

19.
$$\int_0^{2\pi} \cot\left(\frac{t-x}{2}\right) y(t) dt = f(x), \qquad 0 \le x \le 2\pi.$$

Here, the integral is understood in the sense of the Cauchy principal value and the right-hand side is assumed to satisfy the condition $\int_0^{2\pi} f(t) dt = 0$.

Solution:

$$y(x) = -\frac{1}{4\pi^2} \int_0^{2\pi} \cot\left(\frac{t-x}{2}\right) f(t) dt + C,$$

where C is an arbitrary constant.

It follows from the solution that $\int_0^{2\pi} y(t) dt = 2\pi C$. The equation and its solution form a Hilbert transform pair (in the asymmetric form).

References

Gakhov, F. D., Boundary Value Problems [in Russian], Nauka, Moscow, 1977.

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ie/ie0319.pdf