Projekt C

Christian Hohlmann Enevoldsen, MRB852, Hold 2

27. december 2013

Opgave 1.

a)

$$\mathbf{u}_1 = \begin{pmatrix} 2\\1\\-2\\0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 2\\0\\2\\-1 \end{pmatrix}$$

 $\mathbf{u}_1 \perp \mathbf{u}_2 \text{ hvis } \mathbf{u}_1 \cdot \mathbf{u}_2 = 0$

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 2 \cdot 2 + 1 \cdot 0 - 2 \cdot 2 - 1 \cdot 0$$

= $4 - 4$
= 0

Da u_3 kan skrives som en lineær kombination af u_1 og u_2 er den ikke en del af basen for \mathcal{U}

ergo er $span\{\mathbf{u}_1,\mathbf{u}_2\}$ en ortogonal basis for $\mathcal U$

b)

$$Pv = proj\mathcal{U}_v = AA^T_v$$

$$Pv = \begin{bmatrix} 2 & 2 \\ 1 & 0 \\ -2 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 2 & 0 & -2 \\ 2 & 1 & -2 & 0 \\ 0 & -2 & 8 & -2 \\ -2 & 0 & -2 & 1 \end{bmatrix} v$$

$$\Leftrightarrow P = \begin{bmatrix} 8 & 2 & 0 & -2 \\ 2 & 1 & -2 & 0 \\ 0 & -2 & 8 & -2 \\ -2 & 0 & -2 & 1 \end{bmatrix}$$

 $\mathbf{c})$

$$Pv = \begin{bmatrix} 8 & 2 & 0 & -2 \\ 2 & 1 & -2 & 0 \\ 0 & -2 & 8 & -2 \\ -2 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 9 \\ 0 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ -36 \\ 9 \end{bmatrix}$$

d)

Vi betragter underrummet $\{\mathcal{U}\} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$

 $\mathrm{Lad}\ \mathbf{A} = span(\{\mathcal{U}\})$

Vi ved at $\mathcal{U}^{\perp} = null(\mathbf{A}^T)$

Vi beregner nu $null(\mathbf{A})$

$$\begin{bmatrix} 2 & 2 & 4 \\ 1 & 0 & 1 \\ -2 & 2 & 0 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\updownarrow$$

$$2x_1 + 2x_2 + 4x_3 = 0$$

$$x_1 + x_3 = 0$$

$$-2x_1 + 2x_2 = 0$$

$$-x_2 - x_3 = 0$$

$$\updownarrow$$

$$\begin{bmatrix} 2 & 2 & 4 & 0 \\ 1 & 0 & 1 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} RREF \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$null(\mathbf{A}) = span \begin{pmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

Et basis
$$\beta$$
 for \mathcal{U}^{\perp} er derfor $\beta = \left\{ \begin{bmatrix} -1\\-1\\1 \end{bmatrix} \right\}$

Opgave 2.

a)

$$q_{1} = \frac{v_{1}}{||v_{1}||} = \begin{bmatrix} 1/5\\2/5\\4/5\\2/5 \end{bmatrix}$$

$$y = v_{2} - proj_{v_{1}}^{v_{2}} = \begin{bmatrix} -3\\4\\3\\4 \end{bmatrix} - \begin{bmatrix} 1\\2\\4\\2 \end{bmatrix} = \begin{bmatrix} -4\\2\\-1\\2 \end{bmatrix}$$

$$q_{2} = \frac{y}{||y||} = \begin{bmatrix} -4/5\\2/5\\-1/5\\2/5 \end{bmatrix}$$

Den ortonormale basis for \mathcal{V} er således $\mathcal{B} = \left\{ \begin{bmatrix} 1/5\\2/5\\4/5\\2/5 \end{bmatrix}, \begin{bmatrix} -4/5\\2/5\\-1/5\\2/5 \end{bmatrix} \right\}$

b)

$$[w]_b = \frac{w \cdot q_1}{||q_1||^2} q_1 + \dots + \frac{w \cdot q_4}{||q_4||^2} q_4$$

Lad
$$x_n = \frac{w \cdot q_n}{||q_n||^2} q_n$$

Længderne på $q_1...q_4$ er normaliseret dvs. 1.

Derfor er $x_n = w \cdot q_n$

Og jeg får
$$(x_1, x_2, x_3, x_4) = (0, 5, 5, 10)$$

Således

$$w = 0 \begin{bmatrix} 1/5 \\ 2/5 \\ 4/5 \\ 2/5 \end{bmatrix} + 5 \begin{bmatrix} -4/5 \\ 2/5 \\ -1/5 \\ 2/5 \end{bmatrix} + 5 \begin{bmatrix} 2/5 \\ -1/5 \\ -2/5 \\ 4/5 \end{bmatrix} + 10 \begin{bmatrix} -2/5 \\ -4/5 \\ 2/5 \\ 1/5 \end{bmatrix}$$

$$c)$$

Da vi har med en ortonormal basis at gøre kan man bruge reglen: $Q^{-1} = Q^T$

$$Q^{-1} = \begin{bmatrix} 1/5 & -4/5 & 2/5 & -2/5 \\ 2/5 & 2/5 & -1/5 & -4/5 \\ 4/5 & -1/5 & -2/5 & 2/5 \\ 2/5 & 2/5 & 4/5 & 1/5 \end{bmatrix}^{T} = \begin{bmatrix} 1/5 & 2/5 & 4/5 & 2/5 \\ -4/5 & 2/5 & -1/5 & 2/5 \\ 2/5 & -1/5 & -2/5 & 4/5 \\ -2/5 & -4/5 & 2/5 & 1/5 \end{bmatrix}$$

Opgave 4.

a, b)

Se Main.java og Matrix.java. Jeg har tilladt mig at ændre navnet til Matrix (fra matrix), da det giver 100 gange mere mening. Eksempel på kørsel:

GramSchmidt

[0,666667 -0,333333 -0,533333] [0,000000 0,000000 0,600000] [0,333333 -0,666667 0,533333] [0,666667 0,666667 0,266667]

v1...

[2,800000]

[0,600000]

[3,200000]

[1,600000]

v2...

[1,000000]

[2,000000]

[3,000000]

[4,000000]