Bangwei Zhou (bz2280)

Professor Paisley

ELEN 4720 HW1

16 February 2020

1. Solution to Problem 1

(a)
$$p(x_1,...,x_N \mid \lambda) = \prod_{i=1}^n p(x_i)$$

$$= \prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$

$$= \lambda^{\sum_{i=1}^n x_i} e^{-n\lambda} \prod_{i=1}^n \frac{1}{x_i!}$$
(b) $l(\lambda) = logp(x_1,...,x_N \mid \lambda)$

$$= \sum_{i=1}^n x_i log\lambda - n\lambda + \sum_{i=1}^n log \frac{1}{x_i!}$$

$$l'(\lambda) = 0 = \frac{\sum_{i=1}^n x_i}{\lambda} - n$$

$$n\lambda = \sum_{i=1}^n x_i$$

$$\lambda = \frac{\sum_{i=1}^n x_i}{n} = \overline{X}$$
(c) $p(\lambda) = \frac{\beta \alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$

$$\lambda_{MAP} = argmax_{\lambda} \ln p(x_1,...,x_n \mid \lambda)$$

$$= argmax_{\lambda} \ln \frac{p(\lambda|x)p(\lambda)}{p(x)}$$

$$= argmax_{\lambda} \log p(\lambda \mid x) + \log p(\lambda) - \log p(x)$$

$$= argmax_{\lambda} (\sum_{i=1}^n x_i log(\lambda) - n\lambda + (\alpha - 1)log\lambda - \beta\lambda)$$

$$0 = \frac{\sum_{i=1}^n x_i}{\lambda} - n + \frac{\alpha - 1}{\lambda} - \beta$$

$$n + \beta = \frac{\sum_{i=1}^n x_i + (\alpha - 1)}{\lambda}$$

$$\lambda_{MAP} = \frac{\sum_{i=1}^n x_i + (\alpha - 1)}{n + \beta}$$
(d) $p(\lambda \mid x) \propto p(x \mid \lambda)p(\lambda)$

$$\propto \lambda^{\sum_{i=1}^n x_i} e^{-n\lambda} \prod_{i=1}^n \frac{1}{x_i!} \lambda^{\alpha - 1} e^{-\beta\lambda}$$

$$\propto \lambda^{\sum_{i=1}^n x_i} e^{-n\lambda - \beta\lambda} \prod_{i=1}^n \frac{1}{x_i!}$$

$$\sim \lambda^{\sum_{i=1}^n x_i + \alpha - 1} e^{-(n+\beta)\lambda}$$

Thus, $p(\lambda \mid x) \propto Gamma(\sum_{i=1}^{n} x_i + \alpha, n + \beta)$

(e)
$$E[\lambda \mid \alpha, \beta] = \frac{\sum_{i=1}^{n} x_i + \alpha}{n+\beta}$$

 $Var(\lambda \mid \alpha, \beta) = \frac{\sum_{i=1}^{n} x_i + \alpha}{(n+\beta)^2}$

Thus, when $\alpha = \beta = 0$, $\hat{\lambda_{ML}}$ is the mean of the posterior,

as
$$E[\lambda \mid \alpha, \beta] = \hat{\lambda_{ML}} = \frac{\sum_{i=1}^{n} x_i}{n}$$
.

Whereas, $\hat{\lambda_{MAP}}$ is the mode of the posterior, when $\alpha \geq 1$,

since the mode of gamma is $\frac{\alpha-1}{\beta}$.

By the same logic, when $\alpha = \beta = 0$, $Var(\lambda \mid \alpha, \beta) = \frac{\sum_{i=1}^{n} x_i}{n^2} = \frac{1}{n} \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} \hat{\lambda}_{ML}$.

2. Solution to Problem 2

(a)
$$E[w_{RR}] = E[(\lambda I + X^T X)^{-1} X^T y]$$

= $(\lambda I + X^T X)^{-1} X^T E[y]$
= $(\lambda I + X^T X)^{-1} X^T X_w$

(b)
$$W_{RR} = (\lambda I + X^T X)^{-1} X^T y$$

 $= (\lambda I + X^T X)^{-1} (X^T X) (X^T X)^{-1} X^T y$
 $= [(X^T X) (\lambda (X^T X)^{-1} + I)]^{-1} (X^T X) w_{LS}$
 $= (\lambda (X^T X)^{-1} + I)^{-1} (X^T X) w_{LS}$
 $= (\lambda (X^T X)^{-1} + I)^{-1} w_{LS}$

Let
$$Z = (\lambda(X^TX)^{-1} + I)^{-1}$$
,
then $Var(w_{RR}) = Var(Zw_{LS})$
 $= ZVar(w_{LS})Z^T$
 $= Z\sigma^2(X^TX)^{-1}Z^T$
 $= \sigma^2 Z(X^TX)^{-1}Z^T$

3. Solution to Problem 3

(b) Clearly, year_made and weight are the two dimensions that stood out over the others. They are the most important features in determining the miles per gallon a car will get. Since year_made is positive, it means that the miles per gallon will increase as car years increase; since weight is negative, the miles per gallon will decrease as car weight increases.

(d) RMSE increases as λ increases. The lowest RMSE is when λ equals zero. Also, as hinted in part (a), when $\lambda = 0$, $w_{RR} = w_{LS}$. Thus, $\lambda = 0$ also gives the least squares solution that generates the least RMSE. Thus, as a conclusion, we should use least squares instead of ridge regression.

It seems that we should always pick p=3, as it always gives the lowest RMSE; in addition, the idea value of λ is no longer 0. Instead, the ideal value is somewhere around 50, as the RMSE score is the lowest there.