Clément Legrand-Duchesne

LaBRI, Université de Bordeaux

September 10, 2021

Internship carried out from February 15 to July 28, under the supervision of Marthe Bonamy and Vincent Delecroix

Clément Legrand 1 / 9

Kempe chain (1879)

Maximal bichromatic connected component in G

Kempe chain (1879)

Maximal bichromatic connected component in G

Kempe chain (1879)

Maximal bichromatic connected component in G

← □ →

Kempe chain (1879)

Maximal bichromatic connected component in ${\it G}$

Clément Legrand Some context 2 /

Natural questions

Application

- Powerful tool (ex: Vizing theorem)
- Sampling coloring with a Markov chain

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- α and β adjacent if $\alpha \longleftrightarrow_{\mathsf{Kempe}} \beta$

Reachability Are α and β Kempe-equivalent ?

Connectivity Is $R^k(G)$ connected ?

Diameter Estimate $diam(R^k(G))$?

Clément Legrand Some context 3 /

Warm up

d-degenerate graph

G is d-degenerate if for any $H\subset G$, $\delta(H)\leq d$ Equivalently, G admits an elimination ordering $v_1\prec v_2\cdots \prec v_n$ such that

$$\forall i, |N^+(v_i)| \leq d$$

Clément Legrand Some context 4 / 9

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \ge d+1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G'

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \geq d+1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G'

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \geq d+1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \overset{\leadsto}{\kappa} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G'

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \geq d+1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

G′

Lift sequence to G then recolor v_1

Natural question

What is the diameter of the reconfiguration graph in this setting ?

Clément Legrand Some context 5 /

Recoloring via trivial Kempe changes

Cerecedas '07

 $R_{\mathsf{Glauber}}^k(G)$ is connected if G is d-degenerate and $k \geq d+2$

Cerecedas' conjecture '07

 $\operatorname{diam}(R^k_{\mathsf{Glauber}}(G)) \leq O(n^2)$ if G is d-degenerate and $k \geq d+2$

Recoloring via trivial Kempe changes

Cerecedas '07

 $R^k_{\mathsf{Glauber}}(G)$ is connected if G is d-degenerate and $k \geq d+2$

Cerecedas' conjecture '07

$$\operatorname{diam}(R_{\mathsf{Glauber}}^k(G)) \leq O(n^2)$$
 if G is d -degenerate and $k \geq d+2$

Treewidth

Graph parameter that measures how close a graph is from being a tree $tw(G) \le k$ implies G k-degenerate

Bonamy, Bousquet '13

$$diam(R_{Glauber}^k(G)) \le O(n^2)$$
 if $k \ge tw(G) + 2$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) = O(tw n^2) \text{ if } k \ge tw(G) + 1,$$

Clément Legrand Some context 6 /

Recoloring via trivial Kempe changes

Cerecedas '07

 $R_{\mathsf{Glauber}}^k(G)$ is connected if G is d-degenerate and $k \geq d+2$

Cerecedas' conjecture '07

 $\operatorname{diam}(R^k_{\mathsf{Glauber}}(G)) \leq O(n^2)$ if G is d-degenerate and $k \geq d+2$

Bousquet, Heinrich '19

 $\operatorname{diam}(R^k_{\mathsf{Glauber}}(G)) \leq O(n^{d+1})$ if G is d-degenerate and $k \geq d+2$

Clément Legrand Some context 6 /

Brooks' theorem

All graphs but odd cycles and cliques are Δ colorable

Mohar's conjecture '07

For all G, for all $k \ge \Delta$, $R^k(G)$ is connected True if G is not regular.

Brooks' theorem

All graphs but odd cycles and cliques are Δ colorable

Mohar's conjecture '07

For all G, for all $k \ge \Delta$, $R^k(G)$ is connected True if G is not regular.

Feghali, Johnson, Paulusma '17 True for all cubic graphs but the 3-prism Bonamy, Bousquet, Feghali, Johnson '19 True for $\Delta \geq$ 4

Brooks' theorem

All graphs but odd cycles and cliques are Δ colorable

Mohar's conjecture '07

For all G, for all $k \ge \Delta$, $R^k(G)$ is connected True if G is not regular.

Feghali, Johnson, Paulusma '17 True for all cubic graphs but the 3-prism Bonamy, Bousquet, Feghali, Johnson '19 True for $\Delta \geq$ 4

Bonamy, Delecroix, Feghali, L. '21+

For all graph G but the 3-prism, for $k \ge \Delta(G)$, diam $(R^k(G)) = O(n^2)$

Clément Legrand Recoloring with Δ colors 7 /

Other work around frozen colorings

Bonamy, Heinrich, Narboni, L. '21

Recoloring version of Hadwiger conjecture:

There exists graphs with no K_t minor but that admit frozen

 $(\frac{3}{2} - \epsilon)t$ -colorings

Other work around frozen colorings

Bonamy, Heinrich, Narboni, L. '21

Recoloring version of Hadwiger conjecture:

There exists graphs with no K_t minor but that admit frozen

$$(\frac{3}{2} - \epsilon)t$$
-colorings

Open Question

Is admitting a frozen coloring the only reason for $R^k(G)$ to be disconneted?

Bonamy, Kaiser, L. '21+

Reed's conjecture for odd hole free graphs and recoloring version for perfect graphs

Clément Legrand Other results 8 /

To be continued...

Connectivity and diameter in various setting

- Diameter for planar graphs? Bounded genus graph?
- Diameter for graphs of bounded mad ? d-degenerate graphs ?

New tools

- to prove disconnectivity of $R^k(G)$?
- to prove mixing times upper bounds?
- to prove lower bounds on the reconfiguration diameter?

Approximate counting of colorings

Efficient enumeration

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$\operatorname{diam}(R^k(G)) \leq O(\operatorname{tw} n^2) \text{ if } k \geq \operatorname{tw}(G) + 1$$

G has treewidth tw iff there exists H chordal with $\omega(H)=\operatorname{tw}+1$. Let G and $k\geq \operatorname{tw}(G)+1$, H an overlying chordal graph with elimination ordering $v_1\prec v_2\prec \cdots \prec v_n$

Length of the sequence $(tw n + n + tw n) \times n = O(tw n^2)$

Bonamy, Delecroix, L. '21+

For all graph G but the 3-prism, for $k \geq \Delta(G)$,

$$\operatorname{diam}(R^k(G)) = O(\Delta n^2)$$

Lemma

Key lemma

If G' is (d-1)-degenerate, with $\deg(v_i) \leq d$ for all i < n, then $\operatorname{diam}(R^k(G')) = O(dn^2)$

Let u and x be two vertices far away in G, v and w be two non-adjacent neighbors of u

For all $(y, z) \in N(x)$ if y and z are non-adjacent, then there exists a k-coloring α such that $\alpha(v) = \alpha(w)$ and $\alpha(y) = \alpha(z)$

Sketch of proof of the lemma

Induction

If $c \notin \alpha(N^+(u))$, then there exits β such that:

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Induction

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Induction

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Induction

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Induction

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Graph minor

Graph minor

 ${\cal H}$ is a minor of ${\cal G}$ if ${\cal H}$ can be obtained be deleting vertices and contracting edges of ${\cal G}$

Equivalently, $V_1 \sqcup \cdots \sqcup V_k \subseteq V(G)$, with V_i connected and $G[V_1, \ldots, V_k] = H$

Graph minor

Graph minor

 ${\cal H}$ is a minor of ${\cal G}$ if ${\cal H}$ can be obtained be deleting vertices and contracting edges of ${\cal G}$

Equivalently,
$$V_1 \sqcup \cdots \sqcup V_k \subseteq V(G)$$
, with V_i connected and $G[V_1, \ldots, V_k] = H$

Kuratowski 1930

A graph is planar iff K_5 -minor and $K_{3,3}$ -minor free

Hadwiger's conjecture

Appel, Haken 1976 If G is planar, then $\chi(G) \leq 4$

Robertson, Sanders, Seymour, Thomas 1997 Much simpler proof, but still computer assisted

Hadwiger's conjecture 1943

If G is K_t -minor free then $\chi(G) \leq t-1$ Proved for $1 \leq t \leq 6$, widely open for t > 6

Reconfiguration counterpoint

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Reconfiguration counterpoint

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Conjecture 1 [Las Vergnas and Meyniel 1981]

All the t-colorings of a K_t -minor free graph are Kempe-equivalent

Conjecture 2 [Las Vergnas and Meyniel 1981]

All the t-colorings of a K_t -minor free graph are Kempe-equivalent to a (t-1)-coloring

Quasi-minor

H is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_k$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots V_k] = H$

- K_t -minor \Rightarrow quasi- K_t -minor
- if all V_i are stable sets, $V_1 \sqcup \cdots \sqcup V_k$ is a frozen coloring

Quasi-minor

H is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_k$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots V_k] = H$

- K_t -minor \Rightarrow quasi- K_t -minor
- if all V_i are stable sets, $V_1 \sqcup \cdots \sqcup V_k$ is a frozen coloring

Conjecture 3 [Las Vergnas and Meyniel 1981]

Quasi- K_t -minor $\Rightarrow K_t$ -minor True for t < 9

Quasi-minor

H is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_k$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots V_k] = H$

- K_t -minor \Rightarrow quasi- K_t -minor
- if all V_i are stable sets, $V_1 \sqcup \cdots \sqcup V_k$ is a frozen coloring

Conjecture 3 [Las Vergnas and Meyniel 1981]

Quasi- K_t -minor $\Rightarrow K_t$ -minor True for t < 9

Bonamy, Heinrich, L., Narboni '21+

• Strongly disproved for large t: for every $\varepsilon > 0$ and large enough t, there exists a graph G with a quasi- K_t -minor but no $K_{\left(\frac{2}{3}+\varepsilon\right)t}$ -minor

Quasi-minor

H is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_k$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots V_k] = H$

- K_t -minor \Rightarrow quasi- K_t -minor
- if all V_i are stable sets, $V_1 \sqcup \cdots \sqcup V_k$ is a frozen coloring

Conjecture 3 [Las Vergnas and Meyniel 1981]

```
Quasi-K_t-minor \Rightarrow K_t-minor
True for t < 9
```

Bonamy, Heinrich, L., Narboni '21+

- Strongly disproved for large t: for every $\varepsilon > 0$ and large enough t, there exists a graph G with a quasi- K_t -minor but no $K_{\left(\frac{2}{3}+\varepsilon\right)t}$ -minor
- All $\frac{t}{2}$ -colorings of a K_t -minor free graph are Kempe-equivalent