kd education academy (9582701166)

Time: 5 Hour STD 11 Science chemistry Total Marks: 480

kd700+ neet target ch-4 chemical bonding and molecular structure

* Chemistry [480]

1. Match List *I* with List *II*.

List I (Compound)	List <i>II</i> (Shape/geometry)
$A. \mathrm{NH}_3$	I. Trigonal Pyramidal
$B.~{ m BrF}_5$	II. Square Planar
$C. ext{ XeF}_4$	III. Octahedral
$D. \operatorname{SF}_6$	<i>IV</i> . Square Pyramidal

Choose the correct answer from the options given below:

(A)
$$A-II, B-IV, C-III, D-I$$

(B)
$$A-III, B-IV, C-I, D-II$$

(C)
$$A-II, B-III, C-IV, D-I$$

(D)
$$A-I, B-IV, C-II, D-III$$

- 2. Identify the correct answer.
 - (A) BF₃ has non-zero dipole moment
 - (B) Dipole moment of NF_3 is greater than that of NH_3
 - (C) Three canonical forms can be drawn for CO_3^{2-} ion
 - (D) Three resonance structures can be drawn for ozone
- 3. Intramolecular hydrogen bonding is present in

(A)

(B)

$$\bigcap_{\mathsf{HO}}^{\mathsf{NO}_2}$$

- (C) HF
- (D)

- 4. The number of σ bonds, π bonds and lone pair of electrons in pyridine, respectively are:
 - (A) 12,2,1
- (B) 11,2,0
- (C) 12,3,0
- (D) 11,3,1

5. Amongst the following the total number of species NOT having eight electrons around central atom in its outermost shell, is NH_3 , $AlCl_3$, $BeCl_2$, CCl_4 , PCl_5 : (A) 1 (B) 3 6. The correct order of energies of molecular orbitals of N_2 molecule, is (A) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma 2p_z$ $<\sigma^*2p_z$ (B) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y)$ $<\sigma^*2p_z$ (C) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y)$ $<\sigma^*2p_z$ (D) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < \sigma^* 2p_z < (\pi 2p_x = \pi 2p_y)$ $<(\pi^*2p_x=\pi^*2p_y)$ 7. Amongst the following which one will have maximum 'lone pair - lone pair' electron repulsions? (A) IF_5 (C) XeF_2 (D) ClF_3 (B) SF_4 8. BF₃ is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are: (A) sp^3 and 4 $(C) sp^2$ and 6(D) sp^2 and 8 (B) sp^3 and 6 9. Match List-I with List-II. List-II $\mathsf{List}{-}II$ (a) PCl_5 (i) Square pyramidal (b) SF_6 (ii) Trigonal planar (iii) Octahedral (c) BrF_5 (iv) Trigonal bipyramidal $(d) BF_3$ Choose the correct answer from the options given below. (A) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)(B) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)(C) (a) - (iii), (b) - (i), (c) - (iv), (d) - (ii)(D) (a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)10. Which of the following set of molecules will have zero dipole moment? (A) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4- dichlorobenzene (B) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene

(C) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene

(D) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene

11. Match the coordination number and type of hybridisation with distribution of hybrid orbitals in space based on Valence bond theory.

Coordination number and type of	Distribution of hybrid
hybridisation	orbitals In space
$(a) \ 4, sp^3$	(i) trigonal bipyramidal
$(b) \ 4, dsp^2$	(ii) octahedral
$(c) \ 5, sp^3d$	(iii) tetrahedral
$(d) \ 6, d^2sp^3$	(iv) square planar

Select the correct option

(A)
$$(a) - (iii)(b) - (i)(c) - (iv)(d) - (ii)$$

(B)
$$(a) - (ii)(b) - (iii)(c) - (iv)(d) - (i)$$

(C)
$$(a) - (iii)(b) - (iv)(c) - (i)(d) - (ii)$$

(D)
$$(a) - (iv)(b) - (i)(c) - (ii)(d) - (iii)$$

12. Among the compounds shown below which one revealed a linear structure?

(A)
$$N_2O$$

(B)
$$NO_2$$

(D)
$$O_3$$

13. Identify the wrongly match pair.

Molecule Shape or geometry of molecule

- (A) NH_3 Trigonal pyramidal
- (B) PCl_5 Trigonal planar
- (C) SF_6 Octahedral
- (D) $BeCl_2$ Linear

14. Match the compounds of Xe in column I with the molecular structure in column II.

Column - I	Column - II
$(a) XeF_2$	(i) Van Arkel method
$(b) XeF_4$	(ii) Linear
$(c) XeO_3$	(iii) Square pyramidal
$(d) \ XeOF_4$	(iv) Pyramidal

(A)
$$(a) - (ii)(b) - (i)(c) - (iv)(d) - (iii)$$

(B)
$$(a) - (ii)(b) - (i)(c) - (iii)(d) - (iv)$$

(C)
$$(a) - (ii)(b) - (iv)(c) - (iii)(d) - (i)$$

(D)
$$(a) - (ii)(b) - (iii)(c) - (i)(d) - (iv)$$

15. Identify a molecule which does not exist.

(A)
$$O_2$$

(B)
$$He_2$$

(C)
$$Li_2$$

(D)
$$C_2$$

16.	The calculated spin or	lly magnetic moment o	of Cr^{2+} lon is $B.M.$		
	(A) 2.84	(B) 3.87	(C) 4.90	(D) 5.92	
17.	Which of the followin to Molecular Orbital T	_	species has only π bo	nds according	
	(A) O_2	(B) N_2	(C) C_2	(D) Be_2	
18.	Which of the following	g is paramagnetic ?			
	(A) N_2	(B) H_2	(C) Li ₂	(D) O ₂	
19.	Which of the following	g is the correct order o	of dipole moment ?	5	
	(A) $\mathrm{NH_3} < \mathrm{BF_3} < \mathrm{NF_3} <$	$<$ $\rm H_2O$			
	(B) ${ m BF_3} < { m NF_3} < { m NH_3} <$	$<$ $\rm H_2O$			
	(C) ${ m BF_3} < { m NH_3} < { m NF_3} <$	$<$ $\mathrm{H_2O}$			
	(D) $\mathrm{H_2O} < \mathrm{NF_3} < \mathrm{NH_3}$	$<{ m BF}_3$			
20.	Which of the following	g pairs of compounds	is isoelectronic and iso	structural ?	
	(A) TeI_2, XeF_2	(B) $BeCl_2, XeF_2$	(C) IF_3, XeF_2	(D) IBr_2^-, XeF_2	
21.	Which one of the follo	wing pairs of species	have the same bond or	der ?	
	(A) O_2, NO^+	(B) CN^-,CO	(C) N_2, O_2^-	(D) <i>CO</i> , <i>NO</i>	
22.	Predict the correct or	der among the followi	ng:		
	(A) bond pair $-$ bond pair $-$ bond pair $-$ lone pair $-$ lone pair				
	(B) lone pair $-$ bond μ	$pair > bond \; pair - bor$	nd pair $>$ lone pair $-$ lo	ne pair	
(C) lone pair $-$ lone pair $-$ bond pair $>$ bond pair $-$ bond pair					
	(D) lone pair — lone p	$\operatorname{air} > \operatorname{bond} \operatorname{pair} - \operatorname{bon}$	d pair $>$ lone pair $-$ bo	nd pair	
23.	Which one of the foll	owing compounds sh	ows the presence of i	ntramolecular	
	hydrogen bond ?				
	(A) H_2O_2				
	(B) <i>HCN</i>	5			
	(C) Cellulose	Õ			
	(D) Concentrated acet				
24.			ecies are not isostructu	ral ?	
	(A) Diamond, Silicon of	arbide	(B) NH_3, PH_3		
	(C) $XeF_4, XeO4$		(D) $SiCl_4, PCl_4^+$		
25.			he correct bond order?		
	(A) $O_2^- > O_2 < O_2^+$	(B) $O_2^- < O_2 > O_2^+$	(C) $O_2^- > O_2 > O_2^+$	(D) $O_2^- < O_2 < O_2^+$	
26.			aximum dipole momen		
	(A) CO_2	(B) CH_4	(C) NH_3	(D) NF_3	

27.	'. Identify the correct order of solubility in aqueous medium.					
	(A) $Na_2S>CuS>ZnS$		(B) $Na_2S>ZnS>Cus$	S		
	(C) $CuS>ZnS>Na_2S$		(D) $ZnS>Na_2S>Cus$	S		
28. The outer orbitals of ${\it C}$ in ethene molecule can be considered to be			be hybridized			
	to give three equivalen	to give three equivalent sp^2 orbitals. The total number of sigma (σ) and pi (π)				
	bonds in ethene molecule is					
	(A) $3 \text{ sigma } (\sigma) \text{ and } 2 \text{ pi}$	(A) $3 \text{ sigma } (\sigma) \text{ and } 2 \text{ pi } (\pi) \text{ bonds}$				
	(B) 4 sigma (σ) and 1 pi					
	(C) 5 sigma (σ) and 1 pi	, ,				
	(D) 1 sigma (σ) and 2 pi	(π) bonds.				
29.	XeF_2 is isostructural wit					
	(A) $SbCl_3$	B) $BaCl_2$	(C) TeF_2	(D) ICl_2^-		
30.	Which of the following i	is a polar molecule ?	40			
	(A) SiF_4	B) XeF_4	(C) BF_3	(D) SF_4		
31.	Which of the following i	is paramagnetic ?				
	(A) CN^-	B) NO^+	(C) CO	(D) O_2^-		
32.	In which of the followi					
	the magnetic behaviour					
			(C) $NO o NO^+$			
33.	Dipole-induced dipole in	nteractions are prese		.		
	(A) HCl and He atoms		(B) SiF_4 and He atom	is .		
	(C) H_2O and alcohol		(D) Cl_2 and CCl_4			
34.	The pair of species that		_			
	(A) CO, NO^+	B) NO^-, CN^-	(C) O_2, N_2	(D) O_2, B_2		
35.	Nodal plane in a ethyler					
	(A) Parallel to the bond axis					
	(B) Prependicular to the bond axis					
	(C) In the molecular plane					
(D) None of these						
36.	Match list <i>I</i> with list <i>II</i> a	18				
	list I (species)	list $II (O-N-O)$ ar	ngle)			
	$(A) \ NO_2^+$	(1) 180°				
	$(B) NO_2$	$(2) \ 132^o$				
	$(C) \ NO_2^-$	$(3) 120^{\circ}$				

Page 5

		-		
	$(D) NO_3^-$	$(4) 115^o$		
		$(5) 109^o$		
	A-5, B-4, C-3,	D-2		
	(B) $A-5$, $B-2$, $C-4$,	D-3		
	(C) $A-1, B-2, C-4,$	D-3		
	(D) $A-1, B-4, C-3,$	D-2		
37.	According to $VSEPR$ th	eory		
	(A) the shape of the mo	olecule depends upo	n the bonded electron	pairs
	(B) pair of electrons att	ract each other in va	alence shells	
	(C) the pairs of electron	ns tend to occupy su	ch positions that minir	nise repulsions
	(D) the pairs of electron	ns tend to occupy su	ch positions that mini	mise distances from
	each other		60	
38.	A molecule of the type	AX_5 has square py	ramidal geometry her	nce number of
	lone pairs on $'A'$ is			
	(A) 1 (B) 2	(C) 3	(D) 4
39.	Which of the following i		-	
	(A) BF_3	B) $N(CH_3)_3$	(C) $N(SiH_3)_3$	(D) PF_3
40.	Which of the following	properties correctly	•	
	(A) Linear, basic		(B) Tetrahedral, acidio	
	(C) Tetrahedral, basic	V	(D) Linear, acidic	
41.	Which of the following		?	
	(A) ICl_2^-	B) I_3^-	(C) N_3^-	(D) ClO_2^-
42.	Assertion : Bond angle			
	Reason : Electronegativ		_	
	(A) If both Assertion an the Assertion.	d Reason are correc	t and the Reason is a t	correct explanation of
	(B) If both Assertion an	d Reason are correc	t but Reason is not a c	correct explanation of
	the Assertion.	7		
	(C) If the Assertion is co	orrect but Reason is	incorrect.	
	(D) If both the Assertion	n and Reason are inc	correct.	
43.	A molecule which conta	ins unpaired electro	ns is	
	(A) Carbon monoxide	·	(B) Molecular nitroge	en
	(C) Molecular oxygen		(D) Hydrogen peroxid	de
44.	The bond order of NO i	molecule is		
	(A) 1 (B) 2	(C) 2.5	(D) 3

45.	. The bond order in N_2^+ ion is				
	(A) 1	(B) 2	(C) 2.5	(D) 3	
46.	Which of the following	g molecule is paramag	netic		
	(A) Chlorine	(B) Nitrogen	(C) Oxygen	(D) Hydrogen	
47.	Which molecule has tl	he highest bond order			
	(A) N_2	(B) Li_2	(C) He_2	(D) O_2	
48.	Which one of the follo	owing is paramagnetic			
	(A) H_2O	(B) NO_2	(C) SO_2	(D) <i>CO</i> ₂	
49.	According to the mole	ecular orbital theory, th	ne bond order in C_2 mo	lecule is	
	(A) 0	(B) 1	(C) 2	(D) 3	
50.	The bond order in ${\cal O}_2^+$	is			
	(A) 2	(B) 2.5	(C) 1.5	(D) 3	
51.	Which of the following	g molecular orbitals ha	as two nodal planes		
	(A) $\sigma 2s$	(B) $\pi2p_y$	(C) $\pi^*~2p_y$	(D) σ^*2p_x	
52.	What is correct seque				
	(A) $O_2^+ > O_2^- > O_2$	(B) $O_2^+ > O_2 > O_2^-$	(C) $O_2 > O_2^- > O_2^+$	(D) $O_2^- > O_2^+ > O_2$	
53.	The bond order is not	three for			
	(A) N_2^+	(B) O_2^{2+}	(C) N_2	(D) <i>NO</i> ⁺	
54.	Which of the following	g is correct for N_2 tripl	e bond		
	(A) 3s	(B) $1p,2s$	(C) $2p,1s$	(D) 3p	
55.	The paramagnetic prunpaired electorns pr		n molecule due to the	e presence of	
	(A) $(\sigma 2p_x)^1$ and $(\sigma^* 2p_x)^2$	$)^1$	(B) $(\sigma 2p_x)^1$ and $(\pi 2p_y)^1$		
	(C) $(\pi^*2p_y)^1$ and $(\pi^*2p_y)^2$	$(z)^1$	(D) $(\pi^*2p_y)^1$ and $(\pi2p_y)$	1	
56.	The bond order of O_2^+	is the same as in			
	(A) N_2^+	(B) CN-	(C) <i>CO</i>	(D) NO^+	
57.	Bond order of O_2 is	4			
	(A) 2	(B) 1.5	(C) 3	(D) 3.5	
58.	What is not true abou	it ice?			
	(A) It has open cage l	ike structure			
	(B) It has less density	than water			
	(C) Each O atom is su	rrounded by $4H$ atom	S		
	(D) Each O atom has	four $H-$ bonds around	d it		

- 59. Which of the following when dissolved in water forms a solution which is non-conducting?
 - (A) Green vitriol

(B) Chile or Indian salt petre

(C) Alcohol

- (D) Potash alum
- 60. Which of the following is not a best representation of the H- bond?

(A)

(B)

(C)

- (D) None
- 61. The H- bonds in solid HF can be best represented as
 - (A) H F H F H F

(B)

(C)

(D)

- 62. Hydrogen bonding present in
 - (A) KHF_2
- (B) KH_2PO_4
- (C) KH_2PO_2
- (D) Both (A) and (B)

- 63. The hydrogen bond is not present in
 - (A) phenol

(B) liquid HCl

(C) water

(D) liquid NH_3

64.	Which of the following	g form dimer by $H-$ b	ond		
	(A) CH_3COOH	(B) H_2SO_4	(C) AlCl ₃	(D) $o-$ nitrophenol	
65.	Which one of the follo	wing does not have ir	ntermolecular $\it H-$ bond	ing ?	
	(A) H_2O	(B) O- nitro phenol	(C) HF	(D) CH_3COOH	
66.	In a crystal cations an	d anions are held toge	ether by		
	(A) Electrons		(B) Electrostatic forces	5	
	(C) Nuclear forces		(D) Covalent bonds		
67.	The enhanced force o (A) The covalent linka		s due to		
	(B) The electrovalent	linkages between aton	ns		
	(C) The lack of exchar	nge of valency electror	ns		
	(D) The exchange ene	rgy of mobile electron	is O		
68.	Which of the following	g has the highest melt	ing point		
	(A) <i>Pb</i>	(B) Diamond	(C) Fe	(D) <i>Na</i>	
69.	Which has weakest bo	ond			
	(A) Diamond	(B) Neon (Solid)	(C) KCl	(D) Ice	
70.	Glycerol has strong in	termolecular bonding	therefore it is		
	(A) Sweet	(B) Reactive	(C) Explosive	(D) Viscous	
71.	Which of the following does not exists as ionic substance in solid state				
	(A) PBr_5	(B) N_2O_5	(C) Na_2SO_4	(D) H_2O	
72.	Dipole-induced dipole	interactions are prese	ent in which of the follo	wing pairs	
	(A) SiF_4 and $Heatoms$		(B) H_2O and $alcohol$		
	(C) Cl_2 and CCl_4		(D) HCl and He atoms		
73.	Among the following	mixture dipole-dipole a	attraction is present ?		
	(A) CH_2Cl_2 and CCl_4		(B) He and He		
	(C) $CHCl_3$ and CH_2Cl_3	2	(D) C_6H_6 and CH_4		
74.	The boiling points of the type	noble gases are illus	trative of the operation	n of forces of	
	(A) ion-dipole		(B) dipole-induced dip	ole	
	(C) ion-induced dipole		(D) London dispersion	forces	
75.	The bond that exists b	between NH_3 and BF_3	is called		
	(A) Electrovalent	(B) Covalent	(C) Coordinate	(D) Hydrogen	
76.	Which of the following				
	(A) SO_2	(B) HNO_3	(C) H_2SO_3	(D) HNO_2	

- 77. Which has a coordinate bond
 - (A) SO_3^{2-}
- (B) CH_4
- (C) *CO*₂
- (D) NH_3

- 78. The compound containing co-ordinate bond is
 - (A) O_3

(B) SO_3

- (C) H_2SO_4
- (D) All of these
- 79. The number of dative bonds in sulphuric acid molecules is
 - (A) 2

(B) 1

(C) 0

- (D) 4
- 80. Which of the following compounds has coordinate (dative) bond
 - (A) CH_3NC
- (B) CH_3OH
- (C) CH_3Cl
- (D) NH_3

- 81. The structure of orthophosphoric acid is
 - (A) $H-O-\stackrel{O}{\overset{\frown}{P}}-O-H$
 - (B) $O \leftarrow P O H$ $O \leftarrow H$ $O \leftarrow H$ $O \leftarrow H$
 - (C) $O \leftarrow egin{pmatrix} H \\ P \\ H \end{pmatrix} O H$
 - (D) $H-O-\stackrel{O}{P}=O$
- 82. What is the nature of the bond between B and O in $(C_2H_5)_2OBH_3$
 - (A) Covalent

(B) Co-ordinate covalent

(C) Ionic bond

- (D) Banana shaped bond
- 83. The number of ionic, covalent and coordinate bonds in NH_4Cl are respectively
 - (A) $1,3 \, and \, 1$
- (B) 1,3 and 2
- (C) $1,2 \, and \, 3$
- (D) $1,1 \, and \, 3$

- 84. The bonds in $K_4[Fe(CN)_6]$ are
 - (A) All ionic
 - (B) All covalent
 - (C) Ionic and covalent
 - (D) Ionic, covalent and coordinate covalent
- 85. Dative bond is present in
 - (A) O_3

- (B) NH_3
- (C) $BaCl_2$
- (D) BI_3

(A) only ionic (C) covalent and co-or Which of the following (A) H_3O^+ The $d-$ orbitals which	rdinate g does not contain any (B) BF_4^-	(B) only covalent (D) covalent and io	nic		
Which of the following (A) H_3O^+	g does not contain any				
(A) H_3O^+		CO- OFCHIATE DODGE			
		(C) HF_2^-	(D) $NH_{\scriptscriptstyle A}^{+}$		
THE a- OLDITALS WHICH	-	-	-		
			-		
(A) $a_{z^2}, a_{x^2-y^2}$	(b) $a_{x^2-y^2}, a_{xy}, a_{yz}, a_{zx}$	(C) $a_z, a_{xy}, a_{yz}, a_{xz}$	$(D) \; a_{xy}, a_{xz}, a_{yz}$		
in a regular octanedra are :-	al molecule MX_6 , the	number of $X - M -$	X bonds of 180°		
(A) 3	(B) 2	(C) 6	(D) 4		
If Hund's rule is vio	olated then select th	e <i>CORRECT</i> state	ement regarding		
$[Ni(NH_3)_6]^{2+}$ is					
(A) sp^3d^2 , paramagne	tic	(B) d^2sp^3 , diamagn	etic		
(C) sp^3d^2 , diamagneti	С	(D) d^2sp^3 , paramag	gnetic		
Choose the correct sti	ructure for PF_3Cl_2 mo	lecule. (electron Affe	enity : $Cl>F$)		
(A)					
F Cl F					
(B)					
(C)					
	In a regular octahedrare:- (A) 3 If Hund's rule is vio $[Ni(NH_3)_6]^{2+}$ is (A) sp^3d^2 , paramagnetic (C) sp^3d^2 , diamagnetic (A) (B) (C) F C1 F C1	In a regular octahedral molecule MX_6 , the are :- (A) 3 (B) 2 If Hund's rule is violated then select the $[Ni(NH_3)_6]^{2+}$ is (A) sp^3d^2 , paramagnetic (C) sp^3d^2 , diamagnetic Choose the correct structure for PF_3Cl_2 molecular.	In a regular octahedral molecule MX_6 , the number of $X-M-are:$ - (A) 3 (B) 2 (C) 6 If Hund's rule is violated then select the $CORRECT$ state $[Ni(NH_3)_6]^{2+}$ is (A) sp^3d^2 , paramagnetic (B) d^2sp^3 , diamagnetic (C) sp^3d^2 , diamagnetic (D) d^2sp^3 , paramagnetic (A) (B) d^2sp^3 , paramagnetic (C) d^2sp^3 , paramagnetic (D) d^2sp^3 , paramagnetic (E) d^2sp^3 ,		

92.	Molecular shape of XeF_3^+ and SNF_3 species are respectively				
	(A) $T-$ shaped, Tetrahedral				
	(B) $T-$ shape, square pyramidal				
	(C) See-saw, square pyram	(C) See-saw, square pyramidal			
	(D) Square pyramidal, see-	saw			
93.	93. Match the species given in Column I with the shape given in column II mark the correct option:-			column II and	
	Column- <i>I</i>	I Column-II (Shape)			
	$\overline{\left(A\right)SF_{4}}$	(1) Tetrahedral			
	$(B) Br F_3$	(2) Pyramidal			
	$\overline{(C) BrO_3^-}$	(3) Se	a-Saw shaped		
	$\overline{\left(D ight)NH_{4}^{+}}$	(4) Be	nt $T-$ shaped	60	
		,		5	
	(A) $A(3), B(2), C(1), D(4)$		(B) A((3), B(4), C(2), D	$\mathcal{O}(1)$
	(C) $A(1), B(2), C(3), D(4)$ (D) $A(1), B(4), C(3), D(2)$				
94.	Match List $-I$ with List $-II$	and s	select the correct	answer using	the codes given
	below the lists		427		
	List-I		List-II		
	$(I) \; XeF_4$		(A) See-saw		
	$(II) I_3^-$		(B) Tetra hedral		
	$(III) \ XeO_2F_2$	4	(<i>C</i>) Bond angle 90	0	
	$(IV) \; SO_4^{2-}$		(D) Linear		
	(A) (I) - (C), II - (D), III - (D)	$\overline{(A),IV}$	- (B)		
	(B) $(I) - (B), II - (A), III - (B)$	(C), IV	$-\left(D ight)$		
	(C) $(I) - (C), II - (B), III - (A), IV - (D)$				
	(D) $(I) - (A), II - (C), III - (B), IV - (D)$				
95.	$BeCl_2$ is not isostructural w	ith			
	(A) ICl_2^-	C_2H_2	(C) X	e F_2	(D) $GeCl_2$
96.	Which of the following stat	ement	s is incorrect for i	PCl_5 ?	
	(A) Its three $P-Cl$ bond le	ngths	are equal		
	(B) It involves sp^3d hybridiz	ation			
	(C) It has an regular geom	etry			
(D) Its shape is trigonal bipyramidal					

97. Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false: (I) The order of repulsion between different pair of electrons $l_P - l_P > l_P - b_P > b_P - b_P$ (II) In general, as the number of lone pair of electrons on central atom increases, value of bond angle from normal bond angle also increases (III) The number of lone pair on O in H_2O is 2 while on N in NH_3 is 1 (IV) The structures of xenon fluorides and xenon oxyfluorides could not be explained on the basis of VSEPR theory (A) TTTF (B) TFTF (C) TFTT(D) TFFF 98. Which species is planar? (B) SO_3^{2-} (A) CO_3^{2-} (C) ClO_3^- (D) $BF_{\scriptscriptstyle A}^-$ 99. Among the following species, the least angle around the central atom is in (A) O_3 (B) I_{2}^{-} (C) NO_{2}^{-} (D) PH_3 100. Which ionic compound has the largest amount of lattice energy? (A) NaF(B) AlF_3 (C) AlN(D) MqF_2 101. Iodine molecules are held in the solid lattice by (A) London forces (B) dipole-dipole interactions (C) covalent bonds (D) coulombic force 102. Carbon dioxide is gas, while SiO_2 is solid because (A) CO_2 is a linear molecule, while SiO_2 is angular (B) van der Waals' forces are very strong in SiO_2 (C) CO_2 is covalent, while SiO_2 is ionic (D) Si cannot form stable bonds with O, hence Si has to form a 3D lattice 103. Which of the following diagram show correct change in the ionic character of given compounds according to Fajans rule? (A) RbCl

(B)

104. Which of the following diagrams shows correct change in the polarity of bond ?

105. Which of the following is the correct order for increasing bond angle?

(A)
$$NH_3 < PH_3 < AsH_3 < SbH_3$$

(B)
$$H_2O < OF_2 < Cl_2O$$

(C)
$$H_3Te^+ < H_3Se^+ < H_3S^+ < H_3O^+$$

(D)
$$BF_3 < BCl_3 < BBr_3 < BI_3$$

107. Which set contain molecules with $\mu=0$ (A)

(B)

(C) ClF_3, SiF_4, SO_3

(D)

- 108. The magnetic moment of M^{x+} (atomic number =25) is $\sqrt{15}$ BM. The number of unpaired electrons and the value of x, respectively, are
 - (A) 4,3

(B) 3,4

(C) 3,2

(D) 5,2

109. Which has maximum dipole moment?

116.	The hybridization of t	he central atom will ch	nange when	
	(A) NH_3 combines with H^+		(B) H_3BO_3 combines with OH^-	
	(C) NH_3 forms NH_2^-		(D) H_2O combines with H^+	
117.	Which of the followin	g overlapping is not p	resent in XeO_3 molecule	e ?
	(A) sp^3+p_x	(B) sp^3+p_y	(C) $d_{xy}+p_x$	(D) sp^3+s
118.	(I) The bond angle de	f a hybrid orbital decr	and strength increases	S
119.	_	(A) and (B) will result d P_x -orbital of B and P_z orbital of B and p_z orbital of B	, which of the overlapp in bonding? (C) <i>III</i> and <i>IV</i>	ing of atomic
		$O_2^- < ClO^- \ O_3^- < ClO_4^- \ m{cunities}$ in disguise: Do	(B) $ClO^- < ClO_4^- < ClO_4^-$ (Clo) $ClO_4^- < ClO_3^- < ClO_3^-$ (D) $ClO_4^- < ClO_3^- < ClO_3^-$ (D) on't be discouraged by ond become stronger	$D_2^- < ClO^-$