

INGENIERÍA DE SOFTWARE

- Requerimientos
- Ingeniería de requerimientos
- Técnicas de especificación de requerimientos

RESUMEN

Conceptos generales

Modelos proceso

Metodologías agiles

Desarrollo de Software Dirigido por Modelos

Problemas de Comunicación

- Desarrollador
- Cliente
- Puntos de vista

Elicitacion de requerimientos

Técnicas de elicitacion de requerimientos

- Entrevistas / Cuestionarios / Muestreo de la documentación, las formas y los datos existentes / Investigación y visitas al lugar
- Observación del ambiente de Trabajo / Planeación conjunta de Requerimientos (JRP o JAD) /Lluvia de Ideas - Brainstorming

Hoy agregamos ...

Definición de Requerimientos

Ingeniería de Requerimientos

Clasificación de requerimientos

Técnicas de especificación de requerimientos

- Estáticas
- Dinámicas

REQUERIMIENTOS

»Un Requerimiento (o requisito) es una característica del sistema o una descripción de algo que el sistema es capaz de hacer con el objeto de satisfacer el propósito del sistema

»Definición IEEE-Std-610

- Condición o capacidad que necesita el usuario para resolver un problema o alcanzar un objetivo
- 2. Condición o capacidad que debe satisfacer o poseer un sistema o una componente de un sistema para satisfacer un contrato, un estándar, una especificación u otro documento formalmente impuesto.
- 3. Representación documentada de una condición o capacidad como en 1 o 2.

Pfleeger Capitulo 4

REQUERIMIENTOS

- »Impacto de los errores en la etapa de requerimientos
 - El software resultante puede no satisfacer a los usuarios
 - Las interpretaciones múltiples de los requerimientos pueden causar desacuerdos entre clientes y desarrolladores
 - Puede gastarse tiempo y dinero construyendo el sistema erróneo
- »Solucionar el error de cálculo en una formula compleja

REQUERIMIENTOS 0,1			
DISEÑO	0,5		
CODIFICACIÓN	1.		
PRUEBAS DE UNIDAD		2	
PRUEBAS DE ACEPTACIÓN	ı		5
MANTENIMIENTO			

- »La ingeniería de requerimientos es <u>la disciplina</u> para desarrollar una especificación completa, consistente y no ambigua, la cual servirá como base para acuerdos comunes entre todas las partes involucradas y en donde se describen las funciones que realizará el sistema
- »Ingeniería de requerimientos es el proceso por el cual se transforman los requerimientos declarados por los clientes, ya sean hablados o escritos, a especificaciones precisas, no ambiguas, consistentes y completas del comportamiento del sistema, incluyendo funciones, interfaces, rendimiento y limitaciones"

- »"Ingeniería de requerimientos es el proceso mediante el cual se intercambian diferentes puntos de vista para recopilar y modelar lo que el sistema va a realizar. Este proceso utiliza una combinación de métodos, herramientas y actores, cuyo producto es un modelo del cual se genera un documento de requerimientos."
- "'Ingeniería de requerimientos es un enfoque sistémico para recolectar, organizar y documentar los requerimientos del sistema; es también el proceso que establece y mantiene acuerdos sobre los cambios de requerimientos, entre los clientes y el equipo del proyecto"

»Importancia

- Permite gestionar las necesidades del proyecto en forma estructurada
- Mejora la capacidad de predecir cronogramas de proyectos
- Disminuye los costos y retrasos del proyecto
- Mejora la calidad del software
- Mejora la comunicación entre equipos
- Evita rechazos de usuarios finales.

»Proceso

INGENIERÍA DE REQUERIMIENTOS ESTUDIO DE VIABILIDAD

- »Principalmente para sistemas nuevos
- »A partir de una descripción resumida del sistema se elabora un informe que recomienda la conveniencia o no de realizar el proceso de desarrollo
- »Responde a las siguientes preguntas:
- ¿El sistema contribuye a los objetivos generales de la organización?
 - Si no contribuye, entonces no tiene un valor real en el negocio
- ¿El sistema se puede implementar con la tecnología actual?
- ¿El sistema se puede implementar con las restricciones de costo y tiempo?
- ¿El sistema puede integrarse a otros que existen en la organización?
- "Una vez que se ha recopilado toda la información necesaria para contestar las preguntas anteriores se debería hablar con las fuentes de información para responder nuevas preguntas y luego se redacta el informe, donde debería hacerse una recomendación sobre si debe continuar o no el desarrollo.

- »Propiedades de los Requerimientos
 - Necesario: Su omisión provoca una deficiencia.
 - Conciso: Fácil de leer y entender
 - Completo: No necesita ampliarse
 - Consistente: No contradictorio con otro
 - No ambiguo: Tiene una sola implementación
 - Verificable: Puede testearse a través de inspecciones, pruebas, etc.

Supongamos un relevamiento de requerimientos para la nueva aplicación móvil de suscripción de pago a servicios cervecerías que ofrece descuentos

¿Cuáles serían los requerimientos?

»Tipos de requerimientos

- Requerimientos funcionales
 - Describen una interacción entre el sistema y su ambiente. Como debe comportarse el sistema ante determinado estímulo.
 - Describen lo que el sistema debe hacer, o incluso cómo NO debe comportarse.
 - Describen con detalle la funcionalidad del mismo.
 - Son independientes de la implementación de la solución.
 - Se pueden expresar de distintas formas
- Requerimientos no funcionales
 - Describen una restricción sobre el sistema que limita nuestras elecciones en la construcción de una solución al problema.

»Tipos de requerimientos

- Requerimientos no funcionales
 - Requerimientos del producto
 - Especifican el comportamiento del producto (usabilidad, eficiencia, rendimiento, espacio, fiabilidad, portabilidad).
 - Requerimientos organizacionales
 - Se derivan de las políticas y procedimientos existentes en la organización del cliente y en la del desarrollador (entrega, implementación, estándares).
 - Requerimientos externos
 - Interoperabilidad, legales, privacidad, seguridad, éticos.

Fuente:

»Tipos de requerimientos

- Otras Clasificaciones
 - Requerimientos del dominio
 - Reflejan las características y restricciones del dominio de la aplicación del sistema. Pueden ser funcionales o no funcionales y pueden restringir a los anteriores. Como se especializan en el dominio son complicados de interpretar.
 - Requerimientos por Prioridad
 - Que deben ser absolutamente satisfechos
 - Que son deseables pero no indispensables
 - Que son posibles, pero que podrían eliminarse

»Tipos de requerimientos

- Otras Clasificaciones
 - Requerimientos del Usuario
 - Son declaraciones en lenguaje natural y en diagramas de los servicios que se espera que el sistema provea y de las restricciones bajo las cuales debe operar.
 - Pueden surgir problemas por falta de claridad, confusión de requerimientos, conjunción de requerimientos.
 - Requerimientos del Sistema
 - Establecen con detalle los servicios y restricciones del sistema.
 - Es difícil excluir toda la información de diseño (arquitectura inicial, interoperabilidad con sistemas existentes, etc.)

»Objetivos

- Permiten que los desarrolladores expliquen cómo han entendido lo que el cliente pretende del sistema
- Indican a los diseñadores qué funcionalidad y características va a tener el sistema resultante
- Indican al equipo de pruebas qué demostraciones llevar a cabo para convencer al cliente de que el sistema que se le entrega es lo que había pedido.

INGENIERÍA DE REQUERIMIENTOS ESPECIFICACIÓN DE REQUERIMIENTOS

- »Propiedades de la Especificación de requerimientos
 - Correcta
 - No ambigua
 - Completa
 - Verificable
 - Consistente
 - Comprensible por los consumidores
 - Modificable
- Rastreable
- Independiente del diseño
- Anotada
- Concisa
- Organizada
- Utilizable en operación y mantenimiento

INGENIERÍA DE REQUERIMIENTOS ESPECIFICACIÓN DE REQUERIMIENTOS

- »Documento de definición de requerimientos
- Listado completo de todas las cosas que el cliente espera que haga el sistema propuesto
- »Documento de especificación de requerimientos
 - definición en términos técnicos
- »Documento de especificación de requerimientos de Software IEEE Std. 830-1998 (SRS)
 - Objetivo:
 - Brindar una colección de buenas prácticas para escribir especificaciones de requerimientos de software (SRS).
 - Se describen los contenidos y las cualidades de una buena especificación de requerimientos.

INGENIERÍA DE REQUERIMIENTOS ESPECIFICACIÓN DE REQUERIMIENTOS

- »Aspectos básicos de una especificación de requerimientos
 - Funcionalidad
 - ¿Qué debe hacer el software?
 - Interfaces Externas
 - ¿Cómo interactuará el software con el medio externo (gente, hardware, otro software)?
 - Rendimiento
 - Velocidad, disponibilidad, tiempo de respuesta, etc.
 - Atributos
 - Portabilidad, seguridad, mantenibilidad, eficiencia
 - Restricciones de Diseño
 - Estándares requeridos, lenguaje, límite de recursos, etc.

- »Es el proceso de certificar la corrección del modelo de requerimientos contra las intenciones del usuario.
- »Trata de mostrar que los requerimientos definidos son los que estipula el sistema. Se describe el ambiente en el que debe operar el sistema.
- »Es importante, porque los errores en los requerimientos pueden conducir a grandes costos si se descubren más tarde

»Definición de la IEEE

- Validación
 - Al final del desarrollo evaluar el software para asegurar que el software cumple los requerimientos
- Verificación
 - Determinar si un producto de software de una fase cumple los requerimientos de la fase anterior

»Sobre estas definiciones:

- · la validación sólo se puede hacer con la activa participación del usuario
- validación: hacer el software correcto
- verificación: hacer el software correctamente

»¿Es suficiente validar después del desarrollo del software?

- La evidencia estadística dice que NO
- Cuanto más tarde se detecta, más cuesta corregir (Boehm)
- Bola de nieve de defectos
- Validar en la fase de especificación de requerimientos puede ayudar a evitar costosas correcciones después del desarrollo

»¿Contra qué se verifican los requerimientos?

- No existen "los requerimientos de los requerimientos"
- No puede probarse formalmente que un Modelo de Requerimientos es correcto. Puede alcanzarse una convicción de que la solución especificada en el modelo de requerimientos es el correcto para el usuario.

»Comprenden

- Verificaciones de validez (para todos los usuarios)
- Verificaciones de consistencia (sin contradicciones)
- Verificaciones de completitud (todos los requerimientos)
- Verificaciones de realismo (se pueden implementar)
- Verificabilidad (se pueden diseñar conjunto de pruebas)

»Técnicas de validación

- Pueden ser manuales o automatizadas
- Revisiones de requerimientos (formales o informales)
- Construcción de prototipos
- Generación de casos de prueba

»Revisión de Requerimientos

- Es un proceso manual que involucra a distintas personas.
- Ellos verifican el documento de requerimientos en cuanto a anomalías y omisiones.
- Informales
 - Los desarrolladores deben tratar los requerimientos con tantos stakeholders como sea posible.
- Formal
 - El equipo de desarrollo debe conducir al cliente, explicándole las implicaciones de cada requerimiento
- Antes de una revisión formal, es conveniente realizar una revisión informal.

TÉCNICAS DE ESPECIFICACIÓN DE REQUERIMIENTOS

»Estáticas

- Se describe el sistema a través de las entidades u objetos, sus atributos y sus relaciones con otros. No describe como las relaciones cambian con el tiempo.
- Cuando el tiempo no es un factor mayor en la operación del sistema, es una descripción útil y adecuada.
 - Referencia indirecta
 - Relaciones de recurrencia
 - Definición axiomática
 - Expresiones regulares
 - Abstracciones de datos
 - Otras...

TÉCNICAS DE ESPECIFICACIÓN DE REQUERIMIENTOS

»Dinámicas

- Se considera un sistema en función de los cambios que ocurren a lo largo del tiempo.
- Se considera que el sistema está en un estado particular hasta que un estímulo lo obliga a cambiar su estado.
 - Tablas de decisión
 - Diagramas de transición de estados
 - Tablas de transición de estados
 - Diagramas de persianas
 - Diagramas de transición extendidos,
 - Redes de Petri
 - Otras...

»Referencia indirecta (ecuaciones implícitas)

- Descripción del sistema con una referencia indirecta al problema y su solución.
- Se define "QUÉ" se hace, no "CÓMO".
- Ejemplo: sistema que resuelva k ecuaciones con n incógnitas => NO se declara el método de resolución, puede NO existir la solución.

»Relaciones de recurrencia

- Descripción del sistema mediante una función que define su valor en función de términos anteriores.
- Ejemplo: Expresar la serie de Fibonacci

•
$$F(0) = 1$$
 $F(1) = 1$ $F(n+1)=F(n)+F(n-1)$

»Definición axiomática

- Se definen las propiedades básicas de un sistema a través de operadores y axiomas (debe ser un conjunto completo y consistente)
- Se generan teoremas a través del comportamiento del sistema y se demuestran
- Ejemplos: Sistemas expertos, Definición de TADs, etc.

»Expresiones regulares

- Se define un alfabeto y las combinaciones permitidas. Cuando un sistema procesa un conjunto de cadenas de datos, permite definir las cadenas de datos aceptables
 - Alfabeto
 - ÁTOMOS: (símbolos básicos) a,b,c.
 - ALTERNACIÓN: $(a | b) = \{a,b\}$
 - COMPOSICIÓN: $(ab) = \{ab\}$
 - ITERACIÓN: (a)*= $\{e,a,aa..\}$ (a)+= $\{a,aa,...\}$
 - Se definen las combinaciones válidas
 - $(a(b|c)) = \{ab,ac\}$
 - $(a(b|c)) + = \{ab,ac,abac,acab...\}$

»Abstracciones de datos

- Para aquellos sistemas en los que los datos determinan las clases de acciones que se realizan (importa para qué son).
- Se categorizan los datos y se agrupan los semejantes.
- El diccionario contiene los TIPOS DE DATOS (clases) y los DATOS (objetos).
- Se organizan de tal manera de aprovechar las características compartidas.

»Tablas de Decisión

• Es una herramienta que permite presentar de forma concisa las reglas lógicas que hay que utilizar para decidir acciones a ejecutar en función de las condiciones y la lógica de decisión de un problema específico.

»Describe el sistema como un conjunto de:

- Posibles CONDICIONES satisfechas por el sistema en un momento dado
- REGLAS para reaccionar ante los estímulos que ocurren cuando se reúnen determinados conjuntos de condiciones y
- ACCIONES a ser tomadas como un resultado.

Pfleeger, Capitulo 4

- Construiremos las tablas con:
 - condiciones simples y acciones simples
 - Las condiciones toman sólo valores Verdadero o Falso
 - Hay 2N Reglas donde N es el nro. de condiciones

	REGLA 1	REGLA 2	
COND 1			
COND 2			_
ACCION 1			
ACCION 2			

- Modelizar el problema de remisión de mercadería con las siguientes consideraciones:
 - 1 Si el comprador no es cliente se imprime un mensaje de aviso y no se remite.
 - 2- Si no hay stock y el comprador es cliente no se remite.
 - 3- Si hay stock y el comprador es cliente se remite

- Modelizar el problema de remisión de mercadería con las siguientes consideraciones:
 - 1. Si el comprador no es cliente se imprime un mensaje de aviso y no se remite.
 - 2. Si no hay stock y el comprador es cliente no se remite.
 - 3. Si hay stock y el comprador es cliente se remite

- Modelizar el problema de remisión de mercadería con las siguientes consideraciones:
 - 1. Si el comprador no es cliente se imprime un mensaje de aviso y no se remite.
 - 2. Si no hay stock y el comprador es cliente no se remite.
 - 3. Si hay stock y el comprador es cliente se remite

- 1. Si el comprador no es cliente se imprime un mensaje de aviso y no se remite.
- 2. Si no hay stock y el comprador es cliente no se remite.
- 3. Si hay stock y el comprador es cliente se remite

- Especificaciones completas
 - Aquellas que determinan acciones (una o varias) para todas las reglas posibles.
- Especificaciones redundantes
 - Aquellas que marcan para reglas que determinan las mismas condiciones acciones iguales.
- Especificaciones contradictorias
 - Aquellas que especifican para reglas que determinan las mismas condiciones acciones distintas.

»Tablas de Decisión

Redundancia y Contradictoria

	Reglas						
C1	V	V		••		F	F
			•				
C2	V	V		•	•	V	V
C 3	V	F		•	••	F	F
A 1						X	X
A2	X				•		
A3		X	•	•		X	X

Redundancia

	Reglas						
C 1	V	V	•	•		F	F
			•	•			
C2	V	V	•	•	•	V	V
C 3	V	F			••	F	F
A 1			•	•	••		X
A2	X				•	X	
A 3		X	•	•		X	

Contradictoria

- Reducción de Complejidad (Redundancia)
 - Combine las reglas en donde sea evidente que una alternativa no representa una diferencia en el resultado.
 - La raya [—] significa que la condición 2 puede ser S o N, y que aún así se realizará la acción.

Condición 1:	S	S
Condición 2	S	N
Acción 1	X	X

Condición 1:	S
Condición 2	_
Acción 1	X

- Reducción de Complejidad (Redundancia)
 - Algebra de bool

	Reglas			
Es cliente	V	V	F	F
Hay stock	V	F	V	F
Imprime mensaje de aviso			X	X
Se remite	X			
No se remite		X	X	X

Reglas				
V	V	F		
V	F	1		
		X		
X				
	X	X		

RESUMEN DE HOY

Definición de Requerimientos

Ingeniería de Requerimientos

- Viabilidad
- Obtención
- Especificación
- Validación

Clasificación de requerimientos

- Funcionales
- No Funcionales

Técnicas de especificación de requerimientos

- Estáticas
 - Referencia indirecta
 - Relaciones de recurrencia
 - Definición axiomática
 - Expresiones regulares
- Dinámicas
 - Tablas de decisión

