

TEOREMA DE LA PROBABILIDAD TOTAL Y DE BAYES

Definición 5 Supongamos que $\{A_1, A_2, ..., A_n\}$ es una <u>PARTICIÓN</u> del Espacio Muestral. Esto es,

$$\Omega = \bigcup_{i=1}^{n} A_i \ y \ A_i \cap A_j = \emptyset \ para \ i \neq j.$$

Sea B un evento cualquiera, $B \subseteq \Omega$.

Supongamos además que $P(B|A_i)$ y $P(A_i)$ son conocidos, para todo $i=1,2,\ldots,n$.

Teorema 1 TEOREMA de la PROBABILIDAD TOTAL: Sea A_1, A_2, \cdots, A_n una partición de Ω y $B \subseteq \Omega$

Entonces

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$
 (1)

siendo $P(B|A_i)$ y $P(A_i)$ para $i=1,2,\cdots,n$ probabilidades conocidas.

Del teorema anterior y de la definición de Probabilidad Condicional, rápidamente se deduce:

Teorema 2 TEOREMA DE BAYES: Bajo las misma condiciones que el Teorema 1, se tiene:

$$P(A_i|B) = \frac{P(B \cap A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$
(2)