Dimensionality Reduction

Using Principal Component Analysis

Motivation

- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimensional real valued vector

Motivation

- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimentional real valued vector

- Given data points in d dimensions
- Convert them to data points in r<d dimensions
- With minimal loss of information

Data Compression

Reduce data from 2D to 1D

Data Compression

Data Compression

Reduce data from 3D to 2D

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Goal: Find r-dim projection that best preserves variance

- 1. Compute mean vector μ and covariance matrix Σ of original points
- 2. Compute eigenvectors and eigenvalues of Σ
- 3. Select top r eigenvectors
- 4. Project points onto subspace spanned by them:

$$y = A(x - \mu)$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
 - Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
 - Measure of the deviation from the mean for points in one dimension
- Covariance:
 - Measure of how much each of the dimensions vary from the mean with respect to each other

- Covariance is measured between two dimensions
- Covariance sees if there is a relation between two dimensions
- Covariance between one dimension is the variance

positive covariance

negative covariance

Positive: Both dimensions increase or decrease together

Negative: While one increase the other decrease

Covariance

 Used to find relationships between dimensions in high dimensional data sets

$$q_{jk} = \frac{1}{N} \sum_{i=1}^{N} \left(X_{ij} - E(X_j) \right) \left(X_{ik} - E(X_k) \right)$$
The Sample mean

$$Ax = \lambda x$$

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

$$Ax = \lambda x$$

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

Show
$$x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector for $A = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix}$

Solution:
$$Ax = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

But for
$$\lambda = 0$$
, $\lambda x = 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Thus, x is an eigenvector of A, and $\lambda = 0$ is an eigenvalue.

$$Ax = \lambda x \longrightarrow Ax - \lambda x = 0$$

$$(A - \lambda I)x = 0$$

If we define a new matrix B:

$$B = A - \lambda I$$

$$Bx = 0$$

If B has an inverse:

$$x = B^{-1}0 = 0$$

BUT! an eigenvector cannot be zero!!

x will be an eigenvector of A if and only if B does not have an inverse, or equivalently det(B)=0:

$$det(A - \lambda I) = 0$$

Example 1: Find the eigenvalues of

ple 1: Find the eigenvalues of
$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$$
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix} = (\lambda - 2)(\lambda + 5) + 12$$
$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

two eigenvalues: -1, -2

Note: The roots of the characteristic equation can be repeated. That is, $\lambda_1 = \lambda_2 = ... = \lambda_k$. If that happens, the eigenvalue is said to be_of multiplicity k.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Example 2: Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$

$$\lambda = 2 \text{ is an eigenvector of multiplicity 3.}$$

Input: $\mathbf{x} \in \mathbb{R}^D\colon \, \mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$

Set of basis vectors: $\mathbf{u}_1, \dots, \mathbf{u}_K$

Summarize a D dimensional vector X with K dimensional feature vector h(x)

$$h(\mathbf{x}) = \left[egin{array}{c} \mathbf{u}_1 \cdot \mathbf{x} \ \mathbf{u}_2 \cdot \mathbf{x} \ & \cdots \ \mathbf{u}_K \cdot \mathbf{x} \end{array}
ight]$$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

Basis vectors are orthonormal

$$\mathbf{u}_i^T \mathbf{u}_j = 0$$
$$||\mathbf{u}_i|| = 1$$

New data representation h(x)

$$z_j = \mathbf{u}_j \cdot \mathbf{x}$$

 $h(\mathbf{x}) = [z_1, \dots, z_K]^T$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

New data representation h(x)

$$h(\mathbf{x}) = \mathbf{U}^T \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{U}^T(\mathbf{x} - \mu_0)$$

Empirical mean of the data

$$\mu_0 = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
 - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces example

Top eigenvectors: u₁,...u_k

Mean: µ

slide by Derek Hoiem

Representation and reconstruction

• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$

$$= w_1, \dots, w_k$$

Reconstruction:

Reconstruction

After computing eigenfaces using 400 face images from ORL face database

Application: Image compression

Original Image

- Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

PCA compression: 144D → 60D

PCA compression: 144D → 16D

16 most important eigenvectors

PCA compression: 144D) 6D

6 most important eigenvectors

PCA compression: 144D → 3D

3 most important eigenvectors

PCA compression: 144D → 1D

An example

\boldsymbol{x}	\boldsymbol{y}
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

Mean subtracted Data

x	y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1

1.5 1.6

1.1 0.9

Mean subtracted Data

x	\boldsymbol{y}
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

Mean subtracted Data

x	\boldsymbol{y}
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

Mean subtracted Data

x	y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9
'	ı

Eigenvalues are 1.28, 0.049

Corresponding Eigenvectors are
$$\begin{pmatrix} -.67 \\ -.73 \end{pmatrix}$$
 and $\begin{pmatrix} -.73 \\ .67 \end{pmatrix}$

What is the projection matrix?

If we are interested in 1D data

Ref: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

Data

Mean subtracted Data

x	y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

Eigenvalues are 1.28, 0.049

Corresponding Eigenvectors are
$$\begin{pmatrix} -.67 \\ -.73 \end{pmatrix}$$
 and $\begin{pmatrix} -.73 \\ .67 \end{pmatrix}$

What is the projection matrix?

$$\mathbf{P} = \begin{pmatrix} -.67 \\ -.73 \end{pmatrix}^{t}$$

Transformed Data (Single eigenvector)

x
827970186
1.77758033
992197494
274210416
-1.67580142
912949103
.0991094375
1.14457216
.438046137
1.22382056

The data after transforming using only the most significant eigenvector

Ref: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

Mean subtracted Data

\boldsymbol{x}	$\boldsymbol{\mathcal{Y}}$
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9
'	1

Eigenvalues are 1.28, 0.049

Corresponding Eigenvectors are
$$\begin{pmatrix} -.67 \\ -.73 \end{pmatrix}$$
 and $\begin{pmatrix} -.73 \\ .67 \end{pmatrix}$

We can get a 2D data by using both eigenvectors,

Dimensionality reduction

- PCA (Principal Component Analysis):
 - Find projection that maximize the variance
- ICA (Independent Component Analysis):
 - Very similar to PCA except that it assumes non-Guassian features
- Multidimensional Scaling:
 - Find projection that best preserves inter-point distances
- LDA(Linear Discriminant Analysis):
 - Maximizing the component axes for class-separation
- ...
- •