

Euler Transforms

Euler transform and Euler angles.

- When we successively rotate an object about the principal axes, the object acquires an arbitrary orientation.
- This method of determining an object's orientation is called the *Euler transform*, and the rotation angles, $(\theta_1, \theta_2, \theta_3)$, are called the *Euler angles*.

Euler Transforms

Euler transform and Euler angles.

Concatenating three matrices produces a single matrix defining an arbitrary orientation.

Euler Transforms

The order of rotation

- The rotation axes are not necessarily taken in the order of x, y, and z.
- Shown below is the order of y, x, and z. Observe that the teapot has a different orientation from the previous one.

Keyframe Animation in 2D

Keyframe

- In the traditional hand-drawn cartoon animation, the senior key artist would draw the keyframes, and the junior artist would fill the in-between frames.
- For a 30-fps computer animation, for example, much fewer than 30 frames are defined per second. They are the keyframes.

Keyframe Animation in 2D

Keyframe

- In real-time computer animation, the in-between frames are automatically filled at run time.
- The key data are assigned to the keyframes, and they are interpolated to generate the in-between frames.
- In the example, the center position p and orientation angle θ are interpolated.
 - $p(t) = (1 t)p_0 + tp_1$
 - $\theta(t) = (1 t)\theta_0 + t\theta_1$

Keyframe Animation in 3D

Sampling between keyframes.

Seven chess piece instances are defined by sampling the graphs seven times.

Keyframe Animation in 3D

Animation smoothing

Smoother animation may often be obtained using a higher-order interpolation.

Euler angles is intuitive and easy to use!

- However, every ease of use will come up by a cost.
- Euler method can't provide you a nice interpolation between two different Euler rotations.

Why?

- Euler angle rotates object only along the axis.
- Imagine the rotation of (60, 30, 45).

Why?

- Euler angle rotates object only along the axis.
- Imagine the rotation of (60, 30, 45) and rotates the object along the Y axis again.
- Since the previous rotation distorted the *rotation axis* (*gimbal axis*), Y rotation cannot be achieved by rotating one *axis*. two or three *axis* will be rotating to reach the specified goal.

11

Gimbal lock

- Gimbal coordinate system (Euler rotation) suffers from an issue called gimbal lock.
- When it occurs, you lose one degree of freedom.

Quaternion?

- To overcome the limitation of the Euler angle, the quaternion number system has been used in graphics.
- Conceptually, quaternions are used to represent an axis-angle rotation about an arbitrary axis.
- A spatial rotation around a fixed point of θ radians about a unit axis $\hat{e} = (\hat{x}, \hat{y}, \hat{z})$ is given by the unit quaternion

•
$$\mathbf{q} = (q_x, q_y, q_z, q_w) = q_x i + q_y j + q_z k + q_w = e^{\frac{\theta}{2}(\hat{x}i + \hat{y}j + \hat{z}k)} = \cos\frac{\theta}{2} + (\hat{x}i + \hat{y}j + \hat{z}k)\sin\frac{\theta}{2}$$
$$= (\hat{x}\sin\frac{\theta}{2}, \hat{y}\sin\frac{\theta}{2}, \hat{z}\sin\frac{\theta}{2}, \cos\frac{\theta}{2})$$

 $e^{ix} = \cos x + i\sin x$ (Euler's formula)

Quaternion?

- Quaternions are more compact, efficient, and numerically stable compared to Euler Rotation.
- However, quaternions look more complex and difficult to understand.
- Furthermore, due to the periodic nature of sine and cosine, rotation angles differing precisely by 2π will be encoded into identical quaternions and recovered angles in radians will be limited to $[0, 2\pi]$.

A quaternion is an extended complex number.

- Quaternions encode the axis-angle representation in four numbers.
 - $\mathbf{q} = (q_x, q_y, q_z, q_w) = q_x i + q_y j + q_z k + q_w$, where (q_x, q_y, q_z, q_w) are real numbers and (i, j, k) are symbols that represent unit-vectors pointing along the three spatial axes.

•

- A quaternion consists of a vector part and a scalar part, $\mathbf{q} = (q_v, q_w)$
 - The $q_x i + q_y j + q_z k$ is called the vector part (imaginary part) of **q**.
 - The q_w is the scalar part (real part) of \mathbf{q} .
- The multiplication of basis is as follows:
 - i1 = 1i = i, j1 = 1j = j, k1 = 1k = k.
 - $i^2 = j^2 = k^2 = -1$.
 - ij = k, ji = -k, jk = i, kj = -i, ki = j, ik = -j.

×	1	i	j	k
1	1	i	j	k
i	i	-1	k	<i>-j</i>
j	j	- <i>k</i>	-1	i
k	k	j	-i	-1

Hamilton Product

- For two quaternions of **p** and **q**, their product (called the Hamilton product) is determined by the products of the basis elements and the distributive law.
 - $\mathbf{p} = (p_x, p_y, p_z, p_w)$
 - $\bullet \quad \mathbf{q} = (q_x, q_y, q_z, q_w)$

•
$$\mathbf{pq} = (p_x i + p_y j + p_z k + p_w)(q_x i + q_y j + q_z k + q_w)$$

$$= (p_x q_w + p_y q_z - p_z q_y + p_w q_x) \mathbf{i} + (-p_x q_z + p_y q_w + p_z q_x + p_w q_y) \mathbf{j}$$

$$+ (p_x q_y - p_y q_x + p_z q_w + p_w q_z) \mathbf{k} + (-p_x q_x - p_y q_y - p_z q_z + p_w q_w)$$

Conjugation of the quaternion

- The conjugate of the quaternion **q** is the quaternion $\mathbf{q}^* = (-q_v, q_w) = -q_x i q_y j q_z k + q_w$.
- Conjugating an element twice equals the original element: $(\mathbf{q}^*)^* = \mathbf{q}$
- The conjugate of a product of two quaternions is the product of the conjugates in the reverse order: $(\mathbf{pq})^* = \mathbf{q}^*\mathbf{p}^*$
- The conjugation can be used to extract the scalar and vector parts of **p**.
 - Scalar part: $\frac{1}{2}(\mathbf{p} + \mathbf{p}^*)$
 - Vector part: $\frac{1}{2}(\mathbf{q} + \mathbf{q}^*)$

Unit Quaternion

- The magnitude of a quaternion **p** can be obtained by the square root of the product of a quaternion with its conjugate.
 - This is called its norm and is denoted $\|\mathbf{p}\|$.

• Therefore,
$$||\mathbf{p}|| = \sqrt{\mathbf{p}\mathbf{p}^*} = \sqrt{(p_x)^2 + (p_y)^2 + (p_z)^2 + (p_w)^2}$$

• A quaternion whose norm is 1 is called a unit quaternion.

•
$$\widehat{\mathbf{p}} = \frac{\mathbf{p}}{\|\mathbf{p}\|}$$

Recall 2D rotation

- Let us represent (x, y) by a complex number x + yi, and denote it by **p**.
- Given the rotation angle θ , let us define a unit-length complex number, $\mathbf{q} = \cos\theta + \sin\theta i$.
- Surprisingly, the real and imaginary parts of **pq** represent the rotated coordinates:

•
$$pq = (x + yi)(cos\theta + sin\theta i) = (xcos\theta - ysin\theta) + (xsin\theta + ycos\theta)i - -$$

Quaternions can also be used to describe 3D rotation.

$$(q_x, q_y, q_z, q_w) = q_x i + q_y j + q_z k + q_w$$

- Consider rotating a 3D vector p about an axis u by an angle θ .
 - Let us represent p = (x, y, z) by xi + yj + zk, and denote it by a quaternion **p** whose real part is 0.

$$\rightarrow$$
 p = $(p_v, p_w) = (p, 0)$

• Define a *unit quaternion* \mathbf{q} using a unit vector u and θ .

$$\rightarrow \mathbf{q} = (q_v, q_w) = (\sin\frac{\theta}{2}u, \cos\frac{\theta}{2})$$

• Then the imaginary part of the calculation result of **qpq*** represents the rotated vector.

Proof

When we denote **p** and **q** by (p_v, q_w) and (q_v, q_w) , respectively, **qp** can be written as follows:

• Using $\mathbf{qp} = (p_v \times q_v + q_w p_v + p_w q_v, p_w q_w - p_v \cdot q_v)$, \mathbf{qpq}^* is expanded as follows:

$$\mathbf{qpq^*} = (q_v \times p_v + q_w p_v, -q_v \cdot p_v) \mathbf{q^*} \text{ (since } p_w = 0)$$

$$= (q_v \times p_v + q_w p_v, -q_v \cdot p_v) (-q_v, q_w)$$

$$= ((q_v \times p_v + q_w p_v) \times (-q_v) + q_w (q_v \times p_v + q_w p_v) + (-q_v \cdot p_v) (-q_v), (-q_v \cdot p_v) q_w - (q_v \times p_v + q_w p_v) \cdot (-q_v))$$
[Using Eq. 1]

$$= ((q_v \cdot p_v)q_v - (q_v \cdot p_v) p_v + 2q_w(q_v \times p_v) + q_w^2 p_v + (q_v \cdot p_v) q_v, 0)$$
[Using $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$, the real part becomes 0 since $(q_v \times p_v) \cdot q_v = 0$]

$$= (2(q_v \cdot p_v)q_v + (q_w^2 - //q_v//^2)p_v + 2q_w(q_v \times p_v), 0)$$

$$= (2sin^2\frac{\theta}{2}(u \cdot p_v)u + (cos^2\frac{\theta}{2} - sin^2\frac{\theta}{2})p_v + 2cos\frac{\theta}{2}sin\frac{\theta}{2}(u \times p_v), 0) \quad \text{[Using } q_v = sin\frac{\theta}{2}u, \ q_w = cos\frac{\theta}{2}u\text{]}$$

$$= ((1-\cos\theta)(u \cdot p_{v})u + \cos\theta p_{v} + \sin\theta(u \times p_{v}), 0)$$

[Using
$$sin^2\frac{\theta}{2} = \frac{1-cos\theta}{2}$$
, $cos^2\frac{\theta}{2} = \frac{1+cos\theta}{2}$, $2sin\theta cos\theta = sin2\theta$]

$$= ((u \cdot p_{v})u + cos\theta(p_{v} - (u \cdot p_{v})u) + sin\theta(u \times p_{v}),0)$$

Recall that the magnitude of the cross product equals the area of the parallelogram spanned by \mathbf{u} and p_v .

$$((\mathbf{u} \cdot p_{\mathbf{v}})\mathbf{u} + \cos\theta(p_{\mathbf{v}} - (\mathbf{u} \cdot p_{\mathbf{v}})\mathbf{u}) + \sin\theta(\mathbf{u} \times p_{\mathbf{v}}),0)$$

$$p' = ((\mathbf{u} \cdot p_{\mathbf{v}})\mathbf{u} + \cos\theta(p_{\mathbf{v}} - (\mathbf{u} \cdot p_{\mathbf{v}})\mathbf{u}) + \sin\theta(\mathbf{u} \times p_{\mathbf{v}}),0)$$

Multiple Quaternions

- Let $\mathbf{p'}$ denote $\mathbf{qpq^*}$. It represents the rotated vector $\mathbf{p'}$. Consider rotating $\mathbf{p'}$ by another quaternion \mathbf{r} .
- The combined rotation is represented in **rq**.
 - $rp'r^* = r(qpq^*)r^* = (rq)p(q^*r^*) = (rq)p(rq)^*$

Quaternion and Negation

• "Rotation about **u** by θ " is identical to "rotation about –**u** by – θ ."

Quaternion and Matrix

A quaternion **q** representing a rotation can be converted into a matrix form. If $\mathbf{q} = (q_x, q_y, q_z, q_w)$, the rotation matrix is defined as follows:

$$\begin{pmatrix} 1 - 2(q_y^2 + q_z^2) & 2(q_x q_y - q_w q_z) & 2(q_x q_z + q_w q_y) & 0 \\ 2(q_x q_y + q_w q_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_y q_z - q_w q_x) & 0 \\ 2(q_x q_z - q_w q_y) & 2(q_y q_z + q_w q_x) & 1 - 2(q_x^2 + q_y^2) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Conversely, given a rotation matrix, we can compute its quaternion. It requires us to extract $\{q_x,q_y,q_z,q_w\}$ given the above matrix.

Compute the sum of all diagonal elements.

$$4 - 4(q_x^2 + q_y^2 + q_z^2) = 4 - 4(1 - q_w^2) = 4q_w^2$$

- So, we obtain q_w .
- Subtract m_{12} from m_{21} of the above matrix.

$$m_{21} - m_{12} = 2(q_x q_y + q_w q_z) - 2(q_x q_y - q_w q_z) = 4q_w q_z$$

• As we know q_w , we can compute q_z . Similarly, we can compute q_x and q_y .