Unit 1: Basics of Digital Electronics

- Introduction
- Decoder
- Encoder
- Multiplexers
- Demultiplexer
- Registers

2-2 Decoder/Encoder

Decoder

- A combinational circuit that converts binary information from the n coded inputs to a maximum of 2ⁿ unique outputs
- n-to-m line decoder = $n \times m$ decoder
 - n inputs, m outputs
- If the n-bit coded information has unused bit combinations, the decoder may have less than 2ⁿ outputs Fig. 2-1 3-to-8 Decoder
 - m ≤ 2ⁿ

3-to-8 Decoder

A Binary-to-octal conversion Enable

Logic Diagram : Fig. 2-1

Truth Table: Tab. 2-1

Commercial decoders include one or more Enable Input(E)

Tab. 2-1 Truth table for 3-to-8 Decoder

AO

2-2 Decoder/Encoder

NAND Gate Decoder

- * Active Low Output

 * Fig. 2-1 3-to-8 Decoder

 Active High Output
- Constructed with NAND instead of AND gates
- Logic Diagram/Truth Table : Fig. 2-2

Fig. 2-2 2-to-4 Decoder with NAND gates

Enable	Input		Output			
Ε	A1	A0	D0	D1	D2	D3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	x	×	1	1	1	1
(a) 1	ru	th 1	Tab	le		

Decoder Expansion

- Constructed decoder: Fig. 2-3
- 3 X 8 Decoder constructed with two 2 X 4 Decoder

Encoder

- Inverse Operation of a decoder
- ◆ 2ⁿ input, n output
- Truth Table : Tab. 2-2
 - 3 OR Gates Implementation
 - » A0 = D1 + D3 + D5 + D7
 - » A1 = D2 + D3 + D6 + D7
 - » A2 = D4 + D5 + D6 + D7

Fig. 2-3 A 3-to-8 Decoder constructed with two with 2-to-4 Decoder

- Encoder and decoder are the examples of?
- A) Sequential Circuits
- B) Combinational Circuits

2-3 Multiplexers

- Multiplexer(Mux)
 - A combinational circuit that receives binary information from one of 2ⁿ input data lines and directs it to a single output line
 - A 2ⁿ -to 1 multiplexer has 2ⁿ input data lines and 1_n input selection lines (Data Selector)
 - 4-to-1 multiplexer Diagram : Fig. 2-4
 - 4-to-1 multiplexer Function Table : Tab. 2-3

Tab. 2-3 Function Table for 4-to-1 line Multiplexter

Sele	ect	Output
S1	S0	Y
0	0	lo
0	1	I ₁
1	0	12
1	1	l ₂

Fig. 2-4 4-to-1 Line Multiplexer

- Quadruple 2-to-1 Multiplexer
 - Quadruple 2-to-1 Multiplexer: Fig. 2-5

Fig. 2-5 Quadruple 2-to-1 line Multiplexter

Sel	ect	Output	
Ε	S	Υ	
0	0	All 0's	
1	0	A	
1	1	В	
70 W.	o vision and a second		

(a) Function Table

2-3 Multiplexers

Fig A. Combinational logic diagram with four 2×1 multiplexer

Fig B. Demultiplexer

A **Demultiplexer**, sometimes abbreviated **DMUX** is a circuit that has one input and more than one output. It is used when a circuit wishes to send a signal to one of many devices

 Suppose a MUX is having 16 input lines. How many selection input lines are required?

- A) 2
- B) 3
- C) 4
- D) 5