Algebraic Geometry

Lectured by Prof Mark Gross Typed by David Kurniadi Angdinata

Michaelmas 2020

Syllabus

Algebraic Geometry Contents

Contents

0	Brie	ef review of classical algebraic geometry and motivation for scheme theory	3
	0.1	Classical algebraic geometry	9
	0.2	Why schemes?	9
	0.3	Categorical philosophy	
	0.4	Solutions over non-algebraically closed fields	
	0.5	Spectrum of a ring	
1	She	eaves	6
	1.1	Sheaves	(
	1.2	Examples	7
	1.3	Stalks	7
	1.4	Sheafification	
	1.5	Kernels, cokernels, and images	Ć
	1.6	Passing between spaces	1(
2	Sch	emes	L1
	2.1	Localisation of a ring	11
	2.2	Construction of the structure sheaf	11
	2.3	Ringed spaces	12
	2.4	Affine schemes	
	2.5	Projective schemes	
	2.6	Open and closed subschemes	
	2.7	Fibre products	

0 Brief review of classical algebraic geometry and motivation for scheme theory

The following are the main references for the course.

Lecture 1 Friday 09/10/20

- R Hartshorne, Algebraic geometry, 1977
- U Goertz and T Wedhorn, Algebraic geometry I, 2010
- R Vakil, The rising sea: foundations of algebraic geometry, 2017

0.1 Classical algebraic geometry

Throughout this discussion, we take the base field k to be algebraically closed. An **affine variety** $V \subseteq \mathbb{A}^n(k)$, where, once one has chosen coordinates, $\mathbb{A}^n(k) = k^n$, is given by the vanishing of polynomials $f_1, \ldots, f_r \in k[X_1, \ldots, X_n]$. If $I = \langle f_1, \ldots, f_r \rangle \triangleleft k[X_1, \ldots, X_n]$ is any ideal, we set

$$\mathbb{V}\left(I\right) = \left\{z \in \mathbb{A}^n \mid \forall f \in I, \ f\left(z\right) = 0\right\}.$$

First set $\mathbb{P}^n(k) = (k^{n+1} \setminus \{0\})/k^*$ with **homogeneous coordinates** $(x_0 : \cdots : x_n)$. A **projective variety** $V \subseteq \mathbb{P}^n$ is given by the vanishing of homogeneous polynomials $F_1, \ldots, F_r \in k[X_0, \ldots, X_n]$. If I is the ideal generated by the homogeneous ideals F_i , that is if $F \in I$ then so are all its homogeneous parts, we set

$$\mathbb{V}\left(I\right)=\left\{ z\in\mathbb{P}^{n}\mid\forall F\in I\text{ homogeneous, }F\left(z\right)=0\right\} .$$

If $V = \mathbb{V}(I) \subseteq \mathbb{A}^n$, set

$$\mathbb{I}(V) = \{ f \in k [X_1, \dots, X_n] \mid \forall x \in V, \ f(x) = 0 \}.$$

Observe that $\mathbb{V}(\mathbb{I}(V)) = V$, by tautology, and $\mathbb{I}(\mathbb{V}(I)) \supseteq \sqrt{I}$, which is obvious. Recall that the **radical** \sqrt{I} of the ideal I is defined by $f \in \sqrt{I}$ if and only if there exists m > 0 such that $f^m \in I$. **Hilbert's** Nullstellensatz states that, noting $k = \overline{k}$, $\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$. The coordinate ring is

$$k[V] = k[X_1, \dots, X_n] / \mathbb{I}(V)$$
.

This may be regarded as the ring of polynomial functions on V, and it is a finitely generated reduced k-algebra. Recall that a k-algebra is a commutative ring containing k as a subring. It is **finitely generated** if it is the quotient of a polynomial ring over k, and **reduced** if $a^m = 0$ implies that a = 0.

0.2 Why schemes?

A better question is what is wrong with varieties?

- With varieties, always work over algebraically closed fields. For example, let $I = \langle X^2 + Y^2 + 1 \rangle \subseteq \mathbb{R}[X,Y]$. Then $\mathbb{V}(I) = \emptyset$, but I is a prime ideal, hence radical, so $\mathbb{I}(\mathbb{V}(I)) = \mathbb{R}[X,Y] \neq I$.
- Number theory? Diophantine equations. If $I \subseteq \mathbb{Z}[X_1, \dots, X_n]$ is an ideal, have $\mathbb{V}(I) \subseteq \mathbb{Z}^n$. For example, $X^n + Y^n = Z^n$.
- Why should we only consider radical, or prime, ideals? For example, a natural situation is

$$X_1 = \mathbb{V}\left(X - Y^2\right) \subseteq \mathbb{A}^2, \qquad X_2 = \mathbb{V}\left(X\right) \subseteq \mathbb{A}^2.$$

Then $X_1 \cap X_2 = \mathbb{V}(X - Y^2, X)$. Note $I = \langle X - Y^2, X \rangle = \langle X, Y^2 \rangle$ is not a radical ideal, because $Y \notin I$ and $Y^2 \in I$ so $Y \notin \sqrt{I}$. Recall the coordinate ring of X_i is $k[X_i] = k[X,Y]/I_i$. Then $k[X_1 \cap X_2] = k[X,Y]/\langle X,Y^2 \rangle \cong k[Y]/\langle Y^2 \rangle$. So thinking of the coordinate ring of $X_1 \cap X_2$ as functions on $X_1 \cap X_2$, we have a function Y whose square is zero, but is not itself zero.

0.3 Categorical philosophy

What is a point? In the category of sets, objects are sets, and if A and B are sets, then morphisms are $\operatorname{Hom}(A,B)$, the set of maps $f:A\to B$. Let * be a one-element set. Then the elements of any set X are in one-to-one correspondence with $\operatorname{Hom}(*,X)$. In the category of affine varieties, objects are affine varieties and morphisms are $\operatorname{Hom}(X,Y)=\operatorname{Hom}_{k-\operatorname{alg}}(k[Y],k[X])$. In this category, a point is a single point with coordinate ring k. Giving a morphism

$$\{\text{point}\} \to X = \mathbb{V}(I) \subseteq \mathbb{A}^n, \qquad I \subseteq k[X_1, \dots, X_n],$$

for I a radical ideal, is the same as giving a homomorphism

$$\phi : k[X] = k[X_1, \dots, X_n]/I \longrightarrow k$$
 $X_i \longmapsto a_i$.

Note that ϕ vanishes in I if and only if $f(a_1, \ldots, a_n) = 0$ for all $f \in I$, which is if and only if $(a_1, \ldots, a_n) \in \mathbb{V}(I) = X$. Note ϕ is surjective, and hence $\ker \phi$ is a maximal ideal. With k algebraically closed, the maximal ideals at k[X] are all of the form $\langle X_1 - a_1, \ldots, X_n - a_n \rangle$ for $(a_1, \ldots, a_n) \in X$, a consequence of Hilbert's Nullstellensatz. That is, there exists one-to-one correspondences

 $\{\text{points of }X\} \iff \{k\text{-algebra homomorphisms }\phi:k\left[X\right]\to k\} \iff \{\text{maximal ideals of }k\left[X\right]\}.$

0.4 Solutions over non-algebraically closed fields

What if k is not algebraically closed? We may want to consider solutions not just in $k^n = \mathbb{A}^n$ but $(k')^n$ for k' any field extension of k. That is, we may consider k-algebra homomorphisms

$$\phi : k[X] = k[X_1, \dots, X_r]/I \longrightarrow k' X_i \longmapsto a_i$$
.

This gives a tuple $(a_1, \ldots, a_n) \in (k')^n$ with $f(a_1, \ldots, a_n) = 0$ for all $f \in I$. Then ϕ need not be surjective, so can only say the image of ϕ is a subring of a field, hence an integral domain. Thus ker ϕ is a prime ideal, and maximal if and only if im ϕ is a field.

Example. The \mathbb{R} -algebra homomorphism

$$\phi : \mathbb{R}[X,Y] / \langle X^2 + Y^2 + 1 \rangle \longrightarrow \mathbb{C}$$

$$\begin{array}{c} X & \longmapsto & 0 \\ Y & \longmapsto & i \end{array}$$

is surjective with kernel $\langle X, Y^2 + 1 \rangle$, since $\mathbb{R}[Y] / \langle Y^2 + 1 \rangle \cong \mathbb{C}$. This is a maximal ideal but is not of the form $\langle X - a, Y - b \rangle$ for $(a, b) \in \mathbb{R}^2$. If instead we considered the map

$$\mathbb{R}[X,Y]/\langle X^2+Y^2+1\rangle \longrightarrow \mathbb{C} \\ X \longmapsto 0 \\ Y \longmapsto -i$$

we get the same kernel. That is, (0,i) and (0,-i) are solutions to $X^2 + Y^2 + 1$, but they correspond to the same maximal ideal. In fact, this maximal ideal corresponds to a Galois orbit of $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ of solutions.

There are more exotic points by taking even bigger fields.

Lecture 2 Monday 12/10/20

Example. Let $k\left(X\right)$ be the field of fractions of $k\left[X\right]=\mathbb{R}\left[X,Y\right]/\left\langle X^{2}+Y^{2}+1\right\rangle$. There is an inclusion

$$\begin{array}{ccc} k\left[X\right] & \longrightarrow & k\left(X\right) \\ f & \longmapsto & \frac{f}{1} \\ (X,Y) & \longmapsto & (X,Y) \end{array}.$$

The kernel of this map is zero. This gives a solution to the equation $X^2 + Y^2 + 1 = 0$ with coordinates in the field k(X). This solution is $(X,Y) \in \mathbb{A}^2(k(X))$.

The moral is that once we start looking at solutions to equation over any field, then we get maps $k[X] \to k'$ with kernel not necessarily maximal. What about solutions over rings?

Example. Let $A = \mathbb{Z}[X_1, \dots, X_n]/I$, and let R be any commutative ring. We define an R-valued point of Spec A to be a ring homomorphism

$$\begin{array}{ccc} A & \longrightarrow & R \\ X_i & \longmapsto & r_i \end{array}.$$

Then $f(r_1,\ldots,r_n)=0$ for all $f\in I$. This gives a lot of flexibility. For example,

- $R = \mathbb{Z}$ gives diophantine equations,
- $R = \mathbb{F}_p$ gives solutions modulo p, and
- $R = \mathbb{Q}$ gives rational solutions.

Take this to its logical conclusion. Let A be a ring, where all rings are commutative in this course. Given A, we hope for some geometric object Spec A, the **spectrum** of A. For a ring R, the set of R-valued points of X is

$$X(R) = \operatorname{Hom}_{\operatorname{ring}}(A, R)$$
.

A morphism $X = \operatorname{Spec} A \to Y = \operatorname{Spec} B$ should be the same thing as giving a morphism $\phi : B \to A$. Define the category of **affine schemes** to be the opposite category to the category of rings. Define a **scheme** to be something which is locally isomorphic to an affine scheme. By analogy, a **manifold** is a topological space with an open cover $\{U_i\}$ with each U_i homeomorphic to an open subset of \mathbb{R}^n . To make sense of the definition of schemes, we need a lot of language.

0.5 Spectrum of a ring

Definition. Let A be a ring. Then

$$\operatorname{Spec} A = \{ \mathfrak{p} \subseteq A \mid \mathfrak{p} \text{ a prime ideal} \}.$$

For $I \subseteq A$ an ideal, define

$$\mathbb{V}\left(I\right)=\left\{ \mathfrak{p}\subseteq A\mid\mathfrak{p}\text{ prime, }\mathfrak{p}\supseteq I\right\} .$$

Proposition 0.1. The sets $\mathbb{V}(I)$ form the closed sets of a topology on Spec A, called the **Zariski topology**. Proof.

- $\mathbb{V}(A) = \emptyset$.
- $\mathbb{V}(0) = \operatorname{Spec} A$.
- If $\{I_i\}_{i\in I}$ is a collection of ideals, then

$$\mathbb{V}\left(\sum_{i\in J}I_i\right) = \bigcap_{i\in J}\mathbb{V}\left(I_i\right).$$

• Claim that

$$\mathbb{V}\left(I_{1}\cap I_{2}\right)=\mathbb{V}\left(I_{1}\right)\cup\mathbb{V}\left(I_{2}\right).$$

⊇ Obvious.

 \subseteq If $\mathfrak{p} \supseteq I_1 \cap I_2$ is prime, then $\mathfrak{p} \supseteq I_1$ or $\mathfrak{p} \supseteq I_2$. See Atiyah-Macdonald, Proposition 1.11.ii. ¹

Example. Let $A = k[X_1, ..., X_n]$ with k algebraically closed and $I \subseteq A$ an ideal. Then the maximal ideals \mathfrak{m} of A containing I are in one-to-one correspondence with the zero set of I in $\mathbb{A}^n(k)$, so

$$\{ \langle X_1 - a_1, \dots, X_n - a_n \rangle \supseteq I, \ a_i \in k \} \qquad \iff \qquad \{ (a_1, \dots, a_n) \in \mathbb{V}(I) \subseteq \mathbb{A}^n(k) \}.$$

The new $\mathbb{V}(I)$ now extends this notion of zero set by including possible other prime ideals.

Example. If k is a field, Spec $k = \{0\}$, so the topological space cannot see the field.

We fix this by also thinking about what functions are on these spaces.

¹Exercise: try to prove without looking up

1 Sheaves

Fix a topological space X.

1.1 Sheaves

Definition. A **presheaf** \mathcal{F} on X consists of the following data.

- For every open set $U \subseteq X$ an abelian group $\mathcal{F}(U)$.
- Whenever given an inclusion $V \subseteq U \subseteq X$, a **restriction map** $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$, a homomorphism, such that
 - $-\rho_{UU}=\mathrm{id}_{\mathcal{F}(U)}$, and
 - if $W \subseteq V \subseteq U$, then $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

Remark. Can think of a presheaf as a contravariant functor from the category of open sets of X, the category whose objects are open subsets of X and whose morphisms are inclusions of open sets, to the category of abelian groups. Can replace the category of abelian groups with any desired category, such as commutative rings.

Definition. A morphism of presheaves $f: \mathcal{F} \to \mathcal{G}$ is a collection of homomorphisms $f_U: \mathcal{F}(U) \to \mathcal{G}(U)$ such that for all $V \subseteq U$ the diagram

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{f_{U}} & \mathcal{G}(U) \\
\rho_{UV} \downarrow & & \downarrow \rho_{UV} \\
\mathcal{F}(V) & \xrightarrow{f_{V}} & \mathcal{G}(V)
\end{array}$$

is commutative.

Definition. A presheaf \mathcal{F} is a **sheaf** if it satisfies the following additional axioms.

- S1. If $U \subseteq X$ is covered by an open cover $\{U_i\}$ and $s \in \mathcal{F}(U)$ satisfies $s|_{U_i} = \rho_{UU_i}(s) = 0$ for all i, then s = 0.
- S2. If U and $\{U_i\}$ are as in S1 and $s_i \in \mathcal{F}(U_i)$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i and j, then there exists $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$ for all i.

Remark.

- If \mathcal{F} is a sheaf, then $\emptyset \subseteq X$ is covered by the empty covering, and hence $\mathcal{F}(\emptyset) = 0$.
- S1 and S2 together can be described as saying, given U and $\{U_i\}_{i\in I}$,

$$0 \to \mathcal{F}\left(U\right) \xrightarrow{\alpha} \prod_{i \in I} \mathcal{F}\left(U_{i}\right) \overset{\beta_{1}}{\underset{\beta_{2}}{\Longrightarrow}} \prod_{i,j} \mathcal{F}\left(U_{i} \cap U_{j}\right)$$

is exact, where

$$\alpha\left(s\right) = \left(s|_{U_{i}}\right)_{i \in I}, \qquad \beta_{1}\left(\left(s_{i}\right)_{i \in I}\right) = \left(s_{i}|_{U_{i} \cap U_{j}}\right)_{i, j}, \qquad \beta_{2}\left(\left(s_{i}\right)_{i \in I}\right) = \left(s_{j}|_{U_{i} \cap U_{j}}\right)_{i, j}.$$

Exactness means

- $-\alpha$ is injective, which is S1,
- $-\beta_1 \circ \alpha = \beta_2 \circ \alpha$, and
- for any $(s_i) \in \prod_{i \in I} \mathcal{F}(U_i)$, with $\beta_1((s_i)) = \beta_2((s_i))$, there exists $s \in \mathcal{F}(U)$ with $\alpha(s) = (s_i)$, which is S2.

1.2 Examples

Example.

• Let X be any topological space, and let

Lecture 3 Wednesday 14/10/20

$$\mathcal{F}(U) = \{ \text{continuous functions } U \to \mathbb{R} \}.$$

This is a sheaf, by

$$\begin{array}{ccc} \rho_{UV} & : & \mathcal{F}\left(U\right) & \longrightarrow & \mathcal{F}\left(V\right) \\ & f & \longmapsto & f|_{V} \end{array}.$$

- S1. A continuous function is zero if it is zero on every open set of a cover.
- S2. Continuous functions can be glued.
- Let $X = \mathbb{C}$ with the Euclidean topology, and let

$$\mathcal{F}(U) = \{ f : U \to \mathbb{C} \mid f \text{ is a bounded analytic function} \}.$$

This is a presheaf. It satisfies S1, and does not satisfy S2. For example, consider the cover $\{U_i\}_{i\in\{1,2,\dots\}}$ of $\mathbb C$ given by $U_i=\{z\in\mathbb C\mid |z|< i\}$ and

$$\begin{array}{cccc} s_i & : & U_i & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & z \end{array}.$$

Note if i < j, then $U_i \cap U_j = U_i$ and $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$. But if we glue we get the function $z : \mathbb{C} \to \mathbb{C}$, which is not bounded. Note $\mathcal{F}(\mathbb{C}) = \mathbb{C}$.

• Take any group G and set $\mathcal{F}(U) = G$ for any open set U. This is called the **constant presheaf**. This is not a sheaf. Let $U = U_1 \sqcup U_2$. If we wanted a sheaf,

$$\mathcal{F}\left(U_{1}\right)=G$$

$$\mathcal{F}\left(U_{1}\cap U_{2}\right)=\mathcal{F}\left(\emptyset\right)=0$$

so if S2 is satisfied, would want $s_1 \in \mathcal{F}(U_1)$ and $s_2 \in \mathcal{F}(U_2)$ to glue. We would then want to have $\mathcal{F}(U) = G \times G$. Now give G the discrete topology, and define instead

$$\mathcal{F}(U) = \{ f : U \to G \text{ continuous} \},$$

that is f is locally constant. That is, if $x \in U$, there exists a neighbourhood $x \in V \subseteq U$ with $f|_V$ constant. This is called the **constant sheaf** and if U is non-empty and connected, then $\mathcal{F}(U) = G$.

• If X is an algebraic variety, and $U \subseteq X$ is a Zariski open subset, define

$$\mathcal{O}_X(U) = \{ f : U \to k \mid f \text{ regular function} \}.$$

Roughly f is **regular** means that every point of U has an open neighbourhood on which f is expressed as a ratio of polynomials g/h with h non-vanishing on the neighbourhood. Then \mathcal{O}_X is a sheaf, called the **structure sheaf** of X.

1.3 Stalks

Definition. Let \mathcal{F} be a presheaf on X. Let $p \in X$. Then the **stalk** of \mathcal{F} at p is

$$\mathcal{F}_{p} = \{(U, s) \mid U \subseteq X \text{ is an open neighbourhood of } p, s \in \mathcal{F}(U)\} / \equiv$$

where $(U, s) \equiv (V, s')$ if there exists $W \subseteq U \cap V$ also a neighbourhood of p such that $s|_W = s'|_W$. An equivalence class of a pair (U, s) is called a **germ**.

Remark.
$$\mathcal{F}_{p} = \varinjlim_{p \in U} \mathcal{F}(U)$$
.

Note that a morphism $f: \mathcal{F} \to \mathcal{G}$ of presheaves induces a morphism

$$f_p: \mathcal{F}_p \longrightarrow \mathcal{G}_p \ (U,s) \longmapsto (U,f_U(s))$$
.

Proposition 1.1. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then f is an isomorphism if and only if f_p is an isomorphism for all $p \in X$.

Proof.

 \implies Obvious.

- \Leftarrow Assume f_p is an isomorphism for all $p \in X$. Need to show that $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is an isomorphism for all $U \subseteq X$, as then we can define $(f^{-1})_U = (f_U)^{-1}$. Check that with this definition, $(f^{-1})_U$ is compatible with restriction maps, hence f^{-1} is a morphism of sheaves.
 - f_U is injective. Suppose $s \in \mathcal{F}(U)$, and $f_U(s) = 0$. Then for all $p \in U$, $f_p(U, s) = (U, f_U(s)) = (U, 0) = 0 \in \mathcal{G}_p$. Since f_p is injective, (U, s) = 0 in \mathcal{F}_p . That is, there exists a open neighbourhood V_p of p in U such that $s|_{V_p} = 0$. Since $\{V_p\}_{p \in U}$ cover U, we see by S1 that s = 0.
 - f_U is surjective. Let $t \in \mathcal{G}(U)$ and write $t_p = (U, t) \in \mathcal{G}_p$. Since f_p is surjective, there exists $s_p \in \mathcal{F}_p$ with $f_p(s_p) = t_p$. That is, there exists $V_p \subseteq U$ an open neighbourhood of p, and a germ (V_p, s_p) such that $(V_p, f_{V_p}(s_p)) \equiv (U, t)$. By shrinking V_p if necessary, we can assume that $t|_{V_p} = f_{V_p}(s_p)$. Now on $V_p \cap V_q$,

$$f_{V_p \cap V_q} \left(s_p |_{V_p \cap V_q} - s_q |_{V_p \cap V_q} \right) = t |_{V_p \cap V_q} - t |_{V_p \cap V_q} = 0,$$

and hence by injectivity of $f_{V_p \cap V_q}$ already proved, we have $s_p|_{V_p \cap V_q} = s_q|_{V_p \cap V_q}$. By S2 the s_p 's glue to give an element $s \in \mathcal{F}(U)$ with $s|_{V_p} = s_p$, for all $p \in U$. Now

$$f_U(s)|_{V_p} = f_{V_p}(s|_{V_p}) = f_{V_p}(s_p) = t|_{V_p}.$$

By S1, applied to $f_{U}(s) - t$, we get $f_{U}(s) = t$. Thus f_{U} is surjective.

1.4 Sheafification

Theorem 1.2 (Sheafification). Given a presheaf \mathcal{F} , there exists a sheaf \mathcal{F}^+ and a morphism $\theta: \mathcal{F} \to \mathcal{F}^+$ satisfying the following universal property. For any sheaf \mathcal{G} and morphism $\phi: \mathcal{F} \to \mathcal{G}$, there exists a unique morphism $\phi^+: \mathcal{F}^+ \to \mathcal{G}$ such that $\phi^+ \circ \theta = \phi$, so

The pair (\mathcal{F}^+, θ) is unique up to unique isomorphism, and is called the **sheafification** of \mathcal{F} .

Proof. See example sheet 1. The idea is to make \mathcal{F}^+ look like functions. Define

$$\mathcal{F}^{+}\left(U\right) = \left\{s: U \to \bigsqcup_{p \in U} \mathcal{F}_{p} \middle| \begin{array}{c} \forall p \in U, \ s\left(p\right) \in \mathcal{F}_{p}, \\ \forall p \in U, \ \exists p \in V \subseteq U, \ \exists t \in \mathcal{F}\left(V\right), \ \forall q \in V, \ s\left(q\right) = \left(V, t\right) \in \mathcal{F}_{q} \end{array} \right\}.$$

Then

$$\theta_{U}: \mathcal{F}(U) \longrightarrow \mathcal{F}^{+}(U)$$
 $s \longmapsto (p \mapsto (U, s) \in \mathcal{F}_{p})$

Exercise. A recommendation is to do all exercises in chapter II.1 of Hartshorne.

²Exercise

1.5 Kernels, cokernels, and images

Definition. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of presheaves on a space X. We define the following.

• The **presheaf kernel** of f, ker f, is the presheaf given by $(\ker f)(U) = \ker(f_U : \mathcal{F}(U) \to \mathcal{G}(U))$.

Lecture 4

Friday 16/10/20

- The **presheaf cokernel** coker f is the presheaf given by $(\operatorname{coker} f)(U) = \operatorname{coker}(f_U) = \mathcal{G}(U) / \operatorname{im} f_U$.
- The **presheaf image** im f is the presheaf given by $(\operatorname{im} f)(U) = \operatorname{im} f_U$.

Exercise. Check that these are presheaves, that is restrictions work.

Remark 1.3. If $f: \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, then ker f is also a sheaf.

Proof. S1 is certainly satisfied. If $s \in (\ker f)(U) \subseteq \mathcal{F}(U)$ satisfies $s|_{U_i} = 0$ for all U_i in a cover of U so s = 0 by S1 for \mathcal{F} . Given $s_i \in (\ker f)(U_i)$ with $\{U_i\}$ an open cover of U, and with $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, then there exists $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$ by S2 for \mathcal{F} . But $f_U(s) = 0$ since $f_U(s)|_{U_i} = f_{U_i}(s|_{U_i}) = f_{U_i}(s_i) = 0$ so by S1, $f_U(s) = 0$.

Example. Let $X = \mathbb{P}^1$, or think of the Riemann sphere. Let $P, Q \in X$ be distinct points. Let \mathcal{G} be the sheaf of regular functions on X, or think of the sheaf of holomorphic functions. Let \mathcal{F} be the sheaf of regular functions on X which vanish at P and Q. Note $\mathcal{F}(U) = \mathcal{G}(U)$ if $U \cap \{P,Q\} = \emptyset$. Let $U = \mathbb{P}^1 \setminus \{P\}$ and $V = \mathbb{P}^1 \setminus \{Q\}$. Note $\mathcal{F}(\mathbb{P}^1) = 0$ and $\mathcal{G}(\mathbb{P}^1) = k$, because regular functions on \mathbb{P}^1 are constants. Let $f : \mathcal{F} \to \mathcal{G}$ be the obvious inclusion. Then

$$(\operatorname{coker} f)(\mathbb{P}^{1}) = k, \qquad (\operatorname{coker} f)(U) = \mathcal{G}(U)/\mathcal{F}(U) = k[X]/\langle X \rangle = k,$$
$$(\operatorname{coker} f)(V) = k, \qquad (\operatorname{coker} f)(U \cap V) = \mathcal{G}(U \cap V)/\mathcal{F}(U \cap V) = 0.$$

If S2 holds, then we would need to have (coker f) (\mathbb{P}^1) = $k \oplus k$. This is not a bug, but a feature.

Definition. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves.

- The **sheaf kernel** $\ker f$ of f is just the presheaf kernel.
- The **sheaf cokernel** is the sheaf associated to the presheaf cokernel of f.
- The **sheaf image** is the sheaf associated to the presheaf image of f.

 \mathcal{F} is a subsheaf of \mathcal{G} if we have inclusions $\mathcal{F}(U) \subseteq \mathcal{G}(U)$ for all U compatible with restrictions.

Exercise. The sheaf image im f is a subsheaf of \mathcal{G} .

We say f is **injective** if ker f = 0. We say f is **surjective** if im $f = \mathcal{G}$. We say a sequence of morphisms of sheaves

$$\cdots \to \mathcal{F}^{i-1} \xrightarrow{f^i} \mathcal{F}^i \xrightarrow{f^{i+1}} \mathcal{F}^{i+1} \to \cdots$$

is **exact** if ker $f^{i+1} = \operatorname{im} f^i$ for all i. If $\mathcal{F}' \subseteq \mathcal{F}$ is a subsheaf, we write \mathcal{F}/\mathcal{F}' for the sheaf associated to the presheaf $U \mapsto \mathcal{F}(U)/\mathcal{F}'(U)$. That is, this is the cokernel of the inclusion $\mathcal{F}' \hookrightarrow \mathcal{F}$. A warning is if $f : \mathcal{F} \to \mathcal{G}$ is surjective, we do not necessarily have $\mathcal{F}(U) \to \mathcal{G}(U)$ surjective for all U.

Lemma 1.4. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then for all $p \in X$,

$$(\ker f)_p = \ker (f_p : \mathcal{F}_p \to \mathcal{G}_p), \qquad (\operatorname{im} f)_p = \operatorname{im} f_p.$$

Proof. Have a map

$$\begin{array}{ccc} (\ker f)_p & \longrightarrow & \ker f_p \subseteq \mathcal{F}_p \\ (U,s) & \longmapsto & (U,s) \end{array} .$$

If $s \in (\ker f)(U) = \ker f_U$ represents a germ $(U, s) \in (\ker f)_p$, then $(U, s) \in \mathcal{F}_p$, and $f_p(U, s) = (U, f_U(s)) = (U, 0) = 0 \in \mathcal{G}_p$. So $(U, s) \in \ker f_p$.

- Injective. If (U,s)=0 in \mathcal{F}_p , there exists a neighbourhood $V\subseteq U$ of p such that $s|_V=0$. Then $(U,s)\sim (V,s|_V)=(V,0)=0$ in $(\ker f)_p$.
- Surjective. If $(U, s) \in \ker f_p$, then $(U, f_U(s)) = 0$ in \mathcal{G}_p . That is, there exists a neighbourhood $V \subseteq U$ of p such that $0 = f_U(s)|_V = f_V(s|_V)$. Thus $s|_V \in (\ker f)(V)$, and $(V, s|_V) \in (\ker f)_p$, and $(V, s|_V)$ maps to the same element in $\ker f_p$ represented by (U, s).

Let im' f be the presheaf image. An easy fact is if \mathcal{F} is a presheaf with associated sheaf \mathcal{F}^+ , then $\mathcal{F}_p \cong \mathcal{F}_p^+$ for all $p \in X$. Thus $(\operatorname{im} f)_p = (\operatorname{im}' f)_p$, so need to show $(\operatorname{im}' f)_p \cong \operatorname{im} f_p$. Define a map by

$$\begin{array}{ccc} \left(\operatorname{im}' f\right)_p & \longrightarrow & \operatorname{im} f_p \\ (U, s) & \longmapsto & (U, s) \end{array} .$$

- Injective. If (U, s) = 0 in \mathcal{G}_p then there exists a neighbourhood $V \subseteq U$ of p such that $s|_V = 0$. Then $(U, s) \sim (V, 0)$ in $(\operatorname{im}' f)_p$.
- Surjective. If $(U, s) \in \text{im } f_p$, then there exists $(V, t) \in \mathcal{F}_p$ with $(U, s) = f_p(V, t) = (V, f_V(t))$, so after shrinking U and V if necessary, then we can take U = V and $f_U(t) = s$. Then $(U, s) \in (\text{im}' f)_p$.

Proposition 1.5. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then

- 1. f is injective if and only if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is injective for all p, and
- 2. f is surjective if and only if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is surjective for all p.

Proof.

- 1. f_p is injective for all p if and only if $\ker f_p = 0$ for all p, if and only if $(\ker f)_p = 0$ for all p, if and only if $\ker f = 0$, ⁴ which is if and only if f is injective.
- 2. f_p is surjective for all p if and only if $\operatorname{im} f_p = \mathcal{G}_p$ for all p, if and only if $(\operatorname{im} f)_p = \mathcal{G}_p$ for all p, if and only if $\operatorname{im} f = \mathcal{G}$, f_p which is if and only if f_p is surjective.

Remark. Given $f: \mathcal{F} \to \mathcal{G}$, in fact $\mathcal{G}/\operatorname{im} f \cong \operatorname{coker} f$.

1.6 Passing between spaces

Let $f: X \to Y$ be a continuous map between topological spaces, \mathcal{F} a sheaf on X, and \mathcal{G} a sheaf on Y. Define $f_*\mathcal{F}$ by, for $U \subseteq Y$

 $(f_*\mathcal{F})(U) = \mathcal{F}(f^{-1}(U)).$

Exercise. Check $f_*\mathcal{F}$ is a sheaf on Y.

Define $f^{-1}\mathcal{G}$ to be the sheaf associated to the presheaf

$$U \subseteq X \mapsto \{(V, s) \mid V \supseteq f(U), V \text{ open, } s \in \mathcal{G}(V)\} / \sim$$

where $(V,s) \sim (V',s')$ if there exists $W \subseteq V \cap V'$ such that $f(U) \subseteq W$, and $s|_{W} = s'|_{W}$.

Example. If $f: \{p\} \to X$ is an inclusion of a point, then $f^{-1}\mathcal{G} = \mathcal{G}_p$. This is a group but defines a sheaf on a one-point space. More generally, if $\iota: Z \hookrightarrow X$ is an inclusion of a subset with induced topology, we often write

$$\mathcal{F}|_Z = \iota^{-1} \mathcal{F}.$$

If Z is open in X, then this is easy, since if $U \subseteq Z$ then $\mathcal{F}|_{Z}(U) = \mathcal{F}(U)$.

Remark. If $s \in \mathcal{F}(U)$ we say s is a **section** of \mathcal{F} over U. We often write

$$\mathcal{F}(U) = \Gamma(U, \mathcal{F}),$$

thinking of $\Gamma(U,\cdot)$ as a functor from the category of sheaves on a space X to the category of abelian groups.

Lecture 5 Monday

19/10/20

³Exercise: check

 $^{^4}$ Exercise: check by S1

⁵Exercise: check using im $f \subseteq \mathcal{G}$

⁶Exercise

2 Schemes

Want to construct a sheaf \mathcal{O} on Spec A, analogous to the sheaf of regular functions on a variety, and \mathcal{O} will be a sheaf of rings. That is, $\mathcal{O}(U)$ will be a ring for each open set U and restriction maps will be ring homomorphisms.

2.1 Localisation of a ring

Importantly recall the following. Let A be a ring, where all rings are commutative with unity, and $S \subseteq A$ be a multiplicatively closed subset, that is $1 \in S$ and if $s_1, s_2 \in S$ then $s_1s_2 \in S$. We define a ring

$$S^{-1}A = \{(a, s) \mid a \in A, s \in S\} / \sim,$$

where $(a, s) \sim (a', s')$ if there exists $s'' \in S$ such that s''(as' - a's) = 0. Then $S^{-1}A$ is called the **localisation** of A at S. Note that we write a/s for the equivalence class of (a, s). The usual equivalence relation on fractions is a/s = a'/s' if and only if as' = a's. We need the extra possibility of killing as' - a's with s'' if A is not an integral domain.

Example.

- Take $f \in A$ and $S = \{1, f, ...\} \subseteq A$. Then we write $A_f = S^{-1}A$. These will correspond to open subsets.
- If $\mathfrak{p} \subseteq A$ is a prime ideal and $S = A \setminus \mathfrak{p}$, then
 - $-1 \in S$, and
 - $-a,b \in S$ and $ab \in \mathfrak{p}$ is a contradiction by definition of prime ideals, so $ab \in S$.

Then $A_{\mathfrak{p}} = S^{-1}A$ is the localisation of A at \mathfrak{p} . These will correspond to stalks.

2.2 Construction of the structure sheaf

Let

$$\mathcal{O}\left(U\right) = \left\{ s: U \to \bigsqcup_{\mathfrak{p} \in U} A_{\mathfrak{p}} \, \middle| \, \begin{array}{l} \forall \mathfrak{p} \in U, \ s\left(\mathfrak{p}\right) \in A_{\mathfrak{p}} \\ \forall \mathfrak{p} \in U, \ \exists \mathfrak{p} \in V \subseteq U \ \text{open}, \ \exists a, f \in A, \ \forall \mathfrak{q} \in V, \ f \notin \mathfrak{q}, \ s\left(\mathfrak{q}\right) = \frac{a}{f} \in A_{\mathfrak{q}} \end{array} \right\}.$$

Proposition 2.1. For any $\mathfrak{p} \in \operatorname{Spec} A$, $\mathcal{O}_{\mathfrak{p}} = A_{\mathfrak{p}}$.

Proof. Have a map

$$\begin{array}{ccc} \mathcal{O}_{\mathfrak{p}} & \longrightarrow & A_{\mathfrak{p}} \\ (U,s) & \longmapsto & s\left(\mathfrak{p}\right) \end{array}.$$

• Surjective. Any element of $A_{\mathfrak{p}}$ can be written as a/f for some $a \in A$ and $f \notin \mathfrak{p}$. Then $\mathbb{D}(f) = \operatorname{Spec} A \setminus \mathbb{V}(f) = \{\mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p}\}$, since $\mathbb{V}(f) = \{\mathfrak{p} \in \operatorname{Spec} A \mid f \in \mathfrak{p}\}$. Now a/f defines an element of $\mathcal{O}(\mathbb{D}(f))$ given by

and in particular, $s(\mathfrak{p}) = a/f \in A_{\mathfrak{p}}$.

• Injective. Let $\mathfrak{p} \in U \subseteq \operatorname{Spec} A$ and $s \in \mathcal{O}(U)$ with $s(\mathfrak{p}) = 0$ in $A_{\mathfrak{p}}$. Want to show (U,s) = 0 in $\mathcal{O}_{\mathfrak{p}}$. By shrinking U if necessary, we can assume that s is given by $a, f \in A$ with $s(\mathfrak{q}) = a/f$ for all $\mathfrak{q} \in U$. In particular $f \notin \mathfrak{q}$ for all $\mathfrak{q} \in U$. Thus a/f = 0/1 in $A_{\mathfrak{p}}$ so there exists $h \in A \setminus \mathfrak{p}$ such that $0 = h \cdot (a \cdot 1 - f \cdot 0) = h \cdot a$ in A. Now let $V = U \cap \mathbb{D}(h)$. Then $(V, s|_{V}) = 0$, since for $\mathfrak{q} \in V$, $s|_{V}(\mathfrak{q}) = s(\mathfrak{q}) = a/f \in A_{\mathfrak{q}}$ and $h \cdot a = 0$, and $h \in A \setminus \mathfrak{q}$ so $h \cdot a = 0$ implies a/f = 0/1 in $A_{\mathfrak{q}}$. Thus (U, s) = 0 in $\mathcal{O}_{\mathfrak{p}}$.

Proposition 2.2. For any $f \in A$, $\mathcal{O}(\mathbb{D}(f)) = A_f$.

In particular, as Spec $A = \mathbb{D}(1)$, the **global sections** of \mathcal{O} is $\mathcal{O}(\operatorname{Spec} A) = A_1 = A$.

Proof. Let

$$\begin{array}{cccc} \psi & : & A_f & \longrightarrow & \mathcal{O}\left(\mathbb{D}\left(f\right)\right) \\ & & \frac{a}{f^n} & \longmapsto & \left(\mathfrak{p} \in \mathbb{D}\left(f\right) \mapsto \frac{a}{f^n} \in A_{\mathfrak{p}}\right) \end{array},$$

since $f \notin \mathfrak{p}$ implies that $f^n \notin \mathfrak{p}$ for all $n \geq 0$.

- Injective. If $\psi\left(a/f^n\right)=0$, then for all $\mathfrak{p}\in\mathbb{D}(f)$, $a/f^n=0$ in $A_{\mathfrak{p}}$, that is there exists $h\in A\setminus \mathfrak{p}$ such that $h\cdot a=0$ in A. Let $I=\{g\in A\mid g\cdot a=0\}$, the **annihilator** of a. So $h\in I$ and $h\notin \mathfrak{p}$, so $I\not\subseteq \mathfrak{p}$. This is true for all $\mathfrak{p}\in\mathbb{D}(f)$, so $\mathbb{V}(I)\cap\mathbb{D}(f)=\emptyset$. Thus $f\in \bigcap_{\mathfrak{p}\in\mathbb{V}(I)}\mathfrak{p}=\sqrt{I}$, the radical, so $f^m\in I$ for some m>0. Thus $f^m\cdot a=0$, so $a/f^n=0$ in A_f . Thus ψ is injective.
- Surjective. Let $s \in \mathcal{O}(\mathbb{D}(f))$. Cover $\mathbb{D}(f)$ with open sets V_i on which s is represented as a_i/g_i with $a_i, g_i \in A$ such that $g_i \notin \mathfrak{p}$ whenever $\mathfrak{p} \in V_i$. Thus $V_i \subseteq \mathbb{D}(g_i)$. By question 1 on example sheet 1, the sets of the form $\mathbb{D}(h)$ form a base for the Zariski topology on Spec A. Thus we can assume $V_i = \mathbb{D}(h_i)$ for some $h_i \in A$. Since $\mathbb{D}(h_i) \subseteq \mathbb{D}(g_i)$, we have $\mathbb{V}(h_i) \supseteq \mathbb{V}(g_i)$, so $\sqrt{\langle h_i \rangle} \subseteq \sqrt{\langle g_i \rangle}$, so $h_i^n \in \langle g_i \rangle$ for some n, say $h_i^n = c_i g_i$, so $a_i/g_i = c_i a_i/h_i^n$. Now replace h_i by h_i^n , since this does not change open sets because in general $\mathbb{D}(h_i) = \mathbb{D}(h_i^n)$, and replace a_i by $c_i a_i$. The situation so far is that we can assume $\mathbb{D}(f)$ is covered by sets $\mathbb{D}(h_i)$ such that s is represented by a_i/h_i on $\mathbb{D}(h_i)$. Claim that $\mathbb{D}(f)$ can be covered by a finite number of the $\mathbb{D}(h_i)$, that is $\mathbb{D}(f)$ is quasi-compact. Since

$$\mathbb{D}(f) \subseteq \bigcup_{i} \mathbb{D}(h_{i}) \qquad \iff \qquad \mathbb{V}(f) \supseteq \bigcap_{i} \mathbb{V}(h_{i}) = \mathbb{V}\left(\sum_{i} \langle h_{i} \rangle\right) \qquad \iff \qquad f \in \bigcap_{\mathfrak{p} \in \mathbb{V}\left(\sum_{i} \langle h_{i} \rangle\right)} \mathfrak{p}$$

$$\iff \qquad f \in \sqrt{\sum_{i} \langle h_{i} \rangle} \qquad \iff \qquad \exists n, \ f^{n} \in \sum_{i} \langle h_{i} \rangle,$$

we can write $f^n = \sum_{i \in I} b_i h_i$ for some finite index set I. Thus reversing this argument, $\mathbb{D}(f) \subseteq \bigcup_{i \in I} \mathbb{D}(h_i)$. We now pass to this finite subcover $\{\mathbb{D}(h_i)\}$. On $\mathbb{D}(h_i) \cap \mathbb{D}(h_j) = \mathbb{D}(h_i h_j)$, note a_i/h_i and a_j/h_j both represent s, so by injectivity shown in the last lecture, $a_i h_j/h_i h_j = a_i/h_i = a_j/h_j = a_j h_i/h_i h_j$ in $A_{h_i h_j}$. Thus for some n, $(h_i h_j)^n (h_j a_i - h_i a_j) = 0$ in A. We can pick an n sufficiently large to work for all pairs i and j. Rewriting, $h_j^{n+1} (h_i^n a_i) - h_i^{n+1} (h_j a_j) = 0$. Replace each h_i by h_i^{n+1} and a_i by $h_i^n a_i$, since $a_i/h_i = a_i h_i^n/h_i^{n+1}$. Thus we can assume that s is still represented on $\mathbb{D}(h_i)$ by a_i/h_i but also for each i and j have $h_i a_j = h_j a_i$. Note $f^n = \sum_i b_i h_i$ for $b_i \in A$, since $\{\mathbb{D}(h_i)\}$ cover $\mathbb{D}(f)$. Let $a = \sum_i b_i a_i$. Then for any j, $h_j a = \sum_i b_i a_i h_j = \sum_i b_i a_j h_i = f^n a_j$. Thus $a/f^n = a_j/h_j$ on $\mathbb{D}(h_j)$. Thus $\psi(a/f^n) = s$, so ψ is surjective.

We now have a topological space Spec A equipped with a sheaf of rings \mathcal{O} .

2.3 Ringed spaces

Definition. A ringed space is a pair (X, \mathcal{O}_X) where

- X is a topological space, and
- \mathcal{O}_X is a sheaf of rings on X.

A morphism of ringed spaces $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ is the following data.

- $f: X \to Y$ a continuous map.
- $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ a morphism of sheaves of rings, that is for each $U \subseteq Y$ open, we have a ring homomorphism $f_{U}^{\#}: \mathcal{O}_{Y}(U) \to (f_{*}\mathcal{O}_{X})(U) = \mathcal{O}_{X}(f^{-1}(U))$.

Lecture 6 Wednesday 21/10/20

Example.

• Let X be a topological space, and let \mathcal{O}_X be the sheaf of continuous \mathbb{R} -valued functions. Then if (Y, \mathcal{O}_Y) is similarly defined, given $f: X \to Y$, we get $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ defined by

$$f_U^{\#}: \mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(f^{-1}(U))$$

 $\phi \longmapsto \phi \circ f$.

• Let X be a variety, and let \mathcal{O}_X be the sheaf of regular functions on X. A morphism of varieties $f: X \to Y$ is a continuous map inducing

$$f_U^{\#}: \mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(f^{-1}(U))$$

 $\phi \longmapsto \phi \circ f$.

A ring is **local** if it has a unique maximal ideal.

Definition. A locally ringed space (X, \mathcal{O}_X) is a ringed space such that $\mathcal{O}_{X,p}$ is a local ring for all $p \in X$. A morphism $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of locally ringed spaces is a morphism of ringed spaces such that the induced homomorphism $f_p^\#: \mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}$ is a local homomorphism for all $p \in X$.

• The map is defined by ⁷

$$f_p^{\#}: \mathcal{O}_{Y,f(p)} \longrightarrow \mathcal{O}_{X,p}$$

$$(U,s) \longmapsto \left(f^{-1}(U), f_U^{\#}(s)\right).$$

• A ring homomorphism $\phi: (A, \mathfrak{m}_A) \to (B, \mathfrak{m}_B)$ is **local** if $\phi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$, where \mathfrak{m}_A is the maximal ideal of A. Note that $\phi(A \setminus \mathfrak{m}_A) = \phi(A^*) \subseteq B^* = B \setminus \mathfrak{m}_B$, where A^* is the set of invertible elements of A. Thus $\phi^{-1}(\mathfrak{m}_B) \subseteq \mathfrak{m}_A$ always.

Example. In the case of varieties, $\mathcal{O}_{X,p}$ has a unique maximal ideal

$$\{(U, f) \in \mathcal{O}_X(U) \mid f(p) = 0\} / \sim.$$

If $f(p) \neq 0$, f is nowhere vanishing on some neighbourhood of p, so after shrinking U, we can invert f. The local homomorphism condition just follows from the pull-back $\phi \circ f$ of a function ϕ vanishing at f(p) vanishes at p.

2.4 Affine schemes

The key example (Spec A, \mathcal{O}) is a locally ringed space, which we call an affine scheme.

Lecture 7 Friday 23/10/20

Theorem 2.3. The category of affine schemes with locally ringed morphisms is equivalent to the opposite category of rings.

Need to show that

- 1. if $\phi: A \to B$ is a ring homomorphism, we obtain an induced morphism $(f, f^{\#}): (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$, and
- 2. any morphism of affine schemes as locally ringed spaces arises in this way.

Proof.

1. Given a ring homomorphism $\phi: A \to B$, define

$$\begin{array}{cccc} f & : & \operatorname{Spec} B & \longrightarrow & \operatorname{Spec} A \\ & \mathfrak{p} & \longmapsto & \phi^{-1}\left(\mathfrak{p}\right) \end{array}.$$

Note $\phi^{-1}(\mathfrak{p})$ is prime, since if $ab \in \phi^{-1}(\mathfrak{p})$, then $\phi(ab) = \phi(a)\phi(b) \in \mathfrak{p}$, thus either $\phi(a) \in \mathfrak{p}$ or $\phi(b) \in \mathfrak{p}$, and hence either $a \in \phi^{-1}(\mathfrak{p})$ or $b \in \phi^{-1}(\mathfrak{p})$. Then f is continuous, since

$$f^{-1}(\mathbb{V}(I)) = f^{-1}(\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \supseteq I\}) = \{\mathfrak{q} \in \operatorname{Spec} B \mid f(\mathfrak{q}) \supseteq I\}$$
$$= \{\mathfrak{q} \in \operatorname{Spec} B \mid \phi^{-1}(\mathfrak{q}) \supseteq I\} = \{\mathfrak{q} \in \operatorname{Spec} B \mid \mathfrak{q} \supseteq \phi(I)\} = \mathbb{V}(\phi(I)).$$

⁷Exercise: check well-defined

We need to construct $f^{\#}: \mathcal{O}_{\operatorname{Spec} A} \to f_* \mathcal{O}_{\operatorname{Spec} B}$. For $\mathfrak{p} \in \operatorname{Spec} B$, we obtain a natural homomorphism

$$\begin{array}{cccc} \phi_{\mathfrak{p}} & : & A_{\phi^{-1}(\mathfrak{p})} & \longrightarrow & B_{\mathfrak{p}} \\ & & \frac{a}{s} & \longmapsto & \frac{\phi\left(a\right)}{\phi\left(s\right)} \end{array}.$$

Note $\phi_{\mathfrak{p}}$ is a local homomorphism, since the maximal ideal $\mathfrak{p}B_{\mathfrak{p}}$ of $B_{\mathfrak{p}}$ is generated by the image of \mathfrak{p} under the map

$$\begin{array}{ccc} B & \longrightarrow & B_{\mathfrak{p}} \\ b & \longmapsto & \frac{b}{1} \end{array},$$

and the maximal ideal $\phi^{-1}(\mathfrak{p}) A_{\phi^{-1}(\mathfrak{p})}$ of $A_{\phi^{-1}(\mathfrak{p})}$ is generated by the image of $\phi^{-1}(\mathfrak{p})$ under the map

$$\begin{array}{ccc} A & \longrightarrow & A_{\phi^{-1}(\mathfrak{p})} \\ a & \longmapsto & \frac{a}{1} \end{array} ,$$

so have a commutative diagram

thus $\phi_{\mathfrak{p}}^{-1}(\mathfrak{p}B_{\mathfrak{p}}) = \phi^{-1}(\mathfrak{p}) A_{\phi^{-1}(\mathfrak{p})}$. Given $V \subseteq \operatorname{Spec} A$ open, we may define

$$f_{V}^{\#} : \mathcal{O}_{\operatorname{Spec} A}(V) \longrightarrow \mathcal{O}_{\operatorname{Spec} B}(f^{-1}(V))$$

$$(\mathfrak{p} \in V \mapsto s(\mathfrak{p}) \in A_{\mathfrak{p}}) \longmapsto (\mathfrak{q} \in f^{-1}(V) \mapsto \phi_{\mathfrak{q}}(s(f(\mathfrak{q}))) \in B_{\mathfrak{q}}).$$

Note that we need to check the local coherence part of the definition of \mathcal{O} . That is, if s is locally given by a/h, then $f_V^\#(s)$ is locally given by $\phi(a)/\phi(h)$. This gives the desired map $f^\#: \mathcal{O}_{\operatorname{Spec} A} \to f_*\mathcal{O}_{\operatorname{Spec} B}$, and the induced map on stalks $f_{\mathfrak{p}}^\#: \mathcal{O}_{\operatorname{Spec} A, f(\mathfrak{p})} \to \mathcal{O}_{\operatorname{Spec} B, \mathfrak{p}}$ agrees with $\phi_{\mathfrak{p}}: A_{\phi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$, by construction. Hence $(f, f^\#)$ is a morphism of locally ringed spaces.

2. Now suppose given a morphism $(f, f^{\#})$: Spec $B \to \operatorname{Spec} A$ of locally ringed spaces. Take

$$\phi = f_{\operatorname{Spec} A}^{\#} : \Gamma\left(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}\right) = A \to \Gamma\left(\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}\right) = B.$$

We need to show ϕ gives rise to $(f, f^{\#})$. We have $f_{\mathfrak{p}}^{\#}: \mathcal{O}_{\operatorname{Spec} A, f(\mathfrak{p})} = A_{f(\mathfrak{p})} \to \mathcal{O}_{\operatorname{Spec} B, \mathfrak{p}} = B_{\mathfrak{p}}$ a local homomorphism. This is compatible with the corresponding map on global sections, that is

$$\Gamma\left(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}\right) \xrightarrow{f_{\operatorname{Spec} A}^{\#}} \Gamma\left(\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{\operatorname{Spec} A, f(\mathfrak{p})} \xrightarrow{f_{\mathfrak{p}}^{\#}} \mathcal{O}_{\operatorname{Spec} B, \mathfrak{p}}$$

is commutative. That is, we have a commutative diagram

Then $(f_{\mathfrak{p}}^{\#})^{-1}(\mathfrak{p}B_{\mathfrak{p}}) = f(\mathfrak{p}) A_{f(\mathfrak{p})}$ since $f_{\mathfrak{p}}^{\#}$ is a local homomorphism, and by commutativity of the diagram, $f(\mathfrak{p}) = \phi^{-1}(\mathfrak{p})$. Thus f is induced by ϕ , and $f_{\mathfrak{p}}^{\#} = \phi_{\mathfrak{p}}$. So $f^{\#}$ is as constructed previously.

П

Remark. Demanding $(f, f^{\#})$ was a morphism of locally ringed spaces was crucial to make the proof work.

Definition. An **affine scheme** is a locally ringed space isomorphic, in the category of locally ringed spaces, to (Spec A, $\mathcal{O}_{\text{Spec }A}$) for some ring A. A **scheme** is a locally ringed space (X, \mathcal{O}_X) with an open cover $\{(U_i, \mathcal{O}_X|_{U_i})\}$ with each $(U_i, \mathcal{O}_X|_{U_i})$ an affine scheme, where $\mathcal{O}_X|_{U_i}(V) = \mathcal{O}_X(V)$ for $V \subseteq U_i$ open. A **morphism of schemes** is a morphism of locally ringed spaces.

Example. Let k be a field. Then Spec $k = (\{0\}, k)$.

• What does giving a morphism $f: \operatorname{Spec} k \to X$ to a scheme mean? First, this selects a point $x \in X$, the image of f. Second, we get a local ring homomorphism $f_x^\#: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} k,0} = k$, that is $\left(f_x^\#\right)^{-1}(0) = \mathfrak{m}_x \subseteq \mathcal{O}_{X,x}$, the maximal ideal of $\mathcal{O}_{X,x}$. Thus we get a factorisation $f_x^\#: \mathcal{O}_{X,x} \to \mathcal{O}_{X,x}/\mathfrak{m}_x \to k$, where $\mathcal{O}_{X,x}/\mathfrak{m}_x$ is a field, written as $\kappa(x)$, called the **residue field** of X at x. Thus f induces an inclusion $\kappa(x) \hookrightarrow k$. Conversely, given such an inclusion $\iota: \kappa(x) \hookrightarrow k$ of fields, we get a scheme morphism by defining f(0) = x, and

$$f^{\#}: \mathcal{O}_{X} \longrightarrow f_{*}k$$
 $s \longmapsto \iota(s(x))$, $s(x) \in \mathcal{O}_{X,x}$.

The moral is that giving a morphism $f: \operatorname{Spec} k \to X$ is equivalent to giving a point $x \in X$ and an inclusion $\iota: \kappa(x) \to k$. Note that if $X = \operatorname{Spec} A$, giving $\operatorname{Spec} k \to \operatorname{Spec} A$ is equivalent to giving a homomorphism $A \to k$, which we viewed at the beginning of the course as a k-valued point on $\operatorname{Spec} A$.

Lecture 8 Monday 26/10/20

• What does giving $X \to \operatorname{Spec} k$ mean? No information in the continuous map, but need also a map $f^{\#}: k \to f_*\mathcal{O}_X$, that is a map $k \to \Gamma(\operatorname{Spec} k, f_*\mathcal{O}_X) = \Gamma(X, \mathcal{O}_X)$. That is, $\Gamma(X, \mathcal{O}_X)$ carries a k-algebra structure. Note this induces k-algebra structures on $\mathcal{O}_X(U)$ for all U via the composition $k \to \mathcal{O}_X(X) \to \mathcal{O}_X(U)$ and similarly all stalks $\mathcal{O}_{X,p}$ are also k-algebras. We say X is a **scheme defined over** k. For example, in affine varieties, consider $A = k[X_1, \ldots, X_n]/I$ with $I = \sqrt{I}$. Then $\operatorname{Spec} A$ is our replacement for $\mathbb{V}(I) \subseteq \mathbb{A}^n_k$, viewing $\operatorname{Spec} A$ as a scheme over k. If $k \subseteq k'$ is a field extension, a k'-valued point of X/k is a commutative diagram

We write X(k') for the set of such morphisms.

Remark. It is rare in algebraic geometry to work with schemes alone, but rather always working over a base scheme.

Fix a base scheme S. Define \mathbf{Sch}/S to be the category whose objects are morphisms $T \to S$ and morphisms are commutative diagrams

We will frequently work with $\operatorname{\mathbf{Sch}}/k = \operatorname{\mathbf{Sch}}/\operatorname{Spec} k$. Given $T \to S$ and $X \to S$ objects in $\operatorname{\mathbf{Sch}}/S$, a T-valued point of $X \to S$ is a morphism $T \to X$ over S, so

and we write X(T) for the set of T-valued points. The **Yoneda philosophy** is that X(T) for all T determines X.

Example. Fix a field k, and let $D = \operatorname{Spec} k[t] / \langle t^2 \rangle = (\{\langle t \rangle\}, k[t] / \langle t^2 \rangle)$. Then t does not make sense as k-valued function anymore, as $t^2 = 0$. Let X be any scheme over k. What is X(D)? Given $f: D \to X$ a morphism of schemes over k, we get a point $x \in X$ as the image of f and a local homomorphism

$$\begin{array}{ccc} f_x^{\#} & : & \mathcal{O}_{X,x} & \longrightarrow & k\left[t\right]/\left\langle t^2\right\rangle \\ & & \mathfrak{m}_x & \longmapsto & \left\langle t\right\rangle \end{array}.$$

Note that \mathfrak{m}_x^2 maps to zero, hence we get a k-linear map $\mathfrak{m}_x/\mathfrak{m}_x^2 \to \langle t \rangle \cong k$ as a k-vector space. We also have a composed surjective k-algebra homomorphism $\mathcal{O}_{X,x} \to k[t]/\langle t \rangle \cong k$ with kernel \mathfrak{m}_x , and hence we have $\kappa(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x \cong k$. So we get

- a k-valued point x with residue field k, and
- a k-vector space map $\mathfrak{m}_x/\mathfrak{m}_x^2 \to k$, that is an element of $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$, the dual vector space.

Then $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ is called the **Zariski tangent space** to X at x. Think of D as a point plus an arrow.

Example. Glued schemes are a special case of a question on example sheet 1. Suppose given two schemes X_1 and X_2 and open subsets $U_i \subseteq X_i$. Recall U_i is also a locally ringed space $(U_i, \mathcal{O}_{X_i}|_{U_i})$, and in fact U_i is then a scheme. Given an isomorphism $f: U_1 \xrightarrow{\sim} U_2$, can glue X_1 and X_2 along U_1 and U_2 to get a scheme X with an open cover $\{X_1, X_2\}$, so $X = X_1 \sqcup X_2 / \sim$ such that $x_1 \in U_1 \sim x_2 \in U_2$ if $f(x_1) = x_2$, and need to define \mathcal{O}_X . Now take $\mathbb{A}_k^n = \operatorname{Spec} k[X_1, \ldots, X_n]$, so $\mathbb{A}_k^1 = \operatorname{Spec} k[X]$. Take $X_1 = X_2 = \mathbb{A}_k^1$.

- Glue $U_1 = \mathbb{A}^1 \setminus \{0\} = \mathbb{D}(X) \subseteq X_1$ and $U_2 = \mathbb{A}^1 \setminus \{0\} = \mathbb{D}(X) \subseteq X_2$ via the identity map. This is the affine line with doubled origin.
- Could instead glue U_1 and U_2 via the map given by $X \mapsto X^{-1}$, where $U_1 = \operatorname{Spec} k[X]_X = U_2$ and

$$\begin{array}{ccc} k\left[X\right]_X & \longrightarrow & k\left[X\right]_X \\ X & \longmapsto & X^{-1} \end{array}$$

induces an isomorphism $U_1 \to U_2$. When we glue, we get the projective line over k, \mathbb{P}^1_k .

2.5 Projective schemes

Let S be a graded ring, that is

$$S = \bigoplus_{d>0} S_d,$$

with S_d an abelian group, and product law satisfies $S_d \cdot S_{d'} \subseteq S_{d+d'}$.

Example. $S = k[X_0, ..., X_n]$, and S_d is the space of polynomials which are homogeneous of degree d, that is spanned by monomials of degree d.

We write

$$S_+ = \bigoplus_{d \ge 1} S_d,$$

which we call the **irrelevant ideal**.

Definition. $I \subseteq S$ is a **homogeneous ideal** if I is generated by its homogeneous elements, that is elements in S_d for various d.

Definition. Let

$$\operatorname{Proj} S = \{ \mathfrak{p} \in \operatorname{Spec} S \mid \mathfrak{p} \text{ is homogeneous, } \mathfrak{p} \not\supseteq S_+ \}.$$

For $I \subseteq S$ a homogeneous ideal, set

$$\mathbb{V}(I) = \{ \mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I \}.$$

Exercise. Check the $\mathbb{V}(I)$ form the closed sets of a topology on Proj S.

Notation. For $\mathfrak{p} \in \operatorname{Proj} S$, let

$$T = \{ f \in S \setminus \mathfrak{p} \mid f \text{ is homogeneous} \}.$$

Lecture 9 Wednesday 28/10/20

Then T is a multiplicatively closed subset of S, and let $S_{(\mathfrak{p})} \subseteq T^{-1}S$ be the subring of elements of degree zero, that is written in the form s/s' with $s \in S$ homogeneous and $s' \in T$ with deg $s = \deg s'$. For $f \in S$ homogeneous, we write $S_{(f)} \subseteq S_f$ for the subset of elements of degree zero.

Can now define a sheaf \mathcal{O} on Proj S. For $U \subseteq \operatorname{Proj} S$ open, set

$$\mathcal{O}\left(U\right) = \left\{s: U \to \bigsqcup_{\mathfrak{p} \in U} S_{(\mathfrak{p})} \middle| \begin{array}{c} \forall \mathfrak{p} \in U, \ s\left(\mathfrak{p}\right) \in S_{(\mathfrak{p})} \\ \forall \mathfrak{p} \in U, \ \exists \mathfrak{p} \in V \subseteq U \ \text{open}, \ \exists a, f \in S, \ \forall \mathfrak{q} \in V, \ f \notin \mathfrak{q}, \ s\left(\mathfrak{q}\right) = \frac{a}{f} \in S_{(\mathfrak{q})} \end{array} \right\},$$

where a and f are homogeneous of the same degree. As before, $\mathcal{O}_{\mathfrak{p}} = S_{(\mathfrak{p})}$. 8 Is the locally ringed space (Proj S, \mathcal{O}) a scheme?

Notation. If $f \in S$ is homogeneous, then we write

$$\mathbb{D}_{+}(f) = \{ \mathfrak{p} \in \operatorname{Proj} S \mid f \notin \mathfrak{p} \},\,$$

which is an open set and $\mathbb{D}_{+}(f) = \operatorname{Proj} S \setminus \mathbb{V}(f)$.

Proposition 2.4. $\left(\mathbb{D}_{+}(f), \mathcal{O}|_{\mathbb{D}_{+}(f)}\right) \cong \operatorname{Spec} S_{(f)}$ as locally ringed spaces. Further, the open sets $\mathbb{D}_{+}(f)$ for $f \in S_{+}$ cover $\operatorname{Proj} S$. Hence $\left(\operatorname{Proj} S, \mathcal{O}\right)$ is a scheme.

Proof. Will be on example sheet 2.

Definition. If A is a ring, define

$$\mathbb{P}_A^n = \operatorname{Proj} A [X_0, \dots, X_n].$$

Example. If k is an algebraically closed field, consider $\mathbb{P}^1_k = \operatorname{Proj} k[X_0, X_1]$. The closed points, that is points \mathfrak{p} such that $\{\mathfrak{p}\}$ is closed, correspond to maximal elements of $\operatorname{Proj} S$. These maximal elements are ideals of the form $\langle aX_0 - bX_1 \rangle$. The only maximal homogeneous ideal of $k[X_0, X_1]$ is $\langle X_0, X_1 \rangle = S_+$, since any maximal ideal is of the form $\langle X_0 - a_0, X_1 - a_1 \rangle$. The other prime ideals of $k[X_0, X_1]$ are principal, that is of the form $\langle f \rangle$ with f irreducible or f = 0. For $\langle f \rangle$ to be homogeneous, f must be homogeneous. Any such polynomial splits into linear factors, all homogeneous, so in order for f to be irreducible it must be linear. Note we have a one-to-one correspondence between

$$\left\{ \left\langle aX_0 - bX_1 \right\rangle \mid a,b \in K, \ a,b \text{ not both zero} \right\} \quad \underset{}{\longleftrightarrow} \quad \left(k^2 \setminus \left\{ (0,0) \right\} \right)/k^* \\ \left\langle aX_0 - bX_1 \right\rangle \quad \longmapsto \quad (b:a)$$

where k^* acts by $(a, b) \mapsto (\lambda a, \lambda b)$ for $\lambda \in k^*$. The conclusion is that the closed points of \mathbb{P}^1_k are in one-to-one correspondence with points of $\left(k^2 \setminus \{(0,0)\}\right)/k^*$. More generally, the closed points of \mathbb{P}^n_k are in one-to-one correspondence with points of $\left(k^{n+1} \setminus \{0\}\right)/k^*$. Can see this by making use of the open cover $\{\mathbb{D}_+(X_i) \mid 0 \le i \le n\}$, which is an open cover since $\mathfrak{p} \notin \mathbb{D}_+(X_i)$ for any i implies that $X_i \in \mathfrak{p}$ for all i, so $S_+ \subseteq \mathfrak{p}$ and so $\mathfrak{p} \notin \operatorname{Proj} S$.

Example. Let $S = k[X_0, ..., X_n]$, but grade by deg $X_i = w_i$, where $w_0, ..., w_n$ are positive integers. Define $W\mathbb{P}^n(w_0, ..., w_n) = \text{Proj } S$, the **weighted projective space**. For example, $W\mathbb{P}^2(1, 1, 2)$ has an open cover $\{\mathbb{D}_+(X_i) \mid 0 \le i \le 2\}$. Consider $\mathbb{D}_+(X_2) = \text{Spec } S_{(X_2)}$. Note

$$S_{(X_2)} = k \left[\frac{X_0^2}{X_2}, \frac{X_0 X_1}{X_2}, \frac{X_1^2}{X_2} \right] \cong k \left[U, V, W \right] / \left\langle UW - V^2 \right\rangle \subseteq S_{X_2},$$

so Spec $S_{(X_2)}$ is a quadric cone with a singular point. Similarly, $\mathbb{D}_+(X_0)$ and $\mathbb{D}_+(X_1)$ are both isomorphic to \mathbb{A}^2_k .

⁸Exercise: check

⁹Exercise: check

¹⁰Exercise: good exercise

Example. Let $M = \mathbb{Z}^n$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{R}^n$. Let $\Delta \subseteq M_{\mathbb{R}}$ be a compact convex lattice polytope. That is, there exists a finite set $V \subseteq M$ such that Δ is the convex hull of V, that is the smallest convex set containing V. Let

$$C(\Delta) = \{(m,r) \in M_{\mathbb{R}} \oplus \mathbb{R} \mid m \in r\Delta, \ r \geq 0\} \subseteq M_{\mathbb{R}} \oplus \mathbb{R}$$

Here $r\Delta = \{rm \mid m \in \Delta\}$. This is the **cone over** Δ . Let

$$S = k \left[C \left(\Delta \right) \cap \left(M \oplus \mathbb{Z} \right) \right] = \bigoplus_{P \in C(\Delta) \cap \left(M \oplus \mathbb{Z} \right)} k Z^{P},$$

with multiplication given by $Z^PZ^{P'}=Z^{P+P'}$, since $C(\Delta)\cap (M\oplus \mathbb{Z})$ is a monoid, that is it is closed under addition and contains zero. This makes S into a ring, and it is graded by $\deg Z^{(m,r)}=r$. Define $\mathbb{P}_{\Delta}=\operatorname{Proj} S$. This is called a **projective toric variety**.

- Let Δ be the convex hull of $\{0, e_1, \dots, e_n\}$ with e_1, \dots, e_n the standard basis of $M = \mathbb{Z}^n$. Check that $S = k[X_0, \dots, X_n]$ with standard grading $X_0 = Z^{(0,1)}$ and $X_i = Z^{(e_i,1)}$. ¹¹ So $\mathbb{P}_{\Delta} = \mathbb{P}_k^n$.
- Let n=2, and let Δ be the convex hull of $\{(0,0),(1,0),(0,1),(1,1)\}$. In S, the degree d monomials are $\{Z^{(a,b,d)} \mid 0 \leq a \leq d, 0 \leq b \leq d\}$. Any of these can be written as a product of monomials of degree one, that is the monomials $X=Z^{(0,0,1)}, Y=Z^{(1,0,1)}, W=Z^{(0,1,1)}$, and $T=Z^{(1,1,1)}$. Thus $S=k[X,Y,W,T]/\langle XT-YW\rangle$. So Proj S can be thought of as a quadric surface in \mathbb{P}^3_k .

2.6 Open and closed subschemes

Definition. An **open subscheme** of a scheme X is a scheme $(U, \mathcal{O}_X|_U)$ for $U \subseteq X$ an open subset. Note that this is a scheme because from question 1 and question 11 on the first example sheet, open affine subsets of X form a basis for the topology on X. An **open immersion** is a morphism $f: X \to Y$ which induces a isomorphism of X with an open subscheme of Y. A **closed immersion** $f: X \to Y$ is a morphism which is a homeomorphism onto a closed subset of Y, and the induced morphism $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective. A **closed subscheme** of Y is an equivalence class of closed immersions, where

Lecture 10

are equivalent if there exists an isomorphism i making the diagram commute.

Example.

- Let $Y = \operatorname{Spec} A$, let $I \subseteq A$ be an ideal, and let $X = \operatorname{Spec} A/I$. Note the map of schemes induced by the quotient map $A \to A/I$ identifies $\operatorname{Spec} A/I$ with $\mathbb{V}(I) \subseteq \operatorname{Spec} A$. Thus $f: X \to Y$, induced by $A \to A/I$, satisfies the first condition of being a closed immersion. Note that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective on stalks. For $\mathfrak{p} \in \mathbb{V}(I)$, $\mathcal{O}_{Y,\mathfrak{p}} = A_{\mathfrak{p}}$ and $(f_*\mathcal{O}_X)_{\mathfrak{p}} = \mathcal{O}_{X,\mathfrak{p}}$ since all open sets in X are of the form $U \cap X$ for U an open set of Y and $\mathcal{O}_{X,\mathfrak{p}} = (A/I)_{\mathfrak{p}/I}$. Certainly $A_{\mathfrak{p}} \to (A/I)_{\mathfrak{p}/I}$ is surjective.
- Let Spec $k[X,Y]/\langle X\rangle \to \operatorname{Spec} k[X,Y] = \mathbb{A}^2$. This gives a closed subscheme structure to the set $\mathbb{V}(X)$. Note $\mathbb{V}(X^2,XY) = \mathbb{V}(X)$. This gives a closed immersion $\operatorname{Spec} k[X,Y]/\langle X^2,XY\rangle \to \mathbb{A}^2$. This gives a different closed subscheme structure on $\mathbb{V}(X)$. Note these two subschemes are isomorphic away from the origin, which we can see by looking at $\mathbb{D}(Y) \subseteq \operatorname{Spec} k[X,Y]/\langle X\rangle$, where

$$\mathbb{D}(Y) \cong \operatorname{Spec}(k[X,Y]/\langle X \rangle)_{Y} = \operatorname{Spec}k[Y]_{Y}.$$

Looking at $\mathbb{D}(Y) \subseteq \operatorname{Spec} k[X,Y] / \langle X^2, XY \rangle$,

$$\mathbb{D}\left(Y\right)\cong\operatorname{Spec}\left(k\left[X,Y\right]/\left\langle X^{2},XY\right\rangle \right)_{V}\cong\operatorname{Spec}\left(k\left[X,Y\right]_{V}/\left\langle X\right\rangle \right)\cong\operatorname{Spec}k\left[Y\right]_{V}.$$

¹¹Exercise

2.7 Fibre products

Let C be a category and

$$X \xrightarrow{f} Z$$

be a diagram in \mathcal{C} . Then the **fibre product**, if it exists, is an object W equipped with morphisms $p:W\to X$ and $q:W\to Y$ such that $f\circ p=g\circ q$ satisfying the following universal property. For any W' equipped with maps $p':W'\to X$ and $q':W'\to Y$ such that $f\circ p'=g\circ q'$, there exists a unique morphism $h:W'\to W$ making the diagram

commute, that is $p \circ h = p'$ and $q \circ h = q'$. Note that if the fibre product exists, it is unique up to unique isomorphism.

Example. Let \mathcal{C} be the category of sets. Then

$$X \times_Z Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\}.$$

It will be helpful to think about the fibre product, and more generally other universal properties, via the Yoneda lemma.

Definition. Let \mathcal{C} be a category. Write h_X for the contravariant functor

$$\begin{array}{cccc} \mathbf{h}_{X} & : & \mathcal{C} & \longrightarrow & \mathbf{Set} \\ & Y & \longmapsto & \mathrm{Hom}\,(Y,X) \\ & f:Y\to Z & \longmapsto & (\phi\in\mathrm{Hom}\,(Z,X)\mapsto\phi\circ f\in\mathrm{Hom}\,(Y,X)) \end{array}.$$

Recall that a **natural transformation** between contravariant functors $F, G : \mathcal{C} \to \mathcal{D}$, written as $T : \mathcal{C} \to \mathcal{D}$, consists of the data $T(X) : F(X) \to G(X)$ for all $X \in \text{Ob } \mathcal{C}$ such that for all $f : X \to Y$ in \mathcal{C}

$$F\left(X\right) \xleftarrow{F(f)} F\left(Y\right)$$

$$T(X) \downarrow \qquad \qquad \downarrow T(Y)$$

$$G\left(X\right) \xleftarrow{G(f)} G\left(Y\right)$$

is commutative.

Lemma 2.5 (Yoneda's lemma). The set of natural transformations between $h_X : \mathcal{C} \to \mathbf{Set}$ and $G : \mathcal{C} \to \mathbf{Set}$ is G(X).

Proof. Given $\eta \in G(X)$, we need to define a map

$$\mathbf{h}_{X}\left(Y\right) = \mathrm{Hom}\left(Y, X\right) \quad \longrightarrow \quad G\left(Y\right) \\ f \quad \longmapsto \quad G\left(f\right)\left(\eta\right) \ ,$$

for all objects $Y \in \mathcal{C}$. Check that this defines a natural transformation $h_X \to G$. ¹² Conversely, given $T: h_X \to G$ a natural transformation, take $\eta = T(X)$ (id_X). Check that these two maps are inverse to each other. ¹³

Corollary 2.6. The set of natural transformations $h_X \to h_Y$ is $h_Y(X) = \text{Hom}(X,Y)$.

 $^{^{12}}$ Exercise

 $^{^{13}}$ Exercise

Definition. A contravariant functor $F: \mathcal{C} \to \mathbf{Set}$ is said to be **representable** if $F \cong h_X$ for some $X \in \mathrm{Ob}\,\mathcal{C}$.

Lots of questions in algebraic geometry are about representability of functors. Redefining, the fibre product in a category \mathcal{C} is an object which represents the functor

$$T \mapsto \operatorname{Hom}(T, X) \times_{\operatorname{Hom}(T, Z)} \operatorname{Hom}(T, Y)$$
,

since an element of the set $\operatorname{Hom}(T,X) \times_{\operatorname{Hom}(T,Z)} \operatorname{Hom}(T,Y)$ is a commutative diagram

The advantage of using Yoneda is that we can check identities using fibre products using identities of the products of sets.

Example. In Set,

$$\begin{array}{cccc} (A \times_B B) \times_C D & \longleftrightarrow & A \times_B D \\ & ((a,c)\,,d) & \longmapsto & (a,d) \\ & ((a,f\,(d))\,,d) & \longleftrightarrow & (a,d) \end{array}, \qquad f:D \to C.$$

Then we have two functors

$$T \longrightarrow \operatorname{h}_{A}\left(T\right) \times_{\operatorname{h}_{B}\left(T\right)} \operatorname{h}_{C}\left(T\right) \times_{\operatorname{h}_{C}\left(T\right)} \operatorname{h}_{D}\left(T\right)$$

$$\downarrow \sim \qquad \qquad \downarrow \sim \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow$$

and natural transformations showing those functors are isomorphic, and hence represent isomorphic objects.