§5 多维随机变量函数的分布

一.和的分布

例 1 设二维离散型随机变量(X, Y)的联合分布律为

Y	1	2	3	4
1	<u>1</u> 4	O	O	O
2	$\frac{1}{8}$	$\frac{1}{8}$	O	O
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	O
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

令:Z = X + Y,试求随机变量Z的分布律.

例 1 (续)

§5 多维随机变量函数的分布

解: 由于X与Y的取值都是1, 2, 3, 4,

可知随机变量Z = X + Y的取值为2,3,4,5,6,7,8.

$$P\{Z=2\} = P\{X=1, Y=1\} = \frac{1}{4};$$

$$P\{Z=3\} = P\{X=1, Y=2\} + P\{X=2, Y=1\} = 0 + \frac{1}{8} = \frac{1}{8};$$

$$P\{Z=4\}$$

$$= P\{X=1, Y=3\} + P\{X=2, Y=2\} + P\{X=3, Y=1\}$$

$$= 0 + \frac{1}{8} + \frac{1}{12} = \frac{5}{24};$$

§5 多维随机变量函数的分布

(续)

$$P\{Z=5\} = P\{X=1, Y=4\} + P\{X=2, Y=3\}$$
$$+ P\{X=3, Y=2\} + P\{X=4, Y=1\}$$
$$= 0 + 0 + \frac{1}{12} + \frac{1}{16} = \frac{7}{48};$$

$$P\{Z=6\}$$

$$= P\{X=2, Y=4\} + P\{X=3, Y=3\} + P\{X=4, Y=2\}$$

$$= 0 + \frac{1}{12} + \frac{1}{16} = \frac{7}{48};$$

$$P\{Z=7\} = P\{X=3, Y=4\} + P\{X=4, Y=3\}$$

$$= 0 + \frac{1}{16} = \frac{1}{16};$$

例 1 (续)

§5 多维随机变量函数的分布

$$P\{Z=8\} = P\{X=4, Y=4\} = \frac{1}{16}$$
.

由此得Z = X + Y的分布律为

§5 多维随机变量函数的分布

设随机变量 X = Y 相互独立,且分别服从参数为 $\lambda_1 = \lambda_2$ 的 Poisson 分布,令 Z = X + Y ,试求随 机变量 Z 的分布律 .

解 由随机变量X = Y的取值都是0, 1, 2, \cdots ,

可知随机变量 Z = X + Y的取值也是 0 , 1 , 2 , \cdots , 而且 ,

$$P\{Z=n\} = P\{X+Y=n\} = P\{\bigcup_{k=0}^{n} (X=k, Y=n-k)\}$$

例 2 (续)

§5 多维随机变量函数的分布

$$\begin{split} &= \sum_{k=0}^{n} P\{X = k, Y = n - k\} \\ &= \sum_{k=0}^{n} P\{X = k\} P\{Y = n - k\} \qquad (随机变量 X 与 Y 的独立性) \\ &= \sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \cdot \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}} \\ &= e^{-(\lambda_{1} + \lambda_{2})} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \lambda_{1}^{k} \cdot \lambda_{2}^{n-k} \\ &= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \cdot \lambda_{2}^{n-k} \end{split}$$

例 2 (续)

§5 多维随机变量函数的分布

$$=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^n C_n^k \cdot \lambda_1^k \cdot \lambda_2^{n-k} = \frac{e^{-(\lambda_1+\lambda_2)}}{n!} (\lambda_1+\lambda_2)^n$$

即,

$$P\{Z=n\} = \frac{\left(\lambda_1 + \lambda_2\right)^n}{n!} e^{-(\lambda_1 + \lambda_2)}$$

$$\left(n = 0, 1, 2, \cdots\right)$$

由Poisson分布的定义,知Z = X + Y服从参数为 $\lambda_1 + \lambda_2$ 的 Poisson分布.

§5 多维随机变量函数的分布

设(X, Y)是二维连续型随机变量,其联合密度函数为 f(x, y),

令:
$$Z = X + Y$$
,

下面计算随机变量 Z = X + Y的密度函数 $f_z(z)$. 首先计算随机变量 Z = X + Y的分布函数 $F_z(z)$.

$$F_{Z}(z) = P\{Z \le z\} = P\{X + Y \le z\}$$
$$= \iint f(x, y) dx dy$$

连续型随机变量和的分布

₹5 多维随机变量函数的分布

$$F_{Z}(z) = \iint_{x+y \le z} f(x, y) dx dy = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} f(x, y) dy$$
作变换: $y = u - x$

则 $x + y \le z \Rightarrow u \le z$

$$F_{Z}(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z} f(x, u-x) du$$

$$= \int_{-\infty}^{z} du \int_{-\infty}^{+\infty} f(x, u-x) dx$$

§5 多维随机变量函数的分布

注意里层的积分是 u的函数:

$$g(u) = \int_{-\infty}^{+\infty} f(x, u - x) dx$$

$$(z) = \int_{-\infty}^{z} f(x) du$$

即有
$$F_Z(z) = \int_{-\infty}^z g(u) du$$

由分布函数与密度函数之间的关系,上式对表求 导,可得Z = X + Y的密度函数为

$$f_Z(z) = F_Z'(z) = \frac{d}{dz} \left(\int_{-\infty}^z g(u) du \right) = g(z)$$

§5 多维随机变量函数的分布

即
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z-x) dx$$

注意到在前面的积分中

$$F_{Z}(z) = \iint_{x+y \le z} f(x, y) dx dy = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} f(x, y) dy$$

我们是先对y,后对x积分的,若将其改成先对x,后对y积分,通过类似的计算,有

§4 多维随机变量函数的分布

$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

因此,我们有以下结论:

设二维连续型随机变量 (X, Y) 的联合密度函数为 f(x, y),则 Z = X + Y 的密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z-x)dx$$

或
$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

§4 多维随机变量函数的分布

特别地,如果随机变量X与Y相互独立,则有

$$f(x, y) = f_X(x)f_Y(y)$$

此时,我们有

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx$$

或者

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$$

我们称上式为函数 $f_{x}(x)$ 与 $f_{y}(y)$ 的卷积,记作

$$f_X(x) * f_Y(y)$$

§4 多维随机变量函数的分布

因此,我们有以下结论:

如果随机变量 X = Y 相互独立,则它们的和 Z = X + Y的密度函数等于 X = Y 密度函数的卷积:

$$f_{Z}(z) = f_{X}(x) * f_{Y}(y)$$

$$= \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z - x) dx$$

$$= \int_{-\infty}^{+\infty} f_{X}(z - y) f_{Y}(y) dy$$

§5 多维随机变量函数的分布

3

设随机变量X = Y相互独立, $X \sim N(0, 1)$, $Y \sim N(0, 1)$,令Z = X + Y,试求随机变量Z的密度函数.

解

由题意,可知

$$f_X(x) = f_Y(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad x \in (-\infty, +\infty)$$

设随机变量Z = X + Y的密度函数为 $f_z(z)$,则有

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2}} e^{-\frac{(z-x)^{2}}{2}} dx$$

例 3 (续)

§5 多维随机变量函数的分布

在上式中e的指数上对x作配方法,得

$$f_{z}(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{4}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\left(x - \frac{z}{2}\right)^{2}} dx$$

作积分变换
$$\frac{u}{\sqrt{2}} = x - \frac{z}{2}$$
,则有 $\frac{du}{\sqrt{2}} = dx$,代入上式,有

$$f_{Z}(z) = \frac{1}{\sqrt{2\pi}\sqrt{2}}e^{-\frac{z^{2}}{2\cdot(\sqrt{2})^{2}}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}}e^{-\frac{u^{2}}{2}}du = \frac{1}{\sqrt{2\pi}\sqrt{2}}e^{-\frac{z^{2}}{2\cdot(\sqrt{2})^{2}}}$$

这表明, $Z \sim N(0, 2)$.

结 论

§5 多维随机变量函数的分布

一般地,我们有如下结论:

如果随机变量 X = Y 相互独立,且

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$

$$Y \sim N(\mu_2, \sigma_2^2)$$

$$Z = X + Y$$
,

则
$$Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

结论

§5 多维随机变量函数的分布

更一般地,我们有如下结论:

如果随机变量 X_1 , X_2 , \cdots , X_n 相互独立,

$$X_i \sim N(\mu_i, \sigma_i^2)$$
 $(i=1, 2, \dots, n)$

又 a_1 , a_2 , …, a_n 为n个实常数,

$$\diamondsuit: Z = \sum_{i=1}^n a_i X_i ,$$

则
$$Z \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$$

§5 多维随机变量函数的分布

设随机变量 X 与Y 相互独立,都服从区间 (0, 1) 上的均匀分布,令 Z = X + Y,试求随机变量 Z 的密度函数.解:方法一 用公式: $f_Z(z) = \int_{-\infty}^\infty f_X(x) f_Y(z-x) dx$ 由题意,可知

$$f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其它 \end{cases} \qquad f_Y(y) = \begin{cases} 1 & 0 < y < 1 \\ 0 & 其它 \end{cases}$$

设随机变量Z = X + Y的密度函数为 $f_z(z)$,则有

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx$$

§5 多维随机变量函数的分布

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx$$

$$f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其它 \end{cases} \qquad f_Y(z - x) = \begin{cases} 1 & 0 < z - x < 1 \\ 0 & 其它 \end{cases}$$

₹5 多维随机变量函数的分布

 $f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx$ $0 < x < 1, \ 0 < z - x < 1$

(1) . 若
$$z \le 0$$
 , 或 z 2, $f_z(z) = 0$

(2) . 若
$$0 < z \le 1$$
 , $f_z(z) = \int_0^z 1 dx = z$

(3) . 若 $1 < z < 2$, $f_z(z) = \int_1^z 1 dx = 2 - z$

综上所述,我们可得 $z = 1$

(3) . 若
$$1 < z < 2$$
 , $f_z(z) = \int_{z-1}^{1} 1 dx = 2 - z$ 绝 压锅水 我们可想 $z = 1$

$$Z = X + Y$$
的密度函数为
$$f_z(z) = \begin{cases} z & 0 < z \le 1\\ 2 - z & 1 < z < 2 \end{cases}$$

例 4 (续)方法二

$$F_{Z}(z) = P\{Z \le z\} = P\{X + Y \le z\} = \iint_{x+y \le z} f(x, y) dxdy$$

(1). 若
$$z \le 0$$
, 则 $F_z(z) = 0$

(2) . 若
$$0 < z \le 1$$
 ,

$$F_Z(z) = \iint_{G_1} 1 dx dx = \frac{1}{2} z^2$$

(3) . 若
$$1 < z \le 2$$
, $F_Z(z) = 1 - \frac{1}{2}(2 - z)^2$

(4). 若 2 < z,
$$F_Z(z) = 1$$
.

§5 多维随机变量函数的分布

设随机变量 X = Y 相互独立,X 服从区间(0, 1) 上的均匀分布,Y 服从 $\lambda = 1$ 的指数分布,令 Z = X + Y,试求随机变量 Z 的密度函数 .

解。由题意,可知

$$f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{ 其它} \end{cases}$$

$$f_{Y}(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases} \qquad f_{Y}(z - x) = \begin{cases} e^{-(z - x)} & z - x > 0 \\ 0 & z - x \le 0 \end{cases}$$

$$f_X(x)f_Y(z-x) = \begin{cases} e^{-(z-x)} & 0 < x < 1, z-x > 0 \\ 0 & z-x \le 0 \end{cases}$$

例 5 (续设随机变量Z = X + Y的密度函数为 $f_z(z)$,则有

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx, \quad 0 < x < 1, \quad z-x > 0$$

(1) . 若
$$z \le 0$$
 , $f_z(z) = 0$

(2). **若**
$$0 < z \le 1$$
 ,

$$f_Z(z) = \int_0^z 1 * e^{-(z-x)} dx = e^{-z} \int_0^z e^x dx = 1 - e^{-z}$$

(3) . 若
$$z > 1$$
 ,
$$f_{z}(z) = \int_{0}^{1} e^{-(z-x)} dx = e^{-z} \int_{0}^{1} e^{x} dx = e^{-z+1} - e^{-z}$$

§5 多维随机变量函数的分布

(续)

综上所述,我们可得Z = X + Y的密度函数为

$$f_{Z}(z) = \begin{cases} 0 & z \le 0 \\ 1 - e^{-z} & 0 < z \le 1 \\ e^{-z+1} - e^{-z} & z > 1 \end{cases}$$

<u>补充结论</u>:

§5 多维随机变量函数的分布

(1) 设(X, Y)是二维连续型随机变量,其联合密度函数为f(x, y), 令: $Z = \frac{X}{Y}$,

则随机变量 $Z = \frac{X}{Y}$ 的密度函数 为:

$$f_Z(z) = \int_{-\infty}^{+\infty} |y| f(zy, y) dy$$

§5 多维随机变量函数的分布

特别地,如果随机变量X与Y相互独立,则有

$$f(x, y) = f_X(x)f_Y(y)$$

此时,我们有

$$f_Z(z) = \int_{-\infty}^{+\infty} |y| f_X(yz) f_Y(y) dy$$

补充结论:

§5 多维随机变量函数的分布

- (2 设(X,Y)是二维连续型随机变量,其联合密度函
- **数为** f(x, y) 令:Z = X Y,则

$$f_Z(z) = \int_{-\infty}^{+\infty} f(z+y, y)dy$$

- $(3 \odot (X, Y)$ 是二维连续型随机变量,其联合密度函
- **数为** f(x, y),令:Z = XY,则

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f\left(x, \frac{z}{x}\right) \frac{1}{|x|} dx = \int_{-\infty}^{+\infty} f\left(\frac{z}{y}, y\right) \frac{1}{|y|} dy$$

§5 多维随机变量函数的分布

设随机变量 X = Y 相互独立,分别服从参数为 $\lambda_1 = \lambda_2$ 的指数分布,令 $Z = \frac{X}{Y}$,试求随机变量 Z 的密度函数 .

解: 由题意,可知

$$f_X(x) = \begin{cases} \lambda_1 e^{-\lambda_1 x} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad f_Y(y) = \begin{cases} \lambda_2 e^{-\lambda_2 y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

例 7 (续)

§5 多维随机变量函数的分布

设:
$$Z = \frac{X}{Y}$$

设: $Z = \frac{X}{V}$ 由随机变量 X = Y 相互独立性,我们有

$$f_{Z}(z) = \int_{-\infty}^{+\infty} |y| f_{X}(yz) f_{Y}(y) dy$$

(1) . 若
$$z \le 0$$
 , $f_z(z) = 0$.

(2) . 若
$$z > 0$$
,

$$f_Z(z) = \int_0^{+\infty} y \lambda_1 e^{-\lambda_1 yz} \lambda_2 e^{-\lambda_2 y} dy$$

§5 多维随机变量函数的分布

(续)

$$= \lambda_1 \lambda_2 \int_0^{+\infty} y e^{-(\lambda_2 + \lambda_1 z)y} dy = \frac{\lambda_1 \lambda_2}{(\lambda_2 + \lambda_1 z)^2}$$

所以,
$$Z = \frac{X}{Y}$$
的密度函数为

$$f_{Z}(z) = \begin{cases} \frac{\lambda_{1}\lambda_{2}}{(\lambda_{2} + \lambda_{1}z)^{2}} & z > 0\\ 0 & z \leq 0 \end{cases}$$

二. 其它的分布

§5 多维随机变量函数的分布

设(X, Y)是二维连续型随机变量,其联合密度函数为 f(x, y), Z = g(X, Y) 求随机变量函数 Z = g(X, Y)的密度函数 $f_Z(z) = F_Z'(z)$,

本节的解题步骤

- 1. 先求随机变量函数 Z = g(X, Y)的分布函数 $F_z(z)$,
- 2. 再求随机变量函数 Z = g(X, Y)的密度函数 $f_z(z) = F'_z(z)$,

§5 多维随机变量函数的分布

设随机变量 X 与 Y 相互独立, $X \sim N(0, 1)$, $Y \sim N(0, 1)$, 令 $Z = \sqrt{X^2 + Y^2}$,试求随机变量 Z 的密度函数 .

解 由题意,可知

$$f_X(x) = f_Y(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 $x \in (-\infty, +\infty)$

由于X与Y是相互独立的,所以,(X, Y)的联合密度函数为

例 8 (续)

§5 多维随机变量函数的分布

所
$$S$$
 (Y) $f(x, y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$ $(-\infty < x, y < +\infty)$ 所以, $Z = \sqrt{X^2 + Y^2}$ 的分布函数为 $F_Z(z) = P\{Z \le z\} = P\{\sqrt{X^2 + Y^2} \le z\}$ 若 $Z \le 0$,则 $F_Z(z) = 0$ 若 $Z > 0$,则 $F_Z(z) = P\{\sqrt{X^2 + Y^2} \le z\} = \iint_{\sqrt{x^2+y^2} \le z} f(x, y) dx dy$ $= \frac{1}{2\pi} \iint_{\sqrt{x^2+y^2} \le z} e^{-\frac{x^2+y^2}{2}} dx dy$

§5 多维随机变量函数的分布

(续)

作极坐标变换 $x = r \cos \theta$, $y = r \sin \theta$, 则有

$$F_{Z}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{z} e^{-\frac{r^{2}}{2}} r dr = \int_{0}^{z} e^{-\frac{r^{2}}{2}} r dr$$

$$F_Z(z) = \begin{cases} \int_0^z e^{-\frac{r^2}{2}} r dr & z > 0 \\ 0 & z \le 0 \end{cases}$$
 所以, $Z = \sqrt{X^2 + Y^2}$ 的密度函数为

$$f_Z(z) = \begin{cases} ze^{-\frac{z^2}{2}} & z > 0\\ 0 & z \le 0 \end{cases}$$

§5 多维随机变量函数的分布

设随机变量 X与Y相互独立, $X \sim B(1, p)$, $Y \sim B(1, p)$ $(0 ,令<math>\xi = \min(X, Y)$, $\eta = \max(X, Y)$,试求随机变量 ξ 与 η 的联合分布律及 ξ 与 η 各自的边缘分布律,并判断 ξ 与 η 是否相互独立?

解:

由随机变量 X与Y的取值都为 0与1,知

$$\xi = \min(X, Y), \eta = \max(X, Y)$$

的取值也为0与1.

例 9 (续)

$$P\{\xi=0, \eta=0\} = P\{X=0, Y=0\}$$

$$= P\{X=0\}P\{Y=0\} = (1-p)^2$$

$$P\{\xi=0, \eta=1\} = P\{X=0, Y=1\} + P\{X=1, Y=0\}$$

$$= P\{X=0\}P\{Y=1\} + P\{X=1\}P\{Y=0\}$$

$$= 2p(1-p)$$

$$P\{\xi=1, \eta=0\} = P(\emptyset) = 0$$

$$P\{\xi=1, \eta=1\} = P\{X=1, Y=1\}$$

$$= P\{X=1\}P\{Y=1\} = p^2$$

例 9 (续)

§5 多维随机变量函数的分布

随机变量 ξ 与 η 的联合分布律及 ξ 与 η 各自的边缘分布律为,

`	ξ	0	1	p_{i} .
_	0	$(1-p)^2$	2p(1-p)	$1 - p^2$
	1	0	p ²	p ²
_	$p_{\cdot j} = 0 - n - 1$	$(1-p)^2$	$1-(1-p)^2$	

由于0 , 所以,

 $P\{\xi=1, \eta=0\}=0 \stackrel{\neq}{=} P\{\xi=1\}P\{\eta=0\}=p^2 (1-p)^2$ 这表明,随机变量 $\xi=\eta$ 不独立.

例 10

§5 多维随机变量函数的分布

设 X_1 , X_2 , \cdots , X_n 是独立的连续型随机变量,

 X_i 的分布函数为 $F_i(x)$ $(i = 1, 2, \dots n)$.令:

$$X_{(1)} = \min(X_1, X_2, \dots, X_n),$$

 $X_{(n)} = \max(X_1, X_2, \dots, X_n),$

试求随机变量 $X_{(1)}$ 与 $X_{(n)}$ 的分布函数.

解

设随机变量 $X_{(1)}$ 的分布函数为 $F_{(1)}(x)$,

设随机变量 $X_{(n)}$ 的分布函数为 $F_{(n)}(x)$,

例 10

§5 多维随机变量函数的分布

(续)

则

$$F_{(n)}(x) = P\{X_{(n)} \le x\}$$

$$= P\{\max(X_1, X_2, \dots, X_n) \le x\}$$

$$= P\{X_1 \le x, X_2 \le x, \dots, X_n \le x\}$$

$$= P\{X_1 \le x\}P\{X_2 \le x\}\dots P\{X_n \le x\}$$

$$= F_1(x)F_2(x)\dots F_n(x)$$

例 10 (续)

$$F_{(1)}(x) = P\{X_{(1)} \le x\}$$

$$= P\{\min(X_1, X_2, \dots, X_n) \le x\}$$

$$= 1 - P\{\min(X_1, X_2, \dots, X_n) > x\}$$

$$= 1 - P\{X_1 > x, X_2 > x, \dots, X_n > x\}$$

$$= 1 - P\{X_1 > x\}P\{X_2 > x\} \cdots P\{X_n > x\}$$

$$= 1 - [1 - P\{X_1 \le x\}][1 - P\{X_2 \le x\}] \cdots [1 - P\{X_n \le x\}]$$

$$= 1 - [1 - F_1(x)][1 - F_2(x)] \cdots [1 - F_n(x)]$$

§5 多维随机变量函数的分布

特别,若 X_1 , X_2 , \cdots , X_n 是独立同分布的连续型

随机变量, X_1 的分布函数为F(x).令:

$$X_{(1)} = \min(X_1, X_2, \cdots, X_n),$$

$$X_{(n)} = \max(X_1, X_2, \cdots, X_n),$$

则随机变量 $X_{(1)}$ 的分布函数为

$$F_{(1)}(x) = P\{X_{(1)} \le x\} = 1 - [1 - F(x)]^n$$

随机变量 $X_{(n)}$ 的分布函数为

$$F_{(n)}(x) = P\{X_{(n)} \le x\} = [F(x)]^n$$

例 11

§5 多维随机变量函数的分布

设系统 L是由n个相互独立的子系统 L_1 , L_2 , \cdots , L_n 并联而成,并且 L_i 的寿命为 X_i ,它们都服从参数为 λ 的指数分布,试求系统 L 的寿命 Z 的密度函数 .

由于系统 L是由n个相互独立的子系统 L_1 , L_2 , \cdots , L_n 并联而成,故有

$$Z = \max(X_1, X_2, \dots, X_n),$$

又因为子系统 L_i 的寿命 X_i 服从参数为 λ 的指数分布,因此 X_i 的密度函数为

₹5 多维随机变量函数的分布

例 11 (续)
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

X, 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

所以,由例9知

$$Z = \max(X_1, X_2, \dots, X_n)$$

的密度函数为

的密度函数为
$$f_Z(x) = n[F(x)]^{n-1} f(x) = \begin{cases} n(1 - e^{-\lambda x})^{n-1} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

二.连续型随机变量商的分布

§5 多维随机变量函数的分布

连续型随机变量商的分布

设(X,Y)是二维连续型随机变量,其联合密度函

数为
$$f(x, y)$$
, 令: $Z = \frac{X}{Y}$,

下面计算随机变量 $Z = \frac{X}{Y}$ 的密度函数 $f_z(z)$.

首先计算随机变量 $Z = \frac{X}{Y}$ 的分布函数 $F_z(z)$.

$$F_{Z}(z) = P\{Z \le z\} = P\left\{\frac{X}{Y} \le z\right\}$$

连续型随机变量商的分布

$$= \iint_{\frac{x}{y} \le z} f(x, y) dx dy$$

$$= \iint_{\frac{x}{y} \le z, y > 0} f(x, y) dx dy + \iint_{\frac{x}{y} \le z, y < 0} f(x, y) dx dy$$

$$= \iint_{x \le zy, y>0} f(x, y) dx dy + \iint_{x} f(x, y) dx dy$$

$$= \int_{0}^{+\infty} dy \int_{-\infty}^{zy} f(x, y) dx + \int_{-\infty}^{0} dy \int_{zy}^{+\infty} f(x, y) dx$$

连续型随机变量商的分布

在第一个积分
$$\int_{0}^{+\infty} dy \int_{-\infty}^{zy} f(x, y) dx$$
 中,作变换 $x = uy$,则 $dx = ydu$,当 $x = zy$ 时, $u = z$;

当
$$x \rightarrow -\infty$$
时,注意到 $y > 0$,因而有 $u \rightarrow -\infty$;

$$\int_{0}^{+\infty} dy \int_{-\infty}^{zy} f(x, y) dx = \int_{0}^{+\infty} dy \int_{-\infty}^{z} f(uy, y) y du$$

$$= \int_{-\infty}^{z} du \int_{0}^{+\infty} y f(uy, y) dy = \int_{-\infty}^{z} du \int_{0}^{+\infty} |y| f(uy, y) dy$$

连续型随机变量商的分布

§5 多维随机变量函数的分布

同理,在第二个积分
$$\int_{-\infty}^{0} dy \int_{zy}^{+\infty} f(x, y) dx$$
 中,作变换 $x = uy$,

则 dx = ydu, 当 x = zy时, u = z;

当 $x \to +\infty$ 时,注意到y < 0,因而有 $u \to -\infty$;

$$\int_{-\infty}^{0} dy \int_{zv}^{+\infty} f(x, y) dx = \int_{-\infty}^{0} dy \int_{z}^{-\infty} f(uy, y) y du$$

$$= \int_{-\infty}^{z} du \int_{-\infty}^{0} (-y) f(uy, y) dy = \int_{-\infty}^{z} du \int_{-\infty}^{0} |y| f(uy, y) dy$$

□ 返回主目录

连续型随机变量商的分布

§5 多维随机变量函数的分布

$$F_{z}(z) = \int_{-\infty}^{z} du \int_{0}^{+\infty} |y| f(uy, y) dy + \int_{-\infty}^{z} du \int_{-\infty}^{0} |y| f(uy, y) dy$$
$$= \int_{-\infty}^{z} \left(\int_{-\infty}^{+\infty} |y| f(uy, y) dy \right) du$$

所以,由密度函数的定义有

$$f_Z(z) = \int_{-\infty}^{+\infty} |y| f(zy, y) dy$$

- 1 要理解二维随机变量的分布函数的定义及性质
- 2 要理解二维随机变量的边缘分布以及与联合分布的关系,了解条件分布。
- 3 掌握二维均匀分布和二维正态分布。
- 4 要理解随机变量的独立性。
- 5 要会求二维随机变量的和及多维随机 变量的最值分布和函数的分布。

 p_{87-89} 21, 24, 26, 29, 31, 35, 36.