Probability

Name	Nathan Varghese
Identity Key	nava3000

	Level	Completed
0	Beginner	9
	Intermediate	5
\Diamond	Advanced	0
(X)	Expert	0

Goal		
5722	12	

Total Completed	
14	

Probability

CSCI 5722: Computer Vision

Fall 2024

Dr. Tom Yeh

Probabilities

CSCI 5722 Computer Vision

1: Correct, 0: Incorrect

A. How are you?	
B. How do you do?	
C. Howdy?	
D. How are you doing?	
E. How is you?	
F. How am you?	

3: very high, 2: high, 1: low, 0: wrong

A. How are you?	
B. How do you do?	
C. Howdy?	
D. How are you doing?	
E. How is you?	
F. How am you?	

Context: Texas +2

A. How are you?	3
B. How do you do?	2
C. Howdy?	1
D. How are you doing?	3
A. How are you?	3
B. How do you do?	2
C. Howdy?	1
D. How are you doing?	3

Context: Formal +1, Texas +2

		A. How are you?	3
	Tavas	B. How do you do?	2
	Texas	C. Howdy?	1
Connal		D. How are you doing?	3
Poles		A. How are you?	3
	IToyos	B. How do you do?	2
	!Texas	C. Howdy?	1
		D. How are you doing?	3
	Texas	A. How are you?	3
		B. How do you do?	2
		C. Howdy?	1
Tormal		D. How are you doing?	3
		A. How are you?	3
	!Texas	B. How do you do?	2
		C. Howdy?	1
		D. How are you doing?	3

Language Model: Input and Output

8

Aggregate

		A. How are you?	3
	Texas	B. How do you do?	3
		C. Howdy?	3
Formal		D. How are you doing?	3
Formal		A. How are you?	3
	IToyas	B. How do you do?	3
	!Texas	C. Howdy?	1
		D. How are you doing?	3
		A. How are you?	3
	Texas	B. How do you do?	2
		C. Howdy?	2
!Formal		D. How are you doing?	3
!FOITIal		A. How are you?	3
	ITovos	B. How do you do?	2
	!Texas	C. Howdy?	1
		D. How are you doing?	3

Joint probability

opability			0(x	(X2, X3)
XI	X1 X2		100	1, X2, X3)
		A. How are you?	3	3/41
	Toyos	B. How do you do?	3	3/41
	Texas	C. Howdy?	3	
Formal	12	D. How are you doing?	3	
Formal		A. How are you?	3	
	IToyos	B. How do you do?	3	
	!Texas	C. Howdy?	1	V41
22	10	D. How are you doing?	3	
		A. How are you?	3	
	Texas	B. How do you do?	2	2/41
		C. Howdy?	2	2/41
15 о июс о 1	10	D. How are you doing?	3	
!Formal		A. How are you?	3	
	IToyoo	B. How do you do?	2	2/41
	!Texas	C. Howdy?	1	1/41
19	9	D. How are you doing?	3	3/4\

Conditional probability

mai prob	ability		. (.	.)	
×ι	X2	X3	f ()	(3) X1,X	1
		A. How are you?	3	3/41	3/12
	Toyas	B. How do you do?	3	3/41	3/12
	Texas	C. Howdy?	3	3/41	
Formal	12	D. How are you doing?	3	3/41	
Formal •		A. How are you?	3	3/41	
	IToyos	B. How do you do?	3	3/41	
22	!Texas	C. Howdy?	1	1/41	1/10
22	10	D. How are you doing?	3	3/41	
		A. How are you?	3	3/41	
	Texas	B. How do you do?	2	2/41	2/10
		C. Howdy?	2	2/41	3/10
I Formal	10	D. How are you doing?	3	3/41	
!Formal		A. How are you?	3	3/41	
	IT	B. How do you do?	2	2/41	
4.5	!Texas	C. Howdy?	1	1/41	1/9
19	9	D. How are you doing?	3	3/41	319

Joint probability

 $p(x_3|x_2,x_1)$

Χı	X2	P(XI,X2)	×3	$p(x_i)$	$_1, x_2, x_3$	3)
			A. How are you?	3	3/41	3/12
	Toyas	12	B. How do you do?	3	3/41	3/12
	Texas	41	C. Howdy?	3	3/41	3/12
Formal	12		D. How are you doing?	3	3/41	3/12
Formal			A. How are you?	3	3/41	3/10
	IToyas	10	B. How do you do?	3	3/41	3/10
	!Texas	41	C. Howdy?	1	1/41	1/10
22	10	"	D. How are you doing?	3	3/41	3/10
			A. How are you?	3	3/41	3/10
	Texas	10	B. How do you do?	2	2/41	2/10
		41	C. Howdy?	2	2/41	2/10
IFormal	10	7	D. How are you doing?	3	3/41	3/10
!Formal			A. How are you?	3	3/41	3/9
	!Texas	9	B. How do you do?	2	2/41	2/9
		41	C. Howdy?	1	1/41	1/9
19	9		D. How are you doing?	3	3/41	3/9

Conditional probability

 $P(x_2|x_1)$

 $p(x_3|x_2,x_1)$

 $p(x_1, x_2, x_3)$

				A. How are you?	3	3/41	3/12
	Toyos	12	2 12	B. How do you do?	3	3/41	3/12
	Texas	$\frac{12}{41}$	22	C. Howdy?	3	3/41	3/12
Formal	12	41		D. How are you doing?	3	3/41	3/12
Formal				A. How are you?	3	3/41	3/10
	IToyas	10	10	B. How do you do?	3	3/41	3/10
	!Texas	$\frac{3}{41}$	122	C. Howdy?	1	1/41	1/10
22	10	41		D. How are you doing?	3	3/41	3/10
				A. How are you?	3	3/41	3/10
	Texas	10	10	B. How do you do?	2	2/41	2/10
		$\frac{1}{41}$	19	C. Howdy?	2	2/41	2/10
IFormal	10	41		D. How are you doing?	3	3/41	3/10
!Formal				A. How are you?	3	3/41	3/9
	IToyas	9	9	B. How do you do?	2	2/41	2/9
	!Texas	$\frac{1}{41}$	19	C. Howdy?	1	1/41	1/9
19	9			D. How are you doing?	3	3/41	3/9

 $p(x_2|x_1)$

 $p(x_3|x_2,x_1)$

-	. ~			$p(x_2 x$	1丿		P	3172)
XI	b(xi)	1	$p(x_1, x_2)$			$p(x_1)$	$_{L},x_{2},x_{3}$	3)
					A. How are you?	3	3/41	3/12
		Toyos	12	2 12	B. How do•you do?	3	3/41	3/12
		Texas			C. Howdy?	3	3/41	3/12
Formal	22 41	12	41	22	D. How are you doing?	3	3/41	3/12
FUIIIIai	41				A. How are you?	3	3/41	3/10
		!Texas	10	10	B. How do you do?	3	3/41	3/10
		! IEXas		22	C. Howdy?	1	1/41	1/10
22		10	41	22	D. How are you doing?	3	3/41	3/10
					A. How are you?	3	3/41	3/10
		Texas	10	10	B. How do you do?	2	2/41	2/10
			$\frac{1}{41}$	1 9	C. Howdy?	2	2/41	2/10
!Formal		10	41	19	D. How are you doing?	3	3/41	3/10
!FUIIIdl	41				A. How are you?	3	3/41	3/9
		IToyas	9	9	B. How do you do?	2	2/41	2/9
		!Texas	$\frac{1}{41}$	$\overline{19}$	C. Howdy?	1	1/41	1/9
19		9			D. How are you doing?	3	3/41	3/9

\bigcirc Calculate Joint Probabilities p(x₁, x₂)

X_1	X_2	Freq	$p(x_1, x_2)$
	A. woof	40	40/106
!Angry	B. growl	20	26/100
80	C. bark	20	20/100
	A. woof	4	4/100
Angry	B. growl	8	8/100
20	C. bark	8	8/100

\bigcirc Calculate Conditional Probabilities p($x_2|x_1$)

X_1	X_2	Freq	$p(x_2 \mid x_1)$
	A. woof	40	40/80
!Angry	B. growl	20	20/80
80	C. bark	20	20/80
	A. woof	4	4/20
Angry	B. growl	8	8/20
20	C. bark	8	8/20

Calculate p(home?)

		A. woof	3
	!Angry	B. growl	2
Illomo	٥١	C. bark	5
!Home		A. woof	1
	Angry	B. growl	3
15	5	C. bark	1

		A. woof	12
	!Angry	B. growl	4
Homo	20	C. bark	4
Home		A. woof	2
	Angry	B. growl	5
30	10	C. bark	3

Calculate p(angry?, home?)

		A. woof	3
	!Angry	B. growl	2
Illama	6	C. bark	5
!Home		A. woof	1
	Angry	B. growl	3
15	5	C. bark	1

		A. woof	12
	!Angry	B. growl	4
Homo	25	C. bark	4
Home		A. woof	2
	Angry	B. growl	5
30	10	C. bark	3

n/angryl lhoma)	5	
p(angry !home) = -	15	_

Calculate p(angry?, home?)

		A. woof	3
	!Angry	B. growl	2
Illama	b	C. bark	5
!Home		A. woof	1
	Angry	B. growl	3
15	5	C. bark	1

			A. woof	12
		!Angry	B. growl	4
	Homo	26	C. bark	4
	Home		A. woof	2
1,5	0	Angry	B. growl	5
4)	30	10	C. bark	3

Calculate p(sound?, angry?, home?)

		A. woof	3
	!Angry	B. growl	2
Illama	6	C. bark	5
!Home		A. woof	1
	Angry	B. growl	3
15	5	C. bark	1

	2
p(growl, angry, !home) = -	45

-				
			A. woof	12
		!Angry	B. growl	4
	Hama		C. bark	4
	Home		A. woof	2
3		3° Angry	B. growl	5
	30		C. bark	3

Calculate p(sound? | angry?, home?)

(Simplify the fractions)

		A. woof	3
	!Angry	B. growl	2
Illomo		C. bark	5
!Home	Angry	A. woof	1
		B. growl	3
15	5	C. bark	1

n(growll angry Ihome) = -	3	_
p(growl angry, !home) = -	01	_

			A. woof	12
		!Angry	B. growl	4
	11		C. bark	4
	Home		A. woof	2
		Angry	B. growl	5
5	30	10	C. bark	3

45

The Chain Rule of Probabilities

CSCI 5722 Computer Vision

Conditional >> Joint Probabilities

 $p(x_3|x_2,x_1)$

$p(x_1)$		$p(x_1, x_2)$	$p(x_2 x_2)$	1)	$p(x_1)$	$_{1},x_{2},x_{3}$	₃)
				A. How are you?	3	3/41	3/12
	Texas	$\frac{12}{41}$	2 12	B. How do you do?	3	3/41	3/12
			$\frac{1}{2}$	C. Howdy?	3	3/41	3/12
Formal 22	1	12 41	22/	D. How are you doing?	3	3/41	3/12
FOITIAI 41				A. How are you?	3	3/41	3/10
	!Texas	10	10	B. How do you do?	3	3/41	3/10
	! IEXaS	$\left \frac{1}{41} \right $	${22}$	C. Howdy?	1	1/41	1/10
22	22 10	0 41		D. How are you doing?	3	3/41	3/10

$$\rho(\chi_2|\chi_1) \cdot \rho(\chi_3|\chi_2,\chi_1) = \rho(\chi_1,\chi_2,\chi_3)$$

$$\frac{3}{12} = \frac{3}{41}$$

Probability Distribution vs. Values

Conditional Probability Distributions

$$P(x_2|x_1=Y) = \begin{pmatrix} 0.55 \\ 0.45 \end{pmatrix}$$

$$P(x_2|x_1 = N) = \begin{pmatrix} 6.53 \\ 0.47 \end{pmatrix}$$

Conditional Probability Values

$$P(x_{2} | x_{1} = Y) = \begin{pmatrix} .55 \\ .545 \end{pmatrix}$$

$$P(x_{2} = Y | x_{1} = Y) = 0.55$$

$$P(x_2 | x_1 = N) = (.53)$$

$$P(x_2 = N | x_1 = N) = 6.47$$

Joint Probability "Values" by the Chain Rule

Joint Probability of x1, x2
$$= p(\underline{x_1}, \underline{x_2})$$

$$= p(\underline{x_1}) \times p(\underline{x_2}, \underline{x_1})$$

$$P(x_1 = Y, x_2 = N) = 0.54 \times 0.45$$

$$P(x_1 = N, x_2 = Y) = 0.46 \times 6.53$$

Joint Probability "Distributions" by the Chain Rule

$$P(x_1 = Y, x_2) = 0.55$$

$$P(x_1 = N(x_2)) = 0.46 \times 0.45$$

Conditional Probability Distributions

$$P(x_3 | x_1 = N, x_2 = Y) =$$

$$P(x_3 | x_1 = Y, x_2 = N) =$$

Conditional Probability Values

$$P(x_3 | x_1 = N, x_2 = Y) = \begin{pmatrix} .3 \\ .2 \\ .3 \end{pmatrix}$$

$$P(x_3 = C | x_1 = N, x_2 = Y) = 6.2$$

$$P(x_3 | x_1 = Y, x_2 = N) = \begin{pmatrix} .3 \\ .3 \\ .1 \\ .3 \end{pmatrix}$$

$$P(x_3 = D | x_1 = Y, x_2 = N) = \begin{pmatrix} .3 \\ .1 \\ .3 \end{pmatrix}$$

Joint Probability "Values" by the Chain Rule


```
Joint Probability of x1, x2, x3
= p(\underline{\hspace{1cm}} x_1, \underline{\hspace{1cm}} x_2, \underline{\hspace{1cm}} x_3)
= p(\underline{\hspace{1cm}} x_1, \underline{\hspace{1cm}} x_2, \underline{\hspace{1cm}} x_4, \underline{\hspace{1cm}} x_5, \underline{\hspace{1cm
```

Joint ?
$$P(x_1 = Y, x_2 = N, x_3 = A) = 0.54 \times 0.45 \times 0.3$$

$$P(x_1 = N, x_2 = N, x_3 = B) = 6.46 \times 6.47 \times 6.22$$

Joint Probability "Distributions" by the Chain Rule

$$P(x_1 = Y, x_2 = N, x_3) = 0.54 \times 0.45 \times \begin{bmatrix} 0.3 \\ 0.3 \\ 0.1 \\ 0.8 \end{bmatrix}$$

$$P(x_1=Y,Y=0 \times O \times [])$$

$$PNY = D \times O \times ()$$

Calculate Joint Probability

$$p(x1=B, x2=Y) = 6.2 \times 6.6 = 6.12$$

$$p(x1=W, x2=N) = \frac{0.8 \times 6.7}{0.56} = 0.56$$

$$p(x1=W, x2=Y) = 6.8 \times 6.3 = 0.24$$

Calculate Conditional Probability

Calculate Joint Probability

p("you are rich") =
$$\underline{0.2 \times 0.3 \times 0.4} = 0.024$$

p("you can swim") = $\underline{6.2 \times 0.2 \times 0.2} = 0.008$
p("how is she") = $\underline{0.2 \times 0.4 \times 0.4} = 0.032$
p("how is he") = $\underline{0.032}$

Pixel-based Image Model

CSCI 5722 Computer Vision

Color Image

С	С	В	А
В	В	В	А
В	С	В	А
В	В	В	В

Part Labels

1 = skin, 2 = hair

2	2	2	1
1	1	1	2
1	1	1	1
1	1	1	1

Generative Image Model (Joint Probability)

Colour

С	С	В	А
В	В	В	Α
В	С	В	А
В	В	В	В

port

1 = skin, 2 = hair

2	2	2	1
1	1	1	2
1	1	1	1
1	1	1	1

Tree Representation

Conditional Probability Distribution

A 2

$$Skin$$
 $A = 1$
 $A = 1$
 $B = 1$
 $C = 2$
 $C = 2$
 $C = 2$
 $C = 1$
 $C = 1$

Conditional Probability Values

Joint Probability Distribution

Joint Probability Values

p(color = A, part = skin) =
$$\frac{12}{16}$$
 x $\frac{2}{12}$

kin

A

B

P(color = A, part = skin) = $\frac{12}{16}$ x $\frac{2}{12}$

hair

A

D

p(color = B, part = hair) = $\frac{4}{16}$ x $\frac{1}{4}$

C

2

Fill the aggregation tree

1	1	1	1	1
1	1	1	1	2
1	2	2	2	2
2	2	2	2	2
2	2	2	2	2

Conditional Probability Values

white	2	
blue	8	
green	0	
brown	0	

7	ما	L = 7	とり
	sky	10	
			1

	white	× o
_	blue	× 2
	green	3
	brown	10

$$1 = sky, 2 = land$$

1	1	1	1	1
1	1	1	1	2
1	2	2	2	2
2	2	2	2	2
2	2	2	2	2

p(color = blue | part = sky) =
$$\frac{9}{10}$$

p(color = green | part = sky) =
$$\frac{6}{10}$$

p(color = green | part = land) =
$$\frac{3}{15}$$

Joint Probability Values

white	2	
blue	8	
green	0	
brown	0	

sky	10
land	15

white	X O
blue	¥ 2
green	3
brown	10

$$1 = sky$$
, $2 = land$

1	1	1	1	1
1	1	1	1	2
1	2	2	2	2
2	2	2	2	2
2	2	2	2	2

p(color = blue, part = sky) =
$$\frac{8}{10} \times \frac{10}{25} = \frac{8}{25}$$

p(color = blue, part = land) =
$$\frac{2}{15} \times \frac{15}{25} = \frac{2}{25}$$

p(color = green, part = sky) =
$$\frac{0}{26}$$
 = 0

p(color = green, part = land) =
$$\frac{3}{25}$$

Autoregressive Image Model

CSCI 5722 Computer Vision

What to draw next?

$$P(x_{2}|x_{1}=0)$$

 $P(x_{2}=-|x_{1}=0)=0.2$

Xo

Conditional Probability

$$p(\overline{(:)}|\underline{(:)}) = 6.2$$

$$p(\bigcirc M | \bigcirc M) = 6.5$$

$$p(x4|\bigcirc 1) = \begin{pmatrix} 0 \cdot \frac{3}{3} \\ \vdots \\ \vdots \\ \end{pmatrix}$$

Joint Probability

$$p(\bigcirc) = 0.2 \times 0.5 \times 0.4 \times 0.2 \times 0.3$$

Joint Probability

$$p(0) = 0.3 \times 0.3 \times 0.2 = 0.018$$