Bioinformatik Übung 6

Sunhild Hartmann

Aufgabe 2

"Human Hemoglobin subunit alpha" (HBA_HUMAN)

MVLSPADKTN VKAAWGKVGA HAGEYGAEAL ERMFLSFPTT KTYFPHFDLS HGSAQVKGHG KKVADALTNA VAHVDDMPNA LSALSDLHAH KLRVDPVNFK LLSHCLLVTL AAHLPAEFTP AVHASLDKFL ASVSTVLTSK YR

"Human Hemoglobin subunit beta" (HBB HUMAN)

MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG KEFTPPVQAA YQKVVAGVAN ALAHKYH

Aufgabe 3

Globales Alignment: Zwei komplette Sequenzen werden betrachtet, meist bei ähnlichen Sequenzen mit ähnlicher Länge

<u>Lokales Alignment</u>: Betrachtung von zwei Teilsequenzen, diese werden durch Betrachtung und Vergleichen des Scores gefunden, da dieser im optimalen Fall maximal ist.

Aufgabe 4

1) Globales Alignment mit voreingestellten Parametern

EMBOSS_001	1 MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-D	48
EMBOSS_001	1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	48
EMBOSS_001	49 LSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR	93
EMBOSS_001	49 LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	98
EMBOSS_001	94 VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR 1	L42
EMBOSS 001		L47

Aligned_sequences: 2 Matrix: EBLOSUM62 Gap_penalty: 10.0 Extend_penalty: 0.5

Length: 149

Identity: 65/149 (43.6%) Similarity: 90/149 (60.4%) Gaps: 9/149 (6.0%)

Score: 292.5

2) Globales Alignment mit einer anderen Matrix (EBLOSUMN)

EMBOSS_001	1 MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-D	48
EMBOSS_001	1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	48
EMBOSS_001	49 LSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR	93
EMBOSS_001	49 LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	98
EMBOSS_001	94 VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR	142
EMBOSS 001	99 VDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH	147

Aligned_sequences: 2 Matrix: EBLOSUMN Gap_penalty: 10.0 Extend_penalty: 0.5

Length: 149

Identity: 65/149 (43.6%) Similarity: 82/149 (55.0%) Gaps: 9/149 (6.0%)

Score: 297.5

3) Globales Alignment mit einer anderen GAP OPEN penalty (5)

EMBOSS_001	1 MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-D	48
EMBOSS_001	1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	48
EMBOSS_001	49 LSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR	93
EMBOSS_001	49 LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	98
EMBOSS_001	94 VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR	142
EMBOSS_001		147

Aligned_sequences: 2 Matrix: EBLOSUM62 Gap_penalty: 5.0 Extend_penalty: 0.5

Length: 149

Identity: 65/149 (43.6%) Similarity: 90/149 (60.4%) Gaps: 9/149 (6.0%)

Score: 312.5

4) Lokales Alignment mit voreingestellten Parametern

EMBOSS_001	3 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS- 50
EMBOSS_001	4 LTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLST 51
EMBOSS_001	51HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDP 96
EMBOSS_001	. :.: . . .::.: : :::. : .
EMBOSS_001	97 VNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKY 141
EMBOSS 001	. : .:. : . . . : .: . 102 ENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKY 146

Aligned_sequences: 2 Matrix: EBLOSUM62 Gap_penalty: 10.0 Extend_penalty: 0.5

Length: 145

Identity: 63/145 (43.4%) Similarity: 88/145 (60.7%) Gaps: 8/145 (5.5%)

Score: 293.5

PRIO_CHICK PRIO_CAPHI PRIO_HUMAN PRIO_GORGO PRIO_RAT PRIO_MOUSE	MARLLTTCCLLALLLAACTDVALSKKGKGKPSGGGWGAGSHRQPSYPRQPGYPHNPGYPH MVKSHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPMANLGCWMLVLFVATWSDLGLCKKRPKPG-GWNTGGSRYPGQGSPGGNRYPPMANLGCWMLVLFVATWSDLGLCKKRPKPG-GWNTGGSRYPGQGSPGGNRYPPMANLGYWLLALFVTTCTDVGLCKKRPKPG-GWNTGGSRYPGQGSPGGNRYPPMANLGYWLLALFVTMWTDVGLCKKRPKPG-GWNTGGSRYPGQGSPGGNRYPP	60 54 51 51 51 51
PRIO_CHICK PRIO_CAPHI PRIO_HUMAN PRIO_GORGO PRIO_RAT PRIO_MOUSE	NPGYPHNPGYPHNPGYPHNPGYPQNPGYPHNPGYPGWGQGYNPSSGGSYHNQKPW-QGGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQGGSHSQWNQGGGGWGQPHGGGW	115 103 100 100 100 99

Alignment aus der Vorlesung (1.7.2018, Folie 9)

Auf der Folie wurden mehrere Sequenzen miteinander verglichen, nicht wie in den vorherigen Aufgaben jeweils 2. Zu sehen ist, dass in der Vorlesungsfolie eindeutig mehr Abschnitte der Sequenzen übereinstimmen und sich diese dementsprechend ähnlicher sind (mit Ausnahme der ersten Sequenz, PRIO_CHICK). Diese Ähnlichkeiten sind vermutlich dadurch zustande gekommen, indem viele Gaps eingefügt wurden, welche in den erstellten Alignments kaum vorhanden sind.

Substitutionsmatrizen: Bewertet individuelle Substitutionen, wird genutzt, um einem Alignment einen Score zuzuordnen und das Alignment so bewertet.

Häufig verwendete Substitutionsmatrizen sind BLOSUM und PAM.

BLOSUM (Blocks Substitution Matrix): basiert auf homologen Proteinsequenzen, deren Alignments evolutionär weit entfernt sind.

<u>BLOSUM62</u>: Alle Sequenzen in der Matrix werden mit mehr als 62% Sequenzidentität zu einer Sequenz zusammengefasst.

PAM (Point-Accepted Mutations): Die Mutationswahrscheinlichkeit ist unabhängig von der Position in der Sequenz. Die Matrix berechnet sich aus der absoluten Häufigkeit aller Aminosäuren über alle Sequenzen, welche auf die Gesamtlänge aller Sequenzen normiert werden.

Gap Penalty: Wird verwendet, um die Anzahl der Gaps minimal zu halten und den Alignment Score anzupassen basierend auf der Zahl und Länge der Gaps, um noch ein nützliches Alignment zu erhalten.

Quelle:

https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/teaching/archive/ws0506/bioinformatik-bpi/05_pam.pdf (10.7.2018, 11:43)