Cognome:	Nome:	Matricola:	
· · · · · · · · · · · · · · · · · · ·	-		

Università degli Studi della Calabria

Corso di Laurea in Ingegneria Informatica

Prova scritta di *Algoritmi e Strutture Dati* (durata della prova: 60 minuti) Traccia A

Esercizio 1

Si consideri una classe *AlberoBinario* che rappresenta *alberi binari* in cui la parte informativa di ogni nodo è un numero intero. Si assuma che in tale classe siano implementati i seguenti metodi:

public	: interface AlberoBinario{
	/* restituisce il sottoalbero destro dell'albero corrente, la complessità temporale è $\theta(1)^*/$ public AlberoBinario destro();
	/* restituisce il sottoalbero sinistro dell'albero corrente, la complessità temporale è $\theta(1)$ */ public AlberoBinario sinistro();
	/* restituisce il valore memorizzato nella radice dell'albero, la complessità temporale è $\theta(1)^*$ / public int val();
}	

Si realizzi un metodo ricorsivo

public static boolean verificaDueNodi(AlberoBinario a) {...}

che restituisce *true* se e solo se esistono almeno due nodi dell'albero che soddisfano la proprietà A specificata di seguito. Un nodo soddisfa la proprietà A se la somma tra il valore contenuto in esso ed il valore del livello in cui si trova è minore di zero. Si caratterizzi la complessità temporale e spaziale del metodo nel caso migliore e peggiore, specificando anche quali siano il caso migliore ed il caso peggiore per la complessità temporale e spaziale.

Commenti:	
	_

Esercizio 2

Per ognuna delle seguenti affermazioni, indicare se è vera o falsa.

	V	F	Affermazione
1			Un albero binario è bilanciato se la differenza fra l'altezza del sottoalbero sinistro
			della radice e l'altezza del sottoalbero destro della radice è minore o uguale ad 1.
2			La complessità spaziale della visita anticipata di un albero binario con n nodi è $O(lg)$
			n) nel caso peggiore.
3			La funzione $f(n) = 2n^2 \ e \ \Omega(n)$.
4			Sia G un grafo non orientato ed aciclico. G è un albero.
5			L'inserimento di un elemento in una hash table ha complessità $O(n)$ nel caso
J			migliore.
6			La complessità temporale della visita per livelli di un albero binario è $O(n^2)$.
7			Un grafo non orientato connesso e pesato (sugli archi) ammette sempre un unico
/			albero ricoprente di costo minimo.
8			L'inserimento di un elemento in un heap binario ha complessità temporale $\theta(n)$ nel
			caso peggiore (dove n è il numero dei nodi).
			Un albero binario è detto di ricerca se, per ognuno dei suoi nodi <i>u</i> , la radice del
9			figlio sinistro di u contiene un valore minore di quello contenuto in u e la radice del
			figlio destro di <i>u</i> contiene un valore maggiore o uguale di quello contenuto in <i>u</i> .
10			Un grafo connesso ed orientato in cui esiste almeno un nodo con grado di entrata
			uguale a 0 può contenere un ciclo.

Esercizio 3

Si descrivano le caratteristiche di un Heap binario e la procedura di estrazione della radice da esso.						