Multiclass

Nazerfard, Ehsan nazerfard@aut.ac.ir

Topics

- Multiclass prediction
 - Decision Tree example
- One vs. All
- Non-Parametric Models
- No free lunch theorem
- UCI machine learning repository

Handwriting Digit Recognition

```
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Features:
```

Multiclass Prediction (example)

```
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Features: 0 2 C U
```

Feature Set

Feature Set (cont.)

$$0123456789$$

(%) (%)(%)(%)(%)(%)(%)(%)(%)(%)

Decision Tree

Confusion Matrix

■ A multiclass (A, B, ..., E) prediction:

Predicted							
		Α	В	С	D	Е	
Actual	Α						
	В						
	С						
	D						
	E						

Confusion Matrix (cont.)

A multiclass prediction:

Predicted							
		Α	В	С	D	Е	
	Α	#TP _A	$\#E_AB$	#E _{AC}	#E _{AD}	#E _{AE}	
-	В	#E _{BA}	#TP _B	-	-		
Actual	C	#E _{CA}	-	$\#TP_C$	-		
ď	D	#E _{DA}	-	-	#TP _D	-	
	E	#E _{EA}	•	•	•	#TP _E	

Confusion Matrix (cont.)

A multiclass prediction:

Predicted							
		Α	В	С	D	Е	Accuracy
Actual	Α	TP_A	E_AB	E_AC	E_AD	E_AE	-
	В	E_BA	TP_B	•	•	•	_
	C	E_CA		TP_C			-
	D	E_DA	•	•	TP_D	•	-
	Ε	E_EA	-			TP_E	-

Performance Metrics

- How to Compute the followings (one vs. all):
 - Accuracy
 - True Positive (TP)
 - False Negative (FN)
 - False Positive (FP)
 - True Negative (TN)
 - Sensitivity
 - Precision
 - O . . .

Non-Parametric Models

- A non-parametric model
 - Does it refer to a model without parameters?
 - Examples:
 - K-nearest neighbors
 - Decision Tree
 - •

Miscellaneous

- No free lunch (NFL) theorem
 - The theorem states that no learner can succeed on all learnable tasks – every learner has tasks on which it fails while other learners succeed [1].
- UCI machine learning repository
 - o https://archive.ics.uci.edu/ml/

Further Reading

 Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David, Cambridge University Press, 2014.

(Available online - No for distribution)