

1ST ACT GLOBAL TRAJECTORY OPTIMISATION COMPETITION

Carlos Corral Van Damme Raul Cadenas Gorgojo Jesus Gil Fernandez (GMV, S.A.)

ESTEC, 2nd February, 2006

© GMV S.A., 2006 Property of GMV S.A.
All rights reserved

- First team meeting for preliminary assessment of the problem
- Analysis of objective function
 ⇒ preferred impact conditions
 - Frontal impact at asteroid perihelion
 - Impactor in retrograde orbit, coplanar with the asteroid one

Candidate trajectory concepts

- Pure ballistic trajectory
 - Coast arcs + planets swingby
- Pure low thrust trajectory
 - >Thrust arcs + coast arcs
 - Without any planet swingby
- Hybrid trajectory
 - >Thrust + coast arcs + swingby

Pure ballistic trajectories

Departure v_∞ = 2.5 km/s
 ⇒ Do need low thrust to reach any planet other than the Earth

Pure low thrust trajectories

 Too much fuel to attain retrograde motion and fall back into the inner Solar System within 30 years

Hybrid trajectory

Our choice

Other considerations

- ullet Gravity assists with giant planets promise high ΔV
 - Constraints on mission duration & periapsis altitude
 - ⇒ only Saturn may produce retrograde motion
- Venus and Earth swingbys needed to reach Jupiter
- Expected impact velocity (approx. 50 km/s) exceeds g₀·I_{sp}
 - > No thrust in the last trajectory leg
- Last swingby close to a node of the giant planet with the asteroid

GeoExpress

- Low-thrust transfers
- Optimal control (Pontryagin) in the inner (fast) loop
- Optimisation of the guidance profile in the outer (slow) loop
- Applied to the GTO-GEO transfer of ConExpress

o GlOptImp

 Global search (GA) of ballistic trajectories within the Solar System

Includes

- planet swingbys
- minor body flybys
- impulsive deep space maneuvers

Mitrades

- Interactive design and optimization of interplanetary ballistic trajectories in MATLAB
- Phase-free transfers, resonant orbits, multiple DSM
- Applied to NEO mission design

o MerPro

- Constrained
 optimization of
 multi-arc finite thrust trajectories
- Global search (GA)+ local optimizer
- Applied to abort trajectories, orbit transfer and launch and interplanetary missions

Our first guess

GlOptImp used to find best EJSA trajectory

• EJSA

- Earth departure in December 2016 (< 7 years to get V_∞=9.2 km/s)
- DSM between Jupiter and Saturn
- ➤ Asteroid impact in December 2026 (48.5 km/s)

- Mitrades used to match the Earth swingby conditions
 - EVE-DSM-E
 - Earth departure March 2012 (2 years to get V_{∞} =4.5 km/s)
- Merpro used to compute the lowthrust transfer
 - EEE
 - ► Launch in March 2010
- Objective function
 - 1 283 000 km²kg/s²

o Improvements

- Optimize dates and maneuvers
 - ➤ Objective function: 1 417 000 km²kg/s²
- Wait one extra revolution in the last arc and apply a DSM at aphelion to improve impact geometry and velocity
 - Objective function
 - > 1 456 000 km²kg/s²
 - > Arrival
 - > June 15th, 2039
 - > 49.1 km/s
 - > 1306 kg

- Focus in obtaining a feasible, good trajectory (not the global optimum)
 - Search for initial guess was not exhaustive
- Method to build and improve the complete trajectory worked successfully
 - Hybrid trajectory: low-thrust + swingbys
 - Difficult to satisfy constraint in launch date (due to initial guess)
- Tools require deep understanding of the problem to find a good solution
- GMV is continuously improving and extending the tools and algorithms for trajectory design and optimization