

Escuela Politécnica Superior Redes de comunicaciones 1

Examen 2º parte Capas de Red y Transporte 13 enero 2016 Modelo A

APELLIDOS (MAYÚSCULAS):			
NOMBRE (MAYÚSCULAS):			
DNI:POSICIÓN(solo si le es solicitado):			
GRUPO:(mañana(m)/tarde(t)/doble(d)): FIRMA:			
Tiempo: 1 hora 45 minutos. Sin libros ni apuntes, pueden usarse calculadoras. El examen se compone de 5 cuestiones breves de desarrollo (D), 13 cuestiones breves numéricas (N), y 7 cuestiones tipo test (T). El examen es sobre 25 puntos en las que cada cuestión vale 1 punto (no restan los errores). La fecha de la publicación de notas será el 18 enero 2016 (se publicarán en Moodle) y la revisión el 25 enero (se informará de hora y aula, también por Moodle). EL ALUMNO DEBE ENTREGAR ESTE ENUNCIADO RESPONDIENDO A LAS CUESTIONES EN LAS HOJAS DE RESPUESTAS ADJUNTAS AL FINAL DE ESTE ENUNCIADO.			
D1 Explique en que consiste la técnica inversa envenenada (poison reverse) con respecto a algoritmo vector distancias (máx. 2 líneas).			
D2 Explique en que consiste el control de flujo TCP (máx. 2 líneas).			
D3 Explique en que consiste "NAT transversal con retransmisores (TURN)" (máx. 3 líneas).			
D4 De dos razones por las que Microsoft abandonó TURN basados en supernodos en los usuarios en su implementación de Skype tras su compra (máx. 3 líneas)			
D5 Explique a que nos referimos con el termino <i>Best-effort</i> respecto a IP (máx. 3 líneas)			
N1-N5 Dado el par: 1) Rango <u>IP</u> en formato CIDR como IP _r /Mascara _r , y 2) una dirección IP, IP _v responda respetando que el rango IP _r /Mascara _r esté <u>correctamente</u> definido y la dirección IP _v sea <u>asignable</u> en dicho rango (no tenga en cuenta /32):			
N1 El <u>MENOR</u> valor que puede tener Mascara _r , dado IP _r =150.244.0.0 e IP _v =150.244.13.0			
N2 El <u>mayor</u> valor que puede tener Mascara _r , dado IP _r =150.244.0.0 e IP _v =150.244.13.0			
$N3$ El <u>mayor</u> valor que puede tener Mascara _r , dado IP_r =150.244.0.0 e IP_v =150.0.255.255			
N4 El mayor valor que puede tener Mascara _r , dado IP _r =150.244.0.0 e IP _v =150.1.255.255			

N6-N10 Dada la Figura 1 que muestra la interacción del protocolo TCP Reno entre dos equipos, A y B, al transmitir un fichero muy grande del primero al segundo, complete los números de secuencia y reconocimiento solicitados.

N5 El mayor valor que puede tener Mascara_r, dado IP_r=150.244.0.0 e IP_v=150.244.0.3

Asuma que A siempre tiene datos que mandar, que se usan buffers de recepción de capacidad infinita y que no ha saltado ningún temporizador, pero asuma que el tamaño de la ventana de congestión en A es de tamaño <u>constante</u> e igual a 40 B siendo cero al comienzo de la figura. La versión de TCP mostrada como es habitual implementa ACKs acumulativos, en concreto, de manera estricta.

Figura 1. SEC=Número de secuencia. ACK=Número de reconocimiento. L=Bytes transmitidos a nivel de aplicación. El aspa significa que se perdió ese paquete. Note que estamos solo ante dos equipos A y B. En la parte izquierda las transmisiones de $A \rightarrow B$, y en la derecha de $B \rightarrow A$

N6 Valor de SEC₄. **N7** Valor de ACK₇. **N8** Valor de SEC₁₀.

N9 Valor de ACK_{11} . **N10** Valor de SEC_{12} .

N11-N13 Dada la evolución de la ventana de congestión TCP (en número de segmentos y asumiendo su modelo Reno simplificado), mostrada en la Figura 2 durante la descarga de un fichero que necesitó medio minuto para su completa descarga, responda a las siguientes preguntas asumiendo las siguientes premisas:

El RTT entre el host destino y origen es constante e igual a 0'5 segundos, el MSS de la conexión es 500B (bytes), buffers de recepción infinitos, la pila de protocolos que se sigue es ETH|IP|TCP (con cabeceras de tamaño 14B, 20B y 20B respectivamente).

N11 Calcule el *goodput* medio en los primeros 6 segundos mostrados en la figura en kb/s (esto es en 10^3 bits por segundo).

N12 Calcule la carga ofrecida media en kb/s durante la descarga del fichero.

N13 Asuma solo para esta cuestión el modelo estacionario de TCP, y calcule la carga ofrecida media estimada según el modelo para la conexión TCP dada, también en kb/s.

Figura 2: Ventana de congestión por ciclo de transmisión (o RTT) para cuestiones N11-N13

T1-T4 Dado un *router* IP y su tabla de reenvío (mostrada en la Figura 3) marque por cual interface (A, B, C, D, o E) transmitirá dicho *router* paquetes destinados a las siguientes direcciones IP destino:

Rango de direcciones	Interface	
1.1.1.0 /24	A	Figura para cue
1.1.1.0/26	В	
1.1.1.128/26	С	
1.1.1.8/29	D	
Otro caso	Е	

Figura 3: Tabla de reenvíos para cuestiones T1—T4

T1 Dirección destino: 1.1.1.1. **T2** Dirección destino: 1.1.1.10.

T3 Dirección destino: 1.1.1.70. **T4** Dirección destino: 1.1.1.194.

T5-T7 Dada la topología mostrada en la Figura 4, donde muestra una fracción del Internet donde cada nube representa un sistema autónomo (AS) que siguen las políticas habituales de rentabilidad para el enrutamiento BGP en Internet. Diga que rutas seguirán los paquetes con los siguientes ASs origen y destino (A-B, significa usar el enlace entre A y B):

Figura 4: Topología a nivel ASs para cuestiones T5—T7.

Las líneas continuas representan relaciones de tipo proveedor → cliente (apuntando al cliente) y las líneas discontinuas relaciones de tipo peering

T5 Ruta para paquetes con origen "AS D" y destino "AS G"

a) D-B-A-C-G;

b) D-E-F-G;

c) D-B-F-G;

d) Ninguna de las anteriores (incluyendo cuando no es posible o hay varias rutas igualmente válidas)

e) D-B-F-C-G;

T6 Ruta para paquetes con origen "AS B" y destino "AS C"

a) B-E-F-C;

b) B-A-C;

c) B-F-C;

d) Ninguna de las anteriores (incluyendo cuando no es posible o hay varias rutas igualmente válidas)

- **e**) B-D-E-F-C;
- T7 Ruta para paquetes con origen "AS D" y destino "AS F".
 - **a**) D-E-F;

b) D-B-E-F;

c) D-B-F;

d) Ninguna de las anteriores (incluyendo cuando no es posible o hay varias rutas igualmente válidas)

e) D-B-A-C-F;