AI Planning Exercise Sheet 11

AI Planning Exercise Sheet 11

Date: January 21, 2015

Students: Axel Perschmann, Tarek Saier

Exercise 11.1

(a)

Figure 1: breadth-first search graph (with dublicate detection)

(b)

Exercise 11.2

Preliminaries

For every variable $v \in prevars(o)$ (Only for $o \in app(s)$?) we need to compute the Domain transition graph:

All given operators are "Active Operators" (see lecture 13, slide 14), because of

- For every variable $v \in prevars(o)$ there is a path in DTG(v) from s(v) to pre(o)(v).
- If v is goal-related, then there is also a path from pre(o)(v) to the goal value $\gamma(v)$.

AI Planning Exercise Sheet 11

Figure 2: DTG(a)

Disjunctive Action Landmark:

 $L = \{o, o'\}$ in initial state

Strong Stubborn Sets

- 1. Include o (or o') in T_S as disjunctive action landmark.
- 2. Include o_d in T_S since it interferes with o (o_d disables o)
- 3. Include o' (or o) in T_S since it interferes with o_d (o_d disables o')
- 4. Include $\overline{o_d}$ and o_i in T_S since both conflict with o_d
- 5. Include $\overline{o_i}$ in T_S since it conflicts with o_i

 $T_S = \{o, o', o_d, \overline{o_d}, o_i, \overline{o_i}\}$

All six operators included in T_S , no pruning.

Figure 3: strongStubborn

Weak Stubborn Sets

- 1. Include o (or o') in T_S as disjunctive action landmark.
- 2. there are no operators in s that have conflicting effects with o or that are disabled by o

 $T_S = \{o\}$

Nice amount of pruning.

Conclusion: Weak stubborn sets admit exponentially more pruning than strong stubborn sets.

AI Planning Exercise Sheet 11

Figure 4: weakStubborn