# Econometrics 2 (Part 1)

Sergey Lychagin

Central European University

Winter 2020

### Motivation

### Early econometric research on

- Simultaneous Equations Models
- Measurement Error Bias

### Today

- Omitted Variables Bias
- Applications:
  - Effect of military service on earnings
  - ▶ Effects of family size on female labor supply
  - ▶ Returns to education

## Omitted variables problem

• Constant Effects Setup

$$y_{si} = f_{i}(s)$$

$$f_{i}(s) = \alpha + \rho s + \eta_{i}$$

$$\eta_{i} = A'_{i}\gamma + v_{i}, E[\eta_{i}|A_{i}] = A_{i}\gamma.$$

- $A_i$  are the only reason why  $\eta_i$  and  $s_i$  may be correlated:  $s_i \coprod \eta_i | A_i$ .
- $\gamma$  population regression coefficients (not necessarily causal)

$$E[A_i v_i] = 0$$

$$E[s_i v_i] = 0$$

• If  $A_i$  is observed:

$$Y_i = \alpha + \rho s_i + A'_i \gamma + v_i \Rightarrow \text{Long Regression}$$

- Problems:
  - $A_i$  is unobserved, how can we estimate  $\rho$ ?

### Instrumental Variable

$$Y_i = \alpha + \rho s_i + \eta_i$$

- Instrumental Variable
  - $\triangleright$   $z_i$  correlated with  $s_i$ , but uncorrelated with any other determinants of  $Y_i$  (instrument relevance)
  - ►  $Cov(\eta_i, z_i) = 0$ , or  $z_i$  uncorrelated with both  $A_i$  and  $v_i$  (instrument exogeneity)
- Exclusion Restriction/Instrument exogeneity:

$$\rho = \frac{Cov\left(Y_{i}, z_{i}\right)}{Cov\left(s_{i}, z_{i}\right)} = \frac{Cov\left(Y_{i}, z_{i}\right) / V\left(z_{i}\right)}{Cov\left(s_{i}, z_{i}\right) / V\left(z_{i}\right)}$$

• Ratio of population regression of  $Y_i$  on  $z_i$  (reduced form) and  $s_i$  on  $z_i$  (first stage).

# Assumptions

- 2 important assumptions:
  - ▶ Relevance:  $z_i$  has an effect on  $s_i$  (can be tested)

$$Cov\left(s_{i},z_{i}\right)\neq0$$

▶ Exogeneity/exclusion restriction:  $z_i$  affects  $Y_i$  only via  $s_i$ :

$$Cov\left(\eta_{i},z_{i}\right)=0$$

- How do we find Instrumental Variables?
  - ► Institutional knowledge
  - ▶ Ideas about the process determining  $s_i$
- Examples:
  - ► Compulsory schooling law
  - Schooling decision based on costs and benefits
  - ▶ College proximity as determinant of schooling decision

### General model

• Structural Equation

$$Y_i = X_i'\alpha + \rho s_i + \eta_i, \ E[\eta_i|X_i] = 0.$$

► First Stage:

$$s_i = X_i' \pi_{10} + \pi_{11} z_i + \xi_{1i}, \ E[\xi_{1i} | X_i, z_i] = 0$$

▶ Reduced Form:

$$Y_i = X_i' \pi_{20} + \pi_{21} z_i + \xi_{2i}$$

- $s_i$  and  $Y_i$  are endogenous variables. Fundamental issue:  $\xi_{1i}$  correlates with  $\eta_i$  (e.g. schooling and wage are driven by unobserved ability).
- $z_i$  instrumental variable, conditionally independent of  $\eta_i$ :  $z_i \coprod \eta_i | X_i$ .
- $X_i$  controls

# Indirect Least Squares

Covariate adjusted IV estimator:

$$\rho = \frac{\pi_{21}}{\pi_{11}} = \frac{Cov(Y_i, \tilde{z}_i)}{Cov(s_i, \tilde{z}_i)}$$

- $\tilde{z}_i$  residual from regressing  $z_i$  on  $x_i$  (regression anatomy)
- Proof:

$$Y_i = X_i'\alpha + \rho s_i + \eta_i$$

$$Cov(Y_i, \tilde{z}_i) = \rho Cov(s_i, \tilde{z}_i)$$

- $\triangleright$   $\tilde{z_i}$  uncorrelated with  $X_i$  by construction.
- $\triangleright$   $\tilde{z}_i$  uncorrelated with  $\eta_i$  by assumption (easy to check)

# Alternative Representation

$$Y_i = X_i'\alpha + \rho s_i + \eta_i$$

Substitute first stage

$$Y_{i} = X'_{i}\alpha + \rho \left[ X'_{i}\pi_{10} + \pi_{11}z_{i} + \xi_{1i} \right] + \eta_{i}$$
  

$$Y_{i} = X'_{i} \left[ \alpha + \rho \pi_{10} \right] + \rho \pi_{11}z_{i} + \left[ \rho \xi_{1i} + \eta_{i} \right]$$

Reduced Form

$$Y_i = X_i' \pi_{20} + \pi_{21} z_i + \xi_{2i}$$

• Compare coefficients

$$\pi_{20} = \alpha + \rho \pi_{10}$$

$$\rho \pi_{11} = \pi_{21} \Rightarrow \rho = \frac{\pi_{21}}{\pi_{11}}$$

$$\xi_{2i} = \rho \xi_{1i} + \eta_i$$

### Two Stage Least Squares

Re-write structural equation

$$Y_{i} = X'_{i}\alpha + \rho \underbrace{\left[X'_{i}\pi_{10} + \pi_{11}z_{i}\right]}_{s_{i}^{*}} + \rho \xi_{1i} + \eta_{i}$$

- $s_i^*$  population fitted value from first stage
- $X_i$  and  $z_i$  are uncorrelated with  $\xi_{1i}$
- $second\ stage\ regression\ coefficient\ on\ s^*\ equals\ \rho$

### Two stage least squares

- 2 stage procedure:
  - ► Fitted First Stage

$$\hat{s}_i = X_i' \hat{\pi}_{10} + \hat{\pi}_{11} z_i$$

Second Stage Equation

$$Y_i = X_i' \alpha + \rho \hat{s}_i + [\eta_i + \rho(s_i - \hat{s}_i)]$$

- Exclusion Restriction:  $\hat{s}_i$  not correlated with  $\eta_i$
- ▶ By construction:  $\hat{s}_i$  not correlated with  $s_i \hat{s}_i$
- 2SLS can be performed in two steps, but second stage standard errors are incorrect.
- Better to use STATA procedure!
- In a model with one endogenous variable and a single instrumental variable 2SLS is the same as ILS.

# Compulsory schooling law

- School entry date determined by the calendar year when a child turns 6
- Those born later in the year are younger when they start school
- Compulsory schooling law: earliest school leaving date 16th birthday
- Kids born early in the year can leave before finishing 10th grade
- Does this variation in schooling levels influence earnings?

#### A. Average Education by Quarter of Birth (first stage)



#### B. Average Weekly Wage by Quarter of Birth (reduced form)



Figure 4.1.1: Graphical depiction of first stage and reduced form for IV estimates of the economic return to schooling using quarter of birth (from Angrist and Krueger 1991).

## Multiple Instruments

- $z_{1i}, z_{2i}, z_{3i}$  dummy variables for quarter of birth
- 2 stage least squares estimation
- First stage equation

$$s_i = X_i' \pi_{10} + \pi_{11} z_{1i} + \pi_{12} z_{2i} + \pi_{13} z_{3i} + \xi_{i1}$$

- $\hat{s}_i$  fitted values from first stage regression
- 2SLS "instrument": linear combination of all instrumental variables increases efficiency.

Table 4.1.1: 2SLS estimates of the economic returns to schooling

|                                                               | OLS               |                   | 2SLS                  |                                      |                       |                               |                                                                           |                                                                           |  |  |
|---------------------------------------------------------------|-------------------|-------------------|-----------------------|--------------------------------------|-----------------------|-------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
|                                                               | (1)               | (2)               | (3)                   | (4)                                  | (5)                   | (6)                           | (7)                                                                       | (8)                                                                       |  |  |
| Years of education                                            | 0.075<br>(0.0004) | 0.072<br>(0.0004) | 0.103<br>(0.024)      | 0.112<br>(0.021)                     | 0.106<br>(0.026)      | 0.108<br>(0.019)              | 0.089<br>(0.016)                                                          | 0.061<br>(0.031)                                                          |  |  |
| Covariates:<br>Age (in quarters)<br>Age (in quarters) squared |                   |                   |                       |                                      |                       |                               |                                                                           | √<br>√                                                                    |  |  |
| 9 year of birth dummies<br>50 state of birth dummies          |                   | <b>√</b>          |                       |                                      | <b>√</b>              | √<br>√                        | <b>√</b>                                                                  | <b>√</b>                                                                  |  |  |
| Instruments:                                                  |                   |                   | dummy<br>for<br>QOB=1 | dummy<br>for<br>QOB=1<br>or<br>QOB=2 | dummy<br>for<br>QOB=1 | full set<br>of QOB<br>dummies | full set<br>of QOB<br>dummies<br>int. with<br>year of<br>birth<br>dummies | full set<br>of QOB<br>dummies<br>int. with<br>year of<br>birth<br>dummies |  |  |

Notes: The table reports OLS and 2SLS estimates of the returns to schooling using the the Angrist and Krueger (1991) 1980 Census sample. This sample includes native-born men, born 1930-1939, with positive earnings and non-allocated values for key variables. The sample size is 329,509. Robust standard errors are reported in parentheses.

#### Wald Estimator

- Special case:  $z_i$  dummy variable
- Structural model  $Y_i = \alpha + \rho s_i + \eta_i$

$$E(Y_i|z_i) = \alpha + \rho E(s_i|z_i) + E(\eta_i|z_i)$$

$$E(Y_i|z_i = 1) = \alpha + \rho E(s_i|z_i = 1) + E(\eta_i|z_i = 1)$$

$$E(Y_i|z_i = 0) = \alpha + \rho E(s_i|z_i = 0) + E(\eta_i|z_i = 0)$$

Wald estimator

$$\rho = \frac{E[Y_i|z_i = 1] - E[Y_i|z_i = 0]}{E[s_i|z_i = 1] - E[s_i|z_i = 0]}$$

$$= \frac{\text{difference in mean earnings by z}}{\text{difference in mean schooling by z}}$$

### Draft lottery

- U.S. conscription during the Vietnam war era
  - ▶ Institution of draft lottery in 1970
  - each year 1970-1972 a random sequence of lottery numbers were assigned to each birth date in the cohort of 19-year olds.
  - ▶ lottery numbers below a cutoff were eligible to be drafted
  - exceptions for volunteers, school attendance, bad health etc.
- use draft eligibility status as binary instrument for military service
- lottery number positively correlated with veteran status: relevance
- lottery number uncorrelated to other determinants of earnings: exclusion restriction
- discrete instrument: lottery number groups, visual IV

Table 4.1.3: Wald estimates of the effects of military service on the earnings of white men born in 1950

|               | Earnings |                             | Vete  | eran Status           | Wald                               |  |
|---------------|----------|-----------------------------|-------|-----------------------|------------------------------------|--|
| Earnings year | Mean     | Eligibility<br>Effect       | Mean  | Eligibility<br>Effect | - Estimate of<br>Veteran<br>Effect |  |
|               | (1)      | (2)                         | (3)   | (4)                   | (5)                                |  |
| 1981          | 16,461   | -435.8                      | 0.267 | 0.159                 | -2,741                             |  |
| 1971          | 3,338    | (210.5)<br>-325.9<br>(46.6) |       | (0.040)               | (1,324)<br>-2050<br>(293)          |  |
| 1969          | 2,299    | -2.0<br>(34.5)              |       |                       | (200)                              |  |

Notes: Adapted from Angrist (1990), Tables 2 and 3. Standard errors are shown in parentheses. Earnings data are from Social Security administrative records. Figures are in nominal dollars. Veteran status data are from the Survey of Program Participation. There are about 13,500 individuals in the sample.



Figure 4.1.2: The relationship between average earnings and the probability of military service (from Angrist 1990). This is a VIV plot of average 1981-84 earnings by cohort and groups of five consecutive draft lottery numbers against conditional probabilities of veteran status in the same cells. The sample includes white men born 1950-53. Plotted points consist of average residuals (over four years of earnings) from regressions on period and cohort effects. The slope of the least-squares regression line drawn through the points is -2.384, with a standard error of 778.

"Using geographic variation in college proximity to estimate the return to education", Card (1993, NBER WP 4483)

- Ability Bias
  - ▶ Individual with high test scores have higher schooling upward biased OLS  $\hat{\rho}$
- Absence of "pure" random assignment
  - Use the presence of a nearby college as exogenous variation in education
  - ▶ Students who grow up in an area without a college face a higher cost of college education, since the option of living at home is precluded.
  - $\triangleright \rho$  might depend on levels of income

### Relevance



Note: prediction equation is fit to subsample with no college nearby

# Structural Model Equation

#### Model

$$Y_i = \alpha + \rho s_i + \gamma_1 exper_i + \gamma_2 exper_i^2 + \eta_i$$

- Potential experience  $exper_i = age_i s_i 6$
- Additional covariates: parents' education, region of residence, etc
- Proxy for ability: 'knowledge of the world of work' test score
- instrument  $c_i$  college proximity
- First stage

$$s_i = \pi_{10} + \pi_{11}c_i + \pi_{12}exper_i + \pi_{13}exper_i^2 + \xi_{1i}$$

# Multiple Endogenous Variables

- $\bullet$  experience, experience<sup>2</sup>
- Need two additional excluded variables  $z_2$ ,  $z_3$  correlated with experience, experience<sup>2</sup>
- age,  $age^2$
- Three first stage equations:

$$s_{i} = X'_{i}\pi_{10} + \pi_{11}z_{1i} + \pi_{12}z_{2i} + \pi_{13}z_{3i} + \xi_{1i}$$

$$exper_{i} = X'_{i}\pi_{20} + \pi_{21}z_{1i} + \pi_{22}z_{2i} + \pi_{23}z_{3i} + \xi_{2i}$$

$$exper_{i}^{2} = X'_{i}\pi_{30} + \pi_{31}z_{1i} + \pi_{32}z_{2i} + \pi_{33}z_{3i} + \xi_{3i}$$

• Reduced form equation:

$$Y_{i} = X_{i}'\pi_{40} + \pi_{41}z_{1i} + \pi_{42}z_{2i} + \pi_{43}z_{3i} + \xi_{4i}$$

Table 3: Reduced Form and Structural Estimates of Education and Earnings Models

|     |                         | Reduced Fo<br>Education |           | rm Models:<br>Earnings |             | Structural Models<br>of Earnings |         |
|-----|-------------------------|-------------------------|-----------|------------------------|-------------|----------------------------------|---------|
|     |                         | (1)                     | . (2)     | (3)                    | (4)         | (5)                              | (6)     |
|     | <u>A :</u>              | Treat Ex                | perience  | and Exper              | ience Squar | ed as Exogen                     | ous     |
|     |                         |                         | 0.322     | 0.042                  | 0.045       |                                  |         |
|     | College in<br>1966      | (0.088)                 | (0.083)   | (0.018)                | (0.018)     |                                  |         |
| ٠.  | Education               |                         |           |                        | ••          | 0.132                            | 0.140   |
|     |                         |                         |           |                        |             | (0.055)                          | (0.055) |
|     | Family                  | no                      | y e s     | no                     | y e s       | . no                             | yes     |
|     | Background<br>Variables |                         |           |                        |             |                                  |         |
|     |                         |                         |           |                        |             |                                  |         |
|     | <u>8:</u>               | Treat Exp               | erience a | nd Experi              | ence Square | d as Endogen                     | ovs     |
|     | Live Near               | 0.382                   | 0.365     | 0.047                  | 0.048       |                                  | • •     |
|     | College in<br>1966      | (0.114)                 | (0.105)   | (0.019)                | (0.019)     |                                  |         |
| i . | Education               |                         |           | • • •                  | ••          | 0.122                            | 0.132   |
|     |                         |                         |           | -                      |             | (0.046)                          | (0.049) |
| ٠.  | Family                  | no                      | yes       | no                     | y e s       | no                               | yes     |
|     | Background<br>Variables |                         |           |                        |             |                                  |         |

#### Exclusion restriction

- Exclusion restriction does not allow for a *direct* effect of college proximity on earnings.
  - Better schools in college areas
  - Geographic wage premia
  - ▶ Selection of families into college areas

# "Forbidden regression"

Common mistake — "forbidden regression"

- Suppose one fits  $\widehat{exper_i}$  and  $\widehat{s_i}$ , runs  $Y_i$  on  $\widehat{exper_i}$ ,  $\widehat{exper_i}^2$  and  $\widehat{s_i}$  rather than on  $\widehat{exper_i}$ ,  $\widehat{exper_i}^2$  and  $\widehat{s_i}$ .
- What the second stage estimates:

$$Y_{i} = \alpha + \rho s_{i} + \gamma_{1} exper_{i} + \gamma_{2} exper_{i}^{2} + \eta_{i}$$

$$= \alpha + \rho(\widehat{s}_{i} + \xi_{1i}) + \gamma_{1} (\widehat{exper}_{i} + \xi_{2i}) + \gamma_{2} (\widehat{exper}_{i} + \xi_{2i})^{2} + \eta_{i}$$

$$= \alpha + \rho \widehat{s}_{i} + \gamma_{1} \widehat{exper}_{i} + \gamma_{2} \widehat{exper}_{i}^{2}$$

$$+ (\rho \xi_{1i} + \gamma_{1} \xi_{2i} + \gamma_{2} \xi_{2i}^{2} + 2\gamma_{2} \widehat{exper}_{i} \xi_{2i} + \eta_{i})$$

$$\zeta_{i}$$

• RHS variables are likely to correlate with  $\zeta_i$  (e.g. if  $\xi_{2i}$  is heteroskedastic).

Run three separate 1st stage regressions, don't predict  $exper_i$  and  $exper_i^2$  using one 1st stage regression.

## Testing for Endogeneity

• 2SLS less efficient than linear regression (larger standard errors)

$$Y_i = \alpha X_i' + \rho s_i + \eta_i$$

- $z_i$  exogenous instrument.
- If  $Cov(s_i, \eta_i) = 0$ , we can use linear regression
  - 2SLS consistent but less efficient
- If  $Cov(s_i, \eta_i) \neq 0$ , should use 2SLS with instrument  $z_i$
- Idea: Compare OLS and 2SLS estimates

# Testing for Endogenity

• First Stage

$$s_i = X_i' \pi_{10} + \pi_{11} z_i + \xi_{1i}$$

• Predict first stage residual  $\hat{\xi}_{1i}$  and include it in structural equation.

$$Y_i = X_i'\alpha + \rho s_i + \delta \hat{\xi}_{1i} + error$$

• Hausman Test: Test  $H_0: \delta = 0$ 

# Testing Overidentification Restrictions

$$Y_i = X_i' \alpha + \rho s_i + \eta_i$$

- Two instruments  $z_1$  and  $z_2$
- We could generate 2 IV estimators one using  $z_1$ , one using  $z_2$  and compare or check for correlation between IV-residuals with the other instrument.
- Test procedure
  - ▶ Estimate 2SLS using  $z_1$  and  $z_2$  and predict residuals  $\hat{\eta}_i$
  - Regress  $\hat{\eta}_i$  on all exogenous variables  $(X, z_1, z_2)$  and obtain  $\mathbb{R}^2$
  - $H_0: z_1$  and  $z_2$  uncorrelated to  $\eta_i$
  - Under  $H_0$ ,  $nR^2 \approx \chi_q^2$ , q=2, number of instruments

# Testing Overidentification Restrictions

- Caveat:
  - ▶ IV estimators often imprecise tests don't have much power.
  - ► Treatment effect heterogeneity

# Using IV to address simultaneity issues

Typical application: demand estimation

$$q_i = \alpha - \rho p_i + X'_{di}\beta_d + u_{di} \tag{1}$$

Identification issue: price  $p_i$  is driven by demand shocks  $u_{di}$ . Using OLS is a bad idea.

- Typical strategy: use observable supply shifters  $X_{si}$  as instruments for  $p_i$ . Be careful:  $X_{si}$  cannot correlate with  $u_{di}$ !
  - ► Exogenous changes in market structure (entry/exit/mergers)
  - ▶ Fluctuations in wages, prices for inputs
  - Disruptions in supply chains
- Estimating supply: symmetric case; use demand shifters  $X_{di}$  as instruments for  $q_i$ .

### Weak instruments

Suppose we estimate  $\rho$  using one exogenous IV:

$$Y_i = \alpha + \rho s_i + \eta_i$$

$$\widehat{\rho} = \rho + \frac{\frac{1}{n} \sum_{i} (\eta_i - \overline{\eta}_i)(z_i - \overline{z}_i)}{\frac{1}{n} \sum_{i} (s_i - \overline{s}_i)(z_i - \overline{z}_i)}$$

LLN+CLT imply that

$$\frac{1}{n} \sum_{i} (\eta_i - \overline{\eta}_i)(z_i - \overline{z}_i) = cov(\eta_i, z_i) + \frac{1}{\sqrt{n}} N_1 + o\left(\frac{1}{\sqrt{n}}\right)$$
$$\frac{1}{n} \sum_{i} (s_i - \overline{s}_i)(z_i - \overline{z}_i) = cov(s_i, z_i) + \frac{1}{\sqrt{n}} N_2 + o\left(\frac{1}{\sqrt{n}}\right)$$

where  $N_1$  and  $N_2$  are two normal random variables.

#### Weak instruments

$$\widehat{\rho} = \rho + \frac{\frac{1}{\sqrt{n}}N_1 + o\left(\frac{1}{\sqrt{n}}\right)}{cov(s_i, z_i) + \frac{1}{\sqrt{n}}N_2 + o\left(\frac{1}{\sqrt{n}}\right)}$$

- In the limit, the denominator  $\approx cov(s_i, z_i)$ , and then  $\widehat{\rho} \approx \rho + \frac{1}{\sqrt{n}cov(s_i, z_i)} N_1$ .
- However, in finite (and not necessarily small!) samples,  $\frac{1}{\sqrt{n}}N_2$  may dominate  $cov(s_i, z_i)$ .
- In this case,  $\hat{\rho} \approx \rho + \frac{N_1}{N_2}$  biased point estimate, the distribution of  $\hat{\rho}$  far from normal.
- This may happen even if  $z_i$  appears significant at the conventional levels in the 1st stage.

There is more on this at the Friday's seminar (how bad the bias can be, how to test properly). Stay tuned!