COLOR

Duangpen jetpipattanapong

COLOR

 Electromagnetic radiation with wavelength in the length between about 400 and 700 nanometers stimulates human neurosensor and produce the sensation of color.

 The CIE (Commission Internationale de l'Eclairage - The international Commission on Illumination) proposed the spectral primary system RGB corresponding to monochromatic primary source

 R_{CIF} = red 700 nm

 G_{CIE} = green 546.1nm

 B_{CIE} = blue 435.8nm

The CIE system characterizes colors by a luminance parameter Y and two color coordinates x and y which specify the point on the chromaticity diagram.

MODELS OF COLORS

RGB

CMY

HSI

YIQ / YUV

RGB

- The trichrommatic RGB (red-green-blue) encoding in graphics systems usually uses three bytes enabling 2²⁴ or roughly 16 million distinct color code.
- Each 3-byte or 24-bit RGB pixel includes one byte for each red, green, blue.
- The order in which each appears in memory can vary.

Red = (255,0,0)

Green = (0,255,0)

Blue = (0,0,255)

Red+Green = (255,255,0)

Red+blue = (255,0,255)

Green+Blue = (0,255,255)

White = (255, 255, 255)

Black = (0,0,0)

Gray = (c,c,c) 0 < c < 255

True color

- Display devices whose color resolution matches the human visible is called true color, At least 16 bits are need
- 16 bit better model the relatively larger green sensitivity 6 bits

- The RGB system is an additive color system because colors are created by adding components to black (0,0,0)
- To normalize image data for interpretation by both computer programs and people and for transformation to other color systems.

```
Intensity I = (R+G+B)/3

Normalized red r = R/(R+G+B)

Normalized green g = R/(R+G+B)

Normalized blue b = R/(R+G+B)
```


CMY

- CMY is an abbreviation of Cyan-Magenta-Yellow.
 - Cyan absorbs red illumination
 - Magenta absorbs green
 - Yellow absorbs blue
- CMY color system is subtractive color system
 - subtracts from white rather than adds to black as the RGB system does.

HSI

 HSI system encodes color information by separating out an overall intensity value I from two values encoding chromaticity hue H and saturation S.

Hexagone allows us to visualize the former cube diagonal as a

vertical intensity axis I.

HSI

- Hue H is defined by angle between 0 and 2pi relative to the red-axis.
- Saturation S is the 3rd coordinate value, number of the parity of the color hue range 0 - 1
 - 1 is completely pure color
 - 0 is completely unsaturation

$$I = max(R,G,B)$$

 $S = (I - min(R,G,B))/I$

If point with in +/-60 degrees of red axis (R=I)

$$H = \frac{\frac{\pi}{3}(G - B)}{I - \min(R, G, B)}$$

If point with in +/-60 degrees of green axis (G=I)

$$H = \frac{2\pi}{3} + \frac{\frac{\pi}{3}(B-R)}{I - \min(R, G, B)}$$

If point with in +/-60 degrees of blue axis (B=I)

$$H = \frac{4\pi}{3} + \frac{\frac{\pi}{3}(R - G)}{I - \min(R, G, B)}$$
 Note I is returned in the same range as input value.

S is not defined when intensity I=0 H is not defined when S=0

YIQ / YUV

- The NTSC television standard is an encoding that use one luminance value Y and two chromaticity values I and Q
- Only Y is used by black and white TV. While all three are used by color TVs.
- In practice, Y value is encoded using more bits than I, Q because human visual system is more sensitive to luminance than chromaticity values.
 - > Luminance Y = 0.3R + 0.59G + 0.11B
 - Arr R-Cyan I = 0.6R 0.28G- 0.32B
 - \triangleright Magenta-green Q = 0.21R-0.52G+0.31B

PROBLEMS

Convert the normalize colors to RGB, CMY, HSI, and YIQ system

```
o r =0.2 g=0.3 b=0.5 I=150
```

Convert HSI to RGB

$$\circ$$
 H = $5\pi/6$ S = 0.25 I = 200

COLOR HISTOGRAM

- Histogram for each color created by concatenate the higher order two bits of each RGB color code.
- The histogram will has 2⁶=64 colors

Color = **01**0111101**11**000101**01**100001 Color histogram = **01**1101 We can compare the image histogram to model histogram by

Intersection - the sum of the minimum overall K

Intersection
$$(h(I), h(M)) = \sum_{j=1}^{K} \min(h(I)[j], h(M)[j])$$

Match - measure of how much color model content is present in image

$$\mathrm{match}(h(I), h(M)) = \frac{\sum_{j=1}^{K} \min(h(I)[j], h(M)[j])}{\sum_{j=1}^{K} h(M)[j]}$$

Intersection =

Color [k]	Histogram image I h(I)	Histogram model M h(M)	Min{h(l),h(M)}
0	15	15	
1	40	30	
2	65	80	
3	100	40	
4	30	15	
5	80	40	
6	0	40	
7	25	30	
8	100	60	
9	20	25	

Match =

Sum = 475 375