TEMA 1

ОПРЕДЕЛЕНИЕ И КЛАСИФИКАЦИЯ

Ключови думи:

Бройна система

Позиционни и непозиционни бройни системи

Еднородни и нееднородни бройни системи

Постоянни и непостоянни тегла на едноименните разряди

Адитивен и самодопълващ се код

Естествен и изкуствен порядък на теглата

Цели:

След запознаване с материала Вие трябва да можете:

- ✓ да дадете определение за бройна система;
- ✓ да дадете определение и пример за непозиционна бройна система;
- ✓ да дадете определения и примери за еднородна и нееднородна позиционни бройни системи;
- ✓ да дадете определения и примери за системи с постоянни и непостоянни тегла на разрядите;
- ✓ да дадете определения и примери за системи с естествен и изкуствен порядък на теглата;
- ✓ да посочите основните недостатъци на позиционните бройни системи.

1. Определение

Бройна система това е съвкупност от ограничен брой цифри, букви и правила, с помощта на които може да се запише и да се даде име на всяко число.

Бройните системи трябва да позволяват:

- кратко и леко записване на всякакви числа;
- леко и бързо изпълнение на аритметичните операции.

2. Класификация

Класификацията на бройните системи е показана на фиг.1.

Фиг.1. Класификация на бройните системи

2.1. Непозиционни системи - това са системи, при които значението на дадена цифра се определя само от нейния вид и не зависи от позицията, която тя заема в кода на числото. Числата се формират чрез събиране и изваждане на съседни цифри - при адитивните системи или чрез умножение на съседни цифри - при мултипликативните системи. Няма цифра "0".

Пример: Римската бройна система.

Римска бройна с-ма	I	V	Χ	L	С	D	M
Десетична бройна с-ма	1	5	10	50	100	500	1000

1998 - M CM XC VIII

2.2. Позиционни системи - това са системи, при които значението на дадена цифра се определя не само от нейния вид, но и от позицията, която тя заема в кода на числото. Има цифра "0". Едно число записано в позиционна система има следния общ вид:

$$A = a_n a_{n-1} \dots a_2 a_1, a_{-1} a_{-2} \dots a_{-k},$$

където: a_i са цели положителни числа; a_i = 0 ÷ $(p_i$ - 1)

 p_i е цяло положително число > 1 - основа на i-тия разряд на бройната система.

В зависимост от изменението на основата р_і при преход от разряд към разряд в кода на дадено число позиционните системи се делят на

- еднородни (основите на отделните разряди са еднакви) и
- нееднородни (основите на отделните разряди са различни).

Еднородни системи - едно число може да бъде записано в еднородна система с основа р по следния начин:

$$A_p = a_n p^{n-1} + a_{n-1} p^{n-2} + ... + a_2 p + a_1 + a_{-1} p^{-1} + a_{-2} p^{-2} + ... + a_{-k} p^{-k}$$
, където: $a_i = 0 \div (p-1)$ са разрядни коефициенти; p е основата на системата; p^i е теглото на единиците в (i+1)-вия разряд.

Пример: Десетичната бройна система.
$$A_{10}=a_n 10^{n-1}+a_{n-1}10^{n-2}+...+a_2 10+a_1+a_{-1}10^{-1}+a_{-2} 10^{-2}+...+a_{-k}10^{-k}$$
. 1998 = 1.10³ + 9.10² + 9.10 + 8

<u>Нееднородни системи</u> - едно число може да бъде записано в нееднородна система по следния начин:

$$A = a_n p_{n-1} p_{n-2}... p_2 p_1 + a_{n-1}p_{n-2} p_{n-3}... p_2 p_1 + ... + a_2 p_1 + a_1$$
 където: $a_n = 0 \div (p_i - 1);$ p_i е основата на і-тия разряд на системата;
$$\prod_{i=1}^m p_i$$
 е теглото на единиците в (m+1)-вия разряд.

Пример: Системата за измерване на времето.

		- p = 0 = 1 =
В разряда на	секундите	p = 60
	минутите	p = 60
	часовете	p = 24
	дните	p = 7
	седмиците	p = 4
	месеците	p = 12

В зависимост от изменението на теглото на единиците в даден разряд при преход от код на едно число към код на друго число еднородните системи се делят на:

- системи с постоянни тегла на едноименните разряди и
- системи с непостоянни тегла на едноименните разряди (символически).

Системи (кодове) с постоянни тегла на разрядите:

Примери: Код 8421 и код 2421.

	код 8421	код 2421
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	1011
6	0110	1100
7	0111	1101
8	1000	1110
9	1001	1111

Определения:

- Един код е **адитивен**, ако сумата от кодовете на кои да са две цифри е равна на кода на тяхната сума.
- Един код е **самодопълващ се**, ако за всеки две десетични цифри A и B, сумата на които е 9, е изпълнено условието {A} + {B} = 1111.

Кодът 8421 е адитивен, но не е самодопълващ се, а кодът 2421 е самодопълващ се, но не е адитивен.

Адитивните кодове са удобни за извършване на операцията "събиране", а самодопълващите се - за операцията "изваждане".

Системи (кодове) с непостоянни тегла на разрядите:

Примери: Код с излишък 3 (8421+3) и код на Грей.

	код с излишък 3	код на Грей
0	0011	0000
1	0100	0001
2	0101	0011
3	0110	0010
4	0111	0110
5	1000	0111
6	1001	0101
7	1010	0100
8	1011	1100
9	1100	1101

Кодът с излишък 3 е самодопълващ се, но не е адитивен.

Кодът на Грей се използва при построяване на преобразуватели "ъгъл - код", тъй като това води до минимална грешка при заставане на преобразувателя в междинно положение.

Системите с постоянни тегла на разрядите биват с

- естествен порядък на теглата и с
- изкуствен порядък на теглата.

Системи с естествен порядък на теглата:

Такива са системите, за които е в сила следното:

Теглото на единиците в младшия разряд на цялата част на числото е 1, а теглото на единиците във всеки друг разряд на цялата част е равно на произведението на броя цифри допустими във всеки от разрядите на цялата част в дясно от този разряд.

Теглото на единиците във всеки разряд на дробната част е равно на реципрочната стойност на произведението на броя цифри допустими в този разряд и във всеки от разрядите на дробната част в ляво от него.

Пример: Код 8421.

Системи с изкуствен порядък на теглата:

Такива са системите, при които теглата на единиците в отделните разряди се получават по правила, различни от горното.

Пример: Код 2421.

Основен недостатък на позиционните системи е междуразрядният пренос, който се получава при извършване на операцията "аритметическо събиране" и води до съществено увеличаване на времето за изпълнение на тази операция. А в компютрите всички аритметични операции с числа се свеждат до поредица от аритметични събирания на техните кодове. Този недостатък липсва при някои непозиционни системи.

Контролни въпроси:

- 1. Какво представлява бройната система?
- 2. От какво се определя значението на дадена цифра в непозиционните бройни системи?
- 3. Как се изменя основата р_і при преход от разряд към разряд в еднородните и нееднородните бройни системи?
- 4. Каква е разликата между системите с постоянни тегла на разрядите и тези с непостоянни такива?
- 5. Как се формира теглото на единиците в системите с естествен порядък на теглата и как в тези с изкуствен?
- 6. Какъв е основният недостатък на позиционните бройни системи и до какво води той?