Пример 14. Импорт модели из поэтажных планов DXF AutoCAD

Цели и задачи:

- описать технологию создания файлов dxf для передачи данных о геометрии конструкции из программы AutoCAD;
- описать технологию импорта DXF файлов в САПФИР и процедуру назначения недостающих параметров объектам слоя ;
- показать процедуру создания расчетной схемы после импорта из поэтажных планов DXF

После импорта чертежа из AutoCAD рекомендуется использовать Сшивку совпадающих узлов и элементов (вкладка **Создание** ⇒ панель **Редактирование** ⇒ **Упаковка схемы**) для устранения возможного дублирования элементов и узлов схемы.

Импорт поэтажных планов из файлов DXF в модель ПК САПФИР

1. Общие сведения

ПК САПФИР импортирует из текстовых DXF файлов строительные оси, сваи, стены, колонны, балки, плиты, отверстия в плитах, окна и двери, лестницы. Нагрузки, точки и линии триангуляции. Для того, чтобы ПК САПФИР импортировал эти объекты, в DXF они должны быть представлены определенным объектом в AutoCAD и принадлежать слою с предопределенным именем.

Следующая таблица описывает, как должен быть задан объект в DXF файле, и в какой объект модели ПК САПФИР он преобразуется при импорте.

Таблица 1

Конструктивный элемент	Представление в DXF	Объект DXF	Слой DXF	Свойства	Описание
Строительная ось		LINE	AXES или CO_AXE		
Колонна	Центр или контур поперечного сечения на плане	POINT или POLYLINE	COLUMNS или CO_POTEAU	(SEC- RC_RECT), (SEC-RC_BOX B-800 B1-140 H- 900 H1-180)	Параметры сечения: название или название и характеристики
Балка	Центральная ось	LINE	BEAMS или CO_POUTRE	(SEC-RC_T2)	Параметры сечения: название или название и характеристики
Свая	Центр или контур поперечного сечения на плане	POINT или POLYLINE	PILES	(SEC- RC_RING), (SEC-RC_RECT D-800)	Параметры сечения: название или название и характеристики
Стена	Проекция серединной плоскости на плане	LINE или POLYLINE	WALLS или CO_VOILE	(H-250)	Толщина
	Контур стены на плане	POLYLINE	CONTOUR_WA		
Перегородка	Проекция серединной плоскости на плане	LINE	WALL_P или NON_STRUCTU RAL_WALL	(H-150)	Толщина

Плита перекрытия	Контур серединной плоскости	POLYLINE	SLABS или CO_DALLE	(H-200 LOAD-1 P1-250)	Толщина 200мм; нагрузка на плиту 0.25тс/м ² , принадлежащая загружению 1
Плита основания	Контур серединной плоскости	POLYLINE	FOUNDATION_ SLABS	(H-800 LOAD-2 P1-450)	Перекрытие толщиной 800мм, нагрузка на плиту 0.45тс/м², принадлежащая загружению 2
Отверстие в плите перекрытия	Контур	POLYLINE	SLAB_OPENIN GS или CO_TREMIE		
Отверстие в плите основания	Контур	POLYLINE	FOUNDATION_ SLAB_OPENIN GS		
Оконный проем	Проекция на плане	LINE	WALL_WINDOW S или CO_FENETRE	(H-2100 B-700)	Высота, нижний уровень
Дверной проем	Проекция на плане	LINE	WALL_DOORS или CO_PORTE	(H-2100)	Высота
Одномаршевая лестница	Прямоугольный контур <u>*</u>	POLYLINE	STRAIGHT_STA IRS	(H-1500 H1-500)	Высота лестницы, нижний уровень
Линейная нагрузка	Проекция на плане	LINE или POLYLINE	LINE_LOADS	(LOAD-1 P1- ^300 P2-500)	Нагрузка распределенна я по линии. Принадлежит загружению 1. Значения: в начале -0.3тс/м, в конце 0.5тс/м
Точечная нагрузка	Центр	POINT	POINT_LOADS	(LOAD-2 P1- 100)	Сосредоточенн ая нагрузка. Принадлежит загружению 2. Значение нагрузки 0.1тс
Штамп нагрузки	Контур	POLYLINE	AREA_LOADS	(LOAD-4 P1-150 P2-300)	Нагрузка распределенна я по площади. Принадлежит загружению 4. Значения: в начале 0.15тс/м², в конце 0.3тс/м²
Точки для триангуляции	Центр	POINT	POINT_TRIANG ULATION		Представляется элементом дополнительны е опорные точки для триангуляции

Отрезки для триангуляции	Проекция в плане	LINE или POLYLINE	LINE_TRIANGU LATION	Представляется элементом дополнительны е опорные отрезки для
				триангуляции

Примечания:

Имена слоев стен и плит могут иметь суффикс (H-число), где число - толщина стены или плиты, мм.

Имена слоев колонн, балок, свай могут иметь суффиксы, определяющие их поперечное сечение (SEC_название сечения). Кроме этого после названия могут быть указаны дополнительные параметры, которые характеризуют конкретный тип сечения, например (SEC_RC_BOX B-800 B1-140 H-900 H1-180). Если параметры не заданы, то будут подставлены значения параметров контура по умолчанию. Если сечение не указано, выбирается сечение из параметров по умолчанию.

Имена слоев оконных и дверных проемов могут иметь суффикс (Н-число1 В-число2), где число1 высота оконного проема от пола, мм; число2 - нижний уровень проема, мм.

Линия стены не должна прерываться в дверных и оконных проемах.

Размеры стен, плит, балок и проемов ограничены допустимыми параметрами. Изменить эти значения можно в настройках допустимых параметров объектов. Значения не могут принимать значение <= 0.

Имена слоев лестниц могут иметь суффикс (H-число1 H1-число2), где число1 - высота лестницы, мм; число2 - нижний уровень, мм.

Имена слоев нагрузок могут иметь суффикс (LOAD-число1 P1-число2 P2-число3), где число1 - номер загружения; число2 - значение нагрузки в начале; число3 - значение нагрузки в конце (только для линейной и штампа нагрузки). Отрицательное значение нагрузки задается символом "^" (LOAD-число1 P1-^число2 P2-^число3).

Если какие-то параметры не заданы, они будут подставлены значениями по умолчанию (Параметры по умолчанию).

* - Прямоугольный контур задает габарит лестницы. Направление лестницы определяет

окружность на той стороне прямоугольника, от которой начинается подъем. Окружность должна принадлежать слою STRAIGHT_STAIRS.

Информация о плане каждого этажа содержится в отдельном dxf файле, имя файла соответствует наименованию этажа (например. 1.dxf – первый этаж, 2.dxf – второй и т.д.). Все dxf планов этажей для удобства работы желательно поместить в одну папку.

Существует 2 возможных способа задания свойств объектам модели при импорте из dxf.

- 1) Ввести параметры объектов в названиях слоев согласно табл.1:
 - а) Названия слоев вводятся вручную;
 - b) Используется компонент импорта поэтажных планов из AutoCAD (он встраивается в AutoCAD непосредственно при установке ПК ЛИРА-САПР (рис.14.1)).
- 2) Ввести параметры объектов непосредственно при импорте в ПК САПФИР.

Для того, чтобы воспользоваться способом b для задания свойств объектам необходимо при установке ПК ЛИРА-САПР установить компонент Импорт планов dxf (рис.14.1), который встраивает необходимые панели инструментов в AutoCAD (рис.14.2).

Рис.14.1. Выбор компонента Импорт планов DXF при установке ПК ЛИРА-САПР

Рис.14.2. Панель инструментов для AutoCAD

В данном примере мы рассмотрим все 3 способа задания данных. Они могут использоваться как в комбинации, так и каждый по отдельности.

Исходные данные:

Для работы с данным примером необходимо будет открыть файл **Example14_0.dwg** с готовой геометрией модели. При установке по умолчанию, все файлы примеров устанавливаются на жесткий диск компьютера в <u>C:\Program Files (x86)\LIRA SAPR\LIRA SAPR 2017\Samples\Rus</u>. Для начала запустите программу Autodesk AutoCAD и откройте пример (рис.14.3).

Рис.14.3. План подвала в AutoCAD

Этап 1: Ввод свойств объектов 1а способом (ввод имени слоя вручную)

Создание слоев для осей и отверстия в плите

 Вызовите диалоговое окно Диспетчер свойств слоев (рис.14.4) щелчком по кнопке Свойства слоя (панель Слои на вкладке Главная)

Рис.14.4. Диалоговое окно Диспетчер свойств слоев

- В открывшемся диалоговом окне выполните следующее:
 - выделите слой оси и выполните по нему щелчок правой кнопкой мыши;
 - выберите из контекстного меню команду Переименовать слой;
 - введите новое имя слоя AXES (см. табл.1);
 - нажмите клавишу **Enter** на клавиатуре для подтверждения;
 - выделите слой Отверстие в фундаменте и выполните по нему щелчок правой кнопкой мыши
 - выберите из контекстного меню команду Переименовать слой;
 - введите новое имя слоя **SLAB_OPENINGS** (см. табл.1);

- нажмите клавишу **Enter** на клавиатуре для подтверждения.
- Щелкните по кнопке Закрыть для завершения работы с диалоговым окном.

Этап 2: Ввод свойств объектов 1b способом (с использованием компонента импорта поэтажных планов, встраиваемого в AutoCAD)

Создание стен

- ▶ На встроенной панели инструментов для AutoCAD (рис.14.2) щелкните и удерживайте нажатой первую команду Слои.
- ▶ В раскрывающемся списке выберите команду Новый слой стен. В Диспетчере свойств слоев AutoCAD (рис.14.5) создастся новый слой WALLS и автоматически назначится текущим.

Рис.14.5. Диспетчер свойств слоев AutoCAD и новый слой WALLS.

Вызовите команду Полилиния щелчком по кнопке

олилиния (панель **Рисование** на вкладке **Создание**).

Согласно требованиям к поэтажным планам (табл 1.) стена должна быть создана с помощью команд **Line** или **Polyline** одной линией по срединной плоскости проекции стены на плане.

- Приблизьтесь к дверному проему в ядре жесткости, расположенному вдоль оси Д.
- > При активной команде Полилиния выполните следующее:
 - привяжитесь к середине левой грани проема (рис.14.6) и начните отсюда построение полилинии;
 - задайте направление создания полилинии влево, введите значение **575мм** и нажмите клавишу **Enter** на клавиатуре;

Рис.14.6. Начальная точка полилинии для создания стены

- измените направление создание полилинии на вверх, введите значение 2170мм и нажмите клавишу Enter;
- создайте еще участок длиной 1920мм вправо, 2170мм вниз и замкните полилинию. Каждый раз подверждайте ввод значений нажатием клавиши Enter;
- выделите только что созданную полилинию;
- щелкните точку в начале дверного проема и перенесите ее в угол стены (рис.14.7).

Рис.14.7. Перенос точки полилинии

- На встроенной панели инструментов для AutoCAD щелкните по 6-й команде
 Толщина плиты или стены.
- Следуя подсказкам в командной строке выберите только что созданную полилинию стены и нажмите клавишу Enter.
- Программа спросит Следующие слои будут изменены: WALLS. Продолжить? <Enter>:. Подтвердите согласие нажатием клавиши Enter.
- ▶ Введите толщину стен ядра, мм 200 и нажмите клавишу Enter. В слое WALLS появится приписка WALLS(H-200).

Создание дверей

- ➤ На встроенной панели инструментов для AutoCAD (рис.14.2) щелкните и удерживайте нажатой первую команду Слои.
- ▶ В раскрывающемся списке выберите команду Новый слой дверных проемов. В Диспетчере свойств слоев AutoCAD (рис.14.8) создастся новый слой WALL_DOORS и автоматически назначится текущим.

Рис.14.8. Диспетчер свойств слоев AutoCAD и новый слой WALL DOORS

Вызовите команду Отрезок щелчком по кнопке Отрезок (панель Рисование на вкладке Создание).

Согласно требованиям к поэтажным планам (табл 1.) дверной проем должен быть создан отрезком в проекции на плане с помощью команды Line.

Создайте отрезок по габаритам проема (рис.14.9)

Рис.14.9. Дверной проем

- На встроенной панели инструментов для AutoCAD щелкните по 7-й команде дверных и оконных проемов.
- Следуя подсказкам в командной строке выберите только что созданный отрезок дверного проема и нажмите клавишу Enter.
- Программа спросит Следующие слои будут изменены: WALL_DOORS. Продолжить? <Enter>:. Подтвердите согласие нажатием клавиши **Enter**.
- Введите высоту дверных проемов от центра перекрытия, мм **2100** и нажмите клавишу **Enter**. В слое WALL_DOORS появится приписка WALL_DOORS(H-2100).

Название слоя для дверных проемов и высоту дверных проемов стен можно ввести и вручную, как в пункте Этап 1: Ввод свойств объектов 1а способом согласно требованиям к наименованию слоев в табл.1.

По такой же аналогии как и со стенами создаются и колонны, и балки, и плиты и др. объекты. Вначале во встраиваемой компоненте AutoCAD из раскрывающегося списка выбирается Новый слой колонн/балок/ стен/плит/отверстий в плитах. Затем, для колонн и балок используется вторая команда Тип жб сечения или четвертая команда Тип металлического сечения. После этого задаются габариты выбранного жб сечения с помощью третьей команды Размеры жб сечения. Или металлический профиль с помощью команды Профиль стального сечения. Толщина плит задается также как и толщина стен в рассмотренном примере.

Модель, созданную способом 1 (b) можно также импортировать напрямую в ВИЗОР-САПР. Произойдет распознавание слоев-объектов и жесткостей. А также непосредственно при импорте выполнится триангуляция схемы. Все объекты, создание которых выходит за рамки встроенного компонента AutoCAD, в ВИЗОР-САПР создаваться не будут.

Этап 3: Ввод свойств объектов 2-м способом (объекты по контуру)

Создание свай

- **Вызовите команду Полилиния** щелчком по кнопке (панель **Рисование** на вкладке **Создание**).
- При активной команде Полилиния выполните следующее:

 Из раскрывающегося списка слоев выберите слой Сваи (панель Слои на вкладке Создание) (рис.14.10);

Рис.14.10. Раскрывающийся список слоев

- проконтролируйте, чтобы были включены: Привязка курсора к опорным точкам в 2D

 (а именно Конточка), Отображение опорных линий привязки и Ортогональное ограничение перемещений курсора;
- приблизьтесь к свае, расположенной на пересечении осей Б и 11;
- привяжитесь к левой нижней точке сваи и начните вести перекрестье влево, задав таким образом направление отступа. За курсором потянется зеленая пунктирная линия;
- введите с клавиатуры значение отступа **1150** и нажмите клавишу **Enter** на клавиатуре;
- укажите направление построения вверх и введите значение 350, нажмите Enter;
- постройте таким же образом **350**мм влево, **350**мм вниз и замкните полилинию (должен получится квадрат 350х350). Каждый раз подтверждайте ввод нажатием клавиши **Enter**.
- > Выделите только что созданную сваю.
- Вызовите команду Копировать щелчком по кнопке вкладке Создание).
 (панель Редактирование на вкладке Создание).
- При активной команде Копировать выполните следующее:
 - укажите правую верхнюю точку сваи как базовую точку привязки;
 - задайте направление смещения влево и расстояния смещения (3 копии) **1540**мм, потом **2590**мм и **4150**мм.

ti-

Нажмите клавишу Esc, чтобы выйти из команды Копировать.

Сохранение файла

Вызовите диалоговое окно Сохранение чертежа щелчком по кнопке Сохранить как (меню

Приложения – раскрывающийся список Сохранить как - Чертеж).

- > В открывшемся диалоговом окне выполните следующее:
 - в раскрывающемся списке Тип файла выберите AutoCAD 2007/LT2007 DXF (*.dxf).
 - введите имя файла **0_подвал.dxf** и нажмите кнопку **Сохранить**.

Этап 4: Работа с 1-м этажом.

Для продолжения работы с данным примером откройте файл **Example14_1.dwg** (рис.14.11) с готовой геометрией модели. При установке по умолчанию, все файлы примеров устанавливаются на жесткий диск компьютера в C:\Program Files (x86)\LIRA SAPR\LIRA SAPR 2017\Samples\Rus.

Рис.14.11. План 1-го этажа в AutoCAD

Создание стен по контуру

- ▶ Вызовите команду Полилиния щелчком по кнопке полилиния (панель Рисование на вкладке Создание).
- При активной команде Полилиния выполните следующее:
 - Из раскрывающегося списка слоев выберите слой перегородки_250 (панель Слои на вкладке Создание) (рис.14.12);

Рис.14.12. Раскрывающийся список слоев

- проконтролируйте, чтобы были включена Привязка курсора к опорным точкам в 2D

 (а именно Конточка), Отображение опорных линий привязки и Ортогональное ограничение перемещений курсора;
- привяжитесь к левой нижней точке пилона, расположенного на пересечении осей **10-Б** и выполните щелчок левой кнопкой мыши;
- начните вести перекрестье влево, введите с клавиатуры значение **3230** и нажмите клавишу **Enter** на клавиатуре;
- укажите направление построения вверх и введите значение 250, нажмите Enter;
- постройте таким же образом **3230**мм вправо и замкните полилинию. Каждый раз подтверждайте ввод нажатием клавиши **Enter**.
- Еще раз выберите команду Полилиния и выполните следующее:
 - привяжитесь к правой нижней точке пилона, расположенного на пересечении осей **10-Б** и выполните щелчок левой кнопкой мыши;
 - начните вести перекрестье вправо, введите с клавиатуры значение **3170** и нажмите клавишу **Enter** на клавиатуре;
 - укажите направление построения вверх и введите значение 250, нажмите Enter;
 - постройте таким же образом 3170мм влево и замкните полилинию. Каждый раз подтверждайте ввод нажатием клавиши Enter.

Создание окон по контуру

- ▶ Вызовите команду Полилиния щелчком по кнопке панель Рисование на вкладке Создание).
- При активной команде Полилиния выполните следующее:
 - из раскрывающегося списка слоев выберите слой **окна_контур** (панель **Слои** на вкладке **Создание**) (рис.14.13);

Рис.14.13. Раскрывающийся список слоев

 привяжитесь к середине нижней грани стены вдоль оси Б (рис.14.14), которая начинается от оси 8 и щелкните левой кнопкой мыши;

Рис.14.14. Создание контура окна

- начните вести перекрестье вправо, введите с клавиатуры значение **1200** и нажмите клавишу **Enter** на клавиатуре;
- укажите направление построения вверх и введите значение 250, нажмите Enter;
- постройте таким же образом **1200**мм влево и замкните полилинию. Каждый раз подтверждайте ввод нажатием клавиши **Enter**.
- Выделите только что созданный оконный проем.
- Вызовите команду Копировать щелчком по кнопке вкладке Создание).
 (панель Редактирование на вкладке Создание).
- При активной команде Копировать выполните следующее:
 - укажите середину на нижней грани оконного проема как базовую точку привязки;
 - укажите середину стены, расположенной вдоль оси **Б** между осями **10-11** как вторую точку.
- ➤ Нажмите клавишу Esc, чтобы выйти из команды Копировать.

Создание дверей по контуру

- ▶ Вызовите команду Полилиния щелчком по кнопке полилиния (панель Рисование на вкладке Создание).
- При активной команде Полилиния выполните следующее:
 - из раскрывающегося списка слоев выберите слой **двери_контур** (панель **Слои** на вкладке **Создание**) (рис.14.15);

Рис.14.15. Раскрывающийся список слоев

- привяжитесь к левому нижнему углу окна вдоль оси **Б** между осями **9-10** и щелкните левой кнопкой мыши;
- начните вести перекрестье влево, введите с клавиатуры значение **700** и нажмите клавишу **Enter** на клавиатуре;
- укажите направление построения вверх и введите значение 250, нажмите Enter;
- постройте таким же образом **700**мм вправо и замкните полилинию. Каждый раз подтверждайте ввод нажатием клавиши **Enter**.

Этап 5: Нагрузка

Создание линейной нагрузки

- **Вызовите команду Полилиния** щелчком по кнопке Полилиния (панель **Рисование** на вкладке **Создание**).
- При активной команде Полилиния выполните следующее:
 - из раскрывающегося списка слоев выберите слой **лин_нагрузка** (панель **Слои** на вкладке **Создание**) (рис.14.16);

Рис.14.16. Раскрывающийся список слоев

- привяжитесь к точке пересечения плиты и пилона возле пересечения осей **Б-2** и начните вести перекрестье вправо, задав таким образом направление отступа. За курсором потянется зеленая пунктирная линия;
- введите с клавиатуры значение отступа **60** и нажмите клавишу **Enter** на клавиатуре;
- укажите направление построения вниз и введите значение 1440, нажмите Enter;
- постройте таким же образом 3650мм вправо и 540мм вверх. Каждый раз подтверждайте ввод нажатием клавиши Enter.
- Повторно нажмите Enter, чтобы выйти из построения полилинии.
- Вызовите диалоговое окно Быстрый выбор (рис.14.18) щелчком по команде Быстрый выбор (рис.14.17) в окне Свойства.

Рис.14.17. Окно Свойства

- > В открывшемся диалоговом окне **Быстрый выбор** выполните следующее:
 - в блоке Свойства укажите Слой;
 - в раскрывающемся списке **Значение** выберите слой **лин_нагрузка**;
 - подтвердите введенные данные щелчком по кнопке ОК.

Рис.14.18. Диалоговое окно Быстрый выбор

- На чертеже выделятся все элементы, которые принадлежат слою лин нагрузка.
- ▶ Вызовите команду Отразить зеркально щелчком по кнопке Редактирование на вкладке Главная).
- При активной команде Отразить зеркально выполните следующее:
 - укажите 2 точки на оси 6, чтобы задать ось симметрии;
 - на вопрос Удалить исходные объекты? [Да Нет] ответьте Нет нажатие Enter;

Принцип создания колонн такой же как и для свай. Задается контур колонны по габариту ее сечения с использованием объекта Polyline (например см. слой Пилоны). Для создания балок используется объект Polyline. Балки задаются в проекции на плане по габариту сечения (по ширине).

Сохранение файла

Вызовите диалоговое окно Сохранение чертежа щелчком по кнопке Сохранить как (меню

Приложения – раскрывающийся список Сохранить как - ше Чертеж).

- > В открывшемся диалоговом окне выполните следующее:
 - в раскрывающемся списке Тип файла выберите AutoCAD 2007/LT2007 DXF (*.dxf).
 - введите имя файла **1-й_этаж.dxf** и нажмите кнопку **Сохранить**.

Этап 6: Импорт в САПФИР

Открыть ПК САПФИР

Для того чтобы начать работу с ПК САПФИР выполните следующую команду Windows: Пуск
⇒ Все программы ⇒ ЛИРА-САПР 2017 ⇒ САПФИР 2017.

- В открывшемся диалоговом окне проконтролируйте следующее:
 - Текущий норматив СП 63.13330.2012;
 - Норматив по нагрузкам СП 20.13330.2011;
 - в строке **Описание** введите учебный пример 14 импорт модели из поэтажных планов DXF.
- Щелкните по кнопкам Применить и Выход.

Описание, которое вводится в свойствах проекта, можно увидеть в проводнике Windows, если включить для него Область просмотра. В области просмотра отображается последний ракурс модели на момент сохранения файла, а также введенная информация о файле. Таким образом можно еще на этапе проводника понять чем отличаются два одинаковых файла (например, модель с АЖТ и модель без АЖТ с капителями)

Рис.14.19. Диалоговое окно Свойства проекта

Импорт поэтажных планов dxf

▶ Вызовите диалоговое окно Импорт поэтажных планов (рис.14.20) щелчком по кнопке Импорт поэтажных планов DXF (меню Приложения – Импорт модели... – Поэтажные планы DXF).

Рис.14.20. Диалоговое окно Импорт поэтажных планов

В открывшемся диалоговом окне Импорт поэтажных планов выберите файлы 0_подвал.dxf и 1-й_этаж.dxf (удерживая нажатой клавишу Shift) и щелкните кнопку Открыть. Планы загрузятся в модель и станет доступным диалог назначения параметров Импорт dxf (рис.14.21).

Рис.14.21. Диалоговое окно Импорт DXF

В диалоговом окне **Импорт DXF** первым в списке всегда идет самый нижний этаж. Этажи в диалоговом окне сортируются следующим образом: вначале цифры, затем латинские буквы по алфавиту, после этого кириллические буквы по алфавиту. Поэтому для того чтобы подвальный этаж был у нас первым в списке мы добавили перед ним цифру 0.

Назначение параметров этажам

- ▶ Щелкните по наименованию этажа 0_подвал в правой области диалогового окна отобразятся свойства этажа:
 - укажите Уровень низа этажа, мм (-3000);
 - щелкните по кнопке Применить свойства (клавиша Enter на клавиатуре).
- Щелкните по наименованию этажа 1-й этаж в правой области диалогового окна отобразятся свойства этажа:
 - укажите Уровень низа этажа, мм − 0;
 - щелкните по кнопке Применить свойства (клавиша Enter на клавиатуре).

Назначение параметров слоям для этажа 0 подвал

- Для слоя Сваи:
 - установите флажок напротив слоя Сваи (флажок значит «создавать слой»);
 - в раскрывающемся списке Тип выберите тип объекта Свая;
 - установите флажок Контур;
 - в области свойств напротив параметра **Тип опирания плиты на сваю** задайте **Шарнирное**;
 - щелкните по кнопке Применить свойства (клавиша Enter на клавиатуре).
- Для слоя Стены подвала:
 - установите флажок создавать слой Стены подвала;
 - в раскрывающемся списке Тип выберите тип объекта Стена;
 - установите флажок Контур;
 - щелкните по кнопке Применить свойства (клавиша Enter на клавиатуре).
- Для слоя Фундамент 600:
 - установите флажок создавать слой Фундамент 600;
 - в раскрывающемся списке **Тип** выберите тип объекта **Фунд. плита**;
 - в области свойств вызовите диалоговое окно **Связи** щелчком по напротив параметра **Связи**;
 - в открывшемся диалоговом окне установите флажки X, Y и щелкните по кнопке ОК;

Рис.14.22. Диалоговое окно Связи

■ щелкните по кнопке - Применить свойства (клавиша Enter на клавиатуре).

Назначение параметров слоям для этажа 1-й этаж

- Для слоя двери_контур:
 - установите флажок создавать слой двери_контур;
 - в раскрывающемся списке Тип выберите тип объекта Дверь;
 - установите флажок Контур.
- Для слоя лин_нагрузка:
 - установите флажок создавать слой лин_нагрузка;
 - в раскрывающемся списке Тип выберите тип объекта Линейная нагр;
 - в области свойств проконтролируйте, чтобы для параметра **Загружение** стояло **Загружение** прочее;
 - задайте Значение, тс/м 0.24;
 - Второе значение, тс/м 0.24;
 - щелкните по кнопке
 Применить свойства (клавиша Enter на клавиатуре).
- Для слоя окна_контур:
 - установите флажок создавать слой окна_контур;
 - в раскрывающемся списке Тип выберите тип объекта Окно;
 - установите флажок Контур.
 - в области свойств вызовите диалоговое окно **Параметры окон** щелчком по напротив параметра **Параметры проема**;
 - в открывшемся диалоговом окне задайте Высота (H), мм 1300 и щелкните по кнопке ОК;

Рис.14.23. Диалоговое окно Параметры проема

- щелкните по кнопке Применить свойства (клавиша Enter на клавиатуре).
- Для слоев осевые размеры, оси и оси@100 не будет соответствующих объектов, поэтому эти слои мы просто пропускаем.
- Для слоя отверстия в плитах:
 - установите флажок создавать слой отверстия в плитах;

- в раскрывающемся списке **Тип** выберите тип объекта **Проем в плите** (для замкнутых объектов флажок Контур устанавливается автоматически).
- Удерживая нажатой клавишу Shift на клавиатуре выделите слои перегородки_120 и перегородки_250:
 - установите флажки создавать слои перегородки_120 и перегородки_250;
 - в раскрывающемся списке Тип выберите тип объекта Перегородка;
 - установите флажок Контур.
- Для слоя перекрытие 190:
 - установите флажок создавать слой перекрытие_190;
 - в раскрывающемся списке Тип выберите тип объекта Плита;
 - в области свойств задайте Толщина, мм 190;
 - Нагрузка на плиту, тс/м − 0.2;
 - Кратковременная нагрузка на плиту, тс/м − 0.1;
 - щелкните по кнопке **Применить свойства** (клавиша **Enter** на клавиатуре).
- Для слоя пилоны:
 - установите флажок создавать слой пилоны;
 - в раскрывающемся списке Тип выберите тип объекта Колонна;
 - установите флажок Контур.
- Для слоя стены_200_жб:
 - установите флажок создавать слой **стены_200_жб**;
 - в раскрывающемся списке Тип выберите тип объекта Стена;
 - установите флажок Контур.
- Щелкните по кнопке
 Создать модель по плану , чтобы создать 3D модель.
- > Закройте диалоговое окно щелчком по кнопке Закрыть.

1

Заданные параметры для объектов слоя могут быть сохранены для дальнейшего использования. Например, если Вы все еще редактируете схему в AutoCAD и постоянно подгружаете поэтажные планы в САПФИР. В набор параметров сохраняются все заданные параметры объектов, кроме флажка Контур. Набор параметров подгружается в другой проект и подключается к слоям по имени. Для сохранения набора параметров щелкните по кнопке - Сохранить набор в верхней части диалогового окна. Откроется диалоговое

окно в которое необходимо будет ввести имя набора параметров и нажать на кнопку **Применить**. Для того чтобы загрузить набор параметров необходимо выбрать его из раскрывающегося списка.

Этап 7: Копирование этажей

Контроль корректности модели

Для того чтобы переключиться в аналитическое представление щелкните по кнопке Аналитическая модель (рис.14.24) на панели инструментов Визуализация.

Рис.14.24. Аналитическое представление модели

- Проконтролируйте чтобы модель получилась корректной и отключите аналитической представление
 щелчком по кнопке
 Аналитическая модель на панели инструментов Визуализация.
- В диалоговом окне Структура проконтролируйте, чтобы активным был 1-й_этаж +3.000 (15).
- ▶ Вызовите диалоговое окно Создать новый этаж (рис.14.25) щелчком по кнопке Этаж (панель Проект на вкладке Главная).

Рис.14.25. Диалоговое окно Создать новый этаж

- > В открывшемся диалоговом окне задайте следующее:
 - наименование 2-й этаж;
 - количество этажей 8;
 - установите флажок копировать элементы;
 - щелчком по кнопке точно вызовите диалоговое окно **Фильтр объектов** (рис.14.26);
 - в открывшемся диалоговом окне снимите флажок **Блок** и щелкните по кнопке **ОК**;

Рис.14.26. Диалоговое окно Фильтр объектов

■ щелкните по кнопке OK, чтобы подтвердить копирование этажей.

Корректировка последнего этажа

- ▶ Выделите плиту последнего этажа и щелкните по кнопке Копировать (раскрывающийся список Копировать панель Корректировка на вкладке Главная).
- Щелкните по кнопке Вставить (раскрывающийся список Вставить панель Корректировка на вкладке Главная).
- ▶ В строке свойств инструмента Плита щелкните по кнопке От верха этажа в раскрывающемся списке Высотная привязка.
- Вызовите диалоговое окно Эквидистанта (рис.14.27) щелчком по кнопке Эквидистанта (панель Корректировка на вкладке Редактирование).
- В открывшемся диалоговом окне задайте следующее:
 - Отступ, мм − 300;
 - щелкните по кнопке ОК.

Рис.14.27. Диалоговое окно Эквидистанта

- ➤ Нажмите клавишу Esc на клавиатуре, чтобы снять выделение с плиты.
- Щелкните по кнопке Вид спереди на панели инструментов Проекции и виды.

Вызовите диалоговое окно Фильтр указывания объектов (рис.14.28) щелчком по кнопке Фильтр указывания объектов на панели инструментов Визуализация.

Рис.14.28. Диалоговое окно Фильтр указывания элементов

- В открывшемся диалоговом окне выполните следующее:
 - отключите указывание всех объектов щелчком по кнопке
 - установите флажок напротив объекта Проем;
 - щелкните по кнопке ОК для подтверждения.
- Выделите рамкой слева направо плиту перекрытия верхнего этажа (выделятся только проемы, расположенные в плите).
- Удалить в раскрывающемся списке Удалить (панель Корректировка на Щелкните по кнопке вкладке Редактирование).
- Вызовите диалоговое окно Фильтр указывания объектов (рис.14.28) щелчком по кнопке 📉 Фильтр указывания объектов на панели инструментов Визуализация.
- В открывшемся диалоговом окне выполните следующее:
 - включите указывание всех объектов щелчком по кнопке
 - щелкните по кнопке ОК, чтобы выйти из диалогового окна.

Этап 8: Редактирование списка загружений

Редактор загружений

Вызовите диалоговое окно Загружения (рис.14.29) щелчком по кнопке - Загружения (панель Нагрузки на вкладке Создание).

Рис.14.29. Диалоговое окно Загружения

- В открывшемся диалоговом окне задайте следующее:
 - выделите строку Загружение прочее и щелкните по кнопке 👈 Опустить;
 - выполните щелчок по названию **Загружение прочее**, чтобы оно стало доступным для редактирования и введите наименование **Балконы**;
 - в столбцах Вид загружения и Подвид установите для загружений следующие виды и подвиды:

Собственный вес – Постоянное, пост 1.10;

Нагрузки на плиты – Постоянное, пост.1.10;

Временные нагрузки на плиты – Кратк.доминир.1, врем.кр 1.20;

Нагрузки от стен – Постоянное, пост.1.10;

Балконы – Постоянное, пост.1.10.

- переключитесь на закладку **РСУ** и щелкните по кнопке **Сгенерировать**, в диалоговом окне сформируются расчетные сочетания усилий;
- выполните щелчок по кнопке **ОК**, чтобы подтвердить внесенные изменения и закрыть диалоговое окно.

В диалоговом окне Загружения назначаются виды загружений и генерируются таблицы РСУ, РСН согласно Нормативу по нагрузкам, заданному в диалоговом окне Свойства проекта.

Этап 9: Создание расчетной модели

Формирование расчетной модели

Рис.14.30. Диалоговое окно Создать новую расчетную модель

- В открывшемся диалоговом окне щелкните по кнопке ОК.
- Вызовите диалоговое окно Параметры (рис.14.31) щелчком по кнопке Свойства расчетной модели

Рис.14.31. Диалоговое окно Свойства расчетной модели

- > В открывшемся диалоговом окне задайте следующее:
 - Точность объединения, мм − 5;
 - Настройки пересечений Осевые нестрого;
 - щелкните по кнопке ОК, чтобы подтвердить внесенные изменения.
- **В** открывшемся диалоговом окне **САПФИР** (рис.14.32) щелкните по кнопке **Да**.

Рис.14.32. Диалоговое окно САПФИР

Вызовите диалоговое окно **Настройки триангуляции** (рис.14.33) щелчком по кнопке **Настройки** (панель **Расчетная модель: триангуляция** на вкладке **Аналитика**).

Рис.14.33. Диалоговое окно Настройки триангуляции

- > В открывшемся диалоговом окне задайте следующее:
 - проконтролируйте чтобы тип триангуляции был выбран адаптивная четырехугольная;
 - шаг, м 0.25;
 - щелкните по кнопке Назначить.
- Щелкните по кнопке Создать триангуляционную сеть в раскрывающемся списке Сеть (панель Расчетная модель: триангуляция на вкладке Аналитика).
- ▶ В открывшемся диалоговом окне САПФИР (рис.14.34) щелкните по кнопке Да.

Рис.14.34. Диалоговое окно САПФИР

Расчетная модель с триангуляцией выглядит следующим образом (рис.14.35).

Рис.14.35. Расчетная модель с пересечениями и триангуляцией

Сохранение файла САПФИР

 Для сохранения информации о проекте откройте меню приложения и выберите пункт Сохранить (кнопка на панели быстрого доступа).

Открытие файла в ВИЗОР-САПР

У Чтобы открыть конечно-элементную схему в ВИЗОР-САПР щелкните по кнопке — • Открыть в раскрывающемся списке Открыть (панель Расчет в ЛИРА-САПР на вкладке Аналитика).

Программа создаст файл в формате *.s2I в каталоге C:\Users\Public\Documents\LIRA SAPR\LIRA SAPR 2017\Data и откроет этот файл в системе **ВИЗОР-САПР**.

Запустится ВИЗОР-САПР с открытым файлом задачи.

Этап 10. Полный расчет схемы

Запустите задачу на расчет щелчком по кнопке - Полный расчет в раскрывающемся списке Выполнить расчет (панель Расчет на вкладке Расчет).

После расчета задачи, просмотр и анализ результатов статического и динамического расчетов осуществляется на вкладке **Анализ**.