Scalable ML 10605-10805

Count-Min Sketch

Barnabás Póczos

Motivation

Safe password selection:

We want to provide protection against "statistical-guessing awards"

- ☐ **Goal**: Create an oracle that can identify undesirably popular passwords
- ☐ If a user wants to choose a way-too-popular password, we will not let her do that

What is the right data structure for this problem?

■ We want to be able to query the frequency of each password used by our users

We will use the "Count-min sketch" data structure

Details: Schechter et al, Popularity Is Everything: A New Approach to Protecting Passwords from Statistical-Guessing Attacks

An Improved Data Stream Summary: The Count-Min Sketch and its Applications

Graham Cormode, S. Muthukrishnan

Journal of Algorithms Volume 55, Issue 1, April 2005, Pages 58-75

Problem Statement

Goal:

Introduce a new **sublinear space** data structure for summarizing data streams

Data Streams

Definition: [Data stream]
$$\begin{pmatrix} a_1(t) \\ a_2(t) \\ \vdots \\ a_i(t) \\ \vdots \\ a_n(t) \end{pmatrix} \in \mathbb{R}^n$$

n is very-very big, e.g. number of all possible passwords in the world...

Example: $a_i(t)$ = the number of how many times the i^{th} password was used by our users till time step t.

We cannot store a(t) in memory or disk since n is too big.

At time step 0 all components are zero:

$$a(0) \doteq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

The time is discrete: t=0,1,2,...

Updates in Data Streams

The t-th update is given in the form of (i_t, c_t) .

- * Here $i_t \in \{1, 2, ..., n\}$ indicates where to update the stream,
- \star and $c_t \in \mathbb{R}$ indicates the quantity of update.

In time step t-1 we do an (i_t, c_t) update.

After the (i_t, c_t) update:

Let
$$a(t) \doteq \begin{pmatrix} a_1(t-1) \\ a_2(t-1) \\ \vdots \\ a_{i_t}(t-1) + c_t \\ \vdots \\ a_{n-1}(t-1) \\ a_n(t-1) \end{pmatrix} \in \mathbb{R}^n$$

Query Types

Definition [Point Query]

Q(i): Return an approximation of $a_i(t) \in \mathbb{R}$ $i \in \{1, 2 \dots, n\}$

Definition [Range Query]

Q(l,r): Return an approximation of $\sum\limits_{i=l}^{r}a_{i}(t)\in\mathbb{R}$ $l,r\in\{1,2\ldots,n\}$

[discussed in the paper, we are not going to discuss it] **Definition [Inner Product Query]**

Q(a,b): Given two stream $a(t),b(t)\in\mathbb{R}^n$, provide an approximation of $\sum\limits_{i=1}^n a_i(t)b_i(t)\in\mathbb{R}$

[discussed in the paper, we are not going to discuss it]

Norms

1-norm:

$$||a||_1 = \sum_{i=1}^n |a_i(t)|$$

p-norm:

$$||a||_p = \left(\sum_{i=1}^n |a_i(t)|^p\right)^{1/p}$$

Assumptions

- □ "Machine words" can store integers up to $\max\{\|a\|_1, n\}$ using $\log(\max\{\|a\|_1, n\})$ bits
- Space counting: We count the num of words stored in our data structure (instead of bits)
- ☐ If we need the space count in bits:

num of bits \leq (num of words) \times log(max{ $||a||_1, n$ })

☐ **Time counting:** We count the operations on words

Goals

Goals:

Develop an (ϵ, δ) approximate and probabilistic algorithm That is, $\forall \epsilon > 0, \delta > 0$,

 $\mathbb{P}(\text{ error in answering querry } Q > \epsilon) < \delta$

Since *n* is very big, we also want the algorithm to operate in sublinear space, i.e using only

Poly(log(max
$$\{n, ||a||_1\})$$
) < Linear(max $\{n, ||a||_1\}$)

space.

The Count-Min Sketch Data Structure

Definition [CM Data Structure]

The $CM(\epsilon, \delta)$ data structure is represented with a 2D array, called Count matrix

The size of $CM(\epsilon, \delta)$ doesn't depend on n.

Pairwise Independent Hash Functions

We are also given *d* hash functions:

$$H = \{h_1, h_2, \dots, h_d\}$$

 $h_i : \{1, 2, \dots, n\} \to \{1, 2, \dots, w\}$

We assume that H is a **pairwise independent** hash family, that is

$$\mathbb{P}_{h \in H}[h(i) = h(j)] \leq \frac{1}{w}, \quad \forall i \neq j \ (1 \leq i, j \leq n)$$
 uniform

[The probability of collision]

CM Data Structure Update

After the
$$(i_t,c_t)$$
 update:
$$a_{i_t}(t)=a_{i_t}(t-1)+c_t \qquad a(t)=\begin{pmatrix} a_1(t-1)\\a_2(t-1)\\ \vdots\\a_{i_t}(t-1)+c_t\\\vdots\\a_{n-1}(t-1)\\a_n(t-1) \end{pmatrix} \in \mathbb{R}^n$$
 CM Update Procedure

$$a_{i_t}(t) = a_{i_t}(t-1) + c_t$$

$$a(t) = \begin{bmatrix} a_{i_t}(t-1) \\ \vdots \\ a_{i_t}(t-1) \end{bmatrix}$$

Update $\underbrace{\text{one entry}}$ in each $\underbrace{\text{row}}$ of the Count sketch matrix.

 $Count[j, h_j(i_t)] := Count[j, h_j(i_t)] + c_t$

$$d \doteq \left\lceil \log \frac{1}{\delta} \right\rceil$$

$$w \doteq \left[\frac{e}{\epsilon}\right]$$

CM Data Structure Update

For each i_t , cells in a specific pattern (dependening on h_1, \ldots, h_d) get increased by c_t .

Point Query Approximation

Point Query:

Q(i): Return an approximation of $a_i(t) \in \mathbb{R}$ $i \in \{1, 2, ..., n\}$

Approximation:

Let
$$\hat{a}_i \doteq \min_{1 \leq j \leq d} Count[j, h_j(i)]$$
 $i \in \{1, 2, \dots, n\}$

Point Query Approximation

$$\hat{a}_i \doteq \min_{1 \le j \le d} Count[j, h_j(i)]$$

Theorem 1

Let $c_t \geq 0$.

 \widehat{a}_i has the following approximation guarantees

$$\star \ a_i \leq \hat{a}_i \quad \forall i \in \{1, 2 \dots, n\}$$

$$\star \ \hat{a}_i \leq a_i + \epsilon ||a||_1$$
 with prob. at least $1 - \delta \quad \forall i \in \{1, 2, ..., n\}$

Storage cost: $wd = \left[\frac{e}{\epsilon}\right] \left[\log \frac{1}{\delta}\right]$ words

Comput time complexity: $O(d) = O\left(\left\lceil \log \frac{1}{\delta}\right\rceil\right)$

We have 4 hash functions: h_1, \ldots, h_4 , and n = 3 Collision matrix

Hash Functions

		1		$h_1(1)$
		1		$h_2(1)$
	1			$h_3(1)$
			1	$h_4(1)$

	2			$h_1(2)$
	2			$h_2(2)$
		2		$h_{3}(2)$
			2	$h_{4}(2)$

		3	$h_1(3)$
	3		$h_2(3)$
	3		$h_{3}(3)$
		3	$h_4(3)$

	2	1	3
	2	13	
	1	23	
			123

Let the stream be

$$a_{1}\begin{pmatrix}0\\a_{2}\\a_{3}\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix} \begin{pmatrix}c_{1}\\c_{1}\\0\end{pmatrix} \begin{pmatrix}c_{1}\\c_{1}\\0\end{pmatrix}\begin{pmatrix}c_{2}\\c_{1}\\0\end{pmatrix}\begin{pmatrix}c_{2}\\c_{1}+c_{3}\\0\end{pmatrix} \begin{pmatrix}c_{2}\\c_{1}+c_{3}\\0\end{pmatrix} \begin{pmatrix}c_{2}\\c_{1}+c_{3}\\0\end{pmatrix}$$

$$t = 0 \qquad t = 1 \qquad t = 2 \qquad t = 3 \qquad t = 4$$

Let the us calculate the values in the CM sketch matrix

Stream updates:

$$a_{1}\begin{pmatrix}0\\a_{2}\\a_{3}\end{pmatrix}^{(2,c_{1})} \Rightarrow \begin{pmatrix}0\\c_{1}\\0\end{pmatrix}$$
$$t = 0 \qquad t = 1$$

Hash functions

	2			$h_1(2)$
	2			$h_2(2)$
		2		$h_{3}(2)$
			2	$h_{4}(2)$

	2	1	3
	2	13	
	1	23	
			123

Stream updates:

$$a_{1}\begin{pmatrix}0\\a_{2}\\a_{3}\begin{pmatrix}0\\0\\0\end{pmatrix} \qquad \begin{pmatrix}0\\c_{1}\\0\end{pmatrix} \qquad \begin{pmatrix}c_{2}\\c_{1}\\0\end{pmatrix}$$

$$t = 0 \qquad t = 1 \qquad t = 2$$

Hash functions

		1		$h_1(1)$
		1		$h_2(1)$
	1			$h_{3}(1)$
			1	$h_4(1)$

	2	1	3
	2	13	
	1	23	
			123

Stream updates:

$$a_{1}\begin{pmatrix}0\\a_{2}\\a_{3}\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}\begin{pmatrix}c_{1}\\c_{1}\\0\end{pmatrix}\begin{pmatrix}c_{1}\\c_{1}\\0\end{pmatrix}\begin{pmatrix}c_{2}\\c_{1}\\0\end{pmatrix}\begin{pmatrix}c_{1}\\c_{1}+c_{3}\\0\end{pmatrix}$$

$$t = 0 t = 1 t = 2 t = 3$$

Hash functions

	2			$h_1(2)$
	2			$h_2(2)$
		2		$h_{3}(2)$
			2	$h_4(2)$

		c1+c3	c2	
Count=		c1+c3	c2	
		c2	c1+c3	
				c1+c2 +c3

	2	1	3
	2	13	
	1	23	
			123

Stream updates:

$$\begin{pmatrix} c_{2} \\ c_{1} \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} c_{2} \\ c_{1} + c_{3} \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} c_{2} \\ c_{1} + c_{3} \\ 0 \end{pmatrix}$$

$$t = 2 \qquad t = 3 \qquad t = 4$$

		3	$h_1(3)$
	3		$h_2(3)$
	3		$h_{3}(3)$
		3	$h_4(3)$

	2	1	3
	2	13	
	1	23	
			123

Hash Functions

		1		$h_1(1)$
		1		$h_2(1)$
	1			$h_3(1)$
			1	$h_4(1)$

	2			$h_1(2)$
	2			$h_2(2)$
		2		$h_{3}(2)$
			2	$h_{4}(2)$

		3	$h_1(3)$
	3		$h_2(3)$
	3		$h_{3}(3)$
		3	$h_4(3)$

Count=		c1+c3	c2	c4
		c1+c3	c2+c4	
		c2	c1+c3+ c4	
				c1+c2+ c3+c4

$$t = 4$$

$$\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \begin{pmatrix} c_2 \\ c_1 + c_3 \\ c_4 \end{pmatrix}$$

$$\begin{array}{ll}
a_1 \\ a_2 \\ a_3
\end{array} \begin{pmatrix}
c_2 \\ c_1 + c_3 \\ c_4
\end{pmatrix} \qquad \hat{a}_i \doteq \min_{1 \le j \le d} Count[j, h_j(i)]$$

$$\hat{a}_1 = \min\{c_2, c_2 + c_4, c_2, c_1 + c_2 + c_3 + c_4\}$$

= c_2

$$\hat{a}_2 = \min\{c_1 + c_3, c_1 + c_3, c_1 + c_3 + c_4, c_1 + c_2 + c_3 + c_4\}$$

= $c_1 + c_3$

$$\hat{a}_3 = \min\{c_4, c_2 + c_4, c_1 + c_3 + c_4, c_1 + c_2 + c_3 + c_4\}$$

= c_4

Point Query Approximation v2

Theorem 2

Let $c_t \in \mathbb{R}$. It doesn't need to be nonnegative anymore.

Let
$$\hat{a}_i \doteq \text{median}_{1 \leq j \leq d} Count[j, h_j(i)]$$
 (Instead of min)

 \widehat{a}_i has the following approximation guarantees

$$a_i - 3\epsilon \|a\|_1 \le \widehat{a}_i \le a_i + 3\epsilon \|a\|_1$$
 with prob. at least $1 - \delta^{1/4}$

$$\forall i \in \{1, 2 \dots, n\}$$

Thanks for your Attention! ©