Материалы для подготовки к коллоквиуму по дискретной математике Теоремы

ПМИ 2016 Орлов Никита, Рубачев Иван, Ткачев Андрей, Евсе
в Борис12~ декабря~2016~ г.

4

Утверждение. Число решений уравнения $x_1 + x_2 + \ldots + x_k = n$ в неотрицательных целых числах равно $\binom{n+k-1}{k-1}$

Доказательство. Воспользуемся методом «шаров и перегородок». Пусть есть n шаров и k-1 перегородок, тогда какая-то их расстановка однозначно задаёт решение уравнения: x_1 – количество шаров перед первой перегородкой, x_2 – между 1 и 2, и так далее, количество шаров после последней перегородки - x_k . Тогда число решений равно $\binom{n+k-1}{k-1}$.

Докажем справедливость данной формулы. Рассмотрим n одинаковых объектов, добавим к ним ещё k-1 таких же объектов. Тогда, заменив какие-то k-1 объектов на перегородки, мы получим разбиение множества из n элементов на k непересекающихся подмножеств.

8

Утверждение. Неориентированный граф является 2-раскрашиваемым тогда и только тогда, когда в нём нет циклов нечётной длины.

Доказательство. ⇒ Пусть в графе есть цикл нечётной длины. Покрасим какую-то вершину цикла в первый цвет и будем двигаться по нему в одном направлении, крася каждую следующую вершину в противоположный цвет. Тогда, вернувшись в исходную вершину, получим противоречие.

 \Leftarrow Пусть циклов нечётной длины нет. Выберем произвольную вершину A и покрасим её в первый цвет. Для любой другой вершины B рассмотрим количество рёбер в пути $A \to B$.

Если есть два пути $A \to B$ таких, что в одном чётное число рёбер, а в другом – нечётное, то есть цикл с нечётным числом рёбер, который получается, если пройти $A \to B$ по первому пути и вернуться $B \to A$ по второму.

Следовательно, между любыми двумя вершинами все пути либо чётной, либо нечётной длины. Раскрасить граф можно следующим образом:

- выделим остовное дерево, раскрасим корень в первый цвет
- раскрасим его потомков во второй цвет
- для каждого из потомков раскрасим всех его потомков опять в первый цвет, и.т.д

Полученная раскраска будет корректной, так как в остовном дереве любой путь между вершинами одного цвета имеет чётную длину (по построению), а по доказанному выше путей нечётной длины между такими вершинами нет.

12

Утверждение. Деревья это в точности графы, в которых для любых двух вершин есть ровно один простой путь с концами в этих вершинах.

 $Доказательство. \Rightarrow$

По определению дерева оно является связным графом без циклов. Рассмотрим какие-то две вершины a и b. Докажем, что существует ровно один простой путь между ними.

Поскольку дерево по определению связно, путь есть. Докажем его единственность.

Если есть несколько путей, то маршрут из a в b по первому пути и обратно по другому пути будет являться циклом — значит, путь только один.

 \Leftarrow

Рассмотрим две вершины a и b данного графа, по условию между ними существует простой путь. Если таких путей несколько, то маршрут из a в b по первому пути и обратно по другому пути будет являться циклом. Следовательно, путей не более одного. Если же такого пути нет, то вершина b не достижима из a, то есть граф не связен. Следовательно, такой граф является деревом.

16

Утверждение. Критерий Дирака: граф G на n вершинах содержит гамильтонов цикл, если каждая вершина графа имеет степень не меньшую, чем $\frac{n}{2}$.

Доказательство. Рассмотрим самую длинную простую цепь в графе, обозначим её $x_1 \to x_2 \to \dots \to x_m$. Докажем, что существует вершина x_i такая, что $x_i \to x_m$ и $x_{i+1} \to x_1$. Выберем из множества вершин этой цепи два подмножества:

• множество вершин, соединённых с x_m , то есть $A = \{f\}$

20

24

28