Megjegyzések, megváltoztatott bizonyítások a Analízis I. jegyzethez (fizikus hallgatók számára)

Izsák Ferenc

2017. február 11.

1. Néhány formai megjegyzés a leendő jegyzettel kapcsolatban

- Minden mondat nagy betűvel kezdődjön; legyen az tétel vagy állítás kimondása, megjegyzésekben szereplő felsorolások mondatai.
- Hasonlóan minden mondat végére kerüljön pont; akkor is, ha a mondat vége egy képlet.
- A személynevekhez kapcsolódó fogalmak és a személynév közé kötőjel írandó: Weierstrasskritérium.
- Az elején jó volna rögzíteni, hogy ha egy függvényt $f: X \to Y$ alakban adunk meg, akkor az automatikusan azt jelenti, hogy értelmezési tartománya X, nem pedig annak csak egy része. Ez utóbbira használjuk majd az $f: X \rightarrowtail Y$ jelölést.
- ullet Szokás a bizonyítások végére valamilyen jelet tenni, jelezve, hogy itt van a a vége. Pl.: \Box .
- A nevesített tételeket javaslom így írni: Tétel (Heine) vagy Tétel (Weierstass-kritérium).
- A javításban néhányszor csak kiemeltem egy-egy dolgot, ahol nyilvánvaló apró elírás (pl. betű kihagyása) szerepel.
- Gyakran szerepel ez is: "M béli". Helyette mindig legyen ez: "M-beli".
- lim sup és lim inf írása és helyköz utána is a tex szerinti szabvány kell, hogy legyen.
- Ha jól jön valamilyen meglevő tex-keret, akkor tudok keresni. Szívesen átnézem még a tex-ben beírt verziót is. Nem tudom, mennyit írt tex-ben; javaslom rövidítések sűrű használatát: "er" a "mathbb $\{R\}$ " helyett, "pa" a "partial" helyett stb.

2. Módosított tételek, bizonyítások

• Legyen $A:X\to X$ lineáris. Ekkor teljesül a következő.

 $A: X \to X$ folytonos $\Leftrightarrow A: X \to X$ folytonos a nulla helyen $\Leftrightarrow A$ korlátos

Bizonyítás: Az első ekvivalencia: Ha A mindenhol folytonos, akkor nyilván nullában is. Másrészt, ha nullában folytonos, akkor tetszőleges x-re $x_n \to x$ esetén $x_n - x \to 0$, vagyis $Ax_n - Ax = A(x_n - x) \to 0$. Az átviteli elv alapján tehát valóban folytonos A az x helyen.

A második ekvivalencia: Ha A korlátos, akkor $x_n \to 0$ esetén $||Ax_n|| \le C||x_n||$ miatt $Ax_n \to 0$ is fennáll, vagyis A folytonos a nulla helyen.

Fordítva, ha A nem lenne folytonos a nullában, akkor valamilyen $x_n \to 0$ sorozatra $Ax_n \not\to 0$, azaz ennek egy x_{n_k} részsorozatára $\|Ax_{n_k}\| > \delta$ teljesül valamilyen pozitív δ esetén. Ekkor viszont nem teljesülhet $\|Ax_{n_k}\| \le C\|x_{n_k}\|$ a sorozat elemeire semmilyen C > 0 esetén, vagyis A nem lehet korlátos sem.

• Bizonyítás: Tudjuk, hogy ha $||a_k|| \leq K$ teljesül minden k indexre, akkor

$$\lim \|\lambda_k a_k\| = \lim |\lambda_k| \|a_k\| \le K \lim |\lambda_k| = 0,$$

ami éppen a tétel állítását adja.

• Bizonyítás: A háromszög-egyenlőtlenséget, valamint az összeadásra vonatkozó állítást alkalmazva kapjuk, hogy

$$\|\lambda a - \lim \lambda_k a_k\| \le \|\lambda a - \lim \lambda a_k\| + \|\lambda a_k - \lim \lambda_k a_k\| = |\lambda| \|a - \lim a_k\| + |\lambda - \lim |\lambda_k| \|a_k\| = 0,$$

hiszen az utolsó összeg első tagja definíció szerint nulla, a második pedig az előző állítás miatt. Innen következik, hogy $\lambda a = \lim \lambda_k a_k$.

• Példa: Legyen sq : $\mathbb{R}^{n\times n}\to\mathbb{R}^{n\times n}$ az sq $(A)=A^2$ hozzárendeléssel adott. Kiszámítjuk ennek deriváltját az A helyen.

A definíciót használjuk az x=A+S és $x_0=A$ szereposztással. Ekkor az $x\to x_0$ feltétel az $S\to 0$ feltétellel ekvivalens.

Nyilván

$$sq(A + S) - sq(A) = (A + S)^{2} - A^{2} = AS + SA + S^{2}.$$

Itt nyilván $\lim_{S\to 0} \frac{\|S^2\|}{\|S\|} \leq \lim_{S\to 0} \frac{\|S\|\|S\|}{\|S\|} = \lim_{S\to 0} \|S\| = 0$, vagyis a definícióban szereplő η függvényként megfelelő az $\eta(S) = S^2$ hozzárendeléssel adott. Így a derivált az A helyen a $S\to AS+SA$ hozzárendeléssel adott, azaz $\operatorname{sq}'(A)[S] = AS+SA$.

• Példa: Legyen $b_A: \mathbb{R}^n \to \mathbb{R}$ az $b_A(x) = (Ax, x)$ hozzárendeléssel adott, ahol (\cdot, \cdot) az \mathbb{R}^n -beli skaláris szorzás, $A \in \mathbb{R}^{n \times n}$ pedig egy adott mátrix. Az előző példához hasonló elven

$$b_A(x+s) - b_A(x) = (A(x+s), x+s) - (Ax, x) = (Ax, s) + (As, x) + (s, s) = (s, Ax) + (s, A*x) + (s, s),$$

ahol $\lim_{s\to 0} \frac{\|s^2\|}{\|s\|} \leq \lim_{s\to 0} \frac{\|s\|\|s\|}{\|s\|} = \lim_{s\to 0} \|s\| = 0$, vagyis η függvényként megfelelő az $\eta(s) = (s,s)$ hozzárendeléssel adott. A derivált az x helyen pedig a következő hozzárendeléssel adott lineáris függvény lesz: $b_A'(x)[s] = (s,(A+A*)x)$, ami azonosítható az (A+A*)x vektorral.

• Legyen $A \in L(X,Y)$. Ekkor minden $x \in X$ esetén teljesül az $||A|| ||x|| \ge ||Ax||$ egyenlőtlenség, továbbá $||A|| = \min\{c \ge 0 : ||Ax|| \le c ||x|| \ \forall x \in X\}$.

Bizonyítás: Felhasználva, hogy $x\neq 0$ esetén $\frac{x}{\|x\|}=1,$ az operátornorma definícióját átírhatjuk a következőképpen:

$$\|A\| = \sup\{\frac{\|Ax\|}{\|x\|} : 0 \neq x \in X\},$$

azaz minden $x \neq 0$ vektor esetén $||A|| \geq \frac{||Ax||}{||x||}$, amiből ||x||-szel való szorzással kapjuk az $||A||||x|| \geq ||Ax||$ egyenlőtlenséget, ami persze x = 0 esetén is teljesül.

Másrészt, maga ||A|| is olyan c érték, amelyre $||Ax|| \le c||x||$, vagyis teljesül, hogy

$$\|A\| \geq \inf\{c \geq 0: \|Ax\| \leq c\|x\| \; \forall x \in X\}.$$

Így ha $\|Ax\| \le c \|x\|$ teljesül minden $x \in X$ esetén, akkor $x \ne 0$ esetén $\frac{\|Ax\|}{\|x\|} \le c$ is igaz, sőt emiatt

 $||A|| = \sup_{0 \neq x \in X} \frac{||Ax||}{||x||} \le c.$

Ekkor a jobb oldalon szereplő c értékek infimumánál is kisebbegyenlő lesz $\|A\|$. Kaptuk tehát, hogy $\|A\| = \inf\{c \geq 0: \|Ax\| \leq c\|x\| \ \forall x \in X\}$, és mivel maga $\|A\|$ is megfelel c-nek, ezért ez egyszersmind minimum is.