교시차결정알고리듬에 대한 연구

최진혁, 최철민

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《지구우에 존재하는 모든 생명체와 자연현상은 대양의 영향을 크게 받고있습니다. 그러므로 인간생활과 직접 잇닿아있는 대양부터 잘 연구하여 대양의 변화를 미리 예견하고 그것을 사람들에게 알려주어야 합니다.》(《김정일전집》제3권 380폐지)

태양복사응용에서의 끊임없는 기술개발과 함께 태양위치계산에서의 정확도를 높일데 대한 요구는 언제나 제기되다.

선행연구[2]에서는 최근 기초예측위치표 DE405/LE405와 IAU2000A/IAU2006세차-장동 모형들에 기초하여 행성위치계산들의 정확도를 높이고있다.

론문에서는 DE405/LE405와 IAU2000A/IAU2006세차-장동모형에 기초하여 태양위치계 산에 리용되는 교시차계산알고리듬을 작성하였다.

1. 균시차결정알고리듬

진태양의 이동속도에서의 불균일성과 황도면과 적도면사이의 경사에 의하여 진태양시는 년중 계속 변하게 된다. 이 차를 없애기 위하여 가상천체인 평균적도태양을 도입한다. 해당 지역의 자오선을 지날 때를 12^h 로 하고 다음날 다시 자오선을 지날 때까지의 시간간격(24시간)을 하루로 하는 평균태양시를 리용한다.[4]

균시차는 태양의 위치를 보다 정확히 결정할 때 진태양시와 평균태양시사이 보정을 위하여 도입되였다.

균시차결정알고리듬에 대하여 보기로 하자.

① 율리우스력정천년기 JME 를 계산한다.

JME 는 J2000.0표준원기에 대한 율리우스력정천년기인데 다음과 같이 계산된다.

$$JME = \begin{cases} INT(365.25(Y + 4 716)) + INT(30.600 1(M+1)) + \\ + D + B - 1 524.5 + \frac{\Delta T}{86 400} - 2 451 545 \end{cases} / 365 250$$
 (1)

JCE 는 J2000.0표준원기에 대한 율리우스력정세기이며 JCE=10JME 로 계산한다. INT는 계산되는 항의 옹근수부(실례로 8.7=8, 8.2=8, -8.7=8 등), Y는 년(실례로 2001, 2002 등), M은 월(실례로 1월에 대해 1 등)이다. M>2이면 Y와 M은 변하지 않는다. 그러나 M=1 혹은 2이면 Y=Y-1, M=M+12가 성립한다. D는 10진시간을 포함한 월의 일번호(실례로 월의 두번째 날의 12:30:30 UT에 대해 D=2.521 180 556), B는 율리우스력에 대해 0(즉 방정식 (1)에서 B=0을 리용하면 JD<2 299 160)이며 그레고리력에 대해 2-A+INT(A/4)(즉 방정식 (1)에서 B=0을 리용하면 JD>2 299 160)이다. 여기서 A=INT(Y/100)이다.

② 태양의 평균경도 *M*을 계산한다.[6]

 $M = 280.466 \ 457 + 360 \ 007.698 \ 277 \ 9 \cdot \text{JME} + 0.030 \ 320 \ 28 \cdot \text{JME}^2 +$

$$+\frac{\text{JME}^3}{49\ 931} - \frac{\text{JME}^4}{15\ 300} - \frac{\text{JME}^5}{2\ 000\ 000} \tag{2}$$

③ 지심적경 α 를 계산한다.

$$\alpha = \arctan 2 \left(\frac{\sin \lambda \cos \varepsilon - \tan \beta \sin \varepsilon}{\cos \lambda} \right)$$
 (3)

 $\arctan 2$ 는 α 의 정확한 4분구를 지적할수 있게 분자와 분모에 적용되는 \arctan 함수이다. α 는 $-\pi$ 에서 π 까지의 값을 가진다. 여기서 λ 는 겉보기태양경도, ε 은 황도의 진경사, β 는 지심위도이다.[3]

④ 경도장동 $\Delta \psi$ 와 황도의 진경사 ε 을 계산한다.

$$\Delta \psi = \frac{\sum_{i=0}^{n} \Delta \psi_i}{36\ 000\ 000} \tag{4}$$

$$\varepsilon = \frac{\varepsilon_0}{3\ 600} + \Delta\varepsilon \tag{5}$$

 ε_0 은 황도의 평균경사, $\Delta \varepsilon$ 은 경사장동이다.[5]

(5) 균시차 E결정

$$E = M - 0.005 718 3 - \alpha + \Delta \psi \cos \varepsilon \tag{6}$$

2. 결 과 분 석

균시차를 결정하기 위한 알고리듬을 작성하였다. 이 알고리듬으로는 주어진 날자와 시간에 대하여 균시차를 계산할수 있다. 표. 균시차

시험날자 2017년 5월 1일과 2일의 균시차 에 대하여 《천문력2017》과 비교해보자.[1]

표에서 보여준것처럼 평양천문대에서 매해 제출하는 천문력에서의 균시차값과 우리가 작 성한 균시차결정알고리듬으로 계산한 균시차값 이 오차범위내에서 정확히 일치한다.

	ш. шлл	
날자	출처	균시차/(^m)
2017.5.1.	천문력2017	2.87
	계산	2.875 2
2017.5.2.	천문력2017	2.99
	계산	2.991 4

맺 는 말

우리는 기초예측위치표 DE405/LE405와 IAU2000A/IAU2006세차-장동모형에 기초한 균 시차결정알고리듬을 작성하고 이전의 자료와 비교하여 오차범위내에서 정확히 일치하다는 결론을 얻었다. 따라서 이 알고리듬을 실지 관측에 리용할수 있다.

참 고 문 헌

- [1] 강창혁 등 천문력2017, 과학기술출판사, 11~14, 24~28, 주체105(2016).
- [2] J. J. Michalsky; Solar Energy, 40, 3, 227, 1988.
- [3] A. R. Choudhuri; The User's Guide to the Solar Dynamo Code, Surya, 130~180, 2005.
- [4] Astronomy Encyclopedia, Philips, 142~144, 2002.
- [5] F. Garcia et al.; Journal of Computational Physics, 30, 273, 2016.
- [6] M. Blanco et al.; Solar Energy, 70, 5, 431, 2001.

주체106(2017)년 9월 5일 원고접수

On the Algorithm for Determination of the Equation of Time

Choe Jin Hyok, Choe Chol Min

We established the algorithm to determine the equation of time based on the fundamental ephemerides—DE405/LE405 and precession-nutation model—IAU2000A/IAU2006 model, compared them with the older data and concluded that they coincided with each other within errors. Thus we can use it at the practical observation.

Key words: equation of time, nutation, precession