Teoría de Integración

Basado en las clases impartidas por Santiago Saglietti en el segundo semeste del 2025

Contents

1	Inte	egral de Riemann	2
	1.1	Limitaciones de la integral de Riemann	6
	1.2	Demostración del teorema de extensión de Carathéodory	17
	1.3	Unidad 2 - Funciones Medibles	35
		1.3.1 Principios de Littlewood	44
2	Unidad 3: Integración 4		47
	2.1	Integración de funciones a valores en \mathbb{C}	59
		2.1.1 Caso particular: Integral de Lebesgue	60
3	Uni	dad 4: Espacios Producto	64

Chapter 1

Integral de Riemann

Clase 1

4 de Agosto

Definición 1.1 (partición + intervalos). Una partición de un intervalo $[a,b] \subseteq \mathbb{R}$ es un subconjunto finito $\Pi \subseteq [a,b]$ tal que $a,b \in \Pi$. Denotaremos a las particiones como $\Pi = \{x_0,\ldots,x_n\}$, donde $a=x_0 < x_1 < \cdots < x_n = b$. Los intervalos $I_i = [x_{i-1},x_i], i=1,\ldots,n$ serán llamados intervalos de la partición.

Observación. A veces, identificaremos la partición Π con $(I_i)_{i=1,\dots,n}$. En tal caso, abusando de la notación, escribiremos $I_i \in \Pi$ cuando queramos hablar de los intervalos de Π .

Definición 1.2 (norma de particiones). La norma de una partición Π como $\|\Pi\| \coloneqq \max_{i=1,\dots,n} (x_i-x_{i-1}) = \max_{I_i \in \Pi} |I_i|$.

Definición 1.3 (partición marcada). Una partición marcada de [a,b] es un par $\Pi^* := (\Pi, \varepsilon)$ donde:

- $\Pi = \{x_0, \dots, x_n\}$ es una partición de [a, b];
- $\varepsilon = \{x_1^*, \dots, x_n^*\}$ es una colección de puntos tal que $x_i^* \in I_i$ para cada $i = 1, \dots, n$.

Observación. Dada una partición marcada $\Pi^* = (\Pi, \varepsilon)$, definimos $\|\Pi^*\| := \|\Pi\|$.

Definición 1.4 (Suma de Riemann). Sean $f:[a,b]\to\mathbb{R}$ acotada y $\Pi^*=(\Pi,\varepsilon)$ una partición marcada. Definimos la suma de Riemann de f asociada a Π^* como:

$$S_R(f; \Pi^*) := \sum_{n=1}^n f(x_i^*)(x_i - x_{i-1}) = \sum_{I_i \in \Pi} f(x_i^*)|I_i|.$$

Clase 2

6 de Agosto

Definición 1.5 (Riemann integrable). Dada $f:[a,b]\to\mathbb{R}$ acotada, decimos que es Riemann integrable si existe el límite $\lim_{\|\Pi^*\|\to 0} S_R(f;\Pi^*)$. Equivalentemente, $\exists L\in\mathbb{R}$, tal que dado cualquier $\varepsilon>0$, existe $\delta=\delta(\varepsilon)>0$ tal que $\|\Pi^*\|<\delta\Rightarrow|S_R(f;\Pi^*)-L|<\varepsilon$.

Observación. Cuando el límite existe, lo llamamos la integral de Riemann de f en [a,b] y lo notamos $\int_a^b f(x)dx$.

Definición 1.6 (Sumas superior e inferior de Darboux). Dadas $f:[a,b]\to\mathbb{R}$ acotada y $\Pi=(I_i)_{i=1,\dots,n}$ una partición de [a,b], definimos

$$m_{I_i} \coloneqq \inf_{x \in I_i} f(x), \quad M_{I_i} \coloneqq \sup_{x \in I_i} f(x) \quad \mathbf{y}$$

 $\underline{S}(f; \Pi) \coloneqq \sum_{I_i \in \Pi} m_{I_i} |I_i|, \quad \overline{S}(f; \Pi) \coloneqq \sum_{I_i \in \Pi} M_{I_i} |I_i|.$

Llamamos a $\underline{S}(f;\Pi)$ y $\overline{S}(f;\Pi)$ las sumas inferior y superior de Darboux de f con respecto a Π , respectivamente.

Nota. Como $m_{I_i} \leq f(x) \leq M_{I_i}, \ \forall x \in I_i$ para toda partición marcada $\Pi^* = (\Pi; \varepsilon)$, tenemos $\underline{S}(f; \Pi) \leq S_R(f; \Pi^*) \leq \overline{S}(f; \Pi)$.

Definición 1.7 (refinamiento). Diremos que una partición Π' de [a,b] es un refinamiento de otra partición de [a,b], Π , si $\Pi \subseteq \Pi'$. Equivalentemente, si para todo $J_i \in \Pi'$ existe $I_i \in \Pi$ tal que $J_i \subseteq I_i$.

Proposición 1.8. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces,

• Si $\Pi \subseteq \Pi'$ son particiones de [a, b],

$$S(f;\Pi) \le S(f;\Pi'), \quad \overline{S}(f;\Pi) \ge \overline{S}(f;\Pi').$$

• Si Π_1, Π_2 son particiones de [a, b] cualesquiera,

$$\underline{S}(f;\Pi_1) \leq \overline{S}(f;\Pi_2)$$

Definición 1.9. Sea $f:[a,b]\to\mathbb{R}$ acotada. Definimos:

- La integral superior (de Darboux) de f como $\overline{\int_a^b} f(x) dx \coloneqq \inf_{\Pi} \overline{S}(f; \Pi)$.
- La integral inferior (de Darboux) de f como $\underline{\int_a^b} f(x) dx \coloneqq \sup_{\Pi} \underline{S}(f; \Pi)$.

Teorema 1.10. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces,

$$\int_a^b f(x) dx = \lim_{\|\Pi\| \to 0} \underline{S}(f;\Pi) \quad \text{y} \quad \overline{\int_a^b} f(x) dx = \lim_{\|\Pi\| \to 0} \overline{S}(f;\Pi).$$

Observación. Equivalentemente, para cualquier sucesión $(\Pi_n)_{n\in\mathbb{N}}$ de partición de [a,b] tal que $\|\Pi_n\| \xrightarrow{n\to\infty} 0$, se tiene que

$$\int_a^b f(x)dx = \lim_{n \to \infty} \underline{S}(f; \Pi_n) \quad \text{y} \quad \overline{\int_a^b} f(x)dx = \lim_{n \to \infty} \overline{S}(f; \Pi_n).$$

Teorema 1.11. Dada $f:[a,b]\to\mathbb{R}$ acotada, son equivalentes:

- 1. $\int_a^b f(x)dx = \overline{\int_a^b} f(x)dx$ (i.e., f es Darboux integrable).
- 2. f es Riemann integrable.
- 3. $\lim_{\|\Pi\| \to 0} \overline{S}(f; \Pi) \underline{S}(f; \Pi) = 0$.
- 4. $\forall (\Pi_n)_{n\in\mathbb{N}}$ sucesión de particiones de [a,b] tal que $\|\Pi_n\|\to 0$,

$$\lim_{n \to \infty} \overline{S}(f; \Pi_n) - \underline{S}(f; \Pi_n) = 0.$$

5. $\exists (\Pi_n)_{n \in \mathbb{N}}$ sucesión de particiones de [a, b] tal que

$$\lim_{n \to \infty} \overline{S}(f; \Pi_n) - \underline{S}(f; \Pi_n) = 0.$$

Clase 3

Nota. Las integrales en el sentido de Darboux y el de Riemann coinciden.

7 de Agosto

Proposición 1.12. Si $f:[a,b]\to\mathbb{R}$ es monótona, entonces es Riemann integrable.

Observación. Una función monótona tiene discontinuidades numerables.

Proposición 1.13. Si $f:[a,b]\to\mathbb{R}$ es continua, entonces es Riemann integrable.

En particular, existen funciones Riemann integrables con numerables discontinuidades. De hecho, hay ejemplos con c (cardinal del continuo) discontinuidades. No obstante, si f es integral de Riemann, su conjunto de discontinuidades tiene que ser "pequeño".

Teorema 1.14. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces, f es Riemann Integrable si y sólo si su conjunto de discontinuidades tiene medida nula.

Definición 1.15 (intervalo). Decimos que un conjunto $I \subseteq \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$ es un intervalo si satisface

$$x, y \in I \Rightarrow z \in I$$
 para todo $\min x, y \le z \le \max x, y$.

Ejemplo. (y propiedades)

- Dados $a \leq b$ $(a, b \in \mathbb{R})$, los conjuntos (a, b), (a, b], [a, b], [a, b) son intervalos;
- El conjunto vacío es un intervalo ($\emptyset = (a, a)$);
- Los puntos son intervalos. $I = [\lambda, \lambda];$
- La intersección de intervalos es intervalos.

Definición 1.16 (intervalo generalizado). Decimos que un conjunto $I \subseteq \mathbb{R}^d$ es un intervalo si puede escribirse como

$$I = \prod_{k=1}^{d} I_k$$

donde cada I_r es un intervalo en $\mathbb R.$ La medida de un intervalo $I\subseteq \mathbb R^d$ se define como

$$|I| \coloneqq \prod_{k=1}^d |I_k|.$$

Nota. Los intervalos en \mathbb{R}^d heredan las mismas pripiedades en \mathbb{R} :

- Intersección de intervalos en \mathbb{R}^d es intervalo.
- Si $I \subseteq J \subseteq \mathbb{R}^d$ son intervalos, entonces $|I| \le |J|$.

Definición 1.17 (medida nula). Un conjunto $E \subseteq \mathbb{R}^d$ se dice de medida nula si, dado $\varepsilon > 0$, existe una sucesión $(I_n)_{n \in \mathbb{N}}$ de intervalos de \mathbb{R}^d tal que

$$E\subseteq \bigcup_{n\in\mathbb{N}} I_n \quad \text{ y } \quad \sum_{n\in\mathbb{N}} |I_n|<\varepsilon.$$

Ejemplo. (y propiedades)

- 1. Todo conjunto unitario $\{x\}, (x \in \mathbb{R}^d)$ tiene medida nula;
- 2. Toda unión numerable de conjuntos de medida nula tiene medida nula;
- 3. Cualquier conjunto numerable tiene medida nula;
- 4. Cualquier subconjunto de un conjunto de medida nula tiene medida nula;
- 5. Existen conjuntos no numerables de medida nula:

- En \mathbb{R}^d con $d \geq 2$, los ejes $\{x : x_1 = 0\}, i = 1, \ldots, d$ tiene medida nula.
- \bullet En \mathbb{R} , el conjunto de cantor tiene medida nula.
- 6. $E \subseteq \mathbb{R}^d$ es de medida nula, entonces $\alpha \dot{E}$ tiene medida nula $\forall \alpha \in \mathbb{R}$.
- 7. $E \subseteq \mathbb{R}^d$ es de medida nula, entonces E + v tiene medida nula $\forall v \in \mathbb{R}^d$.
- 8. Si ${\cal E}$ contiene un intervalo no unitario, entonces no tiene medida nula. Notar que:
 - La vuelta no es válida: $\mathbb{R}\backslash\mathbb{Q}$ no contiene untervalos no unitarios pero no puede tener medida nula.
 - De esto se deduce que si $E \subseteq \mathbb{R}^d$ tiene medida nula. Entonces E^c es denso (no vale la vuelta: $E^c = \mathbb{Q}$).
- 9. $E \subseteq \mathbb{R}^d$ tiene medida nula si y sólo si

$$|E|_e := \inf\{\sum_{n \in \mathbb{N}} |I_n| : E \subseteq \bigcup_{n \in \mathbb{N}} I_n\} = 0, \quad I_n \text{ intervalo } \forall n \in \mathbb{N}.$$

Clase 4

8 de Agosto

Teorema 1.18. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces

f Riemann integrable \iff $D_f = \{x \in [a, b] : f$ discontinua en $x\}$ tiene medida nula.

1.1 Limitaciones de la integral de Riemann

- 1. Sólo está definida para f acotada y sobre intervalos [a,b] acotados. La teoría de integrales impropias resuelve esto.
- 2. Propiedades del espacio $\mathcal{R}([a,b]) = \{f : [a,b] \to \mathbb{R} : f \text{ Riemann integrable}\}:$ Nos gustaría poder definir una noción de convergencia en $\mathcal{R}([a,b])$ tal que

$$f_n \to f \text{ en } \mathcal{R}([a,b]) \Rightarrow \int_a^b f_n \to \int_a^b f \quad \left(\lim \int_a^b f_n = \int_a^b \lim f_n\right).$$

Observación. La convergencia puntal NO cumple esto (punto 2). **Ejemplo** (1).

- $f_n := n\chi_{(0,\frac{1}{n}]}$ es Riemann integrable en $[0,1], \ \forall n \in \mathbb{N};$
- $f_n \to f \cong 0$ puntualmente en [0,1];
- $\int_0^1 f_n = 1 \not\to 0 = \int_0^1 f$.

Ejemplo (2).

- Sea $(Q_n)_{n\in\mathbb{N}}$ una enumeración de $\mathbb{Q}\cap[0,1]$;
- $f_n := \chi_{\{Q_1, \dots, Q_n\}}$ es Riemann integrable en $[0, 1], \forall n \in \mathbb{N};$
- $f_n \to f := \chi_{\mathbb{O} \cap [0,1]}$ puntualmente en [0,1];
- f no es Riemann integrable. $\int_0^1 f = 0 \neq 1 = \overline{\int_0^1} f$.

Observación. La convergencia uniforme SÍ cumple esto, pero es demasiado fuerte. **Ejercicio** (Guía 1). Sean $(f_n)_{n\in\mathbb{N}}\subset\mathcal{R}([a,b])$ tales que $f_n\to f$ uniformemente en [a,b]. Entonces, $f\in\mathcal{R}([a,b])$ y $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$. **Ejemplo** (3).

- $f_n(x) := x^n$ en $[0,1], f_n \in \mathcal{R}([a,b]), \forall n \in \mathbb{N}, f_n \to \chi = f$ puntualmente;
- $f \in \mathcal{R}([a,b])$ y $\int_0^1 f_n(x) dx = \frac{1}{n+1} \to 0 = \int_0^1$;
- f_n no converge uniformemente a f.

Resulta que la noción de convergencia "óptima" (la más "débil" que cumple lo que queremos) es la de convergencia en L':

$$f_n \xrightarrow{L'} f$$
 si $\lim_{n \to \infty} \int_a^b |f_n - f| = 0.$

Esta noción de convergencia viene dada por una "norma":

- $||f||_{L'} := \int_a^b |f|$ (recordar que $f \in \mathcal{R}([a,b]) \Rightarrow |f| \in \mathcal{R}([a,b])$);
- $d_{L'}(f,g) := ||f g||_{L'} = \int_a^b |f g|.$

Observación. $\|\cdot\|_{L'}$ no es una norma porque $\|f\|_{L'} = 0 \Rightarrow f = 0$. Decimos que es una *pseudo-norma* y d una *pseudo-métrica*.

Para arreglar esto, dadas $f,g:[a,b]\to\mathbb{R}$, decimos que son equivalentes y lo notamos $f\sim g$ si $\{x\in[a,b]: f(x)\neq g(x)\}$ tiene medida nula. Resulta que \sim es una relación de equivalencia y, además,

$$f, g \in \mathcal{R}([a, b]), \ f \sim g \Rightarrow \int_a^b f = \int_a^b g.$$

Sea $\overline{\mathcal{R}}([a,b])$ el conjunto de clases de equivalencia de $\mathcal{R}([a,b])$, y denotamos por \overline{f} a la clase de equivalencia de $f \in \mathcal{R}([a,b])$. Con esto, $\|\overline{f}\|_{L'} := \int_a^b |f| dx$ define una norma en $\overline{\mathcal{R}}([a,b])$ que se llama la **norma** L'.

Observación. Hay un problema: $(\overline{\mathcal{R}}([a,b]), \|\cdot\|_{L'})$ NO ES COMPLETO!

3. **TFC:** Si $f \in \mathcal{R}([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F(x) := \int_a^x f(t)dt$ es derivable en x_0 y $F'(x_0) = f(x_0)$. En particular, F es derivable en x y F'(x) = f(x) para todo x salvo un conjunto de medida nula.

Clase 5

Teorema Fundamental del Cálculo: Si $f \in \mathcal{R}([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F:[a,b] \to \mathbb{R}$ dada por $F(x) := \int_a^x f(t)dt$ es derivable en $x=x_0$ y vale $F'(x_0) = f(x_0)$. En particular, F'(x) = f(x) salvo quizás por un conjunto de $x \in [a,b]$ de medida nula. O sea, podemos integrar y luego derivar y esto es "casi" como no hacer nada. Pero, tenemos problemas:

1. Este "casi" no puede removerse

Teorema 1.19 (Hankel, 1871). Dado $[a,b] \subseteq \mathbb{R}$, existe $f \in \mathcal{R}([a,b])$ tal que $F(x) := \int_a^x f(t)dt$ no es derivable para ningún x en un subconjunto denso en [a,b] (y, en particular, infinito).

2. A veces no podemos componer en el orden inverso

Teorema 1.20 (Volterra, 1881). Dado $[a,b] \subseteq \mathbb{R}$, existe $f:[a,b] \to \mathbb{R}$ derivable en [a,b], tal que f' es acotada en [a,b] pero $f' \notin \mathcal{R}([a,b])$.

Extendiendo la integral de Riemann

Sean $f:[a,b]\to\mathbb{R}$ acotada y $\Pi=\{x_0,\ldots,x_n\}$ una partición de [a,b]. Definimos:

$$\begin{split} \Phi_{f,\Pi}(x) &\coloneqq m_{I_1} \chi_{[x_0,x_1]}(x) + \sum_{i=2}^n m_{I_i} \chi_{(x_{i-1},x_i]}(x), \quad m_{I_i} = \inf_{t \in I_i} f(t) \\ &= m_{I_1} \chi_{\{x_0\}}(x) + \sum_{i=1}^n m_{I_i} \chi_{(x_{i-1},x_i]}(x) \\ \psi_{f,\Pi}(x) &\coloneqq M_{I_1} \chi_{\{x_0\}}(x) + \sum_{i=1}^n M_{I_i} \chi_{(x_{i-1},x_i]}(x), \quad M_{I_i} = \sup_{t \in I_i} f(t). \end{split}$$

Observemos que $\Phi_{f,\Pi}(x) \leq f(x) \leq \psi_{f,\Pi}(x) \quad \forall x \in [a,b]$. Además,

$$\int_{a}^{b} \Phi_{f,\Pi}(x) dx = \underline{S}(f,\Pi),$$
$$\int_{a}^{b} \psi_{f,\Pi}(x) dx = \overline{S}(f,\Pi).$$

En particular, si f es Riemann integrable.

$$\begin{split} \int_a^b f(x) dx &= \overline{\int_a^b} f(x) dx = \inf \left\{ \int_a^b \psi_{f,\Pi} \ : \ \Pi \ \text{partición} \right\} \\ &= \underline{\int_a^b} f(x) dx = \sup \left\{ \int_a^b \Phi_{f,\Pi} \ : \ \Pi \ \text{partición} \right\}. \end{split}$$

Definición 1.21 (función escalonada). Una función $\Phi:[a,b]\to\mathbb{R}$ se dice escalonada si existen $\Pi=\{x_0,\ldots,x_n\}$ partición de [a,b] y $c_1,\ldots,c_n\in\mathbb{R}$ tales que

$$\Phi|_{(x_{i-1},x_i)} \equiv c_i \quad \forall i=1,\ldots,n$$

Notemos que podemos escribir a cualquier función Φ escalonada como

$$\Phi(x) \coloneqq \sum_{i=1}^{n} c_i \cdot \chi_{(x_{i-1}, x_i)}(x) + \sum_{i=0}^{n} \Phi(x_i) \cdot \chi_{\{x_i\}}(x)$$
$$= \sum_{i=1}^{k} c_j \cdot \chi_{A_j}(x).$$

donde los A_j son intervalos disjuntos tales que $\biguplus_{j=1}^k A_j = [a,b]$ (se pone una "D" dentro de la unión para denotar que estamos haciendo una unión disjunta).

Si tomamos Φ de la forma $\Phi = \sum_{j=1}^k c_j \cdot \chi_{A_j}$ con $(A_j)_{j=1,\dots,k}$ disjuntos, $\bigcup_{j=1}^k A_j = [a,b]$ pero A_j no son necesariamente intervalos, diremos que Φ es una función escalonada generalizada. Como para funciones escalonadas "normales", tenemos

$$\int_{a}^{b} \Phi(x)dx = \sum_{j=1}^{k} c_j \cdot |A_j| \left(= \sum_{i=1}^{n} c_i \cdot |I_i| \right)$$

La función longitud Sea \mathcal{I} la colección de los intervalos en \mathbb{R} . Definimos la función longitud $\lambda: \mathcal{I} \to [0, \infty]$ como $\lambda(I) := |I|$. Propiedades:

- 1. $\lambda(\varnothing) = 0$;
- 2. $I_1, I_2 \in \mathcal{I}, I_1 \subseteq I_2 \Rightarrow \lambda(I_1) \leq \lambda(I_2)$ (Monotonía de λ);
- 3. (Aditividad finita de λ) Si $I \in \mathcal{I}$ es tal que $I = \bigcup_{i=1}^n J_i$ con $J_i \in \mathcal{I}, \ \forall i = 1, \ldots, n, \ J_i \cap J_j = \emptyset$ con $i \neq j$, entonces

$$\lambda(I) = \sum_{i=1}^{n} \lambda(J_i);$$

4. (σ -aditividad de λ) Si $I\in\mathcal{I}$ es tal que $I=\bigcup_{i=1}^\infty I_i,$ con $(I_i)_{i\in\mathbb{N}}\subseteq\mathcal{I}$ disjuntos, entonces

$$\lambda(I) = \sum_{i=1}^{\infty} \lambda(I_i);$$

- 5. (σ -subaditividad de λ) Si $I \in \mathcal{I}$ verifica $I \subseteq \bigcup_{i=1}^{\infty} I_i$, $(I_1)_{i \in \mathbb{N}}$) intervalos (no necesariamente disjuntos), entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$;
- 6. $\lambda(I+x) = \lambda(I), \ \forall x \in \mathbb{R}, \ I+x := \{a+x : a \in I\};$
- 7. $\lambda(\{x\}) = 0 \ \forall \ x \in \mathbb{R}$.

Clase 6

20 de Agosto

Nos gustaría extender λ a una clase más grande que \mathcal{I} . Más precisamente, nos gustaría definir una aplicación $m: \mathcal{M} \to [0, \infty]$, donde \mathcal{M} es una coleccción de subconjuntos de \mathbb{R} tal que $\mathcal{I} \subseteq \mathcal{M}$, de manera tal que, dado $E \in \mathcal{M}$, m(E) represente la "longitud" de E. Idealmente, nos gustaría que m cumpla lo siguiente:

- 1. $\mathcal{M} = \mathcal{P}(\mathbb{R});$
- 2. Si $I \in \mathcal{I}$, entonces m(I) = |I|;
- 3. $m \in \sigma$ -aditiva $(E, (E_n)_{n \in \mathbb{N}} \in \mathcal{M}, E = \bigcup_{n=1}^{\infty} E_n \Rightarrow m(E) = \sum_{n=1}^{\infty} m(E_n));$

Ejercicio. $(1) + (2) + (3) \Rightarrow m$ es monótona, σ -subaditiva y finitamente aditiva.

4 Si $E \in \mathcal{M}$, entonces $E + x \in \mathcal{M}$ y $m(E + x) = m(E) \ \forall x \in \mathbb{R}$.

El problema es que, si asumimos el Axioma de Elección, uno puede mostrar que no existe una tal m que cumpla (1) - (2) - (3) - (4) y, de hecho, no se sabe si existe m que cumpla (1) - (2) - (3). (Si asumimos la hipótesis del continuo, entonces no existe m que cumpla (1) - (2) - (3)).

Luego, para construir m debemos debilitar alguna de las propiedades:

- Si debilitamos (1) \Rightarrow TEORÍA DE LA MEDIDA;
- Si debilitamos (3), tenemos dos opciones sobre lo que pedir:
 - \rightarrow aditividad finita \Rightarrow "medidas finitamente aditivas";
 - $\rightarrow \sigma$ -subaditividad \Rightarrow "medidas exteriores".

Vamos a optar por debilitar (1).

Una manera de extender λ es la siguiente:

- i. Si $E = \bigcup_{i=1}^{n} I_i$ entonces definitions $\lambda(E) := \sum_{i=1}^{n} \lambda(I_i)$;
- ii. Si $E=\biguplus_{i=1}^{\infty}I_{i}$ entonces definimos $\lambda(E):=\sum_{i=1}^{\infty}\lambda(I_{i});$
- iii. La fórmula anterior nos permite definir $\lambda(E)$ para todo E abierto en \mathbb{R} ;
- iv. Para conjuntos mas generales, "aproximar" por abiertos.

Definición 1.22 (premedida). Sea X un conjunto no vacío y $\mathscr C$ una colección de subconjuntos de X tal que $\varnothing \in \mathscr C$. Diremos que una aplicación $\tau : \mathscr C \to [0,\infty]$ es una premedida si $\tau(\varnothing)=0$.

Observación. El conjunto no vacío X será llamado un espacio y la colección $\mathscr C$ será llamada una clase (de subconjuntos de X).

Intuitivamente, $\mathscr C$ representa la colección de subconjuntos cuyo "tamaño" sabemos medir y τ nos da su medida.

Ejemplo.

- 1. Premedida de Lebesgue: $\mathscr{C} := \mathcal{I} := \{I \subseteq \mathbb{R} : I \text{ intervalo}\}, \ \tau(I) := |I|.$
- 2. Premedidas de Lebesgue-Stieltjes: Sea $F: \mathbb{R} \to \mathbb{R}$ monótona creciente y continua a derecha $(\lim_{x\to x_0}^+ F(x) = F(x_0))$. Una función tal se dice una función de Lebesgue-Stieltjes.

Observemos que, por monotonía, existen los límites

$$\begin{cases} F(\infty) \coloneqq \lim_{x \to \infty} F(x) \\ F(-\infty) \coloneqq \lim_{x \to -\infty} F(x) \end{cases} \in \mathbb{R}$$

Sea además la clase $\widetilde{\mathcal{I}}$ de intervalos de $\mathbb R$ dada por

$$\widetilde{\mathcal{I}} := \{ I(a,b) : -\infty \le a \le b \le \infty \} \text{ donde } I(a,b) := (a,b] \cap \mathbb{R}$$
$$= \{ (a,b] : -\infty \le a \le b \le \infty \} \cup \{ (a,\infty) : -\infty \le a \le \infty \}.$$

Definimos la premedida τ_F de Lebesgue-Stieltjes asociada a F como la aplicación $\tau_F:\widetilde{\mathcal{I}}\to[0,\infty],$ dada por

$$\tau_F(I(a,b)) = F(b) - F(a).$$

Nota. Observar que si F(x)=x entonces τ_F es la premedida de Lebesgue (sobre $\widetilde{\tau}$

3. **Premedidas de Probabilidad:** Si F es una función de L-S tal que $F(\infty) = 1$ y $F(-\infty) = 0$, decimos que F es una función de distribución (acumulada). En tal caso, la premedida τ_F se conoce como premedida de probabilidad o predistribución (en \mathbb{R}).

Observación.
$$\tau_F(\mathbb{R}) = \tau_F(I(-\infty,\infty)) = F(\infty) - F(-\infty) = 1 - 0 = 1.$$

4. Premedida...

Clase 7

22 de Agosto

Definición 1.23 (semiálgebra). Sea X un espacio y $\mathscr C$ una clase de subconjuntos de X. Decimos que $\mathscr C$ es una semiálgebra (de subconjuntos de X) si cumple:

- 1. $\varnothing \in \mathscr{C}$;
- 2. ($\mathscr C$ es cerrada por intesecciones finitas) $A,B\in\mathscr C\Rightarrow A\cap B\in\mathscr C;$
- 3. Si $A \in \mathcal{C}$, existen $C_1, \ldots, C_n \in \mathcal{C}$ disjuntos tal que $A^c = \bigcup_{i=1}^n C_i$.

Ejemplo.

- 1. La clase \mathcal{I}_d de intervalos en \mathbb{R}^d es una semiálgebra.
- 2. La clase $\widetilde{\mathcal{I}}\coloneqq\{(a,b]\cap\mathbb{R}\ :\ -\infty\leq a\leq b\leq\infty\}$ es una semiálgebra.
- 3. Si X e Y son espacios y $\mathscr{C}_X,\mathscr{C}_Y$ son semiálgebras en X e Y respectivamente, entonces

$$\mathscr{C}_X \times \mathscr{C}_Y := \{ F \times G : F \in \mathscr{C}_X, G \in \mathscr{C}_Y \}$$

es una semiálgebra en $X\times Y,$ llamada "semiálgebra producto".

Definición 1.24 (álgebra). Sean X un espacio y $\mathscr A$ una clase de subconjuntos de X. Decimos que $\mathscr A$ es un álgebra (de subconjuntos de X) si cumple que:

- (i) $\varnothing \in \mathscr{A}$;
- (ii) \mathscr{A} es cerrado por intersecciones finitas;
- (iii) (\mathscr{A} es cerrada por complementos) $A \in \mathscr{A} \Rightarrow A^c \in \mathscr{A}$.

Equivalentemente, en presencia de (iii), (ii) se puede reemplazar por:

(ii') ($\mathscr A$ es cerrada por uniones finitas) $A,B\in\mathscr A\Rightarrow A\cup B\in\mathscr A.$ (**Dem:** Ejercicio!)

Ejemplo.

- 1. X espacio, $\mathscr{A}_1 := \{\varnothing, X\}, \ \mathscr{A}_2 := \mathcal{P}(X)$ son álgebras (donde \mathscr{A} es llamada el álgebra trivial);
- 2. Sea $\mathcal S$ una semiálgebra de subconjuntos de un espacio X. Entonces

$$\mathscr{A} := \left\{ E \subseteq X : \exists S_1, \dots, S_n \in \mathscr{S} \text{ disjuntos tal que } E = \bigcup_{i=1}^n S_i \right\}$$

es un álgebra, llamada el álgebra generada por \mathscr{S} . Notemos que $\mathscr{A}(\mathscr{S})$ es el menor álgebra que contiene a \mathscr{S} :

- (i) $\mathscr{A}(\mathscr{S})$ es un álgebra y $\mathscr{S} \subseteq \mathscr{A}(\mathscr{S})$;
- (ii) Si \mathscr{A}' es un álgebra con $\mathscr{S} \subseteq \mathscr{A}'$ entonces $\mathscr{A}(\mathscr{S}) \subseteq \mathscr{A}'$.

Nota. Toda álgebra es una semiálgebra.

Definición 1.25 (σ -álgebra). Una clase (no vacía) \mathcal{M} de subconjuntos de un espacio X se dice una σ -álgebra si cumple:

- 1. $\varnothing \in \mathscr{M}$;
- 2. $E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}$;
- 3. $(E_n)_{n\in\mathbb{N}}\subseteq\mathcal{M}\Rightarrow\bigcup_{n\in\mathbb{N}}E_n\in\mathcal{M}$.

Llamamos al par (X, \mathcal{M}) un <u>espacio medible</u> y a los elementos de \mathcal{M} , conjuntos medibles.

Nota.

- 1. Todo σ -álgebra es un álgebra;
- 2. Equivalentemente, en presencia de (1), (3) se puede reemplazar por
 - (3'.) $(E_n)_{n\in\mathbb{N}}\subseteq\mathcal{M}\Rightarrow\bigcap_{n\in\mathbb{N}}E_n\in\mathcal{M}.$

Ejemplo.

- 1. σ -álgebra \Rightarrow álgebra \Rightarrow semiálgebra (no valen las recíprocas);
- 2. $\{\emptyset, X\}, \mathcal{P}(X)$ son σ -álgebras;
- 3. Si $(\mathcal{M}_{\gamma})_{\gamma \in \Gamma}$ son σ -álgebras, entonces

$$\bigcap_{\gamma \in \Gamma} \mathscr{M}_{\gamma} \coloneqq \{ E \subseteq X \ : \ E \in \mathscr{M}_{\gamma}, \ \forall \gamma \in \Gamma \}$$

es una σ -álgebra.

4. Si \mathcal{M} es una clase de subconjuntos de X, entonces

$$\sigma(\mathcal{M}) \coloneqq \bigcap_{\mathcal{M} \text{ σ-\'algebra}} \mathcal{M}$$

$$\mathscr{C} \subseteq \mathcal{M}$$

es la σ -álgebra generada por \mathcal{M} . De hecho, $\sigma(\mathcal{M})$ es la menor σ -álgebra que contiene a \mathscr{C} :

- (a) $\sigma(\mathscr{C})$ es σ -álgebra y $\mathscr{C} \subseteq \sigma(\mathscr{C})$;
- (b) Si \mathscr{F} es σ -álgebra y $\mathscr{C} \subset \mathscr{F}$ entonces $\sigma(\mathscr{C}) \subseteq \mathscr{F}$.
- 5. Si (X, \mathcal{T}) es un espacio topológico, $\sigma(\mathcal{T})$ se conoce como la σ -álgebra de Borel, y sus elementos se llaman Borelianos. La notamos $\overline{\beta(X)}$ (= $\sigma(\mathcal{T})$).

Ejemplo. $\beta(\mathbb{R})$ contiene a todos los abiertos, cerrados, intervalos, conjuntos de tipo G_{δ} y F_{σ} ,... De hecho, $\beta(\mathbb{R}) = \sigma(\text{cerrados}) = \sigma(\text{compactos}) = \sigma(\mathcal{I}) = \sigma(\widetilde{\mathcal{I}})$.

Definición 1.26. Sea $\mathscr C$ una clase (no vacía) de subconjuntos de X y μ : $\mathscr C \to [0,\infty]$ una función (la llamamos una función de conjuntos). Diremos que:

- (i) μ es monótona (en \mathscr{C}) si $A, B \in \mathscr{C}$, $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$;
- (ii) μ es finitamente aditiva si $(A_i)_{i=1,\ldots,n} \subseteq \mathscr{C}$, entonces

$$\mu(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i);$$

(iii) μ es σ -aditiva si $(A_n)_{n\in\mathbb{N}}\subseteq\mathscr{C}$ disjuntos, entonces

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i);$$

(iv) μ es σ -subaditiva si $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_n)$, para todo $A \in \mathscr{C}$ y $(A_n)_{n \in \mathbb{N}} \subseteq \mathscr{C}$ tal que $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$

Clase 8 25 de Agosto

Observación. Rana da una definición más débil de (4):

$$A \in \mathcal{C}, \ A = \bigcup_{i=1}^{\infty} A_i, \ A_i \in \mathcal{C} \ \forall i \Rightarrow \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$$

Ambas definiciones son equivalentes si $\mathscr C$ es una semiálgebra y μ es monótona (siempre será el caso para nosotros).

Definición 1.27 (premedida finita y σ -finita). Una premedida $\tau : \mathscr{C} \to [0, \infty]$ se dice:

- 1. **finita** si $X \in \mathcal{C}$ y $\tau < \infty$;
- 2. σ -finita si existen $(C_n)_{n\in\mathbb{N}}\subseteq\mathscr{C}$ disjuntos tales que

$$\bigcup_{n=1}^{\infty} C_n = X \quad \text{y} \quad \tau(C_n) < \infty \quad \forall n \in \mathbb{N}.$$

Ejemplo.

- 1. finita $\Rightarrow \sigma$ -finita;
- 2. La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ es σ -finita pero no finita;
- 3. Si F es una función de L-S, entonces $\tau_F: \widetilde{\mathcal{I}} \to [0, \infty]$ es siempre σ -finita $(\tau_F((n, n+1]) = F(n+1) F(n) < \infty \ \forall n \in \mathbb{Z})$ y es finita si y sólo si $\tau_F(\mathbb{R}) = \tau_F((-\infty, \infty] \cap \mathbb{R}) = F(\infty) F(-\infty) < \infty$.

Definición 1.28 (medida). Sea (X, \mathcal{M}) es un espacio medible. Diremos que $\mu : \mathcal{M} \to [0, \infty]$ es una medida (en (X, \mathcal{M})) si:

- 1. $\mu(\emptyset) = 0$;
- 2. μ es σ -aditiva en \mathscr{M} $(\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i))$.

Llamamos a la terna (X, \mathcal{M}, μ) un epacio de medida.

Objetivo. Construir un espacio de medida $(\mathbb{R}, \mathcal{M}, \mu)$ tal que $\mathcal{I} \subseteq \mathcal{M}$ y

$$\begin{cases} \mu(I) = |I| \ \forall I \in \mathcal{I}, \\ \mu(E+x) = \mu(E) \ \forall E \in \mathcal{M}. \end{cases}$$

Ejemplo (Espacios de Probabilidad). Si (X, \mathcal{M}, μ) es un EdM tal que $\mu(X) = 1$, (X, \mathcal{M}, μ) recibe el nombre de espacios de probabilidad.

- X recibe el nombre de espacio muestral, y se lo nota Ω (en lugar de X);
- \mathcal{M} se suele notar como \mathcal{F} (ó \mathcal{Y}). Sus elementos se dicen eventos;

• μ recibe el nombre de medida de probabilidad ó distribución y se la nota \mathbb{P}

En probabilidad, típicamente se estudian 2 tipos de distribuciones en \mathbb{R} (o en \mathbb{R}^d).

1. **Distribuciones discretas:** $\exists S \subseteq \mathbb{R}$ numerable y $(p_x)_{x \in S} \subseteq [0,1]$ tal que $\mathbb{P}(A) = \sum_{x \in A \cap S} p_x$.

Ejemplo. Binomial, Geométrica, Poisson,...

2. Distribuciones (absolutamente) continuas: $\exists f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ "integrable" tal que $\mathbb{P}(A) = \int_A f(x) dx$.

Ejemplo. Uniforme, Exponencial, Normal,...

Propiedades generales de una medida. Si μ es una medida sobre (X, \mathcal{M}) , entonces:

- 1. μ es monótona (en \mathcal{M});
- 2. μ es σ -subaditiva;
- 3. μ es **continua por debajo**: si $(A_n)_{n\in\mathbb{N}}\subseteq \mathscr{M}$ es <u>creciente</u> $(A_n\subseteq A_{n+1}\ \forall n)$ entonces

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

4. μ es continua por arriba: si $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{M}$ es decreciente $(A_{n+1}\subseteq A_n\ \forall n)$ y $\mu(A_{n_0})<\infty$ para algún $n_0\ (\Rightarrow \mu(A_n)<\infty\ \forall n\geq n_0)$, entonces

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

(Cuidado! (4) puede no valer si $\mu(A_n) = \infty \ \forall n \in \mathbb{N}$)

Definición 1.29 (premedida extendible y unívocamente extendible). Una premedida $\tau: \mathscr{S} \to [0, \infty]$ definida sobre una semiálgebra de subconjunto de X, se dice:

- 1. Extendible si es
 - (E1) finitamente aditiva en \mathscr{S} ;
 - (E2) σ -subaditiva en \mathscr{S} .
- 2. Univocamente extendible si es extendible y se cumple
 - (E3) σ -finita

Observación. Los nombres de extendible y unívocamente extendible no se encontrarán en el Rana (los puso el profe).

Teorema 1.30 (Extensión de Carathéodory). Dados un espacio X y una premedida τ sobre una semiálgebra $\mathscr S$ de subconjuntos de X tal que τ es extendible, existe una extensión de τ a una medida μ_{τ} definida sobre $\sigma(\mathscr S)$ la σ -álgebra generada por $\mathscr S$. Más aún, si τ es unívocamente extendible, entonces la extensión μ_{τ} a $\sigma(\mathscr S)$ es <u>única</u>.

Por último, si τ es unívocamente extendible, entonces se puede extender de manera única a una medida $\overline{\mu_{\tau}}$ sobre la μ_{τ} -completación de $\sigma(\mathscr{S})$, i.e. la σ -álgebra $\overline{\sigma(\mathscr{S})}$ dada por

$$\overline{\sigma(\mathscr{S})} \coloneqq \{B \cup N : B \in \sigma(\mathscr{S}), \exists \widetilde{N} \in \sigma(\mathscr{S}) \text{ con } N \subseteq \widetilde{N} \text{ y } \mu_{\tau}(\widetilde{N}) = 0\}$$

mediante la fórmula $\overline{\mu_{\tau}}(B \cap N) := \mu_{\tau}(B)$.

Clase 9

27 de Agosto

Observación. Si $\tau: \mathscr{S} \to [0, \infty]$ es σ -aditiva en \mathscr{S} y \mathscr{S} es una semiálgebra, entonces τ es extendible.

Observación. La extensión puede no ser única si τ no es σ -finita.

- $\widetilde{\mathcal{I}}_{\mathbb{O}}$ es una semiálgebra;
- $\sigma(\widetilde{\mathcal{I}}_{\mathbb{Q}}) = \sigma(\widetilde{\mathcal{I}} \cap \mathbb{Q}) \stackrel{\text{Ej!}}{=} \sigma(\widetilde{\mathcal{I}}) \cap \mathbb{Q} = \beta(\mathbb{R}) \cap \mathbb{Q} = \mathcal{P}(\mathbb{Q})$ (9.52)
- $\tau: \widetilde{\mathcal{I}}_{\mathbb{Q}} \to [0, \infty]$, dada por $\tau(A) := \begin{cases} 0 & A = \emptyset \\ \infty & A \neq \emptyset, \ A \in \widetilde{\mathcal{I}}_{\mathbb{Q}} \end{cases}$ (Observar que τ no es σ -finita)
- Para cada r > 0, $\mu_r : \mathcal{P}(\mathbb{Q}) \to [0, \infty]$ dada por $\mu_r(A) := r(\#A)$ es una extensión de τ (y es una medida)

Definición 1.31 (espacio completo y conjuntos μ -nulos). Sea (X, \mathcal{M}, μ) un EdM y definamos

$$\mathcal{N}_{\mu} := \{ E \subset X : \exists N \in \mathcal{M} \text{ con } E \subseteq N \text{ y } \mu(N) = 0 \}$$

Los elementos de \mathscr{N}_{μ} se dicen <u>conjuntos μ -nulos</u>. Diremos que (X, \mathscr{M}, μ) es completo si $\mathscr{N}_{\mu} \subseteq \mathscr{M}$

Observación. $(X, \overline{\sigma(\mathscr{S})}, \overline{\mu_{\delta}})$ es <u>completo</u>. En efecto, $\mathscr{N}_{\overline{\mu_{\delta}}}$ corresponde al subconjunto de $\overline{\sigma(\mathscr{S})}$ que se obtiene tomando $B = \varnothing$.

Observación. Veremos más adelante que las siguientes premedidas son UE:

- (i) Premedidas de Lebesgue-Stieltjes (en particular, la función longitud λ (sobre $\widetilde{\mathcal{I}}$) y las premedidas de probabilidad).
- (ii) Premedidas de Lebesgue en \mathbb{R}^d , con $d \in \mathbb{N}$.

En particular;

Corolario 1.32. Para cada función F de Lebesgue-Stieltjes, existe una σ -álgebra \mathcal{M}_F sobre \mathbb{R} y una única medida μ_F en $(\mathbb{R}, \mathcal{M}_F)$ tal que

$$\mu_F = (I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

Además, $\beta(\mathbb{R}) \subseteq \mathcal{M}_F$. Es decir, μ_F es una medida que extiende a τ_F , a todo \mathcal{M}_F (y en particular, a todo $\beta(\mathbb{R})$). Además, $(\mathbb{R}, \mathcal{M}_F, \mu_F)$ es un EdM completo. $(\mathcal{M}_F := \overline{\sigma(\widetilde{\mathcal{I}})^F}, \ \mu_F := \overline{\mu_{\tau_F}})$. La medida μ_F se conoce como medida de L-S asociada a F. En particular, para cualquier función de distribución F, existe una única medida de probabilidad \mathbb{P}_F en $(\mathbb{R}, \beta(\mathbb{R}))$ tal que

$$\mathbb{P}_F(I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

(En la guía 3 veremos que $F \to \mathbb{P}_F$ es una biyección)

Nota. Los β son los Borelianos y $I(a,b)=(a,b]\cap\mathbb{R}$. (super $F\to 10.26$).

Ejemplo (Importante!). Medida de Lebesgue en \mathbb{R} . Tomando F = id en el Corolario anterior, obtenemos una σ-álgebra $\mathscr{L}(\mathbb{R}) := \mathscr{M}_{id}$ con $\beta(\mathbb{R}) \subseteq \mathscr{L}(\mathbb{R})$ y una medida μ_{id} en $(\mathbb{R}, \mathscr{L}(\mathbb{R}))$ tal que $\mu_{id}(I(a,b)) = b - a \quad \forall -\infty \leq a \leq b \leq \infty$. En particular, de esto se deduce que $\mu_{id}(I) = |I| \quad \forall I \in \mathcal{I}$. Dicha medida recibe el nombre de medida de Lebesgue (en \mathbb{R}), y los elementos de $\mathscr{L}(\mathbb{R})$ se dicen conjuntos medibles Lebesgue. Adoptaremos la notación $\mu_{id}(E) := \lambda(E) := |E|$. La medida μ_{id} es la extensión de la noción de longitud que buscábamos y $\mathscr{L}(\mathbb{R})$ son los conjuntos cuya "longitud" podremos medir. Además, los conjuntos de medida nula (de la guía 2), son exactamente aquellos $A \in \mathscr{L}(\mathbb{R})$ tal que $\mu_{id}(A) = 0$ (lo veremos más adelante!).

Ejemplo (Medida de Lebesgue en \mathbb{R}^d). Si \mathcal{I}_d son los intervalos en \mathbb{R}^d y definimos $\tau: \mathcal{I}_d \to [0,\infty]$ como $\tau(I) \coloneqq |I|$, entonces \mathcal{I}_d es una semiálgebra y τ es una premedida σ -aditiva en \mathcal{I}_d (lo veremos después). Por lo tanto, τ se puede extender (de manera única, pues τ es σ -finita) a una medida μ_δ sobre la σ -álgebra $\mathscr{L}(\mathbb{R}^d) = \overline{\sigma(\mathcal{I}_d)^\tau}$, llamada medida de Lebesgue en \mathbb{R}^d y $\mathscr{L}(\mathbb{R}^d)$ es la clase de conjuntos medibles Lebesgue en \mathbb{R}^d . Al igual que antes, dado $E \in \mathscr{L}(\mathbb{R}^d)$, notamos $|E| \coloneqq \mu_\tau(E)$.

Clase 10

29 de Agosto

1.2 Demostración del teorema de extensión de Carathéodory

Paso 1: Medidas Exteriores

Proposición 1.33. Si $I \subseteq \mathbb{R}$ es un intervalo,

$$|E|_e = \inf \left\{ \sum_{n=1}^{\infty} |I_n| : (I_n)_{n \in \mathbb{N}} \text{ intervalos, } E \subseteq \bigcup_{n=1}^{\infty} I_n \right\}$$

Demostración.

 (\geq) Tomando $I_1=I,\ I_{n+1}=\varnothing\quad \forall n\in\mathbb{N}$

(
$$\leq$$
) For la σ -subaditividad de λ en \mathcal{I} : si $I \subseteq \bigcup_{n=1}^{\infty}$ entonces $\lambda(I) \subseteq \sum_{i=1}^{\infty} \lambda(I_i)$.

Definición 1.34 (Medida exterior inducida por una premedida). Sea X un espacio, $\mathscr C$ una clase de subconjuntos de X y $\tau:\mathscr C\to [0,\infty]$ una premedida. Definimos la medida exterior inducida por τ como la aplicación $\mu_\tau^*:\mathscr P(X)\to [0,\infty]$ dada por

$$\mu_{\tau}^*(A) := \inf \{ \sum_{n=1}^{\infty} \tau(C_i) : (C_i)_{i \in \mathbb{N}} \subseteq \mathscr{C} \text{ y } A \subseteq \bigcup_{i=1}^{\infty} C_i \}$$

con la convención de que inf $\varnothing \coloneqq \infty.$

Ejemplo. $\mu_{\lambda}^* = medida \ exterior \ de \ Lebesgue \ y \ la notamos \ |E|_e := \mu_{\lambda}^*(E)$. Idealmente, nos gustaría que μ_{τ}^* cumpla

$$\begin{cases} (C1) \ \mu_{\tau^*}(C) = \tau(C) \quad \forall C \in \mathscr{C} \\ (C2) \ \mu_{\tau}^* \text{ es } \sigma\text{-subaditiva en } \mathscr{P}(X) \end{cases}$$

pero no tienen por qué cumplirse ninguna de la 2:

(C1) Sean $X = \{a, b\}, \ \mathscr{C} = \{\varnothing, \{a\}, X\},\$

$$\tau(A) = \begin{cases} 0 & A = \varnothing \\ 2 & A = \{a\} \\ 1 & A = X \end{cases}$$

Luego, $\tau(\{a\}) = 2$, $\mu_{\tau}^*(\{a\}) = 1 \neq \tau(\{a\})$.

(C2) Medida exterior de Lebesgue no es σ -aditiva (lo vemos mas adelante!)

Proposición 1.35. Si τ es una premedida sobre una semiálgebra ${\mathscr S}$ que satisface

(E2) τ es σ -subaditiva en \mathscr{S} ,

entonces $\mu_{\tau}^*(A) = \tau(A) \quad \forall A \in \mathscr{S} \text{ (i.e. } \mu_{\tau}^* \text{ cumple (C1))}.$

Demostración. $\underline{\mu}_{\tau}^*(A) \leq \tau(A)$. Tomando $C_1 = A \in \mathscr{S}$, $C_{n+1} = \varnothing \in \mathscr{S}$. Luego $(C_n)_{n \in \mathbb{N}}$ es cubrimiento de A por elementos de \mathscr{S} y luego

$$\mu_{\tau}^*(A) \le \sum_{n \in \mathbb{N}} \tau(C_n) = \tau(A)$$

 $\underline{\tau(A)} \leq \mu_{\tau}^*(A)$. Si $(C_n)_{n \in \mathbb{N}} \subseteq \mathscr{S}$ es un cubrimiento de $A \in \mathscr{S}$ entonces por (E2), tenemos que $\tau(A) \leq \sum_{n \in \mathbb{N}} \tau(C_n)$. Tomando inf sobre tales

cubrimientos, resulta $\tau(A) \leq \mu_{\tau}^*(A)$.

Teorema 1.36. Sean X un espacio, $\mathscr C$ una clase de subconjuntos de X y $\tau:\mathscr C\to [0,\infty]$ una premedida. Entonces,

- 1. $\mu_{\tau}^{*}(\varnothing);$
- 2. μ_{τ}^* es monótona $(A \subseteq B \Rightarrow \mu_{\tau}^*(A) \le \mu_{\tau}^*(B))$;
- 3. μ_{τ}^* es σ -subaditiva $(A \subseteq \bigcup_{n \in \mathbb{N}} A_n \Rightarrow \mu_{\tau}^*(A) \leq \sum_{n=1}^{\infty} \mu_{\tau}^*(A_n)$.

Demostración. 1. $\mu_{\tau}^*(\varnothing) \ge 0$ es por definición. Para ver que $\mu_{\tau}^*(\varnothing) \le 0$, tomamos el cubrimiento $C_n = \varnothing$ y repetimos el argumento de la Proposición anterior.

- 2. Si $\mu_{\tau}^*(B) = \infty$, la desigualdad es inmediata. Si $\mu_{\tau}^*(B) < \infty$, entonces existen cubrimientos de B por elementos de \mathscr{S} . Sea $(C_n)_{n \in \mathbb{N}} \subseteq \mathscr{S}$ un cubrimiento de B. Entonces, $(C_n)_{n \in \mathbb{N}}$ es también cubrimiento de A y, luego, $\mu_{\tau}^*(A) \leq \sum_{n \in \mathbb{N}} \tau(C_n)$. Como esto es cierto para todo cubrimiento $(C_n)_{n \in \mathbb{N}}$ de B, tomando ínfimo en la desigualdad anterior sobre tales cubrimientos resulta $\mu_{\tau}^*(A) \leq \mu_{\tau}^*(B)$.
- 3. Dado $\varepsilon > 0$, sea $(C_i^{(n)})_{i \in \mathbb{N}}$ un cubrimiento de A_n tal que $\sum_{i=1}^{\infty} \tau(C_i^{(n)}) \le \mu_{\tau}^*(A_n) + \frac{\varepsilon}{2^n}$. Luego, notando que $(C_i^{(n)} : i \in \mathbb{N}, n \in \mathbb{N})$ es un cubrimiento de A, obtenemos que

$$\mu_{\tau}^*(A) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \tau(C_i^{(n)}) \leq \sum_{n=1}^{\infty} \left(\mu_{\tau}^*(A_n) + \frac{\varepsilon}{2^n}\right)$$
$$\leq \sum_{n=1}^{\infty} \mu_{\tau}^*(A_n) + \varepsilon \sum_{n=1}^{\infty} \frac{1}{2^m}$$

Luego, $\mu_{\tau}^*(A) \leq \sum_{n=1}^{\infty} \mu_{\tau}^*(A_n) + \varepsilon \quad \forall \varepsilon > 0$. Tomando $\varepsilon \to 0^+$, obtenemos la σ -subaditividad de μ_{τ}^* .

Definición 1.37 (medida exterior). Sea X un espacio. Decimos que μ^* : $\mathscr{P}(X) \to [0, \infty]$ es una medida exterior si:

- 1. $\mu^*(\emptyset) = 0$;
- 2. $A \subseteq B \Rightarrow \mu^*(A) \le \mu^*(B)$;
- 3. $A \subseteq \bigcup_{n \in \mathbb{N}} A_n \Rightarrow \mu^*(A) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$.

Ejemplo.

1. Medidas exteriores generadas por una premedida;

2. Si $(\mu_{\gamma}^*)_{\gamma \in \Gamma}$ son medidas exteriores sobre X, entonces

$$\mu^*(A) \coloneqq \sup_{\gamma \in \Gamma} \mu_{\gamma}^*(A)$$

es una medida exterior (Ej. Guía 3).

- 3. Medida exterior s-dimensional de Hausdorff en \mathbb{R}^d .
- Si I es un intervalo en \mathbb{R}^d , entonces $|rI| = r^d |I|$;
- Si $E \subseteq \mathbb{R}^d$ es medible Lebesgue, entonces $|rE| = r^d |E|$;
- En particular, si E = B(x, r), entonces

$$|E| = |B(0,r)| = |rB(0,1)| = r^d |B(0,1)| = C_d (diam E)^d, \quad C_d := \frac{|B(0,1)|}{2^d}$$

• Si $E \subseteq \mathbb{R}^d$ es "s-dimensional" y \mathscr{H}_s es la medida que queremos, entonces debería valer que

$$\mathscr{H}_s(E \cap B(x,r)) = \mathscr{H}_s(\text{entorno s-dimensional}) \approx (diam \text{ (entorno)})^s$$

Luego, si cubrimos a E por entornos pequeños $(E \cap B(x,r))_{i \in \mathbb{N}}$, entonces

$$\mathscr{H}_s(E) \approx \sum_{i \in \mathbb{N}} \mathscr{H}_s(E \cap B(x_i, r_i)) \approx \sum_{i \in \mathbb{N}} (diam(E \cap B(x_i, r_i)))^s.$$

Clase 11

1 de Septiembre

Medida exterior de Hausdorff

 \mathcal{H}_s = medida que "mide" el tamaño de objetos s-dimensionales en \mathbb{R}^d .

Si E es un conjunto s-dimensional en \mathbb{R}^d , entonces

$$\mathscr{H}_s(E) \stackrel{r_1 \leqslant 1}{\approx} \sum_{i \in \mathbb{N}} \mathscr{H}_s(E \cap B(x_i, r_i)) \approx \sum_{i \in \mathbb{N}} (\operatorname{diam}(E \cap B(x_i, r_i)))^s.$$

Teniendo esto en cuenta, dados $d \in \mathbb{N}, s \in [0, d], \delta > 0$, definimos:

- $C_{\delta} := \{ A \subseteq \mathbb{R}^d : \operatorname{diam} A < \delta \};$
- $\mathscr{H}_{s}^{(\delta)}(E) := \inf\{\sum_{n \in \mathbb{N}} (\operatorname{diam} A_{n})^{s} : (A_{n})_{n \in \mathbb{N}} \subseteq C_{\delta}, E \subseteq \bigcup_{n \in \mathbb{N}} A_{n}\}.$ Donde $\mathscr{H}_{s}^{(\delta)}(E)$ es la medida exterior inducida por $\tau_{s}^{(\delta)}$ y $\tau_{s}^{(\delta)}(A) := (\operatorname{diam} A)^{s}$ la δ -premedida de Hausdorff s-dimensional en \mathbb{R}^{d} con $\tau_{s}^{(\delta)}$: $C_{\delta} \to [0, \infty].$

Observar. Si $\delta' < \delta$ entonces $\mathscr{H}_{s}^{(\delta')}(E) \geq \mathscr{H}_{s}^{(\delta)}(E)$.

Luego, podemos definir

$$\mathscr{H}_s(E) := \sup_{\delta > 0} \mathscr{H}_s^{(\delta)}(E) = \lim_{\delta \to 0^+} \mathscr{H}_s^{(\delta)}(E),$$

donde \mathcal{H}_s es la medida exterior de Hausdorff s-dimensional en \mathbb{R}^d .

Definición 1.38 (conjunto μ^* -medible). Sea X un espacio y $\mu^* : \mathcal{P}(X) \to [0, \infty]$ medida exterior. Decimos que $E \subseteq X$ es un conjunto μ^* -medible si

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \quad \forall A \subseteq X.$$

Observar. $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c)$ vale siempre (por σ -subaditividad de μ^* . Luego, para ver que R es μ^* -medible, basta ver que $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

Teorema 1.39. Sea μ^* una medida exterior sobre un espacio X. Entonces:

- 1. $\mu^*(E) = 0 \Rightarrow E \text{ es } \mu^*\text{-medible};$
- 2. La clase \mathcal{M}_{μ^*} de conjuntos μ^* -medibles es una σ -álgebra;
- 3. La restricción μ de μ^* a \mathcal{M}_{μ^*} es una medida.

En particular, $(X, \mathcal{M}_{\mu^*}, \mu)$ es un espacio de medida completo.

Demostración.

- 1. Si $A \subseteq X$, $\mu^*(A \cap E) \le \mu^*(E) = 0$. Además, por monotonía, $\mu^*(A \cap E^c) \le \mu^*(A)$. Luego, $\mu^*(A \cap E) + \mu^*(A \cap E^c) = 0 + \mu^*(A \cap E^c) \le \mu^*(A)$.
- 2. $(\emptyset \in \mathcal{M}_{\mu^*})$: Se sigue de (1), pues $\mu^*(\emptyset) = 0$, por definición.

 $(E \in \mathcal{M}_{\mu^*})$: Directo de la definición de \mathcal{M}_{μ^*} , puesto que es simétrica en E y E^c .

 $((E_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}_{\mu^*}\Rightarrow \bigcup_{n\in\mathbb{N}}E_n\in \mathcal{M}_{\mu^*})$: Esto lo demostramos en tres pasos.

• En primer lugar, demostramos que si $E_1, E_2 \in \mathcal{M}_{\mu^*}$, entonces $E_1 \cap E_2, E_1 \cup E_2 \in \mathcal{M}_{\mu^*}$. Si $A \subseteq X$, entonces

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c)$$

$$= \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c \cap E_2) + \mu^*(A \cap E_1^c \cap E_2^c)$$

$$\geq \mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1 \cup E_2)^c).$$

Notar que la primera igualdad se tiene por $E_1 \in \mathcal{M}_{\mu^*}$ y la segunda por $E_2 \in \mathcal{M}_{\mu^*}$. Esto implica que $E_1 \cap E_2 \in \mathcal{M}_{\mu^*}$. Pero entonces $E_1 \cap E_2 = ((E_1 \cap E_2)^c)^c = (\underbrace{E_1^c}_{\in \mathcal{M}_{\mu^*}} \cup \underbrace{E_2^c}_{\in \mathcal{M}_{\mu^*}})^c \in \mathcal{M}_{\mu^*}$

• Para el segundo paso, demostramos que si $E_1, \ldots, E_n \in \mathcal{M}_{\mu^*}$ disjuntos, entonces

$$\mu^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n \mu^* (A \cap E_i).$$

La idea es probarlo por inducción. Basta ver el caso n=2 (los otros casos salen iterando éste)

$$\mu^*(A \cap (E_1 \uplus E_2)) = \mu^*(\underbrace{A \cap (E_1 \uplus E_2) \cap E_1}_{A \cap E_1}) + \mu^*(\underbrace{A \cap (E_1 \uplus E_2) \cap E_1^c}_{A \cap E_2}).$$

pues $E_2 \subseteq E_1^c$ por ser disjuntos. Por último, vemos que si $(E_n)_{n\in\mathbb{N}}\subseteq \mathscr{M}_{\mu^*}$, entonces $\bigcup_{n\in\mathbb{N}}E_n\in \mathscr{M}_{\mu^*}$. Podemos suponer que los E_n son disjuntos. Si no, los cambiamos por

$$E'_{1} := E_{1} \in \mathcal{M}_{\mu^{*}}$$

$$E'_{2} := E_{2} \setminus E_{1} = E_{2} \cap E_{1}^{c} \in \mathcal{M}_{\mu^{*}}$$

$$\vdots$$

$$E'_{n+1} := E_{n+1} \setminus \bigcup_{i=1}^{n} E_{i} \in \mathcal{M}_{\mu^{*}},$$

 $E'_{n+1} := E_{n+1} \setminus \bigcup_{i=1}^{n} E_i \in \mathscr{M}_{\mu^*},$

У

$$\bigcup_{n\in\mathbb{N}} E_n = \bigcup_{n=1}^{\infty} E'_n.$$

Sea

$$F_n := \bigcup_{i=1}^n E_i \longrightarrow E := \bigcup_{n \in \mathbb{N}} E_n.$$

Notar que si $F_n \subseteq E$, entonces $E^c \subseteq F_n^c$. Luego, dado $A \subseteq X$, como $F_n \in \mathscr{M}_{\mu^*}$, se tiene

$$\mu^*(A) = \underbrace{\mu^*(A \cap F_n)}_{=\sum_{i=1}^n \mu^*(A \cap E_i)} + \mu^*(\underbrace{A \cap F_n^c}_{\subseteq A \cap E^c})$$
$$\geq \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c).$$

Tomando $n \to \infty$,

$$\mu^*(A) \ge \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c)$$

$$\ge \mu^*(A \cap E) + \mu^*(A \cap E^c) \qquad (\mu^* \text{ σ-subad.})$$

$$A \cap E = \bigcup_{i=1}^\infty A \cap E_i.$$

Que era lo que necesitabamos. \checkmark

Con esto, tenemos que \mathcal{M}_{μ^*} es, en efecto, σ -álgebra.

Clase 12

3 de Septiembre

Teorema 1.40. Si μ^* es una medida exterior sobre un espacio X, entonces:

- 1. $\mu^*(E) = 0 \Rightarrow E \text{ es } \mu^*\text{-medible};$
- 2. $\mathcal{M}_{\mu^*} := \{ E \subseteq X \mid E \text{ es } \mu^*\text{-medible} \} \text{ es } \sigma\text{-\'algebra};$
- 3. $\mu := \mu^* |_{\mathcal{M}_{\mu^*}}$ es una medida y $(X, \mathcal{M}_{\mu^*}, \mu)$ es completo.

Demostración (3). Debemos ver que si $(E_n)_{n\in\mathbb{N}}\subseteq \mathscr{M}_{\mu^*}$ son disjuntos entonces

$$\mu\left(\bigcup_{n=1}^{\infty}\right) = \sum_{n \in \mathbb{N}} \mu(E_n)$$

La desigualdad (\leq) viene dada ya que μ^* es σ -aditiva. Entonces, basta ver la desigualdad (\geq). Para esto, notamos que:

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \ge \mu^* \left(\bigcup_{n=1}^{M} E_n \right) = \sum_{n=1}^{M} \mu^*(E_n)$$

$$\mu^*\text{-monótona} \quad E_n \text{ es } \mu^*\text{-medible } \forall n$$

Si tomamos $M \longrightarrow \infty$, resulta que

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \ge \sum_{n=1}^{\infty} \mu^*(E_n).$$

Entonces, μ es medida. Ahora, tenemos que ver que $(X, \mathcal{M}_{\mu^*}, \mu)$ es completo. Notamos que si $E \subseteq X$ es μ -nulo, es decir, $\exists N \in \mathcal{M}_{\mu^*}$ tal que $E \subseteq N$ y $\mu(N) = 0$, entonces

$$\mu^*(E) \le \mu^*(N) = 0$$

Por lo tanto, $\mu^*(E) = 0$ y, por (1), $E \in \mathcal{M}_{\mu^*}$.

Observación. Esto muestra que si μ es finitamente aditiva (\Rightarrow monótona) y σ -subaditiva, entonces es σ -aditiva (es un si y sólo si).

Proposición 1.41. Si τ es una premedida sobre la semiálgebra $\mathscr S$ que es extendible (E_1+E_2) entonces su medida exterior asociada μ_τ^* cumple que:

C1)
$$\mathscr{S} \subseteq \mathscr{M}_{\mu^*} \quad (\Rightarrow \sigma(\mathscr{S}) \subseteq \mathscr{M}_{\mu^*});$$

C2)
$$\mu_{\tau}^*(A) = \tau(A) \quad \forall A \in \mathscr{S} \Leftrightarrow \mu(A) = \tau(A) \quad \forall A \in \mathscr{S} \text{ por (C1)}.$$

Demostración. (C2) ya se ha visto antes, entonces queda demostrar (C1). Necesitamos ver que si $A \in \mathcal{S}$ entonces

$$\mu_{\tau}^*(F) \ge \mu_{\tau}^*(F \cap A) + \mu_{\tau}^*(F \cap A^c) \quad \forall F \subseteq X.$$

En efecto, si $\mu_{\tau}^*(F) = \infty$, es evidente. Si $\mu_{\tau}^*(F) < \infty$, dado $\varepsilon > 0$, existen $(B_i)_{i \in \mathbb{N}} \subseteq \mathscr{S}$ tal que $F \subseteq \bigcup_{i \in \mathbb{N}} B_i$ y $\sum_{i \in \mathbb{N}} \le \mu_{\tau}^*(F) + \varepsilon$. Por otro lado, como $A \in \mathscr{S}$, existen S_1, \ldots, S_k disjuntos tales que $A^c = \bigcup_{j=1}^k S_j$. Como $B_i = \bigcup_{j=1}^k B_i \cap S_j$, donde $S_0 \coloneqq A$, por (E1)

$$\tau(B_i) = \sum_{j=0}^k \tau(B_i \cap S_j).$$

Sumando en i, resulta

$$\mu_{\tau}^{*}(F) + \varepsilon \geq \sum_{i \in \mathbb{N}} \tau(B_{i}) = \sum_{i \in \mathbb{N}} \sum_{i=0}^{k} \tau(B_{i} \cap S_{j})$$

$$= \sum_{j=0}^{k} \sum_{i \in \mathbb{N}} \tau(B_{i} \cap S_{j})$$

$$\begin{pmatrix} B_{i} \cap S_{j} \in \mathscr{S} \\ y(C2) \end{pmatrix} = \sum_{j=0}^{k} \sum_{i \in \mathbb{N}} \mu_{\tau}^{*}(B_{i} \cap S_{j})$$

$$(F \cap S_{j} \subseteq \bigcup_{i \in \mathbb{N}} B_{i} \cap S_{j} \Rightarrow) \geq \sum_{j=0}^{k} \mu_{\tau}^{*}(F \cap S_{j})$$

$$= \mu_{\tau}^{*}(F \cap A) + \sum_{j=1}^{k} \mu_{\tau}^{*}(F \cap S_{j})$$

$$(F \cap S^{c} \subseteq \bigcup_{j=1}^{k} F \cap S_{j} \Rightarrow) \geq \mu_{\tau}^{*}(F \cap A) + \mu_{\tau}^{*}(F \cap A^{c}).$$

Luego, A es μ_{τ}^* -medible (y se cumple (C1)).

Corolario 1.42 (Carathéodory hasta ahora - Versión 1). Si μ^* es una medida exterior en X, entonces

$$\mathcal{M}_{\mu^*} := \{ E \subseteq X : E \text{ es } \mu^*\text{-medible} \}$$

es σ -álgebra y $(X, \mathscr{M}_{\mu^*}, \mu^*\big|_{\mathscr{M}_{\mu^*}})$ es un espacio de medida completo.

Además, si τ es una premedida en una semiálgebra $\mathscr S$ que es extendible y μ_{τ}^* es su medida exterior asociada, entonces $\sigma(\mathscr S)\subseteq\mathscr M_{\mu_{\tau}^*}$ y $\mu_{\tau}\coloneqq \mu_{\tau}^*\big|_{\mathscr M_{\mu^*}}$ es una medida que se extiende a τ .

Teorema 1.43. Si τ es una premedida sobre una semiálgebra $\mathscr S$ que es unívocamente extendible (E1+E2+E3) entonces $\sigma(\mathscr S)\subseteq \mathscr M_{\mu_\tau^*}$ y además son equivalentes:

- 1. $A \in \mathcal{M}_{\mu_{z}^{*}};$
- 2. $\exists B \in \sigma(\mathscr{S}), \ N_1 \in \mathscr{M}_{\mu_{\tau}^*} \text{ con } \mu_{\tau}^*(N_1) = 0 \text{ tal que } A = B N_1;$
- 3. $\exists C \in \sigma(\mathscr{S}), \ N_2 \in \mathscr{M}_{\mu_{\tau}^*} \text{ con } \mu_{\tau}^*(N_2) = 0 \text{ tal que } A = C \cup N_2.$

Observación. $\mu_{\tau}^*(A) = \mu_{\tau}^*(B) = \mu_{\tau}^*(C)$ y $\mathcal{M}_{\mu_{\tau}^*}$ es la $\mu_{\tau}^*|_{\sigma(\mathscr{S})}$ -completación.

Demostración. Que $(2) \Rightarrow (1)$ y $(3) \Rightarrow (1)$ es inmediato. Veamos que $(1) \Rightarrow (2) \Rightarrow (3)$.

 $\boxed{ (1) \Rightarrow (2) } \text{ Supongamos primero que } \mu_\tau^*(A) < \infty. \text{ Dado } \varepsilon > 0, \text{ existen } (B_n^{(\varepsilon)})_{n \in \mathbb{N}} \subseteq \mathscr{S} \text{ tal que } A \subseteq \bigcup_{n \in \mathbb{N}} B_n^{(\varepsilon)} \text{ y } \sum_{n \in \mathbb{N}} \tau(B_n^{(\varepsilon)}) \leq \mu_\tau^*(A) + \varepsilon. \text{ En praticular,}$

$$\mu_{\tau}^{*}(A) \leq \mu_{\tau}^{*} \left(\bigcup_{n \in \mathbb{N}} B_{n}^{(\varepsilon)} \right) \leq \sum_{n \in \mathbb{N}} \mu_{\tau}^{*}(B_{n}^{(\varepsilon)})$$
$$\left(\underset{\tau \text{ si es extendible}}{\mu_{\tau}^{*}} \operatorname{extiende a} \right) = \sum_{n \in \mathbb{N}} \tau(B_{n}^{(\varepsilon)}) \leq \mu_{\tau}^{*}(A) + \varepsilon. \tag{*}$$

Sea $B := \bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} B_n^{(\frac{1}{k})}$. Notemos que $B \in \sigma(\mathscr{S})$ y que $A \subseteq B$. Además, como $A, B \in \mathscr{M}_{\mu^*}$ por hipótesis y $\sigma(\mathscr{S}) \subseteq \mathscr{M}_{\mu^*}$ y $\mu_{\tau} = \mu_{\tau}^*|_{\mathscr{M}_{\mu_{\tau}^*}}$ es finitamente aditiva y si definimos $N_1 := B \setminus A$ y $B^{(\frac{1}{k})} := \bigcup_{n \in \mathbb{N}} B_n^{(\frac{1}{k})}$, entonces $N_1 \in \mathscr{M}_{\mu_{\tau}^*}$, $A := B - N_2$, y para todo $k_0 \in \mathbb{N}$

$$\mu_{\tau}^{*}(N_{1}) = \mu_{\tau}^{*}(B - A) = \mu_{\tau}^{*}\left(\bigcap_{k \in \mathbb{N}} (B^{(\frac{1}{k})} \setminus A)\right)$$

$$\leq \mu_{\tau}^{*}(B^{(\frac{1}{k_{0}})} - A).$$

Luego,

$$A \subseteq B^{(\frac{1}{k_0})} \Rightarrow \mu_{\tau}^*(B^{(\frac{1}{k_0})}) - \mu_{\tau}^*(A) \le \frac{1}{k_0} \tag{*}$$

Tomando $k_0 \longrightarrow \infty$, resulta $(1) \Rightarrow (2)$.

Clase 13

5 de Septiembre

Demostración (Continuación clase anterior).

$$\mu_{\tau}(B \setminus A) = \mu_{\tau} \left(\bigcup_{n \in \mathbb{N}} B_n \setminus A \right) \le \sum_{n \in \mathbb{N}} \mu_{\tau}(B_n \setminus A)$$

$$\le \sum_{n \in \mathbb{N}} \mu_{\tau}(B_n \setminus (A \cap E_n))$$

$$= \sum_{n \in \mathbb{N}} \mu_{\tau}(B_n) - \mu_{\tau}(A \cap E_n) = 0.$$

Observación. $\mathcal{M}_{\mu_{\tau}^*} = \overline{\sigma(\mathscr{S})}$ (con resp. a $\mu_{\tau}^*|_{\sigma(\mathscr{S})}$). En efecto, si $A \in \mathcal{M}_{\mu_{\tau}^*}$ entonces, por $(1) \Rightarrow (3)$, existen $C \in \sigma(\mathscr{S})$ y $N \in \mathcal{M}_{\mu_{\tau}^*}$ tal que $A = C \cup N$ y $\mu_{\tau}^*(N) = 0$. Como $N \in \mathcal{M}_{\mu^*}$, por $(1) \Rightarrow (2)$ para N, existe $\widetilde{N} \in \sigma(\mathscr{S})$ tal que $N \subseteq \widetilde{N}$ y $0 = \mu_{\tau}(N) = \mu_{\tau}(\widetilde{N})$. Luego, N resulta $\mu_{\tau}^*|_{\sigma(\mathscr{S})}$ -nulo y, por lo tanto, $N \in \overline{\sigma(\mathscr{S})^{\mu_{\tau}^*|_{\sigma(\mathscr{S})}}}$.

Por otro lado, si $A \in \overline{\sigma(\mathscr{S})}$ (resp. a $\mu_{\tau}^*|_{\sigma(\mathscr{S})}$), entonces $A = B \cup N$ donde $B \in \sigma(\mathscr{S})$ y $\exists \widetilde{N} \in \sigma(\mathscr{S})$ tal que $N \subseteq \widetilde{N}$ y $\mu_{\tau}^*(N) = 0$, y entonces $A = B \cup N \in \mathscr{M}_{\mu_{\tau}^*}$ (pues $\sigma(\mathscr{S}) \subseteq \mathscr{M}_{\mu_{\tau}^*}$).

Observación. En particular, hemos probado:

Proposición 1.44. Si τ es una premedida UE sobre una semiálgebra $\mathscr S$ entonces, dado $A\subseteq X$ (no necesariamente μ_{τ}^* -medible),

$$\mu_{\tau}^*(A) := \min\{\mu_{\tau}(B) \mid B \in \sigma(\mathscr{S}), \ A \subseteq B\}$$
$$= \max\{\mu_{\tau}(C) \mid C \in \sigma(\mathscr{S}), \ C \subseteq A\}.$$

Teorema 1.45. $\beta(\mathbb{R}^d) \subsetneq \mathcal{L}(\mathbb{R}^d) \subsetneq \mathcal{P}(\mathbb{R}^d)$. De hecho, $\#\mathscr{L}(\mathbb{R}^d) = 2^c$, $\#\mathcal{P}(\mathbb{R}^d) \setminus \mathscr{L}(\mathbb{R}^d) = 2^c$, $\#\beta(\mathbb{R}^d) = c$.

Teorema 1.46. Existe $V \subseteq \mathbb{R}$ no medible Lebesgue.

Lema 1.47. $|E+x|_e=|E|_e \quad \forall E\subseteq \mathbb{R}, \ x\in \mathbb{R}.$ Además, si $E\in \mathscr{L}(\mathbb{R}),$ entonces $E+x\in \mathscr{L}(\mathbb{R})$ y $|E|=|E+x| \quad \forall x\in \mathbb{R}.$

Axioma de Elección. Si $(A_{\gamma})_{\gamma \in \Gamma}$ es una familia de conjuntos disjuntos, no vacíos, entonces existe un conjunto A tal que $A \cap A_{\gamma}$ tiene exactamente 1 elemento $\forall \gamma \in \Gamma$.

Demostración (lema 1.47). Definimos una relación de equivalencia \sim en [0,1) decretando que $x \sim y$ si $x-y \in \mathbb{Q}$. Por el Axioma de Elección, existe un conjunto $V \subseteq \mathbb{R}$ que tiene exactamente 1 elemento de cada clase de equivalencia de \sim . Observemos que:

- V1) $(V+Q_1)\cap (V+Q_2)=\varnothing \quad \forall Q_1,Q_2\in \mathbb{Q}$ distintos. En efecto, si $v_1+Q_1=v_2+Q_2$ con $v_1,v_2\in V\Rightarrow v_1-v_2=Q_2-Q_1\in \mathbb{Q}\Rightarrow v_1\sim v_2\Rightarrow v_1=v_2\Rightarrow Q_1=Q_2.$
- V2) $[0,1)\subseteq\bigcup_{Q\in\mathbb{Q}}V+Q$. Notar que dado $x\in[0,1)$, existe un único $v\in V$ tal que $x\sim v$, i.e., $x-v=Q\in\mathbb{Q}\Rightarrow x=v+Q\in V+Q$.

Si V fuera medible, por (V2) y el Lema,

$$1 == |[0,1)| \le \sum_{Q \in \mathbb{O}} |V+Q| = \sum_{Q \in \mathbb{O}} |V| \Rightarrow |V| > 0$$

Por otro lado, por (V1), $\biguplus_{Q\in\mathbb{Q}\cap[0,1)}V+Q\subseteq[0,2)$, y luego, por el Lema y como |V|>0,

$$\begin{split} \infty &= \sum_{Q \in \mathbb{Q} \cap [0,1)} |V| = \Big| \bigcup_{Q \in \mathbb{Q} \cap [0,1)} V + Q \Big| \\ &\leq |[0,2)| = |[0,1)| + |[1,2)| \\ &= |[0,1)| + |1 + [0,1)| = 2|[0,1)| \\ &= 2 < \infty, \end{split}$$

lo cual es una contradicción. Luego V no es medible.

Clase 14

8 de Septiembre

- 1. Construimos un conjunto $V \subseteq [0,1)$ tal que
 - (V1) $(V+Q_1)\cap (V+Q_2)=\emptyset$, tal que $Q_1,Q_2\in\mathbb{Q}$ son distintos;
 - (V2) $[0,1) \subseteq \bigcup_{Q \in \mathbb{Q}} (V+Q).$

Cualquier conjunto $V \subseteq [0,1)$ que cumpla V_1 y V_2 se dice un cojunto de Vitali. Ningún conjunto de Vitali es medible Lebesgue.

- 2. La misma demostración se puede adaptar para mostrar que:
 - i. Si $|E|_e > 0$ entonces existe $\widetilde{E} \subseteq E$ no medible Lebesgue;
 - ii. Si μ es una medida en $\mathbb R$ invariante por traslaciones definida sobre una σ -álgebra $\mathcal F$ tal que $V\in\mathcal F$ entonces

$$\mu([0,1)) = \begin{cases} 0 & (\Rightarrow \mu \equiv 0) \\ \infty & \end{cases}$$

En particular, la noción de longitud no puede extenderse a todo $\mathcal{P}(\mathbb{R})$ (de forma invariante por traslación).

iii. $V \times [0,1]^{d-1} \not\in \mathscr{L}(\mathbb{R}^d)$ para ningún d>1.

Observación. La existencia de V nos dice que $|\cdot|_e$ no es ni siquiera finitamente aditiva

Paradoja de Banach-Tarski. Si $A = B(0,1) \subseteq \mathbb{R}^d$, existe una partición finita de A,

$$A = A_1 \cup A_2 \cup \cdots \cup A_k$$
 (basta tomar $k = 6$)

tal que sólo mediante rotaciones y traslaciones de los A_j (operaciones que no cambian medida) se pueden obtener 2 copias disjuntas de A.

Definición 1.48 (π -sistema). Una clase de subcontuntos \mathcal{P} de un espacio X, se dice un π -sistema si es cerrado por intersecciones finitas, i.e.,

$$A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$$

Ejemplo.

- Semiálgebra $\Rightarrow \pi$ -sistema $\not\Rightarrow$ semiálgebra;
- $\mathcal{P} = \{(-\infty, x] : x \in \mathbb{R}\}$ es un π -sistema pero no semiálgebra;
- $\mathcal{P} \subseteq \widetilde{I}$ pero \widetilde{I} no es una semiálgebra generada, aunque

$$\mathcal{A}(\mathcal{P}) = \mathcal{P}(\widetilde{I}) \Rightarrow \sigma(\mathcal{P}) = \beta(\mathbb{R}).$$

Definición 1.49 (λ -sistema). Una clase \mathscr{L} de subconjuntos de un espacio X se dice un λ -sistema si:

- $(\lambda_1) \ X \in \mathcal{L};$
- (λ_2) $A \in \mathcal{L} \Rightarrow A^c \in \mathcal{L};$
- (λ_3) $(A_n)_{n\in\mathbb{N}}\subseteq\mathscr{L}$ disjuntos $\Rightarrow \bigcup_{n\in\mathbb{N}}A_n\in\mathscr{L}$.

Nota. Tenemos que $\phi \in \mathcal{L}$ y que, por ende \mathcal{L} es también cerrado por uniones disjuntas finitas.

Ejemplo. σ -álgebra $\Rightarrow \lambda$ -sistema $\not\Rightarrow \sigma$ -álgebra.

$$X = \{1,2,3,4\}, \ \mathcal{L} \coloneqq \{\varnothing,X,\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$

 $\mathscr L$ es un $\lambda\text{-sistema},$ pero $\{1,2,3\}=\{1,2\}\cup\{2,3\}\not\in\mathscr L$ y luego, $\mathscr L$ no es $\sigma\text{-álgebra}.$

Teorema 1.50 ($\pi - \lambda$ de Dynkin). Si \mathscr{L} es un λ -sistema y \mathcal{P} es un π -sistema tal que $\mathcal{P} \subseteq \mathscr{L}$, entonces $\sigma(\mathcal{P}) \subseteq \mathscr{L}$.

Lema 1.51. Todo λ -sistema que sea también π -sistema es, de hecho, una σ -álgebra.

Demostración (lema). Debemos ver que si $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{L}$, entonces $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{L}$. Para ello, definimos para cada $n\in\mathbb{N}$,

$$A_0 := \varnothing, \quad B_n := A_n \setminus (A_1 \cup \cdots \cup A_{n-1}) = A_n \cap A_1^c \cap \cdots \cap A_{n-1}^c$$

Notemos que:

- 1. $(B_n)_{n\in\mathbb{N}}$ son disjuntos y $\bigcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} A_n$;
- 2. $B_n \in \mathcal{L} \quad \forall n \in \mathbb{N}$, pues \mathcal{L} es un λ -sistema y π -sistema. Pero entonces,

$$\bigcup_{n\in\mathbb{N}}=\bigcup_{n\in\mathbb{N}}B_n\in\mathscr{L}.$$

Demostración (Dynkin). Sea

$$\lambda(\mathcal{P}) \coloneqq \bigcap_{\substack{\widetilde{\mathscr{L}} \text{ λ-sistema} \\ \mathcal{P} \subseteq \widetilde{\mathscr{L}}}} \widetilde{\mathscr{L}}$$

el λ -sistema generado por \mathcal{P} . Observar que $\lambda(\mathcal{P})$ es el menor λ -sistema que contiene a \mathcal{P} . Luego, valen las inclusiones $\mathcal{P} \subseteq \lambda(\mathcal{P}) \subseteq \mathcal{L}$. (*) Si mostramos que $\lambda(\mathcal{P})$ es un π -sistema, entonces, por el lema, $\lambda(\mathcal{P})$ resulta una σ -álgebra (que contiene a \mathcal{P}) y, por minimalidad, $\sigma(\mathcal{P}) \subseteq \lambda(\mathcal{P})$. \square

Clase 15

10 de Septiembre

Demostración (Dynkin, continuación). Bastaba con probar que $\lambda(\mathcal{P})$ es un π -sistema. Esto es equivalente a probar que

$$\lambda(\mathcal{P}) \subseteq \mathcal{L}_A := \{ B \subseteq X : A \cap B \in \lambda(\mathcal{P}) \} \quad \forall A \in \lambda(\mathcal{P}).$$

A su vez, para esto basta probar que:

$$\begin{cases} (1) \ \mathscr{L}_A \text{ es un } \lambda\text{-sistema } \forall A \in \lambda(\mathcal{P}) \\ (2) \ \mathcal{P} \subseteq \mathscr{L}_A. \end{cases}$$

Veamos (1).

- $(\lambda_1)\ X\in \mathscr{L}_A\colon \text{Como}\ A\in \lambda(\mathcal{P}),$ se tiene que $A\cap X=A\in \lambda(\mathcal{P})\quad (\Rightarrow X\in \mathscr{L}_A)\ \checkmark$
- (λ_2) $B \in \mathscr{L}_A \Rightarrow B^c \in \mathscr{L}_A$: Notar que

$$A \cap B^c \in \lambda(\mathcal{P}) \Leftrightarrow (A \cap B^c)^c = A^c \cup B \in \lambda(\mathcal{P})$$

$$\Leftrightarrow A^c \cup B^c = \underbrace{A^c}_{\substack{\in \lambda(\mathcal{P}) \\ \text{pues} \\ A \in \lambda(\mathcal{P})}} \underbrace{(B \cap A)}_{\substack{\in \lambda(\mathcal{P}) \\ \text{pues} \\ B \in \mathcal{L}_A}} \in \lambda(\mathcal{P}) \stackrel{\text{(cierto pues } \lambda(\mathcal{P}))}{\text{(es } \lambda \text{-sistema)}}.$$

 (λ_3) Si $(B_n)_{n\in\mathbb{N}}\subseteq\mathscr{L}_A$ disjuntos, entonces $(A\cap B_n)_{n\in\mathbb{N}}$ también. Además, cada $A\cap B_n\in\lambda(\mathcal{P})$ pues $B_n\in\mathscr{L}_A$. Luego,

$$A \cap \left(\bigcup_{n \in \mathbb{N}} B_n\right) = \bigcup_{n \in \mathbb{N}} A \cap B_n \in \lambda(\mathcal{P}) \quad \left(\Rightarrow \bigcup_{n \in \mathbb{N}} B_n \in \mathscr{L}_A\right)$$

Veamos (2). Vamos por casos

- 1. $(A \in \mathcal{P})$: Si $B \in \mathcal{P}$, entonces $A \cap B \in \mathcal{P}$, pues \mathcal{P} es un π -sistema, y entonces $A \cap B \in \mathcal{P} \subseteq \lambda(\mathcal{P})$ y así resulta $B \in \mathcal{L}_A$. Como $B \in \mathcal{P}$ era arbitrario, esto nos dice que $\mathcal{P} \subseteq \mathcal{L}_A$. En particular, por (1) resulta que $\lambda(\mathcal{P}) \subseteq \mathcal{L}_A$.
- 2. $(A \in \lambda(\mathcal{P}) \text{ general})$: Si tomamos $B \in \mathcal{P}$, entonces $B \in \mathcal{L}_A \Leftrightarrow A \cap B \in \lambda(\mathscr{P}) \Leftrightarrow A \in \mathcal{L}_B$. Luego, lo que queremos mostrar es que, para todo $B \in \mathcal{P}$, $\lambda(\mathcal{P}) \subseteq \mathcal{L}_B$. Pero esto vale por el caso 1. \checkmark

Definición 1.52 (extensión de una premedida). Sean $\tau: \mathscr{S} \to [0, \infty]$ una premedida sobre $\mathscr{S} \subseteq \mathcal{P}(X)$ y $\mathcal{F} \subseteq \mathcal{P}(X)$ una σ -álgebra. Decimos que una medida $\mu: \mathcal{F} \to [0, \infty]$ es una extensión de τ (sobre \mathcal{F}) si:

- 1. $\mathscr{S} \subseteq \mathcal{F} \quad (\Rightarrow \sigma(\mathscr{S}) \subseteq \mathcal{F});$
- $2. \ \mu(A) = \tau(A) \quad \forall A \in \mathscr{S}.$

Teorema 1.53 (Unicidad de Extensión de Carathéodory). Sea τ una premedida definida sobre una semiálgebra $\mathscr S$ de subconjuntos de un espacio X. Si τ es σ -finita, entonces existe a lo sumo una extensión de μ sobre $\sigma(\mathscr S)$. En particular, si τ es UE, entonces admite <u>exactamente</u>:

- una extensión sobre $\sigma(\mathscr{S})$, i.e. $\mu_{\tau} := \mu_{\tau}^* \big|_{\sigma(\mathscr{S})}$;
- una extensión sobre $\mathcal{M}_{\mu_{\tau}^*}$, i.e., $\mu_{\tau}^*|_{\mathcal{M}_{\mu_{\tau}^*}}$.

Demostración. Sean μ, μ' medidas sobre (X, \mathcal{M}) tal que $\mu(B) = \mu'(B) \quad \forall B \in \mathcal{S}$. Queremos ver que $\mu(A) = \mu'(A) \quad \forall A \in \mathcal{M}$ (primero cuando $\mathcal{M} = \sigma(\mathcal{S})$ y luego con $\mathcal{M} = \mathcal{M}_{\mu_*^*}$):

(i) $\mathcal{M} = \sigma(\mathcal{S})$: Tomamos $(E_n)_n \subseteq \mathcal{S}$ disjuntos tal que $X = \biguplus_{n \in \mathbb{N}} E_n$ y $\tau(E_n) < \infty \quad \forall n \in \mathbb{N}$ (podemos, pues τ es σ -finita). Observemos que, por ser μ y μ' medidas en $\sigma(\mathcal{S})$ si $A \in \sigma(\mathcal{S})$, entonces:

$$\mu(A) = \mu\left(\bigcup_{n \in \mathbb{N}} A \cap E_n\right) = \sum_{n \in \mathbb{N}} \mu(A \cap E_n) \quad \text{y} \quad \mu'(A) = \sum_{n \in \mathbb{N}} \mu'(A \cap E_n).$$

Luego, bastará con ver que $\mu(A \cap E_n) = \mu'(A \cap E_n) \quad \forall n \in \mathbb{N}, \ A \in \sigma(\mathscr{S})$. Luego, fijemos $n \in \mathbb{N}$ y definamos

$$\xi_n := \{ A \in \sigma(\mathscr{S}) : \mu(A \cap E_n) = \mu'(A \cap E_n) \}.$$

Queremos ver que $\sigma(\mathscr{S}) \subseteq \xi_n$. Para ello, como \mathscr{S} es un π -sistema, por Dynkin bastará con ver que

- 1. ξ_n es un λ -sistema;
- 2. $\mathscr{S} \subseteq \xi_n$.

Veamos 1.

- (λ_1) $X \in \xi_n$: Es cierto, pues $\mu(X \cap E_n) = \mu(E_n) = \tau(E_n) = \mu'(E_n) = \mu'(X \cap E_n)$;
- (λ_2) $A \in \xi_n \Rightarrow A^c \in \xi_n$: $\mu(A^c \cap E) = \mu(E_n \setminus A) = \mu(E_n) \mu(A \cap E_n)$ (la última igualdad se da pues $\mu(E_n) < \infty$). Luego, por (λ_1), esto último es igual a $\mu'(E_n) - \mu'(A \cap E_n) = \mu'(A^c \cap E_n)$;

 (λ_3) Si $(A_k)_{k\in\mathbb{N}}\subseteq \xi_n$ son disjuntos, entonces

$$\mu\left(\left(\bigcup_{k\in\mathbb{N}}^{\mathbb{D}}A_k\right)\cap E_n\right) = \mu\left(\bigcup_{k\in\mathbb{N}}^{\mathbb{D}}A_k\cap E_n\right) = \sum_{k\in\mathbb{N}}\mu(A_k\cap E_n)$$
$$= \sum_{k\in\mathbb{N}}\mu'(A_k\cap E_n)$$
$$= \mu'\left(\left(\bigcup_{k\in\mathbb{N}}^{\mathbb{D}}A_k\right)\cap E_n\right).$$

Luego,
$$\bigcup_{k\in\mathbb{N}} A_k \in \xi_n$$

Veamos 2. Si $A \in \mathcal{S}$ entonces $A \cap E_n \in \mathcal{S}$ pues \mathcal{S} es un π -sistema, y entonces $\mu(A \cap E_n) = \tau(A \cap E_n) = \mu'(A \cap E_n)$. \checkmark

(ii) $\mathcal{M} = \mathcal{M}_{\mu_{\tau}^*}$ (τ unívocamente extendible): Sea $A \in \mathcal{M}_{\mu_{\tau}^*}$. Como τ es σ -finita en \mathcal{S} , existen $B, C \in \sigma(\mathcal{S})$ tales que $C \subseteq A \subseteq B$ y $\mu_{\tau}^*(C) = \mu_{\tau}^*(A) = \mu_{\tau}^*(B)$. Entonces, si μ es una extensión de τ sobre $\mathcal{M}_{\mu_{\tau}^*}$, tenemos que

$$\begin{array}{ccc} \mu_\tau^*(A) = \mu_\tau^*(C) \leq \mu(C) \leq \mu(A) \leq \mu(B) = \mu_\tau^*(B) = \mu_\tau^*(A) \\ \downarrow & \downarrow \\ C \in \sigma(\mathscr{S}) \text{ y } \exists ! \text{ ext. en } \sigma(\mathscr{S}) & B \in \sigma(\mathscr{S}) \end{array}$$

de donde resulta que $\mu(A) = \mu_{\tau}^*(A)$ y la extensión es única. Además, satisface $\mu(A) = \mu_{\tau}(B) = \mu_{\tau}(C)$ para cualquier $C, B \in \sigma(\mathscr{S})$ tal que $C \subseteq A \subseteq B$, $N_1 = A \setminus C$ y $N_2 = B \setminus A$ son μ_{τ} -nulos. Luego, $\mu = \overline{\mu_{\tau}}$, donde $\overline{\mu_{\tau}}$ es la "completación" de μ_{τ} definida en el Teorema de Extensión de Carathéodory.

Nota. De la demostración se deduce que si μ y ν son medidas finitas sobre (X, \mathcal{M}) , entonces

$$\mathcal{L} := \{ A \in \mathcal{M} : \mu(A) = \nu(A) \}$$

es un λ -sistema si y solo si $X \in \mathcal{L}$. En particular, si dos medidas f
nitas coinciden en un π -sistema \mathcal{P} que contiene a X, entonces coinciden en $\sigma(\mathcal{P})$.

Clase 16

12 de Septiembre

Comentario. Si queremos definir una medida finita sobre $(\mathbb{R}, \beta(\mathbb{R}))$, por el comentario de la vez pasada, basta predefinirla en un π -sistema \mathcal{P} que genere a $\beta(\mathbb{R})$ (si queremos unicidad de la extensión a $\beta(\mathbb{R})$). Una elección natural es tomar $\mathcal{P} := \{(-\infty, x] : x \in \mathbb{R}\}\ (\sigma(\mathcal{P}) = \beta(\mathbb{R}))$.

Luego, si μ es una medida que extiende a una premedida τ sobre \mathcal{P} , entonces μ queda unívocamente determinada sobre $\widetilde{\mathcal{I}}$:

- $\mu(\mathbb{R}) = \mu\left(\bigcup_{n \in \mathbb{N}} (-\infty, n]\right) = \lim_{n \to \infty} \mu((-\infty, n]) = \lim_{n \to \infty} \tau((-\infty, n]).$
- $\mu((a,b]) = \mu((-\infty,b] \setminus (-\infty,b]) = \tau((-\infty,b]) \tau((-\infty,a]).$
- $\mu((a,\infty)) = \mu(\mathbb{R} (-\infty, a]) = \lim_{n \to \infty} \tau((-\infty, n]) \tau((-\infty, a]).$

En conclusión, $\widetilde{\mathcal{I}}$ es la semiálgebra natural que aparece cuando buscamos extender un apremedida definida sobre \mathcal{P} (y necesitamos definirla al menos sobre un π -sistema como \mathcal{P} si queremos unicidad).

Luego, la idea será:

au sobre $\mathcal{P} \Rightarrow$ extensión automática a $\widetilde{\mathcal{I}}$ \Rightarrow extensión a $\beta(\mathbb{R})$ por Carathéodory..

 $\tau((-\infty, x]) =: F_{\tau}(x).$

Teorema 1.54. Sea $F: \mathbb{R} \to \mathbb{R}$ monótona creciente. Entonces, $\tau_F: \widetilde{\mathcal{I}} \to [0,\infty]$ dada por $\tau(I(a,b)) = F(b) - F(a) \ (-\infty \le a \le b \le \infty)$ cumple que:

- E1) τ_F es finitamente aditiva;
- E2) Si F es continua a derecha, τ_F es σ -subaditiva.

Es decir, si F es de L-S entonces τ_F es extendible (de hecho, es unívocamente extendible)

Demostración.

E1. Sea $I \in \widetilde{\mathcal{I}}$. Luego, I = I(a,b) para ciertos $-\infty \leq a \leq b \leq \infty$ y $\tau(I) = F(b) - F(a)$. Ahora, si $I = \bigcup_{i=1}^n J_i$ entonces, eventualmente reordenando los J_i , podemos suponer que $J_i = I(a_i,b_i)$ para cada $i = 1,\ldots,n$, donde $a = a_1 \leq b_1 = a_2 \leq \cdots \leq b_{n-1} = a_n \leq b_n = b$. Luego, $\tau(I) = F(b) - F(a) = \sum_{i=1}^n F(b_i) - F(a_i) = \sum_{i=1}^n \tau(J_i)$.

E2. Supongamos primero que I=(a,b] con $-\infty < a < b < \infty$. Si $I\subseteq \bigcup_{i=1}^\infty J_i$ con $J_i\in \widetilde{\mathcal{I}}$, entonces $J_i=(a_i,b_i]\cap \mathbb{R}$ con $-\infty \le a_i \le b_i \le \infty$. Eventualmente, cambiando $a_i\longrightarrow \max\{a,a_i\},\ b_i\longrightarrow \min\{b,b_i\}$, puedo suponer que $-\infty < a_i \le b_i < \infty$. Ahora, como F es continua a derecha, dado $\varepsilon>0$, existen

- $\delta > 0$ tal que $a + \delta < b$ y $F(a + \delta) < F(a) + \varepsilon$;
- $\eta_i > 0$ tal que $F(b_i + \eta_i) < F(b_i) + \frac{\varepsilon}{2^i}$ para cada $i \in \mathbb{N}$.

Luego, los intervalos de la forma $((a_i,b_i+\eta_i))_{i\in\mathbb{N}}$ cubren $[a+\delta,b]$, con lo cual, existe $N\in\mathbb{N}$ tal que $[a+\delta,b]\subseteq\bigcup_{i=1}^N(a_i,b_i+\eta_i)$. Como $a+\delta\in[a+\delta,b]$, existe $i_1\in\{1,\ldots,N\}$ tal que $a+\delta\in(a_i,b_i+\eta_i)=:I_1$.

1. Si $b \in I_1$, entonces

$$F(b) - F(a + \delta) \leq F(b_{i_1} + \eta_{i_1}) - F(a_{i_1})$$

$$\leq F(b_{i_1}) + \frac{\varepsilon}{2^{i_1}} - F(a_{i_1})$$

$$\leq \sum_{i \in \mathbb{N}} \left(F(b_i) + \frac{\varepsilon}{2^i} - F(a_i) \right)$$

$$= \sum_{i \in \mathbb{N}} F(b_i) - F(a_i) + \varepsilon.$$

de modo que $F(b) - F(a) \le F(b) - F(a+\delta) + \varepsilon \le \sum_{i \in \mathbb{N}} F(b_i) + 2\varepsilon$. Tomando $\varepsilon \longrightarrow 0^+$, resulta $\tau(I) \le \sum_{i=1}^\infty \tau(J_i)$. \checkmark

2. Si $b \notin I_1$, entonces $b_{i_1} + \eta_{i_1} \leq b$ y, luego, $b_{i_1} + \eta_{i_1} \in [a + \delta, b]$, de modo tal que existe $i_2 \in \{1, \dots, N\} \setminus \{i_1\}$ tal que $b_{i_1} + \eta_{i_1} \in (a_{i_2}, b_{i_2} + \eta_{i_2}) = I_2$. En general, existen $m \leq N$ e $i_1, \dots, i_m \in \{1, \dots, N\}$ tales que:

$$a_{i_1} < a + \delta < b_{i_1} + \eta_{i_1} < \dots < b_{i_{m-1}} - \eta_{i_{m-1}} \le b < b_{i_m} + \eta_{i_m}$$

$$\operatorname{con} b_{i_k} + \eta_{i_k} \in (a_{i_{k+1}}, b_{i_{k+1}} + \eta_{i_{k+1}}) \quad \forall k = 1, \dots, m. \text{ Luego},$$

$$\begin{split} F(b) - F(a+\delta) &\leq F(b_{i_m} + \eta_{i_m}) - F(a_{i_1}) \\ &= \left(\sum_{k=1}^{m-1} F(b_{i_{k+1}} + \eta_{i_{k+1}}) - F(b_{i_k} + \eta_{i_k})\right) \\ &+ F(b_{i_1} + \eta_{i_1}) - F(a_{i_1}) \\ &\leq \left(\sum_{k=1}^{m-1} F(b_{i_{k+1}} + \eta_{i_{k+1}}) - F(a_{i_{k+1}})\right) \\ &+ F(b_{i_1} + \eta_{i_1}) - F(a_{i_1}) \\ &\leq \sum_{i=1}^{\infty} F(b_i + \eta_i) - F(a_i) \\ &\leq \sum_{i \in \mathbb{N}} F(b_i) - F(a_{i_1}) + \varepsilon. \end{split}$$

Con lo cual, $\tau(I) = F(b) - F(a) \le \sum_{i \in \mathbb{N}} \tau(j_i) + 2\varepsilon$. Tomando $\varepsilon \longrightarrow 0^+$, obtenemos el resultado (en el caso $-\infty < a < b < \infty$).

- 3. Si a = b entonces $I = \emptyset$ y el resultado es inmediato.
- 4. Si $a=-\infty$ ó $b=\infty$ y $a\neq b$, entonces

$$(\max\{a,-N\},\min\{b,N\})\subseteq I \quad \forall N\in\mathbb{N}$$

de modo que, si $I \subseteq \bigcup_{i \in \mathbb{N}} J_i$, por el caso anterior,

$$\tau((\max\{a, -N\}, \min\{b, N\})) \le \sum_{i=1}^{\infty} \tau(J_i) \quad \forall N \in \mathbb{N}.$$

Notamos que la parte izquierda es igual a

$$F(\min\{b, N\}) - F(\max\{a, -N\}),$$

y si $N \longrightarrow \infty$, entonces

$$F(b) - F(a) = \tau(I)$$

22 de Septiembre

Clase 17

Ejemplo. Medida de Lebesgue en \mathbb{R} . Se obtiene tomando $F := x \ (x \in \mathbb{R})$. La medida μ_{id} resultante cumple $\mu_{\mathrm{id}}((a,b]) = b - a \ \forall -\infty \leq a \leq b \leq \infty$. A partir de esta propiedad, se obtiene que μ_{id} coincide con λ en todo \mathcal{I} . $(\mu_{\mathrm{id}}(I) = |I|)$. En particular, es la extensión buscada.

Ejemplo (i?). Medida de Lebesgue en \mathbb{R}^d .

Ejemplo. Medida de Hausdorff s-dimensional en \mathbb{R}^d . La restricción de \mathscr{H}_s^* a los conjuntos medibles \mathscr{H}_s^* -medibles (\mathscr{H}_s^* = medida exterior de Hausdorff s-dimensional en \mathbb{R}^d) es la medida \mathscr{H}_s conocida como medida de Hausdorff s-dimensional en \mathbb{R}^d .

Datazo. Si μ_{ξ} es la distribución de Cantor, $\mu_{\xi} = \mathcal{H}_{\frac{\log 2}{\log 3}} \Big|_{\xi}$. Notar que $\mu_{\xi}(A) = \mathcal{H}_{\frac{\log 2}{\log 3}}(A \cap \xi)$, donde $\xi = \text{conjunto de Cantor}$.

Observación. Los $\beta(\mathbb{R}^d)$ son medibles porque \mathscr{H}_s^* es "medida exterior métrica" (Ejercicio guía 3).

1.3 Unidad 2 - Funciones Medibles

Definición 1.55 (función medible). Sean (X, \mathcal{M}) , (Y, Σ) espacios medibles. Decimos que $f: X \to Y$ es (\mathcal{M}, Σ) -medible (o sólo medible si \mathcal{M} y Σ están claros) si $f^{-1}(B) \in \mathcal{M} \ \forall B \in \Sigma$. Si $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$, decimos que:

- i. f es medible Lebesgue si $f^{-1}(B) \in \mathcal{L}(\mathbb{R}^n) \ \forall B \in \beta(\mathbb{R}^m)$;
- ii. f es medible Borel si $f^{-1}(B) \in \beta(\mathbb{R}^n) \ \forall B \in \beta(\mathbb{R}^m)$.

Observación. f es medible Borel implica f medible Lebesgue.

Aclaración. A veces necesitaremos trabajar con funciones $f: E \subseteq \mathbb{R}^n \to \overline{\mathbb{R}}$. Para ello dotamos a $\overline{\mathbb{R}}$ con la σ -álgebra $\beta(\overline{\mathbb{R}}) := \{A \cup B : A \in \beta(\mathbb{R}), B \subseteq \{-\infty, \infty\}\}$.

Lema 1.56. $\beta(\overline{\mathbb{R}})$ es una σ -álgebra y

$$\beta(\overline{\mathbb{R}}) = \sigma((a, \infty] : a \in \mathbb{R}) = \sigma([a, \infty] : a \in \mathbb{R})$$
$$= \sigma([-\infty, b] : b \in \mathbb{R}) = \sigma([-\infty, b] : b \in \mathbb{R}).$$

Demostración. Ejercicio!

Definición 1.57 (funciones medibles Lebesgue y Borel). Dada $f: E \subseteq \mathbb{R}^n \to \mathbb{R}$, decimos que:

- i. f es medible Lebesgue si $f^{-1}(B) \in \mathcal{L}(\mathbb{R}^n) \ \forall B \in \beta(\overline{\mathbb{R}});$
- ii. f es medible Borel si $f^{-1}(B) \in \beta(\mathbb{R}^n) \ \forall B \in \beta(\overline{\mathbb{R}})$.

Es decir, si es medible cuando tomamos $\Sigma = \beta(\overline{\mathbb{R}})$ es la definición anterior.

Proposición 1.58. Sean (X_1, \mathcal{M}) y (X_2, \mathcal{M}) espacios medibles y ξ una clase de subconjuntos de X_1 tal que $\xi \subseteq \mathcal{M}_2$ y $\sigma(\xi) = \mathcal{M}_2$. Entonces, dada $f: X_1 \to X_2$ tenemos que

$$f \text{ es } (\mathcal{M}_1, \mathcal{M}_2)\text{-medible} \Leftrightarrow f^{-1}(C) \in \mathcal{M}_1 \ \forall C \in \xi$$

Demostración. \Rightarrow Inmediato de la definición de f función medible.

 \sqsubseteq Si definimos $f^{-1}(\mathcal{M}_2) \coloneqq \{f^{-1}(B) : B \in \mathcal{M}_2\}$, debemos ver que $f^{-1}(\mathcal{M}_2) \subseteq \mathcal{M}_1$. Pero por ejercicio de la guía 3, $\{f^{-1}(C) : C \in \xi\}$.

$$f^{-1}(\mathcal{M}_2) = f^{-1}(\sigma(\xi)) = \sigma(f^{-1}(\xi)).$$

Pero $f^{-1}(\xi) \subseteq \mathcal{M}_1$ y esto es exactamente lo que queríamos ver.

Corolario 1.59. Si $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^n$ es continua, entonces es medible Borel.

Demostración. Por la proposición, basta ver que $f^{-1}(G) \in \beta(\mathbb{R}^n) \ \forall G \subseteq \mathbb{R}^n$ abierto. Pero f es continua y G abierto, entonces $f^{-1}(G)$ abierto y, en particular, Boreliano en \mathbb{R}^n .

Pregunta. ¿Por qué tomamos $\Sigma = \beta(\mathbb{R}^m)$ y no $\Sigma = \mathcal{L}(\mathbb{R}^n)$ en la definición de función medible? Pues las funciones medibles son las candidatas a ser integrables en el sentido más amplio que buscamos construir. En particular, toda función continua $f: E \subseteq \mathbb{R}^n \to \mathbb{R}$ debería ser medible. Por la proposición, esto implica que f^{-1} debe ser medible $\forall B \in \beta(\mathbb{R})$. Pero si tomamos $\Sigma = \mathcal{L}(\mathbb{R})$ esto ya no sirve, i.e., existe f continua y $E \subseteq \mathcal{L}(\mathbb{R})$ tal que $f^{-1}(E) \notin \mathcal{L}(\mathbb{R}^n)$.

Clase 18

24 de Septiembre

Fé de erratas. Dada $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$, decimos que

- f es mdeible Lebesgue si $f^{-1}(B) \in \mathcal{L}(E) \quad \forall B \in \beta(\mathbb{R}^m);$
- f es medible Borel si $f^{-1}(B) \in \beta(E) \quad \forall B \in \beta(\mathbb{R}^m)$,

donde $\mathscr{L}(E) := \mathscr{L}(\mathbb{R}^n) \cap E := \{A \cap E : A \in \mathscr{L}(\mathbb{R}^n)\}, \ \beta(E) := \beta(\mathbb{R}^n) \cap E := \{B \cap E : B \in \beta(\mathbb{R}^n)\}.$

Observación. Si $f: X \to \mathbb{R}$ es una función, entonces por el Lema de la clase pasada,

$$\begin{split} f(\mathcal{F},\beta(\mathbb{R})) - \text{medible} &\Leftrightarrow \{f > a\} \in \mathcal{F} \quad \forall a \in \mathbb{R} \\ &\Leftrightarrow \{f \geq a\} \in \mathcal{F} \quad \forall a \in \mathbb{R} \\ &\Leftrightarrow \{f < b\} \in \mathcal{F} \quad \forall b \in \mathbb{R} \\ &\Leftrightarrow \{f \leq b\} \in \mathcal{F} \quad \forall b \in \mathbb{R}. \end{split}$$

Proposición 1.60. Sea (X, \mathcal{M}) es un espacio medible y $f, g: X \to \mathbb{R}$ funciones medibles (i.e. $(\mathcal{M}, \beta(\mathbb{R}))$ -medible). Entonces:

- i) f + g es medible;
- ii) $\alpha \cdot f$ es medible para todo $\alpha \in \mathbb{R}$;
- iii) |f|, $\max\{f,g\}$, $\min\{f,g\}$ son medibles;
- iv) $f \cdot g$ es medible;
- v) Si $g(x) \neq 0 \ \forall x \in X, \ \frac{f}{g}$ es medible.

Además, si $f_n:X\to\mathbb{R}$ es medible para cada $n\in\mathbb{N}$ entonces las funciones $h_i:X\to\overline{\mathbb{R}},\ i=1,2,3,4,$ dadas por

$$h_1(x) \coloneqq \sup_{n \in \mathbb{N}} (f_n(x)) \quad h_2(x) \coloneqq \inf_{n \in \mathbb{N}} (f_n(x))$$
$$h_3(x) \coloneqq \limsup_{n \to \infty} (f_n(x)) \quad h_4(x) \coloneqq \liminf_{n \to \infty} (f_n(x)).$$

son $(\mathcal{M}, \beta(\overline{\mathbb{R}}))$ -medibles.

Demostración. Por la observación, para ver que $h:X\to\mathbb{R}$ es medible bastará con ver que $\{h>a\}=\{x:h(x)>a\}=h^{-1}((a,\infty])\in\mathcal{M}\ \forall a\in\mathbb{R}.$ Veamos esto en cada caso:

i) Notamos que

$$\begin{aligned} \{x \ : \ f(x) + g(x) > a\} &= \{x \ : \ f(x) > a - g(x)\} \\ &= \bigcup_{Q \in \mathbb{Q}} \{x \ : \ f(x) > Q > a - g(x)\} \\ &= \bigcup_{Q \in \mathbb{Q}} \{x \ : \ f(x) > Q\} \cap \{x \ : \ g(x) > a - Q\} \end{aligned}$$

ii) Si
$$\alpha>0,$$

$$\{\alpha\cdot f>a\}=\left\{f>\frac{a}{\alpha}\right\}\in\mathcal{M}.$$
 Si $\alpha<0,$
$$\{\alpha\cdot f>a\}=\left\{f<\frac{a}{\alpha}\right\}\in\mathcal{M}.$$

Si $\alpha = 0$.

$$\{\alpha \cdot f > a\} = \{0 > a\} = \begin{cases} \emptyset & \text{si } a \ge 0 \\ X & \text{si } a < 0 \end{cases}$$

iii) $\{|f| > a\} = \{-a < f < a\} = f^{-1}((-a,a)) \in \mathcal{M}$. Para ver que $\max\{f,g\}$ y $\min\{f,g\}$ son medibles, notamos que

$$\max\{f,g\} = \frac{f+g}{2} + \frac{|f-g|}{2}, \quad \min\{f,g\} = \frac{f+g}{2} - \frac{|f-g|}{2}.$$

- iv) Primero, notemos que f^2 es medible pues
 - si a < 0, $\{f^2 > a\} = X \in \mathcal{M}$,
 - si $a \ge 0$, $\{f^2 > a\} = \{|f| > \sqrt{a}\} \in \mathcal{M}$.

De aquí se deduce que $f \cdot g$ es medible pues

$$f \cdot g = \frac{(f+g)^2 - f^2 - g^2}{2}$$

v) Por (iv), bastará con ver que $\frac{1}{q}$ es medible. Para esto,

$$\left\{ \frac{1}{g} > a \right\} = \left\{ \frac{1}{g} > a \right\} \cap \left\{ g > 0 \right\} \cup \left\{ \frac{1}{g} > a \right\} \cap \left\{ g < 0 \right\}$$

$$= \left\{ 1 > ag \right\} \cap \left\{ g > 0 \right\} \cup \left\{ 1 < ag \right\} \cap \left\{ g < 0 \right\} \in \mathcal{M}.$$

Por último, para ver que las h_i son medibles, notemos que

$$\{h_1 > a\} = \{x : \sup_{n \in \mathbb{N}} f_n(x) > a\} = \bigcup_{n \in \mathbb{N}} \{f_n > a\} \in \mathcal{M}$$

pues f_n medible $\forall n$. Pero entonces,

$$h_2 := \inf_{n \in \mathbb{N}} f_n = -\sup_{n \in \mathbb{N}} (-f_n)$$

$$h_3 := \limsup_{n \to \infty} f_n = \inf_{n \in \mathbb{N}} (\sup_{k \ge n} f_k)$$

$$h_4 := \liminf_{n \to \infty} f_n = -\limsup_{n \to \infty} (-f_n).$$

son todas medibles.

Comentario Las mismas propiedades valen si f, g toman valores en $\overline{\mathbb{R}}$, excepto la (i), pues f+g no está bien definida en x tales que f(x)+g(x) sea $\infty-\infty$ ó $-\infty+\infty$. No obstante, f+g resulta medible si la redefinimos de manera constante en donde no esté bien definida.

Proposición 1.61. Sean (X_i, \mathcal{M}_i) , i = 1, 2, 3, espacios medibles. Si $f: X_1 \to X_2$ es $(\mathcal{M}_1, \mathcal{M}_2)$ -medible y $g: X_2 \to X_3$ es $(\mathcal{M}_2, \mathcal{M}_3)$ -medible, entonces, $g \circ f: X_1 \to X_3$ es $(\mathcal{M}_1, \mathcal{M}_3)$ -medible.

Demostración. Si $B \in \mathcal{M}_3$, $g \circ f^{-1}(B) = f^{-1}(g^{-1}(B)) \in \mathcal{M}_1$ pues f es $(\mathcal{M}_1, \mathcal{M}_2)$ -medible y $g^{-1}(B) \in \mathcal{M}_2$ pues g es $(\mathcal{M}_2, \mathcal{M}_3)$ -medible. \square

Corolario 1.62. Si $f, g : \mathbb{R} \to \mathbb{R}$ son funciones, entonces

- i) f, g medibles Borel $(\mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M}_3 = \beta(\mathbb{R})) \Rightarrow g \circ f$ medible Borel;
- ii) f meible Lebesgue $(\mathcal{M}_1 = \mathcal{L}(\mathbb{R}), \ \mathcal{M}_2 = \beta(\mathbb{R}))$ y g medible Borel $(\mathcal{M}_2 = \beta(\mathbb{R}), \ \mathcal{M}_3 = \beta(\mathbb{R})) \Rightarrow g \circ f$ es medible Lebesgue.

Observación. Si f,g son medibles Lebesgue, entonces $g\circ f$ no tiene por qué ser medible Lebesgue.

Definición 1.63. Dado un espacio de medida (X, \mathcal{M}, μ) , diremos que una cierta propiedad vale en casi todo punto de X respecto a μ , o que vale μ -C.T.P (ó μ -a.e), si el subconjunto de X en donde dicha propiedad no vale es un conjunto μ -nulo.

Proposición 1.64. Si (X, \mathcal{M}, μ) es un espacio de medida completo, y $f, g: X \to \overline{\mathbb{R}}$ son funciones que coinciden μ -C.T.P, entonces

f medible $\Leftrightarrow g$ medible.

Demostración. Si f es medible, entonces

$$\{g>a\}=(\{g>a\}\cap\{f=g\})\cup\underbrace{(\{g>a\}\cap\{f\neq g\})}_{\mu\text{-nulo}}$$

Dado que este conjunto es μ -nulo junto con que el espacio es completo, entonces el conjunto pertenece a \mathcal{M} . Como $\{f \neq g\} \in \mathcal{M}$ por ser μ -nulo, entonces $\{f = g\} = \{f \neq g\}^c \in \mathcal{M}$. Como $\{f > a\} \in \mathcal{M}$, g resulta medible. Luego, probamos \Rightarrow) y la otra implicación es igual.

Clase 19

26 de Septiembre

Observación. Si (X, \mathcal{M}, μ) no necesariamente completo, entonces si $f: X \to \overline{\mathbb{R}}$ es \mathcal{M} -medible y $N \in \mathcal{M}$ con $\mu(N) = 0$, para cualquier $C \in \overline{\mathbb{R}}, \ g: X \to \overline{\mathbb{R}}$ dada por

$$g(x) \coloneqq \begin{cases} f(x) & x \notin N \\ C & x \in N \end{cases}$$

es también medible. A modo de paréntesis, notemos que

$$\{g>a\} = \underbrace{\{f>a\}}_{\in \mathcal{M}} \cap \underbrace{N^c}_{\in \mathcal{M}} \cup \{C>a\} \cap N,$$

donde

$$\{C > a\} \cap N = \begin{cases} \varnothing & \text{si } C \le a \\ N & \text{si } C > a \end{cases} \in \mathcal{M}$$

Definición 1.65 (convergencia μ -CTP). Sean (X, \mathcal{M}, μ) es un espacio de medida y, para cada $n \in \mathbb{N}$, una función $f_n : X \to \overline{\mathbb{R}}$ (no necesariamente medibles). Dada otra función $f : X \to \overline{\mathbb{R}}$ (no necesariamente medible) decimos que f_n converge a f en μ -casi todo punto (ó μ -CTP, ó μ -ae) y lo notamos $f_n \longrightarrow f$ μ -CTP (ó $f_n \xrightarrow{\mathrm{ae}} f$) si $\{x \in X : f_n(x) \longrightarrow f \text{ cuando } n \to \infty\}$ es μ -nulo.

Observación. Si $(f_n)_{n\in\mathbb{N}}$, $f:X\to\mathbb{R}$ son \mathscr{M} -medibles, entonces el conjunto

$$\{x \in X : f_n(x) \longrightarrow f(x)\} = \bigcup_{\delta > 0} \bigcap_{N \in \mathbb{N}} \bigcup_{n \ge N} \{x \in X : |f_n(x) - f(x)| > \delta\}$$

$$= \bigcup_{k \in \mathbb{N}} \bigcap_{M \in \mathbb{N}} \bigcup_{n \ge M} \underbrace{\left\{x \in X : |f_n(x) - f(x)| > \frac{1}{k}\right\}}_{\in \mathscr{M}}$$

$$\Rightarrow \in \mathscr{M}$$

Ver el caso en que sea $\overline{\mathbb{R}}$ en el codominio.

Definición 1.66 (convergencia en medida). Sean (X, \mathcal{M}, μ) un espacio de medida y $f_n, f: X \to \mathbb{R}$ $(n \in \mathbb{N})$, funciones \mathcal{M} -medibles. Decimos que f_n converge en medida a f respecto a μ , y lo notamos $f_n \xrightarrow{\mu} f$, si para cada $\varepsilon > 0$ vale que

$$\lim_{n \to \infty} \mu(\{x \in X : |f_n(x) - f(x)| > \varepsilon\}) = 0$$

Comentarios.

- 1. La definición se puede extender a funciones medibles a valores en $\overline{\mathbb{R}}$, redefiniendo $f_n(x) f(x) := \infty$ cuando no está bien definida.
- 2. $f_n \longrightarrow f \ \mu\text{-CTP} \not\Rightarrow f_n \stackrel{\mu}{\longrightarrow} f$

Ejemplo. $(X, \mathcal{M}, \mu) := (\mathbb{R}, \mathcal{L}, \lambda)$, donde λ es la medida de Lebesgue. $f_n(x) := \chi_{[n,\infty)}(x), \ f(x) := 0$. Entonces, $f_n(x) \longrightarrow f(x) \ \forall x \in \mathbb{R}$, pero si $\varepsilon \in (0,1)$

$$\lambda(\lbrace x : |f_n(x) - f(x)| > \varepsilon \rbrace) = \lambda(\lbrace x : f_n(x) = 1 \rbrace)$$
$$= |[n, \infty)| = \infty \longrightarrow 0.$$

3. $f_n \xrightarrow{\mu} f \not\Rightarrow f_n \longrightarrow f \mu$ -CTP.

Ejemplo. $(X, \mathcal{M}, \mu) := ([0,1], \mathcal{L}([0,1]), \lambda\big|_{[0,1]})$ y las funcions f_n dadas por seguir el mismo proceso (de manera inductiva) que f_1, f_2, f_3 y f_4 en los gráficos (dados en Fig 1.1 y 1.2). Entonces $f_n \xrightarrow{\mu} 0$, pero $f_n \xrightarrow{} 0$ para todo x.

Fig. 1.1: gráficos de f_1 y f_2

Fig. 1.2: gráficos f_3 y f_4

Proposición 1.67. Sean (X, \mathcal{M}, μ) un espacio de medida y $f_n, f: X \to \mathbb{R}$ funciones medibles. Entonces, si μ es finita $(\mu(X) < \infty)$, vale la implicación

$$f_n \longrightarrow f \ \mu\text{-CTP} \Rightarrow f_n \stackrel{\mu}{\longrightarrow} f.$$

Demostración. Por la observación anterior, que $f_n \longrightarrow f$ μ -CTP significa que

$$\mu\left(\bigcup_{k\in\mathbb{N}}\bigcap_{M\in\mathbb{N}}\bigcup_{n\geq M}\left\{x\in X\ :\ |f_n(x)-f(x)|>\frac{1}{k}\right\}\right)=0 \tag{*}$$

Pero (*) sucederá si y sólo si

$$\mu\left(\bigcap_{M\in\mathbb{N}}\left(\bigcup_{n\geq M}\left\{x\in X\ :\ |f_n(x)-f(x)|>\frac{1}{k}\right\}\right)\right)=0\quad\forall k\in\mathbb{N}\quad(**)$$

Luego, dado que es μ -finita (por ende, continua por arriba)

$$(**) \Leftrightarrow \lim_{M \to \infty} \mu \left(\bigcup_{n \ge M} \left\{ x : |f_n(x) - f(x)| > \frac{1}{k} \right\} \right) = 0 \quad \forall k \in \mathbb{N}$$

Como

$$\left\{x : |f_M(x) - f(x)| > \frac{1}{k}\right\} \subseteq \bigcup_{n > M} \left\{x : |f_n(x) - f(x)| > \frac{1}{k}\right\},$$

entonces lo anterior implica que

$$\lim_{M \to \infty} \mu\left(\left\{x : |f_M(x) - f(x)| > \frac{1}{k}\right\}\right) = 0 \quad \forall k \in \mathbb{N}$$

Por lo tanto, si $\varepsilon > 0$ entonces

$$\lim_{M \to \infty} \mu(\{x : |f_M(x) - f(x)| > \varepsilon\}) = 0$$

(tomando k tal que $\frac{1}{k} < \varepsilon$). Luego, $f_n \xrightarrow{\mu} f$.

Observación. Probamos que si μ es finita, entonces

$$f_n \longrightarrow f \ \mu\text{-CTP} \Leftrightarrow \lim_{M \to \infty} \mu \left(\bigcup_{n \ge M} \{ |f_n - f| > \varepsilon \} \right) = 0 \quad \forall \varepsilon > 0$$

Comparar con

$$f_n \xrightarrow{\mu} f \Leftrightarrow \lim_{M \to \infty} \mu(\{|f_M - f| > \varepsilon\}) = 0 \ \forall \varepsilon > 0$$

Lema 1.68. (Borel-Cantelli) Sean (X, \mathcal{M}, μ) un espacio de medida y $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{M}$. Entonces,

$$\sum_{n=1}^{\infty} \mu(A_n) < \infty \Rightarrow \mu(\limsup_{n \to \infty} A_n) = 0$$

donde $\limsup_{n\to\infty} A_n := \bigcap_{n\in\mathbb{N}} \bigcup_{k\geq n} A_k$.

Demostración. Notar que

$$\mu(\limsup_{n \to \infty} A_n) \le \mu\left(\bigcup_{k \ge n} A_k\right) \quad \forall n \in \mathbb{N}$$
$$\le \sum_{k=n}^{\infty} \mu(A_k) \xrightarrow{n \to \infty} 0$$

si
$$\sum_{n=1}^{\infty} \mu(A_n) < \infty$$

Clase 20

29 de Septiembre

A partir de esto, podemos extender la noción de convergencia en casi todo punto y en medida, respectivamente, reemplazando

$$\lim_{n \to \infty} f_n(x) = f(x) \text{ por } \lim_{n \to \infty} \overline{d}(f_n(x), f(x)) = 0$$

у

$$|f_n(x) - f(x)|$$
 por $\overline{d}(f_n(x), f(x))$.

Con este cambio, los resultados que vimos la clase pasada para funcione a valores en \mathbb{R} , también valen si toman valores en $\overline{\mathbb{R}}$. Notar que $\overline{d}(f(x), g(x))$ es medible

(como función de x) pues $\overline{d}(f(x),g(x))=|r\circ f(x)-r\circ g(x)|,$ y $r\circ f,r\circ g$ son medibles porque r es continua.

Lema 1.69. Si $(A_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}$, entonces

$$\sum_{n\in\mathbb{N}}\mu(A_n)<\infty\Rightarrow\mu(\limsup A_n)=0.$$

Aclaración ¿Qué interpretación le damos a $\limsup_{n\to\infty} A_n$?

$$\limsup_{n \to \infty} A_n = \bigcap_{M \in \mathbb{N}} \bigcup_{n \ge M} A_n$$

$$= \{ x \in X : x \in A_n \text{ para infinitos valores de } n \}$$

$$= \{ x \in X : \exists \text{ subsucesión } (A_{n_k})_{k \in \mathbb{N}} \text{ tq } x \in A_{n_k} \ \forall k \in \mathbb{N} \}.$$

¿Por qué se llama límite superior? Porque $\chi_{\limsup_{n\to\infty} A_n} = \limsup_{n\to\infty} \chi_{A_n}$.

Proposición 1.70. Sean (X, \mathcal{M}, μ) un espacio de medida y $(f_n)_{n \in \mathbb{N}}, f: X \to \overline{\mathbb{R}}$ funciones medibles. Entonces, si $f_n \stackrel{\mu}{\longrightarrow} f$, existe una subsucesión $(f_{n_k})_{k \in \mathbb{N}}$ tal que $f_{n_k} \longrightarrow f$ μ -CTP.

Demostración. Como $f_n \xrightarrow{\mu} f$, para cada $k \in \mathbb{N}$ podemos elegir $n_k \in \mathbb{N}$ tal que

$$\mu\left(\left\{\overline{d}(f_{n_k}, f) > \frac{1}{k}\right\}\right) \le \frac{1}{2^k}$$

Si llamamos

$$A_k := \left\{ \overline{d}(f_{n_k}, f) > \frac{1}{k} \right\},$$

entonces $\sum_{k=1}^{\infty} \mu(A_k) < \infty$ y, luego, por el lema de Borel-Cantelli

$$\mu(\limsup_{k\to\infty} A_k) = 0.$$

Pero, por otro lado, si $x \notin \limsup_{k \to \infty} A_k$, entonces $f_{n_k}(x) \longrightarrow f(x)$. En efecto, si $x \notin \limsup_{k \to \infty} A_k = \bigcap_{M \in \mathbb{N}} \bigcup_{k \ge M} A_k$, esto quiere decir que existe $M_0 \in \mathbb{N}$ tal que $x \notin \bigcup_{k \ge M_0} A_k$, i.e., $x \notin A_k \ \forall k \ge M_0$. En particular, $\overline{d}(f_{n_k}(x), f(x)) \le \frac{1}{k} \ \forall k \ge M_0$. Luego, $\lim_{k \to \infty} \overline{d}(f_{n_k}(x), f(x)) = 0$ y entonces $f_{n_k}(x) \longrightarrow f(x)$. En particular, $\{x : f_{n_k}(x) \longrightarrow f(x)\} \subseteq \lim\sup_{k \to \infty} A_k$, y por lo tanto $\{x : f_{n_k}(x) \longrightarrow f(x)\}$ es μ -nulo, lo cual prueba que $f_{n_k} \longrightarrow f$ μ -CTP.

Corolario 1.71. Si (X, \mathcal{M}, μ) es un espacio de medida completo y $(f_n)_{n \in \mathbb{N}}$: $X \to \overline{\mathbb{R}}$ es una sucesión de funciones medibles que convergen μ -CTP a una función límite f, entonces f es medible también.

Demostración. Basta observar que $f = \limsup_{n \to \infty} f_n$ en μ -casi todo punto, y usar que $\limsup_{n \to \infty} f_n$ es, como ya vimos, medible.

1.3.1 Principios de Littlewood

Primer Principio (Todo conjunto medible es casi un abierto).

Teorema 1.72. Dado un conjunto $E \subseteq \mathbb{R}^n$, son equivalentes:

- 1. E medible Lebesgue;
- 2. Dado $\varepsilon > 0$, existe G abierto tal que $E \subseteq G$ y $|G E|_e < \varepsilon$;
- 3. Dado $\varepsilon > 0$, existe F cerrado tal que $F \subseteq E$ y $|E F|_e < \varepsilon$.

Además, si $|E|_e < \infty$, entonces estas afirmaciones son equivalentes a

4. Dado $\varepsilon > 0$, existen intervalos abiertos I_1, \ldots, I_n tal que

$$\left| E\Delta \left(\bigcup_{k=1}^{n} I_{k} \right) \right|_{e} < \varepsilon.$$

Observación. Podemos reemplazar (4) por una condición (4') en donde los intervalos puedan ser tomados semiabiertos, cerrados, disjuntos, etc.

Segundo Principio (Toda sucesión convergente de funciones medibles, es "casi" uniformemente convergente).

Teorema 1.73 (Egorov). Sean (X, \mathcal{M}, μ) un espacio de medida finita y $(f_n)_{n \in \mathbb{N} \cup \{\infty\}} : X \to \mathbb{R}$ tales que $f_n \longrightarrow f_\infty$ μ -CTP. Entonces, dado $\varepsilon > 0$, existe $E_\varepsilon \in \mathcal{M}$ tal que $f_n \longrightarrow f$ uniformemente en E_ε y $\mu(E_\varepsilon^c) < \varepsilon$.

Tercer Principio (Toda función medible es "casi" continua).

Teorema 1.74 (Lusin). Sea $f:[a,b]\to\overline{\mathbb{R}}$ una función medible Lebesgue finita en casi todo punto (resp. de la medida de Lebesgue). Entonces, dado $\varepsilon>0$, existe $g:[a,b]\to\mathbb{R}$ continua tal que

$$|\{x \in [a,b] : f(x) \neq g(x)\}| < \varepsilon.$$

Clase 21

1 de Octubre

Demostración (Primer Principio, 1.72). Veamos sólo $(2) \Leftrightarrow (4)$, si $|E|_e < \infty$. El resto son ejercicios de la guía 4.

 $\mathbb{N},\ \bigcup_{n\in\mathbb{N}}A_n=G)$. Como la medida de Lebesgue es "continua inferior", $|G|=\lim_{n\to\infty}|A_n|$. Tomemos $n_0\in\mathbb{N}$ tal que $|A_{n_0}|>|G|-\frac{\varepsilon}{2}$ (puedo, pues $|G|<\infty$). Entonces, $E\Delta A_n=(E-A_n)\cup(A_n-E)\subseteq(G-A_n)\cup(G-E)$ (notar que en la inclusión estamos usando que $E,A_n\subseteq G$) de modo que, notando primero $|G-A_{n_0}|_e=|G-A_{n_0}|=|G|-|A_{n_0}|<\frac{\varepsilon}{2}$ (notar que en la útlima igualdad usamos que $A_n\subseteq G,\ |G|<\infty$), entonces

$$|E\Delta A_{n_0}|_e \leq |G-A_{n_0}|_e + |G-E|_e < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Luego, A_n es el conjunto buscado.

 \subseteq Dado $\varepsilon > 0$, existen abiertos I_1, \ldots, I_n tal que

$$\left| E\Delta \left(\bigcup_{i=1}^{n} I_{i} \right) \right|_{e} < \frac{\varepsilon}{4}.$$

Por otro lado, por el ejercicio 1 de la guía 4, existe $V \subseteq \mathbb{R}^n$ abierto tal que

$$E\Delta \bigcup_{i=1}^{n} I_{i} \subseteq V \quad y \quad |V| \le \left| E\Delta \left(\bigcup_{i=1}^{n} I_{i} \right) \right|_{e} + \frac{\varepsilon}{4} < \frac{\varepsilon}{2}.$$

Luego, si tomamos $G = V \cup I_1 \cup \cdots \cup I_n$, entonces:

- 1. G es abierto,
- $2. E \subseteq G$
- 3. $G E \subseteq V \cup (\bigcup_{i=1}^{n} I_i \setminus E) \subseteq (E\Delta \bigcup_{i=1}^{n} I_i),$

con lo cual:

$$|G - E|_{e} \le |V|_{e} + \left| E\Delta \left(\bigcup_{i=1}^{n} I_{i} \right) \right|_{e}$$

$$= |V| + \left| E\Delta \left(\bigcup_{i=1}^{n} I_{i} \right) \right|_{e}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{4} < \varepsilon.$$

Demostración (Segundo Principio, 1.73, Egorov). Para cada $k, n \in \mathbb{N}$ definamos

$$E_n^{(k)} := \left\{ x : \overline{d}(f_n(x), f(x)) > \frac{1}{k} \right\}.$$

Observar que $\limsup_{n\to\infty} E_n^{(k)}\subseteq \{x: f_n(x) \to f(x)\}$. Por lo tanto, $\limsup_{n\to\infty} E_n^{(k)}$ es μ -nulo y, como f_n, f son medibles, $\limsup_{n\to\infty} E_n^{(k)}$ es medible y $\mu(\limsup_{n\to\infty} E_n^{(k)}) = 0$. Luego, definimos $B_M^{(k)} \setminus \limsup_{n\to\infty} E_n^{(k)}$ donde $M\to\infty$ $(B_{M+1}^{(k)}\subseteq B_M^{(k)}\ \forall M,\ \bigcap_{M\in\mathbb{N}} B_M^{(k)}=\limsup_{n\to\infty} E_n^{(k)})$.

Como μ es finita, μ es "continua superior" y entonces

$$\mu\left(\limsup_{n\to\infty}E_n^{(k)}\right)=\lim_{M\to\infty}\mu\left(B_M^{(k)}\right)\ \forall k\in\mathbb{N}.$$

En particular, dado $\varepsilon > 0$, podemos tomar $M_k \in \mathbb{N}$ grande, de modo que

$$\mu\left(B_{M_k}^{(k)}\right) < \frac{\varepsilon}{2^k}.$$

Luego, si definimos $E_{\varepsilon} := \bigcap_{k \in \mathbb{N}} (B_{M_k}^{(k)})^c$, entonces

$$\mu\left(E_{\varepsilon}^{c}\right) = \mu\left(\bigcup_{k \in \mathbb{N}} B_{M_{k}}^{(k)}\right) \leq \sum_{k \in \mathbb{N}} \mu\left(B_{M_{k}}^{(k)}\right) < \varepsilon.$$

Por otro lado, si $x \in E_{\varepsilon}$, entonces, dado $k \in \mathbb{N}$,

$$\overline{d}(f_n(x), f(x)) \le \frac{1}{k} \quad \forall n \ge M_k.$$

Es decir, dado $k \in \mathbb{N}$, existe $M_k \in \mathbb{N}$ tal que

$$\sup_{x \in E_{\varepsilon}} \overline{d}(f_n(x), f(x)) \le \frac{1}{k} \quad \forall n \ge M_k.$$

Esto prueba que f_n "converge uniformemente" sobre E_{ε} .

Observación (Importante!). Si las f_n, f son finitas μ -CTP, entonces la misma demostración prueba que, dado $\varepsilon > 0$, existe $E_{\varepsilon} \in \mathcal{M}$ tal que

$$\mu(E_{\varepsilon}^c) < \varepsilon \quad \mathbf{y} \quad \sup_{x \in E_{\varepsilon}} |f_n(x) - f(x)| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Sólo hay que cambiar \overline{d} por d(x,y) := |x-y| y trabajar en el conjunto en donde f_n, f son finitas.

Clase 22

3 de Octubre

Chapter 2

Unidad 3: Integración

Definición 2.1 (función simple). Sea (X, \mathcal{M}) un espacio medible. Una función $\varphi: X \to \mathbb{R}$ se dice simple si existen $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, distintos y no nulos, y $A_1, \ldots, A_n \in \mathcal{M}$ disjuntos y no vacíos tales que

$$\varphi = \sum_{i=1}^{n} \alpha_i \chi_{A_i} \quad \left(\varphi(x) = \begin{cases} \alpha_i & \text{si } x \in A_i \\ 0 & \text{si } x \notin \bigcup A_i \end{cases} \right) \tag{*}$$

Observación.

- 1. φ simple $\Rightarrow \varphi$ \mathscr{M} -medible, pues χ_{A_i} \mathscr{M} -medible $\forall i$.
- 2. $\operatorname{Im}(\varphi) \{0\} = \{\alpha_1, \dots, \alpha_n\}$ y $A_i = \varphi^{-1}(\{\alpha_i\}) \ \forall i = 1, \dots, n$, de modo tal que la representación en (*) es única salvo reordenamiento de los α_i (siempre que los α_i sean disjuntos y distintos de 0, y los A_i sean disjuntos y distintos de \varnothing). Llamamos a (*), la representación canónica de φ (abreviado RC).
- 3. Si φ es \mathscr{M} -medible y toma finitos valores, entonces es simple. En particular, si φ es combinación linea (finita) de χ_{A_i} con $A_i \in \mathscr{M}$ (no necesariamente disjuntos, ni no vacíos), entonces es simple.

Definición 2.2. Dado un espacio de medida (X, \mathcal{M}, μ) y $\varphi : X \to \mathbb{R}_{\geq 0}$ una función simple no negativa, definimos la integral de φ respecto a μ como:

$$\int_X \varphi d\mu := \sum_{i=1}^n \alpha_i \mu(A_i),$$

si φ tiene RC, $\varphi = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$.

Proposición 2.3 (Propiedades de la integral para funciones simples). Si φ_1, φ_2 : $X \to \mathbb{R}_{>0}$ son simples no negativas, entonces

- 1. Si $\alpha \geq 0$, $\alpha \cdot \varphi$ es simple no negativa y $\int_X \alpha \varphi d\mu = \alpha \int_X \varphi d\mu$;
- 2. $\varphi_1 + \varphi_2$ es simple no negativa y $\int_X (\varphi_1 + \varphi_2) d\mu = \int_X \varphi_1 d\mu + \int_X \varphi_2 d\mu$;
- 3. Si $\varphi_1 \leq \varphi_2$ μ -CTP, entonces $\int_X \varphi_1 d\mu \leq \int_X \varphi_2 d\mu$.

Demostración. Ver Canvas

Definición 2.4. Dados (X, \mathcal{M}, μ) un espacio de medida y $f: X \to [0, \infty]$ \mathcal{M} medible no negativa, definimos la integral de f con respecto a μ como

$$\int_X f d\mu \coloneqq \sup \left\{ \int_X \varphi d\mu \ : \ \varphi \text{ simple, } 0 \le \varphi \le f \right\} \in [0,\infty].$$

Observación. Si $f: X \to \mathbb{R}_{\geq 0}$ es simple no negativa, entonces esta definición es consistente con la anterior, pues

 \subseteq Si $\varphi: X \to \mathbb{R}$ es simple tal que $0 \le \varphi \le f$ y f tiene RC $f = \sum_{i=1}^n \alpha_i \chi_{A_i}$ entonces por la proposición,

$$\int_{X} \varphi d\mu \le \sum_{i=1}^{n} \alpha_{i} \mu(A_{i}).$$

Tomando supremo en φ , resulta DEF NUEVA \leq DEF ORIGINAL.

 \geq Tomando $\varphi=f$ en la definición nueva, resulta DEF NUEVA \geq DEF ORIGINAL.

Definición 2.5 (partes negativa y positiva de f). Dados (X, \mathcal{M}, μ) un espacio de medida y $f: X \to \overline{\mathbb{R}}$ \mathcal{M} -medible, definimos:

- la parte positiva de f como $f^+ := \max\{f, 0\}$.
- la parte negativa de f como $f^- := -\min\{f, 0\}$.

Observación. Notar que f^+ y f^- son \mathcal{M} -medibles, no negativas y $f = f^+ - f^-$, $|f| = f^+ + f^-$.

Definición 2.6. Diremos que f es integrable con respecto a μ (o $\mu\text{-integrable})$ si

$$\max\left\{\int_X f^+ d\mu, \ \int_X f^- d\mu\right\} < \infty$$

y diremos que es débilmente integrable respecto a μ si

$$\min\left\{\int_{Y} f^{+} d\mu, \int_{Y} f^{-} d\mu\right\} < \infty.$$

Definición 2.7. Si f es (al menos) débilmente $\mu\text{-integrable},$ definimos su integral respecto de μ como

$$\int_X f d\mu := \int_X f^+ d\mu - \int_X f^- d\mu \in [-\infty, \infty]$$

Definición 2.8. Si f es débilmente μ -integrable y $E \in \mathcal{M}$, definimos

$$\int_{E} f d\mu \coloneqq \int_{X} f \chi_{E} d\mu$$

Observación. La integral está bien definida, pues $f\chi_E$ resulta débilmente μ -integrable.

Lema 2.9. Si f es débilmente μ -integrable y $\mu(E) = 0$, entonces

$$\int_{E} f d\mu = 0.$$

Demostración. Supongamos primero que $f \ge 0$. En tal caso, $f\chi_E = 0$ μ -CTP. En particular, si φ es simple tal que $0 \le \varphi \le f\chi_E$,

$$0 \le \int_X \varphi d\mu \le \int_X (\max \varphi) \chi_E d\mu = (\max \varphi) \mu(E) = 0.$$

Entonces, $\int_X \varphi d\mu = 0$, lo que implica $\int_X f \chi_E = 0$. Para el caso general, usamos este caso y el hecho de que $(f\chi_E)^\pm = f^\pm \chi_E$.

Clase 23 6 de Octubre

Recordar.

- f μ -integrable $\Leftrightarrow \int_X |f| d\mu < \infty$.
- f débilmente μ -integrable si $\int_X f^+ d\mu < \infty$ y/o $\int_X f^- d\mu < \infty$.

Teorema 2.10. Sean (X, \mathcal{M}, μ) un Edm y $f, g: X \to \overline{\mathbb{R}}$ débilmente μ -integrables. Entonces, valen las siguientes

- i) Dado $\alpha \in \mathbb{R}$, $\alpha \cdot f$ es débilmente μ -integrable y $\int_X \alpha \cdot f d\mu = \alpha \int_X f d\mu$. (con la convención de que $\alpha \cdot \infty = 0$)
- ii) Si f + g es débilmente μ -integrable, entonces

$$\int_{X} (f+g)d\mu = \int_{X} f d\mu + \int_{X} g d\mu. \tag{*}$$

- iii) (Monotonía) Si $f \leq g$ μ -CTP, entonces $\int_X f d\mu \leq \int_X g d\mu$.
- iv) (Designaldad Triangular) $\left| \int_X f d\mu \right| \leq \int_X |f| d\mu$.
- v) Si $\mu(E) = 0 \Rightarrow \int_E f d\mu = 0$.

En particular.

- 1. Si f, g son μ -integrables, entonces f + g es μ -integrable y vale (*).
- 2. f es μ -integrable si y sólo si $\int_X |f| d\mu < \infty$.

Nota. (i) + (ii) se conocen como la propiedad de "linealidad" de la integral.

Observación. Si f es \mathscr{M} -medible y no negativa, entonces es débilmente μ -integrable pue $f^-\cong 0$ y entonces $\int f^-=0<\infty$. Lo mismo si no es positiva. Asi que todas estas propiedades valen para funciones que no cambian de signo.

Nota. La siguiente proposición es un caso particular de (iii).

Proposición 2.11. Si $f,g:X\to\overline{\mathbb{R}}$ son débilmente μ -integrables y $f\le g$ en todo punto, entonces $\int_X f d\mu \le \int_X g d\mu$.

Demostración. Si f, g son no negativas, entonces

$$\int_X f \ d\mu = \sup \left\{ \int_X \varphi \ d\mu \ : \ 0 \le \varphi \le f, \ \varphi \ \text{simple} \right\}$$
$$(f \le g \Rightarrow) \le \sup \left\{ \int_X \varphi \ d\mu \ : \ 0 \le \varphi \le g, \ \varphi \ \text{simple} \right\} = \int_X g \ d\mu.$$

(el caso general de éste, se demuestra usando que $f^+ \leq g^+$ y $g^- \leq f^-$). \square

Lema 2.12. Si $\varphi: X \to \mathbb{R}_{\geq 0}$ es función simple no negativa, entonces la aplicación $\mu_{\varphi}: \mathscr{M} \to \mathbb{R}$ dada por $\mu_{\varphi}(E) = \int_{E} \varphi \ d\mu$ es una medida en (X, \mathscr{M}) .

Demostración. 1.
$$\mu_{\varphi}(\varnothing)=\int_{\varnothing}\varphi\ d\mu=\int_{X}\varphi\chi_{\varnothing}\ d\mu=\int_{X}0\ d\mu=0\cdot\mu(X)=0.$$

2. Sean $(E_i)_{i\in\mathbb{N}}\subseteq \mathcal{M}$ disjuntos y supongamos que φ tiene RC $\varphi=\sum_{i=1}^n \alpha_i \varphi_{A_i}$. Entonces,

$$\mu_{\varphi}\left(\bigcup_{i\in\mathbb{N}}^{\mathbb{D}} E_{i}\right) = \int_{\bigcup_{j} E_{j}} \varphi \ d\mu = \int_{X} \varphi \chi_{\bigcup_{j} E_{j}} \ d\mu$$

$$= \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \chi_{\bigcup_{j} E_{j}} \ d\mu = \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{A_{i} \cap \bigcup_{i} E_{i}} \ d\mu$$

$$= \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{\bigcup_{j} A_{i} \cap E_{j}} \ d\mu = \sum_{i=1}^{n} \alpha_{i} \int_{X} \chi_{\bigcup_{j} A_{i} \cap E_{j}} \ d\mu$$

$$= \sum_{i=1}^{n} \alpha_{i} \mu \left(\bigcup_{j=1}^{\infty} A_{i} \cap E_{j}\right) d\mu = \sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{\infty} \mu(A_{i} \cap E_{j})$$

$$(\alpha > 0) = \sum_{j=1}^{\infty} \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E_{j}) = \sum_{j=1}^{\infty} \sum_{i=1}^{n} \alpha_{i} \int_{X} \chi_{A_{i} \cap E_{j}} \ d\mu$$

$$= \sum_{j=1}^{\infty} \int_{X} \left(\sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \chi_{E_{j}}\right) d\mu$$

$$= \sum_{j=1}^{\infty} \int_{E_{j}} \varphi \ d\mu$$

$$= \sum_{j=1}^{\infty} \mu_{\varphi}(E_{j}).$$

Observación. Lo que tuvimos que demostrar fue:

$$\int_X \varphi \chi_{\bigcup_j E_j} \ d\mu = \sum_{j=1}^\infty \int_X \varphi \chi_{E_j} \ d\mu,$$

es decir

$$\int \sum_{j=1}^{\infty} \varphi \chi_{E_j} = \sum_{j=1}^{\infty} \int \varphi \chi_{E_j}.$$

Teorema 2.13 (Convergencia Monótona). Sean (X, \mathcal{M}, μ) un Edm y $(f_n)_n$ una sucesión de funciones $f_n: X \to [0, \infty]$ \mathcal{M} -medibles no negativas tales que $f_n \leq f_{n+1} \ \forall n \in \mathbb{N}$. Entonces

- 1. $\lim_{n\to\infty} f_n$ existe y es \mathcal{M} -medible.
- 2. $\int_X (\lim_{n\to\infty} f_n) d\mu = \lim_{n\to\infty} \int_X f_n d\mu$.

Demostración. 1. Como $0 \le f_n(x) \le f_{n+1}(x) \ \forall x \in X \ y \ n \in \mathbb{N}$, entonces $f(x) := \lim_{n \to \infty} f_n(x) \in [0, \infty]$ existe $\forall x \in X$, y es medible porque $f \cong \sup_{n \in \mathbb{N}} f_n$. Como $f \ge 0$, es también débil μ -integrable.

2. Notemos que por monotonía de la integral, $\left(\int_X f_n \ d\mu\right)_{n\in\mathbb{N}}\subseteq [0,\infty]$ es una sucesión creciente y, como tal, tiene límite $L\in [0,\infty]$. Queremos ver que $L=\int_X f \ d\mu$. Para ello, notemos que $f_n\leq f \ \forall n\in\mathbb{N}$

$$\int_X f_n \ d\mu \le \int_X f \ d\mu \quad \forall n \in \mathbb{N}$$

Tomando supremo, $L \leq \int_X f \ d\mu$. Para la otra desigualdad, sea φ simple tal que $0 \leq \varphi \leq f$. Bastará ver que $\int_X \varphi \ d\mu \leq L$. Si tomamos $\alpha \in (0,1)$ y definimos

$$E_n := \{x : f_n(x) \ge \alpha \varphi(x)\},\$$

entonces $E_n \nearrow X$ pues $f_n \longrightarrow f$ puntualmente. Luego, para cada $n \in \mathbb{N}$,

$$L \ge \int_X f_n \ d\mu \ge \int_{E_n} f_n \ d\mu \ge \int_{E_n} \alpha \varphi \ d\mu = \alpha \int_{E_n} \varphi \ d\mu = \alpha \mu_{\varphi}(E_n).$$

Por continuidad por debajo, $\mu_{\varphi}(E_n) \nearrow \mu_{\varphi}(X) = \int_X \varphi \ d\mu$. Tomando $n \to \infty$ en la desigualdad anterior,

$$L \ge \alpha \int_X \varphi \ d\mu \quad (\forall \alpha \in (0,1)).$$

Tomando $\alpha \to 1^-$, resulta $L \ge \int_X \varphi \ d\mu$.

Clase 24

8 de Octubre

Aplicación. Sea (X, \mathcal{M}, μ) un espacio de medida.

1. Si $(f_n)_{n\in\mathbb{N}}: X \to \overline{\mathbb{R}}$ son \mathcal{M} -medibles no negativas, entonces $\sum_{n\in\mathbb{N}} f_n$ es \mathcal{M} -medible (y, por ende, débil μ -integrable, pues es no negativa) y vale que

$$\int_{X} \left(\sum_{n \in \mathbb{N}} f_n \right) d\mu = \sum_{n \in \mathbb{N}} \int_{X} f_n d\mu$$

(i.e., vale integrar la serie término a término).

2. Si $f:X\to\overline{\mathbb{R}}$ es \mathscr{M} -medible no negativa, entonces $\mu_f:\mathscr{M}\to[0,\infty]$ dada por

$$\mu_f(A) := \int_A f d\mu,$$

es una medida.

Demostración. 1. Si definimos $S_n := \sum_{k=1}^n f_k$, entonces S_n es \mathscr{M} -medible $\forall n \in \mathbb{N}$ (suma finita de medibles) y $0 \leq S_n \leq S_{n+1} \ \forall n \in \mathbb{N}$ (pues

 $f_{n+1} \ge 0$). Por convergencia monótona,

$$\sum_{n \in \mathbb{N}} f_n = \lim_{n \to \infty} S_n$$

es \mathcal{M} -medible y

$$\int_{X} \left(\sum_{n \in \mathbb{N}} f_{n} \right) d\mu = \int_{X} \left(\lim_{n \to \infty} S_{n} \right) d\mu$$
(por C. Mon.) = $\lim_{n \to \infty} \int_{X} S_{n} d\mu$
(por linealidad) = $\lim_{n \to \infty} \sum_{k=1}^{n} \int_{X} f_{n} d\mu$
= $\sum_{n \in \mathbb{N}} \int_{X} f_{n} d\mu$.

2. Notar que $\mu_f(\varnothing)=\int_{\varnothing}fd\mu=0$, pues $\mu(\varnothing)=0$ y f débil μ -int. Además, si $(E_j)_{j\in\mathbb{N}}\subseteq\mathscr{M}$ son disjuntos,

$$\mu_f \left(\bigcup_{j=1}^{\infty} E_j \right) = \int_{\left[\mathbb{D}\right]_{j=1}^{\infty}} f d\mu = \int_X f \chi_{\left[\mathbb{D}\right]_{j=1}^{\infty} E_j} d\mu$$

$$= \int_X f \left(\sum_{j=1}^{\infty} \chi_{E_j} \right) d\mu = \int_X \left(\sum_{j=1}^{\infty} f \chi_{E_j} \right) d\mu$$

$$(\text{por 1.}) = \sum_{j=1}^{\infty} \int_X f \chi_{E_j} d\mu = \sum_{j=1}^{\infty} \mu_f(E_j)$$

Luego,

$$\sum_{j=1}^{\infty} \mu(E_j) = \mu\left(\bigcup_{j=1}^{\infty} E_j\right)$$

$$= \int_X \chi_{[D]_{j=1}^{\infty} E_j}$$

$$= \sum_{j=1}^{\infty} \int_X \chi_{E_j} d\mu.$$

Lema 2.14. Sea $f: X \to [0, \infty]$ una función no negativa. Entonces, f es \mathscr{M} -medible si y sólo si existe una sucesión $(\varphi_n)_{n \in \mathbb{N}}$ de funciones simples \mathscr{M} -medibles tales que

i)
$$0 \le \varphi_n(x) \le \varphi_{n+1}(x) \quad \forall x \in X, \ n \in \mathbb{N};$$

ii)
$$f(x) = \lim_{n \to \infty} \varphi_n(x) \quad \forall x \in X.$$

En particular, por Convergencia Monótona,

$$\int_X f(x)d\mu = \lim_{n \to \infty} \int_X \varphi_n d\mu.$$

Demostración. \Leftarrow Inmediato, pues límite puntual de medibles es medible (ó $f = \sup \varphi_n$).

⇒ Definimos

$$\varphi_n \coloneqq \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \chi_{A_k^{(n)}} + n \chi_{B^{(n)}},$$

donde

$$A_k^{(n)} := \left\{ x : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \ B^{(n)} := \left\{ x : f(x) \ge n \right\}$$

Observar que cada φ_n es simple y \mathcal{M} -medible (pues f es \mathcal{M} -medible) y

$$\varphi_n(x) = \begin{cases} \frac{\left[2^n f(x)\right]}{2^n} & \text{si } 0 \le f(x) < n \\ n & \text{si } f(x) \ge n, \end{cases}$$

de donde se sigue que $\varphi_n(x) \stackrel{n \to \infty}{\longrightarrow} f(x) \ \forall x \in X$. Por otro lado, como $A_k^{(n)} = A_{2k}^{(n+1)} \uplus A_{2k+1}^{(n+1)}$, entonces, si $x \in A_k^{(n)}$,

$$\varphi_n(x) = \frac{k}{2^n} \le \begin{cases} \frac{2k}{2^{n+1}} & \left(= \frac{k}{2^n} \right) & \text{si } x \in A_{2k}^{(n+1)} \\ \frac{2k+1}{2^{n+1}} & \left(= \frac{k}{2^n} + \frac{1}{2^{n+1}} \right) & \text{si } x \in A_{2k+1}^{(n+1)} \end{cases} = \varphi_{n+1}(x).$$

Si $x \in B^{(n)}$, la demostración es similar.

Demostración (propiedades de la integral). Linealidad Lo vemos sólo en el caso $\alpha \geq 0$ y funciones no negativas. El caso general, se deduce de éste, trabajando con partes pos/neg. En efecto, sean $f,g:X\to [0,\infty]$ \mathscr{M} -medibles no negativas. Por el lema, existen $(\varphi_n)_{n\in\mathbb{N}}$, $(\psi_n)_{n\in\mathbb{N}}$ simples \mathscr{M} -medibles tales que

- $0 \le \varphi_n \nearrow f$;
- $0 \le \psi_n \nearrow g$.

Como $\alpha \geq 0$, tenemos que

$$\begin{cases} 0 \le \alpha \varphi_n \nearrow \alpha f \\ 0 \le \alpha \psi_n \nearrow \alpha g \\ 0 \le \varphi_n + \psi_n \nearrow f + g. \end{cases}$$

Por Convergencia Monótona, y la linealidad para simples,

$$\int_X \alpha f d\mu = \lim_{n \to \infty} \int_X \alpha \varphi_n d\mu = \lim_{n \to \infty} \int_X \varphi_n d\mu = \alpha \int_X f d\mu$$

у

$$\begin{split} \int_X (f+g) d\mu &= \lim_{n \to \infty} \int_X (\varphi_n + \psi_n) d\mu \\ &= \lim_{n \to \infty} \left(\int_X \varphi_n d\mu + \int_X \psi_n d\mu \right) \\ &= \int_X f d\mu + \int_X g d\mu. \end{split}$$

Esto prueba linealidad. En particular, vemos que

$$\int_X |f| d\mu = \int_X f^+ d\mu + \int_X f^- d\mu$$

y, por ende, f es μ -integrable si y sólo si $\int_X |f| d\mu < \infty$.

Desigualdad Triangular Si f es débil μ -integrable, pero $\int_X |f| d\mu = \infty$, entonces la desigualdad es inmediata. Por otro lado, si f es μ -integrable, entonces, por la desigualdad triangular en $\mathbb R$

$$\left| \int_{X} f d\mu \right| = \left| \int_{X} f^{+} d\mu - \int_{X} f^{-} d\mu \right|$$

$$\leq \left| \int_{X} f^{+} \right| + \left| \int_{X} f^{-} \right|$$

$$= \int_{X} f^{+} + \int_{X} f^{-} = \int_{X} |f|.$$

<u>Monotonía.</u> Si $f \leq g$ μ -CTP, entonces, como $f, f\chi_{\{f \leq g\}}$ son débil μ -int. (y lo mismo para g) y $\mu(\{f>g\})=0$,

$$\int_X f d\mu = \int_X f(\chi_{\{f \le g\}} + \chi_{\{f > g\}}) d\mu$$

$$= \int_X f\chi_{\{f \le g\}} + \int_X f\chi_{\{f > g\}}$$

$$= \int_{\{f \le g\}} f \le \int_{f \le g} g = \int_X g d\mu$$

(notar que la última desigualdad está dada por una propiedad de la clase pasada). $\hfill\Box$

Clase 25

10 de Octubre

Observación. Si f es débil μ -integrable y $A, B \in \mathcal{M}$ son disjuntos, entonces

$$\int_{A} \mathop{\mathrm{Id}}\nolimits_B f \ d\mu = \int_X f(\chi_A + \chi_B) d\mu = \int_A f \ d\mu + \int_B f \ d\mu.$$

En particular, si $\mu(E) = 0$, entonces

$$\int_X f \ d\mu = \int_E f \ d\mu + \int_{E^c} f \ d\mu = \int_{E^c} f \ d\mu.$$

Propiedad 2.15 (Desigualdad de Tchebychev). Si f es μ -integrable, entonces, dado $\lambda > 0$,

$$\mu(\{x : |f(x)| > \lambda\}) \le \frac{1}{\lambda} \int_{\{x : |f(x) > \lambda\}} |f| d\mu.$$

Demostración.

$$\int_{\{x \ : \ |f(x)| > \lambda\}} |f(x)| \ d\mu \ge \int_{\{x \ : \ |f(x)| > \lambda\}} \lambda \ d\mu = \lambda \mu(\{x \ : \ |f(x)| > \lambda\}).$$

Corolario 2.16. Si f es \mathcal{M} -medible no negativa y tal que $\int_X f \ d\mu = 0$, entonces f = 0 μ -CTP.

Corolario 2.17. Si $f:X\to\overline{\mathbb{R}}$ es μ -integrable, entonces es finita μ -CTP.

Lema 2.18 (Fatou). Sea (X, \mathcal{M}, μ) un espacio de medida y $(f_n)_{n \in \mathbb{N}} : X \to \mathbb{R}$ funciones \mathcal{M} -medibles no negativas μ -CTP. Entonces,

$$\int_{X} \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_{X} f_n \ d\mu.$$

Observación. La desigualdad puede ser estricta: En efecto, tomar $(X, \mathcal{M}, \mu) := (\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda), \ f_n(x) := n\chi_{(0,\frac{1}{n}]}.$ Entonces, $f_n \longrightarrow 0$ puntualmente, pero $\int_X f_n \ d\mu = 1 \ \forall n \ y$ esto es estrictamente mayor que $\int_X 0 \ d\mu = 0$. Además, tomando $g_n := -f_n$, vemos que la hipótesis de $f_n \ge 0$ μ -CTP también es necesaria.

Demostración. Sea $E := \bigcup_{k \in \mathbb{N}} \{x : f_k(x) < 0\}$. Notar que $E \in \mathcal{M}$ y $\mu(E) = 0$. Luego, si definimos $g_n := (\inf_{k \ge n} f_k) \chi_{E^c}$, entonces

$$0 \le g_n \nearrow \left(\liminf_{n \to \infty} f_n \right) \chi_{E^c} = \left(\sup_{n \in \mathbb{N}} g_n \right) \chi_{E^c}.$$

Luego, por Convergencia Monótona,

$$\int_{E^c} \left(\liminf_{n \to \infty} f_n \right) d\mu = \lim_{n \to \infty} \int_X g_n \ d\mu \le \liminf_{n \to \infty} \int_X f_n \ d\mu.$$

(no podemos poner límite sólo en el lado derecho, pues no sabemos si converge). Para concluir, debemos ver que $\lim\inf_{n\to\infty}f_n$ es débil μ -integrable y que $\int_X \liminf_{n\to\infty}f_n\ d\mu = \int_{E^c} \liminf_{n\to\infty}f_n\ d\mu$. Pero esto se deduce de la observación al principio de la clase, pues $\liminf_{n\to\infty}f_n$ es débil μ -integrable, ya que $\liminf_{n\to\infty}f_n \geq 0$ μ -CTP y, por lo tanto,

$$\left(\liminf_{n\to\infty} f_n\right)^- = 0 \ \mu\text{-CTP}$$

y, por lo tanto,

$$\int_X (\liminf f_n)^-) d\mu = \int_X 0 \ d\mu = 0 < \infty.$$

(notar que la igualdad está dada por la observación dada a continuación).

Observación. Si $f = g \mu$ -CTP, entonces

$$\int_X f \ d\mu = \int_{\{f=g\}} f \ d\mu = \int_{\{f=g\}} g \ d\mu = \int_X g \ d\mu.$$

 $(f, g \text{ son d\'ebil } \mu\text{-integrables}).$

Teorema 2.19 (de Convergencia Dominada). Sean (X, \mathcal{M}, μ) un espacio de medida y $(f_n)_{n \in \mathbb{N}} : X \to \overline{\mathbb{R}}$ funciones \mathcal{M} -medibles tales que

- 1. $(f_n)_{n\in\mathbb{N}}$ converge μ -CTP a $f:X\to\overline{\mathbb{R}}$ \mathscr{M} -medible;
- 2. Existe $g: X \to [0, \infty]$ μ -integrable ($\Rightarrow \mathcal{M}$ -medbile) tal que

$$\sup_{n\in\mathbb{N}}|f_n|\leq g$$

 μ -CTP.

Entonces, f es μ -integrable y

$$\lim_{n \to \infty} \int_X |f_n - f| \ d\mu = 0.$$

En particular,

$$\int_X f \ d\mu = \lim_{n \to \infty} \int_X f_n \ d\mu.$$

Observación. (2) es equivalente a que $(\sup_{n\in\mathbb{N}} |f_n|)$ sea μ -integrable.

Demostración. Vemos primero que f es μ -integrable. Observar que

$$|f(x)| = \liminf_{n \to \infty} |f_n(x)| \quad \forall x \in E := \{x : f_n(x) \longrightarrow f(x)\}.$$

Como $\mu(E^c) = 0$ por hipótesis, entonces

$$\int_X |f| \ d\mu = \int_E |f| \ d\mu = \int_E \left(\liminf_{n \to \infty} |f_n| \right) d\mu = \int_X \left(\liminf_{n \to \infty} |f_n| \right) d\mu.$$

Luego, por el Lema de Fatou,

$$\int_X |f| \ d\mu \le \liminf_{n \to \infty} \int_X |f_n| \ d\mu \le \int_X g \ d\mu < \infty.$$

Luego, f es μ -integrable. En particular, como cada f_n es μ -integrable,

$$\int_X |f_n - f| \ d\mu < \infty.$$

Sea ahora $h_n \coloneqq 2g - |f_n - f|$. Observar que $h_n \ge 0$ μ -CTP (pues $|f_n| \le g$ μ -CTP $\forall n \in \mathbb{N} \Rightarrow |f| \le g$ μ -CTP). Por el Lema de Fatou,

$$\int_X \liminf_{n \to \infty} h_n \le \liminf_{n \to \infty} \int_X h_n \ d\mu = \liminf_{n \to \infty} \left(2 \int_X g \ d\mu - \int_X |f_n - f| \ d\mu \right).$$

Como $\lim_{n\to\infty} h_n = 2g \ \mu$ -CTP,

$$\int_X \liminf_{n \to \infty} h_n = \int_X 2g \ d\mu.$$

Juntando ambas cosas, tenemos que

$$2\int_X g \ d\mu \le 2\int_X g \ d\mu - \limsup_{n \to \infty} \int_X |f_n - f| \ d\mu.$$

Luego,

$$\limsup_{n \to \infty} \int_X |f_n - f| \ d\mu \le 0 \Rightarrow \lim_{n \to \infty} \int_X |f_n - f| \ d\mu = 0$$

y, como,

$$\left| \int_X f_n \ d\mu - \int_X f \ d\mu \right| = \left| \int_X (f_n - f) \ d\mu \right| \le \int_X |f_n - f| \ d\mu \stackrel{n \to \infty}{\longrightarrow} 0$$

resulta que $\lim_{n\to\infty} \int_X f_n \ d\mu = \int_X f \ d\mu$.

Clase 26

13 de Octubre

Observación. $f: \mathbb{R} \to \mathbb{R}$ medible si $f^{-1}(B) \in \mathcal{L}(\mathbb{R})$ $\forall B \in \beta(\mathbb{R})$.

Proposición 2.20. Sean (X, \mathcal{M}, μ) un espacio de medida y $(f_n)_{n \in \mathbb{N}} : X \to \mathbb{R}$ funciones \mathcal{M} -medibles. Entonces, si $f_n \geq 0$ μ -CTP $\forall n \in \mathbb{N}$ ó $\int (\sum_{n \in \mathbb{N}} |f_n|) d\mu < \infty$, vale que $\sum_{n \in \mathbb{N}} f_n$ converge μ -CTP (en \mathbb{R}), es \mathcal{M} -medible, (definida como 0 donde no converge) y, además,

$$\int_X \left(\sum_{n \in \mathbb{N}} f_n \right) d\mu = \sum_{n \in \mathbb{N}} \int_X f_n d\mu.$$

2.1 Integración de funciones a valores en $\mathbb C$

Sean (X, \mathcal{M}, μ) un espacio de medida y $f: X \to \mathbb{C}$ una función. Notemos que $f = \Re(f) + i\Im(f)$ donde $\Re(f), \Im(f): X \to \mathbb{R}$ están definidas por

$$\Re(f)(x) := \Re(f(x)), \quad \Im(f)(x) := \Im(f(x)).$$

Definición 2.21 (función medible). Una función $f: X \to \mathbb{C}$ se dice medible si $\Re(f)$, $\Im(f)$ lo son (en el sentido usual). Decimos que f es μ -integrable si $\Re(f)$, $\Im(f)$ lo son. En ese caso, definimos

$$\int_X f \ d\mu \coloneqq \int_X \Re(f) \ d\mu + i \int_X \Im(f) \ d\mu \ \in \mathbb{C}.$$

Teorema 2.22. Sean (X,\mathcal{M},μ) un espacio de medida y $f,g:X\to\mathbb{C}$ funciones \mathcal{M} -medibles. Entonces:

1. Si f,g son $\mu\text{-integrables},$ entonces $\alpha f+\beta g$ es $\mu\text{-integrable}\ \forall\alpha,\beta\in\mathbb{C}$ y

$$\int_X (\alpha f + \beta g) \ d\mu = \alpha \int_X f \ d\mu + \beta \int_X g \ d\mu.$$

2. f es μ -integrable (en $\mathbb C$) si y sólo si |f| es μ -integrable (en $\mathbb R$) y, en tal caso,

$$\left| \int_X f \ d\mu \right| \le \int_X |f| \ d\mu.$$

3. Si f es μ -integrable y $E \in \mathcal{M}$, entonces $f\chi_E$ es μ -integrable. En particular, si definimos $\int_E f \ d\mu \coloneqq \int_X f \cdot \chi_E \ d\mu$, entonces si $E_1, E_2 \in \mathcal{M}$ son disjuntos,

$$\int_{E_1 \, \mathrm{d}! \, E_2} f \ d\mu = \int_{E_1} f \ d\mu + \int_{E_2} f \ f \mu.$$

Además, si $\mu(E)=0,$ entonces $\int_E f\ d\mu=0$ y, por lo tanto, $\int_X f\ d\mu=\int_{E^c} f\ d\mu.$

Demostración. Teorema 8.12 del Rana.

2.1.1 Caso particular: Integral de Lebesgue

Notación.

- $\int f(x) dx$ = integral de f respecto a la medida de Lebesgue.
- $\int_a^b f(x) \ dx := \int_{[a,b]} f(x) \ dx$.
- C.T.P. = C.T.P. respecto de la medida de Lebesgue.
- integrable = integrable respecto de la medida de Lebesgue.
- $\int_X f(x) d\mu(x)$ cuando queramos destacar la variable de integración.

Teorema 2.23. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces,

- 1. f es integrable Riemann si y sólo si f es continua C.T.P.
- 2. Si f es integrable Riemann, entonces f es integrable Lebesgue y

$$\int_a^b f(x) \ dx(R) = \int_a^b f(x) \ dx(L).$$

Definición 2.24 (envolventes de Baire). Dada $f:[a,b] \to \mathbb{R}$ acotada, definimos:

1. La envolvente superior de Baire de f como $M:[a,b]\to\mathbb{R}$ dada por

$$M(x) \coloneqq \limsup_{y \to x} f(y) \coloneqq \inf_{\delta > 0} \left(\sup_{y:|y-x| < \delta} f(y) \right).$$

2. La envolvente inferior de Baire de f como $m:[a,b]\to\mathbb{R}$ dada por

$$m(x) \coloneqq \liminf_{y \to x} f(y) \coloneqq \sup_{\delta > 0} \left(\inf_{y : |y - x| < \delta} f(y) \right).$$

Lema 2.25. Si $f:[a,b] \to \mathbb{R}$ es acotada, entonces:

- 1. $m(x) \le f(x) \le M(x) \quad \forall x \in [a, b].$
- 2. f es continua en $x \Leftrightarrow m(x) = M(x)$.
- 3. M es semicontinua superior, i.e. $\{M < \alpha\}$ es abierto $\forall \alpha \in \mathbb{R}$.
- 4. m es semicontinua inferior, i.e. $\{m > \alpha\}$ es abierto $\forall \alpha \in \mathbb{R}$.

En particular, M y m son medibles Borel.

Demostración. Ver Canvas.

Lema 2.26. Sean $f:[a,b]\to\mathbb{R}$ acotada y $(\pi_n)_{n\in\mathbb{N}}$ una sucesión de particiones de [a,b] tales que $\|\pi_n\| \stackrel{n\to\infty}{\longrightarrow} 0$. Entonces, si definimos $\underline{s}_{\pi_n}, \overline{s}_{\pi_n}:[a,b]\to\mathbb{R}$ por

$$\underline{s}_{\pi_n} \coloneqq \sum_{I \in \pi_n} m_I(f) \chi_I, \quad \overline{s}_{\pi_n} \coloneqq \sum_{I \in \pi_n} M_I(f) \chi_I.$$

vale que

$$\frac{\underline{s}_{\pi_n}(x) \longrightarrow m(x)}{\overline{s}_{\pi_n}(x) \longrightarrow M(x)} \ \forall x \not\in \bigcup_{n \in \mathbb{N}} \pi_n.$$

En particular, $\underline{s}_{\pi_n} \longrightarrow m$, $\overline{s}_{\pi_n} \longrightarrow M$ C.T.P.

Demostración. Dado $x_0 \in [a, b] \setminus \bigcup_{n \in \mathbb{N}} \pi_n \ y \ \varepsilon > 0$, existe $\delta > 0$ tal que

$$\sup_{y:|y-x_0|<\delta} f(y) < M(x_0) + \varepsilon.$$

Sea $n_0 \in \mathbb{N}$ tal que $\|\pi_n\| < \delta \ \forall n \geq n_0$. Luego, para cada $n \geq n_0$, existe $I_n \in \pi_n$ tal que $x_0 \in \mathring{I}_n \subseteq B(x_0, \delta)$. En particular,

$$\overline{s}_{\pi_n}(x_0) = \sup_{y \in I_n} f(y) \le \sup_{y:|y-x_0| < \delta} f(y) < M(x_0) + \varepsilon.$$

Por otro lado, existe $\delta^* > 0$ tal que $B(x_0, \delta^*) \subseteq I_n$, de modo que

$$\overline{s}_{\pi_n}(x_0) = \sup_{y \in I_n} f(y) \ge \sup_{y:|y-x_0| < \delta^*} f(y) \ge M(x_0).$$

Luego, $\forall n \geq n_0, \ M(x_0) \leq \overline{s}_{\pi_n}(x_0) \leq M(x_0) + \varepsilon$. Como $\varepsilon > 0$ es arbitrario, resulta $\lim_{n \to \infty} \overline{s}_{\pi_n}(x_0) = M(x_0)$.

Nota. La prueba para m es análoga.

Proposición 2.27. Si $f:[a,b]\to\mathbb{R}$ es acotada, entonces

$$\overline{\int_a^b} f(x) \ dx(R) = \int_a^b M(x) \ dx(L), \quad \int_a^b f(x) \ dx(R) = \int_a^b m(x) \ dx(L).$$

Demostración. Hacemos el caso de M. Sean $(\pi_n)_{n\in\mathbb{N}}$ partición de [a,b] tal que $\|\pi_n\| \longrightarrow 0$. Entonces

- 1. $\overline{s}_{\pi_n} \longrightarrow M$ C.T.P.
- 2. $|\overline{s}_{\pi_n}| \leq \sup_{x \in [a,b]} |f(x)| := K \in [0,\infty)$ pues f es acotada.

Luego, como la función constante K es integrable en [a,b] por ser simple y ser $|[a,b]|<\infty$, entonces por Convergencia Dominada,

$$\lim_{n \to \infty} \int_a^b \overline{s}_{\pi_n}(x) \ dx(L) = \int_a^b M(x) \ dx.$$

Clase 27

15 de Octubre

Proposición 2.28. Si $f:[a,b]\to\mathbb{R}$ es acotada, entonces

$$\overline{\int_a^b} f\left(R\right) = \int_a^b M\left(L\right) \quad \text{y} \quad \int_a^b f\left(R\right) = \int_a^b m\left(L\right).$$

Demostración (continuación). Vemos sólo el caso de M, pues el otro es igual. Vimos ya que

$$\lim_{n \to \infty} \int_a^b \overline{s}_{\pi_n}(x) \ dx \ (L) = \int_a^b M(x) \ dx \ (L).$$

Pero, notemos que

$$\int_{a}^{b} \overline{s}_{\pi_{n}}(x) \ dx = \overline{S}(f; \pi_{n}).$$

Luego, por resultado visto en clases, como $\|\pi_n\| \stackrel{n\to\infty}{\longrightarrow} 0$, entonces

$$\lim_{n \to \infty} \overline{S}(f; \pi_n) = \overline{\int_a^b} f(R).$$

Juntando ambas cosas, por unicidad del límite,

$$\overline{\int_{a}^{b}} f(R) = \int_{a}^{b} M(L).$$

Demostración (Teorema 2.23). 1. f integrable Riemann $\Leftrightarrow \overline{\int_a^b} f = \underline{\int_a^b} f \Leftrightarrow \int_a^b M(x) \ dx = \int_a^b m(x) \ dx \Leftrightarrow \int_a^b (M(x) - m(x)) \ dx = 0 \Leftrightarrow \text{(por corolario de la clase pasada)} \ M - m = 0 \text{ CTP.} \Leftrightarrow M = m \text{ CTP.} \Leftrightarrow f \text{ continua CTP.}$

2. Si f es Riemann integrable, entonces, por (1) y el control 3, f es medible Lebesgue (o, sino, f=M CTP y M es medible). Además, es integrable por ser acotada y, en consecuencia,

$$\int_{a}^{b} f(x) dx (L) = \int_{a}^{b} M(x) dx (L) = \overline{\int_{a}^{b}} f(x) dx (R) = \int_{a}^{b} f(x) dx (R).$$

Definición 2.29 (función escalonada). Una función $\varphi:[a,b]\to\mathbb{R}$ se dice escalonada si existe una partición $\pi=\{x_0,\ldots,x_n\}$ de [a,b] y $a_1,\ldots,a_n\in\mathbb{R}$ tal que

$$\varphi(x) = \sum_{i=1}^{n} a_i \chi_{[x_{i-1}, x_i]}(x) \quad \forall x \notin \pi.$$

Observación. Toda φ escalonada es simple y Riemann integrable.

Proposición 2.30. Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Entonces

$$f \text{ Riemann integrable} \Leftrightarrow \inf_{\substack{\varphi \text{ escalonada} \\ \varphi \geq f}} \int_a^b \varphi = \sup_{\substack{\varphi \text{ escalonada} \\ \varphi \leq f}} \int_a^b \varphi,$$

У

$$f \text{ Lebesgue integrable} \Leftrightarrow \inf_{\substack{\varphi \text{ simple} \\ \varphi \geq f}} \int_a^b \varphi \ (L) = \sup_{\substack{\varphi \text{ simple} \\ \varphi \leq f}} \int_a^b \varphi \ (L).$$

Demostración. Royden (Capítulo 4, sección 2, proposición 3). □

Chapter 3

Unidad 4: Espacios Producto

Definición 3.1. Sean $(X_1, \mathcal{M}_2), (X_2, \mathcal{M}_2)$ espacioes medibles. Definimos

1. La clase de rectángulos medibles en $X_1 \times X_2$ como

$$\mathcal{R} := \{ A \times B : A \in \mathcal{M}_1, B \in \mathcal{M}_2 \}.$$

2. La σ -álgebra producto $\mathcal{M}_1 \times \mathcal{M}_2$ en $X_1 \times X_2$ como $\mathcal{M}_1 \times \mathcal{M}_2 := \sigma(\mathbb{R})$.

Nota. No confundir $\mathcal{M}_1 \times \mathcal{M}_2$ con el producto cartesiano de \mathcal{M}_1 y \mathcal{M}_2 !!! En efecto, notar que el el producto cartesiano entre \mathcal{M}_1 y \mathcal{M}_2 es igual a $\{(A,B):A\in\mathcal{M}_1,\ B\in\mathcal{M}_2\}$. En cambio, los elementos de $\mathcal{M}_1\times\mathcal{M}_2$ son subconjuntos de $X_1\times X_2$.

Ejemplo.

- $\beta(\mathbb{R}^n) \times \beta(\mathbb{R}^m) = \beta(\mathbb{R}^{n+m}) = \sigma(I_1 \times \cdots \times I_{n+m} : I_i \subseteq \mathbb{R} \text{ intervalo}).$
- $\beta(\mathbb{R}^n) \times \beta(\mathbb{R}^m) \subseteq \mathcal{L}(\mathbb{R}^n) \times \mathcal{L}(\mathbb{R}^m) \subseteq \mathcal{L}(\mathbb{R}^{n+m})$.

Observación. \mathcal{R} es una semiálgebra.

Teorema 3.2. Sean $(X_1, \mathcal{M}_1, \mu_1)$, $(X_2, \mathcal{M}_2, \mu_2)$ espacios de medida σ -finita. Entonces, existe una única medida $\mu_1 \times \mu_2$ en $(X_1 \times X_2, \mathcal{M}_1 \times \mathcal{M}_2)$ tal que $\mu_1 \times \mu_2(A \times B) = \mu_1(A)\mu_2(B) \quad \forall A \times B \in \mathcal{R}.$

Más aún, $\mu_1 \times \mu_2$ se puede extender de manera única a la σ -álgebra

$$\overline{\mathcal{M}_1 \times \mathcal{M}_2} := \{ A \cup N : A \in \mathcal{M}_1 \times \mathcal{M}_2, \exists B \in \mathcal{M}_1 \times \mathcal{M}_2 \text{ tq } N \subseteq B \text{ y } (\mu_1 \times \mu_2)(B) = 0 \}.$$

Notamos a dicha extensión como $\overline{\mu_1 \times \mu_2}$ y viene dada por

$$\overline{\mu_1 \times \mu_2}(A \triangleleft N) = \mu_1 \times \mu_2(A).$$

Nota. La medida $\mu_1 \times \mu_2$ se llama la medida producto de μ_1 y μ_2 .

Observación. Por inducción, se puede definir $\mu_1 \times \cdots \times \mu_n \quad \forall n \in \mathbb{N}$.

Ejemplo. Si
$$(X_i, \mathscr{M}_i, \mu_i) \coloneqq (\mathbb{R}, \beta(\mathbb{R}), \lambda)$$
 $i = 1, \dots, n$ entonces
$$X_1 \times \dots \times X_2 = \mathbb{R}^n$$

$$\beta(\mathbb{R}) \times \dots \times \beta(\mathbb{R}) = \beta(\mathbb{R}^n)$$

$$\lambda \times \dots \times \lambda = \lambda_{\mathbb{R}^n} \text{ (sobre } \beta(\mathbb{R}^n))$$