Raport 3 Klasyfikacja na bazie modelu regresji Porównanie metod klasyfikacji

Romana Żmuda 249706 Adrian Kit 249746

18 maja 2020

Spis treści

1	Wstęp - wprowadzenie do podanych zagadnień		1
	1.1	Opis wybranych pojęć	2
2	Zadanie 1 - Klasyfikacja na bazie modelu regresji liniowej		
	2.1	Wybór i przygotowanie danych	3
	2.2	Podział danych na zbiór uczący i testowy	
	2.3	Konstrukcja klasyfikatora i wyznaczenie prognoz	
	2.4	Ocena jakości modelu	
	2.5	Budowa modelu liniowego dla rozszerzonej przestrzeni cech	6
		2.5.1 Klasyfikator, Prognozy i Wnioski	7
3	Zadanie 2 - Porównanie metod klasyfikacji		10
	3.1	Wybór i przygotowanie danych	10
		3.1.1 Podział danych na zbiór uczący i testowy	14
	3.2	Naiwny Bayes	15
	3.3	Metoda k-NN	
	3.4	Metoda drzew klasyfikacyjnych	24
	3.5	Podsumowanie i wnioski	

1 Wstęp - wprowadzenie do podanych zagadnień

W tym sprawozdaniu będziemy badali dwa zbiory danych. Pierwszy z nich, podobnie jak w poprzednim raporcie, dotyczy kwiatków irysów. W drugim zadaniu możemy wybrać spośród pięciu zbiorów. Zdecydowaliśmy się na zbiór o winach.

Celem raportu jest:

- Klasyfikacja na bazie modelu regresji liniowej
- Porównanie wybranych metod klasyfikacji

Poniżej zamieściliśmy krótkie charakteryzacje metod wykorzystanych w raporcie.

1.1 Opis wybranych pojęć

• Klasyfikacja

Klasyfikacja danych to metoda, która umożliwia tworzenie klasyfikatorów. Klasyfikator to pewna funkcja (zazwyczaj w postaci algorytmu lub programu komputerowego), która przypisuje analizowane obiekty do jednej z rozpatrywanych klas. Zazwyczaj klasyfikator konstruuje się na podstawie pewnego zbioru danych uczących, zawierającego opisy i klasy pewnej liczby obiektów.

• Klasyfikator K najbliższych sąsiadów (KNN)

Przykładem najprostszego klasyfikatora jest klasyfikator K najbliższych sąsiadów (ang. K Nearest Neighbors, KNN). Jest to funkcja, która dla rozpatrywanego obiektu, wyszukuje w zbiorze danych uczących K obiektów najbardziej do niego podobnych i zwraca etykietę tej klasy, do której należy większość z tych K obiektów. Często spotykanym przypadkiem klasyfikacji danych jest klasyfikacja danych wektorowych. Obiekty są opisywane przez wektory liczb rzeczywistych. Wówczas prosty klasyfikator K najbliższych sąsiadów (KNN) polega na policzeniu odległości opisu rozpatrywanego obiektu od opisów każdego obiektu ze zbioru danych uczących (często stosowana jest odległość Euklidesowa), a następnie na wybraniu K obiektów o najmniejszych odległościach od x.

Naiwny klasyfikator bayesowski

Naiwny klasyfikator bayesowski to prosty klasyfikator oparty na wnioskowaniu statystycznym. Naiwność klasyfikatora przejawia się założeniem niezależności zmiennych losowych reprezentujących cechy klasyfikowanych obiektów, które nie zawsze, a raczej prawie nigdy, nie jest prawdziwe w zagadnieniach rzeczywistych. Popularność naiwnego klasyfikatora bayesowskiego wynika z jego prostoty, zarówno konceptualnej jak i obliczeniowej, która mimo swoich naiwnych założeń często prowadzi do dosyć dobrych wyników.

• Drzewa klasyfikacyjne

Inną klasą klasyfikatorów są cieszące się dużą popularnością metody bazujące na drzewach decyzyjnych (klasyfikacyjnych). W tym przypadku klasyfikator jest reprezentowany przez drzewo binarne, w którego węzłach znajdują się pytania o wartości określonej cechy, a w liściach znajdują się oceny klas.

• Metoda regresji liniowej

Głównym celem regresji jest zbudowanie modelu, który podobnie jak model klasyfikacji posłuży do predykcji jednej zmiennej na podstawie znanych wartości innych zmiennych. Podstawową różnicą pomiędzy regresją i klasyfikacją jest to, że w klasyfikacji przewidywana zmienna przyjmuje wartość kategoryczną, natomiast w regresji celem jest przewidzenie zmiennej przyjmującej wartość ciągłą (numeryczną).

2 Zadanie 1 - Klasyfikacja na bazie modelu regresji liniowej

2.1 Wybór i przygotowanie danych

```
library("datasets")
data("iris")
attach(iris)
ncol(iris) # ilość kolumn
## [1] 5
nrow(iris) #ilość przypadków
## [1] 150
sapply(iris, class) # identyfikacja cech
## Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             Species
                 "numeric"
      "numeric"
                                "numeric"
                                              "numeric"
                                                            "factor"
ilebrakujacych<-sum(is.na(iris))</pre>
ilebrakujacych # liczba brakujących danych
## [1] 0
```

2.2 Podział danych na zbiór uczący i testowy

```
n <- dim(iris)[1]</pre>
learn.indx \leftarrow sample(1:n,2/3*n)
learn.set <- iris[learn.indx,] # zbiór uczący</pre>
test.set <- iris[-learn.indx,] # zbiór testowy
head(learn.set)
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                                 Species
## 117
                 6.5
                              3.0
                                            5.5
                                                          1.8 virginica
                 5.0
                              2.0
                                            3.5
                                                         1.0 versicolor
## 61
## 130
                 7.2
                              3.0
                                            5.8
                                                         1.6 virginica
## 28
                 5.2
                              3.5
                                            1.5
                                                         0.2
                                                                  setosa
## 116
                 6.4
                              3.2
                                            5.3
                                                          2.3 virginica
## 49
                 5.3
                              3.7
                                            1.5
                                                          0.2
                                                                  setosa
```

2.3 Konstrukcja klasyfikatora i wyznaczenie prognoz

Definiujemy podstawowe zmienne potrzebne do dalszej pracy.

Potrzebujemy reprezentacji macierzowej naszych danych. Pierwszą kolumnę wypełniamy jedynkami (uwzględnienie stałej w modelu regresji).

```
Xu <- cbind(rep(1,100), learn.set[,1:4])
Xu <- as.matrix(Xu)
Xt <- cbind(rep(1,50), test.set[,1:4])
Xt <- as.matrix(Xt)</pre>
```

Następnie kodujemy poszczególne klasy. Rezultat umieszczamy w macierzy wskaźnikowej Y. Zaczniemy od wygenerowania macierzy zerowej, zmieniając zera na jedynki, jeżeli i-ta obserwacja należy do j-tej klasy.

```
[,1] [,2] [,3]
##
## [1,]
            0
                  0
## [2,]
                  1
            0
                       0
## [3,]
            0
## [4,]
            1
                  0
                       0
## [5,]
                  0
                       1
## [6,]
            1
                  0
                       0
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                                   Species
## 117
                  6.5
                                              5.5
                                                                 virginica
                               3.0
                  5.0
                                                            1.0 versicolor
## 61
                               2.0
                                              3.5
## 130
                  7.2
                               3.0
                                              5.8
                                                            1.6
                                                                 virginica
## 28
                  5.2
                               3.5
                                              1.5
                                                            0.2
                                                                     setosa
## 116
                  6.4
                               3.2
                                              5.3
                                                            2.3
                                                                 virginica
## 49
                  5.3
                               3.7
                                              1.5
                                                            0.2
                                                                     setosa
```

Istotnie, na przykładzie pierwszych sześciu rekordów, widać, że kodowanie jest poprawne (setosa - "1", versicolor - "2", virginica - "3").

Przedstawimy prognozowane prawdopodobieństwa przynależności do danych klas obiektów ze zbioru

```
B <- solve(t(Xu)%*%Xu) %*% t(Xu) %*% Yu #klasyfikator
Yu.hat <- Xu%*%B
Yt.hat <- Xt%*%B
head(Yu.hat)
##
                [,1]
                           [,2]
                                       [,3]
## 117 -0.084919250 0.46949848
                                 0.61542077
        0.078296166 0.83923972
                                 0.08246412
## 61
## 130 -0.095894728 0.58787670
                                 0.50801803
## 28
        0.969927065 0.12716622 -0.09709328
## 116
        0.008216176 0.05637633
                                0.93540750
## 49
        1.024442100 0.04557983 -0.07002193
```

Poniżej wykresy prognoz dla zbioru uczącego i testowego

Zbiór uczacy

Rysunek 1: Prognozy dla zbioru uczącego

Zbiór testowy

Rysunek 2: Prognozy dla zbioru testowego

Wnioski:

- Na obu wykresach widać wyraźne oddzielenie setosy od pozostałych klas.
- Wiele obserwacji może zostać błędnie sklasyfikowanych (głównie versicolor i virginica),
 ponieważ ich prognozy wynoszą około 0,5. Na tej podstawie (wspomagając się obserwacjami) możemy wnioskować, że wystąpuje zjawisko maskowania klas.
- Z wykresu dla zbioru uczącego można odczytać, że obserwacje należące do klas setosa (1) i virginica (3) beda dobrze sklasyfikowane. Dla versicolor (2) moga wystapić błedy.

2.4 Ocena jakości modelu

Macierz pomyłek i poprawność dla zbioru uczącego:

```
##
                          prognozowane.etykietki
##
  rzeczywiste.etykietki setosa versicolor virginica
##
                                38
                                             0
               setosa
                                            20
##
               versicolor
                                0
                                                       10
                                 0
                                             4
                                                       28
##
               virginica
## [1] 0.86
```

Macierz pomyłek i poprawność dla zbioru testowego:

```
##
                          prognozowane.etykietki
## rzeczywiste.etykietki setosa versicolor virginica
##
               setosa
                                12
                                             0
                                                        0
##
               versicolor
                                0
                                           15
                                                       5
                                             3
##
               virginica
                                0
                                                       15
## [1] 0.84
```

Wnioski:

- \bullet Nasze przypuszczenia okazały się słuszne, około 40 % gatunku versicolor zostało błędnie sklasyfikowanych.
- Poprawność kształtuje się na poziomie 80%, jednak czy da się uzyskać większą?

2.5 Budowa modelu liniowego dla rozszerzonej przestrzeni cech

Zbudujemy nowy model liniowy z dodatkowymi cechami: $PL^2, PW^2, SL^2, SW^2, PL*PW, PL*SW, PL*SL, PW*SL, PW*SW, SL*SW$ Tak wygląda nasz nowy zbiór:

```
SL^2 SW^2 PL^2 PW^2 SL.SW SL.PL SL.PW SW.PL SW.PW PL.PW Species
## 1 5.1 3.5 26.01 12.25 1.96 0.04 17.85
                                          7.14
                                                1.02
                                                       4.90
                                                                   0.28
                                                             0.70
                                                                         setosa
## 2 4.9 3.0 24.01
                   9.00 1.96 0.04 14.70
                                          6.86
                                                0.98
                                                      4.20
                                                                   0.28
                                                             0.60
                                                                         setosa
## 3 4.7 3.2 22.09 10.24 1.69 0.04 15.04
                                                      4.16
                                          6.11
                                                0.94
                                                             0.64
                                                                   0.26
                                                                         setosa
## 4 4.6 3.1 21.16 9.61 2.25 0.04 14.26
                                          6.90
                                                0.92
                                                       4.65
                                                             0.62
                                                                   0.30
                                                                         setosa
## 5 5.0 3.6 25.00 12.96 1.96 0.04 18.00
                                          7.00
                                                1.00
                                                      5.04
                                                             0.72
                                                                   0.28
                                                                         setosa
## 6 5.4 3.9 29.16 15.21 2.89 0.16 21.06 9.18 2.16 6.63
                                                           1.56 0.68
                                                                         setosa
```

Krótki opis danych:

```
ncol(iris.new) # ilość kolumn
## [1] 15
nrow(iris.new) #ilość przypadków
## [1] 150
sapply(iris.new, class) # identyfikacja cech
                                                 SL^2
                    SW
                              PL
                                         PW
                                                           SW<sup>2</sup>
                                                                     PL^2
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
                           SL.PW
                                      SW.PL
                 SL.PL
                                                SW.PW
                                                          PL.PW
## "numeric" "numeric" "numeric" "numeric" "numeric" "factor"
ilebrakujacych<-sum(is.na(iris.new))</pre>
ilebrakujacych # liczba brakujących danych
## [1] 0
```

2.5.1 Klasyfikator, Prognozy i Wnioski

Tworzymy zbiór uczący, na którym skonstruujemy klasyfikator regresji oraz zbiór testowy, na którym zweryfikujemy czy stworzony model jest poprawny.

```
n <- dim(iris.new)[1]
learn.indx <- sample(1:n,2/3*n)

learn.set <- iris.new[learn.indx,] # zbiór uczący

test.set <- iris.new[-learn.indx,] # zbiór testowy</pre>
```

Wyliczamy klasyfikator ze zbioru uczącego, a następnie wyznaczamy prognozy dla obydwu zbiorów:

```
B <- solve(t(Xu)%*%Xu) %*% t(Xu) %*% Yu #klasyfikator
Yu.hat <- Xu%*%B
Yt.hat <- Xt%*%B</pre>
```

Poniżej wykresy prognoz dla zbioru uczącego i testowego po uzupełnieniu wyjściowych cech o składniki wielomianowe stopnia 2:

Zbiór uczacy dla skladników wielomianowych

Rysunek 3: Prognozy dla zbioru uczącego

Zbiór testowy dla skladników wielomianowych

Rysunek 4: Prognozy dla zbioru testowego

Wyznaczenie prognoz dla poszczególnych ID zbioru testowego (badanie maksymalnej wartości etykietki).

```
13
                                    15
                                         18
                                              19
                                                    23
                                                         29
                                                              31
                                                                   38
                                                                        39
                                                                             43
                                                                                   46
                                                                                                       51
##
                    10
                          11
                                                                                        47
                                                                                             49
                                                                                                  50
                                          1
                                                          1
                                                                               1
                                                                                    1
                                                                                                         2
##
      1
           1
                1
                      1
                           1
                                1
                                     1
                                                1
                                                     1
                                                               1
                                                                     1
                                                                          1
                                                                                         1
                                                                                               1
                                                                                                    1
     56
          59
               60
                    61
                          65
                               67
                                    69
                                         80
                                              82
                                                   84
                                                         85
                                                              87
                                                                   94
                                                                       101
                                                                            103
                                                                                 106
                                                                                      109
                                                                                            110 111
                                                                                                      115
##
      2
           2
                2
                      2
                           2
                                2
                                     2
                                           2
                                                2
                                                     3
                                                          2
                                                               2
                                                                     2
                                                                          3
                                                                               3
                                                                                    3
                                                                                         3
                                                                                                         3
##
   116 119 120 121 125 134 135 136 141 145
                                2
                                     3
                                          3
##
                2
                      3
                           3
                                                3
```

Wnioski:

- Wyraźny podział na 3 podzbiory, zgodnie z naszym podziałem.
- W tym przypadku nie ma maskowania środkowej klasy, jednak w 3 zbiorze, dla virginici, widać że prognoza dla klasy numer 3 nie zawsze jest najwyżej, tym samym klasa wybrana przez model regresji może być niewłaściwa.

Sprawdzimy ile z nich jest rozpoznana błędnie, używając macierzy pomyłek. Zaczniemy od zbioru uczącego:

```
##
                      prognozowane.etykietki.u
   etykietki.klas.ucz setosa versicolor virginica
##
                           31
                                        0
                                                   0
           setosa
##
           versicolor
                             0
                                       36
                                                   0
           virginica
                             0
                                        0
                                                  33
##
   [1] "Dokładność klasyfikacji dla zbioru uczącego: "
   [1] 1
```

Błąd przydzielenia elementu do złej klasy jest bliski 1-3%. Jest to o wiele dokładniejszy pomiar, niż w przypadku poprzednich podpunktów.

Sprawdźmy zbiór testowy:

```
##
                       prognozowane.etykietki.t
##
   etykietki.klas.test setosa versicolor virginica
                            19
##
            setosa
                                         0
                              0
                                        13
                                                    1
##
            versicolor
                             0
                                         2
            virginica
##
   [1] "Dokładność klasyfikacji dla zbioru testowego: "
## [1] 0.94
```

Prawie wszystkie elementy ze zbioru testowego zostały przydzielone do właściwych etykiet. Podsumowanie i wnioski:

- Uzupełniając dane o składniki wielomianowe stopnia 2 uzyskujemy lepsze rezultaty niż dla danych wyjściowych z błędem wynoszącym maks kilka punktów procentowych. Jest to łatwy sposób na poprawienie dokładności klasyfikatora.
- Pozbywamy się także efektu maskowania klas.

3 Zadanie 2 - Porównanie metod klasyfikacji

3.1 Wybór i przygotowanie danych

Wybraliśmy dane z pakietu *HDclassif* o nazwie "WINE", poniżej krótka charakteryzacja pliku:

```
library(HDclassif)
data(wine)
colnames(wine) <- c('Type', 'Alcohol', 'Malic', 'Ash',</pre>
                        'Alcalinity', 'Magnesium', 'Phenols',
                        'Flavanoids', 'Nonflavanoids',
                        'Proanthocyanins', 'Color', 'Hue',
                        'Dilution', 'Proline')
wine$Type <- as.factor(wine$Type)</pre>
head(wine)
##
     Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids Nonflavanoids
## 1
             14.23
                   1.71 2.43
                                     15.6
                                                 127
                                                         2.80
                                                                     3.06
                                                                                    0.28
## 2
        1
             13.20
                    1.78 2.14
                                     11.2
                                                 100
                                                         2.65
                                                                     2.76
                                                                                    0.26
## 3
        1
             13.16
                    2.36 2.67
                                     18.6
                                                 101
                                                         2.80
                                                                     3.24
                                                                                    0.30
## 4
        1
             14.37
                    1.95 2.50
                                     16.8
                                                         3.85
                                                                     3.49
                                                                                    0.24
                                                 113
## 5
        1
             13.24
                    2.59 2.87
                                     21.0
                                                         2.80
                                                                                    0.39
                                                 118
                                                                     2.69
             14.20 1.76 2.45
## 6
        1
                                     15.2
                                                 112
                                                         3.27
                                                                     3.39
                                                                                    0.34
     Proanthocyanins Color Hue Dilution Proline
##
## 1
                 2.29
                       5.64 1.04
                                      3.92
                                               1065
## 2
                 1.28
                       4.38 1.05
                                      3.40
                                               1050
## 3
                 2.81
                       5.68 1.03
                                      3.17
                                               1185
                 2.18
                                      3.45
## 4
                       7.80 0.86
                                               1480
                       4.32 1.04
## 5
                 1.82
                                      2.93
                                                735
## 6
                 1.97
                       6.75 1.05
                                      2.85
                                               1450
ncol(wine) # ilośc kolumn
## [1] 14
nrow(wine) #ilość przypadków
## [1] 178
sapply(wine, class) # identyfikacja cech
##
               Type
                             Alcohol
                                                Malic
                                                                    Ash
                                                                             Alcalinity
                                            "numeric"
           "factor"
                           "numeric"
                                                             "numeric"
                                                                               "numeric"
##
##
         Magnesium
                             Phenols
                                           Flavanoids
                                                         Nonflavanoids Proanthocyanins
          "integer"
                           "numeric"
                                            "numeric"
                                                             "numeric"
                                                                               "numeric"
##
##
              Color
                                 Hue
                                             Dilution
                                                               Proline
##
          "numeric"
                           "numeric"
                                            "numeric"
                                                             "integer"
```

Dane Wina - rozklad klas

Plik zawiera 14 cech i 178 przypadków, w których kolumny odpowiednio nazywają się:

- Type Wektor klasowy, trzy różne odmiany wina reprezentowane przez trzy liczby całkowite od 1 do 3.
- Alcohol procent alkoholu
- Malic wskaźnik określający jabłkowość
- Ash wskaźnik winny mętności
- Alcalinity Alkaliczność
- Magnesium Magnez
- Phenols Fenole
- Flavanoids Flavanoidy
- Nonflavanoids Nieflawanoidy
- Proanthocyanins Proantocyjaniny

- Color Kolor
- Hue Odcień
- Dilution Roztwór
- Proline Prolina

Zaczniemy od sprawdzenia zmienności cech. Jeśli wariancje poszczególnych zmiennych będą zbyt zróżnicowane, wtedy konieczna będzie standaryzacja.

```
## Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids

## 1 0.6590623 1.248015 0.07526464 11.15269 203.9893 0.3916895 0.9977187

## Nonflavanoids Proanthocyanins Color Hue Dilution Proline

## 1 0.01548863 0.3275947 5.374449 0.05224496 0.5040864 99166.72
```

Obserwacje: Wariancje wyjściowych zmiennych są bardzo zróżnicowane. Celem uniknięcia dominacji zmiennej o bardzo dużej wariancji (zmienna Proline) przeprowadzimy standaryzację.

Rysunek 5: Rozrzut zmiennych przed standaryzacją

Boxplot dla 4 zmiennych po standaryzacji

Rysunek 6: Rozrzut zmiennych po standaryzacji

Zdolności dyskryminacyjne zmiennych:

Rysunek 7: Zdolności dyskryminacyjne poszczególnych zmiennych

Rysunek 8: Zdolności dyskryminacyjne poszczególnych zmiennych

Wniosek: Najlepszymi cechami do separacji klas są Phenols i Flavanoids.

3.1.1 Podział danych na zbiór uczący i testowy

Stworzymy 2 zbiory uczącę i 2 zbiory testowe. W jednym znajdą się wszystkie cechy, w drugim zaś te o najlepszej zdolności dyskryminacyjnej (Phenols i Flavanoids).

```
etykietki<-wine$Type
etykietki<-data.frame(etykietki)
wine2<-cbind(etykietki, wine1)

np <- dim(wine2)[1]
learn.indx.all <- sample(1:np,2/3*np)
learn.set.all <- wine2[learn.indx.all,] # zbiór uczący wszystkich zmiennych
test.set.all <- wine2[-learn.indx.all,] # zbiór testowy wszystkich zmiennych
wine3<-wine2[7:8]
wine3<-cbind(etykietki, wine3)

etykietki.learn.all<-learn.set.all$etykietki
etykietki.test.all <- test.set.all$etykietki
n2 <-dim(wine3)[1]
learn.indx.subset <- sample(1:n2,2/3*n2)
learn.set.subset <- wine3[learn.indx.subset,] # zbiór uczący pozdbioru danych
test.set.subset <- wine3[-learn.indx.subset,] # zbiór testowy pozdbioru danych</pre>
```

```
etykietki.learn.subset<-learn.set.subset$etykietki
etykietki.test.subset <- test.set.subset$etykietki
```

Przeprowadzimy analizę trzema metodami na wyżej pokazanych podzbiorach. Porównamy uzyskane rezultaty i postaramy się wybrać najlepszą z metod, badając przy tym różne przypadki poboczne.

3.2 Naiwny Bayes

Wyznaczamy macierz pomyłek i błąd klasyfikacyjny dla metody naiwnego Bayesa. Na początek przeanalizujemy wyjściowy zbiór danych z podziałem na zbiór uczący i testowy. Macierz pomyłek i błąd dla zbioru uczącego wyjściowych danych:

```
## $macierz.pomylek
## etykietki
## etykietki.prog 1 2 3
## 1 37 0 0
## 2 1 43 0
## 3 0 1 36
##
## $blad.klasyf
## [1] 0.01694915
```

Macierz pomyłek i błąd dla zbioru testowego wyjściowych danych:

```
## $macierz.pomylek
## etykietki
## etykietki.prog 1 2 3
## 1 21 1 0
## 2 0 25 0
## 3 0 1 12
##
## $blad.klasyf
## [1] 0.03333333
```

Następnie rozważymy podzbiór danych wyjściowych z cechami o najlepszej zdolności dyskryminacyjnej.

Macierz pomyłek i błąd dla zbioru uczącego pozdbioru wyjściowych danych:

```
## $macierz.pomylek
## etykietki
## etykietki.prog 1 2 3
## 1 28 12 0
## 2 6 35 4
## 3 0 5 28
##
## $blad.klasyf
## [1] 0.2288136
```

Macierz pomyłek i błąd dla zbioru testowego pozdbioru wyjściowych danych:

```
## $macierz.pomylek
## etykietki
## etykietki.prog 1 2 3
## 1 18 3 0
## 2 7 12 0
## 3 0 4 16
##
## $blad.klasyf
## [1] 0.2333333
```

Wnioski:

Standard deviation: 0.0035

- Analiza całego zbioru: Podobne, niemal identyczne wyniki zbiorów uczącego i testowego. Błąd kształtuje się w okolicach 2%, co jest świetnym rezultatem.
- \bullet Analiza podzbioru cech o najlepszych zdolnościach dyskryminacyjnych: Wyniki również są podobne dla obu zbiorów, jednak na wiele niższym poziomie, bowiem błąd wynosi około 20%

Otrzymane wyniki porównamy z tymi uzyskami dzięki algorytmowi "bootstrap":

```
library(ipred)
#Wine3-pozdbiór wyjściowych danych z cechami o najlepszej zdolności dyskryminacyjnej,
#bez podziału na zbiór uczący i testowy
#Wine2-wyjściowe dane po standaryzacji
my.predict <- function(model, newdata)</pre>
{ predict(model, newdata=newdata, type="class") }
my.naiveBayes <- function(formula, data)</pre>
{ naiveBayes(formula=formula,data=data)}
#Testujemy model dla nboot=50, nboot=3
(blad.bootstrap <- errorest(etykietki~., wine3, model=my.naiveBayes, predict=my.predict,
 estimator="boot", est.para=control.errorest(nboot = 50)))
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.naiveBayes,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
##
##
     Bootstrap estimator of misclassification error
##
##
     with 50 bootstrap replications
## Misclassification error: 0.2233
```

```
(blad.bootstrap <- errorest(etykietki~., wine3, model=my.naiveBayes, predict=my.predict,
 estimator="boot", est.para=control.errorest(nboot = 3)))
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.naiveBayes,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 3))
##
    Bootstrap estimator of misclassification error
##
     with 3 bootstrap replications
##
## Misclassification error: 0.2328
## Standard deviation: 0.0329
(blad.bootstrap <- errorest(etykietki~., wine2, model=my.naiveBayes, predict=my.predict,
 estimator="boot", est.para=control.errorest(nboot = 50)))
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine2, model = my.naiveBayes,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
##
##
    Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
## Misclassification error: 0.0295
## Standard deviation: 0.0024
(blad.bootstrap <- errorest(etykietki~., wine2, model=my.naiveBayes, predict=my.predict,
estimator="boot", est.para=control.errorest(nboot = 3)))
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine2, model = my.naiveBayes,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 3))
##
    Bootstrap estimator of misclassification error
##
##
    with 3 bootstrap replications
## Misclassification error: 0.0451
## Standard deviation: 0.0115
(blad.cv <- errorest(etykietki~., wine3, model=my.naiveBayes, predict=my.predict,
            estimator="cv", est.para=control.errorest(k = 5)))
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.naiveBayes,
       predict = my.predict, estimator = "cv", est.para = control.errorest(k = 5))
```

```
##
     5-fold cross-validation estimator of misclassification error
##
##
## Misclassification error:
(blad.cv <- errorest(etykietki~., wine3, model=my.naiveBayes, predict=my.predict,
            estimator="cv", est.para=control.errorest(k = 100)))
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.naiveBayes,
       predict = my.predict, estimator = "cv", est.para = control.errorest(k = 100))
##
     100-fold cross-validation estimator of misclassification error
##
##
## Misclassification error: 0.2303
```

Wnioski:

- Algorytm "bootstrap" uzyskujemy podobne do siebie rezultaty, bez względu na wartość parametru nboot (testowane dla nboot=3 oraz nboot=50) zarówno dla zbioru wyjściowego jak i podzbioru z danymi o najlepszej zdolności dyskryminacyjnej. Maksymalna różnica wynosi kilka punktów procentowych.
- Wyniki otrzymanę metodą "bootstrap" są praktycznie identyczne jak te otrzymane macierzą pomyłek. Maksymalny błąd szacujemy na 1%.
- Algorytm "cross validation" daje niemal identyczne rezultaty jak algorytm "bootstrap" (dla różnych wartości k)

3.3 Metoda k-NN

Zaczniemy od analizy wyjściowego zbioru.

```
## $macierz.pomylek
##
                etykietki.rzecz
## etykietki.prog 1
                     2 3
##
               1 38 2 0
##
               2 0 40 0
                  0 2 36
##
##
## $blad.klasyf
## [1] 0.03389831
## $macierz.pomylek
##
                etykietki.rzecz
## etykietki.prog 1 2 3
##
               1 21 4
##
               2 0 21 0
##
               3 0 2 12
```

Model dla zbiorów o najlepszej zdolności dyskryminacyjnej:

```
# budujemy model
model.knn.2 <- ipredknn( etykietki~ ., data=learn.set.subset, k=5) #na zbiorze uczącym
etykietki.prog.learn.subset<- predict(model.knn.2, learn.set.subset,type="class")
etykietki.prog.test.subset<- predict(model.knn.2, test.set.subset,type="class")
(blad.klasyf(etykietki.prog.learn.subset, etykietki.learn.subset))
## $macierz.pomylek
##
                 etykietki.rzecz
## etykietki.prog 1 2 3
##
                1 28 11 0
                2 6 35 4
##
##
                3 0 6 28
##
## $blad.klasyf
## [1] 0.2288136
(blad.klasyf(etykietki.prog.test.subset, etykietki.test.subset))
## $macierz.pomylek
##
                 etykietki.rzecz
## etykietki.prog 1 2 3
                1 22 4 0
##
                2 3 13 3
##
                3 0 2 13
##
##
## $blad.klasyf
## [1] 0.2
```

Wnioski:

- Analiza dla wyjściowego zbioru: Występuje istotna różnica na poziomie kilku punktów procentowych między zbiorem uczącym a testowym, która nie występowała w metodzie naiwnego Bayesa.
- Analiza podzbioru cech o najlepszych zdolnościach dyskryminacyjnych: Wciąż występuje różnica w błędach, jednak nie jest już tak istotna, mimo wszystko nie występowała ona w metodzie Bayesa.
- Test był wykonywany dla k=5, może się okazać, że nie jest to optymalna liczba.

Badanie jakości klasyfikacji dla różnych kombinacji danych (bez podziału na zbiory uczące i testowe), ale dla różnej liczby najbliższych sąsiadów (testowane k=1, k=20 i k=100):

```
#Wine3-pozdbiór wyjściowych danych z cechami o najlepszej zdolności dyskryminacyjnej,
#bez podziału na zbiór uczący i testowy
#Wine2-wyjściowe dane po standaryzacji
my.predict <- function(model, newdata) predict(model, newdata=newdata, type="class")</pre>
my.ipredknn <- function(formula1, data1, ile.sasiadow) ipredknn(formula=formula1,data=da
attach(wine2)
errorest(etykietki ~., wine2, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=1)
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine2, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
       ile.sasiadow = 1)
##
##
    Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
##
## Misclassification error: 0.0488
## Standard deviation: 0.0019
errorest(etykietki ~., wine2, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=20)
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine2, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
       ile.sasiadow = 20)
##
##
##
    Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
##
## Misclassification error: 0.0486
## Standard deviation: 0.0031
errorest(etykietki ~., wine2, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=100)
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine2, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
       ile.sasiadow = 100)
```

```
##
##
    Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
##
## Misclassification error: 0.1446
## Standard deviation: 0.0142
errorest(etykietki ~., wine3, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=1)
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
       ile.sasiadow = 1)
##
    Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
##
## Misclassification error: 0.2915
## Standard deviation: 0.0059
errorest(etykietki ~., wine3, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=20)
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
##
       ile.sasiadow = 20)
##
    Bootstrap estimator of misclassification error
##
##
    with 50 bootstrap replications
## Misclassification error: 0.2273
## Standard deviation: 0.0039
errorest(etykietki ~., wine3, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=100)
##
## Call:
## errorest.data.frame(formula = etykietki ~ ., data = wine3, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
       ile.sasiadow = 100)
##
##
##
    Bootstrap estimator of misclassification error
    with 50 bootstrap replications
## Misclassification error: 0.3944
## Standard deviation: 0.0131
```

Wnioski:

- Wyjściowy zbiór: Dla k=1 błąd na poziomie 5%, dla k=20 na poziomie 4%, dla k=100 aż 15%.
- Pozdbiór z cechami o najlepszych zdolnościach dyskryminacyjnych: Błąd dla k=1 bliski 30%, dla k=20 około 22%, k=100 około 40%. Tutaj różnica jest wyraźna.
- Zwiększenie k powoduje zmniejszenie błędu, ale tylko do pewnego momentu. Zatem istnieje takie k, dla którego analiza jest optymalna. W dalszej analizie przyjmujemy k=20 jako optymalne.
- Dla k=1 błąd jest niewielki, jednak tutaj mamy dużą losowość.

Dowolne podzbiory danych dla takiego samego k=20:

```
##
## Call:
## errorest.data.frame(formula = etykietki ~ Ash + Alcalinity +
       Proline + Hue, data = wine2, model = my.ipredknn, predict = my.predict,
       estimator = "boot", est.para = control.errorest(nboot = 50),
##
##
       ile.sasiadow = 20)
##
     Bootstrap estimator of misclassification error
##
     with 50 bootstrap replications
##
##
## Misclassification error: 0.1198
## Standard deviation: 0.0038
##
## Call:
## errorest.data.frame(formula = etykietki ~ Ash + Hue + Flavanoids +
       Proline, data = wine2, model = my.ipredknn, predict = my.predict,
       estimator = "boot", est.para = control.errorest(nboot = 50),
##
       ile.sasiadow = 20)
##
##
##
    Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
##
## Misclassification error:
## Standard deviation: 0.0025
```

Obserwacje:

• Po zamianie jednej z cech zbioru na cechę mającą wysokie zdolności dyskryminacyjne błąd klasyfikacji maleje o połowę.

Sprawdzimy, czy dodanie kolejnej cechy o wysokiej zdolności dyskryminacyjnej znowu zmniejszy błąd.

```
##
## Call:
## errorest.data.frame(formula = etykietki ~ Ash + Hue + Flavanoids +
       Proline + Phenols, data = wine2, model = my.ipredknn, predict = my.predict,
##
       estimator = "boot", est.para = control.errorest(nboot = 50),
       ile.sasiadow = 20)
##
##
##
     Bootstrap estimator of misclassification error
##
     with 50 bootstrap replications
##
## Misclassification error: 0.0731
## Standard deviation: 0.0029
##
## Call:
## errorest.data.frame(formula = etykietki ~ Phenols + Hue + Flavanoids +
       Ash, data = wine2, model = my.ipredknn, predict = my.predict,
       estimator = "boot", est.para = control.errorest(nboot = 50),
##
       ile.sasiadow = 20)
##
    Bootstrap estimator of misclassification error
##
##
    with 50 bootstrap replications
##
## Misclassification error:
## Standard deviation: 0.0043
```

Obserwacje:

- Dodanie kolejnej cechy o wysokiej zdolności dyskryminacyjnej nie zmniejsza błędu.
- Usunięcie zmiennej Proline znacznie zwiększa błąd.

Wnioski:

- Model z cechami o wysokiej zdolności dyskryminacyjnej nie musi minimalizować błędu klasyfikacyjnego.
- Istotny wpływ zmiennej Proline na poziom błędu klasyfikacyjnego (dlaczego?).

Wykres zależności prognozowanych i rzeczywistych etykiet (tu zmienne Flavanoids i Proline)

Porównanie etykiet rzeczywistych z prognozami

Rysunek 9: Prognozy

Kolorowe obszary oznaczają prognozowane etykiety. Na niebiesko - (1), fioletowo - (2), biało - (3)

3.4 Metoda drzew klasyfikacyjnych

Wyznaczenie drzewa i klasyfikatora:

Stworzymy dwa modele. Jeden ze wszystkimi danymi w zbiorze, a drugi z wybranym podzbiorem. Model pierwszy zastosujemy do analizy danych wyjściowych oraz do podzbioru danych z cechami o najlepszej zdolności dyskryminacyjnej. Natomiast model drugi, zbudowanych na wybranych cechach, przeanalizujemy na danych wyjściowych i porównanym, jakie znaczenie ma ilość zmiennych przy tworzeniu modelu klasyfikatora metodą drzew.

```
library(MASS)
library(rpart)
library(rpart.plot)
library(klaR)
attach(wine2)
set.seed(1) # ustalamy ziarno generatora aby otrzymać powtarzalne wyniki
n.learn.all <- nrow(learn.set.all)
n.learn.subset<-nrow(learn.set.subset)

n.test.all <- nrow(test.set.all)
n.test.subset <- nrow(test.set.subset)
model<- etykietki~ . #model klasyczny
#model 2</pre>
```

```
model.all.1 <- etykietki ~ Proline + Phenols + Hue + Flavanoids

# budujemy drzewo

tree.all <- rpart(model, data=learn.set.all, control=rpart.control(cp=.03, minsplit=10,
tree.all.1 <- rpart(model.all.1, data=learn.set.all, control=rpart.control(cp=.03, minsplit=10,
tree.subset <- rpart(model, data=learn.set.subset, control=rpart.control(cp=.03, minsplit=10,
tree.subset <- rpart(model, data=learn.set.subset, control=rpart.control(cp=.03, minsplit=10,
tree.all)</pre>
```


rpart.plot(tree.all.1)

rpart.plot(tree.subset)

Wnioski:

• Największe znaczenie w klasyfikowaniu ma zmienna Proline, kolejnymi zmiennymi są Duration i Phenols, jeśli rozważamy zbiór danych wyjściowych, podobne zjawisko występuje w modelu drugim.

- Proline i Phenols mają zależność decydującą na poziomie zera, pamiętay że dane uległy standaryzacji, wię możemy uznać, że zmienna Proline dzieli drzewko na dwie ilościwo podobne zbiory
- Analizując drzewo z danymi o najlepszej zdolności dyskryminacyjnej, widzimy że klasa 3 jest mocno oddzielona od klas 1 oraz 2

Macierze pomyłek:

Analiza dla danych wyjściowych:

```
# macierz pomyłek dla zbioru uczącego
conf.mat.learn.all <- table(prog.learn.all, etykietki.learn.all)</pre>
conf.mat.learn.all
##
                 etykietki.learn.all
## prog.learn.all 1 2 3
                1 38 2 1
##
                2 0 42 0
##
##
                3 0 0 35
(error.learn.all <- (n.learn.all - sum(diag(conf.mat.learn.all))) / n.learn.all)</pre>
## [1] 0.02542373
# macierz pomyłek dla zbioru testowego
conf.mat.test.all <- table(prog.test.all, etykietki.test.all)</pre>
conf.mat.test.all
##
                etykietki.test.all
## prog.test.all 1
                     2
##
               1 21
                     6
                        0
##
               2 0 20 0
               3 0 1 12
##
(error.rate.test <- (n.test.all - sum(diag(conf.mat.test.all))) / n.test.all)
## [1] 0.1166667
```

Analiza dla danych o największych zdolnościach dyskryminacyjnych:

```
# macierz pomylek dla zbioru uczącego
conf.mat.learn.subset<-table(prog.learn.subset, etykietki.learn.subset)
conf.mat.learn.subset

## etykietki.learn.subset
## prog.learn.subset 1 2 3
## 1 33 15 0
## 2 1 31 1
## 3 0 6 31</pre>
```

```
(error.learn.subset <- (n.learn.subset - sum(diag(conf.mat.learn.subset))) / n.learn.sub
## [1] 0.1949153

# macierz pomytek dla zbioru testowego
conf.mat.test.subset<-table(prog.test.subset, etykietki.test.subset)
conf.mat.test.subset

## etykietki.test.subset
## prog.test.subset 1 2 3
## 1 25 4 0
## 2 0 11 0
## 3 0 4 16

(error.rate.test.subset <- (n.test.subset - sum(diag(conf.mat.test.subset))) / n.test.subset
## [1] 0.1333333</pre>
```

Analiza danych wyjściowych w drugim modelu:

```
#macierz pomyłek dla modelu 2
#Zbiót uczący
conf.mat.all.1.learn<-table(prog.all.1.learn, etykietki.learn.all)</pre>
conf.mat.all.1.learn
##
                   etykietki.learn.all
## prog.all.1.learn 1 2 3
##
                  1 38 3 0
##
                  2 0 41 2
                  3 0 0 34
##
(error.learn.1.all <- (n.learn.all - sum(diag(conf.mat.all.1.learn))) / n.learn.all)
## [1] 0.04237288
#Zbiór testowy
conf.mat.all.1.test<-table(prog.all.1.test, etykietki.test.all)</pre>
conf.mat.all.1.test
                  etykietki.test.all
## prog.all.1.test 1 2 3
                 1 20 1 0
##
##
                 2 1 24 0
##
                 3 0 2 12
(error.rate.1.test <- (n.test.all - sum(diag(conf.mat.all.1.test))) / n.test.all)</pre>
## [1] 0.06666667
```

Wnioski:

- Stosunkowa wysoka róźnica pomiędzy zbiorem testowym, a uczącym w danych wyjściowych w obu modelach.
- Model 2 zastosowany na mniejszej ilości danych niewiele różni się w stosunku do modelu na wszystkich zmiennych, wnioskujemy że głównymi zmiennymi, które w znacznym stopniu klasyfikują drzewo to Proline oraz Phenols
- Tak jak w innych klasyfikatorach istnieje spora niedokładność dla zbioru o najlpeszych cechach dyskryminacyjnych, dla obu zbiorów (uczący i testowy) wynosi ona około 18%

3.5 Podsumowanie i wnioski

Podsumowanie:

- Naiwny Bayes:
 - -Analiza całego zbioru: Błąd na poziomie 2%
 - -Analiza podzbioru cech o najlepszych zdolnościach dyskryminacyjnych: Błąd na poziomie 20%
- k-NN:
 - -Analiza całego zbioru: Błąd poniżej 2%
 - -Analiza podzbioru cech o najlepszych zdolnościach dyskryminacyjnych: Błąd na poziomie 18-23%
- Drzewa klasyfikacyjne:
 - -Analiza całego zbioru: Błąd na poziomie 7-10%
 - -Analiza podzbioru cech o najlepszych zdolnościach dyskryminacyjnych: Błąd na poziomie 14-22%

Wnioski:

- Metoda naiwnego Bayesa oraz k-NN daje bardzo zbliżone, niemal identyczne rezultaty.
- Metoda drzew klasyfikacyjnych gorzej radzi sobie gdy analizujemy cały zbiór, jednak daje szansę na zmniejszenie błędu, gdy ograniczymy się do podzbioru cech o najlepszych zdolnościach dyskryminacyjnych.