Auto-doctor for echocardiography

Chengche Tsai, Alessandro Folloni

Recap - background

Recap - terminology

EF (ejection fraction): the percentage of blood pumped out from the heart per stroke.

ED: end of the diastolic phase (the largest volume)

ES: end of the systolic phase (the smallest volume)

The data (CAMUS)

- 500 videos
- Semantic segmentation: full annotations of left ventricle, myocardium (heart muscle) of left ventricle, and left atrium

Left ventricle

wall

Goals of the final report

What have been done in midway:

- Moved from Image-based to video-based
- Great segmentation results (qualitatively/quantitatively).

What we wanted to achieved in the final:

- A transformer-based segmentation model
- Better EF estimation

Mask2Former, 2022

Mask2former

Key elements:

- Backbone
- Pixel decoder
- Transformer decoder with masked attention

Main strengths of the model

Masked attention: extracts localized features

$$\mathbf{X}_{l} = \operatorname{softmax}(\mathbf{\mathcal{M}}_{l-1} + \mathbf{Q}_{l}\mathbf{K}_{l}^{\mathrm{T}})\mathbf{V}_{l} + \mathbf{X}_{l-1}.$$

$$\mathcal{M}_{l-1}(x,y) = \begin{cases} 0 & \text{if } \mathbf{M}_{l-1}(x,y) = 1 \\ -\infty & \text{otherwise} \end{cases}$$

Main strengths of the model

- High resolution features: increase performance (and controlling computational cost)
 - → we utilize a feature pyramid which consists of both low and high-resolution features and feed one resolution of the multi-scale feature to one Transformer decoder layer at a time.
- Optimization: changed order of self and cross-attention to have more effective computation.

Additionally

Overview

Segmentation

 Mask2Former outputs instance segmentation masks

 Instance reduces to semantic segentations if only 1 object per class.

Segmentation - temporal smoothness

To use temporal information and anatomically constraint the output:

```
def temporal_smoothness_loss(frames):
    # Function to compute the temporal smoothness loss
    frame_diff = frames[1:] - frames[:-1]

# You can use different norms or similarity metrics to measure difference
loss = torch.mean(torch.pow(frame_diff, 2)) # L2 (MSE) loss
    return loss
```


Pixel, is not the only thing we can model through time

Segmentation - future prediction

 To force the model better learn the temporal relations, we force the model to predict a future frame

Segmentation to registration

Brief review of registration

moving scan $m{m}$

fixed scan \boldsymbol{f}

Brief review of registration

Moving image (m)

Fixed image (\mathbf{f})

Brief review of registration

Segmentation to registration

End mask

Volume-CNN

- Predicts volumes for ED and ES
- EF = (ED-ES)/ED

Result (segmentation)

	DeepLabv3	Mask2Former (small)	Mask2Former (base)	Ours (no registration)	Ours
mIOU (Left ventricle)	0.808	0.5	0.58	0.65	0.75

^{*}Both models were trained on 400 videos for only 10 epochs

Result - EF estimation

- Even worse...
 - SOTA: RMSE = 5.17
 - Ours (previous): 17.xx
 - o Today: 24.21

Failure analysis

Mask2Former is encapsulated too well.

Not enough data to train Mask2Former

 Mask2Former is a instance segmentation models. The classification layer is not needed in our case, probably harmful.

Both "start" phase

Patient A

Patient B

More to do

1. Probably try a simpler transformer-based model first.

- 2. To add 'cycle-consistency' to the model
 - a. -> Find a dataset with long clips (>2 cycles) and good annotations.

3. Train looooonger, >1k iterations.