Nome____

COMPUTAÇÃO GRÁFICA E INTERFACES

LEI/FCT/UNL – Ano letivo 2013/2014 Teste 2 – 2013.12.10

Atenção:

Responda no próprio enunciado, que entregará.

Em caso de engano e se o espaço para as respostas não for suficiente poderá usar o verso das folhas desde que feitas as devidas referências. Não desagrafe as folhas!

A prova, com duração de **1H30**, é **sem consulta**!

1.

Ao polígono P=[A,B,C,D,E,F] vai aplicar-se o recorte pela janela Q=[1,2,3,4], usando para tal o algoritmo de Sutherland-Hodgman. Considere que a ordem de progressão do algoritmo é Clip Right→Clip Left→Clip Bottom→Clip Top. Nas respostas às questões abaixo **não renomeie** os pontos já identificados na figura e não se esqueça de nela indicar os pontos adicionais de que vier a necessitar.

a) Indique os polígonos resultantes das primeiras duas fases de recorte:

Clip Right: [

Clip Left: [

b) Quantas arestas irá ter o polígono P', que será o resultado final do recorte de P em Q? ______ Indique qual será, no final do processamento, a especificação do polígono recortado P':

P' = [

- c) Na figura dada, pinte as regiões que ficariam preenchidas pelo aplicação do algoritmo de FILL AREA (par-ímpar) ao polígono recortado P'.
- d) Quantas entradas não vazias apresentaria a Tabela de Arestas (TA), do referido algoritmo, no contexto da sua aplicação a P', tal como referido em c)? _____

Ρá	g. 2/4	NomeNúmero
e)	Identifique	e cada uma dessas entradas, assim como o respetivo conteúdo:
	Se auiséss	emos pintar a parte do polígono P exterior à janela de recorte Q, tal seria possível usando
	-	algoritmo de FILL-AREA aplicado ao polígono inicial P, em conjunção com a utilização do
	_	
	algoritmo	de Z-Buffer? Justifique a sua resposta:
g)	Haverá alg	guma perda de generalidade pelo facto do algoritmo de Z-Buffer realizar a determinação
	das superf	ícies ocultas usando como base a coordenada z dos pixels a pintar? Justifique:
h)	Considera	ndo agora o algoritmo de Cohen-Sutherland, para o recorte das areastas do polígono P
11)		Q, indique uma aresta que:
	ania trivia	almonto agaito.
		almente aceite: possa, no máximo, ter duas interseções:
	-	ficação do código de bits dos seus extremos se pudesse concluir não ser adjacente a
	nenhuma a	aresta trivialmente aceite:
;)	No conário	o propocto em h) indique co a coguinto afirmação á verdadeira ou falca e justifique
-		o proposto em h), indique se a seguinte afirmação é verdadeira ou falsa e justifique: o um OR bit a bit de todos os códigos dos vértices do polígono P, um dos bits do resultado, e
	apenas um	

Pág.	3/4	
rag.	3/4	

Nome_____Número_____

2.

Considere a seguinte composição de transformações geométricas aplicadas às primitivas P₁,...,P₆.:

$$\begin{split} &T(2,3,1).R_z(45^\circ).S(1,2,3).T(0,1,2).P_1\\ &T(2,3,1).R_z(45^\circ).S(1,2,3).S(2,1,2).\ R_y(90^\circ).P_2\\ &T(2,3,1).R_z(45^\circ).S(1,2,3).T(2,1,3).P_3\\ &T(2,3,1).R_x(90^\circ).P_4\\ &T(2,3,1).T(0,5,0).P_5\\ &T(2,3,1).R_x(20^\circ).\ T(2,5,1).P_6 \end{split}$$

a) Esboçe o respetivo grafo de cena:

b) Escreva, em pseudo-código, o programa OpenGL otimizado correspondente, usando o menor número de operações glPushMatrix() e glPopMatrix():

Pág.	1.	11
Pag.	4	/4

Nome_____Número____

3.

As imagens abaixo representam uma textura preto-e-branco de 8x8 texels, assim como a sua aplicação, com dois mapeamentos distintos, a um mesmo polígono $P=[V_1,V_2,V_3,V_4]$, cujas coordenadas estão indicadas na figura.

a) Indique as coordenadas de textura (s_i,t_i) para o vértice V_i, em cada um dos mapeamentos:

Mapeamento 1:

$$(s_1,t_1) =$$

$$(s_2,t_2)=$$

$$(s_3,t_3)=$$

$$(s_4,t_4)=$$

Mapeamento 2:

$$(s_1,t_1) =$$

$$(s_2,t_2)=$$

_____ Justifique: _____

$$(s_3,t_3)=$$

$$(s_4,t_4)=$$

b) Dê uma explicação para o facto de cada quadrícula do mapeamento 2 ser um paralelogramo e não um trapézio, com a mesma forma que o polígono P:

a) No coso do os polígonos com a toutura manada vivom a con decembados recomendo a filtracom

c) No caso de os polígonos com a textura mapeada virem a ser desenhados recorrendo a filtragem, usada no contexto de anti-aliasing, as cores intermédias serão igualmente satisfatórias se forem calculadas em qualquer modelo de cor dos estudados nas aulas (RGB, CMY, HSV ou HLS)?