TD N°2: Contrôle du flux d'instructions

Ahmed Ammar (ahmed.ammar@fst.utm.tn)

Institut Préparatoire aux Études Scientifiques et Techniques, Université de Carthage.

Nov 6, 2019

Table des matières

Exercise 1 : Comparer deux entiers

Écrivez un programme qui vous demande de saisir 2 nombres entiers et affiche la plus petite de ces valeurs.

Exercise 2 : Comparer deux chaînes

Écrivez un programme qui demande d'entrer 2 chaînes et qui affiche la plus grande des 2 chaînes (celle qui contient le plus de caractères).

Exercise 3: Convertir Euro contre Dinar Tunisien | EUR TND

Écrivez un programme qui convertit l'euro (EUR) en dinar tunisien (TND) :

- Le programme commence par demander à l'utilisateur d'indiquer par une chaîne de caractères 'EUR' ou 'TND' la devise du montant qu'il entrera.
- Ensuite, le programme exécute une action conditionnelle de la forme :

```
if devise == 'EUR' :
    # Expression 1
elif devise == 'TND' :
    # Expression 2
else :
    # affichage d'un message d'erreur
```

Exercise 4 : Résolution d'une équation du second degré

Soit l'équation du second degré $ax^2 + bx + c = 0$ où a, b et c sont des coefficients réels.

a) Écrivez un programme qui demande d'entrer les coefficients et affiche les solutions de l'équation.

Indication. Solutions analytiques

Des solutions sont recherchées dans le cas général, compte tenu du discriminant $\Delta=b^2-4ac$, l'équation admet comme solutions analytiques :

$$\begin{cases} \Delta > 0 & deux \ solutions \ r\'{e}elles: \ x_1 = \frac{-b - \sqrt{\Delta}}{2a}; \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a} \\ \Delta = 0 & une \ solution \ double: \ x_0 = \frac{-b}{2a} \\ \Delta < 0 & deux \ solutions \ complexes: \ z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}; \quad z_2 = \frac{-b + i\sqrt{-\Delta}}{2a} \end{cases}$$

Algorithme

Définition

Ensemble de règles opératoires dont l'application permet de résoudre un problème énoncé au moyen d'un nombre fini d'opérations. Un algorithme peut être traduit, grâce à un langage de programmation, en un programme exécutable par un ordinateur. Source: LAROUSSE

Pseudo-code de l'algorithme

Présentons tout d'abord un pseudo-code de l'algorithme, c'est-à-dire le détail des opérations à effectuer sans syntaxe propre du langage.

```
# Calcul des racines de l'équation du second degré a, b et c \leftarrow \dots # Assignation des variables a, b et c (variables de type réel) en utilisant la fonction input() \Delta \leftarrow b^2 - 4ac si \Delta est positive: x_1 \leftarrow \frac{b-\sqrt{\Delta}}{2a} x_2 \leftarrow \frac{-b+\sqrt{\Delta}}{2a} # Affichez les solutions trouvées sinon si \Delta est nul: x_0 \leftarrow \frac{-b}{2a} # Affichez la solution trouvée sinon si \Delta est négative: x_1 \leftarrow \frac{-b-i\sqrt{\Delta}}{2a} # Affichez la solution trouvée sinon si \Delta est négative: x_1 \leftarrow \frac{-b-i\sqrt{\Delta}}{2a} # Affichez les solutions trouvées
```

- b) Soit la fonction $f(x) = 0.83x^2 + 3.8x + 2.48$. En utilisant le programme précédent, trouvez les solutions pour f(x) = 0.
- c) La représentation graphique de f(x) est indiquée ci-dessous :

Nous allons utiliser une fonction EqSecondDegree(a,b,c) dans $TD\ N^{\circ}3$ pour reproduire cette figure en utilisant les bibliothèques numpy et matplotlib.

- Écrivez la fonction EqSecondDegree(a,b,c) qui renvoie les solutions de l'équation $ax^2 + bx + c = 0$.
- Enregistrez la fonction EqSecondDegree(a,b,c) dans un script Python racines.py.
- d) En utilisant la fonction EqSecondDegree(a,b,c), trouvez les solutions de f(x) = 0.

Exercise 5: programmez une boucle while

Définir une séquence de nombres :

$$x_n = n^2 + 1$$

pour les entiers n = 0,1,2,..., N. Écrivez un programme qui affiche x_n pour n = 0,1,..., 20 en utilisant une boucle while.

Exercise 6 : Créer une liste avec une boucle while

Stockez toutes les valeurs x_n calculées dans l'exercice 5 dans une liste (à l'aide d'une boucle while). Afficher la liste complète (en un seul objet).

Exercise 7: Programmer une boucle for

Faites l'exercice 6, mais utilisez une boucle for.

Exercise 8: Ecrire une fonction Python

Écrivez une fonction $\mathbf{x}(\mathbf{n})$ pour calculer un élément dans la séquence $x_n = n^2 + 1$. Appelez la fonction pour $\mathbf{n} = 4$ et afficher le résultat.

Exercise 9: Renvoyer trois valeurs d'une fonction Python

Écrivez une fonction Python qui évalue les fonctions mathématiques f(x) = cos(2x), f'(x) = -2sin(2x) et f''(x) = -4cos(2x). Retourner ces trois valeurs. Écrivez les résultats de ces valeurs pour $x = \pi$.