Adaptive Monitoring: Optimal wait-time to control false discoveries

Jonathan J Chipman, PhD

Population Health Sciences, Division of Biostatistic University of Utah Huntsman Cancer Institute

March 23, 2020

Overview

Co-authors Jeffrey D Blume, PhD and Robert A Greevy, Jr., PhD

AM SGPV Adaptive monitoring on Second Generation p-Value (Chipman 2019)

Burn-in To ensure $\alpha < 0.05$ with unlimited sample size

Prematurely Ending Clinical Trial(s)

Towards a Revolution in COPD Health (TORCH) (Calverley 2007)

Primary Aim: Establish whether beta-agonist (salmeterol plus fluticasone propionate) has survival benefit in participants with chronic obstructive pulmonary disease

2007 6112 participants

- ► HR 0.825 (95% CI: 0.681-1.002, p-adjusted=0.052)
- Awkward Conclusion: primary outcome did not reach statistical significance, yet 'significant benefits in all other outcomes.'

Prematurely Ending Clinical Trial(s)

Towards a Revolution in COPD Health (TORCH) (Calverley 2007)

Primary Aim: Establish whether beta-agonist (salmeterol plus fluticasone propionate) has survival benefit in participants with chronic obstructive pulmonary disease

2007 6112 participants

- ► HR 0.825 (95% CI: 0.681-1.000, p-adjusted=0.05)
- Awkward Conclusion: primary outcome did not reach statistical significance, yet 'significant benefits in all other outcomes.'

Prematurely Ending Clinical Trial(s)

Towards a Revolution in COPD Health (TORCH) (Calverley 2007)

Primary Aim: Establish whether beta-agonist (salmeterol plus fluticasone propionate) has survival benefit in participants with chronic obstructive pulmonary disease

2007 6112 participants

- ► HR 0.825 (95% CI: 0.681-0.998, p-adjusted=0.0498)
- Awkward Conclusion: primary outcome did not reach statistical significance, yet 'significant benefits in all other outcomes.'

AM SGPV lpha < 0

Envisioning treatment effects

AM SGPV lpha < 0

Envisioning treatment effects

Region of Practically Equivalent Effects (ROPE) (Kruschke 2011)

Region of Practically Equivalent Effects (ROPE) (Kruschke 2011)

Region of Meaningful Effects (ROME)

AM SGPV

ROPE and ROME

Second Generation p-value (SGPV; Blume et al. 2018, 2019)

What proportion of interval overlaps with Δ_H ?

Interpretation of p_H

ightharpoonup p_H = 0: Evidence to rule out hypothesis effects

 $ightharpoonup p_H = 1$: Evidence supporing hypothesis effects

 $ightharpoonup 0 < p_H < 1$: Inconclusive, need more data

AM SGPV lpha < 0

TORCH with ROPE and ROME

$$\begin{split} 0 < p_{ROPE} < 1 \; ; \; 0 < p_{ROME} < 1 \\ 0 < p_{ROPE} < 1 \; ; \; 0 < p_{ROME} < 1 \\ 0 < p_{ROPE} < 1 \; ; \; 0 < p_{ROME} < 1 \\ 0 < p_{ROPE} < 1 \; ; \; p_{ROME} = 0 \\ p_{ROPE} < 0 \; ; \; p_{ROME} < 1 \\ p_{ROPE} = 0 \; ; \; 0 < p_{ROME} < 1 \\ p_{ROPE} = 0 \; ; \; 0 < p_{ROME} < 1 \\ p_{ROPE} = 0 \; ; \; p_{ROME} < 1 \\ p_{ROPE} = 0 \; ; \; p_{ROME} < 0 \end{split}$$

Wait Interval width stabilizes

Monitor Interval and SGPV at desired looks

Alert $p_{ROPE} = 0.0$: Ruled out ROPE effects

 $p_{ROME} = 0.0$: Ruled out ROME effects

Affirm Stop if same conclusion k participants later

End of resources

Wait Interval width stabilizes

Monitor Interval and SGPV at desired looks

Alert $p_{ROPE} = 0.0$: Ruled out ROPE effects

 $p_{ROME} = 0.0$: Ruled out ROME effects

Affirm Stop if same conclusion k participants later

End of resources

Wait Interval width stabilizes

Monitor Interval and SGPV at desired looks

Alert $p_{ROPE} = 0.0$: Ruled out ROPE effects

 $p_{ROME} = 0.0$: Ruled out ROME effects

Affirm Stop if same conclusion k participants later

End of resources

Wait Interval width stabilizes

Monitor Interval and SGPV at desired looks

Alert $p_{ROPE} = 0.0$: Ruled out ROPE effects

 $p_{ROME} = 0.0$: Ruled out ROME effects

Affirm Stop if same conclusion k participants later

End of resources

AM SGPV lpha < 0

Error probabilities

Error probabilities (such as Type I Error) depend on

- ROPE and ROME
- ▶ Wait time
- ► Affirmation steps (*k*)

Error probabilities

Error probabilities (such as Type I Error) depend on

- ► ROPE and ROME (set by science)
- Wait time
- Affirmation steps

Wait time with unlimited sample size

Measured by inferential width

Controlling errors

Simulations with 40K replicates with varying wait times

Holding constant:

- ightharpoonup Control~N(0,1), Treated~N(0,1)
- ► ROME and ROPE regions (10 settings)
- k = 0

 $\alpha < 0$

Wait until expected margin if error (1/2 width of CI) is 0.5

Wait until expected margin if error (1/2 width of CI) is 0.25

Wait until expected margin if error (1/2 width of CI) is 0.15

Type I Error; P (Reject Point Null | Theta = 0)

Type I Error; P (Reject Point Null | Theta = 0)

Type I Error; P (Reject Point Null | Theta = 0)

Type I Error; P (Reject Point Null | Theta = 0)

Conclusions

 AM SGPV novel design to follow studies until ruling out practially null or meaningful effects

② With immediate stopping (k=0) and unlimited sample size, Type I error can be controlled through the wait time.

AM SGPV lpha < 0

Thank you and questions