ОТУ лаб1

 $T_0 = 0.93$, n = 6

ПИ-регулятор

T = 0:

Начальное приближение по Н-Ц:

Kkr = 1.18

 $K = 0.45 \ 1.18 = 0.531$

Tikr = 10

Ti = 10 / 1.2 = 8.33

После покоординатной оптимизации по интегральному критерию качества:

K = 0.6

Ti = 7.38

T = 1.5:

Начальное приближение по Н-Ц:

Kkr = 0.833

 $K = 0.45 \ 0.833 = 0.37485$

Tikr = 14

Ti = 14 / 1.2 = 11.67

После покоординатной оптимизации по интегральному критерию качества:

K = 0.45

Ti = 9

T = 3:

Kkr = 0.705

 $K = 0.45 \ 0.705 = 0.31725$

Tikr = 17

Ti = 17 / 1.2 = 14.167

После покоординатной оптимизации по интегральному критерию качества:

K = 0.38

Ti = 11.6

ПИД-регулятор

T = 0:

Начальное приближение по Н-Ц:

Kkr = 1.18

 $K = 0.6 \cdot 1.18 = 0.708$

Tikr = 10

Ti = 10 / 2 = 5

Td = 5 / 4 = 1.25

Tc = 1.25 / 8 = 0.15625

После покоординатной оптимизации по интегральному критерию качества:

K = 0.65

Сначала фиксируем Ті и меняем К

Ti = 4.8 Затем фиксируем подобранное K и меняем Ti

По формулам получены значения:

1 вариант: K = 1.267, Ti = 3.518

2 вариант: К = 1.2913, Ті = 2.6882

T = 1.5:

Начальное приближение по Н-Ц:

Kkr = 0.833

 $K = 0.6 \ 0.833 = 0.4998$

Tikr = 14

Ti = 14/2 = 7

Td = 7/4 = 1.75

Tc = 1.75 / 8 = 0.21875

После покоординатной оптимизации по интегральному критерию качества:

K = 0.472

Ti = 5

По формулам:

1 вариант: K = 0.835, Ti = 3.797

2 вариант: K = 0.921, Ti = 3.291

T = 3:

Начальное приближение по Н-Ц:

Kkr = 0.705

 $K = 0.6 \, 0.705 = 0.423$

Tikr = 17

Ti = 17 / 2 = 8.5

Td = 8.5 / 4 = 2.125

Tc = 2.125 / 8 = 0.265625

После покоординатной оптимизации по интегральному критерию качества:

K = 0.38

Ti = 6.14

По формулам:

1 вариант: K = 0.623, Ti = 4.0765

2 вариант: К = 0.776, Ті = 3.894

ПИ-регулятор				ПИД-регулятор		
Параметры \ Т	0	1.5	3	0	1.5	3
K	0.6	0.45	0.38	0.65	0.472	0.38
T_i	7.38	9	11.6	4.8	5	6.14
К (формула)	0.567	0.434	0.352	1.267	0.835	0.623
Т_і (формула)	2.319	2.55	2.778	3.518	3.797	4.077
Интегральная ошибка	7.439	10.489	15.262	4.341	6.762	8.645

По строке с интегральной ошибкой видно, что ПИД-регулятор приводит систему в устойчивое состояние намного лучше, чем ПИ-регулятор.

Чтобы составить свои варианты формул, выберем лучшие параметры настройки ПИДрегулятора при различных Т. Лучше параметры - это те параметры, при которых интегральная ошибка минимальна. Выпишем ошибки в таблицу выше для ПИД-регулятора. Видим, что при Т = 0 интегральная ошибка наименьшая. Составленные формулы выглядят так:

Т	K	Ти
[0, 1.5]	0.65 – 0.119 * T	4.8 + 0.133 * T
[1.5, 3]	0.564 – 0.061 * T	3.86 + 0.76 * T

Применим составленные формулы для T = 1, 2, 10. Для T = 10 используем формулу для диапазона [1.5, 3]:

Т	K	Ти	Интегральная ошибка
1	0.531	4.933	6.087
2	0.442	5.38	7.427
10	0.046	11.46	124.541

По первому варианту формул получаем:

Т	K	Ти	Интегральная ошибка
1	0.88	3.492	inf
2	0.7	3.678	inf
10	0.265	5.166	50.593

По второму варианту формул получаем:

Т	K	Ти	Интегральная ошибка
1	1.002	3.09	inf
2	0.86	3.492	inf

Т	K	Ти	Интегральная ошибка
10	0.582	6.708	inf

Получаем, что при большом параметре задержки первый вариант формул хорошо работает, а при малых значениях - система неустойчива.