

Building a Multi-class prediction App for Malicious URLs

Paper ID: 371 ANTIC-2022

Presenter : Vijayaraj S

MTech in Cybersecurity
Vijayraj.cs04@race.reva.edu.in

2nd & 3rd Authors:

Dr. Shinu Abhi & Dr. Rashmi Agrawal

Date: 24-Dec-2022

race.reva.edu.in

Introduction

Harmful URLs and Threats

Malicious landing URLs are those that give users the chance to click on harmful links.

Simple click may misuse user's computing resources, steal confidential data, or carry out other forms of assaults.

Employees receive an average of 14 phishing emails per year.

Users clicking on bad URL reported as second most expensive cause of data breaches.

It is imperative to detect and block these threats effectively.

Google Safe Browsing data depicts sharp rise in Phishing sites between Jan 2016 – Jan 2021

Introduction

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Background | Current status | Why this topic

2021 Malware Phishing Trojans Increase Trends

found information-

stealing malware activity

Problem Statement

Technical | Functional

- **Methods widely used**: Sandboxing, secure email gateways, and installing plugins.
- **ML** Detection Techniques (**Binary class**) in **literatures**: URL based, Host based, content based.
- **Needs supplementation**
 - Host combinations are less explored.
 - Parametric and nonparametric algorithms less explored for multi classification or URLs.
- Need of simple powerful solution bringing **detection** and **protection** for end users.

Work Objectives

- Validate application of Parametric & non-parametric (ANN & Ensemble) classifiers for multi categorization of URLs
- Use lexical and host features (combination) for building best **Multi classification** model
- Evaluate performance of discriminative features
- Explore the **influence of feature variation** on detection result of parametric and parametric models.
- Build a **sustainable** (low code) Web **Solution** for **URL prediction**
- **Integrate third party tool** (Virus Total) for parallel validation.

Project Methodology

Data Preparation and Feature Engineering Phase

Datasets creation: 2

Project Methodology

High level Workflow

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Web App Design

Integration of modules

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Module 1 Workflow

Whois Feature Generator

Web App

Virus Total Connector

Module 2 Workflow

Lexical Feature Builder

Module 3 – Model Building & Deployment

Model Performance validation and Best model selection

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Module 4 – Virus total Validation

Integration Workflow

Project Methodology

Algorithms Selection

1. Parametric Classifier

Multilaver perceptron (MLP) – ANN

Algo assume data to follow certain distributions

2. Nonparametric Classifiers

- Decision Tree Classifier (DT).
- K-Nearest Neighbor Classifier (KNN).

Ensemble Algorithms:

- Gradient Boosting Classifier.
- Random Forest Classifier (RF).
- Light Gradient Boosting Machine (LGBM).
- Extreme Gradient Boosting Classifier (XGBoost).

Algo doesn't assume data to follow certain distributions

use multiple learning algorithms to obtain better predictive performance

Resource Specifications

Software | Hardware | Others

Local Machine Configur	ation					
System	ACER-NITRO 5 AMD					
Operating System	Windows 11 Home Single Language					
	AMD Ryzen™ 5 4600H (3.00 GHz base frequency, uptoMax. Boost Clock 4.0GHz, 8 MB					
Processor	cache, 6 cores, 12 Threads)					
Memory	32 GB DDR4 3200MHz (2 x 16 GB)					
Graphics	AMD Radeon™ Graphics (6 core, 1500 MHz frequency)					
Hard Disk	256 GB PCIe® NVMe™ M.2 SSD + 1 TB HDD					
Machine Learning Softv	vare and Libraries					
Language	Python 3.9.12					
Development						
Environment and GUI	Anaconda Navigator, Jupter, IDLE					
Libraries	Pandas, Scikit Learn, confusionmatrix, whois, Numpy, Matplotlib, Seaborn, GridSeaarchCV					

Resource Specifications

Software | Hardware | Others

Program modules and Web UI					
Virus total Connector	Python				
Web application	Python, Streamlit				
Deployment	Lightweight container using Python libraries				

Data & Feature Vizualisation

Exploratory Data Analysis

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Features List

Multiclass Dataset distribution

Label	No. of URLs				
Benign	26144				
Malware	27424				
Phishing	26773				
Spam	25889				
Total URLs: 1,06,230					

Out[7]:		url	type
0.	0	http://www.keve-kiserdo.hu/portal/index.php?op	spam
	1	www.agdealer.com/keystone	phishing
	2	sbcspa.tripod.com/sbcs/	phishing
	3	hockeydraft.ca/players/profile.aspx?id=4132&na	benign
	4	210.37.11.238/jm32/includes/site/config.bin	malware

~ Equal distribution

	ss 'pandas.core.fram		
	eIndex: 106230 entri columns (total 32 c		
ata #	Columns (total 32 c	Non-Null Count	Division
	Column	Non-Null Count	Dtype
9	url	106230 non-null	
1	type	106230 non-null	
2	Domain_Age	106230 non-null	
	Registrant_Country	106230 non-null	int64
	use_of_ip	106230 non-null	int64
	_	106230 non-null	
_	count.	106230 non-null	
7	count-www	106230 non-null	
	count@	106230 non-null	
9	count//	106230 non-null	
	count?	106230 non-null	
	count=	106230 non-null	
12	count_comma		
13	count*	106230 non-null	
14	count+	106230 non-null	
15	count!	106230 non-null	
16	count%	106230 non-null	int64
17	count-	106230 non-null	int64
18	count_quote	106230 non-null	int64
19	count_dir	106230 non-null	int64
20	count_embed_domian	106230 non-null	int64
21	short url	106230 non-null	int64
22	count-https	106230 non-null	int64
23	count-http	106230 non-null	int64
24	url length	106230 non-null	int64
25	hostname_length	106230 non-null	int64
26	sus url	106230 non-null	
27	fd length	106230 non-null	int64
	tld_length	106230 non-null	int64
		106230 non-null	int64
	count-letters	106230 non-null	int64
	type code	106230 non-null	

Domain Age vs Type Label

Young urls contribute more to Malware and Phishing attacks

Feature Analysis

Feature dependency Analysis

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

strength of

correlation

among features # looking at the correlations of the features. corr = df.corr()

corr.style.background_gradient(cmap='coolwarm')

Visualize the

	Domain_Age	Registrant_Country	use_of_ip	abnormal_url	count.	count- www	count@	count//	count?	count=	count_c
Domain_Age	1.000000	0.023014		-0.068769	-0.054421	0.022927	-0.010675	-0.069397	0.058018	0.054067	-0
Registrant_Country	0.023014	1.000000	0.048292		0.107565		0.011783				-0
use_of_ip	-0.073401	0.048292	1.000000	0.184378	0.235070	-0.161901	-0.016122	0.182650	-0.131509	-0.105973	-0
abnormal_url	-0.068769		0.184378	1.000000	0.264189		0.044637	0.987431	0.256590	0.281226	0
count.	-0.054421		0.235070	0.264189	1.000000	0.336510		0.280689	0.197741	0.176335	0
count-www	0.022927		-0.161901	0.062655	0.336510	1.000000	-0.018764		0.207871	0.229186	-0
count@	-0.010675	0.011783		0.044637			1.000000	0.049754		0.023840	0
count//	-0.069397		0.182650	0.987431	0.280689		0.049754	1.000000	0.263975	0.281807	0
count?	0.058018	0.016851	-0.131509	0.256590	0.197741	0.207871		0.263975	1.000000		-0
count=	0.054067		-0.105973	0.281226	0.176335	0.229186	0.023840	0.281807	0.766861	1.000000	
count_comma	-0.001116	-0.000915		0.018521			0.004235	0.017912			. 1
count*	0.002165	0.000588		-0.012770			0.100517	-0.010123			0
count+	0.017654	-0.035301		-0.034351			0.000394	-0.032700			0
count!	-0.005228	0.004780		0.009676			0.060015	0.009197			
count%	-0.033765	0.018094		0.133677	-0.183699	-0.111432	-0.006051		-0.056374	-0.054606	-0
count-	0.061249	-0.064133	-0.103820		-0.109882		0.006511				0
count_quote	0.001725	0.004748		-0.016676				-0.016470			
count_dir	-0.010983	-0.016162	-0.095491	-0.002605			0.066675	0.000572	-0.106845	-0.178857	
count_embed_domian	-0.009223	0.008363		0.028899			0.046268			-0.006095	-0
short_url	0.004811	-0.009621		-0.054193			0.045181	-0.050502			¢
count-https	-0.083262			0.269740		-0.183972		0.281477	-0.029702		
count-http	-0.068211		0.176210	0.979016	0.291526	0.063632	0.046762	0.987062	0.269237	0.284349	0
url_length	0.030955	0.025444	-0.148018	0.350073	0.181554	0.109536	0.087309	0.358649	0.517528	0.583552	C
hostname_length	-0.038855		0.057293	0.847418	0.350575	0.170016	0.050126	0.836076	0.270153	0.292627	0
sus_url	-0.009368	0.010184	-0.048611		0.041264	0.009071	0.048533		0.054857	0.021439	C
fd_length	-0.022944	0.019434		0.107691	-0.154385	-0.060833	0.006781		-0.078981	-0.046535	-0
tld_length	-0.018145		-0.225965	0.714835	0.104452	0.137557		0.706669	0.295114	0.286081	0
count-digits	-0.056062	0.041161	0.098106	0.280604	0.130220	-0.153136	0.022689	0.279927	0.164344	0.171955	0
count-letters	0.061694	0.007127	-0.219500	0.263701	0.160162	0.183642		0.273885	0.537357	0.599672	C
type_code	0.000748	0.195481		0.502632	0.295175	0.590776	0.025201	0.493702	0.323854	0.372768	0

Exploratory Data Analysis

Background Gradient

It is common abnormal URL strongly related to more "//".

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Feature Interpretation

Exploratory Data Analysis

URL Length distribution per Category


```
# malware rep as 1
#phishing rep as 2
#benign rep as 0
sns.distplot(df.loc[df['type code'] == 1]['url length'], bins = 20, color='red')
sns.distplot(df.loc[df['type code'] == 2]['url length'], bins = 20, color='blue')
sns.distplot(df.loc[df['type_code'] == 3]['url_length'], bins = 20, color='orange')
sns.distplot(df.loc[df['type_code'] == 0]['url_length'], bins = 20, color='green')
```

malware and phishing URLs having common characteristics with particular URL length

Model Performance

Dataset1 - Experiment Results-Default Parameters

XGBoost classifiers and Random Classifier gave maximum accuracy and precision of 95%

Hyperparameters : Default

Approved by AICTE, New Delhi

Classifier Type	Classifier Name	Accuracy	Precision	Recall	Fl
	DT	94%	90%	87%	89%
	RF	95%	93%	90%	91%
	KNN	90%	88%	80%	83%
	LGBM	94%	92%	88%	90%
Non-	GB	91%	89%	81%	85%
parametric	XGBoost	95%	93%	95%	94%
Parametric	MLP	92%	90%	82%	87%

Model Performance

Dataset2 - Experiment Results-Default Parameters

3 models performed with accuracy of 95% which are LGBM classifier, XGB Classifier and RF classifier.

Hyperparameters : Default

Approved by AICTE, New Delhi

Classifier Type	Classifier Name	Accuracy	Precision	Recall	Fl
	DT	93%	93%	87%	88%
	RF	95%	93%	88%	92%
	KNN	90%	88%	80%	84%
	LGBM	95%	96%	88%	91%
Non-	GB	91%	90%	82%	86%
parametric	XGBoost	95%	95%	96%	97%
Parametric	MLP	93%	93%	90%	89%

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Feature performance validation

Comparison - Feature Importance

Top 20 without Whois Feature: Dataset1

Top 20 with Whois Feature: Dataset2

Implementation

Model comparison across datasets

Summary of Models Performance

Prediction Accuracy Name of Classification With URL Features With URL features Trend Algorithm + Whois Features 0.94 0.93 **Decision Tree Classifier** 0.95 0.95 Random Forest Classifier 0.9 0.9 Kneighbors classifier 0.95 LGBM Classifier 0.91 0.91 **Gradient Boosting Classifier** 0.95 0.95 XGB Classifier 0.92 0.93 MLP Classifier

Comparative analysis of performance indicators with previous works

Classifier Name	Accuracy	Precision	Recall	Fl
Asela et al. [24]	82.37%	89.78%	58.22%	70.64%
Rohit et al. [23]	89.00%	88.00%	88.00%	92.00%
Chiramdasu et al. [22]	91.00%	62.00%	85.00%	90.00%
Eduardo et al. [9]	93.47%	93.63%	93.28%	93.46%
Chen et al. [8]	85.99%	87.19%	84.66%	85.01%
Zhao et al. [5]	90.31%	90.03%	90.00%	89.00%
Proposed work	95.02%	95.04%	96.10%	96.99%

XGBoost model is selected for deployment along with Dataset2 features.

Project Code

Web App Design and Integration of modules

GitHub repository: https://github.com/svijayar1/-Building-a-Deep-Learning-based-

Multi-class-prediction-model-for-Malicious-URLs-Proj2-

Code

```
import numpy as np
st.header("URL type Prediction App-(Bening, Malware, Phishing, Spam)"
if=pd.read csv('C:\\Users\\vijay\\Desktop\\Python-programs\\multiclas
Predictor Variables
|Target Variable
/ = df['type code']
train, X test, y train, y test = train test split(X, y, stratify=y,
nodel = xgb.XGBClassifier()
nodel.load_model("xgb_model.json")
Feature Engineering
#df1 = pd.DataFrame({'url':[st.text_input('Enter URL to check')], 'Dc
input_var=st.text_input('Enter URL to check')
ifldata = {'url':input var}
Whois info collection
from openpyxl import load_workbook
from os.path import exists
import sys
import json
import whois
from datetime import datetime
def getDaysDiff(whoi info):
```


Implementation

Deploy Model and Build web application

Streamlit Webpage at launch

Testing and Validation

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Checking Input URL and Output

Webpage Test and Results

Analysis and Results

Key Findings | Insights

Nonparametric Ensemble classifier LGBM and Parametric classifier MLP performance improved as we enrich data with more features

Ensemble models like XGBoost and Random Forest demonstrate consistency staying high with prediction accuracy

Non parametric Ensemble models, perform better than parametric (ANN) models for multiclass classification.

Domain features influence both ML and Neural network model performance

Combination of Lexical and Whois features adds value in identifying malicious URL under multiclass set.

First directory, hostname length, URL length, directory and digit counts having maximum impact on model performances.

Suggestions and Conclusion

Insights | Next Step | Future Scope

- Multiclass work can be considered in the perspective of multilabel learning with little finetune in the methodology keeping class as malicious with labels as Malware, Phishing and Spam
- DNS Feature inclusion and further additional feature from whois information can be considered in future work.
- Model efficiency can be increased by fine tunning hyper parameters
- Application of Deep learning algorithms on multi classification of URLs can be considered for future study

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

