& Pel, Lec. tineales no homogenees

OSol. general a la honogénea asaltida:

$$a_{n-1} = (D + E \cdot n) \cdot 3^{n}$$

$$a_{n-1} = (D + E (n-1)) \cdot 3^{n-1}$$

$$a_{n-2} = (D + E (n-2)) \cdot 3^{n-2}$$

$$a_{n-3} = (D + E (n-3)) \cdot 3^{n-3}$$

$$a_{n-3} = (D + E (n-3)) \cdot 3^{n-3}$$

 $(b + \epsilon_n) \cdot 3^n = 6 \cdot (b + \epsilon_{(n-1)}) \cdot 3^{n-1} - 12(b + \epsilon_{(n-2)}) \cdot 3^{n-2} + 8(b + \epsilon_{(n-3)}) \cdot 3^{n-3} + (1 + n) \cdot 3^n$ $= (6b + 6\epsilon_n - 6\epsilon_j) 3^{n+1} (-12b - 12\epsilon_n + 14\epsilon_j) 3^{n-2} + (8b + 8\epsilon_n - 24\epsilon_j) \cdot 3^{n-3} + (1 + n) 3^n$

$$\begin{array}{lll}
\alpha_{n} - \alpha_{n-1} & -2\alpha_{n-2} & = n^{2} & \text{fam } n \ge 2 & \alpha_{n} = 2 \\
\alpha_{n} = \alpha_{n-1} + 2\alpha_{n-2} - n^{2} & \alpha_{n} = 2
\end{array}$$

$$\begin{array}{lll}
Sol. & \text{Ec. } & \text{car.} & = +^{2} - + -2 = 0, & + \left\{\frac{2}{-1}\right\} & \text{Sol.} & \left\{\frac{2}{n}, (-1)^{n}\right\} \Rightarrow A. & 2^{n} + B. & (-1)^{n}
\end{array}$$

$$\begin{array}{lll}
\text{Considers policions girals } & 2 \Rightarrow \alpha_{n} = A \cdot n^{2} + B \cdot n + C
\end{array}$$

$$\begin{array}{lll}
\left(An^{2} + Bn + C\right) - \left(A \cdot (n-1)^{2} + B \cdot (n-1) + C\right) - 2\left(A \cdot (n-2)^{2} + B \cdot (n-2) + C\right) = n^{2}$$

$$\left(An^{2} + Bn + C\right) - \left(A \cdot n^{2} + A - 2An + Bn - B + C\right) - 2\left(An^{2} + 4A - 4An + Bn - 2B + C\right) = n^{2}$$

$$An^{2} + Bn + C \Rightarrow An^{2} + A + 2An \Rightarrow Bn + B \Rightarrow C \Rightarrow 2An^{2} - 8A + 8An \Rightarrow 2Bn + 4B \Rightarrow 2C = n^{2}$$

$$\left(-2A\right)n^{2} + \left(2A - 2B\right)n + \left(-4A + 5B - 2C\right) = n^{2}$$

$$Q_{n} = C_{n-1} + 7c_{n-2} - h^{2}$$

$$A_{n^{2}+B_{n}+C} = [A_{C_{n}+1}]^{2} + B_{C_{n-1}}] + C + 2[A_{C_{n}-2}]^{2} + B_{C_{n-2}}] + C - n^{2}$$

$$A_{n^{2}+B_{n}+C} = [A_{n^{2}+A-2A_{n}+B_{n}-B+C}] + 2[A_{n^{2}+A-4A_{n}+B_{n}-2B+C}] - n^{2}$$

$$A_{n^{2}+B_{n}+C} = [A_{n^{2}+A-2A_{n}+B_{n}-B+C}] + 2[A_{n^{2}+A_{n}+A_{n}+B_{n}-2B+C}] - n^{2}$$

$$A_{n^{2}+B_{n}+C} = [3A-1]_{n^{2}} + [-10A+3B]_{n} + [9A-5B+3C]$$

$$A = 2A-1 \Rightarrow -2A = -1; A = 1/2$$

$$b = -10A+3B \Rightarrow 2B = -10A; B = -6A = -5/2$$

$$C = 9A-5B+3C$$

$$-2C = 9A-5B+3C$$

$$-2C = 9A-5B=9/2 - 25/4 = \frac{18}{4} - \frac{25}{4} = \frac{-7}{4}$$

$$A_{n^{2}+B_{n}+C} = \frac{1}{2}A_{n^{2}+B_{n}+C} + \frac{1}{2}A_{n^{2}+B_{n}+C}$$

· Gercicios Discretas - TI

(1) Cov	nstrui	rt		verded de		•	
P	9 00-100	r 0 1 0 1 0 1		pv (g1r)			
1		1	Ĭ	- (1	1	

- 3) Table p > (qvr) (=> + 1 (p + 4) + (p
- (4) is villed et eng.?

 X (1) p = 9

 X (1) p = 9

 X (1) p = (1) p = (1) p = (1)

 (2) + (1) (1) p = (1)

 (3) p = (1) p = (1)

 (4) p = 1

 (5) t = 1 simplify.

 (6) + v u

 (7) u
- (F v q) ~ (r 1s) (D Cono res falso, r 1s es falso.

 (F v q) ~ (r 1s) (D Cono res falso, k pen psfalso.

 (F v q) ~ (r 1s) (D P N q: De Morgan sabre 3)

 (F p N q: De Morgan sabre 3)
- (c) Vélido? ((p 1 q) V (p 1 q)

 D p 4 9 () q (Hilblers)

 D p 4 9 (p 1 q)

 D p 6 9 (p 1 q)
- (a) \$\frac{\partial}{\partial} \text{M.T.} \\
 \text{\$\text{\$\sigma} \partial} \text{\$\sigma} \te

p	9	prq	p v q	p = q	p of	PD	9
1	1	1	1	Ī	1	O	
i	0	0	$-\bar{U}$	0	0	1	
0	t	0	1	1	0	1	
Propled D Cont	o edes mtativa	pero son entergo tembren incliso tento como	o tembros o meliso o meliso o no ser a no ser o y	implica entorees pri 6 farto Lavego	si ysolosi sperpre y wado es equivalente	0	

2) Asococtiva: po(q 0 r) = po(q 0 r)

3 Distributiva: po (q: x r) = (pog q) x (pog r)

4 Morgan: (p 29) = P x q

(5) Absorción: p (p 2 q) = p

· Equivalencial

1 Definiciones:

Definiciones:

o $p \rightarrow q = \bar{p} \vee q$ o $p \rightarrow (q \forall r) \equiv (p \rightarrow q) \forall (p \rightarrow r)$ o $p \rightarrow q \equiv (p \vee q) \times (\bar{p} \vee q)$ o $p \rightarrow q \equiv (p \vee q) \times (\bar{p} \vee q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \vee q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$ o $p \rightarrow q \equiv (p \wedge q) \times (\bar{p} \wedge q)$

· Demostración

$$\begin{array}{c}
\text{Tartaghz} \\
\binom{m}{o} = \binom{m}{m} = I \\
\binom{m}{h} = \frac{m!}{n! \ (mn)!}
\end{array}$$

$$\begin{array}{c}
\binom{m}{o} = \binom{m}{m} = I \\
\binom{m}{o} = \frac{m!}{n! \ (mn)!}
\end{array}$$

$$\begin{array}{c}
\binom{m}{o} = \frac{m!}{n! \ (mn)!}
\end{array}$$

$$\begin{array}{c}
\binom{3}{o} \quad \binom{3}{i} \quad \binom{3}{2} \quad \binom{3}{5}
\end{array}$$

$$\frac{\text{Bin. Newton}}{(a \pm b)^{h}} = \binom{n}{o} a^{h} b^{o} \pm \binom{h}{l} a^{h-l} b^{i} \pm \binom{h}{l} a^{h-l} b^{2} \pm \dots \pm \binom{h}{h} a^{o} \cdot b^{n}$$

· Ppio del Palomar

Tengo K+I palomos y los meto en K cajas. Por lo tanto, existe una caja con 2 palomos. G. Tengo N elementos y K cajas donde insertarlos. Al menos hay una caja con [N] redondano panisha

Ejemplo: en un grupo de 367 personas, al menos 2 cumplen el mismo día.

· Conjuntos

IAI = Cardinal de A = nº, elementos que purtenecen a A.

A = Confinto que comple una propiedad.

AC = X - A = Complementario de A; Conjunto de elementos que no complen A. (todos elem 6s que complen p).

Regla de la somai tava 1 se prede hacer de m formas ? Se preden hacer ambas tava 2 se prede hacer de n formas. } taveas de m + n formas.

No se preden hacer ambus a lares.

Regla del producto: Un prodedimento se divide en 2 tenens.) El procedimento se prede Tarea I prede tener m resultados. I llevar a cabo de min formas. Tarea 2 prede tener n resultados.

ANB = elementos que complen propiedad de A y propiedad de B. (Ambas a la vez) AUB = A+B-ANB = elementos que complen prop. A ó propiedad B. (No ambas a lavez)

· Fincish generadora en partes de taméno K

$$F(x) = (1 + x^1 + x^2 + x^3 \pm x^n) \cdot (\pm + (x^n)^1 + (x^n)^2 \pm (x^n)^n) \cdot (1 + (x^n)^1 + (x^n)^2 \pm (x^n)^n)$$

$$P(n) = \text{particiones de } n \cdot (n^n \text{ de particiones})$$

$$P(n \mid \text{propiedad}) = \text{particiones de } n \cdot \text{ que varifica prop}.$$

$$p(n \mid h^{\circ} \text{ partes} \ll r) = p(n+r \mid \text{ con exectamentie } r \text{ partes})$$

 $g. p(3| h^{\circ} \text{ partes} \ll 2) = p(3+2| \text{ exact. 2} \text{ partes}) \begin{cases} 1+2,3 \\ 3+2,4+1 \end{cases}$

p(n | code parte de tam i aparece cono nola. K veces) =
$$\frac{1-x^{i}(K+1)}{1-x^{i}}$$

p(n | partes partes) = $\frac{1*1x}{1-x^{2}K}$ | p(n | partes imp.) = $\frac{1}{1-x^{2}K+1}$

Cálculo de p(n)

Por lo tanto:

$$P(x) = \frac{1}{1-x^{\frac{1}{2}}}$$
 (gen. [p(in)] $P(x) Q(x) = 1$. Son inverses.
 $Q(x) = (1-x)(1-x)$.: $(1-x^{\frac{1}{2}})$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(2)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(1)x + p(1)x^{2} + p(n)x^{n}) (1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+)$$

$$1 = P(x) Q(x) = (1+p(1)x + p(1)x + p(1)x^{2} + p$$

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) \dots$$

$$p(7) = p(6) + p(5) - p(3) / p(0) / p(7) = 11 + 7 2 - 1 = 18-3=15,$$

· F. Generadous exponenciales: usadas cuando al escoger, el orden importa.

Formato

$$a_1 \leqslant x_1 \leqslant b_1$$
 $a_2 \leqslant x_2 \leqslant b_2$
 $a_1 \leqslant x_1 \leqslant b_2$
 $a_2 \leqslant x_2 \leqslant b_2$
 $a_1 \leqslant x_1 \leqslant b_2$
 $a_2 \leqslant x_2 \leqslant b_2$
 $a_1 \leqslant x_1 \leqslant b_2$
 $a_2 \leqslant x_2 \leqslant b_2$
 $a_3 \leqslant x_1 \leqslant b_2$
 $a_4 \leqslant x_1 \leqslant b_2$
 $a_$

(onversiones

$$e^{x} = \frac{x^{\circ}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \frac{x^{n}}{n!}$$

$$\frac{e^{x} + e^{-x}}{2} = \frac{x^{\circ}}{0!} + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{per}}{per!}$$

$$\frac{e^{x} - e^{-x}}{2!} = \frac{x^{1}}{1!} + \frac{x^{3}}{3!} + \frac{x^{imper}}{imper!}$$

Buscar el coef. de
$$\frac{x^{+}}{r!}$$

Nota:
$$x^r = \frac{r! \cdot x^r}{r!} = r! \cdot \frac{x^r}{r!}$$

Note 2:
$$\frac{x^r}{(r-0)!} = \frac{r \cdot x^r}{r \cdot (r-1)!} = r \cdot \frac{x^r}{r!}$$

$$e^{3x} = \frac{(3x)^3}{1!} + \frac{(3x)^3}{2!} + \frac{(3x)^n}{n!}$$

· Gemple

Former palabres de long. 4 con A. B. C. Al neros A debe aparecer à veles Como importa el orden (AABC # BCAA), debo usar una F. Gen. Exporencial

Formerto:
$$la + lb + lc = 4 \left\{ 25 la 54 \right\} \times lc + \times lc = x^4; \left\{ \frac{la + lb + lc}{lal \, lb! \, lc!} \right\}$$
 reorderaciónes posibles.

$$F(x) \Rightarrow \left(\frac{x^2 + x^3 + x^4}{2!} + \frac{x^4}{4!}\right) \cdot \left(\frac{x^\circ}{0!} + \frac{x'}{1!} + \frac{x^2}{2!}\right) \cdot \left(\frac{x^\circ}{0!} + \frac{x'}{1!} + \frac{x^2}{2!}\right) \cdot \left(\frac{x^\circ}{0!} + \frac{x'}{2!} + \frac{x'}{2!}\right) \cdot \left(\frac{x^\circ}{0!} + \frac{x'}{2!}$$

$$F(x) = \left(1 + \frac{3x}{1!} + \frac{(3x)^2}{2!} + \frac{(3x)^2}{2!} + \frac{(3x)^2}{2!} + \frac{(2x)^2}{2!} + \frac{(2x)^2}{2!} + \frac{x(2x)^2}{2!} + \frac$$

Como debo buscar r=4; Busco coef. de x4/4/

$$C_1 \Rightarrow n = 4; \frac{(3x)^{\frac{1}{4}}}{4!} = 81 \frac{x^4}{4!}; C_1 = 81$$

$$C_2 \Rightarrow n = 4; \frac{(2x)^{\frac{1}{4}}}{4!} = 16 \cdot \frac{x^{\frac{1}{4}}}{4!}; C_2 = 16$$
Solución = $\sum_{i=1}^{4!} \frac{4!}{4!}$

$$C_3 \Rightarrow n = 8; \frac{x(2x)^3}{3!} \Rightarrow \frac{8x^4}{3!}$$
 $\begin{cases} Aplico note 2 \Rightarrow \frac{8x^4}{3!} \cdot \frac{4}{4!} = 8.4. \cdot \frac{x^4}{4!} = 32 \cdot \frac{x^4}{4!}; c_3 = 32 \end{cases}$

N° total de reordencciones para solvabres:
$$C_1 - C_2 - C_3 = 81 - 16 - 32 = 33/1$$

Recordens $F(x) = e^{3x} - xe^{2x} - e^{2x}$

of Generadovus

$$2 \frac{1}{1 - \frac{3}{3}z} = \sum_{n=0}^{\infty} \frac{2}{3}z^{n} = 2^{0} + 2^{1} + 2^{2}$$

$$9 + x + x^2 + x^n = \sum_{n=0}^{\infty} x^n$$

(1)
$$1+3+3^2...2^m = \frac{1-3}{1-3}$$
 (1+x) = $\sum_{N=0}^{\infty} (-1)^N \cdot x^N \cdot (N+k-1)$

$$\boxed{2} \frac{1}{1 - \frac{3}{3}z} = \sum_{N=0}^{\infty} \frac{3z}{2} = \sum_{N=0}^{\infty} \frac{3z$$

an & xn & bn

1 Gjemplo

Nº soluciones x, + x2 + x3 = 15; 3 x x2 66

$$G(x) = x^q \cdot \left(\frac{1-x^4}{1-x}\right)^2 \cdot \frac{1}{1-x} = \frac{x^q \cdot (1-x)^2 \cdot 1}{(1-x)^2 \cdot (1-x)}$$
, Expando el polinomia:

$$G(x) = x^4 \cdot (1 - 2x^4 + x^8) \cdot (1 - x)^{-3}$$
; Aplico consideracción 2.

$$G(x) = (x^{9} - (2x^{13} + x^{17}), \sum_{N=0}^{\infty} (N + (3-1)) \cdot x^{N}; \text{ Coclembe} \begin{cases} x^{15} = x^{9} \cdot x^{6} & (a) \\ x^{15} = x^{13} \cdot x^{2} & (b) \end{cases}$$

$$C_{15} \stackrel{\text{def}}{=} K = 2; -2x^{13} \cdot {\binom{6+2}{5}} x^{6}$$

$$C_{15} \stackrel{\text{def}}{=} K = 2; -2x^{13} \cdot {\binom{2+2}{5}} x^{2}$$

$$C_{15} \stackrel{\text{def}}{=} \left[1 \cdot {\binom{6+2}{5}}\right] + \left[-2 \cdot {\binom{2+2}{5}}\right] = 16 \text{ M}$$

· Particiones de un entero

Dado un número n, se puede expresar como k combinaciones de sumas de números n. n. h. (h Egemple: particiones de 5:

$$p_1 = S$$
 $p_2 = 3 + I + I$
 $p_3 = 4 + I$
 $p_4 = 2 + 2 + I$
 $p_5 = 1 + 1 + 1 + 1 + 1$
 $p_6 = 3 + 2$
 $p_8 = 2 + I + I + I$

p(5) = 7 => h= particiones de 5 = 7 p(n/P) => particiones de n que cumplen la propiedad P

· Diagrama de Ferrer

Un D.d. Ferrer representa una partición concreta de un nº n, de mayor a never.

p(n, k) => ho de particiones de n cono sura de {1,2,3,... k}

$$p(n,K) = p(n,K-1) + p(n-K,K)$$

 $p(n,1) = 1 | p(0) = 1 (convenio).$

Por la tanto, p(n,k) = p(n, k-1)+p(n-k, k-1)+p(n-2k, k-1)...

1 5 10 19 5

Rel Recurrencia Les orden

o Forma general

ant = dan i neo; d=cte; ao=4; Solución = A.d" ineo

· Ejemplo 1:

Para la successón 5, I5, 45,135... podenos ver que an=3·an-, y an+1=3an

Venos que $a_n = 3^n$, a_0 $a_n = 3^n$, 5

· Ejemplo 2: banco interés anual 6%. Deposito 1000€, icicínto tengro en 1 año? Interés mensual = 0'06/12 = 0'0005;

Venes que a = 1000;

a, = ao + (ao. interés) (=> porner mes

az a + (ap. interies) & egendo mes

an = an + (an -, interée) => n res en an = 1'0005. an -, ; Buccardo ao ...
an = 1000. (1'0005)"; Para 1 año => a12 = 1000. (1'0005)" = 1061'68

· Hallar rel. recurrencia de. 0, 2, 6, 12, 20, 30, 42...

 $a_0 = 0$ $a_1 = 2 = 20 + 2$ $a_2 = 6 = 6 + 4$ $a_3 = 12 = 20 + 6$ $a_4 = 20 = 23 + 2$ $a_n = ? = 2n - 1 + 2n$

o Rel lineales homogéneus de orden k

Formato

an= Cx . an + C2 . an - 2 . . . Ck . an - K ; N > K ; a = J

DEncontrer ecuación característica: rx = c, ·rx - cz. rx-z = 0;

2 Encontrar raices (soluciones) de la ec. característica: Vis con la multiplicidad. . Si no es mittiple (1 única sol con meso nº) = R, n -S: hay multiplicided (+ de una) => R, n, h. R, n eh2 . R,

3 Sol, general: an = A. R," + B. R2" ... Z. Rx

(Sol especif. => Sustituir por cond. iniciales y resolver sixt. ecuaciones

· Ejemplo 2:

an=5an-x - 6an-z para n=2; ao=1

(2) +2-5++6=0; +(3=R) (2) Soluciones {3", 2"} (3) S. Gen => an=A.2" + B.3"

(4) Sol, especifica:

 $a_0 = A \cdot 2^0 + B \cdot 3^0$; -2A + 2B = 1; A = -B; A = -B; A = -B; A = -2; A = 3; A = 3;

· Ejemplo 2: an = 6an - 12an + 8an 3 para 1231 a. = 0

1 Ec. Car = +3-62 +12r-8 =0; { 2 | 2 Sol. { 2h, n.2h, n2. 2h}

3 S. Gen => an = A. 2" + Bon. 2" + C . n3 2"

 $C_0 = \Delta \cdot 2^\circ + B \cdot 0 \cdot 2^\circ + C \cdot 0^2 \cdot 2^\circ$ | I = A $C_1 = A \cdot 2^i + B \cdot 1 \cdot 2^i + C \cdot 1^2 \cdot 2^i$ | O = 2A + 2B + 2C | B = -1 | $C_1 = 1 \cdot 2^h + 1 \cdot n \cdot 2^h + 0$ (S. Especifica:

Cz = A·Zz + D·2·Zz + (·Zz · Zz) - 4 = 4A + 8B + 16C)

{(-2) n, n. (-2) n, xn} · Ejemplo 3: (3) EC. +3+3+2-470, (3) Sol. {1", (4)"} an = -3 an - 1 + 4 an - 3 para n > 3/ a = 0

3 S. Gen => and All 84(-4) & R C 2 = -3 an = A. (-2)"+ B.n. (-2)" + C

(9 S. Especif.

13 = A 415B

a = A (-2) + B · O (-2) + C | A + C = 5 | A = 8/9 | a = \frac{8}{5} (-2) - \frac{5}{6} (-2) \cdot n + \frac{7}{5} C2 = A (-2)2 + B 2 (-2)2 + (4A + 8B + C=-3 C= 1/9

```
Sempre M. du?
     € E. an=Gan-, -12an-2 +8an-3 + (1+18).3h (£)
      aoミゴ
       a, = 0
1 Sol. gen. honogénea;
    r3-6r2+12r-8=0; r => Sol. { 2h . h, 2h . n2}
    Tenenos que la sel gen, es (A+B·n+(·n²)·2h
@ Busco sol. particular de la deda.
   F(n) = (1+1n).3"; s=3; Gno s no es miz de la ea cariét.,
   busco sol particular de la forme f (p. + p. . h). 3"
   Para hayarla, sistituyo esciformen la ecidada. (1)
   an= (po+pxin) 3 h;
   an-1=(po+p, (n-1)) 3 n-1;
   anz (po+p, (n-z)). 3 n-2;
   a h3= (p. + p. (n-3)) · 3 n-3;
   (po+ps.n) 3h = 6. (po+p. (n-1)).3n-1-12(po+p. (n-2))3n-2
                +8. (po+p,.(n-3)).3"3+(1+h).3"
                                                      ax + b = 2 x + i
   bivide la ignalded por 3 n-3: par gostar
   (po+px.n).33=6.(ps+px.(n-1))32-12(po+px(n-2))32
               +8. (po+p, (n-3))3°+ (1+h).33
    Dos polinomos son iguales si sus coop. tembres 6 soni
     Coef. h: (p. n).
     27. p. w =[6.9. p.]+[-12.3.p.]+[8.1.p.]+[29] ,
                                                              P.==135
     27 p. = 54p, -36p, +8p, +27, p. (7-64+36-8) = 27; 1.p. = 275
      Coef. tetrano indep .:
     27 po = [6. 9 po] + [-12.3. po] + [8.1. po] + [29] + [6.9. (1). Px] + [-12.3. (-2). px]
                                      + [8.1.(3) b.]tr
    Por (27-54-36-8) = 27: P=
     24 po. (27-64+36-8) = -1458 + 1944 + [-648] + 27
       po. 1 = -135
                           Forma f(n) = -135+27. h].34
```

*One ver temps y p, busco: $A = \begin{cases} F(n) = [-13s + 27 \cdot n7 \cdot 3^{h}] \\ F(n) = A \cdot 2^{h} + B \cdot h \cdot 2^{h} + C \cdot h^{2} \cdot 2^{h} \end{cases}$ (= tendrenos que $a_{0} = A \cdot 2^{h} + B \cdot h \cdot 2^{h} + C \cdot h^{2} \cdot 2^{h} + (-13s + 24 h) \cdot 3^{h}$ (=

Sict. por cord (m):

$$a_0 \Rightarrow 1 = A - 135$$
; $A = 136$; $A = 136$; $A = 136$
 $a_1 \Rightarrow 0 = 2A + 2B + 2C - (3 \cdot 135) + (3 \cdot 27)$ $B = 117/4$
 $a_2 \Rightarrow -3 = 4A + 8B + 16C - 1215 + 486$ $C = -13/4$

Gemple: G ({a,b,c}, {x,y})
D C
p(x) = {b,a} x ex incidente con a,b
a, c son adjacentes
odo extreno s, hado extreno z}
Grafo dirigido Las austas tienen las austas tienen extremo imadal y paso. 5 \$\Dar{D}\$ 7
5 D 7
inciden en el (Bicles 2). Bucle + 1 + 2 = 4 Petas entirates - 8 (nodo) 8 (X) = 2 ctac salientes 8 + (nodo) 8 + (X) = 2
Petas entrantes - 8 (nodo) 8 (x) = 2
ctac salienter S+(nodo) S+(x)=2
. IEI 6-6
8(a) + 8(b) = 2.1
es grafo por si misma.
entre code par de vortices.
and a search

· Aprendiendo Gras

1 Terminología $G(V, E, p) \begin{cases} V: conjunto de vértices <math>\{v_1, v_2, ... v_n\} \\ E: conjunto de aristas <math>\{a_1, a_2, ... a_n\} \\ p: app. de incidencia. p(anista,) = \{n_1, n_2, ... a_n\} \end{cases}$

Awster paralelas; inciden sobre los mismas hodes. x, y son puraleles

p(x) = {a}

Bucles:

ariste que colo

incide en un nodo . No tiene bucles

p(x) = {a}

App. incidencia injectiva

(2) Vertices

Grado de un vertice $\begin{cases} Grado no dirigido. no de avistus que \\ Grado de un vertice <math>\begin{cases} Grado dirigido: \\ Grado sulida: avis$

Características

2 El no de vertices de grado impar es par.

3) nº alistaes = E S(v) = E S (v)

1 Un subgrato de un grato es una parte del grato que

Subgrafo

Grato completo: grato que posee exactamente i ansta e

Aquel cuyos vertices theren todos el mos no grade.

Gralo de n vortices: nº vortices : nº anstas!

Grafo bipartido Grado an 2 anjuntos de vertices. Cada vertice de un conjunto se relacciona sob con les S: todos les vertires de un conjunto se relacionan con todos les vertires del otro, le l'amanos completo. (K m, n). del stro conjunto. Ilsta de adjacencie Representes el grato señalando sus voltes adyacentes. Vertice / Vertices adjacentes 6 c, d

Matriz de adjacence

Pres la de antes pero con una nativa

· Si el graso es no divigido, es una metros sinotrica · Si el grab es dirigido, se pore el nº de avistas que un de un vortice a

Gratos isonarfos Dos gresos son isonorfox si arrique la dibyes diferentex les dibytes son equizalentes.

- Ejemplo: 1) ¿ Mis no nº vértices?
- Q ¿ Mes no no anestas?
- 1 & Mismo no grados?
- @ Egura encie. ("

- 1) Mismo no notrosces: 4
- 3 Macho nº avestas: 5
- 3) Mains no grados: SCVI) =3 ; 8 (in) = 3 5(vz)=2 5(42) = 2 8(43)=3 5 (v3) = 7

5(44)=2

5 (4) =2

Un commo es una successión de avistas que corectan un vertice con otro. Campas La Congritudi no de anistres que se ctransesen

Carcuito: empieza y acceba en el mesno vortice.

Campos de long 1 (Matriò adyacercia) es Muestra cant. de campros de long. Il de un retrôce a otro.

Un gorbo ex corexo si hay un cumpro entre cede pour de voirtions.

· Grafos conexos

C es conexo si todas los vértices están conectados.

Puente: avista que si se quita, deja de ser un grada conexo.

Pto. articulación: vértice que si se quita, pasa a ser un grado no conexo.

Componente Comp.
Corex a Conexa
Cores ono Conexa.

o Grafo evleviano: se puede recorrer todos sus vortices son pasar por la misma avista más de una vez: ciclo evleviano.

Codo everano: Camino de Euler

Vertices de grade pour. Bude. No vertices grado pou: (2

· Algoritho de Dijustra

Un grado es ponderado si cada avista trene un paso (coste).

Longitud: peso de toder las avistes del cambo.

Notación pene Disketra

Sn {v, vz ...vn} = vortices a les que se ha llegado enpason

Ln (V) = Ceste de llegar a v en paso n.

va(10, vz) = paso de anista que une v, y vz.

Paso 0: So { p} Lo(a) = 0 (o (resto) = 00 A rado a.

Paso 1: Sp={a} Ly (b) = min {Lo (b), Ly (a)+w(a,b)}=4 Ly (c) = min {Lo(a), (x (a)+w(a,c)}=3 L, (redo) = 00 tono 6.

| Paso 2: $S_2 = \{c, c\}$ $L_2(b) = \min\{l_1(b), l_2(c) + w(c, b)\} = \min\{4, 5\} = 4$ $L_2(d) = \min\{l_1(d), l_1(c) + w(c, d)\} = \min\{\infty, 6\} = 6$ $L_2(e) = \min\{l_1(e), l_1(c) + w(c, e)\} = \min\{\infty, 9\} = 9$ $l_1(ed) = \infty$ Tome b.

Paso 3: S= { a, c, b} L3(d) = mon { L7 (d), L2(b+w(b,d), L2(c)+w(c,d)} = mon { 6, 9, 6} = 6 L3(e) = mon { L2(e), L2(b+w(b,e)} = mon { 9, 00} = 9

L3 (redo)=90 Tono d.

Poso 4: Sy={c,c,b,d} 44(e) cmon { (3(e), (3(d) + w(d,e)) cmon { e, 11} = 7 Ly (f) cmon { (4(f), (3(d) + w(d,f)) cmon { octs} < 11 Ly (resto) = 00 Tono e.

Paso S: $S_{c}=\{a, c, b, d, e\}$ $L_{S}(f) = \{a, b, d, e\}$ $L_{S}(f) = \{a, b, d, e\}$ $L_{S}(g) = \{a, b, d, e\}$ $L_{S}(g) = \{a, b\}$ $L_{S}(g) = \{a, b\}$ $L_{S}(g) = \{a, b\}$

Paso 6: Sc={a,c,b,d,e,f} l6(g) = men {ls(g),ls(f)+w(f,g)}= Mm{12,13}=12 (c(z)=mm{ls(z),(s(f)+w(f,z)}=mm{0,11+7}=19 tono g. Paso 7 St. f a, c, b, d, e, b, g} (x(z) = non { (a(z), (a(g) + w(g, z)) = won { 19, 12+4} = 16 Tono d.