HAI711I — **TD**s

Ivan Lejeune

12 octobre 2025

Table des matières

TD1 — Généralités																2
TD2 — Couplages .	•		•	•						•	•	•	•	•	•	6

TD1 — Généralités

Exercice 1 Soirée chez Ramsey.

On considère un ensemble de six personnes. Montrer que au moins trois personnes se connaissent deux-à-deux ou que au moins trois personnes ne se connaissent pas deux-à-deux. Est-ce vrai pour un ensemble de cinq personnes?

Solution

Soit G = (V, E) un graphe à six sommets. On veut montrer que G contient K_3 ou $\overline{K_3}$. Considérons $x \in V$ un sommet de G et procédons par disjonction de cas en fonction du degré de x:

• Si $\deg(x) \geq 3$, on note s_1, s_2, s_3 trois voisins de x. Si $(s_1, s_2) \in E$ alors x, s_1, s_2 forment K_3 .

De manière similaire, si $(s_1, s_3) \in E$ ou $(s_2, s_3) \in E$ alors K_3 est formé. Si il n'existe pas d'arête entre s_1, s_2, s_3 alors $\overline{K_3}$ est formé.

Ainsi, si $deg(x) \ge 3$ alors G contient K_3 ou $\overline{K_3}$.

Visuellement, on peut voir que si un des traits rouges est présent (donc si il existe une arête entre deux des sommets s_1, s_2, s_3) alors K_3 est formé. Sinon, il y a un triangle rouge en pointillés et $\overline{K_3}$ est formé.

• Si $\deg(x) \le 2$, on note $s_1, s_2, s_3 \in V$ trois sommets de G qui ne sont pas voisins de x (ils existent forcément car |V| = 6). Si $(s_1, s_2) \notin E$ alors x, s_1, s_2 forment $\overline{K_3}$.

De manière similaire, si $(s_1, s_3) \notin E$ ou $(s_2, s_3) \notin E$ alors $\overline{K_3}$ est formé. Si il existe une arête entre chacun des sommets s_1, s_2, s_3 alors K_3 est formé.

Visuellement, on peut voir que si un des traits rouges est absent (donc si il n'existe pas d'arête entre deux des sommets s_1, s_2, s_3) alors $\overline{K_3}$ est formé. Sinon, il y a un triangle rouge en pointillés et K_3 est formé.

Ainsi, si $deg(x) \le 2$ alors G contient K_3 ou $\overline{K_3}$.

Donc pour un ensemble de six personnes, au moins trois personnes se connaissent deux-à-deux ou au moins trois personnes ne se connaissent pas deux-à-deux.

Pour un ensemble de cinq personnes, le graphe G à cinq sommets ci-dessous ne contient ni K_3 ni $\overline{K_3}$:

2

Exercice 2 Hyperparcours.

Soit d un entier positif non nul. L'hypercube Q_d est le graphe dont l'ensemble des sommets est l'ensemble des d-uplets x_1, \ldots, x_d de 0 et de 1, deux d-uplets étant adjacents s'ils diffèrent sur une seule entrée.

- 1. Dessiner Q_d pour d = 1, 2, 3, 4.
- 2. Calculer un parcours en largeur de Q_3 de racine 000. En cas de choix entre plusieurs sommets pour entrer dans la file, on choisira celui de valeur (en binaire) minimale.
- 3. Effectuer de même un parcours en profondeur de Q_3 . Cette fois, il n'y a pas de consigne en cas de choix, mais on essayera d'obtenir un arbre de parcours qui ne soit pas un chemin.

Solution.

1. On a les hypercubes suivants :

FIGURE 4 – Hypercube Q_4 Noeuds non précisés pour la clareté

2. On peut effectuer le parcours suivant :

$$000 \rightarrow 001 \rightarrow 101 \rightarrow 100 \rightarrow 110 \rightarrow 010 \rightarrow 011 \rightarrow 111$$

ce qui se représente visuellement comme suit :

FIGURE 5 – Hypercube Q_3

Exercice 3 Convexité.

Solution.

A remplir

Exercice 4 Convexité.

Solution.

A remplir

Exercice 5 Convexité.

Solution.

A remplir

Exercice 6 Convexité.

Solution.

A remplir

Exercice 7 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$

Exercice 8 Convexité.

Solution.

A remplir

Exercice 9 Convexité.

Solution.

A remplir

Exercice 10 Convexité.

Solution.

A remplir

Exercice 11 Convexité.

Solution. A remplir

TD2 — Couplages

Exercice 1 Convexité.

Solution.

A remplir

Exercice 2 Convexité.

Solution.

A remplir

Exercice 3 Convexité.

Solution.

A remplir

Exercice 4 Jeu de Slither.

Le jeu de Slither se joue sur un graphe connexe, noté G. Chaque joueur choisit à son tour un sommet v_i non précédemment choisi. La suite v_0, v_1, \ldots doit former un chemin, c'est-à-dire que tout pour tout $i = 1, 2, \ldots, v_i$ doit être choisi comme adjacent à v_{i-1} . Le joueur qui ne peut plus jouer a perdu.

Montrer que si G admet un couplage parfait alors le second joueur a une stratégie gagnante. Montrer que si G n'admet pas un couplage parfait alors le premier joueur a une stratégie gagnante

Solution.

A remplir

Exercice 5 Tous d'un coup.

Soit $G = (X \cup Y, E)$ un graphe biparti de bipartition (X, Y) avec $\Delta(G) \ge 1$.

- 1. Montrer que G admet un couplage couvrant tous les sommets de X de degré $\Delta(G)$.
- 2. Montrer que G admet un couplage couvrant tous les sommets de G de degré $\Delta(G)$.
- 3. En déduire qu'il est possible de partitionner les arêtes de G en $\Delta(G)$ couplages.

Solution.

1. On note $k = \Delta(G)$. Soit $S \subseteq X_{\Delta}$. On note $Z = N_G(S)$. On va compter e le nombre d'aretes entre S et Z:

$$e = \sum_{s \in S} \deg(s) = k \cdot |S|$$

Par ailleurs, comme toute arete comptée est incidente à un sommet z, on a :

$$e \le \sum_{z \in Z} \deg(z) = k \cdot |Z|$$

Donc $k \cdot |S| \le k \cdot |Z|$ d'où $|S| \le |Z| = |N_G(S)|$. Par le théorème de Hall, G admet un couplage qui sature X_{Δ} .

2. Par la question précédente il existe un couplage M_X saturant X_{Δ} . De même, il existe un couplage M_Y saturant Y_{Δ} . On va extraire de $M_X \cup M_Y$ un couplage M saturant $X_{\Delta} \cup Y_{\Delta}$. On construit M en regardant chaque composante connexe de $M_X \cup M_Y$.

Soit C une composante connexe de $(V, M_X \cup M_Y)$ (C est soit un chemin soit un cycle).

- Si C est un cycle alors on choisit $M=M_X$ ou $M=M_Y$ (les deux conviennent) et on continue à saturer les sommets de C
- Si C est un chemin on peut supposer que sa première arête est dans M_X . On note $C = x_1 x_2 \dots x_k$. On a trois cas :
 - (a) Si $x_1 \in Y_\Delta$, c'est impossible car x_1 doit être incident à une arête de M_Y ,
 - (b) Si $x_1 \in Y \setminus Y_\Delta$, on prend $M = M_Y$,
 - (c) Si $x_1 \in X_{\Delta}$ on prend $M = M_X$.

Exercice 6 Famille couvrante de cycles dans les graphes 2k-réguliers.

Un 2-factor d'un graphe G

Solution.

A remplir

Exercice 7 Convexité.

Solution.

- 1. On construit le graphe biparti ((X,Y),E) avec Y=A et $X=\{1,\ldots,p\}$. On relie $a\in A$ à i si $a\in A_i$. Un SDR correspond à un couplage saturant X.
 - C'est exactement le théorème de Hall.
- 2. Dans le cas où il y a p-candidats potentiels pour p ensembles, chaque élément sera un représentant.

3.

Exercice 8 Subtil SAT.

Solution.

1. Soit F une formule 3-SAT. Pour $i=1\ldots s$ nombre de variables, si x_i apparaît l_i fois, on crée l_i variables $x_i^1,\ldots,x_i^{l_i}$ dans F, on remplace la j-eme occurence de x_i par x_i^j . On ajoute les clauses

$$(\neg x_i^1 \lor x_i^2) \land (\neg x_i^2 \lor x_i^3) \land \dots \land (\neg x_i^{l_i} \lor x_i^1).$$

Elles sont toutes de taille ≤ 2 et maintenant toutes les variables x_i^j ont la même valeur. On obtient une formule équivalente à F, où les clauses sont de taille ≤ 3 et les variables apparaissent 3 fois.

Comme 3-SAT est NP-complet, (≤ 3) -SAT (≤ 3) est aussi NP-complet.

2. On fait le biparti G Clause-Variable. Les sommets clauses sont de degré 3 dans G. Les sommets variables sont de degré ≤ 3 .

Par l'exercice 5 il existe un couplage M saturant les clauses. Chaque clause C_i a sa variable privée $M \cdot C_i$. Pour $i \in \{1, ..., n\}$, on instancie $M \cdot C_i$ pour satisfaire C_i .

Ainsi, la formule de départ est toujours satisfaisable.

Exercice 9 Algo de couplace max — Partie 1.

Dans le graphe biparti suivant, appliquer l'algo de calcul d'un couplage maximum, en sachant que le couplage $\{1b,2c\}$ a déjà été précalculé.

Solution.

On commence par a non saturé et on fait l'arbre de couplage.

- On trouve 1, 2 à partir de a,
- puis on trouve b, c et on barre les chemins reliés,
- on trouve 4 à partir de b, il est non saturé donc a1b4 est augmentant.
- On augmente |M| et on recommence.
- Je choisis e non saturé,
- 5 est non saturé donc e5 est augmentant.
- On augmente |M| et on recommence.

- Je choisis d non saturé,
- 6 est non saturé donc d4b6 est augmentant.
- On augmente |M| et on recommence.

- On calcule un arbre de couplage enraciné en 3,
- Il est complet, on peut le retirer du graphe

A la fin, il reste:

Exercice 10 Convexité.

Solution.

A remplir

Exercice 11 Convexité.

Solution.

A remplir

Exercice 12 Convexité.

Solution.

A remplir

Exercice 13 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$

Exercice 14 Convexité.

Solution.

 ${\bf A} \ {\bf remplir}$