Descriere solutie Pavare

Autor: prof. Daniel Popa, Colegiul Național "Aurel Vlaicu", Orăștie

Calculăm distanța maximă ce poate fi acoperită folosind x dale ce respectă cerința și obținem:

X	1	2	3	4	5	6	7	8	9
Dist(x)	1	2	4	6	9	12	16	20	25
Dale	1	11	121	1221	12321	123321	1234321	12344321	123454321

Pentru o distanță dată \mathbf{n} căutăm cel mai mic \mathbf{x} pentru care Dist(\mathbf{x})>= \mathbf{n} .

Se observă că pentru x impar $Dist(x)=((x+1)/2)^2$, iar pentru x par Dist(x)=x/2*(x/2+1).

Calculând, se poate obține x=2*sqrt(n)-1+(sqrt(n) != (int)sqrt(n)).

Pentru a determina soluția de pavare cea mai mică din punct de vedere lexicografic sunt 2 posibilități:

- 1) Se generează într-un vector șirul de dale de lungime **x** care are cea mai mare lungime, iar apoi pornind de la **x**/2+**x**%2(de la jumătatea vectorului) în jos se scade unu din fiecare termen. Numărul de termeni din care se face scăderea este egal cu Dist(**x**)-**n**, unde **x** este numărul de dale, iar **n** lungimea drumului.
- 2) Bazându-ne pe ideea de mai sus generăm rând pe rând lungimile dalelor (1, 2, 3,; pe poziția i având o dală de lungime i)având grijă ca dalele de dinaintea poziției x/2+x%2 (de la x/2-Dist(x)+n+1+x%2 până la x/2+x%2) să fie mai mici cu o unitate față de cele calculate prin metoda anterioară, iar dalele de la poziția x/2+x%2+1 până la final vor avea valori descrescătoare de la x/2 până la 1.

Rezolvarea primei cerințe se face în timp constant.

Construcția soluției minim lexicografice de lungime minimă are complexitatea în timp de ordin sqrt(n).