STREAMING INTERACTIVE PROOFS

CS5234 FINAL PROJECT

NGUYEN DANG PHUC <u>NHAT</u>, <u>ANJU</u> GOPALKRISHNAN, <u>GRACE</u> NGU SOOK ERN

OUTLINE

INTRODUCTION TO STREAMING INTERACTIVE PROOFS - PROJECT SCOPE

RECALL: FINITE FIELDS AND POLYNOMIALS

REVISIT: EQUALITY COMMUNICATION PROBLEM

IP TECHNIQUE: MULTILINEAR EXTENSION

SUM-CHECK PROTOCOL

STREAMING APPLICATIONS: FREQUENCY MOMENT VERIFICATION

SUMMARY

STREAMING INTERACTIVE PROOFS (SIP)

Problem Statement: A **computationally limited** client (Business/Agency) outsources a **powerful but untrusted** third-party service provider (Cloud). Example applications: Social Media Analytics, Financial Transaction Agency, etc.

Cloud service provider tries to convince the business of the truth of an 'answer' to the 'question' by interacting through a series of messages generated by randomized algorithms.

PROJECT SCOPE

Legend:
Presentation
Scope

Evaluation for both protocols: 1) Correctness, 2) Soundness, 3) Space Usage, and 4) Communication Cost

PRELIMINARIES: FINITE FIELDS AND POLYNOMIALS

Finite fields and polynomials are two algebraic concepts we utilize in the SIP setting:

<u>Finite Fields</u>, **F** in the SIP settings include both prime and binary fields. The common operations on **F** are 1) Addition 2) Multiplication

Polynomial is a mathematical expression involving a sum of powers in one or more variables multiplied by coefficients:

E.g.: Uni-variate polynomial - $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ where $a_n, a_{n-1}, ..., a_0$ are coefficients and n is degree of polynomials.

Multi-variate polynomial - $x^2 + 2xy + 2xz + y^2 + 2yz + z^2$

Why are they important for SIP?

- 1. Efficient to work with: Addition, Multiplication
- 2. Makes verification easy: A polynomial can be interpolated from a set of points and they can represent complex computations succinctly

POWER OF RANDOMNESS: EQUALITY PROBLEM

From our lectures... We learned about checking if two points are equal through Alice and Bob's one-way communication (non-interactive). Two claims arise from this protocol, and we will see here how randomness and polynomials plays an important role for SIPs [Tha20a].

Equality: Another Communication Problem

- Alice and Bob gets n-length Binary strings x, y respectively
- Bob needs to determine whether x = y or not deterministically
- Lower Bound: $\geq n$ bits of communication required

New Idea:
$$x \to p(r) = \sum_{i=1}^{n} x_i r^i$$

 $y \to q(r) = \sum_{i=1}^{n} y_i r^i$

Total cost: 2 field elements i.e. (r, p(r)), field size is n^2 $O(\log |F|) = O(\log n)$ bits

Protocol:

- Alice picks random $r \in \mathbb{F}$ and sends (r, p(r)) to Bob.
- Bob checks p(r) = q(r)
- <u>Claim 1</u>: if x= y, then Bob outputs **EQUAL** with high probability (1).

If 2 low-degree polynomial agree at randomly chosen input, then they are the same polynomial

• Claim 2: if $x \neq y$, then Bob outputs **NOT-EQUAL** with probability at least $1 - \frac{1}{n}$ over the choice of $r \in \mathbb{F}$

If 2 inputs differ at all, then they differ almost everywhere if interpreted as polynomials.

SIP GENERAL PROTOCOL & REQUIREMENTS

SIP Protocol:

- P computes and solves the problem and tells V the answer.
- P and V exchange a series of conversations.
- V's challenges are randomized in such a way that P cannot predict what V would ask.
- Goal: P wants to convince V that the answer is correct. V wants to detect if P is lying.

To prove that the answer is correct, two requirements must be met:

Completeness: An honest P can convince V to accept.

 $Pr[V \ accepts \ if \ P \ is \ honest] \geq 1 - \delta_c$

2. <u>Soundness</u>: **V** will catch a lying **P** with high probability. This must hold even if **P** is computationally unbounded and trying to trick **V** into accepting the incorrect answer.

 $Pr[V \ accepts \ if \ P \ is \ dishonest] \leq \delta_s$

INTERACTIVE PROOF TECHNIQUES

PRELIMINARIES

1. SHWARTZ-ZIPPEL LEMMA

Let $p \neq q$ be ℓ -variate polynomials of total degree at most d.

Then
$$\Pr_{r \in \mathbf{F}^{\ell}}[p(r) = q(r)] \le \frac{d}{|\mathbf{F}|}$$
.

"Total degree" refers to the maximum sum of degrees of all variables in any term. E.g., $x_1^2x_2 + x_1x_2$ has total degree 3.

2. MULTILINEAR EXTENSIONS

Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.

Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \to \mathbf{F}$ has a unique multilinear extension (MLE), denoted \tilde{f} .

- Multilinear means the polynomial has degree at most 1 in each variable.
- $(1-x_1)(1-x_2)$ is multilinear, $x_1^2x_2$ is not.

MULTILINEAR EXTENSION

SUM CHECK PROTOCOL

[THA20B], [THA15]

SUM-CHECK PROTOCOL

Input: V given oracle access to a ℓ -variate polynomial $g: F^{\ell} \to F$ over field \mathbf{F} .

Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

V checks that $C_1 = s_1(0) + s_1(1)$.

If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.

How to check this? Just check that S_1 and H_1 agree at a random point r_1 ! V can compute $S_1(r_1)$ directly from P's first message, but not $H_1(r_1)$.

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends univariate polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

V checks that $C_1 = s_1(0) + s_1(1)$.

V picks r_1 at random from \boldsymbol{F} and sends r_1 to \boldsymbol{P} .

Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$.

i.e., that
$$s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$$
.

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

V checks that $C_1 = s_1(0) + s_1(1)$.

V picks r_1 at random from F and sends r_1 to P.

Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$.

i.e., that
$$s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$$
.

Round ℓ (Final round): P sends univariate polynomial $S_{\ell}(X_{\ell})$ claimed to equal

$$H_{\ell} := g(r_1, ..., r_{\ell-1}, X_{\ell}).$$

V checks that $s_{\ell-1}(r_{\ell-1}) = s_{\ell}(0) + s_{\ell}(1)$.

V picks r_{ℓ} at random, and needs to check that $s_{\ell}(r_{\ell}) = g(r_1, ..., r_{\ell})$.

• No need for more rounds. V can perform this check with one oracle query.

ANALYSIS: SUM-CHECK PROTOCOL

COMPLETENESS

Completeness holds by design: If P sends the prescribed messages, then all of V's checks will pass.

SOUNDNESS

Soundness: If P does not send the prescribed messages, then V rejects with probability at least 1- $\frac{\ell \cdot d}{|\mathbf{F}|}$, where d is the maximum degree of g in any variable.

Proof is by induction on the number of variables ℓ .

SOUNDNESS: SUMMARY

Summary: if $S_1 \neq H_1$, the probability V accepts is at most:

$$\begin{split} \Pr_{r_1 \in \pmb{F}}[s_1(r_1) &= H_{\pmb{I}}(r_1)] + \Pr_{r_2, \dots, r_\ell \in \pmb{F}}[V \text{ accepts} | s_1(r_1) \neq H_{\pmb{I}}(r_1)] \\ &\leq \frac{d}{|\pmb{F}|} + \frac{d(\ell-1)}{|\pmb{F}|} \leq \frac{d\ell}{|\pmb{F}|}. \end{split}$$

COST ANALYSIS

Total communication is $O(d\ell)$ field elements.

- P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell-1$ messages, each consisting of one field elements.
 - o Space usage: $O(d \log |F|)$
- V's runtime is:
- $O(d\ell + [time\ required\ to\ evaluate\ g\ at\ one\ point]).$
- P's runtime is at most:
- $O(d \cdot 2^{\ell} \cdot [time\ required\ to\ evaluate\ g\ at\ one\ point]).$

STREAMING APPLICATIONS

STREAMING APPLICATIONS

- Modify Sum-check to design SIP protocols:
 - Compute the value g(r) at a random point r
- Chosen problem: Frequency Moment Verification [CTY11]
 - F₂ Verification
 - Extension to F_k

STREAMING SETUP

- Universe: [n] where $n = 2^b$
- Token: (*i*, *c*)
- Frequency vector: $(f_1, f_2, ..., f_n)$
- Stream length *m*
- Frequency Moment: $F_k = \sum_{i=1}^n f_i^k$

APPLY MULTILINEAR EXTENSION

- Think of the Frequency Vector as a function *P*
 - $P: [n] \rightarrow [m]$
 - $P(i) = f_i$
- Transform the input of *P* into its binary representation
 - $P: \{0,1\}^b \to \mathbb{F}$
 - $P(i_1, i_2, ..., i_b) = f_i$
- Choose a field \mathbb{F} such that $[m] \subseteq \mathbb{F}$

APPLY MULTILINEAR EXTENSION

- Transform P into a multi-variate function
 - $P: \{0,1\}^b \to \mathbb{F}$
 - $P(i_1, i_2, ..., i_b) = f_i$
- Apply Multilinear Extension
 - $\tilde{P}: \mathbb{F}^b \to \mathbb{F}$
 - $\tilde{P}(z_1, z_2, ..., z_b) = \sum_{i \in [n]} P(i_1, i_2, ..., i_b) \chi_i(z_1, z_2, ..., z_b)$
- χ_i function acts as identity over $\{0,1\}^b$
 - $\chi_i: \mathbb{F}^b \to \mathbb{F}$
 - $\chi_i(z_1, z_2, ..., z_b) = 1$ if $(z_1, z_2, ..., z_b) = (i_1, i_2, ..., i_b)$
 - $\chi_i(z_1, z_2, \dots, z_b) = 0$ for $(z_1, z_2, \dots, z_b) \in \{0, 1\}^b \setminus (i_1, i_2, \dots, i_b)$

APPLY SUM-CHECK

• Goal: Apply Sum-check on \tilde{P} (?)

- $\tilde{P}: \mathbb{F}^b \to \mathbb{F}$
- $\tilde{P}(z_1, z_2, ..., z_b) = \sum_{i \in [n]} f_i \chi_i(z_1, z_2, ..., z_b)$
- Randomly pick $(r_1, r_2, ..., r_b) \in \mathbb{F}^b$ \rightarrow Verifier computes $\tilde{P}(r_1, r_2, ..., r_b)$ from the stream
- Keep a variable Q
- Process each stream token (i, c):
 - $Q \leftarrow Q + c\chi_i(r_1, r_2, ..., r_b)$
 - $O(\log |\mathbb{F}|)$ bits

APPLY SUM-CHECK

- Goal: Apply Sum-check on \tilde{P} (?)
 - $\tilde{P}: \mathbb{F}^b \to \mathbb{F}$
 - $\tilde{P}(z_1, z_2, ..., z_b) = \sum_{i \in [n]} f_i \chi_i(z_1, z_2, ..., z_b)$

•
$$\sum_{j \in [n]} (\tilde{P}(j_1, j_2, \dots, j_b))^2 = \sum_{j \in [n]} (P(j_1, j_2, \dots, j_b))^2 = \sum_{j \in [n]} f_j^2 = F_2$$

- Final Protocol:
 - To verify F_2 , apply Sum-check on \tilde{P}^2
 - Evaluate $\tilde{P}^2(r_1, r_2, ..., r_b)$ by computing Q^2 after processing the stream

ANALYSIS

- Completeness: Perfect! If Prover is honest, Verifier always accepts
- Soundness: \tilde{P}^2 is b-variate with degree at most 2 at all variables. If Prover is dishonest, Verifier rejects with probability at least $1 \frac{2b}{|\mathbb{F}|}$. With a large enough field $|\mathbb{F}| = \Theta\left(\frac{b}{\delta_s}\right) = \Theta(\frac{1}{\delta_s}\log n)$, we can bound soundness to any parameter δ_s
- Verifier's space usage: $O(\frac{1}{\delta_s} \log n)$ bits
 - $O(2 * \log |\mathbb{F}|) = O(\frac{1}{\delta_s} \log n)$ bits to keep Q^2
 - $O(2 * \log |\mathbb{F}|) = O(\frac{1}{\delta_s} \log n)$ for univariate polynomials degree at most 2 in Sum-check
- Number of messages: $O(b) = O(\log n)$ for Sum-check on b-variate polynomial

EXTENSION TO F_k

•
$$\sum_{j \in [n]} (\tilde{P}(j_1, j_2, ..., j_b))^k = \sum_{j \in [n]} (P(j_1, j_2, ..., j_b))^k = \sum_{j \in [n]} f_j^k = F_k$$

- Final Protocol:
 - To verify F_k , apply Sum-check on \tilde{P}^k
 - Evaluate $\tilde{P}^k(r_1, r_2, ..., r_b)$ by computing Q^k after processing the stream
- Analysis is identical, but with a constant k blow-up in space: $O(\frac{k}{\delta_s}\log n)$ bits
- Space-Advantage over computation (AMS sketch): $O\left(k\epsilon^{-2}n^{1-\frac{1}{k}}\log\left(\frac{1}{\delta}\right)\left(\log m + \log n\right)\right)$ bits

TRIVIA

- Over a field \mathbb{F}_p defined by the prime $p, \forall x \in \mathbb{F}_p, x^{p-1} = 1$ according to Fermat's Little Theorem.
 - $\sum_{j \in [n]} (\tilde{P}(j_1, j_2, \dots, j_b))^{p-1} = \sum_{j \in [n]} f_j^0 = F_0$
- Cannot apply Sum-check directly. See arithmetization idea in [CMT12].

SUMMARY

- We have seen:
 - Background knowledge for Streaming IP
 - A basic algebra concept: Multilinear Extension
 - A basic Verification protocol: Sum-check
 - Combination of both to Verify F_k
- IP in general and SIP in particular are deep subjects. Further study directions include, but not limited to:
 - Verifying Frequency Query and other Point Query problems [Cha+15] (in project write-up)
 - Communication Complexity classes in SIP [Cha+15]
 - Efficient SIP implementations [CMT12]

REFERENCES

- [Tha15] Justin Thaler. "Stream Verification". In: CoRR abs/1507.04188 (2015). arXiv: 1507.04188. URL: http://arxiv.org/abs/1507.04188.
- [Tha20a] Justin Thaler. COSC544 Lecture 2: The power of randomness: Fingerprinting and Freivalds' Algorithm for verifying matrix multiplication. Low-degree and multilinear extensions. 2020. URL: https://people.cs.georgetown.edu/jthaler/COSC544/Lecture2slides.pdf.
- [Tha20b] Justin Thaler. COSC544 Lecture 3: LFKN's sum-check protocol. 2020. URL: https://people.cs.georgetown.edu/jthaler/COSC544/Lecture3slides.pdf.
- [CTY11] Graham Cormode, Justin Thaler, and Ke Yi. "Verifying computations with streaming interactive proofs". In: arXiv preprint arXiv:1109.6882 (2011).
- [Cha+15] Amit Chakrabarti et al. "Verifiable stream computation and Arthur-Merlin communication". In: Leibniz international proceedings in informatics (LIPIcs) (2015), pp. 217–243.
- [CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. "Practical verified computation with streaming interactive proofs". In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. 2012, pp. 90–112.

THANK YOU!