DIALOG(R)File 351:Derwent WPI (c) 2006 Thomson Derwent. All rts. reserv.

011365127 **Image available** WPI Acc No: 1997-343034/199732 XRPX Acc No: N97-284439

Semiconductor rectifier diode for motor vehicle - has diode chip mounted on base with wall taking up forces at 90 degrees to plane of chip

Patent Assignee: BOSCH GMBH ROBERT (BOSC)

Inventor: SCHULER S; SPITZ R

Number of Countries: 020 Number of Patents: 008

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

DE 19549202 A1 19970703 DE 195049202 A 19951230 199732 B
WO 9724762 A1 19970710 WO 96DE2139 A 19961109 199733
EP 870328 A1 19981014 EP 96945714 A 19961109 199845
WO 96DE2139 A 19961109

JP 2000502838 W 20000307 WO 96DE2139 A 19961109 200023 JP 97523961 A 19961109

US 6060776 A 20000509 WO 96DE2139 A 19961109 200030 US 9891973 A 19980626

KR 99072188 A 19990927 WO 96DE2139 A 19961109 200048 KR 98704549 A 19980617

EP 870328 B1 20040818 EP 96945714 A 19961109 200455 WO 96DE2139 A 19961109

DE 59611062 G 20040923 DE 96511062 A 19961109 200462 EP 96945714 A 19961109 WO 96DE2139 A 19961109

Priority Applications (No Type Date): DE 195049202 A 19951230

Cited Patents: EP 34207; FR 2412166; US 5005069

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 19549202 A1 7 H01L-023/049 WO 9724762 A1 G 21 H01L-023/049 Designated States (National): JP KR US

Designated States (Regional): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

EP 870328 A1 G H01L-023/049 Based on patent WO 9724762

Designated States (Regional): DE FR GB IT

JP 2000502838 W 18 H01L-023/48 Based on patent WO 9724762
US 6060776 A H01L-023/02 Based on patent WO 9724762
KR 99072188 A H01L-023/049 Based on patent WO 9724762
EP 870328 B1 G H01L-023/049 Based on patent WO 9724762
Designated States (Regional): DE FR GB IT

DE 59611062 G H01L-023/049 Based on patent EP 870328 Based on patent WO 9724762

Abstract (Basic): DE 19549202 A

The diode (100) has a base (2) which can be pressed into an opening of a rectifier arrangement the base forming a single item with a platform (3). A semiconductor (4) fitted with a wire connector (8) is mounted on the platform.

In the region of the platform, the bottom section (1) of the base has a wall (9) which surrounds the platform and the wall. The wall is separated from the platform by a trench (10), and the wall is formed as

one piece with the bottom section. On the side of the wall remote from the trench a pressure area can be provided to take up the forces at 90 degrees to the plane of the chip.

USE/ADVANTAGE - In generator rectifier assembly of motor vehicle. Increases rigidity of diode assembly to resist deformation when pressed into rectifier arrangement.

Dwg.1/5

Title Terms: SEMICONDUCTOR; RECTIFY; DIODE; MOTOR; VEHICLE; DIODE; CHIP; MOUNT; BASE; WALL; UP; FORCE; DEGREE; PLANE; CHIP

Derwent Class: U11; U12; U24; X12; X22

International Patent Class (Main): H01L-023/02; H01L-023/049; H01L-023/48

International Patent Class (Additional): H01L-023/04; H01L-023/051;

H01L-023/24; H01L-023/28; H01L-023/492; H01L-029/861

File Segment: EPI

Manual Codes (EPI/S-X): U11-D01B; U11-D01Q; U12-C01C; U24-D05; X12-J05; X22-X10

?

61 Int. Cl.8: H 01 L 2

H 01 L 23/049

H 01 L 23/051 H 01 L 29/861

DEUTSCHES PATENTAMT

2) Aktenzeichen: 195 49 202.1
 2) Anmeldetag: 30. 12. 95

Offenlegungstag: 3. 7.97

)E 19549202 A

(1) Anmelder:

Robert Bosch GmbH, 70489 Stuttgart, DE

@ Erfinder:

Spitz, Richard, Dipl.-Phys., 72766 Reutlingen, DE; Schuler, Siegfried, Dipl.-Phys., 72829 Engstingen, DE

66 Entgegenhaltungen:

DE 30 11 491 A1 US 37 13 007

Prüfungsantrag gem. § 44 PatG ist gestellt

(S) Gleichrichterdiode

Die Erfindung betrifft eine Gleichrichterdiode mit einem Sockel, die in eine vorgesehene Öffnung einer Gleichrichteranordnung einpreßbar ist, wobei auf dem Sockel einstückig mit dem Sockel ein Podest angeordnet ist, auf dem seinerseits ein Halbleitertyp befestigt ist, der wiederum mit einem Kopfdraht verbunden ist. Bei der erfinderischen Konstruktion ist ein das Podest umgebender Wall vorgesehen, der beim Einpreßvorgang eine niedrige und homogene Biegebeanspruchung an der Chipauflagefläche gewährleistet sowie im Vergleich zu einer Konstruktion ohne Wall die Chipzentrierung bei der Herstellung unkritischer macht. Auch nicht so gut zentrierte Halbleiterchips stellen kein Hindernis mehr dar für die Zuverlässigkelt der Gleichrichterdiode.

Beschreibung

Stand der Technik

Die Erfindung betrifft eine Gleichrichterdiode nach dem Oberbegriff des Anspruchs 1. Es ist bekannt, Gleichrichterdioden mittlerer und höherer Leistungen als Einpreßdioden auszuführen. Die Einpreßdioden weisen dabei einen Einpreßsockel auf, der in einer entspre- 10 chenden Ausnehmung einer Gleichrichteranordnung eingepreßt wird. Der Einpreßsockel übernimmt dabei gleichzeitig eine dauerhafte thermische und elektrische Verbindung der Gleichrichterdiode mit der Gleichrichteranordnung. Derartige Anordnungen sind beispiels- 15 weise aus der Kraftfahrzeugtechnik bekannt, wo sie als Gleichrichter in den Kraftfahrzeuggeneratoren eingesetzt werden. Der Einpreßsockel weist dabei einen Befestigungsbereich auf, auf dem ein Halbleiterchip beiterchip wiederum ist ebenfalls beispielsweise durch Löten ein sogenannter Kopfdraht befestigt, der elektrisch beispielsweise durch Löten oder Schweißen fest mit einer Phasenzuleitung des Kraftfahrzeuggenerators verbunden ist.

Beim Einpressen der Gleichrichterdiode in eine vorgesehene Öffnung einer Gleichrichteranordnung greifen am Rande der Gleichrichterdiode mechanische Kräfte auf diese an. Diese mechanischen Kräfte werden über den Einpreßsockel auf den Befestigungsbereich 30 des Halbleiterchips übertragen. Beim Einpressen erfährt der auf dem Befestigungsbereich montierte Halbleiterchip eine Biegebeanspruchung. Auch die Lotschichten zwischen Halbleiterchip und Einpreßsockel sowie zwischen Halbleiterchip und Kopfdraht sind von 35 der Biegebeanspruchung betroffen.

In der DE 41 12 286 A1 ist der Einpreßsockel aus massivem Metall ausgeführt, und zwar in Form eines zentrisch angeordneten Podests, auf dem der Halbleiterchip montiert ist. Dadurch ist bereits eine räumliche 40 Trennung des Halbleiterchips vom Einpreßsockelrand, auf den die Einpreßkräfte einwirken, gegeben. Trotz der räumlichen Trennung erfahren der Chip und die ihn umgebenden Lotschichten eine Biegebeanspruchung, Altern der Einpreßdiode führen kann.

Bei einer alternativen Konstruktion einer Gleichrichterdiode ohne Podest und dieses Podest umgebenden Wall hängt die Robustheit und Zuverlässigkeit des Bauteils davon ab, daß der Chip bei der Herstellung exakt 50 zentriert befestigt ist.

Vorteile der Erfindung

Die Gleichrichterdiode mit den im Hauptanspruch 55 genannten kennzeichnenden Merkmalen hat demgegenüber den Vorteil, daß in einfacher Weise eine Robustheit bezüglich Deformation, beispielsweise beim Einpressen, erreicht wird. Dadurch, daß der Sockelboden im Bereich des Podests einen dieses Podest umge- 60 benen Wall aufweist, der mit dem Sockelboden einstükkig ist, kann durch einfache geometrische Variationen der Höhe des Walls und seines Abstands vom Podest die Steifigkeit des gesamten Sockels verbessert werden.

Durch die in den abhängigen Ansprüchen aufgeführ- 65 ten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch gegebenen Gleichrichterdiode möglich.

Insbesondere vorteilhaft ist die Anordnung eines Preßbereichs auf der vom Graben abgewandten Seite des Walls. Dadurch wird eine Robustheit der Gleichrichterdiode gegenüber Deformation beim Einpressen 5 in eine Gleichrichteranordnung gewährleistet. Die Kombination von Preßbereich, Wall und Graben verringert die Biegebeanspruchung an der Chipauflagefläche im Vergleich zu einer Konstruktion ohne Wall.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß der Preßbereich der Einpreßdiode durch einen Wall vom Sockel getrennt ist, dessen Höhe ungefähr halb so groß ist wie die Länge des Grabens zwischen Sockel und Wall. Bei minimaler Biegebeanspruchung während des Einpreßvorgangs erreicht man dabei im Rahmen gegebener Fertigungstechniken für den Sockel gleichzeitig eine geringere Fehlerquote bei der Herstellung, da die Chipzentrierung auf der Chipauflagefläche des Podests weniger kritisch ist.

Vorteilhaft ist die Kombination von Kopfzylinder und spielsweise durch Löten befestigt ist. Auf dem Halblei- 20 Kopfkegel, weil sie die Vorteile des Kopfzylinders (hohe Wärmekapazität/große Masse für erforderliche Impulsfestigkeit der Diode) und des Kopfkegels (Steifigkeit gegen Zugbelastung des Kopfdrahts, kleine Bauhöhe der Gleichrichterdiode) in sich vereint.

Vorteilhaft ist die optimierte Wahl des Winkels von ca. 20° im Sinne eines Formschlusses mit der Verpakkung. Trotz schräger Kontaktfläche mit der Verpakkung ist die für den Formschluß entscheidende normale Komponente der Zugkraft (Fig. 4) nur wenige Prozent kleiner als die axiale Zugkraft selbst.

Vorteilhaft ist die kompakte Bauweise durch eine spezielle Ausgestaltung der Verpackung. Nur am Rande des Kopfes, dort, wo also große Kräfte über den Formschluß des Kopfes mit der Verpackung auftreten, beispielsweise wenn die Zugkraft am Kopfdraht auch nicht-axiale Komponenten aufweist, ist die Verpackung stark ausgelegt.

Das Anbringen einer Fase oder einer Stufe o. ä. am Kopfzylinder, am Sockel und/oder am Chip selber ist vorteilhaft, da sich am Rande des Chips eine dickere Lotschicht einstellen läßt im Vergleich zu einer Konstruktion ohne Fase, Stufe o. ä. Dadurch wird die Lotermüdung am Chiprand reduziert.

Der Vorteil einer Schulter besteht darin, daß ein innidie zum sofortigen Ausfall oder später zum vorzeitigen 45 ger Formschluß des Sockels mit der Verpackung besteht. Außerdem geht man bei der Herstellung der Verpackung beispielsweise von einer Gießharzmasse aus, die beim Trocknen auf den Sockel aufschrumpft und dadurch den Kopfbereich der Gleichrichterdiode samt Halbleiterchip fest an den Einpreßsockel drückt.

Eine schräge Kante an der Schulter vermeidet hohe mechanische Spannungen in der Verpackung, wenn die Gleichrichterdiode beispielsweise unter Zugbelastung steht. Hohe mechanische Belastungen oder auch thermische Spannungen bilden sich stets an scharfen Kanten aus. Durch die Verwendung einer schrägen Kante am Ende der Schulter wird eine solche scharfe Kante vermieden.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen

Fig. 1 schematisch einen teilweise aufgeschnittenen Querschnitt einer Gleichrichterdiode, Fig. 2 ein Detail aus Fig. 1 in einer schematischen Vergrößerung, Fig. 3 eine schematische Darstellung des Vorgehens beim Ein-

pressen der Gleichrichterdiode, Fig. 4 ein weiteres Detail aus Fig. 1 in einer schematischen Vergrößerung, Fig. 5 ein drittes Detail aus Fig. 1 in einer schematischen Vergrößerung.

Beschreibung des Ausführungsbeispiels

Fig. 1 zeigt eine allgemein mit 100 bezeichnete, in einem teilweise aufgeschnittenen Querschnitt dargestellte Gleichrichterdiode. Die Gleichrichterdiode 100 besitzt einen Sockel 2 mit einem Sockelboden 1. Mit dem Sockel 2 ist einstückig ein Podest 3 verbunden, auf dem seinerseits, beispielsweise durch Löten (Lot 5b), ein Halbleiterchip angebracht ist. Der Halbleiterchip 4 seinerseits ist beispielsweise wiederum durch Löten (Lot 15 nur auf einen Randbereich des Sockelbodens drückt. 5a) über einen Kopfzylinder 6 und einen Kopfkegel 7 mit einem Kopfdraht 8 verbunden. Das vorzugsweise zentriert angeordnete Podest 3 ist von einem umlaufenden Wall 9 und einen durch den Wall 9 und das Podest 3 gebildeten Graben 10 umgeben. Vom Podest 3 aus be- 20 trachtet befindet sich jenseits des Walls 9 noch ein Preßbereich 11, auf den beim Einpressen der Gleichrichterdiode 100 Kräfte senkrecht zur Ebene des Halbleiterchips 4 einwirken können. Der Kopfkegel 7, der Kopfzylinder 6, der Halbleiterchip 4 und das Podest 3 sind mit einer 25 zu beschädigen, deutlich reduziert wird. FEM-Berech-Verpackung 13 umgeben, die von einer Schutzhülse 12 begrenzt wird. Das Podest 3 und der Kopfzylinder 6 weisen zum Halbleiterchip hin am Rande eine Fase 16 und/oder 17 auf (Fig. 5). Diese Fasen können, beispielsweise mit Lot 18 und/oder 19, ausgefüllt sein. Ferner ist 30 Podest mit Wall und Graben erlaubt also die Anwenam Rande des Chips eine Passivierung 14 angebracht, die den Chip und das Lot am Chiprand versiegelt. Ferner weist das Podest 3 eine umlaufende Schulter 15 mit einer schrägen Kante 20 auf, die in die Verpackung 13

Bei der in der Fig. 1 gezeigten Gleichrichterdiode 100 ist besonders vorteilhaft, daß der Halbleiterchip 4 auf einem erhöhtem Podest 3 befestigt ist, der von einem Wall 9 umgeben ist. Der so gebildete Graben 10 hat dabei typischerweise eine Länge, die ca. doppelt so groß 40 ist wie die Höhe des Walls 9. Der Vorteil der Erfindung besteht darin, daß die Konstruktion besonders robust ist gegenüber Deformation beim Einpressen der Gleichrichterdiode. Die Kombination von Podest und Wall/ Graben gewährleistet eine homogenere und niedrigere 45 Biegebeanspruchung an der Chipauflagefläche im Vergleich zu einer Konstruktion ohne signifikant ausgebildeten Wall 9. Diese Robustheit wird durch Finite- Elemente-Rechnungen bestätigt. Ein weiterer Vorteil ist, daß die Chipzentrierung im Vergleich zu der Konstruk- 50 tionsfigur 4 der Schrift DE 41 12 286 weniger kritisch ist. Bei der dort beschriebenen Konstruktion hängt die Robustheit und Zuverlässigkeit des Bauteils wesentlich davon ab, den Chip bei der Herstellung exakt zentriert zu befestigen. Vorzugsweise ist bei der erfinderischen 55 Konstruktion der Wall niedriger als das Podest, u. a. um den Zugang zum Chip bei der Herstellung der Diode und bei der Passivierung nicht zu beeinträchtigen.

Nach Fig. 1 weist die Gleichrichterdiode 100 an ihrem Sockel 2, beispielsweise am Umfang des Podests 3, eine 60 Schulter 15 auf. Diese fakultative Schulter dient dazu, einen innigen Formschluß der Verpackung mit dem Sockel herzustellen. Zum einen ergibt sich mechanische Stabilität, der Sockel ist gewissermaßen mit der Verpakkung 13 verhakt. Zum anderen drückt eine beispielswei- 65 se als Gießharzmasse ausgeführte Verpackung bei der Herstellung beim Austrocknen den Kopfteil der Diode samt Halbleiterchip auf den Sockel auf ("Aufschrump-

fen"). So ergibt sich insgesamt eine stabile Konstruktion. Die Schulter 15 weist dabei eine schräge Kante 20 auf, wodurch das Auftreten hoher mechanischer Spannungen und die Gefahr der Rißbildung in der Verpackung 5 bei äußeren mechanischen, aber auch thermischen Belastungen, vermieden wird, die bei einem spitz zulaufenden Ende der Schulter bestehen würde.

Fig. 2 und 3 illustrieren den Einpreßvorgang bzw. die dabei auf die Gleichrichterdiode wirkende Kraft. Beim Einpressen der Gleichrichterdiode in eine Gleichrichteranordnung 36 verwendet man einen Einpreßstempel 35 (siehe Fig. 3), der eine Einpreßkraft 37 auf den Sockel 2 der Gleichrichterdiode 100 überträgt. Vorzugsweise ist dabei der Einpreßstempel 35 so ausgebildet, daß er Die Gleichrichteranordnung 36 übt eine Gegenkraft 34 auf den Preßbereich 11 des Sockels der Gleichrichterdiode 100 aus (siehe Fig. 2). Der Halbleiterchip 4 und die ihn umgebenden Lotschichten 5a, 5b liegen zum einen deutlich höher als der Angriffspunkt der Kraft, die beim Einpressen auf den Sockel einwirkt, und zum anderen sind sie durch den umlaufenden Graben 10 vom Bereich starker Deformation entkoppelt. Dies hat zur Folge, daß die Wahrscheinlichkeit, den Chip durch das Einpressen nungen und auch Versuche haben dies bestätigt. Außerdem ist der Graben durch ein Breite- zu Tiefeverhältnis 2:1 so gestaltet, daß sich der Sockel kostengünstig herstellen läßt. Die robuste und einfache Konstruktion von dung hoher Einpreßkräfte bei minimaler Deformation des Halbleiterchips.

Die Befestigung des Kopfdrahts 8 (Fig. 4) ist so gestaltet, daß drei wesentliche Anforderungen an diesen 35 erfüllt werden:

> 1. Für eine hohe Impulsfestigkeit, wie sie für Dioden, insbesondere für die bei den Generatoren gebräuchlichen Zenerdioden, gefordert wird, muß der Kopf 6, 7 eine möglichst hohe Wärmekapazität haben. Bei gegebenen Material benötigt man also eine hinreichend große Masse. Begrenzend wirkt dabei die Forderung nach möglichst geringer Bauhöhe 29 der Gleichrichterdiode, wie sie für eine kompakte Bauweise erforderlich ist.

2. Der Kopf muß möglichst steif sein. Nach dem Einbau der Diode 100 in die Gleichrichteranordnung 36 wird der Kopfdraht 8 während des Betriebes durch Vibrationen auf Zug belastet. Ist der Kopf lediglich zylinderförmig ausgelegt, kann dies zu einer starken Durchbiegung führen, wenn Zugbelastungen senkrecht zur Ebene des Halbleiterchips auftreten. Dies führt zu einer stark inhomogenen Kräfteverteilung auf der anliegenden Lotschicht 5a, d. h. es kann lokal zu sehr hohen Spannungen in der Lotschicht kommen. Diese haben eine beschleunigte Alterung, eine Erhöhung des Wärmewiderstands und schließlich den vorzeitigen Ausfall der Diode zur Folge.

3. Für eine hohe Temperaturwechselfestigkeit der Diode 100 ist es erforderlich, zwischen Kopf 6, 7 und Sockel 2 einen Formschluß über die Verpakkung 13 herzustellen. Hierzu muß der Kopf hinreichend mit Vergußmasse bedeckt sein. Allerdings trägt zur Verklammerung praktisch ausschließlich die Normalkomponente 32 der axialen Zugkraft 30 bei (Fig. 4). Die tangentiale Komponente 31 der Zugkraft 30 kann als Klebekraft der Vergußmasse

6

an einer metallischen Oberfläche praktisch vernachlässigt werden. In diesem Sinne wäre es ideal, den Kopf zylinderförmig auszubilden. Dies widerspricht aber den Forderungen nach kompakter Bauhöhe bei gleichzeitig großer Steifigkeit.

Der Vorteil der Erfindung besteht hier nun darin, den Kopf aus einem Zylinder- und einem Kegelanteil auszubilden. Der Kopfkegel 7 erlaubt eine hinreichende Bedeckung mit Vergußmasse am Außendurchmesser, bei 10 gleichzeitig kompakter Bauweise (kleine Bauhöhe). Bei einem Winkel 33 des Kopfkegels 7 von typischerweise 20° erhält man trotz der Kegelform weiterhin eine optimale Kraftnutzung für den Formschluß von Verpakkung und Kopf von ca. 94% der axialen Zugkraft. Durch 15 die kegelförmige Ausgestaltung eines Teils des Kopfes wird ferner die Steifigkeit beträchtlich erhöht und auftretende Zugkräfte somit gleichmäßig auf die gesamte Fläche verteilt. Der Kopfzylinder 6 hingegen gewährleistet eine möglichst große Masse, um bei gegebener spe- 20 zifischer Wärmekapazität eine möglichst hohe Impulsfestigkeit der Zenerdiode zu gewährleisten.

Die spezielle Auslegung der Verpackung 13 im Bereich des Kopfes 6,7 stellt eine weitere Optimierung dar im Sinne einer kompakteren Bauweise. Die Verpackung 25 13 wird durch die Schulter 15 formschlüssig mit dem Sockel 2 verbunden.

Weiterhin kann die Verpackung Kräfte auf den Kopf ausüben. Diese Kräfte sind im Randbereich des Kopfes höher als in der Mitte des Kopfes, in der der Kopfdraht befestigt ist. Die Verpackung ist daher im Randbereich des Kopfes wesentlich dicker ausgelegt als im mittleren Bereich (Fig. 1). So erhält man ausgehend von der Schutzhülse 12 beispielsweise einen leicht ansteigenden Verlauf der Verpackung 13 hin zum Kopfdraht 8.

Fig. 5 zeigt ein Detail aus Fig. 1 an der Kante des Halbleiterchips 4. Kopfzylinder 6 und Podest 3 weisen jeweils am Rande eine Fase 16 und 17 auf. Der freie Bereich zwischen Podest und Halbleiterchip bzw. Halbleiterchip und Kopfzylinder ist beispielsweise mit Lot 18 40 bzw. 19 aufgefüllt. Vorteilhaft daran ist, daß im Bereich der maximalen Durchmesser bei runden Chips oder geometrisch angepaßten Sockeln bzw. Köpfen auf dem gesamten Umfang sich eine dickere Lotschicht einstellen läßt, wodurch die Lotermüdung drastisch reduziert 45 wird. Die Lotermüdung und insbesondere das Lotkriechen, die durch das unterschiedliche thermische Ausdehnungsverhalten von Silizium und Kopf bzw. Podest verursacht werden, hängen stark von den geometrischen Verhältnissen ab. Die Scherung der Lotschicht ist 50 um so größer, je geringer die Schichtdicke des Lotes und je länger der gescherte Bereich ist. Über die Chipdiagonale bzw. an den Ecken würde das Lot verstärkt altern, und Lotkriechen könnte zum vorzeitigen Ausfall der Diode durch Kurzschluß führen. Durch den zusätz- 55 lich mit Lot ausgefüllten Bereich 18 und/oder 19 wird also eine extrem hohe Temperaturwechselfestigkeit der Diode erreicht. So vereint man den Vorteil einer dünnen Lotschicht in der Mitte des Chips (kleiner Wärmewiderstand) mit hoher Temperaturwechselfestigkeit. Alterna- 60 tiv zu einer Fase kann man auch eine Stufe vorsehen, kann der Sockel oder der Kopf im Bereich der Chipekken abgerundet sein. Alternativ kann diese Rundung, Fase, Stufe usw. auch am Chip angebracht sein. Die Passivierung 14 bedeckt dabei das Lot 18 und/oder 19.

Patentansprüche

- 1. Gleichrichterdiode mit einem Sockel (2), die in eine vorgesehene Öffnung einer Gleichrichteranordnung (36) einpreßbar ist, wobei auf dem Sockel (2) einstückig mit dem Sockel ein Podest (3) angeordnet ist, auf dem seinerseits ein Halbleiterchip (4) befestigt ist, an dem seinerseits ein Kopfdraht (8) befestigt ist, dadurch gekennzeichnet, daß der Sockelboden (1) im Bereich des Podests (3) einen dieses Podest umgebenden Wall (9) aufweist und daß der vom Podest (3) durch einen Graben (10) getrennte Wall (9) mit dem Sockelboden (1) einstückig ist.
- 2. Einpreßdiode nach Anspruch 1, dadurch gekennzeichnet, daß auf der vom Graben (10) abgewandten Seite des Walls (9) ein Preßbereich (11) angeordnet ist, der zur Aufnahme von senkrecht zur Ebene des Halbleiterchips (4) gerichteten Kräften ausgebildet ist.
- 3. Einpreßdiode nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der zwischen Wall (9) und Podest (3) ausgebildeter Graben (10) eine radiale Ausdehnung hat, die ungefähr doppelt so groß ist wie die Höhe des Walls (9) vom Graben (10) ab gerechnet
- 4. Einpreßdiode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kopfdraht (8) über einen Kopfkegel (7) und einen Kopfzylinder (6) mit dem Halbleiterchip (4) verbunden ist.
- 5. Einpreßdiode nach Anspruch 4, dadurch gekennzeichnet, daß die Mantellinie des Kopfkegels (7) einen Winkel (33) von etwa 20° zur Ebene des Halbleiterchips (4) in Fig. 1 und die Gleichrichterdiode eine den Halbleiterchip (4) schützende Verpakkung (13) aufweist.
- 6. Einpreßdiode nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß sie eine den Halbleiterchip (4) schützende, im Bereich des äußeren Randes des Kopfkegels (7) im Vergleich zum Bereich des Kopfdrahtes (8) dickere Verpackung (13) aufweist.
- 7. Einpreßdiode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Podest (3) und/oder der Kopfzylinder (6) im Bereich des Halbleiterchips (4) am äußeren Rand eine Fase (16 und/oder 17) aufweist und daß im Bereich der Fase (16 und/oder 17) Lot (18 und/oder 19) und/oder eine Passivierung (14) angebracht ist.
- 8. Einpreßdiode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Podest (3), vorzugsweise in seinem unteren Teil, eine Schulter (15) aufweist.
- 9. Einpreßdiode nach Anspruch 8, dadurch gekennzeichnet, daß die Schulter (15) eine schräge Kante (20) aufweist.

Hierzu 3 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: Offenlegungstag: DE 195 49 202 A1 H 01 L 23/049 3. Juli 1997

FIG. 1

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 195 49 202 A1 H 01 L 23/049 3. Juli 1997

FIG. 2

Nummer:

Int. Cl.6:

Offenlegungstag:

DE 195 49 202 A1 H 01 L 23/049

3. Juli 1997

