Teoría de la integral y de la medida Hoja n⁰ 5 (Medidas exteriores)

1.- Sea X un conjunto no vacío. Definimos $\mu^* : \mathcal{P}(X) \to [0,1]$ mediante $\mu^*(\emptyset) = 0$, $\mu^*(A) = 1$, si $A \neq \emptyset$, $A \subset X$. Comprobar que μ^* es una medida exterior. Determinar la σ - álgebra de los conjuntos medibles.

SOL: $\mathcal{A}^* = \{\emptyset, X\}.$

2.- Sea X un conjunto no vacío. Definimos $\mu^*(\emptyset) = 0$, $\mu^*(X) = 2$, $\mu^*(A) = 1$ para $A \neq \emptyset$, $A \neq X$. Comprobar que μ^* es una medida exterior. Determinar la σ - álgebra de los conjuntos medibles.

SOL: Si card
$$(X) = 2$$
, i.e. $X = \{a, b\}$, entonces $\mathcal{A}^* = \{\emptyset, \{a\}, \{b\}, X\} = \mathcal{P}(X)$. Si card $(X) > 2$, entonces $\mathcal{A}^* = \{\emptyset, X\}$.

- 3.- Comprobar que si μ^* es una medida exterior finitamente aditiva entonces es numerablemente aditiva.
- **SOL**: Observamos que, si μ^* es finitamente aditiva, entonces $\forall E, A \subset X$ se cumple $\mu^*(E \cap A) + \mu^*(E \cap A^c) = \mu^*(E)$. Luego se tiene $\mathcal{A}^* = \mathcal{P}(X)$. En particular μ^* no solo es una medida exterior sino, de hecho, una medida.
- 4.- Sea μ^* una medida exterior, sea H un conjunto μ^* -medible, sea μ_H^* la restricción de μ^* a $\mathcal{P}(H)$.
 - a) Comprobar que μ_H^* es una medida exterior en H.
 - b) Comprobar que $A \subset H$ es μ_H^* -medible si y solo si es μ^* -medible

SOL: a) Obvio.

- b) Definimos $\mathcal{B}^* = \{A \subset H : \mu^*(E \cap A) + \mu^*(E \cap (H \setminus A)) = \mu^*(E), \forall E \subset H\}$. Queremos probar que $A \in \mathcal{B}^* \iff A \subset H, \ y \ A \in \mathcal{A}^*$.
- <=) Esta parte es evidente porque si $A \subset H$ y $A \in \mathcal{A}^*$ entonces para todo $E \subset H$ se tiene $\mu^*(E \cap A) + \mu^*(E \cap (H \setminus A)) = \mu^*(E \cap A) + \mu^*(E \cap (A^c)) = \mu^*(E)$.
- =>) Suponemos ahora que $A \in \mathcal{B}^*$. Dado $E \subset X$, necesitamos ver que

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(E)$$

Definimos $E_1 = E \cap A$, $E_2 = E \cap (H \setminus A)$, $E_3 = E \cap H^{c(1)}$, de forma que $E \cap A^c = E_2 \cup E_3$. Por ser $H \in \mathcal{A}^*$, tenemos $\mu^*(E) = \mu^*(E_1 \cup E_2 \cup E_3) = \mu^*(E_1 \cup E_2) + \mu^*(E_3)$ y por otro lado, por ser $A \in \mathcal{B}^*$, $\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2)$. Luego, $\mu^*(E) = \mu^*(E_1) + \mu^*(E_2) + \mu^*(E_3)$. De esta forma llegamos a

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) = \mu^*(E_1) + \mu^*(E_2 \cup E_3) \le \mu^*(E_1) + \mu^*(E_2) + \mu^*(E_3) = \mu^*(E),$$

q.e.d.

¹corregido; en una versión anterior ponía: $E_3 = A \cap H^c$

5.- Si en el ejercicio 4) se suprime la hipótesis de que H sea μ^* -medible, ¿qué partes seguirían siendo ciertas y cuales fallarían?

SOL: Son ciertos a) y la implicación $A \subset H$, y $A \in \mathcal{A}^* => A \in \mathcal{B}^*$ de b).

6.- Sea μ^* una medida exterior, sean $\{A_j\}$ una sucesión de conjuntos μ^* -medibles disjuntos. Probar que

$$\mu^* \left(E \bigcap \left(\bigcup_{j=1}^{\infty} A_j \right) \right) = \sum_{j=1}^{\infty} \mu^* (E \cap A_j), \quad \forall E \subset X.$$

Esto aparece en la demostración del Teorema de Caratheodory. (Sugerencia: Empezar considerando que A_1 es medible y tomando como conjunto de prueba $E \cap (\cup_{i=1}^{\infty} A_i)$.)

SOL: Hecho en clase.

- 7.- Sea X un conjunto con un número infinito de elementos. Tomemos como clase recubridora \mathcal{C} , la formada por el vacío, el total y los conjuntos con un único elemento. Definimos $\rho(\emptyset)=0,\ \rho(X)=\infty$, $\rho(E)=1,$ si $E\in\mathcal{C},\ E\neq\emptyset,\ X$. Describir la medida exterior así obtenida. Estudiar la σ álgebra de los conjuntos medibles.
- **SOL**: 1) Si $E \subset X$ es finito entonces el mejor cubrimiento de E por elementos de \mathcal{C} viene dado por $\{\{x\}\}_{x\in E}$. En este caso $\mu^*(E) = \sum_{x\in E} \rho(\{x\}) = \sum_{x\in E} 1 = \operatorname{card}(E)$. Si E contiene infinitos elementos -tanto numerable o no- entonces $\mu^*(E) = \infty$ porque cualquier cubrimiento por \mathcal{C} debe tener bien los conjuntos de un único punto de E (caso numerable) o bien X (caso no numerable). μ^* es la que hemos denominado " $medida\ de\ contar$ ".
 - 2) μ^* es una medida exterior "finitamente aditiva", porque si A y B son disjuntos $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ (probarlo considerando los casos i) A y B ambos finitos y ii) cuando uno de los dos no lo es). Por el ejercicio 3, $A^* = \mathcal{P}(X)$.
- 8.- Sea X un conjunto no-numerable. Sea $\mathcal C$ la σ álgebra formada por los conjuntos numerables y no-numerables de complementario numerable.
- Sea $\mu: \mathcal{C} \to [0,\infty]$ definida mediante $\mu(E) = \text{card } E$, si E es finito, $\mu(E) = \infty$ en otro caso.
 - a) Probar que μ es una medida completa en \mathcal{C} .
 - b) Estudiar la medida μ^* construida a partir de \mathcal{C} y μ .
- **SOL**: a) μ es la "medida de contar" sobre la σ -álgebra \mathcal{C} , y es completa porque el único conjunto de medida nula es \emptyset .
 - b) La medida μ^* construida a partir de \mathcal{C} y μ vuelve a ser "finitamente aditiva" como en el ejercicio anterior y por tanto, de nuevo, $\mathcal{A}^* = \mathcal{P}(X)$.