

Høgskolen i Sør-Trøndelag Avdeling for informatikk og e-læring

Høst 2014

Oppgave 1 (20%)

- a) La $A=\{1,2,3\},\,B=\{\emptyset,\{1\},2,3\}$ og $C=\{0,1\}$ være mengder. Oppgaven var å avgjøre om påstandene under er sanne eller usanne:
 - (i) $A \cup C = A$ er usann fordi $A \neq A \cup C = \{0, 1, 2, 3\}$
 - (ii) $A C = \{2, 3\}$ er sann fordi $\{2, 3\}$ er de elementene i A som ikke er med i C
 - (iii) $A \cap B = \{1, 2, 3\}$ er usann fordi 1 ikke er med i B.
 - (iv) A og C er komplementære mengder. Usann fordi både A og C inneholder 1
 - (v) $(A B) \cap C \subseteq B$ er usann fordi venstresiden er lik $\{1\}$ og 1 er ikke med i B. $\{1\}$ er element i B, men det er noe annet.
 - (vi) $\emptyset \subseteq B$ er sant da alle mengder inneholder den tomme mengden.
 - (vii) $\emptyset \in B$ er usant fordi den tomme mengden ikke er et **element** i B.
 - (viii) $\{\emptyset\} \subseteq B$ er usann av samme grunn som i (vii).
 - (ix) $A B = A \cap B^c$ er sant da det er en generell setning som gjelder for alle mengder A og B.
 - (x) $\mathcal{P}(C) \cap B = \emptyset$ er usann fordi {1} er med i både $\mathcal{P}(C)$ og $\cap B$
- b) Oppgaven var å beskrive funksjoner fra A til C (der A og C er mengdene i a)) som har følgende egenskaper:
 - (i) Surjektiv men ikke injektiv. Et eksempel er f(1) = 0, f(2) = 1, f(3) = 1.
 - (ii) Injektiv men ikke surjektiv. Er ikke mulig fordi A har ett element mer enn C.
 - (iii) Verken injektiv eller surjektiv. Et eksempel er f(1) = 0, f(2) = 0, f(3) = 0.

Oppgave 2 (20%)

- a) La A og B være mengder inneholdt i en universalmengde \mathcal{U} .
 - (i) Oppgaven er å vise eller motbevise at uansett hva A og B er, er mengdene

$$A-B$$
, $B-A$ og $A\cap B$

parvis disjunkte (det vil si at hvert par av dem er disjunkte). Det viser seg at dette er riktig og må bevise dette.

Først har vi at A-B og B-A er disjunkte fordi om $a \in A-B$ så er $a \in A$ som igjen betyr at $a \notin B-A$. På samme måte, hvis $b \in B-A$ så er $b \in B$ men da er ikke b med i A-B.

Så har vi at A-B og $A\cap B$ er disjunkte fordi om $a\in A-B$ så er a ikke med i B som igjen betyr at $a\not\in A\cap B$. På samme måte, hvis $b\in A\cap B$ så er $b\in B$ men da er ikke b med i A-B.

Sist har vi at B-A og $A\cap B$ er disjunkte fordi om $b\in B-A$ så er b ikke med i A som igjen betyr at $b\not\in A\cap B$. På samme måte, hvis $a\in A\cap B$ så er $a\in A$ men da er ikke a med i B-A.

- (ii) Oppgaven er å vise eller motbevise at A-B, B-A og $A\cap B$ gir en oppdeling av $A\cup B$. Vi vet allerede at mengdene er disjunkte. Vi trenger kun å sjekke om $A\cup B=(A-B)\cup (B-A)\cup (A\cap B)$. Oppgave 1a(ix) gir $(A-B)\cup (B-A)\cup (A\cap B)=(A\cap B^c)\cup (B\cap A^c)\cup (A\cap B)$. Distributiv lov, negasjonslov og identitetslov gir $(A\cap B^c)\cup (B\cap A^c)\cup (A\cap B)=(A\cap (B^c\cup B))\cup (B\cap A^c)=(A\cap U)\cup (B\cap A^c)=A\cup (B\cap A^c)=(A\cup B)\cap (A\cup A^c)=(A\cup B)\cap U=A\cup B$.
- b) Oppgaven er å vise at for alle heltall n har vi at 3 ikke deler $n^2 + 1$.

Et heltall kan alltid skrives på en av formene n = 3k, n = 3k + 1 eller 3k + 2. I disse tre tilfellene har vi

$$-n^{2} + 1 = 9k^{2} + 1 \equiv 1 \pmod{3}$$
$$-n^{2} + 1 = 9k^{2} + 6k + 1 + 1 \equiv 2 \pmod{3}$$
$$-n^{2} + 1 = 9k^{2} + 12k + 4 + 1 \equiv 2 \pmod{3}$$

Ingen av disse er ekvivalent med 0 mod 3.

Oppgave 3 (20%)

a) Oppgaven er å finne

$$17^{35} + 676^7 \cdot 3 \pmod{39}$$
.

Vi har $676 \equiv 13 \pmod{39}$ så

$$17^{35} + 676^7 \cdot 3 \equiv 17^{35} + 13^7 \cdot 3 \equiv 17^{35} + 13^6 \cdot 39 \equiv 17^{35} + 0 \pmod{39}$$

Vi har at $17^2 = 289 \equiv 16 \pmod{39}$ $17^3 = 4913 \equiv -1 \pmod{39}$ og $35 = 3 \cdot 11 + 2$. Derfor er $17^{35} + 676^7 \cdot 3 \equiv 17^{35} + 0 \equiv (17^3)^1 \cdot 17^2 \equiv (-1)^1 \cdot 16 \equiv (-1) \cdot 16 \equiv (-16) \equiv 23 \pmod{39}$

b) Oppgaven er å gi et induksjonsbevis for følgende kongruensregningsregel:

For alle heltall $n \geq 1$ har vi at hvis $a \equiv c \pmod{m}$, så er

$$a^n \equiv c^n \pmod{m}$$
.

der m er et heltall større enn 1.

For n = 1 er setningen sann fordi $a^1 = a \equiv c = c^1 \pmod{m}$.

Vi antar at setningen er sann for n=k, dvs $a^k\equiv c^k\pmod m$ og skal vise at den er sann for n=k+1. Nå er a=c+rm og $a^k=c^k+sm$ der r og s er heltall fordi $a\equiv c\pmod m$ og $a^k\equiv c^k\pmod m$. Da er $a^{k+1}=aa^k=(c+rm)(c^k+sm)=cc^k+csm+rmc^k+srm^2=c^{k+1}+(cs+rc^k+srm)m$.

$$a^{k+1} = c^{k+1} + (cs + rc^k + srm)m$$

betyr at $a^{k+1} \equiv c^{k+1} \pmod{m}$.

Oppgave 4 (25%) Vi definerer funksjonen $f(x,y) = x^3 + 3xy^2 - 3x$.

- a) Oppgaven er å regne ut de første ordens og andre ordens partiellderiverte til f. og skrive ned gradienten ∇f . $f_x = 3x^2 + 3y^2 3$, $f_y = 6xy$, $f_{xx} = 6x$, $f_{yx} = 6y$, $f_{yy} = 6x$. Gradienten er $\nabla f = (3x^2 + 3y^2 3, 6xy)$.
- b) Oppgaven er å besteme de kritiske punktene til f(x,y). Vi starter med $f_y = 6xy = 0$. Dvs x = 0 eller y = 0. Vi setter inn i $f_x = 3x^2 + 3y^2 - 3 = 0$. $(x = 0) \Rightarrow y = \pm 1$ og $(y = 0) \Rightarrow x = \pm 1$. De kritiske punktene er (-1,0), (1,0), (0,-1), (0,1).

c) Oppgaven er å regne ut diskriminanten $D = f_{xx}f_{yy} - f_{xy}^2$ for alle de kritiske punktene og besteme hvilke typer disse er (sadelpunkt, lokalt minimum, lokalt maksimum.)

Kritiske punkter	$D = 36(x^2 - y^2)$	f_{xx}	type
(-1,0)	36	-6	lokalt maks
(1,0)	36	6	lokalt min
(0,-1)	-36		sadel
(0,1)	-36		sadel

d) La C være sirkelen med radius $\sqrt{3}$ og senter i origo. $(g(x,y)=x^2+y^2=3.)$ Oppgaven er å vise med hjelp av Lagrange multiplikator at på sirkelen C har f(x,y) seks kritiske punkter $(\pm\sqrt{3},0), (\pm 1,\pm\sqrt{2}).$

Lagrangelikningene er: $\nabla f = \lambda \nabla g$ og g(x,y) = 3. Vi skriver dette ut:

(i)
$$3x^2 + 3y^2 - 3 = 2\lambda x$$

(ii)
$$6xy = 2\lambda y$$

(iii)
$$x^2 + y^2 = 3$$

Vi tar tak likning (ii) $6xy = 2\lambda y \Leftrightarrow y = 0 \lor \lambda = 3x$ Vi sjekker begge tilfeller

1)
$$y = 0 \stackrel{(iii)}{\Rightarrow} x^2 = 3 \Leftrightarrow x = \pm \sqrt{3}$$
, som gir $(x, y) = (\pm \sqrt{3}, 0)$.

2)
$$\lambda = 3x \stackrel{(i)}{\Rightarrow} 3x^2 + 3y^2 - 3 = 6x^2 \stackrel{(iii)}{\Rightarrow} 3x^2 + 3(3 - x^2) - 3 = 6x^2 \Leftrightarrow 6 = 6x^2 \Leftrightarrow x^2 = 1 \stackrel{(iii)}{\Rightarrow} y^2 = 2$$

Det gir $(x, y) = (\pm 1, \pm \sqrt{2}).$

e) Oppgaven er å finne ligningen til tangentplanet til grafen z = f(x, y) i punktet (1, 1, 1).

Vi har fra punkt a) at $f_x = 3x^2 + 3y^2 - 3$ og $f_y = 6xy$.

Likningen til tangenplanet er z = L(x, y), der L(x, y) er lineariseringen til f(x, y) i punktet (1, 1).

$$L(x,y) = f(1,1) + f_x(1,1)(x-1) + f_y(1,1)(y-1) = 1 + 3(x-1) + 6(y-1)$$

Oppgave 5 (15%)

a) Oppgaven er å finne gradienten til f(x, y, z) = xy + 2yz + 3zx.

Vi regner ut og får $f_x(x, y, z) = y + 3z$, $f_y(x, y, z) = x + 2z$ og $f_z(x, y, z) = 2y + 3x$. Det gir $\nabla f = (y + 3z, x + 2z, 2y + 3x)$

b) Oppgaven er å finne den retningsderiverte til f(x, y, z) i retningen $\mathbf{u} = (1/3, 2/3, 2/3)$ i punktet (1, 1, 1).

Vi ser at lengden til \mathbf{u} er $|\mathbf{u}| = \sqrt{1/9 + 4/9 + 4/9} = \sqrt{1} = 1$. Da har vi at den retningsderiverte til f i punktet (1,1,1) er

$$D_{\mathbf{u}}f\Big|_{(1,1,1)} = \mathbf{u} \cdot \nabla f(1,1,1) = (1/3,2/3,2/3) \cdot (1+3,1+2,2+3) = (1/3,2/3,2/3) \cdot (4,3,5) = 4/3 + 6/3 + 10/3 = 20/3 = 6/3 + 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3 = 6/3 + 10/3$$

c) Oppgaven er å besvare i hvilken retning øker f(x, y, z) mest i punktet (1, 1, 1).

Det vil si vi vil finne den største verdien av den retningsderiverte. Den retningsderiverte i retningen \mathbf{v} , (der |v|=1), kan skrives som

$$D_{\mathbf{v}}f\Big|_{(1,1,1)} = \mathbf{v} \cdot \nabla f(1,1,1) = 1 \cdot |\nabla f(1,1,1)| \cos \theta,$$

der θ er vinkelen mellom \mathbf{v} og $\nabla f(1,1,1)$. Det betyr at $D_{\mathbf{v}}f\Big|_{(1,1,1)}$ er størst når $\cos \theta = 1$, dvs at \mathbf{v} peker i samme retning som $\nabla f(1,1,1) = (4,3,5)$.

$$\mathbf{v} = \frac{1}{\sqrt{4^2 + 3^2 + 5^2}} (4, 3, 5) = \frac{1}{5\sqrt{2}} (4, 3, 5)$$