

EE366L/CE366L: Introduction to Robotics Lab

Dr Basit Memon Muhammad Hassan Shah

Lab 4: Forward Kinematics

Sadaf Shaikh and Mohammad Hasan Tariq

February 21st 2022

Task 4.1

DH Frame Assignment

Task 4.2

Link	α _i (degrees)	a _i (cm)	θ_i (degrees)	d _i (cm)
1	90	0	$ heta_{ exttt{1}}$	L1=14.1 cm
2	0	L2=10.3 cm	θ_2	0
3	0	L3=10.3cm	$ heta_3$	0
4	0	L4=9.2 cm	$ heta_4$	0

We saw that the difference between the actual and the model was 3 mm. Here, by model we mean the manufacturer provided 3D model.

Task 4.3

a, b)

Matlab Script

```
syms('theta_1');
syms('theta_2');
syms('theta_3');
syms('theta_4');
T01 = [cos(theta_1) 0 sin(theta_1) 0; sin(theta_1) 0 -cos(theta_1) 0; 0 1 0 141; 0 0 0
1];
T12 = [cos(theta_2) -sin(theta_2) 0 103*cos(theta_2); sin(theta_2) cos(theta_2) 0
103*sin(theta_2); 0 0 1 0; 0 0 0 1];
```

```
T23 = [cos(theta_3) -sin(theta_3) 0 103*cos(theta_3); sin(theta_3) cos(theta_3) 0 103*sin(theta_3); 0 0 1 0; 0 0 0 1];  
T34 = [cos(theta_4) -sin(theta_4) 0 103*cos(theta_4); sin(theta_4) cos(theta_4) 0 92*sin(theta_4); 0 0 1 0; 0 0 0 0 1];  
T04 = T01 * T12 * T23 * T34;  
T = simplify(T04)  

c)  
\begin{pmatrix} \sigma_3 \cos(\theta_1) & -\sigma_1 \cos(\theta_1) & \sin(\theta_1) & \cos(\theta_1) \sigma_2 \\ \sigma_3 \sin(\theta_1) & -\sigma_1 \sin(\theta_1) & -\cos(\theta_1) & \sin(\theta_1) \sigma_2 \\ \sigma_1 & \sigma_3 & 0 & 92 \sigma_1 + 103 \sin(\theta_2 + \theta_3) + 103 \sin(\theta_2) + 141 \\ 0 & 0 & 0 & 1 \end{pmatrix}
```

Where,

$$\sigma_1 = \sin(\theta_2 + \theta_3 + \theta_4)$$

$$\sigma_1 = \sin(\theta_2 + \theta_3 + \theta_4)$$

$$\sigma_3 = \cos(\theta_2 + \theta_3 + \theta_4)$$

Here, the first three elements in the 4th column define the position of the end-effector. The first three columns and rows correspond to the rotation matrix with respect to the base frame which defines the orientation of the end-effector.

Task 4.4

Code

```
function [x,y,z, R] = findPincher(jointAngles)

theta_1 = jointAngles(1);
theta_2 = jointAngles(2);
theta_3 = jointAngles(3);
theta_4 = jointAngles(4);

T =[cos(theta_2 + theta_3 + theta_4)*cos(theta_1), -sin(theta_2 + theta_3 +
theta_4)*cos(theta_1), sin(theta_1), cos(theta_1)*(92*cos(theta_2 + theta_3 +
theta_4) + 103*cos(theta_2 + theta_3) + 103*cos(theta_2)); cos(theta_2 + theta_3 +
theta_4)*sin(theta_1), -sin(theta_2 + theta_3 + theta_4)*sin(theta_1), -
cos(theta_1), sin(theta_1)*(92*cos(theta_2 + theta_3 + theta_4) + 103*cos(theta_2 +
theta_3) + 103*cos(theta_2)); sin(theta_2 + theta_3 + theta_4), cos(theta_2 +
theta_3 + theta_4), sym(0), 92*sin(theta_2 + theta_3 + theta_4) + 103*sin(theta_2 +
theta_3) + 103*sin(theta_2) + 141; sym(0), sym(0), sym(0), sym(1)];
format short
```

```
x = round(T(1,4),3);
y = round(T(2,4),3);
z = round(T(3,4),3);
R = [T(1,1:3); T(2,1:3); T(3,1:3)];
end
```

Task 4.5

The 4-5 random configurations for the manipulator are the following where all the results match.

(pi,pi/3,pi/6,pi/8)

(0,pi/3,0,pi/3)

(pi/3,pi/3,pi/3,pi/3)

(pi/4,pi.4,pi/4,pi/4)

Task 4.6

Zero Configuration of the Robot

<u>Table 4.1</u>

Motor ID	DH Joint Angle	Servo Angle
1	0	0
2	0	90
3	0	0
4	0	0

Matlab Code for errorCode

function f= setPosition(arb, jointAngles) % order from base to wrist in radians
 jointAngles(2) = - jointAngles(2) + pi/2; % the offset in motor 1 is
determined to be 90 degrees

```
jointAngles(3) = - jointAngles(3);
jointAngles(4) = - jointAngles(4);
f = 1;
for i = 1:4
    if jointAngles(i) >=5*pi/6 || jointAngles(i) <= -5*pi/6
        f = 0;
    end
end

if f
    arb.setpos([jointAngles 0],[50,50,50,50,50]);
end
end</pre>
```

Task 4.7

Configuration $(\theta_1, \theta_2, \theta_3, \theta_4)$	Actual Robot	findPincherModel	Euclidean
(rad)	Location(x,y,z) (mm)	Location (x,y,z)	Distance (mm)
-0.4309,2.5802,-1.9990, -	56,-22.9,180	50.7682,-	5.252
1.4841		23.3387,180.1519	
-0.9365,1.0832,-0.6170,-	120,-142,189	102.9743,-	17.523
1.6643		139.9648,192.6104	
2.2271,2.2866,1.3203,0.5008	130,-169,90	129.3261,-	6.937
		167.9126,96.818	
1.6342,1.3668,1.9861,0.6339	9,-130,160	8.9271,-	13.63
		140.6087,151.4352	
1.5198, 1.8296,1.5303,1.7947	2,-90,130	-4.4625,-	8.631
		87.4314,135.112	

There is error observed between the coordinates produced by the findPincher model and the measured distance. This can be due to human error in determining the projection of the end-effector position on the x-y plane. There could be a parallax error when measuring the height of the end-effector. This error would become larger for instances where the end-effector was at a larger height above the base frame's x-y plane.

Task 4.8

```
Code
```

```
N = 5000;
theta_min = -5*pi/6;
theta_max = 5 * pi/6;
theta1 = theta_min +(theta_max-theta_min)*rand(N,1);
theta2 = theta_min +(theta_max-theta_min)*rand(N,1);
theta3 = theta_min +(theta_max-theta_min)*rand(N,1);
theta4 = theta_min +(theta_max-theta_min)*rand(N,1);
```

```
X =[];
Y=[];
Z=[];
for i = 1:N
        [x, y, z, R] = findPincher([theta1(i), theta2(i), theta3(i), theta4(i)]);
        X(i)=x;
        Y(i) = y;
        Z(i) = z;
end
plot3(X,Y,Z)
```

Projection in the x-y Plane

The maximum horizontal reach is around 291.467 in the y direction and 289.973 in the x direction.