第三章作业题解答

1. 设 $X = \{a,b,c\}$,给出 X 上的一个二元关系,使其同时不满足自反性、反自反性、对称性、反对称和传递性的二元关系,并画出 R 的关系图。

【解】设 $X = \{a,b,c\}$, R 是 X 上的二元关系, $R = \{(a,a),(a,c),(a,b),(c,a)\}$,则 R 同时不满足自反性、反自反性、对称性、反对称和传递性。R 的关系图为:

- 2. 设R是X上的二元关系,下面的结论是否正确?并证明你的结论。
 - (1) 如果 R 是自反的,则 $R \cdot R$ 也是自反的。
 - (2) 如果 R 是对称的,则 $R \cdot R$ 也是对称的。
 - (3) 如果 R 是反自反和传递的,则 R 是反对称的。

【证明】

- (1) 正确。 $\forall a \in X$,因为 R 是自反的,所以 $(a,a) \in R$,于是 $(a,a) \in R \cdot R$,所以 $R \cdot R$ 也是自反的。
- (2) 正确。假设 $(a,b) \in R \cdot R$,则 $\exists c \in X$ 使得 $(a,c) \in R$ 且 $(c,b) \in R$,又因为 R 是对称的,所以 $(b,c) \in R$ 且 $(c,a) \in R$,于是 $(b,a) \in R \cdot R$,因此 $R \cdot R$ 也是对称的。
- (3) 正确。假设 $(a,b) \in R$ 且 $(b,a) \in R$,因为 R 是传递的,所以 $(a,a) \in R$,这与 R 是反自反的矛盾,因此 $(a,b) \in R$ 与 $(b,a) \in R$ 不能同时成立,故 R 是反对称的。
- 3. 设 R,S 是 X 上的二元关系,试证: $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$ 。

【证明】假设 $(x,y) \in (R \cup S)^{-1}$,则 $(y,x) \in R \cup S$,即 $(y,x) \in R$ 或 $(y,x) \in S$ 。于是 $(x,y) \in R^{-1}$ 或 $(x,y) \in S^{-1}$,即 $(x,y) \in R^{-1} \cup S^{-1}$,因而 $(R \cup S)^{-1} \subseteq R^{-1} \cup S^{-1}$ 。

反之,假设 $(x,y) \in R^{-1} \cup S^{-1}$,则 $(x,y) \in R^{-1}$ 或 $(x,y) \in R^{-1}$ 。于是 $(y,x) \in R$ 或 $(y,x) \in S$,即 $(y,x) \in R \cup S$ 。从而 $(x,y) \in (R \cup S)^{-1}$,因此, $R^{-1} \cup S^{-1} \subseteq (R \cup S)^{-1}$ 。综上, $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$ 。

4. 设 R,S 为 X 上的二元关系,试证: $(R \cup S)^+ \supset R^+ \cup S^+$ 。

【证明】将关系的传递闭包运算看作一个函数,则它相对于 \subseteq 是单调递增的,于是,因为 $R \subseteq R \cup S$ 且 $S \subseteq R \cup S$,所以 $R^+ \subseteq (R \cup S)^+$ 且 $S^+ \subseteq (R \cup S)^+$,因此 $R^+ \cup S^+ \subset (R \cup S)^+$ 。

5. 由置换
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 5 & 8 & 1 & 2 & 7 & 4 \end{pmatrix}$$
确定了 $X = \{1, 2, \dots, 8\}$ 上的一个关系 \cong ,

 $\forall i, j \in X$, $i \cong j$ 当且仅当 i 与 j 在 σ 的循环分解式中的同一循环置换中,证明: \cong 是 X 上的等价关系,求 X / \cong 。

【证明】
$$\sigma = (1 \ 3 \ 5)(2 \ 6)(4 \ 8)(7)$$
。

 $\forall i \in X$,i = i 必在 σ 的循环分解式中的同一个循环置换中,即 $i \cong i$,则 \cong 是自反的。 $\forall i, j \in X$, 若 $i \cong j$,即i = j 在 σ 的循环分解式中的同一个循环置换中,则j = i 也在 σ 的循环分解式中的同一个循环置换中,故 $j \cong i$ 。因而 \cong 是对称的。

 $\forall i, j, k \in X$,若 $i \cong j, j \cong k$,则i = j在 σ 的循环分解式中的同一个循环置换中,j = k在 σ 的循环分解式的同一个循环置换中,因而i = k也在 σ 的循环分解式中的同一个循环置换中,即 $i \cong k$ 。因而 \cong 是传递性的。

综上, \cong 是 X 上的等价关系。

 $X/\cong = \{\{1,3,5\}, \{2,6\}, \{4,8\}, \{7\}\}.$

6. 设 $(S, \leq_1), (T, \leq_2)$ 是偏序集。在 $S \times T$ 上定义二元关系 \leq_3 如下:

 $\forall (s,t), (s',t') \in S \times T, (s,t) \leq_3 (s',t') \Leftrightarrow (s \leq_1 s', t \leq_2 t')$

证明: (1) \leq_3 是 $S \times T$ 上的偏序关系;

(2) 若 $(s,t) \le (s',t') \Leftrightarrow s \le s'$ 或 $t \le t'$,则 $\le E S \times T$ 上的偏序关系吗?

【证明】(1) $\forall (s,t) \in S \times T$ 均有 $s \in S$, $t \in T$ 。由于 (S, \leq_1) , (T, \leq_2) 是偏序集,故有 $s \leq_1 s, t \leq_2 t \Leftrightarrow (s,t) \leq_3 (s,t)$,因此 \leq_3 是自反的;

由 (S, \leq_1) , (T, \leq_2) 是偏序集可知, $s_1 = s_2$ 且 $t_1 = t_2$, 故 $(s_1, t_1) = (s_2, t_2)$ 。 因此 " \leq_3 "是对称的。

综上可知: ≤ $_3$ 是 $S \times T$ 上的一个偏序关系。

(2) 如果将 \leq_3 的定义改为 $(s,t)\leq_3(s',t')$ \Leftrightarrow $s\leq_1 s'$ 或 $t\leq_2 t'$,则 \leq_3 不是偏序关系。因为 \leq_3 不满足反对称性。

例如,令S=T=N,则利用 (N,\leq_1) , (N,\leq_2) 定义 $(N\times N,\leq_3)$ 为 $(s,t)\leq_3(s',t')$ ⇔ $s\leq_1 s'$ 或 $t\leq_2 t'$,则 $(1,2)\leq_3(2,1)$ 且 $(2,1)\leq_3(1,2)$,但 $(1,2)\neq(2,1)$ 。 故 \leq_3 不满足反对称性,因此 \leq_3 不是 $N\times N$ 上的偏序关系。

- 7. 设R是X的自反且传递的二元关系,则
 - (1) 给出R的一个实例;
 - (2) 在 X 上定义二元关系 ~ 是: $x \sim y \Leftrightarrow xRy, yRx$ 。证明: ~ 是 X 上的等价关系。
 - (3) 在商集 X/ 上定义二元关系 \leq : $[a] \leq [b] \Leftrightarrow aRb$ 。

证明: $\leq \frac{X}{2}$ 上的偏序关系。

【证明】(1) $\diamondsuit X = N$, $R = \subseteq \subset N \times N$ 。

(2) $\forall x \in X$, $x \sim x$, 所以~是自反的。

假设 $x \sim y$,则xRy且yRx,因此 $y \sim x$,故~是对称的。

假设 $x \sim y \perp y \sim z$,则 xRy, $yRx \perp yRz$, zRy,因为 R 是传递的,所以 $xRz \perp zRx$,从而有 $x \sim z$,故 ~ 是传递的。

综上, \sim 是X上的等价关系。

(3) $\forall [a] \in X/_{\sim}$,因为R是X上的自反关系,所以aRa,于是 $[a] \leq [a]$,所以 \leq 是自反的;

 $\forall [a],[b] \in X/_{\sim}$,如果 $[a] \leq [b]$ 且 $[b] \leq [a]$,则aRb且bRa,即a与b在同一个等类中,故[a] = [b],因此 \leq 是反对称的;

 $\forall [a],[b],[c] \in X/_{\sim}$,如果 $[a] \leq [b]$ 且 $[b] \leq [c]$,则aRb且bRc,由R的传递性知aRc,于是 $[a] \leq [c]$,因此 \leq 是传递的。

综上,≤是X/ 上的偏序关系。

8. 设 $R \neq X$ 上的偏序关系,证明: $R \neq X$ 上的全序关系 $\Leftrightarrow X \times X = R \cup R^{-1}$ 。

【证明】 $\Rightarrow \forall (x,y) \in X \times X$,因为 $R \in X$ 上的全序关系,所以 $(x,y) \in R$ 或 $(x,y) \in R^{-1}$ 必有一个成立,亦即 $(x,y) \in R \cup R^{-1}$,因此 $X \times X \subset R \cup R^{-1}$;

反之,因为 R 是 X 上的关系,所以 $R \subseteq X \times X$, $R^{-1} \subseteq X \times X$,于是 $R \cup R^{-1} \subseteq X \times X$ 。 综上, $X \times X = R \cup R^{-1}$ 。

 $\leftarrow \forall (x,y) \in X \times X$,因为 $X \times X = R \bigcup R^{-1}$,所以 $(x,y) \in R$ 或 $(x,y) \in R^{-1}$,亦即 xRy 与 yRx 必有一个成立,因此 $R \in X$ 上的全序关系。

- 9. 设 $n=2^33^3$, X 为 n 的所有因子之集, $1,n\in X$ 。 $\forall x,y\in X$, $x\leq y\Leftrightarrow x|y$ 。
 - (1) 画出偏序集(X,≤)的哈氏图。
 - (2) 给出偏序集(X,≤)的一条最长链和一条最长反链。
 - (3) (*X*,≤)有最大元素吗?
 - (4) 证明: (X, \leq) 的最长链的最大元素一定是 (X, \leq) 的最大元素。

【解】

(1) 偏序集(*X*,≤)的哈氏图为:

- (2){1,2,4,8,24,72,216}是($X \le$)的最长链,{8,12,18,27}是($X \le$)的最长反链。
- (3)有, 216 是(*X*,≤)的最大元素。
- (4)采用反证法。假设(X,\le)的最长链 A 的最大元素不是(X,\le)的最大元素 a,则 $A \cup \{a\}$ 是(X,\le)的一条比 A 更长的链,矛盾。
- 10. 是否存在一个偏序关系 \leq ,使得(X, \leq)中有唯一的极大元素,但没有最大元素? 若有请给出一个具体例子,若没有,请证明之。
- 【解】存在。例如:假设 $i=\sqrt{-1}$, $(N\bigcup\{i\},\leq)$ 中有唯一的极大元素 i,但没有最大元素。