

Álgebra Linear

Espaços Vetoriais

Profa. Elba O. Bravo Asenjo eoba@uenf.br

Referências Bibliográficas

Espaços vetoriais

$$u, v, w \in V$$

$$u + v \in V$$

$$\alpha u \in V$$

Espaços vetoriais - Definição

Definição.

Um **espaço vetorial** é um conjunto não vazio **V** de objetos, chamados *vetores*, sobre os quais são definidas duas operações:

- Adição, e
- Multiplicação por escalar

Além disso, devem satisfazer os seguintes axiomas (condições):

- 1. A soma de u e v, denotado por u+v está em V
- 2. u+v=v+u (comutatividade)
- 3. (u+v) + w = u+(v+w) (associatividade)
- 4. Existe o vetor 0 em V, denominado *vetor nulo* de V, ou *vetor zero*, tal que 0+u=u+0=u
- 5. Para cada vetor $u \in V$, existe um vetor $-u \in V$, denominado *negativo* de u, tal que u + (-u) = (-u) + u = 0

Espaços vetoriais - Definição

- 6. Se α for qualquer escalar e \mathbf{u} um elemento em V, então $\alpha \mathbf{u}$ é um elemento em V.
- 7. $\alpha(u+v) = \alpha u + \alpha v$
- 8. $(\alpha + \beta)u = \alpha u + \beta u$
- 9. $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$
- 10. $1 \cdot u = u$

onde $u, v, w \in V$ e $\alpha, \beta \in \mathbb{R}$ (números reais)

Exemplo 1. \mathbb{R}^n é um espaço vetorial

Seja $V = \mathbb{R}^n$ e defina as operações de espaço vetorial em V como as operações conhecidas de adição e multiplicação por escalar de ênuplas, ou seja,

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

$$a\mathbf{u} = (au_1, au_2, \dots, au_n)$$

O conjunto $V = \mathbb{R}^n$ é fechado na adição e na multiplicação por escalar, porque as operações que acabamos de definir produzem ênuplas, e essas operações satisfazem todos os Axiomas da definição.

Por exemplo, vamos provar a propriedade associativa da adição.

Sejam
$$\mathbf{u} = (u_1, u_2, \dots, u_n), \mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbf{w} = (w_1, w_2, \dots, w_n).$$
 Então
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = ((u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n)) + (w_1, w_2, \dots, w_n)$$

$$= (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n) + (w_1, w_2, \dots, w_n)$$

$$= ((u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n)$$

$$= (u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n))$$

$$= (u_1, u_2, \dots, u_n) + (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

$$= \mathbf{u} + (\mathbf{v} + \mathbf{w}) \blacktriangleleft$$

Em especial,

- O conjunto dos números reais $\mathbb R$ é um espaço vetorial
- O plano $\mathbb{R}^2 = \{(x,y) \; ; \; x,y \in \mathbb{R}\}$ é um espaço vetorial
- O espaço $\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}$ é um espaço vetorial com as operações usuais de adição e multiplicação por escalar

Exemplo 2. O espaço vetorial das matrizes 2 x 2

Seja V o conjunto de todas as matrizes 2×2 com entradas reais e tomemos as operações de espaço vetorial em V como sendo as operações usuais de adição matricial e a multiplicação matricial por escalar, ou seja,

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix}$$

$$a\mathbf{u} = a \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} au_{11} & au_{12} \\ au_{21} & au_{22} \end{bmatrix}$$

O conjunto *V* é fechado na adição e na multiplicação por escalar, porque as operações matriciais usadas nessa definição produzem matrizes 2 x 2 como resultado final. Resta verificar os outros axiomas da definição. Por exemplo a propriedade comutativa da adição.

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{v} + \mathbf{u}$$

O vetor nulo ou vetor zero de V seria a Matriz zero 2 x2 tal que,

$$\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{0} + \mathbf{u} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u} \qquad \text{e, analogamente } \ \mathbf{u} + \mathbf{0} = \mathbf{u}$$

Definindo o negativo de u como

$$-\mathbf{u} = \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix}$$

temos

$$\mathbf{u} + (-\mathbf{u}) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$$
 e, analogamente (-u) + u = 0

Finalmente

$$1\mathbf{u} = 1 \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

Exemplo 3. O espaço vetorial das matrizes $m \times n$ denotado por M_{mn}

Exemplo 4. O espaço vetorial das funções reais

Seja V o conjunto das funções reais que estão definidas em cada x do intervalo $(+\infty, -\infty)$. Se $\mathbf{f} = f(x)$ e $\mathbf{g} = g(x)$ forem duas funções em V e se \mathbf{a} for um escalar qualquer, definimos as operações de adição e multiplicação por escalar por

$$(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$$
$$(a\mathbf{f})(x) = af(x)$$

O conjunto V com essas operações, denotado pelo símbolo $F(+\infty, -\infty)$, é um espaço vetorial.

Exemplo 4. Para $n \ge 0$, o conjunto P_n de polinômios de grau menor ou igual que **n** consiste de todos os polinômios da forma

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$
 (*)

onde os coeficientes a_0 , ..., a_n e a variável t são números reais.

O grau de *p* é a potencia mais alta de t (na equação *) cujo coeficiente é diferente de zero.

Se $p(t) = a_0 \neq 0$, o grau de p é zero.

Se todos os coeficientes são zero, *p* é chamado o *polinômio zero*.

O polinômio zero está incluído em P_n mesmo que seu grau, por razões técnicas, não esteja definido.

Se p é dado por (*) e se $\mathbf{q}(t) = b_0 + b_1 t + \dots + b_n t^n$, então a soma p + q é definida por

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$

= $(a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$

A multiplicação escalar cp é o polinômio definido por

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = ca_0 + (ca_1)t + \dots + (ca_n)t^n$$

Essas definições satisfazem os Axiomas 1 e 6 da definição de espaço vetorial, devido a que p + q e cp são polinômios de grau menor ou igual que n.

O conjunto P_n com as duas operações de soma e multiplicação escalar é um espaço vetorial.

Exemplo 5.

Seja $V = R^2$ e defina as operações de adição e multiplicação por escalar como segue: se $\mathbf{u} = (u_1, u_2)$ e $\mathbf{v} = (v_1, v_2)$, defina

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$$

e se a for um número real qualquer, defina

$$a\mathbf{u} = (au_1, 0)$$

Por exemplo, se $\mathbf{u} = (2, 4), \mathbf{v} = (-3, 5)$ e a = 7, então

$$\mathbf{u} + \mathbf{v} = (2 + (-3), 4 + 5) = (-1, 9)$$

$$a\mathbf{u} = 7\mathbf{u} = (7 \cdot 2, 0) = (14, 0)$$

Vamos verificar os 8 Axiomas:

2. Comutatividade: u + v = v + u

$$\begin{aligned} \mathbf{u} + \mathbf{v} &= (u_1 \ , u_2) \ + \ (v_1 \ , v_2) \\ &= (u_1 + v_1 \ , u_2 + v_2) = (v_1 + u_1 \ , v_2 + u_2) = (v_1 \ , v_2) \ + \ (u_1 \ , u_2) \\ &= \mathbf{v} + \mathbf{u} \end{aligned}$$

- 4. Existe o vetor zero 0 = (0,0) em \mathbb{R}^2 tal que $0 + u = (0,0) + (u_1, u_2) = (0 + u_1, 0 + u_2) = (u_1, u_2) = u$
- 5. Para todo vetor $u = (u_1, u_2)$ em \mathbb{R}^2 existe o vetor negativo $-u = (-u_1, -u_2)$ em \mathbb{R}^2 tal que $-u + u = (-u_1, -u_2) + (u_1, u_2) = (-u_1 + u_1, -u_2 + u_2) = (0,0) = 0$

```
7. Provar que a(u + v) = au + av, para todo a escalar real a(u + v) = a(u_1 + v_1, u_2 + v_2) = (a(u_1 + v_1), 0) = (au_1 + av_1, 0+0) = (au_1, 0) + (av_1, 0) = au + av
```

8. Provar que
$$(a + b) u = a u + b u$$

 $(a + b) (u_1, u_2) = ((a + b) u_1, 0) = (a u_1 + b u_1, 0+0)$
 $= (au_1, 0) + (bu_1, 0)$
 $= a u + b u$

- 9. Provar que a(bu) = (ab) u, para todo a, b escalares reais $a(bu) = a (b (u_1, u_2))$ $= a (bu_1, 0)$ $= (ab u_1, 0) = ((ab) u_1, 0)$ = (ab) u
- 10. Provar que 1. u = u

O Axioma 10 falha!!!

Seja u = (u_1, u_2) tal que $u_2 \neq 0$, então

$$1\mathbf{u} = 1(u_1, u_2) = (1 \cdot u_1, 0) = (u_1, 0) \neq \mathbf{u}$$

Assim, V não é um espaço vetorial com as operações fornecidas.

Subespaços Vetoriais

<u>Definição</u>. Um subconjunto W de um espaço vetorial V é denominado subespaço de V se W for um espaço vetorial por si só com as operações de adição e multiplicação por escalar definidas em V.

Teorema. Se W for um conjunto de um ou mais vetores num espaço vetorial V, então W é um subespaço de V se, e só se, as condições seguintes forem válidas.

- (i) O vetor zero de V está em W.
- (ii) Se u e v forem vetores em W, então u + v está em W.
- (iii) Se a for um escalar qualquer e u algum vetor de W, então au está em W.

Exemplo 1. O subespaço zero

Se V for um espaço vetorial qualquer e se $W = \{0\}$ for o subespaço de V que consiste somente no vetor nulo, então W é fechado na adição e na multiplicação por escalar, já que

$$0 + 0 = 0$$
 e $a0 = 0$

com qualquer escalar a. Dizemos que W é o subespaço zero ou nulo de V.

Observação. Cada espaço vetorial tem pelo menos dois subespaços, ele mesmo e seu subespaço nulo.

Exemplo 2. Retas pela origem são subespaços em \mathbb{R}^2 e \mathbb{R}^3

Se W for uma reta pela origem de \mathbb{R}^2 ou \mathbb{R}^3 , então a soma de dois vetores na reta W ou a multiplicação de um vetor na reta W por algum escalar produz um outro vetor na reta W, de modo que W é fechado na adição e na multiplicação por escalar

Exemplo 3. Planos pela origem são subespaços de \mathbb{R}^3

Subespaços de R²

Subespaços de R³

- {0}
- Retas pela origem
- R²

- {0}
- Retas pela origem
- Planos pela origem
- R³

Exemplo 4. Um subconjunto de \mathbb{R}^2 que não é um subespaço

Seja W o conjunto de todos os pontos (x, y) em \mathbb{R}^2 tais que $x \ge 0$ e $y \ge 0$ (a região destacada na Figura abaixo). Esse conjunto não é um subespaço de \mathbb{R}^2 , pois não é fechado na multiplicação por escalar. Por exemplo, $\mathbf{v} = (1, 1)$ é um vetor em W, mas $(-1)\mathbf{v} = (-1, -1)$ não é.

Exemplo 5. Sejam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 / y = 2x\}$ ou $W = \{(x, 2x); x \in \mathbb{R}\}$ W é um subespaço vetorial de $V = \mathbb{R}^2$ De fato,

- (i) O vetor $(0, 0) \in W$
- (ii) Verificar, se u, $v \in W$ então $u + v \in W$ Se u, $v \in W$ então $u = (x_1, 2x_1)$ e $v = (x_2, 2x_2)$ Logo $u + v = (x_1, 2x_1) + (x_2, 2x_2) = (x_1 + x_2, 2x_1 + 2x_2)$ $= (x_1 + x_2, 2(x_1 + x_2)) \in W$
- (iii) Sejam $\mathbf{u}=(x_1,2\,x_1)\in\mathbf{W}$ e $a\in\mathbb{R}$, então $a\,u=a\,(x_1,2\,x_1)=(ax_1,2\,ax_1)\in\mathbf{W}$ Logo W é um subespaço vetorial de $V=\mathbb{R}^2$

Observação. O gráfico de W é uma reta no plano que passa pela origem.

Exemplo 6. Sejam
$$V = \mathbb{R}^2$$
 e
 $W = \{(x, y) \in \mathbb{R}^2 \mid x + y = 1\} = \{(x, -x+1) ; x \in \mathbb{R}\}$

W não é subespaço vetorial de V

- (i) $(0,0) \notin W$
- (ii) Sejam u, $v \in W$, então $u = (x_1, -x_1+1)$ e $v = (x_2, -x_2+1)$, Logo, $u + v = (x_1, -x_1+1) + (x_2, -x_2+1) = (x_1+x_2, -x_1+1 -x_2+1)$ $= (x_1+x_2, -(x_1+x_2) + 2) \notin W$

Observação. O gráfico de W é uma reta que não passa pela origem.

Subespaços

Teorema. Se W_1 , W_2 , ..., W_r forem subespaços de um espaço vetorial V, então a interseção desses subespaços também será um subespaço de V.

Prova

Seja W a interseção dos subespaços W_1 , W_2 , ..., W_r .

Esse conjunto não é vazio porque, como cada um desses subespaços contém o vetor nulo de V, também sua interseção tem o vetor nulo.

Assim, falta mostrar que W é fechado na adição e na multiplicação por escalar.

Para provar o fechamento na adição, sejam \mathbf{u} e \mathbf{v} vetores em W. Como W é a interseção de W_1 , W_2 , ..., W_r , segue que \mathbf{u} e \mathbf{v} também estão em cada um desses subespaços. Como esses subespaços são fechados na adição, todos contêm o vetor $\mathbf{u} + \mathbf{v}$ e, portanto, sua interseção W também contém esse vetor. Isso prova que W é fechado na adição.

Da mesma forma, prova-se que W é fechado na multiplicação por escalar.

Combinações Lineares

Definição. Dizemos que um vetor w num espaço vetorial V é uma combinação linear dos vetores v_1 , v_2 , ..., v_r em V se w puder ser expresso na forma

$$\mathbf{w} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_r \mathbf{v_r}$$

em que a_1 , a_2 , ..., a_r são escalares. Esses escalares são denominados coeficientes da combinação linear.

Exemplo 1. Considere os vetores $\mathbf{u} = (1, 2, -1)$ e $\mathbf{v} = (6, 4, 2)$. Mostre que $\mathbf{w} = (9, 2, 7)$ é uma combinação linear de \mathbf{u} e \mathbf{v} e que $\mathbf{w'} = (4, -1, 8)$ não é uma combinação linear de \mathbf{u} e \mathbf{v} .

Solução

Para que \mathbf{w} seja uma combinação linear de \mathbf{u} e \mathbf{v} , devem existir escalares a e b tais que

$$\mathbf{w} = a \mathbf{u} + b \mathbf{v}$$

Combinações Lineares - Exemplos

ou seja,

$$(9, 2, 7) = a(1, 2, -1) + b(6, 4, 2)$$

Ou

$$(9, 2, 7) = (a + 6b, 2a + 4b, -a + 2b)$$

Igualando componentes correspondentes, obtemos

$$a + 6b = 9$$

 $2a + 4b = 2$
 $-a + 2b = 7$

Resolvendo esse sistema com eliminação gaussiana, obtemos a = -3, b = 2

De modo que

$$\mathbf{w} = -3\mathbf{u} + 2\mathbf{v}$$

Combinações Lineares - Exemplos

Analogamente, para que w' seja uma combinação linear de u e v, devem existir escalares a e b tais que

$$\mathbf{w'} = a \mathbf{u} + b \mathbf{v}$$

ou seja,

$$(4, -1, 8) = a(1, 2, -1) + b(6, 4, 2)$$

Ou

$$(4, -1, 8) = (a + 6b, 2a + 4b, -a + 2b)$$

Igualando componentes correspondentes, obtemos

$$a + 6b = 4$$

 $2a + 4b = -1$
 $-a + 2b = 8$

Esse sistema de equações é inconsistente, de modo que não existem tais escalares a e b. Consequentemente, \mathbf{w} não é uma combinação linear de \mathbf{u} e \mathbf{v} .

Combinações Lineares

Teorema. Seja $S = \{w_1, w_2, \dots, w_r\}$ um conjunto não vazio de vetores num espaço vetorial V.

- (a) O conjunto W de todas as combinações lineares possíveis de vetores em S é um subespaço de V.
- (b) O conjunto W da parte (a) é o "menor" subespaço de V que contém todos os vetores de S, no sentido de que qualquer outro subespaço de V que contenha todos aqueles vetores contém W.

Subespaço Gerado

Definição. Dizemos que o subespaço de um espaço vetorial V que é formado com todas as combinações lineares possíveis de vetores de um conjunto não vazio S é *gerado* por S, e dizemos que os vetores em S *geram* esse subespaço.

Se
$$S = \{w_1, w_2, \dots, w_r\}$$
, denotamos o gerado de S por $ger\{w_1, w_2, \dots, w_r\}$ ou $ger(S)$ ou $G(S)$

Subespaço Gerado

Exemplo. Os vetores unitários canônicos geram \mathbb{R}^n

Os vetores unitários canônicos em \mathbb{R}^n são

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Esses vetores geram \mathbb{R}^n , pois cada vetor $\mathbf{v} = (v_1, v_2, \dots, v_n)$ em \mathbb{R}^n pode ser expresso como

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

que é uma combinação linear de e_1 , e_2 , ..., e_n

Subespaço Gerado

Assim, por exemplo, os vetores

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1)$$

geram \mathbb{R}^3 , pois cada vetor $\mathbf{v} = (a, b, c)$ nesse espaço pode ser expresso como

$$\mathbf{v} = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$
.

Independência e Dependência Linear

<u>Definição</u>. Se $S = \{v_1, v_2, ..., v_r\}$ for um conjunto não vazio de vetores num espaço vetorial V, então a equação vetorial

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \cdots + k_r\mathbf{v}_r = \mathbf{0}$$

tem uma solução, pelo menos, a saber,

$$k_1 = 0, \quad k_2 = 0, \dots, \quad k_r = 0$$

Dizemos que essa é a solução trivial. Se essa for a única solução, dizemos que S é um *conjunto linearmente independente*. Se existem outras soluções além da trivial, dizemos que S é um *conjunto linearmente dependente*.

Independência e Dependência Linear - Exemplos

Exemplo1. O conjunto linearmente independente mais básico de \mathbb{R}^n é o conjunto dos vetores unitários canônicos

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Para simplificar a notação, vamos provar a independência linear em \mathbb{R}^3 dos vetores

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1)$$

Seja a equação vetorial

$$k_1 \mathbf{i} + k_2 \mathbf{j} + k_3 \mathbf{k} = 0$$

Em termos de componentes, obtemos

$$(k_1, k_2, k_3) = (0, 0, 0)$$

De onde segue que $k_1 = k_2 = k_3 = 0$

Logo, os vetores são linearmente independentes.