Predicción de Ventas con Machine Learning

Mirlenis Tovar Junio 2025

"Una herramienta de apoyo a la toma de decisiones basada en datos históricos de ventas."

Abstracto/ Motivación

¿Por qué este proyecto?

En el contexto actual de la industria farmacéutica, predecir las ventas es esencial para:

- Optimizar la planificación de stock
- Mejorar la eficiencia comercial
- Detectar tendencias y tomar decisiones proactivas

Este modelo predice el importe vendido neto por producto, usando datos históricos entre 2019 y 2025.

PROBLEMAY AUDIENCIA

Problema de negocio:

¿Cómo podemos predecir las ventas de un producto?

Audiencia objetivo:

Gerentes comerciales y de ventas

Objetivo:

Construir un modelo predictivo que permita anticipar montos de venta según múltiples variables: artículo, vendedor, cliente, ubicación y tipo de cliente.

DATOS UTILIZADOS ©

• Origen: Base de datos propia (XLSX)

Período: 2019 - mayo 2025

Registros: 531.893 filas

Variables clave:

- Artículo y familia
- Tipo de cliente
- Provincia / Localidad
- Vendedor
- Fecha
- Importe vendido neto

Se plantearon preguntas clave que guiaron el desarrollo del modelo y las visualizaciones:

- ¿Cuáles son los productos más vendidos por importe neto? Para identificar qué artículos impulsan las ventas totales.
- ¿Qué vendedores generan mayor volumen de ventas? Para reconocer patrones de rendimiento comercial.
- ¿Qué provincias o localidades concentran la mayor facturación? Para detectar oportunidades de crecimiento geográfico.
- ¿El tipo de cliente influye en el volumen de ventas? Para segmentar estrategias comerciales.
 - ¿Podemos predecir el importe vendido neto con variables como producto, cliente, vendedor, zona y fecha?

Para automatizar decisiones futuras.

METODOLOGÍA

Proceso aplicado:

- Limpieza y transformación de datos
- Codificación de variables categóricas
- División en entrenamiento y prueba (80/20)
- Entrenamiento de modelos:
- Regresión Lineal (modelo base)
- Random Forest Regressor (modelo final)

Métricas utilizadas:

- MSE (Error Cuadrático Medio)
- R² (Coeficiente de Determinación)

RESULTADOS DE LOS MODELOS

Modelo	MSE	R ²
Regresión Lineal	119.840.733.939	0.096
Random Forest	98.833.459.198	0.255 🗸

VISUALIZACIONES CLAVE

Top 10 artículos más vendidos:

2.
Top 10 vendedores por cliente:

Hallazgos principales:

- Los productos con mayor venta representan el 60% del volumen total.
- Ciertos vendedores concentran más del 40% del importe vendido.
- El modelo predice mejor en artículos con comportamiento estable y clientes frecuentes.
- Hay oportunidades en provincias con baja presencia de vendedores top.

INSIGHTS EJECUTIVOS

¿Qué podemos hacer con esto?

- Enfocar las campañas en los artículos más predictivos.
- Asignar vendedores top a zonas menos desarrolladas.
- Optimizar el inventario por provincia según estacionalidad.
- Continuar mejorando el modelo con más variables: clima, promociones, días hábiles.

Este proyecto demuestra cómo el uso de Machine Learning permite:

- Prever ingresos
- Detectar patrones de venta
- Tomar decisiones comerciales más informadas

GRACIAS

Presentado por: Mirlenis Tovar Industria farmacéutica – Data Science II Junio 2025

