Recall:

Space

$$\mathbb{P}(\hat{V}_{i=1}^{2}E_{i}) = \sum_{i=1}^{2}\mathbb{R}(E_{i})$$

A finite collection of events

A, A2, , An is mutually independent if

- $P(E, \Lambda E, \Lambda E_3 \cdot \Lambda E_n) = \prod_{i=1}^{n} P(E_i)$ where $E_i = A_i$ or $A_i^c = 1,2,...,n$. Independence

An arbitrary collection of events Ar where teI for some index set I is mutually independent if every finite subcollection is mutually is dependent.

· A, B arc independent

 $\mathbb{P}(A \wedge B) = \mathbb{P}(A) \otimes \mathbb{P}(B)$

$$P(A|B) = P(A \cap B)$$
 $P(B)$

Definition of Randon Walk

Intuitive: Riv. Toes a coin at each step

If head occurs more right

occurs of the tril occurs more left

Sn = position at time n

Q:-. Typical position at time 1?

• $P(S_n=0)=?$ • Find $z \in [-n,n)$ st $P(S_n=x)$ is maximum?

Notation: N - natural numbers
No - NU (0).

Simple randon walls on 21

Fix NEN.

 $\Omega_{N} = \left\{ \omega = (\omega_{1}, ..., \omega_{n}) \mid \omega \in \{-1, +1\} \right\} = \{-1, 1\}^{N}$

Define fu 12 12 P

Xx: 12,-3 2-1,13 by Xx (w) = wx

(Step of random walk at time 1c)

 $S_0(u) = 0$; $S_0(u) = \sum_{k=1}^{N} \chi_k(w)$ $1 \le n \le N$

 $\mathbb{P}(X_{k} = 1) = \frac{1}{2} = \mathbb{P}(X_{k} = -1)$ • (E_x.)

$$\mathbb{P}(X_{k}=1) = \frac{1}{2} = \mathbb{P}(X_{k}=-1)$$

$$\forall 1 \leq k \leq N$$

$$\mathbb{P}(X_{k}=1) = \mathbb{P}(X_{k}=1) = \mathbb{P}(X_{k}=1)$$

(independence) K=2

Note:
$$S_{k_1} = \sum_{n=0}^{k_1} X_n$$
 and dependent $S_{k_2} = S_{k_1} + \sum_{n=k_1+1}^{k_2} X_n$

 $\mathbb{P}(S_{m-1} = a) = \mathbb{P}(S_{m-1} = a)$

(6)
$$P(S_n = a | S_{n-1} = a_{n-1}, ..., S_1 = a_1) - (+)$$

$$= P(S_n = a | S_{n-1} = a_{n-1})$$
if $P(S_{n-1} = a_{n-1}, ..., S_1 = a_1) > 0$

(*) Suppose
$$P(S_{K}=a)$$
 70 for lett, at Z.

$$P(S_{M}=b \mid S_{K}=a) = P(S_{M-K}=b-a)$$

Expectation E[Sn] =? Var [Sn] =?

$$F[X_{k}] = 1 P(X_{k}=1) + (-1) P(X_{k}=-1)$$

$$= 1 \cdot \frac{1}{2} - \frac{1}{2} = 0 - \bigoplus$$

$$S_{n} = \sum_{k=1}^{n} X_{k} + 0$$

$$\Rightarrow E[S_n] = \hat{Z} E[Y_k] = 0$$

$$Var[S_n] = E[S_n^2] - (E[S_n])^2$$

$$= E[S_n^2] = E((\sum_{k=1}^n Y_k)^2)$$

$$= E \left[\sum_{k=1}^{\infty} X_{k}^{2} + \sum_{i,j} X_{i}^{2} \right]$$

$$= \sum_{k=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i,j} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i,j} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i,j} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i,j} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{k}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right] + \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{i}^{2} X_{i}^{2} \right]$$

$$= \sum_{i=1}^{\infty} E \left[X_{$$

$$= 1.7 + 1.7 = 1 + 1.5 = 1$$

$$= 1.6(x^{\kappa-1}) + (-1) \cdot 6(x^{\kappa-1})$$

Proof

$$P(S_n = x) = \binom{n}{n+x} \frac{1}{2^n}$$

Proof

$$\begin{cases} S_n = x \end{cases} = \begin{cases} \text{first } n \text{ compenents of } \omega \text{ take} \\ \text{precisally } | x = n+x | \text{times value } + 1 \end{cases}$$

Let
$$S_n = k(+1) + (n-k)(-1) = \frac{2x-n}{2}$$

$$\text{the plant is demolited stress}$$

$$\text{The clands is } S_n(\omega) = x \text{ if } | x \text{ down } | \text{set} | x \text{ stress} | x$$

Observations

Distribulian of

Sn - Symmetric around 0. $P(S_n = x) = \frac{n!}{2! \cdot 2!} = P(S_n = -x)$

$$\mathbb{P}(S_{2n}=0) = \binom{2n}{n} 2^{-2n}$$

$$= \frac{2n!}{n! n!} 2^{-2n}$$

$$0 \leq P(\Delta \leq S_n \leq b) = \sum_{x \in \{a,b\}} P(S_n = x)$$

$$\leq \sum_{x \in \{a,b\}} P(S_n = x) + P(S_n = y)$$

for some $\leq (b-a+1)\frac{C_1}{\sqrt{5}}$ - \int By (1) =) (P(a \le S_1 \le b) -> 0 0 n-> 0 Mathematical issue: our P = Pr n-fixed. (length of walk) So n->0 need N->0 as well. Understanding Pu when M= = Cone back to it later 1.2 Stopping times Interpretation: . Sn = represent "amount of capital"

of the player after a rounds · Xk = amount a player vino in would k. Expected "amount of Capital" after n sound $= ECS_n = 0$ $0 \le n \le N$ Question: Is it possible to stop the game in a favorable moment? (Clever Stopping Strategy -- to a positive expected sain) (no future). no -insider toading { decision to stop man

(i	O 1	te	(m	المح	tion	(٠)		0	N	り	. (يلا	Pl	ه		<u>.</u>	D-	4	Ю	334	•.	4	; \ I	Ü	47,	K	. ,	ი,	

Intuition

at the first light after the air port (no fatore information) stop

Airport ist light

at the 3rd last light before the disport

(use future internation) g Al