$12n_{0566} \ (K12n_{0566})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4.65742 \times 10^{21} u^{31} - 2.20023 \times 10^{22} u^{30} + \dots + 9.36708 \times 10^{23} b + 5.12230 \times 10^{23}, \\ &\quad 2.94856 \times 10^{25} u^{31} - 3.10386 \times 10^{25} u^{30} + \dots + 2.99747 \times 10^{25} a - 2.87196 \times 10^{25}, \ u^{32} - u^{31} + \dots - 2u + 1 \rangle \\ I_2^u &= \langle b - u, \ a^5 - a^4 + 2a^3 - a^2 + a - 1, \ u^2 + 1 \rangle \\ I_3^u &= \langle b - u, \ a, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle \\ I_4^u &= \langle b - u, \ a, \ u^3 + u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle -4.66 \times 10^{21} u^{31} - 2.20 \times 10^{22} u^{30} + \dots + 9.37 \times 10^{23} b + 5.12 \times 10^{23}, \ 2.95 \times 10^{25} u^{31} - 3.10 \times 10^{25} u^{30} + \dots + 3.00 \times 10^{25} a - 2.87 \times 10^{25}, \ u^{32} - u^{31} + \dots - 2u + 1 \rangle \end{matrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.983683u^{31} + 1.03549u^{30} + \dots + 42.1633u + 0.958130 \\ 0.00497211u^{31} + 0.0234890u^{30} + \dots + 1.12532u - 0.546841 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.495029u^{31} - 0.483684u^{30} + \dots + 26.1222u - 0.952046 \\ -0.0284611u^{31} + 0.0288036u^{30} + \dots + 0.536896u - 0.995028 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.466568u^{31} - 0.454881u^{30} + \dots + 26.6591u - 1.94707 \\ -0.0284611u^{31} + 0.0288036u^{30} + \dots + 0.536896u - 0.995028 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.466568u^{31} - 0.454881u^{30} + \dots + 26.6591u - 1.94707 \\ -0.0000739509u^{31} + 0.00179294u^{30} + \dots + 0.0937032u - 1.00672 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.935244u^{31} - 1.05640u^{30} + \dots - 35.9185u + 0.318643 \\ -0.00328364u^{31} - 0.0312396u^{30} + \dots + 1.93055u + 0.535840 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.357364u^{31} + 0.452611u^{30} + \dots - 8.86369u + 3.30364 \\ 0.136131u^{31} - 0.134930u^{30} + \dots - 8.17487u + 4.78562 \\ 0.151172u^{31} - 0.159734u^{30} + \dots - 8.17487u + 4.78562 \\ 0.151172u^{31} - 0.159734u^{30} + \dots - 8.17487u + 4.78562 \\ 0.151172u^{31} - 0.159734u^{30} + \dots - 8.17487u + 4.78562 \\ 0.151172u^{31} - 0.159734u^{30} + \dots - 2.72954u - 0.0680096 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1	$u^{32} + 3u^{31} + \dots - 20u + 1$
c_2, c_7	$u^{32} + u^{31} + \dots - 10u^2 + 1$
c_3, c_4, c_8	$u^{32} + u^{31} + \dots + 2u + 1$
c_5, c_6, c_{10}	$u^{32} + 2u^{31} + \dots + 5u + 2$
c_{9}, c_{12}	$u^{32} + 8u^{31} + \dots + 837u + 136$
c_{11}	$u^{32} - 2u^{31} + \dots - 96u + 16$

Crossings	Riley Polynomials at each crossing
c_1	$y^{32} + 63y^{31} + \dots - 48y + 1$
c_2, c_7	$y^{32} + 3y^{31} + \dots - 20y + 1$
c_3, c_4, c_8	$y^{32} + 47y^{31} + \dots - 84y + 1$
c_5, c_6, c_{10}	$y^{32} + 28y^{31} + \dots + 19y + 4$
c_9, c_{12}	$y^{32} + 44y^{30} + \dots - 169353y + 18496$
c_{11}	$y^{32} - 4y^{31} + \dots - 256y + 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.149637 + 1.036980I		
a = -0.417547 + 0.954803I	1.43807 - 1.50420I	9.22727 + 3.53831I
b = 0.302187 - 0.006644I		
u = -0.149637 - 1.036980I		
a = -0.417547 - 0.954803I	1.43807 + 1.50420I	9.22727 - 3.53831I
b = 0.302187 + 0.006644I		
u = 0.570569 + 0.926273I		
a = 0.652139 + 0.672144I	0.356823 - 1.078380I	5.98174 + 1.89501I
b = -0.729100 + 0.429975I		
u = 0.570569 - 0.926273I		
a = 0.652139 - 0.672144I	0.356823 + 1.078380I	5.98174 - 1.89501I
b = -0.729100 - 0.429975I		
u = -0.759558 + 0.797956I		
a = -0.669157 + 0.706117I	2.84076 + 4.52561I	7.98035 - 6.47723I
b = 0.806103 + 0.667276I		
u = -0.759558 - 0.797956I		
a = -0.669157 - 0.706117I	2.84076 - 4.52561I	7.98035 + 6.47723I
b = 0.806103 - 0.667276I		
u = 0.080786 + 1.113860I		
a = 0.450290 + 1.273100I	-4.20210 + 4.53860I	4.95050 - 3.52289I
b = -0.240058 - 0.218923I		
u = 0.080786 - 1.113860I		
a = 0.450290 - 1.273100I	-4.20210 - 4.53860I	4.95050 + 3.52289I
b = -0.240058 + 0.218923I		
u = 0.856979 + 0.733531I		
a = 0.658177 + 0.744370I	-2.06044 - 8.15993I	2.47068 + 7.37481I
b = -0.839448 + 0.780469I		
u = 0.856979 - 0.733531I		
a = 0.658177 - 0.744370I	-2.06044 + 8.15993I	2.47068 - 7.37481I
b = -0.839448 - 0.780469I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.388206 + 0.750499I		
a = 0.618021 + 0.553690I	0.37663 - 1.40948I	4.16499 + 4.71779I
b = -0.445761 + 0.493038I		
u = 0.388206 - 0.750499I		
a = 0.618021 - 0.553690I	0.37663 + 1.40948I	4.16499 - 4.71779I
b = -0.445761 - 0.493038I		
u = -0.564144 + 0.368266I		
a = -1.072100 + 0.757048I	-4.95649 + 1.03511I	-2.62837 - 3.37474I
b = 0.426872 + 0.891946I		
u = -0.564144 - 0.368266I		
a = -1.072100 - 0.757048I	-4.95649 - 1.03511I	-2.62837 + 3.37474I
b = 0.426872 - 0.891946I		
u = -0.14043 + 1.61047I		
a = 1.344160 + 0.225189I	1.96786 + 3.39058I	0
b = -0.909776 - 0.978319I		
u = -0.14043 - 1.61047I		
a = 1.344160 - 0.225189I	1.96786 - 3.39058I	0
b = -0.909776 + 0.978319I		
u = 0.31474 + 1.69085I		
a = -1.283680 - 0.037904I	6.02211 - 12.78960I	0
b = 0.93918 - 1.20942I		
u = 0.31474 - 1.69085I		
a = -1.283680 + 0.037904I	6.02211 + 12.78960I	0
b = 0.93918 + 1.20942I		
u = 0.20411 + 1.72625I		
a = -1.226140 + 0.091965I	9.50782 - 4.34458I	0
b = 1.02007 - 1.09862I		
u = 0.20411 - 1.72625I		
a = -1.226140 - 0.091965I	9.50782 + 4.34458I	0
b = 1.02007 + 1.09862I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.27493 + 1.71725I		
a = 1.249820 + 0.010579I	11.3763 + 8.7540I	0
b = -0.98277 - 1.17471I		
u = -0.27493 - 1.71725I		
a = 1.249820 - 0.010579I	11.3763 - 8.7540I	0
b = -0.98277 + 1.17471I		
u = 0.08047 + 1.76969I		
a = -1.133210 + 0.199889I	9.94630 - 3.44071I	0
b = 1.12271 - 0.97669I		
u = 0.08047 - 1.76969I		
a = -1.133210 - 0.199889I	9.94630 + 3.44071I	0
b = 1.12271 + 0.97669I		
u = -0.07166 + 1.77723I		
a = -1.040780 + 0.308237I	7.36926 + 5.04799I	0
b = 1.20703 - 0.80705I		
u = -0.07166 - 1.77723I		
a = -1.040780 - 0.308237I	7.36926 - 5.04799I	0
b = 1.20703 + 0.80705I		
u = 0.00485 + 1.78607I		
a = 1.074930 + 0.259134I	12.35040 - 0.91754I	0
b = -1.18249 - 0.88752I		
u = 0.00485 - 1.78607I		
a = 1.074930 - 0.259134I	12.35040 + 0.91754I	0
b = -1.18249 + 0.88752I		
u = -0.156144 + 0.076843I		
a = -4.97166 - 4.58572I	-7.55319 - 4.33239I	-6.63531 + 3.69864I
b = 0.069135 - 1.045370I		
u = -0.156144 - 0.076843I		
a = -4.97166 + 4.58572I	-7.55319 + 4.33239I	-6.63531 - 3.69864I
b = 0.069135 + 1.045370I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.1157890 + 0.0692134I		
a = 6.26675 - 1.88119I	-2.01181 - 1.57269I	-2.90508 + 4.76814I
b = -0.063886 + 0.968637I		
u = 0.1157890 - 0.0692134I		
a = 6.26675 + 1.88119I	-2.01181 + 1.57269I	-2.90508 - 4.76814I
b = -0.063886 - 0.968637I		

II.
$$I_2^u = \langle b - u, a^5 - a^4 + 2a^3 - a^2 + a - 1, u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} au \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} au \\ -au - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au \\ -au - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{4} - a^{3} + a^{2} + 1 \\ a^{4}u - a^{4} + a^{2}u - a^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{3}u + au \\ -a^{2} - au - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^3 4a^2 + 4a$

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{10}$
$c_2, c_3, c_4 \ c_7, c_8$	$(u^2+1)^5$
c_5, c_6, c_{10}	$u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1$
<i>c</i> ₉	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$
c_{11}	$u^{10} + u^8 + 8u^6 + 3u^4 + 3u^2 + 1$
c_{12}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{10}$
c_2, c_3, c_4 c_7, c_8	$(y+1)^{10}$
c_5, c_6, c_{10}	$(y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2$
c_9, c_{12}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$
c_{11}	$(y^5 + y^4 + 8y^3 + 3y^2 + 3y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = -0.339110 + 0.822375I	-0.32910 - 1.53058I	3.48489 + 4.43065I
b = 1.000000I		
u = 1.000000I		
a = -0.339110 - 0.822375I	-0.32910 + 1.53058I	3.48489 - 4.43065I
b = 1.000000I		
u = 1.000000I		
a = 0.766826	-2.40108	2.51890
b = 1.000000I		
u = 1.000000I		
a = 0.455697 + 1.200150I	-5.87256 + 4.40083I	-0.74431 - 3.49859I
b = 1.000000I		
u = 1.000000I		
a = 0.455697 - 1.200150I	-5.87256 - 4.40083I	-0.74431 + 3.49859I
b = 1.000000I		
u = -1.000000I		
a = -0.339110 + 0.822375I	-0.32910 - 1.53058I	3.48489 + 4.43065I
b = -1.000000I		
u = -1.000000I		
a = -0.339110 - 0.822375I	-0.32910 + 1.53058I	3.48489 - 4.43065I
b = -1.000000I		
u = -1.000000I		
a = 0.766826	-2.40108	2.51890
b = -1.000000I		
u = -1.000000I		
a = 0.455697 + 1.200150I	-5.87256 + 4.40083I	-0.74431 - 3.49859I
b = -1.000000I		
u = -1.000000I		
a = 0.455697 - 1.200150I	-5.87256 - 4.40083I	-0.74431 + 3.49859I
b = -1.000000I		

III.
$$I_3^u = \langle b-u,\ a,\ u^6-u^5+2u^4-2u^3+2u^2-2u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ 2u^{5} + 2u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{5} + u^{4} - 4u^{3} + 3u^{2} - 3u + 3 \\ -3u^{5} + 2u^{4} - 4u^{3} + 3u^{2} - u + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ 2u^{4} + 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u + 6$

Crossings	u-Polynomials at each crossing	
c_1	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$	
c_2, c_3, c_4 c_7, c_8	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$	
c_5, c_6, c_{10}	$(u^3 - u^2 + 2u - 1)^2$	
c_9, c_{11}, c_{12}	$(u^3 + u^2 - 1)^2$	

Crossings	Riley Polynomials at each crossing
c_1	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_3, c_4 c_7, c_8	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_5, c_6, c_{10}	$(y^3 + 3y^2 + 2y - 1)^2$
c_9, c_{11}, c_{12}	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = 0	-3.02413 + 2.82812I	2.49024 - 2.97945I
b = -0.498832 + 1.001300I		
u = -0.498832 - 1.001300I		
a = 0	-3.02413 - 2.82812I	2.49024 + 2.97945I
b = -0.498832 - 1.001300I		
u = 0.284920 + 1.115140I		
a = 0	1.11345	9.01951 + 0.I
b = 0.284920 + 1.115140I		
u = 0.284920 - 1.115140I		
a = 0	1.11345	9.01951 + 0.I
b = 0.284920 - 1.115140I		
u = 0.713912 + 0.305839I		
a = 0	-3.02413 + 2.82812I	2.49024 - 2.97945I
b = 0.713912 + 0.305839I		
u = 0.713912 - 0.305839I		
a = 0	-3.02413 - 2.82812I	2.49024 + 2.97945I
b = 0.713912 - 0.305839I		

IV.
$$I_4^u = \langle b - u, \ a, \ u^3 + u^2 + 2u + 1 \rangle$$

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ 2u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^2 + 4u + 10$

Crossings	u-Polynomials at each crossing
c_1	$u^3 + 3u^2 + 2u - 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}	$u^3 - u^2 + 2u - 1$
c_9, c_{11}, c_{12}	$u^3 + u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^3 - 5y^2 + 10y - 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}	$y^3 + 3y^2 + 2y - 1$
c_9, c_{11}, c_{12}	$y^3 - y^2 + 2y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0	-3.02413 - 2.82812I	2.49024 + 2.97945I
b = -0.215080 + 1.307140I		
u = -0.215080 - 1.307140I		
a = 0	-3.02413 + 2.82812I	2.49024 - 2.97945I
b = -0.215080 - 1.307140I		
u = -0.569840		
a = 0	1.11345	9.01950
b = -0.569840		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{10}(u^3 + 3u^2 + 2u - 1)(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)$ $\cdot (u^{32} + 3u^{31} + \dots - 20u + 1)$
c_2, c_7	$(u^{2}+1)^{5}(u^{3}-u^{2}+2u-1)(u^{6}+u^{5}+2u^{4}+2u^{3}+2u^{2}+2u+1)$ $\cdot (u^{32}+u^{31}+\cdots -10u^{2}+1)$
c_3, c_4, c_8	$ (u^{2} + 1)^{5}(u^{3} - u^{2} + 2u - 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1) $ $ \cdot (u^{32} + u^{31} + \dots + 2u + 1) $
c_5, c_6, c_{10}	$(u^{3} - u^{2} + 2u - 1)^{3}(u^{10} + 5u^{8} + 8u^{6} + 3u^{4} - u^{2} + 1)$ $\cdot (u^{32} + 2u^{31} + \dots + 5u + 2)$
<i>c</i> 9	$(u^{3} + u^{2} - 1)^{3}(u^{5} - u^{4} + 2u^{3} - u^{2} + u - 1)^{2}$ $\cdot (u^{32} + 8u^{31} + \dots + 837u + 136)$
c_{11}	$(u^{3} + u^{2} - 1)^{3}(u^{10} + u^{8} + 8u^{6} + 3u^{4} + 3u^{2} + 1)$ $\cdot (u^{32} - 2u^{31} + \dots - 96u + 16)$
c_{12}	$(u^{3} + u^{2} - 1)^{3}(u^{5} + u^{4} + 2u^{3} + u^{2} + u + 1)^{2}$ $\cdot (u^{32} + 8u^{31} + \dots + 837u + 136)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{10}(y^3 - 5y^2 + 10y - 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot (y^{32} + 63y^{31} + \dots - 48y + 1)$
c_2, c_7	$(y+1)^{10}(y^3+3y^2+2y-1)(y^6+3y^5+4y^4+2y^3+1)$ $\cdot (y^{32}+3y^{31}+\cdots-20y+1)$
c_3, c_4, c_8	$(y+1)^{10}(y^3+3y^2+2y-1)(y^6+3y^5+4y^4+2y^3+1)$ $\cdot (y^{32}+47y^{31}+\cdots-84y+1)$
c_5, c_6, c_{10}	$(y^3 + 3y^2 + 2y - 1)^3 (y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2$ $\cdot (y^{32} + 28y^{31} + \dots + 19y + 4)$
c_9, c_{12}	$(y^3 - y^2 + 2y - 1)^3 (y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$ $\cdot (y^{32} + 44y^{30} + \dots - 169353y + 18496)$
c_{11}	$(y^3 - y^2 + 2y - 1)^3 (y^5 + y^4 + 8y^3 + 3y^2 + 3y + 1)^2$ $\cdot (y^{32} - 4y^{31} + \dots - 256y + 256)$