

Deep Learning

Dr. Santosh Kumar Vipparthi
Dept. of CSE

Based on notes from Andrej Karpathy, Fei-Fei Li, Justin Johnson, Hung-yi Lee

Introduction

DL attracts lots of attention.

Google Trends

Deep learning obtains many exciting results.

Outline

Introduction of Deep Learning

Why Deep?

Tips for Training Deep Neural Network

What is Deep Learning (DL)?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond in useful ways.

"Shallow" vs. "deep" architectures
 Traditional recognition: "Shallow" architecture

Deep learning: "Deep" architecture

Learn a *feature hierarchy* all the way from pixels to classifier

Example

Deep Learning

Deep learning is a machine learning technique that can learn useful representations or features directly from images, text and sound

Testing

Lazebnik

Quantitative Analysis

TABLE II recognition accuracy comparison on MMI dataset

Methods	6-Class Exp.	7-Class Exp.
LBP[9]	76.5	81.7
Two-Phase [10]	75.4	82.0
LDP [11]	80.5	84.0
LDN [12]	80.5	83.0
LDTexP [13]	83.4	86.0
LDTerP[14]	80.6	80.0
Spatio-	81.2	
Temopral* [25]	01.2	<u>-</u>
QUEST	83.05	84.0

TABLE III recognition accuracy comparison on GEMEP-FERA dataset

Methods	5-Class Exp.	6-Class Exp.
LBP [9]	92.2	87.8
Two-Phase [10]	88.6	85.0
LDP [11]	94.0	90.0
LDN [12]	93.4	91.0
LDTexP [13]	94.0	91.8
QUEST	94.3	91.33

Why is DL useful?

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- Can learn both unsupervised and supervised
- Effective end-to-end joint system learning
- Utilize large amounts of training data

Artificial Intelligence – Deep Learning and its applications

- Trend Prediction
- Recognition
- New Knowledge
- Making Sense
- Replacing Human

Artificial Intelligence – Deep Learning and its applications

- Information retrieval (search engines)
- Pattern recognition
- Audience targeting
- Sentiment analysis (based on written text)
- Personalization
- Automation
- Natural Language Processing
- Social media mining
- Organic search and content performance
- Brand and product differentiation

Artificial Intelligence – Deep Learning and its applications

- Language Translation
- Speech Recognition
- Generating Handwriting
- Face Recognition
- Autonomous Driving
- Generating Arts
- Imitating Famous Painters
- Generating Music
- Generating Photos

Drawbacks of Neural Networks

☐ The number of trainable parameters becomes extremely large.

Drawbacks of Neural Networks

☐ Little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of Neural Networks

☐ Little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of Neural Networks

☐ Little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of Neural Networks

☐ Feature extraction and training

CNN

Next: Convolutional Neural Networks

Putting it all together

A set of pixels becomes a set of votes.

.92

Deep Learning: CNN

Deep Learning: CNN

Fig. Convolution Layer

Fig. Visual representation of repetitive 3x3 convolution operation

Convolution Layer

32x32x3 image -> preserve spatial structure

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full

depth of the input volume

Convolution Layer

activation map

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

A closer look at spatial dimensions:

activation map


```
(not counting biases)
INPUT: [224x224x3]
                     memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                             FC 4096
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                           VGG16
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```



```
INPUT:
           [224x224x3]
                                                   weights: 0
                                  224*224*3=150K
                         memory:
CONV3-64:
          [224x224x64]
                                 224*224*64=3.2M
                                                   weights: (3*3*3)*64 = 1,728
                         memory:
CONV3-64:
          [224x224x64]
                        memory: 224*224*64=3.2M
                                                   weights: (3*3*64)*64 = 36,864
           [112x112x64]
                         memory: 112*112*64=800K
                                                   weights: 0
POOL2:
CONV3-128: [112×112×128]
                                 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
                         memory:
                         memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
CONV3-128: [112x112x128]
POOL2:
           [56x56x128]
                                 56*56*128=400K
                                                   weights: 0
                         memory:
CONV3-256: [56x56x256]
                         memory: 56*56*256=800K
                                                   weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]
                                  56*56*256=800K
                                                   weights: (3*3*256)*256 = 589,824
                         memory:
                                                   weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]
                                 56*56*256=800K
                         memory:
                                                   weights: 0
POOL2:
           [28x28x256]
                                 28*28*256=200K
                         memory:
                                                   weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]
                                 28*28*512=400K
                         memory:
CONV3-512: [28x28x512]
                                                   weights: (3*3*512)*512 = 2,359,296
                         memory:
                                 28*28*512=400K
CONV3-512: [28x28x512]
                                 28*28*512=400K
                                                   weights: (3*3*512)*512 = 2,359,296
                         memory:
                                                   weights: 0
POOL2:
          [14x14x512]
                                 14*14*512=100K
                         memory:
                                                   weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]
                                 14*14*512=100K
                         memory:
                                                   weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]
                                 14*14*512=100K
                         memory:
                                  14*14*512=100K
                                                   weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]
                         memory:
POOL2:
           [7x7x512]
                                 7*7*512=25K
                                                   weights: 0
                         memory:
                                                   weights: 7*7*512*4096 = 102,760,448
FC:
           [1x1x4096]
                         memory:
                                  4096
                                                   weights: 4096*4096 = 16,777,216
FC:
          [1x1x4096]
                                  4096
                         memory:
           [1x1x1000]
                                                   weights: 4096*1000 = 4,096,000
FC:
                                  1000
                         memory:
```

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

Back Propagation in CNN

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X_{22}	X ₂₃
X ₃₁	X ₃₂	X ₃₃

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

$W_{_{II}}$	W ₁₂
W ₂₁	W ₂₂

h ₁₁	h ₁₂
h ₂₁	h ₂₂

$$h_{11} = W_{11}X_{11} + W_{12}X_{12} + W_{21}X_{21} + W_{22}X_{22}$$

$$h_{12} = W_{11}X_{12} + W_{12}X_{13} + W_{21}X_{22} + W_{22}X_{23}$$

$$h_{21} = W_{11}X_{21} + W_{12}X_{22} + W_{21}X_{31} + W_{22}X_{32}$$

$$h_{22} = W_{11}X_{22} + W_{12}X_{23} + W_{21}X_{32} + W_{22}X_{33}$$

How it Works: Convolutional Neural Networks

A toy ConvNet: X's and O's

Says whether a picture is of an X or an O

For example

Trickier cases

Deciding is hard

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

What computers see

```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```


Computers are literal

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets match pieces of the image

Features match pieces of the image

-1	-1	1
-1	1	-1
1	-1	-1

-1	-1	1
-1	1	-1
1	-1	-1

-1	-1	1
-1	1	-1
1	-1	-1

- 1. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature.

1	1	

1	1	1

1	1	1
1		

1	1	1
1	1	

1	1	1
1	1	1

1	1	1
1	1	1
1		

1	1	1
1	1	1
1	1	

1	1	1
1	1	1
1	1	1

1	1	1
1	1	1
1	1	1

1	1	-1

1	1	-1
1	1	1
-1	1	1

Convolution: Trying every possible match

1 -1 -1 -1 1 -1 -1 -1 1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution: Trying every possible match

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Convolution layer

One image becomes a stack of filtered images

Convolution layer

One image becomes a stack of filtered images

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

Pooling

Pooling

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

Introduction to Deep Learning

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

1.00	0.33	0.55	0.33	
0.33	1.00	0.33	0.55	
0.55	0.33	1.00	0.11	
0.33	0.55	0.11	0.77	

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Pooling layer

A stack of images becomes a stack of smaller images.

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77
0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33
0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Normalization

Keep the math from breaking by tweaking each of the values just a bit.

Change everything negative to zero.

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	0.77

ReLU layer

A stack of images becomes a stack of images with no negative values.

Layers get stacked

The output of one becomes the input of the next.

Deep stacking

Layers can be repeated several (or many) times.

Every value gets a vote

Vote depends on how strongly a value predicts X or O

Vote depends on how strongly a value predicts X or O

A list of feature values becomes a list of votes.

These can also be stacked.

Putting it all together

A set of pixels becomes a set of votes.

Introduction to Deep Learning

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

What features might you expect a good NN to learn, when trained with data like this?

Vision

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Suggestions while Training DNN

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

Modify the Network

New activation functions, for example, ReLU or Maxout

Better optimization Strategy

Adaptive learning rates

Prevent Overfitting

• Dropout

Only use this approach when you already obtained good results on the training data.

Suggestions while Training DNN

New Activation Function

Activation: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

$$R^n \rightarrow [0,1]$$

- + Nice interpretation as the **firing rate** of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
 - when the neuron's activation are 0 or 1 (saturate)
 - gradient at these regions almost zero
 - almost no signal will flow to its weights
 - if initial weights are too large then most neurons would saturate

Activation: Tanh

Takes a real-valued number and "squashes" it into range between -1 and 1.

$$R^n \rightarrow [-1,1]$$

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: tanh(x) = 2sigm(2x) 1

Activation: ReLU

Takes a real-valued number and thresholds it at zero f(x) = max(0, x)

$$R^n \to R^n_+$$

Most Deep Networks use ReLU nowadays

- Trains much faster
 - accelerates the convergence of SGD
 - due to linear, non-saturating form
- **U**Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero
- More expressive
- Prevents the gradient vanishing problem

Tips for Training DNN

Dropout

Dropout

Pick a mini-batch

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Dropout

Pick a mini-batch

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times (1-p)%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- ➤ However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

 Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- >Some parameters in the network are shared

More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate