

ESCUEIA DE Ingeniería Eléctrica

IE0431: Sistemas de Control	II-2017
-----------------------------	---------

Nombre:	Carné:	Grupo:
William C.	Carne.	Or upo.

EXAMEN FINAL

Prof. Leonardo Marín Paniagua Prof. Helber Meneses Navarro

Tiempo máximo: 2 horas 50 min

Instrucciones generales:

- 1. Entregue el enunciado solucionado al finalizar el examen.
- 2. Cada problema debe resolverse por separado en hojas aparte.
- 3. Cada hoja de examen debe estar identificada en la parte superior derecha, con el nombre completo, número de carné y número de grupo en el que está matriculado.
- 4. Los problemas deben resolverse en forma ordenada, indicando y justificando debidamente, todos los pasos intermedios para la solución.
- 5. Todos los cálculos deberán realizarse considerando dos decimales.
- 6. No se permite el uso de calculadora programable.
- 7. Se supondrá que la calculadora debe resolver polinomios de a lo más, tercer orden.
- 8. El examen debe realizarse con bolígrafo azul o negro. Si se hace a lápiz, no se aceptarán reclamos sobre el mismo.
- 1. Considere un sistema de control de razón en donde se desea realizar la mezcla de dos fluidos que deben conservar la misma proporción en el producto final. Se tiene conocimiento de que el valor deseado del lazo primario permanece constante y que las perturbaciones de carga son frecuentes en ambos lazos (primario y secundario), pero mayoritariamente en el secundario. Adicionalmente, se sabe que el punto de operación del lazo primario casi no varía y que su modelo tiene una alta certidumbre, mientras que el punto de operación del lazo secundario cambia con frecuencia y su modelo tiene una alta incertidumbre.

Cada proceso está descrito mediante las siguientes funciones de transferencia: $P_{11}(s) = \frac{2e^{-2.5s}}{(10s+1)(5s+1)}$

(lazo primario) y $P_{12}(s) = \frac{3e^{-2s}}{4s+1}$ (lazo secundario). Las constantes de tiempo están dadas en minutos.

- 1.1 (2 puntos) Determine los parámetros del controlador de la familia PID que permita controlar cada proceso correctamente. Describa el razonamiento y las justificaciones necesarias para seleccionar el controlador y el método de sintonización.
- 1.2 (0.5 puntos) Dibuje un diagrama de bloques completo del sistema de control diseñado, indicando el contenido de cada bloque.

Indique su solución en los siguientes recuadros:

EIE Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control II-2017

Controlador Lazo Primario	Controlador Lazo Secundario
Cálculos y Análisis:	Cálculos y Análisis:
Culculos y Thurisis.	Culculos y Thansis.
Parámetros	Parámetros
del controlador:	del controlador:
Diagrama:	

EIE Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control II-2017

Nombre:	Carné:	Grupo:
2. (2.5 puntos) Considere un sistema de contro	ol cuya función de transferencia	de lazo abierto es
I	$K_3(s) = \frac{K(s-1)^3}{s^3}$	
Determine si el sistema de control es estable Nyquist, y en caso de no serlo, determinar separado el diagrama de Nyquist para valo encierros, si estos existieran. Indique su solu-	o no para todo valor de <i>K</i> , emple el número de raíces inestables res bajos y altos de <i>K</i> , e indiq	s. Si correspondiera, dibuje por ue con claridad los respectivos
FT en Frecuencia:		
Ecuación de Magnitud:		
Ecuación de Fase:		
Tabla y Bosquejo General:	A	
	•	
	1	

EIE
Escuela de
Ingeniería Eléctrica

IE0431: Sistemas de Control

II-2017

EIE
Escuela de
Ingeniería Eléctrica

IE0431: Sistemas de Control II-2017

Nombre: _____ Grupo: ____

3.	` '						_			_	_	
	$P_3(s) = \frac{1}{(s^2 + 1)^2}$	$\frac{2}{-4s+8}$	(la unidad d	le tiempo es	el seg	undo). Para	este siste	ema se d	lesea di	señar un co	ontrolad	or
	que obtenga un de asentamien	na respue	esta del siste	ma de contr	ol a un	cambio tij	o escaló	n en el v	alor de	seado con	un tiemp	
	Determine de PID, de forma mayor cantida	que la re	espuesta del	sistema de o		_						
	Indique los va	lores de l	as especific	aciones obto	enidas	$(t_{a2}, e_{pr0} y)$	$M_{p\%}$) para	todos l	os caso	S.		
	Los diseños correspondien		onsiderarán	como váli	dos ei	n caso de	no pres	entar lo	os boso	quejos de	los LG	R
	Indique su sol	ución en	los siguiente	es recuadros	s:							
	ontrolador tipo					LGR:						
	álculos y Análi:	515.				•						•
						Parámetr	os:		Espe	ecificacion	es:	

Controlador tipo PD:

Cálculos y Análisis:

Controlador tipo PID:

Cálculos y Análisis:

Universidad de Costa Rica Escuela de Ingeniería Eléctrica

EIE Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control

II-2017 LGR: Parámetros: Especificaciones: LGR:

4. Para un sistema de control realimentado simple:

Universidad de Costa Rica Escuela de Ingeniería Eléctrica

EIE Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control II-2017

Nombre: _____ Carné: ____ Grupo: ____

4.1 (1.5 puntos) Desarrolle la síntesis analítica para determinar, en forma general, los parámetros de un controlador PI o PID de dos grados de libertad, considerando que el modelo del proceso controlado es inestable de primer orden. Se desea que la respuesta del sistema de control de lazo cerrado, a entradas tipo escalón, sea sin oscilaciones y con el menor número posible de parámetros de diseño.
4.2 (1.0 puntos) Utilizando el procedimiento desarrollado en el punto anterior y teniendo que el proceso está
dado por la siguiente función de transferencia $P_3(s) = \frac{1}{2s-1}$ (la unidad de tiempo es el minuto),
determine los parámetros de un controlador PI o PID de dos grados de libertad, de tal forma que la
respuesta del sistema de control sea: $y(s) = \frac{1}{2s+1}r(s) + \frac{2s}{(2s+1)^2}d(s)$.
Indique el RESUMEN de su solución en el siguiente recuadro:
Ecuaciones de los parámetros:
Parámetros del Controlador:

EIE Escuela de

Ingeniería Eléctrica

IE0431: Sistemas de Control

II-2017

- Parámetros de la respuesta a un escalón en el valor deseado
- * Sistema de 2° orden $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega s + \omega_n^2}$: $M_p = e^{-\zeta \pi / \sqrt{1 \zeta^2}}$, $t_p = \frac{\pi}{\omega_n \sqrt{1 \zeta^2}}$, $t_l \approx \frac{0.6 + 2.16 \zeta}{\omega}$, $t_{a5} \approx \frac{3}{\zeta \omega}$, $t_{a2} \approx \frac{4}{\zeta \omega_n}$
- * Sistema de primer orden $G(s) = \frac{1}{T_{s+1}}$: $t_{a5} = 3T$, $t_{a2} = 4T$
- $* \ {\rm Sistema} \ {\rm de \ polo \ doble} \quad G(s) = \frac{1}{(T\ 's+1)^2} \ : \ t_{63,2} = 2,15\ T\ ' \ \ , \ \ t_{a5} = 4,74\ T\ ' \ \ , \ \ t_{a2} = 5,83\ T\ '$

REGLAS DE SINTONIZACIÓN

a. El método de Méndez y Rímolo, que utiliza un controlador PI y optimiza el desempeño del lazo de control a la entrada que considere más importante. Los parámetros del controlador se calculan como:

$$\kappa_p = K_p K = a_0 + a_1 \tau_o^{a_2}$$
, $\tau_i = \frac{T_i}{T} = b_0 + b_1 \tau_o^{b_2}$

en donde las constantes de las ecuaciones están dadas por el cuadro 1.

Cuadro 1: Parámetros para el método de Méndez y Rímolo

			Constant	(Méndez	y Rímolo)					
	IAE					ITAE				
a=	0,0	0,25	0,5	0,75	1,0	0	0,25	0,5	0,75	1
a_0	0,265	-0,035	0,013	-0,040	0,035	0,209	-0,148	-0,198	-0,299	-0,338
a_1	0,509	0,761	0,730	0,835	0,825	0,441	0,748	0,788	0,914	0,997
a_2	-1,042	-0,619	-0,616	-0,587	-0,618	-1,054	-0,475	-0,416	-0,372	-0,360
b_0	0,433	0,395	0,382	0,353	0,406	0,326	0,316	0,307	0,299	0,291
b_1	0,922	1,117	1,381	1,671	1,903	0,882	1,005	1,169	1,371	1,605
b_2	-0,017	-0,080	-0,114	-0,121	-0,134	-0,035	-0,033	-0,067	-0,076	-0,072

	Constantes para control regulatorio (Méndez y Rímolo)										
	IAE					ITAE					
a=	0	0,25	0,5	0,75	1	0	0,25	0,5	0,75	1	
a_0	0,124	0,250	0,225	0,190	0,184	0,114	0,179	0,212	0,191	0,225	
a_1	0,886	0,658	0,731	0,868	0,994	0,758	0,598	0,592	0,648	0,718	
a_2	-1,005	-0,991	-1,010	-0,999	-0,999	-1,012	-0,910	-0,952	-0,970	-0,978	
b_0	-2,422	0,272	0,280	0,223	0,194	-1,997	0,276	0,248	0,202	0,239	
b_1	3,855	1,341	1,627	2,013	2,358	3,273	1,161	1,437	1,691	1,938	
b_2	0,780	0,087	-0,013	-0,022	-0,020	0,763	0,097	0,018	-0,007	-0,011	

b. El método uSORT₁ o uSORT₂, que utiliza un controlador PI o PI₂ para optimizar el desempeño del sistema de control a la entrada que considere más importante, considerando adicionalmente la robustez. En este caso, los parámetros del controlador se calculan como: Control regulatorio Servo control

$$\kappa_p \doteq K_p K = a_0 + a_1 \tau_o^{a_2}$$

$$\tau_i \doteq \frac{T_i}{T} = b_0 + b_1 \tau_o^{b_2}$$

$$\tau_d \doteq \frac{T_d}{T} = c_0 + c_1 \tau_o^{c_2}$$

$$\kappa_p \doteq K_p K = a_0 + a_1 \tau_o^{a_2}$$

$$\kappa_p \doteq K_p K = a_0 + a_1 \tau_o^{a_2}$$

$$\tau_i \doteq \frac{T_i}{T} = b_0 + b_1 \tau_o^{b_2}$$

$$\tau_i \doteq \frac{T_i}{T} = \frac{b_0 + b_1 \tau_o + b_2 \tau_o^2}{b_3 + \tau_o}$$

$$au_d \doteq rac{T_d}{T} = c_0 + c_1 au_o^{c_2}$$

Factor de peso del valor deseado

$$\beta = d_0 + d_1 \tau_o^{d_2}$$

EIE Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control

II-2017

en donde las constantes de las ecuaciones están dadas por el cuadro 2.

Cuadro 2: Parámetros para los métodos uSORT₁ y uSORT₂

ontrolade	or PI – Control r	egulatorio			
	R	azón de constante	es de tiempo del n	nodelo a	
	0,0	0,25	0,50	0,75	1,0
		Robustez de	diseño $M_S^t = 2$,	0	
a_0	0,265	0,077	0,023	-0,128	-0,244
a_1	0,603	0,739	0,821	1,035	1,226
a_2	-0,971	-0,663	-0,625	-0,555	-0,517
		Robustez de	diseño $M_S^t = 1$,	6	
a_0	0,175	-0,009	-0,080	-0,247	-0,394
a_1	0,466	0,612	0,702	0,913	1,112
a_2	-0,911	-0,578	-0,522	-0,442	-0,397
b_0	-1,382	0,866	1,674	2,130	2,476
b_1	2,837	0,790	0,268	0,112	0,073
b_2	0.211	0.520	1.062	1.654	1.955

Controlador PI – Servo control

Razón	de	constant	es de	tiempo	del	modelo a

			•		
	0,0	0,25	0,50	0,75	1,0
		Robustez de	$\overline{\text{diseño}} M_S^t = 1,$	8	
a_0	0,243	0,094	0,013	-0,075	-0,164
a_1	0,509	0,606	0,703	0,837	0,986
a_2	-1,063	-0,706	-0,621	-0,569	-0,531
		Robustez de	diseño $M_S^t = 1,0$	6	
a_0	0,209	0,057	-0,010	-0,130	-0,220
a_1	0,417	0,528	0,607	0,765	0,903
a_2	-1,064	-0,667	-0,584	-0,506	-0,468
b_0	14,650	0,107	0,309	0,594	0,625
b_1	8,450	1,164	1,362	1,532	1,778
b_2	0,0	0,377	0,359	0,371	0,355
b_3	15,740	0,066	0,146	0,237	0,209

Factor de peso del valor deseado

	Robustez de diseño ${\cal M}_S^t$							
	2,0	1,6	1,4					
	Controlador PI							
d_0	0,658	0,649	0,811					
d_1	0,578	0,900	1,205					
d_2	0,372	0,446	0,608					

IE0431: Sistemas de Control

II-2017

Reglas de Evans para el dibujo del lugar geométrico de las raíces (LGR)

- 1. Simetría del LGR
- 2. Inicio y final del LGR
- 3. Número de ramas del LGR
- 4. LGR sobre el eje real
- 5. Angulos de las asíntotas

$$\alpha_k = \frac{(2k+1)180^{\circ}}{n-m}, \quad k=0,1,2,...(n-m-1)$$

6. Intersección de las asíntotas con el eje real

$$\sigma_a = \frac{\sum_{j=1}^n \Re(p_j) - \sum_{i=1}^m \Re(z_i)}{n-m}, \quad (n-m) \ge 2$$

7. Centroide de las raíces

$$\sigma_r = \frac{\sum_{j=1}^n \Re(p_j)}{n}, \quad (n-m) \ge 2$$

8. Puntos de salida o entrada al eje real

$$\frac{d\mathbf{K}(\sigma)}{d\sigma} = 0$$

9. Ángulos de salida o entrada al eje real

$$\alpha_{c,k} = \frac{(2k+1)180^{\circ}}{p}, \quad p = 2,3,... \quad k = 0,1,...(p-1)$$

10. Angulo de partida (de llegada) de un polo (a un cero) complejo

- 11. Punto de cruce del eje imaginario
- 12. Cálculo de la ganancia en un punto del LGR

$$|K|_{s=s_1} = \frac{1}{|C'(s_1)P'(s_1)|} = \frac{\prod_{j=1}^{n} |s_1+p_j|}{\prod_{i=1}^{m} |s_1+z_i|}$$