BI028: Linux and Shell Programming

Maoying, Wu

ricket.woo@gmail.com

Dept. of Bioinformatics & Biostatistics Shanghai Jiao Tong University

Spring, 2016

Course Overview

 Course Description: Linux command line, system administration and bash/python programming

Prerequisite: None

Textbook: None

Grading: Grades will be determined roughly by

5 Quizzes: 20% total

▶ Take-home Practical Final: 30%

Assignments: 20%

Projects: 25%

- Exams: There will be 5 quizzes, 1 bring-home practical final. All exams will be open-book, and cover materials from lectures, discussions, labs and extracurricular readings.
- Webpage: http://cbb.sjtu.edu.cn/course/bi028

Course Plan

Schedule is to be changed according to the practical reasons.

- Lecture 00: Fundamental Knowledge about Linux
- Lecture 01: Dummy Linux Commands
- Lecture 02: Linux File System and System Management
- Lecture 03: Regular Expression SED and AWK
- Lecture 04: Shell Programming (BASH)
- Lecture 05: Fundamental Python Programming
- Lecture 06: Data Structures and Algorithms in Python
- Lecture 07: Scientific computing with Python
- Lecture 08: Data visualization with Python
- Lecture 09: Statistical Analysis with Python
- Lecture 10: Machine learning using Python
- Lecture 11: Process Management and Scheduling
- Lecture 12: System Administration

Assignment Policy

- To: ricket.woo@gmail.com
- Title: lab1_5140809010
- Attachment: lab1_5140809010.tar.gz
- Late Policy
 - Solutions to assignments should be submitted before the due.
 - Being late within 3 days will get the 50% grades.
 - Later more than 3 days will get no grades.

Spring, 2016

4/37

Stop here and Ask

Any Questions?

Next we will talk about ...

- Course Outline
- Computer hardware
- Introduction to linux
 - Operating System (OS)
 - Why Linux?
 - Future Perspectives
 - Basic Knowledge
 - Linux Commands

The Definition of Operating System (OS)

Wikipedia

An **OS** is a collection of software that manages computer resources (CPUs, memory, storage, etc.) and provides universal services for a set of computer programs.

Figure: Operating System

The principal tasks for an OS

- Processor (CPU) Management
- Memory (Storage) Management
- Devices Management
- Application Management
- User Interface (UI)

Next we will talk about ...

- Course Outline
- Computer hardware
- Introduction to linux
 - Operating System (OS)
 - Why Linux?
 - Future Perspectives
 - Basic Knowledge
 - Linux Commands

9/37

What is Linux?

A free and open-source UNIX-like operating system developed under the GNU General Public License (GPL).

- Free and open source.
- More and more popular
- Portable: Supports most of the available computers

Maoying (CBB) Bl028 Spring, 2016 10 / 37

A Short History of UNIX

- Prototype: Multics by AT&T Bell Lab, GE and MIT
- 1969, UNIX by Ken Thompson and Dennis Ritchie
- 1973 UNIX rewritten with C (unprecedented, providing portability)
- Berkeley UNIX (BSD UNIX)
- 1983, System V
- Commercial Products: SunOS, Solaris, HP-UX, AIX, SCO-UNIX

Advantages of UNIX

- Unix is very simple
 - UNIX systems implement only hundreds of system calls and
 - have a straightforward, even basic design.
- In UNIX, everything is a file, which unifies the manipulation of data and devices into a set of core system calls.
- Kernels and all related system utilities are written in C
- Fast process creation and unique fork() system call.
- Providing simple yet robust IPC (inter-process communication) primitives.
- Exhibiting clean layering, with a strong separation between policy and mechanism.

A Short History of Linux (1)

- 1984, Richard Stallman, GNU Project
 - ► GNU's Not Unix:http://www.gnu.org
 - Copyleft
- Purpose: Free UNIX
 - Free as in free speech, not free tickets.
- 1st step: re-implementation of UNIX utilities, especially
 - C Compiler, C library
 - emacs/bash
- To fund the GNU project Free Software Foundation (FSF)
 - http://www.fsf.org

A Short History of Linux (2)

- 1991, Linus Torvalds, 1st version of Linux Kernel
 - ▶ Initially on the 386 protected mode
 - Linus's UNIX = Linux
- 1992: 1st distributions emerged
 - Linux Kernel
 - GNU and other tools
 - Installation procedure
- The rest is well-known history ...
 - RedHat, Ubuntu, Debian, OpenSuSe, etc.

A Typical Computer System Architecture

Programmer's Viewpoint

16/37

Next we will talk about ...

- Course Outline
- Computer hardware
- Introduction to linux
 - Operating System (OS)
 - Why Linux?
 - Future Perspectives
 - Basic Knowledge
 - Linux Commands

Maoying (CBB) Bl028 Spring, 2016 17 / 37

Future Perspectives

"I'm too tired to hear the whole story. Who wins, the bear or the bull?"

Maoying (CBB) Bl028 Spring, 2016 18 / 37

Next we will talk about ...

- Course Outline
- Computer hardware
- Introduction to linux
 - Operating System (OS)
 - Why Linux?
 - Future Perspectives
 - Basic Knowledge
 - Linux Commands

19/37

2-M: Multi-User and Multi-tasking

- Linux is a multi-user, multi-tasking OS
 - Multiple users can run multiple tasks simultaneously, independent of each other.
- Always need to "log in" before using the system
 - Identify yourself with username + password
- Ways to log in to the system
 - Console: Directly attached keyboard, mouse, monitor
 - Serial terminal
 - Network connection (ssh, telnet, etc.)

Next we will talk about ...

- Course Outline
- Computer hardware
- Introduction to linux
 - Operating System (OS)
 - Why Linux?
 - Future Perspectives
 - Basic Knowledge
 - Linux Commands

Linux Commands

- Many things on a Linux system can be done by typing commands
- Note that the GUI (X-window) is not needed for running a Linux system.
- In order to type commands in X-window you need to start a terminal emulator
- Command Prompt
 - Can be configure yourself, the default is
 - \$ "logged in as a regular user"
 - # "logged in as root (privileged user)"

Start Linux

Now start Linux and log in as administrator "root"; and then open a terminal on your desktop. See, what's your command prompt?

Command Syntax

Syntax format

¡command¿ [option(s)] [argument(s)]

Examples

```
# list files and directories in current directory
ls
# list files and directories lengthily
ls -1
# list files and directories in /dev
ls /dev
ls -al /dev
```

Some Useful Commands

- passwd: Change your password
- mkpasswd: Generate a random password
- date, cal: Find out today's date and display a calendar
- who, finger: Find out who else is active on the system
- clear: Clear the screen
- echo: Write a message to your screen
- write, wall, talk, mesg: Inter-user communication
- ...

who, what, where, where to go

pwd: Print Working Directory

• uname: Print the system information

whoami: Who am I

• cd: Change Directory

pwd: knowing where you are now

- Synopsis: pwd
- All the path names are started with a slash ("/"), for example
- "/root" is the home directory for root
- "/home/xxx" is the home directory for user "xxx"
- Use command "which pwd" can show you where your command locates
- Most of the user commands are stored in /bin or /usr/bin
- Commands for super user are in the directories /sbin and /usr/sbin

uname: knowing what my system is

- Synopsis: uname option(s) ● uname -a: --all • uname -i: --hardware-platform • uname -m: --machine • uname -n: --node-name • uname -o: --operation-system • uname -r: --kernel-release • uname -s: --kernel-name • uname -v: --kernel-version uname -p: --processor
- You can use uname --help to obtain more information for this command.
- This command is very useful in compiling the system-dependent code.

whoami: knowing who you are

- Synopsis: whoami
- The command is different from "who am i"
- and also "who"
- Now guess what the command "who" can do for you?

cd: change directory to

- Synopsis: cd dir_name
- Command "cd" without any argument will direct you to your home directory
- Command "cd ~xxx" can direct you to the home directory of user "xxx"
- You can use either absolute pathname to visit the directory, e.g. "cd /tmp" or
- You can also use relative pathname to visit the relevant directory.
- If you are root, you can visit anywhere; but if you are a normal user, maybe you will be forbidden to visit somewhere, for example "/root".

How to get help for a command

- "man" command
 - for example "man Is" can return the manual for the command "Is"
 - manpage is stored in the directory/usr/share/man/
- "info"
- command --help or command -h
- HOWTO Documentation
- Refer to Internet

31/37

The man command (1)

- With the man command you can get the manual page of commands
- Manual pages are stored in /usr/man or /usr/share/man
- The manual page consists of:
 - NAME: The name of the command and a online description
 - SYNOPSIS: The syntax of the command
 - ▶ DESCRIPTION: Explanation of how the command works and what it does
 - Files: The files used by the command
 - Bugs: Known bugs and errors
 - ▶ See also: Other relevant commands

The man command (2)

- The "-k" option
 - man -k print
- Manual pages are divided into 8 sections:
 - User commands
 - System calls
 - Libc calls
 - Devices
 - File formats and protocols
 - Games
 - Conventions, macro packages and so forth
 - System administration
- To select the correct section, add section number:
 - man 1 passwd
 - man 5 passwd

The info command

- FUNCTION: Read documentation, sometimes an alternative for manual pages
- Information for info is stored in /usr/info or /usr/share/info
- Some info commands:
 - SPACE: next screen of text
 - DELETE: previous screen of text
 - n: next node
 - p: previous node
 - u: up node
 - q: quit info
 - TAB: skip to next menu item

34 / 37

Working with Files and Directories

What is a file?

- A collection of data
- An object that can be read from, or written to, or both.
- All the objects in Linux are files
- A file has certain attributes include
 - File type
 - Access permissions

File Structure

- Generally: byte stream, record sequence, record tree
- In Linux: byte stream

Maoying (CBB) Bl028 Spring, 2016 35 / 37

Directory Structure

• Linux File System Standard: http://www.pathname/fhs

36 / 37

Maoying (CBB) Bl028 Spring, 2016