Planche 1.

Exercice 1. Soit A et B deux connexes par arcs d'un evn. Est-ce que $A \bigcup B$ est toujours connexe par arcs? Trouver une condition suffisante pour que ce soit le cas.

Exercice 2. Soit $f: \mathbb{R} \to]0, +\infty[$. Montrer que $\ln(f)$ est convexe ssi $c^x f(x)$ est convexe pour tout c > 0.

Planche 2.

Exercice 1. Existe-t-il une fonction continue et injective de \mathbb{R}^n dans \mathbb{R} ?

Exercice 2. Montrer que pour tout $t \in [-1, 1]$ et $x \in \mathbb{R}$,

$$e^{tx} \le \frac{1}{2} \left[(1-x)e^t + (1+x)e^{-t} \right]$$

Planche 3.

Exercice 1. Soit $n \geq 2$, $f : \mathbb{R}^n \to \mathbb{R}$ continue telle que $f^{-1}(a)$ est un compact pour tout $a \in \mathbb{R}$. Montrer que f admet un extremum global.

Exercice 2. Soit $f:]0, +\infty[\to \mathbb{R}$. Montrer que $x \longmapsto xf(x)$ est convexe ssi $x \longmapsto f(1/x)$ l'est.

Hints

Planche 1.

Exercice 1. Condition suffisante : que l'intersection soit non vide. Pas nécessaire :]0,1[et [1,2]. Si A et B sont ouverts alors c'est une CNS mais c'est un peu chaud à démontrer : ça revient à montrer que [0,1] ne s'écrit pas $C \cup D$ avec C et D deux ouverts non vides disjoints (c'est ce qu'on appelle la connexité).

Exercice 2. $\ln(f)$ implique le second c'est easy en utilisant que $\exp \circ f$ est convexe si f est convexe et que la somme de deux convexes et convexes.

Dans l'autre sens : passer à l'exponentielle mettre le c que d'un côté du genre $f(\lambda x + (1 - \lambda)y) \le$ des trucs en c. On veut alors minimiser et on étudie une fonction en c.

Planche 2.

Exercice 1. L'idée est de dire que l'image de \mathbb{R}^n par f est un connexe par arcs donc un intervalle. On lui enlève un point au milieu et il est plus connexe par arcs alors que \mathbb{R}^n privé de $f^{-1}(a)$ l'est encore.

Exercice 2. Convexité de exp.

Planche 3.

Exercice 1. Utiliser que $K = f^{-1}(0)$ est un compact. Du coup il existe r tel que $K \subset B_f(0, r)$. Or \mathbb{R}^n privé de $B_f(0, r)$ est connexe par arcs. On dit alors que f admet un extremum sur $B_f(0, r)$ et après sur le reste c'est soit > 0 soit < 0.

Exercice 2. La définition de base ça marche pas. Faut utiliser la croissance des pentes.

Solutions - Planche 1.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 2.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 3.

Question de cours.

Exercice 1.

Exercice 2.

Bonus

Exercice. Montrer que la fonction Γ est log-convexe.

Exercice. Soit $A \in M_2(\mathbb{R})$. Montrer que la classe de similitude de A est connexe par arcs ssi A est diagonalisable.

Exercice. \mathbb{Q}^2 privé d'un nombre dénombrable de points est connexe par arcs.

Exercice. Trouver un ensemble qui est connexe par arcs pour une norme mais pas pour une autre. (pas trouvé).

Exercice. Les matrices nilpotentes de $M_n(\mathbb{C})$ forme un ensemble connexe par arcs.

Exercice. Soit $A \subset \mathbb{R}^n$ un sous-ensemble fermé non-borné et convexe. Montrer que A contient une demi-droite.