Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Sistemas Discretos

Lista de Exercícios - Relações e Propriedades das Endorrelações

- **1.** Seja R a relações dos números \mathbb{N}^* definida pela sentença aberta 2x + y = 10, isto é, seja R = $\{(x, y) \in \mathbb{N}^* \times \mathbb{N}^* \mid 2x + y = 10\}$
 - a) Determine o domínio, contradomínio, domínio de definição* e a imagem de R.
 - b) Determine R^{-1} e o domínio, contradomínio, domínio de definição* e imagem de R^{-1} .
 - * <u>Domínio de definição</u>: conjunto de todos os elementos do domínio (conjunto origem) para os quais a relação está definida.
- **2.** Enumere os elementos das relações em A = {0, 1, 2, 3} abaixo, representadas por grafos. Que propriedades estas relações apresentam (neste exercício uma aresta com duas direções está representando duas arestas, uma para cada direção)?
 - a) R1:

b) R2:

- **3.** Exemplifique cada um dos casos abaixo:
 - a) Relação que não é simétrica nem anti-simétrica.
 - b) Relação que é simultaneamente simétrica e anti-simétrica.
- **4.** Seja A = {a, b, c, d}. Defina endorrelações em A tais que:
 - a) R₁: só tem a propriedade reflexiva;
 - b) R₂: só tem a propriedade simétrica;
 - c) R₃: só tem a propriedade transitiva;
 - d) R_{4:} só tem a propriedade antissimétrica;
 - e) R₅: reflexiva e transitiva, mas não simétrica;
 - f) R₆: reflexiva e simétrica, mas não transitiva;
 - g) R₇: simétrica e transitiva, mas não reflexiva.
- **5.** Determinar quais das seguintes relações em A = {1,2,3} são reflexivas:
 - a) $R_1 = \{(1,1),(2,2),(2,3),(3,2),(3,3)\}$
 - b) $R_2 = \{(1,2),(3,2),(2,2),(2,3)\}$
 - c) $R_3 = \{(1,2),(2,3),(1,3)\}$
 - d) $R_4 = \{(1,2)\}$
 - e) $R_5 = A \times A$

- **6.** Determinar quais das seguintes relações em $A = \{1,2,3\}$ são simétricas:
 - a) $R_1 = \{(1,1),(2,1),(2,2),(3,2),(2,3)\}$
 - b) $R_2 = \{(1,1)\}$
 - c) $R_3 = \{(1,2)\}$
 - d) $R_4 = A \times A$
 - e) $R_5 = \{(1,1),(3,2),(2,3)\}$
- 7. Determinar quais das seguintes relações em A = {1,2,3} são anti-simétricas:
 - a) $R_1 = \{(1,1),(2,1),(2,2),(3,2),(2,3)\}$
 - b) $R_2 = \{(3,3)\}$
 - c) $R_3 = \{(1,2)\}$
 - d) $R_4 = \{(1,1),(2,3),(3,2)\}$
 - e) $R_5 = A \times A$
- **8.** Determinar quais das seguintes relações em $A = \{1,2,3\}$ são transitivas:
 - a) $R_1 = \{(1,2),(2,3),(1,3),(2,1),(1,1)\}$
 - b) $R_2 = \{(1,2),(2,2)\}$
 - c) $R_3 = \{(1,2)\}$
 - d) $R_4 = \{(1,1)\}$
 - e) $R_5 = A \times A$
- **9.** Determinar quais das seguintes relações em A = {1,2,3,4} são reflexivas, simétricas, anti-simétricas ou transitivas:
 - a) $R_1 = \{(1,1),(1,2)\}$
 - b) $R_2 = \{(1,3),(2,4)\}$
 - c) $R_3 = \{(1,1),(2,2),(3,3)\}$
 - d) $R_4 = A \times A$
 - e) $R_5 = \{(1,1),(2,3),(4,1)\}$
- **10.** Seja A = {1,2,3,4}. Determine se a relação é reflexiva, irreflexiva, simétrica, assimétrica, anti-simétrica ou transitiva.
 - a) $R = \{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$
 - b) $R = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$
 - c) $R = \{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4)\}$
 - d) $R = \{(1,1),(2,2),(3,3)\}$
 - e) $R = \{\}$
 - f) $R = A \times A$
 - g) $R = \{(1,2),(1,3),(3,1),(1,1),(3,3),(3,2),(1,4),(4,2),(3,4)\}$
- **11.** Seja A = {1,2,3,4,5}. Determine se a relação é reflexiva, irreflexiva, simétrica, assimétrica, anti-simétrica ou transitiva.

12. Seja A = {1,2,3,4}. Determine se a relação é reflexiva, irreflexiva, simétrica, assimétrica, anti-simétrica ou transitiva.

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 a)
$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

13. Determine se a relação dos grafos é uma relação reflexiva, simétrica e transitiva.

- **14.** Sejam A= $\{1,2,3\}$, B= $\{a,b,c\}$ e C= $\{x,y,z\}$. Seja R uma relação de A para B e S uma relação de B para C, onde R= $\{(1,a), (1,c), (2,a), (3,b)\}$ e S= $\{(a,x),(a,y),(a,z),(c,x)\}$. Encontre a relação composta S \circ R de A para C.
- **15.** Sendo A = {p, q, r, s}, B = {a, b}, C = {1, 2, 3, 4}, R: A \rightarrow B = {(p, a), (p, b), (q, b), (r, a), (s, a)} e S: B \rightarrow C = {(a, 1),(a, 2),(b, 4)} determinar a inversa de S \circ R ou seja (S \circ R) $^{-1}$.