

ELSEVIER

Mathematics and Computers in Simulation 53 (2000) 473–475

MATHEMATICS
AND
COMPUTERS
IN SIMULATION

www.elsevier.nl/locate/matcom

Author index of volume 53

(The issue number is given in front of the page number)

- Aamo, O.M. and T.I. Fossen**, Finite element modelling of mooring lines (4–6) 415–422
- Ackermann, J.**, *see Kordt, M.* (4–6) 309–321
- Aime, M.L. and C. Maffezzoni**, Modelling and simulation of combined lumped and distributed systems by an object-oriented approach (4–6) 345–351
- Aitzetmüller, H.**, *see Kugi, A.* (4–6) 409–414
- Alcorta García, E.**, *see Frank, P.M.* (4–6) 259–271
- Asharif, M.R.**, *see Yamashita, K.* (4–6) 437–442
- Bajracharya, K.**, *see Barry, D.A.* (1–2) 113–127
- Barnard, B.**, *see Borutzky, W.* (4–6) 381–387
- Barry, D.A., J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham and F. Stagnitti**, Analytical approximations for real values of the Lambert *W*-function (1–2) 95–103
- Barry, D.A., K. Bajracharya, M. Crapper, H. Prommer and C.J. Cunningham**, Comparison of split-operator methods for solving coupled chemical non-equilibrium reaction/groundwater transport models (1–2) 113–127
- Bickle, T.**, *see Mihálykó, Cs.* (4–6) 403–408
- Book, W.J. and C. Watson**, Alternatives in the generation of time domain models of fluid lines using frequency domain techniques (4–6) 353–365
- Borutzky, W., B. Barnard and J.U. Thoma**, Describing bond graph models of hydraulic components in Modelica (4–6) 381–387
- Bouia, H.**, *see Ménézo, C.* (4–6) 395–401
- Braun, S.** Application of computer-algebra simulation (CALS) in industry (4–6) 249–257
- Clauß, C., P. Schwarz, B. Straube and W. Vermeiren**, Symbolically calculated higher index conditions for linear circuits (4–6) 281–286
- Crapper, M.**, *see Barry, D.A.* (1–2) 113–127
- Cunningham, C.J.**, *see Barry, D.A.* (1–2) 113–127
- Cunningham, C.J.**, *see Barry, D.A.* (1–2) 95–103
- Dagusé, T.**, *see Woloszyn, M.* (4–6) 423–428
- Dens, E.J. and J.F. Van Impe**, On the importance of taking space into account when modeling microbial competition in structured food products (4–6) 443–448
- Dimitri, G.-G., S. Shimon and P. Ljubisa**, Resource supportability simulation model for a man-machine production system (1–2) 105–112
- Dinkelmann, M., M. Wächter and G. Sachs**, Modelling and simulation of unsteady heat transfer for aerospacecraft trajectory optimization (4–6) 389–394

- Dünnebier, G.**, *see Klatt, K.-U.* (4–6) 449–455
Engell, S., *see Klatt, K.-U.* (4–6) 449–455
Fossen, T.I., *see Aamo, O.M.* (4–6) 415–422
Frank, P.M., **E. Alcorta García** and **B. Köppen-Seliger**, Modelling for fault detection and isolation versus modelling for control (4–6) 259–271
Geiger, G., *see Matko, D.* (4–6) 303–308
Gopalsamy, K., *see Mohamad, S.* (1–2) 1–39
Gregoritza, W., *see Matko, D.* (4–6) 303–308
Guerra, M.L. and **L. Stefanini**, A comparative simulation study for estimating diffusion coefficient (3) 193–203
Günther, M. Semidiscretization may act like a deregularization (4–6) 293–301
Hermann, G., *see Kugi, A.* (4–6) 409–414
Hudson, A.D., *see Sanders, D.A.* (1–2) 41–65
Hughes, R.L. The flow of large crowds of pedestrians (4–6) 367–370
Karnopp, D. Retaining analog intuition in a digital world with bond graphs (4–6) 219–226
Klatt, K.-U., G. Dünnebier and **S. Engell**, Modeling and computationally efficient simulation of chromatographic separation processes (4–6) 449–455
Köppen-Seliger, B., *see Frank, P.M.* (4–6) 259–271
Kordt, M. and **J. Ackermann**, Nonlinear model reduction — method and CAE-tool development (4–6) 309–321
Kreimer, J. Real-time multiserver system with two non-identical channels and limited maintenance facilities (1–2) 85–94
Kugi, A., K. Schlacher, H. Aitzetmüller and **G. Hermann**, Modeling and simulation of a hydrostatic transmission with variable-displacement pump (4–6) 409–414
Lakatos, B.G., *see Mihálykó, Cs.* (4–6) 403–408
Li, L., *see Barry, D.A.* (1–2) 95–103
Liu, R.-X., *see Wang, J.-W.* (3) 171–184
Ljubisa, P., *see Dimitri, G.-G.* (1–2) 105–112
Loose, H., *see Reibiger, A.* (4–6) 323–332
Maffezzoni, C., *see Aime, M.L.* (4–6) 345–351
Matko, D., G. Geiger and **W. Gregoritza**, Verification of various pipeline models (4–6) 303–308
Ménézo, C., H. Bouia, J.J. Roux and **J. Virgone**, Adaptation of the balanced realization to the coupling of reduced order models for the modelling of the thermal behavior of buildings (4–6) 395–401
Meusburger, M., K. Schlacher and **A. Sillaber**, Modeling of the works water section of a power plant group (4–6) 429–435
Mihálykó, Cs., B.G. Lakatos and **T. Bickle**, Modelling heat transfer between solid particles (4–6) 403–408
Miyagi, H., *see Yamashita, K.* (4–6) 437–442
Mohamad, S. and **K. Gopalsamy**, Dynamics of a class of discrete-time neural networks and their continuous-time counterparts (1–2) 1–39
Müller, P.C. Descriptor systems: pros and cons of system modelling by differential-algebraic equations (4–6) 273–279
Murray-Smith, D.J. The inverse simulation approach: a focused review of methods and applications (4–6) 239–247
Özyıldırım, S. Genetic algorithm for closed-loop equilibrium of high-order linear-quadratic dynamic games (3) 139–147
Parlange, J.-Y., *see Barry, D.A.* (1–2) 95–103

- Pombortsis, A.S., see Veglis, A.A.** (1–2) 67–83
Prommer, H., see Barry, D.A. (1–2) 113–127
Prommer, H., see Barry, D.A. (1–2) 95–103
Razzaghi, M. and S. Yousefi, Legendre wavelets direct method for variational problems (3) 185–192
Reibiger, A. and H. Loose, Bond graphs and matroids (4–6) 323–332
Roux, J.J., see Ménézo, C. (4–6) 395–401
Roux, J.-J., see Woloszyn, M. (4–6) 423–428
Rusaouën, G., see Woloszyn, M. (4–6) 423–428
Sachs, G., see Dinkelmann, M. (4–6) 389–394
Sanders, D.A. and A.D. Hudson, A specific blackboard expert system to simulate and automate the design of high recirculation airlift reactors (1–2) 41–65
Scheffran, J. The dynamic interaction between economy and ecology. Cooperation, stability and sustainability for a dynamic-game model of resource conflicts (4–6) 371–380
Schlacher, K., see Kugi, A. (4–6) 409–414
Schlacher, K., see Meusburger, M. (4–6) 429–435
Schwarz, P. Physically oriented modeling of heterogeneous systems (4–6) 333–344
Schwarz, P., see Clauß, C. (4–6) 281–286
Shimabukuro, A., see Yamashita, K. (4–6) 437–442
Shimon, S., see Dimitri, G.-G. (1–2) 105–112
Shu, H.Z. Approximation of a bidimensional problem with skin effect (3) 149–170
Sillaber, A., see Meusburger, M. (4–6) 429–435
Stagnitti, F., see Barry, D.A. (1–2) 95–103
Stefanini, L., see Guerra, M.L. (3) 193–203
Straube, B., see Clauß, C. (4–6) 281–286
Thoma, J.U., see Borutzky, W. (4–6) 381–387
Van Impe, J.F., see Dens, E.J. (4–6) 443–448
Veglis, A.A. and A.S. Pombortsis, Analytical simulation of multiprocessor architectures under non-uniform traffic loads (1–2) 67–83
Vermeiren, W., see Clauß, C. (4–6) 281–286
Virgone, J., see Ménézo, C. (4–6) 395–401
Wächter, M., see Dinkelmann, M. (4–6) 389–394
Wagner, Y. A further index concept for linear PDAEs of hyperbolic type (4–6) 287–291
Wang, J.-W. and R.-X. Liu, A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems (3) 171–184
Watson, C., see Book, W.J. (4–6) 353–365
Willems, J.C. Modelling dynamical systems using manifest and latent variables (4–6) 227–237
Woloszyn, M., G. Rusaouën, J.-J. Roux and T. Dagusé, Adapting block method to solve moist air flow model (4–6) 423–428
Yamashita, K., A. Shimabukuro, M.R. Asharif and H. Miyagi, Orthogonal ECLMS algorithm for double-talk echo cancelling (4–6) 437–442
Yousefi, S., see Razzaghi, M. (3) 185–192

