Signale und Systeme 2

FS 24 Prof. Dr. Heinz Mathis Autoren: Simone Stitz, Laurin Heitzer

Version: 1.0.20240523 https://github.com/P4ntomime/signale-und-systeme-2

Inhaltsverzeichnis

Filter		2	1.6 Approximation mittels kritisch-gedämpfter Filter (S. 299)	2
	Grundtypen (S. 291)			2
1.2	Frequnezgang H(jimg omega) – Übertragungsfunktion H(s)	2	1.8 Vorgehen Filter dimensionieren / auslegen	2
1.3	Approximation im Frequnezbereich	2	1.9 Nomogramme (S. 393)	2
1.4	Ideales Tiefpassfilter (S. 297)	2	1.10 Tabellen zum Entwurf von LC-Filtern	2
1.5	Amplitudengang mit char. Funktion K(Omega2)	2	1.11 Approximation nach Butterworth (S. 303)	3

1.1 Grundtypen (S. 291)

Filter sind mehrheitlich frequnezselektive, lineare Netzwerke, welche gewisse Frequenzbereiche übertragen und andere dämpfen. Die fünf frequnezselektiven Grundtypen sind:

- Tiefpass (TP)
- Bandpass (BP)
- Allpass

- · Hochpass (HP)
- Bandsperre, Notch (BS)

1.2 Frequenzgang $H(j\omega)$ – Übertragungsfunktion H(s) (s. 294)

Für den Frequnezgang $H(\mathrm{j}\omega)$ und die Übertragungsfunktion H(s) gelten die folgenden Zu-

$$\begin{split} |H(\mathrm{j}\omega)|^2 &= H(\mathrm{j}\omega) \cdot H^*(\mathrm{j}\omega) = H(\mathrm{j}\omega) \cdot H(-\mathrm{j}\omega) = H(s) \cdot H(-s) \Big|_{s=\mathrm{j}\omega} \\ H(s) \cdot H(-s) &= |H(\mathrm{j}\omega)|^2 \Big|_{\omega^2 = -s^2} \end{split}$$

Hinweis: $|H(j\omega)|^2$ ist immer eine Funktion in ω^2 , da der Amplitudengang eine gerade Funktion ist!

Da in der Praxis **jeweils nur** H(s) **interessant** ist, muss H(s) aus $|H(j\omega)|^2$ 'isoliert' werden. Dies ist durch den folgenden Zusammenhang möglich.

$$\boxed{\underbrace{\frac{N(s)}{D(s)} \cdot \frac{N(-s)}{D(-s)}}_{H(s)} = |H(j\omega)|^2 \Big|_{\omega^2 = -s^2}}$$

Hinweis: D(s) muss aus Stabilitätsgründen ein Hurwitz-Polynom sein!

1.3 Approximation im Frequnezbereich

Die wichtigste Aufgabe der Filtertheorie ist die Bestimmung der Übertragungsfunktion, die einen vorgegebenen Frequenzgang gewährleistet. Zuerst soll der Amplitudengang $|H(j\omega)|$ im Frequeezbereich approximiert werden. Der vorgeschriebene Phasengang wird dann allenfalls mit zusätzlichen Allpass-Filtern erreicht.

1.3.1 Toleranzschema (Stempel und Matritze) – Filterspezifikation

Die Anforderungen an ein Filter werden häufig im Toleranzschema beschrieben. Dieses steht jeweils 'auf dem Kopf'.

- Im Durchlassbereich (DB) bestimmt der Stempel die maximal zulässige Dämpfung A_{max}
- Im Sperrbereich (SB) bestimmt die Matritze die minimal nötige Dämpfung

1.3.2 Frequenznormierung

Um möglist kompakte Tabellen zu haben, wird auf Frequenzen normiert. Grundsätzlich kann auf eine beliebige Frequenz normiert werden. Allerdings gilt grundsätzlich:

- HP / TP: Normierung bezüglich Grenzfrequenz des Durchlassbereichs $\omega_r = \omega_D$
- BP / BS: Normierung bezüglich der Mittenfrequenz $\omega_r = \omega_m$

Normierte Grössen

Zur $\overline{\text{Entnorm}}$ ierung wird jeweisl S in der normierter Funktion durch $\frac{s}{\omega}$ ersetzt.

1.4 Ideales Tiefpassfilter (S. 297)

- DB: keine Dämpfung
- SB: kein Ausgangssignal
- Akausale Impulsantwort h(t)
- → Ideales Tierpass ist physikaltisch nicht realisierbar. → Approximationen

1.5 Amplitudengang mit char. Funktion $K(\Omega^2)$

Um Wurzelausdrücke zu vermeiden, wird der folgenden Ansatz verwendet

$$|H(j\Omega)|^2 = \frac{1}{1 + K(\Omega^2)}$$

Im Fall des (idealen) Tiefpasses gilt füt die charakteristische Funktion $K(\Omega^2)$ Durchlassbereich (DB) $0 \le K(\Omega^2) \ll 1$ für $0 \le \Omega < 1$ $\Rightarrow |H(j\Omega)|^2 \approx 1$ $K(\Omega^2) \gg 1$ $\Rightarrow |H(j\Omega)|^2 \approx 0$ Sperrbereich (SB) für $\Omega > 1$

1.6 Approximation mittels kritisch-gedämpfter Filter (S. 299)

Tiefpassfilter n. Ordnung mit kritischer Dämpfung haben jeweilen einen n-fachen Pol auf der **negativen** σ -Achse.

- Impuls- und Sprungantwort können nicht oszillieren
- Geringe Flankensteilheit im Übergangsbereich

Die Übertragungsfunktion H(s) ergibt sich als:

$$H(s) = \frac{1}{\left(1 + \frac{s}{\omega_c}\right)^n}$$

Ordnung des Filters

3 dB-Punkt jedes der n Teilfilter

Will man bei der Kreisfrequenz ω_D eine Dämpfung von α dB haben, so muss ω_c (der n identischen Teilfilter) gewählt werden als

$$\omega_c = \frac{\omega_D}{\sqrt{10^{\frac{\alpha}{10 \cdot n}} - 1}}$$

1.6.1 Eigenschaten kritisch-gedämpfte Filter

- Alle Pole am gleichen Ort auf negativer σ -Achse \Rightarrow Allpolfilter
- Für $\Omega = 0$ ist für sämtliche $n: |H(0)| = H_{\text{max}} = 1$
- Für $\Omega = 1$ ist für sämtliche $n: |H(j)| = \frac{H_{\text{max}}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow 3 \text{ dB Dämpfung}$
- Für Ω ≫ 1 wird |H(jΩ)| ≈ 1/Ωⁿ ⇒ -n·20 dB/ Dekade
 Amplitudengang bei Ω = 0 maximal flach, da alle Ableitungen = 0 sind
- Amplitudengang ist streng-monoton fallend → keine Welligkeit
- Pole verschieben sich bei höherer Ordnung in Richtung imaginäre Achse
- Gruppenlaufzeit konstant bis ω_D

Amplitudengänge

Pol-Lagen

1.7 Standard-Filtertypen – Überblick

- Butterworth
 - + Kein Rippel im Durchlass- und Sperrbereich
 - + Im Durchlassbereich ist der Amplitudengang maximal flach
 - Überhöhung in der Gruppenlaufzeit der Grenzfrequenz
 - Braucht hohe Ordnung für steilen Übergang von Durchlass- zu Sperrbereich
- Bessel
 - + Flachster Übergag von Durchlass- und Sperrbereich von allen Filtern
 - Konstante Gruppenlaufzeit
 - Für steile Filter im Durchlass- und Sperrbereich nicht geeignet
- Tschebyscheff-I
 - + Schon für kleine Ordnungen relativ steil im Übergang von Durchlass- und Sperrbereich
 - Rippel im Durchlassbereich
 - Keine konstante Gruppenlaufzeit

1.8 Vorgehen Filter dimensionieren / auslegen

- 1. Gemäss Anforderungen geeigneten Filtertyp wählen (→ 1.7)
- Toleranzschema gemäss Anforderungen erstellen inkl. Normierung (→ 1.3.1)
- 3. Ordnung des Filters bestimmen (Formel oder Nomogramm $\Rightarrow 1.9$)
- **4.** Übertragungsfunktion bestimmen (→ Matlab)
- 5. Komponenten mittels Entnormierung bestimmen (Tabellen \Rightarrow 1.10)

1.9 Nomogramme (S. 393)

Nomogramme können verwendet werden, um die Ordnung eines Filters zu bestimmen.

Benutzung von Nomogrammen

- **1.** P_1 : Verbindung von A_{max} zu A_{min}
- 2. P_2 : Verlängerung von P_1 bis zum 'Diagramm-
- 3. P3: Horizontale Linie vom Rand in Diagramm
- **4.** P_4 : Bei $\Omega = \frac{\Omega_S}{\Omega_D} = \frac{\omega_S}{\omega_D} = \frac{f_S}{f_D}$ vertikale Linie
- 5. P₅: Schnittpunkt: 'hochfahren' zur nächsten Kurve \Rightarrow Ordnung *n* der Kurve ablesen

1.10 Tabellen zum Entwurf von LC-Filtern (S. 409)

Achtung: Normierung der Widerstände beachten!

1.11 Approximation nach Butterworth (s. 303)

Das die charakteristische Funktion wird bei der Butterworth-Approximation als $K(\Omega^2) = (\Omega^2)^n = \Omega^{2n}$ gewählt.

Allgemein

Butterworth

$$|H(\mathsf{j}\Omega)|^2 = \frac{1}{1+K(\Omega^2)}$$

$$|H(j\Omega)| = \frac{1}{\sqrt{1 + \Omega^{2n}}}$$

 \Rightarrow $|H(j\Omega)|$ ist streng-monoton fallend!

1.11.1 Eigenschaften der Butterworth-Approximation (S. 303)

Durchlassbereich

- Für $\Omega=0$ ist für sämtliche n: $|H(0)|=H_{\max}=1$ Für $\Omega=1$ ist für sämtliche n: $|H(j)|=\frac{H_{\max}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow 3$ dB Dämpfung Amplitudengang bei $\Omega=0$ maximal flach, da alle Ableitungen =0 sind

• Sperrbereich

- Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{\Omega^n} \Rightarrow -n \cdot 20 \, dB/$ Dekade

Allgemein

Amplitudengang ist streng-monoton fallend ⇒ keine Welligkeit

1.11.2 Bestimmung von H(s) **aus** $|H(j\Omega)|$ (s. 304)

Aus dem Ansatz

$$|H(\mathrm{j}\Omega)|^2 = \frac{1}{1+K(\Omega^2)}\bigg|_{\Omega^2 = -S^2} = \frac{1}{s+(-S^2)^n} = H(S) \cdot H(-S) = \frac{1}{D(S)} \cdot \frac{1}{D(-S)}$$

kann der folgende Teil isoliert betrachtet werden (D(S) ist ein Hurwitz-Polynom):

$$D(S) \cdot D(-S) = 1 + (-S^2)^n$$

1.11.3 Bestimmung der Pol-Lage (S. 307)

Der Zusammenhang aus Abschnitt 1.11.2 kann für die Bestimmung der Pole auf Null gesetzt werden:

$$D(S) \cdot D(-S) = 1 + (-S^2)^n \stackrel{!}{=} 0$$

Durch Auflösen der Gleichung nach S kommen die Pole auf dem Einheitskreis zu liegen.

- Abstand zwischen den Polen: $\frac{\pi}{n}$
- Ordnung n gerade: keine reellen Pole
- Ordnung n ungerade: zwei reelle Pole bei ± 1 Für Nennerpolynom $D(S) = \frac{1}{H(S)}$ müssen nur Pole in der linken Halbebene berücksichtigt werden!

Beispiel: Butterworth 2. Ordnung – H(s) und Pol-Lage bestimmen

Ansatz:
$$H(S) \cdot H(-S) = \frac{1}{D(s)} \cdot \frac{1}{H(s)} = \frac{1}{1 + (-S^2)^n}$$

Für die Ordnung n = 2 ergibt sich das Nennerpolynom zu:

$$D(S) \cdot D(-S) = 1 + (-S^4) \quad \Leftrightarrow \quad S^4 = -1 \quad \Leftrightarrow \quad e^{j\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)}$$

Aufgelöst nach S liegen die Nullstellen auf dem Einheitskreis mit Abstand $\frac{\pi}{4}$ verteilt.

Rechte Halbebene
 Linke Halbebene

$$P_1 = \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}$$
 $P_2 = -\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}$
 $P_4 = \frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$
 $P_3 = -\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$

 \Rightarrow Für die Übertragungsfunktion H(s) sind nur die Nullstellen in der linken Halbebene relevant!

Die Übertragungsfunktion H(s) ergibt sich aus

$$H(s) = \frac{1}{D(s)} = \frac{1}{(S - P_2) \cdot (S - P_3)} = \frac{1}{S^2 + \sqrt{2}S + 1}$$

1.11.4 Bestimmung der Filterordnung (S. 308)

Aus dem Toleranzschema lassen sich für die 'Ecken' die folgenden beiden Bedingungen aufstellen:

$$A(\Omega_D) = 10 \cdot \log_{10}(1 + \Omega_D^{2n}) = A_{\text{max}}$$

$$A(\Omega_S) = 10 \cdot \log_{10}(1 + \Omega_S^{2n}) = A_{\min}$$

Mittels Umformungen und aufgelöst nach nergibt sich die Filter-Ordnung als [.] bedeutet 'aufrunden auf ganze Zahl'

$$n = \left\lceil \frac{\log_{10}\left(\frac{10^{A_{\min}/10} - 1}{10^{A_{\max}/10} - 1}\right)}{2 \cdot \log_{10}\left(\frac{\Omega_{S}}{\Omega_{D}}\right)} \right\rceil$$

→ Alternativ kann die Ordnung n auch mit dem Nomogramm bestimmt werden