2.) Algoritmo de Verlet
(a) El 02(0 X x 0/200 13 (a)
en serie de Toulor somo sino están dados por las expansion
al region opino signi
$\chi_{n+1} = \chi_n + h v_n + \frac{1}{2} h \partial_n + \frac{1}{6} h^3 \partial_n$
$\chi_{n-1} = \chi_n - h V_n + \frac{1}{2} h^2 \partial_n - \frac{1}{6} h^3 \partial_n $ Sumardo ambau
Xn + xn = 2xn + h^2 2n Restande el whorevardo x (1:)
cutt on-1-x on the city
$\epsilon_{n+1} \left(2 + h^2 a_n^2 \right) + \epsilon_{n-1} = 0$
L) Dividado
$\dot{x} = -\frac{\kappa}{\kappa} \times \frac{\omega}{\omega} = \frac{\omega}{\kappa}$
$\mathring{x}^{\circ} = -\omega^2 x$
$a' = \frac{\partial x}{\partial y} = -\omega^2$ Reemplazando ena)
$C = 2(1-e)C + C = 0 = 2R = h^2w^2$
enti-2(1- R Enten-1-0
c) $\epsilon_n = \epsilon_0 \lambda^n$
$6\lambda^{n+1}-2(1-R)60\lambda^n+60\lambda^{n-1}=0$ Divide entre λ
$\lambda - 2(1-R) + \lambda^{-1} = 0$
$\frac{\lambda^2 + 1}{\lambda} - 2(1-R) = 0$
$\frac{\lambda^{2}+1-2\lambda(1+R)}{1-2\lambda(1+R)} = 0 \Rightarrow \lambda^{2}-2(1-R)\lambda+1=0$
λ
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1. 0) + [22 22]
$\lambda_{+} = (1-R) \pm \sqrt{R^2 - 2R}$

$$|\lambda_{+}| \leq 1$$

$$|\lambda_{+}| \leq 1$$

$$|\lambda_{-}| = 1$$