Iris Flower Classification ML Project

Classification using Decision Tree

Author - SHIVANGI CHAUHAN

LGMVIP- Data Science

Iris is a flowering plant with showy flowers. Our task is train a decision tree classifier model that would classify the dataset and predict the appropriate specicis for the given input. The dataset contains information about three species of this plant, so, our output must be among one of these three species

The iris dataset has four attributes namely:

```
1. sepal length
```

- 2. sepal width
- 3. petal length
- 4. petal width

Target variable: species (Iris-setosa, Iris-versicolor, Iris-virginica)

Importing all the required libraries

In [68]:

```
import pandas as pd
import numpy as np
import plotly
import plotly.express as px
import plotly.offline as pyo
import cufflinks as cf
from plotly.offline import init_notebook_mode,plot,iplot

import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.metrics import accuracy_score
import os
```

In [69]:

```
pyo.init_notebook_mode(connected=True)
cf.go_offline()
```

Loading the Iris Dataset

```
In [70]:
```

```
df=pd.read_csv('C:/Users/hp/OneDrive/Desktop/Iris.csv')
```

In [71]:

df

Out[71]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [72]:

df.shape

Out[72]:

(150, 6)

In [89]:

```
df.drop('Id',axis=1,inplace=True)
```

In [90]:

df

Out[90]:

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Renaming columns label into suitable label

In [91]:

SepalLengthCm':'SepalLength','SepalWidthCm':'SepalWidth','PetalLengthCm':'PetalLength','Peta

◆ ▶

In [92]:

df

Out[92]:

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Visualizing our Data

Scatter Plot

In [93]:

px.scatter(df,x='Species', y='PetalWidth',size='PetalWidth',title='Iris Data',color='Specie

Iris Data

Bar Plot

In [94]:

```
px.bar(df,x='Species',y='PetalWidth',color='Species')
```


In [95]:

px.line(df,x='Species',y='PetalWidth')

In [96]:

px.scatter_matrix(df,color='Species',title='Iris',dimensions=['SepalLength','SepalWidth','P

Iris

Data Preprocessing

In [97]:

df

Out[97]:

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
	•••				
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

In [98]:

x=df.drop(['Species'],axis=1)

```
In [99]:
```

Х

Out[99]:

	SepalLength	SepalWidth	PetalLength	PetalWidth
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [100]:

```
y=df[('Species')]
```

In [101]:

Out[101]:

У

```
Iris-setosa
1
          Iris-setosa
2
          Iris-setosa
3
          Iris-setosa
4
          Iris-setosa
145
       Iris-virginica
       Iris-virginica
146
147
       Iris-virginica
148
       Iris-virginica
149
       Iris-virginica
```

Name: Species, Length: 150, dtype: object

In [102]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
y=le.fit_transform(y)
```

```
In [103]:

y
Out[103]:
```

In [104]:

```
x=np.array(x)
Х
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3., 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3., 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2.],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3., 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6., 3., 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
```

In [105]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
```

```
In [106]:
```

```
x_test
```

```
Out[106]:
```

```
array([[5.8, 2.8, 5.1, 2.4],
       [6., 2.2, 4., 1.],
       [5.5, 4.2, 1.4, 0.2],
       [7.3, 2.9, 6.3, 1.8],
       [5., 3.4, 1.5, 0.2],
       [6.3, 3.3, 6., 2.5],
       [5., 3.5, 1.3, 0.3],
       [6.7, 3.1, 4.7, 1.5],
       [6.8, 2.8, 4.8, 1.4],
       [6.1, 2.8, 4., 1.3],
       [6.1, 2.6, 5.6, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.5, 2.8, 4.6, 1.5],
       [6.1, 2.9, 4.7, 1.4],
       [4.9, 3.1, 1.5, 0.1],
       [6., 2.9, 4.5, 1.5],
       [5.5, 2.6, 4.4, 1.2],
       [4.8, 3., 1.4, 0.3],
       [5.4, 3.9, 1.3, 0.4],
       [5.6, 2.8, 4.9, 2.],
       [5.6, 3., 4.5, 1.5],
       [4.8, 3.4, 1.9, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [6.2, 2.8, 4.8, 1.8],
       [4.6, 3.6, 1., 0.2],
       [5.1, 3.8, 1.9, 0.4],
       [6.2, 2.9, 4.3, 1.3],
       [5., 2.3, 3.3, 1.],
       [5., 3.4, 1.6, 0.4],
       [6.4, 3.1, 5.5, 1.8],
       [5.4, 3., 4.5, 1.5],
       [5.2, 3.5, 1.5, 0.2],
       [6.1, 3., 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.2],
       [5.2, 2.7, 3.9, 1.4],
       [5.7, 3.8, 1.7, 0.3],
       [6., 2.7, 5.1, 1.6],
       [5.9, 3., 4.2, 1.5],
       [5.8, 2.6, 4., 1.2],
       [6.8, 3., 5.5, 2.1],
       [4.7, 3.2, 1.3, 0.2],
       [6.9, 3.1, 5.1, 2.3],
       [5., 3.5, 1.6, 0.6],
       [5.4, 3.7, 1.5, 0.2]])
```

In [107]:

```
x_test.size
```

Out[107]:

180

```
In [108]:
```

```
x_train.size
```

Out[108]:

420

Decision Tree

Training The Decision Tree

```
In [109]:
```

```
from sklearn import tree
DT=tree.DecisionTreeClassifier()
DT=DT.fit(x_train,y_train)
```

```
In [110]:
```

```
from sklearn.metrics import accuracy_score
import os
```

```
In [111]:
```

```
PDT=DT.predict(x_test)
```

```
In [112]:
```

```
ADT=accuracy_score(y_test,PDT)*100
```

```
In [113]:
```

ADT

Out[113]:

97.777777777777

In [114]:

```
y_test
```

Out[114]:

```
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0])
```

```
In [115]:
```

PDT

```
Out[115]:
```

```
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 2, 0, 2, 0, 0])
```

In [116]:

```
pip install graphviz
```

Requirement already satisfied: graphviz in c:\users\hp\anaconda3\lib\site-pa ckages (0.17)

Note: you may need to restart the kernel to use updated packages.

In [117]:

```
os.environ["PATH"]+= os.pathsep+(r'C:\Users\hp\Downloads')
```

In [118]:

```
import graphviz
```

In [119]:

```
re_names=df.drop(['Species'],axis=1).keys(),class_names=df['Species'].unique(),filled=True,
```

In [120]:

```
graphviz.Source(vis_data)
```

Out[120]:

Let's predict on some custom values

```
In [126]:
```

```
Catagory=['Iris-Setosa','Iris-Versicolor','Iris-Virginica']
```

```
In [127]:
```

```
X_DT=np.array([[1 ,1, 1, 1]])
X_DT_prediction=DT.predict(X_DT)
```

In [128]:

```
X_DT_prediction[0]
print(Catagory[int(X_DT_prediction[0])])
```

Iris-Versicolor

_	-	-	
In		- 1 -	۰
TII			
	_	ъ,	