Teoría de las comunicaciones

Práctica 5: Ruteo

Temas

Ruteo Estático, Ruteo Intra dominio, Inter dominio, Distance Vector, Link State, RIP, OSPF.

Definiciones

Protocolos de ruteo interno o intradominios (IGP, Internal Gateway Protocol):

Distance vector (vector de distancias): RIP (Routing Information Protocol)

Link state (estado del enlace): OSPF (Open Shortest Path First)

Protocolos de ruteo externo o interdominios (EGP, External Gateway Protocols):

Path vector: BGP (Border Gateway Protocol)

Métricas relevantes:

Métrica de RIP= 1

Métrica de OSPF= 10⁸/Ancho de banda [bps]

Técnicas para evitar ciclos RIP:

Split horizon: No envíar aquellas rutas que aprendió de un vecino de nuevo a ese vecino.

Split horizon with poison reverse: Ídem pero enviando infinito.

Ejercicio 1

En la red de la figura los enlaces están etiquetados con los costos relativos.

- a. Mostrar la tabla de forwarding para cada nodo. Cada tabla en cada nodo debe reflejar la ruta de menor costo para el envío de un paquete a un determinado destino.
- b. ¿De qué maneras se pueden llenar esas tablas?
- c. En el caso de ruteo dinámico, ¿Qué problemas se resuelven, además del llenado de las tablas?

Ejercicio 2

Entre Link State y Distance Vector:

- a. Compare la información que llevan los mensajes. ¿Qué datos envía cada uno?
- b. ¿Cuanto conocimiento de la red necesita un nodo para poder correr cada algoritmo? (uso de memoria)
- c. Compare los envíos de los paquetes. ¿Entre quienes se da el intercambio de información?

- d. Compare la carga de CPU dedicada a la ejecución del algoritmo en cada nodo.
- e. Para cada uno de los aspectos anteriores analice su crecimiento en función del tamaño de la red. ¿Que tipo de protocolo escala mejor?

Ejercicio 3

¿Cuáles de las siguientes estrategias de ruteo y forwarding obtienen el camino más corto a destino para un datagrama dado en todo tiempo t?

- Forwarding IP con Ruteo Estático.
- Forwarding IP con OSPF.
- Forwarding IP con RIP.
- Flooding.

Ejercicio 4

Nombre y explique la función de los campos relevantes de cada uno de los **protocolos** RIP y OSPF.

Ejercicio 5

Dada la red del Ejercicio 1 presentar la matriz global de Distance Vector en los siguientes escenarios:

- a. Los nodos recién bootean y solo conocen las distancias de sus vecinos inmediatos.
- b. Los nodos ya propagaron la información del inciso anterior.
- c. Otro paso de propagación más.

Ejercicio 6

Para un protocolo de vector de distancias corriendo en la red de la figura:

- a. ¿Cuántas corridas de intercambio de mensajes se necesitarían para llegar a un estado de convergencia?
- b. Suponga la caída del enlace B-D. ¿Qué diversos posibles escenarios se le ocurren de intercambio de mensajes respecto a la convergencia?
- c. Indicar y explicar tres formas de prevenir, anular y/o disminuir las anomalías respecto al retardo de convergencia.

Ejercicio 7

En la red de la figura, los nodos usan un algoritmo basado en Link State. En un momento dado C recibe dos Link State Packets(LSPs) contradictorios: uno de A que dice que el enlace entre A y B está caído y uno de B diciendo que el enlace entre A y B está activo.

- a. ¿Cómo pudo haber sucedido?
- b. ¿Que debería hacer C? ¿Qué debería asumir?

No asumir que los LSPs contienen marcas de tiempo sincronizadas.

Ejercicio 8

Calcule la capacidad de red (bps) consumida por los protocolos **OSPF** y **RIP** para las redes ya convergidas (presentadas al final del ejercicio) asumiendo las siguientes condiciones:

- Los updates automáticos se producen cada 30 segundos.
- El overhead impuesto por los headers es de 32 bits para ambos protocolos.
- Las métricas se almacenan con un entero de 32 bits.
- Las direcciones utilizadas son IPv4.
- Para el caso de **OSPF**: no tener en cuenta paquetes de control (ACK, HELLO, etc); los updates automáticos **modifican** las tablas de fordwarding.

Redes a utilizar:

Ejercicio 9

Dada la red de la figura donde recien se encienden los routers, se pide:

- a. Mostrar intercambio de mensajes y tablas de fordwarding generados por el uso del algoritmo RIP.
- b. Idem a. para el algoritmo OSPF. No olvidar tener en cuenta las métricas

Ejercicios de Parcial

Ejercicio 10

En la red de la figura, el router E que estaba apagado, se acaba de conectar. Todos los demás routers han alcanzado el estado estable y tienen sus tablas de ruteo construidas.

a. Muestre los vectores de distancias (destino, distancia) que recibirá E describiendo cómo E, a partir de la información recibida, construye la tabla de forwarding hasta que la red converge.

- b. Muestre un posible mensaje RIP que E pueda distribuir a sus vecinos.
- c. Además de RIP, esta red implementa OSPF. Muestre un posible mensaje OSPF que salga de B y su inundación en la red. (Asuma la red ya convergida)

Ejercicio 11

Dada la topología de red de la figura, mostrar la ruta que seguirá un paquete IP una vez que los routers alcanzaron el estado estable:

- a. Desde A hasta E si construyeron sus tablas utilizando RIP con *triggered updates*.
- b. Desde E hasta A si construyeron sus tablas utilizando OSPF en área única.
- c. En un instante se cae el enlace entre A y B. Resolver los dos items anteriores una vez que la red converge.

Ejercicio 12

Considerando la red de la figura, asuma que todos los nodos son routers que están recién encendidos y no han corrido aun ningún protocolo de ruteo:

- a. Describir una secuencia posible de paquetes RIP que envía el router A hasta que converge el protocolo.
- b. Mostrar la tabla de forwarding de todos los routers resultante de correr el protocolo OSPF.
- c. En un momento dado se ca
e el enlace entre B y C. Muestre una secuencia de cambios posible en la tabla de forwarding del router B hasta que el protocolo RIP converge a la nueva topología. Justifique los cambios en base a los mensajes del protocolo.

Ejercicio 13

Dada la red de la figura,

suponga que la red corrió exitosamente los algoritmos OSPF y RIPV1 y desde entonces no se han producido cambios en el topología.

- a. Muestre el contenido de los campos fundamentales para la ejecución de un paquete LSP y un paquete RIP generado como actualización periódica en el nodo 3.
- b. Que consecuencias desencadena la transmisión de los paquetes del punto (a.) en el resto de la red. (explicar que decisiones y acciones toman los routers de la red para OSPF y RIP)
- c. Basado en el punto (b.) que algoritmo genera mas trafico en el segmento de red 3 7. Nota: Considere evaluar la sumatoria de la cantidad de paquetes por el tamaño de los mismos como indicador del trafico generado.

Bibliografía

Computer Networks: A systems approach. 5ta Edición. $Peterson \ \mathcal{C}$ Davie. Capítulo 3: Internetworking.

Computer Networks, 5ta Edición. Andrew S. Tanenbaum & David J. Wetherall. Capítulo 5: The Network Layer (Secciones 5.1, 5.2, 5.5, 5.6 y 5.7).

RFC 2453: RIP Version 2 (Hasta sección 3.10.2).