Lecture 13

Gaussian Process Models - Part 2

Colin Rundel 03/01/2017

EDA and GPs

Variogram

From the spatial modeling literature the typical approach is to examine an *empirical variogram*, first we'll look at the *theoretical variogram* before looking at the connection to the covariance.

Variogram

From the spatial modeling literature the typical approach is to examine an *empirical variogram*, first we'll look at the *theoretical variogram* before looking at the connection to the covariance.

Variogram:

$$2\gamma(t_i, t_j) = Var(Y(t_i) - Y(t_j))$$

= $E([(Y(t_i) - \mu(t_i)) - (Y(t_j) - \mu(t_j))]^2)$

where $\gamma(t_i,t_j)$ is called the semivariogram.

Variogram

From the spatial modeling literature the typical approach is to examine an *empirical variogram*, first we'll look at the *theoretical variogram* before looking at the connection to the covariance.

Variogram:

$$2\gamma(t_i, t_j) = Var(Y(t_i) - Y(t_j))$$

= $E([(Y(t_i) - \mu(t_i)) - (Y(t_j) - \mu(t_j))]^2)$

where $\gamma(t_i,t_j)$ is called the semivariogram.

If the process has constant mean (e.g. $\mu(t_i) = \mu(t_j)$ for all i and j) then we can simplify to

$$2\gamma(t_i,t_j) = E([Y(t_i) - Y(t_j)]^2)$$

3

Some Properties of the theoretical Variogram / Semivariogram

both are non-negative

$$\gamma(t_i,t_j)\geq 0$$

· both are 0 at distance 0

$$\gamma(t_i,t_i)=0$$

· both are symmetric

$$\gamma(t_i,t_j)=\gamma(t_j,t_i)$$

· there is no dependence if

$$2\gamma(t_i, t_j) = Var(Y(t_i)) + Var(Y(t_j))$$
 for all $i \neq j$

· if the process is not stationary

$$2\gamma(t_i,t_j) = Var(Y(t_i)) + Var(Y(t_j)) - 2Cov(Y(t_i),Y(t_j))$$

• if the process is stationary

$$2\gamma(t_i, t_j) = 2Var(Y(t_i)) - 2Cov(Y(t_i), Y(t_j))$$

Empirical Semivariogram

We will assume that our process of interest is stationary, in which case we will parameterize the semivariagram in terms of $h=|t_i-t_j|$.

Empirical Semivariogram:

$$\hat{\gamma}(h) = \frac{1}{2 N(h)} \sum_{|t_i - t_j| \in (h - \epsilon, h + \epsilon)} (Y(t_i) - Y(t_j))^2$$

5

Empirical Semivariogram

We will assume that our process of interest is stationary, in which case we will parameterize the semivariagram in terms of $h=|t_i-t_j|$.

Empirical Semivariogram:

$$\hat{\gamma}(h) = \frac{1}{2 N(h)} \sum_{|t_i - t_j| \in (h - \epsilon, h + \epsilon)} (Y(t_i) - Y(t_j))^2$$

Practically, for any data set with n observations there are $\binom{n}{2}+n$ possible data pairs to examine. Each individually is not very informative, so we aggregate into bins and calculate the empirical semivariogram for each bin.

5

Connection to Covariance

Covariance vs Semivariogram - Exponential

Covariance vs Semivariogram - Square Exponential

From last time

Empirical semivariogram - no bins / cloud

Empirical semivariogram (binned)

Empirical semivariogram (binned + n)

Theoretical vs empirical semivariogram

After fitting the model last time we came up with a posterior median of $\sigma^2=1.89$ and l=5.86 for a square exponential covariance.

Theoretical vs empirical semivariogram

After fitting the model last time we came up with a posterior median of $\sigma^2=1.89$ and l=5.86 for a square exponential covariance.

$$Cov(h) = \sigma^2 \exp\left(-(h l)^2\right)$$

$$\gamma(h) = \sigma^2 - \sigma^2 \exp\left(-(h l)^2\right)$$

$$= 1.89 - 1.89 \exp\left(-(5.86 h)^2\right)$$

Theoretical vs empirical semivariogram

After fitting the model last time we came up with a posterior median of $\sigma^2=$ 1.89 and l= 5.86 for a square exponential covariance.

$$Cov(h) = \sigma^2 \exp\left(-(h l)^2\right)$$
$$\gamma(h) = \sigma^2 - \sigma^2 \exp\left(-(h l)^2\right)$$
$$= 1.89 - 1.89 \exp\left(-(5.86 h)^2\right)$$

Variogram features

PM2.5 Example

FRN Data

Measured PM2.5 data from an EPA monitoring station in Columbia, NJ.

site	latitude	longitude	pm25	date	day
230031011	46.682	-68.016	8.9	2007-01-03	3
230031011	46.682	-68.016	10.4	2007-01-06	6
230031011	46.682	-68.016	9.7	2007-01-15	15
230031011	46.682	-68.016	7.5	2007-01-18	18
230031011	46.682	-68.016	4.6	2007-01-21	21
230031011	46.682	-68.016	9.5	2007-01-24	24
230031011	46.682	-68.016	9.0	2007-01-27	27
230031011	46.682	-68.016	16.2	2007-01-30	30
230031011	46.682	-68.016	9.1	2007-02-05	36
230031011	46.682	-68.016	19.9	2007-02-11	42
230031011	46.682	-68.016	11.5	2007-02-14	45
230031011	46.682	-68.016	6.5	2007-02-17	48
230031011	46.682	-68.016	14.7	2007-02-23	54
230031011	46.682	-68.016	14.1	2007-02-26	57
230031011	46.682	-68.016	13.3	2007-03-01	60
230031011	46.682	-68.016	8.6	2007-03-04	63
230031011	46.682	-68.016	9.0	2007-03-07	66
230031011	46.682	-68.016	14.0	2007-03-10	69
230031011	46.682	-68.016	8.6	2007-03-13	72
230031011	46.682	-68.016	10.3	2007-03-16	75

Mean Model


```
##
## Call:
## lm(formula = pm25 ~ day + I(day^2), data = pm25)
##
## Coefficients:
## (Intercept) day I(day^2)
## 12.9644351 -0.0724639 0.0001751
##
## Call:
## lm(formula = pm25 p. day + I(day^2) data = pm25)
```

Detrended Residuals

Empirical Variogram

Empirical Variogram

Model

What does the model we are trying to fit actually look like?

Model

What does the model we are trying to fit actually look like?

$$y(d) = \mu(d) + w(d) + w$$

where

$$\begin{split} \mu(d) &= \beta 0 + \beta_1 d + \beta_2 d^2 \\ w(d) &\sim \mathcal{GP}(0, \Sigma) \\ w &\sim \mathcal{N}(0, \sigma_w^2) \end{split}$$

```
## model{
##
     v ~ dmnorm(mu, inverse(Sigma))
##
     for (i in 1:N) {
##
       mu[i] \leftarrow beta[1] + beta[2] * x[i] + beta[3] * x[i]^2
##
##
##
##
     for (i in 1:(N-1)) {
       for (j in (i+1):N) {
##
##
         Sigma[i,j] \leftarrow sigma2 * exp(-pow(l*d[i,j],2))
         Sigma[j,i] <- Sigma[i,j]
##
##
##
     }
##
     for (k in 1:N) {
##
##
       Sigma[k,k] <- sigma2 + sigma2 w
##
##
##
     for (i in 1:3) {
##
       beta[i] ~ dt(0, 2.5, 1)
##
     sigma2 w ~ dnorm(10, 1/25) T(0,)
##
     sigma2 ~ dnorm(10, 1/25) T(0,)
##
##
        \sim dt(0, 2.5, 1) T(0,)
## }
```

Posterior - Betas

Posterior - Covariance Parameters


```
## # A tibble: 6 × 5
##
                 post mean
                                post med post lower post upper
       param
## *
       <chr>
                     < fdb>
                                   <fdh>>
                                                 <fdh>>
                                                              <fdh>>
## 1
     beta[1] 7.283488e+00
                            8.667009e+00 -0.7461648059 1.503065e+01
##
     beta[2] -1.627421e-02 -2.817415e-02 -0.0988863015 1.026401e-01
## 3
     beta[3] 5.858818e-05 8.569993e-05 -0.0002481874 2.567976e-04
## 4
             1.277712e-01
                            2.433287e-02 0.0060909947 8.443888e-01
           1
##
      sigma2 9.379213e+00
                            9.016621e+00 1.5643832453 1.979094e+01
##
  6 sigma2 w 1.088809e+01
                            1.116626e+01 4.2665826402 1.448447e+01
```

Fitted Variogram

Empirical + Fitted Variogram

Fitted Model + Predictions

Empirical Variogram (again)

Empirical Variogram Model

Empirical Variogram Model + Predictions

