Structured Programming

- Primary data types and variables

Donglong Chen

Outline

- Values
- Primary data types
- Identifier
- Keywords
- Variables
- Declaration

Values

- There are different types of value
 - E.g.,
 - Age: 19
 - Gender: 'm' or 'f'
 - Name: "Tommy"
 - Weight: 82.5 (kg)
 - Time: 13:25:16

Recommend reading about how to pronounce punctuation in English: https://simple.wikipedia.org/wiki/Punctuation
https://www.ruanyifeng.com/blog/2007/07/english_punctuation.html

Values

There are different types of value

```
– E.g.,
```

```
Age: 19

Gender: 'm' or 'f'
Weight: 82.5 (kg)
Name: "Tommy"

(integer)

(char)

(real)
(string)
```

- Time: 13:25:16 (structure)

Values

There are different types of value

– E.g.,

Age: 19

– Gender: 'm' or 'f'

Weight: 82.5 (kg)

– Name: "Tommy"

- Time: 13:25:16

```
(integer)
(char)
(real)
(string)
(structure)
```

Primary Data Types

int

 Used to express the integer type. The biggest integer that can be expressed in a computer depends on the host computer (32 bits or 64 bits)

char

 Used to express the single characters. Each character corresponds to an integer between 0 and 127

float

- Real number (single precision float point)
- double
 - Real number (double precision float point)
- bool
 - A Boolean value which takes value 0 or 1

int

int

- A natural number (including 0), a negative number
- E.g., 10, 20, 10000
- Can be expressed in
 - Decimal (base-10)
 - Binary (base-2)
 - Hexadecimal (base-16)
 - Octal (base-8)

int

- 32 bits machine
 - 32 bits are used to express an integer value
- 64 bits machine
 - 64 bits are used to express an integer value

Question: Which one can express more integers?

int

- 32 bits machine
 - 32 bits are used to express an integer value
 - $-2^{31} \sim 2^{31} 1$
- 64 bits machine
 - 64 bits are used to express an integer value
 - $-2^{63} \sim 2^{63} 1$

int – Other int types

- short int
 - -2 bytes, $-2^{15} \sim 2^{15} 1$
 - E.g., 12, 20
- long int
 - -4 bytes, $-2^{31} \sim 2^{31} 1$
 - 20, 20L, 12, -2000, 0xffffL

int – Other int types

- unsigned int
 - -4 bytes, $0 \sim 2^{32} 1$
 - E.g., 20, 12u, 0xffu
- long long int
 - -8 bytes, $-2^{63} \sim 2^{63} 1$
 - 20, 20LL,

Primary Data Types

- int
 - Used to express the integer type. The biggest integer that can be expressed in a computer depends on the host computer (32 bits or 64 bits)
- char
 - Used to express the single characters. Each character corresponds to an integer between 0 and 127
- float
 - Real number (single precision float point)
- double
 - Real number (double precision float point)
- Bool
 - A Boolean value which takes value 0 or 1

char

- char
 - 1 byte
 - $- 2^7 \sim 2^7 1$
 - E.g., 'a', '1', '+'
- Attention
 - '1' is different from 1
 - '+' is different from +
 - 'a' is different from a
 - 'a' is different from "a"
- Every char corresponds to an integer code

Char - ASCII

- ASCII
 - American Standard Code for Information Interchange
 - Tables
 - https://www.ascii-code.com/

Char – Other char types

- unsigned char
 - 1 byte
 - $-0 \sim 2^8 1$

Primary Data Types

- int
 - Used to express the integer type. The biggest integer that can be expressed in a computer depends on the host computer (32 bits or 64 bits)
- char
 - Used to express the single characters. Each character corresponds to an integer between 0 and 127
- float
 - Real number (single precision float point)
- double
 - Real number (double precision float point)
- Bool
 - A Boolean value which takes value 0 or 1

float

Float

- 4 bytes
- E.g., 1.2, 2.5e8 (Scientific notation. 2.5 ×10⁸)
- $-1.2 \times 10^{-38} \sim 3.4 \times 10^{38} (1.2e-38 \sim 3.4e38)$
- IEEE 754 standard: 1 bit sign, 8 bits exponent, 23 bits mantissa

Double

- 8 bytes
- $-2.2 \times 10^{-308} \sim 1.8 \times 10^{308} (2.2e-308 \sim 1.8e308)$
- IEEE 754 standard: 1 bit sign, 10 bits exponent, 53 bits mantissa

https://en.wikipedia.org/wiki/IEEE 754
https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Primary Data Types

- int
 - Used to express the integer type. The biggest integer that can be expressed in a computer depends on the host computer (32 bits or 64 bits)
- char
 - Used to express the single characters. Each character corresponds to an integer between 0 and 127
- float
 - Real number (single precision float point)
- double
 - Real number (double precision float point)
- Bool
 - A Boolean value which takes value 0 or 1

Identifiers (Variable Names)

- An identifier consists of a letter or underscore followed by any sequence of letters, digits or underscores
 - E.g., _ls, This_ls, A12, a23
- Names are case-sensitive! The following are unique identifiers:
 - Hello, hello,
 - whoami, whoAMI, WhoAmI
 - Are they same?

Identifiers (Variable Names)

- Names cannot have special characters in them
 - E.g., X=Y, J-20, #007 are invalid identifiers.
- C keywords (reserved words) cannot be used as identifiers.
- Choose identifiers that are meaningful and easy to remember.

Keywords

<u>auto</u>	<u>break</u>	<u>case</u>	<u>char</u>	<u>const</u>	continue	<u>default</u>	<u>do</u>
double	<u>else</u>	<u>enum</u>	<u>extern</u>	<u>float</u>	<u>for</u>	goto	<u>if</u>
int	long	register	return	<u>short</u>	<u>signed</u>	<u>sizeof</u>	static
struct	switch	typedef	union	unsigned	<u>void</u>	<u>volatile</u>	while

Exercises

- Are these the valid variable names
 - _ _123
 - abc
 - Example
 - Abc123
 - unsigned
 - int
 - a%b
 - 2example
 - -Xx

Every variable used in a program must declare its type

```
Format: TYPE variable_name _list;
E.g.,
int i;
float f;
double area;
unsigned int number;
int number, index, grade;
```

The variables can be assigned values using the assignment operator

```
Format: variable_name = value;
E.g.,
i = 10;
f = 1.2;
area = 6.28;
area = f;
```

```
int i;
char c;
float f;

i = 28;
c = 'a';
f = 28.0;

assignment
```

```
int i1;
char 2c
float f;
i1 = 28.5;
2c = '*';
f = 28
```

What problems are there in the code?

```
int i;
char c;
float f;
i = 28;
c = 42;
f = 28;
```

Are these assignment OK?

Type Conversion

- C allows for conversions between the basic types, implicitly or explicitly.
- Explicit conversion uses the cast operator.

cast operator

Implicit Conversion

 If the compiler expects one type at a position, but another type is provided, then implicit conversion occurs.

Implicit conversion

Implicit Conversion

 If the compiler expects one type at a position, but another type is provided, then implicit conversion occurs.

```
char c = 'a';
int i;
i = c; /* i is assigned the ASCII code of 'a' */
    Type : int
```

Summary

- Basic data type
- Type casting