CALIFORNIA TRAFFIC COLLISION ANALYSIS PROJECT DOCUMENT

Abstract

The project focuses on studying the road traffic accidents specifically in the state of California from the year of 2019 –2020 to analyze the dataset as recorded by California Highway Patrol and gain insights

Team: Group 10

Table of Contents

INTRODUCTION	2
DATASET SIZE AND COMPLEXITY	3
DATA SOURCE DATASET SIZE AND COMPLEXITY DATA WRANGLING	3
DATA MODEL	5
NORMALIZATION Entity Relationship Model Entity -Relationship Diagram	5
USAGE OF TRIGGERS AND PROCEDURES	9
Triggers Procedures	
DATA DESIGN	11
TABLE STRUCTURE AND BUSINESS RULES	
SQL CODE/QUERIES	16
DATA DEFINITION LANGUAGE QUERIES	16
SQL PERFORMANCE MEASUREMENT (SELECT)	17
QUERY TO SELECT COUNT OF RECORDS IN COLLISIONS	
CONNECTIVITY TO AWS PYTHON	
UPLOAD MYSQL PROJECT DATABASE INTO RDS	27 30
VISUALIZATION	33
COUNT OF VICTIMS VS COUNTY BASED ON LOCATION TYPE INJURED VICTIMS VS HOUR OF COLLISION TIME. WEATHER CONDITION VS COLLISION SEVERITY	34 35 36 37 38 39
CONCLUSION	

Introduction

The increase of automobile demand has also increased the traffic rate across many countries. The increase in automobile demand has also increased the traffic and the traffic collision rate compared to the last decade. Over 1.2 million individuals die every year on the world's streets, and somewhere in the range of 20 and 50 million endure non-fatal injuries. In 2019, California's mileage death rate was 1.06 fatalities per 100 million miles traveled. That's according to the Global Traffic Scorecard released in March 2020 by INRIX, a data analytics company that studies how people move around the world - San Francisco, California was rated 7th among the most congested cities in the U.S. in 2019. The collisions are caused due to various reasons such as alcohol or drug consumption, cellphone in use, motorcycle, bicycle, pedestrian etc. During the pandemic in 2020 nationwide lockdown had restricted the movement of traffic. In this study, we are analyzing the dataset of Traffic collision rate of California from the Kaggle which was provided by California Highway portal records to the author. The data was collected, clean, manipulated, tabulated, and then analyzed. The analysis shows the accident prone regions of the country and the comparison of the fatal and non-fatal collisions in year 2019 and 2020. The significant findings from the analysis are: (a) most of the fatal and non-fatal accidents occurred in January 2019 (b) a more substantial number of deaths are from drivers in the 20-50 age group; (c) Most of the fatal collisions have occurred during the cloudy weather followed by rainy weather (d) about 13% accidents are attributed to drunk driving. (e) Passenger cars contribute to the highest number of collisions in 2019 and 2020. 22,464 collisions occurred in 2019 which dropped to 8320 in 2020 during COVID (f) Top 3 traffic violations leading to collisions were: Not following Traffic guidelines(11%), Unsafe speed (22% approx.) and Improper turns(17%).

Dataset Size and Complexity

Data Source

The California Traffic collisions dataset that we have used is from Kaggle repository which is collected from the California Highway Patrol records by the author. It covers collisions from January 1st, 2001, until December 2020 and is available in form of SQLite Database. The dataset contains ~ 9 Million unique collision cases information

There are three main tables:

- collisions: Contains information about the collision, where it happened, what vehicles were involved
- **parties:** Contains information about the groups people involved in the collision including age, sex, and sobriety
- victims: Contains information about the injuries of specific people involved in the collision

Dataset Link

Dataset Size and Complexity

The dataset size of original dataset is 10 GB. Below are the statistics of columns in each table

Collisions: 75 columns, 9424334 rows
 Parties: 32 columns, 18669166 rows
 Victims: 12 columns, 9639334 rows

Data Wrangling

As part of the project scope, we selected traffic collisions that occurred in year 2019 and 2020. There are ~ 5k cases of traffic collisions.

The data set has 49958 unique cases and their related collisions, parties and victims data, it is not ready to use for analysis.

There are many anomalies in the dataset like:

- Null records
- o Duplicate records
- Mismatched column

Below cleansing activities were performed to handle the anomalies and other discrepancies in dataset:

- $\circ\quad$ To maintain data integrity , few duplicate records where deleted
- o To handle data redundancy in source tables, the dataset was modelled into 3 NF form
- o Datatypes of few columns were not recognized by tableau, therefore, datatype was changes
- o To simplify the data complexity irrelevant columns were dropped
- o Implemented relationship and constraints like primary key, foreign key, indexes, check constraints, assigned default values as part of data profiling and accuracy

After data wrangling, the dataset size is 46.6 MB. It contains 9 entities as below:

Table Name	Columns	Rows
Collisions	35	49958
Parties	28	100674
Victims	12	45871
County	2	47
Collisions_location	7	41996
Road_Condition	3	46
Vehicle_Type	2	16
Violation	3	255
Weather_Effect	3	30

Data Model

Normalization

The initial California traffic collision dataset available contained three entities - Collisions, Parties and Victims in denormalised form. As part of this project, we have normalized the entities up to third Normal Form modelling it into a snowflake schema.

Entity Relationship Model

The entity-relationship (ER) model and its accompanying ER diagrams are widely used for database design and systems analysis.

California traffic collision entity relationship model is composed of entity type and specifies relationships that can exist between entities.

Collisions -Parties: Collisions contain one entity instance (Case ID) for each traffic collision that
occurs. For each collision there exists parties involved in the collision. For example: two cars collided
with each other, therefore, there are two parties involved in the accident. Also, there must be at least on
party involved in accident to cause collision

Relationship: Collisions → [Mandatory One -to-Many] → Parties

• Parties – Victims: For each party involved in the collision, victims may or may not exists, for example, no one was injured due to the collision. Also, for each party there can be one or more victims. For example, two cars A and B collided. There was driver plus two passengers in Car A and driver and one passenger of Car A gets injured. Therefore, there are two victims for party A during the collision

Relationship: Parties → [Optional One to Many] → Victims

• **County - Collisions:** Multiple collisions can occur in a particular county over a period. In a rare scenario, there might not be any collision occurring in a particular county

Relationship: County → [Optional One to Many] → Collisions

• Collisions_Location - Collisions: Multiple collisions can occur in a particular location (street, city etc.) over a period. In a rare scenario, there might not be any collision occurring in a particular location

Relationship: Collisions_Location → [Optional One to Many] → Collisions

• Road_Condition - Collisions: Same type of road condition and lighting can cause may or may not cause collisions

Relationship: Road_Condition → [Optional One to Many] → Collisions

• Weather Effect – Collisions: Same type of weather conditions and road surface conditions may or may not cause traffic collisions

Relationship: Weather_Effect → [Optional One to Many] → Collisions

• **Violation- Collisions:** From this relation we can determine in a collision which violation category was the cause

Relationship: violation → [Optional One to Many] → Collisions

• **Violation -Parties:** From this relation we can determine which sort of violation was caused by the parties involved

• **Vehicle_Type – Collisions:** From this relation we can infer what type of vehicles were involved in a collision

Relationship: vehicle_type → [Optional One to Many] → Collisions

• Vehicle_type - Parties: From this relation we can infer what type of vehicles were used by the parties

Relationship: vehicle_type → [Optional One to Many] → Collisions

Entity - Relationship Diagram

Below is the entity relationship diagram for the database `Cal_Road_Accident`

Usage of Triggers and Procedures

Triggers

Trigger Name: parties_afterInsert

When a record is inserted in victims table for a particular case update party_count in collisions table. This field gives the aggregated count of party involved in a particular collision briefly

Code Snippet:

Trigger Name: victims_afterInsert

When a record is inserted in victims table for a particular case update victim_count in collisions table. This field gives the aggregated count of victims in a particular collision briefly

Code Snippet:

Procedures

Procedure Name: Compare_Collisions_2019_2020

Stored procedures can reduce network traffic between clients and servers, because the commands are executed as a single batch of code. This means only the call to execute the procedure is sent over a network, instead of every single line of code being sent individually. We have created a stored procedure Compare_Collisions_2019_2020 and this procedure is further used for visualization.

Code Snippet:

```
SQL File 4*
                                                                                                             The name of the routine is parsed automatically from the DDL statement. The DDL is parsed automatically while you type.
        Compare_Collisions_2019_2020
          CREATE DEFINER=`root`@`localhost` PROCEDURE `Compare_Collisions_2019_2020`()
                       select Duration, collision_severity, count(*)
                  from (SELECT concat(MONTHNAME(collision_date),'-',DATE_FORMAT(collision_date,'%y')) as Duration,
                  case
                  when collision_severity='fatal' then 'Fatal'
                  ELSE 'Non Fatal' END as collision_severity
                  FROM `collisions`) collision_stats group by Duration,collision_severity
                order by FIELD(Duration, 'January-19', 'February-19', 'March-19', 'April-19', 'May-19',
                  'June-19','July-19','August-19','September-19','October-19','November-19','December-19',
                  'January-20','February-20','March-20','April-20','May-20','June-20','July-20','August-20',
                  'September-20','October-20','November-20','December-20');
          12
          13
```

Data Design

Table Structure and Business Rules

Table Name: Collisions

Field	▼ Type	▼ Null	▼ Key ▼	Default	w
case_id	varchar(100)	NO	PRI	NULL	
location_type	text	YES		NULL	
tow_away	int	YES		NULL	
collision_severity	text	YES		NULL	
killed_victims	int	YES		NULL	
injured_victims	int	YES		NULL	
party_count	int	YES		NULL	
primary_collision_factor	text	YES		NULL	
type_of_collision	text	YES		NULL	
motor_vehicle_involved_with	text	YES		NULL	
pedestrian_action	text	YES		NULL	
control_device	text	YES		NULL	
pedestrian_collision	int	YES		NULL	
bicycle_collision	int	YES		NULL	
motorcycle_collision	int	YES		NULL	
truck_collision	int	YES		NULL	
alcohol_involved	int	YES		NULL	
chp_vehicle_type_at_fault	text	YES		NULL	
severe_injury_count	int	YES		NULL	
other_visible_injury_count	int	YES		NULL	
complaint_of_pain_injury_cou	unt int	YES		NULL	
pedestrian_killed_count	int	YES		NULL	
pedestrian_injured_count	int	YES		NULL	
bicyclist_killed_count	int	YES		NULL	
bicyclist_injured_count	int	YES		NULL	
motorcyclist_killed_count	int	YES		NULL	
motorcyclist_injured_count	int	YES		NULL	
collision_date	text	YES		NULL	
collision_time	text	YES		NULL	
violation_ID	int	YES	MUL	NULL	
county_ID	int	NO	MUL	NULL	
location_ID	int	YES	MUL	NULL	
WE_ID	int	YES	MUL	NULL	
rc_ID	int	YES	MUL	NULL	
vehicle_type_at_fault_id	int	YES	MUL	NULL	

Table Name: Parties

Field	Туре	▼ Null ▼	Key	▼ Default	-
case_id	varchar(100)	NO	PRI	NULL	
party_number	int	NO	PRI	NULL	
party_type	text	YES		NULL	
at_fault	int	YES		NULL	
party_sex	varchar(255)	YES		NA	
party_age	int	YES		NULL	
party_sobriety	text	YES		NULL	
party_drug_physical	text	YES		NULL	
direction_of_travel	text	YES		NULL	
party_safety_equipment_1	text	YES		NULL	
party_safety_equipment_2	text	YES		NULL	
financial_responsibility	text	YES		NULL	
hazardous_materials	tinyint	YES		NULL	
cellphone_in_use	tinyint	YES		NULL	
cellphone_use_type	text	YES		NULL	
school_bus_related	tinyint	YES		NULL	
other_associate_factor_1	text	YES		NULL	
other_associate_factor_2	text	YES		NULL	
party_number_killed	int	YES		NULL	
party_number_injured	int	YES		NULL	
movement_preceding_collision	text	YES		NULL	
vehicle_year	int	YES		NULL	
vehicle_make	text	YES		NULL	
chp_vehicle_type_towing	text	YES		NULL	
chp_vehicle_type_towed	text	YES		NULL	
party_race	text	YES		NULL	
violation_ID	int	YES	MUL	NULL	
vt_id	int	YES	MUL	NULL	

Table Name: Victims

Field ▼	Type 💌	Null ▼	Key ▼	Default ▼	Extra ▼
id	int	NO	PRI	NULL	auto_increment
case_id	varchar(100)	YES	MUL	NULL	
party_number	int	YES	MUL	NULL	
victim_role	text	YES		NULL	
victim_sex	varchar(255)	YES		NA	
victim_age	varchar(5)	YES		NULL	
victim_degree_of_injury	text	YES		NULL	
victim_seating_position	text	YES		NULL	
victim_safety_equipment_1	text	YES		NULL	
victim_safety_equipment_2	text	YES		NULL	
victim_ejected	text	YES		NULL	
party_ID	mediumint	NO	MUL	NULL	

Table Name: Collisions_Location

Field ▼	Type 🔻	Null 💌	Key ▼	Default ▼	Extra 💌
collision_location_ID	int	NO	PRI	NULL	auto_increment
primary_road	varchar(255)	NO	MUL	NULL	
secondary_road	varchar(255)	NO	MUL	NULL	
population	varchar(255)	YES	MUL	NULL	
latitude	double	YES	MUL	NULL	
longitude	double	YES	MUL	NULL	
county_city_location	int	YES	MUL	NULL	

Table Name: County

Field	Type 🔻	Null -	Key ▼	Default ▼	Extra 🔻
County_ID	int	NO	PRI	NULL	auto_increment
County Name	varchar(100)	NO	UNI	NULL	

Table Name: Road_Condition

Field	Type ▼	Null 🔻	Key ▼	Default	▼ Extra ▼
road_cndtn_id	int	NO	PRI	NULL	auto_increment
road_condition	varchar(45)	NO	PRI	NULL	
lighting	varchar(45)	NO	PRI	NULL	

Table Name: Vehicle_Type

Table Name: Violation

Table Name: Weather_Effect

Field ▼	Type ▼	Null	▼ Key	Default ▼	Extra ▼
WE_ID	int	NO	PRI	NULL	auto_increment
Weather_Condition	varchar(45)	NO		NULL	
Road_Surface_Condition	varchar(45)	NO		NULL	

Representing Primary Keys, Foreign Key and Constraints

The data model has been designed to ensure integrity of data is maintained thought out the process. Below is the table that lists the constraints applied on table sin schema `Cal_Road_Accident`

Query Used:

```
SELECT
    table_name,
    COLUMN_NAME,
    CONSTRAINT_NAME,
    IFNULL(REFERENCED_COLUMN_NAME, 'NA') AS REFERENCED_COLUMN_NAME,
    IFNULL(REFERENCED_TABLE_NAME, 'NA') AS REFERENCED_TABLE_NAME
FROM
    information_schema.KEY_COLUMN_USAGE
WHERE
    constraint_schema = 'cal_road_accident'
ORDER BY table_name;
```

	TABLE_NAME	△ COLUMN_NAME	CONSTRAINT_NAME	REFERENCED_COLUMN_NAME	REFERENCED_TABLE_NAME
•	collisions	case_id	PRIMARY	NA	NA
	collisions	location_ID	collisions_ibfk_1	collision_location_ID	collisions_location
	collisions	county_ID	fk_collision_countyID	County_ID	county
	collisions	rc_ID	fk_collision_rc	road_cndtn_id	road_condition
	collisions	violation_ID	fk_collision_violation	violation_ID	violation
	collisions	vehicle_type_at_fault_id	fk_collision_vt	vt_id	vehide_type
	collisions	WE_ID	fk_collision_we	WE_ID	weather_effect
	collisions_location	collision_location_ID	PRIMARY	NA	NA
	county	County_Name	County_Name_UNIQUE	NA	NA
	county	County_ID	PRIMARY	NA	NA
	parties	case_id	PRIMARY	NA	NA
	parties	party_number	PRIMARY	NA	NA
	parties	case_id	fk_parties_case_id	case_id	collisions
	parties	violation_ID	fk_parties_violation	violation_ID	violation
	parties	vt_id	fk_parties_vt	vt_id	vehide_type
	road_condition	road_cndtn_id	PRIMARY	NA	NA
	road_condition	road_condition	PRIMARY	NA	NA
	road_condition	lighting	PRIMARY	NA	NA
	vehide_type	vt_id	PRIMARY	NA	NA
	victims	id	PRIMARY	NA	NA
	victims	case_id	fk_victim_party_case	case_id	parties
	victims	party_number	fk_victim_party_case	party_number	parties
	violation	violation_ID	PRIMARY	NA	NA
	weather_effect	WE_ID	PRIMARY	NA	NA

SQL Code/Queries

Data Definition Language Queries

Attached is the .sql file containing below queries:

Cal_Road_Accident_Database_OnlyQueries.sql

- Create Database
- Create Tables
- Triggers and Procedures

Data Manipulation Language Queries

Attached is the .sql file containing below queries:

Queries of normalization -updating FK and drop columns in Collisions and Parties table

DataWranglingQueries.sql

Database Dump - Cal_Road_Accident

California Traffic Collision Database Export WithData.sql

SQL Performance Measurement (Select)

Query to select count of records in Collisions

Query to select count of records in Parties

Query to select count of records in Victims

Query for Fatal -Non-Fatal Collisions from January 22019 -December 2020

Query for visualization of Count of Victims vs County Based on Location Type

Query for visualization of Weather Condition vs Collision Severity

Query for visualization of Alcohol vs time and type of collision

Query for visualization of Age vs Gender of Parties at Fault

Query for Victims Degree of Injury vs Injury Count

Queries in .sql file used for Performance Measurement

SQl_Performance_Measurement_Queries.sql

Connectivity to AWS Python

Upload MySQL Project Database into RDS

Step 1: Logged in to AWS and created RDS database

Step 2: Creating security group in EC2

Step 3: Connection established in MYSQL workbench

Step 4: Uploading cal_road_accident database from MYSQL to AWS RDS First created database in MYSQL using AWS database connection

Step 5: Importing Database Cal_Road_Accident database SQL file into Cal_Road_Accident_aws database using connection awards

Step 6: Database imported successfully

Connecting AWS RDS in python

Step 7: Querying on cal_road_accident_aws database


```
Select query on collision table
 In [5]: cursor.execute('select case_id from cal_road_accident_aws.collisions limit 5');
          select_collision=cursor.fetchall();
          dataframe_collision= pd.DataFrame(select_collision, columns=['case_id']);
print(dataframe_collision);
              case_id
              8008500
              8008532
              8008550
             80972854
          4 80976438
           Select query on parties table
  In [6]: cursor.execute('select case_id,party_number,party_sobriety,cellphone_in_use,hazardous_materials,cellphone_use_type from cal_road
           select_parties=cursor.fetchall();
           dataframe_parties=pd.DataFrame(select_parties, columns=['case_id','party_number','party_sobriety','cellphone_in_use','hazardous_n
          print(dataframe_parties);
              case_id party_number
                                                            party_sobriety \
             0081715
                                                            not applicable
             0081715
                                                            not applicable
              0726202
                                      impairment unknown had been drinking, under influence
              8008483
              8008483
                                                            not applicable
              cellphone_in_use hazardous_materials
                                                        cellphone use type
                                                None cellphone not in use
                            9.9
                                                None cellphone not in use
                                                None
                                                                       None
                            NaN
                                                      cellphone not in use
           1
                            MaN
                                                None
                                                                       None
         Select query on victims
In [7]: cursor.execute('SELECT id, case_id,party_number, victim_role, victim_sex, victim_age FROM cal_road_accident_aws.victims limit 5;'
         dataframe_victims=upd.DataFrame(select_victims, columns=['id', 'case_id','party_number', 'victim_role', 'victim_sex', 'victim_age'
         print(dataframe_victims);
        4
                 id case_id party_number victim_role victim_sex victim_age
         0
            3078083 8008484
                                           2
                                                   driver
                                                                 male
                                                                               33
            3078084
                      8008484
                                                passenger
                                                                             None
            3078087
                     8008488
                                                   driver
                                                                 male
                                                                               26
            3078088
                     8008488
                                                passenger
                                                               female
                                                                               26
            3078090
                      8008491
                                                               female
                                                   driver
        Analysis on sobriety of parties consuming alcohol
In [8]: cursor.execute('select c.alcohol_involved ,p.party_sobriety , count(*) from cal_road_accident_aws.collisions c join cal_road_acci
        select_output=cursor.fetchall();
dataframe_analysis_result=pd.DataFrame(select_output, columns=['alcohol_involved','party_sobriety','no. of collisions']);
        print(dataframe_analysis_result);
        4
                                                        party_sobriety no. of collisions
           alcohol involved
                                   had been drinking, under influence
                                                        not applicable
                                                                                       2311
                                                had not been drinking
                                                                                       3314
                                                                                       324
                              had been drinking, impairment unknown had been drinking, not under influence
        4
                                                                                       1253
                                                                                       874
        6
                                                   impairment unknown
                                                                                       225
```

MYSQL-AWS-CONNECTION NOTEBOOK

Group10-MySQL-AWS-Connection.ipynb

Visualization

Count of Victims vs County Based on Location Type

Count of victims for each County Name. Color shows details about Location Type. The data is filtered on county ID, which excludes 32 members. The view is filtered on Location Type, County Name and Exclusions (County Name, Location Type). The Location Type filter excludes intersection and Other. The County Name filter excludes monterey, solano and sonoma. The Exclusions (County Name, Location Type) filter keeps 187 members.

Location Type
Inighway
Inighway-intersection
ramp

FIGURE 1: GRAPH REPRESENTING COUNT OF VICTIMS VS COUNTY NAME BASED ON LOCATION TYPE

The stacked bar graph gives a pictorial description on the total number of victims who have been in a collision in different counties in the State of California for the years 2019-2020 based on location where collision occurred. We can infer from the graph that most of the accidents occur in large counties such as Los Angeles, Kern and Orange on Highway and Highway Road Intersections.

Injured Victims vs Hour of Collision Time

FIGURE 2: GRAPH REPRESENTING THE INJURED VICTIMS VS HOUR OF COLLISION TIME

Above line graph illustrates the correlation between number of injured and killed victims' and time of the day. Units measured are in hours (0-24-hour format)

The number of killed victims is at the peak from evening 6pm till midnight. It can conclude that collisions are more severe during nights compared to daytime.

Weather Condition vs Collision Severity

Map based on Longitude (generated) and Latitude (generated) broken down by Weather Condition. Color shows details about Collision Severity. Details are shown for County Name. The data is filtered on Location Type, which excludes Other. The view is filtered on Weather Condition, Collision Severity and Inclusions (Collision Severity, County Name, Weather Condition). The Weather Condition filter excludes clear, NA, other, snowing and wind. The Collision Severity filter excludes other injury.

FIGURE 2: GRAPH REPRESENTING WEATHER CONDITION VS COLLISION SEVERITY

Open Street Graph illustrates the collision severity with respect to changes in weather.

The major contributors for weather related accidents are cloudy, fog and rain. Highest fatality rate can be witnessed when it's cloudy. Whereas it's the least when the weather is foggy. Highest pain is witnessed when it's raining and it's the least when the weather is foggy. This is a clear indication that foggy weather is comparatively better than cloudy and rainy weather condition.

Alcohol Influence vs Time and Type of Collision

FIGURE 4: GRAPH REPRESENTING ALCOHOL INFLUENCE VS TIME AND TYPE OF COLLISION

The above graph gives a pictorial description on the type of collision and the time of occurrence when the person is under the influence of alcohol. We can infer from the graph that the most common type of collision is 'Hit Object' collision and the most common time for an accident to occur while the person is under the influence of alcohol is usually during the nighttime.

Diversity of Party Gender Involved in Collision

Figure 5: Graph showing gender vs count of the parties

The above count plot graph [Python visualization] gives us insights on how many people were involved in the collision and their gender either Male or Female or Transgender. NA is the unspecified data in the Dataset which means their gender was not specified. It is clear that Males have a larger count with a number of almost 25000 and females have a count of 12500

Age vs Gender of Parties at Fault

FIGURE 6: GRAPH SHOWING THE AGE GROUP VS GENDER OF PEOPLE CAUSING A COLLISION

The above boxplot gives us insights on the party age, party sex based on Female or Male or Transgender and NA. From the graph we can say that the mean age for male victim at fault for causing an accident is 35 and the mean age for the female victim causing an accident is 37.

From the graph we can say that the age group that are at fault is mainly between early 20's and 40's for both the genders. NA is the not specified gender which tells us that there are many people between the age group of 30 and early 60's who are at fault for the accident and their gender has not been specified while collecting data. We can infer from the above two graphs that the total number of men at fault are the highest when compared to the female at fault.

Number of Fatal Collisions [January 2019 – December 2020]

FIGURE 7: GRAPH REPRESENTS NUMBER OF FATAL COLLISIONS FROM JANUARY 2019 – DECEMBER 2020

The above bar plot provides insights on how many fatal collisions occurred from January 2019 to December 2020. The number of fatal collisions pre-covid was more as there was more movement amongst the people of California.

January-2019 has the most with a count of almost greater than 100 fatal collisions. But as the pandemic started to get worse the movement within the state reduced so did the total number of collisions in the State as well. The months from September 2019 till July 2020 (considering there was s stay at home order imposed in April 2020), from this we can infer that the movement of people reduced and gradually so did the collisions. But soon as they started to ease the lockdown rules, the rate of collisions increased as people started to travel.

Number of Non-Fatal Collisions [January 2019 – December 2020]

FIGURE 8: GRAPH REPRESENTS NUMBER OF NON-FATAL COLLISIONS FROM JANUARY 2019 – DECEMBER 2020

The above bar plot provides insights on how many non-fatal collisions takes place from January 2019 to December 2020. The number of non-fatal collisions pre-covid was more as there was more movement amongst the people of California.

January-2019 has the most with a count of almost greater than 15000 non-fatal collisions. We can clearly see from the graph above that the number of non-fatal collisions has reduced drastically as the pandemic got worse. The months from April 2019 till July 2020 had the least number of non-fatal accidents in the State of California. The number of non-fatal collisions started increasing gradually once people started to make movement across California.

Visualization Code Documents

Tableau Dashboard

LINK

Visualization - Python Jupyter Notebook

 $\underline{California Traffic Collision Python Visualization.ipynb}$

Visualization - Tableau Workbook

Tableau_Wookbook_Folder

Queries in .sql file used for Visualization

Python_Tableau_Visualization_Queries.sql

Conclusion

Despite small number of vehicles operating in the year 2020, the level of crash accident recorded in California, made the state one of the top in the United States for traffic collisions. Through this data analysis a variety of insights concerning the location, time, weather, and points-of-interest of an accident are found. The analysis helps us understand the best month, day, and hour of the day to commute. Also, it can help us to predict what are the accident prone areas in the state such as Los Angeles, Kern and Orange with Highway and Highway road Intersections. It also shows that the highest death is happening between the 20-50 age group and most of the accidents have occurred during a cloudy weather. The top 3 violations causing maximum collisions were: not following Traffic guidelines (11%), Unsafe speed (22% approx.) and Improper turns (17%).