

ÁRBOL

y ALGORITMOS LCC – LSI - TUPW

Árbol Balanceado - AVL

Un árbol es *perfectamente equilibrado*, si para cada nodo los números de nodos en sus subárboles izquierdo y derecho difieren cuanto más en uno.

Un árbol está *balanceado* si y solo si en cada nodo las alturas de sus dos subárboles difieren a lo máximo en uno.

Los árboles balanceados reciben el nombre de **Árboles AVL** por ser Adelson-Velski y Landis quienes propusieron esta definición de equilibrio.

T.A.D. Arbol Balanceado Construcción de operaciones abstractas (1)

Inserción en un Árbol Balanceado

a) Si altura(I(r)) < altura(D(r)) y X se inserta en I(r)

T.A.D. Arbol Balanceado Construcción de operaciones abstractas (2)

Inserción en un Árbol Balanceado

b) Si altura(I(r)) = altura(D(r)) y X se inserta en I(r),

T.A.D. Arbol Balanceado Construcción de operaciones abstractas (3)

Inserción en un Árbol Balanceado

c) Si altura(I(r)) > altura(D(r)) y X se inserta en I(r)

REBALANCEAR!!

T.A.D. Arbol Balanceado

Construcción de operaciones abstractas (4)

T.A.D. Arbol Balanceado Construcción de operaciones abstractas (5)

Árbol Multicamino

Construcción y mantención de árboles de búsqueda a gran escala, que se almacenan en memoria secundaria.

Almacenar datos de 1 millón de elementos árbol balanceado \rightarrow Log₂10 = 20 comp. acceso a disco por cada comp . 20 accesos a disco

Se incorpora un tipo particular de árbol multicamino

cantidad de accesos en el peor de los casos sería: Log $_{100}^{}$ $^{\circ}$ = 3 accesos

Cada página (salvo una) contiene entre n y 2n nodos para determinada constante n. De ahí que, en un árbol con N elementos y un tamaño máximo de página de 2n nodos por página, en el peor caso requiere log N_n accesos de página.

Árbol B, árbol multicamino de orden n:

- 1) Cada página contiene a lo sumo 2n elementos (claves).
- 2) Cada página, excepto la pagina raíz, contiene n elementos por lo menos.
- 3) Cada página es una página de hoja, o sea que no tiene descendientes, o tiene m+1 descendientes, donde m es su número de claves en esa página (n <= m <= 2n).
- 4) Todas las páginas hoja aparecen al mismo nivel.

T.A.D. Árbol B de orden 2 Especificación

- 1) Cada página contiene a lo sumo 4 (2*2) elementos (claves).
- 2) Cada página, excepto la pagina raíz, contiene 2 elementos por lo menos.
- 3) Cada página es una página de hoja, o sea que no tiene descendientes, o tiene m+1 descendientes, donde m es su número de claves en esa página (2 <= m <= 4).
- 4) Todas las páginas hoja aparecen al mismo nivel.

T.A.D. Árbol B

Representación

Estructura de la Página

m : cantidad de claves en la página

ki: clave; 1 <= i <= m

p0 : dirección de la página que contiene claves

menores que k1

pi : dirección de la página que contiene claves

mayores que ki y menores que ki+1

pm : dirección de la página que contiene claves

mayores que km

T.A.D. Árbol B

Operaciones Abstractas: Buscar

¿Cómo se realiza la búsqueda de una clave **X**, *en una página dada*? ¿Si la clave **X** no se encuentra en una página, cómo continúa la búsqueda?

- 1) km < X;
- 2) X< k1;
- 3) ki < X < ki+1 (1 <= i < m)

entonces la búsqueda continúa por la página apuntada por p_m entonces la búsqueda continúa por la página apuntada por p_0 entonces la búsqueda continúa por la página apuntada por p_0

Árbol Binario Semicompleto

Árbol Binario Semicompleto: Un Árbol Binario Semicompleto de n nodos, se forma a partir de un árbol binario completo de n+q nodos, quitando las q hojas extremo derechas del árbol binario completo.

T.A.D.Montículo Binario

Especificación

Montículo Binario: Un *Montículo Binario* es un árbol binario semicompleto en el que el valor de clave almacenado en cualquier nodo es menor o igual que el valor de clave de sus hijos.

Montículos Binarios Colas de Prioridad

Los valores –claves- que representan prioridades deben interpretarse de la siguiente manera: a menor valor-mayor prioridad, por lo que la máxima prioridad se encuentra en la raíz del árbol.

T.A.D.Montículo Binario

Especificación

Operaciones Abstractas

M: Montículo Binario y X: Clave

NOMBRE	ENCABEZADO	FUNCIÓN	ENTRADA	SALIDA
Insertar	Insertar(M, X)	Ingresa el elemento X al montículo M	M, X	M con el nuevo elemento
Eliminar_Mínimo	Eliminar_Mínimo (M, X)	Suprime del montículo M el elemento de máxima prioridad- mínimo valor de clave	М	M y X: elemento de máxima prioridad

T.A.D. Montículo Binario

Representación

Montículo Binario desde una perspectiva conceptual

Montículo Binario en su almacenamiento

T.A.D.Montículo Binario Construcción de operaciones abstractas (1)

Tanto la operación *Insertar* como *Eliminar_Mínimo*, deben garantizar que en el Montículo Binario se mantengan las siguientes dos propiedades:

- ➤ Propiedad de Estructura : el objeto de datos debe ser un árbol binario semicompleto.
- > Propiedad de Orden : el valor de clave almacenado en cualquier nodo debe ser menor o igual que el valor de clave de sus hijos.

T.A.D.Montículo Binario Construcción de operaciones abstractas (2)

Insertar (M,X=35)

10 11

T.A.D.Montículo Binario Construcción de operaciones abstractas (3)

Eliminar_Mínimo (M, X)

T.A.D.Montículo Binario Construcción de operaciones abstractas (4)

Eliminar_Mínimo (M, X)

b) Propiedad de Orden

Elementos

	20	50	30	40	35	60	70	80	90	100	<u>.</u>	
0	1	2	3	4	5	6	7	8	9	10	11	

Elementos

