CPTS 580 Structured Prediction: Algorithms and Applications, Spring 2017 Homework #1

Due Date: Tue, Feb 14

NOTE 1: Please use a word processing software (e.g., Microsoft word or Latex) to write your answers and submit a printed copy to me. The rationale is that it is sometimes hard to read and understand the hand-written answers. Thanks for your understanding.

NOTE 2: Please ensure that all the graphs are appropriately labeled (x-axis, y-axis, and each curve). The caption or heading of each graph should be informative and self-contained.

- 1. (15 points) Tom wants to apply the LaSO framework to the problem of co-reference resolution that arises in natural language processing. Coreference resolution is a structured prediction problem where the set of mentions m_1, m_2, \dots, m_D extracted from a document D corresponds to a structured input x and the structured output y corresponds to a partition of the mentions into a set of clusters C_1, C_2, \dots, C_k . Each mention m_i belongs to exactly one of the clusters C_j . Tom needs your help in designing a concrete search space. Can you give some concrete search space definitions, and discuss their pros and cons in terms of learning an accurate heuristic function to guide the search process?
- 2. (85 points) Please implement the online structured perceptron training algorithm for sequence labeling problems and experiment with two sequence labeling datasets: handwriting recognition, and text-to-speech mapping.

In a sequence labeling problem, the structured input $x = (x_1, x_2, \dots, x_T)$ is a sequence of input tokens, where each input token x_i is represented as a m-dimensional feature vector; and the structured output $y = (y_1, y_2, \dots, y_T)$ is a sequence of output labels, where each output label y_i comes from a label set $\{1, 2, \dots, k\}$. You were provided with a set of training examples $\mathcal{D} = \{(x, y^*)\}$, where y^* is the correct structured output for the structured input x.

You need to learn a scoring function $S(x,y) = w \cdot \phi(x,y)$, where $\phi(x,y) \in \mathbb{R}^d$ is a joint feature representation over a structured input x and candidate structured output $y \in Y(x)$ and $w \in \mathbb{R}^d$ corresponds to the weights (or parameters) of the cost function. Essentially, you need to learn the weights $w \in \mathbb{R}^d$ from the given training data.

Algorithm 1 Randomized Greedy Search (RGS) Inference

Input: x = structured input, $\phi =$ joint feature function, w = weights of scoring function, R = number of restarts

Output: \hat{y} , best scoring structured output

- 1: Initialize the best scoring output \hat{y} randomly
- 2: Initialize the best score S_{best} as $S(x, \hat{y}) = w \cdot \phi(x, \hat{y})$
- 3: for R iterations do
- 4: Pick a random structured output y_{start} as starting point
- 5: while NOT reached local optima do
- 6: Perform a greedy search step by considering all one-label changes.
- 7: Score each candidate structured output (corresponding to one-label change) y: $S(x,y) = w \cdot \phi(x,y)$
- 8: Pick the best scoring candidate output and continue search
- 9: Update the best scoring output \hat{y} and the corresponding best score S_{best}
- 10: end while
- 11: end for
- 12: **return** the best scoring output \hat{y}

Algorithm 2 Online Structured Perceptron Training

Input: $\mathcal{D}=$ Training examples, $\phi=$ joint feature function, R= number of restarts, $\eta=$ learning rate, MAX= maximum training iterations

Output: w, weights of the scoring function

1: Initialize the weights of the scoring function w=02: for MAX iterations or until convergence do

3: for each training example $(x,y^*)\in\mathcal{D}$ do

4: Make prediction: $\hat{y}=$ RGS-Inference (x,ϕ,w,R) 5: Compare \hat{y} and y^* to check for error

6: If error, perform weight update:

```
w=w+\eta(\phi(x,y^*)-\phi(x,\hat{y})) 7: end for 8: end for
```

9: **return** weights w

(a) Implement the structured perceptron training algorithm and the randomized local search

inference algorithm as shown in the above pseudo-code.

- (b) Plot the Hamming accuracy over the training and testing set as a function of the number of online learning iterations (say MAX=100, $\eta=0.01, R=20$); for both handwriting and text-to-speech mapping problem.
- (c) Repeat (b) with different feature representations ϕ . First-order: unary + pairwise features $(d=m\cdot k+k^2)$ Second-order: unary + pairwise + triple features $(d=m\cdot k+k^2+k^3)$ Third-order: unary + pairwise + triple + quadruple features $(d=m\cdot k+k^2+k^3+k^4)$
- (d) Fix the number of online learning iterations (MAX=100) and learning rate ($\eta = 0.01$) to reasonable values (based on (b)); and plot the Hamming accuracy for first-order representation as a function of the number of restarts R=10, 25, 50, 100, 200.
- (e) How will you diagnose the performance of learning algorithm? Please list your ideas and explain your intuition and rationale. Implement your ideas to perform diagnosis and test your hypotheses.
- (f) Please feel free to try other ways of randomizing the local search and list your observations in comparison to RGS.