a_k and if $\gamma \approx 0$ in G then $rac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^{m}n(\gamma;a_{k})\mathrm{Res}(f;a_{k}).$

 a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

 $\max\{|f(z)|: z \in G^-\} = \max\{|f(z)|: z \in \partial G\}.$

1234567890

ΑΛ Δ ∇BCD Σ EFΓGHIJKLMNOΘ Ω \mho PΦΠΞQRSTUVWXY Υ ΨZ $a\alpha b\beta c\partial d\delta e\epsilon \epsilon f(\xi q\gamma h\hbar\hbar iii) ikkil\lambda mn\eta \theta vo\sigma \zeta \phi \phi \rho pp \rho qrst \tau \pi u \mu \nu vvw \omega \varpi x \chi y \psi z \infty \propto \emptyset \varnothing d\tilde{o}$