百工谱——AIGC物品展示框

Artisan's Tome

- ▼ 百工谱——AIGC物品展示框
 - Artisan's Tome
 - 项目简介
 - 项目功能
 - 开源链接
 - 视频链接
 - ▼ 使用说明
 - - 注册API
 - 网络设置
 - 结构设计
 - ▼ 硬件设计
 - 电源电路
 - 主控电路
 - 墨水屏驱动
 - ▼ 嵌入式软件
 - 网络连接、存储与配网
 - 休眠与唤醒
 - 网页访问
 - 墨水屏显示
 - ▼ 图像生成与处理
 - 运行平台与环境
 - Prompt设计
 - API调用与接口设计
 - 图像处理
 - BOM表与费用
 - 参考资料

项目简介

一款基于ESP32的智能桌面艺术装置。

项目功能

本设备主控为ESP32 Pico-D4,基于预设库中时代、地域、职业等元素与文化符号,通过Kolors图像生成模型,创造出一件符合该时代与人物特征、独一无 二的虚拟物品,通过墨水屏向用户展示,让每一次交互都成为在历史长河中的一次随机发现。

开源链接

todo

视频链接

todo

使用说明

注册API

设备使用前需注册API,并传入相应参数。

网络设置

结构设计

todo

硬件设计

电源电路

本设备采用3.7V锂电池供电,经线性稳压器BL9110-330BPFB输出3.3V,参考前作 $^{[1]}$ 。

电源电压检测采用CN312,其内部主要包括电压比较器与基准电压源。简而言之,RTH引脚电压高于内部基准电压(1.205V)时LBO输出低电平,FTH低于基准电压时LBO输出高电平,LBO#引脚电平相反。方便起见,设置基准电压为3.605V,且FTH与RTH电压相等,则电源电压低于3.605V时LED亮起,反之熄灭。

主控电路

整体设计参考前作^[1],其中由于按钮需要实现深度休眠唤醒功能,因此按钮连接在RTC GPIO(0, 2, 4, 5, 12, 13, 14, 15, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39)上,且需注意对应芯片内部自带的上下拉电阻。

与墨水屏连接(前缀SCR)的引脚建议改为SCK-18, MOSI-23, MISO-19, CS-5 (对应硬件SPI) ,或顺序反向便于走线。

墨水屏驱动

按照^[2-3]进行设计,其中NMOS、肖特基二极管可自行替换。

嵌入式软件

网络连接、存储与配网

本项目支持WiFi连接与配网。

ESP32提供的Preferences库利用芯片内置的NVS,实现了数据的断电保留,可用于记录连接过的WiFi信息,实现自动连接。

设备每次成功连接后,记录WiFi的SSID与密码,在下次启动时将依次尝试连接所有记录的网络,直到成功或连接超时。

配网模式下,设备工作在AP模式,并维护一个HTTP服务器(页面使用html编写,储存在char*变量中)。用户连接ESP32的WiFi后,通过浏览器访问设置的固定地址 192.168.4.1:3000 ,即可进入配网页面。用户输入WiFi的SSID与密码后,点击提交按钮,设备将尝试连接该WiFi,若成功则自动重启,并保存输入的表单内容。

休眠与唤醒

为保证设备在常开情况下能够长时间工作,在不需要生成图像时ESP32处于深度休眠状态,此时除RTC、ULP协处理器等外设几乎全部关闭,电流可降低到uA级别^[4]。

休眠后,可通过RTC GPIO唤醒,或通过RTC定时器唤醒,本项目中两方式均采用。

具体地, esp_sleep_enable_timer_wakeup(us) 可配置设备在指定时间后自动唤醒,而 esp_sleep_enable_ext1_wakeup(pins, mode) 用于指定GPIO唤醒的引脚与模式(电平或边沿等),并在 esp_deep_sleep_start() 执行后进入休眠状态。

唤醒后 esp_sleep_get_wakeup_cause() 可获取唤醒原因,用于执行不同的操作。

网页访问

此部分参考[1]即可。

墨水屏显示

项目采用汉硕WFH0420CZ35墨水屏,驱动程序可完全参考WaveShare 4.2inch e-Paper Module (B)^[5],使用SPI接口进行通信,本项目使用GPIO模拟SPI时序。

本项目屏幕尺寸为400*300,若仅使用黑色显示,则图片所需字节为400*300/8=15000,在ESP32 Pico-D4中具有足够内存空间。

显示逻辑如下:

墨水屏为红黑白三色,因此需要将图片分为黑色、红色两部分。以黑色为例,每一位分别控制一个像素点(低电平为墨水显示),黑色会被红色覆盖。从左上角开始,15000字节依次对应从上到下、从左到右的像素点,低位在左。完成数据发送后,需向墨水屏发送全局刷新指令,更新图像。

图像生成与处理

运行平台与环境

图像生成与处理均在华为云FunctionGraph上运行 $^{[1]}$ 。由于华为云的免费APIG服务已停止,但先前申请的APIG仍可使用,因此所有设备均调用已部署的API,传入用户自行配置的AI Token。

也可自己搭建服务器或使用类似服务,此时需要修改ESP32中的URL。

Prompt设计

使用DeepSeek大语言模型的目的是,获取一段可用于生图的Prompt。由于完全使用AI生成会使得内容趋于同质化,因此使用**随机数**产生可列举的元素。为使AI生成的图像模型符合以下特征,Prompt采用**循序渐进**的方式,先根据职业生成人物设定,再根据设定生成物品,最后根据生成生图Prompt与物品描述,且严格限制输出格式以便读取。

(该Prompt在后续可能会更新)

```
"你是一位游戏中的平民阶层角色,年龄" + age + ",背景为" + culture + "文化," + era + '''时代。
请根据以下约束生成内容:
role: 你的具体职业(具体而简短),该职业类型属于''' + role + '''
item: ''' + typ + '''(8字以内, 不要带括号),
该场景下参考物品品质: 草帽5/酒30/铁锄50/米10/绢200/牛1500, 该物品品质为''' + price + '''
description: 一段描述性文字,涉及其特征、功能、来历、故事等,不使用第一人称
- 长度:保证在60字符以上、75字符以下(计算标点)
- 语言风格: ''' + style + '''
- 不要带有emoji
prompt: 用于文生图的提示词
- 必须包含: 物品材质+形态+颜色+细节特征, 白色背景
- 禁止出现: 拼接碎片、透视变形
- 需描述物品形态、材质、颜色、典型特征等
- 描述物品时语言需简洁而准确,不要出现歧义,物品名称可适当换成便于文生图理解的描述
严格按照以下示例输出json:
{
"role":string
"item": string
"description": string
"prompt": string
}
```

其中, 随机元素已在代码中列举:

```
age = str(np.random.randint(12, 70))
    role = np.random.choice(["农业/种植类", "工匠/工业/技术类", "养殖/畜牧类", "公共事务/法律类", ...
    if(np.random.random() < 0.8):</pre>
       era_selection = ["西周", "秦代", "汉代", ...]
       style selection = [
          "铭文风格,参考先秦时期甲骨文和金文,简约古拙,多使用"唯"、"其"等古语,庄重肃穆。",
          "诗经风格,类似诗经的四言诗句,质朴口语化,带有比兴手法,多提及自然景物,生活气息浓厚。",
       ]
       era_index = np.random.randint(0, len(era_selection))
       era = era_selection[era_index]
       style = style_selection[era_index * 2 + np.random.randint(0, 2)]
    else:
       era_selection = ["史前", "魔法时代", ...]
       style_selection = [
          "神话风格,来自史前,语言充满对自然力量的敬畏,将万物拟人化、神化,描述如创世史诗般宏大而神秘。",
          "岩画风格,极其简练、具象,如同刻在岩壁上的符号,只描述原始社会下动作、猎物和基本需求,原始粗犷。",
       ]
       era_index = np.random.randint(0, len(era_selection))
       era = era_selection[era_index]
       style = style_selection[era_index * 2 + np.random.randint(0, 2)]
    culture = np.random.choice(["江南", "岭南", "巴蜀", "中原", ...])
    price = str(int(10 ** (np.random.random() * 4)))
    if(np.random.random() < 0.7):</pre>
       typ = "生成一项与你的职业特征强相关的工具,原料,产品或物品"
    else:
       typ = "生成一项与你的职业弱相关或无关,但你可能会携带或使用的日常生活用品或个人配饰"
返回示例如下:
    'role': '风水罗盘匠',
    'item': '铜制风水盘',
    'prompt': '3D建模参考图,白色背景,等距视角,写实风格,铜制圆盘
    表面氧化泛青,中央太极阴阳鱼浮雕,外圈镌刻天干地支篆文,边缘有磨
    损包浆',
    'description': '祖传三代的黄铜罗盘,指针永远指向东南'}
```

Propmt用于图像生成,且传入Base64形式的以下参考图像以统一风格:

{

API调用与接口设计

为提高设备对不同AI的兼容性,以便在AI推陈出新时用户可选择更好的模型,同时避免多设备使用相同API导致短时间用量达到上限,本项目允许用户自定 义API的URL与模型名称。

选用的大语言模型需采用OpenAI形式API,以火山引擎的豆包^{[6]}为例,POST请求格式如下:

其中,请求头的 Authorization 字段为API密钥, mode1 字段为模型名称,与URL需作为访问FunctionGraph时的POST请求体参数传入。 stream 流式输出为 false,若部分API默认为true则需显式指定为false。

对于图像生成,各API的功能、接口存在差异,且此项目需要用到参考图像功能,因此固定采用硅基流动的 Kolors 模型(**免费**且每天可生成400张图像),仅需将API密钥传入即可。

在FunctionGraph中,提供的参数会被解析,并在调用API时相应传入。

图像处理

为使彩色图像在黑白屏幕显示,需要将图像转为灰度图,并将尺寸缩小到300*300(原图为1:1)。此后对图片进行随机抖动处理: 设像素点的灰度值为 $g\in[0,1]$,则转换后灰度值为h=g>rand()?1:0,其中rand()服从[0,1]上的均匀分布。 完成后,在图像上添加文字,包括物品名称、拥有者职业与物品描述,字体采用Zpix。完整图像将进行旋转以适应屏幕方向,转换为15000字节的文件,对应墨水屏驱动时依次传递的120000像素(仅黑色)。

示例如下:

文件上传至阿里云对象存储(OSS)指定路径中,云端向下位机发送生成成功信息后,下位机直接从OSS下载图片。

BOM表与费用

以下部分元件立创商城与其它途径相差较大,在 Supplier 一栏中未写 LCSC 则为其它途径价格。

No.	Quantity	Comment	Designator	Footprint	Value	Manufacturer Part	Manufacturer
1	1	2.2uF	C1	C0402	2.2uF	HGC0402R5225K160NTEJ	Chinocera(华瓷)
2	1	10uF	C2	C0402	10uF	CGA0402X5R106M100GT	HRE(芯声)
3	4	4.7uF	C3,C4,C6,C11	C0402	4.7uF	CL05A475MP5NRNC	SAMSUNG(三星)
4	10	10uF	C5,C8,C9,C12,C14, C15,C16,C17,C18,C19	C0402	10uF	CL05A106MQ5NUNC	SAMSUNG(三星)

No.	Quantity	Comment	Designator	Footprint	Value	Manufacturer Part	Manufacturer
5	4	100nF	C7,C10,C13,C20	C0402	100nF	CL05B104KO5NNNC	SAMSUNG(三星)
6	1	ZX-XH2.54- 2PZZ	CN1	CONN-TH_2P- P2.50_HX25003- 2A		ZX-XH2.54-2PZZ	Megastar(兆星)
7	3	SS36	D1,D2,D3	DO-214AC_L5.0- W2.5-LS5.0-FD		SS36	R+O(宏嘉诚)
8	1	U.FL-R-SMT- 1(80)	JP1	RF- SMD_FRF05002- JSS103M		U.FL-R-SMT-1(80)	HRS(广濑)
9	1	1uH	L1	IND-SMD_L2.0- W1.6-B	1uH	FTC201610S1R0MBCA	cjiang(长江微电)
10	2	KT-0603R	LED1,LED2	LED0603-RD		KT-0603R	KENTO
11	1	NH- B1010RGBT- HF	LED3	LED-ARRAY- SMD_4P-L1.0- W1.0-TR_NH- B1010RGBT		NH-B1010RGBT-HF	国星光电
12	1	HL2300	Q1	SOT-23-3_L2.9- W1.3-P1.90- LS2.4-BR		HL2300	R+O(宏嘉诚)
13	2	S8050	Q2,Q3	SOT-23-3_L2.9- W1.6-P1.90- LS2.8-BR		S8050	Hottech(合科泰)
14	9	10kΩ	R1,R6,R7,R8,R9, R13,R15,R16,R17	R0402	10kΩ	0402WGF1002TCE	UNI-ROYAL(厚声)
15	3	180Ω	R2,R3,R5	R0402	180Ω	0402WGF1800TCE	UNI-ROYAL(厚声)
16	1	2.7kΩ	R4	R0402	2.7kΩ	0402WGF2701TCE	UNI-ROYAL(厚声)
17	1	470mΩ	R10	R0402	470mΩ	0402WGF470LTCE	UNI-ROYAL(厚声)
18	3	500Ω	R11,R12,R14	R0402	500Ω	RT0402FRE07500RL	YAGEO(国巨)
19	1	K3-1296S-E1	SW1	SW-TH_K3- 1296S-E1		K3-1296S-E1	韩国韩荣
20	2	TS-1088- AR02016	SW2,SW3	SW-SMD_L3.9- W3.0-P4.45		TS-1088-AR02016	XUNPU(讯普)
21	1	CN312	U1	SOT-23-6_L2.9- W1.6-P0.95- LS2.8-BL		CN312	CONSONANCE(上海如音
22	1	BL9110- 330BPFB	U2	SOT-223_L6.5- W3.5-P2.30- LS7.0-BR		BL9110-330BPFB	BL(上海贝岭)
23	1	LGS4084HB6	U3	SOT-23-6_L2.9- W1.6-P0.95- LS2.8-BL		LGS4084HB6	Legend-Si(棱晶半导体)
24	1	FPC 0.5-24P HYH2.0	U4	FPC-SMD_24P- P0.50_FPC-0.5- 24P-HYH2.0		FPC 0.5-24P HYH2.0	SHOU HAN(首韩)

No.	Quantity	Comment	Designator	Footprint	Value	Manufacturer Part	Manufacturer
25	1	ESP32- PICO-D4	U5	ESP32-PICO- D4_lengthen	-	ESP32-PICO-D4	ESPRESSIF(乐鑫)
26	1	CH340K	U6	ESOP-10_L4.9- W3.9-P1.00- LS6.0-BL-EP		CH340K	WCH(南京沁恒)
27	1	TYPE-C 16PIN 2MD(073)	USB1	USB-C- SMD_TYPE-C- 6PIN-2MD-073		TYPE-C 16PIN 2MD(073)	SHOU HAN(首韩)

以上共16.73元 (不计运费)。

墨水屏建议选用二手(淘宝上很多,但尽量选没有老化的),400*300价格在20~60都有,当然也可以选择不同尺寸的(代码需自行适配)。 PCB为33元(**可使用嘉立创免费打样**),外壳3D打印为(待定)元。

墨水屏按30元计算,不计PCB,共计成本 (待定)元。

参考资料

- [1] 【星火计划】骑行导航辅助显示 https://oshwhub.com/ljh345/cycling_assistance.
- [2] 墨水屏驱动板 有示例 https://e.tb.cn/h.SVfh0rEaqfkrB5y?tk=m9hz4DtTtNR.
- [3] 4.2inch e-Paper Module (B) Manual https://www.waveshare.net/w/upload/9/97/4.2inch_e-Paper_Schematic.pdf.
- [4] Arduino-ESP32深度睡眠模式: 超低功耗设计与唤醒策略 https://blog.csdn.net/gitblog_00419/article/details/151563516.
- [5] [other] 两款汉朔4.2寸墨水屏电子价签拆解与点亮,型号都是Stellar-X https://www.mydigit.cn/forum.php? mod=viewthread&tid=274369&page=1&authorid=1055519.
- [6] 对话(Chat) API (火山引擎) https://www.volcengine.com/docs/82379/1494384.