Ayudantía 5 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

21 de abril de 2022

Problema 1. Sea V espacio vectorial sobre K.

- 1. Demuestre que si $\mathbf{A} \subseteq \mathbf{V}$ es linealmente independiente entonces todo $\mathbf{S} \subseteq \mathbf{A}$ es linealmente independiente.
- 2. Pruebe que si A es linealmente dependiente entonces todo $S \supseteq A$ es linealmente dependiente.
- 3. Demuestre que si $\mathbf{A} \subseteq \mathbf{V}$ es un conjunto generador de \mathbf{V} y $\mathbf{S} \supseteq \mathbf{A}$ entonces \mathbf{S} es también generador de \mathbf{V} .

Demostración.

- 1. Sean $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{S}$ distintos entre sí y consideremos una combinación lineal de ellos $\sum_{j=1}^n \alpha_j \mathbf{v}_j = \mathbf{0}$ para ciertos escalares $\alpha_j \in K$. En particular, se tiene que $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{A}$ y por lo tanto $\sum_{j=1}^n \alpha_j \mathbf{v}_j = \mathbf{0}$ es una combinación lineal en \mathbf{A} . Por independencia lineal entonces $\alpha_j = 0$ para todo $j = 1, \dots, n$.
- 2. El hecho de que **A** sea linealmente dependiente significa que existen $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{A}$ distintos y $\alpha_1, \dots, \alpha_n \in K$ no todos nulos tales que $\sum_{k=1}^n \alpha_k \mathbf{v}_k = \mathbf{0}$. Como $\mathbf{A} \subseteq \mathbf{S}$, se tiene que $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{S}$, es decir, existe una combinación lineal no trivial de elementos de **S** cuyo resultado es **0**, lo cual significa que es linealmente dependiente.
- 3. Similar a los argumentos dados en los puntos anteriores, como todo vector es una combinación lineal de elementos en A, también son combinación lineal de elementos en S.

Problema 2. Sea V espacio vectorial sobre K. Pruebe que V es de dimensión infinita si y sólo si existe una sucesión de vectores $\mathbf{v}_1, \mathbf{v}_2, \ldots \in V$ tales que $\mathbf{v}_1, \ldots, \mathbf{v}_n$ es linealmente independiente para todo $n \in \mathbb{N}$.

Considere ahora $\mathbb{R}^{\mathbb{R}}$ el espacio vectorial de las funciones $f: \mathbb{R} \to \mathbb{R}$ junto con las operaciones usuales de suma y multiplicación por escalar de matrices. Muestre que el conjunto $\{e^x, e^{2x}, \dots, e^{nx}\}$ es linealmente independiente para todo $n \in \mathbb{N}$. Deduzca que el espacio vectorial $C(\mathbb{R})$ de las funciones a valores reales continuas es de dimensión infinita.

Demostración. Suponiendo que \mathbf{V} es de dimensión infinita probamos que existe dicha sucesión por inducción. Como \mathbf{V} es de dimensión infinita, $\mathbf{V} \neq \{0\}$ y por lo tanto existe $\mathbf{v} \in \mathbf{V}$ linealmente independiente. Suponiendo ahora que existe $\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbf{V}$ linealmente independiente, dicho conjunto no puede ser generador pues \mathbf{V} es de dimensión infinita. En consencuencia existe $\mathbf{v}_{n+1} \in \mathbf{V} \setminus \{\text{span}(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})\}$ y $\{\mathbf{v}_1, \dots, \mathbf{v}_{n+1}\}$ es claramente linealmente independiente.

Recíprocamente, si tal sucesión existe y V fuera de dimensión finita, existiría entonces una base finita. Dado que una base es un conjunto linealmente independiente maximal, esto es una contradicción.

Para n=1 es obvio que $\{e^x\}$ es linealmente independiente pues contiene un único vector. Suponer por inducción que $\{e^x, \dots, e^{nx}\}$ es linealmente independiente. Tomamos una combinación lineal de la siguiente forma

$$\alpha_1 e^x + \ldots + \alpha_n e^{nx} + \alpha_{n+1} e^{(n+1)x} = \mathbf{0}$$

Multiplicando la expresión anterior por $e^{-(n+1)x}$ se tiene que

$$\alpha_{n+1} + \sum_{k=1}^{n} \alpha_k e^{(k-(n+1))x} = \mathbf{0}$$

MAT210 UTFSM

Tomando límite $x \to +\infty$ en la igualdad anterior se obtiene que $\alpha_{n+1} = 0$. Entonces la expresión anterior se reduce a

$$\alpha_1 e^x + \ldots + \alpha_n e^{nx} = \mathbf{0}$$

y deducimos que $\alpha_1 = \ldots = \alpha_n = 0$ por independencia lineal. Se concluye entonces el resultado. Dado que la función exponencial es continua, $\{e^x, \ldots, e^{nx}\} \subseteq C(\mathbb{R})$ y por el criterio demostrado anteriormente $C(\mathbb{R})$ resulta ser de dimensión infinita.

Problema 3. El objetivo de este problema es probar algunas propiedades acerca del subespacio generado por un conjunto **A**. Considere **V** espacio vectorial sobre K y $\mathbf{A}, \mathbf{B} \subseteq \mathbf{V}$ subconjuntos.

- 1. Si $\mathbf{A} \subseteq \mathbf{B}$, muestre que span $(\mathbf{A}) \subseteq \operatorname{span} \mathbf{B}$.
- 2. Pruebe que span $\mathbf{A} = \text{span}(\text{span}(\mathbf{A}))$.
- 3. $\operatorname{span}(\mathbf{A} \cap \mathbf{B}) \subseteq \operatorname{span}(\mathbf{A}) \cap \operatorname{span}(\mathbf{B})$

Demostración.

- 1. Si $\mathbf{v} \in \operatorname{span}(\mathbf{A})$ existen $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{A}$ tales que $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$. Como $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{B}$ entonces $\mathbf{v} \in \operatorname{span}(\mathbf{B})$ pues es combinación lineal de elementos de \mathbf{B} .
- 2. Es obvio que $\operatorname{span}(\mathbf{A}) \subseteq \operatorname{span}(\operatorname{span}(\mathbf{A}))$. Si $\mathbf{v} \in \operatorname{span}(\operatorname{span}(\mathbf{A}))$ entonces existen $\mathbf{v}_1, \dots, \mathbf{v}_n \in \operatorname{span}(\mathbf{A})$ tales que

$$\mathbf{v} = \sum_{k=1}^{n} \alpha_k \mathbf{v}_k$$

A su vez, como \mathbf{v}_k está en span (\mathbf{A}) existen $\mathbf{w}_1 l \dots, \mathbf{w}_{n_k}^k \in \mathbf{A}$ tales que

$$\mathbf{v}_k = \beta_1^k \mathbf{w}_1^k + \ldots + \beta_{n_k}^k \mathbf{w}_{n_k}^k$$

Se sigue que

$$\mathbf{v} = \sum_{k=1}^{n} \alpha_k \mathbf{v}_k = (\beta_1^1 \mathbf{w}_1^1 + \ldots + \beta_{n_1}^1 \mathbf{w}_{n_1}^1) + \ldots + (\beta_1^n \mathbf{w}_1^n + \ldots + \beta_{n_n}^n \mathbf{w}_{n_n}^n) \in \operatorname{span}(\mathbf{A})$$

3. Sea $\mathbf{v} \in \operatorname{span}(\mathbf{A} \cap \mathbf{B})$. Por lo tanto existen $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{A} \cap \mathbf{B}$ y escalares $\alpha_1, \dots, \alpha_n \in K$ tal que $x = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$. En particular $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{A}$, de donde $\mathbf{v} \in \operatorname{span}(\mathbf{A})$, y similarmente $\mathbf{v} \in \operatorname{span}(\mathbf{B})$.

Problema 4. Sean $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ linealmente independientes en \mathbf{V} y $\mathbf{w} \in \mathbf{V}$. Pruebe que si $\{\mathbf{v}_1 + \mathbf{w}, \dots, \mathbf{v}_n + \mathbf{w}\}$ es linealmente dependiente entonces $\mathbf{w} \in \text{span}(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})$.

Demostración. Dado que $\{\mathbf{v}_1 + \mathbf{w}, \dots, \mathbf{v}_n + \mathbf{w}\}$ es linealmente dependiente, existe una combinación lineal no trivial

$$\alpha_1(\mathbf{v}_1 + \mathbf{w}) + \ldots + \alpha_n(\mathbf{v}_n + \mathbf{w}) = \mathbf{0}$$

Por lo tanto se obtiene que

$$\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n + (\alpha_1 + \ldots + \alpha_n) \mathbf{w} = \mathbf{0}$$

Notamos que $\alpha_1 + \ldots + \alpha_n \neq 0$ pues sino por independencia lineal $\alpha_1 = \ldots = \alpha_n = 0$. Podemos entonces despejar

$$\mathbf{w} = -\frac{1}{\sum_{k=1}^{n} \alpha_k} (\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n) \in \operatorname{span}(\{\mathbf{v}_1, \ldots, \mathbf{v}_n\})$$

MAT210 UTFSM

Problema 5. El objetivo de este problema es demostrar la existencia de un subespacio conocido como **subespacio complementario**. Sea **V** espacio vectorial de dimensión finita, \mathbf{W}_1 subespacio de **V**. Decimos que $\mathbf{W}_2 \leq \mathbf{V}$ es subespacio complementario de \mathbf{W}_1 si $\mathbf{V} = \mathbf{W}_1 \oplus \mathbf{W}_2$. Pruebe que todo subespacio de **V** posee un complementario.

Demostración. Sea $\mathscr{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ base de \mathbf{W}_1 . Por lo tanto \mathscr{C} puede ser extendido a una base $\mathscr{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_n\}$ de \mathbf{V} . Definimos el subespacio $\mathbf{W}_2 := \{\mathbf{v}_{m+1}, \dots, \mathbf{v}_n\}$. Probaremos que dicho subespacio verifica $\mathbf{V} = \mathbf{W}_1 \oplus \mathbf{W}_2$. Veamos en primer lugar que $\mathbf{V} = \mathbf{W}_1 \oplus \mathbf{W}_2$. Si $v \in \mathbf{V}$ entonces existen escalares $\alpha_1, \dots, \alpha_n \in K$ tales que

$$\mathbf{v} = \sum_{k=1}^{n} \alpha_k \mathbf{v}_k = \sum_{k=1}^{m} \alpha_k \mathbf{v}_k + \sum_{k=m+1}^{n} \alpha_k \mathbf{v}_k \in \mathbf{W}_1 + \mathbf{W}_2$$

Basta entonces verificar que $\mathbf{W}_1 \cap \mathbf{W}_2 = \{\mathbf{0}\}$. Sea $\mathbf{v} \in \mathbf{W}_1 \cap \mathbf{W}_2$. Entonces se tienen dos escrituras

$$\mathbf{v} = \sum_{k=1}^{m} \beta_k \mathbf{v}_k = \sum_{k=m+1}^{n} \gamma_k \mathbf{v}_k$$

Por lo tanto

$$\sum_{k=1}^{m} \beta_k \mathbf{v}_k + \sum_{k=m+1}^{n} (-\gamma_k) \mathbf{v}_k = \mathbf{0}$$

Como \mathscr{B} es una base, en particular es linealmente independiente, y por lo tanto deducimos que $\beta_1 = \ldots = \beta_m = \gamma_{m+1} = \ldots = \gamma_n = 0$ y así $\mathbf{v} = \mathbf{0}$. Por criterio visto en Ayudantía 4 se concluye la demostración.