WEEKLY SUBMISSION - TASK 09

POTHUGANTI CHAITHANYA - Personal Code: 10711998

Politecnico di Milano - M.Arch Sustainable Architecture & Landscape Design

DATE: 03 DEC 2019

1) Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Soln:

Date: 03 December 2019

Piacenza Weather Data:

 $T_{out} = 6$ °c

Relative Humidity = 90%

Atmospheric pressure = 1017kpa

From the Graph:

Specific Humidity = 0.005 $\left(\frac{gm \ of \ water}{gm \ of \ dry \ air}\right)$

Wet bulb temperature = 5°c

Specific enthalpy of humid air = $19(\frac{KJ}{Kg \ of \ dry \ air})$

$$P_v = \frac{p.\omega}{0.622 + \omega} = 0.84 \ kg$$

$$V_{room A} = 20 \times 6 \times 6 = 720 m^2$$

$$m_v = \frac{p_v \cdot v}{R_v \cdot T} = \frac{0.84 \times 720}{0.4615 \times (273+6)} = 4.7 \text{ kg}$$

2) Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

		BRINDISI, Italy															
	Lat:	40.65N	Long:	17.95E	Elev	r: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and H	lumidificat	ion Design C	onditions												
					Hu	midification D	Coldest month WS/MCDB MCWS/					VPCWD					
	Coldest Month	Heating DB		99.6%			r / MICODO GINO	99%			4%		1%		to 99.6% DB		
	Worth	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	oling, Dehu	umidificatio	on, and Enth	alpy Desig	n Condition	\$										
		Interest Hottest Cooling DB/MCWB Evaporation WB/MCDB												MCWS/	DOWN		
	Hottest	Month			Cooling DB/MCWB		2%				n WB/MCDB 1% 2%						
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
		Dehumidification DP/MCDB and HR											Enthalpy/MCDB				
		0.4%			1%			2%						2% 8 to 4			
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	nnual Desi	gn Conditie	ons													
		Extreme Extreme Annual DB n-Year Return Period Values of Extreme DB															
	Extr	Extreme Annual WS				Extreme Mean	Annual DB Standard deviation		n=5 years		n-Year Return Period n=10 years		values of Extreme DB n=20 years		n=50	unare	
	1% 2.5% 5		5%	Max WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Soln:

Number of occupants = 2

Number of bed rooms = 1

Height of the building = 2.5m

Area of the floor = 200 m^2

Internal gains:

$$\dot{Q}_{\text{igsensible}} = 136 + 2.2A_{cf} + 22Noc$$

$$= 136 + 2.2 (200) + 22(2)$$

$$= 620 \text{ W}$$

$$\dot{Q}_{\text{iglatent}} = 20 + 0.22A_{cf} + 12Noc$$

$$= 20 + 0.22 (200) + 12(2)$$

$$= 88 \text{ W}$$

INFILTRATION

A house with good construction quality, $A_{ul}=1.4 \frac{cm^2}{m^2}$

Table 3 Unit Leakage Areas A_{ul} , cm²/m² Construction Description Construction supervised by air-sealing 0.7 Tight specialist Good Carefully sealed construction by 1.4 knowledgeable builder 2.8 Average Typical current production housing Typical pre-1970 houses

Very leaky Old houses in original condition 10.4
$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 m^2$$

$$A_{L} = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 cm^2$$

$$T_{cooling} = 24^{\circ}c$$

$$T_{heating} = 20$$
°c

$$\Delta T_{cooling} = 31.1$$
°c - 24°c = 7.1 °c

$$\Delta T_{heating} = 20^{\circ}\text{c} - (-4.1)^{\circ}\text{c} = 24.1^{\circ}\text{c}$$

$$DR = 7.1$$
°c

Given
$$IDF_{heating} = 0.073 \frac{L}{s \times cm^2}$$

 $IDF_{cooling} = 0.033 \frac{L}{s \times cm^2}$

INFILTRATION AIRFLOW RATE

$$Q_{i.heating} = A_L x IDF_{heating} = 481.6 \times 0.073 = 35.15 \frac{L}{s}$$

 $Q_{i.cooling} = A_L x IDF_{cooling} = 481.6 \times 0.033 = 15.89 \frac{L}{s}$

VENTILATION

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5(1 + 1) = 17\frac{L}{s}$$

$$Q_{i-v.heating} = Q_{i.heating} + Q_v = 35.15 + 17 = 52.15 \frac{L}{s}$$

$$Q_{i-v.cooling} = Q_{i.cooling} + Q_{v} = 15.89 + 17 = 32.89 \frac{L}{s}$$

Given that

 $C_{sensible} = 1.23$,

 $C_{latent} = 3010$,

 $\Delta\omega_{cooling}=0.0039$

 $q_{inf-ventilation\;cooling\;sensible} = C_{sensible} \; Q_{i-v.cooling} \; \Delta T_{cooling} \; = 1.23 \; x \; 32.89 \; x \; 7.1 = 287.25 W$

 $q_{inf-ventilation\;cooling\;latent} = \; C_{\;latent} \; Q_{\;i-v.cooling} \; \Delta \omega_{cooling} \; = 3010 \; x \; 32.89 \; x \; 0.0039 = 386.13 \; W$

 $q_{inf-ventilation\;heating\;latent} = C_{sensible}\;Q_{i-v.heating}\;\Delta T_{heating}\;=1.23\;x\;52.15\;x\;24.1 = 1546W$