Lab2 Report

Mohamed Elmaghraby Mohamed 55

Prepare data:

- Prepare column names.
- Import breast-cancer-Wisconsin data.
- Merge both data sets.
- Explore data:
 - Number of instances = 569
 - number of attributes = 32
 - o class names : ['M', 'B']
 - o number of classes: 2

Data Exploration:

- Plot Box plot for the data
 - Conclusion:
 - most of the values of the attributes are around zero
 - attr 4 and attr 24: has bigger and spread values
 - attr 14: has many outliers
- Correlation matrix
 - Use .corr(method = 'Pearson') to get the Pearson's
 correlation between each 2 attributes.
 - Conclusion
 - some of the attributes have a high positive correlation
 - most of the attributes have a medium positive correlation
 - a small set of attributes has a low positive correlation

■ Examples:

- attrs (21, 23, 24) vs attrs (1, 3, 4) has very strong correlation
- attrs(25, 26, 27, 28, 29, 30) has very strong correlation
- attrs (15, 16, ..., 20) vs attrs (1, 2, 3, 4) has very weak correlation
- o Draw the correlation using heatmap.

Line plot

- o I plotted a line plot for each class independently
- Conclusion
 - by comparing both attr 3 and attr 23 seems to has a higher value in class 'B' than in class' (colored by green)
 - same for attrs (1, 2, 21, 22, 11, 12) (colored by blue and orange)

Class B

Class M

Data Preprocessing:

• Split the data int train and test sets using StratifiedShuffleSplit

• Normalization:

• Z-score:

■ Calculate z-score using zscore(x) from scipy library

■ Conclusion:

- The result data spread on less scale, so values are more close to each other.
- A value is exactly equal to the mean of all the values of the feature, it will be normalized to 0. If it is below the mean, it will be a negative number, and if it is above the mean it will be a positive number.

• Dimensionality reduction

- Feature Projection:
 - Use PCA from the scikit-learn library seeking to sum of variance ratio we need of 0.95.
 - Number of PCA components = 10
 - Plot correlation matrix for result data.

Train Data

ID -	100	0.05	-0.04	0.13	-0.02	-0.01	-0.10	0.10	0.14	0.19	0.04
principal component 1 -	0.05	1.00	-0.00	0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	0.00
principal component 2 -	-0.04	-0.00	100	-0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00
principal component 3 -	0.13	0.00	-0.00	1.00	-0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00
principal component 4 -	-0.02	0.00	0.00	-0.00	1.00	0.00	-0.00	-0.00	0.00	-0.00	0.00
principal component 5 -	-0.01	0.00	0.00	0.00	0.00	1.00	0.00	-0.00	0.00	-0.00	0.00
principal component 6 -	-0.10	0.00	-0.00	-0.00	-0.00	0.00	1.00	-0.00	-0.00	0.00	-0.00
principal component 7 -	0.10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	1.00	0.00	-0.00	0.00
principal component 8 -	0.14	0.00	0.00	-0.00	0.00	0.00	-0.00	0.00	1.00	0.00	0.00
principal component 9 -	0.19	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	1.00	-0.00
principal component 10 -	0.04	0.00	0.00	-0.00	0.00	0.00	-0.00	0.00	0.00	-0.00	1.00
	- QI	principal component 1 -	principal component 2 –	principal component 3 -	principal component 4 -	principal component 5 -	principal component 6 -	principal component 7 -	principal component 8 –	principal component 9 -	principal component 10 –

Test Data

■ Conclusion

- Principal component analysis convert a set of observations of correlated variables into a set of values of linearly uncorrelated variables called principal components
- less than half of the attributes can describe the data with 0.95 percent.

Classification

Decision tree

- Used GridSearchCV for tunning the depth parameter among the given values [5, 7, 10, 15, 20, 30] and get 5 as the best value.
- Train the model with DecisionTreeClassifier from Sk-learn
- Compute precision, recall, F-score using precision_recall_fscore_support from SK-learn
 - precision: 0.9193548387096774 for "M" class ,0.9357798165137615 for "B" class
 - recall: 0.890625 for "M" class, 0.9532710280373832 for "B" class
 - fscore: 0.9047619047619047 for "M" class , 0.9444444444444445 for "B" class
- Compute Confusion matrix using confusion_matrix from SK-learn

Note

The same algorithm tested for depth = 15, 50 and less value for Evaluation matrices are obtained, so parameter tunning helped to get better accuracy.

AdaBoost Classifier

- Used GridSearchCV for tunning
 - n_estimators in range [10, 50, 100, 200, 500]
 - learning_rate in range [0.25, 0.5, 1, 1.5, 2, 3]
 - Best value of learning rate = 1.5
 - Best value of n estimators = 200
- Train the model with AdaBoostClassifier from Sk-learn
- Compute precision, recall, F-score using precision_recall_fscore_support from SK-learn
 - precision: 0.9375 for "M" class , 0.9626168224299065 for "B" class
 - recall: 0.9375 for "M" class, 0.9626168224299065 for "B" class
 - fscore: 0.9375 for "M" class, 0.9626168224299065 for "B" class
- Compute Confusion matrix using confusion_matrix from SK-learn

Note

The same algorithm tested for learning rate = 0.5, 2..5 and n_estimtors = 50, 300 and less value for Evaluation matrices are obtained, so parameter tunning helped to get better accuracy.

Random Forest Classifier

- Used GridSearchCV for tunning
 - depth in range [5, 10, 15, 20, 50]
 - n estimators in range [10, 50, 100, 200, 500]
 - Best value of depth = 10
 - Best value of n_estimators = 50
- Train the model with RandomForestClassifier from Sk-learn
- Compute precision, recall, F-score using precision_recall_fscore_support from SK-learn
 - precision: 0.9016393442622951 for "M" class ,0.9181818181818182 for "B" class
 - recall: 0.859375 for "M" class, 0.9439252336448598 for "B" class
 - fscore: 0.88 for "M" class , 0.9308755760368663 for "B" class
- Compute Confusion matrix using confusion_matrix from SK-learn

Note

The same algorithm tested for depth = 2, 20 and n_estimtors = 50, 200 and less value for Evaluation matrices are obtained, so parameter tunning helped to get better accuracy.

Conclusion

- All the models have very good values for the precession, recall, and F-score
- The best model is the AdaBoost classifier as the number of wrongly classified samples is less = 9