Predicting Liver Disease:

The given dataset is related to Indian patients who have been tested for a liver disease. Based on chemical compounds (bilrubin,albumin,protiens,alkaline phosphatase) present in human body and tests like SGOT, SGPT the outcome mentioned is whether person is a patient i.e, whether he needs to be diagnosed further or not.

Objective:

Perform data cleansing, and required transformations and build a predictive model which will be able to predict most of the cases accurately.

Attributes:

Following are the feature names for the given data: Age,Gender,Total_Bilirubin,Direct_Bilirubin,Alkaline_Phosphotase, Alamine_Aminotransferase,Aspartate_Aminotransferase,Total_Protiens,Albumin, Albumin_and_Globulin_Ratio,Class.

Step 1:

Importing the libraries required -

```
In [54]: import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.utils import resample
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
    from sklearn.svm import SVC
    from sklearn.ensemble import RandomForestClassifier
```

Step 2:

Loading the Data -

```
In [3]: data = pd.read_csv("C:/Users/Rohit/Downloads/IndianLiverPatientData.txt", delimiter="\t", header=None, index_
col=0)
data.head()
```

Out[3]:

	1	2	3	4	5	6	7	8	9	10	11
0											
1	65	Female	0.7	0.1	187	16	18	6.8	3.3	0.90	No
2	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	No
3	62	Male	7.3	4.1	490	60	68	7.0	3.3	0.89	No
4	58	Male	1.0	0.4	182	14	20	6.8	3.4	1.00	No
5	72	Male	3.9	2.0	195	27	59	7.3	2.4	0.40	No

As you can see we have no headings for the columns we give them manually

Out[5]:

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Pı
0								
1	65	Female	0.7	0.1	187	16	18	
2	62	Male	10.9	5.5	699	64	100	
3	62	Male	7.3	4.1	490	60	68	
4	58	Male	1.0	0.4	182	14	20	
5	72	Male	3.9	2.0	195	27	59	
<								>

We can check the summary by -

In [8]: summary = data.describe(include='all') # include all so that it takes categorical columns if there exist any
print(summary)

count unique top freq mean std min 25% 50% 75%	Age 583.000000 NaN NaN NaN 44.746141 16.189833 4.000000 33.000000 45.000000 58.000000	Gender 563 2 Male 421 NaN NaN NaN NaN NaN	: 6 6	ilirubin 3.000000 NaN NaN NaN 3.298799 5.209522 0.400000 0.8000000 1.0000000		Bilirubin 83.000000 NaN NaN NaN 1.486106 2.808498 0.100000 0.200000 0.300000	
max	90.000000	NaN	75	5.000000		19.700000	
count unique top freq mean std min 25% 50% 75% max	; ;	583.0000 N N	00 aN aN 29 89 00 00	ine_Amino	583.000	000 NaN NaN S51 356 000 000 000	
count unique top freq mean std min 25% 50% 75% max	Aspartate_/	58 10 28 1 2 4 8	nsferase 3.000000 NaN NaN 9.910806 8.918529 0.000000 5.000000 2.000000 7.000000 9.000000	568 6 1 2 5 6	Protiens 3.000000 NaN NaN 5.483979 .084039 2.700000 5.800000 6.600000 2.200000	Albumin 583.000000 NaN NaN 3.141852 0.795519 0.90000 2.600000 3.100000 3.800000 5.500000	\
count unique top	Albumin_and	_	in_Ratio 9.000000 NaN NaN	Class 583 2 No			

freq	NaN	416
mean	0.947064	NaN
std	0.319592	NaN
min	0.300000	NaN
25%	0.700000	NaN
50%	0.930000	NaN
75%	1.100000	NaN
max	2.800000	NaN

Step 3:

Checking for null values -

```
In [9]: data.isnull().sum()
Out[9]: Age
                                        0
         Gender
                                        20
         Total Bilirubin
                                         0
         Direct_Bilirubin
                                         0
         Alkaline_Phosphotase
                                         0
         Alamine_Aminotransferase
                                         0
         Aspartate_Aminotransferase
                                         0
                                       15
         Total_Protiens
         Albumin
                                         0
         Albumin_and_Globulin_Ratio
                                         4
         Class
                                         0
         dtype: int64
In [10]:
         # creating a copy of data if we mess something up
         data1 = data.copy()
In [12]: data1['Gender'].value counts()
Out[12]: Male
                   421
                   142
         Female
         Name: Gender, dtype: int64
In [13]:
         # as we have more values for "Male" we fill the missing values in Gender column with "Male"
         data1['Gender'].fillna(data1['Gender'].mode()[0], inplace=True)
```

```
In [14]: # and we do the following for Albumin_and_Globulin_Ratio, Total_Protiens
         for value in ['Albumin_and_Globulin_Ratio', 'Total_Protiens']:
             data1[value].fillna(data1[value].median(), inplace=True)
In [15]: # to check if NAs still exist
         data1.isnull().sum()
Out[15]: Age
                                       0
         Gender
                                       0
         Total_Bilirubin
         Direct_Bilirubin
         Alkaline Phosphotase
         Alamine_Aminotransferase
                                       0
         Aspartate_Aminotransferase
                                       0
         Total_Protiens
                                       0
         Albumin
                                       0
         Albumin_and_Globulin_Ratio
                                       0
         Class
         dtype: int64
```

Step 4:

Performing Label Encoding on categorical columns -

```
In [16]: col name = ['Gender', 'Class']
         from sklearn import preprocessing
         le={}
         for value in col name:
             le[value]=preprocessing.LabelEncoder()
         for value in col name:
             data1[value] = le[value].fit_transform(data1[value])
         data1.info() # see if all values are either float or int
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 583 entries, 1 to 583
         Data columns (total 11 columns):
         Age
                                       583 non-null int64
         Gender
                                       583 non-null int32
         Total Bilirubin
                                       583 non-null float64
         Direct Bilirubin
                                       583 non-null float64
         Alkaline Phosphotase
                                       583 non-null int64
         Alamine Aminotransferase
                                       583 non-null int64
         Aspartate Aminotransferase
                                       583 non-null int64
         Total Protiens
                                       583 non-null float64
         Albumin
                                       583 non-null float64
         Albumin and Globulin Ratio
                                       583 non-null float64
                                       583 non-null int32
         Class
         dtypes: float64(5), int32(2), int64(4)
         memory usage: 50.1 KB
```

Step 5:

To check for Outliers -

```
In [19]: summary2 = data1.describe(np.arange(0.9, 0.99, 0.01), include='all')
print(summary2)
```

		Λαο	Gender	Total_Bilirubin	Direct_Bilirubi	n \			
_	ount	Age 583.000000	583.000000	583.000000	583.00000				
	ean	44.746141	0.756432	3.298799					
	td	16.189833	0.429603	6.209522					
	in	4.000000	0.000000	0.400000	0.10000				
	0%	45.000000	1.000000	1.000000	0.30000				
	0% 0%	66.000000	1.000000	7.860000	4.08000				
	0% 1%	66.000000	1.000000	8.900000	4.50000				
	1% 2%	67.440000	1.000000	10.900000	5.14400				
	2% 3%	69.260000	1.000000	12.256000	6.25200				
	3% 4%	70.000000	1.000000	14.816000	7.60800				
	4 % 5%	72.000000	1.000000	16.350000	8.40000				
	5% 6%	72.720000	1.000000	18.288000	8.97200				
	7%	74.540000	1.000000	20.108000	10.10800				
	8%	75.000000	1.000000	23.072000	11.73600				
m	ax	90.000000	1.000000	75.000000	19.70000	0			
		Allestine Dh	b-t A'	1	(Canada)				
_		Alkaline_Ph	•	lamine_Aminotrans					
	ount		83.000000		000000				
	ean		90.576329		713551				
	td		42.937989		620356				
	in		63.000000		000000				
	0% 0%		08.000000		35.000000				
	0%		11.400000		140.000000				
	1%		49.440000		240000				
	2%		74.440000		880000				
	3%		10.520000		080000				
	4%		61.240000		560000				
	5%		98.100000		232.000000				
	6%		92.480000		341.440000				
	7%		08.560000		409.700000				
9	8%		03.600000		549.680000				
m	ax	21	10.000000	2000.	000000				
		Aspartate_A	minotransfer	_		\			
C	ount		583.000	900 583 . 0000	000 583.000000				
	ean		109.910						
S	td		288.918		.36 0.795519				
	in		10.000	2.7000					
5	0%		42.000	000 6.6000	3.100000				
9	0%		190.000	900 7 . 9000	4.100000				
9	1%		230.620	900 7 . 9000	4.200000				
9	2%		239.960	900 8 . 0006	4.200000				

```
93%
                        277.600000
                                                        4.300000
                                           8.000000
94%
                        351.360000
                                           8.000000
                                                        4.300000
95%
                        400.900000
                                           8.100000
                                                        4.390000
96%
                        507.920000
                                           8.200000
                                                        4.400000
97%
                        626.780000
                                           8.300000
                                                        4.500000
98%
                        846.160000
                                           8.500000
                                                        4.636000
                                                        5.500000
max
                       4929.000000
                                           9.600000
       Albumin and Globulin Ratio
                                          Class
                        583.000000
count
                                     583.000000
                          0.946947
                                       0.286449
mean
std
                          0.318495
                                       0.452490
min
                          0.300000
                                       0.000000
50%
                          0.930000
                                       0.000000
90%
                          1.300000
                                       1.000000
91%
                          1.380000
                                       1.000000
92%
                          1.400000
                                       1.000000
93%
                          1.400000
                                       1.000000
94%
                          1.400000
                                       1.000000
95%
                          1.500000
                                       1.000000
96%
                          1.507200
                                       1.000000
97%
                          1.600000
                                       1.000000
98%
                          1.700000
                                       1.000000
                          2.800000
max
                                       1.000000
data2 = data1.loc[data1["Alkaline Phosphotase"] < 909]</pre>
# here we took those samples where the specified column had value below 97th %ile
```

```
In [20]: data2 = data1.loc[data1["Alkaline_Phosphotase"] < 909]
# here we took those samples where the specified column had value below 97th %ile

data3 = data2.loc[data2["Alamine_Aminotransferase"] < 500]
# here we took those samples where the specified column had value below 98th %ile

# we took this values because they seemed to have no outliers beyond those values</pre>
```

Step 6:

Checking multicollinearity and removing it -

Out[23]:

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	As
Age	1.000000	0.063305	0.020704	0.012033	0.009075	-0.053116	
Gender	0.063305	1.000000	0.107551	0.121324	0.054975	0.117867	
Total_Bilirubin	0.020704	0.107551	1.000000	0.860373	0.184910	0.223902	
Direct_Bilirubin	0.012033	0.121324	0.860373	1.000000	0.209227	0.264239	
Alkaline_Phosphotase	0.009075	0.054975	0.184910	0.209227	1.000000	0.245415	
Alamine_Aminotransferase	-0.053116	0.117867	0.223902	0.264239	0.245415	1.000000	
Aspartate_Aminotransferase	-0.007257	0.124726	0.294169	0.328998	0.156771	0.774318	
Total_Protiens	-0.185952	-0.096330	0.006380	0.012968	0.024365	0.067497	
Albumin	-0.265396	-0.114106	-0.224084	-0.234582	-0.136099	-0.001841	
Albumin_and_Globulin_Ratio	-0.207842	-0.024835	-0.200034	-0.194982	-0.224555	-0.075860	
€							- 3

Out[25]:

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	As
Age	1.000000	0.063305	0.020704	0.012033	0.009075	-0.053116	
Gender	0.063305	1.000000	0.107551	0.121324	0.054975	0.117867	
Total_Bilirubin	0.020704	0.107551	1.000000	0.860373	0.184910	0.223902	
Direct_Bilirubin	0.012033	0.121324	0.860373	1.000000	0.209227	0.264239	
Alkaline_Phosphotase	0.009075	0.054975	0.184910	0.209227	1.000000	0.245415	
Alamine_Aminotransferase	-0.053116	0.117867	0.223902	0.264239	0.245415	1.000000	
Aspartate_Aminotransferase	-0.007257	0.124726	0.294169	0.328998	0.156771	0.774318	
Total_Protiens	-0.185952	-0.096330	0.006380	0.012968	0.024365	0.067497	
Albumin_and_Globulin_Ratio	-0.207842	-0.024835	-0.200034	-0.194982	-0.224555	-0.075860	
<							>

Out[26]:

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Tot
Age	1.000000	0.063305	0.020704	0.012033	0.009075	-0.053116	
Gender	0.063305	1.000000	0.107551	0.121324	0.054975	0.117867	
Total_Bilirubin	0.020704	0.107551	1.000000	0.860373	0.184910	0.223902	
Direct_Bilirubin	0.012033	0.121324	0.860373	1.000000	0.209227	0.264239	
Alkaline_Phosphotase	0.009075	0.054975	0.184910	0.209227	1.000000	0.245415	
Alamine_Aminotransferase	-0.053116	0.117867	0.223902	0.264239	0.245415	1.000000	
Total_Protiens	-0.185952	-0.096330	0.006380	0.012968	0.024365	0.067497	
Albumin_and_Globulin_Ratio	-0.207842	-0.024835	-0.200034	-0.194982	-0.224555	-0.075860	
1							-

In [28]: # we check the same with the help of heat map whether removing the above columns helped in reducing multicoll
inearity
sns.heatmap(coor5, vmin=-1, vmax=1, annot=True)

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x123c6357f08>

Step 7: Resampling (Class Balancing)

In [29]: data3['Class'].value_counts()

Out[29]: 0 388

1 166

Name: Class, dtype: int64

We observe here that our dependent variable has class imbalanced as class 0 has 388 observations and class 1 has 166 observations. Hence to resolve this issue we upsample the class 1 to class 0 so that it matches perfectly and doesn't affect our predictions.

As you can see we have matched both the classes

Step 8:

Scaling the data

Step 9:

Splitting the data into training and testing

```
In [33]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

Step 10:

Performing Logistic Regression

```
In [35]: model lr = LogisticRegression()
          model_lr.fit(x_train, y_train)
         y pred = model lr.predict(x test)
         # confusion matrix and some othe measures
In [36]:
          cfm = confusion matrix(y test, y pred)
          print(cfm)
          print(classification report(y test, y pred))
          print(accuracy score(y test, y pred))
         [[41 30]
          [19 66]]
                                     recall f1-score
                        precision
                                                         support
                    0
                             0.68
                                       0.58
                                                 0.63
                                                              71
                                       0.78
                                                 0.73
                     1
                             0.69
                                                              85
                                                 0.69
                                                             156
             accuracy
            macro avg
                             0.69
                                       0.68
                                                 0.68
                                                             156
         weighted avg
                             0.69
                                       0.69
                                                 0.68
                                                             156
```

0.6858974358974359

The catch here is that while dividing the classes as the probability of being 1, the GLM by default assumes the threshold as 0.5 Hence we need to decide which threshold suits better by checking for errors manually.

In [37]: # this gives us a data frame for probabilty of each observation being 0 or 1
y_pred_prob = model_lr.predict_proba(x_test)
print(y_pred_prob) # first column is prob. of being 0 and 2nd column is prob. of beinf 1

[[3.79015689e-01 6.20984311e-01] [3.15061664e-01 6.84938336e-01] [5.03658284e-01 4.96341716e-01] [8.76892943e-01 1.23107057e-01] [3.85386419e-01 6.14613581e-01] [3.42904387e-01 6.57095613e-01] [3.10812823e-01 6.89187177e-01] [3.84841870e-01 6.15158130e-01] [2.73809565e-01 7.26190435e-01] [3.88145628e-01 6.11854372e-01] [3.59816573e-01 6.40183427e-01] [3.36302097e-01 6.63697903e-01] [7.16060973e-01 2.83939027e-01] [3.10763336e-01 6.89236664e-01] [3.07018224e-01 6.92981776e-01] [3.88145628e-01 6.11854372e-01] [3.94509746e-01 6.05490254e-01] [5.69212388e-01 4.30787612e-01] [5.98679316e-01 4.01320684e-01] [5.93751541e-01 4.06248459e-01] [4.03036778e-01 5.96963222e-01] [2.20803501e-01 7.79196499e-01] [2.56669791e-01 7.43330209e-01] [2.73809565e-01 7.26190435e-01] [9.92174127e-01 7.82587320e-03] [3.90471903e-01 6.09528097e-01] [6.05807637e-01 3.94192363e-01] [2.43451824e-01 7.56548176e-01] [4.95418788e-01 5.04581212e-01] [5.69212388e-01 4.30787612e-01] [7.07644299e-01 2.92355701e-01] [9.06688507e-01 9.33114931e-02] [3.19267349e-01 6.80732651e-01] [4.13974047e-01 5.86025953e-01] [3.10812823e-01 6.89187177e-01] [3.81609614e-01 6.18390386e-01] [4.64449959e-01 5.35550041e-01] [5.98568958e-01 4.01431042e-01] [9.91743765e-01 8.25623548e-03] [4.86507424e-01 5.13492576e-01] [2.38835129e-01 7.61164871e-01] [4.87346008e-01 5.12653992e-01]

[2.38397837e-01 7.61602163e-01]

- [4.03036778e-01 5.96963222e-01]
- [5.62671484e-01 4.37328516e-01]
- [9.98515433e-01 1.48456746e-03]
- [3.03010949e-01 6.96989051e-01]
- [3.79014877e-01 6.20985123e-01]
- [5.42738746e-01 4.57261254e-01]
- [8.73041399e-01 1.26958601e-01]
- [6.34869659e-01 3.65130341e-01]
- [6.85270531e-01 3.14729469e-01]
- [0.052705510 01 5.147254050 01
- [4.53845267e-01 5.46154733e-01]
- [4.00771570e-01 5.99228430e-01]
- [7.86112990e-01 2.13887010e-01]
- [9.99996035e-01 3.96501846e-06]
- [5.67778258e-01 4.32221742e-01]
- [9.96198740e-01 3.80125971e-03]
- [4.83863928e-01 5.16136072e-01]
- [5.00577378e-01 4.99422622e-01]
- [4.14810045e-01 5.85189955e-01]
- [2.32527928e-01 7.67472072e-01]
- [4.54921707e-01 5.45078293e-01]
- [7.60498846e-01 2.39501154e-01]
- [4.06605820e-01 5.93394180e-01]
- [5.21287336e-01 4.78712664e-01]
- [9.96963944e-01 3.03605569e-03]
- [2.50372469e-01 7.49627531e-01]
- [3.88145628e-01 6.11854372e-01]
- [9.18223301e-01 8.17766993e-02]
- [3.37235080e-01 6.62764920e-01]
- [2.75462494e-01 7.24537506e-01]
- [3.41451995e-01 6.58548005e-01]
- [2.93762536e-01 7.06237464e-01]
- [2:337023300 01 7:002374040 01
- [2.94212802e-01 7.05787198e-01]
- [3.13506319e-01 6.86493681e-01]
- [5.61831256e-01 4.38168744e-01]
- [2.56669791e-01 7.43330209e-01]
- [6.71117047e-01 3.28882953e-01]
- [3.56325539e-01 6.43674461e-01]
- [3.24748153e-01 6.75251847e-01]
- [2.43451824e-01 7.56548176e-01]
- [4.31327420e-01 5.68672580e-01]
- [3.35251797e-01 6.64748203e-01]
- [3.72372375e-01 6.27627625e-01]
- [9.98919167e-01 1.08083282e-03]

[9.15354106e-01 8.46458940e-02] [2.95017267e-01 7.04982733e-01] [3.69020642e-01 6.30979358e-01] [9.81787406e-01 1.82125938e-02] [3.17188750e-01 6.82811250e-01] [3.33774386e-01 6.66225614e-01] [3.79014877e-01 6.20985123e-01] [3.61134351e-01 6.38865649e-01] [6.80960233e-01 3.19039767e-01] [3.40114822e-01 6.59885178e-01] [4.26154753e-01 5.73845247e-01] [5.42738746e-01 4.57261254e-01] [4.35508239e-01 5.64491761e-01] [3.28734792e-01 6.71265208e-01] [4.86507424e-01 5.13492576e-01] [3.26824059e-01 6.73175941e-01] [2.15863680e-01 7.84136320e-01] [3.33575970e-01 6.66424030e-01] [8.02320224e-01 1.97679776e-01] [5.27855795e-01 4.72144205e-01] [9.69709055e-01 3.02909451e-02] [5.18770701e-01 4.81229299e-01] [2.49224154e-01 7.50775846e-01] [1.52992519e-01 8.47007481e-01] [5.90766852e-01 4.09233148e-01] [2.88823981e-01 7.11176019e-01] [9.70865428e-01 2.91345724e-02] [6.31984730e-01 3.68015270e-01] [3.24748153e-01 6.75251847e-01] [9.99702595e-01 2.97405135e-04] [2.75462494e-01 7.24537506e-01] [3.67938666e-01 6.32061334e-01] [2.73520065e-01 7.26479935e-01] [2.67506832e-01 7.32493168e-01] [9.03930755e-01 9.60692452e-02] [3.73131893e-01 6.26868107e-01] [2.24104415e-01 7.75895585e-01]

localhost: 8888/nbconvert/html/Desktop/Assg~Sem2/Asignment.ipynb?download=false

[4.35525277e-01 5.64474723e-01] [9.91571506e-01 8.42849427e-03] [9.99615116e-01 3.84884044e-04] [5.55836139e-01 4.44163861e-01] [7.13179984e-01 2.86820016e-01] [2.94107841e-01 7.05892159e-01]

- [4.51388281e-01 5.48611719e-01]
- [4.34263767e-01 5.65736233e-01]
- [4.53845267e-01 5.46154733e-01]
- [4.37018484e-01 5.62981516e-01]
- [2.16875029e-01 7.83124971e-01]
- [5.23328064e-01 4.76671936e-01]
- [4.16002870e-01 5.83997130e-01]
- [9.88541960e-01 1.14580400e-02]
- [2.95017267e-01 7.04982733e-01]
- [6 05320404- 04 3 04770506- 04
- [6.05229494e-01 3.94770506e-01]
- [2.50372469e-01 7.49627531e-01]
- [5.30404301e-01 4.69595699e-01]
- [5.16963147e-01 4.83036853e-01]
- [9.86161563e-01 1.38384374e-02]
- [3.13506319e-01 6.86493681e-01]
- [2.58742733e-01 7.41257267e-01]
- [3.16627167e-01 6.83372833e-01]
- [9.99977898e-01 2.21019831e-05]
- [9.81575573e-01 1.84244272e-02]
- [2.32527928e-01 7.67472072e-01]
- [8.69552135e-01 1.30447865e-01]
- [7.69999199e-01 2.30000801e-01]
- [2.43451824e-01 7.56548176e-01]
- [3.85386419e-01 6.14613581e-01]
- [9.16525795e-01 8.34742052e-02]
- [2.75227144e-01 7.24772856e-01]
- [8.08347056e-01 1.91652944e-01]]

Errors at threshold 0.2 : 46 , type 2 error : 1 , type 1 error: 45 Errors at threshold 0.21000000000000002 : 46 , type 2 error : 1 , type 1 error: 45 Errors at threshold 0.220000000000000003 : 45 , type 2 error: 1 , type 1 error: 44 Errors at threshold , type 2 error : 1 , type 1 error: 44 0.23000000000000004 : 45 Errors at threshold 0.24000000000000005 : 43 , type 2 error: 1 , type 1 error: 42 Errors at threshold 0.25000000000000006 : 43 , type 2 error : 1 , type 1 error: 42 Errors at threshold 0.26000000000000006 : 43 , type 2 error: 1 , type 1 error: 42 Errors at threshold 0.2700000000000001 : 43 , type 2 error: 1 , type 1 error: 42 Errors at threshold 0.280000000000001 : 43 , type 2 error : 1 , type 1 error: 42 Errors at threshold 0.290000000000001 : 43 , type 2 error: 2 , type 1 error: 41 Errors at threshold 0.300000000000001 : 44 , type 2 error : 3 , type 1 error: 41 Errors at threshold 0.310000000000001 : 44 , type 2 error : 3 , type 1 error: 41 Errors at threshold 0.320000000000001 : 46 , type 2 error : 5 , type 1 error: 41 , type 2 error : 6 Errors at threshold 0.330000000000001 : 47 , type 1 error: 41 Errors at threshold 0.3400000000000014 : 47 , type 2 error : 6 , type 1 error: 41 Errors at threshold , type 2 error : 6 , type 1 error: 41 0.35000000000000014 : 47 , type 2 error : 6 Errors at threshold 0.3600000000000015 : 47 , type 1 error: 41 , type 1 error: 40 Errors at threshold 0.3700000000000016 : 47 , type 2 error : 7 Errors at threshold 0.3800000000000017 : 47 , type 2 error : 7 , type 1 error: 40 Errors at threshold 0.3900000000000002 : 47 , type 2 error: 7 , type 1 error: 40 Errors at threshold 0.4000000000000002 : 47 , type 2 error: 8 , type 1 error: 39 Errors at threshold 0.4100000000000002 : 49 , type 2 error : 11 , type 1 error: 38 Errors at threshold 0.4200000000000000 : 49 , type 2 error: 11 , type 1 error: 38 Errors at threshold 0.4300000000000002 : 49 , type 2 error: 11 , type 1 error: 38 Errors at threshold 0.4400000000000000 : 48 , type 2 error: 13 , type 1 error: 35 Errors at threshold 0.45000000000000023 : 47 , type 2 error: 13 , type 1 error: 34 Errors at threshold 0.4600000000000024 : 49 , type 2 error : 15 , type 1 error: 34 Errors at threshold 0.47000000000000025 : 48 , type 2 error : 15 , type 1 error: 33 Errors at threshold 0.4800000000000026 : 47 , type 2 error : 16 , type 1 error: 31 Errors at threshold 0.4900000000000027 : 47 , type 2 error : 17 , type 1 error: 30 Errors at threshold 0.5000000000000002 : 49 , type 2 error : 19 , type 1 error: 30 Errors at threshold 0.5100000000000002 : 48 , type 2 error: 19 , type 1 error: 29 Errors at threshold 0.5200000000000000 : 48 , type 2 error : 21 , type 1 error: 27 Errors at threshold 0.5300000000000002 : 48 , type 2 error : 21 , type 1 error: 27 Errors at threshold 0.5400000000000003 : 49 , type 2 error : 22 , type 1 error: 27 Errors at threshold 0.5500000000000003 : 51 , type 2 error : 25 , type 1 error: 26 Errors at threshold 0.560000000000003 : 51 , type 2 error : 25 , type 1 error: 26 Errors at threshold 0.5700000000000003 : 52 , type 2 error : 28 , type 1 error: 24 Errors at threshold 0.580000000000003 : 53 , type 2 error : 29 , type 1 error: 24 Errors at threshold , type 2 error : 30 , type 1 error: 22 0.590000000000003 : 52 Errors at threshold 0.6000000000000003 : 56 , type 2 error : 34 , type 1 error: 22 Errors at threshold 0.6100000000000003 : 58 , type 2 error : 36 , type 1 error: 22 Errors at threshold 0.6200000000000003 : 63 , type 2 error : 42 , type 1 error: 21

```
Errors at threshold
                    0.6300000000000003 : 62
                                            , type 2 error : 44 , type 1 error: 18
Errors at threshold
                    0.640000000000003 : 63
                                            , type 2 error : 46 , type 1 error: 17
                                            , type 2 error : 47 , type 1 error: 16
Errors at threshold
                    0.6500000000000004 : 63
Errors at threshold
                    0.6600000000000004 : 62
                                            , type 2 error : 48
                                                                , type 1 error: 14
Errors at threshold
                    0.6700000000000004 : 61
                                            , type 2 error : 50
                                                                , type 1 error: 11
Errors at threshold
                    0.680000000000004 : 61
                                            , type 2 error : 52
                                                                , type 1 error: 9
Errors at threshold
                    0.690000000000004 : 66
                                            , type 2 error : 59
                                                                , type 1 error: 7
Errors at threshold
                    0.7000000000000004 : 66
                                            , type 2 error : 60
                                                                , type 1 error: 6
Errors at threshold
                    0.7100000000000004 : 71
                                            , type 2 error : 65
                                                                , type 1 error: 6
Errors at threshold
                    0.7200000000000004 : 72
                                            , type 2 error : 66
                                                                , type 1 error: 6
Errors at threshold
                    0.7300000000000004 : 74
                                            , type 2 error : 70 , type 1 error: 4
Errors at threshold
                    0.7400000000000004 : 73
                                            , type 2 error : 70 , type 1 error: 3
Errors at threshold
                    0.7500000000000004 : 76
                                            , type 2 error : 74 , type 1 error: 2
Errors at threshold
                    0.7600000000000005 : 80
                                            , type 2 error : 78
                                                                , type 1 error: 2
Errors at threshold
                    0.7700000000000005 : 84
                                            , type 2 error : 82 , type 1 error: 2
Errors at threshold
                    0.7800000000000005 : 86
                                            , type 2 error: 84 , type 1 error: 2
Errors at threshold
                    0.7900000000000005 : 84
                                            , type 2 error: 84 , type 1 error: 0
, type 2 error : 84 , type 1 error: 0
```

```
In [53]: # Now we decide the threshold to be 0.35 as it has lower Type 2 error and considerably acceptable Total error
          # While detecting a disease we Type 2 error says that he/she doesn't have a disease in fact when he/she has t
          he disease
          # Hence we look for a small Type 2 error
          y \text{ pred1} = \text{np.where}(y \text{ pred prob}[:, 1] > 0.35, 1, 0)
          cfm = confusion matrix(y test, y pred1)
          print(cfm)
          print(classification report(y test, y pred1))
          print("Accuracy is",round(accuracy_score(y_test, y_pred1)*100, 2) , "%")
          [[30 41]
          [ 6 79]]
                                      recall f1-score
                        precision
                                                          support
                     0
                              0.83
                                        0.42
                                                   0.56
                                                               71
                     1
                              0.66
                                        0.93
                                                   0.77
                                                               85
              accuracy
                                                   0.70
                                                              156
                              0.75
                                        0.68
                                                   0.67
                                                              156
             macro avg
         weighted avg
                              0.74
                                        0.70
                                                   0.68
                                                              156
         Accuracy is 69.87 %
```

A slight increase in the accuracy but not worth considering

Step 11:

Performing SVC

```
In [52]: model = SVC(C=1, kernel='rbf') # i.e cost = 1
         model.fit(x train, y train)
         y pred = model.predict(x test)
         print(cfm)
         print(classification report(y test, y pred))
         print("Accuracy is", round(accuracy score(y test, y pred)*100, 2) , "%")
         [[30 41]
          [ 6 79]]
                        precision
                                     recall f1-score
                                                        support
                    0
                             0.78
                                       0.51
                                                 0.62
                                                             71
                     1
                             0.68
                                       0.88
                                                 0.77
                                                             85
                                                 0.71
                                                            156
             accuracy
            macro avg
                             0.73
                                       0.69
                                                 0.69
                                                            156
         weighted avg
                             0.73
                                       0.71
                                                 0.70
                                                            156
         Accuracy is 71.15 %
```

Step 12:

Applying Random Forest

```
In [55]: rf = RandomForestClassifier(n_estimators=500, criterion='entropy', min_samples_split=4)
    rf.fit(x_train, y_train)
    ypred_rf = rf.predict(x_test)
    confusion_matrix(y_test, ypred_rf)
    print("Accuracy is", round(accuracy_score(y_test, ypred_rf)*100, 2) , "%")

Accuracy is 83.97 %
```

Conclusion:

Out of all the models we applied, Random Forest gave us the best accuracy. Hence we find this model suitable for our data and will use this for further evaluation if new data comes in.

In []:	