1 Grafos Direcinados

1.1 Introdução

- Até o momento trabalhamos com grafos tais que as arestas são pares não ordenados de vértices
- Várias situações práticas requerem que associemos sentido às arestas do grafo.
- Por exemplo, considere um grafo representando as ruas de uma cidade. Nem todas as ruas são de mão dupla. Ao se estudar rotas de ônibus é necessário considerar se as ruas são de mão única, isto é, permitem fluxo apenas no sentido (v_i,v_j) ou se são de mão dupla.
- Outras situações são: fluxograma de programas computacionais onde os vértices representam instruções e as arestas a sequência de execução; redes elétricas; fluxos em redes que possuem válvulas nos encanamentos.
- · Quando associamos sentido às arestas do grafo temos um grafo direcionado ou digrafo.
- A maioria dos conceitos e terminologia usados para grafos não-orientados são também aplicados para digrafos.
- Por exemplo, o conceito de planaridade independe do sentido associado às arestas.

Vamos chamar atenção neste tópico apenas para as propriedades e conceitos que se aplicam apenas a digrafos.

O conceito formal de um grafo direcionado é dado a seguir.

1.2 Digrafos

1.2.1 Definição

Um **grafo direcionado** G(V,A) é constituido por um conjunto $V=\{v_1,v_2,\ldots,v_n\}$ não-vazio de objetos, chamados vértices (ou nós), e um conjunto $A=\{a_1,a_2,\ldots,a_m\}$ de arestas ou arcos, e uma aplicação Ψ que associa cada aresta a um par ordenado de vértices.

Os digrafos são representados através de um diagrama onde os vértices são representados por pontos e cada aresta (v_i, v_j) é representada por uma linha ligando v_i a v_j com uma seta apontando para v_j .

1.3 Grau de vértices

Em um digrafo, quando dizemos que uma aresta é incidente a um vértice queremos saber em que sentido, isto é, se a aresta é convergente ou divergente a este vértice.

É natural dizer que uma aresta a associada ao par (v_i, v_j) é convergente a v_i e divergente de v_i .

Em relação ao grau de um vértice v_i queremos também saber: * o número de arestas convergentes, chamado **grau de entrada** e denotado $d_e(v_i)$ (ou $d^-(v_i)$); * o número de arestas divergentes, chamado **grau de saída** e denotado $d_s(v_i)$ (ou $d^+(v_i)$).

1.4 Mais definições

- Temos uma fonte quando o grau de entrada é nulo e um sumidouro quando o grau de saída é nulo.
- Duas arestas são paralelas se elas incidem nos mesmos vértices e possuem a mesma orientação.
- Muitas das propriedades de grados não orientados são válidas para digrafos e portanto muitas vezes a orientação do grafo e desconsiderada.
- Definimos o grafo associado a um $\operatorname{grafo} G$ como sendo o grafo obtido desconsiderando a orientação de G.

1.5 Orientação de um grafo

A operação oposta também pode ser considerada:

Dado um grafo (não orientado) G podemos definir alguma orientação para suas arestas obtendo assim um digrafo \overrightarrow{G} chamado de um **digrafo associado** a G.

 Observemos que enquanto o grafo associado a um digrafo é único (a menos de isomorfismos), um digrafo associado a um grafo pode ter várias orientações distintas.

1.6 Digrafos Isomorfos

Dados digrafos G e H, dizemos que eles são **isomorfos** quando os grafos associados são isomorfos e além disso a orientação das arestas coincide.

1.7 Tipos de digrafos

Seja G(V,A) um digrafo. Então G é dito: * Simples se não possui loops ou arestas paralelas; * Assimétrico se possui no máximo uma aresta orientada entre cada par (não-ordenado) de vértices; * Grafos assimétricos podem ter loops; * Simétrico se para cada aresta (a,b) existe também uma aresta (b,a); * Completo Simétrico se G é simples e existe exatamente uma aresta de todo vértice para todos os outros vértices; * Completo Assimétrico se $d_e(v_i) = d_s(v_i)$ para todo $v_i \in V$; * Regular se existe um inteiro k tal que $d_e(v_i) = d_s(v_i) = k$ para todo $v_i \in V$. Dizemos que o digrafo é k-regular.

1.8 Caminhos Orientados

- Definimos passeios da mesma forma que para grafos. No entanto, a orientação das arestas deve coincidir: isto é, dado um par de arestas consecutivos onde v é o vértice comum, a primeiro aresta converge para v enquanto a segunda diverge de v. Neste caso podemos chamar a sequência de passeio orientado, ou simplesmente passeio.
 - Quando a orientação das arestas não coincide, dizemos que a sequência é um semi-passeio.
- · De forma similar definimos trajetos, semi-trajetos, caminhos, semi-caminhos e semi-circuitos.

1.9 Digrafos Conexos

1.9.1 Definição

Um digrafo D(V,A) é **fortemente conexo** se existe um caminho orientado de v_i para v_j e de v_j para v_i , quaisquer que sejam $v_i, v_j \in V$.

2 ♣ April 4, 2019

Um digrafo D(V,A) é fracamente conexo se o grafo associado é conexo mas D não é fortemente conexo.

Propriedades 1.10

Um digrafo é dito ser **acíclico** se não possui circuitos.

- Um digrafo é acíclico se, e somente se, todo trajeto orientado é também um caminho orientado.
- Todo digrafo acíclico possui pelo menos uma fonte e um sumidouro.