1 Równoliczność zbiorów, zbiory co najwyżej przeliczalne, zbiory mocy continuum, przykłady

1.1 Definicja równoliczności

Dwa zbiory Ai Bsą równoliczne, jeśli istnieje bijekcja $f:A\to B.$

1.2 Zbiory co najwyżej przeliczalne

Zbiór A jest co najwyżej przeliczalny, jeśli jest skończony lub równoliczny ze zbiorem liczb naturalnych N.

1.3 Zbiory mocy continuum

Zbiór ma moc continuum, jeśli jest równoliczny z przedziałem (0,1) lub z R.

1.4 Przykłady

- $\bullet~N,\,Z,\,Q$ są przeliczalne
- R, (0,1), $\mathcal{P}(N)$ mają moc continuum
- \bullet Zbi
ór funkcji $f:R\to R$ ma moc większą niż continuum

2 Relacja równoważności. Klasy abstrakcji relacji równoważności. Przykłady

2.1 Definicja relacji równoważności

Relacja R na zbiorze A jest relacją równoważności, jeśli jest:

- Zwrotna: $\forall a \in A : aRa$
- Symetryczna: $\forall a, b \in A : aRb \Rightarrow bRa$
- Przechodnia: $\forall a, b, c \in A : (aRb \land bRc) \Rightarrow aRc$

2.2 Klasy abstrakcji

Dla $a \in A$, klasa abstrakcji $[a]_R = \{x \in A : xRa\}$

2.3 Przykłady

- Kongruencja modulo n: $a \equiv b \pmod{n}$
- Równoległość prostych na płaszczyźnie
- Relacja "mieć tę samą długość" na zbiorze odcinków

3 Relacje częściowego porządku, rodzaje porządków, izomorfizmy porządkowe, elementy wyróżnione w porządku i relacje między nimi

3.1 Definicja relacji częściowego porządku

Relacja \leq na zbiorze A jest częściowym porządkiem, jeśli jest:

- Zwrotna: $\forall a \in A : a \leq a$
- Antysymetryczna: $\forall a, b \in A : (a < b \land b < a) \Rightarrow a = b$
- Przechodnia: $\forall a, b, c \in A : (a \le b \land b \le c) \Rightarrow a \le c$

3.2 Rodzaje porządków

- Porządek liniowy: $\forall a, b \in A : a \leq b \lor b \leq a$
- Porządek dobry: każdy niepusty podzbiór ma element minimalny
- Porządek gęsty: między każdymi dwoma elementami istnieje trzeci

3.3 Izomorfizmy porządkowe

Bijekcja $f: A \to B$ zachowująca porządek: $x \leq_A y \Leftrightarrow f(x) \leq_B f(y)$

3.4 Elementy wyróżnione

- Element minimalny: $m \in A : \forall a \in A : m \leq a \Rightarrow m = a$
- Element makeymalny: $M \in A : \forall a \in A : a \leq M \Rightarrow a = M$
- Najmniejszy element (minimum): $\min A \in A : \forall a \in A : \min A < a$
- Największy element (maksimum): $\max A \in A: \forall a \in A: a \leq \max A$
- Kres dolny: inf $B \in A$: $(\forall b \in B : \inf B \le b) \land (\forall x \in A : (\forall b \in B : x \le b) \Rightarrow x \le \inf B)$
- Kres górny: $\sup B \in A: (\forall b \in B: b \leq \sup B) \land (\forall x \in A: (\forall b \in B: b \leq x) \Rightarrow \sup B \leq x)$

4 Granica ciągu liczbowego, granica i ciągłość funkcji, przykłady

4.1 Granica ciągu

 $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \exists N \in N \forall n > N : |a_n - a| < \varepsilon$

4.2 Granica funkcji

 $\lim_{x\to x_0} f(x) = L \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 \forall x : 0 < |x-x_0| < \delta \Rightarrow |f(x)-L| < \varepsilon$

4.3 Ciągłość funkcji

f jest ciągła w x_0 , jeśli $\lim_{x\to x_0} f(x) = f(x_0)$

4.4 Przykłady

- $\lim_{n\to\infty} \frac{1}{n} = 0$
- $\lim_{x\to 0} \sin x = 0$
- $f(x) = x^2$ jest ciągła w każdym punkcie

5 Kryteria zbieżności szeregów liczbowych, przykłady

5.1 Kryteria zbieżności

- Kryterium porównawcze: Jeśli $0 \le a_n \le b_n$ i $\sum b_n$ jest zbieżny, to $\sum a_n$ jest zbieżny
- Kryterium d'Alemberta: Jeśli $\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|<1,$ to szereg jest zbieżny
- Kryterium Cauchy'ego: Jeśli $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, to szereg jest zbieżny
- Kryterium całkowe: Jeśli f(x) jest funkcją nierosnącą i dodatnią, to $\sum_{n=1}^{\infty} f(n)$ jest zbieżny wtw, gdy $\int_1^{\infty} f(x) dx$ jest zbieżny

5.2 Przykłady

- $\sum_{n=1}^{\infty} \frac{1}{n^2}$ jest zbieżny (szereg Riemanna)
- $\sum_{n=1}^{\infty} \frac{1}{n}$ jest rozbieżny (szereg harmoniczny)
- $\sum_{n=0}^{\infty} x^n$ jest zbieżny dla |x|<1 (szereg geometryczny)

6 Twierdzenia Cauchy'ego i Lagrange'a o wartości średniej dla pochodnych

6.1 Twierdzenie Lagrange'a

Jeśli funkcja f jest ciągła na [a,b] i różniczkowalna na (a,b), to istnieje $c\in(a,b)$ taki, że:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

6.2 Twierdzenie Cauchy'ego

Jeśli funkcje f i g są ciągłe na [a,b] i różniczkowalne na (a,b), oraz $g'(x) \neq 0$ dla $x \in (a,b)$, to istnieje $c \in (a,b)$ taki, że:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

7 Twierdzenia o całkowaniu i różniczkowaniu granic ciągów jednostajnie zbieżnych funkcji ciągłych

7.1 Twierdzenie o całkowaniu granicy

Jeśli ciąg funkcji (f_n) jest jednostajnie zbieżny do f na [a,b] i wszystkie f_n są całkowalne, to:

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx = \int_a^b f(x) dx$$

7.2 Twierdzenie o różniczkowaniu granicy

Jeśli ciąg funkcji (f_n) jest jednostajnie zbieżny do f na [a,b], wszystkie f_n są różniczkowalne, a ciąg pochodnych (f'_n) jest jednostajnie zbieżny do funkcji g na [a,b], to f jest różniczkowalna i f'=g.

8 Całka Riemanna. Związek pomiędzy całką oznaczoną a nieoznaczoną

8.1 Definicja całki Riemanna

Funkcja f jest całkowalna w sensie Riemanna na [a,b], jeśli istnieje granica:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1})$$

gdzie (x_i) jest podziałem [a,b], a $c_i \in [x_{i-1},x_i]$.

8.2 Związek między całką oznaczoną a nieoznaczoną

Jeśli F jest funkcją pierwotną dla f na [a, b], to:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

To twierdzenie znane jest jako podstawowe twierdzenie rachunku całkowego.

9 Pochodne cząstkowe funkcji wielu zmiennych, pochodna kierunkowa, różniczka odwzorowania. Jaki jest związek pomiędzy tymi pojęciami?

9.1 Pochodne cząstkowe

Dla funkcji $f(x_1,\ldots,x_n)$, pochodna cząstkowa względem x_i to:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

9.2 Pochodna kierunkowa

Pochodna funkcji f w punkcie x_0 w kierunku wektora v to:

$$D_v f(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

9.3 Różniczka odwzorowania

Różniczka odwzorowania $f: \mathbb{R}^n \to \mathbb{R}^m$ w punkcie x_0 to odwzorowanie liniowe $L: \mathbb{R}^n \to \mathbb{R}^m$ takie, że:

$$\lim_{h \to 0} \frac{||f(x_0 + h) - f(x_0) - L(h)||}{||h||} = 0$$

9.4 Związki między pojęciami

- Pochodne cząstkowe to szczególne przypadki pochodnych kierunkowych dla wektorów bazowych
- Różniczka odwzorowania w punkcie x_0 może być reprezentowana przez macierz pochodnych cząstkowych (macierz jakobianu) w tym punkcie
- Pochodna kierunkowa może być wyrażona jako iloczyn skalarny gradientu i wektora kierunku

10 Warunek konieczny i dostateczny istnienia ekstremum lokalnego funkcji wielu zmiennych. Przykłady

10.1 Warunek konieczny

Jeśli funkcja $f: \mathbb{R}^n \to \mathbb{R}$ ma ekstremum lokalne w punkcie x_0 , to wszystkie pochodne cząstkowe w tym punkcie są równe zero:

$$\frac{\partial f}{\partial x_i}(x_0) = 0 \quad dlai = 1, \dots, n$$

10.2 Warunek dostateczny

Niech $f: \mathbb{R}^n \to \mathbb{R}$ będzie funkcją klasy \mathbb{C}^2 w otoczeniu punktu x_0 . Jeśli:

- $\nabla f(x_0) = 0$
- Macierz Hessego $H(x_0)$ jest:
 - dodatnio określona \Rightarrow minimum lokalne
 - ujemnie określona ⇒ maksimum lokalne

to f ma ekstremum lokalne w x_0 .

10.3 Przykłady

- $f(x,y) = x^2 + y^2$ ma minimum w (0,0)
- $f(x,y) = x^2 y^2$ ma punkt siodłowy w (0,0)
- $f(x,y) = x^3 + y^3 3xy$ ma minimum lokalne w(1,1)i maksimum lokalne w(-1,-1)

11 Równania różniczkowe liniowe i o zmiennych rozdzielonych; metody rozwiązywania

11.1 Równania liniowe pierwszego rzędu

Postać ogólna: y'+p(x)y=q(x) Rozwiązanie: $y=e^{-P(x)}(\int e^{P(x)}q(x)dx+C),$ gdzie $P(x)=\int p(x)dx$

11.2 Równania o zmiennych rozdzielonych

Postać ogólna: $\frac{dy}{dx} = f(x)g(y)$ Rozwiązanie: $\int \frac{dy}{g(y)} = \int f(x)dx + C$

11.3 Metody rozwiązywania

- Dla równań liniowych: metoda czynnika całkującego
- Dla równań o zmiennych rozdzielonych: separacja zmiennych
- Dla równań wyższych rzędów: redukcja rzędu, metoda przewidywań
- Dla układów równań: metoda eliminacji, metoda macierzowa

12 Twierdzenie o istnieniu i jednoznaczności rozwiązania równania różniczkowego

12.1 Twierdzenie Picarda-Lindelöfa

Niech f(x,y) będzie funkcją ciągłą i spełniającą warunek Lipschitza względem y w pewnym otoczeniu punktu (x_0,y_0) . Wtedy istnieje jednoznaczne rozwiązanie równania różniczkowego:

$$\frac{dy}{dx} = f(x,y), \quad y(x_0) = y_0$$

w pewnym otoczeniu punktu x_0 .

12.2 Warunki twierdzenia

- Ciagłość f(x,y)
- Warunek Lipschitza: $\exists L > 0 : |f(x, y_1) f(x, y_2)| \le L|y_1 y_2|$
- Ograniczoność f(x,y) w rozważanym obszarze

13 Zliczanie elementów sumy mnogościowej zbiorów skończonych. Zasada włączeń i wyłączeń

13.1 Suma mnogościowa

Dla zbiorów skończonych A_1, A_2, \ldots, A_n :

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

13.2 Zasada włączeń i wyłączeń

Dla zdarzenia A_i : "liczba ma właściwość i", liczba elementów mających co najmniej jedną z n właściwości wynosi:

$$N = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|$$

13.3 Przykład

Liczba liczb niepodzielnych przez 2, 3 ani 5 w przedziale [1, n]:

$$N = n - (\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{3} \rfloor + \lfloor \frac{n}{5} \rfloor) + (\lfloor \frac{n}{6} \rfloor + \lfloor \frac{n}{10} \rfloor + \lfloor \frac{n}{15} \rfloor) - \lfloor \frac{n}{30} \rfloor$$

14 Grupa i jej przykłady. Twierdzenie o postaci grup skończonych abelowych

14.1 Definicja grupy

Grupa to zbiór G z działaniem dwuargumentowym *, spełniający:

- Łączność: (a*b)*c = a*(b*c)
- Istnienie elementu neutralnego $e: \forall a \in G: a*e = e*a = a$
- Istnienie elementu odwrotnego: $\forall a \in G \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$

14.2 Przykłady grup

- \bullet (Z, +) liczby całkowite z dodawaniem
- $(Q \setminus \{0\}, \cdot)$ liczby wymierne bez zera z mnożeniem
- Grupa symetrii figury geometrycznej
- Grupa permutacji zbioru n-elementowego S_n

14.3 Twierdzenie o postaci grup skończonych abelowych

Każda skończona grupa abelowa jest izomorficzna z grupa postaci:

$$Z_{n_1} \times Z_{n_2} \times \cdots \times Z_{n_k}$$

gdzie $n_1|n_2|\cdots|n_k$ (tzn. n_i dzieli n_{i+1}).

15 Zwartość. Podprzestrzenie zwarte przestrzeni euklidesowych

15.1 Definicja zwartości

Przestrzeń topologiczna X jest zwarta, jeśli z każdego otwartego pokrycia X można wybrać skończone podpokrycie.

15.2 Twierdzenie Heinego-Borela

W przestrzeni euklidesowej \mathbb{R}^n , zbiór jest zwarty wtedy i tylko wtedy, gdy jest domknięty i ograniczony.

15.3 Podprzestrzenie zwarte przestrzeni euklidesowych

- Skończone zbiory punktów
- \bullet Domknięte przedziały $[a,b]\le R$
- Domknięte kule $B[x,r] = \{y \in \mathbb{R}^n : d(x,y) \le r\}$
- Domkniete i ograniczone podzbiory \mathbb{R}^n
- Grafy funkcji ciągłych na zwartych dziedzinach

15.4 Własności zbiorów zwartych

- Obraz ciągły zbioru zwartego jest zwarty
- Przecięcie rodziny zbiorów zwartych jest zbiorem zwartym
- Produkt kartezjański skończonej liczby zbiorów zwartych jest zwarty

16 Ciągłość funkcji. Niezmienniki przekształceń ciągłych

16.1 Definicja ciągłości

Funkcja $f: X \to Y$ jest ciągła w punkcie $x_0 \in X$, jeśli:

$$\forall \varepsilon > 0 \exists \delta > 0 : d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon$$

16.2 Niezmienniki przekształceń ciągłych

- Spójność: Obraz zbioru spójnego jest spójny
- Zwartość: Obraz zbioru zwartego jest zwarty
- Ograniczoność: Obraz zbioru ograniczonego jest ograniczony
- Domkniętość: Przeciwobraz zbioru domkniętego jest domknięty
- Własność Darboux: Funkcje ciągłe na przedziałach przyjmują wszystkie wartości pośrednie

17 Różniczkowalność w sensie zespolonym. Równania Cauchy'ego-Riemanna

17.1 Różniczkowalność w sensie zespolonym

Funkcja $f:C\to C$ jest różniczkowalna w sensie zespolonym w punkcie z_0 , jeśli istnieje granica:

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

17.2 Równania Cauchy'ego-Riemanna

Dla f(x+iy)=u(x,y)+iv(x,y), funkcja jest różniczkowalna w sensie zespolonym wtedy i tylko wtedy, gdy: $\partial u \frac{\partial v}{\partial x=\frac{\partial v}{\partial n}\frac{\partial u}{\partial n}=-\frac{\partial v}{\partial x}}$

17.3 Konsekwencje

- Funkcje różniczkowalne w sensie zespolonym są nieskończenie wiele razy różniczkowalne
- Części rzeczywista i urojona funkcji holomorficznej są funkcjami harmonicznymi

18 Twierdzenie Cauchy'ego dla funkcji holomorficznych. Wzór całkowy Cauchy'ego

18.1 Twierdzenie Cauchy'ego

Niech fbędzie funkcją holomorficzną w obszarze D. Dla każdej krzywej zamkniętej $\gamma \le D$:

$$\oint_{\gamma} f(z)dz = 0$$

18.2 Wzór całkowy Cauchy'ego

Niech f będzie funkcją holomorficzną w obszarze zawierającym domknięty kontur γ i jego wnętrze. Dla każdego punktu z_0 wewnątrz γ :

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$

18.3 Konsekwencje

- Funkcje holomorficzne są nieskończenie wiele razy różniczkowalne
- Wartość funkcji wewnątrz konturu jest jednoznacznie określona przez jej wartości na konturze
- Zasada maksimum modułu: Moduł funkcji holomorficznej osiąga maksimum na brzegu obszaru

19 Przestrzeń liniowa, baza, wymiar, przykłady

19.1 Definicja przestrzeni liniowej

Przestrzeń liniowa (wektorowa) nad ciałem K to zbiór V z działaniami dodawania wektorów i mnożenia przez skalar, spełniający określone aksjomaty.

19.2 Baza przestrzeni liniowej

Baza to liniowo niezależny układ wektorów generujący całą przestrzeń. Każdy wektor przestrzeni można jednoznacznie przedstawić jako kombinację liniową wektorów bazowych.

19.3 Wymiar przestrzeni liniowej

Wymiar to liczba wektorów w bazie przestrzeni. Przestrzenie o tym samym wymiarze są izomorficzne.

19.4 Przykłady

- R^n przestrzeń n-wymiarowych wektorów rzeczywistych
- ullet C^n przestrzeń n-wymiarowych wektorów zespolonych
- P_n przestrzeń wielomianów stopnia $\leq n$
- C[a,b] przestrzeń funkcji ciągłych na przedziałe [a,b] (nieskończenie wymiarowa)
- $M_{n \times m}$ przestrzeń macierzy $n \times m$

20 Twierdzenie Kroneckera - Capellego. Wymiar przestrzeni rozwiązań

20.1 Twierdzenie Kroneckera-Capellego

Układ równań liniowych AX=B ma rozwiązanie wtedy i tylko wtedy, gdy rząd macierzy A jest równy rzędowi macierzy rozszerzonej [A|B].

20.2 Wymiar przestrzeni rozwiązań

Dla układu jednorodnego AX = 0:

$$\dim(\ker A) = n - rank(A)$$

gdzie n to liczba niewiadomych.

20.3 Konsekwencje

- Jeśli rank(A) = rank[A|B] < n, układ ma nieskończenie wiele rozwiązań
- Jeśli rank(A) = rank[A|B] = n, układ ma dokładnie jedno rozwiązanie
- Jeśli rank(A) < rank[A|B], układ jest sprzeczny

20.4 Przykład

Dla układu: x + y + z = 1

x - y + 2z = 2

 $2\mathbf{x}+\mathbf{z}=3~$ MacierzAma rząd 3, więc układ ma dokładnie jedno rozwiązanie.

21 Przestrzenie niezmiennicze przekształcenia, wektory własne i wartości własne

21.1 Przestrzeń niezmiennicza

Podprzestrzeń W przestrzeni liniowej V jest niezmiennicza względem przekształcenia liniowego $T:V\to V$, jeśli $T(W)\subset W$.

21.2 Wektory własne i wartości własne

Dla przekształcenia liniowego $T: V \to V$:

- Wektor własny $v \neq 0$: $T(v) = \lambda v$ dla pewnego $\lambda \in K$
- Wartość własna λ : liczba $\lambda,$ dla której istnieje niezerowy wektor własny

21.3 Równanie charakterystyczne

$$\det(T - \lambda I) = 0$$

21.4 Twierdzenie o diagonalizacji

Macierz jest diagonalizowalna wtedy i tylko wtedy, gdy man liniowo niezależnych wektorów własnych.

22 Definicja prawdopodobieństwa warunkowego. Wzór na prawdopodobieństwo całkowite i wzór Bayesa

22.1 Prawdopodobieństwo warunkowe

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

22.2 Wzór na prawdopodobieństwo całkowite

Dla zdarzeń B_1, B_2, \dots, B_n tworzących podział przestrzeni zdarzeń:

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

22.3 Wzór Bayesa

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}$$

23 Wartość oczekiwana i wariancja zmiennej losowej, własności i metody obliczania

23.1 Wartość oczekiwana

- Dla zmiennej dyskretnej: $E(X) = \sum_{i} x_i P(X = x_i)$
- Dla zmiennej ciągłej: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

23.2 Wariancja

$$Var(X) = E((X - E(X))^{2}) = E(X^{2}) - (E(X))^{2}$$

23.3 Własności

- Liniowość wartości oczekiwanej: E(aX + b) = aE(X) + b
- $Var(aX + b) = a^2 Var(X)$
- Dla niezależnych X i Y: E(XY) = E(X)E(Y), Var(X+Y) = Var(X) + Var(Y)

24 Przedziały ufności. Przykłady konstrukcji

24.1 Definicja przedziału ufności

Przedział ufności to przedział, który z zadanym prawdopodobieństwem (poziomem ufności) zawiera nieznaną wartość parametru populacji.

24.2 Konstrukcja przedziału ufności dla średniej

Dla dużych prób (n > 30) i nieznanej wariancji populacji:

$$\left(\bar{X} - z_{\alpha/2} \frac{s}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{s}{\sqrt{n}}\right)$$

gdzie $z_{\alpha/2}$ to kwantyl rozkładu normalnego, s to odchylenie standardowe próby.

24.3 Konstrukcja przedziału ufności dla proporcji

$$\left(p - z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}, p + z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}\right)$$

gdzie p to proporcja sukcesu w próbie.

25 Estymatory największej wiarygodności

25.1 Definicja estymatora największej wiarygodności

Estymator największej wiarygodności to wartość parametru, która maksymalizuje funkcję wiarygodności dla danej próby.

25.2 Funkcja wiarygodności

Dla próby X_1, X_2, \dots, X_n i parametru θ :

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$

gdzie $f(x|\theta)$ to funkcja gęstości lub funkcja prawdopodobieństwa.

25.3 Metoda znajdowania estymatorów

- 1. Zapisz funkcję wiarygodności $L(\theta)$
- 2. Oblicz logarytm funkcji wiarygodności $l(\theta) = \ln L(\theta)$
- 3. Znajdź maksimum $l(\theta),$ rozwiązując równanie $\frac{d}{d\theta}l(\theta)=0$

25.4 Przykład: Rozkład normalny

Dla próby z rozkładu $N(\mu, \sigma^2)$, estymatory największej wiarygodności to: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^2$