Variance Reduction in Policy Gradient

David S. Rosenberg

NYU: CDS

April 2, 2021

Contents

- Recap: policy gradient for contextual bandits
- Using a baseline
- ③ "Optimal" baseline
- Actor-Critic methods

Recap: policy gradient for contextual bandits

[Online] Stochastic k-armed contextual bandit

Stochastic k-armed contextual bandit

Environment samples context and rewards vector jointly, iid, for each round:

$$(X,R),(X_1,R_1),\ldots,(X_T,R_T)\in \mathfrak{X}\times\mathbb{R}^k$$
 i.i.d. from P ,

where
$$R_t = (R_t(1), ..., R_t(k)) \in \mathbb{R}^k$$
.

- ② For t = 1, ..., T,
 - **0** Our algorithm **selects action** $A_t \in \mathcal{A} = \{1, ..., k\}$ based on X_t and history

$$\mathcal{D}_t = \Big((X_1, A_1, R_1(A_1)), \dots, (X_{t-1}, A_{t-1}, R_{t-1}(A_{t-1})) \Big).$$

- ② Our algorithm receives reward $R_t(A_t)$.
- We never observe $R_t(a)$ for $a \neq A_t$.

Contextual bandit policies

- A contextual bandit policy at round t
 - gives a conditional distribution over the action A_t to be taken
 - conditioned on the history \mathcal{D}_t and the current context X_t .
- In this module, we consider policies parameterized by θ : $\pi_{\theta}(a \mid x)$, for $\theta \in \mathbb{R}^d$.
- We denote the θ used at round t by θ_t , which will depend on \mathcal{D}_t .
- At round t, action $A_t \in \mathcal{A} = \{1, ..., k\}$ is chosen according to

$$\mathbb{P}(A_t = a \mid X_t = x, \mathcal{D}_t) = \pi_{\theta_t}(a \mid x).$$

Example: multinomial logistic regression policy

• An example parameterized policy:

$$\pi_{\theta}(a \mid x) = \frac{\exp\left(\theta^{T} \phi(x, a)\right)}{\sum_{a'=1}^{k} \exp\left(\theta^{T} \phi(x, a')\right)},$$

where $\phi(x, a) : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$ is a joint feature vector.

- And $\theta^T \phi(x, a)$ can be replaced by a more general $g_\theta : \mathfrak{X} \times \mathcal{A} \to \mathbb{R}$.
- The whole conditional distribution $\pi_{\theta}(a \mid x)$ can also be represented as a neural network with a softmax output.
- The differentiability w.r.t. θ is key to a policy gradient method.

How to update the policy?

Objective function for policy gradient:

$$J(\theta) := \mathbb{E}_{\theta} [R(A)].$$

• Idealized policy gradient is to iteratively update θ as:

$$\theta_{t+1} \leftarrow \theta_t + \eta \nabla J(\theta_t)$$
.

• Policy gradient theorem from last module gives an unbiased estimate of $\nabla J(\theta_t)$.

Unbiased estimate for the gradient

- Consider round t of SGD for optimizing $J(\theta)$.
- We play A_t from $\pi_{\theta_t}(a \mid X_t)$ and record $(X_t, A_t, R_t(A_t))$.
- To update θ_t , we need an unbiased estimate of $\nabla J(\theta_t)$.
- Last time we showed that

$$\mathbb{E}_{\theta_t} \left[R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \right] = \nabla_{\theta} J(\theta_t)$$

• Suggests the following iterative update:

$$\theta_{t+1} \leftarrow \theta_t + \eta R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

• This is the basic policy gradient method.

Using a baseline

Subtracting a Baseline from Reward

Our objective function is

$$J(\theta) = \mathbb{E}_{\theta} [R(A)].$$

- Suppose we introduce a new reward vector $R_0 = R b$, for constant $b \in \mathbb{R}$.
- Then

$$J_b(\theta) = \mathbb{E}_{\theta}(R_0(A)) = \mathbb{E}_{\theta}(R(A)) - b.$$

- Obviously, $J(\theta)$ and $J_b(\theta)$ have the same maximizer θ^* .
- And $\nabla_{\theta} J(\theta) = \nabla_{\theta} J_b(\theta)$.

Policy gradient with a baseline

• If we just plug in the shift to our gradient estimators, we get:

$$J(\theta): \quad \theta_{t+1} \leftarrow \quad \theta_t + \eta R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$$

$$J_b(\theta): \quad \theta_{t+1} \leftarrow \quad \theta_t + \eta \left(R_t(A_t) - b\right) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$$

where b is called the baseline.

- The updates are different, so we'll get different optimization paths.
- Is $(R_t(A_t) b) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$ still unbiased for $\nabla J(\theta)$?
- Doesn't really look like it.
- But we'll show that it is, even when we allow a random baseline $B_t = f(\mathcal{D}_t, X_t)$.
- The hope is to find a B_t that reduces the variance of the gradient estimate,
 - getting us to a better policy, faster.

The score has zero expectation

- Let $p(a; \theta)$ be a parametric distribution on a finite set A.
- The score function is defined as $s(a, \theta) = \nabla_{\theta} \log p(a; \theta)$.
- Then $\mathbb{E}_{A \sim p(a;\theta)}[s(A,\theta)] = 0$ for any θ .
- Proof: (assuming differentiability as needed)

$$\begin{split} \mathbb{E}_{A \sim p(a;\theta)} \left[s(A,\theta) \right] &= \mathbb{E}_{A \sim p(a;\theta)} \left[\nabla_{\theta} \log p(a;\theta) \right] \\ &= \mathbb{E}_{A \sim p(a;\theta)} \left[\frac{\nabla_{\theta} p(a;\theta)}{p(a;\theta)} \right] \\ &= \sum_{a \in \mathcal{A}} p(a;\theta) \left[\frac{\nabla_{\theta} p(a;\theta)}{p(a;\theta)} \right] = \sum_{a \in \mathcal{A}} \nabla_{\theta} p(a;\theta) \\ &= \nabla_{\theta} \left[\sum_{a \in \mathcal{A}} p(a;\theta) \right] = \nabla_{\theta} \left[1 \right] = 0 \end{split}$$

Estimate with baseline is unbiased

• Allow θ_t and the baseline B_t at round t to depend on \mathcal{D}_t and X_t :

$$B_t = f(\mathcal{D}_t, X_t)$$
 for some function f , and let $\theta_t = g(\mathcal{D}_t)$ for some function g .

So

$$\begin{split} & \mathbb{E}\left[B_{t}\nabla_{\theta}\log\pi_{\theta_{t}}(A_{t}\mid X_{t})\right] \\ & = & \mathbb{E}\left[\mathbb{E}\left[B_{t}\nabla_{\theta}\log\pi_{\theta_{t}}(A_{t}\mid X_{t})\mid \mathcal{D}_{t}, X_{t}\right]\right] \quad \text{inner expectation over } A_{t} \sim \pi_{\theta_{t}}(\cdot\mid X_{t}) \\ & = & \mathbb{E}\left[B_{t}\mathbb{E}\left[\nabla_{\theta}\log\pi_{\theta_{t}}(A_{t}\mid X_{t})\mid \mathcal{D}_{t}, X_{t}\right]\right] \quad \text{taking out what is known} \\ & = & \mathbb{E}\left[B_{t}0\right] = 0. \end{split}$$

- Therefore $(R_t(A_t) B_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$ is an unbiased estimate of $\nabla J(\theta)$.
 - for any choice of f and g above.

- Let's show $\mathbb{E}[\nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \mid \mathcal{D}_t, X_t] = 0$ very explicitly. First, the only thing random in the expectation is $A_t \sim \pi_{\theta_t}(\cdot \mid X_t)$. Note that θ_t is generally random, via its dependence on \mathcal{D}_t , but we're conditioning on \mathcal{D}_t , so θ_t is constant here.
- Previously, we showed $\mathbb{E}_{A \sim p(a;\theta)}[s(A,\theta)] = 0$ for any θ , where $s(a,\theta) = \nabla_{\theta} \log p(a;\theta)$. We'll try to put things in these terms...
- Define $p(a;\theta,x)=\pi_{\theta}(a\,|\,x)$, which gives a distribution on \mathcal{A} for every $\theta\in\Theta$ and $x\in\mathcal{X}$. Define the corresponding score function as $s(a,\theta;x)=\nabla_{\theta}\log p(a;\theta,x)$. Then we know $\mathbb{E}_{A\sim p(a;\theta,x)}\left[s(A,\theta;x)\right]=0$ for every θ and x, which we apply in the last step below. Let

$$r(d,x) := \mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \mid \mathcal{D}_t = d, X_t = x\right]$$

$$= \mathbb{E}\left[\nabla_{\theta} \log p(A_t; \theta_t, x) \mid \mathcal{D}_t = d, X_t = x\right]$$

$$= \mathbb{E}\left[s(A_t, \theta_t; x) \mid \mathcal{D}_t = d, X_t = x\right]$$

$$= \mathbb{E}\left[s(A_t, g(d); x) \mid \mathcal{D}_t = d, X_t = x\right] \quad \text{(only } A_t \text{ is random)}$$

$$= \mathbb{E}_{A_t \sim p(a; g(d), x)} \left[s(A_t, g(d); x)\right]$$

$$= 0$$

So
$$r(\mathcal{D}_t, X_t) = \mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \mid \mathcal{D}_t, X_t\right] = 0.$$

What to use for the baseline?

• In round t, our unbiased estimate of $\nabla_{\theta} J(\theta_t)$ is

$$(R_t(A_t) - B_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

- We're trying to "reduce the variance" of this estimate.
- But what is the "variance"?
- This expression is generally a vector.
- There is no scalar "variance" we can just try to minimize.
- We'll revisit this shortly...

Basic approach to the baseline

The easiest thing to use for a baseline is

$$B_t = \frac{1}{t-1} \sum_{i=1}^{t-1} R_i(A_i).$$

- Think B_t as a value estimate for policy $\pi_{\theta_t}(a \mid x)$: $B_t \approx \mathbb{E}_{\theta_t}[R_t(A_t)]$.
- It should make some rewards positive and some rewards negative.
- I don't know a great mathematical justification for this choice.
- In practice, it's usually much better than $B_t \equiv 0$.

Input-dependent baseline

- What if rewards R_t are generally smaller for some inputs X_t than others?
- We can try to choose $B_t \approx \mathbb{E}_{\theta_t} [R(A_t) \mid X_t]$.
- Learn $\hat{r}_t(x) \approx \mathbb{E}_{\theta_t}[R_t(A_t) \mid X_t = x]$ from history \mathfrak{D}_t .
- Use $B_t = \hat{r}_t(X_t)$ as a baseline for round t.
- We can learn $\hat{r}_t(x)$ in an online manner, at the same time as we learn our policy.
 - e.g. in t'th round take a gradient step to reduce $(R_t(A_t) \hat{r}_t(X_t))^2$.
- This is an approach suggested in Sutton's book [SB18, Sec 13.4].

"Optimal" baseline

"Optimal" baseline

- Our gradient estimator is $(R_t(A_t) B_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$.
- This a vector, so it's not clear what it means to minimize the variance.
- Let's allow a different baseline $B_t(\alpha)$ for each entry of the gradient estimate.
 - (We did this for the multiarmed bandit in the previous module.)
- Now we can attempt to minimize the variance for each entry separately.

The entry variance

Define

$$G_t^j = \left[\nabla_{\theta} \log \pi_{\theta_t} (A_t \mid X_t) \right]_j.$$

- That is, G_t^j is the j'th entry of the score at round t.
- Let's consider the variance of the jth entry of our estimator with baseline b:

$$\begin{split} V_j &:= \operatorname{Var} \left(\left[\left(R_t(A_t) - b \right) \nabla_\theta \log \pi_{\theta_t}(A_t \mid X_t) \right]_j \right) \\ &= \operatorname{Var} \left(\left(R_t(A_t) - b \right) G_t^j \right) \\ &= \operatorname{\mathbb{E}} \left[\left(R_t(A_t) - b \right)^2 \left(G_t^j \right)^2 \right] - \left[\operatorname{\mathbb{E}} \left(R_t(A_t) - b \right) G_t^j \right]^2 \\ &= \operatorname{\mathbb{E}} \left(R_t(A_t) - b \right)^2 \left(G_t^j \right)^2 - \left[\operatorname{\mathbb{E}} \left[R_t(A_t) G_t^j \right] \right]^2 \end{split}$$

"Optimal" baselines

• Differentiating V_i w.r.t. b:

$$V_{j} = \mathbb{E}(R_{t}(A_{t}) - b)^{2} \left(G_{t}^{j}\right)^{2} - \left[\mathbb{E}\left[R_{t}(A_{t})G_{t}^{j}\right]\right]^{2}$$

$$\frac{dV_{j}}{db} = \frac{d}{db} \left(\mathbb{E}\left[R_{t}(A_{t})^{2} \left(G_{t}^{j}\right)^{2}\right] + b^{2}\mathbb{E}\left(G_{t}^{j}\right)^{2} - 2b\mathbb{E}R_{t}(A_{t}) \left(G_{t}^{j}\right)^{2}\right)$$

$$= 2b\mathbb{E}\left(G_{t}^{j}\right)^{2} - 2\mathbb{E}R_{t}(A_{t}) \left(G_{t}^{j}\right)^{2}$$

• Solving for b in $\frac{dV_j}{db} = 0$:

$$b_t^j := \frac{\mathbb{E}\left[R_t(A_t) \left(G_t^j\right)^2\right]}{\mathbb{E}\left[\left(G_t^j\right)^2\right]}$$

"Optimal baselines"

- So estimate for the j'th entry should ideally use baseline b_t^j .
- We can try to estimate the expectations from the logs:

$$\mathbb{E}\left[R_t(A_t)\left(G_t^j\right)^2\right] \approx \frac{1}{t-1}\sum_{i=1}^{t-1}R_i(A_i)\left(G_i^j\right)^2$$

$$\mathbb{E}\left[\left(G_t^j\right)^2\right] \approx \frac{1}{t-1}\sum_{i=1}^{t-1}\left(G_i^j\right)^2.$$

- This derivation is based on Berkeley's CS 285: Lecture 5, Slide 19, but their slide is quite vague on specifics. They don't seem to acknowledge that the gradient is a vector or that they'll need a different baseline for each entry. They also don't indicate how to estimate the expectations. Their interpretation of the resulting b_t in that slide is that it's "just expected reward, but weighted by gradient magnitudes!".
- On further literature review, this result seems to be a special case of Theorem 8 from [GBB04], though I still need to check the details. They're in the full reinforcement learning setting, so things are a bit more complicated. Their Example 1 (p. 1491) seems like an accessible special case for the *k*-armed bandit, though it'll take some time to figure out their notation . In Section 7, they discuss an approach to getting the baseline in practice.

"Optimal baselines" putting it together

- Let θ_t^j denote the j'th entry of θ_t .
- Update step at round t with these baselines is

$$\theta_{t+1}^{j} \leftarrow \theta_{t}^{j} + \eta \left(R_{t}(A_{t}) - B_{t}^{j} \right) \left[\nabla_{\theta} \log \pi_{\theta_{t}}(A_{t} \mid X_{t}) \right]_{j},$$

where

$$B_t^j = \left[\frac{1}{t-1}\sum_{i=1}^{t-1}R_i(A_i)\left(G_i^j\right)^2\right] / \frac{1}{t-1}\sum_{i=1}^{t-1}\left(G_i^j\right)^2$$

$$G_i^j = \left[\nabla_{\theta}\log \pi_{\theta_t}(A_i \mid X_i)\right]_i$$

Actor-Critic methods

Recall the policy gradient derivation

• Recall the following formulation of the value function:

$$\mathbb{E}_{\theta} [R(A)] = \mathbb{E}_{X} \left[\mathbb{E}_{A|X \sim \theta} \left[\mathbb{E}_{R|X} [R(A) \mid A, X] \mid X \right] \right]$$
$$= \mathbb{E}_{X} \left[\sum_{a=1}^{k} \pi_{\theta} (a \mid X) \mathbb{E}_{R|X} [R(A) \mid A = a, X] \right]$$

So

$$\nabla_{\theta} \mathbb{E}_{\theta} [R(A)] = \mathbb{E}_{X} \left[\sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X)] \mathbb{E}_{R|X} [R(A) \mid A = a, X] \right]$$

• In PG, we use a "clever trick" to get an unbiased estimate of $\nabla \mathbb{E}_{\theta} [R(A)]$ from $(X_t, A_t, R_t(A_t))$.

Plug-in a value estimate

We have

$$\nabla_{\theta} \mathbb{E}_{\theta} \left[R(A) \right] = \mathbb{E}_{X} \left[\sum_{a=1}^{k} \nabla_{\theta} \left[\pi_{\theta} \left(a \mid X \right) \right] \mathbb{E}_{R \mid X} \left[R(A) \mid A = a, X \right] \right]$$

- Suppose we had $\hat{r}(x, a) \approx \mathbb{E}[R(A) \mid A = a, X = x]$.
- Then we get

$$\nabla_{\theta} \mathbb{E}_{\theta} [R(A)] \approx \mathbb{E}_{X} \left[\sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X)] \hat{r}(X, a) \right]$$
$$\approx \sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X_{t})] \hat{r}(X_{t}, a)$$

• The last step is a one-sample Monte Carlo estimate for \mathbb{E}_{X} .

Online update of value estimator

- Parametrize value estimator: $\hat{r}_w(x, a)$.
- We'll fit w by SGD on square loss:

$$\nabla_w (\hat{r}_w(X, A) - R(A))^2 = 2(\hat{r}_w(X, A) - R(A)) \nabla_w \hat{r}_w(X, A).$$

- This is the step direction, and we can absorb the 2 into the step size multiplier.
- So value estimator update is

$$w_{t+1} \leftarrow w_t - \eta_w \left(\hat{r}_w(X, A) - R(A) \right) \nabla_w \hat{r}_w(X, A)$$

• Setting the step size can be done with the usual approaches.

Actor-critic method

Definition (Actor-critic method, [SB18, p. 321])

Methods that learn approximations to both policy and value functions are often called **actor-critic** methods, where **actor** is a reference to the learned policy, and **critic** is a reference to the learned value function.

- Initialize θ_1 and w_1 (learning rates η_{θ} and η_w).
- For each round t:
 - Observe X_t , choose action $A_t \sim \pi_{\theta_t}(a \mid X_t)$, receive $R_t(A_t)$.

 - [Update critic] $w_{t+1} \leftarrow w_t \eta_w \left(\hat{r}_w(X_t, A_t) R_t(A_t) \right) \nabla_w \hat{r}_w(X_t, A_t)$

A slow direct method: we're slowly adjusting our policy towards larger [estimated] value.

Compare to policy gradient

• The estimate of $\nabla_{\theta}\mathbb{E}[R(A)]$ in policy gradient is

$$(R_t(A_t) - B_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

- It's unbiased, but it has variance coming from R_t , A_t , and X_t .
- The actor-critic estimate of $\nabla_{\theta}\mathbb{E}[R(A)]$ is

$$\sum_{a=1}^{k} \nabla_{\theta} \left[\pi_{\theta} \left(a \mid X_{t} \right) \right] \hat{r}(X_{t}, a).$$

- Variance comes from X_t and from \hat{r} , but the variance of \hat{r} decreases as we get more data.
- The actor-critic estimate is **biased** by \hat{r} , in general, but we expect it to have **less variance**.

References

Resources

 In this module and the previous module, we present approaches to the online contextual bandit problem. The policy gradient and actor-critic methods are usually presented in more general setting of reinforcement learning. The standard textbook reference is [SB18, Ch 13] and [Wil92] is the original paper for "REINFORCE", which is policy gradient in the reinforcement learning setting.

References I

- [GBB04] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter, Variance reduction techniques for gradient estimates in reinforcement learning, J. Mach. Learn. Res. 5 (2004), 1471–1530.
- [SB18] Richard S. Sutton and Andrew G. Barto, *Reinforcement learning: An introduction*, A Bradford Book, Cambridge, MA, USA, 2018.
- [Wil92] Ronald J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine Learning 8 (1992), no. 3-4, 229–256.