Stochastic Financial Models 2

Michael Tehranchi

9 October 2023

1 Mean-variance efficiency

To solve the mean-variance portfolio problem, we will use the following lemma

Lemma. If $\theta^{\top}a = b$ then

$$\theta^{\top} V \theta \ge \frac{b^2}{a^{\top} V^{-1} a}$$

with equality if and only if

$$\theta = \lambda \ V^{-1}a$$

where

$$\lambda = \frac{b}{a^\top V^{-1} a}.$$

 $Proof\ of\ lemma.$ Since V is non-negative definite we have

$$\theta^{\top}V\theta = \theta^{\top}V\theta + 2\lambda(b - \theta^{\top}a)$$

$$= (\theta - \lambda V^{-1}a)^{\top}V(\theta - \lambda V^{-1}a)$$

$$+ 2\lambda b - \lambda^{2} a^{\top}V^{-1}a$$

$$\geq 2\lambda b - \lambda^{2} a^{\top}V^{-1}a = \frac{b^{2}}{a^{\top}V^{-1}a}$$

and since V is positive definite there is equality only if

$$\theta = \lambda \ V^{-1} a$$

Remark. This proof is secretly using the Lagrangian technique from IB Optimisation or Variational Principles. The constant λ could be thought of as a Lagrange multiplier.

Remark. The lemma is equivalent to

$$(\theta^{\top} a)^2 < (\theta^{\top} V \theta) (a^{\top} V^{-1} a).$$

This is just the Cauchy–Schwarz inequality applied to the vectors $V^{1/2}\theta$ and $V^{-1/2}a$.

By applying the lemma with $a = \mu - (1+r)S_0$ and $b = \mathbb{E}(X_1) - (1+r)X_0$, we see that

$$Var(X_1) \ge \frac{(\mathbb{E}(X_1) - (1+r)X_0)^2}{[\mu - (1+r)S_0]^\top V^{-1}[\mu - (1+r)S_0]}$$

with equality if and only if

$$\theta = \lambda V^{-1} [\mu - (1+r)S_0]$$

where

$$\lambda = \frac{\mathbb{E}(X_1) - (1+r)X_0}{[\mu - (1+r)S_0]^{\top} V^{-1} [\mu - (1+r)S_0]}.$$

When the initial wealth X_0 is fixed, we can plot the set of all possible values of $(\mathbb{E}(X_1), \operatorname{Var}(X_1))$ as we vary the portfolio θ .

Definition. Given X_0 , the mean-variance efficient frontier is the lower boundary of the set of possible values of $(\mathbb{E}(X_1), \operatorname{Var}(X_1))$; i.e. the set $\{m, (\min_{\mathbb{E}(X_1)=m} \operatorname{Var}(X_1)) : m \in \mathbb{R}\}$.

Remark. Note that we have shown that the mean-variance efficient frontier is a parabola.

Proof of mean-variance optimal portfolio. If $m > (1+r)X_0$, then it is optimal to take $\mathbb{E}(X_1) = m$ with portfolio $\theta = \lambda V^{-1}$, since minimised variance increases with $\mathbb{E}(X_1)$.

However, if $m \leq (1+r)X_0$, then the minimised variance decreases with $\mathbb{E}(X_1)$ and hence it is optimal to take $\mathbb{E}(X_1) = (1+r)X_0 \geq m$, with portfolio $\theta = 0$.

Definition. Given X_0 , we say that a portfolio is *mean-variance efficient* iff it is the optimal solution to a mean-variance portfolio problem for *some* target mean m.

Theorem (Mutual fund theorem). A portfolio θ is mean-variance efficient if and only there exists a scalar $\lambda \geq 0$ such that

$$\theta = \lambda \ V^{-1}[\mu - (1+r)S_0]$$

Proof. We are given an initial wealth X_0 .

Suppose we are given a target mean m. Then the optimal solution of the mean-variance portfolio problem if of the correct form with

$$\lambda = \frac{(m - (1+r)X_0)^+}{[\mu - (1+r)S_0]^\top V^{-1}[\mu - (1+r)S_0]} \ge 0$$

On the other hand, suppose that we are given $\lambda \geq 0$. Then the given portfolio is the optimal solution of the mean-variance portfolio problem for target mean

$$m = (1+r)X_0 + \lambda[\mu - (1+r)S_0]^{\top}V^{-1}[\mu - (1+r)S_0].$$

2 Capital Asset Pricing Model

have positive, finite variances

Theorem (Linear regression coefficients). Let X and Y be two-square integrable random variables with Var(X) > 0. The unique constants a and b such that

$$Y = a + bX + Z$$

where $\mathbb{E}(Z) = 0$ and Cov(X, Z) = 0 are given by

$$b = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$$
 and $a = \mathbb{E}(Y) - b\mathbb{E}(X)$.

Proof. Let Z = Y - a - bX and note

$$\mathbb{E}(Z) = \mathbb{E}(Y) - a - b\mathbb{E}(X)$$
$$Cov(X, Z) = Cov(X, Y) - bVar(X)$$

The given a and b are the unique solution to the system of equations $\mathbb{E}(Z) = 0$ and Cov(X, Z) = 0.

Definition. The portfolio

$$\theta_{\text{Mar}} = V^{-1}[\mu - (1+r)S_0]$$

is called the market portfolio.

Remark. The name market portfolio is explained below.

Definition. Given initial wealth $X_0 > 0$, the excess return R^{ex} of a portfolio θ is defined by

$$R^{\text{ex}} = \frac{X_1}{X_0} - (1+r) = \frac{1}{X_0} \theta^{\top} [S_1 - (1+r)S_0]$$

Let $R_{\mathrm{Mar}}^{\mathrm{ex}}$ be the excess return of the market portfolio θ_{Mar} .

Theorem (Alpha is zero). Fix $X_0 > 0$ and a portfolio θ . Suppose α and β are such that

$$R^{\rm ex} = \alpha + \beta R_{\rm Mar}^{\rm ex} + \varepsilon$$

where $\mathbb{E}(\varepsilon) = 0$ and $\operatorname{Cov}(R_{\operatorname{Mar}}^{\operatorname{ex}}, \varepsilon) = 0$. Then $\alpha = 0$.

Proof. (next time) Note

and hence

$$Var(R_{Mar}^{ex}) = Cov(R_{Mar}^{ex}, R_{Mar}^{ex})$$
$$= \frac{1}{X_0} \mathbb{E}(R_{Mar}^{ex}).$$

By linear regression, we have

$$\beta = \frac{\text{Cov}(R^{\text{ex}}, R^{\text{ex}}_{\text{Mar}})}{\text{Var}(R^{\text{ex}}_{\text{Mar}})}$$
$$= \frac{\mathbb{E}(R^{\text{ex}}_{\text{Mar}})}{\mathbb{E}(R^{\text{ex}}_{\text{Mar}})}$$

and

$$\alpha = \mathbb{E}(R^{\text{ex}}) - \beta \mathbb{E}(R^{\text{ex}}_{\text{Mar}}) = 0.$$