Simulando redes sem-fio com obstáculos usando o COOJA extendido

Manassés Ferreira¹

¹Departamento de Ciência da Computação Universidade Federal de Minas Gerais (UFMG) Belo Horizonte. Brazil

Projeto Orientado em Computação - 2014/2 Professor: Clodoveu Davis e Marcos André Gonçalves Orientador: Olga Goussevskaia {clodoveu, mgoncalv, olga}@dcc.ufmg.br

Agenda

Trabalho Relacionado

COOJA - Contiki

Redes sem-fio com obstáculos

Trabalho Desenvolvido

UDGO

Automação e Análise

Computação distribuída

Resultado

Esperado

Prévia

Trabalho por Desenvolver

Gerar Resultados

Diminuir tempo de simulação otimizando COOJA

2 / 13

Simulador e SO

Manassés (UFMG) COOJA-UDGO September 23, 2014 3 / 13

Modelo

(a) Deployment of nodes over a grid of size g=4.

Manassés (UFMG) COOJA-UDGO September 23, 2014 4 / 13

Raio Crítico de Transmissão

THEOREM 3. Let \mathcal{N} be a set of nodes deployed uniformly at random in a lattice square of granularity g in the area $[0, g-1]^2$, with segments' width 2ϵ . Let also μ be the expected quantity of nodes per segment. The Critical Transmission Range for Connectivity, denoted by r_c is

$$r_c = \frac{\ln(g^{a+1/2}) + \ln(\mu - 1)}{\mu}$$

for a > 0, whenever $\epsilon \geq \epsilon_c$.

$$a=1$$

Manassés (UFMG) COOJA-UDGO September 23, 2014 5 / 13

UDGM ∧ **MRM**

Manassés (UFMG) COOJA-UDGO September 23, 2014

6 / 13

Ciclo de Simulação

Manassés (UFMG) COOJA-UDGO September 23, 2014 7 / 13

Protocolo Cliente-Servidor

Manassés (UFMG) COOJA-UDGO September 23, 2014 8 / 13

- 1. Como o modelo poderia ser 'alimentado' pelo meio físico UDGO?
- 2. CTR experimental será menor que o analítico?
- 3. Propriedades físicas do MRM podem aumentar visibilidade? E a interferência?

Manassés (UFMG) COOJA-UDGO September 23, 2014 9 / 13

Instância Pequena

$$T = 20, \ g = 3, \ \mu = 5, \ \epsilon = 10$$
 $CTR_{experimental} = 19.96$ $r_{c} = 46.82$

Manassés (UFMG)

Instâncias Maiores

Т	20	30	35	28	70		
g	2	6	8	12			
$\overline{\mu}$	6	8	10	12	14	16	18
ϵ	10						

 Manassés (UFMG)
 COOJA-UDGO
 September 23, 2014
 11 / 13

Um modo mais eficiente de computar visibilidade

Fig. 2.1. Partitioning the disks into levels (k = 2).

Fig. 2.5. Example of table lookups for a square S at level j in case k = 2. (a) shows 13 disks in D(r, s) that intersect S: 2 disks of level less than j, 2 disks on level j, and 9 disks on level j + 1. (b) displays an independent set I consisting of 1 disk of level less than j. (c) illustrates that lookups are performed in 9 tables $T_{S_{a,h}}$ during the computation of the table entries $AT_{S,I}(S_{a,h}',*)$.

Ideia: 'Estratégia Deslocadora'

Manassés (UFMG) COOJA-UDGO September 23, 2014 12 / 13

Perguntas

Manassés (UFMG) COOJA-UDGO September 23, 2014 13 / 13