Simple Linear Regression

```
Import libraries and load dataset
```

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: df = pd.read_csv('Salary_Data.csv')
```

df.head()

YearsExperience Salary 1.1 39343.0 1.3 46205.0 2 1.5 37731.0 2.0 43525.0 2.2 39891.0

In [3]: df.isnull().sum() YearsExperience 0 Salary 0 dtype: int64

observations:

* There are no missing values.

Separating independent and dependent data

```
In [4]: # independent features
        x = df.drop(columns = ['Salary'], axis = 1)
        # dependent features
        y = df['Salary']
```

Train Test Split

```
In [5]: from sklearn.model_selection import train_test_split
         x_{train}, x_{test}, y_{train}, y_{test} = train_{test}, y_{test}, y_{test} = 0.3, train_{test}, y_{test}
```

Model Training

LinearRegression()

```
In [6]: from sklearn.linear_model import LinearRegression
        regressor = LinearRegression()
        regressor.fit(x_train, y_train)
```

Prediction

```
In [7]: y_pred = regressor.predict(x_test)
        y_pred
Out[7]: array([115573.62288352, 71679.93878159, 102498.90847018, 75415.57147111,
                55803.4998511 , 60473.04071301, 122110.98009019, 107168.44933209,
                63274.76523015])
```

Evaluation

```
In [8]: from sklearn.metrics import r2_score
        score = r2_score(y_test, y_pred)
        print(score)
        0.9414466227178214
```

1. Visualising training result

```
In [9]: plt.scatter(x_train, y_train)
        plt.plot(x_train, regressor.predict(x_train), color = 'orange')
        plt.title('Salary vs Experience (Training set)')
        plt.xlabel('Years of Experience')
        plt.ylabel('Salary')
        plt.show()
```


Assumption 1:

```
In [10]: plt.scatter(x_test, y_test)
         plt.plot(x_test, regressor.predict(x_test), color = 'orange')
         plt.title('Salary vs Experience (Test set)')
         plt.xlabel('Years of Experience')
         plt.ylabel('Salary')
         plt.show()
```


	Simple Linear Regression
In [1]: In [2]:	<pre>import library and load dataset import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('height-weight.csv')</pre>
Out[2]:	<pre>df.head() Weight Height 0 45 120 1 58 135</pre>
In [3]:	
Out[3]:	<pre>df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 23 entries, 0 to 22 Data columns (total 2 columns): # Column Non-Null Count Dtype</class></pre>
	0 Weight 23 non-null int64 1 Height 23 non-null int64 dtypes: int64(2) memory usage: 496.0 bytes
In [5]:	<pre>Visual represetation of data plt.scatter(x = df['Weight'], y = df['Height']) plt.title('Weight v/s Height') plt.xlabel('Weight') plt.ylabel('Height')</pre>
	Weight v/s Height 180 -
	170 - 160 - \frac{\frac{7}{2}}{\frac{7}{2}} 150 -
	140 - 130 -
	120 - 50 60 70 80 90 100 Weight
	Aim: • To Create a best fit line which has least error. In machine learning before training model we need to perform some steps:
	 Divide the features based on independent and dependent features. Train, Test split of dataset. Standardize the data. Train the model using LinearRegression Test model. Performance metrics.
	7. Assumptions. 1. Divide the features based on independent and dependent features.
	<pre># x is independent feature x = df[['Weight']] # y is dependent feature y = df['Height'] print(x) print()</pre>
	<pre>Weight 0 45 1 58 2 48 3 60 4 70 5 78</pre>
	6 80 7 90 8 95 9 78 10 82 11 95 12 105
	13 100 14 85 15 78 16 50 17 65 18 76 19 87 20 45 21 56
	22 72 0 120 1 135 2 123 3 145 4 160 5 162
	162 6 163 7 175 8 182 9 170 10 176 11 182 12 175 13 183
	14 170 15 177 16 140 17 159 18 150 19 167 20 129 21 140
	22 160 Name: Height, dtype: int64 2. Train Test split
In [8]: In [9]: In [10]:	<pre>print('Length of train data :',len(x_train))</pre>
	# test data size is 20% of actual data size. print('Length of test data :',len(x_test)) Length of Dataset : 23 Length of train data : 18 Length of test data : 5
In [11]:	3. Standardize the train independent data. Because weight vary in different scale i.e 50-100. Therefore, we need to scale down the data so that our gradient descent optimization will happen quickly. from sklearn.preprocessing import StandardScaler scaler = StandardScaler()
	<pre>We need to optimize our training data also based on the observation got in the test data. # it will apply the z-score for every point in the dataset # we need mean and std to apply z-score that will be calculated by fit # transform applies the z-score</pre>
	<pre>x_train = scaler.fit_transform(x_train) # no need to calculate the mean and std as it is already calculated above so fit is not required # here, in x_test it will take the mean and std of train dataset and apply the z-score for test data x_test = scaler.transform(x_test)</pre> We do only transform on test dataset because of data leakage
In [14]: Out[14]:	We do this because our model should not know anything about our test data but it should have only information about the train data such as mean and std plt.scatter(x_train, y_train) <matplotlib.collections.pathcollection 0x1a805531e50="" at=""></matplotlib.collections.pathcollection>
	180 - 170 - 160 -
	150 -
	120 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
	 Observation: Here, our weight feature is scale down between -1.5 to +1.5 4. Train the simple linear regression model.
In [15]: In [16]:	from sklearn.linear_model import LinearRegression regressor = LinearRegression() fit will find intercept and slope value
In [17]: Out[17]: In [18]:	regressor.fit(x_train,y_train) LinearRegression() print('The slope or coefficient of weight is',regressor.coef_) # it will give the slope of the features # Here, we have one feature so only 1 slope
In [19]:	The slope or coefficient of weight is [17.03440872] print('The intercept of weight is',regressor.intercept_) The intercept of weight is 157.5 Observation:
	• $ heta_0$ = 157.5 (Intercept) • $ heta_1$ = 17.03440872 (Coefficient or slope) Line equation : $h_{ heta}(x) = heta_0 + heta_1 x$
In [20]: Out[20]:	Now, we will create the best fit line plt.scatter(x_train, y_train) plt.plot(x_train, regressor.predict(x_train),'r') [<matplotlib.lines.line2d 0x1a805715520="" at="">] 190</matplotlib.lines.line2d>
	180 -
	150 - 140 -
	120 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
	prediction of train data 1. predicted height output = intercept + coef_(Weights) 2. y_pred_train = 157.5 + 17.03(X_train)
	prediction of test data 1. predicted height output = intercept + coef_(Weights) 2. y_pred_test = 157.5 + 17.03(X_test)
<pre>In [21]: In [22]: Out[22]:</pre>	5. Test model with test data. y_pred = regressor.predict(x_test) y_pred , y_test (array([161.08467086, 161.08467086, 129.3041561 , 177.45645118,
	148.56507414]), 15 177 9 170 0 120 8 182 17 159 Name: Height, dtype: int64) We can compare and calculate the accuracy
<pre>In [23]: Out[23]:</pre>	<pre># for actual point plt.scatter(x_test,y_test) # best fit line is calculated plt.plot(x_test,regressor.predict(x_test),'r')</pre>
ouc[23].	180 -
	160 - 150 - 140 -
	120 -
	 6. Performance metrics. MSE, MAE and RMSE. R² and Adjusted R²
In [24]: In [25]:	<pre>from sklearn.metrics import mean_squared_error,mean_absolute_error mse = mean_squared_error(y_test,y_pred) mae = mean_absolute_error(y_test,y_pred) rmse = np.sqrt(mse)</pre>
In [26]:	Less the error then better the will be model. print (mse) print (mse) print (rmse) 109.77592599051654 9.822657814519227 10.477400726827076
In [28]:	$Adjusted_{R_{squared}} = 1 - \frac{(r - tr) + (r - tr)}{N - p - 1}$ $from sklearn.metrics import r2_score$ $r_square = r2_score(y_test, y_pred)$ $print('Our model is', round((r_square*100), 2), '% accurate calculated using r square.')$
In [30]:	Our model is 77.7 % accurate calculated using r square. n = len(y_test) p = x_test.shape[1] adjusted_r_square = 1 - ((1-r_square)*(n-1)/(n-p-1)) print('Our model is',round((adjusted_r_square*100),2),'% accurate calculated using adjusted r square.')
.~4]:	Our model is 70.26 % accurate calculated using adjusted r square. ${\sf Always}: R_{squared} > Adjusted_{R_{squared}}$
Ip ^r ~	For any new weight 1. Scale the weight. 2. predict the height. 3. Render the resuls. weight = 80
Out[32]:	scaled_weight = scaler.transform([[weight]]) scaled_weight D:\Anconda\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names warnings.warn(array([[0.32350772]])
Out[33]:	height_pred = regressor.predict(scaled_weight) height_pred array([163.01076266]) print(f'Height predicted for weight {weight} kg is {round(height_pred[0],2)} cm') Height predicted for weight 80 kg is 163.01 cm
In [35]:	# Assumption 1 # plot scatter plot for the actual value and predicted value plt.scatter(y_test,y_pred)
Out[35]:	(mathletlib callections DathCallection at Owla9057a6da0)
	150 -
	130 -
	120 130 140 150 160 170 180 Conclusion: • If plot looks linear then our prediction is done well.
<pre>In [36]: Out[36]:</pre>	<pre># Assumption 2 # Residuals residuals = y_test - y_pred residuals 15 15.915329 9 8.915329 0 -9.304156</pre>
In [37]:	<pre>8 4.543549 17 10.434926 Name: Height, dtype: float64 # plot the residuals import seaborn as sns sns.distplot(residuals , kde = True)</pre>
Out[37]:	D:\Anconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) <axessubplot:xlabel='height', ylabel="Density"> 0.06</axessubplot:xlabel='height',>
	0.05 - 0.04 - <u>isi</u> 0.03 -
	0.02 - 0.01 -
	0.00
	• If normal distribution then better model is created. # scatter plot with respect to prediction and residuals plt.scatter(y_pred, residuals) (metholatilib collections Rethocalisation at 001200557bc70)
Out[38]:	<pre>matplotlib.collections.PathCollection at 0x1a805f7bc70></pre> 15 - 10 -
	5 - 0 -
	-5 - -10 - 130 140 150 160 170
	Conclusion: • If uniform distribution then better model is created. Pickling the model - model is converted into file and used to predict output for any new data.