Meer, Märkte, Mobilität

Zusammenspiel von Küstenschutz und Handelsdrehscheibe Niederlande

Freitag, 11. Juli 2025

Leon Randzio

Ingo Weber

Yannick Königstein

Sophie Blum

Tjark Gerken

Projektauftrag

Anforderung und Teamstruktur eines Data-Science-Projekts zur Bewertung und Vermittlung klimatischer Risiken.

Anforderung

Wo liegen Chancen für die EU im Bereich Data Science?

Visualisierung komplexer Zusammenhänge in einer **Data Story** und **Video**.

Climate Risk Assessment zum

Meeresspiegelanstieg - Fallstudie Niederlande.

Datenanalyse, Mustererkennung und Visual Storytelling in einem integrierten Format.

Projektstruktur

Projektziele

Sechs miteinander verknüpfte Projektziele als Basis für datenbasierte Risikoanalyse, politische Relevanz und technische Skalierbarkeit.

Heterogene Datenquellen

Verknüpfung und Harmonisierung unterschiedlicher Datenformate für integrierte Analysen.

Kommunikation

Visualisierung als Data Story und multimediale Aufbereitung zur Förderung des Transfers in Gesellschaft und Politik.

Handlungsempfehlung

Ableitung konkreter, faktenbasierter Empfehlungen für politische Entscheidungsträger.

Datenbasierte Risikoanalyse

Aufzeigen des Potenzials datengetriebener Analysen zur Bewertung klimabedingter Risiken.

Sozioökonomische Folgen

Analyse der sozialen, wirtschaftlichen und ökologischen Auswirkungen des Meeresspiegelanstiegs.

Technisches Framework

Entwicklung einer skalierbaren Georisiko-Pipeline zur Bewertung und Visualisierung von Risiken.

Persona-Profile

Definition exemplarischer Zielgruppen zur zielgerichteten Gestaltung von Storytelling, Visualisierung und Formaten.

Projektvorstellung - Was wurde umgesetzt?

Vom Projektauftrag zur Umsetzung – Darstellung der inhaltlichen und medialen Bestandteile der Realisierung.

Projektvorstellung - Data Science Modul

Technische Architektur des Moduls mit leistungsoptimierter Datenverarbeitung und wissenschaftlich fundierter Methodik.

Architektur & Umfang

4 Schichten Architektur

31
Python Module

15.000Zeilen Code

30m räumliche Auflösung

Kern Features

Projektvorstellung - Video

Visuelle und auditive Umsetzung des Projekts zur verständlichen und ansprechenden Präsentation komplexer Inhalte.

Vom Konzept zum fertigen Film

- 1. Entwicklung von Bildsprache & visuellem Leitfaden
- 2. Einsatz von Stockmaterial, Grafiken & Diagrammen
- 3. Aufnahme eines professionellen Voice-Overs
- 4. Untermalung mit Soundeffekten, Atmosphäre & Musik
- 5. Color Grading für einen einheitlichen, stimmungsvollen Stil
- 6. Visuelle Effekte und Motion Graphics

Projektvorstellung - Website

Admin Panel zur modularen Verwaltung von Inhalten, Referenzen und Visualisierungen.

Projektvorstellung - Website

Webbasierte Kartendarstellungen zur explorativen Analyse von Szenarien und Abhängigkeiten.

Projektvorstellung - Website

Wissenschaftlich fundierte Kommunikation der Analyseergebnisse über kuratierte Data Story Blocks.

Niederlande aus - und wie kann Data Science die EU dabei unterstützen, frühzeitig fundierte Entscheidungen zu

treffen?

Retrospektive Risikenanalyse

Projektrisiken im Überblick - bewertet nach Eintrittswahrscheinlichkeit und Auswirkung auf Qualität und Verlauf der Ergebnisse.

1

Qualität und Verfügbarkeit der Daten

Unzureichende, unvollständige oder fragmentierte Daten können zu eingeschränkten Analysen und die Aussagekraft der Ergebnisse beeinträchtigen

Ergab keine Gefährdung für den Projektabschluss.

2

Enger Zeitrahmen und personelle Kapazitäten

Der enge Zeitrahmen begrenzt den Projektumfang - bei gleichzeitiger Auslastung durch andere Projekte besteht das Risiko qualitativer Einbußen.

Ergab ein kritisches Risiko für den Projektabschluss.

3

Technische Integrationsprobleme

Zusammenführung und Harmonisierung unterschiedlicher Datenformate könnten die zeitlichen Projektmeilensteine gefährden.

Ergab ein minimale Gefährdung für den Projektabschluss

4

Begrenzte Hardware-Kapazitäten

Große Datenmengen übersteigen die vorhandenen Ressourcen und können zu Performance-Einbrüchen oder Systemabstürzen führen.

Ergab ein kritisches Risiko für den Projektabschluss.

Eintrittswahrscheinlichkeit

Anforderungserfüllung

Umgesetzt In Bearbeitung-Teilweise umgesetzt

Vollständige Umsetzung der geplanten Funktionen als Grundlage für Relevanz, Nachvollziehbarkeit und Weiterverwendung.

Funktionale Anforderungen

Anforderungserfüllung

Begleitende Anforderungen zur Qualitätssicherung und Zielgruppenansprache wurden weitgehend umgesetzt.

Nicht-Funktionale Anforderungen

Retrospektive Projektmanagement

Bewertung der Projektsteuerung – Visualisierung, Priorisierung und Zeitpuffer im Spannungsfeld agiler Umsetzung.

Lessons Learned

Methodisch gestützte Reflexion zur kontinuierlichen Verbesserung der Teamprozesse und Kommunikation.

Roll-Out-Planung

Kommunikationsstrategie mit Fokus auf Reichweite, Kooperationen und nachhaltiger Nutzerbindung.

Abschluss

Rückblick auf Projekterfolge und Ausblick auf künftige Weiterentwicklungen und Einsatzszenarien.

Zentrale Erkenntnisse

Risiko Awareness

Datenbasierte Risikoanalyse macht die Folgen des Meeresspiegelanstiegs für die Niederlande greifbar.

Narrative Erzählung

Die Verbindung aus analytischer Tiefe und erzählerischer Klarheit steigert die Wirksamkeit enorm.

Zugängliche Information

Interaktive Story und Videoformat fördern Wissenstransfer auch für nicht-technische Zielgruppen.

Resultate

Technisches Framework

Ein öffentlich zugängliches Tool mit hoher Relevanz für Politik, Bildung und Gesellschaft wurde erfolgreich entwickelt.

Kommunikationsrahmen

Die Kombination aus Visualisierung, Interaktivität und Storytelling sorgt für nachhaltige Vermittlung komplexer Inhalte.

Ausblick

Daten Erweiterung

Integration von Echtzeitdaten (z. B. Pegelständen) und regionale Anpassungen denkbar.

Skalierbarkeit

Übertragbarkeit auf andere europäische Küstenregionen zur langfristigen Wirkung durch Partnerschaften.

Bildungseinrichtungen

Einsatz in der Hochschullehre und Verbindung mit Citizen-Science-Projekten geplant.

Meer, Märkte, Mobilität

Zusammenspiel von Küstenschutz und Handelsdrehscheibe Niederlande

Freitag, 11. Juli 2025

Leon Randzio

Ingo Weber

Yannick Königstein

Sophie Blum

Tjark Gerken

