Total Type Error Localization and Recovery with Holes

A	Preface							
	.1 Organization							
	.2 Mechanization	. 3						
В	Marked lambda calculus							
	.1 Syntax	. 4						
	.2 Types	. 4						
	.3 Unmarked expressions							
	.4 Marking	. 6						
	.5 Marked expressions							
	.6 Mark erasure	. 9						
	.7 Metatheorems	. 9						
	.8 Alternative conditional rules	. 10						
C	xtension: patterned let expressions	11						
	.1 Syntax	. 11						
	.2 Types	. 11						
	.3 Unmarked patterns							
	.4 Pattern marking							
	.5 Marked patterns							
	.6 Pattern mark erasure							
	.7 Unmarked expressions							
	.8 Marking	. 14						
	.9 Marked expressions							
	.10 Mark erasure	. 14						
	.11 Metatheorems	. 15						
D	Entancian Cratan Estala nalum ambian							
D	xtension: System F-style polymorphism	16						
	.1 Syntax							
	.2 Unmarked types							
	.3 Type marking							
	.4 Marked types							
	7.5 Type mark erasure							
	.6 Unmarked expressions							
	.7 Marking							
	*							
	The state of the s							
	.10 Metatheorems	. 20						
E	intyped hazelnut	21						
	.1 Syntax							
	2 Cursor erasure							
	3 Action model							
	.4 Metatheorems	. 26						

F	Type	ed hazelnut	27
	F.1	Syntax	27
	F.2	Cursor erasure	28
	F.3	Action model	28
	F.4	Mark erasure	37
	F.5	Metatheorems	37
G	Con	straint generation	39

A Preface

This is the complete formalism demonstrating the *marked lambda calculus*, a judgmental framework for precise bidirectional error localization and recovery that employs gradual typing.

A.1 Organization

Though more is said in each individual section, the overall structure of the document is as follows:

- Section B employs the framework on a gradually typed lambda calculus.
- Section C extends the demonstration with patterned let expressions.
- Section D extends the demonstration with System F-style parametric polymorphism.
- Section E gives a version of the Hazelnut structure editor calculus that uses the marked lambda calculus to solve Hazelnut's deficiency with regards to non-local hole fixes.
- Section F is similar, except that it employs the marking procedure in a roughly incremental fashion.
- Section G additionally gives the rules for constraint generation in relation to the type hole inference work of Section 4.

Note that each of the sections following Section B build upon that same core language.

A.2 Mechanization

Not all parts of the formalism are mechanized in Agda. It is noted in each section whether or not the section has been mechanized and, if so, where to find the relevant definitions and theorems.

As possible, the names of judgments and rules that appear in the mechanization have been made to follow those in this formalism. Refer also to the mechanization's README for more details.

B Marked lambda calculus

The *marked lambda calculus* is a judgmental framework for bidirectional type error localization and recovery. Here, we demonstrate it on a gradually typed lambda calculus with numbers, booleans, and product types, as described in Section 2.1 of the paper.

MECHANIZATION O

- ▶ core.agda
- ▶ marking.agda

B.1 Syntax

Type
$$\tau$$
 ::= ? | num | bool | $\tau \rightarrow \tau$ | $\tau \times \tau$
UExp e ::= $x \mid \lambda x : \tau$. $e \mid e \mid e \mid \text{let } x = e \text{ in } e \mid \underline{n} \mid e + e$
| tt | ff | if e then e else $e \mid (e, e) \mid \pi_1 e \mid \pi_2 e \mid (||)$
MExp \check{e} ::= $x \mid \lambda x : \tau$. $\check{e} \mid \check{e} \check{e} \mid \text{let } x = \check{e} \text{ in } \check{e} \mid \underline{n} \mid \check{e} + \check{e}$
| tt | ff | if \check{e} then \check{e} else $\check{e} \mid (\check{e}, \check{e}) \mid \pi_1 \check{e} \mid \pi_2 \check{e} \mid (||)$
| $(x)_n \mid (\check{e})_+$
| $(\lambda x : \tau . \check{e})_: \mid (\lambda x : \tau . \check{e})_{-}^* \mid (|\check{e}|_{-}^*)_+^*$
| (if \check{e} then \check{e} else \check{e}) | $((\check{e}, \check{e}))_{-}^* \mid \pi_1 (|\check{e}|_{-}^*)_+^*$

B.2 Types

 $\boxed{ au_1 \sim au_2} au_1$ is consistent with au_2

TCUnknown1	TCUnknown2	TCRefl	$ ag{TCArr} \ ag{ ag{ ag{ ag{ ag{ ag{ ag{ ag{ ag{ ag{$	$ au_1 \sim au_1' \qquad au_2 \sim au_2'$
$\overline{? \sim au}$	$\overline{ au \sim ?}$	$\overline{ au \sim au}$	$\frac{\tau_1 \to \tau_1 \to \tau_2 \to \tau_2'}{\tau_1 \to \tau_2 \to \tau_1' \to \tau_2'}$	$rac{ au_1 au_2 au_2}{ au_1 imes au_2 au_1' imes au_2'}$

 $\tau \mapsto \tau_1 \to \tau_2 \tau$ has matched arrow type $\tau_1 \to \tau_2$

TMAUNKNOWN TMAARR
$$\frac{}{?_{\, \Vdash_{\rightarrow}}? \to ?}$$

$$\frac{}{\tau_1 \to \tau_2 _{\, \Vdash_{\rightarrow}} \tau_1 \to \tau_2}$$

 $\tau_1 \times \tau_1 \times \tau_2 \to \tau$ has matched binary product type $\tau_1 \times \tau_2$

TMPUNKNOWN TMPPROD
$$\frac{\tau_1 \times \tau_2 \times \tau_1 \times \tau_2}{\tau_1 \times \tau_2 \times \tau_1 \times \tau_2}$$

 $\tau_1 \sqcup \tau_2$ is a partial metafunction Type × Type \rightharpoonup Type defined as follows:

$$? \sqcup \tau = \tau$$

$$\tau \sqcup ? = \tau$$

$$\mathsf{num} \sqcup \mathsf{num} = \mathsf{num}$$

$$\mathsf{bool} \sqcup \mathsf{bool} = \mathsf{bool}$$

$$(\tau_1 \to \tau_2) \sqcup (\tau_1' \to \tau_2') = (\tau_1 \sqcup \tau_1') \to (\tau_2 \sqcup \tau_2')$$

$$(\tau_1 \times \tau_2) \sqcup (\tau_1' \times \tau_2') = (\tau_1 \sqcup \tau_1') \times (\tau_2 \sqcup \tau_2')$$

 τ base $|\tau|$ is a base type

B.3 Unmarked expressions

 $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$ e synthesizes type τ

 $\Gamma \vdash_{\overline{U}} e \leftarrow \tau \mid e \text{ analyzes against type } \tau$

UALAM

$$\frac{\tau_{3} \Vdash_{\rightarrow} \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash_{\overline{U}} let x : \tau \vdash_{\overline{U}} e \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \tau_{1} \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \tau_{1} \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1}}{\Gamma \vdash_{\overline{U}} let x : \epsilon_{1} \ln e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \leftarrow \tau_{2}} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{U}} e_{2} \Rightarrow \tau_{2} \qquad \Gamma \vdash_{\overline{$$

UALET

e subsumable *e* is subsumable

B.4 Marking

 $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau \mid e \text{ is marked into } \check{e} \text{ and synthesizes type } \tau$

B.5 Marked expressions

MLLAM MLAP MLHole MLVar ě markless \check{e}_1 markless \check{e}_2 markless markless $\lambda x : \tau. \check{e} \text{ markless}$ ě₁ ě₂ markless x markless MLLET MLPLUS MLTrue MLFALSE MLNum \check{e}_2 markless ě₂ markless \check{e}_1 markless \check{e}_1 markless let $x = \check{e}_1$ in \check{e}_2 markless $\check{e}_1 + \check{e}_2$ markless tt markless ff markless n markless MLProjL MLProjR MLIF MLPair \check{e}_2 markless \check{e}_1 markless ě₂ markless ě markless ě markless ě₁ markless ě₃ markless $(\check{e}_1, \check{e}_2)$ markless if \check{e}_1 then \check{e}_2 else \check{e}_3 markless $\pi_1 \check{e}$ markless $\pi_2 \check{e}$ markless

ě markless *ě* has no marks

B.6 Mark erasure

 \tilde{e}^{\square} is a metafunction MExp \rightarrow UExp defined as follows:

```
x^{\square} = x
                                                         (|x|)_{\square}^{\square} = x
                                    (\lambda x : \tau . \check{e})^{\square} = \lambda x : \tau . (\check{e}^{\square})
                                 (\lambda x : \tau . \check{e}). \Box = \lambda x : \tau . (\check{e}\Box)
                             (\lambda x : \tau. \check{e}) = \lambda x : \tau. (\check{e}^{\square})
                                                  (\check{e}_1 \; \check{e}_2)^{\square} = (\check{e}_1^{\square}) (\check{e}_2^{\square})
                                      ((\check{e}_1) \stackrel{\rightarrow}{\triangleright} \check{e}_2)^{\square} = (\check{e}_1^{\square}) (\check{e}_2^{\square})
                  (\operatorname{let} x = \check{e}_1 \text{ in } \check{e}_2)^{\square} = \operatorname{let} x = (\check{e}_1^{\square}) \operatorname{in} (\check{e}_2^{\square})
                                          (\check{e}_1 + \check{e}_2)^{\square} = (\check{e}_1^{\square}) + (\check{e}_2^{\square})
                                                               \mathsf{tt}^{\scriptscriptstyle \square} = \mathsf{tt}
                                                                 ff^{\square} = ff
     (if \check{e}_1 then \check{e}_2 else \check{e}_3) = if (\check{e}_1^{\square}) then (\check{e}_2^{\square}) else (\check{e}_3^{\square})
(if \check{e}_1 then \check{e}_2 else \check{e}_3)<sub>|/|</sub> = if (\check{e}_1^{\square}) then (\check{e}_2^{\square}) else (\check{e}_3^{\square})
                                                (\check{e}_1,\check{e}_2)^{\square} = (\check{e}_1^{\square},\check{e}_2^{\square})
                                      ((\check{e}_1,\check{e}_2))^{\square} = (\check{e}_1^{\square},\check{e}_2^{\square})
                                                     (\pi_1\check{e})^{\square} = \pi_1(\check{e}^{\square})
                                          (\pi_1(\check{e}))^{\rightarrow})^{\square} = \pi_1(\check{e}^{\square})
                                                     (\pi_2\check{e})^{\scriptscriptstyle \square} = \pi_2(\check{e}^{\scriptscriptstyle \square})
                                          (\pi_2(\check{e})^{\rightarrow}_{k})^{\square} = \pi_2(\check{e}^{\square})
                                                         (|\check{e}|)_{\square} = \check{e}^{\square}
```

B.7 Metatheorems

Theorem B.1 (Marking Totality).

- 1. For all Γ and e, there exist \check{e} and τ such that $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau$.
- 2. For all Γ , e, and τ , there exists \check{e} such that $\Gamma \vdash e \hookrightarrow \check{e} \leftarrow \tau$.

Theorem B.2 (Marking Well-Formedness).

- 1. If $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau$, then $\Gamma \vdash_{M} \check{e} \Rightarrow \tau$ and $\check{e}^{\square} = e$.
- 2. If $\Gamma \vdash e \hookrightarrow \check{e} \leftarrow \tau$, then $\Gamma \vdash_{\overline{M}} \check{e} \leftarrow \tau$ and $\check{e}^{\square} = e$.

Theorem B.3 (Marking of Well-Typed/Ill-Typed Expressions).

- 1. (a) If $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$ and $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$, then \check{e} markless.
 - (b) If $\Gamma \vdash_{\overline{v}} e \leftarrow \tau$ and $\Gamma \vdash_{\overline{v}} e \hookrightarrow_{\overline{v}} \check{e} \leftarrow_{\overline{v}}$, then \check{e} markless.
- 2. (a) If there does not exist τ such that $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$, then for all \check{e} and τ' such that $\Gamma \vdash_{\overline{e}} e \hookrightarrow \check{e} \Rightarrow \tau'$, it is not the case that \check{e} markless.
 - (b) If there does not exist τ such that $\Gamma \vdash_{\overline{\upsilon}} e \leftarrow \tau$, then for all \check{e} and τ' such that $\Gamma \vdash_{e} e \hookrightarrow_{e} \check{e} \leftarrow \tau'$, it is not the case that \check{e} markless.

Theorem B.4 (Marking Unicity).

- 1. If $\Gamma \vdash e \hookrightarrow \check{e}_1 \Rightarrow \tau_1$ and $\Gamma \vdash e \hookrightarrow \check{e}_2 \Rightarrow \tau_2$, then $\check{e}_1 = \check{e}_2$ and $\tau_1 = \tau_2$.
- 2. If $\Gamma \vdash e \hookrightarrow \check{e}_1 \Leftarrow \tau$ and $\Gamma \vdash e \hookrightarrow \check{e}_2 \Leftarrow \tau$, then $\check{e}_1 = \check{e}_2$.

B.8 Alternative conditional rules

There are alternative ways to formulate error localization in conditionals. Below, we provide two alternatives to the rules above.

B.8.1 Localize to second

In this formulation, we always select the first branch as "correct" and localize errors to the second.

B.8.2 Localize to first

In this formulation, we always select the second branch as "correct" and localize errors to the first.

$$\begin{array}{c}
\Gamma \vdash_{\overline{U}} e \Rightarrow \tau \\
\hline
 e \text{ synthesizes type } \tau \\
\hline
 \Gamma \vdash_{\overline{U}} e_1 \Leftarrow \text{ bool} \qquad \Gamma \vdash_{\overline{U}} e_3 \Rightarrow \tau \qquad \Gamma \vdash_{\overline{U}} e_2 \Leftarrow \tau \\
\hline
 \Gamma \vdash_{\overline{U}} \text{ if } e_1 \text{ then } e_2 \text{ else } e_3 \Rightarrow \tau
\end{array}$$

 $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau \mid e \text{ is marked into } \check{e} \text{ and synthesizes type } \tau$

$$\frac{\text{MKSI}_{\text{F}}"}{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Leftarrow \tau}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau}$$

$$\Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \tau \qquad \check{e} \text{ synthesizes type } \tau$$

$$MSIF"$$

$$\Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \tau \qquad \Gamma$$

C Extension: patterned let expressions

In this section, we describe an extension of the marked lambda calculus for destructuring let expressions, as described in Section 2.3 of the paper.

MECHANIZATION ×

C.1 Syntax

Type
$$\tau$$
 ::= \cdots | ? \Rightarrow
UExp e ::= \cdots | let $p = e$ in e
MExp \check{e} ::= \cdots | let $p = \check{e}$ in \check{e}
UPat p ::= $_{-}$ | x | (p,p) | p : τ
MPat \check{p} ::= $_{-}$ | x | (\check{p},\check{p}) | \check{p} : τ
| $(\check{p})_{-}$ | $((\check{p},\check{p}))_{-x}^{-}$

C.2 Types

 $\boxed{ au_1 \sim au_2} au_1$ is consistent with au_2

TCUnknownSwitch1

?[⇒] ~ τ

TCUnknownSwitch2

· ~ ?[⇒]

 $\tau \triangleright_{\rightarrow} \tau_1 \rightarrow \tau_2 \ \tau$ has matched arrow type $\tau_1 \rightarrow \tau_2$

TMAUnknownSwitch

$$\overline{?^{\Rightarrow}}_{\text{P}\rightarrow}?^{\Rightarrow}\rightarrow?^{\Rightarrow}$$

 $\tau_1 \times \tau_1 \times \tau_2 \tau_1$ r has matched binary product type $\tau_1 \times \tau_2$

TMPUnknownSwitch

$$\overrightarrow{?^{\Rightarrow}} \triangleright_{\checkmark} ?^{\Rightarrow} \times ?^{\Rightarrow}$$

 $\tau_1 \sqcup \tau_2$ is a *partial* metafunction Type × Type \rightarrow Type defined as follows:

$$\begin{array}{cccc} & \vdots & & \\ ?^{\Rightarrow} \sqcup \tau & = & ?^{\Rightarrow} \\ \tau \sqcup ?^{\Rightarrow} & = & ?^{\Rightarrow} \end{array}$$

C.3 Unmarked patterns

 $\Gamma \vdash_{\overline{v}} p \Rightarrow \tau \quad p \text{ synthesizes type } \tau$

$$\frac{\text{USPVar}}{\Gamma \vdash_{\overline{U}} - \Rightarrow ?^{\Rightarrow}} \qquad \frac{\text{USPVar}}{\Gamma \vdash_{\overline{U}} x \Rightarrow ?^{\Rightarrow}} \qquad \frac{\frac{\text{USPPAIR}}{\Gamma \vdash_{\overline{U}} p_{1} \Rightarrow \tau_{1}} \qquad \frac{\text{USPANN}}{\Gamma \vdash_{\overline{U}} p_{2} \Rightarrow \tau_{2}}}{\Gamma \vdash_{\overline{U}} (p_{1}, p_{2}) \Rightarrow \tau_{1} \times \tau_{2}} \qquad \frac{\Gamma \vdash_{\overline{U}} p \Leftarrow \tau \dashv \Gamma'}{\Gamma \vdash_{\overline{U}} p : \tau \Rightarrow \tau}$$

 $\Gamma_1 \vdash_{\overline{\upsilon}} p \leftarrow \overline{\tau} \vdash_{\Gamma_2} p$ analyzes against type τ producing context Γ_2

$$\frac{\text{UAPWILD}}{\Gamma \vdash_{\overline{U}} = \tau \dashv \Gamma} \qquad \frac{\text{UAPVAR}}{\Gamma \vdash_{\overline{U}} x \Leftarrow \tau \dashv \Gamma, \ x : \tau} \qquad \frac{\text{UAPPAIR}}{\tau \vdash_{\times} \tau_{1} \times \tau_{2}} \qquad \frac{\tau \vdash_{\overline{U}} p_{1} \Leftarrow \tau_{1} \dashv \Gamma_{1}}{\Gamma \vdash_{\overline{U}} (p_{1}, p_{2}) \Leftarrow \tau \dashv \Gamma_{2}} \qquad \Gamma \vdash_{\overline{U}} (p_{1}, p_{2}) \Leftarrow \tau \dashv \Gamma_{2}$$

$$\frac{\Gamma \vdash_{\overline{U}} p \Leftarrow \tau' \dashv \Gamma' \qquad \tau \sim \tau'}{\Gamma \vdash_{\overline{U}} p : \tau' \Leftarrow \tau \dashv \Gamma'}$$

C.4 Pattern marking

 $\Gamma \vdash p \hookrightarrow \check{p} \Rightarrow \tau$ p is marked into \check{p} and synthesizes τ

MKSPPair

 $\Gamma_1 \vdash p \hookrightarrow \check{p} \leftarrow \tau \dashv \Gamma_2 \mid p$ is marked into \check{p} and analyzes against τ producing Γ_2

$$\begin{array}{c} \text{MKAPPAIR1} \\ \tau \Vdash_{\times} \tau_{1} \times \tau_{2} & \Gamma \vdash p_{1} \looparrowright \check{p}_{1} \Leftarrow \tau_{1} \dashv \Gamma_{1} \\ \hline \text{MKAPWILD} & \frac{\text{MKAPVAR}}{\Gamma \vdash_{-} \looparrowright_{-} \Leftarrow \tau \dashv \Gamma} & \frac{\Gamma_{1} \vdash_{p_{2}} \looparrowright \check{p}_{2} \Leftarrow \tau_{2} \dashv \Gamma_{2}}{\Gamma \vdash_{-} (p_{1}, p_{2}) \looparrowright (\check{p}_{1}, \check{p}_{2}) \Leftarrow \tau \dashv \Gamma_{2}} \end{array}$$

MKAPPair2

C.5 Marked patterns

$$oxed{\Gamma dash \check{p} \Rightarrow au} \check{p} ext{ synthesizes type } au$$

$$\frac{\text{MSPValr}}{\Gamma \mid_{\overline{\mathbb{M}}} \longrightarrow ?^{\Rightarrow}} \qquad \frac{\text{MSPVar}}{\Gamma \mid_{\overline{\mathbb{M}}} x \Rightarrow ?^{\Rightarrow}} \qquad \frac{\frac{\text{MSPPair}}{\Gamma \mid_{\overline{\mathbb{M}}} \check{p}_{1} \Rightarrow \tau_{1}} \qquad \frac{\Gamma \mid_{\overline{\mathbb{M}}} \check{p}_{2} \Rightarrow \tau_{2}}{\Gamma \mid_{\overline{\mathbb{M}}} (\check{p}_{1}, \check{p}_{2}) \Rightarrow \tau_{1} \times \tau_{2}} \qquad \frac{\Gamma \mid_{\overline{\mathbb{M}}} \check{p} \in \tau \dashv \Gamma'}{\Gamma \mid_{\overline{\mathbb{M}}} \check{p} : \tau \Rightarrow \tau}$$

$$\begin{array}{c} \text{MAPVAIR1} \\ \text{MAPWILD} \\ \hline \\ \frac{\text{MAPVAR}}{\Gamma \vdash_{\overline{\mathbb{M}}} _ \Leftarrow \tau \dashv \Gamma} \end{array} \qquad \begin{array}{c} \text{MAPVAR2} \\ \hline \\ \frac{\text{MAPVAR}}{\Gamma \vdash_{\overline{\mathbb{M}}} x \Leftarrow \tau \dashv \Gamma, \ x : \tau} \end{array} \qquad \begin{array}{c} \text{MAPVAIR1} \\ \hline \\ \frac{\Gamma_1 \vdash_{\overline{\mathbb{M}}} \check{p}_1 \Leftarrow \tau_1 \dashv \Gamma_1}{\Gamma_1 \vdash_{\overline{\mathbb{M}}} \check{p}_2 \Leftarrow \tau_2 \dashv \Gamma_2} \end{array} \qquad \begin{array}{c} \text{MAPPAIR2} \\ \hline \\ \frac{\Gamma_1 \vdash_{\overline{\mathbb{M}}} \check{p}_2 \Leftarrow \tau_2 \dashv \Gamma_2}{\Gamma \vdash_{\overline{\mathbb{M}}} (\check{p}_1, \check{p}_2) \Leftarrow \tau \dashv \Gamma_2} \end{array} \qquad \begin{array}{c} \text{MAPANN2} \\ \hline \\ \frac{\tau \rightharpoonup \tau'}{\Gamma \vdash_{\overline{\mathbb{M}}} \check{p}} \triangleq \tau' \dashv \Gamma' \end{array} \\ \hline \\ \frac{T \vdash_{\overline{\mathbb{M}}} \check{p} \vdash_{\overline{\mathbb{M}}} \check{p} \vdash_{\overline{\mathbb{M}}} \tau' \vdash_$$

 $|\check{p}|$ markless $|\check{p}|$ has no marks

C.6 Pattern mark erasure

 $\left|\check{p}^{\scriptscriptstyle\square}\right|$ is a metafunction MPat ightarrow UPat defined as follows:

$$\begin{array}{rcl} & - & - & - \\ & x^{\Box} & = & x \\ (\check{p}_{1}, \check{p}_{2})^{\Box} & = & (\check{p}_{1}^{\Box}, \check{p}_{2}^{\Box}) \\ ((\check{p}_{1}, \check{p}_{2}))_{*_{\kappa}}^{+\Box} & = & (\check{p}_{1}^{\Box}, \check{p}_{2}^{\Box}) \\ (\check{p} : \tau)^{\Box} & = & (\check{p}^{\Box}) : \tau \\ (\check{p} : \tau)_{*_{\omega}}^{+\Box} & = & (\check{p}^{\Box}) : \tau \end{array}$$

C.7 Unmarked expressions

 $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$ e synthesizes type τ

$$\frac{\Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1}{\Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1} \qquad \frac{\Gamma \vdash_{\overline{U}} p \Leftarrow \tau_1 \dashv \Gamma'}{\Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_2}$$

$$\frac{\Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1}{\Gamma \vdash_{\overline{U}} let \ p = e_1 \ in \ e_2 \Rightarrow \tau_2}$$

 $\Gamma \vdash_{\overline{U}} e \leftarrow \tau$ e analyzes against type τ

$$\begin{array}{c|c} \text{UASynSwitch} & \text{UALetPat} \\ \hline \Gamma \vdash_{\overline{U}} e \Rightarrow \tau \\ \hline \Gamma \vdash_{\overline{U}} e \Leftarrow ?^{\Rightarrow} \end{array} \qquad \begin{array}{c|c} \text{UALetPat} \\ \hline \Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1 & \Gamma \vdash_{\overline{U}} p \Leftarrow \tau_1 \dashv \Gamma' & \Gamma' \vdash_{\overline{U}} e_2 \Leftarrow \tau_2 \\ \hline \hline \Gamma \vdash_{\overline{U}} let p = e_1 \text{ in } e_2 \Leftarrow \tau_2 \end{array}$$

e subsumable | *e* is subsumable

USuLetPat

let $p = e_1$ in e_2 subsumable

C.8 Marking

 $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau \mid e \text{ is marked into } \check{e} \text{ and synthesizes type } \tau$

MKSLETPAT

$$\begin{split} \Gamma \vdash p & \hookrightarrow \check{p} \Rightarrow \tau_{p} & \Gamma \vdash e_{1} \hookrightarrow \check{e}_{1} \Leftarrow \tau_{p} \\ \hline \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} & \Gamma \vdash_{\overline{U}} p \Leftarrow \tau_{1} \dashv \Gamma' & \Gamma' \vdash_{e_{2}} \hookrightarrow \check{e}_{2} \Rightarrow \tau_{2} \\ \hline \Gamma \vdash_{\overline{U}} e_{1} \Rightarrow \tau_{1} & \Gamma \vdash_{\overline{U}} p \Leftrightarrow_{1} \vdash_{1} \vdash_{1} \Leftrightarrow_{2} \hookrightarrow_{1} \vdash_{2} \Leftrightarrow_{2} \vdash_{2} \Leftrightarrow_{2} \Leftrightarrow_{2} \Leftrightarrow_{2} \vdash_{2} \Leftrightarrow_{1} \vdash_{1} \vdash_{1}$$

 $\Gamma \vdash e \hookrightarrow \check{e} \leftarrow \tau \mid e$ is marked into \check{e} and analyzes against type τ

MKALETPAT

$$\begin{split} \Gamma \vdash p & \hookrightarrow \check{p} \Rightarrow \tau_p & \Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \tau_p \\ \hline \Gamma \vdash_{\overline{U}} e_1 \Rightarrow \tau_1 & \Gamma \vdash_{\overline{U}} p \Leftarrow \tau_1 \dashv \Gamma' & \Gamma' \vdash e_2 \hookrightarrow \check{e}_2 \Leftarrow \tau_2 \\ \hline \Gamma \vdash_{\text{let}} p = e_1 \text{ in } e_2 \hookrightarrow_{\text{let}} \check{p} = \check{e}_1 \text{ in } \check{e}_2 \Leftarrow \tau_2 \end{split}$$

C.9 Marked expressions

 $\Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \tau$ \check{e} synthesizes type τ

MSLETPAT

ě subsumable *ě* is subsumable

$$MSuLetPat\\$$

$$\overline{\text{let } p = \check{e}_1 \text{ in } \check{e}_2 \text{ subsumable}}$$

ě markless *ě* has no marks

$$\frac{\text{MLLetPat}}{\overset{}{\underline{p}} \text{ markless}} \quad \overset{}{\underline{e}_1} \text{ markless} \quad \overset{}{\underline{e}_2} \text{ markless}}{\text{let } \overset{}{\underline{p}} = \overset{}{\underline{e}_1} \text{ in } \overset{}{\underline{e}_2} \text{ markless}}$$

C.10 Mark erasure

 $|\check{e}^{\square}|$ is a metafunction MExp \rightarrow UExp defined as follows:

$$\begin{array}{ccc} & \vdots \\ (\text{let } \check{p} = \check{e}_1 \text{ in } \check{e}_2)^{\scriptscriptstyle \square} & = & \text{let } (\check{p}^{\scriptscriptstyle \square}) = (\check{e}_1^{\scriptscriptstyle \square}) \text{ in } (\check{e}_2^{\scriptscriptstyle \square}) \end{array}$$

C.11 Metatheorems

In addition to the original metatheorems above (see Section B.7), the following ones governing patterns additionally hold.

Theorem C.1 (Pattern Marking Totality).

- 1. For all Γ and p, there exist \check{p} and τ such that $\Gamma \vdash p \hookrightarrow \check{p} \Rightarrow \tau$.
- 2. For all Γ , p, and τ , there exists \check{p} and Γ' such that $\Gamma \vdash p \hookrightarrow \check{p} \Leftarrow \tau \dashv \Gamma'$.

Theorem C.2 (Pattern Marking Well-Formedness).

2. If
$$\Gamma \vdash p \hookrightarrow \check{p} \Leftarrow \tau \dashv \Gamma'$$
, then $\Gamma \vdash_{\mathbb{M}} \check{p} \Leftarrow \tau \dashv \Gamma'$ and $\check{p}^{\square} = p$.

Theorem C.3 (Pattern Marking of Well-Typed/Ill-Typed Patterns).

1. (a) If
$$\Gamma \vdash_{\overline{U}} p \Rightarrow \tau$$
 and $\Gamma \vdash_{\overline{P}} p \hookrightarrow_{\overline{P}} \tau$, then \check{p} markless.

(b) If
$$\Gamma \vdash_{\overline{U}} p \leftarrow \tau \dashv \Gamma'$$
 and $\Gamma \vdash p \hookrightarrow \check{p} \leftarrow \tau \dashv \Gamma'$, then \check{p} markless.

- 2. (a) If there does not exist τ such that $\Gamma \vdash_{\overline{U}} p \Rightarrow \tau$, then for all \check{p} and τ' such that $\Gamma \vdash_{p} p \Rightarrow \check{p} \Rightarrow \tau'$, it is not the case that \check{p} markless.
 - (b) If there does not exist τ and Γ' such that $\Gamma \vdash_{\overline{U}} p \Leftarrow \tau \dashv \Gamma'$, then for all \check{p}, τ' , and Γ' such that $\Gamma \vdash_{p} \hookrightarrow \check{p} \Leftarrow \tau' \dashv \Gamma'$, it is not the case that \check{p} markless.

Theorem C.4 (Pattern Marking Unicity).

1. If
$$\Gamma \vdash p \hookrightarrow \check{p}_1 \Rightarrow \tau_1$$
 and $\Gamma \vdash p \hookrightarrow \check{p}_2 \Rightarrow \tau_2$, then $\check{p}_1 = \check{p}_2$ and $\tau_1 = \tau_2$.

2. If
$$\Gamma \vdash p \hookrightarrow \check{p}_1 \leftarrow \tau \dashv \Gamma_1$$
 and $\Gamma \vdash p \hookrightarrow \check{p}_2 \leftarrow \tau \dashv \Gamma_2$, then $\check{p}_1 = \check{p}_2$ and $\Gamma_1 = \Gamma_2$.

D Extension: System F-style polymorphism

In this section, we describe an extension of the marked lambda calculus for System F-style parametric polymorphism, as sketched out in Section 2.4 of the paper.

MECHANIZATION ×

D.1 Syntax

Type
$$\tau$$
 ::= \cdots | $\forall \alpha. \tau$ | α

MType $\check{\tau}$::= \cdots | $\forall \alpha. \check{\tau}$ | α | $(\alpha)_{\alpha}$

UExp e ::= \cdots | $\Lambda \alpha. e$ | e [τ]

MExp \check{e} ::= \cdots | $\Lambda \alpha. \check{e}$ | \check{e} [$\check{\tau}$]

| $(\Lambda \alpha. \check{e})_{\tau}^{\star}$ | $(\check{e})_{\tau}^{\star}$ [$\check{\tau}$]

D.2 Unmarked types

 $\boxed{\Sigma \vdash_{\overline{U}} \tau_1 \sim \tau_2} \boxed{\tau_1 \text{ and } \tau_2 \text{ are consistent}}$

.
$$\frac{ \begin{array}{c} \text{TCForall} \\ \frac{\Sigma, \alpha \mid_{\overline{U}} \tau \sim \tau'}{\Sigma \mid_{\overline{U}} \forall \alpha. \ \tau \sim \forall \alpha. \ \tau' \end{array} } \frac{ \begin{array}{c} \text{TCVar} \\ \frac{\alpha \in \Sigma}{\Sigma \mid_{\overline{U}} \alpha \sim \alpha} \end{array}$$

 $\Sigma \vdash_{\overline{U}} \tau$ | τ is well-formed

$$\frac{\text{TWFUnknown}}{\sum \mid_{\overline{\upsilon}} ?} \qquad \frac{\text{TWFNum}}{\sum \mid_{\overline{\upsilon}} \text{ num}} \qquad \frac{\text{TWFBool}}{\sum \mid_{\overline{\upsilon}} \text{ bool}} \qquad \frac{\sum \mid_{\overline{\upsilon}} \check{\tau}_1}{\sum \mid_{\overline{\upsilon}} \check{\tau}_1} \qquad \frac{\text{TWFProd}}{\sum \mid_{\overline{\upsilon}} \check{\tau}_1} \qquad \frac{\text{TWFProd}}{\sum \mid_{\overline{\upsilon}} \check{\tau}_1} \qquad \frac{\sum \mid_{\overline{\upsilon}} \check{\tau}_2}{\sum \mid_{\overline{\upsilon}} \check{\tau}_1 \times \check{\tau}_2} \qquad \frac{\sum, \alpha \mid_{\overline{\upsilon}} \check{\tau}}{\sum \mid_{\overline{\upsilon}} \check{\tau}_2} \qquad \frac{\sum, \alpha \mid_{\overline{\upsilon}} \check{\tau}}{\sum \mid_{\overline{\upsilon}} \check{\tau}_1 \times \check{\tau}_2} \qquad \frac{\sum, \alpha \mid_{\overline{\upsilon}} \check{\tau}}{\sum \mid_{\overline{\upsilon}} \check{\tau}_2 \times \check{\tau}_2} \qquad \frac{\sum, \alpha \mid_{\overline{\upsilon}} \check{\tau}}{\sum \mid_{\overline{\upsilon}} \check{\tau}_2} \qquad \frac{\sum, \alpha \mid_{\overline{\iota}} \check{\tau}}{\sum \mid_{\overline{\iota}} \check{\tau}$$

 $\Sigma \vdash_{\mathcal{U}} \alpha$

 $\tau \triangleright_{\forall} \forall \alpha. \ \tau'$ τ has matched for all type $\forall \alpha. \ \tau'$

TMFUNKNOWN
$$\frac{\text{TMFForall}}{? \triangleright_{\forall} \forall \alpha. ?} \qquad \frac{\forall \alpha. \ \tau \triangleright_{\forall} \forall \alpha. \tau }{\forall \alpha. \tau \triangleright_{\forall} \forall \alpha. \tau}$$

 $\tau_1 \sqcup \tau_2$ is a *partial* metafunction Type × Type \rightarrow Type defined as follows:

$$\begin{array}{ccc} & \vdots \\ (\forall \alpha. \ \tau) \sqcup (\forall \alpha. \ \tau') & = & \forall \alpha. \ (\tau \sqcup \tau') \\ \alpha \sqcup \alpha & = & \alpha \end{array}$$

 $\tau_1[\tau_2/\alpha]$ is a metafunction Type × Type × TypeVar \rightarrow Type defined as follows:

$$\begin{array}{rcl} ?[\tau/\alpha] & = & ?\\ \operatorname{num}[\tau/\alpha] & = & \operatorname{num}\\ \operatorname{bool}[\tau/\alpha] & = & \operatorname{bool}\\ (\tau_1 \to \tau_2)[\tau/\alpha] & = & (\tau_1[\tau/\alpha]) \to (\tau_2[\tau/\alpha])\\ (\tau_1 \times \tau_2)[\tau/\alpha] & = & (\tau_1[\tau/\alpha]) \times (\tau_2[\tau/\alpha])\\ (\forall \alpha'. \ \tau')[\tau/\alpha] & = & \forall \alpha'. \ \tau' & \alpha = \alpha'\\ (\forall \alpha'. \ \tau')[\tau/\alpha] & = & \forall \alpha'. \ (\tau'[\tau/\alpha]) & \alpha \neq \alpha'\\ \alpha'[\tau/\alpha] & = & \tau & \alpha = \alpha'\\ \alpha'[\tau/\alpha] & = & \alpha' & \alpha \neq \alpha' \end{array}$$

D.3 Type marking

$$\Sigma \vdash \tau \hookrightarrow \check{\tau} \quad \tau \text{ is marked into } \check{\tau}$$

$$\frac{\text{MKTUnknown}}{\sum \vdash ? \looparrowright ?} \frac{\text{MKTNum}}{\sum \vdash \text{num} \looparrowright \text{num}} \frac{\text{MKTBool}}{\sum \vdash \text{bool} \looparrowright \text{bool}} \frac{\frac{\text{MKTArr}}{\sum \vdash \tau_1 \looparrowright \check{\tau}_1} \sum \vdash \tau_2 \looparrowright \check{\tau}_2}{\sum \vdash \tau_1 \looparrowright \check{\tau}_1 \implies \check{\tau}_2 \looparrowright \check{\tau}_2}$$

$$\frac{\text{MKTProd}}{\sum \vdash \tau_1 \looparrowright \check{\tau}_1} \frac{\text{MKTForall}}{\sum \vdash \tau_2 \looparrowright \check{\tau}_2} \frac{\frac{\text{MKTForall}}{\sum \vdash \pi_1 \looparrowright \check{\tau}_2} \frac{\text{MKTVar}}{\sum \vdash \pi_1 \rightarrowtail \pi_2 \looparrowright \check{\tau}_2} \frac{\text{MKTFree}}{\sum \vdash \forall \alpha . \ \tau \looparrowright \forall \alpha . \ \check{\tau}} \frac{\alpha \in \Sigma}{\sum \vdash \alpha \looparrowright \alpha} \frac{\alpha \notin \Sigma}{\sum \vdash \alpha \looparrowright (\alpha)_0}$$

D.4 Marked types

$$[\check{\tau} \triangleright_{\forall} \forall \alpha. \check{\tau}'] \check{\tau}$$
 has matched forall type $\forall \alpha. \check{\tau}'$

MTMFUNKNOWN MTMFFORALL MTMFFREE
$$\frac{}{? \triangleright_{\forall} \forall \alpha. ?} \qquad \frac{}{\forall \alpha. \check{\tau} \triangleright_{\forall} \forall \alpha. \check{\tau}} \qquad \frac{}{(\alpha)_{\alpha} \triangleright_{\forall} \forall \alpha. ?}$$

 $|\check{\tau}_1 \sqcup \check{\tau}_2|$ is a *partial* metafunction MType × MType \rightharpoonup MType defined as follows:

$$(\forall \alpha. \ \check{\tau}) \sqcup (\forall \alpha. \ \check{\tau}') = \forall \alpha. \ (\check{\tau} \sqcup \check{\tau}')$$

$$\alpha \sqcup \alpha = \alpha$$

$$(\alpha)_{\square} \sqcup \check{\tau} = \check{\tau}$$

$$\check{\tau} \sqcup (\alpha)_{\square} = \check{\tau}$$

 $[\check{\tau}_1[\check{\tau}_2/\alpha]]$ is a metafunction MType × MType × MTypeVar \rightarrow MType defined as follows:

```
\begin{array}{rcl} ?[\check{\tau}/\alpha] & = & ?\\ num[\check{\tau}/\alpha] & = & num\\ bool[\check{\tau}/\alpha] & = & bool\\ (\check{\tau}_1 \to \check{\tau}_2)[\check{\tau}/\alpha] & = & (\check{\tau}_1[\check{\tau}/\alpha]) \to (\check{\tau}_2[\check{\tau}/\alpha])\\ (\check{\tau}_1 \times \check{\tau}_2)[\check{\tau}/\alpha] & = & (\check{\tau}_1[\check{\tau}/\alpha]) \times (\check{\tau}_2[\check{\tau}/\alpha])\\ (\forall \alpha'. \, \check{\tau}')[\check{\tau}/\alpha] & = & \forall \alpha'. \, \check{\tau}' & \alpha = \alpha'\\ (\forall \alpha'. \, \check{\tau}')[\check{\tau}/\alpha] & = & \forall \alpha'. \, (\check{\tau}'[\check{\tau}/\alpha]) & \alpha \neq \alpha'\\ \alpha'[\check{\tau}/\alpha] & = & \check{\tau} & \alpha = \alpha'\\ \alpha'[\check{\tau}/\alpha] & = & \alpha' & \alpha \neq \alpha'\\ (\alpha')_0[\check{\tau}/\alpha] & = & (\alpha')_0 \end{array}
```

 $\check{\tau}$ markless $\check{\tau}$ has no marks

MLTUnknown	MLTNum	MLTBool	MLTA $_1$ markless	$\check{ au}_2$ markless
? markless	num markless	bool markless	$\check{\tau}_1 \rightarrow \check{\tau}_2$	markless
MLTP $_{ m rod}$ $\check{ au}_1$ markless	$\check{ au}_2$ markless	MLTForall $\check{ au}$ markless	MLTV	AR
$\check{\tau}_1 \times \check{\tau}_2$ markless		∀α. Ť markless	$\frac{-}{\alpha}$ ma	rkless

D.5 Type mark erasure

 $\check{\tau}^{\scriptscriptstyle \square}$ is a metafunction MType \rightarrow Type defined as follows:

$$?^{\square} = ?$$

$$\operatorname{num}^{\square} = \operatorname{num}$$

$$\operatorname{bool}^{\square} = \operatorname{bool}$$

$$(\check{\tau}_{1} \to \check{\tau}_{2})^{\square} = (\check{\tau}_{1}^{\square}) \to (\check{\tau}_{2}^{\square})$$

$$(\check{\tau}_{1} \times \check{\tau}_{2})^{\square} = (\check{\tau}_{1}^{\square}) \times (\check{\tau}_{2}^{\square})$$

$$(\forall \alpha. \check{\tau})^{\square} = \forall \alpha. (\check{\tau}^{\square})$$

$$\alpha^{\square} = \alpha$$

$$(\alpha)_{\square}^{\square} = \alpha$$

D.6 Unmarked expressions

 $\Sigma; \Gamma \vdash_{\overline{\cup}} e \Rightarrow \tau \qquad e \text{ synthesizes type } \tau$ $\dots \qquad \frac{\text{USTypeLam}}{\sum, \alpha; \Gamma \vdash_{\overline{\cup}} e \Rightarrow \tau} \qquad \frac{\text{USTypeAp}}{\sum; \Gamma \vdash_{\overline{\cup}} h\alpha. \ e \Rightarrow \forall \alpha. \ \tau} \qquad \frac{\Sigma; \Gamma \vdash_{\overline{\cup}} e \Rightarrow \tau \qquad \Sigma \vdash_{\overline{\cup}} \tau_2 \qquad \tau \Vdash_{\forall} \forall \alpha. \ \tau_1}{\sum; \Gamma \vdash_{\overline{\cup}} e \vdash_{\overline{\cup}} \tau_2 \qquad \tau \vdash_{\forall} \forall \alpha. \ \tau_1}$ $\Sigma; \Gamma \vdash_{\overline{\cup}} e \leftarrow \tau \qquad e \text{ analyzes against type } \tau$

$$... \frac{\text{UATypeLam}}{\tau \Vdash_{\forall} \forall \alpha. \ \tau' \qquad \Sigma, \alpha; \Gamma \vdash_{\overline{U}} e \Leftarrow \tau'}{\Sigma; \Gamma \vdash_{\overline{U}} \Lambda \alpha. \ e \Leftarrow \tau}$$

e subsumable |e| is subsumable

 $\dfrac{ ext{USuTypeAp}}{e\left[au
ight] ext{ subsumable}}$

D.7 Marking

 $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \check{\tau} \mid e \text{ is marked into } \check{e} \text{ and synthesizes type } \check{\tau}$

$$\frac{\sum_{i} \alpha_{i} \Gamma_{i} - e \hookrightarrow \check{e} \Rightarrow \check{\tau}}{\sum_{i} \Gamma_{i} - \Lambda \alpha_{i} e \hookrightarrow \Lambda \alpha_{i} \check{e} \Rightarrow \forall \alpha_{i} \check{\tau}}$$

$$\frac{\sum_{i} \Gamma_{i} - \Lambda \alpha_{i} e \hookrightarrow \Lambda \alpha_{i} \check{e} \Rightarrow \check{\tau}}{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{e} \Rightarrow \check{\tau}}$$

$$\frac{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{e} \Rightarrow \check{\tau}}{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}$$

$$\frac{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}$$

$$\frac{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}$$

$$\frac{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}{\sum_{i} \Gamma_{i} - e \hookrightarrow \check{\tau}}$$

$$\frac{\text{MKSTypeAp2}}{\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \check{\tau} \qquad \Sigma \vdash \tau_2 \hookrightarrow \check{\tau}_2 \qquad \check{\tau} \blacktriangleright_{\forall}}$$
$$\Sigma; \Gamma \vdash e [\tau_2] \hookrightarrow \check{e} [\check{\tau}_2] \Rightarrow ?$$

 $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \leftarrow \check{\tau}$ e is marked into \check{e} and analyzes against type $\check{\tau}$

$$... \frac{\check{\tau} \triangleright_{\forall} \forall \alpha. \ \check{\tau}' \qquad \Sigma, \alpha; \Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \check{\tau}'}{\Sigma; \Gamma \vdash \Lambda \alpha. \ e \hookrightarrow \Lambda \alpha. \ \check{e} \Leftarrow \check{\tau}} \frac{\mathsf{MKATypeLam2}}{\mathsf{KKATypeLam2}} \frac{\check{\tau} \triangleright_{\forall} \qquad \Sigma, \alpha; \Gamma \vdash e \hookrightarrow \check{e} \Leftarrow ?}{\Sigma; \Gamma \vdash \Lambda \alpha. \ e \hookrightarrow \Lambda \alpha. \ \check{e} \Leftarrow \check{\tau}}$$

D.8 Marked expressions

 $\Sigma; \Gamma \vdash_{\overline{M}} \check{e} \Rightarrow \check{\tau}$ \check{e} synthesizes type $\check{\tau}$

$$... \frac{\mathsf{MATypeLam1}}{\check{\tau} \blacktriangleright_{\forall} \forall \alpha. \ \check{\tau}' \qquad \Sigma, \alpha; \Gamma \models_{\overline{M}} \check{e} \Leftarrow \check{\tau}'}{\Sigma; \Gamma \models_{\overline{M}} \Lambda \alpha. \ \check{e} \Leftarrow \check{\tau}} \frac{\mathsf{MATypeLam2}}{\Sigma; \Gamma \models_{\overline{M}} (\Lambda \alpha. \ \check{e}) \blacktriangleright_{\forall}^{=}} \Leftrightarrow \check{\tau}$$

ě subsumable *ě* is subsumable

ě markless *ě* has no marks

$$... \frac{ \begin{array}{c} \text{MLTypeLam} \\ \underline{\check{e} \text{ markless}} \\ \Lambda \alpha. \ \check{e} \text{ markless} \\ \end{array} }{ \begin{array}{c} \underline{\Lambda \alpha. \ \check{e} \text{ markless}} \\ \end{array} } \frac{ \begin{array}{c} \text{MLTypeAp} \\ \underline{\check{e} \text{ markless}} \\ \underline{\check{e} \text{ [}\check{\tau} \text{] markless}} \\ \end{array} }$$

D.9 Mark erasure

$$\begin{array}{rcl} & \vdots & & \\ (\Lambda\alpha.\,\check{e})^{\scriptscriptstyle\square} & = & \Lambda\alpha.\,(\check{e}^{\scriptscriptstyle\square}) \\ (\!\!(\Lambda\alpha.\,\check{e})\!\!)^{\scriptscriptstyle\square} & = & \Lambda\alpha.\,(\check{e}^{\scriptscriptstyle\square}) \\ (\check{e}\,[\check{\tau}])^{\scriptscriptstyle\square} & = & \check{e}^{\scriptscriptstyle\square}\,[\check{\tau}^{\scriptscriptstyle\square}] \\ ((\![\check{e}]\!\!)^{\scriptscriptstyle\square}_{\scriptscriptstyle \gamma}\,[\check{\tau}])^{\scriptscriptstyle\square} & = & \check{e}^{\scriptscriptstyle\square}\,[\check{\tau}^{\scriptscriptstyle\square}] \end{array}$$

D.10 Metatheorems

With polymorphism, we have the following modified metatheorems which additionally account for type well-formedness and marking.

Lemma D.1 (Unmarked Synthesis). *If* Σ ; $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$, then $\Sigma \vdash_{\overline{U}} \tau$.

Lemma D.2 (Marked Synthesis). *If* Σ ; $\Gamma \bowtie \check{e} \Rightarrow \check{\tau}$, then $\Sigma \bowtie \check{\tau}$.

Theorem D.3 (Marking Totality).

- 1. For all Σ and τ , there exists $\check{\tau}$ such that $\Sigma \vdash \tau \hookrightarrow \check{\tau}$.
- 2. For all Σ , Γ , and e, there exist \check{e} and $\check{\tau}$ such that Σ ; $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \check{\tau}$.

Theorem D.4 (Marking Well-Formedness).

- 1. If $\Sigma \vdash \tau \hookrightarrow \check{\tau}$, then $\Sigma \vdash_{\overline{M}} \check{\tau}$ and $\check{\tau}^{\square} = \tau$.
- 2. If $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \check{\tau}$, then $\Sigma \vdash_{\!\!\!M} \check{\tau}$ and $\Sigma; \Gamma \vdash_{\!\!\!M} \check{e} \Rightarrow \check{\tau}$ and $\check{e}^{\Box} = e$.
- 3. If $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \check{\tau}$ and $\Sigma \vdash_{\!\!\!M} \check{\tau}$, then $\Sigma; \Gamma \vdash_{\!\!\!M} \check{e} \Leftarrow \check{\tau}$ and $\check{e}^{\square} = e$.

Theorem D.5 (Marking of Well-Typed/Ill-Typed Expressions).

- 1. (a) If $\Sigma \vdash_{\overline{\iota}} \tau$ and $\Sigma \vdash_{\overline{\iota}} \tau \hookrightarrow \check{\tau}$, then $\check{\tau}$ markless.
 - (b) If Σ ; $\Gamma \vdash_{\overline{U}} e \Rightarrow \tau$ and Σ ; $\Gamma \vdash_{\overline{e}} e \hookrightarrow \check{e} \Rightarrow \check{\tau}$, then $\Sigma \vdash_{\overline{e}} \tau \hookrightarrow_{\overline{e}} \check{\tau}$ and \check{e} markless.
 - (c) If $\Sigma; \Gamma \vdash_{\overline{U}} e \leftarrow \tau$ and $\Sigma \vdash \tau \hookrightarrow \check{\tau}$ and $\Sigma; \Gamma \vdash e \hookrightarrow \check{e} \leftarrow \check{\tau}$, then \check{e} markless.
- 2. (a) If it is not the case that $\Sigma \vdash_{\overline{U}} \tau$, then for all $\check{\tau}$ such that $\Sigma \vdash_{\overline{\tau}} \tau \hookrightarrow \check{\tau}$, it is not the case that $\check{\tau}$ markless.
 - (b) If there does not exist τ such that Σ ; $\Gamma \vdash_{\overline{\upsilon}} e \Rightarrow \tau$, then for all \check{e} and $\check{\tau}$ such that Σ ; $\Gamma \vdash_{e} e \Rightarrow \check{\tau}$, it is not the case that \check{e} markless.
 - (c) If there does not exist τ such that Σ ; $\Gamma \vdash_{\overline{\upsilon}} e \Leftarrow \tau$, then for all \check{e} and $\check{\tau}$ such that Σ ; $\Gamma \vdash_{e} e \hookrightarrow \check{e} \Leftarrow \check{\tau}$, it is not the case that \check{e} markless.

Theorem D.6 (Marking Unicity).

- 1. If $\Sigma \vdash \tau \hookrightarrow \check{\tau}_1$, and $\Sigma \vdash \tau \hookrightarrow \check{\tau}_2$, then $\check{\tau}_1 = \check{\tau}_2$.
- 2. If Σ ; $\Gamma \vdash e \hookrightarrow \check{e}_1 \Rightarrow \check{\tau}_1$ and Σ ; $\Gamma \vdash e \hookrightarrow \check{e}_2 \Rightarrow \check{\tau}_2$, then $\check{e}_1 = \check{e}_2$ and $\check{\tau}_1 = \check{\tau}_2$.
- 3. If $\Sigma; \Gamma \vdash e \hookrightarrow \check{e}_1 \Leftarrow \check{\tau}$ and $\Sigma; \Gamma \vdash e \hookrightarrow \check{e}_2 \Leftarrow \check{\tau}$, then $\check{e}_1 = \check{e}_2$.

E Untyped hazelnut

In this section we describe an *untyped* version of the Hazelnut action calculus that might be layered with the marked lambda calculus to yield a structure editing calculus that supports non-local hole fixes. This is described in Section 3.2 of the paper.

MECHANIZATION O

▶ hazelnut.agda

E.1 Syntax

```
ZType \underline{\tau} ::= \triangleright \tau \triangleleft |\underline{\tau} \rightarrow \tau| \tau \rightarrow \underline{\tau} |\underline{\tau} \times \tau| \tau \times \underline{\tau}

ZExp \underline{e} ::= \triangleright e \triangleleft |\lambda x : \underline{\tau}. e |\lambda x : \tau. \underline{e} |\underline{e} |\underline{e} |\underline{e} |\underline{e} |\underline{e}

| \text{let } x = \underline{e} \text{ in } e | \text{let } x = e \text{ in } \underline{e}

| \underline{e} + e | e + \underline{e} |

| \text{if } \underline{e} \text{ then } e \text{ else } e | \text{if } e \text{ then } \underline{e} \text{ else } e | \text{if } e \text{ then } e \text{ else } \underline{e} |

| (\underline{e}, \underline{e}) | (\underline{e}, \underline{e}) | \pi_1 \underline{e} | \pi_2 \underline{e} |
```

E.2 Cursor erasure

E.2.1 Type cursor erasure

 $\boxed{\underline{\tau}^{\diamond}}$ is a metafunction ZType \rightarrow Type defined as follows:

```
 | \nabla \tau |^{\diamond} = \tau 
 (\underline{\tau} \to \tau)^{\diamond} = (\underline{\tau}^{\diamond}) \to \tau 
 (\tau \to \underline{\tau})^{\diamond} = \tau \to (\underline{\tau}^{\diamond}) 
 (\underline{\tau} \times \tau)^{\diamond} = (\underline{\tau}^{\diamond}) \times \tau 
 (\tau \times \tau)^{\diamond} = \tau \times (\underline{\tau}^{\diamond})
```

E.2.2 Expression cursor erasure

 $\boxed{\underline{e}^{\diamond}}$ is a metafunction ZExp \rightarrow UExp defined as follows:

```
\triangleright e \triangleleft^{\diamond} = e
                       (\lambda x : \tau. e)^{\diamond} = \lambda x : (\tau^{\diamond}). e
                       (\lambda x : \tau . \underline{e})^{\diamond} = \lambda x : \tau . (\underline{e}^{\diamond})
                                       (\underline{e} \ e)^{\diamond} = (\underline{e}^{\diamond}) \ e
                                       (e \underline{e})^{\diamond} = e (\underline{e}^{\diamond})
             (\text{let } x = \underline{e} \text{ in } e)^{\diamond} = \text{let } x = (\underline{e}^{\diamond}) \text{ in } e
            (\text{let } x = e \text{ in } \underline{e})^{\diamond} = \text{let } x = e \text{ in } (\underline{e}^{\diamond})
                                 (\underline{e} + e)^{\diamond} = (\underline{e}^{\diamond}) + e
                                 (e + \underline{e})^{\diamond} = e + (\underline{e}^{\diamond})
(if e then e_1 else e_2)\diamond = if (e^{\diamond}) then e_1 else e_2
(if e_1 then \underline{e} else e_2)\diamond = if e_1 then (\underline{e}^{\diamond}) else e_2
(if e_1 then e_2 else \underline{e})^{\diamond} = if e_1 then e_2 else (\underline{e}^{\diamond})
                                      (\underline{e}, e)^{\diamond} = (\underline{e}^{\diamond}, e)
                                      (e,\underline{e})^{\diamond} = (e,\underline{e}^{\diamond})
                                    (\pi_1\underline{e})^{\diamond} = \pi_1(\underline{e}^{\diamond})
                                     (\pi_2 e)^{\diamond} = \pi_2(e^{\diamond})
```

E.3 Action model

Action α ::= move δ | construct ψ | del ActionList $\overline{\alpha}$::= \cdot | α ; $\overline{\alpha}$ Dir δ ::= child n | parent Shape ψ ::= arrow_L | arrow_R | prod_L | prod_R | num | bool | var x | lam x | ap_L | ap_R | let_L x | let_R x| lit n | plus_L | plus_R | true | false | if_C | if_L | if_R | pair_L | pair_R | proj_L | proj_R

E.3.1 Shape sort

 $\boxed{\psi \text{ tshape}} \psi \text{ is a shape on types}$

 $\frac{ASORTARROW1}{arrow_L \ tshape} \quad \frac{ASORTARROW2}{arrow_L \ tshape} \quad \frac{ASORTPROD1}{prod_L \ tshape} \quad \frac{ASORTPROD2}{prod_R \ tshape} \quad \frac{ASORTNUM}{num \ tshape} \quad \frac{ASORTBOOL}{bool \ tshape}$

 ψ eshape ψ is a shape on expressions

pair_L eshape

ASORTLET1 ASortVar ASORTLAM ASORTAP1 ASORTAP2 ASORTLET2 lam *x* eshape ap_R eshape $let_L x eshape$ $let_R x eshape$ var x eshape ap_L eshape ASORTIF2 ASORTLIT ASortPlus1 ASortPlus2 ASORTTRUE ASORTFALSE ASortIf1 lit *n* eshape plus_L eshape false eshape if_C eshape plus_R eshape true eshape if_L eshape ASORTIF3 ASORTPAIRL ASORTPAIRR **ASORTPROJL ASORTPROJR**

pair_R eshape

proj_R eshape

proj_L eshape

E.3.2 Type actions

if_R eshape

 $\underline{\tau} \xrightarrow{\alpha} \underline{\tau}'$

Movement

Deletion

$$\frac{\text{ATDel}}{\triangleright \tau \lhd \xrightarrow{\text{del}} \triangleright ? \lhd}$$

Construction

Zipper Cases

E.3.3 Expression movement

AEMPLUSCHILD1

AEMPLUSCHILD2

AEMPLUSPARENT1

$$|e_1 + e_2| \stackrel{\text{move child 1}}{|e_1 + e_2|} | |e_1 + e_2| |e$$

AEMIFPARENT2

if e_1 then $\triangleright e_2 \triangleleft$ else $e_3 \xrightarrow{\text{move parent}} \triangleright$ if e_1 then e_2 else $e_3 \triangleleft$

AEMIFPARENT3

AEMPairChild1

if e_1 then e_2 else $\triangleright e_3 \triangleleft \xrightarrow{\text{move parent}} \triangleright \text{if } e_1$ then e_2 else $e_3 \triangleleft$

AEMPairChild2

AEMPairParent1

AEMPairParent2

$$(\triangleright e_1 \triangleleft, e_2) \xrightarrow{\mathsf{move parent}} \triangleright (e_1, e_2) \triangleleft$$

$$(e_1, \triangleright e_2 \triangleleft) \xrightarrow{\mathsf{move parent}} \triangleright (e_1, e_2) \triangleleft$$

AEMProjlChild

$$\pi_1 \triangleright e_1 \triangleleft \xrightarrow{\mathsf{move parent}} \triangleright \pi_1 e_1 \triangleleft$$

AEMProjRParent

$$\pi_2 \triangleright e_1 \lhd \xrightarrow{\mathsf{move parent}} \triangleright \pi_2 e_1 \lhd$$

E.3.4 Expression actions

$$\underline{e} \xrightarrow{\alpha} \underline{e}'$$

Movement

AEMOVE
$$\underline{e} \xrightarrow{\text{move } \delta} \underline{e}'$$

$$\underline{e} \xrightarrow{\text{move } \delta} \underline{e}'$$

Deletion

$$\triangleright e \triangleleft \xrightarrow{\text{del}} \triangleright () \triangleleft$$

Construction

$$| > (|) < | \xrightarrow{\text{construct var } x} > x < |$$

$$\triangleright e \triangleleft \xrightarrow{\text{construct lam } x} \lambda x : \triangleright ? \triangleleft . e$$

$$\triangleright e \triangleleft \xrightarrow{\text{construct ap_L}} e \triangleright () \triangleleft$$

AEConAp2

AEConLet1

AEConLet2

$$\triangleright e \triangleleft \xrightarrow{\text{construct let}_R x} \text{let } x = \triangleright () \triangleleft \text{ in } e$$

AEConNum

AEConPlus2

AEConTrue

AEConFalse

$$| > (|) < | \xrightarrow{\text{construct false}} > ff < |$$

AEConIf1

$$\triangleright e \triangleleft \xrightarrow{\text{construct if}_{C}} \text{if } e \text{ then } \triangleright () \triangleleft \text{ else } ()$$

AEConI_F2 AEConIf3 AEConPair1 $\triangleright e \lhd \xrightarrow{\text{construct if}_C} \text{if } \triangleright (\parallel) \triangleleft \text{ then } (\parallel) \text{ else } e$

Zipper Cases

 $\frac{\text{AEZIPLus1}}{\text{let } x = e \text{ in } \underline{e} \xrightarrow{\alpha} \text{ let } x = e \text{ in } \underline{e}'} \qquad \frac{\text{AEZIPPLus1}}{\underbrace{e \xrightarrow{\alpha} \underline{e}'}} \qquad \underbrace{\frac{e \xrightarrow{\alpha} \underline{e}'}{\underline{e} + e \xrightarrow{\alpha} \underline{e}' + e}} \qquad \frac{\underbrace{e \xrightarrow{\alpha} \underline{e}'}}{\underbrace{e + \underline{e} \xrightarrow{\alpha} e + \underline{e}'}} \qquad \frac{\text{AEZIPF1}}{\underbrace{e \xrightarrow{\alpha} \underline{e}'}} \qquad \underbrace{\frac{e \xrightarrow{\alpha} \underline{e}'}{\underline{e}' \text{ then } e_1 \text{ else } e_2}}$ AEZIPIF2 $\underbrace{\frac{e \xrightarrow{\alpha} e'}{e \xrightarrow{\alpha} e'}}_{\text{if } e_1 \text{ then } \underline{e} \text{ else } e_2 \xrightarrow{\alpha} \text{ if } e_1 \text{ then } \underline{e'} \text{ else } e_2}_{\text{AEZIPIF3}} \underbrace{\begin{array}{c} \text{AEZIPAR1} \\ \underline{e \xrightarrow{\alpha} \underline{e'}} \\ \text{if } e_1 \text{ then } e_2 \text{ else } \underline{e} \xrightarrow{\alpha} \text{ if } e_1 \text{ then } e_2 \text{ else } \underline{e'} \end{array}}_{\text{AEZIPPAIR1}} \underbrace{\begin{array}{c} \text{AEZIPPAIR1} \\ \underline{e \xrightarrow{\alpha} \underline{e'}} \\ \underline{(e,e) \xrightarrow{\alpha} (\underline{e'},e)} \end{array}}_{\text{AEZIPPAIR2}}$

AEZipProjL AEZipProjR

AEZIPPAIR2 AEZIPPROJL AEZIPPROJR
$$\underbrace{ \underbrace{e \xrightarrow{\alpha} \underline{e'}}_{(e,\underline{e}) \xrightarrow{\alpha} (e,\underline{e'})} \qquad \underbrace{ \underbrace{e \xrightarrow{\alpha} \underline{e'}}_{\pi_1\underline{e} \xrightarrow{\alpha} \pi_1\underline{e'}} \qquad \underbrace{ \underbrace{e \xrightarrow{\alpha} \underline{e'}}_{\pi_2\underline{e} \xrightarrow{\alpha} \pi_2\underline{e'}}$$

E.3.5 Iterated actions

 $\frac{\underline{\tau} \xrightarrow{\alpha} \underline{\tau}' \qquad \underline{\tau}' \xrightarrow{\overline{\alpha}} * \underline{\tau}''}{\tau \xrightarrow{\alpha; \overline{\alpha}} * \underline{\tau}''}$ ATIREFL

 $e \xrightarrow{\overline{\alpha}} * e'$ $\frac{\underline{e} \xrightarrow{\alpha} \underline{e}' \qquad \underline{e}' \xrightarrow{\overline{\alpha}} \star \underline{e}''}{e \xrightarrow{\alpha; \overline{\alpha}} \star e''}$ AEIREEL.

 $\overline{\alpha}$ movements

AMICONS AMINIL $\overline{\alpha}$ movements move $\delta; \overline{\alpha}$ movements · movements

E.4 Metatheorems

Theorem E.1 (Movement Erasure Invariance).

1. If
$$\underline{\tau} \xrightarrow{\text{move } \delta} \underline{\tau}'$$
, then $\underline{\tau}^{\diamond} = \underline{\tau}'^{\diamond}$.

2. If
$$\underline{e} \xrightarrow{\text{move } \delta} \underline{e}'$$
, then $\underline{e}^{\diamond} = \underline{e}'^{\diamond}$.

Theorem E.2 (Reachability).

- 1. If $\underline{\tau}^{\diamond} = \underline{\tau}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} * \underline{\tau}'$.
- 2. If $\underline{e}^{\diamond} = \underline{e}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{e} \xrightarrow{\overline{\alpha}} * \underline{e}'$.

Lemma E.2.1 (Reach Up).

- 1. If $\underline{\tau}^{\diamond} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} * \triangleright \tau \triangleleft$.
- 2. If $\underline{e}^{\diamond} = e$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{e} \xrightarrow{\overline{\alpha}} * \triangleright e \triangleleft$.

Lemma E.2.2 (Reach Down).

- 1. If $\underline{\tau}^{\diamond} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\triangleright \tau \lhd \xrightarrow{\overline{\alpha}} \star \underline{\tau}$.
- 2. If $\underline{e}^{\diamond} = e$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\triangleright e \triangleleft \xrightarrow{\overline{\alpha}} * \underline{e}$.

Theorem E.3 (Constructability).

- 1. For every τ , there exists $\overline{\alpha}$ such that \triangleright ? $\triangleleft \xrightarrow{\overline{\alpha}} * \triangleright \tau \triangleleft$.
- 2. For every e, there exists $\overline{\alpha}$ such that $\triangleright (|| \triangleleft \xrightarrow{\overline{\alpha}} * \triangleright e \triangleleft$.

Theorem E.4 (Determinism).

- 1. If $\underline{\tau} \xrightarrow{\alpha} * \underline{\tau}'$ and $\underline{\tau} \xrightarrow{\alpha} * \underline{\tau}''$, then $\underline{\tau}' = \underline{\tau}''$.
- 2. If $e \xrightarrow{\alpha} * e'$ and $e \xrightarrow{\alpha} * e''$, then e' = e''.

F Typed hazelnut

We now give a description of a *typed* version of the Hazelnut action calculus that incorporates the marked lambda calculus to solve the problem of non-local hole fixes. Here, unlike in the integration of the untyped version and the marked lambda calculus given in Section E, remarking is performed only when necessary instead of after every action. This system is sketched out in Section 3.2 of the paper.

MECHANIZATION ×

F.1 Syntax

Zippered types are the same as in the untyped model.

```
ZMExp 
\underline{e} ::= \triangleright \underline{e} \mid \lambda x : \underline{\tau} \cdot \underline{e} \mid \lambda x : \underline{\tau} \cdot \underline{e} \mid \underline{e} \, \underline{e} \mid \underline{e}
```

F.1.1 Well-formedness

 $\underline{\check{e}}$ WF $\underline{\check{e}}$ is well-formed

WFCursor	WFLAM1	WFL.	am2 ž WF	WFLAM3	WFLAM4 <u>ě</u> WF	:	WFLAM5
⊳ě⊲ WF	$\lambda x : \underline{\tau}. \check{e}$	$\overline{WF} \qquad \overline{\lambda x} :$	τ. <u>ě</u> WF	$\sqrt{ \lambda x } : \underline{\tau}. \check{e})_{\bullet}^{\leftarrow} WF$	$(\lambda x : \tau. \underline{\check{e}})$	← WF	$(\lambda x : \underline{\tau}. \check{e})$. WF
WFLAM6 <u>ě</u> W	/ F	WFAp1 <u>ě</u> WF	WFA _P 2 <u>ě</u> WF	WFAp3 <u>ě</u> WF	WFAp4 <u>ě</u> WF		Let1 <u>ě</u> WF
$(\lambda x : \tau)$	<u>ě</u>) . WF	<u>ě</u> ě WF	ě <u>ě</u> WF	$\frac{\underline{\check{e}} \ WF}{(\underline{\check{e}})^{\rightarrow}_{+}} \ \check{e} \ WF$	$(\check{e})^{\Rightarrow}_{\downarrow} \underline{\check{e}} WF$	let	$x = \underline{\check{e}} \text{ in } \check{e} \text{ WF}$
WFLET2 <u>ě</u> W	<u>′F</u>		WFPLUS2 <u>ě</u> WF	WFIF1 $\frac{\underline{\check{e}}}{\text{if } \underline{\check{e}} \text{ then } \check{e}}$	WF	WFIF2	<u>ě</u> WF
$let x = \check{e} i$	in <u>ě</u> WF	$\underline{\check{e}} + \check{e} WF$	$\check{e} + \check{\underline{e}} WF$	if $\underline{\check{e}}$ then \check{e}	\check{e}_1 else \check{e}_2 WF	if \check{e}_1 the	en $\underline{\check{e}}$ else \check{e}_2 WF
WFIF3 <u>ě</u> WF	:	<u>ě</u> \	entBranches: WF	$\check{\underline{e}}$	rentBranches2 WF		nsistentBranches3 <u>ě</u> WF
if \check{e}_1 then \check{e}_2 e	lse <u>ě</u> WF	(if $\underline{\check{e}}$ then \check{e}_1	else \check{e}_2 $_{\!\!\!\!/\!\!\!\!\!\!\!\perp}$ WF	(if \check{e}_1 then \check{e}	else \check{e}_2) _{\swarrow} WF	(if \check{e}_1 th	en \check{e}_2 else $\underline{\check{e}}$ $ _{\not\sqcup}$ WF
	$\underline{\check{e}}$ WF	<u>ě</u> V	VF	VFPAIR4 <u>ĕ</u> WF (ĕ, <u>ĕ</u>) _{►*} WF	$\check{\underline{e}}$ WF		$\check{\underline{e}}$ WF
WFPROJR2 $\frac{\underline{\check{e}} \text{ WF}}{\pi_2(\underline{\check{e}})^{-}_{*} \text{ W}}$	<u>ě</u> ≠	iconsistentTy ⊳ <mark>ě</mark> ⊲ <u>ě</u> WI (<u>ě</u>), WF	F WF	Lam3 : <u>T</u> . <u>ě</u>) . WF	$\frac{\text{WFLam4}}{\underbrace{e} \text{ WF}}$ $(\lambda x : \tau . \underline{e}) \cdot \text{W}$	W F (/	$\frac{\partial \mathbf{r}}{\partial x} : \underline{\tau}. \check{\mathbf{e}}) = \mathbf{WF}$
<u>e</u> WF		\underline{e} WF	\underline{e} WF	WFINCONSISTE \underline{e} W (if \underline{e} then \check{e}_1 e	/F		isistentBranches2 $ \underline{e} \text{ WF} $ en $\underline{e} \text{ else } \check{e}_2 _{V_1} \text{ WF}$

WFInconsistentBranches3	WFPAIR3	WFPair4	WFProjL2	WFProjR2
<u>e</u> WF	<u>e</u> WF	<u>e</u> WF	<u>e</u> WF	<u>e</u> WF
(if \check{e}_1 then \check{e}_2 else \underline{e}) _/ WF	$\overline{((\underline{e}, \check{e}))_{k}^{\leftarrow}}$ WF	$\overline{((\check{e},\underline{e}))_{\star}^{\leftarrow} WF}$	$\overline{\pi_1(\underline{e})} \rightarrow WF$	$\pi_2(\underline{e})^{\Rightarrow}$ WF

F.2 Cursor erasure

F.2.1 Type cursor erasure

Type cursor erasure is the same as in the untyped model.

F.2.2 Expression cursor erasure

 $|\underline{\check{e}}^{\diamond}|$ is a metafunction ZMExp \rightarrow MExp defined as follows:

```
\triangleright \check{e} \triangleleft^{\diamond} = \check{e}
                                             (\lambda x : \underline{\tau}. \check{e})^{\diamond} = \lambda x : (\underline{\tau}^{\diamond}). \check{e}
                                             (\lambda x : \tau . \underline{\check{e}})^{\diamond} = \lambda x : \tau . (\underline{\check{e}}^{\diamond})
                                   \begin{array}{rcl} (\lambda x : \underline{\tau}. \, \check{e})_{\star, +}^{\circ} &=& (\lambda x : (\underline{\tau}^{\circ}). \, \check{e})_{\star, +}^{\circ} \\ (\lambda x : \underline{\tau}. \, \check{e})_{\star, +}^{\circ} &=& (\lambda x : \underline{\tau}. \, (\check{e}^{\circ}))_{\star, +}^{\circ} \\ (\lambda x : \underline{\tau}. \, \check{e})_{\star, +}^{\circ} &=& (\lambda x : (\underline{\tau}^{\circ}). \, \check{e})_{\star, +}^{\circ} \end{array}
                                        (\lambda x : \tau. \underline{\check{e}}) \stackrel{\diamond}{\cdot} = (\lambda x : \tau. (\underline{\check{e}}^{\diamond})).
                                                                     (\underline{\check{e}}\ \check{e})^{\diamond} = (\underline{\check{e}}^{\diamond})\ \check{e}
                                                                     (\check{e}\ \check{\underline{e}})^{\diamond} = \check{e}\ (\check{\underline{e}}^{\diamond})
                                                     ((|\underline{\check{e}}|)^{\Rightarrow} \check{e})^{\diamond} = (|\underline{\check{e}}^{\diamond}|)^{\Rightarrow} \check{e}
                                                     ((|\check{e}|)^{\rightarrow}_{k,k} \; \check{e})^{\diamond} = (|\check{e}|)^{\rightarrow}_{k,k} \; (\underline{\check{e}}^{\diamond})
                            (\text{let } x = \underline{\check{e}} \text{ in } \check{e})^{\diamond} = \text{let } x = (\underline{\check{e}}^{\diamond}) \text{ in } \check{e}
                            (\text{let } x = \check{e} \text{ in } \check{e})^{\diamond} = \text{let } x = \check{e} \text{ in } (\check{e}^{\diamond})
                                                             (\check{e} + \check{e})^{\diamond} = (\check{e}^{\diamond}) + \check{e}
                                                             (\check{e} + \check{e})^{\diamond} = \check{e} + (\check{e}^{\diamond})
       (if \underline{\check{e}} then \check{e}_1 else \check{e}_2)^{\diamond} = if (\underline{\check{e}}^{\diamond}) then \check{e}_1 else \check{e}_2
       (if \check{e}_1 then \underline{\check{e}} else \check{e}_2)\diamond = if \check{e}_1 then (\underline{\check{e}}^{\diamond}) else \check{e}_2
       (if \check{e}_1 then \check{e}_2 else \check{e})^{\diamond} = if \check{e}_1 then \check{e}_2 else (\check{e}^{\diamond})
(\underline{\check{e}}, \check{e})^{\diamond} = (\underline{\check{e}}^{\diamond}, \check{e})
                                                                    (\check{e}, \underline{\check{e}})^{\diamond} = (\check{e}, \underline{\check{e}}^{\diamond})
                                                       \|(\underline{\check{e}},\check{e})\|_{\bullet}^{=\diamond} = \|(\underline{\check{e}}^{\diamond},\check{e})\|_{\bullet}^{=}
                                                       ((\check{e},\underline{\check{e}}))_{k_{\star}}^{\bullet\bullet} = ((\check{e},\underline{\check{e}}^{\bullet}))_{k_{\star}}^{\bullet\bullet}
                                                                   (\pi_1\underline{\check{e}})^{\diamond} = \pi_1(\underline{\check{e}}^{\diamond})
                                                     (\pi_1(|\underline{\check{e}}|)^{\rightarrow})^{\diamond} = \pi_1(|\underline{\check{e}}^{\diamond}|)^{\rightarrow}
                                                                   (\pi_2 \check{e})^{\diamond} = \pi_2 (\check{e}^{\diamond})
                                                     (\pi_2(|\underline{\check{e}}|)^{\Rightarrow})^{\diamond} = \pi_2(|\underline{\check{e}}^{\diamond}|)^{\Rightarrow}_{\bullet_{*}}
                                                                        (|\underline{\check{e}}|)_{+}^{\diamond} = (|\underline{\check{e}}^{\diamond}|)_{+}
```

F.3 Action model

The action syntax is the same in the untyped model.

F.3.1 Shape sort

The shape sort judgments are the same as in the untyped model.

F.3.2 Type actions

Type actions are the same as in the untyped model.

F.3.3 Expression movement

$$\underbrace{e^{\operatorname{Move} \delta} e^{i}}_{ > \lambda x : \tau, e^{i} \leq \operatorname{Move child 1}_{ > \lambda x : \tau, e^{i} \leq \operatorname{Move child 2}_{ > \lambda x : \tau, e^{i} \leq \operatorname{Move parent}_{ > \lambda x : \tau, e^{i$$

```
AEMPLUSPARENT2
                                                                                                                                                                                    AEMIrChild1

\underbrace{\check{e}_1 + \triangleright \check{e}_2 \triangleleft} \xrightarrow{\text{move parent}} \triangleright \check{e}_1 + \check{e}_2 \triangleleft

                                                                                                                                                         \triangleright if \check{e}_1 then \check{e}_2 else \check{e}_3 \triangleleft \xrightarrow{\text{move child 1}} if \triangleright \check{e}_1 \triangleleft then \check{e}_2 else \check{e}_3
                                                                                                        AEMIrChild2
                                                                                                         \triangleright if \check{e}_1 then \check{e}_2 else \check{e}_3 \lhd \xrightarrow{\mathsf{move child 2}} if \check{e}_1 then \triangleright \check{e}_2 \lhd else \check{e}_3
                                                                                                         AEMIrChild3
                                                                                                          \triangleright if \check{e}_1 then \check{e}_2 else \check{e}_3 \lhd \xrightarrow{\mathsf{move child } 3} if \check{e}_1 then \check{e}_2 else \triangleright \check{e}_3 \lhd
                                                                                                         AEMIFPARENT1
                                                                                                        if \triangleright \check{e}_1 \triangleleft then \check{e}_2 else \check{e}_3 \xrightarrow{\text{move parent}} \triangleright \text{if } \check{e}_1 then \check{e}_2 else \check{e}_3 \triangleleft
                                                                                                        AEMIFPARENT2
                                                                                                         if \check{e}_1 then \triangleright \check{e}_2 \triangleleft else \check{e}_3 \xrightarrow{\text{move parent}} \triangleright \text{if } \check{e}_1 then \check{e}_2 else \check{e}_3 \triangleleft
                                                                                                        AEMIFPARENT3
                                                                                                        if \check{e}_1 then \check{e}_2 else \triangleright \check{e}_3 \triangleleft \xrightarrow{\text{move parent}} \triangleright \text{if } \check{e}_1 then \check{e}_2 else \check{e}_3 \triangleleft
                                                                                            AEMInconsistentBranchesChild1
                                                                                             {\rhd} (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{|{\mathcal U}|} {\vartriangleleft} \xrightarrow{\text{move child } 1} (\text{if } {\rhd} \check{e}_1 {\vartriangleleft} \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{|{\mathcal U}|}
                                                                                            AEMInconsistentBranchesChild2
                                                                                            \triangleright (if \check{e}_1 then \check{e}_2 else \check{e}_3)<sub>1/1</sub>\triangleleft \xrightarrow{\text{move child 2}} (if \check{e}_1 then \triangleright \check{e}_2 \triangleleft else \check{e}_3)<sub>1/1</sub>
                                                                                            AEMInconsistentBranchesChild3
                                                                                            \triangleright (if \check{e}_1 then \check{e}_2 else \check{e}_3)<sub>1/1</sub>\triangleleft \xrightarrow{\text{move child } 3} (if \check{e}_1 then \check{e}_2 else \triangleright \check{e}_3 \triangleleft )_{1/1}
                                                                                            AEMInconsistentBranchesParent1
                                                                                            (\text{if } \triangleright \check{e}_1 \triangleleft \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{U} \xrightarrow{\text{move parent}} \triangleright (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{U} \triangleleft
                                                                                            AEMInconsistentBranchesParent2
                                                                                            (\text{if } \check{e}_1 \text{ then } \triangleright \check{e}_2 \triangleleft \text{ else } \check{e}_3)_{\mathcal{U}} \xrightarrow{\text{move parent}} \triangleright (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\mathcal{U}} \triangleleft
                  AEMInconsistentBranchesParent3
                                                                                                                                                                                                                                                                                        AEMPairChild1
                   (if \check{e}_1 then \check{e}_2 else \triangleright \check{e}_3 \triangleleft )_{l/1} \xrightarrow{\mathsf{move parent}} \triangleright (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/1} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} \triangleleft (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} \lozenge (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} \lozenge (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} \lozenge (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} \lozenge (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} \lozenge (\mathsf{if } \check{e}_1 \mathsf{ then } \check{e}_2 \mathsf{ else } \check{e}_3)_{l/2} )
                                                                                                                                                                                                                                                                                      \triangleright (\check{e}_1, \check{e}_2) \triangleleft \xrightarrow{\text{move child } 1} (\triangleright \check{e}_1 \triangleleft, \check{e}_2)
                                                     AEMPairChild2
                                                                                                                                                                                                                            AEMPairChild3
                                                      \triangleright (\check{e}_1, \check{e}_2) \triangleleft \xrightarrow{\mathsf{move child 2}} (\check{e}_1, \triangleright \check{e}_2 \triangleleft)
                                                                                                                                                                                                                         \triangleright (\!(\check{e}_1,\check{e}_2)\!)\!\!\mid_{\blacktriangleright_{k}}^{=} \triangleleft \xrightarrow{\text{move child } 1} (\!(\triangleright\check{e}_1 \triangleleft,\check{e}_2)\!)\!\!\mid_{\blacktriangleright_{k}}^{=}
AEMPairChild4
                                                                                                                                                                 AEMPairParent1
```

AEMPAIRPARENT3

$$\xrightarrow{\text{move parent}} \triangleright ((\check{e}_1, \check{e}_2)) = \langle$$

AEMPairParent4

$$((\triangleright \check{e}_1 \triangleleft, \check{e}_2)) \stackrel{\leftarrow}{\longrightarrow} \xrightarrow{\text{move parent}} \triangleright ((\check{e}_1, \check{e}_2)) \stackrel{\leftarrow}{\longrightarrow} \langle$$

$$\frac{}{\left(\!\left(\check{e}_{1},\,\triangleright\check{e}_{2}\vartriangleleft\right)\!\right)_{\star_{\star}}^{\leftarrow}}\xrightarrow{\mathsf{move\ parent}} \triangleright \left(\!\left(\check{e}_{1},\check{e}_{2}\right)\!\right)_{\star_{\star}}^{\leftarrow}\vartriangleleft} \xrightarrow{\mathsf{move\ child\ 1}} \pi_{1}\triangleright\check{e}\vartriangleleft$$

$$\triangleright \pi_1 \check{e} \triangleleft \xrightarrow{\text{move child 1}} \pi_1 \triangleright \check{e} \triangleleft$$

AEMProjLChild2

AEMProjLParent1

$$\triangleright \pi_1 (|e|)_{\bullet_*} \triangleleft \longrightarrow \pi_1 (|\triangleright e|)_{\bullet_*} \triangleleft$$

$$\pi_1 \triangleright \check{e} \lhd \xrightarrow{\mathsf{move parent}} \triangleright \pi_1 \check{e} \lhd$$

$$\frac{\pi_1 \triangleright \check{e} \triangleleft \xrightarrow{\text{move parent}} \triangleright \pi_1 \check{e} \triangleleft}{\pi_1 (\triangleright \check{e} \triangleleft)_{**}^{\Rightarrow} \xrightarrow{\text{move parent}} \triangleright \pi_1 (\check{e})_{**}^{\Rightarrow} \triangleleft}$$

AEMProjRChild1

AEMProjRParent2

$$\frac{}{\pi_2(\triangleright\check{e}\triangleleft)} \xrightarrow{\text{move parent}} \triangleright \pi_2(\check{e}) \xrightarrow{\bullet} \triangleleft$$

AEMInconsistentTypesChild

$$\begin{array}{c|c}
 & \xrightarrow{\text{move child } n} & \underline{\check{e}'} \\
\hline
 & & \xrightarrow{\text{(\underline{\check{e}})}_{+}} & \xrightarrow{\text{move child } n} & & & \\
\hline
 & & & & & \\
\hline
\end{array}$$

AEMInconsistentTypesParent

$$\underbrace{\check{e}} \xrightarrow{\text{move parent}} \triangleright \check{e}' \triangleleft$$

$$\underbrace{(\check{e})}_{*} \xrightarrow{\text{move parent}} \triangleright \underbrace{(\check{e}')}_{*} \triangleleft$$

F.3.4 Synthetic expression actions

$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau'$$

Movement

$$\frac{\underline{\check{e}} \xrightarrow{\text{move } \delta} \underline{\check{e}}'}{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\text{move } \delta} \underline{\check{e}}' \Rightarrow \tau}$$

Deletion

Construction

ASEConVar
$$x: \tau \in \Gamma \qquad \qquad X \notin \text{dom}(\Gamma)$$

$$\Gamma \vdash \triangleright (\mathbb{I}) \triangleleft \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright x \triangleleft \Rightarrow \tau \qquad \qquad \Gamma \vdash \triangleright (\mathbb{I}) \triangleleft \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright (x)_{\square} \triangleleft \Rightarrow ?$$

$$\Gamma \vdash \triangleright () \triangleleft \Rightarrow ? \xrightarrow{\text{construct var } x} \triangleright (x) _{\square} \triangleleft \Rightarrow ?$$

ASEConLam

$$\frac{\text{ASEConApl1}}{\Gamma, \ x : ? \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Rightarrow \tau'} \qquad \frac{\text{ASEConApl1}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct lam } x} \lambda x : \triangleright ? \triangleleft . \ \check{e}' \Rightarrow ? \rightarrow \tau'} \qquad \frac{\tau \triangleright_{\rightarrow} \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct apl}} (|\check{e}|)_{+} \triangleright (|) \triangleleft \Rightarrow \tau_{2}}$$

$$\frac{\tau \triangleright_{\rightarrow} \tau_1 \to \tau_2}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau} \xrightarrow{\text{construct ap}_{\perp}} (|\check{e}|) \triangleright (|\lozenge| \triangleleft \Rightarrow \tau.$$

ASEConApL2

$$\begin{array}{ccc}
\tau \blacktriangleright_{+} \\
\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau & \xrightarrow{\text{construct ap}_{L}} & (\check{e}) & \triangleright (\lozenge) \triangleleft \Rightarrow ?
\end{array}$$

ASEConApR

$$\frac{\tau \blacktriangleright_{+}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct ap}_{L}} (|\check{e}|)_{+} \triangleright (|) \triangleleft \Rightarrow ?} \qquad \frac{\Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow ?}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct ap}_{R}} \triangleright (|) \triangleleft \check{e}' \Rightarrow ?}$$

ASEConLet1

$$\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct let}_L x} \text{let } x = \check{e} \text{ in } \triangleright \mathbb{N} \triangleleft \Rightarrow ?$$

$$\Gamma, x : ? \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Rightarrow \tau'$$

ASECONLET1
$$\Gamma, x : ? \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Rightarrow \tau'$$

$$\Gamma \vdash \triangleright \check{e} \lhd \Rightarrow \tau \xrightarrow{\text{construct let}_{L} x} \text{let } x = \check{e} \text{ in } \triangleright \emptyset \lhd \Rightarrow ?$$

$$\Gamma \vdash \triangleright \check{e} \lhd \Rightarrow \tau \xrightarrow{\text{construct let}_{L} x} \text{let } x = \triangleright \emptyset \lhd \text{ in } \check{e}' \Rightarrow \tau'$$

ASEConNum

$$\Gamma \vdash \triangleright () \triangleleft \Rightarrow ? \xrightarrow{\mathsf{construct \, lit \, } \underline{n}} \triangleright \underline{n} \triangleleft \Rightarrow \mathsf{num}$$

ASEConPlusR

$$\frac{\Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow \mathsf{num}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\mathsf{construct plus}_{\mathbb{R}}} \triangleright \emptyset \triangleleft + \check{e}' \Rightarrow \mathsf{num}}$$

ASEConIfL

$$\Gamma \vdash \rhd \check{e} \lhd \Rightarrow \tau \xrightarrow{\mathsf{construct} \ \mathsf{if}_L} \mathsf{if} \ \rhd ()\!\!\!/ \lhd \ \mathsf{then} \ \check{e} \ \mathsf{else} \ (\!\!\!/) \Rightarrow \tau$$

ASEConPairL

$$\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct pair}_{\mathsf{L}}} (\triangleright \check{e} \triangleleft, (||)) \Rightarrow \tau \times ?$$

ASEConProjL

$$\frac{\tau \Vdash_{\times} \tau_{1} \times \tau_{2}}{\Gamma \vdash \rhd \check{e} \lhd \Rightarrow \tau \xrightarrow{\text{construct projL}} \pi_{1} \rhd \check{e} \lhd \Rightarrow \tau_{1}}$$

ASEConProjR1

$$\frac{\tau \triangleright_{\times} \tau_{1} \times \tau_{2}}{\Gamma \vdash \rhd \check{e} \lhd \Rightarrow \tau \xrightarrow{\text{construct proj}_{R}} \pi_{2} \rhd \check{e} \lhd \Rightarrow \tau_{2}}$$

ASEConPlusL

$$\frac{\Gamma \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Leftarrow \mathsf{num}}{\Gamma \vdash \triangleright \check{e} \lhd \Rightarrow \tau \xrightarrow{\mathsf{construct plus_L}} \check{e}' + \triangleright () \lhd \Rightarrow \mathsf{num}}$$

ASEConIfC

$$\frac{\Gamma \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Leftarrow \mathsf{bool}}{\Gamma \vdash \triangleright \check{e} \vartriangleleft \Rightarrow \tau \xrightarrow{\mathsf{construct} \ \mathsf{if}_{\mathsf{C}}} \mathsf{if} \ \check{e}' \ \mathsf{then} \ \triangleright () \vartriangleleft \ \mathsf{else} \ ()) \Rightarrow ?}$$

ASEConIfR

$$\Gamma \vdash \triangleright \check{e} \lhd \Rightarrow \tau \xrightarrow{\text{construct if}_R} \text{if } \triangleright () \lhd \text{ then } () \text{ else } \check{e} \Rightarrow \tau$$

ASEConPairR

$$\Gamma \vdash |\triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct pair}_{\mathsf{R}}} (\|), |\triangleright \check{e} \triangleleft) \Rightarrow ? \times \tau$$

ASEConProjL2

$$\frac{\tau \blacktriangleright_{\times}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct proj}_{\bot}} \pi_{1}(\triangleright \check{e} \triangleleft) \stackrel{\rightarrow}{\longrightarrow} ?$$

ASEConProjR2

$$\frac{\tau \blacktriangleright_{\aleph}}{\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\text{construct proj}_{\mathbb{R}}} \pi_2 (\triangleright \check{e} \triangleleft) \stackrel{\rightarrow}{\blacktriangleright_{\aleph}} \Rightarrow ?}$$

Zipper Cases

$$\frac{\underline{\tau_1} \stackrel{\alpha}{\to} \underline{\tau_1'} \qquad \underline{\tau_1^{\circ}} = \underline{\tau_1'^{\circ}}}{\Gamma \vdash \lambda x : \tau_1. \check{e} \Rightarrow \tau_1^{\circ} \to \tau_2 \stackrel{\alpha}{\to} \lambda x : \tau_1'. \check{e} \Rightarrow \tau_1^{\circ} \to \tau_2}$$

ASEZIPLAME

$$\frac{\Gamma, \ x : \tau_1 \vdash \check{\underline{e}} \Rightarrow \tau_2 \xrightarrow{\alpha} \check{\underline{e}}' \Rightarrow \tau_2'}{\Gamma \vdash \lambda x : \tau_1 \cdot \check{\underline{e}} \Rightarrow \tau_1 \to \tau_2 \xrightarrow{\alpha} \lambda x : \tau_1 \cdot \check{\underline{e}}' \Rightarrow \underline{\tau}_1 \to \tau_2'}$$

ASEZIPAPLS
$$\Gamma \downarrow_{\overline{M}} \underline{\check{e}}_{1}^{\alpha} \Rightarrow \tau_{1} \qquad \Gamma \vdash \underline{\check{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime} \qquad \Gamma \vdash \underline{\check{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime} \qquad \Gamma \vdash \underline{\check{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime} \qquad \Gamma \vdash \underline{\check{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime} \Rightarrow \tau_{1}^{$$

ASEZIPAPL4

$$\frac{\Gamma \sqsubseteq_{\overline{M}} \check{\underline{e}}_{1}^{\diamond} \Rightarrow \tau_{1} \qquad \Gamma \vdash \check{\underline{e}}_{1} \Rightarrow \tau_{1} \stackrel{\sim}{\to} \check{\underline{e}}_{1}' \Rightarrow \tau_{1}'}{\Gamma \vdash (\underbrace{\check{e}}_{1})_{+} \check{e}_{2} \Rightarrow ? \stackrel{\alpha}{\to} \check{\underline{e}}_{1}' \check{e}_{2} \Rightarrow \tau_{3}}$$

ASEZ1PAPL6

$$\frac{\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\underline{e}_{1}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}_{1}' \Rightarrow \tau_{1}'}{\tau_{1}' \blacktriangleright_{+}} \qquad \qquad ASEZIPAPR1$$

$$\frac{\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1} \Rightarrow \tau_{1} \qquad \tau_{1} \blacktriangleright_{-} \tau_{2} \Rightarrow \tau_{3} \qquad \Gamma \vdash_{\underline{e}_{2}} \xrightarrow{\alpha} \check{\underline{e}}_{2}' \Leftarrow \tau_{2}}{\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1} \Rightarrow \tau_{1}} \qquad \Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1} \Rightarrow \tau_{1} \qquad \tau_{1} \blacktriangleright_{-} \tau_{2} \Rightarrow \tau_{3} \qquad \Gamma \vdash_{\underline{e}_{2}} \xrightarrow{\alpha} \check{\underline{e}}_{2}' \Leftarrow \tau_{2}}$$

$$\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1} \Rightarrow \tau_{1} \qquad \tau_{1} \blacktriangleright_{-} \tau_{2} \Rightarrow \tau_{3} \qquad \Gamma \vdash_{\underline{e}_{2}} \xrightarrow{\alpha} \check{\underline{e}}_{2}' \Rightarrow \tau_{3}$$

$$\frac{\underline{\tau_{1}} \stackrel{\alpha}{\to} \underline{\tau'_{1}} \qquad \underline{\tau_{1}} \stackrel{\alpha}{\to} \underline{\tau'_{1}}}{\Gamma \vdash \lambda x : \underline{\tau_{1}}. \ \check{e} \Rightarrow \underline{\tau_{1}}^{\circ} \to \tau_{2}} \stackrel{\alpha}{\to} \lambda x : \underline{\tau'_{1}}. \ \check{e} \Rightarrow \underline{\tau_{1}}^{\circ} \to \tau_{2}} \qquad \frac{\underline{\tau_{1}} \stackrel{\alpha}{\to} \underline{\tau'_{1}}}{\underline{\tau'_{1}}} \stackrel{\tau_{1}}{\to} \underline{\tau'_{1}} \stackrel{\tau_{1}}{\to} \underline{\tau'_{1}}} \stackrel{\Gamma}{\to} x : \underline{\tau'_{1}} \stackrel{\epsilon}{\to} e^{\square} \hookrightarrow \check{e'} \Rightarrow \underline{\tau'_{2}}}{\Gamma \vdash \lambda x : \underline{\tau_{1}}. \ \check{e} \Rightarrow \underline{\tau_{1}}^{\circ} \to \tau_{2}} \stackrel{\alpha}{\to} \lambda x : \underline{\tau'_{1}}. \ \check{e'} \Rightarrow \underline{\tau'_{1}}^{\circ} \to \tau'_{2}}$$

$$\frac{\Gamma \vdash_{M} \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash \check{\underline{e}}_{1} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime}}{\tau_{1}^{\prime} \triangleright_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{\underline{e}}_{2} \Leftarrow \tau_{2}}$$

$$\frac{\tau_{1}^{\prime} \triangleright_{\rightarrow} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash \check{\underline{e}}_{2} \Leftarrow \tau_{2}}{\Gamma \vdash \check{\underline{e}}_{1} \check{\underline{e}}_{2} \Rightarrow \tau \xrightarrow{\alpha} \check{\underline{e}}_{1}^{\prime} \check{\underline{e}}_{2} \Rightarrow \tau_{3}}$$

ASEZIPAPL3

$$\frac{\Gamma \vdash_{M} \check{e}_{1}^{\bullet} \Rightarrow \tau_{1} \qquad \Gamma \vdash \check{e}_{1} \Rightarrow \tau_{1} \stackrel{\sim}{\rightarrow} \check{e}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime}}{\tau_{1}^{\prime} \blacktriangleright_{\rightarrow}}$$

$$\frac{\tau_{1}^{\prime} \blacktriangleright_{\rightarrow}}{\Gamma \vdash \check{e}_{1} \check{e}_{2} \Rightarrow \tau \stackrel{\alpha}{\rightarrow} (|\check{e}_{1}^{\prime}|) \stackrel{\bullet}{\longrightarrow} \check{e}_{2} \Rightarrow ?}$$

ASEZ_{IP}A_PL₅

$$\frac{\Gamma \sqsubseteq_{\mathbb{M}} \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\underline{e}_{1}} \Rightarrow \tau_{1} \stackrel{\alpha}{\to} \check{\underline{e}}_{1}^{\prime} \Rightarrow \tau_{1}}{\tau_{1}^{\prime} \trianglerighteq_{\to} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash_{\underline{e}_{2}} \Leftarrow \tau_{2}} \qquad \frac{\Gamma \sqsubseteq_{\mathbb{M}} \check{\underline{e}}_{1}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\underline{e}_{1}} \Rightarrow \tau_{1} \stackrel{\alpha}{\to} \check{\underline{e}}_{1}^{\prime} \Rightarrow \tau_{1}}{\tau_{1}^{\prime} \trianglerighteq_{\to} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash_{\underline{e}_{2}} \Leftarrow \tau_{2}} \qquad \frac{\tau_{1}^{\prime} \trianglerighteq_{\to} \tau_{2} \to \tau_{3} \qquad \Gamma \vdash_{\underline{e}_{2}} \Leftrightarrow \tau_{2}}{\Gamma \vdash_{\mathbb{M}} \check{\underline{e}}_{1}^{\circ} \Vdash_{\to} \tau_{2}} \Rightarrow \tau_{3}}$$

$$\frac{\Gamma \vdash_{\mathbb{M}} \check{e}_1 \Rightarrow \tau_1 \qquad \tau_1 \triangleright_{\rightarrow} \tau_2 \to \tau_3 \qquad \Gamma \vdash_{\underline{e}_2} \stackrel{\alpha}{\to} \underline{\check{e}}_2' \Leftarrow \tau_2}{\Gamma \vdash_{\underline{e}_1} \check{e}_2 \stackrel{\alpha}{\to} \tau_2 \to \tau_3} \qquad \Gamma \vdash_{\underline{e}_2} \stackrel{\alpha}{\to} \underline{\check{e}}_2' \Leftrightarrow \tau_2}$$

$$\frac{\Gamma \vdash \underline{\check{e}}_2 \xrightarrow{\alpha} \underline{\check{e}}_2' \leftarrow ?}{\Gamma \vdash (|\underline{\check{e}}_1|)_-^* \quad \underline{\check{e}}_2 \Rightarrow ? \xrightarrow{\alpha} (|\underline{\check{e}}_1|)_-^* \quad \underline{\check{e}}_2' \Rightarrow ?}$$

$$\frac{\Gamma \vdash \underline{\check{e}}_{2} \xrightarrow{\alpha} \underline{\check{e}}_{2}' \Leftarrow ?}{\Gamma \vdash (\underline{\check{e}}_{1})_{*,*}^{-} \underline{\check{e}}_{2} \Rightarrow ? \xrightarrow{\alpha} (\underline{\check{e}}_{1})_{*,*}^{-} \underline{\check{e}}_{2}' \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}}_{1} \xrightarrow{\alpha} \tau_{1}}{\Gamma \vdash (\underline{e}_{1})_{*,*}^{-} \underline{\check{e}}_{2} \Rightarrow ? \xrightarrow{\alpha} (\underline{\check{e}}_{1})_{*,*}^{-} \underline{\check{e}}_{2}' \Rightarrow ?}{\Gamma \vdash (\underline{e}_{1})_{*,*}^{-} \underline{\check{e}}_{2} \Rightarrow ? \xrightarrow{\alpha} (\underline{\check{e}}_{1})_{*,*}^{-} \underline{\check{e}}_{2}' \Rightarrow ?}$$

ASEZIPLETL2

$$\frac{}{\Gamma \vdash \text{let } x = \underline{\check{e}}_1 \text{ in } \check{e}_2 \Rightarrow \tau_2 \xrightarrow{\alpha} \text{let } x = \underline{\check{e}}_1' \text{ in } \check{e}_2' \Rightarrow \tau_2'}$$

ASEZIPLETR

ASEZIPLETIZ
$$\Gamma \vdash_{\overline{M}} \check{\underline{e}}_{1}^{\alpha} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\check{\underline{e}}_{1}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}_{1}^{\prime} \Rightarrow \tau_{1}^{\prime} \qquad \qquad \Gamma \vdash_{\overline{M}} \check{\underline{e}}_{1}^{\alpha} \Rightarrow \tau_{1} \qquad \Gamma, \ x : \tau_{1} \vdash_{\overline{M}} \check{\underline{e}}_{2}^{\alpha} \Rightarrow \tau_{2}$$

$$\frac{\tau_{1} \neq \tau_{1}^{\prime}}{\Gamma \vdash_{\overline{e}_{1}} \vdash_{\overline{e}_{2}} \vdash_{\overline{e}_{2}^{\prime}} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2}^{\prime}} \qquad \qquad \Gamma, \ x : \tau_{1} \vdash_{\overline{\underline{e}}_{2}} \check{\underline{e}}_{2}^{\alpha} \Rightarrow \tau_{2}$$

$$\Gamma \vdash_{\overline{e}_{1}} \vdash_{\overline{e}_{2}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \vdash_{\overline{e}_{2}^{\prime}} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2}^{\prime} \qquad \qquad \Gamma, \ x : \tau_{1} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2}^{\prime} \Rightarrow \tau_{2}^{\prime}$$

$$\Gamma \vdash_{\overline{e}_{1}} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \vdash_{\overline{e}_{1}^{\prime}} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2}^{\prime} \Rightarrow \tau_{2}^{\prime} \Rightarrow \tau_{2}^{\prime} \Rightarrow \tau_{2}^{\prime}$$

$$\Gamma \vdash_{\overline{e}_{1}} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \vdash_{\overline{e}_{1}^{\prime}} \vdash_{\overline{e}_{2}^{\prime}} \Rightarrow \tau_{2}^{\prime} \Rightarrow \tau_{2}^{\prime}$$

ASEZIPPLUSL

$$\frac{\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \text{num}}{\Gamma \vdash \underline{\check{e}} + \check{e} \Rightarrow \text{num} \xrightarrow{\alpha} \underline{\check{e}}' + \check{e} \Rightarrow \text{num}}$$

ASEZipPlusR

$$\frac{\Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \text{num}}{\Gamma \vdash \check{\underline{e}} + \check{\underline{e}} \Rightarrow \text{num} \xrightarrow{\alpha} \check{\underline{e}} + \check{\underline{e}}' \Rightarrow \text{num}}$$

ASEZIPIFC

$$\Gamma \vdash \check{e} \xrightarrow{\alpha} \check{e}' \Leftarrow \mathsf{boo}$$

ASEZ_{IP}I_FL1

$$\frac{\Gamma \sqsubseteq \underline{e} \stackrel{\alpha}{\to} \underline{e}' \Leftrightarrow \text{bool}}{\Gamma \vdash \underline{i} \stackrel{\alpha}{\to} \text{then } \check{e}_1 \text{ else } \check{e}_2 \Rightarrow \tau \stackrel{\alpha}{\to} \text{if } \underline{e}' \text{ then } \check{e}_1 \text{ else } \check{e}_2 \Rightarrow \tau }$$

$$\frac{\Gamma \sqsubseteq \underline{e} \stackrel{\alpha}{\to} \underline{e}' \Rightarrow \tau_1 \qquad \Gamma \sqsubseteq \underline{e} \stackrel{\alpha}{\to} \tau_2}{\Gamma \vdash \underline{e} \Rightarrow \tau_1 \stackrel{\alpha}{\to} \underline{e}' \Rightarrow \tau_1 \qquad \tau_1' \sim \tau_2 \qquad \tau' = \tau_1' \sqcup \tau_2}{\Gamma \vdash \underline{i} \stackrel{\alpha}{\to} \text{then } \underline{e} \text{ else } \check{e}_2 \Rightarrow \tau \stackrel{\alpha}{\to} \text{if } \check{e}_1 \text{ then } \underline{e}' \text{ else } \check{e}_2 \Rightarrow \tau'}$$

ASEZ_{IP}I_FL₂

$$\Gamma \vdash_{\overline{\mathbb{M}}} \check{\underline{e}}^{\circ} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\overline{\mathbb{M}}} \check{e}_{2} \Rightarrow \tau_{2}$$

$$\Gamma \vdash \check{e} \Rightarrow \tau_{1} \stackrel{\alpha}{\to} \check{e}' \Rightarrow \tau'_{1} \qquad \tau'_{1} \nsim \tau_{2}$$

 $\frac{\Gamma \vdash \check{\underline{e}} \Rightarrow \tau_1 \stackrel{\alpha}{\to} \check{\underline{e}}' \Rightarrow \tau_1' \qquad \tau_1' \neq \tau_2}{\Gamma \vdash \text{if } \check{e}_1 \text{ then } \check{\underline{e}} \text{ else } \check{e}_2 \Rightarrow \tau \stackrel{\alpha}{\to} (\text{if } \check{e}_1 \text{ then } \check{\underline{e}}' \text{ else } \check{e}_2)_{l/l} \Rightarrow ?}$

ASEZIPIFR1

ASEZ_{IP}I_FR2

ASEZ_IpInconsistentBranchesC

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \mathsf{bool}$$

 $\frac{\Gamma \vdash \underline{c} \vdash \underline{c} \vdash \underline{bool}}{\Gamma \vdash (|\text{if } \underline{\check{e}} \text{ then } \check{e}_1 \text{ else } \check{e}_2|)_{|\underline{l}|} \Rightarrow \tau \xrightarrow{\alpha} (|\text{if } \underline{\check{e}}' \text{ then } \check{e}_1 \text{ else } \check{e}_2|)_{|\underline{l}|} \Rightarrow \tau}$

ASEZipInconsistentBranchesl

ASEZIPINCONSISTENTBRANCHESLIT
$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_1 \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau_1'$$

$$\Gamma \vdash_{\overline{M}} \check{e}_2 \Rightarrow \tau_2 \qquad \tau_1' \sim \tau_2 \qquad \tau' = \tau_1' \sqcup \tau_2$$

$$\overline{\Gamma \vdash_{\overline{M}} \check{e}_1 \text{ then } \underline{\check{e}} \text{ else } \check{e}_2} \downarrow_{\underline{U}} \Rightarrow \tau \xrightarrow{\alpha} \text{ if } \check{e}_1 \text{ then } \underline{\check{e}}' \text{ else } \check{e}_2 \Rightarrow \tau'$$

ASEZIPINCONSISTENTBRANCHESL2

$$\begin{array}{c} \Gamma \vdash \check{\underline{e}} \Rightarrow \tau_1 \stackrel{\alpha}{\rightarrow} \check{\underline{e}}' \Rightarrow \tau_1' \\ \Gamma \vdash_{\overline{\mathbb{M}}} \check{\underline{e}}_2 \Rightarrow \tau_2 & \tau_1' \nsim \tau_2 \end{array}$$

ASEZIPINCONSISTENTBRANCHESR1

ASEZipInconsistentBranchesR2

ASEZIPINCONSISTENTBRANCHESR2
$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau_{2}'$$

$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_{1} \qquad \tau_{1} \nsim \tau_{2}'$$

$$\Gamma \vdash (\text{if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \underline{\check{e}})_{\underline{\!\!\!/}\underline{\!\!\!/}}) \Rightarrow \tau \xrightarrow{\alpha} (\text{if } \check{e}_{1} \text{ then } \check{e}_{2} \text{ else } \underline{\check{e}}')_{\underline{\!\!\!/}\underline{\!\!\!/}}) \Rightarrow ?$$

$$ASEZIPPAIRL$$

$$\Gamma \vdash \underline{\check{e}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau_{1}'$$

$$\Gamma \vdash (\underline{\check{e}}, \check{e}) \Rightarrow \tau_{1} \times \tau_{2} \xrightarrow{\alpha} (\underline{\check{e}}', \check{e}) \Rightarrow \tau_{1}' \times \tau_{2}$$

$$1 + (11 c_1 \operatorname{then} c_2 \operatorname{cisc} \underline{c}) / (11 c_1 \operatorname{then} c_2 \operatorname{ci$$

ASEZIPPROJL3
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \triangleright_{\times} \tau'_{1} \times \tau}{\Gamma \vdash \pi_{1}(\underline{\check{e}})^{=} \Rightarrow ? \xrightarrow{\alpha} \pi_{1} \underline{\check{e}}' \Rightarrow \tau'_{1}}$$

$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{-} \Rightarrow ? \xrightarrow{\alpha} \pi_{1}\underline{\check{e}}' \Rightarrow \tau'_{1}} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{-} \Rightarrow ? \xrightarrow{\alpha} \pi_{1}(\underline{\check{e}}')_{\blacktriangleright_{\star}}^{-} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{1}(\underline{\check{e}})_{\blacktriangleright_{\star}}^{-} \Rightarrow ? \xrightarrow{\alpha} \pi_{1}(\underline{\check{e}}')_{\blacktriangleright_{\star}}^{-} \Rightarrow ?} \qquad \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{2}\underline{\check{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \pi_{2}\underline{\check{e}}' \Rightarrow \tau'_{2}}$$

ASEZIPPROJR2 ASEZIPPROJL3 ASEZIPPROJR4
$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times}}{\Gamma \vdash \pi_{2}\underline{\check{e}} \Rightarrow \tau_{2} \xrightarrow{\alpha} \pi_{2}(\underline{\check{e}}') \xrightarrow{\sim} ?} \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times} \tau'_{1} \times \tau'_{2}}{\Gamma \vdash \pi_{2}(\underline{\check{e}}) \xrightarrow{\sim} ?} \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times}}{\Gamma \vdash \pi_{2}(\underline{\check{e}}) \xrightarrow{\sim} ?} \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \pi_{2}(\underline{\check{e}}') \xrightarrow{\sim} ?}{\Gamma \vdash \pi_{2}(\underline{\check{e}}) \xrightarrow{\sim} ?} \frac{\Lambda SEZIPPROJR4}{\Gamma \vdash \pi_{2}(\underline{\check{e}}) \xrightarrow{\sim} ?} \frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \tau' \blacktriangleright_{\times}}{\Gamma \vdash \pi_{2}(\underline{\check{e}}) \xrightarrow{\sim} ?} \frac{\Lambda SEZIPPROJR4}{\Gamma \vdash \pi_{2}(\underline{\check{e}}) \xrightarrow{\sim} ?}$$

$$\Gamma \vdash \pi_2 \underline{\check{e}} \Rightarrow \tau_2 \xrightarrow{\alpha} \pi_2 \underline{\check{e}}' \Rightarrow \tau_2'$$

$$ASEZIPPROJR4$$

F.3.5 Analytic expression actions

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \leftarrow \tau'$$

Subsumption

Movement

AAEMOVE
$$\frac{\underline{\check{e}} \xrightarrow{\text{move } \delta} \underline{\check{e}}'}{\Gamma \vdash \underline{\check{e}} \xrightarrow{\text{move } \delta} \underline{\check{e}}' \leftarrow \tau}$$

Deletion

$$\frac{\text{AAEDel}}{\Gamma \vdash |\triangleright \check{e} \triangleleft \xrightarrow{\text{del}} |\triangleright (|) \triangleleft \leftarrow \tau}$$

Construction

$$\frac{\tau \Vdash_{\rightarrow} \tau_{1} \to \tau_{2} \qquad \Gamma, \ x : \tau_{1} \vdash \check{e}^{\square} \hookrightarrow \check{e}' \leftarrow \tau_{2}}{\Gamma \vdash \trianglerighteq\check{e}^{\square} \stackrel{\text{construct lam } x}{\longrightarrow} \lambda x : \trianglerighteq \tau_{1} \trianglelefteq . \check{e}' \leftarrow \tau}$$

AAEConLetL

$$\Gamma \vdash \check{e}^{\sqcup} \hookrightarrow \check{e}' \Rightarrow \tau$$

$$\Gamma \vdash \triangleright \check{e} \triangleleft \xrightarrow{\text{construct let}_{L} x} \text{let } x = \check{e}' \text{ in } \triangleright \mathbb{N} \triangleleft \Leftarrow \tau$$

AAEConIfC

$$\Gamma \vdash \check{e} \hookrightarrow \check{e}' \Leftarrow \mathsf{bool}$$

$$\Gamma \vdash \triangleright \check{e} \triangleleft \xrightarrow{\text{construct if } c} \text{ if } \check{e}' \text{ then } \triangleright () \triangleleft \text{ else } () \leftarrow \tau$$

AAEConIfR

$$\overbrace{\Gamma \vdash \rhd \check{e} \lhd \xrightarrow{\mathsf{construct} \; \mathsf{if}_R} } \mathsf{if} \; \rhd ()\!\!\!/ \lhd \mathsf{then} \; (\!\!\!/) \; \mathsf{else} \; \check{e}' \Leftarrow \tau$$

AAEConPairL2

$$\frac{\tau \blacktriangleright_{\times} \qquad \Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow ?}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow \tau_{2}}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow \tau_{2}}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash \flat} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash_{\times} \check{e} \backsim}{\Gamma \vdash_{\times} \check{e} \backsim} \qquad \frac{\tau \vdash_{$$

AAEConLam2

$$\frac{\tau \blacktriangleright_{+} \qquad \Gamma, \ x : ? \vdash \check{e}^{\square} \hookrightarrow \check{e}' \Leftarrow ?}{\Gamma \vdash \rhd \check{e} \vartriangleleft} \xrightarrow{\text{construct lam } x} (\lambda x : \rhd ? \vartriangleleft. \check{e}') \vdash_{\!\! \blacktriangleright_{+}}^{=} \Leftarrow \tau$$

AAEConLetR

$$\frac{\Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Rightarrow \tau}{\Gamma \vdash \rhd \check{e} \triangleleft \xrightarrow{\text{construct let}_{\mathbb{L}} x} \text{let } x = \check{e}' \text{ in } \rhd () \triangleleft \Leftarrow \tau} \qquad \frac{\Gamma, \ x : ? \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow \tau}{\Gamma \vdash \rhd \check{e} \triangleleft \xrightarrow{\text{construct let}_{\mathbb{R}} x} \text{let } x = \rhd () \triangleleft \text{ in } \check{e}' \Leftarrow \tau}$$

AAEConIfL

AAEConPairL1

$$\frac{\tau \triangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e}^{\square} \hookrightarrow \check{e}' \leftarrow \tau_{1}}{\Gamma \vdash \triangleright \check{e} \vartriangleleft} \xrightarrow{\text{construct pair}_{L}} (\check{e}', \triangleright ()) \vartriangleleft) \leftarrow \tau$$

AAEConPairR1

$$\tau \Vdash_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{e}^{\square} \xrightarrow{} \check{e}' \xleftarrow{} \tau_{2}$$

$$\Gamma \vdash \triangleright \check{e} \triangleleft \xrightarrow{\text{construct pair}_{R}} (\triangleright \lozenge \triangleleft , \check{e}') \xleftarrow{} \tau_{2}$$

$$\frac{\tau \blacktriangleright_{\star} \qquad \Gamma \vdash \check{e}^{\square} \looparrowright \check{e}' \Leftarrow ?}{\Gamma \vdash \rhd \check{e} \lhd \xrightarrow{\text{construct pair}_{R}} (\!(\rhd (\!() \lhd , \check{e}')\!) \!)_{\blacktriangleright_{\star}}^{\leftarrow} \Leftarrow \tau}$$

Zipper Cases

AAEZIPLAMT1
$$\underline{\underline{\tau_3} \stackrel{\alpha}{\to} \underline{\tau_3}} \quad \underline{\underline{\tau_3}} = \underline{\tau_3}^{\prime \circ}$$

$$\Gamma \vdash \lambda x : \underline{\tau_3}. \check{e} \stackrel{\alpha}{\to} \lambda x : \underline{\tau_3}. \check{e} \leftarrow \tau$$

AAEZIPLAMT3

$$\underline{\tau}_{3} \xrightarrow{\alpha} \underline{\tau}_{3}' \qquad \underline{\tau}_{3}^{\circ} \neq \underline{\tau}^{\circ} \qquad \tau \triangleright_{\rightarrow} \tau_{1} \to \tau_{2}
\underline{\tau}_{3}^{\circ} \neq \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}^{\circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}^{\prime} \leftarrow \tau_{2}
\underline{\tau}_{1} \xrightarrow{\alpha} \tau_{1} \qquad \underline{\tau}_{2} \xrightarrow{\alpha} \tau_{3}^{\prime} \qquad \underline{\tau}_{3}^{\circ} = \underline{\tau}_{3}^{\prime \circ}
\underline{\tau}_{1} \xrightarrow{\alpha} \tau_{2}^{\prime} \qquad \underline{\tau}_{3}^{\circ} = \underline{\tau}_{3}^{\prime \circ} = \underline$$

AAEZIPLAMT5

AAEZIPLAMT5
$$\underline{\tau_{3}} \stackrel{\alpha}{\to} \underline{\tau'_{3}} \qquad \underline{\tau_{3}} \neq \underline{\tau'_{3}} \qquad \text{AAEZIPLAMT6}$$

$$\Gamma, x : \underline{\tau'_{3}} \vdash \check{e}^{\Box} \hookrightarrow \check{e}' \Leftarrow ? \qquad \underline{\tau_{3}} \stackrel{\alpha}{\to} \underline{\tau'_{3}} \qquad \underline{\tau_{3}} = \underline{\tau'_{3}} \qquad \underline{\tau'_{3}} = \underline{\tau'_{3}} \qquad$$

AAEZIPLAMT7

AAEZIPLAMT2

$$\frac{\underline{\tau}_{3} \xrightarrow{\alpha} \underline{\tau}_{3}' \qquad \underline{\tau}_{3}^{\bullet} \neq \underline{\tau}_{3}^{\bullet} \qquad \tau \triangleright_{\rightarrow} \tau_{1} \to \tau_{2}}{\underline{\tau}_{3}^{\prime \circ} \sim \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}^{\prime \circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}^{\prime} \Leftarrow \tau_{2}}$$

$$\frac{\underline{\tau}_{3}^{\prime \circ} \sim \tau_{1} \qquad \Gamma, \ x : \underline{\tau}_{3}^{\prime \circ} \vdash \check{e}^{\Box} \hookrightarrow \check{e}^{\prime} \Leftarrow \tau_{2}}{\Gamma \vdash \lambda x : \underline{\tau}_{3}. \ \check{e}^{\prime} \xrightarrow{\alpha} \lambda x : \underline{\tau}_{3}^{\prime}. \ \check{e}^{\prime} \Leftarrow \tau}$$

$$\frac{\underline{\tau_3} \stackrel{\alpha}{\to} \underline{\tau_3'} \qquad \underline{\tau_3^{\circ}} = \underline{\tau_3'^{\circ}}}{\Gamma \vdash (\lambda x : \underline{\tau}_3. \check{e})_{\star, +}^{-} \stackrel{\alpha}{\to} (\lambda x : \underline{\tau_3'}. \check{e})_{\star, +}^{-} \leftarrow \tau}$$

$$\frac{\underline{\tau}_{3} \stackrel{\alpha}{\to} \underline{\tau}_{3}' \qquad \underline{\tau}_{3}^{\diamond} = \underline{\tau}_{3}^{\diamond \circ}}{\Gamma \vdash (|\lambda x : \underline{\tau}_{3}. \ \check{e})_{:} \stackrel{\alpha}{\to} (|\lambda x : \underline{\tau}_{3}'. \ \check{e})_{:} \leftarrow \tau}$$

AAEZIPLAMT8
$$\underline{\tau}_{3} \stackrel{\alpha}{\to} \underline{\tau}'_{3} \qquad \underline{\tau}'_{3} \stackrel{*}{\to} \underline{\tau}'_{3} \stackrel{*}{\to} \tau_{1} \to \tau_{2}$$

$$\underline{\tau}'_{3} \stackrel{*}{\to} \tau_{1} \qquad \Gamma, \ x : \underline{\tau}'_{3} \stackrel{*}{\to} \check{e}^{\square} \hookrightarrow \check{e}' \stackrel{*}{\leftarrow} \tau_{2}$$

$$\underline{\Gamma} \vdash (\lambda x : \tau_{2} \stackrel{*}{\to}) \stackrel{\alpha}{\to} (\lambda x : \tau'_{1} \stackrel{*}{\to}') \stackrel{*}{\leftarrow} \tau$$

AAEZIPLAMEI
$$\underline{\tau} \mapsto \tau_1 \to \tau_2 \qquad \Gamma, \ x : \tau_3 \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \leftarrow \tau_2$$

$$\Gamma \vdash \lambda x : \tau_3 \cdot \underline{\check{e}} \xrightarrow{\alpha} \lambda x : \tau_3 \cdot \underline{\check{e}}' \leftarrow \tau$$

$$\Gamma \vdash (\lambda x : \tau_3 \cdot \underline{\check{e}}) \xrightarrow{\alpha} (\lambda x : \tau_3 \cdot \underline{\check{e}}') \leftarrow \tau$$

$$\Gamma \vdash (\lambda x : \tau_3 \cdot \underline{\check{e}}) \xrightarrow{\alpha} (\lambda x : \tau_3 \cdot \underline{\check{e}}') \leftarrow \tau$$

AAEZIPLAME3
$$\underbrace{\tau \Vdash_{\rightarrow} \tau_{1} \to \tau_{2}}_{\Gamma \vdash (\lambda x : \tau_{3} : \underline{e}):} \xrightarrow{\alpha} (\lambda x : \tau_{3} \cdot \underline{e}'): \leftarrow \tau$$

$$\underbrace{\tau \vdash_{\rightarrow} \tau_{1} \to \tau_{2}}_{\Gamma \vdash (\lambda x : \tau_{3} : \underline{e}'):} \xrightarrow{\alpha} (\lambda x : \tau_{3} \cdot \underline{e}'): \leftarrow \tau$$

$$\underbrace{\Gamma \vdash_{M} \check{\underline{e}}^{\circ} \Rightarrow \tau_{1}}_{\Gamma \vdash \text{let } x = \underline{e}' \text{ in } \check{e}} \xrightarrow{\alpha} \text{let } x = \underline{e}' \text{ in } \check{e} \leftarrow \tau$$

AAEZIPLETL2

AAEZIPLETL2
$$\Gamma \sqsubseteq_{\underline{e}} \check{\underline{e}} \Rightarrow \tau_{1} \qquad \Gamma \vdash_{\underline{e}} \Rightarrow \tau_{1} \xrightarrow{\alpha} \check{\underline{e}}' \Rightarrow \tau'_{1}$$

$$\tau_{1} \neq \tau'_{1} \qquad \Gamma, \ x : \tau'_{1} \vdash_{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftrightarrow \tau$$

$$\Gamma \vdash_{\underline{e}} = \tau \xrightarrow{\alpha} \ker \underline{e}' \text{ in } \check{\underline{e}}' \Leftrightarrow \tau$$

$$\Gamma \vdash_{\underline{e}} = \tau \xrightarrow{\alpha} \ker \underline{e}' \text{ in } \check{\underline{e}}' \Leftrightarrow \tau$$

$$\Gamma \vdash_{\underline{e}} = \tau \xrightarrow{\alpha} \ker \underline{e}' \text{ in } \check{\underline{e}}' \Leftrightarrow \tau$$

$$\Gamma \vdash_{\underline{e}} = \tau \xrightarrow{\alpha} \ker \underline{e}' \text{ in } \check{\underline{e}}' \Leftrightarrow \tau$$

$$\Gamma \vdash_{\underline{e}} = \tau \xrightarrow{\alpha} \ker \underline{e}' \text{ in } \check{\underline{e}}' \Leftrightarrow \tau$$

AAEZıpIfC

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow \mathsf{boo}$$

AAF7IDI AMF2

$$\frac{\Gamma \vdash_{\mathbb{M}} \check{e} \Rightarrow \tau_{1} \qquad \Gamma, \ x : \tau_{1} \vdash_{\underline{e}} \overset{\alpha}{\to} \underline{\check{e}}' \leftarrow \tau}{\Gamma \vdash_{\mathbb{M}} \mathsf{let} \ x = \check{e} \mathsf{in} \ \check{e}' \xrightarrow{\alpha} \mathsf{let} \ x = \check{e} \mathsf{in} \ \check{e}' \leftarrow \tau}$$

$$\frac{\Gamma \vdash \check{\underline{e}} \stackrel{\alpha}{\to} \check{\underline{e}}' \Leftarrow \mathsf{bool}}{\Gamma \vdash \mathsf{if} \, \check{\underline{e}} \, \mathsf{then} \, \check{e}_1 \, \mathsf{else} \, \check{e}_2 \stackrel{\alpha}{\to} \mathsf{if} \, \check{\underline{e}}' \, \mathsf{then} \, \check{e}_1 \, \mathsf{else} \, \check{e}_2 \Leftarrow \tau} \qquad \frac{\Gamma \vdash \check{\underline{e}} \stackrel{\alpha}{\to} \check{\underline{e}}' \Leftarrow \tau}{\Gamma \vdash \mathsf{if} \, \check{\underline{e}}_1 \, \mathsf{then} \, \check{\underline{e}} \, \mathsf{else} \, \check{\underline{e}}_2 \stackrel{\alpha}{\to} \mathsf{if} \, \check{\underline{e}}_1 \, \mathsf{then} \, \check{\underline{e}}' \, \mathsf{else} \, \check{\underline{e}}_2 \Leftarrow \tau}$$

$$\frac{\tau \triangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \tau}{\Gamma \vdash (\check{e}, \check{e}) \xrightarrow{\alpha} (\check{e}', \check{e}) \Leftarrow \tau}$$

AAEZipPairL2

$$\frac{\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \Leftarrow ?}{\Gamma \vdash \{\!\!\{(\underline{\check{e}}, \check{e})\}\!\!\}_{**}^{=} \xrightarrow{\alpha} \{\!\!\{(\underline{\check{e}}', \check{e})\}\!\!\}_{**}^{=} \Leftarrow \tau}$$

$$\frac{\tau \triangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} \underline{\check{e}}' \leftarrow \tau}{\Gamma \vdash (\check{e}, \check{e}) \xrightarrow{\alpha} (\check{e}, \check{e}') \leftarrow \tau}$$

$$\frac{\Gamma \vdash \check{\underline{e}} \stackrel{\alpha}{\to} \check{\underline{e}}' \Leftarrow ?}{\Gamma \vdash (\check{\underline{e}}, \check{\underline{e}}))_{**}^{-} \stackrel{\alpha}{\to} ((\check{\underline{e}}', \check{\underline{e}}))_{**}^{-} \Leftarrow \tau} \qquad \frac{\tau \triangleright_{\times} \tau_{1} \times \tau_{2} \qquad \Gamma \vdash \check{\underline{e}} \stackrel{\alpha}{\to} \check{\underline{e}}' \Leftarrow \tau_{2}}{\Gamma \vdash (\check{\underline{e}}, \check{\underline{e}}) \stackrel{\alpha}{\to} ((\check{\underline{e}}, \check{\underline{e}}'))_{**}^{-} \Leftarrow \tau} \qquad \frac{\Gamma \vdash \check{\underline{e}} \stackrel{\alpha}{\to} \check{\underline{e}}' \Leftarrow ?}{\Gamma \vdash ((\check{\underline{e}}, \check{\underline{e}}'))_{**}^{-} \Leftrightarrow ((\check{\underline{e}}, \check{\underline{e}}'))_{**}^{-} \Leftrightarrow \tau}$$

F.3.6 Iterated actions

The iterated type action and movements judgments are the same as in the untyped model.

$$\boxed{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\overline{\alpha}} * \underline{\check{e}}' \Rightarrow \tau'}$$

ASEIREFL
$$\frac{\cdot}{\Gamma \vdash \check{e} \Rightarrow \tau \xrightarrow{\cdot} \star \check{e} \Rightarrow \tau}$$

$$\frac{\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau' \qquad \Gamma \vdash \underline{\check{e}}' \Rightarrow \tau' \xrightarrow{\overline{\alpha}} * \underline{\check{e}}'' \Rightarrow \tau''}{\Gamma \vdash \check{e} \Rightarrow \tau \xrightarrow{\alpha; \overline{\alpha}} * \underline{\check{e}}'' \Rightarrow \tau''}$$

$$\Gamma \vdash \underline{\check{e}} \xrightarrow{\overline{\alpha}} * \underline{\check{e}}' \leftarrow \tau$$

$$\frac{\Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha} \check{\underline{e}}' \Leftarrow \tau' \qquad \Gamma \vdash \check{\underline{e}}' \xrightarrow{\overline{\alpha}} \star \check{\underline{e}}'' \Leftarrow \tau''}{\Gamma \vdash \check{\underline{e}} \xrightarrow{\alpha; \overline{\alpha}} \star \check{\underline{e}}'' \Leftarrow \tau''}$$

F.4 Mark erasure

 $|\underline{\check{e}}^{\square}|$ is a metafunction ZMExp \rightarrow ZExp defined as follows:

```
\triangleright \check{e} \triangleleft^{\square} = \triangleright \check{e}^{\square} \triangleleft
                                                           (\lambda x : \tau. \check{e})^{\square} = \lambda x : \tau. (\check{e}^{\square})
                                                           (\lambda x : \tau . \underline{\check{e}})^{\square} = \lambda x : \tau . (\underline{\check{e}}^{\square})
                                               (\lambda x : \tau . \underline{\check{e}}) : \Box = \lambda x : \tau . (\underline{\check{e}}\Box)
                                                                                           (\underline{\check{e}}\ \check{e})^{\square} = (\underline{\check{e}}^{\square})(\underline{\check{e}}^{\square})
                                                                                           (\check{e}\ \check{e})^{\square} = (\check{e}^{\square})(\check{e}^{\square})
                                                                      ((\underline{\check{e}}) \xrightarrow{\Rightarrow} \check{e})^{\square} = \underline{\check{e}}^{\square} (\check{e}^{\square})
                                                                     ((\check{e})^{\rightarrow}_{\bullet} \underline{\check{e}})^{\Box} = \check{e}^{\Box} (\underline{\check{e}}^{\Box})
                                     (\operatorname{let} x = \underline{\check{e}} \operatorname{in} \check{e})^{\square} = \operatorname{let} x = (\underline{\check{e}}^{\square}) \operatorname{in} (\check{e}^{\square})
                                     (\text{let } x = \check{e} \text{ in } \check{e})^{\square} = \text{let } x = (\check{e}^{\square}) \text{ in } (\check{e}^{\square})
                                                                                (\check{e} + \check{e})^{\square} = (\check{e}^{\square}) + (\check{e}^{\square})
                                                                               (\check{e} + \check{e})^{\square} = (\check{e}^{\square}) + (\check{e}^{\square})
           (if \underline{\check{e}} then \check{e}_1 else \check{e}_2)<sup>\square</sup> = if (\underline{\check{e}}^{\square}) then (\check{e}_1^{\square}) else (\check{e}_2^{\square})
          (if \check{e}_1 then \check{e} else \check{e}_2)<sup>\square</sup> = if (\check{e}_1^{\square}) then (\check{e}_2^{\square}) else (\check{e}_2^{\square})
\begin{array}{lll} (\text{if } \check{e}_1 \text{ then } \check{\underline{e}}_2 \text{ else } \check{\underline{e}}_2) & = & \text{if } (\check{e}_1^{\scriptscriptstyle \square}) \text{ then } (\check{e}_2^{\scriptscriptstyle \square}) \text{ else } (\check{e}_2^{\scriptscriptstyle \square}) \\ (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_2^{\scriptscriptstyle \square})_{\check{\mu}^{\scriptscriptstyle \square}} & = & \text{if } (\check{e}_1^{\scriptscriptstyle \square}) \text{ then } (\check{e}_2^{\scriptscriptstyle \square}) \text{ else } (\check{e}_2^{\scriptscriptstyle \square}) \\ (\text{if } \check{e}_1 \text{ then } \check{\underline{e}}_2 \text{ else } \check{e}_2^{\scriptscriptstyle \square})_{\check{\mu}^{\scriptscriptstyle \square}} & = & \text{if } (\check{e}_1^{\scriptscriptstyle \square}) \text{ then } (\check{e}_2^{\scriptscriptstyle \square}) \text{ else } (\check{e}_2^{\scriptscriptstyle \square}) \\ (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{\underline{e}}_2^{\scriptscriptstyle \square})_{\check{\mu}^{\scriptscriptstyle \square}} & = & \text{if } (\check{e}_1^{\scriptscriptstyle \square}) \text{ then } (\check{e}_2^{\scriptscriptstyle \square}) \text{ else } (\check{e}_2^{\scriptscriptstyle \square}) \end{array}
                                                                                         (\underline{\check{e}},\underline{\check{e}})^{\square} = (\underline{\check{e}}^{\square},\underline{\check{e}}^{\square})
                                                                                         (\check{e},\check{e})^{\square} = (\check{e}^{\square},\check{e}^{\square})
                                                                       (\pi_1\underline{\check{e}})^{\square} = \pi_1(\underline{\check{e}}^{\square})
                                                                     (\pi_1(\underline{\check{e}})^{-})^{\square} = \pi_1\check{\underline{e}}^{\square}(\pi_2\check{\underline{e}})^{\square} = \pi_2(\check{\underline{e}}^{\square})
                                                                     (\pi_2(\underline{\check{e}})^{-})^{\square} = \pi_2\check{e}^{\square}(\underline{\check{e}})^{\square} = \check{e}^{\square}
```

F.5 Metatheorems

Theorem F.1 (Erasure Commutativity). For all \check{e} , $(\check{e}^{\square})^{\diamond} = (\check{e}^{\diamond})^{\square}$.

Theorem F.2 (Correctness).

1. If
$$\underline{\check{e}}$$
 WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\circ} \Rightarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau'$ and $\underline{\check{e}}^{\Box} \xrightarrow{\alpha} \underline{e}'$, then $\underline{\check{e}}'^{\Box} = \underline{e}'$.

2. If
$$\underline{\check{e}}$$
 WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\circ} \leftarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \xrightarrow{\alpha} \underline{\check{e}}' \leftarrow \tau$ and $\underline{\check{e}}^{\Box} \xrightarrow{\alpha} \underline{e}'$, then $\underline{\check{e}}'^{\Box} = \underline{e}'$.

Theorem F.3 (Sensibility).

1. If
$$\underline{\check{e}}$$
 WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \Rightarrow \tau \xrightarrow{\alpha} \underline{\check{e}}' \Rightarrow \tau'$, then $\underline{\check{e}}'$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}'^{\diamond} \Rightarrow \tau'$.

2. If \check{e} WF and $\Gamma \vdash_{\mathbb{M}} \check{e}^{\diamond} \leftarrow \tau$ and $\Gamma \vdash \check{e} \xrightarrow{\alpha} \check{e}' \leftarrow \tau$, then \check{e}' WF and $\Gamma \vdash \check{e}'^{\diamond} \leftarrow \tau$.

Theorem F.4 (Movement Erasure Invariance).

- 1. If $\underline{\tau} \xrightarrow{\text{move } \delta} \underline{\tau}'$, then $\underline{\tau}^{\diamond} = \underline{\tau}'^{\diamond}$.
- 2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \Rightarrow \tau \xrightarrow{\text{move } \delta} \underline{\check{e}}' \Rightarrow \tau'$, then $\underline{\check{e}}'$ WF and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$ and $\tau = \tau'$.
- 3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\Gamma \vdash_{\underline{\check{e}}} \xrightarrow{\mathsf{move} \ \delta} \underline{\check{e}}' \leftarrow \tau$, then $\underline{\check{e}}'$ WF and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$.

Theorem F.5 (Reachability).

- 1. If $\underline{\tau}^{\circ} = \underline{\tau}'^{\circ}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} \star \underline{\tau}'$.
- 2. If $\underline{\check{e}}$ WF and $\underline{\check{e}}'$ WF and $\Gamma \vdash_{\overline{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\overline{\alpha}} \star \check{e}' \Rightarrow \tau$.
- 3. If $\underline{\check{e}}$ WF and $\underline{\check{e}}'$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\underline{\check{e}}^{\diamond} = \underline{\check{e}}'^{\diamond}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\overline{\alpha}} \star \underline{\check{e}}' \leftarrow \tau$. **Lemma F.5.1** (Reach Up).
 - 1. If $\underline{\tau}^{\circ} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\underline{\tau} \xrightarrow{\overline{\alpha}} \star \nabla \tau = 0$.
 - 2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \Rightarrow \tau \xrightarrow{\overline{\alpha}} \star \triangleright \check{e} \triangleleft \Rightarrow \tau$.
 - 3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\overline{\alpha}} \star \triangleright \check{e} \lhd \leftarrow \tau$.

Lemma F.5.2 (Reach Down).

- 1. If $\underline{\tau}^{\circ} = \tau$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\nabla \tau \triangleleft \xrightarrow{\overline{\alpha}} \star \tau$.
- 2. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\mathbb{M}} \underline{\check{e}}^{\diamond} \Rightarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash \triangleright \check{e} \triangleleft \Rightarrow \tau \xrightarrow{\overline{\alpha}} * \check{e} \Rightarrow \tau$.
- 3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\diamond} \leftarrow \tau$ and $\underline{\check{e}}^{\diamond} = \check{e}$, then there exists $\overline{\alpha}$ such that $\overline{\alpha}$ movements and $\Gamma \vdash_{\underline{N}} \underline{\check{e}}^{\diamond} = \check{e}$.

Theorem F.6 (Constructability).

- 1. For every τ , there exists $\overline{\alpha}$ such that $\triangleright ? \triangleleft \xrightarrow{\overline{\alpha}} * \triangleright \tau \triangleleft$.
- 3. If $\Gamma \vdash_{\mathbb{M}} \check{e} \leftarrow \tau$, then there exists $\overline{\alpha}$ such that $\Gamma \vdash \triangleright () \triangleleft \xrightarrow{\overline{\alpha}} * \triangleright \check{e} \triangleleft \leftarrow \tau$.

Theorem F.7 (Determinism).

- 1. If $\underline{\tau} \xrightarrow{\alpha} * \underline{\tau}'$ and $\underline{\tau} \xrightarrow{\alpha} * \underline{\tau}''$ then $\underline{\tau}' = \underline{\tau}''$.
- 2. If \check{e} WF and $\Gamma \vdash_{M} \check{e}^{\circ} \Rightarrow \tau$ and $\Gamma \vdash_{E} \check{e} \Rightarrow \tau \xrightarrow{\alpha} \check{e}' \Rightarrow \tau'$ and $\Gamma \vdash_{E} \check{e} \Rightarrow \tau \xrightarrow{\alpha} \check{e}'' \Rightarrow \tau''$, then $\check{e}' = \check{e}''$ and $\tau' = \tau''$.
- 3. If $\underline{\check{e}}$ WF and $\Gamma \vdash_{\underline{M}} \underline{\check{e}}^{\circ} \leftarrow \tau$ and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} * \underline{\check{e}}' \leftarrow \tau$ and $\Gamma \vdash \underline{\check{e}} \xrightarrow{\alpha} * \underline{\check{e}}'' \leftarrow \tau$, then $\underline{\check{e}}' = \underline{\check{e}}''$.

Constraint generation G

Here, we give the list of constraint-generating bidirectional typing rules under the marked lambda calculus for type hole inference, described in Section 4 of the paper.

MECHANIZATION ×

 $\tau \triangleright_{\rightarrow} \tau_1 \rightarrow \tau_2 \mid C \mid \tau$ has matched arrow type $\tau_1 \rightarrow \tau_2$ and generates constraints C

TMAHole-C
$$\frac{\text{TMAArr-C}}{?^{p} \triangleright_{\rightarrow} ?^{\rightarrow_{L}(p)} \rightarrow ?^{\rightarrow_{R}(p)} \mid \{?^{p} \approx ?^{\rightarrow_{L}(p)} \rightarrow ?^{\rightarrow_{R}(p)}\}}{\tau_{1} \rightarrow \tau_{2} \triangleright_{\rightarrow} \tau_{1} \rightarrow \tau_{2} \mid \{?^{p} \approx ?^{\rightarrow_{L}(p)} \rightarrow ?^{\rightarrow_{R}(p)}\}}$$

 $\tau_{\triangleright_{\times}}\tau_1 \times \tau_2 \mid C$ τ has matched binary product type $\tau_1 \times \tau_2$ and generates constraints C

TMPHole-C
$$\frac{\text{TMPProd-C}}{?^{p} \triangleright_{\times} ? \times ? \mid \{?^{p} \approx ?^{\times_{L}(p)} \times ?^{\times_{R}(p)}\}} \qquad \frac{\text{TMPProd-C}}{\tau_{1} \times \tau_{2} \triangleright_{\times} \tau_{1} \times \tau_{2} \mid \{\}}$$

 $\Gamma \vdash \check{e} \Rightarrow \tau \mid C \mid \check{e}$ synthesizes type τ and generates constraints C

$$\frac{\text{MSEHOLE-C}}{\Gamma \vdash (||)^u \Rightarrow ?^{exp(u)} \mid \{?^{exp(u)} \approx \text{etc}\}}$$

$$\frac{\text{MSVar-C}}{x : \tau \in \Gamma} \qquad \frac{\text{MSFree-C}}{\Gamma \vdash x \Rightarrow \tau \mid \{\}} \qquad \frac{x \notin \text{dom}(\Gamma)}{\Gamma \vdash (x)^{u}_{\square} \Rightarrow ?^{exp(u)} \mid \{?^{exp(u)} \approx \text{etc}\}} \qquad \frac{\text{MSLam-C}}{\Gamma, \ x : \tau \vdash \check{e} \Rightarrow \tau_{2} \mid C}$$

$$\frac{\Gamma \vdash \check{e}_1 \Rightarrow \tau \mid C_1 \qquad \tau_{\triangleright \rightarrow} \tau_1 \rightarrow \tau_2 \mid C_2 \qquad \Gamma \vdash \check{e}_2 \Leftarrow \tau_1 \mid C_3}{\Gamma \vdash \check{e}_1 \; \check{e}_2 \Rightarrow \tau_2 \mid C_1 \cup C_2 \cup C_3}$$

MSA_P2-C

$$\frac{\Gamma \vdash \check{e}_1 \Rightarrow \tau \mid C_1 \qquad \tau \blacktriangleright_{+} \qquad \Gamma \vdash \check{e}_2 \Leftarrow ?^{\rightarrow_L(exp(u))} \mid C_2}{\Gamma \vdash (\check{e}_1)_{+}^{\rightarrow_{+}} \quad \check{e}_2 \Rightarrow ?^{\rightarrow_R(exp(u))} \mid C_1 \cup C_2 \cup \{?^{exp(u)} \approx ?^{\rightarrow_L(exp(u))} \rightarrow ?^{\rightarrow_R(exp(u))}\}}$$

$$\frac{\text{MSNum-C}}{\Gamma \vdash \underline{n} \Rightarrow \text{num} \mid \{\}}$$

$$\frac{\Gamma \vdash \check{e}_{1} \leftarrow \operatorname{num} \mid C_{1}}{\Gamma \vdash \check{e}_{1} + \check{e}_{2} \Rightarrow \operatorname{num} \mid C_{1} \cup C_{2}} \qquad \frac{\operatorname{MSTrue-C}}{\Gamma \vdash \operatorname{tt} \Rightarrow \operatorname{bool} \mid \{\}} \qquad \frac{\operatorname{MSFalse-C}}{\Gamma \vdash \operatorname{ff} \Rightarrow \operatorname{bool} \mid \{\}}$$

$$\frac{\text{MSIF-C}}{\Gamma \vdash \check{e}_1 \leftarrow \text{bool} \mid C_1 \qquad \Gamma \vdash \check{e}_2 \Rightarrow \tau_1 \mid C_2 \qquad \Gamma \vdash \check{e}_3 \Rightarrow \tau_2 \mid C_3 }{\Gamma \vdash \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_1 \sqcup \tau_2 \mid C_1 \cup C_2 \cup C_3 \cup \{\tau_1 \approx \tau_2\} }$$

MSInconsistentBranches-C

$$\frac{\Gamma \vdash \check{e}_1 \Leftarrow \mathsf{bool} \mid C_1 \qquad \Gamma \vdash \check{e}_2 \Rightarrow \tau_1 \mid C_2 \qquad \Gamma \vdash \check{e}_3 \Rightarrow \tau_2 \mid C_3 \qquad \tau_1 \nsim \tau_2}{\Gamma \vdash (\mathsf{if} \; \check{e}_1 \; \mathsf{then} \; \check{e}_2 \; \mathsf{else} \; \check{e}_3)_{|I|}^{u} \Rightarrow ?^{exp(u)} \mid C_1 \cup C_2 \cup C_3 \cup \{\tau_1 \approx \tau_2, ?^{exp(u)} \approx \mathsf{etc}\}}$$

$$\frac{\text{MSPair-C}}{\Gamma \vdash \check{e}_{1} \Rightarrow \tau_{1} \mid C_{1}} \frac{\Gamma \vdash \check{e}_{2} \Rightarrow \tau_{2} \mid C_{2}}{\Gamma \vdash (\check{e}_{1}, \check{e}_{2}) \Rightarrow \tau_{1} \times \tau_{2} \mid C_{1}} \frac{\text{MSProjL1-C}}{\Gamma \vdash \check{e} \Rightarrow \tau \mid C_{1}} \frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C_{1}}{\Gamma \vdash \pi_{1}\check{e} \Rightarrow \tau_{1} \mid C_{1} \cup C_{3}}$$

MSProjL2-C

$$\Gamma \vdash \check{e} \Rightarrow \tau \mid C_1 \qquad \tau \triangleright_{\times} \tau_1 \times \tau_2 \mid C_1 \qquad \Gamma \vdash \check{e} \Rightarrow \tau \mid C_1 \qquad \Gamma$$

$$\Gamma \vdash \dot{e} \Rightarrow \tau \mid C \qquad \tau \triangleright$$

$$\Gamma \vdash \pi_2 \check{e} \Rightarrow \tau_2 \mid C_1 \cup C_2$$

 $\frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C_{1} \qquad \tau \blacktriangleright_{\times} \tau_{1} \times \tau_{2} \mid C_{2}}{\Gamma \vdash \pi_{2} \check{e} \Rightarrow \tau_{2} \mid C_{1} \cup C_{2}} \qquad \frac{\Gamma \vdash \check{e} \Rightarrow \tau \mid C \qquad \tau \blacktriangleright_{\times}}{\Gamma \vdash \pi_{1} (\![\check{e}\!]\!)^{\rightarrow, u}_{\rightarrow, u} \Rightarrow ?^{\times_{L}(exp(u))} \mid C \cup \{?^{exp(u)} \approx ?^{\times_{L}(exp(u))} \times ?^{\times_{R}(exp(u))}, ?^{exp(u)} \approx \text{etc}\}}$

MSProjR2-C

$$\Gamma \vdash \check{e} \Rightarrow \tau \mid C \qquad \tau \triangleright_{\mathsf{X}}$$

 $\Gamma \vdash \pi_2(|\check{e}|)^{-, u} \Rightarrow ?^{\times_R(exp(u))} \mid C \cup \{?^{exp(u)} \approx ?^{\times_L(exp(u))} \times ?^{\times_R(exp(u))}, ?^{exp(u)} \approx \text{etc}\}$

 $\Gamma \vdash \check{e} \leftarrow \tau \mid C \mid \check{e}$ analyzes against type τ and generates constraints C

MALAM1-C

$$\frac{\tau_{3} \triangleright_{\rightarrow} \tau_{1} \rightarrow \tau_{2} \mid C_{1}}{\Gamma \vdash \lambda x : \tau \cdot \check{e} \leftarrow \tau_{3} \mid C_{1} \cup C_{2} \cup \{\tau \approx \tau_{1}\}} \qquad \frac{\tau_{3} \triangleright_{\rightarrow} \Gamma_{1} \times \tau_{2} \mid C_{2}}{\tau_{3} \triangleright_{\rightarrow} \Gamma_{2} \mid C_{1} \cup C_{2} \cup \{\tau \approx \tau_{1}\}} \qquad \frac{\tau_{3} \triangleright_{\rightarrow} \Gamma_{1} \times \tau_{2} \mid C_{2} \cup \{\tau \approx \tau_{1}\}}{\Gamma \vdash (\lambda x : \tau \cdot \check{e})^{-1} \leftarrow \tau_{3} \mid C \cup \{\tau^{exp(u)} \approx \tau_{3}\}}$$

$$\tau_3 \blacktriangleright_{+} \qquad \Gamma, \ x : \tau \vdash \check{e} \leftarrow ?^{anon} \mid C$$

MALAM3-C

$$\tau_{3} \vdash_{\rightarrow} \tau_{1} \rightarrow \tau_{2} \mid C_{1} \qquad \tau \neq \tau_{1}$$

$$\Gamma, x : \tau \vdash \check{e} \leftarrow \tau_{2} \mid C_{2}$$

$$T \vdash \check{e}_{1} \leftarrow bool \mid C_{1} \qquad \Gamma \vdash \check{e}_{1} \leftarrow \tau \mid C_{2} \qquad \Gamma \vdash \check{e}_{2} \leftarrow \tau \mid C_{3}$$

$$\Gamma \vdash \check{e}_{1} \leftarrow bool \mid C_{1} \qquad \Gamma \vdash \check{e}_{2} \leftarrow \tau \mid C_{3} \mid C_{3} \mid C_{4} \mid C_{5} \mid C_{5}$$

 $\Gamma \vdash (\lambda x : \tau . \check{e})^u \leftarrow \tau_3 \mid C_1 \cup C_2 \cup \{?^{exp(u)} \approx \tau_3\}$

$$-\check{e}_1 \leftarrow \operatorname{bool} | C_1 \qquad \Gamma \vdash \check{e}_1$$

$$\Gamma \vdash \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \leftarrow \tau \mid C_1 \cup C_2 \cup C_3$$

MAPair1-C

$$\frac{\tau \Vdash_{\times} \tau_{1} \times \tau_{2} \mid C_{1} \qquad \Gamma \vdash \check{e}_{1} \Leftarrow \tau_{1} \mid C_{2} \qquad \Gamma \vdash \check{e}_{2} \Leftarrow \tau_{2} \mid C_{3}}{\Gamma \vdash (\check{e}_{1}, \check{e}_{2}) \Leftarrow \tau \mid C_{1} \cup C_{2} \cup C_{3}} \qquad \frac{\tau \Vdash_{\times} \qquad \Gamma \vdash \check{e}_{1} \Leftarrow ?^{anon} \mid C_{1} \qquad \Gamma \vdash \check{e}_{2} \Leftarrow ?^{anon} \mid C_{2}}{\Gamma \vdash ((\check{e}_{1}, \check{e}_{2})) \vdash_{\times} u \Leftarrow \tau \mid C_{1} \cup C_{2} \cup \{?^{exp(u)} \approx \tau\}}$$

MAPair2-C

$$\frac{\tau \blacktriangleright_{\times} \qquad \Gamma \vdash \check{e}_{1} \leftarrow ?^{anon} \mid C_{1} \qquad \Gamma \vdash \check{e}_{2} \leftarrow ?^{anon} \mid C_{2}}{\Gamma \vdash ((\check{e}_{1}, \check{e}_{2}))^{=, u} \leftarrow \tau \mid C_{1} \cup C_{2} \cup \{?^{exp(u)} \approx \tau\}}$$

MAInconsistentTypes-C

$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \not\sim \tau' \qquad \check{e} \text{ subsumable}}{\Gamma \vdash (\check{e})^{u} \leftarrow \tau \mid C \cup \{\tau \approx ?^{exp(u)}\}}$$

MASubsume-C

$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \sim \tau' \qquad \check{e} \text{ subsumable}}{\Gamma \vdash \check{e} \Leftarrow \tau \mid C \cup \{\tau \approx \tau'\}}$$