SOLUTION TO 3RD SEMESTER ENGINEERING ECONOMICS HS 2002 QUESTION PAPER(Dated: 22/09/20)

SECTION A: SHORT ANSWER TYPE

Ans1(a) The percentage increase in its demand = 40%

(2X5=10)

- The price elasticity of supply (Es) = 2
- The price elasticity of demand = 2.5 > 1, so elastic.
- The price at which he will demand 40 units of this commodity = or $P_2 = 22$

Ans 1(b) Students will define 'veblen goods' with examples.

- Students will define 'Giffen Goods' and explain its demand curve.
- Will explain any two factors which causes a shift in the supply curve. (NO DIAGRAMS REQUIRED).
- Will explain GNP at Market price.

Ans 1(c) They will exaplin MRS.

$$MRS = 4:1, 2:1, 1:1$$

- Shortage , shortage , equilibrium, surplus and surplus.
- Elastic product , so TR will fall.
- The Income elasticity of the product = ei = 4.16 > 1, so elastic. (By Midpoint method= ep=4.61)

Ans 1(d) P = 158730

- F = 856912
- F = 385780.50
- Effective rate = r = 12.68

Ans 1(e) (IF COMPLETED AT LEAST TWO COLUMNS, CAN BE ASSIGNED FULL MARKS)

Price of	Quantity	Total	Average	Marginal
Apples	sold	Revenue	Revenue(A	Revenue
(per kg)	(in kg) per day	(TR)	R)	(MR)
90	? (10)	900	?(90)	? (900)

80	20	? (1600)	? (80)	? (700)
70	? (30)	2100	? (70)	? (500)
? (60)	? (60)	3600	60	? (1500)
50	? (50)	2500	? (50)	? (1100)

- Quantity = 56000/800 = 70
- Combined demand function = 78 -7P . At P=5 , Qd = 43
- n= 27.62

SECTION B (ANY ONE)

$$e_P = \frac{dQ}{dP} \times \frac{P}{Q}$$

$$\frac{2000}{56000}$$

$$e_P = -0.0714$$

(ii) TR will increase

(b)
$$20000 - 8P = 8000 + 2P$$
 [3]

$$P = 1200$$
 Q.D/Q.S = 10400

3. (a) (i)
$$Q = 76000$$
 [3+3+4]

$$e_{Y} = \frac{dQ}{dY} \times \frac{Y}{Q}$$

$$e_{V} = 4 \times \frac{10000}{76000}$$

$$e_Y = 0.526$$

(ii) Normal Product

Demand will increase.

(b)
$$P = 100 - 4Q$$

$$TR = P.Q = 100Q - 4Q^2$$

$$\frac{dTR}{dQ} = MR1000Q$$

$$MR = 0 \Rightarrow 100 - 8Q = 0$$

$$Q = 25 - \frac{1}{4} P$$

$$e_p = \frac{dQ}{dP} \times \frac{P}{Q}$$

$$e_p = -\frac{1}{4} \times \frac{50}{125} = -1$$

(c)
$$F = A \times \left[\frac{(1+i)^n-1}{i}\right] + P(1+i)^n$$

$$F = 20000 \left[\frac{(10)7^{\circ} - 1}{007} \right] + 120007$$

F = 836740.4672

$$4. (a) e = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

$$= \frac{-20}{4} \times \frac{8}{100} = 0.4$$
[3+3+4]

Or

$$% P = 50\%$$

$$% Q = -20\%$$

$$\frac{\% Q}{\% P} = \frac{20}{50} = 0.4$$

Increase the price.

(b) (i)

(ii) MRS_{xy} =
$$\frac{P_x}{P_y} = \frac{8}{4} = \frac{2}{1}$$

(c)
$$A=F \times \left[\frac{i}{(1+i)^n-1}\right]$$

$$A = 2000000 \left[\frac{.1}{(1.1)^{20} - 1} \right]$$

5. (a) Demand increases by 24% for 10% decrease in the price of car. [3+3+4]

Demand decreases by 45% for 30% decrease in Income

Net decrease in demand = 21%

(b) (i) equilibrium

$$500 - 3P = 2P$$

$$5P = 500$$

$$P = 100$$

(ii) Revised supply

$$Q = 2(P - 10) = 2P - 20$$

Revised price

$$500 - 3P = 2P - 20$$

$$5P = 520$$

$$P = 104$$

Yes, demand is more elastic.

(c)
$$A = P \times \left[\frac{i(1+i)^n}{(1+i)^n-1}\right]$$

$$A = 1000000 \left[\frac{0.06(1.06)^{20}}{(1.06)^{20} - 1} \right]$$

A = 87184.55698

6. (a) Train travel will increase i.e. 2.2 x 12 = 26.4%

$$[3+3+4]$$

(b)

Qty	MU _A /P _A	MU _B /P _B
1	20	16
2	16	15
3	12	12
4	10	11

The consumer will buy 3 units of A and 3 units of B.

(c)
$$A = A + C \left[\frac{(1+i)^n - in - 1}{i(1+i)^n - i} \right]$$

$$A = 20000 + 1000 \left[\frac{(1.0)^{12} - .04 \times 12 - 1}{.0(1.0)^{12} - .04} \right]$$

$$A = 25034.34819$$
