Applying K-Means Clustering on Hotness Classification

bdss lab _ undergraduated intern 정준혁 25. 2. 6.Thu.

Contents

- 1. Goal
- 2. Data Classification
- 3. K-means Clustering Algorithm
- 4. Review & Future Plan

Details exist in each Chapters!

1. Goal

- Demand of SSD is improving nowadays, and it has a particular feature, which is called 'garbage collection'. It occurs 'write amplification', and it makes life-cycle to down.

- Many researchers go ahead the study(classify data according to I/O access pattern) to reduce GC overhead.

- And we expect to find more sophisticated method.

2. Data Classification

2-1. Hot & Cold & Warm

Cold

- All data is available
- Low cost
- Not performance sensitive

Warm

- Most data is available
- Moderate cost
- Moderate performance

Hot

- · Business-critical datasets
- Always online
- Latency extremely important

2. Data Classification

2-2. Purpose of Data Classification

- The arrangement of similar-state data helps to avoid the write amplification.
- Criteria of classification is 'Hotness'

3-1. Concepts

 k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

Demonstration of the standard algorithm

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

 The centroid of each of the k clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

Core goal: Maximize the cohesion of data within each cluster & maximize the separation of clusters.

3-2. Elbow Method: Find the optimized number(k) of Clusters

- Find the moment When SSE decreases the most
- Easy to implement

3-3. Prepare files and Example implementation

mscambridge trace

Ex file: 'Mall_Customer.csv'

3-4. Result(..?)

3-4. Result(..?)

Cluster_id	# of Request	Frequency Avg. (회)	Inter-Arrival Time	Inter-Arrival Time	Hotness
			Avg. (ns)	Std Avg. (ns)	
2	2	49540	40425674	45584949	6
4	46	5744	407548351	1294014551	5
3	28803	10	395617324639	29991984745	4
1	3452	5	400570796017	332598969204	3
5	1057	3	618591415541	748036523152	2
0	98547	1	1977955331090	938795435	1

Classification results when progressed normally

4. Review & Future Plan

Review

- What caused the inaccurate results?
- > Suspected candidates : Scaling, Data missing
- We can use a variety of learning methods for classification.

What I learned

- Main Idea: Efficient lifespan management through classification according to number of updates.
- Unsupervised Learning: K-Means Clustering

4. Review & Future Plan

Review

- First application after learning ML concept
- First study of ML paper
- Necessity to study more about Python

Future Plan

- Read the paper, 'Reliable Storage Study with ML'
- Language review(C, Py) for smooth implementation
- OS ..?

References

- SSD 쓰기 증폭을 줄이기 위한 머신러닝 기반 정교한 Hotness 분류 방안 : https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11036160/
- K-Means Clustering: en.wikipedia.org/wiki/K-means_clustering
- K-Menas 알고리즘 : velog.io/@eogns1208/K-Means-알고리즘