CS 4110

Programming Languages & Logics

Lecture 1
Course Overview

JavaScript

- {} + [] {} + {} {} + {}
- From Wat:

https://www.destroyallsoftware.com/talks/wat

Java

```
class A {
    static int a = B.b + 1;
}
class B {
    static int b = A.a + 1;
}
```

Python

```
a = [1], 2
a[0] += 3
```

Java and Scala

Nada Amin and Ross Tate: http://io.livecode.ch/learn/namin/unsound

Question: What makes a good programming language?

Question: What makes a good programming language?

One answer: A good language is one people use.

Question: What makes a good programming language?

One answer: A good language is one people use.

Wrong! Is JavaScript bad? What's the best language?

Question: What makes a good programming language?

One answer: A good language is one people use.

Wrong! Is JavaScript bad? What's the best language?

Some good features:

- Simplicity (clean, orthogonal constructs)
- Readability (elegant syntax)
- Safety (guarantees that programs won't "go wrong")
- Modularity (support for collaboration)
- Efficiency (it's possible to write a good compiler)

Design Challenges

Unfortunately these goals almost always conflict.

- Types provide strong guarantees but restrict expressiveness.
- Safety checks eliminate errors but have a cost—either at compile time or run time.
- A language that's good for quick prototyping might not be the best for long-term development.

Design Challenges

Unfortunately these goals almost always conflict.

- Types provide strong guarantees but restrict expressiveness.
- Safety checks eliminate errors but have a cost—either at compile time or run time.
- A language that's good for quick prototyping might not be the best for long-term development.

A lot of research in programming languages is about discovering ways to gain without (too much) pain.

Course Staff

Instructor

Adrian Sampson

Teaching Assistants

Pedro Amorim Devin Lehmacher Alexa VanHattum Irene Yoon

Prerequisites

Mathematical Maturity

- Much of this class will involve formal reasoning
- Set theory, formal proofs, induction

Programming Experience

- Comfortable using a functional language
- For undergrads: CS 3110 or equivalent

Interest (having fun is a goal!)

If you don't meet these prerequisites, please get in touch.

http://www.cs.cornell.edu/courses/cs4110/2018fa/

Course Work

Homework

- 9 assignments, roughly one per week
- Always due on Wednesday night at 11:59pm
- Can work with one partner
- Three slip days and lowest score discarded
- Otherwise, no late submissions

Preliminary Exams (in class)

- October 3
- November 14

Final Exam

Date TBD

Participation (5% of your grade)

- Introduction survey (out now!)
- Mid-semester feedback
- Course evaluation

Academic Integrity

Some simple requests:

- 1. You are here as members of an academic community. Conduct yourself with integrity.
- 2. Problem sets must be completed with your partner, and only your partner. You must *not* consult other students, alums, friends, Google, GitHub, StackExchange, Course Hero, etc.!
- 3. If you aren't sure what is allowed and what isn't, please ask.

Respect in Class

We hold all communication (in class & online) to a high standard for inclusiveness. It may not target anyone for harassment, and it may not exclude specific groups.

Examples:

- Do not talk over other people.
- Do not use male pronouns when you mean to refer to people of all genders.
- Avoid language that has a good chance of seeming inappropriate to others.

If anything doesn't meet these standards, contact the instructor.