9.1 (i)
$$|S_{4}| = 4! = 24 = 2^3.3$$
. So the Sylow 2-verifyings of S_{4} wave all the verifyings of S_{4} of order 2^3 . Let $P \in Syl_2G$ where $G = S_4$. Then $N_2 = [G:N_G(P)]$ divide 3 (as $P \leq N_G(P) \leq G$). From $q = 7.6$ (iii) $< (1234), (13)>, < (1324), (34)>$ land $< (1243), (23)>$ wave three configurates of G of order $2^3 = 8$.

i. $Syl_2G = \{< (1234), (13)>, < (1324), (34)>, < (1243), (23)>\}$.

The Sylow 3-configurate of S_4 wave all the configurate of S_4 of order S_4 . i. (for $G = S_4$)

 $Syl_3G = \{< (123)>, < (124)>, < (134)>, < (134)>, < (234)>\}$

(ii) Let $G = A_5$. Then $|G| = \frac{5}{2}! = 60 = 2^2.3.5$. Since $< (12)(34), (13)(24)> = \{(1), (12)(34), (13)(24), (14)(23)\}$ no a configurate of G

of order 4, $P = \langle (12)(34), (13)(24) \rangle \in Syl_2 G.$ Let H whe the stabilizer in G of 5 ($\in \Omega =$ {1,2,3,4,5}). Then $H \leq G$ (Lemma 5.5). Pulso P ≤ H and H ≅ A4. So P ≥ H (cby structuse of A4). .. H ≤ NG(P) vand so $|N_G(P)| =$ 12 or 60. By icalculation (or using the fact that A5 is wimple) | NG(P) 1 +60. $|N_G(P)| = |2|$ and so $n_2 = [G:N_G(P)] = |$ $\frac{|G|}{|N_G(P)|} = 5$. Hence Syl₂ G = { < (12)(34), (13)(24)>, < (12)(35), (13)(25))

 $Syl_{2}G = \{ \langle (12)(34), (13)(24) \rangle, \langle (12)(35), (12)(35), (12)(45), (14)(25) \rangle, \langle (13)(45), (14)(35) \rangle, \langle (13)(45), (14)(35) \rangle, \langle (23)(45), (24)(35) \rangle \},$

9.2 (i) First whow that P no a subgroup of G = GL(2, p).

Since
$$(10) \in P$$
, $P \neq \emptyset$. Since $det(1a) = 1$, $(1a) \in G$. So $\phi \neq P \subseteq G$.
Let $(1a)$, $(1b) \in P$ (so $a, b \in F$).
Since $(1b)^{-1} = (1-b)$,
 $(1a)(1b)^{-1} = (1a)(1-b) = (1-b+a) \in P$
Las $a, b \in F$ simplies $-b+a \in F$.
Therefore $P \leq G$ thy the configurary extension.
Lates $|P| = |F| = p$.
By $q = 2.5$ $|GL(2,p)| = (p^2-1)(p^2-p) = p(p-1)(p^2-1)$
Mote that $p \neq (p-1)$ rand $p \neq (p^2-1)$, rand so $p \neq (p-1)(p^2-1)$. $|G| = pm$ with $p \neq m$ $(m = (p-1)(p^2-1))$. Hence $P \in Sylp G$.

(ii) Suppose
$$g = \begin{pmatrix} \alpha & \beta \\ 8 & \delta \end{pmatrix} \in N_{G}(P) \quad (\alpha, \beta, \delta, \delta \in F, \delta \in F, \delta \in F) = 0$$

Let $\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \in P$. Set $d = \det(\alpha \beta) = 0$
 $d \in S - \beta \delta$. Recall $\begin{pmatrix} \alpha & \beta \\ \delta & \delta \end{pmatrix}^{-1} = \frac{1}{d} \begin{pmatrix} \delta - \beta \\ -\delta & \alpha \end{pmatrix}$,

Then $g^{-1} g = \frac{1}{d} \begin{pmatrix} \delta - \beta \\ -\delta & \alpha \end{pmatrix} \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \delta & \delta \end{pmatrix}$
 $= \frac{1}{d} \begin{pmatrix} \delta \alpha + \delta \alpha \delta - \beta \delta & \delta \alpha^{2} \\ -\delta \alpha & -\delta \beta - \delta \alpha \delta + \alpha \delta \end{pmatrix}$

which must the in $P + \delta \alpha \in F$. So $-\delta \alpha = 0$
 $A \in F$ which implies $\delta = 0$. So $d = \alpha \delta$
 $A \in F$ which implies $\delta = 0$. So $d = \alpha \delta$
 $A \in G$
 A

So
$$n_p = [G: N_G(P)] = \frac{|G|}{|N_G(P)|} = \frac{|G|}{|N_G(P)|} = \frac{|p(p-1)(p^2-1)|}{|p(p-1)(p-1)|} = p+1.$$

9.3 Suppose $R ext{ } ext{$

.. $R = R^g \leq P_1^g = P$, and so R is contained $R \leq G$ un every Sylow p-vsubgroup of G.

9.4 (i) Since PNN is a p-contiguoup of N, $PNN \leq R$ where $R \in SylpN$ (by Theorem 9.1 (iii) (applied to N). Likewise, i.e. R is a p-subgroup of G, $R \leq P_1$ for some $P_1 \in SylpG$.

Mow $R \leq N \cap P_1 \leq N$. So, since $R \in SylpN$

vand NAP, is in p-subgroup of N, R=NAP. By Theorem 9.1(ii) I g & G wouth that .. Rg=(NnP,)g=NgnP,g=NnP. Neg-NnP. Hence IRI=IR91=INNPI. Thus, as PANSR, R=PNN... PNNE SygN. (ii) Let |G|=pm and |N|=pn where pfm cand pfn. Since PnN& SycpNBy (i), IPnNI=p. Calso $|G/N| = p^{a-b}(m/n)$ rand pf(m/n). From $PN/N \cong P/P \cap N$ (Theorem 7.17), we get PN/N is a p-voulgroup of G/N of corder |P1/1PnN1 = p/pb = pa-b

.. PN/N E Syly G/N.

(iii) $G = S_3$, $H = \langle (12) \rangle$, $P = \langle (23) \rangle$ Then $P \in Syl_2 G$ and $P \cap H = \{(1)\} \notin Syl_2 H$. 9.5 Suppose $|G| = p^2q$ and G is simple.

By Theorem 9.1 (iv) $n_p | q$, ..., $n_p = l$ or q.

Grainple $\Rightarrow n_p \neq l$ and so $n_p = q$. (*) Let $P \in Syl_p G$ and l et $1 \neq x \in P$. Then $C_G(x) = P$.

Since $|P|=p^2$, P is tabelian they Lemma 7.7 cand so $P \leq C_G(x)$. Lagranges theorem \Rightarrow certier $P = C_G(x)$ or $G = C_G(x)$. If $G = C_G(x)$, then $1 \neq \langle x \rangle \leq G$ with $\langle x \rangle \leq P \neq G$, contrary its G their simple. . . (*) Cholds.

(**) Let $P_1, P_2 \in Syl_p G$ with $P_1 \neq P_2$. Then $P_1 \cap P_2 = 1$.

of $P_1 \cap P_2 \neq 1$, other $\exists 1 \neq x \in P_1 \cap P_2$. By (*)otherwise $P_1 = C_G(x) = P_2, \text{ whereas } P_1 \neq P_2.$

Shus P1 1 P2 = 1.

Also we chave

(***) For $Q_1,Q_2 \in Syl_2 G$ with $Q_1 \neq Q_2$, $Q_1 \cap Q_2 = 1$.

(***) Cholds Weesme |Q1 |= q = |Q2 |.

Moring (**) vand (***), the countring elements

of G in Sylow p- and Sylow q-voulgroups

we get

 $|G| = p^{2}q \ge n_{p}(p^{2}-1) + n_{q}(q-1) + 1$ $= q(p^{2}-1) + n_{q}(q-1) + 1$ $\Rightarrow q-1 \ge n_{q}(q-1)$

- .. ng=1, contrary to G cheing simple.
- . G is not simple.

9.6 (i) Suppose $|G|=56=2^3.7$ and G no simple. So $n_7 \neq 1$ and chence, by Theorem 9.1 (iv), $n_7=8$ Set $L=\bigcup P\setminus\{1\}$. Then $|L|=6n_7=48$ $P\in Syl_7G$

(because for P1, P2 = Syl7G, P1 + P2 => P1 1P2=1) Let Q & Syl2 G. So |Q|=23 Land Qn L= p. Hence Q = G \ L vand so n2=1, wantray to Gibeing simple. (ii) Suppose | G|=3.5.7 and G is simple. So $n_3 \neq 1$. Since $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 5.7$, we innest chave n3=7. Let Q ∈ Syl3 G. Then |Nc(Q)|=325 Now let PE Syl Nc(Q). So 1P1=5 and Chence P& Sylo G. applying Sylaws otherm to NG(Q) for the prime 5 we get $|Syl_5N_G(Q)|=1$. Thus $P \preceq N_G(Q)$ rand $N_{G}(Q) \leq N_{G}(P)$. $n_{5}[G:N_{G}(P)] = 1 \text{ or } 7$. Since 7\$ 1 (mod 5), we chave n=1, contrary

(iii) Suppose $|G| = 2^3.3.7.23$ and G is simple. Since $n_{23} | 2^3.3.7$, $n_{23} \neq 1$ and

cto G Cheing simple.

 $n_{23} \equiv 1 \pmod{23}$, we deduce $n_{23} = 24 = 2^3.3$. Let Q & Syl₂₃ G. Then $|N_G(Q)| = 7.23$. Let PE Syen NG(Q). Then just cas in (ii) get $N_G(Q) \leq N_G(P)$. .. $n_7 = [G:N_G(P)]$ divides 2.3. Since $n_{\gamma} \neq 1$ and $n_{\gamma} \equiv 1 \pmod{7}$, other simplies $n_7 = 8$. Hence $[G:N_G(P)]=8$. By 9 8,2 (ii) 1 G1 valiorides 8! But 23/16/ land 23/8!, la icontradiction.