## Zaawansowane metody analizy danych medycznych

Projekt – część II

Prowadzący:

Dr hab. inż. Robert Burduk

Wybrany zbiór danych, w którym zebrane zostały wszystkie przeprowadzone badania pochodzi z serwisu Kaggle. Zbiór danych dotyczący chorób serca pochodzi z 1988 roku. Złożony jest z czterech zestawów danych przebadanych pacjentów: Cleveland i Long Beach V – miasta w Stanach Zjednoczonych, Węgry oraz Szwajcaria. Plik heart.csv został załadowany do programu poprzez blok *File Import*.



Rysunek 1. Diagram stworzony w programie Enterprise Miner

Kolejny blok o nazwie *StatExplore* odpowiadał za przekazanie informacji o zbiorze danych. Natomiast *Impute* to bloczek mający za zadanie ewentualne uzupełnienie brakujących danych. Dane posiadają 14 atrybutów, w tym etykietę wyniku przewidywanego "target". Kolumna "target" zawiera informacje o rozpoznaniu przypadku. Wartość 1 oznacza chorobę, natomiast wartość 0, to brak choroby. Liczba wykonanych badań dostępnych w zbiorze to 1025, z czego 526 to przypadki chorób serca, a 499 to próbki, które okazały się badaniami osób zdrowych. Z powyższych liczb, odnośnie ilości przypadków można wnioskować, że wybrany zbiór danych jest dobrze zbalansowany. Oznacza to że, jedna klasa wynikowa znacząco nie góruje nad drugą klasą, jeśli chodzi o ilość badanych próbek. Wybrany zbiór danych nie posiada wartości nieznanych czy też pustych.

Ważnym elementem jest *Data Partition*, za jego pomocą wykonano podział danych wejściowych na zbiory: uczący, testowy i walidacyjny.

Wybranym klasyfikatorem, dla którego przeprowadzone zostały badania eksperymentalne, była sieć neuronowa.

Testy zostały wykonane dla odpowiednio trzech, czterech, pięciu oraz sześciu jednostek ukrytych w warstwach sieci neuronowej, dla wyznaczonych podziałów procentowych zbioru wejściowego. Zbiór walidacyjny został określony w każdym przypadku na 15% początkowego zbioru. Parametrem był procent zbioru testowego (odpowiednio 15%, 25%, 33%). Liczba epok uczenia została ustalona na wartość 50.



Rysunek 2. Wyniki dla jednostek ukrytych = 3 oraz podziału zbioru testowego 15%



Rysunek 3. Wyniki dla jednostek ukrytych = 3 oraz podziału zbioru testowego 25%



Rysunek 4. Wyniki dla jednostek ukrytych = 3 oraz podziału zbioru testowego 33%



Rysunek 5. Wyniki dla jednostek ukrytych = 4 oraz podziału zbioru testowego 15%



Rysunek 6. Wyniki dla jednostek ukrytych = 4 oraz podziału zbioru testowego 25%



Rysunek 7. Wyniki dla jednostek ukrytych = 4 oraz podziału zbioru testowego 33%



Rysunek 8. Wyniki dla jednostek ukrytych = 5 oraz podziału zbioru testowego 15%



Rysunek 9. Wyniki dla jednostek ukrytych = 5 oraz podziału zbioru testowego 25%



Rysunek 10. Wyniki dla jednostek ukrytych = 5 oraz podziału zbioru testowego 33%



Rysunek 11. Wyniki dla jednostek ukrytych = 6 oraz podziału zbioru testowego 15%



Rysunek 12. Wyniki dla jednostek ukrytych = 6 oraz podziału zbioru testowego 25%



Rysunek 13. Wyniki dla jednostek ukrytych = 6 oraz podziału zbioru testowego 25%

Wyniki poszczególnych badań zostały ukazane w tabeli poniżej, gdzie główną metryką porównawczą była dokładność. Dokładność jest to stosunek liczby poprawnie sklasyfikowanych próbek do liczby wszystkich próbek dostępnych w bazie.

Tabela 1. Wyniki przeprowadzonego eksperymentu w Enterprise Miner

| jedn. ukryte<br>% zbioru | 3 jednostki | 4 jednostki | 5 jednostek | 6 jednostek |
|--------------------------|-------------|-------------|-------------|-------------|
| 15%                      | 95,11%      | 95,53%      | 99,02%      | 100%        |
| 25%                      | 93,16%      | 95,44%      | 98,05%      | 97,72%      |
| 33%                      | 92,86%      | 95,49%      | 98,12%      | 99,06%      |

Dodatkowo dla porównania przeprowadzone zostały również badania w środowisku programistycznym Python. Sieć neuronowa została zbudowana za pomocą biblioteki dla języka Python o nazwie Keras. Keras jest pakietem, dzięki któremu łatwo można definiować i trenować dowolne modele uczenia maszynowego.

Tabela 2. Wyniki przeprowadzonego eksperymentu w środowisku Python

| jedn. ukryte<br>% zbioru | 3 jednostki | 4 jednostki | 5 jednostek | 6 jednostek |
|--------------------------|-------------|-------------|-------------|-------------|
| 15%                      | 96,75%      | 96,05%      | 98,70%      | 99,35%      |
| 25%                      | 93,39%      | 95,50%      | 97,67%      | 99,22%      |
| 33%                      | 92,33%      | 95,57%      | 95,57%      | 98,82%      |

Zgodnie z uzyskanymi wynikami można wyciągnąć wnioski, że im większa liczba jednostek ukrytych w poszczególnych warstwach sieci neuronowej, tym znacząco lepsze wyniki klasyfikacji są uzyskiwane. Analizując badania dla parametru procentowego podziału zbioru testowego zauważyć można, że wyniki dla 15% podziału w każdym przypadku są lepsze od pozostałych badanych podziałów. Taki stan rzeczy jest spowodowany przez zbyt małą ilość próbek w zbiorze uczącym dla innych podziałów.

Ponadplanowo w projekcie porównano dwie platformy badawczych tzn. środowisko Enterprise Miner oraz własną implementację w języku Python. Zgodnie z wynikami przedstawionymi w Tabeli 1 oraz Tabeli 2 nie można jednoznacznie stwierdzić, które ze środowisk poradziło sobie znacząco lepiej z problemem klasyfikacji chorób serca. Obie metody uzyskały satysfakcjonujące wyniki klasyfikacji (ponad 90% dokładności).