DISCIPLINA: Álgebra Linear I Professor: José Luiz Neto

Espaço Vetorial

Atenção! Prepare-se para fazer muitas contas. Conviver com mais de uma resposta. Fazer muitos " mostre que". Notação também é um grande problema.

1. Nenhum subconjunto de $V=\mathbb{R}^3$ abaixo $\underline{\acute{e}}$ subespaço vetorial. Apresente $\underline{\text{uma}}$ justificativa para cada um.

a)
$$A = \{(x, y, z) \in \mathbb{R}^3 / |x| + 2y - z = 0\}$$

b)
$$B = \{(x, y, z) \in \mathbb{R}^3 / z = 1\}$$

c)
$$C = \{(x, y, z) \in \mathbb{R}^3 / x^2 + 2y - z = 0\}$$

d)
$$D = \{(x, y, z) \in \mathbb{R}^3 / x \le y \le z\}$$

e)
$$E = \{(x, y, z) \in \mathbb{R}^3 / (y + z) \in \mathbb{Q}\}$$

- **2.** Mostre que $W = \{(x, y, z) \in \mathbb{R}^3 / x y + 2z = 0\}$ é um subespaço vetorial do \mathbb{R}^3 .
- **3.** Sejam $V = \mathbb{R}^3$, E = [(1, 1, 1), (1, 2, 2)] e F = [(0, -1, 1), (1, 1, 2)] subespaços de V. Determine a dimensão de:

a)
$$E+F$$

b)
$$E \cap F$$

- **4.** Sejam $V = \mathbb{R}^4$, $W_1 = \{(x, y, z, t) \in \mathbb{R}^4 / x + y = 0 \text{ e } z t = 0\}$ e $W_2 = \{(x, y, z, t) \in \mathbb{R}^4 / x y z + t = 0\}$ subespaços de V.
 - a) Encontre $W_1 \cap W_2$
 - b) Escreva uma base para $W_1 \cap W_2$
 - c) Encontre uma base para $W_1 + W_2$
 - d) $W_1 + W_2 = \mathbb{R}^4$? Justifique!
 - e) $W_1 + W_2$ é soma direta? Justifique!

- **5.** Sejam $V = \mathbb{R}^3$, $W_1 = \{(x, y, z) \in \mathbb{R}^3 / x = 0\}$, $W_2 = \{(x, y, z) \in \mathbb{R}^3 / y 2z = 0\}$ e $W_3 = [(1, 1, 0), (0, 0, 1)]$ subespaços de V. Determine a dimensão de:
 - **a)** $W_1, W_2 \in W_3$
 - **b)** $W_1 \cap W_2$
 - c) $W_2 + W_3$
 - **d)** $W_1 + W_2 + W_3$
 - e) $W_1 + W_2$ é soma direta? Justifique!
- **6.** Obtenha um subespaço W_2 de \mathbb{R}^3 tal que dim $W_2=2$ e $W_1\oplus W_2$ se $W_1=\{(x,y,z)\in\mathbb{R}^3/x+z=0\ \text{e}\ y=z\}$.
- 7. Verifique se $\beta = \{x^2 + 1, x 1, x^2 2x\}$ é base de $V = P_2(\mathbb{R})$.
- 8. Sejam $V=\mathbb{R}^3,~\beta=\{e_1,e_2,e_3\}$, e $~\alpha=\{g_1,g_2,g_3\}~$ duas bases ordenadas de V, relacionadas da seguinte forma:

$$\begin{cases} g_1 &= e_1 - e_2 - e_3 \\ g_2 &= 2e_2 + 3e_3 \\ g_3 &= 3e_1 + e_3 \end{cases}$$
. Determine:

- $\mathbf{a)} \ [I]^{\alpha}_{\beta} \ \mathbf{e} \ [I]^{\beta}_{\alpha}$
- **b)** $[v]_{\alpha}$, sabendo-se que $[v]_{\beta} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- **9.** Mostre que o subconjunto $A = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \right\}$ é uma base de $V = M_{2\times 2}\left(\mathbb{R}\right)$.

RESPOSTAS: Espaço Vetorial

- **1.** a) $|x| + |a| \ge |x + a|$.
 - **b)** $(0,0,0) \notin B$.
 - **c)** $x^2 + a^2 \neq (x+a)^2$.
 - **d)** Se k < 0 e u = (1, 2, 3) então $ku \notin D$.
 - e) Se $k = \sqrt{2}$ e $u = (\pi, 2, 3)$ então $ku \notin E$.
- **2.** Dica. Mostre que: (i) $(0,0,0) \in W$; (ii) $\forall u,v \in W \Longrightarrow (u+v) \in W$; (iii) $\forall k \in \mathbb{R} \text{ e } \forall v \in W \Longrightarrow (kv) \in W$.
- **3.** a) dim (E + F) = 3.
 - **b)** dim $(E \cap F) = 1$.
- **4.** a) $W_1 \cap W_2 = [(0,0,1,1)]$.
 - **b)** $\beta_{W_1 \cap W_2} = \{(0, 0, 1, 1)\}.$
 - **c)** $\beta_{W_1+W_2} = \{(1, -1, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1)\}.$
 - **d)** Sim. dim $(W_1 + W_2) = 4$.
 - e) Não. dim $(W_1 \cap W_2) = 1 \neq 0$.
- **5.** a) $\dim(W_1) = \dim(W_2) = \dim(W_3) = 2$.
 - **b)** dim $(W_1 \cap W_2) = 1$.
 - **c)** dim $(W_2 + W_3) = 3$.
 - **d)** dim $(W_1 + W_2 + W_3) = 3$.
 - **e)** Não. dim $(W_1 \cap W_2) = 1 \neq 0$.
- **6.** $W_2 = [(0,1,0),(0,0,1)]$.
- 7. Dica. Resolvendo o sistema homogêneo $0x^2 + 0x + 0 = a(x^2 + 1) + b(x 1) + c(x^2 2x)$ conclua que a = b = c = 0. Logo β é L.I.
- **8. a)** $[I]^{\alpha}_{\beta} = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & 3 & 1 \end{pmatrix}$ e $[I]^{\beta}_{\alpha} = \begin{pmatrix} -2 & -9 & 6 \\ -1 & -4 & 3 \\ 1 & 3 & -2 \end{pmatrix}$
 - **b)** $[v]_{\alpha} = [I]_{\alpha}^{\beta} [v]_{\beta} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$.
- $\mathbf{9.} \ \, \text{Dica.} \, \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right) \Longleftrightarrow \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right) \Longleftrightarrow \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right).$