Linguagens Formais e Autômatos

Aula 18 - Determinismo em PDAs

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 6 Seção 6.4

Determinismo em PDAs

- O não-determinismo é um bom "truque de programação", pois ajuda a projetar linguagens/autômatos
 - Para autômatos finitos, o não-determinismo não dá poder aos autômatos, ou seja:
 - NFAs reconhecem as mesmas linguagens que DFAs
 - É possível converter NFAs em DFAs e vice-versa
 - A escolha de quando converter (em tempo de execução ou pré-execução) fica a cargo do projetista, e depende do cenário de aplicação

Determinismo em PDAs

- Para autômatos de pilha, o mesmo não acontece
- O não-determinismo AUMENTA a capacidade reconhecedora de um PDA
 - Ou seja, PDAs determinísticos (DPDAs) reconhecem menos linguagens do que PDAs não-determinísticos (NPDAs)
 - Equivalente a dizer que existem linguagens reconhecidas por NPDAs que não são reconhecidas por DPDAs

- Definição informal é a mesma do que para autômatos finitos determinísticos
 - Ou seja, em um DPDA, nunca há alternativa de escolha para movimento,
 e sempre o autômato sabe o que fazer
 - Isso significa que, para toda combinação de entrada, estado e topo da pilha, há uma e somente uma possibilidade de transição
- Importante: a transição vazia (ε) aqui não é indicativo de não-determinismo!!
 - Pois pode haver uma decisão com base no topo da pilha.
 - O problema é haver conflito entre consumir a entrada ou não!

- O caso da entrada vazia
 - Para um determinado topo da pilha X, e uma entrada a
 - O DPDA:
 - Ou define uma transição com base em a (e a transição com base em ε fica vazia)
 - Ou define uma transição com base em ε (e a transição com base em a fica vazia)
- Na tabela, as células correspondentes às colunas ε nunca sobrepõem o que foi definido nas células das colunas das entradas

Na primeira linha, as colunas ϵ estão todas vazias, pois as combinações 0 x {0,1,\$} e 1 x {0,1,\$} foram definidas

Entrada:	0			da: 0 1					3	
Pilha:	0	1	\$	0	1	\$	0	1	\$	
q0	(q0,00)	(q0,01)	(q0,0\$)	(q0,10)	(q0,11)	(q0,1\$)	Ø	Ø	Ø	
q1	(q1,ε)	Ø	(q2,11)	(q1,ε)	Ø	(q1,ε)	Ø	(q2,01)	Ø	
q2	Ø	Ø	(q2,11)	Ø	Ø	(q1,0\$)	(q1,0)	(q1,0)	Ø	

Na segunda linha, a coluna $(\varepsilon,1)$ não está vazia, pois as combinações 0 x $\{1\}$ e 1 x $\{1\}$ não foram definidas

,						$\overline{}$			
Entrada:	0				1			3	
Pilha:	0	1	\$	0	1	\$		1	\$
q0	(q0,00)	(q0,01)	(q0,0\$)	(q0,10)	(q0,11)	(q0,1\$)	Ø	Ø	Ø
q1	(q1,ε)	Ø	(q2,11)	(q1,ε)	Ø	(q1,ε)	Ø	(q2,01)	Ø
q2	Ø	Ø	(q2,11)	Ø	Ø	(q1,0\$)	(q1,0)	(q1,0)	Ø

Entrada:	0			1			3		
Pilha:	0	1	\$	0	1	\$	0	1	\$
q0	(q0,00)	(q0,01)	(q0,0\$)	(q0,10)	(q0,11)	(q0,1\$)	Ø	Ø	Ø
q1	(q1,ε)	Ø	(q2,11)	(q1,ε)	Ø	(q1,ε)	Ø	(q2,01)	Ø
q2	Ø	Ø	(q2,11)	Ø	Ø	(q1,0\$)	(q1,0)	(q1,0)	Ø

Na terceira linha, as colunas $(\epsilon,0)$ e $(\epsilon,1)$ não estão vazias, pois as combinações 0 x $\{0,1\}$ e 1 x $\{0,1\}$ não foram definidas

- Outra maneira de "enxergar" o determinismo é fazer o seguinte:
 - 1: "Recorte" as colunas do ε

	0			1	
0	1	\$	0	1	\$
(q0,00)	(q0,01)	(q0,0\$)	(q0,10)	(q0,11)	(q0,1\$)
(q1,ε)		(q2,11)	(q1,ε)		(q1,ε)
		(q2,11)			(q1,0\$)

3							
0	1	\$					
	(q2,01)						
(q1,0)	(q1,0)						

 2: Ctrl-C Ctrl-V no pedaço recortado, quantas vezes for necessário para obter o mesmo número de "cópias" do que entradas

	0			1	
0	1	\$	0	1	\$
(q0,00)	(q0,01)	(q0,0\$)	(q0,10)	(q0,11)	(q0,1\$)
(q1,ε)		(q2,11)	(q1,ε)		(q1,ε)
		(q2,11)			(q1,0\$)

ε 0 1 \$ 0 1 \$ (q2,01) (q1,0) (q1,0)

Neste caso, criamos duas cópias do "pedaço" recortado, pois temos duas entradas, 0 e 1

 3: Coloque cada cópia dos pedaços recortados sobre cada entrada

				ŧ					
	0 1		\$	0		1		\$	
	(q0,00)	(q0,01)	(q0,0\$)	(q0,1	0)	(q0,1	1)	(q0,1	\$)
	(q1,ε)	(q2,01)	(q2,11)	(q1,	(3	(q2,0	1)	(q1,	ε)
	(q1,0)	(q1,0)	(q2,11)	(q1,0	0)	(q1,0))	(q1,0	\$)
	8							ξ	
0	0 1 \$				0		1	\$	
	(q2,0	1)					(q2	2,01)	
(q1,0) (q1,C))			(q	1,0)	(q	1,0)	

- 4: A tabela resultante deve estar completamente preenchida
 - E nenhuma célula deve conter valores sobrepostos
- Caso contrário, existe um ponto de não-determinismo

	B		É			
0	1	\$	0	1	\$	
(q0,00)	(q0,01)	(q0,0\$)	(q0,10)	(q0,11)	(q0,1\$)	
(q1,ε)	(q2,01)	(q2,11)	(q1,ε)	(q2,01)	(q1,ε)	
(q1,0)	(q1,0)	(q2,11)	(q1,0)	(q1,0)	(q1,0\$)	

- Definição formal:
- Um PDA P = (Q,Σ,Γ,δ_F,q0,Z₀,F) é determinístico se e somente se:
 - δ(q, a, X) tem no máximo um elemento para qualquer q em Q, a em Σ ou a = ε e X em Γ
 - Se δ(q, a, X) é não vazio para algum a em Σ
 - então δ (q, ε, X) deve ser vazio

Determinismo em PDAs

- Até agora, vimos somente NPDAs
- Vimos que os NPDAs aceitam as linguagens livres de contexto
- Então quais seriam as linguagens dos DPDAs?

- Bom, sabemos que as linguagens regulares são aceitas por DPDAs
 - Como? Prova por construção: basta construir um DPDA que sempre "ingora" a pilha
 - Na tabela, as colunas ε ficam vazias
 - O comportamento será exatamente o mesmo que um DFA

- Existem linguagens aceitas por DPDAs que não são regulares
 - Ex: L = {wcw^R | w está em (0+1)*} __
 - É possível construir um DPDA para essa linguagem
- É possível mostrar (usando o lema do bombeamento para linguagens regulares) que L não é regular
- Está acompanhando? O desenho
 à direita mostra o que sabemos até
 o momento sobre as linguagens
 aceitas pelos PDAs determinísticos

- Além disso, sabemos que as linguagens aceitas pelos DPDAs não são inerentemente ambíguas
 - Ou seja, existe pelo menos uma gramática não-ambígua para suas linguagens

Não vimos essa conversão!!!

- A prova envolve o processo de conversão de PDAs para gramáticas
 - É possível mostrar que o processo de conversão de um DPDA para uma CFG produz uma gramática onde todas as derivações mais à esquerda que levam a cadeias da linguagem são únicas

- Mas as linguagens aceitas pelos DPDAs não são TODAS as linguagens não-inerentemente ambíguas
 - Ou seja, existem linguagens não-inerentemente ambíguas (que possuem pelo menos uma gramática não-ambígua) que NÃO são aceitas por um DPDA
 - Exemplo: S → 0S0 | 1S1 | ε (gramática dos palíndromos com número par de símbolos)
 - É necessário um ponto de não-determinismo para "adivinhar" quando terminou de ler a primeira metade da entrada
 - Ou seja, não existe um DPDA que aceita essa linguagem

 Resumindo o que sabemos sobre as linguagens aceitas pelos DPDAs

Fim

Aula 18 - Determinismo em PDAs