Literature review Imputation done by Ramon

What is this	Summary or citation	АРА
research for?		
Variance error	The research of RAO and SITTER (1995) shows that the choice of variance estimators in imputed data differs largely based on several factors. A very important consideration that needs to be made is the susceptibleness to outliers for variance calculation.	RAO, J. N. K., & SITTER, R. R. (1995). Variance estimation under two-phase sampling with application to imputation for missing data. Biometrika, 82(2), 599–631. https://doi.org/10.1093/biomet/82.2.453
K-algorithm	Zhang, Z (2016) stated that the K in KNN has a large impact on the diagnostic performance of KNN algorithm and that the key between an appropriate k value lies between a balance of overfitting and underfitting.	Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. <i>Annals of Translational Medicine</i> , <i>4</i> (11), 218. https://doi.org/10.21037/atm.2016.03.37
LOCF	Where the imputation methods KNN and LOCF will likely be sufficient for simpler cases of imputation. For larger chunks of missing data the former named methods were expected to have increasing error. However these methods should perform equally well for small percentages of missing data (Beck et al, 2018)	Beck, M., Bokde, N., Asencio-Cortés, G., & Kulat, K. (2018). R Package imputeTestbench to Compare Imputation Methods for Univariate Time Series. <i>The R Journal, 10</i> (1), 218. https://doi.org/10.32614/rj-2018-024
BMS or energy usage	A study that presents a computationally efficient data processing method for imputing missing data. This made use of a continuous profile with respect to adjacent available measurements, which is desirable for time-series analyses (Peppanen et al.,2016).	Peppanen, J., Xiaochen Zhang, Grijalva, S., & Reno, M. J. (2016). Handling bad or missing smart meter data through advanced data imputation. 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). https://doi.org/10.1109/isgt.2016.7781213
Weighted KNN	Cost & Salzburg (1993) stated that a weighted instance makes it less likely for a new instance to appear near an exemplar as the exemplar weight increases. This in theory increases the accuracy when imputing missing data for most cases.	Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features. <i>Machine Learning</i> , <i>10</i> (1), 57–78. https://doi.org/10.1007/bf00993481
Recurrent Neural networks	Handling missing values in multivariate time series data using Recurrent Neural Networks is challenging. Using popular	Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24271-9

	imputation mathods loads to a	
	imputation methods leads to a	
	time-consuming prediction	
	procedure and may impair the	
	prediction performance. To	
	address the above issues, a GRU-	
	based model could be used which	
	captures the informative	
	missingness by incorporating	
	masking and time interval	
	directly inside the GRU	
	architecture. (Che et al., 2018)	
Missing data	This paper addresses the gap in	Pazhoohesh, M., Pourmirza, Z., & Walker, S. (2019). A Comparison of
in energy	the current study of missing data	Methods for Missing Data Treatment in Building Sensor Data. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering
building	treatment. It presents a	(SEGE).
	comparative study of eight	https://doi.org/10.1109/sege.2019.8859963
	methods for imputing missing	
	values in building sensor data.	
Sensor	In this paper, a framework is	Zhang, L. (2020). A Pattern-Recognition-Based Ensemble Data
building	developed to address these two	Imputation Framework for Sensors from Building Energy Systems.
management	gaps. First, a validation data	Sensors, 20(20), 5947. https://doi.org/10.3390/s20205947
system data	generation module is developed	πτιρ5.//ασί.σιχ/ 10.3330/320203347
imputation	based on pattern recognition to	
imputation	create a validation dataset to	
	quantify the performance of data	
	imputation methods. Second, a	
	pool of data imputation methods	
	is tested under the validation	
	dataset to find an optimal single	
	imputation method for each	
	sensor, which is termed as an	
	ensemble method.	AA- L Chara L C L'ara E Chara W. Warra AA () 7h-1 C (2020) A
Bi-directional	This study proposed a	Ma, J., Cheng, J. C., Jiang, F., Chen, W., Wang, M., & Zhai, C. (2020). A bi-directional missing data imputation scheme based on LSTM and
data	methodology, namely the hybrid	transfer learning for building energy data. Energy and Buildings, 216,
imputation	Long Short Term Memory model	109941.
	with Bi-directional Imputation	https://doi.org/10.1016/j.enbuild.2020.109941
	and Transfer Learning (LSTM-	
	BIT). It integrates the powerful	
	modeling ability of deep learning	
	networks and flexible	
	transferability of transfer	
	learning	
Machine	this research aims to address the	Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy
learning for	problems by developing a predictive	consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5,
energy data	model for energy consumption in	100037.
	Microsoft Azure cloud-based	https://doi.org/10.1016/j.dibe.2020.100037
	machine learning platform. Three	
	methodologies which are Support	
	Vector Machine, Artificial Neural Network, and k-Nearest Neighbour	
	are proposed for the algorithm of	
	the predictive model.	
	and predictive injudes	