C++ DP-GBDT Side-channel Analysis

Contents

1	Severity List	2
2	Building a single tree	3
	2.1 find_best_split	3
	2.1.1 Side channel leakage	3
	2.2 compute_gain	4
	2.2.1 Side channel leakage	4

1 Severity List

General

entity	secrecy
X	✓
X_cols_size	×
X_rows_size	×
У	√
y_rows_size	×

parameter	secret
${ m nb_trees}$	×
$learning_rate$	×
privacy_budget	×
task	×
\max_{depth}	×
$\min_{\text{samples}_{\text{split}}}$	×
$balance_partition$	×
$\operatorname{gradient}$ filtering	×
$leaf_clipping$	×
$scale_y$	×
use_decay	×
$l2_threshold$	×
$l2_lambda$	×
cat_idx	×
num_idx	×

While building a single tree

entity	secrecy	
X_subset	✓	
$X_{subset_cols_size}$	×	
X_subset_rows_size	√	
y_subset	√	
y_subset_rows_size	√	
gradients	√	
$gradients_size$	√	

2 Building a single tree

2.1 find_best_split

${\bf Arguments} \ / \ {\bf used} \ {\bf variables}$

variable	secret
X	✓
gradients	✓
$\operatorname{curr_depth}$?
tree_budget	×

params.use_decay	×
params. Δg	×
$params.max_depth$	×

Algorithm 1: find best split

```
1 Function find_best_split(X, gradients, curr_depth)
       // determine node privacy budget
       if params.use_decay then
2
 3
          if curr_depth == 0 then
             \texttt{node\_budget} = \frac{\texttt{tree\_budget}}{2*(2^{\texttt{max\_depth}+1} + 2^{\texttt{curr\_depth}+1})}
 4
          else
 5
             \mathtt{node\_budget} = \frac{\mathtt{tree\_budget}}{2*2^{\mathtt{curr\_depth}+1}}
 6
       else
          node\_budget = \frac{tree\_budget}{2*max\_depth}
 8
       // iterate over all possible splits
 9
       for feature_index : features do
10
          for feature_value : X[feature_index] do
              if "already encountered feature_value" then
11
               continue
12
              gain = compute_gain(X, gradients, feature_index, feature_value)
13
              if gain < 0 then
14
15
                 continue
              gain = \frac{node\_budget*gain}{2}
16
              candidates.insert(Candidate(feature_index, feature_value, gain))
17
       // choose a split using the exponential mechanism
       index = exponential\_mechanism(candidates)
18
       // construct the node
       TreeNode *node = new TreeNode(candidates[index])
19
       return node
20
```

2.1.1 Side channel leakage

leakage in compute_gain and exponential_mechanism

From branches/loops

- params.use_decay
- $\operatorname{curr} \operatorname{depth} == 0$
- number of features (columns of X)
- number of rows in X resp. length of gradients
- number of unique feature values of a feature
- number of splits that don't give any gain
- number of split candidates

Potential arithmetic leakage?

- Not sure about this in SGX though
- edge cases of variables appearing in formulas \to tree_budget and curr_depth and Δg and gain

2.2 compute_gain

Caller graph

Call graph

Arguments / used variables

variable	secret	
X	√	
gradients	√	
feature_index	×	
feature_value	×	
params.l2_lambda	×	

Algorithm 2: compute gain

```
1 Function compute_gain(X, gradients, feature_index, feature_value)
       // // partition into lhs/rhs
2
       \verb|lhs, rhs| = samples\_left\_right\_partition(X, feature\_index, feature\_value)|
3
       lhs\_size = lhs.size()
       rhs_size = rhs.size()
 4
       // return on useless split
      if lhs_size == 0 || rhs_size == 0 then
5
       return -1
 6
       // sums of lhs/rhs gains
       lhs_gain = sum(gradients[lhs])
 7
       rhs_gain = sum(gradients[rhs])
8
                            lhs_gain^2
       {\tt lhs\_gain} = \tfrac{{\tt lhs\_gain}}{{\tt lhs\_size+params.12\_lambda}}
 9
                            rhs_gain
       \texttt{rhs\_gain} = \tfrac{\texttt{rns\_gain}}{\texttt{rhs\_size} + \texttt{params.12\_lambda}}
10
       total_gain = lhs_gain + rhs_gain
11
       total_gain = max(total_gain, 0)
12
       return total_gain
13
```

2.2.1 Side channel leakage

leakage in samples_left_right_partition

From branches/loops/function calls

- size (#rows) of X/gradients
- lhs/rhs size
- whether it's a useless split

- memory access pattern of left/right gradients
- max function might leak whether total_gain < 0

Potential arithmetic leakage?

 edge cases of variables appearing in formulas → lhs_gain and lhs_size, rhs respectively.