Министерство ФГБОУ

Югорский государственный университет Институт Цифровой экономики

Отчет по проекту D На тему «Агентная модель распространения инфекции(SIR)» Вариант 9

Выполнил:

Грабовский А.С.

Группа: 1191б

Ханты-Мансийск

Оглавление

Введение3

Формализация5

D18

Эксперимент 114

Эксперимент 216

Эксперимент 320

Заключение22

Источники23

Введение

В настоящее время в условиях эпидемии в результате распространения коронавируса стала актуальной задача прогнозирования размеров, сроков пика и окончания распространения эпидемии, а также оценки эффективности возможных управленческих решений, направленных на предотвращение распространения эпидемии.

Ha случае могут прийти помощь В ЭТОМ математические модели, Существует описывающие данные процессы. несколько подходов моделированию распространения эпидемии, которые могут быть использованы для анализа протекающих процессов. В данной работе будет (SIR), рассмотрена агентная модель распространения инфекции разработанная в 1927 года шотландскими эпидемиологами Кермаком и Маккендриком.

Концептуальная модель

Рассматривается процесс распространения инфекционного заболевания (эпидемия) среди населения некоторого региона. Предполагается, что заболеванию. изначально население восприимчиво К Эпидемия распространяется, поскольку заражённые люди контактируют и передают заболевание восприимчивым. Через определённое время после заражения выздоравливает и вырабатывает иммунитет к человек заболеванию. Имитационная модель процесса эпидемии разрабатывается с целью получить ответы на ряд вопросов: как процесс развивается во времени? Как изменяется численность заболевших и выздоровевших?

Цель моделирования: анализ распространения инфекционного заболевания.

Определим следующие задачи:

- 1. Выявить время окончания инфекции
- 2. Оценить число восприимчивых людей
- 3. Оценить число зараженных людей
- 4. Оценить число людей с иммунитетом

Формализация

Население региона условно разделяется на три категории в соответствии с их состоянием:

- Susceptible восприимчивые к заболеванию
- Infection зараженные
- Recovered выздоровевшие

По мере того, как люди заражаются, они перемещаются из категории Susceptible в категорию Infectious, и затем, по мере выздоровления - в категорию Recovered.

Переход из первого состояния (восприимчивый к заболеванию) во второе

(зараженный) происходит в результате взаимодействия людей между собой. Переход из второго состояния (зараженный) в третье (выздоровевший) и из третьего (выздоровевший) в первое (выздоровевший) происходит по таймауту. Люди общаются друг с другом с определённой известной

интенсивностью. Если заражённый человек контактирует с восприимчивым к заболеванию, то последний заражается с заданной вероятностью. Люди контактируют только с теми, кто находятся в окрестности определённого радиуса.

Единицей модельного времени являются дни. Продолжительность эксперимента 1 год (365 дней)

Модель имеет следующие входные данные:

Формальн обозначен		Сокращенное обозначение	Полное обозначение	Название
ooosha ich	110			Количество населения
\mathbf{x}_1		P Population	(тыс. человек)	
				Интенсивность заражения
\mathbf{x}_2		I	Intensive	(частота рассылки
				сообщений в день)

X3	NatI	Nature_of_Infection	Характер заражения
X4	CR	Contact_Radius	Радиус контакта (размер окрестности, в которой может происходить взаимодействие)
X5	TIR	QueueClerk*	Время перехода из состояния «Infection» в состояние «Recovered» (в днях)
X ₆	TRS	ParametrClerk*	Время перехода из состояния «Recovered» в состояние «Susceptible» (в днях)

Табл. 1 — входные данные эксперимента

Выходные данные включают следующие пункты:

Формальное обозначение	Сокращенное обозначение	Полное обозначение	Название
y 1	A	Appearance	Внешний вид распространения инфекции
y ₂	СТ	Cessation_time	Время прекращения инфекции
y 3	NS	Number_ Susceptible	Число восприимчивых людей по прошествии заданного времени
У4	NI	Number_Infection	Число зараженных людей по прошествии заданного времени
y 5	NR To 6	Number_ Recovered	Число людей с иммунитетом по прошествии заданного времени

Табл. 2 — выходные данные эксперимента

^{*} Так указано в индивидуальном варианте. Полагаю это опечатка и должно быть что-то вроде: Time_ Infection_to_ Recovered, Time_ Recovered _to_ Susceptible.

Компьютерная модель

Компьютерная модель построена в среде AnyLogic. Модель имеет следующий вид:

Рисунок 1 — Модель

Модель представляет собой диаграмму состояний, состоящую из трёх состояний:

- Susceptible восприимчивые к заболеванию
- Infective зараженные
- Recovered выздоровевшие

Модель имеет два перехода Susceptible → Infective, которые происходят при получении сообщений "Inf0" (отправляется при запуске модели, заражение первого человека) и "Inf" (отправляется с заданной интенсивностью, отправка происходит внутри состояния Infective).

Из Infective→Recovered ведёт переход, срабатывающий по таймауту. Таймаут соответствует времени протекания болезни. Аналогичный переход — Recovered→Susceptible, ссоответствует времени сохранения иммунитета.

D1

Запускаем AnyLogic, указываем название и местоположение, также выбираем единицу модельного времени.

Строим модель, используя следующие блоки из Библиотеки моделирования процессов:

Создание типа агента.

Создадим нового агента и назовем «Person»

Разместим на холсте main четыре параметра

Построение состояний.

Создадим три элемента Состояние на холсте «Person». Назовем состояния: Susceptible, Infective, Recovered и для каждого состояния укажем свой цвет

Добавим элемент «Начало диаграммы состояний» над состоянием Susceptible и назовем «InfectionStatechart»

Построение переходов.

Воспользуемся инструментом «Переход» и построим переход от первого состояния ко второму

В свойствах перехода в поле «Происходит» установим «При получении данного сообщения». В поле «Сообщение» установим "Inf". В поле «Доп. условие» введем: randomTrue(main.p)

Воспользуемся инструментом «Переход» и построим переход от второго состояния к третьему

В свойствах перехода в поле «Происходит» установим «По таймауту» и введем значение 14 дней

Используем специальный тип перехода для моделирования распространения инфекции, называемый внутренним переходом. Внутренний переход разместим внутри второго состояния.

В свойствах перехода в поле «Происходит» установим «С заданной интенсивностью» и укажем значение main.c в день. В поле Действие введем: «sendToAllConnected("Inf");» // передает инфекцию всем соседним агентам

Создадим функцию изменения цвета при переходах на холсте Person и назовем ее «colorForInfectionState»

В Свойствах в пункте «Возвращает значение» обозначим «Тип»: «Другой» и в свободное поле введем «Color». В разделе «Тело функции» введем следующий код:

Рисунок 2 – Свойства функции «colorForInfectionState»

На холст «Pearson» поместим элемент «Овал» в начало координат

В свойствах укажем Окружность радиуса 3. В секции Цвет заливки выбираем «Динамическое значение» и введем название функции colorForInfectionState

Создание популяции.

Для этого на холст «Main» добавим объект «Pearson» и назовем его «People»

В свойствах укажем, что это будет популяция агентов. Начальное количество агентов равно «total»

Топология пространства.

Объект «Маіп» является средой, в которой размещена популяция «Реорlе». В свойствах объекта «Маіп», в секции «Пространство и сеть» установим флажок напротив имени выбранной популяции. «Тип пространства» - «Непрерывное». «Тип расположения» - «Случайный». «Тип сети» - «Согласно расстоянию». «Радиус соединения» = r

Первоначальный посев инфекции можно обеспечить, если в свойствах объекта «Маіп» в разделе «Действия агента», в строке «При запуске» введем код: «this.deliverToRandomAgentInside("Inf0");» // случайным образом происходит первоначальный посев инфекции

Построенная модель имитирует процесс, когда люди не могут повторно заболеть, т.е. у них выработался постоянный иммунитет. Если же требуется промоделировать процесс, когда люди начинают заново болеть после того, как выздоровели, необходимо добавить ещё один переход.

На холсте «Person», установим переход от «Recovered» к «Susceptible» значение «Происходит» указать «По таймауту» со значение в 600 дней.

В свойствах укажем значение «Происходит» - «По таймауту» со значением 600 дней

Создадим функции сбора статистики ДЛЯ подсчёта людей, восприимчивых к заболеванию. Для этого в свойствах объекта People перейдем на вкладку «Статистика», добавляем функцию, задаем имя Susceptible. функции Тип функции Условие: кол-во. item.InfectionStatechart.isStateActive(item.Susceptible). item ЭТО агент

(элемент реплицированного объекта people). Аналогично создадим ещё две функции: Infective и Recovered

Добавление графика.

Добавим элемент временной график на холст «Main», построим три временных графика функций Susceptible, Infective и Recovered

Проведем настройку свойств графиков

Получаем следующую структуру проекта

Рисунок 3 – Структура проекта в Маіп

Рисунок 4 — Структура проекта в Person

Для проведения экспериментов я решил добавить на холст «Main» еще несколько элементов.

Для выявления числа восприимчивых людей по прошествии заданного времени (под заданным временем понимается время окончания эксперимента, т.е. 365 день) добавлено событие «time_y2» для определения времени прекращения инфекции и «time_y4» для определения числа зараженных людей по прошествии заданного времени.

Рисунок 5 — Событие «time_y₄» и параметр «y₄»

Рисунок 6 – Свойство события «time_y₄»

Рисунок 7 — Событие «time_ y_2 » и параметр « y_2 »

Рисунок 8 – Свойства события «getInfectiveEnd»

В итоге структура имеет следующий вид

Рисунок 9 – Структура проекта для экспериментов

Эксперимент 1

Задачи:

- 1. Подсчитать значения выходных данных у=(у1,...,у5).
- 2. Построить графики, отображающих динамику изменения численности агентов, находящихся в состоянии «восприимчивых», «инфицированных» и «выздоровевших».
- 3. Представить скриншот карты распространения инфекции в популяции в день максимального значения численности инфицированных.

Данные эксперимента, согласно варианту 9:

Формальное	Обозначение	Название	Значение
обозначение			
X ₁	P	Количество	
		населения (тыс.	19
		человек)	
		Интенсивность	
X ₂	I	заражения (частота	0,5
Λ2	1	рассылки	0,5
		сообщений в день)	
X 3	NatI	Характер	RANDOM_NEIGHBOR
Λ3	Ivati	заражения	KANDOWI_NEIGIIBOK
		Радиус контакта	
		(размер	
X4	CR	окрестности, в	2
Λ4	CK	которой может	
		происходить	
		взаимодействие)	
	TIR	Время перехода из	
		состояния	
X ₅		«Infection» в	16
Α		состояние	
		«Recovered»	
		(в днях)	
	TRS	Время перехода из	
X ₆		состояния	30
Λ6		«Recovered» в	50
		состояние	

	«Susceptible»	
	(в днях)	

^{*} При использовании данного параметра заражение происходит мгновенно в первый же день (рисунок 40). Исходя из-этого для эксперимента использован стандартный sendToAllConnected

Результаты эксперимента:

Формальное	Название	Значение
обозначение		
y 1	Внешний вид распространения инфекции	Рисунок 11
y 2	Время прекращения инфекции	20
у3	Число восприимчивых людей по прошествии заданного времени	18998
y 4	Число зараженных людей по прошествии заданного времени	2
y 5	Число людей с иммунитетом по прошествии заданного времени	2

Рисунок 10 – Симуляция модели

Рисунок 11 — Внешний вид распространения инфекции

Вывод: исходя из данных графика, мы видим, что инфекция не распространилась по населению.

Эксперимент 2

Исследовать зависимость динамики количества инфицированных от интенсивности заражения (частота рассылки сообщений). Запись [a; b; h] означает интервал от, а (начальное значение) до b (конечное) с шагом h.

Задачи:

1. Проанализируйте влияние параметра x_2 на динамику количества инфицированных.

Данные эксперимента, согласно варианту 9:

Формальное	Обозначение	Название	Значение
обозначение			
X ₁	P	Количество населения (тыс. человек)	19
X2	I	Интенсивность заражения (частота рассылки сообщений в день)	[0,4; 0,8; 0,2]

X3	NatI	Характер заражения	RANDOM_NEIGHBOR*
		Радиус контакта	
		(размер окрестности, в	
X 4	CR	которой может	2
		происходить	
		взаимодействие)	
	TIR	Время перехода из	
W.		состояния «Infection» в	16
X5		состояние «Recovered»	
		(в днях)	
		Время перехода из	
	TRS	состояния «Recovered»	
X 6		в состояние	30
		«Susceptible»	
		(в днях)	

Рисунок 12 — Динамика количества инфицированных при $X_2 = 0.4$

Рисунок 13 — Динамика количества инфицированных при $X_2 = 0.6$

Рисунок $14 - Динамика количества инфицированных при <math>X_2 = 0.8$

Вывод: с увеличением интенсивности заражения болезнь все равно не прогрессирует.

Эксперимент 3

В ходе эксперимента используются входные данные первого эксперимента (кроме параметра радиус контакта (х4))

Задачи:

1. Найти такой радиус контакта (x4), чтобы доля инфицированных составляла не менее 30%, не позже, чем за 1 год.

Для этого эксперимента мне пришлось изменить еще один параметр для выполнения (x_3 c RANDOM_NEIGHBOR на ALL_CONNECTED).

Вывод: доля инфицированных составляет не менее 30% при радиусе 4.37. При меньшем радиусе не удаётся инфицировать значимое кол-во человек. Этот радиус оказался минимальным для того, чтобы приблизить его к 30%.

Заключение

В ходе работы над лабораторной работой D, были освоены технологии стейчартов, построения переходов, а также задания топологии пространства.

Источники

1) https://eluniver.ugrasu.ru/course/view.php?id=1689