

Junior Balkan Olympiad in Informatics

Day 1, 31 августа 2022 г.

Задача АВ

Входные данные stdin Выходные данные stdout

Алиса решила впечатлить младшего брата Боба своей математической дедукцией. Для этого она, в матрице размером M линий и N столбцов, разместила числа $1,2,\ldots,M\times N$ таким образом, что элементы в каждой линии и в каждой строке отсортированы в строго возрастающем порядке. Матрицу с данным свойством они назвали матрицей AB.

Алиса просит Боба удалить K несмежных по вертикали или горизонтали чисел, в надежде что, пользуясь свойством матрицы AB, она сможет восстановить начальные позиции удалённых K элементов. После нескольких попыток Алиса понимает, что в определенных ситуациях существует несколько способов расстановки K чисел на свободные позиции, так чтобы получаемая матрица сохраняла свойство матрицы AB. Помогите Алисе определить, если существует единственный способ расстановки удалённых чисел в матрицу AB.

Зная начальную матрицу AB и Q запросов, каждый из которых состоит из списка удалённых элементов матрицы, напишите программу, которая определяет для каждого запроса, если существует единственный способ расстановки удалённых элементов в матрицу, с сохранением свойства матрицы AB.

Входные данные

Первая линия входных данных содержит три натуральных числа M, N и Q, разделённые пробелом, значения которых определены в условии задачи. Следующие M линий содержат N чисел, разделённых пробелом, которые представляют матрицу AB, построенную Алисой. После матрицы описывается Q запросов. Каждый запрос определяется двумя линиями. Первая линия содержит натуральное число K, представляющее количество удалённых элементов. Вторая линия запроса содержит K удалённых чисел, разделённых пробелом.

Выходные данные

Выходные данные содержат Q линий. Каждая i-ая линия выходных данных содержит ответ для i-го запроса входных данных; 1 – если существует единственное решение, 0 – если существует несколько решений.

Ограничения

- $1 \le M, N \le 2000$
- $1 \le Q \le 25$
- K > 1
- гарантируется, что каждый запрос удаляет различные числа, удовлетворяющие условию задачи (числа несмежные по горизонтали и вертикали).
- Количество чисел в запросах не превышает 4000000
- Пункты за тест начисляются только если ответы для всех запросов в тесте будут верными.

Junior Balkan Olympiad in Informatics

#	Пунктаж	Ограничения
1	21	$1 \le M, N \le 10$
2	18	$1 \le M, N \le 100$
3	55	$1 \le M, N \le 400$
4	6	Нет дополнительных ограниченний.

Примеры

Входные данные	Выходные данные	Пояснения
3 3 2	1	Первый запрос предполагает удаление
1 2 4	0	чисел 1, 5 и 9, после удаления матрица
3 5 8		будет выглядеть следующим образом:
6 7 9		? 2 4
3		3 ? 8
1 5 9		67?
3		Можно заметить что расстановка трёх
5 4 6		чисел является уникальной.
		Второй запрос предполагает удаление
		чисел 5, 4 и 6:
		1 2 ?
		3 ? 8
		? 7 9
		Расстановка не является единственной,
		возможно также решение:
		1 2 5
		3 6 8
		479