Musical instruments: strings and pipes

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

April 21, 2015

Announcements

- "Optional" recitation section next Wednesday: more review for the final on Reading Day
- Homework 9 due next Wednesday
- Practice exam posted; 8 questions on it can be submitted for extra credit (also Wednesday)
- Daily practice questions and discussion on the Facebook group
- Tentative final exam review schedule will be emailed out tomorrow

Final exam "makeup opportunity"

- If you do substantially better on the final than one of your other exams...
 - That exam counts less
 - The final counts more
 - This can only help you
 - Questions about grades: I am not curving numerical grades
 - ... the cutoffs between A/B/C/D/F are just different, and will be determined at the end
 - Over 50% of grades will be A's and B's

Grade appeals for Exam 3

- To appeal your grade, you must submit a correct solution with your appeal form
 - (Remember recitation attendance counts toward your grade anyway!)
- Same procedure as before

Standing waves, a reminder

- Only certain wavelengths can persist as standing waves in a "one-dimensional cavity"
- 1D cavity: waves on a string, sound waves in a pipe... things we make musical instruments out of!
- Waves are linear multiple standing waves of different wavelengths can coexist

Sine waves

- We're particularly concerned with waves that look like sines and cosines
- ullet These waves have two new properties: wavelength λ and frequency f
 - Wavelength: distance from crest to crest
 - Frequency: how many crests go by per second, equal to 1/T (T = period)

Sine waves

- We're particularly concerned with waves that look like sines and cosines
- These waves have two new properties: wavelength λ and frequency f
 - Wavelength: distance from crest to crest
 - Frequency: how many crests go by per second, equal to 1/T (T = period)
 - Speed = distance \times time

$$c = \lambda f$$

Sine waves

- We're particularly concerned with waves that look like sines and cosines
- These waves have two new properties: wavelength λ and frequency f
 - Wavelength: distance from crest to crest
 - Frequency: how many crests go by per second, equal to 1/T (T = period)
 - Speed = distance \times time

$$c = \lambda f$$

- What kind of sine and cosine waves can we put on our string?
- Not any wavelengths will do, since the ends have to be fixed

Standing waves, in more detail

Can we write these wavelengths in terms of f using $c = f\lambda$?

Standing waves, in more detail

Musical instruments: in general

- Vibrating strings or columns of air inside tubes all can support all of these modes
 - You can select for particular ones, however: what happens if you pluck a string in its center?

Musical instruments: in general

- Vibrating strings or columns of air inside tubes all can support all of these modes
 - You can select for particular ones, however: what happens if you pluck a string in its center?
 - Only odd-numbered modes are excited: the even ones have a node there
- In general, when you excite a string or air column, you produce them all
- Often we choose to excite strings in ways that prefer some modes over others
- The unique sound of each instrument comes mostly from the relative strengths

Controlling pitch

- Any instrument needs a way of changing f_1 to play different notes
- Modern piano: f_1 from 28.5 Hz to 4 kHz
- Human voice: f_1 from 65 Hz to 1 kHz
- Human hearing: sensitive from 20 Hz to 20 kHz (roughly)

Stringed instruments

- Make a string vibrate, its vibrations cause sound waves (not very efficient)
- Make a string vibrate, couple it mechanically to something bigger which makes the air vibrate: better!
- Three ways to control the fundamental frequency of sound in a string:
 - Speed of sound on a stretched string: $c = \sqrt{T/\lambda}$
 - T is the tension, λ is the linear mass density (kg per meter)
 - If $c = f\lambda$, then $f_1 = \frac{\sqrt{T}}{2L\sqrt{\lambda}}$
- More tension makes the frequency go up (how these instruments are tuned
- A longer string makes the frequency go down (bass vs. violin)
- A thicker string makes the frequency go down (wound strings)

Wind instruments

- Same idea, except we have a column of air instead of a string
- \bullet Here the wave speed c is just the speed of sound in air
- Classic example: the pipe organ
 - Each pipe only sounds one note
 - Pipes up to 32 feet long $\rightarrow f_1 = 17$ Hz!
- Others: use one pipe to sound multiple notes by opening and closing holes
- Excite vibrations with either a reed or something akin to a whistle (on a flute)

Brass instruments

- Don't be fooled by the funny shapes: they (mostly) act like straight pipes
- Here there are two tricks for controlling pitch: change the length of the tube...
 - Trombone: physically make the tube longer
 - Trumpet etc.: Add/subtract lengths of tubing
- \bullet ... or match the buzzing of the player's lips to frequencies other than f_1
- How does a trombonist play a scale?