4 9.1 × 10-6 कैडिमियम सल्फाइड Cd(OH)2 2.5 × 10-14 क्रोमियम हाइड्रॉक्साइड CdS 8.0 × 10-27 क्युप्रस ब्रोमाइड Cr(OH)3 6.3 × 10-31
कैंडिमियम हाइड्ॉक्साइड CaSO4 9.1 × 10-6 कैंडिमियम सल्फाइड Cd(OH)2 2.5 × 10-14 क्रोमियम हाइड्ॉक्साइड CdS 8.0 × 10-27 क्युप्रस ब्रोमाइड Cr(OH)3 6.3 × 10-31
कैडिमियम सल्फाइड Cd(OH)2 2.5 × 10-14 क्रोमियम हाइड्ॉक्साइड CdS 8.0 × 10-27 क्युप्रस ब्रोमाइड Cr(OH)3 6.3 × 10-31
क्रोमियम हाइड्रॉक्साइड CdS 8.0 × 10-27 क्युप्रस ब्रोमाइड Cr(OH)₃ 6.3 × 10-31
क्यूप्रस ब्रोमाइड
44x(1 x1·1126
क्युप्रिक कार्बोनेट CuBr 5.3 × 10-9
क्यूप्रस क्लोराइड CuCO ₃ 1.4 × 10 ⁻¹⁰
क्यूप्रिक हाइड्रॉक्साइड CuCl 1.7 × 10-6
क्युप्रस आयोडाइड Cu(OH) ₂ 2.2 × 10 ⁻²⁰
क्यूप्रिक सल्फाइड CuI 1.1 × 10-12
फेरस कार्बोनेट CuS 6.3 × 10-36
फेरस हाइड्रॉक्साइड FeCO ₃ 3.2 × 10 ⁻¹¹
फेरिक हाइड्रॉक्साइड $Fe(OH)_2$ 8.0×10^{-16}
फेरस सल्फाइड Fe(OH)3 1.0 × 10-38
मरक्यूरस ब्रोमाइड FeS 6.3×10^{-18}
मरक्यूरस क्लोराइड Hg_2Br_2 5.6×10^{-23}
मरक्यूरस आयोडाइड Hg ₂ Cl ₂ 1.3 × 10 ⁻¹⁸
मरक्यूरेस सल्फेट Hg ₂ I ₂ 4.5 × 10- ²⁹
मरक्यूरिक सल्फाइड Hg_2SO_4 7.4×10^{-7}
मैग्नीशियम कार्बोनेट HgS 4.0×10^{-53}
मैग्नीशियम फ्लुओराइड MgCO ₃ 3.5 × 10-8
मैंग्नीशियम हाइँड्रॉक्साइड MgF_2 6.5×10^{-9}
मुैग्नी्शियम ऑक्सेलेट Mg(OH)2 1.8 × 10-11
मैंग्नीज कार्बोनेट MgC_2O_4 7.0×10^{-7}
मैग्नीज सल्फाइड MnCO ₃ 1.8 × 10-11
मैग्नीज सल्फाइड MnS 2.5 × 10- ¹³ निकेल हाइडॉक्साइड Ni(OH) ₂ 2.0 × 10- ¹⁵
()
निकैल सल्फाइड NiS 4.7 × 10-5 लंड ब्रोमाइड PbBr ₂ 4.0 × 10-5
लंड ब्राबीनेट $PbCO_3$ 7.4×10^{-14}
लंड क्लोराइड PbCl ₂ 1.6 × 10-5
लंड फ्लुओराइड PbF ₂ 7.7 × 10-8
लंड हाइड्रॉक्साइड $Pb(OH)_2$ 1.2×10^{-15}
लेड आयोडाइड PbI ₂ 7.1 × 10-9
लंड सल्फेट PbSO ₄ 1.6 × 10-8
लंड सल्फाइड PbS 8.0 × 10 ⁻²⁸
स्टेनस हाइड्रॉक्साइड Sn(OH) ₂ 1.4 × 10 ⁻²⁸
स्टेनस सल्फाइड SnS 1.0 × 10-25
स्ट्रॉन्शियम कार्बोनेट SrCO ₃ 1.1 × 10-10
स्ट्रॉन्शियम फ्जुओराइड SrF ₂ 2.5 × 10 ⁻⁹
स्ट्रॉन्शियम सल्फेट SrSO ₄ 3.2 × 10- ⁷
थैलस ब्रोमाइड TlBr 3.4 × 10-6
थैलस क्लोराइड TICl 1.7 × 10-4
थैलस आयोडाइड TII 6.5 × 10-8
जिंक कार्बोनेट $ZnCO_3$ 1.4×10^{-11}
जिंक हाइड्रॉक्साइड $Zn(OH)_2$ 1.0×10^{-15}
जिंक सल्फाइंड ZnS 1.6 × 10-24

 $AgCN \rightleftharpoons Ag^{+} + CN^{-}$ $K_{\rm sp} = [{\rm Ag}^+][{\rm CN}^-] = 6 \times 10^{-17}$ $Ni(OH)_2 \rightleftharpoons Ni^{2+} + 2OH^{-}$ $K_{\rm sp} = {\rm [Ni}^{2+} {\rm [OH}^{-}]^2 = 2 \times 10^{-15}$ यदि $[Ag^{\dagger}] = S_1$, तो $[CN^{\dagger}] = S_1$ यदि $[Ni^{2+}] = S_2$, तो $[OH^-] = 2S_2$ $S_1^2 = 6 \times 10^{-17}$, $S_1 = 7.8 \times 10^{-9}$ $(S_2)(2S_2)^2 = 2 \times 10^{-15}, S_2 = 0.58 \times 10^{-4}$ AgCN से Ni(OH), की विलेयता अधिक है।

7.13.2 आयनिक लवणों की विलेयता पर सम आयन

ला-शातलिए सिद्धांत के अनुसार, यह आशा की जाती है कि यदि किसी लवण विलयन में किसी एक आयन की सांद्रता बढ़ाने पर आयन अपने विपरीत आवेश के आयन के साथ संयोग करेगा तथा विलयन से कुछ लवण तब तक अवक्षेपित होगा, जब तक एक बार पुन: $K_{sp} = Q_{sp}$ न हो जाए। यदि किसी आयन की सांद्रता घटा दी जाए, तो कुछ और लवण घुलकर दोनों आयनों की सांद्रता बढ़ा देंगे, ताकि फिर $\mathbf{K}_{\mathrm{sp}} = \mathbf{Q}_{\mathrm{sp}}$ हो जाए। यह विलेय लवणों के लिए भी लागू हैं, सिवाय इसके कि आयनों की उच्च सांद्रता के कारण \mathbf{Q}_{sp} व्यंजक में मोलरता के स्थान पर हम सिक्रयता (activities) का प्रयोग करते हैं। इस प्रकार सोडियम क्लोराइड के संतृप्त विलयन में HCI के वियोजन से प्राप्त क्लोराइड आयन की सांद्रता (सक्रियता) बढ जाने के कारण सोडियम क्लोराइड का अवक्षेपण हो जाता है। इस विधि से प्राप्त सोडियम क्लोराइड बहुत ही शुद्ध होता है। इस प्रकार हम सोडियम अथवा मैग्नीशियम सल्फेट जैसी अशुद्धियाँ दूर कर लेते हैं। भारात्मक विश्लेषण में किसी आयन को बहुत कम विलेयता वाले उसके अल्प विलेय लवण के रूप में पूर्णरूपेण अवक्षेपित करने में भी सम आयन प्रभाव का प्रयोग किया जाता है। इस प्रकार हम भारात्मक विश्लेषण में सिल्वर आयन का अवक्षेपण सिल्वर क्लोराइड के रूप में. फेरिक अम्ल का अवक्षेपण फेरिक हाइडॉक्साइड के रुप में तथा अवक्षेपण बेरियम आयन का बेरियम सल्फेट के रूप में कर सकते हैं।

उदाहरण 7.28

0.10 M NaOH में Ni (OH)2 की मोलर विलेयता की गणना किजिए। Ni (OH)2 का आयनिक गुणनफल 2.0 ×10⁻¹⁵ है।

माना कि Ni (OH), की विलेयता S mol L⁻¹ के विलेय होने से Ni²⁺ के (S) मोल एवं OH⁻ के 2S mol L⁻¹ मोल लिटर बनते हैं, लेकिन OH की कुल सांद्रता OH $(0.10 + 2S) \text{ mol L}^{-1}$ होगी, क्योंकि विलयन में पहले से ही NaOH से प्राप्त 0.10 mol L-1 उपस्थित है। $K_{\rm sp} = 2.0 \times 10^{-15} = [\text{Ni}^{2+}] [\text{OH}^{-}]^2 = (\text{S}) (0.10 + \text{Ni}^{-})^2$ चूँकि $K_{\rm sp}$ का मान कम है 2S << 0.10

अत: (0.10 + 2S) ≈ 0.10 अर्थात् $2.0 \times 10^{-15} = \mathrm{S} \left(0.10\right)^2$ $S = 2.0 \times 10^{-13} M = [Ni^{2+}]$

दुर्बल अम्ल के लवणों की विलेयता कम pH पर बढ्ती है, क्योंकि कम pH पर ऋणायन की सांद्रता इसके प्रोटॉनीकरण

के कारण घटती है, जो लवण की विलेयता को बढ़ा देता है। इससे $K_{\rm sp}=Q_{\rm sp}$ हमें दो साम्यों को एक साथ संतुष्ट करना होता है, अर्थात् $K_{\rm sp}=[{
m M}^+]$ [X-],

$$HX(aq) \rightleftharpoons H^{+}(aq) + X^{-}(aq);$$

$$K_{\mathbf{a}} = \frac{\left[\mathbf{H}^{+}(\mathbf{a}\mathbf{q})\right]\left[\mathbf{X}^{-}(\mathbf{a}\mathbf{q})\right]}{\left[\mathbf{H}\mathbf{X}(\mathbf{a}\mathbf{q})\right]}$$

 $[X^{-}] / [HX] = K_a / [H^{+}]$ दोनों तरफ का व्युत्क्रम लेकर 1 जोड़ने पर हमें प्राप्त

$$\frac{HX}{X^{-}}$$
 1 $\frac{H}{K_{2}}$ 1

$$\frac{\left[\mathsf{HX}\right] + \left[\mathsf{X}^{-}\right]}{\left[\mathsf{X}^{-}\right]} = \frac{\left[\mathsf{H}^{+}\right] + K_{\mathsf{a}}}{K_{\mathsf{a}}}$$

पुन: व्युत्क्रम लेने पर हमें प्राप्त होगा [X-] / {[X-] + [HX]} = f = $K_{\rm a}$ / ($K_{\rm a}$ + [H+])। यह देखा जा सकता है कि pH के घटने पर 'f' भी घटता है। यदि दी गई pH पर लवण की विलेयता S हो, तो

$$K_{\rm sp}$$
 = [S] [f S] = S² { $K_{\rm a}$ / ($K_{\rm a}$ + [H+])} एवं S = { $K_{\rm sp}$ ([H+] + $K_{\rm a}$) / $K_{\rm a}$ } $^{1/2}$ (7.42) अतः S, [H+] के बढ़ने या pH के घटने पर विलेयता बढ़ती है।

सारांश

यदि द्रव से निकलनेवाले अणुओं की संख्या वाष्प से द्रव में लौटनेवाले अणुओं की संख्या के बराबर हो, तो साम्य स्थापित हो जाता है। यह गतिशील प्रकृति का होता है। साम्यावस्था भौतिक एवं रासायनिक, दोनों प्रक्रमों द्वारा स्थापित हो सकती है। इस अवस्था में अग्र एवं पश्च अभिक्रिया की दर समान होती है। उत्पादों की सांद्रता को अभिकारकों की सांद्रता से भाग देने पर हम प्रत्येक पद को रससमीकरणमितीय स्थिरांक के घात के रूप में साम्य स्थिरांक K को व्यक्त करते हैं।

अभिक्रिया $a A + b B \rightleftharpoons c C + d D$ के लिए $K = [C]^c [D]^d / [A]^a [B]^b$

नियत ताप पर साम्यावस्था स्थिरांक का मान नियत रहता है। इस अवस्था में सभी स्थूल गुण जैसे सांद्रता, दाब आदि स्थिर रहते हैं। गैसीय अभिक्रिया के लिए साम्यावस्था स्थिरांक को K_p से व्यक्त करते हैं। इसमें साम्यावस्था स्थिरांक पद में सांद्रता के स्थान पर हम आंशिक दाब लिखते हैं। अभिक्रिया की दिशा का अनुमान अभिक्रिया भागफल Q_p से लगाया जाता है, जो साम्यावस्था पर K_p के बराबर होता है। 'ला–शातेलीए सिद्धांत', के अनुसार ताप, दाब, सांद्रता आदि कारकों में से किसी एक में पिरवर्तन के कारण साम्यावस्था उसी दिशा में विस्थापित होती है, जो पिरवर्तन के प्रभाव को कम या नष्ट कर सकें उसका उपयोग विभिन्न कारकों जैसे ताप, सांद्रता, दाब, उत्प्रेरक और अक्रिय गैसों के साम्य की दिशा पर प्रभाव के अध्ययन में किया जाता है तथा उत्पाद की मात्रा का नियंत्रण इन कारकों को नियंत्रित करके किया जा सकता है। अभिक्रिया मिश्रण के साम्यावस्था संगठन को उत्प्रेरक प्रभावित नहीं करता, किंतु अभिक्रिया की गित को नए निम्न ऊर्जा–पथ में अभिकारक से उत्पाद तथा विलोमत: उत्पाद से अभिकारक में बदलकर बढ़ाता है।

वे सभी पदार्थ, जो जलीय विलयन में विद्युत् का चालन करते हैं, 'विद्युत् अपघट्य' कहलाते हैं। अम्ल, क्षारक तथा लवण 'विद्युत् अपघट्य' हैं। ये जलीय विलयन में वियोजन या आयनन द्वारा धनायन एवं ऋणायन के उत्पादन के कारण विद्युत् का चालन करते हैं। प्रबल विद्युत् अपघट्य पूर्णत: वियोजित हो जाते हैं। दुर्बल विद्युत् अपघट्य में आयनित एवं अनायनित अणुओं के मध्य साम्य होता है। आरेनियस के अनुसार, जलीय विलयन में अम्ल, हाइड्रोजन आयन तथा क्षारक, हाइड्रॉक्सिल आयन देते हैं। संगत संयुग्मी अम्ल देता है। दूसरी ओर ब्रान्सटेड-लोरी ने अम्ल को प्रोटॉनदाता के कप में एवं क्षारक प्रोटॉनग्राही के कप में परिभाषित किया। जब एक ब्रान्स्टेड-लोरी अम्ल एक क्षारक से अभिक्रिया करता है, तब यह इसका संगत संयग्मी क्षारक एवं क्रिया करने वाले क्षारक के संगत संयुग्मी अम्ल को बनाता है। इस प्रकार संयुग्मी अम्ल-क्षार में केवल एक प्रोटॉन का अंतर होता है। आगे, लुइस ने अम्ल को सामान्य रूप में इलेक्ट्रॉन युग्मग्राही एवं क्षारक को इलेक्ट्रॉन युग्मदाता के रूप में परिभाषित किया। आरेनियस की परिभाषा के अनुसार, दुर्बल अम्ल के वियोजन के लिए स्थिरांक (K) तथा दुर्बल क्षार के वियोजन के लिए स्थिरांक (K,) के व्यंजक को विकसित किया गया। आयनन की मात्रा एवं उसकी सांद्रता पर निर्भरता तथा सम आयन का विवेचन किया गया है। हाइड्रोजन आयन की सांद्रता (सिक्रयता) के लिए pH मापक्रम (pH = -log[H+]) प्रस्तुत किया गया है। तथा उसे अन्य राशियों के लिए विस्तारित किया ($pOH = -\log[OH^-]$) ; $pK_s = -\log[K_s]$; $pK_s = -\log[K_s]$ $-\log[K_{\rm g}]$ तथा $pK_{\rm m}=-\log[K_{\rm m}]$ आदि) गया है। जल के आयनन का अध्ययन करने पर हम देखते हैं कि समीकरण pH+ $pOH = pK_{m}$ हमेशा संतुष्ट होती है। प्रबल अम्ल एवं दुर्बल क्षार, दुर्बल अम्ल एवं प्रबल क्षार और दुर्बल अम्ल एवं दुर्बल क्षार के लवणों का जलीय विलयन में जल-अपघटन होता है। बफर विलयन की परिभाषा तथा उसके महत्त्व का संक्षिप्त वर्णन किया गया है। अल्प विलेय लवणों के विलेयता संबंधी साम्यों का वर्णन एवं विलेयता गुणांक स्थिरांक (K_) की व्युत्पत्ति करते हैं। इसका संबंध लवणों की विलेयता से स्थापित किया गया। विलयन से लवण के अवक्षेपण या उसके जल में विलेयता की शर्तों का निर्धारण किया गया है। सम आयन एवं अल्प विलेय लवणों की विलयेता के महत्त्व की भी विवेचना की गई है।

विद्यार्थियों के लिए इस एकक से संबंधित निर्देशित क्रियाएँ

- (क) विद्यार्थी विभिन्न ताजा फलों एवं सिब्जियों के रसों, मृदु पेय, शरीर पदार्थी द्रवों एवं उपलब्ध जल के नमूनों का pH ज्ञात करने के लिए pH पेपर का उपयोग कर सकते हैं।
- (ख) pH पेपर का उपयोग विभिन्न लवणों का विलयन की pH ज्ञात करने में भी किया जा सकता है। वह यह पता कर सकता/सकती है कि ये प्रबल/दुर्बल अम्लों या क्षारों से बनाए गए हैं।
- (ग) वे सोडियम एसीटेट एवं एसीटिक अम्ल को मिश्रित कर कुछ बफर विलयन बना सकते हैं एवं pH पेपर का उपयोग कर उनका pH ज्ञात कर सकते हैं।
- (घ) उन्हें विभिन्न pH के विलयनों में विभिन्न रंग प्रेक्षित करने के लिए सूचक दिए जा सकते हैं।
- (ङ) सूचकों का उपयोग कर कुछ अम्ल क्षार अनुमापन कर सकते हैं।
- (च) वे अल्प विलेय लवणों की विलेयता पर सम आयन प्रभाव को देख सकते हैं।
- (छ) यदि विद्यालय में pH मीटर उपलब्ध हो, तो वे इससे pH माप कर उसकी pH पेपर से प्राप्त परिणामों से तुलना कर सकते हैं।

अभ्यास

- 7.1 एक द्रव को सीलबंद पात्र में निश्चित ताप पर इसके वाष्प के साथ साम्य में रखा जाता है। पात्र का आयतन अचानक बढ़ा दिया जाता है।
 - (क) वाष्प-दाब परिवर्तन का प्रारंभिक परिणाम क्या होगा?
 - (ख) प्रारंभ में वाष्पन एवं संघनन की दर केसे बदलती है?
 - (ग) क्या होगा, जब कि साम्य पुन: अंतिम रूप से स्थापित हो जाएगा तब अंतिम वाष्प दाब क्या होगा?
- 7.2 निम्न साम्य के लिए K_c क्या होगा, यदि साम्य पर प्रत्येक पदार्थ की सांद्रताएँ हैं $[SO_2]$ = 0.60M, $[O_2]$ = 0.82M एवं $[SO_3]$ = 1.90M

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

7.3 एक निश्चित ताप एवं कुल दाब $10^5 \, \mathrm{Pa}$ पर आयोडीन वाष्प में आयतनानुसार 40% आयोडीन परमाणु होते हैं।

$$I_2(g) \rightleftharpoons 2I(g)$$

साम्य के लिए K_p की गणना कीजिए।

- 7.4 निम्नलिखित में से प्रत्येक अभिक्रिया के लिए साम्य स्थिरांक K_c का व्यंजक लिखिए—
 - (i) $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$
 - (ii) $2Cu(NO_3)_2$ (s) $\rightleftharpoons 2CuO$ (s) $+ 4NO_2$ (g) $+ O_2$ (g)
 - (iii) $CH_3COOC_2H_5(aq) + H_2O(1) \rightleftharpoons CH_3COOH(aq) + C_2H_5OH(aq)$
 - (iv) Fe^{3+} (aq) + $3OH^-$ (aq) \rightleftharpoons $Fe(OH)_3$ (s)
 - (v) $I_2(s) + 5F_2 \rightleftharpoons 2IF_5$
- 7.5 $K_{_{\! D}}$ के मान से निम्नलिखित में से प्रत्येक साम्य के लिए $K_{_{\! C}}$ का मान ज्ञात कीजिए-
 - (i) 2NOCl (g) \rightleftharpoons 2NO (g) + Cl₂ (g); $K_p = 1.8 \times 10^{-2}$ at 500 K
 - (ii) $CaCO_3$ (s) \rightleftharpoons $CaO(s) + CO_2(g)$; $K_p = 167$ at 1073 K

7.6 साम्य NO (g) + O_3 (g) \rightleftharpoons NO $_2$ (g) + O_2 (g) के लिए 1000K पर $K_c = 6.3 \times 10^{14}$ है। साम्य में अग्र एवं प्रतीप दोनों अभिक्रियाएँ प्राथमिक रूप से द्विअणुक हैं। प्रतीप अभिक्रिया के लिए K_c क्या है?

- 7.7 साम्य स्थिरांक का व्यंजक लिखते समय समझाइए कि शुद्ध द्रवों एवं ठोसों को उपेक्षित क्यों किया जा सकता है?
- N_2 एवं O_{2^-} के मध्य निम्नलिखित अभिक्रिया होती है—

 $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$

यदि एक 10L के पात्र में 0.482 मोल N_2 एवं 0.933 मोल O_2 रखें जाएँ तथा एक ताप, जिसपर N_2O बनने दिया जाए तो साम्य मिश्रण का संघटन ज्ञात कीजिए $K_{\rm c}=2.0\times 10^{-37}$ ।

7.9 निम्निलिखित अभिक्रिया के अनुसार नाइट्रिक ऑक्साइड Br_2 से अभिक्रिया कर नाइट्रोसिल ब्रोमाइड बनाती है—

2NO (g) + Br_2 (g) \rightleftharpoons 2NOBr (g)

जब स्थिर ताप पर एक बंद पात्र में 0.087 मोल NO एवं 0.0437 मोल ${\rm Br}_2$ मिश्रित किए जाते हैं, तब 0.0518 मोल NOBr प्राप्त होती है। NO एवं ${\rm Br}_2$ की साम्य मात्रा ज्ञात कीजिए।

- 7.10 साम्य $2{
 m SO}_2({
 m g})+{
 m O}_2({
 m g}) \rightleftharpoons 2{
 m SO}_3({
 m g})$ के लिए $450{
 m K}$ पर K_p = 2.0×10^{10} bar है। इस ताप पर K_p का मान ज्ञात कीजिए।
- 7.11 HI(g) का एक नमूना 0.2~atm दाब पर एक फ्लास्क में रखा जाता है। साम्य पर HI(g) का आंशिक दाब 0.04~atm है। यहाँ दिए गए साम्य के लिए K_p का मान क्या होगा?

2HI (g) \rightleftharpoons H₂ (g) + I₂ (g)

- 7.12 500K ताप पर एक 20L पात्र में N_2 के 1.57 मोल, H_2 के 1.92 मोल एवं NH_3 के 8.13 मोल का मिश्रण लिया जाता है। अभिक्रिया N_2 (g) $+ 3H_2$ (g) $\rightleftharpoons 2NH_3$ (g) के लिए K_c का मान 1.7×10^2 है। क्या अभिक्रिया-मिश्रण साम्य में है? यदि नहीं, तो नेट अभिक्रिया की दिशा क्या होगी?
- 7.13 एक गैस अभिक्रिया के लिए

$$K_c = \frac{\left[\mathrm{NH_3}\right]^4 \left[\mathrm{O_2}\right]^5}{\left[\mathrm{NO}\right]^4 \left[\mathrm{H_2O}\right]^6} \ \ {}^{\frac{\lambda}{6}}, \ \overrightarrow{\mathrm{dl}}$$

इस व्यंजक के लिए संतुलित रासायनिक समीकरण लिखिए।

- 7.14 H_2O का एक मोल एवं CO का एक मोल 725 K ताप पर 10L के पात्र में लिए जाते हैं। साम्य पर 40% जल (भारात्मक) CO के साथ निम्निलिखित समीकरण के अनुसार अभिक्रिया करता है— H_2O (g) + CO (g) \rightleftharpoons H_2 (g) + CO_2 (g) अभिक्रिया के लिए साम्य स्थिरांक की गणना कीजिए।
- 7.15 700K ताप पर अभिक्रिया $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ के लिए साम्य स्थिरांक 54.8 है। यदि हमने शुरू में HI(g) लिया हो, 700K ताप साम्य स्थापित हो, तथा साम्य पर $0.5 \text{ mol } L^{-1} HI(g)$ उपस्थित हो, तो साम्य पर $H_2(g)$ एवं $I_2(g)$ की सांद्रताएँ क्या होंगी?
- 7.16 ICI, जिसकी सांद्रता प्रारंम्भ में 0.78 M है, को यदि साम्य पर आने दिया जाए, तो प्रत्येक की साम्य पर सांद्रताएँ क्या होंगी?

2ICl (g)
$$\rightleftharpoons$$
 I₂ (g) + Cl₂ (g); $K_c = 0.14$

7.17 नीचे दर्शाए गए साम्य में 899 K पर $K_{\rm p}$ का मान $0.04~{
m atm}$ है। $C_{
m p}H_{
m p}$ की साम्य पर सांद्रता क्या

होगी यदि $4.0~{
m atm}$ दाब पर ${
m C_2H_6}$ को एक फ्लास्क में रखा गया है एवं साम्यावस्था पर आने दिया जाता है?

 $C_2H_6(g) \rightleftharpoons C_2H_4(g) + H_2(g)$

7.18 एथेनॉल एवं ऐसीटिक अम्ल की अभिक्रिया से एथिल ऐसीटेट बनाया जाता है एवं साम्य को इस प्रकार दर्शाया जा सकता है—

 $\mathrm{CH_{3}COOH}\left(\mathrm{I}\right) + \mathrm{C_{2}H_{5}OH}\left(\mathrm{I}\right) \rightleftharpoons \mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{I}\right) + \mathrm{H_{2}O}\left(\mathrm{I}\right)$

- (i) इस अभिक्रिया के लिए सांद्रता अनुपात (अभिक्रिया-भागफल) $Q_{\rm c}$ लिखिए (टिप्पणी : यहाँ पर जल आधिक्य में नहीं हैं एवं विलायक भी नहीं हैं)
- (ii) यदि 293K पर 1.00 मोल ऐसीटिक अम्ल एवं 0.18 मोल एथेनॉल प्रारंभ में लिये जाएं तो अंतिम साम्य मिश्रण में 0.171 मोल एथिल ऐसीटेट है। साम्य स्थिरांक की गणना कीजिए।
- (iii) 0.5 मोल एथेनॉल एवं 1.0 मोल ऐसीटिक अम्ल से प्रारंभ करते हुए 293K ताप पर कुछ समय पश्चात् एथिल ऐसीटेट के 0.214 मोल पाए गए तो क्या साम्य स्थापित हो गया?
- 7.19 437K ताप पर निर्वात में PCl_5 का एक नमूना एक फ्लास्क में लिया गया। साम्य स्थापित होने पर PCl_5 की सांद्रता $0.5 \times 10^{-1} \, \text{mol L}^{-1} \, \text{पाई}$ गई, यदि K_c का मान $8.3 \times 10^{-3} \, \text{है}$, तो साम्य पर PCl_3 एवं Cl_9 की सांद्रताएं क्या होंगी?

 $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$

7.20 लोह अयस्क से स्टील बनाते समय जो अभिक्रिया होती है, वह आयरन (II) ऑक्साइड का कार्बन मोनोक्साइड के द्वारा अपचयन है एवं इससे धात्विक लोह एवं ${
m CO}_2$ मिलते हैं।

FeO (s) + CO (g) \rightleftharpoons Fe (s) + CO $_2$ (g); K_p = 0.265 atm at 1050K 1050K पर CO एवं CO $_2$ के साम्य पर आंशिक दाब क्या होंगे, यदि उनके प्रारंभिक आंशिक दाब हैं –

 p_{CO} = 1.4 atm एवं $p_{\mathrm{CO_2}}$ = 0.80 atm

- 7.21 अभिक्रिया N_2 (g) + $3H_2$ (g) $\rightleftharpoons 2NH_3$ (g) के लिए (500 K पर) साम्य स्थिरांक $K_c = 0.061$ है। एक विशेष समय पर मिश्रण का संघटन इस प्रकार है— $3.0 \ \text{mol L}^{-1} \ N_2, \ 2.0 \ \text{mol L}^{-1} \ H_2$ एवं $0.5 \ \text{mol L}^{-1} \ NH_3$ क्या अभिक्रिया साम्य में है? यदि नहीं, तो साम्य स्थापित करने के लिए अभिक्रिया िकस दिशा में अग्रसर होगी?
- 7.22 ब्रोमीन मोनोक्लोराइड BrCl विघटित होकर ब्रोमीन एवं क्लोरीन देता है तथा साम्य स्थापित होता है: $2 \text{BrCl } (g) \iff \text{Br}_2 (g) + \text{Cl}_2 (g)$ इसके लिए 500K पर $K_c = 32$ है। यदि प्रारंभ में BrCl की सांद्रता $3.3 \times 10^{-3} \text{ mol L}^{-1}$ हो, तो साम्य पर मिश्रण में इसकी सांद्रता क्या होगी?
- 7.23 $1127 {
 m K}$ एवं $1~{
 m atm}$ दाब पर CO तथा CO $_2$ के गैसीय मिश्रण में साम्यावस्था पर ठोस कार्बन में 90.55% (भारात्मक) CO है।

 $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$

उपरोक्त ताप पर अभिक्रिया के लिए K के मान की गणना कीजिए।

7.24 298K पर NO एवं O_2 से NO_2 बनती है- NO (g) + $\frac{1}{2}$ O_2 (g) \rightleftharpoons NO $_2$ (g)

अभिक्रिया के लिए (क) ΔG° एवं (ख) साम्य स्थिरांक की गणना कीजिए-

- $\Delta_{f}G^{\ominus}$ (NO₂) = 52.0 kJ/mol
- $\Delta_{f}G^{\ominus}$ (NO) = 87.0 kJ/mol
- $\Delta_{f}G^{\ominus}(O_{2}) = 0 \text{ kJ/mol}$
- 7.25 निम्निलिखित में से प्रत्येक साम्य में जब आयतन बढ़ाकर दाब कम किया जाता है, तब बतलाइए कि अभिक्रिया के उत्पादों के मोलों की संख्या बढ़ती है या घटती है या समान रहती है?
 - $(\overline{\mathfrak{A}})$ $\operatorname{PCl}_5(g) \rightleftharpoons \operatorname{PCl}_3(g) + \operatorname{Cl}_2(g)$
 - (평) $CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)$
 - (π) 3Fe (s) + 4H₂O (g) \rightleftharpoons Fe₃O₄ (s) + 4H₂ (g)
- 7.26 निम्नलिखित में से दाब बढ़ाने पर कौन-कौन सी अभिक्रियाएँ प्रभावित होगी? यह भी बताएँ कि दाब परिवर्तन करने पर अभिक्रिया अग्र या प्रतीप दिशा में गतिमान होगी?
 - (i) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
 - (ii) $CH_4(g) + 2S_2(g) \rightleftharpoons CS_2(g) + 2H_2S(g)$
 - (iii) $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$
 - (iv) $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$
 - (v) $CaCO_3$ (s) \rightleftharpoons CaO (s) + CO_2 (g)
 - (vi) $4 \text{ NH}_3 \text{ (g)} + 5O_2 \text{ (g)} \rightleftharpoons 4 \text{NO (g)} + 6 \text{H}_2 \text{O(g)}$
- 7.27 निम्नलिखित अभिक्रिया के लिए $1024 \mathrm{K}$ पर साम्य स्थिरांक 1.6×10^5 है।
 - $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$
 - यदि HBr के 10.0 bar सीलयुक्त पात्र में डाले जाएँ, तो सभी गैसों के 1024K पर साम्य दाब ज्ञात कीजिए।
- 7.28 निम्नलिखित ऊष्माशोषी अभिक्रिया के अनुसार ऑक्सीकरण द्वारा डाइहाइड्रोजन गैस प्राकृतिक गैस से प्राप्त की जाती है—
 - $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
 - (a) उपरोक्त अभिक्रिया के लिए $K_{_{D}}$ का व्यंजक लिखिए।
 - (ख) 🔏 एवं अभिक्रिया मिश्रण का साम्य पर संघटन किस प्रकार प्रभावित होगा, यदि।
 - (i) दाब बढ़ा दिया जाए
 - (ii) ताप बढ़ा दिया जाए
 - (iii) उत्प्रेरक प्रयुक्त किया जाए
- 7.29 साम्य $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$ पर प्रभाव बताइए-
 - (a) H_2 मिलाने पर
 - (ख) CH3OH मिलाने पर
 - (ग) CO हटाने पर
 - (घ) CH₃OH हटाने पर
- 7.30 473K पर फॉस्फोरस पेंटाक्लोराइड PCl_5 के विघटन के लिए K_c का मान 8.3×10^{-3} है। यदि विघटन इस प्रकार दर्शाया जाए, तो PCl_5 (g) \rightleftharpoons PCl_3 (g) + Cl_2 (g) $\Delta_r H^{\ominus} = 124.0 \text{ kJ mol}^{-1}$

- (a) अभिक्रिया के लिए K_{c} का व्यंजक लिखिए।
- (ख) प्रतीप अभिक्रिया के लिए समान ताप पर K_c का मान क्या होगा?
- (ग) यदि (i) और अधिक PCl_5 मिलाया जाए, (ii) दाब बढ़ाया जाए तथा (iii) ताप बढ़ाया जाए, तो K पर क्या प्रभाव होगा?
- 7.31 हाबर विधि में प्रयुक्त हाइड्रोजन को प्राकृतिक गैस से प्राप्त मेथैन को उच्च ताप की भाप से क्रिया कर बनाया जाता है। दो पदोंवाली अभिक्रिया में प्रथम पद में CO एवं H_2 बनती हैं। दूसरे पद में प्रथम पद में बनने वाली CO और अधिक भाप से अभिक्रिया करती है।

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

यदि $400\,^{\circ}\mathrm{C}$ पर अभिक्रिया पात्र में CO एवं भाप का सममोलर मिश्रण इस प्रकार लिया जाए कि $p_{\mathrm{co}}-p_{\mathrm{H}_2\mathrm{O}}-4.0\,\mathrm{bar}$, H_2 का साम्यावस्था पर आंशिक दाब क्या होगा? $400\,^{\circ}\mathrm{C}$ पर K_p = 10.1

- 7.32 बताइए कि निम्नलिखित में से किस अभिक्रिया में अभिकारकों एवं उत्पादों की सांद्रता सुप्रेक्ष्य होगी—
 - (क) $\operatorname{Cl}_2(g) \rightleftharpoons 2\operatorname{Cl}(g) K_c = 5 \times 10^{-39}$
 - (\overline{g}) Cl₂(g) + 2NO (g) \rightleftharpoons 2NOCl (g) $K_c = 3.7 \times 10^8$
 - (η) $\text{Cl}_2(g) + 2\text{NO}_2(g) \rightleftharpoons 2\text{NO}_2\text{Cl}(g) K_c = 1.8$
- 7.33 25° C पर अभिक्रिया $3O_{2}$ (g) $\rightleftharpoons 2O_{3}$ (g) के लिए K_{c} का मान 2.0×10^{-50} है। यदि वायु में 25° C ताप पर O_{2} की साम्यावस्था सांद्रता 1.6×10^{-2} है, तो O_{3} की सांद्रता क्या होगी?
- 7.34 ${
 m CO(g)} + 3{
 m H_2(g)} \iff {
 m CH_4(g)} + {
 m H_2O(g)}$ अभिक्रिया एक लिटर फ्लास्क में $1300{
 m K}$ पर साम्यावस्था में है। इसमें ${
 m CO}$ के 0.3 मोल, ${
 m H_2}$ के 0.01 मोल, ${
 m H_2O}$ के 0.02 मोल एवं ${
 m CH_4}$ की अज्ञात मात्रा है। दिए गए ताप पर अभिक्रिया के लिए ${
 m K_c}$ का मान 3.90 है। मिश्रण में ${
 m CH_4}$ की मात्रा ज्ञात कीजिए।
- 7.35 संयुग्मी अम्ल-क्षार युग्म का क्या अर्थ है? निम्निलिखित स्पीशीज़ के लिए संयुग्मी अम्ल/क्षार बताइए— HNO_2 , CN^- , $HClO_4$, F^- , OH^- , CO_3^{2-} एवं S^{2-}
- 7.36 निम्नलिखित में से कौन से लूइस अम्ल है? H_2O , BF_3 , H^+ एवं NH_4^+
- 7.37 निम्नलिखित ब्रन्स्टेदअम्लों के लिए संयुग्मी क्षारकों के सूत्र लिखिए— ${
 m HF,\,H_2SO_4}$ एवं ${
 m HCO_3^-}$
- 7.38 ब्रन्स्टेदक्षारकों NH_{2}^{-} , NH_{3} तथा $HCOO^{-}$ के संयुग्मी अम्ल लिखिए-
- 7.39 स्पीशीज $\rm H_2O$, $\rm HCO_3^-$, $\rm HSO_4^-$ तथा $\rm NH_3$ ब्रन्स्टेदअम्ल तथा क्षारक—दोनों की भाँति व्यवहार करते हैं। प्रत्येक के संयुग्मी अम्ल तथा क्षारक बताइए।
- 7.40 निम्नलिखित स्पीशीज़ को लूइस अम्ल तथा क्षारक में वर्गीकृत कीजिए तथा बताइए कि ये किस प्रकार लुई अम्ल-क्षारक के समान कार्य करते है— (क) OH^- (ख) F^- (ग) H^+ (घ) BCl_3
- 7.41 एक मृदु पेय के नमूने में हाइड्रोजन आयन की सांद्रता $3.8 \times 10^{-3}\,\mathrm{M}$ है। उसकी pH परिकलित कीजिए।
- 7.42 सिरके के एक नमूने की pH, 3.76 है, इसमें हाइड्रोजन आयन की सांद्रता ज्ञात कीजिए।
- 7.43 HF, HCOOH तथा HCN का $298 \mathrm{K}$ पर आयनन स्थिरांक क्रमश: 6.8×10^{-4} , 1.8×10^{-4} तथा 4.8×10^{-9} है। इनके संगत संयुग्मी क्षारकों के आयनन स्थिरांक ज्ञात कीजिए।

7.44 फीनॉल का आयनन स्थिरांक 1.0×10^{-10} है। 0.05M फीनॉल के विलयन में फीनॉलेट आयन की सांद्रता तथा 0.01M सोंडियम फीनेट विलयन में उसके आयनन की मात्रा ज्ञात कीजिए।

- 7.45 H_2S का प्रथम आयनन स्थिरांक 9.1×10^{-8} है। इसके 0.1M विलयन में HS^- आयनों की सांद्रता की गणना कीजिए तथा बताइए कि यदि इसमें 0.1~M~HCl भी उपस्थित हो, तो सांद्रता किस प्रकार प्रभावित होगी, यदि H_2S का द्वितीय वियोजन स्थिरांक 1.2×10^{-13} हो, तो सल्फाइड S^{2-} आयनों की दोनों स्थितयों में सांद्रता की गणना कीजिए।
- 7.46 एसिटिक अम्ल का आयनन स्थिरांक 1.74 × 10⁻⁵ है। इसके 0.05 M विलयन में वियोजन की मात्रा, ऐसीटेट आयन सांद्रता तथा pH का परिकलन कीजिए।
- 7.47 0.01M कार्बनिक अम्ल (HA) के विलयन की pH, 4.15 है। इसके ऋणायन की सांद्रता, अम्ल का आयनन स्थिरांक तथा pK मान परिकलित कीजिए।
- 7.48 पूर्ण वियोजन मानते हुए निम्नलिखित विलियनों के pH ज्ञात कीजिए।
 - (क) 0.003 M HCl
- (평) 0.005 M NaOH
- (η) 0.002 M HBr
- (되) 0.002 M KOH
- 7.49 निम्नलिखित विलयनों के pH ज्ञात कीजिए-
 - (क) 2 ग्राम TIOH को जल में घोलकर 2 लिटर विलयन बनाया जाए।
 - (ख) 0.3 ग्राम Ca(OH), को जल में घोलकर 500 mL विलयन बनाया जाए।
 - (ग) 0.3 ग्राम NaOH को जल में घोलकर 200 mL विलयन बनाया जाए।
 - (घ) 13.6 M HCl के 1mL को जल से तनुकरण करके कुल आयतन 1 लिटर किया जाए।
- 7.50 ब्रोमोएसीटिक अम्ल की आयनन की मात्रा 0.132 है। 0.1 M अम्ल की pH तथा pK_a का मान ज्ञात कीजिए।
- 7.51 0.005M कोडीन ($C_{18}H_{21}NO_3$) विलयन की pH 9.95 है। इसका आयनन स्थिरांक ज्ञात कीजिए।
- 7.52 0.001M एनीलीन विलयन का pH क्या है? एनीलीन का आयनन स्थिरांक सारणी 7.7 से ले सकते हैं। इसके संयुग्मी अम्ल का आयनन स्थिरांक ज्ञात कीजिए।
- 7.53 यदि 0.05M ऐसीटिक अम्ल के pK_a का मान 4.74 है, तो आयनन की मात्रा ज्ञात कीजिए। यदि इसे (अ) 0.01M (ब) 0.1M HCl विलयन में डाला जाए, तो वियोजन की मात्रा किस प्रकार प्रभावित होती है?
- 7.54 डाइमेथिल एमीन का आयनन स्थिरांक 5.4×10^{-4} है। इसके 0.02M विलयन की आयनन की मात्रा की गणना कीजिए। यदि यह विलयन NaOH प्रति 0.1M हो तो डाईमोथिल एमीन का प्रतिशत आयनन क्या होगा?
- 7.55 निम्नलिखित जैविक द्रवों, जिनमें pH दि गई है, की हाइड्रोजन आयन सांद्रता परिकलित कीजिए-
 - (क) मानव पेशीय द्रव, 6.83
- (ख) मानव उदर द्रव, 1.2
- (ग) मानव रुधिर, 7.38
- (घ) मानव लार, 6.4
- 7.56 दूध, कॉफी, टमाटर रस, नीबू रस तथा अंडे की सफेदी के pH का मान क्रमश: 6.8, 5.0, 4.2, 2.2 तथा 7.8 है। प्रत्येक के संगत H $^+$ आयन की सांद्रता ज्ञात कीजिए।
- 7.57 298K पर 0.561~g, KOH जल में घोलने पर प्राप्त 200~mL विलयन की है pH, पोटैशियम, हाइड्रोजन तथा हाइड्रॉक्सिल आयनों की सांद्रताएँ ज्ञात कीजिए।
- 7.58 $298 \mathrm{K} \, \mathrm{Tr} \, \mathrm{Sr}(\mathrm{OH})_2$ विलयन की विलेयता $19.23 \, \mathrm{g/L} \, \mathrm{\r{e}}$ । स्ट्रांशियम तथा हाइड्रॉक्सिल आयन की सांद्रता तथा विलयन की pH ज्ञात कीजिए।

7.59 प्रोपेनोइक अम्ल का आयन स्थिरांक 1.32×10^{-5} है। 0.05M अम्ल विलयन के आयनन की मात्रा तथा pH ज्ञात कीजिए। यदि विलयन में 0.01~M~HCl मिलाया जाए तो उसके आयनन की मात्रा ज्ञात कीजिए।

- 7.60 यदि साइनिक अम्ल (HCNO) के 0.1M विलयन की pH, 2.34 हो, तो अम्ल के आयनन स्थिरांक तथा आयनन की मात्रा ज्ञात कीजिए।
- 7.61 यदि नाइट्रस अम्ल का आयनन स्थिरांक 4.5×10^{-4} है, तो 0.04M सोडियम नाइट्राइट विलयन की pH तथा जलयोजन की मात्रा ज्ञात कीजिए।
- 7.62 यदि पीरीडिनीयम हाइड्रोजन क्लोराइड के 0.02M विलयन का $pH\ 3.44$ है, तो पीरीडीन का आयनन स्थिरांक ज्ञात कीजिए।
- 7.63 निम्नलिखित लवणों के जलीय विलयनों के उदासीन, अम्लीय तथा क्षारीय होने की प्रागुक्ति कीजिए— NaCl, KBr, NaCN, NH_4NO_3 , $NaNO_2$ तथा KF
- 7.64 क्लोरोएसीटिक अम्ल का आयनन स्थिरांक 1.35×10^{-3} है। 0.1M अम्ल तथा इसके 0.1M सोडियम लवण की pH ज्ञात कीजिए।
- 7.65 310K पर जल का आयनिक गुणनफल 2.7 × 10^{-14} है। इसी तापक्रम पर उदासीन जल की pH ज्ञात कीजिए।
- 7.66 निम्नलिखित मिश्रणों की pH परिकलित कीजिए-
 - (क) 0.2M Ca(OH)₂ का 10 mL + का 0.1M HCl का 25 mL
 - (ख) $0.01 \mathrm{M~H_2SO_4}$ কা $10 \mathrm{~mL} + 0.01 \mathrm{M~Ca(OH)_2}$ কা $10 \mathrm{~mL}$
 - (ग) $0.1 \text{M H}_2 \text{SO}_4$ का 10 mL + 0.1 M KOH का 10 mL
- 7.67 सिल्वर क्रोमेट, बेरियम क्रोमेट, फेरिक हाइड्रॉक्साइड, लेड क्लोराइड तथा मर्क्युरस आयोडाइड विलयन की सारणी 7.9 में दिए गए विलेयता गुणनफल स्थिरांक की सहायता से विलेयता ज्ञात कीजिए तथा प्रत्येक आयन की मोलरता भी ज्ञात कीजिए।
- 7.68 ${
 m Ag_2CrO_4}$ तथा ${
 m AgBr}$ का विलेयता गुणनफल स्थिरांक क्रमश: 1.1×10^{-12} तथा 5.0×10^{-13} है। उनके संतृप्त विलयन की मोलरता का अनुपात ज्ञात कीजिए।
- 7.69 यदि 0.002M सांद्रतावाले सोडियम आयोडेट तथा क्यूप्रिक क्लोरेट विलयन के समान आयतन को मिलाया जाए, तो क्या कॉपर आयोडेट का अवक्षेपण होगा? (कॉपर आयोडेट के लिए $K_{\rm sp}=7.4\times10^{-8}$)
- 7.70 बेन्जोईक अम्ल का आयनन स्थिरांक 6.46×10^{-5} तथा सिल्वर बेन्जोएट का $K_{\rm sp} 2.5 \times 10^{-13}$ है। $3.19~{\rm pH}$ वाले बफर विलयन में सिल्वर बेन्जोएट जल की तुलना में कितना गुना विलेय होगा?
- 7.71 फैरस सल्फेट तथा सोडियम सल्फाइड के सममोलर विलयनों की अधिकतम सांद्रता बताइए जब उनके समान आयतन मिलाने पर आयरन सल्फाइड अवक्षेपित न हो। (आयरन सल्फाइड के लिए $K_{sp} = 6.3 \times 10^{-18})$
- 7.72 1 ग्राम कैल्सियम सल्फेट को घोलने के लिए कम से कम कितने आयतन जल की आवश्यकता होगी? (केल्सियम सल्फेट के लिए $K_{\rm sp}=9.1\times 10^{-6}$)
- 7.73 $0.1 \mathrm{M} \ \mathrm{HCl} \ \mathrm{T}$ हाइड्रोजन सल्फाइड से संतृप्त विलयन की सांद्रता $1.0 \times 10^{-19} \mathrm{M}$ है। यदि इस विलयन का $10 \ \mathrm{mL}$ निम्निलिखत $0.04 \mathrm{M}$ विलयन के $5 \ \mathrm{mL}$ डाला जाए, तो किन विलयनों से अवक्षेप प्राप्त होगा? $\mathrm{FeSO_4}$, $\mathrm{MnCl_2}$, $\mathrm{ZnCl_2}$, एवं $\mathrm{CdCl_2}$.