AMCS 313: Spatial Statistics

Prof. Marc G. Genton, CEMSE, KAUST (joint notes with Prof. Mikyoung Jun, TAMU)

BEFORE WE START

- Prerequisites
- Homeworks and paper presentation
- R programming
- Project and final presentation/report
- Office hours
- Textbook(s)

Types of Spatial Data

- Regularly spaced data vs irregularly spaced data
- Point measurement vs block averages (or areal data)
- Point patterns
- Directional data
- Data from moving stations

GENERAL DESCRIPTION

- Temporal: $\{Z(t); t \ge 0\}$
- Spatial: $\{Z(\mathbf{s}); \mathbf{s} \in D\}$
- Spatio-temporal: $\{Z(\mathbf{s},t); \mathbf{s} \in D, t \geq 0\}$
- Multivariate: $\mathbf{Z} \in \mathbb{R}^p$, e.g. $\{\mathbf{Z}(\mathbf{s}); \mathbf{s} \in D\}$
- On the sphere: use latitude/longitude

Law of Geography:

nearby things tend to be more alike than those far apart

GEOSTATISTICAL DATA

- $lacksquare D \in \mathbb{R}^d$, d=1,2,3, "continuous" spatial index
- Mining: coal ash
- Pollution: soil, air (nuclear, chemical; ozone)
- Rainfall
- Temperature, pressure
- Wind speed and direction
- Remote sensing (satellite)

LATTICE DATA

- D is a fixed collection of points, "discrete" spatial index
- Sudden Infant Death Syndrom (SIDS) in each county of the state of North Carolina, USA
- Cancer rates per city (or per state, or per country)
- Crime rates
- Census data
- Remote sensing (satellite)
- Agriculture: yield in a plot

POINT PATTERNS

- D is a random set, i.e. random locations
- Lansing wood trees in Michigan: hickory, maple
- Earth quake locations (e.g. San Francisco Bay)
- Mine fields
- Object recognition
- Nanoparticules
- Wildfires
- Lightning
- Blue spotted ribbon tail rays
- Spatial randomness? Clusters? Regularity?

IRISH WIND DATA

source: Haslett and Raftery (1989, Applied Statistics)

8 / 27

TOTAL COLUMN OZONE LEVELS (TOMS DATA)

From satellite: Total Ozone Mapping Spectrometer instrument

Level 3 data (NASA-produced) on regular grid (1 degree latitude by 1.25 degrees longitude) source: Jun and Stein (2008, AOAS)

CANADIAN CENSUS DATA

WIND SPEED AND DIRECTION DATA

source: Hering and Genton (2010, JASA)

NEED FOR SPATIAL STATISTICS

- Roots: geology (mining), geography, meteorology, environmetrics
- Classical statistics: $X_1, ..., X_n$ iid $\sim F$, e.g. F is normal (Gaussian) distribution
- Spatial data: measurements/observations taken at specific locations or within specific regions
- Key features of spatial data: autocorrelation of observations in space, i.e. observations spatially close tend to be more similar
- **Example:** simulate data on 10×10 lattice, iid from normal N(5,1)
- a) observations assigned randomly to lattice coordinates
- b)-d) data rearranged: each value surrounded by more similar values (by simulated annealing algorithm)
- Define nearest neighbors: move queen piece on chess board
- $(\mathbf{s}_i, \bar{Z}_i)$, i = 1, ..., 100, \bar{Z}_i =average of neighboring sites of \mathbf{s}_i (note: edge effect!)
- Plot: $(\bar{Z}_i, Z(\mathbf{s}_i))$

DIFFERENT AUTOCORRELATIONS

DIFFERENT AUTOCORRELATIONS

source: Schabenberger & Gotway (2005)

EFFECT OF AUTOCORRELATION ON INFERENCE

- Y_1, \ldots, Y_n : $Y_i \sim N(\mu_Y, \sigma^2)$, $Cov(Y_i, Y_j) = \sigma^2 \rho$, $i \neq j$ (equicorrelation)
- $X_1, ..., X_n$: $X_i \sim N(\mu_X, \sigma^2)$, $Cov(X_i, X_j) = \sigma^2 \rho$, $i \neq j$ (equicorrelation)
- Y_i 's independent of X_j 's
- Effect of ignoring correlation:
- $\hat{\mu} = \bar{Y}$ is "natural" estimator for μ_Y
- $\operatorname{Var}(\bar{Y}) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(Y_i, Y_j) = \frac{1}{n^2} \{ n\sigma^2 + n(n-1)\sigma^2 \rho \} = \frac{\sigma^2}{n} \{ 1 + (n-1)\rho \}$. So if $\rho > 0$ then $\operatorname{Var}(\bar{Y}) > \sigma^2/n$, i.e. more dispersed than in random sample
- $\mathsf{E}(\bar{Y}) = \mu_Y$ and $\lim_{n\to\infty} \mathsf{Var}(\bar{Y}) = \sigma^2 \rho$, so \bar{Y} is not a consistent estimator of μ_Y
- Effective sample size: $n' = \frac{n}{1 + (n-1)\rho}$, e.g. $n' = \frac{5}{1 + 4*0.25} = 2.5$

EFFECT OF AUTOCORRELATION ON INFERENCE

- Hypothesis test: $H_0: \mu_X = \mu_Y$
- Ignoring correlation: $Z_{obs}^* = \frac{\bar{Y} \bar{X}}{\sigma \sqrt{2/n}}$
- Correct test statistics: $Z_{obs} = \frac{\bar{Y} \bar{X}}{\sigma \sqrt{2\{1 + (n-1)\rho\}/n}}$
- $lacksquare Z_{obs}^*$ too large, so p-values too small, i.e. test rejects more often than it should
- n correlated observations contain less information than n uncorrelated observations
- Generalized least squares estimator of μ_Y : $\hat{\mu}_Y = \frac{\mathbf{1}^T \Sigma^{-1} \mathbf{Y}}{\mathbf{1}^T \Sigma^{-1} \mathbf{1}}$ where $\Sigma = \sigma^2 \{ (1 \rho) I_n + \rho \mathbf{1} \mathbf{1}^T \}$
- Can derive similar results for AR(1) structure: Cov $(Y_i, Y_j) = \sigma^2 \rho^{|i-j|}$
- Later: effect of autocorrelation on prediction
- Exercise 1: Study the effect of AR(1) autocorrelation structure on classical statistical inference

US WEATHER STATIONS: AIR TEMPERATURE

(NATIONAL CLIMATIC DATA CENTER)

TEMPERATURE SURFACE

BLOOD LEAD LEVELS IN CHILDREN

Percent of children under the age of 72 months with elevated blood lead levels in Virginia in 2000 (133 counties). source: Schabenberger & Gotway (2005)

40.49.41.41.1 1 000

Median housing value per county in Virginia in 2000

Locations of Lightning Strikes: April 17-20,

source: Schabenberger & Gotway (2005)

2003

Scatter plot of $u_{ij} = |Z(\mathbf{s}_i) - Z(\mathbf{s}_j)|$ for simulated lattice data d)

Possible definitions of spatial connectedness (contiguity) for a regular lattice

rook; bishop; queen

Two definitions of spatial connectedness (contiguity) for an irregular lattice

Circle of radius 35 miles source: Schabenberger & Gotway (2005)

Independent vs AR(1) observations (var is 0.3)

source: Schabenberger & Gotway (2005)

Introduction to R

- R is a free statistical package similar to S-plus (http://r-project.org)
- Even if you are a first time R user, there are more than enough resources for you to get started:
 - http://dist.stat.tamu.edu/pub/rvideos/
 - http://www.statmethods.net/index.html
 - http://zoonek2.free.fr/UNIX/48_R/all.html

SPATIAL STATISTICS USING R

- R packages for spatial statistics
 - fields (http://www.image.ucar.edu/Software/)
 - geoR (http://www.leg.ufpr.br/geoR)
 - RandomFields (https://cran.r-project.org/web/packages/ RandomFields/index.html)
 - useful link:
 - Pages 1-15 can be useful
 (http://www.unc.edu/~rls/s890/ShortCourseMalta.pdf)
- R package for point patterns
 - spatstat (http: //cran.r-project.org/web/packages/spatstat/index.html)