1.

- 1. Sort by $W_i + S_i$ decreasing and if same by W_i by decreasing

 We can use counting sort for this and cost $O(N + W_{max} + S_{max})$
- 2. Remove unimportant item

If the occurrence of one item with the weight W_i is above $\frac{W_{max} + S_{max}}{W_i}$

We don't need to consider that item again

Using harmonic series, this will make the remaining item at most $S \lg S$ O(N)

3. Use DP[i][j] which define by:

The largest total weight with item from i to n with the available remaining weight possible is j.

$$O((S_{max} + W_{max}) \cdot \lg(S_{max} + W_{max}) \cdot S_{max}) = O((S_{max}^2 + S_{max} \cdot W_{max}) \cdot \lg(S_{max} + W_{max}))$$

4. The base case happen when i = number of item

If i = number of item, the largest weight is 0

5. $DP[i][j] = max(DP[i+1][j], W_i + DP[i+1][min(j-W_i, S_i)])$

We need to make sure that for the latter case, $W_i \leq j$ is always happen

6. So the answer should be in DP[0][inf]

In this case, $\inf = W_{max} + S_{max}$

7. Backtrack the items

Keep track for every DP state, whether they come from the path that pick item_i or not $O(S_{max} + W_{max})$

Final Complexity:

$$= O(N + W_{max} + S_{max} + N + (S_{max}^2 + S_{max} \cdot W_{max}) \cdot \lg(S_{max} + W_{max}) + S_{max} + W_{max})$$

= $O(N + W_{max} + S_{max} + (S_{max}^2 + S_{max} \cdot W_{max}) \cdot \lg(S_{max} + W_{max}))$

,