Operation Analytics and Investigating Metric Spike

DESCRIPTION:

Operation Analytics is the analysis done for the complete end-to-end operations of a company. With the help of this analysis, the company finds the areas in which it must do something to improve. In this project, I will work closely with the ops team, support team, marketing team, etc., and help them derive insights from the data they collect. As one of the most important parts of a company, this analysis is further used to predict the overall growth or decline of a company's fortune. It means better automation, better understanding between cross-functional teams, and more effective workflows.

Investigating Metric spikes is also an important part of operation analytics as Data Analysts. I must understand or make other teams understand questions like- Why is there a dip in daily engagement? Why have sales taken a dip? Etc. Questions like these must be answered daily, so it is very important to investigate metric spikes.

Project Approach Used:

According to the project's scenario, I am working for a company like Microsoft, designated as Data Analyst Lead, and provided with different data sets and tables from which I must derive certain insights and answer the questions asked by different departments. This project is completely based on Structured Query Language (SQL). To create a complete database containing different tables, SQL queries were provided. To answer all the questions asked, I used SQL Basic to Advanced functions that generated useful insights. This report gives a better understanding of that in the 'insight.' segment.

Tech-Stack Used:

- MySQL Workbench with the latest released Version 8.0 CE (Community Edition) by Oracle Corporation For Importing Database, Running SQL Queries to get insights
- Excel 2016 by Microsoft Corporation For extracting & manipulating data
- Word 2016 by Microsoft Corporation For creating a project report

I used it because MySQL Workbench is a visual database design tool that combines SQL development, administration, database design, creation, and maintenance into a single development environment.

Project Insights

I. Case Study 1 (Job Data)

A. Number of jobs reviewed:

Here, I need to calculate the number of jobs reviewed per hour per day for November 2020 from the given database.

For fulfilling the required query, I selected ds and used the COUNT function on job_id and named that column jobs_per_day. Then I used the SUM function on the total time spent (I assumed that the time spent was in minutes) and divided it by 60 to get time in hours and used table opsanalytics.jobs_data (Table I created in MYSQL using the given dataset), and lastly, used the WHERE function to narrow down the search results for the month of November.

SQL Statement:

SELECT

ds,

COUNT(job_id) AS jobs_per_day,

SUM(time_spent)/60 AS hours_spent

FROM opsanalytics.jobs_data

WHERE ds >='01-11-2020' AND ds <='30-11-2020' GROUP BY ds;

Result:

ds	jobs_per_day	hours_spent
30-11-2020	2	0.6667
29-11-2020	1	0.3333
28-11-2020	2	0.5500
27-11-2020	1	1.7333
26-11-2020	1	0.9333
25-11-2020	1	0.7500

Conclusion:

Following are the number of jobs reviewed per hour per day for the month of November 2020.

B. Throughput or the no. of events happening per second.

Here I need to calculate the 7-day rolling average of throughput, and for throughput, do I prefer daily metric or 7-day rolling and why?

We know that a rolling average is a calculation that lets us analyze data points by creating a series of averages based on different subsets of a data set called a moving average or running average.

A 7-day moving average is a short-term trend indicator. It is simply the average closing values of the last seven days. I prefer a 7-day rolling average because it is reliable, and it is a simple indicator of changing the price/production of services or goods.

SQL Statement:

SELECT x.*,

AVG(dailyusage) over (partition by job_id order by job_id, ds rows between 6 preceding and current row) AS rolling_avg
FROM (select job_id, ds, sum(time_spent) as dailyusage
FROM opsanalytics.jobs_data
GROUP BY job_id, ds) x;

Result:

job_id	ds	dailyusage	rolling_avg
20	25-11-2020	45	45.0000
21	30-11-2020	15	15.0000
22	30-11-2020	25	25.0000
23	26-11-2020	56	56.0000
23	28-11-2020	22	39.0000
23	29-11-2020	20	32.6667
25	28-11-2020	11	11.0000

Conclusion:

A 7-day rolling average is what I prefer because rolling averages can be used to uncover long-term trends that are occasionally masked by volatility.

C. Percentage share of each language: Share of each language for different contents.

Here I need to calculate the percentage share of each language in the last 30 days.

SQL Statement:

SELECT ds, language, event,

COUNT(*) as lang_usage,

COUNT(*) * 100.0 / sum(COUNT(*)) OVER () AS percentage

FROM opsanalytics.jobs_data

WHERE ds >='01-11-2020' and ds <='30-11-2020'

GROUP BY language ORDER BY event;

Result:

ds	language	event	lang_usage	percentage
29-11-2020	Persian	decision	3	37.50000
28-11-2020	Hindi	decision	1	12.50000
27-11-2020	French	decision	1	12.50000
30-11-2020	English	skip	1	12.50000
30-11-2020	Arabic	transfer	1	12.50000
25-11-2020	Italian	transfer	1	12.50000

Conclusion:

Following is the percentage share of each language for events, where we can conclude Persian is the most used language, and the rest, like Hindi, French, etc., have an equal share with a percentage share of 37.5% and 12.5%, respectively.

D. Duplicate rows: Rows that have the same value present in them.

Here I need to display duplicates from the table.

SQL Statement:

SELECT job_id, actor_id,
COUNT(*)
FROM opsanalytics.jobs_data
GROUP BY job_id, actor_id
HAVING COUNT(*) > 1;

Result:

Conclusion:

Here all the rows have unique values. No rows were found that have the same value present in them.

Hence, there are no duplicate values to be displayed.

II. Case Study 2 (Investigating metric spike)

A. User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Here I need to calculate the weekly user engagement.

SQL statement:

SELECT

EXTRACT(WEEK FROM occurred_at) AS weeknum, COUNT(DISTINCT user_id) AS no_of_distinct_user FROM `opsanalytics`.`table-2 events` GROUP BY weeknum

Conclusion:

Following is the weakly user engagement.

	Α	В	
1	weeknum	no_of_distinct_user	
2	17	85	
3	18	194	
4	19	208	
5	20	195	
6	21	208	
7	22	230	
8	23	224	
9	24	252	
10	25	245	
11	26	230	
12	27	249	
13	28	114	
14	29	18	
15	30	7	
16	31	7	
17	32	1	
18	33	2	
19	34	1	
20			

B. User Growth: Amount of users growing over time for a product.

Here I need to calculate the user growth for the product.

SQL statement:

SELECT

activated_at, weeknum, num_active_user,

SUM(num_active_user),

OVER(ORDER BY activated_at, weeknum ROWS BETWEEN UNBOUNDED

PRECEDING AND CURRENT ROW) AS cum_active_users

FROM

(SELECT EXTRACT(year from activated_at) AS year, EXTRACT(week from activated_at) AS weeknum,

COUNT(DISTINCT user_id) AS num_active_user

FROM 'opsanalytics'. 'table-1 users' a

WHERE state='active'

GROUP BY year, weeknum

ORDER BY year, weeknum) a;

Result:

year	weeknum	no_of distiner_user	cum_active_users
2013	0	23	23
2013	1	30	53
2013	2	48	101
2013	3	36	137
2013	4	30	167
2013	5	48	215
2013	6	38	253
2013	7	42	295
2013	8	34	329
2013	9	43	372

Conclusion: Following is the output for the query having the amount of users growing over time for a product.

C. Weekly Retention:

Here I need to find users getting retained weekly after signing up for a product.

SQL statement:

SELECT week (occurred_at) AS week,

COUNT(CASE WHEN e.event_type = 'engagement' THEN e.user_id

ELSE NULL END) AS engagement,

COUNT(CASE WHEN e.event_type = 'signup_flow' THEN e.user_id

ELSE NULL END) AS signup

FROM `opsanalytics`.`table-2 events` e

GROUP BY 1

ORDER BY 1

Conclusion:

Following mentioned above are the metrics of the users getting retained weekly after signing up for a product, and the engagements related to it.

week		engagement	signup
1	۱7	617	72
1	18	1498	163
1	L9	1552	185
2	20	1580	176
2	21	1612	183
2	22	1870	196
2	23	1795	196
2	24	2014	229
2	25	1798	207
2	26	1963	201
2	27	1988	222
2	28	1010	89
2	29	147	0
3	30	75	0
3	31	77	0
3	32	6	0
3	33	7	0
3	34	2	0

D. Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

Here I need to calculate the weekly engagement per device.

SQL Statement:

SELECT week (occurred_at) AS week,

COUNT(DISTINCT e.user_id) AS weekly_users,

COUNT(DISTINCT CASE WHEN e. device IN ('macbook pro', 'aceraspire notebook',

'acer aspire desktop', 'lenovo thinkpad', 'mac mini', 'dell inspirondesktop',

'dell inspiron notebook', 'windows surface', 'macbook air', 'asus chromebook', 'hppavilion desktop')

THEN e.user_id ELSE NULL END) AS computer,

COUNT(DISTINCT CASE WHEN e. device IN ('iphone 5s',

'nokia lumia635', 'amazon fire phone', 'iphone 4s', 'htc one', 'iphone 5', 'samsung galaxy s4')

THEN e.user_id ELSE NULL END) AS phone,

COUNT(DISTINCT CASE WHEN e. device IN ('kindle fire',

'samsunggalaxy note', 'ipad mini', 'nexus 7', 'nexus 10', 'samsumg galaxy tablet', 'nexus 5', 'ipad air')

THEN e.user_id ELSE NULL END) AS tablet

FROM 'opsanalytics'. 'table-2 events' e

WHERE e. event_type = 'engagement'

AND e. event_name = 'login'

GROUP BY 1

ORDER BY 1

Conclusion:

Following is the weakly engagement per device, where users are using devices like computers, phone and tablets.

week	weekly_users	computer	phone	tablet	
17	85	35	29	14	
18	194	107	35	36	
19	208	95	59	39	
20	195	98	47	32	
21	208	99	56	40	
22	230	120	47	47	
23	224	111	53	36	
24	252	126	67	43	
25	245	126	53	38	
26	230	115	65	32	
27	249	118	77	40	
28	114	56	28	21	
29	18	10	3	3	
30	7	5	1	0	
31	7	2	3	1	
32	1	0	1	0	
33	2	2	0	0	
34	1	0	1	0	

E. Email Engagement: Users engaging with the email service.

Here I need to calculate the email engagement metrics.

SQL statement:

SELECT

EXTRACT(WEEK FROM occurred_at) AS weeknum,

COUNT(DISTINCT e.user_id) AS weekly_users,

COUNT(CASE WHEN e.action = 'sent_weekly_digest' THEN e.user_id ELSE NULL

END) AS 'weekly_emails',

COUNT(CASE WHEN e.action = 'email_open' THEN e.user_id ELSE NULL END) AS 'email_opens',

COUNT(CASE WHEN e.action = 'email_clickthrough' THEN e.user_id ELSE NULL

END) AS 'email_click through'

FROM 'opsanalytics'. 'table-3 email_events' e

GROUP BY 1

Conclusion:

Following are the email metrics, where I found 18 rows of the metrics like weekly users, weekly emails, email opens, email clickthrough etc.

weeknum	weekly_users	weekly_emails	email_opens	email_click through
17	510	510	129	55
18	1462	1462	430	160
19	1462	1462	431	189
20	1462	1462	440	172
21	1462	1462	451	153
22	1462	1462	408	170
23	1462	1462	446	182
24	1462	1462	459	192
25	1462	1462	410	168
26	1462	1462	416	176
27	1462	1462	444	175
28	1462	1462	443	181
29	1462	1462	442	163
30	1461	1461	448	172
31	1461	1461	422	97
32	1461	1461	439	99
33	1461	1461	453	110
alt 11 V	+ 45 +	4454	440	07

Result:

I accomplished a great deal while working on the Operation Analytics and Investigating Metric Spike Report project. During the project, I gained knowledge about various techniques utilized for investigating metric spikes, and I also learned about the tools utilized for analyzing data. This project has provided me with practical knowledge about these concepts, enhancing my understanding of operation analytics and data analysis. Furthermore, the project has improved my problem-solving and analytical abilities.

DRIVE LINK:

https://drive.google.com/file/d/1m186RQGVljZULBtQ9ReMMtxUjTZijS7N/view?usp=share_link