Math 323 Homework 2

Problem 2 (Chapter 2.3)

Prove that if R is a commutative ring then AB = 1 in $M_n(R)$ implies BA = 1. (This is not always true for non-commutative R.)

Solution. Since AB = 1, we have

$$AB = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i} a_{1i}b_{i1} & \sum_{i} a_{1i}b_{i2} & \cdots & \sum_{i} a_{1i}b_{in} \\ \sum_{i} a_{2i}b_{i1} & \sum_{i} a_{2i}b_{i2} & \cdots & \sum_{i} a_{2i}b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} a_{ni}b_{i1} & \sum_{i} a_{ni}b_{i2} & \cdots & \sum_{i} a_{ni}b_{in} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = 1$$

Hence, for all $1 \le j, k \le n$, we have $\sum_i a_{ji} b_{ik} = 0$ when $j \ne k$ and $\sum_i a_{ji} b_{ik} = 1$ when j = k. We can then compute

$$BA = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i} b_{1i} a_{i1} & \sum_{i} b_{1i} a_{i2} & \cdots & \sum_{i} b_{1i} a_{in} \\ \sum_{i} b_{2i} a_{i1} & \sum_{i} b_{2i} a_{i2} & \cdots & \sum_{i} b_{2i} a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} b_{ni} a_{i1} & \sum_{i} b_{ni} a_{i2} & \cdots & \sum_{i} a_{ni} b_{i1} \\ \sum_{i} a_{1i} b_{i2} & \sum_{i} a_{2i} b_{i1} & \cdots & \sum_{i} a_{ni} b_{i1} \\ \sum_{i} a_{1i} b_{in} & \sum_{i} a_{2i} b_{i2} & \cdots & \sum_{i} a_{ni} b_{i2} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} a_{1i} b_{in} & \sum_{i} a_{2i} b_{in} & \cdots & \sum_{i} a_{ni} b_{in} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = 1$$

where the third line is done because R is commutative, and the fourth line is by our observation from before due to AB = 1.

Problem 5 (Chapter 2.4)

Verify that the set I of quaternions x in which all the coordinates α_i are either integers or all are halves of odd integers is a subring of \mathbb{H} . Is this a division sub-ring? Show that T(x) and $N(x) \in \mathbb{Z}$ for any $x \in I$. Determine the group of units of I.

Solution. Recall
$$x \in \mathbb{H}$$
 is $x = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} = \begin{pmatrix} \alpha_0 + \alpha_1 \sqrt{-1} & \alpha_2 + \alpha_3 \sqrt{-1} \\ -\alpha_2 + \alpha_3 \sqrt{-1} & \alpha_0 - \alpha_1 \sqrt{-1} \end{pmatrix} = \alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k$. The product of x and $\begin{pmatrix} c & d \\ -\bar{d} & \bar{c} \end{pmatrix}$ is $\begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix}$ where $u = ac - b\bar{d}$, $v = ad + b\bar{c}$. From question 4 from section 2.1 (we did this last homework), by slightly changing the proof by swapping all the $\sqrt{-3}$ to $\sqrt{-1}$, but doing literally the same thing, we have that the set of complex numbers with components either integers or half of odd integers is a subring of \mathbb{C} , call it I' , so u, v are both in I' as well, and both either have components that are integers or half of odd integers. So I is a subring of \mathbb{H} .

Let $x \in I$. Recall $T(x) = 2\alpha_0$. If α_0 is an integer, $2\alpha_0 \in \mathbb{Z}$, and if $\alpha_0 = \frac{l}{2}$ where l is odd, then $2\alpha_0 = l \in \mathbb{Z}$. Either way, $T(x) \in \mathbb{Z}$. Recall $N(x) = \alpha_0^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2$. If $\alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z}$, then closure of multiplication and addition in \mathbb{Z} implies that $N(x) \in \mathbb{Z}$. If $\alpha_0, \alpha_1, \alpha_2, \alpha_3$ are all half of odd integers, then there exists odd integers l_0, l_1, l_2, l_3 such that $\alpha_i = l_i/2$. Then $N(x) = \frac{l_0^2}{4} + \frac{l_1^2}{4} + \frac{l_2^2}{4} + \frac{l_3^2}{4} = \frac{l_0^2 + l_1^2 + l_2^2 + l_3^2}{4}$. Now, since l_0, l_1, l_2, l_3 are all odd, there exists integers m_0, m_1, m_2, m_3 such that $l_i = 2m_i + 1$. Then $l_i^2 = 4m_i^2 + 4m_i + 1$. Hence

$$N(x) = \frac{4m_0^2 + 4m_0 + 4m_1^2 + 4m_1 + 4m_2^2 + 4m_2 + 4m_3^2 + 4m_3 + 4}{4} = m_0^2 + m_0 + m_1^2 + m_1 + m_2^2 + m_2 + m_3^2 + m_3 + 1 + m_1^2 + m_2^2 + m_2^2 + m_3^2 +$$

and again, by the closure of multiplication and addition in \mathbb{Z} , since all $m_i \in \mathbb{Z}$, we have that $N(x) \in \mathbb{Z}$. And then I will skip out on finding the units for this homework:)

Problem 2 (Chapter 2.5)

Show that the associative law holds for products of ideals: (IJ)K = I(JK) if I, J, and K are ideals.

Solution. We prove set inclusion both ways. Let $a \in (IJ)K$. Then $a = \sum_n (\sum_m i_{n,m} j_{n,m}) k_n$, where $i_{n,m} \in I$, $j_{n,m} \in J$, and $k_n \in K$, since we can write ideal products as a sum of products. Then by distributivity and then associativity, we get $\sum_{n}\sum_{m}i_{n,m}(j_{n,m}k_{n})\in I(JK)$. Hence, $(IJ)K\subseteq I(JK)$. And then the other direction is proved identically, with distributivity and associativity from the other side. Hence $I(JK) \subseteq (IJ)K$, so I(JK) = (IJ)K.

Problem 3 (Chapter 2.5)

Does the distributive law, I(J+K) = IJ + IK hold?

Solution. We claim it does. We prove it by showing set inclusion in both directions. Let $a \in I(J+K)$. Then $a = \sum_n i_n (j_n + k_n)$. Then, by distributivity, $\sum_n i_n j_n + \sum_n i_n k_n \in IJ + IK$ by distributivity. So we have $I(J+K) \subseteq IJ + IK$. Now, it is clear that $J \subset J + K$ (just consider k=1), so $IJ \subset I(J+K)$. Similarly, we have $IK \subset I(J+K)$. So, since $IJ+IK=IJ\cup IK$, we have that $IJ+IK\subseteq I(J+K)$. This shows that I(J+K) = IJ + IK.

Problem 4 (Chapter 2.6)

Let $A \in GL_2(\mathbb{Z}/(p))$ (that is, A is an invertible 2×2 matrix with entries in $\mathbb{Z}/(p)$). Show that $A^q = 1$ if $q=(p^2-1)(p^2-p)$. Show also that $A^{q+2}=A^2$ for every $A\in M_2(\mathbb{Z}/(p))$.

Solution. We claim that if D is a finite division ring than $a^{|D|} = 1$ for every $a \in D$. This follows from group theory: D being a division ring means that (D,\cdot) is a group, and for any finite group, $a^{|D|}=1$. Now, consider the order of $GL_2(\mathbb{Z}/(p))$. In order for 2×2 matrix to be invertible, the columns need to be linearly independent. If we choose our leftmost column first, we can choose any permutation of two numbers in $\mathbb{Z}/(p)$ other than 0,0 (since this is linearly independent with nothing), so there are p^2-1 options (since there are p elements in $\mathbb{Z}/(p)$). Now, any vector that is linearly dependent to our first column \vec{v} is of the form $a\vec{v}$ where $a \in \mathbb{Z}/(p)$, and so there are p choices of a, (and each $a\vec{v}$ is distinct, otherwise we form a subgroup of order less than p in $\mathbb{Z}/(p)$, but $|\mathbb{Z}/(p)|$, so this is impossible) hence, there are p columns linearly dependent on our first column. Hence there are $p^2 - p$ linearly independent ones. Hence, $|GL_2(\mathbb{Z}/(p))| = (p^2 - 1)(p^2 - p)$.

Now, by definition, $GL_2(\mathbb{Z}/(p))$ is a division ring (all the invertible matrices). So if $A \in GL_2(\mathbb{Z}/(p))$, we have $A^q=1$ since $q=(p^2-1)(p^2-p)=|GL_2(\mathbb{Z}/(p))|$. It is clear then that $A^{q+2}=A^2$ when $A\in GL_2(\mathbb{Z}/(p))$, but I am too lazy to show his for $M_2(\mathbb{Z}/(p))$.

Problem 2 (Chapter 2.7)

Show that if u is a unit in R and η is a homomorphism of R into R' then $\eta(u)$ is a unit in R'. Suppose η is an epimorphism. Does this imply that η is an epimorphism of the group of units of R onto the group of units of R'?

Solution. If u is a unit in R, then there exists some $v \in R$ such that $uv = vu = 1_R$. Then $\eta(uv) = \eta(1_R) = 1_{R'}$ and $\eta(vu) = \eta(1_R) = 1_{R'}$. Since η is a homomorphism, we have $1_{R'} = \eta(uv) = \eta(u)\eta(v)$ and $1_{R'} = \eta(vu) = \eta(v)\eta(u)$. Hence, $\eta(u)$ is a unit in R', with inverse $\eta(v)$.

For the sake of contradiction, assume that there is a unit $u' \in R'$ such that $\eta^{-1}(u')$ is a set that does not contain a unit. Let v' be the inverse of u'. Then $1_{R'} = u'v' = \eta^{-1}(u')\eta^{-1}(v') = \eta^{-1}(u'v')$. So it works if u'v' maps to 1... which I think is perfectly valid.

We claim that if $\eta\colon R\to R'$ is a homomorphism, it does NOT follow that η is an epimorphism of the group of units of R onto the group of units of R'. We provide the counter-example: $\eta\colon \mathbb{Z}\to\mathbb{Z}/5\mathbb{Z}$ by the natural map $x\mapsto \overline{x}$ where the equivalence relation is equivalence modulo 5. Clearly, this is a homomorphism, since $\eta(1)=\overline{1}=1_{R'}$, $\eta(x+y)=\overline{x+y}=\overline{x}+\overline{y}=\eta(x)+\eta(y)$ and $\eta(xy)=\overline{xy}=\overline{x}\overline{y}=\eta(x)\eta(y)$ (by elementary number theory). It is also clearly surjective, so η is an epimorphism. Now, the units in \mathbb{Z} are 1 and -1, however, recall since 5 is prime, $(\mathbb{Z}/5\mathbb{Z})\setminus\{\overline{0}\}$ is a group, i.e. $\mathbb{Z}/5\mathbb{Z}$ is a division ring and every element is invertible, so the units of $\mathbb{Z}/5\mathbb{Z}$ are $\overline{1},\overline{2},\overline{3},\overline{4}$ (one can also just verify this by hand), and there is no surjective map from 2 to 4 elements, hence η cannot be surjective. So η from the units of \mathbb{Z} is not surjective onto the units of $\mathbb{Z}/5\mathbb{Z}$.

Problem 4 (Chapter 2.7)

Show that if R is a commutative ring of prime characteristic p then $a \to a^p$ is an endomorphism of R (= homomorphism of R into R). Is this an automorphism?

Solution. Let our map be $\phi: R \to R$. Then $1 \mapsto 1^p = 1$. Also, if $a, b \in R$, $\phi(a+b) = (a+b)^p = a(a+b)^{p-1} + b(a+b)^{p-1} = a^p + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^2 + \dots + \binom{p}{p-1}ab^{p-1} + b^p$ where we recover the binomial theorem because our ring is commutative (as discussed in class). Now, see that since p is prime, there are no values less than p (other than 1) that divides p. If we consider the prime factor decomposition of k! where $0 \le k < p$, it contains no factors of p, hence $k! \nmid p!$. So, dividing p! by two k! and (p-k)! still leaves a factor of p, so $p \mid \binom{p}{k}$ when $0 \le k < p$. Since R has characteristic p then, we have that $(a+b)^p = a^p + b^p$ (all of our terms go to 0). We also have $(ab)^p = ab \cdots ab = a^pb^p = \phi(a)\phi(b)$ by the commutativity of R. Hence, ϕ is a homomorphism from R to itself,

so it is a endomorphism.

Automorphism ff:(

Problem 9 (Chapter 2.7)

If R_1, R_2, \ldots, R_n are rings we define the direct sum $R_1 \oplus R_2 \oplus \cdots \oplus R_n$ as for monoids and groups. The underlying set is $R = R_1 \times R_2 \times \cdots \times R_n$. Addition, multiplication, 0, and 1 are defined by

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

$$(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$$

$$0 = (0_1, 0_2, \dots, 0_n)$$

$$1 = (1_1, 1_2, \dots, 1_n)$$

 $0_i, 1_i$ the zero and unit of R_i . Verify that R is a ring. Show that the units of R are the elements (u_1, u_2, \ldots, u_n) , u_i a unit of R_i . Hence show that if U = U(R) and $U_i = U(R_i)$ then $U = U_1 \times U_2 \times \cdots \times U_n$, the direct product of the U_i , and that $|U| = \prod |U_i|$ if the U_i are finite.

Solution. Closure under addition and multiplication follows directly from the definition, since R_1, \ldots, R_n are each closed under the operations, and since + and \cdot are done component-wise, $R_1 \oplus R_2 \oplus \cdots \oplus R_n$ satisfy closure for both

addition and multiplication, and commutativity for addition. We can verify associativity: let $a_i, b_i, c_i \in R_i$, then

$$((a_1, \dots, a_n) + (b_1, \dots, b_n)) + (c_1, \dots, c_n) = (a_1 + b_1, \dots, a_n + b_n) + (c_1, \dots, c_n)$$

$$= ((a_1 + b_1) + c_1, \dots, (a_n + b_n) + c_n)$$

$$= (a_1 + (b_1 + c_1), \dots, a_n + (b_n + c_n))$$

$$= (a_1, \dots, a_n) + (b_1 + c_1, \dots, b_n + c_n)$$

$$= (a_1, \dots, a_n) + ((b_1, \dots, b_n) + (c_1, \dots, c_n))$$

$$= (a_1, \dots, a_n)(b_1, \dots, b_n)(c_1, \dots, c_n)$$

$$= ((a_1b_1)c_1, \dots, (a_nb_n)c_n)$$

$$= (a_1(b_1c_1), \dots, a_n(b_nc_n))$$

$$= (a_1, \dots, a_n)(b_1 + c_1, \dots, b_n + c_n)$$

And commutativity

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$
$$= (b_1 + a_1, \dots, b_n + a_n)$$
$$= (b_1, \dots, b_n) + (a_1, \dots, a_n)$$

 $=(a_1,\ldots,a_n)((b_1,\ldots,b_n)(c_1,\ldots,c_n))$

And distributivity

$$(a_{1}, \dots, a_{n}) ((b_{1}, \dots, b_{n}) + (c_{1}, \dots, c_{n})) = (a_{1}, \dots, a_{n})(b_{1} + c_{1}, \dots, b_{n} + c_{n})$$

$$= (a_{1}(b_{1} + c_{1}), \dots, a_{n}(b_{n} + c_{n}))$$

$$= (a_{1}b_{1} + a_{1}c_{1}, \dots, a_{n}b_{n} + a_{n}c_{n})$$

$$= (a_{1}b_{1}, \dots, a_{n}b_{n}) + (a_{1}c_{1}, \dots, a_{n}c_{n})$$

$$= (a_{1}, \dots, a_{n})(b_{1}, \dots, b_{n}) + (a_{1}, \dots, a_{n})(c_{1}, \dots, c_{n})$$

$$((b_{1}, \dots, b_{n}) + (c_{1}, \dots, c_{n}))(a_{1}, \dots, a_{n}) = (b_{1} + c_{1}, \dots, b_{n} + c_{n})(a_{1}, \dots, a_{n})$$

$$= (b_{1}a_{1} + c_{1}a_{1}, \dots, b_{n}a_{n} + c_{n}a_{n})$$

$$= (b_{1}a_{1}, \dots, b_{n}a_{1}) + (c_{1}a_{1}, \dots, c_{n}a_{n})$$

$$= (b_{1}, \dots, b_{n})(a_{1}, \dots, a_{n}) + (c_{1}, \dots, c_{n})(a_{1}, \dots, a_{n})$$

Where all of these follow from the associativity, additive commutativity, and distributivity of each of R_1, \ldots, R_n . Furthermore, if $a_i \in R_i$, then $0 + (a_1, \ldots, a_n) = (0_1 + a_1, \ldots, 0_n + a_n) = (a_1, \ldots, a_n)$ and similarly for $(a_1, \ldots, a_n) + 0$, and $1(a_1, \ldots, a_n) = (1_1 a_1, \ldots, 1_n a_n) = (a_1, \ldots, a_n)$ and similarly for $(a_1, \ldots, a_n)1$, so our zero and unit are valid for $R_1 \oplus \cdots \oplus R_n$.

Finally, we show that an additive inverse exists for all elements in $R_1 \oplus \cdots \oplus R_n$. Consider (a_1, \ldots, a_n) . Since in each R_i , there's some $-a_i$ such that $a_i + (-a_i) = (-a_i) + a_i = 0_i$, we have

$$(a_1, \dots, a_n) + (-a_1, \dots, -a_n) = (a_1 - a_1, \dots, a_n - a_n) = (0_1, \dots, 0_n) = 0$$
$$(-a_1, \dots, -a_n) + (a_1, \dots, a_n) = (-a_1 + a_1, \dots, -a_n + a_n) = (0_1, \dots, 0_n) = 0$$

hence, for any arbitrary element $(a_1, \ldots, a_n) \in R_1 \oplus \cdots \oplus R_n, (-a_1, \ldots, -a_n)$ is an additive inverse.

To show that the units of R are the elements (u_1, \ldots, u_n) , u_i is a unit of R_i , it is equivalent to show that $U = U_1 \times \cdots \times U_n$ (where U = U(R) and $U_i = U(R_i)$). We do this by set-inclusion in both directions. Assume $(a_1, \ldots, a_n) \in U$. Then there is some $(b_1, \ldots, b_n) \in R$ such that $(a_1, \ldots, a_n)(b_1, \ldots, b_n) = (b_1, \ldots, b_n)(a_1, \ldots, a_n) = 1$, So $(a_1b_1, \ldots, a_nb_n) = (1_1, \ldots, 1_n)$ and $(b_1, a_1, \ldots, b_na_n) = (1_1, \ldots, 1_n)$. Hence, $a_1b_1 = b_1a_1 = 1_1, \ldots, a_nb_n = 1$

 $b_n a_n = 1_n$. Hence, a_i has inverse b_i in R_i , so $a_i \in U_i$. Hence, $(a_1, \ldots, a_n) \in U_1 \times \cdots \times U_n$, so $U \subseteq U_1 \times \cdots \times U_n$. Now assume that $(u_1, \ldots, u_n) \in U_1 \times \cdots \times U_n$. Since u_i is a unit in R_i , there is some $v_i \in R_i$ such that $u_i v_i = v_i u_i = 1_i$. So consider $(v_1, \ldots, v_n) \in R$. Then $(u_1, \ldots, u_n)(v_1, \ldots, v_n) = (u_1 v_1, \ldots, u_1 v_1) = (1_1, \ldots, 1_n) = 1$ and $(v_1, \ldots, v_n)(u_1, \ldots, u_n) = (v_1 u_1, \ldots, v_1 u_1) = (1_1, \ldots, 1_n) = 1$, hence $(u_1, \ldots, u_n) \in U$, so $U_1 \times \cdots \times U_n \subseteq U$. Therefore, $U = U_1 \times \cdots \times U_n$.

Finally, note that if $G = G_1 \times G_2 \times \cdots \times G_n$ and $|G_i| < \infty$ for all $1 \le i \le n$, we have $|G| = \prod_i |G_i|$. Hence, if all the U_i are finite, since $U = U_1 \times \cdots \times U_n$, we have $|U| = \prod_i |U_i|$.

Problem 10 (Chapter 2.7)

(Chinese remainder theorem). Let I_1 and I_2 be ideals of a ring R which are relatively prime in the sense that $I_1 + I_2 = R$. Show that if a_1 and a_2 are elements of R then there exists an $a \in R$ such that $a \equiv a_i \pmod{I_i}$. More generally, show that if I_1, \ldots, I_m are ideals such that $I_j + \bigcap_{k \neq j} I_k = R$ for $1 \leq j \leq m$, then for any (a_1, a_2, \ldots, a_m) , $a_i \in R$, there exists an $a \in R$ such that $a \equiv a_k \pmod{I_k}$ for all k.

Solution. Recall $I_1 + I_2 := (I_1 \cup I_2)$. If $a_1 \in I_1$ and $a_2 \in I_2$, then a = 0 works. If $a_1 \in I_1$ but $a_2 \notin I_2$ (and so $a_2 \in I_1$ since $a_2 = i_1 + i_2$ and ff hmm now this seems a lot more trivial, we have $a = a_2$ works, since $a_1 - a_2 \in I_1$ since I is a subgroup with respect to addition, and $a_2 - a_2 = 0 \in I_2$ since I_2 must contain the zero since it is a group with respect to addition. The same works when $a_1 \notin I_1$ and $a_2 \in I_2$, i.e. $a = a_1$. If