Process Systems Modeling:

HW: 4

By: Yash S. Gokhale (ysg)

Given:

N=5(Products), M=6 (Stages),

Processing time τ_{ij}

Size factor S_{ii}

Horizon time H

Product Demand D_i

cost coefficient and cost exponent α_i , β_i

Variables:

 V_i : Volume of unit in stage j

 N_i : Number of units in stage j

 B_i : Size of batch in product i

 T_i : Cycle time for product i

Formulate Model:

$$\min \sum_{i=1}^{M} N_i \alpha_i V_i^{\beta_j}$$

Such that:

$$V_i \geq S_{ij}B_i$$

$$\sum_{i=1}^{N} D_i * T_i / B_i \le H$$

$$T_i \geq \tau_{ij}/N_i$$

All variables are positive with N as a positive integer variable.

The following model was incorporated in gams and the output was:

Optimum objective solution is listed below:

```
Solution = 2269798.49978729 found at node 104

Best possible = 2063453.18162

Absolute gap = 206345.318167286 optca = 1E-9

Relative gap = 0.0909090909112082 optcr = 0.1

(Note that BARON uses a different formula to compute the was used for the above reported value.)
```

The values of the variables at the optimum are listed below:

```
---- 66 VARIABLE N.L Number of units in stage j
sl 1.000, s2 1.000, s3 1.000, s4 1.000, s5 1.000, s6 1.000
---- 66 VARIABLE V.L Volume of unit in stage j
sl 5823.474, s2 3371.227, s3 3833.173, s4 4667.853, s5 4496.606, s6 3760.215
---- 66 VARIABLE B.L Size of batch of product i
pl 737.149, p2 1372.898, p3 1296.626, p4 1239.037, p5 936.452
```

's' indicates the stage and 'p' indicates the product.

The .gms file is attached.

Q2]

For the S-system model of for anaerobic fermentation in *Saccahromyces cerevisiae*, the logarithmic transformation was used for each variable over the product rates for steady state.

A general equation is of the form:

$$\sum_{j} f_i * X_{ij}^{\beta f_j} = \sum_{j} b_i * X_{ij}^{\beta b_j}$$

The LHS of the equation indicates the forward rate and the RHS indicates the backward rate at steady state.

Applying logarithmic transform:

$$\log(fi) + \sum_{j} \beta f_{j} \log(X_{ij}) = \log(bi) + \sum_{j} \beta b_{j} \log(X_{ij})$$

Additional constraints involved are:

$$X_{11} = 14.31$$

$$X_{12} = 203$$

$$X_{14} = 0.042$$

These three enzymes are maintained at constant concentration

The maximized value of ethanol production $0.0945X_3^{0.05}X_4^{0.533}X_5^{-0.0822}X_{10}$ gives the following:

X1	0.0345
X2	1.011
X3	9.144
X4	0.0095
X5	1.1278
X6	19.7
X7	68.7
X8	31.7

49.9	X9
3440	X10
14.31	X11
203	X12
25.1	X13
0.042	X14

Additional constraints are:

For metabolites: X_m lies in +/- 20% of the equilibrium value

For enzymes: Xe lies in 1 to 50 times of the equilibrium value

```
ob..z=e=log(0.0945)+0.05*s('x3')+0.533*s('x4')-0.0822*s('x5')+s('x10') e1(m)..log(f(m))+sum(x,fp(m,x)*s(x))=e=log(b(m))+sum(x,bp(m,x)*s(x)); e2..s('x11')=e=log(14.31); e3..s('x12')=e=log(203); e4..s('x14')=e=log(0.042); e5(m)..s(m)=g=log(0.8*eqlb(m)); e6(m)..s(m)=l=log(1.2*eqlb(m)); e7(e)..s(e)=g=log(1*eqlb(e)); e8(e)..s(e)=l=log(50*eqlb(e));
```

Solving the model using these constraints, we get:

```
Optimal solution found.
Objective: 7.255156
```

Thus, optimal rate of production: 1415.3837 units.

Reading the solution gives:

	Log(X)	Numeric value
X1	-3.184	0.04142
X2	0.193	1.212883
Х3	2.395	10.9682
X4	-4.474	0.011402
X5	0.303	1.353914
X6	6.659	779.7708
X7	7.723	2259.729
X8	7.033	1133.426
X9	7.627	2052.882
X10	11.904	147856.9
X11	2.661	14.31059
X12	5.313	202.9582
X13	7.135	1255.137
X14	-3.170	0.042004

The subsequent .gms file was attached.