Legacy Systems

• Older software systems that remain vital to an organisation

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Objectives

- To explain what is meant by a legacy system and why these systems are important
- To introduce common legacy system structures
- To briefly describe function-oriented design
- To explain how the value of legacy systems can be assessed

©Ian Sommerville 200

Software Engineering, 6th edition. Chapter 26

Topics covered

- · Legacy system structures
- · Legacy system design
- · Legacy system assessment

©Ian Sommerville 2000

oftware Engineering, 6th edition. Chapter 26

Legacy systems

- Software systems that are developed specially for an organisation have a long lifetime
- Many software systems that are still in use were developed many years ago using technologies that are now obsolete
- These systems are still business critical that is, they are essential for the normal functioning of the business
- They have been given the name legacy systems

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Legacy system replacement

- There is a significant business risk in simply scrapping a legacy system and replacing it with a system that has been developed using modern technology
 - Legacy systems rarely have a complete specification. During their lifetime they have undergone major changes which may not have been documented
 - Business processes are reliant on the legacy system
 - The system may embed business rules that are not formally documented elsewhere
 - New software development is risky and may not be successful

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 5

Legacy system change

- Systems must change in order to remain useful
- However, changing legacy systems is often expensive
 - Different parts implemented by different teams so no consistent programming style
 - The system may use an obsolete programming language
 - The system documentation is often out-of-date
 - The system structure may be corrupted by many years of maintenance
 - Techniques to save space or increase speed at the expense of understandability may have been used
 - File structures used may be incompatible

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

The legacy dilemma

- It is expensive and risky to replace the legacy system
- · It is expensive to maintain the legacy system
- Businesses must weigh up the costs and risks and may choose to extend the system lifetime using techniques such as re-engineering.
- This is covered in Chapters 27 and 28

©Ian Sommerville 2000

Software Engineering 6th edition Chanter 26

Slide 7

Legacy system structures

- Legacy systems can be considered to be sociotechnical systems and not simply software systems
 - System hardware may be mainframe hardware
 - · Support software operating systems and utilities
 - · Application software several different programs
 - Application data data used by these programs that is often critical business information
 - Business processes the processes that support a business objective and which rely on the legacy software and hardware
 - Business policies and rules constraints on business operations

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Layered model

Socio-technical system

Business processes

Application software

Support software

Hardware

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 10

System change

- In principle, it should be possible to replace a layer in the system leaving the other layers unchanged
- In practice, this is usually impossible
 - Changing one layer introduces new facilities and higher level layers must then change to make use of these
 - Changing the software may slow it down so hardware changes are then required
 - It is often impossible to maintain hardware interfaces because of the wide gap between mainframes and client-server systems

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

11

Legacy application system

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Database-centred system

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 13

Transaction processing

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 14

Legacy data

- The system may be file-based with incompatible files. The change required may be to move to a database-management system
- In legacy systems that use a DBMS the database management system may be obsolete and incompatible with other DBMSs used by the business
- The teleprocessing monitor may be designed for a particular DB and mainframe. Changing to a new DB may require a new TP monitor

©Ian Sommerville 200

Software Engineering, 6th edition. Chapter 26

Slide 15

Legacy system design

- Most legacy systems were designed before object-oriented development was used
- Rather than being organised as a set of interacting objects, these systems have been designed using a function-oriented design strategy
- Several methods and CASE tools are available to support function-oriented design and the approach is still used for many business applications

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 16

A function-oriented view of design

Functional design process

- Data-flow design
 - Model the data processing in the system using data-flow diagrams
- Structural decomposition
 - Model how functions are decomposed to sub-functions using graphical structure charts
- · Detailed design
 - The entities in the design and their interfaces are described in detail. These may be recorded in a data dictionary and the design expressed using a PDL

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Input-process-output model

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 19

Input-process-output

- Input components read and validate data from a terminal or file
- Processing components carry out some transformations on that data
- Output components format and print the results of the computation
- Input, process and output can all be represented as functions with data 'flowing' between them

©Ian Sommerville 2000

oftware Engineering, 6th edition. Chapter 26

Data flow diagrams

- Show how an input data item is functionally transformed by a system into an output data item
- Are an integral part of many design methods and are supported by many CASE systems
- May be translated into either a sequential or parallel design. In a sequential design, processing elements are functions or procedures; in a parallel design, processing elements are tasks or processes

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 2

Payroll system DFD

Payroll batch processing

- The functions on the left of the DFD are input functions
 - Read employee record, Read monthly pay data, Validate employee data
- The central function Compute salary carries out the processing
- The functions to the right are output functions
 - Write tax transaction, Write pension data, Print payslip, Write bank transaction, Write social security data

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

...

Transaction processing

- A ban ATM system is an example of a transaction processing system
- Transactions are stateless in that they do not rely on the result of previous transactions. Therefore, a functional approach is a natural way to implement transaction processing

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Design description of an ATM

Using function-oriented design

- For some classes of system, such as some transaction processing systems, a functionoriented approach may be a better approach to design than an object-oriented approach
- Companies may have invested in CASE tools and methods for function-oriented design and may not wish to incur the costs and risks of moving to an object-oriented approach

©Ian Sommerville 2000

oftware Engineering, 6th edition. Chapter 26

Legacy system assessment

- Organisations that rely on legacy systems must choose a strategy for evolving these systems
 - Scrap the system completely and modify business processes so that it is no longer required
 - Continue maintaining the system
 - Transform the system by re-engineering to improve its maintainability
 - Replace the system with a new system
- The strategy chosen should depend on the system quality and its business value

©Ian Sommerville 200

Software Engineering, 6th edition. Chapter 2

Slide 27

System quality and business value

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Slide 28

Legacy system categories

- Low quality, low business value
 - These systems should be scrapped
- Low-quality, high-business value
 - These make an important business contribution but are expensive to maintain. Should be re-engineered or replaced if a suitable system is available
- · High-quality, low-business value
 - Replace with COTS, scrap completely or maintain
- High-quality, high business value
 - Continue in operation using normal system maintenance

©Ian Sommerville 200

Software Engineering, 6th edition. Chapter 26

lide 29

Business value assessment

- Assessment should take different viewpoints into account
 - System end-users
 - Business customers
 - Line manager
 IT managers
 - Senior managers
- Interview different stakeholders and collate results

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

System quality assessment

- · Business process assessment
 - How well does the business process support the current goals of the business?
- Environment assessment
 - How effective is the system's environment and how expensive is it to maintain
- Application assessment
 - What is the quality of the application software system

©Ian Sommerville 2000

Software Engineering 6th adition Chapter 26

Slide 31

Business process assessment

- Use a viewpoint-oriented approach and seek answers from system stakeholders
 - Is there a defined process model and is it followed?
 - Do different parts of the organisation use different processes for the same function?
 - How has the process been adapted?
 - What are the relationships with other business processes and are these necessary?
 - Is the process effectively supported by the legacy application software?

©Ian Sommerville 2000

oftware Engineering, 6th edition. Chapter 26

Slide 32

Environment assessment

Factor	Questions
Supplier	Is the supplier is still in existence? Is the supplier financially stable and
stability	likely to continue in existence? If the supplier is no longer in business,
	are the systems maintained by so meone else?
Failure rate	Does the hardware have a high rate of reported failures? Does the
	support software crash and force system restarts?
Age	How old is the hardware and software? The older the hardware and
	support software, the more obsolete it will be. It may still function
	correctly but there could be significant economic and business benefits
	to moving to more modern systems.
Performance	Is the performance of the system adequate? Do performance problems
	have a significant effect on system users?
Support	What local support is required by the hardware and software? If there
requirements	are high costs associated with this support, it may be worth considering
	system replacement.
Maintenance	What are the costs of hardware maintenance and support software
costs	licences? Older hardware may have higher maintenance costs than
	modern systems. Support software may have high annual licensing
	costs.
Interoperability	Are there problems interfacing the system to other systems? Can
	compilers etc. be used with current versions of the operating system? I
	hardware emulation required?

Application assessment

Factor	Questions
Understandability	How difficult is it to understand the source code of the current system?
	How complex are the control structures which are used? Do variables
	have meaningful names that reflect their function?
Documentation	What system documentation is available? Is the documentation
	complete, consistent and up-to-date?
Data	Is there an explicit data model for the system? To what extent is data
	duplicated in different files? Is the data used by the system up-to-date
	and consistent?
Performance	Is the performance of the application adequate? Do performance
	problems have a significant effect on system users?
Programming	Are modern compilers available for the programming language u sed to
language	develop the system? Is the programming language still used for new
	system development?
Configuration	Are all versions of all parts of the system managed by a configuration
management	management system? Is there an explicit description of the versions of
	components that are used in the current system?
Test data	Does test data for the system exist? Is there a record of regression tests
	carried out when new features have been added to the system?
Personnel skills	Are there people available who have the skills to maintain the
	application? Are there only a limited number of people who understand
	the system?
on Commoraille 2000	Software Engineering 6th edition Chapter 26

System measurement

- You may collect quantitative data to make an assessment of the quality of the application system
 - $\bullet \quad \ \ \, \text{The number of system change requests}$
 - The number of different user interfaces used by the system
 - The volume of data used by the system

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Key points

- A legacy system is an old system that still provides essential business services
- Legacy systems are not just application software but also include business processes, support software and hardware
- Most legacy systems are made up of several different programs and shared data
- A function-oriented approach has been used in the design of most legacy systems

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26

Key points

- The structure of legacy business systems normally follows an input-process-output model
- The business value of a system and its quality should be used to choose an evolution strategy
- The business value reflects the system's effectiveness in supporting business goals
- System quality depends on business processes, the system's environment and the application software

©Ian Sommerville 2000

Software Engineering, 6th edition. Chapter 26