Surds, Indices & Logarithms

- **1.** $(17)^{3.5}$ x $(17)^{?}$ = 17^{8}
- **A**. 2.29 **B**. 2.75 **C**. 4.25 **D**. 4.5
- 2. Given that $100^{.48} = x$, $100^{.70} = y$ and $x^z = y^2$, then the value of z is close to:
- **A**. 1.45 **B**. 1.88 **C**. 2.9 **D**. 3.7
- 3. If $5^a = 3125$, then the value of $5^{(a-3)}$ is:
- **A**. 25 **B**. 125 **C**. 625 **D**. 1625
- **4.** If $3^{(x-y)} = 27$ and $3^{(x+y)} = 243$, then x is equal to:
- **A**. 0 **B**. 2 **C**. 4
- **5.** $(256)^{0.16}$ x $(256)^{0.09}$ = ?
- **A**. 4 **B**. 16 **C**. 64 **D**. 256.25
- **6.** The value of $[(10)^{150} \div (10)^{146}]$
- **A**. 1000 **B**. 10000 **C**. 100000 **D**. 106
- 7. $(25)^{7.5}$ x $(5)^{2.5}$ ÷ $(125)^{1.5}$ = 5?
- **A**.8.5 **B**.13
- **C**.16 **D**.17.5

D. 6

- **E**. None of these
- **8**. $(0.04)^{-1.5} = ?$
- **A**. 25 **B**. 125
- **C**. 250 **D**. 625
- 9. If m and n are whole numbers such that $m^n = 121$, the value of $(m-1)^{n+1}$ is:
- **A**. 1 **B**. 10 **C**. 121 **D**. 1000
- **10**. Which of the following statements is not correct?
- **A**. $\log_{10} 10 = 1$
- **B**. $\log (2 + 3) = \log (2 \times 3)$
- **C**. $\log_{10} 1 = 0$
- **D**. $\log (1 + 2 + 3) = \log 1 + \log 2 + \log 3$
- **11**. If $\log 2 = 0.3010$ and $\log 3 = 0.4771$, the value of $\log_5 512$ is:
- **A**. 2.870 **B**. 2.967 **C**. 3.876 **D**. 3.912
- **12**. If $\log 27 = 1.431$, then the value of $\log 9$ is:

- **A**. 0.934 **B**. 0.945 **C**. 0.954 **D**. 0.958
- **13**. If $\log_{10} 2 = 0.3010$, then $\log_2 10$ is equal to:
- **A**. 699/301 **B**.1000/301 **C**. 0.3010 **D**. 0.6990
- **14**. If $\log_{10} 5 + \log_{10} (5x + 1) = \log_{10}(x + 5) + 1$, then x is equal to:
- **A**. 1 **B**. 3
 - **B**. 3
- **C**. 5
- **D**. 10
- **15**. If $\log_x y = 100$ and $\log_2 x = 10$, then the value of y is:
- **A**. 210 **B**. 2100
- **C**. 21000 **D**. 210000
- **16**. The value of $log_2 16$ is:
- **A**.1/8 **B**. 4
- **C**. 8
- **D**. 16