Libro: Süli, "An Introduction to Numerical Analysis"

EJERCICIO 1.3: (continuación)

La siguiente tabla corresponde a los valores x_k del método de Newton para k>=80 (considerando un valor inicial $x_1=100$)

k	x_k
80	21,00000001040640
81	20,00000002708810
82	19,00000007037230
83	18,00000018242820
84	17,00000047179780
85	16,00000121698630
86	15,00000313008220
87	14,00000802450650
88	13,00002049735430
89	12,00005214143520
90	11,00013201284220
91	10,00033241234650
92	9,00083168334077
93	8,00206501006018
94	7,00507964605702
95	6,01234894316053
96	5,02955962791920
97	4,06926286846843
98	3,15740278631240
99	2,34209860980313
100	1,69752585652667
101	1,30229522179734
102	1,16208944237534
103	1,14637611343467
104	1,14619324513471
105	1,14619322062058

Tabla 1

Ahora calculamos e_k (el error para cada k), esto es:

$$e_k = |x_k - \xi|$$

Donde ξ es la solución del problema. En este ejercicio, consideramos $\xi = x_105 = 1,1461932$. Los errores son mostrados en la Tabla 2. Aquí también se presentan los cocientes $\frac{e_{k+1}}{e_k}$ y $\frac{e_{k+1}}{(e_k)^2}$ para verificar si la convergencia es lineal o cuadrática, respectivamente.

Se observa que la convergencia en las primeras 90 iteraciones es lineal: El cociente $\frac{e_{k+1}}{e_k}$ varía entre 0,95 y 0,90. Ahora, en las últimas iteraciones se observa una convergencia cuadrática: El cociente $\frac{e_{k+1}}{(e_k)^2}$ tiende al valor 0,73. Este valor corresponde a $\left|\frac{f''(\xi)}{2f'(\xi)}\right|$, como era de esperarse (ver demostración del Teorema de Convergencia para el método de Newton).

k	x_k	e_k	(e_(k+1))/(e_k)	(e_(k+1))/(e_k)^2
80	21,00000001040640	1,99E+01		
81	20,00000002708810	1,89E+01	0,950	
82	19,00000007037230	1,79E+01	0,947	
83	18,00000018242820	1,69E+01	0,944	
84	17,00000047179780	1,59E+01	0,941	
85	16,00000121698630	1,49E+01	0,937	
86	15,00000313008220	1,39E+01	0,933	
87	14,00000802450650	1,29E+01	0,928	
88	13,00002049735430	1,19E+01	0,922	
89	12,00005214143520	1,09E+01	0,916	
90	11,00013201284220	9,85E+00	0,908	
91	10,00033241234650	8,85E+00	0,899	
92	9,00083168334077	7,85E+00	0,887	0,1002
93	8,00206501006018	6,86E+00	0,873	0,1111
94	7,00507964605702	5,86E+00	0,855	0,1246
95	6,01234894316053	4,87E+00	0,831	0,1418
96	5,02955962791920	3,88E+00	0,798	0,1640
97	4,06926286846843	2,92E+00	0,753	0,1938
98	3,15740278631240	2,01E+00	0,688	0,2354
99	2,34209860980313	1,20E+00	0,595	0,2957
100	1,69752585652667	5,51E-01	0,461	0,3855
101	1,30229522179734	1,56E-01		0,5135
102	1,16208944237534	1,59E-02		0,6523
103	1,14637611343467	1,83E-04		0,7238
104	1,14619324513471	2,45E-08		0,7329
105	1,14619322062058	-	-	-

Tabla 2

Un análisis similar se hace considerando un valor de partida x_1 = 0,1. La Tabla 3 muestra los resultados. El método de Newton converge a la solución positiva ξ = x_16 = 1,1461932, como debe ser (visto en clase). También se cumple que, como x_1 es positivo y menor a ξ , el valor de la segunda iteración (x_2) pasa a ser mayor o igual a ξ . Se observa que la convergencia en las primeras 7 iteraciones es lineal: El cociente $\frac{e_{k+1}}{e_k}$ varía entre 0,88 y 0,78. Y finalmente, en las últimas iteraciones se observa una convergencia cuadrática: El cociente $\frac{e_{k+1}}{(e_k)^2}$ tiende al valor 0,73, que corresponde a $\left|\frac{f''(\xi)}{2f'(\xi)}\right|$, como era de esperarse (ver demostración del Teorema de Convergencia para el método de Newton).

k	x_k	e_k	(e_(k+1))/(e_k)	(e_(k+1))/(e_k)^2
1	0,1	1,05E+00		
2	9,55916513925255	8,41E+00	8,042	
3	8,55991015860109	7,41E+00	0,881	
4	7,56174253756821	6,42E+00	0,865	
5	6,56619668906517	5,42E+00	0,845	
6	5,57685838225789	4,43E+00	0,817	0,1508
7	4,60184263394226	3,46E+00	0,780	0,1760
8	3,65861741515930	2,51E+00	0,727	0,2104
9	2,78183632204984	1,64E+00	0,651	0,2591
10	2,03148476315880	8,85E-01	0,541	0,3309
11	1,48903975189695	3,43E-01	0,387	0,4374
12	1,21410763586444	6,79E-02		0,5778
13	1,14940057511806	3,21E-03		0,6954
14	1,14620074150322	7,52E-06		0,7311
15	1,14619322066204	4,15E-11		0,7330
16	1,14619322062058	-	-	-

Tabla 3

EJERCICIO 1.5:

Supóngase que f es una función real con segunda derivada f " continua definida en un intervalo $I_{\delta}=[\xi-\delta,\xi+\delta]$, donde ξ es tal que f(ξ)=0. Se asume también que existe un A > 0 tal que:

$$\left| \frac{f''(x)}{f'(y)} \right| \le A \quad \forall \, x, y \in I_{\delta}$$

Sea (x_n) la secuencia definida por el Método de Newton. Suponga que existe un k tal que $|x_k - \xi| \le h$ donde h=min{ δ ,1/A}. Entonces, por Teorema de Convergencia, la secuencia $(x_n)_{n\ge k}$ converge cuadráticamente a ξ .

Para aquel k, tenemos que x_k coincide con la solución ξ en "m" dígitos decimales, entonces el error e_k es:

$$e_k = |x_k - \xi| < 10^{-m}$$

Como x_k pertenece a la vecindad de radio h, vamos a suponer que $h \approx 10^{-m}$, es decir:

$$10^{-m} \approx h \le \frac{1}{A}$$

O sea $A \leq 10^m$. También vamos a suponer que:

$$\lim_{n \to \infty} \frac{|x_{n+1} - \xi|}{|x_n - \xi|^2} \approx \frac{|x_{k+1} - \xi|}{|x_k - \xi|^2}$$
(1)

El límite μ existe pues (x_n) converge cuadráticamente a ξ . Es decir, (1) queda así:

$$\frac{|x_{k+1} - \xi|}{|x_k - \xi|^2} \approx \mu$$

O sea:

$$\frac{e_{k+1}}{(e_k)^2} \approx \mu$$

$$e_{k+1} \approx \mu (e_k)^2 < \mu (10^{-m})^2$$

$$e_{k+1} < \mu 10^{-2m}$$
(2)

Por otro lado, en la demostración del Teorema de Convergencia se tiene que μ es igual a $\left|\frac{f''(\xi)}{2f'(\xi)}\right|$ y este cociente está acotado superiormente por A/2. Además, arriba mencionamos que $A \leq 10^m$. O sea $\mu \leq \frac{10^m}{2}$, por ejemplo:

- a) Si $\mu\approx 1$, entonces $e_{k+1}<10^{-2m}$. Es decir, en la siguiente iteración, x_(k+1) tendrá "2m" decimales exactos.
- b) Pero si $\mu \approx 10^{m-1}$, entonces $e_{k+1} < 10^{-m-1}$. Es decir, en la siguiente iteración x (k+1) tendrá "m+1" decimales exactos (y no "2m").

Ahora usaremos el Método de Newton para determinar el cero positivo de $f(x) = e^x - x - 1.00000005$, que es cercano a 0.0001 (el valor de partida será $x_1 = 0.0005$). La Tabla 4 muestra los resultados. La solución ciertamente es próxima a 0.0001: usamos x_8 para el cálculo del error y de μ : $\mu = \left| e^x(x_8)/[2(e^x(x_8)-1)] \right| = 5000$. La columna $\frac{e_{k+1}}{e_k}$ indica que las tres primeras iteraciones convergen casi linealmente: ese cociente oscila entre vale 0.4 y 0.3. La convergencia cuadrática es más clara a partir de x_4 , donde podemos asumir que el cociente $\frac{e_{k+1}}{(e_k)^2}$ es aproximadamente el valor límite $\mu = 5000 \approx 10^x(3,7)$. Así, de la ecuación (2) tenemos:

Si x_k tiene m decimales exactos (e_k < 10^(-m)), entonces x_(k+1) tiene 2m-4 \acute{o} 2m-3 decimales exactos (pues e_(k+1) < μ * 10^(-2m) = 10^(-2m+3,7)).

k	x_k	e_k	(e_(k+1))/(e_k)	(e_(k+1))/(e_k)^2
1	0,00050000000000000000	4,00E-04		
2	0,0002600183335441990	1,60E-04	0,400	1000
3	0, <mark>0001</mark> 492417139818290	4,92E-05	0,308	1923
4	0, <mark>00010</mark> 81229108054990	8,12E-06	0,165	3350
5	0,0001003035980362050	3,05E-07	0,038	4625
6	0,0000999987988558199	4,66E-10	0,002	5004
7	0,0000999983348002246	2,22E-12	0,005	10212679
8	0,0000999983325798526	-	-	-

Tabla 4

Finalmente, observamos que x_7 debería tener 15 decimales exactos (pues x_6 tiene 9 decimales exactos). Sin embargo, al comparar x_7 con la solución de referencia x_8, notamos que sólo coinciden en 11 decimales. Es por ello que el cociente $\frac{e_7}{(e_6)^2}$ es mayor a lo esperado.

Es probable que el error de redondeo esté influyendo en el cálculo de x_7 y x_8. La Figura 1 muestra la convergencia del método de Newton.

Figura 1. x k versus k

EJERCICIO 1.6:

Se sabe que (x_k) es una secuencia obtenida por el Método de Newton. Además, f es una función real con segunda derivada f " continua definida en un intervalo $I_{\delta} = [\xi - \delta, \xi + \delta]$, donde ξ es tal que f(ξ) = 0 = f '(ξ).

Primero, se pide demostrar que si $\exists k$ talque $x_k \in I_{\delta}$, entonces se cumple:

$$\xi - x_{k+1} = -\frac{1}{2} \frac{(\xi - x_k)^2 f''(\eta_k)}{f'(x_k)} = \frac{1}{2} (\xi - x_k) \frac{f''(\eta_k)}{f''(\chi_k)}$$
(3)

donde η_k y χ_k se ubican entre ξ y x_k .

Esto es verdad. Como $x_k \in I_\delta$, se puede usar el polinomio de Taylor:

$$0 = f(\xi) = f(x_k) + (\xi - x_k)f'(x_k) + \frac{(\xi - x_k)^2}{2}f''(\eta_k)$$

donde η_k se localiza entre ξ y x_k . Y re-escribiendo esta última ecuación tenemos:

$$x_k - \frac{f(x_k)}{f'(x_k)} = \xi + \frac{1}{2} \frac{(\xi - x_k)^2 f''(\eta_k)}{f'(x_k)}$$

Note que el lado izquierdo de esta ecuación es igual a x_(k+1). Además, observe que la secuencia dada por el Método de Newton, indica implícitamente que la derivada $f'(x_k)$ es diferente de cero. La ecuación entonces se escribe como:

$$\xi - x_{k+1} = -\frac{1}{2} \frac{(\xi - x_k)^2 f''(\eta_k)}{f'(x_k)}$$
(4)

Por otro lado, el teorema de valor medio nos dice que:

$$\frac{f'(\xi) - f'(x_k)}{(\xi - x_k)} = f''(\chi_k)$$

Donde χ_k se localiza entre ξ y x_k . Pero, por dato del problema: f '(ξ) = 0; entonces esta ecuación queda así:

$$f'(x_k) = -f''(\chi_k)(\xi - x_k)$$

que al sustituirla en la ecuación (4) tenemos:

$$\xi - x_{k+1} = \frac{1}{2} \frac{(\xi - x_k) f''(\eta_k)}{f''(\chi_k)}$$
(5)

Y ambas igualdades (4) y (5) son las que se pide demostrar.

Segundo, se pide demostrar lo siguiente:

Suponga que existen m y M tales que 0 < m < M < 2m. Además suponga que m < |f''(x)| < M para todo $x \in I_{\delta}$. Finalmente suponga que x_0 se ubica en I_{δ} . Entonces la secuencia (x_k) converge a ξ y la convergencia es lineal a una tasa de $\log_{10} 2$.

Demostración: A seguir, se demuestra que si $\xi < x_0$ entonces $\xi < x_1 < x_0$. Del método de Newton, x 1 es definido así:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \tag{6}$$

Note que f " o bien es positiva o bien es negativa, en el intervalo I_{δ} . Caso contrario, por la continuidad de f " existiría un punto donde f " es igual a cero, pero |f''(x)| está acotado inferiormente por m>0. Supongamos que f " es siempre positiva, entonces f 'es estrictamente creciente y ξ es el único punto de mínimo en I_{δ} (recuerde que f '(ξ) = 0). Si $\xi < x_0$, entonces $f(x_0)>0$ y f '($x_0>0$)>0. Por lo tanto, de (6), tenemos $x_1 < x_0$. Como ejercicio, se puede demostrar que $\xi < x_1$ (si $\xi = x_1$ se tiene la convergencia), y por tanto $x_1 \in I_{\delta}$. Si suponemos que f " es siempre negativa se llega a un resultado análogo (ejercicio).

Por inducción, se tiene entonces que todos los x_k pertenecen a I_δ ; y que si $\xi < x_0$ entonces:

$$\xi < \dots < x_{k+1} < x_k < \dots < x_1 < \, x_0$$

Y si $x_0 < \xi$ entonces (ejercicio):

$$x_0 < x_1 < \dots < x_k < x_{k+1} < \dots < \xi$$

Sin pérdida de generalidad, consideramos que $\xi < x_0$. En este caso la secuencia es decreciente y acotada inferiormente, por tanto tiene límite: $\lim_{k \to \infty} x_k$ =L. Del método de Newton los x_(k+1) son definidos así:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

y si aplicamos el límite tenemos:

$$\lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} x_k - \lim_{k \to \infty} \frac{f(x_k)}{f'(x_k)}$$
$$L = L - \lim_{k \to \infty} \frac{f(x_k)}{f'(x_k)}$$

Si L fuese diferente a ξ , entonces f'(L) sería diferente de cero, pues f ' es estrictamente creciente o decreciente en I_{δ} , y $f'(\xi)=0$. Así la ecuación anterior queda:

$$0 = \lim_{k \to \infty} \frac{f(x_k)}{f'(x_k)} = \frac{\lim_{k \to \infty} f(x_k)}{\lim_{k \to \infty} f'(x_k)}$$

y por la continuidad de f y de f ':

$$0 = \frac{\lim_{k \to \infty} f(x_k)}{\lim_{k \to \infty} f'(x_k)} = \frac{f\left(\lim_{k \to \infty} x_k\right)}{f'\left(\lim_{k \to \infty} x_k\right)} = \frac{f(L)}{f'(L)}$$

o sea f(L)=0 (recuerde que f ' (L) no es cero); pero esto es absurdo pues sabemos que ξ es el único punto de mínimo o de máximo en I_{δ} , y f(ξ)=0. Es decir, L debe ser igual a ξ .

Por último, se debe demostrar que la convergencia es lineal y a una tasa de $\log_{10} 2$. De la ecuación (3) tenemos que para todo k se cumple:

$$\begin{aligned} |\xi - x_{k+1}| &= \frac{1}{2} |\xi - x_k| \left| \frac{f''(\eta_k)}{f''(\chi_k)} \right| \\ \frac{|\xi - x_{k+1}|}{|\xi - x_k|} &= \frac{1}{2} \left| \frac{f''(\eta_k)}{f''(\chi_k)} \right| \end{aligned}$$

donde η_k y χ_k se ubican entre ξ y χ_k . Como la secuencia (χ_k) converge a ξ , entonces las secuencias (η_k) y (χ_k) también convergen a ξ . Se aplica límites a la última ecuación:

$$\lim_{k \to \infty} \frac{|\xi - x_{k+1}|}{|\xi - x_k|} = \frac{1}{2} \lim_{k \to \infty} \left| \frac{f''(\eta_k)}{f''(\chi_k)} \right| = \frac{1}{2} \left| \lim_{k \to \infty} \frac{f''(\eta_k)}{f''(\chi_k)} \right|$$

y por la continuidad de f ":

$$\lim_{k \to \infty} \frac{|\xi - x_{k+1}|}{|\xi - x_k|} = \frac{1}{2} \left| \frac{\lim_{k \to \infty} f''(\eta_k)}{\lim_{k \to \infty} f''(\chi_k)} \right| = \frac{1}{2} \left| \frac{f''\left(\lim_{k \to \infty} \eta_k\right)}{f''\left(\lim_{k \to \infty} \chi_k\right)} \right|$$

$$\lim_{k \to \infty} \frac{|\xi - x_{k+1}|}{|\xi - x_k|} = \frac{1}{2} \left| \frac{f''(\xi)}{f''(\xi)} \right| = \frac{1}{2}$$

Recuerde que f " no es cero en I_δ . Haciendo $e_k=|\xi-x_k|$ para k=0,1,2,... , re-escribimos la última ecuación:

$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k}=\frac{1}{2}$$

(7)

es decir, la secuencia (x_k) converge a ξ a una tasa de $-\log_{10}\left(\frac{1}{2}\right) = \log_{10} 2$.

Tercero, se pide verificar la conclusión anterior al encontrar la solución de $e^x = 1+x$, comenzando con $x_1 = 1$.

Haciendo $f(x) = e^x - x - 1$, se sabe que la solución es $\xi = 0$, además $f'(\xi) = 0$. La Tabla 5 muestra los resultados al aplicar el método de Newton. Note que los valores x_k son iguales a e_k y ambos convergen a cero. La columna $\frac{e_{k+1}}{e_k}$ indica que las iteraciones convergen linealmente: ese cociente es aproximadamente 0,5 (que es el valor límite de la ecuación (7)).

k	x_k = e_k	(e_(k+1))/(e_k)
1	1,00E+00	
2	5,82E-01	0,582
3	3,19E-01	0,548
4	1,68E-01	0,527
5	8,63E-02	0,514
6	4,38E-02	0,507
7	2,21E-02	0,504
8	1,11E-02	0,502
9	5,54E-03	0,501
10	2,78E-03	0,500
11	1,39E-03	0,500
12	6,94E-04	0,500
13	3,47E-04	0,500
14	1,74E-04	0,500
15	8,68E-05	0,500
16	4,34E-05	0,500
17	2,17E-05	0,500
18	1,08E-05	0,500
19	5,42E-06	0,500
20	2,71E-06	0,500
21	1,36E-06	0,500
22	6,78E-07	0,500
23	3,39E-07	0,500
24	1,70E-07	0,502
25	8,51E-08	0,501
26	4,08E-08	0,479
27	1,90E-08	0,466
28	7,31E-09	0,385
29	7,31E-09	1,000

Tabla 5

Como $\frac{e_{k+1}}{e_k} \approx \frac{1}{2}$, al aplicar logaritmo tenemos:

$$\log_{10} e_{k+1} - \log_{10} e_k \approx -\log_{10} 2$$

Así, $-\log_{10} 2$ es la pendiente de la recta de la Figura 2. El eje Y (escala logarítmica) de esta figura contiene los errores e_k y los valores de k están sobre el eje X. (Note que entre dos

puntos consecutivos de la recta se tiene una pendiente $\frac{\log_{10}e_{k+1}-\log_{10}e_k}{(k+1)-k}$ que es aproximadamente $-\log_{10}2$). Una observación final apunta al comportamiento de las últimas iteraciones, especialmente x_28 y x_29, cuyos valores son iguales porque, debido al redondeo en la sustracción e^(x_28) - x_28 - 1, f(x_28) es representado por cero y el método de Newton nos da x_29 = x_28.

Figura 2. e_k versus k