MCV4U Lesson 9.4

Intersection of Three Planes

Given Three planes in R3, there are six possible geometric models for the intersection of the planes.

CONSISTENT SYSTEMS

CASE 1 CASE 2 CASE 3 • Two planes intersect at a point • The planes intersect in a line • The planes intersect in a plane (3 coincident planes) • There is exactly one solution • There are an infinite # of • There are an infinite number of solutions • Requires the use of 1 parameter solutions • Requires the use of 2 parameters. **Normals Normals Normals** • Not parallel, not coplanar. Not parallel, coplanar. • Parallel, coplanar

INCONSISTENT SYSTEMS

CASE 4	CASE 5	CASE 6
Three planes are parallel and at least 2 are distinct	 Two planes are parallel and distinct The third plane is not parallel to the other two 	 The planes intersect in pairs The pairs intersect in lines that are parallel and distinct
Normals	Normals	Normals
Parallel, coplanar	Not parallel, coplanar.	Not parallel, coplanar

Ex 1. Determine the solution. Describe the planes.

Solve Row 3 Solve Row 2 Solve Row 1

$$\frac{13}{10} = \frac{13}{10}$$
 $\frac{13}{10} = \frac{13}{10}$
 $\frac{13}{10} = \frac{1$

b)
$$(1) \times -5y + 2z - 10 = 0$$
 $\vec{n}_1 = (1, 5, 2)$
 $(2) \times +7y - 2z + 6 = 0$ $\vec{n}_2 = (1, 1, -2)$
 $(3) 8x + 5y + z - 20 = 0$ $\vec{n}_3 = (3, 5, 1)$

$$\begin{bmatrix}
1 & -5 & 2 & | & 0 \\
1 & 7 & -2 & | & -6 \\
8 & 5 & 1 & 20
\end{bmatrix}
R_{2}-R_{1}$$

$$\begin{bmatrix}
1 & -5 & 2 & | & 0 \\
0 & 12 & -4 & | & -16 \\
0 & 12 & -4 & | & -16 \\
0 & 12 & -4 & | & -46
\end{bmatrix}
R_{2}-R_{2}$$

$$\begin{bmatrix}
1 & -5 & 2 & | & 10 \\
0 & 1 & -\frac{1}{3} & | & -\frac{4}{3} \\
0 & 1 & -\frac{1}{3} & | & -\frac{4}{3}
\end{bmatrix}
R_{3}-R_{2}$$

Let
$$z=t$$
 ignore

 $y - \frac{1}{3}t = -\frac{4}{3}$ $\times -5y + 2z = 10$
 $y = \frac{1}{3}t - \frac{4}{3}$ $\times -5\left(\frac{1}{3}t - \frac{4}{3}\right) + 2t = 10$
 $x - \frac{5}{3}t + \frac{20}{3} + 2t = 10$
 $x + \frac{1}{3}t + \frac{20}{3} = \frac{30}{3}$

Parametric

sol^N of line $x = -\frac{1}{3}t + \frac{10}{3}$

c) (1)
$$3x + y - 2z = 7$$
 $\vec{n_1} = (3) \cdot 5x$)

(2) $x - 5y + z = 8$ $\vec{n_2} = (1, -5, 1)$

(3) $12x + 4y - 8z = -4$ $\vec{n_3} = (12, 4, -8)$

(4) Check if (1)+(3) are the same II

(5) $D_1 = -7$

(6) $D_1 = -7$

(7) $D_4 = 4$

(8) $D_1 = -7$

(9) $D_1 = -7$

(1) $D_2 = -7$

(1) $D_3 = -7$

(1) $D_4 = 4$

(2) $D_4 = 4$

(3) $D_4 = 4$

(4) $D_4 = 4$

(5) $D_4 = 4$

d) (i)
$$x + 3y - z = -10 \overline{n_1} = (1,3,-1)$$

(3) $2x + y + z = 8$ $\overline{n_2} = (2,1,1)$
(3) $x - 2y + 2z = -4$ $\overline{n_3} = (1,-2,1)$

$$\begin{bmatrix} 1 & 3 & -1 & | & -10 \\ 2 & 1 & 1 & 8 \\ 1 & -2 & 2 & | & -4 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & | & 10 \\ 0 & -5 & 3 & | & 28 \\ 0 & -5 & 3 & | & 6 \end{bmatrix} R_{2} - 2R_{1} \begin{bmatrix} 1 & 3 & -1 & | & 10 \\ 0 & -5 & 3 & | & 28 \\ 0 & 0 & 0 & | & -22 \\ 0 & 0$$

 $0 \times + 0 \times + 0 = -22$ no solution

e)
$$(1) 4x - 2y + 6z = 35 \vec{n}_1 = (4, -2, 6) \times \frac{-5}{2}$$

 $(2) -10x + 5y - 15z = 20 \vec{n}_2 = (-10, 5, -15) \times \frac{-5}{2}$
 $(3) 6x - 3y + 9z = -50 \vec{n}_3 = (6, -3, 9) \times \frac{-3}{5}$
Ace all 3 75 the same?

