

Convolutional Neural Networks

Outline of Presentation

- . Image and Computers
- · Features Extraction
- · Manual Feature Extraction
- Manual feature Representation
- **❖** Feature Extraction Issues
- · Fully Connected Neural Network
- * Feature Extraction and Convolution
- · Feature Matching
- · Convolution Operation
- · Convolution Layer and Feature Maps
- Convolutional Neural Network: Spatial View
- Pooling and Activation Function (ReLU)
- · CNNs Applications

Visual Cortex and Deep Neural Network (DNN)

Visual Cortex and Deep Neural Network (DNN)

Comparison of Biological neural network and Artificial Neural Network

Biological Neural Network	Artificial Neural Network		
Stimulus	Input		
Receptor	Input Layer		
Neural Network	Processing Layer		
Neuron	Processing Element		
Dendrite	Addition Function		
Synapse	Weight		
Cell Body	Transfer/ Activation Function		
Axon	Artificial Neural Output		

Images are Just a Matrix of Numbers

255	200	211	235	1
200	161	217	233	0
218	65	214	237	0
232	29	217	236	0
234	23	216	240	0
102	31	217	234	0

Computer Interpretation

- For a grayscale images, the pixel value is a single number that represents the brightness of the pixel. The most common pixel format is the byte image, where this number is stored as an 8-bit integer giving a range of possible values from 0 to 255.
- Similarly for color images, each level is represented by the range of decimal numbers from 0 to 255 (256 levels for each color), equivalent to the range of binary numbers from 00000000 to 11111111, or hexadecimal 00 to FF. The total number of available colors is 256 x 256 x 256, or 16,777,216 possible color.

Computer Vision Task

- Regression is about predicting a quantity. It is the process of finding a model or function for distinguishing the data into continuous real values. Example: Price estimation of houses.
- Classification- is about predicting a label. It is the process of finding or discovering a model or function which helps in separating the data into multiple categorical classes i.e. discrete values.

High Level Feature Detection

Low-level features are minor details of the image, like lines or dots, that can be picked up by convolutional filter (for really low-level things) or SIFT or HOG (for more abstract things like edges). High-level features are built on top of low-level features to detect objects and larger shapes in the image.

Key Features

Manual Feature Extraction

Manual Feature Extraction: Issues

Occlusion

Cluttered Background

Intra-class Diversity

Object Deformation

Scale Variation

Illumination Variation

Change in Viewing Angles

Image Deformity

Feature Representation

Fully Connected Neural Network

Fully connected neural networks (FCNNs) are a type of artificial neural network where the architecture is such that all the nodes, or neurons, in one layer are connected to the neurons in the next layer.

Fully Connected Neural Network

Feature Extraction using Convolution

Connect Input Layer patches to neurons of hidden layer/subsequent layer with sliding window approach.

Step 1:

Extract Set of Local Features by applying filters (set of weights)

Step 2:

Apply Multiple Filters for extraction of different features

Step 3:

Spatial Sharing of parameters for each filter

Convolutional Neural Network (Feature Extraction and Convolution)

Challenging Cases

Computer and Human Interpretation

Computer Interpretation

Computers are Literal

Feature matching for symbol 'X'

Piece Matching of Features

Piece Matching of Features

Image

Convolved Feature

1	1	1
1	1	1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	51	21	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	1
1	1	1
1		

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	51	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	1
1	1	1
1	1	

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	E1	21	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	1
1	1	1
1	1	1

Feature Map

1	1	1
1	1	1
1	1	1

$$\frac{1+1+1+1+1+1+1+1}{9} = \boxed{1}$$

Filter

Feature Map

1	1	-1
1	1	1
-1	1	1

$$\frac{1+1-1+1+1+1-1+1+1}{9} = \boxed{.55}$$

0.77	-0.11	0.01	0.33	0.55	0.11	0.33
-0.11	1.00	-0.11	0.33	-0.12		-7.11
0.11	-0-11	1.00	-0.33		0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55			-0.33	1:00	0.11	
-0.11		-0.11	0.33	-0.11	1.00	0.11
0.33	-6.11	0.55	0.33	0.11	-0.11	0.77

Convolutional layer

Convolutional layer

Feature Maps on an Image

Sharpen

Edge Detected

Original Image

Output Image - Same as Original

Original image

The emboss kernel (similar to the Sobel kernel and sometimes referred to mean the same) givens the illusion of depth by emphasizing the differences of pixels in a given direction. In this case, in a direction along a line from the top left to the bottom right.

An outline kernel (also called an "edge" kernel) is used to highlight large differences in pixel values. A pixel next to neighbor pixels with close to the same intensity will appear black in the new image while one next to neighbor pixels that differ strongly will appear white.

The sharpen kernel emphasizes differences in adjacent pixel values. This makes the image look more vivid.

CONVOLUTIONAL NEURAL NETWORK--- CLASSIFICATION

Feature Extraction using Spatial Structure

Connect Input Layer patches to neurons of hidden layer/subsequent layer with sliding window approach.

Step 1:

Take inputs from the window (set of weights)

Step 2:

Calculation of weighted sum

Step 3:

Apply Bias

Feature Extraction using Spatial Structure

Step 1:

Take inputs from the window (set of weights)

Step 2:

Calculation of weighted sum

Step 3:

Apply Bias

For (p, q) neuron in hidden layer

$$\sum_{i=1}^{4} \sum_{i=1}^{4} w_{ij} x_{i+p,j+q} + 1$$

Where, w_{ij} = weights in matrix

Convolutional Neural Network--- Spatial View

Stride = Step size of filter, Receptive Field = Location of connected path in an input image

Non-Linearity in Convolutional Neural Network

Applied after every convolutional layer. The rectified linear activation (ReLU) function is a simple calculation that returns the value provided as input directly, or the value 0.0 if the input is 0.0 or less.

$$g(x) = max(0, x)$$

ReLU layer

A stack of images becomes a stack of images with no negative values.

POOLING

- Dimensionality Reduction
- Preserve Spatial Invariance

STEPS

- Pick a window size (usually 2 or 3).
- Pick a stride (usually 2).
- Walk your window across your filtered images.
- From each window, take the maximum value.

Pooling: Shrinking the Image stack

- Pick a window size (usually 2 or 3).
- Pick a stride (usually 2).
- Walk your window across your filtered images.
- From each window, take the maximum value.

The three types of pooling operations are:

- Max pooling: The maximum pixel value of the batch is selected.
- ■Min pooling: The minimum pixel value of the batch is selected.
- ■Average pooling: The average value of all the pixels in the batch is selected.

Pooling layer

A stack of images becomes a stack of smaller images.

Stacking of Layers

Multiple Stacking of Layers

Fully Connected Layer (Training Phase)

Fully Connected Layer (Training Phase)

Fully Connected Layer

Multiple Stacking of Fully Connected Layers

Stacking of Multiple Layers

Convolutional Classification

Neural Network-

- · Convolutional layer and Pooling help to extract high level features of input
- · Fully connected layer used extracted high level features for classification of input image in different classes
- · Output also include the class probability of the image

Image Augmentation

To reduce the problem of overfitting, various augmentation variants can be applied to particular image of the training dataset.

Applications of CNNs

Face Recognition

Analyzing Documents

Medical Imaging

Applications of CNNs

Automatic Navigation

Applications of CNNs

Image Recognition (Prediction of objects in different classes)

