Generated on 2016-10-09 23:51:03 by gEcon version 1.0.0 (2016-10-09) Model name: ttb

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, N_t, a_t, L_t} U_t = \beta E_t [U_{t+1}] + \gamma^{-1} (C_t^{\mu} L_t^{1-\mu})^{\gamma}$$
(1.1)

s.t.:

$$C_t = \pi_t + N_t W_t \quad (\lambda_t^{\rm c}) \tag{1.2}$$

$$L_t = 1 - \alpha N_t - \eta a_{t-1} (1 - \alpha) \quad \left(\lambda_t^{\text{CONSUMER}^2}\right)$$
(1.3)

$$a_t = N_t + a_{t-1} (1 - \eta) \quad \left(\lambda_t^{\text{CONSUMER}^3}\right)$$
(1.4)

1.2 First order conditions

$$\beta - \lambda_t^{\mathcal{U}} = 0 \quad (U_t) \tag{1.5}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} L_t^{1-\mu} (C_t^{\mu} L_t^{1-\mu})^{-1+\gamma} = 0 \quad (C_t)$$
(1.6)

$$\lambda_t^{\text{CONSUMER}^3} + \lambda_t^{\text{c}} W_t - \alpha \lambda_t^{\text{CONSUMER}^2} = 0 \quad (N_t)$$
(1.7)

$$-\lambda_t^{\text{CONSUMER}^3} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{U}} \left(\lambda_{t+1}^{\text{CONSUMER}^3} \left(1 - \eta \right) - \eta \lambda_{t+1}^{\text{CONSUMER}^2} \left(1 - \alpha \right) \right) \right] = 0 \quad (a_t)$$

$$(1.8)$$

$$-\lambda_t^{\text{CONSUMER}^2} + (1 - \mu) C_t^{\mu} L_t^{-\mu} (C_t^{\mu} L_t^{1-\mu})^{-1+\gamma} = 0 \quad (L_t)$$
(1.9)

_

2 FIRM

2.1 Optimisation problem

$$\max_{K_t, N_t^{\rm d}, Z_t, Y_t, S_t, X_t, \pi_t, S_t^{\rm lag^1}, S_t^{\rm lag^2}} \Pi_t = \pi_t + \lambda_t^{\rm c-1} E_t \left[\lambda_{t+1}^{\rm c} \lambda_{t+1}^{\rm U} \Pi_{t+1} \right]$$
(2.1)

s.t.

$$Y_t = \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_t K_{t-1}^{\theta} N_t^{\mathrm{d}^{1-\theta}}\right)^{-\nu}\right)^{-\nu^{-1}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

$$K_t = S_{t-3} + K_{t-1} (1 - \delta) \quad \left(\lambda_t^{\text{FIRM}^2}\right)$$
 (2.3)

$$X_t = \psi \left(S_{t-3} + S_{t-2} + S_{t-1} + S_t \right) \quad \left(\lambda_t^{\text{FIRM}^3} \right)$$
 (2.4)

$$\pi_t = Z_{t-1} - X_t + Y_t - Z_t - N_t^{d} W_t \quad \left(\lambda_t^{\text{FIRM}^4}\right)$$
 (2.5)

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{c}} \lambda_t^{\text{U}} = 0 \quad (\Pi_t)$$
(2.6)

 $-\lambda_{t}^{\text{FIRM}^{2}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta \right) + \theta \lambda_{t+1}^{\text{FIRM}^{1}} \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{\text{d}}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-1-\nu} \right) \right] = 0 \quad (K_{t}) \quad (2.7)$

$$-\lambda_{t}^{\text{FIRM}^{4}}W_{t} + \lambda_{t}^{\text{FIRM}^{1}}\Lambda_{t} (1 - \theta) K_{t-1}^{\theta} N_{t}^{d-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{d^{1-\theta}}\right)^{-\nu}\right)^{-1-\nu^{-1}} \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{d^{1-\theta}}\right)^{-1-\nu} = 0 \quad \left(N_{t}^{d}\right)$$
(2.8)

$$-\lambda_{t}^{\text{FIRM}^{4}} + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{4}} + \sigma \lambda_{t+1}^{\text{FIRM}^{1}} Z_{t}^{-1-\nu} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) \right] = 0 \quad (Z_{t})$$
(2.9)

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^4} = 0 \quad (Y_t)$$
 (2.10)

$$\psi \lambda_t^{\text{FIRM}^3} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad (S_t)$$
(2.11)

$$-\lambda_t^{\text{FIRM}^3} - \lambda_t^{\text{FIRM}^4} = 0 \quad (X_t)$$
 (2.12)

$$1 - \lambda_t^{\text{FIRM}^4} = 0 \quad (\pi_t) \tag{2.13}$$

 2

$$-\lambda_t^{\text{FIRM}^{\text{Slag}^2}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^2} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad \left(S_t^{\text{lag}^2} \right)$$
(2.15)

2.3 First order conditions after reduction

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{c}} \lambda_t^{\text{U}} = 0 \quad (\Pi_t)$$

$$(2.16)$$

$$-\lambda_{t}^{\text{FIRM}^{2}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta \right) + \theta \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{\text{d}}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-1-\nu} \right) \right] = 0 \quad (K_{t})$$
 (2.17)

$$-W_{t} + \Lambda_{t} (1 - \theta) K_{t-1}^{\theta} N_{t}^{d-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{d^{1-\theta}} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{d^{1-\theta}} \right)^{-1-\nu} = 0 \quad (N_{t}^{d})$$

$$(2.18)$$

$$-1 + E_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(1 + \sigma Z_t^{-1-\nu} \left(\sigma Z_t^{-\nu} + \left(\Lambda_{t+1} K_t^{\theta} N_{t+1}^{d}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) \right] = 0 \quad (Z_t)$$
 (2.19)

$$-\psi + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^{S^{\text{lag}^1}}} \right) \right] = 0 \quad (S_t)$$
 (2.20)

$$-\lambda_t^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^2}}} \right) \right] = 0 \quad \left(S_t^{\text{lag}^1} \right)$$
(2.21)

$$-\lambda_t^{\text{FIRM}^{\text{Slag}^2}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^2} \right) \right] = 0 \quad \left(S_t^{\text{lag}^2} \right)$$
(2.22)

3 EQUILIBRIUM

3.1 Identities

ಬ

$$N_t^{\rm d} = N_t \tag{3.1}$$

4 EXOG

4.1 Identities

$$-1 + \Lambda_t = \epsilon_t^{\Lambda} + \phi^{a} \left(-1 + \Lambda_{t-1} \right) + \phi^{b} \left(-1 + \Lambda_{t-1} \right)$$
(4.1)

5 Equilibrium relationships (after reduction)

$$-1 + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(1 + \sigma Z_t^{-1-\nu} \left(\sigma Z_t^{-\nu} + \left(\Lambda_{t+1} K_t^{\theta} N_{t+1}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.1)

$$-\psi + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(-\psi + \lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.2)

$$S_{t-1} - S_t^{\log^1} = 0 (5.3)$$

$$S_{t-1}^{\log^{1}} - S_{t}^{\log^{2}} = 0 ag{5.4}$$

$$-\lambda_{t}^{\text{FIRM}^{2}} + \beta C_{t}^{1-\mu} L_{t}^{-1+\mu} \left(C_{t}^{\mu} L_{t}^{1-\mu} \right)^{1-\gamma} E_{t} \left[\left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta \right) + \theta \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{1-\theta} \right)^{-1-\nu} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1} L_{t+1}^{1-\theta} L_{$$

$$-\lambda_t^{\text{FIRMS}^{\text{lag}^1}} + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(-\psi + \lambda_{t+1}^{\text{FIRMS}^{\text{lag}^2}} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.6)

$$-\lambda_t^{\text{FIRM}^{\text{S}^{\text{lag}^2}}} + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(-\psi + \lambda_{t+1}^{\text{FIRM}^2} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0 \tag{5.7}$$

$$-W_{t} + \Lambda_{t} (1 - \theta) K_{t-1}^{\theta} N_{t}^{-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{1-\theta} \right)^{-1-\nu} = 0$$

$$(5.8)$$

$$-Y_t + \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_t K_{t-1}^{\theta} N_t^{1-\theta}\right)^{-\nu}\right)^{-\nu-1} = 0$$
 (5.9)

$$S_{t-1}^{\log^2} - K_t + K_{t-1} (1 - \delta) = 0 (5.10)$$

$$-a_t + N_t + a_{t-1} (1 - \eta) = 0 (5.11)$$

$$-\pi_t + \Pi_t - \beta \left(C_t^{-1+\mu} \right)^{-1} \left(L_t^{1-\mu} \right)^{-1} \left(\left(C_t^{\mu} L_t^{1-\mu} \right)^{-1+\gamma} \right)^{-1} \mathcal{E}_t \left[\Pi_{t+1} C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.12)

$$\pi_t - C_t + N_t W_t = 0 (5.13)$$

$$U_t - \beta E_t [U_{t+1}] - \gamma^{-1} (C_t^{\mu} L_t^{1-\mu})^{\gamma} = 0$$
(5.14)

_

$$1 - L_t - \alpha N_t - \eta a_{t-1} (1 - \alpha) = 0 \tag{5.16}$$

$$1 + \epsilon_t^{\Lambda} - \Lambda_t + \phi^{a} \left(-1 + \Lambda_{t-1} \right) + \phi^{b} \left(-1 + \Lambda_{t-1} \right) = 0$$
(5.17)

$$Z_{t-1} - \pi_t + Y_t - Z_t - \psi \left(S_{t-1} + S_{t-1}^{\log^2} + S_{t-1}^{\log^2} + S_t \right) - N_t W_t = 0$$
(5.18)

6 Steady state relationships (after reduction)

$$-1 + \beta \left(1 + \sigma Z_{\rm ss}^{-1-\nu} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.1)

$$-\psi + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^{S^{lag}^{1}}}\right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.2)

 $-\lambda_{\rm ss}^{\rm FIRM^2} + \beta \left(\lambda_{\rm ss}^{\rm FIRM^2} (1 - \delta) + \theta \Lambda_{\rm ss} K_{\rm ss}^{-1 + \theta} N_{\rm ss}^{1 - \theta} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta}\right)^{-\nu}\right)^{-1 - \nu^{-1}} \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta}\right)^{-1 - \nu}\right) C_{\rm ss}^{-1 + \mu} C_{\rm ss}^{1 - \mu} L_{\rm ss}^{-1 + \mu} L_{\rm ss}^{1 - \mu} = 0 \quad (6.3)$

$$-\lambda_{\rm ss}^{\rm FIRM^{\rm S^{\rm lag^{1}}}} + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^{\rm S^{\rm lag^{2}}}} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.4)

$$-\lambda_{\rm ss}^{\rm FIRM^{\rm Slag^2}} + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^2} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.5)

$$S_{\rm ss} - S_{\rm ss}^{\rm lag^1} = 0 ag{6.6}$$

$$S_{\rm ss}^{\rm lag^1} - S_{\rm ss}^{\rm lag^2} = 0 ag{6.7}$$

$$-W_{\rm ss} + \Lambda_{\rm ss} (1 - \theta) K_{\rm ss}^{\theta} N_{\rm ss}^{-\theta} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta} \right)^{-\nu} \right)^{-1 - \nu^{-1}} \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta} \right)^{-1 - \nu} = 0$$
 (6.8)

$$-Y_{ss} + \left(\sigma Z_{ss}^{-\nu} + \left(\Lambda_{ss} K_{ss}^{\theta} N_{ss}^{1-\theta}\right)^{-\nu}\right)^{-\nu^{-1}} = 0$$
(6.9)

 $^{\circ}$

$$-a_{ss} + N_{ss} + a_{ss} (1 - \eta) = 0 \tag{6.10}$$

$$-\pi_{\rm ss} + \Pi_{\rm ss} - \beta \Pi_{\rm ss} 1 L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0 \tag{6.11}$$

$$\pi_{\rm ss} - C_{\rm ss} + N_{\rm ss} W_{\rm ss} = 0 \tag{6.12}$$

$$-K_{\rm ss} + S_{\rm ss}^{\rm lag^2} + K_{\rm ss} (1 - \delta) = 0 \tag{6.13}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \gamma^{-1} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{1-\mu} \right)^{\gamma} = 0 \tag{6.14}$$

$$\beta \left((1-\eta) \left(\alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} - \mu W_{ss} C_{ss}^{-1+\mu} L_{ss}^{1-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \eta (1-\alpha) (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{\mu} L_$$

$$1 - L_{ss} - \alpha N_{ss} - \eta a_{ss} (1 - \alpha) = 0 \tag{6.16}$$

$$1 - \Lambda_{ss} + \phi^{a} \left(-1 + \Lambda_{ss} \right) + \phi^{b} \left(-1 + \Lambda_{ss} \right) = 0 \tag{6.17}$$

$$-\pi_{\rm ss} + Y_{\rm ss} - \psi \left(2S_{\rm ss} + S_{\rm ss}^{\rm lag^1} + S_{\rm ss}^{\rm lag^2} \right) - N_{\rm ss} W_{\rm ss} = 0 \tag{6.18}$$

7 Parameter settings

6

$$\alpha = 1 \tag{7.1}$$

$$\beta = 0.99 \tag{7.2}$$

$$\delta = 0.025 \tag{7.3}$$

$$\eta = 0.5 \tag{7.4}$$

$$\gamma = -1 \tag{7.5}$$

$$\mu = 0.34\tag{7.6}$$

$$\nu = 3 \tag{7.7}$$

$$\phi^{\rm a} = 0.906$$
 (7.8)

$$\phi^{\rm b} = 0.088$$
 (7.9)

$$\psi = 0.25 \tag{7.10}$$

$$\sigma = 0.01 \tag{7.11}$$

$$\theta = 0.36 \tag{7.12}$$

8 Steady-state values

	Steady-state value
\overline{a}	0.6064
π	0.1283
C	0.8261
K	11.0149
L	0.6968
Λ	1
N	0.3032
Π	12.8257
S	0.2754
S^{\log^1}	0.2754
S^{\log^2}	0.2754
U	-135.4461
W	2.3014
Y	1.1015
Z	1.0987

9 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{c} a_{t-1} & K_{t-1} & \Lambda_{t-1} & S_{t-1} & S_{t-1}^{\mathrm{lag}^1} & S_{t-1}^{\mathrm{lag}^2} & Z_{t-1} \\ a_{t} & 0.5 & -0.0601 & 0.1549 & -0.0012 & -0.0024 & -0.0037 & -0.0086 \\ K_{t} & 0 & 0.975 & 0 & 0 & 0 & 0.025 & 0 \\ 0 & 0 & 0.994 & 0 & 0 & 0 & 0 \\ S_{t} & 0 & -8.077 & 6.257 & -1.0496 & -1.0055 & -0.8423 & 8.6102 \\ S_{t}^{\mathrm{lag}^1} & 0 & 0 & 0 & 1 & 0 & 0 \\ S_{t}^{\mathrm{lag}^2} & 0 & 0 & 0 & 1 & 0 & 0 \\ Z_{t} & 0 & 0.453 & 0.2652 & 0.0002 & -0.0056 & -0.0193 & 0.4187 \end{array}$$

Matrix Q

$$\begin{array}{c} \epsilon^{\Lambda} \\ a \\ K \\ \Lambda \\ S \\ S^{\mathrm{lag}^1} \\ S^{\mathrm{lag}^2} \\ Z \end{array} \begin{pmatrix} 0.1558 \\ 0 \\ 1 \\ 6.2947 \\ 0 \\ 0 \\ 0.2668 \end{pmatrix}$$

Matrix R

$$\begin{array}{c} a_{t-1} \quad K_{t-1} \quad \Lambda_{t-1} \quad S_{t-1} \quad S_{t-1}^{\mathrm{lag}^1} \quad S_{t-1}^{\mathrm{lag}^2} \quad Z_{t-1} \\ \lambda_t^{\mathrm{FIRM}^2} \\ \lambda_t^{\mathrm{FIRM}^{\mathrm{Slag}^1}} \quad 0 \quad -0.0493 \quad 0.0617 \quad -0.0009 \quad -0.0019 \quad -0.0025 \quad 0.0167 \\ \lambda_t^{\mathrm{FIRM}^{\mathrm{Slag}^2}} \quad 0 \quad -0.0227 \quad 0.025 \quad -0.0016 \quad -0.0017 \quad -0.0015 \quad 0.0126 \\ \lambda_t^{\mathrm{FIRM}^{\mathrm{Slag}^2}} \quad 0 \quad -0.0376 \quad 0.044 \quad -0.0012 \quad -0.0024 \quad -0.0022 \quad 0.0165 \\ \pi_t \quad 0 \quad 1.3828 \quad -1.7195 \quad 0.0202 \quad 0.041 \quad 0.0647 \quad 0.1891 \\ C_t \quad 0 \quad 0.4442 \quad 0.6996 \quad 0.0019 \quad 0.0039 \quad 0.0062 \quad 0.0545 \\ L_t \quad 0 \quad 0.0523 \quad -0.1348 \quad 0.001 \quad 0.0021 \quad 0.0033 \quad 0.0075 \\ N_t \quad 0 \quad -0.1202 \quad 0.3098 \quad -0.0023 \quad -0.0048 \quad -0.0075 \quad -0.0172 \\ \Pi_t \quad 0 \quad 0.8155 \quad 0.0939 \quad 0.0046 \quad 0.0091 \quad 0.014 \quad 0.0989 \\ U_t \quad 0 \quad 0.0465 \quad 0.2798 \quad 0.0003 \quad 0.0006 \quad 0.0009 \quad 0.0046 \\ W_t \quad 0 \quad 0.3919 \quad 0.8344 \quad 0.0009 \quad 0.0018 \quad 0.0029 \quad 0.047 \\ Y_t \quad 0 \quad 0.2802 \quad 1.1803 \quad -0.0015 \quad -0.003 \quad -0.0047 \quad -0.0008 \\ \end{array}$$

Matrix S

 ϵ^{Λ} $\lambda^{ ext{FIRM}^2}$ 0.06210.0252 $\lambda^{\mathrm{FIRM}^{\mathrm{S}^{\mathrm{lag}^2}}}$ 0.0443-1.7299C0.7038L-0.1356N0.3117П 0.0945U0.2815W0.83951.1874

10 Model statistics

10.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{C}	0.8261	0.2883	0.0831	Y
K	11.0149	0.093	0.0087	Y
L	0.6968	0.0533	0.0028	Y
Λ	1	0.4096	0.1678	Y
N	0.3032	0.1225	0.015	Y
U	-135.4461	0.1153	0.0133	Y
Y	1.1015	0.4723	0.2231	Y
W	2.3014	0.3399	0.1155	Y

10.2 Correlation matrix

	$\mid C \mid$	K	L	Λ	N	U	W	Y
\overline{C}	1	-0.069	-0.961	0.989	0.961	0.994	0.999	0.994
K		1	0.312	-0.207	-0.312	-0.171	-0.107	-0.167
L			1	-0.989	-1	-0.984	-0.972	-0.986
Λ				1	0.989	0.999	0.994	0.998
N					1	0.984	0.972	0.986
U						1	0.997	0.999
W							1	0.998
Y								1

10.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
C_t	0.61	-0.046	0.088	0.23	0.427	0.681	0.994	0.744	0.526	0.345	0.198	0.072
K_t	0.197	-0.465	-0.472	-0.45	-0.391	-0.291	-0.167	0.018	0.278	0.619	0.61	0.568
L_t	0.113	-0.086	-0.213	-0.337	-0.507	-0.725	-0.986	-0.636	-0.361	-0.163	-0.045	0.09
Λ_t	0.867	0.029	0.16	0.295	0.479	0.714	0.998	0.71	0.467	0.265	0.102	-0.026
N_t	0.259	0.086	0.213	0.337	0.507	0.725	0.986	0.636	0.361	0.163	0.045	-0.09
U_t	0.244	0.01	0.142	0.279	0.467	0.707	0.999	0.722	0.485	0.288	0.127	-0.001
W_t	0.72	-0.025	0.108	0.248	0.442	0.691	0.998	0.731	0.503	0.318	0.175	0.047
Y_t	1	0.007	0.139	0.275	0.463	0.705	1	0.705	0.463	0.275	0.139	0.007

10.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
\overline{C}	0.73	0.499	0.307	0.153	0.024
K	0.867	0.72	0.614	0.53	0.368
L	0.681	0.426	0.242	0.133	-0.001
Λ	0.721	0.484	0.286	0.125	-0.002
N	0.681	0.426	0.242	0.133	-0.001
U	0.724	0.488	0.291	0.13	0.002
W	0.721	0.485	0.294	0.147	0.016
Y	0.705	0.463	0.275	0.139	0.007

11 Impulse response functions

Figure 1: Impulse responses (C,K,L,S,Y) to ϵ^{Λ} shock

Figure 2: Impulse response (N) to ϵ^{Λ} shock