Recall. Coraniance le Correlation. (ov(x,Y) = E(xY) - E(x)E(Y) Properties: (i) Cov(x,x) = Var(x) Recall from Lec-37: Example(T) Joint pef of (X,Y) is. $\{(x,y)=\}1, \quad 0<x<1, \quad x< y< x<1$ (ov(x,Y)=1) Correlation = g(x,Y)=Cov(x,Y)= 1/2 Example Q: Joint pdf of (x, Y) :. ** \$(n,y) = \10, 0< n < 1, ~ < y < n < 10 CN(X,Y)= 12, B(X,Y)= \[\loo_1

satisfies: E(x)=0, $E(x^{\gamma})=1$, $E(x^3)=0$,

 $E(x^4) = 3$. Let $Y = a \cdot b \times \cdot c \times^2$, find wordston coefficient f(x, Y). the urrelation Soh: Cov(X,Y)= E(XY)-E(X) E(Y) $-\mathbb{E}(xx+bx^2+cx^3)-0$ = $a E(x) + b E(x^{2}) + c E(x^{3})$ = $0 = b \times 1 + 0 = b$ $V_{ar}(X) = E(X^2) - \left[E(X)\right]^2 = 1$ Var (Y) = E(Y2) - (E(Y)) = = \(\begin{array}{c} a^2 + b^2 \times^2 + c^2 \times^4 + 2abx + 2acx^2 + 2bcx^3 \)
- (E(a+bx+cx^2))^2 $= x^{2} + b^{2} + 3c^{2} + 2ax - a^{2} - c^{2} - 2ax$ $= x^{2} + 2c^{2}$ = 6 + 202 $\frac{1}{1} \cdot g(x,y) = \frac{(av(x,y))}{\sqrt{av(x)} \sqrt{av(y)}} = \frac{b}{\sqrt{b^2 + 2c^2}} \frac{b}{\sqrt{av(x)}}$ When Correlation fails: Covariance & correlation measures only a particular kind of linear relationship.

,	But it may happen that I and I have a strong relationship but their covariance & correlation are small or even zero, be cause
	cordation au mall or even zero, be cause
	the relationship is not linear.
	n the above example (3), we saw that
	(g(x,y)) - [b]
	$\left S(n,y) \right = \left \frac{b}{\sqrt{b^2 e_2 c^2}} \right \leq \frac{161}{\sqrt{2 c }}$
<u> </u>	Jobs small and a is large, then correlation small. [;\8(n.y)] ≤ \frac{121}{24c1} b→ small
- Vs	(200 all - [] & (24 m) () () = 2 small
	2/c/ charles
If	6=0, then (ar(Y,Y)=0 and s(x,Y)=0
\	but Y = a = b x ec x = a ec x 2
	X2 Pare not linear.
	Compres - relaced Random Variable
	Congex-valued Random Variables
A Co	mplex valued random variable (SZ, F, P)
	$Z: \Omega \longrightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
而机	$Z: \Omega \longrightarrow \emptyset$ can be written $\Omega \rightarrow \mathbb{R}$ e form $Z = X + iY$, where til no
	<i> </i>
\wedge	Y are real-valued random F: 2 -> F

variables. Its expectation E(2) is defined as: E(Z) = E(X+iY) = E(x)+iE(Y), provided E(x) and E(Y) are well-defined only finite. The formula E (a, Z, ea, Z) = a E(Z1)+ a2 E(Z2) is valid Duenevez a 2 az voe complex constants and Z1 and Z2 are complex-valued random variables having finite expectation, Characteristic Function -> Serves as an important tool for analyzing random phenomenon. Defn: The characteristic function of a random variable X is defined as: $\Phi_{x}(t) = E[e^{itx}], t \in \mathbb{R}$ So barically \$\bar{\pi}_x \display \mathbb{\P}_x \din \mathbb{\P}_x \display \mathbb{\P}_x \display \mathbb{\P}_x The advantage of the characteristic forth is that it is defined for all seal-valued random variables. Because for any real rot, the ran. vor. og t X, sint X are bounded by 1

Therefore, both have finite expectation bounded by I, hence $\int_X lt)$ is defined for all t and for all X.

Characteristic Function of a Discrete Random variable:

If X is a discrete random variable, then

=
$$\sum con(tx) P(X=x) + i \sum sin(tx) P(X=x)$$

 $x \in R(x)$

=
$$\sum_{x \in R(X)} \left[cos(tx) + i sin(tx) \right] P(X = x)$$

Characteristic Function of a random variable with doubty:

If the ran. var. X has density fx then

$$\overline{\mathcal{D}}_{x}(t) = \mathbb{E}\left[e^{itx}\right] = \mathbb{E}\left[\omega_{x}(tx)\right] + i\mathbb{E}\left[\omega_{x}(tx)\right]$$