Apunte ICPC

9 de octubre de 2017

Índice general

Notas previas		
	0.1.	Abreviaciones utilizadas
1.		ructuras de datos
	1.1.	Fenwick Tree
		1.1.1. Actualizaciones por rango, consultas puntales
		1.1.2. Actualizaciones puntuales, consultas por rango
	1.2.	Union-Find
2.	Gra	
	2.1.	Single source shortest path
		2.1.1. Dijkstra
3.	Fluj	o 4
	3.1.	Problemas de asignación
		3.1.1. Bipartite matching
4.	Pro	gramación dinámica
5.	Con	tenido adicional
	5.1	Usar en caso de emergencia

Notas previas

0.1. Abreviaciones utilizadas

Estructuras de datos

1.1. Fenwick Tree

Nota: Ambas implementaciones tienen rangos entre 1 a n.

1.1.1. Actualizaciones por rango, consultas puntales

```
struct FenwickTree{
      vi FT;
     FenwickTree(int N){
        FT.resize(N+1,0);
 4
 5
     int query(int i){
        int ans = 0;
 9
        for(;i;i-=i&(-i)) ans += FT[i];
10
        return ans;
11
12
13
    int query(int i, int j){
14 }
        return query(j)-query(i-1);
16
    void update(int i, int v){
17
18
         for(;i<FT.size();i+=i&(-i)) FT[i] += v;</pre>
19
21
     void update(int i, int j, int v){
         update(i,v); update(j+1,-v);
23
24 };
```

1.1.2. Actualizaciones puntuales, consultas por rango

La consulta query(a,b) corresponde a la sumatoria de los elementos entre los índices a y b.

```
struct FenwickTree {
2
      vi ft;
3
     FenwickTree(){}
4
      FenwickTree(int n){
       ft.assign(n + 1, 0);
5
7
8
     int query(int b) {
9
        int sum = 0;
10
       for (; b; b -= b&(-b)) sum += ft[b];
11
       return sum;
12
13
14
     int query(int a, int b) { \\RSQ
15
       return query(b) - (a == 1 ? 0 : query(a - 1));
16
17
     void update(int k, int v) {
                                                       // note: n = ft.size() - 1
18
19
       for (; k < (int)ft.size(); k += k&(-k)) ft[k] += v;
20
21
   };
```

1.2. Union-Find

Utilizada para trabajar conjuntos disjuntos. Sirve para encontrar componentes conexas en grafos no dirigidos.

```
1
   class UnionFind {
   private:
     vi p, rank, setSize;
     int numSets;
5
   public:
     UnionFind(int N) {
            setSize.assign(N, 1); numSets = N; rank.assign(N, 0);
           p.assign(N, 0); for (int i = 0; i < N; i++) p[i] = i; }
     int findSet(int i) { return (p[i] == i) ? i : (p[i] = findSet(p[i])); }
10
     bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
     void unionSet(int i, int j) {
11
12
           if (!isSameSet(i, j)) { numSets--;
           int x = findSet(i), y = findSet(j);
13
14
            // rank is used to keep the tree short
15
            if (rank[x] > rank[y]) \{ p[y] = x; setSize[x] += setSize[y]; \}
16
                                       { p[x] = y; setSize[y] += setSize[x];
17
                                 if (rank[x] == rank[y]) rank[y]++; } }
     int numDisjointSets() { return numSets; }
18
19
     int sizeOfSet(int i) { return setSize[findSet(i)]; }
20
   };
```

Grafos

2.1. Single source shortest path

2.1.1. Dijkstra

Utilizamos la representacion vvii con pares (vecino,peso)

a

1

Flujo

3.1. Problemas de asignación

3.1.1. Bipartite matching

Tenemos dos conjuntos A y B, donde cada elemento de A es compatible con ciertos elementos de B. Además, tenemos la condición de que podemos asociar cada elemento de A con a lo más un solo elemento de B. Bipartite matching nos permite saber la cantidad máxima de asociaciones posibles.

Modelamiento utilizado. Todas las aristas llevan 1 de flujo.

Programación dinámica

Contenido adicional

5.1. Usar en caso de emergencia

GOD BLESS OUR SAVIOUR

Índice alfabético

Bipartite matching, 4

Fenwick Tree, 1

Componentes conexas, 2

Particiones, 2

Conjuntos disjuntos, 2

RSQ, 2