More about scds: the extended Euclidean alsorithm. Recall that for a, b & Z, 3 x, y & Z s.t. gd(a,b) = xa+yb. Let's see how to find x, y. Aside: one application, use fal in cryptography, is to find modular inverses. That is, given α , $n \in \mathbb{Z}^+$, find $x \in \mathbb{Z}^+$ 5.t. $\alpha x \otimes n = 1$. (This is possible only when gcd(a,n) = 1.) If gcd (gn) = 1, then if x,y & Z s.t. ax +bn = 1, then note that ax = 1 - bn $50 \text{ ax } g n = (1 - b n) g n = 1. \sqrt{2}$ How to compute x, y when siven a, b? Again, well use necursion. Storage for outpats! Possible prototype: int xscd (int a, int b, int&x, int&y); Base case? Before, we used b = = 0. If b = = 0, what are valid choices of

$$x,y$$
? $x = 1$, $y = 0$

so that $x = 1$, $y = 1$ a to 0

 $x = 3$ col(a,0).

Now, assuming our x gcd bushes for any smaller value of b , how could we find x,y for a,b when $b \neq 0$?

Say $a = g \cdot b + r$., $f \in Z$, $f \not\in b$.

As we saw before, $gcd(a,b) = gcd(b,r)$.

Assuming a gcol works for smaller values of the second apaid, we can find x',y' s.t.

 $x'b + y'r = d$ $d = gcd(a,b)$

But $r = a - gb$ $f = a = gcd(a,b)$

So, $f = a + gcd(a - gcd(a,b))$

So, $f = a + gcd(a - gcd(a,b))$
 $f = a + gcd(a - gcd(a,b))$
 $f = a + gcd(a,b)$
 $f = a + gcd(a,b)$

Analysis: Now many recursive calls will be made, relative to 161?

Claim: only takes ~ c.log_161

Steps for a small constant C.

Now to see this?

If r is "large", the 'next r'

wont be...

Exercise TODO: make this arsument

Cormal + precise!