- 0. MOTIVATION
- 1. PROBLEM SOLVING
- 2. INFORMATION
- 3. COUNTING
- 4. BITS
- 5. CODES
- 6. ALGORITHMS
- 7. COMPUTERS
- 8. ARITHMETIC
- 9. MEMORY
- 10. ANALOG VS. DIGITAL

MOTIVATION

digitally illiterate society with a few experts

collective understanding

You?

society with a distributed and high degree of digital education

artificial Intelligence

data analysis

representation

processing

programming

artificial intelligence

data analysis

representation

processing

programming

digital fundamentals

digital applications

artificial intelligence

data analysis

representation

processing

programming

digital fundamentals

digital fundamentals

PROBLEM SOLVING

a model for solving problems

a model for solving problems

problem solving strategies

divide and conquer

smaller problem	smaller problem
smaller problem	smaller problem

even smaller problem	smaller problem
even smaller problem	
smaller problem	smaller problem

is 67 a prime number?

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

19 steps... can't we do better?

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

binary search 67!= 41 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

67 > 41


```
binary search 67 > 41

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

1
67!=71
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

67!=59
```

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

1
67 > 59
```

$$\frac{2}{5}$$
, $\frac{5}{5}$, $\frac{7}{7}$, $\frac{11}{13}$, $\frac{17}{17}$, $\frac{19}{19}$, $\frac{23}{29}$, $\frac{29}{31}$, $\frac{37}{37}$, $\frac{41}{43}$, $\frac{47}{53}$, $\frac{59}{59}$, $\frac{61}{67}$, $\frac{71}{73}$, $\frac{79}{79}$, $\frac{83}{89}$, $\frac{89}{97}$.

$$\frac{2}{5}$$
, $\frac{5}{5}$, $\frac{7}{7}$, $\frac{11}{13}$, $\frac{17}{17}$, $\frac{19}{19}$, $\frac{23}{29}$, $\frac{29}{31}$, $\frac{37}{37}$, $\frac{41}{43}$, $\frac{47}{53}$, $\frac{59}{59}$, $\frac{61}{67}$, $\frac{67}{71}$, $\frac{73}{79}$, $\frac{83}{89}$, $\frac{89}{97}$.

3 splits → much better

$$\frac{2}{5}$$
, $\frac{5}{5}$, $\frac{7}{7}$, $\frac{11}{13}$, $\frac{17}{17}$, $\frac{19}{19}$, $\frac{23}{29}$, $\frac{29}{31}$, $\frac{37}{37}$, $\frac{41}{43}$, $\frac{47}{53}$, $\frac{59}{59}$, $\frac{61}{67}$, $\frac{67}{71}$, $\frac{73}{79}$, $\frac{83}{89}$, $\frac{89}{97}$.

how efficient are linear and binary search in general?

how many words are in the book?

strategies, anyone?

page 1

n = 1327 pages

Ø 2:23 minutes per page

~ 52.34 hours

divide and conquer

+

7

divide and conquer

4

distribution and parallelization

recursion

INFORMATION

{A}

AA

AA

AB

BA

BB

{A, B}

AA, AB, BA, BB

{A, B, C}

{A, B, C}

AA, AB, BA, BB, AC, BC, CA, CB, CC

{A, B, C, D}

{A, B, C, D}

AA, AB, BA, BB, AC, BC, CA, CB, CC, AD, DA, BD, DB, CD, DC, DD

{A, B, C, D, E}

{A, B, C, D, E}

AA, AB, BA, BB, AC, BC, CA, CB, CC, AD, DA, BD, DB, CD, DC, DD, AE, EA, BE, EB, CE, EC, DE, ED, EE

with length n = 2

# symbols	# messages
1	1
2	4
3	9
4	16
5	25

with length n = 2

{A, B}

COUNTING

1 2 3

1 2 3 10² 10¹ 10⁰ 1 2 3

10² 10¹ 10⁰

 $= 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$ $= 1 \times 100 + 2 \times 10 + 3 \times 1$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 1000 + 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 1000 + 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4123$$

Human Hand

Human Hand

Cartoon Character's Hand

2 3 (octal)

2 3 (octal)

8² 8¹ 8⁰

1 2 3 (octal)

8² 8¹ 8⁰

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

2 3 (octal)

8² 8¹ 8⁰

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

$$= 1 \times 64 + 2 \times 8 + 3 \times 1$$

(octal)

8²

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

$$= 1 \times 64 + 2 \times 8 + 3 \times 1$$

= 83 (decimal)

? - 7

What now?

0, 1, ...

0, 1, 10, ...

0, 1, 10, 11, ...

0, 1, 10, 11, 100, ...

0, 1, 10, 11, 100, 101, ...

0, 1, 10, 11, 100, 101, 110

(binary)

1 0 (binary)
2² 2¹ 2⁰

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

1 0 (binary)

2² 2¹ 2⁰

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 1 \times 4 + 1 \times 2 + 0 \times 1$$

1 0 (binary)
22 21 20

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 1 \times 4 + 1 \times 2 + 0 \times 1$$

$$= 6 \text{ (decimal)}$$

2 3 4 5 6 0, 1, 10, 11, 100, 101, 110

Place Value Systems

$$N = d_n * R^{n-1} + ... + d_1 * R^1 + d_0 *$$

$$d \in \{0, 1, ... R-1\}$$

n = Number of digits

Place Value Systems

R ≥ 2

BITS

Why do computers think binary?

A Bit (binary digit)

A byte (8 bits)

What can we store in one byte?

Are we stuck with binary?

What about ternary?

CODES

A B C D ... a b c d
65 66 67 68 97 98 99 100

ASCII Code

A B C D ... a b c d 65 66 67 68 97 98 99 100

1F648

1F600 1F601

1F602 1F603

1F649 1F64A 1F64B

Unicode

#AC8909

possible colors?

R

2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

2²³ 2²² 2²¹ 2²⁰ 2¹⁹ 2¹⁸ 2¹⁷ 2¹⁶ 2¹⁵ 2¹⁴ 2¹³ 2¹² 2¹¹ 2¹⁰ 2⁹ 2⁸

2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

compression?

0	1	1	1	0
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	1	1	1	1
1	0	0	0	1
1	0	0	0	1

0	1	1	1	0
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	1	1	1	1
1	0	0	0	1
1	0	0	0	1

$0\ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1$

0 1 1 1 0 1 0 0 0 1 1 0 0

ALGORITHMS

complexity

O(n)

COMPUTERS

ARITHMETIC

MEMORY

ANALOG VS. DIGITAL