22.4-2

Give a linear-time algorithm that takes as input a directed acyclic graph G = (V, E) and two vertices s and t, and returns the number of simple paths from s to t in G. For example, the directed acyclic graph of Figure 22.8 contains exactly four simple paths from vertex p to vertex v: pov, poryv, posryv, and psryv. (Your algorithm needs only to count the simple paths, not list them.)

4	Arbre B (19 points)	
ve	Un arbre B d'ordre 20 contient 10^9 feuilles. Quel est le nombre minimal et maximal des reaux?	ni-

5 Arbre 2-3-4 (15 points)

Considérez l'arbre 2-3-4 de l'illustration ci-dessous.

► Montrez la séquence de transformations dans la structure, ainsi que la structure résultante quand on insère la clé «8» dans le 4-nœud avec les clés «5», «6», et «9» (on performe l'éclatement/découpage en ascendant).

22.1-5

The *square* of a directed graph G = (V, E) is the graph $G^2 = (V, E^2)$ such that $(u, v) \in E^2$ if and only G contains a path with at most two edges between u and v. Describe efficient algorithms for computing G^2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

22-4 Reachability

Let G = (V, E) be a directed graph in which each vertex $u \in V$ is labeled with a unique integer L(u) from the set $\{1, 2, \ldots, |V|\}$. For each vertex $u \in V$, let $R(u) = \{v \in V : u \leadsto v\}$ be the set of vertices that are reachable from u. Define $\min(u)$ to be the vertex in R(u) whose label is minimum, i.e., $\min(u)$ is the vertex v such that $L(v) = \min\{L(w) : w \in R(u)\}$. Give an O(V + E)-time algorithm that computes $\min(u)$ for all vertices $u \in V$.