	Phys 772: Week 6 Tresday
¥	Loops and perturbation theory
	In Standard Model, only limited benefit without loop diagrams (Free-level). Need higher order loop diagrams for precision or for processes that cannot be described other-wise
	loop diagrams (Free-Coul). Need higher order
	los dianous for recision or for Moceses
	that councille described other-wise
	$CB1 \qquad \gamma_3 \qquad \gamma_4 \qquad \gamma_1 \vee_2 \qquad \gamma_3 \gamma_4$
	$\frac{1}{2}$
	Charged charged femions
	Thomps of themions
	NY Change
	1. I francis
	. /
	-> M = M ree-level + M one-loop + M two-loop +-
	- with browefully decreasing ellect
	- with hopsefully decreasing effect - without divergences
	Divergences must ultimately concel when full
	Divergences must ultimately cancel when full perturbative series with all diagrams is calculated for physical observables.
	calculated for physical observation.

Photon propagator with vacuum polarization vacuum polarisation 7/12 $\Lambda = \text{cut-off}$, $Z_3 = \left(1 - \frac{e_0}{12\pi i} \ln \frac{\Lambda^2}{n^2}\right)$ indeed directly - ignv e2 > - ignv e2 (Zz + e6 [[q2]) = - ignve² (| + e_o [[q²]) $= -i \frac{gr}{e^2} \left(\frac{1}{1 - \frac{e_0^2}{e_0^2}} \prod_{q^2} \frac{1}{1 - \frac{e_0^2}{e_0^2}} \prod_{q^2} \frac{1}{1 - \frac{e_0^2}{e_0^2}} \right)$ 2 - igrv (e² / 1 - e² TI(q²))

for TI(q²) in terms of e², m

without divergences

In QED:
$$\Lambda = \text{Plank scale}$$
, $10!$ GeV

$$\frac{7}{3} = 1 - \frac{1}{3} \ln \Lambda^{2} \qquad \left(\frac{10!}{41!}\right)^{2} \qquad \left(\frac{10!}{41!}\right)^{2} = \frac{10!}{3!} \ln \Lambda^{2} \qquad \left(\frac{10!}{41!}$$

x Renormalization group equation for QED $T(q^2)$ is correction due b one electron loop, ene logs two-loop $TT(q^2) = \frac{1}{12\pi^2} \ln \frac{0^2}{m^2}$ for $6^2 > 4m^2$ (above treshold) $\frac{e^{2}(Q^{2})}{1-e^{2}(Q_{0}^{2})} = \frac{e^{2}(Q_{0}^{2})}{1-e^{2}(Q_{0}^{2})} = \text{effective coupling}$ $\alpha (Q^{2}) = \frac{\alpha(Q^{2})}{1-\alpha(Q^{2})} \ln Q^{2}$ $\frac{1-\alpha(Q^{2})}{3\pi} Q_{0}^{2}$ 129: L' | Xo! lare coupling en 62 0 5 m à Mz. 1 high energy cut-eff

$$\frac{du(Q^{2})}{d\ln Q^{2}} = \beta(q^{2}) = \frac{1}{3\pi} x^{2}(Q^{2}) + O(x^{3})$$

$$qenerally: \beta(q^{2}) = 0! x^{2}(Q^{2}) + O(x^{3})$$

$$e.g. 3 \times \frac{qu}{3\pi}, 1 \times \frac{qu}{3\pi}$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| = \frac{1}{3\pi} \sum_{m \neq 0} (x \cdot q^{2})$$

$$|37| =$$

* Running coupling in QCD (langacker 5.4) $\alpha_{s} = \frac{9s}{4\pi} \rightarrow \alpha_{s} (\mathbb{Q}^{2})$ depends on scale \mathbb{Q}^{2} gluon vacuum polarization Jam + Jam de Jace mot in abelian QED $\frac{dg^{2}}{d\ln Q^{2}} = 4\pi \beta(g^{2}) \quad \text{or} \quad \frac{d\alpha}{d\ln Q^{2}} = \beta(\alpha) = b'\alpha^{2}(Q^{2}) \\
= b'\alpha'(Q^{2}) + O(g^{6}) \quad d\ln Q^{2} \quad + O(\alpha^{3})$ one-loop diagrams One-loop beta function is $V = -\frac{1}{3} \left(\frac{1!}{3} C_2(G) - \frac{G}{3} + \frac{1!}{3} \varphi_C - \frac{1}{6} \varphi_h \right)$ (2(5) = quadratic casimir = m far SU(n) = 0 for U(1)

QED:
$$b = -\frac{1}{(4\pi)^2} \left(-\frac{4}{3} \sum_{m_1 < Q}^2 \right) > 0$$
 $b^! = 4\pi b = \frac{1}{3\pi} \sum_{m_1 < Q}^2 \frac{1}{3m_1 < Q} = \frac{1}{3m_1 < Q} - 4\pi b \ln \frac{Q^2}{Q_0^2}$

QCD: $b = -\frac{1}{(4\pi)^2} \left(\frac{1!}{3m_1 < Q} + \frac{1}{3m_1 < Q^2} \right)$
 $b^! = 4\pi b = -\frac{1}{(2\pi)} \left(\frac{1!}{3m_2} - \frac{1}{3m_1 < Q^2} \right)$
 $M_1 = \text{planers}$
 $M_2 = 3, 4, 5$
 $M_2 = 3, 4, 5$
 $M_3 = 3, 4, 5$
 $M_4 =$

100-300 MeV Gamensional frommulation: do -> 00

