

Децентрализованное решение задачи о назначениях целей группе роботов

Кромачев М.А., гр. 5030102/10201

СП6ПУ Петра Великого Физико-механический институт

Научный руководитель: доц., к.ф.-м.н. И.Е. Ануфриев 18 июня 2025 г.

Содержание

- Сущность задачи
- Обзор возможных робототехнических систем
- Положения, выносимые на защиту
- Формальная постановка задачи
- Венгерский метод
- Алгоритм аукциона
- Модификация алгоритма аукциона
- Результаты экспериментов
- Выводы и перспективы

Сущность задачи

- Цели 🜥
- Роботы 🛪
 - Радиус связи
 - Область видимости
- Центр управления 👅
- Погрешность определения координат целей

MRTA(Multi-Robot Task Allocation)

Обзор возможных робототехнических систем

Положения, выносимые на защиту

- Принятые допущения:
 - Все роботы имеют одинаковый и неизменный радиус связи
 - о Все роботы обладают одинаковыми скоростями движения
 - Каждый робот видит все цели
 - Точность определения координат целей одинакова для всех роботов
 - Не учитываются динамические системы роботов
- Постановка задачи
- Итерационный децентрализованный алгоритм назначения целей роботам:
 - Учет ограничений связи (R)
 - \circ Управление точностью решения через параметр (arepsilon)
- Результаты исследований
- Выводы о применимости

Формальная постановка задачи

Дано:

- Множество роботов $R = \{r_1, r_2, \dots, r_n\}.$
- \bullet Множество целей $T = \{t_1, t_2, \dots, t_m\}.$
- Матрица выгод $A = \{\alpha_{ij}\}$, где α_{ij} выгода от назначения робота i цели j.

Цель: Максимизировать суммарную выгоду

$$\sum_{i=1}^{n} \alpha_{ij_i} \to \max,$$

где j_i — цель, назначенная роботу r_i .

Ограничения:

- Каждый робот получает не более одной цели: $\sum_{i=1}^{m} x_{ii} \leq 1, \ \forall i = 1, \dots, n.$
- Каждая цель назначается не более чем одному роботу: $\sum_{i=1}^n x_{ii} \le 1, \ \forall j=1,\ldots,m.$
- ullet $x_{ij} \in \{0,1\}$, где $x_{ij} = 1$, если робот i назначен цели j, иначе $x_{ii} = 0$.

Венгерский метод

- Единый центр управления (централизованный подход)
- Гарантирует точное оптимальное решение
- Вычислительная сложность: $O(n^2 * m)$

Алгоритм аукциона

- Нет единого центра управления
- Имитирует процесс торгов
- Параметр ε контролирует точность
- Требует полной связи между роботами
- ullet Число итераций $\sim m \cdot C/arepsilon$

Описание аукционного алгоритма

- Инициализация:
 - \circ Установить цены целей: $p_j = 0, \ \forall j.$
 - Назначения роботов пустые.
- Итерация для каждого робота і:
 - \circ Выбрать цель: $j_i = \arg\max_i \{\alpha_{ii} p_i\}$ (макс. выгода).
 - Вычислить:
 - $\mathbf{v}_i = \max_j \{\alpha_{ij} \mathbf{p}_j\}$ (макс. выгода).
 - $ightharpoonup w_i = \max_{j
 eq j_i} \{ lpha_{ij} p_j \}$ (вторая по величине выгода).
 - \circ Переназначить робота i на цель j_i .
 - \circ Обновить цену: $p_{j_i} \leftarrow p_{j_i} + (v_i w_i + \varepsilon)$.
- Условие завершения: Все роботы «почти счастливы».
- «Почти счастье»:

$$\alpha_{ij_i} - p_{j_i} \geq \max_j \{\alpha_{ij} - p_j\} - \varepsilon.$$

Модификация алгоритма аукциона

- Нет единого центра управления
- Ограниченная связь между роботами (внутри связных компонент)
- Полная видимость целей для всех роботов
- Разделение роботов на связные компоненты по графу связи
- Независимый аукцион в каждой компоненте

Результаты экспериментов

Выводы и перспективы