Ray tracing výškových polí

Zuzana Štětinová

Co je výškové pole

- 2,5D struktura
- Typicky uniformní mřížka se vzorky vzdálenosti od roviny
- Zobrazení
 - Ve stupních šedé (256)
 - Bílá nejvyšší
 - Černá nejnižší
 - Barevné (256³ 256⁴)
 - Více možných výšek
 - Možné použít RGBA

Aplikace výškových polí

Použití

- Bump mapping
- Displacement mapping
- Terén

Reálné aplikace

- Geografické informační systémy
- Vědecké vizualizace
- Speciální efekty
- Hry, filmy...

Současné přístupy k renderování

- Konverze do alternativní reprezentace
 - Do polygonové sítě
 - Do množiny bodů
 - Do objemové reprezentace
 - Pro využití HW rendereru
- Přímé renderování pomocí ray tracingu

Výhody a nevýhody použití ray tracingu

Výhody

- Stručnější reprezentace
- Výpočetní výhoda
- Informace o struktuře

Nevýhody

HW podporující přímo stále v začátku vývoje

Úvod

- Podmínka existence: průsečík s BB
- Promítnutí
- Iterativní průchod 2D rovinou
 - Např. DDA, či algoritmus středního bodu
- Při průchodu průsečík proti sousední množině vzorků výšky

Složitost

- Algoritmus založený na buňkách O(n)
 - o n počet buněk v dráze paprsku
- Algoritmus založený na úsecích O(n/r)
 - o n počet buněk v dráze paprsku
 - o r průměrná délka paprsku
 - Dráha paprsku kolekce úseků pro buňku
 - Cena stejná jako buňky

Průchod paprsku

- Předpoklady: paprsek v souřadném systému výškového pole
- Dráha paprsku

$$\circ \quad y = \alpha x + \beta; \ \alpha, \ \beta \subseteq \mathbb{R}$$

Pro popis

- $y = \alpha x$
- průsečík v [0,0]

Hledání úseků

- Úsek definován délkou a počátečním bodem (x_i, i_i)
- Přímka uspořádaná množina délek úseků

$$(x_{j+1}, y_{j+1}) = (x_j + r_j, y_j + 1)$$

Paprsek - segmenty a sklon

- Racionální umožňuje opakování
- $\alpha = \frac{\delta y}{\delta x}$
 - δx počet buněk v segmentu
 - δy počet segmentů
- Krátké $\lfloor \frac{1}{\alpha} \rfloor$ a dlouhé $\lceil \frac{1}{\alpha} \rceil$
 - o IsIsIssIsIssIsIss
- $\begin{array}{ccc}
 \bullet & \beta_j = \alpha x_j y_j \\
 \circ & 0 \le \beta_i < 1
 \end{array}$
- $\bullet \quad \beta_{j+1} \beta_j = \alpha r_j 1$

 $y = \frac{17}{41}x.$

Geometrie průniku úseku a přímky

- Přímka protíná koncový bod krátkého úseku
 - $(x_{i+1}, y_{i+1}) = (x_i + r, y_i + 1); r_i = r; \beta_{i+1} = 0$
 - Pozice kritická pro rozhodování o délce
 - Pod $\Rightarrow \beta_i \ge v \Rightarrow dlouh\acute{y}$
 - Nad $\rightarrow \beta_i < v \rightarrow krátký$
- $v = 1 \alpha r$
- $\mu = \alpha \nu = \alpha(r + 1) 1$

Výpočet další hodnoty

- Po krátkém:
 - $\circ \qquad \beta_{j+1} \beta_j = -\nu$
- Po dlouhém
 - \circ $\beta_{j+1} \beta_j = \alpha(r+1) 1 = \mu$

Oříznutí začátku

- Počáteční bod paprsku (x₀, y₀ + β)
- Pro první úsek, který má být zkrácen jeho délka musí být menší než u krátkého úseku, tj. r₀ < r
- Určující poloha spojité přímky pro zkrácení:
 - \circ Přímka protíná bod (x₀ + r 1, y₀ + 1)
 - \circ $\beta \ge 1 (r 1)\alpha = \alpha + \nu$
- Pokud je zkrácen potřeba výpočtu délky a hodnoty první posloupnosti

$$\Delta r = \left\lfloor \frac{\beta - \nu}{\alpha} \right\rfloor$$

$$r_0 = \left\lceil \frac{1-\beta}{\alpha} \right\rceil = r - \Delta r$$

• $\beta_1 = (\beta - \nu) - \Delta r\alpha$

Rekonstrukce povrchu

- (a) Rovina z 1 vzorku
- (b) Rovina ze 3 vzorků
- (c) 2 trojúhelníky
- (d) interpolace bilineárního povrchu

Měření

- Výhoda použití úsekového algoritmu pro procházení paprskem oproti buňkovému proto silně závisí na orientaci výškového pole k paprsku
- Průměrné zrychlení 125 %
- Dle délky úseku

 - o ≈ 2 **→** 110 %
 - o ≈ 25 **→** 180 %

Děkuji za pozornost