ASSIGNMENT # 6

MATH 660, DIFFERENTIAL GEOMETRY

These excercises explore the geometry of \mathbb{CP}^n . We use the following notation: S^1 acts via the Hopf action on $\mathbb{S}^{2n+1}(1) \subset \mathbb{C}^{n+1}$ as $x \to e^{i\theta}x$ for $x \in \mathbb{C}^{n+1}$. Then $\mathbb{CP}^n = \mathbb{S}^{2n+1}/S^1$ with its induced Fubini Study metric. $[x] \in \mathbb{CP}^n$ denotes the equivalence class $x \simeq e^{i\theta}x$ and the tangent space $T_{[x]}\mathbb{CP}^n$ is represented by [(x,v)] with $v \in H_x$, i.e. $\langle v, x \rangle = \langle v, ix \rangle = 0$, and equivalence relationship $(x,v) \simeq (e^{i\theta}x, e^{i\theta}v)$.

- (1) Show that \mathbb{CP}^1 with its Fubini-Study metric is isometric to $\mathbb{S}^2(\frac{1}{2})$.
- (2) Compute the full isometry group of the Fubini Study metric on \mathbb{CP}^n . Hint: Use the fact that isometries preserve sectional curvature.
- (3) Show that the only isometric quotient of \mathbb{CP}^n is, up to isometry, obtained when n=2k-1 and by dividing by the involution

$$[z_0, z_1, z_2, z_3, \dots, z_{2k-1}, z_{2k}] \rightarrow [\bar{z}_1, -\bar{z}_0, \bar{z}_3, -\bar{z}_2, \dots, \bar{z}_{2k}, -\bar{z}_{2k}].$$

- (4) Show that J([x,v]) = [x,iv] for $[x,v] \in T_{[x]}\mathbb{CP}^n$ is a well defined complex structure and that $\nabla J = 0$, i.e. the Fubini Study metric is Káhler.
- (5) Let M be \mathbb{CP}^n with its Fubini Study metric.
 - (a) A linear subspace $V \subset T_{[x]}\mathbb{CP}^n$ is called complex if JV = V and totally real if $JV \perp V$. Show that if V is complex, $\exp_{[x]}(V)$ is totally geodesic and isometric to $\mathbb{CP}^k \subset \mathbb{CP}^n$ with its Fubini Study metric. Show that if V is totally real, $\exp_{[x]}(V)$ is totally geodesic and isometric $\mathbb{RP}^k(1) \subset \mathbb{RP}^n(1) \subset \mathbb{CP}^n$.
 - (b) Show that these two types of submanifolds are the only ones which are totally geodesic.

Hint: Use (and prove) the fact that for a totally geodesic submanifold $N \subset M$ we have $R(u,v)w \subset T_pN$ if $u,v,w \in T_pN$. You need to derive a formula for R(u,v)v for the Fubini Study metric.