Name:

Grade:

Due Date: 16/08/2021 (Due at the time of class)

Solve the following problems. Clearly justify all your assumptions.

Problem 1:

A four-cylinder, two-stroke cycle diesel engine with 10.9-cm bore and 12.6-cm stroke produces 88 kW of brake power at 2000 RPM. Compression ratio $r_c = 18:1$.

Calculate:

(a)	Engine displacement. [cm ³ , L]	(2.5)
(b)	Brake mean effective pressure. [kPa]	(2.5)
(c)	Torque. [N-m]	(2.5)
(d)	Clearance volume of one cylinder. [cm ³]	(2.5)

Problem 2:

A four-cylinder, 2.4-liter engine operates on a four-stroke cycle at 3200 RPM. The compression ratio is 9.4:1, the connecting rod length r = 18 cm, and the bore and stroke are related as S = 1.06B.

Calculate:

(a)	Clearance volume of one cylinder in cm ³ , L, and in. ³ .	(2)
(b)	Bore and stroke in cm and in.	(2)
(c)	Average piston speed in m/sec and ft/sec.	(1)

Problem 3:

What are the advantages of an over square engine? What are the advantages of an under square engine? (7.5)

Problem 4:

A single-cylinder, four-stroke cycle CI engine with 12.9-cm bore and 18.0-cm stroke, operating at 800 RPM, uses 0.113 kg of fuel in four minutes while developing a torque of 76 N-m. Calculate:

(a)	Brake specific fuel consumption. [gm/kW-hr]	(2)
(b)	Brake mean effective pressure. [kPa]	(2)
(c)	Brake power. [kW]	(2)
(d)	Specific power. [kW/cm ²]	(2)
(e)	Output per displacement. [kW/L]	(1)
(f)	Specific volume. [L/kW]	(1)

Problem 5:

Draw and briefly explain power and torque curve of an IC Engine. (7.5)

Problem 6:

A 1500-cm³, four-stroke cycle, four-cylinder CI engine, operating at 3000 RPM, produces 48 kW of brake power. Volumetric efficiency is 0.92 and air-fuel ratio AF = 21:1. Calculate:

(a)	Rate of air flow into engine. [kg/sec]	(2.5)
(b)	Brake specific fuel consumption. [gm/kW-hr]	(2.5)
(c)	Mass rate of exhaust flow. [kg/hr]	(2.5)
(d)	Brake output per displacement. [kW/L]	(2.5)