Module de Physique-Biophysique

1ère année de médecine

DEPARTEMENT DE MEDECINE

FACULTE DE MEDECINE – UNIVERSITE ALGER 1

e-mail: biophysique_facmed-alger@hotmail.com

énergie et thermodynamique quelques notions élémentaires à retenir

Professeur M. CHEREF

Notion d'Energie et ses différentes formes

Introduction et définitions

Notion d'Energie (1)

• Définition, ... et un peu d'histoire

vient du grec « energia = force agissante »

De manière générale, un système sera considéré comme contenant de l'énergie si celui-ci est susceptible de fournir du travail.

l'énergie s'exprime en Joule (J).

Notion d'Energie (2)

• Sous ses différentes formes, (a)

de manière non exhaustive

Sous ses diverses formes, l'énergie peut être transférée d'un système à un autre.

<u>Exemple de l'énergie cinétique</u>: l'énergie que possède un système à un instant t du fait des vitesses de ses éléments ;

<u>Exemple de l'énergie potentielle</u>: l'énergie qu'un système peut éventuellement libérer en modifiant les positions relatives de ses éléments ;

L'énergie potentielle est une fonction des variables de position définie à une constante arbitraire près.

Notion d'Energie (3)

Sous ses différentes formes, (b)

de manière non exhaustive

<u>Exemple de l'énergie électromagnétique</u>: dans un volume dV situé au voisinage d'un point O, où règne un champ électromagnétique, une énergie dW se trouve emmagasinée;

<u>Exemple de l'énergie électrostatique</u>: il s'agit d'un cas particulier de l'énergie électromagnétique;

<u>Exemple de l'énergie gravitationnelle</u>: il s'agit du pendant de l'énergie électrostatique;

<u>Exemple de l'énergie interne</u>: cette énergie exprime la sommes des énergies mécaniques des éléments constitutifs du système ;

Notion d'Energie (4)

Sous ses différentes formes, (c)

de manière non exhaustive

<u>Exemple de l'énergie mécanique</u>: il s'agit de l'énergie qui exprime la somme des énergies cinétique et potentielle ;

(un système dont l'énergie reste constante sera dit conservatif)

Autres énergies : énergie superficielle ; énergie de masse ; énergie nucléaire; énergie de liaison ;

Thermodynamique et système thermodynamique

Définitions et principes

Thermodynamique (1)

• Définition (a), ... et un peu d'histoire

vient du grec « thermos = chaud ; dunamis = force ou dunamicos = puissance »

- Initialement, la « Thermodynamique » apparaissait comme la science qui traite des relations entre les phénomènes thermiques et les phénomènes mécaniques.
- Cette branche de la physique s'exprime aujourd'hui comme la science des transformations de l'énergie, de la matière et des états d'équilibre.

Thermodynamique (2)

- Définition (b), ... plus particulièrement
- Elle englobe l'étude des propriétés de la matière dans lesquelles interviennent les notions de température et de chaleur.
- Selon une approche globale, cette science repose sur des principes desquels sont déduites les lois de la thermodynamique :
- Principe zéro ;
- Premier principe (ou principe de conservation);
- Second principe (ou principe d'évolution) ;
- Troisième principe (ou principe de Nernst-Planck).

Thermodynamique (3)

Principe zéro

« Deux systèmes thermodynamiques en équilibre avec un troisième sont en équilibre entre eux ».

Leur propriété commune est la température. Cela signifie qu'un transfert d'énergie sera conséquent à la réalité d'une différence de température.

illustration de ce principe

le principe zéro permet d'instaurer des témoins de température : les thermomètres

Thermodynamique (4)

- Premier principe
- A tout système, il est possible d'associer une fonction d'état U appelée énergie interne dont la variation au cours d'une transformation quelconque est égale à la somme du travail et de la chaleur reçus par le système.
- Il s'agit d'une généralisation de la loi de conservation de l'énergie mécanique (l'énergie totale se conserve) :

$$dU = \delta Q + \delta W$$

Thermodynamique (5)

Second principe

Le second principe exprime l'irréversibilité des phénomènes naturels, et décrit la spontanéité d'une réaction.

Tout système qui évolue spontanément voit son entropie augmenter.

Thermodynamique (6)

Troisième principe

L'entropie de tous les corps est nulle au zéro absolu.

Plus rigoureusement, « L'entropie d'un système quelconque peut toujours être prise égale à zéro à la température du zéro absolu »

De manière pratique, aucun système physique, à ce jour, n'a violé ce principe thermodynamique.

Ce théorème (théorème de Nernst) peut s'appliquer tant aux systèmes liquides, solides, ou gazeux.

Système thermodynamique (1)

• Définition (a):

C'est un ensemble de constituants qui peuvent évoluer au cours d'une transformation.

- Tous les concepts de la thermodynamique s'appliquent à des systèmes matériels.
- « Un système est un ensemble d'objets, défini par une enveloppe géométrique macroscopique (déformable ou non) ».
- On peut donc toujours distinguer ce qui à l'intérieur du système de ce qui est à l'extérieur

Système thermodynamique (2)

Définition (b)

Système homogène : une seule phase

Système hétérogène : plusieurs phases

Système isolé: aucun échange avec l'extérieur

Système ouvert : échange de matière et d'énergie

Système fermé : échange d'énergie

Processus adiabatique : pas d'échange de chaleur