9 L9: Hash

Hash 是一種 compression function。長的 input 經過 hash 之後會變成短的 ouput。 Hash 也被稱為 fingerprint / hash value / digest。

因為是壓縮,所以會存在一些碰撞 (collision)。

Collision: a pair of distinct items x, x' for which $Hash(x) = Hash(x') \circ$

9.1 Syntax

Definition 11

A hash function (with output length l(n)) is a pair of PPT algorithm (Gen, H)

- Gen: takes a security parameter 1^n and outputs a key s.
- H: takes input as a key s and a string $x \in \{0,1\}^*$, and outputs a string $\mathbf{H}^s(x) \in \{0,1\}^{l(n)}$.

If $x \in \{0,1\}^{l'(n)}$ and l'(n) > l(n), then we say it's a fixed-length input hash.

Definition 12 (Collision resistant)

A hash function $\Pi = (Gen, H)$ is collision resistant if \forall PPT adversaries A, there is a negligible function negl such that

$$\Pr[\text{Hash-coll}_{A,\Pi}(n) = 1] \leq \operatorname{negl}(n)$$

 $\operatorname{Hash-coll}_{A,\Pi}(n)$ 的 scenario 如下:

首先 challenger C 會先產生一個 key s 給 adversary $A \cdot A$ 可以通過自己的計算,試圖猜出一個 pair (x,x'),再傳給 $C \cdot$ 若 $H^s(x) = H^s(x')$ 且 $x \neq x'$,則 output $\mathbf{1}$,也就是 $\operatorname{Hash-coll}_{A,\Pi}(n) = 1$ 。

§ Preimage resistant (one-wayness)

Adversary 會拿到一個 key s (下圖省略) 和一個 hash function H 的 output y · 並且當 adversary 給 出 $x=\mathrm{H}^{-1}(y)$ 時,視為破解成功。

§ Second-preimage resistant

Adversary 會拿到一個 key s (下圖省略)和一對 value — hash function H 的 input x 和 output y = H(x),並且當 adversary 給出 $x' \neq x$ 且 H(x') = H(x) 時,視為破解成功。

若要以上述情況作為 security 的定義,則兩者成功的機率都是要 ≤ negl。

Quiz

Compare the security notions of hash function. 比較各種 hash function 的安全定義的難易程度 (易、難、無法比較)

(Ex:Second-preimage resistant is harder than collision resistant.)

9.2 SIS

§ Short Integer Solution (SIS) Problem

 \mathbb{Z}_q^n : n-dimensional vectors modulo q (e.g. $q \approx n^3$)

Goal: find non-trivial small (ex: $\{0,1\}$) $z_1, z_2, \ldots, z_m \in \mathbb{Z}$ such that

$$z_{1} \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{13} \end{bmatrix} + z_{2} \begin{bmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{23} \end{bmatrix} + z_{m} \begin{bmatrix} a_{m1} \\ a_{m2} \\ \vdots \\ a_{m3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{Z}_{q}^{n}$$

Remark:

- $\begin{array}{lll} \bullet & z_1,z_2,\ldots,z_m=0 & \Rightarrow & \text{``trival''} \\ \bullet & z_1,z_2,\ldots,z_m \notin \{0,1\} & \Rightarrow & \text{``easy''} \end{array}$

§ SIS-based Hash Function

Rewrite the forementioned definition of SIS problem.

 \mathbb{Z}_q^n : n-dimensional vectors modulo q (e.g. $q \approx n^3$)

Goal: find non-trivial small (ex: $\{0,1\}$) $z_1, z_2, \ldots, z_m \in \mathbb{Z}$ such that

$$\mathbf{Az} = \begin{bmatrix} a_1 & a_2 & \dots & a_m \\ & \vdots & & \vdots \\ z_m \end{bmatrix} = \mathbf{0} \in \mathbb{Z}_q^n$$

Construction of Hash

Set $m > n \log q$ (for compression).

Define $f_{\mathbf{A}}:\{0,1\}^m o \mathbb{Z}_q^n$ as $f_{\mathbf{A}}(x) = \mathbf{A}\mathbf{x}$

Collision: $\mathbf{x}, \mathbf{x}' \in \{0, 1\}^m$ where $\mathbf{x} \neq \mathbf{x}'$ and $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}'$

§ Collision Resistant SIS-based Hash

Quiz

We do not formally write down the security proof, and only provide proof intuition.

- (i) Please show the assumption ($Pr[success] \leq negl$), aka SIS, which is used in the proof.
- (ii) Please complete the proof with probability analysis.

9.3 Arbitrary-length Hash Function

前面介紹的 SIS-based hash function 和現實中使用的 hash function 都是 fixed-length compression function。我們可以透過 Merkel-Damgard transformation 來做到 arbitrary-length hash function。

§ Merkle-Damgard Transformation

和 CBC-MAC 的概念相似。

Let (Gen', h) be a fixed input length hash. $h : \{0, 1\}^{2n} \to 0, 1^n$ Let (Gen, H) be a fixed input length hash. $H : \{0, 1\}^* \to 0, 1^n$

Use (Gen, h) to build (Gen, H)

- Gen: run Gen' $(1^n) \rightarrow s$ (key)
- H: on input s and a string $x \in \{0,1\}^*$ of length L where $L < 2^n$.
 - (i) Set $B = \lceil \frac{L}{n} \rceil$ (B: number of blocks) Pad x with 0s, so length will be a multiple of n. Parse x to x_1, x_2, \dots, x_B , and set $x_{B+1} = L$
 - (ii) Set $z_0 = 0^n$ as IV
 - (iii) For i = 1, 2, ..., B + 1, compute $z_i = h^s(z_{i-1}||x_i)$

(iv) Output z_{B+1} as the hash value of x.

Quiz

We found some cute trick in Merkle-Damgard transformation:

- (i) The purpose of *L*? (Hint: related to collision)
- (ii) Suppose the fixed-length hash is $h:0,1^{n+1}\to 0,1^n$ How to build an arbitrary length has from the above?

§ Security of Merkel-Damgard Transformation

Theorem 9

If (Gen', h) is collision resistant, then (Gen, h) is collision resistant.

Proof

For any s, a collision in H^s yields a collision h^s . Assume two distinct strings (x, x') of length (L, L') such that $H^s(x) = H^s(x')$.

Let x_1, x_2, \ldots, x_B are the blocks of padded x and $x_{B+1} = L$, and x'_1, x'_2, \ldots, x'_B are the blocks of padded x' and $x_{B'+1} = L'$.

Case 1:
$$L \neq L'$$
In the last step of $\mathrm{H}^s(x)$ (resp. $\mathrm{H}^s(x')$),
 $z_{B+1} = \mathrm{h}^s(z_B||L)$ (resp. $z'_{B'+1} = \mathrm{h}^s(z'_{B'}||L')$)
Assume $\mathrm{H}^s(x) = \mathrm{H}^s(x')$
 $\Rightarrow h^s(z_B||L) = h^s(z'_{B'}||L')$ which is a collision in h^s
Case 2: $L = L'$ (implies $B = B'$)
Let $I_i \stackrel{\mathrm{def}}{=} z_{i-1}||x_i|$. (*i*-th input of h^s) (I'_i , resp.)
Set $I_{B+2} \stackrel{\mathrm{def}}{=} z_{B+1}$.

Assume $\mathrm{H}^s(x)=\mathrm{H}^s(x').$ Let N be the largest index for $I_N\neq I_N'.$ Since |x|=|x'|, but $x\neq x',$ there must exist an i with $x_i\neq x_i'.$ $I_{B+2}=z_{B+1}=\mathrm{H}^s(x)=\mathrm{H}^s(x')=z_{B+1}'=I_{B+2}'$ $\Rightarrow N\leqslant B+1\Rightarrow I_{N+1}=I_{N+1}'$ For this N, I_N , I_N' are collision in $\mathrm{h}^s.$