that $\langle \phi, f \rangle = 0$ for all $\phi \in S$. Consequently, f = 0.

<u>Remark</u>. Using the Fourier transform one can show that the semigroups in example c) and d) are given by

(1.6)
$$(T(t)f)(x) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} \exp(-(x-y)^2/4t) f(y) dy$$
 (f \in E), where $z^2 := \sum_{i=1}^n z_i^2$ (z \in \mathbb{R}^n).

e) The following example is the analog of a) for higher dimension. Let $\Omega \subset \mathbb{R}^n$ be a bounded open and connected set and $E = C_O(\Omega)$. We assume that the Dirichlet problem

$$u(x) - \Delta u(x) = 0 \qquad (x \in \Omega)$$

$$u(x) = b(x) \qquad (x \in \partial\Omega)$$

has a solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ for every $b \in C(\partial\Omega)$. For example, this is the case if the boundary $\partial\Omega$ is C^2 (see [Gilbarg-Trudinger (1977), Thm. 6.137).

Let A be given by $Af = \Delta f$ on

 $D(A) = \{f \in C^{2}(\Omega) \cap C_{O}(\Omega) : \Delta f \in C_{O}(\Omega)\}.$

Then A is closable and the closure of A is the generator of a positive contraction semigroup.

<u>Proof.</u> D(A) is clearly dense in E. Moreover, one can show as in c) that A is dispersive. It remains to prove that $(\mathrm{Id}-A)\mathrm{D}(A)$ is dense in E. The space $C_{\mathbb{C}}^{\infty}(\Omega)$ of all infinitely differentiabel functions on Ω with compact support contained in Ω is dense in E. Let $g\in C_{\mathbb{C}}^{\infty}(\Omega)$. We show that there exists $f\in D(A)$ satisfying $(\mathrm{Id}-A)f=g$. Let $\bar{g}:\mathbb{R}^{n}\to\mathbb{R}$ be given by $\bar{g}(x)=g(x)$ if $x\in\Omega$ and 0 if $x\notin\Omega$. Then $\bar{g}\in S(\mathbb{R}^{n})$. By (1.3) there exists $\bar{f}\in S(\mathbb{R}^{n})$ such that $\bar{f}-\Delta\bar{f}=\bar{g}$. Consider the function $b\in C(\partial\Omega)$ given by $b(x)=\bar{f}(x)$ for all $x\in\partial\Omega$. Then by our hypothesis there exists $u\in C(\bar{\Omega})\cap C^{2}(\Omega)$ satisfying (1.7). Let $f(x)=\bar{f}(x)-u(x)$ $(x\in\bar{\Omega})$. Then $f\in C^{2}(\Omega)\cap C_{0}(\Omega)$ and $(f-\Delta f)(x)=g(x)$ $(x\in\bar{\Omega})$. Thus $\Delta f=f-g$ vanishes on $\partial\Omega$. Hence $f\in D(A)$ and f-Af=g.

f) Let $\Omega\subset\mathbb{R}^n$ be as in e) and $E=L^p(\Omega)$. Define $Af=\Delta f$ on $D(A)=\{f\in C^2(\Omega)\ \cap\ C_0(\Omega): \Delta f\in C_0(\Omega)\}$. Then A is closable and the closure of A is the generator of a positive contraction semigroup on E.