Set Theory

Outline

- 1. Definitions
- 2. Notations
 - a. Is a member of
 - b. Is not a member of
 - c. Is a subset of
 - d. Is a proper subset of
 - e. Null Set
 - f. Intersection
 - g. Union
 - h. Universal Set
 - i. Compliment
- 3. Describing Sets
 - a. List the elements
 - b. Verbal description
 - c. Give a mathematical inclusion rule
- 4. Special sets
 - a. Null Set
 - b. Universal Set
- 5. Membership relationships
 - a. Subsets
 - b. Proper Subsets
 - c. Intersection
 - d. Union
 - e. Complement
 - f. Difference
 - g. Disjoint sets
 - h. Cartesian Products
 - i. Power Set
- 6. Set Identities
 - a. Commutative Laws
 - b. Associative Laws
 - c. Distributive Laws
 - d. Intersection with U
 - e. Double Complement Laws
 - f. Idempotent Laws
 - g. De Morgan's Laws
 - h. Union with U

- i. Absorption Laws
- j. Alternate Representation for Set Difference

Definitions

- It's a well-defined collection of objects.
- The **elements** of a set are the **objects** in a set.
- Usually sets are denoted with uppercase letters while elements are denoted with lowercase letters.

Notations

- a. Is a member of
 - $x \in A \rightarrow x$ is a member of set A.
- b. Is not a member of
 - $y \notin A \rightarrow y$ is not a member of set A.
- c. Is a subset of
 - $A \subseteq B \rightarrow A$ is a subset of set B.
- d. Is a proper subset of
 - $A \subset B \rightarrow A$ is a proper subset of B.
- e. Null Set
 - $A = \emptyset \rightarrow \text{Set A is null (empty)}.$
- f. Intersection
 - $A \cap B \rightarrow$ All elements that are in **both** A and B.
- g. Union
 - $A \cup B \rightarrow$ All elements in A or B or both.
- h. Universal Set
 - \mathbb{U} or U or $\Omega \rightarrow$ The set of all elements currently under consideration
- i. Complement
 - A^c → Compliment of A (Elements that are NOT inside set A)
- i. Cartesian Product of sets.
 - $\{(a,b)|a\in A\ and\ b\in B\}$ \rightarrow Set of all ordered pairs formed by taking one element from each set.

- k. Power set
 - $P(A) \rightarrow All$ the possible subsets of set A.

Describing Sets

1. List elements

$$A = \{2,4,6,8\}$$

2. Verbal Description

"Even integers from 1 to 10. Exclusive."

3. Give a mathematical inclusion rule

$$A = \{Integer \ even \ x | \ 1 < x < 10\}$$

Special Sets

1. Null set (Ø)

A set with no element (An empty set).

$$A = \emptyset \rightarrow A = \{\}$$

2. Universal Set $(\mathbf{U}, \mathbf{U}, \mathbf{\Omega}, \mathbf{\Sigma})$

A set of all the elements under consideration.

$$A = \{2,4,6,8,10\}$$

$$B = \{1,3,5,7\}$$

$$\mathbb{U} = \{1,2,3,4,5,6,7,8,9,10\}$$

Membership Relationships

- 1. Subset of
 - >> If all the members of a set are also members in another set.
 - >> C is a subset of B
 - >>C ⊆ B

- 2. Proper subset of
 - >> If all the members of a set are also members of another set, but that another group has more elements.
 - >> A is a proper subset of B
 - $>> A \subseteq B$

- 3. Intersection
 - >> The set of all elements that belong to both selected sets.
 - $>> A \cap B$ means all the elements that belong to both A and B sets.

4. Union

- >> Set of all elements in selected sets.
- $>> A \cap B$ means all elements in A, or B or both.

Figure: Union of Two Sets

5. Complement

- >> The art of the universal set except the selected set.
- >> A^c means all the other elements under consideration except the elements in A.

6. Difference

>> The set of elements that are in one set but not in the other.

$$>> A = \{1,2,3,4,5,6,7,8,9,10\}$$

$$>> B = \{2,4,6,8,10\}$$

$$\Rightarrow A - B = \{1,3,5,7,9\}$$

>> Also equals to $A \cap B'$

7. Disjoint sets

- >> Two sets that share **no** common elements.
- >> The intersection of disjoint sets is null.

Disjoint sets

$$>> X \cap Y = \emptyset$$

8. Cartesian products of sets

>> Set of all ordered pairs formed by taking one element from each set.

$$>>> A = \{a, b, c\}$$

$$>>> B = \{2,4,6\}$$

$$>> A \times B = \{(a,2), (a,4), (a,6), (b,2), (b,4), (b,6), (c,2), (c,4), (c,6)\}$$

9. Power set

>>All the possible subsets of given set.

$$>> A = \{3,4,5\}$$

$$\Rightarrow P(A) = \{\emptyset, \{3\}, \{4\}, \{5\}, \{3,4\}, \{4,5\}, \{3,4,5\}\}$$

Set Identities

1. Commutative Laws

$$A \cap B = B \cap A$$

 $A \cup B = B \cup A$

2. Associative Laws

$$(A \cap B) \cap C = A \cap (B \cap C)$$

 $(A \cup B) \cup C = A \cup (B \cup C)$

3. Distributive Laws

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4. Intersection with U

$$A \cap \mathbb{U} = A$$

5. Double Complement Laws

$$(A')' = A$$

6. Idempotent Laws

$$A \cap A = A$$

$$A \cup A = A$$

7. De Morgan's Laws

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

8. Union with U

$$A \cup \mathbb{U} = \mathbb{U}$$

9. Absorption Laws

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

10. Alternate Representation for Set Difference

$$A - B = A \cap B'$$