Data leakage assignment

Team names, ids:

Menna Osama Elminshawy	20217011
Yassin Ehab	20216117
Radwa Belal	20217005

Data cleaning steps:

- 1. First we checked for any duplicates, any missing values in the data. And we found none
- 2. After that we encoded the categorical column "Type" using the label encoding technique such that: High is 0, low is 1, medium is 2
- 3. Explored the data to see what may cause the problem of data leakage and found out that :
 - → The Failure Type column introduces target leakage because it only contains values when Failure = 1. If used as a feature, the model can trivially predict failures by checking whether Failure Type is populated, rather than learning meaningful patterns from sensor data. This cause a poor generalization

- → The "Product ID" can also be a cause of data leakage if the same machine /product appeared in both training, testing
- 4. Explored the data and found out there are some highly correlated features like "Torque" & "Rotational Speed", "Process temperature" & "Air temperature" those may affect the performance of the model so we dropped the "Torque", "Process temperature"

Machine models:

We used many models to classify if it failed or not like DT, Random Forest, Logistic Regression, SVM

Here is the before and after handling data leakage evaluation results:

After:

Results:

Performance Comparison:							
	Model	Scenario	Accuracy	Precision	Recall	F1	
0	Logistic Regression	No Leakage	0.8295	0.145455	0.823529	0.247241	
1	Logistic Regression	With Leakage	0.9990	1.000000	0.970588	0.985075	
2	Naive Bayes	No Leakage	0.7305	0.089005	0.750000	0.159126	
3	Naive Bayes	With Leakage	0.9990	1.000000	0.970588	0.985075	
4	Random Forest	No Leakage	0.9660	0.500000	0.735294	0.595238	
5	Random Forest	With Leakage	0.9990	1.000000	0.970588	0.985075	
6	XGBoost	No Leakage	0.9770	0.625000	0.808824	0.705128	
7	XGBoost	With Leakage	0.9990	1.000000	0.970588	0.985075	
6	XGBoost	No Leakage	0.9770	0.625000	0.808824	0.705128	

Data Leakage Different techniques & limitations:

1. Train-Test Performance Comparison

How it works:

- Train your model and check its performance on both the training set and test set
- If the model performs almost perfectly on the training set but poorly on the test set, it might be overfitting (not necessarily leakage).

- If it performs suspiciously well on both, there could be data leakage (e.g., test data influencing training).

Limitation

- Doesn't tell you where the leakage is coming from.
- Some models (like deep learning) naturally overfit without leakage.

2. Check Feature Importance for Illogical Features

How it works:

- Train a model (like Random Forest or XGBoost) and check feature importance.
- If irrelevant features (e.g., IDs, timestamps, future data) have high importance, leakage is likely.

Limitation

- Requires domain knowledge to recognize illogical features.
- Some leakage (e.g., subtle time-based leaks) may not show up in feature importance.

3. Leakage via Time-Based Data Splitting

Technique: Using future data to predict past events (e.g., stock price prediction with test data from before training data).

Limitation: Causes unrealistic model performance since real-world predictions can't rely on future data.