РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Дисциплина: Методы машинного обучения

Москва 2022

Вариант № 22

В соответствии с индивидуальным заданием, указанным в записной книжке команды или полученным на занятии, скачайте данные для анализа, сделайте необходимые расчеты и постройте следующие визуализации:

- 1. При помощи модуля tensorflow_datasets загрузите указанный в индивидуальном задании набор данных и оставьте в наборе данных три указанных в индивидуальном задании признака (столбца).
- 2. В соответствии с индивидуальным заданием вычислите необходимые показатели признаков и визуализируйте соответствующие признаки набора данных.
- 3,4 В соответствии с индивидуальным заданием выполните необходимые расчеты и визуализируйте диаграмму рассеяния для пары признаков.

1

e=tf.float32, name=None)}>

```
Ввод [2]: import tensorflow_datasets as tfds

BBOД [3]: ds = tfds.load("diamonds", split='train')

Out[3]: <PrefetchDataset element_spec={'features': {'carat': TensorSpec(shape=(), dtype=tf.flo at32, name=None), 'clarity': TensorSpec(shape=(), dtype=tf.int64, name=None), 'color': TensorSpec(shape=(), dtype=tf.int64, name=None), 'depth': TensorSpec(shape=(), dtype=tf.float32, name=None), 'tabl e': TensorSpec(shape=(), dtype=tf.float32, name=None), 'x': TensorSpec(shape=(), dtype=tf.float32, name=None), 'dtype=tf.float32, name=None), 'dtype=tf.float32, name=None), 'x': TensorSpec(shape=(), dtype=tf.float32, name=None), 'x': TensorSpec(shap
```

=tf.float32, name=None), 'y': TensorSpec(shape=(), dtype=tf.float32, name=None), 'z':
TensorSpec(shape=(), dtype=tf.float32, name=None)}, 'price': TensorSpec(shape=(), dtype=tf.float32, name=None)

```
df.head()
  Out[4]:
                 features/carat features/clarity features/color features/cut features/depth features/table features/x features/c
              0
                                             2
                                                                          2
                          1.26
                                                                                  60.599998
                                                                                                      60.0
                                                                                                                  6.97
              1
                          0.80
                                             3
                                                             4
                                                                          4
                                                                                  62.099998
                                                                                                      54.0
                                                                                                                  5.96
              2
                          0.56
                                             4
                                                             2
                                                                          4
                                                                                  61.700001
                                                                                                      54.0
                                                                                                                  5.28
                          1.51
                                             3
                                                             6
                                                                          1
                                                                                  64.000000
                                                                                                      58.0
                                                                                                                  7.24
                          0.33
                                             6
                                                             5
                                                                          4
                                                                                  62.200001
                                                                                                      54.0
                                                                                                                  4.43
Ввод [7]:
             data = df
             data.head()
  Out[7]:
                 features/carat features/clarity
                                                features/color features/cut features/depth features/table features/x features/x
                                                                          2
              0
                          1.26
                                             2
                                                             4
                                                                                  60.599998
                                                                                                      60.0
                                                                                                                  6.97
              1
                          0.80
                                             3
                                                             4
                                                                          4
                                                                                  62.099998
                                                                                                      54.0
                                                                                                                  5.96
              2
                                             4
                                                             2
                          0.56
                                                                          4
                                                                                  61.700001
                                                                                                      54.0
                                                                                                                  5.28
              3
                          1.51
                                             3
                                                             6
                                                                          1
                                                                                  64.000000
                                                                                                      58.0
                                                                                                                  7.24
                          0.33
                                             6
                                                             5
                                                                          4
                                                                                  62.200001
                                                                                                      54.0
                                                                                                                  4.43
             data = data[['features/carat', 'features/x', 'features/y']]
Ввод [8]:
```

Out[8]:

	features/carat	features/x	features/y
0	1.26	6.97	7.00
1	0.80	5.96	5.99
2	0.56	5.28	5.32
3	1.51	7.24	7.27
4	0.33	4.43	4.45

Ввод [4]: df = tfds.as_dataframe(ds)

2

data.head()

Ввод [9]: data.describe()

Out[9]:

	features/carat	features/x	features/y
count	53940.000000	53940.000000	53940.000000
mean	0.797950	5.731170	5.734540
std	0.474018	1.121749	1.142133
min	0.200000	0.000000	0.000000
25%	0.400000	4.710000	4.720000
50%	0.700000	5.700000	5.710000
75%	1.040000	6.540000	6.540000
max	5.010000	10.740000	58.900002

Ввод [10]: print (data.max()-data.min())

features/carat 4.810000 features/x 10.740000 features/y 58.900002

dtype: float32

Ввод [11]: df[::500]['features/y'].plot.bar(title='Столбчатая диаграмма признака features/y'); # шо

3

Ввод [13]: data.mean()

Out[13]: features/carat 0.79795 features/x 5.73117 features/y 5.73454

dtype: float32

Ввод [14]: data.mean().min()

Out[14]: 0.7979496717453003

Ввод [16]: df['features/carat'].plot.hist(color='orange', edgecolor='black', bins=20, density=True)

4

Ввод [17]: data.cov()

Out[17]:

	features/carat	features/x	features/y
features/carat	0.224687	0.518484	0.515248
features/x	0.518484	1.258347	1.248789
features/y	0.515248	1.248789	1.304472

Ввод [18]: df.plot.scatter('features/carat','features/y',title='Диаграмма рассеяния признаков carat

