一、选择题

1. 一个动量为p的电子,沿图示方向入射并能穿过一个宽度为 D、磁感应强度为 \bar{B} (方向垂直纸面向外) 的均匀磁场区域, 则该电子出射方向和入射方向间的夹角为

(A)
$$\alpha = \cos^{-1} \frac{eBD}{p}$$

(B)
$$\alpha = \sin^{-1} \frac{eBD}{p}$$

(C)
$$\alpha = \sin^{-1} \frac{BD}{ep}$$

(D)
$$\alpha = \cos^{-1} \frac{BD}{ep}$$

2. 图为四个带电粒子在 O 点沿相同方向垂直射入均匀磁场后的 偏转轨迹照片. 磁场方向垂直纸面向外, 轨迹所对应的四个粒 子的质量相等, 电量大小也相等, 则其中动能最大的带负电的 粒子的轨迹是

- (A) Oa (B) Ob
- (C) *Oc*
- (D) Od
- 3. 把轻的正方形线圈用细线挂在载流直导线 AB 的附近,两者在同一平面内,直导线 AB 固 定,线圈可以活动. 当正方形线圈通以如图所示的电流时,线圈将

(C) 发生转动,同时离开导线 AB

(E) 离开导线 AB

4. 两个同心圆线圈,大圆半径为R,通有电流 I_1 ,小圆半径为r,通有电流 I_2 ,方向如图.若 $r \ll R$ (大线圈在小线圈处产生的磁场近似为均匀磁场), 当它们处在同一平面内时小线圈 所受磁力矩的大小为

(B)
$$\frac{\mu_0 I_1 I_2 r^2}{2R}$$

(C) $\frac{\mu_0 \pi I_1 I_2 R^2}{2\pi}$

(D) 0

- 5. 有两个半径相同的圆环形载流导线 A、B, 它们可以自由转动和移动, 把它们放在相互垂 直的位置上,如图所示,将发生以下哪一种运动
 - (A) A、B 均转动和平动,最后两线圈电流同方向并紧靠一起
 - (B) A 不动,B 在磁力作用下发生转动和平动
 - (C) A、B都在运动,但运动的趋势不能确定
 - (D) $A \cap B$ 都转动,但不平动,最后两线圈磁矩同方向平行

6.	绝缘 (A)	电流 <i>I</i> ₂ 与圆升),设长直电; 绕 <i>I</i> ₂ 旋转 向上运动	流不动,则 (B)		f	[]	·	作间 (I_1
7.	迹如 (A) (B) (C)	强磁场,其磁图所示,则两粒子的电粒子的电荷两粒子的动动。两粒子的运	荷必然同 可以同号也 量大小必然	可以异号 不同	纸面(指向	如图),两	有带电粒 气	子在该和	磁场中!	的运动	动轨:::
8.	直导 (A)	,无限长直载 线固定不动, 向着长直导: 转动	则载流三角	角形线圈将 (B) 离	流线圈在同 5开长直导 ^下 动	[]	内, 若长	$I_1 \wedge I_2 \wedge I_3 = I_3 \wedge I_4 \wedge I_4 \wedge I_5 \wedge I_5 \wedge I_5 \wedge I_6 $	I_2	× /	>
9.	a 向 为零 (A) (B) (C)	所示,一根长 b. 此时悬线 则必须 改变电流方 不改变电流 改变磁场方 不改变磁场方	张力不为零 向,并适当 方向,而适 句,并适当	(即安培/增大电流当增大电流增大磁感应	力与重力不 i i i强度 <i>喜</i> 的	下平衡). { []		异线与维 × B × × a ×	次线连 × ×	妾处 ³ × × ×	
10.	磁力	强磁场中,有 矩之比 <i>M</i> ₁ / <i>1</i>	M_2 等于			[]		2 <i>I</i> ₂ , 7	它们所	受的責	表大
	作匀	之题 点带有电荷 <i>g</i> 速圆周运动. 轨道运动的磁	该带电质点	点在轨道中	心所产生的	勺磁感应!	强度 <i>B</i> =_				

12.	电子在磁感应强度为 B 的均匀磁场中沿半径为 R 的圆周运动,电流强度 $I=$	
13.	已知磁场中某点处的磁感应强度矢量为 $\vec{B} = 0.40\vec{i} - 0.20\vec{j}$ (S. $\vec{v} = 0.50 \times 10^6\vec{i} + 1.0 \times 10^6\vec{j}$ (SI)通过该点,则磁场作用于该电气 $\vec{F} = $ (基本电荷 $e = 1.6 \times 10^{-19}$ C)	
14.	如图,半径为 R 的空心载流无限长螺线管,单位长度上有 n 匝线圈,导线中电流为 I . 今在螺线管中部以与轴线成 α 角的方向发射一个质量为 m ,电荷为 q 的粒子.则该粒子的初速 v_0 必须小于或等于,才能保证它不与螺线管壁相撞.	
15.	如图,均匀磁场中放一均匀带正电荷的圆环,其电荷线密度为 λ,圆环可绕通过环心 O 且与环面垂直的转轴旋转. 当圆环以 角速度ω转动时,圆环所受到的磁力矩大小为, 其方向为	B R D D D D D D D D D D
16.	在同一平面上有两个同心的圆线圈,大圆半径为 <i>R</i> ,通有电流 <i>I</i> ₁ 小圆半径为 <i>r</i> ,通有电流 <i>I</i> ₂ ,如图所示.则小圆线圈所受的磁力的为。同时小圆线圈还受到使它的力.	1 12 7 X
17.	如图所示,在真空中有一半径为 a 的 $3/4$ 圆弧形的导线,其中通以稳恒电流 I ,导线置于均匀外磁场 \overline{B} 中,且 \overline{B} 与导线所在平面垂直.则该载流导线 \overline{bc} 所受的磁力大小为	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18.	有一半径为 a 的 $1/4$ 圆弧形载流导线 \widehat{bc} 按图示方式置于均匀外磁场 \overline{B} 中,载流导线 \widehat{bc} 中流过的稳恒电流为 \overline{I} . 则该载流导线所受的安培力大小为	

三、计算题

19. 在通有电流为 I_1 的无限长直导线所形成的磁场中,放置一个通有电流 I_2 、半径为R的半圆形线圈MLN,直线电流 I_1 恰好通过半圆形线圈 MLN 的直径,两导线相互绝缘。求半圆形线圈受到长直线电流 I_1 的磁力。

- 20. 一个通有电流强度I=16 A的载流线圈 abcda 位于 xOv 平面内,其中bc 和da 皆为以O为圆
 - 心、半径R=15 cm的 1/4 圆弧, ab和cd皆为直线段,电流方向沿 abcda 的绕向. 设该线圈处于磁感应强度 $B=8.5\times10^{-2}$ T的均匀磁场中, \vec{B} 方向沿 x 轴正方向. 求:
 - (1) 图中电流元 $I\Delta l_1$ 和 $I\Delta l_2$ 所受安培力 $\Delta \vec{F_1}$ 和 $\Delta \vec{F_2}$ 的 大小和方向,设 $I\Delta l_1 = I\Delta l_2 = 0.15$ mm;
 - (2) 线圈上直线段ab和cd所受到的安培力 \vec{F}_{ab} 和 \vec{F}_{cd} 的大小和方向;
 - (3) 线圈上圆弧段 \widehat{bc} 和 \widehat{da} 所受到的安培力 \overline{F}_{bc} 和 \overline{F}_{da} 的大小和方向.

21. 一个半径r = 5.0 cm的圆环放在磁场中,对环而言,磁场的分布是对称发散的. 圆环位置处

的磁感应强度的大小B = 0.15 T,磁场方向与环面法向夹角 $\theta = 30^{\circ}$. 如果当圆环中通有电流I = 16 A时,求圆环所受磁力的大小和方向.

22. ab 和 cd 是两条相互平行、相距为5r的载流长直导线,其通过的电流强度分别为 I_1 和 I_2 ,另有一条通有电流为 I_3 、长度为r的导线MN水平放置在两条直导线之间,其两端M、N与 I_1 、 I_2 的距离都是2r,长直导线 ab 和 cd 与导线MN共面,且相互垂直,求导线MN所受的磁力大小和方向.

23. 一个质量分布均匀的圆柱,其质量 m=0.35 kg,半径为 R,长度 l=0.15 m. 在圆柱表面

上,顺着圆柱缠绕 10 匝的漆包导线,且圆柱体的轴线位于导线回路的平面内. 圆柱体放在一个与水平成 θ 的斜面上,斜面处于方向沿竖直朝上的均匀磁场 $\vec{B}=0.6$ T中. 如果圆柱表面导线绕线的平面与斜面平行,问通过回路的电流至少要有多大,圆柱体才不沿斜面向下滚动(假设摩擦力足够大,圆柱体无滑动,且导线质量忽略不计)?

- 24. 有一个边长a = 15 cm、通有电流强度 I 的正方形铜质线圈,将其放在方向竖直向上的均匀外磁场 \vec{B} 中,如果 $B = 8.80 \times 10^{-3}$ T,线圈中电流I = 15 A,铜线横截面积S = 4.0 mm²,铜的密度 $\rho = 8.9 \times 10^3$ kg/m³.
 - (1) 若使线圈平面保持竖直, 求线圈所受的磁力矩大小.
 - (2) 假若线圈能以某一条水平边为固定轴自由摆动,求线圈平衡时,线圈平面与竖直面夹角为多少?