Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	20

[5352]-541

S.E. (Electrical Engg./Instru. & Control) EXAMINATION, 2018 ENGINEERING MATHEMATICS—III

(2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- Figures to the right indicate full marks.
 - Use of electronic pocket calculator is allowed.
 - Net diagrams must be drawn wherever necessary.
 - Assume suitable data, if necessary.

[8]

Solve any
$$two$$
:
$$(1) \quad \frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$$

(2) $(D^2 + 9)y = \frac{1}{1 + \sin 3x}$ by variation of parameters method

(3)
$$(4x + 1)^2 \frac{d^2y}{dx^2} + 2(4x + 1)\frac{dy}{dx} + y = 2x + 1$$

Solve by Laplace Transform method
$$\frac{d^2y}{dt^2} + 9y(t) = 18t$$
with $y(0) = 0$, $y(\pi/2) = 0$.

(*b*)

[4]

$$\frac{d^2y}{dt^2} + 9y(t) = 18t$$

- An inductor of 0.5 henry is connected in series with resistor 2. (a) of 6 ohms. A capacitor of 0.02 farad and generator having alternative voltage given by 24 sin 10t (t > 0) with a switch K. Forming a differential equation find the current and charge at any time t if charge is zero when switch is closed at [4]
 - Solve any one: (*b*) [4](1) $L\left[t\int_{0}^{t} e^{-4t} \sin 3t \ dt\right]$ (2) $L^{-1}\left[\frac{2s+1}{(s^{2}+s+1)^{2}}\right]$
 - Find Laplace transform of $(1+2t-3t^2+4t^3) \cup (t-2)$. (*c*)
- Find Fourier sine transform of $f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 x & 1 \le x \le 2 \\ 0 & x > 2 \end{cases}$ 3. (a)
 - Attempt any one (*b*)
 - Find z-transform of $f(k) = (k + 1) (k + 2)2^k k \ge 0$. (i)
 - (ii)

Show that
$$z^{-1} \left\{ \frac{1}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{3}\right)} \right\} = \{x_k\} \text{ for } | z| > \frac{1}{2}$$
 where $x_k = 6\left[\left(\frac{1}{2}\right)^{k-1} - \left(\frac{1}{3}\right)^{k-1}\right], \ k \ge 1.$ I directional derivative of $\phi = xy^2 + yz^3$ at $(2, -1, 1)$

Find directional derivative of $\phi = xy^2 + yz^3$ at (2, -1, 1) along (c)the line 2(x - 2) = (y + 1) = (z - 1). [4]

[4]

$$(i) \qquad \overline{a}.\nabla \left[\overline{b}.\nabla \left(\frac{1}{r}\right)\right] = \frac{3(\overline{a}.\overline{r})(\overline{b}.\overline{r})}{r^5} - \frac{(\overline{a}.\overline{b})}{r^3}$$

$$(ii) \quad \nabla 4e^r = e^r + \frac{4}{r}e^r$$

Show that $\overline{F} = (6xy + z^3)\overline{i} + (3x^2 - z)\overline{j} + (3xz^2 - y)\overline{k}$ is irrotational (*b*) and find ϕ such that $\overline{F} = \nabla \phi$. [4]

(c) Solve
$$y_k - \frac{5}{6}y_{k-1} + \frac{1}{6}y_{k-2} = \left(\frac{1}{2}\right)^k \quad k \ge 0.$$
 [4]

Attempt any two: 5.

- Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ for $\overline{F} = (2x + y)\overline{i} + (3y x)\overline{j}$ and c is the straight (a) line joining (0, 0) and (3, 2). [6]
- (*b*) Apply Stokes' theorem to evaluate

$$\int_{c} 4y \, dx + 2z \, dy + 6y \, dz$$

where c is the curve of intersection of $x^2 + y^2 + z^2 = 6z$ and z = x + 3. [7]

Evaluate $\iint_{S} \overline{r} \cdot \hat{n} ds$ over the surface of a sphere of radius 1 with centre at the origin. [6]

Or

6. Attempt any two:

Using Green's theorem evaluate $\int_c \overline{F} \cdot d\overline{r}$ where $\overline{F} = (2x - \cos y)\overline{i} + x(4 + \sin y)\overline{j}$ (a)

$$\overline{F} = (2x - \cos y)\overline{i} + x(4 + \sin y)\overline{j}$$

where c is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0. [6]

- Evaluate $\iint_{S} (\nabla \times \overline{F}) \cdot d\overline{s}$ for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ where s is the surface (*b*) of paraboloid z = 1, $x^2 - y^2$ above the XOY plane. [7]
- Use Gauss divergence theorem to evaluate $\iint_s \overline{F}.d\overline{s}$ over the (c)cylindrical region bounded by $x^2 + y^2 = 4$, z = 0, $z = \alpha$, where $\overline{F} = x\overline{i} + y\overline{j} + z^2\overline{k}$. [6]
- If $V = \sinh x \cos y \text{ find } u \text{ such that } u + iv \text{ is analytic}$ 7. (a) function. [4]
 - Evaluate $\oint_c \frac{1+z}{z(z-2)} dz$ where c is the circle |z| = 1. [4] (*b*)
 - Find the bilinear transformation which maps points 1, i, (*c*) -1 of z-plane onto i, o, -i of w-plane. [5]

- Find 'a' such that the function $f(z) = r^2 \cos 2\theta + ir^2 \sin \theta$ 8. $(a\theta)$ is an analytic function.
 - Evaluate $\oint_c \frac{15z+9}{z(z+3)} dz$ where c is the circle |z-11| =(*b*)
 - Show that under the transformation $w = \frac{i-z}{i+z}$, x-axis in z-plane is mapped onto $\frac{z}{i}$ (c)z-plane is mapped onto the circle |w| = D

[5352]-541