Mathematics Methods for Computer Science

Conjugate Direction

Preconditioning

Extensions

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Conjugate Directions

Preconditioning

Extensions

Lecture

Conjugate Gradients II: CG and Variants

Gradient Descent: Issue

Conjugate Directions

Preconditioning

Extensions

$$\vec{x}_k - \vec{x}_0 \neq \underset{\vec{v} \in \text{span}\{\vec{r}_0, A\vec{r}_0, \dots, A^{k-1}\vec{r}_0\}}{\text{arg min}} \qquad f(\vec{x}_0 + \vec{v})$$

But if this did hold ...

Convergence in *n* steps!

Preconditioning

Extension:

- (Somehow) generate search direction \vec{v}_k (initialize to \vec{r}_0)
- Line search: $\alpha_k = \frac{\vec{v}_k^\top \vec{r}_{k-1}}{\vec{v}_k^\top A \vec{v}_k}$
- Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \vec{v}_k$
- Update residual: $\vec{r}_k = \vec{r}_{k-1} + \alpha_k A \vec{v}_k$

Preconditioning

• Easy way to generate
$$n$$
 conjugate directions $\{\vec{v}_1, \dots, \vec{v}_n\}$

• span
$$\{\vec{v}_1, \dots, \vec{v}_n\} =$$

span $\{\vec{r}_0, A\vec{r}_0, \dots, A^{k-1}\vec{r}_0, \}$ for all k

Preconditioning

• Easy way to generate
$$n$$
 conjugate directions $\{\vec{v}_1,\ldots,\vec{v}_n\}$

• span
$$\{\vec{v}_1, \dots, \vec{v}_n\} =$$

span $\{\vec{r}_0, A\vec{r}_0, \dots, A^{k-1}\vec{r}_0, \}$ for all k

- Converge in n steps
- Always better than gradient descent

Method of Conjugate Directions

Conjugate Directions

Preconditioning

$$\vec{v}_k \leftarrow A^{k-1} \vec{r}_0 - \sum_{i < k} \frac{\left\langle A^{k-1} \vec{r}_0, \vec{v}_i \right\rangle_A}{\left\langle \vec{v}_i, \vec{v}_i \right\rangle_A} \vec{v}_i$$

$$(A-)$$
 Gram-Schmidt on $ec{r}_0,\ldots,A^{k-1}ec{r}_0$

Problems with Method of Conjugate Directions

Conjugate Directions

Preconditioning

Extensions

 $\triangleright A^{k-1}\vec{r_0}$ looks like largest eigenvector of A, so projection is poorly conditioned

ightharpoonup Have to store $\vec{v}_1, \ldots, \vec{v}_{k-1}$

Small Adjustment

Conjugate Directions

Preconditioning

$$\vec{w} \in \text{span} \{\vec{r_0}, \dots, A^{k-1}\vec{r_0}, \} \setminus \text{span} \{\vec{r_0}, \dots, A^{k-2}\vec{r_0}, \}$$

$$\vec{r}_k = \vec{r}_{k-1} - \alpha_k A \vec{v}_k$$

Small Adjustment

Conjugate Directions

Preconditioning

$$\vec{w} \in \text{span} \{\vec{r}_0, \dots, A^{k-1}\vec{r}_0, \} \setminus \text{span} \{\vec{r}_0, \dots, A^{k-2}\vec{r}_0, \}$$

$$ec{r}_k = ec{r}_{k-1} - lpha_k A ec{v}_k \quad o \quad \mathsf{Take} \ ec{v}_k = ec{r}_{k-1} \ ec{v}_k$$

Small Adjustment

Conjugate Directions

Preconditioning

$$\vec{w} \in \text{span} \{\vec{r}_0, \dots, A^{k-1}\vec{r}_0, \} \setminus \text{span} \{\vec{r}_0, \dots, A^{k-2}\vec{r}_0, \}$$

$$ec{r}_k = ec{r}_{k-1} - lpha_k A ec{v}_k \quad o \quad \mathsf{Take} \ ec{v}_k = ec{r}_{k-1}$$

$$\vec{v}_k \leftarrow \vec{r}^{k-1} - \sum_{i < k} \frac{\langle \vec{r}_{k-1}, \vec{v}_i \rangle_A}{\langle \vec{v}_i, \vec{v}_i \rangle_A} \vec{v}_i$$

Preconditioning

Extensions

$$\vec{w} \in \text{span} \{ \vec{r}_0, \dots, A^{k-1} \vec{r}_0, \} \setminus \text{span} \{ \vec{r}_0, \dots, A^{k-2} \vec{r}_0, \}$$

$$ec{r}_k = ec{r}_{k-1} - lpha_k A ec{v}_k \quad o \quad \mathsf{Take} \ ec{v}_k = ec{r}_{k-1}$$

$$\vec{v}_k \leftarrow \vec{r}^{k-1} - \sum_{i < k} \frac{\langle \vec{r}_{k-1}, \vec{v}_i \rangle_A}{\langle \vec{v}_i, \vec{v}_i \rangle_A} \vec{v}_i$$

Fixed conditioning, but still have to store \vec{v}_i 's

Remarkable Observation

Conjugate Directions

Preconditioning

Extensions

Proposition

$$\langle \vec{r}_k, \vec{v}_l \rangle_A = 0$$
 for all $l < k$.

Warning: Technical.

Preconditionin,

Extensions

Proposition

$$\langle \vec{r_k}, \vec{v_l} \rangle_A = 0$$
 for all $l < k$.

Warning: Technical.

$$\vec{v}_k \leftarrow \vec{r}_{k-1} - \frac{\langle \vec{r}_{k-1}, \vec{v}_{k-1} \rangle_A}{\langle \vec{v}_{k-1}, \vec{v}_{k-1} \rangle_A} \vec{v}_{k-1}$$

No memory!

即每次只需要计算当前k对应的值就行了,而不需要重复计算前面 n-1个值!

Preconditioning

$$\vec{v}_k \leftarrow \vec{r}_{k-1} - \frac{\langle \vec{r}_{k-1}, \vec{v}_{k-1} \rangle_A}{\langle \vec{v}_{k-1}, \vec{v}_{k-1} \rangle_A} \vec{v}_{k-1}$$

- Line search: $\alpha_k = \frac{\vec{v}_k^\top \vec{r}_{k-1}}{\vec{v}_k^\top A \vec{v}_k}$
- Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \vec{v}_k$
- Update residual: $\vec{r}_k = \vec{r}_{k-1} \alpha_k A \vec{v}_k$

Properties

Conjugate Directions

Preconditioning

Extensions

 $hd \vec{x}_k$ optimal in subspace spanned by first k directions \vec{v}_i

Properties

Conjugate Directions

Preconditioning

- $hd \vec{x}_k$ optimal in subspace spanned by first k directions \vec{v}_i
- $\triangleright f(\vec{x}_k)$ upper-bounded by f of k-th iterate of gradient descent

Properties

Conjugate Directions

Preconditioning

Extension

- $hd \vec{x}_k$ optimal in subspace spanned by first k directions \vec{v}_i
- $\triangleright f(\vec{x}_k)$ upper-bounded by f of k-th iterate of gradient descent

 \triangleright Converges in n steps

Visualization

Conjugate Directions

Preconditioning

Well conditioned A

Poorly conditioned A

Preconditioning

Extension:

See book.

- $\begin{array}{c} {\rm \; Dpdate \; search \; direction: \; } \beta_k = \frac{\vec{r}_{k-1},\vec{r}_{k-1}}{\vec{r}_{k-2},\vec{r}_{k-2}} \\ \vec{v}_k = \vec{r}_{k-1} + \beta_k \vec{v}_{k-1} \end{array}$
- ho Line search: $lpha_k = rac{ec{r}_{k-1}^ op ec{r}_{k-1}}{ec{v}_k^ op A ec{v}_k}$
- \triangleright Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \vec{v}_k$
- \triangleright Update residual: $\vec{r}_k = \vec{r}_{k-1} \alpha_k A \vec{v}_k$

Typical Stopping Conditions

Conjugate Directions

Preconditioning

Extensions

Don't run to completion!

$$\frac{||\vec{r}_k||_2}{||\vec{r}_0||_2} < \epsilon$$

Convergence

Conjugate Directions

Preconditioning

$$\frac{f(\vec{x}_k) - f(\vec{x}^*)}{f(\vec{x}_0) - f(\vec{x}^*)} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

Preconditioning

Extensions

$$\frac{f(\vec{x}_k) - f(\vec{x}^*)}{f(\vec{x}_0) - f(\vec{x}^*)} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

Still depends on condition number!

Preconditioning

Extensions

$$\operatorname{cond} A \neq \operatorname{cond} PA$$

But we can solve

$$PA\vec{x} = P\vec{b}$$

Preconditioning

Conjugate Directions

Preconditioning

Solve
$$PA\vec{x} = P\vec{b}$$
 for $P \approx A^{-1}$

Preconditioning

Extension

 $\triangleright PA$ may not be symmetric or positive definite

 \triangleright Need to find an "easy" P

Symmetrization

Conjugate Directions

Preconditioning

$$P$$
 symmetric and positive definite
$$\Rightarrow P^{-1} = EE^{\top}$$

Symmetrization

Conjugate Directions

Preconditioning

Extensions

$$P$$
 symmetric and positive definite $\Rightarrow P^{-1} = EE^{\top}$

Proposition

PA and $E^{-1}AE^{-T}$ have the same eigenvalues

Symmetrization

Conjugate Directions

Preconditioning

 ${\sf Extensions}$

P symmetric and positive definite $\Rightarrow P^{-1} = EE^{\top}$

Proposition

PA and $E^{-1}AE^{-T}$ have the same eigenvalues

• Solve
$$E^{-1}AE^{-T}\vec{y} = E^{-1}\vec{b}$$

• Solve
$$\vec{x} = E^{-1}\vec{y}$$

Better-Conditioned CG

Conjugate Directions

Preconditioning

Update search direction:
$$\beta_k = \frac{\vec{r}_{k-1}^{\vec{r}} \vec{r}_{k-1}}{\vec{r}_{k-2}^{-1} \vec{r}_{k-2}}$$

$$\vec{v}_k = \vec{r}_{k-1} + \beta_k \vec{v}_{k-1}$$
 Line search:
$$\alpha_k = \frac{\vec{r}_{k-1}^{\top} \vec{r}_{k-1}}{\vec{v}_k^T E^{-1} A E^{-\top} \vec{v}_k}$$
 Update residual:
$$\vec{r}_k = \vec{r}_{k-1} - \alpha_k E^{-1} A E^{-\top} \vec{v}_k$$

Preconditioning

Update search direction:
$$\beta_k = \frac{\tilde{r}_{k-1}^\top P \tilde{r}_{k-1}}{\tilde{r}_{k-2}^{-1} P \tilde{r}_{k-2}}$$

$$\tilde{v}_k = P \tilde{r}_{k-1} + \beta_k \tilde{v}_{k-1}$$
 Line search:
$$\alpha_k = \frac{\vec{r}_{k-1}^\top P \vec{r}_{k-1}}{\tilde{v}_k^\top A \tilde{v}_k}$$
 Update estimate:
$$\vec{x}_k = \vec{x}_{k-1} + \alpha_k \tilde{v}_k$$
 Update residual:
$$\tilde{r}_k = \tilde{r}_{k-1} - \alpha_k A \tilde{v}_k$$

Common Preconditioners

Conjugate Directions

Preconditioning

- \triangleright Diagonal ("Jacobi") $A \approx D$
- ▷ Sparse approximate inverse
- \triangleright Incomplete Cholesky $A \approx L_* L_*^{\top}$
- ▶ Domain decomposition

Preconditionin

- \triangleright Splitting: $A = M N \Rightarrow M\vec{x} = N\vec{x} + \vec{b}$
- ▷ Conjugate gradient normal equation residual (CGNR): $A^{T}A\vec{x} = A^{T}\vec{b}$
- ▷ Conjugate gradient normal equation error (CGNE): $AA^{\top}\vec{y} = \vec{b}$; $\vec{x} = A^{\top}\vec{y}$
- \triangleright MINRES, SYMLQ: $g(\vec{x}) \equiv ||\vec{b} A\vec{x}||_2^2$ for symmetric A
- \triangleright LSQR, LSMR: Normal equations, same g

Preconditionin

- ightharpoonup GMRES, QMR, BiCG, CGS, BiCGStab: Any invertible A
- \triangleright Fletcher-Reeves, Polak-Ribière: Nonlinear problems; replace residual with ∇f and add back line search