

refnx - reproducible neutron + X-ray reflectometry analysis

Andrew Nelson

In a nutshell

- Python based / Open-source / Fast / Well tested
- Co-refinement of Neutron, X-ray (and ellipsometry) data
- Scriptable/Jupyter notebooks reproducible research
- Standalone GUI
- Bayesian analysis framework posterior distribution for parameters, model selection, include prior knowledge in modelling system {nested sampling, MCMC}
- Different fitting algorithms differential evolution, Levenberg-Marquardt, etc.
- Batch Fitting
- Parallelisable on cluster
- MixedReflectModel model patchy surfaces
- Component defines subset of SLD profile, uses physically relevant parameters
- Interface different types of roughness between Component
- Various types of resolution smearing
- Simulate NR datasets

Sources of Information

- Source code https://github.com/refnx/refnx
 - Issues, Contribute your changes
- Documentation https://refnx.readthedocs.io/en/latest/
 - Getting Started, FAQs, Examples, API reference, etc
- Video tutorials https://www.youtube.com/channel/UCvhOxwZsdFMGqSzasE0ZSOw
- User contributed models/Component https://github.com/refnx/refnx-models
- ASK

New features/highlights

- Energy dispersive Scatterers (ellipsometry/RSoXRR?)
- Components
 - FreeformVFP
 - MaxEnt
 - LipidLeaflet
- Detailed resolution smearing kernel
- Simulate datasets from ToF reflectometers
- MixedReflectModel (incoherent averaging)
- Read ORSO files

MCMC sampling – emcee/ptemcee/dynesty/pymc

$$p(\theta \mid D, I) = \frac{p(\theta \mid I)p(D \mid \theta, I)}{p(D \mid I)}$$

Dynesty - model selection

$$p(\theta \mid D, I) = \frac{p(\theta \mid I)p(D \mid \theta, I)}{p(D \mid I)}$$

https://refnx.readthedocs.io/en/latest/model_selection.html

Detailed resolution kernel

Nelson and Dewhurst, J. Appl. Cryst, 47, 2014

Complex constraints

- Priors can be any statistical distribution
- Functional relationships $x_0 = \sin(x_1)$ or $x_0 = f(x_1)$
- Inequality constraints $|b| < f(x_{0...n}) < ub$

$$\theta_{n,\text{cr}} = \begin{cases} a \frac{0.5 \tanh[-0.5(t+b)] + 0.5}{0.5 \tanh(-0.5b) + 0.5}, & \theta_{n,\text{cr}} \ge c, \\ (c-f) \exp[-d(t-t_{\text{c}})] + f, & \theta_{n,\text{cr}} < c, \end{cases}$$

Maximum entropy

$$S = \sum_{i} \rho_{j} - m_{j} - \rho_{j} \log \left(\frac{\rho_{j}}{m_{j}} \right)$$

$$p = \frac{S}{\alpha}$$

Add to logposterior

refellips

x (mm)

X-ray

Neutron

250

300

Ellipsometry

3.5

1.0

Optimisations

- Calculation kernels
 - C/Python/Cython/numba/Parratt/JAX
 - JAX allows automatic differentiation
- Internal overhead
- HPC sampling speed

