13주 2강

인터넷

숭실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다.

*사용서체 : 나눔글꼴

1. 인터넷의 개요

- 인터네트워크
 - LAN이나 WAN 등 독립적인 네트워크를 상호 연결하여 만 든 복잡한 네트워크
- 인터네트워킹
 - 인터네트워크를 연결하는 과정이나 방법
- 인터넷
 - 인터네트워킹으로 구성된 대표적인 네트워크
 - 1969년 미국 국방성의 알파넷이 시초
 - 정보를 주고받는 컴퓨터 사이에 적용하는 약속인 표준 규약 도 만들어짐
 - 이 규약을 TCP/IP라고 함

- ◆ 인터넷 프로토콜
 - TCP/IP는 인터넷에 기반을 둔 프로토콜
 - 가정과 대학교 캠퍼스, 기업, 정부 연구기관 등을 서로 연결하여 전 세계적 규모의 인터넷을 구성하는 기반을 형성
 - 네트워크 접근 계층, 인터넷 계층, 전송 계층, 응용 계층 4계층 으로 구성

그림 8-2 인터넷에서 사용하는 프로토콜의 계층 구조

- ◆ 인터넷 프로토콜
 - 네트워크 접근 계층 : 이더넷, FDDI, 토 큰 링, X.25 등
 - 인터넷 계층 : IP, ICMP, IGMP, ARP, RARP 등
 - 전송 계층 : TCP, UDP
 - 응용 계층: HTTP, FTP, 전자우편, 텔넷, SMTP, DNS 등

그림 8-3 인터넷의 계층별 대표 프로토콜

- ◆ 인터넷에서 데이터를 전송하는 과정
 - ①송신 측의 최상위 계층(응용 계층)에서 발생한 데이터는 헤더 정보를 추가한 후 아래 계층으로 전달됨
 - ②송신 측에 있는 최하위 계층에는 원래 데이터에 헤더를 여러 개 씌운 형태로 존재 → 캡슐화
 - ③송신 측 최하위 계층에서는 이 데이터를 전기 신호로 변환하여 전송
 - ④송신 측 각 계층은 헤더에 해당되는 부분을 벗겨내어 수신 측의 최상위 계층 으로 전달 → 캡슐해제
 - ⑤수신 측의 최상위 계층에서는 송신 측의 최상위 계층에서 보낸 원래 데이터가 정확하게 전달됨

- ◆ 인터넷의 주소 체계
 - IP주소 또는 인터넷 도메인
 - IP 주소 체계 : 컴퓨터가 인식할 수 있는 주소 체계
 - 인터넷 도메인 : 사람이 인식할 수 있는 주소 체계
 - 인터넷 주소 관리 기관
 - NIDA(한국인터넷진흥원) : 우리나라의 인터넷 주소 자원을 관리
 - 국내에서 인터넷 도메인을 등록하려면 한국인터넷진흥원의 한국 인터넷정보센터(KRNIC)에서 주소를 할당 받아야 함

- ◆ 인터넷의 주소 체계
 - 인터넷 도메인
 - 영문자나 .(마침표)를 혼합해 주소를 표현하는 것
 - 국가는 최상위 도메인, 기관은 서브 도메인

- ◆ 인터넷의 주소 체계
 - 인터넷 도메인
 - 도메인명의 조합 규칙
 - 도메인명의 길이는 최대 256자까지 가능
 - 도메인명은 숫자(0~9)나 영문자(A~Z), 영문자와 숫자의 조합으로 구성
 - ,(쉼표)나 _(언더바) 등은 사용할 수 없지만 -(하이픈)은 사용할 수 있음
 - 전 세계적으로 중복되지 않은 고유 주소를 사용해야 함

표 8-1 국가별 도메인명의 예

국가명	도메인명	국가명	도메인명	국가명	도메인명
Argentina	AR	Egypt	EG	Korea (North)	KP
Australia	AU	Finland	FI	Korea (South)	KR
Austria	AT	France	FR	New Zealand	NZ
Belgium	BE	Germany	GE	Norway	NO
Beliuze	BZ	Hong Kong	HK	Poland	PL
Canada	CA	Italy	IT	Taiwan	TW
China	CN	Japan	JP	United Kingdom	UK

표 8-2 기관별 도메인명의 예

도메인명	기관	사용 예
ac 또는 edu	학교(ACademy) 또는 학술기관	cheonan.ac.kr
co 또는 com	회사(COmpany)	samsung,com
go 또는 gov	정부기관(GOvernment)	bluehouse.go.kr
re	연구소(REsearch)	etri.re.kr
net	네트워크(NETwork) 관련기관	hitel,net
nm	네트워크 운영기관 (Network Management)	hana,nm,kr
org	특수 사설기관(ORGanization)	www.ieee.org

- ◆ 인터넷의 주소 체계
 - 도메인 네임 시스템(DNS)과 URL
 - DNS
 - 인터넷 도메인명과 IP 주소를 대응시켜 주는 대규모의 분산 시스템
 - 사람이 기억하기 어려운 IP 주소를 이해하기 쉬운 도메인으로 변환 하거나 그 반대의 변환을 수행
 - URL
 - 인터넷에서 자원의 위치를 통일적으로 표현하는 주소
 - 웹 브라우저에 URL을 입력하면 그 URL이 가리키는 웹 서버에 있는 하이퍼미디어 문서를 불러올 수 있음

- ◆ 인터넷 계층 프로토콜
 - IP
 - 인터넷을 이용해 발신지에서 목적지까지 데이터그램을 전송 할 수 있도록 라우팅 기능을 수행
 - 오류와 상황 보고, 경로를 제어하는 정보 전달 기능 등은 포 함되어 있지 않음
 - 경로 설정과 주소 지정, 비접속형 등의 특성을 가짐
 - 버전은 IPv4와 IPv6가 있음

- ◆ 인터넷 계층 프로토콜
 - IPv4
 - 전 세계 모든 컴퓨터에 부여된 고유의 식별 주소
 - 차세대 버전으로 IPv6가 있으며, 보통 IP주소는 IPv4를 지칭
 - 10진수 4개와 .(점)으로 표현하며, 실제로는 32비트로 구성
 - 네트워크 번호와 그 네트워크에 접속해서 부여하는 호스트 번호로 구성

- ◆ 인터넷 계층 프로토콜
 - IPv6
 - IPv4의 주소 체계를 개선한 인터넷 프로토콜
 - 주소 부족, 보안성 취약
 - 실시간 전송의 문제점 등의 문제점을 개선
 - 주소 공간은 128비트로, 32비트인 IPv4보다 주소 공간이 4배 확대
 - IPv6의 헤더
 - 헤더의 길이를 40바이트로 고정하여 헤더를 처리하는 소프 트웨어를 최적화
 - 기본 헤더와 확장 헤더가 분리되어 구조가 매우 유연하며, 쉽게 변경 및 추가
 - IPv4의 헤더 구조보다 단순하며, IPv4의 옵션 필드를 확장 헤더로 구현

- ◆ 인터넷 계층 프로토콜
 - 모바일 IP
 - 사용자가 다른 지역 인터넷망으로 이동할 때, 사용 중인 IP 주소를 그대로 사용하여 통신의 지속성을 유지시켜 주는 기술

- ◆ 인터넷 계층 프로토콜
 - ICMP
 - IP에서 발생하는 문제를 처리하기 위한 프로토콜
 - 오류 보고, 상황 보고, 경로를 제어하는 정보 전달 기능 등이 있음

- ◆ 전송 계층 프로토콜
 - TCP
 - 두 종단 간의 연결을 설정한 후 데이터를 8비트의 바이트 스 트림으로 교환하는 연결형 프로토콜

- ◆ 전송 계층 프로토콜
 - UDP
 - 두 종단 간에 연결을 설정하지 않고 데이터를 교환하는 비연 결형 프로토콜
 - TCP와는 달리 비연결성이라 수신 측이 데이터가 제대로 도 착했는지 확인하지 않음

- ◆ 전송 계층 프로토콜
 - TCP와 UDP의 특징 비교

표 8-9 TCP와 UDP의 특징 비교

프로토콜의 기능	TCP	UDP
데이터 전송 단위	세그먼트	블록 형태의 데이터그램
서비스 형태	연결형	비연결형
수신 순서	송신 순서와 일치	송신 순서와 불일치
오류와 흐름 제어	있음	없음

- ◆ 전송 계층 프로토콜
 - 응용 계층 프로토콜과 인터넷 서비스
 - HTTP
 - 인터넷에서 하이퍼텍스트 문서를 교환하는 데 사용하는 통신 규약
 - 1989년 팀 버너스 리가 처음 설계
 - 인터넷을 이용한 월드 와이드 웹에 기반을 두고 전 세계적으로 정보를 공유할 수 있게 함
 - 웹(Web)에서 HTML 문서를 송수신하는 데 사용
 - 텍스트, 이미지, 멀티미디어 파일 등 다양한 형태의 데이터를 전송 할 수 있음

- ◆ 전송 계층 프로토콜
 - 응용 계층 프로토콜과 인터넷 서비스
 - HTTP
 - HTML과 보완 기술
 - » HTML: 웹 문서를 작성할 수 있도록 제정해 놓은 표준 형식
 - > 텍스트 위주의 웹 문서에는 적합하지만 동적인 효과를 표현하는 데는 부적합
 - » HTML의 한계를 보완하기위해 여러 기술 개발 (플래시, VRML, 자바 애플릿, 자바스크립트 등)
 - 브라우저와 웹 페이지
 - 웹 브라우저: HTML 언어로 생성된 문서를 읽을 수 있는 프로그램
 - » 마이크로소프트의 인터넷 익스플로러, 구글의 크롬 등
 - » 웹 페이지: 웹에서 페이지 단위로 상호 연결된 HTML 형식의 웹 문서

- ◆ 전송 계층 프로토콜
 - 응용 계층 프로토콜과 인터넷 서비스
 - FTP
 - 파일을 효율적으로 주고받을 수 있는 파일 전송 프로토콜
 - 인터넷을 이용해 컴퓨터끼리 파일을 송수신할 수 있도록 지원하는 방법
 - 용량이 큰 파일도 빠르게 송수신할 수 있음

- ◆ 전송 계층 프로토콜
 - 텔넷
 - 원격지에서 컴퓨터를 이용한 가상 단말 기능을 구현하는 프 로토콜
 - 원격지에 위치한 호스트 컴퓨터를 로컬 컴퓨터처럼 사용할 수 있음
 - SMTP
 - 전자우편 서비스를 사용할 수 있는 프로토콜

◆ 웹의 진화 과정과 발전 방향

그림 8-29 웹의 진화 과정과 발전 방향 출처: www.radametworks.com

◆ 웹의 진화 과정과 발전 방향

표 8-11 웹의 진화 과정과 특징

구분	1990년~2000년	2000년~2010년	2010년~2020년	2020년~2030년
	웹 1.0	웹 2.0	웹 3.0	웹 4,0
특징	단순한 웹사이트의 집합체	웹 애플리케이션을 제공하는 하나의 플랫폼	시맨틱 웹으로 규정	웹OS의 개념
내용	인터넷을 통해 일방적으로 정보를 보여줌	 사용자가 직접 콘텐츠를 생산 하여 쌍방향으로 소통 가능 게시판, 댓글, 블로그, UCC, 지식백과 등이 있음 	시맨틱 데이터를 이용 하는 인텔리전트 소프 트웨어와 같음	인터넷이 사람의 두뇌를 대체한다는 개념
대역	전화 접속, 평균 50K 정도 대역	평균 1M비트의 대역	10M비트의 대역 (완전한 비디오 웹이 재생될 수 있음)	10M비트 이상의 대역 (실감 미디어가 가능)

- ◆ 웹의 진화 과정과 발전 방향
 - 웹 1.0
 - 웹 2.0이 유행하기 전의 월드 와이드 웹 상태
 - 1990년부터 2000년까지의 기간 동안에 있던 대부분의 웹사이트가 이에 해당
 - 웹 2.0
 - 용량이 큰 동영상이나 이미지 파일도 큰 제약 없이 쉽게 업
 - 키워드로 검색하는 웹 엔진
 - 키워드가 길거나 키워드로 검색할 수 없는 정보라면 원하는 정보를 찾을 수 없음

- ◆ 웹의 진화 과정과 발전 방향
 - 웹 3.0
 - 언제 어디서든 원하는 정보를 찾아 개인별 맞춤 서비스가 가 능한 지능형 웹
 - 사용자가 원하는 정보를 정확히 찾아주는 시맨틱 웹 기반의 지능형 웹 서비스

- ◆ 웹의 진화 과정과 발전 방향
 - 웹 4.0
 - '웹 OS'로 규정(인터넷이 사람의 두뇌를 대체한다는 뜻)
 - 시맨틱 웹 기술
 - 인간을 대신하는 에이전트(로봇, 인공지능 등)가 인간의 질문을 이해하고, 방대한 정보를 검색하고 편집한 후
 적절한 답안을 스스로 추론하여 제공하는 것이 목표인 시스템
 - 인간과 기계 또는 기계와 기계를 연결하는 역할을 수행할 전망
 - 기계와 기계, 기계와 인간이 의사소통 하는 웹 환경을 구현

- ◆ 웹 언어의 진화와 발전 방향
 - CGI 언어
 - 서버와 외부 데이터, 응용 프로그램 간의 인터페이스
 - 브라우저에서 서버로 보낸 데이터를 가공하여 응용 프로그램에 전달
 - 응용 프로그램에서 받은 데이터를 가공하여 서버를 통해 브 라우저로 전달
 - ASP, PHP, JSP 등

- ◆ 웹 언어의 진화 과정과 발전 방향
 - 마크업 언어
 - 웹 서버에 저장된 문자, 그림, 표, 음성, 동영상 등을 포함한 문서를 클라이언트가 내려받아 웹 브라우저에 표현할 때 사용
 - SGML, HTML 순으로 발전
 - XML은 SGML과 HTML의 단점을 보완해 등장한 언어

표8-13 SGML, HTML, XML의 비교

구분	SGML	HTML	XML
등장 시기	1986년	1991년	1996년
목적	정보의 구조화	정보의 표현	정보의 구조화
문법	엄격하고 복잡	느슨	엄격하나 단순
사용 가능한 태그	확장 가능	확장 불가능	확장 가능
정보 검색	트리 검색	텍스트 검색	트리 검색
재사용	매우 쉬움	어려움	쉬움

- ◆ 웹 언어의 진화 과정과 발전 방향
 - 마크업 언어
 - HTML5
 - 차세대 웹 표준으로 2014년 10월 28일에 W3C가 발표
 - HTML이 멀티미디어 등 다양한 애플리케이션까지 표현 및 제공하 도록 진화
 - » 오디오, 비디오, 그래픽의 처리, 위치정보 제공 등 다양한 기능을 제공
 - 홈 페이지에서 사용한 시맨틱 태그를 사용한 레이 아웃을 다른 곳에서 검색하고 의미를 알아내기 쉬움
 - 기존의 웹 콘텐츠의 경우, One source, One Device로 운영되었으나, HTML5가 적용됨에 따라 비로소 표준을 따르는 대부분의 브라우저를 수용하는 환경이 됨.

- ◆ 사물 인터넷
 - 각종 사물에 컴퓨터 칩과 통신 기능을 내장하여 인터넷에 연 결하는 기술을 의미
 - 다양한 산업에 융합되어 사용 가능

수고하셨습니다.

