Processador Calculadora

Design de Computadores

João V. Rodrigues, Jose F. Cruz

Arquitetura

A arquitetura escolhida para esse projeto foi a arquitetura Registrador-Memória, onde as operações acontecem entre registradores e valores salvos na memória. É uma arquitetura intermediária, que não apresenta alta complexidade de código VHDL, assim como uma arquitetura que é suficiente para o projeto da calculadora

Imagem 1: Esquema simplificado da arquitetura Registrador-Memória

Instruções

Nesse projeto o endereçamento é feito de forma direta, ou seja, o endereço é passado diretamente na instrução, uma das formas mais simples de endereçamento.

Instrução	OpCode	Descrição
LOAD	00000	Carrega a posição da memória no registrador
STORE	00001	Salva o conteúdo do registrador na memória
JMP	00010	Jump incondicional
JE	00011	Jump se igual
JLT	00100	Jump se menor que
JSR	00101	Jump para um endereço
RET	00110	Jump devolta
Soma	00111	Soma simples reg/mem
Sub	01000	Subtração simples reg/mem
Soma im	01001	Soma com imediato
Sub im	01010	Subtração com imediato
Soma car	01011	Soma com carry
Sub bor	01100	Subtração com borrow
Mul	01101	Multiplicação
Div	01110	Divisão
AND	01111	AND lógico
OR	10000	OR lógico
NOT	10001	NOT lógico
XOR	10110	XOR lógico
MOV	10011	Move valor imediato para <u>registrador</u> .

Nesse projeto o endereçamento é feito de forma direta, ou seja, o endereço é passado diretamente na instrução, uma das formas mais simples de endereçamento.

A palavra de instrução para esse projeto contém 16 bits, descrito na tabela 2:

OpCode	Registrador	Endereço
5 bits	3 bits	8 bits
[23 – 19]	[18 – 16]	[8-0]
MSB(b23)		LSB(b0)

Tabela 2: Formato da instrução

Onde:

- 5 bits são referentes ao OpCode, possibilitando até 32 instruções;
- 3 bits para os descrever 8 registradores;
- 8 bits que descrevem 265 posições na memória

Ponto de Controle Descrição		
JumpMux	1 bit	Ativado quando uma instrução vinda da ROM chega solicitando um salto na memória.
Mux	1 bit	Controla o MUX que recebe os dados da memória de instrução;
Hab. Escrita Reg	1 bit	Ativa a escrita nos registradores no banco de registradores;
Write	1 bit	Ativa a leitura na memória RAM;
Read	1 bit	Ativa a escrita na memória RAM;
Operação ULA↓	3 bits	
Soma	000	Soma os dados da entrada A com a entrada B
Subtração	001	Subtrai os dados da entrada A com a entrada B
AND	010	
OR	011	
XOR	100	
NOT	101	

Tabela 3: Formato dos pontos de controle

Imagem 2: Esquema da arquitetura Registrador-Memória

A memória do projeto está distribuída da seguinte forma:

- Com a arquitetura Harvard, não precisaremos alocar nada para a memória ROM
- A RAM ficará entre os endereços 0 a 63;
- As chaves de 0 a 7 estão na posição 64;
- As chaves 8 e 9 estão na posição 65;
- O botão O ocupa a posição 66;
- O botão 1 ocupa a posição 67;
- Os displays ocupam posições agrupadas, onde:
 - Os displays 0 e 1 estão na posição 128;
 - Os displays 2 e 3 estão na posição 129;
 - O display 4 está na posição 130;
 - O display 5 está na posição 131;

Imagem 3: Diagrama de blocos da calculadora desenvolvida.

Manual

A calculadora funciona para números de até 16 bits, da seguinte forma:

Entrada de valores:

A chave 9 indica se a variável de entrada é A ou a B, sendo A e B as variáveis a serem calculadas. Chave 9 igual a zero indica variável A, e chave 9 igual a um indica variável B;

A chave 8 indica se os números de entrada são referentes a parte mais significativa ou menos significativa do número de entrada. Chave 8 igual a zero indica a parte menos significativa e chave 8 igual a um indica a parte mais significativa o número.

As chaves de 7 a 0 são a entrada de número de 8 bits, podendo ser de até 16, baseada na instrução da chave 8.

Operações

As operações ocorrem através dos botões:

O botão O armazena os números de entrada;

O botão 1 realiza a operação com os números inseridos;

Modo de usar

Insira os 8 bits menos significativos da variável A e aperte o botão 0 para armazená-los;

Insira os 8 bits mais significativos da variável A e aperte o botão 0 para armazená-los;

Repita o processo para a variável B, mudando a chave 9 de zero para 1;

Ao fim do armazenamento das duas variáveis, insira o opCode da operação de deseja realizar. Os opCodes de operação podem ser encontrados na *tabela 4*.

Após inserir o opCode da operação, aprete o botão 1 para executar a operação;

O resultado será exibido nos displays de sete segmentos.

Operação	OpCode	Descrição
Soma	00111	Soma simples reg/mem
Subtração	01000	Subtração simples reg/mem
Multiplicação	01101	Multiplicação
Divisão	01110	Divisão
AND	01111	AND lógico
OR	10000	OR lógico
NOT	10001	NOT lógico
XOR	10110	XOR lógico
MOV	10011	Move valor imediato para registrador.

Tabela 4: OpCode das operações.