# **Big Data Analytics**

The Linear Model

Souhaib Ben Taieb

March 25, 2021

University of Mons

## Table of contents

Linear Classification

Linear Regression

Important notions in nonlinear optimization

Back to linear regression

Logistic Regression

## Table of contents

#### Linear Classification

Linear Regression

Important notions in nonlinear optimization

Back to linear regression

Logistic Regression

#### A real data set



(C) FIT Greator: Yaser Abu-Mostafa - LFD Lecture 3

#### Input representation

'raw' input 
$$\mathbf{x} = (x_0, x_1, x_2, \cdots, x_{256})$$

linear model:  $(w_0, w_1, w_2, \cdots, w_{256})$ 

Features: Extract useful information, e.g.,

intensity and symmetry 
$$\mathbf{x} = (x_0, x_1, x_2)$$

linear model:  $(w_0, w_1, w_2)$ 



(c) P. Greator: Yaser Abu-Mostafa - LFD Lecture 3

#### Illustration of features

$$\mathbf{x} = (x_0, x_1, x_2)$$
  $x_1$ : intensity  $x_2$ : symmetry



© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

### A simple learning algorithm - PLA

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 1





#### What PLA does

### Evolution of $E_{\rm in}$ and $E_{\rm out}$



### Final perceptron boundary



© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

### The 'pocket' algorithm

### PLA:



### Pocket:



© 🖫 Creator: Yaser Abu-Mostafa - LFD Lecture 3

### Classification boundary - PLA versus Pocket

## PLA: Pocket:





© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

## Table of contents

Linear Classification

Linear Regression

Important notions in nonlinear optimization

Back to linear regression

Logistic Regression

### Credit again

Classification: Credit approval (yes/no)

Regression: Credit line (dollar amount)

Input:  $\mathbf{x} =$ 

| age                | 23 years |
|--------------------|----------|
| annual salary      | \$30,000 |
| years in residence | 1 year   |
| years in job       | 1 year   |
| current debt       | \$15,000 |
|                    |          |

Linear regression output: 
$$h(\mathbf{x}) = \sum_{i=0}^d w_i \ x_i = \mathbf{w}^\mathsf{T} \mathbf{x}$$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 3

#### The data set

Credit officers decide on credit lines:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$$

 $y_n \in \mathbb{R}$  is the credit line for customer  $\mathbf{x}_n$ .

Linear regression tries to replicate that.

© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

#### How to measure the error

How well does 
$$h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
 approximate  $f(\mathbf{x})$ ?

In linear regression, we use squared error  $(h(\mathbf{x}) - f(\mathbf{x}))^2$ 

in-sample error: 
$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 3

### Illustration of linear regression





© 🖫 Creator: Yaser Abu-Mostafa - LFD Lecture 3

### The expression for $E_{in}$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{y}_{n})^{2}$$
$$= \frac{1}{N} ||\mathbf{X} \mathbf{w} - \mathbf{y}||^{2}$$

where 
$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^\mathsf{T} - \\ -\mathbf{x}_2^\mathsf{T} - \\ \vdots \\ -\mathbf{x}_N^\mathsf{T} - \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

# The expression for $E_{in}$

$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

$$E_{\text{in}}(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{x}_{n} - y_{n})^{2}$$
 (1)

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^N \quad \text{and} \quad \mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ \vdots \\ -\mathbf{x}_N^T - \end{bmatrix} \in \mathbb{R}^{N \times (d+1)}$$

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2},$$
 (2)

where  $\|\cdot\|$  is the Euclidean norm of a vector.

# Minimizing Ein

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2}$$
 (3)

$$=\frac{1}{N}\|\mathbf{y}-X\mathbf{w}\|_2^2\tag{4}$$

$$= \frac{1}{N} (\mathbf{y} - X\mathbf{w})^{\mathsf{T}} (\mathbf{y} - X\mathbf{w}) \qquad (\|\mathbf{v}\|_{2}^{2} = \mathbf{v}^{\mathsf{T}} \mathbf{v}) \qquad (5)$$

$$= \frac{1}{N} (\mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T X^T \mathbf{y} + \mathbf{w}^T X^T X \mathbf{w}). \tag{6}$$

We need to solve the following optimization problem

$$\mathbf{w}_{\mathsf{lin}} = \underset{\mathbf{w} \in \mathbb{R}^{d+1}}{\mathsf{argmin}} \; E_{\mathsf{in}}(\mathbf{w}),$$

where  $E_{in}(\mathbf{w})$  is a single-valued **multivariable** function.

## Table of contents

Linear Classification

Linear Regression

Important notions in nonlinear optimization

Back to linear regression

Logistic Regression

### Multivariate calculus - Gradient

Consider a function r(z) where z is a d-vector  $z = [z_1, z_2, \dots, z_d]^T$ . The **gradient vector** of this function is given by the **partial derivatives** with respect to each of the independent variables,

$$\nabla r(\mathbf{z}) \equiv g(\mathbf{z}) \equiv \begin{bmatrix} \frac{\partial r}{\partial z_1}(\mathbf{z}) \\ \frac{\partial r}{\partial z_2}(\mathbf{z}) \\ \vdots \\ \frac{\partial r}{\partial z_d}(\mathbf{z}) \end{bmatrix}.$$

### Multivariate calculus - Gradient

The gradient is the generalization of the concept of derivative, which captures the local rate of change in the value of a function, in multiple directions.

It is very important to remember that the gradient of a function is only defined if the function is real-valued, that is, if it returns a scalar value.

If the gradient exists at every point, the function is said to be **differentiable**. If each entry of the gradient is continuous, we say the function is **once continuously differentiable**.

Note on notations:  $\nabla_z r$  means the gradient of r where the ith partial derivative is taken with respect to  $z_i$ . The same notation is used for the directional derivatives defined as  $\nabla_z r = \nabla r \cdot \mathbf{z}$ .

### Multivariate calculus - Hessian

While the gradient of a function of d variables (i.e. the "first derivative") is an d-vector, the "second derivative" of an d-variable function is defined by  $d^2$  partial derivatives (the derivatives of the d first partial derivatives with respect to the d variables):

$$\frac{\partial r}{\partial z_i} \left( \frac{\partial r}{\partial z_j} \right) = \frac{\partial^2 r}{\partial z_i \partial z_j}, i \neq j \quad \text{and} \quad \frac{\partial r}{\partial z_i} \left( \frac{\partial r}{\partial z_i} \right) = \frac{\partial^2 r}{\partial^2 z_i}, i = j$$

where  $i, j = 1, \ldots, d$ .

### Multivariate calculus - Hessian

If r is single-valued and the partial derivatives  $\frac{\partial r}{\partial z_i}$ ,  $\frac{\partial r}{\partial z_j}$  and  $\frac{\partial^2 r}{\partial z_i \partial z_j}$  are continuous, then  $\frac{\partial^2 r}{\partial z_i \partial z_j}$  exists and  $\frac{\partial^2 r}{\partial z_i \partial z_j} = \frac{\partial^2 r}{\partial z_j \partial z_i}$ .

Therefore the second order partial derivatives can be represented by a square *symmetric* matrix called the **Hessian** matrix:

$$\nabla^2 r(\mathbf{z}) \equiv H(\mathbf{z}) \equiv \begin{pmatrix} \frac{\partial^2 r}{\partial^2 z_1}(\mathbf{z}) & \cdots & \frac{\partial^2 r}{\partial z_1 \partial z_d}(\mathbf{z}) \\ \vdots & & \vdots \\ \frac{\partial^2 r}{\partial z_d \partial z_1}(\mathbf{z}) & \cdots & \frac{\partial^2 r}{\partial^2 z_d}(\mathbf{z}) \end{pmatrix},$$

which contains d(d+1)/2 independent elements.

If a function has a Hessian matrix at every point, we say that the function is **twice differentiable**. If each entry of the Hessian is continuous, we say the function is **twice continuously differentiable**.

### Multivariate calculus - Hessian

For functions of a vector, the gradient is a vector, and **we cannot** take the gradient of a vector. Therefore, it is not the case that the Hessian is the gradient of the gradient. However, this is almost true, in the following sense: If we look at the *i*th entry of the gradient  $(\nabla_z r(z))_i = \frac{\partial r(z)}{\partial z_i}$ , and take the gradient with respect to z, we get

$$abla_{\mathbf{z}} rac{\partial r(\mathbf{z})}{\partial z_{i}} \equiv egin{bmatrix} rac{\partial r}{\partial z_{i}\partial z_{1}}(\mathbf{z}) \\ rac{\partial r}{\partial z_{i}\partial z_{2}}(\mathbf{z}) \\ \vdots \\ rac{\partial r}{\partial z_{i}\partial z_{d}}(\mathbf{z}) \end{bmatrix},$$

which is the ith column (or row) of the Hessian. Therefore,

$$\nabla_{\mathbf{z}}^2 = [\nabla_{\mathbf{z}}(\nabla_{\mathbf{z}}r(\mathbf{z}))_1 \ \nabla_{\mathbf{z}}(\nabla_{\mathbf{z}}r(\mathbf{z}))_2 \ \cdots \ \nabla_{\mathbf{z}}(\nabla_{\mathbf{z}}r(\mathbf{z}))_d].$$

### **Definiteness of a matrix**

- $A \in \mathbb{R}^{n \times n}$  is **positive semi-definite**, denoted  $A \succeq 0$ , if  $\mathbf{v}^T A \mathbf{v} \geq 0, \forall \mathbf{v} \in \mathbb{R}^n_{>0}$ . If  $A = A^T$ , all the eigenvalues of A are larger or equal to zero.
- $A \in \mathbb{R}^{n \times n}$  is **positive definite**, denoted  $A \succ 0$ , if  $\mathbf{v}^T A \mathbf{v} > 0$ ,  $\forall \mathbf{v} \in \mathbb{R}^n_{>0}$ . If  $A = A^T$ , all the eigenvalues of A are strictly positive.
- $A \in \mathbb{R}^{n \times n}$  is **negative definite**, denoted  $A \prec 0$ , if  $\mathbf{v}^T A \mathbf{v} < 0, \forall \mathbf{v} \in \mathbb{R}^n_{>0}$ . If  $A = A^T$ , all the eigenvalues of A are strictly negative.
- $A \in \mathbb{R}^{n \times n}$  is **indefinite** if there exists  $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n_{>0}$  such that  $\mathbf{v}_1^T A \mathbf{v}_1 > 0$  and  $\mathbf{v}_2^T A \mathbf{v}_2 < 0$ . If  $A = A^T$ , A has eigenvalues of mixed sign.

### **Convex functions**

A function  $r: \mathbb{R}^d \to \mathbb{R}$  is called **convex** if for any  $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^d$  and every  $\lambda \in [0, 1]$ , we have

$$f(\lambda \mathbf{z}_1 + (1-\lambda)\mathbf{z}_2) \leq \lambda f(\mathbf{z}_1) + (1-\lambda)f(\mathbf{z}_2).$$

- *r* is **convex** if and only if its Hessian is **positive semidefinite**.
- For a convex function, any local minimum (optimum) is also a global minimum (optimum).

## Optimality conditions for unconstrained optimization

- Necessary Optimality Conditions
  - First-Order Necessary Conditions
     If z\* is a local minimum of r and r is once continously differentiable, then ∇r(z\*) = 0.
  - Second-Order Necessary Conditions
     If z\* is a local minimum of r and r is twice continously differentiable, then ∇²r(z\*) > 0.
  - There may exist points that satisfy these conditions but are not local minima, e.g. z = 0 for  $r(z) = z^3$ ,  $r(z) = |z|^3$  or  $r(z) = -|z|^3$ .
- Sufficient Optimality Conditions
  - First-Order Sufficient Conditions

    If r is once continously differentiable and convex, and  $\nabla r(z^*) = 0 \text{ then } z^* \text{ is a global minimum of } r.$
  - Second-Order Sufficient Conditions If r is once continously differentiable,  $\nabla r(z^*) = 0$  and  $\nabla^2 r(z^*) \succ 0$ ., then  $z^*$  is a (strict) local minimum of r.

## Table of contents

Linear Classification

Linear Regression

Important notions in nonlinear optimization

Back to linear regression

Logistic Regression

## Minimizing Ein

Since  $E_{in}(\mathbf{w})$  is differentiable and convex, we can find the global minimum of  $E_{in}(\mathbf{w})$  by requiring  $\nabla E_{in}(\mathbf{w}) = 0$ . We have

$$\nabla_{\mathbf{w}} \left( \frac{1}{N} (\mathbf{y}^{T} \mathbf{y} - 2\mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{w}^{T} X^{T} X \mathbf{w}) \right) = 0$$

$$\iff \frac{2}{N} \left( X^{T} X \mathbf{w} - X^{T} \mathbf{y} \right) = 0 \iff X^{T} X \mathbf{w} = X^{T} \mathbf{y}$$

$$\iff \mathbf{w} = (X^{T} X)^{-1} X^{T} \mathbf{y} \quad \text{(assuming } X^{T} X \text{ is invertible)}$$

where we used the following gradient identities

$$\nabla_{\mathbf{w}}(\mathbf{w}^T A \mathbf{w}) = (A + A^T) \mathbf{w}, \qquad \nabla_{\mathbf{w}}(\mathbf{w}^T \mathbf{b}) = \mathbf{b}.$$

The Hessian of  $E_{in}(\mathbf{w})$  is given by

$$H(\mathbf{w}) = \nabla_{\mathbf{w}} \left( \frac{2}{N} \left( X^T X \mathbf{w} - X^T \mathbf{y} \right) \right) = \frac{2}{N} X^T X, \tag{7}$$

where we used  $\nabla_{\boldsymbol{w}}(A\boldsymbol{w}) = A$ .  $H(\boldsymbol{w})$  is positive semi-definite.

### Minimizing $E_{in}$

$$\begin{split} E_{\mathsf{in}}(\mathbf{w}) &= \frac{1}{N} \|\mathbf{X} \mathbf{w} - \mathbf{y}\|^2 \\ \nabla E_{\mathsf{in}}(\mathbf{w}) &= \frac{2}{N} \mathbf{X}^\mathsf{T} (\mathbf{X} \mathbf{w} - \mathbf{y}) = \mathbf{0} \\ \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} &= \mathbf{X}^\mathsf{T} \mathbf{y} \end{split}$$

$$\mathbf{w} = X^\dagger \mathbf{y}$$
 where  $X^\dagger = (X^\intercal X)^{-1} X^\intercal$ 

 $X^{\dagger}$  is the 'pseudo-inverse' of X

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 3

#### The linear regression algorithm

1: Construct the matrix X and the vector  ${\bf y}$  from the data set  $({\bf x}_1,y_1),\cdots,({\bf x}_N,y_N)$  as follows

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^\mathsf{T} - & \\ -\mathbf{x}_2^\mathsf{T} - & \\ \vdots & \\ -\mathbf{x}_N^\mathsf{T} - & \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
 input data matrix 
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

- $_{2:}$  Compute the pseudo-inverse  $X^{\dagger}=(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}.$
- 3: Return  $\mathbf{w} = \mathrm{X}^\dagger \mathbf{y}$ .

© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

# Learning curves in linear regression

### Expected $E_{\text{out}}$ and $E_{\text{in}}$

Data set  $\mathcal{D}$  of size N

Expected out-of-sample error  $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{out}}(g^{(\mathcal{D})})]$ 

Expected in-sample error  $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{in}}(g^{(\mathcal{D})})]$ 

How do they vary with N?

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 8

# Learning curves in linear regression

#### Linear regression case

Noisy target 
$$y = \mathbf{w}^{*\mathsf{T}}\mathbf{x} + \mathsf{noise}$$

Data set 
$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$$

Linear regression solution:  $\mathbf{w} = (X^TX)^{-1}X^T\mathbf{y}$ 

In-sample error vector  $= X\mathbf{w} - \mathbf{y}$ 

'Out-of-sample' error vector  $= X\mathbf{w} - \mathbf{y}'$ 

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 8

# Learning curves in linear regression

#### Learning curves for linear regression

Best approximation error =  $\sigma^2$ 

Expected in-sample error  $=\sigma^2\left(1-\frac{d+1}{N}\right)$ 

Expected out-of-sample error =  $\sigma^2\left(1+\frac{d+1}{N}\right)$ 

Expected generalization error =  $2\sigma^2\left(\frac{d+1}{N}\right)$ 



(c) Fill Creator: Yaser Abu-Mostafa - LFD Lecture 8

### Linear regression for classification

Linear regression learns a real-valued function  $y=f(\mathbf{x})\in\mathbb{R}$ 

Binary-valued functions are also real-valued!  $\pm 1 \in \mathbb{R}$ 

Use linear regression to get  ${\bf w}$  where  ${\bf w}^{\scriptscriptstyle\mathsf{T}}{\bf x}_n \approx y_n = \pm 1$ 

In this case,  $\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$  is likely to agree with  $y_n=\pm 1$ 

Good initial weights for classification

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 3

### Linear regression boundary



© @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

# **Table of contents**

Linear Classification

Linear Regression

Important notions in nonlinear optimization

Back to linear regression

Logistic Regression

#### A third linear model

$$s = \sum_{i=0}^d w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$



linear regression

$$h(\mathbf{x}) = s$$



logistic regression

$$h(\mathbf{x}) = \theta(s)$$



© 🗗 Creator: Yaser Abu+Mostafa - LFD Lecture 9

### The logistic function $\theta$

The formula:

$$\theta(s) = \frac{e^s}{1 + e^s}$$



soft threshold: uncertainty

sigmoid: flattened out 's'

© 💇 Creator: Yaser Abu-Mostafa - LFD Lecture 9

### Probability interpretation

 $h(\mathbf{x}) = \theta(s)$  is interpreted as a probability

**Example.** Prediction of heart attacks

Input  $\mathbf{x}$ : cholesterol level, age, weight, etc.

 $\theta(s)$ : probability of a heart attack

The signal  $s = \mathbf{w}^{\mathsf{T}}\mathbf{x}$  "risk score"

(℃ (F) Greator: Yaser Abu-Mostafa - LFD Lecture 9

### Genuine probability

Data  $(\mathbf{x}, y)$  with binary y, generated by a noisy target:

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target  $f: \mathbb{R}^d \to [0,1]$  is the probability

Learn 
$$g(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}} \mathbf{x}) \approx f(\mathbf{x})$$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 9

### Genuine probability

Data  $(\mathbf{x}, y)$  with binary y, generated by a noisy target:

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target  $f:\mathbb{R}^d \to [0,1]$  is the probability

$$\text{Learn } g(\mathbf{x}) \ = \ \theta(\mathbf{w}^{\scriptscriptstyle \mathsf{T}} \ \mathbf{x}) \ \approx \ f(\mathbf{x})$$

© Treator: Yaser Abu-Mostafa - LFD Lecture 9

**13/**24

The data does not give us the value of f explicitly. It gives us samples generated by this probability. How do we learn from such data?

#### Error measure

For each  $(\mathbf{x},y)$ , y is generated by probability  $f(\mathbf{x})$ 

Plausible error measure based on likelihood:

If 
$$h = f$$
, how likely to get  $y$  from  $\mathbf{x}$ ?

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

© @ Greator: Yaser Abu-Mostafa - LFD Lecture 9

# Formula for likelihood

Since the data points are assumed to be (conditionally) independently generated, the probability of observing all the  $y_n$ 's in the data set from the corresponding  $x_n$  is given by

$$\Pi_{n=1}^{N} P(y_n | \mathbf{x}_n).$$

where

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The method of  $maximum\ likelihood$  selects the hypothesis h which maximizes this probability.

# From likelihood to $E_{in}$

$$\begin{split} \text{Maximize } & \Pi_{n=1}^N P(y_n|\mathbf{x}_n) \equiv \text{Maximize } & \ln \left( \Pi_{n=1}^N P(y_n|\mathbf{x}_n) \right) \\ & \equiv \text{Maximize } & \frac{1}{N} \ln \left( \Pi_{n=1}^N P(y_n|\mathbf{x}_n) \right) \\ & \equiv \text{Minimize } & -\frac{1}{N} \ln \left( \Pi_{n=1}^N P(y_n|\mathbf{x}_n) \right) \end{split}$$

Furthermore, we can write

$$-\frac{1}{N} \ln \left( \prod_{n=1}^{N} P(y_n | \mathbf{x}_n) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left( \frac{1}{P(y_n | \mathbf{x}_n)} \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1} \{ y_n = +1 \} \ln \left( \frac{1}{h(\mathbf{x}_n)} \right) + \mathbb{1} \{ y_n = -1 \} \ln \left( \frac{1}{1 - h(\mathbf{x}_n)} \right)$$

# From likelihood to $E_{in}$

We have  $h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$ , where  $\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}}$  with  $\theta(-s) = 1 - \theta(s)$ . So, we can write

$$\frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\{y_n = +1\} \ln \left(\frac{1}{h(\mathbf{x}_n)}\right) + \mathbb{I}\{y_n = -1\} \ln \left(\frac{1}{1 - h(\mathbf{x}_n)}\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\{y_n = +1\} \ln \left(\frac{1}{\theta(\mathbf{w}^T \mathbf{x}_n)}\right) + \mathbb{I}\{y_n = -1\} \ln \left(\frac{1}{1 - \theta(\mathbf{w}^T \mathbf{x}_n)}\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\{y_n = +1\} \ln \left(\frac{1}{\theta(\mathbf{w}^T \mathbf{x}_n)}\right) + \mathbb{I}\{y_n = -1\} \ln \left(\frac{1}{\theta(-\mathbf{w}^T \mathbf{x}_n)}\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)}\right) \quad \text{(i.e. } P(y_n | \mathbf{x}_n) = \theta(y_n \mathbf{w}^T \mathbf{x}_n))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n}\right)$$

$$E_{\ln}(\mathbf{w})$$

# **Cross-entropy**

For two probability distributions with binary outcomes  $\{p, 1-p\}$  and  $\{q, 1-q\}$ , the cross-entropy (from information theory) is

$$p \log \frac{1}{q} + (1-p) \log \frac{1}{1-q}.$$

The in-sample error above corresponds to a cross-entropy error measure on the data point  $(\mathbf{x}_n, y_n)$ , with  $p = \mathbb{1}\{y_n = +1\}$  and  $q = h(\mathbf{x}_n)$ .

### Formula for likelihood

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$
Substitute  $h(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ , noting  $\theta(-s) = 1 - \theta(s)$ 

$$P(y \mid \mathbf{x}) = \theta(y \mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$\text{Likelihood of } \mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N) \text{ is }$$

$$\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n) = \prod_{n=1}^{N} \theta(y_n \mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$$

(C) IFF Creator: Yaser Abu-Mostafa - LFD Lecture 9

## Maximizing the likelihood

$$-\frac{1}{N}\ln\left(\prod_{n=1}^{N}\theta(y_{n}\mathbf{w}^{\mathsf{T}}\mathbf{x}_{n})\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left( \frac{1}{\theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)} \right)$$

$$\left[\theta(s) = \frac{1}{1 + e^{-s}}\right]$$

$$E_{ ext{in}}(\mathbf{w}) = rac{1}{N} \sum_{n=1}^{N} \underbrace{\ln \left( 1 + e^{-y_n \mathbf{w}^{\mathsf{T}}} \mathbf{x}_n 
ight)}_{\mathsf{e}\left(h(\mathbf{x}_n), y_n
ight)}$$
 "cross-entropy" error

(℃ (F) Greator: Yaser Abu-Mostafa - LFD Lecture 9

### How to minimize $E_{in}$

For logistic regression,

$$E_{\rm in}({\bf w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left( 1 + e^{-y_n {\bf w}^{\mathsf{T}} {\bf x}_n} \right) \qquad \longleftarrow \text{ iterative solution}$$

Compare to linear regression:

© 💇 Creator: Yaser Abu-Mostafa - LFD Lecture 9

## Summary of Linear Models



© 💇 Creator: Yaser Abu-Mostafa - LFD Lecture 9