

Leakage in Meta Modeling & Its Connection to HCC Target-Encoding

Mathias Müller

faron@h2o.ai kaggle.com/mmueller - github.com/Far0n

Background

- Born & raised in Berlin
- Diplom in Computer Science from Humboldt University of Berlin
- Joined H2O two month ago
 - Data Scientist
 - Development of Driverless AI

kaggle

Faron

Data Scientist at H2O.ai Deutschland

Joined 3 years ago · last seen in the past day

O y in http://kagglenizer.com/

Edit Profile Competitions (26) Kernels (9) Discussion (377) Datasets (0) · · · ·

Competitions Gr	andmaster	8
Current Rank 5 of 66,213	Highes 4	t Rank
14	4	3
Homesite Quote C 2 years ago - Top		1st of 1764
Truly Native? 2 years ago - Top	1%	1 st of 274
Two Sigma Conne		2nd of 2488

Kernels Expe	ert	8	
Current Rar 22 of 109,345		hest Rank 8	
3	⊚ 3	3	
Road-2-0.4+ o · a year ago			
F1-Score Exp		105 votes	
Stacking Starter o - a year ago		84 votes	

Discussion	Master	897
Current F 12 of 40,8		Highest Rank
© 26	43	187
2nd Place Solution		87 votes
Get Expect	ed F1-Score in ago	78 votes
Faron's 3rd	Place Solutio	n 53

My Al Roadmap

Chess-Engine

Bio-inspired Navigation of Flying Robots

R&D Testing Methods for PTI in Germany

kaggle`ing

Leakage

"Data Leakage is the creation of unexpected additional information in the training data, allowing a model or machine learning algorithm to make unrealistically good predictions." kaggle.com/wiki/leakage

- Many different sources
 - ID-Leaks
 - Leaking future information into past
 - Validating models on already seen data
 - Leaking target information into Feature Matrices
 - Feedback loops / adaptive data analysis
 - ...
- Caused damage varies from case to case

Meta Modeling / Stacking

Leakage in Meta Modeling

- Suppose a 3-fold split of our training data into (A,B,C)
- Creating of out-of-fold predictions (A2,B2,C2)
 - train((A,B)) followed by predict(C) to get C2
 - train((A,C)) followed by predict(B) to get B2
 - train((B,C)) followed by predict(A) to get A2

Base Level	1st Meta Level	Leaked Target Information
AB -> C2	A2B2 -> C3	$(BC)(AC) \rightarrow C3$
AC -> B2	A2C2 -> B3	$(BC)(AB) \rightarrow B3$
BC -> A2	B2C2 -> A3	$(AC)(AB) \rightarrow A3$

HCC Target Encoding

- In general, tree based models like XGBoost, LightGBM, RF, etc. struggle with (non-ordinal) High Cardinal Categoricals (HCC) features
- Order of mapped HCC values determines the required amount of splits to get "useful" data partitions
- Idea: Replace HCC values by their likelihoods to get a "good order"

K-Fold Target Encoding - Example

 We want to replace the categorical values blue and red by their likelihoods in a k-fold cross-validated fashion:

X	у	Fold	AB -> C	AC -> B	BC -> A	X_lhood_cv
blue	1	А			$p(y \mid X = blue) = 0$	0
red	1	^			p(y X = red) = 1.0	1
blue	0	В		n(v V - blue) - 0 5		0.5
blue	0	D		p(y X = blue) = 0.5		0.5
blue	0	С	p(y X = blue) = 0.333			0.333
red	1		p(y X = red) = 1.0			1

Recap: Leakage in Meta Modeling

Base Level	1st Meta Level	Leaked Target Information
AB -> C2	A2B2 -> C3	$(BC)(AC) \rightarrow C3$
AC -> B2	A2C2 -> B3	$(BC)(AB) \rightarrow B3$
BC -> A2	B2C2 -> A3	$(AC)(AB) \rightarrow A3$

K-Fold Target Encoding - Example

X	У	Fold	AB -> C	AC -> B	BC -> A	X_lhood_cv
blue	1	٨			$p(y \mid X = blue) = 0$	0
red	1	А			p(y X = red) = 1.0	1
blue	0	В		n/v V _ hluo) _ 0 5		0.5
blue	0	D		p(y X = blue) = 0.5		0.5
blue	0	C	p(y X = blue) = 0.333			0.333
red	1	С	p(y X = red) = 1.0			1

- X_Ihood_cv values are basically "out-of-fold" predictions of a maximum likelihood estimator
- Using X_Ihood_cv as feature is pretty much the same procedure as stacking
- Same leakage issue .. but fails more often than strong model stacking, because of no regularization

Counter-Measures

- Using a fixed holdout set to calculate likelihoods / to generate out-of-fold predictions
 - Loss of training data at later stages
- Using a 2-fold scheme with fixed seed
 - Not ideal regarding bias-variance-tradeoff
- Adding Noise to likelihoods / out-of-fold predictions
 - Hard to get the noise level right (heavily dataset dependent)
- Avoiding target leakage by nested cross validation
 - Order of magnitude higher complexitity: $O(k) => O(k_{outer} * k_{inner})$

Nested Cross Validation

Base Level	1st Meta Level	No Leaked Target Information
AB -> C2	A2B2 -> C3	(B)(A) -> C3
A -> B2		
B -> A2		
AC -> B2	A2C2 -> B3	(C)(A) -> B3
A -> C2		
C -> A2		
BC -> A2	B2C2 -> A3	(C)(B) -> A3
B -> C2		
C -> B2		

Thank you for your attention!

Any Questions?

