

a)

Rconv1 =
$$\frac{1}{K \cdot A} = \frac{1}{10 \text{ W/ m}^2 \cdot ^{\circ}\text{C} \times 0,25\text{m}^2} = 0,4 \, ^{\circ}\text{C/W}$$

Rbrick =
$$Lf$$
 = $0.03m$ = $4.615 °C/W$
K . A $0.26W/m^2.°C \times 0.25m^2$

Rplaster_{sx,dx} =
$$L$$
 = $0.363 \, ^{\circ}\text{C/W}$
K . A $0.22 \, \text{W/m}^2. ^{\circ}\text{C} \times 0.25 \, \text{m}^2$ = $0.363 \, ^{\circ}\text{C/W}$

Rplaster_{top,down} =
$$\frac{L}{K \cdot A} = \frac{0.32m}{0.22W/m^2 \cdot ^{\circ}C \times 0.015m^2} = 96.96 \, ^{\circ}C/W$$

Rbrick =
$$L$$
 = $0.32m$ = 2.02 °C/W
K . A $0.72W/m^2$. °C x $0.22m^2$

Rconv₂ =
$$\frac{1}{H_2 \cdot A} = \frac{1}{40W/m^2 \cdot {^{\circ}C} \times 0.25m^2} = 0.10 \, {^{\circ}C/W}$$

$$\frac{1}{\text{Rtot parall}}$$
 = 2 *($\frac{1}{\text{Rplaster top,down}}$)+ $\frac{1}{\text{Rbrick}}$ = 0,5156 °C/W Rtot parall = $\frac{1}{0,5156}$ = 1.9394

Q=
$$\Delta T$$
 = 20°C - (-10°C) = 30°C = 15,46 W
Rtotal 1,9394 °C/W 1,9394 °C/W

Rtotal= Rtotal= Rconv₁ + Rfoam + Rplaster₁ + R tot parall+ Rplaster₂ + Rconv₂ =
$$0.40 \text{ °C/W} + 4.615 \text{ °C/W} + 0.36 \text{ °C/W} + 1.9394 \text{ °C/W} + 0.36 \text{ °C/W} + 0.10 \text{ °C/W} = 7.7744 \text{ °C/W}$$

Foam is the moast resistant material in this example.

Q=
$$\Delta T$$
 = 20°C - (-10°C) = 30°C = 3,85 W
Rtotal 7,855 °C/W 7,7744 °C/W

Conclusion: the heat transfer through a wall made with a 32cm brick is less than the one made with a 16cm brick.

WOOD **INSULATION** Outside air 0,03 0,03 Wood bevel 0,14 0,14 Plywood 0,11 0,11 Urethane rigid foam NO 0,98 Wood studs 0,63 NO Gypsum board 0,079 0,079 Inside surface 0,12 0,12 Rwood= 1,109 m².°C/W Rwood= 1,459 m².°C/W

• Q=
$$\Delta T$$
 = $22^{\circ}C - (-2^{\circ}C)$ = $24^{\circ}C$ = **21,64W**
Rtotal 1,109°C/W 1,109°C/W
• Q= ΔT = $22^{\circ}C - (-2^{\circ}C)$ = $24^{\circ}C$ = **16,44W**
Rtotal 1,459°C/W 1,459°C/W