Methodology:

1. Simple train-test:

2. Validation:

- * 60 20 20
- # 64 -16 -20
- * Train + Validation used for final model.

3. Cross Validation:

* Split data into folds (e.g. 5, 1,10) * train on larger set, test on small * Accuracy = avg. of all models

Depends (1) Could do train-test split and on size) then do C.V. an train of data
Set (2) Use all data four C.V

4. Stralified C.V. and validation:

* Items in folds/validation set are Chosen such that distribution af Ropulation is retained

> L. e.g. 80%. male 20%. female

5. Leave P-out C.V.

* General Structure af C.V.

* C.V above is a special instance af heave-P-out C.V.

- -> Leave P observations as the Validation set and use the remaining (N-P) as train
- Repeat all possible Combinations af n and p:

$$C_{u}^{b} = \frac{(v-b); \cdot b!}{N!}$$

$$C_{30}^{100} = \frac{100!}{70! \cdot 30!} \approx 3.10^{25}$$

special case: Leave-one-out C.V:

$$b=1: \quad C_{n}' = \frac{(N-1)! \mid 1}{N!} = N$$

Overfitting Revisited:

Strain >> Stest - overfitting

-> Cross Validalian Low external

- More data
- Feature engineering
- Regularisation (vext week)

Dupater: Validation

<u>Performance</u>:

How do we assess whether our models me good?

- i) Supervised US. Unsupervised ii) Classification us. vegression

Today

supervised: True label is known

Wikipedia

A)	S	Actual 1	Label 0
Predicted Label	1	TP	FP
	0	FN	TN

В)		Actual 0	Label 1
Predicted Label	0	TN	FN
	1	FP	TP

		Predicted Label		
C)		1	0	
Actual Label	1	TP	FN	
	0	FP	TN	

D)		0 1		
Actual Label	0	TN	FP	
	1	FN	TP	

Prodicted Label

Python!

What is the default output of confusion_matrix from sklearn? Image by Author

TP: True Positive

TN: True Negative

F.P: False Positive (Type I error, a)

FN: False Negative (Type I error, B)

Accura Cy:

* Most used metric

* Radio of correct predictions

Precisian:

* ratio af relevant instances among the retireved instances!

Example: 12 dogs, 10 cats
ML model: 8 dogs < 3 cats

out af all items predicted "Dog" how many were night: \frac{5}{8}

* Often used when we are interested in Jahr positives.

* Positive Predictive Rate/Value PPR/PPV

* Has to do with quality

Recult:

TN FP &

Type II TP

H True Positive Rate (TPR)
L Hitrate
L Sensitivity
L Power

Example: 12 dogs, 10 cats
ML model: 8 dogs < 3 cats

"out af all the doys, how many were night" 5

offen used when we are interested in false regulives.

* Has to do with quantity

trade-off:

TP+FP VS. TP+FW

F-Score.

F = 2. Prec * Recall
Prec + Recall

Precision-Recall curve:

Auc: Area under the curve Max = 1

ROC-Curve:

Recall (TPR) US. $FPR = \frac{FP}{FN + TN}$ (TP US. FP)

Many other metrics. Just go to Wikipedia!