ממ"ך 11

Note: Sometimes I'll be using e.g. $\neg(A \cup B)$ to represent the complement of $(A \cup B)$ (My script doesn't fully support superscript or overline)

2

×

Prove: $(A\backslash B) \cup (B\backslash C) = (A \cup B) \setminus (B \cap C)$

First: expand left-hand side $(A\B) \cup (B\C)$

```
(A \cap \neg B) \cup (B \cap \neg C) // diff

(A \cup B) \cap (A \cup \neg C) \cap (\neg B \cup B) \cap (\neg B \cup \neg C) // distributivity

(A \cup B) \cap (A \cup \neg C) \cap (\neg B \cup \neg C) // (\neg B \cup B) \equiv T

(A \cup B) \cap [(A \cap \neg B) \cup \neg C] // dist.
```

Second: expand right-hand side (A \cup B) \ (B \cap C)

```
(A \cup B) \cap \overline{(B \cap C)}
(A \cup B) \cap (\neg B \cup \neg C)
(A \cap \neg B) \cup (A \cap \neg C) \cup (B \cap \neg B) \cup (B \cap \neg C) \qquad // \text{ dist}
(A \setminus B) \cup (A \cap \neg C) \cup (B \cap \neg C) \qquad // (B \cap \neg B) \equiv \emptyset
(A \setminus B) \cup [(A \cup B) \cap \neg C] \qquad // \text{ dist}
[(A \setminus B) \cup (A \cup B)] \cap [(A \cap \neg B) \cup \neg C] \qquad // \text{ dist}
// \text{ I'll now prove that } [(A \setminus B) \cup (A \cup B)] \equiv (A \cup B),
// \text{ then get back to expanding the full statement}
\text{Since } (A \setminus B) \subseteq A \text{ and } A \subseteq (A \cup B) \Rightarrow
(A \setminus B) \subseteq (A \cup B)
\text{Therefore}
(A \setminus B) \cup (A \cup B) = (A \cup B)
(A \cup B) \cap [(A \cap \neg B) \cup \neg C]
```

We see that left-hand side \equiv right-hand side, therefore $(A \setminus B) \cup (B \setminus C) = (A \cup B) \setminus (B \cap C)$

Prove:

if $P(A) \vee P(B) = P(C)$, then $(C=A) \vee (C=B)$

I'll be proving: $(C\subseteq A \land A\subseteq C) \lor (C\subseteq B \land B\subseteq C)$ Since it's equivalent to $(C=A) \lor (C=B)$

First: proof that C⊆A v C⊆B

 $C \in P(C)$ // power set definition $P(C) = P(A) \lor P(B) \Rightarrow C \in (P(A) \lor P(B))$ $C \in P(A) \lor C \in P(B)$ $C \subseteq A \lor C \subseteq B$

Second: proof that $A\subseteq C$ \vee $B\subseteq C$

 $A \in P(A)$ $P(A) \subseteq P(A) \cup P(B)$ // union definition $A \in P(A) \cup P(B)$ Given $P(C) = (P(A) \cup P(B)) \Rightarrow A \in P(C)$ $A \subseteq C$

 $B \in P(B)$ $P(B) \subseteq P(A) \cup P(B)$ // union definition $B \in P(A) \cup P(B)$ Given $P(C) = (P(A) \cup P(B)) \Rightarrow B \in P(C)$ $\mathbf{B} \subseteq \mathbf{C}$

Since $C\subseteq A \lor C\subseteq B$ and $A\subseteq C$ and $B\subseteq C$, we conclude that: $C\subseteq A \lor C\subseteq B \land A\subseteq C \land B\subseteq C$ Therefore (C=A) \lor (C=B)