TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1

AIM₃

- 1.1 Abstract
- 1.2 Introduction
- 1.3 Methods

1.3.1 EEG Acquisition and Processing

EEG measures electrical activity from the brain via electrodes placed on the scalp. As cortical regions are active, extracellular current creates inhibitory and excitatory post synaptic potentials which are detected by the scalp electrodes [51]. Subjects will be fitted with a standard 58-channel EEG cap (*Electrocap, Eaton, OH*) with a sampling rate of 1000 Hz *Synamps 2, Neuroscan, Charlotte, NC, USA*). Brain activity will be measured during the performance of the Probabilistic Choice Reaction Task (PCRT, described below) by responding to images on the screen on a custom built, two button keypad (*Arduino Uno, www.arduino.cc*). Eye blinks and movement artifacts will be recorded using electrooculographic (EOG) activity and subtracted from the data offline. Data will initially be analyzed by examining changes in the event-related potentials (ERP) compared across each condition but also over time. This allows for investigation into specific sensory and cognitive responses to on-screen stimuli and movement generation.

The raw, continuous EEG was leaded into EEG lab [52] for subsequent post-processing and analysis. All data was first high-pass filtered at 0.5 Hz and low-pass filtered at 50 Hz. Bad channels (those with maximum), bad channels were identified, rejected and interpolated. Data was then epoched from 100 ms pre- stimulus onset to 500 ms post-stimulus for all 945 stimuli presentations with baseline correction from 100 to 0 msec, to provide epochs

for subsequent event-related potential (ERP) analysis. An independent component analysis (ICA) was then conducted, utilizing EEGLABs runica algorithm, to assist in removal of blink and other stereotypical movement artifact components. Selection of components for removal was based on visual inspection of scalp map localization, unusual spectral frequency patterns and irregular ERP-image activity. An average of 7 of 58 components per participant was selected for subtraction. After removal of artifact components, data was segmented into 27 separate datasets, one for each block. A separate dipole fitting analysis was then conducted, utilizing EEGLABs DIPFIT plugin [21], for every block for each subject. Dipole localization was determined utilizing the Talairach Client application [22]. After pre-processing, all datasets were loaded into a STUDY structure for group analysis.

- 1.4 Results
- 1.5 Discussion
- 1.6 Conclusion

Appendices

APPENDIX A SUMMARY TABLE OF STUDIES WITH DEHYDRATION AND COGNITION

Authors	n	%BM Loss	HYPO Method / Control	Cognitive Functions	Reported Effects of HYPO
Wittbrodt et al. [24]	12 M	-1.5	EHS / EHS + Fluids	Information Processing	_
				Attention	_
				Executive Function	_
				Working Memory	_
Weber et al. [35]	32 M	-2.4, 4.8	FR + Exercise / Rest	Simple Reaction Time	_
				Concussion Protocol	_
Armstrong et al. [53]	25 F	~1	Exercise / Exercise + Fluids	Reaction Time	
				Working Memory	_
				Logical Reasoning	_
				Learning	_
				Attention	Increased False Alarms (p < 0.05)
Ganio et al. [54]	26 M	~1	Exercise / Exercise + Fluids	Reaction Time	_
				Working Memory	Increased Errors (p < 0.05)
				Logical Reasoning	_
				Learning	_
				Attention	Increased False Alarms (p < 0.05)
Baker et al. [55]	11 M	1,2,3,4	FR & EHS / EHS + Fluids	Attention	Decreased vigilance (p < 0.001)
Sharma et al. [6]	8 M	1-3	EHS + FR / EHS + Fluids	Motor Coordination	Decreased Score at 2% BM
				Information Processing	Fewer Correct Scores \geq -2% BM
				Working Memory	Fewer Correct Responses at \geq -2% BN
Patel et al. [32]	24 M	2.5	FR & Exercise / Rest	Reaction time	_
				Information Process	ing —
				Working memory	Deteriorated Memory (p < 0.001)
				Motor Coordination	. -
Cian et al. [33]	8 M	2.8	Heat, EHS / Exercise + Flu	uids Long term memory	Shorter String Recall (p < 0.05)
				Reaction Time	_
				Information Process	ing Increased Reaction Time ($p < 0.05$)
				Short Term Memory	Shorter String Recall (p < 0.05)
				Motor Coordination	Elevated Deviation (p < 0.05)

W . 1 [2.4]	10 (0) ()	1.4.0	FIIG / FIIG + FI 11	M · C · I' · ·	D 10 1/ (0.05)
Wong et al. [34]	19 (9M)	1.4 - 2	EHS / EHS + Fluids	Motor Coordination	Decreased Speed (p < 0.05)
				Information Processing	Decreased Accuracy (p < 0.05)
				Working Memory	_
				Short Term Memory	Decreased Accuracy (p < 0.05)
				Attention	Decreased Performance (p < 0.05)
Gopinathan et al. [5]	11 M	0,1,2,3,4	EHS EHS + Fluids	Mental Arithmetic	Decreased Correct at \geq -2% BM
				Short-Term Memory	Decreased Performance at \geq -2% BM
				Executive Function	Decreased Speed at \geq -2% BM
Smith et al. [56]	7 M	-1.5	FR / Rest	Executive Function	Impaired Performance (p < 0.001)
Watson et al. [25]	11 M	1.1	FR / Rest	Attention	Increased Errors after 30 min (p < 0.05)
Barroso et al. [57]	12 M	1.8	EHS / Rest	Reaction Time	Impaired Reaction Time (p < 0.05)
Cian et al. [58]	7M	2.8	FR, EHS / Exercise + Fluids	Long Term Memory	
				Reaction Time	ND
				Short Term Memory	
				Information Processing	

APPENDIX B SUPPLEMENTAL FIGURES

Figure B.1: Meta Regression analysis of body mass loss compared to the mean study effect size in studies examining executive functioning.

7

REFERENCES

- [1] A. Grandjean and N. Grandjean, "Dehydration and cognitive performance," eng, *Journal of the American College of Nutrition*, vol. 26, no. 5 Suppl, 549S–554S, Oct. 2007.
- [2] N. A. Masento, M. Golightly, D. T. Field, L. T. Butler, and C. M. van Reekum, "Effects of hydration status on cognitive performance and mood," *The British Journal Of Nutrition*, vol. 111, pp. 1841–52, May 2014. DOI: 10.1017/S0007114513004455.
- [3] H. Lieberman, "Hydration and cognition: A critical review and recommendations for future research," eng, *Journal Of The American College Of Nutrition*, vol. 26, 555S–561S, Oct. 2007.
- [4] M. Wilson and J. Morley, "Impaired cognitive function and mental performance in mild dehydration," eng, *European Journal of Clinical Nutrition*, vol. 57 Suppl 2, S24–29, Dec. 2003. DOI: 10.1038/sj.ejcn.1601898.
- [5] P. M. Gopinathan, G. Pichan, and V. M. Sharma, "Role of dehydration in heat stress-induced variations in mental performance," eng, *Archives of Environmental Health*, vol. 43, pp. 15–7, Feb. 1988. DOI: 10.1080/00039896.1988.9934367.
- [6] V. M. Sharma, K. Sridharan, G. Pichan, and M. R. Panwar, "Influence of heat-stress induced dehydration on mental functions," *Ergonomics*, vol. 29, no. 6, pp. 791–799, Jun. 1986. DOI: 10.1080/00140138608968315. [Online]. Available: http://dx.doi.org/10.1080/00140138608968315.
- [7] G. Adam, R Carter, S. Cheuvront, D. Merullo, J. Castellani, H. Lieberman, and M. Sawka, "Hydration effects on cognitive performance during military tasks in temperate and cold environments," *Physiology & Behavior*, vol. 93, pp. 748–756, 2008. DOI: 10.1016/j.physbeh.2007.11.028.
- [8] B. Ely, K. Sollanek, S. Cheuvront, H. Lieberman, and R. Kenefick, "Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance," *European Journal Of Applied Physiology*, vol. 113, pp. 1027–1034, 2013. DOI: 10.1007/s00421-012-2506-6.
- [9] H. R. Lieberman, "Methods for assessing the effects of dehydration on cognitive function," eng, *Nutrition Reviews*, vol. 70 Suppl 2, S143–146, Nov. 2012. DOI: 10. 1111/j.1753-4887.2012.00524.x.

- [10] J. King, "Brief account of the sufferings from a detachment of United States Cavalry, from deprivation of water, during a period of eightysix hours, while scouting on the Llano Estacadoi or Staked Plainsi, Texas," *American Journal of Medical Science*, vol. 75, pp. 404–468, 1878.
- [11] E. Adolf, *Physiology of Man in the Desert*. Interscience, 1947.
- [12] H. Lieberman, G. Bathalon, C. Falco, M. Kramer, C. Morgan, and P Niro, "Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat," eng, *Biological Psychiatry*, vol. 57, no. 4, pp. 422–429, Feb. 2005. DOI: 10.1016/j.biopsych.2004.11.014.
- [13] A. J. Krause, E. B. Simon, B. A. Mander, S. M. Greer, J. M. Saletin, A. N. Goldstein-Piekarski, and M. P. Walker, "The sleep-deprived human brain," en, *Nature Reviews Neuroscience*, vol. 18, no. 7, pp. 404–418, Jul. 2017. DOI: 10.1038/nrn.2017. 55. [Online]. Available: http://www.nature.com/nrn/journal/v18/n7/full/nrn.2017.55.html?foxtrotcallback=true.
- [14] M. W. Strachan, I. J. Deary, F. M. Ewing, S. S. Ferguson, M. J. Young, and B. M. Frier, "Acute hypoglycemia impairs the functioning of the central but not peripheral nervous system," eng, *Physiology & Behavior*, vol. 72, no. 1-2, pp. 83–92, Jan. 2001.
- [15] P. K. Opstad, R. Ekanger, M. Nummestad, and N. Raabe, "Performance, mood, and clinical symptoms in men exposed to prolonged, severe physical work and sleep deprivation," eng, *Aviation, Space, and Environmental Medicine*, vol. 49, no. 9, pp. 1065–1073, Sep. 1978.
- [16] V. M. Sharma, G. Pichan, and M. R. Panwar, "Differential effects of hot-humid and hot-dry environments on mental functions," *Int Arch Occup Environ Health*, vol. 52, pp. 315–27, 1983.
- [17] S. Cheuvront and R. Kenefick, "Dehydration: Physiology, assessment, and performance effects," *Compr Physiol*, vol. 4, pp. 257–85, Jan. 2014. DOI: 10.1002/cphy.c130017.
- [18] T. McMorris, J. Swain, M. Smith, J. Corbett, S. Delves, C. Sale, R. C. Harris, and J. Potter, "Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance," *International Journal of Psychophysiology*, vol. 61, no. 2, pp. 204–215, Aug. 2006. DOI: 10.1016/j.ijpsycho.2005.10.002.
- [19] P. A. Hancock and I. Vasmatzidis, "Effects of heat stress on cognitive performance: The current state of knowledge," *Int J Hyperthermia*, vol. 19, pp. 355–72, Jun. 2003. DOI: 10.1080/0265673021000054630.

- [20] D Benton and H. Young, "Do small differences in hydration status affect mood and mental performance?" *Nutr Rev*, vol. 73 Suppl 2, pp. 83–96, Sep. 2015. DOI: 10.1093/nutrit/nuv045.
- [21] S. Cheuvront, R. Kenefick, N Charkoudian, and M. Sawka, "Physiologic basis for understanding quantitative dehydration assessment," Eng, *The American Journal Of Clinical Nutrition*, Jan. 2013. DOI: 10.3945/ajcn.112.044172.
- [22] Y. K. Chang, J. D. Labban, J. I. Gapin, and J. L. Etnier, "The effects of acute exercise on cognitive performance: A meta-analysis," eng, *Brain Research*, vol. 1453, pp. 87–101, May 2012. DOI: 10.1016/j.brainres.2012.02.068.
- [23] S. B. Morris and R. P. DeShon, "Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs," eng, *Psychological Methods*, vol. 7, no. 1, pp. 105–125, Mar. 2002.
- [24] M. T. Wittbrodt, M. Millard-Stafford, R. A. Sherman, and C. C. Cheatham, "Fluid Replacement Attenuates Physiological Strain Resulting From Mild Hypohydration Without Impacting Cognitive Performance," English, *International Journal Of Sport Nutrition And Exercise Metabolism*, vol. 25, pp. 439–447, Oct. 2015. DOI: 10.1123/ijsnem.2014-0173.
- P. Watson, A. Whale, S. A. Mears, L. A. Reyner, and R. J. Maughan, "Mild hypohydration increases the frequency of driver errors during a prolonged, monotonous driving task," *Physiol Behav*, vol. 147, pp. 313–8, Aug. 2015. DOI: 10.1016/j.physbeh.2015.04.028.
- [26] N. Scammacca, G. Roberts, and K. K. Stuebing, "Meta-Analysis With Complex Research Designs: Dealing With Dependence From Multiple Measures and Multiple Group Comparisons," *Review of educational research*, vol. 84, no. 3, pp. 328–364, Sep. 2014. DOI: 10.3102/0034654313500826. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191743/.
- [27] L. V. Hedges, E. Tipton, and M. C. Johnson, "Robust variance estimation in metaregression with dependent effect size estimates," *Res Synth Methods*, vol. 1, pp. 39– 65, Jan. 2010. DOI: 10.1002/jrsm.5.
- [28] E. Tipton, "Small sample adjustments for robust variance estimation with metaregression," English, *Psychological Methods*, vol. 20, no. 3, pp. 375–393, 2015. DOI: 10.1037/met0000011.
- [29] E. E. Tanner-Smith and E. Tipton, "Robust variance estimation with dependent effect sizes: Practical considerations including a software tutorial in Stata and spss," en, *Research Synthesis Methods*, vol. 5, no. 1, pp. 13–30, Mar. 2014. DOI: 10.1002/

- jrsm.1091. [Online]. Available: http://onlinelibrary.wiley.com/ doi/10.1002/jrsm.1091/abstract.
- [30] P. D. Tomporowski, K. Beasman, M. S. Ganio, and K. Cureton, "Effects of dehydration and fluid ingestion on cognition," *International Journal Of Sports Medicine*, vol. 28, pp. 891–896, 2007.
- [31] G. S. Shields, J. C. Bonner, and W. G. Moons, "Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting," *Psychoneuroendocrinology*, vol. 58, pp. 91–103, Aug. 2015. DOI: 10.1016/j.psyneuen.2015.04.017.
- [32] A. V. Patel, J. P. Mihalik, A. J. Notebaert, K. M. Guskiewicz, and W. E. Prentice, "Neuropsychological performance, postural stability, and symptoms after dehydration," *Journal of Athletic Training*, vol. 42, no. 1, pp. 66–75, 2007. [Online]. Available: http://prx.library.gatech.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2007-06591-001&site=ehost-livegus@email.unc.edu.
- [33] C. Cian, N. Koulmann, P. A. Barraud, C. Raphel, C. Jimenez, and B. Melin, "Influence of variations in body hydration on cognitive function: Effect of hyperhydration, heat stress, and exercise-induced dehydration," *Journal of Psychophysiology*, vol. 14, pp. 29–36, 2000.
- [34] S. H. S. Wong, F.-H. Sun, W. Y. J. Huang, and Y.-J. Chen, "Effects of beverages with variable nutrients on rehydration and cognitive function," eng, *International Journal of Sports Medicine*, vol. 35, no. 14, pp. 1208–1215, Dec. 2014. DOI: 10.1055/s-0034-1370968.
- [35] A. F. Weber, J. P. Mihalik, J. K. Register-Mihalik, S. Mays, W. E. Prentice, and K. M. Guskiewicz, "Dehydration and performance on clinical concussion measures in collegiate wrestlers," *Journal of Athletic Training*, vol. 48, no. 2, pp. 153–160, 2013. DOI: 10.4085/1062-6050-48.1.07.
- [36] R. Kenefick and M. Sawka, "Hydration at the Work Site," *Journal of the American College of Nutrition*, vol. 26, no. sup5, 597S–603S, Oct. 2007. DOI: 10.1080/07315724.2007.10719665.
- [37] F. Grego, J. M. Vallier, M. Collardeau, C. Rousseu, J. Cremieux, and J. Brisswalter, "Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise," *International Journal Of Sports Medicine*, vol. 26, pp. 27–33, 2005.
- [38] A. M. J. van den Heuvel, B. J. Haberley, D. J. R. Hoyle, N. A. S. Taylor, and R. J. Croft, "The independent influences of heat strain and dehydration upon cognition,"

- eng, European Journal of Applied Physiology, vol. 117, no. 5, pp. 1025–1037, May 2017. DOI: 10.1007/s00421-017-3592-2.
- [39] S. Bandelow, R. Maughan, S. Shirreffs, K. Ozgnen, S. Kurdak, G. Ersz, M. Binnet, and J. Dvorak, "The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players," *Scandinavian Journal of Medicine and Science in Sports*, vol. 20, pp. 148–160, 2010.
- [40] M. Kempton, U Ettinger, R Foster, S. Williams, G. Calvert, A Hampshire, F. Zelaya, R. O'Gorman, T McMorris, A. Owen, and M. Smith, "Dehydration affects brain structure and function in healthy adolescents," eng, *Human Brain Mapping*, vol. 32, no. 1, pp. 71–79, Jan. 2011. DOI: 10.1002/hbm.20999.
- [41] E. Hogervorst, W. Riedel, A. Jeukendrup, and J. Jolles, "Cognitive performance after strenuous physical exercise," eng, *Perceptual and Motor Skills*, vol. 83, no. 2, pp. 479–488, Oct. 1996. DOI: 10.2466/pms.1996.83.2.479.
- [42] P. D. Lindseth, G. N. Lindseth, T. V. Petros, W. C. Jensen, and J. Caspers, "Effects of hydration on cognitive function of pilots," eng, *Military Medicine*, vol. 178, no. 7, pp. 792–798, Jul. 2013. DOI: 10.7205/MILMED-D-13-00013.
- [43] F.-A. Savoie, R. W. Kenefick, B. R. Ely, S. N. Cheuvront, and E. D. B. Goulet, "Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis," eng, *Sports Medicine (Auckland, N.Z.)*, vol. 45, no. 8, pp. 1207–1227, Aug. 2015. DOI: 10.1007/s40279–015–0349–0.
- [44] L. B. Baker, K. A. Dougherty, M. Chow, and W. L. Kenney, "Progressive dehydration causes a progressive decline in basketball skill performance," eng, *Medicine and Science in Sports and Exercise*, vol. 39, no. 7, pp. 1114–1123, Jul. 2007. DOI: 10.1249/mss.0b013e3180574b02.
- [45] K. E. D'Anci, A. Vibhakar, J. H. Kanter, C. R. Mahoney, and H. A. Taylor, "Voluntary dehydration and cognitive performance in trained college athletes," *Perceptual and Motor Skills*, vol. 109, no. 1, pp. 251–269, 2009. DOI: 10.2466/pms. 109.1.251-269. [Online]. Available: http://prx.library.gatech.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2010-00565-022&site=ehost-live.
- [46] R. Bijlani and K. Sharma, "Effect of dehydration and a few regimes of rehydration on human performance.," eng, *Indian journal of physiology and pharmacology*, vol. 24, no. 4, pp. 255–266, 1980.
- [47] M. N. Sawka, L. M. Burke, E. R. Eichner, R. J. Maughan, S. J. Montain, and N. S. Stachenfeld, "American College of Sports Medicine position stand. Exercise and

- fluid replacement," eng, *Medicine And Science In Sports And Exercise*, vol. 39, pp. 377–90, Feb. 2007. DOI: 10.1249/mss.0b013e31802ca597.
- [48] T. Andreoli, W. Reeves, and D. Bichet, "Endocrine Control of Water Balance," en, in *Comprehensive Physiology*, John Wiley & Sons, Inc., 2010, ISBN: 978-0-470-65071-4. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/cphy.cp070314/abstract.
- [49] P. Saker, M. J. Farrell, F. R. Adib, G. F. Egan, M. J. McKinley, and D. A. Denton, "Regional brain responses associated with drinking water during thirst and after its satiation," *Proc Natl Acad Sci U S A*, vol. 111, pp. 5379–84, Apr. 2014. DOI: 10.1073/pnas.1403382111.
- [50] D Benton and N Burgess, "The effect of the consumption of water on the memory and attention of children," *Appetite*, vol. 53, no. 1, pp. 143–146, Aug. 2009. DOI: 10.1016/j.appet.2009.05.006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0195666309005029.
- [51] G. Kuperberg, "Electroencephalography, Event-Related Potentials, and Magnetoencephalography," in *Essentials of Neuroimaging for Clinical Practice*, 1st ed., American Psychiatric Publishing, 2004, pp. 117–127.
- [52] A. Delorme and S. Makeig, "EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," eng, *Journal of Neuroscience Methods*, vol. 134, no. 1, pp. 9–21, Mar. 2004. DOI: 10.1016/j.jneumeth.2003.10.009.
- [53] L. E. Armstrong, M. S. Ganio, D. J. Casa, E. C. Lee, B. P. McDermott, J. F. Klau, L. Jimenez, L. Le Bellego, E. Chevillotte, and H. R. Lieberman, "Mild dehydration affects mood in healthy young women," *Journal of Nutrition*, vol. 142, pp. 382–388, 2012.
- [54] M. S. Ganio, L. E. Armstrong, D. J. Casa, B. P. McDermott, E. C. Lee, L. M. Yamamoto, S. Marzano, R. M. Lopez, L. Jimenez, L. Le Bellego, E. Chevillotte, and H. R. Lieberman, "Mild dehydration impairs cognitive performance and mood of men," eng, *The British Journal Of Nutrition*, vol. 106, pp. 1535–43, Nov. 2011. DOI: 10.1017/S0007114511002005.
- [55] L. B. Baker, D. E. Conroy, and W. L. Kenney, "Dehydration impairs vigilance-related attention in male basketball players," *Medicine And Science In Sports And Exercise*, vol. 39, pp. 976–983, 2007.
- [56] M. F. Smith, A. J. Newell, and M. R. Baker, "Effect of acute mild dehydration on cognitive-motor performance in golf," *Journal of Strength and Conditioning Research*, vol. 26, pp. 3075–3080, 2012.

- [57] S. d. S. Barroso, R. D. d. Almeida, W. d. S. Gonzaga, S. R.A.e. S. Camerino, R. C. P. Lima, E. S. Prado, S. d. S. Barroso, R. D. d. Almeida, W. d. S. Gonzaga, S. R.A.e. S. Camerino, R. C. P. Lima, and E. S. Prado, "Hydration status and cognitive-motor performance during a fast triathlon race in the heat," *Revista da Educao Fsica / UEM*, vol. 25, no. 4, pp. 639–650, Dec. 2014. DOI: 10.4025/reveducfis.v25i4.22459.
- [58] C. Cian, P. A. Barraud, B. Melin, and C. Raphel, "Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration," *International Journal of Psychophysiology*, vol. 42, no. 3, pp. 243–251, 2001. DOI: 10.1016/S0167-8760 (01) 00142-8.