Index

September 18, 2020

Classical Machine Learning

Week 0

Plan - Setting up your learning and programming environment

Getting started - Setting up your ML environment - Choosing an ML environment - Quick intro to the tools

1 Week 1

Plan - Motivate Machine Learning - Introduce notation used throughout course - Plan for initial lectures - *What*: Introduce, motivate a model - *How*: How to use a model: function signature, code (API) - *Why*: Mathematical basis – enhance understanding and ability to improve results

- Course Overview
- Machine Learning: Overview
- Intro to Classical ML

2 Week 2

Plan - Introduce a model for the Regression task: Linear Regression - Introduce the Recipe for Machine Learning: detailed steps to problem solving

- Our first model: Linear Regression (Overview)
- A process for Machine Learning
 - Go through the methodical, multi-step process
 - * Quick first pass, followed by Deeper Dives
 - This will be a code-heavy notebook!
 - Illustrate Pandas, Jupyter, etc
 - Recipe for Machine Learning: Overview
 - * Linked notebook

Deeper dives - Iterative improvement - When to stop: Bias and Variance - Regularization - Fine tuning techniques

3 Week 3

Plan - Regression wrap up - The Loss function for Linear Regression

- Recipe for ML focus: Introduction to Transformations (Prepare Data step)
 - Transforming data (featuring engineering) is a key step in the Recipe
 - We introduce transformations
 - * Focus on the how; subsequent lecture will cover the why
- Introduce a model for the Classification task: Logistic Regression
- How to deal with Categorical (non-numeric) variables
 - classification target
 - features

Regression wrap up - Linear Regression: Loss Function

Transformations - Prepare Data: Intro to Transformations

Classification intro - Classification: Overview - Classification and Categorical Variables - linked notebook

Classification, continued - Multinomial Classification - Classification Loss Function

Deeper dives - Log odds

4 Assignments

Your assignments should follow the Assignment Guidelines

- Regression
 - Assignment notebook: Using Machine Learning for Hedging
 - _ Data
 - * There is an archive file containing the data
 - * You can find it
 - · Under the course page: NYU Classes -> Resources -> Data -> Regression Task
 - * You should unzip this archive into the the same directory as the assignment notebook
 - * The end result is that the directory should contain
 - · The assignment notebook and a helper file
 - · A directory named Data