

Universidad autónoma de baja California

Ingeniería en computación

Inteligencia artificial

Meta 5.1: Aprendizaje supervisado

Erik garcia Chávez 01275973

Juan Ramon castro rodrigez

28 de mayo del 2025

índice

Teoría fórmulas para regresión polinomial multivariable:	3
Resultados del aprendizaje:	5
Regresión polinomial multivariable utilizando el optimizador GDX:	5
Regresión polinomial multivariable utilizando AdamD:	7
Teoría clasificación: regresión logística – regresión softmax:	10
Resultados del aprendizaje:	12
Clasificador polinomial multivariable utilizando GDX – regresión logística:.	12
clasificador polinomial multivariable utilizando GDX – regresión SoftMax:	13
Clasificación polinomial multivarable – AdamD – regresión logística:	15
Clasificación polinomial multivariable – AdamD – SoftMax :	16
Clasificación polinomial multivariable – multiclase:	18
Clasificador polinomual multivarible – multiclass- GDX- regresión logística:	18
Clasificador polinomial multivariable – multiclass - GDX – regresor softmax:	20
Clasificador polinomial multivariable – multiclass – AdamD – regresional logística:	
Clasificador polinomial multivariable – multiclass – AdamD – regresion SoftMax:	

Teoría fórmulas para regresión polinomial multivariable:

El modelo de regresión polinomial multivariable de grado (τ) permite capturar relaciones no lineales entre múltiples variables productoras. Y una variable de respuesta

$$P_{\tau}(\mathbf{x}) = \theta_0 + \sum_{l_1=1}^n \theta_{l_1} x_{l_1} + \sum_{l_1=1}^n \sum_{l_2=l_1}^n \theta_{l_1,l_2} x_{l_1} x_{l_2} + \sum_{l_1=1}^n \sum_{l_2=l_1}^n \cdots \sum_{l_{\tau}=l_{\tau-1}}^n \theta_{l_1,l_2,\dots,l_{\tau}} x_{l_1} x_{l_2} \cdots x_{l_{\tau}}$$

Donde:

 $X = [x_1, x_2, ..., x_n]$: vector de variables de entrada

T = frado máximo del polinomio

Oi1i2,ik : coeficiente del termino de combinación.

Modificación de la función para calcular el número de parámetros,

def polyParamsNumber(n, tau),

razon:

los factores crecen exponencialmente y causan desbordamiento para valores moderados de n o τ, tiene un mayor costo computacional.

Beneficios de la nueva versión:

Utiliza una identidad combinatoria equivalente:

$$\sum_{l=0}^{\tau} \binom{n+l-1}{l} = \binom{n+\tau}{\tau}$$

Identidad de Hockey-stick

```
def polyParamsNumber(n, tau):
    return int(math.comb(n + tau, tau))
3
4
```

 La función mat.comb calcula combinaciones directamente sin factoriales intermedios.

- Evita números gigantescos
- Es mucho más simple.

Explicación de la función y ecuaciones perdida

Tenemos a:

$$SSE = \|\mathbf{\Xi}\|_F^2 = tr(\mathbf{\Xi}^{\mathsf{T}}\mathbf{\Xi})$$

Donde E = Y_verdadera – Y_pred es la matriz de errores

Y $\|.\|_f$ es la norma de forbernius

SSE con norma de Frobenius: es el estándar para modelos multivariados.

Termino de regularización Ridge (L2)

$$\hat{\theta} = \min_{\theta} ||y - A\theta||_2^2 + \lambda ||\theta||_2^2 = \min_{\theta} SSE + \lambda ||\theta||_2^2$$

Donde excluye el termino intercepto (Θ_0) para evitar su penalización. Dentro de la función **THETA[1:,:]1** excluye la primera fila, parámetros Θ_1 a Θ_n dejando fuera Θ_0 .

Función desingMatrix(Tau, X):

Esta función construye la matriz de diseño para regresión polinómica, transforma la matriz de entrada X en una matriz con todas las combinaciones polinómicas de sus características hasta grado **tau**.

Función poweVector(Tau, X):

Esta función genera todas las combinaciones polinómicas de un vector de características **X** hasta un grado máximo Tau, usando recursividad.

Resultados del aprendizaje:

Regresión polinomial multivariable utilizando el optimizador GDX:

Datos de entrenamiento: engine dataset.mat

Mini lotes

```
R2_train = r2_score(targets_train_descaled, outputTrain_descaled.reshape(-1, 1))
print(R2_train)
0.9503984993728382
# MSE for raw train data
MSE_train = mean_squared_error(targets_train_descaled, outputTrain_descaled.reshape(-1, 1))
print(MSE_train)
12935.872327524816
# R2 for raw test data
R2_test = r2_score(targets_test_descaled, outputTest_descaled.reshape(-1, 1))
print(R2_test)
0.9574186002109912
# MSE for raw test data
MSE_test = mean_squared_error(targets_test_descaled, outputTest_descaled.reshape(-1, 1))
print(MSE_test)
12035.92286675407
THETA
array([[ 0.01958919, 0.35407876], [ 0.97937582, 1.0734356 ],
       [-0.05531105, -1.09346678],
       [ 0.03358722, -0.23560476],
       [ 0.09185862, -0.10700749],
[-0.04545827, -0.17645382]])
```

```
Princing_cruin
  0.9501071392602626
# MSE for raw train data
  MSE_train = mean_squared_error(targets_train_descaled, outputTrain_descaled.reshape(-1, 1))
  print(MSE_train)
  13011.857875743231
# R2 for raw test data
  R2_test = r2_score(targets_test_descaled, outputTest_descaled.reshape(-1, 1))
  print(R2_test)
  0.9549455024165753
# MSE for raw test data
  MSE_test = mean_squared_error(targets_test_descaled, outputTest_descaled.reshape(-1, 1))
  print(MSE_test)
  12734.960813909878
 THETA
array([[ 0.01388956,  0.27247694],  [ 0.94568848,  1.00001092],
          [-0.03633054, -0.98021644],
          [ 0.027629 , -0.21647424],
[ 0.08598198, -0.11202569],
          [-0.04392353, -0.15354643]])
```

Lote completo:

```
# R2 for raw train data
  R2_train = r2_score(targets_train_descaled, outputTrain_descaled.reshape(-1, 1))
  print(R2_train)
  0.9520533098628233
: # MSE for raw train data
  MSE_train = mean_squared_error(targets_train_descaled, outputTrain_descaled.reshape(-1, 1))
  print(MSE_train)
  12504.30439199801
: # R2 for raw test data
   R2_test = r2_score(targets_test_descaled, outputTest_descaled.reshape(-1, 1))
  print(R2_test)
   0.9581312107999834
: # MSE for raw test data
  MSE_test = mean_squared_error(targets_test_descaled, outputTest_descaled.reshape(-1, 1))
  print(MSE_test)
   11834.498626930097
: THETA
: array([[ 0.01984981, 0.30785984],
          [ 0.9752518 , 1.048895 ],
[-0.05860286, -1.08462375],
          [ 0.0249616 , -0.2224697 ],
          [ 0.0914151 , -0.10370667],
          [-0.046274 , -0.1773417 ]])
```

Regresión polinomial multivariable utilizando AdamD:

datos de entrenamiento: engiene_dataset.mat

Mini lote:

```
print(R2_train)
     0.9392825174822423
6]: MSE_train = mean_squared_error(tTrain_original, outputTrain)
     print(MSE_train)
     12601.903725260476
7]: # Test data
     R2_test = r2_score(tTest_original, outputTest)
     print(R2_test)
     0.9489383729778305
8]:
     MSE_test = mean_squared_error(tTest_original, outputTest)
     print(MSE_test)
     12093.46994797191
9]: THETA
9]: array([[ 0.0131116 , 0.3159656 ], [ 0.96851457, 1.06278731],
             [-0.04771009, -1.05697628],
             [ 0.03083468, -0.22194714],
            [ 0.09303978, -0.11221019],
[-0.04727476, -0.16912499]])
```

```
print(R2_train)
      0.8608386135212868
[16]: MSE_train = mean_squared_error(tTrain_original, outputTrain)
      print(MSE_train)
      30564.5184847236
[17]: # Test data
      R2_test = r2_score(tTest_original, outputTest)
      print(R2_test)
      0.862740391839625
[18]:
      MSE_test = mean_squared_error(tTest_original, outputTest)
      print(MSE_test)
      34073.7039908613
[19]: THETA
[-0.03958482, -0.09762124]])
```

Lote completo:

```
print(R2_train)
      0.9393667313012334
[16]: MSE_train = mean_squared_error(tTrain_original, outputTrain)
      print(MSE_train)
      12590.29625323632
[17]: # Test data
      R2_test = r2_score(tTest_original, outputTest)
      print(R2_test)
      0.9490973201716718
      MSE_test = mean_squared_error(tTest_original, outputTest)
      print(MSE_test)
      12064.092936739908
[19]: THETA
[ 0.03195839, -0.22140541],
            [ 0.09642981, -0.10781042],
[-0.0500841 , -0.18561584]])
```

Teoría clasificación: regresión logística – regresión softmax:

El objetivo es predecir la proba lidiad de que una instancia pertenezca a una clase especifica. Una probabilidad puede ser una salida entre 0 y 1. (función sigmoide)

El modelo se entra mediante una serie de elementos, como la función de costo, la cual mide el error entre las probabilidades predichas y las etiquetas reales.

El uso de un optimizador que ajusta los coeficientes para minimizar la perdida logarítmica, como en nuestro caso es GDX y AdamD.

Se usa **One-vs-Rest** o **SoftMax Regression** para una clasificación de múltiples clases.

Sigmoide logística:

$$S \equiv P(Y = k | X = x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}}$$

Esta función transforma cualquier valor numérico en el rango [0,1], lo que permite interpretar su salida como una **probabilidad**

Donde **P(Y=K | X=x)** es la probabilidad de que la variable objetivo **Y** sea 1, dado el predictor **X=x**

Por lo que la sigmoide es el puente entre la regresión lineal (genera valores continuos) y la clasificación binaria

Función de costo:

$$\mathcal{L}(\mathbf{\Theta}) = -\sum_{p=1}^{q} \sum_{j=1}^{m} [y_{p,j} \ln(S_{p,j}) + (1 - y_{p,j}) \ln(1 - S_{p,j})]$$

Donde:

q: número de muestras

y_p: etiqueta real (0 o 1) para la muestra p

S p: probabilidad predicha por el modelo

Theta: parámetros del modelo

Dentro del código se implementa épsilon como una protección extra ya que si h = 0 o h=1, los logaritmos devuelven -inf causando erroes, por lo que la función **np.clip(),** fuerza las predicciones al rango [épsilon, 1-epsilon]

softmax

la función softmax es un componenete fundameltal en la clsificacion de multiclase, su objetivo es convertir un vector de valroes numéricos arbitarios en probabilidades multinmiales normalizadas, donde cada valor representa la probabilidad de pertenecer a una clase especifica.

Formula:

$$S_{p,j} = softmax(h_{\Theta}(\mathbf{x})) = \frac{exp(h_{\theta:,j}(x_{p,:}))}{\sum_{k=1}^{m} exp(h_{\theta:,k}(x_{p,:}))}$$

Donde

M: numero de clases

H: vector de logits

Exp(h_j) exponencial del logit de la clase j

Esta formula nos sirve para transformar salidas numéricas en probabilidades comprensibles.

Resultados del aprendizaje:

Clasificador polinomial multivariable utilizando GDX – regresión logística:

Utilizando datos de: cancer_dataset.dat

Mini lotes:

datos de entrenamiento:

Accuracy: 0.9857 matriz de confusion: [[321 7] [0 161]] reporte de clasificacion: precision recall f1-score support 0 1.00 0.98 0.99 328 1 0.96 1.00 0.98 161 accuracy 0.99 489 macro avg 0.98 0.99 0.98 489 weighted avg 0.99 0.99 0.99 489

Datos de prueba:

Accuracy: 0.9	857				
matriz de con [[128 2] [1 79]]	fusion:				
reporte de cl	asificacion: precision	recall	f1-score	support	
0	0.99	0.98	0.99	130	
1	0.98	0.99	0.98	80	
accuracy			0.99	210	
macro avg	0.98	0.99	0.98	210	
weighted avg	0.99	0.99	0.99	210	

Online:

Datos de entrenamiento

			,				
Accuracy: 0.9816							
matriz de com	nfusion:						
[[325 3] [6 155]]							
reporte de clasificacion:							
	precision	recall	f1-score	support			
0	0.98	0.99	0.99	328			
1	0.98	0.96	0.97	161			
accuracy			0.98	489			
macro avg	0.98	0.98	0.98	489			
and the second second			0.00	400			
weighted avg	0.98	0.98	0.98	489			

Datos de prueba

Accuracy: 0.9810

matriz de confusion:
[[129 1]
 [3 77]]

reporte de clasificacion: recall f1-score support precision 0 0.98 0.99 0.98 130 1 0.99 0.96 0.97 80 0.98 210 accuracy 0.98 0.98 0.98 210 macro avg 0.98 0.98 0.98 210 weighted avg

Lote:

Datos de entrenamiento: Datos de prueba:

Accuracy: 0.979	6				Accuracy: 0.981	0			
matriz de confu [[318 10] [0 161]]	sion:				matriz de confu [[127 3] [1 79]]	sion:			
	: 6::				reporte de clas	ificacion:			
reporte de clas	recision:		f1-score	support	•	recision		f1-score	support
0	1.00	0.97	0.98	328	0	0.99	0.98	0.98	130
1	0.94	1.00	0.97	161	1	0.96	0.99	0.98	80
accuracy			0.98	489	accuracy			0.98	210
macro avg	0.97	0.98	0.98	489	macro avg	0.98	0.98	0.98	210
	0.98	0.98	0.98	489	weighted avg	0.98	0.98	0.98	210

clasificador polinomial multivariable utilizando GDX – regresión SoftMax: utilizando datos de: cancer_dataset.dat

mini lote:

datos de entrenamiento

Datos de prueba:

Resulta	dos en	conjunto	de	entrenamiento:
Accuracy	y: 0.9	959		
Matriz o	de con	fusión:		
[[326	2]			
[0 1	51]]			

Reporte de o	clasificación: precision	recall	f1-score	support
(1.00	0.99	1.00	328
1	0.99	1.00	0.99	161
accuracy	/		1.00	489
macro ava	-	1.00	1.00	489
พeighted av	g 1.00	1.00	1.00	489

Resultados en conjunto de prueba: Accuracy: 0.9952 Matriz de confusión: [[129 1] [0 80]]

Reporte de cl	lasificación: precision	recall	f1-score	support
0	1.00	0.99	1.00	130
1	0.99	1.00	0.99	80
accuracy			1.00	210
macro avg	0.99	1.00	0.99	210
weighted avg	1.00	1.00	1.00	210

Datos de entrenamiento:

resultados en conjunto de entrenamiento:

Accuracy: 0.9959 matriz de confusion: [[326 2]

[0 161]]

reporte de clasificacion:

reporte de e	precision	recall	f1-score	support
0	1.00	0.99	1.00	328
1	0.99	1.00	0.99	161
accuracy	,		1.00	489
macro avg	0.99	1.00	1.00	489
weighted avg	1.00	1.00	1.00	489

datos de prueba

resultados en conjunto de prueba:

Accuracy: 0.9905

matriz de confusion:

[[129 1] [1 79]]

reporte de clasificacion:

	precision	recall	f1-score	support
0	0.99	0.99	0.99	130
1	0.99	0.99	0.99	80
accuracy			0.99	210
macro avg	0.99	0.99	0.99	210
weighted avg	0.99	0.99	0.99	210

Lote:

Datos de entrenamiento:

resultados en conjunto de entrenamiento:

Accuracy: 0.9796 matriz de confusion: [[318 10]

[0 161]]

reporte de clasificacion:

	precision	recall	f1-score	support
0	1.00	0.97	0.98	328
1	0.94	1.00	0.97	161
accuracy			0.98	489
macro avg weighted avg	0.97 0.98	0.98 0.98	0.98 0.98	489 489

datos de prueba:

resultados en conjunto de prueba:

Accuracy: 0.9857

matriz de confusion:

[[128 2] [1 79]]

reporte de clasificacion:

support	f1-score	recall	precision	
130	0.99	0.98	0.99	0
80	0.98	0.99	0.98	1
210	0.99			accuracy
210	0.98	0.99	0.98	macro avg
210	0.99	0.99	0.99	weighted avg

Clasificación polinomial multivarable – AdamD – regresión logística:

Utilizando datos de: cancer_dataset.dat

Mini lote:

Datos de entrenamiento

datos de prueba

 $resultados\ en\ conjunto\ de\ entrenamiento:$

Accuracy: 0.9775 Matriz de confusión:

[[318 10] [1 160]]

Reporte de clasificación:

	precision	recall	f1-score	support
0	1.00	0.97	0.98	328
1	0.94	0.99	0.97	161
accuracy			0.98	489
macro avg	0.97	0.98	0.97	489
weighted avg	0.98	0.98	0.98	489

resultados en conjunto de prueba: Accuracy: 0.9810					
Matriz de con	fusión:				
[[128 2]					
[2 78]]					
Reporte de clasificación:					
	precision	recall	f1-score	support	
0	0.98	0.98	0.98	130	
1	0.97	0.97	0.97	80	

0.98

0.98

0.98

210

210

210

Online:

Datos de entrenamiento:

resultados en conjunto de entrenamiento:

Accuracy: 0.9959 Matriz de confusión:

[[326 2] [0 161]]

Reporte de clasificación:

Reporte de	precision	recall	f1-score	support
	0 1.00	0.99	1.00	328
	1 0.99	1.00	0.99	161
accurac	у		1.00	489
macro av	g 0.99	1.00	1.00	489
weighted av	g 1.00	1.00	1.00	489

datos de prueba:

accuracy

resultados en conjunto de prueba:

macro avg 0.98 0.98 weighted avg 0.98 0.98

Accuracy: 0.9952 Matriz de confusión:

[[129 1] [0 80]]

Reporte de clasificación:

precision	recall	f1-score	support
1.00	0.99	1.00	130
0.99	1.00	0.99	80
		1.00	210
0.99	1.00	0.99	210
1.00	1.00	1.00	210
	1.00 0.99 0.99	1.00 0.99 0.99 1.00 0.99 1.00	1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99

Lote:

Datos de entrenamiento:

resultados en conjunto de entrenamiento:

Accuracy: 0.9775

Matriz de confusión:

[[318 10] [1 160]]

Reporte de clasificación:

	precision	recall	f1-score	support
0	1.00	0.97	0.98	328
1	0.94	0.99	0.97	161
accuracy			0.98	489
macro avg	0.97	0.98	0.97	489
weighted avg	0.98	0.98	0.98	489

datos de prueba:

resultados en conjunto de entrenamiento:

Accuracy: 0.9775

Matriz de confusión:

[[318 10] [1 160]]

Reporte de clasificación:

neporte de es	precision	recall	f1-score	support
0	1.00	0.97	0.98	328
1	0.94	0.99	0.97	161
accuracy			0.98	489
macro avg	0.97	0.98	0.97	489
weighted avg	0.98	0.98	0.98	489

Clasificación polinomial multivariable – AdamD – SoftMax :

Utilizando datos de: cancer_dataset.dat

Mini lotes:

Datos de entrenamiento:

Resultados en conjunto de entrenamiento:

Accuracy: 0.9836

Matriz de confusión:

[[321 7] [1 160]]

Reporte de clasificación:

	precision	recall	f1-score	support
0	1.00	0.98	0.99	328
1	0.96	0.99	0.98	161
accuracy			0.98	489
macro avg	0.98	0.99	0.98	489
weighted avg	0.98	0.98	0.98	489

datos de prueba.

Resultados en conjunto de prueba:

Accuracy: 0.9857

Matriz de confusión:

[[128 2] [1 79]]

Reporte de clasificación:

	precision	recall	f1-score	support
0	0.99	0.98	0.99	130
1	0.98	0.99	0.98	80
accuracy			0.99	210
macro avg	0.98	0.99	0.98	210
weighted avg	0.99	0.99	0.99	210

Datos de entrenamiento:

Resultados en conjunto de entrenamiento:

Accuracy: 0.9939 Matriz de confusión:

[[326 2] [1 160]]

Reporte de clasificación:

	precision	recall	f1-score	support
0 1	1.00 0.99	0.99 0.99	1.00 0.99	328 161
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	489 489 489

datos de prueba:

Resultados en conjunto de prueba:

Accuracy: 0.9762 Matriz de confusión:

[[128 2] [3 77]]

Reporte de clasificación:

,	precision	recall	f1-score	support
0	0.98	0.98	0.98	130
1	0.97	0.96	0.97	80
accuracy			0.98	210
macro avg	0.98	0.97	0.97	210
weighted avg	0.98	0.98	0.98	210

Lote:

Datos de entrenamiento:

Resultados en conjunto de entrenamiento:

Accuracy: 0.9796 Matriz de confusión:

[[319 9] [1 160]]

Reporte de clasificación:

	precision	recall	f1-score	support
0	1.00 0.95	0.97 0.99	0.98 0.97	328 161
_	0.33	0.33	0.57	101
accuracy			0.98	489
macro avg	0.97	0.98	0.98	489
weighted avg	0.98	0.98	0.98	489

datos de prueba:

Resultados en conjunto de prueba:

Accuracy: 0.9857 Matriz de confusión:

[[128 2] [1 79]]

Reporte de clasificación:

	precision	recall	f1-score	support
0	0.99	0.98	0.99	130
1	0.98	0.99	0.98	80
accuracy			0.99	210
macro avg	0.98	0.99	0.98	210
weighted avg	0.99	0.99	0.99	210

Clasificación polinomial multivariable – multiclase:

Clasificador polinomual multivarible – multiclass- GDX- regresión logística: Utilizando datos de: dermatology.dat

Mini lote:

3

4

macro avg 0.73 0.82 ighted avg 0.78 0.86

accuracy

weighted avg

Datos entrenamiento:

0.00 0.00 0.00 0.97 0.94 0.96 0.84 1.00 0.91

datos de prueba:

0.00

1.00

0.57

0.68

0.78

4

accuracy

weighted avg

macro avg

0.00

0.88

1.00

0.80

0.83

0.00

0.93

0.73

0.83 0.72

0.79

15

16

110

110

110

Rendimiento en en Accuracy: 0.8594	ntrenamiento (mu	ulticlase):		Rendimiento en prueba (multiclase): Accuracy: 0.8273	
Matriz de confus: [[72 0 0 0 0 0 [0 45 0 0 0 [0 0 53 0 0 [0 32 0 0 1 [0 0 0 0 0 34 [0 0 0 0 0	0] 0] 0] 1] 2]			Matriz de confusión: [[38 0 0 0 0 2] [0 16 0 0 0 0] [0 0 19 0 0 0] [0 15 0 0 0 0] [0 1 0 0 14 1] [0 0 0 0 0 4]]	
Reporte de clasit pre		ll f1-score	support	Reporte de clasificación: precision recall f1-score support	
0	1.00 1.0		72	0 1.00 0.95 0.97 40	
1 2	0.58 1.6		45 53	1 0.50 1.00 0.67 16 2 1.00 1.00 1.00 19	
2	1.00 1.0		22	3 000 000 000 15	

34

36

16

 0.86
 256

 0.77
 256

 0.81
 256

0.77

Datos de entrenamiento

```
rendimiento en entrenamiento (multiclase):
Accuracy: 0.9883
matriz de confusion:
[[72 0 0 0 0 0]
[ 0 43 0 2 0 0]
[ 0 0 53 0 0 0]
[ 0 1 0 33 0 0]
 [0000360]
[0000016]]
reporte de clasificacion:
            precision
                        recall f1-score
          0
                 1.00
                          1.00
                                   1.00
                                               72
          1
                 0.98
                          0.96
                                   0.97
                                               45
          2
                 1.00
                          1.00
                                   1.00
                                               53
          3
                 0.94
                          0.97
                                   0.96
                                               34
          4
                 1.00
                          1.00
                                   1.00
                                              36
          5
                 1.00
                          1.00
                                   1.00
                                   0.99
                                              256
   accuracy
                 0.99
                          0.99
                                   0.99
                                              256
  macro avg
weighted avg
                 0.99
                          0.99
                                    0.99
                                              256
```

datos de prueba:

rendimiento en prueba (multiclase):
Accuracy: 0.9727

matriz de confusion:
[[39 1 0 0 0 0]
[0 15 0 1 0 0]
[0 0 19 0 0 0]
[0 1 0 14 0 0]
[0 0 0 0 0 16 0]
[0 0 0 0 0 0 4]]

reporte de clasificacion:

			sificacion:	reporte de clas
support	f1-score	recall	precision	р
40	0.99	0.97	1.00	0
				_
16	0.91	0.94	0.88	1
19	1.00	1.00	1.00	2
15	0.93	0.93	0.93	3
16	1.00	1.00	1.00	4
4	1.00	1.00	1.00	5
110	0.97			accuracy
110	0.97	0.97	0.97	macro avg
110	0.97	0.97	0.97	weighted avg

Lote:

Datos de entrenamiento:

rendimiento en entrenamiento (multiclase):
Accuracy: 0.7812

matriz de confusion:
[[72 0 0 0 0 0]
[0 45 0 0 0 0]
[0 0 53 0 0 0]
[0 32 0 2 0 0]
[0 24 0 0 12 0]
[0 0 0 0 0 16]]

reporte de clasificacion:

precision recall f1-score support

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	72
	1	0.45	1.00	0.62	45
	2	1.00	1.00	1.00	53
	3	1.00	0.06	0.11	34
	4	1.00	0.33	0.50	36
	5	1.00	1.00	1.00	16
accur	racy			0.78	256
macro	avg	0.91	0.73	0.70	256
weighted	avg	0.90	0.78	0.74	256

datos de prueba:

rendimiento en prueba (multiclase): Accuracy: 0.8818

matriz de confusion: [[40 0 0 0 0 0 0] [0 15 0 1 0 0] [0 0 19 0 0 0] [0 1 0 14 0 0] [0 5 0 6 5 0] [0 0 0 0 0 0 4]]

reporte de	clasifi	cacion:			
	prec	ision	recall	f1-score	support
	0	1.00	1.00	1.00	40
	1	0.71	0.94	0.81	16
	2	1.00	1.00	1.00	19
	3	0.67	0.93	0.78	15
	4	1.00	0.31	0.48	16
	5	1.00	1.00	1.00	4
accura	cy			0.88	110
macro a	√g	0.90	0.86	0.84	110
weighted av	∕g	0.91	0.88	0.87	110

Clasificador polinomial multivariable - multiclass - GDX regresor softmax:

Utilizando datos de: dermatology.dat

Mini lote:

Datos de entrenamiento:

rendimiento en entrenamiento (multiclase):

datos de prueba:

rendimiento en prueba (multiclase): Accuracy: 0.7273

matriz de confusion: [[27 0 0 0 0 13] [016 0 0 0 0] [0019000] [015 0 0 0 0] [0 1 0 0 14 1] [000004]]

reporte de clasificacion:

Accuracy: 0.8594

matriz de confusion:

[[71 0 0 1 0 0] [044 0 0 0 1]

[0 0 53 0 0 0]

[032 0 1 0 1]

[0 1 0 0 35 0]

[0000016]]

•	precision	recall	f1-score	support	
0	1.00	0.99	0.99	72	
1	0.57	0.98	0.72	45	
2	1.00	1.00	1.00	53	
3	0.50	0.03	0.06	34	
4	1.00	0.97	0.99	36	
5	0.89	1.00	0.94	16	
accuracy			0.86	256	
macro avg	0.83	0.83	0.78	256	
weighted avg	0.85	0.86	0.82	256	We

reporte de cl	asificacion:			
	precision	recall	f1-score	support
0	1.00	0.68	0.81	40
1	0.50	1.00	0.67	16
2	1.00	1.00	1.00	19
3	0.00	0.00	0.00	15
4	1.00	0.88	0.93	16
5	0.22	1.00	0.36	4
accuracy			0.73	110
macro avg	0.62	0.76	0.63	110
weighted avg	0.76	0.73	0.71	110

Datos de entrenamiento:

datos de prueba:

rendimiento en entrenamiento (multiclase): Accuracy: 0.9844 rendimiento en prueba (multiclase): Accuracy: 0.9636 matriz de confusion: [[72 0 0 0 0 0] matriz de confusion: [0 42 0 3 0 0] [[40 0 0 0 0 0] [0 053 0 0 0] [0 15 0 1 0 0] [0 1 0 33 0 0] [0 0 19 0 0 0] [0000360] [0 3 0 12 0 0] [0000016]] [0000160] [000004]] reporte de clasificacion: precision recall f1-score support reporte de clasificacion: precision recall f1-score support a 1.00 1.00 1.00 72 0.98 0.93 0.95 1 45 0 1.00 1.00 1.00 40 2 1.00 1.00 1.00 53 0.83 0.94 0.88 1 16 3 0.92 0.97 0.94 34 2 1.00 1.00 1.00 19 4 1.00 1.00 1.00 36 3 0.92 0.80 0.86 15 1.00 1.00 1.00 1.00 5 1.00 1.00 16 4 16 1.00 1.00 1.00 4 0.98 256 accuracy 0.96 accuracy 110 0.98 0.98 0.98 256 macro avg 0.96 0.96 0.96 macro avg 110 weighted avg 0.98 0.98 0.98 256 0.97 0.96 0.96 weighted avg 110

Lote:

Dat os de entrenamiento:

datos de prueba:

rendimiento en entrenamiento (multiclase): rendimiento en prueba (multiclase): Accuracy: 0.8242 Accuracy: 0.9636 matriz de confusion: matriz de confusion: [[65 7 0 0 0 0] [[39 0 0 0 0 1] [044 0 0 0 1] [0 15 0 1 0 01 [0 0 53 0 0 0] [0 0 19 0 0 01 [031 0 2 0 1] [0 1 0 13 1 01 [0 5 0 0 31 0] [0 0 0 0 16 0] [0000016]] 0 0 0 0 [0 reporte de clasificacion: reporte de clasificacion: precision recall f1-score support precision recall f1-score support 0 1.00 0.90 0.95 72 0.97 0.99 0 1.00 40 1 0.51 0.98 0.67 45 0.94 0.94 0.94 1 16 2 1.00 1.00 53 1.00 1.00 1.00 2 1.00 19 3 1.00 0.06 0.11 34 3 0.90 0.93 0.87 15 4 1.00 0.86 0.93 36 4 0.94 1.00 0.97 16 5 0.89 1.00 0.94 16 5 0.80 1.00 0.89 4 0.82 256 accuracy accuracy 0.96 110 0.90 0.77 macro avg 0.80 256 macro avg 0.93 0.96 0.95 110 weighted avg 0.91 0.82 0.79 256 weighted avg 0.97 0.96 0.96 110

Clasificador polinomial multivariable – multiclass – AdamD – regresión logística:

Utilizando datos de: dermatology.dat

Mini lote:

Datos de entrenamiento:

Rendimiento en entrenamiento (multiclase - AdamD): Accuracy: 0.9570

Matriz de confusión: [[70 0 0 2 0 0] [0 39 0 5 0 1] [0 0 53 0 0 0] [0 2 0 32 0 0] [0 0 0 0 36 0] [0 0 0 0 1 15]

Reporte de clasificación:

	precision	recall	f1-score	support
0	1.00	0.97	0.99	72
1	0.95	0.87	0.91	45
2	1.00	1.00	1.00	53
3	0.82	0.94	0.88	34
4	0.97	1.00	0.99	36
5	0.94	0.94	0.94	16
accuracy			0.96	256
macro avg	0.95	0.95	0.95	256
weighted avg	0.96	0.96	0.96	256

datos de prueba:

macro avg weighted avg

Rendimiento en prueba (multiclase - AdamD): Accuracy: 0.9636 Matriz de confusión: [[40 0 0 0 0 0] [0140002] [0 0 19 0 0 0] [0 1 0 13 0 1] [0000160] [000004]] Reporte de clasificación: precision recall f1-score support 0 1.00 1.00 1.00 40 1 0.93 0.88 0.90 16 1.00 2 1.00 1.00 19 3 1.00 0.87 0.93 15 4 1.00 1.00 1.00 16 0.57 1.00 0.73 4 0.96 110 accuracy

0.92

0.97

0.96

0.96

0.93

0.97

110

110

Datos de entrenamiento:

datos de prueba

rendimiento en entrenamiento (multiclase - AdamD): Accuracy: 0.9844			amD):	Rendimiento en prueba (multiclase - AdamD): Accuracy: 0.9636	
matriz de confusion: [[71 0 0 1 0 0] [0 44 0 1 0 0] [0 0 52 1 0 0] [0 1 0 33 0 0] [0 0 0 0 36 0] [0 0 0 0 0 16]]				matriz de confusion: [[40 0 0 0 0 0] [0 15 0 1 0 0] [0 0 19 0 0 0] [0 2 0 13 0 0] [0 0 0 1 15 0] [0 0 0 0 0 0 4]]	
reporte de clasificaci	on:			reporte de clasificacion:	
precisio		1-score	support	precision recall f1-score support	
0 1.0 1 0.9 2 1.0 3 0.9 4 1.0	8 0.98 0 0.98 2 0.97 0 1.00	0.99 0.98 0.99 0.94 1.00	72 45 53 34 36	0 1.00 1.00 40 1 0.88 0.94 0.91 16 2 1.00 1.00 1.00 19 3 0.87 0.87 0.87 15 4 1.00 0.94 0.97 16 5 1.00 1.00 1.00 4	
accuracy		0.98 0.98	16 256 256	accuracy 0.96 110 macro avg 0.96 0.96 0.96 110	

Lote:

0.98

0.99

Datos de entrenamiento:

0.99

0.98

0.98

0.98

datos de prueba:

256

256

rendimiento en entrenamiento (multiclase - AdamD): Accuracy: 0.9375

matriz de confusion: [[69 1 0 0 0 2] [0 33 0 11 0 1] [0 0 53 0 0 0] [0 0 0 34 0 0] [0001350] [0000016]]

macro avg

weighted avg

reporte de clasificacion:

	precision	recall	f1-score	support
0	1.00	0.96	0.98	72
1	0.97	0.73	0.84	45
2	1.00	1.00	1.00	53
3	0.74	1.00	0.85	34
4	1.00	0.97	0.99	36
5	0.84	1.00	0.91	16
accuracy			0.94	256
macro avg	0.93	0.94	0.93	256
weighted avg	0.95	0.94	0.94	256

rendimiento en entrenamiento (multiclase - AdamD): Accuracy: 0.9375

0.96

0.96

110

0.96

matriz de confusion: [[69 1 0 0 0 2] [0 33 0 11 0 1] [0 0 53 0 0 0] [0003400] [0001350] [0000016]]

weighted avg

reporte de clasificacion:

•	precision	recall	f1-score	support
0	1.00	0.96	0.98	72
1	0.97	0.73	0.84	45
2	1.00	1.00	1.00	53
3	0.74	1.00	0.85	34
4	1.00	0.97	0.99	36
5	0.84	1.00	0.91	16
accuracy			0.94	256
macro avg	0.93	0.94	0.93	256
weighted avg	0.95	0.94	0.94	256

Clasificador polinomial multivariable – multiclass – AdamD – regresión SoftMax:

Utilizando datos de: dermatology.dat

Mini lotes:

Datos de entrenamiento:

datos de prueba:

```
rendimiento en entrenamiento (multiclase - AdamD):
                                                      rendimiento en prueba (multiclase - AdamD):
Accuracy: 0.9609
                                                      Accuracy: 0.9727
matriz de confusion:
                                                      matriz de confusion:
[[70 1 0 1 0 0]
                                                      [[40 0 0 0 0 0]
[139 0 5 0 0]
                                                       [0160000]
[0 0 52 1 0 0]
                                                       [0 0 18 0 0 1]
[0 1 0 33 0 0]
                                                       [0 2 0 13 0 0]
[0000360]
                                                       [0000160]
[0000016]]
                                                       [000004]]
reporte de clasificacion:
                                                      reporte de clasificacion:
           precision
                      recall f1-score
                                     support
                                                                  precision
                                                                             recall f1-score support
                0.99
                        0.97
                                 0.98
                                           72
                                                               0
                                                                      1.00
                                                                              1.00
                                                                                       1.00
                                                                                                  40
         1
               0.95 0.87
                                0.91
                                           45
                                                                                       0.94
                                                               1
                                                                      0.89
                                                                               1.00
                                                                                                  16
         2
               1.00
                        0.98
                                0.99
                                           53
                                                                               0.95
                                                                                       0.97
                                                                                                  19
                                                                      1.00
               0.82 0.97
         3
                                0.89
                                           34
                                                                               0.87
                                                                                       0.93
                                                                                                  15
                                                               3
                                                                      1.00
               1.00 1.00
         4
                                1.00
                                           36
                                                                      1.00
                                                                               1.00
                                                                                       1.00
                                                                                                  16
               1.00
                        1.00
                                1.00
                                           16
                                                                      0.80
                                                                               1.00
                                                                                       0.89
                                                                                                  4
                                 0.96
                                          256
   accuracy
                                                         accuracy
                                                                                       0.97
                                                                                                 110
               0.96
                        0.97
                                 0.96
                                          256
  macro avg
                                                                      0.95
                                                                               0.97
                                                                                       0.96
                                                                                                 110
                                                         macro avg
               0.96
                        0.96
                                          256
weighted avg
                                 0.96
                                                      weighted avg
                                                                      0.98
                                                                               0.97
                                                                                       0.97
                                                                                                 110
```

Datos de entrenamiento:

rendimiento en entrenamiento (multiclase - AdamD): Accuracy: 0.9805

reporte de clasificacion:

[0000016]]

	precision	recall	f1-score	support
0	1.00	0.99	0.99	72
1	0.92	0.98	0.95	45
2	1.00	1.00	1.00	53
3	0.97	0.91	0.94	34
4	1.00	1.00	1.00	36
5	1.00	1.00	1.00	16
accuracy			0.98	256
macro avg	0.98	0.98	0.98	256
weighted avg	0.98	0.98	0.98	256

datos de prueba:

rendimiento en prueba (multiclase - AdamD): Accuracy: 0.9636

matriz de confusion:
[[40 0 0 0 0 0]
[0 15 0 1 0 0]
[0 0 19 0 0 0]
[0 3 0 12 0 0]
[0 0 0 0 16 0]
[0 0 0 0 0 4]]

reporte de clasificacion:

reporte de	CTasi	ritcacton:			
	pr	recision	recall	f1-score	support
	0	1.00	1.00	1.00	40
	1	0.83	0.94	0.88	16
	2	1.00	1.00	1.00	19
	3	0.92	0.80	0.86	15
	4	1.00	1.00	1.00	16
	5	1.00	1.00	1.00	4
accurac	y			0.96	110
macro av	/g	0.96	0.96	0.96	110
weighted av	/g	0.97	0.96	0.96	110

Lote:

Datos de entrenamientos:

rendimiento en entrenamiento (multiclase - AdamD): Accuracy: 0.9023

matriz de confusion: [[68 3 0 0 0 1] [0 41 0 3 0 1] [0 0 53 0 0 0] [0 2 0 32 0 0] [0 0 0 0 35 1] [0 0 0 5 9 2]]

reporte de clasificacion:

precision

0	1.00	0.94	0.97	72
1	0.89	0.91	0.90	45
2	1.00	1.00	1.00	53
3	0.80	0.94	0.86	34
4	0.80	0.97	0.88	36
5	0.40	0.12	0.19	16
accuracy			0.90	256
macro avg	0.81	0.82	0.80	256
weighted avg	0.89	0.90	0.89	256

recall f1-score support

datos de entrenamientos

rendimiento en prueba (multiclase - AdamD): Accuracy: 0.9273

matriz de confusion: [[39 0 0 0 0 1] [0 15 0 1 0 0] [0 0 19 0 0 0] [0 1 0 13 0 1] [0 0 0 0 16 0] [0 0 0 1 3 0]

reporte de clasificacion:

p					
		precision	recall	f1-score	support
	0	1.00	0.97	0.99	40
	1	0.94	0.94	0.94	16
	2	1.00	1.00	1.00	19
	3	0.87	0.87	0.87	15
	4	0.84	1.00	0.91	16
	5	0.00	0.00	0.00	4
accur	acy			0.93	110
macro	avg	0.77	0.80	0.78	110
weighted	avg	0.91	0.93	0.92	110