Lezione 29

Saverio Salzo*

16 novembre 2022

1 Teoremi di Fermat, Rolle e Lagrange

Nello studio di una funzione ha grande importanza stabilire la presenza di punti di massimo o di minimo. La derivata di una funzione può servire a identificare questi punti speciali. Cominciamo col dare alcune definizioni.

Definizione 1.1. Sia $A \subset \mathbb{R}$. Un punto $x_0 \in A$ si dice *interno ad* A se esiste un intorno U di x_0 tale che $U \subset A$. L'insieme dei punti interni ad A si chiama *interno di* A e si indica con \mathring{A} . Un punto $x_0 \in \mathbb{R}$ si dice *esterno ad* A se esiste un intorno U di x_0 tale che $U \subset \mathcal{C}A$. Un punto $x_0 \in \mathbb{R}$ si dice *di frontiera di* A se x_0 non è né interno ad A né esterno ad A, quindi se per ogni intorno U di x_0 , risulta che $U \cap A \neq \emptyset$ e $U \cap \mathcal{C}A \neq \emptyset$ (in ogni intorno di x_0 devono cadere punti di A e punti che non appartengono ad A). L'insieme dei punti di frontiera di A si chiama A si chia

Esempio 1.2.

- (i) Se A è un intervallo (aperto, semiaperto, o chiuso) di estremi $a, b \in \mathbb{R}$ con a < b, allora $\mathring{A} = [a, b[$, e la frontiera di A è l'insieme $\{a, b\}$.
- (ii) Sia $A = [1, 2[\cup]2, 3]$. Allora $\mathring{A} =]1, 2[\cup]2, 3[$ e la frontiera di A è l'insieme $\{1, 2, 3\}$.
- (iii) Sia $A = \{1/n \mid n \in \mathbb{N}^*\}$. Allora $\mathring{A} = \emptyset$ e la frontiera di A è l'insieme $\{0\} \cup A$.
- (iv) In generale si vede che la frontiera di A è l'insieme $\overline{A} \setminus \mathring{A}$.

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

Figura 1: Punti estremali di una funzione f definita in [a,b]: x_1 e x_3 sono punti di minimo locale proprio, x_2 è punto di massimo locale, x_4 è punto di massimo assoluto, x_5 è punto di minimo assoluto.

Definizione 1.3. Sia $f: A \to \mathbb{R}$ e $x_0 \in A$. Allora

1) x_0 si dice punto di minimo locale (o relativo) per f se esiste U intorno di x_0 tale che

$$\forall x \in U \cap A_{x_0} \colon \ f(x_0) \le f(x) \tag{1}$$

e si dice punto di minimo locale proprio se nella (1) vale la disuguaglianza stretta <.

2) x_0 si dice punto di massimo locale (o relativo) per f se esiste U intorno di x_0 tale che

$$\forall x \in U \cap A_{x_0} \colon \ f(x) \le f(x_0) \tag{2}$$

e si dice punto di massimo locale proprio se nella (2) vale la disuguaglianza stretta <.

- 3) I punti di minimo locale o massimo locale si chiamano anche punti di estremo locale (o punti estremali) per f.
- 4) Un punto $x_0 \in A$ si dice un punto critico (o stazionario) per f, se f è derivabile in x_0 e $f'(x_0) = 0$.

Osservazione 1.4. Ricordiamo che, se esiste il minimo (risp. massimo) di una funzione $f: A \to \mathbb{R}$, ogni punto $x_0 \in A$ tale che $f(x_0) = \min_A f$ (risp. $f(x_0) = \max_A f$) si chiama punto di minimo (risp. massimo) assoluto o globale di f. Si noti che ci possono essere più punti di minimo o massimo assoluti. Inoltre è chiaro che i punti di minimo e massimo assoluti sono anche estremi locali.

Teorema 1.5 (regola di Fermat). Sia $f: A \to \mathbb{R}$ e supponiamo che f sia derivabile in un punto x_0 interno ad A. Allora

 x_0 è un punto di minimo o massimo locale per $f \Rightarrow f'(x_0) = 0$.

Figura 2: Illustrazione della regola di Fermat per i punti di minimo e massimo locale.

Dimostrazione. Per fissare le idee supponiamo che x_0 sia un punto di minimo locale per f. Allora esiste un intorno U di x_0 tale che

$$x \in U \cap A_{x_0} \Rightarrow f(x) - f(x_0) \ge 0. \tag{3}$$

Indichiamo, per brevità, con Φ la funzione rapporto incrementale in x_0 , cioè

$$\Phi \colon A_{x_0} \to \mathbb{R}, \quad \Phi(x) = \frac{f(x) - f(x_0)}{x - x_0}.$$
 (4)

Dato che x_0 è di accumulazione a destra e a sinistra per A e f è derivabile in x_0 , risulta

$$\lim_{x \to x_0^-} \Phi(x) = f'_-(x_0) = f'(x_0) \quad \text{e} \quad \lim_{x \to x_0^+} \Phi(x) = f'_+(x_0) = f'(x_0).$$

Ma da (3) segue che (si veda Figura 3, a destra)

$$\forall x \in U \cap A_{x_0}^- \colon \Phi(x) \le 0 \quad \text{e} \quad \forall x \in U \cap A_{x_0}^+ \colon \Phi(x) \ge 0,$$

infatti il numeratore in (4) è sempre positivo, mentre il denominatore cambia segno a seconda che $x < x_0$ o che $x > x_0$. Perciò per il teorema sul prolungamento delle disuguaglianze, risulta

$$f'(x_0) \le 0$$
 e $f'(x_0) \ge 0$,

e quindi
$$f'(x_0) = 0$$
.

Osservazione 1.6.

(i) La regola di Fermat stabilisce che i punti di minimo o massimo locale, che sono interni all'insieme di definizione e in cui la funzione è derivabile, sono punti critici della funzione f. Non è vero il viceversa, cioè ci possono essere punti critici che non sono né di massimo locale né di minimo locale. Un esempio a tal proposito è fornito dalla funzione f(x) = x³ che ha derivata nulla in 0, ma 0 non è né punto di massimo locale né punto di minimo locale per f.

Figura 3: Teorema di Rolle (a sinistra) e teorema di Lagrange (a destra).

- (ii) La condizione che x_0 sia interno a A è necessaria per la validità della regola di Fermat. Infatti se x_0 è un punto di frontiera di A, allora x_0 può essere un punto di massimo o di minimo senza che la derivata sia nulla in x_0 . Tale situazione può verificarsi per esempio se f è strettamente monotona in A e A è un intervallo. Si pensi infatti alla funzione f(x) = x definita nell'intervallo [0,1]. I punti 0 e 1 sono estremi (assoluti) ma la derivata non si annulla mai in [0,1].
- (iii) Nelle applicazioni è spesso importante determinare i punti di massimo e minimo globali di una funzione f definita in A. A tale scopo sarà sufficiente esaminare:
 - i punti interni a A che sono critici per f
 - i punti interni ad A in cui la funzione f non è derivabile.
 - i punti di frontiera di A.

Teorema 1.7 (di Rolle). Sia $f: [a,b] \to \mathbb{R}$ continua in [a,b] e derivabile in]a,b[. Supponiamo che f(a) = f(b). Allora esiste $c \in]a,b[$ tale che f'(c) = 0.

Dimostrazione. Per i teorema di Weierstrass, f ha minimo e massimo in [a, b]. Quindi esistono $x_1, x_2 \in [a, b]$ tali che

$$\forall x \in [a, b] \colon f(x_1) \le f(x) \le f(x_2).$$

Si possono presentare due casi:

- 1) $x_1, x_2 \in \{a, b\}$. Allora, essendo f(a) = f(b), si ha $f(x_1) = f(x_2)$ e quindi f è costante su [a, b]. In tal caso chiaramente ogni $c \in [a, b]$ soddisfa f'(c) = 0.
- 2) almeno uno tra x_1 e x_2 appartiene a]a,b[. Allora per la regola di Fermat, si ha $f'(x_1) = 0$ o $f'(x_2) = 0$, a seconda che sia x_1 o x_2 ad essere interno all'intervallo [a,b].

In ogni caso si è provata l'esistenza di un punto $c \in]a, b[$ su cui la derivata si annulla.

Esempio 1.8. Il teorema di Rolle non è vero se la funzione f non è continua in [a, b] o se non è derivabile in qualche punto di]a, b[. Per esempio la funzione $f: [-1, 1] \to \mathbb{R}$ con f(x) = |x|, verifica f(-1) = f(1), ma la derivata è sempre diversa da zero nei punti di derivabilità.

Teorema 1.9 (di Lagrange o del valor medio). $Sia\ f:[a,b]\to\mathbb{R}\ continua\ su\ [a,b]\ e\ derivabile\ su\ [a,b].\ Allora$

$$\exists c \in]a, b[\quad t.c. \quad \frac{f(b) - f(a)}{b - a} = f'(c).$$

Dimostrazione. La funzione affine che rappresenta il segmento congiungente i punti (a, f(a)) e (b, f(b)) ha espressione

$$\ell \colon [a,b] \to \mathbb{R}$$
 $\ell(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$

Applichiamo il Teorema 1.7, di Rolle, alla funzione

$$g: [a, b] \to \mathbb{R}, \quad g(x) = f(x) - \ell(x).$$

Evidentemente g è continua su [a, b] e derivabile in]a, b[e inoltre g(a) = 0 = g(b). Allora, il teorema di Rolle garantisce che esiste $c \in [a, b[$ tale che

$$0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}.$$

2 Conseguenze del teorema di Lagrange (parte I)

Teorema 2.1 (degli accrescimenti finiti). Sia I un intervallo di \mathbb{R} e $f: I \to \mathbb{R}$ una funzione continua in I e derivabile in \mathring{I} (interno di I). Supponiamo che la funzione derivata f' sia limitata in \mathring{I} , cioè che esiste $L \geq 0$ tale che

$$\forall x \in \mathring{I}: |f'(x)| \le L < +\infty.$$

Allora f è Lipschitziana su I con costante di Lipschitz L, cioè

$$\forall x, y \in I: |f(x) - f(y)| \le L|x - y|.$$

Dimostrazione. E' sufficiente provare la tesi per x < y. Siano quindi $x, y \in I$, con x < y. Allora $f_{|[x,y]}$ è continua in [x,y] e derivabile in]x,y[. Perciò, per il teorema di Lagrange, esiste $c \in]x,y[$ tale che

$$\frac{f(x) - f(y)}{x - y} = f'(c)$$

e quindi, essendo chiaramente $c \in \mathring{I}$, si ha

$$\frac{|f(x) - f(y)|}{|x - y|} \le |f'(c)| \le L,$$

da cui, moltiplicando per |x-y|, segue la tesi.

Esempio 2.2.

- (i) Abbiamo visto che la derivata della funzione seno è la funzione coseno e chiaramente $|\cos x| \leq 1$. Perciò per il teorema degli accrescimenti finiti, risulta che sen: $\mathbb{R} \to \mathbb{R}$ è Lipschitziana con costante 1.
- (ii) Sia $f: [0,1] \to \mathbb{R}$ con $3x^2 + 2x 1$. Allora

$$\forall x \in [0,1] \colon |f'(x)| = |6x + 2| \le 8.$$

Perciò la funzione f è Lipschitziana con costante 8, cioè

$$\forall x_1, x_2 \in [0, 1] \colon |f(x_1) - f(x_2)| \le 8|x_1 - x_2|.$$

Corollario 2.3. Se f è una funzione continua in un intervallo I ed è dotata di derivata nulla in ogni punto di \mathring{I} , allora f è costante in I.

Dimostrazione. La tesi segue direttamente dal Teorema 2.1 con L=0. Si ha quindi che per ogni $x, y \in I$, f(x) = f(y). Basta prendere un punto arbitrario $x_0 \in I$ e allora per ogni $x \in I$ si ha $f(x) = f(x_0)$, cioè f è costante.

Teorema 2.4 (criteri di monotonia). Sia $f: I \to \mathbb{R}$ una funzione continua in un intervallo I e derivabile in \mathring{I} . Valgono le seguenti affermazioni.

- (i) $\forall x \in \mathring{I}$: $f'(x) \ge 0 \Leftrightarrow f \ \grave{e} \ crescente \ in \ I$
- (ii) $\forall x \in \mathring{I}$: $f'(x) < 0 \Leftrightarrow f \ e$ decrescente in I
- (iii) $\forall x \in \mathring{I}$: $f'(x) > 0 \implies f$ è strettamente crescente in I
- (iv) $\forall x \in \mathring{I}$: $f'(x) < 0 \implies f$ è strettamente decrescente in I

Dimostrazione. Proviamo prima le implicazioni " \Rightarrow ". Siano $x, y \in I$ con x < y. Allora $f_{|[x,y]}$ è continua in [x,y] e derivabile in]x,y[$\subset \mathring{I}$. Per il teorema di Lagrange esiste $c \in]x,y[$ tale che

$$\frac{f(y) - f(x)}{y - x} = f'(c).$$

Allora, dato che y-x>0, il segno di f(y)-f(x) è uguale a quello di f'(c). Per quanto riguarda le due implicazioni " \Leftarrow ", basta osservare che il rapporto incrementale

$$\frac{f(y) - f(x)}{y - x}$$

ha segno positivo se f è crescente, e segno negativo se f è decrescente. Perciò la tesi segue dal Teorema di prolungamento delle disuguaglianze.

Esempio 2.5. Consideriamo la funzione $f \colon \mathbb{R}^* \to \mathbb{R}$ definita come

$$\forall x \in \mathbb{R}^* \colon \ f(x) = \frac{1}{x}.$$

La derivata è

$$\forall x \in \mathbb{R}^* : f'(x) = -\frac{1}{x^2} < 0.$$

Possiamo concludere che la funzione f è strettamente decrescente su ciascuno dei due intervalli $]-\infty,0[$ e $]0,+\infty[$, separatamente. Ma la funzione non è strettamente decrescente sul suo insieme di definizione (unione dei due intervalli suddetti).