Assignment - 3

- 1. Find the Fourier Aramsform of the function $f(x) = \begin{cases} 1 + x/a, -a < x < 0 \\ 1 x/a, & 0 < x < a \end{cases}$ or otherwise
- 2. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & |x| \ge 1 \\ 0, & |x| > 1 \end{cases}$

and hence, find

So x cos x - Sinx cos z dx

- 3. Find the inverse Fourier transform $F(\omega) = e^{-1\omega a}$
- 4. Find the Fourier Conine transform of $f(x) = \frac{1}{1+x^2}$, hence derive the Sine transform of $g(x) = \frac{x}{1+x^2}$
- 5. Find the Fourier sine transform of $e^{-1\times 1}$, hence evaluate $\int_{0}^{\infty} \frac{\chi \sin m\chi}{1+\chi^{2}} d\chi$

6. Solve for
$$f(x)$$
 when
$$\int_{0}^{\infty} f(x) \cos sx dx = \begin{cases} 1-s, & 0 \le s \le 1 \\ 0, & s > 1 \end{cases}$$
and hence, find
$$\int_{0}^{\infty} \frac{\sin^{2}t}{t^{2}} dt.$$

7. Une Parneval's identity to find

A)
$$\int_{0}^{\infty} \frac{dx}{(1+x^{2})^{2}} ; d$$
 $\int_{0}^{\infty} \frac{\sin 3t}{t (t^{2}+9)} dt$

b) $\int_{0}^{\infty} \frac{x^{2}}{(1+x^{2})^{2}} dx ; e$ $\int_{0}^{\infty} \frac{\sin^{2} 4x}{x^{2}} dx$.

e) $\int_{0}^{\infty} \frac{dt}{(a^{2}+t^{2})(b^{2}+t^{2})} ;$

8. Find the Fourier sine transform of

a)
$$f(x) = \frac{1}{x(x^2 + a^2)}$$

b) $f(x) = \begin{cases} \sin x, & o < x < a \\ 0, & x > a \end{cases}$.

9. Solve the integral equation $\int_0^\infty f(x) \sin t x \, dx = \begin{cases} 0.1, 0 \le t \le 1 \\ 2.1 \le t \le 2 \end{cases}$ 0. 9f $F_S[f(x)] = 1$

10. 9f
$$F_S[f(x)] = \frac{1}{5}$$

$$= \frac{1}{5}$$
Find $f(x)$.

Show that
a)
$$F_S \left[x f(x) \right] = -\frac{d}{d\omega} \left[F_c(f(x)) \right]$$

b) $F_c \left[x f(x) \right] = \frac{d}{d\omega} \left[F_s(f(x)) \right]$,
and hence, find
 $F_c \left(x e^{-ax} \right) \times F_s \left(x e^{-bx} \right)$

12. find a)
$$P = \left[e^{-\chi^2} \sin 3\chi \right]$$

b) $F = \left[e^{-3(\chi-2)^2} \right]$
e) $F = \left[e^{-\chi^2/4} \cos 2\chi \right]$

13. Use Parsevals identity of F5 and Fe of f(x)= \$\frac{1}{2} 0, \chi >1

to find a)
$$\int_{0}^{\infty} \left(1 - \frac{\cos x}{\pi}\right)^{2} dx$$
b) $\int_{0}^{\infty} \frac{\sin^{2} x}{\pi^{2}} dx$

14. Show mut
$$\int_{0}^{\infty} \frac{\cos 5x}{a^{2}+s^{2}} dx = \frac{\pi}{2a} e^{-ax}$$

$$d) \int_{0}^{\infty} \frac{\sin 5x}{a^{2}+s^{2}} ds = \frac{\pi}{2} e^{-ax}$$