



 $X^{l+1}$ 

# A RECURSIVE METHOD FOR DETERMINING TRANSIENT TEMPERATURE DISTRIBUTIONS IN A HOLLOW CYLINDER WITH NONSTEADY BOUNDARY CONDITIONS

Percy B. Carter, Jr. ARO, Inc.

**July 1969** 

This document has been approved for public release and sale; its distribution is unlimited.

ENGINEERING SUPPORT FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

# NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

# A RECURSIVE METHOD FOR DETERMINING TRANSIENT TEMPERATURE DISTRIBUTIONS IN A HOLLOW CYLINDER WITH NONSTEADY BOUNDARY CONDITIONS

Percy B. Carter, Jr. ARO, Inc.

This document has been approved for public release and sale; its distribution is unlimited.

### **FOREWORD**

The work reported herein was done at the request of Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65401F.

The results of tests (or research) presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee, under Contract F40600-69-C-0001. The research was conducted from April through December, 1968, under ARO Project No. VT8002, and the manuscript was submitted for publication on March 13, 1969.

This technical report has been reviewed and is approved.

Vincent A. Rocco 1st Lt, USAF Research Division Directorate of Plans and Technology Edward R. Feicht Colonel, USAF Director of Plans and Technology

## **ABSTRACT**

Recursion equations are developed for solution of transient temperature distributions in an infinite hollow cylinder with nonsteady boundary conditions. The solution is shown to be applicable to any imposed boundary condition and is also shown to be able to handle the special case of the solid cylinder. A computer program is written and applied to two examples. A comparison of the numerical results with classical exact solutions reveals close agreement between the two types of solutions for the particular cases considered.

J

# **CONTENTS**

| I.<br>II.<br>IV.<br>V.<br>VI. | NO<br>IN<br>DI<br>CO<br>CO<br>AI<br>DI | BSTRACT                                                                                                | Page iii vi 1 5 7 8 11 12 |
|-------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|
|                               |                                        | AFFERDINES                                                                                             |                           |
| I.                            |                                        | ERIVATION OF THE GOVERNING DIFFERENTIAL QUATION                                                        | 15                        |
| II.                           | IL                                     | LUSTRATIONS                                                                                            |                           |
| Fig                           | ure                                    |                                                                                                        |                           |
|                               | 1.                                     | Numerical Model                                                                                        | 17                        |
|                               | 2.                                     | Effects of Convergence Criteria on the Convergence of the Numerical Solution                           | 18                        |
| •                             | 3.                                     | Sample Problem Two - Program Constant Inputs                                                           | 19                        |
|                               | 4.                                     | Sample Problem Two - Initial Temperature Distribution                                                  | 20                        |
|                               | 5.                                     | Transient Temperature Distributions in a Pipe with Nonsteady Boundary Conditions                       | 21                        |
|                               | 6.                                     | Exact Mathematical Model                                                                               | 22                        |
| III.                          | C                                      | OMPUTER PROGRAM FORTRAN LISTING                                                                        | 23                        |
| IV.                           | T                                      | ABLES                                                                                                  |                           |
|                               | I.                                     | Error Propagation in a Twenty-Element Numerical System                                                 | 25                        |
|                               | II.                                    | Comparison of Recursive Solution with Exact Solution for Transient Temperature Distribution in a Solid |                           |
|                               |                                        | Cylinder                                                                                               | 26                        |

# NOMENCLATURE

Α Area Α Convergence indicator C Specific heat of pipe metal Gas specific heat at constant pressure  $C_p$ D Diameter Convection heat-transfer film coefficient h K Thermal conductivity k Element index number M Mass flow rate  $\mathbf{N}$ Number of elements Р Pressure  $\mathbf{R}$ Radius Radius ratio - Ri/Ro r Temperature Т Thickness of elemental cylindrical shell t V Volume  $\mathbf{Z}$ . Axial 'coordinate Thermal diffusivity α β  $R_0/K$ Time θ Viscosity μ Density ρ Azimuthal angle φ  $2N^2 \Delta\theta \alpha/R_0^2$ ψ

## SUBSCRIPTS

1, 2...k Element index number
g Gas
i Inside pipe
N Number of elements
o Outside pipe

# SECTION I

The design of industrial processes frequently requires a knowledge of the transient heat-transfer phenomena within infinite cylinders. The heat treatment of solid, long steel billets, or the analysis of thermal stresses in pipelines carrying hot or cold fluids and subject to nonsteady flow conditions are examples where an analysis of transient heat transfer is desired.

The derivation of the governing differential equation for transient heat flow in a cylinder is well known and can be found in texts such as Schneider (Ref. 1) or Eckert and Drake (Ref. 2). In the most general case, the cylinder is hollow, has an arbitrary internal distribution of temperature, and is subject to nonsteady environments, not necessarily the same, at both the inside and outside surfaces. Appendix I contains the derivation of the governing differential equation, together with a formal statement of this general set of boundary conditions.

Solutions to the general equation subject to a more restrictive set of boundary conditions have been developed by several authors. Schneider (Ref. 1) develops solutions for solid cylinders with arbitrarily specified initial radial temperature distribution and with a temperature,  $T_0$ , suddenly applied to the outside face. Schneider also develops solutions for the solid cylinder subject to a uniform initial temperature and suddenly immersed in a fluid at temperature  $T_g$ . Boelter, Cherry, et al. (Ref. 3) also present solutions for transient temperature distributions in solid cylinders, with arbitrary initial temperature distributions, that are suddenly immersed in a constant temperature fluid. However, analytical solutions of the differential equation subject to the boundary conditions of Appendix I do not appear to be available in the literature.

This document addresses itself to the problem of developing a numerical technique for solving the general differential equation subject to the general set of boundary conditions.

# SECTION II DERIVATION OF THE RECURSION EQUATIONS

The recursive technique is introduced by dividing the cylinder into N cylindrical shells, each of equal thickness,  $2\Delta R$ . Next the assumption is made that, for sufficiently small increments of time, the problem

approaches a quasi-steady state process for each of the incremental elements. Consequently, by making successive energy balances on small elements of the pipe for small time periods, a steady-state approximation of the actual process can be made.

Figure 1 (Appendix II) shows a unit length of cylinder divided into N concentric elements of equal thickness. Choosing N large enough allows each elemental shell to be considered isothermal. If the cylinder is considered a composite of N isothermal shells, each at its own specific temperature, then over short periods of time the temperature change of any element will be a function only of the temperature of that element and the temperature of adjacent elements.

Referring to Fig. 1, the geometrical aspects of the pipe indicate that the thickness, t, of each shell is given by Eq. (1)

$$t = (R_0 - R_i) \div N = 2 \Delta R \tag{1}$$

where  $R_i$  and  $R_0$  are the inside and outside pipe radii, respectively, and N is the chosen number of concentric shells.

An energy balance is now made on the first cylindrical shell:

Rate of Energy In (from Gas) - Rate of Energy Out (to Element 2) = Time Rate of Change in Energy Stored in Element 1.

Expressed mathematically the energy balance becomes

$$h_{i}(\theta) A_{i}(T_{gi}(\theta) - T_{i}) + \frac{2\pi K(T_{2} - T_{1})}{\ell_{n} R_{2}/R_{1}} = C \rho V_{i} \frac{\Delta T_{1}}{\Delta \theta} = C \rho V_{1} \frac{(T_{1}' - T_{1})}{\Delta \theta}$$

$$h_{i}(\theta) 2\pi R_{i} (T_{gi}(\theta) - T_{i}) + \frac{2\pi K(T_{2} - T_{1})}{\ell_{n} R_{2}/R_{1}} = C \rho \pi [(R_{i} + 2\Delta R)^{2} - R_{i}^{2}] \frac{(T_{1}' - T_{1})}{\Delta \theta}$$
(2)

Here  $T_1'$  is taken to represent the new temperature of Element 1 after exchanging energy with adjacent elements during the time period  $\Delta\theta$ . C is the pipe metal specific heat, K is the pipe metal thermal conductivity,  $\rho$  is the pipe metal density,  $V_1$  is the volume per unit length of the first (inside) cylindrical shell, and  $A_i$  is the inside area of the cylinder per unit length.

Recalling the definition of  $\Delta R$  allows  $R_1$  and  $R_2$  to be expressed as follows:

$$R_{1} = R_{i} + \Delta R = R_{i} + (R_{o} - R_{i})/2N = \left(\frac{2N-1}{2N}\right)R_{i} + \frac{1}{2N}R_{o}$$

$$R_{2} = R_{i} + 3\Delta R = R_{i} + \frac{3(R_{o} - R_{i})}{2N} = \left(\frac{2N-3}{2N}\right)R_{i} + \frac{3}{2N}R_{o}$$
(3)

Substituting Eqs. (1) and (3) into Eq. (2) gives:

$$\begin{cases} h_{i}(\theta) \ 2\pi R_{i} \ (T_{gi}(\theta) - T_{i}) + 2\pi K \ (T_{2} - T_{1})/\ell_{n} \ \left[ \frac{R_{i} + \frac{3}{2} \left( \frac{R_{o} - R_{i}}{N} \right)}{R_{1} + \frac{1}{2} \left( \frac{R_{o} - R_{i}}{N} \right)} \right] \end{cases} \Delta \theta$$

$$= C \rho \pi \left[ \left( R_{i} + \frac{R_{o} - R_{i}}{N} \right)^{2} - R_{i}^{2} \right] (T_{1}' - T_{1})$$

Expanding the squared terms and simplifying yields

$$\left\{ 2 \pi h_{i}(\theta) R_{i} \left( T_{gi}(\theta) - T_{i} \right) + 2 \pi K \left( T_{2} - T_{i} \right) / \ell_{n} \left[ \frac{(2N-3) R_{i} + 3 R_{o}}{(2N-1) R_{i} + R_{o}} \right] \right\} \Delta \theta$$

$$= C \rho \pi \left[ \frac{[R_{o}^{2} - (2N-2) R_{o} R_{i} + (1-2N) R_{i}^{2}] \left( T_{i}^{\prime} - T_{i} \right)}{N^{2}} \right] (4)$$

It now becomes convenient to redefine certain parameters into groups. Let  $\beta = R_0/K$ , let r represent the ratio of inside radius to outside radius  $(R_i/R_0)$ , and let  $\psi$  be as defined below:

$$\psi = \frac{2 K N^2 \Delta \theta}{C \rho R_0^2} = \frac{2 N^2 \Delta \theta \alpha}{R_0^2}$$

where  $\alpha$  is the thermal diffusivity.

Substituting these parameters into Eq. (4) and solving for the new element temperature,  $T_1'$ , gives

$$T_{i}' = T_{2} + \psi \left\{ \frac{r\beta h_{i}(\theta) \left[T_{gi}(\theta) - T_{1}\right] + (T_{2} - T_{1})/\ell n \left[\frac{(2N-3)r+3}{(2N-1)r+1}\right]}{(1-r)\left[(2N-1)r+1\right]} \right\}$$
 (5)

Looking now at the inner elements of the cylinder and writing an energy balance for Element 2 gives

$$\left[\frac{2\pi \ K \ (T_1 - T_2)}{\ell_n \ (R_2/R_1)} + \frac{2\pi \ K \ (T_3 - T_2)}{\ell_n \ (R_3/R_2)}\right] \Delta \ \theta = C \ \rho \ V_2 \ (T_2' - T_2)$$
 (6)

Generalizing Eq. (6) to the kth cylindrical element gives

$$\left[\frac{2\pi K (T_{k-1} - T_k)}{\ell_n (R_k/R_{k-1})} + \frac{2\pi K (T_{k+1} - T_k)}{\ell_n (R_{k+1}/R_k)}\right] \Delta \theta = C \rho V_k (T'_k - T_k)$$
(7)

Solving for T'<sub>k</sub> gives

$$T'_{k} = T_{k} + \frac{2\pi\Delta\theta K}{C\rho V_{k}} \left[ \frac{T_{k-1} - T_{k}}{\ell_{n} (R_{k}/R_{k-1})} + \frac{T_{k-1} - T_{k}}{\ell_{n} (R_{k+1}/R_{k})} \right]$$
(8)

Substitution for  $V_k$ ,  $\ln{(R_k/R_{k-1})}$ ,  $\ln{(R_{k+1}/R_k)}$ , and applying the definition of  $\psi$  gives

$$T_{k}' = T_{k} + \psi \left\{ \frac{\frac{T_{k-1} - T_{k}}{(2k-1) - (2N-2k+1)r} + \frac{T_{k+1} - T_{k}}{\ell_{n} \left[ \frac{(2k+1) + (2N-2k-1)r}{(2k-3) + (2N-2k+3)r} \right]}}{(1-r) \left[ (2N-2k+1)r + (2k-1) \right]} \right\}$$
(9)

Next a look is taken at the outermost cylindrical element. The energy balance gives

$$\left(\frac{2\pi K \left(T_{N-1}-T_{N}\right)}{\ell_{n}\left[\frac{R_{o}-\Delta R}{R_{o}-3\Delta R}\right]} + 2\pi h_{o}(\theta) R_{o} \left(T_{go}(\theta)-T_{N}\right)\right) \Delta \theta = C \rho V_{N}(T_{N}'-T_{N}) \tag{10}$$

$$\begin{cases}
\frac{2\pi K (T_{N-1} - T_{N})}{\ell_{n} \left[\frac{R_{o} (2N-1) + R_{1}}{R_{o} (2N-3) + 3 R_{1}}\right]} + 2\pi h_{o}(\theta) R_{o} (T_{go}(\theta) - T_{N}) & \Delta \theta = \\
C \rho \pi \left\{R_{o}^{2} - \left[R_{o} - \frac{(R_{o} - R_{1})}{N}\right]^{2} (T_{N}' - T_{N})\right\}$$
(11)

Solving for T<sub>N</sub> gives

$$T_{N} = T_{N} + \psi \left\{ \frac{\frac{T_{N-1}-T_{N}}{\ell_{n} \frac{2N-1+r}{2N-3+3r}} + \beta h_{o}(\theta) \left[T_{go}(\theta) - T_{N}\right]}{(1-r)\left[r+2N-1\right]} \right\}$$
(12)

Equations (5), (9), and (12) will yield the new temperature of the inner element, the middle elements, and the outer element, respectively, after a given time interval  $\Delta\theta$ . The information required to solve for the new element temperatures is as follows:



- 1. The previous element temperature as well as previous temperatures of adjacent elements.
- 2. Time-dependent functions for inside and outside surface film coefficients (if applicable).
- 3. A specification of the outside radius of the cylinder and the radius ratio.
- 4. A specification of the material properties of the cylinder.

# SECTION III CONVERGENCE AND STABILITY

### 3.1 CONVERGENCE

In a qualitative sense, convergence is a measure of the ability of the numerical approach to yield results which agree with those results that could hypothetically be determined from an exact solution. If in Eqs. (5), (9), and (12) the value of  $\Delta\theta$  was allowed to approach zero and the value of N was allowed to approach infinity, then the numerical solution would converge to exactly the same results as the exact solution. However, it is impossible to allow the limiting cases for  $\Delta\theta$  and N to exist or even to be realistically approached. Hence, convergence is the measure of how close the exact solution can be approached using finite values of  $\Delta\theta$  and N. In the interest of time, it behooves us to use the largest value of  $\Delta\theta$  and the smallest value of N that will give convergent results.

Convergence is difficult to study analytically. However, a simplified approach can lead to criteria for establishing limits to the constants  $\Delta\theta$  and N beyond which the solution will begin to diverge.

Equation (5) may be rewritten as follows:

$$T_{i}' = T_{1} \left\{ 1 - \psi \left[ \frac{r \beta h_{i}(\theta) + \frac{1}{\ell n \left[ \frac{(2N-3)r-3}{(2N-1)r+1} \right]}}{(1-r) \left[ (2N-1) r + 1! \right]} \right\} + \psi \left\{ \frac{r \beta h_{i}(\theta) T_{gi}(\theta) + \frac{T_{2}}{\ell n \left[ \frac{(2N-3)r+3}{(2N-1)r+1} \right]}}{(1-r) \left[ (2N-1) r + 1 \right]} \right\}$$

$$(13)$$

Inspection of Eq. (13) indicates that it can be expressed in the following form:

$$T_1' = T_1(1 - A_1) + B$$
 (14)

where the terms  $A_1$  and B are complicated terms involving the parameters  $\psi$ , r,  $\beta$ ,  $h_i(\theta)$ ,  $T_{gi}(\theta)$ ,  $T_2$ , and N. It is evident that the term B in Eq. (14) will always be positive while the term (1 -  $A_1$ ) can be either positive or negative depending on the value of  $A_1$ . If  $A_1$  is greater than unity, then (1 -  $A_1$ ) becomes negative, and the solution diverges. Solution divergence occurs because for (1 -  $A_1$ ) < 0, with the value of B fixed, any new estimate of  $T_1$  is inversely related to  $T_1$ . Hence, higher values of  $T_1$  call for lower values of  $T_1$  and vice versa, which is a violation of intuitive reasoning and in some instances could entail a violation of the second law of thermodynamics. Thus, for the first incremental element, a convergence criterion would restrict values of  $A_1$  to  $A_1 \leq 1$ . Equation (15) is the formal statement of convergence criterion based upon the first element.

$$A_{1} = \psi \left\{ \frac{r\beta h_{i}(\theta) + \frac{1}{\ell n \left[ \frac{(2N-3)r+3}{(2N-1)r+1} \right]}}{(1-r)\left[ (2N-1)r+1 \right]} \right\} \leq 1$$
 (15)

Following similar reasoning, convergence criteria can be developed for the kth and Nth elements. Equations (16) and (17) are formal statements of the convergence criteria for the kth and Nth elements, respectively.

$$A_{k} = \psi \left\{ \frac{\frac{1}{\rho_{n} \left[ \frac{(2k-1)+(2N-2k+1)r}{(2k-3)+(2N-2k+3)r} \right]^{+} \frac{1}{\rho_{n} \left[ \frac{(2k+1)+(2N-2k-1)r}{(2k-1)+(2N-2k+1)r} \right]}}{(1-r)\left[ (2N-2k+1)r+(2k-1) \right]}} \right\} \leq 1$$
(16)

$$A_{N} = \psi \left\{ \frac{\frac{1}{\ln \left[\frac{2N+r-1}{2N-3r-3}\right]} - (\beta h_{o}(\theta))}{(1-r)(2N+r-1)} \right\} \leq 1$$
 (17)

Figure 2 shows a typical application of the convergence criteria. The recursion equations of Section II were applied to a situation where a solid cylinder was suddenly immersed in a fluid at a constant temperature  $T_g$ . The film coefficient was held constant. For this particular application, the inside radius in the recursion equations, along with the inside film coefficient, were simply set equal to zero. Plotted on Fig. 2

is the exact solution of the problem along with the results of two recursive solutions — one in which the convergence criteria is satisfied and one in which the convergence criteria is not satisfied. Inspection of Fig. 2 indicates that the recursive solution in which the convergence criteria is satisfied converges to the exact solution. However, for the case of nonsatisfaction of the convergence criteria, the recursive solution is highly divergent.

## 3.2 STABILITY

Stability is a measure of the ability of the numerical system to absorb systematic errors caused by roundoff and by the finite element assumption. A stable system damps out errors and distributes them evenly throughout the system. Like convergence, stability is not easy to analyze. However, Smith (Ref. 4) gives a well-developed analysis of stability for certain classes of numerical problems. Smith indicates that one method of gaining insight into the stability of a numerical solution is to apply the numerical equations to the errors themselves. Hence, by assuming, for example, a unit error somewhere in the system and watching the propagation of this error as the solution progresses, an indication of system stability becomes available. Table I (Appendix IV) is a tabulation of the propagation of a unit error that is assumed to occur at time equal zero, in the tenth element, of a twenty-element system.

Table I reveals that errors in the system do indeed tend to distribute themselves and to diminish with time. Although a check of this sort is not an all-conclusive proof of stability, it does indicate that the system tends to be stable, provided roundoff error is not excessive and can be expected to be random with regard to sign.

# SECTION IV COMPUTER PROGRAM

Equations (5), (9), and (12) were programmed for solution on the IBM 360/50 computer. Programming was carried out in G Level FORTRAN.

The program is set up to take any type of boundary condition or initial condition. The program is expected to be called on to solve the problem for two general types of boundary conditions:

- 1. Type I boundary conditions involve an arbitrary specification of initial temperature distribution within the cylinder wall, together with the specification of a suddenly applied temperature to either or both the inside and outside cylindrical surfaces. The initial temperature distribution is input as data, while the suddenly applied surface temperature is included in the program as an arithmetic statement function. The suddenly applied surface temperature can, in the general case, be time variant.
- 2. Type II boundary conditions also involve an arbitrary specification of initial temperature distribution within the cylinder. However, Type II problems differ from Type I problems in that the boundary conditions are specified in terms of a timevarying surface film coefficient and fluid temperatures adjacent to each surface of the cylinder. Both the inside and outside surface film coefficients are included in the program as time-dependent arithmetic statement functions. Likewise, the inside and outside fluid temperatures are included as timedependent arithmetic statement functions. Film coefficients and fluid temperatures can, as a special case, be considered constant. The surface film coefficients can also be considered as functions of other parameters such as fluid temperature and the thermodynamic and transport properties of the fluid, if desirable. The thermodynamic and transport properties of the fluid must then be specified and included in the program as functions of time or temperature.

A combination of Type I and Type II boundary conditions can also be handled by the program.

The special case of the solid cylinder is handled readily by the program if the radius ratio is simply set equal to zero.

Appendix III gives a FORTRAN listing of the program as applied to Sample Problem Two of the following section.

# SECTION V APPLICATION OF THE RECURSIVE METHOD

The application of the numerical method will be illustrated by two sample problems. Sample Problem One involves transient heat transfer in a solid cylinder with Type II boundary conditions at the outside surface.

The results of the recursive solution are compared with exact solutions from the literature for the same problem.

Sample Problem Two is a typical example of the application of the method to a hollow cylinder with time-dependent, Type II, boundary conditions on both the inside and outside surfaces.

## 5.1 SAMPLE PROBLEM ONE

Schneider (Ref. 1) develops the exact solution for the transient temperature distribution in a solid cylinder with Type II boundary conditions and with a uniform initial temperature. Schneider's solution is developed in terms of zero and first order Bessel Functions of the first kind. The results are expressed as dimensionless temperature ratios with the Fourier modulus,  $\alpha\theta/R_0^2$ , and the Biot modulus,  $hR_0/K$ , as parameters.

The present method was used to generate comparative results that were then nondimensionalized and compared with Schneider's results.

The outside surface film coefficient,  $h_0(\theta)$ , and outside fluid temperature,  $T_{g0}(\theta)$ , were specified as arithmetic statement functions in the program. The outside film coefficient was held constant for a given run but was varied between runs so as to allow variations in the dimensionless Biot modulus,  $hR_0/K$ . A constant fluid temperature of 800°R was used in the calculations.

A comparison of the present method with the exact method is presented in Table II. The results of Schneider's analysis for selected values of the Biot and Fourier moduli are presented along with the results of the present numerical solution. It is apparent from Table II that, for the cases studied, a close degree of correspondence exists between the exact and the recursive solutions.

# 5.2 SAMPLE PROBLEM TWO

In Sample Problem Two application is made to an interesting problem which occurs in a pipeline carrying gas that is being discharged from a pressurized storage vessel. For a gas stored at high pressure, for example, P = 2500 psia, and at ambient temperature and with the pipeline existing initially at ambient temperature, it is possible to induce severe temperature gradients in the pipeline because of the cooling effect the drawdown process has on the stored gas. The combined conditions of high pressure and severe thermal gradients could cause

serious stress problems within the pipe wall. Therefore, the unsteady thermal gradients which would exist in the pipe wall become significant.

The problem of determining the transient thermal gradients was investigated using the current numerical method for the case of a 14-in.-diam steel pipe carrying air that was being discharged from a storage vessel at a constant mass flow rate.

# 5.2.1 Program Inputs

The initial storage pressure and temperature of the air was 3600 psia and 576°R, respectively. The temperature of the air was found to be a function of the vessel volume, initial storage temperature, rate of mass withdrawal from the tank, and the time lapse since initiation of drawdown. Assuming the air in the tank expanded isentropically gave a relationship for the air temperature is a function of time as follows:

$$T_{gi}(\theta) = 576[1 - .006179 \, \theta]^{.4} \, ^{\circ}R$$
 (18)

The derivation of Eq. (18) assumes that the section of pipeline to be investigated is located immediately downstream of the storage vessel at a point where the gas has not had time to exchange heat with the pipeline. The air temperature surrounding the pipe was assumed to remain constant at 560°R. The inside film coefficient was assumed to follow the relationship given by Eq. (19).

$$h_{i}(\theta) = 0.0279 \left(\frac{K}{2 r R_{o}}\right) \left(\frac{\dot{M}}{2 \mu r R_{o}}\right)^{.8} \left(\frac{C p \dot{\mu}}{k}\right)^{.35} \frac{Btu}{ft^{2}-sec^{-0}R}$$
(19)

For the particular blowdown rate ( $\dot{M}$  = 805 lb<sub>m</sub>/sec), Eq. (19) becomes

$$h_i(\theta) = 1.6919 (r R_o)^{-1.8} (K)^{.65} (\mu)^{-.45} (C_p)^{.35} \frac{Btu}{ft^2 - sec^{-0}R}$$
 (20)

For the particular temperature range of interest, 300 to 800°R, the specific heat, viscosity, and thermal conductivity of the air have been found to obey the following relationships:

Specific Heat

$$C_p = 0.2431 - .00001919T + .0000000244T^2 \left(\frac{Btu}{Ib_m - c_R}\right) (T = R)$$
 (21)

$$\mu = \frac{7.3026 \cdot T^{3/2}}{(T + 198.6)} \times 10^{-7} \frac{1b_{m}}{\text{sec-ft}} (T = {}^{\circ}R)$$

$$\rho MSSU^{\uparrow}$$

$$NACH 1/35$$

$$12^{\circ} 19$$

Thermal Conductivity

$$K = 0.003716 + .00001676T + 0.000000008T^2 \frac{Btu}{hr-ft-R} (T = R)$$
 (23)

The outside film coefficient is assumed to correspond to natural convection from a horizontal cylinder and is given by Eq. (24).

$$h_o(\theta) = 0.00005 (T_{go} - T_n!)^{1/3} \frac{Btu}{ft^2 - sec^{-0}R}$$
 (24)

Equations (18) through (24) were input into the computer program as arithmetic statement functions. Figure 3 shows the input cards for the program constants, while Fig. 4 shows the input cards for the initial temperature distribution. T<sub>1</sub> corresponds to the innermost element.

### 5.2.2 Results

The results of the study are shown in Fig. 5, where the temperature as a function of location within the pipe wall is plotted for selected time intervals.

# SECTION VI DISCUSSION

The preceding sections have presented the development of the recursive method, its application, and a comparison of typical results with a corresponding exact solution. The comparison indicated close agreement between the recursive method and the exact solution for the particular cases that were investigated.

The recursive technique presented is particularly useful in cases involving complicated or noncontinuous boundary conditions, since the technique will handle any boundary condition that can be expressed as either a function of time or a function of the surface temperature. The technique also allows any type of initial temperature distribution to be specified.

Computer time required is not excessive. On the average, a nominal time of 0.15 sec was required to compute the temperature distribution over a single time increment in a system composed of ten elements.

Since the recursive technique is designed to step through the solution in discrete time intervals, a certain inaccuracy is inherent in the early stages of the solution. These inaccuracies disappear as the solution progresses. In general, accurate results can be expected at any time,  $\theta$ , provided the condition of Eq. (25) is met.

$$\theta \ge N\Delta\theta \tag{25}$$

### REFERENCES

- 1. Schneider, P. J. <u>Conduction Heat Transfer</u>. Addison-Wesley Publishing Company, Inc., Cambridge, Massachusetts, 1955.
- 2. Eckert, E. R. G. and Drake, R. M., Jr. Heat and Mass Transfer.

  McGraw-Hill Book Company, Inc., New York, 1959.
- 3. Boelter, L. M. K., Cherry, V. H., Johnson, H. A., and Martinelli, R. C. <u>Heat Transfer Notes</u>. McGraw-Hill Book Book Company, Inc., New York, 1965.
- 4. Smith, G. D. <u>Numerical Solution of Partial Differential Equations</u>. Oxford University Press, New York, 1965.

# **APPENDIXES**

- I. DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION
- II. ILLUSTRATIONS
- III. COMPUTER PROGRAM FORTRAN LISTING
- IV. TABLES

# APPENDIX I DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION

Figure 6 shows the geometrical aspects of the mathematical model. The differential equation of the problem is developed by making an energy balance on a typical differential volume element of the pipe wall.

The following assumptions are made concerning the problem:

- 1. All energy transport occurs through thermal conduction except at the boundaries.
- 2. Energy transport occurs in the radial direction only.
- 3. Pipe thermal conductivity is constant.

The energy balance is expressed in simple terms as

The energy conducted into the volume element is given by

Conduction In = 
$$-\left(KA\frac{\partial T}{\partial R}\right) = -\left(KRd\phi dZ\frac{\partial T}{\partial R}\right)$$
 (I-1)

The energy conducted out of the volume element is given by

Conduction Out = 
$$-\left(KA\frac{\partial T}{\partial R} + \frac{\partial}{\partial R}\left[KA\frac{\partial T}{\partial R}\right]dR\right)$$
  
=  $-\left(KRd\phi dZ\frac{\partial T}{\partial R} + \frac{\partial}{\partial R}\left[KRd\phi dZ\frac{dT}{dR}\right]dR\right)$   
=  $-KRd\phi dZ\frac{\partial T}{\partial R} - Kd\phi dZ\frac{\partial}{\partial R}\left[R\frac{\partial T}{\partial R}\right]dR$  (I-2)

Combining Eqs. (I-1) and (I-2) gives

Conduction In - Conduction Out = 
$$Kd\phi dZdR \left[ R \frac{\partial^2 T}{\partial R^2} + \frac{\partial T}{\partial R} \right]$$
 (I-3)

The energy stored is given by

Energy Stored = 
$$\rho \ VC \frac{\partial T}{\partial \theta} = \rho \ Rd\phi dZdRC \frac{\partial T}{\partial \theta}$$
 (I-4)

Equating Eqs. (I-3) and (I-4) gives the governing differential equation:

$$\frac{\partial^2 T}{\partial R^2} + \frac{1}{R} \frac{\partial T}{\partial R} = \frac{1}{\alpha} \frac{\partial T}{\partial \theta}$$
 (I-5)

where  $\alpha = \frac{K}{\rho C}$  and is known as the thermal diffusivity.

Associated with Eq. (I-5) are the following initial and boundary conditions:

(1) Initial Condition

at 
$$\theta = 0$$
,  $T(R,\theta) = T(R,0)$ 

(2) Boundary Condition 1 (Inside the Pipe)

at R = R<sub>i</sub>, K 
$$\frac{\partial T(R_i, \theta)}{\partial R}$$
 = K  $\frac{\partial T(R_i, \theta)}{\partial R}$   
= h<sub>i</sub>(\theta)  $\left(T(R_i, \theta) - T_{gi}(\theta)\right)$ 

Here  $h_i(\theta)$  and  $T_{gi}(\theta)$  are the time-dependent inside fluid heat-transfer coefficient and inside fluid temperature, respectively. Rewriting this boundary condition gives:

$$\frac{\partial T(R_i, \theta)}{\partial R} - \frac{h_i(\theta)}{K} T(R_i, \theta) = - \frac{h_i(\theta)}{K} T_{gi}(\theta)$$

(3) Boundary Condition 2 (Outside the Pipe)

at R = R<sub>o</sub>, K 
$$\frac{\partial T(R, \theta)}{\partial R}$$
 = K  $\partial \frac{T(R_o, \theta)}{\partial R}$   
= h<sub>o</sub>(\theta) (T<sub>go</sub>(\theta) - T(R<sub>o</sub>, \theta)

Here  $h_0(\theta)$  and  $T_{g0}(\theta)$  are the time-dependent outside fluid heat-transfer coefficient and outside fluid temperature, respectively. Rewriting this boundary condition gives

$$\frac{\partial T(R_o, \theta)}{\partial R} + \frac{h_o(\theta)}{K} T(R_o, \theta) = \frac{h_o(\theta)}{K} T_{go}(\theta)$$

Inspection of the boundary conditions reveals that they are not homogeneous; consequently, the path to an exact solution does not readily present itself. Recourse must therefore be made to approximate numerical techniques.



Fig. 1 Numerical Model



Fig. 2 Effects of Convergence Criteria on the Convergence of the Numerical Solution





Fig. 3 Sample Problem Two - Program Constant Inputs

| 512.40                                | 511.52   511.08                         | 510.64   510.20                         |                                         |
|---------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| T <sub>1</sub>                        | T <sub>2</sub> T <sub>3</sub>           | T <sub>4</sub> T <sub>5</sub>           |                                         |
| 0000000 00                            |                                         |                                         |                                         |
| (11 11111                             |                                         |                                         | 1 11 11 11 11 11 11 11 11 11 11 11 11 1 |
| 2222 2222                             | 2222222 2222222222                      | 222222222222222222222                   | 272222222222222222222222222222          |
| 33333 3333                            | 33333 333333333 3333                    | 333333 33333333 333                     | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
| 144444 444                            | 44444444444441In                        | itial Temperature                       | :1 44444444444444444444444444           |
| 55 555555                             | 55 555 555 55 555: Di                   | stribution, OR ormat (F10.0)            | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| 666666666                             | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6       | e eeeeee eee eeeeeee                    |                                         |
| 111111111                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1                                       | ווווווווווווווווווווווווווווווווווווו   |
| 88080 8886                            |                                         |                                         | 8888888880000000                        |
| 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9   | 999999999999999999999999999999999999999 | 99999999999999999999999999999999999999  |

| 509.76                                | 509.32 508                                  | 3.88   508.44                           | 508.00            |                                               |
|---------------------------------------|---------------------------------------------|-----------------------------------------|-------------------|-----------------------------------------------|
| т <sub>6</sub>                        | T <sub>7</sub> 7                            | г <sub>8</sub> т <sub>9</sub>           | T <sub>10</sub>   |                                               |
| 900 000080                            | 11 13 13 14 15 16 17 18 18 2021 22 23 24 25 | 106000000 00000<br>58118881334881733    | 0000 00 00        | 00000000000000000000000000000000000000        |
|                                       |                                             |                                         |                   | <b>4</b> 111111111111111111111111111111111111 |
|                                       |                                             |                                         | 7                 | /2222222222222222222222222222222              |
| 33333 3333                            | 1                                           |                                         |                   | 333333333333333333333333333333333333333       |
|                                       | 1                                           |                                         |                   | 555555555555555555555555555555555555555       |
| 6666666 66                            | 6 8 8 6 6 6 6 6 6 6 6 6 6                   | 666666666666                            | 6 6 6 6 6 6 6 6 6 | 666666666666666666666666666666666666666       |
| 111111 111                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,       |
| 88008 8888                            | 8888 0808                                   | 80 888 888                              | 8888 0880         | 088408804800888048808880888888                |
| 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9       |                                         | 999999999999      | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9         |

Fig. 4 Sample Problem Two - Initial Temperature Distribution



Fig. 5 Transient Temperature Distributions in a Pipe with Nonsteady Boundary Conditions



Fig. 6 Exact Mathematical Model

# APPENDIX III COMPUTER PROGRAM FORTRAN LISTING

```
C FORTRAN LISTING OF PROGRAM AS APPLIED TO SAMPLE PROBLEM
                   SEE SECTION IV.
      C TWO.
    C**********************
     <u>C ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN A HOLLOW</u>
     C CYLINDER WITH NON-STEADY BOUNDARY CONDITIONS.
     C*********************
     C INSIDE FILM COEFFICIENT (HI) IS FOR AIR- TURBULENT FORCED
    C CONVECTION WITH VARIABLE PROPERTIES.
     C OUTSIDE FILM COEFFICIENT (HO) IS FOR AIR -NATURAL
     C TURBULENT CONVECTION OVER A HORIZONTAL CYLINDER.
     DIMENSION A(20), B(20), TITLE(20)
                TGU(E) = 560.+1.*E-1.*E
              TGI(E) = 576.*((1.-.006179*E)**.4)
                CPGAS(TGI)=.2431-.00001919*TGI+.0000000244*(TGT**2)
               AMD(TGI)=7.3026*(TGI**(3./2.))*.0000001/(TGI+198.6) - 481 22
                AKGAS(TGI)=(.003716+.00001676*TGI+.00008*(TGI**2)* - 4/n 23
              1.0001)/3600.
              > HI (CPGAS, AMU, AKGAS) = (1.6919/((R*RO) **1.8)) * (AKGAS** 49 0 20
              1.65) * (CPGA S**.35) / (AMU**.45)
HD(TGO,TN)=.00005*((ABS(TGO-TN)) **(1./3.)) والم كل المالية ا
              1-1.)+(2.*N-2.*K+1.)*R))
                F2(U,V)=(U-V)/ALOG(((2.*K-1.)+(2.*N-2.*K+1.)*R)/((2.*K
              1-3.)+(2.*N-2.*K+3.)*R))
                F3(U) = (1.-U)*((2.*N-2.*K+1.)*R + (2.*K-1.))
                READ(5.1) TITLE
            1 FORMAT(20A4)
                WRITE (6.1) TITLE
                READ(5,2)BETA, D, E, ALP, R, RO, N
            2 FORMAT(6F10.0,12)
                WRITE(6,3)D,F,ALP,BETA,R,RO,N
            3 FORMAT (////' INPUT CONSTANTS'///' DELTA TIME = 'F6.3
             .1' SEC.'/' TOTAL RUN TIME = 'F7.3'SEC.'/' THERMAL DIFF'
              '2,'USIVITY = 'F10.8'SQ.FT./SEC.'/' BETA = 'F10.4' SQ.',
           3'FT.-SEC.-R/BTU'/' RADIUS RATIO (RI/RO) = 'F5.3/
              4' OUTSIDE RADIUS (RO) = 'F6.3'FT.'/' THE NUMBER OF',
              5' ELEMENTAL CYLINDRICAL SHELLS IS ('12') 1///)
                READ(5,4)(A(J),J=1,N)
            4 FORMAT (5F10.0)
                WRITE (6,5)
            5 FORMAT(3X*TIME*4X*T(1)*4X*T(2)*4X*T(3)*4X*T(4)*4X
```

```
1'T(5)'4X'T(6)'4X'T(7)'4X*T(3)'4X'T(9)'4X'T(10)'4X
  2'TGASI'3X'TGASO')
   CHI=2.*(N**2)*D*ALP/(RJ**2)
   E=0.0
 6 TGASU=TGO(F)
TGAS I=TGI(E)
   WRITE(6,7) E,(A(J),J=1,N),TGASI,TGASO
7 FOFMAT (/13F8.2)
   K = 1
   B(1)=CHI*((R*BETA*HI(CPGAS(TGI(E)),AMU(TGI(E)),AKGAS(
  1TGI(E)))*(TGI(E)-A(1)))+F1(A(2),A(1)))/F3(R) + A(1)
NN=N-1
   DO 8 K=2,NN
   B(K) = CHI*(F2(A(K+1),A(K)) + F1(A(K+1),A(K)))/F3(R)
  1+A(K)
8 CONTINUE
   K = N
   B(N)=CHI*(F2(A(N-1),A(N))+BETA*HC(TGO(E),A(N))*(TGO(E)
  1-A(N)))/F3(R)+A(N)
   DD 9 J=1,N _____
   A(J) = B(J)
 9 CONTINUE
   E = E + 0
   IF(E-F)6,6,10
 10 STOP
 END:
```

TABLE I ERROR PROPAGATION IN A TWENTY-ELEMENT NUMERICAL SYSTEM

|       | 2                                                                | 3                                                                                                           | "                                     | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                     | 19                                                                                                                                                                                                                     | 20                                                                                                      |
|-------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|       |                                                                  |                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                        |                                                                                                                                                                                                                        |                                                                                                         |
| 0     | 0                                                                | 0                                                                                                           | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                      | 0                                                                                                                                                                                                                      | 0                                                                                                       |
| 0     | 0                                                                | 0                                                                                                           | 0.01                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0. 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                      | 0                                                                                                                                                                                                                      | 0                                                                                                       |
| 0.02  | 0.03                                                             | 0.04                                                                                                        | 0. 05                                 | 0. 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0, 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0. 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                   | 0                                                                                                                                                                                                                      | 0                                                                                                       |
| 0.07  | 0. 07                                                            | 0.07                                                                                                        | 0. 08                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                   | 0.02                                                                                                    |
| 0.07  | 0.07                                                             | 0.07                                                                                                        | 0.07                                  | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                   | 0. 03                                                                                                                                                                                                                  | 0.03                                                                                                    |
| 0.06  | 0.06                                                             | 0.06                                                                                                        | 0.06                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                   | 0.03                                                                                                    |
| 0.04  | 0.04                                                             | 0.04                                                                                                        | 0.04                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0, 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                   | 0.03                                                                                                    |
| 0.03  | 0.03                                                             | 0. 03                                                                                                       | 0. 03                                 | 0, 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                   | 0.02                                                                                                    |
| 0. 02 | 0. 02                                                            | 0.02                                                                                                        | 0.02                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                   | 0.02                                                                                                    |
| 0.02  | 0.02                                                             | 0.02                                                                                                        | 0.02                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                   | 0.01                                                                                                    |
| 0.01  | 0.01                                                             | 0.01                                                                                                        | 0. 01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                   | 0. 01                                                                                                                                                                                                                  | 0.01                                                                                                    |
|       | 0<br>0, 02<br>0, 07<br>0, 07<br>0, 06<br>0, 04<br>0, 03<br>0, 02 | 0 0<br>0.02 0.03<br>0.07 0.07<br>0.07 0.07<br>0.06 0.06<br>0.04 0.04<br>0.03 0.03<br>0.02 0.02<br>0.02 0.02 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0         0         0         0.01           0.02         0.03         0.04         0.05           0.07         0.07         0.07         0.08           0.07         0.07         0.07         0.07           0.06         0.06         0.06         0.06           0.04         0.04         0.04         0.04           0.03         0.03         0.03         0.03           0.02         0.02         0.02         0.02           0.02         0.02         0.02         0.02 | 0         0         0         0.01         0.02           0.02         0.03         0.04         0.05         0.07           0.07         0.07         0.07         0.08         0.08           0.07         0.07         0.07         0.07         0.07           0.06         0.06         0.06         0.06         0.06           0.04         0.04         0.04         0.04         0.04           0.03         0.03         0.03         0.03         0.03           0.02         0.02         0.02         0.02         0.02           0.02         0.02         0.02         0.02         0.02 | 0         0         0         0.01         0.02         0.05           0.02         0.03         0.04         0.05         0.07         0.08           0.07         0.07         0.07         0.08         0.08         0.08           0.07         0.07         0.07         0.07         0.07         0.07           0.06         0.06         0.06         0.06         0.06         0.05           0.04         0.04         0.04         0.04         0.04         0.04           0.03         0.03         0.03         0.03         0.03         0.03           0.02         0.02         0.02         0.02         0.02         0.02           0.02         0.02         0.02         0.02         0.02         0.02 | 0         0         0         0.01         0.02         0.05         0.09           0.02         0.03         0.04         0.05         0.07         0.08         0.10           0.07         0.07         0.07         0.08         0.08         0.08         0.08           0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07           0.06         0.06         0.06         0.06         0.06         0.05         0.05           0.04         0.04         0.04         0.04         0.04         0.04         0.04           0.03         0.03         0.03         0.03         0.03         0.03         0.03           0.02         0.02         0.02         0.02         0.02         0.02         0.02           0.02         0.02         0.02         0.02         0.02         0.02         0.02 | 0         0         0         0.01         0.02         0.05         0.09         0.14           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11           0.07         0.07         0.07         0.08         0.08         0.08         0.08         0.08           0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.06           0.06         0.06         0.06         0.06         0.05         0.05         0.05         0.05           0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08           0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.06         0.06         0.06         0.06         0.06         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.11           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08           0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.06         0.06         0.06         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18         0.15           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.11         0.11         0.11         0.11         0.11         0.10         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18         0.15         0.12           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.11         0.11         0.10         0.09           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18         0.15         0.12         0.06           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.11         0.10         0.09         0.07           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18         0.15         0.12         0.06         0.03           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.11         0.10         0.09         0.07         0.05           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18         0.15         0.12         0.06         0.03         0.01           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.10         0.09         0.07         0.05         0.04           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.06         0.06         0.07         0.07         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.05         0.05         0.05         0.05         0.05         0.05         0.06         0.06         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04 | 0         0         0         0.01         0.02         0.05         0.09         0.14         0.16         0.18         0.15         0.12         0.06         0.03         0.01         0           0.02         0.03         0.04         0.05         0.07         0.08         0.10         0.11         0.11         0.11         0.10         0.09         0.07         0.05         0.04         0.02           0.07         0.07         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.09         0.07         0.06         0.05         0.04         0.03           0.07         0.07         0.07         0.07         0.07         0.07         0.06         0.06         0.06         0.06         0.06         0.05         0.04         0.04         0.04         0.04           0.06         0.06         0.06         0.06         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0 | 0 0 0 0 0.01 0.02 0.05 0.09 0.14 0.16 0.18 0.15 0.12 0.06 0.03 0.01 0 0 0 0.02 0.03 0.04 0.05 0.07 0.08 0.10 0.11 0.11 0.11 0.10 0.09 0.07 0.05 0.04 0.02 0.01 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 | 0 0 0 0 0.01 0.02 0.05 0.09 0.14 0.16 0.18 0.15 0.12 0.06 0.03 0.01 0 0 0 0 0 0 0.02 0.03 0.04 0.05 0.07 0.08 0.10 0.11 0.11 0.11 0.10 0.09 0.07 0.05 0.04 0.02 0.01 0.01 0.01 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 | 0 0 0 0 0 0.01 0.02 0.05 0.09 0.14 0.16 0.18 0.15 0.12 0.06 0.03 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

 $\Delta\theta$  = .001 sec N = 20

| Biot Modulus, | Fourier Modulus, $\frac{\alpha \theta}{{ m R_O}^2}$ | Radius Ratio,<br>R/R <sub>O</sub> | Dimensionless Temperature Ratio, $^{\mathrm{T/T}_{\mathrm{initial}}}$ |                    |  |  |  |  |
|---------------|-----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--------------------|--|--|--|--|
| K             | R <sub>o</sub> <sup>2</sup>                         |                                   | Exact Solution                                                        | Recursive Solution |  |  |  |  |
| 0. 1          | 0.1                                                 | o                                 | 1.00088                                                               | 1. 00085           |  |  |  |  |
| 0.1           | 0.1                                                 | 1                                 | 1.01352                                                               | 1.012767           |  |  |  |  |
| 0.1           | 1. 0                                                | 0                                 | 1.05234                                                               | 1.05227            |  |  |  |  |
| 0, 1          | 1.0                                                 | 1                                 | 1.06588                                                               | 1.06518            |  |  |  |  |
| 1.0           | 0. 1                                                | 0                                 | 1.00798                                                               | 1.00803            |  |  |  |  |
| 1.0           | 0. 1                                                | 1                                 | 1.10515                                                               | 1. 10202           |  |  |  |  |
| 1.0           | 1.0                                                 | 0                                 | 1.25021                                                               | 1. 25238           |  |  |  |  |
| 1.0           | 1.0                                                 | 1                                 | 1.27989                                                               | 1. 28050           |  |  |  |  |
| 10.0          | 0.1                                                 | 0                                 | 1.03331                                                               | 1.03618            |  |  |  |  |
| 10.0          | 0. 1                                                | 1                                 | 1.28946                                                               | 1. 28987           |  |  |  |  |
| 10.0          | 1. 0                                                | 0                                 | 1.32881                                                               | 1.32967            |  |  |  |  |
| 10.0          | 1. 0                                                | 1                                 | 1.33278                                                               | 1.33288            |  |  |  |  |
|               |                                                     |                                   |                                                                       | <u></u>            |  |  |  |  |

### Security Classification

| Security Classification                                                                       |                       |                      |                                 |
|-----------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------|
| DOCUMENT CONT                                                                                 | ROL DATA - R 8        | D                    | •                               |
| (Security classification of title, body of abstract and indexing a                            | ennotation must be en | itered when the or   | verall report is claseilled)    |
| I. ORIGINATING ACTIVITY (Corporate author)                                                    |                       | 20. REPORT SEC       | URITY CLASSIFICATION            |
| Arnold Engineering Development Cent                                                           | er                    | UNCL                 | ASSIFIED                        |
| ARO, Inc., Operating Contractor                                                               |                       | 26. GROUP            |                                 |
| Arnold Air Force Station, Tennessee                                                           |                       | N/A                  |                                 |
| 3. REPORT TITLE                                                                               |                       |                      |                                 |
| A RECURSIVE METHOD FOR DETERMINING<br>IN A HOLLOW CYLINDER WITH NONSTEADY                     |                       |                      |                                 |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) April through December, 1968 - Fina | l Report              | 35-00                |                                 |
| Percy B. Carter, Jr., ARO, Inc.                                                               |                       |                      |                                 |
| 5. REPORT DATE                                                                                | 74. TOTAL NO. OF      | PAGES :              | 7b. NO. OF REFS                 |
| July 1969                                                                                     | 32                    |                      | 4                               |
| 84. CONTRACT OR GRANT NO.                                                                     | 94. ORIGINATOR'S      | REPORT NUMBE         | ER(5)                           |
| F40600-69-C-0001                                                                              | ĺ                     |                      |                                 |
| b. PROJECT NO                                                                                 | AEDC-T                | R-69-87              |                                 |
| c Program Element 65401F                                                                      | AN OTHER RESOR        | T NO(S) (Any oth     | er numbers that may be easigned |
| arrogram Brement Golder                                                                       | this report)          | 1 100107 (2213) 1021 |                                 |
| d.                                                                                            | N/A                   |                      |                                 |
| 10. DISTRIBUTION STATEMENT                                                                    |                       |                      |                                 |
| This document has been approved for distribution is unlimited.                                | public re             | lease and            | sale; its                       |
| 11. SUPPLEMENTARY NOTES                                                                       | 12. SPONSORING M      | ILITARY ACTIVI       | ITY                             |
|                                                                                               | Arnold Eng            | zineering            | Development                     |
| Available in DDC                                                                              | Center, A             |                      |                                 |
|                                                                                               | Station, ?            |                      |                                 |
|                                                                                               | ı — - — - — · · ·     |                      | - · - <del></del>               |

3. ABSTRACT

Recursion equations are developed for solution of transient temperature distributions in an infinite hollow cylinder with nonsteady boundary conditions. The solution is shown to be applicable to any imposed boundary condition and is also shown to be able to handle the special case of the solid cylinder. A computer program is written and applied to two examples. A comparison of the numerical results with classical exact solutions reveals close agreement between the two types of solutions for the particular cases considered.

UNCLASSIFIED
Security Classification

| Security Classification  | LIN  | - A | 1.184 | K B | LINKC   |        |  |
|--------------------------|------|-----|-------|-----|---------|--------|--|
| KEY WORDS                | ROLE | WT  | ROLE  | WT  | ROLE WT |        |  |
|                          |      |     |       |     |         |        |  |
| recursive functions      |      |     |       |     |         |        |  |
| temperature distribution |      |     |       |     |         |        |  |
| cylindrical shells       |      |     |       |     |         |        |  |
| boundaries               |      |     |       |     |         | 9      |  |
| solutions                |      |     |       |     |         |        |  |
| computerized simulation  |      | 77  |       |     |         | n 2    |  |
| billets                  |      |     |       |     |         | 1      |  |
| pipelines                |      |     |       |     |         |        |  |
| heat transfer            |      | g.  |       |     |         |        |  |
|                          |      | Ĭ.  |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
| •                        |      |     |       |     |         | . 1    |  |
|                          |      | 25  |       |     |         |        |  |
|                          |      |     |       |     |         | i      |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      | i i |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         | )<br>} |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          | ì    |     |       |     |         |        |  |
|                          |      | 0 8 | Ŋ.    |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      | 8   |       |     |         |        |  |
|                          |      |     |       |     |         | y Ü    |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         | 4      |  |
|                          |      | P   |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
|                          |      |     |       |     |         |        |  |
| APSC<br>Symila APS Tess  |      |     |       |     |         |        |  |

UNCLASSIFIED

Security Classification