The Treasure's in the Details

Jacques Carette, Musa Al-hassy, Wolfram Kahl

McMaster University, Hamilton

July 19, 2018

https://github.com/JacquesCarette/TheoriesAndDataStructures
WORK IN PROGRESS

DeepSpec 2018, Princeton University

The Curry-Howard Correspondence		— "Propositions as Types"	
Logic Programming		Example Use in Programming	
\overline{true}	singleton type	return type of side-effect only methods	
false	empty type	return type for non-terminating methods	

The Curry-Howard Correspondence		Howard Correspondence	—"Propositions as Types"
Lo	ogic	Programming	Example Use in Programming
t	rue	singleton type	return type of side-effect only methods
f	alse	empty type	return type for non-terminating methods
	\Rightarrow	function type \rightarrow	methods with an input and output type
	\wedge	product type \times	simple records of data and methods
	V	sum type +	enumerations or tagged unions

The Curry-Howard Correspondence		— "Propositions as Types"	
Logic	Programming	Example Use in Programming	
\overline{true}	singleton type	return type of side-effect only methods	
false	empty type	return type for non-terminating methods	
\Rightarrow	function type \rightarrow	methods with an input and output type	
\wedge	product type \times	simple records of data and methods	
V	sum type +	enumerations or tagged unions	
	dependent function type Π	return type varies according to input value	
3	dependent product type Σ	record fields depend on each other's values	

The Curry-	Howard Correspondence	—"Propositions as Types"
\mathbf{Logic}	Programming	Example Use in Programming
\overline{true}	singleton type	return type of side-effect only methods
$__false$	empty type	return type for non-terminating methods
\Rightarrow	function type \rightarrow	methods with an input and output type
\wedge	product type \times	simple records of data and methods
\vee	sum type +	enumerations or tagged unions
	dependent function type Π	return type varies according to input value
∃	dependent product type Σ	record fields depend on each other's values
natural deduction	type system	ensuring only "meaningful" programs
hypothesis	free variables	global variables, closures
implication elimination	function application	executing methods on arguments
implication introduction	λ-abstraction	parameters acting as local variables to method definitions

Science
Proposition P is either true or false.

The Curry-Howard Correspondence		—"Propositions as Types"
Logic	Programming	Example Use in Programming
\overline{true}	singleton type	return type of side-effect only methods
false	empty type	return type for non-terminating methods
\Rightarrow	function type \rightarrow	methods with an input and output type
\wedge	product type \times	simple records of data and methods
\vee	sum type +	enumerations or tagged unions
	dependent function type Π	return type varies according to input value
3	dependent product type Σ	record fields depend on each other's values
natural deduction	type system	ensuring only "meaningful" programs
hypothesis	free variables	global variables, closures
implication elimination	function application	executing methods on arguments
implication introduction	λ-abstraction	parameters acting as local variables to method definitions

The Curry-Howard Correspondence		— Tropositions as Types
Logic	Programming	Example Use in Programming
\overline{true}	singleton type	return type of side-effect only methods
false	empty type	return type for non-terminating methods
\Rightarrow	function type \rightarrow	methods with an input and output type
\wedge	product type \times	simple records of data and methods
V	sum type +	enumerations or tagged unions
A	dependent function type Π	return type varies according to input value
3	dependent product type Σ	record fields depend on each other's values
natural deduction	type system	ensuring only "meaningful" programs
hypothesis	free variables	global variables, closures
implication di mination Type implication introduction	function application P may have mon λ-abstraction	re than 2 elements! parameters acting as local variables to method definitions

"Propositions as Types"

|Proposition| P is either true or false.

The Curry-Howard Correspondence		—"Propositions as Types"
\mathbf{Logic}	Programming	Example Use in Programming
true	singleton type	return type of side-effect only methods
$_$ $false$	empty type	return type for non-terminating methods
\Rightarrow	function type \checkmark \rightarrow	methods with an input and output type
\wedge	product type \times ×	simple records of data and methods
V	sum type	enumerations or tagged unions
\forall	dependent function type IV	return type varies according to input value
3	dependent product type Σ	Goord fields depend on each other's values
natural deduction	type system	ensuring only "meaningful" programs
hypothesis	free variables	global valuables, closures
implication Lype implication introduction	function application P may have mon λ-abstraction	executing methods on arguments re than 2 elements! parameters acting as local variables to method definitions

• Try to understand *complex notion* via a transformation to a *simpler notion*.

- Try to understand *complex notion* via a transformation to a *simpler notion*.
- ② Methodology: Transport *complex*-problems into *simple*-setting where they are easier to solve, then go back.

- Try to understand *complex notion* via a transformation to a *simpler notion*.
- Methodology: Transport *complex*-problems into *simple*-setting where they are easier to solve, then go back.
- Usually transformation is not invertible, but has a best approximate inverse:

- Try to understand *complex notion* via a transformation to a *simpler notion*.
- Methodology: Transport *complex*-problems into *simple*-setting where they are easier to solve, then go back.
- Usually transformation is not invertible, but has a best approximate inverse:

Galois Connections

$$f \dashv g \equiv \forall x, y \bullet f x \leq_1 y \equiv x \leq_2 g y$$

- Try to understand *complex notion* via a transformation to a *simpler notion*.
- Methodology: Transport *complex*-problems into *simple*-setting where they are easier to solve, then go back.
- Usually transformation is not invertible, but has a best approximate inverse:

Galois Connections

$$f \dashv g \equiv \forall x, y \bullet f x \leq_1 y \equiv x \leq_2 g y$$

For example, we can understand the complicated notion of supremum by the trivial notion of constant function:

$$\forall h, z \bullet \sup h \leq z \equiv h \stackrel{\cdot}{\leq} \mathsf{K} z$$

- Try to understand *complex notion* via a transformation to a *simpler notion*.
- Methodology: Transport *complex*-problems into *simple*-setting where they are easier to solve, then go back.
- Usually transformation is not invertible, but has a best approximate inverse:

Galois Connections

$$f \dashv g \equiv \forall x, y \bullet f x \leq_1 y \equiv x \leq_2 g y$$

For example, we can understand the complicated notion of supremum by the trivial notion of constant function:

$$\forall h, z \bullet \sup h \le z \equiv h \in \mathsf{K} z$$

- Try to understand *complex notion* via a transformation to a *simpler notion*.
- Methodology: Transport *complex*-problems into *simple*-setting where they are easier to solve, then go back.
- Usually transformation is not invertible, but has a best approximate inverse:

Galois Connections

$$f \dashv g \equiv \forall x, y \bullet f x \leq_1 y \equiv x \leq_2 g y$$

For example, we can understand the complicated notion of supremum by the trivial notion of constant function:

$$\forall h, z \bullet \sup h \le z \equiv h \in \mathsf{K} z$$

Ubiquitous! Integer division: $(\times k) \dashv (\div n)$, floor: $\iota_{\mathbb{R}} \dashv \lfloor - \rfloor$,

Prefix extraction: length \times ld \dashv take, Binary joins: max \dashv Δ , Power sets: $\bigcup \vdash \mathbb{P}$,

Unit & empty types, residuals, colimits, Kan extensions, Free ⊢ Forgetful

Proof relevance: We care about which proof witnesses the Galois Connection.

Proof relevance: We care about *which proof* witnesses the Galois Connection. We make a few replacements,

Proof relevance: We care about *which proof* witnesses the Galois Connection. We make a few replacements,

Order '<'

 \mapsto

Morphism type constructor ' \longrightarrow '

Proof relevance: We care about which proof witnesses the Galois Connection.

We make a few replacements,

Order ' \leq ' \mapsto Morphism type constructor ' \longrightarrow ' Equivalence ' \equiv ' \mapsto Isomorphism ' \cong '

Proof relevance: We care about which proof witnesses the Galois Connection.

We make a few replacements,

Order ' \leq ' \longrightarrow Morphism type constructor ' \longrightarrow '

Equivalence $\stackrel{\cdot}{\equiv}$ \mapsto Isomorphism $\stackrel{\cdot}{\cong}$

Functions f,g between sets \mapsto Functors F,G between categories

Proof relevance: We care about which proof witnesses the Galois Connection.

We make a few replacements,

Order ' \leq ' \longrightarrow Morphism type constructor ' \longrightarrow '

Equivalence $\stackrel{\cdot}{\equiv}$ \mapsto Isomorphism $\stackrel{\cdot}{\cong}$

Functions f, g between sets \mapsto Functors F, G between categories

Adjunctions, Global Characterisation

$$F \dashv G \equiv \forall x, y \bullet (Fx \longrightarrow_1 y) \cong (x \longrightarrow_2 Gy)$$

Where the isomorphism is natural in x and y.

Proof relevance: We care about which proof witnesses the Galois Connection.

We make a few replacements,

Order ' \leq ' \longrightarrow Morphism type constructor ' \longrightarrow '

Equivalence $\stackrel{\cdot}{\equiv}$ \mapsto Isomorphism $\stackrel{\cdot}{\cong}$

Functions f, g between sets \mapsto Functors F, G between categories

Adjunctions, Global Characterisation

$$F \dashv G \equiv \forall x, y \bullet (F x \longrightarrow_1 y) \cong (x \longrightarrow_2 G y)$$

Where the isomorphism is natural in x and y.

Adjunctions, Local Characterisation

$$\epsilon: FG \longrightarrow \mathsf{Id} \qquad \text{and} \qquad \eta: \mathsf{Id} \longrightarrow GF$$

such that the nonsensical "inverse equation $\mathsf{Id} = \epsilon \circ \eta$ " holds.

 η is called the unit since FG is a monad; dually ϵ is the counit since GF is a comonad.

Proof relevance: We care about which proof witnesses the Galois Connection.

We make a few replacements,

Order ' \leq ' \longrightarrow Morphism type constructor ' \longrightarrow '

Equivalence $\stackrel{\cdot}{\equiv}$ \mapsto Isomorphism $\stackrel{\cdot}{\cong}$

Functions f,g between sets \mapsto Functors F,G between categories

Adjunctions, Global Characterisation

$$F \dashv G \equiv \forall x, y \bullet (F x \longrightarrow_1 y) \cong (x \longrightarrow_2 G y)$$

Where the isomorphism is natural in x and y.

Adjunctions, Local Characterisation

 $\epsilon: FG \longrightarrow \mathsf{Id} \qquad \text{and} \qquad \eta: \mathsf{Id} \longrightarrow GF$

such that the nonsensical "inverse equation $\mathsf{Id} = \epsilon \circ \eta$ " holds.

 η is called the unit since FG is a monad; dually ϵ is the counit since GF is a comonad.

 η embeds, or *inserts*, "elements" as "singleton structures"; whereas ϵ extracts "elements" from "singleton structures."

Theory	Structure	Over	Equality	I
Carrier	Identity A	Type	Propositional	Ī
Pointed	Maybe A	Type	Propositional	ı

Theory	Structure	Over	Equality	Ì
Carrier	Identity A	Type	Propositional	I
Pointed	Maybe A	Type	Propositional	ı
Unary	$\mathbb{N} \times A$	Type	Propositional	Ī
Involutive	$A \uplus A$	Type	Propositional	ı

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times A$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times A$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	List A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times A$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	List A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional
Commutative Monoid	Bag	Setoid	Proof-relevant permutations
Group	?	?	?
Abelian Group	Hybrid Sets	Setoid	Proof-relevant permutations
Idemp. Comm. Monoid	Set	Setoid	Logical equivalence

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times \mathbf{A}$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	List A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional
Commutative Monoid	Bag	Setoid	Proof-relevant permutations
Group	?	?	?
Abelian Group	Hybrid Sets	Setoid	Proof-relevant permutations
Idemp. Comm. Monoid	Set	Setoid	Logical equivalence

[♦] Free Structure is "the" term language in normal form associated to the theory.

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times A$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	List A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional
Commutative Monoid	Bag	Setoid	Proof-relevant permutations
Group	?	?	?
Abelian Group	Hybrid Sets	Setoid	Proof-relevant permutations
Idemp. Comm. Monoid	Set	Setoid	Logical equivalence

[♦] Free Structure is "the" term language in normal form associated to the theory.

 $[\]diamond \perp$, \top , \mathbb{B} , \mathbb{N} , \mathbb{Z} show up as initial objects.

Computing Science \dashv Mathematics A. Given an arbitrary type A,

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	≱ ist A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional
Commutative Monoid	Bag	Setoid	Proof-relevant permutations
Group	?	?	?
Abelian Group	Hybrid Sets	Setoid	Proof-relevant permutations
Idemp. Comm. Monoid	Set	Setoid	Logical equivalence

[♦] Free Structure is "the" term language in normal form associated to the theory.

 $[\]diamond \perp$, \top , \mathbb{B} , \mathbb{N} , \mathbb{Z} show up as *initial objects*.

Computing Science \dashv Mathematics A. Given an arbitrary type A,

Theory	Structure	Over	Equality
Carrier	Identity A	Type	Propositional
Pointed	Maybe A	Type	Propositional
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	List A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional
Commutative Monoid	$=\mathrm{Bag} his$ t	0:00:16: 1d	OPAG-1986AP permutations
Group	?	?	?
Abelian Group	Hybrid Sets	Setoid	Proof-relevant permutations
Idemp. Comm. Monoid	Set	Setoid	Logical equivalence

[♦] Free Structure is "the" term language in normal form associated to the theory.

 $[\]diamond \perp$, \top , \mathbb{B} , \mathbb{N} , \mathbb{Z} show up as *initial objects*.

Computing Science - Mathematics Science Given an arbitrary type A,

Theory	Structure	Over	Equality	ı
Carrier	Identity A	Type	Propositional	
Pointed	Maybe A	Type	Propositional	ı
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional	
Involutive	$A \uplus A$	Type	Propositional	ı
Magma	Tree A	Type	Propositional	Ī
Semigroup	NEList A	Type	Propositional	ı
Monoid	List A	Type	Propositional	Ī
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional	ı
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional	ı
Commutative Monoid	Bag <i>his</i>	<i>took</i> id (Proof - Medit permutations	

Implementation issues!

Computing Science \dashv Mathematics Given an arbitrary type A,

Theory	Structure	Over	Equality	
Carrier	Identity A	Type	Propositional	
Pointed	Maybe A	\sim Type	Propositional	
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional	
Involutive	$A \uplus A$	Type	Propositional	
Magma	Tree A	Type	Propositional	
Semigroup	NEList A	Type	Propositional	
Monoid	List A	Type	Propositional	
Left Unital Semigroup	List A \times N	Type	Propositional	
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional	
Commutative Monoid	$\mathrm{Bag}nis$	tookid (Ma f-i yleah i	ermutations

Implementation issues!

 $[\]diamond$ Inductive type \Rightarrow Ordering! Thus not free!

Computing Science \dashv Mathematics Given an arbitrary type A,

Theory	Structure	Over	Equality
Carrier	Identity A	Ууре	Propositional
Pointed	Maybe A	ightharpoons Type	Propositional
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional
Involutive	$A \uplus A$	Type	Propositional
Magma	Tree A	Type	Propositional
Semigroup	NEList A	Type	Propositional
Monoid	List A	Type	Propositional
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional
Commutative Monoid	$\mathrm{Bag} ns$	t cookid (OPAG-IGEAN permutations

Implementation issues!

- \diamond Inductive type \Rightarrow Ordering! Thus not free!
- $\diamond A \to \mathbb{N}$ \Rightarrow No finite support

Computing Science \dashv Mathematics Given an arbitrary type A,

Theory	Structure	Over	Equality	1
Carrier	Identity A	Type	Propositional	
Pointed	Maybe A	$_{\mathrm{Type}}$	Propositional	ı
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional	I
Involutive	$A \uplus A$	Type	Propositional	ı
Magma	Tree A	Type	Propositional	I
Semigroup	NEList A	Type	Propositional	ı
Monoid	List A	Type	Propositional	I
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional	ı
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional	1
Commutative Monoid	$\mathrm{Bag} nis$	<i>t 0:00:16</i> id (PR 6f- iglean permutation	\mathbf{s}

- \diamond Inductive type \Rightarrow Ordering! Thus not free!
- $\diamond A \to \mathbb{N}$ \Rightarrow No finite support
 - ⇒ Finiteness hard to express constructively!

Computing Science - Mathematics Given an arbitrary type A,

Theory	Structure	Over	Equality	
Carrier	Identity A	T ype	Propositional	
Pointed	Maybe A 🔨	ightharpoons Type	Propositional	
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional	
Involutive	$A \uplus A$	Type	Propositional	
Magma	Tree A	Type	Propositional	
Semigroup	NEList A	Type	Propositional	
Monoid	List A	Type	Propositional	П
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional	
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional	
Commutative Monoid	$\mathrm{Bag} ns$	tookid (Pre f- iglean permutatio	ns

- \diamond Inductive type \Rightarrow Ordering! Thus not free!
- $\diamond A \to \mathbb{N}$
- \Rightarrow No finite support
- ⇒ Finiteness hard to express constructively!
- \Rightarrow Decidable equality on A! Thus not free!

Computing Science \dashv Mathematics Given an arbitrary type A,

Theory	Structure	Over	Equality	
Carrier	Identity A	Type	Propositional	
Pointed	Maybe A	ightharpoons Type	Propositional	
Unary	$\mathbb{N} \times \mathbb{A}$	Type	Propositional	
Involutive	$A \uplus A$	Type	Propositional	
Magma	Tree A	Type	Propositional	
Semigroup	NEList A	Type	Propositional	
Monoid	List A	Type	Propositional	
Left Unital Semigroup	List A \times N	Type	Propositional	
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional	
Commutative Monoid ($\mathrm{Bag} ns$	tookid (Me f-i ylear i	ermutations

- \diamond Inductive type \Rightarrow Ordering! Thus not free!
- $\diamond A \to \mathbb{N}$
- \Rightarrow No finite support
- ⇒ Finiteness hard to express constructively!
- \Rightarrow Decidable equality on A! Thus not free!
- \diamond List A with permutations! Works!

Computing Science \dashv Mathematics Given an arbitrary type A,

Theory	Structure	Over	Equality	
Carrier	Identity A	ype	Propositional	- 1
Pointed	Maybe A	⊘ Type	Propositional	
111	v .	•	v, there's no free functor	
M from Types to Comn Semigroup	ANEList A	Type	propositional equality. Propositional	
Monoid	List A	Type	Propositional	\exists
Left Unital Semigroup	List $A \times \mathbb{N}$	Type	Propositional	
Right Unital Semigroup	$\mathbb{N} \times \text{List A}$	Type	Propositional	
Commutative Monoid	Bag nis	COO Kid	OPLEG-146647 permutation	ns

- \diamond Inductive type \Rightarrow Ordering! Thus not free!
- $\diamond A \to \mathbb{N}$

- \Rightarrow No finite support
- ⇒ Finiteness hard to express constructively!
- \Rightarrow Decidable equality on A! Thus not free!
- \diamond List A with permutations! Works!

Why the Mechanisation

 ~ 1000 lines of Agda code

Why the Mechanisation

 ~ 1000 lines of Agda code

Benefits of the formal approach

• Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- ullet Unicode and mixfix operators \Rightarrow Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- \bullet Unicode and mixfix operators \Rightarrow Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- Unicode and mixfix operators ⇒ Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- ullet Unicode and mixfix operators \Rightarrow Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.
- Finally, formal proofs are fool-proof! No "an exercise to the reader"!

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- \bullet Unicode and mixfix operators \Rightarrow Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.
- Finally, formal proofs are fool-proof! No "an exercise to the reader"!

By working out the details we discovered

 \bullet Common recursion principles ; "Evaluate" the ${\color{red} {\bf syntax}}$ under a given semantics.

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- Unicode and mixfix operators ⇒ Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.
- Finally, formal proofs are fool-proof! No "an exercise to the reader"!

- Common recursion principles ; "Evaluate" the syntax under a given semantics.
- $\bullet \ \text{ map operators and their optimisation rewrites: } \operatorname{\mathsf{map}} \operatorname{\mathsf{Id}} \mapsto \operatorname{\mathsf{Id}} \ ; \ \operatorname{\mathsf{map}} f \circ \operatorname{\mathsf{map}} g \mapsto \operatorname{\mathsf{map}} (f \circ g)$

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- ullet Unicode and mixfix operators \Rightarrow Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.
- Finally, formal proofs are fool-proof! No "an exercise to the reader"!

- Common recursion principles ; "Evaluate" the syntax under a given semantics.
- $\bullet \ \text{map operators and their optimisation rewrites: } \operatorname{\mathsf{map}} \operatorname{\mathsf{Id}} \mapsto \operatorname{\mathsf{Id}} \ ; \ \operatorname{\mathsf{map}} f \circ \operatorname{\mathsf{map}} g \mapsto \operatorname{\mathsf{map}} (f \circ g)$
- (Haskell's return) Unit transformations take on familiar forms: [-], Leaf, Just, ... Along with proven optimisation laws: $\mathsf{map}\,f(\mathsf{return}\,x) \mapsto \mathsf{return}\,(f\,x)$

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- ullet Unicode and mixfix operators \Rightarrow Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.
- Finally, formal proofs are fool-proof! No "an exercise to the reader"!

- Common recursion principles ; "Evaluate" the syntax under a given semantics.
- $\bullet \ \, \text{map operators and their optimisation rewrites: map Id} \mapsto \text{Id} \; ; \; \text{map} \, f \circ \text{map} \, g \mapsto \text{map} \, (f \circ g)$
- (Haskell's return) Unit transformations take on familiar forms: [-], Leaf, Just, ... Along with proven optimisation laws: $\mathsf{map}\,f(\mathsf{return}\,x) \mapsto \mathsf{return}\,(f\,x)$
- Boom Hierarchy does not necessarily work for type theory!

- Give solid grounding to folklore; e.g., there are no associative extensions of non-associative operators: There is no free functor from magmas to semigroups.
- Unicode and mixfix operators ⇒ Mechanisation is readable and not significantly more effort than a conventional presentation in LaTeX.
- Agda as a type checker for doing mathematics —manipulating symbols according to specified rules. Mechanised mathematical notation ⇒ Confidence in results! Dispell silly conjectures/errors!
- Agda enables a natural treatment of theories and their direct use as modules of executable programs.
- Finally, formal proofs are fool-proof! No "an exercise to the reader"!

- Common recursion principles ; "Evaluate" the syntax under a given semantics.
- $\bullet \ \, \text{map operators and their optimisation rewrites: map Id} \mapsto \text{Id} \; ; \; \text{map} \, f \circ \text{map} \, g \mapsto \text{map} \, (f \circ g)$
- (Haskell's return) Unit transformations take on familiar forms: [-], Leaf, Just, ... Along with proven optimisation laws: $\mathsf{map}\,f(\mathsf{return}\,x) \mapsto \mathsf{return}\,(f\,x)$
- Boom Hierarchy does not necessarily work for type theory!
- New-ish relationships: Lists may be specified as a *free monoid* but may also be specified as *initial pointed indexed unary algebra*. Single-sorted unary algebras also have a surprising relationship with temporal logic.

Adventurous Avenues To Explore

—Where do these show up?

Adventurous Avenues To Explore —Where do these show up? Math theories yielding potential data structures

left-zero monoid (Prolog's cut!?), pointed unary (natural numbers!?), idempotent unary, commutative magma, pointed magma, quasigroup, loop, semilattice, medial magma, left semimedial magma, left distributive magma, idempotent magma, zeropotent magma, left unary magma, Steiner magma, null semigroup, BCI algebra, BCK algebra, squag, sloop, Moufang quasigroup, loop, left shelf, shelf, rack, spindle, quandle, Kei, involutive semigroup, band, rectangular band, hemigroup, pseudo inverse algebra, ringoid, left near semiring, near semiring, semifield, semiring, semirng, pre-dioid, dioid, star semiring, idempotent dioid, ring, commutative ring, idempotent semiring, Stone algebra, Kleene lattice, Kleene algebra, Heyting algebra, Goedel algebra, ortho lattice, directoid, semiheap, idempotent semiheap, heap, meadow, wheel.

Adventurous Avenues To Explore —Where do these show up? Math theories yielding potential data structures

left-zero monoid (Prolog's cut!?), pointed unary (natural numbers!?), idempotent unary, commutative magma, pointed magma, quasigroup, loop, semilattice, medial magma, left semimedial magma, left distributive magma, idempotent magma, zeropotent magma, left unary magma, Steiner magma, null semigroup, BCI algebra, BCK algebra, squag, sloop, Moufang quasigroup, loop, left shelf, shelf, rack, spindle, quandle, Kei, involutive semigroup, band, rectangular band, hemigroup, pseudo inverse algebra, ringoid, left near semiring, near semiring, semifield, semiring, semirng, pre-dioid, dioid, star semiring, idempotent dioid, ring, commutative ring, idempotent semiring, Stone algebra, Kleene lattice, Kleene algebra, Heyting algebra, Goedel algebra, ortho lattice, directoid, semiheap, idempotent semiheap, heap, meadow, wheel.

Structures possibly arising from mathematical theories

Difference list (Yoneda on Monoids!?), stack, queue, finite map, rose tree, digraph, multigraph, partitions, oriented cycles, colorings, tri-colorings, hedges, derangements, ballots, commutative parenthesizations, linear order, permutations, even permutations, chains, oriented sets, even sets, octopus, vertebrae, automata (pointed indexed algebras!?).