Interview questions - TCP and UDP

1. What is the key difference between TCP and UDP?

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both **transport layer protocols**, but they have fundamental differences:

- TCP is a connection-oriented protocol. It establishes a reliable connection before sending data and ensures that data packets arrive in the correct order and without loss.
- UDP is a connectionless protocol. It sends data without establishing a connection and does not guarantee delivery, order, or error correction.

Feature	TCP (Transmission Control Protocol)	UDP (User Datagram Protocol)
Connectio n	Connection-oriented (handshake required)	Connectionless (no handshake)
Reliability	Reliable (ensures all packets arrive)	Unreliable (some packets may be lost)
Speed	Slower due to error checking & acknowledgments	Faster as it skips reliability checks
Use Cases	Web browsing, file transfer, email	Streaming, gaming, VoIP, DNS lookups

Summary: TCP prioritizes **reliability**, whereas UDP prioritizes **speed**.

2. When should you use TCP over UDP?

TCP should be used when **data integrity is critical**, and transmission **reliability is required**.

Common use cases for TCP:

- **Web Browsing (HTTP, HTTPS):** Ensures that all webpage data is received without corruption.
- File Transfers (FTP, SFTP): Guarantees complete file downloads/uploads without missing chunks.

- Email Communication (SMTP, IMAP, POP3): Ensures emails are received in full, without data loss.
- **Database Queries:** Prevents corruption of data when sending/receiving requests and responses.

TCP is essential whenever missing or corrupted data cannot be tolerated.

3. When should you use UDP over TCP?

UDP is preferred when **speed is more important than reliability**, and **occasional data loss is acceptable**.

Common use cases for UDP:

- Video Streaming (YouTube, Netflix): A few lost frames don't significantly affect the user experience.
- Online Gaming (Multiplayer Games): Low latency is crucial for real-time interactions.
- VolP Calls (Skype, Zoom): Small packet losses are tolerable, but delays should be minimal.
- **DNS Lookups (Domain Name System):** Quick responses are needed, and lost packets can be retried without noticeable delay.

UDP is ideal for real-time communication where low latency matters more than guaranteed delivery.

4. How does TCP ensure reliability?

TCP guarantees reliable communication using the following mechanisms:

- Three-Way Handshake: Establishes a connection before data transmission.
- Acknowledgments (ACKs): Confirms receipt of packets.
- Retransmission of Lost Packets: If a packet is lost, TCP resends it.
- Error Checking: Uses checksums to detect corrupted packets.

 Ordered Data Delivery: Reassembles packets in the correct order before passing them to the application.

These features ensure that **TCP delivers all data accurately and in sequence**.

5. Why is UDP faster than TCP?

UDP is faster because:

- **No connection establishment** It does not use a handshake like TCP.
- **No acknowledgments** Data is sent without waiting for confirmation.
- **No retransmission** Lost packets are **not** resent, reducing delays.
- Lower overhead It has a simpler header (8 bytes vs. TCP's 20 bytes).

Since **UDP doesn't waste time on ensuring reliability**, it delivers data **as quickly as possible**.

6. What are the main disadvantages of TCP and UDP?

TCP Disadvantages:

- Slower performance due to reliability mechanisms.
- Higher resource consumption (CPU and memory usage).
- Not suitable for real-time applications (e.g., VoIP, live streaming).

UDP Disadvantages:

- No guarantee of delivery Some packets may be lost.
- No built-in error correction Applications must handle errors manually.
- Unordered delivery Packets may arrive out of sequence.

Each protocol has trade-offs, and choosing between TCP and UDP depends on the application's needs.

7. How do applications handle reliability when using UDP?

Since UDP **doesn't ensure reliable delivery**, applications must implement their own mechanisms:

- **Sequence Numbers:** Ensures packets arrive in the correct order.
- Custom Acknowledgments: Applications can request ACKs for important data.
- Forward Error Correction (FEC): Adds extra data to recover lost packets.
- **Application-Level Retransmission:** If a packet is lost, the application requests it again.

For example, **online games and video streaming** use **error correction techniques** to reduce the impact of packet loss.

8. Can TCP and UDP be used together?

Yes! Some applications **combine TCP and UDP** to optimize performance.

Examples:

- Online Video Streaming (Netflix, YouTube): Uses UDP for fast video delivery but TCP for control messages (pause, seek, etc.).
- **Online Games:** UDP for real-time actions (player movement) + TCP for non-time-sensitive data (chat, game stats).
- VolP (Skype, Zoom): UDP for low-latency voice data + TCP for connection setup.

By using both protocols strategically, applications balance speed and reliability.

9. Which protocol does DNS use, TCP or UDP?

DNS (Domain Name System) primarily uses UDP because:

- Speed is crucial A DNS query must be resolved quickly.
- Small packet size DNS requests/responses fit within UDP's limits.

However, **DNS** can use **TCP** for larger responses, such as when retrieving a full DNS zone transfer.

10. How do firewalls handle TCP vs. UDP traffic?

Firewalls manage TCP and UDP traffic differently:

- **TCP traffic** is easier to monitor since it has a clear connection setup (handshake) and termination.
- **UDP traffic** is harder to track because it's connectionless, making it more vulnerable to abuse (e.g., DDoS attacks).

To secure UDP traffic, firewalls use **rate limiting**, **deep packet inspection**, **and UDP filtering**.