Énumération efficace des cliques maximales dans les flots de liens réels massifs

Alexis Baudin*, Clémence Magnien et Lionel Tabourier Jeudi 19 janvier 2023

EGC 2023

23ème conférence francophone sur l'extraction et la gestion de connaissances

> Définition

$\textbf{Graphe} \rightarrow \textbf{interactions statiques}$

> Définition

$\textbf{Graphe} \rightarrow \textbf{interactions statiques}$

• {1, 2, 3, 4} clique

Clique d'un graphe

Ensemble de sommets tous connectés entre eux.

> Définition

$\textbf{Graphe} \rightarrow \textbf{interactions statiques}$

- {1,2,3,4} clique **maximale**
- {1,2,3} clique non maximale

Clique d'un graphe

Ensemble de sommets tous connectés entre eux.

Clique maximale

Incluse dans aucune autre clique.

→ Énumération : Bron-Kerbosch (1973)

> Enjeux

Détection de communautés

Palla et al. 2005

> Enjeux

Détection de communautés

Palla et al. 2005

→ Ajout d'une dimension temporelle ?

Exemples:

développement d'épidémie, détection d'anomalies (spam, ...)

> Définition

	Ó			2	,				4				(5				8	3				1	()				ti	ir	n	e
d																																
c																																
b																																
a							٠							٠			٠			٠		٠				-						•

Flot de liens

• 4 sommets : a, b, c et d

• Durée : [0,12]

> Définition

Flot de liens

• 4 sommets : a, b, c et d

• Durée : [0,12]

• Exemple : a et b sont connectés sur [3,7]

> Définition

Flot de liens

• 4 sommets : a, b, c et d

• Durée : [0,12]

• Exemple : a et b sont connectés sur [3,7]

> Cliques maximales dans un flot de liens

> Cliques maximales dans un flot de liens

 $({a,b,c},{[4,6]})$ est une clique

> Cliques maximales dans un flot de liens

$$({a, b, c}, [4, 6])$$
 est une clique

 \rightarrow ({a, b, c}, [4,5]) n'est pas maximale en temps

> Cliques maximales dans un flot de liens

 $({a, b, c}, [4, 6])$ est une clique

- \rightarrow ({a, b, c}, [4, 5]) n'est pas maximale en temps
- $\rightarrow (\{a,b\},[4,6])$ n'est pas maximale en sommets

> Cliques maximales dans un flot de liens

$$({a, b, c}, [4, 6])$$
 est une clique

- \rightarrow ({a, b, c}, [4, 5]) n'est pas maximale en temps
- \rightarrow ({a,b},[4,6]) n'est pas maximale en sommets

> Cliques maximales dans un flot de liens

 $({a, b, c}, [4, 6])$ est une clique <u>maximale</u>.

- \rightarrow ({a, b, c}, [4, 5]) n'est pas maximale en temps
- \rightarrow ({a,b},[4,6]) n'est pas maximale en sommets

> Cliques maximales dans un flot de liens

 $({a, b, c}, [4, 6])$ est une clique <u>maximale</u>.

- \rightarrow ({a, b, c}, [4, 5]) n'est pas maximale en temps
- \rightarrow ({a, b}, [4, 6]) n'est pas maximale en sommets

> Cliques maximales dans un flot de liens

 $({a,b,c},[4,6])$ est une clique maximale.

- \rightarrow ({a, b, c}, [4, 5]) n'est pas maximale en temps
- \rightarrow ($\{a,b\}$, [4,6]) n'est pas maximale en sommets

3 - Énumération des cliques

maximales dans les flots de liens

- 3 Énumération des cliques maximales dans les flots de liens > État de l'art
 - État de l'art : quatre travaux principaux
 - Viard *et al.* 2016
 - Viard et al. 2018
 - Himmel *et al.* 2017
 - Bentert et al. 2019

3 - Énumération des cliques maximales dans les flots de liens > État de l'art

État de l'art : quatre travaux principaux

```
    Viard et al. 2016
    Viard et al. 2018
    Himmel et al. 2017
    Bentert et al. 2019
    Mémoïsation
    ⇒ trop de mémoire
    Besoin de toutes les interactions passées et futures
```

⇒ Problème de passage à l'échelle.

3 - Énumération des cliques maximales dans les flots de liens > État de l'art

État de l'art : quatre travaux principaux

```
• Viard et al. 2016
                                 Mémoïsation
                              ⇒ trop de mémoire
• Viard et al. 2018
• Himmel et al. 2017
                           Besoin de toutes les interactions
                                  passées et futures
• Bentert et al. 2019
```

⇒ Problème de passage à l'échelle.

Nouvel algorithme:

- cliques non conservées en mémoire ;
- interactions réduites à chaque pas de temps.

Cliques maximales qui commencent à t = 4

Cliques maximales qui commencent à t = 4

Graphe instantané G_t

> Algorithme

Cliques maximales qui commencent à t = 4

 \rightarrow cliques de G_t contenant une nouvelle arête ;

> Algorithme

Cliques maximales qui commencent à t=4

- \rightarrow cliques de G_t contenant une nouvelle arête ;
- \rightarrow temps début : t = 4;

> Algorithme

Cliques maximales qui commencent à t = 4

Graphe instantané G_t

$$({b, c}, [4, 7]), ({b, c, a}, [4, 6])$$

- \rightarrow cliques de G_t contenant une nouvelle arête ;
- \rightarrow temps début : t = 4 ;
- \rightarrow temps fin : min des temps de fin des arètes.

> Algorithme

Cliques maximales qui commencent à t = 4

Graphe instantané *G*_t

$$({b,c}, [4,7]), ({b,c}, a\}, [4,6])$$

- \rightarrow cliques de G_t contenant une nouvelle arête ;
- \rightarrow temps début : t = 4 ;
- \rightarrow temps fin : min des temps de fin des arètes.

> Algorithme

Cliques maximales qui commencent à t = 4

Graphe instantané G_t

$$({b, c}, [4, 7]), ({b, c, a}, [4, 6])$$

- \rightarrow cliques de G_t contenant une nouvelle arête ;
- \rightarrow temps début : t = 4 ;
- \rightarrow temps fin : min des temps de fin des arètes.

⇒ On se ramène à un problème de graphes : Bron-Kerbosch.

- 3 Énumération des cliques maximales dans les flots de liens
 - > Algorithme

Bilan du nouvel algorithme

- ightarrow cliques non conservées en mémoire \checkmark
- ightarrow interactions réduites à chaque pas de temps \checkmark

4 - Étude expérimentale : gain de

performance

Protocole expérimental

- Implémentations Python et C++
- Maximum 24h et 390Gb de RAM.

Protocole expérimental

- Implémentations Python et C++
- Maximum 24h et 390Gb de RAM.

Jeux de données : état de l'art + flots de liens massifs

- réseaux de communication
- interactions humaines
- interactions biologiques

Flot de liens	#liens	#cliques
highschool-2011	6 472	7 732
facebooklike	50 056	50 080
infectious	100 329	138 670
stackexchange	870 128	894.317
youtube	$12 \cdot 10^6$	$12 \cdot 10^6$
wikipedia	$39 \cdot 10^6$	$41\cdot 10^6$
soc-bitcoin	$94 \cdot 10^6$	$787 \cdot 10^6$

Flot de liens	#liens	#cliques	Litt.	Python	C++
highschool-2011	6 472	7 732	1.2s	0.12s	0.05s
facebooklike	50 056	50 080	15s	0.42s	0.12s
infectious	100 329	138 670	20s	1.7s	0.78s
stackexchange	870 128	894.317	1h	10s	1.9s
youtube	$12 \cdot 10^6$	$12 \cdot 10^6$	×	9min	2min
wikipedia	$39 \cdot 10^6$	$41 \cdot 10^6$	×	4h30	1min20s
soc-bitcoin	$94 \cdot 10^{6}$	$787 \cdot 10^{6}$	×	×	7h30

Conclusion

Conclusion

Contributions

- nouvel algorithme;
- gain de 2 ordres de grandeur de taille de données ;
- protocole expérimental sur données réelles ;
- étude détaillée de la complexité ;
- version parallèle.

Conclusion

Contributions

- nouvel algorithme;
- gain de 2 ordres de grandeur de taille de données ;
- protocole expérimental sur données réelles ;
- étude détaillée de la complexité ;
- · version parallèle.

Perspectives – flots de liens

- communautés par percolation de cliques.
- adapter l'algorithme à la recherche de motifs ;

Merci pour votre attention!

Accès au code :

https://gitlab.lip6.fr/baudin/maxcliques-linkstream

Contact : alexis.baudin@lip6.fr