Dynamic Programming

Slides were prepared using the following book: "Introduction to Operations Research, 8th Ed." - Chapter 10
F. S. Hillier, G. J. Lieberman
McGraw Hill, 2005

 $\underline{\text{Note:}}$ For the solutions to the examples used in the slides, please refer to the book.

Dynamic Programming

- Mathematical technique
- Systematic procedure for determining optimal combination of decisions
- Requires experience to determine when and how to apply dynamic programming to a problem

3

Prototypical Example – The Stagecoach Problem

• A problem specially constructed to illustrate the features and to introduce the terminology of dynamic programming problems

Prototypical Example – The Stagecoach Problem

- A mythical fortune seeker in Missouri decided to go west to join the gold rush during the mid-19th century.
- The journey required travel through a country where there was serious danger of attack by marauders.
- His starting and end positions were fixed but he could choose through which states he passed on his route.
- Possible routes are shown in the figure on the next slide, where states are represented as nodes.
- · Direction of travel is always from left to right.
- 4 coach runs are needed to go from A to J.

5

Prototypical Example – The Stagecoach Problem

- The fortune seeker was concerned about his safety.
- Coach passengers were offered life insurance policies.
- The cost of the policy depends on the safety of the traveled route.
- So, the safest route would be the cheapest.
- The fortune seeker wants to determine a route so that the total cost of the insurance policy would be minimized.

Prototypical Example – The Stagecoach Problem

Solving the Problem

· Choosing cheapest policy at each stage gives

$$A -> B -> F -> I -> J$$
 with cost 13

- However, A -> D -> F is cheaper overall than A -> B -> F
- Dynamic programming
 - starts with a smaller part of the original problem and finds the optimal solution for this smaller problem
 - then gradually enlarges the problem, finding the current optimal solution from the preceding one, until the original problem is solved in its entirety

Solving the Problem: Stagecoach

- Start with smaller problem: Fortune seeker (FS) is at last stage
- At each iteration, the problem is enlarged by increasing by 1 the number of stages left to complete journey
- For the enlarged problem, the optimal solution for where to go next from each possible state is found using results obtained in preceding iteration.

9

Formulation

- Stages x_n (n=1,2,3,4)
- $f_n(s,x_n)$: total cost of best overall policy for the remaining stages, given that the FS is in stage s and selects x_n as the immediate destination.
- x_n^* is any value of x_n (not necessarily unique) that minimizes $f_n(s,x_n)$, $f_n^*(s)$ is the corresponding minimum value of $f_n(s,x_n)$, i.e. $f_n(s,x_n^*)$
- f_n(s,x_n) = immediate cost at stage n + minimum future cost for stages n+1 onward, i.e.
 - $f_n(s,x_n) = c_{sxn} + f_{n+1}^*(x_n)$
- Since the ultimate destination (state J) is reached at the end of stage 4, $f_{\rm s}{}^{\star}(J) = 0$.
- Dynamic Programming finds the route successively by finding $f_4^*(s)$, $f_3^*(s)$, $f_2^*(s)$ for each possible state s, then uses $f_2^*(s)$ to solve for $f_1^*(A)$.

Characteristics of Dynamic Programming Problems

 One way to recognize that a situation can be formulated as a dynamic programming problem is to notice that its basic structure is analogous to the stage coach problem.

11

Characteristics of Dynamic Programming Problems

- The problem can be divided into stages, with a policy decision required at each stage
 - Requires making a sequence of interrelated decisions
- Each stage has a number of states associated with the beginning of that stage, i.e., various possible conditions the system may be in at that stage of the problem.
- The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.
- The solution procedure is designed to find an optimal policy for the overall problem, i.e., an optimal policy decision at each stage for each of the possible states.

Characteristics of Dynamic Programming Problems

Given the current state, an *optimal policy for the remaining stages* is *independent* of the policy decisions made in *previous stages*. The optimal immediate decision depends only on the current state and not on how you got there. This is called the "principle of optimality" for dynamic programming.

- The solution procedure begins by finding an *optimal policy for the last stage*.
- A recursive relationship, that identifies the optimal policy for stage n, given the optimal policy for stage n+1, is available.
 - e.g., for the stagecoach problem, $f_n^*(s) = \min_{x_n} (c_{sx_n} + f_{n+1}^*(x_n))$
- When we use this recursive procedure, the solution procedure starts at the end and moves *backward* stage by stage, each time finding the optimal policy for that stage; until it finds the optimal policy starting at the *initial* stage.

Characteristics of Dynamic Programming Problems

	$f_n(s_n, x_n)$		
s_n		$f_n^*(s_n)$	x _n *

Obtain such a table for each stage (n = N, N-1, ..., 1). When this table is finally obtained for the initial stage (n=1), the problem is solved.

Example 2: Distributing Medical Teams to Countries

- World Health Council has five available medical teams to allocate among three countries.
- The council needs to decide how many teams (if any) to allocate to each of these three countries to maximize the total effectiveness of the five teams.
- Teams must be allocated as a whole, i.e., the number allocated to each country must be an integer; no partial team assignments are allowed.
- · Performance measure is:

(increased life expectancy in years * country's population)

· Which allocation maximizes this measure?

1

Example 2: Distributing Medical Teams to Countries

Teams	Country1	Country2	Country3
0	0	0	0
1	45	20	50
2	70	45	70
3	90	75	80
4	105	110	100
5	120	150	130

In terms of thousands of additional person-years of life

Questions to Ask to Determine the States

- What changes from one stage to next?
- Given that the decisions have been made at the previous stages, how can the status of the situation at the current stage be described?
- What information about the current state is necessary to determine the optimal policy from then on?

17

Formulation

- State of the system x_n is the number of available medical teams
- At stage 1 (country 1), where all three countries remain under consideration for allocations, s₁=5.
- However, at stage 2 or 3 (country 2 or 3), s_n is just 5 minus the number of teams allocated at preceding stages, so that the sequence of states is

$$s_1 = 5$$
, $s_2 = 5 - x_1$, $s_3 = s_2 - x_2$

- When we are solving at stage 2 or 3, we shall not yet have solved for the allocations at the preceding stages.
- So, we consider every possible state we could be in at stage 2 or 3, namely, s_n=0, 1, 2, 3, 4, or 5.