

Model Optimization and Tuning Phase

Date	9 th July 2024
Team ID	SWTID1720017249
Project Title	Panic Disorder Detection
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Gradient Boosting	n_estimators, learning_rate, max_depth,	n_estimators: 200, learning_rate: 0.1, max_depth: 4, min_samples_split: 5, min_samples_leaf: 2, subsample: 0.9
XGBoost	n_estimators, learning_rate, max_depth, subsample,	n_estimators: 300, learning_rate: 0.1, max_depth: 4, subsample: 0.8, colsample_bytree: 0.9, gamma: 0.1
Decision Tree	criterion, splitter, max_depth, min_samples_split, min_samples_leaf, max_features	criterion: 'gini', splitter: 'best', max_depth: 30, min_samples_split: 2, min_samples_leaf: 1, max_features: None

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric (Accuracy)	Optimized Metric (Accuracy)
Decision Tree	90.45	90.34
Gradient Boosting	90.13	91.54
XGBoost	91.12	91.51

Final Model Selection Justification (2 Marks):

Final Model	Reasoning	
	Gradient Boosting achieved the highest optimized accuracy of 91.54%, showing a significant improvement over its baseline accuracy of 90.13%. This indicates that the model benefits greatly from hyperparameter tuning. Although XGBoost also performed well with an optimized accuracy of 91.51%, the slight edge in accuracy and the stability of Gradient Boosting make it the preferred choice. Furthermore, Gradient Boosting has shown to be less prone to overfitting in this context compared to Decision Tree, whose optimized accuracy decreased. Therefore, Gradient Boosting is selected for its	
Gradient Boosting	superior performance and robustness after optimization.	