Q. Lucies

/ 76.	Two VR (75	-30) tubes are connected in series. The voltage across the
	and their	current limit would be:
	(s.	60 volts at 75 milliamperes
	b)	75 volts at 60 milliamperes
	C)	75 volts at 30 milliamperes
	d)	150 volts at 60 milliamperes
	(e)	150 volts at 30 milliamperes
√ 77°	The ripple	frequency of a fullwave sing le-phase rectifier is:
	a)	equal to the input frequency
	b)	one-half of the input frequency
	(e)	twice the input frequency
	d)	three times the input frequency
	e)	one-third theinput frequency.
√ 78 _°	A capaciton	reinput filter is characterized by:
	a)	high voltage output and good regulation
	b)	low voltage output and good regulation
	(*)	low voltage output and poor regulation
	(b)	high voltage output and poor regulation
	e)	high voltage output and low peak current
1790	A 25,000 oh	m 50 watt bleeder resistor is to be replaced by two 50,000
	ohm resisto	rs in parallel. Their individual power ratings (in watts)
	should bes	
		50
	b)	100
	c)	25
	d)	200
	(10	12.5

1507.2 400 total ger voltage unique and pion regulation top, 62 or no bountypy of or all reduced tobased last of are too, the .

80.	80. In Figure 11, the a-e component of the input voltage to the fi			
	100 volts, 60 cps. The m	agnitude of the ripple (in volts) present at		
	the output is approximate	lys VL		
(0)	*) 83 ₀ 2	000000		
	b) 100	T \$1000 A		
	(a) 16.8	4 N 3 d		
	d) 30°4	Антабализа сапача на не на зацио неврасне на		
	(e) 32.9			
810	A power transformer with	a peak to peak secondary voltage of 1,000		
× ×		njunction with a full-wave single-phase		
	rectifier eircuit and a c	apacitor-input filter. The voltage appearing		
	aeross the input capacito	r is approximately:		
	a) 705	1000		
	b) 1,000	500		
	e) 1,410			
	a) 354			
	e) 500			
82.	The speed of synchronous	notor containing two pairs of poles and		
	operated on a 60 cycle si	ngle phase source, will be:		
	a) 1800 RPM			
	b) 3600 RPM	3600		
	e) 120 RFM	720		
	(d) 7200 RPM	(NICKEN F.) 60 60		

XL = 6.28 60.10 = 3768 10 H 4 up men on a 6.2.3 m Xcom 22.8.60.4 x10 100 O toopen (as 103 76. Eggs out to chatlages out topo 00 , atter to 100011.41 987.070.

83.	When the ro	otor (R) of the selsyn system shown is rotated 30° in the
	direction i	indicated, the stator voltages will: FAGE 23A
		be changed in phase.
	b)	be changed in polarity
		remain the same after R1 rotates a corresponding amount
		be changed in amplitude
J 840	Both primar	y and secondary windings of the transformer shown are identical.
	10 volts is	induced in the secondary when both windings are parallel.
	If the seco	ndary is rotated so that it forms an angle of 30° with the
	primary, th	e voltage indused will be:
	/a)	8.7V
	p)	5V 10 VOLTS as
	(c)	5.75V
	d)	17.3V
85.	The directi	on of rotation of a single phase induction motor may be reversed
	ph 8	
		reversing the connections to both windings
	(demonstration	shifting the phase in one winding 900
	(0)	reversing the connections to one winding
	d)	connecting both windings in series
\$660	The slip of	synchronous motor is:
		zere
	b)	infinite
	c)	about 5%
	đ)	about 95%
	(e)	about 10%

Ce. . . . v

-about four of Laguers of to
the Both princips one considery windings of the
mile gradenoon and at bevolved as associates as
A di sedi sa bededor al quetenche ed Mi
TE,TE (b
i is maddissinion out galorieries (e
note evo at ousing one gattalds its
o of mrotitoennes edf pointeres (o
on mi contheir stod sattlement to
tot color appropriate to give est 48

Fr = ZTITLE

V 87 0	The frequency of the oscillator shown is determined by:
	a) the L C ratio
	b) the amount of coupling
	(e) the LC product
	d) the plate characteristic
√ 88.	Providing that both triedes of the circuit shown are identical, the
	output wave form will be similar to:
	a) ////
	b)
	250 \ K
	d) LLA \$1. M
√ 89.	Feedback in the tuned-plate tuned-grid oscillator is:
	a) magnetic
	b) inductive.
	e) resistive
	d) directly between the plate and grid coils
	e) through the grid-plate capacity of the tube
J 90°	A 1,000 K.C. R.F. carrier is 50% amplitude modulated with a pure
	sine wave of 1000 c.p.s. The resultant frequencies will be:
	a) 1000 K.C. and 1001 K.C.
	✓ b) 1000 К.С., 999 К.С., 1001 К.С.
	c) dependent upon the deviation ratio
	d) 998 K.C., 999 K.C., 1000 K.C., 1001 K.C., 1002 K.C.

S-

d) the plate characteristic	
Providing that both brindes of the carcult show are adeptical, the	
output near form wall be studied to:	
Many and Add the	
Freedomic in the Lucad-plane cumpd-grad occillator in	
d) directly between the plate and grid coils	
of through the grid-plate capacity of the total	
a people of the contract to SOA amplitude modulated with a pure	
a) 1000 K.C. and 1002 K.C.	
P) X000 K'C'" 558 K'C'" 7003 K'C"	
elist noise was and nage desired to	
4) 998 K.C., 999 K.C., 1000 K.C., 1001 K.C. 1012 K.C.	

1			
1 91.	The apin ax	ia of a perfectly balanced gyro isperpe	ndicular to the
	earth s sur	face at the equator. After twelve hour	s, the spin axis in
	relation to	the earth's surface:	
	a)	will be totally unchanged	
	(d	will be parallel	
	(c)	will Form an angle of 45°	
	d)	will be perpendicular but turned end f	or end
920	In the brid	ge circuit shown, the meter will indica	te an electron flow
	thru to the	10-	2 100 x 100 1
		left	7
	b)	cannot be determined	T. J.
	c)	right 100.	7 1000x
	d)	no current	
93.	In Figure 3	, theresistance (in chas), of R_{χ} in the	balanced bridge
	circuit is:	Control of the second states of the second s	300 = 59
	2)	20 + 1000-4.17	12500 m 1000
	(0	500 FF	Annumental
	(6)	10,000 T- Yz	and the second
	d)	5,000	ur R×
1	6)	A D	
1 940	1,000 volta	de are applied to a series RC circuit	containing a 0.5 megchm
	resistor an	d a 0.01 misrofarad capacitor. After 0	.005 second has elepsed,
	the circuit	current (in milliamperes) will be:	TC = RC
		0.735	5 x 1 5 x 1 x 10 =
	b)	200	5 x107 = .005 Sec
	(c)	5	1 TC = .005 Sec.
	d)	5. Wi	63. % of 1000 = 630
			630 = 1.26 ma.
			5 X 105

The apparation of a perfectly balanced gree tenergation as to also the sell has beened first takenthrougher of they be restance and a 0.00 magnetisted especially of the 0.005 mecond but slagers and the commencer all amount almost ask

/ /95。	5. Two identical 1-misrofarad capacitors connected in parallel are cha			
	to 100 volt	s. If they are connected in series aiding and discharged throu		
	a 2 megohm	resistor, when they first start to discharge, the current		
	will be:	1 + EMPX 200 V		
	(a)	100 millien peres		
	(b)	100 microamperes 3 .000000		
	(c)	zero		
	d)	infinite		
	e)	50 microamperes		
96.	The charact	eristicsimpedance of a transmission line is dependent upons		
	(s	length and spacing of the line		
	management b)	wire sizeeand frequency		
		size and length of wire		
		length and frequency		
	e)	wire size and wire spacing		
V 97.	The inserti	on of a powdered-iron slug into the core of an i-f		
	operating at 456 kess			
		increases the resonant frequency		
	p)	decreases the resonant frequency		
	(C)	does not affect the resonant frequency		
	d)	is eddy-current tuning		
	e)	decreases the industance		
/98,	Resistance	loading of i-f transformers:		
	8)	decreases the band-pass		
	b)	does not affect the output of the receiver		
	(0)	improves the selectivity of the receiver		
	/ d)	improves the fidelity of the receiver		

ennes trestanges beneformed lesstands our .20	
novequatilim DOL (a	
Consequences out to	
dealerante of to consbequential and all all	
entl ad to gained the manut to	
gonesper't havenin stim (a	
unionis with the east water (e	
transformer operating at 155 tests	
Torontoet Stanoner end sessonest (M.	
geneaport Susnoner out secounts fd	
mort dammest eds spells don numb fe	
garnes anoxim-tobo at 18	
enterophet out ameasteb (s	
the district test to political completes a	
or oil to playlisates of nerought to	
the state of the selection of the V	