Exercice 1:

1. E est un espace euclidien de dimension 3, $e_1, ..., e_4$ quatres vecteurs de E de norme 1 de sorte

$$(\widehat{e_1, e_2}) = (\widehat{e_1, e_3}) = (\widehat{e_1, e_4}) = \alpha \neq 0 [\pi] \text{ et } (\widehat{e_2, e_3}) = (\widehat{e_2, e_4}) = (\widehat{e_3, e_4}) = \beta \neq 0.$$

Faire une figure représentant la configuration.

Soit $H = e_1^{\perp}$ et p la projection orthogonale sur H. Justifier que, si $i \in \{2, 3, 4\}, p(e_i) \neq 0_E$.

Montrer que $(p(e_2), p(e_3)) = (p(e_2), p(e_4)) = (p(e_3), p(e_4)) \neq 0$, et donner la valeur de cet angle.

Etablir que $\cos(\beta) - \frac{3}{2}\cos^2(\alpha) + \frac{1}{2} = 0$. Quel est l'angle entre quatre vecteurs issus du centre

(a) E est un espace euclidien, et $e_1, ..., e_k$ sont des vecteurs de norme 1 de E formant deux à deux un même angle non nul ie qu'existe $\alpha \in]0,\pi]$ tel que $\forall i,j \in [1,k]$, tels que $i \neq j$, $(\widehat{e_i,e_j}) = \alpha.$

Soit p la projection orthogonale sur $H = e_1^{\perp}$.

Si $k \geq 3$, justifier que $\forall i \in [2, k], p(e_i) \neq 0_E$.

Montrer qu'existe $\beta \in]0,\pi]$ tel que $\forall i,j \in [2,k]$, tels que $i \neq j, (p(e_i),p(e_j)) = \beta$ et que si α est aigu (ie $\alpha \leq \pi/2$), β l'est aussi. (on donnera une relation entre $\cos(\alpha)$ et $\cos(\beta)$)

(b) Donner (et démontrer) une majoration optimale dans E euclidien de dimension n, du nombre d'éléments d'une famille de vecteurs formant deux à deux un même angle non nul. Idem en imposant de plus à l'angle d'être aigu.

Exercice 2: Familles angle-obtuses

Une famille $(e_1, ..., e_k)$ $(k \ge 2)$ d'un espace euclidien sera dite angle-obtuse ssi:

$$\forall i, j \in [1, k], \ i \neq j \Longrightarrow < e_i, e_j > < 0$$

1. Soit E un espace euclidien, $(e_1,...,e_k)$ une famille angle-obtuse de E $(k \geq 3), H = e_1^{\perp}$ et p la projection orthogonale sur H.

Si
$$i \in [2, k]$$
, justifier que $p(e_i) = e_i - \frac{\langle e_i, e_1 \rangle}{\|e_1\|^2} \cdot e_1$.

Montrer que $(p(e_2),...,p(e_k))$ est angle-obtuse.

On notera pour la suite que cette dernière famille est constituée de vecteurs de H.

- 2. Montrer que, si E est un espace euclidien de dimension n, toute famille angle-obtuse de E est de cardinal $\leq n+1$.
- 3. Soit E euclidien de dimension n, H un hyperplan de E (dim(H) = n 1), et $(e_1, ...e_k)$ $(k \ge 2)$ une famille angle-obtuse de H.

Soit $w \in H^{\perp} \setminus \{0_E\}$.

Montrer que pour t > 0 assez petit, la famille $(e_1 - t.w, e_2 - t.w, ..., e_k - t.w, w)$ est angle-obtuse.

4. Montrer que, si E est un espace euclidien de dimension n, il existe une famille angle-obtuse de E de cardinal n+1.

Exercice 3 : Caractérisation des parties finies d'un espace euclidien

- 1. Si E est euclidien et $(e_1, ..., e_n)$ est une base de E, montrer qu'existe $(y_1, ..., y_n)$ famille de E telle que pour tous $i, j, < e_i, y_j >= 1$ si i = j et 0 si $i \neq j$, et que c'est une base de E.
- 2. Soit P une partie de E euclidien. Montrer que P est finie ssi $\{\langle x,y\rangle\mid x,y\in P\}$ est fini. (on pourra supposer, quitte à restreindre l'espace, que E=vect(P), et se donner une base de E formée de vecteurs de P)

Exercice 4 : Suite de polynômes orthogonaux

On définit, si $P, Q \in \mathbb{R}[X], \langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$.

- 1. Montrer que <, > est un produit scalaire sur $\mathbb{R}[X]$.
- 2. En appliquant à $(X^n)_{n \in \mathbb{N}}$ le procédé de Schmidt, montrer qu'existe une seule famille orthonormale $(P_n)_{n \in \mathbb{N}}$ dans laquelle $d(P_n) = n$ et $\langle P_n, X^n \rangle > 0$. Montrer qu'il s'agit d'une base de $\mathbb{R}[X]$.
- 3. On pose $Q_n = \frac{1}{2^n n!} \frac{d^n}{dX^n} ((X^2 1)^n).$

Montrer que $d(\tilde{Q}_n) = n$, que Q_n est orthogonal à tout polynôme P de degré < n.

Calculer $||Q_n||, Q_n(1), Q_n(-1).$

Montrer que Q_n possède n racines distinctes dans]-1,1[.

Montrer que pour tout $n \in \mathbb{N}$, il existe $\lambda_n \in \mathbb{R}$ tel que $P_n = \lambda_n Q_n$ et calculer λ_n .

Exercice 5 : Décomposition "OT" et inégalité d'Hadamard

 \mathbb{R}^n est muni du produit scalaire canonique.

Soit $n \in \mathbb{N}^*$ et $M \in GL_n(\mathbb{R})$. Montrer qu'existent $T \in \mathcal{M}_n(\mathbb{R})$ triangulaire supérieure et $O \in O_n(\mathbb{R})$ telles que M = OT. (ind: propriété de Schmidt appliquée aux colonnes).

Montrer alors l'inégalité d'Hadamard: |det(M)| est inférieur ou égal au produit des normes des colonnes de M.

Exercice 6: Soient u, v deux rotations de E euclidien de dimension 3. Montrer que $u \circ v = v \circ u$ ssi u et v ont même axe ou sont des symétries par rapport à deux droites orthogonales.

Exercice 7: Etudier les endomorphismes de E euclidien de dimension 3 dont les matrices dans une base orthonormée sont:

$$\frac{1}{4} \begin{pmatrix} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix}; \frac{1}{9} \begin{pmatrix} 8 & 1 & -4 \\ -4 & 4 & -7 \\ 1 & 8 & 4 \end{pmatrix}; \begin{pmatrix} \cos(\phi)\cos(\theta) & \cos(\phi)\sin(\theta) & \sin(\phi) \\ -\sin(\theta) & \cos(\theta) & 0 \\ -\sin(\phi)\cos(\theta) & -\sin(\phi)\sin(\theta) & \cos(\phi) \end{pmatrix}$$

S'il s'agit de rotations préciser axe et angle.

Exercice 8: Soient E euclidien de dimension n, et $\mathcal{B} = (e_1, ..., e_n)$ une base orthonormale de E. Soient de plus $f \in \mathcal{L}(E)$ tel que $\forall x, y \in E, \langle x, y \rangle = 0 \Rightarrow \langle f(x), f(y) \rangle = 0$.

 2

- 1. Si $i, j \in \{1, ..., n\}, i \neq j$ calculer $\{e_i + e_j, e_i e_j \}$ et en déduire que $||f(e_i)|| = ||f(e_j)||$.
- 2. montrer qu'il existe $\lambda \in \mathbb{R}$ et $u \in O(E)$ tels que $f = \lambda . u$.

Exercice 9: Soient E euclidien et $p \in \mathcal{L}(E)$.

Montrer que p est un projecteur orthogonal ssi $p^2 = p$ et $\forall x \in E, ||p(x)|| \le ||x||$.

Exercice 10: Soit u un automorphisme orthogonal de E euclidien.

- 1. On pose $v = u id_E$. Montrer que $Ker(v) = (Im(v))^{\perp}$.
- 2. Si $x \in E$ et y est la projection orthogonale de x sur Ker(v) montrer que $||y \frac{1}{n} \sum_{k=0}^{n} u^{k}(x)|| \underset{n \to +\infty}{\longrightarrow} 0$.

Exercice 11 : Déterminants de Gram

E est un \mathbb{R} -ev muni d'un produit scalaire <, >.

Si $(e_1, ..., e_n) \in E^n$, on définit $Gram(e_1, ..., e_n)$ comme le déterminant de la matrice de $\mathcal{M}_n(\mathbb{R})$ dont le coefficient en position (i, j) est $\langle e_i, e_j \rangle$. Autrement dit, $Gram(e_1, ..., e_n) = \det((\langle e_i, e_j \rangle)_{1 \leq i, j \leq n})$.

- 1. Montrer que :
 - (a) $Gram(e_1, ..., e_{i-1}, \lambda e_i, e_{i+1}, ..., e_n) = \lambda^2 Gram(e_1, ..., e_i, ..., e_n).$
 - (b) Si $i \neq j$, Gram $(e_1, ..., e_i, ..., e_{j-1}, e_j + \lambda e_i, e_{j+1}, ..., e_n) = Gram<math>(e_1, ..., e_i, ..., e_j, ..., e_n)$. (dans le premier déterminant de Gram, on a $e_j + \lambda e_i$ à la place de e_j)
 - (c) S'il existe $i \neq j$ tels que $e_i = e_j$, $Gram(e_1, ..., e_n) = 0$.
- 2. En déduire que si $(e_1, ..., e_n)$ est liée, $Gram(e_1, ..., e_n) = 0$. (On pourra par exemple supposer que $e_n \in vect(e_1, ..., e_{n-1})$)
- 3. Si $e_1, ..., e_n, y_1, ..., y_n$ sont dans E, et que pour tout $i \in [1, n]$, $y_i = \lambda_{i,1}e_1 + \lambda_{i,2}e_2 + ... + \lambda_{i,i}e_i$, montrer que $Gram(y_1, ..., y_n) = (\lambda_{1,1}\lambda_{2,2}...\lambda_{n,n})^2Gram(e_1, ..., e_n)$.

Montrer que si $x \in E$, $Gram(x, y_1, ..., y_n) = (\lambda_{1,1}\lambda_{2,2}...\lambda_{n,n})^2 Gram(x, e_1, ..., e_n)$.

- 4. Montrer que $Gram(e_1,...,e_n) \neq 0$ ssi $(e_1,...,e_n)$ est libre.
- 5. Soient V un sev de E de dimension finie $n \ge 1$ et p la projection orthogonale sur V. Si $x \in E$ et $(y_1, ..., y_n)$ est une base de V (pas nécessairement orthonormée), montrer que $d(x,V)^2 = \frac{\operatorname{Gram}(x,y_1,...,y_n)}{\operatorname{Gram}(y_1,...,y_n)}.$

Exercice 12 : $A = (a_{i,j}) \in O(n)$. J est la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

 $\chi_J = ?$ En utilisant $\langle A, J \rangle$, montrer que $|\sum_{i,j} a_{i,j}| \leq n$.

Exercice 13:

- 1. $A \in \mathcal{M}_n(R)$ est antisymétrique. Si $X \in \mathbb{R}^n$, que vaut $\langle AX, X \rangle$?
- 2. $B \in \mathcal{M}_n(R)$. B = A + S, A antisymétrique, S symétrique. Si $\lambda \in Sp_{\mathbb{R}}(B)$, montrer que $min(Sp(S)) \leq \lambda \leq max(Sp(S))$.

Exercice 14: $A \in S_n^{++}(\mathbb{R}), B \in S_n(\mathbb{R}).$

- 1. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que $A = {}^tPP$.
- 2. Montrer que AB est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 15: Soient $A, B \in S_n(\mathbb{R})$. Comparer tr(ABAB) et $tr(A^2B^2)$.

Exercice 16: $A \in \mathcal{M}_n(\mathbb{R})$, et $A^3 = {}^t AA$. Montrer que A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 17:

Soient $A, B \in S_n^+(\mathbb{R})$. Montrer que $0 \le tr(AB) \le tr(A)tr(B)$. On écrira A = PD tP et B = PC tP avec $P \in O(n)$ et D diagonale.

Exercice 18: "coréduction"

Soient $A \in S_n^{++}(\mathbb{R})$ et $B \in S_n^+(\mathbb{R})$

- 1. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que $A = {}^tPP$. On se fixe P ainsi.
- 2. Justifier que B s'écrit $B = {}^t PCP$ avec $C \in S_n^+(\mathbb{R})$.
- 3. Montrer qu'il existe $Q \in GL_n(\mathbb{R})$ telle que $A = {}^tQQ$ et $B = {}^tQdiag(\lambda_1, ..., \lambda_n)Q$, où $\lambda_1, ..., \lambda_n$ sont les valeurs propres de C.
- 4. Une application : montrer que $\det(A) + \det(B) \le \det(A+B)$.
- 5. Autre application: Si $A, B \in S_n(\mathbb{R}), A > B$ signifie $A B \in S_n^{++}(\mathbb{R})$ (ordre de Lowner) Soient $A, B \in S_n(\mathbb{R})$ telles que A > B > 0. Montrer que $B^{-1} > A^{-1}$.

Exercice 19 : Théorème de Courant et Fischer

Soit $A \in S_n(\mathbb{R})$. On note $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ ses valeurs propres et $(X_1, ..., X_n)$ une base orthonormée de \mathbb{R}^n telle que $\forall i, X_i$ est vecteur propre de A associée à la valeur propre λ_i . On pose $F_k = vect(X_1, ..., X_k)$, si $k \in [1, n]$.

Si $k \in [1, n]$, on note Ψ_k l'ensemble des sev de \mathbb{R}^n de dimension k.

On veut montrer que $\lambda_k = \max_{F \in \Psi_k} \min_{X \in F \setminus \{0\}} \frac{\langle AX, X \rangle}{\|X\|^2}$ (théorème de Courant et Fischer).

- 1. Que vaut $\frac{\langle AX_k, X_k \rangle}{\|X_k\|^2}$, $k \in [1, n]$?
- 2. Montrer que $\forall X \in F_k \setminus \{0\}$, $\frac{\langle AX, X \rangle}{\|X\|^2} \ge \lambda_k$ et déterminer $\min_{X \in F_k \setminus \{0\}} \frac{\langle AX, X \rangle}{\|X\|^2}$.
- 3. Soit $F \in \Psi_k$.
 - (a) Montrer que dim $(F \cap vect(X_k, X_{k+1}, ..., X_n)) \ge 1$.
 - (b) Si $X \in F \cap vect(X_k, X_{k+1}, ..., X_n)$ est non nul, montrer que $\frac{\langle AX, X \rangle}{\|X\|^2} \leq \lambda_k$.
- 4. Conclure.

Exercice 20 : Comparaison du spectre d'une matrice symétrique à ses coefficients diagonaux

- 1. E est un espace euclidien de dimension n de produit scalaire noté <, >. $f \in S(E)$ a pour valeurs propres $\lambda_1 \leq ... \leq \lambda_n$, et $(e_1, ..., e_n)$ est une base orthonormée de vecteurs propres associés.
 - (a) Soit $k \in [1, n-1]$. $(x_1, ..., x_k)$ est une famille orthonormée de E. Montrer qu'existe $x_{k+1} \in (x_1, ..., x_k)^{\perp} \cap vect(e_1, ..., e_{k+1})$ de norme 1. Montrer que $< f(x_{k+1}), x_{k+1} > \le \lambda_{k+1}$.
 - (b) Montrer que si $k \in [1, n]$, et $(x_1, ..., x_k)$ est une famille orthonormée de E, alors $\sum_{i=1}^k < f(x_i), x_i > \ge \sum_{i=1}^k \lambda_i$.

2. Soit $M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 7 & 8 \\ 1 & 7 & 3 & 0 \\ 1 & 8 & 0 & 4 \end{pmatrix} \in S_4(\mathbb{R})$, et $\lambda_1 \leq ... \leq \lambda_4$ ses valeurs propres. Majorer $\lambda_1, \lambda_1 + \lambda_2$, $\lambda_1 + \lambda_2 + \lambda_3$ et calculer $\sum_{i=1}^4 \lambda_i$ en utilisant les coefficients diagonaux de M.

Exercice 21 : Caractérisation des matrices symétriques définies positives avec les mineurs principaux

Si $M=(m_{i,j})\in\mathcal{M}_n(\mathbb{R})$, on notera M_i la matrice $i\times i$ extraite de M obtenue en éliminant les lignes i+1 à n et les colonnes i+1 à n de M (ie que l'on garde le bloc $i \times i$ "en haut à gauche"). Ainsi par exemple, $M_1 = (m_{1,1})$, et $M_n = M$.

Les déterminants des M_i , i = 1, ..., n sont appelés mineurs principaux de M.

On va montrer que $M \in S_n(\mathbb{R})$ est définie positive ssi tous les mineurs principaux sont > 0.

On se donne $M \in S_n(\mathbb{R})$. On note $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n , et $V_i = vect(e_1, ..., e_i)$.

- 1. Montrer que $\forall X,Y \in V_i, \langle M_i \tilde{X}, \tilde{Y} \rangle = \langle MX,Y \rangle$, où \tilde{X} est le vecteur de \mathbb{R}^i obtenu en tronquant X, ie en enlevant les n-i derniers 0.
- 2. Si $M \in S_n^{++}(\mathbb{R})$, montrer que $\forall i \in [1, n], M_i \in S_i^{++}(\mathbb{R})$.
- 3. Montrer que si $M \in S_n^{++}(\mathbb{R})$, alors tous ses mineurs principaux sont > 0.
- 4. Soit $(v_1, ..., v_n)$ une base orthonormée de vecteurs propres de M, associés aux valeurs propres
 - (a) Supposons qu'au moins deux des λ_i soient < 0. Quitte à renuméroter, disons $\lambda_1 < 0$ et

Soit $W = vect(v_1, v_2)$.

Montrer que $\forall X \in W \setminus \{0\}, \langle MX, X \rangle < 0$.

Soit V un sev de \mathbb{R}^n tel que $\forall x \in V \setminus \{0\}, \langle MX, X \rangle > 0$. Montrer que $\dim(V) \leq n-2$.

(b) Montrer que si tous les mineurs principaux de $M \in S_n(\mathbb{R})$ sont strictement positifs, alors $M \in S_n^{++}(\mathbb{R}).$

Exercice 22: Matrice symétrique à coefficients positifs

 $M \in S_n(\mathbb{R})$ est à coefficients strictement positifs, de valeurs propres $\lambda_1 \leq ... \leq \lambda_n$. \mathbb{R}^n est muni du produit scalaire canonique et de la norme associée.

- 1. Si $x \in \mathbb{R}^n$, montrer que $\langle Mx, x \rangle \leq \lambda_n \|x\|^2$ avec égalité si et seulement si $Mx = \lambda_n x$. (l'hypothèse sur les coefficients de M n'a pas d'utilité ici)
- 2. Soit $x = {}^t(x_1, ..., x_n) \in \mathbb{R}^n$ un vecteur propre de M associé à la valeur propre λ_n . On note $x' = {}^{t}(|x_1|, ..., |x_n|).$

Comparer $\langle Mx, x \rangle$ et $\langle Mx', x' \rangle$, et en déduire que x' est aussi vecteur propre de Massocié à la valeur propre λ_n .

Montrer que les x_i sont tous de même signe.

- 3. Montrer que $Ker(M \lambda_n I_n)$ est de dimension 1.
- 4. Soit $\lambda_i \neq \lambda_n$, et $y = {}^t(y_1, ..., y_n)$ un vecteur propre associé. Montrer que $|\lambda_i| < \lambda_n$, et que les y_i ne sont pas tous strictement de même signe. On pourra commencer par regarder | < My, y > |.

Exercice 23 : Soit A une matrice réelle symétrique positive.

On note λ_1 , ..., λ_n ses valeurs propres et $(a_{ij})_{1 \leq i,j \leq n}$ ses coefficients.

- 1. Montrer que les éléments diagonaux de A sont positifs ou nuls. Soit ϕ une application convexe de \mathbb{R}^+ dans \mathbb{R} .
- 2. Montrer que $\phi(\sum_{i=1}^n \mu_i x_i) \leq \sum_{i=1}^n \mu_i \phi(x_i)$. oú les μ_i sont des réels positifs ou nuls, de somme égale à 1 tandis que les x_i sont des réels positifs ou nuls .
- 3. Montrer que: $\sum_{i=1}^{n} \phi(a_{ii}) \leq \sum_{i=1}^{n} \phi(\lambda_i).$
- 4. En déduire: $det(A) \leq \prod_{i=1}^{n} a_{ii}$.

Exercice 24 : Soit A une matrice carrée réelle de taille n où $n \ge 1$.

- 1. On pose $B = {}^{t} AA$. Montrer que B est symétrique et positive.
- 2. Soit S une matrice symétrique-positive réelle de taille (n+1). On pose $S = \begin{pmatrix} \alpha & {}^tC \\ C & S_1 \end{pmatrix}$ où S_1 est carrée de taille n.
 - (a) Calculer le produit $t \begin{pmatrix} x \\ X \end{pmatrix} S \begin{pmatrix} x \\ X \end{pmatrix}$ en fonction du réel x et de α , C, C, C, C, et X.
 - (b) Montrer que α est positif ou nul. Que dire de C quand α est nul?
 - (c) Montrer que la matrice $\alpha S_1 C^t C$ est symétrique et positive.
- 3. Montrer que, pour toute matrice symétrique réelle positive, il existe une matrice triangulaire supérieure T telle que: $S = {}^{t}TT$.
- 4. Montrer que: $|det(A)| \le \sqrt{\prod_{i=1}^n \sum_{k=1}^n a_{k,i}^2}$.

${\bf Exercice~25: sym\acute{e}trique+antisym\acute{e}trique=orthogonal}$

On note A_n (resp. S_n) l'espace des matrices antisymétriques (resp. symétriques) de $\mathcal{M}_n(\mathbb{R})$.

- 1. Si $A \in A_n$, $S \in S_n$, et $A + S \in O_n(\mathbb{R})$, montrer que AS = SA et $S^2 A^2 = I_n$.
- 2. Dans les divers cas suivants, dire dans quels cas il existe $A \in A_n$ telle que $A + S \in O_n(\mathbb{R})$ (Si une telle matrice A existe, donner une valeur possible, sinon prouver la non existence) 1) S = diag(1, 1/2, 1/2) 2) S = diag(2, 1, -1) 3) S = diag(1/4, -1/2, 1/2)
- 3. Si $A \in A_n$, montrer que la seule valeur propre réelle possible de A est 0.
- 4. Si $\lambda \in \mathbb{R}$, montrer qu'il existe $A \in A_n$ telle que $A^2 = \lambda I_n$ si et seulement si $\lambda = 0$ ou $(\lambda < 0)$ et n est pair). On pourra commencer par " \Leftarrow " avec n = 2.
- 5. Si $S \in S_n$, donner et démontrer une condition nécessaire et suffisante pour qu'il existe $A \in A_n$ telle que $S + A \in O_n(\mathbb{R})$.

Exercice 26: On note $S_n(\mathbb{R}^+)$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ à coefficients ≥ 0 (à ne pas confondre avec les matrices symétriques positives).

6

- 1. Une matrice de $S_n(\mathbb{R}^+)$ peut-elle avoir une valeur propre < 0?
- 2. Une matrice de $S_n(\mathbb{R}^+)$ peut-elle n'avoir que des valeurs propres < 0?

- 3. Soit $A \in S_n(\mathbb{R}^+)$ de valeurs propres $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$. On se donne $(X_1, ..., X_n)$ une base orthonormée de vecteur propres associés. $(AX_i = \lambda_i X_i)$. Si $\alpha \in \mathbb{R}$, on pose $B(\alpha) = \begin{pmatrix} A & \alpha X_n \\ \alpha^t X_n & 0 \end{pmatrix} \in S_{n+1}(\mathbb{R})$.
 - (a) Montrer que $\lambda_1, ..., \lambda_{n-1}$ sont valeurs propres de $B(\alpha)$.
 - (b) Notons β , γ les deux autres valeurs propres de $B(\alpha)$. Déterminer $\beta + \gamma$ et $\beta \gamma$ en fonction de λ_n et α .
 - (c) Déterminer une matrice $A \in S_2(\mathbb{R}^+)$ de valeurs propres -1 et 2, et une matrice de $B \in S_3(\mathbb{R}^+)$ de valeurs propres -2, -1, 4.
- 4. On note V_n l'ensemble des matrices symétriques de $S_n(\mathbb{R})$ à coefficients dans [0,1]. Si $M \in V_n$, on note $\lambda_n(M)$ sa plus grande valeur propre. Déterminer $\sup_{M \in V_n} \lambda_n(M)$ et $\inf_{M \in V_n} \lambda_n(M)$

Exercice 27: Barycentres de matrices

Si E est un \mathbb{R} -ev (dans la suite on s'intéresse à $E = \mathcal{M}_n(\mathbb{R})$), on appelle barycentre de $x_1, ..., x_p \in E$ tout élément de E de la forme $\sum_{i=1}^p \lambda_i x_i$ où les λ_i sont des réels **positifs** vérifiant $\sum_{i=1}^p \lambda_i = 1$.

Si P est une partie de E on appelle enveloppe convexe de P, et on note conv(P) l'ensemble des barycentres d'un nombre fini (variable et quelconque) d'éléments de P.

On pose $D_n = \{ diag(a_1, ..., a_n) \mid \forall i, a_i \in \{-1, 1\} \}.$

 \mathbb{R}^n est muni du produit scalaire canonique et de la norme associée.

Si
$$M \in \mathcal{M}_n(\mathbb{R})$$
, $||M|| = \sup_{\begin{subarray}{c} x \in \mathbb{R}^n \\ et \ ||x|| = 1\end{subarray}} ||Mx||.$

- 1. Soient $a_1, ..., a_n \in [-1, 1]$. Notant que $diag(a_1, ..., a_n) = \frac{1 - a_1}{2} diag(-1, a_2, ..., a_n) + \frac{1 + a_1}{2} diag(1, a_2, ..., a_n)$. Montrer que $conv(D_n) = \{diag(a_1, ..., a_n) \mid \forall i, a_i \in [-1, 1]\}$.
- 2. Si $M \in conv(O_n(\mathbb{R}))$, montrer que $||M|| \le 1$.
- 3. Décomposition polaire. Soit $M \in GL_n(\mathbb{R})$.
 - (a) Montrer que tMM est symétrique à valeurs propres positives, puis qu'existe $S \in S_n(\mathbb{R})$ telle que $S^2 = {}^tMM$.
 - (b) Montrer qu'existe $U \in O_n(\mathbb{R})$ telle que M = US.

On admettra qu'une telle décomposition reste valable pour une matrice non inversible.

- 4. Soit $S \in S_n(\mathbb{R})$ telle que $\forall \lambda \in Sp(S), |\lambda| \leq 1$. Montrer que $S \in conv(O_n(\mathbb{R}))$.
- 5. Montrer que $conv(O_n(\mathbb{R})) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid |||M||| \le 1 \}$

Exercice 28: Matrices de Hilbert

 \mathbb{R}^n assimilé à $\mathcal{M}_{n,1}(\mathbb{R})$ est muni du produit scalaire canonique $\langle A,B\rangle = {}^t\!AB$ et de la norme associée.

Matrices de produit scalaire

Soit E préhilbertien réel de produit scalaire (|).

Soit $(e_1, ..., e_n)$ une famille libre de E et $M \in \mathcal{M}_n(\mathbb{R})$ de coefficient $(e_i|e_j)$ en position (i, j).

1. Si
$$x = x_1e_1 + ... + x_ne_n$$
 et $y = y_1e_1 + ...y_ne_n$ sont dans E et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, montrer que $(x|y) = \langle X, MY \rangle$. (calculer "naïvement" $\langle X, MY \rangle$ avec des sommes)

2. En déduire que $M \in S_n^{++}(\mathbb{R})$.

Inégalités

$$M = (m_{i,j}) \in S_n(\mathbb{R})$$
 a pour valeurs propres $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$

- 3. Question de cours. Montrer que pour tout $x \in \mathbb{R}^n$, $\lambda_1 ||x||^2 \le Mx$, $x > \le \lambda_n ||x||^2$.
- 4. Question de cours. Montrer que pour tout $i, \lambda_1 \leq m_{i,i} \leq \lambda_n$.

Matrices de Hilbert

Si $n \in \mathbb{N}^*$, on note H_n la matrice de $\mathcal{M}_n(\mathbb{R})$ dont le coefficient en position (i,j) est $\frac{1}{i+j-1}$.

- 5. Montrer que $(P|Q) = \int_0^1 P(t)Q(t)dt$ définit un produit scalaire sur $\mathbb{R}_n[X]$, et calculer $(X^{i-1}|X^{j-1})$ si $i, j \in \mathbb{N}^*$.
 - (|) désigne ce produit scalaire dans la suite.
- 6. Montrer que $H_n \in S_n^{++}(\mathbb{R})$.

On note m(n) la plus petite valeur propre de H_n , et M(n) la plus grande.

- 7. Donner un équivalent de $tr(H_n)$ quand $n \to +\infty$.
- 8. Justifier que $0 < m(n) \le \frac{1}{2n-1}$ et $M(n) \ge 1$.

9. Si
$$Y = \begin{pmatrix} y_0 \\ \vdots \\ y_{n-1} \end{pmatrix} \in \mathbb{R}^n \text{ et } P = \sum_{i=0}^{n-1} y_i X^i \in \mathbb{R}_{n-1}[X], \text{ montrer que } \langle H_n Y, Y \rangle = \int_0^1 P(t)^2 dt.$$

10. Si
$$n \in \mathbb{Z}$$
, vérifier que $\int_0^{2\pi} e^{int} dt = \begin{cases} 2\pi \text{ si } n = 0 \\ 0 \text{ sinon} \end{cases}$
Si $P = \sum_{i=0}^{n-1} y_i X^i \in \mathbb{R}_{n-1}[X]$, montrer que $\int_0^{2\pi} |P(e^{it})|^2 dt = 2\pi \sum_{i=0}^{n-1} y_i^2$
(écrire $|P(e^{it})|^2 = P(e^{it})\overline{P(e^{it})}$ et développer)

11. Soit
$$Q = \sum_{k=0}^{p} a_k X^k \in \mathbb{R}[X]$$
.

Calculer $-i\int_0^{\pi} e^{it}Q(e^{it})dt$ en fonction des a_k , et en déduire $\int_{-1}^1 Q(t)dt = -i\int_0^{\pi} e^{it}Q(e^{it})dt$. En déduire en utilisant $Q = P^2$ que, si $P \in \mathbb{R}[X]$, $\int_0^1 P(t)^2 dt \leq \frac{1}{2}\int_0^{2\pi} |P(e^{it})|^2 dt$.

On pourra vérifier que $\overline{P(e^{it})} = P(e^{-it})$, et donc $|P(e^{it})| = |P(e^{-it})|$

12. Montrer que $\forall Y \in \mathbb{R}^n$, $\langle H_n Y, Y \rangle \leq \pi ||Y||^2$, et en déduire $M(n) \leq \pi$.