Exoplanet Spectral Analysis using CNN

Abstract

This project implements a machine learning system for analyzing transmission spectra of exoplanet atmospheres to detect and measure concentrations of water (H₂O) and oxygen (O₂). Synthetic data was generated to simulate real atmospheric spectra, and a Convolutional Neural Network (CNN) was trained to accurately predict gas concentrations. The system automates exoplanet atmospheric analysis — a key step toward identifying potentially habitable worlds.

Introduction

Problem Statement

Develop an automated deep learning model to detect and quantify H_2O and O_2 in exoplanet atmospheres using **transmission spectroscopy** data. The model must handle spectral complexity, noise, and atmospheric effects efficiently.

Objectives

- Build a reliable tool to identify and characterize exoplanets with potential biosignatures
- Automate and accelerate spectroscopic data analysis
- Improve prediction accuracy of molecular concentrations

Motivation

- Identifying potentially habitable planets
- Detecting biosignature gases (H₂O + O₂)
- Reducing manual data analysis time
- Enabling faster telescope-based follow-up studies

Data Generation

Synthetic transmission spectra were generated for exoplanet atmospheres containing H_2O , O_2 , CO_2 , CH_4 , and N_2 .

Steps:

 Absorption Features – Gaussian or Voigt profiles simulate molecular absorption bands:

- \circ H₂O \rightarrow 1.4, 1.9, 2.7 μm
- $O_2 \rightarrow 0.69, 0.76, 1.27 \, \mu m$
- o CO₂, CH₄, N₂ with unique wavelengths
- 2. **Noise Addition** Gaussian noise simulates realistic observation errors
- 3. Concentration Ranges:
 - o H₂O: 0-10%
 - o O₂: 0-25%
- 4. Dataset:
 - ~10,000 spectra
 - 1000 wavelength points per sample (0.5–3.0 μm)
 - o Labels: H2O_concentration, O2_concentration

Data Preprocessing

- Standardization: Normalize spectra to mean 0 and std 1
- Noise Reduction: Apply Savitzky-Golay filter to smooth spectra
- Dimensionality Reduction (Optional): PCA to capture 95% variance
- Train-Test Split: 80% training, 20% validation

Methodology

- 1. Model Used: Convolutional Neural Network (CNN)
 - 3 Convolutional Layers + Max Pooling
 - Fully Connected Layers + Dropout (to prevent overfitting)
 - Output: Continuous values for H₂O and O₂ concentrations

2. Why CNN?

- Detects local spectral patterns like absorption peaks
- Learns hierarchical features automatically
- Handles noise and high-dimensional data effectively

3. Training Setup

• Optimizer: Adam

• Loss Function: Mean Squared Error (MSE)

• Batch Size: 32

• **Epochs:** 50

• Validation Split: 80/20

• Framework: PyTorch

4. Feature Processing

- **Standard Scaling** → equal feature weightage
- Savitzky–Golay Filter → denoising without losing peaks
- CNN implicitly performs feature selection and extraction

Experimental Setup

Tools & Libraries

- Python 3.8+
- PyTorch model building & training
- NumPy, Pandas data handling
- **SciPy** spectral simulation (Voigt profiles, filters)
- **Scikit-learn** scaling, train/test split
- Matplotlib plotting loss curves & evaluation

Environment

- CPU: Multicore (recommended 16GB+ RAM)
- GPU (optional): CUDA-enabled for faster training
- Platform: Google Colab or Local Python Environment

Evaluation

Metrics

- Mean Squared Error (MSE): Penalizes large errors
- Mean Absolute Error (MAE): Measures average deviation

Formulas:

$$MSE = \frac{1}{n} \sum (y_{true} - y_{pred})^{2}$$

$$MAE = \frac{1}{n} \sum |y_{true} - y_{pred}|$$

Visual Evaluation

- Scatter plots: True vs Predicted concentrations for H₂O & O₂
- Training & validation loss curves
- Optional metrics: RMSE, R² score

Results & Discussion

- CNN achieved **low MSE and MAE**, showing strong predictive accuracy
- Outperformed traditional regressors (Linear Regression, SVR, Random Forest)
- Errors increased for extreme absorption spectra can be reduced via tuning or augmentation
- Visualization confirmed close alignment between predicted and actual gas concentrations

Error Analysis

Observed Issues

- Overfitting: Model memorizing training noise
- Underfitting: Insufficient layers for complex spectra
- **High Error Cases:** Extreme concentrations caused deviation

Improvements

- Add dropout & weight decay
- Perform hyperparameter optimization (learning rate, depth)
- Introduce data augmentation and early stopping

Conclusion

This project demonstrates that a CNN-based deep learning model can effectively analyze spectral data to predict H₂O and O₂ concentrations in exoplanet atmospheres.

The approach automates the interpretation of complex transmission spectra, making it a valuable tool for **exoplanetary research** and **biosignature detection**.

Future work includes expanding molecular diversity, fine-tuning hyperparameters, and adapting the model for real telescope data.

How to Run

Install dependencies

pip install -r requirements.txt

Run the training script

python train_model.py

Evaluate the model

python evaluate_model.py

Tech Stack

Languages: Python

Frameworks: PyTorch, SciPy, Scikit-learn

Environment: Google Colab Visualization: Matplotlib