école — — — normale — — supérieure — — paris — saclay — —

Review of the paper: "Optimal spectral transportation with application to music transcription"

Project for the course "Computational Optimal Transport"

Lucas Haubert

Master MVA

ENS Paris-Saclay

The problem: Robustness of Music Transcription

Definition: Music transcription aims to "translate" a raw musical signal according to its composition (notes)

Figure: Music transcription on Prelude in C# minor, Op.3 No.2, S. Rachmaninoff

The idea : Approximate an input spectrogram V by a product $\hat{V} = WH$, where W is a dictionary of representation of notes, and H is the optimal allocation of notes. $V = (v_1, ..., v_n)$.

A relevant baseline: PLCA

Naive frequency-wise comparison : Probabilistic Latent Component Analysis (PLCA)

- The process :
 - Normalize columns v_n 's of V (discrete probability distribution); same requirements for W and H
 - Comparison of V and \hat{V} (or v_n and \hat{v}_n); min $D_{KL}(V|\hat{V})$ s.t. $\forall n, ||h_n||_1 = 1$ over $H \ge 0$
 - Use of KL divergence : $D_{KL}(v_n|\hat{v}_n) = \sum_{i=1}^M v_i \log(v_i/\hat{v}_i)$ and $D_{KL}(V|\hat{V}) = \sum_{n=1}^N D_{KL}(v_n|\hat{v}_n)$
- Analysis:
 - Pros of KL : Tool for comparing distributions => notion of """distance"" (not a metric)
 - BUT : Separability of KL => frequency-wise comparison between v_n and \hat{v}_n
 - Lack of robustness to small displacements in the frequency support (disproportional changes of KL)
 - Use of other methods, such as OT-based approaches, to fix it (see content of [1])

OT-based approaches

Approach of the studied article [11: "Optimal spectral transportation with application to music transcription"

- The idea :
 - Columns v_0 's are energy distributions of intensities v_{01}, \ldots, v_{0M} at sampling frequencies f_1, \ldots, f_M
 - Use of a transportation matrix in $\{T \in \mathbb{R}^{M \times M} | \forall i, j \in [0, M], \sum_{i=1}^{M} t_{i,j} = v_{ni}, \sum_{i=1}^{M} t_{i,j} = \hat{v}_{ni}\}$
 - Use of a cost matrix C to quantify the distance between uncorrelated frequencies
 - Define the "OT divergence" : $D_C(V|\hat{V}) = \sum_n D_C(v_n|\hat{v}_n) = \sum_n \min_T \sum_{i,j} c_{i,j} t_{i,j}$
 - Solve min $D_C(V|\hat{V})$ s.t. $\forall n, ||h_n||_1 = 1 (H > 0)$
- Analysis:
 - $D_C(\cdot|\cdot)$ is an OT-based measure that can handle robustness issues with C
 - Define C_h with $c_{i,i} = \min_{\alpha=1,\dots,q_{min}} (f_i qf_i)^2 + \epsilon \delta_{\alpha \neq 1}$ for inharmonicities and variation of timbre
 - Define W as a set of Dirac vectors placed at the fundamental frequencies ν_1, \ldots, ν_K of the notes to identify
 - This method can be extended to regularized ones by means of additional assumptions

Optimization and regularization

Improvement of classical OST: Analysis and regularization

- Analysis:
 - Naive OT unmixing : $\min_{h_0 \ge 0, T \ge 0} < T, C > \text{s.t. } T \in \Theta$: LP (computationally heavy)
 - With W set of Diracs and K < M, sparse transportation matrix \tilde{T} related to fundamentals $\nu_1, ..., \nu_K$ and $\hat{h}_n = L^T v_n$ where L is sparse => computationally efficient algorithm
 - Define $\tilde{c}_{i,k} = \min_{a} (f_i g\nu_k)^2 + \epsilon \delta_{a\neq 1} = \tilde{T}$ deals with the fundamentals directly
 - Opportunity to keep this method or to settle regularization(s)
- Regularizations :
 - Entropic regularization : $\min_{h_e \geq 0, T \geq 0} < \tilde{T}, \tilde{C} > +\lambda_e \Omega_e(\tilde{T})$ s.t $T \in \Theta$; $\Omega_e(\tilde{T}) = \sum_{i,k} \tilde{t}_{ik} \log(\tilde{t}_{ik})$ Distribute energies a bit more in order to get a smoother estimate of transport $\tilde{\mathcal{T}}$; closed-form solution
 - Group regularization : Add $\lambda_a \Omega_a(\tilde{\tau}) = \lambda_a \sum_{t} \sqrt{\|\tilde{t}_k\|_1}$ Use the group structure of \tilde{T} : solution obtained by iterations of classic OST with additive term on \tilde{C}
 - Entropic + Group regularization: Use both methods at the same time

January 19, 2024

Experiment 1: Synthetic data

Synthetic harmonic templates: Setup and results

- Setup:
 - Generate a synthetic dictionary of template (12 here)
 - extract two templates to generate a new one, and apply a small shift on fundamental frequencies
 - Compute the l_1 error between h_n and \hat{h}_n for each method

Figure: 12 simulated harmonic templates

Figure: Small shift of fundamentals

- Results :
 - Group regularization approach is the best (due to sparse context of these synthesis templates)
 - Same conclusion for variation of timbre

Experiment 2 : Real-world data

Piano recordings from dataset MAPS: Setup and results

- Setup :
 - Produce a spectrogram V by means of Hann windows and overlap
 - Real-world music instrument can produce time varying signals, due to their physical composition
 - Comparison tools based on MIDI system

Figure: Harmonics of a single piano note along time

- Results:
 - Entropic regularization performs better in this situation (due to a better distribution of transportation)

Conclusion and opening

Overview of the study of article [1]: "Optimal spectral transportation with application to music transcription"

- Problem and solutions :
 - Naive measure of fit: $\min D_{KL}(V|\hat{V}) =>$ frequency-wise comparison => lack of robustness
 - PLCA have been widely used to perform MT, but is no longer state-of-the-art
 - OT-based approaches: Leverage OT techniques to proceed a global comparison
 - Entropic regularization good on real-world musical data; Group regularization efficient on sparse profiles
- Possible openings / extensions :
 - Quadratic regularization => maintains a sparse transport plan
 - Unbalanced optimal transport => better deal with outliers and noise
 - Deep Learning architectures such as LSTMs or Transformers to process the audio tracks

Thank You for Listening Ready for Q&A session

9/10

Reference

N. Courty R. Flamary, C. Févotte and V. Emiya.

Optimal spectral transportation with application to music transcription, 2016.