Московский Авиационный Институт

(Национальный Исследовательский Университет)

Факультет информационных технологий и прикладной математики

Кафедра 806 "Вычислительная математика и программирование"

Курсовая работа

по курсу "Архитектура компьютера" 1 семестр

Задание 3. Вещественный тип. Приближенные вычисления. Табулирование функций

Студент: Старостина А.А.

Группа: М8О-108Б-22

№ по списку: 19

Руководитель: Сахарин Н.А.

Дата: 08.01.2023

Оценка:

Содержание

1.	Задание	. 3
2.	Вариант	. 3
3.	Общий метод решения.	3
4.	Общие сведения о программе	4
5.	Функциональное назначение	. 4
6.	Описание логической структуры	4
7.	Описание переменных, констант и подпрограмм	5
8.	Протокол.	6
9.	Входные данные	8
10.	Выходные данные	. 8
11.	Выволы	10

Задание

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n + 1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon^* k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа ДЛЯ данной ЭВМ, подбираемый коэффициент, обеспечивающий экспериментально приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное є и обеспечивать корректные размеры генерируемой таблицы.

Вариант 19

No	Ряд	a	b	Функция
19	$1 + \frac{x^2}{2} \dots + \frac{x^{2n}}{(2n)!}$	0.1	0.6	chx

Общий метод решения

Вычисление значения функции в некоторой точке на отрезке от 0.1 до 0.6 двумя способами:

1: использование программных средств, встроенных в стандартную математическую библиотеку языка Си "math.c".

2 : при помощи ряда Тейлора.

Общие сведения о программе

Аппаратное обеспечение: домашний ноутбук

Операционная система: Linux Ubuntu, версия 22.04.1 LTS

Язык и система программирования: C, GNU

Местонахождение файлов: /home/ann

Компиляция программы: gcc -lm kp3.c

Вызов программы: ./a.out

Функциональное назначение

Программа предназначена для высокоточного вычисления вещественного значения трансцедентных функций в алгебраической форме с использованием ряда Тейлора и при помощи встроенных программных функций библиотеки языка Си.

Описание логической структуры

Программа вычисляет значение функции в данной точке при помощи разложения по ряду Тейлора и с использованием программных средств языка программирования СИ. Ряд Тейлора мы преобразуем в функцию, которая вычисляет слагаемые ряда. Далее мы складываем полученные слагаемые, пока их количество не превысит 100 или значение

4

одного из них не станет совсем мало. В конце мы выводим таблицу с значением аргумента, значением функции, вычисленным с помощью ряда Тейлора и с использованием программной библиотеки, и номером итерации.

Описание переменных, констант и подпрограмм

Функция	Входные аргументы	Описание
computer_epsilo		Функция для подсчета
n		машинного є. Сравниваем
		1+ε/2 с 1. Последнее число,
		при стремлении є к нулю, при
		котором $1+\epsilon/2 = 1$ и будет
		машинным є
func	long double x	Вычисляет значение входной
		функции
taylor	long double x	Считает сумму ряда по
		формуле Тейлора
tabulation	const ld a, const ld b,	Печатает значения в таблицу
	const uint steps	

Таблица 1. Описание функций программы

Переменная	Значение
long double eps	Машинный эпсилон (абсолютный)
MAX_ITER	Максимальное число итераций

const long double a,b	Границы отрезка
const long double step	Отрезок
long double n, steps	Количество разделителей, которые разбивают отрезок [a, b]
long double result	Сумма ряда
long double x	Значение аргумента функции
int n	Текущая итерация
long double cur_member	Текущий член
long double ch	Вычисляет числитель
long double fac	Вычисляет знаменатель

Таблица 2. Описание переменных

Протокол

```
Код программы:

#include <math.h>
#include <stdio.h>

#define MAX_ITER 100

typedef long double ld;
typedef unsigned uint;

ld computer_epsilon() {
```

```
1d \text{ eps} = 1.0;
  while (1.0 + eps / 2.0 != 1.0)
     eps *= 0.5;
  return eps;
}
ld func(ld x) {
  return cosh(x);
}
ld taylor(ld x) {
  ld eps = computer epsilon();
  int n = 0.0;
  ld cur member = 1.0, ch = 1.0, fac = 1.0, result = 0.0;
  while ((fabsl(cur member) > sqrt(eps) && n <= MAX ITER)) {
     cur member *= ch / fac;
     ch *= x*x;
     fac *= 2*(n+1);
     result += cur member;
     n++;
  return result;
}
void tabulation(const ld a, const ld b, const uint steps) {
  const ld step = b/steps - a/steps;
  for (ld x = a; x \le b; x += step)
     printf("|\%.3Lf|\%.19Lf|\%.19Lf|\n", x, func(x), taylor(x));
}
```

```
int main() {
    ld eps = computer_epsilon();
    printf("Machine epsilon: %.45Lf\n", eps);
    printf("______\n");
    printf("| x | function | Teylor |\n");
    printf("|____|\n");
    tabulation(0.1, 0.6, 14);
    printf("|___|\n");
}
```

Входные данные

Не подаются. В программе указано выполнить действия для 14 итераций.

Выходные данные

x		sum of ro	W		function		
0.1	00 1.0	005004168	05580359	996 1.00	050041680)5580705670	0
0.1	38 1.0	009601123	19658304	086 1.00	096011231	965897891	9
0.1	77 1.0	015691755	24130606	770 1.0	156917552	2413171623	7
0.2	15 1.0	023285075	11142135	520 1.02	232850751	1143773634	4
0.2	54 1.0	032392316	91340289	173 1.03	323923169	1342592250	6
0.2	92 1.0	043026954	55929943	150 1.04	430269545	55932981083	3

```
| 0.331 | 1.05520472170101423210 | 1.05520472170105339416 | | 0.369 | 1.06894363500780754697 | 1.06894363500785605225 | | 0.408 | 1.08426402082146028772 | 1.08426402082151840389 | | 0.446 | 1.10118854522853490890 | 1.10118854522860010192 | | 0.485 | 1.11974224759422623283 | 1.11974224759428864218 | | 0.523 | 1.13995257760741697584 | 1.13995257760744506115 | | 0.562 | 1.16184943589175203644 | 1.16184943589166156386 | | 0.600 | 1.18546521824282886838 | 1.18546521824240169707 |
```

Вывод

В ходе выполнения данной работы были получены навыки вычисления заданной функции при помощи разложения по ряду Тейлора и с помощью встроенной библиотеки "math.c", было изучено вычисление и использование машинного эпсилон., как абсолютного, так и относительного. При сравнении данных в таблице, можно увидеть, что значения различаются приблизительно после 13 знака после запятой. Это происходит из-за ограниченного количества памяти в компьютере для представлении вещественных чисел, что приводит к тому, что в окрестностях границ данного диапазона возникают погрешности.

И что важно, вычисление трансцендентных функций при помощи формулы Тейлора не применяется на практике ввиду большой ресурсоемкости и значительной погрешности.