Exercise 2.1.3 use result of exercise 2.1.2 to show that if τ is mon-mull then u = Ax + B for constants A and B, $A \neq O$?

From Exercise 2.1.2, the length λ of $\dot{\chi}^{0} = d\dot{\chi}^{0}$ is constant. So $\bar{\tau}$ constant A > 0 $\bar{\tau} + A^{2} = L^{2} = \pm g_{ab} \dot{\chi}^{a} \dot{\chi}^{b} = g_{ab} d\dot{\chi}^{0} d\dot{\chi}^{b} d\dot{\chi}^{b} = g_{ab} d\dot{\chi}^{0} d\dot{\chi}^{b} d\dot{\chi}^{0} - g_{ab} d\dot{\chi}^{0} d\dot{\chi}^{b} (d\dot{\chi}^{0})^{2}$ $A^{0} = d\dot{\chi}^{0}$ and $A^{0} = d\dot{\chi}^{0}$. Then $g_{ab} d\dot{\chi}^{0} d\dot{\chi}^{0} - g_{ab} d\dot{\chi}^{0} d\dot{\chi}^{0} = d\dot{\chi}^{0} d\dot{\chi}^{0} + d\dot{\chi}^{0} +$