Linguagens Formais UNICAP Eduardo Araújo Oliveira http://sites.google.com/site/eaoufpe

Estrutura

- Definição de AFND-e
- Equivalência AFε / AFN
- JFLAP

- Uma extensão do formalismo AFND
 - A diferença é que permite movimentos vazios
- Movimento vazio (transição ε)
 - Uma transição <u>sem leitura de símbolo</u>
 - Transição não obrigatória
 - A fita não se altera

- A diferença para os AFNDs é a função de transição
 - Além dos símbolos, agora também está definida para ε (ausência de símbolo)

5

AFNDε

o autômato vai do estado ${\it p}$ para o estado ${\it q}$ $\underline{\rm sem}$ ler um símbolo de entrada.

- Exemplo
 - $ACEITA(M) = \{ w \mid todo \ a \text{ antecede todo } b \}$

M:

δ:

	a	b	3
q0	{q0}	{}	{qf}
qf	{}	{qf}	{}

7

AFNDε

Suponha um autômato que reconhece a soma de um inteiro positivo ou negativo com um decimal positivo.

Acompanhar este autômato com a expressão

-12+2.6

AFNDε

Mostre como o autômato finito não-determinístico com transições vazias (AFND- ϵ) se comporta ao receber a palavra **abc**.

Para isso, mostre os conjuntos de estados atingidos após a leitura de cada símbolo da palavra. Lembre-se de considerar as transições ϵ antes e depois de fazer a transição para os símbolos da palavra.

autômato D:

Estando no estado s e recebendo o símbolo b:

- ler **b** e ir para **p**
- ir para t e então ler b e ir para q
- ir para t, ir para u e então ler b e ir para r.

O conjunto {b, bb, bbb} é aceito pelo autômato.

- Função FECHO-ε
 - Estados alcançáveis sem leitura de símbolo, inclui
 - O próprio estado
 - Estados alcançáveis por transições $\, oldsymbol{\epsilon} \,$
- Exemplo
 - FECHO- $\epsilon(q_1)$ = { q_1 , q_2 , q_3 , q_4 }

13

AFε vs. AFN

- Apesar do novo tipo de transição, o AFε não reconhece linguagens mais complexas
- Equivalência AFN \rightarrow AF ϵ
 - Trivial, decorrente da definição
- Equivalência AF $\epsilon \to AFN$
 - Dado um AF ϵ qualquer M, construir um AFN equivalente M'

Equivalência AFε / AFN

- Construindo M'
 - Muda apenas δ' e F'!
 - $-\delta'(q, a) = \underline{\delta}(\{q\}, a)$
 - Para todo estado **q** todo símbolo **a**
 - $$\begin{split} & \textbf{F'} = \{ \ q \ | \ \mathsf{FECHO-}\epsilon(q) \ \mathsf{cont\'{e}m} \ \mathsf{estado} \ \mathsf{de} \ \mathsf{F} \ \} \\ & = \{ \ q \ | \ \mathsf{FECHO-}\epsilon(q) \cap \mathsf{F} \neq \varnothing \ \} \end{split}$$

15

Equivalência AFε / AFN

- Exemplo 1
 - Criar AFN equivalente ao AFε

Equivalência AFε / AFN

- Exemplo 2
 - Resultado:

17

AFε

- Portanto, o formalismo AFε não é mais expressivo do que o AFN nem do que o AFD
 - São formalismos equivalentes
- Os três reconhecem a mesma classe de linguagens
 - Linguagens Regulares (ou Tipo-3)

JFLAP

- Simulador de formalismos, desenvolvido em Java, disponível no site da disciplina
- Permite criar um autômato qualquer
 Opção "Finite Automaton"
- Trata todos os autômatos como AFE

JFLAP

- Editor
 - Permite adicionar estados e transições
 - Ao adicionar a transição, clique no campo e digite um caractere
 - Se não digitar nada, a aresta será ϵ (ou λ)
 - Clique com o botão direito no estado e escolha se é inicial/final

2

JFLAP

- · Caminho de reconhecimento de uma palavra
 - Input->Fast Run
- Converter de AFε para um AFD
 - Convert->Convert to DFA
 - DFA Deterministic Finite Automaton

Referências

- Dois primeiros capítulos do livro em formato eletrônico
 - http://teia.inf.ufrgs.br/library.html

23

Linguagens Formais

UNICAP

Eduardo Araújo Oliveira http://sites.google.com/site/eaoufpe

