МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа \mathbb{N}_2

по дисциплине: Исследование операций тема: "Симплекс-метод в чистом виде"

Выполнил: ст. группы ВТ-231 Масленников Даниил

Проверил:

Вирченко Юрий Петрович

Лабораторная работа №2 «Симплекс-метод в чистом виде.»

Цель работы: изучение симплекс-метода для решения задачи линейного программирования с использованием симплекс-таблиц, получение навыков кодирования изученного алгоритма, отладки и тестирования соответствующих программ.

Вариант 14

Задания для подготовки к работе

- 1. Выяснить: какой вид должна иметь задача ЛП, чтобы можно было применять симплекс-метод в чистом виде, а также как составляется первая симплекс-таблица?
- 2. Изучить алгоритм перехода от одной симплекс-таблицы к другой при решении задачи симплексметодом.
- 3. Запрограммировать и отладить изученный алгоритм. В рамках подготовки тестовых данных аналитически решить задачу:

$$z = 6x_2 + 9x_4 + 2x_6 \to max;$$

$$\begin{cases} 5x_2 + 5x_4 + x_5 + x_6 = 26, \\ x_1 - 3x_2 - 4x_4 - 2x_6 = 10, \\ 4x_2 + x_3 - 6x_4 - 3x_6 = 12, \end{cases}$$

$$x_i \ge 0 (i = \overline{1, 6})$$

Задание 1

Выяснить: какой вид должна иметь задача ЛП, чтобы можно было применять симплекс-метод в чистом виде, а также как составляется первая симплекс-таблица?

Ответ: Для непосредственного применения симплекс-метода задача линейного программирования должна быть представлена в *канонической форме* (или, иначе говоря, в базисном виде с допустимым начальным решением). В наиболее простом случае это подразумевает следующее:

Необходимо найти максимум целевой функции:

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to \max,$$

которая задана при системе линейных ограничений в виде уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

и условиях неотрицательности переменных: $x_i \ge 0$ для всех $i=1,2,\ldots,n$. Для запуска симплекс-метода требуется:

- 1. Привести систему к базисному виду, то есть выбрать m базисных переменных и выразить их через оставшиеся n-m переменных. При этом начальное базисное решение должно быть допустимым, что означает неотрицательность всех базисных переменных на первом шаге.
- 2. Преобразовать целевую функцию, исключив из неё базисные переменные. Это означает, что z должна быть выражена только через свободные (небазисные) переменные.

Если допустимое начальное (опорное) решение существует, то можно построить первую симплекстаблицу и выполнять итеративные преобразования, двигаясь к оптимальному решению. В процессе также может быть выявлена неограниченность целевой функции или несовместность системы ограничений.

Задание 2

Построение начальной симплекс-таблицы

Предположим, что после приведения системы к базисному виду мы получили следующие выражения для базисных переменных:

$$x_1 = b_1 - a_{1,r+1}x_{r+1} - \dots - a_{1,n}x_n,$$

$$x_2 = b_2 - a_{2,r+1}x_{r+1} - \dots - a_{2,n}x_n,$$

$$\vdots$$

$$x_r = b_r - a_{r,r+1}x_{r+1} - \dots - a_{r,n}x_n,$$

где: - x_1, x_2, \ldots, x_r — базисные переменные, - x_{r+1}, \ldots, x_n — свободные переменные, - $b_1, \ldots, b_r \ge 0$ (условие допустимости решения).

Целевая функция выражена исключительно через свободные переменные:

$$z = \gamma_0 + \gamma_{r+1} x_{r+1} + \dots + \gamma_n x_n \to \max.$$

Для построения симплекс-таблицы выполним следующие преобразования: 1. Перенесём все слагаемые с переменными в левую часть уравнений, оставив свободные члены справа. 2. Целевую функцию представим в виде:

$$z - \gamma_{r+1} x_{r+1} - \dots - \gamma_n x_n = \gamma_0.$$

Полученная система уравнений и целевая функция представляются в виде следующей симплекс-таблицы:

	Св. член	x_1	x_2		x_n
$\overline{x_1}$	b_1	1	0		$a_{1,n}$
x_2	b_2	0	1		$a_{2,n}$
:	:	:	:	٠	:
x_r	b_r	0	0		$a_{r,n}$
\overline{z}	γ_0	0	0		$-\gamma_n$

Пояснения к таблице:

- В первом столбце указаны базисные переменные.
- ullet Столбец "Св. член"содержит значения b_i для уравнений и γ_0 для целевой функции.
- В строке z коэффициенты при переменных записаны со знаком "минус что соответствует преобразованной форме целевой функции.

Эта таблица представляет собой начальный этап симплекс-метода. На последующих шагах:

- Выбирается разрешающий элемент.
- Таблица преобразуется для перехода к новому базисному решению.
- Значение целевой функции при этом не уменьшается.

Процесс продолжается до выполнения критерия оптимальности, который заключается в отсутствии положительных коэффициентов в строке z при свободных переменных.

Задание 3

Блок-схемы:

Код программы:

Результат работы программы:

Аналитическое решение

1. Постановка задачи

Дана задача линейного программирования:

$$z = 6x_2 + 9x_4 + 2x_6 \rightarrow max;$$

$$\begin{cases} 5x_2 + 5x_4 + x_5 + x_6 = 26, \\ x_1 - 3x_2 - 4x_4 - 2x_6 = 10, \\ 4x_2 + x_3 - 6x_4 - 3x_6 = 12, \end{cases}$$

$$x_i \ge 0 (i = \overline{1,6})$$

2. Решение

• Начальное базисное решение:

$$x_1 = 10$$
, $x_3 = 12$, $x_5 = 26$, $x_2 = x_4 = x_6 = 0$

Начальное значение целевой функции: z = 0.

• Симплекс-таблица (начальная):

Баз.пер.	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	10	1	-3	0	-4	0	-2
x_3	12	0	4	1	-6	0	-3
x_5	26	0	5	0	5	1	1
-Z	0	0	-6	0	-9	0	-2

- Итерация 1:
 - Разрешающий столбец: x_4 (наибольший по модулю отрицательный коэффициент)
 - Отношения b/a_{i4} :

$$x_1: 10/(-4) < 0$$
 (пропускаем), $x_3: 12/(-6) < 0$ (пропускаем), $x_5: 26/5 = 5.2$

Разрешающая строка: x₅, элемент: 5

После преобразований:

Б	аз.пер.	b	x_1	x_2	x_3	x_4	x_5	x_6
	x_1	30.8	1	1	0	0	0.8	-1.2
	x_3	43.2	0	10	1	0	1.2	-1.8
	x_4	5.2	0	1	0	1	0.2	0.2
	-Z	46.8	0	3	0	0	1.8	-0.2

- Итерация 2:
 - Разрешающий столбец: x_6 (единственный отрицательный коэффициент)
 - Отношения:

$$x_1:30.8/(-1.2)<0$$
 (пропускаем), $x_3:43.2/(-1.8)<0$ (пропускаем), $x_4:5.2/0.2=26$

– Разрешающая строка: x_4 , элемент: 0.2

Результат:

Баз.пер.	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	62	1	7	0	6	2	0
x_3	90	0	19	1	9	3	0
x_6	26	0	5	0	5	1	1
-Z	52	0	4	0	1	2	0

• Оптимальное решение:

$$x_1 = 62$$
, $x_3 = 90$, $x_6 = 26$, $x_2 = x_4 = x_5 = 0$

• Максимальное значение:

$$z_{\rm max} = 52$$

Вывод: аналитическое решение совпадает с результатом написанной мной программы, что подтверждает корректность симплекс-метода.