

321-10302- Ψηφιακές Επικοινωνίες

Διδάσκοντες

Μεσαριτάκης Χάρης (Θεωρία), Τάτσης Βασίλειος (Εργαστήριο)

3η Εργαστηριακή Άσκηση

3212018107 Κυριαζής Ιωάννης

3212018161 Παπαδόπουλος Παναγιώτης

Κατάλογος Περιεχομένων

<u>ΚΕΦΑΛΑΙΟ 1</u>	Βασική Θεωρητική Προετοιμασία	σελ. 03
ΚΕΦΑΛΑΙΟ 2	Απαντήσεις στις Ερωτήσεις	σελ. 06
ΚΕΦΑΛΑΙΟ 3	Βιβλιογραφία	σελ. 09

ΚΕΦΑΛΑΙΟ 1

Βασική Θεωρητική Προετοιμασία

QAM (Quadrature Amplitude Modulation)

QAM, Quadrature Amplitude Modulation, είναι μια τεχνική Adaptive Modulation και χρησιμοποιείται ευρέως σέ ψηφιακές τηλεπικοινωνίες προκειμένου αυξηθεί ο ρυθμός μετάδοσης δεδομένων. Χρησιμοποιούνται διάφορές μορφές QAM, ανάλογα τον αριθμό των bit/σύμβολο υπάρχουν 8 QAM 16 QAM, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM και 1024 QAM. Η διαμόρφωσή QAM δημιουργήθηκε από το συνδυασμό τής διαμόρφωσής πλάτους και τής διαμόρφωσής φάσης. Το μεταδιδόμενο σήμα πληροφορίας είναι διαμορφωμένο και κατά πλάτος και κατά φάση.

8-QAM σε διαφορετικές διατάξεις

64-QAM

Η QAM μπορεί να χρησιμοποιείται όταν ο ρυθμός μετάδοσης πού απαιτείται από το τηλεπικοινωνιακό σύστημα δεν καλύπτεται από 8-PSK και οι συνθήκες τού καναλιού το επιτρέπουν. Ο θόρυβος στο κανάλι δημιουργεί μια διασπορά στα σημεία τού αστερισμού και μπορεί να επηρεάζει το σήμα σέ δύο παραμέτρους στο πλάτος και στη φάση (φασικός θόρυβος).

16-QAM

ΚΕΦΑΛΑΙΟ 2

Απαντήσεις στις Ερωτήσεις

Διαγράμματα Αστερισμού για κάθε τιμή του Ε_b/N₀

Bit Error Rate (BER) προς E_b/N₀

Στα παραπάνω στιγμιότυπα παρατηρούμε ότι ο Πρόσθετος Λευκός Γκαουσιανός Θόρυβος εκμηδενίζει σταδιακά το Bit Error Rate. Επιδρά εκθετικά στο αρχικό σήμα. Στην αρχή, ο κανονικοποιημένος λόγος σήματος προς θόρυβο ανά bit (E_b/N_0) που έχει μικρή τιμή επιτρέπει στο SNR να έχει μικρή τιμή με αποτέλεσμα η συνάρτηση awgn του matlab να μην μπορεί να αντιληφθεί τον θόρυβο. Όσο αυξάνεται το E_b/N_0 το SNR αυξάνεται κι αυτό και έτσι η awgn μπορεί να εκμηδενίσει τον θόρυβο στο εξερχόμενο σήμα.

ΚΕΦΑΛΑΙΟ 3 Βιβλιογραφία

[1]:https://eclass.icsd.aegean.gr/modules/document/file.php/ICSD411/%CE%95%CF%81%CE%B3%CE%B1%CF%83%CF%84%CE%AE%CF%81%CE%B9%CE%BF/%CE%95%CF%81%CE%B3%CE%B1%CF%83%CF%84%CE%B7%CF%81%CE%B9%CE%B1%CE%BA%CE%AD%CF%82%20%CE%91%CF%83%CE%BA%CE%BA%CE%AE%CF%83%CE%B5%CE%B9%CF%82/%CE%86%CF%83%CE%BA%CE%B7%CF%83%CE%B7%203%CE%B7%2016QAM-AWGN%202021.pdf

[2]: https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise

ΠΕΡΑΣ 3ης ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ

Kyriazis Ioannis | Papadopoulos Panagiotis

Copyright © 2021 – All Rights Reserved