Цифровая обработка сигналов

Лекция №4

Санкт-Петербург 2020

Дискретные сигналы

Дискретный сигнал:

$$X_0, X_1, X_2, ..., X_{N-1}$$
 , (4.1)

как правило, получается при дискретизации аналогового (определенного во все моменты времени) сигнала $\mathit{S}(t)$.

Будем считать, что отсчеты x_k , k = 0,1,...,N-1 дискретного сигнала получены в результате равномерной дискретизации сигнала S(t) с шагом дискретизации, равным единице:

$$x_k = s(t_k), k = 0, 1, ..., N-1; t_k - t_{k-1} = T, k = 1, 2, ..., N-1; T = 1$$

Если на самом деле $t_k - t_{k-1} = \Delta t$, k = 1, 2, ..., N-1; и $\Delta t \neq 1$

то вводим в рассмотрение
$$\tilde{t}_k = \frac{(t_k - t_0)}{\Delta t}, k = 0, 1, ..., N-1$$

В результате получим: $\tilde{t}_k = k$; $s(\tilde{t}_k) = s(k\Delta t), k = 0,1,...,N-1$

Спектр дискретного сигнала

Представим дискретный сигнал в виде функции от времени: $\underline{\infty}$

$$s(t) = \sum_{k = -\infty} x_k \delta(t - k). \tag{4.2}$$

Тогда, пользуясь свойствами преобразования Фурье, спектр дискретного сигнала можно представить в виде периодической функции с периодом, равным 2π :

$$S(\omega) = \sum_{k=-\infty}^{\infty} x_k e^{-i\omega k}, \qquad (4.3)$$

Спектр дискретного сигнала

С другой стороны, представим дискретный сигнал в виде:

$$s_d(t) = \sum_{n=0}^{\infty} s(t)\delta(t - kT)$$
 (4.4)

s(t) за знак суммы: ∞ Вынесем

а знак суммы:
$$\infty$$

$$S_d(t) = S(t) \sum_{k=-\infty}^{\infty} \delta(t - kT) \tag{4.5}$$

Сумма в (4.5) может быть представлена комплексным рядом Фурье:

$$\sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{\infty} c_k e^{i\omega_k t}$$

где:
$$\omega_{k} = \frac{2\pi k}{T} \qquad ; \quad c_{k} = \frac{1}{T} \int_{-\frac{T}{T}}^{\frac{T}{2}} \delta(t) e^{-i\omega_{k}t} dt = \frac{1}{T}$$

Спектр дискретного сигнала

Таким образом дискретный сигнал может быть записан в виде:

$$s_d(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} s(t) e^{i\omega_k t}$$
, (4.6)

а его спектр:

 $-\omega_{n}$

а его спектр:
$$S_{d}(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} S\left(\omega - \frac{2\pi k}{T}\right) \tag{4.7}$$

 $\omega_n/2$

 ω_n

Расстояние между копиями равно $2\pi/T$

 $-\omega_a/2$

Теорема. Сигнал s(t), не содержащий гармоник с частотами, превышающими некоторого значения $\hat{\omega} = 2\pi \hat{f}$,

может быть представлен без потери информации своими дискретными отсчетами $\mathit{S}(kT)$, взятыми с интервалом T ,

удовлетворяющим условию:

$$T \le \frac{1}{2\hat{f}} = \frac{\pi}{\hat{\omega}} \tag{4.8}$$

Восстановление исходного сигнала осуществляется по

формуле:

$$s(t) = \sum_{k=-\infty}^{\infty} s(kT) \frac{\sin\left(\pi \frac{t - kT}{T}\right)}{\left(\pi \frac{t - kT}{T}\right)}$$
(4.9)

Формула (4.9) представляет собой разложение S(t) в ряд по системе функций

$$\varphi_{k}(t) = \frac{\sin\left(\pi \frac{t - kT}{T}\right)}{\left(\pi \frac{t - kT}{T}\right)},$$
(4,10)

называемой базисом Котельникова.

Рис. Восстановление сигнала по его дискретным отсчетам

Рис. Сигнал с ограниченным спектром, содержащий фрагмент с колебанием высокой частоты

Дискретное преобразование Фурье

Пусть последовательность отсчетов $\{x_k\}$ является периодической с периодом N :

$$x_{k+N} = x_k \ \forall k$$
.

Рассмотрим фрагмент последовательности из N отсчетов.

Например,
$$\{x_k : k = 0, 1, 2, ..., N-1\}$$
. Тогда дискретная функция

$$s(t) = \sum_{k=-\infty}^{\infty} x_k \delta(t - kT)$$
 (4.11)

тоже будет периодической, с периодом NT . Здесь T - период дискретизации

Спектр s(t) также должен периодическим (с периодом $\frac{2\pi}{T}$) и дискретным с расстоянием между гармониками $\frac{2\pi}{NT}$

Дискретное преобразование Фурье

Поскольку s(t) периодическая функция, ее можно разложить в ряд Фурье, коэффициенты которого вычисляются по формуле:

$$X(n) = \frac{1}{NT} \int_{0}^{NT} s(t)e^{-i\omega_{n}t}dt ,$$

или после преобразований:

$$X(n) = \frac{1}{NT} \sum_{k=0}^{N-1} x_k e^{-i\frac{2\pi nk}{N}}$$
(4.12)

Дискретное преобразование Фурье

После удаления в (4.12) множителя перед суммой, получим:

$$X(n) = \sum_{k=0}^{N-1} x_k e^{-i\frac{2\pi n}{N}k}, n = 0, 1, 2, ..., N-1$$
 (4.13)

Выражение (4.13) называют дискретным преобразованием Фурье (ДПФ).

Обратное дискретное преобразование Фурье (ОДПФ) запишется в виде:

$$x_{k} = \frac{1}{N} \sum_{n=0}^{N-1} X(n) e^{i\frac{2\pi k}{N}n}, k = 0, 1, 2, ..., N-1 \quad (4.14)$$

Пусть $\{x(k)\}$, $\{y(k)\}$ дискретные последовательности с периодом N и

ДПФ
$$\{x(k)\}=\{X(n)\}$$
, а ДПФ $\{y(k)\}=\{Y(n)\}$

1. Линейность:

ДПФ
$$\left[\alpha\left\{x(k)\right\}+\beta\left\{y(k)\right\}\right]=\alpha\left\{X(n)\right\}+\beta\left\{Y(n)\right\}$$

2. Задержка:

2. Задержка:
$$\{z(k)\} = \{x(k-1)\} \Rightarrow \{Z(n)\} = \{X(n) \exp\left(-i\frac{2\pi n}{N}\right)\}$$
 Здесь $z(0) = x(-1) = x(N-1)$

3. Симметрия: $X(N-n) = X(-n) = X^*(n)$

Имеет место для вещественного сигнала.

4. ДПФ произведения:

$$z(k) = x(k) \cdot y(k), k = 0, 1, 2, ..., N-1$$

$$Z(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)Y(n-k), n = 0, 1, 2, ..., N-1 \quad (4.15)$$

Свертка в выражении (4.15) является круговой сверткой и отличается от линейной свертки тем, что в круговой свертке используется периодичность $\{Y(k)\}$ в случае, когда значение k выходит за пределы диапазона 0...N-1.

Другими словами, в этом случае используется равенство:

$$Y(k) = Y(k \pm N)$$

5. Матрица ДПФ: $X=A_{Д\Pi\Phi}x$

	(1)	1	1	1	•••	1
$A_{J\Pi\Phi}=$	1	$e^{-i\frac{2\pi}{N}}$	$e^{-i\frac{4\pi}{N}}$	$e^{-i\frac{6\pi}{N}}$	•••	$e^{-i\frac{2\pi}{N}(N-1)}$
	1	$e^{-i\frac{4\pi}{N}}$	$e^{-i\frac{8\pi}{N}}$	$e^{-i\frac{12\pi}{N}}$	•••	$e^{-i\frac{2\pi}{N}2(N-1)}$
	1	$e^{-i\frac{6\pi}{N}}$	$e^{-i\frac{12\pi}{N}}$	$e^{-i\frac{18\pi}{N}}$	•••	$e^{-i\frac{2\pi}{N}3(N-1)}$
	•	•	•	•	•••	•
	1	$e^{-i\frac{2\pi}{N}(N-1)}$	$e^{-i\frac{2\pi}{N}2(N-1)}$	$e^{-i\frac{2\pi}{N}3(N-1)}$	•••	$e^{-i\frac{2\pi}{N}(N-1)^2}$

6. Спектр дискретного сигнала определяется формулой (4.3).

$$S(\omega) = \sum_{k=-\infty}^{\infty} x_k e^{-i\omega k}$$

Из сравнения этой формулы с формулой ДПФ

$$X(n) = \sum_{k=0}^{N-1} x_k e^{-i\frac{2\pi n}{N}k}, n = 0, 1, 2, ..., N-1$$

следует, что ДПФ вычисляет дискретные отсчеты спектра дискретного сигнада:

$$X(n) = S\left(\frac{2\pi n}{N}\right) = S\left(\omega_d \frac{n}{N}\right), T = 1 \tag{4.16}$$

7. Из формулы (4.16) следует, что, дополняя $\{x_k\}$ нулями (что не меняет спектра) можно увеличить «спектральную разрешающую» способность ДПФ

Прореживание по времени. Пусть N – четное число.

$$X(n) = \sum_{k=0}^{\frac{N}{2}-1} x_{2k} e^{-i\frac{2\pi n}{N}2k} + \sum_{k=0}^{\frac{N}{2}-1} x_{2k+1} e^{-i\frac{2\pi n}{N}(2k+1)}$$

Обозначим
$$\{y(k)\} = \{x(2k)\}$$
и $\{z(k)\} = \{x(2k+1)\}$

$$X(n) = \sum_{k=0}^{\frac{N}{2}-1} y_k e^{-i\frac{2\pi n}{(N/2)}k} + e^{-i\frac{2\pi n}{N}} \sum_{k=0}^{\frac{N}{2}-1} z_k e^{-i\frac{2\pi n}{(N/2)}k}$$

В результате:

$$X(n) = Y(n) + e^{-i\frac{2\pi n}{N}}Z(n)$$
 (4.17)

Последовательности $\{y(k)\}$ и $\{z(k)\}$ размерности N/2, поэтому формулу (4.17) можно использовать только при $0 \le n < N/2$. При $(N/2) \le n < N$ следует

 $Y\left(n+\frac{N}{2}\right)=Y(n);\ Z\left(n+\frac{N}{2}\right)=Z(n)$

воспользоваться периодичностью ДПФ:

В результате при
$$(N/2) \le n < N$$
 формула (4.17) примет

вид: $X(n) = Y \left(n - \frac{N}{2} \right) - e^{-i\frac{2\pi}{N} \left(n - \frac{N}{2} \right)} Z \left(n - \frac{N}{2} \right)$ (4.18) В результате получаем

N(N+1)/2 вместо N^2 вычислительных операций. При $N = 2^k$ можно ограничиться $N \log_2 N$ операциями.

Вычисление 8-точечного ДПФ с помощью 2-х

«Бабочка» условное изображение «Бабочка» структурная схема

Разработаны также схемы БДПФ с прореживанием по частоте.

Дискретное преобразование Фурье растекание спектра

Пусть анализируется дискретная последовательность $\{x(k)\}$, для которой $x(0) \neq x(N-1)$. Из-за **периодичности** последовательности имеет место «расширение» спектра. Например, $x(k) = \cos\left(\omega kt + \varphi\right), k = 0,1,2,...,N.-1$ Если $N\omega T/2\pi$ - целое число, то ДПФ дискретного сигнала x(k) содержит только два отличных от нуля отсчета:

$$X(n) = egin{cases} rac{N}{2}e^{iarphi}, & n = rac{\omega T}{2\pi}N \ rac{N}{2}e^{-iarphi}, & n = \left(1 - rac{\omega T}{2\pi}
ight)N \ 0, \ ext{в остальных случаях} \end{cases}$$

Дискретное преобразование Фурье растекание спектра

Графическая иллюстрация «растекания» спектра дискретизированного гармонического сигнала в случае,

когда $N\omega T/2\pi \neq$ целому числу. Здесь N=16.

Дискретное преобразование Фурье растекание спектра

Графическая иллюстрация «растекания» спектра когда

 $N\omega T/2\pi$ ≠ целому числу. Здесь N=16.

Существуют и другие трактовки «растекания» спектра, вычисляемого ДПФ.

Линейная и круговая свертки

Имеем две последовательности $\{x_1(k)\}$ и $\{x_2(k)\}$ Линейная свертка:

$$y(k) = \sum_{m=0}^{N-1} x_1(m) x_2(k-m)$$

Круговая свертка:

$$y(k) = \sum_{m=0}^{N-1} x_1(m) x_2 ((k-m) \mod N)$$

Линейная и круговая свертки

$$x_1: (1,2,4,8); x_2: (2,3,4,5)$$

Линейная свертка:

 $y_0 = 1 \cdot 2 = 2;$

 $y_1 = 1 \cdot 3 + 2 \cdot 2 = 7;$

 $y_2 = 1 \cdot 4 + 2 \cdot 3 + 4 \cdot 2 = 18;$

 $y_3 = 1 \cdot 5 + 2 \cdot 4 + 4 \cdot 3 + 8 \cdot 2 = 41;$

 $y_4 = 2 \cdot 5 + 4 \cdot 4 + 8 \cdot 3 = 50;$ $y_5 = 4 \cdot 5 + 8 \cdot 4 = 52;$

 $y_6 = 8 \cdot 5 = 40.$

Результат:

(2,7,18,41,50,52,40)

Круговая свертка:

 $y_0 = 1 \cdot 2 + 2 \cdot 5 + 4 \cdot 4 + 8 \cdot 3 = 52;$

 $y_1 = 1 \cdot 3 + 2 \cdot 2 + 4 \cdot 5 + 8 \cdot 4 = 59;$

 $y_2 = 1 \cdot 4 + 2 \cdot 3 + 4 \cdot 2 + 8 \cdot 5 = 58;$

 $y_3 = 1 \cdot 5 + 2 \cdot 4 + 4 \cdot 3 + 8 \cdot 2 = 41.$

Результат:

(52,59,58,41)

Линейная и круговая свертки

$$x_1: (1,2,4,8); x_2: (2,3,4,5)$$

В матричной форме

Линейная свертка

Круговая свертка

Круговая свертка

$$x_1: (1,2,4,8,0,0,0); x_2: (2,3,4,5,0,0,0)$$

Круговая свертка:

$$y_0 = 1 \cdot 2 = 2;$$

 $y_1 = 1 \cdot 3 + 2 \cdot 2 = 7;$
 $y_2 = 1 \cdot 4 + 2 \cdot 3 + 4 \cdot 2 = 18;$
 $y_3 = 1 \cdot 5 + 2 \cdot 4 + 4 \cdot 3 + 8 \cdot 2 = 41;$
 $y_4 = 2 \cdot 5 + 4 \cdot 4 + 8 \cdot 3 = 50;$
 $y_5 = 4 \cdot 5 + 8 \cdot 4 = 52;$
 $y_6 = 8 \cdot 5 = 40.$

Результат:

(2,7,18,41,50,52,40)

Круговая свертка

$$x_1: (1,2,4,8,0,0,0); x_2: (2,3,4,5,0,0,0)$$

Круговая свертка в матричной форме:

$$\begin{pmatrix}
2 & 0 & 0 & 0 & 5 & 4 & 3 \\
3 & 2 & 0 & 0 & 0 & 5 & 4 \\
4 & 3 & 2 & 0 & 0 & 0 & 5 \\
5 & 4 & 3 & 2 & 0 & 0 & 0 \\
0 & 5 & 4 & 3 & 2 & 0 & 0 \\
0 & 0 & 5 & 4 & 3 & 2 & 0 \\
0 & 0 & 5 & 4 & 3 & 2
\end{pmatrix}
\begin{pmatrix}
1 \\ 2 \\ 7 \\ 18 \\ 8 \\ = \begin{pmatrix}
41 \\ 50 \\ 52 \\ 40
\end{pmatrix}$$