Parte I

Comportamiento de Amplificadores Operacionales

1. Comportamiento de amplificador operacional inversor

A lo largo de esta sección se procederá a analizar el comportamiento ideal y real del amplificador operacional LM324 conectado como se muestra en la Figura 1. Considerando los valores de los componentes como se puede ver en la tabla 1. Es necesario aclarar que para realizar calculos numéricos y simbólicos de ecuaciones se utilizó la librería SymPy de python, donde se creó un $Circuit\ Solver$, por lo tanto si no se encuentra el procedimiento para el hallazgo de una ecuación en este informe, es porque se halló mediante programación con variables simbólicas.

Figura 1: Circuito a analizar

Caso	$R_1 = R_3$	R_2	R_4
1	$10(k\Omega)$	$100 (k\Omega)$	$40 (k\Omega)$
2	$10(k\Omega)$	$10 (k\Omega)$	$40 (k\Omega)$
3	$100 (k\Omega)$	$10(k\Omega)$	$400 (k\Omega)$

Cuadro 1: Valores de los componentes

Para implementar este circuito, se utilizó el software de *Altium Designer* creando un proyecto de *Printed Circuit Board* como se muestra en las figuras 2 y 3.

Figura 2: Esquemático del circuito implementado

Figura 3: PCB del circuito implementado

1.1. Análisis de la transferencia

Comenzando por el análisis ideal, se pidió calcular y graficar la relación $\frac{V_{out}}{V_{in}}$, esto quiere decir, considerando a_0 finito y $A(\omega)$ con polo dominante. Considerando las siguientes ecuaciones descriptas a continuación y operando correctamente, se llega a que la relación $\frac{V_{out}}{V_{in}}$ esta dada por la ecuación (1).

$$\begin{cases} V_{out} = -A(\omega)v^{-} \\ I = i_{3} + i_{1} \\ i_{1} = -i_{2} \\ v^{-} = i_{3}R_{3} \\ V_{in} - IR_{1} = v^{-} \end{cases}$$

$$H(s) = \frac{V_{out}}{V_{in}} = -\frac{R_{2}R_{3}Wa_{0}}{R_{1}R_{2}(W+s) + R_{1}R_{3}Wa_{0} + R_{1}R_{3}(W+s) + R_{2}R_{3}(W+s)}$$

$$H(s) = -\frac{5 \cdot 10^{15}}{2,110^{9}s + 50210^{12}}Caso1$$

$$H(s) = -\frac{50210^{12}}{30010^{6}s + 50210^{12}}Caso2$$

$$H(s) = -\frac{5 \cdot 10^{15}}{1210^{9}s + 5 \cdot 10^{16}}Caso3$$

Como se puede ver, se encuentra un polo en la transferencia del circuito, por lo cual, el circuito se debería comportar a grandes rasgos como un pasabajos. Es importante notar, que el valor de R_4 no afecta a la transferencia del circuito. Si se grafica la transferencia del circuito para los distintos casos, se puede ver que, en efecto, se comporta como un pasabajos, con diferente frecuencia de corte f_0 , esto se puede ver en las figuras 4, 6 y 8. La diferencia con lo simulado se debe a que la frecuencia del polo dominante dada por la hoja de datos no está bien especificada, y en la calculada se uso un polo dominante de 7,5 (Hz) (Era lo que se observaba aproximadamente en el grafico provisto por el fabricante) y en el simulado se uso el modelo real del LM324.

Figura 4: Comportamiento del circuito para el caso 1

Figura 5: Análisis Montecarlo del circuito para el caso 1

Figura 6: Comportamiento del circuito para el caso $2\,$

Figura 7: Análisis Montecarlo del circuito para el caso 2

Figura 8: Comportamiento del circuito para el caso 3

Figura 9: Análisis Montecarlo del circuito para el caso 3

Como se pudo observar en las Figuras 4, 6 y 8, para el caso 1 el circuito se comporta como un amplificador de 20(dB) hasta la frecuencia del polo, donde ya empieza a afectar el comportamiento de pasabajos. Un comportamiento similar tuvieron los casos 2 y 3, con la salvedad de que en el caso 2 se trataba de un Buffer y en el caso 3 de un atenuador de 20(dB).

Por otro lado, en el caso 3 se puede observar un sobrepico bastante pronunciado que se debe al efecto de las puntas del osciloscopio, sumado a las capacidades parásitas intrínsecas de nuestro circuito. Si simulamos nuestro circuito, teniendo en cuenta estas capacidades, podemos ver que nuestra simulación es acorde a los resultados empíricos.

Figura 10: Simulación del comportamiento del circuito para el caso 3 considerando las puntas de los osciloscopios y capacidades parásitas

1.2. Análisis de impedancia de entrada

Consecuentemente, se nos instó a calcular la impedancia de entrada vista por el generador hacia el circuito. Nuevamente, utilizando las ecuaciones descriptas en la subsección 1.1, y operando adecuadamente, se llegó a la conclusión de que la impedancia de entrada es la descripta en la ecuación (2).

$$K = \frac{R_2 a_0 \omega_p (R_3 + R_1) - \omega_p (a_0 - 1) (R_2 R_3 + R_1 R_2 + R_1 R_3)}{R_2 a_0 \omega_p - (R_2 + R_3) \omega_p (a_0 - 1)}$$

$$C = \frac{\omega_p (a_0 - 1) (R_2 R_3 + R_1 R_2 + R_1 R_3) - R_2 a_0 \omega_p (R_3 + R_1)}{(R_2 R_3 + R_1 R_2 + R_1 R_3)}$$

$$L = \frac{(R_2 + R_3) \omega_p (a_0 - 1) - R_2 a_0 \omega_p}{R_2 + R_3}$$

$$\Rightarrow Z_{in} = K \frac{1 + \frac{s}{C}}{1 + \frac{s}{T}}$$
(2)

Por lo tanto, para cada caso se tendrá una impedancia de entrada como se muestra en las siguientes formulas:

$$Z_{in} = \frac{912 \times 10^{3} f^{2} + 100 \times 10^{12}}{47,77 f^{2} + 10 \times 10^{9}} + i \frac{6,28 \times 10^{9} f}{47,77 f^{2} + 10 \times 10^{9}} \quad Caso 1$$

$$Z_{in} = \frac{5,92 \times 10^{3} f^{2} + 25 \times 10^{12}}{0,39 f^{2} + 2,5 \times 10^{9}} + i \frac{157 \times 10^{6} f}{0,39 f^{2} + 2,5 \times 10^{9}} \quad Caso 2$$

$$Z_{in} = \frac{5,21 \times 10^{6} f^{2} + 100 \times 10^{15}}{47,77 f + 999,98 \times 10^{9}} + i \frac{62,83 \times 10^{9} f}{47,77 f + 999,98 \times 10^{9}} \quad Caso 3$$

Graficando la impedancia de entrada con respecto a la frecuencia de entrada, se puede ver en la Figura 11, como varía dependiendo de la frecuencia, es decir, no permanece constante. Nuevamente, se puede observar como esta impedancia no es afectada por R_4 .

Figura 11: Impedancia de entrada calculada

Figura 12: Cálculo y simulación del modulo de la impedancia de entrada para el caso 1

Figura 13: Medición del módulo de la impedancia de entrada para el caso $1\,$

Figura 14: Cálculo y simulación de la fase de la impedancia de entrada para el caso 1

Figura 15: Medición de la fase de la impedancia de entrada para el caso 1

Figura 16: Cálculo y simulación del módulo de la impedancia de entrada para el caso 2

Figura 17: Medición del módulo de la impedancia de entrada para el caso $2\,$

Figura 18: Cálculo y simulación de la fase de la impedancia de entrada para el caso 2

Figura 19: Medición de la fase de la impedancia de entrada para el caso $2\,$

Figura 20: Cálculo y simulación del módulo de la impedancia de entrada para el caso 3

Figura 21: Medición del módulo de la impedancia de entrada para el caso $3\,$

Figura 22: Cálculo y simulación de la fase de la impedancia de entrada para el caso 3

Figura 23: Medición de la fase de la impedancia de entrada para el caso $3\,$

Como se puede observar, en los casos 1 y 2, el modelo teórico calculado y las simulaciones se condicen acordemente con lo medido. Las diferencias en los valores se deben a la incertidumbre que genera el analizador de impedancias junto con los valores que se usaron para las resistencias del circuito (los valores nominales más cercanos), y las tolerancias de dichas resistencias. No obstante, en el caso 3 se puede ver que las diferencias entre lo teórico y lo simulado, con lo medido, son bastante significativas estas diferencias se deben al comportamiento de atenuador que provée el circuito. Como a altas frecuencias las tensiones y corrientes son demasiado bajas, las mediciones tienen un alto grado de incertidumbre debido al ruido electromagnético ambiente, el cual se hace comparable con las señales de entrada.

1.3. Consideraciones para utilizar un modelo lineal del amplificador operacional

A continuación, se procederá a aclarar cuales son las consideraciones para caracterizar al circuito de manera lineal. Para esto se deben tener en cuenta diversas consideraciones descriptas a continuación.

1.3.1. Análisis de saturación y polo dominante

Si se tiene en cuenta un amplificador operacional ideal, el primer contacto con un circuito alineal se da cuando este entra en saturación, es decir, $|V_{out}| > |V_{cc}|$. Si se considera una tensión de entrada de la forma $V_{in} = sin(2\pi ft)$, es decir, con amplitud I(V), solo basta con analizar el valor del módulo de la transferencia vista en la ecuación (1).

$$|H(f)| \times V_{in} = \frac{R_2 R_3 \omega_p a_0}{\sqrt{\omega_p^2 \left(-R_1 R_2 + R_1 R_3 a_0 + R_1 R_3 + R_2 R_3\right)^2 + 4\pi^2 f^2 \left(-R_1 R_2 + R_1 R_3 + R_2 R_3\right)^2}} \times V_{in} \leq V_{cc}$$

$$V_{in} \leq 1, 3 \cdot 10^{-17} \sqrt{1 \cdot 10^{25} f^2 + 1, 4 \cdot 10^{34}} \quad Caso 1$$

$$V_{in} \leq 1, 3 \cdot 10^{-16} \sqrt{2, 2 \cdot 10^{23} f^2 + 1, 4 \cdot 10^{34}} \quad Caso 2$$

$$V_{in} \leq 1, 3 \cdot 10^{-17} \sqrt{3, 6 \cdot 10^{26} f^2 + 1, 4 \cdot 10^{38}} \quad Caso 3$$

Con estas ecuaciones, se puede ver que el efecto de saturación no afecta en ninguno de los casos para tensiones de entrada igual a 1(V) sin embargo, hay que tener cuidado cuando se trabaja con tensiones de entrada superiores, ya que la frecuencia mínima de operación a la cual no satura el amplificador operacional podría empezar a afectar nuestro circuito.

Figura 24: Tensión máxima en función de la frecuencia de operación para que el circuito no entre en saturación caso 1

Figura 25: Tensión máxima en función de la frecuencia de operación para que el circuito no entre en saturación caso 2

Figura 26: Tensión máxima en función de la frecuencia de operación para que el circuito no entre en saturación caso 3

Figura 27: Tensión máxima en función de la frecuencia de operación para que el circuito no entre en saturación

Figura 28: Medición de la saturación para el caso 1 a 2(kHz)

Como se puede ver en la Figura 28, el efecto de saturación es muy evidente ya que con una entrada de 8(Vp), si se observa la figura 37, para 2 (kHz), la señal de entrada se encuetra muy excedida respecto al máximo valor permitido para que no sature, por lo tanto, la salida que se puede ver tiene 28(Vpp), que es aproximadamente $2V_{cc}$, lo cual se condice con lo predicho. A su vez, como se observa en la Figura 27, el efecto de saturación solo se puede notar cuando se supera un valor de tensión prácticamente constante para cada caso en frecuencias bajas sin embargo, en los tres casos a frecuencias altas la tension máxima permitida para que el circuito comienze a tener el efecto de saturación tiende a infinito, esto se da por el efecto pasabajos del circuito, como fue explicado anteriormente.

1.3.2. Análisis de Slew Rate

Otro problema con el cual el circuito comienza a comportarse alinealmente es el Slew Rate(SR), que indica el valor máximo que puede tener $\frac{\partial V_{out}}{\partial t}$. Esto significa que a una entrada x(t) senoidal de la forma $x(t) = V_p sin(2\pi ft)$ le corresponde una salida $v_{out}(t) = |H(f)| V_p sin(2\pi ft + \phi(\omega))$, siendo $H(f) = |H(h)| e^{i\phi(\omega)}$. Por lo tanto, derivando la salida nos queda la ecuación (3).

$$\frac{\partial v_{out}}{\partial t} = |H(f)| V_p 2\pi f \cos (2\pi f t + \phi(\omega))$$
(3)

A su vez, sabemos que, $cos(\alpha) \le 1$, por lo tanto;

$$\frac{\partial v_{out}}{\partial t} \le |H(f)| V_p 2\pi f \le SR$$

$$f \le \frac{SR}{|H(f)| \, 2\pi V_p} \tag{4}$$

$$V_{in} \leq \frac{6.37 \times 10^{-4} SR \sqrt{62.5 \times 10^{3} \omega_{p}^{2} \left(R_{1} R_{2} + R_{1} R_{3} a_{0} + R_{1} R_{3} + R_{2} R_{3}\right)^{2} + 2.5 \times 10^{6} f^{2} \left(R_{1} R_{2} + R_{1} R_{3} + R_{2} R_{3}\right)^{2}}{R_{2} R_{3} \omega_{p} a_{0} f}$$

Como se ve en la Figura 33, el valor de $SR = \frac{2,65225}{4,75} \frac{(V)}{(\mu s)} = 0,55836 \left(\frac{V}{\mu s}\right)$, por lo tanto nos queda que para cada caso se deben cumplir las siguientes ecuaciones. Estas ecuaciones se pueden ver en la Figuras 29, 30 y 31.

$$V_{in} \le \frac{7.5 \cdot 10^{-14} \sqrt{1.1 \cdot 10^{25} f^2 + 1.4 \cdot 10^{34}}}{f} \quad Caso 1$$

$$V_{in} \le \frac{7,5 \cdot 10^{-13} \sqrt{2,2 \cdot 10^{23} f^2 + 1,4 \cdot 10^{34}}}{f} \quad Caso \, 2$$

$$V_{in} \le \frac{7.5 \cdot 10^{-14} \sqrt{3.6 \cdot 10^{26} f^2 + 1.4 \cdot 10^{38}}}{f} Caso 3$$

Figura 29: Cálculo de tensión pico máxima en función de la frecuencia para que no haya Slew Rate Caso 1

Figura 30: Cálculo de tensión pico máxima en función de la frecuencia para que no haya $Slew\ Rate\ Caso\ 2$

Figura 31: Cálculo de tensión pico máxima en función de la frecuencia para que no haya Slew Rate Caso 3

Figura 32: Cálculo de tensión pico máxima en función de la frecuencia para que no haya Slew Rate

Figura 33: Medición de la pendiente del Slew Rate

Como se puede observar en la Figura 32, los efectos del *Slew Rate* comienzan a hacerse muy significativos a altas frecuencias, lo cual se condice con lo explicado anteriormente. Sin embargo, los valores picos a la entrada del circuito para frecuencias bajas, si bien son finitos, son extremadamente grandes comparados con los valores máximos para la saturación, por lo tanto, se deberá tener en cuenta ambos efectos a la hora de aplicar una tensión de entrada para que no se encuentre ninguna alinealidad en el circuito.

1.3.3. Análisis de crossover distortion

El crossover distortion o distorsión de cruce por cero es una distorsión que se da en amplificadores operacionales que tienen a la salida una etapa "Push-Pull", una de estas etapas se muestra en la Figura 34. Esta alinealidad se produce por las corrientes de BIAS de los transistores BJT en esta etapa, que generan una caída de tensión de aproximadamente 0.7(V), por lo tanto, la salida del circuito sera 0(V) siempre que $|v_{in}| \le 0.7(V)$ por lo tanto, la salida del amplificador a una entrada senoidal será la que se puede ver en la Figura 35.

Figura 34: Etapa push-pull con transistores PNP y NPN

Figura 35: Crossover distortion

Figura 36: Medición de la distorsión de cruce por cero

Para solucionar este problema, se decidió ingresar al circuito con una tensión de la forma $V_{in} = A \sin(2\pi f t) + V_{offset}$, siendo, $V_{offstet}$ una tensión lo suficientemente grande para que alguno de los transistores BJT de la etapa pushpull se encuentre siempre polarizado. Sin embargo, esta solución afectó posteriormente a las mediciones de la transferencia, ya que como se explicará en la siguiente subsección, la amplitud máxima de entrada al circuito esta limitada por ciertas curvas, por lo tanto, al agregarle un offset, estamos limitando todavía más nuestro circuito.

1.3.4. Conclusión

En conclusión, teniendo en cuenta los efectos del *Slew Rate* y de la saturación para diferentes frecuencias del espectro, los resultados para poder medir la transferencia del circuito sin tener efectos alineales determinan que para cierta

frecuencia elegida para medir, la amplitud máxima de la tensíon de entrada al circuito deberá estar por debajo de las curvas mostradas en las figuras 37, 38 y 39.

Figura 37: Amplitud máxima de entrada en función de la frecuencia para el caso 1

Figura 38: Amplitud máxima de entrada en función de la frecuencia para el caso 2

Figura 39: Amplitud máxima de entrada en función de la frecuencia para el caso 3

Figura 40: Amplitud máxima de entrada en función de la frecuencia

Como se puede observar, cuando la frecuencia se hace lo suficientemente grande la amplitud de entrada se aproxima a cero, por lo tanto, en cada caso se encontrará una cierta frecuencia máxima para la cual no se podrá medir la transferencia del circuito ya que la tensión de entrada al mismo será del orden del ruido electromagnetico ambiente del laboratorio.

1.4. Otros fenómenos que afectan el comportamiento del Amplificador Operacional

1.4.1. Corriente de BIAS y offset de entrada

El siguiente inconveniente se da debido a que el amplificador operacional esta compuesto por transistores BJT internamente, por ende cada terminal v^+ y v^- tiene una corriente necesaria para polarizar a los transistores que debe ser tenida en cuenta. A su vez, debe ser tenido en cuenta el offset de entrada, que generará una salida del tipo $V_{out} = A(\omega) (v^+ - v^- + v_{io})$ siendo v_{io} la tensión de offset de entrada. En el caso del amplificador operacional LM324, las características dadas por el fabricante son las siguientes:

$$I_{bias} \approx 45(nA)$$

$$v_{io} \approx 2(mV)$$

Sin embargo, hay que tener en cuenta que en la hoja de datos se aclara que la corriente de *BIAS* puede llegar a valer hasta 100 (nA) y que la tensión de *offset* de entrada puede valer hasta 3(mV), los valores dichos previamente son valores típicos, y los mencionados son valores máximos. A su vez, la corriente de *offset* de entrada será:

$$I_{io} \approx 5(nA)$$

1.5. Aplicaciones y características

Como se pudo observar anteriormente, el circuito es un pasabajos inversor con un rango de frecuencias determinadas para cada caso durante esta sección se focalizará en explicar algunas características del circuito.

1.5.1. Efecto de la resistencia R4 en el circuito inversor

Como se vió en las las subsecciones 1.1 y 1.2, la transferencia y la impedancia de entrada no dependen del valor de R_4 , lo cual nos hace pregutarnos cual es el propósito de esta resistencia. En principio, la resistencia tiene el objetivo de cargar el circuito para que funcione adecuadamente, esto querría decir que la resistencia R_4 podría tomar cualquier valor entre $0e\infty$, sin embargo nuestro circuito presenta una corriente de salida máxima y si hacemos tender $R_4 \longrightarrow 0$, la corriente necesaria se aproximaría a infinito, lo cual no es posible. El otro caso posible es que $R_4 \longrightarrow \infty$, esto significaría que la corriente de salida del amplificador operacional sea la mínima, y es necesario verificar que esa corriente no sea menor a la corriente mínima de salida del amplificador. Sin embargo, como el segundo caso no suele traer problemas, nos enfocaremos en procurar que la corriente de salida no supere la corriente máxima nominal del amplificador operacional. Para esto, y aproximando $i_2 \approx 0$ (siendo i_2 la corriente de retroalimentación del circuito), se puede decir que $R_4 > \frac{V_{out}}{i_{max}}$.

1.5.2. Efecto de la resistencia R3

Por otro lado, se puede ver como, en la Figura 1, la resistencia R_3 determina la tensión v^- . Sabiendo que $v^+=0(V)$, significa que en cierta medida, la ganancia del circuito va a estar dada por el valor de R_3 y en particular , si $R_3 \longrightarrow 0$, entonces $v^-=0(v)$, por lo tanto $V_{out}=A(\omega)$ (v^+-v^-) = 0(v), con lo cual la ganancia sería nula. De la misma manera, se puede ver que si $R_3 \longrightarrow \infty$, entonces la ganancia es máxima.

Figura 41: Mediciones del efecto de la resistencia R3

Como se observa en la Figura 41, la tensión de salida no es exactamente 0(V), esto se debe a la tensión de offset de entrada de la ecuación $V_{out} = A(\omega) \ (v^+ - v^- + v_{offset}) = 0(v)$, esta diferencia de potencial se debe a las diferencias entre los transistores de entrada, que, mediante la amplificación del amplificador operacional, se evidencia a la salida del circuito.

1.6. Análisis de DC Sweep a la entrada

Para probar el efecto de la saturación, se aplicó un DC Sweep a la entrada para observar la salida, lo que se observó se muestra en las Figuras 42,43 y 44.

Figura 42: Simulación y mediciones del DC Sweep para el caso 1

Figura 43: Simulación y mediciones del DC Sweep para el caso 2

Figura 44: Simulación y mediciones del DC Sweep para el caso 3

Como se puede observar, prácticamente no hay diferencias entre lo calculado y lo medido las pequeñas diferencias en la V_{sat} se deben a que la fuente que se usó para generar una tension de V_{cc} $y-V_{cc}$, tenía cierta imprecisión. A su vez se suma la tensión V_{pol} de polarización de los transistores de la etapa push-pull, lo que genera que $V_{sat} \approx V_{cc} - V_{pol}$.