STA141C: Big Data & High Performance Statistical Computing

Lecture 11: Clustering

Cho-Jui Hsieh UC Davis

May 24, 2018

Outline

- Kmeans Clustering
- Graph Clustering

Supervised versus Unsupervised Learning

Supervised Learning:

- Learning from labeled observations
- Classification, regression, ...

Unsupervised Learning:

- Learning from unlabeled observations
- Discover hidden patterns
- Clustering (today)

Clustering

- Given $\{x_1, x_2, \dots, x_n\}$ and K (number of clusters)
- Output $A(\mathbf{x}_i) \in \{1, 2, \dots, K\}$ (cluster membership)

Two circles

Can we split the data into two clusters?

Two circles

Can we split the data into two clusters?

Clustering is Subjective

- Non-trivial to say one clustering is better than the other
- Each algorithm has two parts:
 - Define the objective function
 - Design an algorithm to minimize this objective function

K-means Objective Function

• Partition dataset into C_1, C_2, \ldots, C_K to minimize the following objective:

$$J = \sum_{k=1}^K \sum_{\boldsymbol{x} \in C_k} \|\boldsymbol{x} - \boldsymbol{m}_k\|_2^2,$$

where m_k is the mean of C_k .

K-means Objective Function

• Partition dataset into C_1, C_2, \ldots, C_K to minimize the following objective:

$$J = \sum_{k=1}^K \sum_{\mathbf{x} \in C_k} \|\mathbf{x} - \mathbf{m}_k\|_2^2,$$

where \mathbf{m}_k is the mean of C_k .

- Multiple ways to minimize this objective
 - Hierarchical Agglomerative Clustering
 - Kmeans Algorithm (Today)
 - ...

• Re-write objective:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mathbf{m}_k\|_2^2,$$

where $r_{nk} \in \{0,1\}$ is an indicator variable

$$\mathit{r}_{\mathit{nk}} = 1$$
 if and only if $\mathit{x}_{\mathit{n}} \in \mathit{C}_{\mathit{k}}$

- Alternative optimization between $\{r_{nk}\}$ and $\{\boldsymbol{m}_k\}$
 - Fix $\{\boldsymbol{m}_k\}$ and update $\{r_{nk}\}$
 - Fix $\{r_{nk}\}$ and update $\{\boldsymbol{m}_k\}$

• Step 0: Initialize $\{ m_k \}$ to some values

- Step 0: Initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \| \mathbf{x}_n - \mathbf{m}_j \|_2^2 \ 0 & ext{otherwise} \end{cases}$$

- Step 0: Initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \| \mathbf{x}_n - \mathbf{m}_j \|_2^2 \ 0 & ext{otherwise} \end{cases}$$

• Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

- Step 0: Initialize $\{m_k\}$ to some values
- Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{ if } k = rg \min_j \| oldsymbol{x}_n - oldsymbol{m}_j \|_2^2 \ 0 & ext{ otherwise} \end{cases}$$

• Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

• Step 3: Return to step 1 unless stopping criterion is met

Equivalent to the following procedure:

- Step 0: Initialize centers $\{m_k\}$ to some values
- Step 1: Assign each x_n to the nearest center:

$$A(\boldsymbol{x}_n) = \arg\min_{j} \|\boldsymbol{x}_n - \boldsymbol{m}_j\|_2^2$$

Update clusters:

$$C_k = \{ \mathbf{x}_n : A(\mathbf{x}_n) = k \} \quad \forall k = 1, \dots, K$$

• Step 2: Calculate mean of each cluster C_k :

$$\boldsymbol{m}_k = \frac{1}{|C_k|} \sum_{\boldsymbol{x}_n \in C_k} \boldsymbol{x}_n$$

• Step 3: Return to step 1 unless stopping criterion is met

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will keep unchanged when step 1 doesn't change cluster assignment ⇒ Converged

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will keep unchanged when step 1 doesn't change cluster assignment ⇒ Converged
- May not converge to global minimum
 Sensitive to initial values

More on K-means Algorithm

- Always decrease the objective function for each update
- Objective function will keep unchanged when step 1 doesn't change cluster assignment ⇒ Converged
- May not converge to global minimum
 Sensitive to initial values
- Kmeans++: A better way to initialize the clusters

Coming up

Clustering

Questions?