$https://phet.colorado.edu/sims/cheerpj/fluid-pressure-and-flow/latest/fluid-pressure-and-flow.html?simulation=fluid-pressure-and-flow&locale=pt_BR$

Roteiro do Phet simulações: PRESSÃO DO FLUIDO E FLUXO (PARTE II)

Este roteiro será o **passo a passo** para o uso do simulador. Assim, siga cada detalhe e anote os valores observados. Use apenas o **mouse** para realizar a atividade.dffgdg

Observações

- Você irá fazer simulações baseadas no princípio de pascal.
- Qualquer problema ou erro na simulação clique em: Reiniciar tudo.
- Não esqueça que kPa = 10³ Pa

1º passo	
Abra a torneira e deixe encher completamente o tano	ue. Com o uso da régua, verifique a altura da coluna
líquido, tendo como referência a saída do líquido	na base Verifique a press
hidrostática da coluna de líquido no fundo do recipien	e (use: p _H = d.g.h)
ESPAÇO P.	RA CÁLCULOS
Observe que no fundo do recinto há uma tampa, puxe	para cima e observe o que ocorre. O que ocorreu con
alcance do jato de água a medida que o tanque es	vazia. Explique fisicamente o motivo do alcance da ág
diminui a medida que esvazia o tanque	
Abaixe a tampa, clique em encher. Abra novamente	a tanoa inferior do tanque e verifique a velocidade inic
da saída da água. (use: $V = \sqrt{2.gh}$). Posteriormente	confira com o "velocímetro" colocando o mesmo na sa
da água (basta arrastá - lo com o mouse até o lo	cal). Será que o valor é o mesmo ao do seus cálculo
ESPAÇO PARA CÁLCULOS	
	Observe a figura:

Verifique a velocidade final (da queda da água no maior alcance) Use: As equações de MU e MUV

ESPAÇO PARA CÁLCULOS

Confira os seus resultados com o uso do "velocímetro".

________. Proceda conforme a figura ao lado:

Qual o valor do maior alcance que a água pode ter? (use a trena) ______.

A que altura do solo a água começa a ser liberada do fundo do tanque? _____.

2º passo

Clique em **Reiniciar tudo**. Marque o quadrado branco referente a **Mangueira**. Clique em **Encher**. Arraste o velocímetro até o "bico" da torneira. Abra a tampa da extremidade inferior do recipiente. Observe o que ocorre. Qual a altura máxima do jato de água (use a régua). _______. Qual a velocidade inicial da saída do jato de água?

Agora, proceda conforme a figura do lado, colocando a mangueira na metade da altura suporte do tanque. Para isso, puxe a alça da mangueira para cima, indicada pela seta preta na figura. Observe o que ocorre. Qual a altura máxima do jato de água (use a régua).

Agora, faça conforme a figura abaixo. Rotacione a mangueira através do arraste da válvula da mangueira(indicado pela seta preta). Feche a base do recipiente. Clique em **Encher**. Coloque o velocímetro na saída da água da torneira. Abra a base do recipiente. Qual a velocidade inicial da saída do jato de água? ______. Aumentou ou diminuiu a velocidade em relação ao estágio anterior? ______

Agora, proceda conforme a figura do lado. Feche a base do recipiente. Clique em **Encher**. Coloque o velocímetro na saída da água da torneira. Abra a base do recipiente. Qual a velocidade inicial da saída do jato de água? ______.

Aumentou ou diminuiu a velocidade em relação ao estágio anterior? _____

Agora, proceda conforme a figura do lado. Feche a base do recipiente. Clique em Encher. Coloque o velocímetro na saída da água da torneira. Abra a base do recipiente. Qual a velocidade inicial da saída do jato de água?
Em relação às duas situações anteriores, por que o tanque para de esvaziar no mesmo nível da "boca" da torneira?
Clique na aba Fluxo . Nessa parte você estudará a Hidrodinâmic a (fluido em movimento). No quadrado amarelo a direita, marque: Medidor de fluxo . Arraste o velocímetro para qualquer região do fluido, como indicado na figura. Calcule o valor da vazão (Z), em m³/s, através da expressão: Z = A.V (Obs.: A = área da secção do tudo; V = velocidade do fluido).
Reinicie tudo. Agora, tente deformar o tubo conforme a figura ao lado, apenas arrastando as alças inferior e superior presentes no tudo. Verifique com o velocímetro a velocidade do fluido na região indicado pelas setas preta na figura. V1: V2: Marque: marcador de fluxo, everifique a área da secção na região indicado pelas setas pretas na figura. A1: A2: Através da equação da continuidade A1.V1 = A2.V2, verifique se a igualdade é validade matematicamente. (Obs.: A = área da secção do tudo; V = velocidade do fluido). ESPAÇO PARA CÁLCULOS
Explique fisicamente o que significa a equação da continuidade A₁.V₁ = A₂.V₂.

Verifique a pressão no início , no estrangulamento e no final do tubo (nas regiões visíveis). (Obs.: arraste o "o
relógio de pressão até os locais adequados"). Em qual região há maior pressão? Em qual
dos três pontos de pressão houve um aumento na velocidade do fluido?
Reinicie tudo. Agora, tente deformar o tubo conforme a figura ao lado, apenas arrastando as alças inferior e superior presentes no tudo. Verifique com o "relógio de pressão" e com o velocímetro nas regiões indicadas pelas setas pretas. P1: P2: V1: V2:
Na região estreita, a pressão diminuiu realizado um aumento na P, e V,
velocidade do fluido. Como é chamado esse fenômeno?
Dê alguns exemplos onde é possível ocorrer o fenômeno
semelhante (pesquise em livros).
Tente deformar o tubo conforme a figura ao lado, apenas arrastando as alças inferior e superior presentes no tudo. Verifique a validade da equação abaixo (equação de Bernoulli). $p_1 + \frac{dv_1^2}{2} = p_2 + \frac{dv_2^2}{2}$
ESPAÇO PARA CÁLCULOS