Brody lemma and Kobayashi metric

Misha Verbitsky November 7, 2024

Contents

Upshot Brody lemma says Kobayashi hyperbolic is equivalent to containing \mathbb{C} .

SO(n) acts on \mathbb{R}^n any SO(n)-invariant quadratic form is proportional to $\sum x_i^2$. The orbits fo SO(n) are spheres...

Definition *Brody curve* is a non-constant holomorphic map $f : \mathbb{C} \to M$ such that $|df| \le C$ for some constant C.

Definition (Δ_r, g_r) a disck of raduis r in $\mathbb C$ and Poincaré metric rescaled "in a such a way that the unit tangent vector to 0 has length 1". *Brody map* is a holomorphic $\Delta_r \to M$ with $|df| \le 1$ and $|df|_{\widehat{\mathcal C}} = 1$.

Lemma 1 Let $f_r : \Delta_r \to M$ be a sequence of Brody maps, then f_r converges uniformly to a Brody curve.

Proof. Took some time, using Kobayashi metric, theorems of uniform convergence. □

Theorem (Brody lemma) Let Mbe a compact complex manifold that is not Kobayashi hyperbolic. Then M contains a Brody curve.

Proof. Somehow we have a sequence of maps, but they are not Brody. To have Brody curve we need to take the limit of Brody maps. \Box