ENSEMBLES DE NOMBRES

1) LES PRINCIPAUX ENSEMBLES DE NOMBRES

A) DÉFINITIONS ET NOTATIONS

N est l'ensemble des nombres entiers naturels. $N = \{0:1:2:3:...\}$

L'ensemble des nombres entiers naturels différents de 0 se note \mathbb{N}^* .

 \mathbb{Z} est l'ensemble des <u>nombres entiers relatifs</u> (ou nombres entiers) $\mathbb{Z} = \{ \dots : -3 : -2 : -1 : 0 : 1 : 2 : 3 : \dots \}$

L'ensemble des nombres entiers différents de 0 se note \mathbb{Z}^* .

 $-32 \in \mathbb{Z}$ et $-32 \notin \mathbb{N}$ Exemples: $27 \in \mathbb{N}$ et $27 \in \mathbb{Z}$

ID est l'ensemble des **nombres décimaux** . (nombres s'écrivant $n \times 10^p$ avec n et p dans \mathbb{Z})

Exemples: $0.26 = 26 \times 10^{-2}$, donc $0.26 \in ID$

• Q est l'ensemble des <u>nombres rationnels</u>. (nombres que l'on peut écrire sous la forme $\frac{p}{q}$, p étant un nombre entier et q un entier non nul)

Exemples: $\frac{2}{3} \in \mathbb{Q}$; $5 = \frac{5}{1}$, donc $5 \in \mathbb{Q}$; $-12,57 = -\frac{1257}{100}$, donc $-12,57 \in \mathbb{Q}$; $\sqrt{3} \notin \mathbb{Q}$

- On appelle <u>nombre irrationnel</u> tout nombre que l'on ne peut pas écrire sous la forme $\frac{p}{q}$, p étant un nombre entier et q un entier non nul
- La longueur d'un carré d'aire 2 cm^2 , noté $\sqrt{2}$ est un nombre irrationnel. (Démonstration en exercice)
- π et un nombre irrationnel
- R est l'ensemble des **nombres réels**, c'est à dire qui sont soit rationnels, soit irrationnels. R est l'ensemble des abscisses des points d'une droite graduée munie d'un repère (O,I).

Exemples: $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ (on lit \mathbb{R} privé de \mathbb{Q})

B) SYMBOLE D'INCLUSION

Définition:

Soit A et B deux ensembles :

A

B se lit: " A est inclus dans B ", " A est contenu dans B " ou " A est une partie de B "

A ⊂ B signifie que tout élément de l'ensemble A appartient à l'ensemble B.

Si A n'est pas inclus dans B on note : A ⊄ B

Exemple:
$$\mathbb{N} \subset \mathbb{Z} \subset \mathrm{ID} \subset \mathbb{Q} \subset \mathbb{R}$$

$$\mathbb{Q} \not\subset \mathbb{Z} \text{ car par exemple } \frac{2}{3} \in \mathbb{Q} \text{ et } \frac{2}{3} \notin \mathbb{Z}$$

2) INTERVALLES

A) DÉFINITIONS ET NOTATIONS

Remarque préliminaire :

On a vu que sur une droite munie d'un repère (O,I), à tout point M de cette droite, on peut associer un réel, appelé abscisse de M dans le repère (O,I). Dans la suite, pour représenter les réels, on se contentera d'utiliser cette droite sans marquer le nom des points. Cette droite est appelée droite des réels.

Définition:

Soit a et b deux réels tels que a < b.

L'ensemble des nombres réels vérifiant la double inégalité $a \le x \le b$ est appelé <u>intervalle fermé</u> a, b de \mathbb{R} noté [a;b].

Les nombres a et b sont les **bornes** de l'intervalle |a;b|

b-a est <u>l'amplitude</u> de l'intervalle [a;b]. (c'est à dire sa " largeur ")

Les différents cas sont représentés dans le tableau ci-dessous.

	INTERVALLE	INÉGALITÉ e des réels x vérifiant :	REPRÉSENTATION ensemble
Intervalle fer	[a;b]	$a \leq x \leq b$	<i>a b</i> >
Intervalle ou]a; b[a < x < b	<i>a b</i>
Intervalle ser	[a;b[$a \leq x < b$	<i>a b</i>
Intervalle ser (ou semi ouv]a;b]	$a < x \le b$	<i>a b</i>
Intervalle fer $(+\infty, plus)$	$[a;+\infty[$	$x \ge a$	<i>a</i> [>
Intervalle ou	$]a;+\infty[$	x > a	<i>a</i>
Intervalle fer $(-\infty, moins)$	$]-\infty$; a]	$x \leq a$	<i>a</i>
Intervalle ou]-∞; <i>a</i> [x < a	<i>a</i>

ermé

uvert

emi fermé à gauche vert à droite) emi fermé à droite vert à gauche) ermé

l'infini, n'est pas un nombre)

uvert

ermé

ns l'infini, n'est pas un nombre)

uvert

Remarques:

L'intervalle $\left[-\infty; +\infty\right[$ n'est rien d'autre que \mathbb{R}

B) INTERSECTION ET RÉUNION

Définition:

Soit A et B deux ensembles.

- L'intersection de ces deux ensembles, noté $A \cap B$ (A inter B), est l'ensemble de tous les éléments communs à A et à B .
- <u>La réunion</u> de ces deux ensembles, noté $A \cup B$ (A union B), est l'ensemble de tous les éléments appartenant à A ou à B .

Remarque:

- Si deux ensembles A et B n'ont pas d'éléments communs, alors on dit que leur intersection est vide. On note : $A \cap B = \emptyset$
- Notation: $\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[$

Exemples:

- $[-5;3] \cap [1;5] = [1;3]$
- $[-3;2[\cup[1;3,5]=]-3;3,5]$
- $[-5;2] \cap [3;7,5] = \emptyset$

3) ENCADRER ET ARRONDIR UN RÉEL

Définitions:

- Donner un <u>encadrement</u> décimal d'un réel x, c'est donner deux nombres décimaux a et b tels que $a \le x \le b$. b-a est appelée <u>amplitude</u> de l'encadrement.

On dit qu'un encadrement est à 10^{-n} près (où $n \in \mathbb{N}$) si son amplitude est égale à 10^{-n} .

- Arrondir un nombre, c'est lui trouver la valeur la plus proche à une précision donnée.

Exemple:

 $3, 1 \le \pi \le 3, 2$ est un encadrement de π d'amplitude 10^{-1}

- 3,1 est une valeur approchée par défaut de π .
- 3,2 est une valeur approchée par excès de π .
- 3,1 est l'arrondi de π à 10^{-1} près. (On regarde le chiffre situé juste après la valeur approchée par défaut : si ce chiffre est 0,1,2,3 ou 4, on choisit comme arrondi, la valeur approchée par défaut, sinon on choisit la valeur approchée par excès)

4) VALEUR ABSOLUE

Définition:

La distance entre deux points de la droite des réels est la différence entre l'abscisse la plus grande et l'abscisse la plus petite.

Exemple:

$$AB = 1,7 - (-4,5) = 6,2$$

Définition:

Pour tout nombre réel x, <u>la valeur absolue</u> de x (notée |x|) est la distance entre x et 0. On a:

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Exemples:

- |5|=5 car 5 est un nombre positif.
- |-3|=3 car -3 est un nombre négatif.
- Si x est un nombre réel, $|x^2| = x^2$ car $x^2 \ge 0$.

Remarques:

Pour tout réel x, on a :

$$|x|=0 \Leftrightarrow x=0$$

$$|x| = |a| \Leftrightarrow x = a \text{ ou } x = -a$$

$$|-x| = |x|$$

$$\sqrt{x^2} = |x|$$

Propriété:

La distance entre deux réels a et b est égale à |b-a|

La distance entre a et b est la même que la distance entre b et a. On a donc |b-a|=|a-b|

Exemple: La distance entre -4 et -7 est |-4-(-7)|=3

Propriété:

Soit $a \in \mathbb{R}$ et $r \in \mathbb{R}^+$.

On dit que les intervalles [a-r;a+r] et]a-r;a+r[ont pour <u>centre</u> a et pour <u>rayon</u> r. On a:

- $x \in [a-r;a+r] \Leftrightarrow |x-a| \le r$ $x \in]a-r;a+r[\Leftrightarrow |x-a| < r$

Exemple:

L'intervalle [-2;5] a pour amplitude 5-(-2)=7, pour rayon $\frac{7}{2}=3.5$ et pour centre $\frac{5+(-2)}{2}=1.5$

On a:
$$x \in [-2;5] \Leftrightarrow |x-1,5| \le 3,5$$