- 1. 🗆 Formulujte základní úlohu lineárního programování
 - $Ax \leq b, x \geq 0$
- 2.

 □ Proveď te klasifikaci úloh lineárního programování.
 - soubor metod umožňující výběr optimální varianty při danem kritériu a podmínkách. Patří do odvětví optimalizace. Řeší problém nalezení min/max lin. fce n proměnných na množině popsané soustavou lineárních nerovností. Je to speciální úloha neklasického vázaného extrému
 - $\max_{t} c^{t}x$, $Ax \leq b$; $\min_{t} c^{t}x$, $Ax \leq b$; $\max_{t} c^{t}x$, $Ax \geq b$; $\min_{t} c^{t}x$, $Ax \geq b$
 - kombinovane jsou tam taky
- 3.

 □ Popište primární a duální úlohu lineárního programování.
 - asi: V primarni hledame maximum, v dualni minimum
 - Ke každé základní úloze loneárního programování lze definovat úlohu duální, kdy se vymění minimum a maximum a otočí se nerovnosti v omezení
- 4. \square Jak může vypadat množina přípustných řešení úlohy lineárního programování?
 - Množina přípustných řešení úlohy LP je uzavřená a konvexní a má konečný počet krajních bodů.
 - jedna se o polyedr
- 5. U v jakých bodech množiny přípustných řešení může být optimální řešení úlohy LP?
 - Máli úloha LP optimální řešení, potom alespoň jedno optimální řešení je krajním bodem množiny přípustných řešení.
 - Pokud je množina přípustných řešení omezená, je množina všech optimálních řešení konvexním obalem množiny všech těch optimálních řešení, která jsou krajními body množiny přípustných řešení.
- 6. \square Popište simplexovou tabulku pro úlohu lineárního programování.
 - nerovnice doplnim pridatnymi promennymi na rovnice a dodam radek ucelove fce jako posledni radek simplexove tabulky (s opacnymi znamenky)

7.	\square ? Jak odečtete řešení duální úlohy lineárního programování v simplexové tabulce?
	\bullet Ze simplexove tabulky odecteme hodnoty z pomocnych promennych a funkcni hodnotu
8.	□ Jaké podmínky musí splňovat matematický model (resp. jak vypadá), abychom jej nazývali modelem LP? linearni fce, linear. omezeni a podminky nezapornosti
9.	□ Uvažujme takovou úlohu LP, kde některé/á omezení není/nejsou vyčerpána. Nicméně, se trvá na plném dočerpání omezení. Co toto rozhodnutí může znamenat pro hodnotu účelové funkce a j řešení? Nebude maximalni. Napr. prodelame
10.	\Box Jak se formuluje úloha celočí selného lineárního programování a naznačte, jak se to projeví v řešení.
	 lineární programování + podmínka řešení v celých číslech Optimální řešení se nemusí nacházet na hranici polyedru omezení Hodnota účelové funkce při celočíselném řešení je obvykle "horší" než v neceločíselném
11.	\Box Je celočíselné zaokrouhlení cestou k řešení úlohy celočíselného rogramování? Ne
12.	\Box Formulujte úlohu síťové (grafické) formy dynamického programování a popište postup řešení.
	• formou grafu a jednou od cile k pocatku a jednou, jedna cesta mne vylouci nemozne (slepe ulicky), druha cesta udela souvislou krivku spojeni
13.	\Box Popište způsob řešení úlohy dynamického programování v tabulce dynamického programování. asi proste jen popsat ty tabluky
14.	\square Které osobnosti znáte jako tvůrce moderní teorie her.
	• Pocatky: Daniel Bernoulli, Gabriel Cramer, Daniel Bernoulli, Émile Borel

Harsanyim, T. C. Schellingovi a R.J.Aumannovi

• Modernejsi: John von Neumann, Oskarem Morgensternem, John Forbes Nash, Reinhardem Seltenem a Johnem C.

- 15. \Box Jaké znáte základní principy v teorii rozhodování? Vyjmenujte aspoň dva.
 - Princip minimaxní (pesimistické) kritérium
 - Princip maximaxní (optimistické) kritérium
 - Hurwitzovo kritérium,
 - Minimalizace funkce lítosti,
 - Laplaceův princip,
 - Bernouliho princip,
 - Cramérův princip postoje k riziku,
 - Rozhodování o preferencích, atd.
- 16. □ Co je funkce užitku v teorii rozhodování?
 - poskytují jednoduché a jasné pravidlo pro rozřešení obtížných rozhodovacích situací
- 17. \square Co je maticová hra dvou hráčů? Dvoumaticovou hrou se rozumí hra dvou hráčů v normálním tvaru, kde hráč $\mathit{H1}$ má konečnou množinu strategií $S = \{s_1, s_2, \ldots, s_m\}$ a hráč $\mathit{H2}$ má konečnou množinu strategií $T = \{t_1, t_2, \ldots, t_n\}$. Při volbě strategií (s_i, t_j) je výhra prvního hráče $a_{ij} = u_1(s_i, t_j)$ a výhra druhého hráče $b_{ij} = u_2(s_i, t_j)$, funkce u_1, u_2 se nazývají výplatní funkce.
- 18. \square Co je dolní cena hry a horní cena hry?
 - Maximum z minim se nazývá dolní cena hry, minimum z maxim se nazývá horní cena hry
- 19. □ Jaký je rozdíl mezi čistou a smíšenou strategií?
 - Cista (ryzi) horni a dolni cesta jsou totozne
 - Matice nema sedlovy prvek reseni bude pouze ve smisenych strategiich
- 20. 🗆 Jaký je vztah čisté strategie a sedlového prvku matice.
 - sedlovy prvek matice obsahuje hodnotu optimalniho reseni a take strategii, kterou maji hraci vyuzit

- ChatGPT: Vztah mezi čistou strategií a sedlovým prvkem v matici spočívá v tom, že sedlový prvek v matici reprezentuje čistou strategii pro oba hráče, která je nejlepší vzhledem k vybraným strategiím druhého hráče. To znamená, že se jedná o bod, kde hráči dosáhnou největší možné výhry, pokud oba používají tuto optimální strategii
- Sedlový bod a čistá strategie existuje právě tehdy, jestliže horní a dolní cena hry jsou totožné
- Vyjadřuje optimální řešení maticové hry
- 21. □ Popište, jak se nalezne sedlový prvek matice. asi: souradnice dolni a horni cesty, pokud se svou hodnotou rovnaji
- 22. \square Popište geometrický způsob nalezení smíšené strategie pro matice 2 x 2.
 - asi? tr. 80
 - dam tam cisla matic a tam, kde se to protne, je extremalni hodnota pravdepodobnosti matic, ktere nemaji sedlovy prvek
- 23. \square ? Popište způsob převodu smíšené strategie na úlohu lineárního programování.
- 24. \square Definujte separovatelnou funkci reálné funkce n
 reálných proměnných
 - $f(x_1, \dots, x_n) = \sum_{i=1}^n f_i(x_i)$