UNIVERSITATEA DIN BUCUREȘTI

Facultatea de Matematică și Informatică

Disertație masterală

Étale stuff

Autor: Andrei Sipoș

Profesor coordonator: Lect. dr. Victor Vuletescu

Cuprins

In	ntroducere				
	Situl étale 1.1 Morfisme étale				
2	P. De la étale la ℓ-adic				
3	Numărarea punctelor	5			

iv CUPRINS

Introducere

Acest text își propune să:

- enunțe cadrul de desfășurare al coomologiei étale
- prezinte versiuni étale ale unor rezultate fundamentale în topologie, precum dualitatea Poincaré sau formulele de tip Lefschetz
- aplice aceste rezultate la studiul funcțiilor zeta asociate varietăților peste corpuri finite

vi INTRODUCERE

Capitolul 1

Situl étale

Pîs pîs pîs

1.1 Morfisme étale

Definiția 1.1. Un morfism de inele $A \to B$ se numește **plat** dacă functorul $B \otimes_A \cdot : A\text{-Mod} \to B\text{-Mod}$ este exact.

Definiția 1.2. Un morfism de varietăți (sau scheme) $\phi: Y \to X$ este **plat** dacă morfismele locale $\mathcal{O}_{X, \varphi(y)} \to \mathcal{O}_{Y,y}$ sunt plate pentru orice y din Y.

Definiția 1.3. Un morfism local de inele locale $f: A \to B$ se numește **neramificat** dacă $A/\mathfrak{m}_A \hookrightarrow B/f(\mathfrak{m}_A)B$ este o extindere finită și separabilă.

Definiția 1.4. Un morfism de varietăți (sau scheme) $\phi: Y \to X$ este **neramificat** dacă este de tip finit și morfismele locale $\mathcal{O}_{X,\phi(y)} \to \mathcal{O}_{Y,y}$ sunt neramificate pentru orice y din Y.

Definiția 1.5. Un morfism (regulat) între două varietăți este **étale** dacă este plat și neramificat.

Morfismele étale au următoarele proprietăți:

Propoziția 1.6. 1. Orice imersie deschisă este étală.

- 2. Compunerea a două morfisme étale este étală.
- 3. Un morfism care este schimbare de bază a unui morfism étale este étale.
- 4. Dacă $\phi \circ \psi$ și ϕ sunt étale, atunci și ψ este étale.

De acum încolo vom lucra cu o varietate X peste un corp algebric închis k.

O vecinătate étală a unui punct x din X este o aplicație étală $\phi: U \to X$ împreună cu un punct $u \in U$ cu $\phi(u) = x$. Un morfism de vecinătăți étale $(V, v) \to (U, u)$ este o aplicație regulată de la V la U care duce pe v în u (dacă există, este unică, din anumite proprietăți ale

morfismelor étale). Am obținut astfel o categorie index și putem defini **inelul local în** x **pentru topologia étală** ca fiind:

$$\mathcal{O}_{X,\bar{x}} = \varinjlim_{(U,u)} \Gamma(U,\mathcal{O}_U)$$

Dat fiind că orice vecinătate Zariski, fiind imersie deschisă, este étală, din proprietatea limitei inductive avem un morfism natural

$$\mathcal{O}_{X,x} o \mathcal{O}_{X,\bar{x}}$$

1.2

Capitolul 2

De la étale la ℓ-adic

Capitolul 3

Numărarea punctelor

Problema pe care urmează să o formulăm a pornit de la cea a numărării punctelor de pe o curbă eliptică. Ne este cunoscută din studiul acelor curbe inegalitatea Hasse-Weil, care spune că pentru orice curbă eliptică X definită peste un corp finit \mathbb{F}_q , dacă notăm $N_{\mathfrak{m}}(X) = \#X(\mathbb{F}_{q^{\mathfrak{m}}})$, are loc relația:

$$|N_{\mathfrak{m}}(X) - (\mathfrak{q}^{\mathfrak{m}} + 1)| \le 2\sqrt{\mathfrak{q}^{\mathfrak{m}}}$$

Mai precis, există două numere algebrice α_1, α_2 de modul \sqrt{q} astfel încât pentru orice m:

$$N_{m}(X) = 1 - \alpha_{1}^{m} - \alpha_{2}^{m} + q^{m}$$

André Weil a propus următoarea generalizare:

Teorema 3.1. (Conjecturile Weil) Fie X o varietate proiectivă netedă definită peste \mathbb{F}_q de dimensiune d. Atunci:

1. există 2d numere naturale $b_0, ..., b_{2d}$ și o familie de numere complexe $\{a_{j,u}\}_{\substack{j \in \overline{0,2d} \\ s \in \overline{1,b_j}}}$ astfel încât pentru orice m am:

$$N_{m}(X) = \sum_{j=0}^{2d} (-1)^{j} (\sum_{u=1}^{b_{j}} \alpha_{j,u}^{m})$$

Mai mult, $b_0=b_{2d}=1, \alpha_{0,1}=1, \alpha_{2d,1}=q^d.$ Numărul $\sum\limits_j (-1)^j b_j$ va fi notat cu $\chi.$

- 2. pentru orice j, b_j este egal cu b_{2d-j} , iar $(\frac{q^d}{\alpha_{2d-j,1}},...,\frac{q^d}{\alpha_{2d-j,b_j}})$ e o permutare a enumerării $(\alpha_{j,1},...,\alpha_{j,b_j})$.
- 3. pentru orice j, u, avem că $\alpha_{j,u}$ e număr algebric de modul $q^{\frac{j}{2}}$.

Se observă că dacă X este curbă eliptică se reconstituie relația de mai devreme, cu $b_1 = 2 = \dim H^1(\mathbb{C}/\Lambda, \mathbb{Q})$ (pentru Λ o latice în planul complex).

Un mod mai pragmatic de a exprima conjecturile Weil este reprezentat de instrumentul funcțiilor generatoare.

Ne bazăm pe identitatea formală:

$$\log(\frac{1}{1-x}) = \sum_{m=1}^{\infty} \frac{x^m}{m}$$

scrisă eventual

$$\frac{1}{1-x} = \exp(\sum_{m=1}^{\infty} \frac{x^m}{m})$$

ce se poate verifica via expansiune în serie Taylor în jurul lui zero.

Definind $Z_X(t) = exp(\sum_{m=1}^{\infty} N_m \frac{t^m}{m})$ (fixând pe X), obținem din punctul 1 al conjecturilor:

$$\begin{split} Z_X(t) &= exp(\sum_{m=1}^{\infty} \sum_{j=0}^{2d} (-1)^j \sum_{u=1}^{b_j} \alpha_{j,u}^m \frac{t^m}{m}) \\ &= \prod_{j=0}^{2d} (\prod_{u=1}^{b_j} exp(\sum_{m=1}^{\infty} \frac{(a_{j,u}t)^m}{m}))^{(-1)^j} \\ &= \prod_{j=0}^{2d} (\frac{1}{\prod_{u=1}^{b_j} (1 - \alpha_{j,u}t)})^{(-1)^j} \\ &= \prod_{j=0}^{2d} P_j(t)^{(-1)^{j+1}} \end{split}$$

unde am notat
$$P_j(t) = \prod_{u=1}^{b_j} (1-\alpha_{j,u}t)$$
 (și am $P_0(t) = 1-t$, $P_{2d}(t) = 1-q^dt$).

Vom deriva acum din punctul 2 o relație pe care o va satisface $Z_X(t)$. Aplicăm relația de permutare între enumerări și obținem:

$$\begin{split} P_{2d-j}(t) &= \prod_{u} (1 - \alpha_{2d-j,u} t) = \prod_{u} (1 - \frac{q^d}{\alpha_{j,u}} t) \\ &= (\prod_{u} \alpha_{j,u})^{-1} \prod_{u} (\alpha_{j,u} - q^d t) \\ &= (\prod_{u} \alpha_{j,u})^{-1} (-1)^{b_j} (q^d t)^{b_j} \prod_{u} (1 - \frac{\alpha_{j,u}}{q^d t}) \\ &= (\prod_{u} \alpha_{j,u})^{-1} (-1)^{b_j} (q^d t)^{b_j} P_j (\frac{1}{q^d t}) \end{split}$$

Folosim acum atât simetria b_i-urilor cât și permutarea enumerărilor:

$$\begin{split} P_j(t)P_{2d-j}(t) &= (q^dt)^{2b_j}(q^d)^{-b_j}P_j(\frac{1}{q^dt})P_{2d-j}(\frac{1}{q^dt}) \\ &= (q^d)^{\frac{b_j+b_{2d-j}}{2}}t^{b_j+b_{2d-j}}P_j(\frac{1}{q^dt})P_{2d-j}(\frac{1}{q^dt}) \end{split}$$

Însă $(\prod\limits_s \alpha_{d,u})^2 = (q^d)^{b_d}$, deci $\prod\limits_s \alpha_{d,u} = \pm (q^d)^{\frac{b_d}{2}}$, și pot scoate relația (pentru indicele d):

$$P_{d}(t) = \pm (-1)^{b_{d}} (q^{d}t)^{b_{d}} (q^{d})^{\frac{b_{d}}{2}} P_{d}(\frac{1}{q^{d}t})$$

Şi obţin astfel formula pentru funcţia Z_X :

$$\begin{split} Z_X(t) &= \prod_{j=0}^{2d} P_j(t)^{(-1)^{j+1}} \\ &= \pm \prod_{j=0}^{2d} P_j(\frac{1}{q^d t})^{(-1)^{j+1}} (q^d)^{-\frac{\sum\limits_j (-1)^{j+1} b_j}{2}} t^{-\sum\limits_j (-1)^{j+1} b_j} \\ &= \pm q^{\frac{d_X}{2}} t^X Z_X(\frac{1}{q^d t}) \end{split}$$

numită **ecuația funcțională** a lui Z_X .

O altă reformulare ne este dată de următoarea substituție:

$$\zeta_{\mathbf{X}}(\mathbf{s}) = \mathsf{Z}_{\mathbf{X}}(\mathbf{q}^{-\mathbf{s}})$$

Notând pentru un punct închis $x \in X$ cu $\kappa(x)$ corpul rezidual al său, cu deg(x) gradul extinderii $\kappa(x)$: \mathbb{F}_q și cu

$$N_{\mathfrak{m}}(x) = \left\{ \begin{array}{ll} deg(x) & dacă \ deg(x) \mid \mathfrak{m} \\ 0 & altfel \end{array} \right.$$

avem din cele cunoscute de la teoria schemelor:

$$N_{\mathfrak{m}} = \sum_{x} N_{\mathfrak{m}}(x)$$

Obţinem rescrierile:

$$\begin{split} Z_X(t) &= exp(\sum_{m\geq 1} N_m \frac{t^m}{m}) = exp(\sum_{m\geq 1} \sum_x N_m(x) \frac{t^m}{m}) \\ &= exp(\sum_x \sum_{\substack{m\geq 1 \\ \deg(x) \mid m}} N_m(x) \frac{t^m}{m}) \\ &= exp(\sum_x \sum_{n\geq 1} deg(x) \frac{t^{n \cdot deg(x)}}{n \cdot deg(x)}) \\ &= exp(\sum_x \sum_{n\geq 1} \frac{(t^{deg(x)})^n}{n}) = exp(\sum_x \log \frac{1}{1 - t^{deg(x)}}) \\ &= exp \log \prod_x \frac{1}{1 - t^{deg(x)}} = \prod_x \frac{1}{1 - t^{deg(x)}} \end{split}$$

și deci

$$\zeta_X(s) = \prod_x \frac{1}{1 - (q^{\deg(x)})^{-s}} = \prod_x \frac{1}{1 - (\#\kappa(x))^{-s}}$$

Ultima formulă are sens pentru o schemă oarecare, nu neapărat peste un corp finit. De pildă, înlocuind X cu Spec \mathbb{Z} , apare:

$$\zeta_{\operatorname{Spec} \mathbb{Z}}(s) = \prod_{\mathfrak{p} \in \operatorname{Max} \mathbb{Z}} \frac{1}{1 - (\#(\frac{\mathbb{Z}}{\mathfrak{p}}))^{-s}} = \prod_{\mathfrak{p} \text{ prim}} \frac{1}{1 - \mathfrak{p}^{-s}}$$

binecunoscuta funcție zeta a lui Riemann (punctele închise din Spec \mathbb{Z} sunt precis idealele maximale ale lui \mathbb{Z}), ceea ce ne justifică notația.

Atenție, însă: funcția Z_X nu are sens decât pentru scheme definite pentru un corp finit!

Este clar că $s \in \mathbb{C}$ este zerou, respectiv pol, pentru ζ_X dacă și numai dacă q^{-s} va avea aceeași calitate pentru Z_X (și orice $t \in \mathbb{C}^*$ se poate scrie ca q^{-s} , e drept, într-o infinitate de moduri). Iau un astfel de s. Din exprimarea rațională a lui Z_X rezultă că $q^{-s} = \frac{1}{\alpha_{\mathfrak{j},\mathfrak{u}}}$ pentru anumite \mathfrak{j} și \mathfrak{u} , iar ultima afirmație din conjecturi implică $|q^{-s}| = q^{-\frac{1}{2}}$. Scriu $s = \mathfrak{a} + \mathfrak{bi}$, cu $\mathfrak{a},\mathfrak{b} \in \mathbb{R}$, și am $q^{-s} = e^{-s \ln q} = e^{-a \ln q - \mathfrak{bi} \ln q}$. Deci $q^{-\frac{1}{2}} = |e^{-a \ln q - \mathfrak{bi} \ln q}| = q^{-a}$ și $\frac{\mathfrak{j}}{2} = \mathfrak{a} = \mathbb{R}e$ s.

Invers, acum, dacă fac presupunerea că orice s zerou sau pol al lui ζ_X are proprietatea că $\mathbb{R}e$ s = $\frac{j}{2}$ (cu j \in $\overline{0,2d}$), pot face următorul raționament. Iau t \in \mathbb{C}^* zerou sau pol pentru Z_X și fie s cu t = q^{-s} . Atunci s este zerou/pol pentru ζ_X și $\mathbb{R}e$ s = $\frac{j}{2}$. Ca înainte, avem $|t| = |q^{-s}| = q^{-\mathbb{R}e}$ s = $q^{-\frac{j}{2}}$. Deci zerourile și polii lui Z_X au modulul $q^{-\frac{j}{2}}$.

Rezultă că acea condiție 3 este echivalentă cu faptul că funcția zeta a varietății are zerourile și polii pe liniile $\mathbb{R}e$ $s=\frac{1}{2}$, ceea ce justifică numele dat condiției de **ipoteză Riemann**.

Mai mult decât atât, această separare după modul a zerourilor și polilor lui Z_X ne permitm să extragem P_j -urile din Z_X și să obținem în mod reciproc din ecuația funcțională condiția 2 din conjecturile Weil.

Toate aceste manipulări de formule ne învață să apreciem modul cum coomologia étală conduce în mod natural măcar la expresia rațională și la ecuația funcțională a funcției Z_X .

Să vedem cum. Mai întâi, vom obține o altă descriere a lui $X(\mathbb{F}_{q^m})$ cu ajutorul aplicației Frobenius.

Orice \mathbb{F}_q -algebră A admite endomorfismul Frobenius $a \mapsto a^q$, ce se dualizează la o aplicație Spec $A \to S$ pec A. Această familie de aplicații se prelungește unic la o întreagă transformare naturală $\{F_X : X \to X\}_{X \in \mathbb{F}_q - Sch}$. Din naturalitate, rezultă că acționează pe varietăți afine sau proiective în modul firesc, prin ridicarea la puterea q a coordonatelor. În particular F_X are gradul $q^{\dim X}$, după cum se verifică ușor pe spațiile afine.

Rezultă deci $X(\mathbb{F}_{q^m}) = Fix(F_X^m)$.

Lema 3.2.
$$\Gamma_{F^m} \cdot \Delta_X = \sum_{P \in Fix(F_X^m)} P$$
 (în sensul că toate apar cu multiplicitate 1).

Demonstrație. E suficient să arătăm pentru $\mathfrak{m}=1$ ($F^{\mathfrak{m}}$ este Frobeniusul lui $\mathbb{F}_{\mathfrak{q}^{\mathfrak{m}}}$). Notez $F=F_X$.

Fie $P \in Fix(F)$. Înlocuiesc X cu o vecinătate afină a lui P, să zicem U = Spec A, cu $A = \mathbb{F}_q[t_1,...,t_n] = \frac{\mathbb{F}_q[T_1,...,T_n]}{\mathfrak{a}}$.

$$\text{Atunci pentru orice i am } t_i \circ F = t_i^q \text{ $\rm yi } (dt_i)_P \circ (dF)_P = (dt_i^q)_P = qt_i^{q-1}(dt_i)_P = 0.$$

Ca urmare diferențiala lui F în P este zero, ca urmare graficul lui Frobenius nu este tangent la diagonală în (P, P), iar numărul de intersecție (multiplicitatea) este 1.

Aplicând formula de punct fix a lui Lefschetz, rezultă (pentru $(\ell, q) = 1$):

$$N_{\mathfrak{m}} = \sum_{\mathfrak{r}} (-1)^{\mathfrak{r}} Tr(F^{\mathfrak{m}}|H^{\mathfrak{r}}(X,\mathbb{Q}_{\ell}))$$

Putem folosi formula pentru a prelucra funcția Z a lui X:

$$\begin{split} Z_X(t) &= exp(\sum_{m=1}^{\infty} N_m \frac{t^m}{m}) \\ &= exp(\sum_{m=1}^{\infty} (\sum_{r=0}^{2d} (-1)^r Tr(F^m | H^r(X, \mathbb{Q}_\ell)) \frac{t^m}{m}) \\ &= \prod_{r=0}^{2d} exp(\sum_{m=1}^{\infty} Tr(F^m | H^r(X, \mathbb{Q}_\ell) \frac{t^m}{m})^{(-1)^r} \end{split}$$

Scriem acum fiecare $F|H^r(X,\mathbb{Q}_\ell)$ ca matrice pătratică superior triunghiulară (eventual peste o extindere a lui \mathbb{F}_q) cu numărul de linii egal cu $b_r = \dim H^r(X,\mathbb{Q}_\ell)$. Se observă atunci că dacă elementele de pe diagonală (valorile proprii) sunt $\alpha_{r,1},...,\alpha_{r,b_r}$, atunci $Tr(F^m|H^r(X,\mathbb{Q}_\ell))$ va fi egal cu $\sum_{i=1}^{b_r} \alpha_{r,i}^m$ și deci pot aplica exact același raționament ca mai devreme pentru a exprima rațional pe Z_X .

Vom avea $Z_X \in \mathbb{Q}_\ell(t) \cap \mathbb{Q}[[t]] \subseteq \mathbb{Q}(t)$, însă aceasta nu ne garantează că fiecare P_j este în $\mathbb{Q}[t]$ (că este "independent de ℓ ") - aceasta se poate face doar presupunând ipoteza lui Riemann, care ne permite, după cum am spus și mai devreme, să separăm P_j -urile după modulul rădăcinilor.

Altă consecință a raționamentului precedent a fost că am identificat $\alpha_{j,u}$ -urile ca fiind valorile proprii ale operatorilor induși de Frobenius pe spațiile de coomologie.