stochastics and probability

Lecture 10

Dr. Johannes Pahlke

$$\underline{x}^* :=$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Challenges:

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Challenges:

black box

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Challenges:

black box

high dimentional

$$h(x_1, x_2, x_3, \dots, x_{100})$$

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Challenges:

black box

high dimentional

$$h(x_1, x_2, x_3, \dots, x_{100})$$

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Challenges:

black box

high dimentional

$$h(x_1, x_2, x_3, \dots, x_{100})$$

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

Challenges:

black box

high dimentional

$$h(x_1, x_2, x_3, \dots, x_{100})$$

Goal:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \left(\longleftrightarrow \qquad h(\underline{x}^*) = \min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \right)$$

black box

Challenges:

high dimentional

$$h(x_1, x_2, x_3, \dots, x_{100})$$

 $\underline{x}^* :=$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} (h(\underline{x}))$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} (h(\underline{x})) \approx \arg\min(h(\underline{X}_1), \dots, h(\underline{X}_n))$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} (h(\underline{x})) \approx \arg\min_{\underline{h}(\underline{X}_1), \dots, h(\underline{X}_n)$$

$$\underline{X}_t: \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) \qquad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} (h(\underline{x})) \approx \arg\min(h(\underline{X}_1), \dots, h(\underline{X}_n))$$

$$\underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min_{\left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right)} =: \underline{\tilde{X}}^*_n \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$
 global convergence:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min_{\left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right)} =: \underline{\tilde{X}}^*_n \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$
 global convergence:

*

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$
 global convergence:

$a \qquad \qquad \tilde{x}^* x^* \qquad b$ $\mathbb{S} := [a, b]$

$\underline{x}^* = \lim \tilde{X}_n^*$

1d:

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d:

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

$$P(X \in ---) =$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

$$P(X \in ---) = \frac{1}{10}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d: $\frac{1}{0}$

$$P(X \in ---) = \frac{1}{10}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) =$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

properties:

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

properties:very simple

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

properties:

- very simple
- converges to \underline{x}^*

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

properties:

- very simple
- converges to \underline{x}^*

useful if:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

1d:

$$P(X \in ---) = \frac{1}{10}$$

properties:

- very simple
- converges to \underline{x}^*

useful if:

• S is low-dimensional and bounded

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* \coloneqq \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \approx \arg\min \left(h(\underline{X}_1), \dots, h(\underline{X}_n) \right) =: \underline{\tilde{X}}_n^* \quad \underline{X}_t : \Omega \to \mathbb{S} \subseteq \mathbb{R}^d$$

$$\underline{X}_t \sim \mathcal{U}(\mathbb{S})$$

global convergence:

$$\underline{x}^* = \lim_{n \to \infty} \underline{\tilde{X}}_n^*$$

properties:

- very simple
- converges to x^*

useful if:

- S is low-dimensional and bounded
- (h is cheap to evaluate for higher dimensions)

1d:

$$P(X \in ---) = \frac{1}{10}$$

$$P(X \in \square) = \frac{1}{10^2}$$

$$error \propto n^{-\frac{1}{d}}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

gradient descent: \underline{x}_{t+1}

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$
 gradient descent:
$$\underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \text{ steps}$$
 gradient descent:
$$\underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps} \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \qquad \qquad \text{steps}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps} \\ \alpha_t > 0 \quad \text{step size} \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \quad -\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps} \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \qquad \qquad -\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease} \\ \underline{x}_0 \quad \text{starting point}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\alpha_t > 0 \quad \text{step size}$$

$$-\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$


```
\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\min} \left( h(\underline{x}) \right) \qquad t \in \{1, ..., n\} \text{ steps}
\underline{\text{gradient descent:}} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \qquad ext{of steepest decrease}
\underline{x}_0 \text{ starting point}
```


$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ & \underline{x}_0 \quad \text{steps} \\ & \underline{x}_0 \quad \text{steps} \\ & \underline{x}_0 \quad \text{steps} \\ & \underline{x}_0 \quad \text{starting point} \\ \\ \\ & \underline{x}_0 \quad \text{sta$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

$$X_{t+1}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

$$\underline{X}_{t+1} = \underline{X}_t + \alpha_t \underline{U}_t$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ \underline{x}_0 \quad \text{steps} \\ -\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease} \\ \underline{x}_0 \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t + \alpha_t \underline{U}_t$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t + \alpha_t \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

dot product:

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix}$$

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \underline{x} \in \mathbb{S} \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ \underline{x}_0 \quad \text{step size} \\ -\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease} \\ \underline{x}_0 \quad \text{starting point} \\ \underline{x}_0 \quad \text{starting point} \\ \underline{x}_0 \quad \text{starting point} \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline$$

$$a \qquad \underline{x}_2 \qquad \underline{x}^* \qquad b$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ & \qquad \qquad t \in \{1, \dots, n\} \\ & \qquad \qquad \alpha_t > 0 \\ & \qquad \qquad - \nabla h(\underline{x}_t) \\ & \qquad \qquad \qquad x_0 \\ & \qquad \qquad \text{starting point} \\ \\ & \qquad \qquad \qquad x_0 \\ & \qquad \qquad \text{starting point} \\ \\ & \qquad \qquad x_0 \\ & \qquad x_0 \\$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x},\underline{y})}{2|\underline{y}|}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

se
$$\frac{x_2}{a}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ & \underline{x}_t > 0 \quad \text{step size} \\ & -\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease} \\ & \underline{x}_0 \quad \text{starting point}$$

$$a \qquad \underline{\underline{x}}_2 \qquad \underline{\underline{x}}^* \qquad b$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

Stochastic descent:
$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{X}_{t+1} = \underline{X}_t - \alpha_t \left(\nabla h(\underline{X}_t) \cdot \underline{U}_t \right) \underline{U}_t$$
 \mathbb{S} be the d -dimensional unit sphere

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

$$a \qquad \underline{\underline{x}}_2 \qquad \underline{\underline{x}}^* \qquad b$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

gradient:
$$\nabla h(\underline{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} h(\underline{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} h(\underline{x}) \end{pmatrix}, \qquad \frac{\partial}{\partial x_1} h(\underline{x}) \approx \begin{pmatrix} h\begin{pmatrix} x_1 + \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} - h\begin{pmatrix} x_1 - \Delta x \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \cdot \frac{1}{2\Delta x}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\alpha_t > 0 \quad \text{step size}$$

$$-\nabla h(\underline{x}_t) \quad \text{vector of steepest decreas}$$

$$\underline{x}_0 \quad \text{starting point}$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\text{arg min}} \left(h(\underline{x}) \right)$$
 $\underline{x} \in \mathbb{S}$
 $\underline{x$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

 \rightarrow approximation has 2 evaluations of h (cheaper)

properties:

simple

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x_0} \quad \text{starting point}$$

ase
$$\frac{x_2}{a}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

dot product: $\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

 \rightarrow approximation has 2 evaluations of h (cheaper)

properties:

- simple
- no global convergence guarantee

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\min} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decreas}$$

$$\underline{x_0} \quad \text{starting point}$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\min} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \text{ steps}$$

$$\underline{\sigma_t > 0} \text{ step size}$$

$$-\nabla h(\underline{x}_t) \text{ vector of steepest decrease}$$

$$\underline{x}_0 \text{ starting point}$$

$$\underline{\sigma}_0 \text{ gradient:} \left(\underline{\sigma}_0 h(x) \right) \qquad \left((x_1 + \Delta x) - (x_2 - \Delta x) \right)$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim \alpha_n = 0$ and $\lim \frac{\alpha_n}{\beta} = const$. $n \rightarrow \infty$ β_n $n \rightarrow \infty$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \dots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ \underline{x}_0 \quad \text{step size} \\ -\nabla h(\underline{x}_t) \quad \text{vector of steepest decreas} \\ \underline{x}_0 \quad \text{starting point}$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\text{min}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \text{ steps}$$

$$\underline{\alpha_t > 0} \text{ step size}$$

$$-\nabla h(\underline{x_t}) \text{ vector of steepest decrease}$$

$$\underline{x_0} \text{ starting point}$$

$$\underline{x}_{t+1} = \underline{x_t} - \alpha_t \nabla h(\underline{x_t}) \qquad (x_1 - \Delta x)$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim \alpha_n = 0$ and $\lim \frac{\alpha_n}{\alpha} = const$. $n \rightarrow \infty \beta_n$
- converges fast $(\alpha \frac{1}{n})$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} \frac{\alpha_n}{\beta_n} = const$.
- converges fast ($\propto \frac{1}{n}$)
- needs uniform random numbers on the unit sphere

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\min} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 \mathbb{S} be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} \frac{\alpha_n}{\beta_n} = const$.
- converges fast $(\alpha \frac{1}{n})$
- needs uniform random numbers on the unit sphere
- need to choose $\alpha_t, \beta_t, \underline{X}_0$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \dots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, ..., n\} \quad \text{steps}$$

$$\underline{\alpha_t > 0} \quad \text{step size}$$

$$-\nabla h(\underline{x_t}) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(\underline{x})$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} \frac{\alpha_n}{\beta_n} = const$.
- converges fast $(\alpha \frac{1}{n})$
- needs uniform random numbers on the unit sphere
- need to choose $\alpha_t, \beta_t, \underline{X}_0$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

 \rightarrow approximation has 2 evaluations of h (cheaper)

useful if:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \\ \underline{x} \in \mathbb{S} \\ \text{gradient descent:} \quad \underline{x}_{t+1} = \underline{x}_t - \alpha_t \nabla h(\underline{x}_t) \\ \underline{x}_0 \quad \text{step size} \\ -\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease} \\ \underline{x}_0 \quad \text{starting point} \\ \underline{x}_0 \quad \text{starting point} \\ \underline{x}_0 \quad \text{starting point} \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \\ \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline{x}_0 \quad \underline$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim_{n\to\infty}\alpha_n=0$ and $\lim_{n\to\infty}\frac{\alpha_n}{\beta_n}=const$.
- converges fast ($\propto \frac{1}{n}$)
- needs uniform random numbers on the unit sphere
- need to choose $\alpha_t, \beta_t, \underline{X}_0$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

 \rightarrow approximation has 2 evaluations of h (cheaper)

useful if:

• S is high-dimensional and unbounded

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right) \qquad \qquad t \in \{1, \dots, n\} \quad \text{steps}$$

$$\alpha_t > 0 \quad \text{step size}$$

$$-\nabla h(\underline{x}_t) \quad \text{vector of steepest decrease}$$

$$\underline{x}_0 \quad \text{starting point}$$

 \rightarrow approximating $\nabla h(x)$ has 2d evaluations of h (expensive)

stochastic descent:

$$\underline{X}_{t+1} = \underline{X}_t - \frac{\alpha_t}{2\beta_t} \Delta h(\underline{X}_t, \beta_t \underline{U}_t) \underline{U}_t$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere β_t sampling radius

properties:

- simple
- no global convergence guarantee
- local convergence if $\lim_{n\to\infty}\alpha_n=0$ and $\lim_{n\to\infty}\frac{\alpha_n}{\beta_n}=const$.
- converges fast ($\propto \frac{1}{n}$)
- needs uniform random numbers on the unit sphere
- need to choose $\alpha_t, \beta_t, \underline{X}_0$

dot product:
$$\underline{x} \cdot \underline{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \ldots + x_d y_d$$

directional derivative:

$$\nabla h(\underline{x}) \cdot \frac{\underline{y}}{|\underline{y}|} \approx \frac{\Delta h(\underline{x}, \underline{y})}{2|\underline{y}|}, \quad \Delta h(\underline{x}, \underline{y}) := h(\underline{x} + \underline{y}) - h(\underline{x} - \underline{y})$$

 \rightarrow approximation has 2 evaluations of h (cheaper)

useful if:

- \$\S\$ is high-dimensional and unbounded
- h is convex or \underline{X}_0 is close to \underline{x}^*

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} (h(\underline{x}))$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1}$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} (h(\underline{x}))$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

eta is distance between X_t and $\overline{X_{t+1}}$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

eta is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_t in the direction U_t)

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} (h(\underline{x}))$$

$$\underline{x}$$
 \in S

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_{t} in the direction U_{t})

→ reduction to 1d-optimisation problem

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x} \in \mathbb{S}$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_t in the direction U_t

→ reduction to 1d-optimisation problem

properties:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

 $\underline{X_{t+1}} = \underline{X_t} + linesearch(\underline{X_t}, \underline{U_t}) \qquad \underline{U_t} \sim \mathcal{U}(\mathbb{S})$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_t in the direction U_t)

→ reduction to 1d-optimisation problem

properties:

• global convergence guarantee

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x} := \underset{\underline{x} \in \mathbb{S}}{\text{arg } \min } (n(\underline{x}))$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

$$\underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_{τ} in the direction U_{τ})

→ reduction to 1d-optimisation problem

properties:

- global convergence guarantee
- converges fast

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$\begin{array}{c} x \\ b_y \\ \hline a_x \\ \hline a_x \\ \end{array}$$

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_t in the direction U_t

→ reduction to 1d-optimisation problem

properties:

- global convergence guarantee
- converges fast
- needs uniform random numbers (on the unit sphere)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$b_y$$
 high a_y high a_x how b_x

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_t in the direction U_t

→ reduction to 1d-optimisation problem

properties:

useful if:

- global convergence guarantee
- converges fast
- needs uniform random numbers (on the unit sphere)

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} = \underline{X}_t + linesearch(\underline{X}_t, \underline{U}_t) \qquad \underline{U}_t \sim \mathcal{U}(\mathbb{S})$$

 $\mathbb S$ be the d-dimensional unit sphere

$$b_y$$
 high a_x how a_x how

$$linesearch_h(\underline{X}_t, \underline{U}_t) := \arg\min_{\beta} \left(h(\underline{X}_t + \beta \cdot \underline{U}_t) \right) \cdot \underline{U}_t$$

 β is distance between X_t and X_{t+1}

(finds the vector to the point with minimal value on the line that goes through X_t in the direction U_t

→ reduction to 1d-optimisation problem

properties:

- global convergence guarantee
- converges fast
- needs uniform random numbers (on the unit sphere)

useful if:

• S is high-dimensional and bounded

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$X_{t+1}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$X_{t+1}$$

 $U_t \sim \mathcal{U}(0,1)$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$X_{t+1}$$

$$U_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t^{\beta} \sim \mathcal{U}(0,1)$$

 $\overline{T_t > 0}$ is the "temperature" (parameter for the chance to accept worse points)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t^{\beta} \sim \mathcal{U}(0,1)$$

 $\overline{T_t} > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t>0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1}:=0.95\,T_t$)

properties:

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $\overline{T_t} > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

simple

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme
- can go out of local minima again

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme
- can go out of local minima again

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme
- can go out of local minima again

useful if:

• S is high-dimensional

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme
- can go out of local minima again

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme
- can go out of local minima again

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{X}_{t+1} := \begin{cases} \underline{X}_t + \underline{U}_t^{\beta} & \text{if } U_t < e^{\frac{h(\underline{X}_t) - h(\underline{X}_t + \underline{U}_t^{\beta})}{T_t}} \\ \underline{X}_t & \text{else} \end{cases} \qquad \underline{U}_t \sim \mathcal{U}(0,1)$$

$$\underline{U}_t^{\beta} \sim \mathcal{U}(-\frac{1}{2}\underline{\beta}, \frac{1}{2}\underline{\beta})$$

 $T_t > 0$ is the "temperature" (parameter for the chance to accept worse points) (example for a cooling scheme: $T_{t+1} := 0.95 \, T_t$)

properties:

- simple
- convergence to a local minimum
- global convergence for the "right" cooling scheme
- can go out of local minima again

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima
- h is discrete

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

 $\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$

(1+1)-ES:

 $\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$

$$(1+1)$$
-ES: (ES = Evolution Strategy)

```
\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left( h(\underline{x}) \right)
```

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{\underline{Y}}_t$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$(1+1)$$
-ES: (ES = Evolution Strategy)

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t$$

$$(1+1)$$
-ES: (ES = Evolution Strategy)

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{Y}_t$$
 child

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\frac{Y}{t}$$
 child X_t parent

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{t}$ parent $\frac{N_t}{t}$ mutation

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{Y}_t$$
 child

$$X_t$$
 parent

$$N_t$$
 mutation

$$\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$
 multivariate Gaussian

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t$$

$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{Y}_t$$
 child

$$\underline{X}_t$$
 parent

$$N_t$$
 mutation

$$\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$
 multivariate Gaussian

$$\sum$$
 co-variance matrix

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$

$$\underline{X}_{t+1}$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent $\underline{\underline{N}}_t$ mutation $\underline{\underline{N}}_t$ multivariate Gaussian $\underline{\underline{\Sigma}}_t$ co-variance matrix

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation \underline{Y}_t multivariate Gaussian $\underline{\Sigma}_t$ co-variance matrix

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent $\underline{\underline{N}}_t$ mutation $\underline{\underline{N}}_t$ multivariate Gaussian $\underline{\underline{\Sigma}}_t$ co-variance matrix

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent $\underline{\underline{N}}_t$ mutation $\underline{\underline{N}}_t$ multivariate Gaussian

 $\stackrel{\Sigma}{=}$ co-variance matrix

$$Y_{t,k}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{t}$ parent $\frac{N_t}{t}$ mutation

$$\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$
 multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

 $\frac{Y}{t}$ child X_t parent

 N_t mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

 $\underline{\underline{\Sigma}}$ co-variance matrix

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{X}}_t + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X_t}{X_t}$ parent

$$\underline{N}_t$$
 mutation $\underline{(0,\underline{\Sigma})}$ multivariate Gaussian

 $\sum_{i=1}^{\infty}$ co-variance matrix

$$(1+\lambda)$$
-ES:

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{X}}_t + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{\underline{X}}_{t+1}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent $\underline{\underline{N}}_t$ mutation

$$\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$
 multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y}{t}$$
 child X_t parent

 N_t mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

 \geq co-variance matrix

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y}{t}$$
 child $\frac{X}{t}$ parent

 N_t mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$(\mu,\lambda)$$
-ES & $(\mu+\lambda)$ -ES :

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent

 N_t mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

 \sum co-variance matrix

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$(\mu,\lambda)$$
-ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{N_t}$ parent $\frac{N_t}{N_t}$ mutation

$$\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$
 multivariate Gaussian

 \sum co-variance matrix

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$(\mu,\lambda)$$
-ES & $(\mu+\lambda)$ -ES:

$$\begin{pmatrix} \underline{Y}_{t,1}', \dots, \underline{Y}_{t,\lambda}' \end{pmatrix} = recombination \begin{pmatrix} \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\underline{\underline{Y}}_{t,k}$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

 \underline{X}_t parent \underline{N}_t mutation $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

 \underline{Y}_t child

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\begin{pmatrix} \underline{Y}'_{t,1}, \dots, \underline{Y}'_{t,\lambda} \end{pmatrix} = recombination \begin{pmatrix} \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent

 \underline{N}_t mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

 \sum co-variance matrix

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\begin{pmatrix} \underline{Y}'_{t,1}, \dots, \underline{Y}'_{t,\lambda} \end{pmatrix} = recombination \begin{pmatrix} \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N} \begin{pmatrix} \underline{\underline{0}}, \underline{\underline{\Sigma}} \end{pmatrix}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\begin{array}{ll} \textbf{(1+1)-ES:} & \text{(ES = Evolution Strategy)} & \underbrace{Y_t \quad \text{child}}_{X_t \quad \text{parent}} \\ \underline{Y_t} & = \underline{X_t} + \underline{N_t} & \underline{N_t} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right) & \underbrace{N_t \quad \text{mutation}}_{X_t \quad \text{mutation}} \\ \underline{X_{t+1}} & = \arg\min\left(h(\underline{Y_t}), h(\underline{X_t})\right) & \underline{\Sigma} \quad \text{co-variance matrix} \end{array}$$

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\left(\underline{X}_{t+1,1},\ldots,\underline{X}_{t+1,\mu}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\begin{array}{ll} \textbf{(1+1)-ES:} & \text{(ES = Evolution Strategy)} & \underbrace{Y_t \quad \text{child}} \\ \underline{Y_t} & = \underline{X_t} + \underline{N_t} & \underline{N_t} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right) & \underbrace{N_t \quad \text{mutation}} \\ \underline{X_{t+1}} & = \arg\min\left(h(\underline{Y_t}), h(\underline{X_t})\right) & \underline{\Sigma} \quad \text{co-variance matrix} \end{array}$$

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\begin{split} \left(\underline{Y}_{t,1}^{'}, \dots, \underline{Y}_{t,\lambda}^{'}\right) &= recombination \left(\underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right) \\ &\underline{Y}_{t,k} = \underline{Y}_{t,k}^{'} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right) \\ \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{\mu}, \lambda\right) - \underline{\mathsf{ES}}\left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}\right) \end{split}$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \\ (\mu, \lambda) - ES \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda} \end{pmatrix} \\ (\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu})$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$$\begin{array}{ll} \textbf{(1+1)-ES:} & \text{(ES = Evolution Strategy)} & \underbrace{Y_t \quad \text{child}}_{X_t \quad \text{parent}} \\ \underline{Y_t} & = \underline{X}_t + \underline{N}_t & \underline{N}_t \sim \mathcal{N}\left(\underline{0},\underline{\Sigma}\right) & \underline{N}_t \quad \text{mutation} \\ \underline{X}_{t+1} & = \arg\min\left(h(\underline{Y}_t),h(\underline{X}_t)\right) & \underline{\Sigma} \quad \text{co-variance matrix} \end{array}$$

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\begin{pmatrix} \underline{Y}'_{t,1}, \dots, \underline{Y}'_{t,\lambda} \end{pmatrix} = recombination \begin{pmatrix} \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N} \begin{pmatrix} \underline{0}, \underline{\Sigma} \end{pmatrix}$$

$$\left(\underline{X}_{t+1,1},\ldots,\underline{X}_{t+1,\mu}\right) = selection_{(\mu,\lambda)-ES}\left(\underline{Y}_{t,1},\ldots,\underline{Y}_{t,\lambda}\right)$$

$$\left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) = selection \\ (\mu + \lambda) - \mathsf{ES}\left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

recombination

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\left(\underline{X}_{t+1,1},\ldots,\underline{X}_{t+1,\mu}\right) = selection_{(\mu,\lambda)-\mathsf{ES}}\left(\underline{Y}_{t,1},\ldots,\underline{Y}_{t,\lambda}\right)$$

$$\left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) = selection \\ (\mu + \lambda) - \mathsf{ES}\left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right)$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent

 N_t mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

 \sum co-variance matrix

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

recombination

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

mutation

$$\left(\underline{X}_{t+1,1},\ldots,\underline{X}_{t+1,\mu}\right) = selection_{(\mu,\lambda)-ES}\left(\underline{Y}_{t,1},\ldots,\underline{Y}_{t,\lambda}\right)$$

$$\left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) = selection \\ (\mu + \lambda) - \mathsf{ES}\left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{\underline{Y}}_t$$
 child $\underline{\underline{X}}_t$ parent $\underline{\underline{N}}_t$ mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

 $\sum_{i=1}^{\infty}$ co-variance matrix

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$X = \arg\min\left(h(Y), h(Y)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{t}$ parent $\frac{N_t}{t}$ mutation

properties:

 $\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$

multivariate Gaussian

 \geq co-variance matrix

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

 (μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

recombination

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

mutation

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \\ (\underline{\mu}, \lambda) - \mathsf{ES} \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda} \end{pmatrix}$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \\ (\underline{\mu} + \lambda) - \mathsf{ES} \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{t}$ parent $\frac{N_t}{t}$ mutation

properties:

global convergence posible

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

recombination

mutation

multivariate Gaussian

co-variance matrix

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation $\underline{\Sigma}$ multivariate Gaussian

co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

 (μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

recombination

mutation

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t),h(\underline{X}_t)\right)$$

$$Y_t$$
 child X_t parent N_t mutation Σ multivariate Gaussian Σ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

useful if:

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \\ (\underline{\mu}, \lambda) - \mathsf{ES} \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda} \end{pmatrix}$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \\ (\underline{\mu} + \lambda) - \mathsf{ES} \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

recombination

mutation

$$\underline{x}^* := \underset{\underline{x} \in \mathbb{S}}{\arg \min} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation $\underline{\Sigma}$ multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

• S is high-dimensional

(μ,λ) -ES & $(\mu+\lambda)$ -ES :

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{Y}_{t,k} = \underline{Y}'_{t,k} + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda} \end{pmatrix}$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

recombination

mutation

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

 \underline{Y}_t child \underline{X}_t parent \underline{N}_t mutation \underline{S}_t multivariate Gaussian $\underline{\Sigma}_t$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$+ \underline{N}_{t,k}$$
 $\underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$

recombination

mutation

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{\underline{Y}}_t = \underline{\underline{X}}_t + \underline{\underline{N}}_t \qquad \underline{\underline{N}}_t \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{\underline{X}}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation \underline{S}_t multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima

(μ,λ) -ES & $(\mu+\lambda)$ -ES :

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\begin{split} \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right) \end{split}$$

recombination

mutation

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation \underline{Y}_t multivariate Gaussian $\underline{\Sigma}$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima
- h is discrete

 (μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda} \end{pmatrix}$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

$$\begin{pmatrix} \underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu} \end{pmatrix} = selection \begin{pmatrix} \underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu} \end{pmatrix}$$

recombination

mutation

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} (h(\underline{x}))$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{t}$ parent $\frac{N_t}{N_t}$ mutation $\frac{\Sigma}{t}$ multivariate Gaussian $\frac{\Sigma}{t}$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima
- h is discrete

(μ,λ) -ES & $(\mu+\lambda)$ -ES :

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\begin{split} \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) &= selection \\ \left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right) \end{split}$$

recombination

mutation

selection

improvement by covariance matrix adaptation (CMA)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation \underline{S}_t multivariate Gaussian $\underline{\Sigma}_t$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

 $(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima
- h is discrete

 (μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

recombination

mutation

selection

improvement by covariance matrix adaptation (CMA)

 \sum_{t}

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} \left(h(\underline{x}) \right)$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\frac{Y_t}{X_t}$$
 child $\frac{X}{N_t}$ parent $\frac{N_t}{N_t}$ mutation

 $\mathcal{N}\left(\underline{0},\underline{\Sigma}\right)$ multivariate Gaussian

co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima
- h is discrete

(μ,λ) -ES & $(\mu+\lambda)$ -ES:

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

recombination

mutation

selection

improvement by covariance matrix adaptation (CMA)

$$\sum_{i=1}^{n}$$

 scaling per dimension (different diagonal entries)

$$\underline{x}^* := \arg\min_{\underline{x} \in \mathbb{S}} (h(\underline{x}))$$

(1+1)-ES: (ES = Evolution Strategy)
$$\underline{Y}_t = \underline{X}_t + \underline{N}_t \qquad \underline{N}_t \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_t), h(\underline{X}_t)\right)$$

$$\underline{Y}_t$$
 child \underline{X}_t parent \underline{N}_t mutation $\underline{\Sigma}_t$ multivariate Gaussian $\underline{\Sigma}_t$ co-variance matrix

properties:

- global convergence posible
- (can go out of local minima)

$(1+\lambda)$ -ES:

$$\underline{Y}_{t,k} = \underline{X}_t + \underline{N}_{t,k} \qquad \underline{N}_{t,k} \sim \mathcal{N}\left(\underline{0}, \underline{\Sigma}\right)$$

$$\underline{X}_{t+1} = \arg\min\left(h(\underline{Y}_{t,1}), \dots, h(\underline{Y}_{t,\lambda}), h(\underline{X}_t)\right)$$

useful if:

- S is high-dimensional
- finding the global optimum is more important than finding the exact position of a (local/ global) optimum
- h has a lot of local minima
- h is discrete

(μ,λ) -ES & $(\mu+\lambda)$ -ES :

$$\left(\underline{Y}_{t,1}^{'},\ldots,\underline{Y}_{t,\lambda}^{'}\right) = recombination\left(\underline{X}_{t,1},\ldots,\underline{X}_{t,\mu}\right)$$

$$\underline{\underline{Y}}_{t,k} = \underline{\underline{Y}}'_{t,k} + \underline{\underline{N}}_{t,k} \qquad \underline{\underline{N}}_{t,k} \sim \mathcal{N}\left(\underline{\underline{0}}, \underline{\underline{\Sigma}}\right)$$

$$\left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) = selection \left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right)$$

$$\left(\underline{X}_{t+1,1}, \dots, \underline{X}_{t+1,\mu}\right) = selection \left(\underline{Y}_{t,1}, \dots, \underline{Y}_{t,\lambda}, \underline{X}_{t,1}, \dots, \underline{X}_{t,\mu}\right)$$

recombination

mutation

selection

improvement by covariance matrix adaptation (CMA)

$$\sum_{i=1}^{n}$$

- scaling per dimension (different diagonal entries)
- correlations (off-diagonal entries)

end