Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application.

- 1. (Previously Presented) Method for processing a signal (y(t)) sent over a wireless communication channel, comprising sampling the received signal (y(t)) with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, lower than the chip rate ($1/T_c$) of said received signal (y(t)), but greater than the rate of innovation (ρ) of said received signal (y(t)), for generating a set of sampled values (y(nT_s)).
- 2. (Previously Presented) Method according to claim 1, further comprising filtering said received signal (y(t)) with a filter (f).
- 3. (Original) Method according to claim 2, wherein said filter (f) is a lowpass filter.
- 4. (Original) Method according to claim 3, wherein said filter (f) is a sinc filter.
- 5. (Original) Method according to claim 3, wherein said filter (f) is a Gaussian filter.
- 6. (Previously Presented) Method according to claim 1, wherein said wireless communication channel comprises a multipath fading transmission channel (c).
- 7. (Previously Presented) Method according to claim 1, wherein said wireless communication channel comprises a CDMA channel.
- 8. (Previously Presented) Method according to claim 1, wherein said sampling frequency $(1/T_s)$ is greater than the information rate (K/T_b) of said received signal (y(t)).

9. (Previously Presented) Method according to claim 1, wherein said sent signal (y(t)) includes a plurality of training sequences (b_{kt}) each encoded with a user specific coding sequence $(s_k(t))$ and transmitted by said users (k), said method further comprising:

computing a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values $(y(nT_s))$,

recovering spectral values $(S_k[m])$ corresponding to each of said user specific coding sequence $(s_k(t))$,

retrieving the delays $(\tau_k^{(l)})$ and the amplitude attenuations $(a_k^{(l)})$ induced by said communication channel on said sent signal (y(t)), from said set of spectral values (Y[m]) corresponding to said received signal (y(t)) and from said spectral values $(S_k[m])$ corresponding to each of said user specific coding sequence $(s_k(t))$.

- 10. (Previously Presented) Method according to claim 9, wherein retrieving said delays $(\tau_k^{(1)})$ and said amplitude attenuations $(a_k^{(1)})$ includes solving a series of one-dimensional estimation problems, the size of each said one-dimensional estimation problem being equal to the number of said sampled values $(y(nT_s))$ generated during one symbol duration (T_b) .
- 11. (Original) Method according to claim 10, wherein said series of one-dimensional equation systems is derived from said spectral values (Y[m]) of said received signal (y(t)), said spectral values ($S_k[m]$) of each of said user specific coding sequence ($s_k(t)$) and the value of the bits ($b_k^{(h)}$) of said training sequences (b_{kt}).
- 12. (Previously Presented) Method according to claim 11, further comprising: processing a second sent signal (y(t)) including a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k),

sampling said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said second sent signal (y(t)), for generating a second set of sampled values $(y(nT_s))$.

13. (Previously Presented) Method according to claim 12, further comprising running a multiuser detection scheme using said second set of sampled values $(y(nT_s))$ and previously

computed said delays $(\tau_k^{(l)})$ and said amplitude attenuations $(a_k^{(l)})$ for estimating the value of the symbol (b_k) sent by each said user (k).

- 14. (Original) Method according to claim 13, wherein said multiuser detection scheme is a decorrelating detection scheme.
- 15. (Previously Presented) Method according to claim 13, wherein said multiuser detection scheme is a minimum mean-square error detection scheme.
- 16. (Previously Presented) Method according to claim 1, wherein said sent signal (y(t)) includes a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), said method further comprising:

running a multiuser detection scheme using known delays $(\tau_k^{(l)})$ and amplitude attenuations $(a_k^{(l)})$ induced by said wireless communication channel on said sent signal (y(t)) and using said set of sampled values $(y(nT_s))$ and for estimating the value of the symbol (b_k) sent by each said user (k).

- 17. (Original) Method according to claim 16, wherein said multiuser detection scheme is a decorrelating detection scheme.
- 18. (Previously Presented) Method according to claim 16, wherein said multiuser detection scheme is a minimum mean-square error detection scheme.
- 19. (Previously Presented) Method according to claim 1, wherein said sent signal (y(t)) includes a plurality of training sequences (b_{kt}) each encoded with a user specific coding sequence $(s_k(t))$ and transmitted by said users (k), said method further comprising:

computing a set of spectral values (Y[m]) of said received signal (y(t)) from said set of sampled values (y(nT_s)), computing a set of channel dependant values (C) from said set of spectral values (Y[m]) and said training sequences (b_{kl}),

processing a second sent signal (y(t)) including a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k),

sampling said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (p) of said second sent signal (y(t)), for generating a second set of sampled values $(y(nT_s))$

retrieving the value of the symbol (b_k) sent by each said user (k) by solving a linear matrix system including said second set of sampled values $(y(nT_s))$ and said set of channel dependant values (C).

20. (Previously Presented) Method according to claim 1, wherein said sent signal (y(t)) includes a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), said user specific coding sequence $(s_k(t))$ being chosen such that, when filtered with a lowpass filter (f), it is orthogonal to any other user's specific coding sequence $(s_k(t))$ used in said communication channel and filtered with said lowpass filter (f), said method further comprising:

sampling said sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said sent signal (y(t)), for generating a set of sampled values (y(nT_s))

filtering said set of sampled values $(y(nT_s))$ with a bank of matched filters, each filter being matched to said user specific coding sequence $(s_k(t))$ filtered with said lowpass filter (f), for estimating the value of the symbol (b_k) sent by each said user (k).

- 21. (Previously Presented) Method according to claim 1, wherein said wireless communication channel comprises an array of antennas (i).
- 22. (Previously Presented) Method according to claim 21, wherein said sent signal (y(t)) is the superposition of a plurality of training sequences (b_{kt}) each encoded with a user specific coding sequence ($s_k(t)$) and transmitted by said users (k), said method further comprising:

sampling the received signals $(y_i(t))$ received by each antenna (i) in the antenna array with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said received signals $(y_i(t))$, for generating sets of sampled values $(y_i(nT_s))$,

computing sets of spectral values $(Y_i[m])$ of said received signals $(y_i(t))$ from said sets of sampled values $(y_i(nT_s))$,

recovering the spectral values $(S_k[m])$ of each of said user specific coding sequence $(s_k(t))$,

retrieving the delays $(\tau_k^{(l)})$, the amplitude attenuations $(a_k^{(l)})$ and the directions of arrival $(\theta_k^{(l)})$ induced by said communication channel on said sent signal (y(t)) from said sets of spectral values $(Y_i[m])$ corresponding to said received signals $(y_i(t))$ and from said spectral values $(S_k[m])$ corresponding to each of said user specific coding sequence $(s_k(t))$.

- 23. (Previously Presented) Method according to claim 22, wherein retrieving said delays $(\tau_k^{(l)})$, said amplitude attenuations $(a_k^{(l)})$ and said directions of arrival $(\theta_k^{(l)})$ includes solving a series of two-dimensional estimation problems, the size of each said two-dimensional estimation problem being equal to the number of said sampled values $(y_i(nT_s))$ generated during one symbol duration (T_b) .
- 24. (Original) Method according to claim 23, wherein said series of two-dimensional equation systems is derived from said spectral values $(Y_i[m])$ of said received signal $(y_i(t))$, said spectral values $(S_k[m])$ of each of said user specific coding sequence $(s_k(t))$ and the value of the bits $(b_k^{(h)})$ of said training sequences (b_{kt}) .
- 25. (Previously Presented) Method according to claim 24, further comprising: processing a second sent signal (y(t)) including a plurality of symbols (b_k) each encoded with said user specific coding sequence (s_k(t)) and transmitted by said users (k),

orienting the beams of said array of antennas (i) towards previously determined said arrival directions ($\theta_k^{(1)}$),

sampling said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said second sent signal (y(t)), for generating a second set of sampled values $(y(nT_s))$.

26. (Previously Presented) Method according to claim 25, further comprising running a 2D-RAKE detection scheme using said second set of sampled values (y(nT_s)) and previously

computed said delays $(\tau_k^{(l)})$ and said amplitude attenuations $(a_k^{(l)})$ for estimating the value of the symbol (b_k) sent by each said user (k).

- 27. (Previously Presented) Method according to claim 1, wherein said wireless communication channel comprises an Ultra Wideband (UWB) communication channel.
- 28. (Previously Presented) A computer-readable medium on which is recorded a control program for a data processor, the computer-readable medium comprising instructions for causing the data processor to:

sample a signal (y(t)) sent over a wireless communication channel with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, lower than the chip rate $(1/T_c)$ of said signal (y(t)), but greater than the rate of innovation (ρ) of said signal (y(t)), for generating a set of sampled values $(y(nT_s))$.

- 29. (Original) Receiver for decoding a signal (y(t)) sent over a bandwidth-expanding communication system according to the method of claim 1.
- 30. (Original) Receiver according to claim 29, comprising a memory for storing said spectral values $(S_k[m])$ of said signature sequences $(s_k(t))$.
- 31. (Original) Set of at least two encoders for use with a receiver according to claim 29, each encoder (50) of said set of encoders being assigned at least one training sequence (b_{kt}) to be sent over a bandwidth-expanding channel during a training phase (30), wherein said at least one training sequence (b_{kt}) is chosen such that it is linearly independent from any other training sequence (b_{kt}) assigned to any other encoder (50) of said set of encoders.
- 32. (Original) Set of at least two encoders according to claim 31, each said encoder (50) being assigned at least two said training sequences (b_{kt}), wherein each said encoder (50) is designed to select from said at least two training sequences (b_{kt}) the training sequence (b_{kt}) to be sent during said training phase (30).

- 33. (Original) Set of at least two encoders according to claim 31, each said encoder (50) further being assigned a specific coding sequence $(s_k(t))$ for coding a signal (x(t)) to be sent over said bandwidth-expanding channel, wherein said coding sequence $(s_k(t))$ is chosen such that, when filtered with a lowpass filter (f), it is orthogonal to any specific coding sequence $(s_k(t))$ assigned to any other encoder (50) of said set of encoders filtered with said lowpass filter (f).
- 34. (Previously Presented) An apparatus for processing a signal (y(t)) sent over a wireless communication channel, comprising:

a receiver configured to sample the received signal (y(t)) with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, lower than the chip rate (1/ T_c) of said received signal (y(t)), but greater than the rate of innovation (ρ) of said received signal (y(t)), for generating a set of sampled values (y(n T_s)).

- 35. (Previously Presented) The apparatus of claim 34, further comprising a filter configured to filter the received signal (y(t)).
- 36. (Previously Presented) The apparatus of claim 35, wherein said filter is a lowpass filter.
- 37. (Previously Presented) The apparatus of claim 36, wherein said filter is a sinc filter.
- 38. (Previously Presented) The apparatus of claim 36, wherein said filter is a Gaussian filter.
- 39. (Previously Presented) The apparatus of claim 38, wherein said wireless communication channel comprises a multipath fading transmission channel.
- 40. (Previously Presented) The apparatus of claim 34, wherein said wireless communication channel comprises a CDMA channel.
- 41. (Previously Presented) The apparatus of claim 34, wherein said sampling frequency $(1/T_s)$ is greater than the information rate (K/T_b) of said received signal (y(t)).

42. (Previously Presented) The apparatus of claim 34, wherein said sent signal (y(t)) includes a plurality of training sequences (b_{kt}) each encoded with a user specific coding sequence $(s_k(t))$ and transmitted by said users, said apparatus further comprising:

a computing device configured to compute a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values $(y(nT_s))$; and

a processing device configured to recover spectral values $(S_k[m])$ corresponding to each of said user specific coding sequence $(s_k(t))$, and recover the delays $(\tau_k^{(l)})$ and the amplitude attenuations $(a_k^{(l)})$ induced by said communication channel on said sent signal (y(t)), from said set of spectral values (Y[m]) corresponding to said received signal (y(t)) and from said spectral values $(S_k[m])$ corresponding to each of said user specific coding sequence $(s_k(t))$.

- 43. (Previously Presented) The apparatus of claim 42, wherein the processing device is further configured to solve a series of one-dimensional estimation problems, the size of each said one-dimensional estimation problem being equal to the number of said sampled values $(y(nT_s))$ generated during one symbol duration (T_b) .
- 44. (Previously Presented) The apparatus of claim 43, wherein said series of one-dimensional equation systems is derived from said spectral values (Y[m]) of said received signal (y(t)), said spectral values ($S_k[m]$) of each of said user specific coding sequence ($S_k(t)$) and the value of the bits ($S_k(t)$) of said training sequences ($S_k(t)$).
- 45. (Previously Presented) The apparatus of claim 44, wherein the receiver is further configured to process a second sent signal (y(t)) including a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), and sample said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said second sent signal (y(t)), for generating a second set of sampled values $(y(nT_s))$.
- 46. (Previously Presented) The apparatus of claim 45, wherein the receiver is further configured to run a multiuser detection scheme using said second set of sampled values $(y(nT_s))$

and previously computed said delays $(\tau_k^{(l)})$ and said amplitude attenuations $(a_k^{(l)})$ for estimating the value of the symbol (b_k) sent by each said user (k).

- 47. (Previously Presented) The apparatus of claim 46, wherein said multiuser detection scheme is a decorrelating detection scheme.
- 48. (Previously Presented) The apparatus of claim 46, wherein said multiuser detection scheme is a minimum mean-square error detection scheme.
- 49. (Previously Presented) The apparatus of claim 34, wherein said sent signal (y(t)) includes a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), and

wherein the receiver is further configured to run a multiuser detection scheme using known delays $(\tau_k^{(l)})$ and amplitude attenuations $(a_k^{(l)})$ induced by said communication channel on said sent signal (y(t)) and using said set of sampled values $(y(nT_s))$ and for estimating the value of the symbol (b_k) sent by each said user (k).

- 50. (Previously Presented) The apparatus of claim 49, wherein said multiuser detection scheme is a decorrelating detection scheme.
- 51. (Previously Presented) The apparatus of claim 49, wherein said multiuser detection scheme is a minimum mean-square error detection scheme.
- 52. (Previously Presented) The apparatus of claim 34, wherein said sent signal (y(t)) includes a plurality of training sequences (b_{kt}) each encoded with a user specific coding sequence $(s_k(t))$ and transmitted by said users (k), said apparatus further comprising:

a computing device configured to compute a set of spectral values (Y[m]) of said received signal (y(t)) from said set of sampled values $(y(nT_s))$; and

a processing device configured to compute a set of channel dependant values (C) from said set of spectral values (Y[m]) and said training sequences (b_{tt}).

wherein the receiver is further configured to process a second sent signal (y(t)) including a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), sample said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said second sent signal (y(t)), for generating a second set of sampled values $(y(nT_s))$, and retrieve the value of the symbol (b_k) sent by each said user (k) by solving a linear matrix system including said second set of sampled values $(y(nT_s))$ and said set of channel dependant values (C).

53. (Previously Presented) The apparatus of claim 34, wherein said sent signal (y(t)) includes a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), said user specific coding sequence $(s_k(t))$ being chosen such that, when filtered with a lowpass filter (f), it is orthogonal to any other user's specific coding sequence $(s_k(t))$ used in said communication channel and filtered with said lowpass filter (f), and wherein the receiver is further configured to sample said sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said sent signal (y(t)), for generating a set of sampled values $(y(nT_s))$, the apparatus further comprising:

a bank of matched filters configured to filter said set of sampled values $(y(nT_s))$, each filter being matched to said user specific coding sequence $(s_k(t))$ filtered with said lowpass filter (f), for estimating the value of the symbol (b_k) sent by each said user (k).

- 54. (Previously Presented) The apparatus of claim 34, wherein said communication channel comprises an array of antennas (i).
- 55. (Previously Presented) The apparatus of claim 54, wherein said sent signal (y(t)) is the superposition of a plurality of training sequences (b_{kt}) each encoded with a user specific coding sequence $(s_k(t))$ and transmitted by said users (k), and wherein the receiver is further configured to sample the received signals $(y_i(t))$ received by each antenna (i) in the antenna array with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, but

greater than the rate of innovation (p) of said received signals $(y_i(t))$, for generating sets of sampled values $(y_i(nT_s))$, the apparatus further comprising:

a computing device configured to compute sets of spectral values $(Y_i[m])$ of said received signals $(y_i(t))$ from said sets of sampled values $(y_i(nT_s))$; and

a processing device configured to recover the spectral values $(S_k[m])$ of each of said user specific coding sequence $(s_k(t))$, and retrieve the delays $(\tau_k^{(l)})$, the amplitude attenuations $(a_k^{(l)})$ and the directions of arrival $(\theta_k^{(l)})$ induced by said communication channel on said sent signal (y(t)) from said sets of spectral values $(Y_i[m])$ corresponding to said received signals $(y_i(t))$ and from said spectral values $(S_k[m])$ corresponding to each of said user specific coding sequence $(s_k(t))$.

- 56. (Previously Presented) The apparatus of claim 55, wherein the processing device is further configured to solve a series of two-dimensional estimation problems, the size of each said two-dimensional estimation problem being equal to the number of said sampled values $(y_i(nT_s))$ generated during one symbol duration (T_b) .
- 57. (Previously Presented) The apparatus of claim 56, wherein said series of two-dimensional equation systems is derived from said spectral values $(Y_i[m])$ of said received signal $(y_i(t))$, said spectral values $(S_k[m])$ of each of said user specific coding sequence $(s_k(t))$ and the value of the bits $(b_k^{(h)})$ of said training sequences (b_{kt}) .
- 58. (Previously Presented) The apparatus of claim 57, wherein the receiver is further configured to process a second sent signal (y(t)) including a plurality of symbols (b_k) each encoded with said user specific coding sequence $(s_k(t))$ and transmitted by said users (k), orient the beams of said array of antennas (i) towards previously determined said arrival directions $(\theta_k^{(l)})$, and sample said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem, but greater than the rate of innovation (ρ) of said second sent signal (y(t)), for generating a second set of sampled values $(y(nT_s))$.
- 59. (Previously Presented) The apparatus of claim 58, wherein the receiver is further configured to run a 2D-RAKE detection scheme using said second set of sampled values (y(nT_s))

and previously computed said delays $(\tau_k^{(l)})$ and said amplitude attenuations $(a_k^{(l)})$ for estimating the value of the symbol (b_k) sent by each said user (k).

- 60. (Previously Presented) The apparatus of claim 34, wherein said wireless communication channel comprises an Ultra Wideband (UWB) communication channel.
- 61. (Previously Presented) An apparatus for processing a signal, comprising: means for receiving a signal (y(t)) over a wireless communication channel; and means for sampling the received signal (y(t)) with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, lower than the chip rate (1/T_c) of said received signal (y(t)), but greater than the rate of innovation (ρ) of said received signal (y(t)), for generating a set of sampled values (y(nT_s)).
- 62. (Previously Presented) A mobile station for wireless communication, comprising: at least one antenna; and

a receiver configured to receive a signal (y(t)) over a wireless communication channel via the at least one antenna, and sample the signal (y(t)) with a sampling frequency (f_s) lower than the sampling frequency given by the Shannon theorem, lower than the chip rate $(1/T_c)$ of said received signal (y(t)), but greater than the rate of innovation (ρ) of said received signal (y(t)), for generating a set of sampled values $(y(nT_s))$.