Resumo 2BI

```
(∀x) e (∃x):
~(∀x) = (∃x)
~(∃x)=(∀x)
(∀x)="Para todo x"
(∃x)="Existe pelo menos um x"
(Ax)(Ey) = "Para todo x existe pelo menos um y"
```

```
      Vp = {1,2,3}
      Números que ao quadrado estão em A

      Vq = {2,4,6,8}
      Números que são pares em A

      Vp→q= V(-p V q) = (A-Vp)
      U Vq = {4,5,6,7,8,9}
      U {2,4,6,8} = {2,4,5,6,7,8,9}
      Negação de um valor resulta em todos o valor per valor
```

Explicação

~Vp = A-Vp (O que tem no conjunto A que não tem no Vp)

U = Junta tudo dos dois conjuntos

∩ = Apenas os que são iguais entre os conjuntos

Inconsistente: deduzir uma contradição ou premissas não são todas V

Não-Validade ou Sofisma: Premissas V e Conclusão F

Proposições da questão:

- toda mulher é boa motorista;
- nenhum homem é bom motorista;
- todos os homens são maus motoristas;
- pelo menos um homem é mau motorista;
- todos os homens s\u00e3o bons motoristas.

Negação:

- I. Pelo menos uma mulher não é boa motorista
- II. Pelo menos um homem é bom motorista.
- III. Pelo menos um homem é bom motorista.
- IV. Todos os homens são bons motoristas.
- V. Pelo menos um homem não é bom motorista.

Qual das alternativas abaixo reúne o par de proposições em que uma delas é a negação da outra?

- a) II e V.
- b) lelll.
- c) III e V.
- d) II e IV.

e) IV e V.

Fazer a negação das proposições dadas e depois ver qual é a negação da outra

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

$$\sim$$
($\exists x$)($p(x)$) = ($\forall x$)($\sim p(x)$)
 \sim ($\forall x$)($p(x)$) = ($\exists x$)($\sim p(x)$)

Exemplos:

- a) Negar que todo homem foi à lua é o mesmo que existe pelo menos um homem que não foi à lua;
- b) Negar que existe uma pessoa que é trilhonária é o mesmo que todas as pessoas não são trilhonárias.

2º Questão (1,5 ponto) Sejam as sentenças abertas em A= {1,2,3,4,5,6,7,8,9}: $p(x) \in x^2 \in A \in q(x) \in x \in par$. Determinar $V_{p \to q}$, $V_{q \to p} \in V_{p \leftrightarrow q}$

```
 \begin{array}{ll} Vp = \{1,2,3\} & \text{N\'umeros que ao quadrado est\'ao em A} \\ Vq = \{2,4,6,8\} & \text{N\'umeros que s\'ao pares em A} \\ Vp \rightarrow q = V(-p \ V \ q) = (A - Vp) \ U \ Vq = \{4,5,6,7,8,9\} \ U \ \{2,4,6,8\} = \{2,4,5,6,7,8,9\} \ \text{Negaç\'ao de um valor resulta em todos os n\'umeros de A que n\'ao est\'ao no valor (A-Vp)} \\ Vq \rightarrow p = V(-q \ V \ p) = (A - Vq) \ U \ Vp = \{1,3,5,7,9\} \ U \ \{1,2,3\} = \{1,2,3,5,7,9\} \\ Vp \leftrightarrow q = Vp \rightarrow q \ \cap \ Vq \rightarrow p = \{2,4,5,6,7,8,9\} \ \cap \ \{1,2,3,5,7,9\} = \{2,5,7,9\} \\ \end{array}
```

```
3- a)
                          (\forall x) (\exists y) (p(x,y) \rightarrow q(y))
                           (\exists x) (\forall y) \sim (p(x,y) \rightarrow q(y))
                                                                                       Condicional (COND)
                                                                                                                                p \rightarrow q \Leftrightarrow \sim p \vee q
                                                                                                                                      ~(p ∧ q) ⇔ ~p ∨ ~q
                           (\exists x) (\forall y) \sim (\sim p(x,y) \vee q(y))
                                                                                                                                      ~(p ∨ q) ⇔ ~p ∧ ~q
                          (\exists x) (\forall y) (p(x,y) \land \neg q(y))
3- a)
                           (\exists x) (\forall y) (p(x,y) \rightarrow q(x,y))
                           (\forall x) (\exists y) \sim (p(x,y) \rightarrow q(x,y))
                                                                                          Condicional (COND)
                                                                                                                                   p \rightarrow q \Leftrightarrow \sim p \vee q
                          (\forall x) (\exists y) \sim (\sim p(x,y) \lor q(x,y))
                                                                                                                                        \sim(p \wedge q) \Leftrightarrow \simp \vee \simq
                                                                                                                                        \sim (p \lor q) \Leftrightarrow \sim p \land \sim q
                          (\forall x) (\exists y) (p(x,y) \land \neg q(x,y))
```

```
3° Questão (1,0 ponto):Dar a negação de cada uma das seguintes proposições:
a) (\forall x) (\exists y) (p(x,y) \rightarrow q(y));
```

b) $(\exists x) (\forall y) (p(x,y) \rightarrow q(x,y))$. Obs: Deve-se resolver até chegar na expressão mais simplificada.

4-

DEM	ONSTRAÇÃO:	
(1)	$(p \rightarrow q) \rightarrow (q \land r),$	P ₁
(2)	~(r ∨ s)	P ₂
(3)	t→~p	P ₃
(4)	~(->~W	P ₄
(5)	W	PA - DC
_(6)	~V	PA - DI
(7)	~r ^ ~s	2 - DM
(8)	t	4, 5 - MT
(9)	~p	3, 8 - MP
(10)	~p∨q	9 – AD
(11)	$(p \rightarrow q)$	10 - COND
(12)	q ^ r	1, 11 - MP
(13)	~r	7- SIMP
(14)	r	12 - SIMP
(15)	r ^ ~ r	14,13 - CONJ

4º Questão (2,0 pontos) Use Demonstração Indireta E Demonstração Condicional para prova do argumento: (note que é obrigatório usar as duas demonstrações, mas não é para resolver o exvezes)

$$(p \rightarrow q) \rightarrow (q \land r), \ \sim (r \lor s), \ t \rightarrow \sim p, \ \sim t \rightarrow \sim w \mid - w \rightarrow v$$

u regras de equivalencia:	
Idempotente (ID)	$p \lor p \Leftrightarrow p$
	$p \wedge p \Leftrightarrow p$
Comutativa (COM)	$p \lor q \Leftrightarrow q \lor p$
	$p \land q \Leftrightarrow q \land p$
Associativa (ASSOC)	$(p \land q) \land r \Leftrightarrow p \land (q \land r)$
	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
Distributivas (DIST)	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
Dupla negação (DN)	p ⇔ ~~p
Regras de Morgan (DM)	~(p ∧ q) ⇔ ~p ∨ ~q
	~(p ∨ q) ⇔ ~p ∧ ~q

 $p \rightarrow q \Leftrightarrow \sim p \vee q$

 $p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$

 $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$

 $p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$

Exportação-Importação (EI)

10 regras de inferência:

Condicional (COND)

Contraposição (CP)

Bicondicional (BICOND)

10 regras de inferencia:	
Adição (AD)	p
	p — (q ∨ p)
Simplificação (SIMP)	p ∧ q ├─ p
	p ∧ q — q
Conjunção (CONJ)	$p \land q \vdash p \land q$
	p ^ q — q ^ p
Absorção (ABS)	$p \rightarrow q \mid p \rightarrow (p \land q)$
Modus Ponens (MP)	$(p \rightarrow q) \land p \models q$
Modus Tollens (MT)	$(p \rightarrow q) \land \sim q \models \sim p$
Silogismo Disjuntivo (SD)	(p ∨ q) ∧ ~p — q
	(p ∨ q) ∧ ~q — p
Silogismo Hipotético (SH)	$(p \rightarrow q) \land (q \rightarrow r) \models (p \rightarrow r)$
Dilema Construtivo (DC)	$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \models (q \lor s)$
Dilema Destrutivo (DD)	$(p \rightarrow q) \land (r \rightarrow s) \land (\sim q \lor \sim s) \models (\sim p \lor \sim r)$

5-a) Considerando p: 7 é primo e q: 7 divide 21, fica: $p\rightarrow q, q \mid ---p$

Se fizermos p, q como V:

(Argumentos V e conclusão F

5-b) Mesmo jeito da letra a

```
\begin{array}{c|c} V & F \\ \hline r & p \\ \hline s & q \\ \hline \hline v & t \\ \hline \\ V(P_1) = V(p \rightarrow (q \rightarrow r)) = F \rightarrow (F \rightarrow V) = F \rightarrow V = V; \\ V(P_2) = V(s \rightarrow (t \rightarrow v)) = V \rightarrow (F \rightarrow V) = V \rightarrow V = V; \\ V(P_3) = V(q \rightarrow s \land t) = F \rightarrow (V \rightarrow F) = F \rightarrow F = V; \\ V(P_4) = V(\neg (q \land v)) = \neg (F \land V) = \neg (F) = V; \\ V(Q) = V(p \leftrightarrow r) = F \leftrightarrow V = F. \end{array}
```

5° Questão (1,0 ponto) Responda se a afirmação é verdadeira ou falsa e JUSTIFIQUE sua resposta:
a) (V) O argumento: Se 7 é primo, então 7 divide 21
7 divide 21
Logo, 7 não é primo - é um sofisma.

Para que seja um sofisma, os argumentos devem ser V e a conclusão F em pelo menos uma ocasião

b) (V) O argumento $p \to (q \to r)$, $s \to (t \to v)$, $q \to s \land t$, $\neg (q \land v) \models p \leftrightarrow r \not e$ um sofisma. Resposta: Verdadeiro:

6-

- 6ª Questão (1,0 ponto) Faça o que se pede:
- a) De uma interpretação para a fórmula ∃ x (A(x) ∧(∀y(B(x,y) → C(y))) de forma a obter o valor lógico Verdadeiro com o domínio contendo pelo menos 5 elementos;
- b) Obtenha para a mesma formula do item a) o valor lógico Falso sobre uma interpretação distinta da anterior com o domínio contendo pelo menos 5 elementos.

Resoluções:

- a) Interpretação: A(x): x < 10 e B(x,y): x | y e C(y): y é par com domínio A = { 0, 2, 4, 8, 10}. Daí:
- \exists x $(A(x) \land (\forall y(B(x,y) \rightarrow C(y))) = (\exists x)(x < 10) \land (\forall y(x | y \rightarrow y \in par))) \in Variable verdadeira pois podemos escolher x = 2 que teríamos (2 < 10) <math>\land (\forall y(2 \mid y \rightarrow y \in par)))$ e verdadeira.
 - b) Interpretação: A(x): x é impar e B(x,y): x > y e C(y): y é primo com domínio A = { 8,11, 13, 14, 15}. Daí:
- \exists x (A(x) \land (\forall y(B(x,y) \rightarrow C(y))) = (\exists x)(x é impar) \land (\forall y(x > y \rightarrow y é primo))) é FALSA pois QUALQUER VALOR DE x que possamos escolher teremos (x é impar) \land (\forall y(x > y \rightarrow y é primo)) = F (FALSA), uma vez que, qualquer impar escolhido vai ser maior do que 8 que NÃO é primo.