デジタルメディア処理2

担当: 井尻 敬

デジタルメディア処理2、2017(前期)

4/20 フィルタ処理1 : 画素ごとの濃淡変換、線形フィルタ、非線形フィルター

4/27 フィルク処理2 : フ リエ変換, ロ パスフィルタ, ハイパスフィルター

5/18 画像の幾何変換2 : 画像の補間, イメージモザイキングー

6/01 前半のまとめ (約30分)と中間試験 (約70分)

6/08 特徴検出1 : テンプレートマッチング、コーナー・エッジ検出

6/15 特徴検出2 : DoG、SIFT特徴量、Hough変換

6/22 画像認識1 : パターン認識概論, サポートベクタマシン

6/29 画像認識2 : ニューラルネットワーク、深層学習

7/06 画像処理演習 : ImageJを使った画像処理 7/13 画像処理演習 : Pythonプログラミング 7/20 後半のまとめ (約30分)と期末試験(約70分)

Contents

- パターン認識概論
- •特徵抽出
- 識別器
 - kNN
 - サポートベクターマシン
 - Random forests

パターン認識

『データの中の規則性を自動的に見つけ出し、その規則性を使って データを異なるカテゴリに分類する処理』 (PRML, C.M. Bishop)

例) 手書き文字画像の認識

パターン認識

『データの中の規則性を自動的に見つけ出し、その規則性を使ってデータを異なるカテゴリに分類する処理』 (PRML, C.M. Bishop)

データ 研究分野

画像 画像認識 (Computer vision)

手書き文字 文字認識 (Optical character recognition)

音声 音声認識 (Speech recognition)

Genome Bioinformatics 生体 Biometrics

身近な応用例 - 音声認識

iOS

Windows

siri

Dictation

『コントロールパネル > 音声認識』

身近な応用例 - 文字認識

Windows IME pad 読めない漢字の手書きにより検索を支援

身近な応用例 - その他

指紋認証

顔認識

© IEEE Trans. Cyber. Hubert Shum, et al.

姿勢追跡 ジェスチャ認識

パターン認識

『データの中の規則性を自動的に見つけ出し、その規則性を使ってデータを異なるカテゴリに分類する処理』 (PRML, C.M. Bishop)

1) クラス分類 Classification

『複数の入力データを<mark>既知</mark>のクラスに分類する』 ※クラス分類のみをパターン認識と呼ぶ事もある

2) クラスタリング Clustering

『複数の入力データから<mark>未知</mark>の類似したグループ (クラスタ)を発見する』

1) クラス分類 Classification

『複数の入力データを既知のクラスに分類する』

例) 果物の写真を、リンゴ・バナナ・みかんの3クラスに分類せよ

2) クラスタリング Clustering

『複数の入力データから<mark>未知</mark>の類似したグループ (クラスタ)を発見する』

例) 果物の写真を、類似したグループを発見せよ

パターン認識

『データの中の規則性を自動的に見つけ出し、その規則性を使ってデータを異なるカテゴリに分類する処理』 (PRML, C.M. Bishop)

1) クラス分類 Classification

『複数の入力データを既知のクラスに分類する』

2) クラスタリング Clustering

『複数の入力データから未知の類似したグループを発見する』

パターン認識

『データの中の規則性を自動的に見つけ出し、その規則性を使って データを異なるカテゴリに分類する処理』 (PRML, C.M. Bishop)

1) クラス分類 Classification 本日の対象はこちら

『複数の入力データを既知のクラスに分類する』 ※クラス分類のみをパターン認識と呼ぶ事もある

2) クラスタリング Clustering

『複数の入力データから未知の類似したグループ (クラスタ)を発見する』

『写真を、リンゴ・バナナ・みかんの3クラスに分類せよ』

ID: リンゴ

下解画像群 クラスIDが既に付いた画像群 (教師データと呼ばれる)

分類対象画像群 この画像を分類したい

『写真を、リンゴ・バナナ・みかんの3クラスに分類せよ』

前処理:画像から前景領域を抽出する

自動分割に関する既存手法は多いの でどれかを使う Otsu method, Grab cut, Saliency map + graph cut

『写真を、リンゴ・バナナ・みかんの3クラスに分類せよ』

特徴抽出:画像からクラスを良く分離する特徴量(数値データ)を抽出する

- 前景領域の平均の色
- HSV色空間の彩度V

彩度:8

彩度:28

『写真を、リンゴ・バナナ・みかんの3クラスに分類せよ』

特徴抽出:画像からクラスを良く分離する特徴量(数値データ)を抽出する

2. 円形度: 領域が円に近い度合

A:領域の面積 L:領域の周囲長

 $L^2/4\pi$: 周囲長Lの円の面積

円形度 1.0 円形度 0.785 円形度 0.604

『写真を、リンゴ・バナナ・みかんの3クラスに分類せよ』

特徴抽出:画像からクラスを良く分離する特徴量(数値データ)を抽出する

(1)平均彩度と(2)円形度により、 入力画像を2D空間に配置できる 特徴空間

『写真を、リンゴ・バナナ・みかんの3クラスに分類せよ』

識別:特徴空間に入力画像を射影(配置)し、クラスIDを割り当てる

1. 正解画像を特徴空間に射影

ID: みかん

2. 分類したい画像も特徴空間射 影し距離が一番近い正解画像 のIDを返す

※ Nearest neighbor 法

クラス分類の一般的な処理手順

クラス分類の一般的な処理手順

特徴抽出のための前処理

データが画像ならば…

二値化、平滑化、先鋭化、特徴保存平滑化、など

クラス分類の一般的な処理手順

入力データ群に対し,同じクラスは近く・異なるクラス遠くなるような特徴空間にデータを射影する

良い特徴空間を構築するには、知識・経験・試行錯誤が必要

画像認識: HLAC・SIFT・HoG特徴などが有名

- ※最近流行りの深層学習は特徴量の設計もデータから学習する
- ※深層学習の発展に伴い、人がデザインした特徴量は「Hand Craftな」特徴量と呼ばれる

クラス分類の一般的な処理手順

正解データ群を利用して特徴空間を分割する(訓練) 識別対象を特徴空間に射影し、上記の分割結果を用いてラベルを割り振る クラス分類の手法

K-Nearest Neighbor, ベイズ決定則, 決定木(random forests), サポートベクタマシン ニューラルネットワーク, etc…

まとめ:パターン認識とは

『データの中の規則性を自動的に見つけ出し、その規則性を使ってデータを異なるカテゴリに分類する処理』 (PRML, C.M. Bishop)

1) <u>クラス分類 Classification</u>

複数の入力データを<mark>既知</mark>のクラスに分類する ※クラス分類のみをパターン認識と呼ぶ事もある

2) クラスタリング Clustering

複数の入力データから未知の類似したグループ (クラスタ)を発見する

クラス分類の一般的な手順は以下の通り

識別器

- 教師データ(ラベルつき特徴ベクトル)から特徴空間の分割方法を学習し、 未知データにラベル付けを行なう手法
- プロトタイプ法, kNN(k-Nearest-Neighbor法), SVM(Support Vector Macine)RM(Random Forest)

プロトタイプ法

- 各クラスを代表する点を選択(作成)↑これをプロトタイプと呼ぶ
 - 代表的なデータをプロトタイプにする
 - クラス内データの平均値をプロトタイプにする
- 未知データを特徴空間に配置し, 最も近い プロトタイプのラベルを識別結果とする

プロトタイプ法 と マハラノビス距離

プロトタイプまでの距離で識別するのはOK でも明らかに分布の形が異なるクラス同士を ユークリッド距離で比較していいの?

右図において…

- 赤:平均(2,2), 分散共分散 $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ のガウス分布
- 青:平均(10,2),分散共分散 $\begin{pmatrix} 0.3 & 0 \\ 0 & 0.3 \end{pmatrix}$ のガウス分布
- 未知データ (6,2)はどちらのクラス?

プロトタイプ法 と マハラノビス距離

N個の点群 $\mathbf{x}_i \in R^d$ の平均と分散共分散行列は…

平均: $\mathbf{m} = \frac{1}{N} \sum_{i} \mathbf{x}_{i}$

分散共分散行列: $\mathbf{S} = \frac{1}{N} \sum_{i} (\mathbf{x}_{i} - \mathbf{m}) (\mathbf{x}_{i} - \mathbf{m})^{T}$

点 $\mathbf{p} \in \mathbb{R}^d$ と \mathbf{m} のユークリッド距離:

$$d = \sqrt{(\mathbf{p} - \mathbf{m})^T (\mathbf{p} - \mathbf{m})}$$

点 $\mathbf{p} \in \mathbb{R}^d$ と \mathbf{m} のマハラノビス距離:

$$d = \sqrt{(\mathbf{p} - \mathbf{m})^T \mathbf{S}^{-1} (\mathbf{p} - \mathbf{m})}$$

プロトタイプ法 と マハラノビス距離

- 赤:平均(2,2), 分散共分散 $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ のガウス分布
- 青:平均(10,2),分散共分散 $\begin{pmatrix} 0.3 & 0 \\ 0 & 0.3 \end{pmatrix}$ のガウス分布
- マハラノビス距離を用いた場合未知データ (6,2)は どちらのクラス?

※マハラノビス距離は点群の分布を考慮し、分散の大きさの逆数で正規化した距離と考えられる

kNN(k-Nearest Neighbor法)

- 特徴空間において、未知データとの距離が 最も近いk個の教師データを検索し、その 点の多数決でラベルを決定する
- 特徴空間の次元が低く教師データの量が十分多いときには高い精度が得られる
- 全教師データを保持するのでメモリ消費が 大きい
- 素朴な実装をすると計算量も大きくなる

kd-tree

- K-dimensional tree
- 2分木構造により空間を分割し, 高速な近傍探索を可能にする
- 近傍探索の計算複雑度は

平均 O(log N) 最悪ケース O(N)

kd-treeの構築

• 下を繰り返す

空間を分割する軸を決定し軸に沿って点群を ソート

中央の点を現在ノードに割り当て, 左側の点群を左の子に, 右側の点群を右の子にする

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

kd-treeの構築

• 下を繰り返す

空間を分割する軸を決定し軸に沿って点群を ソート

中央の点を現在ノードに割り当て, 左側の点群を左の子に, 右側の点群を右の子にする

kd-treeの構築

• 下を繰り返す

空間を分割する軸を決定し軸に沿って点群を ソート

中央の点を現在ノードに割り当て,左側の点 群を左の子に,右側の点群を右の子にする

kd-treeの構築

• 下を繰り返す

空間を分割する軸を決定し軸に沿って点群を ソート

中央の点を現在ノードに割り当て, 左側の点群を左の子に, 右側の点群を右の子にする

kd-treeの構築

点pの最近傍点探索

木を下方向にたどり葉ノードを見つけ、これを暫定的な最近傍点とする(近似解でよければここで終了) 到達した葉ノードから木を上方向にたどり、 ちゅから

到達した葉ノードから木を上方向にたどり、点pからの距離がR以下の領域は検索する、

kd-treeの構築

点pの最近傍点探索

木を下方向にたどり葉ノードを見つけ,これを暫定的な最近傍点とする(近似解でよければここで終了) 到達した葉ノードから木を上方向にたどり、点pからの距離がR以下の領域は検索する、

kd-treeの構築

点pの最近傍点探索

木を下方向にたどり葉ノードを見つけ, これを暫定的な 最近傍点とする(近似解でよければここで終了)

到達した葉ノードから木を上方向にたどり, 点pからの 距離がR以下の領域は検索対象として下方向にたどる

二分木でクラス分類を表現

Node:特徴ベクトルに基づいた分割規則

が定義される

Leaf : クラスに対応

• Xが観察される → 木を辿り分類先を決定

- 分類 (test) が高速
- 実装が簡単
- 木が深くなると過学習
- DNNに近い成績(要出展)

Decision tree

Random forests

決定木 (classification tree / decision tree)

二分木でクラス分類を表現

Node:特徴ベクトルに基づいた分割規則

が定義される

Leaf : クラスに対応

• Xが観察される → 木を辿り分類先を決定

• 分類 (test) が高速

• 実装が簡単

• 木が深くなると過学習

• DNNに近い成績(要出展)

決定木の学習 (概要)[Fielding 77; Quinlan 93; Breiman 84]

入力:教師データ (Y_i, X_i) , 木の深さD

- 1. Root に全教師データを関連付け
- 2. 深さがDになるまで以下を繰り返す
- + Node d に注目
- + d に属すデータ群を二分割するルールを決定
- ランダムに候補を作成
- なるべく偏りが大きなルールを選択
- + d の子に分割したデータ群を関連付け
- 3. 葉にラベル付け(属するデータの多数決)

決定木の学習 (概要)[Fielding 77; Quinlan 93; Breiman 84]

入力: 教師データ (Y_i, \mathbf{X}_i) , 木の深さD

- 1. Root に全教師データを関連付け
- 2. 深さがDになるまで以下を繰り返す
- + Node d に注目
- +d に属すデータ群を二分割するルールを決定
- ランダムに候補を作成
- なるべく偏りが大きなルールを選択
- + d の子に分割したデータ群を関連付け
- 3. 葉にラベル付け(属するデータの多数決)

決定木の学習 (概要)[Fielding 77; Quinlan 93; Breiman 84]

入力: 教師データ (Y_i, \mathbf{X}_i) , 木の深さD

- 1. Root に全教師データを関連付け
- 2. 深さがDになるまで以下を繰り返す
- + Node d に注目
- + d に属すデータ群を二分割するルールを決定
- ランダムに候補を作成
- なるべく偏りが大きなルールを選択
- + d の子に分割したデータ群を関連付け
- 3. 葉にラベル付け(属するデータの多数決)

決定木の学習 (概要)[Fielding 77; Quinlan 93; Breiman 84]

入力: 教師データ (Y_i, X_i) , 木の深さD

- 1. Root に全教師データを関連付け
- 2. 深さがDになるまで以下を繰り返す
- + Node d に注目
- + d に属すデータ群を二分割するルールを決定
- ランダムに候補を作成
- なるべく偏りが大きなルールを選択
- + d の子に分割したデータ群を関連付け
- 3. 葉にラベル付け(属するデータの多数決)

参考資料

なるべく偏りが大きなルールを選択

例) 情報利得が大きくなる分割を選択

Entropy: $H = -\sum_{c=1}^{k} P_c \log P_c$

Pc はクラスcに属すデータ点の出現確率

分割により減少したエントロピー量

 $H_n/H_L/H_R$: 親/左/右Nodeのエントロピー

 $N_p/N_L/N_R$:親/左/右Nodeに属す要素数

$$P: \left(\frac{9}{60}, \frac{22}{60}, \frac{17}{60}, \frac{22}{60}\right) \quad L: \left(\frac{9}{21}, 0, 0, \frac{12}{21}\right) \quad R: \left(0, \frac{22}{39}, \frac{17}{39}, 0\right)$$

$$H_P = -\frac{9}{60}\log\frac{9}{60} - \frac{22}{60}\log\frac{22}{60} - \frac{17}{60}\log\frac{17}{60} - \frac{12}{60}\log\frac{12}{60} = 0.578$$

$$H_L = -\frac{9}{21}\log\frac{9}{21} - 0 - 0 - \frac{12}{21}\log\frac{12}{21} = 0.296$$

$$H_R = -0 - \frac{22}{39} \log \frac{22}{39} - \frac{17}{39} \log \frac{17}{39} - 0 = 0.297$$

情報利得: $0.578 - \frac{21}{60}0.296 - \frac{39}{60}0.297 = 0.281$

$$H_P = -\frac{9}{60}\log\frac{9}{60} - \frac{22}{60}\log\frac{22}{60} - \frac{17}{60}\log\frac{17}{60} - \frac{12}{60}\log\frac{12}{60} = 0.578$$

$$H_L = -\frac{5}{25}\log\frac{5}{25} - \frac{18}{25}\log\frac{18}{25} - \frac{2}{25}\log\frac{2}{25} = 0.330$$

$$H_R = -\frac{4}{35}\log\frac{4}{35} - \frac{4}{35}\log\frac{4}{35} - \frac{15}{35}\log\frac{15}{35} - \frac{12}{35}\log\frac{12}{35} = 0.532$$

情報利得: $0.578 - \frac{25}{60}0.330 - \frac{35}{60}0.532 = 0.131$

参考資料

情報利得: 0.281

情報利得: 0.131

左の分割のほうが情報利得が高い(偏りが大きい) → この二つの候補があったら左を選ぶ

参考資料

葉にラベル付け

Nodeの分割を繰り返して指定された深さの木を作ったら…

→ 葉にラベルをつける

葉に属すデータ点のうち出現確率が最大のもののラベルを選択 (単純ベイズ、多数決)

集団学習 (Ensemble learning)

弱識別器を多数組み合わせて強識別器を実現する

弱識別器:精度の低い識別器 強識別器:精度の高い識別器

決定木 → ランダム森(Random Forests)

Support Vector Machine

- 特徴空間が超平面(2次元なら直線) で分離可能なとき・・・
- 超平面と最も近いデータ点との距離が 最大となるような超平面を選択する
 - これをマージン最大化という
 - 最近傍点をサポートベクトルという
- 超平面の方程式だけを記録すればよい ので軽い

※線形分離不可能な場合

- → ソフトマージンSVM
- → カーネルトリック

詳細はパターン認識の講義へ

識別器

- 識別器:教師データに基づき特徴 空間を分割することで,未知デー タへのラベル付けを行なう
- 特に有名な下の識別器を紹介
 - K Nearest Neighbor
 - Random Forests
 - Support Vector Machine

