13. Properties of Least Squares

Spring 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

- Before: learned about CEFs and linear projections in the population.
- · Last time: OLS estimator, its algebraic properties.
- Now: its statistical properties, both finite-sample and asymptotic.

Acemoglu, Johnson, and Robinson (2001)

Sampling distribution of the OLS estimator

• OLS is an estimator—we plug data into and we get out estimates.

- Just like the sample mean or sample difference in means
- · Has a sampling distribution, with a sampling variance/standard error.

Simulation procedure

- · Let's take a simulation approach to demonstrate:
 - Pretend that the AJR data represents the population of interest
 - See how the line varies from sample to sample
- Draw a random sample of size n = 30 with replacement using sample()
- 2. Use lm() to calculate the OLS estimates of the slope and intercept
- 3. Plot the estimated regression line

Population Regression

Randomly sample from AJR

Big picture

- We want finite-sample guarantees about our estimates.
 - · Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
 - · Unbiasedness: CEF is linear.
 - Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.
 - OLS consistent for the linear projection even with nonlinear CEF.
 - Asymptotic normality for sampling distribution under mild assumptions.
- · Focus on two models:
 - Linear projection model for asymptotic results.
 - Linear regression/CEF model for finite samples.

1/ Linear projection model and Large-sample Properties

Linear projection model

· We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}) , we assume the linear projection of Y on \mathbf{X} is defined as:

$$Y = \mathbf{X}' \boldsymbol{\beta} + e$$

 $\mathbb{E}[\mathbf{X}e] = 0.$

- 2. The design matrix is invertible, so $\mathbb{E}[\mathbf{X}_i \mathbf{X}_i'] > 0$ (positive definite).
 - Linear projection model holds under **very** mild assumptions.
 - Remember: not even assuming linear CEF!
 - Implies coefficients are $\pmb{\beta} = (\mathbb{E}[\mathbf{X}\mathbf{X}'])^{-1}\mathbb{E}[\mathbf{X}Y]$
 - What properties can we derive under such weak assumptions?

A very useful decomposition

$$\hat{\boldsymbol{\beta}} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}\right) = \boldsymbol{\beta} + \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)}_{\text{estimation error}}$$

- · OLS estimates are the truth plus some estimation error.
- · Most of what we derive about OLS comes from this view.
- Sample means in the estimation error follow the law of large numbers:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}'\overset{p}{\to}\mathbb{E}[\mathbf{X}_{i}\mathbf{X}_{i}']\equiv\mathbf{Q}_{\mathbf{X}\mathbf{X}}\qquad\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}e_{i}\overset{p}{\to}\mathbb{E}[\mathbf{X}e]=\mathbf{0}$$

• $\mathbf{Q}_{\mathbf{X}\mathbf{X}}$ is invertible by assumption, so by the continuous mapping theorem:

$$\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}\right)^{-1}\overset{p}{\rightarrow}\mathbf{Q}_{\mathbf{XX}}^{-1}\quad\Longrightarrow\quad\hat{\boldsymbol{\beta}}\overset{p}{\rightarrow}\boldsymbol{\beta}+\mathbf{Q}_{\mathbf{XX}}^{-1}\cdot\mathbf{0}=\boldsymbol{\beta},$$

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\beta}$ is consistent for β .

- · Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, $\pmb{\beta}$.
 - No guarantees about what the β_i represent!
 - Best linear approximation to $\mathbb{E}[Y \mid \mathbf{X}]$.
 - If we have a linear CEF, then it's consistent for the CEF coefficients.
- · Valid with no restrictions on Y: could be binary, discrete, etc.
- Not guaranteed to be unbiased (unless CEF is linear, as we'll see...)

Central limit theorem, reminders

- We'll want to approximate the sampling distribution of $\hat{\pmb{\beta}}$. CLT!
- Consider some sample mean of i.i.d. data: $n^{-1} \sum_{i=1}^{n} g(\mathbf{X}_{i})$. We have:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(\mathbf{X}_{i})\right] = \mathbb{E}[g(\mathbf{X}_{i})] \quad \text{var}\left[\frac{1}{n}\sum_{i=1}^{n}g(\mathbf{X}_{i})\right] = \frac{\text{var}[g(\mathbf{X}_{i})]}{n}$$

· CLT implies:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}g(\mathbf{X}_{i})-\mathbb{E}[g(\mathbf{X}_{i})]\right)\overset{d}{\rightarrow}\mathcal{N}(0,\mathrm{var}[g(\mathbf{X}_{i})])$$

• If $\mathbb{E}[g(\mathbf{X}_i)] = 0$, then we have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}g(\mathbf{X}_{i})\right) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}g(\mathbf{X}_{i}) \stackrel{d}{\to} \mathcal{N}(0,\mathbb{E}[g(\mathbf{X}_{i})g(\mathbf{X}_{i})'])$$

Standardized estimator

$$\sqrt{n}\left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) = \left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{X}_{i}\mathbf{X}_{i}'\right)^{-1} \left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n} \mathbf{X}_{i}e_{i}\right)$$

• Remember that $(n^{-1}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}')^{-1}\overset{\rho}{\to}\mathbf{Q}_{\mathbf{XX}}^{-1}$ so we have

$$\sqrt{n}\left(\hat{oldsymbol{eta}}-oldsymbol{eta}
ight)pprox \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\left(rac{1}{\sqrt{n}}\sum_{i=1}^{n}\mathbf{X}_{i}e_{i}
ight)$$

- What about $n^{-1/2} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$? Notice that:
 - $n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$ is a sample average with $\mathbb{E}[\mathbf{X}_{i} e_{i}] = 0$.
 - Rewrite as \sqrt{n} times an average of i.i.d. mean-zero random vectors.
- Let $\mathbf{\Omega} = \mathbb{E}[e_i^2 \mathbf{X}_i \mathbf{X}_i']$ and apply the CLT:

$$\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\mathbf{X}_{i}e_{i}\right)\overset{d}{\rightarrow}\mathcal{N}(0,\mathbf{\Omega})$$

Asymptotic normality

Theorem (Asymptotic Normality of OLS)

Under the linear projection model,

$$\sqrt{n}\left(\hat{\pmb{\beta}} - \pmb{\beta}\right) \overset{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \mathbf{V}_{\pmb{\beta}}),$$

where,

$$\mathbf{V}_{\pmb{\beta}} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{\Omega}\mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1} = \left(\mathbb{E}[\mathbf{X}_i\mathbf{X}_i']\right)^{-1}\mathbb{E}[e_i^2\mathbf{X}_i\mathbf{X}_i']\left(\mathbb{E}[\mathbf{X}_i\mathbf{X}_i']\right)^{-1}$$

- + $\hat{\pmb{\beta}}$ is approximately normal with mean $\pmb{\beta}$ and variance $\mathbf{Q}_{\mathbf{XX}}^{-1}\mathbf{\Omega}\mathbf{Q}_{\mathbf{XX}}^{-1}/n$
- $\mathbf{V}_{\hat{m{eta}}} = \mathbf{V}_{m{eta}}/n$ is the **asymptotic covariance matrix** of $\hat{m{eta}}$
 - Square root of the diagonal of $\mathbf{V}_{\hat{oldsymbol{eta}}}$ = standard errors for $\hat{oldsymbol{eta}}_{j}$
- Allows us to formulate (approximate) confidence intervals, tests.

Estimating OLS variance

$$\mathbf{V}_{\hat{\boldsymbol{\beta}}} = \frac{1}{n} \mathbf{V}_{\boldsymbol{\beta}} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{\Omega} \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}$$

- Estimation of V_B uses plug-in estimators.
 - Replace $\mathbf{Q}_{\mathbf{X}\mathbf{X}} = \mathbb{E}[\mathbf{X}_i \mathbf{X}_i']$ with $n^{-1} \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i' = \mathbb{X}' \mathbb{X}/n$.
 - Replace $\mathbf{\Omega} = \mathbb{E}[e_i^2 \mathbf{X}_i \mathbf{X}_i']$ with $n^{-1} \sum_{i=1}^{n-1} \hat{e}_i^2 \mathbf{X}_i \mathbf{X}_i'$
- · Putting these together:

$$\widehat{\mathbf{V}}_{\beta} = \left(\frac{1}{n} \mathbb{X}' \mathbb{X}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{e}}_{i}^{2} \mathbf{X}_{i} \mathbf{X}'_{i}\right) \left(\frac{1}{n} \mathbb{X}' \mathbb{X}\right)^{-1}$$
$$= \left(\mathbb{X}' \mathbb{X}\right)^{-1} \left(\sum_{i=1}^{n} \widehat{\mathbf{e}}_{i}^{2} \mathbf{X}_{i} \mathbf{X}'_{i}\right) \left(\mathbb{X}' \mathbb{X}\right)^{-1}$$

- Straightforward to show this is consistent: $\widehat{\mathbf{V}}_{\pmb{\beta}} \overset{p}{
 ightarrow} \mathbf{V}_{\pmb{\beta}}.$
- Square root of the diagonal of $\widehat{\mathbf{V}}_{\hat{\beta}} = n^{-1}\widehat{\mathbf{V}}_{\hat{\beta}}$: heteroskedasticity-consistent (HC) SEs

Homoskedasticity

Assumption: Homoskedasticity

The variance of the error terms is constant in \mathbf{X} , $\mathbb{E}[e^2 \mid \mathbf{X}] = \sigma^2(\mathbf{X}) = \sigma^2$.

Consequences of homoskedasticity

- Homoskedasticity implies $\mathbb{E}[e_i^2\mathbf{X}_i\mathbf{X}_i'] = \mathbb{E}[e_i^2]\mathbb{E}[\mathbf{X}_i\mathbf{X}_i'] = \sigma^2\mathbf{Q}_{\mathbf{XX}}$
- Simplifies the expression for the variance of $\sqrt{n}(\hat{\beta} \beta)$:

$$\mathbf{V}_{\pmb{\beta}}^{\text{lm}} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbb{E}[e_i^2]\mathbf{Q}_{\mathbf{X}\mathbf{X}}\mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1} = \sigma^2\mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}$$

• Estimated variance of $\hat{\beta}$ under homoskedasticity

$$s^{2} = \frac{1}{n-k} \sum_{i=1}^{n} \hat{\mathbf{e}}_{i}^{2} \qquad \widehat{\mathbf{V}}_{\hat{\beta}}^{\text{lm}} = \frac{1}{n} s^{2} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}' \right)^{-1} = s^{2} \left(\mathbb{X}' \mathbb{X} \right)^{-1}$$

• LLN implies $s^2\stackrel{p}{ o}\sigma^2$ and so $n\widehat{m V}_{\hatm eta}^{lm}$ is consistent for $m V_{m eta}^{lm}$

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\widehat{\boldsymbol{\beta}}}^{\text{lm}}$ by default.
 - e.g. lm() in R or reg in Stata.
- Separate commands for HC SEs $\widehat{\mathbf{V}}_{\hat{\pmb{\beta}}}$
 - Use {sandwich} package in R or , robust in Stata.
- If $\widehat{\mathbf{V}}_{\hat{\beta}}^{\text{lm}}$ and $\widehat{\mathbf{V}}_{\hat{\beta}}$ differ a lot, maybe check modeling assumptions (King and Roberts, PA 2015)
- Lots of "flavors" of HC variance estimators (HC0, HC1, HC2, etc).
 - Mostly small, ad hoc changes to improve finite-sample performance.

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{V}_{eta_{j}}$ be the estimated SE for $\widehat{eta}_{j}.$
 - Square root of jth diagonal entry: $\sqrt{[\widehat{\mathbf{V}}_{\widehat{m{eta}}}]_{jj}}$
- Hypothesis test of $\beta_j = \beta_0$:

$$\text{general t-statistic} = \frac{\widehat{\beta}_j - \beta_0}{\sqrt{\widehat{V}_{\beta_j}}} \qquad \text{``usual'' t-statistic} = \frac{\widehat{\beta}_j}{\sqrt{\widehat{V}_{\beta_j}}}$$

- Use same critical values from the normal as usual $z_{lpha/2}=1.96$.
- 95% (asymptotic) confidence interval for \hat{eta}_{j} :

$$\left[\widehat{\beta}_{j}-1.96\widehat{V}_{\beta_{j}},\;\widehat{\beta}_{j}+1.96\widehat{V}_{\beta_{j}}\right]$$

• Software often uses t critical values instead of normal (we'll see why).

2/ Inference for Multiple Parameters

Inference for interactions

$$m(x,z) = \beta_0 + X\beta_1 + Z\beta_2 + XZ\beta_3$$

- Partial or marginal effect of X at Z: $\frac{\partial m(x,z)}{\partial x} = \beta_1 + z\beta_3$
- Estimate it by plugging in the estimated coefficients: $\frac{\partial \widehat{m}(x,z)}{\partial x} = \hat{\beta}_1 + z\hat{\beta}_3$
- What if we want the variance of this effect for any value of Z?

$$\mathbb{V}\left(\frac{\partial \widehat{m}(x,z)}{\partial x}\right) = \mathbb{V}\left[\widehat{\beta}_1 + z\widehat{\beta}_3\right] = \mathbb{V}[\widehat{\beta}_1] + z^2 \mathbb{V}[\widehat{\beta}_3] + 2z \mathsf{cov}[\widehat{\beta}_1,\widehat{\beta}_3]$$

· Use the estimated covariance matrix:

$$\widehat{\mathbb{V}}\left(\frac{\partial \widehat{m}(x,z)}{\partial x}\right) = \widehat{V}_{\beta_1} + z\widehat{V}_{\beta_3} + 2z\widehat{V}_{\beta_1\beta_3}$$

Tests of multiple coefficients

$$m(X,Z) = \beta_0 + X\beta_1 + Z\beta_2 + XZ\beta_3$$

• What about a test of no effect of X ever? Involves 2 coeffcients:

$$H_0: \beta_1 = \beta_3 = 0$$

- Alternative: $H_1: \beta_1 \neq 0$ or $\beta_3 \neq 0$
- We would like a test statistic that is large when the null is implausible.
 - What about $\hat{\beta}_1^2 + \hat{\beta}_3^2$?
 - · Distribution depends on the variance/covariance of the coefficients.
 - · Need to normalize like the t-statistic.

Alternative test for one coefficient

• Usually t-test of $H_0: \beta_j = b_0$ based on the t-statistic:

$$t = \frac{\hat{\beta}_j - b_0}{\widehat{\mathsf{se}}(\hat{\beta}_j)},$$

- Reject when |t| > c for some critical value c from the standard normal.
- Equivalent test based rejects when $t^2 > c^2$

$$t^2 = \frac{\left(\hat{\beta}_j - b_0\right)^2}{\mathbb{V}[\hat{\beta}_j]} = \frac{n\left(\hat{\beta}_j - b_0\right)^2}{[\mathbf{V}_{\pmb{\beta}}]_{jj}}$$

- Because $t \stackrel{d}{\to} \mathcal{N}(0,1)$, we'll have t^2 converging to a χ_1^2 distribution
 - Reminder: χ_k^2 is the sum of k squared standard normals.
 - Could get the critical value for t^2 directly from χ_1^2 .

Rewriting hypotheses with matrices

• We can rewrite the null hypothesis as $H_0: \mathbf{L}\boldsymbol{\beta} = \mathbf{c}$ where,

$$\mathbf{L} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- L has q rows or restriction and k+1 columns (one for each coefficient)
- Estimated version of the constraint: $\mathbf{L}\hat{\boldsymbol{\beta}}$
- By the Delta method, under the null hypothesis we have

$$\sqrt{n}\left(\mathbf{L}\hat{\boldsymbol{\beta}} - \mathbf{L}\boldsymbol{\beta}\right) \stackrel{d}{\to} \mathcal{N}(0, \mathbf{L}'\mathbf{V}_{\boldsymbol{\beta}}\mathbf{L}).$$

· In this case:

$$\sqrt{n} \left(\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_3 \end{bmatrix} \right) \overset{d}{\to} \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} [\mathbf{V}_{\pmb{\beta}}]_{[11]} & [\mathbf{V}_{\pmb{\beta}}]_{[13]} \\ [\mathbf{V}_{\pmb{\beta}}]_{[31]} & [\mathbf{V}_{\pmb{\beta}}]_{[33]} \end{bmatrix} \right)$$

• If this covariance matrix where identity, then these would be standard normal and $\hat{\beta}_1^2 + \hat{\beta}_3^2$ would be χ_2^2 under the null

Wald statistic

- Under the null, $\sqrt{n}\left(\mathbf{L}\hat{\pmb{\beta}}-\mathbf{c}\right)\overset{d}{\to}\mathcal{N}(\mathbf{0},\mathbf{L}'\mathbf{V}_{\pmb{\beta}}\mathbf{L})$
- $(\mathbf{L}\hat{\pmb{\beta}} \mathbf{c})'(\mathbf{L}\hat{\pmb{\beta}} \mathbf{c})$ is the squared deviations from the null.
 - Problem: doesn't account for variance/covariance of the estimated coefficients.
- Wald statistic normalize by the covariance matrix:

$$W = n \left(\mathbf{L} \hat{\boldsymbol{\beta}} - \mathbf{c} \right)' \left(\mathbf{L}' \hat{\mathbf{V}}_{\boldsymbol{\beta}} \mathbf{L} \right)^{-1} \left(\mathbf{L} \hat{\boldsymbol{\beta}} - \mathbf{c} \right)$$

- Similar to dividing by the SE for the t-test
- Squared distance of observed values from the null, weighted by the distribution of the parameters under the null

Weighting by the distribution

Wald test

$$W = n \left(\mathbf{L} \hat{\boldsymbol{\beta}} - \mathbf{c} \right)' \left(\mathbf{L}' \hat{\mathbf{V}}_{\boldsymbol{\beta}} \mathbf{L} \right)^{-1} \left(\mathbf{L} \hat{\boldsymbol{\beta}} - \mathbf{c} \right)$$

- Asymptotically under the null $W \stackrel{d}{\to} \chi_q^2$ where q is rows of L
 - q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}(W>w_{\alpha})=\alpha$ under the null.
 - Use χ_q^2 distribution for critical values, p-values
- Typical software output: **F-statistic** F = W/q
 - p-values and critical values come from F distribution with q and n-k-1 dfs.
 - As $n \to \infty$, $F_{q,n-k-1} \stackrel{d}{\to} \chi_q^2$ so asymptotically similar to Wald under homoskedascity (slightly more conservative).
 - No justification for F test under heteroskedasticity.
 - "Usual" F-test reports test of all coef = 0 except intercept (pointless?)

Wald test steps

- 1. Choose a Type I error rate, α .
 - · Same interpretation: rate of false positives you are willing to accept
- 2. Calculate the rejection region for the test (one-sided)
 - Rejection region is the region $W > w_{\alpha}$ such that $\mathbb{P}(W > w_{\alpha}) = \alpha$
 - We can get this from R using the qchisq() function
- 3. Reject if observed statistic is bigger than critical value
 - Use pchisq() to get p-values if needed.
 - When applied to a single coefficient, equivalent to a t-test.
 - Use packages like {aod} or {clubSandwich} in R.

Multiple testing

- Separate t-tests for each β_i : α of them will be significant by chance.
- · Illustration:
 - · Randomly draw 21 variables independently.
 - · Run a regression of the first variable on the rest.
- · By design, no effect of any variable on any other.

Multiple test example

noise <- data.frame(matrix(rnorm(2100), nrow = 100, ncol = 21))
summary(lm(noise))</pre>

```
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.028039
                          0.113820
                                      -0.25
                                              0.8061
## X2
              -0.150390
                          0.112181
                                      -1.34
                                              0.1839
## X3
                0.079158
                          0.095028
                                     0.83
                                              0.4074
## X4
              -0.071742
                          0.104579
                                      -0.69
                                              0.4947
## X5
                0.172078
                          0.114002
                                      1.51
                                              0.1352
## X6
                0.080852
                           0.108341
                                      0.75
                                              0.4577
## X7
                0.102913
                          0.114156
                                      0.90
                                              0.3701
## X8
              -0.321053
                          0.120673
                                      -2.66
                                              0.0094 **
## X9
              -0.053122
                          0.107983
                                      -0.49
                                              0.6241
## X10
                0.180105
                          0.126443
                                      1.42
                                              0.1583
## X11
                0.166386
                           0.110947
                                      1.50
                                              0.1377
## X12
               0.008011
                          0.103766
                                      0.08
                                              0.9387
## X13
               0.000212
                          0.103785
                                      0.00
                                              0.9984
## X14
              -0.065969
                           0.112214
                                      -0.59
                                              0.5583
## X15
              -0.129654
                           0.111575
                                      -1.16
                                              0.2487
                                              0.6647
## X16
              -0.054446
                           0.125140
                                      -0.44
## X17
                0.004335
                           0.112012
                                      0.04
                                              0.9692
## X18
              -0.080796
                           0.109853
                                      -0.74
                                              0.4642
## X19
              -0.085806
                           0.118553
                                      -0.72
                                              0.4713
## X20
              -0.186006
                          0.104560
                                      -1.78
                                              0.0791 .
## X21
                0.002111
                          0.108118
                                     0.02
                                              0.9845
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.999 on 79 degrees of freedom
## Multiple R-squared: 0.201. Adjusted R-squared: -0.00142
## F-statistic: 0.993 on 20 and 79 DF. p-value: 0.48
```

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha = 0.05$
- 2 out of 20 variables significant at $\alpha = 0.1$
- · Exactly the number of false positives we would expect.
- · But notice the F-statistic: the variables are not jointly significant
- Bonferroni correction: use p-value cutoff α/m where m is the number of hypotheses.
 - Example: 0.05/20 = 0.0025
 - Ensures that the family-wise error rate (probability of making at least 1 Type I error) is less than α .

3/ Linear Regression Model and Finite-sample Properties

Standard linear regression model

- Standard textbook model: correctly specified linear CEF
 - · Designed for finite-sample results.

Assumption: Linear Regression Model

1. The variables (Y, \mathbf{X}) satisfy the the linear CEF assumption.

$$Y = \mathbf{X}' \boldsymbol{\beta} + e$$

 $\mathbb{E}[e \mid \mathbf{X}] = 0.$

- 2. The design matrix is invertible $\mathbb{E}[\mathbf{XX'}] > 0$ (positive definite).
 - Basically this assumes the CEF of Y given **X** is linear.
- We continue to maintain $\{(Y_i, \mathbf{X}_i)\}$ are i.i.d.

Properties of OLS under linear CEF

- Linear CEFs imply stronger finite-sample guarantees:
- 1. Unbiasedness: $\mathbb{E}\left[\hat{\pmb{\beta}}\mid\mathbb{X}\right]=\hat{\pmb{\beta}}$
- 2. Conditional sampling variance: let $\sigma_i^2 = \mathbb{E}[e_i^2 \mid \mathbf{X}_i]$

$$\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}] = (\mathbb{X}'\mathbb{X})^{-1} \left(\sum_{i=1}^{n} \sigma_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}' \right) (\mathbb{X}'\mathbb{X})^{-1}$$

• Useful when linearity holds by default (discrete X in experiments, etc)

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:
- 3. Conditional sampling variance: $\mathbb{V}[\hat{\beta} \mid \mathbb{X}] = \sigma^2 (\mathbb{X}'\mathbb{X})^{-1}$
- 4. Unbiased variance estimator: $\mathbb{E}\left[\hat{\mathbb{V}}^0[\hat{\pmb{\beta}}]\mid \mathbf{X}\right]=\sigma^2(\mathbb{X}'\mathbb{X})^{-1}$
- 5. **Gauss-Markov**: OLS is the best linear unbiased estimator of $\pmb{\beta}$ (BLUE). If $\pmb{\tilde{\beta}}$ is a linear estimator,

$$\mathbb{V}[\tilde{\boldsymbol{\beta}}\mid\mathbb{X}]\geq\mathbb{V}[\hat{\boldsymbol{\beta}}\mid\mathbb{X}]=\sigma^{2}\left(\mathbb{X}'\mathbb{X}
ight)^{-1}$$

- For matrices, $A \ge B$ means that A B is positive semidefinite.
- A matrix **C** is p.s.d. if $\mathbf{x}'\mathbf{C}\mathbf{x} \geq 0$.
- $\bullet\,$ Upshot: OLS will have the smaller SEs than any other linear estimator.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}(\mathbf{X}'\boldsymbol{\beta}, \sigma^2)$.
 - Normal error model since $e = Y \mathbf{X}'\boldsymbol{\beta} \sim \mathcal{N}(0, \sigma^2)$.
- Rarely believed, but allows for exact inference for all n.
 - $(\hat{\beta}_i \beta_i)/\widehat{\text{se}}(\hat{\beta}_i)$ follows a t distribution with n k degrees of freedom.
 - \cdot F statistics follows F distribution exactly rather than approximately.
- · Software often implicitly assumes this for p-values.
- With reasonable *n*, asymptotic normality has the same effect.