Deep Learning Project: Predicting Recovery Time from MRI Data

1. Project Objective

The primary aim of this project is to develop a predictive model that estimates the recovery time (in days) for patients based on their blood flow MRI (data and demographic/medical features. By achieving this, we aim to provide valuable insights into patient recovery and improve medical decision-making processes.

2. Problem Statement

The key question driving this project is: Can we accurately predict recovery time based on blood flow MRI data, demographic features (e.g., age, gender), and medical history (e.g., history of concussion)?

This project involves leveraging a deep learning approach to analyze blood flow MRI images and other structured data, enabling the development of a robust predictive tool.

3. Data Overview

The dataset comprises MRI image data and tabular features for patients. The details are as follows:

- **Blood flow MRI Data**: High-dimensional data representing brain scans. Images of blood flow to certain areas of the brain.
- Demographic Features:
 - Age: Continuous variable.
 - o **Gender**: Binary variable (0: Female, 1: Male).
- Medical History:
 - **History of Concussion (HOC)**: Binary variable (0: No history, 1: History).
- Days After Injury: The number of days after the injury when the MRI was taken.
- Target Variable: Days of Recovery (continuous variable).

Below are visualizations of MRI data:

Below is a summary of the dataset:

Feature	Туре	Description
Age	Continuous	Age of the patient
Gender	Binary	Gender of the patient (0: Female, 1: Male)
HOC	Binary	History of concussion
Days After Injury	Continuous	Time elapsed since the injury (in days)
fMRI Data	Image	High-dimensional image data
Days of Recovery (y)	Continuous	Target variable to predict

4. Tools and Techniques

Converting fMRI Data into a Numerical Array

HDF5 and h5py:

 Purpose: The HDF5 format is a hierarchical data format commonly used for storing large-scale scientific data, like fMRI scans.

SimpleITK:

 SimpleITK is another Python library often used for working with medical images, particularly in radiology and fMRI.

Deep Learning Framework: PyTorch

PyTorch is chosen for its flexibility, ease of debugging, and dynamic computation graph. These characteristics make it particularly suitable for iterative model development.

Neural Network Model

• Cross-Validation

5-fold cross-validation to evaluate model generalizability.

Convolutional Neural Network (CNN)

Spatial Relationships:

 fMRI data (or MRI images) contain spatial patterns and structural information about the brain. CNNs are excellent at capturing these spatial hierarchies through convolutional layers.

• Dimensionality Reduction:

 Instead of flattening the fMRI images into large arrays (as with fully connected layers), CNNs preserve the spatial structure and reduce dimensionality efficiently.

• Feature Extraction:

 CNNs automatically learn spatial features such as edges, textures, and patterns in the brain data that may be predictive of recovery time.

Why is this method appropriate for this dataset?

Understanding the Data Structure:

- The dataset includes high-dimensional MRI data, which contains spatial features that are essential for predicting recovery time.
- CNNs are well-suited for handling spatial dependencies in images, making them an ideal choice for MRI data rather than fully connected networks that lose spatial relationships.

Why CNNs Work Well for MRI Data?

- CNNs leverage convolutions to capture important brain features that influence recovery time.
- They apply filters to detect structural differences in brain regions, which are crucial for medical predictions.

Why Cross-Validation?

 MRI data can be noisy and limited in size. Using 5-fold cross-validation ensures that the model generalizes well and does not overfit to a specific subset of the data.

5. Project Timeline

The following Gantt chart outlines the major milestones of the project:

PROCESS	JAN			FEB				MAR				
	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	WII	W12
Selecting data set and Proposal												
Background research and EDA												
Design Process												
Data analysis												
Report writing												
Presentation of												