142500 г. Павловский Посад Московской обл., ул. Интернациональная, д.34а

www.okbexiton.ru E-mail: info@okbexiton.ru Тел. 8-(49643)-2-31-07

1564ИР8 ЭП

Аналог 54НС164.

8-ми разрядный сдвиговый регистр с последовательным входом и параллельными выходами. Технология – КМОП 3мкм процесс.

Технические условия исполнения АЕЯР.431200.424-12ТУ.

Предназначены для применения в радиоэлектронной аппаратуре специального назначения.

Основные характеристики:

Диапазон напряжений питания от 2 B до 6 B.

Предельное напряжение питания до 7 В.

Диапазон рабочих температур от -60 °C до + 125 °C.

Время задержки распространения сигнала \leq 34 нс при $U_{CC} = 6$ B, $C_L = 50$ pF, T = 25 °C.

Выходное напряжение низкого уровня ≤ 0.26 В при $U_{CC} = 6$ В, $I_{O} = 5.2$ мА, T = 25 °C.

Выходное напряжение высокого уровня > 5.5 В при $U_{CC} = 6$ В, $I_O = 5.2$ мА, T = 25 °C.

Предельное знач. входного и выходного напряжений от -0.5 B до ($U_{CC} + 0.5$) B.

Стойкость к воздействию спецфакторов по группам исполнения:

 $7.И_{1}$ - $3У_{C}$, $7.И_{6}$ - $2У_{C}$, $7.И_{7}$ - $5У_{C}$, $7.C_{1}$ - $1У_{C}$, $7.C_{4}$ - $5У_{C}$, $7.K_{1}$ -1K, $7.K_{4}$ -1K для диапазона напряжения питания от 2 В до 6 В.

 $7.И_1$ - $3У_C$, $7.И_6$ - $2x5У_C$, $7.И_7$ - $5У_C$, $7.C_1$ - $4У_C$, $7.C_4$ - $5У_C$, $7.K_1$ -1K, $7.K_4$ -1K для диапазона напряжения питания от 3 В до 6 В.

Рис. 1. Условное графическое обозначение микросхем 1564ИР8 ЭП в корпусе 402.16-33.

Таблица 1. Назначение выводов микросхем 1564ИР8 ЭП в корпусе 402.16-33.

<u>№</u>	Обозначение	Haavayayya nynaga
вывода	вывода	Назначение вывода
1	D0	Вход информационный
2	D1	Вход информационный
3	Q0	Выход нулевого разряда
4	Q1	Выход первого разряда
5	Q2	Выход второго разряда
6	Q3	Выход третьего разряда
7	NC	Не подключен
8	0V	Общий
9	CLK	Вход тактовый
10	CLR	Вход установки в «0», сброс
11	NC	Не подключен
12	Q4	Выход четвертого разряда
13	Q5	Выход пятого разряда
14	Q6	Выход шестого разряда
15	Q7	Выход седьмого разряда
16	V_{CC}	Питание

Рис. 2. Условное графическое обозначение микросхем 1564ИР8 ЭП в корпусе 401.14-5.

Таблица 2. Назначение выводов микросхем 1564ИР8 ЭП в корпусе 401.14-5.

	D0 D1 CLK	RG	Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7	3 4 5 6 10 11 12 13
9	CLR		Vcc 0V	7

No॒	Обозначение	Назначение вывода
вывода	вывода	пизна тепне вывода
1	D0	Вход информационный
2	D1	Вход информационный
3	Q0	Выход нулевого разряда
4	Q1	Выход первого разряда
5	Q2	Выход второго разряда
6	Q3	Выход третьего разряда
7	0V	Общий
8	CLK	Вход тактовый
9	CLR	Вход установки «0»
10	Q4	Выход четвертого разряда
11	Q5	Выход пятого разряда
12	Q6	Выход шестого разряда
13	Q7	Выход седьмого разряда
14	V_{CC}	Питание

Таблица истинности микросхем 1564ИР8 ЭП.

	Bxc	ды			Выходы	Режим
CLR	CLK	D0	D1	Q0	Q1Q	7
L	X	X	X	L	L I	Сброс
Н	L	X	X	Q0	Q1Q	7 Хранение
Н	1	Н	Н	Н	Q0n Q0	on l
Н	1	L	X	L	Q0n Q	бn Сдвиг вправо
Н	1	X	L	L	Q0n Q	5n

L - низкое состояние, H - высокое состояние,

Х - любое состояние, ↑ - переход с низкого состояния в высокое.

Таблица 4. Электрические параметры микросхем 1564ИР8 ЭП при приемке и поставке.

Наименование параметра,	Буквенное	Норма параметра		Темпера-
единица измерения,	обозначение			тура
режим измерения	параметра	не менее	не более	среды, °С
1. Максимальное выходное напряжение низкого				
уровня, В, при:	U _{OL max}			
$U_{CC} = 2.0 \text{ B}, U_{IL} = 0.3 \text{ B}, U_{IH} = 1.5 \text{ B}, I_{O} = 20 \text{ мкA}$		-	0,10	25±10,
$U_{CC} = 4,5 \text{ B}, U_{IL} = 0,9 \text{ B}, U_{IH} = 3,15 \text{ B}, I_O = 20 \text{ мкA}$		-	0,10	-60,
$U_{CC}=6,0~B,~U_{IL}=1,2~B,~U_{IH}=4,2~B$, $I_O=20~$ мкА		-	0,10	125
		-	0,26	25±10
$U_{CC} = 4,5 \text{ B}, U_{IL} = 0,9 \text{ B}, U_{IH} = 3,15 \text{ B}, I_{O} = 4 \text{ MA}$		-	0,40	-60
	_	-	0,40	125
		_	0,26	25±10
$U_{CC} = 6,0 \text{ B}, U_{IL} = 1,2 \text{ B}, U_{IH} = 4,2 \text{ B}, I_O = 5,2 \text{ mA}$		-	0,40	-60
		-	0,40	125

Продолжение таблицы 4.

		Продолжение таблицы 4.		
Наименование параметра,	Буквенное	Норма п	араметра	Темпера-
единица измерения,	обозначение		 I	тура
режим измерения	параметра	не менее	не более	среды, °С
2. Минимальное выходное напряжение высокого	1			1 11 2
уровня, В, при:	$ m U_{OHmin}$			
$U_{CC} = 2.0 \text{ B}, U_{IL} = 0.3 \text{ B}, U_{IH} = 1.5 \text{ B}, I_{O} = 20 \text{ мкA}$	C OIT IIIII	1,9	_	25±10,
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0.9 \text{ B}, U_{IH} = 3.15 \text{ B}, I_{O} = 20 \text{ MKA}$		4,4	_	-60,
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}, I_0 = 20 \text{ мкA}$		5,9	_	125
- CC 0,0 B, OIL 1,2 B, OIN 1,2 B, 10 20 MM	-	4,0	_	25±10
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0.9 \text{ B}, U_{IH} = 3.15 \text{ B}, I_{O} = 4 \text{ MA}$		3,7	_	-60
0,5 B, 0 E 0,5 B, 0 H 2,10 B, 10 H MT		3,7	_	125
-	1	5,5	_	
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}, I_{O} = 5.2 \text{ MA}$			-	25±10
0 cc 0,0 B, Cit 1,2 B, Cit 1,2 B, 10 0,2 im 1		5,20	-	-60
2 D		5,20	- / 0.1/	125
3. Входной ток низкого уровня, мкА,	т	-	/ -0,1/	25±10
при: $U_{CC} = 6.0 B$,	$ m I_{IL}$	-	/ -0,1/	-60
$U_{IH} = U_{CC}, \ U_{IL} = 0 B$		-	/ -1,0/	125
4. Входной ток высокого уровня, мкА,	_	-	0,1	25±10
при: $U_{CC} = 6.0 B$,	$ m I_{IH}$	-	0,1	-60
$U_{IH} = U_{CC}, \ U_{IL} = 0 B$		-	1,0	125
5. Ток потребления ,мкА,		-	4,0	25±10
при: $U_{CC} = 6.0 B$,	I_{CC}	-	80	-60
$U_{IH} = U_{CC}, \ U_{IL} = 0 B$		-	80	125
6. Динамический ток потребления, мА,	Ĭ		15,0	25±10
при: $U_{CC} = 6.0 B$, $f = 10.0 M\Gamma$ ц	I_{OCC}	_	13,0	25±10
7. Время задержки распространения при		-	160	25±10
включении и выключении, нс,		_	235	-60
- по входу CLK	t_{PHL} ,	-	235	125
при: $U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi$	$t_{\rm PLH}$			
		-	34	25±10
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi$		-	48	-60
		-	48	125
	1	_	29	25±10
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ n}\Phi$		_	42	-60
		_	42	125
				123
8. Время задержки распространения при				
включении и выключении, нс,	$t_{\mathrm{PHL}},$	-	195	25±10
- по входу CLR	$t_{\rm PLH}$	-	280	-60
при: $U_{CC} = 2.0 \text{ B}, \ C_L = 50 \ \text{п} \Phi$		-	280	125
		_	40	25±10
$U_{CC} = 4.5 \text{ B}, \ C_L = 50 \ \Pi\Phi$		_	56	-60
		_	56	125
	1	_	34	25±10
		_	48	-60
$U_{CC} = 6.0 \text{ B}, \ C_L = 50 \ \text{m}$		_	48	125
9. Входная емкость, пФ			10	123
- по входам D0, CLR	$C_{\rm I}$	_	10,0	25±10
- по входам D0, СLК - по входам D1, СLК		_	20,0	23±10
по влодим D1, CLIX			20,0	

Таблица 5. Предельно допустимые и предельные режимы эксплуатации

микросхем 1564ИР8 ЭП.

Наименование	Буквен-	0 0 110	Норма параметра				
параметра режима, единица измерения	ное обозна- чение	предельно допустимый режим		предельный режим		воздействия предельного режима	
	пара- метра	не менее	не более	не менее	не более	эксплуатации	
Напряжение питания, В	Ucc	2,0	6,0	минус 0,5	7,0	_	
Входное напряжение, В	$U_{\rm I}$	0	U_{CC}	минус 0,5 минус 1,5	$U_{CC} + 0,5$ $U_{CC} + 1,5$	_	
Напряжение подаваемое	Uo	0	Ucc	минус 1,5	$U_{CC} + 1,5$	5 мс	
на выход, В Ток через один любой вход, мА	I	_	_	минус 0,5 —	$U_{CC} + 0.5$		
Ток через один любой выход, мА	I_{O}	_	5,2	_	25	_	
Ток постоянный (средний) через вывод V_{CC} и «общий», мА	$I_{\rm I}$	-	-	-	50	_	
Рассеиваемая мощность, мВт	P _{tot}	_	_	_	4001)	-	
Длительность фронта и спада входного сигнала, нс, при: $U_{CC} = 2,0$ В $U_{CC} = 4,5$ В	τ _ф , τ _{сп}	_ _	$6^{2)}$ $6^{2)}$	_ _	1000 ³⁾ 500 ³⁾	- -	
$U_{CC} = 6,0 \text{ B}$ Емкость нагрузки, пФ	C_{L}		6 ²⁾ 50 ²⁾	_ _	400 ³⁾ 500	_	

 $^{^{1)}}$ В диапазоне температур от минус 60 до 100 °C. В диапазоне температур от 100 до 125 °C норма снижается с коэффициентом 12 мВт / °C.

Наработка микросхем до отказа T_H в режимах и условиях эксплуатации, допускаемых TY исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000 ч, а в облегченном режиме: при $U_{CC} = 5$ B \pm 10 % - не менее 120000 ч.

Масса микросхем: не более 1,0 г для микросхем в корпусах 401.14-5; не более 1,7 г для микросхем в корпусах 402.16-33.

Варианты конструктивного исполнения для поставок заказчику:

- в корпусе типа 402.16-33.03 с золотым покрытием (1564ИР8Т ЭП);
- в корпусе типа 402.16-33НБ с никелевым покрытием (1564ИР8Т1 ЭП);
- в корпусе типа 401.14-5М с золотым покрытием (1564ИР8Т2 ЭП);
- кристаллы без корпуса и без выводов.

Возможно иное исполнение по требованиям Заказчика.

Обозначение микросхем при заказе (в договоре на поставку)

1564ИР8Т ЭП – АЕЯР.431200.424-12ТУ.

При заказе микросхем, предназначенных для автоматической сборки (монтажа) аппаратуры, после обозначения ТУ ставят букву «А»:

1564ИР8Т ЭП – АЕЯР.431200.424-12ТУ, А.

Обозначение микросхем при заказе в бескорпусном исполнении на общей пластине:

Б1564ИР8-4 ЭП – АЕЯР.431200.424-12ТУ.

²⁾ При измерении динамических параметров.

³⁾ Динамические параметры не регламентируются.

Рис. 3. Корпус 402.16-33 размеры в миллиметрах.

- А длина вывода, в пределах которой производится контроль смещения плоскостей симметрии выводов от номинального расположения. - ширина зоны, которая включает действительную ширину
- микросхемы и часть выводов, непригодную для монтажа.
- допускается поставка изделий без технологической перемычки В по согласованию с потребителями.

Рис. 4. Корпус 401.14-5 размеры в миллиметрах.

- А длина вывода, в пределах которой производится контроль смещения плоскостей симметрии выводов от номинального расположения.
- Б ширина зоны, которая включает действительную ширину микросхемы и часть выводов, непригодную для монтажа.

Для более полной информации о микросхеме использовать АЕЯР.431200.424ТУ и АЕЯР.431200.424-12ТУ, КСНЛ.431233.001Э3, КСНЛ.431233.001ТБ1.