Name : G.Kiran kishore Reg no : 21 BCE 9233

impo impo	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns</pre>							
	<pre>dataset=pd.read_csv("car_crashes.csv") dataset</pre>							
	total	speeding	alcohol	not_di	stracted	no_previous	ins_premium	
	18.8	7.332	5.640		18.048	15.040	784.55	
0								
1 1053	18.1	7.421	4.525		16.290	17.014		
2	18.6	6.510	5.208		15.624	17.856		
899.	.47 3	22.4	4.032	5.824	2	21.056	21.280	
827.	.34							
4 878.		4.200	3.360		10.920	10.680		
5	13.6	5.032	3.808		10.744	12.920		
835.	.50 6	10.8	4.968	3.888		9.396	8.856	
1068	3.73 7	16.2	6.156	4.860		14.094	16.038	
1137	7.87 8	5.9	2.006	1.593		5.900	5.900	
1273	3.89 9	17.9	3.759	5.191		16.468	16.826	
1160	0.13							
10	15.6	2.964	3.900		14.820	14.508	913.15	
11	17.5	9.450	7.175		14.350	15.225	861.18	
12	15.3	5.508	4.437		13.005	14.994	641.96	
13	12.8	4.608	4.352		12.032	12.288	803.11	
14	14.5	3.625	4.205		13.775	13.775	710.46	
15	15.7	2.669	3.925		15.229	13.659	649.06	

16	17.8	4.806	4.272	13.706	15.130	780.45
17	21.4	4.066	4.922	16.692	16.264	872.51
10	00 5	- 4	6 5 6 5	4.4.065	00 000	1001 55
18	20.5	7.175	6.765	14.965	20.090	1281.55

19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78
21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43 44	19.4 11.3	7.760 4.859	7.372 1.808	17.654 9.944	16.878 10.848	1004.75 809.38

45	13.6	4.080	4.080	
10	13.0	4.000	4.000	
46	12.7	2.413	3.429	
47	10.6	4.452	3.498	
48	23.8	8.092	6.664	
49	13.8	4.968	4.554	
50	17.4	7.308	5.568	
	ins_losse	es abbrev		
0	145.	.08		
	AL			
1	133.	. 93		
	AK			
2	110.	. 35		
	AZ			
3	142.	.39		
	AR			
4	165.	. 63		
	CA			
5	139.	. 91		
	CO			
6	167.	.02		
	CT			
7	151.	. 48		
	DE			
8	136.	.05		
	DC			
9	144.	.18		
	FL	. 10		
10	142.	80		
10	GA	. 0 0		
11	120.	92		
Т Т	120. HI	. 92		
12	82.7	75 TD		
13	139.			
10	139. IL	, ± J		
14	108.	92		
T -1	IN	. 12		
15	114.	47		
10	IA	· I /		
16	133.	80		
10	KS	. 0 0		
17	137.	13		
Ι /	137. KY	. 10		
18	194.	78		
10	LA	, , ,		
19	96.5	57 ME		
1)	JU. 3	7 116		

20	192.70 MD	
21		
21	135.63 MA	
2.2	MA 152.26	
22	132.20 MI	
23	133.35	
23	133.33 MN	
0.4		
24	155.77	
O.F.	MS	
25	144.45	
26	MO of 15	МТ
	85.15	M.T.
27	114.82	
28	NE	
28	138.71 NV	
2.0		
29	120.21 NH	
30	159.85	
30	139.63 NJ	
31	120.75	
31	120.75 NM	
32	150.01	
32	NY	
33	127.82	
55	127.02 NC	
34	109.72	
54	109.72 ND	
	IAD	

35	133.52	
	OH	
36	178.86	
	OK	
37	104.61	
	OR	
38	153.86	
	PA	
39	148.58	
	RI	
40	116.29	
	SC	
41	96.87	SD
42	155.57	
	TN	
43	156.83	
	TX	
44	109.48	
	UT	
45	109.61	
	VT	
46	153.72	
	VA	
47	111.62	
	WA	
48	152.56	
	WV	
49	106.62	
	WI	
50	122.04	
	WY	

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50 Data
columns (total 8 columns):

#	Column	Non-Null Count	Dtype
			-
0	total	51 non-null	float64
1	speeding	51 non-null	float64 2 alcohol
51	non-null float	t64	
3	not_distracted	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins premium	51 non-null	float64

6 ins_losses 51 non-null float64 7 abbrev 51 non-null object dtypes: float64(7), object(1) memory usage: 3.3+ KB dataset.head(8)

	total	speeding	alcohol	not distracted	no previous	ins premium
	00042	op coaring	G		110_F10\10\00	
	18.8	7.332	5.640	18.048	15.040	784.55
\						
0						
1	18.1	7.421	4.525	16.290	17.014	1053.48 2
1.0			0.00	15 604	10.056	000 47
18.	6 6	5.510 5.	208	15.624	17.856	899.47
3	22.4	4.032	5.824	21.056	21.280	827.34
4	12.0	4.200	3.360	10.920	10.680	878.41
5	13.6	5.032	3.808	10.744	12.920	835.50

```
10.8
              4.968
                       3.888
                                        9.396
                                                      8.856
                                                                  1068.73
7
    16.2
              6.156
                       4.860
                                       14.094
                                                     16.038
                                                                  1137.87
   ins losses abbrev
0
       145.08
                   AL
1
       133.93
                   AK
2
       110.35
                   ΑZ
3
       142.39
                   AR
4
       165.63
                   CA
5
       139.91
                   CO
6
       167.02
                   CT
7
       151.48
                   DE
sns.scatterplot(x="total",y="speeding",data=dataset)
<Axes: xlabel='total', ylabel='speeding'>
```


Inference:from the plot we can say that as the total increases
speeding is decreases

```
sns.pairplot(dataset)
plt.title("Pairplot of Car Crashes Dataset") plt.show()
```


Inference: The pairplot provides a quick overview of the relationships between numeric variables in the dataset. It helps identify potential correlations or patterns.

sns.distplot(dataset["total"], bins=20, kde=True)
plt.title("Histogram of Total Number of Accidents")
plt.xlabel("Total Accidents")

plt.ylabel("Frequency")
plt.show()

<ipython-input-24-c2887f4da83f>:1: UserWarning:
 `distplot` is a deprecated function and will be removed in seaborn
v0.14.0.

Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataset["total"], bins=20, kde=True)

Histogram of Total Number of Accidents 0.12 0.10 0.08 Frequency 0.06 0.04 0.02 0.00 0 10 5 15 20 25 30

Inference: The histogram shows the distribution of total accidents. Most states have a relatively low number of accidents, with a few outliers with significantly higher accident counts. sns.boxplot(x="speeding", y="total", data=dataset) plt.title("Boxplot of Speeding vs. Total Accidents") plt.xlabel("Speeding (Yes/No)") plt.ylabel("Total Accidents") plt.show()

Total Accidents

Inference: The boxplot illustrates the relationship between speeding (yes/no) and the total number of accidents. It indicates that states with higher speeding rates tend to have a higher median total number of accidents.

```
sns.barplot(x="alcohol", y="total", data=dataset, ci=None)
plt.title("Barplot of Alcohol Involvement vs. Total Accidents")
plt.xlabel("Alcohol Involvement (Yes/No)") plt.ylabel("Total
Accidents") plt.show()
```

<ipython-input-19-e9d4c62a021d>:1: FutureWarning:
The `ci` parameter is deprecated. Use `errorbar=None` for the same
effect.

sns.barplot(x="alcohol", y="total", data=dataset, ci=None)

Inference: The barplot compares the total number of accidents for states with and without alcohol involvement. It suggests that states with alcohol involvement tend to have a higher average number of accidents.

```
correlation_matrix = dataset.corr()
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap") plt.show()
```


Inference: The heatmap displays the correlation between numeric variables in the dataset. Positive correlations are shown in warmer colors, while negative correlations are in cooler colors. It helps identify potential relationships between variables.

sns.lineplot(x="alcohol", y="speeding", data=dataset)
plt.title("LINEPLOT")

Text(0.5, 1.0, 'LINEPLOT')

Inference: The line plot comparing "Alcohol" and "Speeding" incidents in car crashes shows that alcohol with higher value have higher speeding value.

sns.jointplot(x="total",y="speeding",data=dataset) plt.title("JOINT")
Text(0.5, 1.0, 'JOINT PLOT')

INFERENCE :States with a higher rate of "Speeding" incidents tend to have a wider range of total accidents, as indicated by the larger interquartile range (IQR) and the presence of outliers.