

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

3 GLEICHSTROMMESSUNG

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

DREHSPULINSTRUMENT

- häufigstes analoges Messgerät
- Substitution durch Digitalmultimeter

LORENTZ-KRAFT

Lorentz-Kraft

 $F = I \cdot B \cdot l$ für einen Draht

I : Strom

B: Magnetfeld

l : Drahtlänge

Drehmoment = Kraft x Radius

DREHSPULINSTRUMENT

Elektrisch erzeugtes Drehmoment:

$$T_{el} =$$

N : Anzahl der Windungen

I : Strom

B: Magnetfeld

A : Querschnittsfläche der Spule

Mechanisches Drehmoment durch Feder:

$$T_M =$$

 α : Auslenkungswinkel

D: Federkonstante

EIGENSCHAFTEN DES DREHSPULINSTRUMENTS

$\alpha \propto K I$

mit *K*: Stromempfindlichkeit

Kann man mit einem Drehspulinstrument Spannung messen? Wenn ja, kann man damit auch Wechselspannung messen?

- A. nein, es ist nur zur Strommessung geeignet
- B. ja, weil Strom und Spannung proportional sind
- C. auch Wechselspannung wird in jedem Fall angezeigt
- D. bei Wechselspannung wird stets nichts angezeigt
- E. bei Wechselspannung wird der Mittelwert angezeigt

MEßBEREICHH

Analog-Multimeter Innenwiderstand hängt vom Meßbereich ab

bei **Digitalmultimeter** nicht unbedingt → siehe Datenblatt

BESTIMMUNG VON I_W BEI $U_{in} = 0.1 V$

A. 0,09 *mA*

B. 0,1 *mA*

C. 0,2 *mA*

BESTIMMUNG VON I_W BEI $I_{in} = 10 \ mA$

- A. 0.1 mA
- B. 0,2 *mA*
- C. 2 mA

3 GLEICHSTROMMESSUNG

3	1 Г)re	hsi	الباد	ins	tri	ım	en [.]	t
J.	ıL			Jui	1113	uc	4 I I I	CH	L

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

SYSTEMATISCHER FEHLER

Welchen Innenwiderstand sollten die Instrumente haben?

- Voltmeter $R_{I,V} =$
- Amperemeter $R_{I,A} =$

Messfehler:

Differenz zwischen beobachtetem und wahrem Wert

Systematischer Fehler:

Abweichung der Messergebnisse, die dazu führt, dass die Messungen systematisch zu niedrig oder zu hoch sind.

SYSTEMATISCHER FEHLER BEI SPANNUNGSMESSUNG

Erwarteter Wert für U_a (Leerlauf)

$$\Rightarrow U_{a,\text{true}} =$$

Tatsächlich gemessener Wert $U_{a,meas}$:

 U_0 zu messende Quelle R_i Innenwiderstand Quelle R_{IV} Innenwiderstand Voltmeter

gegeben: U_0 , R_i , $R_{I,V}$

$$\frac{\Delta U}{U} = \frac{U_0 - U_a}{U}$$

gesucht:

SYSTEMATISCHER FEHLER BEI STROMMESSUNG

Bestimmen Sie den wahren Wert $I_{L,true}$

$$I_{L,true} =$$

⇒ Der gemessene Strom ist stets

Bestimmen Sie den gemessenen Wert I_L

$$I_L =$$

als der wahre Strom.

3 GLEICHSTROMMESSUNG

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

GLEICHZEITIGE STROM- & SPANNUNGSMESSUNG

Anwendung:

- Kennlinien
- Leistungsmessung P =

Es kann nur einer von den zwei Werten genau gemessen werden. Wir unterscheiden:

- spannungsrichtige Messung
- stromrichtige Messung

MESSUNG

Maßgeblich ist, welche Größe an R_X durch ein Messgerät genau angezeigt wird.

 I_m , U_m gemessene Werte

Bestimmung von
$$e = \frac{R_m - R_x}{R_x}$$

$$\Rightarrow e = \frac{R_m - R_x}{R_x} = -\frac{R_X}{R_{I,V} + R_X} \approx -\frac{R_X}{R_{I,V}}$$

STROMRICHTIGE MESSUNG

$$I_m$$
, U_m gemessene Werte

$$I_X$$
, U_X Laststrom und -spannung

$$R_{X}$$
 wahrer Lastwiderstand

$$R_m = U_m/I_m$$
 gemessener Widerstand

$$R_{I,A}$$
 Innenwiderstand des Amperemeters

Bestimmung von
$$e=rac{R_m-R_\chi}{R_\chi} \Rightarrow e=rac{R_m-R_\chi}{R_\chi}=rac{R_{I,A}}{R_\chi}$$

3 GLEICHSTROMMESSUNG

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

3 GLEICHSTROMMESSUNG

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

STROMMESSUNG MIT VOLTMETER

Anforderungen an Messwiderstand (engl. Shunt) R_M

- $R_M << R_{I,V}$
- $R_M \ll R_i + R_L$
- hohe Präzision von R_M
- zulässige Verlustleistung einhalten

3 GLEICHSTROMMESSUNG

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

BELASTETER SPANNUNGSTEILER

Hausaufgabe zur Übung (ca. 30 min):

Bestimmen Sie U_L/U_0 als Funktion von R/RL und $x = R_1/R$:

Lösung:
$$\frac{U_L}{U_0} = \frac{x}{1 + x \cdot (1 - x) \cdot \frac{R}{R_I}}$$

BELASTETER SPANNUNGSTEILER

- nichtlinear
- je kleiner die Last umso größer der systematische Fehler

BELASTETER SPANNUNGSTEILER

Bestimmen Sie die Ausgangsspannung des belasteten Spannungsteilers.

3 GLEICHSTROMMESSUNG

3 1	Drel	hspu	linst	trum	ent
O. 1		ISPU		uuii	

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

GENAUIGKEIT UND PRÄZISION

hohe Genauigkeit aber geringe Präzisior

hohe Präzision aber Offset (offset = geringe Genauigkeit)

Valide: sowohl genau als auch präzise

- Genauigkeit
 Maß der Übereinstimmung von gemessener Größe mit dem wahren Wert
- Präzision (früher auch Wiederholgenauigkeit)
 Grad, in dem zukünftige Messungen zu dem gleichen Ergebnis führen
- Valide
 Eine Messung wird als valide bezeichnet, wenn sie sowohl genau als auch präzise ist.

Technik und Informatik

SPEZIFIKATION DER GENAUIGKEIT

Die Genauigkeit eines Voltmeters wird mit $\pm \Delta U$ angegeben.

- Messwerte werden dann wie folgt ausgedrückt:
 Messwert ± Genauigkeit (e.g. 6.45 V ± 0.15V)
- bei analogen Meßinstrumenten: $\Delta U = \text{Genauigkeit} \cdot \text{Meßbereich}$
- bei digitalen Meßinstrumenten:

$$\Delta U = a \cdot \text{Rdg} + n \cdot d$$

wobei:

a: Genauigkeit

Rdg: abgelesener Wert

n: Faktor aus Datenblatt des Meßinstruments

d: geringstmöglicher Anzeigewert > 0 (value of least significant digit)

BEISPIEL: ANALOGINSTRUMENT

Voltmeter

relative Genauigkeit: 5% im Meßbereich 10 V

Diese hängt <u>nicht</u> von der gemessenen Spannung ab!

 \Rightarrow absolute Genauigkeit: $\Delta U = 5\% \cdot 10V = 0.5 V$

 \Rightarrow Ein Meßwert von 2.1 V bedeutet:

 $U = 2.1 V \pm 0.5 V$ oder

 $U = 2.1 V (1 \pm 24\%)$

BEISPIEL: DIGITALES VOLTMETER

Function	Measure- ment range	Resolution	Input impedance		(% rdg + d)
Ω			open circuit voltage	short circuit current	
	300.00 Ω	10 mΩ	max. 4.00 V	max. 1 mA	0.1 + 30
	3.0000 kΩ	100 mΩ	max. 1.25 V	max. 100 μA	0.1 + 6
	30.000 kΩ	1 Ω	max. 1.25 V	max. 10 μA	0.1 + 6
	300.00 kΩ	10 Ω	max. 1.25 V	max. 1 µA	0.1 + 6
	3.0000 MΩ	100 Ω	max. 1.25 V	max. 0.1µA	0.4 + 6
	30.000 MΩ	1 kΩ	max. 1.25 V	max. 0.1µA	3.0 + 6

abgelesen: 166.30 Ω , Meßbereich: 300.00 Ω , geringster Wert: $d = 0.01\Omega$

- \Rightarrow aus Datenblatt: a = 0.1 %, n = 30
- $\Rightarrow \Delta R = 0.1\% \cdot 166.30 \Omega + 30 \cdot 0.01\Omega = 0.4663\Omega \cong 0.47\Omega$
- \Rightarrow Meßergebnis: $R = 166.30 \Omega \pm 0.47 \Omega = 166.30 \Omega \cdot (1 \pm 0.3\%)$

BEISPIEL: DIGITALES VOLTMETER

Aufgabe: Bestimmen Sie das Meßergebnis für den abgelesenen Wert 4.952V.

A. $4,952V \pm 0,0055 V$

B. $4,952V \pm 0,005 V$

C. $4,952V \pm 0,006 V$

D. $4,952V \pm 0,018 V$

Function	Measurement range	Resolution	Input impedance		Accuracy ± (% rdg + d)	
V			=	≅	=	≅
	300.00 mV	10 μV	10 GΩ	5 MΩ //40pF	0.05 + 3	1 + 20
	3.0000 V	100 μV	11 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20
	30.000 V	1 mV	10 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20
	300.00 V	10 mV	10 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20
	1000.0 V	100 mV	10 ΜΩ	1 MΩ //40pF	0.05 + 3	1 + 20

3 GLEICHSTROMMESSUNG

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

Theorie

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

GRAPHISCHE DARSTELLUNG: LINEAR

Linear

x-Achse: **Abszisse**

y-Achse: Ordinate

GRAPHISCHE DARSTELLUNG: LOGARITHMISCH

halblogarithmisch

Ordinate: logarithmisch

Abszisse: linear

Häufig wird ein physikalischer Zusammenhang durch eine e –Funktion beschrieben.

⇒ Verlauf einer Geraden in halblogarithmischer Darstellung

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

Meßgeräte:

No 1): MetraHit 18S, Inv. Nr....

No 2): MetraHit 15S, Inv. Nr....

No 3): VDR #4

No 4): Power supply VHL 0..10V

Schaltung für spannungsrichtige Messung

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

I ₀ /mA	U _{VDR} /V		
0.121	0.103		
0.235	0.201		
0.356	0.297		
0.502	0.403		
0.645	0.499		
0.807	0.600		
1.001	0.712		
1.460	0.946		
2.764	1.470		
4.711	2.045		
9.293	2.982		
17.14	4.040		
27.28	5.000		
42.36	6.040		
62.68	7.060		
86.91	8.000		
104.60	8.560		

LOGARITHMUS

Wenn der Verlauf einer e-Funktion erwartet wird ist eine logarithmische Darstellung geeignet, um die Parameter zu bestimmen.

$$\frac{U}{V} = C \left(\frac{I}{mA}\right)^{\beta} \Rightarrow \lg \frac{U}{V} = \lg C + \beta \cdot \lg \frac{I}{mA}$$

Exponentialfunktion in linearem Diagramm -> Gerade in logarithmischer Darstellung

- Rechenregeln f
 ür Logarithmus
- $a = b^x$ $x = log_b a \text{ für } b \neq 1$
- $ln: = log_e$ "natürlicher Logarithmus"
- $lg:=log_{10}$ "10er-Logarithmus"
- $\lg(a_1 \cdot a_2) = \lg a_1 + \lg a_2$
- $\lg(a_1/a_2) = \lg a_1 \lg a_2$
- $\lg x^r = r \lg x$

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

$$\frac{U}{V} = C \left(\frac{I}{mA}\right)^{\beta} \Rightarrow \lg \frac{U}{V} = \lg C + \beta \cdot \lg \frac{I}{mA}$$

Bestimmung von C:

Wann wird der rechte Term Null?

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

$$\frac{U}{V} = C \left(\frac{I}{mA}\right)^{\beta} \Rightarrow \lg \frac{U}{V} = \lg C + \beta \cdot \lg \frac{I}{mA}$$

Bestimmung von β :

DIAGRAMME MIT MATLAB

1. Messpunkte definieren (Vektor)

$$x = [0 : 0.1 : 3]$$

2. Ergebnis berechnen

$$y = x.^2$$

3. Ergebnis darstellen

```
figure(1)
plot(x, y, 'r:')
%or instead of plot: loglog, semilogx, semilogy
title ('Square')
xlabel('I 1 in mA')
ylabel('R in \Omega')
xlim([0 2])
```

LINKS ZU MATLAB

In Matlab selbst am Beispiel der plot-Funktion:

doc plot gibt die html-Hilfe für die Funktion plot wieder, dort finden Sie auch viele Anwendungsbeispiele

help plot gibt nur eine kurze Funktionsbeschreibung wieder, geht aber viel schneller

Video-Tutorial auf englisch:

http://www.mathworks.de/products/matlab/demos.html

Buch: Schweizer, Wolfgang: MATLAB kompakt

WAS SIE MITNEHMEN SOLLEN (1) ...

Belasteter Spannungsteiler

- Spannungsteiler-Formel nicht anwendbar stattdessen: komplizierte Formel
- Genauigkeit und Präzision

WAS SIE MITNEHMEN SOLLEN (2)...

Graphische Darstellung

- Üben Sie den Umgang mit logarithmischen Diagrammen!
- virtuelles logarithmisches Papier gibts hier: <u>http://www.papersnake.de/logarithmuspapier/</u>