1 – Na figura encontra-se um Sistema de processamento de sinais contínuos no tempo, constituído por um sistema discrete, linear e causal, caracterizado pela equação de diferenças:

$$y[n] = 0.5y[n-1] + x[n]$$

a) Determine a resposta em frequência do sistema discreto.

b) Considere representado graficamente por:

Represente graficamente o espectro dos sinais p(t), $x_p(t)$, x[n], y[n], $\tilde{y}(t)$, $y_c(t)$.

3 – Considere o sistema de processamento digital de sinais contínuos:

O sistema pretende remover um eco, sendo o sinal de entrada dado por $s_c(t) = x(t) + \alpha x(t-t_0), |\alpha| < 1$.

a) Suponha que $T_0 < \frac{\pi}{\omega_M}$. Verifique que se pode tomar como período de amostragem $T_0 = T$.

- b) Determine a equação de diferenças do filtro digital h[n] tal que $y_c(t)$ seja proporcional a x(t). Considere a relação $T_0 = T$.
- c) Suponha que numa aplicação real com fala telefónica amostrada a 8 KHz e com $\omega_M = 4$ KHz mediu-se um atraso de eco $T_0 = 0.55$ ms. Determine a frequência de amostragem que permite a remoção do eco pelo sistema. Determine ω_M que evita o *aliasing*.

3 – Considere o sistema:

O sistema LTI contínuo é causal e satisfaz a seguinte equação diferencial linear de coeficientes constantes:

$$\frac{dy_c(t)}{dt} + y_c(t) = x_c(t)$$

Determine $y_c(t)$.

b) Determine a resposta em frequência do sistema discreto $H(\Omega)$, bem como a sua resposta impulsional h[n] tal que $\omega[n] = \delta[n]$.