Зміст

1	Ком	понування поперечної рами будівлі	2				
	1.1	Компонування поперечної рами промислової будівлі	2				
2	Ста	тичний розрахунок поперечної рами	4				
3	Про	ектування колони одноповерхової промислової будівлі	13				
	3.1	Розрахунок поздовжньої арматури колони	13				
	3.2	Розрахунок розпірки двогілкової колони	23				
	3.3	Розрахунок колони із площини поперечної рами	26				
4	Проектування позацентрового навантаження фундаменту під ко-						
	лон	\mathbf{y}	27				
	4.1	Визначення розмірів фундаменту і армування його плитної ча-					
		стини	28				
	4.2	Проектування підколонника фундаменту	32				
5	Про	ектування плити покриття	35				
	5.1	Розрахунок міцності поздовжніх ребер плити покриття за нор-					
		мальними перерізами	35				
	5.2	Розрахунок міцності похилих перерізів поздовжніх ребер плити	38				
	5.3	Розрахунок полички плити на місцевий вигин	39				
	5.4	Розрахунок втрат попереднього напруження	40				
	5.5	Розрахунок плити на утворення тріщин нормальних до поздов-					
		жньої осі	44				
	5.6	Розрахунок тріщиностійкості плити в стадії виготовлення і транс-	-				
		портування	45				
	5.7	Розрахунок плити за деформаціями	45				
6	Про	ектування кроквяної ферми	47				
Cl	ПИС	ОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ	54				
Д(ДОДАТОК А						

1 КОМПОНУВАННЯ ПОПЕРЕЧНОЇ РАМИ БУДІВЛІ

1.1 Компонування поперечної рами промислової будівлі

1. Визначаємо висоту підкранової балки: при кроці 6 м:

$$h_{n,\delta} = 1000 \text{ MM}$$

2. Визначити висоту над кранової H_{θ} і підкранової H_{H} частин колони, повну висоту H_{I} , H.

Вантажопідйомність $Q = 20 \ m$.

Висота A = 2400 мм.

$$H_{H} = 8600$$
 мм.

h кранового рельса =70 *мм*.

$$H_{\rm g} = h_{\rm n.o.} + A + 1000 = 1000 + 2400 + 100 = 3500$$
 мм.

$$H_1 = H_{\scriptscriptstyle H} + H_{\scriptscriptstyle \theta} = 8000 + 3500 = 12100$$
 мм.

$$H = H_1 + 150 = 12250$$
 мм.

Висота ферми при прольоті 18 м:

$$H_{\phi} = 2450$$
 мм.

- 3. Прив'язка "a" розбивочної осі ряду колон:
 - нульова прив'язка.
- 4. Призначити висоту перетину над кранової частини колони $h_{\it верхне}$:

При нульовій прив'язці — 380 мм.

$$h_{\text{нижн}\epsilon} = \left(\frac{1}{10} \dots \frac{1}{14}\right) H_{\scriptscriptstyle H} = 860 \dots 614$$
 мм.

$$b_{\text{нижне}}, \, b_{\text{верхне}} = \left(\frac{1}{20} \dots \frac{1}{25}\right) H_{\text{H}} = 430 \dots 344 \,$$
мм.

Вид колони — наскрізна.

Так як, $H_1 < 10.8\,$ м; $h_{\text{нижне}} < 900\,$ м; $Q < 30\,$ м, проліт до 24 м, то приймаємо розміри колони:

$$h_{\it гілки} = 200$$
 мм; $h_{\it H} = 1000$ мм;

$$b_{\text{нижне}}, b_{\text{верхне}} = 400 \text{ мм}.$$

Рисунок 1.1 – Схема поперечної рами.

2 СТАТИЧНИЙ РОЗРАХУНОК ПОПЕРЕЧНОЇ РАМИ

Збір навантаження:

Рисунок 2.1 – Статична розрахункова схема рами промислових будівель.

	Вид конструкції	Нормативне значення g_n , $\kappa H/M^2$	γ_f	Розрахункове навантаження $g_p \ \kappa H/m^2$
1	3 шари руберойду	0,15	1,2	0,18
2	Цементно піщана стяжка	0,5	1,3	0,65
3	Пенобетон	0,4	1,2	0,48
4	Пароізоляція	0,1	1,2	0,12
5	Ребриста плита 3x6	1,333	1,1	1,4663
	Всього:			$g_p = 3,52$

Таблиця 1 – Навантаження від покрівлі

Розрахунковий проліт рами:

$$l_0 = L_{yexa} - 2 = 17000 - 2 \cdot 200 = 16600$$
 мм

Визначення опорної реакції $R_A^{\Pi ocm}$:

$$R_A^{\Pi o c m} = 0.5 \cdot g^{n o \kappa p} \cdot l_0 + I, I \cdot 0.5 \cdot G_{II}^{c m p} \tag{1}$$

Де G_{II}^{cmp} — маса кроквяної конструкції; $g^{no\kappa p}$ — навантаження на покритті.

Рисунок 2.2 — Розрахункова схема кроквяної конструкції при визначенні опорної реакції R_A

$$g^{no\kappa p} = g_p \cdot S_1 \tag{2}$$

Де g_p — розрахункове постійне навантаження на 1 м² плити покриття; S_1 — крок поперечних рам в будівлі.

$$g^{no\kappa p} = 3.52 \cdot 6 = 21.12 \ \kappa H/M;$$

 $R_A^{\Pi ocm} = 0.5 \cdot 21.12 \cdot 16.6 + 1.1 \cdot 0.5 \cdot 60 = 208.296 \ \kappa H.$

Снігове навантаження

$$p^{cH} = S_m \cdot S \tag{3}$$

$$S_m = \gamma_{fm} \cdot S_0 \cdot C \tag{4}$$

Де γ_{fm} — коефіцієнт надійності для середнього періоду повтрюваності снігового навантаження T=60 років;

 S_0 — характеристичне значення снігового навантаження на 1 м 2 для заданого району будівництва;

C = 1 при відсутності даних про режим експлуатації будівлі с плоскою конструкцією покрівлі і розміщенням його на висоті H < 0.5 км над рівнем моря.

$$S_m = 1.04 \cdot 1400 \cdot 1 = 1456 \ \Pi a = 1.456 \ \kappa H/m^2$$

 $p^{ch} = 1.456 \cdot 6 = 8.736 \ \kappa H/m$

Рисунок 2.3 — Розрахункова схема кроквяної конструкції при визначенні опорної реакції R_A

$$R_A^{ch} = 0.5 \cdot p^{ch} \cdot l_0 \tag{5}$$

$$R_A^{ch} = 0.5 \cdot 8,736 \cdot 16,6 = 72,51 \text{ kH/m}$$

Кранове навантаження

Рисунок 2.4 — Схема розташування двох зближених мостових кранів на підкрановій балці для визначення кранових навантажень на поперечну раму будівлі.

Проліт крана L_k =16,6 м;

Ширина крана B=6300 мм;

База крана K = 4400 мм;

H = 2400 мм;

 $B_1 = 260$ мм;

 P^n_{max} — навантаження коліс на підкранові рейки — 195 кH;

Вага візка — 8,5 m;

G — Вага крана з візком — 28,5 *m*;

Тип кранової рейки — КР70.

$$D_{max} = \gamma_{fm} \cdot \psi \cdot P_{max}^n \cdot \sum y_i \tag{6}$$

Де γ_{fm} — см. п. 7.9 [4]; ψ — см. п. 7.22 [4]; $\sum y_i$ — Рис. 2.4.

$$D_{min} = \gamma_{fm} \cdot \psi \cdot P_{min}^n \cdot \sum y_i \tag{7}$$

$$P_{min}^n = \frac{Q+G}{n_0} - P_{max}^n \tag{8}$$

Де n_o - кількість коліс на одній стороні крана;

$$D_{max} = 1.1 \cdot 0.85 \cdot 195 \cdot 1.95 = 355,534 \ \kappa H;$$

 $P_{min}^{n} = \frac{200 + 285}{2} - 195 = 47.5 \ \kappa H;$
 $D_{min} = 1.1 \cdot 0.85 \cdot 47.5 \cdot 1.95 = 86.6 \ \kappa H.$

Навантаження на раму від поперечного гальмування

$$T = \gamma_{cou} \cdot \gamma_f \cdot T_n^{\kappa on} \cdot \sum y_i \tag{9}$$

Горизонтальне поперечне гальмівне навантаження від одного колеса для кранів з гнучким підвісом вантажу

$$T_n^{\kappa o \eta} = \frac{0.05 \cdot (Q + Q_t)}{n_0} \tag{10}$$

$$T_n^{\text{kot}} = \frac{0.05 \cdot (20 + 8.5)}{2} = 0.7125 \; \text{m} = 7.2 \; \text{kH}$$

$$T = 0.85 \cdot 1.2 \cdot 7.2 \cdot 1.95 = 14.32 \; \text{kH}$$

Навантаження від стінових панелей:

$$G_{cmnH} = S \cdot_{H} \cdot g \tag{11}$$

 $G_{\it cmnh} = 6 \cdot 8, 6 \cdot 2, 8 = 144, 48 \ \kappa H$ м

$$G_{\textit{cmnh.6.}} = S \cdot_{\textit{g}} \cdot g \tag{12}$$

$$G_{cmnh.e.} = 6 \cdot 3.5 \cdot 2.8 = 58.8 \text{ kHm}$$

Вітрове навантаження:

Рисунок 2.5 – Визначення вітрового тиску в кН/м2 для характерних відміток по висоті колони

Граничне розрахункове значення вітрового навантаження:

$$W_m = \gamma_{fm} \cdot W_0 \cdot C \tag{13}$$

Де γ_{fm} — коефіцієнт надійності, в залежності від терміну повторності максимального значення вітрового тиску в роках. На 100 років — γ_{fm} = 1,14;

 W_0 — характеристичне значення вітрового тиску, залежне від району будівництва. $W_0-0.47~\kappa H {\it M}^2$;

$$h = 5 \text{ M} = W_5 = 0.47 \cdot 0.4 = 0.188 \text{ } \kappa H \text{M}^2;$$

 $h = 10 \text{ M} = W_{10} = 0.47 \cdot 0.6 = 0.282 \text{ } \kappa H \text{M}^2;$
 $h = 20 \text{ M} = W_{20} = 0.47 \cdot 0.85 = 0.399 \text{ } \kappa H \text{M}^2.$

Еквівалентне вітрове навантаження W_e :

$$W_e = \frac{2M_3}{H^2} \tag{14}$$

$$M_3 = \frac{0.188 \cdot 12.25^2}{2} + \frac{1}{2} \cdot (0.308 - 0.188) \cdot 7.25 \cdot \left(\frac{2}{3} \cdot 7.25 + 5\right) = 18.4 \; \text{kHm}^2$$

$$W_e = \frac{2 \cdot 18,4}{12,25^2} = 0,245 \text{ kHm}^2.$$

Активний вітер:

$$W_a = W_e \cdot B \cdot C_{aer} \cdot \gamma_{fm} \tag{15}$$

 $W_a = 0.245 \cdot 6 \cdot 0.8 \cdot 1.14 = 1.341 \text{ кH/м.n.}$

Пасивний вітер:

$$W_n = 0.245 \cdot 6 \cdot 0.6 \cdot 1.14 = 1.01 \text{ кH/м.n.}$$

Зосереджена сила на рівні верха колон по середньому вітряному тиску між $0.308~\kappa H M^2$ і $0.337~\kappa H M^2$

$$W = \left(\frac{0,308 + 0,337}{2}\right) \cdot 6 \cdot 2,45 \cdot (0,8 + 0,6) \cdot 1,14 = 7,57 \, \kappa H$$

Рисунок 2.6 – Визначення активного та пасивного вітрового тиску в кН/м2.

Статична розрахунок поперечної рами

1. Момент інерції відносно осі Ү:

$$I_z = \frac{b \cdot h_g^3}{12} + \frac{bh - (H_H - h_g)^2}{2} \tag{16}$$

$$I_z = \frac{40 \cdot 20^3}{12} + \frac{40 \cdot 20 - (100 - 20)^2}{2} = 23866,\!66 \; \mathrm{cm}^4$$

$$EF = 3310000 \cdot (0.4 \cdot 0.2) = 264800 \, m$$

Рисунок 2.7 – Схема перетину нижньої частини колони.

$$I_y = 40 \cdot 20 \cdot 40^2 = 0,0064 \text{ cm}^2$$

 $EI_y = 3310000 \cdot 0,064 = 21184$

2. Розрахункове поєднання зусиль

Рисунок 2.8 – Схема розрізів елементів рами.

Елемент 1, переріз 1

$$1+2+3+4-7$$
 $1+3+6+7$ $1+2+3+4-7$ $M_y^+ = +265,99$ $M_y^- = -193,405$ $N_{max}^- = -719,658$ $N_{ei\partial n} = -719,658$ $N_{ei\partial n} = -597,47$ $M_{ei\partial n} = +265,99$ $Q_{z.ei\partial n} = -41,052$ $Q_{z.ei\partial n} = 18,078$ $Q_{z.ei\partial n} = -41,052$ $\frac{M}{N} = 0,369$ $\frac{M}{N} = 0,323$ $\frac{M}{N} = 0,369$

Елемент 1, переріз 2

$$1+2+3+6-8$$
 $1+2+3+4$ $M_y^- = -103,237$ $N_{max}^- = -682,55$ $N_{ei\partial n} = -629,63$ $M_{ei\partial n} = -39,418$ $Q_{z.ei\partial n} = 3,701$ $Q_{z.ei\partial n} = 22,14$ $\frac{M}{N} = 0,16$ $\frac{M}{N} = 0,05$

Елемент 3, переріз 1

$$\begin{array}{lll} 1+2+4 & 1+6 & 1+2 \\ M_y^+ = +72,771 & M^- = -3,62 & N_{max}^- = -316,008 \\ N_{6i\partial n} = -308,311 & N_{6i\partial n} = -239044 & M_{6i\partial n} = +39,742 \\ Q_{z.6i\partial n} = -22,14 & Q_{z.6i\partial n} = 2,835 & Q_{z6i\partial n} = -10,888 \\ \frac{M}{N} = 0,23 & \frac{M}{N} = 0,01 & \frac{M}{N} = 0,12 \end{array}$$

Елемент 3, переріз 2

$$1+2$$
 $1+2+4$ $N_{max}^{-} = -301,046$ $Q_z = -10,888$ $Q_{z,si\partial n}^{-} = 17,735$ $N_{si\partial n}^{-} = -293,349$

Від постійного навантаження

Елемент 1, переріз 1

1

$$N = 277,49$$

$$M_y = 26,653$$

$$Q = -8,242$$

Елемент 1, переріз 2

1

$$N = -240,381$$

$$M_y = -44,228$$

$$Q = -8,242$$

Елемент 3, переріз 1

1

$$N = -239,044$$

$$M_y = 30,083$$

$$Q = -8,242$$

Елемент 3, переріз 2

1

$$N = -277,049$$

$$M_y = -26,65 + 3$$

$$Q = -8,242$$

3 ПРОЕКТУВАННЯ КОЛОНИ ОДНОПОВЕРХОВОЇ ПРОМИСЛОВОЇ БУДІВЛІ

3.1 Розрахунок поздовжньої арматури колони

Рисунок 3.1 – Схема перетину нижньої частини колони.

1. Обчислюємо ексцентриситет:

$$e_0 = \frac{M}{N} + e_a \tag{17}$$

Де

•
$$e_a = \frac{1}{600} \cdot 8600 = 14,3 \text{ мм};$$

•
$$e_a = \frac{1}{30} \cdot 200 = 6.6$$
 мм;

Обираємо $e_a = 14,3$ мм.

$$e_0 = \frac{265,99}{219.688} + 0.014 = 0.384 \,\mathrm{m}$$

2. Наведений радіус інерції перерізу підкранової частини двогілкової колони:

$$i_{red}^2 = \frac{c^2}{4\left(\frac{1+3c^2}{\psi^2 n^2 h^2}\right)} \tag{18}$$

Де
$$\psi^2 = 1.5$$
;
$$n = \frac{H_{\scriptscriptstyle H}}{S} = \frac{8.6}{2} = 4.3 \text{ м};$$

$$S = (8 \dots 10)h = 10 \cdot 0.2 = 2 \text{ м}.$$

$$i_{red}^2 = \frac{0.8^2}{4\left(\frac{1+3\cdot 0.8^2}{1.5\cdot 4.3^2\cdot 0.2^2}\right)} = 0.05859 \text{ M}$$

3. Приведена гнучкість підкранової частини колони:

$$\lambda_{red} = \frac{l_0}{i_{red}^2} \tag{19}$$

Де $l_0 = 1.5H_{\text{H}} = 1.5 \cdot 8.6 = 12.9 \text{ м}.$

$$\lambda_{red} = \frac{12.9}{0.05859} = 220.17$$

Гранична гнучкість:

$$\lambda \lim = \frac{20ABC}{\sqrt{n}} \tag{20}$$

Де
$$n = \frac{N}{A_c f_{cd}} = \frac{719,658 \cdot 10^3}{2(0,4 \cdot 0,2) \cdot 17 \cdot 10^6} = 0,265;$$

$$A = \frac{1}{(1+0,2\varphi_{ef})} = \frac{1}{(1+0,2 \cdot 2)} = 0,71;$$
 $\varphi_{ef} = 2;$

$$B = 1,1;$$

$$C = 0.7.$$

$$\lambda \lim = \frac{20 \cdot 0.71 \cdot 1.1 \cdot 0.7}{\sqrt{0.265}} = 21.61$$

Так як, $\lambda_{red} > \lambda$ lim слід враховувати вплив прогину на величину ексцентриситету повздовжньої сили. В цьому випадку в розрахунку замість e_0

необхідно використовувати величину $(\eta \cdot l_0)$, де

$$\eta = \frac{1}{1 - \frac{N}{N_{cr}}}\tag{21}$$

$$N_{cr} = \frac{6.4E_{cm}}{l_0^2} \left[\frac{I}{\varphi_l} \left(\frac{0.11}{0.1 + \frac{\sigma_e}{\varphi_p}} + 0.1 \right) + \alpha I_s \right]$$
 (22)

$$I_S = 2\rho bh \left(\frac{c}{2}\right)^2 = 2 \cdot 0.02 \cdot 0.4 \cdot 0.2 \cdot \left(\frac{0.8}{2}\right)^2 = 0.000512 \,\text{m}^4;$$

$$\sigma_e = \frac{l_0}{h_{\scriptscriptstyle H}} = \frac{12.9}{1} = 12.9 \text{ m};$$

$$\varphi_p = 1.$$

$$\alpha = \frac{E_S}{E_{ct}} = \frac{210 \ \Pi a}{32,5 \ \Pi a} = 6,46$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^6}{12.9^2} \left[\frac{0.02613}{1.1} \left(\frac{0.11}{0.1 + \frac{12.9}{1}} + 0.1 \right) + 6.46 \cdot 0.000512 \right]$$

$$N_{cr} = 7354530 \ \Pi a = 7354,53 \ \kappa H/M^2$$

$$\eta = \frac{1}{1 - \frac{719,658}{7354,53}} = 1,11$$

4. Визначаємо зусилля в гілках колони:

$$N_{61,2} = 0.5N \pm \frac{M \cdot \eta}{c} \tag{23}$$

$$N_{e1,2} = 0.5 \cdot 719,658 + \frac{265,99 \cdot 1,1}{0.8} = 713,2 \ \kappa H$$

$$M_e = V \frac{S}{4}$$
(24)

$$M_{\rm e} = 41,052 \cdot \frac{2}{4} = 20,526 \; \kappa H$$

5. Для кожної з гілок визначаємо:

$$e_0 = \frac{M_{\theta}}{N_{\theta}} + l_a \tag{25}$$

$$e = e_0 \eta + 0.5h - a \tag{26}$$

Де
$$\eta=1$$
; $h=200$ мм; $a=30$ мм; $d=h-a=200-30=170$ мм; $l_a=200/30=6,6$ мм; $\frac{S}{600}=\frac{2000}{600}=3,33$ мм.

$$e_0 = \frac{20,526}{713,2} + 0,0066 = 0,035 \text{ M}$$

$$e = 0,035 \cdot 1 + 0,5 \cdot 0,2 - 0,03 = 0,105 \text{ M}$$

6. Підбираємо армування при несиметричному армуванні:

$$A'_{S} = \frac{N \cdot e - 0.4 \cdot f_{cd} \cdot b \cdot d^{2}}{f_{yd} \cdot (d - a')} \geqslant 0$$

$$A'_{S} = \frac{713.2 \cdot 10^{3} \cdot 0.105 - 0.4 \cdot 17 \cdot 10^{6} \cdot 0.4 \cdot 0.17^{2}}{365 \cdot 10^{6} \cdot (0.17 - 0.03)} \geqslant 0$$
(27)

$$A'_{S} = \frac{713,2 \cdot 10^{-1}0,103 - 0,4 \cdot 17 \cdot 10^{-1}0,4 \cdot 0,17}{365 \cdot 10^{6} \cdot (0,17 - 0,03)} \geqslant 0$$

$$A'_{S} = -0,0000728376 \, \text{M}^{2}$$

Висновок — переріз арматури приймаємо конструктивно.

$$A_S = \frac{0.55 \cdot f_{cd} \cdot b \cdot d - N}{f_{yd}} + A_S'$$
 (28)

$$A_S = \frac{0.55 \cdot 17 \cdot 10^6 \cdot 0.4 \cdot 0.17 - 713.2 \cdot 10^3}{365 \cdot 10^6} + (-0.0000728376)$$

$$A_S = -0.000284892 \, \text{m}^2$$

Висновок — переріз арматури приймаємо конструктивно.

Підбираємо арматуру за відсотком армування:

 A_S' приймаємо $4\varnothing 12A400C - A = 4,52 \ cm^2;$

 A_S приймаємо $4\varnothing 12A400C - A = 4.52 \ cm^2$.

$$\rho = \frac{A_S' + A_S}{b \cdot d} \cdot 100\% \tag{29}$$

$$\rho = \frac{4,52 + 4,52}{40 \cdot 20} \cdot 100\% = 1,13\%$$

Оптимальне значення армування для колон 1...3%.

Рисунок 3.2 – Армування нижньої частини колони.

Розрахунок за другою комбінацією зусиль.

1. Обчислюємо ексцентриситет за формулою (17):

Де

•
$$e_a = \frac{1}{600} \cdot 8600 = 14,3 \text{ мм};$$

•
$$e_a = \frac{1}{30} \cdot 200 = 6.6 \text{ мм};$$

Обираємо $e_a = 14,3$ мм.

$$e_0 = \frac{193,405}{597,47} + 0,014 = 0,34 \text{ M}$$

2. Наведений радіус інерції перерізу підкранової частини двогілкової колони (18):

$$i_{red}^2 = \frac{0.8^2}{4\left(\frac{1+3\cdot 0.8^2}{1.5\cdot 4.3^2\cdot 0.2^2}\right)} = 0.05859 \text{ M}$$

3. Приведена гнучкість підкранової частини колони (19):

$$\lambda_{red} = \frac{12.9}{0.05859} = 220.17$$

Гранична гнучкість (20):

Де
$$n=\frac{N}{A_c f_{cd}}=\frac{597,47\cdot 10^3}{2(0,4\cdot 0,2)\cdot 17\cdot 10^6}=0,22;$$

$$A=\frac{1}{(1+0,2\varphi_{ef})}=\frac{1}{(1+0,2\cdot 2)}=0,71;$$

$$\varphi_{ef}=2;$$

$$B=1,1;$$

$$C=0,7.$$

$$\lambda \lim =\frac{20\cdot 0,71\cdot 1,1\cdot 0,7}{\sqrt{0,22}}=23,31$$

Так як, $\lambda_{red} > \lambda$ lim слід враховувати вплив прогину на величину ексцентриситету повздовжньої сили. В цьому випадку в розрахунку замість e_0 необхідно використовувати величину $(\eta \cdot l_0)$ за формулами (21) (22).

Де
$$I = 0.02613 \text{ м}^4;$$

$$\varphi_l = 1 + 1 \cdot \frac{44,228}{193,405} = 1.23 < (1 + \beta);$$
 $I_S = 0.000512 \text{ м}^4;$

$$\sigma_e = 12.9 \text{ m};$$

$$\varphi_p = 1;$$

$$\alpha = 6.46.$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^6}{12.9^2} \left[\frac{0.02613}{1.23} \left(\frac{0.11}{0.1 + \frac{12.9}{1}} + 0.1 \right) + 6.46 \cdot 0.000512 \right]$$

$$N_{cr} = 7014160 \ \Pi a = 7014,16 \ \kappa H/m^2$$

$$\eta = \frac{1}{1 - \frac{597,47}{7014,16}} = 1,1$$

4. Визначаємо зусилля в гілках колони за формулами (23), (24):

$$N_{\rm e1,2}=0.5\cdot 597.47-rac{193.405\cdot 1.1}{0.8}=32.803~\kappa H$$

$$M_{\rm e}=18.078\cdot rac{2}{4}=9.039~\kappa H$$

5. Для кожної з гілок за формулами (25), (26) визначаємо:

Де
$$\eta=1$$
;
$$h=200 \text{ мм};$$

$$a=30 \text{ мм};$$

$$d=170 \text{ мм};$$

$$l_a=6,6 \text{ мм};$$

$$\frac{S}{600}=3,33 \text{ мм}.$$

$$e_0=\frac{9,039}{32,803}+0,0066=0,28 \text{ м}$$

$$e=0,28\cdot 1+0,5\cdot 0,2-0,03=0,35 \text{ м}$$

6. Підбираємо армування при несиметричному армуванні за формулами (27),(28):

$$A'_{S} = \frac{32,803 \cdot 10^{3} \cdot 0,35 - 0,4 \cdot 17 \cdot 10^{6} \cdot 0,4 \cdot 0,17^{2}}{365 \cdot 10^{6} \cdot (0,17 - 0,03)} \geqslant 0$$

$$A'_{S} = -0,00131364 \, \text{m}^{2}$$

Висновок — переріз арматури приймаємо конструктивно.

$$A_S = \frac{0.55 \cdot 17 \cdot 10^6 \cdot 0.4 \cdot 0.17 - 32,803 \cdot 10^3}{365 \cdot 10^6} + (-0.00131364)$$

$$A_S = 0.000338407, \, \text{m}^2$$

Висновок — переріз арматури приймаємо конструктивно.

Підбираємо арматуру за відсотком армування (29):

 A_S' приймаємо $4\varnothing 12A400C - A = 4,52 \ cm^2;$

 A_S приймаємо $4\varnothing 12A400C - A = 4,52 \ cm^2$.

$$\rho = \frac{4,52 + 4,52}{40 \cdot 20} \cdot 100\% = 1,13\%$$

Оптимальне значення армування для колон 1...3%.

Рисунок 3.3 – Армування нижньої частини колони.

Розрахунок надкранової частини колони

Рисунок 3.4 – Переріз верхньої частини колони.

1. Обчислюємо ексцентриситет за формулою (17), де:

•
$$e_a = \frac{1}{600} \cdot H_{\rm g} = \frac{1}{600} \cdot 3500 = 5,83$$
 мм
• $e_a = \frac{1}{30} \cdot 380 = 12,6$ мм

Обираємо $e_a = 12,6$ мм.

$$e_0 = \frac{72,771}{308,311} + 0,0126 = 0,25 \text{ M}$$

2. Наведений радіус інерції перерізу підкранової частини двогілкової колони:

$$i_{red} = 0.289 \cdot h$$
 (30)
 $i_{red} = 0.289 \cdot 0.38 = 0.11 \text{ M}$

3. Приведена гнучкість підкранової частини колони за формулою (19):

Де
$$l_0 = 2H_{\mathfrak{g}} = 2 \cdot 3,5 = 7$$
 м.

$$\lambda_{red} = \frac{7}{0,11} = 63,63$$

Гранична гнучкість за формулою (20):

Де
$$n = \frac{N}{A_c f_{cd}} = \frac{308,311 \cdot 10^3}{0,4 \cdot 0,38 \cdot 17 \cdot 10^6} = 0,12;$$

$$A = \frac{1}{(1+0,2\varphi_{ef})} = \frac{1}{(1+0,2 \cdot 2)} = 0,71;$$

$$\varphi_{ef} = 2;$$

$$B = 1,1;$$

$$C = 0,7.$$

$$\lambda \lim_{r \to \infty} \frac{20 \cdot 0,71 \cdot 1,1 \cdot 0,7}{\sqrt{0.12}} = 31,56$$

Так як, $\lambda_{red} > \lambda$ lim слід враховувати вплив прогину на величину ексцентриситету повздовжньої сили. В цьому випадку в розрахунку замість e_0 необхідно використовувати величину $(\eta \cdot l_0)$ за формулами (21) (22), де

$$I = \frac{b \cdot h^3}{12} = \frac{0.4 \cdot 0.38^3}{12} = 0.0126 \,\text{m}^4;$$

$$\varphi_{l} = 1 + \beta \frac{M_{1}}{M} = 1 + 1 \cdot \frac{30,083}{72,771} = 1,41 < (1+\beta);$$

$$I_{S} = \rho \cdot \left(\frac{d-a}{h}\right)^{2} = 0,02 \cdot \left(\frac{0,35-0,03}{0,38}\right)^{2} = 0,0142 \text{ M}^{4};$$

$$\sigma_{e} = \frac{l_{0}}{h_{H}} = \frac{7}{0,38} = 18,42 \text{ M};$$

$$\sigma_{min} = 0,5 - 0,01 \cdot \frac{\sigma_{e}}{h} - 0,01 f_{cd} = 0,5 - 0,01 \cdot \frac{18,42}{0,38} - 0,01 \cdot 17 = -0,155;$$

$$\varphi_{p} = 1;$$

$$\alpha = \frac{E_{S}}{E_{ct}} = \frac{210 \text{ Ha}}{32,5 \text{ Ha}} = 6,46.$$

$$N_{cr} = \frac{6,4 \cdot 32500 \cdot 10^{6}}{7^{2}} \left[\frac{0,0126}{1,41} \left(\frac{0,11}{0,1 + \frac{18,42}{1}} + 0,1 \right) + 6,46 \cdot 0,0142 \right]$$

 $N_{cr} = 393412000 \, \Pi a = 393412 \, \kappa H/m^2$

 $\eta = \frac{1}{1 - \frac{308,311}{6.53}} = 1$

4. Підбираємо армування при симетричному армуванні:

$$A_{S} = A'_{S} = \frac{N \cdot e_{0} - f_{cd} \cdot b \cdot h \cdot (d - 0.5h)}{f_{yd} \cdot (d - a')} \geqslant 0$$

$$A_{S} = A'_{S} = \frac{308.311 \cdot 10^{3} \cdot 0.25 - 17 \cdot 10^{6} \cdot 0.4 \cdot 0.38 \cdot (0.35 - 0.5 \cdot 0.38)}{365 \cdot 10^{6} \cdot (0.35 - 0.03)}$$

$$A_{S} = A'_{S} = -0.0028 \, \text{m}^{2}$$
(31)

Висновок — переріз арматури приймаємо конструктивно.

$$A_S=A_S'$$
 приймаємо $4\varnothing 12A400C$ — $A=4{,}52$ $c{\it m}^2.$

Рисунок 3.5 – Армування верхньої частини колони.

3.2 Розрахунок розпірки двогілкової колони

Рисунок 3.6 – Схема перерізу розпірки колони.

1. Згинальний момент в розпірці

$$M_{ds} = \pm \frac{V \cdot s}{2}$$
 (32) $M_{ds} = -\frac{41,052 \cdot 2}{2} = -41,052 \ \kappa H M$

2. Необхідна площа поздовжньої арматури при симетричному армуванні без врахування роботи бетону

$$A_S = A_S' = \frac{M_{ds}}{f_{yd} \cdot (d - a')} \tag{33}$$

$$A_S = A_S' = -\frac{41,052 \cdot 10^3}{365 \cdot 10^6 \cdot (0,36 - 0,04)} = -0,0003514 \,\text{m}^2$$

 $A_S=A_S'$ приймаємо $3\varnothing 14A400C$ — $A=4{,}61$ cм 2 .

3. Поперечна сила в розпірці

$$V_{ds} = \frac{2M_{ds}}{c} = \frac{V \cdot s}{c}$$

$$V_{ds} = \frac{41,052 \cdot 2}{0.8} = 102,63 \text{ } \kappa H$$
(34)

4. Умова необхідності розрахунку поперечних стрижнів розпірки

$$V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck,prism})^{1/3} \right] \cdot b \cdot d$$
 (35)

Де
$$k=1+\sqrt{\frac{200}{14}}=4{,}78,$$
 приймаємо 2;

$$f_{ck,prism} = 22;$$

$$C_{Rd,c} = 0.12;$$

$$\rho_1 = \frac{A_S}{b \cdot d} = \frac{4,61}{40 \cdot 36} = 0,003.$$

$$V_{Rd,c} = \left[0.12 \cdot 2 \cdot \left(100 \cdot 0.003 \cdot 22 \cdot 10^{6}\right)^{1/3}\right] \cdot 0.4 \cdot 0.36 = 6.48 \, \kappa H$$

$$V_{ds} \nleq V_{Rd,c}$$

Умова не виконується.

$$V_{Rd,max} = \frac{\alpha_{cw} \cdot b_w \cdot z \cdot v \cdot f_{cd}}{\cot \theta + \tan \theta}$$
 (36)

Де
$$\alpha_{cw}=1$$
;

$$z = 0.9 \cdot d = 0.9 \cdot 0.36 = 0.324;$$

$$v = 0.6 \cdot \left(\frac{1 - f_{ck,prism}}{250}\right) \leqslant 0.6;$$
 $v = 0.6 \cdot \left(\frac{1 - 22}{250}\right) = 0.54 \leqslant 0.6;$ $\cot \theta = 2.5;$ $\tan \theta = 0.4.$

$$V_{Rd,max} = \frac{1 \cdot 0.4 \cdot 0.324 \cdot 0.54 \cdot 17 \cdot 10^6}{2.5 + 0.4} = 410251 \ \kappa H$$

$$V_{Rd,max} > V_{Rd,c}$$

Приймаємо крок поперечної арматури

$$S \leqslant 0.5h = 200 \text{ мм};$$

 $S \leqslant 150$ мм;

$$S \leqslant S_{w,max} = 0.75d = 270$$
 мм.

Приймаємо $\varnothing 6A240C$ з кроком 150 мм.

Рисунок 3.7 – Схема армування розпірки колони.

3.3 Розрахунок колони із площини поперечної рами

Виявляємо необхідність розрахунку підкранової частини колони із площини поперечної рами

$$\lambda = \frac{l_0}{i} \tag{37}$$

Де
$$l_0=0.8H_{\scriptscriptstyle H}=0.8\cdot 8.6=6.88$$
 м;
$$i=\sqrt{\frac{b^2}{12}}=\sqrt{\frac{0.4^2}{12}}=0.11.$$

$$\lambda = \frac{6,88}{0.11} = 62,54$$

Так як $\lambda_{red} > \lambda = 220{,}17 > 62{,}54$ тому розрахунок не потрібен.

4 ПРОЕКТУВАННЯ ПОЗАЦЕНТРОВОГО НАВАНТАЖЕННЯ ФУНДАМЕНТУ ПІД КОЛОНУ

На фундамент передаються зусилля, що виникають в нижньому перетині колони M_{IV} , N_{IV} , V_{IV} . При цьому враховувати три невигідно розрахункових поєднання. Розрахунок тіла фундаменту виконують на дію відпору (реактивного тиску) грунту, що виникає під підошвою фундаменту.

Розрахунок фундаменту полягає у визначенні:

- 1. Розмірів підошви фундаменту $l \cdot b$;
- 2. Загальної висоти фундаменту висоти нижньої ступені h_1 ;
- 3. Необхідної площі арматури сітки C-1, що укладається у підошви фундаменту;
- 4. Необхідної площі поздовжньої і поперечної арматури підколонника.

Для фундаментів приймати важкий бетон класів C12/15...C20/25; робочу арматуру сітки C-1 классів A400, A300 (\varnothing 10 — \varnothing 18мм) з кроком 100÷250 мм.

Рисунок 4.1 – Схема до розрахунку фундаменту.

(40)

4.1 Визначення розмірів фундаменту і армування його плитної частини

- 1. Призначаємо величину H_1 з умов:
 - $H_1 \geqslant H_{an} + 200 + 150 + 50$;
 - $H_1 \geqslant h_f$.

 $H_a n$ для колон з двогілкової підкрановою частиною:

- $H_{an} \ge 0.33 h_n + 500 = 0.33 \cdot 1000 + 500 = 830$ мм;
- $H_{an} \geqslant 1.5h = 1.5 \cdot 200 = 300$ мм;
- $H_{an} \geqslant 30d = 30 \cdot 12 = 360 \text{ мм};$

Приймаємо 1100 мм.

$$H_1 \geqslant 1100 + 200 + 150 + 50 = 1500 \text{ мм};$$

 $H_1 \geqslant 1200$ мм;

Приймаємо $H_1 = 1950$ мм.

- 2. Попередньо приймаємо розміри фундаменту.
- 3. Визначаємо зусилля що діють на підставу фундаменту для трьох невигідних комбінацій зусиль в опорному перерізу колони

$$M = M_{IV} + V_{IV} \cdot (H_1 - 0.15) + G_{cm} \cdot e_{cm}$$
 (38)

$$N = N_{IV} + G_{cm} \tag{39}$$

Елемент 1 переріз 1

•
$$1+2+3+4-7$$
 $M_y^+ = 265{,}99 \ \kappa H_M$
 $N_{ei\partial n} = -719{,}658 \ \kappa H$
 $Q_{ei\partial n} = -41{,}052 \ \kappa H$
 $G_{cm} = G_{db\bar{0}} \cdot \gamma_{sm}$

де
$$G_{\phi\delta} = 1.8$$
 т;

$$\gamma_{sm}=1,2.$$

$$G_{cm} = 18 \cdot 1,2 = 21,6 \text{ } \kappa H$$

$$e_{\it cm}=rac{t_{\it cm}+h_c}{2}=rac{300+1550}{2}=925$$
 мм
$$M_1=265,99+41,052\cdot(1,95-0,15)+21,6\cdot0,925=359,9~\kappa H {\it M}$$
 $N_1=719,658+21,6=741,26~\kappa H$

Від нормативних значень:

$$M_{n1} = \frac{265,99}{1,15} = 231,3 \ \kappa H$$
M
$$N_{n1} = \frac{719,658}{1,15} = 625,8 \ \kappa H$$

$$M_{N1} = 231,3 + 41,052 \cdot (1,95 - 0,15) + 21,6 \cdot 0,925 = 325,2 \ \kappa H_M$$

$$N_{N1} = 625.8 + 21.6 = 647.4 \, \kappa H$$

•
$$1 + 3 + 6 + 7$$

$$M_y^- = -193,405 \ \kappa H M$$

$$N_{ei\partial n} = -597,47 \ \kappa H$$

$$Q_{ei\partial n} = 18,078 \ \kappa H$$

$$M_2 = 193,\!405 + 14,\!078 \cdot (1,\!95 - 0,\!15) + 21,\!6 \cdot 0,\!925 = 245,\!93$$
 кНм

$$N_2 = 597,47 + 21,6 = 619,07 \ \kappa H$$

Від нормативних значень:

$$M_{n2} = \frac{193,405}{1,15} = 168,18 \ \kappa H_M$$

 $N_{n2} = \frac{597,47}{1,15} = 520 \ \kappa H$

$$M_{N2} = 168,18 + 18,078 \cdot (1,95 - 0,15) + 21,6 \cdot 0,925 = 220,7 \ \kappa H$$
M

$$N_{N2} = 520 + 21.6 = 541.6 \, \kappa H$$

Для подальших розрахунків використовуємо сполучення 1+2+3+4-7.

4. Визначаємо попередні розміри підошви фундаменту.

$$A_f \geqslant \frac{1,05 \cdot N_{n,max}}{R_0 - \gamma_m \cdot H_1} \tag{41}$$

$$m=rac{b}{l}=0.8=rac{2.7}{3.3}$$
 $A_f=3.3\cdot 2.7=8.91~{
m M}^2$

$$A_f \geqslant \frac{1,05 \cdot 647,4}{0,2 \cdot 10^3 - 20 \cdot 1,95} = 4,22 \,\mathrm{M}^2$$

5. Уточнюємо розрахунковий опір основи:

$$R = R_0 \cdot \left(1 + k_1 \cdot \frac{b - b_0}{b_0}\right) + k_2 \cdot \gamma \cdot (d - d_0) \tag{42}$$

де $d = H_1 = 1,95$ м;

$$d_0 = 2 \, M;$$

 k_1 , k_2 для глинистих — 0,05, 0,15 відповідно.

Так як $d < d_0$ в вираженні для R другий додаток приймати рівним 0.

$$R = 0.2 \cdot \left(1 + 0.05 \cdot rac{2.4 - 1}{1}
ight) = 0.215$$
 мПа

Різниця не суттєва. Перевіряти не потрібно.

6. Для прийнятих розмірів підошви фундаменту обчислюємо геометричні характеристики:

$$A_f = 8,91 \text{ m}^2$$

$$W_f = \frac{bl^2}{6} = \frac{2,7 \cdot 3,3^2}{6} = 4,9$$

7. Для кожної з розрахункових комбінацій зусиль обчислюємо крайові напруги в грунті під підошвою фундаменту:

Від нормативної:

$$P_{n,max} = \gamma_m \cdot H_1 + \frac{N_{n,max}}{A_f} + \frac{M_{n,max}}{W_f} \tag{43}$$

$$P_{n,min} = \gamma_m \cdot H_1 + \frac{N_{n,max}}{A_f} - \frac{M_{n,max}}{W_f} \tag{44}$$

$$P_{n,mid} = \gamma_m \cdot H_1 + \frac{N_{n,max}}{A_f} \tag{45}$$

Для першого сполучення:

$$P_{n,max} = 20 \cdot 1,95 + \frac{647,4}{8,91} + \frac{325,6}{4,9} = 178,03 \ \kappa H$$

$$P_{n,min} = 20 \cdot 1,95 + \frac{647,4}{8,91} - \frac{325,6}{4,9} = 45,3 \ \kappa H$$

$$P_{n,mid} = 20 \cdot 1,95 + \frac{647,4}{8,91} = 111,7 \ \kappa H$$

Для другого сполучення:

$$P_{n,max} = 20 \cdot 1,95 + \frac{541,6}{8,91} + \frac{220,7}{4,9} = 144,8 \ \kappa H$$

$$P_{n,min} = 20 \cdot 1,95 + \frac{541,6}{8,91} - \frac{220,7}{4,9} = 54,74 \ \kappa H$$

$$P_{n,mid} = 20 \cdot 1,95 + \frac{541,6}{8,91} = 99,8 \ \kappa H$$

8. Перевіряємо попередньо прийняті розміри підошви фундаменту з умов:

$$P_{n,max} \leq 1.2R$$

$$P_{n,min} > 0 \tag{46}$$

$$P_{n,mid} \leq R$$

Для першого сполучення:

$$178,03 \leqslant 240$$
$$45,3 > 0$$
$$111,7 \leqslant 200$$

Для другого сполучення:

$$144.8 \leqslant 240$$

 $54.7 > 0$
 $99.8 \leqslant 200$

Остаточно приймаємо розміри фундаменту $b \times l = 2.7 \times 3.3~\text{м}$

9. Визначаємо напруження в грунті від розрахункових зусиль M і N без урахування мас грунту і фундаменту:

$$P_{max} = \frac{N}{A_f} + \frac{M}{W_f}$$

$$P_{min} = \frac{N}{A_f} - \frac{M}{W_f}$$
(47)

Для першого сполучення:

$$P_{max} = \frac{647,4}{8,91} + \frac{325,2}{4,9} = 139,03 \ \kappa H$$
$$P_{min} = \frac{647,4}{8,91} - \frac{325,2}{4,9} = 6,3 \ \kappa H$$

Для другого сполучення:

$$P_{max} = \frac{541.6}{8.91} + \frac{220.7}{4.9} = 105.8 \text{ } \kappa H$$
$$P_{min} = \frac{541.6}{8.91} - \frac{220.7}{4.9} = 15.74 \text{ } \kappa H$$

10. Перевіряємо достатність висоти d_1 нижньої сходинки з умов міцності по поперечній силі в перерізі 2-2 з урахуванням роботи тільки бетону (тобто без поперечного армування):

$$d_1 \geqslant \frac{P_{max} \cdot C}{f_{ctk \ 0.05}} \tag{48}$$

$$c = 0.5 \cdot (l - a_n - 2d)$$

$$d = 450 - 50 = 400 \text{ mm}$$

$$c = 0.5 \cdot (3.3 - 1.55 - 2 \cdot 0.4) = 0.475$$

$$d_1 \geqslant \frac{139.04 \cdot 10^3 \cdot 0.475}{1 \cdot 10^6} = 0.066 \text{ m}$$

$$0.45 > 0.066$$

4.2 Проектування підколонника фундаменту

$$1+2+3+4-7$$

$$M_y^+ = 265,99 \ \kappa H$$
M $N_{ei\partial n} = -719,658 \ \kappa H$ $Q_{ei\partial n} = -41,052 \ \kappa H$

1. Зусилля в перерізі 7–7 підколонника:

$$M = M_{IV} + V_{IV}H_{an} + G_{cm}e_{cm}$$

$$M = 265,99 + 41,052 \cdot 1,1 + 21,6 \cdot 0,925 = 331,13 \kappa H_{M}$$

$$N = N_{IV} + G_{cm} + G_{1}$$

$$(50)$$

$$N = 719,658 + 21,6 + 24,15 = 765,408 \ \kappa H$$

де
$$G_1 = (0.84 \cdot 1.15) \cdot 2500 = 2415$$
 кг.

2. Необхідна площа поздовжньої арматури підколонника при $e_0 = M/N < 0.3 h_{on} = 331.13/765.408 = 0.433 < 0.3 \cdot 1.51 = 0.453$:

$$A_S = A_S' = \frac{Ne - f_{cd}S_0}{f_{yd}Z_S} \tag{52}$$

де
$$e=e_0+0.5a_n-a=0.433+0.5\cdot 1.55-0.04=1.168;$$
 $Z_S=h_n-2a=1550-2\cdot 40=1470$ мм; $S_0=0.5\cdot (b_nh_{on}^2-bh_{\scriptscriptstyle H}Z_S)=0.5\cdot (0.95\cdot 1.51^2-0.4\cdot 1)=0.79$ м; $a=30\div 40$ мм.

$$A_S = A_S' = \frac{765,408 \cdot 1,168 - 14,5 \cdot 10^3 \cdot 0,79}{365 \cdot 10^3 \cdot 1,47} = -0,01968 \, \text{m}^2$$

3. Остаточно прийнятий поздовжня арматура підколонника повинна бути не менше конструктивного мінімуму:

$$A_S = A_S' \geqslant \mu_{min} \cdot A_b = 0.001 \cdot (h_n \cdot b_n - h_H b)$$
 (53)

$$A_S = A_S' \geqslant 0.001 \cdot (1.55 \cdot 0.95 - 1 \cdot 0.4) = 0.0010725 \,\mathrm{m}^2$$

Приймаємо $6\varnothing 16A400\ A = 12{,}06\ cm^2$ з кроком $175\ мм$.

4. Необхідну площу поперечної арматури підколонника визначити з розрахунку міцності похилого перерізу на дію моменту за формулою залежно від e_0 :

При
$$\frac{h_{\scriptscriptstyle H}}{6} < e_0 < \frac{h_{\scriptscriptstyle H}}{2} = 0.16 < 0.453 < 0.5$$

$$A_{sw} = \frac{M + VH_{an} - 0.7Ne_0 + G_{cm}(e_{cm} - 0.7e_0)}{f_{ywd} \sum Z_w}$$
 (54)

де
$$\sum Z_w = Z_1 + Z_2 + Z_3 + \ldots + Z_n = 50 + 200 + 350 + 650 + 800 + 950 + 1100 + 1250 = 5350$$
 мм

$$A_{sw} = (265,99 \cdot 10^{3} + 41,052 \cdot 10^{3} \cdot 1,1 - 0,7 \cdot 719,658 \cdot 10^{3} \times 0,453 + 21,6 \cdot (0,925 - 0,7 \cdot 0,453))/285 \cdot 10^{6} \times 5,35 = 0,0000544 \,\text{m}^{2}$$

Приймаємо $4\varnothing 12A400\ A = 4{,}52\ {\it cm}^2$ з кроком $150\ {\it mm}$.

5 ПРОЕКТУВАННЯ ПЛИТИ ПОКРИТТЯ

5.1 Розрахунок міцності поздовжніх ребер плити покриття за нормальними перерізами

Клас напруженої арматури A800

$$f_{pk} = 840 \, M\Pi a$$

$$f_{p0,1k} = 765 \, M\Pi a$$

$$E_p = 190000 \, M\Pi a$$

$$f_{pd} = \frac{f_{p0,1k}}{\gamma_s} = \frac{765}{1,2} = 637,5 \, M\Pi a$$

Монтажна арматура A400

$$f_{vd} = 365 M\Pi a$$

Клас бетону 25/30

$$f_{cd} = 17 M\Pi a$$

$$f_{ck,prizm} = 22 M\Pi a$$

$$\varepsilon_{cu3,cd} = 3 M\Pi a$$

$$E_{cm} = 32.5 \cdot 10^3 \, M\Pi a$$

Рисунок 5.1 – Поперечний переріз плити покриття.

1. Визначити відношення h_f'/h , по ньому встановити величину (ширину полички тавра за рис. 6.1 при наявності поперечних ребер), що вводиться в розрахунок.

$$b_{eff} = min \left\{ \frac{\frac{1}{6} \cdot l_k}{\Pi pu \ h'_f \geqslant 0, 1 \cdot h : 0, 5 \cdot B_K - b} \right\}$$
 (55)

$$\frac{h_f'}{h} = \frac{30}{300} = 0.1$$

$$l_{\kappa} = L - 20 = 6000 - 20 = 5980$$
 мм

При $h_f' \geqslant 0.1 \cdot h$

$$b_{eff} = 0.5 \cdot B_K - b = 0.5 \cdot 2.98 - 0.18 = 1.31 \text{ M}$$

Де $B_K = 2.98 \, M$;

b = 0.18 m.

$$l_0=l_k-2\cdot rac{2}{3}\cdot c=5980-2\cdot rac{2}{3}\cdot 120=5820$$
 мм $M_{max}=rac{q\cdot l_0^2}{8}=rac{10,5291\cdot 5,82^2}{8}=44,58$ к H м $V_{max}=rac{q\cdot l_0}{2}=rac{10,5291\cdot 5,82}{2}=30,64$ к H

Де
$$q_p = q_1^{\textit{nokp}} \cdot B = 2,0537 \cdot 3 = 6,1611$$
 к H /м;

$$P_{cm} = S_m \cdot B = 1,456 \cdot 3 = 4,368 \text{ кH/м};$$

$$q = q_p + P_{cm} = 6,1611 + 4,368 = 10,5291$$
 к H /м.

2. Обчислюємо α_m :

$$\alpha_m = \frac{M_{max}}{b_{eff} \cdot d^2 \cdot f_{cd}} \tag{56}$$

Де d = h - a;

 $a = 30 \div 50$ мм.

$$\alpha_m = \frac{M_{max}}{b_{eff} \cdot d^2 f_{cd}} = \frac{44,58 \cdot 10^3}{1,31 \cdot 0,26^2 \cdot 17 \cdot 10^6} = 0,029 \Longrightarrow 0,031$$

$$\xi=rac{x}{d}\Longrightarrow x=\xi\cdot d=0,\!04\cdot 260=10,\!4$$
 мм $\zeta=0,\!984$

3. Попереднє напруження σ_p в робочій арматурі визначаємо з умови:

$$0.3f_{p0,1k} \leqslant \sigma_p \leqslant 0.9f_{p0,1k}$$

$$0.3 \cdot 765 \leqslant \sigma_p \leqslant 0.9 \cdot 765$$

$$229.5 \leqslant \sigma_p \leqslant 688.5$$
(57)

$$\sigma_p = 600 \, M\Pi a$$

4. Виконуємо перевірку $\xi \leqslant \xi_R$

$$\xi_R = \frac{\varepsilon_{cu3.cd}}{\varepsilon_{cu3.cd} - \varepsilon_{so}} \tag{58}$$

Де
$$\varepsilon_{so} = \frac{f_{pd} + 400 - 0.9\sigma_p}{E_p} \cdot 1000 = \frac{637.5 + 400 - 0.9 \cdot 600}{190000} \cdot 1000 = 2.61$$

$$\xi_R = \frac{3}{3 - 2.61} = 7.86$$
$$0.04 \le 7.86$$

Умова виконується.

5. Визначаємо положення нейтральної вісі:

$$M_f = b_{eff} \cdot h'_f \cdot f_{cd} \cdot (d - 0.5 \cdot h_f) \tag{59}$$

$$M_f = (1,31\cdot 0,03\cdot 17\cdot 10^6\cdot (0,26-0,5\cdot 0,03))/1000 = 163,60845$$
 кНм
$$M_{max}\leqslant M_f$$

44,58 < 163,60845

Нейтральна вісь знаходиться у поличці.

6. Необхідна площа поздовжньої напруженою робочої арматури ребер плити:

$$A_{sp} = \frac{M_{max}}{f_{pd} \cdot d \cdot \zeta}$$

$$A_{sp} = \frac{M_{max}}{f_{pd} \cdot d \cdot \zeta} = \frac{44,58 \cdot 10^3}{637,5 \cdot 10^6 \cdot 0,26 \cdot 0,984} = 0,00027 \text{ m}^2$$
(60)

Приймаємо 2Ø18A800, $A_{sp}^{\phi a \kappa m}=5{,}09~c M^2.$

7. Обчислюємо відсоток армування для прийнятої поздовжньої напруженої арматури:

$$\mu = \left(\frac{A_{sp}^{\phi a \kappa m}}{A_b}\right) \cdot 100\% \tag{61}$$

Де
$$A_b = 296 \cdot 3 + 18 \cdot (30 - 3) = 1374 \text{ см}^2$$

$$\mu = \left(\frac{5,09}{1374}\right) \cdot 100\% = 0.37\%$$

Відсоток армування для прийнятої поздовжньої напруженої арматури $(0.3\% \leqslant \mu \leqslant 0.8\%)$ входить до оптимальних значень.

5.2 Розрахунок міцності похилих перерізів поздовжніх ребер плити

1. Визначаємо σ_{cp} :

$$\sigma_{cp} = \frac{N_{max}}{A_c} < 0.2 \cdot f_{cd} \tag{62}$$

Де $N_{max} = 0.5 \cdot \sigma_p \cdot A_{cp} = 0.5 \cdot 600 \cdot 0.000509 \cdot 1000 = 152.7$ кН.

$$\sigma_{cp} = \frac{152,7}{0,1374} < 0.2 \cdot 17 \cdot 1000$$

$$\sigma_{cp} = 1111 \ \kappa H < 3400 \ \kappa H$$

2. Визначаємо коефіцієнт k:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0$$

$$k = 1 + \sqrt{\frac{200}{260}} \le 2.0$$

$$k = 1.87 \le 2.0$$
(63)

3. Визначаємо $V_{Rd,c}$:

$$V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot \sqrt[3]{100 \cdot \rho_l \cdot f_{ck}} + k_1 \cdot \sigma_{cp} \right] \cdot b \cdot d \tag{64}$$

Де $V_{Rd,c}$ — розрахункове значення поперечної сили, яку може сприйняти похилий переріз без армування (бетон);

 k_1 — коефіцієнт, $k_1 = 0.15$;

 ho_l — коефіцієнт армування перерізу поздовжньою розтягнутою арматурою;

$$C_{Rd,c} - 0.12 \, M\Pi a;$$

 f_{ck} — в $M\Pi a$.

$$V_{Rd,c} = \left[0.12 \cdot 1.877 \cdot \sqrt[3]{100 \cdot 0.37 \cdot 22} + 0.15 \cdot 1.11\right] \cdot 180 \cdot 260 =$$

$$= 1062265 \, M\Pi a = 106.26 \, \kappa H$$

4. Перевіряємо умову $V_{max} \geqslant V_{Rd,c}$

$$30,64 \text{ } \kappa H \ngeq 106,26 \text{ } \kappa H$$

Умова не виконується, приймаємо армування конструктивно:

- В зварних каркасах $d_{non.apm.} \geqslant \left\{ \frac{d_{max}^{noos3\partial.apm}}{4}; 4 \, \textit{мм} \right\}$ кількість стрижнів в перерізі має відповідати кількості плоских каркасів. В ребристій плиті має бути 2 каркаси. Приймаємо 8 мм;
- Крок стрижнів S призначається кратним $50\ \mathit{мм}$ і приймається:
 - $-S \leqslant \{0.5 \cdot h; \ 150 \text{ мм}\}$ на ділянках біля опор $(\geqslant 0.25 \cdot l_0)$ Приймаємо S = 150 мм, біля опор 1500 мм;
 - $-S \leqslant \{0.75 \cdot h; 500 \text{ мм}\}$ на ділянках всередині прогону ($\approx 0.5 \cdot l_0$) Приймаємо S = 300 мм, всередині прогону 3000 мм.

5.3 Розрахунок полички плити на місцевий вигин

•
$$l_{01} = 1 - 0.045 - 0.02 = 0.935 \,\mathrm{M}$$

•
$$l_{02} = 1 - 0.02 - 0.02 = 0.96$$
 м

Відношення сторін полички плити:

•
$$\frac{l_{\partial n}}{l_{01}} = \frac{298 \ cm}{93.5 \ cm} = 2.97 > 2$$

•
$$\frac{l_{\partial n}}{l_{02}} = \frac{298 \text{ cm}}{96 \text{ cm}} = 2,89 > 2$$

$$q_1 = (2.52 - 1.4663) + 1.1 \cdot 25 \cdot 0.03 + 1.456 = 4.56 \text{ kH/m}^2$$

$$q = B \cdot q_1 = 1 \cdot 4.56 = 4.56 \text{ kH/m}$$

$$M = \frac{q \cdot l_{01}^2}{11} = \frac{4.56 \cdot 0.935^2}{11} = 0.36 \text{ kH \cdot m}$$

1. Визначаємо α_m

$$\alpha_m = \frac{M}{f_{cd} \cdot B \cdot d^2} \tag{65}$$

Де $d = 0.5 \cdot h_f = 0.5 \cdot 0.003 = 0.015$ м;

B=1 M.

$$\alpha_m = \frac{0.36 \cdot 10^3}{17 \cdot 10^6 \cdot 1 \cdot 0.015^2} = 0.0947 \Longrightarrow 0.091$$

Приймаємо $\zeta = 0.952$

2. Визначаємо необхідну площу поздовжньої робочої арматури полички плити обчислюємо, як в прямокутному перерізі, за формулою:

$$A_S = \frac{M}{f_{yd} \cdot \zeta \cdot d} \tag{66}$$

Де f_{yd} — розрахунковий опір стрижневої арматури класу A400.

$$A_S = \frac{0.36 \cdot 10^3}{365 \cdot 10^6 \cdot 0.952 \cdot 0.015} = 0.00006906 \,\text{m}^2$$

Приймаємо
$$C-1=\frac{\varnothing 3A400-200}{\varnothing 5A400-300}$$
 5910 × 2910

5.4 Розрахунок втрат попереднього напруження

Визначаємо геометричні характеристики розрахункового перерізу:

$$A_{red} = b_f \cdot h_f + b \cdot (h - h_f) + \alpha \cdot A_P + \alpha \cdot A_{S1} + \alpha \cdot A_{S2}$$
 (67)

$$A_{red} = 2,96 \cdot 0,03 + 3 \cdot (0,3 - 0,03) + 5,85 \cdot 0,000509 + 5,85 \times 0,0002545 + 5,85 \cdot 0,0002545 = 0,904$$

$$S_{red} = b_f \cdot h_f \cdot \left(h - \frac{h_f}{2}\right) + b \cdot (h - h_f) \cdot \left(h - \frac{h_f}{2}\right) \tag{68}$$

$$S_{red} = 2,96 \cdot 0,03 \cdot \left(0,3 - \frac{0,03}{2}\right) + 3 \cdot (0,3 - 0,03) \cdot \left(0,3 - \frac{0,03}{2}\right) = 0,256$$

$$y = \frac{S_{red} + \alpha \cdot A_P \cdot c_P + \alpha \cdot A_{S1} \cdot c + \alpha \cdot A_{S2} \cdot (h - c_1)}{A_{red}}$$
(69)

$$y = (0,256 + 5,85 \cdot 0,000509 \cdot 0,05 + 5,85 \cdot 0,0002545 \cdot 0,02 + 5,85 \cdot 0,0002545 \cdot (0,3 - 0,02))/0,904 = 0,284$$

$$I_{red} = I + \alpha \cdot A_P \cdot y_P^2 + \alpha \cdot A_{S1} \cdot y_{S1}^2 + \alpha \cdot A_{S2} \cdot y_{S2}^2 = \frac{b_f \cdot h_f^3}{12} + b_f \cdot h_f \cdot \left(h - y - \frac{h_f}{2}\right)^2 + \frac{b \cdot (h - h_f)^3}{12} + b \cdot (h - h_f) \times \left(y - \frac{h - h_f}{2}\right)^2 + \alpha \cdot A_P \cdot y_P^2 + \alpha \cdot A_{S1} \cdot y_{S1}^2 + \alpha \cdot A_{S2} \cdot y_{S2}^2$$

$$+ \alpha \cdot A_{S2} \cdot y_{S2}^2$$
 (70)

$$I_{red} = \left[\frac{2,96 \cdot 0,03^{3}}{12}\right] / 10^{8} + \left[2,96 \cdot 0,03\right] / 10^{8} \times \left[\left(0,3 - 0,284 - \frac{0,03}{2}\right)^{2}\right] / 10^{8} + \left[\left(0,18 \cdot (0,3 - 0,03)^{3}\right)^{2}\right] / 10^{8} + \left[\left(0,18 \cdot (0,3 - 0,03)\right) / 10^{8} \times \left[\left(0,284 - \frac{0,3 - 0,03}{2}\right)^{2}\right] / 10^{8} + \left[5,85 \cdot 0,000509 \cdot 0,234^{2}\right] / 10^{8} + \left[5,85 \cdot 0,0002545 \cdot 0,264^{2}\right] / 10^{8} + \left[5,85 \cdot 0,0002545 \cdot 0,264^{2}$$

Де
$$\alpha = \frac{E_S}{E_{cm}} = \frac{190000}{32.5 \cdot 10^3} = 5.85;$$
 $y_P = y - c_P = 0.284 - 0.05 = 0.234;$
 $y_{S1} = y - c = 0.284 - 0.02 = 0.264;$
 $y_{S2} = h - y - c_1 = 0.3 - 0.02 = 0.27.$

$$W_{red} = \frac{I_{red}}{y} = \frac{0,154051298}{0,284} = 0,543 \tag{71}$$

$$r = \frac{W_{red}}{A_{red}} = \frac{0.543}{0.904} = 0.59 \tag{72}$$

Розрахунок втрат I групи попереднього напруження

- 1. Визначаємо втрати від короткотривалої релаксації арматури ΔP_r для арматури класу A800 при механічному та електротермічному способі натягу:
 - При механічному

$$\Delta P_r = (0.1 \cdot \sigma_{p,max} - 20) \cdot A_P \tag{73}$$

$$\Delta P_r = (0.1 \cdot 1250 - 20) \cdot 0.000509 = 0.053 \, \Pi a$$

• При електротермічному

$$\Delta P_r = 0.03 \cdot \sigma_{p,max} \cdot A_P \tag{74}$$

$$\Delta P_r = 0.03 \cdot 1250 \cdot 0.000509 = 0.019 \, \Pi a$$

2. Визначаємо втрати від темепературного перепаду:

$$\Delta P_{\Delta t} = 0.5 \cdot A_P \cdot E_P \cdot \alpha_c \cdot (T_{max} - T_0) \tag{75}$$

$$\Delta P_{\Delta t} = 0.5 \cdot 0.000509 \cdot 190000 \cdot 1 \cdot 10^{-5} \cdot 65 = 0.031 \, \Pi a$$

3. Визначаємо втрати від деформації анкерів, анкерних пристроїв, розташованих в зоні натяжних пристроїв, при натягу на упори:

$$\Delta P_4 = \frac{\Delta l}{l} \cdot E_P \cdot A_P \tag{76}$$

$$\Delta P_4 = \frac{1,25 \cdot 0,15 \cdot 18}{6} \cdot 19000 \cdot 0,000509 = 63,66 \, \Pi a$$

4. Втрати зусилля в арматурі внаслідок миттєвої деформації бетону при натягу на упори:

$$\Delta P_c = \alpha \cdot \rho \left[1 + z_{cp}^2 \cdot \frac{A_c}{I_c} \right] \cdot P_{0,c} \tag{77}$$

Де
$$P_{0,c} = P_{max} - \Delta P_r - \Delta P_{\Delta t} = 1250 - 0,019 - 0,031 = 1249,915 \ \Pi a$$

$$\Delta P_c = 1 \cdot 10^{-5} \cdot 0,0032 \cdot \left[1 + 2,345^2 \cdot \frac{0,000509}{1377865842,7} \right] \cdot 1249,915 = 0,234 \ \Pi a$$

5. Величина I групи втрат:

$$P_{m0} = P_{max} - \Delta P_r - \Delta P_{\Delta t}$$

$$P_{m0} = 1250 - 0.019 - 0.031 = 1186.014 \,\Pi a$$

$$P_{m0} \leqslant 0.75 \cdot f_{pk} \cdot A_P$$

$$1186.014 \,\Pi a \leqslant 0.75 \cdot 840 \cdot 10^6 \cdot 0.000509$$

$$1186.014 \,\Pi a \leqslant 320670 \,\Pi a$$

$$(78)$$

Умова виконується.

Розрахунок втрат II групи попереднього напруження

1. Залежні від часу втрати попереднього напруження від дії постійних навантажень ΔP_{e+s+r} :

$$\Delta P_{e+s+r} = A_P \cdot \sigma_{p,c+s+r} \tag{79}$$

$$\sigma_{p,c+s+r} = \frac{\varepsilon_{cs} \cdot E_P + 0.8 \cdot \Delta \sigma_{pr} + \frac{E_P}{E_{cm}} \cdot \varphi(t,t_0) \cdot \sigma_{c,qp}}{1 + \frac{E_P \cdot A_P}{E_{cm} \cdot A_c} \cdot \left(1 + \frac{A_c}{I_c} \cdot z_{cp}^2\right) \left[1 + 0.8 \cdot \varphi(t,t_0)\right]}$$

$$\text{Де } \sigma_{c,qp} = \frac{P_{m0}}{A_{red}} + \frac{P_{m0} \cdot z_{cp} \cdot y_p}{I_{red}} - \frac{M_{max} \cdot y_p}{I_{red}} = \frac{1186,014}{0.905} + \frac{1186,014 \cdot 2.345 \cdot 0.234}{154051,3} - \frac{44,58 \cdot 0.234}{154051,3} = 1310,87 \, \Pi a$$

$$= 1310,87 \, \Pi a$$

$$\sigma_{p,c+s+r} = \frac{0.39 \cdot 190000 + 0.8 \cdot 0.79 + \frac{190000}{32500} \cdot 2 \cdot 1310.87}{1 + \frac{190000 \cdot 0.000509}{32500 \cdot 0.000509} \cdot \left(1 + \frac{0.000509}{1377865842.7} \cdot 2.345^2\right) [1 + 0.8 \cdot 2]}$$

$$\sigma_{p,c+s+r} = 89426.45 \ \Pi a$$

$$\Delta P_{e+s+r} = 0.000509 \cdot 89426.45 = 45.518 \ H$$

2. Перевірити умову для середнього значення попереднього обтискування $P_{m,t}$ в момент часу $t > t_0$ (з урахуванням всіх втрат):

$$P_{m,t} = P_{m0} - \Delta P_{1(t)} < 0.65 \cdot f_{pk} \cdot A_P \tag{81}$$

Повні сумарні втрати напруження $P_{m0} + \Delta P_{1(t)}$ приймати не менше $100~M\Pi a$.

$$P_{m,t} = 1186,014 - 45,518 < 0,65 \cdot 840 \cdot 10^6 \cdot 0,000509$$

$$P_{m,t} = 1140,49 \, \Pi a < 277914 \, \Pi a$$

5.5 Розрахунок плити на утворення тріщин нормальних до поздовжньої осі

Розрахунок моменту тріщиноутворення $M_{w,ult}$ для нормальних перерізів плити в стадії експлуатації

1. Визначаємо момент тріщиноутворення:

$$M_{w,ult} = f_{ctm} \cdot \gamma \cdot W_{red} + P_2 \cdot (e_{op} + r)$$
 (82)

Де
$$P_2=0.5\cdot A_{sp}^{\it факт}\cdot\sigma_p-(P_{0m}+\Delta P_{1(t)})=0.5\cdot 5.09\cdot 600-(1186.01+45.52)=$$
 = 295.47 кПа;

$$e_{op} = y_0 - a = 0.115 - 0.04 = 0.111 \text{ M}$$

$$M_{w,ult} = 2.6 \cdot 1.3 \cdot 0.543 + 295.47 \cdot (0.111 + 0.115) = 57.97$$
 кНм

2. Порівняємо $M_{w,ult} \geqslant M_{max}$

$$57,97 \ \kappa H$$
м $\geqslant 44,58 \ \kappa H$ м

Умова виконується, тріщини не виникають і розрахунок розкриття тріщин виконувати не потрібно.

5.6 Розрахунок тріщиностійкості плити в стадії виготовлення і транспортування

1. Обчислюємо момент від власної ваги:

$$M_1 = \frac{g \cdot c^2}{2} = \frac{(1,333 \cdot 1,6 \cdot 3) \cdot 0,8^2}{2} = 2,05 \, \kappa H_M \tag{83}$$

2. Перевірити умову тріщиностійкості:

$$P_1 \cdot (e_{op} - r) - M_{w,ult} \leqslant f_{ctm} \cdot \gamma \cdot W_{red} \tag{84}$$

Де
$$P_1 = A_{sp}^{\phi a \kappa m} \cdot \sigma_p - P_{0m} = (5,09/10000) \cdot 600 - 1186,01 = -1185,71 \ \Pi a$$

$$-10,545 \cdot (0,111-0,115) - 57,97 \leqslant 2,6 \cdot 1,3 \cdot 0,543$$

$$-10.545 \leqslant 1.83$$

Умова виконується, тріщини не виникають і розрахунок розкриття тріщин виконувати не потрібно.

5.7 Розрахунок плити за деформаціями

1. Визначаємо прогин плити:

$$f_{sh,t} = \left(\frac{1}{r}\right)_1 \cdot \alpha_k \cdot l_0^2$$

$$\mathbb{E}_{c,eff} = \frac{M}{E_{c,eff}} \cdot I_I = \frac{1,456 \cdot 10^3}{10833,33 \cdot 10^6} \cdot 0,001378 = 1,85203 \cdot 10^{-7};$$

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(t,t_0)} = \frac{32500}{1 + 2} = 10833,33$$

$$(85)$$

$$f_{sh,t} = 1,85203 \cdot 10^{-7} \cdot \frac{5}{48} \cdot 5,82^2 = 0,001457 \text{ M}$$

2. Обчислюємо прогин від постійної та довготривалої діючої частин навантаження на плиту:

$$f_{lt} = \left(\frac{1}{r}\right)_2 \cdot \alpha_k \cdot l_0^2 \tag{86}$$

Де
$$\left(\frac{1}{r}\right)_2 = \frac{M}{E_{cm} \cdot I_I} = \frac{1,456 \cdot 10^3}{32500 \cdot 0,001378 \cdot 10^{-6}} = 0,0003328.$$

$$f_{lt} = 0.0003328 \cdot \frac{5}{48} \cdot 5.82^2 = 0.001174 \text{ M}$$

3. Обчислюємо вигин від короткочасної дії зусилля попереднього обтиску:

$$f_{cp} = \frac{P_2 \cdot e_{op} \cdot l_0^2}{8 \cdot E_{cm} \cdot I_I} \tag{87}$$

$$f_{cp} = \frac{295,46 \cdot 0,075 \cdot 5,82^2}{8 \cdot 32500 \cdot 0,001378 \cdot 10^{-6}} = 2,095 \cdot 10^{-6} \,\mathrm{M}$$

4. Обчислюємо вигин внаслідок повзучості та усадки залізобетонного елементу:

$$f_{cs} = \alpha_P \cdot \left(\frac{1}{r}\right)_{\mathcal{A}} \cdot l_0^2 \tag{88}$$

$$\begin{split} & \operatorname{Дe} \left(\frac{1}{r} \right)_4 = \frac{M - \varepsilon_{cs}(t,t_0) \cdot E_S \cdot S_{Is}}{E_{c,eff} \cdot I_I} = \\ & = \frac{1,\!456 \cdot 10^3 - 0,\!39 \cdot 190000 \cdot 5,\!85 \cdot 10^{-5}}{10833,\!33 \cdot 10^6 \cdot 0,\!001378 \cdot 10^{-6}} = 0,\!01855; \end{split}$$

$$S_{Is} = A_{s1} \cdot z_1 + A_{s2} \cdot z_2 = 0,0002545 \cdot 0,115 + 0,0002545 \cdot 0,115 = 5,85 \cdot 10^{-5}$$

$$f_{cs} = \frac{1}{8} \cdot 0.01855 \cdot 5.82^2 = 0.0785 \, \text{M}$$

5. Обчислюємо повне значення прогину:

$$f = f_{sh,t} + f_{lt} - f_{cp} - f_{cs}$$

$$f = 0.001457 + 0.001174 - 2.095 \cdot 10^{-6} - 0.0785 = -0.075 \text{ M}$$

$$f \leq f_u$$

$$-0.075 \text{ M} \leq 30 \text{ MM}$$

$$(89)$$

Умова виконується.

6 ПРОЕКТУВАННЯ КРОКВЯНОЇ ФЕРМИ

Розрахунок вузлових навантажень на крокв'яну ферму

Рисунок 6.1 – Схема завантаження ферми.

Рисунок 6.2 – Переріз ферми.

1. Від постійного навантаження:

$$F_{nocm} = g \cdot 3 \cdot S + \gamma_f \cdot \frac{G_n^{nocm}}{n} \tag{90}$$

Де g — вага конструкції покрівлі;

 γ_f — коефіцієнт надійності по навантаженню;

 $G_n^{\it nocm}$ — вага кроквяної конструкції;

n — кількість вузлів у фермі.

$$F_{nocm} = 3.52 \cdot 3 \cdot 6 + 1.1 \cdot \frac{60}{9} = 70.69 \ \kappa H$$

2. Від снігових навантажень:

$$F_{cH} = \gamma_f \cdot p_{cH}^n \cdot 3 \cdot S \tag{91}$$

Де $p_{\it ch}^n$ — нормативне значення навантаження снігового навантаження.

$$F_{ch} = 1.04 \cdot 1.456 \cdot 3 \cdot 6 = 27.26 \ \kappa H$$

Розрахунок армування попередньо напруженого розтягнутого нижнього пояса ферми

Рисунок 6.3 – Переріз нижнього поясу ферми.

1. Приймаємо найневигідніше зусилля в найбільш навантаженій панелі нижнього поясу.

Елемент 8 – 9

$$N_{max} = 520,1145 \ \kappa H$$

2. Обчислюємо необхідну площу напруженої арматури, як для центрально розтягнутого елемента:

$$A_{sp} = \frac{N_{max} \cdot e}{f_{pd} \cdot (d - a_p)} \tag{92}$$

Де
$$e=e_a+0.5\cdot h-a_p=0.01+0.5\cdot 0.28-0.04=0.11$$
 м
$$A_{sp}=\frac{520.1145\cdot 10^3\cdot 0.11}{637.5\cdot (0.24-0.04)}=0.0004487~\text{м}^2$$

Приймаємо $2\varnothing 18A800 + 2\varnothing 18A800, A_S^{\phi a \kappa m} = 10{,}18~cm^2.$

Приймаємо розміри перерізу 28×22 *см*.

3. Перевіряємо відсоток армування:

$$\mu_{min} \leqslant \mu = \frac{A_s^{\phi a \kappa m}}{b \cdot h} \cdot 100\% \leqslant 3\%$$

$$0.05\% \leqslant \mu = \frac{10.18}{22 \cdot 28} \cdot 100\% \leqslant 3\%$$

$$0.05\% \leqslant \mu = 1.65\% \leqslant 3\%$$
(93)

Умова виконується.

Рисунок 6.4 – Армування перерізу нижнього поясу ферми.

Розрахунок армування верхнього стиснутого пояса ферми і стиснутих елементів решітки.

Рисунок 6.5 – Переріз верхнього поясу ферми.

1. Приймаємо найневигідніше зусилля в найбільш навантаженій панелі верхнього поясу.

Елемент 2 – 3

$$N_{max} = 525,99 \text{ } \kappa H, N_{1l} = 434,2616 \text{ } \kappa H.$$

2. Визначаємо орієнтовно необхідну площу перерізу верхнього поясу:

$$A_b = \frac{N_{max}}{0.8 \cdot (f_{cd} + 0.03 \cdot f_{yd})} \tag{94}$$

$$A_b = \frac{525,99 \cdot 10^3}{0,8 \cdot (17 + 0,03 \cdot 365) \cdot 10^6} = 0,0235 \,\text{m}^2$$

Приймаємо розміри перерізу 25×22 *см*.

- 3. Призначаємо величину випадкового ексцентриситету $e_a=10~\text{мм}.$ l=300~см довжина верхнього пояса між точками закріплення.
- 4. Уточнюємо розрахункову довжину верхнього пояса в площині ферми при $e_a < \frac{1}{8} \cdot h; 10$ мм < 31,25 мм. Приймаємо $l_0 = 0,9 \cdot l = 2700$ мм.

Для прийнятої розрахункової довжини обчислюємо гнучкість:

$$\lambda = \frac{l_0}{h} = \frac{2700}{250} = 10,8 \text{ мм} \tag{95}$$

5. Обчислюємо умовну критичну силу:

$$N_{cr} = \frac{6.4 \cdot E_{cm}}{l_0^2} \cdot \left[\frac{I}{\varphi_l} \cdot \left(\frac{0.11}{0.1 + \delta_l/\varphi_p} + 1 \right) + \alpha \cdot I_S \right]$$
(96)
$$\underline{\mathcal{H}} e \, \varphi_l = 1 + \beta \cdot \frac{M_{1l}}{M_1} = 1 + 1 \cdot \frac{36.91}{44.71} = 1.82;$$

$$M_{1l} = \frac{N_l \cdot (d - a)}{2} = \frac{434.2616 \cdot (0.21 - 0.04)}{2} = 36.91 \, \kappa H_M;$$

$$M_1 = \frac{N \cdot (d - a)}{2} = \frac{525.99 \cdot (0.21 - 0.04)}{2} = 44.71 \, \kappa H_M;$$

$$\delta_l = \left\{ \begin{array}{c} \frac{e_a}{h} \\ > \delta_{e,min} = 0.5 - 0.01 \cdot \frac{l_0}{h} - 0.01 \cdot f_{cd} \end{array} \right\};$$

$$\delta_l = \left\{ \begin{array}{c} \frac{0.01}{0.25} = 0.04 \\ > \delta_{e,min} = 0.5 - 0.01 \cdot \frac{2.7}{0.25} - 0.01 \cdot 17 = 0.222 \end{array} \right\};$$

Приймаємо $\delta_l = \delta_{e,min} = 0.222$.

$$\begin{split} \varphi_p &= 1; \, \alpha = \frac{E_S}{E_{cm}} = \frac{2.1 \cdot 10^5}{32500} = 6.46; \\ I_S &= \mu \cdot b \cdot h_0 \cdot (0.5 \cdot h - a_S)^2 = 1.575 \cdot 0.22 \cdot 0.21 \cdot (0.5 \cdot 0.25 - 0.04)^2 = \\ &= 0.0005257 \, \text{m}^4; \\ I &= \frac{b \cdot h^3}{12} = \frac{0.22 \cdot 0.25^3}{12} = 0.0002864 \, \text{m}^4. \end{split}$$

$$N_{cr} = \frac{6.4 \cdot 32500 \cdot 10^{6}}{2.7^{2}} \times \left[\frac{28.64 \cdot 10^{-5}}{1.82} \cdot \left(\frac{0.11}{0.1 + 0.222/1} + 1 \right) + 6.46 \cdot 52.57 \cdot 10^{-5} \right] = 98878222/1000 = 98878.2 \ \kappa H/m^{2}$$

6. Обчислюємо коефіцієнт η :

$$\eta = \frac{1}{1 - \frac{N_{max}}{N_{cr}}} = \frac{1}{1 - \frac{525,99}{98878,2}} = 1,0053 \tag{97}$$

7. Обчислюємо ексцентриситет:

$$e = e_a \cdot \eta + 0.5 \cdot h_1 - a \tag{98}$$

$$e = 0.01 \cdot 1.0053 + 0.5 \cdot 0.25 - 0.04 = 0.095 \,\mathrm{M}$$

8. Приймаючи
$$A_A=A_S'$$
, визначаємо $n=\frac{N_{max}}{f_{cd}\cdot b\cdot d}=\frac{525,99\cdot 10^3}{17\cdot 10^6\cdot 0,22\cdot 0,21}=$

= 0.669.

$$\xi_R = \frac{\xi_{cu3}}{\xi_{cu3} + \xi_{so}} = \frac{3}{3 + 0.633} = 0.8257.$$

$$n < \xi_R$$

$$x = \frac{N_{max}}{f_{cd} \cdot b} = \frac{525,99 \cdot 10^3}{17 \cdot 10^6 \cdot 0,22} = 0,14 \tag{99}$$

$$\sigma_s = \left(2 \cdot \frac{1 - \frac{x}{d}}{1 - \xi_R}\right) \cdot f_{yd} \tag{100}$$

$$\sigma_s = \left(2 \cdot \frac{1 - \frac{0.14}{0.21}}{1 - 0.8257}\right) \cdot 365 = 1018.32 \, M\Pi a$$

$$A_S = A_S' = \frac{N_{max} \cdot e - f_{cd} \cdot b \cdot x \cdot (d - 0.5 \cdot x)}{\sigma_s \cdot (d - a')}$$
(101)

$$A_S = A_S' = \frac{525,99 \cdot 10^3 \cdot 0,095 - 17 \times}{1018,32 \times} \\ \frac{\times 10^6 \cdot 0,22 \cdot 0,14 \cdot (0,21 - 0,5 \cdot 0,14)}{\times 10^6 \cdot (0,21 - 0,04)} = -0,0001356 \text{ m}^2$$

Приймаємо 2
Ø12A400+2Ø12A400, $A_S^{\phi a \kappa m}=4{,}52~c {\it m}^2$

9. Перевіряємо відсоток армування:

$$\mu_1 = \frac{A_S + A_S'}{b \cdot d} \cdot 100\% \tag{102}$$

$$\mu_1 = \frac{2,26 + 2,26}{22 \cdot 21} \cdot 100\% = 0,97\%$$

Умова виконується.

Рисунок 6.6 – Армування перерізу верхнього поясу ферми.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Конструкції будинків і споруд. Бетонні та залізобетонні конструкції. Основні положення : ДБН В.2.6-98:2009. Чинні від 01.06.11. К.: Мінрегіонбуд України, 2011. 71 с.
- 2. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции: Общий курс: Учеб. для вузов. М., Стройиздат, 1991. 767 с.
- 3. Мандриков А.П. Примеры расчета железобетонных конструкций: Учебн. Пособие для техникумов. М., Стройиздат, 1989 506 с
- 4. Нагрузки и воздействия. Нормы проектирования. : ДБН В.1.2-2:2006 К.: Минстрой Украины. 2006. 75 с.
- 5. Основи і фундаменти будівель та споруд. Основні положення : ДБН В.2.1- 10:2018 Київ : Мінрегіонбуд України, 2018. 36 с
- 6. Прогини і переміщення Вимоги проектування : ДСТУ Б В.1.2-3: 2006 Київ : Мінбуд України, 2006. 14 с.

ДОДАТОК А

Таблиця 2 – Розрахункові поєднання зусиль ферми прольотом 18 метрів

Елементи ферми	№ стрижня	Зусилля в стрижнях фер	х ферми х	Від постійного навантаження на покритті при Fnocr =(кН)	Від снігового навантаження на покриття за схемою 1 при Есн=(кН)	ового риття ю 1 при (кН)	1+2	1+3
		Для схеми завантаження №1	Для схеми завантаження №2	Для схеми завантаження Ng1	Для схеми завантаження Ng1	Для схеми завантаження №2		
	1 - 2	-5,343	-3,752	-377,69667	-145,65018	-102,27952	-523,34685	-479,97619
	2-3	-5,37	-3,365	-379,6053	-146,3862	-91,7299	-525,9915	-471,3352
:	3 – 4	-5,245	-3,281	-370,76905	-142,9787	-89,44006	-513,74775	-460,20911
Верхіній пояс	4 – 5	-5,245	-1,964	-370,76905	-142,9787	-53,53864	-513,74775	-424,30769
	9-9	-5,37	-2,005	-379,6053	-146,3862	-54,6563	-525,9915	-434,2616
	2-9	-5,343	-1,591	-377,69667	-145,65018	-43,37066	-523,34685	-421,06733
	1 - 8	4,725	3,317	334,01025	128,8035	90,42142	462,81375	424,43167
Нижній пояс	8 – 8	5,31	2,655	375,3639	144,7506	72,3753	520,1145	447,7392
	7-6	4,725	1,408	334,01025	128,8035	38,38208	462,81375	372,39233
	2 - 8	0,557	-0,051	39,37433	15,18382	-1,39026	54,55815	37,98407
,	4 – 8	-0,106	0,794	-7,49314	-2,88956	21,64444	-10,3827	14,1513
Розкоси	4 – 9	-0,106	6,0-	-7,49314	-2,88956	-24,534	-10,3827	-32,02714
	6-9	0,557	809,0	39,37433	15,18382	16,57408	54,55815	55,94841
:	3 – 8	-0,19	-0,488	-13,4311	-5,1794	-13,30288	-18,6105	-26,73398
CTIMEN	5-9	-0,19	0,298	-13,4311	-5,1794	8,12348	-18,6105	-5,30762