Оптимизация количества атомов тулия в магнитооптической ловушке

Хоружий Кирилл

От: 13 июня 2023 г.

Содержание

Аннотация				
O	бозн	ачения и сокращения	3	
1	Введение			
	1.1	Области применения ультрахолодных атомов	4	
	1.2	Х Актуальность проблемы	5	
	1.3	Цели и задачи работы	6	
	1.4	Обзор существующих решений	6	
	1.5	Роль автора	6	
	1.6	Структура последующих глав	6	
2	Экспериментальная установка			
	2.1	Калибровка температуры печи	8	
	2.2	Обработка фотографии	9	
	2.3	Загрузка МОЛ	10	
3	Mo,	делирование охлаждения атомов	11	
	3.1	Печь	11	
	3.2	Зеемановский замедлитель	12	
	3.3	Магнито-оптическая ловушка	15	
	3.4	Двухмерная магнито-оптическая ловушка	16	
4	Зак	ключение	18	
\mathbf{C}_1	Список литературы			

ХАннотация

Обозначения и сокращения

МОЛ	магнито-оптическая ловушка	15
2D-MOЛ	двухмернная магнито-оптическая ловушка	
33	зеемановский замедлитель	
AOM	акусто-оптический модулятор	
CBB	сверхвысокий вакуум	
α	наиболее вероятная тепловая скорость атомов	11
v_{slow}	характерная скорость замедленных в 33 атомов	12
$v_{ m crit}$	максимальная скорость атомов, при которой 33 эффективно работает	12
$v_{\rm cap}$	скорость захвата МОЛ	13, 16
$\Phi_{ m tot}$	поток атомов, вылетающих из печки	
$\Phi_{ m sol}$	поток атомов, влетающих в 33	11
$\Phi_{ m load}$	поток загрузки МОЛ	15

1 Введение

1.1 Области применения ультрахолодных атомов

В области ультрахолодных атомов можно выделить две принципиальные области применений: создание сверхточных измерительных приборов и квантовая симуляция многочастичных систем. Создание квантовых симуляторов позволяет исследовать процессы, недоступные к аналитическому описанию или численному моделированию, в связи с экспоненциальным ростом сложности вычислений многочастичных задач в квантовой механике. Высокая точность измерений связана с возможностью работать с системами в их основном состоянии и наблюдению интерференционных явлений.и

Физика ультрахолодных атомов позволяет добиваться сверхточного измерения времени. Стандарт секунды определяется переходом в атоме 133 Cs, реализация часов на основе лазерного охлаждения позволяет достигать точности порядка 10^{-16} [1, 2]. На Sr и Yb получены точности порядка 10^{-18} [1, 3].

Измерение гравитационных эффектов с помощью ультрахолодных атомов находит применение в фундаментальных исследованиях [4] измерение гравитационной постоянной G, исследование гравитации на малых масштабах, измерение параметра Этвёша; развиваются детекторы гравитационных волн на основе атомных интерферометров [5]. Измерение ускорения свободного падения может использоваться для практических задач, например поиска месторождений полезных ископаемых [4].

Основой квантовых симуляторов на ультрахолодных атомах является возможность в широком диапазоне настраивать различные параметры системы, такие как сила взаимодействия атомов [6], структура и глубина потенциала решетки [7–9], в которую помещаются охлажденные атомы, температуру и концентрацию. В зависимости от используемых атомв возможна симуляция ферми или бозе систем, а также их смесей [10]. С использованием объективов с большой числовой апертурой возможно получение разрешения в один узел оптической решётки [11], что позволяет напрямую наблюдать исследуемые явления на микроскопическом масштабе, увеличивая точность экспериментов и качественно меняя доступные к измерениям эффекты.

В исследуемых с помощью квантовых симуляторов особенно можно выделить многочастичные задачи в оптических решётках [12], формально реализующие модель фермихаббарда и бозе-хаббарда (с реализацией, например, перехода от сверхтекучести к моттовскому изолятору [13]). Экспериментально наблюдались вихри во вращающемся бозеконденсате, формирование вихрями решётки [14]. Возможность настройки взаимодействия через резонанс Фешбаха позволяет исследовать переход от сверхтекучести БКШ, когда притяжение слабое и спаривание проявляется только в импульсном пространстве, к конденсату Бозе-Эйнштейна тесно связанных пар в реальном пространстве [12].

Особый интерес представляет исследование условий, когда система не термализуется [15], так как это является важным шагом на пути к пониманию новых состояний материи, которые могут возникать в сильно неравновесных квантовых системах. Основным путём к термолизации является рассеивание энергии по доступным степеням свободы, что требует переноса между разными частями системы. Соответсвенно нарушение эргодичности происход в изолирующих системах. Примерами такого изолюирующего поведения, исследуемого с помощью квантовых симуляторов на ультрахолодных атомах, являются андерсоновская локализация [16] и многочастичная локализация [17].

1.2 ХАктуальность проблемы

1.3 Цели и задачи работы

Целями данной работы являлись оптимизация количества атомов ¹⁶⁹Tm в магнитооптической ловушке, работающей на длине волны 532 нм: увеличение длительности работы источника атомов (печи), повышение эффективности процесса замедления атомов. Проектирование двухмерной магнитооптическую ловушку в качестве источника атомов ¹⁶⁹Tm.

В рамках работы были поставлены и решены следующие задачи

- 1. С помощью спектроскопии атомарного пучка откалибровать температуру используемой в установке печи. Оптимизировать температуру печи.
- 2. Построить модель замедления атомов в 33. Определить оптимальные параметры мощности лазерного луча, отстройки и значения токов в катушках 33. Измерить значение потока загрузки МОЛ с помощью 33.
- 3. Построить модель формирования атомарного пучка в двухмерной магнитооптической ловушке. Определить оптимальные параметры мощности, отстройки, размеров пучка. Расчитать ожидаемое значение потока загрузки МОЛ с помощью 2D-МОЛ.

1.4 Обзор существующих решений

1.5 Роль автора

Все результаты, изложенные в работе, получены лично автором либо при его решающем участии.

1.6 Структура последующих глав

2 Экспериментальная установка

Рис. 1: Принципиальная схема установки

2.1 Калибровка температуры печи

Для определения температуры печи используется термопара, позволяющаю находить относительное изменение температуры, однако абсолютное значение T_0 было не откалибровано. Для калибровки термопары использвался следующий метод. Атомарный пучок, выходящий из печи, подсвечивался резонансным лазерным излучением на длине волны 410 нм, соответсвтвующей переходу $|F=4\rangle \rightarrow |F=5\rangle$ [18]. Фотодиодом измерялось интегральное значение флюоресценции $V_{\rm PD}$ атомов в пучке для различных значений отстройки лазера $\delta \nu$, примеры приведены на рис. 5а. Верно, что в резонансе максимум интенсивности пропорционален потоку атомов $\Phi_{\rm tot}$. Действительно, нелинейные эффекты связанные с изменением геометрии системы можно связать с изменением наиболее вероятной тепловой скорости $\alpha \propto \sqrt{T}$, но из зависимости (5) видно, что $\Phi_{\rm tot}(T) \propto n_{\rm sat}(T)$ и, соответственно, экспоненциально зависит от температуры (10), что и определяет основной характер зависимости.

Рис. 2: а) Снятая экспериментальная зависимость мощности флюоресценции атомарного пучка от величины отстройки от резонанса лазерного излучения. Непрерывным линиями показана аппроксимация данных лоренцовым контуром. b) Относительная зависимость потока атомов из печки Φ_{tot} от температуры: черными точками отмечены экспериментально снаятые точки, непрерывынми линиями отмечены границы линейной апроксимации c) Восстановление значения T_0 по относительному изменению потока: черным обозначена теоретическая зависимость (10), штрихованным линиями обозначены границы аппроксимации экспериментальных данных уровня

Итак, найдём логарифмическую производную $\Phi'_{\rm tot}/\Phi_{\rm tot}$, с помощью линейной аппроксимации зависимости $\ln \Phi_{\rm tot}/\Phi_0$ (рис. 2b), где $\Phi_0 = \Phi_{\rm tot}(T=T_0-20\,{\rm ^{\circ}C})$. Решая уравнение $n'_{\rm sat}/n_{\rm sat} = \Phi'_{\rm tot}/\Phi_{\rm tot} = V'_{\rm PD}/V_{\rm PD}$, находим (рис. 2c)

$$T_0 = (590 \pm 10) \,^{\circ}\text{C}.$$
 (1)

(полученное значение согласуется с экспериментом по реперной точке на температуре плавления алюминия, стоит ли эту историю описывать?).

2.2 Обработка фотографии

Для получения информации об атомном облаке в МОЛ использовалась схема изображенная на рис. 3.

Рис. 3: Схема детектирования из [18]

В соответствии с законом Бугера-Ламберта-Бера интенсивность резонансного лазерного пучка после прохождения через облако может быть найдена в виде

$$\frac{dI}{dz} = -\sigma nI, \qquad \sigma = \frac{\sigma_0}{1 + I/I_s + 4(\delta/\Gamma)^2},\tag{2}$$

где I_s – интенсивность насыщения, δ – отстройка от резонанса, n – концентрация атомов в ловушке, $\sigma_0 = 3\lambda^2/2\pi$ – резонансное сечение поглощения атомом одиночного фотона, λ – длина волны света. Для измерения параметров атомного облага с помощью CMOS камеры делается фотография лазерного пучка без атомов, что даёт распределение интенсивности $I_{\rm D}$, затем делается фотография тени от атомов I_0 , и по ним вычисляется распределение атомов $f_{\rm exp}(x,y)$ (рис. 4):

$$f_{\text{exp}} = \ln\left(\frac{I_{\text{D}}}{I_{0}}\right) + \frac{I_{\text{D}} - I_{0}}{I_{s}} = \sigma_{0} \int n(x, y, z) dz.$$
 (3)

Рис. 4: ...

2.3 Загрузка МОЛ

Полученные данные (рис. 5а) аппроксимируется зависимостью, вида

$$F(t) = N_{\text{max}} \left(1 - e^{-t_{\text{load}}/\tau} \right), \tag{4}$$

где au – характерное время загрузки, $N_{\rm max}$ – предельное число атомов. Построив зависимость $N_{\rm max}(\delta
u)$ (рис. 5b) можем определить оптимальное значене отстройки $\delta
u$.

Рис. 5: а) Динамика загрузки МОЛ для различных значений отстройки b) Зависимость максимального числа атомов в МОЛ от величины отстройки $\delta \nu$

3 Моделирование охлаждения атомов

3.1 Печь

Расход атомов. В печи нагревается тулий до температуры T, вылетает из сопла диаметра $D_{\rm ov}$, площади $S_{\rm ov}=\pi D_{\rm ov}^2/4$, длины $L_{\rm ov}$. Полный поток атомов тулия [19] может быть определён, как

$$\Phi_{\text{tot}} = \frac{1}{4} n_{\text{sat}} \bar{v} S_{\text{ov}},\tag{5}$$

где $\bar{v}=\sqrt{8k_{\rm B}T/\pi m}$ — средняя тепловая скорость, $n_{\rm sat}=P_{\rm sat}/k_{\rm B}T$ — концентрация атомов в печи, зависимость $P_{\rm sat}(T)$ для тулия приведена в [20] (точность в пределах $\pm 5\%$ в диапазоне 300-1400 K):

$$P_{\text{sat}}(T)[\Pi a] = 101325 \times 10^{8.882 - 12270 \, T^{-1} - 0.9564 \log_{10} T}.$$
 (6)

Время работы печи тогда может найти, как $t_{\rm life} = N_{\rm tm}/\Phi_{\rm tot}$.

Поток атомов на выходе. В соответсвии с [21], вероятность вылететь из печи пропорциональна скорости v, поэтому максвелловское распределение модифицируется. Поток атомов со скоростью меньшей некоторой $v_{\rm crit}$ на выходе из печи может быть найден [19], как

$$\Phi_{\rm sol} = \int_0^{\Omega_{\rm sol}} d\Omega \frac{\cos \theta}{4\pi} \frac{1}{\mathcal{N}} \int_0^{v_{\rm crit}} v^3 e^{-(v/\alpha)^2} dv \approx \frac{\Omega_{\rm sol}}{4\pi} \frac{1}{\mathcal{N}} \int_0^{v_{\rm crit}} v^3 e^{-(v/\alpha)^2} dv, \tag{7}$$

где $\alpha = \sqrt{2k_{\rm B}T/m}$ – наиболее вероятная скорость, $\mathcal{N} = \int v^2 e^{-(v/\alpha)^2} \, dv = \frac{\sqrt{\pi}}{4} \alpha^3$ – нормирующий множитель распределения по скоростям.

Распределение по скоростям. Считая, что из печи вылетают только атомы с $v_r/v_z < \varphi_{\rm ov} \approx D_{\rm ov}/L_{\rm ov}$, можем оценить распределение по v_z

$$f(v_z) \propto \int_0^\infty v_r e^{-(v_r/\alpha)^2} v_z e^{-(v_z/\alpha)^2} \theta(\varphi_{\text{ov}} - v_r/v_z) dv_r \propto \frac{\varphi_{\text{ov}}^2}{\alpha^2} v_z^3 e^{-(v_z/\alpha)^2}.$$
 (8)

Аналогично можем посмотреть на распределение в радиальном направлении

$$f(v_r) \propto \frac{2}{\alpha^2} \int_0^\infty v_r e^{-(v_r/\alpha)^2} v_z e^{-(v_z/\alpha)^2} \theta(\varphi_{\text{ov}} - v_r/v_z) \, dv_z \propto v_r e^{-(v_r/\alpha\varphi_{\text{ov}})^2}. \tag{9}$$

Концентрация. Здесь натуральный лоагарифм! Концентрацию n знаем из давления насыщенных паров [22] для атомов Tm:

$$n_{\text{sat}}(T) = \frac{1}{k_{\text{B}}T} \exp\left(8.882 - 12270\,T^{-1} - 0.9564\ln T\right) \tag{10}$$

где температура T указа в Кельвинах.

3.2 Зеемановский замедлитель

Магнитное поле. Для использующегося зеемановского замедлителя зависимость [18] магнитного поля $B_{\rm exp}$ от координаты z представлена на рис. 6. В соответсвие с [23] магнитное поле эффективно замедляет атомы, при $B(z) \propto \sqrt{1-z/z_0}$, на рисунке 6 видно, что эта зависимость достаточно хорошо приближает $B_{\rm exp}(z)$. Параметры аппроксимации: $z_0 = (94 \pm 1) \, {\rm cm}, \, \delta z = (15 \pm 1) \, {\rm cm}, \, B_0 = (740 \pm 13) \, \Gamma c, \, B_1 = (260 \pm 12) \, {\rm cm}.$

Рис. 6: Зависимость магнитного поля внутри зеемановского замедлителя от координаты

Тормозящая сила. Считая, что мы работаем с циклическим переходом (указать каким), в приближение двухуровневой системы, эффективное сила, действующая со стороны лазерного луча на атом, может быть записана в виде¹ (добавить ссылку)

$$F = \frac{\hbar k \Gamma}{2} \frac{s}{1 + s + 4(\delta + kv)^2 / \Gamma^2}$$
(11)

где $s=I/I_{\rm sat}$ — параметр насыщения, $I_{\rm sat}$ — интенсивность насыщения, v — скорость атома, k — волновой вектор.

Уравнение движения запишется в виде

$$\frac{dv}{dt} = \frac{F}{m}, \quad \stackrel{v \, dt = \, dz}{\Leftrightarrow} \quad \frac{dv(z)}{dz} = \frac{F(v, z)}{m \, v(z)},\tag{12}$$

где m — масса атома. Таким образом можем найти зависимость v(z) для различных $v_0 \stackrel{\text{def}}{=} v(z=0)$, характерный вид приведен на рис. 7 для $\delta = -20\Gamma$, s=20, $B(z) \approx B_{\text{exp}}(z)$.

Рис. 7: a) Зависимость скорости атомов от координаты в зеемановском замедлителе. b) Характерное преобразование распределения атомов по скоростям после замедления

 $^{^{1}}$ Нагрев, связанный с изотропным излучением фотона, приводящий во время движения к случайным блужданиям в пространстве поперечных скоростей в данной работе не рассматривается, потери связанные с этим эффектом обычно ограничиваются 10% (добавить ссылку).

Для атомов со скоростями $v < v_{\rm crit}$ замедлитель работает эффективно и замедляет до некоторой характерной $v_{\rm slow}$, рядом с которой атомы распределены на масштабе (добавить ссылку) $\frac{1}{2}\Gamma\sqrt{1+s}/k$, характерное преобразование распределения² атомов по скоростям приведено на рис. 7b, полученное в результате моделирования методом Монте-Карло для 10^5 частиц. Обычно для зеемановского замедлителя выполняется, что $v_{\rm crit} < \alpha$.

Эффективность замедлителя. Рассмотрим поток частиц, долетающих до замедлителя с учётом геометрии системы: $v_r/v_z < \varphi_{\rm in} \sim 1/40$. Частицы распределены в соотвествии с (добавить ссылку)

$$f(v_z, v_r) \propto v_r e^{-(v_r/\alpha)^2} v_z e^{-(v_z/\alpha)^2} \theta(\varphi_{\rm in} - v_r/v_z). \tag{13}$$

В дальнейшем в моделировании будет использоваться 10^6 частиц из распределения (13) для $\alpha = 300\,\mathrm{m/c}$.

После замедлителя атомы попадают в магнитооптическую ловушку (написать про патоку), основным параметром которой является скорость захвата $v_{\rm cap}$ — максимальная скорость атома, при которой атом захватывается ловушкой.

Рис. 8: Эффективность работы замедлителя

Для оценки эффективности системы замедлитель + МОЛ введём интегральный параметр η , равный отношению количества захваченных в МОЛ к количеству атомов, попадающих в замедлитель. Связь η с наблюдаемым количеством атомов в МОЛ приведена в (17).

Зависимость $\eta(B_0, v_{\rm cap}, \delta, s)$ приведена на рисунке 8. Моделирование методом Монте-Карло проводилось для 10^5 частиц относящихся к распределению в потоке $\Phi_{\rm sol}$. Учтены конечные размеры пространства внутри замедлителя (трубка радиуса порядка 1 см), влияние гравитации, конечные размеры МОЛ в соответсвии с характерными экспериментальными значениями установки.

Здесь анализ картинки, мне не нравится — переписать. Видно, что есть некоторая оптимальная область параметров (в которой $v_{\rm slow} < v_{\rm cap}$), ширина которой увеличивается с увеличением $v_{\rm cap}$. Формально отстройкой δ и магнитным полем B_0 мы можем увеличивать

 $^{^2}$ Забавный факт. Впервые данный способ охлаждения атомов применялся [24] для охлаждения Na до $1.5\,\mathrm{K}$ в продольном направление в 1981 году.

 $v_{
m crit}$ (? добавить зависимость $v_{
m crit}(B_0,\delta)$, подумать про аналитические оценки), ценой увеличения $v_{
m slow}$. Увеличением мощности уменьшаем значение $v_{
m slow}$ до момента, когда $v_{
m slow} < v_{
m cap}$. Важно заметить, что зависимость η от настраиваемых параметров носит унимодальный характер, что позволяет подбирать оптимальные значения итеративно находя максимум η отдельно по каждому из параметров.

3.3 Магнито-оптическая ловушка

Динамика количества атомов в МОЛ. Количество атомов в ловушке N во время загрузки может быть оценено уравнением [18]

$$\frac{dN}{dt} = \Phi_{\text{load}} - \gamma N - \beta \int_{V} n(\mathbf{r}, t)^{2} d^{3}\mathbf{r}, \tag{14}$$

где γ – коэффициент линейных потерь, обусловленных столкновениями с буферным газом, β – скорость неэластичных бинарных столкновений, $n(\boldsymbol{r},t)$ – концентрация атомов, V – объем атомного облака, $\Phi_{\text{load}} = \eta \Phi_{\text{sol}}$ – поток атомов после замедлителя со скоростью $v < v_{\text{cap}}$. Зависимость $n(\boldsymbol{r})$ в каждый момент времени может быть аппроксимирована гауссовой функцией с дисперсиями (w_x, x_y, w_z) , что позволяет явно посчитать интеграл:

$$\frac{dN}{dt} = \Phi_{\text{load}} - \gamma N - \tilde{\beta} N^2, \qquad \tilde{\beta} = \frac{\beta}{(2\pi)^{3/2}} \frac{1}{w_x w_y w_z}.$$
 (15)

Физический смысл $w_{x,y,z}$ – радиус атомного облака по уровню e^{-1} .

Решая уравнение (15), можем найти зависимость N(t):

$$N = \frac{\Phi_{\text{load}}}{\gamma} \left(\frac{1}{2} + \frac{\mu}{\text{th } \mu \gamma t} \right)^{-1}, \qquad \mu \stackrel{\text{def}}{=} \frac{1}{2} \sqrt{1 + 4 \frac{\beta \Phi_{\text{load}}}{\gamma^2}}. \tag{16}$$

Для достаточно большого времени загрузки $\gamma \mu t_{\rm load} \gg 1$ можем рассматривать стационарное значение и выразить связь N с η :

$$N = \frac{\gamma}{2\beta} \left(\sqrt{1 + 4\frac{\beta\eta\Phi}{\gamma^2}} - 1 \right), \qquad \eta = \frac{\gamma}{\Phi_{\text{sol}}} N + \frac{\beta^2}{\Phi_{\text{sol}}} N^2.$$
 (17)

Таким образом задача оптимизации количества атомов в магнитооптической ловушке может быть сведено к оптимизации безразмерного параметра η .

3.4 Двухмерная магнито-оптическая ловушка

Поток загрузки. В соответствии с формулами (5), (7), а также считая, что захватываются все атомы со скоростью $v < v_{\text{cap}}$ [25]

$$\Phi_{\rm 2d} \propto \Phi_{\rm tot} \int_0^{v_{\rm cap}} v^3 e^{-v^2/\alpha^2} dv, \quad \Phi_0 = n_{\rm sat} \bar{v} S_{\rm oven} \frac{\Omega_{\rm 2d}}{4\pi}, \quad \Rightarrow \quad \Phi_{\rm 2d} \approx \frac{1}{2} \Phi_0 \left(\frac{v_{\rm cap}}{\alpha}\right)^4, \quad (18)$$

где Ω_{2d} — телесный угол двухмерной магнитооптической ловушки. Таким образом основным параметром, определяющим поток атомов из 2D-MOЛ является скорость захвата.

Скорость захвата. Тормозящая сила в МОЛ [18, (3.1.5)] может быть записана в виде

$$F(v) = \frac{8\hbar\delta k^2}{\Gamma} \frac{s}{\left(1 + s + \left(\frac{\delta - kv}{\Gamma/2}\right)^2\right) \left(1 + s + \left(\frac{\delta + kv}{\Gamma/2}\right)^2\right)} v. \tag{19}$$

Далее полагая dl = v dt, можем записать

$$m\frac{dv}{dt} = F(v), \quad \Rightarrow \quad m\int_{v_{\text{cap}}}^{0} \frac{v}{F(v)} \, dv = D,$$
 (20)

где D – диаметр лазерного пучка. В левой части получается полином пятой степени по $v_{\rm cap}$. Полагая мощность лазера фиксированной $P \sim 0.1$ Вт, можем выразить $s(D) = \frac{1}{I_{\rm sat}} \frac{P}{\pi D^2/4}$. Уравнение (20) неявно задаёт зависимость $v_{\rm cap}(\delta,s,D)$. Численным решением уравнения (20), найдены зависимости $v_{\rm cap}(\delta,s,D)$, рис. 9.

Рис. 9: Зависимость скорости захвата 2D-МОЛ для различных мощностей

Для наглядности представлены зависимости $v_{\rm cap}(\delta,P,D=5~{\rm mm})$: рис. 10a, и $v_{\rm cap}(\delta,P=25~{\rm mBr},D)$: рис. 10b.

Рис. 10: Зависимость скорости захвата от отстройки

Толкающий луч. Из геометрии системы $v_r/v_z < \theta$ (описать кто есть кто), при этом $v_z < v_{\rm cap}$, что приводит к $v_r < \theta v_{\rm cap} \sim 1$ м/с. Под действием гравитации атомы могут просто не долетать до основной МОЛ, поэтому добавляется толкающий луч.

Силу от одного толкающего луча можем найти в виде

$$a(v) = F(v)/m = \frac{\hbar k}{m} \frac{\Gamma}{2} \frac{s}{1 + s + \frac{(2\pi\delta - kv)^2}{\Gamma^2/4}},$$
 (21)

где для простоты считали $\delta = 0$. Также будем считать, что $v_{\text{нач}} = 0$, интересно найти зависимость $v_{\text{кон}}(s)$ при фиксированной величине длины разгона l:

$$\int_0^{v_{\text{KOH}}} \frac{v \, dv}{a(v)} = \int_0^l \, dl. \tag{22}$$

Считая $s\gg \frac{\Gamma m}{8k^3l\hbar}\sim 10^{-4},$ можем написать

$$v_{\text{\tiny KOH}}(l) = \left(\frac{\hbar\Gamma^3}{2km}ls\right)^{1/4}.$$
 (23)

Для $l \sim 20 \, \text{см}$ можем считать $v_{\text{кон}} \sim s^{1/4} \cdot 30 \, \text{м/c}$.

Аналогично можем найти связь

$$\int_0^{v_{\text{KOH}}} \frac{dv}{a(v)} = \int_0^t dt, \quad \Rightarrow \quad v_{\text{KOH}}(t) = \frac{\Gamma}{2} \left(\frac{3st\hbar}{km} \right)^{1/3}. \tag{24}$$

Теперь можем записать связь например и на время

$$t = \frac{2^{9/4}}{3} \left(\frac{km}{s\Gamma^3\hbar}\right)^{1/4} l^{3/4} = \frac{4}{3} \frac{l}{v_{\text{\tiny KOH}}}.$$
 (25)

Тогда выражение на критическую длину:

$$l_{\text{крит}} \sim \sqrt{\frac{h_{\text{крит}} v_{\text{cap}}^2}{g}},$$
 (26)

где $h_{ ext{крит}}$ определяется геометрией вакуумной установки.

Усиленные встречные пучки. Так как основные требования к $v_{\rm cap}$ возникают в торможение летящих из печки атомов, то имеет смысл перераспределить мощность в пучках 2D-MOЛ так, чтобы во встречных пучках было больше мощности. Данный приём аналогичен расположению двухмерной оптической патоки перед МОЛ, как мы уже делали в секции ??. Подобные конфигурации обычно называются $2D^+MOЛ$.

Совмещая (21) и (19), находим тормозящую силу ... дописать!

Рис. 11: а) ... b) ...

4 Заключение

Список литературы

- [1] Bonnie L. Schmittberger and David R. Scherer. A review of contemporary atomic frequency standards, 2020.
- [2] Thomas Heavner, Tom Parker, Jon Shirley, and Steven Jefferts. Nist f1 and f2. Proc. 2008 Symposium on Frequency Standards and Metrology, Pacific Grove, CA, US, 2008-10-05 00:10:00 2008.
- [3] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye. An optical lattice clock with accuracy and stability at the 10-18 level. *Nature*, 506(7486):71–75, jan 2014.
- [4] Guglielmo M Tino. Testing gravity with cold atom interferometry: results and prospects. Quantum Science and Technology, 6(2):024014, mar 2021.
- [5] Savas Dimopoulos, Peter W. Graham, Jason M. Hogan, Mark A. Kasevich, and Surject Rajendran. Gravitational wave detection with atom interferometry. *Physics Letters B*, 678(1):37–40, jul 2009.
- [6] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbene. Quantum simulations with ultracold quantum gases. *Nature Physics*, 8(4):267–276, 2012.
- [7] Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De), and Ujjwal Sen. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. *Advances in Physics*, 56(2):243–379, March 2007.
- [8] Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in optical lattices. *Science*, 357(6355):995–1001, September 2017.
- [9] V. V. Tsyganok, D. A. Pershin, V. A. Khlebnikov, D. A. Kumpilov, I. A. Pyrkh, A. E. Rudnev, E. A. Fedotova, D. V. Gaifudinov, I. S. Cojocaru, K. A. Khoruzhii, P. A. Aksentsev, A. K. Zykova, and A. V. Akimov. Bose-einstein condensate as a diagnostic tool for an optical lattice formed by 1064 nm laser light, 2023.
- [10] Arata Yamamoto. Lattice simulation of ultracold atomic bose-fermi mixtures, 2012.
- [11] Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch, and Stefan Kuhr. Single-atom-resolved fluorescence imaging of an atomic mott insulator. *Nature*, 467(7311):68–72, aug 2010.
- [12] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-Body Physics with Ultracold Gases. *Reviews of Modern Physics*, 80(3):885–964, July 2008.
- [13] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor Haensch, and Immanuel Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. *Nature*, 415:39–44, 02 2002.
- [14] Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N. Bisset, Manfred J. Mark, and Francesca Ferlaino. Observation of vortices and vortex stripes in a dipolar condensate. *Nature Physics*, 18(12):1453–1458, oct 2022.

- [15] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. *Colloquium*: Many-body localization, thermalization, and entanglement. *Reviews of Modern Physics*, 91(2):021001, May 2019.
- [16] Giacomo Roati, Chiara D'Errico, Leonardo Fallani, Marco Fattori, Chiara Fort, Matteo Zaccanti, Giovanni Modugno, Michele Modugno, and Massimo Inguscio. Anderson localization of a non-interacting Bose–Einstein condensate. Nature, 453(7197):895–898, June 2008. 1D Bose exp.
- [17] Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Gross. Exploring the many-body localization transition in two dimensions. *Science*, 352(6293):1547–1552, June 2016. Bloch, 2D bosons exp.
- [18] В. В. Цыганок. Глубокое лазерное охлаждение атомов тулия в оптической дипольной ловушке. PhD thesis, МФТИ, 2020.
- [19] T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. T. M. Walraven. High-flux twodimensional magneto-optical-trap source for cold lithium atoms. *Physical Review A*, 80(1), 2009.
- [20] C B Alcock, V P Itkin, and M K Horrigan. Vapour Pressure Equations for the Metallic Elements: 298–2500K. 1983.
- [21] N. Ramsey. *Molecular Beams*. International series of monographs on physics. OUP Oxford, 1985.
- [22] C. B. Alcock, V. P. Itkin, and M. K. Horrigan. Vapour pressure equations for the metallic elements: 298–2500k. *Canadian Metallurgical Quarterly*, 23(3):309–313, 1984.
- [23] Jacob Oliver Stack. An Ultra-Cold Lithium Source For Investigating Cold Dipolar Gases. PhD thesis, University of London, 2010.
- [24] С. В. Андреев, В. И. Балыкин, В. С. Летохов, and В. Г. Миногин. Радиационное замедление и монохроматизация пучка атомов натрия до 1,5 K во встречном лазерном луче. 34(8):463–467, 1981. Первое наблюдение охлаждения в продольном направление.
- [25] T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. T. M. Walraven. High-flux two-dimensional magneto-optical-trap source for cold lithium atoms. *Phys. Rev. A*, 80:013409, Jul 2009.