6 Компактность в метрических пространствах

Напомним определение компактности множества K, принадлежащего метрическому пространству M.

Опр. 1. Множество K называется компактным, если из всякой последовательности $\{x_n\}_{n=1}^{\infty} \subset K$ можно выбрать сходящуюся подпоследовательность, предел которой принадлежит K.

Дадим другое определение компактности.

Опр. 2. Множество K называется компактным, если из всякого его открытого покрытия можно выделить конечное подпокрытие.

Теорема 6.1. Определения 1 и 2 эквивалентны.

Доказательство. В силу леммы Гейне-Бореля множество, компактное в смысле определения 1, компактно и в смысле определения 2.

Пусть K компактно в смысле определения 2. Возьмем последовательность $\{x_n\}_{n=1}^{\infty} \subset K$. Предположим, что в $\{x_n\}_{n=1}^{\infty}$ нет подпоследовательности, сходящейся к элементу из K. Тогда для всякого $y \in K$ существует окрестность $B_{r(y)}(y)$, содержащая лишь конечное число элементов последовательности.

Так как система окрестностей $\{B_{r(y)}(y)\}_{y\in K}$ образует открытое покрытие множества K, то по нашему предположению из этого покрытия можно выделить конечное подпокрытие $\{B_{r(y_k)}(y_k)\}_{k=1}^N$.

Так как $\{x_n\}_{n=1}^{\infty} \subset K \subset \bigcup_{k=1}^{N} B_{r(y_k)}(y_k)$, то одна из окрестностей $B_{r(y_k)}(y_k)$ должна содержать бесконечную подпоследовательность элементов из $\{x_n\}_{n=1}^{\infty}$. Противоречие.

Теорема доказана.

Замечание 6.1. Обратим внимание на то, что всякое компактное множество замкнуто.

Опр. 3. Множество K называется npedkomnakmhым (или $omnocumenьнo komnakmhым), если из вской последовательности <math>\{x_n\}_{n=1}^{\infty} \subset K$ можно выделить сходящуюся подпоследовательность.

Теорема 6.2. Множество K предкомпактно тогда и только тогда, когда его замыкание [K] компактно.

Доказательство. Пусть [K] компактно. Тогда из всякой последовательности $\{x_n\}_{n=1}^{\infty} \subset K \subset [K]$ можно выделить сходящуюся подпоследовательность. Значит, K предкомпактно.

Пусть K предкомпактно. Докажем, что [K] компактно. Рассмотрим последовательность $\{x_n\}_{n=1}^{\infty} \subset [K]$.

Для всякого $x_n \in [K]$ существует элемент $x_n' \in K$ такой, что $\rho(x_n', x_n) < 1/n$. В силу предкомпактности K из последовательности $\{x_n'\}_{n=1}^{\infty}$ можно выделить сходящуюся подпоследовательность $x_{n_k}' \to x_0$.

Но тогда $x_{n_k} \to x_0$, причем (в силу замкнутости [K]) $x_0 \in [K]$. Следовательно [K] компактно.

Теорема доказана.

Опр. Пусть $K\subset M$, $\varepsilon>0$. Множество $A\subset M$ называется ε - сетью для K, если для всякого $x\in K$ существует $a\in A$ такой, что $\rho(x,a)\leqslant \varepsilon$.

Другими словами, множество A является ε - сетью для K, если

$$K \subset \bigcup_{a \in A} \overline{B}_{\varepsilon}(a).$$

Примеры. 1. Для $K = \mathbb{R}$ множество $\{k\varepsilon, k \in \mathbb{Z}\}$ образует ε - сеть.

2. Для \mathbb{R}^m множество

$$\left\{ \left(\frac{k_1 \varepsilon}{\sqrt{m}}, \frac{k_2 \varepsilon}{\sqrt{m}}, \dots, \frac{k_m \varepsilon}{\sqrt{m}} \right), \quad (k_1, k_2, \dots, k_m) \in \mathbb{Z}^m \right\}$$

Опр. Множество K называется вполне ограниченным, если для каждого $\varepsilon>0$ для K существует конечная ε - сеть.

Ясно, что каждое вполне ограниченное множество является ограниченным. Обратное неверно.

ДЗ 6.1. Доказать, что каждое вполне ограниченное множество является ограниченным.

Пример. Важный пример ограниченного множества, не являющегося вполне ограниченным, дает единичная сфера в ℓ_2 , то есть множество

$$S = \left\{ x = \{x_k\}_{k=1}^{\infty} \in \ell_2 \mid ||x||_{\ell_2}^2 = \sum_{k=1}^{\infty} |x_k|^2 = 1 \right\}.$$

S содержит счетный набор элементов $e_i=(0,\dots,0,1,0,\dots),$ где 1 находится на i-ой позиции. При этом $\rho(e_i,e_j)=\|e_i-e_j\|_{\ell_2}=\sqrt{2}$ при $i\neq j.$

Предположим, что единичная сфера в ℓ_2 является вполне ограниченным множеством. Тогда для каждого $\varepsilon > 0$ существует ε - сеть. Возьмем $\varepsilon < 1/2$.

Заметим, что в замкнутой ε - окрестности любой из точек ε - сети не могут находится два различных элемента e_i и e_j . Следовательно ε - сеть не может быть конечной.

Теорема 6.3. B конечномерном нормированном пространстве множество K ограничено тогда и только тогда, когда оно вполне ограничено.

Доказательство. Из вполне ограниченности очевидным образом следует ограниченность.

Пусть теперь K — ограниченное множество в конечномерном нормированном пространстве. Тогда его замыкание [K] компактно.

Покроем множество [K] открытыми шарами радиуса ε с центрами в точках $x \in [K]$. Из полученного открытого покрытия выделим конечное подпокрытие $\{B_{\varepsilon}(x_k)\}_{k=1}^N$. Множество $\{x_k\}_{k=1}^N$ дает конечную ε - сеть для K.

Теорема доказана.

ДЗ 6.2. Пусть K — ограниченное множество в конечномерном нормированном пространстве. Доказать, что его замыкание [K] компактно.

Пример. Рассмотрим гильбертов кирпич.

$$\Pi = \{ x = \{ x_k \}_{k=1}^{\infty} \in \ell_2 \mid |x_k| \le 2^{1-k}, \quad k \ge 1 \}.$$

Заметим, что Π – вполне ограниченное множество. Действительно, для любого $\varepsilon>0$ существует $N\geqslant 1$ такое, что

$$\left(\sum_{k=N+1}^{\infty} |x_k|^2\right)^{1/2} \leqslant \left(\sum_{k=N+1}^{\infty} 4^{1-k}\right)^{1/2} < \varepsilon/2 \quad \forall x \in \Pi.$$

Поэтому множество

$$\Pi_N = \{x^N = (x_1, x_2, \dots, x_N, 0 \dots) \mid x \in \Pi\}$$

образует $\varepsilon/2$ - сеть для Π .

Множество Π_N конечномерно и ограничено. Поэтому для него существует конечная $\varepsilon/2$ - сеть. Она и является конечной ε - сетью для Π .

Теорема 6.4. Всякое предкомпактное множество вполне ограничено.

Доказательство. Если K предкомпактно, то [K] компактно. Покроем [K] системой открытых шаров $\{B_{\varepsilon}(x)\}_{x\in[K]}$ с центрами в точках $x\in[K]$. Выбрав из этого открытого покрытия множества [K] конечное подпокрытие $\{B_{\varepsilon}(x_n)\}_{n=1}^N$, (лемма Гейне-Бореля), получим конечную ε – сеть $\{x_n\}_{n=1}^N$.

Теорема доказана.

Теорема 6.5. В полном метрическом пространстве M множество $K \subset M$ предкомпактно тогда и только тогда, когда оно вполне ограничено.

Доказательство. В силу теоремы 6.4 из предкомпактности K следует, что K вполне ограничено.

Пусть теперь K вполне ограничено. Тогда [K] также вполне ограничено, так как

$$K \subset \bigcup_{n=1}^{N} \overline{B}_{\varepsilon}(x_n) \Rightarrow [K] \subset \bigcup_{n=1}^{N} \overline{B}_{\varepsilon}(x_n)$$

Возьмем произвольную последовательность $\{x_n\}_{n=1}^{\infty} \subset K$. Покроем [K] конечным числом шаров радиуса $r_1 = 1$. В одном из них содержится бесконечная подпоследовательность $\{x_n^1\}_{n=1}^{\infty}$ исходной последовательности. Покроем [K] конечным числом шаров радиуса $r_2 = 1/2$. В одном из них находится подпоследовательность $\{x_n^2\}_{n=1}^{\infty}$ последовательности $\{x_n^1\}_{n=1}^{\infty}$. На k-ом этапе выделим подпоследовательность $\{x_n^k\}_{n=1}^{\infty}$, содержащуюся в одном из шаров радиуса $r_k = 1/k$. И т.д.

Возьмем теперь последовательность $\{x_n^n\}_{n=1}^{\infty}$. Эта последовательность фундаментальна, т.к.

$$\rho(x_n^n, x_m^m) \leqslant 2/n \quad \forall m > n.$$

В сислу полноты метрического пространства M имеем $x_n^n \to x \in [K]$.

Теорема доказана.

Следствие 6.1. Множество K в полном метрическом пространстве компактно тогда и только тогда, когда оно вполне ограничено и замкнуто.

Доказательство. Если K компактно, то оно предкомпактно и замкнуто. Поэтому оно вполне ограничено и замкнуто.

Пусть K вполне ограничено и замкнуто. Тогда оно предкомпактно и замкнуто. Следовательно K компактно.

Следствие доказано.

Следствие 6.2. *Метрическое пространство М компактно тогда и только тогда, когда оно полно и вполне ограничено.*

Доказательство. Пусть M вполне ограничено и полно. Тогда [M] = M вполне ограничено. Следовательно M компактно.

Пусть теперь M компактно. Рассмотрим произвольную фундаментальную последовательность $\{x_n\}_{n=1}^{\infty} \subset M$. В силу компактности M из нее можно выбрать подпоследовательность $\{x_{n_k}\}_{n=1}^{\infty}$ такую, что $x_{n_k} \to x \in M$ при $k \to \infty$. Но тогда $x_n \to x$ при $n \to \infty$. Следовательно M полно. В силу предыдущего следствия M вполне ограничено.

Следствие доказано.

Следствие 6.3. Пусть M – полное метрическое пространство $u \ K \subset M$. Тогда следующие 4 утверждения эквивалентны:

- 1) Mножество K компактно.
- 2) Из всякой последовательности $\{x_n\}_{n=1}^{\infty} \subset K$ можно выделить подпоследовательность $x_{n_k} \to x \in K$.
- 3) Из всякого открытого покрытия множества K можно выделить конечное подпокрытие.
 - 4) Множество K замкнуто и вполне ограничено.

Домашнее задание к 16 марта.

Задачи 3.1 - 3.7, 3.9 - 3.11 со стр. 47.