# Grado 9

## Matemáticas



# Factorización algebraica

Técnicas de Factorización

## **Contenidos**

- Metas
- 2 Introducción
- 3 Concepto
- 4 P. Notables
- 6 Actividades
  - Actividad X?

Actividades

#### Metas a desarrollar

#### Propósito

Reconocer las técnicas de factorización de expresiones algebraicas y comprender su procedimiento.

#### Desempeños

- Reconoce y caracteriza los distintos casos de factorización de expresiones algebraicas.
- Descompone expresiones algebraicas por medio de la factorización.



# La factorización: una herramienta algebraica

Hechos y apuntes



- Una herramienta como el destornillador: "si no se tiene..."
- ▶ Una analogía de su propósito:  $120 = 12 \times 10 = 60 \times 2 = \dots$
- Usada en el ámbito científico puro
- Complemento para el desarrollo de expresiones algebraicas
- En Física: permite interpretar las expresiones que surgen de un modelo
- En Matemáticas: permite resolver (manualmente) algunos problemas
- Y que otro apunte...

## La factorización: una herramienta algebraica

Descubrimiento de la antimateria



Figura: Albert Einstein y su famosa fórmula (1905).

Matemáticas

# La factorización: una herramienta algebraica

Descubrimiento de la antimateria



Figura: Paul Dirac, el físico que "profetizo" la antimateria (1928).

#### Según Dirac,

- La anti-materia es la misma materia pero con carga eléctrica opuesta.
- En contacto, anti-materia y materia se aniquilan mutuamente transformandose a otras formas de energía (luz, calor).

## La factorización: una herramienta algebraica

Descubrimiento de la antimateria

$$\underbrace{(E-mc^2)}_{\text{Materia}}\underbrace{(E+mc^2)}_{\text{Antimateria}}$$

"Toda ley física ha de tener belleza matemática", Paul Dirac

- En 1932, fue descubierto el *positrón*, la antipartícula del electrón.
- En la actualidad, ya se han sintetizado algunos anti-átomos.



Figura: El átomo y anti-átomo de hidrógeno.

5/9

Matemáticas

# **El Concepto**

- Factorizar una expresión algebraica (ExpAl), es el procedimiento que permite escribirla como un producto de factores.
- Requiere el conocimiento/dominio de operaciones algebraicas (especial producto y división).
- Según la "forma" de la ExpAl se tienen técnicas o recetas para realizar la factorización.
- En forma generalizada la secuencia del proceso es: *i)* observación, *ii)* verificación, *iii)* ajuste de factores y *iv)* escritura.



Figura: Ilustración de la factorización de un trinomio.

Factorización Matemáticas

#### **Productos notables**

- Son productos algebraicos cuyo resultado se obtiene desde una fórmula.
- Su uso simplifica y agiliza algunas multiplicaciones habituales.
- Cada producto notable corresponde a una técnica de factorización.

### **Productos notables**

#### Resumen de productos notables

| Producto notable                |   | Expresión algebraica                                                   | Nombre                  |
|---------------------------------|---|------------------------------------------------------------------------|-------------------------|
| (a + b) <sup>2</sup>            | = | a <sup>2</sup> + 2ab + b <sup>2</sup>                                  | Binomio al cuadrado     |
| (a + b) <sup>3</sup>            | = | a <sup>3</sup> + 3a <sup>2</sup> b + 3ab <sup>2</sup> + b <sup>3</sup> | Binomio al cubo         |
| a² – b²                         | = | (a + b) (a – b)                                                        | Diferencia de cuadrados |
| a <sup>3</sup> – b <sup>3</sup> | = | $(a - b) (a^2 + b^2 + ab)$                                             | Diferencia de cubos     |
| a <sup>3</sup> + b <sup>3</sup> | = | $(a + b) (a^2 + b^2 - ab)$                                             | Suma de cubos           |
| a <sup>4</sup> – b <sup>4</sup> | = | $(a + b) (a - b) (a^2 + b^2)$                                          | Diferencia cuarta       |
| (a + b + c) <sup>2</sup>        | = | $a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$                                    | Trinomio al cuadrado    |

## Actividad 9

- 1. De acuerdo a la exposición, responder:
  - a) ¿Qué interpreta la famosa fórmula de Einstein,  $E=mc^2$ ?
  - b) ¿Qué interpreta la fórmula masa-energía completa de Einstein?
  - c) ¿Qué es la antimateria?
- 2. Resolver los productos notables.
  - a)  $(3p+4q)^2$
  - b)  $(8-2y)^2$
  - c)  $(x+2y+z)^2$
  - d)  $(5m+3q)^3$
  - e) (13h + 11k)(-11k + 13h)