Calorimetry and Deep Learning

Simon Schnake

30. Oktober 2018

Universität Hamburg

Calorimetry in Particle Physics

- apparatus to measure the energy of a particle
- destructive process
- particle shower
- · sampling or homogenous
- electromagnetic calorimeter
 → via FM interaction
- hadronic calorimeter
 → via strong nuclear force
- $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$

Deep Learning

- Neuron: $\sigma_i(W_iX_{i-1} + b_i)$
- Goal: Fitting NeuralNet(X_0) to $y_{\rm true}$
- · Procedure:
 - Define $Loss(y_{true}, y_{pred})$ to minimize
 - \cdot Use Backpropagation to update W_i, b_i via an optimizer

Simulation Setup

- · Simulation with Geant4
- \cdot e⁻ from 0. to 10 GeV
- · 300,000 events

layer	scint	absorber
layer 0	9mm	40 mm SS
layer 1 - 8	3.7mm	50.5 mm brass
layer 9 - 14	3.7mm	56.5 mm brass
layer 15	3.7 mm	75 mm SS
layer 16	9mm	
		'

Resulting Data

Neuralnet

Layer	Туре	Activation
1	Conv2D(32, (2,2), strides = (1, 1))	ReLu
2	Flatten()	
3-5	Dense(128)	ReLu
6	Dense(10)	ReLu
7	Dense(1)	Linear

- Loss = Mean Squared Error
- Optimizer = RMSprop

First Results of the Neuralnet

Data Augmentation

- flip the data arrays in the y axes
- · rotate around the x axes
- · shift in y and z

Data Augmentation

Maximum Likelihood Loss

Assumption: true values are gaussian distributed with const std σ

$$\begin{aligned} \max \text{ likelihood} &= \max \prod \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_{\text{true}} - y_{\text{pred}})^2}{2\sigma^2}} \\ \Rightarrow \max \text{ log likelihood} &= \max \sum -\frac{(y_{\text{true}} - y_{\text{pred}})^2}{2\sigma^2} - \ln\left(\sqrt{2\pi\sigma^2}\right) \\ &= -\max \sum \frac{(y_{\text{true}} - y_{\text{pred}})^2}{2\sigma^2} - \ln\left(\sqrt{2\pi\sigma^2}\right) \\ &= \min \sum (y_{\text{true}} - y_{\text{pred}})^2 \end{aligned}$$

9

Maximum Likelihood Loss

$$\Rightarrow \max \log \text{likelihood} = \min \sum \ln \left(\frac{\text{Norm}(y_{\text{true}}|y_{\text{pred}}, \sigma)}{\int_a^b \text{Norm}(y_{\text{true}}|y_{\text{pred}}, \sigma)} \right)$$

$$= \min \sum \frac{(y_{\text{true}} - y_{\text{pred}})^2}{2\sigma^2} + \ln \left(\frac{1}{2} \left(\text{erf}(\frac{y_{\text{pred}} - a}{\sqrt{2}\sigma}) - \text{erf}(\frac{y_{\text{pred}} - b}{\sqrt{2}\sigma}) \right) \right)$$

Maximum Likelihood Loss

$$\sigma = 0.31 \sqrt{y_{\text{true}}}$$

Adversarial Training

$$E_{\lambda}(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \lambda \mathcal{L}_r(\theta_f, \theta_r)$$

G. Louppe, "Learning to Pivot with Adversarial Networks", 1611.01046

Adversarial Training

• R estimates y_{true} given $\frac{y_{\text{true}} - D(X)}{\sqrt{y_{\text{true}}}}$

Summary

- The usage of neural nets at analyzing calorimeter data
- Data augmentation is good tool for preventing overfitting in calorimeter data
- Two different ways of targeting systematic errors in neural nets
- The presented neuralnet performs \approx 10% better than a linear fit
- In this setup the usage of a maximum likelihood loss performs better than the adversarial approach