ΜΑΘΗΜΑΤΙΚΉ ΛΟΓΙΚΉ ΑΣΚΉΣΕΙΣ ΓΙΑ ΤΟ ΣΠΙΤΊ 2

 $A\Sigma KH\Sigma H$ 1. Οι σύνδεσμοι δύο θέσεων είναι 16 τον αριθμό. Απ' αυτούς μόνον οι 10 είναι πραγματικά διπλοί. Οι υπόλοιποι είναι είτε ουσιωδώς μονοί (προβολές, $\neg A$, $\neg B$) ή 0 θέσεων (σταθεροί). Από τους 10 ξέρουμε ότι οι | και \downarrow αποτελούν από μόνοι τους (και μόνον αυτοί) επαρκή σύνολα. Από τους 8 που μας μένουν μπορούμε να σχηματίσουμε 28 ζευγάρια. Η ερώτηση είναι: πόσα απ' αυτά τα ζευγάρια αποτελούν επαρκή σύνολα;

(Υπόδειξη: Αποδείξτε ότι $\{\land,\lor,\to,\leftarrow,\leftrightarrow\}$ και $\{\land,\lor,<,>,+\}$ δεν είναι επαρκή σύνολα. Αρα αποκλείονται 19 ζεύγη! Μετά αποδείξτε ότι $\{\to,\mathcal{F}\}$, $\{\leftarrow,\mathcal{F}\}$ είναι επαρκή και άρα συμπεράνετε ότι $\{\to,<\}$, $\{\to,>\}$, $\{\to,+\}$, $\{\leftarrow,<\}$, $\{\leftarrow,>\}$, $\{\leftarrow,+\}$ είναι επαρκή. Κατόπιν αποδείξτε ότι $\{<,T\}$, $\{>,T\}$ είναι επαρκή και συμπεράνετε ότι $\{<,\leftrightarrow\}$, $\{>,\leftrightarrow\}$ είναι επαρκή. (Εδώ $\varphi\to\psi\models\exists\mathcal{T}>(\varphi>\psi)$ και $\{\to,<\}$ επαρκές. Επίσης $\mathcal{T}\models\exists(A\leftrightarrow A)$.) Αρα μας μένει μόνο ένα ζευγάρι να ασχοληθούμε: το $\{+,\leftrightarrow\}$. Αποδείξτε τώρα ότι:

Πρόταση Το $\{\neg, +, \leftrightarrow\}$ δεν είναι επαρκές.) (3,0 μον.)

ΑΣΚΗΣΗ 2. Έστω Σ_1 και Σ_2 (πιθανώς άπειρα) σύνολα προτασιακών τύπων έτσι ώστε $\Sigma_1 \cup \Sigma_2$ δεν είναι ικανοποιήσιμο. Αποδείξτε ότι υπάρχει προτασιακός τύπος ϕ ώστε $\Sigma_1 \models \phi$ και $\Sigma_2 \models \neg \phi$. (1,5 μον.)

ΑΣΚΗΣΗ 3. Έστω Σ σύνολο προτάσεων ώστε για κάθε απονομή V υπάρχει κάποιος $\phi \in \Sigma$ ώστε $\overline{V}(\phi) = T$. Αποδείξτε ότι υπάρχει ένα πεπερασμένο υποσύνολο $\{A_1,\ldots,A_n\}\subseteq \Sigma$ έτσι ώστε ο προτασιακός τύπος $A_1\vee A_2\vee\cdots\vee A_n$ είναι ταυτολογία. (1,5 μον.)

ΑΣΚΗΣΗ 4. Ορίζουμε μια σχέση \prec στο σύνολο των προτασιακών τύπων ως εξής: $\varphi \prec \psi$ ανν $\models \varphi \rightarrow \psi$ και $\not\models \psi \rightarrow \varphi$.

- α) Δείξτε ότι για τυχόντες προτασιαχούς τύπους φ, ψ , αν $\varphi \prec \psi$, τότε υπάρχει προτασιαχός τύπος χ τέτοιος που $\varphi \prec \chi \prec \psi$.
- β) Βρείτε προτασιαχούς τύπους $\varphi_1, \varphi_2, \ldots$ τέτοιους που $\varphi_1 \prec \varphi_2 \prec \varphi_3 \ldots$ (1,5 μον.)

ΑΣΚΗΣΗ 5. Οι υποτύποι ενός προτασιακού τύπου ϕ είναι όλοι οι προτασιακοί τύποι (συμπεριλαμβανομένου του ίδιου του ϕ) που «σχηματίζονται» με βάση τον επαγωγικό ορισμό ώστε να δημιουργηθεί ο τύπος ϕ π.χ. οι ϕ_1 και ϕ_2 είναι υποτύποι του $(\phi_1 \wedge \phi_2)$ κ.λ.π. Δείξτε ότι, για κάθε $n \in \mathbb{N}$ και κάθε προτασιακό τύπο φ , αν στο φ υπάρχουν n εμφανίσεις συνδέσμων, τότε υπάρχουν το πολύ 2n+1 υποτύποι του φ . (1 μον.)

 $A\Sigma KH\Sigma H$ 6. Αποδείξτε ότι | και \downarrow είναι οι μόνοι σύνδεσμοι δύο θέσεων που είναι πλήρεις από μόνοι τους. (1,5 μον.)