

运筹学

2. 线性规划的几何解释

李 力清华大学

Email: li-li@tsinghua.edu.cn

2023.9.

2.1. 基本知识点

凸集Convex Set

 \downarrow

球Ball、超平面Hyperplane、半空间Half Space都是凸集

作为超平面、半空间的交集的可行域是多面体 Polyhedron,多面体是凸集

 \downarrow

基于球的概念定义边界点Boundary Point, 顶点 Extreme Point(也称极点)

凸集Convex Set:如果某个集合中任意两点连起来的直线都属于该集合,则称其为凸集,否则为非凸集

 Ω 是凸集的数学描述:对任意实数 $0 < \alpha < 1$ 和任意的 $X_1, X_2 \in \Omega$ 均成立 $\alpha X_1 + (1-\alpha)X_2 \in \Omega$

球Ball

Definition

A open ball centered at a point \mathbf{x}^* with radius $r \in \mathbb{R}^+$ is defined as

$$B_r(\mathbf{x}^*) = \{\mathbf{x} \mid |\mathbf{x} - \mathbf{x}^*|_2 < r\}$$

Definition

A *closed ball* centered at a point \mathbf{x}^* with radius $r \in \mathbb{R}^+$ is defined as

$$\bar{B}_r(\mathbf{x}^*) = \{\mathbf{x} \mid |\mathbf{x} - \mathbf{x}^*|_2 \le r\}$$

球Ball

Both open balls and closed balls are convex.

We only show that the statement holds for open balls, since the other proof is similar. Suppose there are two points \mathbf{x}_1 , \mathbf{x}_2 in a open ball $B_r(\mathbf{x}^*)$. For any $\lambda \in [0, 1]$, we have

$$|(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) - \mathbf{x}^*|_2 = |\lambda(\mathbf{x}_1 - \mathbf{x}^*) + (1 - \lambda)(\mathbf{x}_2 - \mathbf{x}^*)|_2$$

 $\leq \lambda |\mathbf{x}_1 - \mathbf{x}^*|_2 + (1 - \lambda)|\mathbf{x}_2 - \mathbf{x}^*|_2$
 $< \lambda r + (1 - \lambda)r = r$

By definition, the open balls are convex.

超平面Hyperplane

A *hyperplane* in \mathbb{R}^n is a set of all points satisfying $\{x \mid h^T x = z\}$, where x is an n-dimensional column vector in \mathbb{R}^n , h is a non-zero n-dimensional column vector in \mathbb{R}^n and $z \in \mathbb{R}$. h is said to be the normal of hyperplane $H = \{x \mid h^T x = z \neq 0\}$.

Apparently, if and only if z = 0, the hyperplane $\{x \mid h^T x = z\}$ passes through the origin.

Moreover, \boldsymbol{h} is orthogonal to any vectors lying in the hyperplane H. Indeed, for $\boldsymbol{x}_1, \boldsymbol{x}_2 \in H$, we have $\boldsymbol{h}^T(\boldsymbol{x}_1 - \boldsymbol{x}_2) = z - z = 0$.

半空间Half Space

A closed half-space in \mathbb{R}^n is the set of all points satisfying $\{x \mid h^T x \leq z\}$, where x is an n-dimensional column vector in \mathbb{R}^n , h is an n-dimensional column vector in \mathbb{R}^n and $z \in \mathbb{R}$.

- A open half-space in \mathbb{R}^n is the set of all points satisfying $\{x \mid h^T x < z\}$, where x is an n-dimensional column vector in \mathbb{R}^n , h is an n-dimensional column vector in \mathbb{R}^n and $z \in \mathbb{R}$.
- Some literatures use \geq (>) instead of \leq (<), but their meaning are indeed the same.

半空间Half Space

- 1. Any a hyperplane is convex.
- 2. The closed half-space $\{x \mid \mathbf{h}^T \mathbf{x} \leq z\}$ and $\{\mathbf{x} \mid \mathbf{h}^T \mathbf{x} \geq z\}$ are convex.
- 3. The open half-space $\{x \mid h^T x < z\}$ and $\{x \mid h^T x > z\}$ are convex.
- For statement 2, let $\Omega = \{ \boldsymbol{x} \mid \boldsymbol{h}^T \boldsymbol{x} \geq z \}$ be the studied half-space. For all $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \Omega$ and $\lambda \in [0, 1]$, we have

$$h^{T}[\lambda x_{1} + (1 - \lambda)x_{2}] = \lambda h^{T}x_{1} + (1 - \lambda)h^{T}x_{2} \ge \lambda z + (1 - \lambda)z = z.$$
(4)

So $\lambda x_1 + (1 - \lambda)x_2 \in \Omega$, which means Ω is convex. Similarly we can prove the other half-space is convex.

8

多面体Polyhedron

The intersection of convex sets is still convex.

Let us define the intersection of k convex sets as $\Omega = \bigcap_{i=1,...,k} \Omega_i$. For any $\mathbf{x}_1, \mathbf{x}_2 \in \Omega_i$, i=1,...,k, we have $\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2 \in \Omega_i$, i=1,...,k. So, $\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2 \in \Omega$. Therefore, Ω is convex.

A *polyhedron* is defined as the solution set of a finite number of linear equalities and inequalities:

$$\Omega = \left\{ m{x} \mid m{a}_i^T m{x} \leq b_i, i = 1, \dots, m, m{c}_j^T m{x} = d_j, j = 1, \dots, p \right\}$$
. A polyhedron is thus the intersection of a finite number of halfspaces and hyperplanes.

大前提:线性规划问题的约束条件为若干个线性等式或者不等式,而这些集合都是凸集

小前提: 凸集的交集也是凸集

结论:作为这些凸集交集的线性规划问题定义域也 是凸集(我们一般约定空集为凸集)

边界点Boundary Point

Let Ω be a subset of \mathbb{R}^n . A point \boldsymbol{x} is a boundary point of Ω if every open ball centered at \boldsymbol{x} contains both a point in Ω and a point in $\mathbb{R}^n - \Omega$. The set of all boundary points of Ω , denoted by $\partial \Omega$, is the boundary of Ω .

Figure: An illustration of the boundary points, where \mathbf{x}_1 is a boundary point and \mathbf{x}_2 , \mathbf{x}_3 are not.

顶点Extreme Point (也称极点)

A point \mathbf{x} is an *extreme point* of a convex set C if there exist no two distinct points \mathbf{x}_1 and $\mathbf{x}_2 \in C$ such that $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$ for some $\lambda \in (0, 1)$.

Figure: An illustration of the extreme points, where x_1 is an extreme point and x_2 , x_3 are not.

顶点Extreme Point,如果凸集内的一点不在凸集内 任何不同的两点的连线上,则称该点为该凸集的顶点

单纯形Simplex: We call the convex hull of any set of n+1 points in Rn which do not lie on a hyperplane a simplex.

A simplex in \mathbb{R}^2 and a simplex in \mathbb{R}^3 .

极线Ray

For a nonempty polyhedron $\Omega = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} \geq \boldsymbol{b}, \ \boldsymbol{x} \geq \boldsymbol{0} \}$, the recession cone is the set of all vectors \boldsymbol{d} satisfying

$$Ad = 0, d \ge 0$$

There may exist infinite number of rays in a polyhedron. To specify them using a finite number of elements, we need to further consider the so called extreme rays.

Definition . The nonzero elements of the recession cone are called the rays of the polyhedron Ω . A nonzero element \boldsymbol{x} of a polyhedral cone $\Omega \subset \mathbb{R}^n$ is called an extreme ray of Ω , if there are n-1 linearly independent constraints that are active (that is, are equalities) at \boldsymbol{x} .

It should be pointed out that a positive multiple of an extreme ray is also an extreme ray. So, we say two extreme rays are non-equivalent if one is not a positive multiple of the other; otherwise, we call them equivalent. A *complete* set of extreme rays is a collection of extreme rays that contains exactly one form for each set of equivalent extreme rays.

