${ m CM042}$ - Cálculo II

de Novembro de 2017 - Prova 3

Total

Nome:	P:	30	40	15	15	10	110
	N:						
Questão 1						[30
Calcule as seguintes integrais							
(a) $\boxed{10} \int_0^1 \int_1^2 \frac{xe^x}{y} dy dx$. (c) $\boxed{10} \int_0^1 \int_0^z \int_0^{x+z} 6xz dy dx dz$.							
(b) $10 \int_0^1 \int_y^1 2(1-x^2)^{2017} dxdy$.							
Questão 2							
(a) $\boxed{10} \iint_D \arctan\left(\frac{y}{x}\right) dA$, $D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$.							
(b) $\boxed{10}$ $\iint_D (y+2x+2) dA$, D é o triângulo formado pelos vértices $(3,1)$, $(0,-2)$ e $(-1,0)$.							
(c) $10 \iiint_E x^2 dV$, E é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano $z = 0$ e abaixo do cone $z^2 = 4x^2 + 4y^2$.							
(d) $ 10 \iiint_E xe^{x^2+y^2+z^2} dV $ E é a porção da bola unitária $x^2+y^2+z^2 \le 1$ que fica no primeiro octante.							
Questão 3							
(a) $\boxed{7}$ Esboce R .							
(b) 8 Calcule $\iint_R x dA$ usando a mudança de variável dada.							
Questão 4							
Questão 5							