- 二、(20分)设 X_1, X_2, \cdots, X_n 为一列独立的随机变量, 且均服从 U(0,1) 分布. 记 $Y = \min\{X_1, X_2, \cdots, X_n\}, \quad Z = \max\{X_1, X_2, \cdots, X_n\}.$
 - (1) 试证明: 对任意常数 0 < y, z < 1, 有

$$P(Y \le y, Z \le z) = \begin{cases} z^n - (z - y)^n, & y < z; \\ z^n, & y \ge z. \end{cases}$$

- (2) 利用上述结果, 试求随机变量 Y 和 Z 的联合密度函数 f(y,z).
- (3) 在 Y = y 条件下 (0 < y < 1), 试求 Z 的条件密度函数 $f_{Z|Y}(z|y)$.
- (4) 试求 Y 和 Z 的协方差 Cov(Y, Z).
- 三、(15分)设随机变量 X, Y 和 Z 相互独立, 且均服从参数为 1 的指数分布. 记

$$U = \frac{X}{X+Y}, \quad V = \frac{X+Y}{X+Y+Z}, \quad W = X+Y+Z.$$

- (1) 计算随机向量 (U, V, W) 的联合密度函数.
- (2) 随机变量 U, V 和 W 是否相互独立? 请证明你的结论.
- 四、(15分)设某种元件的使用寿命 T 的分布函数为 $F(t) = \begin{cases} 1 \exp\{-(\frac{t}{\theta})^m\}, & t \geq 0; \\ 0, & t < 0, \end{cases}$ 其中 m > 0 为已知参数, 而 $\theta > 0$ 为未知参数. 随机取 n 个这种元件, 测得它们的寿命分别为 T_1, T_2, \cdots, T_n . 记 $g(\theta) = \theta^m$.
 - (1) 试求 $g(\theta)$ 的极大似然估计 $\hat{g}(T_1, T_2, \dots, T_n)$.
 - (2) 上述估计是否为无偏估计? 请证明你的结论.
- 五、(12分)经大量调查,已知一般健康成年男子每分钟脉搏的次数服从正态分布 $N(72,6^2)$. 现测得 16 例成年男子慢性铅中毒患者的脉搏平均 67 次/分钟,标准差为 7 次/分钟. 问在显著性水平 0.05 下,这群患者每分钟脉搏的次数(假设也服从正态分布)和正常人有无显著性差异?(要求对均值和方差都进行检验.)
- 六、(8分) 中国科学技术大学 2019 级本科新生入学考试中, 某学院两个班级的英语科目各档成绩(从低到高)人数如下表所示:

档次	I	II	III	IV	V	VI	合计
一班	8	27	10	6	8	6	65
二班	15	25	8	7	6	4	65

我们能否认为这两个班级的英语水平大致相当? 显著性水平设为 $\alpha = 0.05$.

附录:

$$\Phi(1.645) = 0.95, \ \Phi(1.96) = 0.975;$$

 $t_{15}(0.025) = 2.131, \ t_{15}(0.05) = 1.753, \ t_{16}(0.025) = 2.12, \ t_{16}(0.05) = 1.746;$
 $\chi_5^2(0.95) = 1.145, \ \chi_5^2(0.05) = 11.071, \ \chi_{15}^2(0.975) = 6.262, \ \chi_{15}^2(0.025) = 27.488.$