1. Máquinas de Turing

1.1 Considere a máquina de Turing

$$\mathfrak{T} = (\{0, 1, 2, 3, 4, 5, 6, 7, 8\}, \{a, b\}, \{a, b, \Delta\}, \delta, 0, 8, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1, a, D)	(1,b,D)	$(2, \Delta, E)$
2	$(3, \Delta, D)$	$(5, \Delta, D)$	$(8, \Delta, D)$
3			(4, a, D)
4	(4, a, D)	(4,b,D)	(7, a, E)
5			(6,b,D)
6	(6, a, D)	(6,b,D)	(7, b, E)
7	(7, a, E)	(7,b,E)	$(2, \Delta, E)$

- a) Represente a máquina de Turing T através de um grafo.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta ab)$; e a partir da configuração $(0, \Delta baa)$?
- c) Indique informalmente o comportamento de \mathfrak{T} , quando a configuração inicial é $(0, \underline{\Delta}u)$, onde u é uma palavra de $\{a, b\}^*$.
- **1.2** Considere a máquina de Turing $\mathfrak{T} = (\{0,1,2\},\{a,b\},\{a,b,\Delta\},\delta,0,2,\Delta)$, onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0	(0, a, C)	(0,b,E)	$(1, \Delta, D)$
1	(1,a,D)		$(2, \Delta, C)$

- a) Indique a sequência de configurações que podem ser computadas a partir de $(0, \underline{\Delta}aab)$.
- b) Indique uma palavra $u \in \{a, b, \Delta\}^*$ tal que, a partir da configuração $(0, \underline{u})$ pode ser computada uma configuração de:
 - i) paragem;
 - ii) ciclo;
 - iii) aceitação;
 - iv) rejeição.
- c) Descreva informalmente o comportamento de \mathcal{T} quando a configuração inicial é $(0, \underline{u})$, onde u é uma palavra sobre $\{a, b, \Delta\}$.
- d) Calcule a linguagem reconhecida por T.

1.3 Considere a seguinte máquina de Turing \mathcal{T} de alfabeto de entrada $A = \{a, b\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}ababba)$.
- b) Identifique a linguagem reconhecida por T.
- 1.4 Construa máquinas de Turing que reconheçam cada uma das seguintes linguagens:
 - a) ab^*a^+ , sobre o alfabeto $\{a,b\}$.
 - **b)** $\{a^nb^{2n} \mid n \in \mathbb{N}_0\}$, sobre o alfabeto $\{a, b\}$.
 - c) $\{a^nb^{2n}a^n \mid n \in \mathbb{N}_0\}$, sobre o alfabeto $\{a,b\}$.
 - **d)** $\{a^m b^n \mid m, n \in \mathbb{N}_0, m < n\}$, sobre o alfabeto $\{a, b\}$.
 - e) $\{a^nb^{mn} \mid m, n \in \mathbb{N}_0\}$, sobre o alfabeto $\{a, b\}$.
 - f) $\{a^mbc^n: m+n \text{ \'e par}\}$, sobre o alfabeto $\{a,b,c\}$.
 - **g)** $\{wcw^I \in A^* \mid w \in \{a, b\}^*\}$, sobre o alfabeto $\{a, b, c\}$.
 - h) $\{abab^2ab^3\cdots ab^na: n \ge 1\}$, sobre o alfabeto $\{a,b\}$.
- **1.5** Mostre que, para toda a máquina de Turing $\mathfrak{T} = (Q, A, T, \delta, i, f, \Delta)$, existe uma máquina de Turing \mathfrak{T}' que reconhece a mesma linguagem que \mathfrak{T} , e tal que \mathfrak{T}' nunca rejeita uma palavra (ou seja, para qualquer palavra $w \in A^*$, \mathfrak{T}' aceita w ou a configuração inicial $(i, \Delta w)$ associada a w é uma configuração de ciclo).
- **1.6** Dada uma máquina de Turing \mathcal{T} , defina uma máquina de Turing \mathcal{T}_{aba} tal que:

 \mathcal{T} aceita a palavra vazia $\epsilon \Longleftrightarrow \mathcal{T}_{aba}$ aceita a palavra aba.

1.7 Considere a seguinte máquina de Turing \mathcal{M} de alfabeto de entrada $A = \{a, b\}$,

- a) Identifique a linguagem reconhecida pela máquina \mathcal{M} .
- b) Identifique a linguagem reconhecida pela máquina $\mathcal{M} \longrightarrow \mathcal{T}$, onde \mathcal{T} é a máquina de Turing do Exercício 1.3.
- **1.8** Construa uma máquina de Turing $\mathfrak{T}=(Q,A,T,\delta,i,f,\Delta)$, com alfabeto de entrada $A=\{a,b\}$, que insira uma letra $x\in A$ na célula onde o cursor está posicionado: ou seja, em rigor, que seja capaz de efetuar a computação

$$(i, u\underline{v}) \stackrel{*}{\longrightarrow} (f, u\underline{x}v)$$

para quaisquer palavras $u \in T^*$ e $v \in A^*$.

1.9 Considere a seguinte máquina de Turing \mathcal{T} de alfabeto de entrada $A = \{a, b\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}babba)$.
- b) Identifique o domínio D da função parcial $g:A^*\to A^*$ calculada por $\mathfrak{T}.$
- c) Para cada palavra $u \in D$, determine a palavra g(u).
- **1.10** A seguinte máquina de Turing calcula uma função g de $\{a,b\}^*$ para $\{a,b\}^*$:

Dada uma palavra $u \in \{a, b\}^*$, descreva a palavra g(u).

1.11 Indique máquinas de Turing que calculem cada uma das seguintes funções:

$$\begin{array}{cccc} \mathbf{e}) & g: & \mathbb{N}_0 & \longrightarrow & \mathbb{N}_0 \\ & n & \longmapsto & 2n \end{array}$$

$$\begin{array}{cccc} \mathbf{f}) & g: & \mathbb{N}_0 & \longrightarrow & \{0,1,2\} \\ & n & \longmapsto & r, & \text{onde } n \equiv r \, (\text{mod } 3) \end{array}$$

$$\mathbf{g}) \quad g: \quad \mathbb{N}_0 \quad \longrightarrow \quad \mathbb{N}_0$$

$$n \quad \longmapsto \quad \begin{cases} \frac{n}{2} & \text{se } n \in \text{par} \\ n.d. & \text{senão} \end{cases}$$

$$\mathbf{d}) \quad g: \quad \mathbb{N}_0 \quad \longrightarrow \quad \mathbb{N}_0$$

$$\qquad \qquad n \quad \longmapsto \quad n+2$$

$$\mathbf{h}) \quad p_2: \qquad \mathbb{N}_0^3 \quad \longrightarrow \quad \mathbb{N}_0$$
$$(n_1, n_2, n_3) \quad \longmapsto \quad n_2$$

1.12 Sejam \mathfrak{T}_f , \mathfrak{T}_g e \mathfrak{T}_h máquinas de Turing que calculam funções $f:\mathbb{N}_0^2\longrightarrow\mathbb{N}_0$ e $g,h:\mathbb{N}_0\longrightarrow\mathbb{N}_0$ respetivamente. Mostre que as seguintes funções são ainda computáveis:

a)
$$[funç\~ao\ composta]$$

 $g \circ h: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$
 $n \longmapsto g(h(n))$

d) [função troca de variáveis]

$$t: \mathbb{N}_0^2 \longrightarrow \mathbb{N}_0$$

 $(n,m) \longmapsto f(m,n)$

$$\begin{array}{cccc} \mathbf{b}) & [\mathit{funç\~ao}\ \mathit{soma}] \\ & g+h: & \mathbb{N}_0 & \longrightarrow & \mathbb{N}_0 \\ & n & \longmapsto & g(n)+h(n) \end{array}$$

e) [função identificação de variáveis]
$$i: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

$$n \longmapsto f(n,n)$$

$$\begin{array}{ccc} \mathbf{c}) & \textit{[função mínimo]} \\ & \min(g,h): & \mathbb{N}_0 & \longrightarrow & \mathbb{N}_0 \\ & & n & \longmapsto & \min(g(n),h(n)) \end{array}$$

f) [função parametrização da $2^{\underline{a}}$ variável] $f_k: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $n \longmapsto f(n,k), \text{ onde } k \in \mathbb{N}_0$

1.13 A máquina de Turing \mathcal{T} seguinte, com alfabeto de entrada $A = \{1\}$, calcula a função característica χ_L de uma linguagem L sobre A.

- a) Indique as configurações de \mathcal{T} que podem ser computadas a partir de $(0, \underline{\Delta}111)$.
- b) Indique, justificando, o valor de $\chi_L(1111)$.
- c) Diga qual é a linguagem L. Justifique.
- d) Diga, justificando, qual é a linguagem reconhecida por T.
- e) Modifique a máquina \mathcal{T} de forma a obter uma máquina de Turing que reconheça L.

Folha 5

- **1.14** Considere a linguagem $L = (ba)^*b^+$ sobre o alfabeto $A = \{a, b\}$.
 - a) Construa uma máquina de Turing \mathcal{T} que calcule a função característica χ_L de L.
 - b) Indique a sequência de configurações de \mathcal{T} que podem ser computadas a partir da configuração $(i, \underline{\Delta}bab^3)$, onde i é o estado inicial de \mathcal{T} .
 - c) Qual é a linguagem reconhecida por T? Justifique.
- **1.15** Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

$$(a,a)/(a,a),(E,C)$$

$$(a,\Delta)/(a,a),(D,D) \qquad (a,\Delta)/(a,\Delta),(E,C)$$

$$(b,\Delta)/(b,\Delta),(D,C) \qquad (b,a)/(b,\Delta),(E,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D) \qquad (\Delta,\Delta)/(\Delta,\Delta),(E,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D) \qquad (\Delta,\Delta)/(\Delta,\Delta),(C,C)$$

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}abbaba, \underline{\Delta})$ e diga se a palavra abbaba é aceite por \mathcal{T} .
- b) Identifique a linguagem reconhecida por T.
- **1.16** Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

Identifique a linguagem reconhecida por T.

1.17 Considere a seguinte linguagem sobre o alfabeto $\{a, b\}$,

$$L = \{a^m b^n a^m : 1 \le n \le m\}.$$

Construa uma máquina de Turing com duas fitas que reconheça L.

 ${\bf 1.18}$ Construa uma máquina de Turing ${\mathfrak T},$ com duas fitas, que calcule a função

$$g: \mathbb{N}_0^2 \longrightarrow \mathbb{N}_0$$
$$(m,n) \longmapsto 2m+n.$$

1.19 Considere a máquina de Turing não-determinista

$$\mathfrak{T} = (\{q_0, q_1, q_2, q_3\}, \{1\}, \{1, \Delta\}, \delta, q_0, q_3, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	1	Δ
q_0	Ø	$\{(q_1, \Delta, D)\}$
q_1	Ø	$\{(q_1, 1, D), (q_2, \Delta, E)\}$
$ q_2 $	$\{(q_2, 1, E)\}$	$\{(q_3, \Delta, C)\}$

Indique o comportamento de \mathcal{T} a partir da configuração inicial $(q_0, \underline{\Delta}u)$ associada a uma palavra $u \in \{1\}^*$.

- 1.20 Seja T a máquina de Turing do exercício anterior e sejam:
 - $\mathcal{T}_{\text{copiar}}$ a máquina de Turing capaz de copiar uma palavra, ou seja, de transformar o conteúdo da fita de $\underline{\Delta}u$ em $\underline{\Delta}u\Delta u$;
 - $\mathfrak{T}_{\text{mult}}$ a máquina de Turing capaz de multiplicar dois números, ou seja, de transformar o conteúdo da fita de $\underline{\Delta} 1^m \Delta 1^n$ em $\underline{\Delta} 1^{mn}$;
 - $\mathfrak{T}_{\text{igual}}$ a máquina de Turing capaz de testar a igualdade entre palavras, ou seja, começando com a fita em $\underline{\Delta}u\Delta v$, atinge uma configuração de aceitação se e só se u=v.

Considere a seguinte máquina de Turing não-determinista.

Qual é a linguagem que esta máquina de Turing reconhece?

1.21 Seja

$$L = \{1^n : n > 1 \text{ \'e um natural n\~ao primo}\}.$$

Usando a ideia do exercício anterior, construa uma máquina de Turing que reconheça a linguagem L.

- **1.22** Prove que a linguagem $L = \{wa^n : w \in A^*, n \in \mathbb{N}_0, |w|_b = n\}$ sobre o alfabeto $A = \{a, b\}$ é recursiva.
- 1.23 Suponha que L_1, \ldots, L_k são linguagens recursivamente enumeráveis que formam uma partição de A^* . Mostre que cada L_i é uma linguagem recursiva.
- **1.24** Esboce uma prova de que, se L_1 e L_2 são linguagens recursivamente enumeráveis, então L_1L_2 e L_1^* são também recursivamente enumeráveis, construindo máquinas de Turing não-deterministas que aceitem estas linguagens.

- **1.25** Mostre que existe uma linguagem L tal que nem L nem \overline{L} são recursivamente enumeráveis.
- **1.26** Seja L uma linguagem sobre um alfabeto A. Indique quais das situações seguintes são possíveis e quais são impossíveis.
 - a) $L \in \overline{L}$ são recursivas.
 - b) L e \overline{L} são recursivamente enumeráveis.
 - c) L e \overline{L} são recursivamente enumeráveis, mas nenhuma delas é recursiva.
 - d) L é recursiva e \overline{L} é recursivamente enumerável mas não recursiva.
 - e) L é recursivamente enumerável e \overline{L} não é recursivamente enumerável.
- 1.27 Seja T a máquina de Turing

que transforma uma dada palavra sobre o alfabeto $\{a,b\}$ numa outra em que a primeira ocorrência da letra a (caso exista) é substituída por b. Codifique a máquina \mathcal{T} .

1.28 Desenhe a máquina de Turing codificada por:

$$x^2yx^2yxyx^3yxyx^3y^2\ x^3yx^2yx^3yx^2yx^3y^2\ x^3yx^3yx^3yx^3y^2\ x^3yxyx^4yxyx^2y^2\ x^4yx^2yx^5yx^2yx^3y^2\ x^4yx^3yx^6yx^3yx^3y^2\ x^5yxyx^7yx^2yx^2y^2\ x^6yxyx^7yx^3yx^2y^2\ x^7yx^3yx^7yx^3yx^7yx^3yx^2y^2\ x^7yxyxyxyxyxy^2$$

- **1.29** Dê exemplos de palavras u sobre $\{x,y\}$ tais que u não é codificação de uma máquina de Turing.
- 1.30 Desenhe a parte da máquina de Turing universal \mathcal{T}_U que é responsável por modificar as 3 fitas e por recolocar o cursor nas posições adequadas, depois da operação de procura ter identificado o quíntuplo correto na fita 1. Por exemplo, a configuração

 $\Delta xxx\Delta \cdots$

seria transformada em

 $\Delta \underline{x}xyxyxxxyxxxyxxxyxxxyxxxyxxxyxxyxxy\cdots$

 $\Delta xyxxyxxxyxxxy\Delta \cdots$

 $\Delta xxxx\Delta \cdots$

2. Problemas de decisão

- **2.1** Seja $A = \{a, b\}$. Mostre que as seguintes propriedades de palavras $w \in A^*$ são decidíveis.
 - a) w tem comprimento impar.
 - **b)** ab não é um fator de w.
 - c) w tem o mesmo número de ocorrências das letras a e b.
- **2.2** Indique quais das afirmações seguintes sobre palavras $w \in \{x, y\}^*$ são decidíveis. Indique ainda quais das afirmações indecidíveis são semi-decidíveis.
 - a) $w = c(\mathfrak{I})$ para alguma máquina de Turing \mathfrak{I} e \mathfrak{I} aceita w.
 - b) $w=c(\mathfrak{I})$ para alguma máquina de Turing \mathfrak{I} e \mathfrak{I} não aceita w.
 - c) $w = c(\mathfrak{I})$ para alguma máquina de Turing \mathfrak{I} .
 - d) $w \neq c(\mathfrak{I})$ para toda a máquina de Turing \mathfrak{I} .
- **2.3** Sejam P e Q predicados de domínio D, e sejam $\neg P$, $P \land Q$ e $P \lor Q$ os predicados definidos, para cada $d \in D$, por:

$$(\neg P)(d) = \neg P(d)$$
$$(P \land Q)(d) = P(d) \land Q(d)$$
$$(P \lor Q)(d) = P(d) \lor Q(d).$$

Mostre que:

- a) se $P \in Q$ são decidíveis, então $P \wedge Q \in P \vee Q$ são decidíveis;
- b) se $P \in Q$ são semi-decidíveis, então $P \wedge Q \in P \vee Q$ são semi-decidíveis;
- c) P é decidível se e só se $\neg P$ é decidível;
- d) P é decidível se e só se P e $\neg P$ são semi-decidíveis.
- e) P ser semi-decidível não implica que $\neg P$ seja semi-decidível.
- 2.4 O objetivo deste exercício é fazer uma redução do problema da aceitação ao problema da paragem. Seja A um alfabeto.
 - a) Dada uma máquina de Turing \mathcal{T} , defina uma máquina de Turing \mathcal{T}' tal que, para toda a palavra $w \in A^*$, \mathcal{T} aceita w se e só se \mathcal{T}' pára com w.
 - **b)** Mostre que existe uma máquina de Turing \mathcal{R} que calcula a função $r: c(\mathcal{T}) \mapsto c(\mathcal{T}')$.
 - c) Conclua que $Aceitação \leq Paragem$.
- **2.5** O objetivo deste exercício é fazer outra demonstração da indecidibilidade do problema da paragem.
 - a) Mostre que a linguagem $\{w: w = c(\mathcal{T}) \in \mathcal{T} \text{ não pára com } w, \text{ para alguma MT } \mathcal{T}\}$ não é recursiva.
 - b) Conclua que o problema $Q(\mathfrak{I})$: " \mathfrak{I} pára com $c(\mathfrak{I})$ " é indecidível.
 - \mathbf{c}) Reduza Q ao problema da paragem e conclua que o problema da paragem é indecidível.

- **2.6** Das afirmações seguintes selecione as que são verdadeiras, sejam quais forem os problemas de decisão P_1, P_2, Q_1 e Q_2 tais que $P_1 \leq Q_1, Q_1 \leq P_2$ e $Q_2 \leq P_2$.
 - a) Se P_2 é decidível, então P_1 , Q_1 e Q_2 são também decidíveis.
 - b) Se P_1 é indecidível, então P_2 , Q_1 e Q_2 são também indecidíveis.
 - c) $P_1 \leq P_2$.
 - d) Se Q_1 é semi-decidível, então P_1 e P_2 são também semi-decidíveis.
- 2.7 Considere os problemas de decisão
 - $Pára_{\epsilon}$: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} pára com ϵ ?
 - $P\'ara_{ab}$: dada uma máquina de Turing T, será que T pára com a palavra ab?
 - a) Mostre que $P \acute{a} r a_{\epsilon} \leq P \acute{a} r a_{ab}$.
 - **b)** Conclua que o problema $P\acute{a}ra_{ab}$ é indecidível.
- **2.8** Considere o problema *Equivalência*: dadas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 , será que \mathcal{T}_1 e \mathcal{T}_2 reconhecem a mesma linguagem?
 - a) Mostre que o problema Aceita Tudo se reduz a Equivalência.
 - b) Conclua que o problema da equivalência é indecidível.
- 2.9 Mostre que os seguintes problemas de decisão são indecidíveis.
 - a) Dadas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 , será que $L(\mathcal{T}_1) \subseteq L(\mathcal{T}_2)$?
 - **b)** Dadas máquinas de Turing \mathfrak{I}_1 e \mathfrak{I}_2 , será que $L(\mathfrak{I}_1) \cap L(\mathfrak{I}_2) = \emptyset$?
 - c) Dada uma máquina de Turing \mathcal{T} e um estado não final q, será que \mathcal{T} atinge o estado q quando iniciada com a fita vazia?
- **2.10** Porque é que o seguinte argumento é incorreto?
 - O problema da aceitação da palavra vazia é um subproblema do problema da aceitação, que é indecidível, e portanto é ele próprio indecidível.
- ${f 2.11}$ Mostre que as seguintes propriedades de máquinas de Turing ${f T}$ são decidíveis.
 - a) O estado inicial de $\mathcal{T} \in q_6$.
 - b) T tem 4 estados.
 - c) O símbolo s_{12} pertence ao alfabeto da fita de T.
 - d) $\delta(q_3, \Delta) = (q_5, \Delta, E)$ é uma transição de T.
 - e) O código de T é w_0 , onde $w_0 \in \{x, y\}^*$ é uma palavra fixa.
- **2.12** Mostre que as seguintes propriedades de linguagens recursivamente enumeráveis L são indecidíveis.
 - a) L contém w_0 , onde w_0 é uma palavra fixa.
 - b) L é regular.
 - c) L é finita.
 - **d)** $L \neq \{a, b\}^*$.
- **2.13** Dê exemplo de uma propriedade de linguagens que nenhuma linguagem recursivamente enumerável verifica.

Folha 10

3. Funções parciais recursivas

- **3.1** Determine a função $\operatorname{Rec}(f,g)$ definida recursivamente pelas funções $f: \mathbb{N}_0 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^3 \to \mathbb{N}_0$ tais que:
 - a) f(x) = x e g(x, y, z) = z + 2.
 - **b)** f(x) = x e g(x, y, z) = (y + 1)z.
- **3.2** Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função definida, para cada $(x,y,z) \in \mathbb{N}_0^3$, por h(x,y,z) = x + yz + 1.
 - a) Defina recursivamente a função h. Ou seja, determine funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0$ tais que h = Rec(f, g).
 - **b)** Mostre que h é uma função recursiva primitiva.
- **3.3** Sejam $qd: \mathbb{N}_0 \to \mathbb{N}_0$ e $h: \mathbb{N}_0^2 \to \mathbb{N}_0$ funções definidas por $qd(x) = x^2$ e $h(x,y) = (x+y)^2$.
 - a) Determine funções f e g tais que qd = Rec(f, g).
 - b) Mostre que a função h é recursiva primitiva.
- 3.4 Mostre que as seguintes funções são recursivas primitivas:
 - a) $mult(x,y) = x \cdot y$.
 - **b)** $exp(x,y) = x^y$.
 - c) $fat(x) = \begin{cases} 1 & \text{se } x = 0 \\ x \cdot (x-1) \cdot \dots \cdot 2 \cdot 1 & \text{se } x > 0. \end{cases}$
 - **d)** $ad^{(k)}(x_1,\ldots,x_k) = x_1 + \cdots + x_k.$
 - e) $h(x,y) = 3x + 2^y + 5$.
- **3.5** Seja $f:\mathbb{N}_0^2\to\mathbb{N}_0$ uma função recursiva primitiva. Mostre que as seguintes funções são recursivas primitivas:
 - a) $g: \mathbb{N}_0^{k+2} \to \mathbb{N}_0$ definida por $g(x, y, z_1, \dots, z_k) = f(x, y)$. [adição de variáveis]
 - **b)** $g: \mathbb{N}_0^2 \to \mathbb{N}_0$ definida por g(y,x) = f(x,y). [troca de variáveis]
 - c) $g: \mathbb{N}_0 \to \mathbb{N}_0$ definida por g(x) = f(x, x). [identificação de variáveis]
- **3.6** Seja $A: \mathbb{N}_0^2 \to \mathbb{N}_0$ a função de Ackermann.
 - a) Determine A(3,0) e A(2,2).
 - **b)** Prove que A(1,y) = y + 2 para todo o $y \in \mathbb{N}_0$.
 - c) Prove que A(2,y) = 2y + 3 para todo o $y \in \mathbb{N}_0$.
- **3.7** Determine a função M_f de minimização da função $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ tal que:
 - a) $f(x,y) = (x+y)^2$
 - **b)** $f(x,y) = \begin{cases} 0 & \text{se } x^2 = y + 9 \\ 1 & \text{senão.} \end{cases}$
- 3.8 Mostre, sem construir máquinas de Turing, que as seguintes funções são computáveis:
 - a) $f(x) = \begin{cases} \sqrt{x} & \text{se } x \text{ \'e um quadrado perfeito} \\ n.d. & \text{sen\~ao.} \end{cases}$
 - **b)** $f(x) = \begin{cases} \frac{x}{2} & \text{se } x \text{ \'e par} \\ n.d. & \text{sen\~ao.} \end{cases}$

4. Introdução à Teoria da Complexidade

- 4.1 Indique, justificando, a veracidade ou falsidade das seguintes afirmações.
 - a) $n^2 \in O(n^4)$.
 - **b)** $2n^3 + n^2 + 7n + 3 \in \mathcal{O}(n^3)$.
 - **c)** $n^4 \in O(n^2)$.
- **4.2** Considere as relações definidas, para funções $f, g : \mathbb{N}_0 \to \mathbb{R}$, por:

$$f(n)R_1 g(n)$$
 se e só se $f(n) \in \mathcal{O}(g(n))$
 $f(n)R_2 g(n)$ se e só se $f(n) \in \mathcal{O}(g(n))$ e $g(n)$ não é $\mathcal{O}(f(n))$
 $f(n)R_3 g(n)$ se e só se $f(n) \in \mathcal{O}(g(n))$ e $g(n) \in \mathcal{O}(f(n))$.

Mostre que:

- a) R_1 é reflexiva e transitiva;
- **b)** R_2 é transitiva e assimétrica (i.e., se $f(n)R_2$ g(n), então $g(n) \not R_2$ f(n));
- c) R_3 é uma relação de equivalência.
- **4.3** Determine a função de complexidade temporal da máquina \mathcal{T}_{apagar} , ou seja, da seguinte máquina de Turing

- **4.4** Seja $L = \{uu : u \in \{a, b\}^*\}$. Mostre que $L \in DTIME(n)$ e que $L \in DSPACE(n)$.
- ${f 4.5}$ Mostre que a classe das linguagens regulares é uma subclasse de DSPACE(1).
- **4.6** Em cada uma das alíneas seguintes, mostre que $L_1 \leq_p L_2$ e $L_2 \leq_p L_1$.
 - a) $L_1 = \{a^n b^n : n \ge 0\}$ e $L_2 = \{a^{n+1} b^n : n \ge 0\}$;
 - **b)** $L_1 = \{u \in A^* : u = u^I\}$ e $L_2 = \{uu : u \in A^*\}$, onde A é um alfabeto não singular qualquer.
- **4.7** Considere linguagens $L_1 \subseteq A_1^*$, $L_2 \subseteq A_2^*$ e $L_3 \subseteq A_3^*$. Mostre que:
 - a) Se $L_1 \leq_p L_2$ e $L_2 \leq_p L_3$, então $L_1 \leq_p L_3$;
 - **b)** Se $L_1 \leq_p L_2$ e $L_2 \in P$, então $L_1 \in P$;
 - c) Se $L_1 \leq_p L_2$ e L_1 é NP-completa, então L_2 é NP-difícil.