#### ELO 385 – Laboratorio de Procesamiento Digital de Señales **Laboratorio # 6:**

## Análisis y Compresión de la Voz Humana

Matías Zañartu, Ph.D.

Departamento de Electrónica Universidad Técnica Federico Santa María



#### Sistema completo



Ciclo típico de vibración de las cuerdas vocales













(b) Laryngoscope view

## Patologías en las cuerdas vocales



Normal



Edema de Reinke



Pólipos



Cáncer Laringeo

## Generación de sonido en la glotis



## Representación básica de la producción de la voz humana





# • • • Aspectos Generales

- Para analizar las señales de la voz humana es necesario considerar nuevas herramientas para estudiar su espectro
- FFT: Representa a la señal modulada, es decir harmónicos del sonido de las cuerdas vocales con amplitudes controladas por la modulación del tracto vocal
- Tracto: Es posible visualizar sólo el efecto modulador del tracto mediante herramientas tales como LPC, FFT con N pequeño, Cepstrum, etc.
- Espectrograma: Una representación de la STFT, la cual muestra la composición espectral de una señal a lo largo del tiempo

### Formantes de Vocales



# Formantes de Vocales en Inglés (Las Vocales del Español son un subconjunto)



| Formant Frequencies for the Vowels                   |                                                                    |                                                                    |                                                                            |                                                                              |
|------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Typewritten Symbol<br>for the Vowel                  | Typical Word                                                       | F1 (Hz)                                                            | F2 (Hz)                                                                    | F3 (Hz)                                                                      |
| IY<br>I<br>E<br>AE<br>UH<br>A<br>OW<br>U<br>OO<br>ER | (beet) (bit) (bet) (bat) (but) (hot) (bought) (foot) (boot) (bird) | 270<br>390<br>530<br>660<br>520<br>730<br>570<br>440<br>300<br>490 | 2290<br>1990<br>1840<br>1720<br>1190<br>1090<br>840<br>1020<br>870<br>1350 | 3010<br>2550<br>2480<br>2410<br>2390<br>2440<br>2410<br>2240<br>2240<br>1690 |

Segundo Formante

### Fonemas del inglés



## Variación Temporal de la señal de la Voz Humana



### Espectrograma







# • • Aspectos Generales

- Compresión de la voz se basa en representar la señal nuevamente con un modelo conocido y eficiente
- Reconstrucción: Síntesis o Vocoder
- La transmisión de voz se asocia a la transmisión de los parámetros del modelo, y no de la señal de audio
- El modelo normalmente utilizado busca representar la fuente del sonido y la modulación del tracto vocal
  - Fuente de sonido: vibración de cuerdas vocales (tono definido) o turbulencias de aire (ruido)
  - Modulación del tracto vocal: Resonancias se modelan con un filtro IIR (sólo polos)

### Síntesis de Voz



P(s) = U(s) T(s) R(s)

### Síntesis de Voz



# • • • Fuente de Sonido

- Con vibración de las cuerdas: Señal con un tono definido y muchos armónicos (tren de impulsos)
- O Sin vibración de las cuerdas: Ruido de banda ancha
- O Detección de segmentos de la señal con vibración de las cuerdas:
  - Vocales o consonantes
  - Alta periodicidad y mayor energía
  - Cruces de ceros y umbral RMS
- Síntesis requiere estimar el tono de la señal:
  - FFT, autocorrelación

# • • • Modulación del Tracto

- Estimación de los parámetros del filtro IIR se obtiene con los mismos datos de la señal
- Método: Predicción Lineal Modelo autoregresivo

$$V(z) = \frac{1}{1 - \sum_{k=1}^{P} a_k z^{-k}}$$

$$s(n) = \sum_{k=1}^{P} a_k s(n-k) + G \cdot x(n)$$

- El filtro tiene orden P el cual suele ser P=fs/1000+2
- La estimación de los coeficientes **a**<sub>k</sub> se repite en el tiempo para capturar las distintas modulaciones



# • • • Actividades Programadas

#### • Parte I:

- Representar espectros de sonidos
- Analizar y clasificar sonidos de vocales
- Crear su propio espectrograma
- Estudiar espectrogramas de distinto ancho de banda

#### • Parte II:

- Crear su propio LPC
- Crear un vocoder para sintetizar una grabación de voz
- Evaluar compresión de la señal