

Bayesian Methods for Clinical Trials

Lecture 1: Clinical trials and the role of statistics

Libby Daniells & Pavel Mozgunov & Thomas Jaki MRC Biostatistics Unit February 24, 2025

A dose of reality

Ben Goldacre, Guardian 1-09-08:

- Before 1935 doctors were basically useless
- 1935-1995: antibiotics, dialysis, transplants, intensive-care units, heart surgery, every drug you've ever heard of
- 1995-now: the low-hanging fruit of medical research has all been harvested, and the industry is rapidly running out of new drugs

The development process

PHASES OF THE RESEARCH AND DEVELOPMENT PROCESS

Drug development

Development of a novel medicinal product

- takes 10-15 years
- costs several hundred million euros on average
 - largest contributors are confirmatory (phase III) trials
 - often involve thousands of patients with follow-up period frequently lasting years

Cost on R&D in Pharmaceutical industry

New molecular entities

NUMBER OF NEW CHEMICAL AND BIOLOGICAL ENTITIES (2002-2021)

Source: SCRIP – EFPIA calculations (according to nationality of mother company)

Cost on R & D in Pharmaceutical industry

ALLOCATION OF R&D INVESTMENTS BY FUNCTION (%)

Success rates

According to a recent review (Wong, Siah & Lo, Biostatistics, 2019), between 2000 and 2015

- 41.0% of confirmatory clinical trials overall and
- 64.5% of confirmatory clinical trials in oncology

have been unsuccessful.

Success rates

According to a recent review (Wong, Siah & Lo, Biostatistics, 2019), between 2000 and 2015

- 41.0% of confirmatory clinical trials overall and
- 64.5% of confirmatory clinical trials in oncology

have been unsuccessful.

- 13.4% of treatments entering Phase I receive approval
- In Oncology only 3.4% of treatments entering Phase I receive approval

Consequences

- Avoid going straight into large and expensive phase III trials
- Take more care during phases I and II
- Explore the potential of "new" statistical methods:
 - Sequential designs
 - Adaptive designs
 - Bayesian methods

Fixed Sample Designs

- no learning during conduct of trial
- clear separation between development phases

A general approach for fixed sample designs

- Parallel group comparison of efficacy
- E: Experimental, C: Control
- $n = n_E + n_C$
- Superiority trial (advantage for E sought)

 H_0 : E no different from C vs H_1 : E superior to C

A general approach for fixed sample designs

 θ : measure of advantage of E over C

 $\theta >$ 0: E superior $\theta =$ 0: No difference $\theta <$ 0: E inferior

 θ_R : target measure of advantage of E over C

(target effect)

 α : $\mathbb{P}\{\text{Reject } H_0 | \theta = 0\}$ Type I error rate (one-sided)

1 – β : $\mathbb{P}\{\text{Reject } H_0 | \theta = \theta_R\}$ Power to detect the target effect

Score Test

- x_1, x_2, \ldots each with density $f(x|\theta)$
- Log-likelihood of θ is

$$I(\theta|x_1,\ldots,x_n) = \sum_{i=1}^n \log f(x_i|\theta)$$

Expanding a Taylor's expansion gives

$$I(\theta) = I(0) + \theta I'(0) + \frac{1}{2}\theta^2 I''(0) + \dots$$

 $\approx const + \theta B - \frac{1}{2}\theta^2 V \text{ (for small } \theta)$

where B = l'(0) and V = -l''(0).

Score Test

- As *B* is a sum $-\sum_{i=1}^{n} \frac{d}{d\theta} \log f(x_i|\theta)$ it is asymptotically normally distributed.
- For large n and small θ

$$B \sim \textit{N}(\theta \textit{V}, \textit{V})$$
 and $\frac{B}{\sqrt{\textit{V}}} \sim \textit{N}(0, 1)$

- B is the efficient score statistic for θ
- For various response types B and V can be derived

Example: Normal data

treatment	Е	С
mean	μ_{E}	$\mu_{\mathcal{C}}$
standard deviation (known)	σ	σ

- $\theta = \mu_E \mu_C$
- $B = \frac{n_C n_E}{n\sigma^2} (\bar{X}_E \bar{X}_C)$
- $V = \frac{n_C n_E}{n\sigma^2} = \frac{n}{4\sigma^2}$ for $n_E = n_C$

Example: Normal data

$$Z = \frac{B}{\sqrt{V}} = \frac{\bar{X}_E - \bar{X}_C}{\sigma} \sqrt{\frac{n_C n_E}{n}}$$
$$= \frac{\bar{X}_E - \bar{X}_C}{\sigma \sqrt{\frac{1}{n_E} + \frac{1}{n_C}}}$$

And hence the Score test is equivalent to the Z-test in this situation.

Sample size

$$\mathbb{P}\{B > c \mid \theta = 0\} = \alpha$$

$$\mathbb{P}\left\{\frac{B}{\sqrt{V}} > \frac{c}{\sqrt{V}} \mid \theta = 0\right\} = \alpha$$

$$1 - \Phi\left(\frac{c}{\sqrt{V}}\right) = \alpha \quad \text{as } \frac{B}{\sqrt{V}} \sim N(0, 1)$$

so that $c = z_{1-\alpha}\sqrt{V}$, where z_{γ} is the γ percentile of the standard normal distribution.

Sample size

Similarly

$$\mathbb{P}\{B > c \mid \theta = \theta_R\} = 1 - \beta$$
$$1 - \Phi\left(\frac{c - \theta_R V}{\sqrt{V}}\right) = 1 - \beta$$

as for
$$\theta = \theta_R$$
, $\frac{Z - \theta_R V}{\sqrt{V}} \sim N(0, 1)$.

Therefore

$$c - \theta_R V = z_\beta \sqrt{V}$$

$$V = \left(\frac{z_{1-\alpha} + z_{1-\beta}}{\theta_R}\right)^2$$

when combining the results.

Sample Size

$$V = \left(\frac{z_{1-\alpha} + z_{1-\beta}}{\theta_R}\right)^2$$

- This formula has general validity
- V is a function of n and unknown parameters, which have to be estimated to obtain a sample size
- The relationship of V to n is the most approximate part of the procedure

When do traditional trials struggle: Rare diseases

- Neuroferritinopathy is an ultra-rare disease
- Fewer than 100 cases reported since its identification in 2001
- Some observational data available

When do traditional trials struggle: Rare diseases

Basket trials in oncology – An example

Hyman et al. (2015) reported a recent basket trial, which has been designed to evaluate the efficacy of vemurafenib in BRAF-V600.

A total of 122 patients with BRAF-V600 mutations were enrolled, of which 95 entered the 6 modules

References

