数学建模算法模型

数学建模十大算法

1、蒙特卡罗算法

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法

2、数据拟合、参数估计、插值等数据处理算法

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用 Matlab 作为工具

3、线性规划、整数规划、多元规划、二次规划等规划类问题 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算 法来描述,通常使用 Matlab、Lingo 软件实现

4、图论算法

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图 论的问题可以用这些方法解决,需要认真准备

- 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中
- 6、最优化理论的三大非经典算法:模拟退火法、<mark>神经网络</mark>、遗传算法 这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有 帮助,但是算法的实现比较困难,需慎重使用

7、网格算法和穷举法

当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用 一些高级语言作为编程工具

8、一些连续离散化方法

很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的

9、数值分析算法

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用

10、图象处理算法

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用 Matlab 进行处理

算法简介

1、灰色预测模型 (一般)

解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。满足两个条件可用:

- ①数据样本点个数 6 个以上
- ②数据呈现指数或曲线的形式,数据波动不大

2、微分方程模型(一般)

微分方程模型是方程类模型中最常见的一种算法。近几年比赛都有体现,但 其中的要求,不言而喻,学习过程中无法直接找到原始数据之间的关系,但可找 到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。

3 、回归分析预测 (一般)

求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化: 样本点的个数有要求:

- ①自变量之间协方差比较小,最好趋近于 0, 自变量间的相关性小;
- ②样本点的个数 n>3k+1, k 为预测个数;

4、 马尔科夫预测 (较好))

一个序列之间没有信息的传递,前后没联系,数据与数据之间随机性强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温度高、中、低的概率,只能得到概率,其算法本身也主要针对的是概率预测。

5、时间序列预测(较好)

预测的是数据总体的变化趋势,有一、二、三次指数平滑法(简单),<mark>AR</mark>, MA,ARMA,ARIMA

6、小波分析预测(高大上)

数据无规律,海量数据,将波进行分离,分离出周期数据、规律性数据;其 预测主要依靠小波基函数,不同的数据需要不同的小波基函数。网上有个通用的 预测波动数据的函数。

7、神经网络 (较好))

大量的数据,不需要模型,只需要输入和输出,黑箱处理,建议作为检验的办法,不过可以和其他方法进行组合或改进,可以拿来做评价和分类。

8、 混沌序列预测(高大上)

适用于大数据预测,其难点在于时延和维数的计算。

9、 插值与拟合 (一般)

拟合以及插值还有逼近是数值分析的三大基础工具,通俗意义上它们的区别 在于: 拟合是已知点列,从整体上靠近它们;插值是已知点列并且完全经过点列; 逼近是已知曲线,或者点列,通过逼近使得构造的函数无限靠近它们。

10、 模糊综合评判 (简单) 不建议单独使用

评价一个对象优、良、中、差等层次评价,评价一个学校等,不能排序

11、 层次分析法(AHP)(简单)

不建议单独使用作决策,去哪旅游,通过指标,综合考虑作决策

12、 数据包络(DEA)分析法 (较好)

综合评价类优化问题,对各省发展状况进行评判,<mark>多输入多输出</mark>,<mark>数据量大</mark>,针对一个优化系统,得到的结果较为客观

13、 秩和比综合评价法和熵权法 (较好)

秩和比综合评价法是评价各个对象并排序,但要求指标间关联性不强,熵权法是根据各指标数据变化的相互影响,来进行赋权。两者在对指标处理的方法类似。

14、 优劣解距离法(TOPSIS 法) (备用)

其基本原理,是通过检测评价对象与最优解、最劣解的距离来进行排序,若评价对象最靠近最优解同时又最远离最劣解,则为最好;否则为最差。其中最优解的各指标值都达到各评价指标的最优值。最劣解的各指标值都达到各评价指标的最差值。

15、投影寻踪综合评价法 (较好)

可揉和多种算法,比如遗传算法、模拟退火等,将各指标数据的特征提取出来,用一个特征值来反映总体情况;相当于高维投影之低维,与支持向量机相反。该方法做评价比一般的方法好。

16、方差分析、协方差分析等 (必要)

方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少

协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲及初始情况。

此外还有灵敏度分析,稳定性分析

17、 线性规划、整数规划、0-1 规划 (一般)

模型建立比较简单,可以用 lingo 解决,但也可以套用智能优化算法来寻最优解。

18、 非线性规划与智能优化算法握 (智能算法至少掌握 1-2) 个,其他的了解即可)

非线性规划包括: 无约束问题、约束极值问题

智能优化算法包括:模拟退火算法、遗传算法、改进的遗传算法、禁忌搜索算法、神经网络、粒子群等

其他规划如:多目标规划和目标规划及动态规划等

- 19、 复杂网络优化 (较好)) 离散数学中经典的知识点——图论。主要是编程。
- 20、排队论与计算机仿真 (高大上)) 排队论研究的内容有 3 个方面:统计推断,根据资料建立模型;系统的性态,

即和排队有关的数量指标的概率规律性; <mark>系统的优化问题</mark>。其目的是正确设计和有效运行各个服务系统, 使之发挥最佳效益。计算机仿真可通过元胞自动机实现, 但元胞自动机对编程能来要求较高, 一般需要证明其机理符合实际情况, 不能作为单独使用。

21 、图像处理 (较好))

MATLAB 图像处理,针对特定类型的题目,一般和数值分析的算法有联系。例如 2013 年国赛 B 题,2014 网络赛 B 题。

22、支持向量机 (高大上))

支持向量机实现是通过某种事先选择的非线性映射(核函数)将输入向量映射到一个高维特征空间,在这个空间中构造最优分类超平面。主要用于<mark>分类</mark>。

23、多元分析

- 1、聚类分析、
- 2、因子分析
- 3、主成分分析: 主成分分析是因子分析处理过程的一部分,可以通过分析各指标数据的变化情况,然后将数据变化相似的指标用一种具有代表性的来代替,从而达到降维的目的。
- 4、判别分析
- 5、典型相关分析
- 6、对应分析
- 7、多维标度法(一般)
- 8、偏最小二乘回归分析(较好)

24 、分类与判别

主要包括以下几种方法,

- 1、距离聚类(系统聚类)(一般)
- 2、关联性聚类
- 3、层次聚类
- 4、密度聚类
- 5、其他聚类
- 6、贝叶斯判别(较好)
- 7、费舍尔判别(较好)
- 8、模糊识别

25 、关联与因果

- 1、灰色关联分析方法
- 2、Sperman 或 kendall 等级相关分析

- 3、Person 相关(样本点的个数比较多)
- 4、Copula 相关(比较难,金融数学,概率密度)
- 5、典型相关分析

(例: 因变量组 Y1234, 自变量组 X1234, 各自变量组相关性比较强, 问哪一个因变量与哪一个自变量关系比较紧密?)

6、标准化回归分析

若干自变量,一个因变量,问哪一个自变量与因变量关系比较紧密

7、生存分析(事件史分析)(较好)

数据里面有缺失的数据,哪些因素对因变量有影响

8、格兰杰因果检验

计量经济学, 去年的 X 对今年的 Y 有没影响

9、优势分析

26、 量子优化算法 (高大上)

量子优化可与很多优化算法相结合,从而使寻优能力大大提高,并且计算速率提升了很多。其主要通过编程实现,要求编程能力较好。

一、优化类

线性规划(运输问题、指派问题、对偶理论、灵敏度分析)

整数规划(分支定界、枚举试探、蒙特卡洛)

非线性规划(约束极值、无约束极值)

目标规划(单目标、多目标)

动态规划(动态、静态、线性动规、区域动规、树形动规、背包动规)

动态优化 (变分法)

现代优化算法(贪婪算法、禁忌搜索、模拟退火、遗传算法、人工神经网络、蚁群算法、粒子群算法、人群搜索算法、人工免疫算法、集成算法、TSP问题、QAP问题、JSP问题)

模糊逼近算法

二、图论

最小生成树(prim 算法、Kruskal 算法)

最短路径 (Dijkstra 算法、Floyd-Warshall 算法、Bellman-Ford 算法、SPFA 算法)

匹配问题(匈牙利算法)

Euler 图和 Hamilton 图

网络流(最大流问题、最小费用最大流问题)

三&四、预测类&统计

GM(1,1)灰色预测,GM(2,1)等等

时间序列模型(确定性时间序列、平稳时间序列、移动平均、指数平滑、Winter方法、ARIMA模型)

回归(一元线性回归、多元线性回归 MLR、非线性回归、多元逐步回归 MSR、 主元回归法 PCR、部分最小二乘回归法 PLSR)(重点)

Bayes 统计预测

分类模型 (逻辑回归、决策树、神经网络)

判别分析模型(距离判别、Fisher 判别、Bayes 判别)

参数估计(点估计、极大似然估计、Bayes 估计)

假设检验(U-检验、T-检验、卡方检验、F-检验、最优性检验、分布拟合检验)

方差分析(单因素、多因素、相关性检验)

经验分布函数

正交试验

模糊数学(模糊分类、模糊决策)

随机森林

五、数据处理

图像处理

插值与拟合(Lagrange 插值、Newton 插值、Hermite 插值、三次样条插值、 线性最小二乘)

搜索算法(回溯、分治、排序、网格、穷举)

数值分析方法(方程组求解、矩阵运算、数值积分、逐次逼近法、牛顿迭代法)

模糊逼近

动态加权

ES

DWRR

序列分析

主成分分析

因子分析

聚类分析

灰色关联分析法

数据包络分析法(DEA)

六、评价类

层次分析法 (AHP)

模糊综合评价

基于层次分析的模糊综合评价

动态加权综合评价

TEIZ 理论

七、图形类(重点)

算法流程图

条形图

直方图

散点图

饼图

折线图

茎叶图

箱线图

PP图

QQ图

Venn 图

矢量图

误差分析图

概率分布图

5w1h 分析法

漏斗模型

金字塔模型

鱼骨分析法

等高线曲面图

思维导图

八、模拟与仿真

蒙特卡洛

元胞自动机

九、方程(进阶)

微分方程(Malthus 人口模型、Logistic 模型、战争模型)

稳定状态模型(Volterra 模型)

常微分方程的解法(离散化、Euler 方法、Runge—Kutta 方法、线性多步法)

差分方程 (蛛网模型、遗传模型)

偏微分方程数值解(定解问题、差分解法、有限元分析)

十、数据建模&机器学习方法(当前热点)

(注:此部分与数据处理算法有大量重叠)

云模型

Logistic 回归

主成分分析

支持向量机 (SVM)

K-均值(K-Means)

近邻法

朴素 Bayes 判别法

决策树方法

人工神经网络(BP、RBF、Hopfield、SOM)

正则化方法

kernel 算法

十一、其他

排队论

博弈论

贮存伦

概率模型

马氏链模型

决策论

(单目标决策:不确定型决策、风险决策、效用函数、决策树、灵敏度分析)

(多目标决策:分层序列法、多目标线性规划、层次分析法)

系统工程建模(ISM 解释模型、网络计划模型、系统评价、决策分析)

交叉验证方法(Holdout 验证、K-fold cross-validation、留一验证)

附: 简单建模方法

比例关系

函数关系

几何模拟

类比分析

物理规律建模

文字建模, 语言建模

注: 各类别之间方法可能有交叉