Cifras de Fluxo Auditoria e Segurança de SI

Prof. Roberto Cabral rbcabral@ufc.br

Universidade Federal do Ceará

 1° semestre/2023

Introdução

Cifras de fluxo

- Encriptam bits individualmente.
- A encriptação consiste em somar um bit da chave de fluxo com um bit do texto claro.
 - o Cifra de fluxo síncrona: a chave de fluxo depende apenas da chave.
 - Cifra de fluxo assíncrona: a chave de fluxo também depende do texto encriptado.

Cifras de bloco

- Encriptam um bloco inteiro do texto claro com uma mesma chave.
- Nessas cifras, a encriptação de qualquer bit de um dado bloco depende de todos os outros bits desse bloco.
- Na prática, a grande maioria das cifras de blocos possuem blocos de 128 bits.

Encriptação e decriptação com Cifras de fluxo

Definição

Em uma cifra de fluxo, o texto claro, o texto encriptado e a chave de fluxo consistem de bits individuais. Sejam $x_i, y_i, s_i \in \{0, 1\}$.

Encriptação: $y_i = e_{s_i}(x_i) \equiv x_i + s_i \mod 2$.

Decriptação: $x_i = d_{s_i}(y_i) \equiv y_i + s_i \mod 2$.

Encriptação e decriptação com Cifras de fluxo

- 1. A encriptação e a decriptação usam a mesma função!
- 2. Porque uma simples adição módulo 2 por ser usada como encriptação?
- 3. Qual a natureza dos bits da chave de fluxo?

Porque a encriptação e a decriptação podem usar a mesma função?

- Sabemos que o texto encriptado y_i foi computado por $y_i \equiv x_i + s_i \mod 2$.
- Se colocarmos a expressão de encriptação na função de decriptação temos:

$$\begin{array}{rcl} d_{s_i} & \equiv & y_i + s_i \bmod 2 \\ & \equiv & (x_i + s_i) + s_i \bmod 2 \\ & \equiv & x_i + 2s_i \bmod 2 \\ & \equiv & x_i + 0 \bmod 2 \\ & \equiv & x_i \bmod 2 \end{array}$$

Porque uma adição módulo 2 é uma boa função de encriptação?

- Se fizermos aritmética módulo 2, os únicos valores possíveis são 0 e
 1.
- Assim, podemos tratar uma aritmética módulo 2 como uma função booleana.
- A aritmética módulo 2 é equivalente a operação XOR.
- Porque usar a função XOR e não outra função booleana?

Qual a natureza dos bits da chave de fluxo?

- A segurança de uma cifra de fluxo depende diretamente da chave de fluxo!
- A geração da chave de fluxo é a principal questão no projeto de uma cifra de fluxo.
- Basicamente, uma boa chave de fluxo deve ser vista por um atacante como uma sequencia de bits aleatórios.
- Desse modo, precisamos de bons Geradores de números aleatórios (RNG).

Geração de números aleatórios verdadeiros (TRNG), NIVERSIDADE REGIRADO CERTA DO CERT

Geração de números aleatórios verdadeiros (TRNG) NIVERSIDADE FEDERAL DO CERTA

- Possuem a propriedade de que não podem ser reproduzidos.
- Por exemplo, se rolarmos uma moeda 100 vezes e guardarmos o a sequência resultante de 100 bits, será virtualmente impossível alguma outra pessoa na terra conseguir a mesma sequência.
- Os TRNGs são baseados em processos físicos, como lançar moedas, rolar dados, ruídos de semicondutores clock de circuitos digitas e decaimento radioativo.
- Na criptografia, TRNGs são normalmente necessários para gerar chaves de sessão, que são distribuídas entre as entidades.

Geração de números pseudoaleatórios (PRNG)

- Geram sequências que são calculadas a partir de um valor inicial. Normalmente são computadas recursivamente da seguinte forma: $s_0 = \text{seed}$; $s_{i+1} = f(s_i), i = 0, 1, \dots$
- Note que os PRNGs não são aleatórios em um verdadeiro sentido da palavra, pois podem ser computados e são, portanto, completamente deterministas.
- Um requisito importante para um PRNG é que ele deve satisfazer propriedades estatísticas, ou seja, sua saída deve se aproximar a uma sequência verdadeiramente aleatória.

Geração de números pseudoaleatórios criptograficamente seguros(CSPRNG)

- São um tipo especial de PRNG.
- Um CSPRNG é um PRNG que é imprevisível.
- Informalmente falando, significa que dado n bits de de saída de uma chave de fluxo $s_i, s_{i+1}, \ldots, s_{i+n-1}$ é computacionalmente inviável computar os bits subsequentes $s_{i+n}, s_{i+n+1}, \ldots$
- Uma outra propriedade dos CSPRNG é que dada a mesma sequencia a cima, deve ser computacionalmente inviável computar qualquer bit precedente s_{i-1}, s_{i-2}, \ldots

Segurança incondicional

Definição - Segurança incondicional

Um criptosistema é incondicionalmente seguro se não pode ser quebrado mesmo com recursos computacionais infinitos.

- Uma cifra com segurança de 10000 bits e com o ataque de força bruta sendo o mais viável, é incondicionalmente segura?
- Número de átomos que formam o universo conhecido é aproximadamente 2^{266} .

One-time Pad

Definição - One-time pad (OTP)

Uma cifra de fluxo onde:

- 1. a chave de fluxo s_0, s_1, \ldots é gerada por um TRNG, e
- 2. a chave de fluxo é conhecida apenas entre as entidades legítimas, e
- 3. cada chave de fluxo s_i é usada apenas uma vez.
- é conhecida como *one-time pad*. Essa cifra é incondicionalmente segura.

One-time Pad é prático?

- Não é fácil gerar números verdadeiramente aleatórios!
- É viável passar a chave de forma segura.
- O principal problema é não reusar a chave! Na prática, as chaves teriam que ser muito grandes.

FIM