

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Докладчик: **Желдак Евгений Михайлович**, слушатель 2 потока 11107 Образовательного центра МГТУ им. Н. Э. Баумана под управлением МИЦ «Композиты России»

Решаемые задачи и исходные данные

- Разведочный анализ данных
- Выбор регрессионной модели и прогноз значений модуля упругости при растяжении и прочности при растяжении
- Построение нейронной сети для прогноза соотношения матрицанаполнитель
- Разработка web-приложения для прогноза соотношения матрицанаполнитель

Исходные данные:

- 13 признаков по 1023 значения
- 1 категориальный признак
- Пропуски отсутствуют
- Распределение данных близко к нормальному
- Линейной зависимости между признаками нет

Данные до предобработки

Попарные графики до предобработки

Данные после удаления выбросов

Данные после нормализации

Попарные графики после удаления выбросов и нормализации

Корреляционная матрица

Разработка и обучение моделей для прогноза модуля упругости при растяжении

Модель	RMSE	r2
Linear	0.185817	-0.021807
Polynomial	0.195041	-0.125768
Spline	0.201448	-0.200949
Random Forest	0.187003	-0.034893
Multilayer Perceptron	0.204796	-0.241197

«Лучшая» модель – случайный лес

Разработка и обучение моделей для прогноза прочности при растяжении

Модель	RMSE	r2
Linear	0.188691	0.004901
Polynomial	0.193815	-0.049882
Spline	0.191584	-0.025843
Random Forest	0.186723	0.025550
Multilayer Perceptron	0.217275	-0.319415

«Лучшая» модель – случайный лес

Создание нейронной сети для рекомендации соотношения матрица-наполнитель

```
normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(np.array(X))
def build_and_compile_model(norm):
    model = keras.Sequential([
        norm,
        layers.Dense(6, activation='relu'),
        layers.Dense(1)])
    model.compile(loss='mean_absolute_error',

optimizer=tf.keras.optimizers.Adam(0.001),

metrics=[tf.keras.metrics.RootMeanSquaredError()])
    return model
```


Сравнение прогнозных и проверочных данных

Разработка web-приложения

← → C	○ <u>127.0.0.1:5000/nn_model/</u>		
Прогнозирование соотношения матрица-наполнитель			
Плотность, кг/м3 (17002300) 1996.159145			
Модуль упругости, ГПа (22000) 525.057774			
Количество отвердителя, м.% (17200) 77.506883			
Содержание эпоксидных групп,%_2 (1434) 18.126107			
Температура вспышки, C_2 (100414) z23.408685			
Поверхностная плотность, г/м2 (0.61400) 28.658102			
Модуль упругости при растяжении, ГПа (6483) 69.489773			
Прочность при растяжении, МПа (10363849)			
Потребление смолы, г/м2 (33414) з14.776669			
Угол нашивки, град (0 или 90) о			
Шаг нашивки (015) 6.67578			
Плотность нашивки (0104) 78.623299			
Submit Query			
Входные переменные:			
матрица- наполнитель	Илотность, кг/м3 модуль упругости, ГПа Количество отвердителя, м.% Содержание эпоксидных групп,%_2 Температура вспышки, С_2 П 96.159145 525.057774 77.506883 18.126107 223.408685 28.6		
	96.159145 525.057774 77.506883 18.126107 223.408685 28.6		
Результат модели:			
Соотношение матрица-наполнитель 2.902847183234564			

- Используем сохранённые нормализатор и нейронную сеть
- Для начала работы нужно ввести значения всех свойств.
- Нажать на кнопку «Submit Query».
- Отобразятся входные переменные и соответствующее им прогнозное значение соотношения матрицанаполнитель

Выводы

- коэффициенты корреляции между ризнаков стремятся к нулю;
- примененные модели линейной и полиномиальной регрессии, случайный лес и нейронная сеть не показали высокой эффективности в прогнозировании свойств композитов, необходимы дополнительные вводные данные для улучшения моделей;
- лучшие метрики критерии качества у модели случайного леса.

