1

1 定义

1. 二元关系

对于非空集合 A, 映射 $f: A \times A \rightarrow A$ 称为 A 上的一个二元关系。

2. 半群、含幺半群、群、可换群 设 *G* 为一非空集合,·为 *G* 上的一个二元关系。有如下性质:

S1: $\forall a, b, c \in G, (ab)c = a(bc)$ (结合律)

S2: $\exists e \in G$, s.t. $\forall a \in G$, ae = ea = a (单位元)

S3: $\forall a \in G, \exists a^{-1} \in G, \text{s.t.} aa^{-1} = a^{-1}a = e$ (逆元)

S4: $\forall a, b \in G, ab = ba$ (交換律)

对满足性质 S1 的集合 G, 称 (G, \cdot) 为半群

对满足性质 S1 和 S2 的集合 G,称 (G,\cdot) 为含幺半群,e 称为单位元 对满足性质 S1,S2 和 S3 的集合 G,称 (G,\cdot) 为群, a^{-1} 称为 a 的逆元 对满足性质 S1,S2,S3 和 S4 的集合 G,称 (G,\cdot) 为可换群。

3. 幂

对于群 (G,\cdot) 中的元素 a,它的幂的定义为

$$a^n = \underbrace{a \cdot a}_{n \uparrow}$$

其中 n 为正整数。并规定 $a^0 = e$.

4. 群的阶

群 G 的元素的个数称为群 G 的阶,记作 |G|

5. 有限群与无限群

如果群 G 是有限集,则称 G 为有限群。 如果群 G 是无限集,则称 G 为无限群。

6. 群表

一个群的乘法表称为一个群表。

7. 左右单位元

设 (G,\cdot) 是一个半群

若 $\exists e_L \in G$, s.t. $\forall a \in G$, $e_L a = a$, 则称 e_L 为左单位元 若 $\exists e_R \in G$, s.t. $\forall a \in G$, $ae_R = a$, 则称 e_L 为右单位元。

8. 左右逆元

设 (G, \cdot) 是一个含幺半群 若 $\forall a \in G, \exists a_L^{-1}, \text{s.t.} a^{-1} a = e, 则称 <math>a_L^{-1}$ 为 a 的左逆元

若 $\forall a \in G, \exists a_L$, s.t. a = e, 则称 a_L 为 a 的左逐允 若 $\forall a \in G, \exists a_R^{-1}, \text{ s.t. } aa^{-1} = e,$ 则称 a_R^{-1} 为 a 的右逆元。

9. 循环子群

设G是群, $a \in G$,令

$$H = \{a^k | k \in \mathbb{Z}\}$$

则 H 称为由 a 生成的循环子群,记作 < a >, a 称为它的生成元。

10. 生成群

设 S 是群 G 的一个非空子集,包含 S 的最小子群称为由 S 生成的子群,记作 < S > , S 称为它生成元集。

如果 $G = \langle S \rangle$, 且任何 S 的真子集的生成子群均不是 G, 则称 $S \in G$ 的极小生成元集。

11. 置换、轮换和对换

- 将 $1,2,\ldots,n$ 变换为一个 n 级排列 i_1,i_2,\ldots,i_n 的变换称为 n 次置换,记作 $\begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}$.
- 设r是一个n次置换,满足

$$\circ r(a_1) = a_2, r(a_2) = a_3, \dots, r(a_l) = a_1$$

$$\circ$$
 当 $a \neq a_i, i = 1, 2, ..., l$ 时, $r(a) = a$

则称 r 是一个长度为 l 的轮换,或称其为一个 l-轮换,记作 $r = (a_1, a_2, \ldots, a_l)$.

- 长度为 2 的轮换称为对换
- 一个置换 σ 分解为对换乘积时,若对换的个数为偶数,则称 σ 为偶置换;若对换的个数为奇数,则称 σ 为奇置换。

Remark

长度为奇数的轮换是偶置换,长度为偶数的轮换是奇置换。

- 若一个n次置换 σ 的标准轮换分解式是由 λ_i 个i-轮换组成,则称 σ 是一个 $1^{\lambda_1}2^{\lambda_2}\cdots n^{\lambda_n}$ 型置换。
- 12. 元素的阶

设G是群, $a \in G$.使

$$a^n = e$$

成立的最小正整数 n 称为 a 的阶或周期,记作 o(a). 如果没有这样的正整数存在,则称 a 的阶是无限的。

13. 集合运算

• 群内子集的运算

下面的集合运算只在讨论群的相关定理的时候成立:

设 A, B 是非空集合,则定义

$$\circ AB = \{ab | a \in A, b \in B\}$$

$$A^{-1} = \{a^{-1} | a \in A\}$$

$$\circ gA = \{ga | a \in A\}$$

• 环内子集的运算

下面的集合运算只在讨论环的相关定理的时候成立:

设 A, B 是非空集合,则定义

$$\circ \ A+B=\{a+b|a\in A,b\in B\}$$

$$\circ AB = \left\{ \sum_{i=1}^{n} a_{i}b_{i} | a_{i} \in A, b_{i} \in B, i = 1, 2, \dots, n, n \in \mathbb{N} \right\}$$

$$\circ gA = \{ga | a \in A\}$$

14. 子群

设 $S \neq G$ 内的一个非空子群,若 S 对 G 的运算也构成群,则称 $S \neq G$ 的一个子群,并记作 $S \leq G$. 若 $S \neq G$, 则称 $S \neq G$ 的真子群,记作 S < G.

15. 群的同构

设 (G, \cdot) 和 (G', \circ) 是两个群, 若存在一个 G 到 G' 的双射 f 满足

$$\forall a, b \in G, f(a \cdot b) = f(a) \circ f(b)$$

就说 $f \in G$ 到 G' 的一个同构映射或同构,并称 G 和 G' 同构,记作 $G \cong G'$.

16. 陪集

设 (G, \cdot) 是一个群, $H \leq G, a \in G$,则称 $a \cdot H$ 为 H 的一个左陪集, $H \cdot a$ 为 H 的一个右陪集。a 称为该陪集的代表元。

 $\overrightarrow{\mathsf{id}}\; (G/H)_L = \{aH | a \in G\}, (G/H)_R = \{Ha | a \in G\}$

17. 子群的指数

设 G 是群, $H \le G,H$ 在 G 中的左 (右) 陪集个数称为 H 在 G 中的指数,记作 [G:H]

18. 正规子群

设G是群, $H \le G$,若 $\forall g \in G$,有

$$gH = Hg$$

则称 $H \neq G$ 的正规子群,记作 $H \triangleleft G$.用 $H \triangleleft G$ 表示 $H \neq G$ 的真正规子群。

19. 换位子

群 G 中形式为 $aba^{-1}b^{-1}$ 的元素称为 a,b 的换位子。

20. 陪集集合

设 $H ext{ ⊆ } G$, 称 G 关于 H 的左陪集的集合(等于 G 关于 H 右陪集的集合)为 G 关于 H 的陪集集合,记作 G/H.

21. 商群

设 $H \subseteq G$, 称 G/H 关于子群乘法构成的群称为 G 关于 H 的商群。有时也称为 G 模 H 的同余类群。有时也记 $\bar{a} = aH$, 称为 G 模 H 的一个同余类。

Remark

- $(G/H, \cdot)$ 的单位元是 H
- 乘法满足 $(aH) \cdot (bH) = (ab)H$, 特别地, $H \cdot H = H$
- aH 的逆元是 $a^{-1}H$

22. 单群

若群 $G \neq \{e\}, G$ 除 $\{e\}$ 和本身外,无其他正规子群,则称 G 是单群。

23. 环

设 A 是一个非空集合, 在 A 中定义两种二元运算, 一种叫加法, 记作 +, 一种叫乘法, 记作 ·, 且满足

- (A, +) 是一个可换群
- (A,·) 是一个半群

• $\forall a, b, c \in A, a(b+c) = ab + ac, (a+b)c = ac + bc(左、右分配律成立)$

则称代数系 $(A, +, \cdot)$ 是环。

若环对乘法是可交换的,则称其为可换环。

A + 1

- 加法的单位元称为 A 的零元,记作 0.
- 元素 a 关于加法的逆元称为 a 的负元,记作 -a.
- 如果存在乘法的单位元,则称其为A的单位元,记作1.
- 如果对于元素 a, 存在它关于乘法的逆元, 则称其为 a 的逆元, 记作 a^{-1} .

环中乘法的可逆元称为正则元或单位。

24. 零因子

设 A 是一个环, $a,b \in A$, 若 ab = 0, 且 $a \neq 0$ 和 $b \neq 0$, 则称 a 为左零因子, b 为右零因子。若一个元素既是左零因子,又是右零因子,则称其为零因子。

25. 环的分类

设 $(A, +, \cdot)$ 是环

- 若 $A \neq \{0\}$, 且 A 可交换, 无零因子, 则称 A 为整环
- 若 A 满足
 - A 中至少有元素 0 和 1
 - $A^* = A/\{0\}$ 构成乘法群

则称 A 是一个除环

• 若 *A* 是一个可交换的除环,则称 *A* 为域。 具有有限个元素的域,称为有限域。

26. 子环与扩环

设 $(A, +, \cdot)$ 和 $(B, +, \cdot)$ 均为环,且 $B \neq \emptyset$. 若 $B \subseteq A$, 则称 $B \neq A$ 的子环, $A \neq B$ 的扩环。

27. 理想

设 A 是一个环,I 是它的一个子环, $\forall a \in I \forall x \in A$,若 $xa \in I$,则称 I 是 A 的一个左理想;若 $ax \in I$,则称 I 是 A 的一个右理想;若 I 既是 A 的左理想,也是 A 的右理想,则称 I 是 A 的一个理想。

对于环 A, 称 $\{0\}$ 和 A 为 A 的平凡理想。

28. 单环

若一个环内无非平凡理想,则称这个环为单环。

Remark

证明一个环是单环,常用方法为证明单位元在其中。

29. 生成子环

设 A 是环, S 是 A 的一个非空子集, 则 A 的包含 S 的最小子环称为由 S 生成的子环, 或 称为 S 的生成子环, 记作 [S].

30. 生成理想

设 A 是环, S 是 A 的一个非空子集,则 A 的包含 S 的最小理想称为由 S 生成的理想,或称为 S 的生成理想,记作 (S).

31. 商环

设 A 是环,I 是 A 的一个理想,A 作为加法关于 I 的商群 A/I 对模 I 的加法与乘法所做成的环,称为 A 关于 I 的商环或称为 A 模 I 的同余类环。

32. 可逆元群

一个环中的所有可逆元的集合记作 U(A). 那么 $(U(A), \cdot)$ 称为可逆元群。

33. 极大理想

设 M 是环 A 的非平凡理想,若有理想 H 且 $M \subseteq H$, 则 H = A, 则称 M 是 A 的一个极大理想。

34. 素理想

设 R 是可换环, H 是 R 的一个非平凡理想, 若由 $ab \in H$ 可得 $a \in H$ 或 $b \in H$, 则称 H 是 R 的一个素理想。

35. 环的同构与同态

设 $(A, +, \cdot)$ 和 (A', \oplus, \circ) 是两个环,若有一个 A 到 A' 的映射 f 满足以下条件: $\forall a, b \in A$,有

$$f(a+b) = f(a) \oplus f(b)$$
$$f(a \cdot b) = f(a) \circ f(b)$$

则称 $f \neq A$ 到 A' 的同态。

如果 f 是单射,则称 f 是一个单同态。

如果 f 是满射,则称 f 是一个满同态。这时,记作 $A \sim A'$

如果 f 是双摄,则称 f 是 A 到 A' 的一个同构,记作 $A \cong A$ "

36. 同态核

设 f 是环 $(A, +, \cdot)$ 到 (A', \oplus, \circ) 的一个同态,则 A' 的零元 0' 的全原象 $f^{-1}(0') = \{x | f(x) = 0', x \in A\}$ 称为 f 的同态核,记作 ker f

2 定理

1. 群表的性质

- 每行(列)包含一个元素
- 若 G 是可换群,则它的乘法表对称于主对角线。

2. 单位元的性质

若半群 G 有左单位元 e_L 和 e_R ,则 $e_L = e_R = e$ 是 G 的单位元,且单位元唯一

3. 逆元的性质

• 若含幺半群 G 中的元素 a 有左逆元 a_L^{-1} 和右逆元 a_R^{-1} , 则 $a_L^{-1}=a_R^{-1}=a^{-1}$ 是 a 的 逆元,且逆元唯一

- $(a^{-1})^{-1} = a$
- 若 a, b 可逆,则 ab 可逆,且 $(ab)^{-1} = b^{-1}a^{-1}$
- 若 a 可逆, 则 a^n 可逆, 且 $(a^n)^{-1} = (a^{-1})^n$

4. 群的等价叙述

 (G,\cdot) 是群与下面几个命题等价

• 半群 (G, \cdot) 满足 G 中有左单位元 e_L , 且 $\forall a \in G, \exists a^{-1} \in G, \text{s.t.} a^{-1}a = e_L$

Remark

这里可以是左单位元和 a 对左单位元的左逆元,也可以是右单位元和 a 对右单位元的右逆元。但不能一左一右。

- 半群 (G, \cdot) 满足 $\forall a, b \in G$, 方程 ax = b, ya = b 在 G 中均有解
- 有限半群 (G,.) 满足左右消去律都成立

5. 元素的阶的性质

• 设G是群, $a \in G$,则

$$a^m = 1 \Leftrightarrow o(a) \mid m$$

• 有限群中的每一个元素的阶是有限的。无限群中的元素的阶不一定是无限的。

Remark

无限群的例子,如: $G = \{a | a^m = 1, m \in \mathbb{N}^+\}$,则 G 对乘法构成群,但 G 中每个元素的阶都是有限的。

- 设G是群, $a,b \in G$, o(a)=m, o(b)=n, 若(m,n)=1和ab=ba, 则o(ab)=mn
- 设G是群, $a \in G, o(a) = n$,则 $\forall m \in \mathbb{N}^+, o(a^m) = \frac{n}{(m,n)}$

6. 子群的性质

- 设 $H \le G$, 则 H 的单位元就是 G 的单位元
- $\not\exists H_1, H_2 \leq G$, $\not\sqsubseteq H_1 \cup H_2 \leq G \Leftrightarrow H_1 \subseteq H_2 \vec{\otimes} H_2 \subseteq H_1$

7. 子群相关定理

设S是群G的一个非空子集,则以下三个命题等价

- *S* 是 *G* 的子集
- 对任何 $a,b \in S$ 有 $ab \in S$ 和 $a^{-1} \in S$
- 对任何 $a,b \in S$ 有 $ab^{-1} \in S$
- 8. 生成元集的表示

设S是群G的一个非空子集,则

$$\langle S \rangle = \{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} \cdots a_k^{\varepsilon_k} | a_i \in S, \varepsilon_i \in \mathbb{Z}, k = 1, 2, \cdots \}$$

9. 群同构的性质

设 (G,\cdot) 和 (G',\circ) 是两个群,单位元分别为 e 和 e', 且 f 是 G 到 G' 的一个同构映射,则

- f(e) = e'
- $\forall a \in G, f(a^{-1}) = (f(a))^{-1}$
- $\forall H \leq G, f(H) \leq G'$
- $\forall a \in G, o(f(a)) = o(a)$
- 若存在 $a, b \in G$, 有 $a \cdot b = b \cdot a$, 则 $f(a) \circ f(b) = f(b) \circ f(a)$
- 10. 循环群的性质

设 $G = \langle a \rangle$ 是a生成的循环群,则

- 当 $o(a) = \infty$ 时, $G \cong (\mathbb{Z}, +), (\mathbb{Z}, +)$ 的生成元只能是 1 或 -1, 其全部子群为 $H_m = < m > , m = 0, 1, 2, \cdots$
- 当 o(a) = n 时, $G \cong (\mathbb{Z}_n, +), (\mathbb{Z}_n, +)$ 的生成元只能是 \bar{a} , 其中 (a, n) = 1, 其全部子 群为 $<\bar{0}>$ 和 $<\bar{d}>$, $d\mid n$
- 11. 置换、轮换和对换的性质
 - 设 σ 是任一个 n 次置换,则 $\sigma=r_1r_2\cdots r_k$,其中 $\{r_i\}$ 是不相交的轮换。若不计因子的次序,则分解式唯一,此分解式被称为其标准轮换分解式。且 $o(\sigma)=[l_1,l_2,\ldots,l_k]$

Remark

- 若要将一个置换表示成若干个轮换之积,则可省略 1-轮换。
- 。不相交的轮换之间满足交换律。
- 任何一个置换 σ 可分解为对换之积:

$$\sigma = \pi_1 \pi_2 \cdots \pi_s$$

其中 π_i 是对换,且对换的个数s的奇偶性由 σ 唯一确定,与分解方法无关。

- 设 $\sigma = (i_1, i_2, \dots, i_k), \tau$ 是任一个 n 次置换,则 $\tau \sigma \tau^{-1} = (\tau(i_1), \tau(i_2), \dots, \tau(i_k)).$
- 12. Cayley 定理

任何一个群同构于一个变换群。

任何一个有限群同构于一个置换群。

Remark

对于任意群 G, 其对应的变换群 G' 与同构 f 的构造方法为:

$$G' = \{g_i | i \in G, \forall k \in G, g_i(k) = ik\}, \forall i \in G, f(i) = g_i\}$$

- 13. 陪集的性质
 - $aH = H \Leftrightarrow a \in H$
 - $b \in aH \Leftrightarrow aH = bH$
 - $aH = bH \Leftrightarrow a^{-1}b = H$
 - $\forall a, b \in G$, $\forall a, b \in G$,
 - 设 G 是群, $H \le G, S_L = \{aH | a \in G\}, S_R = \{Ha | a \in G\}, 则存在 <math>S_L$ 到 S_R 的双射。

Remark

对于有限集 S_L 和 S_R 来说,这意味着它们的基数相等。

14. Lagrange 定理

设G是有限群, $H \leq G$,则

$$|G| = |H|[G:H]$$

Remark

有推论:

- 设 G 是有限群, $H \leq G$, 则 |H| | |G|
- 设 G 是有限群,则 $\forall a \in G, o(a) \mid |G|$
- 若 G 的阶是素数,则 $G = C_p$,即其为 p 阶循环群
- 15. 设 G 是群, A, B 是 G 的两个有限子群,则

$$|AB| = \frac{|A||B|}{|A \cap B|}$$

- 16. 正规子群的性质
 - 设 $H \leq G$, 则下面几个命题相互等价:
 - $\circ \forall a \in G, aH = Ha$
 - $\circ \forall a \in G, \forall h \in H, aha^{-1} \in H$
 - $\circ \forall a \in G, aHa^{-1} \subseteq H$
 - $\circ \ \forall a \in G, aHa^{-1} = H$

Remark

检验正规子群的时候常用第二个条件。

- $\ \ \mathcal{G} A \subseteq G, B \subseteq G, \ \ M \cap B \subseteq G, AB \subseteq G$

- 17. 零因子的定理

环中有左(右)零因子⇔左(右)乘法消去律成立

- 18. 除环判定定理
 - 一个非零的有限的无左(右)零因子环是除环。
- 19. 域有关定理
 - 若 F 是域, 则 F 是整环
 - 若 A 是有限整环,则 A 是域
- 20. 子环的性质
 - 设 S 是环 A 的一个非空子集,则 S 是 A 的子环的充要条件是 $\forall a,b \in S$ 有 $a-b \in S$ 目 $ab \in S$
 - 若 S_1 和 S_2 都是 A 的子环,则 $S_1 \cap S_2$ 也是 A 的子环。
- 21. 理想的相关定理

- 如果 A 是可换环,则 A 的左理想也是其右理想。
- 环 A 中非空子集 H 是理想的充要条件是满足
 - $\circ \ \forall a, b \in H, a b \in H$
 - \circ $\forall a \in H \forall x \in A ff ax, xa \in H$
- 若环 A 有单位元, 且 H 是 A 的一个理想, 则 $1 \in H \Leftrightarrow H = A$
- 若 I, J 都是环 A 的理想,则 $I + J, I \cap J, I \cup J, IJ$ 都是 A 的理想。
- 22. 生成子环的表示

设环 A 中有元素 $a \in A$,则

$$[a] = \{ \sum n_k a^k | n_k \in \mathbb{Z}, k \in \mathbb{Z}^+ \}$$

23. 生成理想的表示

设环 A 中有元素 $a \in A$,则

$$(a) = \{ \sum xay + sa + at + na | x, y, s, t \in A, n \in \mathbb{Z} \}$$

当 A 是有单位元的可换环时,

$$(a) = \{xa | x \in A\} = aA$$

24. 极大理想的性质

设 A 是有单位元的可换环,M 是 A 的一个极大理想,则 A/M 是域。

25. 素理想的性质

设 R 是可换环, $H \subseteq A$, 则 H 是素理想 $\Leftrightarrow R/H$ 是一个整环。

- 26. 同态核的性质

 - \emptyset f 是环 A 到 A' 的一个同态,则 f 是单同态的充分必要条件是 ker $f = \{0\}$
- 27. 环同态基本定理

设 f 是环 $(A, +, \cdot)$ 到 (A', \oplus, \circ) 的一个满同态, $K = \ker f$,则

$$A/K \cong A'$$

3 特殊的群、环

1. Klein 四元群

设集合 $K = \{e, a, b, c\}$, 则 Klein 四元群为 (K, \cdot) , 其中二元关系 · 满足如下群表

2. 整数模 n 同余类

称整数模 n 同余类为 $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$

$$i \exists \mathbb{Z}_n^* = {\overline{a}|(a,n) = 1}$$

其上的加法定义为 $\overline{a} + \overline{b} = \overline{a+b}$

其上的乘法定义为 $\bar{a} \cdot \bar{b} = \bar{ab}$

则 $(\mathbb{Z}_n,+)$ 和 (\mathbb{Z}_n^*,\cdot) 都构成群。

当 p 为素数的时候, $(\mathbb{Z}_p,+,\cdot)$ 是域。它是最简单的有限域。

•	e	a	b	c
e	e	a	b	c
\overline{a}	a	e	c	b
b	b	c	e	a
c	c	b	a	e

表 1: Klein 四元群

3. 对称群、变换群、置换群和交错群

- 设 A 是一个非空集合,如果记 S 是 A 上所有可逆变换的集合,其对映射的复合。构成群。群 (S, \circ) 称为 A 上的对称群,集合 S 记作 S_A . 集合 S 的子群称为变换群。
- 全体 n 次置换对变换的复合构成的群称为 n 次对称群,集合记作 S_n . 集合 S_n 的子群称为 n 次置换群,记作 C_n 。集合 S_n 中所有的偶置换构成一个子群,称为 n 次交错群,记作 A_n .

4. 线性群

- 设 $GL_n(F)$ 是数域 F 上的全体 n 阶可逆矩阵的集合,则其与矩阵乘法构成的群 $(GL_n(F), \cdot)$ 称为 n 次全线性群。
- 设 $SL_n(F)$ 是数域 F 上的全体行列式为 1 的 n 阶矩阵的集合,则其与矩阵乘法构成的群 $(SL_n(F), \cdot)$ 称为 n 次特殊线性群。
- $SL_n^{\pm 1}(F)$ 是数域 F 上的全体行列式为 ± 1 的 n 阶矩阵的集合。
- $O_n(F)$ 是数域 F 上的全体正交的 n 阶矩阵的集合。
- $SO_n(F)$ 是数域 F 上的全体正交的行列式为 1 的 n 阶矩阵的集合。

5. 循环群

设 G 是群, $a \in G$, 若 < a >= G, 则称 G 为循环群。

6. Gauss 整数环

记

$$\mathbb{Z}[\mathbf{i}] = \{a + b\mathbf{i} | a, b \in \mathbb{Z}, \mathbf{i} = \sqrt{-1}\}\$$

称 (ℤ[i], +, ·) 为 Gauss 整数环

7. 整数模 n 的同余类环 称 $(\mathbb{Z}_n, +, \cdot)$ 为整数模 n 的同余类环

8. 全矩阵环

记

$$M_n(A) = \{(a_{ij})_{n \times n} | a_{ij} \in A\}$$

若 A 为数环,则称 $(M_n(A),+,\cdot)$ 为数环 A 上的全矩阵环;特别地,称 $(M_n(\mathbb{Z}),+,\cdot)$ 为整数环上的全矩阵环。特别地,数域 A 上的全矩阵环 $(M_n(A),+,\cdot)$ 是单环。

9. 多项式环

记

$$A[x] = \{a_0 + a_1x + \dots + a_nx^n | a_i \in A, n \in \mathbb{N}\}\$$

则称 $(\mathbb{Z}[x], +, \cdot)$ 为整数环上的多项式环, $(\mathbb{Q}[x], +, \cdot)$ 为有理数环上的多项式环, $(\mathbb{R}[x], +, \cdot)$ 为实数环上的多项式环, $(\mathbb{C}[x], +, \cdot)$ 为复数环上的多项式环。

10. 实四元数除环

记

$$E = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), E = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), J = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), K = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)$$

记集合 $H=\{a_0E+a_1I+a_2J+a_3K|a_0,a_1,a_2,a_3\in\mathbb{R}\}$,则 $(H,+,\cdot)$ 构成非交换除环,称为实四元数除环。