Algorísmica Avançada Programació dinàmica

Sergio Escalera

- La programació dinàmica ens permet resoldre una gran quantitat de problemes (més dels que hem vist fins ara)
- Això, com veurem, té un cost en la complexitat

Teorema de Optimalidad de Mitten

El objetivo básico en la programación dinámica consiste en 'descomponer" un problema de optimización en k variables a una serie de problemas con menor número de variables más fáciles de resolver. La solución óptima obtenida se ajusta al **principio de optimalidad** establecido por R. Bellman en 1957.

Una política óptima tiene la propiedad de que, cualquiera que sea el estado inicial y las decisiones iniciales, las restantes decisiones deben constituir una política óptima con respecto al estado resultante de la primera decisión

Relació amb la linearització de grafs

Distància més curta a D:

$$dist(D) = \min\{dist(B) + 1, dist(C) + 3\}$$

Podem calcular la distància a tots els nodes en un pas:

```
\begin{split} & \text{initialize all } \operatorname{dist}(\cdot) \text{ values to } \infty \\ & \operatorname{dist}(s) = 0 \\ & \text{for each } v \in V \backslash \{s\} \text{, in linearized order:} \\ & \operatorname{dist}(v) = \min_{(u,v) \in E} \{\operatorname{dist}(u) + l(u,v)\} \end{split}
```

- Solucionem un conjunt de subproblemes fins que arribem a una solució final: tècnica molt general!!
- Tenim una funció sobre els nodes anteriors per actualitzar una resposta al node actual:
 - → Aquesta funció podria ser qualsevol! (i.e. Màxim en lloc de mínim)

• Per obtenir una representació de programació dinàmica, suposem que el graf disposa de totes les connexions entre un node i els seus predecessors:

• Exemple: trobar el camí de longitud màxima

for
$$j=1,2,\ldots,n$$
:
$$L(j)=1+\max\{L(i):(i,j)\in E\}$$
 return $\max_j L(j)$

- Complexitat: llista adjacència (en temps lineal)
 - Càlcul de relacions entre
 - Simple i eficient

En aquest cas la recursivitat eficient: seria no exponencial, es recalculen solucions prèviament estimades (en enumeratius: ramificació i poda solucionarem).

Aplicació: distància d'edició

- Tenim inserció, eliminació i substitució
- Hi ha moltes combinacions!!!
- Donem una solució amb programació dinàmica

Taula de subproblemes

```
for \ i=0,1,2,\ldots,m: \\ E(i,0)=i \\ for \ j=1,2,\ldots,n: \\ for \ i=1,2,\ldots,m: \\ for \ j=1,2,\ldots,n: \\ E(i,j)=\min\{E(i-1,j)+1,E(i,j-1)+1,E(i-1,j-1)+\text{diff}(i,j)\} \\ return \ E(m,n)
```


Taula de subproblemes

$$E(i,j) = \min\{E(i-1,j)+1, E(i,j-1)+1, E(i-1,j-1)+\mathtt{diff}(i,j)\}$$

	j-1 j									
i-1										
i					1					
m								GOAL		

		Р	O	L	Y	N	O	M	Ι	A	L
	0	1	2	3	4	5	6	7	8	9	10
E	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
P	3	2	3	3	4	5	6	7	8	9	10
O	4	3	2	3	4	5	5	6	7	8	9
N	5	4	3	3	4	4	5	6	7	8	9
E	6	5	4	4	4	5	5	6	7	8	9
N	7	6	5	5	5	4	5	6	7	8	9
T	8	7	6	6	6	5	5	6	7	8	9
I	9	8	7	7	7	6	6	6	6	7	8
A	10	9	8	8	8	7	7	7	7	6	7
L	11	10	9	8	9	8	8	8	8	7	6

Taula de subproblemes

Hi han diferents camins amb el mateix cost associat

Els camins varien segons fixem costos diferents a diferents operacions de inserció, eliminació i substitució

Exercici

```
for i=0,1,2,\dots,m: E(i,0)=2i for j=1,2,\dots,n: E(0,j)=j for i=1,2,\dots,m: for j=1,2,\dots,m: E(i,j)=\min\{E(i-1,j)+2,E(i,j-1)+1,E(i-1,j-1)+\text{diff}(i,j)\} return E(m,n)
```

Associar la paraula ALGORISMICA amb la paraula AVANÇADA fent ús d'aquesta inicialització i funció de programació dinàmica

• Exercici

		Α	L	G	0	R	S	M	ı	С	Α
	0	1									
Α	2	0									
٧											
Α											
N											
Ç											
Α											
D											
Α											

- Dynamic Time Warping
 - El temps és dinàmic per definició
 - Es poden definir subproblemes temporals per resoldre problemes temporals més grans
 - Un altre cop tenim la programació dinàmica!!
- Veiem el problema de reconeixement de gestos i accions

 Valors espai-temporals de la matriu de programació dinàmica

• DTW (Wikipedia) → ja ho hem vist abans no?

• Resultat – seqüència discreta, trajectòries 2D

 DTW Detecció de patrons en seqüències més llargues

A cada nou instant de temps tenim diferents hipòtesis: possibilitat de néixer primera posició d'un patró temporal (cost mínim amunt) o que estiguem a mig d'un patró (la distància mínima ve propagada de posicions anteriors)

Resultat – seqüència infinita, trajectòries 3D

- Exercicis
- Tenim una trajectòria definida per vectors binaris amb múltiples candidats:

```
\begin{array}{r}
111001 & 01 \\
001 \\
111
\end{array}
```

Volem fer la correspondència amb el patró

1 1 1 0 0 0 1 fent servir DTW i distància de Hamming (número de bits diferents)

```
\gamma(i, j, k) = d(i, j, k) + \min\{\gamma((i-1, j-1), (i-1, j), (i, j-1) \times \{1, ..., K\})\}
```

→ Fes la taula de programació dinàmica i mostra el cost i el "working path"

$$\gamma(i,j,k) = d(i,j,k) + \min\{\gamma((i-1,j-1),(i-1,j),(i,j-1) \times \{1,..,K\})\}$$

1 1 1

	0	1	2	3	4	5	6	7	8	9
1	1									
1	2									
1	3									
1	4									
O	5									
0 0	56									
O	7									
1	8									

- Camins curts: compliquem el problema!
- Volem camí de cost reduït però passant per poques arestes → Dijkstra no guarda aquesta informació!

 $i \le k$, dist(v, i) Distància del camí més curt de s a v que pasa per i nodes

$$\operatorname{dist}(v,i) \; = \; \min_{(u,v) \in E} \{\operatorname{dist}(u,i-1) + \ell(u,v)\}$$

- I com podem guardar la informació dels camins mínims entre totes les parelles possibles de nodes?
- Si fem ús dels algorismes dels temes anteriors per totes les possibles parelles tenim una complexitat $O(|V|^2|E|)$
- Normalment |E|>>|V|
- Si guardem informació de subproblemes podem aconseguir una complexitat $O(|V|^3)$

- Floyd-Warshall
 - Fem ús d'una matriu tridimensional, on

$$\operatorname{dist}(i,j,k) \quad \{1,2,\ldots,k\}$$

és la distància del camí més curt entre *i* i *j* tenint en compte només els nodes 1,...*k*

$$\operatorname{dist}(i,k,k-1) + \operatorname{dist}(k,j,k-1) \ < \ \operatorname{dist}(i,j,k-1),$$

Floyd-Warshall

```
\begin{split} &\text{for } i=1 \text{ to } n\colon\\ &\text{for } j=1 \text{ to } n\colon\\ &\text{dist}(i,j,0)=\infty \end{split} &\text{for all } (i,j)\in E\colon\\ &\text{dist}(i,j,0)=\ell(i,j)\\ &\text{for } k=1 \text{ to } n\colon\\ &\text{for } i=1 \text{ to } n\colon\\ &\text{for } j=1 \text{ to } n\colon\\ &\text{dist}(i,j,k)=\min\{\text{dist}(i,k,k-1)+\text{dist}(k,j,k-1), \text{ dist}(i,j,k-1)\} \end{split}
```