Classification and Prediction 2 Perceptrons and MLPs

Sebastian Risi

IT University of Copehage

Group Project Proposals

 March 26th → You are responsible for forming groups (3 or 4 people, not 1 or 2)

 https://docs.google.com/document/d/ 1VPTm3rbUllq3DohIEcGXvw28QJzxiSn1 FPDe6JcMnpo/edit?usp=sharing

Group Projects

The report should be 6-8 pages (double column format0, excluding source code but including figures, and should be well written. The report should answer the following questions:

- What knowledge are you trying to extract from what data?
- What methods will you be using?
- Why did you choose this data set and this data?
- How do the algorithms work? (Only a brief overview necessary.)
- How did you extract, stor and manage the data?
- Which parameters were used with the algorithms? Did you do any tuning? Why/why not?
- How good are the results, and how valid? What do they really show? (Remember to compare with mode/mean prediction as a baseline, i.e. ZeroR)
- If applicable (in most cases it is), what is the societal impact and what are the privacy aspects of your work?
- Why did it work / did it not work?
- The following technical tasks should be undertaken:
- Preprocessing (except if obviously unnecessary)
- Descriptive statistics
- Appropriate visualization
- Appropriate validation of results
- You should use algorithms from at least two of the following groups (except if you have a very good reason to use something else, needs pre-approval from me):
 - Frequent pattern mining (association mining, sequence pattern mining etc.)
 - Clustering
 - Supervised learning (classification/prediction)
- There will be a 15-minute supervision slot for each group each week, where the group will receive supervision by one of us.

WHAT IS AN ARTIFICIAL NEURAL NETWORK?

Artificial Neural Networks

- Biological brains are made out of neurons
- Neurons send signals to each other
- Idea (Connectionism): Simulate neurons, attach them to each other, and create an artificial brain!

Neurons

A neuron is a cell in the brain that stores and

transmits information

Cortical Neurons (UC Davis)

- Neurons connect through a synapse
 - Chemicals called neurotransmitters send information across the synapse

Networks of Neurons

- Many neurons connecting to each other form a neural network
- More than one neuron can feed into another through a synapse
- The ANN symbol for a synapse is a connecting line

ANN

- What can they do?
 - Supervised Learning (needs data)
 - Classification/Prediction
- Some can do clustering (unsupervised)
 - Self-organizing map

How Do ANNs Work?

How do NNs Work? Example

Outputs (effectors/controls)

Inputs (Sensors)

What Exactly Happens Inside the Network?

Network Activation

Neuron *j* activation:

$$H_{j} = O\left(\sum_{i=1}^{n} x_{i} w_{ij}\right)$$

$$\frac{1/(1+e^{-x})}{0.8}$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.2$$

Perceptron (1943)

- McCulloch & Pitts' neuron model:
 - Inputs and Output are Binary
 - Activation function is Heavyside (step) function

Previously...

one layer only solves linear problems

learning algorithm for an arbitrary topology unavailable

Training Perceptron Algorithm

- Gradient-search algorithm
- Goal: minimize error (E) between actual

 (a) and desired/target (d) output by
 adjusting the weights (w)
- Do that by computing the partial derivative of the Error relative to each connection weight. Apply the Delta-rule to adjust the weights ∂F

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta x_i \left(d^{(p)} - a^{(p)} \right)$$

$$w_i \leftarrow w_i + \Delta w_i$$

Perceptron Training Algorithm

Algorithm's structure

- Given a set of input patterns (x^(p)) and desired outputs: (d^(p))
 - 1. Initialize Perceptron with random weights
 - 2. For each pattern p
 - Compute actual output $(a^{(p)})$
 - Update all weights i = 1,... by Δw_i
 - 3. If no changes to the weights, then STOP
 - 4. Otherwise loop to step 2

Perceptron Training Algorithm

- What can it learn? What can it not learn?
- Can we train networks with more than one layer?

Perceptron (two inputs)

Perceptron (three inputs)

(b) Three-input perceptron.

Example: Logical Operation

Epoch	Inputs		Desired Initial output weights		Actual output	Error Final weights			
	x_1	x_2	Y_d	w_1	w_2	Y	e	w_1	w_2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	^ ^	

Example: Logical Operation

Epoch	Inputs		Desired output	Initial weights		Actual output	Error	Final weights	
	x_1	x_2	Y_d	w_1	w_2	Y	e	w_1	w_2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Threshold: $\theta = 0.2$; learning rate: $\alpha = 0.1$

What can Perceptrons Learn

- Restrict to single layer
 - Linearly separable problems
- Multi-Layer → more complex classification
 - But no training algorithm... (Why?)

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta x_i \left(d^{(p)} - a^{(p)} \right)$$
$$w_i \leftarrow w_i + \Delta w_i$$

XOR Problem Perceptron

- Not trained Weights found ad/hoc
 - Activation Function is Heavyside/Step (not Sigmoid!)
 - What does this mean graphically?

XOR Problem – Decision Boundaries

- (a) Decision boundary constructed by hidden neuron 3;
- (b) Decision boundary constructed by hidden neuron 4;
- (c) Decision boundaries constructed by the complete Network (linear combination)

So what can we do?

- Change activation function:
 - Differentiable everywhere
 - Bounded Output
 - Monotonic, ideally
 - Easy to calculate derivative
- The sigmoid (Fermi function, logistic function):

$$g(x) = \frac{1}{1 + e^{-Dx}}$$

With such an activation function, multi-layer training is possible

MULTI-LAYER PERCEPTRONS (MLPS)

History from 1970's to today

Multi-Layer Perceptrons (MLPs)

- Layered feed-forward fully connected network topology
- Single or multiple output
- Neurons with smooth activation function

Trainable using Backpropagation

Backpropagation

- Designed for at least one hidden layer
- First, activation propagates to outputs
- · Then, errors are computed and assigned
- Finally, weights are updated
- Sigmoid is a common activation function

MLP Forward Operation

- Label and order units (neurons)
- Assume w_{ij} is weight from i to j unit
- Apply an input pattern $\vec{x}^{(p)}$
- For each unit j
 - Compute $s_j = \sum_i w_{ij} a_i$
 - Bias values included as w_{0j} as usual
 - Apply activation function $a_j=g(s_j)$

MLP Forward Operation

$$S_4 = w_{14}a_1 + w_{24}a_2 + w_{34}a_3 + w_{04} = w_{14}x_1 + w_{24}x_2 + w_{34}x_3 + w_{04}$$

$$a_4 = g(S_4) = \frac{1}{1 + e^{-S_4}} = \frac{1}{1 + e^{-(w_{14}x_1 + w_{24}x_2 + w_{34}a_3 + w_{04})}}$$

$$a_8 = g(S_8) = \frac{1}{1 + e^{-S_8}} = \frac{1}{1 + e^{-(w_{48}a_4 + w_{58}a_5 + w_{68}a_6 + w_{78}a_7 + w_{08})}}$$

MLP Backward Operation

Choose a (differentiable) error function:
 Sum of Squared Deviations

For each output:
$$E_k = \frac{1}{2}(d_k - a_k)^2$$
 (and one input pattern)
$$E = \frac{1}{2}\sum_{\forall k \in out}(d_k - a_k)^2$$
 (and one input pattern)

- Minimize it...
- Error is an implicit function of w_{ij}
- Delta rule: $\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$

Error Surface of a Linear Neuron with Two Input Weights

Output layer

Output layer

Output layer

Output layer

Output layer

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial a_k} \cdot \frac{\partial a_k}{\partial s_k} \cdot \frac{\partial s_k}{\partial w_{jk}} = \underbrace{-(d_k - a_k) \cdot a_j \cdot a_j}_{\text{error}}$$

$$\frac{\partial s_k}{\partial w_{jk}} = a_j \qquad \frac{\partial a_k}{\partial s_k} = a_k \cdot (1 - a_k) \qquad \frac{\partial E}{\partial a_k} = -(d_k - a_k)$$

Hidden layer

Hidden layer

Partial derivative of the error for hidden neurons:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial a_j} \cdot \frac{\partial a_j}{\partial s_j} \cdot \frac{\partial s_j}{\partial w_{ij}} = \left(\sum_{k \in out} \left(\frac{\partial E_k}{\partial a_k} \cdot \frac{\partial a_k}{\partial s_k} \cdot \frac{\partial s_k}{\partial a_j}\right)\right) \cdot \frac{\partial a_j}{\partial s_j} \cdot \frac{\partial s_j}{\partial w_{ij}}$$

$$\frac{\partial s_j}{\partial w_{ij}} = a_i \qquad \frac{\partial a_j}{\partial s_j} = a_j \cdot (1 - a_j)$$

$$\frac{\partial s_k}{\partial a_j} = w_{jk} \qquad \frac{\partial a_k}{\partial s_k} = a_k \cdot (1 - a_k) \qquad \frac{\partial E_k}{\partial a_k} = -(d_k - a_k)$$

$$\frac{\partial E}{\partial w_{ij}} = \left(\sum_{k \in out} \left(-(d_k - a_k) \cdot a_k (1 - a_k) \cdot w_{jk}\right)\right) \cdot a_j (1 - a_j) \cdot a_i$$

What you need to know to implement it

Backpropagation Algorithm

(note slightly different notation)

- Initialize weights
- While stopping condition is false, for each training pair
 - Compute outputs by forward activation
 - Backpropagate error: (target minus output times slope) $y_k(1-y_k)$ For each output unit, error $\delta_k = (t_k - y_k) f'(yin_k)$
 - Weight correction $\Delta w_{jk} = \alpha \delta_k z_j$ (Learning rate times error times
 - Send error back to hidden units hidden output)
 - Calculate error contribution for each hidden unit: 4)

$$\delta_{j} = \left(\sum_{k=1}^{m} \delta_{k} w_{jk}\right) f'(zin_{j})$$
5) Weight correction $\Delta v_{ij} = \alpha \delta_{j} x_{i}$

- Adjust weights by adding weight corrections

x's are inputs, z's are hidden units, y's are outputs

t's are targets, v's are layer 1 weights, w's are layer 2 weights

Back-Propagation: Parameters & Variants

- Stopping condition
 - after a number of epochs or after error below a given threshold
- Batch or non-batch
 - weight update after each pattern or after all patterns
- Activation function and topology of the network
- Learning rate

Example Backprop Applications

- Learn mouse gesture recognition
- Learn to drive by observation
- Learn to control anything by observation
- Learn to diagnose medical conditions based on past examples
- For games: Learn to control the NPC by example

Classic Applications

- Anything with a set of examples and known targets
- XOR
- Character recognition
- NETtalk: reading English aloud
- Failure prediction
- (Disadvantages: trapped in local optima)

What can MLPs represent?

 Any continuous real-valued functions can be approximated using a neural network to any desired degree of accuracy with a single hidden layer of logistic sigmoid activation functions. [Kolmogorov (1957); Cybenko (1989); Hornik (1989)]

- But how to choose the topology?
- Can gradient descent find the correct weights?
- Training is done, have I found the function I was looking for?

Topology

- The size of the network should match the complexity of problem
- In theory, one hidden layer would be enough for any problem
- In practice, more layers may lead to less neurons
- Basic algorithms will rarely train correctly more than three layers

Gradient Descent Problems

- Problem: Local minima
- Solution Patch: several experiments with different initial weights

Generalization

- Training finished with error equal to zero
 - perfect result?
 - perfectly wrong?
- Another set of data is required to evaluate whether the ANN has learned the underlying function or simply memorized the training samples (overfitting)
- Divide your data in training and testing set

Reducing Overfitting: Early stopping

- Divide data into three sets:
 - Training
 - Validation
 - Test
- Train model of training set
- Stop when the error on the validation set increases
- Evaluate accuracy of model on test set

ANNs Pros & Cons

- Ideal for well-defined problems
- Simple to implement
- Wide variety of training algorithms to choose from!
- Work well with noise
- Work well with different input and output data types
- Can be used for effective real-time learning
- Adaptive
- Universal Approximators

- Expressiveness (Black Box)
- Experimentation effort! (pre and post data processing, training algorithm parameters, appropriate algorithm)

Thank you!

Questions?