

Sri Lanka Institute of Information Technology Faculty of Computing

IT2120 - Probability and Statistics

Ms. K. G. M. Lakmali

Year 02 and Semester 01

Lecture 10 CHI SQUARED TESTS

Chi-squared tests

Chi-squared tests are used for,

- Discrete data
- Categorical data

Chi Squared Tests

Test for Association

Test for Association

• The hypothesis for the test is,

 H_0 : The factors are independent.

 H_1 : The factors are not independent.

 Test Statistic, Under H₀,

$$X^2 = \sum_{i=1}^n \sum_{j=1}^m \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim X_{d.f.}^2$$

- Oii Observed frequency for cell ij
- Eij Expected frequency for cell ij
- $df = (No \ of \ rows 1)(No \ of \ columns 1)$

- Reject $\mathbf{H_0}$, if $X_{cal}^2 > X_{df,\alpha\%}^2$ (critical value)
- Test:
 - Find the **expected frequencies** for each cell.
 - Calculate test statistic value.
- Conclusion:

Compare calculated test statistic value with critical value and give the conclusion.

Important

Rule 01

• All expected counts should be greater than 5.

Rule 02

- All expected counts should be greater than 1 & at least 80% of the cells should have expected count which is greater than or equal to 5.
- If not, categories can be joined.

The following table gives a classification according to religious affiliation and marital status for 500 randomly selected individuals. For $\alpha=1\%$, test the null hypothesis that marital status and religious affiliation are independent.

		Religious Affiliation						
		Α	В	С	D	None		
Marital Status	Single	39	19	12	28	18		
	Married	172	61	44	70	37		

Goodness of Fit Test

Used to find whether a set of discrete or categorical data follows a specified distribution.

- The hypothesis for the test is,
 - H_0 : The data are consistent with the specified distribution.
 - **H**₁: At least one category deviates from the specified distribution.
- Test Statistic, Under H₀,

$$X^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} \sim X_{d.f.}^2$$

- O_i Observed frequency for cell i
- E_i Expected frequency for cell i

- ullet d.f. = No of classes No of parameters estimated 1
- **Reject H₀**, if $X_{cal}^2 > X_{df,\alpha\%}^2$ (critical value)
- Test:
 - Find the expected frequencies for each category.
 - Calculate test statistic value.
- Conclusion:

Compare calculated test statistic value with critical value and give the conclusion.

1) A die is rolled 60 times and the face values are recorded. The results are as follows.

Up Face	1	2	3	4	5	6
Frequency	8	11	5	12	15	9

Is the die balanced? Test using $\alpha = 0.05$.

2) The number of accidents in a month observed over a period of 10 years is given below.

No of accidents	0	1	2	3	4	5	6	≥7
Frequency	41	40	22	10	6	0	1	0

Is the data following a Poisson distribution? Test using $\alpha = 0.05$.

3) The grades of students in a class of 51 are given in the following table. Test the hypothesis that the grades are normally distributed with a mean of 75 and a standard deviation of 8. Use $\alpha = 0.05$.

Range	0-59.5	59.5- 69.5	69.5- 79.5	79.5- 89.5	89.5- 100
No of students	8	11	5	12	15

Thanks!

Any questions?

