Équations, inéquations et systèmes

Exercice 1:

1. Dresser le tableau de signe de :

$$-4x+8$$
, $2x-3$, $(5x-2)(3x+1)$ et $\frac{-4x+8}{6x+2}$

2. Résoudre dans \mathbb{R}^2 les systèmes suivants :

$$\begin{cases} 5x - 2y = 4 \\ -3x + 4y = 6 \end{cases} \begin{cases} 10x + y = 7 \\ 100x + y = 1 \end{cases}$$

$$\begin{cases} 3x + 4y = 1 \\ x - 2y = 2 \end{cases} \begin{cases} 3x - 2y = 6 \\ \frac{x}{2} - \frac{y}{3} = 0 \end{cases}$$

Exercice 2 : Résoudre dans \mathbb{R} les équations suivantes :

- 1. $2x^2 + x 1 = 0$
- 2. $x^2 8x + 16 = 0$
- 3. $-2x^2 + 2\sqrt{2}x 1 = 0$
- 4. $x^2 2x 3 = 0$
- 5. $x^4 4\sqrt{2}x^2 + 6 = 0$
- 6. $3x^4 4\sqrt{3}x^2 + 4 = 0$
- 7. $-3x^2 + 5x 4 = 0$

Exercice 3: Factoriser si c'est possible les trinômes suivants :

- 1. $P_1(x) = 2x^2 + 3x 2$
- 2. $P_2(x) = -3x^2 + 7x 2$
- 3. $P_3(x) = 25x^2 10x + 1$
- 4. $P_4(x) = 3x^2 + 6\sqrt{3}x + 9$
- 5. $P_5(x) = -3x^4 + x^2 2$
- 6. $P_5(x) = -3x^2 + x 2$

Exercice 4 : Étudier le signe du trinôme P(x) :

1. $P(x) = x^2 - 7x + 12$

Niveau: TCS

- 2. $P(x) = -x^2 + 6x 9$
- 3. $P(x) = -x^2 + 2x 3$
- 4. $P(x) = 7x^2 + 12x + 5$
- 5. $P(x) = x^2 + x + 1$

Exercice 5 : Résoudre dans \mathbb{R} les inéquations :

- 1. $x^2 5x + 6 \ge 0$
- 2. $x^2 8x + 5 < 0$
- 3. $49x^2 70x + 25 > 0$
- 4. $-x^2 + x + 3 < 0$
- 5. $-9x^2 + 6\sqrt{2}x 2 > 0$
- 6. $\frac{x^2-6x+9}{3x^2+10x-8} \ge 0$
- 7. $\frac{x^2 8x + 9}{x^2 4x} < 0$
- $8. \ \frac{x^2 8}{x^2 + 12x 13} \ge 0$
- $9. -\frac{2x^2 + x + 1}{x^2 4x 5} \ge 0$

Exercice 6 : On considère l'équation

$$(E): -2x^2 + \sqrt{2}x + 2 = 0$$

- 1. Montrer que l'équation (E) admet deux solutions distinctes α et β (sans les calculer).
- 2. Calculer $\alpha + \beta$, $\alpha \times \beta$, $\frac{1}{\alpha} + \frac{1}{\beta}$, $\alpha^2 \beta + \alpha \beta^2$, $\alpha^2 + \beta^2$, $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ et $\alpha^3 + \beta^3$.