Chapitre 2: Circuit électrique simple

I- Qui ce qu'un circuit électrique simple?

- 1 Pile
- 2 Interuppteur
- 3 Lampe
- 4 Fil de connexion

Conclusion

- Un circuit électrique est composé:
 - → D'un **générateur** (pile)
 - De récepteur aussi appelés dipôles (lampe, moteur,...)
 - → De fils de connexions
- Un composant électrique constitué de deux bornes est appelé dipôle.

II. SYMBOLE NORMALISÉ D'UN DIPÔLE

1- Indique le nom de chaque appareil électrique ci-dessous.

	GÉNÉRATEURS	S RÉCEPTI	RÉCEPTEURS					
DIPÔLE	PO Namery & Calmana Rocket House any Size 1812 489				NA PORT			
NOM DU DIPÔLE	Pile Générat	eur Lampe	Moteur électrique	Interrupteu Ouvert	rInterrupteui fermé	Fil de connexion		
SYMBOLE NORMALISÉ	++-+-	-&-	<u>_M</u> _	-/-				

II. SYMBOLE NORMALISÉ D'UN DIPÔLE

2- SCHÉMA NORMALISÉ D'UN CIRCUIT ÉLECTRIQUE

Comment procéder ?

On dessine d'abord un rectangle au crayon ; puis, on efface les endroits où seront placés les éléments.

On dessine alors les symboles des éléments du circuit.

II. SYMBOLE NORMALISÉ D'UN DIPÔLE

2- SCHÉMA NORMALISÉ D'UN CIRCUIT ÉLECTRIQUE

Application

Schématise les circuits.

Remarque

- On représente toujours les fils de connexion par des traits horizontaux ou verticaux.
- Les symboles des dipôles ne se placent jamais dans un angle du schéma, on préférera les centrer sur les côtés du rectangle!

Application

 Pour chaque schéma normalisé ci-dessous, entoure la partie du schéma ne respectant pas les normes.

III. Les conducteurs et les isolants

Pour chaque "objet testé" du tableau suivant, réalise le montage ci-dessus en plaçant l'objet testé entre les points A et B du montage puis complète le tableau.

Objet testé	Ciseaux	Mine de crayon	Bâton	Fil de connexi on	L'eau salée	Règle	Aucun
La lampe s'allume-t-elle ?	Oui	Oui	Non	Oui	Oui	Non	Non
Quel est le matériau testé ?	Le Fer	Le graphite	Le bois	Le cuivre	L'eau	Plastique	L'air
Le matériau est-il conducteur ou isolant ?	Conducteu	r Conducteu	r Isolant	Conducteu	Conducteu r	r Isolant	Isolant

III. Les conducteurs et les isolants

Conclusion

- Les **conducteurs** électriques ont la propriété de laisser passer le courant électrique.
- Les isolants électriques ont la propriété de ne pas laisser passer le courant électrique.