Examination of the teaching unit Représentations des signaux - TSIA201

Roland Badeau

Friday, October 28th, 2022

Duration: 2 hours

All documents are permitted. However electronic devices (including calculators) are forbidden.

1 Rejector filter

Let us consider the transfer function $H(z) = \frac{1-2\cos(\theta)z^{-1}+z^{-2}}{1-2\rho\cos(\theta)z^{-1}+\rho^2z^{-2}}$, with $0 < \rho < 1$.

- a) Check that H(z) can be factorized in the form $H(z) = \frac{(1-z_0z^{-1})(1-z_0^*z^{-1})}{(1-\rho z_0z^{-1})(1-\rho z_0^*z^{-1})}$, where z_0 is to be expressed as a function of θ .
- b) What is the normalized frequency rejected by this filter?
- c) What is the domain of convergence of its stable implementation?
- d) Is this implementation causal?
- e) Write the corresponding input/output relationship.

2 Downsampling

Let us consider a discrete time signal x(n), that we wish to downsample by a factor 2. We recall the standard downsampling diagram:

$$\begin{array}{c|c} x(n) & \\ \hline \end{array} \downarrow 2 \qquad \begin{array}{c} y(n) \\ \end{array} \downarrow 2 \qquad \begin{array}{c} \end{array}$$

Figure 1: Downsampling diagram

where H is an ideal low-pass filter with cut-off frequency $\frac{1}{4}$: $\forall \nu \in [-\frac{1}{2}, +\frac{1}{2}], H(e^{2i\pi\nu}) = 1$ if $\nu \in]-\frac{1}{4}, \frac{1}{4}[$, and $H(e^{2i\pi\nu}) = 0$ otherwise.

- a) What is the role of filter H in Figure 1?
- b) We define the filter of frequency response $G(e^{2i\pi\nu}) = e^{i\pi\nu}$ for all $\nu \in]-\frac{1}{2}, +\frac{1}{2}[$.
 - 1) Calculate its impulse response $g(n) \ \forall n \in \mathbb{Z}$.

- 2) Is this filter stable? Is it causal? (justify). From now on, we will assume that we have synthesized a linear phase FIR filter that approximates g(n).
- c) We consider the diagram in Figure 2.

Figure 2: Equivalent implementation of filter H

- 1) Express U(z) as a function of G(z) and X(z).
- 2) Evaluate $G(z^2)$ at $z = e^{2i\pi\nu}$, for $\nu \in [0, \frac{1}{4}[$ on the one hand, and $\nu \in]\frac{1}{4}, \frac{1}{2}[$ on the other hand.
- 3) Deduce the relationship between $U(e^{2i\pi\nu})$ and $X(e^{2i\pi\nu})$, and conclude that this diagram defines an equivalent implementation of filter H.
- d) We consider the diagram in Figure 3.

Figure 3: Efficient implementation

- 1) Check that this diagram is equivalent to the one in Figure 1.
- 2) What is the advantage of implementing the diagram in Figure 3 over that in Figure 1?

3 Hilbert filter

Let $x_a(t)$ be a continuous time (analog) real signal. The analytic signal associated to $x_a(t)$ is the signal $z_a(t)$ whose the CTFT is expressed as $Z_a(f) = 2U_a(f)X_a(f)$, where $U_a(f)$ is the unit step function, whose value is 1 for f > 0, and 0 for f < 0. For continuity reasons, we assume that $U_a(0) = \frac{1}{2}$. The filter of frequency response $2U_a(f)$ is referred to as the analytic filter.

a) Which property does function $X_a(f)$ satisfy? Deduce the expression of $\frac{1}{2}(Z_a(f) + Z_a^*(-f))$ as a function of $X_a(f)$, and prove that the real part of $z_a(t)$ is equal to $x_a(t)$. We can then write $z_a(t) = x_a(t) + iy_a(t)$, where the real signal $y_a(t)$ is defined as the imaginary part of $z_a(t)$.

b) Prove that $y_a(t)$ can be obtained from $x_a(t)$ by linear filtering of frequency response $H_a(f) = -i \operatorname{sign}(f)$, where $\operatorname{sign}(f) = 1$ for f > 0, $\operatorname{sign}(f) = -1$ for f < 0, and $\operatorname{sign}(0) = 0$. Filter $H_a(f)$ is referred to as the *Hilbert filter*, and $y_a(t)$ is called the *Hilbert transform* of $x_a(t)$.

Let us assume that the signal $x_a(t)$ satisfies the assumptions of the sampling theorem: there exists a frequency F_s such that the support of $X_a(f)$ is included in $]-\frac{F_s}{2},\frac{F_s}{2}[$. We then consider the sampled signals $x(n)=x_a(nT_s)$ and $y(n)=y_a(nT_s)$, where $T_s=1/F_s$. We remind the relationship between the DTFT $X(e^{2i\pi\nu})$ and the CTFT $X_a(f)$:

$$X(e^{2i\pi\nu}) = \frac{1}{T_s} \sum_{k \in \mathbb{Z}} X_a \left(\frac{\nu + k}{T_s}\right) \tag{1}$$

c) Simplify the expression (1) when $\nu \in]-\frac{1}{2},\frac{1}{2}[$. Check that $Y(e^{2i\pi\nu})$ satisfies a similar expression. Deduce that the signal y(n) can also be expressed as the output of the discrete filter of frequency response $H(e^{2i\pi\nu}) = -i\operatorname{sign}(\nu)$ for $\nu \in]-\frac{1}{2},\frac{1}{2}[$ (and $H(e^{2i\pi\nu}) = 0$ for $\nu = \pm \frac{1}{2}$), applied to the input signal x(n).

Remark: the discrete filter $H(e^{2i\pi\nu})$ allows us to directly compute the samples y(n) of the Hilbert transform from the samples x(n), without having to perform a digital/analog conversion.

- d) By applying the inverse DTFT, prove that the impulse response h(n) satisfies $h(n) = \frac{2}{\pi n}$ if n is odd, and 0 if n is even.
- e) Is this filter causal? Stable? Of finite (FIR) or infinite (IIR) impulse response?
- f) For a discrete filter of impulse response g(n) and of transfer function G(z), what is the impulse response of the filter of transfer function $G(z^2)$? By using the fact that the even coefficients of h(n) are zero, deduce that there exists a transfer function G(z), such that $H(z) = z^{-1}G(z^2)$. What is the impulse response g(n)?
- g) We want to approximate the ideal filter G(z) by using the window method, in order to synthesize a linear phase FIR filter, of type 4 (even length N, antisymmetric impulse response g(n)). Quickly summarize the principle of the window method, its advantages and its drawbacks.
- h) Now, we want to prove that the following diagram provides an efficient implementation of the discrete Hilbert filter H(z):

We remind that $U_1(z) = \frac{1}{2}(X(z^{\frac{1}{2}}) + X(-z^{\frac{1}{2}}))$. Express $U_2(z)$ as a function of X(z), then $V_1(z)$ and $V_2(z)$ as a function of $U_1(z)$ and $U_2(z)$, then $W_1(z)$ and $W_2(z)$ as a function of $V_1(z)$ and $V_2(z)$, and finally Y(z) as a function of $W_1(z)$ and $W_2(z)$. By substitution, retrieve the relationship Y(z) = H(z)X(z).

4 DFT filter bank

We consider the signal processing system represented in Figure 4.

Figure 4: DFT filter bank

The matrix W^* implements the discrete Fourier transform (DFT) of length M. It is of dimension M, and each element $[W_{km}]$ is written in the form :

$$[W_{km}] = e^{2i\pi \frac{km}{M}}.$$

The input signal x(n) is decomposed into M discrete signals by simply passing through a delay line. We thus define:

$$s_m(n) = x(n-m).$$

- a) Give the expression of the Z-transform $S_m(z)$ as a function of X(z).
- b) Express the subband signals $x_k(n)$ as functions of the signals $s_m(n)$.
- c) Calculate $X_k(z)$ as a function of the Z-transforms $S_m(z)$.
- d) Express $X_k(z)$ in the form: $X_k(z) = H_k(z)X(z)$ and give the expression of $H_k(z)$.
- e) Check that $H_k(z) = H_0(zW_{k1})$. Explain intuitively the spectral content of the subband signals $x_k(n)$.
- f) Determine the type I polyphase components $E_{km}(z)$ of filter $H_k(z)$ at order M. Conclude that Figure 4 actually represents the polyphase implementation of filters h_k .
- g) Draw the diagram of a signal processing system that perfectly reconstructs the original signal x(n) given the subband signals $x_k(n)$.