一、下面是有关二叉树的叙述,请判断正误()
()1. 若二叉树用二叉链表作存贮结构,则在 n 个结点的二叉树链表中只有 n—1 个非空指针域。
()2. 二叉树中每个结点的两棵子树的高度差等于 1。
()3. 二叉树中每个结点的两棵子树是有序的。
()4. 二叉树中每个结点有两棵非空子树或有两棵空子树。
() 5. 二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于
其右非空子树(若存在的话)所有结点的关键字值。
() 6. 二叉树中所有结点个数是 $2^{k-1}-1$,其中 k 是树的深度。
()7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
() 8. 对于一棵非空二叉树,它的根结点作为第一层,则它的第 i 层上最多能有 2 ⁱ -1 个结点。
()9. 用二叉链表法(link-rlink)存储包含 n 个结点的二叉树,结点的 2n 个指针区域中有 n+1 个为
空指针。
()10. 具有 12 个结点的完全二叉树有 5 个度为 2 的结点。
二、填空()
1. 由 3 个结点所构成的二叉树有种形态。
2. 一棵深度为 6 的满二叉树有
3. 一棵具有 2 5 7 个结点的完全二叉树,它的深度为 。
4. 设一棵完全二叉树有 700 个结点,则共有个叶子结点。
5. 设一棵完全二叉树具有 1000 个结点,则此完全二叉树有个叶子结点,有个度为 2 的结
点,有个结点只有非空左子树,有个结点只有非空右子树。
6. 一棵含有 n 个结点的 k 叉树,可能达到的最大深度为,最小深度为。
7. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。因而二叉树的遍历次序有六种。最

8. 中序遍历的递归算法平均空间复杂度为____。
9. 用 5 个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是____。

FEBGCHD,则它的后序序列必是____。

三、	、选择题()	
()1. 不含任何结点的空树。	
	(A)是一棵树; (B)桌	是一棵二叉树;
	(C)是一棵树也是一棵二叉树; (D)员	死不是树也不是二叉树
() 2. 二叉树是非线性数据结构,所以。	
	(A)它不能用顺序存储结构存储; (B)	它不能用链式存储结构存储;
	(C)顺序存储结构和链式存储结构都能存储; (D)	顺序存储结构和链式存储结构都不能使
用		
()3. 具有 n(n>0)个结点的完全二叉树的深度为	_0
	$(A) \lceil \log_2(n) \rceil (B) \lfloor \log_2(n) \rfloor (C) \lfloor \log_2(n) \rceil$) $\rfloor +1$ (D) $\lceil \log_2(n) + 1 \rceil$
()4. 把一棵树转换为二叉树后,这棵二叉树的形态是	•
	(A)唯一的 (B)有多	3种
	(C)有多种,但根结点都没有左孩子 (D)有多	8种,但根结点都没有右孩子
5.	树是结点的有限集合,它 A 根结点,记为 T。其余的结,	点分成为 m (m≥0) 个 B
	 集合 T1, T2, ···, Tm, 每个集合又都是树, 此时结点 T 称为 T _i 的	·
一个组	个结点的子结点个数为该结点的 C 。	
供选:	选择的答案	
A:	①有0个或1个 ②有0个或多个 ③有且只有1个	④有1个或1个以上
	①互不相交 ② 允许相交 ③ 允许叶结点相	
C: (①权 ② 维数 ③ 次数	④ 序
	案: A= B= C=	
6. <u></u>	二叉树 A 。在完全的二叉树中,若一个结点没有 B ,	则它必定是叶结点。每棵树都能惟一地
转换	换成与它对应的二叉树。由树转换成的二叉树里,一个结点 N 的。	左子女是 N 在原树里对应结点的 <u>C</u> ,
而N	N 的右子女是它在原树里对应结点的 <u>D</u> 。	
供选	选择的答案	
A: (①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称	
B:	①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点	④ 兄弟
C∼D:	~D: ①最左子结点 ② 最右子结点 ③ 最邻近的右	ī兄弟 ④ 最邻近的左兄弟
	⑤ 最左的兄弟 ⑥ 最右的兄弟	
答案:	案: A= B= C= D=	

四、简答题()

1. 一棵度为 2 的树与一棵二叉树有何区别?

2. 设如下图所示的二叉树 B 的存储结构为二叉链表, root 为根指针, 结点结构为: (1chi1d, data, rchi1d)。 其中 1chi1d, rchi1d 分别为指向左右孩子的指针, data 为字符型,

root 为根指针,试回答下列问题:

- 1. 对下列二叉树 B, 执行下列算法 traversal(root), 试指出其输出结果:
- 2. 假定二叉树 B 共有 n 个结点, 试分析算法 traversal (root) 的时间复杂度。(每问 4 分, 两问共 8 分)

二叉树 B C E F G

C 的结点类型定义如下:
struct node
{char data;
struct node *lchild, rchild;
};

C 算法如下:
void traversal(struct node *root)
{if (root)
{printf("%c", root->data);
traversal(root->lchild);
printf("%c", root->data);
traversal(root->rchild);
}

3. 给定二叉树的两种遍历序列, 分别是:

前序遍历序列: D, A, C, E, B, H, F, G, I; 中序遍历序列: D, C, B, E, H, A, G, I, F, 试画出二叉树 B, 并简述由任意二叉树 B 的前序遍历序列和中序遍历序列求二叉树 B 的思想方法。

4. 给定如图所示二叉树 T,请画出与其对应的中序线索二叉树。

五、阅读分析题()

1. 试写出如图所示的二叉树分别按先序、中序、后序遍历时得到的结点序列。

2. 把如图所示的树转化成二叉树。

3. 阅读下列算法,若有错,改正之。

```
BiTree InSucc(BiTree q) {

//已知 q 是指向中序线索二叉树上某个结点的指针,

//本函数返回指向*q 的后继的指针。

r=q->rchild;

if(!r->rtag)

while(!r->rtag)r=r->rchild;

return r;

}//ISucc
```

4. 画出和下列二叉树相应的森林。

六、算法设计题()

- 1. 编写递归算法, 计算二叉树中叶子结点的数目。
- 2. 写出求二叉树深度的算法,先定义二叉树的抽象数据类型。
- 3. 编写递归算法, 求二叉树中以元素值为 x 的结点为根的子树的深度。
- 4. 编写按层次顺序(同一层自左至右)遍历二叉树的算法。
- 5. 编写算法判别给定二叉树是否为完全二叉树。
- 6. 假设用于通信的电文仅由 8 个字母组成,字母在电文中出现的频率分别为 0. 07, 0. 19, 0. 02, 0. 06, 0. 32, 0. 03, 0. 21, 0. 10。试为这 8 个字母设计哈夫曼编码。使用 $0\sim7$ 的二进制表示形式是另一种编码方案。对于上述实例,比较两种方案的优缺点。