Introduction to Fourier transform and signal analysis

Zong-han, Xie icbm0926@gmail.com

December 16, 2014

License of this document

Introduction to Fourier Transform and Signal Analysis by Zong-han, Xie (icbm0926@gmail.com) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Outline

- Continuous Fourier transform
- 2 Discrete Fourier transform
- 3 Calculate DFT with Python Numpy Package
- 4 References

Orthogonal condition

 Any two vectors a, b satisfied the following condition are mutually orthogonal.

$$\mathbf{a}^* \cdot \mathbf{b} = 0 \tag{1}$$

• Any two functions a(x), b(x) satisfied the following condition are mutually orthogonal.

$$\int a^*(x) \cdot b(x) dx = 0 \tag{2}$$

• * means complex conjugate.

Complete and orthogonal basis

 cos nx and sin mx are mutually orthogonal in which n and m are integers.

$$\int_{-\pi}^{\pi} \cos nx \cdot \sin mx dx = 0$$

$$\int_{-\pi}^{\pi} \cos nx \cdot \cos mx dx = \pi \delta_{nm}$$

$$\int_{-\pi}^{\pi} \sin nx \cdot \sin mx dx = \pi \delta_{nm}$$
(3)

• δ_{nm} is Dirac-delta symbol. It means $\delta_{nn}=1$ and $\delta_{nm}=0$ when $n\neq m$.

Fourier series

Since $\cos nx$ and $\sin mx$ are mutually orthogonal, we can expand an arbitrary periodic function f(x) by them. we shall have a series expansion of f(x) which has 2π period.

$$f(x) = a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$
(4)

Fourier series

If f(x) has L period instead of 2π , x is replaced with $\pi x/L$.

$$f(x) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \frac{2k\pi x}{L} + b_k \sin \frac{2k\pi x}{L} \right)$$

$$a_0 = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) dx$$

$$a_k = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \cos \frac{2k\pi x}{L} dx, k = 1, 2, ...$$

$$b_k = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \sin \frac{2k\pi x}{L} dx, k = 1, 2, ...$$
 (5)

Complex Fourier series

Using Euler's formula, equation (4) becomes

$$f(x) = a_0 + \sum_{k=1}^{\infty} \left(\frac{a_k - ib_k}{2} e^{ikx} + \frac{a_k + ib_k}{2} e^{-ikx} \right)$$

Let $c_0 \equiv a_0$, $c_k \equiv \frac{a_k - ib_k}{2}$ and $c_{-k} \equiv \frac{a_k + ib_k}{2}$, we have

$$f(x) = \sum_{m=-\infty}^{\infty} c_m e^{imx}$$

$$c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-imx} dx$$
(6)

 e^{imx} and e^{inx} are also mutually orthogonal provided $n \neq m$ and it forms a complete set. Therfore, it can be used as orthogonal basis.

Complex Fourier series

If f(x) has T period instead of 2π , x is replaced with $2\pi x/T$.

$$f(x) = \sum_{m=-\infty}^{\infty} c_m e^{i\frac{2\pi mx}{T}}$$

$$c_m = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-i\frac{2\pi mx}{T}} dx, m = 0, 1, 2...$$
(7)

Fourier Series of step function

f(x) is a periodic function with 2π period and it's defined as follows.

$$f(x) = 0, -\pi < x < 0$$

 $f(x) = h, 0 < x < \pi$ (8)

Fourier series of f(x) is

$$f(x) = \frac{h}{2} + \frac{2h}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right)$$
 (9)

f(x) is piecewise continuous within the periodic region. Fourier series of f(x) converges at speed of 1/n.

Fourier series of step function

Fourier series of saw tooth function

f(x) is a periodic function with 2π period and it's defined as follows.

$$f(x) = -x, -\pi < x < 0$$

 $f(x) = x, 0 < x < \pi$ (10)

Fourier series of f(x) is

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1,3,5...} \left(\frac{\cos nx}{n^2} \right)$$
 (11)

f(x) is continuous and its derivative is piecewise continuous within the periodic region. Fourier series of f(x) converges at speed of $1/n^2$.

Fourier series of saw tooth function

Fourier series of full wave rectifier

f(t) is a periodic function with 2π period and it's defined as follows.

$$f(t) = -\sin \omega t, -\pi < t < 0$$

$$f(t) = \sin \omega t, 0 < t < \pi$$
(12)

Fourier series of f(x) is

$$f(t) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=2,4,6...} \left(\frac{\cos n\omega t}{n^2 - 1} \right)$$
 (13)

f(x) is continuous and its derivative is piecewise continuous within the periodic region. Fourier series of f(x) converges at speed of $1/n^2$.

Fourier series of full wave rectifier

Fourier transform

from Eq. 7, we define variables $k \equiv \frac{2\pi m}{T}$, $\hat{f}(k) \equiv \frac{c_m T}{\sqrt{2\pi}}$ and $\triangle k \equiv \frac{2\pi (m+1)}{T} - \frac{2\pi m}{T} = \frac{2\pi}{T}$. We can have

$$f(x) = \frac{1}{\sqrt{(2\pi)}} \sum_{m=-\infty}^{\infty} \hat{f}(k) e^{ikx} \triangle k$$

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-ikx} dx$$

Fourier transform

Let $T \longrightarrow \infty$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$$
 (14)

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$
 (15)

Eq.15 is the Fourier transform of f(x) and Eq.14 is the inverse Fourier transform of $\hat{f}(k)$.

Convolution theory and Parseval relation

Considering two functions f(x) and g(x) with their Fourier transform F(t) and G(t). We define an operation

$$f * g = \int_{-\infty}^{\infty} g(y)f(x - y)dy$$
 (16)

as the convolution of the two functions f(x) and g(x) over the interval $\{-\infty \sim \infty\}$. It satisfies the following relation:

$$f * g = \int_{-\infty}^{\infty} F(t)G(t)e^{itx}dt$$
 (17)

Correlation

Uncertainty principle

Fourier transform of a Gaussian function

Fourier transform of a Gaussian function with carrier

Transfer function

Outline

- Continuous Fourier transform
- 2 Discrete Fourier transform
- 3 Calculate DFT with Python Numpy Package
- References

From continuous to discrete Fourier transform

Frequency bins and nyquist frequency

Concept of Nyquist-Shannon frequency

Aliasing

Window functions

Filter

Fast Fourier transform

Outline

- Continuous Fourier transform
- 2 Discrete Fourier transform
- 3 Calculate DFT with Python Numpy Package
- 4 References

Discrete Fourier transform in Numpy or Scipy

Transform one dimensional data

Transform more than one dimensional data

Outline

- Continuous Fourier transform
- Discrete Fourier transform
- Calculate DFT with Python Numpy Package
- 4 References

References

- http: //idv.sinica.edu.tw/jwang/SNGP/SNGP20090621.pdf
- http://en.wikipedia.org/wiki/Fourier_series
- http://en.wikipedia.org/wiki/Fourier_transform
- MATHEMATICAL METHODS FOR PHYSICISTS by George B. Arfken and Hans J. Weber. ISBN-13: 978-0120598762
- Numerical Recipes 3rd Edition: The Art of Scientific Computing by William H. Press (Author), Saul A. Teukolsky. ISBN-13: 978-0521880688
- Chapter 12 and 13 in http://www.nrbook.com/a/bookcpdf.php
- Digital Signal Processing: A Computer-Based Approach, 3e
 by Sanjit K. Mitra

2nd page

 $\frac{1}{2}$

(18)

alertblock

alertblock content

3rd page

- •
- 2nd

3rd page

- •
- 2nd
- 3rd

3rd page

- •
- 2nd
- 3rd
- etc. go fuck