```
Problem 1:
start
get (A, B)
if A \% 4 != 0 then
A = A + (4 - A \% 4)
end if
for i in A ... B increasing by 4
 if i \% 100 == 0 then
  if i \% 400 == 0 then
   display i
  end if
 else
  display i
 end if
end for
end
Problem 2B:
Start
num1 = 0
num2 = 0
Read (num1, num2)
For num in num1 ... num2
       sum = 1
       divider = 2
       While ((\text{num} / 2) >= \text{divider}) DO
              IF (num % divider == 0) Then
                      sum=sum + divider
              End IF
              divider = divider + 1
       End While
       IF (num == sum) Then
              Print (num, "is a perfect number.")
       Else
              Print (num, "is not a perfect number.")
       End IF
End For
End.
```

Problem 2A:

1: Start

2: num = 0

3: sum = 1

4: divider = 2

5: Read (num)

6: While $((num / 2) \ge divider)$ DO

7: IF (num % divider == 0) Then

8: sum=sum+ divider

9: End IF

10: divider = divider + 1

11: End While

12: IF (num == sum AND num != 1) Then

13: Print (num, "is a perfect number.")

14: Else

15: Print (num, " is not a perfect number.")

16: End IF

17: End.

Trace the algorithm for the following values and show the output: 25, 1, 0, 6, 28

25:

Step #	num	sum	divider	output
1				
2	0			
3	0	1		
4	0	1	2	
5	25	1	2	
6	25	1	2	
7	25	1	3	
8	25	1	4	
9	25	6	5	
10	25	6	6	
11	25	6	7	
12	25	6	8	
13	25	6	9	
14	25	6	10	
15	25	6	11	
16	25	6	12	
17	25	6	13	25 is not a perfect number.

1:

Step #	num	sum	divider	output
1				
2	0			
3	0	1		
4	0	1	2	
5	1	1	2	1 is not a perfect number.

0:

Step #	num	sum	divider	output
1				
2	0			
3	0	1		
4	0	1	2	
5	0	1	2	0 is not a perfect number.

6:

Step #	num	sum	divider	output
1				
2	0			
3	0	1		
4	0	1	2	
5	6	1	2	
6	6	1	2	
7	6	3	3	
8	6	6	4	6 is a perfect number.

Step #	num	sum	divider	output
1				
2	0			
3	0	1		
4	0	1	2	
5	28	1	2	
6	28	1	2	
7	28	3	3	
8	28	7	4	
9	28	7	5	
10	28	7	6	
11	28	14	7	
12	28	14	8	
13	28	14	9	
14	28	14	10	
15	28	14	11	
16	28	14	12	
17	28	14	13	
18	28	28	14	
19	28	28	15	28 is a perfect number.

Part B: Trace the following pseudocodes and display the outputs

Problem 1:

1: Start

2: n = 2839

3: sum = 0

4: iteration = 0

5: While (n > 0) Do

6: digit = n % 10 7: sum = sum + digit

8: n = n / 10

9: iteration = iteration +1

10: End While

11: Print (sum,)

12: Print (iteration)

13: End

Step #	n	sum	iteration	digit	output
1					
2	2839				
3	2839	0			
4	2839	0	0		
5	2839	0	0		
6	283	9	1	9	
7	28	12	2	3	
8	2	20	3	8	
9	0	22	4	2	
10	0	22	4	2	22
11	0	22	4	2	4

Problem 2:

1: Start

2: n = 2839

3: sum = 0

4: iteration = 0

5: While $(n \ge 0)$ Do

6: digit = n % 10

7: sum = sum + digit

8: n = n / 10

9: iteration = iteration +1

10: Print (iteration,)

11: End While

12: Print (sum)

13: End

Step #	n	sum	iteration	digit	output
1					
2	2839				
3	2839	0			
4	2839	0	0		
5	2839	0	0		
6	283	9	1	9	1
7	28	12	2	3	2
8	2	20	3	8	3
9	0	22	4	2	4
10	0	22	5	0	5
11	0	22	6	0	6
12	0	22	7	0	7
13	0	22	8	0	8

Error: The while loop will run forever and never terminate. This is due to the condition $n \ge 0$. After all the digits are used up, the loop keeps running and adding to the iteration variable. It also keeps setting the digit variable to 0 and adds 0 to the sum variable. This has no effect on the sum variable. Since n is always going to be greater than or equal to 0 (0/10 = 0), the loop will never terminate and the sum will never print.

This error could be resolved by removing the = sign from line 5: While(n > 0) DO