(1)

Submission for Tuesday 6th September 2016. Time: 15 minutes. Max Marks: 5

Consider the vector space V = R[t] of polynomials with real coefficients over the base field R of real numbers. Let X be the set of all polynomials which have only even order terms, i.e. if $p(t) \in X$, with $p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n$, then $a_i = 0$ for all odd indices i. Prove or disprove: X is a subspace of V. (Note: You must clearly state PROVE or DISPROVE at the top of your answer sheet. If you fail to do so, you will get zero marks.)

(5 marks)

SOLUTION

PROVE

We will apply Proposition 8.

1. The zero polynomial $\bar{O}(t)=0 \in X$ (all odd coefficients are zero).

2. Closure under addition:

Suppose p(t) = ao+a,t+ -- + ant EX

and alt) = bo+b, t+...+ bmth EX.

WOLOG, n > m.

Hence p(+)+ a(+)= (a0+b0)+ (a,+b,)t+---+
(an+bn)t"

where & bi=0 for i>m.

For any odd term tk. The westiment of the = (aptbp)= 0+0=0 min p(t), q(t) + X.

: (P+2)(t)= p(+)+2(+) + X.

3. Closure under scalar multiplication. If C+ IR and p(t) + X, Un

odd timtk, its welfiumt is can = c.0=0.

Result bollows.

Submission for Friday 9th September 2016. Time: 15 minutes. Max Marks: 5

Consider the set $X = C^1[0,1]$ of all real-valued functions defined on the closed interval [0,1] which have a continuous first derivative on [0,1], i.e. $X = \{f(x): [0,1] \rightarrow \mathbb{R} : f'(x) \text{ is continuous on } [0,1]\}$. **Prove or disprove**: X is a subspace of C[0,1]. (Note: You must clearly state PROVE or DISPROVE at the top of your answer sheet. If you fail to do so, you will get zero marks.)

(5 marks)

SOLUTION

PROVE.

Step 1: We need to more that X is a make of C[0,1], i.e. $X \subseteq C[0,1]$.

However, if f(x) is differentiable at x_0 , then it is intimions at x_0 . Hence, $X = C^{I}[0,1] \subseteq C[0,1]$.

Step 2: To show X is a substacle, we apply Proposition 8.

1. The zero function of to = 5 (x)=0 is her a continuous derivatione, 5 (x)=0, hence 5 E X

2. St Suppose & (x), g(n) & X

(b+q) (x) is a differentiable function,
and (f+q)' (x) = f'(x)+ g'(x)

But f'(x) and g'(x) are noth continuous,
and the own of two wat imour functions is
continuous. (f+q)'(x) is continuous, i-e.

This prover clomme under addition.

3. If now c \(\xi\) (\(\alpha\) (\(\frac{1}{2}\)) = c \(\frac{1}{2}\) (\(\frac{1}{2}\)) since \(\frac{1}{2}\) (\(\frac{1}{2}\)) is continuous, so in (c\(\frac{1}{2}\)), i.e. c \(\frac{1}{2}\) \(\frac{1}{2}\) (\(\frac{1}{2}\)).