Greedy Algorithms

- It is an algorithm, design we have	_		an	algorithm design	techniqu
--------------------------------------	---	--	----	------------------	----------

- A Greedy algoritum always makes the Choice that looks best at the moment.

 i.e., it makes a locally optimal Choice
 - in the hope that this choice will lead to a globally optimal solution.
- Grenerally greedy algorithm are simple,
 however browing that greedy algorithm broduces
 an optimal solution to a broblem is challenging
 Sometimes.

Fractional Knapsack

It is Similar to 0-1 knapsack, however here we are allowed Put any fraction of an item into the knapsack.

Formally,

Griven n items with weights wi, .. wo and

Value 19,1 -- Vn, Knapsack of Capacity W.

Select fractions P1, R1 -- Pn to maximize P121+ -- + Pn2n

Such that PIW, + P2W2+ - + PnWn & W,

Where OSPIZI.

Example: W=10

$$\omega_1 = 4$$
, $\omega_2 = 5$, $\omega_3 = 7$

$$v_1 = 2$$
, $v_2 = 3$, $v_3 = 4$

Value =
$$3 + \frac{5}{7} \times 4 = 5 + \frac{6}{7}$$

Weight =
$$5 + \frac{5}{7} \times 7 = 10 \le W$$

It it were 0-1 knapsack:

Greedy Algorithm

Consider the items in non-increasing value-for-weight ratio. Add items to knapsack one at a time, in this order, until we reach an item whose addition would cause knapsack's Capacity W to be exceeded. Add the largest fraction of that item that fits into the knapsack and Stop.

House Example: W=10

 $\omega_1 = 4$, $\omega_2 = 5$, $\omega_3 = 7$

 $v_1 = 2$, $v_2 = 3$, $v_3 = 4$

Value Per weight 2 = 0.5 3 = 0.6 4 = 0.57

号》等7号

oft Soln: Pick item 2 + largest Possible fraction of item 3

Running time.
O(nlogn) time to Sort the items by the
ratio in non-increasing order.
O(n) time to traverse and Pick from the
list of items until knapsack is full.

Proof of <u>Correctness</u> :
Proof by Contradiction
Suppose there is an instance of fractional knapsack
such that the Solution of the algoritm (ALG) is
not Offimal.
let OPT denote the Optimal Soliction.
Wlog we arrune no items have same <u>Vi</u> .
and items are sosted in decreasing order of Dilwi
Let $ALG = \{P_1, P_2,P_n\}$ be the fraction of items Picked by Algorithm $OPT = \{9, 92,2n\} \text{ Offinal Soln}.$
Of 1 = 12, 22, 2n) Ornma soin.
By assumption $\sum_{i=1}^{N} P_i v_i < \sum_{i=1}^{N} P_i v_i$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

let i be the first index at Pi + 9i.

By our greedy algorithm Pi72i

[because our algo takes maximum Possible fraction of an item]

By the offinality, there must exist an item $j > \bar{i}$ such that $P_j < 2j$

Detine new soln $2=\{2_1^1, q_2^1, -- 2_n^1\}$ Where $2_k^1=2_k$ for all $k\neq i,j$

2' will take a little more of item i and a little less of item j compared to OPT.

$$2i = 2i + \epsilon_i$$
, ϵ_i is the fraction of item i
 $2j = 2j - \epsilon_i$

where $E_i = E_j$

Total Weight doesn't Change.

ie., 2' is a valid & better solution than

OPT, which is a contradiction.

Hence, the Solution from Our algorithm is Oftimal.

(a) Can we solve the fractional knapsack in O(n) time? HINT: MEDIAN

Activity Selection Problem [CLRS 16.1]

Given a Set S of n activities

Si = Start time of activity ai

fi = finish time of activity ai

Activity ai takes Place during the interval [Si, fi)

Two activities a; and aj are compatible if the intervals [Si,fi) and [Sj,fi) do not overlap.

Groal: Find max-size Subset A of Compatible activities.

Example:

 $\{a_1, a_4, a_8, a_{11}\}$ and $\{a_2, a_4, a_9, a_{11}\}$ are largest Subset of mutually Compatible activities.

For the rest of the discussion $\text{We assume that} \quad f_1 \leq f_2 \leq \dots = f_n \, .$

Possible ways
- Brute Force
- Dynamic Programming
- Dynamic Programming - Greedy algorithm
U S

Outline of DP - Algorithm

let Sij be the set of activities that

Starts after activity ai finishes and

finish before the activity aj starts

ai

Aij (Blue activities)

Sij

let Aij be a maximum set of mutually compatible activities in Sij

Offimal Substructure

Suppose ax E Aij

Then we get two Subproblems.

Finding mutually compatible activities in Six and

Let Aix = Aij n Six

Akj = Aij NSkj

.. Aij = Aik U {ak} U Akj

|Aij| = |Aix| + |Akj| + 1

let C[i,j] denote the Size of the optimal solution for the set S_{ij} , then we get

$$C[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max \left\{ C[i,k] + C[k,j] + 1 \right\} \\ a_k \in S_{ij} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

From here onwards the Procedure is Similar to the Other DP Droblems we have seen So far.

Greedy Algorithms

Wa	ramup
	Treedy Choices
	Select the activity which takes least time
②	Select the activity which Starts first
	·
3	Select the activity which has minimal
	overlaps with other activities

Greedy	Choice

Select	the	activity	With	earliest	finish	time.
		V				

Proof of Correctney;

Theorem 16.1

Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Prof:

let Ax be a maximum-size subset of

mutually compatible activities in SK.

it am EAK then we are done.

it am & AK

then let as be the activity in Ak

with the earliest finish time.

Let $A_K^1 = A_K - \{a_j\} \cup \{a_m\}$

- (b) The activities in A_k are disjoint, because

the activities in Ak are disjoint, aj is the

first activity in Ax to finish and fm < fj.

... Ak is a maximum-size subset of mutually competible activities of Sk containing am.

Algoritum

ph

Input activities are ordered increasing finish time.

GREEDY-ACTIVITY-SELECTOR (s, f)

```
1 \quad n = s.length
```

$$A = \{a_1\}$$

$$3 k = 1$$

4 for
$$m = 2$$
 to n

5 **if**
$$s[m] \ge f[k]$$

$$6 A = A \cup \{a_m\}$$

$$7 k = m$$

Running time:

 $\Theta(n)$.

By assuming that the activities were already scrited by their finish times)

	Suppos	e we	Sele	ct th	.)	last	activi!	ry to s	itart
	·	Compati						•	
							•		solution.
		,				J			

Ex	۴9	use	(2)	•

To the action colocking the lower for a children
In the activity selection Problem, each activity as
has in addition to a Start and finish time,
a value Vi.
The Objective is to maximize the total value
of the activities scheduled.
i.e., choose a set A of Compatible activities
Such that Σ V_K is maximized.
a _k eA
Give a Polynomial-time algorithm for this
Problem.