Assignment 3

Hand-in Evaluation Deadline: 5:00 pm, 28th October In-class Evaluation: L1: 2:40 pm - 2:50 pm, 1th November

L2: 9:40 am - 9:50 am, 1th November L3: 2:40 pm - 2:50 pm, 31th October L4: 4:40 pm - 4:50 pm, 1th November

1. Determine whether each of the following set of vectors is linearly independent or linearly dependent. If it is linearly dependent, write a nontrivial relation of dependence:
(a)

 $\mathbf{u_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \mathbf{u_3} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}.$

(b) $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v_4} = \begin{bmatrix} 0 \\ 0 \\ 3 \\ 8 \end{bmatrix}.$

2. Find a maximal linearly independent subset of the following set:

$$S = \left\{ \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}, \begin{bmatrix} -2\\3\\-3\\4 \end{bmatrix}, \begin{bmatrix} 3\\-6\\1\\-3 \end{bmatrix}, \begin{bmatrix} -4\\3\\1\\2 \end{bmatrix}, \begin{bmatrix} -5\\9\\-4\\7 \end{bmatrix} \right\}.$$

- 3. Determine whether the following sets are subspaces of $\mathbb{R}^{2\times 2}$. Show your reasoning.
 - (a) The set of all 2×2 diagonal matrices.
 - (b) The set of all 2×2 triangular matrices.
 - (c) The set of all 2×2 lower triangular matrices.
 - (d) The set of all 2×2 matrices A such that $a_{12} = 1$.
 - (e) The set of all 2×2 matrices B such that $b_{11} = 0$.
 - (f) The set of all symmetric 2×2 matrices.
 - (g) The set of all singular 2×2 matrices.

4. (a) Write the solution set of $A\mathbf{x} = \mathbf{b}$ in parametric vector form.

$$A = \begin{bmatrix} 3 & 4 & 4 \\ -3 & -2 & 0 \\ 6 & 2 & -4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 2 \\ -8 \end{bmatrix}$$

(b) For $A\mathbf{x} = \mathbf{b}'$ the following is a solution, Give the full solution set of $A\mathbf{x} = \mathbf{b}'$ in parametric vector form. Explain why you could write this down without doing any work.

$$A = \begin{bmatrix} 3 & 4 & 4 \\ -3 & -2 & 0 \\ 6 & 2 & -4 \end{bmatrix}, \mathbf{b}' = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix},$$

and

$$\mathbf{x} = \begin{bmatrix} -5/3 \\ 3 \\ 0 \end{bmatrix}$$

- 5. Let $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} -3 \\ 4 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$.
 - (a) Show that the set $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}$ is a basis of \mathbb{R}^3 .
 - (b) Given a vector $\mathbf{x} = \begin{bmatrix} -8\\2\\3 \end{bmatrix}$ in \mathcal{R}^3 . Find the coordinate vector of \mathbf{x} with respect to the basis \mathcal{B} .
 - (c) Given the coordinate of \mathbf{y} with respect to the basis \mathcal{B} is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is the vector \mathbf{y} in \mathbb{R}^3 ?
- 6. Determine the dimension of each of the following vector spaces:

Determine the dimension of each of (a) span
$$\left\{ \begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\4 \end{bmatrix}, \begin{bmatrix} -3\\3\\6 \end{bmatrix} \right\}$$
.

- (b) span{ $(x-2)(x+2), x^{2}(x^{4}-2), x^{6}-8$ }.
- 7. Let V be a vector space of dimension n > 0, show that
 - (a) Any set of n linearly independent vectors in V forms a basis.
 - (b) Any set of n vectors that span V forms a basis.

8. Let

$$V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathcal{R}^4 | x_1 + x_2 + x_3 + x_4 = 0 \right\}.$$

Show that

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix} \right\}$$

is a basis for V. What is $\dim(V)$?

9. Show that if U and V are subspaces of \mathbb{R}^n and $U \cap V = \{0\}$, then

$$\dim(U+V) = \dim(U) + \dim(V)$$

.

- 10. Given vectors $\mathbf{u_1}, \dots, \mathbf{u_p}$ and \mathbf{w} in a vector space V with basis B, show that \mathbf{w} is a linear combination of $\mathbf{u_1}, \dots, \mathbf{u_p}$ if and only if $[\mathbf{w}]_B$ is a linear combination of the coordinate vectors $[\mathbf{u_1}]_B, [\mathbf{u_2}]_B, \dots, [\mathbf{u_p}]_B$.
- 11. Let $H = \operatorname{Span}\{\mathbf{v_1}, \mathbf{v_2}\}$ and $K = \operatorname{Span}\{\mathbf{v_3}, \mathbf{v_4}\}$ where $\mathbf{v_1} = [1, -1, -3]^T$, $\mathbf{v_2} = [8, -9, 6]^T$, $\mathbf{v_3} = [-3, -1, 8]^T$, $\mathbf{v_4} = [3, -5, 4]^T$. Geometrically, H and K are planes in \mathbb{R}^3 through the origin, and they intersect in a line through origin. Find a nonzero vector \mathbf{w} that generates that line (i.e., $\operatorname{Span}\{\mathbf{w}\}$ is that line).(Hint: \mathbf{w} can be written as a linear combination of $\mathbf{v_1}$ and $\mathbf{v_2}$, and as a linear combination of $\mathbf{v_3}$ and $\mathbf{v_4}$. To build \mathbf{w} , solve the equation $c_1\mathbf{v_1} + c_2\mathbf{v_2} = c_3\mathbf{v_3} + c_4\mathbf{v_4}$ for the unknown c_1, c_2, c_3, c_4 .)
- 12. (a) Suppose $T = \{\mathbf{u_1}, \dots, \mathbf{u_n}\}, S = \{\mathbf{v_1}, \dots, \mathbf{v_m}\}$. Let $\mathbf{u_i} \in \operatorname{Span}(S)$ for all $i = 1, \dots, n$, show that $\operatorname{Span}(T) \subseteq \operatorname{Span}(S)$.
 - (b) Let $T = {\mathbf{u_1}, \dots, \mathbf{u_n}}$ and $S = {\mathbf{u_1} + 3\mathbf{u_2}, \mathbf{u_2}, \dots, \mathbf{u_n}}$, show that $\mathrm{Span}(T) = \mathrm{Span}(S)$.