Relatório Técnico de Análise de Rede - Lab Segmentação de Rede

Autor: Luccas Correa da Silva

Data: 28 de julho de 2025

Versão: 1.0

1. Sumário Executivo

Foi realizada uma análise de segurança na rede simulada, resultando na

identificação de uma falha crítica na segmentação da rede. A rede designada para

visitantes (guest_net, 10.10.30.0/24) contém, na verdade, toda a infraestrutura de

servidores críticos da empresa, incluindo um servidor LDAP (10.10.30.17) que permite

conexões anónimas, representando um risco Crítico de fuga de informação. Em

contrapartida, a rede que deveria ser a mais segura (infra net, 10.10.50.0/24) aloja apenas

dispositivos de utilizadores finais. Esta inversão anula o propósito da segmentação e expõe

os ativos mais valiosos da organização a ameaças diretas. Recomenda-se uma revisão e

reestruturação imediata da arquitetura da rede.

2. Objetivo

Analisar a topologia da rede corporativa simulada para identificar a exposição de

serviços, avaliar a eficácia da segmentação de rede existente e mapear os riscos

operacionais associados às configurações atuais dos ativos.

3. Escopo

O escopo desta análise está restrito ao ambiente de laboratório Docker fornecido,

composto por três sub-redes:

• corp net (10.10.10.0/24): Rede corporativa principal.

• **guest_net** (10.10.30.0/24): Rede para visitantes e dispositivos pessoais.

• infra net (10.10.50.0/24): Rede de infraestrutura com servidores críticos.

A análise foi conduzida a partir do host analyst.

4. Metodologia

Ferramentas Utilizadas:

Net-Tools (ip, ping, curl)

- Nmap (Network Mapper)
- Rustscan
- Utilitários de linha de comando (grep, tee, awk)

Fases da Análise:

- Fase 1 Reconhecimento Inicial: Identificação das interfaces de rede do host de análise e validação da conectividade.
- Fase 2 Descoberta de Ativos: Utilização do Nmap para criar um inventário de todos os hosts ativos em cada sub-rede.
- Fase 3 Escaneamento de Portas e Serviços: Utilização do Rustscan e
 Nmap (-sV, -sC) para identificar serviços e versões.
- Fase 4 Análise Aprofundada e Documentação: Análise detalhada dos resultados, documentação de cada achado e compilação do inventário de ativos.

5. Diagrama de Rede

6. Inventário de Ativos

A tabela abaixo resume todos os ativos descobertos em cada segmento de rede, com os seus respetivos serviços expostos.

Rede Corporativa (corp_net - 10.10.10.0/24)

IP	Hostname	Portas Abertas	Serviços Identificado	Notas
			s	

10.10.10.1	(gateway)	111/tcp, 39881/tcp	rpcbind, status (RPC)	Gateway da rede, expõe serviços RPC.
10.10.10.2	analyst	N/A	(Máquina de análise)	Ponto de partida da análise.
10.10.10.10	WS_001	N/A	(Workstation)	Sem portas abertas detetadas.
10.10.10.101	WS_002	N/A	(Workstation)	Sem portas abertas detetadas.
10.10.10.127	WS_003	N/A	(Workstation)	Sem portas abertas detetadas.
10.10.10.222	WS_004	N/A	(Workstation)	Sem portas abertas detetadas.

Rede de Servidores (guest_net - 10.10.30.0/24) - Configuração Incorreta

IP	Hostname	Portas Abertas	Serviços Identificado s	Notas
10.10.30.1	(gateway)	111/tcp, 39881/tcp	rpcbind, status (RPC)	Gateway da rede, expõe

				serviços RPC.
10.10.30.10	ftp-server	21/tcp	FTP (Pure- FTPd)	Servidor de ficheiros. Login anónimo desativado.
10.10.30.11	mysql-server	3306/tcp, 33060/tcp	MySQL 8.0.42	Servidor de base de dados. Vaza versão.
10.10.30.15	samba- server	139/tcp, 445/tcp	Samba smbd 4	Servidor de ficheiros. Enumeração anónima desativada.
10.10.30.17	openIdap	389/tcp, 636/tcp	OpenLDAP	Servid or de autenticação. Permite conexão anónima.
10.10.30.117	Zabbix server	80/tcp, 10051/tcp	HTTP (nginx), Zabbix	Servidor de monitorizaçã o. Vaza versão do PHP.

Rede de Utilizadores (infra_net - 10.10.50.0/24) - Configuração Incorreta

IP	Hostname	Portas Abertas	Serviços Identificado s	Notas
10.10.50.1	(gateway)	111/tcp, 39881/tcp	rpcbind, status (RPC)	Gateway da rede, expõe serviços RPC.
10.10.50.2	laptop-luiz	N/A	Dispositivo de utilizador	Sem portas abertas detetadas.
10.10.50.3	laptop-vastro	N/A	Dispositivo de utilizador	Sem portas abertas detetadas.
10.10.50.4	macbook- aline	N/A	Dispositivo de utilizador	Sem portas abertas detetadas.
10.10.50.5	notebook- carlos	N/A	Dispositivo de utilizador	Sem portas abertas detetadas.

7. Diagnóstico (Achados)

Nesta secção são detalhadas as vulnerabilidades e falhas de configuração identificadas durante a análise, por ordem de criticidade.

Achado 01: Falha Crítica de Segmentação de Rede

• Risco: Crítico

• **Descrição:** A análise revelou uma falha grave na arquitetura da rede. A rede que deveria ser a de visitantes (guest_net, 10.10.30.0/24) contém toda a infraestrutura de servidores críticos. Em contrapartida, a rede que deveria ser a de infraestrutura (infra net, 10.10.50.0/24) contém apenas dispositivos de utilizadores finais.

Achado 02: Fuga de Informação via Conexão Anónima ao Servidor LDAP

• **Host/IP:** 10.10.30.17

• Risco: Crítico

• **Descrição:** O servidor LDAP, localizado incorretamente na rede de visitantes, permite conexões anónimas ("anonymous bind").

Achado 03: Servidor de Base de Dados MySQL Exposto com Fuga de Informação

• Host/IP: 10.10.30.11

Risco: Alto

• **Descrição:** Um servidor de base de dados MySQL vaza informações detalhadas da versão.

Achado 04: Servidor de Ficheiros Samba/SMB Exposto

• Host/IP: 10.10.30.15

Risco: Médio

• **Descrição:** Um servidor Samba está exposto. Testes confirmaram que a enumeração anónima de partilhas está desativada.

Achado 05: Painel de Monitorização Zabbix Exposto com Fuga de Versão de Software

• Host/IP: 10.10.30.117

Risco: Médio

• **Descrição:** A interface web de um servidor Zabbix está exposta e divulga a versão exata do PHP.

Achado 06: Divulgação de Serviços RPC através do rpcbind

• Host/IP: 10.10.10.1, 10.10.30.1 e 10.10.50.1

Risco: Médio

• **Descrição:** O serviço rpcbind está exposto nos gateways de todas as redes.

8. Recomendações

- Para o Achado 01 (Segmentação): Realizar uma reestruturação imediata da arquitetura da rede. Migrar todos os servidores críticos da rede 10.10.30.0/24 para a rede 10.10.50.0/24.
- Para o Achado 02 (LDAP): Desativar o "anonymous bind" no servidor OpenLDAP imediatamente.
- **Recomendação Geral:** Após a reestruturação da rede, aplicar regras de firewall rigorosas na rede de infraestrutura (10.10.50.0/24).

9. Plano de Ação (80/20)

Ação	Impacto	Facilidade	Prioridade
Reestruturar a segmentação da rede (migrar servidores)	Crítico	Baixa	Urgente
Desativar conexão anónima	Crítico	Média	Crítica

No LDAP (10.10.30.17)			
Aplicar firewall no MySQL (10.10.30.11)	Alto	Alta	Alta
Testar credenciais padrãono Zabbix (10.10.30.117)	Médio	Alta	Alta
Aplicar firewall no Samba (10.10.30.15)	Médio	Alta	Média

10. Conclusão

A análise de segurança da rede simulada identificou com sucesso uma **falha arquitetural crítica na sua segmentação**, que é a causa raiz da maioria dos outros riscos encontrados. A colocação de ativos de infraestrutura vitais, como o servidor LDAP, na mesma rede designada para visitantes, anula as políticas de segurança e expõe a organização a um risco inaceitável. É imperativo que a organização priorize a reestruturação da sua topologia de rede, seguida pela correção das vulnerabilidades específicas identificadas.

11. Anexos: Guia Completo de Evidências e Análise de Comandos

Esta secção contém as evidências de todos os comandos executados durante a análise, com uma explicação detalhada de cada passo.

Fase 1: Reconhecimento Inicial

Anexo A: Configuração de Rede do Host de Análise

- Comando Executado: ip a
- Explicação do Comando: O comando ip a é usado para listar todas as interfaces de rede e os seus respetivos endereços IP. Este é o primeiro passo para entender o nosso ponto de partida.
 - Resultado:

```
(root® 8256e50f7fdb)-[/home/analyst]
# ip a | grep inet
   inet 127.0.0.1/8 scope host lo
   inet6 ::1/128 scope host proto kernel_lo
   inet 10.10.10.2/24 brd 10.10.10.255 scope global eth0
   inet 10.10.50.6/24 brd 10.10.50.255 scope global eth1
   inet 10.10.30.2/24 brd 10.10.30.255 scope global eth2
```

- Análise do Resultado: A saída confirma que o host analyst possui três interfaces de rede, cada uma com um IP numa das redes do escopo (10.10.10.x, 10.10.30.x, 10.10.50.x), validando a nossa capacidade de analisar todo o ambiente.
 - Comando Executado: ip a | grep inet
- **Explicação do Comando:** O grep inet é usado para filtrar a saída longa do ip a, mostrando apenas as linhas que contêm os endereços IP (IPv4 e IPv6), tornando a visualização mais limpa.
 - Resultado:

```
(root € 8256e50f7fdb)-[/home/analyst]
# ip a | grep inet
   inet 127.0.0.1/8 scope host lo
   inet6 ::1/128 scope host proto kernel_lo
   inet 10.10.10.2/24 brd 10.10.10.255 scope global eth0
   inet 10.10.50.6/24 brd 10.10.50.255 scope global eth1
   inet 10.10.30.2/24 brd 10.10.30.255 scope global eth2
```

- Análise do Resultado: Este resultado limpo serve como uma referência rápida dos nossos pontos de acesso em cada sub-rede.
 - Comando Executado: ip a | grep inet > recon-redes.txt

- **Explicação do Comando:** O > redireciona a saída do comando anterior para um ficheiro de texto, guardando a nossa primeira evidência de forma permanente.
 - Resultado:

```
(root⊕ a17624069370)-[/home/analyst]
# cat recon-redes.txt
  inet 127.0.0.1/8 scope host lo
  inet6 ::1/128 scope host proto kernel_lo
  inet 10.10.50.5/24 brd 10.10.50.255 scope global eth0
  inet 10.10.30.2/24 brd 10.10.30.255 scope global eth1
  inet 10.10.10.2/24 brd 10.10.10.255 scope global eth2
```

• Análise do Resultado: Este passo documenta a prática de guardar os resultados, garantindo que as evidências não se perdem.

Anexo B: Teste de Conectividade com as Redes

- Comando Executado: ping -c 3 10.10.10.1
- Explicação do Comando: O ping -c 3 envia três pacotes ICMP para um alvo para verificar se há comunicação. É o teste mais básico para confirmar que conseguimos "alcançar" as outras redes.
 - Resultado:

```
[root® a17624069370)-[/home/analyst]

# ping -c 3 10.10.10.1

PING 10.10.10.1 (10.10.10.1) 56(84) bytes of data.
64 bytes from 10.10.10.1: icmp_seq=1 ttl=64 time=1.91 ms
64 bytes from 10.10.10.1: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 10.10.10.1: icmp_seq=3 ttl=64 time=0.057 ms

— 10.10.10.1 ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2235ms
rtt min/avg/max/mdev = 0.055/0.674/1.912/0.874 ms
```

- Análise do Resultado: A resposta com 0% packet loss confirma que a comunicação com a rede corp net está a funcionar.
 - Comando Executado: ping -c 3 10.10.30.1
- Explicação do Comando: O mesmo teste de ping é realizado para a rede guest_net.

```
(root® a17624069370)-[/home/analyst]
# ping -c 3 10.10.30.1
PING 10.10.30.1 (10.10.30.1) 56(84) bytes of data.
64 bytes from 10.10.30.1: icmp_seq=1 ttl=64 time=1.19 ms
64 bytes from 10.10.30.1: icmp_seq=2 ttl=64 time=0.038 ms
64 bytes from 10.10.30.1: icmp_seq=3 ttl=64 time=0.061 ms

— 10.10.30.1 ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2244ms
rtt min/avg/max/mdev = 0.038/0.430/1.193/0.539 ms
```

- Análise do Resultado: A resposta positiva confirma a comunicação com a rede guest net.
 - Comando Executado: ping -c 3 10.10.50.1
- Explicação do Comando: O mesmo teste de ping é realizado para a rede infra net.
 - Resultado:

```
(root® a17624069370)-[/home/analyst]
# ping -c 3 10.10.50.1
PING 10.10.50.1 (10.10.50.1) 56(84) bytes of data.
64 bytes from 10.10.50.1: icmp_seq=1 ttl=64 time=1.92 ms
64 bytes from 10.10.50.1: icmp_seq=2 ttl=64 time=0.049 ms
64 bytes from 10.10.50.1: icmp_seq=3 ttl=64 time=0.056 ms

--- 10.10.50.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2258ms
rtt min/avg/max/mdev = 0.049/0.676/1.923/0.881 ms
```

 Análise do Resultado: A resposta positiva confirma a comunicação com a rede infra_net.

Fase 2: Descoberta de Ativos

Anexo C: Descoberta de Hosts na corp_net (10.10.10.0/24)

- Comando Executado: nmap -sn -T4 10.10.10.0/24 -oG | grep "Up"
- Explicação do Comando: O nmap -sn (Ping Scan) varre uma gama de IPs para ver quem responde, descobrindo hosts ativos. O -oG | grep "Up" formata a saída para ser fácil de ler, mostrando apenas os hosts que estão "Up" (ligados).

- Análise do Resultado: A saída lista todos os IPs e hostnames dos computadores que estão ligados na rede corp_net, formando a base do nosso inventário.
- Comando Executado: nmap -sn -T4 10.10.10.0/24 -oG | awk '/Up\$/{print \$2}' | tee corp net ips.txt
- Explicação do Comando: O awk '/Up\$/{print \$2}' processa a saída do Nmap para extrair apenas a segunda coluna (o endereço IP) de cada host ativo. O tee mostra o resultado no ecrã e guarda-o no ficheiro corp net ips.txt.
 - Resultado:

- Análise do Resultado: Este comando cria uma lista de alvos limpa, contendo apenas os IPs dos hosts ativos, que será usada nos próximos scans.
- Comando Executado: nmap -sn -T4 10.10.10.0/24 -oG | awk '/Up\$/{print \$2, \$3}' | tee corp_net_ips_hosts.txt
- **Explicação do Comando:** Semelhante ao anterior, mas o print \$2, \$3 extrai tanto o IP como o hostname, criando um ficheiro de inventário rápido.

```
(root € a17624069370)-[/home/analyst]
# nmap -sn -T4 10.10.10.0/24 -oG - | awk '/Up$/{print $2, $3}' | tee corp_net_ips_hosts.txt
10.10.10.1 ()
10.10.10.10 (WS_001.projeto_final_opcao_1_corp_net)
10.10.10.101 (WS_002.projeto_final_opcao_1_corp_net)
10.10.10.127 (WS_003.projeto_final_opcao_1_corp_net)
10.10.10.222 (WS_004.projeto_final_opcao_1_corp_net)
10.10.10.222 (a17624069370)
```

 Análise do Resultado: Este ficheiro serve como uma referência rápida para associar IPs a nomes de máquinas.

Anexo D: Descoberta de Hosts na guest_net (10.10.30.0/24)

- Comando Executado: nmap -sn -T4 10.10.30.0/24 -oG | grep "Up"
- **Explicação do Comando:** Repetição do processo de descoberta para a rede de visitantes/servidores.
 - Resultado:

- Análise do Resultado: A saída lista todos os servidores críticos que estão incorretamente localizados nesta rede.
- Comando Executado: nmap -sn -T4 10.10.30.0/24 -oG | awk '/Up\$/{print \$2}' | tee infra_net_ips.txt
 - Explicação do Comando: Extração da lista de IPs dos servidores.

```
_____(root € a17624069370)-[/home/analyst]
_# nmap -sn -T4 10.10.30.0/24 -oG - | awk '/Up$/{print $2}' | tee infra_net_ips.txt
10.10.30.1
10.10.30.10
10.10.30.11
10.10.30.15
10.10.30.17
10.10.30.17
10.10.30.227
10.10.30.227
```

- Análise do Resultado: Cria a lista de alvos para a análise aprofundada dos servidores.
- Comando Executado: nmap -sn -T4 10.10.30.0/24 -oG | awk '/Up\$/{print \$2, \$3}' | tee infra_net_ips_hosts.txt
 - Explicação do Comando: Extração dos IPs e hostnames dos servidores.
 - Resultado:

• Análise do Resultado: Cria o ficheiro de inventário para a rede de servidores.

Anexo E: Descoberta de Hosts na infra net (10.10.50.0/24)

- Comando Executado: nmap -sn -T4 10.10.50.0/24 -oG | grep "Up"
- **Explicação do Comando:** Repetição do processo de descoberta para a rede de infraestrutura/utilizadores.

- Análise do Resultado: A saída mostra que esta rede contém apenas dispositivos de utilizadores finais, confirmando a falha de segmentação.
- Comando Executado: nmap -sn -T4 10.10.50.0/24 -oG | awk '/Up\$/{print \$2}' | tee guest_net_ips.txt
- Explicação do Comando: Extração da lista de IPs dos dispositivos de utilizadores.
 - Resultado:

- Análise do Resultado: Cria a lista de alvos para a verificação de portas nos dispositivos dos utilizadores.
- Comando Executado: nmap -sn -T4 10.10.50.0/24 -oG | awk '/Up\$/{print \$2, \$3}' | tee guest_net_ips_hosts.txt
- Explicação do Comando: Extração dos IPs e hostnames dos dispositivos dos utilizadores.

```
(root@ a17624069370)-[/home/analyst]
# nmap -sn -T4 10.10.50.0/24 -oG - | awk '/Up$/{print $2, $3}' | tee guest_net_ips_hosts.txt
10.10.50.1 ()
10.10.50.2 (laptop-vastro.projeto_final_opcao_1_guest_net)
10.10.50.3 (macbook-aline.projeto_final_opcao_1_guest_net)
10.10.50.4 (laptop-luiz.projeto_final_opcao_1_guest_net)
10.10.50.6 (notebook-carlos.projeto_final_opcao_1_guest_net)
10.10.50.5 (a17624069370)
```

 Análise do Resultado: Cria o ficheiro de inventário para a rede de utilizadores.

Fase 3: Escaneamento de Portas

Anexo F: Lista Rápida de Portas Abertas

- Comando Executado: rustscan -a 'corp_net_ips.txt' | grep Open > corp net ips ports.txt
- Explicação do Comando: O rustscan é usado para uma varredura muito rápida de portas em todos os hosts da lista. O grep Open filtra apenas as portas abertas e o > guarda o resultado num ficheiro.
 - Resultado:

```
____(root@ a17624069370)-[/home/analyst]
_# cat corp_net_ips_ports.txt
Open 10.10.10.1:111
Open 10.10.10.1:39881
```

- Análise do Resultado: A saída fornece uma lista rápida de todos os IPs e as suas respetivas portas abertas na rede corp_net.
- Comando Executado: rustscan -a 'infra_net_ips.txt' | grep Open > infra net ips ports.txt
- **Explicação do Comando:** Repetição da varredura rápida de portas para a rede de servidores.

```
root⊕ a17624069370)-[/home/analyst]

# cat infra_net_ips_ports.txt

Open 10.10.30.10:21

Open 10.10.30.117:80

Open 10.10.30.15:139

Open 10.10.30.17:389

Open 10.10.30.17:636

Open 10.10.30.17:636

Open 10.10.30.11:3306

Open 10.10.30.117:10051

Open 10.10.30.11:33060

Open 10.10.30.11:33060

Open 10.10.30.1:39881

Open 10.10.30.2:50332
```

- Análise do Resultado: A saída mostra uma grande quantidade de portas abertas, correspondendo aos vários serviços de servidor.
- Comando Executado: rustscan -a 'guest_net_ips.txt' | grep Open > guest_net_ips_ports.txt
- **Explicação do Comando:** Repetição da varredura rápida de portas para a rede de utilizadores.
 - Resultado:

```
root⊛ a17624069370)-[/home/analyst]

# cat guest_net_ips_ports.txt

Open 10.10.50.1:111

Open 10.10.50.5:33858

Open 10.10.50.1:39881

Open 10.10.50.5:50884
```

 Análise do Resultado: A saída mostra muito poucas portas abertas, o que é esperado e positivo para dispositivos de utilizadores finais.

Fase 4: Análise Aprofundada de Serviços

Anexo G: Investigação do Serviço FTP (10.10.30.10)

- Comando Executado: nmap -p 21 --script ftp-anon 10.10.30.10
- **Explicação do Comando:** O script --script ftp-anon do Nmap tenta autenticarse no servidor FTP com o utilizador "anonymous". É um teste direto para uma das configurações erradas mais comuns e perigosas.
 - Resultado:

- Análise do Resultado: A ausência da mensagem "Anonymous FTP login allowed" na saída significa que o servidor está corretamente configurado para não permitir este tipo de acesso, o que é um ponto positivo de segurança.
- Comando Executado: nmap -p 21 --script ftp-anon 10.10.30.10 > infra_net_servico_ftp-anon.txt
- Explicação do Comando: Este comando executa o mesmo teste, mas guarda a saída diretamente num ficheiro para documentação.

```
root⊕ a17624069370)-[/home/analyst]

# cat infra_net_servico_ftp-anon.txt
Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-28 18:52 UTC
Nmap scan report for ftp-server.projeto_final_opcao_1_infra_net (10.10.30.10)
Host is up (0.000075s latency).

PORT STATE SERVICE
21/tcp open ftp
MAC Address: 76:BB:38:50:1E:87 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 0.20 seconds
```

• Análise do Resultado: Documenta a criação da evidência.

Anexo H: Investigação do Serviço MySQL (10.10.30.11)

- Comando Executado: nmap -p 3306 --script mysql-info 10.10.30.11
- **Explicação do Comando:** O script mysql-info tenta obter informações do serviço MySQL sem precisar de se autenticar.
 - Resultado:

```
rection of the state of the st
```

- Análise do Resultado: A saída mostra que o servidor vaza informações detalhadas da versão (8.0.42) e do método de autenticação, o que é uma fuga de informação valiosa para um atacante.
- Comando Executado: nmap -p 3306 --script mysql-info 10.10.30.11 > infra_net_servico_mysql-info.txt

- Explicação do Comando: Guarda o resultado da investigação do MySQL num ficheiro.
 - Resultado:

```
root@a17624069370)-[/home/analyst]
# cat infra_net_servico_mysql-info.txt
Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-28 18:54 UTC
Nmap scan report for mysql-server.projeto_final_opcao_1_infra_net (10.10.30.11)
Host is up (0.000079s latency).

PORT STATE SERVICE
3306/tcp open mysql
| mysql-info:
| Protocol: 10
| Version: 8.0.42
| Thread ID: 11
| Capabilities flags: 65535
| Some Capabilities: SupportsCompression, ConnectWithDatabase, SupportsLoadDataLocal, SupportsTransactions, LongPassword, FoundRows, IgnoreSignipes, SwitchToSSLAfterHandshake, ODBCClient, InteractiveClient, LongColum nFlag, DontAllowDatabaseTableColumn, Speaks41ProtocolNew, IgnoreSpaceBeforeParenthesis, Speaks41ProtocolOld, Support41Auth, SupportsAuthPlugins, SupportsMultipleResults, SupportsMultipleStatments
| Satus: Autocommit | Satus: Autocommit | Satus: Autocommit | Satus: {\particle (!"crt\timex12 UI\x08g | 71H\x100X | Auth Plugin Name: caching_sha2_password | Auth Plugin Name: caching_sha2_password | NAC Address: BA:93:A5:8B:7A:1E (Unknown)
Nmap done: 1 IP address (1 host up) scanned in 0.18 seconds
```

Análise do Resultado: Documenta a criação da evidência.

Anexo I: Investigação do Serviço LDAP (10.10.30.17)

- Comando Executado: nmap -p 389 --script Idap-rootdse 10.10.30.17
- **Explicação do Comando:** O script Idap-rootdse tenta obter a "base" de informações de um servidor LDAP sem autenticação.

```
-(root& a17624069370)-[/home/analyst]
Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-28 18:55 UTC
Nmap scan report for openIdap.projeto_final_opcao_1_infra_net (10.10.30.17)
Host is up (0.00012s latency).
PORT STATE SERVICE 389/tcp open ldap
  ldap-rootdse:
  LDAP Results
    <R00T>
        namingContexts: dc=example,dc=org
        supportedControl: 2.16.840.1.113730.3.4.18
        supportedControl: 2.16.840.1.113730.3.4.2
        supportedControl: 1.3.6.1.4.1.4203.1.10.1
        supportedControl: 1.3.6.1.1.22
supportedControl: 1.2.840.113556.1.4.319
supportedControl: 1.2.826.0.1.3344810.2.3
        supportedControl: 1.3.6.1.1.13.2
        supportedControl: 1.3.6.1.1.13.1
        supportedControl: 1.3.6.1.1.12
        supportedExtension: 1.3.6.1.4.1.1466.20037
        supportedExtension: 1.3.6.1.4.1.4203.1.11.1
        supportedExtension: 1.3.6.1.4.1.4203.1.11.3
        supportedExtension: 1.3.6.1.1.8
        supportedLDAPVersion: 3
        supportedSASLMechanisms: SCRAM-SHA-1
        supportedSASLMechanisms: SCRAM-SHA-256
        supportedSASLMechanisms: GS2-IAKERB
        supportedSASLMechanisms: GS2-KRB5
        supportedSASLMechanisms: GSSAPI
        supportedSASLMechanisms: GSS-SPNEGO
        supportedSASLMechanisms: DIGEST-MD5
        supportedSASLMechanisms: OTP
        supportedSASLMechanisms: CRAM-MD5
        supportedSASLMechanisms: NTLM
        subschemaSubentry: cn=Subschema
MAC Address: BE:04:FF:EC:24:53 (Unknown)
Nmap done: 1 IP address (1 host up) scanned in 0.18 seconds
```

- Análise do Resultado: A saída confirma a falha crítica. O servidor responde a conexões anónimas e revela o namingContext (dc=example,dc=org), permitindo a um atacante mapear toda a estrutura de utilizadores.
- Comando Executado: nmap -p 389 --script ldap-rootdse 10.10.30.17 > infra net servico ldap-rootdse.txt
- **Explicação do Comando:** Guarda o resultado da investigação do LDAP num ficheiro.

```
# cat infra_net_servico_ldap-rootdse.txt
Starting Nmap 7.95 ( https://mmap.org ) at 2025-07-28 18:56 UTC
Nmap scan report for openIdap.projeto_final_opcao_1_infra_net (10.10.30.17)
Host is up (0.000090s latency).

PORT STATE SERVICE
389/tcp open ldap
| dap-rootdse:
| LDAP Results
| <ROOT>
| namingContexts: dc=example,dc=org |
| supportedControl: 2.16.840.1.113730.3.4.18 |
| supportedControl: 2.16.840.1.113730.3.4.2 |
| supportedControl: 1.3.6.1.4.1.4203.1.10.1 |
| supportedControl: 1.3.6.1.1.22 |
| supportedControl: 1.3.6.1.1.22 |
| supportedControl: 1.3.6.1.1.23 |
| supportedControl: 1.3.6.1.1.32 |
| supportedControl: 1.3.6.1.1.13.1 |
| supportedControl: 1.3.6.1.1.13.1 |
| supportedControl: 1.3.6.1.4.1.1466.20037 |
| supportedExtension: 1.3.6.1.4.1.4203.1.11.1 |
| supportedExtension: 1.3.6.1.4.1.4203.1.11.1 |
| supportedExtension: 1.3.6.1.4.1.4203.1.11.3 |
| supportedExtension: 1.3.6.1.4.1.4203.1.11.1 |
| supportedExtension: 1.3.6.1.4.1.4203.1.11.1 |
| supportedSASLMechanisms: SCRAM-SHA-256 |
| supportedSASLMechanisms: SCRAM-SHA-256 |
| supportedSASLMechanisms: GS2-IAKERB |
| supportedSASLMechanisms: GSS-PNEGO |
| supportedSASLMechanisms: GSS-PNEGO |
| supportedSASLMechanisms: GSS-PNEGO |
| supportedSASLMechanisms: GSS-PNEGO |
| supportedSASLMechanisms: CRAM-MDS |
```

• Análise do Resultado: Documenta a criação da evidência.

Anexo J: Investigação do Serviço Samba (10.10.30.15)

- **Comando Executado:** nmap -p 445 --script smb-os-discovery,smb-enum-shares 10.10.30.15
- Explicação do Comando: O Nmap usa dois scripts: smb-os-discovery para tentar adivinhar o sistema operativo e smb-enum-shares para tentar listar partilhas de ficheiros abertas.
 - Resultado:

```
root® a17624069370)-[/home/analyst]

# nmap -p 445 --script smb-os-discovery,smb-enum-shares 10.10.30.15

Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-28 18:57 UTC

Nmap scan report for samba-server.projeto_final_opcao_1_infra_net (10.10.30.15)

Host is up (0.000087s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 4E:26:34:A2:F9:CD (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds
```

- Análise do Resultado: A saída mostra que o servidor está a correr Samba,
 mas não lista nenhuma partilha, indicando que a enumeração anónima está
 corretamente desativada.
- **Comando Executado:** nmap -p 445 --script smb-os-discovery,smb-enum-shares 10.10.30.15 > infra_net_servico_smb.txt
- Explicação do Comando: Guarda o resultado da investigação do Samba num ficheiro.
 - Resultado:

```
root a17624069370)-[/home/analyst]

# cat infra_net_servico_smb.txt

Starting Nmap 7.95 ( https://nmap.org ) at 2025-07-28 18:57 UTC

Nmap scan report for samba-server.projeto_final_opcao_1_infra_net (10.10.30.15)

Host is up (0.000073s latency).

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 4E:26:34:A2:F9:CD (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds
```

• Análise do Resultado: Documenta a criação da evidência.

Anexo K: Investigação do Serviço HTTP (10.10.30.117)

- Comando Executado: curl -l http://10.10.30.117
- **Explicação do Comando:** O curl -l obtém apenas os cabeçalhos (headers) de uma página web, sem descarregar o conteúdo. É útil para ver rapidamente informações do servidor.

```
-(root& a17624069370)-[/home/analyst]
_# curl -I http://10.10.30.117
HTTP/1.1 200 OK
Server: nginx
Date: Mon, 28 Jul 2025 18:59:17 GMT
Content-Type: text/html; charset=UTF-8
Connection: keep-alive
Keep-Alive: timeout=20
X-Powered-By: PHP/7.3.14
Set-Cookie: PHPSESSID=d17c4541a519265cee2c4ea45149064e; HttpOnly
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
```

- Análise do Resultado: A saída revela o tipo de servidor (nginx) e, mais importante, a versão exata do PHP (7.3.14), o que é uma fuga de informação.
- Comando Executado: curl -l http://10.10.30.117 > infra_net_servico_webserver.txt
 - Explicação do Comando: Guarda os cabeçalhos HTTP num ficheiro.
 - Resultado:

- Análise do Resultado: Documenta a criação da evidência.
- Comando Executado: curl http://10.10.30.117
- **Explicação do Comando:** Este comando descarrega e mostra o código-fonte HTML completo da página.

- Análise do Resultado: A análise do código HTML pode revelar mais informações, como comentários, links para outros ficheiros ou nomes de utilizador.
 - Comando Executado: curl http://10.10.30.117 infra_net_servico_zabbix.txt
- Explicação do Comando: Guarda o código-fonte HTML da página num ficheiro.
 - Resultado:

Análise do Resultado: Documenta a criação da evidência.