DIAS: Decentralized Internet Applications and Services

Midterm Presentation 3/13/14

Adriana Flores
Clayton Shepard
Ellis Giles
Haiuhua Shen
Yanda Lu

Agenda

- Background & Motivation
- DIAS Overview
- Related Work
- DIAS Framework
- Progress
- Remaining Work
- Demo

Motivation - Before

• Rare users have persistent always-on connections.

Always connected servers used as intermediaries

Motivation - Today

- Mobile devices:
 - Widely adopted
 - Always-on
 - Always connected

- Powerful Mobile Devices
- Galaxy S4 as powerful as a year
 2000 super computer
- Why do we still rely on servers?

DIAS: Decentralized Internet Applications and Services

- Centralized Architecture
 - Single point of failure
 - Privacy
 - Security
 - Energy efficiency

- Decentralized Architecture
 - Robust to failure
 - Reclaim personal data
 - Power efficiency

DIAS Overview

Goal:

- Decentralize the current server-client model
- Replace servers with point to point communication for personal communication and services
 - Email, Web Pages, Social Networking, Chat, VoIP

Benefits:

Security, Privacy, Resilience, Cost, and Power

Challenges:

• Redundancy, Uptime, Failover, Battery Management

Related Work

Related Work

- Peer to Peer Networks (P2P)
- Connectivity and Reachability
- Data Replication

Related Work – P2P

- Bitcloud
 - Decentralizing the Internet, creating Distributed Applications, and developing a new mesh network to replace the Internet.

Bitcloud

Improve privacy, security, and ending Internet censorship.

Related Work – P2P

- Chord and Pastry
 - Peer-to-peer lookup service for Internet applications
 - Peers can join and leave

Related Work – Connectivity and Reachability

- Most networks block reachability
- Solutions
 - IPv6 with Mobile IP
 - Unmanaged Internet Architecture (UIA)
- Largely solved issue
 - Caused by business policy, not technical challenge

Related Work – Data Replication

- Decentralized P2P file sharing programs replicate file data on end nodes, which may become corrupt or suffer from loss of availability
 - Limewire
 - Bittorrent
 - Kazaa

- PAST
 - Built on Pastry
 - Replicates files close to owner's nodes
 - Replicates entire files

Related Work – Data Replication

- Cooperative File System (CFS)
 - Peer-to-peer read-only storage system that provides provable guarantees for the efficiency, robustness, and load-balance of file storage and retrieval.
 - Built on Chord Coordinated File System
 - Replicates files close to owner's nodes
 - Replicates at block level to distribute the load and storage space among servers in the network.

Related Work – Data Replication

- Content Delivery Networks
 - Replicate data near consumers.
 - Akamai
 - Amazon S3

DIAS Framework & Progress

DIAS Architecture

Building Blocks

Connectivity & Reachability

Devices publically accessible

Naming and Domain Management

- DNS
- Failover

Basic Services

- Full Communication
- Web and Email services

Integration

Android Application

- Server Manager
- Battery Power Monitoring

Key Functionalities

- Power Management
- Data Replication
- Smart Failover

Building Blocks

Reachability Problem

Reachability Solution

Naming and Management

- DNS
 - Backwards Compatible
 - Human friendly names
 - Help with load balancing and failover

- Identify our personal clusters
 - Self-own laptop, smartphone, desktop, tablet, etc.
 - Clever self failover technique
 - Establish a failover order self-own devices

Communication Services

- Utilize open-source server software, provide basis for our communication services
 - Email Server
 - Web server
 - Other services

- Guarantee:
 - 99% uptime
 - Backwards compatibility

Integration

Android Application

Event and Debug Logs and Configuration Tabs

Configurable Node Name

Connection and Overall Status
Monitoring Thread/Event Receiver

Battery Power Monitoring Thread and Event Broadcast Receiver Can act on power changes.

Pluggable Services List

Services can provide Start, Stop, and Configuration methods.
Web, Email, FTP, etc.

```
package rice.comp529.dias;
import java.util.Vector;
public interface ServicesManager {
    public ServicesManager getServicesManager();
    public void registerService(ServicesInterface service);
    public Vector<ServicesInterface> listServices();
    public void logMessage(String message);
    public void logEvent(String event);
            package rice.comp529.dias;
            public interface ServicesInterface {
                public String getDescription();
                public String getConfigUrl();
                public void start();
                public void stop();
                            Email
 Web
                                                 Other Services
```


Samsung Group Play SDK Utilizes Chord However, it is closed source and doesn't execute outside of Android SDK. Chord SDK Discontinued

Battery Power Monitoring

- Event Log for asynchronous events received from the device such as, network and battery levels. It also logs events for pluggable services and building blocks.
- Debug Log contains debug messages from monitoring threads and services.
- Android application can react to changes in the battery level or network events.
- It has monitoring threads for battery and network connections, and depending on thresholds, the application will be able to react and shutdown services or send notification messages.

Progress

Building Blocks

Connectivity & Reachability

• Devices publically accessible

Naming and Domain Management

- DNS
- Failover

Basic Services

- Full Communication
- Web and Email services

Integration

Android Application

- Server Manager
- Battery Power Monitoring

Key Functionalities

- Power Management
- Data Replication
- Smart Failover

Early Results

• 99.7% uptime!

Galaxy S4 Running DIAS
Dynamic DNS -> Local WiFi
ellis.route404.com
i-jetty, kirium, dyn-dns client
Web server sent over WiFi
2.35 GB Data / 2hrs

Remaining Battery Power

Can effectively monitor power levels with resource monitor threads. Can react to resource changes.

Remaining Work

Proposed Timeline

March Early

March Mid

March End

Framework Setup

Get connectivity and reachability on phones

VPN server with public IPs and DNS

Servers installation (Web and Email)

- Mid-term
 Presentation
- Basic experimental framework installed
- Start working on novel issues (replication, failover, and power).

Data Replication:

Basic replication scheme working

Proposed Timeline

April Early

April Mid April End

Failover:

Basic mechanism developed and implemented

Power:

Experiment with performance and power analysis

Final Presentation:

Polish and integrate results into final presentation

Remaining Work

- Investigate Uptime and Reliability
- Data Replication and Redundancy
- Failover Handling
- Disaster Recovery
- Impact on Power and Mitigation
- Polished Full-Featured App

Demo

Website hosted by our phones

- Go to: (quicklinks at http://clay.rice.edu/dias)
 - http://clay.elec529.recg.rice.edu:8080/
 - http://adriana.elec529.recg.rice.edu:8080/
 - Over Rice Owls WiFi Go To: http://dyn.ellis.elec529.recg.rice.edu:8080/
- Failover:
 - Clay
 - http://3.clay.elec529.recg.rice.edu:8080/
 - Adriana
 - http://1.adriana.elec529.recg.rice.edu:8080/