

PV Cells Interconnection: Effects of Shading & Bypass Diodes

34553: Applied Photovoltaics

Adrián A. Santamaría Lancia, Nicholas Riedel, Sune Thorsteinsson

Solar Cells IV Curve

A solar cell can be modelled as a diode.

We use the IV curve to characterize its electrical performance.

Solar Cells IV Curve

- To supply power to the load, the PV device should operate on the active region.
- The Active region is the typical IV curve shown in all documentation.
- However, the cell can be exposed to reverse voltage conditions.
- If the reverse voltage reaches the Breakdown Voltage value, the cell will irreversible damaged and current would flow in the opposite direction, as in a short-circuit.

- Solar Cells in Series
 - The total current of the string is the current passing through both cells. (fixed, lowest of the two I values)
 - The voltage of the string is the addition of each cell voltage.

- Solar Cells in Parallel
 - The total current of the string is the addition of the currents of each cell.

 The voltage of the string is the voltage of both cells. (fixed, between the two V values)

IV Curve:

- Cells in parallel add up in current.
- Cells in series add up in voltage

IV Curve for a PV Module composed of a total number of (M x N) Cells:

- M strings in parallel.
- Each string is made by N
 cells in series.

Mismatch Effects: Cells Connected in Series

Mismatch in Voltage:

The voltage of the string in series is the summation of the individual voltages.

Mismatch Effects: Cells Connected in Series

Mismatch in Current:

The resulting current of the string is limited by the poorest performing cell.

Mismatch Effects: Cells Connected in Series

Mismatch in Current:

The resulting current of the string is limited by the poorest performing cell.

Mismatch Effects: Cells Connected in Parallel

Mismatch in Current:

The total current is the summation of the individual currents.

Mismatch in Voltage:

The resulting Voc of the string is a combination of the cell's individual Voc values.

Effects of Shading in Strings of Solar Cells

- A partially shaded cell produces lower current than the rest of the cells in the string.
- The current of the shaded cell limits the total current of the string.
- The illuminated cells are forward biased by their generated current.
- If the string is, for example, short circuited, the summation of their voltages in series are the reverse voltage on the shaded cell.
- The shaded cell becomes a load and dissipates power, which raises its temperature and can cause damage to the cell and module. (Hot Spot Effect)

Effects of Shading in Strings of Solar Cells

- The total reverse voltage on the shaded cell depend on the number of cells connected in series in the string.
- The shaded cell can be destroyed by reverse breakdown voltage if the number of cells in the string is high enough.

$$|V_{BRK}| > |V_{OC} \times (n-1)|$$

 Thermal damage by hot spot effect depends on the duration and intensity of the conditions the cell is subjected to, but electronic damage by reverse breakdown voltage is immediate.

Bypass Diodes

- Bypass diodes are connected in parallel to a string of pv cells that allow an alternative path for the current through the module to flow to the load.
- This avoids cell damages by hot spot effect, by excessive reverse voltage, and contributes to minimize power performance loss of the module.

Bypass Diodes

- The bypass diodes remain in reverse bias during normal operation of the module and do not conduct current.
- When a cell becomes shaded, the bypass diode becomes forward biased and conducts current of the illuminated cells without loss, plus the current of the shaded cell.

Effects of Shading in a PV Module with 3 Bypass Diodes

- PV module of 60 cells in series, each bypass diode is connected to 20 cells in series.
- The IV curve of the module is the summation of the IV curves of the 3 strings.

Effects of Shading in a PV Module with 3 Bypass Diodes

- Bypass diodes limit the reverse voltage of the shaded cell to the number of cells inside its string. This voltage is designed to be lower than the breakdown voltage.
- The drop in current value occurs only in the affected string instead of the whole module.

Effects of Shading in a PV Module with 3 Bypass Diodes

Unshaded Module:

Shaded Module:

250

Diffuse light: 30%

String 3: 100%

String 2: 65%

String 1: 30%

Powerloss =35% Shaded area = 7.5%

String 3

Voltage drop of BP-diodes neglected

Thank you for your attention!