ภาคผนวก A

การทดลองที่ 1 ข้อมูลและคณิตศาสตร์ใน คอมพิวเตอร์

การทดลองนี้เป็นการทบทวนความเข้าใจและแบบฝึกหัดเสริมของเนื้อหาในบทที่ 2 เนื่องจากจำนวนบิทข้อมูลที่ ยาวขึ้นจำเป็นต้องใช้โปรแกรมคอมพิวเตอร์ช่วยคำนวณแทน โดยมีวัตถุประสงค์ ดังต่อไปนี้

- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขจำนวนเต็มฐานสองชนิดไม่มีเครื่องหมายและมี เครื่องหมายแบบ 2-Complement
- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขทศนิยมฐานสองมาตรฐาน IEEE754 ชนิด Single Precision
- เพื่อให้เข้าใจรหัส ASCII และ Unicode สำหรับข้อมูลตัวอักษร นอกจากเนื้อหาในบทที่ 2 แล้ว ผู้อ่านสามารถศึกษาเว็บเพจเพิ่มเติม เพื่อทำความเข้าใจอย่างลึกซึ้ง ได้แก่
- https://www.tutorialspoint.com/cprogramming/c_data_types.htm
- https://www3.ntu.edu.sg/home/ehchua/programming/java/ datarepresentation.html

ผู้อ่านจะพบว่าเนื้อหาในเว็บของมหาวิทยาลัยนั้นยาง ประเทศสิงคโปร์ เป็นการสอนพื้นภาษา Java ใช้งาน ข้อมูลเป็นเลขฐานสองเหมือนกับภาษา C/C++ ในเว็บที่สอง การทดลองจะครอบคลุมเนื้อหาตามทฤษฎี โดยจะ เริ่มจากเลขจำนวนเต็ม เลขทศนิยม และตัวอักษรตามลำดับ

A.1 การแปลงและคณิตศาสตร์สำหรับเลขฐานสองจำนวนเต็ม

A.1.1 การทดลอง

เนื่องจากการแปลงเลขฐานสิบเป็นฐานสองชนิดไม่มีเครื่องหมาย (unsigned) ผู้อ่านสามารถใช้เครื่องคิดเลข ทางวิทยาศาสตร์ทั่วไป ดังนั้น การทดลองนี้จะเน้นที่การแปลงเป็นเลขฐานสองชนิดมีเครื่องหมายแบบ 2 Complement สอดคล้องกับเนื้อหาในหัวข้อที่ 2.2 โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือคลิกที่ ชื่อลิงค์ ต่อไปนี้ http://www.free-test-online.com/binary/signed_converter.html ขอให้ผู้อ่าน ปฏิบัติตามการทดลอง ดังนี้

1. คลิกเลือกที่ปุ่ม Signed แล้วจึงกรอกเลข -123 ลงในกล่องข้อความ ดังรูปที่ A.1

รูปที่ A.1: กรอกเลข -123 ลงในกล่องข้อความ และคลิกเลือกที่ปุ่ม Signed เพื่อให้โปรแกรมแปลงเลขจำนวน เต็ม -123 เป็นเลขฐานสองชนิด Signed ชนิด 2 Complement

หน้าต่างมีลักษณะคล้ายเครื่องคิดเลข ประกอบด้วยปุ่มต่างๆ ดังนี้

- 'Bin2Dec' 'Dec2Bin' สำหรับแปลงเลขฐานสองเป็นฐานสิบไปและกลับ
- 'Dec2Hex' 'Hex2Dec' สำหรับแปลงเลขฐานสิบเป็นฐานสิบหกไปและกลับ
- 'Hex2Bin' 'Bin2Hex' สำหรับแปลงเลขฐานสองเป็นฐานสิบหกไปและกลับ
- ปุ่ม 0-9 และ A-F สำหรับกรอกตัวเลขฐานสิบและฐานสิบหก
- CL (Clear) สำหรับล้างค่าในกล่องข้อความให้เป็น 0
- RoR (Rotate Right) และ RoL (Rotate Left) สำหรับเลื่อนวนเลขที่อยู่ในกล่องข้อความทางขวาและ ซ้าย ตามลำดับ
- ShR (Shift Right) และ ShL (Shift Left) โดยป้อนเลข 0 เข้ามาแทน
- 2's C (omplement) สำหรับแปลงเลขฐานสองให้เป็นค่า 2's Complement

- +/- สำหรับกลับเครื่องหมายของตัวเลขฐานสิบในกล่องข้อความ
- 2. กดปุ่มเครื่องหมาย 'Dec2Bin' เพื่อให้เป็นเลขฐานสองชนิด Signed ดังรูปที่ A.2

1111111111	Binary		
0			
Unsigned	Signed		
Bin2Dec	Dec2Hex	Hex2Bin	CL
Dec2Bin	Hex2Dec	Bin2Hex	RoR
D	E	F	RoL
Α	В	С	ShR
7	8	9	ShL
4	5	6	
1	2	3	
0	2's C	+/-	

รูปที่ A.2: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

3. กดปุ่มเครื่องหมาย 'Bin2Hex' เพื่อแปลงเลขฐานสองที่ได้ให้เป็นเลขฐานสิบหกชนิด Signed ตามรูปที่ A.3

FFFF85			HEX
\circ	0		
Unsigned	Signed		
Bin2Dec	Dec2Hex	Hex2Bin	CL
Dec2Bin	Hex2Dec	Bin2Hex	RoR
D	Е	F	RoL
Α	В	С	ShR
7	8	9	ShL
4	5	6	
1	2	3	
0	2's C	+/-	

รูปที่ A.3: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสิบหก 6 หลักจากเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

- 4. กดปุ่ม Hex2Bin เพื่อแปลงผลลัพธ์เลขฐานสิบหกที่ได้กลับไปเป็นฐานสอง แล้วเลือกตัวเลขฐานสอง ทั้งหมด แล้วทำการคัดลอก (Copy) หรือกดปุ่ม Ctrl-C พร้อมกัน
- 5. คลิกบนชื่อลิงค์ต่อไปนี้ เพื่อเปิดหน้าเว็บสำหรับ บวก/ลบ/คูณ/หาร เลขจำนวนเต็ม ทั้งชนิด Unsigned และ Signed ต่อไปนี้

http://www.free-test-online.com/binary/binary_calculator.html

6. กดเลือกปุ่มออพชั้น Signed ก่อนแล้วจึงทำการวาง (Paste) ลงในกล่องข้อความ เพื่อเปลี่ยนการทำงาน ให้อยู่ในโหมดตัวเลขฐานสองชนิดมีเครื่องหมายตามรูปที่ A.4

รูปที่ A.4: หน้าต่างวางเลขการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

- 7. กดปุ่ม '-' เพื่อทำการกระบวนการลบเลข แล้ววาง (Paste) เลข -123 อีกรอบในกล่องข้อความที่ว่างลง
- 8. กดปุ่ม = เพื่อแสดงผลลัพธ์

ร**ูปที่** A.5: ผลลัพธ์เลขการแปลงเลข (-123) - (-123) ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความ ยาว 24 บิท

ในรูปที่ A.5 แสดงให้เห็นว่า -123 - (-123) = 0

A.1.2 กิจกรรมท้ายการทดลอง

จงทำการทดลองและตอบคำถามต่อไปนี้ โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 2.2.2 และตรวจคำตอบตามวิธี ทำการทดลองที่ได้ทำไป

1. จงแปลงเลขฐานสิบชนิดไม่มีเครื่องหมายต่อไปนี้ให้เป็นเลขฐานสอง 24 บิทและฐานสิบหกจำนวน 6 หลัก และบันทึกผลลัพธ์ที่ได้ลงในตาราง

ฐานสิบ	ฐานสอง	ฐานสิบหก
7	2	16
8	2	16
15		16
16		16
255		16
256	2	16
65535	2	16
65536	2	16

2. จงแปลงเลขฐานสิบต่อไปนี้ให้เป็นเลขฐานสองและฐานสิบหกชนิดมีเครื่องหมายแบบ 2-Complement และบันทึกผลลัพธ์ที่ได้ลงในตาราง

ฐานสิบ	ฐานสอง	ฐานสิบหก
+1	2	16
-1		16
+15	2	16
-16	2	16
+255	2	16
-256	2	16
+65535		16
-65536	2	16

3.	จงบวกเลข 2-Complement ต่อไปนี้	แล้วบันทึกผลลัพธ์เป็นฐานสอง	ฐานสิบ	ข้อผิดพลา	ดที่แจ้งเตือน
	และอธิบายเหตุผลว่าทำไมจึงไม่ตรงกัน				

,	100000000000000000000000000000000000000	Ĺ
	 ผลลัพธ์ฐานสอง =	_ 2
	– ผลลัพธ์ฐานสิบหก = ₁₆	
	- ผลลัพธ์ฐานสิบ = ₁₀	
	- ข้อผิดพลาดที่แจ้งเตือน	
	– เหตุผล	
,	100000000000000000000000000000000000000)
	 ผลลัพธ์ฐานสอง =	_ 2
	- ผลลัพธ์ฐานสิบหก = 16	

- ผลลัพธ์ฐานสิบ = 10	
– ข้อผิดพลาดที่แจ้งเตือน	
– เหตุผล	
• 1000000000000000000000000000000000000	1
 ผลลัพธ์ฐานสอง =	2
- ผลลัพธ์ฐานสิบหก = ₁₆	
– ผลลัพธ์ฐานสิบ = ₁₀	
– ข้อผิดพลาดที่แจ้งเตือน	
– เหตุผล	
• 1000000000000000000000000000000000000	0
 ผลลัพธ์ฐานสอง =	2
– ผลลัพธ์ฐานสิบหก = ₁₆	
– ผลลัพธ์ฐานสิบ = _{_ 10}	
– ข้อผิดพลาดที่แจ้งเตือน	
– เหตุผล	

A.2 การแปลงและคณิตศาสตร์สำหรับมาตรฐาน IEEE754

การทดลองเพื่อให้เข้าใจการแปลงเลขจำนวนจริงฐานสิบให้เป็นเลขฐานสองตามรูปแบบและฝึกการคำนวณ โดยใช้คณิตศาสตร์มาตรฐาน IEEE754 Single Precision มีความสอดคล้องกับเนื้อหาในหัวข้อที่ 2.6

A.2.1 การทดลองสำหรับ Single-Precision

การทดลองนี้จะเน้นที่การแปลงเลขจำนวนจริงให้เป็นเลขฐานสองทศนิยมชนิดลอยตัว สอดคล้องกับเนื้อหาใน หัวข้อที่ 2.6 ในรูปแบบ Single Precision โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือคลิกที่ชื่อลิงค์ต่อไปนี้

http://www.binaryconvert.com/convert_float.html เมื่อเว็บเพจปรากฎขึ้น ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

1. กรอกเลข 123 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.6

ร**ูปที่** A.6: ผลลัพธ์จากการแปลงเลข 123.0 ให้เป็นเลขฐานสองชนิด Single Precision

การเรียงตัวของผลลัพธ์เลขฐานสิบหกทางซ้ายมือมาจากเลขฐานสองทางขวามือ ซึ่งเกิดจากบิทข้อมูล ทั้งหมด 32 บิทตามรูปแบบของมาตรฐาน IEEE754 ชนิด Single Precision โปรดสังเกต กล่องสี่เหลี่ยมสีเขียว ตรงกับบิทที่เป็น '1' กล่องสีเทาตรงกับบิทที่เป็น '0' 0x หมายถึง เลขฐานสิบหก

2. กรอกเลข -123.0 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.7

ร**ูปที่** A.7: ผลลัพธ์จากการแปลงเลข -123.0 ให้เป็นเลขฐานสองตามมาตรฐาน IEEE754 ชนิด Single Precision

โปรดสังเกตตำแหน่งของกล่องสี่เหลี่ยมหรือสีเทาที่ตรงกับบิท Sign Exponent และ Mantissa ดังนั้น เรา จะเห็นได้ว่าเฉพาะ Sign ที่มีการเปลี่ยนแปลง

3. คลิกบนลิงค์นี้ เพื่อทดลองบวกและคูณเลขในรูปแบบ Single Precision ด้วยลิงค์ต่อไปนี้ http://weitz.de/ieee/ เลื่อนหน้าเว็บลงไปด้านล่างสุด เพื่อค้นหาแถบเมนูตามรูปที่ A.8

binary32	binary64	binary128
	binary32	binary32 binary64

รูปที่ A.8: เมนูด้านล่างสุดของหน้าเว็บ เพื่อเลือกเลขฐานสองชนิด Single Precision (Binary32) และ Double Precision (Binary64)

4. เลื่อนหน้าเว็บกลับไปด้านบนสุดเพื่อกรอกเลข -123.0 ลงในกล่องข้อความซ้ายบน และ กรอกเลข 123.0 ลงในกล่องข้อความถัดลงมา แล้วกดปุ่ม + แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 11101100000000000000000	10000101
	_	1.921875	+6
		0xC2F60000 0b110000101111011000000000000	00000
123.0	0	1 .111011000000000000000000000000000000	10000101
	+	1.921875	+6
		0x42F60000 0b010000101111011000000000000	00000
+	-	× /	
0.0	0	0 .000000000000000000000000000000000000	0000000
	+	0.0	+0
		0x0000000	00000

รูปที่ A.9: ผลลัพธ์จากการบวกเลข -123.0+123.0 ให้เป็นเลขฐานสองชนิด Single Precision

จะสังเกตเห็นว่า ผลลัพธ์ที่ได้เรียกว่า True Zero ตามตารางที่ 2.12 5. กดปุ่ม x (คูณ) แล้วจะได้ผลลัพธ์ของ -123×123 ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 111011000000000000000000	10000101
	-	1.921875 0xC2F60000 0b110000101111011000000000000	+6
123.0	0	1 . 11101100000000000000000	10000101
	+	1.921875 0x42F60000 0b0100001011110110000000000000	+6
+	-	x /	
-15129.0	1	1 .11011000110010000000000	10001100
	-	1.8468018 0xC66C6400 0b1100011001100110001100100000	+13

รูปที่ A.10: ผลลัพธ์จากการคูณเลข -123.0 x 123.0 ให้เป็นเลขฐานสองชนิด Single Precision

A.2.2 กิจกรรมท้ายการทดลอง

จงใช้เว็บเพจลิงค์ต่อไปนี้ในการตอบคำถาม

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Tools & Thoughts								
IEEE-754 Floating Point Converter Translations: de								
This page allow	This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point).							
IEEE 754 Converter (JavaScript), V0.22								
Sign Expone			ent	Mantissa				
Value:	+1	2-126 (denormal		0.0 (denormalized)				
Encoded as:	0	0		0				
Binary:								
You en	tered	0						
Value a	actually st	ored in float: 0		+1				
Error d	ue to con	version: 0		-1				
Binary	Represer	itation 00	00000000000	000000000000000000000000000000000000000				
Hexade	ecimal Re	presentation 0x	<00000000					

ร**ูปที่** A.11: เว็บสำหรับการตอบคำถามเพื่อสร้างเลขหรือแปลงเลขฐานสิบด้วยมาตรฐาน IEEE754 Single Precision การกดเลือกคือทำให้บิทนั้นเท่ากับ '1'

โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 2.6 และตรวจคำตอบตามวิธีทำการทดลองที่ได้ทำไป และกรอก ผลลัพธ์ลงบนเส้นประที่จัดไว้ให้เท่านั้น ยกตัวอย่างเช่น

1.	จงสร้างเลข -(เลขฐานสอง =			1		_		0 0 0 0 0 0 0 0	0002
	ฐานสิบหก =	= 8	0	0	0	0	0	0	0 16
	97	~	دنا		7 6 1			ש	e d e
2.	จงสร้างเลข -1	1.0_{10} โดยกา	รกดเลือก	าปุ่มสีเห	ลียมในส่ว	เน Expor	nent เท่	านั้น ต่อจ	จากข้อทีแล้ว
	เลขฐานสอง =	=							2
	ฐานสิบหก =								_ 16
3.	จงสร้างเลข -1 เลขฐานสอง = ฐานสิบหก =	=	l	_					
4.	จงสร้างเลข 1.	.17549435(082×10	⁻³⁸ ซึ่งเเ็	ป็นค่านอม่	มัลไลซ์ที่น่	เ๋อยที่สุด	(Norma	alized)
	เลขฐานสอง =	=						1	2
	รานสิบหก =				'		'	'	16

5.	จงสร้างเลข $5.877472 imes 10^{-39}$ ซึ่งอยู่ในรูป ดีนอมัลไลซ์ (Denormalized) เพราะมีค่าน้อยเกินไป
	เลขฐานสอง =
	ฐานสิบหก =
6.	จงสร้างเลข 3.40282346639 $ imes 10^{38}$ ซึ่งเป็นค่านอมัลไลซ์ที่มากที่สุด (Normalized)
	เลขฐานสอง =
	ฐานสิบหก =
7.	จงสร้างเลข ∞ ซึ่งเป็นค่าอนันต์ (Infinity) ตามตารางที่ 2.12
	เลขฐานสอง =
	ฐานสิบหก =
8.	จงสร้างเลข NaN (Not a Number) ตามตารางที่ 2.12
	เลขฐานสอง =
	ฐานสิบหก = 16

9. จงแปลงเลขฐานสองขนาด 32 บิทที่ได้จากกิจกรรมก่อนหน้านี้ ให้เป็น เลขจำนวนเต็ม โดยใช้ลิงค์ต่อไป

นี้ http://www.binaryconvert.com/convert_signed_int.html เมื่อคัดลอกและวางเลข ครบแล้ว ให้กดปุ่ม Convert to decimal

A.3 รหัสของข้อมูลตัวอักษร

A.3.1 การทดลอง

การทดลองในหัวข้อนี้จะเป็นการแปลงรหัสตัวอักษรภาษาอังกฤษและไทย เป็นรหัส ASCII และ Unicode ชนิด UCS-2 ตามเนื้อหาในหัวข้อ 2.7 ผ่านทางเว็บไซต์ https://www.branah.com/ascii-converter ที่มี นักพัฒนาเพื่อเผยแพร่ความรู้เป็นวิทยาทานเช่นเดียวกับเว็บที่ได้ทดลองมา

- 1. เปิดเว็บตามลิงค์ต่อไปนี้ หรือ กดปุ่มซ้ายบนชื่อลิงค์ https://www.branah.com/ascii-converter
- 2. กรอกข้อความต่อไปนี้ ลงไปในกล่องข้อความ ASCII

ไทยกขคลbc

โปรดสังเกต ระหว่างตัวอักษรมี ช่องว่าง 1 ตัวอักษรเสมอ

3. กดปุ่ม Convert ซ้ายบนสุด จะได้ผลลัพธ์ดังรูปต่อไปนี้

ASCII Converter - Hex, decimal, binary, base64, and ASCII converter

Convert	ASCII (Example: a b c)		
ไทยกขคลbo			
Add spaces	Remove spaces Convert white space characters		
Convert	Hex (Example: 0x61 0x62 0x63) ☑ Remove 0x		
e44 e17 e22 e01 e02 e04 61 62 63			
Convert	Decimal (Example: 97 98 99)		
3652 3607 3618 3585 3586 3588 097 098 099			
Convert	Binary (Example: 01100001 01100010 01100011)		
111001000100 111000010111 111000100010 111000000			
Convert	Base64 (Example: YSBiIGM=)		
RCAXICIgASACIAQgYSBiIGM=			

ร**ูปที่** A.12: ผลลัพธ์จากการกรอกและแปลงตัวอักษร ไ ท ย ก ข ค a b c เป็นรหัสต่างๆ

4. กล่องข้อความ Hex จะแสดงค่า Unicode สำหรับภาษาไทย และ ASCII สำหรับภาษาอังกฤษ ในรูปผู้ เขียนได้กดเลือก Remove 0x เพื่อความสะดวกในการอ่านค่า

A.3.2 กิจกรรมท้ายการทดลอง

- 1. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส ASCII ของตัวอักษร 0 9
- 2. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส Unicode ของตัวอักษร o ๙
- 3. จงเปิดเว็บที่มีข้อความภาษาไทย เช่น เว็บข่าว แล้วทดลองเปลี่ยนการนำเสนอบนจอเพื่อ View source เช่น Google Chrome ใช้เมนู Tool-> View Source แล้ว Find หรือกดปุ่ม CTRL-F คำว่า charset ว่ามีค่าเท่ากับ utf-8 หรือไม่ เพราะเหตุใด