湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明(3)

一、证明不等式 1: 不含参: 一般在解题过程中会涉及二阶导、隐零点的处理

1. 己知函数
$$f(x) = e^x - x - mx^2$$
, $x \in (0, +\infty)$.

(1) 若 f(x) 是增函数,求实数m 的取值范围;

(2) 当
$$m=1$$
时,求证: $f(x) > \frac{1}{4}$.

2. 已知函数
$$f(x) = \ln x + ax + \frac{1}{x} (a \in R)$$

(1) 求函数f(x)的单调区间;

(2) 当
$$a = -1$$
 时, $g(x) = f(x) + (x-2)^x e^{-\frac{1}{x}}$, 记函数 $y = g(x)$ 在 $\left[\frac{1}{4}, 1\right]$ 上的最大值为 m ,证明: $(m+4)(m+3) < 0$.

3. 设
$$f(x) = \ln(x+1) + \sqrt{x+1} + ax + b$$
 ($a,b \in R$, a,b 为常数), 曲线 $y = f(x)$ 与直线 $y = \frac{3}{2}x$ 在(0,0) 点相切.

(1) 求*a*,*b* 的值;

(2) 证明: 当
$$0 < x < 2$$
时, $f(x) < \frac{9x}{x+6}$.

4. 已知函数
$$f(x) = \frac{\ln x + k}{e^x}$$
 (k 为常数, $e = 2.71828...$ 是自然对数的底数),曲线 $y = f(x)$ 在点 $(1, f(1))$ 处的切线与 x 轴平行.

- (1) 求k的值;
- (2) 求f(x)的单调区间;

(3) 设
$$g(x) = (x^2 + x)f'(x)$$
, 其中 $f'(x)$ 为 $f(x)$ 的导函数.证明:对任意 $x > 0$, $g(x) < 1 + e^{-2}$.

5. 己知
$$f(x) = ax - \ln x (a \in R)$$
.

(1) 若
$$a = -1$$
, 求证: $f(x) \ge 1 - xe^x$;

(2) 求证:
$$\frac{\ln x}{e^x} < \frac{1}{e^2}.$$

二、证明不等式 2: 含参, 讨论单调性

- 6. 已知函数 $f(x) = e^x \ln(x+m)$.
- (1) 设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
- (2) 当 $m \le 2$ 时, 证明: f(x) > 0.
- 7. 己知函数 $f(x) = \ln x + ax^2 (2a+1)x + 1(a \ge 0)$.
- (1) 当a=0时,求函数 f(x)在区间 $[1,+\infty)$ 上的最大值;
- (2) 函数 f(x) 在区间 $(1,+\infty)$ 上存在最小值,记为 g(a),求证: $g(a) < \frac{1}{4a} 1$.
- 8. 已知函数 $f(x) = e^x \frac{1}{2}ax^2 x$.
- (1) 设f'(x)是f(x)的导函数,讨论函数y = f'(x)的单调性;
- (2) $\stackrel{\text{def}}{=} a \le 1 \frac{1}{e}$ H, $\mathring{\text{R}}$ H: $f(x) + x \ln(x+1) \ge 1$.
- 9. 已知函数 $f(x) = \frac{m(x^2+1)+x}{e^x}$.
- (1) 试讨论 f(x) 的单调性;
- (2) 若 $m \le 0$, 证明: $ef(x) + \ln x \le x$.

三 证明不等式 3: 放缩法

10.
$$f(x) = a(x - \ln x) + \frac{2x - 1}{x^2}$$
, $a \in R$.

(1) 讨论 f(x) 的单调性;

(2) 当
$$a=1$$
 时,证明: $f(x) > f'(x) + \frac{3}{2}$ 对任意的 $x \in [1,2]$ 成立.

11. 已知
$$f(x) = x \ln x - x + \frac{a}{x}$$
, 其中 $a \in R$.

(1) 讨论 f(x) 的极值点的个数;

12. 设函数
$$f(x) = x^2 + (a-2)x - a \ln x \ (a \in R)$$
.

- (1) 若a=1, 求f(x)的极值;
- (2) 讨论函数 f(x) 的单调性;

(3) 若
$$n \in \mathbb{N}^*$$
, 证明: $\frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \dots + \frac{n}{(n+1)^2} < \ln(n+1)$

13. 已知函数 $f(x) = \ln x - ax + 1(a \in R)$.

(1) 求函数
$$f(x)$$
在区间 $\left[\frac{1}{2},2\right]$ 上的最大值;

(2) 证明:
$$\left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right) < e$$
, $n \in \mathbb{N}^*$.

14. 已知函数 $f(x) = a \ln x + x^2$, 其中 $a \in \mathbb{R}$.

- (1) 讨论 f(x) 的单调性;
- (2) 当a=1时,证明: $f(x) \le x^2 + x 1$;

(3) 试比较
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \frac{\ln 4^2}{4^2} + \dots + \frac{\ln n^2}{n^2}$$
与 $\frac{(n-1)(2n+1)}{2(n+1)}$ ($n \in \mathbb{N}^*$ 且 $n \ge 2$) 的大小,证明你的结论.

15. 已知函数 $f(x) = \ln x - mx + m$, $m \in \mathbb{R}$.

(I) 求f(x)的单调区间;

(II) 若
$$x \in (1,+\infty)$$
, 证明: $1 < \frac{x-1}{\ln x} < x$;

(III) 对于任意正整数
$$n$$
, $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right) < t$,求 t 的最小正整数值.

四、证明不等式 4: 指数 ¥ 对数

对于形如: $f(x) = ax^{\alpha} \ln x - \frac{b}{e^x} - c$ ($a,b,c \in R_+$) 的函数,证明 f(x) > 0 在默认定义域上成立的解题策略:

【解法一】: ①分离为两个函数: 对数型函数 $g(x) = ax^{\alpha} \ln x$ 与指数型函数 $h(x) = \frac{b}{e^x} + c$

②分别求出两个函数的最值: $g(x)_{\min} = h(x)_{\max}$, 并比较大小, 可得出结论.

【解法二】: 去对数系数,再作差构造新函数证明.

16. 设函数
$$f(x) = ae^x \ln x + \frac{be^{x-1}}{x}$$
, 曲线 $y = f(x)$ 在点 $(1, f(1))$ 处的切线方程为 $y = e(x-1) + 2$.

(1) 求a,b; (2) 证明: f(x)>1.

17. 已知函数
$$f(x) = \ln x + \frac{2a}{x}$$
.

(1) 讨论函数 f(x) 的单调性; (2) 证明: 当 $a \ge \frac{1}{2}$ 时, $f(x) > e^{-x} + \frac{1}{2}$. 参考数据: $e \approx 2.7183$.

18. 已知函数
$$f(x) = e^x \left(x \ln x + \frac{2}{e} \right)$$
.

(1) 求函数
$$h(x) = f(x) - e^x \left(1 + \frac{2}{e}\right)$$
 的单调区间; (2) 证明: $f(x) - x > 0$.

19. 已知函数
$$f(x) = \frac{x+a}{e^x}$$
 的图象在点 $(0, f(0))$ 处的切线方程为 $y = x$.

(1) 求实数
$$a$$
 的值并判断 $f(x)$ 的单调性; (2) 证明: $x \ln x > \frac{\ln(x+1)}{e^x} - \frac{2}{e}$.

20. 设函数
$$f(x) = \ln x - e^{1-x}$$
, $g(x) = a(x^2 - 1) - \frac{1}{x}$.

(1) 判断函数 y = f(x) 零点的个数,并说明理由;

(2) 记
$$h(x) = g(x) - f(x) + \frac{e^x - ex}{xe^x}$$
, 讨论 $h(x)$ 的单调性;

(3) 若f(x) < g(x)在 $(1,+\infty)$ 恒成立,求实数a的取值范围.

21. 设函数
$$f(x) = \ln x + \frac{a}{x} - x$$

(1) 当a = -2时,求f(x)的极值;

(2) 当
$$a=1$$
时,证明: $f(x)-\frac{1}{e^x}+x>0$ 恒成立.

一、证明不等式 1:不含参:一般在解题过程中会涉及二阶导、隐零点的处理

1. 已知函数 $f(x) = e^x - x - mx^2$, $x \in (0, +\infty)$.

(1) 若f(x)是增函数,求实数m的取值范围;

(2) 当m=1时,求证: $f(x) > \frac{1}{4}$.

【答案】: (1) $m \le \frac{1}{2}$; (2) 证明见解析.

【解析】: (1) 因为 $f(x) = e^x - x - mx^2$, 所以 $f'(x) = e^x - 1 - 2mx, x \in (0, +\infty)$,

因为f(x)是增函数,所以 $f'(x) \ge 0$ 在 $x \in (0,+\infty)$ 时恒成立,

又 $f''(x) = e^x - 2m$, 可知 y = f''(x) 在 $(0, +\infty)$ 上单调递增, 令 f''(x) = 0, $x = \ln 2m$,

当 $\ln 2m \le 0$ 时,即 $m \le \frac{1}{2}$ 时, $f''(x) \ge 0$ 在 $(0,+\infty)$ 上恒成立,

所以 y = f'(x) 在 $(0,+\infty)$ 上单调递增,所以 f'(x) > f'(0) = 0,符合题意;

当 $\ln 2m > 0$ 时,即 $m > \frac{1}{2}$ 时,当 $x \in (0, \ln 2m)$ 时, f''(x) < 0 ,当 $x \in (\ln 2m, +\infty)$ 时, f''(x) > 0 ,

所以 y = f'(x) 在 $(0, \ln 2m)$ 上单调递减,在 $\ln 2m, +\infty$ 上单调递增,

所以 $g'(t) = -\ln t$, 所以 $t \in (1, +\infty)$ 时, g'(t) < 0,

所以 $g(t)_{\max} < g(1) = 0$,所以 $f'(x)_{\min} = f'(\ln 2m) = 2m - 2m \ln 2m - 1 < 0$,这与 $f'(x) \ge 0$ 在 $x \in (0, +\infty)$ 时恒成立矛盾,

综上可知: $m \leq \frac{1}{2}$;

(2) 当
$$m=1$$
时, $f(x)=e^x-x-x^2$, $f'(x)=e^x-1-2x$, $f''(x)=e^x-2$,且 $y=f''(x)$ 为增函数,

令
$$f''(x) = e^x - 2 = 0$$
, 所以 $x = \ln 2$, 所以 $y = f'(x)$ 在 $(0, \ln 2)$ 上单调递减, 在 $(\ln 2, +\infty)$ 山单调递增,

所以
$$f'(x)_{\min} = f'(\ln 2) = 1 - 2\ln 2 < 0$$
,

又因为
$$f'(0)=0$$
, $f'(\frac{3}{2})=e^{\frac{3}{2}}-4=\sqrt{e^3}-4>\sqrt{16}-4=0$, $f'(1)=e-3<0$,

所以存在唯
$$-x_0 \in \left(1, \frac{3}{2}\right)$$
使得 $f'(x_0) = 0$,

所以当
$$x \in (0,x_0)$$
时, $f'(x) < 0$,当 $x \in (x_0,+\infty)$ 时, $f'(x) > 0$,

所以
$$f(x)$$
 在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,且 $f'(x_0) = e^{x_0} - 1 - 2x_0 = 0$,

所以
$$f(x)_{\min} = f(x_0) = e^{x_0} - x_0 - x_0^2 = -x_0^2 + x_0 + 1 = -\left(x_0 - \frac{1}{2}\right)^2 + \frac{5}{4}$$
,

又因为
$$x_0 \in \left(1, \frac{3}{2}\right)$$
,所以 $-\left(x_0 - \frac{1}{2}\right)^2 + \frac{5}{4} > -\left(\frac{3}{2} - \frac{1}{2}\right)^2 + \frac{5}{4} = \frac{1}{4}$,

所以
$$f(x)_{\min} > \frac{1}{4}$$
, 所以 $f(x) > \frac{1}{4}$ 成立.

2. 已知函数
$$f(x) = \ln x + ax + \frac{1}{x}(a \in R)$$

(1) 求函数 f(x) 的单调区间;

(2) 当
$$a = -1$$
 时, $g(x) = f(x) + (x-2)^x e^{-\frac{1}{x}}$, 记函数 $y = g(x)$ 在 $\left[\frac{1}{4}, 1\right]$ 上的最大值为 m ,证明: $(m+4)(m+3) < 0$.

【答案】:

【解析】: (1) 由函数
$$f(x) = \ln x + ax + \frac{1}{x}$$
 的定义域是 $(0,+\infty)$,则 $f'(x) = \frac{1}{x} + a - \frac{1}{x^2} = \frac{ax^2 + x - 1}{x^2}$.

当
$$a = 0$$
 时, $f'(x) = \frac{x-1}{x^2}$,此时在区间 $(0,1)$ 上, $f'(x) < 0$; 在区间 $(1,+\infty)$ 上, $f'(x) > 0$,

故函数 f(x) 的单调递减区间为(0,1), 单调递增区间为 $(1,+\infty)$.

当
$$a < 0$$
且 $\Delta = 1 + 4a \le 0$ 时,即 $a \le -\frac{1}{4}$ 时, $ax^2 + x - 1 \le 0$ 对任意 $x \in (0, +\infty)$ 恒成立,

即 $f'(x) \le 0$ 对任意 $x \in (0, +\infty)$ 恒成立,且不恒为 0.

故函数 f(x) 的单调递减区间为 $(0,+\infty)$,

当 a < 0 且 $\Delta = 1 + 4a > 0$ 时,即 $-\frac{1}{4} < a < 0$ 时,方程 $ax^2 + x - 1 = 0$ 的两根依次为 $x_1 = \frac{-1 + \sqrt{1 + 4a}}{2a}$,

$$x_2 = \frac{-1 - \sqrt{1 + 4a}}{2a} \left(0 < x_1 < x_2 \right),$$

此时在区间 $(0,x_1)$, $(x_2,+\infty)$ 上, f'(x)<0; 在区间 (x_1,x_2) 上, f'(x)>0,

故函数 f(x) 的单调递减区间为 $\left(0, \frac{-1+\sqrt{1+4a}}{2a}\right), \left(\frac{-1-\sqrt{1+4a}}{2a}, +\infty\right)$,单调递增区间为

$$\left(\frac{-1+\sqrt{1+4a}}{2a}, \frac{-1-\sqrt{1+4a}}{2a}\right);$$

当a > 0时,方程 $ax^2 + x - 1 = 0$ 的两根依次为 $x_1 = \frac{-1 + \sqrt{1 + 4a}}{2a}$, $x_2 = \frac{-1 - \sqrt{1 + 4a}}{2a}(x_2 < 0 < x_1)$,

此时在区间 $(0,x_1)$ 上,f'(x) < 0;在区间 $(x_1,+\infty)$ 上,f'(x) > 0,

故函数 f(x) 的单调递减区间为 $\left(0, \frac{-1+\sqrt{1+4a}}{2a}\right)$,单调递增区间为 $\left(\frac{-1+\sqrt{1+4a}}{2a}, +\infty\right)$;

(2) 证明: 当a = -1时, $g(x) = f(x) + (x-2)e^x - \frac{1}{x} = \ln x - x + \frac{1}{x} + (x-2)e^x - \frac{1}{x} = (x-2)e^x - x + \ln x$,

则
$$g'(x) = (x-1)e^x - 1 + \frac{1}{x} = (x-1)\left(e^x - \frac{1}{x}\right)$$
.

则 $h'(x) = e^x + \frac{1}{x^2} > 0$, 所以 h(x) 在 $\left[\frac{1}{4}, 1\right]$ 上单调递增.

因为
$$h\left(\frac{1}{2}\right) = h(x) = e^{\frac{1}{2}} - 2 < 0$$
, $h(1) = e - 1 > 0$,

所以存在 $x_0 \in \left(\frac{1}{2},1\right)$ 使得 $h(x_0) = 0$,即 $e^{x_0} = \frac{1}{x_0}$,即 $\ln x_0 = -x_0$.

故当 $x \in \left(\frac{1}{4}, x_0\right)$ 时,h(x) < 0,此时g'(x) > 0;

即 g(x) 在 $\left(\frac{1}{4}, x_0\right)$ 上单调递增,在 $\left(x_0, 1\right)$ 上单调递减,

$$\operatorname{GH} m = g(x)_{\max} = g(x_0) = (x_0 - 2)e^{x_0} - x_0 + \ln x_0 = (x_0 - 2)\frac{1}{x_0} - x_0 - x_0 = 1 - \frac{2}{x_0} - 2x_0.$$

$$\Leftrightarrow G(x) = 1 - \frac{2}{x} - 2x$$
, $x \in \left(\frac{1}{2}, 1\right)$, $\emptyset G'(x) = \frac{2}{x^2} - 2 = \frac{2(1 - x^2)}{x^2} > 0$,

所以
$$G(x)$$
在 $x \in \left(\frac{1}{2},1\right)$ 上单调递增,则 $G(x) > G\left(\frac{1}{2}\right) = -4$, $G(x) < G(1) = -3$,

所以-4 < m < -3.

故(m+4)(m+3)<0.

3. 设 $f(x) = \ln(x+1) + \sqrt{x+1} + ax + b$ ($a,b \in R$, a,b为常数), 曲线 y = f(x)与直线 $y = \frac{3}{2}x$ 在(0,0)点相切.

(1) 求*a*,*b*的值;

(2) 证明: 当
$$0 < x < 2$$
时, $f(x) < \frac{9x}{x+6}$.

【答案】: (1) b=-1, a=0; (2) 见解析.

【解析】: ($_{\bullet}$ I)由 y = f(x)过(0,0)点,得 b=-1.

由
$$y = f(x)$$
 在 (0,0) 点的切线斜率为 $\frac{3}{2}$, 又 $y'|_{x=0} = (\frac{1}{x+1} + \frac{1}{2\sqrt{x+1}} + a)|_{x=0} = \frac{3}{2} + a$

得 a=0

(II) (证法一)

由均值不等式,当 x>0 时,
$$2\sqrt{(x+1)\bullet 1} < x+1+1 = x+2$$
 故 $\sqrt{x+1} < \frac{x}{2}+1$

则
$$h'(x) = \frac{1}{x+1} + \frac{1}{2\sqrt{x+1}} - \frac{5x}{(x+6)^2} = \frac{2+\sqrt{x+1}}{2(x+1)} - \frac{5x}{(x+6)^2} < \frac{x+6}{4(x+1)} - \frac{5x}{(x+6)^2}$$

♦
$$g(x) = (x+6)^3 - 216(x+1)$$
, 则当 $0 < x < 2$ 时, $g'(x) = 3(x+6)^2 - 216 < 0$

因此 g(x) 在 (0,2) 内是递减函数,又由 g(0)=0,得 g(x)<0,所以 h'(x)<0

因此h(x)在(0,2)内是递减函数,又由h(0)=0,得h(x)<0

当
$$0 < x < 2$$
 时 $f(x) < \frac{9x}{x+6}$

(证法二)

由(
$$_{\bullet}$$
I)知 $f(x) = \ln(x+1) + \sqrt{x+1} - 1$ 由均值不等式,当 $_{x}>0$ 时, $2\sqrt{(x+1)} \cdot 1 < x+1+1 = x+2$ 故 $\sqrt{x+1} < \frac{x}{2} + 1$

(1)

$$\Leftrightarrow k(x) = \ln(x+1) - x$$
, $\emptyset k(0) = 0$, $k'(x) = \frac{1}{x+1} - 1 = \frac{-x}{x+1} < 0$, $b(x) < 0$

 $\mathbb{P} \ln(x+1) < x$ ②

由①②得,当
$$x>0$$
 时, $f(x) < \frac{3}{2}x$

记h(x) = (x+6)f(x)-9x, 则当0 < x < 2时,

$$h'(x) = f(x) + (x+6)f'(x) - 9 < \frac{3}{2}x + (x+6)(\frac{1}{x+1} + \frac{1}{2\sqrt{x+1}}) - 9$$

$$= \frac{1}{2(x+1)} [3x(x+1) + (x+6)(2+\sqrt{x+1}) - 18(x+1)]$$

$$<\frac{1}{2(x+1)}[3x(x+1)+(x+6)(3+\frac{x}{2})-18(x+1)] = \frac{x}{4(x+1)}(7x-18) < 0$$

因此h(x)在(0,2)内单调递减,又h(0)=0,所以h(x)<0即 $f(x)<\frac{9x}{x+6}$

4. 已知函数 $f(x) = \frac{\ln x + k}{e^x}$ (k 为常数, e = 2.71828...是自然对数的底数),曲线 y = f(x) 在点(1, f(1)) 处的切线与 x 轴平行.

- (1) 求k的值;
- (2) 求 f(x) 的单调区间;

(3) 设
$$g(x) = (x^2 + x) f'(x)$$
, 其中 $f'(x)$ 为 $f(x)$ 的导函数.证明:对任意 $x > 0$, $g(x) < 1 + e^{-2}$.

【答案】: (1) k=1; (2) f(x) 的单调增为(0,1), 单调减区为 $(1,+\infty)$; (3) 见解析.

【解析】:解 (1)由
$$f(x) = \frac{\ln x + k}{e^x}$$
,得 $f'(x) = \frac{1 - kx - x \ln x}{xe^x}$, $x \in (0, +\infty)$,

由于曲线 y=f(x)在点(1, f(1))处的切线与 x 轴平行.

所以 f'(1)=0, 因此 k=1.

(2)由(1)得 f'(x)=
$$\frac{1}{xe^x}$$
(1-x-xln x), x∈(0, +∞),

 $\Leftrightarrow h(x)=1-x-x\ln x, x\in(0, +\infty),$

当 $x \in (0,1)$ 时,h(x) > 0;当 $x \in (1, +\infty)$ 时,h(x) < 0.

又 $e^x > 0$,所以 $x \in (0,1)$ 时, f'(x) > 0;

 $x \in (1, +\infty)$ 时, f'(x) < 0.

因此 f(x)的单调递增区间为(0,1), 单调递减区间为 $(1, +\infty)$

(3)因为
$$g(x) = xf'(x)$$
,所以 $g(x) = \frac{1}{e^x} (1 - x - x \ln x)$, $x \in (0, +\infty)$,

由(2)得, $h(x)=1-x-x\ln x$,

求导得 $h'(x) = -\ln x - 2 = -(\ln x - \ln e^{-2})$.

所以当 $x \in (0, e^{-2})$ 时, h'(x) > 0, 函数 h(x)单调递增;

当 $x \in (e^{-2}, +\infty)$ 时,h'(x) < 0,函数 h(x)单调递减.

所以当 $x \in (0, +\infty)$ 时, $h(x) \le h(e^{-2}) = 1 + e^{-2}$.

又当 $x \in (0, +\infty)$ 时, $0 < \frac{1}{e^x} < 1$,

所以当 $x \in (0, +\infty)$ 时, $\frac{1}{e^x}h(x) < 1 + e^{-2}$,即 $g(x) < 1 + e^{-2}$.

综上所述结论成立

5. 已知
$$f(x) = ax - \ln x (a \in R)$$
.

(1) 若
$$a = -1$$
, 求证: $f(x) \ge 1 - xe^x$;

(2) 求证:
$$\frac{\ln x}{e^x} < \frac{1}{e^2}$$
.

【答案】:

【解析】:(1) 当a = -1时,原问题为证明 $-x - \ln x \ge 1 - xe^x$.

令 $g(x) = xe^x - 1$ ($x \ge 0$),则 $g'(x) = (x+1)e^x > 0$ (x > 0),所以 g(x) 在(0,+∞)上单调递增,

$$\mathbb{X} g(0) = -1 < 0$$
, $g(1) = e - 1 > 0$,

所以
$$\exists x_0 \in (0,1)$$
 , 使得 $g(x_0) = 0$, 所以 $e^{x_0} = \frac{1}{x_0}$, 所以 $x_0 = -\ln x_0$. • • • • • . 3 分

当
$$x \in (0, x_0)$$
时, $g(x) < 0$,则 $h'(x) < 0$;当 $x \in (x_0, +\infty)$ 时, $g(x) > 0$,则 $h'(x) > 0$

所以 h(x) 在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,所以 h(x) 在 $x=x_0$ 处取得极小值也是最小值,

$$\mathbb{E} h(x)_{\min} = h(x_0) = x_0 e^{x_0} - \ln x_0 - x_0 - 1 = x_0 \times \frac{1}{x_0} + x_0 - x_0 - 1 = 0,$$

所以 $\forall x \in (0,+\infty)$, $h(x) \geqslant 0$, 即 $-x - \ln x \geqslant 1 - xe^x$. • • • • • • • • 5 分

(2) 记函数 $\varphi(x) = e^{x-2} - \ln x$, 则原不等式可化简为 $\varphi(x) > 0$,

$$\varphi'(x) = \frac{1}{e^2} \times e^x - \frac{1}{x} = e^{x-2} - \frac{1}{x}$$
,可知 $\varphi'(x)$ 在 $(0, +\infty)$ 上单调递增, • • • • • 6 分

由 $\varphi'(1) < 0$, $\varphi'(2) > 0$ 知, $\varphi'(x)$ 在 $(0,+\infty)$ 上有唯一零点 x_1 , 且 $1 < x_1 < 2$,

所以
$$\varphi'(x_1) = e^{x_1} - 2 - \frac{1}{x_1} = 0$$
,即 $e^{x_1 - 2} = \frac{1}{x_1}$. • • • • • • • • • • • • 8 分

当 $x \in (0, x_1)$ 时 $\varphi'(x) < 0$, $\varphi(x)$ 在 $(0, x_1)$ 上单调递减;当 $x \in (x_1, +\infty)$ 时 $\varphi'(x) > 0$, $\varphi(x)$ 在 $(x_1, +\infty)$ 上单调递增充。

所以对 $\forall x \in (0,+\infty)$, $\varphi(x) \geqslant \varphi(x_1) = e^{x_1-2} - \ln x_1$.

所以
$$\varphi(x) \geqslant \varphi(x_1) = \frac{1}{x_1} + x_1 - 2 = \frac{x_1^2 - 2x_1 + 1}{x_1} = \frac{(x_1 - 1)^2}{x_1} > 0.$$
 11分

则
$$\forall x \in (0, +\infty)$$
 , $\varphi(x) = e^{x-2} - \ln x > 0$, 即 $\forall x \in (0, +\infty)$, $\frac{\ln x}{e^x} < \frac{1}{e^2}$ 恒成立. 12 分

三、证明不等式 2: 含参, 讨论单调性

6. 已知函数
$$f(x) = e^x - \ln(x+m)$$
.

- (1) 设x = 0是 f(x)的极值点,求m,并讨论 f(x)的单调性;
- (2) 当 $m \le 2$ 时,证明: f(x) > 0.

【答案】: (1) f(x)在(-1,0)上是减函数; 在(0,+ ∞)上是增函数; (2) 见解析.

【解析】: (1)
$$f'(x) = e^x - \frac{1}{x + m}$$
.

由 x=0 是 f(x)的极值点得 f'(0)=0,所以 m=1.

于是
$$f(x)=e^x-\ln(x+1)$$
,定义域为 $(-1, +\infty)$, $f'(x)=e^x-\frac{1}{x+1}$.

函数 $f'(x) = e^x - \frac{1}{x+1}$ 在 $(-1, +\infty)$ 上单调递增,且 f'(0)=0,因此当 $x \in (-1, 0)$ 时, f'(x)<0;当 $x \in (0, +\infty)$ 时, f'(x)>0.

所以 f(x)在(-1, 0)上单调递减,在 $(0, +\infty)$ 上单调递增.

(2)当 m \leq 2, x \in (-m, + ∞)时, ln(x+m) \leq ln(x+2), 故只需证明当 m=2 时, f(x)>0.

当 m=2 时,函数
$$f'(x) = e^x - \frac{1}{x+2}$$
 在 $(-2, +\infty)$ 上单调递增.

又 f '(-1)<0, f '(0)>0,故 f '(x)=0在(-2, +∞)上有唯一实根 x_2 ,且 x_0 \in (-1,0).

当 $x \in (-2, x_0)$ 时, f'(x) < 0;当 $x \in (x_0, +\infty)$ 时, f'(x) > 0,从而当 $x = x_0$ 时, f(x) 取得最小值.

曲 f'(x₀)=0 得
$$e^{x_0} = \frac{1}{x_0 + 2}$$
, $\ln(x_0 + 2) = -x_0$,

故
$$f(x) \ge f(x_0) = \frac{1}{x_0 + 2} + x_0 = \frac{(x_0 + 1)^2}{x_0 + 2} > 0$$
.

综上, 当 m≤2 时, f(x)>0.

7. 已知函数
$$f(x) = \ln x + ax^2 - (2a+1)x + 1(a \ge 0)$$
.

- (1) 当a = 0时,求函数f(x)在区间 $[1,+\infty)$ 上的最大值;
- (2) 函数 f(x)在区间 $(1,+\infty)$ 上存在最小值,记为 g(a),求证: $g(a) < \frac{1}{4a} 1$.

【答案】: (1) 0; (2) 证明见解析.

【解析】: (1) 当
$$a = 0$$
时, $f(x) = \ln x - x + 1$,则 $f'(x) = \frac{1}{x} - 1$

因为 $x \in [1,+\infty)$, 所以 $f'(x) \le 0$. 所以f(x)在区间 $[1,+\infty)$ 上单调递减

所以 f(x) 区间 $[1,+\infty)$ 上最大值为 f(1)=0.

(2) 由题可知
$$f'(x) = \frac{1}{x} + 2ax - (2a+1) = \frac{2ax^2 - (2a+1)x + 1}{x} = \frac{(2ax-1)(x-1)}{x}$$
.

①当a=0时,由(1)知,函数f(x)在区间(1,+ ∞)上单调递减,

所以函数 f(x) 无最小值,此时不符合题意;

②当
$$a \ge \frac{1}{2}$$
时,因为 $x \in (1, +\infty)$,所以 $2ax - 1 > 0$.此时函数 $f(x)$ 在区间 $(1, +\infty)$ 上单调递增

所以函数 f(x) 无最小值,此时亦不符合题意;

③当 $0 < a < \frac{1}{2}$ 时,此时 $1 < \frac{1}{2a}$.

函数 f(x) 在区间 $(1,\frac{1}{2a})$ 上单调递减,在区间 $(\frac{1}{2a},+\infty)$ 上单调递增

所以 $f(x)_{\min} = f(\frac{1}{2a}) = \ln \frac{1}{2a} - \frac{1}{4a}$,即 $g(a) = \ln \frac{1}{2a} - \frac{1}{4a}$.

要证 $g(a) < \frac{1}{4a} - 1$,只需证当 $0 < a < \frac{1}{2}$ 时, $g(a) - \frac{1}{4a} + 1 < 0$ 成立. 即证 $\ln \frac{1}{2a} - \frac{1}{2a} + 1 < 0$, $\left(0 < a < \frac{1}{2}\right)$

设 $t = \frac{1}{2a}$, $h(t) = \ln t - t + 1$, (t > 1)

由 (1) 知 h(t) < h(1) = 0, 即 $g(a) - \frac{1}{4a} + 1 < 0$ 成立. 所以 $g(a) < \frac{1}{4a} - 1$.

8. 已知函数 $f(x) = e^x - \frac{1}{2}ax^2 - x$.

(1) 设f'(x)是f(x)的导函数, 讨论函数y = f'(x)的单调性;

【答案】: (1) 答案见解析; (2) 证明见解析.

【解析】: (1) 由己知 $f'(x) = e^x - ax - 1$

设g(x) = f'(x), $g'(x) = e^x - a$

①当 $a \le 0$ 时. $g'(x) = e^x - a > 0$ 在R上恒成立, $\therefore g(x) = f'(x)$ 在 $(-\infty, +\infty)$ 上递增

②当a > 0时. 令g'(x) > 0得 $x > \ln a$, g'(x) < 0得 $x < \ln a$

 $\therefore g'(x)=f'(x)$ 在 $(-\infty,\ln a)$ 上递减. 在 $(\ln a,+\infty)$ 上递增

综上所述: 当 $a \le 0$ 时. y = f'(x)是 $(-\infty, +\infty)$ 上的增函数

当a>0时. $y=f^{'}(x)$ 在 $(-\infty, \ln a)$ 是减函数. 在 $(\ln a, +\infty)$ 上是增函数

(2) 由 (1) 知. ①当 $a \le 0$ 时. $f'(x) = e^x - ax - 1$ 在 $(-1, +\infty)$ 上递增

又 f'(0) = 0, :..-1<x<0时. f'(x)<0;x>0时, f'(x)>0,

则 f(x) 在 (-1,0) 上递减. 在 $(0,+\infty)$ 上递增, $:: f(x)_{\min} = f(0) = 1$

② $\pm 0 < a \le \frac{1}{e}$ 时, $\ln a \le -1$

由(1) 知f'(x)在 $(-1,+\infty)$ 上递增.又f'(0)=0,则f(x)在(-1,0)上递减.在 $(0,+\infty)$ 上递增

 $\therefore f(x)_{\min} = f(0) = 1$

③当 $\frac{1}{e}$ < $a \le 1 - \frac{1}{e}$ 时.由(1)知f'(x)在(-1, $\ln a$)上递减.在($\ln a$,+ ∞)上递增

$$\coprod f'(0) = 0, f'(-1) = \frac{1}{e} + a - 1 \le 0$$

∴ $-1 \le x < 0$ 时. f'(x) < 0; x > 0 时. f'(x) > 0,

 $\therefore f(x)$ 在(-1,0)上递减. 在(0,+∞)在递增,则 $f(x)_{\min} = f(0) = 1$

综上所述:函数 f(x) 在 $\left[-1,+\infty\right)$ 上的最小值为1.

 $\therefore f(x) \ge 1$,则要证明原不等式只须证明 $x - \ln(x+1) \ge 0$

设
$$h(x) = x - \ln(x+1)(x > -1)$$
, $h'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1}$

则当-1 < x < 0时,h'(x) < 0; x > 0时,h'(x) > 0

即: h(x) 在 (-1,0) 上递减. 在 $(0,+\infty)$ 上递增,则 $h(x)_{\min} = h(0) = 0$,即 $x - \ln(x+1) \ge 0$

又 f(x) ≥ 1, 故 f(x) + x - ln(x + 1) ≥ 1.

9. 已知函数
$$f(x) = \frac{m(x^2+1)+x}{e^x}$$
.

- (1) 试讨论 f(x) 的单调性;
- (2) 若 $m \le 0$, 证明: $ef(x) + \ln x \le x$.

【答案】:(1)答案不唯一见解析;(2)证明见解析.

【解析】: (1) 因为
$$f'(x) = -\frac{(x-1)(mx+1-m)}{e^x}$$
,

①当m=0时, $f'(x)=-\frac{x-1}{e^x}$,当x>1时,f'(x)<0,当x<1时,f'(x)>0,所以f(x)在 $(-\infty,1)$ 上单调递

增,在(1,+∞)上单调递减;

②
$$\stackrel{\text{def}}{=} m > 0$$
 时, $f'(x) = -\frac{m(x-1)\left(x-1+\frac{1}{m}\right)}{e^x}, 1-\frac{1}{m} < 1$

当
$$x \in \left(1 - \frac{1}{m}, 1\right)$$
时, $f'(x) > 0$,当 $x \in \left(-\infty, 1 - \frac{1}{m}\right)$ (4), 时, $f'(x) < 0$,所以 $f(x)$ 在 $\left(1 - \frac{1}{m}, 1\right)$ 单调递增,

在
$$\left(-\infty,1-\frac{1}{m}\right)$$
, $(1,+\infty)$ 单调递减;

③ 当
$$m < 0$$
 时, $1 - \frac{1}{m} > 1$, 当 $x \in \left(1, 1 - \frac{1}{m}\right)$ 时, $f'(x) < 0$, 当 $x \in (-\infty, 1) \cup \left(1 - \frac{1}{m}, +\infty\right)$ 时, $f'(x) > 0$, 所以

$$f(x)$$
 在 $\left(1,1-\frac{1}{m}\right)$ 单调递减,在 $\left(-\infty,1\right)$, $\left(1-\frac{1}{m},+\infty\right)$ 单调递增.

(2) 要证明 $ef(x) + \ln x \le x$, 只需证明 $ef(x) \le x - \ln x$,

而 $x - \ln x \ge 1$,因此只需证明 $f(x) \le \frac{1}{e}$,

当m = 0时, $f(x) = \frac{x}{e^x}$,由(1)知f(x)在 $(-\infty,1)$ 上单调递增,在 $(1,+\infty)$ 上单调递减,所以 $f(x)_{max} = f(1) = \frac{1}{e}$;

当
$$m < 0$$
时, $f(x) = \frac{m(x^2+1)+x}{e^x} < \frac{x}{e^x} \le \frac{1}{e}$,

故 $ef(x) + \ln x \le x$.

三 证明不等式 3: 放缩法

10.
$$f(x) = a(x - \ln x) + \frac{2x - 1}{x^2}, \quad a \in R$$
.

(1) 讨论 f(x) 的单调性;

(2) 当
$$a = 1$$
 时,证明: $f(x) > f'(x) + \frac{3}{2}$ 对任意的 $x \in [1, 2]$ 成立.

【答案】:(1)见解析;(2)见解析.

【解析】: (1)
$$f(x)$$
的定义域为 $(0,+\infty)$; $f'(x) = a - \frac{a}{x} - \frac{2}{x^2} + \frac{2}{x^3} = \frac{(ax^2 - 2)(x - 1)}{x^3}$.

当 $a \le 0$, $x \in (0,1)$ 时, f'(x) > 0, f(x)单调递增; $x \in (1,+\infty)$ 时, f'(x) < 0, f(x)单调递减.

当
$$a > 0$$
时, $f'(x) = \frac{a(x-1)}{x^3} \left(x + \sqrt{\frac{2}{a}}\right) \left(x - \sqrt{\frac{2}{a}}\right)$.

(1)
$$0 < a < 2$$
, $\sqrt{\frac{2}{a}} > 1$,

当
$$x \in (0,1)$$
或 $x \in \left(\sqrt{\frac{2}{a}}, +\infty\right)$ 时, $f'(x) > 0$, $f(x)$ 单调递增;

当
$$x \in \left(1, \sqrt{\frac{2}{a}}\right)$$
时, $f'(x) < 0$, $f(x)$ 单调递减;

(2)
$$a = 2$$
时, $\sqrt{\frac{2}{a}} = 1$, 在 $x \in (0, +\infty)$ 内, $f'(x) \ge 0$, $f(x)$ 单调递增;

(3)
$$a > 2$$
 H, $0 < \sqrt{\frac{2}{a}} < 1$,

当
$$x \in \left(0, \sqrt{\frac{2}{a}}\right)$$
或 $x \in (1, +\infty)$ 时, $f'(x) > 0$, $f(x)$ 单调递增;

当
$$x \in \left(\sqrt{\frac{2}{a}},1\right)$$
时, $f'(x) < 0$, $f(x)$ 单调递减.

综上所述,

当 $a \le 0$ 时,函数 f(x) 在(0,1) 内单调递增,在(1,+ ∞) 内单调递减;

当0<a<2时,f(x)在(0,1) 内单调递增,在(1, $\sqrt{\frac{2}{a}}$) 内单调递减,在($\sqrt{\frac{2}{a}}$ + ∞) 内单调递增;

当 a=2 时, f(x) 在(0,+ ∞) 内单调递增;

当 a > 2, f(x)在 $(0, \sqrt{\frac{2}{a}})$ 内单调递增,在 $(\sqrt{\frac{2}{a}}, 1)$ 内单调递减,在 $(1, +\infty)$ 内单调递增.

(2) 由 (1) 知, a=1时,

$$f(x) - f'(x) = x - \ln x + \frac{2x - 1}{x^2} - \left(1 - \frac{1}{x} - \frac{2}{x^2} + \frac{2}{x^3}\right) = x - \ln x + \frac{3}{x} + \frac{1}{x^2} - \frac{2}{x^3} - 1, \quad x \in [1, 2],$$

$$\Rightarrow g(x) = x - \ln x, h(x) = \frac{3}{x} + \frac{1}{x^2} - \frac{2}{x^3} - 1, \quad x \in [1,2].$$

则
$$f(x)-f'(x)=g(x)+h(x)$$
,

由 $g'(x) = \frac{x-1}{x} \ge 0$ 可得 $g(x) \ge g(1) = 1$, 当且仅当 x = 1 时取得等号.

$$\mathbb{X} h'(x) = \frac{-3x^2 - 2x + 6}{x^4}$$
,

设 $\varphi(x) = -3x^2 - 2x + 6$, 则 $\varphi(x)$ 在 $x \in [1,2]$ 单调递减,

因为 $\varphi(1) = 1, \varphi(2) = -10$,

所以在 [1,2] 上存在 x_0 使得 $x \in (1,x_0)$ 时, $\varphi(x) > 0, x \in (x_0,2)$ 时, $\varphi(x) < 0$,

所以函数h(x)在 $(1,x_0)$ 上单调递增,在 $(x_0,2)$ 上单调递减,

由于 h(1) = 1, $h(2) = \frac{1}{2}$, 因此 $h(x) \ge h(2) = \frac{1}{2}$, 当且仅当 x = 2 取得等号,

所以 $f(x)-f'(x) > g(1)+h(2) = \frac{3}{2}$,即 $f(x) > f'(x) + \frac{3}{2}$ 对于任意的 $x \in [1,2]$ 恒成立。

11. 已知
$$f(x) = x \ln x - x + \frac{a}{x}$$
, 其中 $a \in R$.

(1) 讨论 f(x) 的极值点的个数;

(2) 当
$$n \in N^*$$
时,证明: $\ln^2 2 + \ln^2 \frac{3}{2} + \ln^2 \frac{4}{3} + \dots + \ln^2 \frac{n+1}{n} > \frac{n}{2n+4}$.

【答案】:

【解析】: (1) f(x)的定义域为(0, + ∞),则 $f'(x) = \ln x + 1 - 1 - \frac{a}{x^2} = \ln x - \frac{a}{x^2}$,

$$\Rightarrow g(x) = \ln x - \frac{a}{x^2}, \quad x > 0, \quad \text{M} \ g'(x) = \frac{1}{x} + \frac{2a}{x^3} = \frac{x^2 + 2a}{x^3}, \quad \dots$$

① $\exists a = 0 \forall f, f'(x) = \ln x, \Leftrightarrow f'(x) = 0, \forall x = 1,$

当 0 < x < 1 时, f'(x) < 0, f(x)单调递减;当 x > 1 时, f'(x) > 0, f(x)单调递增

②当a > 0时,g'(x) > 0,所以g(x)在 $(0, +\infty)$ 上单调递增,

$$\mathbb{Z} g(1) = -a < 0$$
, $g(e^a) = a - \frac{a}{e^{2a}} = a(1 - \frac{1}{e^{2a}}) > 0$

所以 g(x)在(1, e^a)上存在唯一零点,记为 x_0 ,列表:

x	$(0, x_0)$	x_0	$(x_0, +\infty)$
f'(x)	_	0	+
f(x)	`	极小值	1

③当
$$a < 0$$
时,令 $g'(x) = 0$,得 $x = \sqrt{-2a}$,

当 $0 < x < \sqrt{-2a}$ 时, g'(x) < 0, g(x)单调递减; 当 $x > \sqrt{-2a}$ 时, g'(x) > 0, g(x)单调递增,

所以
$$g(x)_{\min} = g(\sqrt{-2a}) = \ln \sqrt{-2a} + \frac{1}{2}$$
,

当 $a \le -\frac{1}{2e}$ 时, $g(x)_{\min} \ge 0$,故 $f'(x) \ge 0$,f(x)在 $(0, +\infty)$ 上单调递增,

所以 *f*(*x*)在(0, +∞)上无极值点,5 分

$$\stackrel{\text{dis}}{=} -\frac{1}{2e} < a < 0$$
 时, $g(x)_{\min} = g(\sqrt{-2a}) = \ln \sqrt{-2a} + \frac{1}{2} < 0$, 又 $g(1) = -a > 0$,

所以 $\varphi(a)$ 在 $\left(-\frac{1}{2e}, 0\right)$ 上单调递增,

所以
$$g(-2a) = \varphi(a) > \varphi(-\frac{1}{2e}) = \ln \frac{1}{e} + \frac{e}{2} = \frac{e}{2} - 1 > 0$$
,

所以 g(x)在 $(0, +\infty)$ 上有且仅有两个零点,记为 $\alpha, \beta(\alpha < \beta)$,列表:

x	(0, α)	α	(α, β)	β	$(\beta, +\infty)$
f'(x)	+	0	_	0	+
f(x)	1	极大值	`	极小值	1

综上所述, 当 $a \le -\frac{1}{2e}$ 时, f(x)无极值点; 当 $-\frac{1}{2e} < a < 0$ 时, f(x)有两个极值点;

(2) 由 (1) 知, 当 a=0 时, $f(x) \ge f(1) = -1$, 所以 $x \ln x \ge x - 1$, …………10 分

即
$$\ln x \ge 1 - \frac{1}{x}$$
,所以 $\ln^2 x \ge (1 - \frac{1}{x})^2$, $\diamondsuit x = \frac{n+1}{n}$ 得

故
$$\ln^2 \frac{n+1}{n} \ge (\frac{1}{n+1})^2 > \frac{1}{n+1} \cdot \frac{1}{n+2} = \frac{1}{n+1} - \frac{1}{n+2}$$

$$\ln^2 2 + \ln^2 \frac{3}{2} + \ln^2 \frac{4}{3} + \dots + \ln^2 \frac{n+1}{n} > \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{2} - \frac{1}{n+2} = \frac{n}{2n+4} + \dots + \frac{1}{2n+2} = \frac{n}{2n+4} + \dots + \frac{n}{2n+2} = \frac{n}{2n+4} + \dots + \frac{n}{2n+4$$

12. 设函数 $f(x) = x^2 + (a-2)x - a \ln x \ (a \in R)$.

- (1) 若a=1, 求f(x)的极值;
- (2) 讨论函数 f(x) 的单调性;

(3) 若
$$n \in \mathbb{N}^*$$
, 证明: $\frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \dots + \frac{n}{(n+1)^2} < \ln(n+1)$

【答案】: (1) 0, 无极大值; (2) 详见解析; (3) 详见解析.

【解析】: (1)
$$f(x)$$
的定义域为 $(0,+\infty)$, 当 $a=1$ 时, $f'(x)=2x-1-\frac{1}{x}=\frac{(2x+1)(x-1)}{x}$,

若f'(x) > 0,则x > 1;若f'(x) < 0,则0 < x < 1,

 $\therefore f(x)$ 在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增.

 $\therefore f(x)_{\text{极小值}} = f(1) = 0$, 没有极大值.

(2)
$$f'(x) = 2x - \frac{a}{x} + (a-2) = \frac{(2x+a)(x-1)}{x}(x>0)$$
,

 1° 当 $a \ge 0$ 时,若 f'(x) > 0 ,则 x > 1 ,若 f'(x) < 0 ,则 0 < x < 1 ,

 $\therefore f(x)$ 在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增,

$$2^{\circ} \stackrel{\text{def}}{=} 0 < -\frac{a}{2} < 1$$
, $\mathbb{P} - 2 < a < 0 \, \mathbb{P}$,

若
$$f'(x) > 0$$
,则 $0 < x < -\frac{a}{2}$ 或 $x > 1$;若 $f'(x) < 0$,则 $-\frac{a}{2} < x < 1$

$$\therefore f(x)$$
在 $\left(-\frac{a}{2},1\right)$ 上单调递减,在 $\left(0,-\frac{a}{2}\right)$, $\left(1,+\infty\right)$ 上单调递增

$$3^{\circ} \stackrel{a}{=} -\frac{a}{2} = 1$$
,即 $a = -2$ 时, $f'(x) \ge 0$ 恒成立, ∴ $f(x)$ 在 $(0,+\infty)$ 上单调递增.

$$4^{\circ} = -\frac{a}{2} > 1$$
,即 $a < -2$ 时,若 $f'(x) > 0$,则 $0 < x < 1$ 或 $x > -\frac{a}{2}$;若 $f'(x) < 0$,则 $1 < x < \frac{a}{2}$,

 $\therefore f(x)$ 在 $(1,-\frac{a}{2})$ 上单调递减,在 $(0,1)(-\frac{a}{2},+\infty)$ 上单调递增

综上所述: 1° 当 a < -2 时, f(x) 在 $(1, -\frac{a}{2})$ 上单调递减,在 $(0,1)(-\frac{a}{2}, +\infty)$ 上单调递增;

 2° 当 a = -2 时, f(x) 在 $(0,+\infty)$ 上单调递增;

$$3^{\circ}$$
 当 $-2 < a < 0$ 时, $f(x)$ 在 $\left(-\frac{a}{2},1\right)$ 上单调递减,在 $(0,1)\left(-\frac{a}{2},+\infty\right)$ 上单调递增

 4° 当 $a \ge 0$ 时, f(x) 在(0,1) 上单调递减,在(1,+∞) 上单调递增;

(3) 由 (1) 知
$$f(x) = x^2 - x - \ln x$$
 在 $(0,1)$ 上为减函数,

∴
$$x \in (0,1)$$
 財, $x^2 - x - lnx > f(1) = 0$, ∴ $x^2 - x > lnx$

:
$$ln2 > \frac{1}{2^2}$$
, $ln\frac{3}{2} > \frac{2}{3^2}$, $ln\frac{4}{3} > \frac{3}{4^2}$, ..., $ln\frac{n+1}{n} > \frac{n}{(n+1)^2}$,

将以上各式左右两边相加得:
$$\ln 2 + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n} > \frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \dots + \frac{n}{(n+1)^2}$$
,

$$\therefore \ln(n+1) > \frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \dots + \frac{n}{(n+1)^2}.$$

13. 已知函数
$$f(x) = \ln x - ax + 1(a \in R)$$
.

(1) 求函数
$$f(x)$$
在区间 $\left[\frac{1}{2},2\right]$ 上的最大值;

(2) 证明:
$$\left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \cdots \left(1 + \frac{n}{n^2}\right) < e$$
, $n \in \mathbb{N}^*$.

【答案】:

【解析】: (1)
$$f'(x) = \frac{1}{x} - a$$
, 因为 $x \in \left[\frac{1}{2}, 2\right]$, 所以 $\frac{1}{x} \in \left[\frac{1}{2}, 2\right]$, 1分

当
$$a \le \frac{1}{2}$$
时, $f'(x) \ge 0$ 恒成立,此时 $f(x)_{\max} = f(2) = \ln 2 - 2a + 1$; •••• 2 分

当
$$a\geqslant 2$$
 时, $f'(x)\leqslant 0$ 恒成立,此时 $f(x)_{\max}=f\left(\frac{1}{2}\right)=\ln\frac{1}{2}-\frac{1}{2}a+1$; •••• 3 分

当
$$\frac{1}{2}$$
< a <2 时,由 $f'(x)$ >0得 $\frac{1}{2}$ < x < $\frac{1}{a}$,由 $f'(x)$ <0得 $\frac{1}{a}$ < x < x < x

所以此时
$$f(x)_{\text{max}} = f\left(\frac{1}{a}\right) = \ln\frac{1}{a}$$
. • • • • • • • • • • • 4 分

(2) 证明: 当a = 1时, $f'(x) = \frac{1}{x} - 1 = \frac{1-x}{x}$, 由f'(x) > 0 得0 < x < 1, 由f'(x) < 0 得x > 1, 所以f(x) 在(0,1)

上单调递增,在(1,+∞)上单调递减,

所以
$$f(x) \le f(1) = 0$$
,即 $\ln x \le x - 1$,当且仅当 $x = 1$ 时等号成立, • • • • • 6 分 即 $\ln(1+x) < x$ 对 $\forall x \in (0,+\infty)$ 都成立。 • • • • • • • • • • • • • 7 分

所以
$$\ln\left(1+\frac{1}{n^2}\right) + \ln\left(1+\frac{2}{n^2}\right) + \dots + \ln\left(1+\frac{n}{n^2}\right) < \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$$
, • • • • • 8分

即
$$\ln \left[\left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \cdots \left(1 + \frac{n}{n^2} \right) \right] < \frac{1 + 2 + \cdots + n}{n^2} = \frac{n+1}{2n}$$
. • • • • • • 9 分

由于
$$n \in \mathbb{N}^*$$
,则 $\frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n} \leqslant \frac{1}{2} + \frac{1}{2 \times 1} = 1$. • • • • • • • • • • • • 10 分

所以
$$\left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right)$$
 < e. 12分

14. 已知函数 $f(x) = a \ln x + x^2$, 其中 $a \in R$.

- (1) 讨论 f(x) 的单调性;
- (2) 当a=1时,证明: $f(x) \le x^2 + x 1$;

(3) 试比较
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \frac{\ln 4^2}{4^2} + \dots + \frac{\ln n^2}{n^2} = \frac{(n-1)(2n+1)}{2(n+1)}$$
 ($n \in \mathbb{N}^*$ 且 $n \ge 2$) 的大小,证明你的结论.

【答案】:

【解析】: (1) 函数
$$f(x)$$
 的定义域为: $(0,+\infty)$, $f'(x) = \frac{a}{x} + 2x = \frac{a+2x^2}{x}$,

①当 $a \ge 0$ 时,f'(x) > 0,所以f(x)在 $(0,+\infty)$ 上单调递增,

②当
$$a < 0$$
时,令 $f'(x) = 0$,解得 $x = \sqrt{-\frac{a}{2}}$.

当
$$0 < x < \sqrt{-\frac{a}{2}}$$
时, $a + 2x^2 < 0$,所以 $f'(x) < 0$,所以 $f(x)$ 在 $\left(0, \sqrt{-\frac{a}{2}}\right)$ 上单调递减;

当
$$x > \sqrt{-\frac{a}{2}}$$
 时, $a + 2x^2 > 0$, 所以 $f'(x) > 0$, 所以 $f(x)$ 在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增.

综上, 当 $a \ge 0$ 时, 函数f(x)在 $(0,+\infty)$ 上单调递增;

当
$$a < 0$$
时,函数 $f(x)$ 在 $\left(0, \sqrt{-\frac{a}{2}}\right)$ 上单调递减,在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增.

(2)
$$\exists a=1$$
 $\forall f(x)=\ln x+x^2$, 要证明 $f(x) \le x^2+x-1$,

即证 $\ln x \le x-1$, 即证: $\ln x-x+1 \le 0$.

设
$$g(x) = \ln x - x + 1$$
, 则 $g'(x) = \frac{1-x}{x}$, 令 $g'(x) = 0$ 得, $x = 1$.

当
$$x \in (0,1)$$
时, $g'(x) > 0$,当 $x \in (1,+\infty)$ 时, $g'(x) < 0$,

所以x=1为极大值点,且g(x)在x=1处取得最大值.

所以
$$g(x) \le g(1) = 0$$
, 即 $\ln x - x + 1 \le 0$. 故 $f(x) \le x^2 + x - 1$.

(3) 证明:
$$\ln x \le x - 1$$
 (当且仅当 $x = 1$ 时等号成立),即 $\frac{\ln x}{x} \le 1 - \frac{1}{x}$,

则有
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \dots + \frac{\ln n^2}{n^2} < 1 - \frac{1}{2^2} + 1 - \frac{1}{3^2} + \dots + 1 - \frac{1}{n^2} = n - 1 - \left(\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}\right)$$

$$< n-1-\left(\frac{1}{2\times 3}+\frac{1}{3\times 4}+\cdots+\frac{1}{n(n+1)}\right) = n-1-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n}-\frac{1}{n+1}\right)$$

$$= n - 1 - \left(\frac{1}{2} - \frac{1}{n+1}\right) = \frac{(n-1)(2n+1)}{2(n+1)},$$

故:
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \dots + \frac{\ln n^2}{n^2} = \frac{(n-1)(2n+1)}{2(n+1)}$$
.

15. 已知函数 $f(x) = \ln x - mx + m$, $m \in \mathbb{R}$.

(I) 求f(x)的单调区间;

(II) 若
$$x \in (1,+\infty)$$
, 证明: $1 < \frac{x-1}{\ln x} < x$;

(III) 对于任意正整数
$$n$$
, $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right)< t$,求 t 的最小正整数值.

【答案】:

【解析】: (I)由
$$f'(x) = \frac{1}{x} - m = \frac{1 - mx}{x}$$
,

若 $m \le 0$, 则当 $x \in (0,+\infty)$ 时, f'(x) > 0, 函数f(x)单调递增;

若
$$m>0$$
,则当 $x\in\left(0,\frac{1}{m}\right)$ 时, $f'(x)>0$,函数 $f(x)$ 单调递增,

当
$$x \in \left(\frac{1}{m}, +\infty\right)$$
时, $f'(x) < 0$,函数 $f(x)$ 单调递减,

所以当 $m \le 0$ 时,函数f(x)的单调递增区间为 $(0,+\infty)$;

当
$$m>0$$
时,函数 $f(x)$ 的单调递增区间为 $\left(0,\frac{1}{m}\right)$,单调递减区间为 $\left(\frac{1}{m},+\infty\right)$.

(II) 由 (I) 知,当m=1时, f(x)在x=1处取得最大值,最大值为f(1)=0,所以当 $x\neq 1$ 时, $\ln x < x-1$,

故当
$$x \in (1,+\infty)$$
, $\ln x < x-1$, $\therefore 1 < \frac{x-1}{\ln x}$.

又
$$\ln \frac{1}{x} < \frac{1}{x} - 1$$
,即 $\frac{x-1}{\ln x} < x$,故 $1 < \frac{x-1}{\ln x} < x$.

(III) $\underline{\exists} m = 1 \exists f$, $f(x) = \ln x - x + 1 \le 0$, $\exists \ln x \le x - 1$,

则有 $\ln(x+1) \le x$, 当且仅当x=0时等号成立,

$$: \ln\left(1+\frac{1}{2^k}\right) < \frac{1}{2^k}, k \in \mathbf{N}^*.$$

一方面:
$$=\ln\left(1+\frac{1}{2}\right)+\ln\left(1+\frac{1}{2^2}\right)+\dots+\ln\left(1+\frac{1}{2^n}\right)<\frac{1}{2}+\frac{1}{2^2}+\dots+\frac{1}{2^n}=1-\frac{1}{2^n}<1$$
,

$$\mathbb{E}\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right)< e.$$

另一方面: 当
$$n \ge 3$$
时 $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\cdots\left(1 + \frac{1}{2^n}\right) > \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\left(1 + \frac{1}{2^3}\right) = \frac{135}{64} > 2$,

当
$$n \ge 3$$
 时, $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\cdots\left(1 + \frac{1}{2^n}\right) \in (2, e)$.

$$: t \in \mathbf{N}^*, \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) \cdots \left(1 + \frac{1}{2^n}\right) < t$$

:. t 的最小正整数值为 3.

四、证明不等式 4: 指数 ¥ 对数

对于形如: $f(x) = ax^{\alpha} \ln x - \frac{b}{e^{x}} - c$ ($a,b,c \in R_{+}$) 的函数,证明 f(x) > 0 在默认定义域上成立的解题策略:

【解法一】: ①分离为两个函数: 对数型函数 $g(x) = ax^{\alpha} \ln x$ 与指数型函数 $h(x) = \frac{b}{e^{x}} + c$

②分别求出两个函数的最值: $g(x)_{\min} = h(x)_{\max}$, 并比较大小, 可得出结论.

【解法二】: 去对数系数,再作差构造新函数证明.

16. 设函数
$$f(x) = ae^x \ln x + \frac{be^{x-1}}{x}$$
, 曲线 $y = f(x)$ 在点 $(1, f(1))$ 处的切线方程为 $y = e(x-1) + 2$.

- (1) 求a,b;
- (2) 证明: f(x) > 1.

【答案】: (1) a=1, b=2; (2) 见解析.

【解析】: (1) 函数
$$f(x)$$
 的定义域为 $(0,+\infty)$, $f'(x) = ae^x \ln x + \frac{a}{x}e^x - \frac{b}{x^2}e^{x-1} + \frac{b}{x}e^{x-1}$.

由题意可得f(1)=2, f'(1)=e.故a=1, b=2.

(2) 证明:由(1)知,
$$f(x) = e^x \ln x + \frac{2}{x} e^{x-1}$$
,从而 $f(x) > 1$ 等价于 $x \ln x > x e^{-x} - \frac{2}{e}$.

设函数 $g(x) = x \ln x$, 则 $g'(x) = 1 + \ln x$.

所以当
$$x \in \left(0, \frac{1}{e}\right)$$
, $g'(x) < 0$; 当 $x \in \left(\frac{1}{e}, +\infty\right)$ 时, $g'(x) > 0$.

故 g(x) 在 $\left(0,\frac{1}{e}\right)$ 上单调递减, $\left(\frac{1}{e},+\infty\right)$ 上单调递增,从而 g(x) 在 $\left(0,+\infty\right)$ 上的最小值为 $g(\frac{1}{e})=-\frac{1}{e}$.

设函数 $h(x) = xe^{-x} - \frac{2}{e}$, 则 $h'(x) = e^{-x}(1-x)$.

所以当 $x \in (0,1)$ 时,h'(x) > 0;当 $x \in (1,+\infty)$ 时,h'(x) < 0. 故h(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减,

从而 h(x) 在 $(0,+\infty)$ 上的最大值为 $h(1) = -\frac{1}{e}$.

综上, 当x > 0时, g(x) > h(x), 即f(x) > 1.

17. 已知函数
$$f(x) = \ln x + \frac{2a}{x}$$
.

(1) 讨论函数 f(x) 的单调性;

(2) 证明:
$$\exists a \ge \frac{1}{2}$$
 时, $f(x) > e^{-x} + \frac{1}{2}$.

参考数据: *e* ≈ 2.7183.

【答案】:

【解析】: (1) 依题意,f(x) 的定义域为 $(0,+\infty)$, 1分

①若
$$a \le 0$$
,则 $f'(x) > 0$, $f(x)$ 在 $(0,+\infty)$ 上为增函数; ……3 分

(2) 要证
$$f(x) > e^{-x} + \frac{1}{2}$$
, 只要证 $\ln x + \frac{2a}{x} > e^{-x} + \frac{1}{2}$, 即证 $x \ln x - \frac{x}{2} + 2a > x e^{-x}$,

------7 分

 $\text{Fiff } x \ln x - \frac{x}{2} + 2a > x e^{-x},$

$$\therefore$$
 当 $x \in \left(0, \frac{1}{\sqrt{e}}\right)$ 时, $g'(x) < 0$, $g(x)$ 为减函数; 当 $x \in \left(\frac{1}{\sqrt{e}}, +\infty\right)$ 时, $g'(x) > 0$, $g(x)$ 为增函数, 8 分

$$\Rightarrow h(x) = xe^{-x}$$
, $\text{III} h'(x) = e^{-x} - xe^{-x} = (1-x)e^{-x}$,

所以当 $x \in (0,1)$ 时,h'(x) > 0,h(x)为增函数;当 $x \in (1,+\infty)$ 时,h'(x) < 0,h(x)为减函数,

由参考数据可知 $\left(-\frac{1}{\sqrt{e}}+1\right)$ $-\frac{1}{e} = \frac{e-\sqrt{e}-1}{e} > 0$,即 $-\frac{1}{\sqrt{e}}+1 > \frac{1}{e}$,

所以 g(x) > h(x), 即 $x \ln x - \frac{x}{2} + 2a > x e^{-x}$,

18. 已知函数 $f(x) = e^x \left(x \ln x + \frac{2}{e} \right)$.

- (1) 求函数 $h(x) = f(x) e^x \left(1 + \frac{2}{e}\right)$ 的单调区间;
- (2) 证明: f(x)-x>0.

【答案】: $(1) h(x) \pm (0,1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增; (2) 证明见解析.

【解析】: (1) 由题意, 函数 $h(x) = f(x) - e^x \left(1 + \frac{2}{e}\right) = e^x \left(x \ln x - 1\right)$, 其定义域为 $\left(0, +\infty\right)$,

可得 $h'(x) = e^x(x+1)\ln x$,

所以h(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增.

(2) 要证
$$f(x)-x>0$$
, 即要证 $e^{x}\left(x\ln x+\frac{2}{e}\right)>x$, 即证明 $x\ln x+\frac{2}{e}>\frac{x}{e^{x}}$.

$$\diamondsuit F(x) = x \ln x + \frac{2}{e}(x > 0), \quad \emptyset F'(x) = \ln x + 1.$$

由 F'(x) < 0, 解得 $0 < x < \frac{1}{e}$; 由 F'(x) > 0, 解得 $x > \frac{1}{e}$.

所以 F(x) 在 $\left(0,\frac{1}{e}\right)$ 上单调递减,在 $\left(\frac{1}{e},+\infty\right)$ 上单调递增, $F(x)_{\min}=F\left(\frac{1}{e}\right)=-\frac{1}{e}+\frac{2}{e}=\frac{1}{e}$.

$$\diamondsuit G(x) = \frac{x}{e^x}(x > 0), \quad \emptyset G'(x) = \frac{1-x}{e^x},$$

由G'(x) < 0,解得x > 1;由G'(x) > 0,解得0 < x < 1.

所以G(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减, $G(x)_{\max} = G(1) = \frac{1}{e}$,

所以 $F(x) \ge \frac{1}{e} \ge G(x)$, 且等号不同时取得, 即 $x \ln x + \frac{2}{e} > \frac{x}{e^x}$ 成立,

所以f(x)-x>0.

19. 已知函数 $f(x) = \frac{x+a}{e^x}$ 的图象在点(0, f(0)) 处的切线方程为 y = x.

(1) 求实数a的值并判断f(x)的单调性;

(2) 证明:
$$x \ln x > \frac{\ln(x+1)}{e^x} - \frac{2}{e}$$
.

20. (1) 解: 由题意可知 $f'(x) = \frac{1-x-a}{e^x}$,

因为函数f(x)的图像在点(0, f(0))处的切线方程为y=x,

所以
$$f'(0)=1-a=1$$
,即 $a=0$, (2分)

所以
$$f(x) = \frac{x}{e^x}$$
, $f'(x) = \frac{1-x}{e^x}$,

当x∈(-∞,1)时, f'(x)>0, 函数f(x)单调递增;

当
$$x \in (1,+∞)$$
时, $f'(x) < 0$,函数 $f(x)$ 单调递减. (4分)

$$\Rightarrow g'(x) = 1 + \ln x = 0$$
, $\bigcup x = \frac{1}{e}$.

当
$$x \in \left(0, \frac{1}{e}\right)$$
时, $g'(x) < 0$,函数 $g(x)$ 单调递减;

当
$$x \in \left(\frac{1}{e}, +\infty\right)$$
时, $g'(x) > 0$,函数 $g(x)$ 单调递增.

所以
$$g(x) \ge g\left(\frac{1}{e}\right) = -\frac{1}{e}$$
.

由 (1) 可得在区间 $(0,+\infty)$ 内, $f(x)_{max} = f(1) = \frac{1}{e}$,

$$||||\frac{x}{e^x} - \frac{2}{e} \le \frac{1}{e} - \frac{2}{e} = -\frac{1}{e},$$

所以
$$x \ln x > \frac{x}{e^x} - \frac{2}{e}$$
.① (8分)

$$i \exists h(x) = x - \ln(x+1)(x>0),$$

则
$$h'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1}$$
,

当x∈(0,+∞)时, h'(x)>0, h(x)单调递增,

所以当 $x \in (0,+\infty)$ 时,h(x) > h(0) = 0,

即 $x > \ln(x+1)$,

所以
$$\frac{x}{e^x} - \frac{2}{e} > \frac{\ln(x+1)}{e^x} - \frac{2}{e}$$
.②

由①②得
$$x \ln x > \frac{\ln(x+1)}{e^x} - \frac{2}{e}$$
.

20. 设函数 $f(x) = \ln x - e^{1-x}$, $g(x) = a(x^2 - 1) - \frac{1}{x}$.

(1) 判断函数 y = f(x) 零点的个数,并说明理由;

(2) 记
$$h(x) = g(x) - f(x) + \frac{e^x - ex}{xe^x}$$
, 讨论 $h(x)$ 的单调性;

(3) 若f(x) < g(x)在 $(1,+\infty)$ 恒成立,求实数a的取值范围.

【答案】: (1) y = f(x)的零点的个数为1. 理由见解析.

(2)
$$a \le 0$$
时, $h(x)$ 在 $(0,+\infty)$ 单调递减; $a > 0$ 时, $h(x)$ 在 $\left(0,\frac{1}{\sqrt{2a}}\right)$ 单调递减,在 $\left(\frac{1}{\sqrt{2a}},+\infty\right)$ 单调递增.

(12分)

(3)
$$a \in \left[\frac{1}{2}, +\infty\right]$$
, $f(x) < g(x)$ 在 $(1, +\infty)$ 恒成立.

【解析】: (1)
$$f(x) = \ln x - e^{1-x}(x > 0)$$
, $f'(x) = \frac{1}{x} + \frac{e}{x^x} > 0$,

故f(x)在(0,+∞)单调递减,

$$\mathbb{X} f(1) = -1 < 0$$
, $f(e) = 1 - e^{1-e} = 1 - \frac{e}{e^e} > 0$,

∴函数 y = f(x) 在(1,e) 内存在零点,所以 y = f(x) 的零点的个数为1.

(2) 由题意得
$$h(x) = a(x^2 - 1) - \frac{1}{x} - \ln x + e^{1-x} + \frac{1}{x} - \frac{e}{e^x} = ax^2 - a - \ln x(x > 0)$$
,

$$\therefore h'(x) = 2ax - \frac{1}{x} = \frac{2ax^2 - 1}{x}.$$

当 $a \le 0$ 时,h'(x) < 0,h(x)在 $(0,+\infty)$ 上单调递减;

当
$$a > 0$$
时,由 $h'(x) = 0$,解得 $x = \pm \frac{1}{\sqrt{2a}}$ (舍去负值),

所以
$$x \in \left(0, \frac{1}{\sqrt{2a}}\right)$$
时, $h'(x) < 0$, $h(x)$ 单调递减;当 $x \in \left(\frac{1}{\sqrt{2a}}, +\infty\right)$ 时, $h'(x) > 0$, $h(x)$ 单调递增.

综上: 当 $a \le 0$ 时, h(x)在 $(0,+\infty)$ 单调递减;

当
$$a > 0$$
时, $h(x)$ 在 $\left(0, \frac{1}{\sqrt{2a}}\right)$ 单调递减,在 $\left(\frac{1}{\sqrt{2a}}, +\infty\right)$ 单调递增.

(3) 由题意得
$$\ln x - \frac{e}{e^x} < a(x^2 - 1) - \frac{1}{x}$$
 在 $(1, +\infty)$ 恒成立, $\therefore a(x^2 - 1) - \ln x > \frac{1}{x} - \frac{e}{e^x}$ 在 $(1, +\infty)$ 恒成立,

设
$$k(x) = \frac{1}{x} - \frac{e}{e^x} = \frac{e^x - ex}{xe^x}$$
, $\Leftrightarrow k_1(x) = e^x - ex$, 则 $k_1'(x) = e^x - e$,

当x>1时, $k_1'(x)>0$, $k_1(x)$ 在 $(1,+\infty)$ 单调递增,

$$k_1(x) > k_1(1) = 0$$
, $\mathbb{R}^{n} k(x) > 0$,

若 $a \le 0$,由于x > 1,故 $a(x^2 - 1) - \ln x < 0$,所以f(x) < g(x)不成立,

故当f(x) < g(x)在 $(1,+\infty)$ 恒成立时,必有a > 0.

当
$$a > 0$$
时,设 $h(x) = a(x^2 - 1) - \ln x$,

①
$$\stackrel{\square}{=} \frac{1}{\sqrt{2a}} > 1$$
, 即 $0 < a < \frac{1}{2}$ 时,

由 (2) 知
$$x \in \left(1, \frac{1}{\sqrt{2a}}\right)$$
, $h(x)$ 单调递减, $x \in \left(\frac{1}{\sqrt{2a}}, +\infty\right)$, $h(x)$ 单调递增,

因此
$$h\left(\frac{1}{\sqrt{2a}}\right) < h(1) = 0$$
,而 $k\left(\frac{1}{\sqrt{2a}}\right) > 0$,即存在 $x = \frac{1}{\sqrt{2a}} > 1$,使 $f(x) < g(x)$,

故当 $0 < a < \frac{1}{2}$ 时,f(x) < g(x)不恒成立.

②当
$$\frac{1}{\sqrt{2a}} \le 1$$
, 即 $a \ge \frac{1}{2}$ 时,

设
$$s(x) = a(x^2 - 1) - \ln x - \frac{1}{x} + \frac{e}{e^x}$$
,则 $s'(x) = 2ax - \frac{1}{x} + \frac{1}{x^2} - \frac{e}{e^x}$,

由于
$$2ax \ge x$$
 且 $k_1(x) = e^x - ex > 0$,即 $\frac{e}{e^x} < \frac{1}{x}$,故 $-\frac{e}{e^x} > -\frac{1}{x}$,

因此
$$s'(x) > x - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x} = \frac{x^2 - 2x + 1}{x^2} > \frac{x^2 - 2x + 1}{x^2} = \frac{(x - 1)^2}{x^2} > 0$$
,故 $s(x)$ 在 $(1, +\infty)$ 单调递增.

所以
$$s(x) > s(1) = 0$$
时,即 $a \ge \frac{1}{2}$ 时, $f(x) < g(x)$ 在 $(1, +\infty)$ 恒成立.

综上: 当
$$a \in \left[\frac{1}{2}, +\infty\right)$$
, $f(x) < g(x)$ 在 $(1, +\infty)$ 恒成立.

21. 设函数 $f(x) = \ln x + \frac{a}{x} - x$

(1) 当a = -2时,求f(x)的极值;

(2) 当a=1时,证明: $f(x)-\frac{1}{e^x}+x>0$ 恒成立.

【答案】: (1) f(x)在x=2处取得极大值 $f(2)=\ln 2-3, f(x)$ 无极小值; (2) 详见解析.

【解析】: (1) $\stackrel{\text{def}}{=} a = -2$ 时, $f(x) = \ln x - \frac{2}{x} - x$, $f'(x) = \frac{1}{x} + \frac{2}{x^2} - 1 = -\frac{(x-2)(x+1)}{x^2}$,

∴ 当 $x \in (0,2)$ 时, f'(x) > 0; 当 $x \in (2,+\infty)$ 时, f'(x) < 0.

 $\therefore f(x)$ 在(0,2)上单调递增,在 $(2,+\infty)$ 上单调递减.

 $\therefore f(x)$ 在x=2处取得极大值 $f(2)=\ln 2-3, f(x)$ 无极小值

(2)
$$\triangleq a = 1$$
 \forall , $f(x) - \frac{1}{e^x} + x = \ln x + \frac{1}{x} - \frac{1}{e^x}$,

下面证 $\ln x + \frac{1}{x} > \frac{1}{e^x}$,即证 $x \ln x + 1 > \frac{x}{e^x}$.

设 $g(x) = x \ln x + 1$, 则 $g'(x) = 1 + \ln x$,

在 $\left(0,\frac{1}{e}\right)$ 上,g'(x) < 0, g(x)是减函数;在 $\left(\frac{1}{e}, +\infty\right)$ 上,g'(x) > 0, g(x)是增函数.

所以 $g(x) \ge g\left(\frac{1}{e}\right) = 1 - \frac{1}{e}$.

设 $h(x) = \frac{x}{e^x}$, 则 $h'(x) = \frac{1-x}{e^x}$,

在(0,1)上,h'(x) > 0, h(x)是增函数;在 $(1,+\infty)$ 上,h'(x) < 0, h(x)是减函数,

所以 $h(x) \le h(1) = \frac{1}{e} < 1 - \frac{1}{e}$.

所以h(x) < g(x), 即 $\frac{x}{e^x} < x \ln x + 1$, 所以 $x \ln x + 1 - \frac{x}{e^x} > 0$, 即 $\ln x + \frac{1}{x} - \frac{1}{e^x} > 0$,

即 $f(x) - \frac{1}{e^x} + x > 0$ 在 $(0, +\infty)$ 上恒成立.