Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

02 de maio de 2017

Plano de Aula

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Problemas em Grafos
 - O problema de Euler
 - O problema de Guthrie
 - O problema do menor caminho
- 4 Noções Básicas de Grafos

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- 3 Problemas em Grafos
 - O problema de Euler
 - O problema de Guthrie
 - O problema do menor caminho
- 4 Noções Básicas de Grafos

Professor

Formação

Bacharel em Sistemas de Informação Mestre em Representação Conhecimento (IA)

Quem?

Esdras Lins Bispo Junior Recife, Pernambuco.

Professor

- Esdras Lins Bispo Jr.
- bispojr@ufg.br
- Sala 18, 1° Andar (Bloco Novo dos Professores)

Disciplina

- Teoria de Grafos
- 15h30-17h10 (Terça, CA 1, Sala 12)
 09h30-11h10 (Quarta, CA 1, Sala 14)
- Dúvidas: 17h30 19h00 (Quinta)
 [é necessário confirmação comigo]
- www.facebook.com/groups/tg.rej.2017.1/

Metodologia

- Ensino sob Medida (Novak, 2011);
- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios;
- Aplicação de atividades de aquecimento utilizando o Canvas AVA (Ambiente Virtual de Aprendizagem);
- Tempo de Aula: 50 minutos.

Mini-Testes (Previsão de datas)

- MT₁ ⇒ 20% da pontuação total (16 de maio);
- $MT_2 \Rightarrow 20\%$ da pontuação total (07 de junho);
- MT₃ ⇒ 20% da pontuação total (28 de junho);
- $MT_4 \Rightarrow 20\%$ da pontuação total (16 de agosto).

Mini-Testes (Previsão de datas)

- MT₁ ⇒ 20% da pontuação total (16 de maio);
- MT₂ ⇒ 20% da pontuação total (07 de junho);
- MT₃ ⇒ 20% da pontuação total (28 de junho);
- $MT_4 \Rightarrow 20\%$ da pontuação total (16 de agosto).

Exercício de Aquecimento (EA)

Serão propostos EAs, durante toda a disciplina, equivalendo a 10% da pontuação total.

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas:

- a PF₁ (29 de agosto) e
- a PF₂ (06 de setembro).

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas:

- a PF₁ (29 de agosto) e
- a PF₂ (06 de setembro).

A PF_1 é composta por dois mini-testes de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas:

- ullet a PF₁ (29 de agosto) e
- a PF₂ (06 de setembro).

A PF_1 é composta por dois mini-testes de caráter substitutivo:

- o SMT₁ (referente ao MT₁), e
- o SMT₂ (referente ao MT₂).

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas:

- ullet a PF₁ (29 de agosto) e
- a PF₂ (06 de setembro).

A PF_1 é composta por dois mini-testes de caráter substitutivo:

- o SMT₁ (referente ao MT₁), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas:

- a PF₁ (29 de agosto) e
- a PF₂ (06 de setembro).

A PF_1 é composta por dois mini-testes de caráter substitutivo:

- o SMT₁ (referente ao MT₁), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

• MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

PONT =
$$\left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EA \times 0, 1$$

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

PONT =
$$\left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EA \times 0, 1$$

Previsão de Término das Atividades

06 de setembro de 2017

Como será?

Os alunos que estiverem entre as 10 melhores notas de cada avaliação receberão um distintivo digital.

Como será?

Os alunos que estiverem entre as 10 melhores notas de cada avaliação receberão um distintivo digital.

Quantos distintivos existem?

- Top One
- Top Five
- Top Ten

Obter a 6ª ou até a 10ª melhor nota da turma em uma avaliação.

Obter a 2ª ou até a 5ª melhor nota da turma em uma avaliação.

Obter a melhor nota da turma em uma avaliação.

FG

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;

Pontuação

- Obter um Top One: 12 pontos;
- Obter um Top Five: 6 pontos;
- Obter um Top Ten: 3 pontos.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;
 (Estou pesquisando para saber se isto é verdade...)

No final da disciplina...

Os dez primeiros que obtiverem maior pontuação ganharão medalhas.

No final da disciplina...

Os dez primeiros que obtiverem maior pontuação ganharão medalhas.

Conteúdo do Curso

- Noções Básicas de Grafos;
- Circuitos e Caminhos;
- Subgrafos;
- Grafos Conexos e Componentes;
- Cortes e Pontes;

Conteúdo do Curso

- Árvores;
- 2 Isomorfismo;
- Coloração;
- Planaridade;
- Outros Tópicos.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Problemas em Grafos
 - O problema de Euler
 - O problema de Guthrie
 - O problema do menor caminho
- 4 Noções Básicas de Grafos

Pensamento

Pensamento

Frase

Now I will have less distraction.

Quem?

Leonhard Euler (1707-83)
Matemático e físico suíço.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- 3 Problemas em Grafos
 - O problema de Euler
 - O problema de Guthrie
 - O problema do menor caminho
- 4 Noções Básicas de Grafos

O problema de Euler O problema de Guthrie O problema do menor caminho

O problema de Euler

O problema de Euler

Sete pontes de Konigsberg

O problema de Euler

Sete pontes de Konigsberg

É possível cruzar as setes pontes sem passar duas vezes por nenhuma delas?

O problema de Euler

Sete pontes de Konigsberg

É possível cruzar as setes pontes sem passar duas vezes por nenhuma delas?

- O problema de Euler O problema de Guthrie
- O problema do menor caminho

O problema de Euler

Sete pontes de Konigsberg

- O problema de Euler O problema de Guthrie
- O problema do menor caminho

O problema de Euler

Sete pontes de Konigsberg

Apresentado em 1736.

O problema de Euler O problema de Guthrie

O problema de Guthrie

Coloração de Mapas

Coloração de Mapas

É verdade que quatro cores são suficientes para se colorar um mapa plano?

Coloração de Mapas

É verdade que quatro cores são suficientes para se colorar um mapa plano?

- O problema de Euler O problema de Guthrie
- O problema do menor caminho

Coloração de Mapas

Coloração de Mapas

Apresentado em 1852. Provado em 1976.

- O problema de Euler
- O problema do menor caminho

Menor Caminho

- O problema de Euler
- O problema do menor caminho

Menor Caminho

Qual é o roteamento de menor custo entre dois dispositivos?

- O problema de Euler
- O problema do menor caminho

Menor Caminho

- O problema de Euler
- O problema do menor caminho

Menor Caminho

Algoritmo de Dijkstra (proposto em 1959).

O problema de Euler O problema de Guthrie O problema do menor caminho

O que existe em comum nos três problemas?

- O problema de Euler
- O problema do menor caminho

O que existe em comum nos três problemas?

Modelo

O problema de Euler O problema de Guthrie O problema do menor caminho

O que existe em comum nos três problemas?

Modelo

Um modelo é uma **simplificação** da realidade. Um modelo abstrai algumas informações e se concentra em outras informações.

O problema de Euler O problema de Guthrie O problema do menor caminho

O que existe em comum nos três problemas?

Modelo

Um modelo é uma **simplificação** da realidade. Um modelo abstrai algumas informações e se concentra em outras informações.

Bom modelo

Um bom modelo é aquele que consegue descrever com maior proximidade as características essenciais do problema.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Problemas em Grafos
 - O problema de Euler
 - O problema de Guthrie
 - O problema do menor caminho
- Moções Básicas de Grafos

Noções Básicas de Grafos

$V^{(2)}$

Para qualquer conjunto V, denotaremos por $V^{(2)}$ o conjunto de todos os pares não-ordenados de elementos distintos de V.

Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

02 de maio de 2017

