UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA/INFORMÁTICA CURSO SUPERIOR DE ENGENHARIA DE COMPUTAÇÃO

GEORGEA DANIELEWICZ GEOVANE VINICIUS FERREIRA

SISTEMA PARA DETECÇÃO DE COMPLEXO QRS EM SINAIS DE ELETROCARDIOGRAFIA

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

2013

GEORGEA DANIELEWICZ GEOVANE VINICIUS FERREIRA

SISTEMA PARA DETECÇÃO DE COMPLEXO QRS EM SINAIS DE ELETROCARDIOGRAFIA

Trabalho de Conclusão de Curso apresentado ao Departamento Acadêmico de Eletrônica/Informática como requisito parcial para obtenção do grau de Engenheiro no Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Professor Doutor Miguel Antonio

Sovierzoski

CURITIBA

2013

AGRADECIMENTOS

Nossos sinceros agradecimentos ao Professor Miguel Antonio Sovierzoski, por ter orientado este trabalho com grande dedicação, estando sempre presente.

Agradecemos de coração a todos os nossos familiares, pois sem eles esta realização jamais teria sido possível. E também a nossos amigos e colegas, pelos incentivos e pelo apoio.

RESUMO

DANIELEWICZ, Georgea e FERREIRA, Geovane Vinicius. Sistema para Detecção de Complexo QRS em Sinais de Eletrocardiografia. 62 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

De acordo com (ZHANG; LIAN, 2007), os exames eletrocardiográficos são considerados uma ferramenta bastante importante no diagnóstico de problemas cardíacos. Para se avaliar adequadamente a situação de um coração, é necessário detectar corretamente o complexo QRS durante a análise do sinal de Eletrocardiografia (ECG), muitas vezes corrompido por ruídos. Este fato dificulta a rotina dos profissionais que analisam este tipo de exame. Em virtude disto, são necessárias ferramentas que busquem otimizar esta leitura e busca pelo padrão QRS. O objetivo deste projeto é desenvolver um sistema computacional para reconhecimento do complexo QRS em sinais de ECG. A metodologia adotada foi composta pelas etapas de projeto, desenvolvimento e testes. As etapas de desenvolvimento e testes utilizaram uma base de dados de exames de ECG de domínio público. A etapa de testes foi realizada pela própria equipe, por meio de um módulo do sistema específico para este fim. O sistema desenvolvido é composto por cinco módulos: visualização do sinal de ECG, marcação de eventos, extração de características, reconhecimento de padrões e avaliação de resultados. O módulo de extração de características aplica a função de correlação entre o padrão escolhido e o sinal de ECG, produzindo um novo sinal que funciona como entrada para o módulo de reconhecimento de padrões. Os eventos detectados por este módulo de reconhecimento são exibidos graficamente na tela. Por fim, o módulo de avaliação compara os resultados obtidos e os esperados, e os classifica como verdadeiro positivo, verdadeiro negativo, falso positivo ou falso negativo. Com base nesta avaliação, foram calculadas as análises de sensibilidade e especificidade, permitindo a impressão de uma Curva ROC. Os resultados do projeto consistem, portanto, no próprio sistema e sua aplicação prática.

Palavras-chave: análise de sinal, reconhecimento de padrões, eletrocardiografia, complexo QRS

ABSTRACT

DANIELEWICZ, Georgea e FERREIRA, Geovane Vinicius. System for QRS Complex Detection in Electrocardiographical Signals . 62 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

According to (ZHANG; LIAN, 2007), electrocardiographic recordings are considered to be a highly important tool in the diagnosis of cardiac disease. So as to make a proper evaluation of the heart condition, one must accurately detect the QRS-complex during the analysis of the electrocardiographic (ECG) signal, often corrupted by noise. Such fact hinders the routines of the professionals who analyze this type of medical recording. In consequence, tools that improve the QRS-complex detection are required. The aim of this project is the development of a computing system for QRS-complex identification in ECG signals. The methodology employed in this project comprises the stages of project, development and tests. The development and tests stages have used an ECG database available in the public domain. The tests stage was performed by the team responsible for this project by using a tool built in the system for this specific purpose. The system is composed of the following modules: ECG signal visualizing, event marking, characteristic extraction, pattern classification and results evaluation. The characteristic extraction module correlates a pattern and the ECG signal, producing a new signal, which works as input for the pattern classification module. The events detected by this pattern classification module are graphically exhibited on the computer screen. Finally, the evaluation module compares the results obtained from the system with the annotations from the database, and classify them as true positive, false positive, true negative or false negative. Based on this evaluation, both sensibility and specificity analysis were calculated, which allows the plot of a ROC graph. The achievements of this project, therefore, consist of the system itself and its practical usage.

Keywords: signal analysis, pattern classification, electrocardiography, QRS-complex

LISTA DE FIGURAS

FIGURA 1 – ANATOMIA DE UM CORAÇÃO	13
FIGURA 2 – DIAGRAMA DE BLOCOS DO CORAÇÃO	13
FIGURA 3 – FIBRAS MUSCULARES CARDÍACAS	14
FIGURA 4 – DERIVAÇÕES CARDÍACAS	17
FIGURA 5 – ONDAS, SEGMENTOS E INTERVALOS DOS SINAIS DE ECG	19
FIGURA 6 – EXEMPLO DE APLICAÇÃO DA FUNÇÃO CORRELAÇÃO	20
FIGURA 7 – ESTRUTURA DE UMA REDE NEURAL ARTIFICIAL	21
FIGURA 8 – GRÁFICOS DAS FUNÇÕES DE ATIVAÇÃO	22
FIGURA 9 – REDE NEURAL DO TIPO MULTILAYER PERCEPTRON	23
FIGURA 10 – RELAÇÃO ENTRE O ERRO MÉDIO QUADRADO E TREINAMENTO	23
FIGURA 11 – ESTRUTURA DE UM MAPA DE KOHONEN	25
FIGURA 12 – MAPA DE KOHONEN INICIALIZADO	27
FIGURA 13 – MAPA DE KOHONEN APÓS ALGORITMO	27
FIGURA 14 – EXEMPLO DE SINAL E PADRÃO DE CLASSIFICAÇÃO	29
FIGURA 15 – GRÁFICOS DE SENSIBILIDADE E ESPECIFICIDADE	30
FIGURA 16 – CURVA ROC	31
	34
FIGURA 18 – TELA DE OPÇÕES DO PHYSIOBANK ATM	35
FIGURA 19 – DIAGRAMA UML DA BIBLIOTECA BRAINNET	37
FIGURA 20 – FLUXOGRAMA SIMPLES	38
3	39
FIGURA 22 – TELA DE SELEÇÃO DO SISTEMA	40
FIGURA 23 – TELA DE VISUALIZAÇÃO DO SINAL NO SISTEMA	
FIGURA 24 – OPÇÃO DE MARCAR EVENTOS	42
FIGURA 25 – MARCAÇÕES DE EVENTOS	43
FIGURA 26 – EDITOR DE MARCAÇÕES	
FIGURA 27 – TELA DA EXTRAÇÃO DE CARACTERÍSTICAS	
FIGURA 28 – TELA DE CONFIGURAÇÃO DO MAPA DE KOHONEN	
FIGURA 29 – TELA DE RESULTADOS	
FIGURA 30 – DIAGRAMA DE CLASSES DO SISTEMA	_
FIGURA 31 – FUNÇÃO CORRELAÇÃO NO SISTEMA	48
FIGURA 32 – MAPA INICIALIZADO COM SINAL	49
FIGURA 33 – MAPA PRODUZIDO	49
FIGURA 34 – LÓGICA DA AVALIAÇÃO	
FIGURA 35 – CURVA ROC DOS RESULTADOS	
FIGURA 36 – CURVA ROC DO PROCESSO COM CORRELAÇÃO	
FIGURA 37 – GRÁFICO DA OUANTIDADE DE HORAS TRABALHADAS	60

LISTA DE TABELAS

TABELA 1	_	TABELA DE CONTINGÊNCIA 2X2	28
TABELA 2	_	PRINCIPAIS INTERFACES DA BRAINNET LIBRARY	36
TABELA 3	_	PRINCIPAIS CLASSES DA BRAINNET LIBRARY	37
TABELA 4	_	TABELA DE CLASSES DO SISTEMA	47
TABELA 5	_	TABELA DE RESULTADOS OBTIDOS COM MAPA DE KOHONEN	52
TABELA 6	_	TABELA DE RESULTADOS OBTIDOS COM RAW ECG	53
TABELA 7	_	TABELA DE RESULTADOS UTILIZANDO CORRELAÇÃO	53
TABELA 8	_	TABELA COMPARATIVA DE MÉTODOS	56
TABELA 9	_	TABELA COM A LISTA DE TAREFAS E HORAS DE TRABALHO	59

LISTA DE SIGLAS

ECG Eletrocardiografia

GPS Global Positioning System

DNA Deoxyribonucleic Acid

MLP Multilayer Perceptron

BMU Best Matching Unit

VP Verdadeiro Positivo

FP Falso positivo

FN Falso negativo

VN Verdadeiro negativo

MLP Multilayer Perceptron

ROC Receiving Operating Characteristic

DER Detection Error Rate

UML Unified Modeling Language

CONEP Comissão Nacional de Ética em Pesquisa

MIT Massachusetts Institute of Technology

EDF European Data Format

WFDB WaveForm DataBase

ATM Automated Teller Machine

XML eXtensible Markup Language

CPOL The Code Project Open License

DER Detection Error Rate

DER Detection Error Rate

ECG Eletroencefalografia

SUMÁRIO

1 INTRODUÇÃO	10
1.1 MOTIVAÇÃO E JUSTIFICATIVA	
1.2 OBJETIVOS	10
1.3 ESTRUTURA DO TRABALHO	11
2 FUNDAMENTAÇÃO TEÓRICA	
2.1 FISIOLOGIA DO CORAÇÃO	
2.2 FORMAÇÃO DO SINAL DE ELETROCARDIOGRAFIA	14
2.3 EXAME DE ELETROCARDIOGRAFIA	15
2.4 SISTEMA DE DERIVAÇÕES	16
2.5 ONDAS, SEGMENTOS E INTERVALOS	18
2.6 FUNÇÃO CORRELAÇÃO	19
2.7 REDES NEURAIS ARTIFICIAIS	20
2.7.1 Rede Multicamadas	22
2.7.2 Estratégia de Treinamento para Rede Multicamadas	23
2.7.3 Validação Cruzada	24
2.7.4 Redes Neurais de Kohonen	
2.8 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES	27
2.8.1 Tabela de Contingência	
2.8.2 Sensibilidade e Especificidade	29
2.8.3 Curva ROC	
2.8.4 Outros Índices Estatísticos	
2.9 CONSIDERAÇÕES	32
3 MATERIAIS E MÉTODOS	
3.1 BASE DE DADOS	
3.2 EUROPEAN DATA FORMAT	
3.3 BIBLIOTECAS UTILIZADAS	
3.3.1 NeuroLoopGain	
3.3.2 BrainNet Library	
3.4 SISTEMA	
3.4.1 Visão Geral do Sistema	
3.4.2 Módulo de Visualização do Sinal	
3.4.3 Módulo de Marcação de Eventos	
3.4.4 Módulo de Extração de Características	
3.4.5 Módulo de Reconhecimento de padrões	
3.4.6 Módulo de Avaliação de Resultados	
3.5 MODELAGEM UML	
3.6 METODOLOGIAS DETALHADAS	
3.6.1 Geração dos Dados de Treinamento	
3.6.2 Metodologia da Extração de Características	
3.6.3 Reconhecimento de Padrões com Redes Neurais Multicamadas	
3.6.4 Reconhecimento de Padrões com Mapa de Kohonen	48

3.6.	.5 Metodologia da Avaliação do Classificador	50
3.7	CONSIDERAÇÕES	51
4	RESULTADOS OBTIDOS	52
	TESTES COM MAPA DE KOHONEN	
4.2	TESTES COM REDE MULTICAMADAS	52
4.3	CONSIDERAÇÕES	55
5	CONSIDERAÇÕES FINAIS	57
	GESTÃO DO PROJETO	
6.1	RECURSOS DE HARDWARE	58
6.2	RECURSOS DE SOFTWARE	58
6.3	HORAS DE TRABALHO	59
RE	FERÊNCIAS	61

1 INTRODUÇÃO

O estado coração humano se altera em questão de milissegundos, produzindo atividade elétrica (MALMIVUO; PLONSEY, 1995). Dá-se o nome de Eletroencefalografia (ECG) aos registros da atividade elétrica do coração. O escopo deste projeto engloba a identificação do complexo QRS, forma de onda característica em sinais de ECG. Foi desenvolvido como Trabalho de Conclusão de Curso pelos alunos Georgea Danielewicz e Geovane Vinicius Ferreira do curso de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

As próximas seções deste capítulo abordarão Motivação e Justificativa 1.1, Objetivos 1.2 e Estrutura do Trabalho 1.3.

1.1 MOTIVAÇÃO E JUSTIFICATIVA

Os exames de Eletrocardiografia (ECG) atuam como uma ferramenta de grande auxílio no diagnóstico de problemas cardíacos. O sinais de ECG se encontram, muitas vezes, corrompidos pelo ruído causado por contrações musculares ou interferências na linha de energia e desvio da linha de base devido à respiração e artefatos motores (ZHANG; LIAN, 2007). Tais fatores podem dificultar a análise do sinal.

Considerando que a detecção do complexo QRS é essencial para se avaliar adequadamente a situação de um coração, surge a necessidade de pesquisas que busquem continuamente automatizar e aprimorar esta tarefa. Por muitas décadas, a detecção do complexo QRS nos sinais de ECG tem sido tema de pesquisas, pois fornece uma visão geral do funcionamento de algoritmos e técnicas para reconhecimento (ZHANG; LIAN, 2007).

1.2 OBJETIVOS

O objetivo geral deste projeto é desenvolver um sistema para reconhecimento do complexo QRS em sinais biomédicos de Eletroencefalografia (ECG). Para melhor definição do escopo, separamos nos seguintes objetivos específicos:

- Desenvolvimento de um ambiente para visualizar sinais de ECG armazenados em arquivos digitais;
- Implementar no ambiente a funcionalidade de marcar eventos no sinal e salvá-los para uso futuro;
- Reconhecimento do complexo QRS;
- Avaliar os resultados obtidos pelo sistema.

1.3 ESTRUTURA DO TRABALHO

Este documento foi estruturado na forma de capítulos, e cada capítulo, por sua vez, é dividido em seções.

O capítulo seguinte a este capítulo introdutório corresponde a Fundamentação Teórica 2, em que são apresentados e devidamente referenciados os princípios teóricos envolvidos no desenvolvimento do trabalho. Em seguida, o capítulo Materiais e Métodos 3 descreve os recursos e metodologias empregados no projeto, cujos resultados observados na etapa de testes são apresentados e representados em gráficos no capítulo Resultados Obtidos 4. A conclusão sobre todas as informações apresentadas nos capítulos anteriores corresponde ao capítulo de Considerações Finais 5. Por fim, o capítulo de Gestão do Projeto 6 descreve aspectos relacionados à gestão do projeto, tais como as principais tarefas realizadas e horas dedicadas pela equipe.

2 FUNDAMENTAÇÃO TEÓRICA

O capítulo de Fundamentação Teórica tem como objetivo apresentar os conceitos envolvidos no desenvolvimento do projeto. Inicialmente, serão abordados temas relativos ao coração humano e à geração do sinal de Eletrocardiografia (ECG), englobando as seções Fisiologia do Coração 2.1, Formação do Sinal de Eletrocardiografia 2.2, Exame de Eletrocardiografia 2.3, Sistema de Derivações 2.4 e Ondas, Segmentos e Intervalos 2.5. Em seguida, as seções Função Correlação 2.6 e Redes Neurais Artificiais 2.7 abordam a operação da correlação e redes neurais, respectivamente. A seção Avaliação de Sistemas Classificadores 2.8 trata de assuntos relativos à análise dos resultados do sistema. E o capítulo é finalizado com a seção de Considerações 2.9.

2.1 FISIOLOGIA DO CORAÇÃO

O coração humano possui paredes compostas por músculos cardíacos estriados, chamados de miocárdio, e forma quatro compartimentos: o átrio direito, o átrio esquerdo, o ventrículo direito e o ventrículo esquerdo. A figura 1 mostra o coração com indicações dos respectivos átrios e ventrículos (MALMIVUO; PLONSEY, 1995).

O coração possui ainda quatro válvulas. Entre o átrio direito e o ventrículo direito se encontra a válvula tricúspide, e entre o átrio esquerdo e o ventrículo esquerdo fica a válvula mitral. A válvula pulmonar fica entre o ventrículo direito e a artéria pulmonar, enquanto a válvula aorta está no trato de saída do ventrículo esquerdo, e controla o fluxo para a aorta (MALMIVUO; PLONSEY, 1995).

Para retornar da circulação sistêmica, o sangue chega ao átrio direito e dele segue pela válvula tricúspide para o ventrículo direito. Então o sangue é ejetado do ventrículo direito para os pulmões, pela válvula pulmonar. Dos pulmões, o sangue oxigenado retorna para o átrio esquerdo, e passa pela válvula mitral até o ventrículo esquerdo. Finalmente, é bombeado pela válvula aorta para a aorta e para a circulação sistêmica. A contração ventricular necessária para o esvaziamento do ventrículo é conhecida como sístole. O relaxamento ventricular é conhecido como diástole, e é nessa fase que os ventrículos recebem sangue do átrio (MALMIVUO;

Figura 1: Anatomia de um coração Fonte: (MALMIVUO; PLONSEY, 1995)

PLONSEY, 1995).

A figura 2 mostra o diagrama de blocos do coração evidenciando o sentido em que o sangue circula.

Figura 2: Diagrama de blocos do coração Fonte: Autoria própria

A fibra muscular que forma o coração é orientada em espiral. O fato das células musculares cardíacas permanecerem tangencialmente e radialmente, como mostra a figura 3, e a resistência do músculo ser mais baixa em direção as fibras são importantes na área da eletrocardiografia, pois a atividade elétrica pode se propagar de uma célula para outra em qualquer direção. Como

resultado disso, as formas de onda de ativação são bastante complexas (MALMIVUO; PLON-SEY, 1995).

Figura 3: Fibras musculares cardíacas Fonte: (MALMIVUO; PLONSEY, 1995)

2.2 FORMAÇÃO DO SINAL DE ELETROCARDIOGRAFIA

O músculo cardíaco, miocárdio, é composto por células geradoras de potencial elétricas denominadas cardiomiócitos. Durante o processo de diástole, o miocárdio está relaxado e não produz atividade elétrica. Suas células permanecem polarizadas na membrana com um potencial elétrico de aproximadamente -90 mV. No entanto, a contração ocasionada pela sístole reverte o potencial elétrico das células miocardiais, caracterizando a fase de despolarização (GACEK; PREDYCZ, 2011).

Logo após a despolarização, ocorre a fase de repolarização, e o músculo retorna a seu estado de relaxamento anterior (diástole). Durante a repolarização, o músculo cardíaco é incapaz de ser estimulado, o que o protege de alguma eventual estimulação prematura (GACEK; PREDYCZ, 2011), evitando danos ao sistema cardíaco.

Estas mudanças no potencial elétrico durante os processos de despolarização e repolarização das fibras do miocárdio são registradas com a colocação de eletrodos posicionados na superfície do peito e nas derivações dos membros, e constituem os sinais de Eletrocardiografia (ECG). A forma de onda do ECG pode ser impressa em papel ou mostrada na tela do computador (GA-CEK; PREDYCZ, 2011).

2.3 EXAME DE ELETROCARDIOGRAFIA

Dentre as vantagens dos exames de Eletrocardiografia (ECG), podem ser citadas seu baixo custo, facilidade de implementação, o fato de ser um procedimento não invasivo e a obtenção imediata dos resultados (GACEK; PREDYCZ, 2011).

Os exames de ECG podem auxiliar em diagnósticos cardiológicos tais como (MALMI-VUO; PLONSEY, 1995):

- 1. Eixo elétrico do coração
- 2. Monitoramento de frequência cardíaca
- 3. Arritmias
 - (a) Arritmias supraventriculares
 - (b) Arritmias ventriculares
- 4. Desordens na sequência de ativação
 - (a) Defeitos na condução atrioventricular
 - (b) Bloqueio atrioventricular de primeiro grau
 - (c) Síndrome de Wolff-Parkinson-White
- 5. Aumento da espessura das paredes ou do tamanho dos átrios e ventrículos
 - (a) Hipertrofia atrial
 - (b) Hipertrofia ventricular
- 6. Isquemia e infarto do miocárdio
 - (a) Isquemia
 - (b) Infarto

- 7. Efeito de drogas
- 8. Desequilíbrio eletrolítico
 - (a) Potássio
 - (b) Cálcio
- 9. Cardite
 - (a) Pericardite
 - (b) Miocardite
- 10. Monitoramento de marca-passo

Os possíveis artefatos em sinais biomédicos são os instrumentais, como os de eletrodo e fisiológicos ou biológicos, que incluem os movimentos musculares, respiratórios entre outros (ANGHINAH et al., 2006).

2.4 SISTEMA DE DERIVAÇÕES

O sistema de configuração mais comum em exames ambulatoriais de Eletrocardiografia (ECG) é o sistema 12 derivações, que consiste nas seguintes derivações (MALMIVUO; PLON-SEY, 1995):

- Derivações dos membros (*Limb leads*): I, II, III;
- Derivações aumentadas ou de Goldberger (Goldberger Augmented Leads): aV_R, aV_L;
- Derivações Precordiais (*Precordial leads*): V₁, V₂, V₃, V₄, V₅ e V₆.

As seis primeiras derivações, I, II, III, aV_R, aV_L e aV_F são derivadas dos mesmos três pontos de medição. Por isso, qualquer par dentre este grupo fornece a mesma informações que os quarto restantes (MALMIVUO; PLONSEY, 1995). A localização das derivações é ilustrada na figura 4.

Mais de 90% da atividade elétrica cardíaca pode ser explicada com a medição de três componentes independentes. A princípio, duas das derivações límbicas I II III devem ser suficiente para descrever completamente o vetor elétrico cardíaco. A principal razão para que sejam gravadas as 12 derivações é porque enriquece o reconhecimento dos padrões. Esta combinação de

Figura 4: Derivações cardíacas
Fonte: (MALMIVUO; PLONSEY, 1995)

derivações fornece ao medico a oportunidade de observar diversas projeções do vetor elétrico cardíaco, que consiste em um modo de visualizar o gerador de potencial elétrico do coração como um dipolo elétrico (MALMIVUO; PLONSEY, 1995).

2.5 ONDAS, SEGMENTOS E INTERVALOS

Além das ondas, os elementos existentes na forma de onda do Eletrocardiografia (ECG) são (GACEK; PREDYCZ, 2011):

- Linha isoelétrica: a linha horizontal quando não há atividade elétrica no ECG;
- Segmentos: a duração da linha isoelétrica entre as ondas;
- Intervalos: o tempo entre dois segmentos de ondas adjacentes.

A onda P é a primeira deflexão do ECG ocorre durante a despolarização ventricular. É positiva na maioria das derivações, mesmo sendo pouco evidente. Sua amplitude não excede 0,15 mV e 0,25 mV nas derivações precordiais, e dura no máximo 0,12 segundos (GACEK; PREDYCZ, 2011).

A onda T, por sua vez, representa a repolarização ventricular, a restauração do repouso no potencial da membrana. As ondas T se diferenciam das ondas P, por seguirem o complexo QRS após cerca de 0,2 segundos. Após a onda T, ocorre a onda U, com a mesma polaridade da onda T que a precede. Ondas U invertidas podem aparecer na presença de hipertrofia do ventrículo esquerdo ou isquemia (GACEK; PREDYCZ, 2011).

O segmento PQ expressa tempo decorrido entre a despolarização atrial e o começo da despolarização ventricular, durando entre 0,12 e 0,2 segundos. O intervalo ventricular ST-T coincide com a repolarização do músculo ventricular. O intervalo QT corresponde à duração do potencial de ação ventricular e da repolarização. O intervalo TP é o período em que os átrios e ventrículos estão na diástole. O intervalo RR corresponde um ciclo cardíaco e é utilizado para o cálculo da frequência cardíaca (GACEK; PREDYCZ, 2011).

A identificação do complexo QRS não apresenta grandes dificuldades, uma vez que possui forma de onda característica e amplitude dominante. Esta amplitude mede cerca de 1 mV em um coração normal, mas pode ser muito maior em uma hipertrofia ventricular. O complexo QRS é o maior grupo de ondas no ECG e corresponde à despolarização ventricular. A primeira deflexão negativa é a onda Q. Seguida de uma deflexão positiva, a onda R, sendo finalizada com uma última deflexão negativa denominada de onda S, completando um complexo QRS (GACEK; PREDYCZ, 2011).

A duração normal do QRS fica entre 0,08 e 0,09 segundos. Durações maiores são geralmente devidas à despolarização assíncrona dos dois ventrículos. Isto ocorre em casos de

bloqueio atrioventricular de primeiro grau, síndromes de pré-excitação ou contração ventricular prematura. Nestas situações, um ventrículo é despolarizado mais cedo que o outro, fazendo com que o complexo QRS apresente uma onda R seguida de outra onda R. Estas ondas correspondem à despolarização dos dois ventrículos (GACEK; PREDYCZ, 2011). A figura 5 mostra as formas de onda características de um ciclo cardíaco.

Figura 5: Ondas, segmentos e intervalos dos sinais de ECG Fonte: (GACEK; PREDYCZ, 2011)

2.6 FUNÇÃO CORRELAÇÃO

O conceito de correlação surgiu na antiguidade onde se comparavam padrões fazendo-os deslizar um sobre o outro. E é deste modo que funciona a correlação. A função correlação permite detectar a presença de um sinal conhecido no ruído. Entre alguns exemplos de aplicação, é possível detectar a presença de um rosto em uma multidão, comparar impressões digitais ou padrões de vasos sanguíneos da retina para identificar pessoas, ou ainda determinar que arma disparou um projétil mesmo que ele esteja amassado ou parcialmente derretido. É utilizada também em radares, no sistema GPS e na análise de DNA (BLOCH, 2004).

A função correlação cruzada é utiliza dois conjuntos de dados, e calcula uma medida da semelhança entre eles. Podem ser utilizados um sinal recebido e um padrão armazenado. À medida que o padrão se desloca pelo sinal recebido, o produto de superposição é calculado e plotado para cada deslocamento. Quando atinge seu valor máximo, 1, há uma coincidência perfeita (BLOCH, 2004). Um exemplo de aplicação da função correlação é ilustrada na figura 6.

No domínio discreto de dados a função correlação pode ser calculada na equação (1), em que o índice r refere-se ao sinal recebido e o índice a se refere ao padrão armazenado. O fator

Figura 6: Exemplo de aplicação da função correlação Fonte: Modificado de (SMITH, 1997)

de normalização K é igual à soma dos quadrados dos valores do padrão armazenado (BLOCH, 2004).

$$R_{r,a}(\tau) = \frac{1}{K} \sum_{n=0}^{N-1} f_r(n) f_s(\tau + n)$$
 (1)

O padrão de sinal armazenado para comparação pode não ser realmente ao sinal que se pretende identificar, pode ser uma estimativa do sinal original, ou uma réplica. Pode ser utilizado um conjunto de padrões de sinais similares ao que se deseja buscar. É com base neste tipo de estimativas que operam astrônomos, peritos em criptografia e especialistas em supervisão eletrônica (BLOCH, 2004).

2.7 REDES NEURAIS ARTIFICIAIS

O cérebro humano funciona de modo completamente diferente dos computadores digitais convencionais. O cérebro pode ser considerado um computador extremamente complexo, não linear com paralelismo. As unidades básicas que constituem o cérebro, chamadas neurônios, têm a capacidade de organizarem-se para desempenhar tarefas tais como reconhecimento de padrões, percepção e controle motor (HAYKIN, 2011).

De certa forma, as redes neurais artificiais foram criadas para realizar atividades mimetizando o cérebro humano. As redes neurais artificiais são modelos matemáticos que podem ser implementadas com componentes eletrônicos ou simuladas em software (HAYKIN, 2011).

As unidades básicas de processamento de uma rede neural artificial são chamadas de neurônios,

analogamente ao cérebro humano. Os neurônios formam entre si grandes conexões caracterizadas por pesos sinápticos (HAYKIN, 2011).

As redes neurais artificiais passam por um processo de aprendizado, também conhecido como algoritmo de aprendizado. Neste processo, são modificados os pesos sinápticos dos neurônios de maneira ordenada visando alcançar um determinado estado objetivo (HAYKIN, 2011).

Um sinal x_j na entrada da sinapse j conectada ao neurônio k, é multiplicada pelo peso sináptico w_{kj} . Constitui também a rede neural artificial um somador, para somar os sinais da entrada ponderados pelas respectivas conexões do neurônio (estas operações constituem uma combinação linear). Uma função de ativação é empregada para limitar a amplitude da saída de um neurônio a um determinado intervalo numérico, usualmente este intervalo corresponde a [0,1] ou [-1,1]. A figura 7 ilustra a estrutura básica de uma rede neural artificial (HAYKIN, 2011).

Figura 7: Estrutura de uma rede neural artificial Fonte: (HAYKIN, 2011)

A função de ativação que limita a saída de um neurônio pode ser de três tipos básicos:

- Função de limiar ou threshold;
- Função Piecewise contínua;
- Função Sigmóide.

A figura 8 representa os gráficos dos três tipos de função de ativação.

Figura 8: Gráficos das funções de ativação Fonte: (HAYKIN, 2011)

2.7.1 Rede Multicamadas

Dentre os tipos de redes neurais artificiais existentes, cabe destacar as redes Perceptron Multicamadas (*Multilayer Perceptron* – MLP). Estas redes são formadas por uma camada de entrada, uma ou mais camadas de nós intermediárias escondidas e um camada de nós de saída. A figura 9 mostra a estrutura de uma rede neural com múltiplas camadas (HAYKIN, 2011).

Como mencionado anteriormente, os neurônios formam conexões representadas pelos pesos sinápticos e ao processo de modificação destes pesos dá-se o nome de algoritmo de aprendizado. As redes Perceptron multicamadas podem ser treinadas por meio do algoritmo de aprendizado *backpropagation*. Em termos gerais, um sinal de erro é originado na saída da rede, e

Figura 9: Rede neural do tipo Multilayer Perceptron Fonte: (HAYKIN, 2011)

propagado de frente para trás (*backwards*) de camada em camada, relacionando os dados de entrada e saída (HAYKIN, 2011).

2.7.2 Estratégia de Treinamento para Rede Multicamadas

A rede multicamadas é treinada com o algoritmo *backpropagation*, em estágios, produzindo funções de mapeamento complexas. Observa-se que o erro médio quadrado diminui com o aumento do número de épocas durante um treinamento. No início apresenta um valor elevado, diminui rapidamente, e então começa a diminuir lentamente até o valor do mínimo local na superfície de erro (HAYKIN, 2011). A figura 10 mostra a relação entre o erro médio quadrado e as épocas de treinamento.

Figura 10: Relação entre o erro médio quadrado e treinamento Fonte: Modificado de (HAYKIN, 2011)

É possível, portanto, acabar treinando a rede em excesso, se o treinamento não for interrompido no instante certo. Para identificar este instante, a cada período de treinamento, a rede é testada e o erro médio quadrado monitorado. A este procedimento dá-se o nome de método de treinamento de parada antecipada. O menor erro médio indica qual a melhor época de treinamento, com base nos testes (HAYKIN, 2011).

2.7.3 Validação Cruzada

Partindo do princípio de que as redes neurais artificiais do tipo MLP passam por um processo de treinamento, é necessário um conjunto de dados para a realização desta etapa. Além disso é necessário testar o funcionamento da rede. Considerada um padrão pela estatística, a validação cruzada soluciona esta questão ao dividir a base de dados inicial em dois conjuntos (HAYKIN, 2011). São eles:

- Conjunto de dados de treinamento;
- Conjunto de dados de testes.

Além destas duas divisões, o conjunto de dados de treinamento pode ser dividido em dados para estimativa e dados para validação (HAYKIN, 2011). Contudo, o estudo aprofundado deste tema não faz parte do escopo deste projeto.

2.7.4 Redes Neurais de Kohonen

Existe um tipo especial de redes neurais artificiais auto organizáveis conhecidas como Mapas Auto Organizáveis ou Mapas de Kohonen. Nos Mapas de Kohonen, os neurônios, ou nós, são dispostos em nós em uma estrutura bidimensional e passam por um processo de aprendizado competitivo utilizando padrões de entrada. Os neurônios são então ordenados uns em relação aos outros. O Mapa de Kohonen forma, portanto, um mapa topográfico dos padrões de entrada, no qual as coordenadas dos neurônios indicam características dos padrões de entrada (HAYKIN, 2011).

Cabe explicitar que o aprendizado dos Mapas de Kohonen é do tipo não supervisionado, isso significa que não é necessário um conjunto de dados de treinamento para que a rede aprenda a classificar padrões (GUTHIKONDA, 2005).

Inicialmente no mapa, cada nó é conectado a todos os nós de entrada, mas não são conectados entre si, como ilustra a figura 11. Cada nó possui um vetor de pesos, e também uma

coordenada única (*i,j*). Esta coordenada auxilia a identificar o nó, além de ser importante para os cálculos do algoritmo do Mapa de Kohonen (GUTHIKONDA, 2005).

Figura 11: Estrutura de um Mapa de Kohonen Fonte: (GUTHIKONDA, 2005)

As redes devem ser formadas por nós, sendo que cada um deles deverá possuir um vetor de pesos de dimensão n. Para que o algoritmo funcione adequadamente, os nós de entrada também deverão apresentar vetores de entrada com dimensão n. E, considerando que os neurônios não possuem nenhuma conexão com os neurônios em sua vizinhança, não podem conhecer o valor dos pesos deles. Para serem organizados, os dados passam pelo algortimo do Mapa de Kohonen. Este algoritmo que agrupa os padrões de entrada é descrito a seguir (GUTHIKONDA, 2005).

- 1. Os pesos de cada nó são inicializados a partir dos dados de entrada;
- 2. Um vetor é escolhido (*input vector*) aleatoriamente dos dados de entrada e apresentado a rede;
- 3. Cada nó da rede é analisado em busca do nó que apresenta pesos mais similares ao nó escolhido (*input vector*). Este nó é conhecido como *Best Matching Unit* (BMU). O BMU é encontrado com o cálculo da distância dado pela equação (2), em que *I* se refere ao vetor escolhido, *W* ao vetor de pesos do nó e *n* à dimensão do vetor.

$$DistFromInput^{2} = \sum_{i=n}^{i=0} (I_{i} - W_{i})^{2}$$

$$\tag{2}$$

4. Calcula-se o raio da vizinhança do BMU de acordo com a equação (3). Este valor deve ser inicialmente grande, mas diminui a cada iteração do algoritmo. Os termos da equação t, σ₀ e λ correspondem a iteração atual, número de iterações sobre o raio do mapa e raio do mapa, respectivamente.

$$\sigma(t) = \sigma_0 e^{(-t/\lambda)} \tag{3}$$

5. Os nós encontrados dentro do raio do BMU tem seus pesos alterados de modo a se assemelharem aos pesos do BMU, conforme as equações (4), (5) e (6). O termo L_0 é o coeficiente de aprendizado, configurado durante a fase de testes.

$$W(t+1) = W(t) + \Theta(t)L(t)(I(t) - W(t))$$
(4)

$$L(t) = L_0 e^{(-t/\lambda)} \tag{5}$$

$$\Theta = e^{(-DistFromBMU^2/2\sigma^2(t))}$$
(6)

6. Repetir o passo 2 por N iterações.

Um exemplo clássico de implementação de Mapas de Kohonen é a clusterização de cores. A figura 12 mostra uma rede inicializada com um conjunto de dados. Cada pixel é um nó da rede e os vetores de peso são representados pela tripla (R,G,B), que caracteriza a cor do nó.

A aplicação do algoritmo do Mapa de Kohonen descrito anteriormente deve resultar no mapa mostrado pela figura 13. Percebe-se que as cores foram agrupadas de acordo com a semelhança entre elas.

Figura 12: Mapa de Kohonen inicializado Fonte: (GUTHIKONDA, 2005)

Figura 13: Mapa de Kohonen após algoritmo Fonte: (GUTHIKONDA, 2005)

2.8 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES

Nesta seção vamos nos concentrar em formas de avaliar o desempenho de sistemas classificadores por meio das seções: Tabela de Contingência 2.8.1, Sensibilidade e Especificidade 2.8.2, Curva ROC 2.8.3 e Outros Índices Estatísticos 2.8.4.

2.8.1 Tabela de Contingência

A tabela de contingência, também chamada de tabela de confusão, é descrita como uma ferramenta capaz de representar, dentro de uma população, os indivíduos doentes, indivíduos

sadios, indivíduos com teste positivo e indivíduos com teste negativo (MASSAD; ORTEGA; SILVEIRA, 2004), como mostrado na tabela 1.

Tabela 1: Tabela de Contingência 2x2

		indiv		
		doentes	sadios	
indicação do	positivo	verdadeiro positivo (VP)	falso positivo (FP)	total de positivos (VP + FP)
exame (para a doença)	negativo	falso negativo (FN)	verdadeiro negativo (VN)	total de negativos (FN + VN)
		total dos doentes (VP + FN)	total dos sadios (FP + VN)	total (VP + VN + FP + FN)

Fonte: (SOVIERZOSKI, 2009)

A partir da tabela de contingência, podem ser observados os seguintes índices:

- VP (Verdadeiro positivo): doente com resultado positivo;
- FP (Falso positivo): sadio com resultado positivo;
- FN (Falso negativo): doente com resultado negativo;
- VN (Verdadeiro negativo): sadio com resultado negativo.

Como este projeto pretende obter a identificação do complexo QRS em exames de Eletro-cardiografia (ECG), a etapa de testes trata como verdadeiro positivo o complexo QRS indicado como positivo, falso positivo como padrão diferente do complexo QRS indicado como positivo, falso negativo como um complexo QRS não identificado e verdadeiro negativo como um padrão diferente do complexo QRS não identificado pelo sistema (SARAIVA, 2012). A lógica desta avaliação é expressa pela figura 14.

Os índices da tabela de contingência são utilizados para o cálculo de outros índices, tais como sensibilidade, especificidade, eficiência e o índice DER.

Figura 14: Exemplo de sinal e padrão de classificação considerando o nível de decisão Fonte: (SARAIVA, 2012)

2.8.2 Sensibilidade e Especificidade

A sensibilidade pode ser descrita como a medida da capacidade de um sistema em identificar indivíduos com exame positivo entre os indivíduos verdadeiramente doentes, levando em conta outros indivíduos doentes com exames negativos, como evidencia a equação (7). Logo, quanto maior a sensibilidade de um sistema, menor o número de falsos negativos (MASSAD; ORTEGA; SILVEIRA, 2004).

$$sensibilidade = \frac{VP}{VP + FN} \tag{7}$$

Especificidade mede a capacidade do sistema em identificar os indivíduos negativos entre os verdadeiramente não doentes, representada pela equação (8). Assim, quanto menor o número de falsos positivos identificados pelo sistema, maior será sua especificidade (MASSAD; ORTEGA; SILVEIRA, 2004).

$$especificidade = \frac{VN}{VN + FP} \tag{8}$$

A sensibilidade e especificidade costumam retornar diferentes valores de acordo com a variação em algum atributo do sistema, geralmente o limiar de decisão da rede neural (SOVI-ERZOSKI, 2009). A figura 15 mostra o comportamento dos índices de sensibilidade e especificidade em função do limiar de decisão de uma rede neural do tipo Perceptron Multicamadas (*Multilayer Perceptron* – MLP).

Figura 15: Gráficos de Sensibilidade e Especificidade Fonte: (SARAIVA, 2012)

2.8.3 Curva ROC

A Curva ROC (*Receiving Operating Characteristic*) é útil para visualização da performance de classificadores. Seu uso vem crescendo em pesquisas nas áreas de *machine learning* e *data mining* (FAWCETT, 2006).

Os valores de sensibilidade e especificidade são organizados em pares ordenados, e dispostos no primeiro quadrante de um plano cartesiano. Com algum método de interpolação, são interligados desde a origem (sensibilidade = 0 e especificidade = 1), até o extremo oposto do gráfico (sensibilidade = 1 e especificidade = 0), dando origem a curva ROC (MASSAD; ORTEGA; SILVEIRA, 2004), conforme ilustra a figura 16.

Cada ponto da curva ROC equivale a um valor diferente do limiar de decisão da rede neural, dessa forma, construindo a relação entre sensibilidade e especificidade (SOVIERZOSKI, 2009).

No eixo das ordenadas da curva ROC pode ser observada a fração dos verdadeiros positivos (sensibilidade). E no eixo das abcissas, a fração dos falsos positivos, correspondente ao complemento da especificidade (1 - especificidade) (MASSAD; ORTEGA; SILVEIRA, 2004).

A linha tracejada representa um sistema classificador incapaz de discriminar, em outras

Figura 16: Curva ROC
Fonte: (SOVIERZOSKI, 2009)

palavras, um sistema que apresenta o mesmo percentual de verdadeiros positivos e de falsos positivos. Quanto mais afastada da linha tracejada estiver a curva ROC (de modo semelhante à figura 16), melhor é o desempenho do sistema. O classificador ideal possui sensibilidade = 1 e especificidade = 1 (BROWN; DAVIS, 2006).

2.8.4 Outros Índices Estatísticos

Além de inúmeros outros métodos para medição do desempenho de sistemas classificadores, existem o índice DER e eficiência.

O índice DER (*Detection Error Rate*), dado na equação (9) (ZHANG; LIAN, 2007), relaciona o número de erros do sistema, soma dos falsos positivos e falsos negativos, com o número total de eventos do sistema.

$$DER = \frac{FP + FN}{\text{Total de eventos QRS}} \tag{9}$$

Eficiência ou *accuracy* corresponde a capacidade de um sistema em identificar os verdadeiros doentes e sadios (SOVIERZOSKI, 2009). A fórmula para o cálculo da eficiência é dada na equação (10).

$$accuracy = \frac{VP + VN}{VP + VN + FP + FN} \tag{10}$$

2.9 CONSIDERAÇÕES

O capítulo de Fundamentação Teórica forneceu esclarecimento acerca de diversos conhecimentos necessários durante implementação do projeto. Entre eles, cabe destacar os conceitos abordados pelas seções Função Correlação 2.6, Redes Neurais Artificiais 2.7 e Avaliação de Sistemas Classificadores 2.8. O entendimento destes conceitos em particular é essencial para uma leitura proveitosa dos próximos capítulos desta monografia.

O próximo capítulo, Materiais e Métodos 3, explica a maneira como todos estes conhecimentos foram aplicados de modo prático, e também os recursos utilizados ao longo do desenvolvimento deste projeto.

3 MATERIAIS E MÉTODOS

Este capítulo aborda os recursos e metodologias utilizadas em todo o desenvolvimento deste trabalho. O capítulo foi dividido em seções: Base de Dados 3.1, *European Data Format* 3.2, Biblioteca Utilizada 3.3, Sistema 3.4, Modelagem UML 3.5, Metodologias Detalhadas 3.6 e por fim as Considerações sobre o capítulo 3.7.

3.1 BASE DE DADOS

De acordo com informações disponibilizadas pela Comissão Nacional de Ética em Pesquisa (CONEP, 2011), "as pesquisas envolvendo apenas dados de domínio público que não identifiquem os participantes da pesquisa, ou apenas revisão bibliográfica, sem envolvimento de seres humanos, não necessitam aprovação por parte do Sistema CEP – CONEP." Por esta razão, a equipe optou por utilizar a base de dados pública MIT-BIH Arrhythmia Database.

A MIT-BIH Arrhythmia Database foi desenvolvida pelo Beth Israel Hospital de Boston em parceria com o MIT durante uma pesquisa sobre arritmia e temas correlatos. Tem sido utilizada como um conjunto de dados padrão para testes e avaliação para sistemas detectores de arritmias e pesquisa em dinâmica cardíaca (MOODY; MARK, 1990).

Os dados correspondem à 48 gravações ECG com duração de meia hora cada uma. São apresentados dois sinais, *modified limb lead II* (MLII) e *lead* V1 (podendo ser ocasionalmente V2, V5 ou V4), ambos obtidos com os eletrodos colocados no peito. Esta é a configuração padrão utilizada pelo BIH Arrhythmia Laboratory. Pode-se observar maior proeminência dos complexos QRS no sinal superior (GOLDBERGER et al., 2000). A figura 17 mostra parte da gravação do exame 105.

Os exames foram realizados com 47 pacientes acompanhados pelo BIH Arrhythmia Laboratory entre os anos de 1975 e 1979. Vinte e três gravações foram selecionadas aleatoriamente de um conjunto de 4000 exames ambulatoriais de ECG com duração de 24 horas coletadas de pacientes internos (cerca de 60%) e pacientes ambulatoriais (cerca de 40%) do Boston's Beth

Figura 17: Parte da gravação 105 da base de dados MIT-BIH Arrhythmia Database Fonte: Autoria própria

Israel Hospital. Os outros 25 exames foram selecionados do mesmo conjunto para incluir arritmias clinicamente incomuns (MOODY; MARK, 1990).

Uma equipe com dois cardiologistas realizou anotações dos batimentos em cada uma das gravações, resultando em aproximadamente 110 mil marcações. Estas foram incluídas na base de dados. A base completa tem sido disponibilizada gratuitamente pelo desde 2005 (MOODY; MARK, 1990).

Para a etapa de testes deste projeto, foi selecionado apenas o arquivo 105 por apresentar maior dificuldade na detecção do complexo QRS (SARAIVA, 2012).

3.2 EUROPEAN DATA FORMAT

A existência de diferentes fabricantes de equipamentos para aquisição de sinais biomédicos implica em diferentes formatos de arquivo para salvar estes dados. Para solucionar este problema, foi criado o *European data format* (EDF), um formato padrão para armazenamento de dados polissonográficos e eletroencefalográficos amplamente aceito. O EDF é o único formato digital que se tornou aceito tanto comercialmente nos equipamentos disponíveis como em pesquisas científica (KEMP; OLIVAN, 2003).

Um arquivo EDF padrão consiste em um cabeçalho seguido dos dados. O cabeçalho identifica o paciente e especifica características técnicas do sinal gravado. Os dados apresentam épocas consecutivas, com duração fixa, a partir do sinal gravado (KEMP; OLIVAN, 2003).

Physiobank Automated Teller Machine (ATM) é uma ferramenta open -source que permite

explorar as bases de dados disponibilzadas pelo *Physiobank* por meio do navegador de *internet*. Esta *toolbox* oferece opções para importar anotações das formas de onda e histogramas, converter sinais em formato padrão do *Physionet* (WFDB – *WaveForm DataBase*) para texto, CSV, EDF, ou .mat files (para utilização nos programas *Matlab* ou *Octave*), entre outras funcionalidades (GOLDBERGER et al., 2000).

A figura 18 mostra a tela de opções da ferramenta *Physiobank* ATM.

Figura 18: Tela de opções do Physiobank ATM Fonte: Autoria própria

Esta ferramenta foi utilizada para obtenção dos arquivos de sinal em formado EDF e anotações em arquivo de texto.

3.3 BIBLIOTECAS UTILIZADAS

O projeto utilizou as bibliotecas *NeuroLoopGain* e *BrainNet Library* para trabalhar com arquivos em formato EDF e redes neurais artificiais respectivamente.

3.3.1 NeuroLoopGain

A biblioteca *NeuroLoopGain* (NEUROLOOPGAIN, 2012) foi implementada para análise de arquivos em formato EDF. O texto da licença Apache 2.0 (The Apache Software Foundation, 2004) mostra que seu código é aplicável a distribuição pretendida do software: "[...] concede licença perpétua, mundial, não exclusiva, gratuita, isenta de royalties e irrevogável para reproduzir, preparar Obras Derivadas, de exibição pública, execução pública, sublicenciamento e distribuição do Trabalho e tais Obras Derivadas, na forma de Código Fonte ou Objeto."

Além disso, o texto da licença também atesta que: "[...] concede licença perpétua, mundial, não-exclusiva, gratuita, isenta de royalties e irrevogável [...] de licença de patente para fazer, mandar fazer, usar, oferecer para venda, vender, importar e transferir o trabalho."

3.3.2 BrainNet Library

A biblioteca *BrainNet Library*, em sua maior parte desenvolvida na plataforma .NET seguindo os preceitos do paradigma de orientação à objetos, permite criar, treinar e executar redes neurais. Um parte da biblioteca, chamada Neural XML, foi implementada em linguagem de programação XML (MADHUDSUDANAN, 2006). Está sujeita aos termos da licença *The Code Project Open License* (CPOL) 1.02. De maneira geral, os termos da licença (PROJECT, 2008) atestam os seguintes pontos:

- Código fonte e arquivos executáveis podem ser utilizados em aplicações comerciais;
- Código fonte e arquivos executáveis podem ser redistribuídos;
- Código fonte pode ser modificado para criação de obras derivativas.

A figura 19 apresenta o diagrama UML da biblioteca.

Figura 19: Diagrama UML da Biblioteca BrainNet Fonte: (MADHUDSUDANAN, 2006)

As principais interfaces disponibilizadas pela biblioteca *BrainNet Library* estão resumidas na tabela 2.

As principais classes disponibilizadas pela biblioteca *BrainNet Library* estão resumidas na tabela 3.

Tabela 2: Principais interfaces da BrainNet Library

INetworkFactory	Interface que define a estrutura da rede
INeuron	Interface que define o neurônio
INeuronStrategy	Interface que define estratégias do neurônio
INeuralNetwork	Interface que define a rede neural

Fonte: (MADHUDSUDANAN, 2006)

Tabela 3: Principais classes da BrainNet Library

Ni-t
NetworkHelper Inicializa e treina a rede
NeuralNetwork Rede neural genérica
NeuralNetworkCollection Coleção do tipo NeuralNetwrok
Neuron Implementação de INeuron
NeuronCollection Coleção do tipo Neuron
NeuronConnections Registro das conexões entre neurônios e pesos sináptico

Fonte: (MADHUDSUDANAN, 2006)

3.4 SISTEMA

Esta seção pretende fornecer um entendimento amplo do sistema desenvolvido a partir da subseção Visão Geral do Sistema 3.4.1, e também uma visão detalhada por meio das subseções: Módulo de Visualização do Sinal 3.4.2, Módulo de Marcação de Eventos 3.4.3, Módulo de Extração de Características 3.4.4, Módulo de Reconhecimento de Padrões 3.4.5 e Módulo de Avaliação de Resultados 3.4.6.

3.4.1 Visão Geral do Sistema

O sistema pode operar de duas maneiras. A primeira, e mais simples delas, utiliza diretamente o sinal de Eletrocardiografia (ECG). A figura 20 mostra todo este processo.

Primeiramente, o arquivo com o sinal de ECG é carregado na memória e exibido na tela (Visualização do sinal), em seguida, é feito o reconhecimento de padrões (Reconhecimento de Padrões), e os resultados são exibidos na tela . Um conjunto de marcações pertencente a base de dados (Marcações da base de dados) é utilizado como parâmetro de comparação com os resultados obtidos pelo sistema (Avaliação dos Resultados).

A segunda maneira de funcionamento do sistema é mais complexa, e pode ser observada no fluxograma da figura 21. A diferença em relação ao método anterior ocorre no processo de geração do conjunto de dados para o reconhecimento de padrões.

Figura 20: Fluxograma simples
Fonte: Autoria própria

Depois que o arquivo com sinal de ECG é carregado e exibido na tela (Visualização do sinal), são feitas marcações diretamente no sinal de ECG (Marcar eventos). Estas marcações do complexo QRS (Marcações direto no sinal) passam por um processo (Extração de características) em conjunto com o sinal original (Sinal de ECG). Este processo será detalhado nas subseções Módulo de Extração de Características 3.4.4 e Metodologia de Extração de Características 3.6.2. O sinal resultante (Sinal resultante) passa pelo reconhecimento de padrões (Reconhecimento de Padrões), e exibe na tela onde são detectadas ocorrências do complexo QRS. Por fim é realizada a etapa de avaliação (Avaliação dos Resultados), que compara os resultados obtidos com os resultados esperados proveniente das marcações da base de dados original (Marcações da base de dados).

Figura 21: Fluxograma com extração de características Fonte: Autoria própria

3.4.2 Módulo de Visualização do Sinal

O primeiro módulo do sistema a ser descrito é o módulo de visualização do sinal. Na figura 22 pode ser observada a tela em que o usuário seleciona quais canais (ou derivações) do sinal deseja visualizar. No caso, as derivações do sinal são modified limb lead II (MLII) e *lead* V1.

A figura 25 mostra a impressão no sinal na tela do sistema. Além dos sinais, a tela também apresenta opções para alterar a frequência e amplitude do sinal e opções para que o sinal possa ser visualizado em janelas de 5 ou 10 segundos.

Figura 22: Tela de seleção do sistema Fonte: Autoria Própria

Figura 23: Tela de visualização do sinal no sistema Fonte: Autoria Própria

3.4.3 Módulo de Marcação de Eventos

Uma vez que a tela do sistema exibe o sinal de Eletroencefalografia (ECG), o usuário pode realizar as marcações de eventos. Ao selecionar o botão evidenciado pela flecha azul na figura 24, o usuário tem acesso a um menu de marcações.

Figura 24: Opção de marcar eventos

Fonte: Autoria Própria

O usuário pode selecionar uma cor disponível no menu do lado esquerdo, e em seguida marcar fragmentos no sinal, determinando assim o início e fim do evento. Estas marcações são salvas em disco utilizando arquivos de texto, podendo ser recuperadas em algum uso futuro. A figura 25 mostra a tela com opção de marcação de eventos. Na figura, a cor selecionada foi o verde (correspondente ao complexo QRS), exibindo duas marcações deste evento no sinal.

Após a realização de algumas marcações, o usuário pode editá-las por meio do Editor de marcações, mostrado na figura 26. Para acessá-lo, basta clicar em Menu Ferramentas, e em seguida, em Editor de Eventos. Este editor permite que o usuário navegue pelos tipos de padrão e visualize as marcações já salvas. O usuário tem a opção de editar os pontos de início, fim e referência do sinal, e também pode excluir a marcação.

Figura 25: Marcações de eventos Fonte: Autoria Própria

Figura 26: Editor de marcações Fonte: Autoria Própria

3.4.4 Módulo de Extração de Características

O módulo de extração de características produz um novo sinal, que pode ser utilizado como entrada do módulo de reconhecimento de padrões. O seu funcionamento é explicado com detalhes na subseção Metodologia da Extração de Caracteríticas 3.6.2 da seção de Metodologias Detalhadas 3.6. Contudo, de modo resumido, pode se dizer que a função correlação pode ser aplicada sucessivas vezes em um evento salvo (do tipo que se quer buscar, no caso o complexo QRS) e o sinal de Eletroencefalografia (ECG). O resultado pode ser observado na figura 27, o primeiro sinal corresponde ao sinal original de ECG, e o segundo foi produzido pela extração de características. O acesso desta tela pode ser obtido ao selecionar Menu Ferramentas e Técnicas de Reconhecimento.

Figura 27: Tela da extração de características Fonte: Autoria Própria

3.4.5 Módulo de Reconhecimento de padrões

O módulo de reconhecimento de padrões utiliza um Mapa de Kohonen para identificar o complexo QRS. Para acessar este módulo, basta selecionar na tela de Técnicas de Reconhecimento a opção Técnicas e em seguida Kohonen. Será exibida uma tela da figura 17, que permite configurar o mapa, tais como tamanho, uso da correlação (extração de características) e tamanho das amostras (explicado em detalhes em 3.6.4).

Figura 28: Tela de configuração do mapa de Kohonen Fonte: Autoria Própria

A figura 17 mostra a tela em que são exibidos os resultados após a execução da etapa de reconhecimento de padrões. O sinal em laranja apresenta amplitude elevada nas detecções do padrão.

Figura 29: Tela de resultados Fonte: Autoria Própria

Da mesma maneira que o módulo anterior, a metodologia em detalhes do módulo de reconhecimento de padrões será descrita na subseção 3.6.4 da seção de Metodologias Detalhadas 3.6.

3.4.6 Módulo de Avaliação de Resultados

Com a conclusão da etapa de reconhecimento de padrões, podem ser gerados dados estatísticos para medir o desempenho do sistema. Os resultados obtidos são comparados às marcações provenientes da base de dados, que indicam existência do complexo QRS no sinal. A partir disso, são contabilizados a quantidade de verdadeiros positivos (VP), falsos positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN) e exibidos no terminal da tela de Técnicas de Reconhecimento.

3.5 MODELAGEM UML

Para proporcionar um entendimento da arquitetura do sistema, estão seção apresenta um diagrama de classes resumido na figura 30.

Figura 30: Diagrama de Classes do Sistema Fonte: Autoria Própria

A finalidade da existência de cada classe do sistema está resumida na tabela 4.

Tabela 4: Tabela de classes do sistema					
Avaliador	Gera tabela de contingência: VP, FP, VN e FN				
AV_Marcacao	Gerencia marcações da base de dados na avaliação				
AV_Resultado	Gerencia resultados do sistema na avaliação				
GerenArquivos	Gerencia arquivos (sinal e marcações)				
Correlacao	Aplica função correlação no sinal				
Annotations_Chart	Carrega a lista de eventos marcados ou resultados				
atualiza_sinal	Carrega eventos marcados do sinal caso elas já existam				
AtualizarRefInChart	Atualiza o ponto de referência de um evento				
Program	Classe que inicializa o sistema				
Licenca	Gerencia licença do sistema				
Form_Site	Carrega e exibe o website do projeto				
FormCarregar_EDF	Janela para selecionar arquivo contendo o sinal				
FormEditarNomePadrao	Janela de edição do nome do padrão				
FormEditorDeEventos	Janela de editor de eventos				
FormPrincipal	Janela principal do sistema, onde é exibido o sinal				
	e realizada as marcações				
FormResultados	Janela onde é mostrado canal por canal e a saída da correlação				
	e as redes neurais quando executadas				
InfoEDF	Exibe informações sobre o EDF, como nome do paciente, data				
MDIPrincipalForm	Tela inicial, onde pode-se abrir várias telas do FormPrincipal				
RedesNeurais	Realiza o reconhecimento de padrões				

Fonte: Autoria Própria

3.6 METODOLOGIAS DETALHADAS

Esta seção visa explicar as metodologias utilizadas na implementação dos módulos do sistema por meio das subseções: Metodologia da Extração de Características 3.6.2, Metodologia do Reconhecimento de Padrões 3.6.4 e Metodologia da Avaliação dos Resultados 3.6.5.

3.6.1 Geração dos Dados de Treinamento

Amostras 306900

3.6.2 Metodologia da Extração de Características

A extração de características é o processo pelo qual o sinal de Eletroencefalografia (ECG) pode ser submetido antes do processo de reconhecimento de padrões. A função correlação, descrita na seção 2.6 do capítulo de Fundamentação Teórica 2, é aplicada sucessivas vezes (no caso apenas duas) em uma marcação arbitrária que represente bem o complexo QRS e no sinal de ECG produzindo um novo sinal como mostrado na figura 31.

Figura 31: Função correlação no sistema Fonte: Autoria Própria

Como se pode perceber, os picos do sinal resultante correspondem aos instantes em que ocorrem o complexo QRS. Este novo sinal pode ser utilizado como entrada para o módulo de reconhecimento de padrões, a ser visto com mais detalhes na próxima seção.

3.6.3 Reconhecimento de Padrões com Redes Neurais Multicamadas

3.6.4 Reconhecimento de Padrões com Mapa de Kohonen

Como foi explicado no capítulo de Fundamentação Teórica, o Mapa de Kohonen agrupa nós que possuem características similares em localizações próximas. No exemplo da clusterização de cores, os nós de cor azul foram agrupados em uma determinada localização. Da mesma forma, o Mapa de Kohonen agrupa fragmentos de sinais com características similares.

O Mapa de Kohonen foi utilizado com o objetivo de identificar ocorrências do complexo QRS em meio ao sinal de Eletroencefalografia (ECG). Considerando que o sinal de ECG utilizado pode ser dividido em fragmentos com diferentes características, alguns poderão apresentar o complexo QRS inteiro ou partes dele, outros poderão apresentar outras formas de onda como a onda P, T ou U, arritmias cardíacas ou apenas ruído.

O mapa é inicializado com fragmentos, ou janelas, obtidos do sinal. Inicialmente, foram realizados testes percorrendo o sinal todo e captando fragmentos deslocando o sinal ponto por ponto. Contudo, isso gerava fragmentos redundantes e aumentava o tempo de duração da etapa de reconhecimento de padrões. Em vista disso, foi decidido deslocar o sinal de cinco em cinco amostras para obtenção de cada janela. Outro aspecto relevante é que para particionar o sinal de ECG sem extração de caracteríticas, são usadas 50 amostras. No particionamento do sinal de ECG após a extração de características é necessário utilizar 200 amostras.

A figura 33 mostra um exemplo simplificado de como seria uma mapa inicializado. As estrelas azuis representam nós onde existem fragmentos com o complexo QRS, e as bolas ver-

melhas representam fragmentos de sinal que não apresentam esta forma de onda.

Figura 32: Mapa inicializado com sinal

Fonte: Autoria Própria

Após a aplicação do algoritmo, o mapa deverá se assemelhar ao mapa da figura 33. Neste exemplo, os sinais com características do complexo QRS formam um grupo, e os sinais com quaisquer outras características formam o outro grupo.

Figura 33: Mapa produzido

Fonte: Autoria Própria

O tamanho do Mapa é variável, contudo, manteve-se um tamanho padrão de 10 por 10 nós para os testes. Nós contendo fragmentos do sinal com características do complexo QRS tenderam a se localizar nas regiões em que as coordenadas x e y se aproximam de 0. Para separar a região onde se concentra o complexo QRS do restante do mapa, determinam-se valores de corte do x e y. Por exemplo, os nós com os valores de x e y entre 0 e 2 representam o grupo de padrões que se deseja buscar. No Capítulo de Resultados Obtidos 4 são apresentados resultados para diferentes valores de corte de x e y.

O algoritmo do Mapa de Kohonen segue a lógica detalhada no artigo de (GUTHIKONDA, 2005).

3.6.5 Metodologia da Avaliação do Classificador

O módulo de Avaliação do Classificador gera de modo automático a tabela de contingência após a conclusão do reconhecimento de padrões. Ou seja, o número de ocorrências de verdadeiro positivo (VP), falso positivo (FP), verdadeiro negativo (VN) e falso negativo (FN), como foi discutido na seção Tabela de Contingência 2.8.1 do capítulo de Fundamentação Teórica 2. A figura 34 mostra ideias básicas para auxiliar a compreensão deste procedimento.

Figura 34: Lógica da avaliação Fonte: Autoria Própria

O processo de avaliação é feito confirme a seguinte lógica:

- 1. São enviadas como parâmetro no construtor da classe Avaliador duas listas: a de lista de resultados (sistema) e a lista de marcações (referência), que enviam a posição x de cada evento em relação ao vetor de todos os pontos do sinal;
- 2. As duas listas são recriadas, utilizando outras estruturas que possibilitam o uso de *flags* e outras variáveis. Os itens da lista de resultados armazenam então apenas seu horário de ocorrência. E os itens da lista de marcações tem seu horário transformado em um intervalo com início e fim, ao sofrerem uma expansão de tamanho variável x para a esquerda e para a direita(no caso 50 amostras);
- 3. Percorre-se a lista de marcações, verificando, se cada um dos resultados está dentro do intervalo de alguma marcação. Caso esteja, ocorreu um verdadeiro positivo (VP) e as

flags de detecção do resultado e da marcação são ativadas. Caso contrário, ou seja, se o resultado está fora da faixa de qualquer uma das marcações, caracteriza-se como falso positivo (FP);

- 4. Novamente, percorre-se a lista de marcações, verificando quais marcações não foram detectadas, pois não apresentam resultado correspondente. Estas ocorrências são classificadas como falso negativo (FN), pois o sistema deveria detectá-las, mas não conseguiu;
- 5. Por fim, o avaliador considera como verdadeiro negativo (VN), intervalo entre duas marcações (entre o fim de uma e início da seguinte) em que não ocorreu nenhum falso positivo (FP).

3.7 CONSIDERAÇÕES

Ao fim deste capítulo de Materiais e Métodos, espera-se que o leitor tenha compreendido como opera o sistema de acordo com as duas metodologias descritas: utilizando sinal de Eletrocardiografia (ECG) puro ou sinal após extração de características.

O sistema foi explicado sob diferentes ângulos, desde a análise dos componentes básicos como bibliotecas e formato de arquivo utilizados, até uma análise global, envolvendo diagramas de blocos, apresentação de telas do sistema e Modelagem UML.

O próximo capítulo, Resultados Obtidos 4, pretende explorar a medição de desempenho do sistema, conforme a metodologia de avaliação apresentada neste capítulo, na seção Avaliação do Classificador 3.6.5.

4 RESULTADOS OBTIDOS

Conforme foi explicado na subseção Visão Geral 3.4.1 da seção Sistema 3.4, o reconhecimento de padrões pode ser realizado de três maneiras distintas. A primeira delas utiliza Mapa de Kohonen, as outras duas utilizam redes neuras artificiais multicamadas. As redes multicamadas são treinadas com dois conjuntos de dados diferentes: marcações feitas diretamente no sinal de Eletrocardiografia (ECG), e marcações feitas no sinal resultante do processo de extração de características. Os resultados obtidos com cada tipo de reconhecimento são descritos nas seções Testes com Mapa de Kohonen 4.1 e Testes com Rede Multicamadas 4.2, respectivamente. Este capítulo termina com a seção de Considerações 4.3.

4.1 TESTES COM MAPA DE KOHONEN

Os testes realizados utilizando Mapa de Kohonen para reconhecimento de padrões obtiveram os resultados apresentados na tabela 5. De acordo com as marcações provenientes da base de dados, há 1182 ocorrências do complexo QRS no fragmento do sinal analisado. Como visto anteriormente, eventos do tipo complexo QRS se concentraram nas regiões do mapa em que a coordenada x tem o valor 0 e a coordenada y varia de 0 a 2. O coeficiente de aprendizado foi configurado com o valor 0.0001.

Tabela 5: Tabela de Resultados Obtidos com Mapa de Kohonen

VP	VN	FP	FN	Sensibilidade	Especificidade	Eficiência	DER
1177	1180	1	5	0,995769882	0,99915326	0,997460855	0,002332815

Fonte: Autoria Própria

4.2 TESTES COM REDE MULTICAMADAS

A tabela 7 mostra os resultados obtidos com uma rede MLP treinada com eventos marcados diretamente no sinal de ECG. Os dados analisados correspondem aos 14 primeiros minutos do sinal do arquivo 105, o que equivale a 1182 ocorrências do complexo QRS. Na tabela são

apresentados os totais de verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos obtidos pela etapa de reconhecimento de padrões. E também os índices estatísticos sensibilidade, especificidade, eficiência e *Detection Error Rate* (DER) considerando a variação do *threshold*.

Tabela 6: Tabela de Resultados com marcações diretamente no ECG

Threshold	VP	VN	FP	FN	Sensibilidade	Especificidade	Eficiência	DER
1	1171	1181	0	11	0,990693739	1	0,9953	0,0042
0,9	1173	1181	0	9	0,992385787	1	0,9961	0,0034
0,8	1175	1181	0	7	0,994077834	1	0,9970	0,0027
0,7	1176	1181	0	6	0,994923858	1	0,9974	0,0023
0,6	1176	1180	1	6	0,994923858	0,99915326	0,9970	0,0027
0,5	1176	1180	1	6	0,994923858	0,99915326	0,9970	0,0027
0,4	1176	1180	1	6	0,994923858	0,99915326	0,9970	0,0027
0,3	1177	1179	2	5	0,995769882	0,99830652	0,9970	0,0027
0,2	1177	1179	3	5	0,995769882	0,99830652	0,9970	0,0027
0,1	1177	1179	3	5	0,995769882	0,99830652	0,9970	0,0027

Fonte: Autoria Própria

A curva ROC do processo utilizando eventos marcados diretamente no sinal de ECG é mostrada na figura 35.

A tabela 7 mostra os resultados atingidos com a base de eventos gerada após o processo de extração de características. Do mesmo modo que a seção anterior, o conjunto de testes considera os primeiros 14 minutos do sinal de ECG do arquivo 105, correspondendo a 1182 ocorrências do complexo QRS. São apresentadas as quantidades de verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos, e os índices estatísticos sensibilidade, especificidade, eficiência e *Detection Error Rate* (DER) obtidos com variação do *threshold*.

Tabela 7: Tabela de Resultados com extração de características

Threshold	VP	VN	FP	FN	Sensibilidade	Especificidade	Eficiência	DER
1	1143	1095	86	39	0,967005076	0,927180356	0,947101143	0,048600311
0,9	1143	1093	88	39	0,967005076	0,925486876	0,946254761	0,049377916
0,8	1144	1089	92	38	0,9678511	0,922099915	0,944985188	0,050544323
0,7	1144	1089	92	38	0,9678511	0,922099915	0,944985188	0,050544323
0,6	1144	1084	97	38	0,9678511	0,922099915	0,942869234	0,052488336
0,5	1144	1084	97	38	0,9678511	0,922099915	0,942869234	0,052488336
0,4	1145	1083	98	37	0,968697124	0,917019475	0,942869234	0,052488336
0,3	1145	1082	99	37	0,968697124	0,916172735	0,942446043	0,052877138
0,2	1145	1081	100	37	0,968697124	0,915325995	0,942022852	0,053265941
0,1	1145	1081	100	37	0,968697124	0,915325995	0,942022852	0,053265941

Fonte: Autoria Própria

Figura 35: Curva ROC dos resultados Fonte: Autoria própria

A curva ROC do processo utilizando a base gerada após a extração de características é mostrada na figura 36.

Figura 36: Curva ROC do processo com correlação Fonte: Autoria própria

4.3 CONSIDERAÇÕES

Com base nós testes realizados, os três métodos de reconhecimento de padrões implementados podem ser considerados sistemas classificadores. A forma do gráfico da curva ROC da rede multicamadas, com ambas as bases de eventos, caracteriza o sistema como classificador, como foi explicado na subseção 2.8.3.

O mesmo pode se afirmar por meio da observação dos dados estatísticos. Os valores da sensibilidade variaram entre 0,967005076 (rede multicamadas treinada com extração de características e *threshold* 0,1) e 0,995769882 (Mapa de Kohonen). Já os valores mínimo e máximo da especificidade variaram entre 0,915325995 (rede multicamadas treinada com extração de características e *threshold* 0,1) e 1 (rede multicamadas treinada com eventos marcados diretamente no sinal). E a eficiência apresentou como valor máximo 0,997460855 (Mapa de Kohonen) e valor mínimo 0,942022852 (rede multicamadas treinada com extração de características e *threshold* 0,1).

Os resultados obtidos com a utilização do Mapa de Kohonen superaram em muito qualquer expectativa, dada a facilidade de sua implementação e o fato de realizar aprendizado não supervisionado. Em relação a rede multicamadas, o Mapa de Kohonen mostrou melhor desempenho, ao menos para o fragmento do sinal testado. Nas poucas partes em que o sinal apresentou muito ruído, a rede multicamadas foi mais eficiente.

Na tabela 8, podem ser observados resultados obtidos a partir da aplicação de diferentes métodos na mesma base de dados utilizada neste trabalho. E possibilita a comparação dos valores observados do índice DER (Detection Error Rate) entre eles.

Tabela 8: Comparação dos métodos utilizados para detecção do QRS oriunda da tabela de (ZHANG; LIAN, 2007) acrescido das quatro últimas linhas com resultados obtidos no trabalho de (SARAIVA, 2012)

Método	QRS	FP	FN	DER
Algoritmos genéticos	2572	86	5	3,54
Filtro passa banda	2572	67	22	3,46
Wavelet denoising	2572	78	5	3,23
Bancos de filtragem	2139	53	16	3,22
BPF/search-back	2564	53	22	2,95
Filtro adaptativo linear	2572	40	22	2,40
Filtragem otimizada	2572	35	21	2,18
Topological mapping	2572	41	4	1,75
Transformada wavelet	2572	15	12	1,09
Filtro adaptativo e rede neural	2572	10	4	0,5
Morfologia 1M	2572	49	10	2,29
Morfologia 2M	2572	27	9	1,40
Morfologia 3M	2572	19	7	1,01
Morfologia 1M	2690	40	2	1,56
Morfologia 2M	2690	41	2	1,60
Morfologia 3M	2690	40	0	1,49
Morfologia 4M	2690	39	0	1,45

Fonte: Modificada de (SARAIVA, 2012)

Cabe destacar, no entanto, que os resultados apresentados na tabela 8 são relativos ao uso do sinal inteiro, em que as marcações da base de dados acusam entre 2572 e 2690 ocorrências do complexo QRS. Enquanto este projeto realizou testes com metade do mesmo sinal, apresentando 1182 ocorrências do complexo QRS.

No entanto, o menor valor do índice DER (*Detection Error Rate*) obtido pelos outros trabalhos foi 0,5 (Filtro adaptativo e rede neural). E o presente trabalho teve como valor mínimo do índice DER 0,002332815 (aplicação do Mapa de Kohonen), valor inferior ao obtido por qualquer dos outros trabalhos. O valor máximo do índice DER observado nos testes deste projeto foi 0,053265941 (rede multicamadas com extração de características e *threshold* 0,1).

5 CONSIDERAÇÕES FINAIS

Os objetivos inicialmente definidos foram alcançados plenamente. O projeto concluiu o desenvolvimento de um sistema computacional, capaz visualizar sinais de ECG armazenados em arquivos digitais, apresentando ainda as funcionalidade de marcar e salvar eventos do sinal, e reconhecer padrões. Além disso, foi implementada uma técnica a mais do que inicialmente planejado. Ao todo, o sistema apresenta três técnicas diferentes para o reconhecimento de padrões: Mapa de Kohonen, rede multicamadas treinada eventos marcados diretamente no sinal e rede multicamadas treinada com eventos obtidos após a extração de características.

Cada uma das técnicas de reconhecimento de padrões implementada foi testada com o mesmo arquivo de sinal. Todas as técnicas apresentaram valores acima de 0,91 para os índices estatísticos de eficiência, especificidade e sensibilidade. Os valores mínimos da sensibilidade e da especificidade foram 0,967005076 (rede multicamadas treinada com extração de características e *threshold* 0,1) 0,915325995 (rede multicamadas treinada com extração de características e *threshold* 0,1), respectivamente. A eficiência apresentou o valor mínimo 0,942022852 (rede multicamadas treinada com extração de características e *threshold* 0,1).

Em relação a utilização da base de dados obtida com extração de características, esperavase que os testes apresentassem melhores resultados. Todavia, o Mapa de Kohonen mostrou-se extremamente eficiente como sistema classificador.

O desenvolvimento deste trabalho exigiu uma grande quantidade de horas dedicadas tanto ao estudo da fundamentação teórica, quanto ao desenvolvimento do projeto propriamente dito. O capítulo Gestão do Projeto 6 foi elaborado para abordar a questão do esforço dispendido pelos membros da equipe, e aspectos de gestão do projeto.

Como trabalhos futuros, propõe-se o uso de outros bases de dados contendo outros tipos de sinal, como sinais de Eletroencefalografia (EEG), por exemplo. Seria interessante observar o comportamento dos métodos de reconhecimento implementados atuando sobre outros tipos de dados, com formas de onda menos definidas.

6 GESTÃO DO PROJETO

Inicialmente, este projeto pretendia utilizar uma base de dados de exames de Eletroencefalografia (EEG), obtida em um Hospital, mediante autorização do Comitê de Ética da Instituição. A metodologia de testes seria realizada por um médico neurologista, que avaliaria os resultados do sistema, classificando-os como verdadeiro positivo, verdadeiro negativo, falso positivo ou falso negativo.

Contudo, dada a limitação de tempo para a conclusão deste trabalho, e a escassez de bases de dados de EEG públicas adequadas (o que dispenderia menor tempo, por não necessitar de autorização do Comitê de Ética), a equipe alterou o escopo do projeto, passando a utilizar uma base de dados pública de ECG.

Esta mudança trouxe alguns benefícios, dentre eles a possibilidade de a própria equipe realizar os testes, uma vez que a base de dados já possui marcações dos eventos, bastando apenas compará-las aos eventos identificados pelo sistema.

Este capítulo apresenta as seções Recursos de Hardware 6.1, Recursos de Software 6.2 e Horas de Trabalho 6.3.

6.1 RECURSOS DE HARDWARE

Os recursos de *Hardware* correspondem às duas máquinas utilizadas pelos membros da equipe durante o desenvolvimento do projeto: *Macbook Pro* 13 polegadas, início de 2011, com processador Intel Core i7 de 2.7 GHz, memória de 16 GB e HD com 1TB e um *notebook* Dell Inspiron 14R-3440 com processador Intel Core i5, memória RAM de 6GB e HD com 1TB.

6.2 RECURSOS DE SOFTWARE

Os recursos de *Software* utilizados neste projeto correspondem ao seguintes itens:

• Visual Studio;

- Plataforma Microsoft .NET versão 4.5;
- Biblioteca NeuroLoopGain;
- Biblioteca BrainNet Library.

Para obter gratuitamente a licença do ambiente de desevolvimento *Visual Studio*, a equipe se associou ao programa DreamSpark, da Universidade Tecnológica Federal do Paraná. Os demais recursos utilizados são gratuitos.

6.3 HORAS DE TRABALHO

A tabela 9 mostra de modo resumido as tarefas envolvidas no projeto, e as respectivas quantidades de horas esperadas e efetivamente dedicadas.

Tabela 9: Tabela com a lista de tarefas e horas de trabalho

Tarefas	Horas esperadas	Horas dedicadas
Plano de Projeto	90	100
Pesquisa da base de dados	0	30
Estudo da base de dados	0	10
Ajustes na base de dados	0	10
Estudo de tecnologias	20	30
Módulo de visualização do sinal	40	45
Módulo de marcação de eventos	50	100
Módulo de extração de características	50	20
Módulo de reconhecimento de padrões	50	100
Módulo de avaliação	50	40
Testes	30	50
Elaboração do relatório	50	70
Reuniões	30	60
Total	460	655

Fonte: Autoria Própria

A figura 37 mostra o comparativo entre as horas esperadas e as horas realmente dedicadas ao projeto.

Figura 37: Gráfico da Quantidade de Horas Trabalhadas Fonte: Autoria própria

REFERÊNCIAS

- ANGHINAH, R. et al. Artefatos bioógicos no EEG quantitativo. **Arquivos de Neuro – Psiquiatria**, 2006.
- BLOCH, S. Excel para engenheiros e cientistas. [S.l.]: Livros Técnicos e Científicos, 2004.
- BROWN, C. D.; DAVIS, H. T. Receiver operating characteristics curves and related decision measures: A tutorial. **Chemometrics and Intelligent Laboratory Systems**, v. 80, n. 1, p. 24 38, 2006. ISSN 0169-7439. Disponível em: http://www.sciencedirect.com/science/article/pii/S0169743905000766.
- CONEP. **Perguntas e Respostas Frequentes**. 2011. Disponível em: http://conselho.saude.gov.br/Web_comissoes/conep/index.html>. Acesso em: 25 de agosto de 2013.
- FAWCETT, T. An introduction to roc analysis. **Pattern Recogn. Lett.**, Elsevier Science Inc., New York, NY, USA, v. 27, n. 8, p. 861–874, jun. 2006. ISSN 0167-8655. Disponível em: http://dx.doi.org/10.1016/j.patrec.2005.10.010.
- GACEK, A.; PREDYCZ, W. ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence. [S.l.]: Springer, 2011.
- GOLDBERGER, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. **Circulation**, v. 101, n. 23, p. e215–e220, 2000. Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.
- GUTHIKONDA, S. M. **Kohonen Self Organizing Maps**. 2005. Disponível em: http://shy.am/writings/Kohonen_SOMs.pdf>. Acesso em: 18 de setembro de 2013.
- HAYKIN, S. Neural Networks: A Comprehensive Foundation. 2nd. ed. [S.l.]: Pearson Prentice Hall, 2011. 823 p.
- KEMP, B.; OLIVAN, J. European data format 'plus' (edf+), an {EDF} alike standard format for the exchange of physiological data. **Clinical Neurophysiology**, v. 114, n. 9, p. 1755 1761, 2003.
- MADHUDSUDANAN, A. **Neural Networks**. 2006. Disponível em: http://www.amazedsaint.com/2008/01/neural-networks-part-iii-nxml-xml-based.html. Acesso em: 09 de setembro de 2013.
- MALMIVUO, J.; PLONSEY, R. **Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields**. New York: Oxford University Press, 1995. Disponível em: http://www.bem.fi/book/>.
- MASSAD, E.; ORTEGA, N.; SILVEIRA, P. **Métodos quantitativos em medicina**. [S.l.: s.n.], 2004.

MOODY, G.; MARK, R. The mit-bih arrhythmia database on cd-rom and software for use with it. In: **Computers in Cardiology 1990, Proceedings.** [S.l.: s.n.], 1990. p. 185–188.

NEUROLOOPGAIN. **NeuroLoopGain**. 2012. Disponível em: http://code.google.com/p/neuroloopgain/>. Acesso em: 09 de setembro de 2013.

PROJECT, C. **The Code Project Open License (CPOL) 1.02**. 2008. Disponível em: http://www.codeproject.com/info/cpol10.aspx. Acesso em: 09 de setembro de 2013.

SARAIVA, A. A. Detecção do Complexo QRS através de Morfologia Matemática Multiescalar. Dissertação (Mestrado) — Programa de Pós –Graduação em Engenharia Biomédica – UTFPR, 2012.

SMITH, S. W. **The scientist and engineer's guide to digital signal processing**. San Diego, CA, USA: California Technical Publishing, 1997. ISBN 0-9660176-3-3.

SOVIERZOSKI, M. Avaliação de Descritores Morfológicos na Identificação de Eventos Epileptiformes. Tese (Doutorado) — Programa de Pós –Graduação em Engenharia Elétrica – UFSC, 2009.

The Apache Software Foundation. **Apache License, Version 2.0**. 2004. Disponível em: http://www.apache.org/licenses/LICENSE-2.0. Acesso em: 09 de setembro de 2013.

ZHANG, F.; LIAN, Y. Electrocardiogram qrs detection using multiscale filtering based on mathematical morphology. In: **Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE**. [S.l.: s.n.], 2007. p. 3196–3199. ISSN 1557-170X.