机器人学实验报告

李厚霖 520020910007

任务一:对给定的 Puma560 机械臂构型,使用正运动学在关节空间随机 采样得到机械臂的工作空间,并画出-90<q<90 范围内工作空间。

实现思路: 首先根据给定的坐标参数构建机器人的机械臂构型,之后再根据[-90,90]的角度限制各个关节的运动范围,最后根据随机采样获得限定范围内的工作空间的散点图。

1、 机械臂的构建

由课上已知的 puma560 机械臂的基本模型,修改其个别参数得到题目中的要求机械臂,代码和图片如下:

```
%设置DH参数
1
2 —
       thel = 0; d1 = 0; a1 = 0; alp1 = 0;
3 —
       the2 = 0; d2 = 0; a2 = 0; a1p2 = -90*pi/180;
       the3 = 0; d3 = 20; a3 = 100; a1p3 = 0;
4 —
       the4 = 0; d4 = 100; a4 = 10; a1p4 = -90*pi/180;
6 —
       the5 = 0; d5 = 0; a5 = 0; a1p5 = 90*pi/180;
       the6 = 0; d6 = 0; a6 = 0; a1p6 = -90*pi/180;
       %建立六个连杆
       L1 = Link([the1, d1, a1, a1p1, 0], 'modified');
       L2 = Link([the2, d2, a2, a1p2, 0], 'modified');
0 —
       L3 = Link([the3, d3, a3, a1p3, 0], 'modified');
       L4 = Link([the4, d4, a4, a1p4, 0], 'modified');
       L5 = Link([the5, d5, a5, a1p5, 0], 'modified');
3 —
      L6 = Link([the6, d6, a6, a1p6, 0], 'modified');
5
       %生成puma
6 —
       mypuma = SerialLink([L1, L2, L3, L4, L5, L6], 'name', 'puma hw');
       mypuma.display();
```

由此获得的 DH 参数表和机械臂结构如下:

puma hw:: 6 axis. RRRRRR. modDH. slowRNE

-			rittititit, modeli,			
	j	theta	d	a	alpha	offset
i	1	q1	0	0	0	0
1	2	q2	0	0	-1.5708	0
\perp	3	q3	20	100	0	0
1	4	q4	100	10	-1.5708	0
	5	q5	0	0	1. 5708	0
	6	q6	0	0	-1. 5708	0
+-	+	+		+		+

2、 限制关节角度并计算末端位姿

由 rand ()函数可以生成范围为 (0,1) 的任意值,根据公式: Theta = (最小角+(最大角-最小角)*rand ())便可得到在限制角度范围内的随机采样点。

%随机次数 N = 30000; theta1 = (-pi/2+(pi/2+pi/2)*rand(N,1));%关节1角度[-pi/2, pi/2] theta2 = (-pi/2+(pi/2+pi/2)*rand(N,1));%关节2角度[-pi/2, pi/2] theta3 = (-pi/2+(pi/2+pi/2)*rand(N,1));%关节3角度[-pi/2, pi/2] theta4 = (-pi/2+(pi/2+pi/2)*rand(N,1));%关节4角度[-pi/2, pi/2] theta5 = (-pi/2+(pi/2+pi/2)*rand(N,1));%关节5角度[-pi/2, pi/2] theta6 = (-pi/2+(pi/2+pi/2)*rand(N,1));%关节6角度[-pi/2, pi/2]

%末端位姿 tail = mypuma.fkine(q);

3、 画出末端位姿的工作空间

q = [theta1, theta2, theta3, theta4, theta5, theta6];

整体散点分布图:

X-Y 分布图:

Y-Z 分布图:

X-Z 分布图:

任务二: 2. 工作空间的 origin=[100, 0, 50] (中心)位置处有一块 size=[200, 30, 150] 的障碍物。使用逆运动学规划一条从起点 pini=[100 100 10]到终点 pend=[100 -100 10]的路径。画出机械臂从起点到终点的工作空间路径及关节角度变化曲线。

基本思路: 同第一题一样先构建好机械臂(此处我为了方便计算更改了机械臂的参数)。此后手动找到几个符合限制的点,这些点能确保机械臂在角度限制范围内通过且不会碰到障碍物。之后,通过这几个点确定起始点和到达点,用五次曲线拟合机械臂的运动轨迹。最后再验证整个轨迹是否符合题意(角度限制、绕过障碍)。

1、 构建机械臂

此处与任务一基本一致,仅为了简便计算将 a3, d3 设为 0, a2, d4 设为 150, 且将机械臂的基点延 x 轴负方向移动 50, 得到的 DH 参数表如下:

j	theta	d	a	alpha	offset
1	q1	0	0	0	0
2	q2	0	0	-1.5708	0
3	q3	0	150	0	0
4	q4	150	0	-1.5708	0
5	q5	0	0	1.5708	0
6	q 6	0	0	-1.5708	0
++	+		+	+	+
base:	t = (-50, 0)	, 0), RPY/xyz	= (0, 0,	0) deg	

2、 找到符合限制的点

由题目可知起始点为[100 100 10],终点为[100 -100 10]。为了让机械臂不碰到障碍物,我找到了离障碍物较远且机械臂能到达的点。

分别为[100 50 200]和[100 -50 200]。且这两个点都不会让关节角度超过限制。

3、 拟合机械臂的运动轨迹并绘制

根据起始点、终点加上步骤二手动找的两个点共四个点,分别做三 段点与点之间的拟合(以下以第一段五次曲线拟合为例):

```
%first line
q0 = mypuma.ikine(trans1(100, 100, 10), 'to1', 1);
q1 = mypuma.ikine(trans1(100, 50, 200), 'to1', 1);
t = [0:0.025:2];
qf = mtraj(@tpo1y, q0, q1, t);
T1 = mypuma.fkine(qf);
```

其中,由于机械臂可能无法完全收敛到设置的点,故设置了一个容忍误差,经报错提示在此处设置为'1'。之后绘制拟合曲线和机械臂的运动过程如下:

```
for i = 1:1:81

plot3(T1(i).t(1),T1(i).t(2),T1(i).t(3),'b.','MarkerSize',0.5);
hold on
end
mypuma.plot(qf);
```


其余两端轨迹绘制的代码与上述第一段的类似。

4、 验证是否符合题意

由于是手动设置的经过点,因此要确保在拟合曲线过程中各个关节的不会超过[-90 90]的角度限制,我从 matlab 中找到存储各关节角度的参数 (qf,qs,qt), 部分截图如下:

	1	2	3	4	5	6
1	0.5854	-0.9846	0.2831	1.0261	0.4910	-0.3390
2	0.5854	-0.9846	0.2831	1.0261	0.4910	-0.3390
3	0.5853	-0.9846	0.2830	1.0260	0.4909	-0.3389
4	0.5852	-0.9848	0.2828	1.0256	0.4907	-0.3388
5	0.5851	-0.9851	0.2823	1.0249	0.4904	-0.3386
6	0.5848	-0.9856	0.2815	1.0239	0.4899	-0.3382
7	0.5844	-0.9864	0.2804	1.0223	0.4891	-0.3377
8	0.5838	-0.9874	0.2788	1.0202	0.4881	-0.3369
9	0.5831	-0.9887	0.2769	1.0174	0.4868	-0.3360
10	0.5822	-0.9903	0.2744	1.0140	0.4852	-0.3348
11	0.5811	-0.9922	0.2713	1.0098	0.4832	-0.3334
12	0.5798	-0.9946	0.2678	1.0048	0.4808	-0.3317
13	0.5783	-0.9973	0.2636	0.9991	0.4781	-0.3297
14	0.5766	-1.0004	0.2588	0.9924	0.4749	-0.3274
15	0.5747	-1.0039	0.2534	0.9849	0.4714	-0.3248
16	0.5725	-1.0079	0.2473	0.9765	0.4674	-0.3220
17	0.5701	-1.0123	0.2406	0.9672	0.4630	-0.3188
18	0.5674	-1.0171	0.2332	0.9570	0.4581	-0.3153
19	0.5646	-1.0223	0.2251	0.9459	0.4528	-0.3115
20	0.5614	-1.0280	0.2164	0.9338	0.4471	-0.3073

可以发现其范围都在[-pi/2 pi/2]之间,符合题目要求,故该任务能够完成。