Dokazi iz Vjerojatnosti i statistike

by sheriffHorsey

8. rujna 2020.

Sadržaj

1	Vje	rojatnost	3		
	1.1	Vjerojatnost komplementa	3		
	1.2	Vjerojatnost unije	3		
2	Uvjetna vjerojatnost				
	2.1	Svojstva vjerojatnosti na uvjetnoj vjerojatnosti	5		
	2.2	Nuždan i dovoljan uvjet za nezavisnost događaja	6		
	2.3	Komplement dvaju nezavisnih događaja je nezavisan	7		
	2.4	Formula potpune vjerojatnosti	7		
	2.5	Bayesova formula	8		
3	Dis	kretne slučajne varijable i vektori	10		
	3.1	Nezavisne slučajne varijable	10		
	3.2	Svojstva očekivanja			
	3.3	Disperzija slučajne varijable			
	3.4	Svojstva disperzije	14		
	3.5	Centrirane i normirane slučajne varijable	15		
	3.6	Svojstva normiranog koeficijenta korelacije	17		
	3.7	Disperzija zbroja slučajnih varijabli	18		
	3.8	Svojstva koeficijenta korelacije	19		
4	Primjeri diskretnih razdioba				
	4.1	Izvod karakteristične funkcije geometrijske razdiobe	22		
	4.2	Očekivanje geometrijske razdiobe	23		
	4.3	Disperzija geometrijske razdiobe	24		
	4.4	Odsutstvo pamćenja geometrijske razdiobe			
	4.5	Odsutstvo pamćenja geometrijske razdiobe iz starog ispita	26		
	4.6	Razdioba minimuma kod geometrijske razdiobe	27		
	4.7	Izvod karakteristične funkcije binomne razdiobe	28		
	4.8	Očekivanje binomne razdiobe	29		
	4.9	Disperzija binomne razdiobe	30		

	4.10	Stabilnost binomne razdiobe	31
	4.11	Karakteristike binomne preko Bernoullijevih sluč. var	31
	4.12	Najvjerojatnija realizacija binomne	33
	4.13	Aproksimacija binomne razdiobe Poissonovom	34
	4.14	Izvod karakteristične funkcije Poissonove razdiobe	34
	4.15	Očekivanje Poissonove razdiobe	35
	4.16	Disperzija Poissonove razdiobe	36
	4.17	Stabilnost Poissonove razdiobe	37
5	Nep	rekinute slučajne varijable	38
	5.1	Temeljno svojstvo funkcije razdiobe	38
	5.2	Izvod jednolike razdiobe	36
	5.3	Karakteristična funkcija jednolike razdiobe	36
	5.4	Očekivanje jednolike razdiobe	40
	5.5	Disperzija jednolike razdiobe	40
	5.6	Transformacija funkcije gustoće	41
6	Prin	njeri neprekinutih razdioba	43
	6.1	Karakteristična funkcija eksponencijalne razdiobe	43
	6.2	Očekivanje eksponencijalne razdiobe	44
	6.3	Disperzija eksponencijalne razdiobe	
	6.4	Odsutstvo pamćenja eksponencijalne razdiobe	46
	6.5	Funkcija razdiobe normalne slučajne varijable	46
	6.6	Veza između jedinične i općenite normalne razdiobe	47
	6.7	Pravilo 3σ	49
	6.8	Stabilnost normalne razdiobe	50
7	Sluč	ajni vektori	51
	7.1	Kriterij nezavisnosti za neprekinute slučajne vektore	
	7.2	Svojstva očekivanja slučajnih vektora	
	7.3	Disperzija zboja za nezavisne slučajne vektore	54
8	Fun	kcije slučajnih vektora	56
	8.1	Jakobijan transformacije kartezijevih u polarne koordinate . .	56
	8.2	Izvod formule za gustoću funkcije slučajnog vektora	57
	8.3	Izvod funkcije razdiobe za $\min\{X_1, X_2,, X_n\}$	58
	8.4	Izvod funkcije razdiobe za $\max\{X_1, X_2,, X_n\}$	58
9	Zak	on velikih brojeva i centralni granični teorem	60
	9.1	Markovljeva nejednakost	60
	0.2	I nojednakost	61

	9.3	Čebiševljeva nejednakost	61
	9.4	Dovoljni uvjeti za slabi zakon velikih brojeva	61
	9.5	Centralni granični teorem	63
10	Mat	ematička statistika	65
	10.1	Nepristrani procjenitelj za očekivanje	65
	10.2	Valjane statistike	66
	10.3	Nepristrani procjenitelj za disperziju uz nepoznato očekivanje	66

Poglavlje 1

Vjerojatnost

1.1 Vjerojatnost komplementa

$$P(\overline{A}) = 1 - P(A)$$

Dokaz:

A je neki odabrani događaj iz skupa elementarnih događaja $P(\Omega)=1,$ (normiranost)

 $A \cup \overline{A} = \Omega,\, A$ i \overline{A} disjunktni

$$P(\Omega) = P(A \cup \overline{A}) = (aditivnost) = P(A) + P(\overline{A}) = 1$$

 $\Rightarrow P(\overline{A}) = 1 - P(A)$

1.2 Vjerojatnost unije

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Dokaz:

A i B su bilo koja dva događaja iz skupa elementarnih događaja Podijelimo $A \cup B$ na disjunktne skupove na sljedeći način:

1) A

$$2)B - A = B \cap \overline{A} = B - (A \cap B)$$

$$P(A \cup B) = P(A \cup (B - A)) = (aditivnost) = P(A) + P(B - A)$$

$$P(B) = P(B - A) + P(A \cap B)$$

-P(B - A) = -P(B) + P(A \cap B)/ \cdot (-1)
$$P(B - A) = P(B) - P(A \cap B)$$

sada se umjesto P(B-A)uvrsti $P(B)-P(A\cap B)$ u prvu jednakost

$$\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Poglavlje 2

Uvjetna vjerojatnost

2.1 Svojstva vjerojatnosti na uvjetnoj vjerojatnosti

1) normiranost, $P(\Omega) = 1$, $P(\emptyset) = 0$

Dokaz:

$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

$$P(\emptyset|B) = \frac{P(\emptyset \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = 0$$

2) monotonost, ako je $C \subset A$ onda vrijedi $P(C|B) \leq P(A|B)$

Dokaz:

vrijedi: $P(C \cap B) \leq P(A \cap B)$, jer je $C \subset A$

$$P(C \cap B) \le P(A \cap B) / \cdot \frac{1}{P(B)}, \mathbf{P(B)} \ne \mathbf{0}$$

$$\frac{P(C \cap B)}{P(B)} \le \frac{P(A \cap B)}{P(B)} \Rightarrow P(C|B) \le P(A|B)$$

3) aditivnost, ako su A i C disjunktni vrijedi $P(A \cup C|B) = P(A|B) + P(C|B)$ Dokaz:

$$P(A \cup C|B) = \frac{P((A \cup C) \cap B)}{P(B)} = \frac{P((A \cap B) \cup (C \cap B))}{P(B)} =$$

 $A \cap B$, $C \cap B$ su disjunktni, vrijedi $P((A \cap B) \cup (C \cap B)) = P(A \cap B) + P(C \cap B)$

$$\frac{P(A \cap B) + P(C \cap B)}{P(B)} = \frac{P(A \cap B)}{P(B)} + \frac{P(C \cap B)}{P(B)} = P(A|B) + P(C|B)$$

2.2 Nuždan i dovoljan uvjet za nezavisnost događaja

$$P(AB) = P(A) \cdot P(B)$$

Dokaz:

Događaji A i B su nezavisni ako vrijedi P(A|B) = P(A) ili P(B|A) = P(B)

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(B) \cdot P(A|B)}{P(A)} = \frac{P(B)P(A)}{P(A)} = P(B)$$

2.3 Komplement dvaju nezavisnih događaja je nezavisan

$$P(\overline{A}) \cdot P(\overline{B}) = P(\overline{A} \cap \overline{B})$$

Dokaz:

A i B su nezavisni događaji iz skupa Ω

$$P(\overline{A}) \cdot P(\overline{B}) = (1 - P(A))(1 - P(B))$$

$$= 1 - P(A) - P(B) + P(AB)$$

$$= 1 - (P(A) + P(B) - P(AB))$$

$$= 1 - (P(A) + P(B) - P(A)P(B))$$

$$= 1 - P(A \cup B)$$

$$= P(\overline{A \cup B})$$

$$= P(\overline{A} \cap \overline{B})$$

2.4 Formula potpune vjerojatnosti

$$P(A) = \sum_{i=1}^{\infty} P(H_i) \cdot P(A|H_i)$$

$$P(H_i) > 0, \text{ za } i \in \{1, 2, ..., n\}$$

$$\Omega = H_1 \cup H_2 \cup ... \cup H_n$$

$$H_i \cap H_j = \emptyset, \text{ za } i \neq j$$

$$A = AH_1 \cup AH_2 \cup ... \cup AH_n$$

vjerojatnost umnoška: $P(AH_i) = P(H_i) \cdot P(A|H_i)$

$$P(A) = P(AH_1) + P(AH_2) + \dots + P(AH_n)$$

$$= P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) + \dots + P(H_n) \cdot P(A|H_n)$$

$$= \sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)$$

2.5 Bayesova formula

$$P(H_i|A) = \frac{P(H_i) \cdot P(A|H_i)}{\sum_{j=1}^{n} P(H_j) \cdot P(A|H_j)}$$

$$\begin{split} P(H_i) > 0, & \text{ za i} = 1, \, 2, \, ..., \, \mathbf{n} \\ \Omega = H_1 \cup H_2 \cup ... \cup H_n \\ H_i \cap H_j = \emptyset, & \text{ za } i \neq j \end{split}$$

$$P(A \cap H_i) = P(H_i) \cdot P(A|H_i) = P(H_i) \cdot P(A|H_i)$$
$$P(H_i|A) = \frac{P(A \cap H_i)}{P(A)} = \frac{P(H_i) \cdot P(A|H_i)}{P(A)}$$

 $P(A) \neq 0$, računa se pomoću formule potpune vjerojatnosti:

$$P(A) = \sum_{j=1}^{n} P(H_j) \cdot P(A|H_j)$$

uvrstimo to u izraz $P(H_i|A)$ i dobivamo Bayesovu formulu:

$$\Rightarrow P(H_i|A) \frac{P(H_i) \cdot P(A|H_i)}{\sum_{j=1}^{n} P(H_j) \cdot P(A|H_j)}$$

Poglavlje 3

Diskretne slučajne varijable i vektori

3.1 Nezavisne slučajne varijable

Slučajne varijable $X,Y:\Omega\to S$ su nezavisne ako za svaki x_k i y_j vrijedi:

$$P(X = x_k, Y = y_j) = P(X = x_k)P(Y = y_j)$$

općenito, za sve A, B \subset S:

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Dokaz:

Slučajne varijable X i Y su nezavisne i označimo A i B:

$$A = \{x_1, x_2, ..., x_n\}, B = \{y_1, y_2, ..., y_m\}$$

$$P(X \in A, Y \in B) = P(X \in \{x_1, x_2, ..., x_n\}, Y \in \{y_1, y_2, ..., y_m\})$$

$$= P\left(\bigcup_{\substack{1 \le k \le n \\ 1 \le j \le m}} \{X = x_k, Y = y_j\}\right)$$

$$= \sum_{\substack{1 \le k \le n \\ 1 \le j \le m}} P(X = x_k, Y = y_j)$$

$$= \sum_{\substack{1 \le k \le n \\ 1 \le j \le m}} P(X = x_k) P(Y = y_j)$$

$$= \sum_{\substack{1 \le k \le n \\ 1 \le j \le m}} P(X = x_k) \cdot \left(\sum_{\substack{1 \le k \le m \\ 1 \le k \le n}} P(X = y_j)\right)$$

$$= P\left(\bigcup_{\substack{1 \le k \le n \\ 1 \le k \le n}} \{X = x_k\}\right) \cdot P\left(\bigcup_{\substack{1 \le j \le m \\ 1 \le j \le m}} \{Y = y_j\}\right)$$

$$= P(X \in \{x_1, x_2, ..., x_n\}) P(Y \in \{y_1, y_2, ..., y_m\})$$

$$= P(X \in A) P(Y \in B)$$

3.2 Svojstva očekivanja

Za dvije slučajne varijable X i Y definirane na istom vjerojatnosnom prostoru vrijedi:

$$E(sX + tY) = sE(X) + tE(Y)$$

Ukoliko su X i Y nezavisne vrijedi dodatno:

$$E(XY) = E(X)E(Y)$$

Dokaz: 1) svojstvo E(sX) = sE(X)

$$E(sX) = \sum_{k=1}^{n} sx_k p_k$$

$$= sx_1 p_1 + sx_2 p_2 + \dots + sx_n p_n$$

$$= s(x_1 p_1 + x_2 p_2 + \dots + x_n p_n)$$

$$= s \sum_{k=1}^{n} x_k p_k$$

$$= sE(X)$$

2) svojstvo
$$E(X + Y) = E(X) + (EY)$$

$$E(X + Y) = \sum_{k,j} (x_k + y_j) p_{jk}$$

$$= \sum_{k,j} (x_k p_{jk} + y_j p_{jk})$$

$$= \left(\sum_{k,j} (x_k p_{jk})\right) + \left(\sum_{j,k} (y_j p_{jk})\right)$$

$$= \sum_k x_k \cdot \sum_j p_{jk} + \sum_j y_j \cdot \sum_k p_{jk}$$

$$= \sum_k x_k p_k + \sum_j y_j p_j$$

$$= E(X) + E(Y)$$

konačno:

$$E(sX + tY) = E(sX) + E(tY) = sE(X) + tE(Y)$$

$$E(XY) = \sum_{k,j} x_k y_j p_{jk}$$

$$= (nezavisnost)$$

$$= \sum_{k,j} x_k y_j p_k p_j$$

$$= \left(\sum_k x_k p_k\right) \cdot \left(\sum_j y_j p_j\right)$$

$$= E(X)E(Y)$$

3.3 Disperzija slučajne varijable

Disperzija slučajne varijable X se može računati formulom:

$$D(X) = E(X^2) - E(X)^2$$

$$D(X) = E[X - E(X)]^{2}$$

$$= E[X^{2} - 2XE(X) + E(X)^{2}]$$

$$= E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

3.4 Svojstva disperzije

Za slučajnu varijablu X i realni broj s vrijedi:

$$D(sX) = s^2 D(X)$$

Ako su X i Y nezavisne slučajne varijable, onda dodatno vrijedi:

$$D(X + Y) = D(X) + D(Y)$$

Dokaz:

1) svojstvo $D(sX) = s^2 D(X)$

$$D(sX) = E[(sX)^{2}] - [E(sX)]^{2}$$

$$= E(s^{2}X^{2}) - [sE(X)]^{2}$$

$$= s^{2}E(X^{2}) - s^{2}E(X)^{2}$$

$$= s^{2}[E(X^{2}) - E(X)^{2}]$$

$$= s^{2}D(X)$$

2) svojstvo D(X + Y) = D(X) + D(Y)

$$\begin{split} D(X+Y) &= E\big[(X+Y)^2\big] - \big[E(X+Y)\big]^2 \\ &= E\big[X^2 + 2XY + Y^2\big] - \big[E(X) + E(Y)\big]^2 \\ &= E(X^2) + 2E(XY) + E(Y^2) - \big[E(X)^2 + 2E(X)E(Y) + E(Y^2)\big] \\ &= \big[E(X^2) - E(X)^2\big] + \big[E(Y^2) - E(Y)^2\big] + 2E(XY) - 2E(X)E(Y) \\ &= D(X) + D(Y) + 2E(X)E(Y) - 2E(X)E(Y) \\ &= D(X) + D(Y) \end{split}$$

3.5 Centrirane i normirane slučajne varijable

Za bilo koju slučajnu varijablu X vrijedi:

$$E(X - a) = E(X) - a$$

$$D(X - a) = D(X)$$

$$cov(X - a, Y - b) = cov(X, Y)$$

Za normiranu slučajnu varijablu $X^* = \frac{X - m_x}{\sigma_x} = \frac{X - E(X)}{\sqrt{D(X)}}$ vrijedi:

$$E(X^*) = 0$$

$$D(X^*) = 1$$

1) svojstvo
$$E(X - a) = E(X) - a$$

$$E(X - a) = \sum_{k} (x_k - a) p_k$$

$$= \sum_{k} x_k p_k - a p_k$$

$$= \left(\sum_{k} x_k p_k\right) - \left(\sum_{k} a p_k\right)$$

$$= E(X) - a \sum_{k} p_k$$

$$= E(X) - a$$

2) svojstvo
$$D(X - a) = D(X)$$

$$D(X - a) = E[(X - a)^{2}] - [E(X - a)]^{2}$$

$$= E[X^{2} - 2aX + a^{2}] - [E(X) - a]^{2}$$

$$= E(X^{2}) - 2aE(X) + a^{2} - [E(X^{2}) - 2aE(X) + a^{2}]$$

$$= [E(X^{2}) - E(X)^{2}] + 2aE(X) - 2aE(X) + a^{2} - a^{2}$$

$$= D(X)$$

3) svojstvo
$$cov(X - a, Y - b) = cov(X, Y)$$

$$cov(X - a, Y - b) = E[(X - a)(Y - a)] - [E(X - a)][E(Y - a)]$$

$$= E[XY - aX - aY + a^{2})] - [E(X) - a][E(Y) - a]$$

$$= E(XY) - aE(X) - aE(Y) + a^{2} - [E(X)E(Y) - aE(X) - aE(Y) + a^{2}]$$

$$= [E(XY) - E(X)E(Y)] - aE(X) - aE(Y) + a^{2} + aE(X) + aE(Y) - a^{2}$$

$$= cov(X, Y)$$

4) svojstvo
$$E(X^*) = 0$$

$$E(X^*) = E\left(\frac{X - m_x}{\sigma_x}\right) = \frac{E(X) - m_x}{\sigma} = \frac{0}{\sigma} = 0$$

5) svojstvo
$$D(X^*) = 1$$

$$D(X^*) = D\left(\frac{X - E(X)}{\sqrt{D(X)}}\right) = \frac{D[X - E(X)]}{D[\sqrt{D(X)}]} = \frac{D(X)}{D(X)} = 1$$

3.6 Svojstva normiranog koeficijenta korelacije

Za dvije normirane slučajne varijable $X^* = \frac{X - m_x}{\sigma_x}$ i $Y^* = \frac{Y - m_y}{\sigma_y}$ vrijedi:

$$r(X^*, Y^*) = r(X, Y)$$

$$r(X^*, Y^*) = E(X^*Y^*)$$

$$= E\left(\frac{X - m_x}{\sigma_x} \cdot \frac{Y - m_y}{\sigma_y}\right)$$

$$= \frac{E[XY - m_xY - m_yX + m_xm_y]}{E[\sigma_x\sigma_y]}$$

$$= \frac{E(XY) - m_xE(Y) - m_yE(X) + m_xm_y}{\sigma_x\sigma_y}$$

$$= \frac{E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y)}{\sigma_x\sigma_y}$$

$$= \frac{E(XY) - E(X)E(Y)}{\sigma_x\sigma_y}$$

$$= \frac{cov(X, Y)}{\sigma_x\sigma_y}$$

$$= r(X, Y)$$

3.7 Disperzija zbroja slučajnih varijabli

Disperzija zbroja $S=X_1+X_2+\ldots+X_n$ slučajnih varijabli računa se formulom

$$D(S) = \sum_{i=1}^{n} D(X_i) + 2\sum_{i < j}^{n} cov(X_i, X_j)$$

$$m_{s} = m_{X1} + m_{X2} + \dots + m_{Xn}$$

$$D(S) = E[(S - m_{s})^{2}]$$

$$= E\left(\sum_{i=1}^{n} (X_{i} - m_{Xi})\right)^{2}$$

$$= \sum_{i=1}^{n} E(X_{i} - m_{Xi})^{2} + \sum_{i \neq j} E[(X_{i} - m_{Xi})][(X_{j} - m_{Xj})]$$

$$= \sum_{i=1}^{n} D(X_{i})^{2} + 2\sum_{i < j} cov(X_{i}, X_{j})$$

3.8 Svojstva koeficijenta korelacije

Za koeficijent korelacije vrijedi:

$$|r(X,Y)| \le 1$$

Ako je $Y = \pm aX + b$, $a, b \in R$

$$r(X,Y) = \pm 1$$

Dokaz:

 $X^* = \frac{X - m_x}{\sigma_x}$ i $Y^* = \frac{Y - m_y}{\sigma_y}$ su normirane slučajne varijable

1) svojstvo $|r(X,Y)| \le 1$

$$\begin{split} D(X^* \pm Y^*) &= D(X^*) + D(Y^*) \pm 2cov(X^*, Y^*) \\ &= 1 + 1 \pm 2r(X^*, Y^*) \\ &= 2 \big[1 \pm r(X, Y) \big] \end{split}$$

2 slučaja:

1)
$$D(X^*+Y^*)=2\big[1+r(X,Y)\big]$$
 $D(X^*+Y^*)\geq 0$, za vrijednosti $r(X,Y)\leq 0$ vrijedi: $r(X,Y)\in \big[-1,0\big]$

2)
$$D(X^*-Y^*)=2\big[1-r(X,Y)\big]$$
 $D(X^*-Y^*)\geq 0$, za vrijednosti $r(X,Y)\geq 0$ vrijedi: $r(X,Y)\in \big[0,1\big]$

$$\Rightarrow |r(X,Y)| \le 1$$

2) svojstvo
$$r(X,Y) = \pm 1$$
, ako je $Y = \pm aX + b$, $a, b \in R$

$$\begin{split} Y &= aX + b \\ m_Y &= m_{aX+b} = E(aX+b) = aE(X) + b = am_X + b \\ \sigma_Y &= \sigma_{aX+b} = \sqrt{D(aX+b)} = \sqrt{a^2D(X)} = a\sqrt{D(X)} = a\sigma_X \end{split}$$

$$r(X,Y) = r(X, aX + B)$$

$$= \frac{cov(X, aX + b)}{\sigma_X \sigma_{aX+b}}$$

$$= \frac{E[X(aX + b)] - m_X m_{aX+b}}{\sigma_X \sigma_{aX+b}} =$$

$$= \frac{E[aX^2 + bX] - m_x (am_X + b)}{a\sigma_X^2}$$

$$= \frac{aE(X^2) + bE(X) - am_X^2 - bm_X}{a\sigma_X^2}$$

$$= \frac{aE(X^2) + bE(X) - aE(X)^2 - bE(X)}{aD(X)}$$

$$= \frac{a[E(X^2) - E(X)^2]}{aD(X)}$$

$$= \frac{aD(X)}{aD(X)}$$

$$= 1$$

$$\begin{split} Y &= -aX + b \\ m_Y &= m_{-aX+b} = E(-aX+b) = -aE(X) + b = -am_X + b \\ \sigma_Y &= \sigma_{-aX+b} = \sqrt{D(-aX+b)} = \sqrt{(-a)^2D(X)} = a\sqrt{D(X)} = a\sigma_X \end{split}$$

$$\begin{split} r(X,Y) &= r(X, -aX + B) \\ &= \frac{cov(X, -aX + b)}{\sigma_X \sigma_{-aX + b}} \\ &= \frac{E\left[X(-aX + b)\right] - m_X m_{-aX + b}}{\sigma_X \sigma_{-aX + b}} = \\ &= \frac{E\left[-aX^2 + bX\right] - m_x(-am_X + b)}{a\sigma_X^2} \\ &= \frac{-aE(X^2) + bE(X) + am_X^2 - bm_X}{a\sigma_X^2} \\ &= \frac{-aE(X^2) + bE(X) + aE(X)^2 - bE(X)}{aD(X)} \\ &= \frac{-a\left[E(X^2) - E(X)^2\right]}{aD(X)} \\ &= \frac{-aD(X)}{aD(X)} \\ &= -1 \end{split}$$

Poglavlje 4

Primjeri diskretnih razdioba

4.1 Izvod karakteristične funkcije geometrijske razdiobe

$$X \sim \mathscr{G}(p)$$

$$\vartheta(t) = \frac{pe^{it}}{1 - qe^{it}}$$

Dokaz:

vrijedi q = 1 - p

$$\begin{split} \vartheta(t) &= E(e^{itX}) \\ &= \sum_k e^{itx_k} p_k \\ &= \sum_{k=1}^\infty e^{itk} \cdot pq^{k-1} \\ &= pe^{it} \sum_{k=1}^\infty e^{it(k-1)} q^{k-1} \\ &= pe^{it} \sum_{k=0}^\infty e^{itk} q^k \\ &= pe^{it} \sum_{k=0}^\infty \left(qe^{it} \right)^k \\ &= \frac{pe^{it}}{1 - qe^{it}} \end{split}$$

4.2 Očekivanje geometrijske razdiobe

 $X \sim \mathscr{G}(p)$

$$E(X) = \frac{1}{p}$$

vrijedi
$$q = 1 - p, p = 1 - q$$

$$\begin{split} E(X) &= \frac{\vartheta^{(1)}(0)}{i^1} \cdot \frac{i}{i} \\ &= -i \cdot \vartheta^{(1)}(0) \\ &= -i \cdot \left[\frac{(pe^{it})'(1 - qe^{it}) - pe^{it}(1 - qe^{it})'}{(1 - qe^{it})^2} \right] \\ &= -i \cdot \left[\frac{(ipe^{it} - ipqe^{2it}) - pe^{it}(-iqe^{it})}{(1 - qe^{it})^2} \right] \\ &= -i \cdot \left[\frac{ipe^{it} - ipqe^{2it} + ipqe^{2it}}{(1 - qe^{it})^2} \right] \\ &= \frac{pe^{it}}{(1 - qe^{it})^2} \\ &= \left[t = 0 \right] \\ &= \frac{p}{1 - q^2} \\ &= \frac{p}{p^2} \\ &= \frac{1}{p} \end{split}$$

4.3 Disperzija geometrijske razdiobe

 $X \sim \mathscr{G}(p)$

$$D(X) = \frac{1 - p}{p^2}$$

Dokaz:

vrijedi q = 1 - p, p = 1 - q

$$\begin{split} E(X^2) &= \frac{\vartheta^{(2)}(0)}{i^2} \\ &= -\left[\vartheta^{(1)}\right]' \\ &= -\left[\frac{ipe^{it}}{(1-qe^{it})}\right]' \\ &= -\left[\frac{ip\cdot ie^{it}(1-qe^{it})^2 - ipe^{it}(-2qie^{it} + 2q^2ie^{2it})}{(1-qe^{it})^4}\right] \\ &= \left[t = 0\right] \\ &= -\left[\frac{-p(1-q)^2 - ip(-2qi + 2q^2i)}{(1-q)^4}\right] \\ &= -\left[\frac{-p\cdot p^2 - 2pq + 2pq^2}{p^4}\right] \\ &= -\left[\frac{-p^3 - 2p(1-p) + 2p(1-p)^2}{p^4}\right] \\ &= -\left[\frac{-p^3 - 2p(1-p) + 2p(1-2p + p^2)}{p^4}\right] \\ &= -\left[\frac{-p^3 - 2p + 2p^2 + 2p - 4p^2 + 2p^3}{p^4}\right] \\ &= -\frac{p^3 - 2p^2}{p^2} \\ &= -\frac{p^2(p-2)}{p^2} \\ &= -\frac{p-2}{p^2} \\ &= \frac{2-p}{p^2} \end{split}$$

$$D(X) = E(X^2) - E(X)^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}$$

4.4 Odsutstvo pamćenja geometrijske razdiobe

Slučajna varijabla X koja poprima vrijednosti u skupu $\{1,2,3,\ldots\}$ ima geometrijsku razdiobu onda i samo onda ako vrijedi za sve $k,m\geq 1$

$$P(X = k + m | X > k) = P(X = m)$$

Dokaz: vrijedi q = 1 - p, p = 1 - q

$$P(X = k + m | X > k) = \frac{P(X = k + m, X > k)}{P(X > k)} = \frac{P(X = k + m)}{P(X > k)}$$
$$= \frac{p \cdot q^{k+m-1}}{q^k} = \frac{q^k}{q^k} \cdot p \cdot q^{m-1}$$
$$= P(X = m)$$

4.5 Odsutstvo pamćenja geometrijske razdiobe iz starog ispita

 $X \sim \mathscr{G}(p)$

$$P(X \le k + m | X > k) = P(X \le m)$$

Dokaz: vrijedi q = 1 - p, p = 1 - q

$$P(X \le k + m | X > k) = \frac{P(X \le k + m, X > k)}{P(X > k)} = \frac{P(X \le k + m) - P(X \le k)}{P(X > k)}$$

$$= \frac{1 - P(X > k + m) - [1 - P(X > k)]}{P(X > k)} =$$

$$= \frac{1 - q^{k+m} - 1 + q^k}{q^k} = \frac{q^k (1 - q^m)}{q^k}$$

$$= 1 - q^m = 1 - P(X > m) = P(X \le m)$$

4.6 Razdioba minimuma kod geometrijske razdiobe

Ponavlja se pokus do realizacije bilo kojeg od 2 nezavisna događaja: A_1 ili A_2 .

Ako su X_1 i X_2 međusobno nezavisne i distribuirane po geometrijskom zakonu s parametrima p1 i p2

$$X_1 \sim \mathcal{G}(p_1), X_2 \sim \mathcal{G}(p_2)$$

onda slučajna varijabla X ima geometrijsku razdiobu s parametrom $1-(1-p_1)(1-p_2)$:

$$X \sim \mathcal{G}(1 - (1 - p_1)(1 - p_2))$$

$$P(X > k) = P(\min\{X_1, X_2\} > k) = P(X_1 > k, X_2 > k)$$

$$= [nezavisnost] = P(X_1 > k)P(X_2 > k)$$

$$= q_1^{k-1} \cdot q_2^{k-1} = (q_1 q_2)^{k-1}$$

$$= [q = q_1 q_2] = q^{k-1}$$

$$P(X = k) = P(X > k - 1) - P(X > k) =$$

$$= q^{k-1} - q^k = q^{k-1}(1 - q) =$$

$$= (q_1 q_2)^{k-1}(1 - q_1 q_2) =$$

$$= \left[(1 - p_1)(1 - p_2) \right]^{k-1} \cdot \left(1 - (1 - p_1)(1 - p_2) \right)$$

$$\Rightarrow \min\{X_1, X_2\} \sim \mathcal{G}\left(1 - (1 - p_1)(1 - p_2) \right)$$

4.7 Izvod karakteristične funkcije binomne razdiobe

$$X \sim \mathcal{B}(n, p)$$

$$\vartheta(t) = (pe^{it} + q)^n$$

$$Dokaz:$$

$$\text{vrijedi } q = 1 - p, \ p = 1 - q$$

$$\vartheta(t) = E(e^{itX})$$

$$= \sum_{k=0}^{n} e^{itx_k} p_k$$

$$= \sum_{k=0}^{n} e^{itk} \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{it})^k q^{n-k}$$

$$= (pe^{it} + q)^n$$

4.8 Očekivanje binomne razdiobe

 $X \sim \mathcal{B}(n,p)$

$$E(X) = np$$

Dokaz:

vrijedi q = 1 - p, p = 1 - q

$$E(X) = \frac{\vartheta^{(1)}(0)}{i^1} \cdot \frac{i}{i}$$

$$= -i \cdot \vartheta^{(1)}(0)$$

$$= -i \cdot \left[(pe^{it} + q)^n \right]'$$

$$= -i \cdot \left[n \cdot (pe^{it} + q)^{n-1} \cdot ipe^{it} \right]$$

$$= n(pe^{it} + q)^{n-1} \cdot pe^{it}$$

$$= \left[t = 0 \right]$$

$$= n(p+q)^{n-1} \cdot p$$

$$= n \cdot (p+1-p)^{n-1} \cdot p$$

$$= np$$

4.9 Disperzija binomne razdiobe

 $X \sim \mathscr{B}(n,p)$

$$D(X) = npq$$

Dokaz:

vrijedi q = 1 - p, p = 1 - q

$$\begin{split} E(X^2) &= \frac{\vartheta^{(2)}(0)}{i^2} \\ &= -\left[\vartheta^{(1)}\right]' \\ &= -\left[inpe^{it}(pe^{it} + q)^{n-1}\right]' \\ &= -\left[npi^2e^{it} \cdot (pe^{it} + q)^{n-1} + npe^{it} \cdot (n-1)(pe^{it} + q)^{n-2} \cdot i^2pe^{it}\right] \\ &= \left[t = 0\right] \\ &= -\left[npi^2(p+q)^{n-1} + np \cdot (n-1) \cdot (p+q)^{n-2} \cdot i^2p\right] \\ &= -\left[npi^2 + np^2i^2(n-1)\right] \\ &= -npi^2 - np^2i^2(n-1) \\ &= np + np^2(n-1) \end{split}$$

$$D(X) = E(X^2) - E(X)^2 = np + n^2p^2 - np^2 - n^2p^2 = np - np^2 = np(1-p) = npq$$

4.10 Stabilnost binomne razdiobe

 $X_1 \sim \mathcal{B}(n_1,p), X_2 \sim \mathcal{B}(n_2,p),$ međusobno nezavisne

$$X_1 + X_2 \sim \mathscr{B}(n_1 + n_2, p)$$

Dokaz:

$$\vartheta_{X1}(t) = (pe^{it} + q)^{n_1}$$

$$\vartheta_{X2}(t) = (pe^{it} + q)^{n_2}$$

$$\vartheta_{X_1+X_2}(t) = \begin{bmatrix} nezavisnost \end{bmatrix}$$

$$= \vartheta_{X_1}(t) \cdot \vartheta_{X_2}(t)$$

$$= (pe^{it} + q)^{n_1} \cdot (pe^{it} + q)^{n_2}$$

$$= (pe^{it} + q)^{n_1+n_2}$$

$$\Rightarrow X_1 + X_2 \sim \mathcal{B}(n_1 + n_2, p)$$

4.11 Karakteristike binomne preko Bernoullijevih sluč. var.

Bernoullijeva slučajna varijabla:

$$X_i \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$

Označimo $X=X_1+X_2+\ldots+X_n$, ako su sve X_i međusobno nezavisne, vrijedi:

$$X \sim \mathcal{B}(n,p)$$

$$E(X) = np$$

$$D(X) = npq$$

Dokaz:

$$\vartheta_{X_1} = \vartheta_{X_2} = \dots = \vartheta_{X_n} = \sum_{k=0}^{1} e^{itk} p^k q^{1-k} = q \cdot e^{it \cdot 0} + p \cdot e^{it \cdot 1} = pe^{it} + q$$

$$\vartheta_X = \vartheta_{X_1 + X_2 + \dots + X_n}$$

$$= \begin{bmatrix} nezavisnost \end{bmatrix}$$

$$= \vartheta_{X_1} \cdot \vartheta_{X_2} \cdot \dots \cdot \vartheta_{X_n}$$

$$= (pe^{it} + q) \cdot (pe^{it} + q) \cdot \dots \cdot (pe^{it} + q)$$

$$= (pe^{it} + q)^n$$

$$\Rightarrow X \sim \mathcal{B}(n, p)$$

$$E(X) = E(X_1 + X_2 + \dots + X_n)$$

$$= E(X_1) + E(X_2) + \dots + E(X_n)$$

$$= n \cdot E(X_i)$$

$$= n \cdot \sum_{k=0}^{1} k \cdot p^k q^{1-k}$$

$$= n \cdot \left[0 \cdot p^0 q^1 + 1 \cdot p^1 q^0 \right]$$

$$= np$$

$$D(X_i) = E(X_i^2) - E(X_i)^2 = 0^2 \cdot p^0 q^1 + 1^2 \cdot p^1 q^0 - p^2 = p - p^2 = p(1 - p) = pq$$

$$D(X) = D(X_1 + X_2 + \dots + X_n)$$

$$= \left[nezavisnost\right]$$

$$= D(X_1) + D(X_2) + \dots + D(X_n)$$

$$= n \cdot D(X_i)$$

$$= npq$$

4.12 Najvjerojatnija realizacija binomne

$$(n+1)p - 1 \le k \le (n+1)p$$

$$p_0 \le p_1 \le \dots \le p_{k-1} \le p_k$$

 $p_n \le p_{n-1} \le \dots \le p_{k-1} \le p_k$

$$\begin{aligned} \frac{p_k}{p_{k-1}} &\geq 1 \\ \frac{p_k}{p_{k-1}} &= \frac{\frac{n!}{k \cdot (k-1)! \cdot (n-k)!}}{\frac{n!}{(k-1)! \cdot (n-k+1)(n-k)!}} \cdot \frac{p^k q^{n-k}}{p^{k-1} q^{n-k+1}} = \frac{n-k+1}{k} \cdot \frac{p}{q} \geq 1/\cdot kq \\ np - kp + p \geq kq \\ -kp - kq \geq -np - p/\cdot (-1) \\ kp + kq \leq np + p \\ k \leq \frac{np+p}{p+q} \\ &\Rightarrow k \leq (n+1)p \end{aligned}$$

$$2)\frac{p_{k}}{p_{k+1}} \ge 1$$

$$\frac{p_{k}}{p_{k+1}} = \frac{\frac{n!}{k! \cdot (n-k)(n-k-1)!}}{\frac{n!}{(k+1)k! \cdot (n-k-1)!}} \cdot \frac{p^{k}q^{n-k}}{p^{k+1}q^{n-k-1}} = \frac{k+1}{n-k} \cdot \frac{q}{p} \ge 1/\cdot (n-k)p$$

$$kq + q \ge np - kp$$

$$kq + kp \ge np - q$$

$$k(q+p) \ge np - q$$

$$k \ge np - q$$

$$k \ge np - q$$

$$k \ge np - 1 - p$$

$$\Rightarrow k \ge (n+1)p - 1$$

$$(n+1)p-1 \le k \le (n+1)p$$

4.13 Aproksimacija binomne razdiobe Poissonovom

Neka je n
 velik, a p malen. $\lambda = np$, vrijedi aproksimacija:

$$\binom{n}{k} p^k q^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

 $Dokaz: \\ \lambda = np$

$$\begin{split} \binom{n}{k} p^k q^{n-k} &= \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \\ &= \frac{1}{k!} \frac{n(n-1) \cdots (n-k+1)}{n^k} \lambda^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \\ &= \frac{1}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \lambda^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \\ &\to \frac{\lambda^k}{k!} e^{-\lambda} \end{split}$$

4.14 Izvod karakteristične funkcije Poissonove razdiobe

 $X \sim \mathscr{P}(\lambda)$

$$\vartheta(t) = e^{\lambda(e^{it} - 1)}$$

Dokaz:

$$\vartheta(t) = E(e^{itX})$$

$$= \sum_{k} e^{itx_{k}} p_{k}$$

$$= \sum_{k=0}^{\infty} e^{itk} \cdot \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^{k}}{k!}$$

$$= e^{-\lambda} \cdot e^{\lambda e^{it}}$$

$$= e^{\lambda e^{it} - \lambda}$$

$$= e^{\lambda(e^{it} - 1)}$$

4.15 Očekivanje Poissonove razdiobe

 $X \sim \mathscr{P}(\lambda)$

$$E(X) = \lambda$$

$$\begin{split} E(X) &= \frac{\vartheta^{(1)}(0)}{i^1} \cdot \frac{i}{i} \\ &= -i \cdot \vartheta^{(1)}(0) \\ &= -i \cdot \left[e^{-\lambda} \cdot e^{\lambda e^{it}} \right]' \\ &= -i \cdot \left[e^{-\lambda} \cdot e^{it} \lambda i e^{\lambda e^{it}} \right] \\ &= e^{-\lambda} \cdot e^{it} \cdot e^{\lambda e^{it}} \cdot \lambda \\ &= \left[t = 0 \right] \\ &= e^{-\lambda} \cdot e^{\lambda} \cdot \lambda \\ &= e^{\lambda - \lambda} \cdot \lambda \\ &= \lambda \end{split}$$

4.16 Disperzija Poissonove razdiobe

 $X \sim \mathscr{P}(\lambda)$

$$D(X) = \lambda$$

$$\begin{split} E(X^2) &= \frac{\vartheta^{(2)}(0)}{i^2} \\ &= -\left[\vartheta^{(1)}\right]' \\ &= -\left[e^{-\lambda} \cdot e^{it}\lambda i e^{\lambda e^{it}}\right]' \\ &= -e^{-\lambda} \cdot \lambda i \left[e^{it} \cdot e^{\lambda e^{it}}\right]' \\ &= -e^{-\lambda} \cdot \lambda i \left[i e^{it} \cdot e^{\lambda e^{it}} + i \lambda e^{it} \cdot e^{it}\lambda e^{\lambda e^{it}}\right] \\ &= -e^{-\lambda} \cdot \lambda i \cdot i e^{it + \lambda e^{it}} - e^{-\lambda} \cdot \lambda i \cdot i \lambda e^{2it + \lambda e^{it}} \\ &= \left[t = 0\right] \\ &= e^{-\lambda} \cdot \lambda e^{\lambda} + e^{-\lambda} \cdot \lambda^2 \cdot e^{\lambda} = \\ &= \lambda + \lambda^2 \\ D(X) &= E(X^2) - E(X)^2 = \lambda + \lambda^2 - \lambda^2 = \lambda \end{split}$$

Stabilnost Poissonove razdiobe 4.17

Ako su $X_1 \sim \mathscr{P}(\lambda_1), X_2 \sim \mathscr{P}(\lambda_2)$ nezavisne slučajne varijable onda vrijedi:

$$X_1 + X_2 \sim \mathscr{P}(\lambda_1 + \lambda_2)$$

$$\begin{array}{l} \mathcal{D}okaz.\\ \vartheta_{X_1}(t) = e^{\lambda_1(e^{it}-1)}\\ \vartheta_{X_2}(t) = e^{\lambda_2(e^{it}-1)} \end{array}$$

$$\vartheta_{X_2}(t) = e^{\lambda_2(e^{it}-1)}$$

$$\begin{split} \vartheta_{X_1+X_2}(t) &= \left[nezavisnost \right] \\ &= \vartheta_{X_1}(t) \cdot \vartheta_{X_2}(t) \\ &= e^{\lambda_1(e^{it}-1)} \cdot e^{\lambda_2(e^{it}-1)} \\ &= e^{\lambda_1(e^{it}-1)+\lambda_2(e^{it}-1)} \\ &= e^{(\lambda_1+\lambda_2)(e^{it}-1)} \\ &\Rightarrow X_1 + X_2 \sim \mathscr{P}(\lambda_1+\lambda_2) \end{split}$$

Poglavlje 5

Neprekinute slučajne varijable

5.1 Temeljno svojstvo funkcije razdiobe

Za sve realne brojeve a, b, a < b vrijedi:

$$P({a \le X < b}) = F(b) - F(a)$$

$$F(b) = P(\{X < b\}) = P(\{X < a\} \cup \{a \le X < b\})$$

$$= P(\{X < a\}) + P(\{a \le X < b\})$$

$$= F(a) + P(\{a \le X < b\})$$

$$\Rightarrow P(\{a \le X < b\}) = F(b) - F(a)$$

5.2 Izvod jednolike razdiobe

$$f(x) = \frac{1}{b-a}, \quad F(x) = \frac{x-a}{b-a}$$

Dokaz:

X uzima vrijednosti iz intervala [a, b]

1)
$$1 = P(a \le X \le b) = F(b) - F(a) = K(b-a)$$

2)
$$P(a \le X < x) = F(x) - F(a) = K(x - a)$$

3)
$$P(X < a) = F(a) = 0$$

1)
$$1 = K(b-a) \Rightarrow K = f(x) = \frac{1}{b-a}$$

2)
$$P(a \le X < x) = F(x) = K(x - a) = \frac{x - a}{b - a}$$

5.3 Karakteristična funkcija jednolike razdiobe

$$X \sim \mathscr{U}(a,b)$$

$$\vartheta(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

$$\vartheta(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{itx} f(x) dx = \int_{a}^{b} e^{itx} \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \int_{a}^{b} e^{itx} dx = \begin{bmatrix} k = itx, & \frac{dk}{it} = dx \end{bmatrix}$$

$$= \frac{1}{b-a} \int e^{k} \frac{dk}{it} = \frac{1}{it(b-a)} \int e^{k} dk$$

$$= \frac{1}{it(b-a)} e^{itx} \Big|_{a}^{b} = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

5.4 Očekivanje jednolike razdiobe

 $X \sim \mathscr{U}(a,b)$

$$E(X) = \frac{b+a}{2}$$

Dokaz:

$$E(X) = \int_{a}^{b} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{1}{b-a} \cdot \frac{x^{2}}{2} \Big|_{a}^{b}$$
$$= \frac{b^{2} - a^{2}}{2(b-a)} = \frac{(b-a)(b+a)}{2(b-a)} = \frac{b+a}{2}$$

5.5 Disperzija jednolike razdiobe

 $X \sim \mathscr{U}(a,b)$

$$D(X) = \frac{(b-a)^2}{12}$$

$$E(X^{2}) = \int_{a}^{b} x^{2} f(x) dx = \int_{a}^{b} \frac{x^{2}}{b - a} dx = \frac{1}{b - a} \int_{a}^{b} x^{2} dx = \frac{1}{b - a} \cdot \frac{x^{3}}{3} \Big|_{a}^{b}$$
$$= \frac{b^{3} - a^{3}}{3(b - a)} = \frac{(b - a)(b^{2} + ab + a^{2})}{3(b - a)} = \frac{b^{2} + ab + a^{2}}{3}$$

$$D(X) = E(X^{2}) - E(X)^{2} = \frac{b^{2} + ab + a^{2}}{3} - \frac{b^{2} + 2ab + a^{2}}{4}$$
$$= \frac{4b^{2} + 4ab + 4a^{2} - 3b^{2} - 6ab - 3a^{2}}{12} = \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

5.6 Transformacija funkcije gustoće

Neka je $Y=\psi(X)$. Ako je funkcija ψ monotono rastuća ili padajuća funkcija, onda vrijedi formula:

$$g(y) = f(x) \left| \frac{dx}{dy} \right|, \quad y = \psi(x)$$

tj.

$$g(y) = f(\psi^{-1}(y)) \left| \frac{d\psi^{-1}(y)}{dy} \right|$$

Dokaz:

1) ψ je monotono rastuća funkcija:

$$A_y = \psi^{-1}\{\langle -\infty, y \rangle\} = \langle -\infty, \psi^{-1}(y) \rangle = \langle -\infty, x \rangle$$

$$G(y) = P(X \in A_y) = P(X \in (-\infty, x >)) = P(X < x) = F(x)$$

$$g(y) = \frac{d}{dy}G(y) = \frac{d}{dx}F(x) \cdot \frac{dx}{dy} = f(x)\frac{dx}{dy}$$

1) ψ je monotono padajuća funkcija:

$$A_y = \psi^{-1}\{\langle -\infty, y \rangle\} = \langle \psi^{-1}(y), \infty \rangle = \langle x, \infty \rangle$$

$$G(y) = P(X \in A_y) = P(X \in (x, \infty)) = P(X > x) = -F(x)$$

$$g(y) = \frac{d}{dy}G(y) = \frac{d}{dx} - F(x) \cdot \frac{dx}{dy} = -f(x)\frac{dx}{dy}$$

Oba slučaja se mogu napisati formulom

$$g(y) = f(x) \left| \frac{dx}{dy} \right|$$

Poglavlje 6

Primjeri neprekinutih razdioba

6.1 Karakteristična funkcija eksponencijalne razdiobe

$$X \sim \mathscr{E}(\lambda)$$

$$\vartheta(t) = \frac{\lambda}{\lambda - it}$$

$$\vartheta(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

$$= \int_{0}^{\infty} e^{itx} \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} e^{x(it-\lambda)} dx$$

$$= \left[k = x(it - \lambda), \frac{dk}{it - \lambda} = dx \right]$$

$$= \frac{\lambda}{it - \lambda} \int e^{k} dk = \frac{\lambda}{it - \lambda} \cdot e^{x(it - \lambda)} \Big|_{0}^{\infty}$$

$$= \frac{\lambda \left[e^{\infty \cdot (it - \lambda)} - e^{0 \cdot (it - \lambda)} \right]}{it - \lambda} = \frac{\lambda}{-(it - \lambda)} = \frac{\lambda}{\lambda - it}$$

6.2 Očekivanje eksponencijalne razdiobe

 $X \sim \mathscr{E}(\lambda)$

$$E(X) = \frac{1}{\lambda}$$

Dokaz:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$= \begin{bmatrix} u = x, & du = dx, & v' = e^{-\lambda x}, & v = -\frac{1}{\lambda} e^{-\lambda x} \end{bmatrix}$$

$$= \lambda \left[\frac{-x e^{-\lambda x}}{\lambda} \Big|_{0}^{\infty} + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda x} dx \right]$$

$$= \lambda \cdot \frac{1}{\lambda} \left[-\frac{1}{\lambda} e^{-\lambda x} \right] = -\frac{1}{\lambda} e^{-\infty \cdot \lambda} + \frac{1}{\lambda} e^{-0 \cdot \lambda} = \frac{1}{\lambda}$$

6.3 Disperzija eksponencijalne razdiobe

 $X \sim \mathscr{E}(\lambda)$

$$D(X) = \frac{1}{\lambda^2}$$

$$\begin{split} E(X^2) &= \int_{-\infty}^{\infty} x^2 f(x) dx \\ &= \int_{0}^{\infty} x^2 \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x^2 e^{-\lambda x} dx \\ &= \left[\quad u = x^2, \quad du = 2x dx, \qquad v' = e^{-\lambda x}, \quad v = -\frac{1}{\lambda} e^{-\lambda x} \right] \\ &= \lambda \left[\frac{-x^2 e^{-\lambda x}}{\lambda} \Big|_{0}^{\infty} - \int_{0}^{\infty} 2x \Big(-\frac{1}{\lambda} e^{-\lambda x} \Big) dx \right] = \lambda \left[\frac{2}{\lambda} \int_{0}^{\infty} x e^{-\lambda x} dx \right] \\ &= \left[\quad u = x, \quad du = dx, \qquad v' = e^{-\lambda x}, \quad v = -\frac{1}{\lambda} e^{-\lambda x} \right] \\ &= 2 \left[\frac{-x e^{-\lambda x}}{\lambda} \Big|_{0}^{\infty} + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda x} dx \right] = \frac{2}{\lambda} \int_{0}^{\infty} e^{-\lambda x} dx \\ &= \left[\quad -\lambda x = t, \quad dx = \frac{dt}{-\lambda} \quad \right] = \frac{2}{\lambda} \left[-\frac{e^{-\lambda x}}{\lambda} \right] \Big|_{0}^{\infty} \\ &= \frac{2}{\lambda} \left[-\frac{e^{-\infty \cdot \lambda}}{\lambda} + \frac{e^{-0 \cdot \lambda}}{\lambda} \right] = \frac{2}{\lambda} \cdot \frac{1}{\lambda} = \frac{2}{\lambda^2} \end{split}$$

$$D(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

6.4 Odsutstvo pamćenja eksponencijalne razdiobe

$$X \sim \mathcal{E}(\lambda)$$
$$x, t > 0$$

$$P(X < x + t | X > t) = P(X < x)$$

Dokaz:

$$P(X < x + t | X > t) = \frac{P(X < x + t, X > t)}{P(X > t)} = \frac{P(t < X < x + t)}{1 - P(X < t)}$$

$$= \frac{F(x + t) - F(t)}{1 - F(t)} = \frac{1 - e^{-\lambda(x + t)} - (1 - e^{-\lambda t})}{1 - (1 - e^{-\lambda t})}$$

$$= \frac{e^{-\lambda t} - e^{-\lambda(x + t)}}{e^{-\lambda t}} = \frac{e^{-\lambda t} - e^{-\lambda x} \cdot e^{-\lambda t}}{e^{-\lambda t}}$$

$$= \frac{e^{-\lambda t} (1 - e^{-\lambda x})}{e^{-\lambda t}} = 1 - e^{-\lambda x} =$$

$$= P(X < x)$$

6.5 Funkcija razdiobe normalne slučajne varijable

Funkcija razdiobe normalne slučajne varijable $X \sim \mathcal{N}(0,1)$ je:

$$\Phi(u) = \frac{1}{2} \left[1 + \Phi^*(u) \right]$$

Dokaz:

Funkcija gustoće slučajne varijable $X \sim \mathcal{N}(0,1)$:

$$\phi(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^2}$$

Funkcija razdiobe:

$$\Phi(u) = \int_{-\infty}^{u} \phi(t)dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{1}{2}t^2} dt$$

Svojstva funkcije gustoće:

$$\int_{-\infty}^{0}\phi(t)dt=\int_{0}^{\infty}\phi(t)dt=\frac{1}{2}\int_{-\infty}^{\infty}\phi(t)dt=\frac{1}{2}$$

$$\int_{-u}^{0} \phi(t)dt = \int_{0}^{u} \phi(t)dt = \frac{1}{2} \int_{-u}^{u} \phi(t)dt$$

Definiramo funkciju Φ^* :

$$\Phi^* = \int_{-u}^{u} \phi(t)dt$$

Računajmo funkciju razdiobe:

$$\Phi(u) = \int_{-\infty}^{u} \phi(t)dt = \int_{-\infty}^{0} \phi(t)dt + \int_{0}^{u} \phi(t)dt$$
$$= \frac{1}{2} + \frac{1}{2} \int_{0}^{u} \phi(t)dt = \frac{1}{2} \left[1 + \Phi^{*}(u) \right]$$

6.6 Veza između jedinične i općenite normalne razdiobe

Ako vrijedi:

$$X \sim \mathcal{N}(0,1), \quad a, \sigma \in \mathbb{R}^+$$

$$Y = a + \sigma X$$

Onda je:

$$g(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-a)^2}{2\sigma^2}}, \quad Y \sim \mathcal{N}(a, \sigma^2)$$

Ako vrijedi:

$$X \sim \mathcal{N}(a, \sigma^2), \quad a, \sigma \in \mathbb{R}^+$$

$$Y = \frac{X-a}{\sigma}$$
 Onda je:

$$g(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2}, \quad Y \sim \mathcal{N}(0, 1)$$

$$a + \sigma X = Y$$
$$\sigma X = Y - a$$
$$X = \frac{Y - a}{\sigma}$$

$$\left| \frac{dx}{dy} \right| = \left| \frac{d(\frac{y-a}{\sigma})}{dy} \right| = \frac{1}{\sigma}$$

$$g(y) = f(x) \left| \frac{dx}{dy} \right| = \left[X = \frac{Y - a}{\sigma} \right]$$
$$= f\left(\frac{y - a}{\sigma}\right) \cdot \frac{1}{\sigma} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\frac{y - a}{\sigma})^2}{2}} \cdot \frac{1}{\sigma}$$
$$= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y - a)^2}{2\sigma^2}} \Rightarrow Y \sim \mathcal{N}(a, \sigma^2)$$

$$\frac{X - a}{\sigma} = Y$$

$$X - a = \sigma Y$$

$$X = a + \sigma Y$$

$$\left| \frac{dx}{dy} \right| = \left| \frac{d(a + \sigma y)}{dy} \right| = \sigma$$

$$g(y) = f(x) \left| \frac{dx}{dy} \right| = \left[X = a + \sigma Y \right]$$

$$= f(a + \sigma y) \cdot \sigma = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{((a + \sigma y) - a)^2}{2\sigma^2}} \cdot \sigma$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{\sigma^2 y^2}{2\sigma^2}} =$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \Rightarrow Y \sim \mathcal{N}(0, 1)$$

6.7 Pravilo 3σ

$$X \sim \mathcal{N}(a, \sigma^2)$$

$$P(|X - a| < 3\sigma) = 0.9973$$

$$P(|X - a| < k\sigma) = P(X^* < k) = \left[k = 3\right]$$

= $\Phi^*(3) = 0.9973$

6.8 Stabilnost normalne razdiobe

 $X_1 \sim \mathcal{N}(a_1, \sigma_1^2), \quad X_2 \sim \mathcal{N}(a_2, \sigma_2^2), \quad s_1, s_2, c \in R$ X_1 i X_2 međusobno nezavisne

$$s_1X_1 + s_2X_2 + c \sim \mathcal{N}(s_1a_1 + s_2a_2 + c, s_1\sigma_1^2 + s_2\sigma_2^2)$$

Dokaz:

$$\vartheta_{X_k}(t) = e^{ita_k - \frac{1}{2}\sigma^2 t^2}, \quad k = 1, 2$$

$$\vartheta_{s_1X_1}(t) = \vartheta_{X_1}(s_1t) = e^{its_1a_1 - \frac{1}{2}s_1^2\sigma_1^2t^2}$$

$$\vartheta_{s_2X_2+c}(t) = e^{itc} \cdot \vartheta_{X_2}(s_2t) = e^{itc} \cdot e^{its_2a_2 - \frac{1}{2}s_2^2\sigma_2^2t^2} = e^{it(s_2a_2 + c) - \frac{1}{2}s_2^2\sigma_2^2t^2}$$

$$\begin{split} \vartheta_{s_1 X_1 + s_2 X_2 + c}(t) &= \left[nezavisnost \right] \\ &= \vartheta_{s_1 X_1}(t) \cdot \vartheta_{s_2 X_2 + c}(t) \\ &= e^{it(s_1 a_1 + s_2 a_2 + c) - \frac{1}{2}(s_1^2 \sigma_1^2 + s_2^2 \sigma_2^2)t^2} \end{split}$$

$$\Rightarrow s_1 X_1 + s_2 X_2 + c \sim \mathcal{N}(s_1 a_1 + s_2 a_2 + c, \ s_1 \sigma_1^2 + s_2 \sigma_2^2)$$

Očekivanje:

$$E(s_1X_1 + s_2X_2 + c) = E(s_1X_1) + E(s_2X_2) + c$$

= $s_1E(X_1) + s_2E(X_2) + c$
= $s_1a_1 + s_2a_2 + c$

Disperzija:

$$D(s_1X_1 + s_2X_2 + c) = D(s_1X_1) + D(s_2X_2)$$

= $s_1^2E(X_1) + s_2^2E(X_2)$
= $s_1^2\sigma_1^2 + s_2^2\sigma_2^2$

Poglavlje 7

Slučajni vektori

7.1 Kriterij nezavisnosti za neprekinute slučajne vektore

Komponente $X_1, X_2, ..., X_n$ neprekinutog slučajnog vektora $(X_1, X_2, ..., X_n)$ su nezavisne onda i samo onda ako vrijedi:

$$f(x_1, ..., x_n) = f_1(x_1) \cdot ... \cdot f_n(x_n), \quad \forall (x_1, ..., x_n) \in \mathbb{R}^n$$

Dokaz: Prvi smjer:

$$F(x_1, ..., x_n) = P(X_1 < x_1, ..., X_n < x_n)$$

$$= \begin{bmatrix} nezavisnost \end{bmatrix}$$

$$= P(X_1 < x_1) \cdot ... \cdot P(X_n < x_n)$$

$$= F_1(x_1) \cdot ... \cdot F_n(x_n)$$

$$F(x_1, ..., x_n) = F_1(x_1) \cdot ... \cdot F_n(x_n) / \cdot \frac{\partial^n}{\partial x_1 \partial x_2 ... \partial x_n}$$

$$\frac{\partial^n F(x_1, ..., x_n)}{\partial x_1 \partial x_2 ... \partial x_n} = \frac{\partial F_1(x_1)}{\partial x_1} \cdot \frac{\partial F_2(x_2)}{\partial x_2} \cdot ... \cdot \frac{\partial F_n(x_n)}{\partial x_n}$$

$$\Rightarrow f(x_1, ..., x_n) = f_1(x_1) \cdot ... \cdot f_n(x_n)$$

Drugi smjer:

 $G = A_1 \times A_2 \times \dots \times A_n,$

 ${\cal A}_i$ intervali za funkcije razdiobe slučajnih varijabli X_i

$$P(X_1 \in A_1, ..., X_n \in A_n) = P((X_1, ..., X_n) \in G)$$

$$= \int \cdots \int_G f(x_1, ..., x_n) dx_1 \cdot ... \cdot dx_n$$

$$= \left[nezavisnost \right]$$

$$= \int \cdots \int_G f_1(x_1) \cdot ... \cdot f_n(x_n) dx_1 \cdot ... \cdot dx_n$$

$$= \int_{A_1} f_1(x_1) dx_1 \cdot ... \cdot \int_{A_n} f_n(x_n) dx_n$$

$$= P(X \in A_1) \cdot ... \cdot P(X \in A_n)$$

7.2 Svojstva očekivanja slučajnih vektora

Za svake dvije slučajne varijable $X,Y:\Omega\to R$ vrijedi:

$$E(X+Y) = E(X) + E(Y)$$

Ako su X i Y nezavisne, onda vrijedi:

$$E(XY) = E(X) \cdot E(Y)$$

$$E(X+Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) + yf(x,y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y)dydx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y)dxdy$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x,y)dydx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f(x,y)dxdy$$

$$= \left[\int_{-\infty}^{\infty} f(x,y)dy = f_x(x), \int_{-\infty}^{\infty} f(x,y)dx = f_y(y) \right]$$

$$= \int_{-\infty}^{\infty} x f_x(x)dx + \int_{-\infty}^{\infty} y f_y(y)dy$$

$$= E(X) + E(Y)$$

7.3 Disperzija zboja za nezavisne slučajne vektore

Ako su $X_1, X_2, ..., X_n$ nekorelirane slučajne varijable, tada vrijedi:

$$D(X_1 + X_2 + \dots + X_n) = D(X_1) + D(X_2) + \dots + D(X_n)$$

Dokaz:

vrijedi: $E(X_k) = 0$

$$D\left(\sum_{k=1}^{n} X_k\right) = E\left[\left(\sum_{k=1}^{n} X_k\right)^2\right] - 0^2$$

$$= E\left(\sum_{j=1}^{n} \sum_{k=1}^{n} X_j X_k\right)$$

$$= \sum_{k=1}^{n} E(X_k^2) + \sum_{j \neq k} E(X_j X_k)$$

$$= \sum_{k=1}^{n} E(X_k^2) + \sum_{j \neq k} E(X_j) E(X_k)$$

$$= \left[E(X_k) = 0, \quad E(X_j) = 0\right]$$

$$= \sum_{k=1}^{n} E(X_k^2)$$

$$= \sum_{k=1}^{n} D(X_k)$$

Poglavlje 8

Funkcije slučajnih vektora

8.1 Jakobijan transformacije kartezijevih u polarne koordinate

Jakobijan transformacije kartezijevih u polarne koordinate glasi:

$$J = r$$

Dokaz:

 $x = r \cos \varphi$

 $y = r \sin \varphi$

$$J = \frac{\partial(x,y)}{\partial(r,\varphi)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix}$$

$$=\cos\,\varphi\cdot r\,\cos\,\varphi-\sin\,\varphi\cdot(-r\,\sin\,\varphi)$$

$$= r \left(\cos^2 \varphi + \sin^2 \varphi \right) = r$$

8.2 Izvod formule za gustoću funkcije slučajnog vektora

Gustoća slučajne varijable $Z=\psi(X,Y)$ dobiva se formulom:

$$g_z(z) = \int_{-\infty}^{\infty} f(x, y) \left| \frac{\partial y}{\partial z} \right| dx$$

Dokaz:

Sustav ovog preslikavanja je:

$$x = x$$

$$z = \psi(x, y)$$

Njegovo inverzno preslikavanje je:

$$x = x$$

$$y = \chi(x, z)$$

Jakobijan inverznog preslikavanja je:

$$J = \frac{\partial(x,y)}{\partial(x,z)} = \begin{vmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial z} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial z} \end{vmatrix} = 1 \cdot \frac{\partial y}{\partial z} - 0 \cdot \frac{\partial y}{\partial x} = \frac{\partial y}{\partial z}$$

Formula gustoće vektora (X, Z) je:

$$g(x,z) = f(x,y) \left| \frac{\partial y}{\partial z} \right|$$

Konačno, integriramo funkciju gustoće g(x,z) po varijabli x:

$$g_z(z) = \int_{-\infty}^{\infty} g(x, z) dx$$

$$= \int_{-\infty}^{\infty} f(x, y) \left| \frac{\partial y}{\partial z} \right| dx$$

8.3 Izvod funkcije razdiobe za $\min\{X_1, X_2, ..., X_n\}$

Funkcija razdiobe slučajne varijable $\min\{X_1,X_2,...,X_n\}$ glasi:

$$F_{\min\{X_1, X_2, \dots, X_n\}} = 1 - [1 - F_{X_i}(x)]^n$$

Dokaz:

 $X_1,...,X_n$ su međusobno nezavisne slučajne varijable s istom distribucijom

$$P(min\{X_1, X_2, ..., X_n\} < x) = 1 - P(min\{X_1, X_2, ..., X_n\} > x)$$

$$= 1 - P(X_1 > x, X_2 > x, ..., X_n > x)$$

$$= \left[nezavisnost\right]$$

$$= 1 - P(X_1 > x)P(X_2 > x)...P(X_n > x)$$

$$= 1 - \left[1 - F_{X_1}(x)\right] \left[1 - F_{X_2}(x)\right]...\left[1 - F_{X_n}(x)\right]$$

$$= 1 - \left[1 - F_{X_1}(x)\right]^n$$

8.4 Izvod funkcije razdiobe za $\max\{X_1, X_2, ..., X_n\}$

Funkcija razdiobe slučajne varijable $\max\{X_1,X_2,...,X_n\}$ glasi:

$$F_{max\{X_1, X_2, \dots, X_n\}} = F_{X_i}(x)^n$$

 $X_1, ..., X_n$ su međusobno nezavisne slučajne varijable s istom distribucijom

$$P(\max\{X_1, X_2, ..., X_n\} < x) = P(X_1 < x, X_2 < x, ..., X_n < x)$$

$$= [nezavisnost]$$

$$= P(X_1 < x)P(X_2 < x)...P(X_n < x)$$

$$= [F_{X_1}(x)][F_{X_2}(x)]...[F_{X_n}(x)]$$

$$= F_{X_i}(x)^n$$

Poglavlje 9

Zakon velikih brojeva i centralni granični teorem

9.1 Markovljeva nejednakost

Ako X poprima nenegativne vrijednosti, onda za svaki a>0 vrijedi:

$$P(X \ge a) \le \frac{E(X)}{a}$$

Dokaz:

Pretpostavimo da se radi o neprekidnoj slučajnoj varijabli:

$$E(X) = \int_0^\infty x f(x) dx \ge \int_a^\infty x f(x) dx \ge \int_0^\infty a f(x) dx$$
$$= a \int_0^\infty f(x) dx = a P(X \ge a)$$

$$E(X) \ge a P(X \ge a) / \cdot \frac{1}{a}$$

$$\frac{E(X)}{a} \ge P(X \ge a)$$

$$\Rightarrow P(X \ge a) \le \frac{E(X)}{a}$$

9.2 L_p nejednakost

Za slučajnu varijablu X s očekivanjem m_x i svaki p>0 vrijedi:

$$P(|X - m_x| \ge a) \le \frac{E(|X - m_x|^p)}{a^p}$$

Dokaz:

Primijeni se Markovljeva nejednakost:

$$P(|X - m_x| \ge a) = P(|X - m_x|^p \ge a^p) \le \frac{E(|X - m_x|^p)}{a^p}$$

9.3 Čebiševljeva nejednakost

$$P(|X - m_x| \ge a) \le \frac{D(X)}{a^2}$$

Dokaz:

Primijeni se Čebiševljeva nejednakost, p = 2:

$$P(|X - m_x| \ge a) \le \frac{E(|X - m_x|^2)}{a^2} = \frac{D(X)}{a^2}$$

9.4 Dovoljni uvjeti za slabi zakon velikih brojeva

Ako varijable X_1, X_2, \dots zadovoljavaju uvjet:

$$\lim_{n \to \infty} \frac{1}{n^2} D\left(\sum_{k=1}^n X_k\right) = 0$$

tada on zadovoljava zakon velikih brojeva.

Taj će uvjet biti ispunjen ako su na primjer:

- 1) X_1, X_2, \dots nekorelirane, s ograničenim varijancama
- 2) X_1, X_2, \dots nezavisne s istom varijancom σ
- 3) X_1, X_2, \dots nezavisne s istom distribucijom i konačnom varijancom

Dokaz:

1)

 $\varepsilon > 0$

Čebiševljeva nejednakost:

$$P\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} (X_k - E(X_k)) \right| > \varepsilon \right\} \le \frac{D\left(\frac{1}{n} \sum_{k=1}^{n} X_k\right)}{\varepsilon^2}$$
$$= \frac{1}{\varepsilon^2} \frac{1}{n^2} D\left(\sum_{k=1}^{n} X_k\right)$$
$$\to 0, \quad kad \ n \to \infty$$

2) i 3)
Neka je
$$\sum_{k=1}^{n} D(X_k) \leq M$$

$$\frac{1}{n^2} D\left(\sum_{k=1}^n X_k\right) = \frac{1}{n^2} \sum_{k=1}^n D(X_k) \le \frac{1}{n^2} \cdot n \cdot M = \frac{M}{n} \to 0, \quad kad \ n \to \infty$$

9.5 Centralni granični teorem

Neka je (X_n) niz identički distribuiranih nezavisnih slučajnih varijabli s očekivanjem m i varijancom σ^2 . Onda za normirani zbrojii vrijedi:

$$\frac{\left(\sum\limits_{k=1}^{n}X_{k}\right)-nm}{\sigma\sqrt{n}}\xrightarrow{\mathscr{D}}\mathcal{N}(0,1)$$

Dokaz:

Pretpostavimo da vrijedi: m=0

$$Z_n = \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^n X_k$$

$$\vartheta_{Z_n}(t) = \vartheta_{\frac{1}{\sigma\sqrt{n}}X_1 + \dots + \frac{1}{\sigma\sqrt{n}}X_n}(t)$$

$$= \begin{bmatrix} nezavisnost \end{bmatrix}$$

$$= \vartheta_{\frac{1}{\sigma\sqrt{n}}X_1}(t) \cdot \dots \cdot \vartheta_{\frac{1}{\sigma\sqrt{n}}X_n}(t)$$

$$= \vartheta_{\frac{1}{\sigma\sqrt{n}}X_k}(t) \cdot \dots \cdot \vartheta_{\frac{1}{\sigma\sqrt{n}}X_k}(t)$$

$$= \vartheta_{\frac{1}{\sigma\sqrt{n}}X_k}(t)^n$$

$$= \vartheta_{X_k} \left(\frac{t}{\sigma\sqrt{n}}\right)^n$$

Taylorov red:

$$\vartheta(t) = \vartheta(0) + \frac{\vartheta'(0)}{1!} + \frac{\vartheta''(0)}{2!} + R$$

$$0) \quad \vartheta(0) = 1$$

$$\frac{\vartheta'(0)}{i} = E(X_i)$$

1)
$$\vartheta'(0) = iE(X_i) = im = i \cdot 0 = 0$$

$$\frac{\vartheta''(0)}{-1} = E(X_i^2)$$

2)
$$\vartheta''(0) = -E(X_i^2) = \left[E(X_i) = 0 \right] = -\left[E(X_i^2) - E(X_i)^2 \right] = -D(X_i) = -\sigma^2$$

$$\vartheta_{Z_n}(t) = \left[\vartheta(0) + \frac{\vartheta'(0)}{1!} + \frac{\vartheta''(0)}{2!} + R\right]^n$$

$$= \left[1 + 0 \cdot \frac{t}{1! \cdot \sigma\sqrt{n}} - \sigma^2 \cdot \frac{t^2}{2! \cdot \sigma^2 \cdot n} + R\right]^n$$

$$= \left[1 - \frac{t^2}{2n} + R\right]^n$$

$$\to e^{-\frac{t^2}{2}}$$

Prema Levyjevom teoremu, niz (Z_n) konvergira po distribuciji k jediničnoj normalnoj razdiobi:

$$Z_n = \frac{\left(\sum_{k=1}^n X_k\right) - nm}{\sigma\sqrt{n}} \xrightarrow{\mathscr{D}} \mathscr{N}(0,1)$$

Poglavlje 10

Matematička statistika

10.1 Nepristrani procjenitelj za očekivanje

Statistika koja je nepristrani procjenitelj za očekivanje je:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Dokaz:

Nepristranost vrijedi ako je: $E(\overline{X}) = a$

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1) + E(X_2) + \dots + E(X_n)}{n}$$

$$= \frac{n \cdot E(X_i)}{n}$$

$$= E(X_i)$$

$$= a$$

10.2 Valjane statistike

Statistika $\Theta_n = \Theta(X_1, X_2, ..., X_n)$ nazivamo valjanom procjenom parametra ϑ ako za svaki $\varepsilon > 0$ slučajna varijabla Θ_n konvergira prema ϑ po vjerojatnosti:

$$\lim_{n \to \infty} P(|\Theta_n - \vartheta| < \varepsilon) = 1$$

Dokaz:

Primijenimo Cebiševljevu nejednakost:

$$P(|\Theta_n - \vartheta| < \varepsilon) \ge 1 - \frac{E[|\Theta_n - \vartheta|]}{\varepsilon^2} = 1 - \frac{D(\Theta_n)}{\varepsilon^2} \to 1$$

Dovoljan uvjet za valjanost:

$$\lim_{n\to\infty}D(\Theta_n)\to 0$$

10.3 Nepristrani procjenitelj za disperziju uz nepoznato očekivanje

Statistika koja je nepristrani procjenitelj za disperziju je:

$$\Theta^* = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Dokaz:

Definiramo statistiku:

$$\Theta = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

i računamo njeno očekivanje:

$$\begin{split} E(\Theta) &= E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}\right) \\ &= \frac{1}{n}\sum_{i=1}^{n}E\left[(X_{i} - \overline{X})^{2}\right] \\ &= \left[\quad X_{i} \ i \ \overline{X} \ zavisne, \qquad E(X_{i} - \overline{X}) = E(X_{i}) - E(\overline{X}) = 0 \right] \\ &= \frac{1}{n}\sum_{i=1}^{n}E\left[(X_{i} - \overline{X})^{2}\right] - \left[E(X_{i} - \overline{X})\right]^{2} \\ &= \frac{1}{n}\sum_{i=1}^{n}D\left[X_{i} - \overline{X}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}D\left[X_{i} - \frac{X_{1} + \ldots + X_{i-1} + X_{i} + X_{i+1} + \ldots + X_{n}}{n}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}D\left[\frac{n \cdot X_{i} - (X_{1} + \ldots + X_{i-1} + X_{i} + X_{i+1} + \ldots + X_{n})}{n}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}D\left[\frac{(n-1) \cdot X_{i}}{n} - \frac{X_{1} + \ldots + X_{i-1} + X_{i+1} + \ldots + X_{n}}{n}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}\left(\frac{n-1}{n}\right)^{2}\sigma^{2} + D\left[\sum_{i \neq j}^{n}\frac{X_{j}}{n}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}\left(\frac{n-1}{n}\right)^{2}\sigma^{2} + \frac{n-1}{n^{2}67}\sigma^{2} \\ &= \frac{(n-1)^{2}}{n^{2}}\sigma^{2} + \frac{n-1}{n^{2}67}\sigma^{2} \\ &= \frac{(n-1)^{2}}{n^{2}}\sigma^{2} + \frac{n-1}{n^{2}67}\sigma^{2} \end{split}$$

$$=\frac{(n^2-2n+1)+n-1}{n^2}\sigma^2=\frac{n^2-n}{n^2}\sigma^2=\frac{n(n-1)}{n^2}\sigma^2=\frac{n-1}{n}\sigma^2$$

Ova statistika nije nepristrana pa nam je potreban koeficijent kojim pomnožiti ovu statistiku da bi bila nepristrana:

$$cE(\Theta) = \sigma^{2}$$

$$c = \sigma^{2} \cdot \frac{1}{E(\Theta)}$$

$$c = \sigma^{2} \cdot \frac{n}{\sigma^{2}(n-1)}$$

$$c = \frac{n}{n-1}$$

Ovo je faktor kojim moramo pomnožiti statistiku Θ da bi ona postala nepristrana:

$$\Theta^* = c \cdot \Theta$$

$$= \frac{n}{n-1} \cdot \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$