Shengqu Cai

shengqu@stanford.edu | +1 (408) 4124395 | https://primecai.github.io

EDUCATION

since 2023	Stanford University, California, USA PhD in COMPUTER SCIENCE GPA: 4.3/4.3
2020 - 2023	ETH Zürich, Zürich, Switzerland MSc in COMPUTER SCIENCE, Major in Visual Computing GPA: 5.7/6.0, Major GPA: 6.0/6.0
2017 - 2020	King's College London, London, United Kingdom BSc (Hons) in COMPUTER SCIENCE Average: 90% (GPA: 4.0/4.0, ≈ top 1%), graduated with First Honour

F

Research Experience		
2022	Visiting Student Researcher at Stanford University , California, USA Master thesis at Stanford Computational Imaging Group. Project: Unsupervised one-shot scene extrapolation. Paper published at ICCV'2023 [2]. Supervisor: Prof. Gordon Wetzstein	
2021	Research Student at ETH Zürich CVL & Toyota TRACE, Zürich, Switzerland Project: Unsupervised one-shot novel view synthesis. Paper published at CVPR'2022 [3]. Patent [A]. Supervisor: Dr. Dengxin Dai, Prof. Luc Van Gool	
2019 <i>-</i> 2020	Research student at King's College London , London, United Kingdom Bachelor final thesis, received high distinction(85%).	

PUBLICATION

[1] Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models Shengqu Cai, Duygu Ceylan, Matheus Gadelha, Chun-Hao Paul Huang, Tuanfeng Yang Wang, and Gordon Wetzstein. Under review, 2023.

Project: Invariant Information Clustering with videos.

Supervisor: Dr. Michael Spratling

- [2] DiffDreamer: Towards Consistent Unsupervised Single-view Scene Extrapolation with Conditional Diffusion Models Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad Shahbazi, Anton Obukhov, Luc Van Gool, and Gordon Wetzstein. In: ICCV, 2023.
- [3] Pix2NeRF: Unsupervised Conditional π -GAN for Single Image to Neural Radiance Fields Translation.

Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc Van Gool.

In: CVPR, 2022.

Featured: NeRF at CVPR 2022, datagen.tech, metaphysic.ai, etc.

PATENT

[A] System for Unsupervised Single Image to Neural Radiance Fields Translation European patent: EP 22 158 531.8. filed in 2022 by Toyota, approved in 2023.

TEACHING EXPERIENCE

2019 | Practical Experiences Of Programming, King's College London

INDUSTRIAL EXPERIENCE

2023	Research Intern at Adobe Research , San Jose, USA Research on enhancing video editing tools. Mentor: Dr. Duygu Ceylan.
2020	Technology Analyst at China National Petroleum Corporation, Shenyang, China
2018	Software Engineer at Neusoft, Shenyang, China
2018	Software Engineer at China National Petroleum Corporation, Shenyang, China

PROJECTS

2021	Real Time Photorealistic Neural Rendering in VR at Computer Vision and Learning Group, ETH Zürich, Zürich, Switzerland Description: Deploy per-frame translation module on Oculus Quest 2 using Barracuda and Unity.
2021	Viewpoint Adaptation in a Synthetic Environment at Computer Vision and Geometry group, ETH Zürich , Zürich, Switzerland Description: SLAM module training augmentation with synthetic world model correspondence. Part of the working package available here.
2021	Semi-supervised Semantic Amodal Hand Gesture Segmentation at ETH Zürich, Zürich, Switzerland Description: Occluded hand gesture segmentation with semi-supervised pipeline.
2020	Adapt RCNN for Natural language to SQL Translation at ETH Zürich , Zürich, Switzerland
2018	Ocado Multi-agent Planning at King's College London , London, United Kingdom
2018	Adapt Deep learning to Episodic non-Markov Localization at King's College London, London, United Kingdom

ACADEMIC SERVICES

CONFERENCE REVIEW: ECCV22, CVPR23, ICCV23, NeurIPS23, ICLR23, CVPR24

JOURNAL REVIEW: IJCV23, Computing Surveys, Eurographics

LANGUAGES

ENGLISH: Fluent

CHINESE: Mothertongue