BAYESIAN METHODS

In many imaging situations—for instance, image recording by film—the observation model is nonlinear of the form

$$v = f(\mathcal{H}u) + \eta \tag{8.210}$$

where f(x) is a nonlinear function of x. The a posteriori conditional density given by Bayes' rule

$$p(u|v) = \frac{p(v|u)p(u)}{p(v)}$$
 (8.211)

is useful in finding different types of estimates of the random vector ω from the observation vector ω . The minimum mean square estimate (MMSE) of ω is the mean of this density. The maximum a posteriori (MAI) and the maximum likelihood (ML) estimates are the modes of $p(\omega|\omega)$ and $p(\omega|\omega)$, respectively. When the

observation model is nonlinear, it is difficult to obtain the marginal density $p(\sigma)$ even when σ and η are Gaussian. (In the linear case $p(\sigma|\sigma)$ is easily obtained since it is Gaussian if σ and η are). However, the MAP and ML estimates do not require $p(\sigma)$ and are therefore easier to obtain.

Under the assumption of Gaussian statistics for u and η , with covariances \mathcal{R}_u and \mathcal{R}_n , respectively, the ML and MAP estimates can be shown to be the solution of the following equations:

ML estimate,
$$\hat{u}_{ML}$$
: $\mathcal{R}^T \mathcal{D} \mathcal{R}_n^{-1} [\sigma - f(\mathcal{R} \hat{u}_{ML})] = 0$ (8.212)

where

$$\mathscr{D} \stackrel{\Delta}{=} \operatorname{Diag} \left\{ \frac{\partial f(x)}{\partial x} \, \Big|_{x = \dot{\omega}_1} \right\} \tag{8.213}$$

and \hat{w}_i are the elements of the vector $\hat{w} \stackrel{\Delta}{=} \mathcal{H} \hat{u}_{ML}$.

MAP estimate,
$$\hat{u}_{MAP}$$
: $\hat{u}_{MAP} = \mu_{u} + \mathcal{R}_{u} \mathcal{H}^{T} \mathcal{D} \mathcal{R}_{n}^{-1} [\sigma - f(\mathcal{H} \hat{u}_{MAP})]$ (8.214)

where μ_w is the mean of w and \mathcal{D} is defined in (8.213) but now $\hat{w} \stackrel{\Delta}{=} \mathcal{H} \hat{u}_{MAP}$.

Since these equations are nonlinear, an alternative is to maximize the appropriate log densities. For example, a gradient algorithm for \hat{u}_{MAP} is

$$\hat{\boldsymbol{u}}_{j+1} = \hat{\boldsymbol{u}}_j - \alpha_j \{ \mathcal{R}^T \mathcal{D}_j \mathcal{R}_n^{-1} [\boldsymbol{v} - f(\mathcal{R} \hat{\boldsymbol{u}}_j)] - \mathcal{R}_{\boldsymbol{u}}^{-1} [\hat{\boldsymbol{u}}_j - \boldsymbol{\mu}_{\boldsymbol{u}}] \}$$
(8.215)

where $\alpha_j > 0$, and \mathcal{Q}_j is evaluated at $\hat{w}_j \stackrel{\triangle}{=} \mathcal{K} \hat{u}_j$.

Remarks

If the function f(x) is linear, say f(x) = x, and $\mathcal{R}_n = \sigma_n^2 \mathbf{I}$, then $\hat{\boldsymbol{u}}_{ML}$ reduces to the least squares solution

$$\mathcal{H}^{\mathsf{T}}\mathcal{H}\hat{u}_{\mathsf{ML}} = \mathcal{H}^{\mathsf{T}} o \tag{8.216}$$

and the MAP estimate reduces to the Wiener filter output for zero mean noise [see (8.87)],

$$\hat{a}_{MAP} = \mu_o + \mathcal{G}(\sigma - \mu_o) \tag{8.217}$$

where $\mathcal{G} = (\mathcal{R}_n^{-1} + \mathcal{R}^T \mathcal{R}_n^{-1} \mathcal{R})^{-1} \mathcal{R}^T \mathcal{R}_n^{-1}$.

In practice, μ_{\bullet} may be estimated as a local average of σ and $\mu_{\bullet} \simeq \mathcal{H}^+ f^{-1}(\mu_{\bullet})$, where \mathcal{H}^+ is the generalized inverse of \mathcal{H} .