MATH 188: Homework #2

Due on Apr 24, 2024 at 23:59pm

 $Professor\ Kunnawalkam\ Elayavalli$

Ray Tsai

A16848188

Let F(x) be a formal power series with F(0) = 0.

(a) Show that there exists a formal power series G(x) with G(0) = 0 such that F(G(x)) = x if and only if $[x^1]F(x) \neq 0$.

Proof. Let $F(x) = \sum_{n=0}^{\infty} a_n x^n$, for some nonzero a_1 and $a_0 = 0$. We look for a formal power series $G(x) = \sum_{n=0}^{\infty} b_n x^n$ such that F(G(x)) = x and $b_0 = 0$. That is,

$$F(G(x)) = \sum_{i=1}^{\infty} a_i G(x)^i$$

$$= \sum_{n=1}^{\infty} x^n \sum_{i=1}^n a_i \sum_{m_1 + m_2 + \dots + m_i = n} b_{m_1} b_{m_2} \cdots b_{m_i} = x.$$

Note that the inner summation terminates at n, as we are enumerating through compositions of n, which could not exceed n terms. By comparing coefficients, we have

$$b_0 = 0, \quad b_1 = \frac{1}{a_1},$$

and for $n \geq 2$,

$$\sum_{i=1}^{n} a_i \sum_{m_1 + m_2 + \dots + m_i = n} b_{m_1} b_{m_2} \cdots b_{m_i} = 0.$$
 (1)

Here, we already know that G(x) exists only if $[x^1]F(x) \neq 0$, it remains to show the converse. Suppose $[x^1]F(x) \neq 0$. We already determined the unique existence of b_1 . For $n \geq 2$, rearranging (1) gives an expression of b_n uniquely determined by $a_1, \ldots a_n, b_1, \ldots b_{n-1}$. But then the existence of $b_1, \ldots b_{n-1}$ are shown by induction, and this ensures the unique existence of b_n .

(b) Assuming $[x^1]F(x) \neq 0$, show that G(x) is unique and also satisfies G(F(x)) = x. You may use without proof that composition of formal power series is associative.

Proof. Uniqueness of G(x) is shown in (a). We know $[x^1]G(x) \neq 0$. By (a), there exists a formal power series H(x) with H(0) = 0 such that G(H(x)) = x. But then F(x) = F(G(H(x))) = H(x).

Problem 2

Evaluate the following sums:

(a)

(b)

$$\sum_{i=0}^{n} \binom{n}{i} \frac{1}{2^i}$$

Proof. By the binomial theorem,

$$\sum_{i=0}^{n} \binom{n}{i} \frac{1}{2^i} = \left(1 + \frac{1}{2}\right)^n = \frac{3^n}{2^n}.$$

$$\sum_{i=0}^{n} i^2 \binom{n}{i} 3^i$$

Proof. By the binomial theorem,

$$\sum_{n\geq 1} i \binom{n}{i} x^{i-1} = \left(\sum_{n\geq 0} \binom{n}{i} x^i\right)' = ((1+x)^n)' = n(1+x)^{n-1},$$

$$\sum_{n\geq 2} i(i-1) \binom{n}{i} x^{i-2} = \left(\sum_{n\geq 0} \binom{n}{i} x^i\right)'' = ((1+x)^n)'' = n(n-1)(1+x)^{n-2}.$$

Hence,

$$\begin{split} \sum_{i=0}^{n} i^2 \binom{n}{i} 3^i &= \sum_{i=0}^{n} i(i-1) \binom{n}{i} 3^i + \sum_{i=0}^{n} i \binom{n}{i} 3^i \\ &= 9 \sum_{i=2}^{n} i(i-1) \binom{n}{i} 3^{i-2} + 3 \sum_{i=1}^{n} i \binom{n}{i} 3^{i-1} \\ &= 9 \left(\sum_{i=0}^{n} \binom{n}{i} 3^i \right)'' + 3 \left(\sum_{i=0}^{n} \binom{n}{i} 3^i \right)' \\ &= 9n(n-1)(1+3)^{n-2} + 3n(1+3)^{n-1} \\ &= \frac{9}{16} n(n-1) 4^n + \frac{3}{4} n 4^n = 3n(3n+1) 4^{n-2}. \end{split}$$

Let a, b be non-negative integers.

(a) By comparing coefficients in $(1+x)^{a+b} = (1+x)^a(1+x)^b$, prove that for any non-negative integer n, we have

$$\binom{a+b}{n} = \sum_{i=0}^{n} \binom{a}{i} \binom{b}{n-i}.$$

Proof. By the binomial theorem,

(b) Now prove this identity using a counting argument.

Proof. Consider choosing n animals from a dogs and b cats. Suppose that we picked i dogs. There are $\binom{a}{i}$ ways of choosing them. In order to have n animals in total, we then have to pick n-i cats, which has $\binom{b}{n-i}$ ways. The possible values for i are between 0 and n, and thus we get the identity

$$\binom{a+b}{n} = \sum_{i=0}^{n} \binom{a}{i} \binom{b}{n-i}.$$

Problem 4

How many ways can we arrange the letters of: MISSISSIPPI?

Proof. There are one M, four I's, two P's, and four S', and we have 11 slots in total. We first choose a slot for the M, which has $\binom{11}{1}$ ways. Then, we choose 4 slots from the remaining 10 slots for the I's, which has $\binom{10}{4}$ ways. Then, we choose 2 slots from the remaining 6 slots for the P's, which has $\binom{6}{2}$ ways. Finally, we choose 4 slots from the remaining 4 slots for the S's, which has $\binom{4}{4}$ ways. In total, there are

$$\binom{11}{1} \binom{10}{4} \binom{6}{2} \binom{4}{4} = \frac{11!}{4!2!4!}$$

ways of arranging the letters of MISSISSIPPI.

Let $f(t) = \sum_{k=0}^{d} f_k t^k$ be a degree d polynomial with rational coefficients. From lecture, we know that there exist unique rational numbers g_0, \ldots, g_d such that

$$\sum_{n>0} f(n)x^n = \frac{g_0 + g_1x + \dots + g_dx^d}{(1-x)^{d+1}}.$$
 (2)

Now assume that f(a) is an integer for a = 0, ..., d. (The f_k don't have to be integers for this to be true, for example f(n) = n(n-1)/2 has this property.) Prove that this implies that the g_k are all integers and that f(a) is an integer whenever a is an integer.

Proof. From (2), for k = 0, 1, ..., d,

$$g_k = [x^k](1-x)^{d+1} \sum_{n\geq 0} f(n)x^n$$
$$= \sum_{i=0}^k (-1)^{k-i} {d+1 \choose k-i} f(i),$$

which is an integer as f(i) and $\binom{d+1}{k-i}$ are both integers, for $i=0,\ldots,d$. But then for $n\in\mathbb{Z}_{\geq 0}$,

$$f(n) = [x^n](1-x)^{-(d+1)}(g_0 + g_1x + \dots + g_dx^d)$$
$$= \sum_{k=0}^d \binom{d+n-k}{n-k} g_k = \sum_{k=0}^d \binom{d+n-k}{d} g_k.$$

Note that $h(n) = \sum_{k=0}^{d} \binom{d+n-k}{d} g_k$ is a polynomial of degree d. Since f(n) - h(n) = 0 for all $n \in \mathbb{Z}_{\geq 0}$, it follows from the Fundamental Theorem of Algebra that f(n) = h(n). Since $g_k \in \mathbb{Z}$ and $\binom{d+n-k}{n-k} \in \mathbb{Z}$ whenever $n \in \mathbb{Z}$, we know f(n) is an integer whenever $n \in \mathbb{Z}$.

Let $n \geq 2$ be an integer.

(a) Prove that

$$\sum_{i=0}^{n} i \binom{n}{i} (-1)^{i-1} = 0.$$

Proof. By the binomial theorem,

$$\sum_{n\geq 1} i \binom{n}{i} x^{i-1} = \left(\sum_{n\geq 0} \binom{n}{i} x^i\right)' = ((1+x)^n)' = n(1+x)^{n-1},$$

and thus

$$\sum_{i=0}^{n} i \binom{n}{i} (-1)^{i-1} = n(1+(-1))^{n-1} = 0$$

(b) Compute

$$\sum_{\substack{0 \le i \le n \\ i \text{ even}}} i \binom{n}{i}.$$

Proof.

$$\begin{split} \sum_{\substack{0 \leq i \leq n \\ i \text{ even}}} i \binom{n}{i} &= \frac{1}{2} \left(\sum_{i=0}^n i \binom{n}{i} - \sum_{i=0}^n i \binom{n}{i} (-1)^{i-1} \right) \\ &= \frac{1}{2} (n(1+1)^{n-1}) = n2^{n-2}. \end{split}$$

(a) Let a, b be rational numbers. Show that for any formal power series A(x) with A(0) = 1, we have

$$A(x)^a A(x)^b = A(x)^{a+b}.$$

[Remember that we defined rational powers in a very specific way, so your proof needs to use this definition.]

Proof. By definition, $A(x)^{m/n} = (A(x)^{1/n})^m = (A(x)^m)^{1/n}$. Let a = m/n, b = p/q, for some $m, n, p, q \in \mathbb{Z}$. Then,

$$A(x)^{a}A(x)^{b} = (A(x)^{1/nq})^{mq}(A(x)^{1/nq})^{np}$$
$$= (A(x)^{1/nq})^{mq+np}$$
$$= A(x)^{a+b}.$$

(b) Deduce from (a) that

$$\binom{a+b}{n} = \sum_{i=0}^{n} \binom{a}{i} \binom{b}{n-i}$$

for all non-negative integers n.

Proof. Put A(x) = (1+x). Since $(1+x)^a (1+x)^b = (1+x)^{a+b}$,

Assume now that we deal with complex-coefficient formal power series. Define the following sets of formal power series:

$$V = \{F(x) \mid F(0) = 0\}, \quad W = \{G(x) \mid G(0) = 1\}.$$

(a) Given $F \in V$, show that $\mathbf{E}(F) = \sum_{n \geq 0} \frac{F^n(x)}{n!}$ is the *unique* formal power series $G \in W$ such that $DG = DF \cdot G$. This defines a function $\mathbf{E} \colon V \to W$. [Convention: $F^0(x) = 1$ even if F(x) = 0.]

Proof. It is easy to see that

$$DG = \sum_{n>0} \frac{D(F^n(x))}{n!} = \sum_{n>1} DF \cdot \frac{F^{n-1}(x)}{(n-1)!} = DF \sum_{n>0} \frac{F^n(x)}{n!} = DF \cdot G,$$

and $G(0) = F^0(0) = 1$. It remains to show that G is unique. Suppose there exists $G = \sum_{n \geq 0} b_n x^n$, $G' = \sum_{n \geq 0} b'_n x^n \in W$ such that $\mathbf{E}(F) = G$ and $\mathbf{E}(F) = G'$. Suppose $DF = \sum_{n \geq 0} a_n x^n$ We know $DG = DF \cdot G$ and $DG' = DF \cdot G'$. By comparing coefficients, for $k \geq 1$,

$$(k+1)b_{k+1} = [x^k]DG = [x^k](DF \cdot G) = \sum_{i=0}^k a_i b_{k-i},$$

$$(k+1)b'_{k+1} = [x^k]DG = [x^k](DF \cdot G) = \sum_{i=0}^k a_i b'_{k-i}.$$

In particular, for $k \geq 1$,

$$b_k = \frac{1}{k+1} \sum_{i=0}^k a_i b_{k-i}, \quad b'_k = \frac{1}{k+1} \sum_{i=0}^k a_i b'_{k-i},$$

so b_k, b'_k are uniquely determined by the corresponding previous coefficients, and thus G = G' if and only if $b_0 = b'_0$. But then G(0) = G'(0) = 1, and the result follows.

(b) Given $G \in W$, show that there is a unique formal power series $F \in V$ such that DF(x) = DG(x)/G(x). We define the function $\mathbf{L} \colon W \to V$ by $\mathbf{L}(G) = F$. [For the rest, it is unnecessary to use explicit formulas for \mathbf{L} and \mathbf{E} and in fact it may be easier to only use the uniqueness properties above.]

Proof. Since G(0)=1, there exists $G^{-1}(x)$ such that $G(x)G^{-1}(x)=G(x)^{-1}G(x)=1$, so DG(x)/G(x) is unique given G. Suppose $DG(x)/G(x)=\sum_{n\geq 0}a_nx^n$. There exists $F=\sum_{n\geq 1}\frac{1}{n}a_{n-1}x^n\in V$ such that

$$DF = \sum_{n\geq 1} a_{n-1} x^{n-1} = \sum_{n\geq 0} a_n x^n = DG(x)/G(x).$$

That is, all coefficients a_n of DF are uniquely determined by DG(x)/G(x). But then all coefficients of F are uniquely determined, as F has no constant term.

(c) Show that **E** and **L** are inverses of each other.

Proof. Let $F \in V$. **E** maps F to some unique $G' \in W$ such that $DG' = DF \cdot G'$, that is, DF = DG'/G'. Then, **L** maps G' back to some unique F' such that DF' = DG'/G' = DF. But then both F and F' have no constant terms, so F and F' actually agree with all coefficients. Hence, $\mathbf{L}(\mathbf{E}(F)) = F$.

Let $G \in W$. L maps G to some unique $F'' \in V$ such that DG/G = DF'', and E maps F'' back to some unique G'' such that $DG'' = DF'' \cdot G'' = DG/G \cdot G''$. But then DG''/G'' = DG/G. By comparing coefficients, for all $k \geq 0$ we get

$$\sum_{i=0}^{k} b_{k-i}''(i+1)b_{i+1} = [x^k]DG'' \cdot G = [x^k]DG \cdot G'' = \sum_{i=0}^{k} b_{k-i}(i+1)b_{i+1}''.$$

Since $b_0 = b_0'' = 1$, it follows from induction that $b_k = b_k''$ for all $k \in \mathbb{Z}_{\geq 0}$, and so G = G''. Hence, $\mathbf{E}(\mathbf{L}(G)) = G$.

(d) Show that $\mathbf{E}(F_1 + F_2) = \mathbf{E}(F_1)\mathbf{E}(F_2)$ for all $F_1, F_2 \in V$.

Proof. Let $G_1 = \mathbf{E}(F_1)$, $G_2 = \mathbf{E}(F_2)$, and $G = \mathbf{E}(F_1 + F_2)$. Since

$$D(G_1G_2) = DG_1 \cdot G_2 + DG_2 \cdot G_1$$

$$= (DF_1 \cdot G_1)G_2 + (DF_2 \cdot G_2)G_1$$

$$= (DF_1 + DF_2)(G_1G_2)$$

$$= D(F_1 + F_2)(G_1G_2).$$

Note that $G_1G_2 \in W$. But then G is the unique element in W such that $DG = D(F_1 + F_2)G$, and so $\mathbf{E}(F_1 + F_2) = G = G_1G_2 = \mathbf{E}(F_1)\mathbf{E}(F_2)$.

(e) Show that $\mathbf{L}(G_1G_2) = \mathbf{L}(G_1) + \mathbf{L}(G_2)$ for all $G_1, G_2 \in W$.

Proof. Let $F_1 = \mathbf{L}(G_1)$, $F_2 = \mathbf{L}(G_2)$. Since

$$D(F_1 + F_2) = DF_1 + DF_2$$

= $DG_1/G_1 + DG_2/G_2$,

$$G_1G_2D(F_1 + F_2) = DG_1 \cdot G_2 + DG_2 \cdot G_1 = D(G_1G_2), \tag{3}$$

that is, $D(F_1 + F_2) = D(G_1G_2)/G_1G_2$. But then $F_1 + F_2 \in F$, so $G_!$ is the unique element in W that satisfies (3), and thus $\mathbf{L}(G_1G_2) = F_1 + F_2 = \mathbf{L}(G_1) + \mathbf{L}(G_2)$.

(f) If m is a positive integer and $G \in W$, show that $\mathbf{E}(\frac{\mathbf{L}(G)}{m})$ is an mth root of G. [This gives an alternative proof for the existence of mth roots and in fact we can now define powers for any complex number m: $F^m = \mathbf{E}(m\mathbf{L}(F))$.]

Proof. By (e),

$$\mathbf{L}\left[\left(\mathbf{E}\left(\frac{\mathbf{L}(G)}{m}\right)\right)^m\right] = m\mathbf{L}\left[\mathbf{E}\left(\frac{\mathbf{L}(G)}{m}\right)\right] = m \cdot \frac{\mathbf{L}(G)}{m} = \mathbf{L}(G).$$

But then L is bijective, and the result follows.

(g) Show that if $\sum_{i>0} F_i(x)$ converges to F(x), then $\prod_{i>0} \mathbf{E}(F_i)$ converges to $\mathbf{E}(F)$.

Proof. Let $F(x) = \sum_{n \geq 0} a_n x^n$. For $n \geq 0$, there exists N_n such that $[x^n] \sum_{i=0}^k F_i(x) = [x^n] F(x)$ for all $k > N_n$. Note that $[x^n] \mathbf{E}(F(x))$ only depends on a_0, \ldots, a_n . Take $N > \max(N_0, \ldots, N_n)$. By part (d), for k > N,

$$[x^n]\mathbf{E}(F(x)) = [x^n]\mathbf{E}\left(\sum_{i=0}^k F_i(x)\right) = [x^n]\prod_{i=0}^k \mathbf{E}(F_i(x)),$$

and thus the convergence.

(h) Show that if $\prod_{i\geq 0} G_i(x)$ converges to G(x), then $\sum_{i\geq 0} \mathbf{L}(G_i)$ converges to $\mathbf{L}(G)$.

Proof. By (e),

$$\mathbf{L}(G(x)) = \mathbf{L}\left(\prod_{i \ge 0} G_i(x)\right) = \sum_{i \ge 0} \mathbf{L}(G_i).$$