Actors

Paul Preißner

Fakultät für Informatik Technische Universität München

July 6th 2017

Brief history of "A Model of Concurrent Computation in Distributed Systems"

REWORK

- ► Controversy: unbounded nondeterminism (unbounded delay yet guarantee of service)
- Many (actively) supported languages
- ▶ History: C. Hewitt et al. '73 \rightarrow W. Clinger '81 \rightarrow G. Agha '85, MIT Message Passing Semantics Group, Caltech, etc.
- Little use around millennium, recent resurgence due to strong relevance to distributed/cloud computing (e.g. Twitter systems scalability)

"A Model of Concurrent Computation in Distributed Systems"

REWORK

- ▶ paradigm: "everything" is an actor (thread, process, core, socket, node, system, ...) → one actor encapsulates one computation unit
- an actor may send messages to actors it knows by name
- an (idling) actor receiving a message will accept it and execute the computation defined within, resulting in the possible actions:
 - sending new messages
 - creating new actors
 - updating its local state
- an actor can only influence its own local state

Example structure

Hello ...

Listing sample code

... World!

Output of sample code

Semantic properties

REWORK - update, detail? one frame per property?

- Actor semantics have three main properties
 - Encapsulation & atomicity (actors don't share state, process one message at a time)
 - Fairness (every actor makes progress, every message delivered eventually)
 - Location transparency (physical location not bound to identifier, hidden migration)
- in reality, some aspects aren't implemented faithfully (for efficiency, complexity)
- concerns about scalability & performance

Synchronization ...

RPC-like local sync cons

... and abstraction

Patterns

Worst practices

Worst practices

Support

Distributed systems

DS server HPC microservices

Embedded systems

system level appl design

Versus

???

Q&A